Claims

- A nitride semiconductor LED, comprising:
 a substrate;
- a GaN-based buffer layer formed on the substrate;

 $Al_yGa_{1-y}N/GaN$ short period superlattice (SPS) layers formed on the GaN-based buffer layer in a sandwich structure of upper and lower layers having an undoped GaN layer or an indium-doped GaN layer interposed therebetween (where, $0 \le y \le 1$);

a first electrode layer of an n-GaN layer formed on the upper ${\rm Al_yGa_{1-y}N/GaN}$ SPS layer;

an active layer formed on the first electrode layer; and

a second electrode layer of a p-GaN layer formed on the active layer.

- 2. The nitride semiconductor LED of claim 1, wherein the GaN-based buffer layer has a triple-structured $Al_yIn_xGa_{1-x},_yN/In_xGa_{1-x}N/GaN$ laminated (Here, $0 \le x \le 1$, $0 \le y \le 1$), a double-structured $In_xGa_{1-x}N/GaN$ laminated (Here, $0 \le x \le 1$), or a super-lattice-structured (SLS) $In_xGa_{1-x}N/GaN$ laminated (Here, $0 \le x \le 1$).
- 3. The nitride semiconductor LED of claim 1, further comprising the undoped GaN layer or the indium-doped GaN layer on the GaN-based buffer layer.
 - 4. A nitride semiconductor LED, comprising: a substrate;
 - a GaN-based buffer layer formed on the substrate;
- an undoped GaN layer or an indium-doped GaN layer formed on the GaN-based buffer layer;

 ${\rm Al}_y{\rm Ga}_{1-y}{\rm N}/{\rm GaN}$ short period superlattice (SPS) layers formed on the undoped GaN layer or the indium-doped GaN

layer, in a sandwich structure of upper and lower layers having the undoped GaN layer or the indium-doped GaN layer interposed therebetween (Here, $0 \le y \le 1$);

a first electrode layer of an n^+ -GaN layer formed on the upper $Al_yGa_{1-y}N/GaN$ SPS layer and containing a high concentration of dopants;

an n-GaN layer formed on the first electrode layer and containing a low concentration of dopants;

an active layer formed on the n-GaN layer; and a second electrode layer of a p-GaN layer formed on the active layer.

- 5. The nitride semiconductor LED of claim 4, wherein the GaN-based buffer layer has a triple-structured $Al_yIn_xGa_{1-x},_yN/In_xGa_{1-x}N/GaN$ laminated (Here, $0 \le x \le 1$, $0 \le y \le 1$), a double-structured $In_xGa_{1-x}N/GaN$ laminated (Here, $0 \le x \le 1$), or a super-lattice-structured (SLS) $In_xGa_{1-x}N/GaN$ laminated (Here, $0 \le x \le 1$).
 - 6. A nitride semiconductor LED, comprising:
 - a substrate;
 - a GaN-based buffer layer formed on the substrate;
- a first electrode layer of an n^+ -GaN layer formed on the GaN-based buffer layer and containing a high concentration of dopants;

an n-GaN layer formed on the first electrode layer and containing a low concentration of dopants;

an active layer formed on the n-GaN layer; and

a second electrode layer of a p-GaN layer formed on the active layer.

7. The nitride semiconductor LED of claim 6, wherein the dopant concentration of the n^+ -GaN layer is more than $1x10^{18}/\text{Cm}^+$.

- 8. The nitride semiconductor LED of claim 6, wherein the dopant concentration of the n-GaN layer is less than $1 \times 10^{18} / \text{cm}^2$.
- 9. The nitride semiconductor LED of claim 6, wherein the dopant concentration of the n-GaN layer is $1\times10^{17}/\text{cm}^2$.
- 10. The nitride semiconductor LED of claim 6, wherein the GaN-based buffer layer has a triple-structured $Al_yIn_xGa_{1-x},_yN/In_xGa_{1-x}N/GaN$ laminated (Here, $0 \le x \le 1$, $0 \le y \le 1$), a double-structured $In_xGa_{1-x}N/GaN$ laminated (Here, $0 \le x \le 1$), or a super-lattice-structured (SLS) $In_xGa_{1-x}N/GaN$ laminated (Here, $0 \le x \le 1$).
- 11. The nitride semiconductor LED of claim 6, further comprising $\mathrm{Al}_y\mathrm{Ga}_{1-y}\mathrm{N}/\mathrm{GaN}$ short period superlattice (SPS) layers formed on the GaN-based buffer layer in a sandwich structure of upper and lower parts having an undoped GaN layer or an indium-doped GaN layer interposed therebetween (Here, $0 \leq y \leq 1$).
- 12. A fabrication method of a nitride semiconductor LED, the method comprising the steps of:

growing-up a GaN-based buffer layer on a substrate; forming $Al_yGa_{1-y}N/GaN$ short period superlattice (SPS) layers on the GaN-based buffer layer in a sandwich structure of upper and lower parts having an undoped GaN layer or an indium-doped GaN layer interposed therebetween (Here, $0 \le y \le 1$);

forming a first electrode layer of an n^+ -GaN layer containing a high concentration of dopants, on the upper Al_yGa_{1-y}N/GaN SPS layer;

forming an active layer on the first electrode layer; and

forming a second electrode layer of an p-GaN layer on the active layer.

- 13. The fabrication method of claim 12, further comprising the step of forming an n-GaN layer containing a low concentration of dopants, between the first electrode layer of the n^+ -GaN layer and the active layer.
- 14. The fabrication method of claim 12, wherein the GaN-based buffer layer is, using a MOCVD equipment, grown-up to have a 50-800 Å thickness at a 500-800 $^{\circ}$ C temperature and in an atmosphere having H_2 and N_2 carrier gases supplied while having TMGa, TMIn, TMAl source gas introduced and simultaneously having NH_3 gas introduced.
- 15. The fabrication method of claim 12, wherein the GaN-based buffer layer is grown-up with a 5- 300μ mol/min flow rate of the TMGa, TMIn, TMAl source gas and a 100-700torr growth pressure.
- 16. The fabrication method of claim 12, wherein the GaN-based buffer layer has a triple-structured $Al_yIn_xGa_{1-x}$, $yN/In_xGa_{1-x}N/GaN$ laminated (Here, $0 \le x \le 1$, $0 \le y \le 1$), a double-structured $In_xGa_{1-x}N/GaN$ laminated (Here, $0 \le x \le 1$), or a super-lattice-structured (SLS) $In_xGa_{1-x}N/GaN$ laminated (Here, $0 \le x \le 1$).
- 17. The fabrication method of claim 12, further comprising the step of forming an undoped GaN layer or an indium-doped GaN layer on the GaN-based buffer layer.
- 18. The fabrication method of claim 12, wherein the dopant concentration of the n^+ -GaN layer is more than $1\times10^{18}/\text{cm}^2$.

- 19. The fabrication method of claim 13, wherein the dopant concentration of the n-GaN layer is $1 \times 10^{17}/\text{cm}^2$.
- 20. The fabrication method of claim 13, wherein the n-GaN layer is formed with a semi-insulating layer.