Quelques suites usuelles

1. Suites récurrentes linéaires d'ordre 2

On s'intéresse aux suites $(u_n)_{n\in\mathbb{N}}$ vérifiant la relation de récurrence

$$\boxed{\forall n \in \mathbb{N}, \quad au_{n+2} + bu_{n+1} + cu_n = 0} \quad (*)$$

où $(a,b,c)\in\mathbb{C}^3$, avec $ac\neq 0$ (sinon on est ramené à des suites géométriques)

Remarque: pour quelles valeurs de λ la suite géométrique (λ^n) vérifie-t-elle (*)

Théorème:

On considère le polynôme $P = aX^2 + bX + c$, et on appelle λ et μ ses deux racines (complexes)

 1^{er} cas : si $\lambda \neq \mu$ $(b^2 - 4ac \neq 0)$: alors les suites vérifiant (*) ont un terme général de la forme

$$u_n = \alpha \lambda^n + \beta \mu^n$$
, α, β constantes

 $\underline{2^{\mathrm{d}}\ \mathrm{cas}: \mathrm{si}\ \lambda = \mu}\ \ \left(b^2 - 4ac = 0\right)$: alors les suites vérifiant (*) ont un terme général de la forme

$$u_n = (\alpha n + \beta) \lambda^n$$
, α, β constantes

Les constantes α et β sont déterminées de manière unique par la donnée des deux premiers termes u_0 et u_1 .

b) Exemples:

- 1. Déterminer l'unique suite (u_n) vérifiant $\begin{cases} u_0 = 3 \\ u_1 = 4 \\ \forall n \in \mathbb{N}, \quad u_{n+2} 5u_{n+1} + 6u_n = 0 \end{cases}$ 2. Déterminer l'unique suite (u_n) vérifiant $\begin{cases} u_0 = 3 \\ u_1 = 4 \\ \forall n \in \mathbb{N}, \quad u_{n+2} 4u_{n+1} + 4u_n = 0 \end{cases}$
- 3. Déterminer l'unique suite (u_n) vérifiant $\begin{cases} u_0 = 0 \\ u_1 = \sqrt{3} \\ \forall n \in \mathbb{N}, \quad u_{n+2} + u_{n+1} + u_n = 0 \end{cases}$
- 4. Déterminer l'unique suite (u_n) vérifiant $\begin{cases} u_0 = 0, & u_1 = 1 \\ \forall n \in \mathbb{N}, & u_{n+2} u_{n+1} 2u_n = 0 \end{cases}$ 5. Déterminer l'unique suite (u_n) vérifiant $\begin{cases} u_0 = u_1 = 1 \\ \forall n \in \mathbb{N}, & u_{n+2} = -u_n \end{cases}$

- 6. Soit $x \in \mathbb{R}$. Déterminer l'unique suite (u_n) vérifiant $\begin{cases} u_0 = 2, & u_1 = 2\cos x \\ \forall n \in \mathbb{N}, & u_{n+2} = 2\cos(x)u_{n+1} u_n \end{cases}$ 7. Soit $(a,b) \in \mathbb{R}^2$. Déterminer l'unique suite (u_n) vérifiant $\begin{cases} u_0 = a b & u_1 = a^2 b^2 \\ \forall n \in \mathbb{N}, & u_{n+2} (a+b)u_{n+1} + abu_n = 0 \end{cases}$ (discuter sur a, b)
- 8. Suite de Fibonacci : soit (u_n) définie par $\left\{ \begin{array}{l} u_0=u_1=1 \\ \forall n\in\mathbb{N},\ u_{n+2}=u_{n+1}+u_n \end{array} \right.$

Calculer u_n pour tout entier n, puis étudier la limite du rapport $\frac{u_{n+1}}{n}$

2. Suites arithmético-géométriques

On s'intéresse aux suites $(u_n)_{n\in\mathbb{N}}$ vérifiant la relation de récurrence

$$\boxed{\forall n \in \mathbb{N}, \quad u_{n+1} = au_n + b} \quad (*)$$

où $(a,b) \in \mathbb{C}^3$, avec $a \neq 1$ (sinon suite arithmétique) et $b \neq 0$ (sinon suite géométrique)

a) Méthode:

- On calcule le point fixe ℓ solution de l'équation $\ell = a\ell + b$ $\ell = b$
- On considère la suite de terme général $v_n = u_n \ell$. On écrit alors pour tout n

$$\begin{cases} u_{n+1} = au_n + b \\ \ell = a\ell + b \end{cases} \Rightarrow u_{n+1} - \ell = a(u_n - \ell) \Rightarrow \boxed{v_{n+1} = av_n}$$

 (v_n) est donc géométrique de raison a, ce qui s'écrit $\forall n \in \mathbb{N}, \ v_n = v_0 a^n$

• Ainsi $\forall n \in \mathbb{N}, \ u_n = \ell + (u_0 - \ell) a^n$

b) Exemple:

- 1. déterminer l'unique suite (u_n) vérifiant $\begin{cases} u_0 = 3 \\ \forall n \in \mathbb{N}, \quad u_{n+1} = \frac{u_n + 2}{3} \end{cases}$

- 2. Déterminer l'unique suite (u_n) vérifiant $\begin{cases} u_0 = 4 \\ \forall n \in \mathbb{N}, \quad u_{n+1} = 2u_n 1 \end{cases}$ 3. Déterminer l'unique suite (u_n) vérifiant $\begin{cases} u_0 = 0 \\ \forall n \in \mathbb{N}, \quad u_{n+1} = a 2u_n \end{cases} \quad (a \in \mathbb{R})$ 4. Déterminer l'unique suite (u_n) vérifiant $\begin{cases} u_0 = 4 + i \\ \forall n \in \mathbb{N}, \quad u_{n+1} = \frac{iu_n + 5}{2} \end{cases}$

Calculer la limite de (u_n) et représenter les premiers termes dans un repère orthonormé

5. Mêmes questions avec $\begin{cases} u_0 = \frac{1+i}{2} \\ \forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1+i}{2} u_n + 1 \end{cases}$