BCH Codes -I

Qi Zhang

Aarhus University School of Engieering

24/02, 2014

1 Introduction: The Minimal Polynomial

2 Description of BCH Cyclic Codes

3 Decoding of BCH Codes

Qi Zhang (ASE) BCH Codes -I 24/02, 2014 2 / 17

- Let's look the example of Hamming code $C_{cyc}(7,4)$ with generator polynomial $g_1(X) = 1 + X + X^3$.
- This generator polynomial has no roots in GF(2), but it has three roots in the GF(2^3) which is generated by primitive polynomial $p_i(X) = 1 + X + X^3$.
- For this particular case, we can easily tell that α is one of the roots of $g_1(X)$.
- We also know that the other roots are the conjugate of α , according to Theorem B.1. Therefore, we find that the other two roots are α^2 and α^4 .
- Assuming that the received polynomial is r(X), we know the relation between the received polynomial and syndrome polynomial:

$$r(X) = q(X)g_1(X) + S(X)$$

- If substituting X by α , there is $r(\alpha) = q(\alpha)g_1(\alpha) + S(\alpha) = S(\alpha) = s_1$.
- Similarly if substituting X by α^2 , there is $r(\alpha^2) = q(\alpha^2)g_1(\alpha^2) + S(\alpha^2) = S(\alpha^2) = s_2$.

3 / 17

- It is possible to find a system of two equations that allows the solution of two unknowns, which are the position and the value of a single error in the polynomial.
- $g_1(X)$ has three roots, therefore, it cannot correct error patterns of t=2.
- The other elements of the extended field GF(8), α^3 , α^5 and α^6 which are the roots of another polynomial:

$$g_2(X) = (x + \alpha^3)(X + \alpha^5)(X + \alpha^6) = X^3 + X^2 + 1$$

- In fact, we know $g_1 = \phi_1(X)$ is the minimal polynomial of α , α^2 and α^4 and $g_2 = \phi_2(X)$ is the minimal polynomial of α^3 , α^5 and α^6 .
- If we take the lowest common multiple (LCM) of these two polynomials $\phi_1(X)$ and $\phi_2(X)$ will form a generator polynomial with roots α , α^2 , α^3 , α^4 , α^5 and α^6 .

$$g_4(X) = \phi_1(X)\phi_2(X) = X^6 + X^5 + X^4 + X^3 + X^2 + X + 1$$

- $g_4(X)$ has 6 roots and have six equations which determine the positions and values of up to three errors in a given codeword.
- From another angle, $g_4(X)$ generates $C_{cyc}(7,1)$ with $d_{min}=7$, able to AARHUS UNIVERSITE OF THE PROPERTY OF THE P correct any error pattern of size t = 3 or less.

BCH Codes -I 24/02, 2014 4 / 17

BCH codes properties

- BCH codes are a class of cyclic codes.
- BCH codes are a generalization of Hamming codes. It can correct any error pattern of size t.
- For any integer $m \ge 3$ and $t < 2^{m-1}$, there exists a binary BCH code $C_{BCH}(n,k)$, with properties:

Code length
$$n=2^m-1$$
 $n=2^m-1$ Number of parity bits $n-k \leq mt$ $n-k=m$ Minimum Hamming distance $d_{min} \geq 2t+1$ $d_{min}=3$ Error correction capability t $t=1$

For example, $C_{BCH}(15,7)$ has minimum distance $d_{min}=5$ and t=2. $n-k=15-7=4\times 2=mt$.

Qi Zhang (ASE) BCH Codes -I 24/02, 2014 5 / 17

BCH codes example

n	k	t
15	7	2
15	5	3
31	21	2
31	16	3
31	11	5
63	51	2
63	45	3
63	39	4
63	36	5
63	30	6
127	113	2
127	106	3
255	239	2
255	231	3

- The generator polynomial of BCH code g(X) is described in terms of its roots which are taken from $GF(2^m)$.
- Assuming g(X) has roots: X_1, X_2, \ldots and $X_i, g(X)$ can be written in the format as

$$g(X) = (X + X_1)(X + X_2) \dots (X + X_i)$$

- There are binary BCH codes and non-binary BCH codes.
- The generator polynomial of binary BCH codes is a polynomial defined over GF(2).

Qi Zhang (ASE) BCH Codes -I 24/02, 2014 7 / 17

- How to find a generator polynomial which can generate codes for correcting t errors in a code vector of length $n = 2^m 1$?
- Assuming α is a primitive element in $GF(2^m)$,
- The generator polynomial g(X) of such a BCH code is the minimum-degree polynomial over GF(2) that has roots $\alpha, \alpha^2, \ldots, \alpha^{2t}$, i.e.,

$$g(\alpha^i)=0, \quad i=1,2,\ldots,2t$$

■ Assuming $\phi_i(X)$ is the minimal polynomial of α^i , then g(X) can be expressed by the *lowest common multiple (LCM)* of the minimal polynomials:

$$g(X) = LCM\{\phi_1(X), \phi_2(X), \dots, \phi_{2t}(X)\}\$$

■ Due to repetition of conjugate roots, the generator polynomial g(X) can be formed with ONLY the ODD index minimal polynomials:

$$g(X) = \mathsf{LCM}\{\phi_1(X), \phi_3(X), \dots, \phi_{2t-1}(X)\}$$

Qi Zhang (ASE) BCH Codes -I 24/02, 2014 8 / 17

Table B.5 Minimal polynomial of all the elements of the Galois field $GF(2^4)$ generated by $p_i(X) = 1 + X + X^4$

conjugate roots	Minimal polynomials	
0	X	
1	1 + X	
α , α^2 , α^4 , α^8	$1 + X + X^4$	
α^3 , α^6 , α^9 , α^{12}	$1 + X + X^2 + X^3 + X^4$	
$lpha^{ extsf{5}}$, $lpha^{ extsf{10}}$	$1 + X + X^2$	
α^7 , α^{11} , α^{13} , α^{14}	$1 + X^3 + X^4$	

- As the degree of each minimal polynomial is m or less, the degree of g(X) is at most mt.
- The parity check digits, n k, of the code is at most equal to mt.
- There is no simple formula for enumerating n k, but if t is small, n k = mt.

Qi Zhang (ASE) BCH Codes -I 24/02, 2014 10 / 17

Example 4.1: Let α be a primitive element of $GF(2^4)$ generated by primitive polynomial $p_i(X) = 1 + X + X^4$. To form the generator polynomial of a BCH code with t=2 error correct capability. We know the minimal polynomial of α , α^3 and α^5 are, respectively,

$$\phi_1(X) = 1 + X + X^4
\phi_3(X) = 1 + X + X^2 + X^3 + X^4
\phi_5(X) = 1 + X + X^2$$

■ **Solution**: As t = 2, 2t - 1 = 3, the generator polynomial can be expressed by

$$g(X) = \mathsf{LCM}\{\phi_1(X), \phi_3(X)\}\$$

As $\phi_1(X)$ and $\phi_3(X)$ are irreducible,

$$g(X) = \phi_1(X)\phi_3(X) = (1 + X + X^4)(1 + X + X^2 + X^3 + X^4)$$

= 1 + X^4 + X^6 + X^7 + X^8

■ This generator polynomial g(X) generates BCH code $C_{BCH}(15,7)$.

Example 4.1.1: Of the same $GF(2^4)$, to form the generator polynomial of a BCH code with t=3 error correct capability. We known the minimal polynomial of α , α^3 and α^5 are, respectively,

$$\phi_1(X) = 1 + X + X^4
\phi_3(X) = 1 + X + X^2 + X^3 + X^4
\phi_5(X) = 1 + X + X^2$$

■ **Solution**: As t = 3, 2t - 1 = 5, the generator polynomial can be expressed by

$$g(X) = \mathsf{LCM}\{\phi_1(X), \phi_3(X), \phi_5(X)\}\$$

As $\phi_1(X)$, $\phi_3(X)$ and $\phi_5(X)$ are irreducible,

$$g(X) = \phi_1(X)\phi_3(X)\phi_5(X)$$

$$= (1+X+X^4)(1+X+X^2+X^3+X^4)(1+X+X^2)$$

$$= 1+X+X^2+X^4+X^5+X^8+X^{10}$$

■ This generator polynomial g(X) generates BCH code $C_{BCH}(15,5)$.

Parity check matrix

- For a BCH code $C_{BCH}(n, k)$ for correcting t errors or less and with code length $n = 2^m 1$,
- As in cyclic code the code polynomial is a multiple of the generator polynomial, the code polynomial of this BCH code also has α , α^2 , ..., α^{2t} and their conjugates as its roots.
- Assume the code polynomial $c(X) = c_0 + c_1 X + ... + c_{n-1} X^{n-1}$ has a primitive element α^i as a root, there is

$$c(\alpha^i) = c_0 + c_1\alpha^i + \ldots + c_{n-1}\alpha^{i(n-1)} = 0$$

We can use an inner product of two vectors to represent the above equation:

$$(c_0, c_1, \ldots, c_{n-1}) \circ egin{bmatrix} 1 & & & & \ lpha^i & & & \ lpha^{2i} & & & \ dots & & & \ lpha^{(n-1)i} & & \ \end{pmatrix} = 0$$

Parity check matrix

- Similarly, if we substitute roots α , α^2 , ..., α^{2t} into code polynomial c(X), we can have 2t similar equations.
- These 2t equations can be written into a matrix form.

$$(c_0, c_1, \dots, c_{n-1}) \circ \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ \alpha & \alpha^2 & \alpha^3 & \dots & \alpha^{2t} \\ \alpha^2 & (\alpha^2)^2 & (\alpha^3)^2 & \dots & (\alpha^{2t})^2 \\ \alpha^3 & (\alpha^2)^3 & (\alpha^3)^3 & \dots & (\alpha^{2t})^3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \alpha^{n-1} & (\alpha^2)^{n-1} & (\alpha^3)^{n-1} & \dots & (\alpha^{2t})^{n-1} \end{bmatrix} = \mathbf{c} \circ \mathbf{H}^T = \mathbf{0}$$

$$\begin{bmatrix} 1 & \alpha & \alpha^2 & \alpha^3 & \dots & \alpha^{n-1} \\ 1 & \alpha^2 & \alpha^2 & \alpha^3 & \dots & \alpha^{n-1} \\ 1 & \alpha^2 & \alpha^2 & \alpha^3 & \dots & \alpha^{n-1} \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} 1 & \alpha & \alpha^2 & \alpha^3 & \dots & \alpha^{n-1} \\ 1 & \alpha^2 & (\alpha^2)^2 & (\alpha^2)^3 & \dots & (\alpha^2)^{n-1} \\ 1 & \alpha^3 & (\alpha^3)^2 & (\alpha^3)^3 & \dots & (\alpha^3)^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \alpha^{2t} & (\alpha^{2t})^2 & (\alpha^{2t})^3 & \dots & (\alpha^{2t})^{n-1} \end{bmatrix}$$

Calculate the syndrome vector

Parity check matrix:

$$\mathbf{H} = \begin{bmatrix} 1 & \alpha & \alpha^2 & \alpha^3 & \dots & \alpha^{n-1} \\ 1 & \alpha^2 & (\alpha^2)^2 & (\alpha^2)^3 & \dots & (\alpha^2)^{n-1} \\ 1 & \alpha^3 & (\alpha^3)^2 & (\alpha^3)^3 & \dots & (\alpha^3)^{n-1} \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 1 & \alpha^{2t} & (\alpha^{2t})^2 & (\alpha^{2t})^3 & \dots & (\alpha^{2t})^{n-1} \end{bmatrix}$$

Syndrome vector can be expressed by

$$\mathbf{S} = (\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_{2t}) = \mathbf{r} \circ \mathbf{H}^T$$

$$= (\mathbf{r}_0, \mathbf{r}_1, \dots, \mathbf{r}_{n-1}) \circ \begin{bmatrix} 1 & 1 & \dots & 1 \\ \alpha & \alpha^2 & \dots & \alpha^{2t} \\ \alpha^2 & (\alpha^2)^2 & \dots & (\alpha^{2t})^2 \\ \vdots & \vdots & \dots & \vdots \\ \alpha^{n-1} & (\alpha^2)^{n-1} & \dots & (\alpha^{2t})^{n-1} \end{bmatrix}$$

therefore,

$$s_i = r_0 + r_1 \cdot lpha^i + r_2 \cdot (lpha^i)^2 + \ldots + r_{n-1} \cdot (lpha^i)^{n-1} = r(lpha^i)^{n-1}$$

with $1 \le i \le 2t$.

Qi Zhang (ASE)

Calculate the syndrome vector

Summary:

- To calculate the *i*th component of the syndrome vector, we can replace the variable X with the root α^i in the received polynomial r(X).
- Syndrome vector consists of elements of the $GF(2^m)$.

Qi Zhang (ASE) BCH Codes -I 24/02, 2014 16 / 17

Calculate the syndrome vector

- **Example 4.3**: The Binary BCH code $C_{BCH}(15,7)$ can correct 2 or less errors. The generator polynomial has roots in $GF(2^4)$ which is generated by primitive polynomial $p_i(X) = 1 + X + X^4$. If the received vector $\mathbf{r} = (100000001000000)$, calculate the syndrome vector.
- **Solution**: Since $\mathbf{r} = (100000001000000)$, $r(X) = 1 + X^8$, then substitute $\alpha^i, 1 \le i \le 2t = 4$, and look up Table B.4

$$s_1 = r(\alpha) = 1 + \alpha^8 = \alpha^2$$

 $s_2 = r(\alpha^2) = 1 + \alpha = \alpha^4$
 $s_3 = r(\alpha^3) = 1 + \alpha^9 = 1 + \alpha + \alpha^3 = \alpha^7$
 $s_4 = r(\alpha^4) = 1 + \alpha^2 = \alpha^8$

Qi Zhang (ASE) BCH Codes -I 24/02, 2014 17 / 17