This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

Art Unit: 2624

CLMPTO 09/973,148

CANCEL CLAIMS 1-36; ADD CLAIMS 37-60

CLAIMS 1-36 CANCELED

37. An image processing method comprising the steps of:
determining a variance of pixel values in a local region
to which a pixel of interest belongs, wherein each pixel constituting an image is defined as said pixel of interest; and

maintaining or enhancing pixel value of said pixel of interest when said determined variance is significantly larger than a variance of noise, otherwise suppressing or maintaining said pixel value of said pixel of interest.

38. The method of claim 37, wherein each pixel constitutes multi-slice images, and the step of maintaining or enhancing pixel value provides adjustment of pixel values; and further comprising the step of:

performing maximum intensity projection on said multi-slice images subjected to said pixel value adjustment.

Art Unit: 2624

- 39. The method of claim 38, further comprising the step of:
 adding to said determined variance a variance of pixel values
 in a local region to which a corresponding pixel of interest in
 an image of a neighboring slice belongs.
- 40. The method of claim 37, wherein said suppressing of said pixel value is performed by multiplying by a coefficient of less than one.
- 41. The method of claim 37, wherein said suppressing of said pixel value is performed by subtracting a predefined numeric value.
- 42. The method of claim 37, wherein said enhancing of said pixel value is performed by multiplying by a coefficient which is equal to or greater than one.
- 43. The method of claim 37, wherein said enhancing of said pixel value is performed by adding a predetermined numeric value.
- 44. The method of claim 37, further comprising the steps of:
 determining a residual sum of squares of pixel values for each
 of a plurality of local regions defined over an entire image;
 determining a histogram of said residual sum of squares; and

determining a histogram of said lesignal sum of squares that gives a peak of said histogram.

45. The method of claim 37, wherein said image is of a blood flow image.

Art Unit: 2624

46. An image processing apparatus comprising:

first means for determining a variance of pixel values in a local region to which a pixel of interest belongs, wherein each pixel constituting an image is defined as said pixel of interest; and

second means for maintaining or enhancing pixel values of said pixel of interest when said determined variance is signifulcantly larger than a variance of noise, otherwise for suppressing or maintaining said pixel value of said pixel of interest.

47. The apparatus of claim 46, wherein each pixel constitutes multi-slice images, and wherein said second means comprises means for adjusting said pixel value; and further comprising:

third means for performing maximum intensity projection on said multi-slice images subjected to said pixel value adjustment.

48. The apparatus of claim 47, further comprising: fourth means for adding to said determined variance a var-

Art Unit: 2624

iance of pixel values in a local region to which a corresponding pixel of interest in an image of a neighboring slice belongs.

- 49. The apparatus of claim 46, wherein said second means comprises means for suppressing said pixel value by multiplying with a coefficient of less than one.
- 50. The apparatus of claim 46, wherein said second means comprises means for suppressing said pixel value by subtracting a predefined numeric value.
- 51. The apparatus of claim 46, wherein said second means comprises means for enhancing said pixel value by multiplying with a coefficient which is equal to or greater than one.
- 52. The apparatus of claim 46, wherein said second means comprises means for enhancing said pixel value by adding a predefined numeric value.
- 53. The apparatus of claim 46, further comprising: third means for determining said variance of noise, wherein said third means comprises:

means for determining a residual sum of squares of pixel values for each of a plurality of local regions defined over an entire image;

means for determining a histogram of said residual sum of squares; and

means for determining said variance of noise based on a residual sum of squares that gives a peak of said histogram.

54. The apparatus of claim 46, wherein said image is of a blood flow image.

Art Unit: 2624

55. A recording medium for being recorded in a computer readable manner with a program for causing a computer to implement the functions of:

determining a variance of pixel values in a local region to which a pixel of interest belongs, wherein each pixel constituting an image is defined as said pixel of interest; and

maintaining or enhancing said pixel value of said pixel of interest when said determined variance is significantly larger than a variance of noise, otherwise for suppressing or maintaining said pixel value of said pixel of interest.

56. The recording medium of claim 55, wherein each pixel constitutes muli-slice images, and the step of maintaining or enhancing pixel value provides adjustment of pixel values; and further comprising the function of:

performing maximum intensity projection on said multi-slice images subjected to said pixel value adjustment.

Art Unit: 2624

57. The recording medium of claim 56, further comprising the function of:

adding to said determined variance a variance of pixel values in a local region to which a corresponding pixel of interest in an image of a neighboring slice belongs.

58. An imaging apparatus for producing an image based on signals collected from an object, said apparatus comprising:

means for determining a variance of pixel values in a local region to which a pixel of interest belongs, said pixel of interest being defined as being each pixel constituting an image; and

means for maintaining or enhancing said pixel value of said pixel of interest when said determined variance is significantly larger than a variance of noise, otherwise for suppressing or maintaining said pixel value of said pixel of interest.

59. The imaging apparatus of claim 58, wherein each pixel conconstitutes multi-slice images, and wherein said means for determing a variance of pixel values comprises means for adjusting said pixel values; and further comprising;

means for performing maximum intensity projection on said multi-slice images subjected to said pixel value adjustment.

60. The imaging apparatus of claim 59, further comprising:
means for adding to said determined variance a variance of
pixel values in a local region to which a corresponding pixel of
interest in an image of a neighboring slice belongs.