Università degli Studi di Verona Dipartimento di Informatica

Elaborazioni di Segnali ed Immagini Sviluppo di un algoritmo per il riconscimento delle canzoni

Nicolò Lutteri Damian Mastroiacovo Luigi Capogrosso 16 aprile 2019

Indice

1 Specifiche del progetto

- Obiettivi: in generale, l'idea è quella di sviluppare il codice visto a lezione sul tema in oggetto, ed in particolare si articola nei seguenti sotto-obiettivi:
 - 1. Individuare un numero di casi di studio elevato (20 almeno) dove applicare, variando i parametri del codice visto a lezione;
 - 2. Grazie all'analisi di cui al punto precedente, l'idea è di capire quali condizioni di acquisizione non permettono una buona accuratezza (= numero di casi giusti/numero di casi totali);
 - 3. Capire come vari l'andamento dell'accuratezza al variare della lunghezza del segmento di test.
- Come prendere il massimo dei voti:
 - 1. Riuscendo a sviluppare tutti i sotto obiettivi;
 - 2. Considerando esempi di canzoni diverse tra loro e non troppo simili a quelle viste in aula.

2 Scopo di questo documento

Lo scopo che si prefigge questo docuemento è quello di spiegare come il progetto è stato implementato, in particolare, la finalità è quella di mostrare come sono stati sviluppati tutti i sotto obiettivi illustrando tutti i test svolti.

3 Sotto-obiettivo 1

Individuare un numero di casi di studio elevato (20 almeno) dove applicare, variando i parametri del codice visto a lezione.

Per la creazione dei casi d'uso, la nostra gestione è stata la seguente:

- Nella cartella Rumore/ abbiamo inserito 10 file .mp3 che simulano un disturbo (applausi, bambino che piange, ambulanza, ecc...);
- Nella cartella Libreria/ abbiamo inserito 20 file .mp3 che risultano, invece, essere canzoni di differenti generi (rock, pop, jaz, latino, ecc...).

Ogni audio contenuto in Rumore/ è stato sommato con tutte le canzoni contenute in Libreria/, generando così un nuovo segnale, poi, tagliato a $1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10$ secondi.

In totale i casi creati dovrebbero quindi essere: 10 * 20 * 10 = 2000.

Nel nostro caso specifico però, questi, sono esattamente 780, poiché, nella funzione SommaSegnali.m abbiamo fatto dei controlli preventivi prima della somma di S1 ed S2. Tutti i file sono stati poi salvati nella cartella Casi/atraverso codice Matlab.

4 Sotto-obiettivo 2

Grazie all'analisi di cui al punto precedente, l'idea è di capire quali condizioni di acquisizione non permettono una buona accuratezza (= numero di casi giusti/numero di casi totali).

I risultati da noi ottenuti sono:

• Lunghezza 1:

- Totali: 180

- Giusti: 54

- Sbagliati: 126

- Rapporto: 30%

• Lunghezza 2:

- Totali: 180

Giusti: 88

- Sbagliati: 92

- Rapporto: 48%

• Lunghezza 3:

- Totali: 100

- Giusti: 68

- Sbagliati: 32

- Rapporto: 68%

• Lunghezza 4:

- Totali: 80

- Giusti: 59

- Sbagliati: 21

- Rapporto: 73%

• Lunghezza 5:

- Totali: 80

- Giusti: 59

- Sbagliati: 21

- Rapporto: 73%

• Lunghezza 6:

- Totali: 40

- Giusti: 32

- Sbagliati: 8

- Rapporto: 80%

• Lunghezza 7:

- Totali: 40

- Giusti: 32

- Sbagliati: 8

- Rapporto: 80%

• Lunghezza 8:

- Totali: 40

- Giusti: 34

- Sbagliati: 6

- Rapporto: 85%

• Lunghezza 9:

- Totali: 20

- Giusti: 16

- Sbagliati: 4

- Rapporto: 80%

• Lunghezza 10:

- Totali: 20

- Giusti: 16

- Sbagliati: 4

- Rapporto: 80%

5 Sotto-obiettivo 3

Capire come vari l'andamento dell'accuratezza al variare della lunghezza del segmento di test.

I nostri test mostrano che l'andamento dell'accuratezza al variare della lunghezza del segmento aumenta. Difatti, con una lunghezza del segmento pari a **2 secondi**, abbiamo una percentaule di casi corretti del **48%**, mentre, con una lunghezza pari a **10 secondi** il rapporto risulta essere del **80%**.

Questo a dimostrazione del fatto che, l'accuratezza aumenta all'aumentare della lunghezza del segmento di test, risultato in linea con ciò che noi ci aspettavamo.