# Digitise, Optimise, Visualise: Optimization

Peter H. Gruber

July 1-5, 2019

# Standard problems for nonlinear functions

Standard problems
Warning
Monotonicity
Continuity
Convexity/concavity
Metrics

Optimization

Convex optimization

- $\square$  **Root:** find (all) x such that f(x) = 0
- $\Box$  **Fixed point:** find (all) x such that f(x) = x
- Inverse function: find x such that f(x) = y for a given y.
- $\square$  Approximation: find  $p(\cdot)$  such that  $p(x) \approx f(x)$  around  $x_0$
- $\square$  Minimum: find x such that f(x) is a global/local minimum.

Closely linked:

- $\square$  Interpolation: find f(x) with  $x_0 < x < x_1$ ,
  - if only  $f(x_0)$ ,  $f(x_1)$  are known
- $\square$  **Extrapolation:** find f(x) with  $x < x_0$  or  $x > x_1$ ,
  - if only  $f(x_0)$ ,  $f(x_1)$  are known

# Warning

Standard problems

Warning

Monotonicity

Continuity

Convexity/concavity

Metrics

Convex optimization

Optimization

- ☐ Most numerical methods rely on some property of a function.
- $\square$  Inappropriate method  $\longrightarrow$  possible errors.
  - May work if conditions are violated (difficult for testing)
  - Most methods always produce a result (possibly wrong)

### Global vs. local properties

- $\square$  globally, over the whole real line  $(x \in \mathbb{R})$
- $\Box$  locally,
  - within an (open or closed) interval  $[x_{min}, x_{max}]$  or
  - within a neighborhood around  $x_0$ .

Before using any numerical method, verify the conditions.

Optimization 3 / 15

# Monotonicity

Standard problems

Warning

▶ Monotonicity

Continuity

Convexity/concavity

Metrics

Optimization

Convex optimization

### **Increasing**

$$f(x) \le f(x + \Delta)$$
 or  $f'(x) \ge 0$ .

For  $\Delta > 0$ 

### **Decreasing**

$$f(x) \ge f(x + \Delta)$$
 or  $f'(x) \le 0$ .

**Strictly** inceasing/decreasing: without equal sign.

**Either** increasing **or** decreasing  $\longrightarrow$  **monotonous**.

Alternative test for monotonicity: horizontal line test.

The graph of the function must cross any horizontal line only once.

# **Continuity**

Standard problems
Warning
Monotonicity
Continuity
Convexity/concavity
Metrics

Optimization

Convex optimization

#### **Classical definition:**

for every  $\epsilon>0$  there exists a  $\delta>0$  such that

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon \tag{1}$$

#### **Alternative definition:**

The graph of a continuous function can be drawn in one strike.

# **Convexity/concavity**

Standard problems

Warning

Monotonicity

Continuity

Convexity/concavity

Metrics

Optimization

Convex optimization



- $\Box \lambda f(x_1) + (1 \lambda)f(x_2) \ge f(\lambda x_1 + (1 \lambda)x_2). \quad 0 < \lambda < 1$
- ☐ A convex function is always above its tangent
- $\Box$  Its second derivative is positive: f'' > 0.
- ☐ A convex function has only one minimum.

**Concave** – opposite of convex.

### **Metrics**

Standard problems
Warning
Monotonicity
Continuity
Convexity/concavity

Metrics

Optimization

Convex optimization

What is a metric? A measure of **distance**.

**Metric** = a non-negative function  $d_{ij}: \mathbb{R}^n \to \mathbb{R}^+$  of two points i and j in the n-dimensional space, satisfying:

- 1.  $d_{ii} = d_{jj} = 0$ The distance between a point and itself is zero.
- 2. if  $i \neq j \rightarrow d_{ij} > 0$ The distance between two different points is larger than zero.
- 3.  $d_{ij} = d_{ji}$ The distance from i to j as the same as the distance from j to i
- 4.  $d_{ik} \leq d_{ij} + d_{jk}$ The triangle inequality is fulfilled.

Standard problems

Warning

Monotonicity

Continuity

Convexity/concavity

Metrics

▶ Optimization

Optimization problem

Facts about minima

Classification

Convex optimization

# **Optimization**

# Canonical formulation of the optimization problem (10.2)

Standard problems

Warning

Monotonicity

Continuity

Convexity/concavity

Metrics

Optimization

Optimization

> problem

Facts about minima

Classification

Convex optimization

- ☐ **Minimze** cost, error, damage, risk ...
- □ **Optimize** solution, use of resources, portfolio ...
- ☐ **Maximize** output, profit, likelihood, ...
- ☐ **M-estimation** huge class of estimators in econometrics

**Sufficient** to discuss minimization:

- $\square$  Optimum is always a maximum or minimum.
- $\square$  max  $f(x) = \min -f(x)$

A static minimization problem is a problem of the type

$$\min_{\theta} f(\theta; X) \qquad f: \mathbb{R}^n \to \mathbb{R}, \quad \theta \in \Theta \subset \mathbb{R}^n$$
 (2)

 $f(\cdot)$  ... objective function  $\Theta$  ... feasible set.

### Facts about minima

Standard problems

Warning

Monotonicity

Continuity

Convexity/concavity

Metrics

Optimization

Optimization problem

Facts about

D minima

Classification

Convex optimization

#### First and second derivative.

If  $f(\cdot)$  is twice differentiable, a (local) minimum is found where

1-dim: 
$$f'(x) = 0$$
 and  $f''(x) > 0$ 

1-dim: 
$$f'(x) = 0$$
 and  $f''(x) > 0$    
  $n$ -dim:  $\frac{\partial f}{\partial \mathbf{x}} = 0$  and Hessian  $\frac{\partial^2 f}{\partial x_i \partial x_j}$  pos. definite

Optimization problem  $\longleftrightarrow$  find the root of the first derivative.

#### Existence of minima

Weierstrass extreme value theorem: any continuous  $f(\cdot)$  on a closed interval has a minimum and a maximum. (Sometimes at border)

### Minimum preserving transformations

- Any affine transformation  $y_{new} = \alpha + \beta \cdot x$  (with  $\beta > 0$ )
- Generally every strictly increasing function (i.e. any power on  $\mathbb{R}^+$ ) Application: simplify calculations.

## Classification of minimization algorithms

Standard problems
Warning
Monotonicity
Continuity
Convexity/concavity
Metrics

Optimization

Optimization problem Facts about minima

Convex optimization

Every algorithm uses some property of the objective function

 $\rightarrow$  need *some* knowledge of the problem.

### **Convexity**

– Most important distinction. Is objective fn convex?

#### Use of derivative

- explicitly (functional form of the derivative known)
- implicitly (derivative calculated numerically, but must exist)

### Starting values

- One starting point/vector (most algorithms)
- Starting interval (grid search, genetic algorithms)

### Type of algorithm

Deterministic or stochastic

Two-step algorithms combine some of the above features.

Standard problems

Warning

Monotonicity

Continuity

Convexity/concavity

Metrics

Optimization

Convex

> optimization

Gradient methods

Gradient methods 2

Gradient methods 3

# **Convex optimization**

Optimization

12 / 15

# Gradient-based methods: steepest descent (10.3.3)

Standard problems Warning

Monotonicity

Continuity

 ${\sf Convexity/concavity}$ 

Metrics

Optimization

Convex optimization

Gradient methods 2

Gradient methods 3

- □ Idea: walk uphill to reach the mountain top.
- $\square$  Direction of the steepest incline = gradient  $\nabla f$
- $\square$  Steepest descent  $= -\nabla f$ .

The gradient of  $f: \mathbb{R}^n \to \mathbb{R}$  is the vector of its partial derivatives

$$grad \ f(x_1, x_2) = \frac{\partial f}{\partial \mathbf{x}} = \nabla f = \begin{pmatrix} \frac{\partial f}{x_1} \\ \frac{\partial f}{x_2} \end{pmatrix}$$



# Gradient-based methods: steepest descent 2

Standard problems

Warning

Monotonicity

Continuity

Convexity/concavity

Metrics

Optimization

Convex optimization

Gradient methods
Gradient methods

Gradient methods 3

- 1. Starting point  $x_0$ , calculate gradient  $\nabla f(x_0)$
- 2. **Direction:**  $\nabla f(x_n)$

**Distance**: s

**Iteration:**  $x_{n+1} = x_n - s\nabla f(x_n)$ .

Optimal value for s:

- (a) Bracketing: start with arbitrary interval for  $s \in [a, b]$ . Expand interval (a/2, ...) and (2b, ...) until  $f(x_n s\nabla f(x_n))$  gets worse.
- (b) Minimization: use a bisection find minimizing s
- 3. Repeat (2) until  $||f(x_{n+1}) f(x_n)|| < \epsilon_{target}$

*Note:*  $\nabla f(x_n) \approx 0$  near a minimum/maximum

## Gradient-based methods: steepest descent 3

Standard problems
Warning
Monotonicity
Continuity
Convexity/concavity
Metrics

Optimization

Convex optimization
Gradient methods
Gradient methods 2
Gradient methods

### Steepest descent

Convex, derivative-based, deterministic, parallel up to # of variables

| Convex, derivative-based, deterministic, parallel up to $\pi$ or variables |                                                        |
|----------------------------------------------------------------------------|--------------------------------------------------------|
| Advantages                                                                 | Disadvantages                                          |
| + Very fast                                                                | <ul> <li>Explicit gradient rarely available</li> </ul> |
| + Intuitive algorithm                                                      | <ul><li>Numerical gradient costly/instalbe</li></ul>   |
|                                                                            | <ul> <li>Cannot handle discontinuities</li> </ul>      |
| +/- First order approximation: fast, simple, not precise                   |                                                        |

### Advanced gradient-based methods

- Using second derivatives (Hessian matrix)
- Allowing for larger approximation region
- Quasi-Newton methods to approximate Hessian matrix