Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	18 October 2022
Team ID	PNT2022TMID37069
Project Name	IOT BASED SMART CROP PROTECTION SYATEM FOR AGRICULTURE
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint	Functional	User Story	User Story / Task	Story Points	Priority	Team Members
	Requirement (Epic)	Number				
Sprint-1	Sensor Data (python	USN-1	The Data of sensor which are feed to the	3	High	S. BHARATHI
	script)		Raspberry pi. Here we are using python script to			(Team leader)
			generate a random sensor data.			
Sprint-1	Automation (python	USN-2	Some activities are made to automation to	5	High	S. BHARATHI
	script)		overcome insufficient of labour force in the field.			(Team leader)
			Hence that also included in python script to			
			implement automation in the.			
Sprint-2	IBM IOT platform	USN-3	To send the raspberry pi data to IOT platform, we	5	High	R. NAVEEN
			create an IBM IOT platform and connect the			KUMAR
			raspberry pi to the device created in IBM IOT.			(Team member-2)
Sprint-3	Node RED service	USN-4	To access the IBM IOT platform from external	5	High	K. LUBNA
			application or from external UI Node red service			(Team Member-1)
			is established.			
Sprint-3	API Key	USN-5	To protect the IBM IOT platform creating an API	3	High	K. LUBNA
			Key.			(Team Member-1)
Sprint-4	User Application	USN-6	To monitor and control the field sensors the User	8	High	R. SASIREKHA
			is provided with an User application created by			(Team Member-3),
			MIT app inventor			B. VISHNU PRIYA
						(Team Member-4)

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	8	6 Days	24 Oct 2022	29 Oct 2022	8	29 Oct 2022
Sprint-2	5	6 Days	31 Oct 2022	05 Nov 2022	5	05 Nov 2022
Sprint-3	8	6 Days	07 Nov 2022	12 Nov 2022	8	12 Nov 2022
Sprint-4	8	6 Days	14 Nov 2022	19 Nov 2022	8	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.