SPRAWOZDANIE PAMSI PROJEKT 2 ALGORYTMY GRAFOWE

Prowadzący:

Mgr inż. Marta Emirsajłow

Dane studenta:

Krzysztof Ragan 249026

Termin zajęć:

Piątek 13:15

1. Zadanie

Celem zadania było zaimplementowanie w języku C++ grafu w dwóch postaciach: macierzy sąsiedztwa oraz listy sąsiedztwa, oraz zbadania wydajności wybranego algorytmu grafowego. Wybrany został algorytm Dijkstry. Wykonano pomiary czasu dla różnych reprezentacji (lista, macierz), różnych gęstości grafu (25%, 50%, 75%, 100%), oraz różnych ilości wierzchołków (10,50,100,500,1000)

2. Opis algorytmu

Algorytm Dijkstry jest jednym z podstawowych algorytmów grafowych. Znajduje on najkrótszą ścieżkę między dowolnymi dwoma wierzchołkami w grafie spójnym ważonym oraz oblicza jej koszt. Teoretycznie, przy implementacji kolejki jako kopiec złożoność czasowa algorytmu powinna wynosić O(E*logV) gdzie E to liczba krawędzi, a V liczba wierzchołków. Złożoność pamięciowa wynosi O(n²) dla reprezentacji macierzowej i O(E+V) dla reprezentacji listowej.

3. Przebieg eksperymentu

Do implementacji algorytmów w języku C++ wykorzystano program Microsoft Visual Studio 2019. Poniżej przedstawiono tabelę ze średnimi czasami działania algorytmu w różnych warunkach (dla różnych parametrów badanych grafów) oraz wykresy typu pierwszego i drugiego, zgodnie z instrukcją do zadania.

Tabela 1. Wyniki pomiaru czasu działania algorytmu przy reprezentacji macierzowej

n\rodzaj tabeli	10	50	100	500	1000
25%	25.4	153.84	357.27	4992.6	21126.68
50%	24.42	168.03	389.37	5988.61	28239.8
75%	28.53	155.11	379.82	5669.14	27208.4
75%	27.84	134.49	331.7	5682.79	24231.07

Tabela 2. Wyniki pomiaru czasu działania algorytmu przy reprezentacji listowej

n\rodzaj tabeli	10	50	100	500	1000
25%	36.61	407.2	1716.22	211554.7	1761117
50%	39.3	555.56	3112.11	469313.2	4107232
75%	44.06	726.18	5171.91	715614.9	6292449
75%	46.06	993.95	6540.09	1031292	8668847

Wykres 1. Wyniki pomiarów czasu dla reprezentacji macierzowej

Wykres 2. Wyniki pomiarów czasu dla reprezentacji listowej

Wykres 3. Wyniki pomiarów czasu dla gęstości 25%

Wykres 4. Wyniki pomiarów czasu dla gęstości 50%

Wykres 5. Wyniki pomiarów czasu dla gęstości 75%

Wykres 6. Wyniki pomiarów czasu dla gęstości 100%

4. Wnioski

Oczekiwano, że reprezentacja listu grafu będzie bardziej optymalnym rozwiązaniem niż jej macierzowy odpowiednik, lecz wyniki na to nie wskazują.

Wykresy typu drugiego z tego powodu są nieczytelne i trudne jest porównanie wartości czasu wykonywania algorytmu dla obydwu reprezentacji.

Krzywe wykresów typu pierwszego przypominają w przybliżeniu krzywe teoretyczne wynikające ze złożoności obliczeniowej algorytmu. Dzięki nim możliwa jest obserwacja zależności czasu do zwiększającej się gęstości.

Bibliografia:

- https://pl.wikipedia.org/wiki/Algorytm_Dijkstry
- https://eduinf.waw.pl/inf/alg/001_search/0138.php