KU-The Future

조교 실습 1

250911

MATLAB Introduction

- MATLAB: <u>MAT</u>rix <u>LAB</u>ortory
- MathWorks사에서 출시된 공학, 시뮬레이션 전문 개발 소프트웨어
- 행렬을 기초로 하여 수학, 공학 계산을 수행하는 일종의 언어
- 코드 문법은 C/C++와 유사
- UNIX, MAC 운영체제에서도 사용가능

MATLAB 응용 분야:

제어 시스템

제어 시스템의 설계, 테스트, 구현

딥러닝

심층 신경망에 사용할 수 있는 데이터 준비, 설계, 시뮬레이션 및 배포

영상 처리 및 컴퓨터 비전

알고리즘 개발과 시스템 설계를 위한 영상 및 비디오의 수집, 처리 및 분석

머신러닝

모델을 학습시키고 파라미터를 조정하며 생산 시스템 또는 에지 기기에 배포

예측 정비

상태 감시 및 예측 정비 소프트웨어 개발 및 배포

로봇공학

로봇공학 관련 아이디어 및 개념을 실제 환경에서 원활하게 작동하는 자율

신호 처리

신호 및 시계열 데이터 분석. 신호 처리 시스템 모델링, 설계 및 시뮬레이션

테스트 및 측정

데이터 수집, 분석, 탐색 및 테스트 자동화

무선 통신

무선 통신 시스템 제작, 설계, 테스트 및 검증

MATLAB Introduction

Toolbox

- 신호처리, 통계학, 제어 등 다양한 전공 분야의 내용을 심도 있게 지원하는 함수 라이브러리
- 모든 toolbox가 필수는 아니고 필요한 toolbox를 그때그때 다운로드

MATLAB Introduction

Toolbox

- 신호처리, 통계학, 제어 등 다양한 전공 분야의 내용을 심도 있게 지원하는 함수 라이브러리
- 모든 toolbox가 필수는 아니고 필요한 toolbox를 그때그때 다운로드

BIOSYSTEM CONTROL LAB.

MATLAB UI

MATLAB 초기 실행 화면

MATLAB UI

- •MATLAB에서 명령어는 왼쪽부터 순차적으로 진행
 - Ex1) 명령 창에 'a=1, b=2, c=3' <mark>입력 결과 확인</mark>
- •명령어 중간에 ',(콤마)'를 사용하면 여러가지 명령어 집합을 한 줄에 표현 가능
- ·명령어 끝에 '...'을 사용하면 너무 길어서 한 줄에 쓸 수 없는 명령 어도 입력 가능
 - Ex1) a=1+2+3+... 4+5+6+... 7+8+9+10
- •명령어 끝에 ' ;(세미콜론)'를 사용하면 출력 미표시
 - Ex1) a=1;
 b=2;
 c=a+b;
 c 입력 결과 확인

•범위지정자 명령어 ':(콜론)'를 사용하면 생성 변수의 범위를 지정 하거나 행렬의 선택 범위 지정 가능

• X=n:m n부터 m까지 단위 간격의 벡터 생성

• X=n:m:l n부터 I까지 균일한 m 간격의 벡터 생성

• A(:,m) 행렬 A의 m번째 열 전체

• A(n,:) 행렬 A의 n번째 행 전체

• A(:) A의 모든 요소를 단일 열 벡터로 형태 변경

•명령어 줄 제일 앞에 '%'를 사용하면 해당 줄은 주석문으로 처리

- Ex1) %학번_이름 <mark>입력결과확인</mark>
- 주석문은 명령어의 수행에 전혀 영향X
- Ctrl + R: 주석처리, Ctrl + T: 주석처리 제거

•명령어 clear, clc, close all

- clear : 현재 작업공간에서 모든 변수를 제거
- clc : 명령창 표시의 모든 입력값과 출력값을 제거
- close all : 핸들이 숨겨지지 않은 모든 Figure를 제거

•명령어 tic, toc

• tic과 toc 사이에 입력된 코드의 실행시간을 측정

•while

• 반복 조건이 참(true)이면 while 영역에 있는 명령문을 계속 반복 실행시키는 함수

•for

• 지정된 횟수만큼 for 영역에 있는 명령문을 실행시키는 함수

if, elseif, else

- if : 조건이 참(true)인 경우 명령문을 실행시키는 함수
- elseif : if 외의 지정된 조건이 참(true)인 경우 명령문을 실행시키는 함수
- else : if와 elseif의 조건을 만족하지 않는 경우 명령문을 실행시키는 함수

• 연산지 명령어

연산	기호	예시
덧셈	+	6+2
뺄셈	-	6-2
곱셈	*	6*2
오른쪽 나눗셈	/	6/2
왼쪽 나눗셈	\(₩)	2\6(=6/2)
지수연산	۸	6^2

우선순위	수학연산
1	괄호 (괄호가 중첩된 경우, 가장 안쪽의 괄호부터 수행)
2	거듭제곱
3	곱하기, 나누기 (우선순위가 동등함, 왼쪽에서 오른쪽 방향으로 수행)
4	더하기, 빼기 (우선순위가 동등함, 왼쪽에서 오른쪽 방향으로 수행)

• 수학 내장함수

함수	설명
sqrt(x)	제곱근
exp(x)	지수함수
abs(x)	절대값
log(x)	자연로그 {밑이 e인 로그(In)}
log10(x)	밑이 10인 로그
factorial(x)	계승함수 x! (x는 양의 정수이어야 함)

• 삼각함수: x의 범위 먼저 지정

함수	설명
sin(x)	각도 x의 sin (x=radian)
sind(x)	각도 x의 sin (x=degree)
cos(x)	각도 x의 cos (x=radian)
cosd(x)	각도 x의 cos (x=degree)
tan(x)	각도 x의 tan (x=radian)
tand(x)	각도 x의 tan (x=degree)
cot(x)	각도 x의 cot (x=radian)
cotd(x)	각도 x의 cot (x=degree)
sec(x)	각도 x의 sec (x=radian)
secd(x)	각도 x의 sec (x=degree)
csc(x)	각도 x의 csc (x=radian)
cscd(x)	각도 x의 csc (x=degree)

if, elseif, else example

```
%nrows를 값 4로 선언
nrows = 4;
        %ncols를 값 6으로 선언
ncols = 6;
A = ones(nrows,ncols); %A를 4 x 6 인 행렬로 선언
for c = 1:ncols %c가 1부터 ncols까지 1씩 증가하는 동안
 for r = 1:nrows %r가 1부터 nrows까지 1씩 증가하는 동안
         %r과 c가 같을 때
   if r == c
    A(r,c) = 2; %r행 c열의 값을 2로 저장
   elseif abs(r-c) ==1 %r과 c를 뺀 절대값이 1일때
    A(r,c) = -1; %r행 c열의 값을 -1로 저장
            %if와 else if를 만족하지 않을 때
   else
    A(r,c) = 0; %r행 c열의 값을 0으로 저장
            %if문 종료
   end
            %for문 종료
 end
           %for문 종료
end
           %A의 결과값을 출력
```

```
명령 창
                           %nrows를 값 4로 선언
 >> nrows = 4;
                         %ncols를 값 6으로 선언
 ncols = 6:
                         %A를 4 x 6 인 행렬로 선언
 A = ones(nrows, ncols);
                         %c가 1부터 ncols까지 1씩 증가하는 동안
                         %r가 1부터 nrows까지 1씩 증가하는 동안
                        %r과 c가 같을 때
        if r == c
                         %r행 c열의 값을 2로 저장
        elseif abs(r-c) ==1 %r과 c를 뺀 절대값이 1일때
                         %r행 c열의 값을 -1로 저장
                        %if와 else if를 만족하지 않을 때
        else
           A(r,c) = 0; %r행 c열의 값을 0으로 저장
                         %if문 종료
                         %for문 종료
     end
                         %for문 종료
                         %A의 결과값을 충력
```


Plot function

- Figure(): 그래프 그리는 창을 여는 함수
- Plot(x,y): 2차원 그래프 그리는 함수

•Figure창을 열고 Y=2*X+3 그래프를 plot

```
figure(1)
X=-2:0.1:2;
Y=2*X+3;
plot(X,Y);
```


- 변수선언: X의 눈금 간격을 지정하고 싶다면
 - X= n:m:l 사용 (n부터 l까지 균일한 m간격의 벡터 생성) cf. x=[-2 -1.9 -1.8 1.9 2] 데이터를 벡터형식으로 선언
 - plot(X,Y) X값에 대한 Y데이터의 2차원 선형 플롯을 생성함

• 한 figure 창에 여러 개의 그래프를 표시

• 여러 figure 창을 동시에 표시

- plot의 제목(title), 범례(legend), 축제목(x, y label)
 - Title(' '): 그래프의 제목 설정
 - Legend(' '): 범례 정보 설정
 - xlabel(''), ylabel(''): x, y축 정보를 설정

```
figure(1)
X=-2:0.1:2;
Y=2*X+3;
plot(X,Y);
title('기울기가 2')
legend('Y=2*X+3')
xlabel('x')
ylabel('v')
figure(2)
X1 = -2:0.1:2:
Y1 = 3*X1+3;
plot(X1,Y1);
title('기울기가 3')
legend('Y=3*X+3')
xlabel('x')
ylabel('y')
```



```
figure(1)
X=-2:0.1:2;
Y=2*X+3;
plot(X,Y);

xlabel('x')
ylabel('y')

hold on
X1 = -2:0.1:2;
Y1 = 3*X1+3;
plot(X1,Y1);
legend('Y=2*X+3','Y=3*X+3')
```


- plot 되는 데이터 범위 조정
 - xlim([]), ylim([]): 축 표시값 제한 설정 가능
 - grid on: 그래프의 격자 표시

```
figure('Name', 'Measured Data')
X=-2:0.1:2;
Y=2*X+3:
plot(X,Y);
xlabel('x')
ylabel('y')
hold on
X1 = -2:0.1:2;
Y1 = 3*X1+3;
plot(X1,Y1);
legend('Y=2*X+3','Y=3*X+3')
xlim([-5 5]);
ylim([-5 10]);
grid on
```


How to import data

- 1) Excel -> txt file -> MATLAB
- 그래프를 그리고자 하는 변수 x, y의 데이터 개수를 동일하게 설정
- txt 파일에는 숫자만 포함
- 다른 방법으로는 데이터를 드래그하여 직접 메모장에 복사 후 저장

How to import data

- 1) Excel -> text file -> MATLAB
- Excel 데이터를 다른 이름으로 저장할 때 [텍스트 (탭으로 분리)] 파 일 형식으로 저장

How to import data

- 1) Excel -> text file -> MATLAB
- 불러올 파일이 있는 경로 지정 (경로 복사 또는 현재 경로 상태에서 현재 폴더에 파일을 드래그앤드롭)
- 반드시 불러올 파일이 현재 폴더에 포함되어 있어야 import 가능
- import 함수: 행렬명 = load('파일명.txt');
- 편집기 스크립트 파일 저장 시 반드시 문자로 시작해야 함

How to import data

- 1) Excel -> text file -> MATLAB
- 작업공간에서 생성된 행렬 더블클릭 시 import된 데이터 확인 가능
- Data indexing: 변수 이름=행렬 이름(행 데이터, 열 데이터);
- 괄호 안 ':'은 전체 데이터를 의미

Plot setting

```
data = load('sample1.txt');

x = data(:,1);
y1 = data(:,2);
y2 = data(:,3);

plot(x,y1, '-.o' , 'LineWidth' , 3 , 'MarkerSize' , 10 , 'MarkerFaceColor' , 'b' , 'MarkerEdgeColor' , 'r')
```


BIOSYSTEM CONTROL LAB.

Plot setting

선 스타일	설명	결과 선
"_"	실선	
""	파선	
":"	점선	
""	일점 쇄선	

마커	설명	결과로 생성되는 마커
"o"	원	0
"+"	플러스 기호	+
п*п	별표	*
"."	점	•
"x"	십자	×
" " -	가로선	_
" "	세로선	
"square"	정사각형	
"diamond"	다이아몬드	\Diamond
"^"	위쪽 방향 삼각형	Δ
"v"	아래쪽 방향 삼각형	∇
">"	오른쪽 방향 삼각형	\triangleright
"<"	왼쪽 방향 삼각형	⊲
"pentagram"	펜타그램	☆
"hexagram"	헥사그램	₹;3

Plot setting

색 이름	짧은 이름	RGB 3색	모양
"red"	"r"	[1 0 0]	
"green"	"g"	[0 1 0]	
"blue"	"b"	[0 0 1]	
"cyan"	"c"	[0 1 1]	
"magenta"	"m"	[1 0 1]	
"yellow"	"у"	[1 1 0]	
"black"	"k"	[0 0 0]	
"white"	"w"	[1 1 1]	

Help

- 함수 설명 및 파라미터 사용법에 도움

```
>> help plot
 plot - 2차원 선 플롯
   x 값에 대한 Y 데이터의 2차원 선 플롯을 생성합니다.
   벡터 및 행렬 데이터
     plot(X,Y)
     plot(X,Y,LineSpec)
     plot(X1, Y1, ..., Xn, Yn)
     plot(X1,Y1,LineSpec1,...,Xn,Yn,LineSpecn)
     plot(Y)
     plot(Y,LineSpec)
   테이블 데이터
     plot(tbl,xvar,yvar)
     plot(tbl,yvar)
   추가 옵션
     plot(ax, )
     plot(___, Name, Value)
     p = plot( )
   입력 인수
     X - x 좌표
       스칼라 | 벡터 | 행렬
     Y - y 좌표
       스칼라 | 벡터 | 행렬
     LineSpec - 선 스타일, 마커, 색
       string형 스칼라 | 문자형 벡터
     tb1 - 소스 테이블
       테이블 | 타임테이블
```


In class quiz #1

KU-The Future

Q&A

KU-The Future

Thank you

