Lab 5: Data Viz with ggplot

Gretel Warmuth (PID: A17595945)

Plotting in R

R has lots of ways to make plots and figures. This includes so-called **base** graphics and packages like **ggplot2**

plot(cars)

This is a base R plot of the in-build cars dataset that has only two columns:

head(cars)

```
speed dist
            2
1
2
       4
           10
3
      7
            4
4
      7
           22
5
       8
           16
       9
           10
```

Q. How would we plot this dataset with **ggplot2**

All ggplotfigures have at least three layers:

-data -aes (how the data map to the plot) -geoms (how we draw the data, lines, points, etc.)

Before I use any new package I need to download and install it with the install.packages() command.

I never use inatall.packages() within my quarto document otherwise I will install the package over and over again - which is silly!

Once a package is installed I can load it up with the library() function.

```
# install.packages("ggplot2")
library(ggplot2)
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point()
```


Key-point: For simple plots (like the one above) ggplot is more verbose (we need to do more typing) but as plots get more complicated ggplot starts to be more clear and simple than base R plot()

```
p<- ggplot(cars) +
  aes(speed, dist) +
  geom_point() +
  geom_smooth(method = "lm", se=FALSE) +
  labs(title="Stopping Distance of Old Cars" , subtitle= "From the In-built Cars Dataset") +
  theme_bw()</pre>
```

Adding More Plot Aesthetics

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
A4GNT -3.6808610 -3.4401355 unchanging
AAAS 4.5479580 4.3864126 unchanging
AASDH 3.7190695 3.4787276 unchanging
```

```
4 AATF 5.0784720 5.0151916 unchanging
```

5 AATK 0.4711421 0.5598642 unchanging

6 AB015752.4 -3.6808610 -3.5921390 unchanging

Q: How many genes are in this dataset?

```
nrow(genes)
```

[1] 5196

Q: How many columns are there and what are their names?

```
ncol(genes)
```

[1] 4

```
colnames(genes)
```

[1] "Gene" "Condition1" "Condition2" "State"

Q: How many upregulated genes are there?

table(genes\$State)

down unchanging up 72 4997 127

Q: What fraction of total genes is upregulated?

round(table(genes\$State)/nrow(genes), 2)

down unchanging up 0.01 0.96 0.02

A first plot:

```
p <- ggplot(genes) +
  aes(Condition1, Condition2, col=State) +
  geom_point() +
  theme_bw() +
  scale_color_manual( values=c("blue", "grey", "red"))</pre>
```

```
p + theme_bw() +
labs(title= "Gene Expression Changes Upon Drug Treatment")
```

Gene Expression Changes Upon Drug Treatment

Going Further

Playing with aesthetics (from data concerning the relationship between population size and life expectancy in each continent in 2007):

```
# File location online
url <- "https://raw.githubusercontent.com/jennybc/gapminder/master/inst/extdata/gapminder.ts
gapminder <- read.delim(url)</pre>
```

Point size and color (based on population size and continent):

```
# install.packages("dplyr") ## un-comment to install if needed
library(dplyr)
```

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

```
gapminder_2007 <- gapminder %>% filter(year==2007)
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp, color=continent, size=pop) +
  geom_point(alpha=0.5) +
  scale_size_area(max_size= 10)
```


Different organization by color:

```
ggplot(gapminder_2007) +
aes(x= gdpPercap, y= lifeExp, color=pop) +
geom_point(alpha= 0.8)
```


Different organization by size:

```
ggplot(gapminder_2007) +
  aes(x= gdpPercap, y=lifeExp, size=pop) +
  geom_point(alpha= 0.5)
```


scale_size_area(max_size= 10)

<ScaleContinuous>

Range:

Limits: 0 -- 1

Scatterplot for 1957:

```
# install.packages("dplyr") ## un-comment to install if needed
library(dplyr)

gapminder_1957 <- gapminder %>% filter(year==1957)

ggplot(gapminder_1957) +
  aes(x= gdpPercap, y=lifeExp, color= continent, size= pop) +
  geom_point(alpha= 0.7) +
  scale_size_area(max_size= 15)
```


Comparing 1957 to 2007:

Q: How many years are in this dataset?

length(gapminder\$year)

[1] 1704

table(gapminder\$year)

length(unique(gapminder\$year))

[1] 12

library(dplyr)

Q: Extract data for US in 1992

```
filter(gapminder, country=="United States", year=="1992")
```

```
country continent year lifeExp pop gdpPercap
1 United States Americas 1992 76.09 256894189 32003.93
```

Q: What is the population and life expectancy of Ireland for the last year on ecord?

```
library(dplyr)
filter(gapminder, country=="Ireland", year== 2007)
```

```
country continent year lifeExp pop gdpPercap
1 Ireland Europe 2007 78.885 4109086 40676
```

Q: What countries in data set had pop smaller than Ireland in 2007?

```
filter(gapminder, pop< 4109086, year== 2007)
```

	country	continent	year	lifeExp	pop	gdpPercap
1	Albania	Europe	2007	76.423	3600523	5937.0295
2	Bahrain	Asia	2007	75.635	708573	29796.0483
3	Botswana	Africa	2007	50.728	1639131	12569.8518
4	Comoros	Africa	2007	65.152	710960	986.1479
5	Congo, Rep.	Africa	2007	55.322	3800610	3632.5578
6	Djibouti	Africa	2007	54.791	496374	2082.4816
7	Equatorial Guinea	Africa	2007	51.579	551201	12154.0897
8	Gabon	Africa	2007	56.735	1454867	13206.4845
9	Gambia	Africa	2007	59.448	1688359	752.7497
10	Guinea-Bissau	Africa	2007	46.388	1472041	579.2317
11	Iceland	Europe	2007	81.757	301931	36180.7892
12	Jamaica	Americas	2007	72.567	2780132	7320.8803
13	Kuwait	Asia	2007	77.588	2505559	47306.9898
14	Lebanon	Asia	2007	71.993	3921278	10461.0587
15	Lesotho	Africa	2007	42.592	2012649	1569.3314
16	Liberia	Africa	2007	45.678	3193942	414.5073
17	Mauritania	Africa	2007	64.164	3270065	1803.1515
18	Mauritius	Africa	2007	72.801	1250882	10956.9911
19	Mongolia	Asia	2007	66.803	2874127	3095.7723
20	Montenegro	Europe	2007	74.543	684736	9253.8961
21	Namibia	Africa	2007	52.906	2055080	4811.0604
22	Oman	Asia	2007	75.640	3204897	22316.1929
23	Panama	Americas	2007	75.537	3242173	9809.1856

24	Puerto Rico	Americas	2007	78.746	3942491	19328.7090
25	Reunion	Africa	2007	76.442	798094	7670.1226
26	Sao Tome and Principe	Africa	2007	65.528	199579	1598.4351
27	Slovenia	Europe	2007	77.926	2009245	25768.2576
28	Swaziland	Africa	2007	39.613	1133066	4513.4806
29	Trinidad and Tobago	Americas	2007	69.819	1056608	18008.5092
30	Uruguay	Americas	2007	76.384	3447496	10611.4630
31	West Bank and Gaza	Asia	2007	73,422	4018332	3025.3498

Running Code

When you click the **Render** button a document will be generated that includes both content and the output of embedded code. You can embed code like this:

1 + 1

[1] 2

You can add options to executable code like this

[1] 4

The echo: false option disables the printing of code (only output is displayed).