Сызыктуу алгебралык теңдемелер системин чыгаруу

Тажрыйбалык иш боюнча отчет ар маселе үчүн төмөнкүлөрдү камтыш керек: 1) маселенин коюлушу; 2) зарыл болгон теориялык маалымат; 3) тест мисалы жана тест боюнча эсептөө эксперимент жыйынтыгы; 4) койулган маселенин чыгарылышы; 5) алынган жыйынтыктын анализи; 6) график материалдар; 7) программ тексти.

Маселелер үчүн варианттар б.А ТИРКЕМЕДЕ берилген.

6.1-маселе. Ax=b системи берилген. Зейдел ыкмасы боюнча 10 итераттоо аткаргыла. МатЛаб менен алынган чыгарылышты так чыгарылыш катары кабыл алып итераттоодо алынган чыгарылыштын абсолют катасын тапкыла.

МАСЕЛЕНИ ЧЫГАРУУ ТАРТИБИ:

- 3. Системдин A матриксин жана оң жагы b векторун бергиле. Ax=b системин МатЛаб пакетин колдонуп чыгаргыла.
- 2. Ax = b системин x = Bx + c түргө келтиргиле жана итераттоо ыкмасынын жетишерлик жыйналуу $||\mathbf{B}||_{\infty} < 1$ шартын текшергиле.
- 5. Зейдел ыкмасынын алгоритми менен 10 итераттоо аткаргыла. МатЛаб пакетин колдонуп алынган чыгарлышыты так деп эсептеп итераттоо чыгарылышынын абсолют катасын тапкыла.
- **6.2-маселе.** Ax=b теңдемелер системин Зейдел ыкмасы менен $\varepsilon=10^{-6}$ тактыкта чыгаргыла , баштапкы жакындоо үчүн каалагандай сан алгыла. ε тактыкка жетүүгө керек болгон итераттоо санын эсептөөнү уюштургула.
- **6.3-маселе.** Ax=b системи үчүн жөнөкөй итераттоо ыкмасы боюнча 10 итераттоо аткаргыла. Жыйналуу шарттарын текшергиле. МатЛаб пакетин колдонуп алынган чыгарылышты так чыгарылыш катары кабыл алып абсолют катасын тапкыла.
- **6.4-маселе.** x=Bx+c теңдемелер системи берилген, мында B=B(t), t=-1,-0.8,...,0.8,1 параметир. $||\mathbf{B}||_{\infty}$ нормдун t параметирден көз карандылыгынын графигин түзгүлө. График боюнча t нын кайсы маанилеринде итераттоо ыкмасынын жыйналуу шарттары аткарыларын аныктагыла. x=Bx+c системинин чыгарылышын жыйналуу шарты аткарылган t параметиринин эң чоң маанисинде $\varepsilon=10^{-5}$ тактыкта тапкыла.
- **6.5-маселе.** Ax=b системин Зейдел ыкмасы менен $\varepsilon=10^{-9}$ тактыкта тапкыла. Белгиленген тактыкка жетүү үчүн талап кылынган итераттоо санын анытагыла.
- **6.6-маселе.** x=Ax теңдемелер системи берилген. Зейдел ыкмасы менен $\varepsilon=10^{-9}$ тактыкта чыгаргыла. Ушул тактыкка жеткирүүчү итераттоо санын аныктагыла.
- **6.7-маселе.** Ax=b системи үчүн жөнөкөй итераттоо ыкмасы боюнча 10 итераттоо аткаргыла. Жыйналуу шарттарын текшергиле.

- **6.8-маселе.** Ax=b теңдемелер системин Зейдел ыкмасы менен тактыкта чыгаргыла $\epsilon=10^{-6}$, баштапкы жакындоо үчүн каалаганды алгыла. ϵ тактыкка жетүүгө керек болгон итераттоо санын эсептөөнү уюштургула.
- **6.9-маселе.** Ax=b системи берилген. МатЛаб каражаты менен чыгаргыла. Зейдел ыкмасы боюнча 10 итераттоо аткаргыла. МатЛаб каражаты менен алынган чыгарылышты так чыгарылыш катары кабыл алып итераттоо чыгарылышынын абсолут катасын тапкыла.

6.A - ТИРКЕМЕ . 6-ТАЖРЫЙБАЛЫК ИШТИН ТАПШЫРМАЛАР ВАРИАНТЫ

6.1-маселеге жадыбал

Бардык варианттар үчүн b вектор компоненттери $b_i=N$, $\forall i=1...n$, формуласы менен берилет c коэффициенттари $c=c_{ij}=0.1\cdot N\cdot i\cdot j$, $\forall i,j=1...n$,

N - вариант номери.

No	n	a_{ij}	N	n	a_{ij}
6.3.1	6	15	6.3.16	5	100
		$\frac{1}{4 \cdot c^5 + 6 \cdot c + 1}$			$\overline{(3+0.3\cdot c)^5}$
6.3.2	6	125	6.3.17	4	115
		$\overline{(4+c\cdot 0.25)^6}$			$3c + 4c^3$
6.3.3	6	12	6.3.18	5	123
		$\overline{4c+4}$			$2c^3 + 5c^2$
6.3.4	7	55	6.3.19	5	100
		$\overline{c^2 + 3 \cdot c + 100}$			$\overline{(11+c)^5}$
6.3.5	7	135	6.3.20	6	$\cos\left(\frac{c}{25}\right)$
		$\overline{(2+0.3\cdot c)^5}$			(25)
6.3.6	7	$\frac{3}{c^4 - 4 \cdot c^3}$	6.3.21	6	1000
		$c^4 - 4 \cdot c^3$			$3c^2 + c^3$
6.3.7	6	256	6.3.22	5	150
		$\frac{256}{(5+c\cdot 0.256)^5}$			$\overline{13c^3 + 777c}$
6.3.8	6	1	6.3.23	5	11.7
		$\sqrt{c^2 + 0.58 \cdot c}$			$\overline{(1+c)^7}$
6.3.9	5	3	6.3.24	4	159
		$\overline{(1+c)^2}$			$10c^3 + c^2 + 25$
6.3.10	5	$\sin\left(\frac{c}{8}\right)$	6.3.25	5	$\frac{321}{(1+c)^6}$
		$\left \frac{8}{8}\right $			$(1+c)^6$

6.3.11	4	_ 1	6.3.26	5	31
		$67 + c^4$			$\sqrt{c^2+6c}$
6.3.12	4	111	6.3.27	6	350
		$c^4 + 13 + 3c$			$(5+0.35c)^3$
6.3.13	5	1	6.3.28	5	500
		$\overline{(1+c)^3}$			$(8\cdot c-5)^2$
6.3.14	7	1.5	6.3.29	6	10
		$\overline{0.001c^3 - 2.5c}$			$0.3c^3 + 10c$
6.3.15	6	88.5	6.3.30	5	1
		$c+0.03c^2$			$0.4c^3 + 20c$

6.4-маселе жадыбалы

N	B(t)	С	N	B(t)	c
6.6.1	0.2 0.3 -0.1	1	6.6.9	0.2 0.3 -0.1	1
	0.1 $-0.25 \cos(0.5\pi t)$	2		0.1 -0.25 0.3	2
	$\sin(10\pi t)$ 0.1 0.3	1		$0.2 \qquad \sin(2\pi t) \qquad 0.3$	1
6.6.2	0.2 0.3 - 0.1	1	6.6.10	0.2 0.3 -0.1	1
	$\cos(6\pi t)$ -0.25 0.3	2		$\cos(2\pi t)$ -0.25 0.3	2
	$0.2 \qquad \sin(10\pi t) \qquad 0.3$	1		0.2 0.1 0.3	1
6.6.3	0.2 $0.3 \sin(3\pi t)$	1	6.6.11	$-0.2 \cos(3t)$ 0.1 0.3	0
	0.1 -0.25 0.3	2		0.1 0.11 0.4 -0.05	1
	0.2 0.1 0.3	1		0.3 0.1 0.2 0.1	2
				0.2 -0.12 0.1 0.09	3
6.6.4	$-0.2 \cos(3t) 0.1 0.3$	0	6.6.12	-0.2 0.15 0.1 0.3	0
	0.1 0.11 0.4 -0.05	1		0.1 0.11 0.4 $\sin(5t)$	1
	$0.3 \ 0.1 \ \sin(3t) + \cos(2t) \ 0.1$	2		0.3 0.1 0.2 0.1	2
	0.2 -0.12 0.1 0.09	3		0.2 -0.12 0.1 $\sin(t)$	3
6.6.5	$\sin(t) = 0.15 = 0.1 = 0.3$	0	6.6.13	$\sin(t)$ 0.15 0.1 0.3	0
	$0.1 \sin(t) 0.4 -0.05$	1		0.1 0.11 0.4 -0.05	1
	0.3 0.1 $\sin(t)$ 0.1	2		0.3 0.1 0.2 0.1	2
	$0.2 - 0.12 0.1 \sin(t)$			0.2 -0.12 0.1 $\sin(5t)$	3
	.,	3			
6.6.6	0.01 0.12 0.5 -0.1	3	6.6.14	0.01 0.12 0.5 -0.1	3
	-0.1 -0.15 -0.01 -0.4	2		-0.1 -0.15 -0.01 $t^2-1.5t$	2
	0.15 0 t-0.5 0.2	1		0.15 0 t 0.2	$\frac{1}{2}$
	0 -0.1 0.25 0.1	0		0 -0.1 0.25 0.1	0
6.6.7	2t 0.12 0.5 -0.1	3	6.6.15	0.01 0.12 0.5 -0.1	3
	-0.1 -0.15 -0.01 -0.4	2		-0.1 -0.15 -0.01 -0.4	2
	0.15 0 0.3 0.2	1		0.15 t^2 0.3 0.2	$\frac{1}{2}$
(()	0 -0.1 0.25 0.1	0	((1 (0 -0.1 0.25 0.1	0
6.6.8	0.01 0.12 0.5 -0.1	3	6.6.16	0.01 -0.1 0.12 <i>t</i> 0.2	1

-0.1	t	-0.01	-0.4	2	0.1	0.08	-0.09	0	0.2	1
0.15	0	2^{t}	0.2	1	t	0.15	-0.06	0.1	0	
0	-0.1	0.25	0.1	0	0.3	0.1	-0.01	0.2	-0.2	
					0.01	0.07	-0.1	0	0.1	

6.5-маселе жадыбалы

N	A	b	N	A	b
6.5.1	5.5 -1 0.9 0.2 0.1	1	6.5.2	5.2 0.3 0.9 -0.7 3.1	1
	-1 7.3 2 0.3 2	2		0.3 8.1 3.8 -2 0.8	0
	0.9 2 6.9 -0.1 0.2	3		0.9 3.8 6.1 -0.1 0.2	5.2
	0.2 0.3 -0.1 5 3.2	4		-0.7 -2 -0.1 5.6 -0.6	-2
6.5.3	8.2 3.2 2.1 0.1 -0.1	0.1	6.5.4	5.7 2.1 -0.2 -3.1	0.1
	3.2 8.1 2.5 -3.3 0.2	6		2.1 6.6 -3.2 0.1	-0.9
	2.1 2.5 10.2 -3.7 0.3	5.2		-0.2 -3.2 6.5 -0.3	0.5
	0.1 -3.3 -3.7 9.6 3.6	0.2			
6.5.5	7.8 0.7 -2.1 -2.4	2	6.5.6	2.9 0.4 0.3 3.8	2.2
	0.7 3 0.3 0.9	4		0.4 6.9 0.4 2.8	-8.3
	-2.1 0.3 6.7 -3.2	2.6		0.3 0.4 6.6 6.6	3.6