Chap 17: Développements limités

I. Introduction

 $f \in \mathcal{F}(I, \mathbb{R})$ $x_0 \in I$ $n \in \mathbb{N}$

Un développement limité à l'ordre n de f en x_0 est la donné d'un polynôme $P_n \in \mathbb{R}_n[X]$ tel que :

$$\forall x \in I, f(x) = P_n(x - x_0) + (x - x_0)^n \varepsilon(x)$$
 avec $\lim_{x \to x_0} \varepsilon(x) = 0$

 $P_n(x-x_0)$ est la partie principale du développement limité

Si f admet un développement limité à l'ordre n en x_0 , alors celui-ci est unique

f admet un développement limité à l'ordre 0 en x_0 ssi f est continue en x_0

f admet un développement limité à l'ordre 1 en x_0 ssif est dérivable en x_0

Taylor-Young : f dérivable n fois en $x_0 \Rightarrow f$ admet un développement limité à l'ordre n en x_0 :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + (x - x_0)^n \varepsilon(x) \quad \left(\text{La réciproque est fausse pour } n \ge 2 : x^3 \sin \frac{1}{x} \right)$$

Si f admet un développement limité à l'ordre n en x_0 , alors f admet un DL à l'ordre $k \in [0, n-1]$

II. Opérations sur les développements limités

Si f est paire (définie sur un intervalle symétrique par rapport à 0) et admet un DL à l'ordre n en 0 de $P.P.\,P_n(x)$, alors P_n est impaire et ne contient que des termes pairs

Si f et g admettent des DL à l'ordre en x_0 , de parties principales respectives $P_n(x-x_0)$ et $Q_n(x-x_0)$

$$\Rightarrow \forall (\alpha, \beta) \in \mathbb{R}^2$$
, $(\alpha f + \beta g)$ admet un DL à l'ordre n , de $PP : \alpha P_n(x - x_0) + \beta Q_n(x - x_0)$

 \Rightarrow fg admet un DL à l'ordre n en x_0 dont la partie principale est obtenue

en tronquant
$$(P_nQ_n)(x-x_0)$$
 à l'ordre n

Si f admet un DL à l'ordre n en x_0 de P.P. $P_n(x-x_0)$,

et
$$g$$
 admet un DL à l'ordre n en $y_0 = f(x_0)$ de P.P. $Q_n(y - y_0)$

 \Rightarrow $g \circ f$ admet un DL à l'ordre x en x_0 dont la partie principale est obtenue en tronquant à l'ordre n $Q_n(P_n(x-x_0)-y_0)$

Si f admet un DL à l'ordre n en x_0 et $f(x_0) \neq 0$

$$\Rightarrow \frac{1}{f} \text{ admet un } DL \text{ à l'ordre } n \text{ en } x_0 \text{ obtenu en écrivant : } \frac{1}{f(x)} = \frac{1}{f(x_0)} \times \frac{1}{1 + \frac{f(x) - f(x_0)}{f(x_0)}}$$

Composée du
$$DL$$
 de $\frac{1}{1+x}$ et de $\frac{f(x)-f(x_0)}{f(x_0)}$

$$(f,g) \in \mathcal{C}^0(I,\mathbb{R})$$
 $x_0 \in I$ $g(x) = o_{x \to x_0}(f(x))$ f ne s'annule qu'en x_0
Si F (resp G) est la primitive de f (resp g) s'annulant en x_0 , alors $G(x) = o_{x \to x_0}(F(x))$

Preuve : croissance de l'intégrale et signe constant de f sur $[x,x_0]$

 $f\in\mathcal{C}^0(I,\mathbb{R})$ admettant un DL à l'ordre n en x_0 . Soit F primitive de f Alors F admet un DL à l'ordre (n+1) en x_0 dont la partie principale est la primitive de celle de f de terme constant nul

ON NE DERIVE PAS LES DEVELOPPEMENTS LIMITES

Soit f homéomorphisme de I sur J, admettant un DL à l'ordre n en x_0 (PP : $P_n(x-x_0)$), supposons que f^{-1} admette un DL à l'ordre n en $y_0 = f(x_0) \in J$ (PP : $Q_n(x-x_0)$) $f^{-1} \circ f(x) = x \Rightarrow Q_n(P_n(X-x_0)-y_0) \text{ tronqué à l'ordre } n \Rightarrow X \text{ (Unicité du } DL\text{)}$

On connaît les DL des fonctions usuelles en 0

 \Rightarrow Pour $x_0 \neq 0$, on pose $y = x - x_0$, on calcule de DL en y = 0 de f(x) = g(y)

III. Développements limités utiles en 0 à l'ordre n

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + o(x^{n})$$

$$\frac{1}{1-x} = \sum_{k=0}^{n} x^{k} + o(x^{n})$$

$$\ln 1 + (x) = -\sum_{k=1}^{n} \frac{x^{k}}{k} + o(x^{n})$$

$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{n} \prod_{j=0}^{k-1} (a-j) \frac{x^{k}}{k!} + o(x^{n})$$

$$\cos(x) = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k}}{(2k)!} + o(x^{2n+1})$$

$$\sin(x) = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2})$$

$$\cosh(x) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+1})$$

$$\sinh(x) = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2})$$

$$\arcsin(x) = x + \sum_{k=1}^{n} \frac{\prod_{j=0}^{k-1} (2j+1)}{2^{k}k!} \frac{x^{2k+1}}{2k+1} + o(x^{2n+2})$$

$$\arctan(x) = \sum_{k=0}^{n} (-1)^{k} \frac{x^{2k+1}}{2k+1} + o(x^{2n+2})$$