```
1) The Solow Model
 · K(t) = investment - depreciation [slide 38]
 · National accounting identity: I(1) = S(1)
[side 40] 3rd line + 4th line: lacks "times k(t)"
[side 46] > Eh: elasticity for expiral capital
[side 48] efficiency units are always dended as small letters with tilde
[slide 53] always a envergence to k* (whe from the left or the sight)
(2) OLG mode!
 · willy maximization + Solow
· New: population with beterogeneity
 [slides] Ly ,..., Ly are population masses + solow: households not stacked over each other
   to generation is born at time t and is aline in periods t and t+1
   by heterogeneity across whorts, but not within cohorts
[slide] exogenous pop quentin rate in ; individuals only work in the first period of life
         savings not exogenous but endogenous
[slide 9] superscripts 1 and I for young and old ind., respectively
           V(c_{i}^{2}, c_{i+1}^{2}) = u(c_{i}^{2}) + \beta u(c_{i+1}) \beta \rightarrow d.s.count factor for time preference (measure of impatience)
[slide 10] consumption today us. consumption tomorrow => Euler equation
     4 return on capital mas to be sufficiently lugh to compensate for importance (1+ 14.4) vs. B & [0,1]
Islice 12) incentive to save more with higher r us. less savings will generate the same feature savings
        as with a lower r (substitution and income effect)
[still 13] CIES whilify in more detail in Ch. 3
 [ride 14] same intuition as before
[slide 15] \frac{\partial s_{+}}{\partial \omega_{+}} > 0 again ) \frac{\partial s_{+}}{\partial (A+F(-A))} \stackrel{?}{=} 0 => deponds on \theta (which can also be > 1)
       4) setting 9=1 makes the equations much easier
       5 8 - coefficient of relative jish avaision - willingness to hade off consumption today and brustom
(18) Rx = return to capital = f'(kx)
(19) Kton = ... => law of motion
```

[27] 8-1 makes the problem much simpler even though it is very unrealistic honly a good assumption if it allers for anomons simplification [23] denominator untiliphed and 6- divided on both sides [24] not exam-material, not be able to explain but Inturnediak Value Theorem - monotonically increasing sonly one intersection point log whility - just a hortcontal line a also just one stoody state [28] multiple equilibra if function is not monotonic -> exam: explaining those graphs (and possible adjustments and changes that wild occur) to poverly trap: several steady states - which one is reached depends on witial applial accumulation - only exogenous push could help of nitial is too low for higher steady state [29] externally arrees since generations rannot contract witheach other - steady stategu. [30] assuming as information frictions, competitive equilibrium as prochablion externalities 6 6nt still: social planner does better 4 perminant externally: young would possibly the to Internal with former generation to after facts sailings devition Uphwer has a total resource coursement but no budget constrait (31) [32] sound planner can choose consumption and capital allocation with full depreciation, same result as before (path is the same) ls problem .s that steady stack is different 34 (is consumption p.c. in the steady stort [correction] [39] : I is too large that decreasing it would incur a higher return than keeping it that high Ly would increase the seturn more than the decrease [36] because of the complementarity in the production function [38] only difference. BLS have changed 16+1 the same for Se and do 4) problem did not fundamentally change b higher accumulation of de was higher than the personal Se choice [39] den mandedeparted Alder - depends on a this time; with regative a one would loss out exam registration: 16 11 - 27.11