What is claimed is:

- 1. An aqueous defoamer emulsion comprising
 - A) at least one active defoaming substance and, optionally, at least one auxiliary or additive,
 - B) an oil-in-water emulsion consisting of at least one organopolysiloxane compound having a viscosity of \geq about $1\cdot10^6$ mPas and water.
- 2. The aqueous defoamer emulsion as claimed in claim 1, wherein the mean particle size of the dispersed phase in the oil-in water emulsion B is in the range between about 0.1 μ m to about 10 μ m.
- 3. The aqueous defoamer emulsion as claimed in claim 1, wherein the oil-in-water emulsion comprises at least one organopolysiloxane compound of the formula (I)

$$\begin{array}{ccc}
R_{a}^{1} & \text{Si} - R_{b}^{2} \\
O_{4-(a+b)} & \\
\end{array}$$

in which

- R¹ is an alkyl radical,
- R^2 has the definition of R^3 , R^4 , R^5 , where
 - R³ identically or differently within the molecule is a branched or unbranched hydrocarbon radical, which optionally contains multiple bonds and/or contains heteroatoms and which has at least 5 carbon atoms,
 - R^4 is a radical $-(CH_2)_c-(AO)_d-R^7$, where

A is an ethylene, propylene, i-propylene, butylene or styrene radical and

c is 2 or 3;

d is 1 to 100;

 R^7 is H or R^3 , with the proviso that R^4 constitutes not more than 10% of the radicals R^2 ,

 R^5 is a radical selected from the group consisting of R^1 , -OH, -OC₁₋₄, aryl and styrene,

- a is a value from 1 to about 2,
- b is a value from 0 to 1,

with the proviso that the organosiloxane of the formula (I) has a viscosity that is \geq about $1\cdot 10^6$ mPas.

4. The aqueous defoamer emulsion as claimed in claim 1 comprises at least one organopolisiloxane compound of the formula:

$$\begin{array}{c}
R_a^1 = S_i - R_b^2 \\
O_{4-(a+b)} \\
\hline
2
\end{array}$$
(I)

in which

R¹ is an alkyl radical having 1 to 4 carbon atoms,

R² has the definition of R³, R⁴, R⁵, where

- R³ identically or differently within the molecule is a branched or unbranched hydrocarbon radical, which optionally containsmultiple bonds and/or contains heteroatoms and which has 5 to 26 carbon atoms,
- R^4 is a radical $-(CH_2)_c-(AO)_d-R^7$, where
 - A is an ethylene, propylene, i-propylene, butylene or styrene radical and
 - c is 2 or 3;
 - d is 1 to 100;
 - R^7 is H or R^3 , with the proviso that R^4 constitutes not more than 10% of the radicals R^2 ,
- R^5 is a radical selected from the group consisting of R^1 , -OH, -OC₁₋₄, aryl, and styrene,
- a is a value from 1 to about 2,
- b is a value from 0 to 1,

with the proviso that the organosiloxane has a viscosity that is $\geq 1 \cdot 10^6$ mPas.

- 5. The aqueous defoaming emulsion as claimed in claim 4 wherein R^1 is methyl.
- 6. The aqueous defoamer emulsion as claimed in claim 1, wherein the organopolysiloxane in component B) is crosslinked, rubber-elastic or elastomeric polymer.
- 7. The aqueous defoamer emulsion as claimed in claim 1, wherein the oil-in-water emulsion comprises at least one organopolysiloxane compound of formula (I) in which the R³

radicals are alkyl radicals having 5 to 20 carbon atoms and in which up to 5% of the R³ alkyl radicals are optionally replaced by OH groups.

- 8. The aqueous defoamer emulsion as claimed in claim 1, wherein the oil-in-water emulsion comprises at least one organopolysiloxane compound of the formula (I) in which a is between 1.5 and about 2.
- 9. The aqueous defoamer emulsion as claimed in claim 1, wherein the oil-in-water emulsion comprises an organopolysiloxane compound of the formula (I) in which b is < 0.5.
- 10. The aqueous defoamer emulsion according to claim 9, wherein b is < 0.1.
- 11. A method for increasing the defoaming properties and/or storage properties of a defoamer formulation which comprises adding a compound of the formula:

$$R_{a}^{1}$$
 Si- R_{b}^{2} (I)

in which

- R¹ is an alkyl radical having 1 to 4 carbon atoms,
- R^2 has the definition of R^3 , R^4 , R^5 , where
 - R³ identically or differently within the molecule is a branched or unbranched hydrocarbon radical, which optionally contains multiple bonds and/or contains heteroatoms and which has 5 to 26 carbon atoms,

- R^4 is a radical – $(CH_2)_c$ - $(AO)_d$ - R^7 , where
 - A is an ethylene, propylene, i-propylene, butylene or styrene radical and
 - c is 2 or 3;
 - d is 1 to 100;
 - R^7 is H or R^3 , with the proviso that R^4 constitutes not more than 10% of the radicals R^2 .
- R^5 is a radical selected from the group consisting of R^1 , -OH, -OC₁₋₄, aryl, and styrene,
- a is a value from 1 to about 2,
- b is a value from 0 to 1,

with the proviso that the organosiloxane has a viscosity that is $\geq 1 \cdot 10^6$ mPas to the defoamer emulsion .

- 12. The method according to claim 11, wherein the compound of formula (I) is present in approximately 50% aqueous concentrate, in which the mean particle size of the discontinuous phase is in the range between 0.1 μ m and 10 μ m.
- 13. An aqueous cooling lubricant which comprises the aqueous defoamer emulsion according to claim 1.
- 14. A polymer dispersion which comprises a polymer and the aqueous defoamer emulsion according to claim 1.

15. A printing ink which comprises a pigment and the aqueous defoamer emulsion according to claim 1.