1. [punti 6] Enunciare il Criterio di Nyquist (sia il caso generale che quello particolare) avendo cura di definire i concetti e le premesse teoriche sui quali si basa. Riportare inoltre una dimostrazione di tale criterio.

2. [punti 6]

a) Tracciare il diagramma polare associato alla funzione di trasferimento

$$P(s) = \frac{10(1-s)^2}{s(s+1)^3}$$

determinando in particolare l'asintoto e l'intersezione con l'asse reale negativo.

- b) Utilizzando il Criterio di Nyquist si studino le radici dell'equazione caratteristica 1 + P(s) = 0 (quante a parte reale negativa, quante puramente immaginarie, quante a parte reale positiva).
- **3.** [punti 6] Presentare e dedurre la funzione di trasferimento a tempo discreto $P_d(z)$ di un sistema a tempo continuo P(s) con all'ingresso un mantenitore D/A di ordine zero ed all'uscita un campionatore A/D sincronizzati con periodo T.

4. [punti 6] Sia dato il sistema retroazionato di figura:

dove K_1 è un parametro reale e $P(s) = \frac{s+1}{s^2(s+4)(s+8)}$.

- 1. Determinare l'insieme dei valori di K_1 per i quali il sistema retroazionato è asintoticamente stabile.
- 2. Tracciare il luogo delle radici dell'equazione caratteristica associata al sistema retroazionato per $K_1 \in (0, +\infty)$. Determinare in particolare gli asintoti del luogo e le intersezioni del luogo con l'asse immaginario del piano complesso.
- 5. [punti 6] Sia dato il sistema di controllo schematizzato in figura

dove $P(s) = \frac{8}{(s+2)^4}$. Determinare un controllore con struttura di rete ritardatrice

 $C(s) = K \frac{1 + \alpha \tau s}{1 + \tau s}$ ed il blocco algebrico $F \in \mathbb{R}$ affinché le seguenti specifiche siano soddisfatte:

- a) $K_p = 5$ (costante di posizione del sistema retroazionato);
- b) $M_F = 35^{\circ}$ (margine di fase del sistema retroazionato);
- c) $e_r = 0$ (errore a regime in risposta ad un gradino del riferimento r).
- **6.** [punti 6] Determinare la risposta forzata y(k) all'ingresso u(k) = 1(k) (gradino unitario) di un sistema a tempo discreto descritto dall'equazione alle differenze

$$y(k) - \frac{1}{4}y(k-2) = u(k) + u(k-2)$$
.