Assignment SQL(major)

1.Create a table "Station" to store information about weather observation stations:

ID	NUMBER	PRIMARY KEY
CITY	CHAR(20)	
STATE	CHAR(2)	
LAT_N	NUMBER	
LONG_W	NUMBER	

```
/*Create table station
 2
 3
          ID Number(3),
 4
          City Char(20),
          State Char(2),
 5
         Lat_N Number(4),
 6
 7
          Long_W Number(4),
 8
        Primary Key(ID)
 9
      );*/
10
      insert into station values (13, 'PHOENIX', 'AZ', 33, 112);
11
      insert into station values (44, 'DENVER', 'CO', 40, 105);
13
      insert into station values (66, 'CARIBOU', 'ME', 47, 68);
1 row(s) inserted.
1 row(s) inserted.
1 row(s) inserted.
```

2. Insert the following records into the table:

ID	CITY	STATE	LAT_N	LONG_W
13	PHOENIX	AZ	33	112
44	DENVER	СО	40	105
66	CARIBOU	ME	47	68

```
insert into station values (13, 'PHOENIX', 'AZ', 33,112);
insert into station values (44, 'DENVER', 'CO', 40,105);
insert into station values (66, 'CARIBOU', 'ME', 47,68);
```

3. Execute a query to look at table STATION in undefined order.

±++	
15	Select * from Station;

ID	CITY	STATE	LAT_N	LONG_W
13	PHOENIX	AZ	33	112
44	DENVER	СО	40	105
66	CARIBOU	ME	47	68

4. Execute a query to select Northern stations (Northern latitude > 39.7).

5. Create another table, 'STATS', to store normalized temperature and precipitation data:

Column	Data type	REMARK
ID	NUMBER	Must match some
		STATION table ID(so
		name & location will
		be known).
MONTH	NUMBER	Range between 1 and
		12
TEMP_F	NUMBER	In Fahrenheit
		degrees,Range
		between -80 and 150
RAIN_I	NUMBER	in inches, Range
		between 0 and 100

There will be no Duplicate ID and MONTH combination

```
Create table stats

(
ID Number(4),
Months Number(2),
TEMP_F Number(3),
RAIN_I Number(3),
foreign key (ID) References Station(ID)

);
```

Table created.

6. Populate the table STATS with some statistics for January and July:

ID	MONTH	TEMP_F	RAIN_I
13	1	57.4	.31
13	7	91.7	5.15
44	1	27.3	.18
44	7	74.8	2.11
66	1	6.7	2.1
66	7	65.8	4.52

```
29     Insert into Stats values (13,1,57.4,.31);
30     Insert into Stats values (13,7,91.7,5.15);
31     Insert into Stats values (44,1,27.3,.18);
32     Insert into Stats values (44,7,74.8,2.11);
33     Insert into Stats values (66,1,6.7,2.1);
34     Insert into Stats values (66,7,65.8,4.52);
```

```
1 row(s) inserted.
```

7. Execute a query to display temperature stats (from STATS table) for each city (from Station table).

```
38    Select s.City, st.Temp_f as temperature
39    from Station s
40    left join stats st
41    on s.ID = st.ID;
```

CITY	TEMPERATURE
PHOENIX	57
PHOENIX	92
DENVER	27
DENVER	75
CARIBOU	7
CARIBOU	66

8. Execute a query to look at the table STATS, ordered by month and greatest rainfall, with columns rearranged. It should also show the corresponding cities.

```
20    Select st.Month, st.Rain_I, sn.CITY from STATS st
21    inner join Station sn
22    on st.ID =sn.ID
23    order by Month;
```

MONTH	RAIN_I	CITY
1	.31	PHOENIX
1	.18	DENVER
1	2.1	CARIBOU
7	2.11	DENVER
7	4.52	PHOENIX
7	5.15	PHOENIX

9. Execute a query to look at temperatures for July from table STATS, lowest temperatures first, picking up city name and latitude.

```
25    Select st.Month, st.TEMP_F, sn.CITY, sn.LAT_N from Stats st
26    inner join station sn
27    on sn.ID = sn.ID and st.month = 7
28    order by TEMP_F;
```

MONTH	TEMP_F	CITY	LAT_N
7	65.8	DENVER	40
7	65.8	PHOENIX	33
7	65.8	CARIBOU	47
7	74.8	PHOENIX	33
7	74.8	DENVER	40
7	74.8	CARIBOU	47
7	91.7	DENVER	40
7	91.7	PHOENIX	33
7	91.7	CARIBOU	47

10. Execute a query to show MAX and MIN temperatures as well as average rainfall for each city.

```
Select max(TEMP_F), min(TEMP_F), SUM(RAIN_I)/3 as AVG_RAINFALL from stats;

31

32
```

MAX(TEMP_F)	MIN(TEMP_F)	AVG_RAINFALL
91.7	6.7	4.79

Download CSV

B 1 1 001/

11. Execute a query to display each city's monthly temperature in Celcius and rainfall in Centimeter.

Select MONTH, RAIN_I, (TEMP_F-32)*5/9 as TEMP_IN_CELCIUS, RAIN_I*.03937 as RAIN_IN_CM from stats;
32

MONTH	RAIN_I	TEMP_IN_CELCIUS	RAIN_IN_CM
1	.31	14.111111111111111111111111111111111111	.0122047
7	5.15	33.166666666666666666666666666666666666	.2027555
1	.18	-2.6111111111111111111111111111111111111	.0070866
7	2.11	23.77777777777777777777777777777777777	.0830707
1	2.1	-14.055555555555555555555555555555555	.082677
7	4.52	18.77777777777777777777777777777777777	.1779524

12. Update all rows of table STATS to compensate for faulty rain gauges known to read 0.01 inches low.

```
33    update stats set RAIN_I =RAIN_I+0.01;
34    Select * from stats;
35
```

5 row(s) updated.

D 1 1 CCV

ID	MONTH	TEMP_F	RAIN_I
13	1	57.4	.32
13	7	91.7	5.16
44	1	27.3	.19
44	7	74.8	2.12
66	1	6.7	2.11
13	7	65.8	4.53

Download CSV

13. Update Denver's July temperature reading as 74.9

```
36   Update stats set TEMP_F = 74.9
37   where ID =44
38   AND MONTH=7;
39   Select * from Stats;
```

. row(s) updated.

ID	MONTH	TEMP_F	RAIN_I
13	1	57.4	.32
13	7	91.7	5.16
44	1	27.3	.19
44	7	74.9	2.12
66	1	6.7	2.11
13	7	65.8	4.53

Download CSV