Q_1

a.

PF:

- 1. Assume each of the clusters $\{a,b\},\{e\},\{d,c,i,f,g,h\}$ is a tree.
- 2. Assume $T \subseteq T_{\min}$ for some MST T_{\min} .

As
$$\{a,b\} \neq \{d,c,i,f,j\}$$
, we add (a,h) to T .

WTP:

- 1. Each of the clusters $\{a, b, d, c, i, f, g, h\}, \{e\}$ is a tree.
- 2. Assume $T = \{(g, h), (c, i), (f, g), (c, f), (a, b), (c, d), (a, h)\} \subseteq T_{\min}$ for some MST T_{\min} .

Consider $\{a,b\}$ and $\{d,c,i,f,g,h\}$ in our assumption

we have $\{a, b\}$ and $\{d, c, i, f, g, h\}$ two trees

- $\Rightarrow 1^{\circ}$ no circle in $\{a,b\}$ and $\{d,c,i,f,g,h\}$ (*)
- 2° $\{a,b\}$ are connected with each other and $\{d,c,i,f,g,h\}$ are connected with each other

$$\therefore \{a,b\} \neq \{d,c,i,f,g,h\}$$

- $\therefore (a, h)$ is added to T
- \Rightarrow {a, b, d, c, i, f, g, h} are connected with each other (1)

suppose there is a circle in $\{a,b,d,c,i,f,g,h\}$

by (*)

there are at least 2 paths that connect $\{a,b\}$ and $\{d,c,i,f,g,h\}$

 $\because (a,h)$ is a path (edge) that connects $\{a,b\}$ and $\{d,c,i,f,g,h\}$

so before adding (a, h). there is still a path that connects $\{a, b\}$ and $\{d, c, i, f, g, h\}$

then after adding the path. $\{a,b\}$ and $\{d,c,i,f,g,h\}$ should already be merged together before adding (a,b)

 \Rightarrow this is a contradiction

 \Rightarrow The supposition is false and there is no circle in $\{a, b, d, c, i, f, g, h\}$ (2)

By (1) and (2).

 $\{a, b, d, c, i, f, g, h\}$ is a tree and so is $\{e\}$

Call the set T before processing (a, h, 8) T_1 and the set T after processing (a, h, 8) T_2

we have $T_1 \subseteq T_{\min}$ for some MST T_{\min} , let's call the T_{\min} " T_{\min} "

if
$$(a, h) \in T_{\text{mink}}$$
, then $T_2 = T_1 \cup \{(a, h)\} \subseteq T_{\text{mink}}$

 $\Rightarrow T_2 \subseteq T_{\min}$ for some MST T_{\min}

if $(a,h) \not\in T_{\text{mink}}$

 \Rightarrow divide vertices into two sets S and V-S

$$S = \{a, b\}$$

$$V - S = \{d, c, i, f, g, h, e\}$$

there is no T_1 edge between S and V-S

in T_{mink} , there exists a unique path that connects a and u, and there is an edge on this path that connects S and V-S

In the graph, we have such edges (a, h) and (b, c)

 $\therefore (a,h) \not\in T_{\text{mink}}$

 $(b,c) \in T_{\text{mink}}$

 \therefore weight (a, h) = weight (b, c) = 8

 $T_{\text{mink}} = T_{\text{mink}} - \{(b,c)\} + \{(a,h)\}$ has the same weight as $T_{\text{mink}} = T_{\text{mink}}$

 T_{mink} is disconnected after removing (b, c), but reconnected after adding (a, h)

In T_{mink} , there is no circle.

So there is no circle in $T_{\rm mink}$ ' as we use one unique edge to link these two

parts: $\{a, b\}$ and $\{h, g, f, c, i, d, e\}$.

 $\Rightarrow T_{\text{mink}}'$ is a MST

 $T_2 \subseteq T_{\min k}'$

 $\therefore T = \{(g,h),(c,i),(f,g),(c,f),(a,b),(c,d),(a,h)\} \subseteq T_{\min} \text{ for some MST}$

 T_{\min}

QED.

b.

PF:

Assume T contains vertices a, b and PQ contains vertices c, d, e, f, g, h, i.

Assume for each v in PQ, priority (v) = minimum weight of any edge between v and T.

Assume $T \subseteq T_{\min}$ for some MST T_{\min}

WTP.

After de-queuing h,

T contains a, b, h and PQ contains c, d, e, f, g, i

for each v in PQ, priority (v) = minimum weight of any edge between V and T

 $T \subseteq T_{\min}$ for some MST T_{\min}

After de-queuing h, (a, h) is added to T

so T has h and PQ only lose h

 $\Rightarrow T$ contains a, b, h and PQ contains c, d, e, f, g, i

As T is only extended a vertex h, the vertices in PQ whose priorities are charged can only be the adjacency of h, as they have a new edge to the new T.

By the algorithm and the graph, only i and g need to update their priority

and they will still be the minimum weight of any edge between i||g and new T ("the decrease-priority ()" lets g and i always choose the minimum weight). From our assumption, c, d, e, f have the priorities that are the minimum weight of any edge between c||d||e||f and old T.

The dequeue operation doesn't affect c||d||e||f:

- 1. The new T's new edge (a, h) still doesn't generate a new edge to c||d||e||f
- 2. Priorities of c||d||e||f aren't changed.
- $\Rightarrow c||d||e||f$ have priorities that are equal to minimum weight of any edge between c||d||e||f and new T. (4)

By (3) (4). for each v in new PQ, priority (v) = minimum weight of any edge between v and new T

Call T before de-queuing h be T_3 , T after de-queuing h be T_4 .

We have $T_3 \subseteq T_{\min}$ for some MST.

Call the T_{\min} be $T_{\min kb}$.

If
$$(a,h) \in T_{\text{minkb}}$$
, then $T_4 = T_3 \cup \{(a,h)\} \subseteq T_{\text{minkb}}$.

 \Rightarrow After de-queuing $h,T\subseteq T_{\min}$ for some MST T_{\min}

If $(a,h) \notin T_{\text{minkb}}$,

then divide V into $\{a,b\}$, and $\{h,i,c,d,e,f,g\}$ two parts.

There is a unique path in T_{minkb} that connects a and h, and there is a unique edge that connects these two parts.

In the given graph, they are (a, h) and (b, c)

- $\therefore (a,h) \notin T_{\text{minkb}}$
- \therefore The unique edge is (b, c)
- ∴ weight (b, c) = weight (a, h) = 8
- $T_{\text{minkb}}' = T_{\text{minkb}} \{(b,c)\} + \{(a,h)\}$ has the same weight as T_{minkb}

 $T_{\rm minkb}$ is disconnected after removing (b,c) and reconnected after adding (a,h) with no circles produced.

 $T_{\rm minkb}{\,}'$ is a MST

$$T_4 = T_3 \cup \{(a,h)\} \subseteq T_{\text{minkb}}'$$

... After de-queuing $h,T\subseteq T_{\min}$ for some MST T_{\min} QED.

 Q_2

a.

PF:

Consider two cases:

1° The graph has no negative weights

Then by line 1: minimum weight > 0

 $\therefore c = 0$

 $\therefore \forall e \in E$, weight '(e) = weight (e)

- \Rightarrow line 5 is actually using the Prim algorithm on the given graph directly.
- ⇒ the output of this new algorithm is the MST of both the given graph with modified weight and the given graph with original weight.
- 2° The graph has negative edges
- \Rightarrow minimum weight < 0
- $\Rightarrow c \ge -\text{minimum_weight} > 0$
- \Rightarrow for an arbitrary edge (u, v) in E

weight $'(u, v) = \text{weight } (u, v) + c \ge \text{minimum_weight } + (-\text{minimum_weight}) = 0$

 $\Rightarrow \forall e \in E$, weight $'(e) \geqslant 0$

After line 5,

according to the lecture, a MST of the given graph with modified weights is produced.

Let's suppose the MST be $T'_{\min} = \{e'_1, e'_2 \dots e'_t\} \subseteq E \quad (t = |V| - 1)$ ①

WTP: T'_{min} is also a MST in the given graph with original weights

As T'_{min} is a MST in the modified graph,

it connects all the vertices of the modified graph and no circle

 \because The given graph with modified weights has the same V and E as the given graph with original weights

 $\Rightarrow T'_{min}$ connects all the vertices in the original given graph and no circle (*) Now we need to show that T'min is also the spanning tree with minimum weight of the original graph.

Suppose T'_{min} in the original-weight graph is not the one with minimum weight.

 \Rightarrow there exists a MST T_{min} in the original graph whose total weight is smaller than T'_{min} 's.

let
$$T_{\min} = \{e_1, e_2 \dots e_m\} (m = |V| - 1)$$

by 1

$$m = t$$

$$T_{\min} = \{e_1, e_2 \dots e_t\}$$

$$W\left(T_{\min}\right) = \sum_{i=1}^{t} \text{ weight } (e_i) < \sum_{i=1}^{t} \text{ weight } (e'_i) = W\left(T'_{\min}\right)$$

$$\Rightarrow W'(T'_{\min}) = \sum_{i=1}^{t} \operatorname{weight}'(e'_{i}) = \sum_{i=1}^{t} (\operatorname{weight}(e'_{i}) + c)$$

$$= \sum_{i=1}^{t} \operatorname{weight}(e'_{i}) + tc$$

$$= W(T'_{\min}) + tc$$

$$> W(T_{\min}) + tc$$

$$= \sum_{i=1}^{t} \operatorname{weight}(e_{i}) + tc$$

$$= \sum_{i=1}^{t} (\operatorname{weight}(e_{i}) + c)$$

$$= \sum_{i=1}^{t} \operatorname{weight}'(e_{i})$$

$$= W'(T_{\min})$$

 $\because T'_{\min}$ is a MST in the modified-weight graph

$$\therefore W'(T'_{\min}) \leqslant W'(T_{\min})$$

- \Rightarrow There is a contradiction.
- \Rightarrow Our supposition is false
- T'_{min} has the minimum weight in the original given graph (#)

By (*) and
$$(\#)$$
,

 T_{\min}' is also a MST in the original given graph

 \Rightarrow The new algorithm outputs an MST.

QED.

b.

We can't get the shortest path to some vertices, as there may be no shortest path to some vertices in a graph with negative weights (no lower bound for the weights of some paths) Consider this graph:

As we do not need the path to be simple, then the path from A to B can be:

$$\{A, B\}$$
 weight $= -1$

$$\{A, B, A, B\}$$
 weight $= -3$

$$\{A, B, A, B, A, B\}$$
 weight $= -5$

$$\underbrace{\{A, B, A, B, ..., A, B\}}_{n"A,B"} \text{ weight } = -2n + 1$$

we can get infinite paths by walking back and forth between A and B n times $(n \in N)$ and stop at B, the weights of those paths will decrease as n increase and will never come to an end as n has no upper bound. (i.e. the weight can be $-\infty$)

- \Rightarrow then we can't get the shortest path from A to B
- c. Disprove,

Consider this graph:

if we set A be the starting point, then by Dijkstra's algorithm:

1

 $A \ B \ C \ D$ Distance tree: $\{\}$

 $0 \infty \infty \infty$

②

```
C
              Distance tree: {}
     2
 1
         \infty
 A
     A
         Distance tree: \{(A, B, 1)\}
     C
 D
 2
     3
 A
     B
4
        Distance tree: \{(A, B, 1), (A, D, 2)\}
C
 -1
 D
⑤ Distance tree: \{(A, B, 1), (A, D, 2), (D, C, -1)\}
\Rightarrow \delta(D) = 2
but in our graph \delta(D) should be 1+2-3=0
0 < 2
```

 \therefore We fail to find the single-source shortest simple path from A to D with Dijkstra's algorithm.

This is because if we want to have $\delta_{\text{fin}}(D) = 0$, we need to dequeue A, B, C first. But in the algorithm $p(C) = \delta_{\text{fin}}(C) = 3 > p(D) = \delta_{\text{fin}}(D) = 2$. This means we have to dequeue D first in the algorithm and that makes our algorithm fail to find the single-source shortest simple path from A to D. QED.

d. Disprove

Consider the graph

the single-source shortest simple path from A to D is $\{A,B,C,D\}$ weight =-6

but by the modified Dijkstra's algorithm:

The graph will become

After line 5 in modified Dijkstra's algorithm:

In the single-source shortest simple paths that output by line 5, the shortest path from A to D will be $\{A, E, D\}$ with weight = 2

Now put it back to the original graph.

 $\{A,E,D\}$ is weighted -4 , which is larger than the actual shortest simple path from A to D $\{A,B,C,D\}$ with weight = -6.

 \Rightarrow The new algorithm fails to output the right shortest single path for A to D.

 \Rightarrow the new algorithm doesn't output all the single-source shortest simple paths

 \Rightarrow so disprove the statement.

QED.

 Q_3

a.

Disprove:

Consider the graph:

According to the new algorithm,

$$L = \{(A,B,1), (C,D,2), (B,C,3)\}, V = \{A,B,C,D\}$$

After processing (A, B, 1) and (C, D, 2), A, B, C, D are all deleted from V and now we are going to process (B, C, 3).

However, based on the algorithm, B and C are not in V, so nothing will be processed and (B, C) won't be added to T.

So after this algorithm finished, $T = \{(A, B), (C, D)\}$ will be returned.

But B and C now are disconnected.

 $\therefore T$ is not a MST

⇒ This algorithm can't always output a minimum spanning tree It's a false algorithm.

QED.

b.

Disprove:

Consider the graph

According to the algorithm,

$$V_{-}S = \{v_1, v_2\}$$
 $E_{-}S = \{(v_1, v_2)\}$

$$V_{-}T = \{v_3, v_4\}$$
 $E_{-}T = \{(v_3, v_4)\}$

$$\therefore MST_S = \{(v_1, v_2)\}, MST_T = \{(v_3, v_4)\}$$

$$\therefore$$
 weight $(v_2, v_3) = 1 <$ weight $(v_1, v_4) = 2$

$$e = \{(v_2, v_3)\}$$

$$MST = \{(v_1, v_2), (v_3, v_4), (v_2, v_3)\}$$
 will be returned

The weight will be 1 + 3 + 4 = 8.

But the MST in this graph is $\{(v_4, v_1), (v_1, v_2), (v_2, v_3)\}$

So the returned one is not a MST and this algorithm can't guarantee to output a MST.

 \Rightarrow The new algorithm is false.

QED.