14. Dimensionality Reduction – Unsupervised Learning Problem

It will allow us **data compression** and **speeding up** the algorithm.

Example:

Data Compression

The points don't lie on the straight line due to rounding off.

>> Reduce Data from 2D to 1D

➤ Since the two features are proportional (not exactly, just approximately):

We try to project each data point on a line(green)

We represent this line as a **new feature** \rightarrow **z**:

$$x_1 \text{ (cm)}$$
 $x_1 \text{ (cm)}$
 $x_2 \text{ (cm)}$
 $x_2 \text{ (cm)}$
 $x_3 \text{ (cm)}$
 $x_4 \text{ (cm)}$
 $x_5 \text{ (cm)}$
 $x_7 \text{ (cm)}$
 $x_7 \text{ (cm)}$

This reduces one dimension from out data:

Reduce data from 2D to 1D

$$x^{(1)} \in \mathbb{R}^{2} \longrightarrow z^{(1)} \in \mathbb{R}$$

$$x^{(2)} \in \mathbb{R}^{2} \longrightarrow z^{(2)} \in \mathbb{R}$$

$$\vdots$$

$$x^{(m)} \longrightarrow z^{(m)}$$

>> Reduce Data from 3D to 2D

Let's say, this data roughly lies on a plane

So, we project the data on that plane:

Hence, we have reduced the data from 3D to 2D

Where:

$$5 = \begin{bmatrix} 57 \\ 51 \end{bmatrix} \qquad \frac{5}{2} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

Dimensionality reduction: Data Visualization:

Suppose we have a 50D feature vector

						76	
	X	X2	N/		Xs	Mean	
		Per capita	X 3	Х4	Poverty	household	
	GDP	GDP	Human		Index	income	
	(trillions of	(thousands	Develop-	Life	(Gini as	(thousands	
Country	US\$)	of intl. \$)	ment Index	expectancy	percentage)	of US\$)	
Canada	1.577	39.17	0.908	80.7	32.6	67.293	
China	5.878	7.54	0.687	73	46.9	10.22	
India	1.632	3.41	0.547	64.7	36.8	0.735	
Russia	1.48	19.84	0.755	65.5	39.9	0.72	
Singapore	0.223	56.69	0.866	80	42.5	67.1	
USA	14.527	46.86	0.91	78.3	40.8	84.3	
•••		•••	•••	•••	•••		

We have to find out two **new features that can summarise these 50 features**... then we can easily plot the data in 2D

We can use the two most important features of deviation

>> PRINCIPLE COMPONENET ANALYSIS:

--algo for dimensionality reduction

Problem formulation:

The PCA algo will chose red line to reduce the dimensions of problem from 2D to 1D because the projection errors (blue lines) in magenta line are much higher.

> Projection errors = reduction errors

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $\underline{u^{(1)} \in \mathbb{R}^n}$) onto which to project the data so as to minimize the projection error.

More generally:

Reduce from n-dimension to k-dimension: Find k vectors $\underline{u^{(1)}, u^{(2)}, \dots, u^{(k)}} \leftarrow$ onto which to project the data, so as to minimize the projection error.

>> It may seem that PCA is like Linear Regression, but its not.

In linear regression:

→ The graph is b/w features vs output

→ The error is the vertical distance b/w actual o/p and predicted o/p(line)

In PCA:

→ The graph is b/w features only

→ The error is projection of data on the PCA line.

>> PRINCIPAL COMPOENT ANALYSIS - ALGOORITHM:

First we do the data pre-processing:

Data preprocessing

Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)} \in$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

 $\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$ Replace each $x_j^{(i)}$ with $x_j - \mu_j$. If different features on different scales (e.g., $x_1 =$ size of house, $x_2 =$ number of bedrooms), scale features to have comparable range of values.

- $\mu_i \rightarrow$ it's the mean of all values of that feature
- $S_j \rightarrow it's$ the range of that feature values \rightarrow standard deviation

> Algorithm:

Principal Component Analysis (PCA) algorithm

Reduce data from n-dimensions to \underline{k} -dimensions

Compute "covariance matrix":

$$\sum = \frac{1}{m} \sum_{i=1}^{n} \underbrace{(x^{(i)})(x^{(i)})^{T}}_{\text{lxn}} \qquad \text{nxn} \qquad \text{Sigma}$$

Compute "eigenvectors" of matrix Σ :

$$\rightarrow [U,S,V] = svd(Sigma);$$

- ➤ SVD = Singular Value Decomposition
 We can also use eig() instead of svd()
- > Sigma = Covariance matrix obtained
- ⇒**U** = the matrix of all the vectors we need, we just take the first "k" vectors from it, and those are our Dimensionality reduction vectors

From [U,S,V] = svd(Sigma), we get:

$$\Rightarrow U = \begin{bmatrix} | & | & | \\ u^{(1)} & u^{(2)} & \dots & u^{(n)} \\ | & | & | \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Now, to find the "z" feature vector:

Here, $X \rightarrow$ can be training data vector, cross validation, test data..

→ It can also be a particular example: X(i)

Principal Component Analysis (PCA) algorithm summary

→ After mean normalization (ensure every feature has zero mean) and optionally feature scaling:

>> RECONSTRUCTION OF DATA FROM COMPRESSED REPRESENTATION:

We have:

To approximate the original data:

>> HOW TO CHOOSE THE VALUE OF "k":

Choosing k (number of principal components) Average squared projection error: $\frac{1}{m} \stackrel{\sim}{\lesssim} \| \mathbf{x}^{(i)} - \mathbf{x}^{(i)} - \mathbf{x}^{(i)} \|^2$

Total variation in the data: 👆 💆 🗓 🗓 🗥 🗥 🗎

Typically, choose k to be smallest value so that

$$\Rightarrow \frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^{2}}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^{2}} \le \underline{0.01} \qquad \underline{(1\%)}$$

"99% of variance is retained"

Algorithm:

Choosing k (number of principal components)

Algorithm:

Try PCA with
$$k=1$$
 [Compute $U_{reduce}, \underline{z}^{(1)}, z^{(2)}, \ldots, z^{(m)}, x^{(1)}_{approx}, \ldots, x^{(m)}_{approx}$

Check if

$$\int \frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \le 0.01?$$

We try diff values of k from 1 until we get the ratio ≤0.01. But this is not an efficient way: So, **svd()** saves us:

$$\rightarrow$$
 [U,S,V] = svd(Sigma)

S→ n x n diagonal matrix

The ratio → (Average Squared projection error) / (Total variance in the data):

For given
$$k$$

$$\Rightarrow 1 - \frac{1}{12} Sii \leftarrow 1$$

$$\Rightarrow 1 - \frac{1}{12} Sii \leftarrow 1$$

$$\Rightarrow 1 - \frac{1}{12} Sii \leftarrow 1$$

OR

> [U,S,V] = svd(Sigma)Pick smallest value of k for which

$$\left(\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}} \right) \ge 0.99$$

(99% of variance retained)

» Speedup Advice:

Supervised learning speedup

$$(\underline{x^{(1)}}, y^{(1)}), (\underline{x^{(2)}}, y^{(2)}), \dots, (\underline{x^{(m)}}, y^{(m)})$$

Extract inputs:

Unlabeled dataset:
$$\underline{x^{(1)}, x^{(2)}, \dots, x^{(m)}} \in \underline{\mathbb{R}^{10000}}$$

$$z^{(1)}, z^{(2)}, \dots, z^{(m)} \in \mathbb{R}^{1000} \le$$

New training set:

$$(z^{(1)}, y^{(1)}), (z^{(2)}, y^{(2)}), \dots, (z^{(m)}, y^{(m)})$$

Note: Mapping $x^{(i)} \to z^{(i)}$ should be defined by running PCA only on the training set. This mapping can be applied as well to the examples $x_{cv}^{(i)}$ and $x_{test}^{(i)}$ in the cross validation and test sets.

>> Overfitting Advice:

Bad use of PCA: To prevent overfitting

Use $\underline{z^{(i)}}$ instead of $\underline{x^{(i)}}$ to reduce the number of features to k < n.— \(\cdot\)

Thus, fewer features, less likely to overfit.

Bad!

This might work OK, but isn't a good way to address overfitting. Use regularization instead.

>> Misuse of PCA:

PCA is sometimes used where it shouldn't be

Design of ML system:

- \rightarrow Get training set $\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\dots,(x^{(m)},y^{(m)})\}$
- \Rightarrow Run PCA to reduce $x^{(i)}$ in dimension to get $z^{(i)}$
- \Rightarrow Train logistic regression on $\{(z^{(1)},y^{(1)}),\ldots,(z^{(m)},y^{(m)})\}$
- \Rightarrow Test on test set: Map $x_{test}^{(i)}$ to $z_{test}^{(i)}$. Run $h_{\theta}(z)$ on $\{(z_{test}^{(1)}, y_{test}^{(1)}), \dots, (z_{test}^{(m)}, y_{test}^{(m)})\}$

But instead:

- How about doing the whole thing without using PCA?
- Before implementing PCA, first try running whatever you want to do with the original/raw data $x^{(i)}$. Only if that doesn't do what you want, then implement PCA and consider using $z^{(i)}$.