

Telephone: 859-226-1000 Facsimile: 859-226-1040 www.intertek-etlsemko.com

TEST REPORT

Report Number: 100252351LEX-001

Project Number: G100252351

Report Issue Date: 11/20/2010

Product Name: IBot Model Number: 3804007

FCCID: VDM3804007 ICID: 7175A-3804007

Standards: Title 47 CFR Part 15 Subpart B and C, RSS-210

Issue 7 and RSS-Gen Issue 2

Tested by: Intertek Testing Services NA, Inc. 731 Enterprise Drive Lexington, KY 40510 Client: Opex Corporation 305 Commerce Drive Moorestown, NJ 08057

Report prepared by

Bryan Taylor, Team Leader

Report reviewed by

Jason Centers, Senior Project Engineer

Paraock Hotsel

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Report Number: 100252351LEX-001 Issued: 11/20/2010

TABLE OF CONTENTS

1	Introduction and Conclusion	3
2	Test Summary	3
3	Description of Equipment Under Test	4
4	Radiated Emissions (Transmitter)	6
5	Radiated Emissions (Receiver)	. 14
6	AC Powerline Conducted Emissions	. 16
7	Antenna Requirement per FCC Part 15.203	.21
8	RF Exposure Requirements (MPE Calculations)	. 22
9	Measurement Uncertainty	. 23
10	Revision History	.24

1 Introduction and Conclusion

The tests indicated in section 2 were performed on the product constructed as described in section 3. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test method, a list of the actual test equipment used, documentation photos, results and raw data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested complied with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

The INTERTEK-Lexington is located at 731 Enterprise Drive, Lexington Kentucky, 40510. The radiated emission test site is a 10-meter semi-anechoic chamber. The chamber meets the characteristics of CISPR 16-1 and ANSI C63.4. For measurements, a remotely controlled flush-mount metal-top turntable is used to rotate the EUT a full 360 degrees. A remote controlled non-conductive antenna mast is used to scan the antenna height from one to four meters. The test site is listed with the FCC under registration number 485103. The test site is listed with Industry Canada under site number IC 2042M-1.

2 Test Summary

Page	Test full name	e FCC Reference		Result
6	Radiated Emissions (Transmitter)	Radiated Emissions (Transmitter) § 15.249(a)		Pass
14	Radiated Emissions (Receiver)	§ 15.109	RSS-Gen (7.2.3)	Pass
16	AC Powerline Conducted Emissions	§ 15.107, § 15.207	RSS-Gen (7.2.2)	Pass
21	Antenna Requirement per FCC Part 15.203	§ 15.203	RSS-Gen (7.1.4)	Pass
22	RF Exposure Requirements (MPE Calculations)	§ 15.247(b)(5), § 1.1310	RSP100 (4)	Pass

3 Description of Equipment Under Test

Equipm	Equipment Under Test					
Manufacturer	Opex Corporation					
Model Number	3804007					
Serial Number	Prototype 88018					
FCC Identifier	VDM3804007					
IC Identifier	7175A-3804007					
Receive Date	11/15/2010					
Test Start Date	11/15/2010					
Test End Date	11/18/2010					
Device Received Condition	Good					
Test Sample Type	Pre-production					
Frequency Band	2405-2480MHz					
Modulation Type	QPSK					
Transmission Control	Test Commands (Hyperterminal)					
Test Channels	0, 7, 15					
Antenna Type (15.203)	PCB					

Description of Equipment Under Test

The IBot is a small radio controlled robotic vehicle which runs in a track system as part of a larger automated sorting machine.

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	Transmitting on channels 0, 7, or 15
2	Receive / idle mode

3.1 System setup including cable interconnection details, support equipment and simplified block diagram

3.2 EUT Block Diagram:

3.3 Cables:

Cables							
Description	escription Length Shielding Ferrites Connection						
Description	Length Shielding		remiles	From	То		
DC Input Cable	40ft	None	None	DC Power Supply	Test Sample		
Serial Cable	40ft	None	None	Laptop	Test Sample		

3.4 Support Equipment:

Support Equipment								
Description Manufacturer Model Number Serial Number								
Laptop Computer	Compaq	N410c	Lab 1					
Power Supply	Astec	MP1-3R-3R-30	0820E398					

4 Radiated Emissions (Transmitter)

4.1 Test Limits

§ 15.249(a): Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Part 15.249: Field Strength Limits

Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
902–928 MHz	50	500
2400 – 2483.5MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

Part 15.205(a): Restricted Bands of Operations

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5–5.15
1 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735–2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215–6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775–6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41.			1155

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

Part 15.209(a): Field Strength Limits for Restricted Bands of Operation

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)		
0.009 - 0.490	2,400 / F (kHz)	300		
0.490 - 1.705	24,000 / F (kHz)	30		
1.705 - 30.0	30	30		
30 – 88	100	3		
88 - 216	150	3		
216 - 960	200	3		
Above 960	500	3		

EMC Report for Opex Corporation on the IBot FCCID:VDM3804007; ICID:7175A-3804007

²Above 38.6

4.2 Test Procedure

ANSI C63.10: 2003 and KDB Publication No. 558074: Guidance on Measurements for Digital Transmission Systems (47 CFR 15.249)

4.3 Example of Field Strength Calculation Method:

The measured field strength was calculated by summing the readings taken from the spectrum analyzer with the appropriate correction factors associated with the antenna losses and cable losses. The calculation formula and sample calculations are listed below:

Formula:

FS = RA + AF + CF

 $FS = Field Strength in dB\mu V/m$

 $RA = Receiver Amplitude in dB\mu V$

AF = Antenna Factor in dB

CF = Cable Attenuation Factor in dB (Including preamplifier and filter attenuation)

Example Calculation:

 $RA = 19.48 dB\mu V$

 $AF = 18.52 \, dB$

CF = 0.78 dB

 $FS = 19.48 + 18.52 + 0.78 = 38.78 \, dB\mu V/m$

Level in $\mu V/m = Common Antilogarithm [(38.78 dB<math>\mu V/m)/20] = 86.89 \mu V/m$

4.4 Test Equipment Used:

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due				
EMI Test Receiver	10887490.26	Rohde & Schwarz	ESI26	6/29/2010	6/29/2011				
Preamplifier	987410	Miteq	AFS44- 00102000-30- 10P-44	6/17/2010	6/17/2011				
Preamplifier	SF456200904	Mini-Circuits	ZX60-3018G-S+	2/12/2010	2/12/2011				
Biconnilog Antenna	00051864	ETS	3142C	12/21/2009	12/21/2010				
Horn Antenna	6556	ETS	3115	8/9/2010	8/9/2011				
System Controller	121701-1	Sunol Sciences	SC99V	Time of Use	Time of Use				
High Pass Filter	3986-01 DC0408	Microwave Circuits, Inc.	H3G020G2	2/10/2010	2/10/2011				

EMC Report for Opex Corporation on the IBot FCCID:VDM3804007; ICID:7175A-3804007

4.5 Results:

All emissions from the fundamental and harmonics were below the field strength limits of Part 15.249(a). Additionally, all emissions falling within restricted bands of operation and at the band edges were found to be below the limit specified in Part 15.209(a). The spurious emissions listed in the following tables are the worst case emissions.

Worst Case Fundamental Measurements

TX Channel	Frequency	Polarity		Corr. Avg Reading. (dBuV/m)	Limit	Avg. Limit (dBuV/m)	Results	Comments
Low	2.4055 GHz	V	87.71	80.93	114	94	Compliant	Fundamental
Low	2.4045 GHz	Н	92.48	77.718	114	94	Compliant	Fundamental
Middle	2.4405 GHz	٧	87.786	78.056	114	94	Compliant	Fundamental
Middle	2.4396 GHz	Η	90.803	80.643	114	94	Compliant	Fundamental
High	2.4796 GHz	V	89.196	78.616	114	94	Compliant	Fundamental
High	2.4806 GHz	Η	93.76	77.79	114	94	Compliant	Fundamental

Worst Case Spurious Measurements (1 – 18GHz)

			шее ерени		(1 - 100112	<u> </u>	
TX Channel	Spurious Frequency	Polarity	Corr. Peak Reading. (dBuV/m)	Corr. Avg Reading. (dBuV/m)	Limit	Avg. Limit (dBuV/m)	Results	Comments
	,	,	(0.2.0.1111)	(0.2 0.1)	((Restricted
Low	4.8091 GHz	V	51.915	37.205	74	54	Compliant	Band
								Restricted
Low	7.2137 GHz	V	51.043	37.773	74	54	Compliant	Band
							-	Restricted
Low	4.809 GHz	Н	48.839	35.989	74	54	Compliant	Band
							•	Restricted
Low	7.2137 GHz	Н	51.803	38.983	74	54	Compliant	Band
								Restricted
Mid	4.8791 GHz	V	47.562	36.332	74	54	Compliant	Band
								Restricted
Mid	7.3186 GHz	V	53.311	39.521	74	54	Compliant	Band
								Restricted
Mid	4.8791 GHz	H	48.563	35.933	74	54	Compliant	Band
							_	Restricted
Mid	7.3189 GHz	Н	50.846	37.896	74	54	Compliant	Band
								Restricted
High	4.959 GHz	V	50.843	37.843	74	54	Compliant	Band
								Restricted
High	7.4417 GHz	V	53.406	39.106	74	54	Compliant	Band
			_	_	_			Restricted
High	4.959 GHz	Н	48.522	35.222	74	54	Compliant	Band
			_	_	_			Restricted
High	7.4387 GHz	Н	51.92	38.85	74	54	Compliant	Band

Report Number: 100252351LEX-001 Issued: 11/20/2010

Worst Case Spurious Measurements (30MHz - 1GHz)

TX Channel	Spurious Frequency	Polarity	Corr. QP Reading. (dBuV/m)	QP Limit (dBuV/m)	Results	Comments
Low	98.102 MHz	V	31.73	43.52	Compliant	QP Detector
Low	217.49 MHz	V	29.68	46.02	Compliant	QP Detector
Low	226.2 MHz	V	35.61	46.02	Compliant	QP Detector
Low	215.2 MHz	Н	36.44	43.52	Compliant	QP Detector
Low	223.8 MHz	Н	41.16	46.02	Compliant	QP Detector
Low	245.0 MHz	Н	32.87	46.02	Compliant	QP Detector
Mid	222.71 MHz	V	34.4	46.02	Compliant	QP Detector
Mid	222.7 MHz	Н	40.12	46.02	Compliant	QP Detector
High	222.91 MHz	V	36.08	46.02	Compliant	QP Detector
High	222.9 MHz	Н	35.52	46.02	Compliant	QP Detector

Band Edge Emissions

Channel	Freq (GHz)	Pol	Corr. Peak Reading. (dBuV/m)	Corr. Avg Reading. (dBuV/m)	Peak Limit (dBuV/m)	Avg. Limit (dBuV/m)	Results	Comments
Low	2.389GHz	Н	57.8	43.63	74	54	Compliant	Low Band Edge
High	2.4835GHz	Н	73.09	51.15	74	54	Compliant	High Band Edge

EMC Report for Opex Corporation on the IBot FCCID:VDM3804007; ICID:7175A-3804007

Low Channel Band Edge Emissions (Peak Detection)

Low Channel Band Edge Emissions (Average Detection)

High Channel Band Edge Emissions (Peak Detection)

High Channel Band Edge Emissions (Average Detection)

5 Radiated Emissions (Receiver)

5.1 Test Limits

§ 15.109: Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of emission (MHz)	Field strength (microvolts/meter)	Field strength (dBuV/m)		
30–88	100	40		
88–216	150	43.5		
216–960	200	46		
Above 960	500	54		

5.2 Test Procedure

ANSI C63.4: 2003

5.3 Example of Field Strength Calculation Method:

The measured field strength was calculated by summing the readings taken from the spectrum analyzer with the appropriate correction factors associated with the antenna losses and cable losses. The calculation formula and sample calculations are listed below:

Formula:

FS = RA + AF + CF

 $FS = Field Strength in dB\mu V/m$

 $RA = Receiver Amplitude in dB\mu V$

AF = Antenna Factor in dB

CF = Cable Attenuation Factor in dB (Including preamplifier and filter attenuation)

Example Calculation:

 $RA = 19.48 dB\mu V$

AF = 18.52 dB

CF = 0.78 dB

 $FS = 19.48 + 18.52 + 0.78 = 38.78 dB\mu V/m$

Level in μ V/m = Common Antilogarithm [(38.78 dB μ V/m)/20] = 86.89 μ V/m

5.4 Test Equipment Used:

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
EMI Test Receiver	10887490.26	Rohde & Schwarz	ESI26	6/29/2010	6/29/2011
Preamplifier	987410	Miteq	AFS44- 00102000-30- 10P-44	6/17/2010	6/17/2011
Preamplifier	SF456200904	Mini-Circuits	ZX60-3018G-S+	2/12/2010	2/12/2011
Biconnilog Antenna	00051864	ETS	3142C	12/21/2009	12/21/2010
Horn Antenna	6556	ETS	3115	8/9/2010	8/9/2011
System Controller	121701-1	Sunol Sciences	SC99V	Time of Use	Time of Use

5.5 Results:

All spurious emissions with the test sample in receive mode were below the limits specified in Part 15.109 for a class B digital device.

				R	adiated Emi	issions				
Test Engineer:	Bryan Tayl	or	Start Date:	11/18/2010		End Date:	11/18/2010			
Temperature:	23.2C		Humidity:	43.40%		Pressure:	989.3mBar			
Specification: Notes:	FCC Part 1	15B	Test Limit:	Class B						
Α	В	С	D	E	F	G	Н		J	K
Frequency	Polarity (H/V)	Raw Reading (dBuV)	Cab. (dB)	Ant. (dB)	Corr. Reading. (dBuV/m)	Limit (dBuV/m)	Delta (dB)	RBW / Detector	Test Distance	Results
211.41 MHz	Н	23.82	1.93	11.16	36.91	43.52	-6.61	120kHz / QP	3m	Compliant
213.8 MHz	Н	25.31	2.09	11.25	38.65	43.52	-4.87	120kHz / QP	3m	Compliant
226.1 MHz	Н	25.13	2.23	11.47	38.83	46.02	-7.19	120kHz / QP	3m	Compliant
221.51 MHz	V	20.69	1.9	11.33	33.92	46.02	-12.1	120kHz / QP	3m	Compliant
223.01 MHz	V	18.23	2.09	11.36	31.68	46.02	-14.34	120kHz / QP	3m	Compliant
228.7 MHz	V	16.02	2	11.62	29.65	46.02	-16.37	120kHz / QP	3m	Compliant
Calculations:					F = C + D +	Е	H = F - G			

Maximized Quasi Peak Emissions

Peak Scan (Receive Mode)

6 AC Powerline Conducted Emissions

6.1 Test Limits

§ 15.107(e): Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission	Conducted limit (dBµV)				
(MHz)	Quasi-peak	Average			
0.15–0.5	66 to 56*	56 to 46*			
0.5–5	56	46			
5–30	60	50			

^{*}Decreases with the logarithm of the frequency.

6.2 Test Procedure

ANSI C63.4: 2003

6.3 Test Equipment Used:

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
EMI Test Receiver	10887490.26	Rohde & Schwarz	ESI26	6/29/2010	6/29/2011
LISN	3333	Teseq	NNB52	2/23/2010	2/23/2011

6.4 Results:

		C	onducted Vol	tage Emissio	ns on Powe	r Lines		
Test Engineer:	Bryan Taylor		Start Date:	11/18/2010		End Date:	11/18/2010	
Temperature:	23.2C		Humidity:	43.40%		Pressure:	989.3mBar	
Specification:	FCC Part 15		Test Limit:	Class B		RBW:	9kHz	
Notes:	Receive Mode							
		Quasi-	Quasi-Peak			Average		
	Frequency	Peak	Limit	Quasi-Peak	Average	Limit	Average	
Line	(MHz)	(dBuV)	(dBuV)	Delta (dB)	(dBuV)	(dBuV)	Delta (dB)	Results
Line 1	9.42 MHz	48.55	60	-11.45	47.53	50	-2.47	Compliant
Line 1	9.6679 MHz	47.63	60	-12.37	44.32	50	-5.68	Compliant
Line 1	12.89 MHz	47.53	60	-12.47	46.1	50	-3.9	Compliant
Line 2	9.4189 MHz	48.07	60	-11.93	47.33	50	-2.67	Compliant
Line 2	10.658 MHz	39.74	60	-20.26	43.09	50	-6.91	Compliant
Line 2	10.907 MHz	46.41	60	-13.59	45.16	50	-4.84	Compliant

Quasi-Peak and Average Measurements (Receive Mode)

Peak Scan (Receive Mode)

		C	onducted Vol	tage Emissio	ns on Power	Lines		
Test Engineer:	Bryan Taylor		Start Date:	11/18/2010		End Date:	11/18/2010	
Temperature:	23.2C		Humidity:	43.40%		Pressure:	989.3mBar	
Specification:	FCC Part 15		Test Limit:	Class B		RBW:	9kHz	
Notes:	Low Channel							
		Quasi-	Quasi-Peak			Average		
	Frequency	Peak	Limit	Quasi-Peak	Average	Limit	Average	
Line	(MHz)	(dBuV)	(dBuV)	Delta (dB)	(dBuV)	(dBuV)	Delta (dB)	Results
Line 1	9.6644 MHz	46.95	60	-13.05	45.83	50	-4.17	Compliant
Line 1	11.897 MHz	47.9	60	-12.1	46.79	50	-3.21	Compliant
Line 1	17.35 MHz	44.46	60	-15.54	42.55	50	-7.45	Compliant
Line 2	9.4203 MHz	48.42	60	-11.58	47.37	50	-2.63	Compliant
Line 2	9.9131 MHz	48.02	60	-11.98	46.77	50	-3.23	Compliant
Line 2	12.394 MHz	48.12	60	-11.88	47	50	-3	Compliant

Quasi-Peak and Average Measurements (Low Channel)

Peak Scan (Low Channel)

		Co	onducted Vol	tage Emissio	ns on Powe	r Lines		
Test Engineer:	Bryan Taylor		Start Date:	11/18/2010		End Date:	11/18/2010	
Temperature:	23.2C		Humidity:	43.40%		Pressure:	989.3mBar	
Specification:	FCC Part 15		Test Limit:	Class B		RBW:	9kHz	
Notes:	Mid Channel							
		Quasi-	Quasi-Peak		•	Average		
	Frequency	Peak	Limit	Quasi-Peak	Average	Limit	Average	
Line	(MHz)	(dBuV)	(dBuV)	Delta (dB)	(dBuV)	(dBuV)	Delta (dB)	Results
Line 1	9.419 MHz	48.48	60	-11.52	47.8	50	-2.2	Compliant
Line 1	11.898 MHz	47.77	60	-12.23	46.71	50	-3.29	Compliant
Line 1	16.856 MHz	46.85	60	-13.15	45.13	50	-4.87	Compliant
Line 2	9.9164 MHz	46.01	60	-13.99	44.56	50	-5.44	Compliant
Line 2	15.863 MHz	45.01	60	-14.99	46.88	50	-3.12	Compliant
Line 2	16.111 MHz	42.37	60	-17.63	39.81	50	-10.19	Compliant

Quasi-Peak and Average Measurements (Mid Channel)

Peak Scan (Mid Channel)

	Conducted Voltage Emissions on Power Lines								
Test Engineer:	Bryan Taylor		Start Date:	11/18/2010		End Date:	11/18/2010		
Temperature:	23.2C		Humidity:	43.40%		Pressure:	989.3mBar		
Specification:	FCC Part 15		Test Limit:	Class B		RBW:	9kHz		
Notes:	High Channel								
		Quasi-	Quasi-Peak			Average			
	Frequency	Peak	Limit	Quasi-Peak	Average	Limit	Average		
Line	(MHz)	(dBuV)	(dBuV)	Delta (dB)	(dBuV)	(dBuV)	Delta (dB)	Results	
Line 1	9.4198 MHz	48.57	60	-11.43	47.74	50	-2.26	Compliant	
Line 1	11.899 MHz	49.36	60	-10.64	48.01	50	-1.99	Compliant	
Line 1	12.642 MHz	38.7	60	-21.3	45.05	50	-4.95	Compliant	
Line 2	9.4189 MHz	47.91	60	-12.09	47.21	50	-2.79	Compliant	
Line 2	9.915 MHz	47.29	60	-12.71	46.54	50	-3.46	Compliant	
Line 2	16.856 MHz	45.33	60	-14.67	43.52	50	-6.48	Compliant	

Quasi-Peak and Average Measurements (High Channel)

Peak Scan (High Channel)

7 Antenna Requirement per FCC Part 15.203

7.1 Test Limits

§ 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

7.2 Results:

The sample tested met the antenna requirement. The antenna used was permanently attached and integral to the PCB.

8 RF Exposure Requirements (MPE Calculations)

8.1 Test Limits

§ 1.1310:

The criteria listed in table 1 shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

Part 1.1310 Limits for Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	Controlled Exposure	es	2
0.3–3.0	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	*(900/f2)	6
30–300	61.4	0.163	1.0	6
300–1500		***************************************	f/300	6
1500–100,000		***************************************	5	6
(B) Limits	for General Populati	on/Uncontrolled Exp	osure	-
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f2)	30
30–300	27.5	0.073	0.2	30
300–1500		***************************************	f/1500	30
1500-100,000			1.0	30

f = frequency in MHz

Note 1 to Table 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

Note 2 to Table 1: General population/uncontrolled exposures apply in situations in which the general public may be ex-

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

8.2 Test Procedure

The radiated RF power (calculated from the field strength measurement) was used to calculate the maximum RF exposure at a 20 cm distance using the formula:

Maximum RF Exposure at 20cm = (EIRP in mW)/(4Pi(20cm)²)

Once the Maximum RF Exposure calculations were complete the results were compared to the MPE limits above.

8.3 Results:

The following calculations show the Maximum RF Exposure from the test sample at 20cm for the worst case EIRP. The MPE level is well below the limits for the general population described in the table above.

Maximum Field Strength at 2.48GHz = 93.76dBuV/m at 3m

Maximum EIRP = 0.71mW

MPE = 0.71mW / (4Pi(20cm $)^2) = 0.71$ mW / 5025.6 cm $^2 = 0.00014$ mW/cm 2 (Limit = 1 mW/cm 2)

^{* =} Plane-wave equivalent power density

Report Number: 100252351LEX-001 Issued: 11/20/2010

9 Measurement Uncertainty

The measured value related to the corresponding limit will be used to decide whether the equipment meets the requirements.

The measurement uncertainty figures were calculated and correspond to a coverage factor of k = 2, providing a confidence level of respectively 95.45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian).

Measurement uncertainty Table

Parameter	Uncertainty	Notes
Radiated emissions, 30 to 1000 MHz	<u>+</u> 3.9dB	
Radiated emissions, 1 to 18 GHz	<u>+</u> 4.2dB	
Radiated emissions, 18 to 40 GHz	<u>+</u> 4.3dB	
Power Port Conducted emissions, 150kHz to 30	<u>+</u> 2.8dB	
MHz		

Report Number: 100252351LEX-001 Issued: 11/20/2010

10 Revision History

Revision	Date	Report Number	Notes
Level			
0	11/20/2010	100252351LEX-001	Original Issue