GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENȚIALĂ. PROBLEME REZOLVATE

Gabriel POPA, Paul GEORGESCU © August 20, 2009, Iași

Cuprins

1	SPAŢIUL VECTORILOR LIBERI. STRUCTURA AFINĂ	4
2	SPAŢIUL VECTORILOR LIBERI. STRUCTURA EUCLIDIANĂ	9
3	DREAPTA ÎN PLAN	19
4	DREAPTA ÎN SPAȚIU	26
5	PLANUL ÎN SPAȚIU	32
6	COORDONATE POLARE, CILINDRICE ŞI SFERICE	43
7	ROTAŢII ŞI TRANSLAŢII	53
8	CONICE PE ECUAȚII REDUSE 8.1 CERCUL	57 57 62 66 69
9	CONICE PE ECUAȚII GENERALE	73
10	SFERA	88
11	CUADRICE PE ECUAȚII REDUSE	94
12	TEORIA SUPRAFEŢELOR	100
13	CURBE ÎN PLAN	107
14	CURBE ÎN SPAȚIU	121

Capitolul 1

SPAŢIUL VECTORILOR LIBERI. STRUCTURA AFINĂ

1.1 Demonstrați că trei vectori \vec{a} , \vec{b} , $\vec{c} \in V_3$ pot forma un triunghi $\Leftrightarrow \vec{a} + \vec{b} + \vec{c} = \overrightarrow{0}$ (relația lui **Chasles**).

Soluție

Dacă \vec{a} , \vec{b} , \vec{c} sunt laturi ale unui triunghi ABC, $\vec{a} = \overrightarrow{BC}$, $\vec{b} = \overrightarrow{CA}$, $\vec{c} = \overrightarrow{AB}$, atunci concluzia rezultă din regula triunghiului de adunare a vectorilor:

$$\vec{c} = \overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB} = -\vec{b} - \vec{a} \Rightarrow \vec{a} + \vec{b} + \vec{c} = \vec{0}.$$

Reciproc, fie \vec{a} , \vec{b} , \vec{c} cu $\vec{a} + \vec{b} + \vec{c} = \vec{0} \Leftrightarrow \vec{c} = -(\vec{a} + \vec{b})$. Construim un vector oarecare $\overrightarrow{BC} = \vec{a}$. Cu originea în C construim un vector $\overrightarrow{CA} = \vec{b}$. Atunci $\overrightarrow{BA} = \overrightarrow{BC} + \overrightarrow{CA} = \vec{a} + \vec{b} \Rightarrow \overrightarrow{AB} = -(\vec{a} + \vec{b}) = \vec{c}$ și deci cu vectorii \vec{a} , \vec{b} , \vec{c} putem construi $\triangle ABC$.

1.2 În
$$\triangle ABC$$
 se consideră $M \in [BC]$ astfel ca $\frac{BM}{MC} = k$. Demonstrați că $\overrightarrow{AM} = \frac{k\overrightarrow{AC} + \overrightarrow{AB}}{k+1}$.

Soluție

Cum BM = kMC iar vectorii \overrightarrow{BM} şi \overrightarrow{MC} au aceeaşi direcţie şi acelaşi sens, atunci $\overrightarrow{BM} = \overrightarrow{kMC}$, prin urmare $\overrightarrow{AM} - \overrightarrow{AB} = \overrightarrow{k(AC} - \overrightarrow{AM})$. Deducem că $(1+k)\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{kAC}$, de unde concluzia problemei.

1.3 În $\triangle ABC$ se consideră medianele [AA'], [BB'] şi [CC']. Demonstrați că putem construi un triunghi cu vectorii $\overrightarrow{AA'}$, $\overrightarrow{BB'}$, $\overrightarrow{CC'}$.

Soluție

 $\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC}) + \frac{1}{2}(\overrightarrow{BA} + \overrightarrow{BC}) + \frac{1}{2}(\overrightarrow{CA} + \overrightarrow{CB}) = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{BC}) + \frac{1}{2}(\overrightarrow{AC} + \overrightarrow{CB} + \overrightarrow{BA}) = \vec{0}$ și concluzia urmează folosind rezultatul problemei 1.1.

1.4 Fie O originea unui reper în spațiu. Demonstrați că patrulaterul ABCD este paralelogram dacă și numai dacă $\vec{r}_A + \vec{r}_C = \vec{r}_B + \vec{r}_D$.

Soluție

Fie M şi N mijloacele diagonalelor [AC], respectiv [BD]. Atunci: ABCD paralelogram $\Leftrightarrow M = N \Leftrightarrow \vec{r}_M = \vec{r}_N \Leftrightarrow \frac{1}{2}(\vec{r}_A + \vec{r}_C) = \frac{1}{2}(\vec{r}_B + \vec{r}_D) \Leftrightarrow \vec{r}_A + \vec{r}_C = \vec{r}_B + \vec{r}_D$.

1.5 Demonstrați că mijloacele laturilor unui patrulater convex ABCD sunt vârfurile unui paralelogram.

Soluţie

Raportăm planul la un reper de origine O și fie M, N, P, Q mijloacele laturilor [AB], [BC], [CD] și respectiv [DA]. Atunci

$$ec{r}_M + ec{r}_P = rac{1}{2}(ec{r}_A + ec{r}_B) + rac{1}{2}(ec{r}_C + ec{r}_D) = rac{1}{2}(ec{r}_A + ec{r}_D) + rac{1}{2}(ec{r}_B + ec{r}_C) = ec{r}_Q + ec{r}_N$$

de unde, conform problemei precedente, urmează că MNPQ este paralelogram.

1.6 Se consideră $\triangle ABC$ și punctele $M \in [AB]$, $N \in [AC]$ astfel încât MA = MB, iar NA = 2NC. Determinați coordonatele vectorilor \overrightarrow{AM} , \overrightarrow{BN} , \overrightarrow{CN} , \overrightarrow{MN} în fiecare din bazele 1) $B_1 = \left\{\overrightarrow{AB}, \overrightarrow{AC}\right\}$; 2) $B_2 = \left\{\overrightarrow{AM}, \overrightarrow{AN}\right\}$; 3) $B_3 = \left\{\overrightarrow{BA}, \overrightarrow{BC}\right\}$.

Soluție

- 1) Avem că $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB}$; $\overrightarrow{BN} = \overrightarrow{BA} + \overrightarrow{AN} = -\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$; $\overrightarrow{CN} = -\frac{1}{3}\overrightarrow{AC}$, iar $\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AN} = -\frac{1}{2}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC}$. Rezultă că, în baza B_1 , vectorii dați au coordonatele: $\overrightarrow{AM}(\frac{1}{2},0)$; $\overrightarrow{BN}(-1,\frac{2}{3})$; $\overrightarrow{CN}(0,-\frac{1}{3})$; $\overrightarrow{MN}(-\frac{1}{2},\frac{2}{3})$.
- 2) Întrucât $\overrightarrow{AB} = 2\overrightarrow{AM}$ şi $\overrightarrow{AC} = \frac{3}{2}\overrightarrow{AN}$, coordonatele vectorilor daţi în baza B_2 sunt: $\overrightarrow{AM}(1,0)$; $\overrightarrow{BN}(-2,1)$; $\overrightarrow{CN}(0,-\frac{1}{2})$; $\overrightarrow{MN}(-1,1)$.
- 3) Observăm că $\overrightarrow{AB} = -\overrightarrow{BA}$, $\overrightarrow{AC} = \overrightarrow{BC} \overrightarrow{BA}$. Rezultă că $\overrightarrow{AM} = -\frac{1}{2}\overrightarrow{BA}$; $\overrightarrow{BN} = \overrightarrow{BA} + \frac{2}{3}(\overrightarrow{BC} \overrightarrow{BA}) = \frac{1}{3}\overrightarrow{BA} + \frac{2}{3}\overrightarrow{BC}$; $\overrightarrow{CN} = -\frac{1}{3}(\overrightarrow{BC} \overrightarrow{BA}) = \frac{1}{3}\overrightarrow{BA} \frac{1}{3}\overrightarrow{BC}$, iar $\overrightarrow{MN} = \frac{1}{2}\overrightarrow{BA} + \frac{2}{3}(\overrightarrow{BC} \overrightarrow{BA}) = -\frac{1}{6}\overrightarrow{BA} + \frac{2}{3}\overrightarrow{BC}$. Astfel, în baza B_3 , $\overrightarrow{AM}(-\frac{1}{2},0)$; $\overrightarrow{BN}(\frac{1}{3},\frac{2}{3})$; $\overrightarrow{CN}(\frac{1}{3},-\frac{1}{3})$; $\overrightarrow{MN}(-\frac{1}{6},\frac{2}{3})$.

1.7 Se consideră paralelogramul ABCD de centru O şi punctele $M \in [AB]$, $N \in [AD]$ astfel încât 3AM = AB şi 2AN = AD. Determinați coordonatele vectorilor \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AO} , \overrightarrow{BD} în fiecare din bazele

1)
$$B_1 = \left\{ \overrightarrow{AM}, \overrightarrow{AN} \right\};$$
 2) $B_2 = \left\{ \overrightarrow{AB}, \overrightarrow{AO} \right\}.$

Soluție

- 1) $\overrightarrow{AB}(3,0)$; $\overrightarrow{AC}(3,2)$; $\overrightarrow{AO}(\frac{3}{2},1)$; $\overrightarrow{BD}(-3,2)$.
- 2) $\overrightarrow{AB}(1,0)$; $\overrightarrow{AC}(0,2)$; $\overrightarrow{AO}(0,1)$; $\overrightarrow{BD}(-2,1)$.
- **1.8** Fie $B = \{\vec{\imath}, \vec{\jmath}\}$ baza canonică în plan.
 - 1) Demonstrați că vectorii $\vec{a}=\vec{\imath}+\vec{\jmath}$ și $\vec{b}=-\vec{\imath}+2\vec{\jmath}$ sunt necoliniari;
 - 2) Aflaţi coordonatele vectorilor bazei B în baza $B_1 = \{\vec{a}, \vec{b}\};$
 - 3) Descompuneți vectorul $\vec{v} = 5\vec{\imath} \vec{\jmath}$ după baza $B_1 = \{\vec{a}, \vec{b}\}$.

Soluție

- 1) Presupunem prin absurd că vectorii \vec{a} și \vec{b} sunt coliniari; atunci există $t \in \mathbb{R}$ astfel încât $\vec{b} = t\vec{a}$. Trecând la coordonate, obținem că $(-1,2) = t \cdot (1,1)$, adică t = -1 și t = 2, contradicție. Rămâne că vectorii \vec{a} și \vec{b} sunt necoliniari.
- 2) Fie $\vec{\imath} = x\vec{a} + y\vec{b}$, cu $x, y \in \mathbb{R}$; atunci $\vec{\imath} = x(\vec{\imath} + \vec{\jmath}) + y(-\vec{\imath} + 2\vec{\jmath}) = (x y)\vec{\imath} + (x + 2y)\vec{\jmath}$, de unde x y = 1, iar x + 2y = 0. Rezultă că $x = \frac{2}{3}$, $y = -\frac{1}{3}$, prin urmare coordonatele versorului $\vec{\imath}$ din baza canonică, în baza B_1 , sunt $\vec{\imath}(\frac{2}{3}, -\frac{1}{3})$. Cu un raționament analog, găsim coordonatele lui $\vec{\jmath}$ în baza B_1 , anume $\vec{\jmath}(\frac{1}{3}, \frac{1}{3})$.
- 3) Folosind punctul precedent, obţinem că $\vec{v} = 5(\frac{2}{3}\vec{a} \frac{1}{3}\vec{b}) (\frac{1}{3}\vec{a} + \frac{1}{3}\vec{b}) = 3\vec{a} 2\vec{b}$, deci coordonatele lui \vec{v} în baza B_1 sunt $\vec{v}(3, -2)$.
- **1.9** Fie ABCDA'B'C'D' un cub. În raport cu reperul $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AA'})$, găsiți coordonatele vectorilor $\overrightarrow{AC'}$, \overrightarrow{MN} , $\overrightarrow{A'N}$, \overrightarrow{OM} , unde M, N sunt mijloacele segmentelor [BC], respectiv [CD], iar O este centrul cubului.

Soluție

$$AC' = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CC'}$$

 $= \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'}$, deci $\overrightarrow{AC'}(1,1,1)$.
 $\overrightarrow{MN} = \overrightarrow{MC} + \overrightarrow{CN} = \frac{1}{2}\overrightarrow{BC} + \frac{1}{2}\overrightarrow{CD} =$
 $= \frac{1}{2}\overrightarrow{AD} + \frac{1}{2}\overrightarrow{BA} = -\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD}$,
deci $\overrightarrow{MN} \left(-\frac{1}{2}, \frac{1}{2}, 0 \right)$.

$$\overrightarrow{A'N} = \overrightarrow{A'D'} + \overrightarrow{D'D} + \overrightarrow{DN} = \overrightarrow{AD} - \overrightarrow{AA'} + \frac{1}{2}\overrightarrow{AB}$$

$$\det \overrightarrow{A'N} \left(\frac{1}{2}, 1, -1\right).$$

$$\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{BM} = -\frac{1}{2}\overrightarrow{AC'} + (\overrightarrow{AB} + \overrightarrow{BM}) = -\frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AA'}) + (\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD}) = \frac{1}{2}\overrightarrow{AB} - \frac{1}{2}\overrightarrow{AA'}, \det \overrightarrow{OM} \left(\frac{1}{2}, 0, -\frac{1}{2}\right).$$

1.10 Demonstrați că medianele unui triunghi sunt concurente (într-un punct numit **centrul de greutate** al triunghiului).

Soluție

Dacă \vec{r}_A , \vec{r}_B , \vec{r}_C sunt vectorii de poziție ai vârfurilor (în raport cu un punct fix oarecare), vectorii de poziție ai mijloacelor laturilor [BC], [CA], [AB] sunt $\vec{r}_M = \frac{1}{2}(\vec{r}_B + \vec{r}_C)$, $\vec{r}_N = \frac{1}{2}(\vec{r}_C + \vec{r}_A)$, respectiv $\vec{r}_P = \frac{1}{2}(\vec{r}_A + \vec{r}_B)$. Folosind rezultatul problemei 1.2, se observă că punctele care împart medianele [AM], [BN], [CP] în raportul k=2 au, toate, același vector de poziție, anume $\frac{1}{3}(\vec{r}_A + \vec{r}_B + \vec{r}_C)$, prin urmare cele trei mediane sunt concurente.

- **1.11** Fie $\triangle ABC$ și fie G centrul său de greutate.
 - 1) Demonstrați că $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \vec{0}$.
 - 2) Dacă M este un punct oarecare, demonstrați că $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$.

Soluție

- 1) Am văzut la problema 1.10 că $\vec{r}_G = \frac{1}{3}(\vec{r}_A + \vec{r}_B + \vec{r}_C)$. Atunci $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = (\vec{r}_A \vec{r}_G) + (\vec{r}_B \vec{r}_G) + (\vec{r}_C \vec{r}_G) = \vec{r}_A + \vec{r}_B + \vec{r}_C 3\vec{r}_G = 0$. 2) Avem că $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = (\overrightarrow{MG} + \overrightarrow{GA}) + (\overrightarrow{MG} + \overrightarrow{GB}) + (\overrightarrow{MG} + \overrightarrow{GC}) = 3\overrightarrow{MG} + (\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}) = 3\overrightarrow{MG} + \overrightarrow{GC}$
- **1.12** Fie ABCDEF hexagon, iar M, N, P, Q, R, S mijloacele laturilor consecutive. Arătați că triunghiurile MPR și NQS au același centru de greutate.

Soluție

Se determină vectorii de poziție ai centrelor de greutate ale celor două triunghiuri, funcție de vectorii de poziție ai vârfurilor hexagonului; obținem, de fiecare dată, $\frac{1}{6}(\vec{r}_A + \vec{r}_B + \vec{r}_C + \vec{r}_D + \vec{r}_E + \vec{r}_F)$, deci cele două centre de greutate coincid.

1.13 Se consideră $\triangle ABC$ și $D \in [BC]$ astfel încât BC = 3DC. Dacă E este mijlocul medianei CC', demonstrați că punctele A, D și E sunt coliniare.

Soluție

Cum
$$\overrightarrow{AE} = \frac{1}{2}(\overrightarrow{AC'} + \overrightarrow{AC}) = \frac{1}{4}(\overrightarrow{AB} + 2\overrightarrow{AC}) = \frac{1}{4} \cdot 3\overrightarrow{AD} = \frac{3}{4}\overrightarrow{AD}$$
, rezultă că vectorii \overrightarrow{AE} şi \overrightarrow{AD} sunt coliniari, de unde cerința problemei.

Soluție alternativă

Se poate utiliza reciproca teoremei lui Menelaus în triunghiul *BCC'*.

Capitolul 2

SPAŢIUL VECTORILOR LIBERI. STRUCTURA EUCLIDIANĂ

2.1 Fie $\overrightarrow{ABCDA'B'C'D'}$ un paralelipiped dreptunghic. Arătaţi că $\overrightarrow{AD} \cdot \overrightarrow{D'C} + \overrightarrow{AB} \cdot \overrightarrow{BC'} + \overrightarrow{A'B} \cdot \overrightarrow{B'C'} = 0$.

Soluție

Deoarece $AD \perp (CDD')$ şi $D'C \subset (CDD')$, rezultă că $AD \perp D'C$. Analog se observă că $AB \perp BC'$, $A'B \perp B'C'$, deci fiecare dintre termenii sumei din enunț este nul.

2.2 Fie \overrightarrow{AB} și \overrightarrow{AC} doi vectori nenuli cu proprietatea că $\|\overrightarrow{AB} + \overrightarrow{AC}\| = \|\overrightarrow{AB} - \overrightarrow{AC}\|$. Demonstrați că $m(\widehat{BAC}) = 90^{\circ}$.

Soluție

Dacă
$$\|\overrightarrow{AB} + \overrightarrow{AC}\| = \|\overrightarrow{AB} - \overrightarrow{AC}\|$$
, atunci $\|\overrightarrow{AB} + \overrightarrow{AC}\|^2 = \|\overrightarrow{AB} - \overrightarrow{AC}\|^2$. Deducem că $\overrightarrow{AB}^2 + 2\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{AC}^2 = \overrightarrow{AB}^2 - 2\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{AC}^2$, de unde $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{0}$, deci $m(\widehat{BAC}) = 90^\circ$.

Soluție alternativă

Fie D cel de-al patrulea vârf al paralelogramului ABDC. Avem că $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$, $\overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB}$, prin urmare ipoteza problemei noastre revine la faptul că diagonalele AD și BC ale paralelogramului ABDC sunt congruente. Rezultă că acest paralelogram este dreptunghi, adică $m(\widehat{BAC}) = 90^{\circ}$.

- **2.3** Se consideră în plan punctele A(1,1), B(-1,-2), C(c,0) și D(0,d), cu c,d>0.
 - 1) Calculați $\overrightarrow{AB} \cdot \overrightarrow{CD}$, $\overrightarrow{AC} \cdot \overrightarrow{DB}$, $\overrightarrow{AD} \cdot \overrightarrow{BC}$.
 - 2) Determinați c, d astfel încât A să fie ortocentrul $\triangle BCD$.

- 1) În raport cu baza canonică, vectorii care apar au coordonatele: $\overrightarrow{AB}(-2, -3)$; $\overrightarrow{CD}(-c, d)$; $\overrightarrow{AC}(c-1, -1)$; $\overrightarrow{DB}(-1, -2 d)$; $\overrightarrow{AD}(-1, d-1)$; $\overrightarrow{BC}(c+1, 2)$. Atunci $\overrightarrow{AB} \cdot \overrightarrow{CD} = (-2)(-c) + (-3)d = 2c 3d$; $\overrightarrow{AC} \cdot \overrightarrow{DB} = (c-1)(-1) + (-1)(-2 d) = -c + d + 3$, iar $\overrightarrow{AD} \cdot \overrightarrow{BC} = (-1)(c+1) + (d-1)2 = -c + 2d 3$.
- 2) Dacă A este ortocentrul $\triangle BCD$, atunci $AB \perp CD$, $AC \perp DB$ și $AD \perp BC$, prin urmare cele trei produse scalare de la punctul precedent trebuie să se anuleze. Obținem sistemul de trei ecuații cu două necunoscute 2c-3d=0, c-d=3, c-2d=-3, care este compatibil determinat, cu soluția c=9, d=6.
- **2.4** Se consideră pătratul ABCD și punctele $M \in [BC]$, $N \in [CD]$ astfel încât BM = CN. Demonstrați că $AM \perp BN$.

Soluție

În baza $B = \{\overrightarrow{AB}, \overrightarrow{AC}\}$, coordonatele vectorului \overrightarrow{AM} sunt (1, x), iar cele ale lui \overrightarrow{BN} sunt (-x, 1), unde x = BM = CN. Astfel, $\overrightarrow{AM} \cdot \overrightarrow{BN} = 1(-x) + x = 0$, prin urmare $AM \perp BN$.

2.5 Fie \vec{a} , \vec{b} , $\vec{c} \in V_3$ de lungime 1 astfel ca $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Calculați $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.

Soluție

Au loc relațiile:

$$\vec{a} \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \Rightarrow \vec{a}^2 + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0$$

$$\vec{b} \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \Rightarrow \vec{a} \cdot \vec{b} + b^2 + \vec{b} \cdot \vec{c} = 0$$

$$\vec{c} \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \Rightarrow \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} + \vec{c}^2 = 0.$$

Prin sumare, obţinem:

$$\vec{a}^2 + \vec{b}^2 + \vec{c}^2 + 2(\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}) = 0 \Rightarrow \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} = -\frac{3}{2}.$$

Soluție alternativă

Conform relației lui Chasles, putem construi un triunghi cu vectorii \vec{a} , \vec{b} , \vec{c} , iar acest triunghi este echilateral, de latură 1. Rezultă că măsura unghiurilor formate de doi

câte doi dintre cei trei vectori este de 120°, deci $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = \|\vec{a}\| \|\vec{b}\| \cos 120^\circ + \|\vec{b}\| \|\vec{c}\| \cos 120^\circ + \|\vec{c}\| \|\vec{a}\| \cos 120^\circ = 1 \cdot 1 \cdot (-\frac{1}{2}) + 1 \cdot 1 \cdot (-\frac{1}{2}) + 1 \cdot 1 \cdot (-\frac{1}{2}) = -\frac{3}{2}.$

Soluție alternativă

Conform comutativității și distributivității produsului scalar, se obține că

$$2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = \vec{a} \cdot (\vec{b} + \vec{c}) + \vec{b} \cdot (\vec{c} + \vec{a}) + \vec{c} \cdot (\vec{a} + \vec{b})$$

$$= \vec{a} \cdot (-\vec{a}) + \vec{b} \cdot (-\vec{b}) + \vec{c} \cdot (-\vec{c})$$

$$= -(\|\vec{a}\|^2 + \|\vec{b}\|^2 + \|\vec{c}\|^2)$$

$$= -3.$$

de unde concluzia.

2.6 Demonstrați că pentru orice puncte A, B, C din plan are loc egalitatea

$$\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BA} \cdot \overrightarrow{BC} + \overrightarrow{CA} \cdot \overrightarrow{CB} = \frac{1}{2}(AB^2 + BC^2 + CA^2)$$

Soluție

Din teorema cosinusului, avem că $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \cdot AC \cos(\hat{A}) = \frac{1}{2}(AB^2 + AC^2 - BC^2)$. Scriem încă două relații analoage și, prin sumarea tuturor, se obține egalitatea dorită.

Soluție alternativă

Conform comutativității și distributivității produsului scalar, se obține că

$$2(\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BA} \cdot \overrightarrow{BC} + \overrightarrow{CA} \cdot \overrightarrow{CB}) = \overrightarrow{AB} \cdot (\overrightarrow{AC} - \overrightarrow{BC}) + \overrightarrow{BC} \cdot (\overrightarrow{BA} - \overrightarrow{CA}) + \overrightarrow{CA} \cdot (\overrightarrow{CB} - \overrightarrow{AB})$$

$$= \overrightarrow{AB} \cdot \overrightarrow{AB} + \overrightarrow{BC} \cdot \overrightarrow{BC} + \overrightarrow{CA} \cdot \overrightarrow{CA}$$

$$= AB^2 + BC^2 + CA^2.$$

de unde concluzia.

2.7 Fie $\triangle ABC$ și fie G centrul său de greutate. Demonstrați că dacă M este un punct oarecare, atunci $MA^2 + MB^2 + MC^2 = GA^2 + GB^2 + GC^2 + 3MG^2$ (Leibniz).

Soluție

Avem că $\overrightarrow{MA} = \overrightarrow{MG} + \overrightarrow{GA}$, deci $MA^2 = \overrightarrow{MA}^2 = MG^2 + GA^2 + 2\overrightarrow{MG} \cdot \overrightarrow{GA}$ şi analoagele. Conform rezultatului problemei 1.11, $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \vec{0}$, de unde

$$MA^{2} + MB^{2} + MC^{2} = 3MG^{2} + GA^{2} + GB^{2} + GC^{2} + 2\overrightarrow{MG}^{2} \cdot (\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}) =$$

= $3MG^{2} + GA^{2} + GB^{2} + GC^{2}$.

2.8 Fie ABCD un patrulater cu $AB \perp CD$ și fie E, F mijloacele laturilor AD, respectiv BC. Demonstrați că

- 1) $2\overrightarrow{EF} = \overrightarrow{AB} \overrightarrow{CD}$;
- 2) $4EF^2 = AB^2 + CD^2$;
- 3) $\overrightarrow{AD} \cdot \overrightarrow{CD} = \overrightarrow{BD} \cdot \overrightarrow{CD}$.

Soluție

- 1) Întrucât $\overrightarrow{EF} = \overrightarrow{EA} + \overrightarrow{AB} + \overrightarrow{BF}$ și $\overrightarrow{EF} = \overrightarrow{ED} + \overrightarrow{DC} + \overrightarrow{CF}$, iar $\overrightarrow{EA} + \overrightarrow{ED} = \vec{0}$, $\overrightarrow{BF} + \overrightarrow{CF} = \vec{0}$, deducem că $2\overrightarrow{EF} = \overrightarrow{AB} + \overrightarrow{DC} = \overrightarrow{AB} \overrightarrow{CD}$.
- 2) Din egalitatea precedentă, rezultă că $4\overrightarrow{EF^2} = (\overrightarrow{AB} \overrightarrow{CD})^2$, adică $4EF^2 = AB^2 2\overrightarrow{AB} \cdot \overrightarrow{CD} + CD^2$. Însă $AB \perp CD$, deci $\overrightarrow{AB} \cdot \overrightarrow{CD} = 0$ și atunci $4EF^2 = AB^2 + CD^2$.
 - 3) Observăm că $\overrightarrow{AD} \cdot \overrightarrow{CD} = (\overrightarrow{AB} + \overrightarrow{BD}) \cdot \overrightarrow{CD} = \overrightarrow{AB} \cdot \overrightarrow{CD} + \overrightarrow{BD} \cdot \overrightarrow{CD} = \overrightarrow{BD} \cdot \overrightarrow{CD}$.

Notă Din relația 3), se poate observa că produsul scalar nu permite simplificarea.

- **2.9** Fie ABCDA'B'C'D' un cub.
 - 1) Demonstrați că $AC' \perp BD$.
 - 2) Determinați cosinusul unghiului dintre AC' și A'M, unde M este mijlocul lui AB.

Soluție

- 1) Alegând convenabil unitatea de măsura, putem considera latura cubului egală cu 1. Raportăm spațiul la un reper ortonormat cu originea în A, versorii axelor fiind $\vec{t} = \overrightarrow{AB}, \vec{j} = \overrightarrow{AD}$ și $\vec{k} = \overrightarrow{AA'}$. Atunci, $\overrightarrow{AC'}(1,1,1)$, $\overrightarrow{BD}(-1,1,0)$, prin urmare $\overrightarrow{AC'} \cdot \overrightarrow{BD} = 1 \cdot (-1) + 1 \cdot 1 + 1 \cdot 0 = 0$, de unde $AC' \perp BD$.
- 2) Coordonatele vectorului $\overrightarrow{A'M}$ sunt $(\frac{1}{2},0,-1)$, deci $\overrightarrow{AC'} \cdot \overrightarrow{A'M} = \|\overrightarrow{AC'}\| \|\overrightarrow{A'M}\| \cos(\overrightarrow{AC'},\overrightarrow{A'M})$, astfel că $-\frac{1}{2} = \sqrt{3}\frac{\sqrt{5}}{2}\cos(\overrightarrow{AC'},\overrightarrow{A'M})$. Rezultă că unghiul vectorilor $\overrightarrow{AC'}$ și $\overrightarrow{A'M}$ are cosinusul $-\frac{1}{\sqrt{15}}$ (este un unghi obtuz); unghiul dreptelor AC' și A'M, fiind ascuțit, va fi suplementul celui de mai înainte și va avea cosinusul egal cu $\frac{1}{\sqrt{15}}$.
- **2.10** Fie \vec{a} , \vec{b} , $\vec{c} \in V_3$ astfel încât $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Demonstrați că $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$.

Soluție

Au loc relațiile

$$\vec{a} \times \vec{b} - \vec{b} \times \vec{c} = \vec{a} \times \vec{b} + \vec{c} \times \vec{b} = (\vec{a} + \vec{c}) \times \vec{b} = (-\vec{b}) \times \vec{b} = \vec{0}.$$

Rezultă că $\vec{a} \times \vec{b} = \vec{b} \times \vec{c}$. Analog se demonstrează și cealaltă egalitate.

2.11 Demonstrați că $\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = \vec{0}, \forall \vec{a}, \vec{b}, \vec{c} \in V_3$ (identitatea lui **Jacobi**).

Soluție

$$\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} + (\vec{b} \cdot \vec{a})\vec{c} - (\vec{b} \cdot \vec{c})\vec{a} + (\vec{c} \cdot \vec{a})\vec{b} - (\vec{c} \cdot \vec{b})\vec{a} = \vec{0}.$$

2.12 Demonstrați că $(\vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a}) = 0, \forall \vec{a}, \vec{b}, \vec{c} \in V_3$, algebric și geometric.

Soluție

Soluţie algebrică: Dacă vectorii \vec{a} , \vec{b} , \vec{c} au, în raport cu o bază ortonormată, coordonatele (x_1, y_1, z_1) , (x_2, y_2, z_2) respectiv (x_3, y_3, z_3) , atunci

$$(\vec{a} - \vec{b}, \vec{b} - \vec{c}, \vec{c} - \vec{a}) = \begin{vmatrix} x_1 - x_2 & y_1 - y_2 & z_1 - z_2 \\ x_2 - x_3 & y_2 - y_3 & z_2 - z_3 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix}.$$

Adunând la prima linie suma celorlalte două, obținem pe aceasta numai zerouri, prin urmare $(\vec{a}-\vec{b},\vec{b}-\vec{c},\vec{c}-\vec{a})=0$.

Soluție geometrică: Observăm că $(\vec{a}-\vec{b})+(\vec{b}-\vec{c})+(\vec{c}-\vec{a})=\vec{0}$, deci cu vectorii $\vec{a}-\vec{b}$, $\vec{b}-\vec{c}$, $\vec{c}-\vec{a}$ se poate construi un triunghi. Rezultă de aici că vectorii respectivi sunt coplanari, de unde cerința.

2.13 Fiind daţi trei vectori necoplanari \vec{a} , \vec{b} , $\vec{c} \in V_3$, demonstraţi că $\left(\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}\right) = 2(\vec{a}, \vec{b}, \vec{c})$ şi interpretaţi geometric rezultatul.

Soluție

$$\begin{split} (\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{a} + \vec{c}) &= (\vec{a} + \vec{b}) \cdot ((\vec{b} + \vec{c}) \times (\vec{a} + \vec{c})) = \\ &= (\vec{a} + \vec{b}) \cdot (\vec{b} \times \vec{a} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{c} \times \vec{c})) = \\ &= (\vec{a}, \vec{b}, \vec{a}) + (\vec{a}, \vec{b}, \vec{c}) + (\vec{a}, \vec{c}, \vec{a}) + (\vec{a}, \vec{c}, \vec{c}) + \\ &+ (\vec{b}, \vec{b}, \vec{a}) + (\vec{b}, \vec{b}, \vec{c}) + (\vec{b}, \vec{c}, \vec{a}) + (\vec{b}, \vec{c}, \vec{c}) = 2(\vec{a}, \vec{b}, \vec{c}). \end{split}$$

Interpretare: Fie paralelipipedul ABCDA'B'C'D' cu $\overrightarrow{AB} = \vec{a}$, $\overrightarrow{AC} = \vec{b}$, $\overrightarrow{AA'} = \vec{c}$; atunci $\vec{a} + \vec{b}$, $\vec{a} + \vec{c}$, $\vec{b} + \vec{c}$ reprezintă respectiv diagonalele \overrightarrow{AD} , $\overrightarrow{A'B'}$, $\overrightarrow{A'C'}$. Rezultatul demonstrează că paralelipipedul construit pe AD, A'B', A'C' are dublul volumului paralelipipedului inițial.

2.14 Demonstrați că
$$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \begin{vmatrix} \vec{a} \cdot \vec{c} & \vec{a} \cdot \vec{d} \\ \vec{b} \cdot \vec{c} & \vec{b} \cdot \vec{d} \end{vmatrix}, \forall \vec{a}, \vec{b}, \vec{c}, \vec{d} \in V_3.$$

Utilizând definiția și proprietățile produsului mixt, obținem

$$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = (\vec{a} \times \vec{b}, \vec{c}, \vec{d}) = (\vec{c}, \vec{d}, \vec{a} \times \vec{b}) = \vec{c} \cdot (\vec{d} \times (\vec{a} \times \vec{b})),$$

de unde, conform formulei de dezvoltare a dublului produs vectorial,

$$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \vec{c} \cdot ((\vec{d} \cdot \vec{b})\vec{a} - (\vec{d} \cdot \vec{a})\vec{b}) = (\vec{d} \cdot \vec{b})(\vec{a} \cdot \vec{c}) - (\vec{d} \cdot \vec{a})(\vec{b} \cdot \vec{c}).$$

Folosind comutativitatea produsului scalar, urmează că

$$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d}) - (\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c}) = \begin{vmatrix} \vec{a} \cdot \vec{c} & \vec{a} \cdot \vec{d} \\ \vec{b} \cdot \vec{c} & \vec{b} \cdot \vec{d} \end{vmatrix}.$$

2.15 Fie A, B, C de vectori de poziție \vec{r}_A , \vec{r}_B , \vec{r}_C . Demonstrați că aria $\triangle ABC$ poate fi calculată prin formula

$$S_{ABC} = \frac{1}{2} \| \vec{r}_A \times \vec{r}_B + \vec{r}_B \times \vec{r}_C + \vec{r}_C \times \vec{r}_A \|$$

Soluție

Întrucât $\|\overrightarrow{AB} \times \overrightarrow{AC}\| = AB \cdot AC \cdot \sin(\hat{A}) = 2S_{ABC}$, obținem că

$$\begin{split} S_{ABC} &= \frac{1}{2} \|\overrightarrow{AB} \times \overrightarrow{AC}\| = \frac{1}{2} \|(\vec{r}_B - \vec{r}_A) \times (\vec{r}_C - \vec{r}_A)\| \\ &= \frac{1}{2} \|\vec{r}_B \times \vec{r}_C - \vec{r}_B \times \vec{r}_A - \vec{r}_A \times \vec{r}_C + \vec{r}_A \times \vec{r}_A\|. \end{split}$$

Relația dorită rezultă acum observând că $\vec{r}_A \times \vec{r}_B = -\vec{r}_B \times \vec{r}_A$, $\vec{r}_C \times \vec{r}_A = -\vec{r}_A \times \vec{r}_C$, iar $\vec{r}_A \times \vec{r}_A = \vec{0}$.

2.16 Fie A, B, C de vectori de poziție $\vec{r}_A = 14\vec{\imath} - 7\vec{\jmath} + 2\vec{k}$, $\vec{r}_B = 2\vec{\imath} + 2\vec{\jmath} - 7\vec{k}$, $\vec{r}_C = 2\vec{\imath} + 7\vec{\jmath} + 2\vec{k}$. Arătați că $\triangle ABC$ este dreptunghic, iar $\triangle BOC$ este isoscel. Calculați perimetrul $\triangle ABC$ și aria $\triangle ABC$.

Solutie

Avem că $OB = \|\vec{r}_B\| = \sqrt{57}$, iar $OC = \|\vec{r}_C\| = \sqrt{57}$, prin urmare $\triangle BOC$ este isoscel. Apoi, deoarece $\overrightarrow{CA}(12,0,0)$, iar $\overrightarrow{CB}(0,-5,-9)$, rezultă că $\overrightarrow{CA} \cdot \overrightarrow{CB} = 0$, deci $\triangle ABC$ este dreptunghic, cu $m(\widehat{ACB}) = 90^\circ$. Lungimile catetelor sunt AC = 12, $BC = \sqrt{106}$, iar lungimea ipotenuzei este $AB = 5\sqrt{10}$; perimetrul triunghiului va fi $P_{ABC} = 12 + \sqrt{106} + 5\sqrt{10}$, iar aria $S_{ABC} = \frac{1}{2}AC \cdot BC = 6\sqrt{106}$.

2.17 Calculați lungimea înălțimii AD a $\triangle ABC$ de vârfuri A(1,3,1), B(3,1,5), C(-1,0,2).

Soluție

Întrucât $S_{ABC} = \frac{1}{2} \|\overrightarrow{AB} \times \overrightarrow{AC}\|$, iar

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 2 & -2 & 4 \\ -2 & -3 & 1 \end{vmatrix} = 10\vec{\imath} - 10\vec{\jmath} - 10\vec{k};$$

urmează că

$$S_{ABC} = \frac{1}{2} ||10\vec{\imath} - 10\vec{\jmath} - 10\vec{k}|| = \frac{1}{2} \cdot 10\sqrt{3} = 5\sqrt{3} = \frac{BC \cdot AD}{2} \Rightarrow AD = \frac{10\sqrt{3}}{BC}.$$

Însă $\overrightarrow{BC} = -4\overrightarrow{\imath} - \overrightarrow{\jmath} - 3\overrightarrow{k}$, deci $BC = \sqrt{16 + 1 + 9} = \sqrt{26}$, de unde

$$AD = \frac{10\sqrt{3}}{\sqrt{26}} = \frac{10\sqrt{78}}{26} = \frac{5\sqrt{78}}{13}.$$

2.18 Calculați volumul tetraedrului de vârfuri A(2, -3, 4), B(3, -2, 4), C(2, -2, 5), D(3, -2, 5) și lungimea înălțimii AE a tetraedrului.

Soluție

Mai întâi, observăm că $\overrightarrow{AB}(1,1,0)$, $\overrightarrow{AC}(0,1,1)$, $\overrightarrow{AD}(1,1,1)$, $\overrightarrow{BC}(-1,0,1)$, iar $\overrightarrow{BD}(0,0,1)$. Astfel,

$$V_{ABCD} = \frac{1}{6} |(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD})| = \frac{1}{6} \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} | = \frac{1}{6},$$

$$S_{BCD} = \frac{1}{2} ||\overrightarrow{BC} \times \overrightarrow{BD}|| = \frac{1}{2} \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{vmatrix} | = \frac{1}{2} ||\vec{j}|| = \frac{1}{2}.$$

Cum $V_{ABCD} = \frac{1}{3} \cdot AE \cdot S_{BCD}$, rezultă că AE = 1.

2.19 Determinați $\alpha \in \mathbb{R}$ astfel ca vectorii $\vec{a} = \vec{\imath} + \alpha \vec{\jmath} + 2\vec{k}$, $\vec{b} = 2\vec{\imath} + \vec{\jmath} + \vec{k}$, $\vec{c} = 3\vec{\imath} - \vec{\jmath} + 4\vec{k}$ să fie coplanari. Pentru acest α , descompuneți \vec{c} după direcțiile vectorilor \vec{a} și \vec{b} .

Soluție

Cei trei vectori sunt coplanari atunci când produsul lor mixt se anulează. Avem că

$$(\vec{a}, \vec{b}, \vec{c}) = \begin{vmatrix} 1 & \alpha & 2 \\ 2 & 1 & 1 \\ 3 & -1 & 4 \end{vmatrix} = -5\alpha - 5,$$

prin urmare valoarea căutată a lui α este -1. Pentru acest α , căutăm $x,y\in\mathbb{R}$ astfel încât $\vec{c}=x\vec{a}+y\vec{b}$; trecând la coordonate, egalitatea precedentă se scrie sub forma (3,-1,4)=x(1,-1,2)+y(2,1,1). Obținem sistemul de trei ecuații cu două necunoscute x+2y=3,-x+y=-1,2x+y=4, care este compatibil determinat, cu soluția $x=\frac{5}{3},y=\frac{2}{3}$.

2.20 Fie
$$\vec{a} = \vec{i} + \alpha \vec{j} + 2\vec{k}$$
, $\vec{b} = \vec{i} - 2\vec{j} + 3\vec{k}$, $\vec{c} = 2\vec{i} + \vec{j} + \vec{k}$

- 1) Determinați $\alpha \in \mathbb{R}$ astfel ca \vec{a} și \vec{b} să fie ortogonali.
- 2) Pot fi \vec{a} și \vec{b} paraleli pentru vreo valoare a lui α ?
- 3) Determinați $\alpha \in \mathbb{R}$ astfel ca \vec{a} , \vec{b} , \vec{c} să fie coplanari.

Soluție

1), 2) Doi vectori sunt ortogonali atunci când se anulează produsul lor scalar și sunt paraleli atunci când au coordonatele proporționale, deci

$$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0 \Leftrightarrow 1 \cdot 1 + \alpha \cdot (-2) + 2 \cdot 3 = 0 \Leftrightarrow \alpha = \frac{7}{2};$$

$$\vec{a} \parallel \vec{b} \Leftrightarrow \frac{1}{1} = \frac{\alpha}{-2} = \frac{2}{3}, \text{ imposibil.}$$

- 3) Procedăm ca în soluția problemei 2.19; obținem că $\alpha = -1$.
- **2.21** Dacă unghiul dintre doi vectori nenuli \vec{u} și \vec{v} este ascuțit sau drept, demonstrați că

$$\|\vec{u} + \vec{v}\| > \|\vec{u}\| \ \text{si} \ \|\vec{u} + \vec{v}\| > \|\vec{v}\|.$$

Reciproca este adevărată?

Soluție

Considerăm $\triangle ABC$ astfel încât $\overrightarrow{ABC} = \overrightarrow{u}$, $\overrightarrow{BC} = \overrightarrow{v}$; atunci $\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AC}$. Măsura unghiului \widehat{ABC} este suplementul unghiului dintre \overrightarrow{u} și \overrightarrow{v} , deci este cel puțin egală cu 90°. Rezultă că unghiul \widehat{ABC} este cel mai mare unghi al $\triangle ABC$, iar latura care i se opune va fi cea mai lungă dintre laturile triunghiului. Astfel,

$$\|\vec{u} + \vec{v}\| = \|\overrightarrow{AC}\| > \|\overrightarrow{AB}\| = \|\vec{u}\|; \quad \|\vec{u} + \vec{v}\| = \|\overrightarrow{AC}\| > \|\overrightarrow{BC}\| = \|\vec{v}\|.$$

Reciproca este falsă; ne putem gândi la doi vectori \vec{u} , \vec{v} de lungimi egale al căror unghi este în intervalul $(\frac{\pi}{2}, \frac{2\pi}{3})$; suplementul său fiind mai mare decât $\frac{\pi}{3}$, raționamentul anterior încă funcționează.

Soluție alternativă

Au loc relațiile:

$$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2 \ge \|\vec{u}\|^2 + \|\vec{v}\|^2,$$

de unde rezultă cerința problemei. Reciproca nu este adevărata; este suficient ca

$$2\vec{u}\cdot\vec{v}+\vec{v}^2>0$$
, $2\vec{u}\cdot\vec{v}+\vec{u}^2>0$.

adică

$$\cos(\widehat{\vec{u},\vec{v}}) > \max\left(-\frac{\|\vec{v}\|}{2\|\vec{u}\|}, -\frac{\|\vec{u}\|}{2\|\vec{v}\|}\right);$$

unghiul dintre \vec{u} și \vec{v} poate fi deci și obtuz.

2.22 Determinați
$$E = \vec{v}_1 \cdot \vec{v}_2 + 3\vec{v}_2 \cdot \vec{v}_3 + 2\vec{v}_3 \cdot \vec{v}_1$$
 știind că $\vec{v}_1 = 2\vec{a} + \vec{b}$, $\vec{v}_2 = 2\vec{a} - \vec{b}$, $\vec{v}_3 = \vec{a} + \vec{b}$, iar $||\vec{a}|| = 2$, $||\vec{b}|| = 3$, $m(\hat{a}, \hat{b}) = \frac{2\pi}{3}$.

Soluție

Avem:

$$E = (2\vec{a} + \vec{b}) \cdot (2\vec{a} - \vec{b}) + 3(2\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) + 2(\vec{a} + \vec{b}) \cdot (2\vec{a} + \vec{b})$$

$$= 4\vec{a}^2 - \vec{b}^2 + 3(2\vec{a}^2 + \vec{a} \cdot \vec{b} - \vec{b}^2) + 2(2\vec{a}^2 + 3\vec{a} \cdot \vec{b} + \vec{b}^2)$$

$$= 14\vec{a}^2 + 9\vec{a} \cdot \vec{b} - 2\vec{b}^2$$

$$= 14||\vec{a}||^2 + 9||\vec{a}|| ||\vec{b}|| \cos(\widehat{\vec{a}}, \widehat{\vec{b}}) - 2||\vec{b}||^2$$

$$= 14 \cdot 4 + 9 \cdot 2 \cdot 3 \cdot (-\frac{1}{2}) - 2 \cdot 9$$

$$= 11.$$

2.23 Dacă \vec{a} , \vec{b} , \vec{c} sunt astfel ca $\|\vec{a}\| = 2$, $\|\vec{b}\| = 3$, $\|\vec{c}\| = 4$, $m(\widehat{\vec{a}}, \widehat{\vec{b}}) = \frac{\pi}{3}$, $m(\widehat{\vec{a}}, \widehat{\vec{c}}) = \frac{\pi}{6}$, calculați $\|\vec{a} - \vec{b}\|$, $\|\vec{a} - \vec{c}\|$, $\|\vec{a} + \vec{b}\|$.

Soluție

Avem:

$$\begin{split} \|\vec{a} - \vec{b}\|^2 &= \vec{a}^2 - 2\vec{a} \cdot \vec{b} + \vec{b}^2 = \|\vec{a}\|^2 - 2\|\vec{a}\| \cdot \|\vec{b}\| \cdot \cos(\widehat{\vec{a}}, \widehat{\vec{b}}) + \|\vec{b}\|^2 \\ &= 4 - 2 \cdot 2 \cdot 3 \cdot \frac{1}{2} + 9 = 7 \Rightarrow \|\vec{a} - \vec{b}\| = \sqrt{7}; \\ \|\vec{a} - \vec{c}\|^2 &= \vec{a}^2 - 2\vec{a} \cdot \vec{c} + \vec{c}^2 = \|\vec{a}\|^2 - 2\|\vec{a}\| \cdot \|\vec{c}\| \cdot \cos(\widehat{\vec{a}}, \widehat{\vec{c}}) + \|\vec{c}\|^2 \\ &= 4 - 2 \cdot 2 \cdot 4 \cdot \frac{\sqrt{3}}{2} + 16 = 20 - 8\sqrt{3} \Rightarrow \|\vec{a} - \vec{c}\| = \sqrt{20 - 8\sqrt{3}}; \\ \|\vec{a} + \vec{b}\|^2 &= \dots = 19 \Rightarrow \|\vec{a} + \vec{b}\| = \sqrt{19}. \end{split}$$

2.24 Fie vectorii
$$\vec{a} = 2\vec{\imath} - 3\vec{\jmath} + \vec{k}$$
, $\vec{b} = \vec{\imath} + 2\vec{\jmath} - 2\vec{k}$, $\vec{c} = -\vec{\imath} + \vec{\jmath}$.

- 1) Arătați că \vec{a} , \vec{b} , \vec{c} sunt necoplanari și calculați volumul paralelipipedului construit pe acești vectori.
 - 2) Verificați că $\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$.

1) Calculăm produsul mixt al celor trei vectori:

$$(\vec{a}, \vec{b}, \vec{c}) = \begin{vmatrix} 2 & -3 & 1 \\ 1 & 2 & -2 \\ -1 & 1 & 0 \end{vmatrix} = 1.$$

Cum $(\vec{a}, \vec{b}, \vec{c}) \neq 0$, înseamnă că vectorii sunt necoplanari. Volumul paralelipipedului construit pe acești vectori este $|(\vec{a}, \vec{b}, \vec{c})| = 1$.

2) Au loc relațiile

$$\vec{b} \times \vec{c} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & -2 \\ -1 & 0 & 1 \end{vmatrix} = 2\vec{i} + \vec{j} + 2\vec{k}$$

$$\Rightarrow \vec{a} \times (\vec{b} \times \vec{c}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -3 & 1 \\ 2 & 1 & 2 \end{vmatrix} = -7\vec{i} - 2\vec{j} + 8\vec{k};$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -3 & 1 \\ 1 & 2 & -1 \end{vmatrix} = 4\vec{i} + 5\vec{j} + 7\vec{k}$$

$$\Rightarrow (\vec{a} \times \vec{b}) \times \vec{c} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4 & 5 & 7 \\ -1 & 1 & 0 \end{vmatrix} = -7\vec{i} - 7\vec{j} + 9\vec{k}.$$

Capitolul 3

DREAPTA ÎN PLAN

- 3.1 Scrieți ecuația vectorială, ecuațiile parametrice și ecuația generală pentru dreptele determinate prin:
 - 1) punctul A(1,2), vectorul director $\vec{v} = -\vec{\imath} + \vec{\jmath}$;
 - 2) punctul A(0,1), vectorul normal $\vec{N} = 2\vec{\imath} + 3\vec{\jmath}$;
 - 3) punctele A(1,2), B(2,1);
- 4) distanța de la origine la dreaptă este p=2, iar unghiul normalei cu axa Ox este egal cu $\omega = \frac{\pi}{4}$.

Soluție

1) Ecuația vectorială:
$$\vec{r} = \vec{r}_A + t\vec{v}$$
, $t \in \mathbb{R}$, unde $\vec{r}_A = \vec{t} + 2\vec{\jmath}$. Ecuațiile parametrice:
$$\begin{cases} x = 1 - t \\ y = 2 + t \end{cases}$$
, $t \in \mathbb{R}$.

Egalând $t = \frac{x-1}{-1} = \frac{y-2}{1}$, obţinem ecuaţia generală: x + y - 3 = 0.

2) Ecuația vectorială: $\vec{N} \cdot (\vec{r} - \vec{r}_A) = 0$, unde $\vec{r}_A = \vec{\jmath}$.

Ecuația generală:
$$2(x-0) + 3(y-1) = 0$$
, *i.e.* $2x + 3y - 3 = 0$.

Ecuația generală poate fi scrisă sub forma $\frac{x-0}{3} = \frac{y-1}{-2}$, de unde obținem ecuațiile

parametrice:
$$\begin{cases} x = 3t \\ y = 1 - 2t \end{cases}$$
, $t \in \mathbb{R}$.

- 3) Un vector director al dreptei este $\overrightarrow{BA} = -\vec{\imath} + \vec{\jmath}$; suntem în condițiile de la 1) (chiar cu aceleași date).
- 4) Ecuația normală în formă vectorială este $\vec{n} \cdot \vec{r} p = 0$, unde $\vec{n}(\cos \omega, \sin \omega)$ este un versor al normalei. În cazul nostru, $n(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$, p=2, deci ecuația vectorială este $\left(\frac{\sqrt{2}}{2}\vec{i} + \frac{\sqrt{2}}{2}\vec{j}\right) \cdot (x\vec{i} + y\vec{j}) - 2 = 0$, iar ecuația generală este $x + y - 2\sqrt{2} = 0$. Ecuațiile

parametrice sunt
$$\begin{cases} x=t \\ y=2\sqrt{2}-t \end{cases}$$
 , $t\in\mathbb{R}.$

- **3.2** Se consideră punctele A(1,2) și B(3,1).
 - 1) Scrieți ecuațiile parametrice ale dreptei AB.
 - 2) Determinați punctele $M \in AB$ pentru care OM = 5.

- 1) Un vector director al dreptei AB este $\overrightarrow{AB}(2,-1)$. Cum dreapta AB trece prin A, ecuațiile sale parametrice sunt (AB): $\begin{cases} x=1+2t \\ y=2-t \end{cases}$, $t \in \mathbb{R}$.
- 2) Coordonatele unui punct curent al dreptei sunt M(1+2t,2-t), $t \in \mathbb{R}$. Impunem condiția OM=5 și obținem ecuația $(1+2t)^2+(2-t)^2=25$, *i.e.* $t^2-4=0$, cu soluțiile $t_{1,2}=\pm 2$. Găsim astfel punctele $M_1(5,0)$ și $M_2(-3,4)$.
- **3.3** Se consideră punctele A(2,0), $B(-1,\sqrt{3})$ și $C(-1,-\sqrt{3})$.
 - 1) Demonstrați că $\triangle ABC$ este echilateral.
 - 2) Scrieți ecuațiile laturilor triunghiului.
 - 3) Scrieți ecuațiile înălțimilor triunghiului.

Soluție

1) Cum $AB = BC = CA = 2\sqrt{3}$, rezultă că $\triangle ABC$ este echilateral.

2)
$$(AB): \frac{x-2}{-1-2} = \frac{y-0}{\sqrt{3}-0}$$
, i.e. $(AB): \sqrt{3}x + 3y - 2\sqrt{3} = 0$. $(AC): \frac{x-2}{-1-2} = \frac{y-0}{-\sqrt{3}-0}$, i.e. $(AC): \sqrt{3}x - 3y - 2\sqrt{3} = 0$. $(BC): x = -1$.

3) Înălţimea din A este un segment de pe axa Ox şi are ecuaţia $(h_1): y=0$. Mijloacele laturilor [AB] şi [AC] sunt $M(\frac{1}{2},\frac{\sqrt{3}}{2})$, respectiv $N(\frac{1}{2},-\frac{\sqrt{3}}{2})$. Cum într-un triunghi echilateral înălţimile şi medianele (corespunzătoare acelorași laturi) coincid, ecuaţiile celorlaltor două înălţimi sunt

$$(CM): \frac{x+1}{\frac{1}{2}+1} = \frac{y+\sqrt{3}}{\frac{\sqrt{3}}{2}+\sqrt{3}}, \quad i.e.(CM): \sqrt{3}-y=0;$$

$$(BN): \frac{x+1}{\frac{1}{2}+1} = \frac{y-\sqrt{3}}{-\frac{\sqrt{3}}{2}-\sqrt{3}}, \quad i.e.(BN): \sqrt{3}x+y=0.$$

- **3.4** Se consideră punctele A(-1, -1), B(5, 1), C(1, 3).
 - 1) Scrieți ecuația medianei din A în $\triangle ABC$.

- 2) Scrieți ecuația înălțimii din A în $\triangle ABC$.
- 3) Scrieți ecuația mediatoarei segmentului [BC].

- 1) Mijlocului segmentului [BC] este M(3,2), deci ecuația medianei din A este (AM): $\frac{x-x_A}{x_M-x_A} = \frac{y-y_A}{y_M-y_A}, i.e. \ (AM): 3x-4y-1=0.$
- 2) Panta dreptei BC este $m_{BC} = \frac{y_B y_C}{x_B x_C} = -2$, prin urmare panta înălţimii din A este $m = -\frac{1}{m_{BC}} = \frac{1}{2}$. Ecuaţia înălţimii din A este $(h): y y_A = m(x x_A)$, *i.e.* (h): x 2y 1 = 0.
- 3) Mediatoarea lui [BC] trece prin mijlocul M al lui [BC] și este perpendiculară pe BC, deci are panta $m=-\frac{1}{m_{BC}}=\frac{1}{2}$. Ecuația acestei mediatoare este $(d):y-y_M=m(x-x_M)$, i.e. (d):x-2y+1=0.
- **3.5** Se consideră dreapta (d): ax + y 1 = 0, $a \in \mathbb{R}$, și punctul A(1,2). Determinați valorile lui a pentru care distanța de la punctul A la dreapta (d) este
 - 1) minimă; 2) maximă.

Soluție

- 1) Distanța de la A la (d) este minimă când este 0, deci când $A \in (d)$. Acest fapt are loc dacă $a \cdot 1 + 2 1 = 0$, deci pentru a = -1.
- 2) Observăm că dreapta (d) trece prin punctul B(0,1), indiferent de $a \in \mathbb{R}$. Atunci distanța de la A la (d) este maximă atunci când $(AB) \perp (d)$. Avem că $m_{AB} = 1$, $m_d = -a$, iar $(AB) \perp (d) \Leftrightarrow m_{AB} \cdot m_d = -1 \Leftrightarrow a = 1$.

Soluție alternativă

Distanța de la A la (d) este $f(a)=\frac{|a+1|}{\sqrt{a^2+1}}, a\in\mathbb{R}$. Studiem variația lui f și determinăm valorile sale extreme.

- **3.6** Se consideră dreapta (d): 2x y + 3 = 0 și punctul M(-2, -3).
 - 1) Calculați distanța de la punctul M la dreapta (d).
 - 2) Aflați coordonatele piciorului perpendicularei dusă din M pe (d).

Soluţie

- 1) Distanța de la punctul $M(x_M,y_M)$ la dreapta (d):ax+by+c=0 se calculează cu formula $d(M,(d))=\frac{|ax_M+by_M+c|}{\sqrt{a^2+b^2}}$. În cazul nostru, $d(M,(d'))=\frac{|2\cdot(-2)-(-3)+3|}{\sqrt{2^2+(-1)^2}}=\frac{2\sqrt{5}}{5}$.
- 2) Fie P(a,b) proiecția lui M pe dreapta (d). Cum $P \in (d)$, obținem că 2a b + 3 = 0. Un vector director al dreptei (d) este $\vec{v}(1,2)$, iar $\overrightarrow{MP}(a+2,b+3)$. Condiția $\vec{v} \perp \overrightarrow{MP}$ conduce la anularea produsului scalar al celor doi vectori, prin urmare 1(a+1)

2)
$$+2(b+3)=0$$
, deci $a+2b+8=0$. Rezolvând sistemul $\begin{cases} 2a-b+3=0\\ a+2b+8=0 \end{cases}$, găsim că $P(-\frac{14}{5},-\frac{13}{5})$. Notăm că $MP=\sqrt{\left(-\frac{14}{5}+2\right)^2+\left(-\frac{13}{5}+2\right)^2}=\frac{2\sqrt{5}}{5}=d(M,(d))$.

Soluție alternativă

Panta dreptei (d) este $m_d=2$; atunci perpendiculara dusă din M pe dreapta (d) va avea panta $m=-\frac{1}{m_d}=-\frac{1}{2}$. Ecuația acestei perpendiculare este $(MP):y-y_M=m(x-x_M),$ i.e. (MP):x+2y+8=0. Coordonatele lui P se află intersectând (d) cu (MP), deci rezolvând sistemul $\begin{cases} 2x-y+3=0\\ x+2y+8=0 \end{cases}$; găsim că $P(-\frac{14}{5},-\frac{13}{5})$.

3.7 Se consideră dreapta (d): 2x - y + 3 = 0 și punctul M(-2, -3). Determinați coordonatele simetricului punctului M față de dreapta (d).

Soluție

Simetricul M' al lui M față de dreapta (d) este simetricul lui M față de proiecția P a punctului M pe dreapta (d). Această proiecție a fost determinată la problema precedentă și este $P(-\frac{14}{5},-\frac{13}{5})$. Coordonatele lui M' sunt $x_{M'}=2x_P-x_M=-\frac{18}{5}$, $y_{M'}=2y_P-y_M=-\frac{11}{5}$, deci $M'(-\frac{18}{5},-\frac{11}{5})$.

3.8 Se consideră dreapta (d): 2x - y + 3 = 0 și punctul M(-2, -3). Determinați ecuația simetricei dreptei d) față de punctul M.

Soluție

Fie (d') simetrica lui (d) față de punctul M; atunci $(d') \parallel (d)$, deci $m_{d'} = m_d = 2$. Un punct de pe dreapta (d) este A(-1,1). Simetricul A' al lui A față de M se află pe dreapta (d'). Coordonatele lui A' sunt $x_{A'} = 2x_M - x_A = -3$, $y_{A'} = 2y_M - y_A = -7$, adică A'(-3,-7). Ecuația dreptei (d') este $(d'): y-y_{A'} = m_{d'}(x-x_{A'})$, i.e. (d'): 2x-y-1=0.

Soluție alternativă

Simetrica (d') a lui (d) față de punctul M este paralelă cu (d), deci ecuația sa este (d'): 2x - y + a = 0. Deoarece d(M, (d)) = d(M, (d')), urmează că

$$\frac{|2(-2)-(-3)+3|}{\sqrt{2^2+(-1)^2}} = \frac{|2(-2)-(-3)+a|}{\sqrt{2^2+(-1)^2}},$$

de unde |a-1|=2, deci $a\in\{-1,3\}$. Cum a=3 corespunde lui (d), urmează că a=-1, deci ecuația lui (d') este (d'):2x-y-1=0.

3.9 Determinați distanța între dreptele $(d_1): 2x + y - 3 = 0$ și $(d_2): 6x + 3y + 1 = 0$.

Soluție

Observăm că dreptele (d_1) , (d_2) sunt paralele. Punctul A(1,1) aparține dreptei (d_1) și atunci $d((d_1),(d_2))=d(A,(d_2))=\frac{|6\cdot 1+3\cdot 1+1|}{\sqrt{6^2+3^2}}=\frac{2\sqrt{5}}{3}$.

3.10 Determinați măsura unghiului ascuțit format de dreptele (d_1) : ax - y + 2 = 0 și (d_2) : (a-1)x - (a+1)y + 3 = 0, unde $a \in \mathbb{R}$.

Soluție

Unghiul celor două drepte este același cu unghiul ascuțit format de normalele $\vec{N}_1(a,-1)$ și $\vec{N}_2(a-1,-a-1)$. Avem:

$$\cos(\widehat{\vec{N}_1}, \widehat{\vec{N}_2}) = \frac{\vec{N}_1 \cdot \vec{N}_2}{\|\vec{N}_1\| \cdot \|\vec{N}_2\|} = \frac{a^2 + 1}{\sqrt{a^2 + 1} \cdot \sqrt{2a^2 + 2}} = \frac{\sqrt{2}}{2},$$

prin urmare $(\widehat{\vec{N}_1,\vec{N}_2}) = \frac{\pi}{4}$, deci $(\widehat{d_1,d_2}) = \frac{\pi}{4}$.

Soluție alternativă

Dacă a=1, prima dreaptă are panta 1 (deci este paralelă cu prima bisectoare), iar a două este verticală, prin urmare ele formează un unghi de măsură $\frac{\pi}{4}$. Dacă $a\in\mathbb{R}\setminus\{1\}$, ambele drepte sunt neverticale, prima de pantă $m_1=a$, iar a două de pantă $m_2=\frac{a-1}{a+1}$. Tangentă unghiului φ format de cele două drepte este

$$\operatorname{tg} \varphi = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{a - \frac{a - 1}{a + 1}}{1 + a \cdot \frac{a - 1}{a + 1}} \right| = \frac{a^2 + 1}{a^2 + 1} = 1,$$

deci $\varphi = \frac{\pi}{4}$.

- **3.11** Se consideră punctele A(1,a), B(2,-1) și C(a,3), unde $a \in \mathbb{R}$.
 - 1) Demonstrați că A, B, C sunt necoliniare, oricare ar fi $a \in \mathbb{R}$.
 - 2) Determinați valorile lui a pentru care aria triunghiului ABC este egală cu 2.

Soluție

1) Condiția de coliniaritate a celor trei puncte este

$$\Delta = \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix} = 0, \quad i.e. \quad \begin{vmatrix} 1 & a & 1 \\ 2 & -1 & 1 \\ a & 3 & 1 \end{vmatrix} = 0.$$

Obținem ecuația $a^2 - a + 2 = 0$, care nu are soluții reale. Rezultă că A, B, C sunt necoliniare indiferent de valoarea numărului real a.

- 2) Aria $\triangle ABC$ este $\frac{1}{2} \cdot |\Delta| = \frac{1}{2} |a^2 a + 2|$. Impunem ca $|a^2 a + 2|$ şi obţinem ecuațiile $a^2 - a + 6 = 0$ (care nu are soluții reale) și $a^2 - a - 2 = 0$, cu soluțiile $a_1 = -1$ $\sin a_2 = 2.$
- **3.12** Se consideră dreptele $(d_1): mx + y + n = 0$ și $(d_2): x ny 2 = 0$. În ce condiții *dreptele sunt:*

1) paralele; 2) confundate; 3) perpendiculare?

Soluție

- 1) $(d_1) \parallel (d_2) \Leftrightarrow \frac{m}{1} = \frac{1}{-n} = \frac{n}{-2} \Leftrightarrow mn = -1 \text{ şi } 2m + n \neq 0 \Leftrightarrow m \in \mathbb{R}^* \setminus \left\{ \pm \frac{\sqrt{2}}{2} \right\} \text{ şi } -\frac{1}{2}$ $n=-\frac{1}{m}$.
- 3) $(d_1) \perp (d_2) \Leftrightarrow m \cdot 1 + 1 \cdot (-n) = 0$ sau una dintre drepte este verticală, iar cealaltă orizontală $\Leftrightarrow m = n \in \mathbb{R}^*$ sau $m = n = 0 \Leftrightarrow m = n \in \mathbb{R}$.
- **3.13** Se consideră dreptele $(d_1): x+y+2=0$, $(d_2): 2x-y+1=0$, $(d_3): mx+ny+4=0$ $0 \not si(d_4) : nx - my - 2 = 0$, unde $m, n \in \mathbb{R}$. Determinați valorile lui $m \not si n$ pentru care cele patru drepte sunt concurente și aflați coordonatele punctului lor comun.

Soluție

Trebuie ca sistemul $\begin{cases} x+y+2=0\\ 2x-y+1=0\\ mx+ny+4=0 \end{cases}$ să fie compatibil determinat. Cum din

primele două ecuații rezultă că x = y = -1, înlocuind aceste valori în ultimele două ecuații obținem că -m-n=-4, -n+m=2, de unde m=3, n=1. Punctul comun este P(-1, -1).

3.14 Se consideră punctele A(1,8), B(4,-1), C(-4,3) și D(4,9). Demonstrați că dreapta AB, paralela prin C la AD și perpendiculara din D pe BC sunt trei drepte concurente.

Soluție

Ecuația dreptei AB este 3x + y - 11 = 0. Panta dreptei AD este $m_1 = \frac{1}{3}$, deci ecuația paralelei prin C la AD este $y - y_C = m_1(x - x_C)$, i.e. x - 3y + 13 = 0. Panta

dreptei BC este $-\frac{1}{2}$, prin urmare o perpendiculară pe această dreaptă are panta $m_2=2$. Ecuația perpendicularei din D pe BC este $y-y_D=m_2(x-x_D)$, i.e. 2x-y+1=0.

Cum sistemul
$$\begin{cases} 3x+y-11=0\\ x-3y+13=0\\ 2x-y+1=0 \end{cases}$$
 este compatibil determinat cu soluția $x=2,y=5,$

urmează că dreptele din enunț sunt concurente în P(2,5).

3.15 Se consideră punctele A(2,3), B(4,0) şi C(-2,0). Determinați locul geometric al punctelor M cu proprietatea că $2MA^2 = MB^2 + MC^2$.

Soluție

Dacă M(a, b) este un punct din plan, atunci

$$2MA^{2} = MB^{2} + MC^{2} \Leftrightarrow 2(a-2)^{2} + 2(b-3)^{2} = (a-4)^{2} + b^{2} + (a+2)^{2} + b^{2}$$
$$\Leftrightarrow 2a^{2} - 8a + 8 + 2b^{2} - 12b + 18 = 2a^{2} - 4a + 20 + 2b^{2}$$
$$\Leftrightarrow 2a + 6b - 3 = 0.$$

Rezultă că locul geometric este dreapta de ecuație 2x + 3y - 3 = 0.

Capitolul 4

DREAPTA ÎN SPAŢIU

- **4.1** Precizați ecuația vectorială, ecuațiile parametrice și ecuațiile canonice ale dreptelor determinate prin:
 - 1) A(2,3,2) și un vector director $\vec{a} = \vec{i} \vec{j} + 2\vec{k}$;
- 2) A(2,3,2) și un vector director \vec{a} care face unghiuri de 30° , 45° , 120° cu versorii axelor de coordonate;
 - 3) A(2,3,2), iar dreapta este paralelă cu axa OY;
 - 4) A(2,3,2) şi B(0,2,3).

Soluție

1) Ecuația vectorială: $\vec{r} = \vec{r}_A + t\vec{a}$, unde $\vec{r}_A = 2\vec{\imath} + 3\vec{\jmath} + 2\vec{k}$.

Ecuațiile parametrice:
$$\begin{cases} x = 2 + t \\ y = 3 - t , t \in \mathbb{R}. \end{cases}$$
$$z = 2 + 2t$$

Ecuațiile canonice: $\frac{x-2}{1} = \frac{y-3}{-1} = \frac{z-2}{2}$.

- 2) Un versor director al dreptei este $\vec{a}=\cos 30^{\circ}\vec{\imath}+\cos 45^{\circ}\vec{\jmath}+\cos 120^{\circ}\vec{k}=\frac{\sqrt{3}}{2}\vec{\imath}+\frac{\sqrt{2}}{2}\vec{\jmath}-\frac{1}{2}\vec{k}$; în continuare, procedăm ca mai sus.
 - 3) Un versor director al dreptei este \vec{j} .
 - 4) Un vector director al dreptei este $\overrightarrow{AB} = -2\vec{\imath} \vec{\jmath} + \vec{k}$.
- **4.2** Determinați ecuațiile laturilor și medianelor $\triangle ABC$ cu vârfurile A(3,1,5), B(7,3,1), C(5,5,3).

Soluţie

Ecuațiile canonice ale dreptei $AB: \frac{x-3}{4} = \frac{y-1}{2} = \frac{z-5}{-4}$.

Ecuațiile canonice ale dreptei $AC: \frac{x-3}{4} = \frac{y-1}{4} = \frac{z-5}{-2}$.

Ecuațiile canonice ale dreptei $BC: \frac{x-7}{-2} = \frac{y-3}{2} = \frac{z-1}{2}$.

Mijloacele laturilor [BC], [CA], [AB] sunt punctele M(6,4,2), N(4,3,4), respective P(5,2,3).

Ecuațiile canonice ale medianei $AM: \frac{x-3}{3} = \frac{y-1}{3} = \frac{z-5}{-3}$.

Ecuațiile canonice ale medianei $BN: \frac{x-7}{-3} = \frac{y-3}{0} = \frac{z-1}{3}$.

Ecuațiile canonice ale medianei $CP: \frac{x-5}{0} = \frac{y-5}{-3} = \frac{z-3}{0}$.

4.3 Determinați $a \in \mathbb{R}$ astfel încât dreptele

$$(d_1): \frac{x-1}{1} = \frac{y+1}{2} = \frac{z+2}{3}$$
 $(d_2): \frac{x+11}{a} = \frac{y-1}{3} = \frac{z+1}{2}$

să fie concurente și în acest caz determinați coordonatele punctului de intersecție.

Soluție

Coordonatele unui punct curent de pe dreapta (d_1) sunt M(1+t,-1+2t,-2+3t), $t \in \mathbb{R}$. Cele două drepte sunt concurente atunci când există valori ale parametrului t pentru care $M \in (d_2)$. Înlocuind coordonatele lui M în ecuația lui (d_2) obținem $\frac{12+t}{a} = \frac{2t-2}{3} = \frac{3t-1}{2}$, de unde $t = -\frac{1}{5}$, iar $a = -\frac{59}{4}$. În acest caz, cele două drepte sunt concurente în $M(\frac{4}{5}, -\frac{7}{5}, -\frac{13}{5})$.

4.4 Precizați ecuația perpendicularei duse din A(3,1,2) pe dreapta de ecuație $(d): \frac{x}{-1} = \frac{y-2}{3} = \frac{z+1}{2}$. Precizați apoi punctul de intersecție al celor două drepte și coordonatele simetricului lui A față de (d).

Solutie

Fie M(-t,2+3t,-1+2t) un punct curent de pe dreapta (d). Vectorul \overrightarrow{AM} are coordonatele (-3-t,1+3t,-3+2t), iar un vector director al dreptei (d) este $\overrightarrow{v}(-1,3,2)$. Dacă impunem ca M să fie piciorul perpendicularei duse din M pe dreapta (d), atunci $\overrightarrow{AM} \cdot \overrightarrow{v} = 0$, de unde t = 0, deci M(0,2,-1). Ecuațiile canonice ale dreptei AM sunt $\frac{x-3}{-3} = \frac{y-1}{1} = \frac{z-2}{-3}$. Simetricul A' al lui A față de dreapta (d) este, de fapt, simetricul lui A față de M. Vom avea $x_M = \frac{1}{2}(x_A + x_{A'})$, $y_M = \frac{1}{2}(y_A + y_{A'})$, $z_M = \frac{1}{2}(z_A + z_{A'})$, de unde $x_{A'} = 2x_M - x_A = -3$, $y_{A'} = 2y_M - y_A = 3$, $z_{A'} = 2z_M - z_A = -4$, deci A'(-3,3,-4).

4.5 Să se determine distanța de la punctul A(-1,2,1) la dreapta (d) : $\frac{x+3}{2} = \frac{y-1}{3} = \frac{z+1}{-1}$.

Dreapta (d) trece prin punctul B(-3,1,-1) și are vectorul director $\vec{v}=2\vec{\imath}+3\vec{\jmath}-\vec{k}$. Distanța D între A și (d) este egală cu înălțimea paralelogramului construit pe \overrightarrow{AB} și \vec{v} în raport cu baza determinată de \vec{v} . Se obține

$$D = \frac{\left\| \overrightarrow{AB} \times \overrightarrow{v} \right\|}{\left\| \overrightarrow{v} \right\|} = \sqrt{\frac{101}{14}}.$$

Soluție alternativă

Fie M(-3+2t,1+3t,-1-t), $t\in\mathbb{R}$, un punct curent pe dreapta (d). Pentru a determina distanța între A și (d), vom evidenția minimul distanței AM^2 ca funție de t. Cum $AM^2=(2t-2)^2+(3t-1)^2+(-2-t)^2=14t^2-10t+9$, urmează că acest minim este $m=-\frac{10^2-4\cdot14\cdot9}{4\cdot14}$, adica $m=\frac{101}{14}$, care se realizează pentru $t=-\frac{-10}{2\cdot14}=\frac{5}{14}$. Urmează că distanța căutată este $\sqrt{m}=\sqrt{\frac{101}{14}}$.

Soluție alternativă

Fie M(-3+2t,1+3t,-1-t), $t\in\mathbb{R}$, un punct curent pe dreapta (d). Pentru a determina distanța între A și (d), vom evidenția perpendiculara din A pe (d). Pentru aceasta, impunem ca $AM\perp(d)$, deci $\overrightarrow{AM}\cdot \overrightarrow{v}=0$. Cum $\overrightarrow{AM}(-2+2t,-1+3t,-2-t)$, urmează că $(-2+2t)\cdot 2+(-1+3t)\cdot 3+(-2-t)\cdot (-1)=0$, de unde $t=\frac{5}{14}$. Atunci $M(-\frac{32}{14},\frac{29}{14},-\frac{19}{14})$, iar distanța căutată este

$$D = \sqrt{\left(-\frac{32}{14} + 1\right)^2 + \left(\frac{29}{14} - 2\right)^2 + \left(-\frac{19}{14} - 1\right)^2} = \frac{1}{14}\sqrt{(-18)^2 + 1^2 + (-33)^2}$$
$$= \frac{1}{14}\sqrt{1414} = \sqrt{\frac{101}{14}}.$$

4.6 Determinați distanța între dreptele

$$(d_1): \frac{x+2}{3} = \frac{y-2}{1} = \frac{z+1}{2}$$
 $(d_2): \frac{x-1}{2} = \frac{y+2}{3} = \frac{z-1}{1}.$

Soluție

Dreapta (d_1) trece prin punctul A(-2,2,1) şi are ca vector director $\vec{v}(3,1,2)$. Dreapta (d_2) trece prin punctul B(1,-2,1) şi are ca vector director $\vec{u}(2,3,1)$. Distanța D între (d_1) şi (d_2) este egală cu înălțimea paralelipipedului construit pe \vec{v} , \vec{u} și \overrightarrow{AB} în raport cu baza determinată de \vec{v} și \vec{u} . Se obține

$$D = \frac{\left| (\vec{v}, \vec{u}, \overrightarrow{AB}) \right|}{\|\vec{v} \times \vec{u}\|} = \frac{5}{\sqrt{75}} = \frac{\sqrt{3}}{3}.$$

Soluție alternativă

Dreapta (d_1) trece prin punctul A(-2,2,1) şi are ca vector director $\vec{v}(3,1,2)$. Dreapta (d_2) trece prin punctul B(1,-2,1) şi are ca vector director $\vec{u}(2,3,1)$. Dacă cele două drepte ar fi coplanare, vectorii \vec{v} , \vec{u} și \overrightarrow{AB} ar fi coplanari, deci produsul lor mixt ar fi zero.

Însă
$$(\vec{v}, \vec{u}, \overrightarrow{AB}) = \begin{vmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & -4 & 2 \end{vmatrix} = -5 \neq 0$$
, prin urmare dreptele date sunt necoplanare.

Fie M(-2+3t,2+t,-1+2t), $t\in\mathbb{R}$, un punct curent pe dreapta (d_1) , iar N(1+2s,-2+3s,1+s), $s\in\mathbb{R}$, un punct curent pe dreapta (d_2) . Pentru a determina distanța între cele două drepte, vom evidenția perpendiculara lor comună. Pentru aceasta, impunem ca $MN\perp (d_1)$ și $MN\perp (d_2)$, deci $\overrightarrow{MN}\cdot \overrightarrow{v}=0$ și $\overrightarrow{MN}\cdot \overrightarrow{u}=0$.

Cum $\overrightarrow{MN}(3-3t+2s,-4-t+3s,2-2t+s)$, relațiile precedente conduc la sistemul 14t-11s=9, 11t-14s=-4, cu soluția $t=\frac{34}{15}$, $s=\frac{31}{15}$. Astfel, $M(\frac{72}{15},\frac{64}{15},\frac{53}{15})$, iar $N(\frac{77}{15},\frac{63}{15},\frac{46}{15})$. Distanța dintre cele două drepte este

$$MN = \sqrt{\left(\frac{77}{15} - \frac{72}{15}\right)^2 + \left(\frac{63}{15} - \frac{64}{15}\right)^2 + \left(\frac{46}{15} - \frac{53}{15}\right)^2} = \frac{1}{15}\sqrt{5^2 + (-1)^2 + (-7)^2}$$
$$= \frac{1}{15}\sqrt{75} = \frac{\sqrt{3}}{3}.$$

Soluție alternativă

Pentru a determina distanța între cele două drepte, putem determina minimul distanței $MN^2=(3-3t+2s)^2+(-4-t+3s)^2+(2-2t+s)^2$ ca funție de t și s.

4.7 Determinați unghiul dreptelor

$$(d_1): \frac{x-2}{6} = \frac{y+1}{3} = \frac{z-2}{2}$$
 $(d_2): \frac{x+1}{9} = \frac{y+5}{2} = \frac{z-1}{-6}.$

Sunt aceste drepte concurente, sau neconcurente?

Soluție

Un vector director al primei drepte este $\vec{u}(6,3,2)$, iar un vector director al celei de-a doua este $\vec{v}(9,2,-6)$. Unghiul celor doi vectori este dat prin

$$cos \varphi = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{48}{7 \cdot 11} = \frac{48}{77}.$$

Cum $\varphi = \arccos \frac{48}{77}$ este unghi ascuţit, acesta este şi unghiul dreptelor (d_1) şi (d_2) .

Un punct pe (d_1) este A(2,-1,2), iar un punct pe (d_2) este B(-1,-5,1). Cum produsul mixt $(\vec{u},\vec{v},\overrightarrow{AB})$ este nenul, înseamnă că dreptele date sunt necoplanare, deci neconcurente.

- **4.8** Studiați poziția dreptei $(d_1): \frac{x-1}{2} = \frac{y-1}{3} = \frac{z}{-1}$ față de dreapta $(d_2): \vec{r} = \vec{r}_B + t\vec{v}$, unde
 - 1) B(1,2,3), $\vec{v} = 4\vec{\imath} + 6\vec{\jmath} 2\vec{k}$;
 - 2) B(3,4,-1), $\vec{v} = 4\vec{\imath} + 6\vec{\imath} 2\vec{k}$
 - 3) B(0, -2, 2), $\vec{v} = \vec{\imath} \vec{\jmath} \vec{k}$.

Se observă că un vector director al dreptei (d_1) este $\vec{u}=2\vec{\imath}+3\vec{\jmath}-\vec{k}$, iar $B\in (d_2)$.

- 1), 2) Deoarece vectorii directori \vec{u} , \vec{v} ai celor două drepte verificua relația $\vec{v}=2\vec{u}$, urmează că dreptele (d_1) și (d_2) sunt paralele sau coincid. Cum în primul caz $B \notin (d_1)$ iar în al doilea $B \in (d_1)$, urmează că în primul caz (d_1) și (d_2) sunt paralele, în timp ce în al doilea caz (d_1) și (d_2) coincid.
- 3) Deoarece $\vec{u} \cdot \vec{v} = 0$, urmează că (d_1) și (d_2) sunt perpendiculare. Cum ecuațiile parametrice ale lui (d_2) sunt $\begin{cases} x=s\\ y=-2-s \end{cases}$, înlocuindu-le în ecuația canonică a lui z=2-s

 (d_1) obţinem $\frac{s-1}{2}=\frac{-3-s}{3}=\frac{2-s}{-1}$, ceea ce conduce la $s=3, s=\frac{3}{4}$, contradicţie. Urmează că (d_1) și (d_2) nu sunt concurente.

- **4.9** Fie dreapta $(d): \frac{x+1}{3} = \frac{y-4}{-1} = \frac{z+2}{2}$.
- 1) Arătați că punctele A(5,2,2) și B(2,3,0) aparțin dreptei (d) și determinați lungimea segmentului AB.
- 2) Determinați ecuația dreptei care trece prin M(1,2,1) și este paralelă cu (d). 3) Arătați că dreapta (d_1) : $\frac{x+5}{1} = \frac{y+2}{1} = \frac{z+3}{-1}$ este perpendiculară pe (d). Sunt (d)

Solutie

- 1) Coordonatele lui A și B verifică ecuația lui (d), deci $A, B \in (d)$. Lungimea segmentului AB este $AB = \sqrt{(2-5)^2 + (3-2)^2 + (0-2)^2} = \sqrt{14}$.
- 2) Un vector director al dreptei (d) este $\vec{u} = 3\vec{\imath} \vec{\jmath} + 2\vec{k}$. Cum (d) şi (d₁) sunt paralele, \vec{u} este vector director și pentru dreapta (d_2) care trece prin M și este paralelă cu (d). Urmează că ecuația lui (d_2) este $\frac{x-1}{3} = \frac{y-2}{-1} = \frac{z-1}{2}$.
- 3) Un vector director al dreptei (d_1) este $\vec{v} = \vec{\imath} + \vec{\jmath} \vec{k}$. Cum $\vec{u} \cdot \vec{v} = 0$, urmează că \vec{u} și \vec{v} sunt perpendiculari, deci și (d) și (d_1) sunt perpendiculare. Se verifică apoi că $N(-5, -2, -3) \in (d_1)$ iar $(\vec{u}, \vec{v}, \overrightarrow{AN}) = -30 \neq 0$. Atunci (d) şi (d_1) sunt necoplanare, deci neconcurente.

- **4.10** Fie M(2,1,0), N(0,3,4), P(4,1,2).
 - 1) Arătați că M, N, P sunt necoliniare și precizați aria $\triangle MNP$.
 - 2) Precizați ecuațiile dreptei MN și ale medianei MM'.

Soluție

- 1) Avem că $\overrightarrow{MN} = -2\vec{\imath} + 2\vec{\jmath} + 4\vec{k}$, $\overrightarrow{MP} = 2\vec{\imath} + 2\vec{k}$, iar $\overrightarrow{MN} \times \overrightarrow{MP} = 4\vec{\imath} + 12\vec{\jmath} 4\vec{k} \neq \vec{0}$, de unde \overrightarrow{MN} și \overrightarrow{MP} sunt necoliniari, ceea ce înseamnă că M, N, P sunt necoliniare. Urmează că $S_{MNP} = \frac{1}{2} \|\overrightarrow{MN} \times \overrightarrow{MP}\| = \frac{1}{2} 4 \sqrt{11} = 2 \sqrt{11}$.
 - 2) Ecuațiile canonice ale dreptei MN: $\frac{x-2}{-2} = \frac{y-1}{2} = \frac{z}{4}$.

Mijlocul segmentului [NP] este punctul M'(2,2,3). Ecuațiile canonice ale dreptei MM': $\frac{x-2}{0} = \frac{y-1}{1} = \frac{z}{3}$.

4.11 Fie dreapta
$$(d)$$
: $\frac{x+1}{3} = \frac{y+2}{4} = \frac{z-4}{-1}$.

- 1) Determinați cosinusurile directoare ale dreptei.
- 2) Aflați intersecția dreptei cu planele de coordonate.

Soluţie

- 1) Un vector director al dreptei (d) este $\vec{u}=3\vec{t}+4\vec{j}-\vec{k}$, iar un versor director corespunzător acestuia este $\vec{v}=\pm\frac{\vec{u}}{\|\vec{u}\|}=\pm\frac{3}{\sqrt{26}}\vec{t}\pm\frac{4}{\sqrt{26}}\vec{j}\mp\frac{1}{\sqrt{26}}\vec{k}$. Atunci $\cos\alpha=\pm\frac{3}{\sqrt{26}}$, $\cos\beta=\pm\frac{4}{\sqrt{26}}$, $\cos\gamma=\mp\frac{1}{\sqrt{26}}$.
- 2) Intersecția cu planul xOy se obține înlocuind z=0 în ecuația dreptei. Se obtine că x=11, y=14, deci intersecția dreptei (d) cu planul xOy este punctul P(11,14,0). Analog se obține că intersecția dreptei (d) cu planul yOz este punctul $M(0,-\frac{2}{3},\frac{11}{3})$ iar intersecția dreptei (d) cu planul xOz este punctul $N(\frac{1}{2},0,\frac{7}{2})$.
- **4.12** Determinați locul geometric al punctelor M(x, y, z) din spațiu ale căror coordonate verifică relația

$$\frac{(x-2)^2}{4} = \frac{(y-1)^2}{9} = \frac{(z-3)^2}{16}.$$

Soluție

Relația dată devine

$$\pm \frac{x-2}{2} = \pm \frac{y-1}{3} = \pm \frac{z-3}{2},$$

cu 8 posibilități de alegere a semnelor. Urmează că locul geometric cerut este reuniunea a 8 drepte ce trec prin punctul A(2,1,3) și care au vectorii directori $(\pm 2, \pm 1, \pm 3)$.

Capitolul 5

PLANUL ÎN SPAŢIU

- **5.1** Scrieți ecuațiile planelor determinate de:
 - 1) A(2, -1, 1) și vectorul normal $\vec{N} = 3\vec{\imath} + 2\vec{\jmath} 5\vec{k}$;
 - 2) A(1,2,-1), B(4,-3,2), C(-2,1,-3);
 - 3) Tăieturile pe axe A(2,0,0), B(0,-3,0), C(0,0,4);
 - 4) A(-1,3,2) și vectorii directori $\vec{u}=2\vec{\imath}-\vec{\jmath}+3\vec{k}$, $\vec{v}=3\vec{\imath}+2\vec{\jmath}-\vec{k}$.

Soluţie

- 1) Ecuația planului determinat de A și vectorul normal \vec{N} este (P): 3(x-2)+2(y+1)-5(z-1)=0, adică (P): 3x+2y-5z+1=0.
 - 2) Ecuația planului sub formă de determinant este (P): $\begin{vmatrix} x & y & z & 1 \\ 1 & 2 & -1 & 1 \\ 4 & -3 & 2 & 1 \\ -2 & 1 & -3 & 1 \end{vmatrix} = 0.$ După

dezvoltarea determinantului se obține ecuația canonică (P): 13x - 3y - 18z - 25 = 0.

- 3) Ecuația planului prin tăieturi este (P) : $\frac{x}{2} + \frac{y}{-3} + \frac{z}{4} 1 = 0$, sau (P) : 6x 4y + 3z 12 = 0.
- 4) Ecuația vectorială a planului este $(P): \vec{r}=\vec{r}_A+t\vec{u}+s\vec{v}, t,s\in\mathbb{R}$. Ecuația canonică se obține din $(\vec{r}-\vec{r}_A,\vec{u},\vec{v})=0$ și este $\begin{vmatrix} x+1 & y-3 & z-2\\ 2 & -1 & 3\\ 3 & 2 & -1 \end{vmatrix}=0$, sau (P):5x-11y-7z+52=0.
- **5.2** 1) Scrieți ecuația planului care trece prin A(-3,1,2) și este perpendicular pe AB, unde B(-4,2,1).

- 2) Scrieți ecuația planului care trece prin A(2,3,5) și este paralel cu planul (P): x+2y-3z+5=0.
- 3) Scrieți ecuația planului care trece prin A(1,2,3), B(2,2,2) și este paralel cu $\vec{u}=\vec{\imath}+3\vec{\jmath}-4\vec{k}$.

- 1) Un vector normal este $\overrightarrow{AB} = -\overrightarrow{t} + \overrightarrow{j} \overrightarrow{k}$. Ecuația a planului determinat de A și de vectorul normal \overrightarrow{AB} este (P): -(x+3)+(y-1)-(z-2)=0, sau (P): x-y+z+2=0.
- 2) Două plane paralele au normalele paralele, deci putem considera că $\vec{N} = \vec{\imath} + 2\vec{\jmath} 3\vec{k}$ este normal la planul căutat. Astfel, ecuația sa va fi (P): (x-2) + 2(y-3) 3(z-5) = 0, sau (P): x + 2y 3z + 7 = 0.
- 3) Doi vectori directori ai planului sunt $\overrightarrow{AB} = \vec{\imath} \vec{k}$ și $\vec{u} = \vec{\imath} + 3\vec{\jmath} 4\vec{k}$. Ecuația canonică a planului care trece prin A și are ca vectori directori \overrightarrow{AB} și \vec{u} este (P):

$$\begin{vmatrix} x-1 & y-2 & z-3 \\ 1 & 0 & -1 \\ 1 & 3 & -4 \end{vmatrix} = 0, \text{ sau } (P) : x+y+z-6 = 0.$$

5.3 Determinați ecuația unui plan (P) care trece prin A(2,1,3), B(3,2,1) și este perpendicular pe planul $(P_1): 3x-y+2z-4=0$.

Soluție

Fiind perpendicular pe (P_1) , planul (P) este paralel cu normala la (P_1) , care are ca vector director $\vec{N} = 3\vec{\imath} - \vec{\jmath} + 2\vec{k}$. Un alt vector director al lui (P) este $\overrightarrow{AB} = \vec{\imath} + \vec{\jmath} - 2\vec{k}$,

deci ecuația planului dorit este
$$(P)$$
:
$$\begin{vmatrix} x-2 & y-1 & z-3 \\ 3 & -1 & 2 \\ 1 & 1 & -2 \end{vmatrix} = 0$$
, sau (P) : $2y+z-5=0$.

5.4 Scrieți ecuația planului (P) care trece prin A(2,1,3) și este perpendicular pe planele $(P_1): -x + y + 2z - 2 = 0$, $(P_2): 2x + y - z + 2 = 0$.

Soluţie

Planul (P) admite ca vectori directori vectorii normali la planele (P_1) și (P_2), respectiv pe $N_1 = -\vec{\imath} + \vec{\jmath} + 2\vec{k}$ și $\vec{N}_2 = 2\vec{\imath} + \vec{\jmath} - \vec{k}$. Ecuația planului care trece prin A și are ca

vectori directori
$$\vec{N}_1$$
 și N_2 este (P) : $\begin{vmatrix} x-2 & y-1 & z-3 \\ -1 & 1 & 2 \\ 2 & 1 & -1 \end{vmatrix} = 0$, sau (P) : $x-y+z-4=0$.

5.5 Determinați ecuația unui plan (P) știind că perpendiculara din origine pe acesta îl intersectează în A(3,2,4).

Soluţie

Vectorul
$$\overrightarrow{OA} = 3\vec{\imath} + 2\vec{\jmath} + 4\vec{k}$$
 este normal planului (P) , deci ecuația lui (P) este (P) : $3(x-3) + 2(y-2) + 4(z-4) = 0$, sau (P) : $3x + 2y + 4z - 29 = 0$.

5.6 Determinați ecuația unui plan (P) știind că perpendiculara coborîtă din M(1,2,3) pe acesta îl intersectează în A(1,-2,1).

Solutie

Vectorul
$$\overrightarrow{AM}=4\vec{\jmath}+2\vec{k}$$
 este normal planului (P) , deci ecuația lui (P) este $(P):4(y+2)+2(z-1)=0$, sau $(P):2y+z+3=0$.

5.7 Fie A(4,2,3), B(2,6,5). Precizați ecuația planului mediator al segmentului [AB].

Soluție

Planul mediator al segmentului [AB] admite ca vector director pe $\overrightarrow{AB} = -2\overrightarrow{\imath} + 4\overrightarrow{\jmath} + 2\overrightarrow{k}$ și trece prin mijlocul M al segmentului, unde M = M(3,4,4). Astfel, ecuația planului dorit este (P): -2(x-3)+4(y-4)+2(z-4)=0, sau (P): x-2y-z+9=0.

5.8 Determinați proiecția punctului A(2,1,1) pe planul (P): x+y+3z+5=0 și simetricul său față de planul dat.

Soluție

Observăm mai întâi că A nu aparține planului. Vectorul normal la plan $\vec{N}=\vec{t}+\vec{j}+3\vec{k}$ este vector director pentru perpendiculara din A pe plan, care are astfel ecuațiile parametrice $(d): x=2+t, y=1+t, z=1+3t, t\in\mathbb{R}$. Proiecția A_0 a punctului A pe planul (P) se află intersectând dreapta (d) cu planul; obținem că (2+t)+(1+t)+3(1+3t)+5=0, deci t=-1. Prin urmare, $A_0=A_0(1,0,-2)$.

Simetricul A' al punctului A față de planul (P) este, de fapt, simetricul lui A față de A_0 . Rezultă că $x_{A'}=2x_{A_0}-x_A$, $y_{A'}=2y_{A_0}-y_A$, $z_{A'}=2z_{A_0}-z_A$, deci A'=A'(0,-1,-5).

5.9 Fie
$$(d_1):$$

$$\begin{cases} x-y-3z+2=0\\ 2x-y+2z-3=0 \end{cases}$$
, $(d_2):$
$$\frac{x+1}{5}=\frac{y-2}{8}=\frac{z+3}{-1}$$
. Demonstrați că dreptele (d_1) și (d_2) sunt paralele, justificând mai întâi de ce (d_1) este o dreaptă.

Soluție

Planele $(P_1): x-y-3z+2=0$ şi $(P_2): 2x-y+2z-3=0$ au vectorii normali $\vec{N}_1=\vec{\imath}-\vec{\jmath}-3\vec{k}$ şi $\vec{N}_2=2\vec{\imath}-\vec{\jmath}+2\vec{k}$ necoliniari, deci sunt concurente, iar intersecția lor este o dreaptă. Un vector director al dreptei (d_1) este

$$\vec{N}_1 \times \vec{N}_2 = \begin{vmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 1 & -1 & -3 \\ 2 & -1 & 2 \end{vmatrix} = -5\vec{\imath} - 8\vec{\jmath} + \vec{k}.$$

Cum (d_2) admite vectorul director $\vec{v}=5\vec{\imath}+8\vec{\jmath}-\vec{k}$ și $\vec{v}\parallel\vec{N}_1\times\vec{N}_2$, rezultă că dreptele (d_1) și (d_2) sunt paralele sau confundate. Cum $A(-1,2,-3)\in (d_2)$, dar $A\not\in (d_1)$, urmează că $(d_1)\parallel (d_2)$.

5.10 Precizați care dintre următoarele perechi de plane sunt alcătuite din plane paralele, confundate sau perpendiculare.

$$1)(P_1): 2x + y - 3z + 4 = 0,$$
 $(P_2): 4x + 2y - 6z + 3 = 0;$ $2)(P_1): x - y + 2z - 3 = 0,$ $(P_2): 2x - 2y + 4z - 6 = 0;$ $3)(P_1): x + y + z - 1 = 0,$ $(P_2): x + y - 2z + 3 = 0$

Soluție

- 1) Observăm că $\frac{2}{4} = \frac{1}{2} = \frac{-3}{-6} \neq \frac{4}{3}$, deci $(P_1) \parallel (P_2)$.
- 2) Cum $\frac{1}{2}=\frac{-1}{-2}=\frac{2}{4}=\frac{-3}{-6}$, urmează că $(P_1)\equiv (P_2)$.
- 3) Un vector normal la (P_1) este $\vec{N}_1 = \vec{\imath} + \vec{\jmath} + \vec{k}$, iar un vector normal la (P_2) este $\vec{N}_2 = \vec{\imath} + \vec{\jmath} 2\vec{k}$. Avem că $\vec{N}_1 \cdot \vec{N}_2 = 1 \cdot 1 + 1 \cdot 1 + 1 \cdot (-2) = 0$, prin urmare $\vec{N}_1 \perp \vec{N}_2$, deci $(P_1) \perp (P_2)$.

5.11 Precizați dacă planele $(P_1): x + 2y - 2z - 3 = 0$, $(P_2): 2x - y + 3z - 3 = 0$, $(P_3): 3x + y - z - 4 = 0$ au puncte comune.

Soluție

Sistemul
$$\begin{cases} x+2y-2z-3=0\\ 2x-y+3z-3=0\\ 3x+y-z-4=0 \end{cases}$$
 admite unica soluție $x=1,\,y=2,\,z=1$, prin

urmare cele trei plane au un singur punct comun, anume A(1,2,1).

 ${f 5.12}\;\; Determinați poziția dreptei (d) față de planul (P) dacă$

1)
$$(d): \frac{x+3}{5} = \frac{y-1}{3} = \frac{z+1}{2}, (P): -x+y+z-2 = 0;$$

2) $(d): \frac{x-2}{4} = \frac{y+1}{3} = \frac{z-1}{2}, (P): 2x-y+z-3 = 0;$
3) $(d): \frac{x+1}{3} = \frac{y-1}{2} = \frac{z+2}{1}, (P): 2x-5y+4z+15 = 0.$

- 1) Vectorul director $\vec{v}=5\vec{\imath}+3\vec{\jmath}+2\vec{k}$ al dreptei (d) și vectorul normal $\vec{N}=-\vec{\imath}+\vec{\jmath}+\vec{k}$ la planul (P) au produsul scalar $\vec{v}\cdot\vec{N}=-5+3+2=0$, prin urmare $\vec{v}\perp\vec{N}$. Rezultă că $(d)\parallel(P)$ sau $(d)\subset(P)$. Punctul A(-3,1,-1) aparține dreptei (d) și nu aparține lui (P), deci $(d)\parallel(P)$.
- 2) Vectorul director $\vec{v} = 4\vec{\imath} + 3\vec{\jmath} + 2\vec{k}$ al dreptei (d) și vectorul normal $\vec{N} = 2\vec{\imath} \vec{\jmath} + \vec{k}$ la planul (P) au produsul scalar $\vec{v} \cdot \vec{N} = 8 3 + 2 = 7 \neq 0$, deci dreapta (d) are un singur punct comun cu planul (P).
- 3) Vectorul director $\vec{v}=3\vec{\imath}+2\vec{\jmath}+\vec{k}$ al dreptei (d) și vectorul normal $\vec{N}=2\vec{\imath}-5\vec{\jmath}+4\vec{k}$ la planul (P) au produsul scalar $\vec{v}\cdot\vec{N}=6-10+4=0$. Cum punctul A(-1,1,-2) aparține atât dreptei (d) cât și planului (P), rezultă că $(d)\subset (P)$.
- **5.13** Determinați unghiul planelor

1)
$$(P_1): 2x - y + 4z - 5 = 0$$
, $(P_2): 3x + 2y - z + 6 = 0$;

2)
$$(P_1): x + 2y - z + 6 = 0$$
, $(P_2): 2x - y + 2z - 1 = 0$;

3)
$$(P_1): 2x + y + 3z - 1 = 0$$
, $(P_2): x - 2y - 2z + 5 = 0$.

Solutie

- 1) Vectorii normali $\vec{N}_1 = 2\vec{\imath} \vec{\jmath} + 4\vec{k}$ şi $\vec{N}_2 = 3\vec{\imath} + 2\vec{\jmath} \vec{k}$ au produsul scalar $\vec{N}_1 \cdot \vec{N}_2 = 6 2 4 = 0$, prin urmare sunt perpendiculari. Deducem că și planele (P_1) și (P_2) sunt perpendiculare.
- 2) Cosinusul unghiului format de vectorii normali $\vec{N}_1=\vec{\imath}+2\vec{\jmath}-\vec{k}$ și $\vec{N}_2=2\vec{\imath}-\vec{\jmath}+2\vec{k}$ este

$$\cos \widehat{\vec{N}_1, \vec{N}_2} = \frac{\vec{N}_1 \cdot \vec{N}_2}{\left\|\vec{N}_1\right| \cdot \left\|\vec{N}_2\right\|} = \frac{1 \cdot 2 + 2 \cdot (-1) + (-1) \cdot 2}{\sqrt{1^2 + 2^2 + (-1)^2} \sqrt{2^2 + (-1)^2 + 2^2}} = \frac{-2}{3\sqrt{6}}.$$

Cum unghiul a două plane se consideră a fi neobtuz, rezultă că $m(\widehat{P_1)}, \widehat{P_2}) = \arccos(\frac{-2}{3\sqrt{6}})$. 3) $m(\widehat{P_1)}, \widehat{P_2}) = \arccos(\frac{2}{\sqrt{14}})$.

5.14 Calculați distanța între planele $(P_1): 2x-10y+11z-6=0$, $(P_2): 2x-10y+11z-21=0$.

Soluţie

Cele două plane sunt paralele deoarece $\frac{2}{2} = \frac{-10}{-10} = \frac{11}{11} \neq \frac{-6}{-21}$, deci distanța dintre ele se poate calcula ca distanța de la punctul A(-3,1,2), care aparține lui (P_1) , pâna la (P_2) . Această distanță este

$$d((A),(P_2)) = \frac{|2x_A - 10y_A + 11z_A - 21|}{\sqrt{2^2 + (-10)^2 + 11^2}} = \frac{15}{\sqrt{225}} = 1.$$

5.15 Determinați ecuația unui plan (P) aflat la egală distanță de planele $(P_1): x+y-2z+3=0$ și $(P_2): x+y-2z+15=0$.

Soluție

Planele (P_1) și (P_2) sunt paralele, deoarece $\frac{1}{1} = \frac{1}{1} = \frac{-2}{-2} \neq \frac{3}{15}$. Punctul A(-2,1,1) aparține planului (P_1) , deci

$$d((P_1),(P_2)) = d(A,(P_2)) = \frac{|x_1 + y_A - 2z_A + 15|}{\sqrt{1^2 + 1^2 + (-2)^2}} = 2\sqrt{6}.$$

Planul (P) va fi paralel cu (P_1) , prin urmare ecuația sa este de tipul (P) : $x + y - 2z + \alpha = 0$. Distanța de la punctul (A) la (P) este $\frac{1}{2} \cdot 2\sqrt{6} = \sqrt{6}$, astfel că

$$\frac{|x_A + y_A - 2z_A + \alpha|}{\sqrt{1^2 + 1^2 + (-2)^2}} = \sqrt{6} \Leftrightarrow |-3 + \alpha| = 6 \Leftrightarrow \alpha \in \{9, -3\}.$$

Cum (P) se află între planele (P_1) și (P_2), reţinem doar valoarea $\alpha = 9$. În concluzie, (P) : x + y - 2z + 9 = 0.

- **5.16** Fie planul (P): $\vec{r} \cdot (2\vec{\imath} 6\vec{\jmath} + 9\vec{k}) = 10$.
- 1) Precizați semnificația vectorului $\vec{v} = 2\vec{\imath} 6\vec{\jmath} + 9\vec{k}$ pentru acest plan și determinați un punct care aparține lui (P).
- 2) Determinați ecuația carteziană generală a unui plan care este paralel cu (P) și trece prin A(1,3,5).

- 1) Vectorul \vec{v} este normal la planul (P). Dacă $\vec{r} = x\vec{\imath} + y\vec{\jmath} + z\vec{k}$, atunci $\vec{r} \cdot (2\vec{\imath} 6\vec{\jmath} + 9\vec{k}) = 2x 6y + 9z$, prin urmare ecuația canonică a planului este 2x 6y + 9z 10 = 0. Pentru y = 1, z = 2, obținem că x = 0, deci A(0, 1, 2) este un punct al planului (P).
- 2) Un plan paralel cu (P) va admite pe \vec{v} ca vector normal, deci ecuația sa va fi 2(x-1)-6(y-3)+9(z-5)=0, sau 2x-6y+9z-29=0.

5.17 Scrieți dreapta
$$(d)$$
: $\frac{x-1}{2} = \frac{y+3}{1} = \frac{z-4}{3}$ ca o intersecție de plane.

Căutăm doi vectori necoliniari perpendiculari pe vectorul director \vec{v} al dreptei, $\vec{v}=2\vec{\imath}+\vec{\jmath}+3\vec{k}$. Găsim, de exemplu, $\vec{N}_1=\vec{\imath}+\vec{\jmath}-\vec{k}$ și $\vec{N}_2=\vec{\imath}-2\vec{\jmath}$. Planele (P_1) și (P_2) , care admit ca vectori normali pe \vec{N}_1 , respectiv \vec{N}_2 , și conțin punctul $A(1,-3,4)\in(d)$, au ca intersecție dreapta (d). Prin urmare, $(d): \begin{cases} (x-1)+(y+3)-(z-4)=0\\ (x-1)-2(y+3)=0 \end{cases}$, sau $(d): \begin{cases} x+y-z+6=0\\ x-2y-7=0 \end{cases}$.

Orice plan (P) care conţine pe (d) trece prin A(1,-3,4) şi are ca vector director \vec{v} , deci va avea ecuaţia

$$(P): \begin{cases} x(t) = 1 + 2t + \alpha s \\ y(t) = -3 + t + \beta s & \text{unde } \vec{w} = \alpha \vec{t} + \beta \vec{j} + \gamma \vec{k} \text{ este un al doilea vector director} \\ z(t) = 4 + 3t + \gamma s \end{cases}$$

al lui (P). Pentru $\vec{w}_1=\vec{\imath}+\vec{\jmath}+\vec{k}$, respectiv $\vec{w}_2=i+2\vec{\jmath}+3\vec{k}$ obținem că (d) se poate scrie

ca interesecție a planelor
$$(P_1)$$
:
$$\begin{cases} x(t) = 1 + 2t + s \\ y(t) = -3 + t + s \end{cases}$$
 și (P_2) :
$$\begin{cases} x(t) = 1 + 2t + s \\ y(t) = -3 + t + 2s \end{cases}$$
 ; $z(t) = 4 + 3t + 3s$

planele (P_1) și (P_2) sunt distincte deoarece \vec{w} , \vec{w}_1 , \vec{w}_2 nu sunt coplanari.

5.18 Scrieți ecuația dreptei
$$(d)$$
:
$$\begin{cases} x+2y-z+1=0\\ 3x-y+2z-5=0 \end{cases}$$
 sub formă canonică.

Soluţie

Soluţiile sistemului dat sunt
$$\begin{cases} x(\alpha) = \frac{9-3\alpha}{7} \\ y(\alpha) = \frac{5\alpha-8}{7} \end{cases}, \alpha \in \mathbb{R}. \text{ De aici, } \frac{7x-9}{-3} = \frac{7y+8}{5} = \frac{z}{1} = \alpha, \\ z(\alpha) = \alpha \end{cases}$$

de unde ecuația canonică a dreptei este (d): $\frac{x-\frac{9}{7}}{-3} = \frac{y+\frac{8}{7}}{5} = \frac{z}{7}$.

Soluție alternativă

Ca mai sus, soluţiile sistemului dat sunt $\begin{cases} x(\alpha)=\frac{9-3\alpha}{7}\\ y(\alpha)=\frac{5\alpha-8}{7} \end{cases} \text{, } \alpha\in\mathbb{R}. \text{ Două puncte ale }\\ z(\alpha)=\alpha \end{cases}$

dreptei (d) sunt deci A(0,1,3) (pentru $\alpha=3$) și B(3,-4,-4) (pentru $\alpha=-4$), deci $\overrightarrow{AB}=3\overrightarrow{i}-5\overrightarrow{j}-7\overrightarrow{k}$ este un vector director al dreptei (d). Ecuația parametrică a dreptei este atunci $(d): \frac{x}{3}=\frac{y-1}{-5}=\frac{z-3}{-7}$.

Soluție alternativă

Un vector director al dreptei (d) este $\vec{v} = \vec{N}_1 \times \vec{N}_2$, unde $\vec{N}_1 = \vec{\imath} + 2\vec{\jmath} - \vec{k}$, $\vec{N}_2 = 3\vec{\imath} - \vec{\jmath} + 2\vec{k}$ sunt vectori normali la planele $(P_1): x + 2y - z + 1 = 0$, $(P_2): 3x - y + 2z - 5 = 0$. Se obține că

$$\vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & -1 \\ 3 & -1 & 2 \end{vmatrix} = 3\vec{i} - 5\vec{j} - 7\vec{k}.$$

Un punct particular al dreptei (d) se obține, de exemplu, pentru x=0; de aici $A(0,1,3) \in (d)$ și se regăsește ecuația anterioară.

5.19 Determinați ecuația planului care conține dreapta (d): $\begin{cases} 3x + 2y - z + 1 = 0 \\ x - 3y + z - 4 = 0 \end{cases}$ și punctul B(2,3,1).

Soluție

Ecuația unui plan care conține dreapta (d) este (P): (3+a)x + (2-3a)y + (-1+a)z + (1-4a) = 0. Impunem ca B(2,3,1) să aparțină lui (P): 2(3+a) + 3(2-3a) + (-1+a) + (1-4a) = 0, deci $a = \frac{6}{5}$. Astfel, (P): 21x - 8y + z - 19 = 0.

5.20 Determinați ecuația planului care conține dreapta $(d): \frac{x+1}{2} = \frac{y-1}{4} = \frac{z+2}{3}$ și punctul B(1,1,2).

Soluție

Dreapta (d) conține punctul A(-1,1,-2). Doi vectori directori ai planului căutat sunt $\overrightarrow{AB} = 2\vec{\imath} + 4\vec{k}$ și vectorul director al dreptei (d), $\vec{v} = 2\vec{\imath} + 4\vec{\jmath} + 3\vec{k}$. Un vector normal la plan este

$$\vec{N} = \overrightarrow{AB} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 0 & 4 \\ 2 & 4 & 3 \end{vmatrix} = -16\vec{i} + 2\vec{j} - 8\vec{k}.$$

Ecuația planului va fi atunci (P): -16(x+1)+2(y-1)-8(z+2)=0, adică (P): -16x+2y-8z-46=0, sau (P): 8x-y+4z+23=0.

5.21 Precizați ecuația planului determinat de dreptele paralele

Soluție

Punctele A(-1,2,-2) și B(1,-3,1) se află pe (d_1) , respectiv (d_2) , deci $\overrightarrow{AB} = 2\overrightarrow{i} - 5\overrightarrow{j} + 3\overrightarrow{k}$ este vector director al planului. Un vector normal la plan este

$$\vec{N} = \overrightarrow{AB} \times \vec{v} = \begin{vmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 2 & -5 & 3 \\ 2 & 1 & 3 \end{vmatrix} = -6(3\vec{\imath} - 2\vec{k}),$$

deci $\vec{N}_0 = 3\vec{\imath} - 2\vec{k}$ este de asemenea vector normal la plan. Ecuația planului va fi (P): 3(x+1) - 2(z+2) = 0, sau (P): 3x - 2z - 1 = 0.

5.22 Precizați ecuația planului care conține perpendicularele din A(3,1,2) pe planele (P_1) : 4x - 3y + z - 1 = 0 și (P_2) : x + 5y - z + 2 = 0.

Solutie

Cele două perpendiculare au vectorii directori $\vec{N}_1=4\vec{\imath}-3\vec{\jmath}+\vec{k}$ și $\vec{N}=\vec{\imath}+5\vec{\jmath}-\vec{k}$, deci $\vec{N}=\vec{N}_1\times\vec{N}_2$ este un vector normal la planul dorit. Avem că

$$ec{N}_1 imes ec{N}_2 = egin{vmatrix} ec{\imath} & ec{\jmath} & ec{k} \ 4 & -3 & 1 \ 1 & 5 & -1 \ \end{bmatrix} = -2ec{\imath} + 5ec{\jmath} + 23ec{k}.$$

Ecuația planului este (P): -2(x-3)+5(y-1)+23(z-2)=0, sau (P): 2x-5y-23z+45=0.

5.23 *Precizați distanța de la* A(2,3,1) *la planul* (P): 2x - 6y + 9z - 2 = 0.

Soluție

Are loc egalitatea

$$d(A,(P)) = \frac{|2x_A - 6y_A + 9z_A - 2|}{\sqrt{2^2 + (-6)^2 + 9^2}} = \frac{7}{\sqrt{121}} = \frac{7}{11}.$$

5.24 Precizați distanța de la
$$A(2, -1, 5)$$
 la dreapta $(d): \begin{cases} x + 2y + 2 = 0 \\ 3x - 2z - 6 = 0 \end{cases}$.

Coordonatele unui punct oarecare de pe dreapta (d) sunt $M(\alpha, -1 - \frac{\alpha}{2}, \frac{3\alpha}{2} - 3)$, deci $AM^2 = (\alpha - 2)^2 + (-\frac{\alpha}{2})^2 + (\frac{3\alpha}{2} - 8)^2$. Pentru a determina distanța de la A la planul (P) trebuie să minimizăm AM^2 , adică să găsim minimul funcției $f: \mathbb{R} \to \mathbb{R}$, $f(\alpha) = \frac{7\alpha^2}{2} - 28\alpha + 68$. Cum acest minim este $m = -\frac{28^2 - 14 \cdot 68}{2 \cdot 7} = 12$, urmează că distanța căutată este $d(A, (d)) = \sqrt{12} = 2\sqrt{3}$.

Soluție alternativă

Un vector director al dreptei (d) este $\vec{v} = \vec{N}_1 \times \vec{N}_2$, unde $\vec{N}_1 = \vec{\imath} + 2\vec{\jmath}$ și $\vec{N}_2 = 3\vec{\imath} - 2\vec{k}$ sunt vectori normali la planele $(P_1): x + 2y + 2 = 0$, $(P_2): 3x - 2z - 6 = 0$. Se obține că

$$\vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & 0 \\ 3 & 0 & -2 \end{vmatrix} = -4\vec{i} + 2\vec{j} - 6\vec{k}.$$

Un punct particular al dreptei (d) se obține, de exemplu, pentru x=0; de aici, $B(0,-1,-3) \in (d)$. Atunci

$$d(A,(d)) = \frac{\left\|\overrightarrow{BA} \times \overrightarrow{v}\right\|}{\left\|\overrightarrow{v}\right\|}.$$
 Deoarece $\overrightarrow{BA} = 2\overrightarrow{i} + 8\overrightarrow{k}$ iar $\overrightarrow{BA} \times \overrightarrow{v} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 0 & 8 \\ -4 & 2 & -6 \end{vmatrix} = -16\overrightarrow{i} + 20\overrightarrow{j} + 4\overrightarrow{k}$, urmează că

$$d(A,(d)) = \frac{\sqrt{(-16)^2 + 20^2 + 4^2}}{\sqrt{(-4)^2 + 2^2 + (-6)^2}} = \frac{\sqrt{672}}{\sqrt{56}} = \sqrt{12} = 2\sqrt{3}.$$

Soluție alternativă

Ca mai sus, se obține că un vector director al dreptei (d) este $\vec{v}=-4\vec{t}+2\vec{\jmath}-6\vec{k}$. Ecuația planului care trece prin A și este perpendicular pe dreapta (d) este -4(x-2)+2(y+1)-6(z-5)=0, adică (P):-4x+2y-6z+30=0. Intersecția dreptei (d)

$$2(y+1)-6(z-5)=0$$
, adică $(P):-4x+2y-6z+30=0$. Intersecția dreptei (d) cu planul (P) se obține rezolvând sistemul
$$\begin{cases} x+2y+2=0\\ 3x-2z-6=0\\ -4x+2y-6z+30=0 \end{cases}$$
; punctul de

intersecție este B(4, -3, 3). Distanța căutată este atunci $AB = \sqrt{(4-2)^2 + (-2)^2 + (-2)^2} = 2\sqrt{3}$.

Soluție alternativă

Ca mai sus, se obține că un vector director al dreptei (d) este $\vec{v} = -4\vec{\imath} + 2\vec{\jmath} - 6\vec{k}$, iar coordonatele unui punct oarecare de pe dreapta (d) sunt $M(\alpha, -1 - \frac{\alpha}{2}, \frac{3\alpha}{2} - 3)$. Dacă $AM \perp (d)$, atunci $\overrightarrow{AM} \cdot \vec{v} = 0$, deci $(\alpha - 2)(-4) + (-\frac{\alpha}{2})2 + (\frac{3\alpha}{2} - 8)(-6) = 0$, de unde $\alpha = 4$, iar M = M(4, -3, -3). Distanța căutată este atunci $AM = \sqrt{(4-2)^2 + (-2)^2 + (-2)^2} = 2\sqrt{3}$.

Soluție alternativă

Ecuația unui plan care conține dreapta (d) este (P): x+2y+2+a(3x-2z-6)=0. Impunem ca $A\in (P): 2+(-2)+2+a(3\cdot 2-2\cdot 5-6)=0$, de unde $a=\frac{1}{5}$, iar ecuația planului (P_1) care conține pe A și (d) este $(P_1): \frac{8}{5}x+2y-\frac{2}{5}z+\frac{4}{5}=0$. Distanța de la A la (d) va fi distanța de la A la planul (P_2) care trece prin (d) și este perpendicular pe (P_1) . Ecuația lui (P_2) va fi $(P_2): x+2y+2+b(3x-2z-6)=0$, sau $(P_2): (1+3b)x+2y-2bz+2-6b=0$. Deoarece $(P_1)\perp (P_2)$, urmează că $(1+3b)\cdot 8+2\cdot 10+(-2b)\cdot (-2)=0$, de unde b=-1, iar ecuația lui (P_2) este $(P_2): -2x+2y+2z+8-0$. Distanța căutată este atunci

$$d(A,(P_2)) = \frac{|-2x_A + 2y_A + 2z_A + 8|}{\sqrt{(-2)^2 + 2^2 + 2^2}} = \frac{12}{2\sqrt{3}} = 2\sqrt{3}.$$

Capitolul 6

COORDONATE POLARE, CILINDRICE ŞI SFERICE

6.1 Determinați coordonatele carteziene ale punctelor cu următoarele coordonate polare:

1)
$$M_1(r=2, \theta=\frac{\pi}{3});$$

1)
$$M_1(r=2, \theta=\frac{\pi}{3});$$

2) $M_2(r=4, \theta=\frac{7\pi}{6});$

3)
$$M_3(r=1, \theta=\frac{7\pi}{4})$$

Soluție

Legătura dintre coordonatele polare (r, θ) și coordonatele carteziene (x, y) este dată de formulele

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$$
, pentru $M(x, y) \neq O(0, 0)$.

Urmează că

1)

$$\begin{cases} x = 2\cos\frac{\pi}{3} = 2 \cdot \frac{1}{2} = 1\\ y = 2\sin\frac{\pi}{3} = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3}; \end{cases}$$

2)

$$\begin{cases} x = 4\cos\frac{7\pi}{6} = 4\cos\left(\pi + \frac{\pi}{6}\right) = -4\cos\frac{\pi}{6} = -4\cdot\frac{\sqrt{3}}{2} = -2\sqrt{3} \\ y = 4\sin\frac{7\pi}{6} = 4\sin\left(\pi + \frac{\pi}{6}\right) = -4\sin\frac{\pi}{6} = -4\cdot\frac{1}{2} = -2 \end{cases}$$

3)
$$\begin{cases} x = \cos\frac{7\pi}{4} = \cos\left(2\pi - \frac{\pi}{4}\right) = \cos\left(-\frac{\pi}{4}\right) = \cos\frac{\pi}{4} = \frac{\sqrt{2}}{2} \\ y = \sin\frac{7\pi}{4} = \sin\left(2\pi - \frac{\pi}{4}\right) = \sin\left(-\frac{\pi}{4}\right) = -\sin\frac{\pi}{4} = -\frac{\sqrt{2}}{2}. \end{cases}$$

- **6.2** Determinați coordonatele polare ale punctelor cu următoarele coordonate carteziene:
 - 1) $M_1(1,\sqrt{3})$;
 - 2) $M_2(2,-2)$;
 - 3) $M_3(-\sqrt{3},1)$;
 - 4) $M_4(0,1)$;
 - 5) $M_5(0,-1)$.

Deoarece

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}$$
, pentru $M(x, y) \neq O(0, 0)$,

se obține că

$$r = \sqrt{x^2 + y^2}$$

iar dacă $x \neq 0$, atunci

$$\operatorname{tg} \theta = \frac{y}{x}$$
, $\operatorname{iar} \theta = \operatorname{arctg} \frac{y}{x} + k\pi, k \in \{0, 1, 2\}$.

Urmează că

- Theaza can be seen that $r=\sqrt{1+\sqrt{3}^2}=\sqrt{4}=2$, $\theta=\arctan\sqrt{3}+k\pi=\frac{\pi}{3}+k\pi$. Cum M_1 este un punct din primul cadran, urmează că k=0, deci $\theta=\frac{\pi}{3}$.
- 2) $r = \sqrt{2^2 + (-2)^2} = \sqrt{8} = 2\sqrt{2}$, $\theta = \arctan(-1) + k\pi = -\frac{\pi}{4} + k\pi$. Cum M_2 este un punct din cadranul al patrulea, urmează că k=2, deci $\theta=\frac{7\pi}{4}$.
- 3) $r = \sqrt{(-\sqrt{3})^2 + 1^2} = \sqrt{4} = 2$, $\theta = \arctan(-\frac{\sqrt{3}}{3}) + k\pi = -\frac{\pi}{6} + k\pi$. Cum M_3 este un punct din cadranul al doilea, urmează că k=1, deci $\theta=\frac{5\pi}{6}$.
- 4) Deoarece x = 0, arctg $\frac{y}{x}$ nu este definită. Cum M_4 se află pe semiaxa (Oy, urmează că $\theta = \frac{\pi}{2}$.
- 5) Deoarece x=0, arctg $\frac{y}{x}$ nu este definită. Cum M_5 se află pe semiaxa (Oy',urmează că $\theta = \frac{3\pi}{2}$.
- **6.3** Fie pătratul ABCD de latură l. Determinați coordonatele polare ale vârfurilor în următoarele situații:
 - 1) Polul este în O, centrul pătratului, iar axa polară este semidreapta [OA;
 - 2) Polul este în A iar axa polară este semidreapta [AB.

Soluţie

- 1) Diagonala pătratului are lungimea $l\sqrt{2}$, deci distanța de la O la oricare din vârfuri este $\frac{l\sqrt{2}}{2}$. Cum $\triangle OAB$, $\triangle OBC$, $\triangle OCD$, $\triangle ODA$ sunt dreptunghice și isoscele, se observă că $r_A = \frac{l\sqrt{2}}{2}$, $\theta_A = 0$; $r_B = \frac{l\sqrt{2}}{2}$, $\theta_B = \frac{\pi}{2}$; $r_C = \frac{l\sqrt{2}}{2}$, $\theta_C = \pi$; $r_D = \frac{l\sqrt{2}}{2}$, $\theta_D = \frac{3\pi}{2}$.
- 2) Se obţine că $r_A=0$, θ_A nu este definit, deoarece A coincide cu polul sistemului de coordonate; $r_B=l$, $\theta_B=0$; $r_C=l\sqrt{2}$, deoarece AC este diagonală a pătratului, $\theta_C=\frac{\pi}{4}$ deoarece $\triangle BAC$ este dreptunghic isoscel cu ipotenuza AC; $r_D=l$, $\theta_D=\frac{\pi}{2}$.
- **6.4** Fie hexagonul regulat ABCDEF de latură l. Determinați coordonatele polare ale vârfurilor în următoarele situații:
 - 1) Polul este în O, centrul hexagonului, iar axa polară este semidreapta [OA;
 - 2) Polul este în A iar axa polară este semidreapta [AB.

Soluție

- 1) Raza cercului circumscris hexagonului regulat ABCDEF de latura l este egală cu l, deci distanța de la O la oricare din vârfuri este l. Cum $\triangle OAB$, $\triangle OBC$, $\triangle OCD$, $\triangle ODE$, $\triangle OEF$, $\triangle OFA$ sunt echilaterale, se observă că $r_A = l$, $\theta_A = 0$, $r_B = l$, $\theta_B = \frac{\pi}{3}$, $r_C = l$, $\theta_C = \frac{2\pi}{3}$, $r_D = l$, $\theta_D = \pi$, $r_E = l$, $\theta_E = \frac{4\pi}{3}$, $r_F = l$, $\theta_F = \frac{5\pi}{3}$.
- 2) Se obţine că $r_A=0$, θ_A nu este definit, deoarece A coincide cu polul sistemului de coordonate; $r_B=l$, $\theta_B=0$. Deoarece $\triangle ABC$ este isoscel cu $m(\widehat{ABC})=\frac{2\pi}{3}$, urmează că $\theta_C=\frac{\pi}{6}$. Aplicând teorema sinusurilor în $\triangle ABC$ se obţine că $r_C=AC=l\sqrt{3}$. Cum AD este diametru în cercul circuscris hexagonului, se obţine că $r_D=2l$, iar deoarece ABCD este trapez isoscel cu $m(\widehat{ABC})=\frac{2\pi}{3}$, $\theta_D=\frac{\pi}{3}$. Deoarece BE este diametru, $\theta_E=\frac{\pi}{2}$, iar cum BE=2l, AB=l, aplicând teorema lui Pitagora în $\triangle ABE$ se obţine că $AE=r_E=l\sqrt{3}$. Se obţine de asemenea că $r_F=l$, iar cum θ_F este unghi al hexagonului, $\theta_F=\frac{2\pi}{3}$.
- **6.5** *Precizați natura mulțimilor reprezentate în coordonate polare prin ecuațiile următoare:*
 - 1) $r = r_0, r_0 > 0$;
 - 2) $\theta = \theta_0, \theta_0 \in [0, 2\pi).$

Soluţie

- 1) Mulţimea punctelor aflate la distanţa $r_0 > 0$ de punctul fix O este cercul cu centru O şi rază r_0 .
- 2) Dacă M este un punct al locului geometric, atunci $m(Ox,OM) = \theta_0$, unde $\angle(Ox,OM)$ este privit ca unghi orientat. Se obține că locul geometric respectiv este o semidreaptă deschisă cu originea în O care face cu semidreapta (Ox unghiul orientat căutat.

6.6 Exprimați ecuațiile următoare, date în coordonate carteziene, cu ajutorul coordonatelor polare:

1)
$$x^2 + y^2 = a^2$$
, $a > 0$;

2)
$$x^2 - y^2 = b^2$$
, $b > 0$;

3)
$$xy = c, c > 0$$
.

Soluţie

- 1) Cum $x = r \cos \theta$, $y = r \sin \theta$, urmează că $r^2(\cos^2 \theta + \sin^2 \theta) = a^2$, deci r = a.
- 2) Analog, $r^2(\cos^2\theta \sin^2\theta) = a^2$, deci $r^2\cos 2\theta = a^2$.
- 3) Se obţine că $r^2 \sin \theta \cos \theta = c$, deci $r^2 \sin 2\theta = 2c$.
- **6.7** Dacă punctele A, B au respectiv coordonatele polare (ρ_A, θ_A) , (ρ_B, θ_B) , demonstrați că

$$AB = \sqrt{r_A^2 + r_B^2 - 2r_A r_B cos(\theta_A - \theta_B)}.$$

Soluție

Au loc relațiile

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

$$= \sqrt{(r_B \cos \theta_B - r_A \cos \theta_A)^2 + (r_B \sin \theta_B - r_A \sin \theta_A)^2}$$

$$= \sqrt{r_A^2 + r_B^2 - 2r_A r_B (\cos \theta_B \cos \theta_A + \sin \theta_B \sin \theta_A)}$$

$$= \sqrt{r_A^2 + r_B^2 - 2r_A r_B \cos(\theta_A - \theta_B)}.$$

- **6.8** Fie $A(r = r_0, \theta = \theta_0)$. Determinați coordonatele polare ale următoarelor puncte
 - 1) M₁, simetricul lui A față de OX;
 - 2) M_2 , simetricul lui A față de OY;
 - 3) M_3 , simetricul lui A față de O;
 - 4) M₄, simetricul lui A față de prima bisectoare;
 - 5) M_5 , simetricul lui A față de a doua bisectoare.

- 1)-5) Coordonatele căutate sunt $M_1(r = r_0, \theta = 2\pi \theta_0)$, $M_2(r = r_0, \theta = (\pi \theta_0) \mod 2\pi)$, $M_3(r = r_0, \theta = (\pi + \theta_0) \mod 2\pi)$, $M_4(r = r_0, \theta = (\frac{\pi}{2} \theta) \mod 2\pi)$, $M_5(r = r_0, \theta = (\frac{3\pi}{2} \theta) \mod 2\pi)$.
- **6.9** Determinați coordonatele carteziene ale punctelor cu următoarele coordonate sferice:

1)
$$M_1(r=2, \varphi=\frac{\pi}{6}, \theta=\frac{\pi}{3});$$

2)
$$M_2(r = 1, \varphi = \frac{5\pi}{6}, \theta = \frac{5\pi}{4});$$

3) $M_3(r = 1, \varphi = 60^{\circ}, \theta = 120^{\circ}).$

Legătura dintre coordonatele polare (r, φ, θ) și coordonatele carteziene (x, y, z) este dată de formulele

$$\begin{cases} x = r \sin \varphi \cos \theta \\ y = r \sin \varphi \sin \theta \quad , \text{ pentru } M(x, y, z) \notin Oz. \\ z = r \cos \varphi \end{cases}$$

Urmează că

1)

$$\begin{cases} x = 2\sin\frac{\pi}{6}\cos\frac{\pi}{3} = 2 \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}; \\ y = 2\sin\frac{\pi}{6}\sin\frac{\pi}{3} = 2 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}; \\ z = 2\cos\frac{\pi}{6} = 2 \cdot \frac{\sqrt{3}}{2}. \end{cases}$$

2)

$$\begin{cases} x = \sin\frac{5\pi}{6}\cos\frac{5\pi}{4} = \sin\left(\pi - \frac{5\pi}{6}\right)\cos\left(\pi + \frac{\pi}{4}\right) = \frac{1}{2} \cdot \left(-\frac{\sqrt{2}}{2}\right) = -\frac{\sqrt{2}}{4}; \\ y = \sin\frac{5\pi}{6}\sin\frac{5\pi}{4} = \sin\left(\pi - \frac{5\pi}{6}\right)\sin\left(\pi + \frac{\pi}{4}\right) = \frac{1}{2} \cdot \left(-\frac{\sqrt{2}}{2}\right) = -\frac{\sqrt{2}}{4}; \\ z = \cos\frac{5\pi}{6} = \cos\left(\pi - \frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2}. \end{cases}$$

3)

$$\begin{cases} x = \sin 60^{\circ} \cos 120^{\circ} = \sin 60^{\circ} \cos(180^{\circ} - 60^{\circ}) = \frac{\sqrt{3}}{2} \cdot \left(-\frac{1}{2}\right) = -\frac{\sqrt{3}}{4}; \\ y = \sin 60^{\circ} \sin 120^{\circ} = \sin 60^{\circ} \sin(180^{\circ} - 60^{\circ}) = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{3}{4}; \\ z = \cos 60^{\circ} = \frac{1}{2}. \end{cases}$$

6.10 Determinați coordonatele carteziene ale punctelor cu următoarele coordonate cilindrice:

1)
$$M_1(r=4, \theta=\frac{\pi}{3}, z=2);$$

1)
$$M_1(r = 4, \theta = \frac{\pi}{3}, z = 2);$$

2) $M_2(r = 6, \theta = \frac{7\pi}{4}, z = 1);$

3)
$$M_3(r=1, \theta=30^\circ, z=3)$$
.

Legătura dintre coordonatele cilindrice (r, θ, z) și coordonatele carteziene (x, y, z) este dată de formulele

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \quad \text{, pentru } M(x, y, z) \notin Oz. \\ z = z \end{cases}$$

Urmează că

1) $\begin{cases} x = 4\cos\frac{\pi}{3} = 4 \cdot \frac{1}{2} = 2; \\ y = 4\sin\frac{\pi}{3} = 4 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3}; \\ z = 2. \end{cases}$

2)
$$\begin{cases} x = 6\cos\frac{7\pi}{4} = 6\cos\left(2\pi - \frac{\pi}{4}\right) = 6\cdot\frac{\sqrt{2}}{2}; \\ y = 6\sin\frac{7\pi}{4} = 6\sin\left(2\pi - \frac{\pi}{4}\right) = 6\cdot\left(-\frac{\sqrt{2}}{2}\right); \\ z = 1. \end{cases}$$

3)
$$\begin{cases} x = \cos 30^\circ = \frac{1}{2}; \\ y = \sin 30^\circ = \frac{\sqrt{3}}{2}; \\ z = 3. \end{cases}$$

- **6.11** Determinați coordonatele sferice și cilindrice ale punctelor cu următoarele coordonate carteziene:
 - 1) $M_1(3,3,0)$;
 - 2) $M_2(1,-1,\sqrt{2})$;
 - 3) $M_3(2,1,-2)$.

Soluție

Coordonatele sferice

Deoarece legătura dintre coordonatele sferice (r, φ, θ) și coordonatele carteziene (x, y, z) este dată de formulele

$$\begin{cases} x = r \sin \varphi \cos \theta \\ y = r \sin \varphi \sin \theta \quad \text{, pentru } M(x, y, z) \notin Oz \\ z = r \cos \varphi \end{cases}$$

urmează că

$$r = \sqrt{x^2 + y^2 + z^2}$$

iar dacă $x \neq 0$, atunci

$$\operatorname{tg} \theta = \frac{y}{x}$$
, $\operatorname{iar} \theta = \operatorname{arctg} \frac{y}{x} + k\pi, k \in \{0, 1, 2\}$.

De asemenea,

$$\cos \varphi = \frac{z}{\sqrt{x^2 + y^2 + z^2}},$$

deci

$$\varphi = \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}}.$$

1) $r=\sqrt{3^2+3^2+0^2}=\sqrt{18}=3\sqrt{2}$, $\theta=\arctan 1+k\pi=\frac{\pi}{4}+k\pi$. Cum proiecția lui M_1 pe planul xOy este un punct din primul cadran, urmează că k=0, deci $\theta=\frac{\pi}{4}$. De asemenea, $\phi=\arccos 0=\frac{\pi}{2}$.

2) $r = \sqrt{1^2 + (-1)^2 + \sqrt{2}^2} = \sqrt{4} = 2$, $\theta = \arctan(-1) + k\pi = -\frac{\pi}{4} + k\pi$. Cum proiecția lui M_2 pe planul xOy este un punct din cadranul al patrulea, urmează că k = 2, deci $\theta = \frac{7\pi}{4}$. De asemenea, $\varphi = \arccos\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$.

3) $r = \sqrt{2^2 + 1^2 + (-2)^2} = \sqrt{9} = 3$, $\theta = \arctan \frac{1}{2} + k\pi$. Cum proiecţia lui M_1 pe planul xOy este un punct din primul cadran, urmează că k = 0, deci $\theta = \arctan \frac{1}{2}$. De asemenea, $\varphi = \arccos \left(-\frac{2}{3}\right) = \pi - \arccos \frac{2}{3}$.

Coordonatele cilindrice

Deoarece legătura dintre coordonatele cilindrice (r, θ, z) și coordonatele carteziene (x, y, z) este dată de formulele

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \quad , \text{ pentru } M(x, y, z) \notin Oz, \\ z = z \end{cases}$$

urmează că

$$r = \sqrt{x^2 + y^2},$$

iar dacă $x \neq 0$, atunci

$$\operatorname{tg} \theta = \frac{y}{x}$$
, $\operatorname{iar} \theta = \operatorname{arctg} \frac{y}{x} + k\pi, k \in \{0, 1, 2\}$.

Coordonata z rămâne aceeași.

1)
$$r = \sqrt{3^2 + 3^2} = 3\sqrt{2}$$
. Ca mai sus, $\theta = \frac{\pi}{4}$. În plus, $z = 0$.

2)
$$r = \sqrt{1^2 + (-1)^2} = \sqrt{2}$$
. Ca mai sus, $\theta = \frac{7\pi}{4}$. În plus, $z = \sqrt{2}$.

3)
$$r = \sqrt{2^2 + 1^2} = \sqrt{5}$$
. Ca mai sus, $\theta = \arctan \frac{1}{2}$. În plus, $z = -2$.

- **6.12** Exprimați ecuațiile următoare, date în coordonate cilindrice, cu ajutorul coordonatelor carteziene:
 - 1) $z = r^2 \cos 2\theta$;
 - 2) $z = r^2 \sin 2\theta$;
 - 3) $z = r \cos(\frac{\pi}{4} \theta)$.

- 1) Deoarece $\cos 2\theta = \cos^2 \theta \sin^2 \theta$, urmează că $z = r^2 (\cos^2 \theta \sin^2 \theta) = x^2 y^2$.
- 2) Deoarece $\sin 2\theta = 2\sin\theta\cos\theta$, urmează că $z = r^2 \cdot 2\sin\theta\cos\theta = 2xy$.
- 3) Deoarece $\cos(\frac{\pi}{4} \theta) = \cos\frac{\pi}{4}\cos\theta + \sin\frac{\pi}{4}\sin\theta = \frac{\sqrt{2}}{2}(\cos\theta + \sin\theta)$, urmează că $z = r \cdot \frac{\sqrt{2}}{2}(\cos\theta + \sin\theta) = \frac{\sqrt{2}}{2}(x+y)$.
- **6.13** Exprimați ecuațiile următoare, date în coordonate sferice, cu ajutorul coordonatelor carteziene:
 - 1) $r^2 \sin 2\varphi \cos \theta = 1$;
 - 2) $r^2 \sin^2 \varphi \cos 2\theta = 1$;
 - 3) $r = \sin \varphi \cos \theta$.

Soluție

- 1) Deoarece $\sin 2\varphi = 2\sin\varphi\cos\varphi$, urmează că $r^2 \cdot 2\sin\varphi\cos\varphi\cos\theta = 1$, adică $2r\sin\varphi\cos\theta \cdot r\cos\varphi = 1$, sau 2xz = 1.
- 2) Deoarece $\cos 2\theta = \cos^2 \theta \sin^2 \theta$, urmează că $r^2 \sin^2 \varphi (\cos^2 \theta \sin^2 \theta) = 1$, sau $r^2 \sin^2 \varphi \cos^2 \theta r^2 \sin^2 \varphi \sin^2 \theta = 1$, sau $x^2 y^2 = 1$.
- 3) Se observă că, pentru buna definire a coordonatelor sferice, $r \neq 0$. Cum $\sin \varphi \cos \theta = \frac{x}{r}$, urmează că $r = \frac{x}{r}$, deci $r^2 = x$, sau $x^2 + y^2 + z^2 = x$.
- **6.14** Fie cubul ABCDA'B'C'D' de latură l. Determinați coordonatele sferice ale punctelor O (centrul cubului), C, C' în raport cu reperul (A; AB, AD, AA').

Soluţie

Mai întâi, se observă cu ajutorul teoremei lui Pitagora că diagonala unei fețe a cubului este $l\sqrt{2}$ iar diagonala cubului este $l\sqrt{3}$.

Deoarece AO reprezintă jumătate din diagonala cubului, $r_O = \frac{l\sqrt{3}}{2}$. Cum tg $\widehat{A'AC'} = \frac{A'C'}{AA'} = \sqrt{2}$, urmează că $\varphi_O = \operatorname{arctg}\sqrt{2}$ și din același motiv $\varphi_{C'} = \operatorname{arctg}\sqrt{2}$. Deoarece O se proiectează pe planul (ABC) în mijlocul diagonalei AC iar $\triangle ABC$ este dreptunghic isoscel, urmează că $\theta_O = \frac{\pi}{4}$. Pentru că AC este diagonală a unei fețe, $r_C = l\sqrt{2}$, iar

pentru că $AA' \perp (ABC)$, $\varphi_C = \frac{\pi}{2}$. Deoarece $\triangle ABC$ este dreptunghic isoscel, $\theta_C = \frac{\pi}{4}$, și din același motiv $\theta_{C'} = \frac{\pi}{4}$. În fine, deoarece AC' este diagonală a cubului, $r_{C'} = l\sqrt{3}$.

6.15 Precizați natura mulțimilor exprimate în coordonate sferice prin ecuațiile următoare:

- 1) $r = r_0, r_0 > 0$;
- 2) $\varphi = \varphi_0, \varphi_0 \in [0, \pi];$
- 3) $\theta = \theta_0, \theta_0 \in [0, 2\pi].$

Soluție

- 1) Mulțimea punctelor aflate la distanța r_0 de axa Oz reprezintă un cilindru de rotație cu Oz ca axă de rotație și generatoare paralelă cu Oz, aflată la distanța r_0 de aceasta.
- 2) Dacă M este un punct al locului geometric, se obține că $m(Oy, OM) = \varphi_0$. Se obține că locul geometric respectiv este un con de rotație în jurul semiaxei Oy, cu generatoare o semidreaptă cu originea în O care face cu Oy un unghi φ_0 .
- 3) Proiecția locului geometric pe planul xOy este o semidreaptă (s) pentru care $m((Ox,(s)) = \theta_0$, acest unghi fiind privit ca unghi orientat. Se obţine că locul geometric respectiv este un semiplan perpendicular pe planul (xOy), a cărui intersecție cu acesta este semidreapta (s).
- **6.16** Precizați natura mulțimilor exprimate în coordonate cilindrice prin ecuațiile următoare:
 - 1) $r = r_0, r_0 > 0$;
 - 2) $\theta = \theta_0, \theta_0 \in [0, 2\pi];$
 - 3) $z = z_0, z_0 \in \mathbb{R}$.

Solutie

- 1) La fel ca la problema precedentă, locul geometric este un cilindru de rotație cu Oz ca axă de rotație și generatoare paralelă cu Oz, aflată la distanța r_0 de aceasta.
- 2) La fel ca la problema precedentă, locul geometric respectiv este un semiplan perpendicular pe planul (xOy), a cărui intersecție cu acesta este o semidreapta (s)pentru care $m((Ox,(s)) = \theta_0$.
 - 3) Locul geometric este un plan perpendicular pe Oz care trece prin $A(0,0,z_0)$.
- **6.17** Precizați natura mulțimilor exprimate în coordonate sferice prin relațiile următoare:

1)
$$r = 2$$
, $\varphi = \frac{\pi}{3}$;

$$2) r = 2, \theta = \frac{\pi}{4};$$

1)
$$r = 2$$
, $\varphi = \frac{\pi}{3}$;
2) $r = 2$, $\theta = \frac{\pi}{4}$;
3) $\varphi = \frac{\pi}{6}$, $\theta = \frac{\pi}{3}$.

- 1) Cerc cu centrul în $A(0,0,\sqrt{3})$ și rază 1.
- 2) Intersecția sferei de rază 2 şi centru în origine cu semiplanul perpendicular pe planul (xOy), a cărui intersecție cu acesta este bisectoarea primului cadran, adică un semicerc.
 - 3) O semidreaptă deschisă cu originea în O.
- **6.18** Exprimați ecuațiile următoare, date în coordonate carteziene, cu ajutorul coordonatelor sferice și cilindrice:
 - 1) $x^2 + y^2 = 4$;
 - 2) $x^2 + y^2 + z^2 = 4$;
 - 3) $x^2 + y^2 z^2 = 0$.

Soluţie

În coordonate sferice:

- 1) Deoarece $(r \sin \varphi \cos \theta)^2 + (r \sin \varphi \sin \theta)^2 = 4$, urmează că $r^2 \sin^2 \varphi = 4$.
- 2) Deoarece $(r\sin\varphi\cos\theta)^2+(r\sin\varphi\sin\theta)^2+(r\cos\varphi)^2=4$, urmează că $r^2=4$, sau r=2.
- 3) Deoarece $(r \sin \varphi \cos \theta)^2 + (r \sin \varphi \sin \theta)^2 (r \cos \varphi)^2 = 4$, urmează că $r^2 \sin^2 \varphi r^2 \cos^2 \varphi = 0$, sau $r^2 \cos 2\varphi = 0$.

În coordonate cilindrice:

- 1) Deoarece $(r\cos\theta)^2 + (r\sin\theta)^2 = 4$, urmează că $r^2 = 4$, sau r = 2.
- 2) Deoarece $(r\cos\theta)^2 + (r\sin\theta)^2 + z^2 = 4$, urmează că $r^2 + z^2 = 4$.
- 3) Deoarece $(r\cos\theta)^2+(r\sin\theta)^2-z^2=4$, urmează că $r^2-z^2=4$.

Capitolul 7

ROTAŢII ŞI TRANSLAŢII

7.1 Se consideră în plan vectorul $\vec{v} = \vec{\imath} - 2\vec{\jmath}$. Determinați imaginile obținute în urma translației de vector \vec{v} a

- 1) punctului M(1, -2);
- 2) dreptei(d): 2x + y = 0.

Soluție

Formula de transformare a coordonatelor după translația de vector \vec{v} este x'=x+1, y' = y + (-2), unde M'(x', y') este imaginea lui M(x, y) prin translația de vector \vec{v} .

- 1) Se obţine că x' = 1 + 1 = 2, y' = -2 + (-2) = -4, deci M' = M'(2, -4).
- 2) Două puncte ale dreptei (d) sunt O(0,0) și M(1,-2). Imaginile acestora prin translația dată sunt O'(1,-2), respectiv, M'(2,-4), deci imaginea dreptei (d) = OMeste dreapta (d') = O'M', de ecuație 2x + y = 0. Observăm că (d) și (d') coincid, deoarece vectorul \vec{v} cu care se face translația este paralel cu vectorul director al dreptei.

Solutie alternativă

- 2) Deoarece x' = x + 1, y' = y + (-2), urmează că x = x' 1, y = y' + 2. Înlocuind aceste relații în ecuația dreptei (*d*) urmează că 2(x'-1)+(y'+2)=0, adică 2x'+y'=00.
- **7.2** Se consideră în spațiu vectorul $\vec{v} = \vec{i} + \vec{j} + \vec{k}$. Determinați imaginile obținute în urma translației de vector v a
 - 1) punctului M(1,2,3);
 - 2) dreptei (d): $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{1}$;
 - 3) planului (P): x + y z = 0.

Formula de transformare a coordonatelor după translația de vector \vec{v} este x' = x + 1, y' = y + 1, z' = z + 1, unde M'(x', y', z') este imaginea lui M(x, y, z) prin translația de vector \vec{v} .

- 1) Se obţine că x' = 1 + 1 = 2, y' = 2 + 1 = 3, z' = 3 + 1 = 4, deci M' = M'(2,3,4).
- 2) Două puncte ale dreptei (d) sunt M(1,2,3) şi N(2,4,4). Imaginile acestora prin translația dată sunt M'(2,3,4), respectiv, M'(3,5,5), deci imaginea dreptei (d)=MN este dreapta (d')=M'N', de ecuație $\frac{x-2}{1}=\frac{y-3}{2}=\frac{z-4}{1}$.
- 3) Imaginea planului (P) prin translația de vector v este un plan (P') paralel cu acesta, deci (P'): x+y-z+C=0. Un punct al planului (P) este M(1,2,3), iar un punct al planului (P') este imaginea M'(2,3,4) a lui M. Urmează că 2+3-4+C=0, deci C=-1, iar ecuația lui (P') este (P'): x+y-z-1=0.

Soluție alternativă

- 2) Deoarece x'=x+1, y'=y+1, z'=z+1, urmează că x=x'-1, y=y'-1, z=z'-1. Înlocuind aceste relații în ecuația dreptei (d) urmează că $\frac{(x'-1)-1}{1}=\frac{(y'-1)-1}{2}=\frac{(z'-1)-1}{1}$, adică $\frac{x-2}{1}=\frac{y-3}{2}=\frac{z-4}{1}$.
- 3) Ecuația lui (P') este (x'-1)+(y'-1)-(z'-1)=0, adică (P'):x+y-z-1=0.
- **7.3** 1) Precizați coordonatele punctului M' obținut prin rotația lui M(1,2) cu 30° în jurul originii în sens direct trigonometric.
- 2) Reperul $R(O; \vec{\imath}, \vec{\jmath})$ se rotește cu 30° în jurul originii în sens direct trigonometric. Precizați noile coordonate ale punctului M(1,2).

Soluție

1) Formula de transformare a coordonatelor după rotația în jurul originii cu 30° în sens direct trigonometric este

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos 30^{\circ} & -\sin 30^{\circ} \\ \sin 30^{\circ} & \cos 30^{\circ} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

În cazul nostru,

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos 30^\circ & -\sin 30^\circ \\ \sin 30^\circ & \cos 30^\circ \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}-2}{2} \\ \frac{1+2\sqrt{3}}{2} \end{pmatrix},$$

deci $M' = M'(\frac{\sqrt{3}-2}{2}, \frac{1+2\sqrt{3}}{2}).$

2) Formula de transformare a coordonatelor după rotația reperului în jurul originii cu 30° în sens direct trigonometric este

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos 30^{\circ} & \sin 30^{\circ} \\ -\sin 30^{\circ} & \cos 30^{\circ} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

În cazul nostru,

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos 30^\circ & \sin 30^\circ \\ -\sin 30^\circ & \cos 30^\circ \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}+2}{2} \\ \frac{1-2\sqrt{3}}{2} \end{pmatrix},$$

deci
$$M' = M'(\frac{\sqrt{3}+2}{2}, \frac{1-2\sqrt{3}}{2}).$$

7.4 Se consideră punctele A(1,0) și B(2,3). Rotim segmentul AB în jurul punctului A, în sens trigonometric, cu un unghi φ . Aflați coordonatele imaginii B' a lui B prin această rotație, în fiecare din cazurile

1)
$$\varphi = 90^{\circ}$$
; 2) $\varphi = 120^{\circ}$.

Soluție

Formula de transformare a coordonatelor după rotația în jurul lui $A(x_A,y_A)$ cu un unghi φ în sens direct trigonometric este

$$\begin{pmatrix} x' - x_A \\ y' - y_A \end{pmatrix} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} x - x_A \\ y - y_A \end{pmatrix}.$$

1) Au loc relațiile

$$\begin{pmatrix} x'-1 \\ y'-0 \end{pmatrix} = \begin{pmatrix} \cos 90^{\circ} & -\sin 90^{\circ} \\ \sin 90^{\circ} & \cos 90^{\circ} \end{pmatrix} \begin{pmatrix} 2-1 \\ 3-0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \end{pmatrix},$$

deci B' = B'(-2,1).

- 2) Aplicând aceleași formule, obținem că $B' = B'(\frac{1-3\sqrt{3}}{2}, \frac{\sqrt{3}-3}{2})$.
- **7.5** Se consideră punctele A(1,0) și B(2,3). Fie A', B' imaginile acestor puncte printr-o rotație în jurul originii O, de unghi 60° , în sens trigonometric. Determinați ecuația dreptei A'B'.

Soluție

Mai întâi, observăm că

$$\begin{pmatrix} x_{A'} \\ y_{A'} \end{pmatrix} = \begin{pmatrix} \cos 60^{\circ} & -\sin 60^{\circ} \\ \sin 60^{\circ} & \cos 60^{\circ} \end{pmatrix} \begin{pmatrix} x_{A} \\ y_{A} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix},$$

$$\begin{pmatrix} x_{B'} \\ y_{B'} \end{pmatrix} = \begin{pmatrix} \cos 60^{\circ} & -\sin 60^{\circ} \\ \sin 60^{\circ} & \cos 60^{\circ} \end{pmatrix} \begin{pmatrix} x_{B} \\ y_{B} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{2-3\sqrt{3}}{2} \\ \frac{2\sqrt{3}+3}{2} \end{pmatrix}.$$

Astfel,
$$A'(\frac{1}{2}, \frac{\sqrt{3}}{2})$$
, $B'(\frac{2-3\sqrt{3}}{2}, \frac{2\sqrt{3}+3}{2})$, iar ecuația dreptei $A'B'$ va fi $(A'B')$: $\frac{x-\frac{1}{2}}{1-3\sqrt{3}} = \frac{y-\frac{\sqrt{3}}{2}}{3+\sqrt{3}}$.

- **7.6** Se consideră $\triangle ABC$, unde A(1,0), B(-1,0), $C(0,\sqrt{3})$. Determinați imaginile vârfurilor triunghiului în urma rotațiilor
 - 1) în jurul lui A, în sens invers trigonometric, cu 60° ;
 - 2) în jurul centrului de greutate G al triunghiului, în sens invers trigonometric, cu 120°.

Mai întâi, se observă că $\triangle ABC$ este echilateral, deoarece AB = AC = BC = 2.

1) Punctul A, ca și centru de rotație, își păstrează coordonatele, deci A' = A'(1,0). În urma rotației descrise, punctul B ajunge în C, deci $B' = B'(0, \sqrt{3})$. În sfârșit,

$$\begin{pmatrix} x_{C'} - 1 \\ y_{C'} - 0 \end{pmatrix} = \begin{pmatrix} \cos(-60^\circ) & -\sin(-60^\circ) \\ \sin(-60^\circ) & \cos(-60^\circ) \end{pmatrix} \begin{pmatrix} 0 - 1 \\ \sqrt{3} - 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} -1 \\ \sqrt{3} \end{pmatrix} = \begin{pmatrix} 1 \\ \sqrt{3} \end{pmatrix},$$
 deci $C' = C'(2, \sqrt{3}).$

2) În urma acestei rotații, vârfurile se permută între ele, anume A' = A, B' = C, C' = A, prin urmare A' = A'(-1,0), $B' = B'(0,\sqrt{3})$, iar C' = C'(1,0).

Capitolul 8

CONICE PE ECUAȚII REDUSE

8.1 CERCUL

- 8.1 Precizați ecuația cercului în fiecare dintre cazurile următoare:
 - 1) Centrul cercului este în C(-4,3) și cercul trece prin origine.
 - 2) Punctele A(-3,2), B(5,-4) sunt extremitățile unui diametru.
 - 3) Centrul cercului este în C(1,2), iar dreapta (d): x+y+1=0 este tangentă la cerc.
 - 4) Cercul trece prin punctele A(2,2), B(0,1), C(1,0).

Soluţie

- 1) Raza cercului este r = CO = 5, prin urmare ecuația sa este (C): $(x x_C)^2 + (y y_C)^2 = r^2$, adică $(x + 4)^2 + (y 3)^2 = 25$.
- 2) Raza cercului este $r=\frac{1}{2}AB=5$, iar centrul său este mijlocul segmentului [AB], de coordonate C(1,-1). Ecuația cercului este $(C):(x-1)^2+(y+1)^2=25$.
- 3) Raza cercului este distanța de la punctul C la dreapta (d), deci $r=\frac{|1+2+1|}{\sqrt{1^2+1^2}}=2\sqrt{2}$. Ecuația cercului este $(C):(x-1)^2+(y-2)^2=8$.
 - 4) Ecuația cercului care trece prin punctele *A*, *B*, *C* este

$$\begin{vmatrix} x^2 + y^2 & x & y & 1 \\ x_A^2 + y_A^2 & x_A & y_A & 1 \\ x_B^2 + y_B^2 & x_B & y_B & 1 \\ x_C^2 + y_C^2 & x_C & y_C & 1 \end{vmatrix} = 0,$$

i.e. $(C): x^2+y^2-x-y=0$. În formă redusă, $(C): \left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=\frac{1}{2}$, prin urmare cercul are centrul $M(\frac{1}{2},\frac{1}{2})$, iar raza sa este $r=\frac{1}{\sqrt{2}}$.

- **8.2** Precizați poziția lui A(-2,1) față de cercurile
 - 1) $(C_1): x^2 + y^2 = 8;$
 - 2) (C_2) : $(x+1)^2 + (y-2)^2 = 2$;
 - 3) $(C_3): x^2 + y^2 6x + 4y 17 = 0.$

- 1) Cum $(-2)^2 + 1^2 = 5 < 8$, rezultă că $A \in Int(C_1)$.
- 2) Deoarece $(-2+1)^2 + (1-2)^2 = 2$, înseamnă că $A \in (C_2)$.
- 3) Fiindcă $(-2)^2 + 1^2 6 \cdot (-2) + 4 \cdot 1 17 = 4 > 0$, deducem că $A \in Ext(C_3)$.
- **8.3** Fie cercurile $(C_1): x^2 + y^2 + 2x + 2y 2 = 0$, $(C_2): x^2 + y^2 4x 6y + 4 = 0$.
- 1) Demonstrați că (C_1) , (C_2) sunt tangente exterior și precizați coordonatele punctului de tangență.
 - 2) Determinați ecuația tangentei interioare la cele două cercuri în punctul de intersecție.

Soluție

Ecuația redusă a lui (C_1) este $(x+1)^2+(y+1)^2=4$, deci (C_1) are centrul $M_1(-1,-1)$ și raza $r_1=2$. Ecuația redusă a lui (C_2) este $(x-2)^2+(y-3)^2=9$, prin urmare (C_2) are centrul $M_2(2,3)$ și raza $r_2=3$.

- 1) Cum $M_1M_2 = 5 = r_1 + r_2$, rezultă că cele două cercuri sunt tangente exterior.
- 2) Punctul comun T al celor două cercuri se poate determina intersectându-le (deci rezolvând sistemul format din ecuațiile lor) sau observând că $T \in [M_1M_2]$, iar $k = \frac{TM_1}{TM_2} = \frac{r_1}{r_2} = \frac{2}{3}$. Astfel, $x_T = \frac{x_{M_1} + kx_{M_2}}{1 + k} = \frac{1}{5}$, iar $y_T = \frac{y_{M_1} + ky_{M_2}}{1 + k} = \frac{3}{5}$. Panta liniei centrelor este $m = \frac{y_{M_1} y_{M_2}}{x_{M_1} x_{M_2}} = \frac{4}{3}$, prin urmare panta tangentei comune interioare, care este perpendiculară pe linia centrelor, este $-\frac{1}{m} = -\frac{3}{4}$. Ecuația tangentei comune interioare este $(d): y \frac{3}{5} = -\frac{3}{4}\left(x \frac{1}{5}\right)$, , i.e. (d): 3x + 4y 3 = 0.

Soluție alternativă

2) Axa radicală a două cercuri este locul geometric al punctelor din plan având puteri egale în raport cu două cercuri date; în situația în care cercurile respective sunt tangente, interior sau exterior, atunci axa radicală este chiar tangenta comună. Dacă (C): f(x,y)=0, puterea unui punct $M(x_M,y_M)$ fața de cercul (C) este $f(x_M,y_M)$. Cum toate punctele A(x,y) ale tangentei au puteri egale față de cercurile date, urmează că $x^2+y^2+2x+2y-2=x^2+y^2-4x-6y+4$, adică 3x+4y-3=0, care este ecuația tangentei.

8.4 Fie cercul
$$(C_1)$$
: $x^2 + y^2 + 4x - 6y + 9 = 0$.

- 1) Determinați centrul și raza cercului.
- 2) Determinați ecuația diametrului perpendicular pe dreapta (d): 2x 3y + 5 = 0.

Soluție

- 1) Ecuația redusă a cercului este (C): $(x+2)^2 + (y-3)^2 = 4$, așadar centrul cercului este M(-2,3), iar raza sa este r=2.
- 2) Panta dreptei (d) este $m=\frac{2}{3}$, deci diametrul perpendicular pe (d) are panta $-\frac{1}{m}=-\frac{3}{2}$ și conține centrul M al cercului. Ecuația sa va fi $y-3=-\frac{3}{2}(x+2)$, i.e. 3x+2y=0.
- 8.5 Precizați poziția dreptei față de cerc în fiecare din cazurile următoare.

1)
$$(d_1): x + 2y + 2 = 0$$
, $(C_1): x^2 + y^2 + 6x - 4y + 9 = 0$;

2)
$$(d_2): x - 2y - 5 = 0$$
, $(C_2): x^2 + y^2 = 5$;

3)
$$(d_3): 2x - y + 13 = 0$$
, $(C_3): x^2 + y^2 - 8x + 2y + 11 = 0$.

Soluţie

- 1) Ecuația redusă a cercului este $(C_1):(x+3)^2+(y-2)^2=4$, prin urmare centrul său este $M_1(-3,2)$, iar raza sa este $r_1=2$. Distanța de la centrul cercului la dreapta (d_1) este $\frac{|-3+2\cdot 2+2|}{\sqrt{1^2+2^2}}=\frac{3}{\sqrt{5}}< r_1$.
- 2) Centrul cercului (C_2) este $M_2(0,0)$, iar raza sa este $r_2 = \sqrt{5}$. Distanța de la M_2 la (d_2) este $\frac{|0-2\cdot 0-5|}{\sqrt{1^2+(-2)^2}} = \sqrt{5} = r_2$, prin urmare (d_2) este tangentă la (C_2) . Coordonatele punctului de tangență se află rezolvând sistemul format din ecuația dreptei și ecuația cercului; găsim T(1,-2).
- 3) Centrul cercului (C_3) este $M_3(4,-1)$, iar raza sa este $r_3=\sqrt{6}$. Distanța de la M_3 la (d_3) este $\frac{|2\cdot 4-(-1)+13|}{\sqrt{2^2+(-1)^2}}=\frac{22}{\sqrt{5}}>\sqrt{6}$, prin urmare (d_3) este exterioară cercului (C_3) .

Soluție alternativă

- 1) Formăm un sistem din ecuația dreptei și ecuația cercului. Înlocuind x=-2y-2 în ecuația lui (C_1) rezultă ecuația $5y^2-8y+1=0$, cu discriminantul $\Delta=44>0$. Sistemul considerat are două soluții, deci dreapta intersectează cercul în două puncte, anume $A(\frac{-18-8\sqrt{11}}{5},\frac{4+2\sqrt{11}}{5})$ și $B(\frac{-18+8\sqrt{11}}{5},\frac{4-2\sqrt{11}}{5})$. Pentru 2), 3) se procedează analog.
- **8.6** *Precizați ecuația tangentei la cercurile următoare în punctele specificate.*

1)
$$(C_1): (x-2)^2 + (y+3)^2 = 25, A(6,0);$$

2)
$$(C_2): (x+1)^2 + (y-2)^2 = 100, B(7,8).$$

- a) Cum $(6-2)^2 + (0+3)^2 = 25$, rezultă că $A \in (C_1)$. Ecuația tangentei în A la (C_1) se scrie prin dedublare: (x-2)(6-2) + (y+3)(0+3) = 25, i.e. 4x + 3y 24 = 0.
- b) Se arată că $B \in (C_2)$ și, prin dedublare, obținem ecuația tangentei în B la (C_2) , care este 4x + 3y 52 = 0.
- **8.7** Precizați ecuațiile tangentelor din B(-1,6) la cercul $(C): x^2 2x + y^2 19 = 0$.

Deoarece $(-1)^2-2\cdot(-1)+6^2-19=20>0$, punctul B este exterior cercului (C). Ecuația unei drepte neverticale din fasciculul de drepte prin B este $(d_m):y-6=m(x+1)$, i.e. $(d_m):mx-y+m-6=0$. Cercul (C) are centrul M(1,0) și raza $r=2\sqrt{5}$. Distanța de la M la dreapta (d_m) trebuie să fie egală cu r (dacă dorim ca (d_m) să fie tangentă la (C)), deci $\frac{|2m-6|}{\sqrt{m^2+1}}=2\sqrt{5}$, de unde $m_1=\frac{1}{2}$ și $m_2=-2$. Ecuațiile tangentelor din B la cercul (C) sunt $(d_{\frac{1}{2}}):x-2y-11=0$, respectiv $(d_{-2}):2x+y+8=0$.

Soluție alternativă

Încercăm să determinăm mai întâi punctele de intersecție ale tangentelor din B cu cercul. Dacă $A(x_0,y_0)$ este un punct oarecare al cercului, atunci ecuatia tangentei în A la cerc este $(d): xx_0 - (x+x_0) + yy_0 - 19 = 0$. Deoarece B(-1,6) aparține dreptei, urmează că $-1 \cdot x_0 - (-1+x_0) + 6y_0 - 19 = 0$, de unde $x_0 = 3y_0 - 9$. Cum $x_0^2 - 2x_0 + y_0^2 - 19 = 0$, rezultă după înlocuire că $10y_0^2 - 60y_0 + 80 = 0$, de unde $y_0 \in \{2,4\}$. De aici, punctele de tangență căutate sunt $A_1(3,4)$ și $A_2(-3,2)$. Înlocuind în ecuația tangentei într-un punct oarecare la cerc se obțin ecuațiile $(d_{A_1}): x - 2y - 11 = 0$, respectiv $(d_{A_2}): 2x + y + 8 = 0$.

- **8.8** Fie cercul de ecuație (C): $x^2 + y^2 10x + 2y + 6 = 0$.
 - 1) Precizați ecuațiile parametrice ale cercului.
 - 2) Determinați ecuațiile tangentelor paralele cu dreapta $(d_1): 2x y + 5 = 0$.
 - 3) Determinați ecuațiile tangentelor perpendiculare pe dreapta $(d_2): x + 2y + 6 = 0$.

Soluţie

1) Ecuația redusă a cercului este (C): $(x-5)^2 + (y+1)^2 = 20$, deci centrul cercului este M(5,-1), iar raza sa este $r=2\sqrt{5}$. Ecuațiile parametrice ale cercului sunt

(C):
$$\begin{cases} x(t) = 5 + 2\sqrt{5}\cos t \\ y(t) = -1 + 2\sqrt{5}\sin t, \end{cases} \quad t \in [0, 2\pi).$$

2) Dacă $A(x_0, y_0)$ este un punct oarecare al cercului, ecuația tangentei în A la cerc se scrie prin dedublare și este $(d): xx_0 + yy_0 - 10 \cdot \frac{x+x_0}{2} + 2 \cdot \frac{y+y_0}{2} + 6 = 0$, i.e. (d):

 $(x_0-5)x+(y_0+1)y-5x_0+y_0+6$. Panta acestei tangente este $m=\frac{5-x_0}{y_0+1}$ și cum $(d)\parallel(d_1)$, atunci $m=m_1$, adică $\frac{5-x_0}{y_0+1}=2$, de unde $x_0=3-2y_0$. Pe de altă parte, $A\in(C)$ și, înlocuind în ecuația cercului (generală sau parametrică), obținem că $y_0=1$ sau $y_0=-3$ și, corespunzător, $x_0=1$, respectiv $x_0=9$. Există două tangente la (C) paralele cu (d_1) , anume (d):2x-y=0 și (d'):2x-y-21=0.

3) În acest caz, dorim ca tangenta (d) să fie perpendiculară pe (d_2) , deci $m_1 \cdot m_2 = -1$, adică $\frac{5-x_0}{y_0+1} \cdot \left(-\frac{1}{2}\right) = -1$. Obținem din nou relația $x_0 = 3-2y_0$, prin urmare dreptele (d) și (d') găsite anterior sunt tangentele dorite.

8.9 Demonstrați că dreapta (d): -x + 7y + 12 = 0 este secantă cercului $(C): (x-1)^2 + (y-2)^2 = 25$ și precizați coordonatele punctelor de intersecție.

Soluție

Procedăm ca la soluția problemei 8.5 1); obținem că $(d) \cap (C) = \{A, B\}$, unde A(-1,5), B(-2,-2).

8.10 Determinați ecuațiile tangentelor la cercul (C): $x^2 + y^2 - 2x + 10y - 74 = 0$ care sunt paralele cu dreapta (d): x + 2y - 3 = 0.

Soluție

Procedăm ca la soluția problemei 8.8 2).

Soluție alternativă

Observă că cercul (C) are centrul M(1,-5) şi raza r=10. O dreaptă oarecare, paralelă cu (d), are ecuația $(d_m): x+2y+m=0, m\in\mathbb{R}\setminus\{-3\}$. Pentru ca această dreaptă să fie tangentă cercului (C), trebuie ca distanța de la M la dreapta (d_m) să fie egală cu raza cercului, deci $\frac{|1+2\cdot(-5)+m|}{\sqrt{1^2+2^2}}=10$. Obținem că $m_{1,2}=9\pm10\sqrt{5}$, de unde ecuațiile celor două tangente paralele cu (d) sunt $(d_1): x+2y+9+10\sqrt{5}=0$, respectiv $(d_2): x+2y+9-10\sqrt{5}=0$.

8.11 Arătați că din punctul M(4,2) nu se pot duce tangente la cercul (C) : $x^2 + y^2 - 10x + 2y + 1 = 0$.

Soluție

Deoarece $4^2 + 2^2 - 10 \cdot 4 + 2 \cdot 2 + 1 = -15 < 0$, punctul M este interior cercului (C), prin urmare nu se pot duce tangente din M la (C).

8.2 ELIPSA

- 8.12 Precizați ecuația elipsei (raportată la axele de simetrie) determinată de
 - 1) Focarele F(4,0), F'(-4,0) și semiaxa mare a = 5.
 - 2) Punctele M(4,3) şi N(2,6).
 - 3) Distanța focală 8 și semiaxa mică b=3.
 - 4) Semiaxa mare 20 și excentricitatea e = 0, 6.

Soluție

- 1) Dacă (E): $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b) este o elipsă de semiaxe a şi b, atunci focarele sale sunt F(c,0), F'(-c,0), unde $c^2 = a^2 b^2$. În cazul nostru, a = 5 şi c = 4, prin urmare b = 3. Ecuația elipsei va fi (E): $\frac{x^2}{25} + \frac{y^2}{9} = 1$.
- 2) Fie (E) : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ elipsa căutată. Din $M \in (E)$ și $N \in (E)$, obținem ecuațiile $\frac{16}{a^2} + \frac{9}{b^2} = 1$, respectiv $\frac{4}{a^2} + \frac{36}{b^2} = 1$. Cu notațiile $\frac{4}{a^2} = u$, $\frac{9}{b^2} = v$, avem de rezolvat sistemul

$$\begin{cases} 4u + v = 1\\ u + 4v = 1, \end{cases}$$

cu soluția $u=v=\frac{1}{5}$. Atunci $a^2=20$, $b^2=45$, iar ecuația elipsei dorite este $(E): \frac{x^2}{20}+\frac{y^2}{45}=1$.

- 3) Distanța focală este FF'=2c=8, de unde c=4. Apoi, $a^2=b^2+c^2=25$, deci ecuația elipsei este $(E):\frac{x^2}{25}+\frac{y^2}{9}=1$.
- 4) Avem că a = 20, iar $e = \frac{c}{a} = 0$, 6, de unde c = 12. Atunci $b^2 = a^2 c^2 = 256$, astfel că ecuația elipsei este $(E): \frac{x^2}{400} + \frac{y^2}{256} = 1$.
- **8.13** Fie elipsa $(E): 4x^2 + 9y^2 = 324$.
 - 1) Determinați semiaxele elipsei, distanța focală, excentricitatea și ecuațiile directoarelor.
 - 2) Determinați punctele elipsei a căror abscisă este 8, precum și razele focale ale acestora.
 - 3) Demonstrați că din M(2,2) nu se pot duce tangente la elipsă.

Soluţie

1) Ecuația canonică a elipsei este $(E): \frac{x^2}{81} + \frac{y^2}{36} = 1$, prin urmare semiaxele sunt a=9, b=6. Obținem că $c^2=a^2-b^2=45$, deci distanța focală este $2c=6\sqrt{5}$, iar excentricitatea este $e=\frac{c}{a}=\frac{\sqrt{5}}{3}$. Directoarea corespunzătoare focarului $F(3\sqrt{5},0)$ este $(d): x=\frac{a^2}{c}$, i.e. $(d): x=\frac{27}{\sqrt{5}}$, iar directoarea corespunzătoare focarului $F'(-3\sqrt{5},0)$ este $(d'): x=-\frac{27}{\sqrt{5}}$.

- 2) Din $4 \cdot 8^2 + 9y^2 = 324$, obţinem că $y = \pm \frac{2\sqrt{17}}{3}$, deci punctele elipsei de abscisă 8 sunt $M(8, \frac{2\sqrt{17}}{3})$, respectiv $M(8, -\frac{2\sqrt{17}}{3})$. Razele focale sunt $FM = FN = \frac{1049 - 432\sqrt{5}}{3} = \frac{1049 - 432\sqrt{5}}{3}$ $9 - \frac{8\sqrt{5}}{3}$, respectiv $F'M = F'N = 9 + \frac{8\sqrt{5}}{3}$.
- 3) Cum $4 \cdot 2^2 + 9 \cdot 2^2 = 52 < 324$, înseamnă că punctul M este interior elipsei; rezultă că din *M* nu pot fi duce tangente la elipsa.
- **8.14** Fie elipsa $(E): x^2 + 4y^2 = 4$ și punctele $M(1, \frac{\sqrt{3}}{2}), N(2, 2)$.
 - 1) Determinați ecuațiile tangentei și normalei la elipsă în M
- 2) Determinați ecuațiile tangentelor la elipsă din N și lungimea coardei determinate de punctele de contact ale acestora cu elipsa.

Soluție

- 1) Cum $1^2 + 4 \cdot \left(\frac{\sqrt{3}}{2}\right)^2 = 4$, rezultă că punctul M aparține elipsei (E). Ecuația tangentei în M la elipsă se scrie prin dedublare și este $(d): x \cdot 1 + 4 \cdot y \cdot \frac{\sqrt{3}}{2} = 4$, i.e. $(d): x+2\sqrt{3}y-4=0$. Normala în M la (E) este perpendiculară pe tangenta (d), deci are panta $-\frac{1}{m_d} = 2\sqrt{3}$. Ecuația normalei este $(d'): y - \frac{\sqrt{3}}{2} = 2\sqrt{3}(x-1)$, i.e. $(d'): 4\sqrt{3}x - 2y - 3\sqrt{3} = 0.$
- 2) Dacă $A(x_0, y_0)$ este un punct oarecare al elipsei, ecuația tangentei în A la elipsă este $(d): xx_0 + 4yy_0 = 4$. Impunem ca N să aparțină lui (d) și rezultă că $2x_0 + 8y_0 = 4$, de unde $x_0=2-4y_0$. Cum $x_0^2+4y_0^2=4$, rezultă după înlocuire că $y_0=0$ sau $y_0=\frac{4}{5}$ și, corespunzător, $x_0=2$, respectiv $x_0=-\frac{6}{5}$. Ecuațiile celor două tangente din N la (*E*) sunt (*d*₁) : x = 2 (care intersectează (*E*) în $A_1(2,0)$) și (*d*₂) : 3x - 8y + 10 = 0 (care intersectează (E) în $A_2(-\frac{6}{5},\frac{4}{5})$. Lungimea coardei $[A_1A_2]$ este $\frac{4\sqrt{17}}{5}$.
- 8.15 Determinați poziția dreptei față de elipsă în fiecare din cazurile următoare
 - 1) $(d_1): x y 3 = 0$; $(E_1): x^2 + 3y^2 = 27$;
 - 2) $(d_2): -5x + 2y 9 = 0$; $(E_2): 9x^2 + 5y^2 = 45$.

- 1) Rezolvăm sistemul $\begin{cases} x-y-3=0\\ x^2+3y^2=27 \end{cases}$; obținem soluțiile (0,-3) și $(\frac{9}{2},\frac{3}{2})$, deci $(d_1) \text{ este secantă la } (E_1).$ 2) Rezolvând sistemul $\begin{cases} -5x+2y-9=0\\ 9x^2+5y^2=45 \end{cases}$, ajungem, după substituție, la ecuația $\begin{cases} 111x^2+180x+225 & \text{otherwise} \end{cases}$
- $111x^2 + 180x + 225 = 0$, cu discriminantul negativ. Rezultă că (d_2) este exterioară elipsei (E_2) .

8.16 Fie elipsa $(E): 4x^2 + 9y^2 = 324$. Determinați lungimea diametrului care trece prin M(3,2).

Soluție

Dreapta OM are ecuația OM: 2x-3y=0 și intersectează elipsa în $A_1(\frac{9}{2},3)$ și $A_2(-\frac{9}{2},-3)$. Lungimea diametrului $[A_1A_2]$ este $3\sqrt{13}$.

8.17 Dacă ecuația tangentei într-un punct M al unei elipse (E): $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ este (d): 2x + 3y + 1 = 0, precizați ecuația tangentei în punctul M' diametral opus lui M.

Soluție

Tangenta (d') în M' la elipsă este simetrica față de O a tangentei în M la elipsă. Cum $(d') \parallel (d)$, cele două drepte au aceeași pantă, prin urmare (d') : 2x + 3y + m = 0. Punctul A(-2,1) aparține lui (d), deci A'(2,-1), simetricul lui A față de A0, aparține lui A1. Rezultă că A2, astfel că A3, astfel că A4, astfel că A5, astfel că A6.

8.18 Demonstrați că dreapta (d): y = mx + n este tangentă elipsei $(E): \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ dacă $n^2 = b^2 + a^2m^2$.

Soluție

Rezolvând sistemul $\begin{cases} y=mx+n \\ \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \end{cases}$ prin substituție, ajungem la ecuația de gradul doi în x $(b^2+a^2m^2)x^2+2a^2mnx+a^2(n^2-b^2)=0$. În ipoteza că $n^2=b^2+a^2m^2$, ecuația devine $(b^2+a^2m^2)x^2+2a^2mnx+a^4m^2=0$, cu discriminantul

$$\Delta = 4a^4m^2n^2 - 4a^4m^2(b^2 + a^2m^2) = 4a^2m^2(n^2 - b^2 - a^2m^2) = 0,$$

deci sistemul are o singură soluție, așadar (d) este tangentă la (E).

8.19 Demonstrați că locul geometric al punctelor din care se pot duce tangente perpendiculare la elipsa $(E): \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ este cercul cu centrul în origine și rază $R = \sqrt{a^2 + b^2}$ (cercul ortoptic sau cercul lui Monge asociat elipsei).

Soluție

Conform rezultatului problemei 8.18, ecuațiile tangentelor care trec prin $P(x_0, y_0)$ sunt de forma $y = mx \pm \sqrt{a^2m^2 + b^2}$, de unde $(y_0 - mx_0)^2 = a^2m^2 + b^2$, deci panta m satisface ecuația

$$m^2(a^2 - x_0^2) + 2mx_0y_0 + b^2 - y_0^2 = 0.$$

Ne amintim că $m_1m_2=-1$, astfel că $\frac{b^2-y_0^2}{a^2-x_0^2}=-1$, prin urmare $x_0^2+y_0^2=a^2+b^2$. Aceasta este relația pe care trebuie să o indeplinească punctul P și ea este ecuația unui cerc, având centrul în origine și rază $R=\sqrt{a^2+b^2}$.

8.20 Determinați ecuația canonică a elipsei care este tangentă dreptelor $(d_1): -4x + y + 13 = 0$, $(d_2): -5x + 4y - 25 = 0$.

Soluție

Ecuațiile dreptelor (d_1) , (d_2) se pot scrie sub forma (d_1) : y = 4x - 13, (d_2) : $y = \frac{5}{4}x - \frac{25}{4}$. Conform rezultatului problemei 8.18, dacă dreptele sunt tangente la elipsa (E): $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, atunci au loc relațiile $(-13)^2 = 4^2a^2 + b^2$, respectiv $\left(-\frac{25}{4}\right)^2 = \left(\frac{5}{4}\right)^2a^2 + b^2$, de unde $a^2 = 9$ iar $b^2 = 25$. Ecuația canonică a elipsei (E) este atunci (E): $\frac{x^2}{9} + \frac{y^2}{25} = 1$.

8.21 Demonstrați că produsul distanțelor de la focarele unei elipse la o tangentă variabilă este constant.

Soluție

Fie $(d): y=mx\pm\sqrt{a^2m^2+b^2}$ o tangentă variabilă la elipsă. Distanțele de la focarele F(c,0) și F'(-c,0) la dreapta (d), a cărei ecuație este pusă sub forma $(d): y-mx\mp\sqrt{a^2m^2+b^2}=0$, sunt $d_1=\frac{\left|-mc\mp\sqrt{a^2m^2+b^2}\right|}{\sqrt{1+m^2}}$, $d_2=\frac{\left|mc\mp\sqrt{a^2m^2+b^2}\right|}{\sqrt{1+m^2}}$; produsul acestora este

$$d_1 d_2 = \frac{\left| a^2 m^2 + b^2 - m^2 c^2 \right|}{1 + m^2} = \frac{\left| m^2 (a^2 - c^2) + b^2 \right|}{1 + m^2} = \frac{\left| m^2 b^2 + b^2 \right|}{1 + m^2}$$
$$= b^2 = \text{constant.}$$

8.22 Dacă M este un punct variabil pe o elipsă de focare F și F' și centru O, arătați că suma $MF \cdot MF' + MO^2$ este constantă.

Solutie

Fie $(E): \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ o elipsă, $M(x_0, y_0)$ un punct al ei, iar $(d): x = \frac{a}{e}$, $(d'): x = -\frac{a}{e}$ directoarele elipsei, unde $e = \frac{c}{a}$ este excentricitatea elipsei. Distanța de la M la (d) este $MP = \left|\frac{a}{e} - x_0\right|$ și, cum $\frac{MF}{MP} = e$, atunci $MF = e \cdot \left(\frac{a}{e} - x_0\right) = a - ex_0$. Analog,

 $MF' = a + ex_0$. Atunci

$$\begin{split} MF \cdot MF' + MO^2 &= (a - ex_0)(a + ex_0) + (x_0^2 + y_0^2) \\ &= a^2 - e^2 x_0^2 + x_0^2 + y_0^2 = a^2 - \frac{c^2 x_0^2}{a^2} + x_0^2 + y_0^2 \\ &= \frac{1}{a^2} \left(a^4 - (a^2 - b^2) x_0^2 + a^2 x_0^2 + a_2 y_0^2 \right) \\ &= \frac{1}{a^2} \left(a^4 + a^2 x_0^2 + a^2 y_0^2 \right) = \frac{1}{a^2} (a^4 + a^2 b^2) = a^2 + b^2 = \text{constant}. \end{split}$$

8.3 HIPERBOLA

- 8.23 Precizați ecuația hiperbolei (raportata la axele de simetrie) determinată de
 - 1) Distanța dintre vârfuri 10 și distanța focală 15.
 - 2) Punctul M(5,2) și distanța dintre vârfuri 8.
 - 3) Distanța focală 10 și ecuațiile asimptotelor $y = \pm \frac{3}{4}x$.
 - 4) Punctul $M(3, 2\sqrt{2})$; hiperbola este echilateră.
 - 5) Distanța focală 10 și excentricitatea 1.25.

- 1) Cum 2a=10 și 2c=15, obținem că a=5, $c=\frac{15}{2}$, deci $b^2=c^2-a^2=\frac{125}{4}$. Ecuația hiperbolei este $(H):\frac{x^2}{25}-\frac{y^2}{\frac{125}{4}}=1$.
- 2) Din 2a=8, obținem că a=4, deci $(H):\frac{x^2}{16}-\frac{y^2}{b^2}=1$. Punctul M aparține lui (H), prin urmare $\frac{25}{16}-\frac{4}{b^2}=1$, de unde $b^2=\frac{64}{9}$. Ecuația hiperbolei este $(H):\frac{x^2}{16}-\frac{y^2}{\frac{64}{2}}=1$.
- 3) Ecuațiile asimptotelor sunt $y=\pm\frac{b}{a}=x$, deci $\frac{b}{a}=\frac{3}{4}$, de unde $b=\frac{3a}{4}$. Cum c=5 și $c^2=a^2+b^2$, obținem că $a^2+\frac{9a^2}{16}=25$, prin urmare a=4, apoi b=3. Ecuația hiperbolei este $(H):\frac{x^2}{16}-\frac{y^2}{9}=1$.
- 4) La o hiperbolă echilateră avem a=b, deci $(H): \frac{x^2}{a^2} \frac{y^2}{a^2} = 1$. Cum M aparține hiperbolei, obținem că $\frac{9}{a^2} \frac{8}{a^2} = 1$, de unde a=1. Ecuația hiperbolei este $(H): x^2 y^2 = 1$.
- 5) Avem că c=5, iar $e=\frac{c}{a}=\frac{5}{4}$, prin urmare a=4. Apoi, $b^2=c^2-a^2=9$, astfel că ecuația hiperbolei este $(H):\frac{x^2}{16}-\frac{y^2}{9}=1$.
- **8.24** Fie hiperbola $(H): 9x^2-16y^2-144=0$. Determinați semiaxele sale, distanța focală, vârfurile, asimptotele și ecuațiile directoarelor.

Soluție

Ecuația canonică a hiperbolei este $(H): \frac{x^2}{16} - \frac{y^2}{9} = 1$, deci semiaxele sale sunt a = 4, b = 3, distanța focală este $2c = 2\sqrt{a^2 + b^2} = 10$, vârfurile sunt A(4,0) și A'(-4,0), asimptotele sunt $y = \pm \frac{3}{4}x$, iar directoarele sunt $(d): x = \frac{16}{5}$ și $(d'): x = -\frac{16}{5}$.

8.25 O hiperbolă trece prin M(4,1), iar unghiul format de asimptotele sale este de 60° . Determinați ecuația canonică a hiperbolei.

Soluție

Unghiul pe care una dintre asimptote îl face cu Ox este fie de 30° , fie de 60° , prin urmare $\frac{b}{a}= \operatorname{tg} 30^\circ = \frac{\sqrt{3}}{3}$ sau $\frac{b}{a}= \operatorname{tg} 60^\circ = \sqrt{3}$. Cum $M\in (H)$, se impune condiția $\frac{16}{a^2}-\frac{1}{b^2}=1$. Dacă $b=\frac{a\sqrt{3}}{3}$, atunci $a^2=13$, $b^2=\frac{13}{3}$, deci $(H):\frac{x^2}{13}-\frac{y^2}{\frac{13}{3}}=1$. Dacă $b=a\sqrt{3}$, atunci $a^2=\frac{47}{3}$, $b^2=47$, deci $(H):\frac{x^2}{\frac{47}{3}}-\frac{y^2}{47}=1$.

8.26 Demonstrați că dreapta (d): y = mx + n este tangentă hiperbolei $(H): \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ dacă $n^2 = a^2m^2 - b^2$.

Soluție

Calculele sunt întru totul analoage cu cele din soluția problemei 8.18

- **8.27** Demonstrați că locul geometric al punctelor din care se pot duce tangente perpendiculare la hiperbola $(H): \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ este
- 1) Cercul cu centrul în origine și de rază $R = \sqrt{a^2 b^2}$ (cercul ortoptic sau cercul lui Monge asociat hiperbolei), dacă a > b.
 - 2) Originea O, dacă a = b.
 - 3) Mulţimea vidă, dacă a < b.

Soluție

Fie $P(x_0, y_0)$ coordonatele unui punct din care se duc tangente perpendiculare la hiperbolă, iar m_1 , m_2 pantele acestor tangente. Cu calcule analoage celor din soluția problemei 8.19, obținem că panta m satisface ecuația

$$-m^2(a^2 - x_0^2) + 2mx_0y_0 + b^2 + y_0^2 = 0.$$

Cum $m_1m_2 = -1$, deducem că $\frac{b^2 + y_0^2}{-a^2 + x_0^2} = -1$, prin urmare $x_0^2 + y_0^2 = a^2 - b^2$. Astfel, P aparține cercului $(C): x^2 + y^2 = a^2 - b^2$, dacă a > b, $P \equiv O$ dacă a = b și nu există puncte P în cazul în care a < b.

8.28 Determinați ecuațiile tangentelor la hiperbola $(H): 36x^2-25y^2=900$ paralele cu dreapta (d): 2x-y+2=0.

Soluție

Fie $M(x_0,y_0)$ punctul de contact cu hiperbola al unei tangente paralele cu dreapta (d). Ecuația tangentei este $36xx_0 - 25yy_0 = 900$, deci panta sa va fi $\frac{36x_0}{25y_0}$. Din condiția de paralelism, $\frac{36x_0}{25y_0} = 2$, deci $y_0 = \frac{18x_0}{25}$. Pe de altă parte, $36x_0^2 - 25y_0^2 = 900$, de unde $x_0 = \pm \frac{25}{4}$ și, corespunzător, $y_0 = \pm \frac{9}{2}$. Ecuațiile celor două tangente sunt 2x - y - 8 = 0, respectiv 2x - y + 8 = 0.

Soluție alternativă

Ecuația canonică a hiperbolei este $(H): \frac{x^2}{25} - \frac{y^2}{36} = 1$. Ecuațiile tangentelor căutate sunt de forma 2x - y + c = 0, $c \in \mathbb{R}$, putând fi deci aduse la forma y = 2x - c. Conform rezultatului problemei 8.26, urmează că $(-c)^2 = 25 \cdot 2^2 - 36$, adica $c \in \{-8, +8\}$, de unde ecuațiile tangentelor sunt 2x - y - 8 = 0, respectiv 2x - y + 8 = 0.

8.29 Determinați ecuația hiperbolei, raportată la axele sale de simetrie, care este tangentă dreptei (d): -3x + 2y + 3 = 0 în A(5,6).

Soluție

Fie (H): $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ ecuația hiperbolei căutate. Din $A \in (H)$, obținem că $\frac{25}{a^2} - \frac{36}{b^2} = 1$. Cum ecuația tangentei în A la (H) este $\frac{5x}{a^2} - \frac{6y}{b^2} = 1$, deci are panta $\frac{5b^2}{6a^2} = \frac{3}{2}$, rezultă că $b^2 = \frac{9}{5}a^2$. Deducem că $\frac{25}{a^2} - \frac{20}{a^2} = 1$, de unde $a^2 = 5$, $b^2 = 9$, iar ecuația hiperbolei este (H): $\frac{x^2}{5} - \frac{y^2}{9} = 1$.

Soluție alternativă

Ca mai sus, din $A \in (H)$, obţinem că $\frac{25}{a^2} - \frac{36}{b^2} = 1$. Ecuaţia dreptei (d) se poate scrie sub forma $(d): y = \frac{3}{2}x - \frac{3}{2}$. Conform rezultatului teoremei 8.26, urmează că $\left(-\frac{3}{2}\right)^2 = \left(\frac{3}{2}\right)^2 a^2 - b^2$, deoarece (d) este tangentă la (H), deci $9 = 9a^2 - 4b^2$. Cu notaţiile $\frac{1}{a^2} = \alpha$, $\frac{1}{b^2} = \beta$, urmează că $\begin{cases} 9\alpha - 4\beta = 9 \\ \frac{25}{\alpha} - \frac{36}{\beta} = 1 \end{cases}$, de unde $\alpha = 5$, $\beta = 9$. Urmează că ecuaţia hiperbolei este $(H): \frac{x^2}{5} - \frac{y^2}{9} = 1$.

- **8.30** Fie hiperbola $(H): 4x^2 9y^2 = 144$.
 - 1) Precizați semiaxele hiperbolei, distanța focală, vârfurile și asimptotele.
 - 2) Demonstrați că din M(8,1) nu se pot duce tangente la hiperbolă.
 - 3) Precizați ecuațiile tangentelor duse din N(0,3) la hiperbolă.

- 1) Semiaxele sunt a=6, b=4, distanța focală este $2c=2\sqrt{a^2+b^2}=4\sqrt{13}$, vârfurile sunt A(6,0) și A'(-6,0), iar asimptotele sunt $y=\pm\frac{2}{3}x$.
- 2) Cum $4 \cdot 8^2 9 \cdot 1^2 = 247 > 144$, punctul M se află în interiorul hiperbolei, deci din M nu pot fi duse tangente la hiperbolă.
- 3) Tangenta în $P(x_0, y_0) \in (H)$ la hiperbolă are ecuația $(d): 4x_0x 9y_0y 144 = 0$; cum $N \in (d)$, obținem că $y_0 = -\frac{16}{3}$, apoi, din $4x_0^2 9y_0^2 = 144$, deducem că $x_0 = \pm 10$. Cele două tangente din N la (H) au ecuațiile 5x + 12y 18 = 0, respectiv 5x 12y + 18 = 0.
- **8.31** Dacă M este un punct variabil pe o hiperbolă de focare F, F' și centru O, arătați că diferența $MF \cdot MF' MO^2$ este constantă.

Soluție

Calculele sunt analoage celor din soluția problemei 8.22.

8.32 Demonstrați că produsul distanțelor de la un punct arbitrar al hiperbolei (H): $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ la asimptotele acesteia este constant, egal cu $\frac{a^2b^2}{a^2 + b^2}$.

Soluție

Fie $P(x_0,y_0)$, cu $\frac{x_0^2}{a^2}-\frac{y_0^2}{b^2}=1$. Distanțele de la P la asimptotele $(d_1):bx-ay=0$ și $(d_2):bx+ay=0$ sunt $\frac{|bx_0-ay_0|}{\sqrt{a^2+b^2}}$, respectiv $\frac{|bx_0+ay_0|}{\sqrt{a^2+b^2}}$. Produsul acestor distanțe este $\frac{|b^2x_0^2-a^2y_0^2|}{a^2+b^2}$ și, cum $b^2x_0^2-a^2y_0^2=a^2b^2$, rezultă concluzia problemei.

8.4 PARABOLA

- 8.33 Precizați ecuația parabolei (raportată la axele de simetrie) determinată de
 - 1) Distanța de la focar la vârf egală cu 6.
 - 2) Punctul M(3,6).
 - 3) Focarul F(3,0).

- 1) Cum $F(\frac{p}{2},0)$, iar vârful este O(0,0), rezultă că p=12. Ecuația parabolei este $(P): y^2=2px$, i.e. $(P): y^2=24x$.
- 2) Dacă $(P): y^2=2px$ și $M(3,6)\in (P)$, atunci 36=6p, deci p=6. Ecuația parabolei este $(P): y^2=12x$.

- 3) Cum $F(\frac{p}{2},0)$, deducem că p=6. Ecuația parabolei este $(P):y^2=12x$.
- **8.34** Determinați pe parabola $(P): y^2 = 12x$ punctele de rază focală egală cu 4.

Focarul este F(3,0). Dacă $M(x_0,y_0) \in (P)$, atunci $y_0^2 = 12x_0$. Raza focală a lui M este $MF = \sqrt{(x_0-3)^2 + y_0^2}$; deducem că $(x_0-3)^2 + 12x_0 = 16$, deci $x_0^2 + 6x_0 - 7 = 0$. Cum $x_0 > 0$, rezultă că $x_0 = 1$, iar $y_0 = \pm 2\sqrt{3}$. Punctele căutate sunt $M_1(1,2\sqrt{3})$ și $M_2(1,-2\sqrt{3})$.

Soluție alternativă

Directoarea parabolei este (d): x=-3, iar distanța de la $M(x_0,y_0)\in (P)$ la (d) este egală cu raza focală, deci egală cu 4. Deducem că $x_0=1$, apoi $y_0=\pm 2\sqrt{3}$.

8.35 Fie parabola $(P): y^2 = 8x$. Determinați razele focale ale punctelor M, N de pe parabolă cu abscisă 1, respectiv ordonată 4.

Soluție

Focarul parabolei este F(2,0). Există două puncte de abscisă 1 pe parabolă, anume $M(1,2\sqrt{2})$ și $M'(1,-2\sqrt{2})$; avem că MF=M'F=3. Punctul N are coordonatele N(2,4), iar NF=4.

8.36 Demonstrați că dreapta (d): y = mx + n este tangentă parabolei $(P): y^2 = 2px$ dacă $n = \frac{p}{2m}$.

Soluție

Rezolvând sistemul $\begin{cases} y=mx+n\\ y^2=2px \end{cases}$, după substituția lui y în a două ecuație, obținem ecuația de gradul doi în x: $m^2x^2+2(mn-p)x+n^2=0$. Discriminantul acestei ecuații este $\Delta=4p(p-2mn)$. În ipoteza că $n=\frac{p}{2m}$, avem $\Delta=0$, prin urmare sistemul considerat are soluție unică, deci dreapta (d) este tangentă la parabolă.

8.37 Demonstrați că locul geometric al punctelor din care se pot duce tangente perpendiculare la parabola $(P): y^2 = 2px$ este directoarea parabolei.

Solutie

Fie $M(x_0, y_0)$ un punct din care se pot duce tangente perpendiculare la parabolă și fie m_1 , m_2 pantele acestor tangente. Ecuația tangentei de pantă m este $y-y_0=$

 $m(x-x_0)$. Dacă sistemul $\begin{cases} y-y_0=m(x-x_0) \\ y^2=2px \end{cases}$ are soluție unică, atunci ecuația de gradul doi în x: $(mx-mx_0+y_0)^2=2px$, i.e.

$$m^2x^2 + 2(my_0 - m^2x_0 - p)x + m^2x_0^2 + y_0^2 - 2mx_0y_0 = 0,$$

are discriminantul nul, prin urmare

$$2m^2x_0 - 2my_0 + p = 0.$$

Soluțiile acestei ecuații de gradul doi în m sunt tocmai numerele m_1 și m_2 . Din a doua relație Viète, obținem că $m_1m_2 = \frac{p}{2x_0}$. Dar $m_1m_2 = -1$, deci $x_0 = -\frac{p}{2}$, ceea ce arată că locul geometric dorit este chiar directoarea parabolei.

- **8.38** Se consideră parabola $(P): y^2 = 2px$ și dreapta (d): y = a.
 - 1) Demonstrați că dreapta intersectează parabola într-un singur punct.
 - 2) Este dreapta (d) tangentă parabolei?

Soluție

- 1) Dreapta (d) este orizontală, deci ea intersectează parabola (P) într-un singur punct, $M(\frac{a^2}{2p},a)$.
- 2) Deşi (d) intersectează (P) într-un singur punct, ea nu este tangentă parabolei, întrucât pe (d) există puncte din interiorul parabolei.
- **8.39** Determinați ecuațiile tangentelor duse din M(4,3) la parabola $(P): y^2 = 2x$.

Soluție

Dacă $T(x_0,y_0)\in (P)$, ecuația tangentei în T la (P) este $(d):yy_0=x+x_0$. Fiindcă $M\in (d)$, vom avea că $3y_0=x_0+4$. Înlocuind în $y_0^2=2x_0$, obținem că $x_0=y_0=2$, sau $x_0=8$, $y_0=4$. Ecuațiile celor două tangente sunt $(d_1):x-2y+2=0$, respectiv $(d_2):x-4y+8=0$.

Soluție alternativă

Conform rezultatului problemei 8.36, ecuațiile tangentelor din M la (P) sunt de forma $y=mx+\frac{p}{2m}$, unde parametrul p al parabolei (P) este 1. Punând condiția ca M să aparțină acestor tangente, obținem că $3=4m+\frac{1}{2m}$, sau $8m^2-6m+1=0$, de unde $m_1=\frac{1}{4}$, iar $m_2=\frac{1}{2}$. Obținem că ecuațiile tangentelor din M sunt $y=\frac{1}{4}x+\frac{1}{2\cdot\frac{1}{4}}$, adică x-4y+8=0, respectiv $y=\frac{1}{2}x+\frac{1}{2\cdot\frac{1}{3}}$, adică x-2y+2=0.

8.40 Precizați punctele de pe parabola $(P): y^2 = 2x$ în care tangenta este paralelă cu dreapta (d): x - 2y + 3 = 0.

Solutie

Dacă $T(x_0, y_0) \in (P)$ este un astfel de punct, ecuația tangentei în T la (P), care este $yy_0=x+x_0$, are panta $m=\frac{1}{y_0}$. Cum dreapta (d) are panta $\frac{1}{2}$, deducem că $y_0=2$, iar $x_0 = \frac{y_0^2}{2} = 2$. Astfel, T(2,2).

Solutie alternativă

Panta dreptei (d) este $m=\frac{1}{2}$ iar parametrul parabolei (P) este p=1, deci ecuația tangentei căutate este $y=\frac{1}{2}x+\frac{1}{2\cdot\frac{1}{2}}$, adică $y=\frac{1}{2}x+1$. Punctul de tangența se obține rezolvând sistemul $\begin{cases} y=\frac{1}{2}x+1\\ y^2=2x \end{cases}$, de unde x=2,y=2, iar punctul de tangență este T(2,2).

8.41 Determinați punctele de intersecție ale dreptei (d): x-y-3=0 cu parabola (P): $y^2 = 4x$ și precizați ecuațiile tangentelor la parabolă în punctele de intersecție.

Soluție

Sistemul $\begin{cases} x-y-3=0\\ y^2=4x \end{cases}$ are soluţiile (9,6) şi (1,-2), deci dreapta (d) intersectează parabola (P) în A(9,6) și B(1,-2). Ecuația tangentei în A la parabolă este x-3y+9=0, iar ecuația tangentei în B la parabolă este x + y + 1 = 0.

8.42 Determinați ecuația canonică a unei parabole dacă tangenta paralelă cu dreapta (d): -x + 3y + 2 = 0 trece prin M(3,4).

Solutie

Fie $T(x_0, y_0)$ punctul în care tangenta paralelă cu dreapta (d) intersectează parabola; atunci ecuația acestei tangente este $yy_0 = p(x + x_0)$, unde $(P): y^2 = 2px$ este ecuația canonică a parabolei. Panta tangentei este $\frac{p}{y_0} = \frac{1}{3}$, deci $y_0 = 3p$. Cum M aparține tangentei, $4y_0 = p(3 + x_0)$, de unde $12p = p(3 + x_0)$, prin urmare $x_0 = 9$. Cum $y_0^2 = 2px_0$, deducem că $9p^2 = 18p$, de unde p = 2, iar $y_0 = 6$. Ecuația parabolei este $(P): y^2 = 4x$.

Soluție alternativă

Panta dreptei (d) este $m=\frac{1}{3}$, deci ecuația tangentei este $y=\frac{1}{3}x+\frac{p}{2\cdot\frac{1}{2}}$. Punând condiția ca M să aparțină dreptei, urmează că $4=\frac{1}{3}\cdot 3+\frac{3p}{2}$, de unde p=2, iar ecuația parabolei este $(P): y^2 = 4x$.

Capitolul 9

CONICE PE ECUAȚII GENERALE

9.1 Aduceți la forma canonică și reprezentați grafic conicele

1)
$$(\Gamma_1)$$
: $6x^2 - 4xy + 9y^2 - 4x - 32y - 6 = 0$;

2)
$$(\Gamma_2)$$
: $5x^2 + 8xy + 5y^2 - 18x - 18y + 2 = 0$;

3)
$$(\Gamma_3): 3x^2 - 4xy - 2x + 4y - 3 = 0$$
;

4)
$$(\Gamma_4)$$
: $3x^2 + 4xy + 12x + 16y - 36 = 0$;

5)
$$(\Gamma_5): xy + x + 2y = 0;$$

6)
$$(\Gamma_6): 4x^2 - 4xy + y^2 + 2x - 6y + 1 = 0;$$

7)
$$(\Gamma_7)$$
: $x^2 + 2xy + y^2 - 3x + 3y - 18 = 0$;

8)
$$(\Gamma_8): 2x^2 + 4xy + 2y^2 - 7x - 7y + 3 = 0$$
;

9)
$$(\Gamma_9)$$
: $-3x^2 + 5xy + 2y^2 + 16x + 3y - 5 = 0$;

10)
$$(\Gamma_{10}): x^2 + 2y^2 - 6x + 4y + 12 = 0.$$

Soluție

1) Cum

$$\delta = \det A = \begin{vmatrix} 6 & -2 \\ -2 & 9 \end{vmatrix} = 50, \Delta = \begin{vmatrix} 6 & -2 & -2 \\ -2 & 9 & -16 \\ -2 & -16 & -6 \end{vmatrix} = -2000,$$

conica dată este o conică nedegenerată de gen eliptic, iar deoarece

$$I = 15, I\Delta = -30000 < 0,$$

ea este o elipsă reală. Coordonatele centrului sunt date de sistemul

$$\begin{cases} 12x - 4y - 4 = 0 \\ -4x + 18y - 32 = 0 \end{cases}$$

deci centrul elipsei este C(1,2). Valorile proprii ale matricei A se obțin rezolvând ecuația

$$\det(\lambda I_2 - A) = 0 \Leftrightarrow \begin{vmatrix} \lambda - 6 & 2 \\ 2 & \lambda - 9 \end{vmatrix} = 0 \Leftrightarrow \lambda^2 - 15\lambda + 50 = 0 \Leftrightarrow \lambda_1 = 5, \lambda_2 = 10.$$

Vectorii proprii ai matricei *A* se obţin rezolvând sistemele

$$A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 5 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, A \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 10 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

Subspaţiul propriu corespunzător valorii proprii $\lambda_1=5$ este $S(5)=\left\{\begin{pmatrix} x_1\\ \frac{x_1}{2} \end{pmatrix}; x_1\in \mathbb{R}\right\}$, iar o bază ortonormată în acesta este $B_1=\left\{u_1=\begin{pmatrix} \frac{2}{\sqrt{5}}\\ \frac{1}{\sqrt{5}} \end{pmatrix}\right\}$. Subspaţiul propriu corespunzător valorii proprii $\lambda_2=10$ este $S(10)=\left\{\begin{pmatrix} -\frac{x_2}{2}\\ x_2 \end{pmatrix}; x_2\in \mathbb{R}\right\}$, iar o bază ortonormată în acesta este $B_2=\left\{u_2=\begin{pmatrix} -\frac{1}{\sqrt{5}}\\ \frac{2}{\sqrt{5}} \end{pmatrix}\right\}$. În raport cu reperul cartezian cu originea în C si cu axele CX şi CY de vectori directori $\vec{v_1}=\frac{2}{\sqrt{5}}\vec{i}+\frac{1}{\sqrt{5}}\vec{j}, \vec{v_2}=-\frac{1}{\sqrt{5}}\vec{i}+\frac{2}{\sqrt{5}}\vec{j}$, ecuația conicei are forma canonică

$$(\Gamma_1): \lambda_1 X^2 + \lambda_2 Y^2 - \frac{\Delta}{\delta} = 0 \Leftrightarrow (\Gamma_1): \frac{X^2}{8} + \frac{Y^2}{4} - 1 = 0.$$

2) Deoarece

$$\delta = \det A = \begin{vmatrix} 5 & 4 \\ 4 & 5 \end{vmatrix} = 9, \Delta = \begin{vmatrix} 5 & 4 & -9 \\ 4 & 5 & -9 \\ -9 & -9 & 2 \end{vmatrix} = -144,$$

conica dată este o conică nedegenerată de gen eliptic, iar deoarece

$$I = 10$$
, $I\Delta = -1440 < 0$,

ea este o elipsă reală. Coordonatele centrului sunt date de sistemul

$$\begin{cases} 10x + 8y - 18 = 0 \\ 8x + 10y - 18 = 0 \end{cases}$$

deci centrul elipsei este C(1,1). Valorile proprii ale matricei A se obțin rezolvând ecuația

$$\det(\lambda I_2 - A) = 0 \Leftrightarrow \begin{vmatrix} \lambda - 5 & -4 \\ -4 & \lambda - 5 \end{vmatrix} = 0 \Leftrightarrow \lambda^2 - 10\lambda + 9 = 0 \Leftrightarrow \lambda_1 = 1, \lambda_2 = 9.$$

Subspaţiul propriu corespunzător valorii proprii $\lambda_1=1$ este $S(1)=\left\{\begin{pmatrix}x_1\\-x_1\end{pmatrix};x_1\in\mathbb{R}\right\}$, iar o bază ortonormată în acesta este $B_1=\left\{u_1=\begin{pmatrix}\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}\end{pmatrix}\right\}$. Subspaţiul propriu corespunzător valorii proprii $\lambda_2=9$ este $S(9)=\left\{\begin{pmatrix}x_2\\x_2\end{pmatrix};x_2\in\mathbb{R}\right\}$, iar o bază ortonormată în acesta este $B_2=\left\{u_2=\begin{pmatrix}\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{pmatrix}\right\}$. În raport cu reperul cartezian cu originea în C si cu axele CX și CY de vectori directori $\vec{v}_1=\frac{1}{\sqrt{2}}\vec{i}-\frac{1}{\sqrt{2}}\vec{j}$, $\vec{v}_2=\frac{1}{\sqrt{2}}\vec{i}+\frac{1}{\sqrt{2}}\vec{j}$, ecuația conicei are forma canonică

$$(\Gamma_2):\lambda_1X^2+\lambda_2Y^2-rac{\Delta}{\delta}=0\Leftrightarrow (\Gamma_2):rac{X^2}{16}+rac{Y^2}{9}-1=0.$$

3) Deoarece

$$\delta = \det A = \begin{vmatrix} 3 & -2 \\ -2 & 0 \end{vmatrix} = -4, \Delta = \begin{vmatrix} 3 & -2 & -1 \\ -2 & 0 & 2 \\ -1 & 2 & -3 \end{vmatrix} = 8,$$

conica dată este o conică nedegenerată de gen hiperbolic, adică o hiperbolă. Coordonatele centrului sunt date de sistemul

$$\begin{cases} 6x - 4y - 2 = 0 \\ -4x + 4 = 0 \end{cases}$$

deci centrul hiperbolei este C(1,1). Valorile proprii ale matricei A se obțin rezolvând ecuația

$$\det(\lambda I_2 - A) = 0 \Leftrightarrow \begin{vmatrix} \lambda - 3 & 2 \\ 2 & \lambda \end{vmatrix} = 0 \Leftrightarrow \lambda^2 - 3\lambda - 4 = 0 \Leftrightarrow \lambda_1 = -1, \lambda_2 = 4.$$

Subspaţiul propriu corespunzător valorii proprii $\lambda_1 = -1$ este $S(-1) = \left\{ \begin{pmatrix} x_1 \\ 2x_1 \end{pmatrix}; x_1 \in \mathbb{R} \right\}$, iar o bază ortonormată în acesta este $B_1 = \left\{ u_1 = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix} \right\}$. Subspaţiul propriu corespunzător valorii proprii $\lambda_2 = 4$ este $S(4) = \left\{ \begin{pmatrix} -2x_2 \\ x_2 \end{pmatrix}; x_2 \in \mathbb{R} \right\}$, iar o bază ortonormată în acesta este $B_2 = \left\{ u_2 = \begin{pmatrix} \frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix} \right\}$. În raport cu reperul cartezian cu originea

în C si cu axele CX şi CY de vectori directori $\vec{v}_1 = \frac{1}{\sqrt{5}}\vec{i} + \frac{2}{\sqrt{5}}\vec{j}$, $\vec{v}_2 = \frac{-2}{\sqrt{5}}\vec{i} + \frac{1}{\sqrt{5}}\vec{j}$, ecuația conicei are forma canonică

$$(\Gamma_3): \lambda_1 X^2 + \lambda_2 Y^2 - \frac{\Delta}{\delta} = 0 \Leftrightarrow (\Gamma_3): -\frac{X^2}{2} + \frac{Y^2}{\frac{1}{2}} - 1 = 0.$$

4) Deoarece

$$\delta = \det A = \begin{vmatrix} 3 & 2 \\ 2 & 0 \end{vmatrix} = -4, \Delta = \begin{vmatrix} 3 & 2 & 6 \\ 2 & 0 & 8 \\ 6 & 8 & -36 \end{vmatrix} = 144,$$

conica dată este o conică nedegenerată de gen hiperbolic, adică o hiperbolă. Coordonatele centrului sunt date de sistemul

$$\begin{cases} 6x + 4y + 12 = 0 \\ -4x + 16 = 0 \end{cases}$$

deci centrul hiperbolei este C(4, -9). Valorile proprii ale matricei A se obțin rezolvând ecuația

$$\det(\lambda I_2 - A) = 0 \Leftrightarrow \begin{vmatrix} \lambda - 3 & -2 \\ -2 & \lambda \end{vmatrix} = 0 \Leftrightarrow \lambda^2 - 3\lambda - 4 = 0 \Leftrightarrow \lambda_1 = -1, \lambda_2 = 4.$$

Subspaţiul propriu corespunzător valorii proprii $\lambda_1 = -1$ este $S(-1) = \left\{ \begin{pmatrix} x_1 \\ -2x_1 \end{pmatrix}; x_1 \in \mathbb{R} \right\}$,

iar o bază ortonormată în acesta este $B_1 = \left\{ u_1 = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} \end{pmatrix} \right\}$. Subspațiul propriu core-

spunzător valorii proprii $\lambda_2=4$ este $S(4)=\left\{\begin{pmatrix}2x_2\\x_2\end{pmatrix};x_2\in\mathbb{R}\right\}$, iar o bază ortonormată în acesta este $B_2=\left\{u_2=\begin{pmatrix}\frac{2}{\sqrt{5}}\\\frac{1}{\sqrt{5}}\end{pmatrix}\right\}$. În raport cu reperul cu originea în C si cu axele CX și CY de vectori directori $\vec{v_1}=\frac{1}{\sqrt{5}}\vec{i}-\frac{2}{\sqrt{5}}\vec{j}$, $\vec{v_2}=\frac{2}{\sqrt{5}}\vec{i}+\frac{1}{\sqrt{5}}\vec{j}$, ecuația conicei are forma canonică

$$(\Gamma_4): \lambda_1 X^2 + \lambda_2 Y^2 - \frac{\Delta}{\delta} = 0 \Leftrightarrow (\Gamma_2): -\frac{X^2}{36} + \frac{Y^2}{9} - 1 = 0.$$

5) Deoarece

$$\delta = \det A = \begin{vmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{vmatrix} = -\frac{1}{4}, \Delta = \begin{vmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & 1 \\ \frac{1}{2} & 1 & 9 \end{vmatrix} = -\frac{7}{4},$$

conica dată este o conică nedegenerată de gen hiperbolic, adică o hiperbolă. Coordonatele centrului sunt date de sistemul

$$\begin{cases} y+1=0\\ x+2=0 \end{cases}$$

deci centrul hiperbolei este C(-1,-2). Valorile proprii ale matricei A se obțin rezolvând ecuația

$$\det(\lambda I_2 - A) = 0 \Leftrightarrow \begin{vmatrix} \lambda & -\frac{1}{2} \\ -\frac{1}{2} & \lambda \end{vmatrix} = 0 \Leftrightarrow \lambda^2 - \frac{1}{4} = 0 \Leftrightarrow \lambda_1 = -\frac{1}{2}, \lambda_2 = \frac{1}{2}.$$

Subspaţiul propriu corespunzător valorii proprii $\lambda_1 = -\frac{1}{2}$ este $S(-\frac{1}{2}) = \left\{ \begin{pmatrix} x_1 \\ x_1 \end{pmatrix}; x_1 \in \mathbb{R} \right\}$, iar o bază ortonormată în acesta este $B_1 = \left\{ u_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \right\}$. Subspaţiul propriu corespunzător valorii proprii $\lambda_2 = \frac{1}{2}$ este $S(\frac{1}{2}) = \left\{ \begin{pmatrix} -x_2 \\ x_2 \end{pmatrix}; x_2 \in \mathbb{R} \right\}$, iar o bază ortonormată în acesta este $B_2 = \left\{ u_2 = \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \right\}$. În raport cu reperul cu originea în C si cu axele CX şi CY de vectori directori $\vec{v}_1 = \frac{1}{\sqrt{2}}\vec{i} + \frac{1}{\sqrt{2}}\vec{j}$, $\vec{v}_2 = -\frac{1}{\sqrt{2}}\vec{i} + \frac{1}{\sqrt{2}}\vec{j}$, ecuația conicei are forma canonică

$$(\Gamma_4): \lambda_1 X^2 + \lambda_2 Y^2 - \frac{\Delta}{\delta} = 0 \Leftrightarrow (\Gamma_2): \frac{X^2}{14} - \frac{Y^2}{14} - 1 = 0.$$

6) Deoarece

$$\delta = \det A = \begin{vmatrix} 4 & -2 \\ -2 & 1 \end{vmatrix} = 0, \Delta = \begin{vmatrix} 4 & -2 & 1 \\ -2 & 0 & -3 \\ 1 & -3 & 1 \end{vmatrix} = -28,$$

conica dată este o conică nedegenerată de gen parabolic, adică o parabolă. Axa de simetrie a acesteia este dată de

$$VX: a_{11}\frac{\partial f}{\partial x} + a_{12}\frac{\partial f}{\partial y} = 0 \Leftrightarrow VX: 2x - y + 1 = 0.$$

Intersectând VX cu (Γ_6) obţinem vârful parabolei $V(-\frac{2}{5},\frac{1}{5})$. Axa VY este atunci perpendiculară în V pe VX (sau, echivalent, tangenta în V la parabolă). Cum $m_{VX}=2$,

urmează că $m_{VY}=-\frac{1}{2}$, iar ecuația lui VY este $VY:y-\frac{1}{5}=-\frac{1}{2}\left(x-(-\frac{2}{5})\right)$, adică $VY:y=-\frac{1}{2}x+\frac{2}{5}$. Parametrul parabolei este $p=\sqrt{-\frac{\Delta}{I^3}}=\frac{1}{5}\sqrt{\frac{28}{5}}$. În raport cu un reper cu originea în V și sensurile pe VX, VY alese în așa fel încât reperul să fie pozitiv orientat, forma canonică a ecuației conicei este

$$(\Gamma_6): Y^2 = \frac{2}{5}\sqrt{\frac{28}{5}}X.$$

7) Deoarece

$$\delta = \det A = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 0, \Delta = \begin{vmatrix} 1 & 1 & -\frac{3}{2} \\ 1 & 1 & \frac{3}{2} \\ -\frac{3}{2} & \frac{3}{2} & -18 \end{vmatrix} = -9,$$

conica dată este o conică nedegenerată de gen parabolic, adică o parabolă. Axa de simetrie a acesteia este dată de

$$VX: a_{11}\frac{\partial f}{\partial x} + a_{12}\frac{\partial f}{\partial y} = 0 \Leftrightarrow VX: x + y = 0.$$

Intersectând VX cu (Γ_7) obţinem vârful parabolei V(-3,3). Axa VY este atunci perpendiculară în V pe VX (sau, echivalent, tangenta în V la parabolă). Cum $m_{VX}=-1$, urmează că $m_{VY}=1$, iar ecuaţia lui VY este VY:y-3=x+3, adică VY:y=x+6. Parametrul parabolei este $p=\sqrt{-\frac{\Delta}{I^3}}=3\frac{\sqrt{2}}{4}$. În raport cu un reper cu originea în V şi sensurile pe VX, VY alese în aşa fel încât reperul să fie pozitiv orientat, forma canonică a ecuaţiei conicei este

$$(\Gamma_7): Y^2=3\frac{\sqrt{2}}{2}X.$$

8) Deoarece

$$\delta = \det A = \begin{vmatrix} 2 & 2 \\ 2 & 2 \end{vmatrix} = 0, \Delta = \begin{vmatrix} 2 & 2 & -\frac{7}{2} \\ 2 & 2 & -\frac{7}{2} \\ -\frac{7}{2} & -\frac{7}{2} & 3 \end{vmatrix} = 0,$$

conica dată este o conică degenerată de gen parabolic. Deoarece rang $\begin{pmatrix} 2 & 2 & -\frac{7}{2} \\ 2 & 2 & -\frac{7}{2} \\ -\frac{7}{2} & -\frac{7}{2} & 3 \end{pmatrix} =$

2, (sau, echivalent $\Delta_1 = \begin{vmatrix} 2 & -\frac{7}{2} \\ -\frac{7}{2} & 3 \end{vmatrix} + \begin{vmatrix} 2 & -\frac{7}{2} \\ -\frac{7}{2} & 3 \end{vmatrix} + \begin{vmatrix} 2 & 2 \\ 2 & 2 \end{vmatrix} \neq 0$), urmează că (Γ_8) este reuniunea a două drepte paralele. Se observă că

$$(\Gamma_8): 2(x+y)^2 - 7(x+y) + 3 = 0 \Leftrightarrow 2\left(x+y-\frac{1}{2}\right)(x+y-3) = 0$$
$$\Leftrightarrow (2x+2y-1)(x+y-3) = 0,$$

iar (Γ_8) este reuniunea dreptelor $(d_1): 2x+2y-1=0$ și $(d_2): x+y-3=0$. Altfel: Reordonând ecuația după x se obține

$$2x^2 + x(4y - 7) + (2y^2 - 7y + 3) = 0.$$

Rezolvând această ecuație ca o ecuație de gradul al doilea în *x* se obține că

$$x_{1,2} = \frac{-(4y-7) \pm \sqrt{(4y-7)^2 - 2 \cdot 4 \cdot (2y^2 - 7y + 3)}}{4}$$
$$= \frac{-(4y-7) \pm 5}{4},$$

de unde

$$x_1 = -y + \frac{1}{2}, x_2 = -y + 3,$$

iar ecuațiile celor două drepte sunt $(d_1): x+y-\frac{1}{2}=0$, $(d_2): x+y-3=0$.

9) Deoarece

$$\delta = \det A = \begin{vmatrix} -3 & \frac{5}{2} \\ \frac{5}{2} & 2 \end{vmatrix} = -\frac{49}{4}, \Delta = \begin{vmatrix} -3 & \frac{5}{2} & 8 \\ \frac{5}{2} & 2 & \frac{3}{2} \\ 8 & \frac{3}{2} & -5 \end{vmatrix} = 0,$$

conica dată este o conică degenerată de gen hiperbolic, adică reuniunea unor drepte concurente. Coordonatele centrului sunt date de sistemul

$$\begin{cases} -6x + 5y + 16 = 0 \\ 5x + 4y + 3 = 0 \end{cases}$$

deci centrul hiperbolei este C(1, -2). Valorile proprii ale matricei A se obțin rezolvând ecuația

$$\det(\lambda I_2 - A) = 0 \Leftrightarrow \begin{vmatrix} \lambda + 3 & -\frac{5}{2} \\ -\frac{5}{2} & \lambda - 2 \end{vmatrix} = 0 \Leftrightarrow \lambda^2 + \lambda - \frac{49}{4} = 0 \Leftrightarrow \lambda_1 = \frac{-1 - 5\sqrt{2}}{2}, \lambda_2 = \frac{-1 + 5\sqrt{2}}{2}.$$

Subspațiul propriu corespunzător valorii proprii $\frac{-1-5\sqrt{2}}{2}$ este

$$S(\frac{-1-5\sqrt{2}}{2}) = \left\{ \begin{pmatrix} x_1 \\ (1-\sqrt{2})x_1 \end{pmatrix}; x_1 \in \mathbb{R} \right\},\,$$

iar o bază ortonormată în acesta este $B_1 = \left\{ u_1 = \begin{pmatrix} \frac{1}{\sqrt{4-2\sqrt{2}}} \\ \frac{1-\sqrt{2}}{\sqrt{4-2\sqrt{2}}} \end{pmatrix} \right\}.$

Subspaţiul propriu corespunzător valorii proprii $\frac{-1+5\sqrt{2}}{2}$ este

$$S(\frac{-1+5\sqrt{2}}{2}) = \left\{ \begin{pmatrix} (\sqrt{2}-1)x_2 \\ x_2 \end{pmatrix}; x_2 \in \mathbb{R} \right\},$$

iar o bază ortonormată în acesta este $B_2 = \left\{ u_2 = \begin{pmatrix} \frac{\sqrt{2}-1}{\sqrt{4-2\sqrt{2}}} \\ \frac{1}{\sqrt{4-2\sqrt{2}}} \end{pmatrix} \right\}$. În raport cu reperul cartezian cu originea în C si cu axele CX și CY de vectori directori $\vec{v}_1 = \frac{1}{\sqrt{4-2\sqrt{2}}} \vec{i} + \frac{1-\sqrt{2}}{\sqrt{4-2\sqrt{2}}} \vec{j}$, $\vec{v}_2 = \frac{\sqrt{2}-1}{\sqrt{4-2\sqrt{2}}} \vec{i} + \frac{1}{\sqrt{4-2\sqrt{2}}} \vec{j}$, ecuația conicei are forma canonică

$$(\Gamma_9): \lambda_1 X^2 + \lambda_2 Y^2 - \frac{\Delta}{\delta} = 0 \Leftrightarrow (\Gamma_9): \frac{-1 - 5\sqrt{2}}{2} X^2 + \frac{-1 + 5\sqrt{2}}{2} Y^2 = 0$$
$$\Leftrightarrow Y = \pm \sqrt{\frac{1 + 5\sqrt{2}}{-1 + 5\sqrt{2}}} X.$$

Altfel: Reordonând ecuația după x se obține

$$-3x^2 + x(5y + 16) + (2y^2 + 3y - 5) = 0.$$

Rezolvând această ecuație ca o ecuație de gradul al doilea în x se obține că

$$x_{1,2} = \frac{-(5y+16) \pm \sqrt{(5y+16)^2 + 12 \cdot (2y^2 + 3y - 5)}}{-6}$$
$$= \frac{-(5y+16) \pm \sqrt{49(y+2)^2}}{-6},$$

de unde

$$x_1 = 2y + 5, x_2 = -\frac{1}{3}y + \frac{1}{3},$$

iar ecuațiile celor două drepte sunt $(d_1): x-2y-5=0$, $(d_2): x+\frac{1}{3}y-\frac{1}{3}=0$. Spre deosebire de ecuațiile obținute cu ajutorul primei metode, care sunt ecuațiile în raport cu reperul canonic, acestea sunt ecuațiile în raport cu reperul inițial.

10) Cum

$$\delta = \det A = \begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} = 2, \Delta = \begin{vmatrix} 1 & 0 & -3 \\ 0 & 2 & 2 \\ -3 & 2 & 12 \end{vmatrix} = 2,$$

conica dată este o conică nedegenerată de gen eliptic, iar deoarece

$$I = 2, I\Delta = 4 > 0,$$

ea este o elipsă imaginară (mulțimea vidă).

9.2 Determinați $a, b \in \mathbb{R}$ astfel ca ecuația

$$x^2 + 2axy + 4y^2 - 4x + 2by = 0$$

să reprezinte două drepte paralele.

Soluție

Invarianții conicei sunt

$$\Delta = \begin{vmatrix} 1 & a & -2 \\ a & 4 & b \\ -2 & b & 0 \end{vmatrix} = -4ab - 16 - b^{2}; \quad \delta = \begin{vmatrix} 1 & a \\ a & 4 \end{vmatrix} = 4 - a^{2}$$

$$\Delta_{1} = \begin{vmatrix} 1 & a \\ a & 4 \end{vmatrix} + \begin{vmatrix} 4 & b \\ b & 0 \end{vmatrix} + \begin{vmatrix} 1 & -2 \\ -2 & 0 \end{vmatrix} = -a^{2} - b^{2}.$$

Pentru ca ecuația să reprezinte două drepte paralele trebuie ca $\Delta=0$, $\delta=0$, $\Delta_1\neq0$. Urmează că a=-2, b=4 sau a=2, $\beta=-4$.

Pentru a = -2, b = 4, ecuația conicei se poate pune sub forma

$$(x^2 - 4xy + 4y^2) - 4x + 8y = 0 \Leftrightarrow (x - 2y)^2 - 4(x - 2y) = 0 \Leftrightarrow (x - 2y)(x - 2y - 4) = 0,$$

de unde ecuațiile dreptelor paralele sunt $(d_1): x-2y=0$, $(d_2): x-2y-4=0$.

Pentru a = 2, b = -4, ecuația conicei se poate pune sub forma

$$(x^2 + 4xy + 4y^2) - 4x - 8y = 0 \Leftrightarrow (x + 2y)^2 - 4(x + 2y) = 0 \Leftrightarrow (x + 2y)(x + 2y - 4) = 0$$

de unde ecuațiile dreptelor paralele sunt (d_3) : x + 2y = 0, (d_4) : x + 2y - 4 = 0.

Altfel: Pentru a = -2, b = 4, reordonând ecuația după x se obține

$$x^2 - 4x(1+y) + 4y^2 + 8y = 0.$$

Rezolvând această ecuație ca o ecuație de gradul al doilea în x se obține că

$$x_{1,2} = \frac{4(1+y) \pm \sqrt{16(1+y)^2 - 4 \cdot (4y^2 + 8y)}}{2}$$
$$= \frac{4(1+y) \pm 4}{2},$$

de unde

$$x_1 = 2y, x_2 = 2y + 4$$

iar ecuațiile celor două drepte sunt $(d_1): x-2=0$, $(d_2): x-2y-4=0$. Pentru a=2, b=-4 se procedează similar.

9.3 Determinați $a, b \in \mathbb{R}$ astfel ca ecuația

$$x^2 - 4xy + ay^2 + 2x - 4y + b = 0$$

să reprezinte două drepte confundate.

Soluție

Invarianții conicei sunt

$$\Delta = \begin{vmatrix} 1 & -2 & 1 \\ -2 & a & -2 \\ 1 & -2 & b \end{vmatrix} = (a-4)(b-1); \quad \delta = \begin{vmatrix} 1 & -2 \\ -2 & a \end{vmatrix} = a-4;$$

$$\Delta_1 = \begin{vmatrix} 1 & -2 \\ -2 & a \end{vmatrix} + \begin{vmatrix} a & -2 \\ -2 & b \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 1 & b \end{vmatrix} = ab + a + b - 9.$$

Pentru ca ecuația să reprezinte două drepte confundate trebuie ca $\Delta=0$, $\delta=0$, $\Delta_1=0$. Urmează că a=4, b=1.

Pentru a = 4, b = 1, ecuația conicei se poate pune sub forma

$$(x^2 - 4xy + 4y^2) + 2x - 4y + 1 = 0 \Leftrightarrow (x - 2y)^2 + 2(x - 2y) + 1 = 0$$
$$\Leftrightarrow (x - 2y + 1)^2 = 0,$$

de unde ecuațiile dreptelor paralele sunt $(d_{1,2}): x-2y+1=0$.

Altfel: Pentru a = 4, b = 1, reordonând ecuația după x se obține

$$x^2 + 2x(1 - 2y) + (4y^2 - 4y + 1) = 0.$$

Rezolvând această ecuație ca o ecuație de gradul al doilea în x se obține că

$$x_{1,2} = \frac{-2(1-2y) \pm \sqrt{4(1-2y)^2 - 4 \cdot (4y^2 - 4y + 1)}}{2}$$

= 2y - 1,

de unde ecuațiile celor două drepte confundate sunt $(d_{1,2}): x-2y+1=0$.

9.4 Discutați natura conicei

$$(\Gamma): x^2 - 2mxy + y^2 + 2x - 2y + m = 0$$

în funcție de valorile parametrului m $\in \mathbb{R}$.

Soluție

Invarianții conicei sunt

$$\Delta = \begin{vmatrix} 1 & -m & 1 \\ -m & 1 & -1 \\ 1 & -1 & m \end{vmatrix} = -(m+2)(m-1)^{2};$$

$$\delta = \begin{vmatrix} 1 & -m \\ -m & 1 \end{vmatrix} = (1-m)(1+m);$$

$$I = 2;$$

$$\Delta_{1} = \begin{vmatrix} 1 & -m \\ -m & 1 \end{vmatrix} + \begin{vmatrix} 1 & -1 \\ -1 & m \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 1 & m \end{vmatrix} = -(m-1)^{2}.$$

1) $m \in (-\infty, -2)$. Atunci $\delta < 0$, $\Delta < 0$. Conica este de gen hiperbolic și este nedegenerată, deci este o hiperbolă.

- 2) m=-2. Atunci $\delta<0$, $\Delta=0$. Conica este de gen hiperbolic și este degenerată, deci este reuniunea unor drepte concurente.
- 3) $m \in (-2,1)$. Atunci $\delta < 0$, $\Delta < 0$. Conica este de gen hiperbolic și este nedegenerată, deci este o hiperbolă.
- 4) m=-1. Atunci $\delta=0$, $\Delta<0$. Conica este de gen parabolic și este nedegenerată, deci este o parabolă.
- 5) $m \in (-1,1)$. Atunci $\delta > 0$, $\Delta < 0$. Conica este de gen eliptic și este nedegenerată. Deoarece I > 0 urmează că $I\Delta < 0$, deci conica este o elipsă.
- 6) m=1. Atunci $\delta=0$, $\Delta=0$. Conica este de gen parabolic și este degenerată. Cum $\Delta_1=0$, conica este reuniunea unor drepte confundate.
- 7) $m \in (1, \infty)$. Atunci $\delta < 0$, $\Delta < 0$. Conica este de gen hiperbolic și este nedegenerată, deci este o hiperbolă.

Capitolul 10

SFERA

- 10.1 Precizați ecuația sferei în fiecare dintre cazurile următoare
 - 1) Sfera trece prin A(2, -1, -3) și are centrul în C(3, 2, -1).
 - 2) Sfera are centrul în C(1,2,2) și este tangentă la planul (P): 2x + y + 2z 5 = 0.
 - 3) Punctele A(2,2,3), B(6,4,7) sunt extremitățile unui diametru.
 - 4) Sfera trece prin punctele A(0,0,-1), B(1,0,-1), C(1,1,0) și D(0,1,1).

Soluție

- 1) Raza sferei este $R = CA = \sqrt{14}$, deci ecuația sferei este $(S): (x-3)^2 + (y-2)^2 + (z+1)^2 = 14$.
- 2) Raza sferei este egală cu distanța de la punctul *C* la planul (*P*), deci $R = \frac{|2 \cdot 1 + 2 + 2 \cdot 2 5|}{\sqrt{2^2 + 1^2 + 2^2}} = \frac{3}{3} = 1$. Ecuația sferei este (*S*) : $(x 1)^2 + (y 2)^2 + (z 2)^2 = 1$.
- 3) Centrul sferei este mijlocul segmentului [AB], adică C(4,3,5). Raza sferei este R=CA=3, deci ecuația sferei este $(S):(x-4)^2+(y-3)^2+(z-5)^2=9$.
 - 4) Ecuația sferei este $\begin{vmatrix} x^2+y^2+z^2 & x & y & z & 1 \\ x_A^2+y_A^2+z_A^2 & x_A & y_A & z_A & 1 \\ x_B^2+y_B^2+z_B^2 & x_B & y_B & z_B & 1 \\ x_C^2+y_C^2+z_C^2 & x_C & y_C & z_C & 1 \\ x_D^2+y_D^2+z_D^2 & x_D & y_D & z_D & 1 \end{vmatrix} = 0.$

Făcând inlocuirile și dezvoltând determinantul, obținem că $(S): x^2+y^2+z^2-x+y-z-2=0$.

- 10.2 Precizați poziția planului față de sferă în fiecare din cazurile următoare
 - 1) $(P_1): 6x + 4y + 3z 2 = 0$, $(S_1): (x-1)^2 + (y-1)^2 + (z-2)^2 = 9$;
 - 2) $(P_2): 2x + 3y 6z 1 = 0$, $(S_2): (x 1)^2 + (y + 1)^2 + (z 2)^2 = 4$;
 - 3) $(P_3): 3x y + 2z + 5 = 0$, $(S_3): (x 3)^2 + (y 2)^2 + (z + 1)^2 = 1$.

Soluție

1) Centrul sferei (S_1) este $C_1(1,1,2)$, iar raza sa este $R_1=3$. Observăm că

$$d(C_1,(P_1)) = \frac{|6 \cdot 1 + 4 \cdot 1 + 3 \cdot 2 - 2|}{\sqrt{6^2 + 4^2 + 3^2}} = \frac{14}{\sqrt{61}} < 3 = R_1,$$

prin urmare planul (P_1) este secant sferei (S_1) .

2) Centrul sferei (S_2) este $C_2(1, -1, 2)$, iar raza sa este $R_2 = 2$. Cum

$$d(C_2,(P_2)) = \frac{|2 \cdot 1 + 3 \cdot (-1) - 6 \cdot 2 - 1|}{\sqrt{2^2 + 3^2 + (-6)^2}} = \frac{14}{7} = 2 = R_2,$$

rezultă că planul (P_2) este tangent sferei (S_2) .

3) Centrul sferei (S_3) este $C_3(3,2,-1)$, iar raza sa este $R_3=1$. Deoarece

$$d(C_3, (P_3)) = \frac{|3 \cdot 3 - 2 + 2 \cdot (-1) + 5|}{\sqrt{3^2 + (-1)^2 + 2^2}} = \frac{10}{\sqrt{14}} > 1 = R_3,$$

planul (P_3) va fi exterior sferei (S_3) .

10.3 Determinați ecuația sferei cu centrul în C(4,5,2) știind că sfera $(S): x^2 + y^2 + z^2 - 4x - 12y + 36 = 0$ este tangentă interior la sfera căutată.

Soluţie

Ecuația redusă a sferei (S) este (S): $(x-2)^2 + (y-6)^2 + z^2 = 4$, prin urmare această sferă are centrul A(2,6,0) și raza R=2. Fie (S_1) sfera de centru C și rază R_1 tangentă interior sferei (S); atunci $CA = |R_1 - R|$. Însă CA = 3 și $R_1 > 0$, prin urmare $R_1 = 5$, iar ecuația sferei (S_1) este (S_1) : $(x-4)^2 + (y-5)^2 + (z-2)^2 = 25$.

- **10.4** Fie sfera $(S): x^2 + y^2 + z^2 + 4x + 6y + 8z 38 = 0$.
 - 1) Precizați centrul și raza sferei (S).
 - 2) Precizați ecuațiile parametrice ale sferei (S).
- 3) Arătați că A(4, -6, 2) este exterior sferei și precizați ecuația sferei cu centrul în A tangentă la (S).

Soluţie

- 1) Ecuația redusă a sferei (S) este (S) : $(x+2)^2+(y+3)^2+(z+4)^2=9$, deci centrul sferei este C(-2,-3,-4) iar raza sa este R=3.
 - 2) Ecuațiile parametrice ale sferei sunt

$$(S): \begin{cases} x = 3\sin\varphi \cdot \cos\theta \\ y = 3\sin\varphi \cdot \sin\theta \quad , \text{ cu } \varphi \in [0, \pi], \theta \in [0, 2\pi]. \\ z = 3\cos\varphi \end{cases}$$

- 3) Observăm că CA = 9 > 3 = R, deci punctul A se află în exteriorul sferei (S). Există două sfere de centru A tangente sferei (S): una are raza $R_1 = CA R = 6$ și este tangentă exterior la (S), iar a doua are raza $R_2 = CA + R = 12$ și este tangentă interior la (S). Ecuațiile acestor sfere sunt $(S_1) : (x-4)^2 + (y+6)^2 + (z-2)^2 = 36$, respectiv $(S_2) : (x-4)^2 + (y+6)^2 + (z-2)^2 = 144$.
- **10.5** Fie sfera $(S): x^2 + y^2 + z^2 6x + 2y + z 11 = 0$.
 - 1) Precizați centrul și raza sferei.
 - 2) Precizați ecuațiile diametrului perpendicular pe planul (P): -x + 5y + 2z 9 = 0.

Soluţie

- 1) Ecuația redusă a sferei este $(S): (x-3)^2+(y+1)^2+(z+\frac{1}{2})^2=\frac{3}{4}$, deci centrul sferei este $C(3,-1,-\frac{1}{2})$, iar raza sa este $R=\frac{\sqrt{3}}{2}$.
- 2) Diametrul cerut conține centrul sferei și are ca vector director normala la plan, $\vec{N} = -\vec{\imath} + 5\vec{\jmath} + 2\vec{k}$. Ecuațiile acestui diametru sunt $(D): \frac{x-3}{-1} = \frac{y+1}{5} = \frac{z+\frac{1}{2}}{2}$.
- **10.6** Fie sfera (S) tangentă în M(4,3,2) la planul (P_1) : x + y + z + 9 = 0, al cărei centru O se află în planul (P_2) : 5x 4y + 7z 14 = 0.
- 1) Precizați ecuația normalei în M la planul (P_1) și justificați că ea conține centrul O al sferei.
 - 2) Determinați coordonatele lui O.
 - 3) Determinați distanța de la O la (P_1) .
 - 4) Precizați ecuația sferei (S).

Soluție

- 1) Normala la (P_1) este $\vec{N}_1 = \vec{\imath} + \vec{\jmath} + \vec{k}$, deci ecuația normalei în M la (P_1) este $(D_1): \frac{x-4}{1} = \frac{y-3}{1} = \frac{z-2}{1}$. Cum raza unei sfere dusă din punctul de contact al sferei cu un plan tangent ei este perpendiculară pe acel plan tangent, rezultă că $O \in (D_1)$.
 - 2) Punctul O va fi intersecția dreptei (D_1) cu planul (P_2) . Ecuațiile parametrice ale

lui
$$(D_1)$$
 sunt (D_1) :
$$\begin{cases} x=4+t \\ y=3+t \\ z=2+t \end{cases}$$
 , $t\in\mathbb{R}$. Impunem condiția $5(4+t)-4(3+t)+t$

- 7(2+t) 14 = 0 și obținem că t = -1, deci O(3, 2, 1).
 - 3) Cum $OM \perp (P_1)$, rezultă că $d(O, (P_1)) = OM = \sqrt{3}$.
- 4) Sfera (*S*) are centrul O(3,2,1) și raza $R=\sqrt{3}$, prin urmare (*S*) : $(x-3)^2+(y-2)^2+(z-1)^2=3$.

10.7 Determinați ecuația planului (P) tangent sferei (S) : $(x-1)^2 + (y+2)^2 + (z-3)^2 = 14$ în punctul A(3,1,2).

Soluție

Centrul sferei (S) este C(1, -2, 3); atunci $\overrightarrow{AC} = -2\overrightarrow{\imath} - 3\overrightarrow{\jmath} + \overrightarrow{k}$ este vector normal la planul (P). Ecuația planului tangent este (P): -2(x-3)-3(y-1)+(z-2)=0, *i.e.* (P): 2x+3y-z-7=0.

10.8 Determinați ecuațiile planelor tangente sferei $(S): (x+1)^2 + (y-2)^2 + (z+2)^2 = 16$, care sunt paralele cu planul (P): 3x - 4y = 2.

Soluţie

Planele paralele cu (P) au ecuații de forma $(P_{\alpha}): 3x-4y-\alpha=0, \alpha\in\mathbb{R}$. Un astfel de plan este tangent sferei (S) dacă și numai dacă distanța de la centrul C(-1,2,-2) al sferei la el reste egală cu raza R=4 a sferei. Impunem așadar condiția $d(C,(P_{\alpha}))=\frac{|3\cdot(-1)-4\cdot2-\alpha|}{\sqrt{3^2+(-4)^2}}=4$, de unde obținem că $|\alpha+11|=20$, prin urmare $\alpha_1=9$ sau $\alpha_2=-31$. Planele căutate sunt $(P_{\alpha_1}): 3x-4y-9=0$ și $(P_{\alpha_2}): 3x-4y+31=0$.

- **10.9** Fie sfera $(S): x^2 + y^2 + z^2 4x + 2y 6z + 8 = 0$.
 - 1) Precizați centrul și raza sferei (S).
- 2) Precizați punctele de intersecție ale dreptei $(d): \frac{x-1}{1} = \frac{y}{-1} = \frac{z-1}{2}$ cu sfera (S) folosind eventual ecuațiile parametrice ale lui (d).
 - 3) Precizați ecuațiile planelor tangente la sferă în punctele determinate anterior.

Solutie

- 1) Ecuația redusă a sferei este (S): $(x-2)^2+(y+1)^2+(z-3)^2=6$, deci sfera are centrul C(2,-1,3) și raza $R=\sqrt{6}$.
 - Thrul C(2, -1, 3) §1 1 aza $\mathbb{R} = \mathbb{V}$ 0.

 2) Ecuațiile parametrice ale dreptei (d) sunt (d): $\begin{cases} x = 1 + t \\ y = -t \\ z = 1 + 2t \end{cases}$, $t \in \mathbb{R}$. Punctele de

intersecție ale dreptei cu sfera se obțin pentru acele valori ale lui t care verifică ecuația $(1+t)^2+(-t)^2+(1+2t)^2-4(1+t)+2(-t)-6(1+2t)+8=0$, i.e. $t^2-2t=0$. Soluțiile acestei ecuații sunt $t_1=0$, $t_2=2$, care fixează pe dreaptă punctele de intersecție cu sfera A(1,0,1), respectiv B(3,-2,5).

3) Planul tangent în A la sferă are normală $AC = \vec{\imath} - \vec{\jmath} + 2\vec{k}$, deci ecuația sa este (P_1) : (x-1)-y+2(z-1)=0, i.e. $(P_1): x-y+2z-3=0$. Planul tangent în B la sferă are

normala $\overrightarrow{BC} = -\vec{\imath} + \vec{\jmath} - 2\vec{k}$, deci ecuația sa este $(P_2): -(x-3) + (y-2) - 2(z-5) = 0$, *i.e.* $(P_2): x-y+2z-15=0$.

- **10.10** Fie planul (P): x + 2y + 2z + 4 = 0.
 - 1) Determinați ecuațile parametrice ale normalei la (P) în punctul A(2,1,-4).
 - 2) Determinați ecuațiile sferelor de rază R=2 tangente planului (P) în punctul A.

Soluție

1) Un vector director al dreptei dorite este vectorul normal la plan $\vec{N} = \vec{\imath} + 2\vec{\jmath} + 2\vec{k}$.

Cum dreapta trece prin
$$A$$
, ecuațiile sale parametrice sunt (d) :
$$\begin{cases} x=2+t \\ y=1+2t \\ z=-4+2t \end{cases}$$

2) Un punct curent al dreptei (d) este C(2+t,1+2t,-4+2t), $t\in\mathbb{R}$. Un astfel de punct este centru al unei sfere de rază 2, tangentă în A planului (P), dacă și numai dacă CA=2, i.e. $(2+t-2)^2+(1+2t-1)^2+(-4+2t+4)^2=4$, ecuație ale cărei soluții sunt $t_{1,2}=\pm\frac{2}{3}$. Centrele celor două sfere căutate sunt $C_1(\frac{8}{3},\frac{7}{3},-\frac{8}{3})$, respectiv $C_2(\frac{4}{3},-\frac{1}{3},-\frac{16}{3})$, iar ecuațiile sferelor vor fi $(S_1): (x-\frac{8}{3})^2+(y-\frac{7}{3})^2+(z+\frac{8}{3})^2=4$, respectiv $(S_2): (x-\frac{4}{3})^2+(y+\frac{1}{3})^2+(z+\frac{16}{3})^2=4$.

10.11 Precizați ecuația planului care conține intersecția sferelor (S_1) : $(x-1)^2 + (y-2)^2 + (z+3)^2 = 16$, (S_2) : $(x+1)^2 + (y-1)^2 + (z-2)^2 = 9$.

Soluție

Ecuația planului radical a două sfere se obține reducând pătratele din ecuațiile celor două sfere, fapt care se realizează practic scăzând membru cu membru cele două ecuații. Cum $(S_1): x^2 + y^2 + z^2 - 2x - 4y + 6z - 2 = 0$, $(S_2): x^2 + y^2 + z^2 + 2x - 2y - 4z - 3 = 0$, rezultă că ecuația planului căutat este (P): 4x + 2y - 10z - 1 = 0.

Soluție alternativă

Prima sferă are centrul $C_1(1,2,-3)$ şi raza $R_1=4$, iar a doua sferă are centrul $C_2(-1,1,2)$ şi raza $R_2=3$. Un vector normal la planul care conține intersecția sferelor este $\overline{C_1C_2}=-2\vec{t}-\vec{j}+5\vec{k}$. Fie $M\in (S_1)\cap (S_2)$, iar P proiecția lui M pe C_1C_2 . Notăm x=MP, $y=PC_2$, iar $PC_1=C_1C_2-PC_2=\sqrt{30}-y$. Aplicând teorema lui Pitagora în $\triangle MPC_1$ și $\triangle MPC_2$, obținem că $x^2+(\sqrt{30}-y)^2=16$ și $x^2+y^2=9$, de unde, prin scădere, $(\sqrt{30}-y)^2-y^2=7$, deci $y=\frac{23\sqrt{30}}{60}$. Rezultă că $\frac{PC_1}{PC_2}=\frac{\sqrt{30}-y}{y}=\frac{37}{23}$ și atunci coordonatele lui P se află din formulele punctului care împart segmentul într-un raport

dat: $x_P = \frac{x_{C_1} + kx_{C_2}}{1+k}$, $y_P = \frac{y_{C_1} + ky_{C_2}}{1+k}$, unde $k = \frac{37}{23}$. Planul căutat are normala cunoscută și trece prin P, deci ecuația sa se scrie imediat.

10.12 Determinați centrul și raza cercului de intersecție dintre sfera (S): $x^2 + (y+1)^2 + (z-1)^2 = 4$ și planul (P): 2x + 2y + z = 1.

Soluție

Sfera are centrul C(0,-1,1) și raza R=2. Fie O și r centrul și respectiv raza cercului $(S)\cap (P)$. Cum $CO\perp (P)$, rezultă că O este intersecția dintre (P) și normala la (P) care trece prin C, de ecuație $\frac{x}{2}=\frac{y+1}{2}=\frac{z-1}{1}$. Această intersecție se dorește a avea coordonatele (0,-1,1), deci O=C. Cercul căutat va fi un cerc mare al sferei, de rază r=R=2.

Capitolul 11

CUADRICE PE ECUAȚII REDUSE

11.1 Determinați curbele de intersecție ale elipsoidului (E) : $\frac{x^2}{9} + \frac{y^2}{16} + \frac{z^2}{4} - 1 = 0$ cu planele de coordonate.

Soluţie

Intersecția cu planul yOz se determină punând x=0; se obține că $\frac{y^2}{16}+\frac{z^2}{4}-1=0$, care este ecuația unei elipse de semiaxe 4 și 2. Intersecția cu planul zOx se determină înlocuind y=0; se obține că $\frac{x^2}{9}+\frac{z^2}{4}-1=0$, ceea ce reprezintă ecuația unei elipse de semiaxe 3 și 2. Intersecția cu planul xOy se deduce punând z=0; se determină că $\frac{x^2}{9}+\frac{y^2}{16}-1=0$, care este ecuația unei elipse de semiaxe 3, 4.

11.2 Precizați natura curbelor

1)
$$\begin{cases} x^2 + y^2 + z^2 = 3 \\ 2z = x^2 + y^2 \end{cases}$$
; 2)
$$\begin{cases} x^2 + y^2 - z^2 = 1 \\ z = 2 \end{cases}$$
; 3)
$$\begin{cases} x^2 + y^2 + z^2 = 1 \\ z = 2 \end{cases}$$
; 4)
$$\begin{cases} x^2 + y^2 - z^2 = 0 \\ z = 3 \end{cases}$$
.

Soluţie

- 1) Urmează că $z^2+2z=3$, deci $z\in\{-3,1\}$. Cum $2z=x^2+y^2$, se obține că $z\geq 0$, deci z=1, de unde $x^2+y^2=2$. Curbă căutată este un cerc cu centrul în A(0,0,1) și rază $\sqrt{2}$, situat în planul z=1, determinat de intersecția dintre sfera $x^2+y^2+z^2=3$ cu centrul în origine și de rază $\sqrt{3}$ și paraboloidul de rotație în jurul lui Oz de ecuație $2z=x^2+y^2$.
- 2) Cum $x^2+y^2=5$ iar z=2, curbă căutată este un cerc cu centrul în A(0,0,2) și rază $\sqrt{5}$, situat în planul z=2, determinat de intersecția dintre hiperboloidul cu o

pânză $x^2 + y^2 - z^2 = 1$ (care este un hiperboloid de rotație în jurul lui Oz) și planul z = 2, paralel cu xOy.

- 3) Se obţine că $x^2 + y^2 = -1$, deci intersecţia respectivă este mulţimea vidă.
- 4) Deoarece $x^2 + y^2 = 9$, iar z = 3, curbă căutată este un cerc cu centrul în A(0,0,3) și rază 3, situat în planul z = 3, determinat de intersecția dintre conul de ecuație $x^2 + y^2 z^2 = 0$ (care este un con de rotație în jurul lui Oz) și planul z = 3, paralel cu xOy.
- **11.3** Determinați generatoarele hiperboloidului cu o pânză (H1): $\frac{x^2}{16} + \frac{y^2}{25} \frac{z^2}{9} = 1$ care trec prin $M_0(4, 10, 6)$.

Soluție

Deoarece $\frac{x^2}{16} - \frac{z^2}{9} = 1 - \frac{y^2}{25}$, urmează că

$$\left(\frac{x}{4} - \frac{z}{3}\right)\left(\frac{x}{4} + \frac{z}{3}\right) = \left(1 - \frac{y}{5}\right)\left(1 + \frac{y}{5}\right),$$

de unde generatoarele hiperboloidului sunt

$$(G1): \begin{cases} \frac{x}{4} - \frac{z}{3} = k \left(1 - \frac{y}{5}\right) \\ \frac{x}{4} + \frac{z}{3} = \frac{1}{k} \left(1 + \frac{y}{5}\right) \end{cases}, k \in \mathbb{R},$$

respectiv

$$(G2): \begin{cases} \frac{x}{4} - \frac{z}{3} = k\left(1 + \frac{y}{5}\right) \\ \frac{x}{4} + \frac{z}{3} = \frac{1}{k}\left(1 - \frac{y}{5}\right) \end{cases}, k \in \mathbb{R}.$$

Punând condiția ca generatoarele să treacă prin M se obține că k=1 (pentru (G1)), respectiv $k=-\frac{1}{3}$ (pentru (G2)). De aici, generatoarele care trec prin M sunt

$$\begin{cases} \frac{x}{4} - \frac{z}{3} = 1 - \frac{y}{5} \\ \frac{x}{4} + \frac{z}{3} = 1 + \frac{y}{5} \end{cases}, \begin{cases} \frac{x}{4} - \frac{z}{3} = -\frac{1}{3} \left(1 + \frac{y}{5} \right) \\ \frac{x}{4} + \frac{z}{3} = -3 \left(1 - \frac{y}{5} \right) \end{cases}.$$

11.4 Determinați generatoarele paraboloidului hiperbolic (PH): $\frac{x^2}{16} - \frac{y^2}{25} = 2z$ care trec prin $M_0(4,5,0)$.

Soluție

Deoarece $\left(\frac{x}{4}-\frac{y}{5}\right)\left(\frac{x}{4}+\frac{y}{5}\right)=2z$, urmează că generatoarele hiperboloidului sunt

$$(G1):\begin{cases} \frac{x}{4} - \frac{y}{5} = k\\ \frac{x}{4} + \frac{y}{5} = \frac{1}{k} \cdot 2z \end{cases}, k \in \mathbb{R},$$

respectiv

$$(G2):\begin{cases} \frac{x}{4} - \frac{y}{5} = k \cdot 2z \\ \frac{x}{4} + \frac{y}{5} = \frac{1}{k}, \end{cases}, k \in \mathbb{R}.$$

Punând condiția ca generatoarele să treacă prin M se obține că $k=\frac{1}{2}$ (pentru (G2)), pentru pentru (G1) problema neavând soluție. De aici, generatoarea care trece prin M este

$$\begin{cases} \frac{x}{4} - \frac{y}{5} = z \\ \frac{x}{4} + \frac{y}{5} = 2. \end{cases}$$

11.5 Precizați ecuațiile planelor paralele cu xOy care taie elipsoidul (E): $\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{4} = 1$ după o elipsă cu distanța focală 6.

Soluție

Pentru z = k, $k \in [-2,2]$, se obţine că $\frac{x^2}{16} + \frac{y^2}{9} = 1 - \frac{k^2}{4}$, sau $\frac{x^2}{16\left(1 - \frac{k^2}{4}\right)} + \frac{y^2}{9\left(1 - \frac{k^2}{4}\right)} = 1$, de unde distanţa focală a elipsei este $2\sqrt{16\left(1 - \frac{k^2}{4}\right) + 9\left(1 - \frac{k^2}{4}\right)} = 10\sqrt{1 - \frac{k^2}{4}}$. De aici, $k = \pm \frac{8}{5}$, iar ecuaţiile planelor căutate sunt $z = \frac{8}{5}$, $z = -\frac{8}{5}$.

11.6 Determinați punctele de intersecție ale elipsoidului (E): $\frac{x^2}{4} + \frac{y^2}{12} + \frac{z^2}{16} - 1 = 0$ cu dreapta (d): $\frac{x+2}{-2} = \frac{y+6}{-3} = \frac{z-4}{2}$.

Soluție

Punctele de intersecție ale elipsoidului (E) și dreptei (d) se determină rezolvând sistemul format cu ecuația elipsoidului și ecuația dreptei. Ecuațiile parametrice ale dreptei (d) sunt

$$\begin{cases} x(t) = -2 - 2t \\ y(t) = -6 - 3t \end{cases},$$

$$z(t) = 4 + 2t$$

iar substituind aceste relații în ecuația lui (E) se obține că $(t+1)^2 + \frac{9(t+2)^2}{12} + \frac{(t+2)^2}{4} = 1$, de unde $t \in \{-2, -1\}$. Pentru t = -2 se obține punctul de intersecție M(2, 0, 0), iar pentru t = -1 se obține punctul de intersecție N(0, -3, 2).

11.7 Determinați punctele de intersecție ale paraboloidului eliptic (PE) : $\frac{x^2}{9} + \frac{y^2}{4} = 2z$ cu dreapta (d) : $\frac{x}{3} = \frac{y}{2} = \frac{z}{1}$.

Soluție

Rezolvăm sistemul format cu ecuația paraboloidului eliptic și ecuația dreptei. Ecuațiile parametrice ale dreptei (d) sunt

$$\begin{cases} x(t) = 3t \\ y(t) = 2t \end{cases},$$

$$z(t) = t$$

iar înlocuind aceste egalități în ecuația lui (PE) se obține că $\frac{(3t)^2}{9} + \frac{(2t)^2}{4} = 2t$, de unde $t \in \{0,1\}$. Corespunzător, punctele de intersecție sunt O(0,0,0) și M(3,2,1).

11.8 Determinați valoarea lui m pentru care planul (P): 2x - y + 2z - m = 0 este tangent paraboloidului eliptic $(PE): \frac{x^2}{2} + \frac{y^2}{4} = 2z$. Pentru acest m, determinați coordonatele punctului de tangență.

Soluție

Determinăm intersecția dintre plan și paraboloidul eliptic. Cum 2z=-2x+y+m, înlocuind această relație în ecuația paraboloidului eliptic se obține că $\frac{x^2}{2}+2x+\frac{y^2}{4}-y-m=0$, sau $\frac{1}{2}(x+2)^2-2+\frac{1}{4}(y-2)^2-1-m=0$. Condiția de tangență este atunci -2-1-m=0, adică m=-3, punctul de tangență fiind $M(-2,2,\frac{3}{2})$.

Soluție alternativă

Fie $M(x_0,y_0,z_0)$ astfel ca (P) să fie tangent la (PE) în M. Ecuația lui (P) se scrie atunci prin dedublare sub forma (P): $\frac{xx_0}{2}+\frac{yy_0}{4}=z+z_0$, de unde, folosind condiția de paralelism, $\frac{2}{\frac{x_0}{2}}=\frac{-1}{\frac{y_0}{4}}=\frac{2}{-1}=\frac{-m}{-z_0}$. Urmează că $x_0=-2$, $y_0=2$, de unde $z_0=\frac{3}{2}$, deci punctul de tangență este $M(-2,2,\frac{3}{2})$. Cum $\frac{-m}{-z_0}=-2$, urmează că m=-3.

11.9 Determinați ecuația planului (P) tangent la paraboloidului eliptic (PE) : $\frac{x^2}{4} + \frac{y^2}{9} = 2z$ care este perpendicular pe vectorul $\vec{N} = \vec{\imath} - 2\vec{\jmath} - 2\vec{k}$.

Soluție

Cum \overrightarrow{N} este normal la (P), urmează ca ecuația lui (P) este (P) : x-2y-2z+m=0, de unde 2x=x-2y+m. Substituind această relație în ecuația paraboloidului eliptic obținem că $\frac{x^2}{4}+\frac{y^2}{9}-x+2y-m=0$, sau $\frac{1}{4}(x-2)^2+\frac{1}{9}(y+9)^2-10-m=0$. Condiția de tangență este m=-10, iar ecuația planului (P) este (P) : x-2y-2z-10=0.

Soluție alternativă

Fie $M(x_0,y_0,z_0)$ astfel ca (P) să fie tangent la (PE) în M. Ecuația lui (P) se scrie atunci prin dedublare sub forma $(P): \frac{xx_0}{4} + \frac{yy_0}{9} = z + z_0$, de unde, cum \overrightarrow{N} este vector normal la (P), $\frac{x_0}{4} = \frac{y_0}{-2} = \frac{-1}{-2}$. De aici, $x_0 = 2$, $y_0 = -9$, iar înlocuind în ecuația lui (P) se obține că $z_0 = 5$. Atunci ecuația lui (P) este $(P): \frac{x}{2} - y = z + 5$, sau (P): x - 2y - 2z - 10 = 0.

11.10 Determinați distanța de la paraboloidul eliptic (PE): $\frac{x^2}{9} + \frac{y^2}{4} = 2z$ la planul (P): 2x - y - 2z + 16 = 0.

Soluție

Distanța respectivă este distanța de la la planul (P) la planul (P_1) paralel cu (P) și tangent paraboloidului. Cum (P_1) este paralel cu (P), ecuația sa este (P): 2x-y-2z+m=0, de unde 2z=2x-y+m. Substituind această egalitate în ecuația paraboloidului eliptic, obținem că $\frac{x^2}{9}+\frac{y^2}{4}=2x-y+m$, sau $\frac{1}{9}(x-9)^2+\frac{1}{4}(y+2)^2-9-1-m=0$, condiția de tangență fiind m=-10. Distanța între planele paralele (P) și (P_1) se determină ca fiind distanța de la un punct aparținând unuia dintre plane la celălalt. Pentru $M(8,0,0)\in (P)$, urmează că distanța căutată este

$$d(M,(P_1)) = \frac{|2 \cdot 8 - 0 - 2 \cdot 0 - 10|}{\sqrt{2^2 + (-1)^2 + (-2)^2}} = 2.$$

11.11 Precizați în ce condiții normala în orice punct al unui elipsoid trece prin centrul acestuia.

Soluție

Fie elipsoidul $(E): \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$, a,b,c>0 şi $M(x_0,y_0,z_0)$ un punct al acestuia. Ecuația planului (P) tangent în M la (E) este $(P): \frac{xx_0}{a^2}+\frac{yy_0}{b^2}+\frac{zz_0}{c^2}=1$, iar ecuația normalei (d) în M la (E) este în consecință $(d): \frac{x-x_0}{\frac{x_0}{a^2}}=\frac{y-y_0}{\frac{y_0}{a^2}}=\frac{z-z_0}{\frac{z_0}{a^2}}$. Dacă $O(0,0,0)\in (d)$, atunci $\frac{-x_0}{\frac{x_0}{a^2}}=\frac{-y_0}{\frac{y_0}{a^2}}=\frac{-z_0}{\frac{z_0}{a^2}}$, deci $a^2=b^2=c^2$, iar a=b=c. În concluzie, elipsoidul (E) este o sferă.

Capitolul 12

TEORIA SUPRAFEŢELOR

12.1 Fie suprafața (S) dată parametric prin

(S):
$$\begin{cases} x(u,v) = u^2 + v + 3 \\ y(u,v) = u^2 - v + 1 \\ z(u,v) = uv \end{cases}$$

- 1) Determinați ecuația normalei la (S) și a planului tangent la (S) în A(u = 1, v = 0). Este acest plan paralel cu planul $(P_1): -x + y z + 4 = 0$? Dar perpendicular pe acesta?
 - 2) Să se arate că
 - 2a) Curbele de coordonate $(C_{\alpha}): u = \alpha$ sunt drepte.
 - 2b) Curba (C) : u=v de pe suprafața (S) este curbă plană.

Soluţie

1) Un vector normal la (S) într-un punct curent M(u,v) = M(x,y,z) este

$$\vec{N} = \frac{D(y,z)}{D(u,v)}\vec{i} + \frac{D(z,x)}{D(u,v)}\vec{j} + \frac{D(x,y)}{D(u,v)}\vec{k}.$$

Se observă că

$$\frac{D(y,z)}{D(u,v)} = \begin{vmatrix} \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{vmatrix} = \begin{vmatrix} 2u & -1 \\ v & u \end{vmatrix} = 2u^2 + v;$$

$$\frac{D(z,x)}{D(u,v)} = \begin{vmatrix} \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{vmatrix} = \begin{vmatrix} v & u \\ 2u & 1 \end{vmatrix} = v - 2u^2;$$

$$\frac{D(x,y)}{D(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 2u & 1 \\ 2u & -1 \end{vmatrix} = -4u.$$

Pentru u = 1, v = 0, aceasta conduce la faptul că un vector normal la (S) în A este $\vec{N} = 2\vec{\imath} - 2\vec{\jmath} - 4\vec{k}$. Cum A(u = 1, v = 0) = A(4, 2, 0), ecuația normalei în A la (S) este (d): $\frac{x-4}{2} = \frac{y-2}{-2} = \frac{z-0}{-4}$, iar ecuația planului tangent în A la (S) este (P): $(x - 4) \cdot 2 + (y - 2) \cdot (-2) + (z - 0) \cdot (-4) = 0$, adică (P): 2x - 2y - 4z - 4 = 0, sau (P): x - y - 2z - 2 = 0.

Un vector normal la planul (P_1) este $\vec{N}_1 = -\vec{\imath} + \vec{\jmath} - \vec{k}$. Cum $\vec{N} \cdot \vec{N}_1 = 0$, urmează că \vec{N} și \vec{N}_1 sunt perpendiculari, deci și planul tangent la (S) în A este perpendicular pe planul (P_1) .

2a) Curbele de coordonate $(C_{\alpha}): u = \alpha$ sunt date de reprezentarea parametrică

$$(C_{\alpha}): \begin{cases} x(v) = \alpha^2 + v + 3 \\ y(v) = \alpha^2 - v + 1 \end{cases}$$
. De aici, $x - (\alpha^2 + 3) = -(y - (\alpha^2 + 1)) = \frac{z}{\alpha} = v$, de $z(v) = \alpha v$

unde ecuațiile curbelor de coordonate (C_{α}) sunt

$$(C_{\alpha}): \frac{x-(\alpha^2+3)}{1} = \frac{y-(\alpha^2+1)}{-1} = \frac{z}{\alpha},$$

iar aceste curbe sunt drepte.

2b) Curba (C): u = v de pe suprafața (S) este dată de reprezentarea parametrică

(C):
$$\begin{cases} x(u) = u^2 + u + 3 \\ y(u) = u^2 - u + 1 \end{cases}$$
,
$$z(u) = u^2$$

de unde coordonatele M(x,y,z) ale unui punct de pe curbă verifică relația x+y-2z=4. În concluzie, curba (C) se găsește în planul (P): x+y-2z=4.

Soluție alternativă

2a) Dacă \vec{r} este vectorul de poziție al unui punct curent de pe curba (C_{α}) , atunci

$$\frac{d\vec{r}}{dv} = \vec{\imath} - \vec{\jmath} + \alpha \vec{k}, \quad \frac{d^2\vec{r}}{dv^2} = \vec{0} \implies \frac{d\vec{r}}{dv} \times \frac{d^2\vec{r}}{dv^2} = \vec{0},$$

iar curbura \widetilde{K} a curbei (C_{α}) este identic nulă. În concluzie, curba de coordonate (C_{α}) este o dreaptă.

2b) Au loc relațiile

$$\frac{d\vec{r}}{du} = (2u+1)\vec{\imath} + (2u-1)\vec{\jmath} + 2u\vec{k}, \quad \frac{d^2\vec{r}}{du^2} = 2\vec{\imath} + 2\vec{\jmath} + 2\vec{k}, \quad \frac{d^3\vec{r}}{du^3} = \vec{0},$$

iar torsiunea \widetilde{T} a curbei (C) este identic nulă. În concluzie, curba (C) este o curbă plană.

12.2 Determinați ecuația planului tangent și ecuația normalei în punctele precizate la următoarele suprafețe

1)
$$(S_1)$$
:
$$\begin{cases} x(u,v) = ue^v \\ y(u,v) = ue^{-v} & \text{in } A(2,2,0); \\ z(u,v) = 4uv \end{cases}$$

2)
$$(S_2): z = x^3 + y^3$$
 în $B(1,2,9)$

3)
$$(S_3): x^2 + 2xy + y^2 + 4xz + z^2 + 2x + 4y - 6z + 8 = 0$$
 în $C(0,0,2)$.

Soluție

1) Un vector normal la (S) într-un punct curent M(u,v) = M(x,y,z) este

$$\vec{N} = \frac{D(y,z)}{D(u,v)}\vec{i} + \frac{D(z,x)}{D(u,v)}\vec{j} + \frac{D(x,y)}{D(u,v)}\vec{k}.$$

Se observă că

$$\frac{D(y,z)}{D(u,v)} = \begin{vmatrix} \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{vmatrix} = \begin{vmatrix} e^{-v} & -ue^{-v} \\ 4v & 4u \end{vmatrix} = 4ue^{-v}(v+1);$$

$$\frac{D(z,x)}{D(u,v)} = \begin{vmatrix} \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \\ \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \end{vmatrix} = \begin{vmatrix} 4v & 4u \\ e^{v} & ue^{v} \end{vmatrix} = 4ue^{v}(v+1);$$

$$\frac{D(x,y)}{D(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} e^{v} & ue^{v} \\ e^{-v} & -ue^{-v} \end{vmatrix} = -2u.$$

Valorile parametrilor *u*, *v* corespunzătoare lui *A* se deduc rezolvând sistemul

$$\begin{cases} ue^v = 2\\ ue^{-v} = 2\\ 4uv = 0. \end{cases}$$

Se obține că $e^{2v}=1$, deci v=0, iar u=2. Aceasta conduce la faptul că un vector normal la (S_1) în A este $\vec{N}=8\vec{\imath}+8\vec{\jmath}-4\vec{k}$. Atunci ecuația normalei în A la (S_1) este $\frac{x-2}{8}=\frac{y-2}{8}=\frac{z-0}{-4}$, sau $(d):\frac{x-2}{2}=\frac{y-2}{2}=\frac{z-0}{-1}$, iar ecuația planului tangent în A la (S_1) este $(P):(x-2)\cdot 8+(y-2)\cdot 8+(z-0)\cdot (-4)=0$, adică (P):8x+8y-4z-32=0, sau (P):2x+2y-z-8=0.

2) Ecuația suprafeței (S_2) poate fi pusă sub forma implicită F(x,y,z)=0, unde $F(x,y,z)=z-x^3-y^3=0$. Un vector normal la (S_2) într-un punct curent M(x,y,z) este

$$\vec{N} = \frac{\partial F}{\partial x}\vec{i} + \frac{\partial F}{\partial y}\vec{j} + \frac{\partial F}{\partial z}\vec{k} = -3x^2\vec{i} - 3y^2\vec{j} + \vec{k}.$$

Pentru x=1, y=2, z=9, se obţine că un vector normal la (S_2) în B este $\vec{N}=-3\vec{\imath}-12\vec{\jmath}+\vec{k}$. Atunci ecuația normalei în B la (S_2) este $(d):\frac{x-1}{-3}=\frac{y-2}{-12}=\frac{z-9}{1}$, iar ecuația planului tangent în B la (S_2) este (P):-3(x-1)-12(y-2)+(z-9)=0, adică (P):-3x-12y+z+18=0.

3) Fie $F(x,y,z) = x^2 + 2xy + y^2 + 4xz + z^2 + 2x + 4y - 6z + 8$. Un vector normal la (S_3) într-un punct current M(x,y,z) este

$$\vec{N} = \frac{\partial F}{\partial x}\vec{\imath} + \frac{\partial F}{\partial y}\vec{\jmath} + \frac{\partial F}{\partial z}\vec{k} = (2x + 2y + 4z + 2)\vec{\imath} + (2x + 2y + 4)\vec{\jmath} + (4x + 2z - 6)\vec{k}.$$

Pentru x = 0, y = 0, z = 2, se obţine că un vector normal la (S_3) în C este $\vec{N} = 10\vec{\imath} + 4\vec{\jmath} - 2\vec{k}$. Atunci ecuaţia normalei în C la (S_3) este (d): $\frac{x-0}{10} = \frac{y-0}{4} = \frac{z-2}{-2}$, sau (d): $\frac{x}{5} = \frac{y}{2} = \frac{z-2}{-1}$, iar ecuaţia planului tangent în C la (S_3) este (P): 10(x-0) + 4(y-0) - 2(z-2) = 0, adică (P): 10x + 4y - 2z + 4 = 0, sau (P): 5x + 2y - z + 2 = 0.

12.3 Determinați ecuația planului tangent și ecuația normalei la (S) în M_0 pentru

1)
$$(S_1)$$
:
$$\begin{cases} x(u,v) = u + v \\ y(u,v) = u - v \\ z(u,v) = uv \end{cases}$$
, $A(u = 2, v = 1)$;

2)
$$(S_2): z = 5x^2 + 4y - 3, B(1,0,2);$$

3)
$$(S_3): \vec{r}(u,v) = (1+uv)\vec{i} + (u+u^2v)\vec{j} + (u^2+u^3v)\vec{k}, C(3,3,3).$$

Soluție

1) Un vector normal la (S_1) într-un punct curent M(u,v) = M(x,y,z) este

$$\vec{N} = \frac{D(y,z)}{D(u,v)}\vec{i} + \frac{D(z,x)}{D(u,v)}\vec{j} + \frac{D(x,y)}{D(u,v)}\vec{k}.$$

Se observă că

$$\frac{D(y,z)}{D(u,v)} = \begin{vmatrix} \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ v & u \end{vmatrix} = u + v;$$

$$\frac{D(z,x)}{D(u,v)} = \begin{vmatrix} \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \\ \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \end{vmatrix} = \begin{vmatrix} v & u \\ 1 & 1 \end{vmatrix} = v - u;$$

$$\frac{D(x,y)}{D(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2.$$

Pentru u=2, v=1, aceasta conduce la faptul că un vector normal la (S_1) în A este $\vec{N}=3\vec{\imath}-\vec{\jmath}-2\vec{k}$. Cum A(u=2,v=1)=A(3,1,2), ecuația normalei în A la (S_1) este

 $(d): \frac{x-3}{3} = \frac{y-1}{-1} = \frac{z-2}{-2}$, iar ecuația planului tangent în A la (S_1) este (P): 3(x-3) - (y-1) - 2(z-2) = 0, adică (P): 3x - y - 2z - 4 = 0.

2) Ecuația suprafeței (S_2) poate fi pusă sub forma implicită F(x,y,z)=0, unde $F(x,y,z)=z-5x^2-4y+3=0$. Un vector normal la (S_2) într-un punct curent M(x,y,z) este

$$\vec{N} = \frac{\partial F}{\partial x}\vec{i} + \frac{\partial F}{\partial y}\vec{j} + \frac{\partial F}{\partial z}\vec{k} = -10x\vec{i} - 4\vec{j} + \vec{k}.$$

Pentru x=1, y=0, z=2, se obține că un vector normal la (S_2) în B este $\vec{N}=-10\vec{\imath}-4\vec{\jmath}+\vec{k}$. Atunci ecuația normalei în B la (S_2) este $(d):\frac{x-1}{-10}=\frac{y-0}{-4}=\frac{z-2}{1}$, iar ecuația planului tangent în B la (S_2) este (P):-10(x-1)-4y+(z-2)=0, adică (P):-10x-4y+z+8=0.

3) Un vector normal la (S_3) într-un punct curent M(u,v) = M(x,y,z) este

$$\vec{N} = \frac{D(y,z)}{D(u,v)}\vec{i} + \frac{D(z,x)}{D(u,v)}\vec{j} + \frac{D(x,y)}{D(u,v)}\vec{k}.$$

Se observă că

$$\frac{D(y,z)}{D(u,v)} = \begin{vmatrix} \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{vmatrix} = \begin{vmatrix} 1 + 2uv & u^2 \\ 2u + 3u^2v & u^3 \end{vmatrix} = -u^3 - u^4v = -u^3(1+uv);$$

$$\frac{D(z,x)}{D(u,v)} = \begin{vmatrix} \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{vmatrix} = \begin{vmatrix} 2u + 3u^2v & u^3 \\ v & u \end{vmatrix} = 2u^2 + 2u^3v = 2u^2(1+uv);$$

$$\frac{D(x,y)}{D(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} v & u \\ 1 + 2uv & u^2 \end{vmatrix} = -u - u^2v = -u(1+uv).$$

Valorile parametrilor *u*, *v* corespunzătoare lui *C* se deduc rezolvând sistemul

$$\begin{cases} 1 + uv = 3, \\ u + u^{2}v = 3, \\ u^{2} + u^{3}v = 3 \end{cases} \implies \begin{cases} 1 + uv = 3, \\ u(1 + uv) = 3, \\ u^{2}(1 + uv) = 3 \end{cases}$$

de unde u = 1, v = 2. Aceasta conduce la faptul că un vector normal la (S_3) în C este $\vec{N} = -3\vec{i} + 6\vec{j} - 3\vec{k}$. Atunci ecuația normalei în C la (S_3) este (d) : $\frac{x-3}{-3} = \frac{y-3}{6} = \frac{z-3}{-3}$, sau (d) : $\frac{x-3}{-1} = \frac{y-3}{2} = \frac{z-3}{-1}$, iar ecuația planului tangent în C la (S_3) este (P) : -3(x-3) + 6(y-3) - 3(z-3) = 0, adică (P) : -3x + 6y - 3z = 0, sau (P) : -x + 2y - z = 0.

12.4 Fie suprafața (S): $x^2 + 3y^2 + 4z^2 - 32 = 0$.

- 1) Determinați punctele de pe suprafața (S) în care planul tangent este paralel cu planul $(P_1): 2x + 6y + 8z 9 = 0.$
 - 2) Determinați ecuația normalei la suprafața (S) în M(-2,-2,-2).

Soluție

1) Fie $F(x,y,z) = x^2 + 3y^2 + 4z^2 - 32$. Un vector normal la (S) într-un punct curent M(x,y,z) este

$$\vec{N} = \frac{\partial F}{\partial x}\vec{i} + \frac{\partial F}{\partial y}\vec{j} + \frac{\partial F}{\partial z}\vec{k} = 2x\vec{i} + 6y\vec{j} + 8z\vec{k}.$$

Un vector normal la planul (P_1) este $\vec{N}_1 = 2\vec{\imath} + 6\vec{\jmath} + 8\vec{k}$. Dacă planul tangent este paralel cu planul (P_1) , urmează că vectorii \vec{N}, \vec{N}_1 sunt paraleli, adică $\frac{2x}{2} = \frac{6y}{6} = \frac{8z}{8}$, sau x = y = z. Înlocuind aceste egalități în ecuația lui (S) obținem că $8x^2 = 32$, adică $x = \pm 2$. În concluzie, punctele căutate sunt M(-2, -2, -2) și N(2, 2, 2).

- 2) Un vector normal în M la suprafața (S) este $\vec{N} = -4\vec{\imath} 12\vec{\jmath} 16\vec{k}$. Atunci ecuația normalei căutate este (d): $\frac{x+2}{-4} = \frac{y+2}{-12} = \frac{z+2}{-16}$, sau (d): $\frac{x+2}{1} = \frac{y+2}{3} = \frac{z+2}{4}$.
- 12.5 Determinați elementul de suprafață dS pentru suprafețele

1)
$$(S_1)$$
:
$$\begin{cases} x(u,v) = u \cos v \\ y(u,v) = u \sin v \end{cases} ;$$
$$z(u,v) = \frac{1}{u}$$

- 2) $(S_2): z = xy$;
- 3) $(S_3): z = x^3 + y^3$.

Soluţie

1) Expresia elementului de suprafață dS este dată de

$$dS = \sqrt{\frac{D(y,z)^{2}}{D(u,v)}^{2} + \frac{D(z,x)^{2}}{D(u,v)}^{2} + \frac{D(x,y)^{2}}{D(u,v)}^{2}} dudv.$$

Se observă că

$$\frac{D(y,z)}{D(u,v)} = \begin{vmatrix} \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{vmatrix} = \begin{vmatrix} \sin v & u \cos v \\ -\frac{1}{u^2} & 0 \end{vmatrix} = \frac{1}{u} \cos v;$$

$$\frac{D(z,x)}{D(u,v)} = \begin{vmatrix} \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \\ \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \end{vmatrix} = \begin{vmatrix} -\frac{1}{u^2} & 0 \\ \cos v & -u \sin v \end{vmatrix} = \frac{1}{u} \sin v;$$

$$\frac{D(x,y)}{D(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} \cos v & -u \sin v \\ \sin v & u \cos v \end{vmatrix} = u.$$

Se obține că

$$dS = \sqrt{\left(\frac{1}{u}\cos v\right)^{2} + \left(\frac{1}{u}\sin v\right)^{2} + u^{2}} = \sqrt{\frac{1}{u^{2}} + u^{2}}dudv.$$

2) Deoarece suprafața (S_2) este definită explicit cu z ca funcție de x, y, prin z = f(x,y) = xy, expresia elementului de suprafață dS este dată de

$$dS = \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} dx dy.$$

Se observă că $\frac{\partial f}{\partial x} = y$, $\frac{\partial f}{\partial y} = x$, de unde $dS = \sqrt{1 + y^2 + x^2} dx dy$.

3) La fel ca mai sus, expresia elementului de suprafață dS este dată de

$$dS = \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} dx dy.$$

cu $f(x,y)=x^3+y^3$. Se observă că $\frac{\partial f}{\partial x}=3x^2$, $\frac{\partial f}{\partial y}=3y^2$, de unde $dS=\sqrt{1+9(x^4+y^4)}dxdy$.

Capitolul 13

CURBE ÎN PLAN

13.1 Fie curba (C) reprezentată implicit în coordonate carteziene prin

$$(C): (x^2+y^2)^2+2c^2(y^2-x^2)=0, \quad c>0 \quad (lemniscata\ lui\ Bernoulli).$$

Precizați ecuația lui (C) în coordonate polare.

Soluție

Figura 13.1: Graficul lemniscatei pentru c=1

Deoarece $x = r \cos \theta$, $y = r \sin \theta$, urmează că

$$[r^{2}(\cos^{2}\theta + \sin^{2}\theta)]^{2} + 2c^{2}[r^{2}\sin^{2}\theta - r^{2}\cos^{2}\theta] = 0,$$

deci

$$r^2(r^2 - 2c^2\cos 2\theta) = 0,$$

de unde

$$r = c\sqrt{2\cos 2\theta}, \theta \in [0, \frac{\pi}{4}] \cup [\frac{3\pi}{4}, \pi],$$

(situație care conține și cazul r = 0).

Notă Lemniscata reprezintă locul geometric al punctelor din plan pentru care produsul distanțelor la două puncte fixe F(c,0) și F'(-c,0) este c^2 .

13.2 Fie curba (C) reprezentată implicit în coordonate carteziene prin

$$(C): (x^2+y^2-2Rx)^2-4R^2(x^2+y^2)=0, R>0$$
 (cardioida).

Precizați ecuația lui (C) în coordonate polare.

Soluție

Figura 13.2: Graficul cardioidei pentru R = 1

Deoarece $x = r \cos \theta$, $y = r \sin \theta$, urmează că

$$[r^{2}(\cos^{2}\theta + \sin^{2}\theta) - 2Rr\cos\theta]^{2} - 4R^{2}r^{2}(\cos^{2}\theta + \sin^{2}\theta) = 0,$$

deci

$$r^2\left[(r-2R\cos\theta)^2-4R^2\right]=0,$$

sau

$$r^2(r - 2R\cos\theta + 2R)(r - 2R\cos\theta - 2R) = 0.$$

Cum $r-2R\cos\theta-2R\geq0$, urmează că

$$r - 2R\cos\theta - 2R = 0$$
, $r = 2R(1 + \cos\theta)$,

situație care conține și cazul r = 0.

Notă Cardioida reprezintă locul geometric descris de un punct fix al circumferinței unui cerc de rază R care se rostogolește fără alunecare pe un cerc fix de rază R, cele două cercuri fiind tangente exterior.

13.3 Determinați punctele singulare ale curbei $(C): y^2 + x^2(x-2)^3 = 0$.

Soluție

Fie $F(x,y)=y^2+x^2(x-2)^3$. Punctele singulare ale curbei se determină rezolvând sistemul

$$\begin{cases} F(x,y) = 0 \\ \frac{\partial F}{\partial x}(x,y) = 0 \\ \frac{\partial F}{\partial y}(x,y) = 0 \end{cases} , \text{ deci } \begin{cases} y^2 + x^2(x-2)^3 = 0 \\ 2x(x-2)^3 + 3x^2(x-2)^2 = 0 \\ 2y = 0. \end{cases}$$

Din prima și a treia ecuație rezultă că y=0, iar $x\in\{0,2\}$. În concluzie, punctele singulare sunt O(0,0), A(2,0).

13.4 Fie curba (C) dată prin ecuațiile parametrice

$$\begin{cases} x(t) = t^2 + 4t \\ y(t) = t^2 + 3t \end{cases}, t \in \mathbb{R}.$$

- 1) Determinați intersecțiile curbei cu axele de coordonate.
- 2) Determinați intersecțiile curbei cu prima și a doua bisectoare.
- 3) Determinația ecuația carteziană implicită a curbei (C).
- 4) Precizați ecuația tangentei și normalei la curbă în A(5,4).

Soluție

- 1) Pentru y = 0 se obține că t(t+3) = 0, deci $t \in \{-3,0\}$, de unde intersecția cu Ox constă în punctele M(-3,0), O(0,0). Analog se obține că intersecția cu Oy constă în punctele P(0,-4), O(0,0).
- 2) Intersecția curbei cu prima bisectoare se obține egalând y cu x. Obținem că t=0, deci intersecția respectivă este O(0,0). Intersecția curbei cu a doua bisectoare se obține egalând y cu -x. Deducem că $t \in \left\{-\frac{7}{2},0\right\}$, obținându-se punctele de intersecție $R(-\frac{7}{4},\frac{7}{4}), O(0,0)$.

3) Se observă că y - x = t, de unde $x = (y - x)^2 + 4(y - x)$, sau

$$y^2 - 2xy + x^2 + 4y - 3x = 0.$$

4) Ecuația tangentei în *A* este

$$\frac{x - x_A}{x'(t_A)} = \frac{y - y_A}{y'(t_A)},$$

iar ecuația normalei în A este

$$(x - x_A)x'(t_A) + (y - y_A)y'(t_A) = 0.$$

Cum $t_A=1$, urmează că ecuația tangentei în A este $\frac{x-5}{6}=\frac{y-4}{5}$, iar ecuația normalei în A este 6(x-5)+5(y-4)=0, adică 6x+5y-50=0.

13.5 Determinați ecuațiile tangentelor la curba (C): $\begin{cases} x(t) = t^2 + 2 \\ y(t) = t^3 + t - 1 \end{cases}$ care sunt paralele cu dreapta (d): y - 2x + 1 = 0.

Soluție

Ecuația tangentei la curba (C) într-un punct curent $M(x(t_M), y(t_M))$ este

$$\frac{x - x(t_M)}{x'(t_M)} = \frac{y - y(t_M)}{y'(t_M)},$$

adică

$$\frac{x - (t_M^2 + 2)}{2t_M} = \frac{y - (t_M^3 + t_M - 1)}{3t_M^2 + 1}.$$

cu panta $\frac{3t_M^2+1}{2t_M}$. Tangenta respectivă fiind paralelă cu dreapta (d), urmează că $\frac{3t_M^2+1}{2t_M}=2$, de unde $t_M\in\left\{\frac{1}{3},1\right\}$. Urmează că tangentele căutate sunt $y-2x+\frac{131}{27}=0$ (în $M_1(\frac{19}{9},-\frac{17}{27})$, respectiv y-2x+5=0 (în $M_2(3,1)$).

13.6 Fie cicloida
$$(C)$$
:
$$\begin{cases} x(t) = R(t - \sin t) \\ y(t) = R(1 - \cos t) \end{cases}$$
, $t \in \mathbb{R}$.

- 1) Determinati elementul de arc ds al cicloidei.
- 2) Determinați lungimea arcului de cicloidă cuprins între A(t=0) și $B(t=2\pi)$.
- 3) Determinați punctele singulare ale arcului AB.
- 4) Determinați ecuațiile tangentei și normalei la cicloidă în $M(\pi R, 2R)$.

111

Figura 13.3: Graficul cicloidei pentru R = 1

Soluție

1) Curba (C) fiind definită parametric, elementul său de arc ds se calculează cu ajutorul formulei

$$ds = \sqrt{x'(t)^2 + y'(t)^2} dt.$$

Urmează că

$$ds = \sqrt{[R(1-\cos t)]^2 + [R\sin t]^2} dt$$
$$= R\sqrt{2 - 2\cos t} dt = 2R \left| \sin \frac{t}{2} \right| dt.$$

2) Lungimea arcului $\stackrel{\frown}{AB}$ este $\int_{t_A}^{t_B} ds$. De aici,

$$l(\widehat{AB}) = \int_0^{2\pi} 2R \left| \sin \frac{t}{2} \right| dt = \int_0^{2\pi} 2R \sin \frac{t}{2} dt = 2R \frac{-\cos \frac{t}{2}}{\frac{1}{2}} \bigg|_0^{2\pi} = 8R.$$

3) Punctele singulare ale arcului \overrightarrow{AB} se obțin pentru

$$\begin{cases} x'(t) = R(1 - \cos t) = 0 \\ y'(t) = R\sin t = 0 \end{cases}$$

de unde $t \in \{0, 2\pi\}$, valori care corespund punctelor A(0, R), $B(2\pi, R)$.

4) Ecuația tangentei în C este $\frac{x-x_M}{x'(t_M)}=\frac{y-y_M}{y'(t_M)}$. Cum $t_M=\pi$, urmează că $\frac{x-\pi R}{2R}=\frac{y-2R}{0}$, sau y=2R. Ecuația normalei în M este $(x-x_M)x'(t_M)+(y-y_M)y'(t_M)=0$, sau $(x-\pi R)\cdot 2R+(y-2R)\cdot 0=0$, adică $x=\pi R$.

Notă Cicloida reprezintă locul geometric descris de un punct fix al circumferinței unui cerc care se rostogolește fără alunecare pe axa Ox.

13.7 Fie curba

$$(C): x^3 + y^3 - 3axy = 0$$
, $a > 0$, (foliul lui Descartes).

- 1) Determinați punctele singulare ale curbei (C).
- 2) Determinați o reprezentare parametrică a curbei (C).
- 3) Determinați ecuațiile tangentei și normalei la (C) în $A(\frac{3a}{2}, \frac{3a}{2})$.

Soluție

Figura 13.4: Graficul foliului lui Descartes pentru a = 1

1) Fie $F(x,y) = x^3 + y^3 - 3axy$. Punctele singulare ale curbei (C) se determină rezolvând sistemul

$$\begin{cases} F(x,y) = 0 \\ \frac{\partial F}{\partial x}(x,y) = 0 \\ \frac{\partial F}{\partial y}(x,y) = 0 \end{cases} , \text{ adică} \begin{cases} x^3 + y^3 - 3axy = 0 \\ 3x^2 - 3ay = 0 \\ 3y^2 - 3ax = 0. \end{cases}$$

Din ultimele două ecuații, $x^2 = ay$ și $y^2 = ax$, deci $0 = x^3 + y^3 - 3axy = axy + axy - 3axy = -axy$. De aici, unicul punct singular este O(0,0).

- 2) O reprezentare parametrică se obține punând y=tx. Urmează că $x=\frac{3at}{1+t^3}$, $y=\frac{3at^2}{1+t^3}$, $t\in\mathbb{R}$.
 - 3) Ecuația normalei în A este

$$\frac{x - x_A}{\frac{\partial F}{\partial x}(x_A, y_A)} = \frac{y - y_A}{\frac{\partial F}{\partial y}(x_A, y_A)},$$

adică $\frac{x - \frac{3a}{2}}{\frac{9a^2}{4}} = \frac{y - \frac{3a}{2}}{\frac{9a^2}{4}}$, sau x - y = 0.

Ecuația tangentei în A este

$$(x-x_A)\frac{\partial F}{\partial x}(x_A,y_A) + (y-y_A)\frac{\partial F}{\partial y}(x_A,y_A) = 0,$$

adică
$$(x - \frac{3a}{2}) \cdot \frac{9a^2}{4} + (y - \frac{3a}{2}) \cdot \frac{9a^2}{4} = 0$$
, sau $x + y - 3a = 0$.

13.8 Determinați elementul de arc al lănțișorului $(C): y = a \operatorname{ch} \frac{x}{a}$.

Soluție

Curba (C) fiind dată explicit, elementul de arc ds se calculează cu ajutorul formulei

$$ds = \sqrt{1 + y'(x)^2} dx.$$

Urmează că

$$ds = \sqrt{1 + \left(\frac{1}{a} \cdot a \operatorname{sh} \frac{x}{a}\right)^2} dx = \sqrt{1 + \left(\operatorname{sh} \frac{x}{a}\right)^2} dx = \sqrt{\left(\operatorname{ch} \frac{x}{a}\right)^2} dx = \operatorname{ch} \frac{x}{a} dx.$$

13.9 Demonstrați că pentru un arc de curbă definit în coordonate polare prin $r = r(\theta)$, $\theta \in [a, b]$, elementul de arc ds este dat de

$$ds = \sqrt{r^2(\theta) + (r')^2(\theta)} d\theta.$$

Soluţie

Au loc egalitățile

$$ds = \sqrt{x'(\theta)^2 + y'(\theta)^2} d\theta = \sqrt{[(r(\theta)\cos\theta)']^2 + [(r(\theta)\sin\theta)']^2} d\theta$$

$$= \sqrt{(r'(\theta)\cos\theta - r(\theta)\sin\theta)^2 + (r'(\theta)\sin\theta + r(\theta)\cos\theta)^2} d\theta$$

$$= \sqrt{r'(\theta)^2(\cos^2\theta + \sin^2\theta) + r^2(\sin^2\theta + \cos^2\theta)} d\theta$$

$$= \sqrt{r^2(\theta) + (r')^2(\theta)} d\theta.$$

13.10 Determinați lungimea arcului de curbă (C): $r = a(1 + \cos \theta)$, $\theta \in [0, 2\pi)$.

Soluție

Conform problemei precedente, urmează că

$$ds = \sqrt{[a(1+\cos\theta)]^2 + [-a\sin\theta]^2} = \sqrt{2a^2(1+\cos\theta)}$$
$$= 2a\left|\cos\frac{\theta}{2}\right|.$$

Atunci

$$l((C)) = \int_0^{2\pi} 2a \left| \cos \frac{\theta}{2} \right| = 2a \left[\int_0^{\pi} \cos \frac{\theta}{2} d\theta + \int_{\pi}^{2\pi} -\cos \frac{\theta}{2} d\theta \right]$$
$$= 2a \left[\frac{\sin \frac{\theta}{2}}{\frac{1}{2}} \Big|_0^{\pi} - \frac{\sin \frac{\theta}{2}}{\frac{1}{2}} \Big|_{\pi}^{2\pi} \right] = 8a.$$

13.11 Fie elipsa
$$(E)$$
: $\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$, $a, b > 0$, $a \ge b$.

- 1) Determinați valorile minime și maxime ale curburii \tilde{K} a elipsei.
- 2) Determinați curbura și raza de curbură a elipsei în M(0,b).

Soluţie

1) Reprezentăm parametric elipsa sub forma

$$\begin{cases} x(t) = a \cos t \\ y(t) = b \sin t \end{cases}, t \in [0, 2\pi).$$

Atunci curbura $\tilde{K}(t)$ a curbei într-un punct curent M(t) se calculează cu ajutorul formulei

$$\widetilde{K}(t) = \frac{\left\| \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \right\|}{\left\| \frac{d\vec{r}}{dt} \right\|^3} = \frac{|x'(t)y''(t) - y'(t)x''(t)|}{\sqrt{x'(t)^2 + y'(t)^2}}$$

De aici,

$$\widetilde{K}(t) = \frac{|(-a\sin t)(-b\sin t) - b\cos t(-a\cos t)|}{\sqrt{(-a\sin t)^2 + (b\cos t)^2}}$$

$$= \frac{ab}{\sqrt{a^2\sin^2 t + b^2\cos^2 t}} = \frac{ab}{\sqrt{a^2 - (a^2 - b^2)\cos^2 t}}.$$

Cum $\cos^2 t \in [0,1]$, iar $a^2 - b^2 \ge 0$, rezultă de aici că valoarea maximă a curburii este $\tilde{K}_{\max} = \frac{ab}{\sqrt{a^2 - (a^2 - b^2)}} = \frac{a}{b^2}$, iar valoarea minimă este $\tilde{K}_{\min} = \frac{ab}{\sqrt{a^2}} = \frac{b}{a^2}$.

2) Cum $t_M=\frac{\pi}{2}$, urmează că valoarea curburii $\widetilde{K}(t_M)$ în punctul M este $\widetilde{K}(t_M)=\frac{ab}{\sqrt{a^2}}=\frac{b}{a^2}$, iar valoarea razei de curbură este $R=\frac{1}{\widetilde{K}}=\frac{a^2}{b}$.

13.12 Determinați curbura și raza de curbură a curbei
$$(C)$$
:
$$\begin{cases} x(t) = t \sin t \\ y(t) = \cos t \end{cases}$$
 în $t = \frac{\pi}{2}$.

Soluție

Au loc relațiile

$$\widetilde{K}(t) = \frac{\left\| \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \right\|}{\left\| \frac{d\vec{r}}{dt} \right\|^3} = \frac{|x'(t)y''(t) - y'(t)x''(t)|}{\sqrt{x'(t)^2 + y'(t)^2}}$$

$$= \frac{|(\sin t + t\cos t)(-\cos t) - (-\sin t)(2\cos t - t\sin t)|}{\sqrt{(\sin t + t\cos t)^2 + (-\sin t)^2}}$$

$$= \frac{|\sin t\cos t - t|}{\sqrt{t^2\cos^2 t + 2t\sin t\cos t + 2\sin^2 t}}.$$

Atunci curbura în $t=\frac{\pi}{2}$ este $\widetilde{K}=\frac{\pi}{2\sqrt{2}}$, iar raza de curbură este $R=\frac{1}{\widetilde{K}}=\frac{2\sqrt{2}}{\pi}$.

13.13 Fie astroida (C):
$$\begin{cases} x(t) = R \cos^3 t \\ y(t) = R \sin^3 t \end{cases}, t \in [0, 2\pi).$$

- 1) Determinați punctele singulare ale curbei (C).
- 2) Determinați curbura $\widetilde{K}(t)$ a curbei (C).
- 3) Determinați ecuația carteziană a curbei (C).

Soluție

1) Punctele singulare ale curbei (*C*) se obțin pentru

$$\begin{cases} x'(t) = -3R\cos^2 t \sin t = 0\\ y'(t) = 3R\sin t \cos^2 t = 0 \end{cases}$$

de unde $\sin t \cos t = 0$, sau $t \in \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$, valori care corespund punctelor singulare M(1,0), N(0,1), P(-1,0), Q(0,-1).

2) Au loc relațiile

$$\widetilde{K}(t) = \frac{|x'(t)y''(t) - y'(t)x''(t)|}{\sqrt{x'(t)^2 + y'(t)^2}}$$

$$= \frac{|-9R^2 \sin^2 t \cos^2 t|}{27R^3 |\sin t \cos t|^3} = \frac{1}{3R|\sin t \cos t|}.$$

Figura 13.5: Graficul astroidei pentru a = 1

3) Se observă că $x^{\frac{2}{3}}(t) + y^{\frac{2}{3}}(t) = (R\cos^3 t)^{\frac{2}{3}} + (R\sin^3 t)^{\frac{2}{3}} = R^{\frac{2}{3}}$, de unde ecuația carteziană implicită a astroidei este $x^{\frac{2}{3}} + y^{\frac{2}{3}} = R^{\frac{2}{3}}$.

Notă Astroida reprezintă locul geometric descris de un punct fix al circumferinței unui cerc de rază $\frac{R}{4}$ care se rostogolește fără alunecare pe un cerc fix de rază R, cele două cercuri fiind tangente interior.

13.14 Determinați asimptotele curbei $(C): y^3 = 8x^3 + 9x^2$.

Soluție

Ecuația curbei se poate pune sub forma explicită $y = f(x) = \sqrt[3]{8x^3 + 9x^2}$. Curba nu are asimptote verticale, funcția de sub radicalul de ordin impar fiind continuă și bine definită pentru orice x. Cum

$$\lim_{x \to \infty} \sqrt[3]{8x^3 + 9x^2} = +\infty, \quad \lim_{x \to -\infty} \sqrt[3]{8x^3 + 9x^2} = -\infty,$$

curba nu are nici asimptote orizontale. Determinăm asimptotele oblice, y=mx+n, spre $+\infty$ și $-\infty$.

Asimptota oblică spre $+\infty$:

$$m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{\sqrt[3]{8x^3 + 9x^2}}{x} = \lim_{x \to \infty} \sqrt[3]{8 + \frac{9}{x}} = 2$$

$$n = \lim_{x \to \infty} [f(x) - mx] = \lim_{x \to \infty} \left[\sqrt[3]{8x^3 + 9x^2} - 2x \right] = \lim_{x \to \infty} 2x \left(\sqrt[3]{1 + \frac{9}{8x}} - 1 \right)$$

$$= \lim_{x \to \infty} 2x \cdot \frac{\sqrt[3]{1 + \frac{9}{8x}} - 1}{\frac{9}{8x}} \cdot \frac{9}{8x} = 2 \cdot \frac{1}{3} \cdot \frac{9}{8} = \frac{3}{4}.$$

Rezultă că $(d): y = 2x + \frac{3}{4}$ este asimptotă oblică spre $+\infty$. Se observă asemănător că (d) este asimptotă oblică și spre $-\infty$.

Soluție alternativă

Fie $F(x,y)=y^3-8x^3+9x^2$. Observăm că F este de gradul 3 în x,y. Asimptotele verticale x=a se obțin dacă în ecuația F(a,y)=0 lipsește termenul care conține y^3 , pentru a determina a egalându-se coeficientul lui y^2 cu 0. Cum $F(a,y)=y^3-8a^3+9a^2$, urmează că (C) nu are asimptote verticale. Similar, deoarece $F(x,b)=b^3-8x^3+9x^2$, urmează că (C) nu are nici asimptote orizontale.

Asimptotele oblice y=mx+n se obțin egalând cu 0 coeficienții lui x^2 și x^3 în ecuația F(x,mx+n)=0. Cum

$$F(x, mx + n) = (mx + n)^3 - 8x^3 - 9x^2$$

= $(m^3 - 8)x^3 + (3m^2n - 9)x^2 + 3mn^2x + n^3$,

urmează că $m^3-8=0$, $3m^2n-9=0$, de unde m=2, $n=\frac{3}{4}$. Rezultă că $(d):y=2x+\frac{3}{4}$ este asimptotă oblică spre $\pm\infty$ la graficul curbei (C).

13.15 Fie curba $(C): y^4 + x^4 = x^2 - y^2$.

- 1) Determinați ecuațiile tangentei și normalei la curbă în A(1,0).
- 2) Determinați curbura și raza de curbură a curbei în A.
- *3) Determinați asimptotele curbei (C).*

Soluție

Notăm $F(x,y)=y^4+x^4-x^2+y^2$. Atunci ecuația carteziană implicită a curbei (C) este F(x,y)=0.

1) Ecuația normalei în A este

$$\frac{x - x_A}{\frac{\partial F}{\partial x}(x_A, y_A)} = \frac{y - y_A}{\frac{\partial F}{\partial y}(x_A, y_A)},$$

adică $\frac{x-1}{1} = \frac{y-0}{0}$, sau y = 0.

Ecuația tangentei în A este

$$(x-x_A)\frac{\partial F}{\partial x}(x_A,y_A) + (y-y_A)\frac{\partial F}{\partial y}(x_A,y_A) = 0,$$

adică $(x-1) \cdot 1 + (y-0) \cdot 0 = 0$, sau x = 1.

2) Curba (C) fiind definită implicit, urmează că expresia curburii într-un punct curent M(x,y) este dată de

$$\widetilde{K}(x,y) = \frac{\left| \frac{\partial^2 F}{\partial x^2}(x,y) \left(\frac{\partial F}{\partial y}(x,y) \right)^2 - 2 \frac{\partial F}{\partial x}(x,y) \frac{\partial F}{\partial y}(x,y) \frac{\partial^2 F}{\partial x \partial y}(x,y) + \frac{\partial^2 F}{\partial y^2}(x,y) \left(\frac{\partial F}{\partial x}(x,y) \right)^2 \right|}{\sqrt{\left(\frac{\partial F}{\partial x}(x,y) \right)^2 + \left(\frac{\partial F}{\partial y}(x,y) \right)^2}}.$$

De aici, curbura în punctul M este $\widetilde{K}(1,0)=1$ iar raza corespunzătoare de curbură este 1.

3) Observăm că (C) este de gradul 4 în x,y. Deoarece $F(a,y)=y^4+y^2+a^4-a^2=0$, iar termenul care conține y^4 nu lipsește, curba (C) nu admite asimptote orizontale. În mod asemănător se arată că (C) nu are nici asimptote verticale.

Asimptotele oblice y=mx+n se obțin egalând cu 0 coeficienții lui x^3 și x^4 în ecuația F(x,mx+n)=0. Cum

$$F(x, mx + n) = (mx + n)^4 + x^4 - x^2 + (mx + n)^2$$

= $(m^4 + 1)x^4 + 4m^3nx^3 + (6m^2n^2 + m^2 - 1)x^2 + (4mn^3 + 2mn)x$
+ $(n^4 + n^2)$,

iar $m^4 + 1 \neq 0$ pentru $m \in \mathbb{R}$, urmează că (C) nu admite nici asimptote oblice.

Soluție alternativă

Deoarece $y^4 + x^4 = x^2 - y^2$, urmează că $\left(y^4 + y^2 + \frac{1}{4}\right) + \left(x^4 - x^2 + \frac{1}{4}\right) = \frac{1}{2}$, deci $\left(y^2 + \frac{1}{2}\right)^2 + \left(x^2 - \frac{1}{2}\right)^2 = \frac{1}{2}$, iar curba (C) este mărginită, neavând puncte la infinit. În concluzie, ea nu are nici asimptote.

13.16 Determinați punctele în care curbura parabolei $(P): y^2 = 2px, p > 0$, este maximă.

Soluție

Reprezentăm parabola parametric sub forma $(P): \begin{cases} x(t) = \frac{t^2}{2p} \\ y(t) = t \end{cases}$. Atunci

$$\tilde{K}(t) = \frac{|x'(t)y''(t) - y'(t)x''(t)|}{\sqrt{x'(t)^2 + y'(t)^2}} = \frac{\left|\frac{t}{p} \cdot 0 - 1 \cdot \frac{1}{p}\right|}{\sqrt{\left(\frac{t}{p}\right)^2 + 1}} = \frac{p^2}{\sqrt{t^2 + p^2}}$$

$$\leq \frac{p^2}{\sqrt{p^2}} \leq \frac{1}{p},$$

119

egalitatea având loc pentru t=0. Rezultă că valoarea maximă a curburii este $\tilde{K}=\frac{1}{p}$, aceasta atingându-se în vârful parabolei.

13.17 Determinați punctele în care curbura spiralei lui Arhimede (C): $r = a\theta$, a > 0, este maximă.

Soluție

Figura 13.6: Graficul spiralei lui Arhimede pentru a=1 (ramura $\theta \geq 0$)

Curba fiind definită prin intermediul ecuației în coordonate polare $r=r(\theta)$, curbura sa într-un punct curent $\tilde{K}(\theta)$ se calculează cu ajutorul formulei

$$\tilde{K}(\theta) = \frac{|r^2(\theta) + 2(r'(\theta))^2 - r(\theta)r''(\theta)|}{\sqrt{r^2(\theta) + (r'(\theta))^2}^3}.$$

Urmează că

$$\tilde{K}(\theta) = \frac{|(a\theta)^2 + 2a^2|}{\sqrt{a^2\theta^2 + a^2}^3} = \frac{\theta^2 + 2}{a\sqrt{\theta^2 + 1}^3} = \frac{1}{a} \cdot \frac{\theta^2 + 1 + 1}{\sqrt{\theta^2 + 1}^3}$$
$$= \frac{1}{a} \left(\frac{1}{\sqrt{\theta^2 + 1}} + \frac{1}{\sqrt{\theta^2 + 1}^3} \right).$$

Rezultă că valoarea maximă a curburii este $\tilde{K} = \frac{1}{a}$, aceasta atingându-se pentru $\theta = 0$.

13.18 Precizați ordinul de contact al curbelor $(C_1): y = e^x$, $(C_2): y = 1 + x + \frac{x^2}{2}$ în punctul comun.

Soluție

Curbele $(C_1): y=f_1(x)$ și $(C_2): y=f_2(x)$ au contact de ordinul n în $M(x_0,y_0)$ dacă

$$y_0 = f_1(x_0) = f_2(x_0), f_1^{(p)}(x_0) = f_2^{(p)}(x_0), 1 \le p \le n, \text{ iar } f_1^{(n+1)}(x_0) = f_2^{(n+1)}(x_0).$$

Punctele de contact se determină rezolvând ecuația $e^x = 1 + x + \frac{x^2}{2}$, cu soluția unică x = 0. În concluzie, unicul punct de contact este M(0,1). Deoarece $f_1(x) = e^x$, $f_2(x) = 1 + x + x^2$, urmezaă că

$$f_1'(x) = e^x$$
, $f_1''(x) = e^x$, $f_1'''(x) = e^x$;
 $f_2'(x) = 1 + x$, $f_2''(x) = 1$, $f_2'''(x) = 0$;

deci

$$f_1(0) = f_2(0) = 1$$
, $f_1'(0) = f_2'(0) = 1$, $f_1''(0) = f_2''(0) = 1$, $f_1'''(0) \neq f_2'''(0)$,

iar curbele (C_1) și (C_2) au în M un contact de ordinul al doilea.

Capitolul 14

CURBE ÎN SPAȚIU

14.1 Determinați punctele de intersecție ale curbei (C): $\vec{r} = (t^2 + 2t + 2)\vec{i} + (2t^2 + 3t)\vec{j} + (3t^2 + t + 1)\vec{k}$ cu planul (P): x + y + z - 3 = 0.

Soluție

Un punct curent M(x,y,z) de pe curba (C) are coordonatele date prin $x(t)=t^2+2t+2$, $y(t)=2t^2+3t$, $z(t)=3t^2+t+1$. Înlocuind aceste relații în ecuația lui (P) se obține că $6t^2+6t=0$, deci $t\in\{-1,0\}$. Se deduce de aici că punctele de intersecție sunt $M_1(1,-1,3)$ și $M_2(2,0,1)$.

14.2 Determinați ecuația curbei (C): $\vec{r} = \vec{r}(t)$ știind că $\vec{r}(0) = 2\vec{\imath} - 3\vec{k}$ și $\vec{r}'(t) = t\vec{\imath} + \sin t\vec{\jmath} + te^t\vec{k}$.

Soluție

Proiectând relațiile date pe fiecare componentă în parte, se obține că

$$x'(t) = t, x(0) = 2;$$
 $y'(t) = \sin t, y(0) = 0;$ $z'(t) = te^t, z(0) = -3.$

Prin integrare, se deduce că

$$x(t) - x(0) = \int_0^t x'(s)ds = \int_0^t sds$$
, deci $x(t) = 2 + \frac{t^2}{2}$.

Analog,

$$y(t) - y(0) = \int_0^t y'(s)ds = \int_0^t \sin s ds, \quad \det y(t) = -\cos t + 1,$$

$$z(t) - z(0) = \int_0^t z'(s)ds = \int_0^t s e^s ds ds, \quad \det$$

$$z(t) = -3 + s e^s \mid_0^t - \int_0^t e^s ds = -2 + e^t (t - 1).$$

În concluzie, ecuația vectorială a curbei este

$$\vec{r}(t) = \left(2 + \frac{t^2}{2}\right)\vec{\imath} + (1 - \cos t)\vec{\jmath} + (-2 + e^t(t-1))\vec{k}.$$

14.3 Determinați elementul de lungime ds al curbelor

1)
$$\vec{r}(t) = e^t \cos t \vec{\imath} + e^t \sin t \vec{\jmath} + 2t \vec{k};$$

2)
$$\begin{cases} x(t) = t - \sin t \\ y(t) = 1 - \cos t \end{cases}$$
;
$$z(t) = 4 \sin \frac{t}{2}$$
3)
$$\begin{cases} y = \operatorname{ch} x \cos x \\ z = \operatorname{ch} x \sin x \end{cases}$$
.

Soluție

Expresia elementului de lungime ds este dată de

$$ds = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} dt = \left\| \frac{d\vec{r}}{dt} \right\| dt,$$

de unde ds se poate calcula în fiecare caz după cum urmează.

1)

$$ds = \sqrt{\left[(e^t \cos t)' \right]^2 + \left[(e^t \sin t)' \right]^2 + \left[(2t)' \right]^2} dt = \sqrt{2(e^{2t} + 2)} dt.$$

2)

$$ds = \sqrt{\left[(t - \sin t)' \right]^2 + \left[(1 - \cos t)' \right]^2 + \left[(4 \sin \frac{t}{2})' \right]^2} = 2dt$$

3) Deoarece curba este definită explicit cu y, z ca funcții de x, pentru a obține reprezentarea parametrică se poate considera x ca parametru. Se obține că

$$ds = \sqrt{1 + \left[(\cosh x \cos x)' \right]^2 + \left[(\cosh x \sin x)' \right]^2} dx = \sqrt{1 + (\sinh x)^2 + (\cosh x)^2} dx$$
$$= \sqrt{2} \cosh x dx$$

14.4 Determinați lungimea arcului de curbă
$$(C)$$
:
$$\begin{cases} x(t) = \sin^3 t \\ y(t) = \cos^3 t \\ z(t) = 2\cos^2 t \end{cases}, t \in [0, \frac{\pi}{4}].$$

Soluție

Lungimea arcului de curbă (C) este

$$\begin{split} l((C)) &= \int_0^{\frac{\pi}{4}} \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} dt \\ &= \int_0^{\frac{\pi}{4}} \sqrt{9 \sin^4 t \cos^2 t + 9 \cos^4 t \sin^2 t + 16 \cos^2 t \sin^2 t} dt \\ &= \int_0^{\frac{\pi}{4}} \sqrt{9 \sin^2 t \cos^2 t (\sin^2 t + \cos^2 t) + 16 \cos^2 t \sin^2 t} dt \\ &= \int_0^{\frac{\pi}{4}} 5 \sin t \cos t dt = \int_0^{\frac{\pi}{4}} \frac{5}{2} \sin 2t dt = -\frac{5}{4} \cos 2t \mid_0^{\frac{\pi}{4}} = \frac{5}{4}. \end{split}$$

14.5 Fie curba (C): $\begin{cases} x(t) = at \cos t \\ y(t) = at \sin t \\ z(t) = bt \end{cases}$, $t \in \mathbb{R}$, a, b > 0. Determinați versorii directori ai

tangentei, binormalei și normalei principale la curba (C) în $M_0(t_0=0)$.

Soluţie

Au loc relațiile

$$\frac{d\vec{r}}{dt} = a(\cos t - t\sin t)\vec{i} + a(\sin t + t\cos t)\vec{j} + b\vec{k}$$
$$\frac{d^2\vec{r}}{dt^2} = a(-2\sin t - t\cos t)\vec{i} + a(2\cos t - t\sin t)\vec{j}.$$

Pentru t = 0, aceasta conduce la

$$\frac{d\vec{r}}{dt} = a\vec{t} + b\vec{k}, \frac{d^2\vec{r}}{dt^2} = 2a\vec{j}.$$

Un vector director al tangentei în M_0 la curba (C) este

$$\vec{T} = \frac{d\vec{r}}{dt} = a\vec{\imath} + b\vec{k},$$

de unde un versor director al tangentei în M_0 la curba (C) este $\vec{t} = \frac{\vec{T}}{\|\vec{T}\|} = \frac{a\vec{t} + b\vec{k}}{\sqrt{a^2 + b^2}}$. Un vector director al binormalei în M_0 la curba (C) este

$$\vec{B} = \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} = \begin{vmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ a & 0 & b \\ 0 & 2a & 0 \end{vmatrix} = -2ab\vec{\imath} + 2a^2\vec{k},$$

de unde un versor director al binormalei în M_0 la curba (C) este $\vec{b} = \frac{\vec{B}}{\|\vec{B}\|} = \frac{-b\vec{i} + a\vec{k}}{\sqrt{a^2 + b^2}}$. Cum normala principală este perpendiculară atât pe tangentă cât și pe binormală, iar $\vec{t} \perp \vec{b}$, un versor director pentru normala principală este $\vec{n} = \vec{t} \times \vec{b}$. Se obține că

$$\vec{n} = \begin{vmatrix} \vec{t} & \vec{j} & \vec{k} \\ \frac{a}{\sqrt{a^2 + b^2}} & 0 & \frac{b}{\sqrt{a^2 + b^2}} \\ \frac{-b}{\sqrt{a^2 + b^2}} & 0 & \frac{a}{\sqrt{a^2 + b^2}} \end{vmatrix} = \vec{j}.$$

14.6 Fie curba (C) dată parametric prin (C) : $\begin{cases} x(t) = \frac{2t^3}{3} + 1 \\ y(t) = -\frac{3t^2}{2} + t \end{cases}, t \in \mathbb{R} \text{ şi dreapta } (d) : \\ z(t) = e^t \end{cases}$

$$\begin{cases} y+z-1=0\\ x-2=0 \end{cases}.$$

- 1) Determinați un vector director al dreptei (d).
- 2) Determinați punctele de pe curba (C) în care planul normal este paralel cu (d) sau conține pe (d).
 - 3) În punctele obținute mai sus, precizați ecuația planului normal și tangentei.

Soluție

1) Cum dreapta (d) este dată ca intersecția planelor $(P_1): y+z-1=0$ și $(P_2): x-2=0$, un vector director al lui (d) este $\vec{v}=\vec{N}_1\times\vec{N}_2$, unde $\vec{N}_1=\vec{\jmath}+\vec{k},\,\vec{N}_2=\vec{\imath}$ sunt vectori normali la (P_1) , respectiv (P_2) . Se obține că $\vec{v}=\begin{vmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{vmatrix} = \vec{\jmath}-\vec{k}$.

2) Un vector tangent la curba (C) într-un punct curent M(t) este

$$\vec{T} = \frac{d\vec{r}}{dt} = 2t^2\vec{\imath} + (-3t+1)\vec{\jmath} + e^t\vec{k}.$$

Pentru ca planul normal să fie paralel cu (d) sau să conțină pe (d), este necesar ca $\vec{v} \perp \vec{T}$, deci $\vec{v} \cdot \vec{T} = 0$. Urmează că $(-3t+1) - e^t = 0$, deci $e^t + 3t = 1$. Cum funcția $f: \mathbb{R} \to \mathbb{R}$, $f(t) = e^t + 3t$ este strict crescătoare, unica soluție a ecuației este t = 0. În concluzie, punctul respectiv este M(1,0,1).

3) Pentru t=0, se obține că $\vec{T}=\vec{\jmath}+\vec{k}$. De aici, ecuația tangentei în M la (C) este $(d): \frac{x-1}{0}=\frac{y}{1}=\frac{z-1}{1}$, iar ecuația planului normal este $(P): (x-1)\cdot 0+y\cdot 1+(z-1)\cdot 1=0$, adică (P): y+z-1=0.

125

- **14.7** Fie curba (C) dată prin ecuația vectorială (C): $\vec{r}(t) = \ln t \vec{\imath} + 2t \vec{\jmath} + t^2 \vec{k}$, t > 0.
 - 1) Determinați lungimea arcului AB de pe curba (C), unde A(0,2,1), $B(\ln 2,4,4)$.
 - 2) Determinați ecuația planului osculator și a binormalei în A.
- 3) Arătați că normala principală în orice punct de pe curbă este paralelă cu planul (P): x+z=0.

Soluţie

1) Valorile parametrului t corespunzătoare punctelor A și B sunt $t_A=1$, $t_B=2$. Lungimea arcului $\stackrel{\frown}{AB}$ este în concluzie

$$l(\widehat{AB}) = \int_{1}^{2} \sqrt{\left[(\ln t)'\right]^{2} + \left[(2t)'\right]^{2} + \left[(t^{2})'\right]^{2}} dt = \int_{1}^{2} \sqrt{\left(\frac{1}{t}\right)^{2} + 2^{2} + (2t)^{2}} dt$$
$$= \int_{1}^{2} \sqrt{\frac{(2t^{2} + 1)^{2}}{t^{2}}} dt = \int_{1}^{2} \left(2t + \frac{1}{t}\right) dt = 3 + \ln 2.$$

2) Un vector normal la planul osculator într-un punct curent M(t) este $\vec{B} = \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}$, unde

$$\frac{d\vec{r}}{dt} = \frac{1}{t}\vec{i} + 2\vec{j} + 2t\vec{k}, \quad \frac{d^2\vec{r}}{dt^2} = -\frac{1}{t^2}\vec{i} + 2\vec{k},$$

 \vec{B} fiind și vector director al binormalei în M. Se obține că

$$\vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{1}{t} & 2 & 2t \\ -\frac{1}{t^2} & 0 & 2 \end{vmatrix} = 4\vec{i} - \frac{4}{t}\vec{j} + \frac{2}{t^2}\vec{k}.$$

Pentru M=A urmează că t=1, deci vectorul director al binormalei este $\vec{B}=4\vec{\imath}-4\vec{\jmath}+2\vec{k}$. Ecuația planului osculator în A este (P):4x-4(y-2)+2(z-1)=0, adică (P):4x-4y+2z+6=0. Ecuația binormalei în A este $(d):\frac{x}{4}=\frac{y-2}{-4}=\frac{z-1}{2}$.

3) Un vector normal la planul rectificant într-un punct curent M(t) este $\vec{R} = \frac{d\vec{r}}{dt} \times \left(\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}\right)$, \vec{R} fiind și vector director al normalei principale. Se obține că

$$\vec{R} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{1}{t} & 2 & 2t \\ 4 & -\frac{4}{t} & \frac{2}{t^2} \end{vmatrix} = \left(\frac{4}{t^2} + 8\right) \vec{i} - \left(\frac{2}{t^3} - 8t\right) \vec{j} + \left(-\frac{4}{t^2} - 8\right) \vec{k}.$$

Un vector normal la planul (P) este $\vec{N} = \vec{\imath} + \vec{k}$. Deoarece $\vec{R} \cdot \vec{N} = 0$, \vec{R} și \vec{N} sunt perpendiculari pentru orice valoare a lui t, iar normala principală este paralelă cu planul (P).

14.8 Determinați ecuațiile tangentei și planului normal la curbele date mai jos în punctele precizate

1)
$$(C)$$
: $\vec{r}(t) = 2\cos t \vec{i} + 2\sin t \vec{j} + 4t \vec{k} \text{ în } M_0(t_0 = \frac{\pi}{6}).$

2) (C):
$$\begin{cases} x^3 - y^2 + z + 6 = 0 \\ x - y^2 + z^3 + 6 = 0 \end{cases}$$
 în $M_0(-1, -2, -1)$.

Soluție

1) Un vector tangent la curbă într-un punct curent M(t) este

$$\vec{T} = \frac{d\vec{r}}{dt} = (-2\sin t)\vec{\imath} + 2\cos t\vec{j} + 4\vec{k}.$$

Cum $M_0(t_0=\frac{\pi}{6})=M_0(\sqrt{3},1,\frac{2\pi}{3})$, urmează că ecuația tangentei în M_0 este $(d):\frac{x-\sqrt{3}}{-1}=\frac{y-1}{\sqrt{3}}=\frac{z-\frac{2\pi}{3}}{4}$, iar ecuația planului normal în $M_0(t_0=\frac{\pi}{6})$ este $(P):(x-\sqrt{3})\cdot(-1)+(y-1)\cdot\sqrt{3}+(z-\frac{2\pi}{3})\cdot 4=0$, adică $(P):-x+y\sqrt{3}+4z-\frac{8\pi}{3}=0$.

2) Curba (*C*) este dată ca intersecție a suprafețelor (S_1) : $x^3 - y^2 + z + 6 = 0$ și (S_2) : $x - y^2 + z^3 + 6 = 0$. Doi vectori normali la aceste suprafețe în punctul curent M(x,y,z) sunt $\vec{N}_1 = 3x^2\vec{\imath} - 2y\vec{\jmath} + \vec{k}$ și $\vec{N}_2 = \vec{\imath} - 2y\vec{\jmath} + 3z^2\vec{k}$. Pentru x = -1, y = -2, z = -1, aceasta conduce la $\vec{N}_1 = 3\vec{\imath} + 4\vec{\jmath} + \vec{k}$ și $\vec{N}_2 = \vec{\imath} + 4\vec{\jmath} + 3\vec{k}$. Urmează că un vector normal \vec{T} al tangentei la (*C*) în M_0 este $\vec{N}_1 \times \vec{N}_2$, adică

$$\vec{T} = \begin{vmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 3 & 4 & 1 \\ 1 & 4 & 3 \end{vmatrix} = 8\vec{\imath} - 8\vec{\jmath} + 8\vec{k}.$$

Ecuația tangentei în $M_0(-1,-2,-1)$ este $(d): \frac{x+1}{8} = \frac{y+2}{-8} = \frac{z+1}{8}$, sau $(d): \frac{x+1}{1} = \frac{y+2}{-1} = \frac{z+1}{1}$, iar ecuația planului normal în $M_0(-1,-2,-1)$ este $(P): (x+1)\cdot 8 + (y+2)\cdot (-8) + (z+1)\cdot 8 = 0$, adică (P): 8x-8y+8z=0, sau (P): x-y+z=0.

- **14.9** Fie curba (C): $\vec{r}(t) = (2t-1)\vec{i} + t^3\vec{j} + (1-t^2)\vec{k}$.
- 1) Să se determine punctele de pe curba (C) în care planul osculator este perpendicular pe planul (P): 7x 12y + 5z 3 = 0.
 - 2) În punctele obținute mai sus, să se scrie ecuațiile binormalei.

Soluție

Un vector normal la planul osculator într-un punct curent M(t) este $\vec{B} = \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}$, unde

$$\frac{d\vec{r}}{dt} = 2\vec{\imath} + 3t^2\vec{\jmath} - 2t\vec{k}, \quad \frac{d^2\vec{r}}{dt^2} = 6t\vec{\jmath} - 2\vec{k}.$$

Se obține că

$$\vec{B} = \begin{vmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 2 & 3t^2 & -2t \\ 0 & 6t & -2 \end{vmatrix} = 6t^2\vec{\imath} + 4\vec{\jmath} + 12t\vec{k}.$$

Un vector normal la planul (P) este $\vec{N}=7\vec{\imath}-12\vec{\jmath}+5\vec{k}$. Dacă planul osculator este perpendicular pe (P), urmează că $\vec{B}\perp\vec{N}$, deci $\vec{B}\cdot\vec{N}=0$. De aici rezultă că $42t^2-48+60t=0$, deci $t_1=\frac{4}{7}$, $t_2=-2$. Urmează că $M_1(t_1)=M_1(\frac{1}{7},\frac{64}{343},\frac{33}{49})$, $M_2(t_2)=M_2(-5,-8,-3)$. Ecuația binormalei în M_1 este atunci $(d_1):\frac{x-\frac{1}{7}}{\frac{96}{49}}=\frac{y-\frac{64}{343}}{4}=\frac{z-\frac{33}{49}}{\frac{48}{7}}$, în timp ce ecuația binormalei în M_2 este $(d_2):\frac{x+5}{24}=\frac{y+8}{4}=\frac{z+3}{-24}$.

14.10 Determinați curbura și torsiunea următoarelor curbe

1) (C):
$$\begin{cases} x(t) = a \cos t \\ y(t) = a \sin t , t \in \mathbb{R}, a, b > 0; \\ z(t) = bt \end{cases}$$
2) (C): $\vec{r}(t) = e^t \cos t\vec{i} + e^t \sin t\vec{j} + e^t \vec{k}, t \in \mathbb{R}$

3) (C):
$$\begin{cases} y = \sinh x \\ z = \cosh x \end{cases}, x \in \mathbb{R}.$$

Solutie

Curbura, respectiv torsiunea unei curbe (C) într-un punct curent M(t) sunt date prin formulele

$$\widetilde{K}(t) = \frac{\left\|\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}\right\|}{\left\|\frac{d\vec{r}}{dt}\right\|^3}, \quad \widetilde{T}(t) = \frac{\left(\frac{d\vec{r}}{dt}, \frac{d^2\vec{r}}{dt^2}, \frac{d^3\vec{r}}{dt^3}\right)}{\left\|\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}\right\|^2}.$$

1) Au loc relațiile

$$\frac{d\vec{r}}{dt} = -a\sin t\vec{\imath} + a\cos t\vec{\jmath} + b\vec{k};$$

$$\frac{d^2\vec{r}}{dt^2} = -a\cos t\vec{\imath} - a\sin t\vec{\jmath};$$

$$\frac{d^3\vec{r}}{dt^3} = a\sin t\vec{\imath} - a\cos t\vec{\jmath},$$

deci

$$\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -a\sin t & a\cos t & b \\ -a\cos t & -a\sin t & 0 \end{vmatrix} = ab\sin t\vec{i} - ab\cos t\vec{j} + a^2\vec{k}.$$

Atunci

$$\left\| \frac{d\vec{r}}{dt} \right\| = \sqrt{(-a\sin t)^2 + (a\cos t)^2 + b^2} = \sqrt{a^2 + b^2};$$

$$\left\| \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \right\| = \sqrt{(ab\sin t)^2 + (-ab\cos t)^2 + (a^2)^2} = a\sqrt{a^2 + b^2},$$

deci

$$\widetilde{K}(t) = \frac{a\sqrt{a^2 + b^2}}{\sqrt{a^2 + b^2}} = \frac{a}{a^2 + b^2}.$$

De asemenea,

$$\left(\frac{d\vec{r}}{dt}, \frac{d^2\vec{r}}{dt^2}, \frac{d^3\vec{r}}{dt^3}\right) = \begin{vmatrix} -a\sin t & a\cos t & b \\ -a\cos t & -a\sin t & 0 \\ a\sin t & -a\cos t & 0 \end{vmatrix} = a^2b,$$

iar

$$\widetilde{T} = \frac{a^2b}{(a\sqrt{a^2 + b^2})^3} = \frac{b}{a\sqrt{a^2 + b^2}^3}.$$

2) Au loc relațiile

$$\frac{d\vec{r}}{dt} = e^t(\cos t - \sin t)\vec{i} + e^t(\cos t + \sin t)\vec{j} + e^t\vec{k};$$

$$\frac{d^2\vec{r}}{dt^2} = -2e^t\sin t\vec{i} + 2e^t\cos t\vec{j} + e^t\vec{k};$$

$$\frac{d^3\vec{r}}{dt^3} = -2e^t(\cos t + \sin t)\vec{i} + 2e^t(\cos t - \sin t)\vec{j} + e^t\vec{k};$$

deci

$$\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ e^t(\cos t - \sin t) & e^t(\cos t + \sin t) & e^t \\ -2e^t \sin t & 2e^t \cos t & e^t \end{vmatrix} = e^{2t} \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \cos t - \sin t & \cos t + \sin t & 1 \\ -2\sin t & 2\cos t & 1 \end{vmatrix} \\
= e^{2t} \left[(\sin t - \cos t)\vec{i} - (\cos t + \sin t)\vec{j} + 2\vec{k} \right].$$

Atunci

$$\left\| \frac{d\vec{r}}{dt} \right\| = \sqrt{\left[e^t (\cos t - \sin t) \right]^2 + \left[e^t (\cos t + \sin t) \right]^2 + \left[e^t \right]^2} = e^t \sqrt{3},$$

$$\left\| \frac{d\vec{r}}{dt} \times \frac{d^2 \vec{r}}{dt^2} \right\| = \sqrt{\left[e^{2t} (\sin t - \cos t) \right]^2 + \left[-e^{2t} (\cos t + \sin t) \right]^2 + \left[2e^{2t} \right]^2} = e^{2t} \sqrt{6},$$

deci

$$\widetilde{K}(t) = \frac{e^{2t}\sqrt{6}}{(e^t\sqrt{3})^3} = \frac{1}{e^t}\frac{\sqrt{2}}{3}.$$

De asemenea,

$$\begin{pmatrix} \frac{d\vec{r}}{dt}, \frac{d^2\vec{r}}{dt^2}, \frac{d^3\vec{r}}{dt^3} \end{pmatrix} = \begin{vmatrix} e^t(\cos t - \sin t) & e^t(\cos t + \sin t) & e^t \\ -2e^t \sin t & 2e^t \cos t & e^t \\ -2e^t(\cos t + \sin t) & 2e^t(\cos t - \sin t) & e^t \end{vmatrix} \\
= e^{3t} \begin{vmatrix} \cos t - \sin t & \cos t + \sin t & 1 \\ -2\sin t & 2\cos t & 1 \\ -2(\cos t + \sin t) & 2(\cos t - \sin t) & 1 \end{vmatrix} \\
= \frac{L_3' = L_3 + 2L_1 - 2L_2}{2} e^{3t} e^{3t} \begin{vmatrix} \cos t - \sin t & \cos t + \sin t & 1 \\ -2\sin t & 2\cos t & 1 \\ 0 & 0 & 1 \end{vmatrix} \\
= e^{3t} \begin{vmatrix} \cos t - \sin t & \cos t + \sin t \\ -2\sin t & 2\cos t \end{vmatrix} = 2e^{3t}.$$

În concluzie,

$$\widetilde{T}(t) = \frac{2e^{3t}}{(e^{2t}\sqrt{6})^2} = \frac{1}{3e^t}.$$

3) Deoarece curba este definită explicit cu y, z ca funcții de x, pentru a obține reprezentarea parametrică se poate considera x ca parametru, x = t. Se obține că

$$\frac{d\vec{r}}{dt} = \vec{t} + \cosh t \vec{j} + \sinh t \vec{k};$$

$$\frac{d^2 \vec{r}}{dt^2} = \sinh t \vec{j} + \cosh t \vec{k};$$

$$\frac{d^3 \vec{r}}{dt^3} = \cosh t \vec{j} + \sinh t \vec{k},$$

deci

$$\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} = \begin{vmatrix} \vec{t} & \vec{j} & \vec{k} \\ 1 & \operatorname{ch} t & \operatorname{sh} t \\ 0 & \operatorname{sh} t & \operatorname{ch} t \end{vmatrix} = \vec{t} - \operatorname{ch} t\vec{j} + \operatorname{sh} t\vec{k},$$

iar

$$\left\| \frac{d\vec{r}}{dt} \right\| = \sqrt{1^2 + (\cosh t)^2 + (\sinh t)^2} = \sqrt{2} \cosh t;$$
$$\left\| \frac{d\vec{r}}{dt} \times \frac{d^2 \vec{r}}{dt^2} \right\| = \sqrt{1^2 + (-\cosh t)^2 + (\sinh t)^2} = \sqrt{2} \cosh t.$$

De aici,

$$\widetilde{K}(t) = \frac{\sqrt{2} \operatorname{ch} t}{(\sqrt{2} \operatorname{ch} t)^3} = \frac{1}{2(\operatorname{ch} t)^2}.$$

De asemenea,

$$\left(\frac{d\vec{r}}{dt}, \frac{d^2\vec{r}}{dt^2}, \frac{d^3\vec{r}}{dt^3}\right) = \begin{vmatrix} 1 & \operatorname{ch} t & \operatorname{sh} t \\ 0 & \operatorname{sh} t & \operatorname{ch} t \\ 0 & \operatorname{ch} t & \operatorname{sh} t \end{vmatrix} = -1,$$

de unde

$$\widetilde{T}(t) = -\frac{1}{2(\operatorname{ch} t)^2}.$$

14.11 În fiecare dintre cazurile de mai jos, să se arate prin calculul torsiunii sau prin eliminarea parametrului t că (C) este o curbă plană și să se determine ecuația planului curbei.

1)
$$(C)$$
: $\vec{r}(t) = (t^2 - 1)\vec{i} + t^2\vec{j} + \ln t \,\vec{k}, t \in \mathbb{R};$

2) (C):
$$\vec{r}(t) = (2t^3 + t^2)\vec{i} + (t^2 - 2t)\vec{j} + (t^3 + t - 1)\vec{k}, t \in \mathbb{R}$$
.

Soluție

1) Fie M(x,y,z) un punct curent pe curbă. Atunci $x(t)=t^2-1$, $y(t)=t^2$, $z(t)=\ln t$, iar x(t)-y(t)+1=0. În concluzie, (C) se găsește în planul x-y+1=0. De asemenea,

$$\frac{d\vec{r}}{dt} = 2t\vec{\imath} + 2t\vec{\jmath} + \frac{1}{t}\vec{k};$$

$$\frac{d^2\vec{r}}{dt^2} = 2\vec{\imath} + 2\vec{\jmath} - \frac{1}{t^2}\vec{k};$$

$$\frac{d^3\vec{r}}{dt^3} = \frac{2}{t^3}\vec{k},$$

iar

$$\left(\frac{d\vec{r}}{dt}, \frac{d^2\vec{r}}{dt^2}, \frac{d^3\vec{r}}{dt^3}\right) = \begin{vmatrix} 2t & 2t & \frac{1}{t} \\ 2 & 2 & -\frac{1}{t^2} \\ 0 & 0 & \frac{2}{t^3} \end{vmatrix} = \frac{2}{t^3} \begin{vmatrix} 2t & 2t \\ 2 & 2 \end{vmatrix} = 0,$$

deci (C) este curbă plană, iar planul curbei coincide cu planul osculator. Un vector normal la planul osculator este

$$ec{B} = rac{dec{r}}{dt} imes rac{d^2 ec{r}}{dt^2} = \begin{vmatrix} ec{\imath} & ec{\jmath} & ec{k} \\ 2t & 2t & rac{1}{t} \\ 2 & 2 & -rac{1}{t^2} \end{vmatrix} = -rac{4}{t} ec{\imath} + rac{4}{t} ec{\jmath};$$

un vector constant coliniar cu acesta este $\vec{v} = \vec{\imath} - \vec{\jmath}$. Ecuația planului osculator este atunci $(x - x_0) - (y - y_0) = 0$, unde $M_0(x_0, y_0, z_0)$ este un punct oarecare de pe curbă. Pentru t = 0 se obține $M_0(-1, 0, 1)$, iar ecuația planului osculator devine x - y + 1 = 0.

2) Fie M(x,y,z) un punct curent de pe curbă. Atunci $x(t)=2t^3+t^2$, $y(t)=t^2-2t$, $z(t)=t^3+t-1$. Ecuația unui plan care conține curba (C) va fi Ax+By+Cz+D=0, cu A,B,C,D ce urmează a fi determinați. Se obține că

$$A(2t^3 + t^2) + B(t^2 - 2t) + C(t^3 + t - 1) + D = 0,$$

de unde 2A + C = 0, A + B = 0, -2B + C = 0, D - C = 0. Atunci B = -A, C = -2A, D = -2A, iar curba (C) se găsește în planul Ax - Ay - 2Az - 2A = 0. Simplificând prin A obținem că ecuația căutată este x - y - 2z - 2 = 0.

De asemenea,

$$\frac{d\vec{r}}{dt} = (6t^2 + 2t)\vec{i} + (2t - 2)\vec{j} + (3t^2 + 1)\vec{k};$$

$$\frac{d^2\vec{r}}{dt^2} = (12t + 2)\vec{i} + 2\vec{j} + 6t\vec{k};$$

$$\frac{d^3\vec{r}}{dt^3} = 12\vec{i} + 6\vec{k},$$

iar

$$\left(\frac{d\vec{r}}{dt}, \frac{d^2\vec{r}}{dt^2}, \frac{d^3\vec{r}}{dt^3}\right) = \begin{vmatrix} 6t^2 + 2t & 2t - 2 & 3t^2 + 1 \\ 12t + 2 & 2 & 6t \\ 12 & 0 & 6 \end{vmatrix}$$

$$\frac{C_1' = C_1 - 2C_3}{2t} \begin{vmatrix} 2t - 2 & 2t - 2 & 3t^2 + 1 \\ 2 & 2 & 6t \\ 0 & 0 & 6 \end{vmatrix} = 0,$$

deci (C) este curbă plană. Ca mai sus, un vector normal la planul curbei este

$$\vec{B} = \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 6t^2 + 2t & 2t - 2 & 3t^2 + 1 \\ 12t + 2 & 2 & 6t \end{vmatrix}$$
$$= (6t^2 - 12t - 2)\vec{i} - (6t^2 - 12t - 2)\vec{j} - 2(6t^2 - 12t - 2)\vec{k};$$

un vector constant coliniar cu acesta este $\vec{v} = \vec{t} - \vec{j} - 2\vec{k}$. Ecuația planului osculator este atunci $(x - x_0) - (y - y_0) - 2(z - z_0) = 0$, unde $M_0(x_0, y_0, z_0)$ este un punct oarecare de pe curbă. Pentru $t_0 = 0$ se obține $M_0(0, 0, -1)$, iar ecuația planului osculator devine x - y - 2z + 2 = 0.

14.12 Determinați punctele curbei
$$(C)$$
:
$$\begin{cases} x(t) = \frac{1}{t} \\ y(t) = t \end{cases}$$
 în care binormala este perpenzute $z(t) = 2t^2 - 1$

diculară pe dreapta $(d): \begin{cases} x+y=1 \\ 4x-z=2 \end{cases}$.

Soluţie

Cum

$$\frac{d\vec{r}}{dt} = -\frac{1}{t^2}\vec{i} + \vec{j} + 4t\vec{k};$$

$$\frac{d^2\vec{r}}{dt^2} = \frac{2}{t^3}\vec{i} + 4\vec{k},$$

un vector director al binormalei este

$$\vec{B} = \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} = \begin{vmatrix} \vec{t} & \vec{j} & \vec{k} \\ -\frac{1}{t^2} & 1 & 4t \\ \frac{2}{t^3} & 0 & 4 \end{vmatrix} = 4\vec{t} + \frac{12}{t^2}\vec{j} - \frac{2}{t^3}\vec{k}.$$

Deoarece (d) este dată ca intersecția planelor $(P_1): x+y=1$ și $(P_2): 4x-z=2$, un vector director al său este $\vec{v}=\vec{N}_1\times\vec{N}_2$, unde $\vec{N}_1=\vec{\imath}+\vec{\jmath}$, $\vec{N}_2=4\vec{\imath}-\vec{k}$ sunt vectori normali la (P_1) , respectiv (P_2) . Se obține că $\vec{v}=-\vec{\imath}+\vec{\jmath}-4\vec{k}$.

Binormala într-un punct curent M(t) este perpendiculară pe (d) dacă $\vec{B} \perp \vec{v}$, adică $\vec{B} \cdot \vec{v} = 0$. Se obține că $-4 + \frac{12}{t^2} + \frac{8}{t^3} = 0$, ceea ce conduce la $(-4)\frac{(t+1)^2(t-2)}{t^3} = 0$, deci $t \in \{-1,2\}$. Se obțin de aici punctele $M_1(-1,-1,1)$, $M_2(\frac{1}{2},2,7)$.

14.13 Fie curba (C):
$$\begin{cases} x(t) = a \sin^2 t \\ y(t) = a \sin 2t \\ z(t) = a \cos^2 t \end{cases}$$
, $t \in \mathbb{R}$, $a > 0$.

- 1) Demonstrați, prin calculul torsiunii sau prin eliminarea parametrului t, că (C) este o curbă plană.
 - 2) Demonstrați că (C) aparține unui elipsoid cu centrul în origine, a cărui ecuație se cere.
 - 3) Precizați punctele curbei în care curbura este minimă.

Soluție

1) Fie M(x,y,z) un punct curent pe curba (C). Se observă că x(t)+z(t)=a, deci (C) este conținută în planul x+z=a.

2) Are loc relația

$$\frac{x^2}{a^2} + \frac{y^2}{2a^2} + \frac{z^2}{a^2} = \sin^4 t + 2\sin^2 t \cos^2 t + \cos^4 t = (\sin^2 t + \cos^2 t)^2 = 1,$$

deci (C) se află pe suprafața elipsoidului (E) : $\frac{x^2}{a^2} + \frac{y^2}{2a^2} + \frac{z^2}{a^2} = 1$.

3) Se observă că

$$\frac{d\vec{r}}{dt} = 2a\sin t \cos t\vec{i} + 2a\cos 2t\vec{j} - 2a\sin t \cos t\vec{k}$$
$$= a\sin 2t\vec{i} + 2a\cos 2t\vec{j} - a\sin 2t\vec{k};$$
$$\frac{d^2\vec{r}}{dt^2} = 2a\cos 2t\vec{i} - 4a\sin 2t\vec{j} - 2a\cos 2t\vec{k}.$$

Atunci

$$\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a\sin 2t & 2a\cos 2t & -a\sin 2t \\ 2a\cos 2t & -4a\sin 2t & -2a\cos 2t \end{vmatrix} = -4a^2\vec{i} - 4a^2\vec{k}.$$

În concluzie,

$$\left\| \frac{d\vec{r}}{dt} \right\| = \sqrt{(a\sin 2t)^2 + (2a\cos 2t)^2 + (a\sin 2t)^2} = \sqrt{2a^2 + 2a^2\cos^2 2t}$$
$$= a\sqrt{2(1+\cos^2 2t)}$$
$$\left\| \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \right\| = \sqrt{(-4a^2)^2 + (-4a^2)^2} = 4a^2\sqrt{2},$$

iar

$$\widetilde{K}(t) = \frac{4a^2\sqrt{2}}{2\sqrt{2}a^3(\sqrt{1+\cos^2 2t})^3} = \frac{2}{a(\sqrt{1+\cos^2 2t})^3}$$

care este minimă pentru $\cos^2 2t = 1$, adică $t \in \{\pm \frac{\pi}{4} + k\pi, \pm \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$.

14.14 Fie curba (C):
$$\begin{cases} x(t) = a \cos t \\ y(t) = a \sin t \quad , t \in \mathbb{R}, a, b > 0. \\ z(t) = bt \end{cases}$$

- 1) Demonstrați că (C) aparține unui cilindru de rotație în jurul lui Oz, a cărui ecuație se cere.
- 2) Demonstrați că tangenta într-un punct curent M al curbei face un unghi constant cu axa Oz.
- 3) Demonstrați că planul normal și planul osculator într-un punct curent M al curbei taie axa Oz în același punct.

Soluție

- 1) Fie M(x,y,z) un punct curent de pe curba (C). Se observă că $x^2 + y^2 = a^2$, deci (C) se află pe suprafața cilindrului de rotație $x^2 + y^2 = a^2$.
- 2) Un vector tangent la curbă într-un punct curent M(x,y,z) este $\vec{T} = \frac{d\vec{r}}{dt} = -a \sin t \vec{\imath} + a \cos t \vec{\jmath} + b \vec{k}$. Unghiul φ dintre \vec{T} (vector director al tangentei) și \vec{k} (vector director al axei Oz) se calculează cu ajutorul formulei $\cos \varphi = \frac{\vec{T} \cdot \vec{k}}{\|\vec{T}\| \cdot \|\vec{k}\|} = \frac{b}{\sqrt{a^2 + b^2}}$. În concluzie, tangenta într-un punct M la curbă face unghiul $\varphi = \arccos \frac{b}{\sqrt{a^2 + b^2}}$ cu axa Oz.
 - 3) Deoarece

$$\frac{d\vec{r}}{dt} = -a\sin t\vec{\imath} + a\cos t\vec{\jmath} + b\vec{k};$$

$$\frac{d^2\vec{r}}{dt^2} = -a\cos t\vec{\imath} - a\sin t\vec{\jmath},$$

urmează că un vector normal la planul normal este

$$\vec{T} = \frac{d\vec{r}}{dt} = -a\sin t\vec{\imath} + a\cos t\vec{\jmath} + b\vec{k},$$

iar un vector normal la planul osculator este

$$\vec{B} = \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -a\sin t & a\cos t & b \\ -a\cos t & -a\sin t & 0 \end{vmatrix} = ab\sin t\vec{i} - ab\cos t\vec{j} + a^2\vec{k}.$$

Atunci ecuația planului normal într-un punct curent M este

$$(x - a\cos t)(-a\sin t) + (y - a\sin t)a\cos t + (z - bt)b = 0.$$

Acest plan intersectează axa Oz în I(0,0,bt), punct ce se obține punând x=y=0 în ecuația de mai sus. Ecuația planului osculator într-un punct curent M este

$$(x - a\cos t)ab\sin t + (y - a\sin t)(-ab\cos t) + (z - bt)a^{2} = 0,$$

iar acest plan de asemenea intersectează axa Oz în I(0,0,bt).

Capitolul 15

PROBLEME DE SINTEZĂ

15.1 Fie \vec{a} , $\vec{b} \in V_3$ necoliniari.

- 1) Calculați $\|(\vec{a} + \vec{b}) \times (\vec{a} \vec{b})\|$ în funcție de $\|\vec{a} \times \vec{b}\|$ și interpretați geometric rezultatul.
- 2) Calculați $\|\vec{a} + \vec{b}\|^2 + \|\vec{a} \vec{b}\|^2$ în funcție de $\|\vec{a}\|^2 + \|\vec{b}\|^2$ și interpretați geometric rezultatul.

Soluţie

1) Folosind proprietățile produsului vectorial, avem:

$$(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = \vec{a} \times (\vec{a} - \vec{b}) + \vec{b} \times (\vec{a} - \vec{b})$$

$$= \vec{a} \times \vec{a} - \vec{a} \times \vec{b} + \vec{b} \times \vec{a} - \vec{b} \times \vec{b}$$

$$= \vec{0} - \vec{a} \times \vec{b} - \vec{a} \times \vec{b} - \vec{0} = -2\vec{a} \times \vec{b}.$$

Rezultă că $\|(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})\| = 2\|\vec{a} \times \vec{b}\|$. Din punct de vedere geometric, această egalitate arată că aria paralelogramului construit pe diagonalele unui paralelogram este dublul ariei acestui paralelogram.

2) Folosind proprietățile produsului scalar, avem:

$$\begin{aligned} \|\vec{a} + \vec{b}\|^2 + \|\vec{a} - \vec{b}\|^2 &= (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) + (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) \\ &= \vec{a} \cdot \vec{a} + 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} + \vec{a} \cdot \vec{a} - 2\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} \\ &= 2\vec{a}^2 + 2\vec{b}^2 = 2(\|\vec{a}\|^2 + \|\vec{b}\|^2). \end{aligned}$$

Geometric, această identitate arată că suma pătratelor diagonalelor unui paralelogram este egală cu suma pătratelor laturilor acestuia (un caz particular al teoremei lui Euler într-un patrulater).

15.2 Demonstrați că
$$(\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}) = (\vec{a}, \vec{b}, \vec{c})^2, \forall \vec{a}, \vec{b}, \vec{c} \in V_3.$$

Soluție

Notăm $\vec{u}=\vec{a}\times\vec{b},\,\vec{v}=\vec{b}\times\vec{c}.$ Folosind proprietățile produsului mixt și pe cele ale dublului produs vectorial, obținem că

$$\begin{split} (\vec{a}\times\vec{b},\vec{b}\times\vec{c},\vec{c}\times\vec{a}) &= (\vec{u},\vec{v},\vec{c}\times\vec{a}) = \vec{u}\cdot(\vec{v}\times(\vec{c}\times\vec{a})) \\ &= \vec{u}\cdot((\vec{v}\cdot\vec{a})\vec{c}-(\vec{v}\cdot\vec{c})\vec{a})) = \vec{u}\cdot((\vec{a}\cdot\vec{v})\vec{c}-(\vec{c}\cdot\vec{v})\vec{a})) \\ &= \vec{u}\cdot((\vec{a},\vec{b},\vec{c})\vec{c}-(\vec{c},\vec{b},\vec{c})\vec{a}) = \vec{u}\cdot((\vec{a},\vec{b},\vec{c})\vec{c}) = (\vec{a},\vec{b},\vec{c})\vec{u}\cdot\vec{c} \\ &= (\vec{a},\vec{b},\vec{c})\vec{c}\cdot\vec{u} = (\vec{a},\vec{b},\vec{c})(\vec{c},\vec{a},\vec{b}) \\ &= (\vec{a},\vec{b},\vec{c})^2. \end{split}$$

15.3 Demonstrați că

$$(\vec{a} \times (\vec{b} \times \vec{c}), \vec{b} \times (\vec{c} \times \vec{a}), \vec{c} \times (\vec{a} \times \vec{b})) = 0, \quad \forall \vec{a}, \vec{b}, \vec{c} \in V_3.$$

Soluție

Observăm că

$$\vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b})$$

$$= (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} + (\vec{b} \cdot \vec{a})\vec{c} - (\vec{b} \cdot \vec{c})\vec{a} + (\vec{c} \cdot \vec{b})\vec{a} - (\vec{c} \cdot \vec{a})\vec{b} = \vec{0},$$

întrucât produsul scalar este comutativ. Atunci, vectorii $\vec{a} \times (\vec{b} \times \vec{c})$, $\vec{b} \times (\vec{c} \times \vec{a})$ şi $\vec{c} \times (\vec{a} \times \vec{b})$ sunt coplanari (unul dinre ei fiind opusul sumei celorlalţi), prin urmare produsul lor mixt este nul.

15.4 Fie G centrul de greutate al $\triangle ABC$ și fie A_1 , B_1 , C_1 proiecțiile punctelor A, B, C pe o dreaptă arbitrară care trece prin G. Demonstrați că $\overrightarrow{AA_1} + \overrightarrow{BB_1} + \overrightarrow{CC_1} = \vec{0}$.

Soluție

Fie M mijlocul laturii [BC]; atunci $\overrightarrow{GB} + \overrightarrow{GC} = 2\overrightarrow{GM}$. Însă $\overrightarrow{GA} = -2\overrightarrow{GM}$, prin urmare $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$. Proiecția sumei unor vectori pe o dreaptă este egală cu suma proiecțiilor vectorilor dați pe acea dreaptă; rezultă astfel că $\overrightarrow{GA_1} + \overrightarrow{GB_1} + \overrightarrow{GC_1} = \overrightarrow{0}$. În aceste condiții,

$$\overrightarrow{AA_1} + \overrightarrow{BB_1} + \overrightarrow{CC_1} = (\overrightarrow{GA} - \overrightarrow{GA_1}) + (\overrightarrow{GB} - \overrightarrow{GB_1}) + (\overrightarrow{GC} - \overrightarrow{GC_1})$$
$$= (\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}) - (\overrightarrow{GA_1} + \overrightarrow{GB_1} + \overrightarrow{GC_1}) = \vec{0} - \vec{0} = \vec{0}.$$

15.5 Fie M, N, P, Q, R, S mijloacele laturilor consecutive ale hexagonului ABCDEF. Dacă $RN^2 = MQ^2 + PS^2$, demonstrați că $MQ \perp PS$.

137

Soluţie

Considerăm că M, N, P, Q, R, S sunt mijloacele laturilor [AB], [BC], [CD], [DE], [EF], respectiv [FA]. Avem

$$\overrightarrow{RN} = \frac{1}{2}(\overrightarrow{RB} + \overrightarrow{RC}) = \frac{1}{2}(\overrightarrow{RF} + \overrightarrow{FB}) + \frac{1}{2}(\overrightarrow{RE} + \overrightarrow{EC})$$
$$= \frac{1}{2}(\overrightarrow{RF} + \overrightarrow{RE}) + \frac{1}{2}(\overrightarrow{FB} + \overrightarrow{EC}) = \frac{1}{2}(\overrightarrow{FB} + \overrightarrow{EC}).$$

Analog se arată că $\overrightarrow{MQ} = \frac{1}{2}(\overrightarrow{AE} + \overrightarrow{BD})$, iar $\overrightarrow{PS} = \frac{1}{2}(\overrightarrow{CA} + \overrightarrow{DF})$, prin urmare

$$\overrightarrow{RN} + \overrightarrow{MQ} + \overrightarrow{PS} = \frac{1}{2}(\overrightarrow{FB} + \overrightarrow{BD} + \overrightarrow{DF}) + \frac{1}{2}(\overrightarrow{EC} + \overrightarrow{CA} + \overrightarrow{AE}) = \vec{0}.$$

Deducem că $\overrightarrow{RN} = \overrightarrow{QM} + \overrightarrow{SP}$, deci

$$RN^2 = \overrightarrow{RN}^2 = (\overrightarrow{QM} + \overrightarrow{SP})^2 = QM^2 + SP^2 + 2\overrightarrow{QM} \cdot \overrightarrow{SP}.$$

Ţinând cont de ipoteza problemei, obţinem că $\overrightarrow{QM} \cdot \overrightarrow{SP} = 0$, de unde rezultă că $MQ \perp PS$.

15.6 În tetraedrul ABCD, medianele din A ale triunghiurilor ABC, ABD și ACD sunt perpendiculare două câte două. Demonstrați că AB = AC = AD.

Soluție

Fie M, N, P mijloacele muchiilor [BC], [BD], respectiv [CD]; atunci $\overrightarrow{AM} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC})$, $\overrightarrow{AN} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AD})$, iar $\overrightarrow{AP} = \frac{1}{2}(\overrightarrow{AC} + \overrightarrow{AD})$. Condiția $AM \perp AN$ conduce la anularea produsului scalar $\overrightarrow{AM} \cdot \overrightarrow{AN}$, adică la

$$(\overrightarrow{AB} + \overrightarrow{AC}) \cdot (\overrightarrow{AB} + \overrightarrow{AD}) = 0 \Leftrightarrow AB^2 + \overrightarrow{AB} \cdot \overrightarrow{AD} + \overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{AC} \cdot \overrightarrow{AD} = 0.$$

Transcriem în același mod ipotezele $AM \perp AP$ și $AN \perp AP$, obținând că

$$AB^2 = AC^2 = AD^2 = -(\overrightarrow{AB} \cdot \overrightarrow{AD} + \overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{AC} \cdot \overrightarrow{AC}),$$

de unde rezultă că AB = AC = AD.

- **15.7** 1) Arătați că $M_1(3,5,2)$, $M_2(4,8,6)$, $M_3(5,11,10)$ sunt coliniare și precizați ecuațiile dreptei determinate de ele.
- 2) Arătați că A(2,-2,3), B(6,2,-3), C(3,1,4), D(4,0,0) sunt coplanare și precizați ecuația planului determinat de ele.

Soluție

1) Observăm că $\overrightarrow{M_1M_2} = \vec{\imath} + 3\vec{\jmath} + 4\vec{k}$, iar $\overrightarrow{M_1M_3} = 2\vec{\imath} + 6\vec{\jmath} + 8\vec{k}$, prin urmare $\overrightarrow{M_1M_3} = 2\overrightarrow{M_1M_2}$, de unde rezultă coliniaritatea celor trei puncte. Vectorul $\overrightarrow{M_1M_2}$ este vector director al dreptei (d) determinate de ele, prin urmare ecuațiile dreptei (d) sunt

$$(d): \frac{x-3}{1} = \frac{y-5}{3} = \frac{z-2}{4}.$$

2) Verificăm condiția de coplanaritate

$$\begin{vmatrix} x_A & y_A & z_A & 1 \\ x_B & y_B & z_b & 1 \\ x_C & y_C & z_C & 1 \\ x_D & y_D & z_D & 1 \end{vmatrix} = \begin{vmatrix} 2 & -2 & 3 & 1 \\ 6 & 2 & -3 & 1 \\ 3 & 1 & 4 & 1 \\ 4 & 0 & 0 & 1 \end{vmatrix} = \dots = 0.$$

Ecuația planului determinat de punctele A, C, D este

$$(P): \begin{vmatrix} x & y & z & 1 \\ 2 & -2 & 3 & 1 \\ 3 & 1 & 4 & 1 \\ 4 & 0 & 0 & 1 \end{vmatrix} = 0, \text{ i.e. } (P): 11x - 5y + 4z - 44 = 0.$$

Soluție alternativă

1) Observăm că

$$M_1 M_2 = \sqrt{(4-3)^2 + (8-5)^2 + (6-2)^2} = \sqrt{26},$$

 $M_2 M_3 = \sqrt{(5-4)^2 + (11-8)^2 + (10-6)^2} = \sqrt{26},$
 $M_1 M_3 = \sqrt{(5-3)^2 + (11-5)^2 + (10-2)^2} = 2\sqrt{26},$

de unde $M_1M_2 + M_2M_3 = M_1M_3$, iar M_1 , M_2 , M_3 sunt coliniare.

2) Cum
$$\overrightarrow{AB} = 4\vec{\imath} + 4\vec{\jmath} - 6\vec{k}$$
, $\overrightarrow{AC} = \vec{\imath} + 3\vec{\jmath} + \vec{k}$, $\overrightarrow{AD} = 2\vec{\imath} + 2\vec{\jmath} - 3\vec{k}$, iar

$$(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}) = \begin{vmatrix} 4 & 4 & -6 \\ 1 & 3 & 1 \\ 2 & 2 & -3 \end{vmatrix} = 0,$$

urmează că \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} sunt coplanari, deci punctele A, B, C, D aparțin unui aceluiași plan (P). Un vector normal la (P) este atunci

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 4 & 4 & -6 \\ 1 & 3 & 1 \end{vmatrix} = 22\vec{\imath} - 10\vec{\jmath} + 8\vec{k}.$$

139

Ecuația planului căutat este atunci (P): 22x - 10y + 8z + C = 0, unde C se determină punând condiția ca $A \in (P)$, obținându-se că C = -88. De aici, planul căutat are ecuația (P): 22x - 10y + 8z - 88 = 0, i.e. (P): 11x - 5y + 4z - 44 = 0.

- **15.8** *Fie* A(3,1,5), B(7,3,1), C(5,5,3).
 - 1) Este $\triangle ABC$ dreptunghic? Dar isoscel?
 - 2) Determinați ecuația laturii AB și a medianei AM.
 - 3) Precizați aria $\triangle ABC$.
 - 4) Determinați $(\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CA})$.

Soluție

1) Calculăm lungimile laturilor $\triangle ABC$:

$$AB = \sqrt{(7-3)^2 + (3-1)^2 + (1-5)^2} = 6,$$

$$BC = \sqrt{(5-7)^2 + (5-3)^2 + (3-1)^2} = 4\sqrt{3},$$

$$CA = \sqrt{(3-5)^2 + (1-5)^2 + (5-3)^2} = 2\sqrt{6}.$$

Deoarece $AB^2 = 36 = BC^2 + CA^2$, $\triangle ABC$ este dreptunghic, cu $m(\hat{C}) = 90^\circ$. Evident, triunghiul considerat nu este isoscel.

2) Vectorul director al laturii AB este $\overrightarrow{AB}(4,2,4)$. Rezultă că

$$(AB): \frac{x-3}{4} = \frac{y-1}{2} = \frac{z-5}{4}.$$

Mijlocul laturii [BC] este punctul M(6,4,2). Atunci $\overrightarrow{AM}(3,3,-3)$, deci ecuația medianei din A este

$$(AM): \frac{x-3}{3} = \frac{y-1}{3} = \frac{z-5}{-3}.$$

3) Triunghiul fiind dreptunghic de catete AC şi BC, rezultă că

$$S_{ABC} = \frac{AC \cdot BC}{2} = \frac{2\sqrt{6} \cdot 4\sqrt{3}}{2} = 12\sqrt{2}.$$

4) Produsul mixt a trei vectori coplanari este nul.

Soluție alternativă

1) Se observă că

$$\overrightarrow{AB} = 4\vec{\imath} + 2\vec{\jmath} - 4\vec{k}, \overrightarrow{AC} = 2\vec{\imath} + 4\vec{\jmath} - 2\vec{k}, \overrightarrow{BC} = -2\vec{\imath} + 2\vec{\jmath} + 2\vec{k}.$$

Cum $\overrightarrow{AC} \cdot \overrightarrow{BC} = 2 \cdot (-2) + 4 \cdot 2 + (-2) \cdot 2 = 0$, urmează că $\overrightarrow{AC} \perp \overrightarrow{BC}$, deci $\triangle ABC$ este dreptunghic, cu $m(\hat{C}) = 90^{\circ}$. Deoarece $\|\overrightarrow{AB}\| = 6$, $\|\overrightarrow{BC}\| = 4\sqrt{3}$, $\|\overrightarrow{AC}\| = 2\sqrt{6}$, $\triangle ABC$ nu este isoscel.

3) Au loc egalitățile

$$S_{ABC} = \frac{1}{2} \|\overrightarrow{AB} \times \overrightarrow{AC}\| = 12\sqrt{2}.$$

- **15.9** *Fie* A(1, -2, 1), B(2, 1, -1), C(3, 2, 6).
 - 1) Determinați $\overrightarrow{AB} \times \overrightarrow{AC}$.
 - 2) Demonstrați că A, B, C nu sunt coliniare și precizați aria $\triangle ABC$.
 - 3) Precizați un vector perpendicular pe planul (ABC).
 - 4) Verificați că $\|\overrightarrow{AB} + \overrightarrow{AC}\|^2 + \|\overrightarrow{AB} \overrightarrow{AC}\|^2 = 2(\|\overrightarrow{AB}\|^2 + \|\overrightarrow{AC}\|^2).$

Soluție

1) Cum $\overrightarrow{AB}(1,3,-2)$, iar $\overrightarrow{AC}(2,4,5)$, atunci

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 1 & 3 & -2 \\ 2 & 4 & 5 \end{vmatrix} = 23\vec{\imath} - 9\vec{\jmath} - 2\vec{k}.$$

2) Întrucât $\overrightarrow{AB} \times \overrightarrow{AC} \neq \overrightarrow{0}$, înseamnă că vectorii nenuli \overrightarrow{AB} și \overrightarrow{AC} sunt necoliniari, prin urmare punctele A, B, C sunt necoliniare. Aria $\triangle ABC$ este

$$S_{ABC} = \frac{1}{2} \|\overrightarrow{AB} \times \overrightarrow{AC}\| = \frac{\sqrt{614}}{2}.$$

- 3) Un vector perpendicular pe planul (ABC) este chiar $\overrightarrow{AB} \times \overrightarrow{AC} = 23\vec{\imath} 9\vec{\jmath} 2\vec{k}$.
- 4) Avem: $\overrightarrow{AB} + \overrightarrow{AC} = 3\vec{\imath} + 7\vec{\jmath} + 3\vec{k}$, $\overrightarrow{AB} \overrightarrow{AC} = -\vec{\imath} \vec{\jmath} 7\vec{k}$, prin urmare

$$\|\overrightarrow{AB} + \overrightarrow{AC}\|^2 + \|\overrightarrow{AB} - \overrightarrow{AC}\|^2 = (3^2 + 7^2 + 3^2) + ((-1)^2 + (-1)^2 + (-7)^2)$$
$$= 67 + 51 = 118.$$

Pe de altă parte,

$$2(\|\overrightarrow{AB}\|^2 + \|\overrightarrow{AC}\|^2) = 2(1^2 + 3^2 + (-2)^2) + 2(2^2 + 4^2 + 5^2) = 28 + 90 = 118,$$

de unde cerința problemei.

15.10 Fie ABCDA'B'C'D' un cub de latură 1. Determinați distanța dintre dreptele AC' și BD, punând în evidență perpendiculara comună.

Solutie

Raportăm spațiul la un reper ortogonal în raport cu care A(0,0,0), B(1,0,0), C(1,1,0), D(0,1,0), A'(0,0,1), B'(1,0,1), C'(1,1,1), iar D'(0,1,1). Considerăm M un punct pe dreapta AC', iar N un punct pe dreapta BD. Cum ecuațiile parametrice al lui AC' sunt

$$\begin{cases} x=t \\ y=t \quad , t \in \mathbb{R}, \text{ iar ecuațiile parametrice al lui } BD \text{ sunt } \begin{cases} x=1+s \\ y=-s \quad , s \in \mathbb{R}, \text{ putem } \\ z=0 \end{cases}$$
 considera că $M(t,t,t), N(1+s,-s,0), \text{ cu } t,s \in \mathbb{R}. \text{ Astfel, } \overrightarrow{MN}(1-t+s,-t-s,-t).$

Dorim ca MN să fie perpendiculara comună a dreptelor BD și AC'; atunci

$$\overrightarrow{BD} \cdot \overrightarrow{MN} = 0 \Rightarrow (-1) \cdot (1 - t + 2) + 1 \cdot (-t - s) + 0 \cdot (-t) = 0 \Rightarrow s = -\frac{1}{2};$$

$$\overrightarrow{AC'} \cdot \overrightarrow{MN} = 0 \Rightarrow 1 \cdot (1 - t + s) + 1 \cdot (-t - s) + 1 \cdot (-t) = 0 \Rightarrow t = \frac{1}{3}.$$

Rezultă coordonatele punctelor M și N, anume $M(\frac{1}{3},\frac{1}{3},\frac{1}{3})$, iar $N(\frac{1}{2},\frac{1}{2},0)$. Prin urmare, distanța dintre cele două drepte va fi $MN = \frac{\sqrt{6}}{6}$.

15.11 Determinați ecuația dreptei care trece prin A(1,2,2) și este paralelă cu planele (P_1) : 2x - y + 3z - 1 = 0 şi $(P_2): 3x + 2y - z + 4 = 0.$

Solutie

Fie (d) dreapta care trece prin A și este paralelă cu cele două plane, iar $\vec{v}(a,b,c)$ un vector director al ei. Dacă $\overrightarrow{N_1}$ și $\overrightarrow{N_2}$ sunt vectori normali la planele (P_1) , respectiv (P_2) , atunci $\vec{v} \perp \overrightarrow{N_1}$ și $\vec{v} \perp \overrightarrow{N_2}$, prin urmare $\vec{v} \cdot \overrightarrow{N_1} = \vec{v} \cdot \overrightarrow{N_2} = 0$. Întrucât $\overrightarrow{N_1}(2, -1, 3)$, iar $\overrightarrow{N_2}(3, 2, -1)$, obținem sistemul $\begin{cases} 2a - b + 3c = 0 \\ 3a + 2b - c = 0 \end{cases}$. O soluție particulară a acestui sistem, obţinută pentru c = 7, este (-5, 11, 7). Ecuațiile dreptei sunt

$$(d): \frac{x-1}{-5} = \frac{y-2}{11} = \frac{z-2}{7}.$$

Soluție alternativă

Fie (d) dreapta căutată și \vec{v} un vector director al ei. Fie deasemenea $\overrightarrow{N_1} = 2\vec{\imath} - \vec{\jmath} + 3\vec{k}$, $\overrightarrow{N_2} = 3\overrightarrow{\imath} + 2\overrightarrow{\jmath} - \overrightarrow{k}$ vectori normali la (P_1) , respectiv (P_2) . Cum (d) este paralelă cu (P_1) și (P_2) , \vec{v} este perpendicular atât pe $\overrightarrow{N_1}$ cât și pe $\overrightarrow{N_2}$; urmează că o alegere pentru \vec{v} este

$$\vec{v} = \overrightarrow{N_1} \times \overrightarrow{N_2} = \begin{vmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 2 & -1 & 3 \\ 3 & 2 & -1 \end{vmatrix} = -5\vec{\imath} + 11\vec{\jmath} + 7\vec{k}.$$

Ecuațiile dreptei sunt atunci

$$(d): \frac{x-1}{-5} = \frac{y-2}{11} = \frac{z-2}{7}.$$

- **15.12** Se consideră cercurile $(C_1): x^2 + y^2 + 8x 6y + 15 = 0$; $(C_2): x^2 + y^2 2x + 4y 15 = 0$; $(C_3): x^2 + y^2 10x 4y + 25 = 0$.
- 1) Determinați mulțimea punctelor M din plan cu proprietatea că tangentele duse din M la (C_1) și la (C_2) sunt congruente.
 - 2) Aflați punctul M din care se pot duce tangente congruente la cele trei cercuri.

Soluţie

- 1) Ecuația axei radicale a cercurilor (C_1) și (C_2) se obține "reducând pătratele" între ecuațiile celor două cercuri, deci scăzând membru cu membru cele două ecuații. Locul geometric al punctelor M cu proprietatea dorită este dreapta (d) : x y + 3 = 0.
- 2) Axa radicală a cercurilor (C_1) şi (C_3) este dreapta (d'): 9x y 5 = 0. Intersectând dreptele (d) şi (d'), găsim coordonatele punctului M căutat, anume M(1,4).

Soluție alternativă

1) Fie M(a,b) punctul căutat, iar $MT_1=MT_2$ tangentele congruente la primele două cercuri. Din triunghiurile dreptunghice MT_1O_1 și MT_2O_2 , obținem cu teorema lui Pitagora că $MO_1^2=R_1^2+MT_1^2$, iar $MO_2^2=R_2^2+MT_2^2$. Scăzând membru cu membru cele două relații, obținem că $MO_1^2-MO_2^2=R_1^2-R_2^2$. Însă $O_1(-4,3)$, $O_2(1,-2)$, $R_1=\sqrt{10}$, $R_1=\sqrt{20}$ și deducem că

$$(a+4)^2 + (b-3)^2 - (a-1)^2 - (b+2)^2 = 10 - 20$$
, i.e. $a-b+3=0$.

Rezultă că locul geometric al lui M este dreapta (d): x - y + 3 = 0.

- 2) Procedăm ca mai sus, adăugând condiția corespunzătoare celui de-al treilea cerc.
- **15.13** Se consideră hiperbola $(H): \frac{x^2}{9} \frac{y^2}{4} = 1$ și punctul său $M(5, \frac{8}{3})$. Tangenta în M la hiperbolă taie asimptotele în punctele B, respectiv C. Demonstrați că M este mijlocul segmentului BC.

Soluție

Ecuațiile celor două asimptote sunt $(d_1): y = \frac{2}{3}x$, respectiv $y = -\frac{2}{3}x$. Tangenta în M la hiperbolă se află prin dedublare și are ecuația (d): 5x - 6y - 9 = 0. Intersectând tangenta cu asimptotele, obținem coordonatele punctelor B și C, anume B(9,6) și $C(1,-\frac{2}{3})$. Se verifică imediat că punctul $M(5,\frac{8}{3})$ este mijlocul segmentului [BC].

- **15.14** Fie sfera $(S): x^2 + y^2 + z^2 6x + 4y 10z 62 = 0$.
 - 1) Precizați centrul și raza sferei S.
- 2) Arătați că A(-5,2,-3) este exterior sferei și precizați ecuația sferei (S_1) cu centrul în A care este tangentă exterior la (S).
 - 3) Precizați coordonatele punctului de tangență a sferelor (S) și (S_1) .

Soluție

- 1) Ecuația redusă a sferei este $(S): (x-3)^2+(y+2)^2+(z-5)^2=100$, prin urmare centrul sferei este punctul C(3,-2,5) iar raza sa este R=10.
- 2) Cum $CA = \sqrt{(-8)^2 + 4^2 + (-8)^2} = 12 > 10$, rezultă că punctul A este exterior sferei (S). Raza sferei (S_1) este $R_1 = CA R = 2$, iar ecuația sa este

$$(S_1): (x+5)^2 + (y-2)^2 + (z+3)^2 = 4.$$

- 3) Punctul de tangență al celor două sfere se află intersectând dreapta CA cu sfera (S) și alegând dintre cele două puncte obținute pe acela care este interior segmentului
- [CA]. Ecuațiile parametrice ale dreptei (CA) sunt $\begin{cases} x=-5+8t\\ y=2-4t \end{cases}, t\in\mathbb{R}. \text{ Impunem}\\ z=-3+8t\\ \text{condiția ca } (x-3)^2+(y+2)^2+(z-5)^2=100 \Leftrightarrow (-8+8t)^2+(4-4t)^2+(-8+8t)^2=100 \Leftrightarrow 144(t-1)^2=100 \Leftrightarrow t_{1,2}=1\pm\frac{5}{6}. \text{ Punctul interior se obține pentru } t=\frac{1}{6} \end{cases}$

Soluție alternativă

şi este $M(-\frac{11}{3}, \frac{4}{3}, -\frac{5}{3})$.

3) Coordonatele punctului de tangență M se obțin știind că acesta împarte [CA] în raportul $k=\frac{CM}{MA}=5$. De aici,

$$x_M = \frac{kx_A + x_C}{k+1} = -\frac{11}{3}, \quad y_M = \frac{ky_A + y_C}{k+1} = \frac{4}{3}, \quad z_M = \frac{kz_A + z_C}{k+1} = -\frac{5}{3}.$$

15.15 Determinați ecuațiile planelor care conțin dreapta $(d): \frac{x-2}{3} = \frac{y+1}{2} = -z$ și sunt tangente sferei $(S): x^2 + y^2 + (z + \frac{1}{2})^2 = \frac{49}{108}$.

Solutie

Fie (P): ax + by + cz + d = 0 planul căutat. Dreapta (d) este conținută în plan dacă două puncte ale ei se află în plan. Punctele A(2,-1,0) și B(5,1,-1) aparțin dreptei

și atunci ele se află în planul (P) dacă $\begin{cases} 2a-b+d=0 \\ 5a+b-c+d=0 \end{cases} \Leftrightarrow \begin{cases} d=b-2a \\ c=3a+2b \end{cases}.$

Distanța de la centrul sferei la plan trebuie să fie egală cu raza sferei, prin urmare

$$\frac{|a \cdot 0 + b \cdot 0 + c \cdot (-\frac{1}{2}) + d|}{\sqrt{a^2 + b^2 + c^2}} = \frac{7}{\sqrt{108}} \Leftrightarrow 17a^2 - 12ab - 5b^2 = 0$$
$$\Leftrightarrow (a - b)(17a + 5b) = 0 \Leftrightarrow a = b \text{ sau } a = -\frac{5b}{17}.$$

Dacă a=b, rezultă că c=5b, d=-b și obținem planul $(P_1): x+y+5z-1=0$. Dacă $a=-\frac{5b}{17}$, obținem analog planul $(P_2): -5x+17y+19z+27=0$.

Soluție alternativă

Dreapta (d) este intersecția planelor $(\mathcal{P}_1): \frac{x-2}{3} = -z$, i.e. $(\mathcal{P}_1): x+3z-2=0$ și $(\mathcal{P}_2): \frac{y+1}{2} = -z$, i.e. $(\mathcal{P}_2): y+2z+1=0$. Un plan care conține dreapta (d), diferit de (\mathcal{P}_1) , are ecuația $(P): (x+3z-2)+\lambda(y+2z+1)=0$, i.e. $(P): x+\lambda y+(2z+3)z+\lambda-2=0$, aparținând fasciculului de plane determinat de (\mathcal{P}_1) și de (\mathcal{P}_2) .

Deoarece (P) este tangent sferei (S), distanța de la centrul $C(0,0,-\frac{1}{2})$ al sferei la planul (P) este egală cu raza $R=\frac{7}{6\sqrt{3}}$ a sferei. Urmează că

$$\frac{|0 + \lambda \cdot 0 + (2\lambda + 3) \cdot (-\frac{1}{2}) + \lambda - 2|}{\sqrt{1 + \lambda^2 + (2\lambda + 3)^2}} = \frac{7}{6\sqrt{3}} \Leftrightarrow \frac{|-\frac{7}{2}|}{\sqrt{5\lambda^2 + 12\lambda + 10}} = \frac{7}{6\sqrt{3}}$$
$$\Leftrightarrow \frac{1}{\sqrt{5\lambda^2 + 12\lambda + 10}} = \frac{1}{3\sqrt{3}}.$$

Urmează că $5\lambda^2 + 12\lambda - 17 = 0$, de unde $\lambda_{1,2} \in \left\{1, -\frac{17}{5}\right\}$. Pentru $\lambda_1 = 1$ se obține planul $(P_1): x + y + 5z - 1 = 0$, iar pentru $\lambda_2 = -\frac{17}{5}$ se obține $(P_2): x - \frac{17}{5}y - \frac{19}{5}z - \frac{27}{5} = 0$, i.e. $(P_2): -5x + 17y + 19z + 27 = 0$.

15.16 Fie curba (C) :
$$\begin{cases} x(t) = a \sin^3 t \\ y(t) = a \cos^3 t \end{cases}$$
 Demonstrați că (C) este situată în intregime pe
$$z(t) = b \cos 2t$$

un hiperboloid cu o pânză, a cărui ecuație se cere.

Soluție

Se observă că

$$\sin^6 t + \cos^6 t = (\sin^2 t)^3 + (\cos^2 t)^3 = (\sin^2 t + \cos^2 t)(\sin^4 t - \sin^2 t \cos^2 t + \cos^4 t)$$
$$= 1 \cdot ((\sin^2 t + \cos^2 t)^2 - 3\sin^2 t \cos^2 t) = 1 - 3\sin^2 t \cos^2 t$$
$$= 1 - \frac{3}{4}\sin^2 2t = \frac{1 + 3\cos^2 2t}{4},$$

de unde

$$\frac{x^2}{a^2} + \frac{y^2}{a^2} = \frac{1}{4} + \frac{3}{4} \frac{z^2}{b^2}.$$

De aici, curba (C) aparține hiperboloidului cu o pânză

$$(H): \frac{x^2}{\frac{a^2}{4}} + \frac{y^2}{\frac{a^2}{4}} - \frac{z^2}{\frac{b^2}{3}} = 1.$$

15.17 Determinați o ecuație parametrică a curbei

(C):
$$\begin{cases} x^2 + y^2 + z^2 = R^2 \\ x^2 + y^2 - Rx = 0. \end{cases}$$
 (curba lui Viviani).

Soluție

Cum curba lui Viviani se află situată pe sfera (S) : $x^2 + y^2 + z^2 = R^2$, se vor folosi coordonatele sferice

$$\begin{cases} x = R \sin \varphi \cos \theta \\ y = R \sin \varphi \sin \theta \quad , \varphi \in [0, \pi], \theta \in [0, 2\pi). \\ z = R \cos \varphi \end{cases}$$

Înlocuind în a doua ecuație se obține că $R^2 \sin^2 \varphi - R^2 \sin \varphi \cos \theta = 0$, deci $\sin \varphi \cos \theta = \sin^2 \varphi$. De aici,

$$(\sin \varphi \sin \theta)^2 = \sin^2 \varphi - (\sin \varphi \cos \theta)^2$$
$$= \sin^2 \varphi - \sin^4 \varphi = \sin^2 \varphi \cos^2 \varphi,$$

iar

$$\sin \varphi \sin \theta = \pm \sin \varphi \cos \varphi.$$

O reprezentare parametrică a curbei lui Viviani este deci

$$\begin{cases} x = R \sin^2 \varphi \\ y = \pm R \sin \varphi \cos \varphi \quad , \varphi \in [0, \pi]. \\ z = R \cos \varphi \end{cases}$$

15.18 Fie curba (C) dată parametric prin $\begin{cases} x(t) = e^t \cos t \\ y(t) = e^t \sin t \\ z(t) = e^{-2t} \end{cases}$

- 1) Determinați ecuația planului osculator și a binormalei în $M_0(t_0 = 0)$. Este acest plan paralel cu planul (P): x + y 2z 3 = 0? Dar perpendicular pe acesta?
- 2) Determinați punctele de pe curba (C) în care tangenta este paralelă cu dreapta (d) : $\frac{x-2}{1} = \frac{y+3}{1} = \frac{z-1}{-2}.$

Soluție

1) Au loc relațiile

$$\frac{d\vec{r}}{dt} = e^t(\cos t - \sin t)\vec{t} + e^t(\sin t + \cos t)\vec{j} - 2e^{-2t}\vec{k}$$
$$\frac{d^2\vec{r}}{dt^2} = -2e^t\sin t\vec{t} + 2e^t\cos t\vec{j} + 4e^{-2t}\vec{k}.$$

De aici,

$$\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ e^t(\cos t - \sin t) & e^t(\sin t + \cos t) & -2e^{-2t} \\ -2e^t \sin t & 2e^t \cos t & +4e^{-2t} \end{vmatrix}.$$

În $M_0(t_0=0)=M_0(1,0,1)$, un vector normal la planul osculator este

$$\vec{B} = \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}(0) = 8\vec{\imath} - 4\vec{\jmath} + 2\vec{k},$$

care este și vector director al binormalei. Ecuația planului osculator este

$$(P_1): 8(x-1)-4(y-0)+2(z-1)=0$$
 i.e. $(P_1): 8x-4y+2z-10=0$,

iar ecuația binormalei în M_0 este

$$\frac{x-1}{8} = \frac{y}{-4} = \frac{z-1}{2}$$
.

Un vector normal la planul (P) este $\overrightarrow{N} = \vec{\imath} + \vec{\jmath} - 2\vec{k}$. Cum $\vec{B} \cdot \vec{N} = 0$, urmează că \vec{B} și \vec{N} sunt perpendiculari, ceea ce înseamnă că planele (P_1) și (P) sunt deasemenea perpendiculare.

2) Un vector tangent la curbă într-un punct curent M(t) este

$$\vec{T} = \frac{d\vec{r}}{dt} = e^t(\cos t - \sin t)\vec{\imath} + e^t(\sin t + \cos t)\vec{\jmath} - 2e^{-2t}\vec{k}.$$

Din condiția de paralelism,

$$\frac{e^t(\cos t - \sin t)}{1} = \frac{e^t(\sin t + \cos t)}{1} = \frac{-2e^{-2t}}{-2},$$

deci

$$e^t(\cos t - \sin t) = e^t(\sin t + \cos t) = e^{-2t},$$

de unde

$$e^t \sin t = 0$$
, $e^t \cos t = e^{-2t}$

Ridicând aceste relații la pătrat și adunându-le, obținem că $e^{2t}=e^{-4t}$, deci t=0, iar punctul căutat este $M_0(1,0,1)$.

15.19 Determinați
$$f: \mathbb{R} \to \mathbb{R}$$
 astfel încât curba $(C): \begin{cases} x(t) = a \cos t \\ y(t) = a \sin t \end{cases}$, $t \in \mathbb{R}$, $a > 0$, să $z(t) = f(t)$

fie curbă plană.

Soluție

Deoarece

$$\frac{d\vec{r}}{dt} = -a\sin t\vec{\imath} + a\cos t\vec{\jmath} + f'(t)\vec{k}$$

$$\frac{d^2\vec{r}}{dt^2} = -a\cos t\vec{\imath} - a\sin t\vec{\jmath} + f''(t)\vec{k}$$

$$\frac{d^3\vec{r}}{dt^3} = a\sin t\vec{\imath} - a\cos t\vec{\jmath} + f'''(t)\vec{k},$$

urmează că

$$(\frac{d\vec{r}}{dt}, \frac{d^2\vec{r}}{dt^2}, \frac{d^3\vec{r}}{dt^3}) = \begin{vmatrix} -a\sin t & a\cos t & f'(t) \\ -a\cos t & -a\sin t & f''(t) \\ a\sin t & -a\cos t & f'''(t) \end{vmatrix} = \frac{L'_1 = L_1 + L_3}{2} \begin{vmatrix} 0 & 0 & f'(t) + f'''(t) \\ -a\cos t & -a\sin t & f''(t) \\ a\sin t & -a\cos t & f'''(t) \end{vmatrix}$$

$$= a^2(f'(t) + f'''(t)).$$

Deoarece (C) este curbă plană, urmează că f'''(t) + f'(t) = 0, care este o ecuație diferențială liniară cu coeficienți constanți. Ecuația caracteristică asociată este $r^3 + r = 0$, cu rădăcinile $r_1 = 0$, $r_2 = i$, $r_3 = -i$. De aici,

$$f(t) = C_1 + C_2 \cos t + C_3 \sin t$$
, $C_1, C_2, C_3 \in \mathbb{R}$.

15.20 Fie curbă (C): $\vec{r} = \sin^2 t\vec{\imath} + \sin t \cos t\vec{\jmath} + \cos t\vec{k}$, $t \in \mathbb{R}$. Demonstrați că planele normale la curba (C) trec printr-un punct fix.

Soluție

Are loc relația

$$\frac{d\vec{r}}{dt} = 2\sin t \cos t\vec{i} + (\cos^2 t - \sin^2 t)\vec{j} - \sin t\vec{k}.$$

Urmează că planul normal într-un punct curent M(t) de pe curbă are ecuația

$$(P): 2\sin t \cos t(x - \sin^2 t) + (\cos^2 t - \sin^2 t)(y - \sin t \cos t) - \sin t(z - \cos t) = 0$$

adică

$$(P): 2\sin t \cos t \cdot x + (\cos^2 t - \sin^2 t) \cdot y - \sin t \cdot z + \sin t \cos t (-2\sin^2 t - (\cos^2 t - \sin^2 t) + 1) = 0.$$

Cum $-2\sin^2 t - (\cos^2 t - \sin^2 t) + 1 = 0$, urmează că

$$(P): 2\sin t\cos t \cdot x + (\cos^2 t - \sin^2 t) \cdot y - \sin t \cdot z = 0,$$

iar (P) trece prin origine.

Bibliografie

- [1] P. Georgescu, G. Popa, Structuri fundamentale în algebra liniară, geometria vectorială și geometria analitică, Ed. Matrix Rom, București, 2003.
- [2] N. Papaghiuc, Geometrie analitică și elemente de geometrie diferențială, Ed. Univ. Tehnice "Gh. Asachi", Iași, 1998.
- [3] M. Roşculeţ, *Algebră liniară*, *geometrie analitică și geometrie diferenţială*, Ed. Tehnică, Bucureşti, 1987.