Практическая работа 5 **Электрохимические процессы**

Коротков Антон, Хохлов Андрей Б06-302

18 марта 2024 г.

1. Сравнение химической активности металлов

В четыре пробирки налили по 1 мл 2М соляной кислоты и поместили в них металлические цинк, железо, медь и магний. Сравнили интенсивность выделения газа,результаты эксперимента занесли в табл 1 (в пробирку с железом добавили каплю красной кровяной соли для визуализации реакции) красной кровяной соли для визуализации реакции)

	Металл	Mg		Zn	
		Наблюдения	Реакция	Наблюдения	Реакция
Ì	HCl	Выделилось много газа	$H_2 \uparrow$	Выделилось меньше газа	$\mathrm{H}_2\uparrow$

Металл	Fe		Cu	
	Наблюдения	Реакция	Наблюдения	Реакция
HCl	Нет признаков реакции	Пассивирует	×	×

$$Mg + HCl \longrightarrow MgCl_2 + H_2 \uparrow$$
 (1)

$$Zn + HCl \longrightarrow ZnCl_2 + H_2 \uparrow$$
 (2)

$$Fe + HCl \longrightarrow FeCl_2 + H_2 \uparrow$$
 (3)

$$Cu + HCl \longrightarrow$$
 (4)

Экспериментальные данные сошлись с рядом электрохимического напряжения металлов.

Рис. 1: Электрохимический ряд напряжений металлов

2. Гальванический элемент

Механически очистили поверхность оцинкованного гвоздя и медной проволоки фильтровальной бумагой. В один химический стакан на 50 мл налили 1/2 объема 0.1М раствора сульфата цинка, а в другой -0.1 М раствор сульфата меди. Соединили стаканы солевым мостиком (полоска фильтровальной бумаги), пропитанным раствором КСl (нас.), а электроды подсоединили к клеммам милливольтметра.выделение **газа**.

Составим схему гальванического элемента

$$A(-)Zn^{0}|ZnSO_{4}||CuSO_{4}|Cu^{0}K(+)$$

$$\tag{5}$$

Процессы на катоде: $Cu^{2+} + 2e^{-} = Cu^{0}$

Процессы на катоде: $Zn^0 - 2e^- = Zn^{2+}$

ЭД
$$C_{\text{эксп}} = \varepsilon_{\text{эксп}} = 1.028B$$
 (6)

$$\varepsilon_{\text{reop}} = \varepsilon_B - \varepsilon_A = 0.34 + 0.76 = 1.1B \tag{7}$$

Элемент будет работать до тех пор, пока ЭДС не уйдёт в ноль (пока разность электродных потенциалов не станет равна нулю

3. Определение электродного потенциала Cu2+/Cu

В химический стакан на 50 мл с небольшим количеством 1М раствора соли меди (II) погрузили медный электрод и, предварительно закрепленный в штативе, хлорсеребряный электрод Измерили разность потенциалов между ними с помощью милливольтметра. Повторили опыт с растворами соли меди меньших концентраций: 0,1 М и 0,01 М. Записали показания в табл. 5.2 и построили зависимость потенциала медного электрода отконцентрации электролита в полулогарифмических координатах, соответствующих уравнению Нернста. Рассчитали стандартный потенциал медного электрода относительно стандартного хлорсеребряного электрода и пересчитали полученное значение относительно стандартного водородного электрода.

Концентрация раствора,М	$\log C$	U, мВ	F, B
0.01	-2	0.103	0.323
0.1	-1	0.065	0.285
1	0	0.052	0.272

$$F_1 = U_1 + 0.22 = 0.323 \tag{8}$$

$$F_2 = U_2 + 0.22 = 0.285 (9)$$

$$F_3 = U_3 + 0.22 = 0.272 \tag{10}$$

Табличные значения: $E_0(Ag/Cl) = 0.22E_0(Cu/Cu^{2+}) = 0.34$ В

Рис. 2: Зависимость потенциала от логарифма

4. Определение полярности источника питания с помощью электролизараствора поваренной соли

В чашку Петри поместили фильтровальную бумажку, смоченную 0,1М раствором хлорида натрия и раствором фенолфталеина. Взяли источник постоянного тока (батарея типа «Крона», 9 В) и коснулись оголенными контактами влажной части фильтровальной бумажки. На катоде (-) можно заметить проявление окраски фенолфталеина.

$$2\text{NaCl} + \text{H}_2\text{O} \longrightarrow 2\text{NaOH} + \text{H}_2 \uparrow + \text{Cl}_2 \uparrow$$
 (11)

Процессы на катоде: $2H_2O + 2e^- = H_2 + OH^-$

Процессы на катоде: $2Cl^{-} - 2e^{-} = Cl_{2}$

Также можно использовать KI на йод-крахмальной бумаге для определения полярности, в процессе электролиза будет выделяться I_2 , и йод-крахмальная бумажка будет давать окраску.

5. Электролиз растворов солей электролитов

Заполнили стакан раствором 1M хлорида натрия и погрузили в него два инертных графитовых электрода В раствор добавили 3 капли фенолфталеина. Включили источник питания и установили ток электролиза 80–100 мА. В процессе электролиза на катоде будет выделяться водород а на аноде хлор

$$2\text{NaCl} + \text{H}_2\text{O} \longrightarrow 2\text{NaOH} + \text{H}_2 \uparrow + \text{Cl}_2 \uparrow$$
 (12)

Процессы на катоде: $2H_2O + 2e^- = H_2 + OH^-$

Процессы на катоде: $2Cl^{-} - 2e^{-} = Cl_{2}$

Если вместо поваренной соли использовать йодид калия, то на катоде будет выделяться **водород**, а йод будет оставаться в растворе(ярко выраженный бурый цвет)

$$2KI + H_2O \longrightarrow 2KOH + H_2 \uparrow + I_2 \tag{13}$$

Процессы на катоде: $2H_2O + 2e^- = H_2 + OH^-$

Процессы на катоде: $2I^- - 2e^- = I_2$

Йод будет реагировать с крахмалом и йод-крахмальная бумажка будет менять цвет.

6. Получение водорода и кислорода электролизом. Закон Фарадея

Собрали установку, изображенную на В стакан на 100 мл (1) налили 60- 80 мл 1М NaOH. Поместили в стакан перевернутую пипетку (3) на 10-25 мл и погрузитестальные электроды (2) таким образом, чтобы один из электродов оказался внутри пипетки. На верхний конец пипетки надели силиконовую трубку (4) с металлическим зажимом (5). С помощью спринцовки и зажима затянули раствор щелочи в пипетку до одного из верхних делений (не до конца!). Убедились, что оба электрода (оголенныечасти) полностью погружены в раствор, а силиконовая трубка (клапан) закрыта герметично (уровень жидкости не опускается). Подготовили источник постоянного тока на 5 В, амперметр, секундомер и журнал для записи. Подключили электроды к источнику тока через амперметр (последовательно), выбрав полярность по указанию преподавателя. Отрегулировали напряжение таким образом, чтобы протекающий ток составлял 80-120 мА. Делали электролиз в течение 10 мин, фиксируя значения тока в цепи каждые 30с. После прекращения электролиза зафиксировали новый уровень жидкости в пипетке. По разнице начального и конечного уровней определили объём выделившегося газа. (5 мл).

$$H_2O \longrightarrow H_2 \uparrow + O_2 \uparrow$$
 (14)

Процессы на катоде: $2H_2O + 2e^- = H_2 + OH^-$

Процессы на катоде: $4OH^- - 4e^- = O_2 + 2H_2O$

t(c)	I(mA)	т(мг)
60	-98,1	-0,48796
120	-98,6	-0,98089
150	-99	-1,23109
180	-99,1	-1,4788
210	-99,33	-1,72927
240	-99,4	-1,9777
270	-99,7	-2,23163
300	-99,9	-2,48456
330	-100,2	-2,74122
360	-100,4	-2,99639
390	-100,5	-3,24933
420	-100,6	-3,50276
450	-100,8	-3,76041
480	-101	-4,01907
510	-101,1	-4,27449
540	-101,2	-4,5304
570	-101,3	-4,78682
600	-101,5	-5,0487

При эмпирическом рассчёте, масса выходит около $7 \mathrm{Mr}$, погрешность измерения примерно 30 процентов

7. Выводы

Жёстко заботали электрохимию.

Рис. 3: Установка для электролиза