

OpenPPL Arm Server 技术分享

商汤 AI 推理引擎 OpenPPL 实战训练营

邱君仪 2022.03.03

邱君仪

商汤科技高性能计算部门异构计算工程师

- 上海交通大学本科毕业,获 UC San Diego 硕士学位
- 曾任职于 Intel, Falcon Computing 和 Google
- 目前在商汤科技负责高性能推理引擎 PPL ARM Server 架构的相关研发

课程提纲

OpenPPL ARM Server 是针对高性能 ARM 服务器优化的深度学习推理引擎。本次分享将结合 ARM 服务器的架构特点,以基于鲲鹏 KP920 芯片的研发和优化为例,对推理引擎的核心卷积技术的算法设计及性能优化进行介绍。

- 1. OpenPPL ARM Server 简介
- 2. ARMv8 及 Neon(Advanced SIMD) 指令集
- 3. ARM 服务器微架构特点
- 4. OpenPPL ARM Server 卷积设计解析
- 5. OpenPPL ARM Server 综合性能展示

实战训练营

Part 1	OpenPPL Arm Server 简介 P03	
Part 2	Arm架构及A64指令集、Neon指令	P05-P07
Part 3	Arm Server 微架构特点	P09-P15
Part 4	OpenPPL Arm Server 卷积实现	P17-P28
Part 5	OpenPPL Arm Server 性能展示	P29-P32

Outline

Part 1 OpenPPL Arm Server 简介 P03

Part 2 Arm架构及A64指令集、Neon指令 P05-P07

Part 3 Arm Server 微架构特点 P09-P15

Part 4 OpenPPL Arm Server 卷积实现 P17-P28

Part 5 OpenPPL Arm Server 性能展示 P29-P32

Outline

OpenPPL Arm Server 简介

OpenPPL Arm Server

- 针对高性能ARM架构服务器处理器优化的深度学习推理引擎
- 目前支持 FP32 及 FP16 两种浮点数精度格式
- 支持常见的分类网络以及部分超分、分割网络推理
- 支持多batch数据、多线程、多推理实例等不同并行方式

Part 1 OpenPPL Arm Server 简介 P03

Part 2 Arm架构及A64指令集、Neon指令 P05-P07

Part 3 Arm Server 微架构特点 P09-P15

Part 4 OpenPPL Arm Server 卷积实现 P17-P27

Part 5 OpenPPL Arm Server 性能展示 P29-P32

Outline

Arm架构及A64指令集、NEON指令简介

• Arm

- 精简指令集 (RISC) 处理器架构
- 通常使用定长指令集 (32-bit)
- 广泛应用在移动端、嵌入式设备

Arm架构及A64指令集、NEON指令简介

- Arm v8
 - 首次支持A64指令集架构 (64位)
 - 更新NEON指令
- Arm v8.2
 - 支持 FP16 运算
 - (可选) 支持SVE
- Arm v8.4
 - 支持有/无符号整数点积指令(SDOT, UDOT)
- Arm v8.6
 - 支持通用矩阵乘法 (GEMM, [2x4]×[4x2], 混合精 度)
 - 支持 BF16 运算
 - SIMD矩阵乘法运算

- Arm v9
 - 基于Arm v8.5特性
 - · 支持SVE 2指令集

Arm架构及A64指令集、NEON指令简介

- NEON指令 (Advanced SIMD)
 - 128-bit 向量数据处理,支持 1、2、4、8字节不同长度的元素
 - 支持全长 (128-bit) 或者半长 (64-bit) 向量计算,同时用于标量浮点数计算
 - 提供了32个向量寄存器

- 1 EOR V0.16B, V0.16B, V0.16B
- 2 FMOV V6.H[0], 6.0e+0
- 3 LD1 {V0.16B}, [X9]
- 4 FADD V0.4S, V0.4S, V0.4S
- 5 FMLA V0.8H, V8.8H, V16.8H
- 6 FMLA V17.4S, V9.4S, V0.S[1]

Part 1 OpenPPL Arm Server 简介 P03

Part 2 Arm架构及A64指令集、Neon指令 P05-P07

Part 3 Arm Server 微架构特点 P09-P15

Part 4 OpenPPL Arm Server 卷积实现 P17-P27

Part 5 OpenPPL Arm Server 性能展示 P29-P32

Outline

Arm Server 微架构特点——以鲲鹏920处理器为例

- 鲲鹏920处理器的体系结构特点——核心架构
 - TaiShan v110 (Armv8.2-A ISA, 非公版设计)
 - 前端:
 - 每周期最多取指4条
 - 支持静态、动态(两级)分支预测
 - 后端:
 - 乱序执行
 - 整数运算单元: 3条ALU流水线, 1条MDU流水线 (整数乘除法运算)
 - AdvSIMD与浮点运算单元:两条FSU流水线(AdvSIMD)
 - Load/Store单元:两个L/S端口,含硬件自动预取器

Arm Server 微架构特点——以鲲鹏920处理器为例

- 鲲鹏920处理器的体系结构特点——核心架构
 - 缓存:
 - L1 ICache: 4路, 64K,B (private)
 - L1 DCache: 4路, 64K,B (private)
 - L2 Cache: 8路, 512K,B (private)
 - L1 ITLB: 全关联,32表项(支持4KB~1GB页大小)
 - L1 DTLB: 全关联, 32表项 (支持4KB~1GB页大小)
 - L2 TLB: 4路组关联, 1152表项
 - LLC/L3 Cache: 32~64M,B (1 M,B per core, shared)

Arm Server 微架构特点——以鲲鹏920处理器为例

- 鲲鹏920处理器的体系结构特点——片上系统
 - 处理器内核集群 CCL (Core CLuster)
 - 包含4个处理器内核及其L1 I/DCache、L2 Cache
 - 包含1个L3 Cache Tag
 - 超级内核集群 SCCL/(Super CCL)
 - 包含6个/8个内核集群 (CCL)
 - 包含2个I/O集群,4个DDR控制器
 - 包含若干L3 Cache Data, 多核缓存一致性模块(HHA)
 - 环形总线互联
 - 相应I/O部件: I/O集群,超级I/O集群

鲲鹏920微架构性能测试

• 计算部分:

Instruction	Latency (cycles)	Throughput (IPC)	
IADD (vector)	2	2	
FADD (vector)	5	2	
FMUL (vector)	5	2	
FMADD (scalar)	5	2	
FMLA (vector)	5	2	
FDIV (vector)	17	0.08225	

• Little's law: 需要 <u>5 × 2 = 10 条独立(无数据依赖)的FMLA指令</u>,才能充分利用Neon单元

鲲鹏920微架构性能测试

• 访存部分:

Instruction	Latency (cycles)	Throughput (IPC)
LDR/LD1 (16 bytes)	~4 (L1 cache hit)	1.85
STR/ST1 (16 bytes)		<u>0.95</u>

Location	Latency (cycles)	
L1D Cache	~4	
L2 Cache	8~9 (L1 TLB hit) 14~16 (L1 TLB miss)	
L3 Cache	25~33 (local) 47~82 (remote)	

鲲鹏920微架构性能测试

• 访存部分:

- 使用一般的pointer chasing无法看到特征的L2, L3 Cache以及内存的load to use latency
- 进一步的测试显示,在4K页的配置下,L2 Cache latency受到了L1 TLB miss的影响。

Part 1 OpenPPL Arm Server 简介 P03

Part 2 Arm架构及A64指令集、Neon指令 P05-P07

Part 3 Arm Server 微架构特点 P09-P15

Part 4 OpenPPL Arm Server 卷积实现 P17-P27

Part 5 OpenPPL Arm Server 性能展示 P29-P32

Outline

卷积

- input: (N, C_i, H_i, W_i), output: (N, C_o, H_o, W_o), weights: (C_o, C_i, K_h, K_w)
- 计算量: C_o × C_i × K_h × K_w × H_o × W_o × 2 FLOP
- 并行维度: C_o, H_o, W_o
- 累加维度: C_i, K_h, K_w

• 卷积——基础 Im2col-GEMM 实现

矩阵乘法: A (weights) × \$ (im2col) = C (output)
 [Co, Ci × Ki × Kw] [Ci × Ki × Kw, Ho × Wo] [Co, Ho × Wo]

• 算法优化

- Tile Im2col:
 - 分块做im2col,减小用于im2col的额外内存开销

- Direct:
 - 按卷积公式计算,无额外im2col开销
 - 在C。维度上进行向量化

- 算法优化 (续)
 - Winograd:
 - 降低卷积计算量,常用于 3×3、5×5 的卷积
 - 减小卷积中的累加维度,增加额外的并行维度
 - 例: BnF3中, 卷积核 3² 次的乘累加, 转换成 (n+2)² 组并行点乘 (矩阵乘法)

- 需要额外的前后转换计算
- 在计算机浮点数运算中会产生误差
 - 在 FP16 精度下更明显, 切分单元越大则误差越大

- 数据排布优化
 - Ndarray 排布 —— 原始张量格式 (n, c, h, w)
 - NBCX 排布 —— (n, c, h, w) → (n, c/c_{blk}, h, w, c_{blk})
 - · 在 im2col转换 / 直接卷积 / winograd前后转换 中,易于利用Neon指令向量化
 - 在channel wise算子 (如 pooling2d, resize等) 中,充分利用Neon指令

• 数据排布优化

- NBCX 排布下,对卷积权重进行重排
 - $(C_o, C_i, K_h, K_w) \rightarrow (C_o/c_{blk}, C_i/c_{blk}, K_h, K_w, ic_{blk}, oc_{blk})$
 - 以外积的方式进行计算时, 权重访存连续
 - 重排在离线处理/预处理的阶段完成

OC0	OC1	OC2	OC3	IC0
OC0	OC1	OC2	OC3	IC1
OC0	OC1	OC2	OC3	IC2
OC0	OC1	OC2	OC3	IC3

Weight

	100	101		102
lm2col	IC0	IC1		IC2
(input)	IC0	IC1		IC2
\ I /		\	т	

1				
hw0	IC3	IC2	IC1	IC0
hw1	IC3	IC2	IC1	IC0
hw2	IC3	IC2	IC1	IC0
hw3	IC3	IC2	IC1	IC0
J			1/2	

Output

hw0	OC3	OC2	OC1	OC0
hw1	OC3	OC2	OC1	OC0
hw2	OC3	OC2	OC1	OC0
hw3	OC3	OC2	OC1	OC0

• GEMM分块计算优化 —— 寄存器分配

- 约束: #寄存器 = (m0 / c_{blk}) × n0 + n0 + 2 (m0 / c_{blk}) ≤ 32
- 分块1: $m0 = c_{blk}$, n0 = 15 $\frac{\#VFMA}{\#VLD}$: fp16 5.21, fp32 3.15
- 分块2: $m0 = c_{blk} \times 2$, n0 = 10 $\frac{\#VFMA}{\#VLD}$: fp16 6.15, fp32 4.44
- 分块3: $m0 = c_{blk} \times 3$, n0 = 7 $\frac{\#VFMA}{\#VLD}$: fp16 5.42, fp32 4.42

B WIDTH

- GEMM分块计算优化 —— 缓存复用(cache blocking)优化
 - · 保留三个矩阵各自的一个分块在L1 DCache中
 - $(m1 \times k1 + k1 \times n1 + m1 \times n1) \times sizeof(type) \approx 64KB$
 - 采用相对固定的分块大小
 - 支持在预处理阶段,搜索性能最优的分块大小
 - 权重数据在预处理阶段时,会按照分块大小进行重排优化访存
 - Kunpeng920上针对L2 Cache的blocking优化没有明显效果

• 多线程优化

- 任务分割
 - 单batch内部,按 Co, Ho, Wo并行维度分割
 - 多batch,按独立的 batch 分割
 - 分组卷积,按独立的分组分割
- 任务并行调度 —— 基于OpenMP的多线程实现
- 多线程绑定到同一NUMA节点内的核心

• 多线程 Conv2d – Im2col

end for

```
for g_{outer} = 0 to #group by seg_{group} do
  for b_{outer} = 0 to #batch by seg_{batch} do
     if pack input for group do
       copy_from_input_to_buffer
                                                                                                                 parallel region
     end if
     for (g_{inner}, b_{inner}, hw_{outer}, oc_{outer}) = 0 to (seg_{group}, seg_{batch}, H_o \cdot W_o, C_o) by (1, 1, seg_{hw}, seg_{oc}) do
        im2col_transform
                                                                                                                 parallel region
        gemm_kernel
     end for
     if not in-place group convolution do
        copy_from_buffer_to_output
                                                                                                                 parallel region
     end if
  end for
```


多线程 Conv2d - Winograd

```
for g = 0 to #group by 1 do
 for idx_{wg-block} = 0 to \#wg-block by seg_{wg-block} do
    for ic_{outer} = 0 to C_i by seg_{ic} do
       wg_preprocess
                                                                parallel region
       for oc_{outer} = 0 to C_o by seg_{oc} do
                                                               parallel region
          wg_gemm_kernel
          if last C_i segment do
            wg_postproccess
                                                                parallel region
          end if
       end for
     end for
  end for
end for
```


Part 1 OpenPPL Arm Server 简介 P03

Part 2 Arm架构及A64指令集、Neon指令 P05-P07

Part 3 Arm Server 微架构特点 P09-P15

Part 4 OpenPPL Arm Server 卷积实现 P17-P27

Part 5 OpenPPL Arm Server 性能展示 P29-P32

Outline

• 推理性能——单线程单batch

Performance Comparison (FP16, single batch w/ single thread on Kunpeng920)

• 推理性能——单线程单batch

• 推理性能——多线程多batch[※]

• 推理性能——多线程多batch[※]

OpenPPL Arm Server 开发计划与展望

- 支持更多的网络模型和算子
 - 语义分割、目标检测等网络
- 支持
 - Int8 数据精度推理
 - Arm v9 特性支持

THANK YOU

Q & A

OpenPPL 微信公众号

OpenPPL QQ 交流群

- OpenPPL 官网主页: https://openppl.ai/
- OpenPPL GitHub 主页: https://github.com/openppl-public
- OpenPPL 知乎账号: https://www.zhihu.com/people/openppl

Thanks for listening!

Q&A Time

实战训练营