Assignment -2

Data Visualization and Preprocessing

Assignment Date	19 September 2022
Student Name	Helen Roshna A
Student Roll Number	211419104099
Maximum Marks	2 Marks

Question-1:

Download the dataset:

Question-2:

Load the dataset.

Solution:

import pandas as pd
df=pd.read_csv('/content/Churn_Modelling.csv')

in [1]:	impo	rt pandas a	s pd		import pandas as pd												
n [3]:	df=p	d.read_csv('/content/Cl	nurn_Mode!	lling.csv')												
n [4]:	df																
Out[4]: _		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited		
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1		
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	C		
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57			
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	(
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	(
	9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	96270.64	C		
	9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77	C		
	9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	42085.58	1		
	9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52	1		
	9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	38190.78	0		

Question-3:

Perform Below Visualizations.

1)Univariate Analysis

Solution:

```
import matplotlib.pyplot as plt
import numpy as np

df_ex_0=df.loc[df['Exited']==0]

df_ex_1=df.loc[df['Exited']==1]

plt.plot(df_ex_0['Balance'],np.zeros_like(df_ex_0['Balance']),color='green')

plt.xlabel('Balance')

plt.show()
```


2)Bi - Variate Analysis

Solution:

import seaborn as sns sns.FacetGrid(df,hue='Exited',size=5).map(plt.scatter,'CreditScore','Balance').add legend()

3)Multivariate Analysis

Solution:

sns.pairplot(df,hue='Exited',height=5)

Question-4:

Perform descriptive statistics on the dataset.

Solution:

df.describe(include='all')

	Descrip	tive Statistic	s											
In [12]:	df.des	cribe(inclu	de='all')											
Out[12]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Estim
	count	10000.00000	1.000000e+04	10000	10000.000000	10000	10000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	101
	unique	NaN	NaN	2932	NaN	3	2	NaN	NaN	NaN	NaN	NaN	NaN	
	top	NaN	NaN	Smith	NaN	France	Male	NaN	NaN	NaN	NaN	NaN	NaN	
	freq	NaN	NaN	32	NaN	5014	5457	NaN	NaN	NaN	NaN	NaN	NaN	
	mean	5000.50000	1.569094e+07	NaN	650.528800	NaN	NaN	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100
	std	2886.89568	7.193619e+04	NaN	96.653299	NaN	NaN	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57
	min	1.00000	1.556570e+07	NaN	350.000000	NaN	NaN	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	
	25%	2500.75000	1.562853e+07	NaN	584.000000	NaN	NaN	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	510
	50%	5000.50000	1.569074e+07	NaN	652.000000	NaN	NaN	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100
	75%	7500.25000	1.575323e+07	NaN	718.000000	NaN	NaN	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149
	max	10000.00000	1.581569e+07	NaN	850.000000	NaN	NaN	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199!
	4													-

Question-5:

Handle the Missing values.

Solution:

df.isnull().sum()

Question-6:

Find the outliers and replace the outliers

Solution:

import seaborn as sns sns.boxplot(df['Balance'])

Question-7:

Check for Categorical columns and perform encoding.

Solution:

from sklearn.preprocessing **import** LabelEncoder **from** collections **import** Counter **as** count

le=LabelEncoder()
df['Geography']=le.fit_transform(df['Geography'])
df['Gender']=le.fit_transform(df['Gender'])
df['Surname']=le.fit_transform(df['Surname'])

Enco	oding													
	m sklearn.pr m collection													
le=	LabelEncoder	()												
df['Geography'] 'Gender']=le 'Surname']=l	.fit_transf	orm(df['G	ender'])	.1)									
df	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ralance	NumOfProducts	HasCrCard	IsActiveMember	Fstimated Salary	Exited
							-						,	
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88	1
0			1115 1177	619	0	0	42	1	0.00 83807.86	1	1		101348.88 112542.58	1
	2	15647311					41	1				1		0
1	2	15647311 15619304	1177	608	2	0	41 42	1	83807.86	1	0	1	112542.58	0
1	2 3 4	15647311 15619304 15701354	1177 2040	608 502	2	0	41 42 39	1 8 1	83807.86 159660.80	1	0	1	112542.58 113931.57	(
1 2 3	2 3 4 5	15647311 15619304 15701354	1177 2040 289	608 502 699	2 0 0	0 0	41 42 39	1 8 1	83807.86 159660.80 0.00	1 3 2	0 1 0	1 0 0	112542.58 113931.57 93826.63	0 1 0
1 2 3 4	2 3 4 5	15647311 15619304 15701354 15737888	1177 2040 289 1822	608 502 699 850	2 0 0 2	0 0 0	41 42 39	1 8 1	83807.86 159660.80 0.00 125510.82	1 3 2 1	0 1 0	1 0 0	112542.58 113931.57 93826.63 79084.10	0
1 2 3 4	2 3 4 5 9996	15647311 15619304 15701354 15737888 	1177 2040 289 1822	608 502 699 850	2 0 0 2 	0 0 0 0	41 42 39 43 	1 8 1 2	83807.86 159660.80 0.00 125510.82 0.00	1 3 2 1	0 1 0 1	1 0 0 1 	112542.58 113931.57 93826.63 79084.10	C C C C C C C C C C C C C C C C C C C
1 2 3 4 	2 3 4 5 9996 9997	15647311 15619304 15701354 15737888 15606229	1177 2040 289 1822 1999	608 502 699 850 771	2 0 0 2 	0 0 0 1	41 42 39 43 	1 8 1 2 	83807.86 159660.80 0.00 125510.82 0.00	1 3 2 1 	0 1 0 1 1	1 0 0 1 	112542.58 113931.57 93826.63 79084.10 96270.64	0 0 0 0 0 0 0 0
1 2 3 4 9995	2 3 4 5 9996 9997 9998	15647311 15619304 15701354 15737888 15606229 15569892	1177 2040 289 1822 1999	608 502 699 850 771 516	2 0 0 2 0 0 0	0 0 0 0 1	41 42 39 43 39 35 36	1 8 1 2 5	83807.86 159660.80 0.00 125510.82 0.00 57369.61 0.00	1 3 2 1 2	0 1 0 1 1 1	1 0 0 1 0	112542.58 113931.57 93826.63 79084.10 96270.64 101699.77	

Question-8:

Split the data into dependent and independent variables.

Solution:

x=df.iloc[:,0:13]
y=df['Exited']

```
Dependent and Independent variables

In [20]: x=df.iloc[:,0:13]

In [21]: y=df['Exited']
```

Question-9:

Scale the independent variables

Solution:

from sklearn.preprocessing import StandardScaler sc=StandardScaler() sc_xtrain=sc.fit_transform(xtrain) sc_xtest=sc.transform(xtest)

Question-10:

Testing and training data

Solution:

from sklearn.model_selection import train_test_split
xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3,random_state=10)