

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

The parity has not actually been measured, but + is of course expected.

We have omitted some results that have been superseded by later experiments. See our earlier editions.

= MASS

The fit uses the Ξ^- , $\overline{\Xi}^+$, and Ξ^0 masses and the $\Xi^-\overline{\Xi}^+$ mass difference. It assumes that the Ξ^- and $\overline{\Xi}^+$ masses are the same.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1321.71±0.07 OUR FI	Т				
$1321.70\pm0.08\pm0.05$	2478 ± 68	ABDALLAH	06E	DLPH	from Z decays
• • • We do not use t	he following dat	a for averages, fits	, limi	ts, etc. •	• • •
1321.46 ± 0.34	632	DIBIANCA	75	DBC	4.9 $GeV/c \ K^- d$
$1321.12 \!\pm\! 0.41$	268	WILQUET	72	HLBC	
1321.87 ± 0.51	195	¹ GOLDWASSER	70	HBC	$5.5 \; \text{GeV}/c \; K^- p$
1321.67 ± 0.52	6	CHIEN	66	HBC	6.9 GeV/ <i>c</i> p p
1321.4 ± 1.1	299	LONDON	66	HBC	
1321.3 ± 0.4	149	PJERROU	65 B	HBC	
1321.1 ± 0.3	241	² BADIER	64	HBC	
1321.4 ± 0.4	517	² JAUNEAU	63 D	FBC	
1321.1 ± 0.65	62	² SCHNEIDER	63	HBC	
1 COLDWASSED 70	111	E EO Mal/			

 $^{^{1}}$ GOLDWASSER 70 uses $m_{ extstyle \Lambda} = 1115.58$ MeV.

三+ MASS

The fit uses the Ξ^- , $\overline{\Xi}^+$, and Ξ^0 masses and the Ξ^- – $\overline{\Xi}^+$ mass difference. It assumes that the Ξ^- and $\overline{\Xi}^+$ masses are the same.

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1321.71±0.07 OUR FI	Т				
$1321.73\pm0.08\pm0.05$	2256 ± 63	ABDALLAH	06E	DLPH	from Z decays
• • • We do not use t	he following data	a for averages, fit	s, limi	ts, etc.	• • •
1321.6 ± 0.8	35	VOTRUBA	72	HBC	10 GeV/ c K^+p
1321.2 ± 0.4	34	STONE	70	HBC	
$1320.69\!\pm\!0.93$	5	CHIEN	66	HBC	6.9 GeV/ <i>c</i> p p

$$(m_{\Xi^-}-m_{\overline{\Xi}^+})/m_{\Xi^-}$$

A test of CPT invariance.

VALUE	DOCUMENT ID		TECN	COMMENT
$(-2.5\pm8.7)\times10^{-5}$	ABDALLAH 06E		DLPH	from Z decays

HTTP://PDG.LBL.GOV

Page 1

 $^{^2}$ These masses have been increased 0.09 MeV because the Λ mass increased.

= MEAN LIFE

Measurements with an error $> 0.2 \times 10^{-10}$ s or with systematic errors not included have been omitted.

$VALUE (10^{-10} \text{ s})$	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
1.639 ± 0.015 OUR AV	'ERAGE				
$1.65 \pm 0.07 \pm 0.12$	2478 ± 68	ABDALLAH	06E	DLPH	from Z decays
1.652 ± 0.051	32k	BOURQUIN	84	SPEC	Hyperon beam
1.665 ± 0.065	41k	BOURQUIN	79	SPEC	Hyperon beam
1.609 ± 0.028	4286	HEMINGWAY	78	HBC	4.2 $GeV/c K^{-}p$
1.67 ± 0.08		DIBIANCA	75	DBC	4.9 GeV/ $c \ K^- d$
1.63 ± 0.03	4303	BALTAY	74	HBC	$1.75 \; \text{GeV}/c \; K^- p$
$1.73 \begin{array}{l} +0.08 \\ -0.07 \end{array}$	680	MAYEUR	72	HLBC	$2.1~{ m GeV}/c~K^-$
1.61 ± 0.04	2610	DAUBER	69	HBC	
$1.80\ \pm0.16$	299	LONDON	66	HBC	
1.70 ± 0.12	246	PJERROU	65 B	HBC	
1.69 ± 0.07	794	HUBBARD	64	HBC	
$1.86 \begin{array}{l} +0.15 \\ -0.14 \end{array}$	517	JAUNEAU	63 D	FBC	

T+ MEAN LIFE

$VALUE (10^{-10} \text{ s})$	EVTS	DOCUMENT ID		TECN	COMMENT
$1.70\pm0.08\pm0.12$	2256 ± 63	ABDALLAH	06E	DLPH	from Z decays
• • • We do not use th	e following dat	a for averages, fit	s, limi	ts, etc. •	• •
$1.55 ^{igoplus 0.35}_{-0.20}$	35	³ VOTRUBA	72	НВС	10 GeV/ $c\ K^+p$
1.6 ± 0.3	34	STONE	70	HBC	
$1.9 \begin{array}{c} +0.7 \\ -0.5 \end{array}$	12	³ SHEN	67	HBC	
1.51 ± 0.55	5	³ CHIEN	66	HBC	6.9 GeV/ <i>c</i> p p
³ The error is statistic	al only.				

$$(au_{\equiv^-} - au_{\equiv^+}) / au_{\equiv^-}$$

A test of CPT invariance.

VALUE	DOCUMENT ID		TECN	COMMENT
-0.01 ± 0.07	ABDALLAH	06E	DLPH	from Z decays

= MAGNETIC MOMENT

See the "Note on Baryon Magnetic Moments" in the Λ Listings.

VALUE (μ_N)	EVTS	DOCUMENT ID		TECN	COMMENT
-0.6507±0.0025 OUR AVER	AGE				
-0.6505 ± 0.0025	4.36M	DURYEA	92	SPEC	800 GeV <i>p</i> Be
$-0.661\ \pm0.036\ \pm0.036$	44k	TROST	89	SPEC	$ar{arrho}^-~\sim$ 250 GeV
-0.69 ± 0.04	218k	RAMEIKA	84	SPEC	400 GeV <i>p</i> Be
HTTP://PDG.LBL.GOV		Page 2	Crea	ated: 5/	/30/2017 17:22

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

-0.674	$\pm 0.021\ \pm 0.020$	122k	НО	90	SPEC	See
						DURYEA 92
-2.1	± 0.8	2436	COOL	74	OSPK	1.8 $GeV/c K^- p$
-0.1	± 2.1	2724	BINGHAM	70 B	OSPK	1.8 $GeV/c K^- p$

=+ MAGNETIC MOMENT

See the "Note on Baryon Magnetic Moments" in the Λ Listings.

VALUE (μ_N)	EVTS	DOCUMENT ID		TECN	COMMENT
$+0.657\pm0.028\pm0.020$	70k	НО	90	SPEC	800 GeV <i>p</i> Be

$$\left(\mu_{\Xi^{-}}+\mu_{\overline{\Xi}^{+}}\right)/\left|\mu_{\Xi^{-}}\right|$$

A test of *CPT* invariance. We calculate this from the $\overline{\Xi}^-$ and $\overline{\Xi}^+$ magnetic moments above.

VALUE DOCUMENT ID

$+0.01\pm0.05$ OUR EVALUATION

Ξ^- DECAY MODES

	Mode		Fraction ((Γ_i/Γ)	Confidence	level
Γ_1	$\Lambda\pi^-$		(99.887	′±0.035) %		
Γ_2	$\Sigma^-\gamma$		(1.27	±0.23) \times	10^{-4}	
Γ ₃	$\Lambda e^- \overline{ u}_e$		(5.63	±0.31) \times	10^{-4}	
Γ_4	$Λμ^-\overline{ u}_{\mu}$		(3.5	$^{+3.5}_{-2.2}$) ×	10^{-4}	
Γ_5	$\Sigma^0 e^- \overline{ u}_e$		(8.7	± 1.7) $ imes$	10^{-5}	
Γ_6	$\Sigma^0 \mu^- \overline{ u}_\mu$		< 8	×	10^{-4}	90%
Γ ₇	$\equiv^0 e^- \overline{\nu}_e$		< 2.3	×	10^{-3}	90%
		$\Delta S = 2$ forbidden (S	2) mod	es		
Γ ₈	$n\pi^-$	<i>S</i> 2	< 1.9	×	10^{-5}	90%
Γ ₉	$ne^-\overline{ u}_e$	<i>S2</i>	< 3.2	×	10^{-3}	90%
Γ_{10}	n $\mu^-\overline{ u}_\mu$	<i>S</i> 2	< 1.5	%)	90%
Γ_{11}	$p\pi^-\pi^-$	<i>S</i> 2	< 4		10^{-4}	90%
Γ_{12}	$p\pi^-e^-\overline{ u}_e$	<i>S2</i>	< 4		10^{-4}	90%
Γ ₁₃	$p\pi^-\mu^-\overline{ u}_\mu$	<i>S</i> 2	< 4	×	10^{-4}	90%
	$p\mu^-\mu^-$	L	< 4	×	10 ⁻⁸	90%

CONSTRAINED FIT INFORMATION

An overall fit to 4 branching ratios uses 5 measurements and one constraint to determine 5 parameters. The overall fit has a $\chi^2=1.0$ for 1 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

= BRANCHING RATIOS

A number of early results have been omitted.

$\Gamma(\Sigma^-\gamma)/\Gamma(\Lambda\pi^-)$	⁻)				Γ_2/Γ_1
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
1.27±0.24 OUR F	IT				
1.27±0.23 OUR A					
$1.22\!\pm\!0.23\!\pm\!0.06$	211	⁴ DUBBS	94	E761	<i>Ξ</i> [−] 375 GeV
$2.27\!\pm\!1.02$	9	BIAGI	87 B	SPEC	SPS hyperon beam
4 DUBBS 94 also = 1.0 \pm 1.3).	o finds weak evi	dence that the a	symm	etry para	ameter α_{γ} is positive (α_{γ}
$\Gamma(\Lambda e^- \overline{\nu}_e)/\Gamma(\Lambda$	$\pi^-)$				Γ_3/Γ_1
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
0.564 ± 0.031 OUR	FIT				
0.564 ± 0.031	2857	BOURQUIN	83	SPEC	SPS hyperon beam
• • • We do not u	se the following	data for average	s, fits	, limits,	etc. • • •
$0.30\ \pm0.13$	11	THOMPSON	80	ASPK	Hyperon beam
$\Gamma(\Lambda\mu^-\overline{ u}_{\mu})/\Gamma(\Lambda$	$\pi^-)$				Γ_4/Γ_1
$VALUE$ (units 10^{-3})	CL% EVTS	DOCUMENT ID		TECN	COMMENT
$0.35^{+0.35}_{-0.22}$ OU	R FIT				
0.35 ± 0.35	1	YEH	74	HBC	Effective denom.=2859
• • • We do not u	se the following	data for average	s, fits	, limits,	etc. • • •
< 2.3	90 0	THOMPSON	80	ASPK	Effective denom.=1017
< 1.3		DAUBER	69	HBC	
<12		BERGE	66	HBC	

$\Gamma(\Sigma^0 e^- \overline{\nu}_e)/\Gamma$	•	•				Γ_5/Γ_1
VALUE (units 10^{-3})		<i>EVTS</i>	DOCUMENT ID		TECN	COMMENT
0.087±0.017 OUF 0.087±0.017	R FIT	154	BOURQUIN	83	SPEC	SPS hyperon beam
$\left[\Gamma\left(\Lambda e^{-}\overline{ u}_{e}\right)+\Gamma ight]$	-(Σ0	$[e^-\overline{ u}_e)]/$	$^{\prime}\Gamma(arLambda\pi^{-})$			$(\Gamma_3+\Gamma_5)/\Gamma_1$
$VALUE$ (units 10^{-3})		EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not	use the	following	g data for average	s, fits,	limits, e	etc. • • •
$\begin{array}{c} 0.651 \pm 0.031 \\ 0.68 \ \pm 0.22 \end{array}$		3011 17	⁵ BOURQUIN ⁶ DUCLOS			SPS hyperon beam
⁵ See the separ	ate BC	URQUIN	I 83 values for Γ	(Λe ⁻	$\overline{\nu}_e$)/ Γ (/	$\Pi\pi^-)$ and $\Gamma(\Sigma^0e^-\overline{ u}_e)/2$
$\Gamma(\Lambda\pi^-)$ above 6 DUCLOS 71 coins about a fact	annot d			The Ca	abibbo tł	neory predicts the Σ^0 rate
$\Gamma ig(\Sigma^0 \mu^- \overline{ u}_\mu ig) / \Gamma$	$(\Lambda\pi^-$	·)				Γ_6/Γ_1
VALUE (units 10^{-3})	CL%	<i>EVTS</i>	DOCUMENT ID		TECN	COMMENT
<0.76	90	0	YEH	74	HBC	Effective denom.=3026
• • • We do not	use the	following	g data for average	s, fits,	limits, e	etc. • • •
<5			BERGE	66	HBC	
$\Gamma(\Xi^0 e^- \overline{\nu}_e)/\Gamma$	•	•				Γ_7/Γ_1
$VALUE$ (units 10^{-3})		<i>EVTS</i>	DOCUMENT ID		TECN	COMMENT
<2.3	90	0	YEH	74	HBC	Effective denom.=1000
$\Gamma(n\pi^-)/\Gamma(\Lambda\pi^-)$		in final an	danah :nhanah			Γ_8/Γ_1
$\Delta S=2$. For $\Delta S=2$. VALUE (units 10^{-3})			der weak interact DOCUMENT ID		TECN	COMMENT
<0.019	90		BIAGI		SPEC	SPS hyperon beam
• • • We do not		following	_			• •
<3.0	90	0	YEH	74	НВС	Effective denom.=760
<1.1			DAUBER	69	HBC	
< 5.0			FERRO-LUZZ	1 63	HBC	
$\Gamma(ne^{-}\overline{\nu}_{e})/\Gamma(\Lambda)$	(π^{-})					Γ_9/Γ_1
ΔS =2. Fort VALUE (units 10 ⁻³)			der weak interact	ion.	TECN	COMMENT
< 3.2	90	0	<u>DOCUMENT ID</u> YEH	74	TECN HBC	
• • • We do not		-			_	Effective denom.=715
<10	90	. TOHOWINE	BINGHAM	65	RVUE	
$\Gamma(n\mu^-\overline{\nu}_{\mu})/\Gamma(\lambda)$		in first-or	der weak interact	ion		Γ_{10}/Γ_{1}
VALUE (units 10^{-3})			DOCUMENT ID		<u>TECN</u>	COMMENT
<15.3	90	0	YEH	74	НВС	Effective denom.=150

$\Gamma(\rho\pi^-\pi^-)/\Gamma(\Lambda\pi^-)$ $\Delta S=2$. Forbidden in first-order weak interaction.						
$VALUE$ (units 10^{-4})			DOCUMENT ID		TECN	COMMENT
<3.7	90	0	YEH	74	НВС	Effective denom.=6200
$\Gamma(p\pi^-e^-\overline{ u}_e)/$ $\Delta S=2$. For	•	,	er weak interacti	on.		Γ_{12}/Γ_1
$VALUE$ (units 10^{-4})	CL%	EVTS	DOCUMENT ID		TECN	COMMENT
<3.7	90	0	YEH	74	HBC	Effective denom.=6200
$\Gamma(\rho\pi^-\mu^-\overline{\nu}_\mu)/\Gamma(\Lambda\pi^-)$ $\Delta S=2$. Forbidden in first-order weak interaction.						
VALUE (units 10^{-4})			DOCUMENT ID		TECN	COMMENT
<3.7	90	0	YEH	74	HBC	Effective denom.=6200
$\Gamma(\rho\mu^-\mu^-)/\Gamma(\Lambda\pi^-)$ A $\Delta L=2$ decay, forbidden by total lepton number conservation.						
<i>VALUE</i> (units 10^{-8})		CL%	DOCUMENT ID		TECN	COMMENT
<4.0		90	RAJARAM	05	HYCP	<i>p</i> Cu, 800 GeV
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$						
$< 3.7 \times 10^4$		90	⁷ LITTENBERG	92 B	HBC	Uses YEH 74 data
⁷ This LITTENBERG 92B limit and the identical YEH 74 limits for the preceding three modes all result from nonobservance of any 3-prong decays of the Ξ^- . One could as						

= DECAY PARAMETERS

See the "Note on Baryon Decay Parameters" in the neutron Listings.

well apply the limit to the sum of the four modes.

$\alpha(\Xi^-)\alpha_-(\Lambda)$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.294 ± 0.005 OUR AV	ERAGE	Error includes scale	facto	or of 1.7.	See the ideogram
below.					
-0.2963 ± 0.0042	189k	LUK	00	E756	p Be, 800 GeV
-0.2894 ± 0.0073	63k	⁸ LUK	00	E756	p Be, 800 GeV
$-0.303 \pm 0.004 \pm 0.004$	192k	RAMEIKA	86	SPEC	400 GeV <i>p</i> Be
$-0.257\ \pm0.020$	11k	ASTON	85 B	LASS	11 GeV/ c K^-p
$-0.260~\pm 0.017$	21k	BENSINGER	85	MPS	$5 \text{ GeV}/c \text{ K}^-p$
-0.299 ± 0.007	150k	BIAGI	82	SPEC	SPS hyperon beam
-0.315 ± 0.026	9046	CLELAND	80 C	ASPK	BNL hyperon beam
-0.239 ± 0.021	6599	HEMINGWAY	78	HBC	4.2 $GeV/c K^{-}p$
$-0.243\ \pm0.025$	4303	BALTAY	74	HBC	1.75 $GeV/c \ K^-p$
$-0.252\ \pm0.032$	2436	COOL	74	OSPK	$1.8~{ m GeV}/c~K^-~p$
-0.253 ± 0.028	2781	DAUBER	69	HBC	

⁸ This LUK 00 value is for $\alpha(\overline{\Xi}^+)$ $\alpha_+(\overline{\varLambda})$. We assume *CP* conservation here by including it in the average for $\alpha(\Xi^-)$ $\alpha_-(\Lambda)$. But see the second data block below for the *CP* test.

α FOR $\Xi^- \rightarrow \Lambda \pi^-$

The above average, $\alpha(\Xi^-)$ $\alpha_-(\Lambda) = -0.294 \pm 0.005$, where the error includes a scale factor of 1.7, divided by our current average $\alpha_-(\Lambda) = 0.642 \pm 0.013$, gives the following value for $\alpha(\Xi^-)$.

VALUE

DOCUMENT ID

−0.458±0.012 OUR EVALUATION Error includes scale factor of 1.8.

 $\frac{\left[\alpha(\Xi^{-})\alpha_{-}(\Lambda) - \alpha(\overline{\Xi}^{+})\alpha_{+}(\overline{\Lambda})\right]}{\left[\alpha(\Xi^{-})\alpha_{-}(\Lambda) + \alpha(\overline{\Xi}^{+})\alpha_{+}(\overline{\Lambda})\right]}$

 $\overline{ (\Lambda)}+\alpha(\overline{\Xi^+})\alpha_+(\overline{\Lambda})]$ This is zero if CP is conserved. The α 's are the decay-asymmetry parameters for $\Xi^- \to \Lambda \pi^-$ and $\Lambda \to p\pi^-$ and for $\overline{\Xi^+} \to \overline{\Lambda}\pi^+$ and $\overline{\Lambda} \to \overline{p}\pi^+$.

VALUE (units 10^{-4})EVTSDOCUMENT IDTECNCOMMENT0.0±5.1±4.4158MHOLMSTROM 04HYCPp Cu, 800 GeV• • • We do not use the following data for averages, fits, limits, etc.• • •+120±140252kLUK00E756p Be, 800 GeV

ϕ ANGLE FOR $\Xi^- \rightarrow \Lambda \pi^-$

 $(\tan\phi=\beta/\gamma)$

VALUE (· (°)	EVTS	DOCUMENT ID		TECN	COMMENT
– 2.1	± 0.8 OUR A	WERAGE				
- 2.39	$9 \pm 0.64 \pm 0.64$	144M	⁹ HUANG	04	HYCP	p Cu, 800 GeV
- 1.63	$1 \pm 2.66 \pm 0.37$	1.35M	¹⁰ CHAKRAVO	03	E756	p Be, 800 GeV
5	± 10	11k	ASTON	85 B	LASS	K^-p
14.7	± 16.0	21k	¹¹ BENSINGER	85	MPS	5 GeV/ <i>c K</i> ⁻ <i>p</i>
11	± 9	4303	BALTAY	74	HBC	$1.75 \; \text{GeV}/c \; K^- p$
5	± 16	2436	COOL	74	OSPK	1.8 $GeV/c K^{-}p$
-14	± 11	2781	DAUBER	69	HBC	Uses $\alpha_{\Lambda} = 0.647 \pm 0.020$
0	± 12	1004	¹² BERGE	66	HBC	

HTTP://PDG.LBL.GOV

Page 7

• • • We do not use the following data for averages, fits, limits, etc. • • •

-26	± 30	2724				
0	± 20.4	364	¹² LONDON	66	HBC	Using α_{Λ} =0.62
54	+30		¹² CARMONY			, ,

⁹ From this result and α_{Ξ} , HUANG 04 gets $\beta_{\Xi}=-0.037\pm0.011\pm0.010$ and $\gamma_{\Xi}=0.888\pm0.0004\pm0.006$. And the strong p—s phase difference for $\Lambda\pi^-$ scattering is $(4.6\pm1.4\pm1.2)^\circ$.

g_A / g_V FOR $\Xi^- \rightarrow \Lambda e^- \overline{\nu}_e$

VALUE	EVTS	DOCUMENT ID		TECN	COMMENT
-0.25 ± 0.05	1992	¹³ BOURQUIN	83	SPEC	SPS hyperon beam

 $^{^{13}}$ BOURQUIN 83 assumes that $g_2=0$. Also, the sign has been changed to agree with our conventions, given in the "Note on Baryon Decay Parameters" in the neutron Listings.

= REFERENCES

We have omitted some papers that have been superseded by later experiments. See our earlier editions.

ABDALLAH	06E	PL B639 179	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
RAJARAM	05	PRL 94 181801	D. Rajaram <i>et al.</i>	(FNAL HyperCP Collab.)
HOLMSTROM	04	PRL 93 262001	T. Holmstrom et al.	(FNAL HyperCP Collab.)
HUANG	04	PRL 93 011802	M. Huang <i>et al.</i>	(FNAL HyperCP Collab.)
CHAKRAVO	03	PRL 91 031601	A. Chakravorty et al.	(FNAL E756 Collab.)
LUK	00	PRL 85 4860	K.B. Luk <i>et al.</i>	(FNAL E756 Collab.)
DUBBS	94	PRL 72 808	T. Dubbs et al.	(FNAL E761 Collab.)
DURYEA	92	PRL 68 768	J. Duryea <i>et al.</i>	(MINN, FNAL, MICH, RUTG)
LITTENBERG	92B	PR D46 R892	L.S. Littenberg, R.E. Shrock	` (BNL, STON)
НО	90	PRL 65 1713	P.M. Ho <i>et al.</i>	(MICH, FNAL, MINN, RUTG)
Also		PR D44 3402	P.M. Ho et al.	(MICH, FNAL, MINN, RUTG)
TROST	89	PR D40 1703	L.H. Trost et al.	` (FNAL-715 Collab.)
BIAGI	87B	ZPHY C35 143	S.F. Biagi et al.	(BRÌS, CERN, GEVA $+$)
RAMEIKA	86	PR D33 3172	R. Rameika <i>et al.</i>	(RUTG, MICH, WISC+)
ASTON	85B	PR D32 2270	D. Aston et al.	(SLAC, CARL, CNRC, CINC)
BENSINGER	85	NP B252 561	J.R. Bensinger et al.	(CHIC, ELMT, FNAL+)
BOURQUIN	84	NP B241 1	M.H. Bourquin et al.	(BRIS, GEVA, HEIDP+)
RAMEIKA	84	PRL 52 581	R. Rameika <i>et al.</i>	(RUTG, MICH, WISC+)
BOURQUIN	83	ZPHY C21 1	M.H. Bourquin et al.	(BRIS, GEVA, HEIDP+)
BIAGI	82	PL 112B 265	S.F. Biagi et al.	`(BRIS, CAVE, GEVA+)
BIAGI	82B	PL 112B 277	S.F. Biagi et al.	(LOQM, GEVA, RL+)
CLELAND	80C	PR D21 12	W.E. Cleland et al.	(PITT, BNL)
THOMPSON	80	PR D21 25	J.A. Thompson et al.	(PITT, BNL)
BOURQUIN	79	PL 87B 297	M.H. Bourquin et al.	(BRIS, GEVA, HEIDP+)
HEMINGWAY	78	NP B142 205	R.J. Hemingway et al.	(CERN, ZEEM, NIJM $+$)
DIBIANCA	75	NP B98 137	F.A. Dibianca, R.J. Endorf	(CMU)
BALTAY	74	PR D9 49	C. Baltay <i>et al.</i>	(COLU, BING) J
COOL	74	PR D10 792	R.L. Cool et al.	(BNL)
Also		PRL 29 1630	R.L. Cool et al.	(BNL)
YEH	74	PR D10 3545	N. Yeh <i>et al.</i>	(BING, COLU)
MAYEUR	72	NP B47 333	C. Mayeur et al. (BRUX, CERN, TUFTS, LOUC)
VOTRUBA	72	NP B45 77	M.F. Votruba, A. Safder, T.I	M. Ratcliffe $(BIRM+\acute)$
WILQUET	72	PL 42B 372	G. Wilquet et al.	(BRUX, CERN, $TUFTS+$)
DUCLOS	71	NP B32 493	J. Duclos et al.	` (CERN)

From this result and α_{Ξ} , CHAKRAVORTY 03 obtains $\beta_{\Xi}=-0.025\pm0.042\pm0.006$ and $\gamma_{\Xi}=0.889\pm0.001\pm0.007$. And the strong p–s phase difference for $\Lambda\pi^-$ scattering is $(3.17\pm5.28\pm0.73)^{\circ}$.

 $^{^{11}}$ BENSINGER 85 used $lpha_{f \Lambda}=$ 0.642 \pm 0.013.

 $^{^{12}}$ The errors have been multiplied by 1.2 due to approximations used for the Ξ polarization; see DAUBER 69 for a discussion.

BINGHAM GOLDWASSER STONE DAUBER SHEN BERGE CHIEN LONDON BINGHAM PJERROU Also BADIER CARMONY HUBBARD FERRO-LUZZI	70 69 67 66 66 66 65 65B 64 64 64 63	PR D1 3010 PR D1 1960 PL 32B 515 PR 179 1262 PL 25B 443 PR 147 945 PR 152 1171 PR 143 1034 PRSL 285 202 PRL 14 275 Thesis Dubna Conf. 1 593 PRL 12 482 PR 135 B183 PR 130 1568	G.M. Bingham et al. E.L. Goldwasser, P.F. Schultz S.L. Stone et al. P.M. Dauber et al. B.C. Shen, A. Firestone, G. Goldh J.P. Berge et al. C.Y. Chien et al. G.W. London et al. H.H. Bingham G.M. Pjerrou et al. G.M. Pjerrou J. Badier et al. D.D. Carmony et al. J.R. Hubbard et al. M. Ferro-Luzzi et al.	(LRL) (YALE, BNL) (BNL, SYRA) (CERN) (UCLA) (UCLA) (EPOL, SACL, ZEEM) (LRL) (LRL)
JAUNEAU Also	63D	Siena Conf. 4 PL 5 261	L. Jauneau <i>et al.</i> L. Jauneau <i>et al.</i>	(EPOL, CERN, LOUC+) (EPOL, CERN, LOUC+)
SCHNEIDER	63	PL 4 360	J. Schneider	(CERN)