BROUILLON - SOMMER LES CARRÉS DES CHIFFRES D'UN NATUREL - MANQUE L'ASPECT PROG POUR PRÉCISER LA PÉRIODICITÉ

CHRISTOPHE BAL

Pour un naturel $n = [c_{d-1}c_{d-2}\cdots c_1c_0]_{10} \stackrel{\text{def}}{=} \sum_{k=0}^{d-1} c_k 10^k$ avec $c_{d-1} \neq 0$, on pose $\phi(n) = \sum_{k=0}^{d-1} (c_k)^2$ et $\tau(n) = d$ sera appelé taille de n.

Pour $(n;k) \in \mathbb{N}^2$, on définit ${}_na_0 = n$ et ${}_na_k = \phi^k(n) \stackrel{\text{def}}{=} \phi \circ \phi \circ \cdots \circ \phi(n)$ avec (k-1) compositions si k > 0. Donc ${}_na_{k+1} = \phi \left({}_na_k \right)$. On note enfin $E_n = \{ {}_na_k \text{ pour } k \in \mathbb{N} \}$.

Fait 1. $\forall n \in \mathbb{N}, \ \phi(n) \leqslant 81d \ où \ d = \tau(n)$.

Preuve. Si
$$n = [c_{d-1}c_{d-2}\cdots c_1c_0]_{10}$$
 alors $\phi(n) = \sum_{k=0}^{d-1}(c_k)^2 \leqslant \sum_{k=0}^{d-1}9^2 = 81d$.

Fait 2. $\forall n \in \mathbb{N}$, notant $d = \tau(n)$, nous avons les résultats suivants :

- (1) Si $d \geqslant 4$ alors $\tau(\phi(n)) < \tau(n)$.
- (2) Si $d \leq 3$ alors $\tau(\phi(n)) \leq 3$.

Preuve. Notons que $n \ge 10^{d-1}$. Le comportement des fonctions 10^{x-1} et 81x sur \mathbb{R}_+^* assure l'existence d'un naturel D tel que $\forall d \in \mathbb{N}, \ d \ge D$ implique $10^{d-1} > 81d \ge \phi(n)$. On a même beaucoup mieux : si $10^{D-1} > 81D \ge \phi(n)$ alors $d \ge D$ implique $10^{d-1} > 81d \ge \phi(n)$.

Comme $10^3 > 81 \times 4$, nous avons sans effort le 1er point (rappelons que $10^k > n$ implique que n admet au plus (k-1) chiffres).

Pour $d \leq 3$, le 2nd point découle de $\phi(999) = 243$, $\phi(99) = 162$ et $\phi(9) = 81$.

Fait 3. $\forall n \in \mathbb{N}$, l'ensemble E_n est fini et donc la suite $({}_na_k)_{k\in\mathbb{N}}$ est ultimement périodique, i.e. périodique à partir d'un certain rang.

Preuve. Le 2nd point dépend directement du 1er point via le principe des tiroirs et la définition récursive de la suite $\binom{n}{a_k}_k$.

Pour le 1er point, il suffit de montrer que $E_n \subset [0; 10^{\tau(n)}]$ pour $n \geqslant 4$ via une petite récurrence descendante finie, et pour $n \leqslant 3$ on a directement $E_n \subset [0; 10^3]$.

Date: 6 Juin 2018.