

UNIVERSITY OF GHANA

(All rights reserved)

SECOND SEMESTER EXAMINATIONS: 2014/2015
LEVEL 200: BACHELOR OF SCIENCE IN ENGINEERING
FAEN 202: DIFFERENTIAL EQUATIONS (4 Credits)

TIME ALLOWED: 3 HOURS

SECTION A [60 marks]

Attempt ALL FOUR (4) questions in SECTION A.

Question 1

- 1.1. State Newton's law of cooling (heating), and find a general solution for its model in the case of:
 - (a) cooling
 - (b) heating

[6 marks]

1.2. Show that the total differential equation

$$(y+z)dx + \left(y - \frac{x-z}{2}\right)dz = \frac{x+z}{2}dy$$

is:

- (a) homogeneous and integrable.
- (b) use the double transformation x = uz, y = vz to solve it.

[6 marks]

1.3. Show that a solution of y' = 1 + 2xy, subject to y(1) = 0 is $y = e^{x^2} \int_1^x e^{-t^2} dt$.

[3 marks]

Question 2

2.1. A mass on a spring undergoes a forced vibration given by

$$m\frac{d^2x}{dt^2} + \beta\frac{dx}{dt} + kx = F(t).$$

In the case where damping is neglected and $F(t) = \alpha \cos \omega t$,

(a) find a complementary solution for this model.

[2 marks]

(b) determine a steady-state oscillation and show that there are two values (to be found) of ω at which resonance occurs. [4 marks]

EXAMINER: Emmanuel D.K. Gazoya

2.2. Given the differential equation $(D^2 - \cot x D - \sin^2 x)y = \cos x - \cos^3 x$, where D = d/dx, show that the introduction of $z = -\cos x$ as a new independent variable leads to the new equation $\frac{d^2y}{dz^2} - y = -z$. Hence obtain a general solution for the original equation.

2.3. Solve
$$\frac{d^4y}{dx^4} - 4\frac{d^3y}{dx^3} - 5\frac{d^2y}{dx^2} + 36\frac{dy}{dx} - 36y = 0$$
 if one solution is xe^{2x} .

Question 3

3.1. Let $Y(t) = t^n$ so that $Y'(t) = nt^{n-1}$, Y(0) = 0. Then using Laplace transform of the derivative show that, in general,

$$\mathcal{L}\{t^n\} = \frac{n(n-1)\dots 2.1}{s^{n+1}} = \frac{n!}{s^{n+1}}$$

$$n = 1,2,3,..., \text{ for } s > 0.$$
 [5 marks]

3.2. (a) By the definition and an appropriate property of Laplace transform, evaluate $\mathcal{L}\left\{\frac{\sin 3x}{x}\right\}$. [3 marks]

(b) Find the inverse Laplace transform
$$\mathcal{L}^{-1}\left\{\frac{s+1}{s^2+s+1}\right\}$$
. [3 marks]

3.3. Use Laplace transform to solve the following initial-value problem. All unknowns are functions of x.

$$w' - w - 2y = 1$$
$$y' - 4w - 3y = -1$$

$$w(0) = 1$$
, $y(0) = 2$.

[4 marks]

Question 4

Find the power series solution of the differential equation y'' = y, y(0) = 1, y'(0) = 0 near x = 0, showing that this solution converges to $\cosh x$. [15 marks]

SECTION B [40 marks]

Attempt ONLY TWO (2) questions.

Question 5

Velocity of Chemical Reactions and the Law of Mass Action. Chemical Mixtures.

In the bimolecular reaction $A + B \to M$, α moles per liter of A and β moles per liter of B are combined. If x denotes the number of moles per liter which have reacted after time t, the rate of reaction is given by $\frac{dx}{dt} = k(\alpha - x)(\beta - x)$.

- (a) Show that if $\alpha \neq \beta$, $x = \frac{\alpha\beta[1 e^{(\beta \alpha)kt}]}{\alpha \beta e^{(\beta \alpha)kt}}$ and find $\lim_{t \to \infty} x$, considering the two cases $\alpha > \beta, \beta > \alpha$.
- (b) If $\alpha = \beta$, show that $x = \alpha^2 kt/(1 + \alpha kt)$ and find $\lim_{t \to \infty} x$.

[20 marks]

Question 6

Absorption of Drugs in Organs or Cells

A liquid carries a drug into an organ of volume $500 \ cm^3$ at a rate of $10 \ cm^3/s$ and leaves at the same rate. The concentration of the drug in the entering liquid is $0.08 \ g/cm^3$. Assuming that the drug is not present in the organ initially, find (a) the concentration of the drug in the organ after 30 s and 120 s, respectively; (b) the steady-state concentration.

[20 marks]

Question 7

Electric Circuits

One of the basic equations in electric circuits is $L\frac{di}{dt} + Ri = E(t)$, where L is the inductance, R is the resistance, i is the current, and E is the electromotive force or emf. (Here R and L are constants). (a) Solve the equation when $E(t) = E_0$ and the initial current is i_0 . (b) Solve the equation when L = 3 H, R = 15 Ω , E(t) is the 60 cycle sine wave of amplitude 110 V and i = 0 when t = 0.

[20 marks]