fo/u fopkjr Hk# tu] ughavkjEHksdke] foifr n§k NWbrigar e/;e eu dj ";keA i#"kflg lalii dj] Igrsfoifr vusl] ^cuk^ u NWb/; \$ dk j?kqj jk[ksVslAA

jipr%ekuo /keZizkrk

QUADRATIC EQUATIONS

Some questions (Assertion-Reason type) are given below. Each question contains Statement - 1 (Assertion) and Statement - 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. So select the correct choice: Choices are:

- (A) Statement – 1 is True, Statement – 2 is True; Statement – 2 is a correct explanation for Statement – 1.
- Statement 1 is True, Statement 2 is True; Statement 2 is NOT a correct explanation for Statement 1. (B)
- (C) **Statement – 1** is True, **Statement – 2** is False.
- **Statement 1** is False, **Statement 2** is True.
- **Statement-1:** If $x \in \mathbb{R}$, $2x^2 + 3x + 5$ is positive. 1.

Statement-2: If $\Delta < 0$, $ax^2 + bx + c$, 'a' have same sign $\forall x \in \mathbb{R}$.

- **Statement-1:** If $1+\sqrt{2}$ is a root of $x^2-2x-1=0$, then $1-\sqrt{2}$ will be the other root. 2.
 - Statement-2: Irrational roots of a quadratic equation with rational coefficients always occur in conjugate pair.
- **Statement-1:** The roots of the equation $2x^2 + 3ix + 2 = 0$ are always conjugate pair. 3.
 - **Statement-2:** Imaginary roots of a quadratic equation with real coefficients always occur in conjugate pair. Consider the equation $(a^2 3a + 2) x^2 + (a^2 5a + 6)x + a^2 1 = 0$
- 4.
 - **Statement 1:** If a = 1, then above equation is true for all real x.
 - **Statement 2:** If a = 1, then above equation will have two real and distinct roots.
- 5. Consider the equation $(a + 2)x^2 + (a - 3)x = 2a - 1$
 - **Statement–1:** Roots of above equation are rational if 'a' is rational and not equal to -2.
 - Statement-2: Roots of above equation are rational for all rational values of 'a'.
- Let $f(x) = x^2 = -x^2 + (a+1)x + \hat{5}$ 6.
 - **Statement–1**: f(x) is positive for same $\alpha < x < \beta$ and for all $a \in R$
 - **Statement–2:** f(x) is always positive for all $x \in R$ and for same real 'a'.
- Consider $f(x) = (x^2 + x + 1) a^2 (x^2 + 2) a$ 7.
 - $-3(2x^2+3x+1)=0$
 - **Statement–1:** Number of values of 'a' for which f(x) = 0 will be an identity in x is 1.
 - **Statement–2**: a = 3 the only value for which f(x) = 0 will represent an identity.
- Let a, b, c be real such that $ax^2 + bx + c = 0$ and $x^2 + x + 1 = 0$ have a common root 8.
 - Statement-1 : a = b = c
 - : Two quadratic equations with real coefficients can not have only one imaginary root common. Statement-2
- : The number of values of a for which $(a^2 3a + 2) x^2 + (a^2 5a + b) x + a^2 4 = 0$ is an identity in x is 1. 9. Statement-1
 - Statement-2 : If $ax^2 + bx + c = 0$ is an identity in x then a = b = c = 0.
- 10. Let $a \in (-\infty, 0)$.
 - : $ax^2 x + 4 < 0$ for all $x \in R$ Statement-1
 - : If roots of $ax^2 + bx + c = 0$, b, $c \in R$ are imaginary then signs of $ax^2 + bx + c$ and a are same for all $x \in R$. Statement-2
- 11. Let a, b, $c \in R$, $a \neq 0$.
 - : Difference of the roots of the equation $ax^2 + bx + c = 0$ Statement-1
 - = Difference of the roots of the equation $-ax^2 + bx c = 0$
 - : The two quadratic equations over reals have the same difference of roots if product of the coefficient of Statement-2 the two equations are the same.
- 12. : If the roots of $x^5 - 40x^4 + Px^3 + Qx^2 + Rx + S = 0$ are in G.P. and sum of their reciprocal is 10, then Statement-1 |S| = 32.
 - Statement-2 : x_1 . x_2 . x_3 . x_4 . x_5 = S, where x_1 , x_2 , x_3 , x_4 , x_5 are the roots of given equation.
- : If $0 < \alpha < \frac{\pi}{4}$, then the equation $(x \sin \alpha)(x \cos \alpha) 2 = 0$ has both roots in $(\sin \alpha, \cos \alpha)$ 13. Statement-1

- Statement-2 : If f(a) and f(b) possess opposite signs then there exist at least one solution of the equation f(x) = 0 in open interval (a, b).
- **Statement–1:** If $a \ge 1/2$ then $\alpha < 1 < p$ where α , β are roots of equation $-x^2 + ax + a = 0$ 14.
- **Statement–2**: Roots of quadratic equation are rational if discriminant is perfect square.
- **Statement-1:** The number of real roots of $|x|^2 + |x| + 2 = 0$ is zero. **Statement-2:** $\forall x \in R, |x| \ge 0$. **Statement-1:** If all real values of x obtained from the equation $4^x (a-3)2^x + (a-4) = 0$ are non-positive, then $a \in (4, 5]$ 15. 16.
 - **Statement-2:** If $ax^2 + bx + c$ is non-positive for all real values of x, then $b^2 4ac$ must be -ve or zero and 'a' must be -ve.
- **Statement-1:** If a, b, c, $d \in R$ such that a < b < c < d, then the equation 17.
 - (x-a)(x-c) + 2(x-b)(x-d) = 0 are real and distinct.
 - **Statement-2:** If f(x) = 0 is a polynomial equation and a, b are two real numbers such that f(a) f(b) < 0 has at least one real
- **Statement-1:** $f(x) = \frac{x^2 + x + 1}{x^2 + 2x + 5} > 0 \ \forall x \in \mathbb{R}$ 18.
- **Statement-2:** $ax^2 + bx + c > 0 \ \forall x \in R \text{ if } a > 0 \text{ and } b^2 4ac < 0.$ **Statement-1:** If a + b + c = 0 then $ax^2 + bx + c = 0$ must have '1' as a root of the equation **Statement-2:** If a + b + c = 0 then $ax^2 + bx + c = 0$ has roots of opposite sign. 19.
- Statement-1: $ax^2 + bx + c = 0$ is a quadratic equation with real coefficients, if $2 + \sqrt{3}$ is one root then other root can be any 20. other real number.
 - Statement-2: If $P + \sqrt{q}$ is a real root of a quadratic equation, then $P \sqrt{q}$ is other root only when the coefficients of
- **Statement-1:** If $px^2 + qx + r = 0$ is a quadratic equation $(p, q, r \in R)$ such that its roots are α , β & p + q + r < 0, p q + r < 021. & r > 0, then $3[\alpha] + 3[\beta] = -3$, where [·] denotes G.I.F.
 - **Statement-2:** If for any two real numbers a & b, function f(x) is such that $f(a).f(b) < 0 \Rightarrow f(x)$ has at least one real root lying
- **Statement-1:** If $x = 2 + \sqrt{3}$ is a root of a quadratic equation then another root of this equation must be $x = 2 + \sqrt{3}$ 22.
 - **Statement-2:** If $ax^2 + bx + c = 0$, a, b, $c \in Q$, having irrational roots then they are in conjugate pairs.
- 23. **Statement-1:** If roots of the quadratic equation $ax^2 + bx + c = 0$ are distinct natural number then both roots of the equation $cx^2 + bx + a = 0$ cannot be natural numbers.
 - **Statement-2:** If α , β be the roots of $ax^2 + bx + c = 0$ then $\frac{1}{\alpha}$, $\frac{1}{\beta}$ are the roots of $cx^2 + bx + a = 0$.
- 24. **Statement-1:** The (x-p) $(x-r) + \lambda$ (x-q) (x-s) = 0 where p < q < r < s has non real roots if $\lambda > 0$.
 - **Statement-2:** The equation $(p, q, r \in \mathbb{R}) \beta x^2 + qx + r = 0$ has non-real roots if $q^2 4pr < 0$.
- **Statement-1:** One is always one root of the equation $(l-m)x^2 + (m-n)x + (n-l) = 0$, where $l, m, n \in \mathbb{R}$. 25.
 - **Statement-2:** If a + b + c = 0 in the equation
 - $ax^2 + bx + c = 0$, then 1 is the one root.
- **Statement-1:** If $(a^2 4) x^2 + (a^2 3a + 2) x + (a^2 7a + 0) = 0$ is an identity, then the value of a is 2. 26.
 - **Statement-2:** If a = b = 0 then $ax^2 + bx + c = 0$ is an identity.
- **Statement-1:** $x^2 + 2x + 3 > 0 \ \forall \ x \in R$ 27.
 - **Statement-2:** $ax^2 + bx + c > 0 \ \forall \ x \in R \text{ if } b^2 4ac < 0 \text{ and } a > 0.$
- **Statement-1:** Maximum value of $\frac{1}{2^{x^2-x+1}}$ is $\frac{1}{2^{3/4}}$ 28.
 - **Statement-2:** Minimum value of $ax^2 + bx + c$ (a > 0) occurs at $x = -\frac{b}{2a}$.
- 29. **Statement-1:** If quadratic equation $ax^2 + bx - 2 = 0$ have non-real roots then a < 0
 - **Statement-2:** For the quadratic expression $f(x) = ax^2 + bx + c$ if $b^2 4ac < 0$ then f(x) = 0 have non real roots.
- **Statement-1:** Roots of equation $x^5 40x^4 + Px^3 + Qx^2 + Rx + S = 0$ are in G.P. and sum of their reciprocal is equal to 10 then 30. |s| = 32.
 - **Statement-2:** If x_1, x_2, x, x_4 are roots of equation

$$ax^4 + bx^3 + cx^2 + dx + e = 0 (a \ne 0)$$

$$x_1 + x_2 + x_3 + x_4 = -b/a$$

$$\sum x_1 x_2 = \frac{c}{a}$$

$$\sum x_1 x_2 x_3 = -\frac{d}{a} \qquad x_1 x_2 x_3 x_4 = \frac{e}{a}$$

Statement-1: The real values of a form which the quadratic equation $2x^2 - (a^3 + 8a - 1) + a^2 - 4a = 0$. Possesses roots of opposite signs are given by 0 < a < 4.

Statement-2: Disc ≥ 0 and product of root is < 2

ANSWER KEY

- 1. A 2. A 3. D 4. C 5. C 6. C 7. D 8. A 9. A 10. D 11. C 12. C
- 13. D 14. B 15. A 16. B 17. A 18. A 19. C 20. A 21. A 22. A 23. A 24. D

25. A 26. C 27. A 28. A 29. A 30. A 31. A

Solution

5. Obviously x = 1 is one of the root

$$\therefore \text{ Other root} = -\frac{2a-1}{a+2} = \text{rational for all rational } a \neq -2.$$

(C) is correct option.

6. Here f(x) is a downward parabola

 $D = (a+1)^2 + 20 > 0$

From the graph clearly st (1) is true but st (2) is false

7. f(x) = 0 represents an identity if $a^2 - a - 6 = 0 \implies a = 3, -2$

$$a^2 - a - 6 = 0 \implies a = 3, -2$$

$$a^2 - a = 0 \Rightarrow a = 3, -3$$

$$a^2 - 2a - 3 = 0 \Rightarrow a = 3, -1 \Rightarrow a = 3$$
 is the only values.

Ans.: D

8. (A)

$$x^2 + x + 1 = 0$$

$$D = -3 < 0$$
 $\therefore x^2 + x + 1 = 0$ and $ax^2 + bx + c = 0$ have both the roots common

$$\Rightarrow$$
 a = b = c.

9. (A)

$$(a^2 - 3a + 2) x^2 + (a^2 - 5a + 6) x + a^2 - 4 = 0$$

Clearly only for a = 2, it is an identify.

10. Statement – II is true as if $ax^2 + bx + c = 0$ has imaginary roots, then for no real x, $ax^2 + bx + c$ is zero, meaning thereby $ax^2 + bx + c$ is always of one sign. Further $\lim_{x \to \infty} \left(ax^2 + bx + c \right) = \text{signum (a)}$.

statement – I is false, because roots of $ax^2 - x + 4 = 0$ are real for any $a \in (-\infty, 0)$ and hence $ax^2 - x + 4$ takes zero, positive and negative values.

Hence (d) is the correct answer.

11. Statement–I is true, as Difference of the roots of a quadratic equation is always \sqrt{D} , D being the discriminant of the quadratic equation and the two given equations have the same discriminant.

Statement – II is false as if two quadratic equations over reals have the same product of the coefficients, their discriminents need not be same.

Hence (c) is the correct answer.

12. Roots of the equation $x^5 - 40x^4 + px^3 + qx^2 + rx + s = 0$ are in G.P., let roots be a, ar, ar², ar³, ar⁴

$$\therefore a + ar + ar^2 + ar^3 + ar^4 = 40$$

and
$$\frac{1}{a} + \frac{1}{ar} + \frac{1}{ar^2} + \frac{1}{ar^3} + \frac{1}{ar^4} = 10$$
 ... (ii

from (i) and (ii); $ar^2 = \pm 2$... (iii)

Now, - S = product of roots = $a^5 r^{10} = (ar^2)^5 = \pm 32$.

| s | = 32. \therefore Hence (c) is the correct answer.

13. Let, $f(x) = (x - \sin \alpha) (x - \cos \alpha) - 2$

then,
$$f(\sin \alpha) = -2 < 0$$
; $f(\cos \alpha) = -2 < 0$

Also as
$$0 < \alpha < \frac{\pi}{4}$$
; $\therefore \sin \alpha < \cos \alpha$

There-fore equation f(x) = 0 has one root in $(-\infty, \sin \alpha)$ and other in $(\cos \alpha, \infty)$

Hence (c) is the correct answer.

Hence (d) is the correct answer.

 $x^2 - ax - a = 0$ 14 (B)

 $g(1) < 0 \Rightarrow a > 1/2$

14.		$< 0 \implies a >$	> 1/2
15.	equation can be written as $(2^{x})^{2} - (a-4)2^{x} - (a-4) = 0$	16.	(A) Let $f(x) = (x - a)(x - c) + 2(x - b)(x - d)$
	\Rightarrow 2 ^x = 1 & 2 ^x = a - 4		Then $f(a) = 2 (a - b) (a - d) > 0$
	Since $x \le 0$ and $2^x = a - 4$ [: x is non positive] ::		f(b) = (b-a)(b-c) < 0
	$0 < a - 4 \le 1 \Rightarrow 4 < a \le 5$		f(d) = (d-a)(d-b) > 0
	i.e., $a \in (4, 5]$		Hence a root of $f(x) = 0$ lies between a & b and another
	Hence ans. (B).		root lies between (b & d).
	,	Hence tl	he roots of the given equation are real and distinct.
17.	$x^2 + x + 1 > 0 \ \forall x \in \mathbb{R}$	18.	$ax^2 + bx + c = 0$
	a = 1 > 0		Put $x = 1$
	$b^2 - 4ac = 1 - 4 = -3 < 0$		a + b + c = 0 which is given
	$x^2 + 2x + 5 > 0 \ \forall x \in \mathbb{R}$		So clearly '1' is the root of the equation
	a = 1 > 0		Nothing can be said about the sign of the roots.
	$b^2 - 4ac = 4 - 20 = -16 < 0$		'c' is correct.
	$x^2 + x + 1$		
	So $\frac{x^2 + x + 1}{x^2 + 2x + 5} > 0 \ \forall x \in \mathbb{R}$ 'a' is correct		
19.	(A) If the coefficients of quadratic equation are not	20.	(D) R is obviously true. So test the statement let $f(x) = (x - 1)$
	rational then root may be $2+\sqrt{3}$ and $2+\sqrt{3}$.		$-p)(x-r) + \lambda(x-q)(x-s) = 0$
			Then $f(p) = \lambda (p - q) (p - s)$
			$f(r) = \lambda (r - q) (r - s)$
			If $\lambda > 0$ then $f(p) > 0$, $f(r) < 0$
			⇒ There is a root between p & r
			Thus statement-1 is false.

- 21. (A) Both Statement-1 and Statement-2 are true and Statement-2 is the correct explanation of Statement-1.
- 22. (C) Clearly Statement-1 is true but Statement-2 is false.
 - \therefore ax² + bx + c = 0 is an identity when a = b = c = 0.
- 23. (A) for $x^2 + 2x + 3$
 - a > 0 and D < 0
- (A) $x^2 x + 1$ 24.

$$=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}$$

25. The roots of the given equation will be of opposite signs. If they are real and their product is negative $D \ge 0$ and product of root is < 0

$$\Rightarrow (a^3 - 8a - 1)^2 - 8(a^2 - 4a) \ge 0 \text{ and } \frac{a^2 - 4a}{2} < 0$$

$$\Rightarrow a^2 - 4a < 0$$

$$\Rightarrow$$
 0 < a < 4.

Ans. (a)

Que. from Compt. Exams

If $x = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots + \text{to infinity}}}}$, then $x = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots + \text{to infinity}}}}$

- (a) $\frac{1+\sqrt{5}}{2}$
- (b) $\frac{1-\sqrt{5}}{2}$
- (d) None of these

For the equation $|x^2| + |x| - 6 = 0$, the roots are 2.

[EAMCET 1988, 93]

- (a) One and only one real number
- (b) (d)
- Real with sum one

(c) Real with sum zero

Real with product zero

- If $ax^2 + bx + c = 0$, then x =3.
- [MP PET 1995]

Pn	one : (0755) 32 00 000, 9	18930 58881 WhatsAp	op 9009 26	0 559	QUADRA	ATIC EQ	UATIONS PART 2 OF 2
	(a) $\frac{b \pm \sqrt{b^2 - 4ac}}{2a}$	$(b) \frac{-b \pm \sqrt{b^2 - ac}}{2a}$					
	(c) $\frac{2c}{-b \pm \sqrt{b^2 - 4ac}}$	(d) None of these					
4.	If the equations $2x^2 + 3x + (a)$ 0	$+5\lambda = 0$ and $x^2 + 2x + 3\lambda$ (b) -1	a = 0 have a $a = 0$	common 0,–1	root, then (d)	$\lambda = 2,-1$	[RPET 1989]
5.	If the equation $x^2 + \lambda x + \mu$ (a) $(4, 4)$	a = 0 has equal roots and $a = 0$ (b) $(-4,4)$	one root of the (c)	he equation (4,–4)		x - 12 = 0 $(-4, -4)$	is 2, then $(\lambda, \mu) =$
6.	If x is real and $k = \frac{x^2 - x}{x^2 + x}$	$\frac{+1}{+1}$, then			[MNR 19	992; RPET	1997]
	(a) $\frac{1}{3} \le k \le 3$	(b) $k \ge 5$	(c)	<i>k</i> ≤ 0	(d)	None of	these
7.	If $a < b < c < d$, then the ro (a) Real and distinct						l None of these
8.	` '	• /	(c) q are real,	Imagin be compl	-	(d) he roots o	of the equation $x^2 - 4qx + p^2 = 0$ are
	(a) Real and unequal	(b) Real and equal	(c)	Imagin	ary	(d)	None of these
9.	The values of 'a' for which (a) $a \ge 1$	h $(a^2 - 1)x^2 + 2(a - 1)x + 2$	e is positive:	for any x	(are	2 < 20	[UPSEAT 2001]
40	If the roots of equation $\frac{x^2}{a}$	$(b) \ a \le 1$ $(b) \ a \le 1$	(C)	a > -3	(u)	a < -3 C	11 a > 1
10.	If the roots of equation —	$\frac{1}{x-c} = \frac{1}{m+1}$ are equal by	ut opposite ii	n sign, the			
	(a) a-b	(b) b-a		(a)	$\frac{a+b}{a-b}$		8, 2001; MP PET 1996, 2002; Pb. CET 2000] b + a
	(a) $\frac{a-b}{a+b}$	a i b			u 2		~ G
11.	The coefficient of x in the roots of the original equation		0 was taken	as 17 in	place of	13, its roo	ots were found to be -2 and -15 , The
	(a) 3, 10	(b) $-3, -10$	(c)			None o	f these
12.	If one root of the equation					(4)	N
13	(a) $na^2 = bc(n+1)^2$ If one root of the quad-						The other root, then the value of
	$(ac^n)^{\frac{1}{n+1}} + (a^nc)^{\frac{1}{n+1}} =$	_		equal to	uic n	power or	the other root, then the value of
	$(ac)^{n+1} + (ac)^{n+1} =$		T 1983]	_1_		_1_	
11	(a) b	(b) $-b$	(c)	<i>b</i> ^{<i>n</i>+1}	(d)	− <i>b</i> ^{<i>n</i>+1}	IMD DET 1002
14.	If $\sin \alpha$, $\cos \alpha$ are the roots of (a) $a^2 - b^2 + 2ac = 0$	_		$a^2 + b^2$	 - 2ac - 0	(d)	[MP PET 1993] $a^2 + b^2 + 2ac = 0$
15.	If both the roots of the qua		(0)	a ib	200 - 0	(u)	<i>a</i> + <i>b</i> + 2 <i>ac</i> = 0
	$x^2 - 2kx + k^2 + k - 5 =$		E 20051				
	are less than 5, then k lies (a) $(-\infty, 4)$	s in the interval [AIEE] (b) [4, 5]	(c)	(5, 6]	(d)	(6, ∞)	
16.			$x^2 - cx +$	b = 0 di	iffer by	the same	quantity, then $b+c$ is equal to
	[BIT Ranchi 1969; MP PET 199 (a) 4	(b) 1	(c)	0	(d)	-4	
17.	If the product of roots of the	=					
	$x^2 - 3kx + 2e^{2\log k} - 1 =$ is 7, then its roots will real		Т 1984]				
	(a) $k = 1$	(b) $k = 2$	(c)	<i>k</i> = 3	(d)	None o	f these
18.	If a root of the given equat is 1, then the other will be		+ c(a - b) = 0 T 1986]				
	(a) $\frac{a(b-c)}{b(c-a)}$	(b) $\frac{b(c-a)}{a(b-c)}$		<u>c(a – b)</u>	(d)	None of	these
10	, ,	,		` '	'		
19.	_	[Roorkee 1972]			_		ots are sin A and tan A will be
0.0	(a) $15x^2 - 8x + 16 = 0$						(d) $15x^2 - 8x - 16 = 0$
20.	If one root of the equation (a) $a^3 + b^3$	$ax^{2} + bx + c = 0$ the square (b) $(a - b)^{3}$	re of the othe (c)	er, then a a ³ – b ³		cX, where None of	
	(a) $a + b$	(U) $(a-U)$	(0)	a - b	(u)	TAOHE OF	uicac

21.	If 8, 2 are the roots of x^2 + (a) 8,-1		ad 3, 3 are the			b = 0, th (d)	en the roo	ots of x ²	
22.	The set of values of x whi	ch satisfy 5x	+2 < 3x + 8	and $\frac{x+2}{x-1}$	4, is			[EAMCI	ET 1989]
	(a) (2, 3)	(b) (-∞,1) ∪		Λ Ι		(d)	(1, 3)		
23.	If α , β are the roots of x^2						nataka CE	Т 2000; Р	b. CET 2002]
	(a) $V_{n+1} = aV_n + bV_{n-1}$								
24.	The value of 'c' for which	$ \alpha^{2} - \beta^{2} = \frac{7}{4}$	-, where α	and β are the	ne roots o	of $2x^2 + 5$	7x+c=0	, is	
	(a) 4	(b) 0		(c)	6	(d)	2		
25 .	For what value of λ the sur	m of the squar	res of the roo	ts of $x^2 + (2)$	$2 + \lambda$) $x -$	$\frac{1}{2}(1+\lambda)$ =	= 0 is min	nimum	[AMU 1999]
	(a) 3/2	(b) 1		(c)	1/2	(d)	11/4		
<i>26</i> .	The product of all real root		ion $x^2 - x $					[Roorkee	e 2000]
27	(a) -9 For the equation $3x^2 + px$	(b) 6	f one of the r	(c)	9	(d)	36	al to	IIIT Concessing 20001
27.	(a) $\frac{1}{3}$							ai to	[IIT Screening 2000]
	J	(0) 1		(C)		(u)	3		
28.	If α , β be the roots of x^2 +								[AMU 2001]
	(a) $\frac{p}{r} = \frac{q}{s}$	(b) $2h = \left[\frac{p}{q}\right]$	$\left[\frac{r}{1} + \frac{r}{s}\right]$	(c)	p^2-4q	$j=r^2-4s$	(d)	$pr^2 = q$	gs ²
29.	If $x^2 + px + q = 0$ is the qu			ots are $a-2$	and $b-1$	2 where a	and b are	e the roo	ots of $x^2 - 3x + 1 = 0$, then
	(a) $p = 1, q = 5$	[Kerala (Engg (b) $p = 1, q$		(c)	p = -1,	q = 1	(d)	None of	f these
30.	The value of 'a' for which	one root of the		quation (a ²	– 5 <i>a</i> + 3)	$1x^{2} + (3a -$	-1)x + 2 =	0 is twi	ce as large as the other, is
	(a) $\frac{2}{3}$	(b) $-\frac{2}{3}$		(c)	1	(d)	_1_		
	3	3			3		J		d
31.	If a, b, c are in G.P., then the	ne equations a	$ax^2 + 2bx + c$	= 0 and dx	$^{2} + 2ex +$	f = 0 hav	e a comn	non root	if $\frac{a}{a}$, $\frac{e}{b}$, $\frac{1}{c}$ are in
	[IIT 1985; Pb. CET 2000; DCE (a) A.P.	2000] (b) G.P.		(c)	H.P.	(d)	None of	these	
<i>32</i> .	The value of 'a' for which		x^2-3x+a	$= 0$ and x^2					s [Pb. CET 1999]
33	(a) 3 If $(x+1)$ is a factor of	(b) 1		(c)	-2	(d)	2		
55.	$x^4 - (p-3)x^3 - (3p-5)x^2$	+(2p-7)x+6	, then $p =$				[HT 1975]	l	
	(a) 4	(b) 2	, ,	(c)	1	(d)	None of		
34.	The roots of the equation $4x^4 - 24x^3 + 57x^2 + 18x - 4x^2 + 18x - $	- 45 = 0 ·							
	If one of them is $3+i\sqrt{6}$,								
	(a) $3 - i\sqrt{6}, \pm \sqrt{\frac{3}{2}}$	(b) $3 - i\sqrt{6}$	$\pm \frac{3}{\sqrt{2}}$	(c)	$3-i\sqrt{6}$	$\pm \frac{\sqrt{3}}{2}$	(d)	None o	f these
		2	\a/a . 1\	0 mar har		at lass th		athan na	
35.	The values of a for which			= 0 may nav	ve one ro	ot less ui	an <i>a</i> and	omer ro	ot greater than a are given by
35.	The values of a for which (a) $1 > a > 0$	$2x^2 - 2(2a+1)$ [UPSEAT (b) $-1 < a < a < a < a < a < b > b$	Γ 2001]	(c)	$a \ge 0$	(d)	a > 0 or		ot greater than a are given by
<i>35.</i>		[UPSEAT] (b) $-1 < a < a$	Γ 2001]	(c)	<i>a</i> ≥ 0	(d)	<i>a</i> > 0 or		ot greater than a are given by
35.		[UPSEAT] (b) $-1 < a < a$	Γ 2001] < 0	(c) EY(Que. fro	<i>a</i> ≥ 0	(d) pt. Exam	<i>a</i> > 0 or		ot greater than a are given by

d

b

 С

 d