

Reference manual

RISMiCal-dev

Last update

January 20, 2024

Index

BASIC USAGE	3
EXECUTION COMMANDS	3
COUPLING WITH EXTERNAL PROGRAMS	3
INPUT REFERENCES	4
RISM NAMELIST	4
RISMSOLVENT NAMELIST	6
VSYM NAMELIST	7
DRISM NAMELIST	7
CHARGEUPOPT NAMELIST	8
MDIIS NAMELIST	8
GRID1D NAMELIST	8
GRID3D NAMELIST	8
VDATA datalist	9
UDATA datalist	9
RISMSOLUTION NAMELIST	10
CURISM NAMELIST	11

Basic Usage

The RISMiCal package includes three basic programs: pure solvent-based, solute-solvent-based (1D), and solute-solvent-based (3D). In order to perform the calculation of the solute-solvent system, solvent susceptibility data obtained by the calculation of the pure solvent system is required. Therefore, the pure solvent system is first calculated, and then the solute solvent system is calculated.

Execution Commands

The executable binary is rismical.x. Also, it is necessary to set the environment variable RISMICALHOME before executing. RISMICALHOME specifies the path for the RISMiCal package folder. The command is

> rismical.x [system] [inputfile.inp]

Here

system: Choose from the following strings:

 $_{\mbox{\scriptsize VV}}$ Pure solvent system, 1d Solute solvent system(1D), $\,$ 3d Solute solvent system(3D)

inputfile.inp: Input file name. The extension should be .inp.

Coupling with external programs

RISMiCal has a built-in function that can be used to couple quantum chemistry calculation programs and MD programs. (To be added in future update.)

Input References

RISM namelist

closure	Specifying a closure [string]		
	KH Kovalenko-Hirata closure (default)		
	HNC Hypernetted-chain closure		
	MSA Mean spherical approximation		
itrmax	Maximum number of iterations [integer] (default=1000)		
conv	Convergence judgment value [real] (default=1.d-8)		
chargeup	Whether or not charging algorithm is used [character]		
	on Charging Execution (default)		
	off Not Charging		
iguess	Specifying guess [integer]		
	0 Use electrostatic potential (default)		
	1 Read an external file (the file is specified by guessfile)		
guessfile	Specifying an external file for guess [character]		
	defaultis inputname.tuv		
alp1d, alp3d	Damping factor [real] (default=1.5 for 1D, 1.0 for 3D)		
grid	Grid specification [character] For 1D-RISM		
	FINE, $N = 8192, \Delta r = 0.025 \text{ Å}$ LFINE, $N = 16384 \Delta r = 0.025 \text{ Å}$		
	STANDARD(default), $N = 4096 \Delta r = 0.05 \text{ Å}$		
	LSTANDARD, $N = 8192 \Delta r = 0.05 \text{ Å}$		
	TEST, $N = 2048 \Delta r = 0.1 \text{Å}$		
	LTEST, $N = 2046 \Delta r = 0.1 \text{ Å}$		
	USER User specification (namelist GRID1D)		
	For 3D-RISM		
	FINE, $N = 256 \Delta r = 0.25 \text{Å}$		
	LFINE, $N = 512 \Delta r = 0.25 \text{ Å}$		
	STANDARD(default), $N = 128 \Delta r = 0.5 \text{ Å}$		
	LSTANDARD, $N = 256 \Delta r = 0.5 \text{ Å}$		
	TEST, $N = 64 \Delta r = 1.0 \text{ Å}$		
	LTEST, $N = 04 \Delta r = 1.0 \text{ Å}$		
	USER User specification (namelist GRID3D)		

iolist Output data specification [character] For solvent-solvent system g ... Radial distribution function (.gvv) h ... Fourier Space Total Correlation Function (.hvk) u ... Interaction Potential (.uvv) c ... Direct correlation function (.cvv) t ... Indirect Correlation Function (.tvv) x ... Solvent susceptibility (.xvk) For 1D solute-solvent system g ... Radial distribution function (.guv) u ... Interaction Potential (.uuv) c ... Direct correlation function (.cuv) t ... Indirect correlation function (.tuv) k ... Fourier Spatial Direct Correlation Function (.cuvk) For 3D solute-solvent system g ... Spatial distribution function (.guv) u ... Interaction Potential (.uuv) v ... Electrostatic field (.vuv) c ... Direct correlation function (.cuv) t ... Indirect correlation function (.tuv) h ... Fourier Space Total Correlation Function (.huvk) q ... Solvent charge density distribution (.qv)

RISMSOLVENT namelist

solvent	Solvent data specification [character, array]	
	Several preset solvents can be specified.	
	TIP3P TIP3P Model Water	
	USER User-specified. Specified in the data list VDATA.	
numspc	Number of solvent components [integer] (default=1)	
temp	Temperature [real] (default=298)	
	The unit is [K]	
dens	Density [real, array] (default=55)	
	The unit is [M]	

VSYM namelist

Valid for 3D-RISM only

nvuniq	Symmetry: Unique solvent atom number [integer]
iuniqlabel	Symmetry Specification Label [Integer / Array]
	Specifies whether the symmetry is unique to the solvent site.
	Positive integer = symmetry unique site
	Negative integer = overlapping sites in symmetry. Specify the
	duplicate destination with a minus

Example. In the case of water

\$vsym nvuniq=2,iuniqlabel(1)=1,2,-2 \$end

Symmetry is unique because of the two types of symmetry: O and H (nvuniq = 2) The third atom, i.e. the second H, overlaps with the second atom in symmetry.

DRISM namelist

Only VV calculations are valid

idrism	Dielectric consistent RISM activation switch [integer]
	0 Do not DRISM (default)
	1 DRISM
delec	Dielectric constant [real] (default=78.5)

CHARGEUPOPT namelist

chgstep	Charging step width [real number] (default=0.1)	
	0 <chgstep 1<="" td="" ≤=""></chgstep>	
chgconv	Convergence judgment value at the time of charging [real]	
	(default=conv*1000)	

MDIIS namelist

nsub	Number of subspaces [integer] (default=10)	
dumpmax	Maximum Damping Factor [real] (default=0.8)	
dumpmin	Minimum Damping Factor [real] (default=0.1)	
dumpnume	Damping Factor Adjustment Parameter [real] (default=0.1)	

GRID1D namelist

ngrid	Number of grids for 1D calculations [integer]
rdelta	Grid width for 1D calculations [real]
	Unit [Å]

GRID3D namelist

ngrid3d	Number of grids for 3D calculations [integer]
rdelta3d	Grid width for 3D calculations [real]
	Unit [Å]

VDATA datalist

line	format	description
1	I A	Number of solvent sites (n1) Solvent name (v1)
2~(n1+1)	A 6F	Site Name $\sigma[Å] \epsilon[J/mol] q[e] x[Å] y[Å] z[Å]$

If there are multiple solvent species, repeat the above example

```
$VDATA
        tip3p

      0.0000000
      0.0000000
      0.0000000

      0.0000000
      0.7566950
      0.5858800

      0.0000000
      -0.7566950
      0.5858800

0
       3.150d0
                       636.0d0 -0.8340d0
       0.400d0
                      192.5d0
                                    0.4170d0
       0.400d0
                      192.5d0
                                     0.4170d0
       sodium_ion
Na
        3.328d0
                        11.59d0 1.0000d0
                                                     0.0000000 0.0000000 0.0000000
       chloride_ion
C1
        4.401d0
                        418.4d0
                                        -1.0000d0
                                                           0.0000000 0.0000000 0.0000000
 $END
```

UDATA datalist

line	format	description
1	I A	Number of solute sites (n1) Solute name (v1)
2~(n1+1)	A 6F	Site Name $\sigma[Å] \epsilon[J/mol] q[e] x[Å] y[Å] z[Å]$

example

```
$UDATA
     tip3p
0
     3.150d0
               636.0d0
                        -0.8340d0
                                   0.0000000 0.0000000 0.0000000
     0.400d0
               192.5d0
                        0.4170d0
                                   0.0000000 0.7566950 0.5858800
               192.5d0
     0.400d0
                        0.4170d0
                                   0.0000000 -0.7566950 0.5858800
 $END
```

RISMSOLUTION namelist

solute	How to specify solute parameters [character]		
	udata Specify by UDATA (default)		
	Other Specify in external files (solutexyz, soluteesp, solutelj)		
solutexyz	Atomic coordinate file of solute [character]		
	default=inputfile.xyz		
soluteesp	Effective charge and electrostatic potential file of solute		
	[character]		
	default=inputfile.esp		
solutelj	LJ potential designation of solute [character]		
	builtinAssign from parameters provided in the package		
	(specified by ljparam) (default)		
	And moreExternal file name (default is inputfile.lj)		
solvent	Solvent susceptibility data faul specification [character]		
ljparam	Parameter file name [character]		
	mm2.prm mm2 parameter set (default)		
	tiny.prm Tinker's minimum set of parameters		
esptype	Electrostatic potential type [character]		
	PCCalculated from effective charge		
	MAP Loading the electrostatic potential map		

CURISM namelist

cuda	Whether or not to use the CUDA version of the external 3D-RISM
	program [logical]
	true Execute external 3D-RISM programs
	false Execute the built-in 3D-RISM program (default)
cupath	Folder path with CUDA version of 3D-RISM executable file
	[character]
ma	Number of subspaces used in the Modified Anderson method
	[integer]
	default=2
param1	Maximum value of the convergent mixing parameter used in the
	Modified Anderson method [real]
	default=0.6
	The value is parm2 <parm1<1.0< td=""></parm1<1.0<>
param2	Minimum value of the converged mixing parameter used in the
	Modified Anderson method [real]
	default=0.2
	The value is 0.0 <parm2<parm1< td=""></parm2<parm1<>