Математическая логика и теория алгоритмов

Сергей Григорян

11 сентября 2024 г.

Содержание

1	Инфа	3
2	\mathbf{C} интаксис \leftrightarrow \mathbf{C} емантика	3
3	Правильные скобочные п-ти (ПСП)	4
	3.1 OIIP $1 \Rightarrow$ OIIP $3 \dots $	5
	3.2 OIIP $2 \Rightarrow$ OIIP $1 \dots $	5
	3.3 OHP $3 \Rightarrow$ OHP $2 \dots $	5

1 Инфа

Лектор: Мусатов

Книги: Верещагин Н. К., Шень А. "Лекции по мат. логике":

№ 1 Начало теории мн-в

№ 2 Языки и исчисления

№ 3 Вычислимые ф-ции

2 Синтаксис \leftrightarrow Семантика

Определение 2.1. Синтаксис - правила составления форм. выр-ий.

<u>Определение</u> **2.2.** Семантика - соспоставление форм выр-ия некоторого смысла.

<u>Определение</u> **2.3. Алфавит** - мн-во символов. (Непустое, обычно конечное)

<u>Определение</u> **2.4.** Слово - конечная последовательность символов алфавита. (Может быть пустым)

 Π устое слово - arepsilon

Определение 2.5. Язык - любое мн-во слов.

 $\overline{\Pi ext{yctoй яз}}$ ык - \emptyset

Синглетов - $\{\varepsilon\}$

Операции над словами:

- Конкатенация: u * v
- Возведение в степень: $u^n = u * u * \cdots * u$ n раз $(u^0 = \varepsilon)$
- Обращение: $u^R = u_n u_{n-1} \cdots u_1$, если $u = u_1 u_2 \cdots u_n$

$$(ab)^R = b^R a^R.$$

Отношения над словами:

• Префикс $u \sqsubset v \iff \exists w \colon uw = v$

- Суффикс $u \supset v \iff \exists w \colon wu = v$
- Подслово $u(\text{subset})v \iff \exists t, w \colon tuw = v$
- Подп-ть $u \subset v \iff$ вычеркнута часть символов v и получили u

Операции над языками:

- 0) Теоретико-множ.
- 1) Конкатенация:

$$L*M = \{u*v | u \in L, v \in M\}.$$
$$L*\emptyset = \emptyset.$$

Пример.

$$L = \{a, ab\}, M = \{a, ba\}, LM = \{aa, aba, abba\}.$$

2) $L^n = L * L * \cdots * L - n$ pas

$$L^0 = \{\varepsilon\}.$$

3) Итерация/Звезда Клини:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{k=0}^{\infty} L^k.$$

$$L^{+} = \bigcup_{k=1}^{\infty} L^{k} = L^{*} * L.$$
$$L^{*} = L^{+} * \{\varepsilon\}.$$

3 Правильные скобочные п-ти (ПСП)

Определение 3.1. Π **СП** - это п-ть скобок, разбитых на пары, и в каждой паре "("раньше ")".

Определение 3.2. $\Pi C \Pi$ - это п-ть, получ. из правил:

- 1. ε это ПСП;
- 2. $s \Pi C\Pi \Rightarrow (s) \Pi C\Pi$;
- 3. $s, t \Pi C\Pi, \Rightarrow st \Pi C\Pi$.

Определение 3.3. Баланс СП - (кол-во "(") - (кол-во ")")

Определение 3.4. ПСП - СП, для кот. баланс всей п-ти = 0, а любого др. префикса ≥ 0

3.1 OPP $1 \Rightarrow OPP 3$

Все скобки разбиты на пары \Rightarrow баланс = 0.

"("левее ")" \Rightarrow в любом префиксе из каждой пары, ни одной, обе или только "(". В любом случае итоговый баланс префикса ≥ 0 .

3.2 OMP $2 \Rightarrow$ OMP 1

Скобки, добавленные по правилу (s), будут в паре.

3.3 OPP $3 \Rightarrow OPP 2$

Д-во: индукция по длине СП

База: $s = \varepsilon \Rightarrow$ подх. по опр. 2

Осн. случ.: $|s| > 0 \Rightarrow$ первый символ "(".

Рассм. кратчайший непустой префикс с балансом = 0:

- Случай 1: Это вся п-ть: $s=(s')\Rightarrow$ для s' верно ОПР 3 (т. к. любой другой баланс по случаю $\geq 1)\Rightarrow$ и ОПР 2.
- Случай 2: Это собств. префикс (\neq всей строке): s=(s')t. И для s', и для t выполнено ОПР $3\Rightarrow$ ОПР 2.