Example: If $A = \{0, 1\}$ then A^4 is the set of binary strings of length 4. Using 0 < 1 we can totally order A^4 .

The correct order is

Definition: The inverse, R^{-1} , of a relation $R \subseteq A \times B$ between a set A and a set B is the relation between B and A given by

$$R^{-1} = \{(b, a) \in B \times A \mid (a, b) \in R\}.$$

Example: If A and B are sets of people and R is the relation 'is a parent of', then R^{-1} is the relation 'is a child of'.

Example: If A = B is a set of positive integers and R is the relation 'is a divisor of', then R^{-1} is the relation 'is a multiple of'.

Note: The digraph of R^{-1} is obtained from the digraph of R by reversing the direction of each edge. The matrix of R^{-1} is obtained from the matrix of R by reflecting it along its diagonal.

Example: For $A = \{a_1, a_2, a_3, a_4\}$ and $C = \{c_1, c_2, c_3\}$ with

$$R = \{(a_1, c_1), (a_2, c_1), (a_4, c_2)\}\$$

the digraphs of R and R^{-1} are

and the matrices are

Note: Suppose R is a relation on a set A. If R is reflexive, then R^{-1} is also reflexive. (Interchanging the entries of (a,a) gives (a,a).) If R is symmetric, then R^{-1} is the same relation as R. (If $(a,b) \in R$ then $(b,a) \in R$ by symmetry. This means $(a,b) \in R^{-1}$. Similarly $R^{-1} \subseteq R$.) If R is transitive, then R^{-1} is also transitive. (If (a,b) and (b,c) are pairs in R^{-1} , then (b,a) and (c,b) are pairs in R. However R transitive means $(c,a) \in R$ so that $(a,c) \in R^{-1}$.)

Definition: If R is a relation between a set A and a set B and S is a relation between B and a set C then the composition of S with R, written $S \circ R$, is the relation between A and C given by

$$S \circ R = \{(a,c) \in A \times C \mid \text{ for some } b \in B, \ [((a,b) \in R) \text{ and } ((b,c) \in S)]\}.$$

Example: If A is a set of men, R is the relation 'is the father of' and S is the relation 'is a brother of', then $S \circ R$ is the relation 'is an uncle of' while $R^2 = R \circ R$ is the relation 'is a grandfather of'.

Note: The digraph of the composition of two relations can be read from the digraphs of the relations.

Example: Suppose $A = \{a_1, a_2, a_3\}$, $B = \{b_1, b_2, b_3, b_4\}$ and $C = \{c_1, c_2\}$ and the relations R and S are given by

$$R = \{(a_2, b_1), (a_2, b_3), (a_3, b_2), (a_3, b_4)\} \subseteq A \times B$$
$$S = \{(b_1, c_1), (b_3, c_1), (b_4, c_2)\} \subseteq B \times C$$

draw the corresponding digraphs, deduce the digraph for $S \circ T$ and express $S \circ T$ as a set of ordered pairs.

For $a_1 \in A$ and $c_1 \in C$ we see no $(a_1,b) \in R$ so $(a_1,c_1) \not\in S \circ R$. Similarly, $(a_1,c_2) \not\in S \circ R$. For $a_2 \in A$ and $c_1 \in C$ we see $(a_2,b_1) \in R$ and $(b_1,c_1) \in S$, so $(a_2,c_1) \in S \circ R$. (We could also go via b_3 .) For $a_2 \in A$ and $c_2 \in C$ we see $(a_2,b_1),(a_2,b_3) \in R$ but $(b_1,c_2) \not\in S$ and $(b_3,c_2) \not\in S$, so $(a_2,c_2) \not\in S \circ R$. For $a_3 \in A$ and $c_1 \in C$ we see $(a_3,b_2),(a_3,b_4) \in R$ but $(b_2,c_1) \not\in S$ and $(b_4,c_1) \not\in S$, so $(a_3,c_1) \not\in S \circ R$. For $a_3 \in A$ and $c_2 \in C$ we see $(a_3,b_4) \in R$ and $(b_4,c_2) \in S$, so $(a_3,c_2) \in S \circ R$. Thus

$$S \circ R = \{(a_2, c_1), (a_3, c_2)\}$$

Note: The matrix of the composition of two relations can be deduced from the matrices of the relations using a logical matrix product. (We will not pursue this.)