

Aeronomía y Clima Espacial

Proyecto 01: Monitoreo e investigación de Clima Espacial sobre el Perú 12-05-2025

- Línea de investigación:
 - Física de las irregularidades ionosféricas
 - Impacto de las perturbaciones ionosféricas en las tecnologías del país
- Responsable: Edgardo Pacheco
- Equipo:
- Frahan Justo
- John Rojas
- Alexander Valdez
- Juan Carlos Espinoza
- · César De La Jara
- Danny Scipión

Cronograma PRO-CIENCIA

Mes	Actividad	Entregable	
Marzo	Finalización de Revisión Bibliográfica y Datos	Documento de revisión y preprocesamien	
	Complementar revisión de literatura	Referencias y análisis comparativo	
	Preprocesar datos adicionales	Datos limpios y estructurados	
	Ajuste de periodos de análisis	Definición final de datos clave	
Abril	Optimización y Evaluación de Modelos	Modelos ajustados y validados	
	Refinar selección de características	Ranking de variables clave	
	Ajustar hiperparámetros en SVM, Random Forest y LSTM	Modelos optimizados	
	Validación con técnicas cruzadas y métricas de desempeño	Reporte de validación	
	Desarrollo del Sistema de Visualización	Prototipo funcional	
Mayo	Integrar modelos en entorno ejecutable	Código implementado	
	Diseñar interfaz para consulta de predicciones	UI inicial	
	Pruebas en Campo y Evaluación Final	Informe de pruebas	
Junio	Pruebas en regiones críticas (Jicamarca, Piura)	Datos de validación en campo	
	Ajuste de modelos según desempeño	Versión mejorada del sistema	
	Redacción y Presentación de Resultados	Borrador de tesis final	
Julio	Documentación del sistema y análisis de resultados	Informe técnico	
	Elaboración de conclusiones y recomendaciones	Presentación final	

- Parámetros que afectan el centelleo ionosférico.
 - Parámetro S4 base de datos CIELO.
 - Indices geomagnéticos: ('AE','Dst, 'Kp),
 - Variaciones del campo magnético interplantario: ('BX', 'BY', 'BZ'),
 - Viento solar: ('SW'),
 - 5. flujo solar:(índice 'f10.7')
 - Velocidad de derivas. Madrigal
 - 7. Ocurrencia de F-dipersa. Madrigal
 - 8. Altura virtual de la parte baja de la ionósfera.ionogramas
 - Altura de densidad máxima de la ionósfera.ionogramas
 - 10. Densidad de electrones en la región F de la ionósfera. Radar, ionosonda-inversion Cristian.
 - Perfiles de densidad de electrones en altura) en el Radio Observatorio de Jicamarca.

Fase 1: Definición y Recolección de Datos

Variable	Descripción
TEC	Contenido total de electrones
ROTI	Índice de variación del TEC
Кр	Índice de actividad geomagnética
F10.7	Flujo solar
Hora local	Para capturar variaciones diurnas
Estación GNSS	Ubicación (ej: Jicamarca, Cusco)
Elevación/Sat	Ángulo del satélite
S4	Valor real a predecir (etiqueta)

Referencia:

Ionospheric scintillation prediction on S4 and ROTI parameters using artificial neural network and genetic algorithm.

https://drive.google.com/file/d/1HqLa-Ciq8TU6Y9EJ13KxgA4f3OFzef-Y/view?usp=sharing.

Objetivo: Predecir, con un día de anticipación, los valores de **S4** (índice de intensidad de señal) y **ROTI** (variabilidad del contenido total de electrones) en la estación GNSS ubicada en Guam. Los parámetros fueron usados para entrenar y alimentar el modelo de predicción tanto de **S4** (centelleo de amplitud) como de **ROTI** (fluctuación del TEC), en intervalos de 5 minutos durante 30 días. Variables:

- Altura máxima de la capa F2 (hmF2)
- Velocidad de deriva vertical de la capa F2 (vdF)
- Flujo solar F10.7
- Número de manchas solares (Sunspot Number)
- Índice geomagnético Kp

Predecir el valor del índice **S4** (cintilación ionosférica) usando como entrada el **TEC** y otras variables relevantes.

Link SPACE WEATHER PREDICTION CENTER NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION:

https://www.swpc.noaa.gov/products/glotec

Index of /pro	ducts/glote	ec/netcdf_2d_urt
Name	Last modified	Size
Parent Directory		11.5
GloTEC TEC 2025 01 2>	2025-01-28 21:21	14M
GloTEC TEC 2025 01 2>	2025-01-28 22:36	8.6M
GloTEC TEC 2025 01 2>	2025-01-29 00:10	8.6M
GloTEC TEC 2025 01 2>	2025-01-30 00:10	8.6M
GloTEC TEC 2025 01 3>	2025-01-31 00:10	8.6M
GloTEC TEC 2025 01 3>	2025-02-01 00:10	8.6M
GloTEC TEC 2025 02 0>	2025-02-02 00:10	8.6M
GloTEC TEC 2025 02 0>	2025-02-03 00:10	8.6M
GloTEC TEC 2025 02 0>	2025-02-04 20:47	8.6M
GloTEC TEC 2025 02 0>	2025-02-05 00:10	8.6M
GloTEC TEC 2025 02 0>	2025-02-06 00:10	8.6M
GloTEC TEC 2025 02 0>	2025-02-07 00:10	8.6M
GloTEC TEC 2025 02 0>	2025-02-08 00:10	8.6M
GloTEC TEC 2025 02 0>	2025-02-09 00:10	8.6M
GloTEC TEC 2025 02 0>	2025-02-10 00:10	8.6M
GloTEC TEC 2025 02 1>	2025-02-11 00:10	8.6M
GloTEC TEC 2025 02 1>	2025-02-12 00:10	8.6M
GloTEC TEC 2025 02 1>	2025-02-13 00:11	8.6M
GloTEC TEC 2025 02 1>	2025-02-14 00:10	8.6M
GloTEC TEC 2025 02 1>	2025-02-15 00:11	8.6M
GloTEC TEC 2025 02 1>	2025-02-16 00:11	8.6M
GloTEC TEC 2025 02 1>	2025-02-17 00:11	8.6M
GloTEC TEC 2025 02 1>	2025-02-18 00:10	8.6M
GloTEC TEC 2025 02 1>	2025-02-19 21:55	8.6M
GloTEC TEC 2025 02 1>	2025-02-20 19:06	8.6M
GloTEC TEC 2025 02 2>		8.6M
GloTEC TEC 2025 02 2>	2025-02-22 00:10	8.6M
GloTEC TEC 2025 02 2>		8.6M
GloTEC TEC 2025 02 2>		8.6M
GloTEC TEC 2025 02 2>		8.6M
GloTEC TEC 2025 02 2>		8.6M
GloTEC TEC 2025 02 2>	2025-02-27 00:11	8.6M
GloTEC TEC 2025 02 2>		8.6M
GloTEC TEC 2025 02 2>		8.6M
GloTEC TEC 2025 03 0>	2025-03-02 00:11	8.6M
GloTEC TEC 2025 03 0>		8.6M

Extraer el TEC, diario cada 10 minutos. calcular el ROTI.

Formando el dataset TEC.

1440 muestras, cada 10 minutos

Perfil del TEC - LIMA

Estimación del ROTEC Y ROTI

datetime	TEC	ROTEC	ROTI	lat	lon	archivo
2025-01-26 0:35:00	69.25879	-0.02060793559	0.01083835647	-11.25	-77.5	GIOTEC_TEC_202
2025-01-26 0:45:00	64.9328	-0.007209981283	0.01093464385	-11.25	-77.5	GIOTEC_TEC_202
2025-01-26 0:55:00	62.162354	-0.004617411296	0.006942434392	-11.25	-77.5	GIoTEC_TEC_202
2025-01-26 1:05:00	61.553207	-0.00101524353	0.005529950963	-11.25	-77.5	GIOTEC_TEC_202
2025-01-26 1:15:00	53.410713	-0.01357082367	0.005507412846	-11.25	-77.5	GIOTEC_TEC_202
2025-01-26 1:25:00	55.01356	0.002671413422	0.00566210115	-11.25	-77.5	GIOTEC_TEC_202
2025-01-26 1:35:00	54.22155	-0.001320018768	0.005692471525	-11.25	-77.5	GIoTEC_TEC_202
2025-01-26 1:45:00	50.11405	-0.006845830282	0.004102340797	-11.25	-77.5	GIOTEC_TEC_202
2025-01-26 1:55:00	44.837387	-0.008794441223	0.002917995376	-11.25	-77.5	GIOTEC_TEC_202
2025-01-26 2:05:00	41.721363	-0.005193373362	0.002371869794	-11.25	-77.5	GIoTEC_TEC_202
2025-01-26 2:15:00	40.755608	-0.001609592438	0.005077901264	-11.25	-77.5	GIoTEC_TEC_202
2025-01-26 2:25:00	37.031597	-0.006206684113	0.00452817615	-11.25	-77.5	GIOTEC_TEC_202
2025-01-26 2:35:00	40.54765	0.005860087077	0.00491095159	-11.25	-77.5	GIoTEC_TEC_202
2025-01-26 2:45:00	41.882282	0.002224388123	0.005497691648	-11.25	-77.5	GIOTEC_TEC_202
2025-01-26 2:55:00	37.66912	-0.007021935781	0.005278208234	-11.25	-77.5	GIoTEC_TEC_202
2025-01-26 3:05:00	33.185516	-0.007472674052	0.004141850362	-11.25	-77.5	GIOTEC_TEC_202
2025-01-26 3:15:00	33.7438	0.0009304745992	0.003501285367	-11.25	-77.5	GIOTEC_TEC_202
2025-01-26 3:25:00	33.81258	0.0001146316528	0.004212289495	-11.25	-77.5	GIoTEC_TEC_202
2025-01-26 3:35:00	32.26469	-0.002579816182	0.003860018712	-11.25	-77.5	GIoTEC_TEC_202
2025-01-26 3:45:00	26.382444	-0.009803743362	0.0044200197	-11.25	-77.5	GIOTEC_TEC_202
2025-01-26 3:55:00	23.521507	-0.004768228531	0.004188550624	-11.25	-77.5	GIOTEC_TEC_202
2025-01-26 4:05:00	25.452467	0.003218266169	0.004194051183	-11.25	-77.5	GIOTEC TEC 202

DATASET resultante, cada 10 minutos, desde Enero- Mayo 2025.

Consideración del parámetro S4

- Cuando calculas el valor máximo de S4 en cada bloque de 5 minutos, estás conservando los picos (valores extremos), pero pierdes la suavidad o continuidad que ayuda a identificar patrones de cintilación.
- Cuando calculas el promedio de S4 cada 5 minutos, los valores son más suaves y permiten observar mejor la forma general del fenómeno, pero el valor máximo baja (porque el promedio siempre es menor o igual al máximo).
- Para conservar ambos aspectos —la suavidad del promedio y la escala del valor máximo original— el artículo propone multiplicar toda la serie de promedios por un factor para que su máximo coincida con el máximo real de S4.

$$S4_{escalado} = S4_{promediado} \times \frac{max(S4 \ original \ a\tilde{n}o \ N)}{max(S4 \ promediado \ a\tilde{n}o \ N)}$$

Procesamiento

- Filtro de elevación de 30°
- S4 max cada 5 minutos
- S4 avg cada 5 minutos
- S4 división.

Esto significa que para cada año (2023, 2024, 2025) tomas el máximo valor de S4 original de ese año y reescalar la versión suavizada (promediada en 5 minutos) usando ese máximo.

I	D Satélite	Tiempo	S4	Elevación	Intervalo
0	9	2023-01-01 00:04:00	0.138	40.0	2023-01-01 00:00:00
1	9	2023-01-01 00:07:00	0.126	40.0	2023-01-01 00:05:00
2	9	2023-01-01 00:11:00	0.166	39.0	2023-01-01 00:10:00
3	9	2023-01-01 00:16:00	0.144	38.0	2023-01-01 00:15:00
4	9	2023-01-01 00:23:00	0.111	37.0	2023-01-01 00:20:00
157881	24	2025-03-31 23:28:00	0.155	40.0	2025-03-31 23:25:00
157882	42	2025-03-31 23:31:00	0.172	31.0	2025-03-31 23:30:00
157883	24	2025-03-31 23:36:00	0.111	42.0	2025-03-31 23:35:00
157884	24	2025-03-31 23:43:00	0.166	44.0	2025-03-31 23:40:00
157885	42	2025-03-31 23:45:00	0.095	36.0	2025-03-31 23:45:00

S4 maximo

S4 promediado

Dataset S4

Descarga de datos de la página de omniweb desde 1963.

https://drive.google.com/file/d/11c650pcKVoS4SKWhzU1Yzb7cSkoZZXj5/view?usp=sharing

Data cada una hora.

Link general de desarrollo:

https://github.com/sebastianVP/ESTUDIO_CINTILACION
ES PERU/tree/main

Ficha de inscripción:

https://drive.google.com/file/d/1AuwKXrFS0ovEOQwa3
NAb OdwKeJWRjp2/view?usp=sharing

Pendiente:

- Definir y cerrar todas las base de datos de todas los parámetros involucrados que afectan el centelleo ionosférico.
- Consultar por datos de GNSS de años anteriores, estar pendiente de los datos de TEC de la red LISN.

Ciencia para protegernos Ciencia para avanzar