

Relational Database Design by ERand EER-to-Relational Mapping

- Relational Database Design Using ER-to-Relational Mapping
- Mapping EER Model Constructs to Relations

Pearson

1

Goals during Mapping

- · Preserve all information (that includes all attributes)
- Maintain the constraints to the extent possible (Relational Model cannot preserve all contstraints- e.g., max cardinality ratio such as 1:10 in ER; exhaustive classification into subtypes, e.g., STUDENTS are specialized into Domestic and Foreign)
- Minimize null values

The mapping procedure described has been implemented in many commercial tools.

Pearson

4

Relational Database Design by ER- and EER-to-Relational Mapping

- · Design a relational database schema
 - Based on a conceptual schema design
- Seven-step algorithm to convert the basic ER model constructs into relations
- · Additional steps for EER model

Pearson

5

8

ER-to-Relational Mapping Algorithm

- · COMPANY database example
 - Assume that the mapping will create tables with simple single-valued attributes
- Step 1: Mapping of Regular Entity Types.
 - For each regular entity type, create a relation R that includes all the simple attributes of E

10 11

ER-to-Relational Mapping Algorithm
Step 2: Mapping of Weak Entity Types
For each weak entity type, create a relation R and include all simple attributes of the entity type as attributes of R
Include primary key attribute of owner as foreign key attributes of R

DEPENDENT
Essn Dependent name Sex Bdate Relationship
Pearson

12 13

ER-to-Relational Mapping Algorithm
 Example: Create the relation DEPENDENT in this step to correspond to the weak entity type DEPENDENT.
 Include the primary key SSN of the EMPLOYEE relation as a foreign key attribute of DEPENDENT (renamed to ESSN).
 The primary key of the DEPENDENT relation is the combination {ESSN, DEPENDENT_NAME} because DEPENDENT_NAME is the partial key of DEPENDENT.

| DEPENDENT | DEPEND

ER-to-Relational Mapping
Algorithm

• Step 3: Mapping of Binary 1:1 Relation Types

- For each binary 1:1 relationship type

• Identify relations that correspond to entity types participating in R

• There are three possible approaches:

1. Foreign Key (2 relations) approach

2. Merged relation (1 relation) option

3. Cross-reference or relationship relation (3 relations) option:

DEPARTMENT

Dname Dnumber Mgr_ssn Mgr_start_date

15 17

20 22

23

ER-to-Relational Mapping Algorithm

- Example: The M:N relationship type WORKS_ON from the ER diagram is mapped by creating a relation WORKS ON in the relational database schema.
 - The primary keys of the PROJECT and EMPLOYEE relations are included as foreign keys in WORKS_ON and renamed PNO and ESSN, respectively.
 - Attribute HOURS in WORKS_ON represents the HOURS attribute of the relation type. The primary key of the WORKS_ON relation is the combination of the foreign key attributes {ESSN, PNO}.

25

Pearson

Pearson

ER-to-Relational Mapping Algorithm

- Example: The relation DEPT_LOCATIONS is created.
 - The attribute DLOCATION represents the multivalued attribute LOCATIONS of DEPARTMENT, while DNUMBER-as foreign key-represents the primary key of the DEPARTMENT relation.
 - The primary key of R is the combination of {DNUMBER, DLOCATION}.

DEPT_LOCATIONS

Dnumber Dlocation

26 28

ER-to-Relational Mapping Algorithm

• Step 7: Mapping of N-ary Relationship Types.

- For each n-ary relationship type R

• Create a new relation S to represent R

• Include primary keys of participating entity types as foreign keys

• Include any simple attributes as attributes

29 31

32 33

34 35

36 37

Mapping EER Model Constructs to Relations

- Step 8: Options for Mapping Specialization or Generalization.
 - Convert each specialization with m subclasses $\{S_n, S_2, \dots, S_m\}$ and generalized superclass C, where the attributes of C are $\{k, a, \dots a_n\}$ and k is the (primary) key, into relational schemas using one of the four following options:
 - A: Multiple relations-Superclass and subclasses

Pearson

38 42

Figure 4.3 (b) Generalizing CAR and TRUCK into the Superclass VEHICLE

(a) No_of_passengers No_of_axles Tonnage

Wehicle_id Price Price TRUCK Wehicle_id

License_plate_no

(b) Vehicle_id Price License_plate_no

Vehicle_id No_of_axles

TRUCK

43 45