Online Appendix "Only You: A Field Experiment of Text Message to Prevent Free-riding in Japan Marrow Donor Program"

Hiroki Kato Fumio Ohtake Saiko Kurosawa Kazuhiro Yoshiuchi Takahiro Fukuda

Last updated on October 25, 2023

1

Contents

1 Economic Models for Predictions

1 Economic Models for Predictions

We present a simple inter-temporal economic model to make predictions of message effects. Consider three periods (t = 1, 2, 3). A potential donor responds in either the first (t = 1) or second period (t = 2). Alternatively, the potential donor can choose not to respond. If the donor responds at t = 1, then the donor pays the response cost, c_1 , at t = 1 and receives the donation utility, b_1 , at t = 2. If the donor responds at t = 2, then the donor pays the response cost, c_2 , at t = 2 and receives the donation utility, b_2 , at t = 3. Assume that $c_1 = c_2 = c$.

We assume that the donor has the present bias. According to Laibson (1997), the utility of present-biased donor is $U_t = u_t + \beta \sum_{\tau=t+1}^3 \delta^{\tau-t} u_{\tau}$ where $\beta \in (0,1]$ is the degree of present bias and $\delta \in (0,1]$ is standard time discount factor. Moreover, at period t, the donor expect that s/he makes decisions after t+1 based on $\hat{\beta} \in [\beta, 1]$. If $\beta < \hat{\beta}$, the donor falsely believes that the present bias of their future self is not as strong. We will solve an interpersonal game (O'Donoghue & Rabin 2001) to obtain optimal response timing.

We employ a backward induction to solve the interpersonal game. Consider t=2. The donor receives $U_2=-c+\beta\delta b_2$ if s/he responses. Thus, the donor responses at t=2 if and only if $b_2\geq c/\beta\delta$. Consider t=1. First, we analyze how the donor expect their behavior at t=2. The donor believes that future selve's present bias is $\hat{\beta}$. Thus, at t=1, the donor expect that s/he will respond at t=2 if and only if $b_2\geq c/\hat{\beta}\delta$. Due to $\beta\leq\hat{\beta},\,c/\hat{\beta}\delta\leq c/\beta\delta$.

Consider $b_2 < c/\hat{\beta}\delta$. Then, at t=1, the donor expects that to give up responding, and actually does so. Thus, the donor at t=1 responds if and only if $U_1=-c+\beta\delta b_1\geq 0$ or $b_1\geq c/\beta\delta$. Otherwise, the donor gives up responding.

Consider $c/\hat{\beta}\delta \leq b_2 < c/\beta\delta$. Then, at t=1, the donor expects to respond at t=2, but will not actually take that action. Due to this false prediction, the donor at t=1 responds if and only if $U_1 \geq \beta(-\delta c + \delta^2 b_2)$ or

$$b_1 \ge \delta b_2 + c \frac{1 - \beta \delta}{\beta \delta}. \tag{1}$$

Otherwise, the donor eventually stops responding.

Consider $c/\beta\delta \leq b_2$. Then, at t=1, the donor expects to respond at t=2, and actually does so. Thus, the donor responds at t=1 if and only if equation (1) holds.

As a basic result, we show optimal timing assuming correct belief in β ($\hat{\beta} = \beta$) and constant utility of donation ($b_1 = b_2$). The second assumption implies that the donor believes that he can help the recipients at any time by transplantion. In addition to the assumption of $c_1 = c_2 = c$, we obtain the following optimal respond timing.

$$\begin{cases} t = 1 & \text{if} \quad c \frac{1 - \beta \delta}{(1 - \delta)\beta \delta} \le b_1 \\ t = 2 & \text{if} \quad c \frac{1}{\beta \delta} \le b_1 < c \frac{1 - \beta \delta}{(1 - \delta)\beta \delta} \\ \text{give up} & \text{if} \quad b_1 < c \frac{1}{\beta \delta} \end{cases}$$
 (2)

Suppose that a policy intervention (Early Coordination message) reduces the utility of donation at t=3, b_2 , by d>0. That is, $b_2=b_1-d$. If $b_1< c/\beta\delta$, then $b_2< c/\beta\delta$ due to $b_2< b_1$. Thus, the optimal timing is unchanged, that is, the donor stops responding. If $c/\beta\delta \leq b_1 < c/\beta\delta + d$, then $b_2< c/\beta\delta$ still holds. Thus, the optimal timing is t=1 because of $c/\beta\delta \leq b_1$.

Consider the case of $c/\beta\delta+d\leq b_1$. Then, $c/\beta\delta\leq b_2$ holds. We can reformulate the equation (1) as follows:

$$b_1 \ge c \frac{1 - \beta \delta}{(1 - \delta)\beta \delta} - d \frac{\delta}{1 - \delta}. \tag{3}$$

Thus, the optimal timing is t = 2 holds only if

$$\begin{split} c\frac{1}{\beta\delta} + d &\leq c\frac{1-\beta\delta}{(1-\delta)\beta\delta} - d\frac{\delta}{1-\delta} \\ d\frac{1}{1-\delta} &\leq c\left[\frac{1-\beta\delta}{(1-\delta)\beta\delta} - \frac{1}{\beta\delta}\right] \\ d\frac{1}{1-\delta} &\leq c\frac{1-\beta}{(1-\delta)\beta} \\ d &\leq c\frac{1-\beta}{\beta}. \end{split} \tag{4}$$

If $d > c(1-\beta)/\beta$, then the optimal timing is t = 1.

In summary, we can theoretically predict the message effect as follows:

Prediction. (i) Suppose that $d \leq c(1-\beta)/\beta$. Then, the optimal timing changes from t=2 to t=1 if $c/\beta\delta \leq b_1 < c/\beta\delta + d$ or $c(1-\beta\delta)/(1-\delta)\beta\delta - d\delta/(1-\delta) \leq b_1 < c(1-\beta\delta)/(1-\delta)\beta\delta$. (ii) Suppose that $c(1-\beta)/\beta < d$. Then, the optimal timing changes from t=2 to t=1 if $c/\beta\delta \leq b_1 < c(1-\beta\delta)/(1-\delta)\beta\delta$. For any case, those whose have other preferences are not affected by the message.

References

Laibson, D. (1997), 'Golden Eggs and Hyperbolic Discounting', The Quarterly Journal of Economics 112(2), 443–478.

O'Donoghue, T. & Rabin, M. (2001), 'Choice and Procrastination', *The Quarterly Journal of Economics* **116**(1), 121–160.