4 Manifolds: Definitions

§ 4.3 Manifolds

Definition 4.17. *M* is a *m*-dimensional **differential manifold** if

- (i) *M* is a topological space.
- (ii) M is provided with a family of pairs $\{(U_i, \varphi_i)\}$ such that
- (iii) $\{U_i\}$ is a family of open sets which covers M ($\cup_i U_i = M$) and φ_i is a *homeomorphism* from U_i onto an open subset $U_i' \subseteq \mathbb{R}^m$.
- (iv) For $U_i \cap U_j \neq \emptyset$, the **transition function** $\psi_{ij} = \varphi_i \circ \varphi_j^{-1}$ from $\varphi_j(U_i \cap U_j)$ to $\varphi_i(U_i \cap U_j)$ is C^{∞} .

Remark.

(1) We call U_i and φ_i coordinate neighborhood and coordinate function, respectively. The tuple (U_i, φ_i) is called a **chart**. Collection of charts, $\{(U_i, \varphi_i)\}$ is called an **atlas**. The coordinate function is

$$\varphi_i(p) = (x^1(p), x^2(p), \cdots, x^m(p))$$

- (2) From (ii) and (iii), M is **LOCALLY** Euclidean(in each coordinate neighborhood U_i , M looks like an open set of \mathbb{R}^m of course $M \neq \mathbb{R}^m$ globally).
- (3) From (iv), transition from one coordinate system to another should be smooth(or C^{∞}). Consider a point $p \in U_i \cap U_j$. Then corresponding coordinate functions φ_i and φ_j assign x^{μ} and y^{μ} respectively. The transition $x^{\mu} = x^{\mu}(y^{\alpha})$ should be C^{∞} .

Remark. If the union of two atlases $\{(U_i, \varphi_i)\}$ and $\{(V_j, \psi_j)\}$ is again an atlas, these two atlases are said to be **compatible**. Such compatibility gives rise to *equivalence relations*. Equivalence classes are called **differentiable structures** on M.

Example 4.18. Examples of manifolds.

- (a) \mathbb{R}^n is a trivial example: single chart covers whole \mathbb{R}^n , with φ as an identity map.
- (b) S^1 , a circle $x^2 + y^2 = 1$ in the *xy*-plane is another example.

For two open sets $U_1 = (0, 2\pi)$ and $U_2 = (-\pi, \pi)$,

$$\varphi_1^{-1}: U_1 \to S^1 - \{(1,0)\} \quad \text{s.t.} \quad \theta \mapsto (\cos \theta, \sin \theta)$$
 $\varphi_2^{-1}: U_2 \to S^1 - \{(-1,0)\} \quad \text{s.t.} \quad \theta \mapsto (\cos \theta, \sin \theta)$

One can show that:

- φ_1^{-1} and φ_2^{-1} are invertible.
- φ_1 , φ_1^{-1} , φ_2 , φ_2^{-1} are continuous¹.
- $\psi_{12}=\varphi_1\circ\varphi_2^{-1}$ and $\psi_{21}=\varphi_2\circ\varphi_1^{-1}$ are smooth.
- (c) S^n realized in \mathbb{R}^{n+1} : $\sum_{i=0}^n (x^i)^2 = 1$. Define coordinate neighborhoods

$$U_{i+} = \{(x^0, x^1, \dots, x^n) \mid x^i > 0\}$$

$$U_{i-} = \{(x^0, x^1, \dots, x^n) \mid x^i < 0\}$$

and coordinate maps by

$$\varphi_{i+}: U_{i+} \to \mathbb{R}^n, \quad \varphi_{i+}(x^0, \dots, x^n) = (x^0, \dots, x^{i-1}, x^{i+1}, \dots, x^n)$$

$$\varphi_{i-}: U_{i-} \to \mathbb{R}^n, \quad \varphi_{i-}(x^0, \dots, x^n) = (x^0, \dots, x^{i-1}, x^{i+1}, \dots, x^n)$$

These are projections of the hemispheres $U_{i\pm}$ to the plane $x^i=0$. For example, we can consider $U_{x\pm}$, $U_{y\pm}$ and $U_{z\pm}$ for S^2 . Then, one transition function of this atlas becomes

$$\psi_{y-x+} := \varphi_{y-} \circ \varphi_{x+}^{-1}$$

$$\psi_{y-x+}(y,z) = (\sqrt{1 - y^2 - z^2}, z)$$

which is C^{∞} on $U_{x+} \cap U_{y-}$.

¹From these two conditions, φ_1 and φ_2 become *homeomorphisms*

- (d) Stereographic projections. Construct the atlas by
 - S^2 {South Pole} with stereographic projection from South Pole
 - S^2 {North Pole} with stereographic projection from North Pole

Then, transition function is smooth (show this as an exercise).

Example 4.19. The **real projective space** $\mathbb{R}P^n$ is the set of lines through the origin in \mathbb{R}^{n+1} .

- If $x = (x^0, \dots, x^n) \neq 0$, x defines a line through the origin.
- $y \in \mathbb{R}^{n+1}$ defines the same line as x if $\exists a \neq 0$ s.t. y = ax.
- Hence, we can define an equivalence relation by

$$x \sim y \iff \exists a \in \mathbb{R} - \{0\} \text{ s.t. } y = ax$$

- From the equivalence relation, a quotient space with equivalence classes can be defined.

$$\mathbb{R}P^n := (\mathbb{R}^{n+1} - \{0\}) / \sim$$

- Since $\mathbb{R}P^n \subset \mathbb{R}^{n+1}$, it has (n+1)-coordinates x^0, \dots, x^n , which is not good(since $\mathbb{R}P^n$ is an n-dimensional manifold). These are **homogeneous** coordinates.

Let U_i be set of lines with $x^i \neq 0$. Then, **inhomogeneous** coordinates on U_i is defined by

$$\xi_{(i)}^{j} = \frac{x^{j}}{x^{i}}, \; \xi_{(i)} = (\xi_{(i)}^{0}, \, \xi_{(i)}^{1}, \, \cdots, \, \xi_{(i)}^{i-1}, \, \xi_{(i)}^{(i+1)}, \, \cdots, \, \xi_{(i)}^{n})$$

This coordinate system is independent of the choice of the representative.

$$\frac{x^j}{x^i} = \frac{y^j}{y^i}$$
 where $y = ax$

The coordinate map corresponding to the chart becomes

$$\varphi_i: (x^0, \dots, x^n) \mapsto (\frac{x^0}{x^i}, \dots, \frac{x^{i-1}}{x^i}, \frac{x^{i+1}}{x^i}, \dots, \frac{x^n}{x^i})$$

For $x \in U_i \cap U_j$ (with inhomogeneous coordinates $\xi_{(i)}^k = \frac{x^k}{x^i}$ and $\xi_{(j)}^k = \frac{x^k}{x^j}$), transition function

$$\psi_{ij}: \xi_{(j)}^k \to \mapsto \xi_{(i)}^k = \frac{x^j}{x^i} \xi_{(j)}^k$$

is smooth.

Remark. The real projective space can be generalized into k-dimensional planes in \mathbb{R}^n . Such planes also form **Grassmann manifold** $G_{k,n}(\mathbb{R})$.

Definition 4.20 (Product manifold). Let M and N be m- and n-dimensional manifold with atlases $\{(U_i, \varphi_i)\}$ and $\{(V_j, \psi_j)\}$, respectively. The **product manifold** $M \times N$ is a (m+n)-dimensional manifold whose atlas is $\{(U_i \times V_j), (\varphi_i, \psi_j)\}$.

Example 4.21. Consider the torus $T^2 = S^1 \times S^1$.

- The torus can be described by two coordinates (θ_1, θ_2) .
- Since S^1 is embedded in \mathbb{R}^2 , we can imagine T^2 embedded in \mathbb{R}^4 . This is the torus as a *flat* manifold.
- However, we often imagine T^2 as the surface of a doughnut in \mathbb{R}^3 , in which case, however, we inevitably have to introduce bending of the surface.
- This is the extrinsic feature brought about by the embedding.
- In the **intrinsic** point of view, we forget about the embedding. More on this later.

In summary,

Manifolds are LOCALLY homeomorphic to Euclidean spaces \mathbb{R}^n , enabling differentiation and integration on them.

§ 4.4 Differentiable Maps

Definition 4.22 (Differentiable maps). Let $f: M \to N$ be a map from an m-dimensional manifold M to an m-dimensional manifold N.

Take a chart (U, φ) on M and (V, ψ) on N. Then f has the coordinate representation

$$\psi \circ f \circ \varphi^{-1} : \mathbb{R}^m \to \mathbb{R}^n$$

If we write $\varphi(p) = (x^{\mu})$ and $\psi(f(p)) = (y^{\alpha})$, $\psi \circ f \circ \varphi^{-1}(x) = y$. We often abuse the notation as

$$y = f(x), y^{\alpha} = f^{\alpha}(x^{\mu})$$

If $\psi \circ f \circ \varphi^{-1}$ is smooth with respect to each x^{μ} , f is said to be **differentiable**(or **smooth**) at p.

Remark. The differentiability of f is independent of coordinate system. Consider a overlapping charts (U_1, φ_1) and (U_2, φ_2) with $p \in U_1 \cap U_2$ and

$$\varphi_1(p) = (x_1^{\mu}), \ \varphi_2(p) = (x_2^{\nu})$$

where f is differentiable with first chart. Then

$$\psi \circ f \circ \varphi_2^{-1} = (\underbrace{\psi \circ f \circ \varphi_1^{-1}}_{\mathcal{C}^{\infty}}) \circ (\underbrace{\varphi_1 \circ \varphi_2^{-1}}_{=\psi_{12}, \, \mathcal{C}^{\infty}})$$

f is also differentiable in second chart.

Definition 4.23 (Diffeomorphism). Let $f:M\to N$ be a homeomorphism and ψ and φ be coordinate functions as previously defined. If $\psi\circ f\circ \varphi^{-1}$ is invertible and both $y=\psi\circ f\circ \varphi^{-1}(x)$ and $x=\varphi\circ f\circ \psi^{-1}(y)$ are \mathcal{C}^∞ , f is called a **diffeomorphism** and M is said to be **diffeomorphic** to N and vice versa, denoted by $M\equiv N$.

Remark. $M \equiv N$ implies dim $M = \dim N$.

Remark. Homeomorphisms classify spaces according to whether it is possible to deform one space into another *continuously. Diffeomorphisms* classify spaces into equivalence classes according to whether it is possible to deform one space into another *smoothly*.

Definition 4.24. The set of diffeomorphisms $f: M \to M$ is a group denoted by Diff(M).

Remark. Active and passive transformation point of view

- Take a point p in a chart (U, φ) such that $\varphi(p) = x^{\mu}(p)$. Under $f \in \text{Diff}(M)$, p is mapped into f(p) and $\varphi(f(p)) = y^{\mu}(f(p))$. Clearly y is a differentiable function of x(active transformation).
- If (U, φ) and (V, ψ) are overlapping charts with $x^{\mu} = \varphi(p)$ and $y^{\mu} = \psi(p)$ ($p \in U \cap V$), the map $x \mapsto y$ is differentiable by the assumed smoothness of the manifold(**passive** transformation).

Before we finish, let me define two important entities for later.

Definition 4.25 (Curves). An **open curve** in an *m*-dimensional manifold M is a map $c:(a,b)\to M$ such that

- c does not intersect with itself.
- For simplicity, we assume 0 is included in (a, b).
- *a* and *b* can be $-\infty$ and ∞, respectively.

Definition 4.26 (Functions on the manifold). A **function** f on M is a smooth map $f: M \to \mathbb{R}$. The set of smooth functions on M is denoted by $\mathcal{F}(M)$.