

A**B**

Fig. 2

B
THE BOSTONIAN

Exp Trans Stat

Fig. 3

[Acte B]

actionRF4p

hrd/Bp

1

Exp Trans Stat

Probe
FLP

A

B
Protein gel at 21°C 34000.

10

Fig. 6

Construction and analysis of the *accBE* conditional mutant

A. Diagram showing the integration of pJ8600 in strain M86 and the expected organization of the Campbell integration of pTR94 in M94. Restriction sites: B, *Bam*H I; N, *Not*I; Nd, *Nde*I; S, *Sac*I; Sp, *Sph*I; Xb, *Xba*I.

B. Hybridization analysis of Southern blot of *Sac*I-digested DNAs from M145, M86 and M94. The probe was the internal *Nde*I-*Xba*I fragment of *accB* showed in A.

Fig. 7

Expression of the acyl-CoA components in M86 and M94

A. SDS-PAGE of cell-free extracts of *S. coelicolor* M86 and M94 strains grown in YEME medium containing $10 \mu\text{g ml}^{-1}$ Am with or without the addition of $5 \mu\text{g ml}^{-1}$ Th.
B. A duplicate of the SDS-PAGE gel showed in A was subjected to Western blotting and stained for biotinylated proteins by using alkaline phosphatase-streptavidin conjugate.

Fig. 8A

Growth curves of M145, M86 and M94 strains.

10^8 spores of strains M86 and M94 were inoculated in YEME medium containing 10 μg of Am or 10 $\mu\text{g ml}^{-1}$ Am and 5 $\mu\text{g ml}^{-1}$ of Th. 10^8 spores of M145 were inoculated in YEME. The growth was followed by measuring OD_{450 nm}.

Fig. 8B

Actinorrhodin

Fig. 9

Morphological and physiological differentiation of M86 and M94 in the presence of Th.

Spores of M86 and M94 were spread in R2 or R5 media containing $10 \mu\text{g ml}^{-1}$ Am. A drop containing $1 \mu\text{g}$ of Th was spotted in the centre of each plate. The picture shows the results obtained after the incubation of the plate at 30°C for 48 h.

Fig. 10

TATTCTAGACATATGACCGTTTGGATGAGGCGCCGGCGAGCCGACGGACGCCGCGCGGGCGGTG
GCCGAGCTGCACGGGATCCGTGCAGCGCCTCGCCGGCGAGTGAGAAGGCGACGGCGCGCAG
CACGCCAAGGGCAAGCTGACGGCACGTGAGCGCATCGAGCTGCTCTGGACCCGGCTCCTCCGC
GAGGTCGAGCAGCTGCGCCGGCACCGGGCAGCGGGTCTGGCTGGAGGCCAAGAACGCGTACACC
GACGGTGTACATCACCGCTGGGACGGTCAGGGCCGACGGTCTTCGTCTACGCCACGACTTC
CGGATCTCGCGCGCCTGGCGAGGCCACGCCAGAAGATCCACAAGATCATGGACATGGCC
ATCGCGGCCGGTCCCCGCTGGTGTGCTGAACGACGGCGCCGGCGCCGTATCCAGGAGGGCGTC
AGCGCCTCGCCGGTACGGCGCATCTCAGCGAACACCAAGGCCTCCGGCTCATCCGCAG
ATCAGCGTATGCTCGGCCCTGCGGGGGCGCGCCCTACAGCCCCGCCCTACCGACTTCGTC
TTCATGGTCCCGCAGACACCTCGCAGATGTTATCACGGGCCGGACGTGCTCAAGGCGGTACCGGC
GAGGAGATCACCGAGAACGGTCTGGCGGCCGACGTGACGCCAGACGTCCGGCGTGTGCCAC
TTCGCCTACGACGAGGAGACCTGCCCTGCCAGGGTCCGCTACCTCCCTCCCTCCGCAG
AACAAACCGGGAGAACCCGCCCGCGCCGAGTCCTCCGACCCGTGGACCGCCGCTGGACACCCCTC
CTCGACCTGGTCCCCGGACGGCAACCGCCGTACGACATGACCAAGGTATCGAGGAACCGTC
GACGAGGGCGAGTACCTGGAGGTCCACGAGCGTTGTCTAGAGGT

Fig. 11

A. AccA1

VRKVLIANRGEIAVRVARACRDAGIASVAVYADPDRDALHVRAADEAFALGGDTPATSYLDIAKVL
KAARESGADAIHPGYGFLSENAEFAQAVLDAGLIWIGPPP HAIRDRGEKVAARHIAQRAGAPLVAG
TPDPVSGADEVVAFAKEHGLPIAIKAAGGGGRGLKVARTLEEVPELYDSAVREAVAAGRGEFCV
ERYLDKPRHVETQCLADTHGNVVVSTRDCSLQRRHQKLVEEAPAPFLSEAQTEQLYSSSKAILKE
AGYGGAGTVEFLVGMGTIFFLEVNLQVEHPVTEEVAGIDLVREMFRIDGEELGYDDPALRGH
SFEFRINGEDPGRGFLPAPGTVTLFDAPTGPVRLDAGVESGSVIGPAWDSLAKLIVTGRTRAEA
LQRAARALDEFTVEGMATAIPFHRTVVRDPAPAPELTGSTDPPFTVHTRWIETEFVNEIKPFTT PAD
TETDEESGRETVVVEVGGRLEVSLPSSLGMSLARTGLAAGARPKRRAAKSGPAASGDTLASPMQ
GTIVKIAVEEGQEVEQEGDLIVVLEAMKMEQPLNAHRSGTIKGLTAEVGASLTSGAAICEIKD

A. AccA2

VRKVLIANRGEIAVRVARACRDAGIASVAVYADPDRDALHVRAADEAFALGGDTPATSYLDIAKVL
KAARESGADAIHPGYGFLSENAEFAQAVLDAGLIWIGPPP HAIRDRGEKVAARHIAQRAGAPLVAG
TPDPVSGADEVVAFAKEHGLPIAIKAAGGGGRGLKVARTLEEVPELYDSAVREAVAAGRGEFCV
ERYLDKPRHVETQCLADTHGNVVVSTRDCSLQRRHQKLVEEAPAPFLSEAQTEQLYSSSKAILKE
AGYVGAGTVEFLVGMGTISFLEVNLQVEHPVTEEVAGIDLVREMFRIDGEELGYDDPALRGH
SFEFRINGDHGRGFLPAPGTVTLFDAPTGPVRLDAGVESGSVIGPAWDSLAKLIVTGRTRAEA
LQRAARALDEFTVEGMATAIPFHRTVVRDPAPAPELTGSTDPPFTVHTRWIETEFVNEIKPFTT PAD
TETDEESGRETVVVEVGGRLEVSLPSSLGMSLARTGLAAGARPKRRAAKSGPAASGDTLASPMQ
GTIVKIAVEEGQEVEQEGDLIVVLEAMKMEQPLNAHRSGTIKGLTAEVGASLTSGAAICEIKD

Fig. 11 (cont)

B. *accA1*

gtgcgcaagggtgtcatcgccaatcgtggcgaaatcgctgtccgcgtggccccgggcctgccgggac
gccgggatcgcgagcgtggccgtctacgcggatccggacccggacgcgttgcacgtccgtgccgct
gatgaggcgttcgccctgggtggtgacaccccccggcgaccggatctggacatcgccaaagggtctc
aaagccgcgcgcgactcgccggacgcgcacccggctacggattctctcgggagaacgcgc
gagttcgccgaggcggtctggacgcgcggctgtatctggatcgccccccccggacgcgcacccatccgc
gaccgtggcgaaaagggtcgccggccacatcgcccagcggggccggcgccccctggtcggcggc
accccccggcccggtctccggcgccggacggggatcgtegccttcgccaaggagcacggcctgcccata
gccatcaaggccgccttcggcgccggcgccggcgccgtcaagggtcgccccgaccctcgaagagggt
ccggagctgtacgactccgcgtcccgcgaggccgtggccgccttcggcccgccccggagtgcctcg
gagcgctacctcgacaaggccccggccacgtggagaccggatcgctggccgacaccacggcaacgt
gtcgctgtctccaccccgcgactgctccctccagcgccgcacccaaaggctcgtagggaggcccc
gcccccttctctccgaggcccagacggagcagctgtactcatctccaaggccatctgaaggag
ggccggctacggcgccggcccgacccgtggagttctcgccatggacggcacgtttcttcctg
ggaggtaaacacccgcctccagggtcgagcaccgggtcaccgagggaaactcgccoggcatcgacttgg
cgcgagatgttccgcattcgccgcacggcgaggaaactcggttacgacgaccggccctgcgcggccac
ttccctcgagttccgcattcaacggcgaggacccggccggcttcgtggccgcggccatcc
acccctctcgacgcgcacccggccggcttcgtggacgcggcgctcgagtcggctcc
tcatcgccccccgcctggactccctcgccttgcggacttgcgtcaccggccgcacccgcggagg
caactcccgccgcggccggccctggacggatgttcaccgtcgaggcatggccaccgcattcc
tccaccgcacgggtcgccgcacccggcccttcgcggccggacttcaccggctccacggacccttca
ccgtccacacccgggtggatcgagacggagttcgtaacgagatcaaggccctteaccaacgcggcc
acaccggagacggacggaggatcgccggccggagacggatcggtcggtcgaggatggccggcaagcg
aagtctccctccctcccgccctggcatgtccctggccggccacccggctggccggccccggcc
ccaaggcgccgcggccaaaggatccggcccccggccctcgggcgacaccctcgccctcccgatgc
agggcacgatcgtaagatcgccgtcgaggaaggccaggaaagtccaggaaaggcgacctcatcg
tactcgaggcgatgaagatggaaacageccctcaacgcccacaggatcgccgaccatcaaggcc
ccggcgagggtcgccgcctccctcacccggcgccatctcgagatcaaggactga

Fig. 11 (cont)

B. *accA2*

gtgcgcaagggtgctcatgccaatcgtggcgaaatcgctgtccgcgtggcccgggctgcgggac
gccgggatcgcgagcgtggccgtctacgoggatccggacgggacgcgttgcacgtccgtgcogct
gatgaggcgittcgcgcgtgggtggatcaccccgcgaccagactatctggacatcgccaaggtcctc
aaagccgcgcgcgagtcggcgccatccaccccgctacggatctctcgagaaacgccc
gagttcgcgcaggcggtctggacgcccgtatctggatcggccccccccgacgcacgcacccgc
gaccgtggcgaaaagggtcgccgcccacatcgcccagcggggccggccccctggtcgcggc
accccccggccccgtctccggcgccggacgaggctgtcgccctcgccaaggagcacggcctgcccata
gccatcaaggccgccttcggcgccggccgtcaaggctcgcccgaccctcgaagaggta
ccggagctgtacgactccgcgtccgcgaggccgtggccgttcggcccgccccggagtgcttcgtc
gagcgtacctcgacaagccccggccacgtggagacccagtgcctggccgacacccacggcaacgtg
gtcgctgtctccaccccgactgctccctccagcgcggccacccaaagctcgtcgaggaggcccc
cgcccccttctctcccgaggcccagacggagcagctgtactcatctccaaggccatctgaaggag
ggccggctacggcgccggcaccgtggagttctcggtggacggacgatcttcctg
ggaggtaacacccgcctccagggtcgagcaccgggtacccgaggaactcgccggcatcgacttggtc
ccggagatgttccgcattcgccgacggcgaggaaactcggttacgacgaccggccctcgccggccac
ttctcgagttccgcattcaacggcgaggacccggccgcggcttcctgccccccccggcaccgtc
accctctcgacggccccacccggccccgggtccgccttggacggccggctcgagttccggctccgtc
atcgccccggctggactcccttcgtccaaactgatcgtcacccggccgcaccggccgaggca
tccagcgcgcggcccgccctggacgagttcaccgtcgaggcatggccaccggcatcccttc
accggcaccggctcgccgcaccggcccttcgccccggactaccggctccacggacccttcacc
gtccacacccgggtggatcgagacggagttcgtaacgagatcaagcccttcaccacggccgcac
accggagacggacggaggactggccggagacgggtcgtcgtcgaggctggccgaagcgccctggaa
gtctccctccctccaggcctggcatgtccctggcccgaccggccctggccggccggccccc
aaggcgccgcggccaaagaagtcggcccccggccctcgggcgacaccctcgctccccgatcgag
ggcacgatcgtaagatcgccgtcgaggaaaggccaggaagtccaggaaggcgaccctcatcgctga
ctcgaggcgatgaagatggaaacagccccatcgccgcaccatcaaggcccttcacc
ggccgaggcgccctccctcacctccggcgccatctgcgagatcaaggactga

Fig. 12

A. AccB

MTVLDEAPGEPTDARGRVAELHGI
RAAALAGPSEKATAAQHAKGLTARERIELLLDPGSFREVEQ
LRRHRATGFGLEAKKPYTDGVITGWGTVEGRTVFVYAHDFRIFGGALGEAHATKIKIMDMAIAAG
APLVSLNDGAGARIQEGV SALAGYGGIFQRNTKASGVIPQISVMLGPCAGGAAYSPLTD
FVFMVR DTSQMFI TGPDVVKA
VTGEEITQNGLGGADVHAETSGVCHFAYDDEETCLAEVRYLLSLLPQN
NRE NPPRAESSDPVDRRS
DTLLDLPADGNRPYDMTKVIEELVDEGEYLEVHERWARNI
ICALARLDGR VVGIVANQPQALAGVLDIEASEKAARFVQMCDAFN
IPIITLLDVPGFI PGVDQEHHGTIRHGAKLL YAYCNATVPRISLILRKAYGGAYIVMDSQS
IGADLTYAWPTNEIAVMGAEGAANVIFRRQIADAED PEAMRARMVKEYK
SELMHPYYAAERGLVDDVIDPAETREVLITSAMLHTKHADLPSRKHGNPPQ

B. accB

ATGACCGTTTGATGAGGCGCCGGCGAGCCGACGGACGCCGCGGGCGGGTGGCCGAGCTGCAC
GGGATCCGTGCAGCGCGCTCGCCGGCGAGTGAGAAGGGCAGCGCCGGCGCAGCACGCCAAGGGC
AAGCTGACGGCACGTGAGCGCATCGAGCTGCTCTGGACCCCGCTCTCCGCAGGTGACCAG
CTGCGCCGGCACCGGGCGACCGGGTTCGGCCTGGAGGCCAAGAACGCCGACGGTGT
ACCGCTGGGCACGGTCGAGGGCGCACGGTCTTCGTCTACGCCAACGACTCCGGATCTCGGC
GGCGCGCTGGGCAGGGCCCACGCCACGAAGATCCACAAGATCATGGACATGCCATCGCGCCGGT
GCCCGCTGGTGTGCGCTGAACGACGGCGCCGGCGCCGTATCCAGGAGGGCGTCAGCGCGCTCGCC
GGGTACGGCGGCATCTTCCAGCGAACACCAAGGCGTCCGGCGTACCCGCAGATCAGCGTGATG
CTCGCCCCCTGCGCGGGCGCGCCCTACAGCCCCGCCCTACCGACTTCGTCTCATGGTCCGC
GACACCTCGCAGATGTTCATCACGGGCCGGACGTGCTCAAGGCGGTACCGGGGAGGAGATCAG
CAGAACGGCTGGCGGCCGACGTGCAGCCAGACGTCCGGCGTGTGCCACTCGCCTACGAC
GACGAGGAGACCTGCCTCGCGAGGTCCGCTACCTCCTCCCTCCCGCAGAACACCGGGAG
AACCGCCCCGCCGAGTCCTCGAACCCGTGGACC CGCCTCGGACACCCCTCTCGACCTGGTC
CCGGCGACCGCAACGCCGTACGACATGACCAAGGTATCGAGGAAC TCGTCGACGAGGGCGAG
TACCTGGAGGTCCACGAGCGTTGGGCCGCAACATCATCTGCGCGCTGGCCGTCTGACGGCGG
GTCGTGGGCATCGCGCCAACCGAGCGCAGGCCCTGGCGGTGTCTGGACATCGAGGCGTCGGAG
AAGGCCGCCGCTCGCCAGATGTGCGACGCCCTCAACATCCGATCATCACTCTTCTGGACGTA
CCC GGCTTCCCTGCCCGCGTGCACCGAGGACCGGGGATCATCGGCCACGGCGCCAAGCTGCTC
TACCGTACTGCAACCGCACCGTGCCTGGGCGGATCTCGCTGATCTCGCGCAAGGCGTACGGAGGTGCT
TACATCGTCATGGACAGCCAGTCCATCGCGCCGACCTCACCTACGCCCTGGCCGACCAACGAGATC
GCCGTCA TGGCGCGGAGGTGCCGCAACGTCACTTCCGCCGGCAGATGCCGACGCCGAGGAC
CCCGAGGCCATGCGGGCGCGCATGGTCAAGGAGTACAAGTCCGAGGCTGATGCACCCCTACTACGCG
GCCGAACCGCGGTCTGGTCGACGACGTCA TCGACCCCGCGAAACCCGCGAGGTGCTGATCACGTCC
CTGGCGATGCTCCACACCAAGCACGCCGACCTGCCCTCCCGCAAGCACGGCAACCCGCCGAGTGA

Fig. 13

A. AcCE

MSPADIRVEKGHAEPPEEVAAITALLARAAARPAAEIAAPTHGGGRARAGWRRLEREPGFRA
PHSWR

B. accE

ATGTCCCCCTGCCGACATCCCGTCAAGAAGGGCCACGCCGAGCCCAGGAAAGTCGCCGCC
ATCACGGCCCTCCTCCTGGCCCCGGCCGCCGCCGCCGAGATCGCGCCGACCCAC
GGCGGC GGCGCCGCCGCCGGCTGGCGCCGCCTGGAACGCGAGCCGGGCTTCCGCGCC
CCGCACAGCTGGCGCTGA

Fig. 14

