

INTRODUCTION TO PORTFOLIO ANALYSIS

Dimensions of Portfolio Analysis

Interpretation of Portfolio Returns

Conclusions
About Past
Performance

Predictions
About Future
Performance

Risk vs. Reward

Need For Performance Measure

Portfolio Returns

Performance & Risk Measures
Computed From Returns

Interpretation

Arithmetic Mean Return

- Focus on mean return & volatility
- Assume a sample of *T* portfolio return observations:

$$R_1, R_2, ..., R_T$$

Reward Measurement: Arithmetic mean return is given:

$$\hat{\mu} = \frac{R_1 + R_2 + \dots + R_T}{T}$$

It shows how large the portfolio return is on average

Portfolio Volatility

• Risk Measurement: Variance of the portfolio

$$\widehat{\sigma}^2 = \frac{(R_1 - \widehat{\mu})^2 + (R_2 - \widehat{\mu})^2 + \dots + (R_T - \widehat{\mu})^2}{T - 1}$$

• Portfolio Volatility: $\hat{\sigma} = \sqrt{\hat{\sigma}^2}$

No Linear Compensation In Return

Mismatch between average return and effective return

final value= initial value * (1 +0.5)*(1-0.5)= 0.75 * initial value

Average Return = (0.5 - 0.5) / 2 = 0

Geometric Mean Return

• Formula for *Geometric Mean* for a sample of **T** portfolio return observations R_1 , R_2 , ..., R_T :

Geometric Mean =
$$[(1 + R_1) * (1 + R_2) * ...(1 + R_T)]^{\frac{1}{T}} - 1$$

• *Example:* +50% & -50% return

Geometric Mean =
$$[(1+0.50)*(1-0.50)]^{\frac{1}{2}} - 1 = [0.75]^{\frac{1}{2}} - 1 = 0.866 - 1$$

-13.4%

Application to the S&P 500

S & P 500

