FeynCalcDemo.nb

FeynCalc demonstration

This *Mathematica* notebook demonstrates computer calculation of Feynman invariant amplitude for $e^-e^+ \rightarrow \mu^- \mu^+$ scattering, using Feyncalc package.

First we load FeynCalc into Mathematica

```
In[1]:= << HighEnergyPhysics `fc `</pre>
```

FeynCalc 4.1.0.3b Evaluate ?FeynCalc for help or visit www.feyncalc.org

Spin-averagedFeynman amplitude squared $\overline{|\mathcal{M}|^2}$ after using Feynman rules and applying the Casimir trick:

$$In[2] := \mathbf{Msq} = \frac{\mathbf{e^4}}{\mathbf{4} \ (\mathbf{p1} + \mathbf{p2})^4} \ \mathbf{Contract[Tr[(GS[p1] + me) . GA[\mu] . (GS[p2] - me) . GA[\nu]]}$$

$$\mathbf{Tr[(GS[p4] - mm) . GA[\mu] . (GS[p3] + mm) . GA[\nu]]]}$$

$$Out[2] = \frac{1}{4 \ (\mathbf{p1} + \mathbf{p2})^4} (e^4 \ (64 \ mm^2 \ me^2 + 32 \ p3 \cdot p4 \ me^2 + 32 \ mm^2 \ p1 \cdot p2 + 32 \ p1 \cdot p4 \ p2 \cdot p3 + 32 \ p1 \cdot p3 \ p2 \cdot p4))}$$

Traces were evaluated and contractions performed automatically. Now we introduce Mandelstam variables by substitution rules,

$$In[3] := prod[a_, b_] := Pair[Momentum[a], Momentum[b]];$$

$$mandelstam = \{prod[p1, p2] \rightarrow (s - me^2 - me^2) / 2, prod[p3, p4] \rightarrow (s - mm^2 - mm^2) / 2, prod[p1, p3] \rightarrow (t - me^2 - mm^2) / 2, prod[p2, p4] \rightarrow (t - me^2 - mm^2) / 2, prod[p1, p4] \rightarrow (u - me^2 - mm^2) / 2, prod[p2, p3] \rightarrow (u - me^2 - mm^2) / 2, (p1 + p2) \rightarrow \sqrt{s} \};$$

and apply these substitutions to our amplitude:

In[5]:= Msq /. mandelstam

Out [5] =
$$\frac{1}{4 s^2} \left(e^4 \left(64 \text{ mm}^2 \text{ me}^2 + 16 \left(s - 2 \text{ mm}^2 \right) \text{ me}^2 + 8 \left(-\text{me}^2 - \text{mm}^2 + t \right)^2 + 8 \left(-\text{me}^2 - \text{mm}^2 + u \right)^2 + 16 \text{ mm}^2 \left(s - 2 \text{ me}^2 \right) \right) \right)$$

This result can be simplified by eliminating one Mandelstam variable:

In[6]:= Simplify[TrickMandelstam[%, s, t, u,
$$2 \text{ me}^2 + 2 \text{ mm}^2$$
]]

Out[6]:=
$$\frac{2 e^4 (2 \text{ me}^4 + 4 (\text{mm}^2 - u) \text{me}^2 + 2 \text{ mm}^4 + s^2 + 2 u^2 - 4 \text{ mm}^2 u + 2 s u)}{s^2}$$

If we go to ultra-relativistic limit, we get result in agreement with our hand calculation:

In[7]:= Simplify[%% /. {mm
$$\rightarrow$$
 0, me \rightarrow 0}]

Out[7]= $\frac{2e^4(t^2+u^2)}{s^2}$