R and Tidyverse

SYS 6018 | Spring 2024

Rintro.pdf

Contents

1	Tech	nical Requirements	2	
2	Introduction to R			
	2.1	Getting Help	2	
	2.2	RStudio	2	
	2.3	Using R Packages	2	
	2.4	Quarto	3	
	2.5	Graphics with the ggplot2 package	3	
	2.6	Data Transformation with the dplyr package	4	
	2.7	Groupwise operations	5	
	2.8	Data Importing	8	
	2.9	Tidy Data with the tidyr package	9	
	2.10	Iteration	10	

1 Technical Requirements

- · Working and updated version of R and RStudio
 - Update packages as well
- Install R packages: tidyverse and nycflights13
- Course Webpage: https://mdporter.github.io/SYS6018

2 Introduction to R

2.1 Getting Help

- A good source of basic data analysis using R is found in the free book R for Data Science 2e.
- Web search, especially stackoverflow.com and stats.stackexchange.com
- · Troubleshooting/Debugging.
 - Check one line of code at a time.
 - Use scripts
 - Make sure it works in plain R before incorporating into Rmd
- ChatGPT can do a decent job at troubleshooting.
- Post a question on Canvas/Discussion. A classmate or teaching staff will be able to help.

2.2 RStudio

- Install R and RStudio
- Make use of *Projects* in RStudio

2.3 Using R Packages

It takes two steps to use the functions and data in an R package

- 1. Install the package
 - i.e., download the package to your computer
 - this only needs to be done one time
 - install.packages()
- 2. Load the package
 - i.e., tell R to look for the package functions and/or data
 - this needs to be done every time R is started (and you want to use the package)
 - library()

2.3.1 Note on tidyverse package

- The tidyverse package https://www.tidyverse.org/packages/ is really just a wrapper to load several related R packages
 - ggplot2 for graphics
 - dplyr for data manipulation
 - tidyr for getting data into tidy form

- readr for loading in data
- tibble for improved data frames
- purrr for functional programming
- stringr for string manipulation
- forcats for categorical/factor data
- lubridate for dealing with dates and times
- This provides a nice shortcut to load all of these packages with library (tidyverse) instead of each separately:

```
#- the hard way
library(ggplot2)
library(dplyr)
library(tidyr)
library(readr)
library(tibble)
library(purrr)
library(stringr)
library(forcats)
library(lubridate)
#- the easy way
library(tidyverse)
```

2.4 Quarto

Quarto is the new RMarkdown.

- Homework will be submitted in .qmd and .html format
- When you render a .qmd, it:
 - 1. starts a new R kernel (clean environment)
 - 2. in the directory the .qmd is in (important for relative links)
 - 3. runs all the code blocks
 - 4. converts the results of the code and other text to plain markdown
 - 5. uses pandoc to create documents of the desired format (e.g., html, pdf, word, revealjs, beamer)
- Any data or code must first be put into the .qmd file
 - The .qmd won't know about anything in another script or in another R environment
 - Any source () or data paths are relative to the current directory of the qmd.
- A homework .qmd template will be provided for each homework. You will modify this template to create your homework solution.
- The course uses a special formatting to ensure all submissions look consistent and are thus easier to grade. The formatting is applied with a special quarto extension. Follow the instructions to install the extension.

2.5 Graphics with the ggplot2 package

The ggplot2 package is an approach for creating graphics for data analysis.

• See https://ggplot2.tidyverse.org/

Figure 1: Quarto Screen Shot

• Keep the ggplot2 cheatsheet handy

2.6 Data Transformation with the dplyr package

- See https://dplyr.tidyverse.org/
- Keep the dplyr cheatsheet handy

2.6.1 single table verbs

- 1. filter(): find/keep certain rows
 - alternative to base::subset()
 - slice() to keep by row number
 - helper functions: between (): numeric values in a range
- 2. arrange(): reorder rows
 - alternative to base::order()
 - helper functions: desc() to use descending order
- 3. select (): find/keep certain columns
 - helper functions: starts_with(), ends_with(), matches(), contains(),
 ?select
- 4. mutate(): add/create new variables
 - alternative to base::transform()
 - transmute(): only return new variables
- 5. summarize(): produce summary statistics
 - don't confuse with summary ()
 - most useful when data is grouped

2.6.2 Chaining/Pipes

• Multiple operations can be chained together with the *pipe* operator, %>%, (pronounced as *then*). Technically, it performs x %>% f (y) -> f (x, y). This lets you focus on the verbs, or actions you are performing.

```
x = c(1:5, NA)
x %>% mean(na.rm=TRUE)
#> [1] 3
mean(x, na.rm=TRUE)
#> [1] 3
```

• **Update:** newer versions of R have introduced a native pipe |>. This can be used instead of %>%.

```
x = c(1:5, NA)
x |> mean(na.rm=TRUE)
#> [1] 3
mean(x, na.rm=TRUE)
#> [1] 3
```

Your Turn #1

- 1. Load the nycflights13 package, which contains airline on-time data for all flights departing NYC in 2013. Also includes useful 'metadata' on airlines, airports, weather, and planes.
- 2. Load the tidyverse package
- 3. Using the flights data,
 - find all flights that were less than 1000 miles (distance)
 - Keep only the columns: dep_delay, arr_delay, origin, dest, air_time, and distance
 - Add the Z-score for departure delays
 - Convert the departure and arrival delays into hours
 - Calculate the average flight speed (in mph)
 - order by average flight speed (fastest to slowest)
 - return the first 12 rows

2.6.3 Other useful dplyr functions

- distinct(): retain unique/distinct rows
- slice_sample(): select random rows
- slice_min/slice_max(): select rows with smallest/highest values
- mutate()/add column() add new column in particular position
- coalesce (x, y) replaces the NA in x with y

```
x = c(1, 2, NA, 5, 5, NA)
coalesce(x, 0)  # replace NA with 0
#> [1] 1 2 0 5 5 0
```

2.7 Groupwise operations

2.7.1 Split - Apply - Combine

The dplyr operations are more powerful when they can be used with grouping variables. Split - Apply - Combine.

Image from Hadley Wickham UseR tutorial June 2014 http://www.dropbox.com/sh/i8qnluwmuieicxc/AAAgt9tIKoIm7 WZKIyK25lh6a

These steps can be performed, at scale, with the MapReduce framework.

2.7.2 group_by()

First use the group_by() function to group the data (determines how to split), then apply function(s) to each group using the summarise() function. Note: grouping should to be applied on discrete variables (categorical, factor, or maybe integer valued columns).

```
flights |>
  group_by(origin, dest) |> # group by both origin and dest
  summarize(
    n_flights = n(), # n() gives the group count
    max_delay = max(arr_delay, na.rm=TRUE),
    avg_delay = mean(arr_delay, na.rm=TRUE),
    min_delay = min(arr_delay, na.rm=TRUE)
)

#> Warning: There were 2 warnings in `summarize()`.

#> The first warning was:
#> i In argument: `max_delay = max(arr_delay, na.rm = TRUE)`.
#> i In group 41: `origin = "EWR"`, `dest = "LGA"`.
#> Caused by warning in `max()`:
#> ! no non-missing arguments to max; returning -Inf
```

- count (...) is a shortcut for group_by (...) |> summarize (n=n())
- ungroup () removes the grouping

2.7.3 Grouped Mutate and Filter

• When data is grouped, mutate() and filter() operate on each group independently

```
#- proportion of carrier at each dest
flights |>
  count (dest, carrier) |>
                                             # group by dest
  group_by(dest) |>
    mutate(
      total = sum(n),  # grouped mutate sum(n) is by group
      p = n/sum(n)
   ) |>
  arrange(desc(total), -p)
                                             # arrange by most freq dest and prop
#> # A tibble: 314 x 5
    dest carrier n total
#> <chr> <int> <int> <dbl>
#> 1 ORD UA 6984 17283 0.404

#> 2 ORD AA 6059 17283 0.351

#> 3 ORD MQ 2276 17283 0.132

#> 4 ORD 9E 1056 17283 0.0611

#> 5 ORD B6 905 17283 0.0524

#> 6 ORD EV 2 17283 0.000116
#> # i 308 more rows
```

2.7.4 Update: grouping with .by

In newer versions of dplyr, many functions that were used with grouped data frames have been given an additional argument that allows grouping specification without the need to use $group_by$ ().

```
#> 3 ORD MQ 2276 17283 0.132
#> 4 ORD 9E 1056 17283 0.0611
#> 5 ORD B6 905 17283 0.0524
#> 6 ORD EV 2 17283 0.000116
#> # i 308 more rows
flights |>
  summarize(.by = c(origin, dest), # <-- specify grouping</pre>
   n_{flights} = n(), # n() gives the group count
   max_delay = max(arr_delay, na.rm=TRUE),
   avg_delay = mean(arr_delay, na.rm=TRUE),
   min_delay = min(arr_delay, na.rm=TRUE)
  )
#> # A tibble: 224 x 6
#> origin dest n_flights max_delay avg_delay min_delay
#> # i 218 more rows
```

2.8 Data Importing

2.8.1 readr package

- See https://readr.tidyverse.org/
- Keep the data import cheatsheet handy

```
## Load data from course website
library(tidyverse)
#: specify path to url
data_dir = 'https://mdporter.github.io/SYS6018/data/' # path to course data
url = file.path(data_dir, 'crashes16.csv') # the crashes 16 data set
#: load directly from web
crashes = read_csv(url)
crashes
#> # A tibble: 456 x 2
#> mile time
#> <dbl> <dbl>
#> 1 87 6.62
#> 2 118 6.70
#> 3 120 0.0549
#> 4 90 0.206
#> 5 124. 0.726
#> 6 118 3.88
#> # i 450 more rows
## Download data first, then load into R
#: specify path to url
data_dir = 'https://mdporter.github.io/SYS6018/data/'
```

url = file.path(data_dir, 'crashes16.csv') # the crashes 16 data set

```
#: download file
save.path = "data/crashes16.csv" # can be relative path!
download.file(url, save.path)

#: load data from hard drive
library(tidyverse)
crashes = read_csv(save.path)
```

2.8.2 readx1 package

• See https://readxl.tidyverse.org/ for importing excel files

2.9 Tidy Data with the tidyr package

- https://tidyr.tidyverse.org/
- Keep the tidy data cheatsheet handy.

2.9.1 Why Tidy Data?

- Tidy data (in form of a data frame) is usually the best form for analysis
 - some exceptions are for modeling (e.g., matrix manipulations and algorithms)
- For presentation of data (e.g., in tables), non-tidy form can often do better
- the functions in tidyr usually allow us to covert from non-tidy to tidy for analysis and also from tidy to non-tidy for presentation

2.9.2 Main tidyr functions

function	description
<pre>pivot_wider()/spread() pivot_longer()/gather()</pre>	Spreads a pair of key:value columns into a set of tidy columns Gather takes multiple columns and collapses into key-value pairs, duplicating all other columns as needed. You use pivot_longer()/gather() when you notice that you have
<pre>separate() unite()</pre>	columns that are not variables turns a single character column into multiple columns paste together multiple columns into one (reverse of separate())

See R4DS Pivoting for more details.

```
## Converting to longer format for grouped summaries and plotting
delays_long = flights |>
    select(year, month, day, dep_delay, arr_delay) |>
    pivot_longer(cols = c(dep_delay, arr_delay), names_to="type", values_to="delay") |>
    mutate(type = ifelse(type == "dep_delay", "departure", "arrival"))

delays_long
#> # A tibble: 673,552 x 5
#> year month day type delay
#> <int> <int> <int> <int> <int> <chr> <dbl>
#> 1 2013 1 1 departure 2
#> 2 2013 1 1 arrival 11
#> 3 2013 1 1 departure 4
```

```
#> 4 2013 1 1 arrival
#> 5 2013 1 1 departure
#> 6 2013 1 1 arrival
                                     2
                                    33
#> # i 673,546 more rows
#: average delays of each type
delays_long |>
  group_by(type) |>
  summarize(avg_delay = mean(delay, na.rm=TRUE))
#> # A tibble: 2 x 2
#> 2 departure 12.6
#: plot density (kernel density estimation)
delays_long |>
  ggplot(aes(delay, fill=type)) +
  geom_density(alpha = .5)
             0.075
                                                                    type
           density
0.050
                                                                       arrival
                                                                       departure
             0.025
             0.000
                                     500
                                                    1000
                                       delay
```

2.10 Iteration

We will make good use of iteration in this course. Be sure to review R4DS Iteration for more details.

Suppose we want to compare the performance of two models over multiple subsets of a data set.

```
#: simulate fake data
set.seed(2023)
data = tibble(x = runif(100), y = rnorm(100))

#: fake model output
model_1 <- function(x) rnorm(length(x), mean = -.5, sd = 1)
model_2 <- function(x) rnorm(length(x), mean = .5, sd = 2)</pre>
```

We can consider using a for loop to simulate and assess performance in each subset.

```
n \text{ subsets} = 5
set.seed(876)
output = vector("list", n_subsets) # initiate empty list
for(i in 1:n_subsets) {
  #: sub-sample data (25 samples)
  data_sub = dplyr::slice_sample(data, n = 25)
  #: get output from the models
  yhat_1 = model_1(data_sub$x)
  yhat_2 = model_2(data_sub$x)
  #: score models (using MSE)
  perf_1 = mean((yhat_1 - data_sub$y)^2)
  perf_2 = mean((yhat_2 - data_sub$y)^2)
  #: save results
  output[[i]] = tibble(perf_1, perf_2, iter = i)
#: convert to tibble and summarize
bind_rows(output) |>
  summarize(
   avg_perf_1 = mean(perf_1),  # avg MSE of model 1
avg_perf_2 = mean(perf_2),  # avg MSE of model 2
   avg_diff = mean(perf_1 - perf_2), # average MSE difference
   n = \mathbf{n}()
                                       # number of iterations
 )
#> # A tibble: 1 x 4
#> avg_perf_1 avg_perf_2 avg_diff n
#> <dbl> <dbl> <dbl> <int>
#> 1 2.12 3.50 -1.37
```

Notice that every *for* loop requires three elements:

- 1. Initializing the **output** structure to store results.
 - In the above example, set the output to be a list with n_subsets empty elements. The list is unnamed.
- 2. The sequence to iterate over.
 - In this example, indexes over 1 to n_subsets. It is common to use seq_len (n_subsets) or seq_along (output) instead of the explicit sequence.
- 3. The body of the loop.
 - In the body of the loop, do the stuff of interest.

2.10.1 Vectorization

R works best (i.e., fastest) when you use *vectorized* calculations. This means you should avoid loops whenever a vectorized function is available.

```
x = 1:100
#: Find squared value
x_sq = x^2 # using vectorized power operator
x_sq_slow = numeric(length(x))
```

```
for(i in seq_along(x)) {
    x_sq_slow[i] = x[i]^2
}
#: replace all even values with -1
x_even = ifelse(x %% 2 == 0, -1, x)
```

Note: check out the dplyr::case_when() for more complex handling of multiple if-else statements.

2.10.2 Iterate over elements of a list or vector with purrr::map()

Sometimes there are no vectorized solutions and we have to loop. The purr library provides a nice set of functions to help you make better loops. See R4DS The map functions

We saw above that every *for* loop requires three elements: 1. Initializing the output structure to store results. 2. The sequence to iterate over. 3. The body of the loop.

The Base R approach explicitly requires each step. Alternatively, the purr::map() solution hides the output and sequence steps and let's you focus on the body. This has other advantages - cleaner and easier to understand code, and ability to more easily parallelize the operations (see https://furrr.futureverse.org/).

The first step is to make a function that does everything in the body; in this example it calculates the mean squared error (mse) of each predictive model:

```
calculate_mse <- function(data, model_1, model_2){

#: sub-sample data (25 samples)
data_sub = dplyr::slice_sample(data, n = 25)

#: get output from the models
yhat_1 = model_1(data_sub$x)
yhat_2 = model_2(data_sub$x)

#: score models (using MSE)
perf_1 = mean( (yhat_1 - data_sub$y)^2 )
perf_2 = mean( (yhat_2 - data_sub$y)^2 )

#: output
tibble(perf_1, perf_2)
}</pre>
```

Then we use the map () function to run the loop:

```
library(purrr)
set.seed(876)
map_df(1:n_subsets, ~calculate_mse(data, model_1, model_2)) |>
summarize(
    avg_perf_1 = mean(perf_1),  # avg MSE of model 1
    avg_perf_2 = mean(perf_2),  # avg MSE of model 2
    avg_diff = mean(perf_1 - perf_2),  # average MSE difference
    n = n()  # number of iterations
)

#> # A tibble: 1 x 4
#> avg_perf_1 avg_perf_2 avg_diff  n
#> <dbl> <dbl> <dbl> <int>
#> #> dbl> <dbl> <int>
#> #> 1 2.12 3.50 -1.37 5
```