Ergänzende Unterlagen zur Vorlesung Grundlagen der Elektrotechnik (437.201) für Elektrotechnik-Studierende und Biomedical Engineering-Studierende

Renhart Werner

29. September 2008

Inhaltsverzeichnis

1	Das	elektrische Feld	1		
	1.1	Die elektrische Ladung	1		
	1.2	Wirkung elektrischer Ladungen	2		
	1.3	Arbeit, Potential und Spannung	5		
	1.4	Materie im elektrischen Feld	7		
	1.5	Energie im elektrostatischen Feld	15		
2	Gle	eichförmig bewegte Ladungen	17		
	2.1	Der elektrische Strom	17		
	2.2	Das Ohmsche Gesetz	20		
	2.3	Die Temperaturabhängigkeit des elektrischen Widerstandes	24		
	2.4	Analogie zwischen elektrostatischem Feld und Strömungsfeld	25		
	2.5	Die Leistung im stationären Strömungsfeld	26		
3	Gleichstromschaltungen				
	3.1	Der einfache elektrische Stromkreis	28		
	3.2	Zweipole	29		
4	Analyse linearer Gleichstromnetzwerke				
	4.1	Äquivalenz von Quellen	45		
	4.2		45		
	4.3	Ersatzquellenverfahren	47		
	4.4		48		
	4.5	Das elektrische Netzwerk als Graph	49		
	4.6	Die Zweigstromanalyse	52		
	4.7	Das Knotenspannungsverfahren	54		
	4.8	Maschenstromverfahren	57		
5	Ungleichförmig bewegte Ladungen				
	5.1		61		
	5.2	Ÿ	61		
	5.3	Kennwerte sinusförmiger Größen	62		
	5.4	Darstellungsformen zeitharmonischer Wechselgrößen	66		

In halts verzeichn is

6	Das	magnetische Feld	72
	6.1	Grunderscheinungen	72
	6.2	Kraft auf bewegte Ladungen	75
	6.3	Magnetische Kraftwirkung auf einen stromdurchflossenen Leiter	77
	6.4	Die Erregung des magnetischen Feldes	78
	6.5	Materie im magnetischen Feld	83
	6.6	Das Ohmsche Gesetz für magnetische Kreise	87
	6.7	Analogie zwischen dem elektrischen und dem magnetischen Feld	87
	6.8	Wirkungen im Magnetfeld	88
7	Verl	nalten Passiver Bauelemente bei zeitharmonischen Vorgängen	96
	7.1	Allgemeines	96
	7.2	Der Ohm'sche Widerstand	96
	7.3	Die Induktivität	
	7.4	Der Kondensator	
	7.5	Zusammenschaltung von passiven Bauelementen	103
8	Die	Frequenzabhängigkeit passiver Schaltungen	110
	8.1	Allgemeines	110
	8.2	Übertragungsfunktion und Bode-Diagramm	
	8.3	Beispiele	

8 Die Frequenzabhängigkeit passiver Schaltungen

8.1 Allgemeines

In sehr vielen praktischen Fällen ist das Verhalten eines R-L-C-Netzwerkes bei unterschiedlichen Frequenzen interessant. Dazu gibt es mehrere Möglichkeiten der Darstellung. Allen ist dabei gemeinsam, dass aus der Darstellungsform über einen sehr großen Frequenzbereich (einige Hz bis in den GHz-Bereich) sowohl der Amplitudenverlauf als auch der Phasenverlauf ablesbar sind.

8.2 Übertragungsfunktion und Bode-Diagramm

Komplexe Effektiv
werte: $\underline{X},\underline{Y}$

Das Verhältnis $\underline{F} = \frac{Y}{X}$ hängt nur von der Struktur des Netzwerkes und von der Frequenz ab: Zwischen den komplexen Effektivwerten des Stromes und der Spannung jedes einzelnen Zweipols besteht eine lineare, algebraische Beziehung. Die Koeffizienten hängen von $j\omega$ ab. Die Funktion $\underline{F}(j\omega)$ ist die Übertragungsfunktion des Netzwerkes. Ist die Übertragungsfunktion bekannt, so kann die Antwort auf eine beliebige Erregung einfach bestimmt werden.

z.B:
$$x(t) = \sqrt{2}X_0 \cos(\omega_0 t + \varphi_x)$$

$$\underline{X} = X_0 e^{j\varphi_x}$$

$$\underline{Y} = \underline{F}(j\omega_0) \underline{X} = Y_0 e^{j\varphi_y}$$

$$Y_0 = |\underline{F}(j\omega_0)|X_0, \qquad \varphi_y = \varphi_x + \arg(\underline{F}(j\omega_0))$$

$$y(t) = \sqrt{2}Y_0 \cos(\omega_0 t + \varphi_y)$$

Da die Impedanzen und Admittanzen der Elemente R, L und C gebrochene rationale Funktionen von $j\omega$ sind und die Übertragungsfunktion durch Addition, Multiplikation und Division von Impedanzen und Admittanzen erstellt wird, ist die Übertragungsfunktion selbst auch eine gebrochene rationale Funktion von $j\omega$:

$$\underline{F}(j\omega) = \frac{a_0 + a_1(j\omega) + a_2(j\omega)^2 + a_3(j\omega)^3 + \dots + a_m(j\omega)^m}{b_0 + b_1(j\omega) + b_2(j\omega)^2 + b_3(j\omega)^3 + \dots + b_n(j\omega)^n} = \frac{\underline{Z}(j\omega)}{\underline{N}(j\omega)}.$$

Die Koeffizienten $a_0, a_1, a_2, a_3, \dots, a_m$ des Zählerpolynoms $\underline{Z}(j\omega)$ und $b_0, b_1, b_2, b_3, \dots$, b_n des Nennerpolynoms $\underline{N}(j\omega)$ sind reelle Konstanten.

Beispiel:

$$\underline{\underline{U}}_{e} = \frac{\underline{U}_{a}}{L} = \frac{\underline{\underline{U}}_{a}}{R + j\omega L + \frac{1}{j\omega C}} = \frac{\underline{\underline{I}}_{j\omega C}}{R + j\omega L + \frac{1}{j\omega C}} = \frac{\underline{\underline{Z}}(j\omega)}{\underline{\underline{N}}(j\omega)}.$$

Die Darstellungen der Übertragungsfunktion können im Pol-Nullstellen-Plan (PN-Plan) oder im Bode-Diagramm erfolgen.

Das Bode-Diagramm ist die graphische Darstellung der Übertragungsfunktion (8.1).

$$\underline{F}(j\omega) = |\underline{F}(j\omega)|e^{j\arg(\underline{F}(j\omega))}.$$
(8.1)

Das Bode-Diagramm besteht aus zwei Abbildungen. In der einen wird der Amplitudenverlauf über der Frequenz aufgetragen. Diese Abbildung wird auch als Amplitudengang bezeichnet. In einer zweiten Abbildung wird die Phasenverschiebung über der Frequenz aufgetragen, dem Phasengang entsprechend. Der zu überstreichende Frequenzbereich ist allgemein sehr groß. Ein linearer Maßstab für die Frequenz ist daher wenig sinnvoll. Sowohl für den Amplitudengang als auch für den Phasengang wird die Frequenz auf der horizontalen Achse im logarithmischen Maß aufgetragen. Somit entspricht der Abstand von beispielsweise 10 Hz auf 100 Hz gleich viele cm am Papier wir der Abstand zwischen 100 kHz und 1 MHz. Beim Amplitudengang hat sich als zweckmäßig erwiesen, auch den Amplitudenwert im logarithmischen Maß aufzutragen.

Im zweiten Diagramm wird die Phase der Übertragungsfunktion ($\arg(\underline{F}(j\omega))$) über der Frequenz aufgetragen, dem **Phasengang** entsprechend.

Falls alle Pole und Nullstellen reell sind, kann die Übertragungsfunktion in folgende Form umgewandelt werden:

$$\underline{F}(j\omega) = K \frac{\left(\frac{j\omega}{\omega_0}\right)^{m_1} \left(1 \pm \frac{j\omega}{\omega_1}\right) \left(1 \pm \frac{j\omega}{\omega_2}\right) \left(1 \pm \frac{j\omega}{\omega_3}\right) \cdots \left(1 \pm \frac{j\omega}{\omega_{m-m_1}}\right)}{\left(\frac{j\omega}{\Omega_0}\right)^{n_1} \left(1 + \frac{j\omega}{\Omega_1}\right) \left(1 + \frac{j\omega}{\Omega_2}\right) \left(1 + \frac{j\omega}{\Omega_3}\right) \cdots \left(1 + \frac{j\omega}{\Omega_{n-n_1}}\right)}.$$

Die Frequenzen $\omega_0, \omega_1, \omega_2, \omega_3, \cdots \omega_{m-m1}$ und $\Omega_0, \Omega_1, \Omega_2, \Omega_3, \cdots \Omega_{n-n1}$ sind positiv reell. Im Zähler gilt das positive Vorzeichen, falls die Nullstelle negativ ist und umgekehrt. Der Betrag wird logarithmisch in **Dezibel** [dB], gemäß nachfolgender Definition, dargestellt.

$$|\underline{F}(j\omega)|_{dB} = 20 \log_{10} |\underline{F}(j\omega)|.$$

Entsprechend der Rechenregeln für die logarthmische Funktion können sowohl Betrag als auch Phase als Summe von linearen Termen dargestellt werden:

$$|\underline{F}(j\omega)|_{dB} = \underbrace{K}_{\underline{F}_{1}(j\omega)}|_{dB} + \left|\underbrace{\left(\frac{j\omega}{\omega_{0}}\right)^{m_{1}}}_{\underline{F}_{2}(j\omega)}|_{dB} + \left|\underbrace{\left(1 \pm \frac{j\omega}{\omega_{1}}\right)}_{\underline{G}_{1}(j\omega)}|_{dB} + \left|\underbrace{\left(1 \pm \frac{j\omega}{\omega_{2}}\right)}_{\underline{G}_{2}(j\omega)}|_{dB} + \cdots + \left|\underbrace{\left(1 \pm \frac{j\omega}{\omega_{m-m_{1}}}\right)}_{\underline{G}_{1}(j\omega)}|_{dB} + \cdots + \frac{1}{\left|\underbrace{\left(\frac{j\omega}{\Omega_{0}}\right)^{n_{1}}}_{\underline{G}_{2}(j\omega)}|_{dB}} + \cdots + \frac{1}{\left|\underbrace{\left(1 + \frac{j\omega}{\Omega_{1}}\right)}_{\underline{G}_{2}(j\omega)}|_{dB}} + \cdots + \frac{1}{\left|\underbrace{\left(1 + \frac{j\omega}{\Omega_{n-n_{1}}}\right)}_{\underline{G}_{2}(j\omega)}|_{dB}} + \cdots + \frac{1}{\left|\underbrace{\left(1 + \frac{j\omega}{\Omega_{n-n_{1}}}\right)}_{\underline{G}_{2}(j\omega)}|_{dB}} + \cdots + \frac{1}{\left|\underbrace{\left(1 + \frac{j\omega}{\Omega_{n-n_{1}}}\right)}_{\underline{G}_{2}(j\omega)}|_{\underline{G}_{2}(j\omega)}} + \cdots + \frac{1}{\left|\underbrace{\left(1 + \frac{j\omega}{\Omega_{n-n_{1}}}\right)}_{\underline{G}_{2}(j\omega)}} + \cdots + \frac{1}{\left|\underbrace{\left(1 + \frac{j\omega}{\Omega_{n-n_{1}}}\right)}_{\underline{G}_{2}(j\omega)}}$$

$$\arg \underline{F}(j\omega) = \arg(K) + \arg\left(\frac{j\omega}{\omega_0}\right)^{m_1} + \arg\left(1 \pm \frac{j\omega}{\omega_1}\right) + \dots + \arg\left(1 \pm \frac{j\omega}{\omega_{m-m_1}}\right) + \arg\left(\frac{1}{\left(\frac{j\omega}{\Omega_0}\right)^{n_1}}\right) + \arg\left(\frac{1}{1 + \frac{j\omega}{\Omega_1}}\right) + \dots + \arg\left(\frac{1}{1 + \frac{j\omega}{\Omega_{n-n_1}}}\right).$$

Es reicht, die folgenden 5 charakteristischen Terme eingehend zu behandeln:

$$\underline{F}_{1}(j\omega) = K, \qquad \underline{F}_{2}(j\omega) = \left(\frac{j\omega}{\omega_{0}}\right)^{m_{1}}, \qquad \underline{F}_{3}(j\omega) = \left(\frac{1}{\left(\frac{j\omega}{\Omega_{0}}\right)^{n_{1}}}\right)$$

$$\underline{F}_{4}(j\omega) = 1 + \frac{j\omega}{\omega_{1}}, \qquad \underline{F}_{5}(j\omega) = \left(\frac{1}{1 + \frac{j\omega}{\Omega_{1}}}\right)$$

• $\underline{F}_1(j\omega)$:

$$|\underline{F}_{1}(j\omega)|_{dB} = 20 \log K \qquad \arg(\underline{F}_{1}(j\omega)) = 0^{\circ}$$

$$|F_{1}(j)| \qquad \arg(\underline{F}_{1}(j\omega)) = 0^{\circ}$$

$$|F_{1}(j\omega)|_{dB} = 20 \log K \qquad \arg(\underline{F}_{1}(j\omega)) = 0^{\circ}$$

$$|F_{1}(j\omega)|_{dB} = 20 \log K \qquad \arg(\underline{F}_{1}(j\omega)) = 0^{\circ}$$

$$|F_{1}(j\omega)|_{dB} = 20 \log K \qquad \arg(\underline{F}_{1}(j\omega)) = 0^{\circ}$$

• $\underline{F}_2(j\omega)$:

$$|\underline{F}_2(j\omega)|_{dB} = 20 \log \left(\frac{\omega}{\omega_0}\right)^{m_1}$$
$$= 20 \log \omega^{m_1} - 20 \log \omega_0^{m_1} =$$
$$= m_1 20 \log \omega - m_1 20 \log \omega_0$$

$$\arg(\underline{F}_2(j\omega)) = m_1 \, 90^{\circ}$$
$$-180^{\circ} \le \arg(\underline{F}_2(j\omega)) \le 180^{\circ}$$

Gerade mit einer Steigung von m_1 mal 20 dB je Dekade. Bei $\omega = w_0$ ist $\underline{F}_2(j\omega) = 0 dB$.

• $\underline{F}_3(j\omega)$:

$$|\underline{F}_{3}(j\omega)|_{dB} = 20 \log \left(\frac{\Omega_{0}}{\omega}\right)^{n_{1}}$$

$$= 20 \log \Omega_{0}^{n_{1}} - 20 \log \omega^{n_{1}} =$$

$$= n_{1} 20 \log \Omega_{0} - n_{1} 20 \log \omega$$

Gerade mit einer Steigung von n_1 mal -20 dB je Dekade. Bei $\omega = \Omega_0$ ist $\underline{F}_3(j\omega) = 0 dB$.

• $\underline{F}_4(j\omega)$:

$$|\underline{F}_4(j\omega)|_{dB} = 20 \log \sqrt{1 + \left(\frac{\omega}{\omega_1}\right)^2}$$

$$\arg(\underline{F}_4(j\omega)) = \arctan\frac{\omega}{\omega_1}$$

Näherung für $\omega \ll \omega_1$:

Näherung für $\omega \ll \omega_1$:

$$\sqrt{1 + \left(\frac{\omega}{\omega_1}\right)^2} \approx 1 \Rightarrow 20 \log 1 = 0 dB$$

$$\arctan \frac{\omega}{\omega_1} \approx 0^{\circ}$$

Näherung für $\omega \gg \omega_1$:

Näherung für $\omega \gg \omega_1$:

$$\sqrt{1 + \left(\frac{\omega}{\omega_1}\right)^2} \approx \frac{\omega}{\omega_1}$$

$$\arctan \frac{\omega}{\omega_1} \approx 90^{\circ}$$

$$\Rightarrow 20 \log \frac{\omega}{\omega_1} = 20 \log \omega - 20 \log \omega_1|_{dB}$$

 $\omega = \omega_1$:

$$\omega = \omega_1$$
:

$$\sqrt{1 + \left(\frac{\omega}{\omega_0}\right)^2} = \sqrt{2}$$

$$\Rightarrow 20 \log \sqrt{2} = 10 \log 2 \approx 3|_{dB}$$

$$\arctan \frac{\omega}{\omega_1} = \arctan 1 = 45^{\circ}$$

Anstelle der genauen Kurven werden Näherungen durch Geradenstücke verwendet. Dies erleichtert die Addition der Kurven wesentlich.

• $\underline{F}_5(j\omega)$:

$$|\underline{F}_{5}(j\omega)|_{dB} = 20 \log \frac{1}{\sqrt{1 + \left(\frac{\omega}{\Omega_{1}}\right)^{2}}}$$

$$= -20 \log \sqrt{1 + \left(\frac{\omega}{\Omega_{1}}\right)^{2}}$$

$$\arg(\underline{F}_5(j\omega)) = -\arctan\frac{\omega}{\Omega_1}$$

Näherung für $\omega \ll \Omega_1$:

$$\sqrt{1 + \left(\frac{\omega}{\Omega_1}\right)^2} \approx 1 \Rightarrow -20 \log 1 = 0 dB$$

Näherung für $\omega \gg \Omega_1$:

$$\sqrt{1+\left(\frac{\omega}{\Omega_1}\right)^2}\approx\frac{\omega}{\Omega_1}$$

$$\Rightarrow -20 \log \frac{\omega}{\Omega_1} = 20 \log \Omega_1 - 20 \log \omega|_{dB}$$

 $\omega = \Omega_1$:

$$\sqrt{1+\left(\frac{\omega}{\Omega_1}\right)^2}=\sqrt{2}$$

$$\Rightarrow -20 \log \sqrt{2} = -10 \log 2 \approx -3|_{dB}$$

Näherung für $\omega \ll \Omega_1$:

$$-\arctan\frac{\omega}{\Omega_1} \approx 0^{\circ}$$

Näherung für $\omega \gg \Omega_1$:

$$-\arctan\frac{\omega}{\Omega_1} \approx -90^{\circ}$$

$$\omega = \Omega_1$$
:

$$-\arctan\frac{\omega}{\Omega_1} = -\arctan 1 = -45^{\circ}$$

Vertiefendes Beispiel:

- a) Mit den Bauteilen $R_1 = 10 \Omega$ und $L = 100 \, mH$ soll ein Tiefpass entworfen werden (lässt vorzugsweise tiefe Frequenzen durch). Finden Sie die Übertragungsfunktion und zeichnen Sie das Bode-Diagramm.
- b) In einem zweiten Schritt soll mit den Bauelementen $R_2 = 10 \Omega$ und C = 10 mF ein Hochpass gefunden werden. Finden Sie auch für diesen die Schaltung entwickeln Sie die Übertragungsfunktion.

ad a) Tiefpass:

Bode-Diagramm für den Tiefpass, angenähert durch Geradenstücke.

ad b) Hochpass:

$$\Rightarrow K = R_2C = 10 \cdot 0.01 = 0.1 20 \log(0.1) = -20 dB$$

$$(j\omega)^1 = \left(\frac{j\omega}{\omega_0}\right)^{m_1} \Rightarrow \omega_0 = 1[s^{-1}], m_1 = 1$$

$$\Omega_2 = \frac{1}{R_2C} = \frac{1}{10 \cdot 0.01} = 10[s^{-1}]$$

$$\underline{f}_1 = K; \underline{f}_2 = \left(\frac{j\omega}{\omega_0}\right)^{m_1}; \underline{f}_3 = \frac{1}{1 + \frac{j\omega}{\Omega_2}}$$

8.3 Beispiele

Stellen Sie die Übertragungsfunktionen nachfolgend abgebildeter Schaltungen auf. Zeichnen Sie dazu jeweils Amplituden- und Phasengang auf. Durch die Hintereinanderschaltung welcher Schaltungen kann man einen Bandpaß bzw. eine Bandsperre erreichen? Folgende Bauteilwerte sind gegeben:

$$R = 10 \Omega$$
, $L = 15.9155 \, mH$, $C = 15.9155 \, \mu F$.

1. R und L Schaltung

2. L und R Schaltung

- 3. R und C Schaltung
- 4. C und R Schaltung

