# **Boosting - AdaBoost**

Zhe Yang



Boosting - AdaBoost

## **Contents**

- Boosting Introduction
- AdaBoost
  - Algorithm
  - Additive structure
  - Different view of AdaBoost
  - Investigate the loss function
  - Margin theory

## **Boosting**

- Motivation: "Can a set of weak learners create a single strong learner?"
  - Kearns & Valiant (1988, 1989)
  - Weak learner: a ML algorithm with performance slightly better than random guessing.

Yes!

#### Brief history

- 1990 First simple boosting procedure (Schapire)
  - Showed that a weak learner could always improve its performance
  - Initial classifier + two classifiers trained on misidentified/disagreed data by previous classifier
- 1993 Idea of "Boost by majority" (Freund)
- ---- Border between theoretical and practical ----
- 1995 AdaBoost (Freund & Schapire)
  - Significant improvement, combines many weighted weak learners, adjusted training weight

### **AdaBoost**

#### Use binary classification as an example

#### FINAL CLASSIFIER



FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted versions of the dataset, and then combined to produce a final prediction.

#### Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights  $w_i = 1/N$ , i = 1, 2, ..., N.
- 2. For m=1 to M:
  - (a) Fit a classifier  $G_m(x)$  to the training data using weights  $w_i$ .
  - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute  $\alpha_m = \log((1 \operatorname{err}_m)/\operatorname{err}_m)$ .
- (d) Set  $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N.$
- 3. Output  $G(x) = \text{sign}\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$ .

#### **Points**

- It's a sequential process
  - Updated weights on training sample, focusing on mistakes made by previous classifiers
- It's a family of ensemble technique
  - Weighted combination of classifiers at different stage, good classifier's decision is more important

#### **Details**

- Base classifier G is not specified
  - Decision tree is an ideal choice

# Why AdaBoost has big impact

- It's simple yet effective
  - The idea behind can be applied to different fields
    - Computer vision: Viola-Jones detector
      - Base classifiers are the haar-like feature with examples given on the right side
      - On average only 8 features need to be evaluated



- Guaranteed by the theory to be valid
  - Train err decrease exponentially
  - "Never" overtrained in practice





### AdaBoost: additive structure

The structure of AdaBoost is indicated in the expression of final prediction

$$G(x) = sign(\sum_{m=1}^{M} \alpha_m G_m(x))$$

■ The basis functions are the individual classifiers  $G_m(x) \in \{-1, 1\}$ 

More generally, basis function expansions takes the form

$$f(x) = \sum_{m=1}^{M} \beta_m b(x; \gamma_m)$$

- $\beta_m$ ,  $m=1,2,\cdots,M$  are the expansion coefficients
- $b(x; \gamma_m) \in \mathbb{R}$  are usually simple functions
  - Taking multivariate input x
  - Defined by parameter set γ

## Use of additive expansions

- Additive expansions are at the heart of many of the learning techniques
  - Neural network with single hidden layer
    - $b(x; \gamma) = \sigma(\gamma^T x)$ ,  $\sigma$  is the activation function,  $\gamma$  are the linear combination weights for input x
  - Multivariate adaptive regression splines (MARS)
    - b is from truncated-power spline basis functions,  $\gamma$  is the choice of  $x_{ij}$ ,  $i=1,2,\cdots,N$ ,  $j=1,2,\cdots,p$
  - Tree methods
    - b is simple tree,  $\gamma$  defines splits and prediction at leaf nodes

# Forward stagewise additive modeling

The additive models discussed in previous page are typically fit by minimizing a loss function averaged over the training data

$$\min_{\{\beta_m,\gamma_m\}_i^M} \sum_{i=1}^N L(y_i, \sum_{m=1}^M \beta_m b(x_i; \gamma_m))$$

■ The loss function *L* could be the squared-error or a likelihood-based loss function

❖ It requires computationally intensive numerical optimization techniques to optimize with all M basis functions considered simultaneously, a simple alternative often can be found when it is feasible to rapidly solve the subproblem of fitting just a single basis function

$$\min_{\{\beta,\gamma\}} \sum_{i=1}^{N} L(y_i, \beta b(x_i; \gamma))$$

# Forward stagewise additive modeling (Algorithm)

#### Algorithm 10.2 Forward Stagewise Additive Modeling.

- 1. Initialize  $f_0(x) = 0$ .
- 2. For m=1 to M:
  - (a) Compute

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(x_i) + \beta b(x_i; \gamma)).$$

(b) Set 
$$f_m(x) = f_{m-1}(x) + \beta_m b(x; \gamma_m)$$
.

At each stage m only update  $\beta_m$  and  $\gamma_m$ 

- by fitting the partial residual  $y f_{m-1}(x)$
- without adjusting those have been already fixed in previous stage  $1,2,\cdots,m-1$
- we show next that AdaBoost is doing the same equivalently
  - even though we didn't use any loss function in the AdaBoost algorithm described earlier

## AdaBoost as a FSAM

AdaBoost is equivalent to forward stagewise additive modeling (FSAM) using the loss function

$$L(y, f(x)) = \exp(-yf(x))$$

- The reason to use exponential form discussed later
- Note that we have  $f(x) \in \{-1,1\} \rightarrow y f(x) = \begin{cases} 1, y = f(x) \\ -1, y \neq f(x) \end{cases}$
- $\diamond$  At stage m, the optimization is done by solving

$$(\beta_m, G_m) = \arg\min_{\beta, G} \sum_{i=1}^N \exp[-y_i(f_{m-1}(x_i) + \beta G(x_i))]$$

Rewrite with  $w_i^m = \exp(-y_i f_{m-1}(x_i))$ 

$$(\beta_m, G_m) = \arg\min_{\beta, G} \sum_{i=1}^N w_i^m \exp[-y_i \beta G(x_i)]$$

- $w_i^m$  is fixed in previous stages and can be regarded as a weight applied to observations
- Note  $G_m(x)$  also have  $G_m(x) \in \{-1, 1\} \to yG_m(x) = \begin{cases} 1, y = G_m(x) \\ -1, y \neq G_m(x) \end{cases}$

# Get $(\beta_m, G_m)$

 $\boldsymbol{\phi}_m$  is a positive constant even thought it's unknown yet, we consider it as fixed and solve the  $G_m$ 

$$G_m = \arg\min_{G} \sum_{i=1}^{N} w_i^{(m)} I(y_i \neq G(x_i))$$

• we only consider  $y_i \neq G(x_i)$  situation here, because the  $y_i = G(x_i)$  situation is the other side of the coin

$$I(y_i = G(x_i)) = 1 - I(y_i \neq G(x_i))$$

• With known  $G_m$  the loss function  $L_m(\beta)$  will be

$$L_m(\beta) = \sum_{i=1}^{N} w_i^{(m)} \exp(-\beta y_i G_m(x_i)) = e^{-\beta} \sum_{y_i = G(x_i)} w_i^{(m)} + e^{\beta} \sum_{y_i \neq G(x_i)} w_i^{(m)}$$

• Get optimal  $\beta$  to minimize  $L_m(\beta)$ 

$$\beta_m = \frac{1}{2} \ln \left( \frac{1 - err_m}{err_m} \right), err_m = \frac{\sum_{i=1}^{N} w_i^{(m)} I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i^{(m)}}$$

- Note that  $\beta_m$  could be negative if  $err_m < 0.5$ , in which case it automatically reverse the polarity.
  - Move the "-1" in  $\beta_m$  to  $G_m$ :  $\beta_m \to -\beta_m > 0$ ,  $G_m(x) \to -G_m(x)$ ,  $err_m \to 1 err_m > 0.5$

# Stage updates

 $\bullet$  In each stage m, the prediction function is updated as

$$f_m(x) = f_{m-1}(x) + \beta_m G_m(x)$$

• where  $\beta_m$  and  $G_m$  are estimated as illustrated in the previous page

- $\bullet$  In next stage m+1
  - the weight  $w_i^{(m)}$  in loss function is updated to  $w_i^{(m+1)}$  by

$$w_i^{(m+1)} = w_i^{(m)} \cdot e^{-\beta_m y_i G_m(x_i)}$$

• then  $\beta_{m+1}$  and  $G_{m+1}$  are updated following the same procedures

### AdaBoost as a Newton-like method

Again, start from the exponential loss  $L(y, f(x)) = \exp(-yf(x))$ . Suppose we seek an improvement

$$f(x) + cg(x)$$

- here c is a constant to be determined and  $g(x) \in \{-1,1\}$  giving a binary prediction
- We can expand L at g(x) = 0

$$L(y, f(x) + cg(x)) = \exp(-yf(x)) \exp(-ycg(x))$$

$$\approx \exp(-yf(x)) \left[1 - cyg(x) + \frac{c^2}{2}\right] \stackrel{\text{def}}{=} L'$$

- notice the derivation of  $\frac{c^2}{2}$  use the fact that  $y^2 = 1$  and  $g(x)^2 = 1$
- $= \exp(-yf(x))$  is determined by previous process and can be view as weight w

# Get g(x)

ightharpoonup 
igh

$$g(x) = \begin{cases} 1, & p(y=1) > p(y=-1) \\ -1, & otherwise \end{cases}$$

• Again, use the fact that  $y^2 = 1$  and  $g(x)^2 = 1$ 

$$yg(x) = -\frac{[y - g(x)]^2}{2} + 1$$

 $\diamond$  Then minimizing L' is equivalent to minimizing the least-square loss

$$\frac{[y-g(x)]^2}{2}-1$$

## Get c

❖ With solved  $g(x) \in \{-1,1\}$ , we can get c again by optimizing L. The essential component is

$$\exp(-ycg(x)) = \sum_{y_i = g(x_i)} e^{-c} + \sum_{y_i \neq g(x_i)} e^{c} = n_T e^{-c} + n_F e^{c} \stackrel{\text{def}}{=} l(c)$$

- where  $n_T$  is the number of correct classification and  $n_F$  is the number of incorrect classification
- Minimizing the equation above

$$\frac{\partial l(c)}{\partial c} = -n_T e^{-c} + n_F e^c = 0 \rightarrow c = \frac{1}{2} \ln \frac{n_T}{n_F} = \frac{1}{2} \ln \frac{1 - err}{err}$$

• where  $err = \frac{n_T}{n_T + n_F} = \frac{n_T}{n}$ 

## Stage updates

We get the exactly same form of coefficient and update function as what we got when we consider AdaBoost as FSAM

And we can now construct a Newton-like method's update in each stage

$$f(x) \to f(x) + \frac{1}{2} \ln \frac{1 - err}{err} g(x)$$

In next round, the weight w is updated by

$$w \rightarrow w \cdot e^{-cyg(x)} = w \cdot e^{-c(1-2I(y\neq g(x)))}$$

## What does exponential loss estimate?

 $\bullet$  Investigating the population minimizer of  $\exp(-yf(x))$ 

$$f^*(x) = \arg\min_{f(x)} E_{y|x}(e^{-yf(x)})$$

• Get derivative  $E_{y|x}(e^{-yf(x)})$  w.r.t f(x) and set to zero

$$\frac{\partial E_{y|x}(e^{-yf(x)})}{\partial f(x)} = E_{y|x}(-ye^{-yf(x)}) = E_{y=1|x}(-ye^{-yf(x)}) + E_{y=-1|x}(-ye^{-yf(x)})$$
$$= -\Pr(y=1|x) e^{-f(x)} + \Pr(y=-1|x) e^{f(x)} = 0$$

Solve the equation

$$f^*(x) = \frac{1}{2} \ln \left( \frac{\Pr(y = 1|x)}{\Pr(y = -1|x)} \right) \text{ or } \Pr(y = 1|x) = \frac{1}{1 + e^{-2f^*(x)}}$$

- $\bullet$  It is estimating the log-odds of Pr(y = 1|x)
  - This provides an inspect to justify that we use the sign of the model prediction as classification  $\{-1,1\}$ , where we have  $G(x) = \underset{m=1}{sign}(\sum_{m=1}^{M} \alpha_m G_m(x))$ .
    - if we have higher probability to predict y = 1,  $f^*(x)$  will be "+"
    - if we have higher probability to predict y = -1,  $f^*(x)$  will be "-",

## Binomial deviance could be another candidate

\* We now show that binomial deviance (cross-entry) leads to same solution at the population level. Using  $y' = \frac{y+1}{2}$  to map  $\{-1,1\}$  to  $\{0,1\}$ , we have the binomial deviance loss

$$l(y, p(x)) = y' \log p(x) + (1 - y') \log(1 - p(x))$$

 $\Leftrightarrow$  Get derivative  $E_{y|x}(l(y,p(x)))$  w.r.t p(x) and set to zero

$$\frac{\partial E_{y|x}l(y,p(x))}{\partial p(x)} = E_{y=1|x} \left(\frac{1}{p(x)}\right) + E_{y=-1|x} \left(-\frac{1}{1-p(x)}\right)$$
$$= \frac{\Pr(y=1|x)}{p(x)} - \frac{\Pr(y=-1|x)}{1-p(x)} = 0$$

Solve the equation we get

$$p(x) = \Pr(y = 1|x) = \frac{1}{1 + e^{-2f(x)}}$$

 $\diamond$  Once p(x) is determined, f(x) is also determined via a logit relation

### Continue

 $\bullet$  Use f(x) to replace p(x)

$$l(y, p(x)) = y' \log p(x) + (1 - y') \log(1 - p(x)) = \log \frac{e^{(y-1)f(x)}}{1 + e^{-2f(x)}}$$

• Notice that  $y \in \{-1,1\}$ 

$$l(y, p(x)) = \begin{cases} \log \frac{1}{1 + e^{-2f(x)}}, y = 1\\ \log \frac{e^{-2f(x)}}{1 + e^{-2f(x)}}, y = -1 \end{cases} = -\log(1 + e^{-2yf(x)})$$

■ Expand  $e^{-yf(x)}$  and -l(y, p(x)) to Taylor series, we have

$$-l(y, p(x)) = \log(2) - yf(x) + \frac{y^2}{2}f^2(x) + \cdots$$
$$e^{-yf(x)} = 1 - yf(x) + \frac{y^2}{2}f^2(x) + \cdots$$

Binomial deviance loss and exponential loss are equivalent to second order

$$-l(y,p(x)) \approx e^{-yf(x)} + \log(2) - 1$$

## Compare different loss for classification

- ❖ In the right plot, "yf" serves as a margin which plays a role analogous to the residuals y − f(x)
- Investigate positive yf
  - Squared Error will penalize correct predictions
  - All other loss decrease monotonically
- Investigate negative yf
  - All the loss penalize incorrect predictions but with different degree
  - Exponential loss will penalize much more on incorrect predictions so it's less robust
    - If inputs have mislabeled entries, the performance of AdaBoost will degrade dramatically (empirical observation)



### AdaBoost doesn't overfit

- AdaBoost often doesn't overfit in practice
- Freund & Schapire[JCSS97] proved that the generalization error of AdaBoostis bounded by:

$$\epsilon_{\mathrm{D}} \le \epsilon_{D} + \tilde{O}\left(\sqrt{\frac{dM}{n}}\right)$$

- with probability at least  $1 \delta$ , where d represents the complexity of base learners,n is the number of training instances, M is the number of learning rounds and  $\tilde{O}$  hides the logarithmic and constant terms
- It implies that AdaBoost will overfit if M is large
- Is there tighter bound to explain the observation in practice?

A typical performance plot of AdaBoost on real data



Seems contradict with the Occam's Razor

# Margin

- We have discussed the statistical view above. However, it did not explain why AdaBoost is resistant to overfitting according to observation in practice.
  - This can be explained by using margin

#### Example

 Binary classification can be viewed as the task of separating classes in a feature space

• 
$$f(x) = sign(w^T x + b)$$

- Margin of a single classifier f: yf(x)
- Margin of the additive model F

$$yF(x) = \sum_{m=1}^{M} \alpha_m y f_m(x)$$



The bigger the margin, the higher the predictive confidence

## Margin explanation of AdaBoost

\* Based on the concept of margin, Schapire et al. [1998] proved that, given any threshold  $\theta > 0$  of margin over the training data D, with probability at least  $1 - \delta$ , the test error of the ensemble  $\epsilon_{\mathbb{D}} = P_{x \sim \mathbb{D}}(y \neq F(x))$  is bounded by

$$\epsilon_{D} \leq P_{x \sim D}(yF(x) \leq \theta) + \tilde{O}\left(\sqrt{\frac{d}{n\theta^{2}} + \ln\frac{1}{\delta}}\right)$$

$$\leq 2^{M} \prod_{m=1}^{M} \sqrt{\epsilon_{m}^{1-\theta} (1 - \epsilon_{m})^{1+\theta}} + \tilde{O}\left(\sqrt{\frac{d}{n\theta^{2}} + \ln\frac{1}{\delta}}\right)$$

This bound implies that, when other variables are fixed, the larger the margin over the training data, the smaller the test error

# Margin explanation of AdaBoost (continued)

- Why AdaBoost tends to be resistant to overfitting?
- Margin theory: Because it is able to increase the ensemble margin even after the training error reaches zero



- > This explanation is quite intuitive
- > It receives good support in empirical study

# The minimal margin bound

- Schapire et al.'s bound depends heavily on the smallest margin
  - If the smallest margin is large,  $P_{x\sim D}(yF(x) \le \theta)$  will be small
- Thus, by considering the minimum margin:

$$\varrho = \min_{x \in D} yF(x)$$

\* Breiman [Neural Comp. 1999] proved a test error bound  $(0(\frac{\log n}{n}))$ , which is tighter than Schapire et al.'s bound

$$\epsilon_{\mathbb{D}} \le R \left( \ln(2n) + \ln\left(\frac{1}{R}\right) + 1 \right) + \frac{1}{n} \ln\frac{|\mathcal{H}|}{\delta}$$

## The doubt about margin theory

- Breiman [Neural Comp. 1999] designed a variant of AdaBoost, the arc-gv algorithm, which directly maximizes the minimum margin
  - the margin theory would appear to predict that arc-gv should perform better than AdaBoost
- However, experiments show that, comparing with AdaBoost:
  - arc-gv does produce uniformly larger minimum margin
  - the test error increases drastically in almost every case
- Thus, Breiman convincingly concluded that the margin theory was in serious doubt. This almost sentenced the margin theory to death

Boosting - AdaBoost 26

# 7 years later

- Reyzin& Schapire [ICML'06 best paper] found that, amazingly, Breiman had not controlled model complexity well in exps
  - Breiman controlled the model complexity by using decision trees with a fixed number of leaves
  - Reyzin & Schapire found that, the trees of arc-gv are generally "deeper" than the trees of AdaBoost
- Reyzin& Schapire repeated Brieman's exps using decision stumps with two leaves: arc-gv is with larger minimum margin, but worse margin distribution

R&S claimed that the minimum margin is not crucial, and the average or median margin is

crucial



# **Supporting theory**

- Equilibrium margin (Emargin) bound
  - Considered factors different from Schapire et al. and Breiman's bounds
  - No intuition to optimize
- The kth margin bound
  - The minimum margin bound and Emargin bound are special cases of the kth margin bound, both are single-margin bound (not margin distribution bound)
- Finally
  - Random choice of sample S with size  $n \ge 5$ , every voting classifier  $f \in C(H)$  satisfies

$$\epsilon_{\text{D}} \le \frac{2}{n} + \inf_{\theta \in (0,1]} \left[ \Pr_{S}[yf(x) < \theta] + \frac{7\mu + 3\sqrt{3\mu}}{3\mu} + \sqrt{\frac{3\mu}{n}} \Pr_{S}[yf(x) < \theta] \right]$$

Where

 $O(\log n/n)$ 

$$\mu = \frac{8}{\theta^2} \ln n \ln(2|H|) + \ln \frac{2|H|}{\delta}.$$

- Uniformly tighter than Breiman's as well as Schapire et al.' bounds
- Considers the same factors as Schapire et al. and Breiman
- thus, defends the margin theory against Breiman'sdoubt

# Variance of margin also matters

Related to average margin

We should pay attention to both average margin and margin variance.

$$\epsilon_{\mathcal{D}} \leq \frac{1}{n^{50}} + \inf_{\theta \in (0,1]} \left[ \Pr_{S}[yf(x) < 0] + n^{-\frac{2}{1 - E_{S}^{2}[yf(x)]} + \frac{\theta}{9}} + \frac{3\sqrt{\mu}}{n^{\frac{3}{2}}} + \frac{7\mu}{3n} + \sqrt{\frac{3\mu}{n}} \widehat{\mathfrak{T}}(\theta) \right]$$

Where

$$\mu = 144 \ln m \ln(2|H|)/\theta^2 + \ln(2|H|/\delta)$$

$$\widehat{\mathfrak{T}}(\theta) = \Pr_{\mathcal{S}}[yf(x) < \theta] \Pr_{\mathcal{S}}[yf(x) \ge \frac{2\theta}{3}]$$

Related to margin variance

## **Experimental results**



Margin variance really important

Figure from [Gao & Zhou, AIJ 2013]

Figure 1: Each curve represents a voting classifier. The X-axis and Y-axis denote example and margin, respectively, and uniform distribution is assumed on the example space. The voting classifiers  $h_1$ ,  $h_2$  and  $h_3$  have the same average margin but with different generalization error rates: 1/2, 1/3 and 0.

[Shivaswamy& Jebara, NIPS 2011] tried to design new boosting algorithms by maximizing average margin and minimizing margin variance simultaneously, and the results are encouraging

Boosting - AdaBoost 30

## **Summary**

- AdaBoost is an effective ensemble strategy to combines multiple weak models into a strong one
  - Additive structure + focusing on mistakes
  - It's usually easy to find a bunch of weak models but hard to find one single strong model
  - The idea behind the algorithm is more important than the algorithm itself

- We can view the AdaBoost from different perspectives
  - It use a set up of forward stagewise additive modeling
  - It can be considered as a Newton method
  - The concept of margin explains why AdaBoost seems never overtrained

Boosting - AdaBoost 31

#### Homework

For a K-class classification problem, we can recode the class label c with a K-dimensional vector  $\mathbf{y}$  with all entries equal to  $-\frac{1}{K-1}$  except a 1 in position k if c=k, i.e.,

$$y_k = \begin{cases} 1, & \text{if } c = k, \\ -\frac{1}{K-1}, & \text{if } c \neq k. \end{cases}$$

Let  $\mathbf{f} = (f_1(\mathbf{x}), \dots, f_K(\mathbf{x}))^T$  with  $\sum_{k=1}^K f_k(\mathbf{x}) = 0$ , and define

$$L(\mathbf{y}, \mathbf{f}(\mathbf{x})) = \exp(-\frac{1}{K}\mathbf{y}^T\mathbf{f}(\mathbf{x})).$$

- (a) Using Lagrange multipliers, derive the population minimizer  $\mathbf{f}^*$  of  $\mathbb{E}_{\mathbf{y}|\mathbf{x}}[L(\mathbf{y}, \mathbf{f}(\mathbf{x}))]$ , subject to  $\sum_{k=1}^K f_k(\mathbf{x}) = 0$ , and relate these to the class probabilities.
- (b) Derive a multiclass boosting algorithm using this loss function and verify that it covers the Adaboost algorithm as a special case (K = 2).
- (c) Implement your derived algorithm, where you are allowed to call package of trees. Compare your implementation with the existing standard gradient boosting package on a multiclass classification problem. Make some discussion about what you observed. (Hint: there are two key differences: First, unlike adaboost which uses classification trees, gradient boosting uses regression trees. Second, gradient boosting has a shrinkage parameter ( $\lambda$ ), a smaller learning rate ( $\lambda = 0.01$ ) often dramatically improves the performance compared with  $\lambda = 1$ ).

# **Backups**

Boosting - AdaBoost

### Reference

- ❖ ISL, ESL
- ❖ Boosting 25年 (2014 周志华) Bilibili
- \* The Annals of Statistics 2000, Vol. 28, No. 2, 337-407

Boosting - AdaBoost 34