

UNIT-V

LATTICES AND BOOLEAN ALGEBRA
5.5 SOME SPECIAL LATTICES

SCIENCE & HUMANITIES

MA8351

DISCRETE MATHEMATICS

(COMMON TO CSE & IT)

SOME SPECIAL LATTICES

BOUNDED LATTICE: $(L, \land, \lor, 0, 1)$

Let (L, \land, \lor) BE A GIVEN Lattice. If it has both the elements '0' and '1' then it is said to be bounded lattices.

Eg: $(P(A), \subseteq)$ is a bounded lattice.

COMPLIMENT OF AN ELEMENT:

Let $(L, \land, \lor, \mathbf{0}, \mathbf{1})$ be given bounded lattices. Let $a \in L$.

The element $a' \in L$ is called complement of a if $a \wedge a' = 0$ and $a \vee a' = 1$.

COMPLEMENTED LATTICE:

A bounded lattice $(L, \land, \lor, 0, 1)$ is said to be complemented lattice if every element of L has atleast one compliment.

COMPLETE LATTICE:

A lattice $(L,*,\oplus)$ is said to be complete if every non-empty subset has a least upper bound and a greatest lower bound.

DISTRIBUTIVE LATTICE:

A lattice $(L,*,\oplus)$ is called distributive lattice if the operations * and \oplus are distributive over each other.

(i)
$$a * (b \oplus c) = (a * b) \oplus (a * c)$$

$$(ii)a \oplus (b * c) = (a \oplus b) * (a \oplus c), \forall a, b, c \in L.$$

MODULAR LATTICE:

A lattice $(L,*,\oplus)$ is called modular lattice if for any $a,b,c\in L,a\leq c \Rightarrow a\oplus (b*c)=(a\oplus b)*c$.

Theorem:

Every chain is a distributive lattice.

Proof:

Let (L, \leq) be a chain and $a, b, c \in L$. It is enough to verify one of the conditions of distributive lattice.

Since L is a chain either $b \le c$ or $c \le b$, because of symmetry of roles of b and c.

Let us assume one of the case $b \le c \implies b \oplus c = c$.

We have the following cases:

case(i):
$$a \le b \le c$$

Then
$$a * b = a$$
 and $a * c = a$

$$a*(b \oplus c) = a*c = a$$
 and

$$(a*b) \oplus (a*c) = a \oplus a = a.$$

Therefore, $a * (b \oplus c) = (a * b) \oplus (a * c)$.

case(ii): $b \le c \le a$

Then a * b = b and a * c = c

 $a*(b \oplus c) = a*c = c$ and

 $(a*b) \oplus (a*c) = b \oplus c = c.$

Therefore, $a * (b \oplus c) = (a * b) \oplus (a * c)$.

case(iii): $b \le a \le c$

Then a * b = b and a * c = a

 $a*(b \oplus c) = a*c = a$ and

 $(a*b) \oplus (a*c) = b \oplus a = a.$

Therefore, $a * (b \oplus c) = (a * b) \oplus (a * c)$.

So, the distributive law holds in all the cases.

Therefore, the chain (L, \leq) is a distributive lattice.

Theorem:

In a distributive lattice $(L, *, \bigoplus)$

if for any $a, b, c \in L$ a * b = a * c and $a \oplus b = a \oplus b$, then b = c.

Proof:

Given $(L,*,\oplus)$ is a distributive lattice, we have

$$(a*b) \oplus c = (a \oplus c)*(b \oplus c)$$

$$(a*b) \oplus c = (a*c) \oplus c = c$$
 an

$$(a \oplus c) * (b \oplus c) = (b \oplus a) * (b \oplus c)$$

$$=b\oplus(a*c)=b\oplus(a*b)=b.$$

Therefore, b = c.

Theorem:

Every distributive lattice is modular.

Proof:

Let $(L,*,\oplus)$ be a distributive lattice. To prove that it is modular.

To prove that for any $a, b, c \in L, a \le c \Rightarrow a \oplus (b * c) = (a \oplus b) * c$.

Since *L* is distributive for any $a, b, c \in L$,

we have
$$a \oplus (b * c) = (a \oplus b) * (a \oplus c)$$
.

If $a \le c$ then $a \oplus c = c$.

Therefore,
$$a \oplus (b * c) = (a \oplus b) * c$$
.

Thus, the modularity condition is satisfied.

Hence L is modular.

Note:

Every Modular lattice need not be distributive.

- (i) Diamond lattice M_5 is Modular but it is not distributive.
- (ii) $(\rho(A), \cup, \cap)$ is an example of both Modular Lattice and Distributive Lattice.

(iii) Pentagon lattice N_5 is an example of both non-modular and non-distributive lattice.

Problem

Check the pentagon lattice or N_5 Lattice is modular or not.

Solution:

Consider (a, b, c)

Clearly, $a \le c$,

Now LHS = $a \lor (b \land c) = a \lor (0) = a$

RHS = $(a \lor b) \land c = (1) \land c = c$

LHS ≠ RHS

Therefore, if , $a \le c$, $a \lor (b \land c) \ne (a \lor b) \land c$.

The pentagon lattice is not modular

Problem:

In a distributive lattice prove that complement of an element, if it exists, is unique.

Solution:

Let $(L,*,\oplus)$ be a distributive lattice. Let $a \in L$ be an element. If a_1 and a_2 are compliments of a, then

$$a * a_1 = 0, \ a \oplus a_1 = 1$$

$$a * a_2 = 0$$
, $a \oplus a_2 = 1$

Therefore, $a * a_1 = a * a_2$ and $a \oplus a_1$ and $a \oplus a_2 \Rightarrow a_1 = a_2$.

So, the compliment of a is unique.

Problem:

Show that a chain with three or more elements is not complemented.

Solution:

Let (L, \leq) be a chain with three or more elements.

Since *L* is a chain, it is a totally ordered lattice.

So, any two elements are comparable with a least element 0 and greatest element 1.

Let $a \in L$ be an element then $0 \le a \le 1$.

Further 0 * a = 0, $0 \oplus a = a$ and a * 1 = a, $a \oplus 1 = 1$.

These relations show that a has no complement and hence is not complemented lattice.

.