## سوال ۱

شبیه سازی با مشخصات خواسته شده همانند تمرین اول انجام شد. نمودار احتمال خطا در شکل ۱ آمده است:



شکل ۱

همانطور که در شکل ۱ مشخص است، در SNR برابر ۶٬۵dB احتمال خطای ۲۰۰۱ بدست آمده است.

## سوال ۲

مطابق آنچه در کلاس گفته شد، در صورت ارسال پایلوت، سیگنال دریافت شده به صورت زیر خواهد بود:

$$y_{1n}=b_ne^{rac{j2\pi n\epsilon}{N}}$$
  $y_{2n}=b_ne^{rac{j2\pi(n+N)\epsilon}{N}}=y_{1n}e^{j2\pi\epsilon}$   $y_{2n}=b_ne^{rac{j2\pi(n+N)\epsilon}{N}}=y_{1n}e^{j2\pi\epsilon}$  در صورت کانال AWGN، پس از  $R_{1k}=Y_{1k}+Z_{1k}$ 

$$R_{2k} = Y_{2k} + Z_{2k} = Y_{1k}e^{j2\pi\epsilon} + Z_{2k}$$

ML در صورت تخمین  $\epsilon$  با روش

$$\epsilon = argmin \ \sum\nolimits_{k = 0}^{N - 1} |R_{2k} - R_{1k}e^{j2\pi\epsilon}|^2$$

و در نهایت خواهیم داشت:

$$\epsilon = \frac{1}{2\pi} \tan^{-1} \frac{\sum I_m \{R_{1k} * R_{2k}^*\}}{\sum Re\{R_{1k}R_{2k}^*\}}$$

از این رابطه برای تخمین  $\epsilon$  زمانی که مقدار آرگومان تابع بین  $\frac{\pi}{2}$  تا  $\frac{\pi}{2}$  باشد میتوان استفاده کرد:

$$-\frac{\pi}{2} < 2\pi\epsilon < \frac{\pi}{2}$$

$$-0.25 < \epsilon < 0.25$$

 $\epsilon < 0.25$  نمودار MSE در شکل ۲ رسم شده است. همانطور که در شکل مشخص است، MSE به ازای مقدار کمی دارد.



 $\epsilon$  سکل ۲، نمودار MSE بر حسب

## سوال ۳

نمودار احتمال خطا پس از جبرانسازی (به ازای  $\epsilon=0.19$ ) در شکل ۳ آمده است:



شکل ۳، نمودار احتمال خطا بر حسب SNR

با توجه به شکل مشخص است که احتمال خطا در SNR ثابت کمی افزایش یافته است.