日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年12月 9日

出 願 番 号 Application Number:

特願2003-410094

[ST. 10/C]:

[JP2003-410094]

出 願 人
Applicant(s):

株式会社デンソー

株式会社日本自動車部品総合研究所

2003年12月25日

特許庁長官 Commissioner, Japan Patent Office

【書類名】 特許願 【整理番号】 IP08597

【提出日】平成15年12月 9日【あて先】特許庁長官殿【国際特許分類】F25B 1/00

【発明者】

【住所又は居所】 愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【氏名】 稲葉 淳

【発明者】

【住所又は居所】 愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【氏名】 山中 康司

【発明者】

【住所又は居所】 愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【氏名】 岩波 重樹

【発明者】

【住所又は居所】 愛知県刈谷市昭和町1丁目1番地 株式会社デンソー内

【氏名】 坂 鉱一

【発明者】

【住所又は居所】 愛知県西尾市下羽角町岩谷14番地 株式会社日本自動車部品総

合研究所内 堀田 忠資

【特許出願人】

【氏名】

【識別番号】 000004260

【氏名又は名称】 株式会社デンソー

【特許出願人】

【識別番号】 000004695

【氏名又は名称】 株式会社日本自動車部品総合研究所

【代理人】

【識別番号】 100100022

【弁理士】

【氏名又は名称】 伊藤 洋二 【電話番号】 052-565-9911

【選任した代理人】

【識別番号】 100108198

【弁理士】

【氏名又は名称】 三浦 高広 【電話番号】 052-565-9911

【選任した代理人】

【識別番号】 100111578

【弁理士】

【氏名又は名称】 水野 史博 【電話番号】 052-565-9911

【先の出願に基づく優先権主張】

【出願番号】 特願2003- 17667 【出願日】 平成15年 1月27日

【先の出願に基づく優先権主張】

【出願番号】 特願2003-395603 【出願日】 平成15年11月26日

```
【手数料の表示】
```

【予納台帳番号】 038287 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】明細書 1【物件名】図面 1【物件名】要約書 1【包括委任状番号】9300006【包括委任状番号】9300009

【包括委任状番号】 9300009 【包括委任状番号】 9701008 【包括委任状番号】 9701010 【包括委任状番号】 9905390

【包括委任状番号】 9905391

【書類名】特許請求の範囲

【請求項1】

冷媒を吸入圧縮する圧縮機(10)と、

前記圧縮機(10)の冷媒吐出側に設けられ、冷媒を冷却する放熱器(11)と、

前記放熱器(11)から流出した冷媒を減圧する減圧器(13)と、

前記減圧器(13)にて減圧された冷媒を蒸発させる蒸発器(14)とを備え、

前記蒸発器 (14) にて冷凍能力を発揮させる場合には、冷媒を前記圧縮機 (10) → 前記放熱器 (11) →前記減圧器 (13) →前記蒸発器 (14) →前記圧縮機 (10) の順に循環させる蒸気圧縮式冷凍機において、

前記圧縮機(10)の冷媒吐出側から前記放熱器(11)へ向けての冷媒の流れを遮断可能な冷媒遮断手段(34c)と、

冷媒を加熱する加熱器(30)と、

前記冷媒遮断手段 (3 4 c) をバイパスして冷媒を前記加熱器 (3 0) に供給する冷媒供給手段 (3 1 、3 1 a 、3 2) と、

前記加熱器(30)から流出した冷媒を膨脹させて前記加熱器(30)により冷媒に与えられた熱エネルギを回収するエネルギ回収機(33)とを備え、

前記エネルギ回収機(33)にてエネルギを回収する場合には、前記冷媒遮断手段(34c)により前記圧縮機(10)の冷媒吐出側から前記放熱器へ向けての冷媒の流れを遮断するとともに、前記冷媒供給手段(31、31a、32)により冷媒を前記加熱器(30)が記エネルギ回収機(33)が記放熱器(11)が記加熱器(30)の順に循環させることを特徴とする蒸気圧縮式冷凍機。

【請求項2】

前記圧縮機 (100) は、前記加熱器 (30) から流出した冷媒が流入するときには前記 エネルギ回収機 (33) として機能することを特徴とする請求項1に記載の蒸気圧縮式冷 凍機。

【請求項3】

前記エネルギ回収機 (33) は前記圧縮機 (10) と並列に接続されていることを特徴とする請求項1に記載の蒸気圧縮式冷凍機。

【請求項4】

前記加熱器 (30) は、前記圧縮機 (10、100) と前記放熱器 (11) とを繋ぐ冷媒 回路に設けられていることを特徴とする請求項1ないし3のいずれか1つに記載の蒸気圧 縮式冷凍機。

【請求項5】

前記放熱器 (11) から流出した冷媒を気相冷媒と液相冷媒とに分離する気液分離器 (12) を備え、前記気液分離器 (12) により分離された液相冷媒を前記冷媒供給手段 (31、31a、32) により前記加熱器 (30) に供給することを特徴とする請求項1ないし4のいずれか1つに記載の蒸気圧縮式冷凍機。

【請求項6】

前記エネルギ回収機 (33) にて回収したエネルギを蓄える畜エネルギ手段を備えること を特徴とする請求項1ないし5のいずれか1つに記載の蒸気圧縮式冷凍機。

【請求項7】

前記畜エネルギ手段は、蓄電器にて構成されていることを特徴とする請求項 6 に記載の蒸 気圧縮式冷凍機。

【請求項8】

前記畜エネルギ手段は、回収したエネルギを機械的エネルギとして蓄えることを特徴とする請求項6に記載の蒸気圧縮式冷凍機。

【請求項9】

前記エネルギ回収機 (33) は回収したエネルギにて電気エネルギを発生させることを特 徴とする請求項1ないし7のいずれか1つに記載の蒸気圧縮式冷凍機。

【請求項10】

ページ: 2/E

前記圧縮機 (10) は電動モータにより駆動されることを特徴とする請求項1ないし9のいずれか1つに記載の蒸気圧縮式冷凍機。

【請求項11】

前記圧縮機 (10) は複数種類の駆動源により駆動され得ることを特徴とする請求項1ないし9のいずれか1つに記載の蒸気圧縮式冷凍機。

【請求項12】

前記圧縮機(10)は、電動モータ以外の駆動源により駆動され得ることを特徴とする請求項1ないし9のいずれか1つに記載の蒸気圧縮式冷凍機。

【請求項13】

熱機関から排出される排気ガスの熱により冷媒を加熱する補助加熱器 (26)が、前記加熱器 (30)とは別に設けられていることを特徴とする請求項1ないし12のいずれか1つに記載の蒸気圧縮式冷凍機。

【請求項14】

前記加熱器 (30) は、熱機関にて発生する廃熱にて冷媒を加熱することを特徴とする請求項1ないし12のいずれか1つに記載の蒸気圧縮式冷凍機。

【請求項15】

前記加熱器 (30) は、熱機関から排出される排気ガスの熱により冷媒を加熱することを 特徴とする請求項14に記載の蒸気圧縮式冷凍機。

【請求項16】

前記加熱器 (30) は、車両に搭載された機器から発生する廃熱にて冷媒を加熱することを特徴とする請求項1ないし12のいずれか1つに記載の蒸気圧縮式冷凍機。

【請求項17】

前記加熱器 (30) は、複数の熱源により冷媒を加熱することを特徴とする請求項1ない し12のいずれか1つに記載の蒸気圧縮式冷凍機

【請求項18】

冷媒として、HFC134a、HFC152a、ブタン、プロパンおよびアンモニアのうち少なくとも1つ主成分とするものが用いられていることを特徴とする請求項1ないし17のいずれか1つに記載の蒸気圧縮式冷凍機。

【書類名】明細書

【発明の名称】蒸気圧縮式冷凍機

【技術分野】

$[0\ 0\ 0\ 1]$

本発明は、熱エネルギを回収するランキンサイクルを備える蒸気圧縮式冷凍機に関する もので、車両用空調装置に適用して有効である。

$[0\ 0\ 0\ 2]$

従来のランキンサイクルを備える蒸気圧縮式冷凍機では、ランキンサイクルにてエネル ギ回収を行う場合には、蒸気圧縮式冷凍機の圧縮機を膨脹機として利用している(例えば 、特許文献1~3参照)。

【特許文献1】特許第3356449号公報

【特許文献2】 実開昭63-92021号公報

【特許文献3】特許第2540738号公報

【発明の開示】

【発明が解決しようとする課題】

[0003]

特許文献1に記載の装置では、1つの熱交換器を、冷凍サイクル時には空気から熱を奪い、冷媒を蒸発させる蒸発器として機能させ、ランキンサイクル時には高温熱源により冷媒を加熱する加熱器として機能させている。このように、加熱器と蒸発器を兼用した場合、この二つの機能する温度帯が非常に異なるために、蒸発器として適合するよう構成すると、加熱器として外部の廃熱を有効に回収することが困難になってしまう。

$[0 \ 0 \ 0 \ 4]$

ところで、圧縮機は、外部から機械的エネルギを与えて気相冷媒等のガスを作動室内に吸入した後、作動室の体積を縮小させてガスを圧縮して吐出するものである。一方、膨脹機は、高圧のガスを作動室内に流入させて、そのガス圧により作動室を膨脹させて機械的エネルギ等を取り出すものである。このため、スクロール型など回転式の圧縮機を膨脹機として利用するには、冷媒流れを逆転させる必要がある。

[0005]

しかし、特許文献 2 に記載の装置は、圧縮機を、冷凍能力を発揮させる際の圧縮機として作動させる場合も、エネルギ回収を行う際の膨脹機として作動させる場合も、圧縮機部分での冷媒流れは同一であり、圧縮機として作動させる場合と膨脹機として作動させる場合とで圧縮機部分での冷媒流れを逆転させるものではない。

[0006]

さらに、特許文献3に記載の装置では、エネルギ回収を行う際の膨脹機(圧縮機)の冷媒入口側及び冷媒出口側が、蒸気圧縮式冷凍機にて冷凍能力を発揮させる場合の圧縮機(膨脹機)の冷媒入口側及び冷媒出口側と同じ側に設定されているので、スクロール型圧縮機を用いた場合、1台の圧縮機を膨脹機として作動させることはできず、現実的には、ランキンサイクル作動及び蒸気圧縮式冷凍機のうちいずれか一方は正常作動しない。

$[0\ 0\ 0\ 7\]$

本発明は、上記点に鑑み、実現可能なランキンサイクルを備える蒸気圧縮式冷凍機を提供することを目的とする。

【課題を解決するための手段】

[0008]

本発明は、上記目的を達成するために、請求項1に記載の発明では、 冷媒を吸入圧縮する圧縮機 (10) と、圧縮機 (10) の冷媒吐出側に設けられ、冷媒を冷却する放熱器 (11) と、放熱器 (11) から流出した冷媒を減圧する減圧器 (13) と、減圧器 (13) にて減圧された冷媒を蒸発させる蒸発器 (14) とを備え、蒸発器 (14) にて冷凍能力を発揮させる場合には、冷媒を圧縮機 (10) →放熱器 (11) →減圧器 (13) →蒸発器 (14) →圧縮機 (10) の順に循環させる蒸気圧縮式冷凍機において、圧縮機 (10) の冷媒吐出側から放熱器 (11) へ向けての冷媒の流れを遮断可能な冷媒遮断手段

(34c) と、冷媒を加熱する加熱器 (30) と、冷媒遮断手段 (34c) をバイパスして冷媒を加熱器 (30) に供給する冷媒供給手段 (31、31a、32) と、加熱器 (30) から流出した冷媒を膨脹させて加熱器 (30) により冷媒に与えられた熱エネルギを回収するエネルギ回収機 (33) とを備え、エネルギ回収機 (33) にてエネルギを回収する場合には、冷媒遮断手段 (34c) により圧縮機 (10) の冷媒吐出側から放熱器へ向けての冷媒の流れを遮断するとともに、冷媒供給手段 (31、31a、32) により冷媒を加熱器 (30) \rightarrow エネルギ回収機 (33) \rightarrow 放熱器 (11) \rightarrow 加熱器 (30) の順に循環させることを特徴とする。

[0009]

これにより、ランキンサイクルを確実に作動させて廃熱を回収することができる。

[0010]

また、蒸発器は空調用に空気を冷やし、加熱器は高温熱源により冷媒を加熱するものであり、機能が異なっているとともに、温度帯が非常に異なっている。したがって、蒸発器と加熱器を独立して設けることにより、それぞれの用途に適合した仕様にすることができるとともに、冷凍サイクルとランキンサイクルを即時に切り替えることができる。

$[0\ 0\ 1\ 1]$

請求項2に記載の発明のように、圧縮機(100)は、加熱器(30)から流出した冷 媒が流入するときにはエネルギ回収機(33)として機能するものを用いてもよい。

$[0\ 0\ 1\ 2\]$

請求項3に記載の発明のように、エネルギ回収機(33)を圧縮機(10)と並列に接続してもよい。

$[0\ 0\ 1\ 3]$

請求項4に記載の発明のように、加熱器(30)を、圧縮機(10)と放熱器(11)とを繋ぐ冷媒回路に設けてもよい。

$[0\ 0\ 1\ 4\]$

請求項5に記載の発明のように、放熱器(11)から流出した冷媒を気相冷媒と液相冷媒とに分離する気液分離器(12)を備え、気液分離器(12)により分離された液相冷媒を冷媒供給手段(31、31a、32)により加熱器(30)に供給するようにしてもよい。

$[0\ 0\ 1\ 5]$

請求項6に記載の発明では、エネルギ回収機(33)にて回収したエネルギを蓄える畜エネルギ手段を備えることを特徴とするものである。

$[0\ 0\ 1\ 6]$

請求項7に記載の発明では、畜エネルギ手段は、蓄電器にて構成されていることを特徴とするものである。

$[0\ 0\ 1\ 7]$

請求項8に記載の発明では、畜エネルギ手段は、回収したエネルギを機械的エネルギと して蓄えることを特徴とするものである。

$[0\ 0\ 1\ 8]$

請求項9に記載の発明では、エネルギ回収機(33)は回収したエネルギにて電気エネルギを発生させることを特徴とするものである。

$[0\ 0\ 1\ 9]$

請求項10に記載の発明では、圧縮機(10)は電動モータにより駆動されることを特徴とするものである。

[0020]

請求項11に記載の発明では、圧縮機(10)は複数種類の駆動源により駆動され得ることを特徴とするものである。

$[0\ 0\ 2\ 1]$

請求項12に記載の発明では、圧縮機(10)は、電動モータ以外の駆動源により駆動され得ることを特徴とするものである。

[0022]

請求項13に記載の発明では、熱機関から排出される排気ガスの熱により冷媒を加熱する補助加熱器(26)が、加熱器(30)とは別に設けられていることを特徴とする。

[0023]

これによると、排気ガスの熱で冷媒をさらに加熱することによって、廃熱の回収量を増やすことができるとともに、温度帯を高くすることができるので、エネルギ回収機でのエネルギ回収量と回収効率を高めることができる。

[0024]

請求項14に記載の発明では、加熱器 (30) は、熱機関にて発生する廃熱にて冷媒を加熱することを特徴とするものである。

[0025]

請求項15に記載の発明では、加熱器(30)は、熱機関から排出される排気ガスの熱により冷媒を加熱することを特徴とするものである。

[0026]

請求項16に記載の発明では、加熱器(30)は、車両に搭載された機器から発生する 廃熱にて冷媒を加熱することを特徴とするものである。

[0027]

請求項17に記載の発明では、加熱器 (30) は、複数の熱源により冷媒を加熱することを特徴とするものである。

[0028]

請求項18に記載の発明では、冷媒として、HFC134a、HFC152a、ブタン、プロパンおよびアンモニアのうち少なくとも1つ主成分とするものが用いられていることを特徴とするものである。

[0029]

因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応 関係を示す一例である。

【発明を実施するための最良の形態】

[0030]

(第1実施形態)

本実施形態は、本発明に係るランキンサイクルを備える蒸気圧縮式冷凍機を車両に適用 したものであって、図1は本実施形態に係る蒸気圧縮式冷凍機の模式図である。

$[0\ 0\ 3\ 1]$

そして、本実施形態に係るランキンサイクルを備える蒸気圧縮式冷凍機は、走行用動力を発生させる熱機関をなすエンジン20で発生した廃熱からエネルギを回収するとともに、蒸気圧縮式冷凍機で発生した冷熱及び温熱を空調に利用するものである。以下、ランキンサイクルを備える蒸気圧縮式冷凍機について述べる。

[0032]

圧縮機10は電動モータから動力を得て冷媒を吸入圧縮するものであり、放熱器11は、圧縮機10の吐出側に接続されて放熱しながら冷媒を冷却する放冷器である。ファン16は、放熱器11に放熱用の風を送るものであり、放熱器11とともにエンジンルーム内に配置される。

[0033]

気液分離器12は放熱器11から流出した冷媒を気相冷媒と液相冷媒とに分離するレシーバであり、減圧器13は気液分離器12で分離された液相冷媒を減圧膨脹させるもので、本実施形態では、冷媒を等エンタルピ的に減圧するとともに、圧縮機10に吸入される冷媒の過熱度が所定値となるように絞り開度を制御する温度式膨脹弁を採用している。

[0034]

蒸発器14は、減圧器13にて減圧された冷媒を蒸発させて吸熱作用を発揮させる吸熱器であり、圧縮機10、放熱器11、気液分離器12、減圧器13及び蒸発器14等にて低温側の熱を高温側に移動させる蒸気圧縮式冷凍機が構成される。ファン17は、空調用

に外気もしくは車室内の空気を蒸発器 1 4 に送り出すものであり、エアコンユニット内に 配置される。

[0035]

加熱器30は、圧縮機10と放熱器11とを繋ぐ冷媒回路に設けられて、この冷媒回路 を流れる冷媒とエンジン冷却水とを熱交換することにより冷媒を加熱する熱交換器であり、三方弁21によりエンジン20から流出したエンジン冷却水を加熱器30に循環させる 場合と循環させない場合とが切り替えられる。

[0036]

第1バイパス回路31は、気液分離器12で分離された液相冷媒を加熱器30のうち放熱器11側の冷媒出入口側に導く冷媒通路であり、この第1バイパス回路31には、液相冷媒を循環させるための液ポンプ32及び気液分離器12側から加熱器30側にのみ冷媒が流れることを許容する逆止弁31aが設けられており、本実施形態では、液ポンプ32、第1バイパス回路31及び逆止弁31a等により特許請求の範囲に記載された冷媒供給手段が構成されている。なお、液ポンプ32は、本実施形態では、電動式のポンプである

. [0037]

そして、圧縮機10と並列な冷媒回路には、加熱器30から流出した過熱蒸気を膨脹させて加熱器30に与えられた熱エネルギを回収するエネルギ回収機33が設けられている。なお、本実施形態では、膨脹機33a及び膨脹機33aから出力される機械的出力による駆動される発電機33bによりエネルギ回収機33が構成されている。

[0038]

また、第2バイパス回路34は、膨脹機33aの冷媒出口側と放熱器11の冷媒入口側とを繋ぐ冷媒通路であり、この第2バイパス回路34には、膨脹機33aの冷媒出口側から放熱器11の冷媒入口側にのみ冷媒が流れることを許容する逆止弁34dが設けられている。

[0039]

なお、逆止弁14aは蒸発器14の冷媒出口側から圧縮機10の吸入側にのみ冷媒が流れることを許容するもので、開閉弁34a~34cは冷媒通路を開閉する電磁式のバルブであり、開閉弁34a~34c及び三方弁21等は電子制御装置により制御されている。開閉弁34cは、後述する廃熱回収運転モード時に、圧縮機10の冷媒吐出側から放熱器11へ向けての冷媒の流れを遮断するものであり、本発明の冷媒遮断手段に相当する。

[0040]

ところで、水ポンプ22はエンジン冷却水を循環させるもので、ラジエータ23はエンジン冷却水と外気とを熱交換してエンジン冷却水を冷却する熱交換器であり、バイパス回路24は、ラジエータ23を迂回させて冷却水を流す迂回路であり、サーもスタット25は、バイパス回路24に流す冷却水量とラジエータ23に流す冷却水量とを調節する流量調整弁である。

[0041]

因みに、水ポンプ22はエンジン20から動力を得て稼動する機械式のポンプであるが 、電動モータにて駆動される電動ポンプを用いてもよいことは言うまでもない。

[0042]

次に、本実施形態に係る蒸気圧縮式冷凍機の作動及びその効果を述べる。

[0043]

1. 空調運転モード (図2参照)

この運転モードは、蒸発器 1 4 にて冷凍能力を発揮させながら放熱器 1 1 にて冷媒を放冷する運転モードである。なお、本実施形態では、蒸気圧縮式冷凍機で発生する冷熱、つまり吸熱作用を利用した冷房運転及び除湿運転にのみ蒸気圧縮式冷凍機を稼動させており、放熱器 1 1 で発生する温熱を利用した暖房運転は行っていないが、暖房運転時であっても蒸気圧縮式冷凍機の作動は冷房運転及び除湿運転時と同じである。

[0044]

具体的には、液ポンプ32を停止させた状態で開閉弁34a、34cを開き、かつ、開閉弁34bを閉じて圧縮機10を稼動させるとともに、三方弁21を図2に示すように作動させて加熱器30を迂回させて冷却水を循環させるものである。

[0045]

これにより、冷媒は、圧縮機 10 →加熱器 30 →放熱器 11 →気液分離器 12 →減圧器 13 →蒸発器 14 →圧縮機 10 の順に循環する。なお、加熱器 30 にエンジン冷却水が循環しないので、加熱器 30 にて冷媒は加熱されず、加熱器 30 は単なる冷媒通路として機能する。

[0046]

したがって、減圧器13にて減圧された低圧冷媒は、室内に吹き出す空気から吸熱して蒸発し、この蒸発した気相冷媒は圧縮機10にて圧縮されて高温となって放熱器11にて室外空気にて冷却されて凝縮する。

[0047]

なお、本実施形態では、冷媒としてフロン(HFC134a)を利用しているが、高圧側にて冷媒が液化する冷媒であれば、HFC134aに限定されるものではなく、例えばHFC134a、HFC152a、ブタン、プロパンおよびアンモニアのうち少なくとも1つ主成分とするものを用いてもよい。

[0048]

2. 廃熱回収運転モード (図3参照)

この運転モードは、空調装置、つまり圧縮機 1 0 を停止させてエンジン 2 0 の廃熱を利用可能なエネルギとして回収するモードである。

$[0\ 0\ 4\ 9]$

具体的には、開閉弁34a、34cを閉じた状態で液ポンプ32を稼動させ、かつ、開閉弁34bを開いて圧縮機10を停止させるとともに、三方弁21を図3に示すように作動させてエンジン20から流出したエンジン冷却水を加熱器30に循環させるものである

[0050]

これにより、冷媒は、気液分離器 $12 \rightarrow$ 第 1 バイパス回路 $31 \rightarrow$ 加熱器 $30 \rightarrow$ エネルギ 回収機 33 (膨脹機 33a) \rightarrow 第 2 バイパス回路 $34 \rightarrow$ 放熱器 $11 \rightarrow$ 気液分離器 12 の順に循環する。

$[0\ 0\ 5\ 1]$

したがって、膨脹機33aには、加熱器30にて加熱された過熱蒸気が流入し、膨脹機33aに流入した蒸気冷媒は、膨脹機33a内で等エントロピ的に膨脹しながらそのエンタルピを低下させていく。このため、膨脹機33aは、低下したエンタルピに相当する機械的エネルギを発電機33bに与え、発電機33bにより発電された電力は、バッテリやキャパシタ等の蓄電器に蓄えられる。

[0052]

また、膨脹機33aから流出した冷媒は、放熱器11にて冷却されて凝縮し、気液分離器12に蓄えられ、気液分離器12内の液相冷媒は、液ポンプ32にて加熱器30側に送られる。なお、液ポンプ32は、加熱器30にて加熱されて生成された過熱蒸気が、気液分離器12側に逆流しない程度の圧力にて液相冷媒を加熱器30に送り込む。

$[0\ 0\ 5\ 3]$

以上に述べたように、本実施形態では、ラジエータ23にて熱として大気中に捨てられていた熱エネルギを電力等の容易に利用することができるエネルギに変換するので、車両の燃費、つまりエンジン20の燃料消費量を低減することができ得る。

[0054]

また、本実施形態では、エンジン20の廃熱により発電するので、オルタネータ等の発電機をエンジン20にて駆動する必要性が低減し、エンジン20の燃料消費量をさらに低減することができる。

[0055]

また、蒸発器 1 4 は空調用に空気を冷やし、加熱器 3 0 は高温熱源により冷媒を加熱するものであり、機能が異なっているとともに、温度帯が非常に異なっている。したがって、本実施形態のように、蒸発器 1 4 と加熱器 3 0 を独立して設けることにより、それぞれの用途に適合した仕様にすることができるとともに、冷凍サイクルとランキンサイクルを即時に切り替えることができる。

[0056]

なお、本実施形態では、圧縮機10の吐出側と膨脹機33aの冷媒入口側との合流点A(図1参照)よりも放熱器11側の冷媒回路に加熱器30を設けたが、加熱器30は、膨脹機33aの冷媒入口側と合流点Aをつなぐ冷媒回路に設けてもよい。

[0057]

(第2実施形態)

本実施形態は、図4に示すように、気液分離器12にて分離された液相冷媒を冷却して 冷媒の過冷却度を高める過冷却器15を設けたものである。

[0058]

なお、本実施形態では、第1バイパス回路31の気液分離器12側を過冷却器15の冷媒出口側に接続することにより、液ポンプ32に吸引される液相冷媒が気化してしまうことを防止してキャビテーションによる液ポンプ32の損傷及びポンプ効率の低下を防止しているが、第1バイパス回路31の気液分離器12側を、第1実施形態と同様に、気液分離器12に接続してもよい。

[0059]

(第3実施形態)

本実施形態は、図5に示すように、開閉弁34a~34cに代えて、切替え弁35にて 冷媒通路を切り替えるものである。より詳細には、この切替え弁35は、2つの冷媒通路 のうち一方の冷媒通路を開通し、他方の冷媒通路を閉通するものである。

$[0\ 0\ 6\ 0\]$

なお、図5は第1実施形態に対して本実施形態を適用したものであるが、第2実施形態 に対して本発明を適用してもよい。

$[0\ 0\ 6\ 1]$

(第4実施形態)

本実施形態は、図6に示すように、圧縮機10とエネルギ回収機33 (膨脹機33a) とが一体となった膨脹機一体型圧縮機100を用いた例である。

$[0\ 0\ 6\ 2]$

1. 空調運転モード

液ポンプ32を停止させた状態で開閉弁34cを開いて圧縮機10を稼動させるとともに、三方弁21を作動させて加熱器30を迂回させて冷却水を循環させるものである。

[0063]

なお、本実施形態では、膨脹機一体型圧縮機100を圧縮機として作動させる際には、 発電機33bを電動モータとして作動させている。

$[0\ 0\ 6\ 4]$

これにより、冷媒は、膨脹機一体型圧縮機100→加熱器30→放熱器11→気液分離器12→減圧器13→蒸発器14→膨脹機一体型圧縮機100の順に循環する。なお、加熱器30にエンジン冷却水が循環しないので、加熱器30にて冷媒は加熱されず、加熱器30は単なる冷媒通路として機能する。

$[0\ 0\ 6\ 5]$

したがって、減圧器13にて減圧された低圧冷媒は、室内に吹き出す空気から吸熱して蒸発し、この蒸発した気相冷媒は圧縮機10にて圧縮されて高温となって放熱器11にて室外空気にて冷却されて凝縮する。

[0066]

2. 廃熱回収運転モード

開閉弁34cを閉じた状態で液ポンプ32を稼動させ、かつ、三方弁21を作動させて

エンジン20から流出したエンジン冷却水を加熱器30に循環させるものである。

[0067]

これにより、冷媒は、気液分離器 1 2 → 第 1 バイパス回路 3 1 → 加熱器 3 0 → 膨脹機一体型圧縮機 1 0 0 → 第 2 バイパス回路 3 4 → 放熱器 1 1 → 気液分離器 1 2 の順に循環する

[0068]

したがって、膨脹機一体型圧縮機100には、加熱器30にて加熱された過熱蒸気が流入し、膨脹機一体型圧縮機100に流入した蒸気冷媒は、膨脹機一体型圧縮機100内で等エントロピ的に膨脹しながらそのエンタルピを低下させていく。このため、膨脹機一体型圧縮機100は、低下したエンタルピに相当する機械的エネルギを発電機33bに与え、発電機33bにより発電された電力は、バッテリやキャパシタ等の蓄電器に蓄えられる

[0069]

なお、図7(a)は膨脹機一体型圧縮機100が圧縮機として作動する場合を示し、図7(b)は膨脹機一体型圧縮機100が膨脹機よして作動する場合を示すものであり、本 実施形態では、ベーン型の流体機械にて膨脹機一体型圧縮機を構成している。

[0070]

また、制御弁36は、膨脹機一体型圧縮機100を圧縮機として作動する際には吐出弁 、つまり逆止弁として作動し、膨脹機として作動させるには開くバルブである。

$[0\ 0\ 7\ 1]$

因みに、図6は第1実施形態に対して本実施形態を適用したものであるが、第2実施形態に対して本発明を適用してもよい。

[0072]

(第5実施形態)

本実施形態は、図8に示すように、膨脹機一体型圧縮機100として、エンジン20が 稼動しているときは、電動モータ以外の駆動源、つまりエンジン20から動力を得て冷媒 を吸入圧縮し、エンジン20が停止しているときには電動モータから動力を得て冷媒を吸 入圧縮する、いわゆるハイブリッド型のものを採用したものである。

[0073]

なお、本実施形態においても、膨脹機一体型圧縮機100を圧縮機として作動させる際には、発電機33bを電動モータとして作動させている。

[0074]

因みに、図8は第1実施形態に対して本実施形態を適用したものであるが、第2実施形態に対して本発明を適用してもよい。

[0075]

(第6実施形態)

本実施形態は、図9に示すように、廃熱回収運転モード時に、放熱器11から流出した冷媒を気相冷媒と液相冷媒とに分離する第2の気液分離器37を設け、かつ、第2の気液分離器37の液相冷媒出口から流出した冷媒を開閉弁34cを迂回させて加熱器30に導く第3バイパス通路38に液ポンプ32を設けるとともに、第2バイパス回路34の放熱器11側を、放熱器11のうち気液分離器12(以下、第1の気液分離器12呼ぶ。)側に接続したものである。

[0076]

そして、空調運転モード時には、液ポンプ32を停止させた状態で開閉弁34a、34cを開き、かつ、開閉弁34bを閉じて圧縮機10を稼動させるとともに、三方弁21を作動させて加熱器30を迂回させて冷却水を循環させるものである。

[0077]

これにより、冷媒は、圧縮機 1 0 →加熱器 3 0 → 放熱器 1 1 → 第 1 の気液分離器 1 2 → 減圧器 1 3 → 蒸発器 1 4 → 圧縮機 1 0 の順に循環する。なお、加熱器 3 0 にエンジン冷却水が循環しないので、加熱器 3 0 にて冷媒は加熱されず、加熱器 3 0 は単なる冷媒通路と

して機能する。

[0078]

したがって、減圧器13にて減圧された低圧冷媒は、室内に吹き出す空気から吸熱して蒸発し、この蒸発した気相冷媒は圧縮機10にて圧縮されて高温となって放熱器11にて室外空気にて冷却されて凝縮する。

[0079]

また、廃熱回収運転モード時には、開閉弁34a、34cを閉じた状態で液ポンプ32を稼動させ、かつ、開閉弁34bを開いて圧縮機10を停止させるとともに、三方弁21を作動させてエンジン20から流出したエンジン冷却水を加熱器30に循環させるものである。

[0080]

これにより、冷媒は、第2の気液分離器37→第3バイパス回路38→加熱器30→エネルギ回収機33(膨脹機33a)→第2バイパス回路34→放熱器11→第2の気液分離器37の順に循環し、放熱器11内を流れる冷媒は空調運転モード時と逆転する。

[0081]

したがって、膨脹機33aには、加熱器30にて加熱された過熱蒸気が流入し、膨脹機33aに流入した蒸気冷媒は、膨脹機33a内で等エントロピ的に膨脹しながらそのエンタルピを低下させていく。このため、膨脹機33aは、低下したエンタルピに相当する機械的エネルギを発電機33bに与え、発電機33bにより発電された電力は、バッテリやキャパシタ等の蓄電器に蓄えられる。

[0082]

なお、本実施形態は、膨脹機一体型圧縮機100を用いても実施することができる。

[0083]

(第7実施形態)

第1~6実施形態では、三方弁21にてエンジン20にて廃熱を回収したエンジン冷却水を加熱器30に供給する場合と供給しない場合とを切り換えていたが、本実施形態は、図10に示すように、気液分離器12と膨脹機一体型圧縮機100とを直接的に繋ぐ冷媒回路31bを設け、この冷媒回路31bに液ポンプ32および加熱器30を配置するとともに、三方弁21を廃止したものである。

[0084]

このため、本実施形態では、エンジン20が稼動している間は、常に加熱器30にエンジン冷却水が循環し、液ポンプ32を稼動させるか否かによりエンジン冷却水から廃熱を回収するか否を制御する。

[0085]

また、制御弁36は、膨脹機一体型圧縮機100を圧縮機として作動する際には吐出弁 、つまり逆止弁として作動し、膨脹機として作動させるには開くバルブである。

[0086]

以下に、具体的な作動を説明する。

[0087]

1. 空調運転モード

液ポンプ32を停止させた状態で開閉弁34cを開くとともに、発電機33bを電動モータとして作動させて圧縮機10を稼動させる。

[0088]

これにより、冷媒は、膨脹機一体型圧縮機 1 0 0 → 放熱器 1 1 → 気液分離器 1 2 → 減圧器 1 3 → 蒸発器 1 4 → 膨脹機一体型圧縮機 1 0 0 の順に循環する。

[0089]

したがって、減圧器13にて減圧された低圧冷媒は、室内に吹き出す空気から吸熱して蒸発し、この蒸発した気相冷媒は圧縮機10にて圧縮されて高温となって放熱器11にて室外空気にて冷却されて凝縮する。

[0090]

2. 廃熱回収運転モード

開閉弁34cを閉じた状態で液ポンプ32を稼動させる。

$[0\ 0\ 9\ 1]$

これにより、冷媒は、気液分離器 1 2 → 冷媒回路 3 1 b → 加熱器 3 0 → 膨脹機一体型圧縮機 1 0 0 → 第 2 バイパス回路 3 4 → 放熱器 1 1 → 気液分離器 1 2 の順に循環する。

[0092]

したがって、膨脹機一体型圧縮機100には、加熱器30にて加熱された過熱蒸気が流入し、膨脹機一体型圧縮機100に流入した蒸気冷媒は、膨脹機一体型圧縮機100内で 等エントロピ的に膨脹しながらそのエンタルピを低下させていく。

[0093]

このため、膨脹機一体型圧縮機 1 0 0 は、低下したエンタルピに相当する機械的エネルギを発電機 3 3 b に与え、発電機 3 3 b により発電された電力は、バッテリやキャパシタ等の蓄電器に蓄えられる。

[0094]

以上に述べたように、本実施形態では、三方弁21を廃止できるので、エンジン冷却水の回路を簡素なものとすることができるので、蒸気圧縮式冷凍機の製造原価を低減することができる。

[0095]

なお、図10は、第4実施形態に示される蒸気圧縮式冷凍機に本実施形態を適用したものであるが、本実施形態は、これに限定されるものではなく、第1~3、5、6実施形態のいずれかにも適用することができることは言うまでもない。

[0096]

(第8実施形態)

第1~7実施形態では、冷媒を加熱する熱源としてエンジン冷却水のみを用いたが、本 実施形態は、冷媒を加熱する熱源としてエンジン20の排気ガスを併用するようにしたも のである。

[0097]

本実施形態では、図11に示すように、気液分離器12と膨脹機一体型圧縮機100と を直接的に繋ぐ冷媒回路31bを、エンジン20の排気管26側に経由させて排気管26 の外壁面に接触させることにより、エンジン冷却水で加熱された冷媒を排気ガスの熱でさ らに加熱させるようにしている。なお、排気管26は本発明の補助加熱器に相当する。

[0098]

したがって、本実施形態では、排気ガスの熱で冷媒をさらに加熱することによって、廃 熱の回収量を増やすことができるとともに、温度帯を高くすることができるので、膨脹機 一体型圧縮機100でのエネルギ回収量と回収効率を高めることができる。

[0099]

(その他の実施形態)

上述の実施形態では、エネルギ回収機33にて回収したエネルギを蓄電器にて蓄えたが、フライホィールによる運動エネルギ又はバネにより弾性エネルギ等の機械的エネルギとして蓄えてもよい。

$[0\ 1\ 0\ 0\]$

また、第1~3 実施形態(図1、図5 および図6)では、加熱器30を放熱器11と圧縮機10との間に直列に配置したが、加熱器30にて冷媒を加熱するのは、廃熱回収運転時のみであることから、加熱器30を放熱器11と膨脹機33aとの間(例えば、図1において、A点より膨脹機33a側の冷媒回路)に直列に配置してもランキンサイクルを稼動させることができる。

[0101]

また、冷媒を加熱する熱源として、車両に搭載された各種機器から発生する廃熱、例えば、ターボの吸気熱、インバーターの発生熱、補機の廃熱を用いてもよい。そして、1つの熱源のみを用いて冷媒を加熱してもよいし、複数の熱源を併用して冷媒を加熱してもよ

ページ: 10/E

1,0

[0102]

また、本発明は、特許請求の範囲に記載された発明の趣旨に合致するものであればよく 、上述の実施形態に限定されるものではない。

【図面の簡単な説明】

[0103]

- 【図1】本発明の第1実施形態に係るランキン蒸気圧縮式冷凍機の模式図である。
- 【図2】本発明の第1実施形態に係るランキン蒸気圧縮式冷凍機の模式図である。
- 【図3】本発明の第1実施形態に係るランキン蒸気圧縮式冷凍機の模式図である。
- 【図4】本発明の第2実施形態に係るランキン蒸気圧縮式冷凍機の模式図である。
- 【図5】本発明の第3実施形態に係るランキン蒸気圧縮式冷凍機の模式図である。
- 【図6】本発明の第4実施形態に係るランキン蒸気圧縮式冷凍機の模式図である。
- [四] 中元为97年大地为87年以 (1977年) (1977年)
- 【図7】本発明の第4実施形態に係る膨脹機一体型圧縮機の模式図である。
- 【図8】本発明の第5実施形態に係るランキン蒸気圧縮式冷凍機の模式図である。
- 【図9】本発明の第6実施形態に係るランキン蒸気圧縮式冷凍機の模式図である。
- 【図10】本発明の第7実施形態に係るランキン蒸気圧縮式冷凍機の模式図である。
- 【図11】本発明の第8実施形態に係るランキン蒸気圧縮式冷凍機の模式図である。

【符号の説明】

$[0\ 1\ 0\ 4]$

- 10…圧縮機、11…放熱器、12…気液分離器、13…減圧器、
- 14…蒸発器14、20…エンジン、20…加熱器、
- 31…第1バイパス回路、32…液ポンプ、33…エネルギ回収機、
- 33a…膨脹機、33b…発電機。

【書類名】図面 【図1】

【図4】

【図5】

【図6】

【図8】

【図9】

【図10】

【書類名】要約書

【要約】

【課題】 実現可能なランキンサイクルを備える蒸気圧縮式冷凍機を提供する。

【解決手段】 圧縮機 10 の冷媒吐出側から放熱器 11 へ向けての冷媒の流れを遮断可能な開閉弁 34 c と、冷媒を加熱する加熱器 30 と、開閉弁 34 c をバイパスして冷媒を加熱器 30 に供給する冷媒供給手段 31、31 a、32 と、加熱器 30 から流出した冷媒を膨脹させて加熱器 30 により冷媒に与えられた熱エネルギを回収するエネルギ回収機 33 とを備え、エネルギ回収機 33 にてエネルギを回収する場合には、開閉弁 34 c により圧縮機 10 の冷媒吐出側から放熱器 11 へ向けての冷媒の流れを遮断するとともに、冷媒供給手段 31、31 a、32 により冷媒を加熱器 30 →エネルギ回収機 33 →放熱器 11 →加熱器 30 の順に循環させる。

【選択図】

図 1

特願2003-410094

出願人履歴情報

識別番号

[000004260]

1. 変更年月日 [変更理由]

1996年10月 8日

[変更理由] 名称変更 住 所 愛知県刈

愛知県刈谷市昭和町1丁目1番地

氏 名 株式会社デンソー

特願2003-410094

出願人履歴情報

識別番号

[000004695]

1. 変更年月日

1990年 8月 7日

[変更理由]

新規登録

住 所 氏 名 愛知県西尾市下羽角町岩谷14番地

株式会社日本自動車部品総合研究所