```
(\mathcal{P} \leftarrow \emptyset, \mathcal{X} \leftarrow \emptyset)
                                                                      \triangleright Create an empty, N-dimensional map of elites: {solutions \mathcal{X} and their performances \mathcal{P}}
for iter = 1 \rightarrow I do
                                                                                                                                                                    \triangleright Repeat for I iterations.
                                                                                                                                     ▶ Initialize by generating G random solutions
    if iter < G then
          \mathbf{x}' \leftarrow \text{random\_solution()}
                                                                                                             ▶ All subsequent solutions are generated from elites in the map
    else
          \mathbf{x} \leftarrow \text{random\_selection}(\mathcal{X})
                                                                                                                                       \triangleright Randomly select an elite x from the map \mathcal{X}
```

 \triangleright Create x', a randomly modified copy of x (via mutation and/or crossover) $\mathbf{x}' \leftarrow \text{random_variation}(\mathbf{x})$ $\mathbf{b}' \leftarrow \text{feature_descriptor}(\mathbf{x}')$ \triangleright Simulate the candidate solution x' and record its feature descriptor \mathbf{b}'

 $p' \leftarrow performance(\mathbf{x}')$ \triangleright Record the performance p' of x' \triangleright If the appropriate cell is empty or its occupants's performance is $\leq p'$, then if $\mathcal{P}(\mathbf{b}') = \emptyset$ or $\mathcal{P}(\mathbf{b}') < p'$ then \triangleright store the performance of x' in the map of elites according to its feature descriptor \mathbf{b}' $\mathcal{P}(\mathbf{b}') \leftarrow p'$

 \triangleright store the solution x' in the map of elites according to its feature descriptor \mathbf{b}' $\mathcal{X}(\mathbf{b}') \leftarrow \mathbf{x}'$

procedure MAP-ELITES ALGORITHM (SIMPLE, DEFAULT VERSION)

return feature-performance map (\mathcal{P} and \mathcal{X})