Chapter 2 - Properties of a Pure Substance

Lecture 3 Sections 2.1-2.3

MEMS 0051 Introduction to Thermodynamics

Mechanical Engineering and Materials Science Department University of Pittsburgh Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

2.2 Phase Boundaries

3.3 The P- ν -T Surface

Student Learning Objectives

At the end of the lecture, students should be able to:

- ► Identify a pure substance
- ▶ Identify phase boundaries for solid, liquid and vapor phases
- ▶ Understand P- ν -T surface representing P-T, T- ν and P- ν diagrams
- ▶ Identify if a substance is a subcooled, compressed or saturated liquid, or a saturated or superheated vapor in terms of saturation pressure and temperature

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

.2 Phase Soundaries

.3 The P- ν -T urface

Pure Substance

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

Boundaries

urface

- ▶ A pure substance is homogeneous and has an invariable chemical composition
- ▶ It can exist in various phases either independently or simultaneously (solid, liquid, vapor), but the chemical composition must be the same in all phases (i.e. H₂O and not H₂O with H₂O₂)
- ▶ However, we may consider air $(78\% N_2, 20.9\% O_2, 0.9\% Ar, 0.03\% CO_2 and CH_4)$ as a pure substance as long as there is no phase change

Consider the following piston-cylinder system, with a weightless piston. The system is initially at State 1, at 25 °C and 101.325 [kPa], i.e. it is completely a liquid.

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

2.2 Phase Boundaries

3.3 The P- ν -T surface

▶ As heat is added to the C.∀., the temperature will increase, as will the specific volume (marginally), whereas the pressure remains constant. This is shown as State 2.

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

2.2 Phase Boundaries

3.3 The P- ν -T surface

There will be an increase in T and ν until the temperature reaches 100 °C. The pressure still remains constant. This is shown as State 3. The system is still completely liquid.

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

2.2 Phase Boundaries

3.3 The P- ν -T surface

▶ Once the temperature reaches 100 °C (T_{sat}) at a pressure of 101.325 [kPa] (P_{sat}), additional heat is needed to change the phase of the liquid water to vapor, i.e. the **latent heat of vaporization**

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

2.2 Phase Boundaries

.3 The P- ν -T urface

During the process of phase change, both temperature and pressure remain constant, but ν increases appreciably as liquid water is turned into vapor. This is shown as State 4.

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

2.2 Phase Boundaries

.3 The P- ν -T urface

• Once all liquid is transformed to vapor (State 5), additional heat is required to increase the temperature and ν , as shown past State 5, however, in this set-up, pressure remains constant.

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

2.2 Phase Boundaries

2.3 The P- ν -T Surface

▶ The relationship between P_{sat} and T_{sat} is depicted by a vapor-pressure curve (P vs. T or vice versa is common), i.e. the interface between the solid, liquid and vapor regions on the phase diagram

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

2.2 Phase Boundaries

2.3 The P- ν -T Surface

- ► The vertical line between solid and liquid phases is the fusion line
- ► The line separating the liquid and vapor phases is the **vaporization line**
- ► The line separating the solid and vapor phases is the **sublimation line**

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

2.2 Phase Boundaries

.3 The P- ν -T urface

➤ Crossing the fusion line can be done via two processes:

- 1. **Melting** solid to liquid
- 2. **Freezing** liquid to solid
- Crossing the vaporization line can be done via two processes:
 - 1. **Boiling** liquid to vapor
 - 2. Condensation vapor to liquid
- Crossing the sublimation line can be done via two processes:
 - 1. **Sublimation** solid to vapor
 - 2. **Deposition** vapor to solid

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

2.2 Phase Boundaries

.3 The P- ν -T urface

Example #1 - P-T Diagram for H_2O

- ▶ What phase changes can water undergo if pressure is held constant at:
- 1. 50 [kPa]
- 2. 0.3 [kPa]

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pur Substance

2.2 Phase Boundaries

2.3 The P- ν -T Surface

- ▶ 1 is the **triple point**
- ▶ 2 would be the **boiling point** at STSP
- ▶ 3 is the **critical point** note there is no phase boundary past this point

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

2.2 Phase Boundaries

2.3 The P- ν -T Surface

- ▶ A $T \nu$ diagram shows the relation between T and ν for lines of constant pressure
- ► The blue line represents a **saturated liquid**
- ► The red line represents a **saturated vapor**
- ► Everything constrained by these lines is the vapor dome

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure

.2 Phase Boundaries

2.3 The P- ν -T Surface

At 100 °C, the $P_{\rm sat}$ is 101.325 [kPa]. That is to say, 100 °C is the $T_{\rm sat}$ corresponding to a pressure of 101.325 [kPa]. The substance is referred to as saturated, denoted by the shaded grey region, if existing at $T_{\rm sat}$ and $P_{\rm sat}$

Note: lines outside the vapor dome are representative and do not reflect actual numeric values.

© Barry, 2020

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

2.2 Phase Boundaries

2.3 The P- ν -T Surface

- ▶ There are important classifications based upon relations to T_{sat} and P_{sat}
- If T is less than T_{sat} for a given P_{sat} , it is a subcooled liquid, i.e. the green shaded region.

Note: lines outside the vapor dome are representative and do not reflect actual numeric values. Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure

.2 Phase Soundaries

2.3 The P- ν -T Surface

▶ If P is greater than P_{sat} for a given T_{sat} , it is a **compressed liquid**, as denoted by the shaded blue region.

Note: lines outside the vapor dome are representative and do not reflect actual numeric values. Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

2.2 Phase Boundaries

2.3 The P- ν -T Surface

▶ If a substance exists as 100% liquid at T_{sat} and P_{sat} , it is a **saturated liquid**, as denoted by the blue line.

Note: lines outside the vapor dome are representative and do not reflect actual numeric values. Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

2.2 Phase Boundaries

2.3 The P- ν -T Surface

▶ If a substance exists as 100% vapor at T_{sat} and P_{sat} , it is a **saturated vapor**, as denoted by the red line.

Note: lines outside the vapor dome are representative and do not reflect actual numeric values. Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

2.2 Phase Boundaries

2.3 The P- ν -T Surface

▶ If a substance exists as a vapor at T greater than T_{sat} for a given P_{sat} , it is a **superheated vapor**, as denoted by the shaded red region.

Note: lines outside the vapor dome are representative and do not reflect actual numeric values. Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

3.2 Phase Boundaries

2.3 The P- ν -T Surface

- We can also visualize states on the P- ν diagram
- Note the directionality of the lines of constant temperature

Note: lines outside the vapor dome are representative and do not reflect actual numeric values.

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

.2 Phase oundaries

2.3 The P- ν -T Surface

Example #2

• Given the $T - \nu$ and $P - \nu$ diagrams of water, and

Given the $T - \nu$ and $P - \nu$ diagrams of water, and a temperature of 325 °C and a corresponding saturation pressure of 12,040 [kPa], determine the following classifications of the substance:

Note: lines outside the vapor dome are representative and do not reflect actual numeric values.

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

oundaries

2.3 The P- ν -T Surface

Example #2

[kPa]

1. T=325 °C, P=20,000

2. T=325 °C, P=8,000 [kPa]

3. T=200 °C, P=12,040 [kPa]

4. T=325 °C, P=12,040 [kPa]

Specific Volume [m3/ka]

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.1 The Pure Substance

.2 Phase Soundaries

2.3 The P- ν -T Surface

Summary

At the end of the lecture, students should be able to:

- ► Identify t a pure substance
 - ► A pure substance is homogeneous with an invariable chemical composition.
- ▶ Identify phase boundaries for solid, liquid and vapor phases
 - ► The fusion line separates the solid and liquid regions, the vaporization line separates the liquid and vapor regions, and the sublimation line separates the solid and vapor regions.
- ▶ Understand $P \nu T$ surface representing P T, $T \nu$ and P- ν diagrams
- ▶ Identify if a substance is a subcooled, compressed or saturated liquid, or a saturated or superheated vapor in terms of saturation pressure and

2.1 The Pure Substance

2.2 Phase Boundaries

Surface

- ▶ Understand P- ν -T surface representing P-T, T- ν and P- ν diagrams
 - ightharpoonup A P-T diagram, also known as a phase diagram, indicates what phase (solid, liquid vapor) the substance is existing in. The $T-\nu$ diagram gives a relation between T and ν with respect to lines of constant pressure. The $P-\nu$ diagram gives a relation between P and ν with lines of constant temperature. The latter two allow us see phase transformation processes in terms of T, P and ν . If all three are assembled with shared axes, we create at $P - \nu - T$ diagram.

- 2.1 The Pure Substance
- 2.2 Phase Boundaries
- urface

- ▶ Identify if a substance is a subcooled, compressed or saturated liquid, or a saturated or superheated vapor in terms of saturation pressure and temperature
 - ▶ A substance is subcooled if T is less than T_{sat} for a given P_{sat}
 - ▶ A substance is compressed if P is less than P_{sat} for a given T_{sat}
 - ▶ A substance is a saturated liquid if T equals $T_{\rm sat}$, P equals $P_{\rm sat}$, and the substance is 100% liquid
 - ▶ A substance is a saturated vapor if T equals $T_{\rm sat}$, P equals $P_{\rm sat}$, and the substance is 100% vapor
 - A substance is superheated if T is greater than T_{sat} for a given P_{sat}

Suggested Problems

2.19, 2.20, 2.21, 2.25

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

- .1 The Pure ubstance
- 2 Phase oundaries
- .3 The P- ν -T urface

