Quiz:

- (a) In which scenarios are inherently interpretable models usually much harder to interpret?
- (b) Why does usually interpretability become worse or more difficult if the generalization performance of the model improves?
- (c) Should we always prefer interpretable models? Explain and describe for which use cases interpretable models would be inconvenient?
- (d) In the linear model, the effect and importance of a feature can be inferred from the estimated β -coefficients. Is this statement true or false. Explain!
- (e) What is so special about LASSO compared to a LM with regards to interpretability? Would you always prefer LASSO over a LM?
- (f) Do the beta-coefficients of GLM always provide simple explanations with respect to the target outcome to be predicted?
- (g) Explain the feature importance provided by model-based boosting. What is the difference to the Gini) feature importance from decision trees?
- (h) How can we use inherently interpretable models to provide insights whether two features are dependent?
- (i) What are the disadvantages of CART? What methods address them and how?

Exercise 1:

Consider the following dataset with 11 observations and two features: where the last column corresponds to the

	1	2	3	4	5	6	7	8	9	10	11	$\sum_{i=1}^{n}$
\overline{y}	-7.90	-6.08	-3.74	-1.18	-1.23	-0.55	0.05	0.88	4.74	2.93	2.55	-9.53
x_1	-1.00	-0.80	-0.60	-0.40	-0.20	0.00	0.20	0.40	0.60	0.80	1.00	0.00
x_2	0.95	0.65	0.40	0.07	0.06	0.02	0.02	0.14	0.34	0.60	0.98	4.23

sum of values of each row.

The following shows the output of an LM $(x_2 \sim x_1)$ and a GAM $(x_2 \sim s(x_1))$:

	LM			GAM			
Predictors	Estimates	CI	p	Estimates	CI	p	
(Intercept)	0.38	0.12 - 0.65	8.851e-03	0.38	0.35 - 0.42	3.196e-07	
x1	-0.01	-0.42 - 0.41	9.749e-01				
s(x1)						2.542e-05	
Observations	11			11			
R ² / R ² adjusted	0.000 / -0	0.111		0.988			

The R^2 -value for the GAM model is the adjusted one.

- a) What conclusions could you draw from the LM model output for the relationship between x_1 and x_2 ?
- b) Considering the information provided by the GAM model: How can the previous statement about the relationship between x_1 and x_2 be extended?

Exercise 2:

You are given the bike rental data with the features season, temp, hum, windspeed, and days_since_2011. A binary target variable y is created:

- Class y=1: "high number of bike rentals" > 70% quantile (i.e., cnt > 5531)
- Class y=0: "low to medium number of bike rentals" (i.e., cnt ≤ 5531)

The following table shows the absolute joint and marginal probabilities of y and season.

-	WINTER	SPRING	SUMMER	FALL	Σ
y=0	174.00	111.00	98.00	128.00	511.00
y=1	7.00	73.00	90.00	50.00	220.00
\sum	181.00	184.00	188.00	178.00	731.00

- a) Calculate and interpret the odds of "high number of bike rentals" vs. "low to medium number of bike rentals" in winter (odds_{winter}).
- b) Calculate and interpret the odds ratio of high vs. low number of bike rentals when season changes from winter to spring.
- c) Consider the output of a GLM on $y \sim$ season:

	Estimate	Std. Error	$\Pr(> z)$
(Intercept)	-3.2131	0.3854	0.0000
seasonSPRING	2.7941	0.4138	0.0000
${\rm seasonSUMMER}$	3.1280	0.4121	0.0000
seasonFALL	2.2731	0.4199	0.0000

Interpret the β -estimate for the intercept and season SPRING.

d) Now compare the two coefficients with the ones in the full model:

	Estimate	Std. Error	Pr(> z)
(Intercept)	-8.5176	1.2066	0.0000
seasonSPRING	1.7427	0.5977	0.0035
${\rm seasonSUMMER}$	-0.8566	0.7660	0.2635
seasonFALL	-0.6417	0.5543	0.2470
temp	0.2902	0.0391	0.0000
hum	-0.0627	0.0124	0.0000
windspeed	-0.0925	0.0305	0.0024
days_since_2011	0.0166	0.0014	0.0000

Exercise 3:

You are again given the bike sharing data. The target variable cnt is renamed in y and the only considered features are $days_since_2011$ and temp. A linear model with single feature (including intercept) as baselearner (BL) is estimated. The changes in risk (MSE) in each iteration are given in the following tables:

iteration	baselearner	old_risk	new_risk
1	days_since_2011	$1\ 873\ 827.22$	1 733 044.28
2	temp	1733044.28	$1\ 597\ 057.93$
3	$days_since_2011$	$1\ 597\ 057.93$	$1\ 486\ 743.19$
4	temp	$1\ 486\ 743.19$	$1\ 379\ 888.98$
5	temp	$1\ 379\ 888.98$	$1\ 293\ 337.07$

Calculate the feature importance of the two features.