ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Ensamble de clasificadores utilizando ADABOOST

Andrés G. Abad, Ph.D.

Agenda

Introducción

Problema de aprendizaje supervisado Métodos de clasificación

Combinando hipótesis

Motivación

Diversidad

Métodos de ensembles

Algoritmo AdaBoost

Introducción al AdaBoost

Descripción general

Conclusiones

Referencias Bibliográficas

Combinación de Estimaciones

En la conferencia Predictive Analytics World/Toronto (PAW) 2012

Método	Valor	Diferencia
Real	362	-
Ganador (persona)	352	10
Promedio ($N = 61$)	365	3

http://www.predictiveanalyticsworld.com/

Agenda

Introducción

Problema de aprendizaje supervisado Métodos de clasificación

Combinando hipótesis

Motivación

Diversidad

Métodos de ensembles

Algoritmo AdaBoost

Introducción al AdaBoost

Descripción general

Conclusiones

Referencias Bibliográficas

Agenda

Introducción

Problema de aprendizaje supervisado Métodos de clasificación

Combinando hipótesis

Motivación

Militaria

Métodos de ensembles

Algoritmo AdaBoost

Introducción al AdaBoost

Descripción general

Conclusiones

Referencias Bibliográficas

Problema de aprendizaje supervisado I

Considere $(\mathbf{x_1}, y_1), \dots, (\mathbf{x_m}, y_m)$ donde $\mathbf{x_i} \in \mathcal{X} \subseteq \mathbb{R}^n, y_i \in \mathcal{Y} \subseteq \mathbb{R}$. Asumimos que existe una función no conocida

$$f: \mathcal{X} \to \mathcal{Y}$$

Buscamos una hipótesis

$$h: X \to \mathcal{Y}$$

que tenga un bajo error de generalización

$$\epsilon = P[h(\mathbf{x}) \neq f(\mathbf{x})].$$

Problema de aprendizaje supervisado II Según la naturaleza del conjunto ${\mathcal Y}$ tenemos los siguientes tipos de problemas

\mathcal{Y}	Tipo de problema	
\mathbb{R}	Regresión	
$\{c_1,\ldots,c_n\}$	Clasificación	
$\{-1, +1\}$	Clasificación binaria	

Para problemas de regresión generalmente usamos

$$\epsilon = MSE(h) = \frac{1}{|\mathcal{X}|} \sum_{\mathbf{x} \in \mathcal{X}} (f(\mathbf{x}) - h(\mathbf{x}))^2$$

Para problemas de clasificación generalmente usamos

$$\epsilon = \frac{1}{|\mathcal{X}|} \sum_{\mathbf{x} \in \mathcal{X}} [\mathbb{I}(h(\mathbf{x}) \neq f(\mathbf{x}))]$$

Métodos de clasificación I

Algunos de los principales algoritmos para clasificación binaria

► Clasificador bayesiano ingenuo

- ► Arboles de clasificación (e.g., CART, C4.5)
- Análisis de discriminantes (e.g., lineal, cuadrático)
- Máquinas de Soporte Vectorial
- Redes Neuronales Artificiales
- Regresión logística

Definición del problema de clasificación I

- ▶ Un objeto $\mathbf{x} = [x_1, \dots, x_p]$, con características x_i , pertenece exactamente a una clases $c \in \{1, 2, \dots, C\}$.
- Asumimos que tenemos un conjunto de datos

$$\mathcal{D} = \{ (\mathbf{x}^{(1)}, c^{(1)}), \dots, (\mathbf{x}^{(n)}, c^{(n)}) \}$$

► Buscamos una función \hat{f} que asigne $\mathbf{x}^{(i)}$ a $c^{(i)}$ lo mejor posible:

$$\hat{f} = \arg\min_{f} \mathbb{P}_{(\mathbf{x},c)}[\mathbb{1}(f(\mathbf{x}) \neq c)]$$

- ► Objeto x pertenece a una de dos clases: {Basico, Premium}
- ► Objeto x medidos en dos características: x₁ ingresos anuales, y x₂ edad en años
- ▶ Dos clasificadores f's: convexo-cuadrático (linea negra) y no-convexo (linea roja)

Clasificador bayesiano ingenuo I

Considera el criterio de maximo a posteriori (MAP)

$$c = \arg\max_{c_j \in C} P(x_1, \dots, x_n | c_j) P(c_j).$$

Bajo el supuesto de independencia entre variables

$$c = \arg \max_{c_j \in C} P(c_j) \prod_{i=1}^n P(x_i|c_j).$$

- No considera interacciones entre variables
- No sufre de la maldición de la dimensionalidad
- Si la clase correcta tiene probabilidad alta es robusto al supuesto de independencia

Árboles de clasificación I

Basado en reglas del tipo: Si $A_1 \wedge \cdots \wedge A_m$ entonces c_j

► Generalmente condición A_l de la forma $x_i \ge \theta$

- ► Algoritmos ID3 [Quinlan, 1986] y C4.5 [Quinlan, 1993] utilizan $H(S) = -\sum_{x \in X} p(x) \log p(x)$
- ► Algortimo CART utiliza Impureza Gini: $I_G(x) = \sum_{i=1}^m x_i(1-x_i)$

- 4 ロ ト 4 周 ト 4 恵 ト - 夏 - 夕 Q G

Análisis de discriminante lineal I

Modelamos la densidad de cada clase con una gaussiana multivariada

$$f_k(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma_k}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \mu_k)^T \mathbf{\Sigma_k^{-1}} (\mathbf{x} - \mu_k)\right).$$

Asumiremos que las clases tienen matriz de covarianzas común $\Sigma_{\mathbf{k}} = \Sigma$

$$\delta_k(\mathbf{x}) = \mathbf{x}^T \mathbf{\Sigma}^{-1} \mu_{\mathbf{k}} - \frac{1}{2} \mu_{\mathbf{k}}^T \mathbf{\Sigma}^{-1} \mu_{\mathbf{k}} + \log \pi_k$$

Agenda

Introducción

Problema de aprendizaje supervisado Métodos de clasificación

Combinando hipótesis

Motivación

Diversidad

Métodos de ensembles

Algoritmo AdaBoost

Introducción al AdaBoost

Descripción general

Conclusiones

Referencias Bibliográficas

Promediando regresiones

Considere

$$H(\mathbf{x}) = \frac{1}{T} \sum_{t=1}^{I} h_i(\mathbf{x}).$$

Se tiene que

$$MSE(H) \leq \overline{MSE(h)}$$

$$\int \left(\frac{1}{T}\sum_{t=1}^{T} \epsilon_i(\mathbf{x})\right)^2 p(\mathbf{x}) d\mathbf{x} \leq \frac{1}{T}\sum_{t=1}^{T} \int \epsilon_i(\mathbf{x})^2 p(\mathbf{x}) d\mathbf{x},$$

donde $h_i(\mathbf{x}) = f(\mathbf{x}) + \epsilon_i(\mathbf{x})$ para $i = 1, \dots, T$.

Si

$$\int \epsilon_i(\mathbf{x})p(\mathbf{x})d\mathbf{x} = 0 \text{ y } \int \epsilon_i(\mathbf{x})\epsilon_j(\mathbf{x})p(\mathbf{x})d\mathbf{x} = 0 \quad (i \neq j)$$

tenemos

$$MSE(H) = \frac{1}{T}\overline{MSE}(h)$$

Sistema de Votación Mayoría Absoluta I

Para el problema de clasificación definimos el ensemble

$$H(\mathbf{x}) = \left\{ \begin{array}{ll} c_j & \text{si } \sum_{i=1}^T h_i^j(\mathbf{x}) > \frac{1}{2} \sum_{k=1}^l \sum_{i=1}^T h_i^k(\mathbf{x}) \\ \text{Rechazo} & \text{si no.} \end{array} \right.$$

Si asumimos que los clasificadores son independientes y su precisión individual es p tenemos la precisión del ensemble dada por

$$P_{mv} = \sum_{k=|T/2+1|}^{T} {T \choose k} p^k (1-p)^{T-k}.$$

Sistema de Votación Mayoría Absoluta II

- ► Si p > 0.5 entonces $\lim_{T\to\infty} P_{mv} = 1$
- ► Si p < 0.5 entonces $\lim_{T\to\infty} P_{mv} = 0$
- ► Si p = 0.5 entonces $P_{mv} = 0.5$ para cualquier T

Diversidad I

A través de las siguientes dos descomposiciones del error cuadrático medio de un ensemble MSE(H)

- ► Descomposición Error-Ambiguedad [Krogh and Vedelsby, 1995]
- ► Descomposición Sesgo-Varianza-Covarianza [Ueda and Nakano, 1996]

Ambas dependen de un término relacionado con la *diversidad* de los clasificadores.

Descomposición Error-Ambiguedad I

Se puede demostrar que

$$MSE(H) = \overline{MSE}(h) - \overline{AMBI}(h)$$

donde

$$\overline{MSE}(h) = \int \sum_{i=1}^{T} w_i MSE(h_i|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

$$\overline{AMBI}(h) = \int \sum_{i=1}^{T} w_i AMBI(h_i|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

$$= \int \sum_{i=1}^{T} w_i (h_i(\mathbf{x}) - H(\mathbf{x}))^2 p(\mathbf{x}) d\mathbf{x}$$

Descomposición Sesgo-Varianza-Covarianza I

$$MSE(h) = sesgo(h)^{2} + var(h)$$

$$\mathbb{E}\{[h - \mathbb{E}(f)]^{2}\} = [\mathbb{E}(h) - \mathbb{E}(f)]^{2} + \mathbb{E}\{[h - \mathbb{E}(h)]^{2}\}$$

Descomposición Sesgo-Varianza-Covarianza II

Así mismo, se puede demostrar que

$$MSE(H) = \overline{SESGO}(H)^2 + \frac{1}{T}\overline{VAR}(H) + \left(1 - \frac{1}{T}\right)\overline{COV}(H)$$

donde

$$\overline{SESGO}(H) = \frac{1}{T} \sum_{i=1}^{T} (\mathbb{E}[h_i] - f)$$

$$\overline{VAR}(H) = \frac{1}{T} \sum_{i=1}^{T} \mathbb{E}(h_i - \mathbb{E}[h_i])^2$$

$$\overline{COV}(H) = \frac{1}{T(T-1)} \sum_{i=1}^{T} \sum_{j=1, i \neq i}^{T} \mathbb{E}(h_i - \mathbb{E}[h_i]) \mathbb{E}(h_j - \mathbb{E}[h_j]).$$

Métodos para Introducir Diversidad I

- ► Utilizar un conjunto de datos de entrenamiento de alguna manera diferente
- Seleccionar un subconjunto diferente de variables para entrenar a la hipótesis
- Manipular las etiquetas de las clases
- Introducir aleatoriedad en el algoritmo

Beneficios de combinar hipótesis I

Fuente: [Dietterich, 2000a]

- ► Problema estadístico
- ► Problema computacional
- ► Problema representacional

Principales métodos de ensembles I

Principales métodos de ensembles:

- Clasificador Bayesiano Óptimo
- Bagging (bootstrap aggregating)
 - Random forest
- Boosting
 - AdaBoost (adaptive boosting)

Clasificador Bayesiano Óptimo I

Consideramos ${\mathcal H}$ como el espacio de todas las hipótesis y D una muestra

$$c = \arg \max_{c_j \in C} \sum_{h_i \in \mathcal{H}} P(c_j | h_i) P(h_i | D)$$

Es el mejor clasificador en promedio considerando ${\mathcal H}$ y conocimiento *a priori* Dificultades prácticas

- lacktriangleright $egin{aligned} lacktriangleright \mathcal{H} & \mathcal{H} \end{aligned}$ generalmente muy grande como para iterar
- ► Hipótesis h generalmente entregan clase y no probabilidades P(c|h)
- ightharpoonup Calcular probabilidades posterior P(h|D) es generalmente no trivial
 - ► Necesitamos *P*(*D*|*h*) y *P*(*h*)

Bagging I

El Bagging (Bootstrap AGGregatING) fue introducido en Breiman [1996]

Considere que tenemos

$$\mathcal{L} = \{(\mathbf{x_1}, y_1), \dots, (\mathbf{x_m}, y_m)\}\$$

 Utilizando muestreo aleatorio con reposición y obtenemos

$$\mathcal{L}_b = \{(\mathbf{x_{b_1}}, y_{b_1}), \dots, (\mathbf{x_{b_m}}, y_{b_m})\},$$

para b = 1, ..., B.

- 2. Aprendemos h_b utilizando \mathcal{L}_b
- 3. Agregamos hipótesis

Boosting I

- ► En Kearns and Valiant [1989] se plantea la pregunta de si las clases de complejidad: aprendedores débiles y aprendedores fuertes, son iguales
- ► Schapire [1990] responde a esa pregunta, su prueba es constructiva: Boosting

Boosting II

Suponga que $h_1, ..., h_T$ son **clasificadores débiles** utilizados para aproximar una función $f : \mathbb{R}^k \to \{-1, +1\}$, tal que

$$\varepsilon = P[h(\mathbf{x}) \neq f(\mathbf{x})] = 0.5 - \gamma$$
 para $\mathbf{x} \in \mathcal{X}; \gamma > 0$

Clasificadores Débiles ([Viola and Jones, 2001])

Boosting III

FINAL CLASSIFIER

Agenda

Introducción

Problema de aprendizaje supervisado Métodos de clasificación

Combinando hipótesis

Motivación

Diversidad

Métodos de ensembles

Algoritmo AdaBoost

Introducción al AdaBoost

Descripción general

Conclusiones

Referencias Bibliográficas

Introducción al AdaBoost I

- ► Basados en Schapire [1990], se introduce en Freund and Schapire [1996] el algoritmo AdaBoost (ADAptive BOOSTing)
- ► En Freund and Schapire [1997] se realiza la primera extensión del AdaBoost al problema de regresión

Reducción del error en AdaBoost I

Sea $\epsilon_t = \frac{1}{2} - \gamma_t$ el error de entrenamiento de h_t , entonces se puede demostrar que

$$\epsilon_H = \prod_t \left[2\sqrt{(\epsilon_t(1 - \epsilon_t))} \right]$$

$$\leq \exp\left(-2\sum_t \gamma_t^2\right)$$

Reducción del error en AdaBoost II

Empiricamente se ha evidenciado la superioridad del AdaBoost [Freund and Schapire, 1996; Bauer and Kohavi, 1999; Dietterich, 2000b]

Comparación de error de prueba entre algoritmos C4.5 Vs. Boosting Decision Stumps, y Boosting C4.5 respectivamente [Freund and Schapire, 1999].

Descripción general I

El AdaBoost es una forma de optimización gradiente en el espacio de hipótesis con el objetivo de minimizar la **función de pérdida exponencial**

$$\ell \exp(f, H|\mathcal{D}) = \mathbb{E}_{x \sim \mathcal{D}}[e^{-f(x)H(x)}]$$

para

$$H(\mathbf{x}) = \sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})$$

Descripción general II

Al minimizar la función de pérdida exponencial $\ell_{\mathsf{exp}}(f, H|\mathcal{D})$ tenemos

$$\frac{\partial e^{-f(\mathbf{x})H(\mathbf{x})}}{\partial H(\mathbf{x})} = -f(\mathbf{x})e^{-f(\mathbf{x})H(\mathbf{x})}$$
$$= e^{-H(\mathbf{x})}P(f(\mathbf{x}) = +1|\mathbf{x}) + e^{H(\mathbf{x})}P(f(\mathbf{x}) = -1|\mathbf{x}) = 0$$

Resolviendo

$$H(\mathbf{x}) = \frac{1}{2} \ln \frac{P(f(\mathbf{x}) = +1|\mathbf{x})}{P(f(\mathbf{x}) = -1|\mathbf{x})}$$

Descripción general III

Dado que

$$sign (H(\mathbf{x})) = sign \left(\frac{1}{2} \ln \frac{P(f(\mathbf{x}) = +1|\mathbf{x})}{P(f(\mathbf{x}) = -1|\mathbf{x})} \right)$$

$$= \begin{cases} 1 & \text{si } P(f(\mathbf{x}) = +1|\mathbf{x}) > P(f(\mathbf{x}) = -1|\mathbf{x}); \\ -1 & \text{si } P(f(\mathbf{x}) = +1|\mathbf{x}) < P(f(\mathbf{x}) = -1|\mathbf{x}) \end{cases}$$

$$= \arg \max_{y \in \{-1, +1\}} P(f(\mathbf{x}) = y|\mathbf{x})$$

lo que implica que sign (H(x)) alcanza la tasa de error bayesiano.

Descripción general IV

Para
$$t = 1, ..., T$$
:

1. Entrenar la hipótesis débil $h_t: X \to \{-1, +1\}$ utilizando la distribución \mathcal{D}_t Obtener $H(\mathbf{x}) = \sum_{i=1}^T \alpha_i h_i(\mathbf{x})$.

Para completamente definir el AdaBoost necesitamos definir

- ► Como determinar las distribuciones \mathcal{D}_t
- Cómo determinar los pesos α_t

Descripción general V

El clasificador h_t que corrige los errores de H_{t-1} debe minimizar la función de pérdida exponencial

$$\ell_{exp}(H_{t-1} + h_t | \mathcal{D}) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[e^{-f(\mathbf{x})(H_{t-1}(\mathbf{x}) + h_t(\mathbf{x}))} \right]$$

$$\approx \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[e^{-f(\mathbf{x})H_{t-1}(\mathbf{x})} \left(1 - f(\mathbf{x})h_t(\mathbf{x}) + \frac{f(\mathbf{x})^2 h_t(\mathbf{x})^2}{2} \right) \right]$$

$$= \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[e^{-f(\mathbf{x})H_{t-1}(\mathbf{x})} \left(1 - f(\mathbf{x})h_t(\mathbf{x}) + \frac{1}{2} \right) \right]$$

Andrés G. Abad, Ph.D., agabad@espol.edu.ec

Descripción general VI

El clasificador ideal h_t sera tal que

$$h_{t}(\mathbf{x}) = \arg\min_{h} \ell_{exp}(H_{t-1} + h|\mathcal{D})$$

$$\approx \arg\min_{h} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[e^{-f(\mathbf{x})H_{t-1}(\mathbf{x})} \left(1 - f(\mathbf{x})h(\mathbf{x}) + \frac{f(\mathbf{x})^{2}h(\mathbf{x})^{2}}{2} \right) \right]$$

$$= \arg\max_{h} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[e^{-f(\mathbf{x})H_{t-1}(\mathbf{x})} f(\mathbf{x})h(\mathbf{x}) \right]$$

$$= \arg\max_{h} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} \left[\frac{e^{-f(\mathbf{x})H_{t-1}(\mathbf{x})}}{\mathbb{E}_{\mathbf{x} \sim \mathcal{D}}[e^{-f(\mathbf{x})H_{t-1}(\mathbf{x})}]} f(\mathbf{x})h(\mathbf{x}) \right]$$

$$= \arg\max_{h} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{t}} [f(\mathbf{x})h(\mathbf{x})]$$

$$= \arg\min_{h} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{t}} [\mathbb{I}(f(\mathbf{x}) \neq h(\mathbf{x}))]$$

para
$$\mathcal{D}_t(\mathbf{x}) = \frac{\mathcal{D}(\mathbf{x})e^{-f(\mathbf{x})H_{t-1}(\mathbf{x})}}{\mathbb{E}_{\mathbf{x}\sim\mathcal{D}}[e^{-f(\mathbf{x})H_{t-1}(\mathbf{x})}]}$$

Descripción general VII

Bajo una distribución \mathcal{D}_t , el peso α_t se escoge minimizando la función de pérdida exponencial

$$\ell \exp(f, \alpha_t h_t | \mathcal{D}_t) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_t} \left[e^{-f(\mathbf{x})\alpha_t h_t(\mathbf{x})} \right]$$

$$= \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_t} \left[e^{-\alpha_t} \mathbb{I}(f(\mathbf{x}) = h_t(\mathbf{x})) + e^{\alpha_t} \mathbb{I}(f(\mathbf{x}) \neq h_t(\mathbf{x})) \right]$$

$$= e^{-\alpha_t} P_{\mathbf{x} \sim \mathcal{D}_t} (f(\mathbf{x}) = h_t(\mathbf{x})) + e^{\alpha_t} P_{\mathbf{x} \sim \mathcal{D}_t} (f(\mathbf{x}) \neq h_t(\mathbf{x}))$$

$$= e^{-\alpha_t} (1 - \epsilon_t) + e^{\alpha_t} \epsilon_t$$

donde $\epsilon_t = P_{\mathbf{x} \sim \mathcal{D}_t}(f(\mathbf{x}) \neq h_t(\mathbf{x})).$

Descripción general VIII

Para obtener el α_t óptimo hacemos

$$\frac{\partial \ell \exp(f, \alpha_t h_t | \mathcal{D}_t)}{\partial \alpha_t} = -e^{-\alpha_t} (1 - \epsilon_t) + e^{\alpha_t} \epsilon_t = 0$$

cuya solución es

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Algoritmo AdaBoost I

Inicialice: $\mathcal{D}_1(i) = 1/m$ para i = 1, ..., m. Para t = 1, ..., T:

- 1. Entrenar la hipótesis débil $h_t: X \to \{-1, +1\}$ utilizando la distribución \mathcal{D}_t
- 2. Evalue error ponderado:

$$\epsilon_t = Pr_{i \sim \mathcal{D}_t}[h_t(x_i) \neq y_i]$$

- 3. Selectione $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- 4. Actualice para i = 1, ..., m:

$$\mathcal{D}_{t+1}(i) = \frac{\mathcal{D}_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t},$$

donde Z_t es el factor de normalización

Algoritmo AdaBoost II

Agenda

Introducción

Problema de aprendizaje supervisado

Métodos de clasificación

Combinando hipótesis

Motivación

Diversidad

Métodos de ensembles

Algoritmo AdaBoost

Introducción al AdaBoost

Descripción general

Conclusiones

Referencias Bibliográficas

Conclusiones I

- ► Los métodos de ensembles reducen el error de entrenamiento y el de prueba
- ► El concepto de diversidad entre hipótesis es central
 - Existen diferentes maneras de introducir diversidad a las hipótesis
- ► El AdaBoost es un algoritmo específico para el Boosting que introduce diversidad ajustando la distribución de la muestra
 - ► El Boosting reduce asintóticamente el error de entrenamiento exponencialmente

Referencias Bibliográficas I

- Bauer, E. and Kohavi, R. (1999). An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. *Machine Learning*, 36(1-2):105–139.
- Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123-140.
- Dietterich, T. G. (2000a). Ensemble Methods in Machine Learning. In *Multiple Classifier Systems*, number 1857 in Lecture Notes in Computer Science, pages 1–15. Springer Berlin Heidelberg.
- Dietterich, T. G. (2000b). An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. *Machine Learning*, 40(2):139–157.
- Freund, Y. and Schapire, R. (1996). Experiments with a New Boosting Algorithm. pages 148–156.
- Freund, Y. and Schapire, R. (1999). A short introduction to boosting. *Japonese Society for Artificial Intelligence*, 14(5):771–780.
- Freund, Y. and Schapire, R. E. (1997). A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting.
- Kearns, M. and Valiant, L. (1989). Cryptographic Limitations on Learning Boolean Formulae and Finite Automata.

Referencias Bibliográficas II

- Krogh, A. and Vedelsby, J. (1995). Neural Network Ensembles, Cross Validation, and Active Learning. In *Advances in Neural Information Processing Systems*, pages 231–238. MIT Press.
- Quinlan, J. R. (1986). Induction of Decision Trees. *Machine Learning*, 1(1):81–106.
- Quinlan, J. R. (1993). *C4.5: Programs for Machine Learning*. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
- Schapire, R. E. (1990). The strength of weak learnability. *Machine Learning*, 5(2):197–227.
- Ueda, N. and Nakano, R. (1996). Generalization error of ensemble estimators. In , IEEE International Conference on Neural Networks, 1996, volume 1, pages 90–95 vol.1.
- Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In *Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001*, volume 1, pages I–511–I–518 vol.1.

Apéndice I

Una expansión aditiva de funciones bases toma la forma

$$f(\mathbf{x}) = \sum_{m=1}^{M} \beta_m b(\mathbf{x}; \gamma_m)$$

El ajuste se realiza minimizando función de pérdida

$$\min_{\{\beta_m,\gamma_m\}_1^M} \sum_{i=1}^N L\left(y_i, \sum_{m=1}^M \beta_m b(\mathbf{x}_i; \gamma_m)\right)$$

$$\min_{\beta,\gamma} \sum_{i=1}^{N} L(y_i, \beta b(\mathbf{x}_i; \gamma))$$

Andrés G. Abad, Ph.D., agabad@espol.edu.ec

Apéndice II

Algoritmo: Ajuste por Etapas hacia Adelante

- 1. Inicialize $f_0(\mathbf{x}) = 0$
- 2. Para m = 1, ..., M:
 - a Calcule

$$(\beta_m, \gamma_m) = \arg\min_{\beta, \gamma} \sum_{i=1}^N L(y_i, f_{m-1}(\mathbf{x}_i) + \beta b(\mathbf{x}_i; \gamma))$$

b Establezca $f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \beta_m b(\mathbf{x}; \gamma_m)$