Determinants Group 12

Catterwell, A. Smith, M. Wang, R. Watson, K.

University of Edinburgh

March 31, 2019

Overview I

- Why calculate determinants?
 - Invertibility of matrices
 - Cramer's Rule
 - Eigenvalues and Eigenvectors
 - Eigenvectors Eigenvalues cont.
 - Jacobian determinant
- 2 Algorithms for computing determinants
 - Leibniz formula
 - Laplace expansion
 - LU decomposition
 - Gaussian elimination
 - Bareiss algorithm
 - Bird's algorithm
- 3 Epilogue
 - Summary of determinant algorithms
 - How fast is Maple's implementation?

Invertbililty of matrices

Theorem

An $n \times n$ square matrix A is invertible if and only if

$$det(A) \neq 0$$
.

Cramer's Rule

Theorem

Given an equation $A\mathbf{x} = \mathbf{b}$ The solutions for \mathbf{x} are given by

$$x_i = \frac{\det(A_i)}{\det(A)}$$

with A_i being the matrix formed by replacing the *i*th column of A by **b**.

It turns out this method has the same runtime complexity as Gaussian elimination for solving systems of linear equations.

Eigenvalues and Eigenvectors

Definition

The Eigenvalues λ of a matrix A are the roots of the characteristic polynomial as defined

$$<<<<<<$$
 HEAD $\chi_A = \det(A - \lambda I) = \mathbf{0} = = = = = = \chi_A = \det(A - \lambda I)$

Definition

The Eigenvectors of A are the vectors \mathbf{v} such that

$$A\mathbf{v} = \lambda \mathbf{v}$$

Volume

The absolute value of the determinant of real vectors is equal to the volume of the parallelepiped spanned by those vectors. $f: \mathbb{R}^n \to \mathbb{R}^n$: the linear map represented by the A. S: any measurable subset of \mathbb{R}^n .

$$\mathsf{volume}(f(S)) = \sqrt{\det(A^T A)} \times \mathsf{volume}(S)$$

The volume of any tetrahedron, given its vertices a, b, c, and d is

$$\frac{\det(a-b,b-c,c-d)}{6}.$$

Jacobian determinant

For $f: \mathbb{R}^n \to \mathbb{R}^n$, the Jacobian matrix is the $n \times n$ matrix whose entries are defined as

$$<<<<<$$
 HEADD $(f)=\left(\frac{\partial f_i}{\partial x_j}\right)_{1\leq i,j\leq n}=======D(f)=\left(\frac{\delta f_i}{\delta x_j}\right)_{1\leq i,j\leq n}$

Its determinant is known as the Jacobian determinant.

If the determinant of a continuously differentiable function f at a point p is. . .

- Non-zero, f is invertible near a point p in \mathbb{R}^n .
- Positive, then *f* preserves orientation near *p*.
- Negative, then f reverses orientation near p.

Leibniz formula

Definition

The Leibniz formula defines the determinant of $A \in \mathbb{M}(n)$ as

$$\det(A) = \sum_{\sigma \in \mathfrak{S}_n} \left(\operatorname{sgn}(\sigma) \cdot \prod_{i=1}^n a_{i,\sigma(i)} \right)$$

where \mathfrak{S}_n is the set of permutations length n.

Computing the determinant using this method is slow with runtime $\mathcal{O}((n+1)!)$.

Laplace expansion

The Laplace (1st row) expansion for computing determinants is usually the first method taught for computing determinants of 3×3 matrices and larger.

$\mathsf{Theorem}$

The formula for the (1st row) Laplace expansion of $A \in \mathbb{M}(n)$ is given as:

$$\det(A) = \sum_{i=1}^n a_{1,j} C_{1,j}$$

where $C_{i,j}$ is the (i,j) cofactor of A.

Its runtime complexity of $\mathcal{O}(n!)$ is poor.

Laplace expansion vs Leibniz formula

Runtimes are similar — both run in exponential time.

What is LU decomposition?

Definition

An LU decomposition of an invertible matrix A is a factorization

$$A = LU$$

where L and U are lower and upper triangular matrices, respectively.

Is there always an LU decomposition?

No.

An LU decomposition of A exists if and only if each of its *leading* principle minors (contiguous square submatrices in the top-left corner of A), are also invertible.

Example

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

This matrix is invertible but has no LU decomposition.

What can we do?

PLU decomposition

Partial pivoting.

We can pivot the matrix into the correct form by multiplication with an orthogonal, permutation matrix P (representing a permutation σ_P) which gives us the PLU decomposition:

$$\sigma_P(A) = PA = LU$$

This technique works on any invertible matrix.

How it helps us compute determinants

Now that we have PA = LU, it follows that

$$A = P^{-1}LU$$
$$= P^{T}LU$$

since $P^{-1} = P^T$ by the definition of orthogonal matrices.

How it helps us compute determinants (cont.)

Now that we have $A = P^T L U$, it follows that

$$det(A) = det(P^{T}LU)$$

$$= det(P^{T}) \cdot det(L) \cdot det(U)$$
 (Thm. 4.4.1)
$$= det(P) \cdot det(L) \cdot det(U)$$
 (Lem. 4.4.4)

Given that

- the determinant of a triangular matrix is the product of its diagonal elements
- the determinant of a permutation matrix (P) is the parity of the permutation it represents (σ_P)

it follows that

$$\det(A) = \operatorname{sgn}(\sigma_P) \cdot \left(\prod_{i=1}^n l_{i,i}\right) \left(\prod_{i=1}^n u_{i,i}\right)$$

How do we find the PLU decomposition?

Input: $A \in \mathbb{R}^{n \times n}$

Output: $L, U, P \in \mathbb{R}^{n \times n}$, with PA = LU, L unit lower triangular, U non-singular upper to and P a permutation matrix

2: for
$$k \leftarrow 1, \ldots, n-1$$
 do

- Choose $i \in \{k, ..., n\}$ which maximises $|u_{ik}|$
- 4: Exchange row (u_{kk}, \dots, u_{kn}) with (u_{ik}, \dots, u_{in})
- Exchange for (a_{kk},..., a_{kn}) with (a_{ik},..., a_{in})
- 5: Exchange row $(l_{k1}, \dots, l_{k,k-1})$ with $(l_{i1}, \dots, l_{ik-1})$
- 6: Exchange row (p_{k1}, \dots, p_{kn}) with (p_{i1}, \dots, p_{in})
- 7: for $j \leftarrow k + 1, \dots, n$ do
- 8: $l_{jk} \leftarrow u_{jk}/u_{kk}$
- 9: $(u_{jk},\ldots,u_{jn}) \leftarrow (u_{jk},\ldots,u_{jn}) l_{jk}(u_{kk},\ldots,u_{kn})$
- 10: end for
- 11: end for

3:

▷ Loop ove

 \triangleright Col. 1 to k have zeros below th

 $ightharpoonup \mathbf{L}$ has unit diagonal, zeros below the diagonal in columns

 $\triangleright u_{l\cdot l\cdot}$ now larges

4 D > 4 D > 4 E > 4 E > 9 Q (^

Runtime analysis

How quick is it?

- The PLU decomposition can be computed in $\mathcal{O}(n^3)$ time.
- The determinants of the triangular matrices computed in $\mathcal{O}(n)$ time.
- The parity of the permutation matrix in $\mathcal{O}(n^2)$ time.

Therefore the total runtime for computing the determinant using the method is

$$\mathcal{O}(n^3) + \mathcal{O}(n^2) + \mathcal{O}(n) = \mathcal{O}(n^3)$$

What are some other methods to compute determinants?

Laplace expansion vs LU decomposition

The difference between the exponential and polynomial-time function is clear.

Gaussian elimination

- The determinant of a triangular matrix can be computed by taking the product of its diagonal entries (which is a quick $\mathcal{O}(n)$ operation).
- Any invertible square matrix can be transformed into echelon form by performing Gaussian elimination, which takes $\mathcal{O}(n^3)$ time.

So how does it compare to LU decomposition?

Gaussian elimination vs LU decomposition

The difference in runtimes is small (a constant factor).

Gaussian elimination (cont.)

Conventional Gaussian elimination requires division. This has two problems:

- Over $\mathbb{M}(n; \mathbb{R})$ solutions maybe inexact, so precision is lost.
- Division is not a ring operation, so would not necessarily work on matrices over a ring.

This is can be addressed by using. . .

Bareiss algorithm

- Addresses the issue of precision-loss by performing integer-preserving Gaussian elimination on integer matrices.
- The runtime complexity is $\mathcal{O}(n^3)$ which is the same as conventional Gaussian Elimination, whilst preserving exactness.

Bird's algorithm

Define $\mu : \mathbb{M}(n) \to \mathbb{M}(n)$:

$$\mu(X) = \begin{pmatrix} \mu_{2,2} - x_{2,2} & x_{1,2} & \cdots & x_{1,n-1} & x_{1,n} \\ 0 & \mu_{3,3} - x_{3,3} & \cdots & x_{2,n-1} & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \mu_{n,n} - x_{n,n} & x_{n-1,n} \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

and
$$F_A: \mathbb{M}(n) \to \mathbb{M}(n)$$
, with $A \in \mathbb{M}(n)$

$$F_A(X) = \mu(X) \cdot A$$

$$F_A^2(X) = \mu(F_A(X)) \cdot A$$

$$\vdots$$

$$F_A^n(X) = \mu(F_A^{n-1}(X)) \cdot A$$

Bird's algorithm (cont.)

Bird's Theorem

$$F_A^{n-1}(A) = \begin{pmatrix} d & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ with } d = \begin{cases} \det(A) & \text{odd } n \\ -\det(A) & \text{even } n \end{cases}$$

- Enables the *division-free* computation of determinants in $\mathcal{O}(n \cdot M(n))$ where M(n) is the runtime complexity of the matrix multiplication algorithm used.
- If the conventional $\mathcal{O}(n^3)$ matrix multiplication algorithm is used, then Bird's algorithm will run in $\mathcal{O}(n^4)$ time.
- But this can be reduced to $\mathcal{O}(n^{3.8})$ by using the *Strassen* algorithm for matrix multiplication.

Bird's algorithm vs LU decomposition

Bird's runtimes increase noticeably more rapidly than LU decomposition, but it's still polynomial.

Summary of determinant algorithms

Algorithm	Runtime	Exact?
Leibniz formula	$\mathcal{O}((n+1)!)$	Yes
Laplace expansion	$\mathcal{O}(n!)$	Yes
LU decomposition	$\mathcal{O}(n^3)$	No
Gaussian elimination	$\mathcal{O}(n^3)$	No
Bareiss algorithm	$\mathcal{O}(n^3)$	Yes
Bird's algorithm	$\mathcal{O}(n^{3.8})$	Yes

How fast is Maple's built-in determinant function?

Very. Maple's optimisation means a fair comparison cannot be made.

Thanks!