Architectures & DataOps

Big Data Management

Knowledge objectives

- 1. Explain the problem of a spaghetti architecture
- 2. Explain the need of the big data architecture
- 3. Identify the components of the big data architecture
- 4. Explain the need of each component
- 5. Explain the difference between various architectures
- 6. Justify the need of a Data Lake
- 7. Identify the difficulties of a Data Lake

Application Objectives

1. Given a use case, define its software architecture

Architectures

Architectures & DataOps

Traditional Architecture: Centralized DBMS

Distributed DBMS Architecture

Distributed DBMS Architecture

Data Warehouses

- Aid the business via analytical insights
 - Extract data from operational databases
 - Transform and load them into centralized DWs
 - Schema-on-write
 - The data model is optimized for BI operations
- Some challenges
 - Compute and storage in on-premise appliances
 - Requires to provision and pay for peak workloads / large datasets
 - Unstructured data
 - Video, audio, text documents
 - DWs cannot deal with these formats

(a) First-generation platforms.

Model-First (Load-Later)

Drawbacks of Model-First (Load-Later)

- Costly: on-premise appliance, provisioned and payed for the peak of user load
- Unstructured data: more and more datasets are completely unstructured, DWs cannot cope well

- Modelling at load time restricts the potential analysis that can be done later (Big Analytics)

Definition

Big Data Architecture (BDA) is a framework built out of different tools and techniques that have the ability to *ingest*, *store*, *process*, and *analyze* big data sets.

Expected Workload:

- Batch processing (BD @ rest)
- Real-time processing (BD in motion)
- Interactive exploration (of BD)
- Predictive analytics and ML

BDA

Why?

- New expectations from data
- Cheaper computation cost
- Growing data sources

When?

- Depends on users/tools
- Intended value
- Volume, Velocity, Variety, ...
- Unstructured data
- Unbounded data streams
- Traditional DBMS can't handle
 - >100s GBs

BDA: Functional Components

Governance

Individual solutions may not contain every component.

Big Data Landscape

Spaghetti Architecture

BDA: Functional Components

Orchestrators

- Technologies to automate repeated workflows for data processing, transformation, and movement.
- Current workflow orchestrators include: Apache Oozie, sqoop, Airflow, Kaestra

 Does a similar job to global execution manager of traditional distributed RDBMS

BDA: Pros and Cons

Benefits

- Parallel computing
- Scalability
- Freedom of choice (flexibility)
- Interoperability

Challenges

- Security
- Complexity
- Evolving technologies
 - Choice paralysis
- Specialized skill set

BDA: Examples

- Data lake architecture
- Lakehouse architecture
- Lambda architecture
- Kappa architecture
- Batch architecture
- Streaming (Event-driven) architecture
- Hybrid architecture

BDA: Examples

- Data lake architecture
- Lakehouse architecture
- Lambda architecture
- Kappa architecture
- Batch architecture
- Streaming (Event-driven) architecture
- Hybrid architecture

Data Lake Architecture (DLA)

- Idea: Load-First, Model-Later
- Modelling at load time restricts the potential analysis that can be done later (Big Analytics)
- Characteristics:
 - a) Store raw data
 - b) Provide governing functionalities
 - c) Create on-demand views to handle precise analysis needs

DLA: Load-First (Model-Later)

Drawbacks of DLA

Data Swamp

DLA Missing Link: Metadata

Data Lakehouse Architecture (LHA)

INIVERSITAT POLITÈCNICA

DLA: possible implementation

Data Governance

Architectural Evolution

27 . .

Lambda Architecture

Kappa Architecture

All data goes through these one path Long-term store Master dataset Analytical client New data (event) Speed layer Real-time views UNIVERSITAT POLITÈCNICA

Evolution of Uber's Big Data Architecture (article)

Before 2014

Evolution of Uber's Big Data Architecture (article)

Generation 1 (2014-2015) - The beginning of Big Data at Uber

Evolution of Uber's Big Data Architecture (article)

Evolution of Uber's Big Data Architecture (article)

Generation 3 (2017-present) - Let's rebuild for long term

BDA: Summary

- Traditional Data Management
 - Centralized or Distributed DBMS
 - Model-first, Load-later (ETL)
- Big Data Management Architecture
 - Functional components
 - Example architectures: data lake, lakehouse, lambda, kappa
- Uber case example

DataOps

Architectures & DataOps

Problem definition

Proportion of Time Spent on Digital Management Tasks

Average Proportion

March 2020 Gartner Survey: "Data Management Struggles to Balance Innovation and Control"

Too much time on low-value tasks, such as data integration and formatting, ad hoc queries and requests, and generating reports and dashboards — activities that are ripe for **automation**.

Challenges:

- Deployment latency
- Production errors (reactive)
- Teams ☺
- Poor time usage

Definition

DataOps is a set of collaborative data management **practices** to:

- Reduces cycles of experimentations
- speed delivery
- lower error rates
- maintain quality
- foster collaboration
- provide maximum value from data.
- monitoring and feedback

DevOps: Why?

- Multiple tools
- Multiple datasets
- Multiple paths
- Multiple methods
- Multiple architectures
- Multiple customers
- Multiple people

- Trust but verify
- Expectation VS Outcomes

Agile Methodology

Agile methodology is a broad term that can refer to any project management methodology that uses an *iterative and flexible* approach.

- Principles:
 - Iterative development
 - Continuous improvement
 - Feedback
 - Adaptability

Goal: deliver value to users early and often

DataOps methodology

DataOps Lifecycle

- Plan: Partner with product, engineering, and business teams to establish goals.
- **Develop:** Create data products and machine learning models for your data application.
- Build: Incorporate the code and/or data product into your existing tech or data stack.
- Manage Environments: segregate environments, collaborate across branches, and set environment variables.
- Test: Verify that your data conforms to business logic and meets operational standards.
- Release: Launch your data in a test environment.
- Deploy: Integrate your data into production.
- Operate: Utilize your data in applications such as dashboards and data loaders.
- Monitor: Continuously observe and report any irregularities in your data.

Things to Automate

- Data curation services: data cleansing, transformation and standardization
- Metadata management: lineage tracking, where data comes from, how it's transformed and how it's used
- Data governance: enforces data quality rules and access controls
- Master data management: data deduplication and synchronization across systems to ensures a single source of truth
- Self-service interaction: data access and exploration

DataOps Functions and Tools

- Data ingestion: Apache Kafka, AWS Glue, or Fivetran
- Data orchestration: Apache Airflow, Prefect, or Dagster
- Data transformation: dbt, Apache Spark, or Snowflake
- Data catalog: Alation, Collibra, or AWS Glue Data Catalog
- Data observability: Monte Carlo, Datadog, or Great Expectations.

DataOps: Summary

- Automation is key to operational efficiency
- Enables proactive error detection and resolution
- Fosters collaboration and agile adaptation to changing needs
- Promotes continuous improvement through iterative cycles
- Reduces manual workload and enhances strategic resource allocation
- Ensures data consistency, reliability, and compliance

References

- D. McCreary and A. Kelly. Making Sense of NoSQL. Manning, 2014
- M. Grover et al. *Hadoop Application Architectures*. O'Reilly, 2015
- N. Marz and J. Warren. *Big Data: Principles and best practices of scalable realtime data systems*. Manning Publications Co., 2015
- D. Sculley et al. Hidden technical debt in machine learning systems. In Advances in Neural Information Processing Systems, 28. Curran Associates, Inc., 2015.
- S. Nadal et al. *A Software Reference Architecture for Semantic-Aware Big Data Systems*. Information and Software Technology 90. Elsevier, 2017
- S. Nadal et al. *ODIN: A Dataspace Management System*. International Semantic Web Conference 2019
- S. Nadal. Metadata-Driven Data Integration (PhD Thesis). 2019
- R. Hai, et al. Data lake concept and systems: a survey. CoRR abs/2106.09592. 2021
- P. Jovanovic et al. *Quarry: A User-centered Big Data Integration Platform*. Information Systems Frontier, 2021

