PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11127899 A

(43) Date of publication of application: 18 . 05 . 99

(51) Int. CI

C12Q 1/68 C12N 15/09 //(C12Q 1/68 , C12R 1:01), (C12N 15/09 , C12R 1:01)

(21) Application number: 09297085 (22) Date of filing: 29 . 10 . 97

(71) Applicant:

YAKULT BIO SCIENCE KENKYU ZAIDAN

(72) Inventor:

TOOMA YUKIKO

ITO KIKUJI

(54) OLIGONUCLEOTIDE PROBE SPECIFIC IN SPECIES TO BACTEROIDES GROUP **BACTERIUM**

COPYRIGHT: (C)1999,JPO

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain the subject new probe comprising an oligonucleotide probe having a specific base sequence or a sequence complementary to the base sequence and useful for identification of species of bacteroides group bacterium in the intestine and analysis or the like of intestinal flora.

SOLUTION: This oligonucleotide probe has a base sequence represented by formula I to formula V or the like or a base sequence which is complementary to the base sequence and each base sequence of the following formulas is specific to the following species of bacteroides (B) group bacterium and useful for specific identification or the like of bacteroides group bacterium: The sequence of formula I: Bacteroides ovatus, the sequence of formula II: Bacteroides fragilis, the sequence of formula III: Bacteroides uniformis, the sequence of formula IV: Bacteroides eggerthii, the sequence of formula V: Porphyromonas asaccharolytica. These probes are obtained by comparing 16Sr RNA gene sequence of each species of bacteroides group registered in database and designing the structure

ATACTGTTTC CAATATATTC TGT ı

and synthesizing these sequences by DNA synthesizer.

GACATGTTTC CACATCATTC CAC

Π

GACATGTATC EACATCATTC AGT

Ш

V

GTAATGTTTC CACTACATTC CGC

CTCCAGTACA CTCTAGCTAG A

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-127899

(43)公開日 平成11年(1999)5月18日

(51) Int.Cl. ⁶	酸別記号		FI					
C 1 2 Q 1/68			C 1	2 Q	1/68		Α	
C 1 2 N 15/09	ZNA		C1	2 N	15/00		ZNAA	
// (C12Q 1/6	8							
C 1 2 R 1:01)							
(C 1 2 N 15/09	ZNA							
		審査請求	未請求	請求	項の数3	OL	(全 9 頁) 最終頁に続く
(21)出顧番号	特顧平9-297085		(71)	出願人	597099	885		
			ļ		財団法	人ヤク	ルト・パイ	オサイエンス研究
(22)出願日	平成9年(1997)10月29日				时团			
					東京都	港区東	新橋1丁目	1番19号
			(72)	発明者	遠間	有希子		
					東京都	杉並区	宮前3-23-	-4
			(72)	発明者	伊藤	喜久治		
					埼玉県	志木市	館2-1-	7 -207
			(74)	代理人	#理士	有賀	三幸(タ	外3名)
			1					

(54) 【発明の名称】 バクテロイデスグループ細菌に種特異的なオリゴヌクレオチドプローブ

(57)【要約】

【解決手段】 配列番号1~18から選ばれる塩基配列 又は該塩基配列に相補的な配列を有するバクテロイデス 細菌種特異的オリゴヌクレオチドプローブ、並びにこの プローブを使用するバクテロイデスグループ細菌の種特 異的同定方法。

【効果】 .迅速、簡便にバクテロイデス細菌の種特異的 同定を行うことができる。 【特許請求の範囲】

【請求項1】 配列番号1~18から選ばれる塩基配列 又は該塩基配列に相補的な配列を有するオリゴヌクレオ チドプローブであって、該各塩基配列が下記のバクテロ イデスグループ細菌の種に特異的なものであることを特 徴とするオリゴヌクレオチドプローブ。

- (1) 配列番号1:バクテロイデス・オバタス (<u>Bacter</u> <u>oides ovatus</u>)
- (2) 配列番号2: バクテロイデス・フラギリス (<u>Bacteroides fragilis</u>)
- (3) 配列番号3:バクテロイデス・ユニフォルミス(<u>Bacteroides uniformis</u>)
- (4) 配列番号4: バクテロイデス・エガーシィー (<u>Ba</u> cteroides eggerthii)
- (5) 配列番号5:ポルフィロモナス・アサカロリティカ (Porphyromonas asaccharolytica)
- (6) 配列番号6: ポルフィロモナス・サーカムデンタ リア (Porphyromonas circumdentaria)
- (7) 配列番号7:ポルフィロモナス・ジンジバリス(Porphyromonas gingivalis)
- (8) 配列番号8:ポルフィロモナス・サリボーサ (<u>Porphyromonas</u> <u>salivosa</u>)
- (9) 配列番号9:バクテロイデス・ディスタソニス(Bacteroides distasonis)
- (10) 配列番号 1 0:バクテロイデス・スプランキニカス (<u>Bacteroides</u> <u>spianchinicus</u>)
- (11) 配列番号 1 1: リケネラ・ミクロヒューザス (<u>Ri</u> <u>kenella microfusus</u>)
- (12) 配列番号12:プレボテラ・メラニノゲニカ (<u>Prevotella melaninogenica</u>)
- (13) 配列番号13:プレボテラ・デンティコラ(<u>Prevotella denticola</u>)
- (14)配列番号14:プレボテラ・コルポリス(<u>Prevot</u> <u>ella</u> <u>corporis</u>)
- (15) 配列番号 1 5: プレボテラ・ディザイエンス (<u>Prevotella disiens</u>)
- (16) 配列番号16:プレボテラ・プカーリス (<u>Prevotella buccalis</u>)
- (17) 配列番号 17: プレボテラ・ブカエ (<u>Prevotella</u> <u>buccae</u>)
- (18) 配列番号18:プレボテラ・ロッシェイー (Prevotella loscheii)

【請求項2】 請求項1記載のオリゴヌクレオチドプロープを使用することを特徴とするバクテロイデスグループ細菌の種特異的同定方法。

【請求項3】 (1) 検体中の核酸を抽出する工程、

(2) 抽出した核酸を増幅させる増幅工程、及び(3) 増幅した核酸に請求項1記載のオリゴヌクレオチドプロープの1又は2以上を反応させる工程を含む請求項2記載のバクテロイデスグループ細菌の種特異的同定方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ヒト及び動物の腸管内に生息するバクテロイデスグループ細菌に特異的なプローブ及び該プローブを使用したバクテロイデスグループ細菌の種特異的同定方法に関するものである。

[0002]

【従来の技術】ヒトや動物等の腸内細菌叢を同定・解析することは、個体の健康状態の把握、腸管内の病理的研究等に非常に有用である。現状ではその手段として、種々の選択培地を組み合わせて用いる選別方法や顕微鏡観察が主に行われている。

【0003】菌種の同定、腸内細菌叢の解析を行うためには、対象となる個体の糞便を嫌気条件下において希釈液で希釈し、これを培地上にまき、嫌気性培養を行う必要がある。しかし、培養には数日から数週間の時間を要し、コロニー数のカウント等の操作も煩雑であった。

【0004】腸内細菌のうちバクテロイデスグループの 細菌は、グラム陰性の嫌気性菌であり、ヒトの腸管内に おける最優勢菌である。通常、この菌は人体に被害を及 ぼすことはないものの、菌体表面のLPS(lipopolysa c carido)には、トキシン様の毒素活性があることも見 出されているため、比較的悪玉菌として認識されてい る。

【0005】バクテロイデスグループ (Bacteroidacea e) は近年、新しい属が提唱され、そのサブグループ は、バクテロイデス (Bacteroides) クラスター、プレボテラ (Prevotella) クラスター、ポルフィロモナス (Porphyromonas) クラスター、ニュー1 (Newl) 、ニュー2 (New2) の5つに大別される。

【0006】バクテロイデスグループ細菌の生態学的研究や臨床株の同定等、大量の菌株をスクリーニングする場合、その同定法としては、主に表現形質、すなわち、糖分解性状、ガス産生、発育温度等を検査することが行われている。また、近年では、DNA-DNAホモロジーによる判定、モノクローナル抗体による検出も行われるようになっている。

【0007】しかしながら、表現形質を基にした同定法 やモノクローナル抗体の作成は、操作が煩雑であり、か つ試験者の熟練を要するものであった。

[0008]

30

【発明が解決しようとする課題】このように、バクテロイデスグループ細菌の種の同定・解析を行うには、長期間を要し、また操作が煩雑である等の問題があった。従って、本発明の目的は、バクテロイデスグループ細菌の種を迅速かつ簡便に同定・解析し得る方法を提供することにある。

[0009]

【課題を解決するための手段】斯かる実情に鑑み本発明 50 者は鋭意研究を行ったところ、バクテロイデスグループ

2

細菌用オリゴヌクレオチドプローブを見出し、これを用いれば、バクテロイデスグループ細菌の種特異的な同定を迅速かつ簡便に行うことが可能となることを見出し本発明を完成した。

【0010】すなわち本発明は、配列番号1~18から 選ばれる塩基配列又は該塩基配列に相補的な配列を有す るオリゴヌクレオチドプローブであって、該各塩基配列 が下記のバクテロイデスグループ細菌の種に特異的なも のであることを特徴とするオリゴヌクレオチドプローブ を提供するものである。

- (1) 配列番号1:バクテロイデス・オバタス (<u>Bacter</u> oides ovatus)
- (2) 配列番号2: バクテロイデス・フラギリス (<u>Bact</u> eroides fragilis)
- (3)配列番号3:バクテロイデス・ユニフォルミス(Bacteroides uniformis)
- (4) 配列番号4:バクテロイデス・エガーシィー (<u>Ba</u> <u>cteroides</u> <u>eggerthii</u>)
- (5)配列番号5:ポルフィロモナス・アサカロリティカ (Porphyromonas asaccharolytica)
- (6) 配列番号6:ポルフィロモナス・サーカムデンタ リア (Porphyromonas circumdentaria)
- (7) 配列番号7:ポルフィロモナス・ジンジバリス(Porphyromonas gingivalis)
- (8) 配列番号8:ポルフィロモナス・サリボーサ (<u>Porphyromonas salivosa</u>)
- (9) 配列番号9:バクテロイデス・ディスタソニス(<u>Bacteroides</u> <u>distason</u>is)
- (10) 配列番号10:バクテロイデス・スプランキニカス (Bacteroides spianchinicus)
- (11) 配列番号11:リケネラ・ミクロヒューザス(<u>Ri</u> <u>kenella microfusus</u>)
- (12) 配列番号12: プレボテラ・メラニノゲニカ (<u>Pr</u>evotella melaninogenica)
- (13) 配列番号13:プレボテラ・デンティコラ (<u>Prevotella denticola</u>)
- (14) 配列番号14: プレボテラ・コルポリス (<u>Prevot</u> ella corporis)
- (15) 配列番号15:プレボテラ・ディザイエンス (<u>Prevotella disiens</u>)
- (16) 配列番号16:プレボテラ・ブカーリス (<u>Prevotella buccalis</u>)
- (17) 配列番号 17: プレボテラ・プカエ (Prevotella buccae)
- (18) 配列番号 1 8: プレボテラ・ロッシェイー (<u>Prevotella loscheii</u>)

【0011】また、本発明は、該オリゴヌクレオチドプローブを使用することを特徴とするバクテロイデスグループ細菌の種特異的同定方法を提供するものである。

【0012】更に本発明は、(1) 検体中の核酸を抽出 50

する工程、(2)抽出した核酸を増幅させる増幅工程、及び(3)増幅した核酸に上記オリゴヌクレオチドプロープの1又は2以上を反応させる工程を含むバクテロイデスグループ細菌の種特異的同定方法を提供するものである。

[0013]

【発明の実施の形態】バクテロイデスグループとは、バクテロイデス属細菌と近縁のもの、すなわち、その表現形質や16SrRNA配列が類似するものである。元 来、その表現形質の類似性からバクテロイデス属の細菌と分類されていたものでも、近年になって16SrRNA配列や進化の経緯等が異なることが判明したものは、このグループには含まれない。

【0014】上記の本発明のプローブは、更に菌を種レベルにまで、簡便、迅速かつ高精度に同定できるものである。

【0015】本発明のプローブを設計する際には、プライマーのターゲットとして、系統分類の指標として信頼性の高い16SrRNAを用い、同定・解析には、PCR法等の手段が必要となるため、RNAでなくDNAを用いた。

【0016】プローブの塩基配列、すなわちバクテロイデスグループに特異的な16SrRNA遺伝子配列は、データベース (DDBJ、Gene bank、RDP等) に登録されているバクテロイデスグループ各菌種の塩基配列を比較・検討して設計した。

【0017】プローブを作成する場合には、ハイブリダイズの特異性、合成の行いやすさ等の理由から遺伝子の全長を、約20から50b.p程度とすることが好ましいため、これと合致するよう設計を行った。また、プローブの長さは、塩基配列の種類による解読のしやすさ等の理由により、17~26b.pとなっている。これらは操作上最も好適な長さであるが、使用に際しては、各々の16sRNA遺伝子中において、該オリゴヌクレオチドに隣接する数~数十b.pの塩基配列を増加させたものを用いても良い。

【0018】このようにして得られたプローブのうち、 配列番号1の塩基配列又は該塩基配列に相補的な配列を 有するものは、バクテロイデス・オバタスに種特異的な 40 オリゴヌクレオチドプローブである。

【0019】配列番号2の塩基配列又は該塩基配列に相補的な配列を有するものはバクテロイデス・フラギリスに種特異的なオリゴヌクレオチドプローブである。

【0020】配列番号3の塩基配列又は該塩基配列に相補的な配列を有するものはバクテロイデス・ユニフォルミスに種特異的なオリゴヌクレオチドプローブである。

【0021】配列番号4の塩基配列又は該塩基配列に相補的な配列を有するものはバクテロイデス・エガーシィーに種特異的なオリゴヌクレオチドプローブである。

【0022】配列番号5の塩基配列又は該塩基配列に相

4

20

補的な配列を有するものはポルフィロモナス・アサカロ リティカに種特異的なオリゴヌクレオチドプローブであ る。

【0023】配列番号6の塩基配列又は該塩基配列に相 補的な配列を有するものはポルフィロモナス・サーカム デンタリアに種特異的なオリゴヌクレオチドプロープで ある。

【0024】配列番号7の塩基配列又は該塩基配列に相 補的な配列を有するものはポルフィロモナス・ジンジバ リスに種特異的なオリゴヌクレオチドプローブである。

【0025】配列番号8の塩基配列又は該塩基配列に相 補的な配列を有するものはポルフィロモナス・サリボー サに種特異的なオリゴヌクレオチドプローブである。

【0026】配列番号9の塩基配列又は該塩基配列に相 補的な配列を有するものはバクテロイデス・ディスタソ ニスに種特異的なオリゴヌクレオチドプローブである。

【0027】配列番号10の塩基配列又は該塩基配列に 相補的な配列を有するものはバクテロイデス・スプラン キニカスに種特異的なオリゴヌクレオチドプローブであ

【0028】配列番号11の塩基配列又は該塩基配列に 相補的な配列を有するものはリケネラ・ミクロヒューザ スに種特異的なオリゴヌクレオチドプローブである。

【0029】配列番号12の塩基配列又は該塩基配列に 相補的な配列を有するものはプレボテラ・メラニノゲニ カに種特異的なオリゴヌクレオチドプロープである。

【0030】配列番号13の塩基配列又は該塩基配列に 相補的な配列を有するものはプレボテラ・デンティコラ に種特異的なオリゴヌクレオチドプローブである。

【0031】配列番号14の塩基配列又は該塩基配列に 相補的な配列を有するものはプレボテラ・コルポリスに 種特異的なオリゴヌクレオチドプローブである。

【0032】配列番号15の塩基配列又は該塩基配列に 相補的な配列を有するものはプレボテラ・ディザイエン スに種特異的なオリゴヌクレオチドプローブである。

【0033】配列番号16の塩基配列又は該塩基配列に 相補的な配列を有するものはプレボテラ・ブカーリスに 種特異的なオリゴヌクレオチドプローブである。

【0034】配列番号17の塩基配列又は該塩基配列に 相補的な配列を有するものはプレボテラ・プカエに種特 異的なオリゴヌクレオチドプローブである。

【0035】配列番号18の塩基配列又は該塩基配列に 相補的な配列を有するものはプレボテラ・ロッシェイー に種特異的なオリゴヌクレオチドプローブである。

【0036】上記のように設計したプロープは、その塩 基配列に従い、DNA合成機により、人工的に合成され る。その種特異性は、バクテロイデスグループ及び代表 的腸内細菌の基準株及び標準株を用いて16SrRNA に対する結合能を指標として、確認した。

【0037】菌種特異性は、上記の菌株を各々単独で培 50

登した後DNAを抽出し、公知のプライマーを使用し て、16SrRNA部分を増幅し、電気泳動によりPC Rプロダクトを確認した。これに本発明のプローブをハ イブリッドさせ、DIG detection kit によりハイブリッドの検出を行った。なお、これらの菌 株は光岡らの方法(腸内菌の世界-嫌気性菌の分離と同 定、光岡知足、叢文社)により、生物・生化学的性状を 確認した。

6

【0038】従って、本発明のプローブは、単独で又は 複数組み合わせて、更に蛍光標識等の修飾を行う等して 使用すれば、バクテロイデスグループ細菌を種特異的に 同定を行うことができる。

【0039】具体的には、(1)検体中の核酸を抽出す る工程、(2)抽出した核酸を増幅させる増幅工程、及 び(3) 増幅した核酸に上記のオリゴヌクレオチドプロ ープの1又は2以上を反応させる工程を含むバクテロイ デス属細菌の種特異的同定方法が好ましい例として挙げ られる。ここで検体としては、ヒトや動物から分離した 物、例えば糞便等が挙げられる。工程(1)において、 検体から核酸を抽出する方法としては、例えば検体を適 当な培地上で培養し、生じたコロニーを1つずつSDS で溶解し、次いでタンパク質の除去、エタノール沈殿等 を行った後、TEバッファー等に溶解する方法が挙げら れる。また、工程(2)において抽出した核酸を増幅さ せる方法としては、PCR反応を利用すればよく、この 後、増幅した核酸は電気泳動等により確認すればよい。 更に工程(3)の方法としては、増幅された核酸と本発 明のプロープの1又は2以上とのハイブリダイゼーショ ンを行う方法が挙げられる。

[0040]

【実施例】次に、実施例を挙げて本発明を更に詳細に説 明するが、本発明は、これらに限定されるものではな W

【0041】実施例1 プローブの作成: プローブの 塩基配列、すなわちバクテロイデスグループ細菌に種特 異的な16SrRNA遺伝子配列は、データベース(DD BJ、Gene bank、RDP等) に登録されているバクテロイデ スグループ各菌種の塩基配列を比較・検討して設計し た。その結果、配列番号1~18の塩基配列を有するプ ローブが得られた。ここでDNAの合成は、DNA合成 機を用いて行った。

【0042】実施例2 プローブの特異性の確認

(1) 菌株の培養及びDNAの抽出

菌株はJCM、DSM、ATCC等から入手したバクテ ロイデスグループの基準株及び標準株26株を用いた。 これらの菌株をEG寒天培地上で37℃、48時間嫌気 的に純培養した。培養後のコロニー各1つずつをSDS で溶解し、除タンパク、エタノール沈殿後、TE バッ ファーに溶解させたDNAをテンプレートとして使用し

た。

40

10 [0045]

【表1】

【0044】(3)ハイブリダイゼーション

PCRプロダクトをナイロンメンプレンに固定後、本発

明の各プローブとハイブリダイゼーションを行い、菌株

直接ブロットし、変性溶液に浸し、中和溶液に浸した後

乾燥し、UVで固定することにより行った。ハイブリダ

を同定した。メンブレンへの固定は、10倍のSSC バッファーで湿潤したメンプレンにPCRプロダクトを

* TBEバッファー中で行う。

イゼーションの条件を表1に示す。

【0043】(2) PCR反応

プライマーとして公知のユニバーサルプライマーである 8F (配列番号19)、15R (配列番号20)、Ta kara EX Taqを使用して16SrRNA部分 を増幅し、電気泳動によりPCRプロダクトを確認し た。なお、PCR反応及び電気泳動の条件は以下のとお りである。

(PCRの条件) a. 72℃、3分

b. 94°C、30秒

c. 55℃、30秒

d. 72℃、2分

e. 94℃、2分

(b~dは35回くり返した)

(電気泳動) 100V、20分、0.8%アガロース、*

種特異的プローブのハイブリダイゼーション条件

プロ・	プローブ		ハイブリダイ	洗 净
配列番号	略称	ド濃度	ゼーション温 度	温度
1	bacova	30%	45℃	65℃
2	bacfra	20%	45 ° C	70℃
3	bacuni	20%	45℃	65℃
4	bacegg	20%	45 ° C	70℃
5	porasa	20%	45℃	60℃
6	porcir	20%	45℃	60℃
7	porgin	20%	45℃	60℃
8	porsal	20%	45℃	60℃
9	pordis	20%	45℃	60℃
10	porspl	20%	45℃	60℃
11	pormic	20%	45℃	60℃
12	preme1	40%	45℃	75℃
13	preden	40%	45℃	75°C
14	precor	0%	45℃	55℃
15	predis	0%	45℃	55℃
16	prebls	20%	45℃	60℃
17	prebce	20%	45℃	60℃
18	prelos	0%	45℃	55℃

【0046】(4)プライマーの特異性の確認

上記の基準株及び標準株26株について、プライマーに よる同定結果と保存機関に登録されている菌種名とを比 較した。その結果、両者の同定結果は同一であった。 ※ ※ (表2~表4)

[0047]

【表2】

種特異的プローブの特異性(1)

細菌種	プローブ						
和磁体	bacova	bacfra	bacuni	bacegg			
Bacteroides ovatus	+	-	`-				
B. thetaiotaomicron		_		_			
B. fragilis	_	+	-	. –			
B. uniformis	_		+	_			
B. eggerthii	-	~		+			
B. vulgatus		-	-				

[0048]

【表3】

種特異的プローブの特異性(2)

細菌種	プローブ							
FW ES (FE	porasa	porcir	porgin	porsal	pordis	porspi	pormic	
P. asaccharolytica	+	_	_	_		_	_	
P. circumdentaria	_	+	_	_	_	-	_	
P. gingivalis	_	_	+	_	_	_	_	
P. salivosa	_	-	_	+	_	_	_	
B. distasonis	-	_	-	_	+	_	_	
B. splanchnicus	-	_	-	_	_	+	_	
R. microfusus	_	_	-	_			+	

P : Porphyromonas

B : Bacteroides

R:Rikenella

[0049]

【表4】

種特異的プローブの特異性(3)

	em est se	プローブ							
	細菌種	premel	preden	precor	predis	prebls	prebce	prelos	
P.	melaninogenica	+	-	-		-	-		
P.	veroralis	-	_	_	_	_	_	_	
P.	denticola	-	+	-	_	-	_	_	
P.	corporis	-		+	_		_	_	
P.	dislens	_	_	_	+	_	_	-	
P.	intermedia	_	_	_		_	_	_	
P.	oris	_	_	_		_	_	_	
P.	buccalis	_	_	_	_	+	_	_	
P.	buccae	_	_	_		_	+	_	
P.	oralis	_	_	_	_	_	_	-	
P.	loscheii	_	_	_	_	-	_	+	
P.	ruminicola	_	-	_	_	_	_	_	

P: Prevotella

*配列番号:1

配列の長さ:23

配列の型:核酸

鎖の数:1本鎖

トポロジー:直鎖状

配列の種類:DNA

23

23

23

23

ロイデスグループ細菌の種特異的な同定が迅速、簡便か つ髙精度に行うことができる。また、他の菌属等に特異 的なプローブ、プライマーなどと組み合わせれば、腸内 細菌叢の解析も迅速、簡便に行え、解析の結果から個体 や消化管の状態を把握することも可能である。 [0051] 【配列表】 配列

ATACTGTTTC CAATATATTC TGT

※鎖の数:1本鎖 【0052】配列番号:2 トポロジー:直鎖状 配列の長さ:23 配列の型:核酸 Ж 配列の種類:DNA

配列

GACATGTTTC CACATCATTC CAC

【0053】配列番号:3 ★鎖の数:1本鎖 配列の長さ:23 トポロジー:直鎖状 配列の種類:DNA 配列の型:核酸

配列

GACATGTATC CACATCATTC AGT

【0054】配列番号:4 ☆鎖の数:1本鎖 トポロジー:直鎖状 配列の長さ:23 配列の型:核酸 配列の種類:DNA

配列

GTAATGTTTC CACTACATTC CGC

【0055】配列番号:5 ◆鎖の数:1本鎖 トポロジー:直鎖状

配列の長さ:21 配列の型:核酸 配列の種類:DNA

配列

CTCCAGTACA CTCTAGCTAG A 21

配列の種類: DNA

【0056】配列番号:6 鎖の数:1本鎖 配列の長さ:21 トポロジー:直鎖状

配列の型:核酸

配列

21 GTTTGCTTGA GAGGAGACGA G

【0057】配列番号:7 鎖の数:1本鎖

配列の長さ:21 トポロジー:直鎖状 配列の型:核酸 配列の種類:DNA

配列

CGCCACTGAA GTCAAGCCCG G 21

【0058】配列番号:8 鎖の数:1本鎖 配列の長さ:21 トポロジー:直鎖状 配列の型:核酸 配列の種類:DNA

配列

21 TTTGGCTTGA GTATAGATGA A

鎖の数:1本鎖 【0059】配列番号:9 トポロジー:直鎖状 配列の長さ:17 配列の型:核酸 配列の種類:DNA

配列

GCTTGAGTAT GTTTGAG 17

【0060】配列番号:10 配列の長さ:21

21

20

26

25

26

14

(8)

Ж

配列の種類:DNA

配列の型:核酸

*トポロジー:直鎖状 鎖の数:1本鎖 配列の種類: DNA

配列

CTCGCCTGTA CTCCAGTTTA C

【0061】配列番号:11 ※鎖の数:1本鎖 配列の長さ:21 トポロジー:直鎖状 配列の型:核酸 配列の種類:DNA

配列

TGCATCTACT CTCCAGCCCG A

【0062】配列番号:12 ★鎖の数:1本鎖 配列の長さ:20. トポロジー:直鎖状 配列の型:核酸 配列の種類: DNA

配列

GTCTTCGATG ACGGCATCAG

【0063】配列番号:13 ☆鎖の数:1本鎖 トポロジー:直鎖状 配列の長さ:26

配列の型:核酸 配列

CCTCAACATC TCTGTATCGT TCTCCT

【0064】配列番号:14 ◆鎖の数:1本鎖

トポロジー:直鎖状 配列の長さ:25 配列の種類:DNA

配列の型:核酸

ATCACCATCT CTGGATCTTT CCTCT

【0065】配列番号:15 鎖の数:1本鎖

トポロジー:直鎖状 配列の長さ:26 配列の型:核酸 配列の種類:DNA

配列

配列

CCTCAACATC TCTGTATCGT GCTCCT

【0066】配列番号:16 鎖の数:1本鎖 トポロジー:直鎖状 配列の長さ:20 配列の型:核酸 配列の種類:DNA

配列

ACGTCGTTTG CTGACATCAA 20

【0067】配列番号:17 鎖の数:1本鎖 配列の長さ:26 トポロジー:直鎖状 配列の型:核酸 配列の種類: DNA

配列

CTTCATCATC TCTGAATCAT TCTCCT 26

【0068】配列番号:18 鎖の数:1本鎖 配列の長さ:18 トポロジー:直鎖状 配列の種類: DNA 配列の型:核酸

配列

TCTCCGAATC GTTCCGCC 18

【0069】配列番号:19 鎖の数:1本鎖 配列の長さ:20 トポロジー:直鎖状 配列の型:核酸 配列の種類:DNA

配列

20 AGAGTTTGAT CMTGGCTCAG

【0070】配列番号:20 50 配列の長さ:20

(9)

特開平11-127899

16

*トポロジー:直鎖状

配列の種類: DNA

配列

AAGGAGGTGA TCCARCCGCA

20

フロントページの続き

配列の型:核酸

鎖の数:1本鎖

(51) Int. Cl. 6

識別記号

FΙ

C 1 2 R 1:01)