Лабораторная работа 3.6.1 СПЕКТРАЛЬНЫЙ АНАЛИЗ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ

Сафиуллин Роберт

30 сентября 2018 г.

1 Цель работы:

В работе изучаются спектры периодических электрических сигналов различной формы (последовательности прямоугольных импульсов и цугов, а также амплитудно- и фазо-модулированных гармонических колебаний). Спектры этих сигналов наблюдаются с помощью спектроанализатора, входящего в состав USB-осциллографа и сравниваются с рассчитанными теоретически.

2 В работе используются:

персональный компьютер; USB-осциллограф АКИП4107; функциональный генератор WaveStation 2012; соединительные кабели.

3 Экспериментальная установка:

4 Ход работы

- 1) Проанализируем как меняетсяя спектр при изменении параметров $\Delta \nu$ и f_povt
 - 1) Собрали схему и включили приборы
- 2) Рассчитали резонансную частоту по формуле: $\nu_0 = 1/2\pi\sqrt{LC} = 1592$ Гц (емкость конденсатора 0.1 мкФ)
- 3) Сделав отклонения в обе стороны от ν_0 снимем показания напряжения при разных значениях R.

Результаты запишем в таблицу и построим по ним график:

	R=0 Ω										
ν, Гц	1588	1534	1580	1575	1582	1566	1592	1590	1605	1667	1698
U, B	1.31	0.77	1.26	1.22	1.24	1.15	1.44	1.35	1.27	0.87	0.66
ν/ u_0	0.997	0.963	0.992	0.989	0.993	0.983	1	0.998	1.008	1.047	1.066
U/U_0	0.909	0.534	0.875	0.847	0.861	0.799	1	0.9375	0.882	0.604	0.458
	$R{=}100~\Omega$										
ν, Гц	1592	1630	1663	1693	1722	1526	1460	1488	1433	•	•
U, B	0.75	0.66	0.6	0.54	0.45	0.66	0.45	0.57	0.36	•	•
ν/ u_0	1	1.023	1.044	1.063	1.08	0.958	0.917	0.935	0.9	•	•
U/U_0	1	0.88	0.8	0.72	0.6	0.88	0.6	0.76	0.48	•	•

$R=0 \Omega$							
ν, Гц	1756	1652					
U, B	0.45	0.96					
ν/ u_0	1.1	1.04					
U/U_0	0.31	0.66					
R	$R=100 \Omega$						
ν	•	•					
U	•	•					
ν/ u_0	•	•					
U/U_0	•	•					

Определим Q_{graf} , рассчитав ширину кривых при значении ординаты $\frac{1}{\sqrt{2}}$ и использовав формулу: $Q=\frac{\omega_0}{\Delta\Omega}$

- 4) Подключим контур к клемме "Цуги" и установим резонансную частоту.
- 5) Измерим значения амплитуд для R=0 Ω и R=100 Ω .

Результаты запишем в таблицу:

•	1		6	2	3		
$R_0^{ubivanie}$	$U_{0+4}=3.0$	$U_{0+9}=2.0$	$U_{0+6}=2.5$	$U_{0+13}=1.4$	$U_{0+6}=2.5$	$U_{0+17}=1.0$	
$R_0^{vozrastanie}$	$U_{0+7}=3.2$	$U_{0+11}=3.0$	$U_{0+13}=2.8$	$U_{0+10}=3.0$	$U_{0+21}=1.6$	$U_{0+19}=2.0$	

•	-	1	6	2	3		
$R_{100}^{ubivanie}$	$U_{0+6}=1.0$	$U_{0+11}=0.6$	$U_{0+15}=0.4$	$U_{0+6}=1.0$	$U_{0+22}=0.2$	$U_{0+15}=0.6$	
$R_{100}^{vozrastanie}$	$U_{0+11}=1.2$	$U_{0+17}=1.0$	$U_{0+14}=1.1$	$U_{0+22}=0.6$	$U_{0+26}=0.2$	$U_{0+17}=1.0$	

6) Рассчитаем по ним добротность Q с помощью формулы:

$$Q = \frac{\pi}{\frac{\ln \frac{U_0 - U_{0+k}}{U_0 - U_{0+k+n}}}{n}} \tag{1}$$

•	1	2	3	Среднее
$Q_0^{ubivanie}$	10.71	25.42	32.7	23 ± 9.3
$Q_0^{vozrastanie}$	11.43	5.43	23.42	13.42 ± 7.5
$Q_{100}^{ubivanie}$	18.53	25.73	48.65	25.11 ± 12
$Q_{100}^{vozrastanie}$	17.57	20.96	21.8	19.7 ± 1.7

Теоретическое значение добротности по параметрам контура:

$$Q_0 = \frac{1}{R} * \sqrt{\frac{L}{C}} = 42.55 \tag{2}$$

$$Q_{100} = \frac{1}{R} * \sqrt{\frac{L}{C}} = 8.1 \tag{3}$$

7) Получим картину биений. Их появление связано с тем, что разность фаз двух близких по частоте колебаний медленно меняется

8) Проведем измерения на мосте переменного тока и результаты занесем в таблицу:

ν, Гц	L, мГн	R,Ω
50	99.967	26.36
500	100	22.49
1500	100	23.5

8) Сведем все найденные добротности в таблицу:

	R, Ω	R_{kont}, Ω	Q_{graf}	Q_{vozr}	Q_{ubiv}	Q_{LCR}
	0	23.5	12	13.4 ± 7.5	23 ± 9.3	42.5
ĺ	100	123.5	7.24	19.7 ± 1.7	31 ± 12	8.1