Introduction to Assignment Project Exam Help Information Retrieval https://powcoder.com

Lecture 6: Scoring, Term Weighting and the Vector Space Model

This lecture; IIR Sections 6.2-6.4.3

- Ranked retrieval
- Scoring documents
- Assignment Project Exam Help
 Term frequency
- Collection stathtps://powcoder.com
- Weighting schemesWeChat powcoder
- Vector space scoring

Ranked retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don't.
- Good for expert users with precise understanding of their needs and the /collection.com
 - Also good for applications: Applications can easily consume 1000s of results.
- Not good for the majority of users.
 - Most users incapable of writing Boolean queries (or they are, but they think it's too much work).
 - Most users don't want to wade through 1000s of results.
 - This is particularly true of web search.

Problem with Boolean search: feast or famine

- Boolean queries often result in either too few (=0) or too many (1000s) results.
- Query 1: "Standard User dink & 50m Holo,000 hits
- Query 2: "standopd: Upervalinde 6.50 mo card found": 0 hits
- Add WeChat powcoder
 It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many

Ranked retrieval models

- Rather than a set of documents satisfying a query expression, in ranked retrieval models, the system returns an ordering of vertice (top) and telements in the collection with respect to a query https://powcoder.com
- Free text queries: Rather than a query language of Add WeChat powcoder operators and expressions, the user's query is just one or more words in a human language
- In principle, there are two separate choices here, but in practice, ranked retrieval models have normally been associated with free text queries and vice versa

Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the sign ment Project Exam Halpue
 - We just show the top k (≈ 10) results
 - We don't overwhelm the user
 Add WeChat powcoder
 - Premise: the ranking algorithm works

Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query in
- Assign a score to each document Add WeChat powcoder
 This score measures how well document and query
- This score measures how well document and query "match".

Query-document matching scores

- We need a way of assigning a score to a query/document pair
- Let's start Assignment Project Exam Help
- If the query tehmpdoepowotookeruroimthe document: score should be 0

 Add WeChat powcoder
- The more frequent the query term in the document, the higher the score (should be)
- We will look at a number of alternatives for this.

Boolean Model: Binary termdocument incidence matrix

Each document is represented by a binary vector $\in \{0,1\}^{|V|}$

Take 1: Jaccard coefficient

- Recall from Lecture 3: A commonly used measure of overlap of two sets A and B
- jaccard(A, B) signment Project Exam Help
- jaccard(A,A) = https://powcoder.com
- jaccard(A,B) = Add Awe & Fall powcoder
- A and B don't have to be the same size.
- Always assigns a number between 0 and 1.

Jaccard coefficient: Scoring example

- What is the query-document match score that the Jaccard coefficient computes for each of the two documents setument Project Exam Help
- Query: ides of μησκεργονοσίας.com
- Document 1: caesar died in march Add WeChat powcoder
- Document 2: the long march

Issues with Jaccard for scoring

- 1 It doesn't consider *term frequency* (how many times a term occurs in a document)
- 2 Rare terms if a collection are finite mative than frequent the small decouple of the information are the single of the single
- We need a more sophisticated way of normalizing for length

Improved Modelling: Term-document count matrices

- Consider the number of occurrences of a term in a document:

https://powcoder.com

	Antony and Cleopated	dany eestaa	t TOOTWEST	e ¶Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words model

- Vector representation doesn't consider the ordering of words in a document
- John is quicker than Mary and Helpicker than John have the hame/yestersder.com
- This is called the bag of words model.
 Add WeChat powcoder
- In a sense, this is a step back: The positional index was able to distinguish these two documents.
- We will look at "recovering" positional information later in this course.
- For now: bag of words model

Term frequency tf

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use the when computing query-document match scores. But how wooder.com
- Raw term frequency is not what we want:
 Add WeChat powcoder
 A document with 10 occurrences of the term is more
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

Idea 2: Normalized tf is an important scoring factor

Log-frequency weighting

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0\\ \text{ssignment Project Exam Help} \\ \text{otherwise} \end{cases}$$

- $0 \to 0, 1 \to 1, \frac{\text{bttps}}{2}, \frac{\text{2000}}{2}, \frac{\text{4000}}{2} \to 4, \text{ etc.}$
- Score for a documentequenty point of over terms t in both q and d:
- score $=\sum_{t \in q \cap d} (1 + \log t f_{t,d})$
- The score is 0 if none of the query terms is present in the document.

Document frequency

- Rare terms are more informative than frequent terms
- Recall stop words
 Assignment Project Exam Help
 Consider a term in the query that is rare in the
- Consider a term in the query that is rare in the collection (e.g., https://powerelep.com
- A document containing thiattprovisitery likely to be relevant to the query arachnocentric
- → We want a high weight for rare terms like arachnocentric.

Document frequency, continued

- Frequent terms are less informative than rare terms
- Consider a query term that is frequent in the collection (e.g., mon, increase, Final) Help
- A document contraining swooder is more likely to be relevant than a document that doesn't Add WeChat powcoder
- But it's not a sure indicator of relevance.
- For frequent terms, we want high positive weights for words like high, increase, and line
- But lower weights than for rare terms.
- We will use document frequency (df) to capture this.

idf weight

- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - df_t is an measure of the fixed matterness of t
 - $df_t \le N$ https://powcoder.com
- We define the idf (inverse document frequency) of t by $idf_t = log_{10} (N/df_t)$
 - We use $log(N/df_t)$ instead of N/df_t to "dampen" the effect of idf.

Idea 3: Normalized idf is an important scoring factor

Will turn out the base of the log is immaterial.

idf example, suppose N = 1 million

term	df_t	idf _t
calpurnia	1 · · · · · · · · · · · · · · · · · · ·	TT 1
animal ASS1g	nment Project Exam	неір
sunday h	ttps://powcoder.com	
fly	dd WeChat powcode	ar
under	100,000	
the	1,000,000	

$$idf_t = log_{10} (N/df_t)$$

There is one idf value for each term *t* in a collection.

Effect of idf on ranking

- Does idf have an effect on ranking for one-term queries, like
 - iPhone Assignment Project Exam Help
- idf has no effention ranking onectarm queries
 - idf affects the ranking of documents for queries with at least two terms dd WeChat powcoder
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

Collection vs. Document frequency

 The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences. Project Exam Help

Example: https://powcoder.com

Word	Collection frequency Add WeChat po	
insurance	10440	3997
try	10422	8760

Which word is a better search term (and should get a higher weight)?

tf-idf weighting

 The tf-idf weight of a term is the product of its tf weight and its idf weight.

weight and its idf weight. Assignment Project Exam Help
$$\mathbf{w}_{t,d} = (1 + \log t \mathbf{f}_{t,d}) \times \log_{10}(N/d\mathbf{f}_{t})$$
 https://powcoder.com

- Best known weighti Mgescheinpe incindormation retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection

Binary \rightarrow count \rightarrow weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	_0	0	0	0.35
Brutus	1.Assign	ment Proje	ect Exam	Help	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	o htt	ps://pawco	oder com	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51 AO	ld WeChat	t powcode	er _{0.12}	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$

Documents as vectors

- So we have a |V|-dimensional vector space
- Terms are axes of the space

 Assignment Project Exem II
- Assignment Project Exam Help
 Documents are points or vectors in this space
- Very high-dimethational? Yers of simensions when you apply this to a web search engine
- These are very sparse vectors most entries are zero.

Queries as vectors

- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2 Rank documents according to their proximity to thetayery in this page
- proximity = similarity of vectors Add WeChat powcoder proximity ≈ inverse of distance
- Recall: We do this because we want to get away from the you're-either-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents

Formalizing vector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean Assignment Project Exam Help
- Euclidean distantque is/pacbacoideraco.m
- ... because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea

Use angle instead of distance

- Thought experiment: take a document d and append it to itself. Call this document d'.
- "Semantically gument Project Fram Helpontent
- The Euclidean Interpretation of the two documents can be quite large Add WeChat powcoder
- The angle between the two documents is 0, corresponding to maximal similarity.

 Key idea: Rank documents according to angle with query.

From angles to cosines

- The following two notions are equivalent.
 - Rank documents in <u>decreasing</u> order of the angle between query an action to the state of the angle between
 - Rank documents in increasing order of https://powcoder.com cosine(query,document)
- Cosine is a mondth weally at ecrossider function for the interval [0°, 180°]

From angles to cosines

But how – and why – should we be computing cosines?

Length normalization

- A vector can be (length-) normalized by dividing each of its components by its length for this we use the L₂ norm: Assignment Project Exam Help $\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$ https://powcoder.com
- Dividing a vector by its L₂ norm makes it a unit Add WeChat powcoder (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights

cosine(query,document)

 q_i is the tf-idf weight of term i in the query d_i is the tf-idf weight of term i in the document

 $\cos(\vec{q}, \vec{d})$ is the cosine similarity of \vec{q} and \vec{d} ... or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

Cosine for length-normalized vectors

For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

Assignment Project Exam Help

$$\cos(\vec{q}, d) = \vec{q} \cdot d = \sum_{i=1}^{n} q_i d_i$$
Add WeChat powereder

for q, d length-normalized.

Cosine similarity illustrated

Cosine similarity amongst 3 documents

How similar are

the novels	on m	term	SaS	PaP John	WH
SaS: Sense and	giiii	affection	115	1eip 58	20
Sensibility	https	Sjeap@WCO	der.com ₀	7	11
PaP: Pride and	Add	w eichat	powcod e i	0	6
<i>Prejudice,</i> and		wuthering	0	0	38

WH: Wuthering

Term frequencies (counts)

Heights?

Note: To simplify this example, we don't do idf weighting in this example.

3 documents example contd.

Log frequency weighting

After length normalization

term	SaS	Assignr	nehtPr	01	ecte <mark>Fi</mark> xan	n Help	PaP	WH
affection	3.06	2.76	2.30	J	affection	0.789	0.832	0.524
jealous	2.00	1 hetet 1	os://pow	VC	egdercon	0.515	0.555	0.465
gossip	1.30	0	1.78		gossip	0.335	0	0.405
wuthering	0	An	u wet 1 2.58	18	gossip It powcod wuthering	der ₀	0	0.588

```
cos(SaS,PaP) \approx 0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94
```

 $cos(SaS,WH) \approx 0.79$ $cos(PaP,WH) \approx 0.69$

Computing cosine scores

```
CosineScore(q)
      float Scores[N] = 0
      float Assignment Project Exam Help
      for each https://powcoder.com
     do calculate w_{t,q} and fetch postings list for t for each WeChat powcoder pair (a, t) in postings list
          do Scores[d] + = w_{t,d} \times w_{t,q}
  6
      Read the array Length
      for each d
  8
      do Scores[d] = Scores[d]/Length[d]
      return Top K components of Scores[]
 10
                                                             38
```

tf-idf weighting has many variants

Term frequency		Docum	ent frequency	Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
I (logarithm)	$1 + \log(tf_{t,d}) \\ \mathbf{ASSign}$	t (idf) nment Pi	roject Exam	c (cosine) Help	$\frac{1}{\sqrt{w_1^2 + w_2^2 + + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\lograc{N-\mathrm{df}_t}{\mathrm{df}_t}\}$ $wcoder.com$	u (pivoted unique)	1/u	
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$	itps.//po	w couer.com	b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$	
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))} A$	dd WeC	hat powcod	er		

Columns headed 'n' are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Weighting may differ in queries vs documents

- Many search engines allow for different weightings for queries vs. documents
- SMART Notation denotes the combination in use in an engine, with the motation ded aga, using the acronyms from the previous table Add WeChat powcoder
- Add WeChat powcoder

 A very standard weighting scheme is: Inc.ltc
 - Document: logarithmic tf (l as first character), no idf and cosine normalization
 - Query: logarithmic tf (l in leftmost column), idf (t in second column), cosine normalization ...

tf-idf example: Inc.ltc

Document: car insurance auto insurance

Query: best car insurance

Term		As	ssignn	nent	Proj	Exam Hebpument			Pro d		
	tf-	tf-wt	brttp	sidfp	OWYC	oder	.com	tf-wt	wt	n'liz	
	raw		_			е				е	
auto	0	0	5 00 0	1 386	eClo a	it pov	vcode	r 1	1	0.52	0
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	0
car	1	1	10000	2.0	2.0	0.52	1	1	1	0.52	0.27
insurance	1	1	1000	3.0	3.0	0.78	2	1.3	1.3	0.68	0.53

Exercise: what is N, the number of docs?

Doc length =
$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

Score =
$$0+0+0.27+0.53 = 0.8$$

Representation/feature perspective

- Inc.ltc
 - doc vector:
 - tf-vectorssignment Project Exam Help
 - normalized to unit length https://powcoder.com
 - query vector
 - tf-idf-vectorAdd WeChat powcoder
 - normalized to unit length
 - score = similarity = inner product between the two vectors

Summary – vector space ranking

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents of the perfect the query by score
- Return the top K (e.g., K = 10) to the user

Resources for today's lecture

- IIR 6.2 6.4.3
- Assignment Project Exam Help http://www.miislita.com/information-retrieval-tutorial/cosinehttipsil/apitwcotleri.acontml
 - Term weighting and cosine similarity tutorial for SEO folk!