CE 3354 Engineering Hydrology Exam 1

1. For a watershed with a size of 120 km^2 , the following data on precipitation P, evaporation E and runoff Q are recorded in watershed mm.

Table 1: Monthly Precipitation (P), Evapotranspiration (E), and Runoff (Q)

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
P (mm)	250	205	165	50	5	0	0	5	10	55	65	190
E (mm)												
Q (mm)	150	110	80	5	0	0	0	0	0	10	15	120

Determine:

- a) The month (end) when the amount of water stored in the basin is the largest.
- b) The month (end) when the amount of water stored in the basin is the smallest.
- c) The difference (in m^3) in the amount of water stored in the basin between these two extremes.
- d) The likely climate type (arid, humid temperate or humid tropical) one would expect to find this catchment.

Solution(s): Items 1,2, and 3 are determined using a water budget approach. An excel spreadsheet is shown in Figure(s) ??, and ??

Item 4 requires internet research to learn about climate classification. The model I used is Köppen climate classification, Gupta's classification(s), and Mays' classifications follow closely. A good starting place is Wikipedia https://en.wikipedia.org/wiki/K%C3%B6ppen_climate_classification.

For the supplied monthly values we can make the following assertions:

- Rainfall (P) is highly concentrated in Jan–Mar and Dec.
- Dry season from May–Sep (very low P, high E).
- E is high in May–Sep, reaching a peak in July (150 mm) when P is 0.

These data indicate a distinct wet/dry seasonality.

The Köppen classification scheme:

- Distinct wet and dry seasons
- Wet summer is not present rainfall is in winter.

EX1 Page 1 of ??

4	Α	В	С	D	E F	G	Н	1	J
1	ce3354-ex1-20	025-2-prob	lem1		S _o (mm)	225	<= Changed until non- negative computed storage, one can answer questions on the change in storage terms as well		
2	DATA SUPPLIE	ED							
3	Area (km^2)	120			сомрит	D VALUES			
4	MONTH	P(mm)	E(mm)	Q(mm)	$\Delta S(mm)$	S(mm)		S(m^3)	
5	Jan	250	5	150	95	320		38400000	
6	Feb	205	25	110	70	390		46800000	
7	Mar	165	30	80	55	445	MAXIMUM VALUE	53400000	
8	Apr	50	50	5	-5	440		52800000	
9	May	5	80	0	-75	365		43800000	
10	Jun	0	100	0	-100	265		31800000	
11	Jul	0	150	0	-150	115		13800000	
12	Aug	5	70	0	-65	50		6000000	
13	Sep	10	60	0	-50	0	MINIMUM VALUE	0	
14	Oct	55	20	10	25	25		3000000	
15	Nov	65	10	15	40	65		7800000	
16	Dec	190	5	120	65	130		15600000	
17									
18							ΔS(m^3)	53400000	

Figure 1: Rainfall-runoff plot for the catchment

- Dry summer with high E
- Total annual precipitation is moderate (1000 mm)

This pattern is typical of a Mediterranean Climate (Köppen: Csa or Csb) Csa: Hot, dry summer; mild, wet winter (likely match)

Characteristics:

- Summer drought
- 3+ months with P; 30 mm and E; 60 mm (May–Sep fits)
- Wet winters (P ¿ E in Jan–Mar, Dec)

The catchment is most likely in a Mediterranean climate (Köppen Csa), common in:

- Coastal California
- Southern Europe (e.g., Spain, Italy)

EX1 Page 2 of ??

4	Α	В	С	D	Ε	F	G	Н	1
	ce3354-ex					S _o (mm)		<= Changed until	
						,		non-negative	
								computed storage,	
								one can answer	
								questions on the	
								change in storage	
1							225	terms as well	
2	DATA SUP	1							
3	Area (km^	120				COMPUTED VALUES			
4	MONTH	P(mm)	E(mm)	Q(mm)		ΔS(mm)	S(mm)		S(m^3)
5	Jan	250	5	150		=B5-C5-D5	=G1+F5		=0.001*G5*\$B\$3*1000*1000
6	Feb	205	25	110		=B6-C6-D6	=F6+G5		=0.001*G6*\$B\$3*1000*1000
7	Mar	165	30	80		=B7-C7-D7	=F7+G6	MAXIMUM VALUE	=0.001*G7*\$B\$3*1000*1000
8	Apr	50	50	5		=B8-C8-D8	=F8+G7		=0.001*G8*\$B\$3*1000*1000
9	May	5	80	0		=B9-C9-D9	=F9+G8		=0.001*G9*\$B\$3*1000*1000
10	Jun	0	100	0		=B10-C10-D10	=F10+G9		=0.001*G10*\$B\$3*1000*1000
11	Jul	0	150	0		=B11-C11-D11	=F11+G10		=0.001*G11*\$B\$3*1000*1000
12	Aug	5	70	0		=B12-C12-D12	=F12+G11		=0.001*G12*\$B\$3*1000*1000
13	Sep	10	60	0		=B13-C13-D13	=F13+G12	MINIMUM VALUE	=0.001*G13*\$B\$3*1000*1000
14	Oct	55	20	10		=B14-C14-D14	=F14+G13		=0.001*G14*\$B\$3*1000*1000
15	Nov	65	10	15		=B15-C15-D15	=F15+G14		=0.001*G15*\$B\$3*1000*1000
16	Dec	190	5	120		=B16-C16-D16	=F16+G15		=0.001*G16*\$B\$3*1000*1000
17									
18								ΔS(m^3)	=MAX(I5:I16)-MIN(I5:I16)
		Sheet1	(+)			1		<u> </u>	1

Figure 2: Rainfall-runoff plot for the catchment

- Western Australia
- $\bullet\,$ Cape region of South Africa
- Parts of central Chile

EX1 Page 3 of ??

2. A watershed with a catchment area of $1mi^2$ converts about 60-percent of precipitation into streamflow, the remainder is lost. The watershed response equation is

$$k\frac{dQ}{dt} + Q(t) = P(t) \cdot A \cdot C \tag{1}$$

where Q(t) is the streamflow leaving the catchment, P(t) is the precipitation entering the catchment, A is the catchment area, C is the precipitation to streamflow conversion fraction, and k is the basin characteristic time constant.

Figure 3: Rainfall-runoff plot for the catchment

Using the information in Figure ?? determine:

- a) The maximum discharge rate in cubic feet per second.
- b) The time when the maximum discharge occurs.
- c) The value in hours of the of the basin time constant k.
- d) The total volume in acre feet of precipitation entering the catchment (before any losses)
- e) The total volume in acre feet of discharge leaving the catchment

EX1 Page 4 of ??

3. Using an appropriate NRCS 24-hour rainfall distribution Determine:

- a) The cumulative rainfall depth (inches) for a 50-yr ARI storm in Lubbock, Texas.
- b) The rainfall intensity (inches/hour) for each half-hour increment of the storm.
- c) The maximum rainfall intensity (inches/hour) in any 30-minute interval.

EX1 Page 5 of ??

4. The relation between infiltration capacity in mm/hour and the time (in hours) since the start of the experiment as measured with an infiltrometer is depicted in Figure ??.

Figure 4: Infiltrometer data for some soil

The relationship is to be described with the Horton infiltration model

$$q(t) = f_c + (f_o - f_c)e^{-kt} (2)$$

Determine:

- a) The equilibrium infiltration rate, f_c , in mm/hr.
- b) The initial (dry soil) infiltration rate, f_o , in mm/hr.
- c) The soil constant k.
- d) The total amount of water that will infiltrate into an initially dry soil during a rainstorm with a duration 60 minutes and a constant intensity of 20 mm/h.
- e) The total amount of water that will infiltrate into an initially dry soil during a rainstorm with a duration 480 minutes and a constant intensity of 12 mm/h.

EX1 Page 6 of ??