



## CONTENTS OF VOLUME 20

*Number 1*

|                                                                                                                                   |    |
|-----------------------------------------------------------------------------------------------------------------------------------|----|
| Behavior of delaminated sandwich beam with transversely flexible core — high order theory . . . . .                               | 1  |
| Y. FROSTIG (Israel)                                                                                                               |    |
| Boundary element analysis of plane anisotropic bodies with stress concentrations and cracks . . . . .                             | 17 |
| C. L. TAN & Y. L. GAO (Canada)                                                                                                    |    |
| Contribution of interlaminar stresses to damping in thick laminated composites under uniaxial extension . . . . .                 | 29 |
| S. J. HWANG & R. F. GIBSON (USA)                                                                                                  |    |
| Low velocity transverse impact of filament-wound pipes: Part 1. Damage due to static and impact loads . . . . .                   | 37 |
| K. L. ALDERSON & K. E. EVANS (UK)                                                                                                 |    |
| Low velocity transverse impact of filament-wound pipes: Part 2. Residual properties and correlations with impact damage . . . . . | 47 |
| K. E. EVANS & K. L. ALDERSON (UK)                                                                                                 |    |
| Shape optimization of openings in composite pressure vessels . . . . .                                                            | 53 |
| LEE M. AHLSTROM & JAN BÄCKLUND (Sweden)                                                                                           |    |

*Number 2*

|                                                                                                                                                                                                  |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Theoretical and experimental investigations on composite blades . . . . .                                                                                                                        | 63  |
| P. SESHU, V. RAMAMURTI & B. J. C. BABU (India)                                                                                                                                                   |     |
| Effects of in-plane restraints on the stability of laminated composite plates . . . . .                                                                                                          | 73  |
| ARCHIBALD N. SHERBOURNE & MAHESH D. PANDEY (Canada)                                                                                                                                              |     |
| Theoretical investigation into the effect of the winding angle of the fibres on the strength of filament wound GRP pipes subjected to combined external pressure and axial compression . . . . . | 83  |
| J. MISTRY (UK)                                                                                                                                                                                   |     |
| Analytical and numerical analyses of transverse cracking in a cross-ply laminate — influence of the constraining effect . . . . .                                                                | 91  |
| J. L. REBIERE & D. GAMBY (France)                                                                                                                                                                |     |
| A general formulation of higher-order theories for the analysis of laminated plates . . . . .                                                                                                    | 103 |
| P. GAUDENZI (Italy)                                                                                                                                                                              |     |
| An efficient higher-order plate theory for laminated composites . . . . .                                                                                                                        | 113 |
| MAENGHYO CHO & R. REID PARMERTER (USA)                                                                                                                                                           |     |
| Book Review . . . . .                                                                                                                                                                            | 125 |

*Number 3*

|                                                                      |     |
|----------------------------------------------------------------------|-----|
| A mixed finite element for interlaminar stress computation . . . . . | 127 |
| YI-BING SHI (USA) & HAO-RAN CHEN (People's Republic of China)        |     |
| Postbuckling response of laminated plates under shear load . . . . . | 137 |
| STEFANOS KOSTELETOS (UK)                                             |     |
| Shear buckling response of laminated plates . . . . .                | 147 |
| STEFANOS KOSTELETOS (UK)                                             |     |

|                                                                                                                                                                           |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Buckling of unsymmetric laminates under linearly varying, biaxial in-plane loads, combined with shear<br>V.J. PAPAZOGLOU, N.G. TSOUVALIS & G.D. KYRIAKOPOULOS<br>(Greece) | 155 |
| Shear deformation and rotary inertia effects of vibrating composite beams<br>HAIM ABRAMOVICH (Israel)                                                                     | 165 |
| Plane strain delamination growth in composite panels<br>P.-L. LARSSON (Sweden) & F.A. LECKIE (USA)                                                                        | 175 |
| Non-linear forced vibrations of antisymmetric rectangular cross-ply plates<br>GAJBIR SINGH, G. VENKATESWARA RAO & N.G.R. IYENGAR<br>(India)                               | 185 |

*Number 4*

|                                                                                                                                                                 |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| A general laminated plate theory accounting for continuity of displacements and transverse shear stresses at material interfaces<br>KOSTAS P. SOLDATOS (Greece) | 195 |
| Transverse vibration of symmetrically laminated rectangular composite plates<br>S.T. CHOW, K.M. LIEW & K.Y. LAM (Singapore)                                     | 213 |
| Three-dimensional elasticity solution for static response of simply supported orthotropic cylindrical shells<br>ALEVANDI BHIMARADDI & K. CHANDRASHEKHARA (USA)  | 227 |
| Interlaminar stresses analysis for laminated composite plates based on a local high order lamination theory<br>CHIH-PING WU & HSI-CHING KUO (Taiwan)            | 237 |
| Non-linear free vibrations of symmetrically laminated, slightly compressible cylindrical shell panels<br>RAOUF A. RAOUF & ANTHONY N. PALAZOTTO (USA)            | 249 |

