座位号

姓名

窕

俳

| | | |

电子科技大学研究生试卷

(考试时间: ______ 至______, 共 2 小时)

教学方式 <u>堂上授课</u> 考核日期 <u>2019</u> 年 <u>5</u>月____日 成绩___

考核方式: _____(学生填写)

一. 填空题(每空3分,共15分)

1. 图 G 的邻接矩阵为 $\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}$,则 G 的生成树的棵数为 $\underline{8}$.

2. 设 G_1 是 (n_1,m_1) 简单图, G_2 是 (n_2,m_2) 简单图, 则 G_1 和 G_2 的(Cartesian)积图 $G_1 \times G_2$ 的 边数 $m(G) = n_1 m_2 + n_2 m_1$.

3. 图 1 中最小生成树T的权值W(T) = 23.

图 1

图 2

4. 图 2 + S 到 T 的最短路的长度为 8...

5. 设 G 是 n 阶简单图, 且不包含三角形, 则其边数一定不超过 $\left\lfloor \frac{n^2}{4} \right\rfloor$.

二. 单项选择题(每题3分,共15分)

- 1. 关于彼得森(Petersen)图, 下面说法**正确**的是(B)
- A. 彼得森图是哈密尔顿图;
- B. 彼得森图是超哈密尔顿图;
- C. 彼得森图可 1-因子分解;
- D. 彼得森图是可平面图.
- 2. 下面说法**正确**的是 (C)
- A. 有割点的三正则图一定没有完美匹配;
- B. 有割边的三正则图一定没有完美匹配;
- C. 存在哈密尔顿圈的三正则图必能1因子分解:
- D. 正则的哈密尔顿图必能 2 因子分解.
- 3. 关于图的度序列, 下面说法**正确**的是(B)
- A. 任意两个有相同度序列的图都同构;
- B. 若图 G 度弱于图 H,则图 G 的边数小于等于图 H 的边数;
- C. 若非负整数序列 $\pi = (d_1, d_2, \dots, d_n)$ 满足 $\sum_{i=1}^n d_i$ 为偶数,则它一定是图序列;
- D. 如果图 G 所有顶点的度和大于或等于图 H 所有顶点的度和,则图 G 度优于图 H.
- 4. 关于图的补图, 下面说法错误的是(A)
- A. 若图 G 连通,则其补图必连通;
- B. 若图 G 不连通,则其补图必连通;
- C. 图 G 中的一个点独立集,在其补图中的点导出子图必为一个团;
- D. 存在 5 阶的自补图.
- 5. 关于欧拉图, 下面说法**正确**的是(D)
- A. 每个欧拉图有唯一的欧拉环游;
- B. 每个顶点的度均为偶数的图是欧拉图;
- C. 欧拉图中一定没有割点;
- D. 欧拉图中一定没有割边.

(三).(10 分)若阶为 25 且边数为 62 的图 G 的每个顶点的度只可能为 3, 4, 5 或 6, 且有两个度为 4 的顶点,11 个度为 6 的顶点,求 G 中 5 度顶点的个数。

解:设 5 度顶点有x个,由握手定理得到:

$$4 \times 2 + 6 \times 11 + 5x + (25 - x - 13) \times 3 = 124$$

解得x=7。

四. (10 分) 证明: (1) 若 k > 0,则 k 正则偶图(二部图)可 1 因子分解;

(2) 若 k > 1,则 k 正则偶图没有割边.

证明: (1) 若图 G 是 k 正则偶图且 k > 0,则 G 有完美匹配 M. 那么 G- $E(M_1)$ 仍然是二部图 且是正则图. 所以 G- $E(M_1)$ 有完美匹配 M_2 ,故可以得到一个图 G 的完美匹配序列 M_1 , M_2 … M_k 由取法知 M_1 , M_2 … M_k 两两无公共边,即为 G 的 1 因子分解.

(2) 设 G 是 k 正则偶图且 k > 0. 用反证法. 假设 G 有割边 e = uv,则 G - e 有两个连通分支 G_1 和 G_2 . 不妨设 $u \in V(G_1)$, $v \in V(G_2)$.显然 G_1 和 G_2 都是二部图. 那么 G_1 有二部划分 X,Y 且 $u \in X$.则 G_1 中仅有 u 点的度为 k - 1,其余项点的度均为 k.则 $k \mid Y \mid = k \mid X \mid -1$.因 k > 0,故这是一个矛盾. 因此结论成立.

五. (10 分) 设 T 是完全 m 元树, i 是分支点数, t 是树叶数. 证明: (m-1)i = t-1.

证明:由 T 是完全 m 元树,故 T 有 i-1 个点的度为 m+1,1 个点的度为 m, t 个点的度为 1. 由握手定理得.

$$(i-1)(m+1)+m+t=2|E(G)|$$
(1)

再由树的性质得

$$i+t-1 = |E(G)|$$
(2)

将(2)代入(1)即得 (m-1)i = t-1

六. (10 分) (1) 画出 C₁, 和 C₂,

(2) 对于一般的 m 和 n, 其中 $1 \le m < \frac{n}{2}$. 证明: $C_{m,n}$ 图不是哈密尔顿图.

(2) 由 $C_{m,n}$ 的定义,删除交图中的 K_m 的m个顶点后,图有m+1个连通分支.这与哈密尔顿图的必

要条件矛盾. 故 C_{mn} 都不是哈密尔顿图.

七. (10 分) 某工厂有 4 名工人和 4 种工作. 每个工人干不同工作的效率由下面矩阵 A 给出(a_{ij} 代表工人 i 干第 i 件工作的效率). 试给 4 名工人分别安排一种工作, 使得他们总的效率最高.

$$A = \begin{pmatrix} 12 & 14 & 15 & 14 \\ 9 & 11 & 6 & 8 \\ 10 & 9 & 16 & 14 \\ 12 & 13 & 13 & 10 \end{pmatrix}$$

(12 14 15 14)15

画出该标号的相等子图为. 该图无完美匹配, 故找到一个 S 与 T, 满足 N(S)=T. 此时, $S=\{x_1, x_2, x_3, x_4\}$, $T=\{y_2, y_3\}$, 算出 $\alpha_i=1$. 故对矩阵 A 的初始标号进行更改得到

此时在原来图的基础上会有一些新加入的边, 形成新的图

此图有完美匹配 M: $x_1y_4, x_2y_2, x_3y_3, x_4y_1$.

因此给第1个工人分配第4份工作,

第2个工人分配第2份工作,

第3个工人分配第3份工作,

第4个工人分配第1份工作是一种效率最高的分配方式.

八. (10分) 富勒烯图(Fullerene graph)是一种只包含五边形面和六边形面的三正则平面图. 试求富勒烯图的五边形面的个数.

解: 设 G 为任意一个富勒烯图. 试 G 的总面数为 f, 而五边形面的个数为 f_5 , 六边形面的个数为 f_6

由欧拉公式得 n-m+f=2 (1)

 $f = f_5 + f_6$ (2)

G 是三正则图, 则有 3n=2m (3)

G 只包含五边形面和六边形面,故 $5f_5+6f_6=2m$ (4)

将(1)式中的 f, n 分别用(2), (3) 代替后得, f_5 + f_6 =2+(1/3)m. 再结合(4)即得 f_5 =12.

九. $(10\, f)$ 某车站有如下9种品名的危险货物要存放于仓库中: a 鞭炮, b 压缩氧, c 丙酮, d 火柴, e 锂电池, f 棉花, g 溴, f 硝酸, f 氢氧化钠. 其中一些货物是互不相容的, 如果它们相互接触,则会引起爆炸或损坏. 每种货物与其它货物不相容的情况如下: "×"表示不相容.

 $a \times c$; $a \times e$; $a \times g$; $a \times h$; $b \times c$; $b \times d$; $b \times e$; $c \times e$; $d \times e$; $d \times h$; $e \times g$; $e \times h$; $f \times g$; $f \times h$; $g \times i$; $h \times i$

试确定需要仓库的最少数量, 使得存储后的货物是安全的. 并给出一种可行的存储方案.

解:结合题意,用图的顶点着色解决问题.用一个顶点表示一种货物,两种货物不相容则对应的两个顶点连一条边.这样就是求图的点色数,以及一种可行的着色方案.

用 3 个颜色无法对图进行正常着色. 因为 a,c,b,d,h 现在一个 5 长圈,点 e 与这 5 个点都相邻. 故至少需要 4 个颜色进行正常着色. 容易给出图的一种 4 色着色方案.

一种着色方案代表一个色类的货物可以放在同一仓库: $\{c,f,i\},\{a,b\},\{h,g\},\{e\}$