3. 求(x⁷+ x⁶ +1)关于模 m(x)=x⁸+x⁴+x³+x+1 的乘法逆元。←

条件:是在
$$F_2[X]$$
中, $a_n\equiv a'_n\pmod 2$
$$f(x)=x^7+x^6+1, m(x)=x^8+x^4+x^3+x+1,$$
 欲求 $f(x)$ 逆元 $f^{-1}(x)$ 即 $f(x)f^{-1}(x)=1+k(x)m(x)$,即寻找 $f^{-1}(x)f(x)+k(x)m(x)=1$ 多项式欧几里得除法, $m(x)$ 是不可约多项式
$$m(x)=x^8+x^4+x^3+x+1=(x+1)(f(x)=x^7+x^6+1)+(x^6+x^4+x^3)$$
 以上经过模 2处理
$$x^6+x^4+x^3=x(x^5+x^3+1)+(x^3+x)$$
 以上经过模 2处理
$$x^6+x^4+x^3=x(x^5+x^3+1)+(x^3+x)$$
 及 $f(x)$ 计算符:
$$1=(x^5+x^3+1)-x^2(x^6+x^4+x^3)-x(x^5+x^3+1)$$

$$=(x^5+x^3+1)-x^2(x^6+x^4+x^3)-x(x^5+x^3+1)$$

$$=(x^5+x^3+1)-x^2(x^6+x^4+x^3)$$

$$=(1+x^3)(x^5+x^3+1)-(x^2(x^6+x^4+x^3))-x^2(x^6+x^4+x^3)$$

$$=(1+x^3)(x^7+x^6+1)-(x+1)(x^6+x^4+x^3))-x^2(x^6+x^4+x^3)$$

$$=(1+x^3)(x^7+x^6+1)-(x^4+x^3+x+1)(x^6+x^4+x^3)$$

$$=(1+x^3)(x^7+x^6+1)-(x^4+x^3+x+1)(x^6+x^4+x^3)$$

$$=(1+x^3)(x^7+x^6+1)-(x^4+x^3+x+1)(x^6+x^4+x^3)$$

$$=(1+x^3)(x^7+x^6+1)-(x^4+x^3+x+1)(x^6+x^4+x^3)$$

$$=(1+x^3)(x^7+x^6+1)-(x^4+x^3+x+1)(x^6+x^4+x^3)$$

$$=(1+x^3)(x^7+x^6+1)-(x^4+x^3+x+1)(x^6+x^4+x^3+x+1)(x^6+x^4+x^3+x+1)$$
 因此, $f(x)$ 乘钱 逆元 $f^{-1}(x)$ 目 $f(x)$