МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В. И. ЛЕНИНА (УЛЬЯНОВА) Кафедра МО ЭВМ

ОТЧЕТ

по практической работе №2 по дисциплине «Теория принятия решений» Тема: Бесконечные антагонистические игры

Студент гр. 8303	Гришин К. И.
Преподаватель	Попова Е. В.

 ${
m Caнкт-}\Pi{
m erep}{
m fypr}$ 2022

1 Цель работы

Использование инструментальных средств для решения задач поддержки принятия решения, а также овладение навыками принятия решения на основе бесконечных антагонистических игр.

2 Основные теоретические положения

В данной работе рассматриваются антагонистические игры, которые отличаются от матричных тем, что в них один или оба игрока имеют бесконечное (счётное или континуум) множество стратегий. С теоретико-игровой точки зрения это отличие малосущественно, поскольку игра остаётся антагонистической и проблема состоит в использовании более сложного аналитического аппарата исследования.

Таким образом, исследуются общие антагонистические игры, т.е. системы вида:

$$\Gamma = (X, Y, H)$$

где X и Y – произвольные бесконечные множества, элементы которых являются стратегиями игроков 1 и 2 соответственно, а $H: X \times Y \to R^1$ — функция выигрыша игрока 1. Выигрыш игрока 2 в ситуации (x,y) равен $[-H(x,y)], x \in X, y \in Y$ (игра антагонистическая). Далее рассматриваются такие игры, у которых функция H ограничена.

Одновременная игра преследования на плоскости

Пусть S_1 и S_2 – множества на плоскости. Игра Γ заключается в следующем. Игрок 1 выбирает некоторую точку $x \in S_1$, а игрок 2 выбирает точку $y \in S_2$. При совершении выбора игроки 1 и 2 не имеют информации о действияхпротивника, поэтому подобный выбор удобно интерпретировать как одновременный. В этом случае точки $x \in S_1, y \in S_2$ являются стратегиями игроков 1 и 2 соответственно. Таким образом, множества стратегий игроков совпадают с множествами и на плоскости.

Целью игрока 2 является минимизация расстояния между ним и игроком 1 (игрок 1 преследует противоположную цель). Поэтому под выигрышем H(x,y) игрока 1 в этой игре понимается евклидово расстояние $\rho(x,y)$ между точками $x \in S_1$ и $y \in S_2$, т.е. $H(x,y) = \rho(x,y), x \in S_1, y \in S_2$. Выигрыш игрока 2 полагаем равным выигрышу игрока 1, взятому с обратным знаком, а именно $[-\rho(x,y)]$ (игра антагонистическая).

Модель покера с одним кругом ставок и одним размером ставки.

В начале партии каждый из двух игроков A и B ставит по единице. После того, как

каждый из игроков получит карту, ходит игрок A: он может или поставить ещё c единиц или спасовать и потерять свою начальную ставку. Если A ставит, то у B две альтернативы: он может или спасовать (теряя при этом свою начальную ставку), или уровнять, поставив c единиц. Если B уравнивает, то игроки открывают свои карты и игрок c лучшей картой выигрывает единицу (банк).

Обозначим карту игрока A через x, а карту игрока B через y, при этом предполагаем, что случайные величины x и y имеют равномерное распределение на единичном интервале.

Стратегии строятся следующим образом. Пусть:

- $\alpha(x)$ вероятность того, что если A получит x, то он поставит c
- $1 \alpha(x)$ вероятность того, что если A получит x, то он спасует
- $\beta(y)$ вероятность того, что если B получит x, то он уровняет ставку c
- $1 \beta(y)$ вероятность того, что если A получит x, то он спасует

Если игроки применяют эти стратегии, то ожидаемый чистый выигрыш $K(\alpha, \beta)$ представляет собой сумму выигрышей, соответствующих трём взаимно исключающим возможностям: A пасует; A ставит a единиц и B уравнивает; A ставит и B пасует.

Для решения игры необходимо найти такую пару стратегий (α^*, β^*) которая удовлетворяет для всех стратегий α и β соответственно.

$$K(\alpha, \beta^*) \le K(\alpha^*, \beta^*) \le K(\alpha^*, \beta)$$

3 Задание

Решить задачи преследования и покера Вариант 3

Для игры преследования:

Фигура S_1 – квадрат со стороной a

Фиугра S_2 – равнобедренный треугольник с основанием b и высотой h

Для покера:

Размер ставки c=4

4 Выполнение работы

4.1 Игра преследования на плоскости

Фигуры соосны и отображены на рисунке 1.

Рис. 1: Представление фигур для случая $O_1 \notin S_2$

Поиск нижней цены игры Для любой точки $x \in S_1$ и $x \notin S_2$ минимальное расстояние до S_2 равно перпендикуляру, опущенному на сторону квадрата S_2 (рис. 2).

Рис. 2: Минимальное расстояние от треугольника до квадрата

Из возможных минимальных расстояний, масимальным является то, в которой $x \in S_1$ приходится на одну из вершин, смежных с основанием S_1 (рис. 3).

Рис. 3: Нижняя цена игры

Найдем полученное расстояние. Положение точки x_0 , начало координат в точке O_2 :

$$x_0 = (\|O_1O_2\| + \frac{bh}{b + \sqrt{4h^2 + b^2}}, b/2)$$

Расстояние от точки x_0 до прямой стороны квадрата S_2 $(x+y-a/\sqrt{2}=0)$:

$$\frac{\|O_1O_2\| + \frac{bh}{b + \sqrt{4h^2 + b^2}} + \frac{b}{2} - \sqrt{2}a}{\sqrt{2}}$$

Нижняя цена игры:

$$\underline{v} = \rho(x_0, y_0) = \left| \frac{\|O_1 O_2\| + \frac{bh}{b + \sqrt{4h^2 + b^2}} + \frac{b}{2} - \sqrt{2}a}{\sqrt{2}} \right|$$

В случае, когда перпидикуляр из вершины треуглоьника S_1 не может быть опущен на сторону квадрата S_2 :

$$h >= b/2, \quad ||O_1O_2|| > a + b/2$$

Максимальным будет расстояние от правого угла квадрата S_2 , к точке пересечения перпендикуляра стороны квадрата S_2 от этого угла к стороне треугольника S_1 (рис. 4)

Рис. 4: Нижняя цена игры, при $h >= b/2, \, \|O_1O_2\| > a + b/2$

Функция стороны квадрата S_2 :

$$x - y - \frac{\sqrt{2}}{2}a = 0$$

Функция стороны треугольника S_1 :

$$\frac{b}{2h}x - y + \frac{b(h - ||O_1O_2|| - r)}{2h} = 0, \quad r = \frac{bh}{b + \sqrt{4h^2 + b^2}}$$

Введем обозначения:

$$D = \begin{vmatrix} 1 & -1 \\ \frac{b}{2h} & -1 \end{vmatrix}$$

$$D_x = \begin{vmatrix} \frac{\sqrt{2}}{2}a & -1\\ -\frac{b(h - ||O_1O_2|| - r)}{2h} & -1 \end{vmatrix}$$

$$D_{y} = \begin{vmatrix} 1 & \frac{\sqrt{2}}{2}a \\ \frac{b}{2h} & -\frac{b(h - ||O_{1}O_{2}|| - r)}{2h} \end{vmatrix}$$

Тогда нижняя цена игры:

$$\underline{v} = \rho(x_0, y_0) = \sqrt{\left(\frac{D_x}{D} - \frac{\sqrt{2}}{2}a\right)^2 + \left(\frac{D_y}{D}\right)^2}$$

В случае, когда h>=b/2, $\|O_1O_2\|=a+b/2$, нижней ценой игры является расстояние от правого угла квадрата S_2 до смежной с основанием вершины треуглольника S_1

$$\underline{v} = \rho(x_0, y_0) = \sqrt{\left(\frac{\sqrt{2}}{2}a - \|O_1O_2\| + \frac{bh}{b + \sqrt{4h^2 + b^2}}\right)^2 + \left(-\frac{b}{2}\right)^2}$$

Поиск верхней цены игры.

Для любой точки $y \in S_2$ максимальное расстояние до S_1 равно расстоянию до вершин треугольника S_1 . Причем для точек y, находящихся в верхней половине квадрата S_2 , максимальным будет расстояние до нижней вершины треугольника S_1 , а для точек y в нижней половине — до верхней. Точки, лежащие на горизонтальной диагонали имеют одинаковое расстояние до любой из вершин (рис. 5).

Рис. 5: Максимальное расстояние от квадрата до треугольника

Из возможных максимальных расстояний, минимальным будет то, что идет от вершины треуглольника до правого угла квадрата (рис. 6).

Найдем полученное расстояние.

Положение точки x_0 :

$$x_0 = (\|O_1O_2\| + \frac{bh}{b + \sqrt{4h^2 + b^2}}, b/2)$$

Рис. 6: Верхняя цена игры

Положение точки y_0 :

$$y_0 = (\frac{\sqrt{2}}{2}a, 0)$$

Расстояние между точками:

$$\rho(x_0, y_0) = \sqrt{\left(\frac{\sqrt{2}}{2}a - \|O_1O_2\| + \frac{bh}{b + \sqrt{4h^2 + b^2}}\right)^2 + \left(-\frac{b}{2}\right)^2}$$

Верхняя цена игры:

$$\overline{v} = \rho(x_0, y_0) = \sqrt{\left(\frac{\sqrt{2}}{2}a - \|O_1O_2\| + \frac{bh}{b + \sqrt{4h^2 + b^2}}\right)^2 + \left(-\frac{b}{2}\right)^2}$$

В случе, когда центр масс O_1 принадлежит S_2 значения верхней (рис. 7) и нижней (рис. 8) цены игры не меняются.

Рис. 7: Нижняя цена игры для случая $O_1 \in S_2$

Рис. 8: Верхняя цена игры для случая $O_1 \in S_2$

Ответ:

В случае когда $O_1 \notin S_2$ и при условии $h >= b/2, \|O_1O_2\| = a + b/2$ значения верхней и нижней игры совпадают:

$$H(x,y) = \underline{v} = \overline{v} = \sqrt{\left(\frac{\sqrt{2}}{2}a - \|O_1O_2\| + \frac{bh}{b + \sqrt{4h^2 + b^2}}\right)^2 + \left(-\frac{b}{2}\right)^2}$$

4.2 Задача покера с одним кругом ставок

Если игрок A использует стратегию $\alpha(x)$ с порогом a, то минимальный проигрыш B составит:

$$H(\alpha,\beta) = \int_{b}^{1} \left(-2(c+1)y + a(c+2) + c \right) dy + 2(1-a) - 1$$

$$H(\alpha,\beta) = (c+1)b^{2} - b(a(c+2) + c) + ac, \ b = \frac{1}{2(c+1)} \left(a(c+2) + c \right)$$

$$H(\alpha,\beta) = H(a) = \frac{(c+2)^{2}}{4(c+1)} \left(-a^{2} + 2a \frac{c^{2}}{(c+2)^{2}} - \frac{c^{2}}{(c+2)^{2}} \right)$$

a - стратегия A, максимизирующая минимальный проигрыш B.

$$a = \left(\frac{c}{c+2}\right)^2, \ a = \frac{4}{9}$$

b - стратегия B, минимизирующая максимальный выигрыш игрока A.

$$b = \frac{c}{c+2}, \ b = \frac{2}{3}$$

Подставляя a в H(a), получаем функцию выигрыша от размера ставки c.

$$\begin{split} H(\alpha,\beta) &= H(a) = H(c) = \frac{(c+2)^2}{4(c+1)} \Big(- \Big(\frac{c}{c+2}\Big)^4 + 2\Big(\frac{c}{c+2}\Big)^4 - (\frac{c}{(+2)})^2 \Big) = \\ &= \frac{(c+2)^2}{4(c+1)} \Big(\Big(\frac{c}{c+2}\Big)^4 - \frac{c^2}{(c+2)^2} \Big) = -\frac{c^2}{(c+2)^2} \\ H(\alpha,\beta) &= -\frac{4}{9}, \text{ при } c = 4 \end{split}$$

Игрок B находится в более выигрышном положении, его порог выше, а выигрыш A — отрицательный.

Если

$$x < a$$
, to $\alpha(x) = 0$

$$x \ge a$$
, to $\alpha(x) = 1$

$$y < b$$
, to $\beta(y) = 0$

$$y > b$$
, to $\beta(y) = 1$

Другая стратегия

При использовании оптимальной стратегии $\alpha(x)$ игроком A, луший выигрыш для B получится при использовании стратегии $\beta(y)$ с порогом b.

Q(x) для данного B:

$$x \le b \quad Q(x) = 1 + \int_0^b dy - \int_b^1 (c+1)dy = 1 + b - (c+1)(1-b) = 0$$

$$H(\alpha, \beta) = -1$$

$$x \ge b \quad Q(x) = 1 + b \int_b^x (c+1)dy - \int_x^1 (c+1)dy = 2(c+1)x - c(b+1) \ge 0$$

$$H(\alpha, \beta) = \int_b^1 \alpha(x)(2(c+1)x - c(b+1))dx - 1 =$$

$$= 2(c+1) \int_b^1 x dx - c(b+1) \int_b^1 dx - 1 = 1 - b^2 - 1 = -b^2$$

$$H(\alpha, \beta) = -\frac{4}{9}$$

Если

 $x \ge b$, игрок A делает ставку;

$$x \le b$$
, игрок A с вероятностью $p = c/(c+2) = 2/3$ пасует, а с вероятностью $p = 1 - c/(c+2) = 1/3$ — блефует.

$$u < b$$
. To $\beta(u) = 0$

$$y > b$$
, to $\beta(y) = 1$

5 Вывод

В ходе выполнения практической работы были изучены бесконечные антагонистические игры, такие как: одновременная игра преследования на плоскости и покер с одним кругом ставок.

Для одновременной игры преследования на плоскости установлено, что решение в чистых стратегиях доступно только при соблюдении строгих условий:

- Высота треугольника не должна превышать половину основания.
- Расстояние между геометрическими центрами должно быть равно сумме половины диагонали квадрата и полуоснования.

Для игры «Покер» с одним кругом ставок было получено, что при заданном значении ставки выигрыш составит $H(\alpha, \beta) = -4/9$, что говорит о проигрыше игрока A.