



# Neuronske mreže

Višeslojni perceptron, Backpropagation

# Agenda

- Biološki neuron
- Veštački neuron
- Veštačke neuronske mreže
- Dodatno čitanje

# Biološki neuron



• Ljudski mozak:



#### Biološki neuron

- Ljudski mozak:
  - Masivni paralelizam
  - Distribuirana reprezentacija i sposobnost računanja
  - Sposobnost učenja
  - Sposobnost generalizacije
  - Prilagodljivost...

#### **HUMAN BRAIN -v- COMPUTER**

|                   | BRAIN                                         | COMPUTER                                   |  |  |
|-------------------|-----------------------------------------------|--------------------------------------------|--|--|
| Size and Weight   | Volume 1500 cm <sup>3</sup> , Weight 3.3 lbs. | Variable Weight and Size.                  |  |  |
| Construction      | Neurons and Synapses                          | Chips, Circuits, Artificial Neurons        |  |  |
| Structure         | Bio-Genetic Programmed, Self-Learning         | Pre-Programmed, Al+ML Learning to Learn    |  |  |
| Memory            | Increases by Connecting Synapses              | Increased by Adding More/Better Chips      |  |  |
| Memory Power      | Teraflops (100 Trln calculations/sec)         | Megabytes, Terabytes, and Zettabytes       |  |  |
| Memory Density    | 10 <sup>7</sup> circuits/cm <sup>3</sup>      | 10 <sup>14</sup> Bits/cm³ , and now Qubits |  |  |
| Info Storage      | In Electrochemical and Electric Impulses      | In Numeric / Symbolic Form (Binary Bits)   |  |  |
| Info Transmission | Chemicals Fire Action Potential in Neurons    | Communicates via Electrical Coded Signals  |  |  |
| Input Tools       | Human Sensory Organs                          | Keyboard, Mouse, Camera, Touch, Vision     |  |  |
| Energy use        | 12 watts of Power; 5-10 Joules/sec            | Gigawatts of Power; 10-16 Joules/sec       |  |  |

Sources: Various; Diagram by Frank Feather (Note: Computers are constantly advancing)

|                    | Frontier<br>Supercomputer | Human Brain                                                         |  |
|--------------------|---------------------------|---------------------------------------------------------------------|--|
| Speed              | 1.102 exaFLOPS            | 1 exaFlops (approximation)                                          |  |
| Power requirements | 21 MW                     | 10-20 W                                                             |  |
| Dimensions         | 680 m2                    | 1.3 to 1.4 kg                                                       |  |
| Cabling            | 145 km                    | 850,000 km of axons and dendrites                                   |  |
| Storage            | 58 billion transistors    | 125 trillion synapses, which can store 4.7 bits of information each |  |



 San računarskih nauka da se napravi računar/program koji rešava izuzetno kompleksne zadatke lako i još brže nego čovek.

### Biološki neuron

- Ljudski mozak se sastoji od oko 86,000,000,000 neurona
- Više od 20 tipova neurona





- Sinapse veze između neurona (svaki neuron je povezan sa oko 1,000-10,000 drugih neurona):
  - Ukupno broj sinapsi ~ 10<sup>15</sup>





- Impulsi do neurona dolaze preko dendrita:
  - Impulsi mogu da povećaju ili smanje verovatnoću da će neuron "ispaliti" impuls na aksonu (izlazu)
  - "Ispaljen" impuls iz aksona je ulaz u druge neurone





- Brzina obrade ulaznih impulsa i generisanja izlaznog impulsa je od 1ms do 10 ms:
  - Da čovek "prepozna" neku scenu/okolinu potrebno je oko 0.1s.

# Veštački neuron



#### Veštački neuron



$$y = f(\sum_{i=1}^{n} A_i * W_i + \theta)$$

- McCulloh-Pits perceptron:
  - o  $A_i$  ulazi u neuron, i ∈ [1, N]
  - W, težine za svaki ulaz
  - Θ bias, konstanta nezavisna od ulaza
  - f aktivaciona funkcija:
    - Određuje nivo aktivacije/pobuđenosti neurona za zadate ulaze
    - Postoji više aktivacionih funckija u praksi



#### Veštački neuron



$$y = f(\sum_{i=1}^{n} A_i * W_i + \theta)$$

 Ogromno pojednostavljenje biološkog neurona, sa svrhom razvijanja razumevanja šta mreža ovako jednostavnih jedinica može da radi.





- Višeslojni perceptron (eng. Multi-layer perceptron = MLP):
  - 1 ulazni linearni sloj (često se i ne smatra kao sloj - nesporazum u literaturi)
  - 1 izlazni (nelinearni) sloj
  - N skrivenih (nelinearnih) slojeva:
    - Formalno, ako je N > 1, u pitanju je duboka neuronska mreža



- Obučavanje neuronske mreže:
  - Ažuriranje mreže kroz korekciju težina (W) tako da mreža može efikasno da izvršava željeni zadatak

- Paradigme obučavanja:
  - Nadgledano:
    - Mrežu snabdeti ispravnim ulazima za zadate izlaze (obučavajući skup)
    - Težine se koriguju tako da mreža proizvodi sve bolje rezultate kroz obučavajući skup
  - Nenadgledano:
    - Nema potrebe zadati ispravan izlaz u obučavajućem skupu



- Paradigme obučavanja:
  - Hibridno:
    - Kombinacija nadgledanog i nenadgledanog
    - Neke težine se koriguju prema ispravnom izlazu, dok se druge automatski koriguju.



- Primer:
  - Istrenirati neuronsku mrežu koja na osnovu podataka o klijentu banke može predvideti da li tom klijentu treba odobriti stambeni kredit ili ne



| lme i<br>prezime | Godine | Plata   | lma druge<br>kredite | Prethodni krediti<br>redovno plaćani | Odobren? |
|------------------|--------|---------|----------------------|--------------------------------------|----------|
| Ana Anić         | 25     | 100.000 | false                | false                                | false    |
| Pera Perić       | 35     | 150.000 | false                | true                                 | true     |
| Mika Mikić       | 60     | 45.000  | true                 | true                                 | false    |
| Sara Sarić       | 45     | 35.000  | true                 | true                                 | false    |



- Ako uzmemo funkciju:
  - o f(x, y, z) = (x + y) \* z
- Kojim mehanizmom matematičke analize možemo izračunati tačno koliko svaka od nezavisnih promenljivih x, y i z utiče na vrednost funkcije f?
  - Parcijalni izvodi

$$\frac{\partial f}{\partial x}$$
  $\frac{\partial f}{\partial y}$   $\frac{\partial f}{\partial z}$ 

• f(x, y, z) = (x + y) \* z



- f(x, y, z) = (x + y) \* z
- g = x + y
- f = g \* Z





$$\frac{\partial f}{\partial z} = g = x + y$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} * \frac{\partial g}{\partial x} = z * 1 = z$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} * \frac{\partial g}{\partial x} = z * 1 = z$$

Pravilo ulančavanja

Pošto se parcijalni izvodi kod propagacije unazad računaju u okolini svakog pojedinačnog čvora, ovaj proces se zbog toga lokalni proces.

$$f(x, y, z) = (x + y) * z$$

 $\frac{\partial f}{\partial z} = x + y$ 

Šta ako imamo sledeći zadatak:

o 
$$x = 1, y = 2, t = 12$$

o 
$$f(x, y, z) = 12$$

$$o$$
  $Z = ?$ 

Analitičko rešavanje:

$$(x + y) *z = 12$$
$$(1 + 2) *z = 12$$

$$(1+2)*z = 12$$

$$z = 12/3$$

$$\circ$$
  $z = 4$ 

- Međutim, šta ako je f funkcija sa milion nezavisnih promenljivih, a ne samo 3 i da imamo više nepoznatih?
- Koristimo numeričko rešavanje umesto analitičkog.

- Za numerički pristup prvo moramo definisati funkciju greške, koja će nam davati informaciju koliko smo daleko ili blizu od tačnog rešenja, odnosno koliko grešimo u svakoj iteraciji, dok se polako približavamo rešenju (konvergiramo ka njemu):
  - Npr.: kvadratna funkcija greške

$$E = \frac{1}{2}(t - f)^2 \to \min \qquad \frac{\partial E}{\partial z} = 0$$

$$E = \frac{1}{2}(t - f)^2 \qquad \frac{\partial E}{\partial z} = 0$$

$$E = \frac{1}{2}(t - f)^2 \qquad \frac{\partial L}{\partial z} = 0$$

$$\frac{\partial E}{\partial z} = \frac{\partial E}{\partial f} * \frac{\partial f}{\partial z} = \frac{1}{2} * 2(t - f) * (-1) * (x + y)$$

$$= (f - t)(x + y) = (f - 12) * 3$$

$$\frac{\partial E}{\partial z} = (f - 12) * 3$$

- Šta sad da radimo sa ovim izvodom?
- Izvod nam pokazuje tačno koliko neka konkretna promenljiva utiče na grešku.
- Intenzitet tog izvoda možemo iskoristiti da promenimo vrednost te konkretne promenljive, da bi u sledećoj iteraciji stvarala manju grešku.

- Prethodno smo definisali funkciju greške, kojom vršimo procenu greške (forward) i uticaja određene promeljive na grešku putem njenog izvoda po toj promenljivoj (backward)
- Da bismo modifikovali vrednost promenljive i iskoristili izračunati izvod za smanjenje greške u sledećim iteracijama, moramo definisati optimizacioni algoritam, čijom se formulom vrši modifikacija promenljive.

• Gradient Descent algoritam (GD):

$$z_{novo} = z_{staro} - \alpha * \frac{\partial E}{\partial z}$$

$$f(x, y, z) = (x + y) * z$$

$$\frac{\partial E}{\partial z} = (f - 12) * 3$$

$$z_{novo} = z_{staro} - \alpha * \frac{\partial E}{\partial z}$$

 Nasumično izaberemo vrednost nepoznate z (početno pogađanje) i krećemo u numerički algoritam:

• Iteracija 1:

$$z = 1$$

$$f = (1+2) * 1 = 3$$

$$\frac{\partial E}{\partial z} = (3-12) * 3 = -27$$

z = 1 - 0.1 \* (-27) = 1 + 2.7 = 3.7

z = 3.7

• Iteracija 2:

$$f = (1+2) * 3.7 = 11.1$$

$$\frac{\partial E}{\partial z} = (11.1 - 12) * 3 = -2.7$$

$$z = 3.7 - 0.1 * (-2.7) = 3.7 + 0.27$$

$$z = 3.97$$

- Parametar  $\alpha$  se obično postavlja na vrednost  $10^{-1}$  ili  $10^{-2}$ , a nakon toga se iterativno smanjuje
- Na taj način se grublje dolazi do dela prostora u kome se nalazi rešenje, a onda se vrednost smanjuje kako bi došli do finijeg rešenja
- U praksi se obično koristi 10<sup>-2</sup>, ali opet sve zavisi od prirode problema koji se rešava.



- Nadgledano obučavanje neuronske mreže:
  - Minimizovati grešku tokom obučavanja tako da izlazi mreže što više odgovaraju željenim ulazima:
    - Hoćemo da je kvadratna greška što manja

$$E(W) = \frac{1}{2} \sum_{i=1}^{N} (y_i - o_i)^2$$



- Nadgledano obučavanje neuronske mreže:
  - Problem: unapred ne znamo "ispravne" izlaze neurona u skrivenom sloju
    - Što zapravo i nije strašno možemo koristiti klasični GD

$$W = W - \alpha * \nabla W$$

- Za svaku težinu računa se parcijalni izvod funkcije greške u odnosu na tu težinu
- Težina se koriguje tako što se ide kontra od smera izvoda sa nekim korakom  $\alpha$  (tzv. brzina obučavanja)

$$W_{i,j} = W_{i,j} - \alpha * \frac{\partial E}{\partial W_{i,j}}$$

- Nadgledano obučavanje neuronske mreže:
  - Navedeni pristup je u redu ako je u pitanju jednoslojni perceptron
  - Šta ćemo sa višeslojnim?
    - Backpropagation

- Backpropagation:
  - Za svaki parametar u obučavajućem skupu:
    - Propagirati ulazni signal unapred kroz neuronsku mrežu (eng. forward pass)
    - Propagirati greške unazad kroz neuronsku mrežu:
      - Za svaku težinu u mreži izračunati  $\delta E / \delta W_{i,j} = \delta_i * o_i$
      - $\delta_i = (o_i y_i) * o_i * (1 o_i)$  za neurone u izlaznom sloju
      - $\delta_i = (\Sigma_i \in L \delta_i * W_{i,l}) * o_i * (1 o_i)$  za neurone u skrivenim slojevima
    - Korigovati težine po formuli  $W_{i,j} = W_{i,j} \Delta W_{i,j} = W_{i,j} \alpha * \delta E / \delta W_{i,j}$
  - Ovo ponavljati N epoha



- Gradient Descent (GD):
  - Jedna epoha obučavanja uvek se prolazi kroz ceo obučavajući skup
  - Ako je obučavajući skup ogroman (što je obično slučaj), ovo ne dolazi u obzir
  - Deterministički postupak, svaki put će mreža biti identično obučena

- Stochastic Gradient Descent (SGD):
  - U svakoj epohi obučavanja uzima samo N nasumičnih primeraka iz obučavajućeg skupa
  - Brže konvergira od GD
  - Stohastičan postupak, zbog nasumičnosti, mreža će svaki put biti drugačije obučena
  - Uglavnom bude jako dobra aproksimacija rezultata dobijenih sa GD
  - U praktičnoj primeni, SGD se uvek koristi umesto GD





- Aktivaciona funkcija:
  - Osnovna namena im je unošenje nelinearnosti u sistem



## **Sigmoid**

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



## Leaky ReLU





### tanh

tanh(x)



## **Maxout**

 $\max(w_1^T x + b_1, w_2^T x + b_2)$ 

### ReLU

 $\max(0,x)$ 



ELU 
$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Sigmoid

Tanh

Step Function

Softplus

$$y = \frac{1}{1 + e^{-x}}$$
 $y = townh(x)$ 

ReLU

Softsign

ELU

Log of Sigmoid

 $y = \frac{1}{1 + e^{-x}}$ 

Swish

Sinc

Leaky ReLU

Mish

 $y = xh(1 + e^{-x})$ 
 $y = xh(1 + e^{-x})$ 
 $y = xh(1 + e^{-x})$ 

Swish

Sinc

 $y = xh(x)$ 
 $y = xh(x)$ 

- Linearni perceptron:
  - Samo y = Wx, gde je x ulazni vektor sa dodatim  $x_0 = 1$  (bias)
  - Može da predstavi bilo koju linearnu funkciju u D + 1 dimenzionalnom prostoru
  - U suštini radi najobičniju linearnu regresiju
  - Nije zgodan za modelovanje binarne klasifikacije

- Nelinearni perceptron:
  - Može da modeluje linearno neseparabilne probleme:
    - Što u teoriji znači da može da modeluje bilo šta (čak i neke nekontinualne funkcije)
  - Sigmoidalne funkcije su zgodne jer:
    - Imaju linearni deo (otprilike u opsegu x ∈ [-1, 1])
    - Ali imaju i nelinearni deo kojim se može modelovati neka klasifikacija (0, 1)



- Aktivaciona funkcija Vanishing gradient:
  - Šta ako izlaz sabirača jednog neurona bude jako velika vrednost po apsolutnoj vrednosti?



Aktivaciona funkcija - Vanishing gradient:

 Dolazimo do situacije da parcijalni izvod oko sigmoidnog čvora (u grafu izračunavanja) u tom slučaju ima vrednost koja

teži nuli.







- Aktivaciona funkcija Vanishing gradient:
  - Potencijalna rešenja:
    - Normalizacija vrednosti ulaznih podataka u mrežu
    - Korišćenje neke druge aktivacione funkcije (ne sigmoidne)

- ReLU aktivaciona funkcija:
  - Rectifying Linear Unit
  - o f(x) = max(0, x)
  - Trenutno najpopularnija aktivaciona funkcija za neurone u skrivenom sloju



- ReLU aktivaciona funkcija:
  - Zašto?
    - Lako se računa
    - Nema vanishing gradient problem kao sigmoid i tanh
    - Brže obučavanje
  - Varijacije:
    - RReLU
    - Leaky ReLU

- Softmax aktivaciona funkcija:
  - Koristi se za izlazni sloj kada se vrši multiklasna klasifikacija
  - Na izlaznom sloju, za razliku od sigmoidalnog sloja koja modeluje N od M klasifikaciju (za određeni ulaz moguće je da bude aktivirano više izlaza), Softmax sloj modeluje 1 od M klasifikaciju (za određeni ulaz moguć je samo jedan izlaz)
  - Suma izlaza iz mreže je 1

• Softmax aktivaciona funkcija:

$$P\left(y^{(i)} = 1 | x^{(i)}, \theta\right) = \frac{e^{\theta x^{(i)}}}{\sum_{j=1}^{M} e^{\theta x^{(j)}}}$$

- Problemi obučavanja neuronske mreže (1/2):
  - Overfitting:
    - Mreža previše dobro obučena na obučavajućem skupu
    - Nema sposobnost generalizacije
    - Radi ispravno samo na podacima koje je već videla
  - Underfitting:
    - Mreža uopšte nike dobro obučena
    - Jednostavno težine još nisu konevrgirale
  - Kada prekinuti obučavanje?
    - Early stopping, checkpoints...



- Dropout:
  - Jedan od najvećih izuma na polju neuronskih mreža u poslednje vreme (2014)
  - Protiv overfitting-a dramatično bolje (i jednostavnije) od nekih drugih metoda



## Dropout:

- Tokom obučavanja nasumično ugasiti/izbaciti neurone
- U svakoj epohi obučavanja nasumično se biraju neuroni koji će biti ugašeni/izbačeni samo u toj epohi

When you are a neuron in a neural network with dropout









## Dropout:

- Sprečava overfitting tako što sprečava neurone da se previše adaptiraju obučavajućem skupu (jer u svakoj epohi postoji šansa da će biti izbačeni)
- Može se posmatrati i kao da u svakoj epohi obučavamo drugu mrežu, i samim tim kao da je konačno obučena mreža skup više jednostavnijih mreža
- Uobičajene vrednosti su između 20% i 50%



- Problemi obučavanja neuronske mreže (2/2):
  - Lokalni optimumi:
    - Teže konvergiraju ka lokalnom minimum



- Problemi obučavanja neuronske mreže (2/2):
  - Batch size:
    - Nakon koliko primeraka ažurirati težine (nakon svakog, nakon svih ili negde između)





- Problemi obučavanja neuronske mreže (2/2):
  - Brzina obučavanja:
    - Konvergencija izuzetno osetljiva na brzinu obučavavanja (izuzetno sporo ili preskakanje minimuma)





- Još problema?
  - Koliko neurona u skrivenim slojevima?
  - Koliko skrivenih slojeva?
  - Koja funkcija greške?
  - Koji su parametri obučavanja?
  - Koja aktivaciona funkcija?
  - Kako povezati neurone?



- Primer:
  - Backpropagation uz graf izračunavanja

# Dodatno čitanje

## — Dodatno čitanje

- Istorijat i modelovanje
- Priprema podataka i funkcije greške
- Backpropagation
- Jednostavno izvođenje Backpropagation algoritma

# Hvala na pažnji!

Pitanja?