Named Data Networking Strategies for Improving Large Scientific Data Transfers

Susmit Shannigrahi, CSU
Chengyu Fan, CSU
Christos Papadopoulos, CSU

Motivation

- Scientific communities are unable to support all computations at generation site
 - Must transfer data over the network
- Infrastructure is insufficient to accommodate all concurrent requests
 - Time shared
 - Must complete within a deadline to make room for others

How Large?

PhEDEx – CMS Data Transfers

<u>Info</u> <u>Activity</u> <u>Data</u> <u>Requests</u> <u>Components</u> <u>Reports</u> <u>Next-gen website</u>

Daily Reports | Daily Report | File Sizes | Site Usage | Group Usage

File size statistics 0h14 ago								
Files	Total Size	Min Size	Max Size	Mean Size	Median Size			
95072007	269.10 PB	0.00 MB	163.82 GB	2.83 GB	2.78 GB			

File size breakdown					
Bin		Files	Total Size		
0.00 GB	0.01 GB	11740167	43.40 TB		
0.01 GB	0.02 GB	1716164	22.98 TB		

Outline

- Background on scientific data transfers
- Problems
- Building blocks
 - NDN-based bandwidth reservation
 - On-demand path creation
 - NDN strategies
- How to use these blocks for a deadline based data transfer protocol
- Analytical evaluation
- Conclusions

Problems

- No support from the network
 - Hard to implement applications
 - Hard to optimize deadline-based data transfers
 - Network resources are not optimally used
- Intelligent applications does not solve inherent problems
 - Support from the network would be helpful

TCP/IP's shortcomings

- End-to-end paths
 - No reusability of content
- No intelligence in the network
 - No multipath forwarding
 - No caching
- Congestion control can be aggressive

Two types of data transfers

- Bulk data transfers ←-- focus of this work
 - Terabyte per day for some workflows
 - Can be scheduled early
 - Sensitive to loss
- Interactive traffic
 - VoIP, visualizations
 - Sensitive to delay and jitter
 - Personalized and dynamic

Deadline-based Transfers

- Scientific communities uses batch transfers
- Clients submit requests and deadlines to a system
 - Application reserves network resources
 - Complex and hard to implement
 - Hard to optimize transfers

NDN can do better

- NDN can do better
 - Reuse reserved resources for serving requests that falls within a deadline
 - Trade in-network storage for bandwidth
 - Aggregated requests use less resources

Outline

- Background on scientific data transfers
- Problems
- Building blocks
 - NDN-based bandwidth reservation
 - On-demand path creation
 - NDN strategies
- How to use these blocks for a deadline based data transfer protocol
- Analytical evaluation
- Conclusions

Overview

Resource Reservation in NDN

Reservation Table

ReqID	Prefix	Requested StartTime	Deadline	BW
1	/xrootd 1463330393		1463355592	1Gbps
2	/xrootd	1463330519	1463355623	1Gbps

Overview

Strategic Caching

Overview

Create New Paths (OSCARS/SDN)

sender stack

receiver stack

Outline

- Background on scientific data transfers
- Problems
- Building blocks
 - NDN-based bandwidth reservation
 - On-demand path creation
 - NDN strategies
- How to use these blocks for a deadline based data transfer protocol
- Analytical evaluation
- Conclusions

Soft vs Hard Deadlines

- Soft deadline = Best effort
- Hard deadlines = reserved resources

Overview

Retrieval Manager

Analytical Evaluation

- Easier to aggregating requests, cache, and intelligently schedule requests
- Investigate how much resources NDN can save
- More resources saved = more data transfers with same amount of resources

Duplicate requests

Bandwidth consumption

Conclusions

- We propose
 - A hop-by-hop resource reservation mechanism
 - A mechanism to interact with other layers
 - A deadline based data transfer protocol
- We use this protocol an example to demonstrate
 - NDN based network layer can be more flexible and versatile
 - NDN can save resources and accommodate more requests

Questions? susmit@cs.colostate.edu

