Prof. Knezevic

ME 643

4/17/19

Deliverable 2

Authors

Joseph Williams Thomas Collins Lucas Simmonds Ross Thyne Charlie Nitschelm

Contents

Table of Figures	2
Table of Tables	2
Beam Equations	3
Maximum and Minimum Axial Stress:	3
Maximum and Minimum Bending Stress:	3
Maximum and Minimum Combined Stress:	3
Mean & Alternating Stress:	3
Buckling	3
Deflection	3
Factor of Safety's	4
Pin Equations	4
Pin Shear Stress	4
Pin Bearing Stress	4
Pin Tear-Out Stress	4
Factor of Safety's	4
Beam Dimensions	5
Beam Calculations and Values	5
Pin Calculations and Values	6
Solidworks Drawings of Members	6
Appendix	10
MATLAB Code	10
T. I. I. C. C.	
Table of Figures	c
Figure 1 - Drawing of Member OA Figure 2 - Drawing of Member AB	
Figure 3 - Drawing of Member BD	
Figure 4 - Drawing of Member DE	
Figure 5 - 2D Figure of Full Assembly	
Figure 6 - 3D Figure of Full Assembly	9
Table of Tables	
Table 1 - Beam Dimensions	5
Table 2 - Beam Stresses and Factor of Safety's	
Table 3 - Pin Dimensions, Forces, and Factor of Safety's	

Beam Equations

Maximum and Minimum Axial Stress:

$$\sigma_{axial\ max} = \frac{F_{ax\ max}}{Area}$$

$$\sigma_{axial\ min} = \frac{F_{ax\ min}}{Area}$$

Maximum and Minimum Bending Stress:

$$\sigma_{bending\;max} = \frac{M_{max}y}{I}$$

$$\sigma_{bending\;min} = \frac{M_{min}y}{I}$$

Maximum and Minimum Combined Stress:

$$\sigma_{combined\ max} = \sigma_{bending\ max} + \sigma_{axial\ max}$$

$$\sigma_{combined\ min} = \sigma_{bending\ min} + \sigma_{axial\ min}$$

Mean & Alternating Stress:

$$\sigma_{mean} = \frac{\sigma_{combined\;max} + \sigma_{combined\;min}}{2}$$

$$\sigma_{alternating} = \frac{\sigma_{combined\;max} - \sigma_{combined\;min}}{2}$$

Buckling

$$P_{critical} = \frac{\pi^2 EI}{L^2}$$

Deflection

$$\delta = \frac{M_{max}L^2}{9\sqrt{3}EI}$$

$$\delta_{max} = \frac{L}{360}$$

Factor of Safety's

$$N_{1,fatigue} = \frac{S_f \sigma_{UTS}}{\sigma_{alternating} \sigma_{UTS} + \sigma_{mean} \sigma_{Sf}}$$

$$N_{2,fatigue} = \frac{S_f}{\sigma_{alternating}}$$

$$N_{tension} = \frac{S_y}{\sigma_{alternating} - \sigma_{mean}}$$

$$N_{compression} = \frac{S_y}{\sigma_{alternating} + \sigma_{mean}}$$

$$N_{buckling} = \frac{\delta_{max}}{\delta}$$

$$N_{deflection} = \frac{P_{critical}}{\sigma_{max,axial}}$$

Pin Equations

Pin Shear Stress

$$\tau_{pin,shear} = \frac{\sqrt{3}F_{max,pin}}{\frac{d^2\pi}{4}}$$

Pin Bearing Stress

$$\sigma_{pin,bearing} = \frac{F_{max,pin}}{\frac{\pi dl}{4}}$$

Pin Tear-Out Stress

$$\sigma_{pin,tearout} = \frac{\sqrt{3}F_{max,axial}}{2bd}$$

Factor of Safety's

$$N_{pin,shear} = \frac{S_y}{\tau_{pin}}$$

$$N_{pin,bearing} = \frac{S_y}{\sigma_{bear}}$$

$$N_{pin,tearout} = \frac{S_y}{\sigma_{tear}}$$

Beam Dimensions

Table 1 - Beam Dimensions

Link	Length (in)	Base (in)	Height (in)	Schematic Drawing
OA	0.5	0.35	0.15	y a
AB	4.68	0.35	0.3	h b
BD	3.5	0.5	0.4	h b
DE	3.4	0.35	0.3	h b

Beam Calculations and Values

Table 2 - Beam Stresses and Factor of Safety's

	Member OA	Member AB	Member BD	Member DE
Maximum Stress (psi)	434.3	14.2	76.9	14.3
Minimum Stress (psi)	418.9	5.0	20.6	5.1
Mean Stress (psi)	426.6	9.6	48.7	9.7
Alternating Stress (psi)	7.7	4.6	28.2	4.6
Tearout Stress (psi)	6.6	12.3	1.6	12.4
$N_{1,fatigue}$	6.5	98.7	17.0	98.4
$N_{2,fatigue}$	85.6	144.4	23.4	144.4
N _{tension}	6.0	495.3	121.7	486.1
N _{compression}	5.8	176.2	32.5	175.0
N _{buckling}	117.3	5.7	274.5	10.8
N _{deflection}	3.5	Infinite	2.8	Infinite
N _{pin,tearout}	270.6	145.3	1283.0	144.3
Failure Mode	Deflection	Buckling	Deflection	Buckling

Pin Calculations and Values

Table 3 - Pin Dimensions, Forces, and Factor of Safety's

Pin	Α	В	С	D	E
Diameter (in)	0.1	0.1	0.2	0.1	0.1
Length (in)	0.2	0.2	0.2	0.2	0.2
Max Force (lb)	1.5	1.5	3.0	1.5	1.5
Shear Stress (psi)	10.8	10.8	9.3	10.9	10.9
Bending Stress (psi)	69.9	69.9	91.5	70.4	70.4
$N_{pin,shear}$	231.1	231.1	269.3	229.6	229.6
$N_{pin,bearing}$	35.7	35.7	27.3	35.5	35.5
Failure Mode	Bearing	Bearing	Bearing	Bearing	Bearing

Solidworks Drawings of Members

Figure 1 - Drawing of Member OA

Figure 2 - Drawing of Member AB

Figure 3 - Drawing of Member BD

Figure 4 - Drawing of Member DE

Figure 5 - 2D Figure of Full Assembly

Figure 6 - 3D Figure of Full Assembly

Appendix

MATLAB Code

```
clear all; close all; clc
%Plastic Properties Given
Mod El=230000; %Modulus of Elasticity E = 230000psi
Sig_y=2500; %Yeild Strength Sig_y = 2500psi
Sig_uts=3000; %Ultamate Tensile Strength Sig_uts = 3000psi
Density=0.0376; %Density = 0.0376lb/in^3
%Extra Definitions
w=50; %Omega = 50rpm
theta=(0:1:360).*(pi/180); %Singular Rotation
k=1; %lbf/in
%Lengths Determined
r_AB = 4.68;
r_BD = 3.5;
r_DE = 3.4;
%Lengths Defined
r_OA = 0.5;
r EF = 2.5;
%Geometry of Each Segment
   %Base = b
   %Height = h
%Base
dimb = .35;
dimh = .30;
b AB=dimb;
b DE=dimb;
b_EF=dimb;
%Height
h AB=dimh;
h_EF=dimh;
h DE=dimh;
% member BD 3
dim2b = .5;
dim2h = .4;
h BD=dim2h;
b BD=dim2b;
```

```
%Member OA
dim3b = .35;
dim3h = .15;
b OA=dim3b;
h OA=dim3h;
%Dimentions [In Inches]
Width=dimh/2;
Width2=dim2h/2;
Width3=dim3h/2;
Thickness=0.125;
Area=[b_OA*h_OA,b_AB*h_AB,b_BD*h_BD,b_EF*h_EF];
%Y values for Bending Calculations
y OA=h OA/2;
y_AB=h_AB/2;
y_BD=h_BD/2;
y DE=h DE/2;
%Inertia Calculations
I OA=(b OA*(h OA^3))/12;
I AB=(b AB*(h AB^3))/12;
I BD= (b BD*(h BD^3))/12;
I DE=(b DE*(h DE^3))/12;
    %Inertia Matrix
I=[I OA, I AB, I BD, I DE];
%Moment Table from Deliverable 1 Solution
   %Values in lb*in
Mmax OA=0.56;
Mmin AB=0.00;
Mmax BD=2.67;
Mmin DE=0.00;
Mmin OA=0.54;
Mmax AB=0.00;
Mmin BD=0.72;
Mmax DE=0.00;
Mmin_Bending=[Mmin_OA, Mmin_AB, Mmin_BD, Mmin_DE];
Mmax Bending=[Mmax OA, Mmax AB, Mmax BD, Mmax DE];
Min Bending Stress=zeros(1,4);
Max Bending Stress=zeros(1,4);
for i=1:4
    if i == 3
        Min_Bending_Stress(i) = (Mmin_Bending(i) * (Width2/2)/I(i));
        Max_Bending_Stress(i) = (Mmax_Bending(i) * (Width2/2)/I(i));
```

```
end
    Min Bending Stress(i) = (Mmin Bending(i) * (Width/2)/I(i));
    Max Bending Stress(i) = (Mmax Bending(i) * (Width/2)/I(i));
end
%Axial Forces Table from Deliverable 1 Solution
   %Values in 1b
Ax Mmax OA=0.4;
Ax Mmax AB=1.49;
Ax Mmin BD=0.06;
Ax Mmax DE=1.50;
Ax Mmin OA=0.39;
Ax Mmin AB=0.53;
Ax Mmax BD=0.36;
Ax Mmin DE=0.54;
% %Maxiumum Compression Table from Deliverable 1 Solution
% %Values in lb
% CMax OA=-1.49;
% CMax AB=-1.49;
% CMax BD=-0.46; %Located in BC Region
% CMax DE=-1.5;
%Maxiumum Force in each Pin Table from Deliverable 1 Solutions
   %Values in 1b
FMax A=1.49;
FMax B=1.49;
FMax C=2.97;
FMax D=1.5;
FMax E=1.5;
F = [FMax_A, FMax_B, FMax_C, FMax_D, FMax_E]
%Bending Calculations
    %Bending values calulated by (M*y)/I
    %Maximum
Bending Max OA=(Mmax OA*y OA)/I OA;
Bending Max AB=(Mmax AB*y AB)/I AB;
Bending Max BD=(Mmax BD*y BD)/I BD;
Bending Max DE=(Mmax DE*y DE)/I DE;
    %Minimum
Bending Min OA=(Mmin OA*y OA)/I OA;
Bending Min_AB=(Mmin_AB*y_AB)/I_AB;
Bending Min BD=(Mmin BD*y BD)/I BD;
Bending Min DE=(Mmin DE*y DE)/I DE;
    %Bending Stress Matrix
%Max Bending Stress=[Bending Max OA, Bending Max AB, Bending Max BD, Bending Max DE];
%Min Bending Stress=[Bending Min OA, Bending Min AB, Bending Min BD, Bending Min DE];
%Axial Calculations
   %Axial Stress Matrix
```

```
Max_Axial=[Ax_Mmax_OA,Ax_Mmax_AB,Ax_Mmax_BD,Ax_Mmax_DE];
Min Axial=[Ax Mmin OA, Ax Mmin AB, Ax Mmin BD, Ax Mmin DE];
Max Axial Stress=Max Axial./Area;
Min Axial Stress=Min Axial./Area;
%Combined Stress Calculations
    Max Comb Stress=zeros(1,4);
    Min Comb Stress=zeros(1,4);
for i=1:4
    Max_Comb_Stress(i) = Max_Bending_Stress(i) + Max_Axial_Stress(i);
    Min Comb Stress(i) = Min Bending Stress(i) + Min Axial Stress(i);
end
%Mean and Alternating Stress
Mean Stress=(Max Comb Stress+Min Comb Stress)./2;
Alt Stress=(Max Comb Stress-Min Comb Stress)./2;
%Buckling & Deflection
L=[r OA, r AB, r BD, r DE];
Buckling = (pi^2*Mod El*I)./(L.^2);
Max Deflection=L./360;
Actual Deflection=(Mmax Bending.*(L.^2))./(9*sqrt(3)*Mod El.*I);
%Fatique
Sf prime=Sig uts/2;
Cload=1;
Csize=1;
a surf=4.511;
b surf=-0.265;
Csurf=a_surf*Sig_uts^b_surf;
Creliab=0.814;
Sf=Cload*Csize*Csurf*Ctemp*Creliab*Sf prime;
%Factor of Safety Calculations
    %Fatique
FOS Fatigue N1=(Sf*Sig uts)./((Alt Stress.*Sig uts)+(Mean Stress.*Sf));
    %Yeild
FOS_Yeild_Tension=Sig_y./abs(Alt_Stress - Mean_Stress);
FOS Yeild N 2=Sf./Alt Stress;
FOS Yeild N 4=Sig y./(Alt Stress + Mean Stress);
    %Deflection
FOS Deflection=Max Deflection./Actual Deflection;
    %Buckling
```

```
FOS_Buckling=Buckling./Max_Axial_Stress;
%Shear Calculations
%Pin Values and Calculations
   %Diameter = d [Values in Inches]
d A=0.137795;
d B=0.137795;
d C=0.21;
d D=0.137795;
d E=0.137795;
Length=0.19685;
d = [d A, d B, d C, d D, d E]
%Shear Stress Calculations per Pin
Shear Stress A=sqrt(3) *FMax A/(pi*d A^2)/4;
Shear Stress B=sqrt(3) *FMax B/(pi*d B^2)/4;
Shear Stress C=sqrt(3) *FMax C/(pi*d C^2)/4;
Shear Stress D=sqrt(3) *FMax D/(pi*d D^2)/4;
Shear Stress E=sqrt(3) *FMax E/(pi*d E^2)/4;
%Shear Stress Array
Shear Stress=[Shear Stress A, Shear Stress B, Shear Stress C, Shear Stress D, Shear Stress
_E];
%Bearing Stress Calculations per Pin
Bearing Stress A=FMax A/((pi*d A*Length)/4);
Bearing Stress B=FMax B/((pi*d B*Length)/4);
Bearing Stress C=FMax C/((pi*d C*Length)/4);
Bearing Stress D=FMax D/((pi*d D*Length)/4);
Bearing Stress E=FMax E/((pi*d E*Length)/4);
%Bearing Stress Array
Bearing_Stress=[Bearing_Stress_A,Bearing_Stress_B,Bearing_Stress_C,Bearing_Stress_D,Be
aring Stress E];
%Factor of Safety Pin Calculations
FOS Shear=Sig y./Shear Stress;
FOS_Bearing=Sig_y./Bearing_Stress;
%Tearout Calculations
Tearout Stress OA=sqrt(3) *Max Axial(1) / (2*b OA*h OA);
Tearout Stress AB=sqrt(3) *Max Axial(2) / (2*b AB*h AB);
Tearout_Stress_BD=sqrt(3) *Max_Axial(3) / (2*b_BD*h_BD);
Tearout Stress DE=sqrt(3) *Max Axial(4) / (2*b DE*h DE);
%Tearout Array
Tearout Stress=[Tearout Stress OA, Tearout Stress AB, Tearout Stress BD, Tearout Stress D
E];
%Factor of Safety for Tearout
FOS_Tearout=Sig_y./Tearout_Stress;
```

```
% Creating FOS Table
t = table(FOS_Fatigue_N1',FOS_Yeild_Tension',FOS_Yeild_N_2'...
,FOS_Yeild_N_4',FOS_Deflection',FOS_Buckling',FOS_Tearout');
t2 = table(FOS_Bearing',FOS_Shear');
```