

1/19

FIG. 1

2/19

FIG. 2

FIG. 3A

FIG. 3B

PLAG1 cDNA sequence

5/19

FIG. 4A

GGCAGCGCAT ACAC TACAAT GGCTGCTGGA AAGAGGCGTA AGGAAACAAT 50
 TTCCAGGCC CCGCGTCCA GCCCGAAATA TGAGAAAAAA ATTATTAGAA 100
 ATTCCGCGGG CGGTGTAGAG GCGGCGGACG GGCGGAGGG AGGATGTTAA 150
 AGCCCCGCGG TTGCCTCTTG GTGCTGCCTT GGCGTATTG GGCACCCAGA 200
 ATGCTTCATT CTGTGACGGT CTATTAATAA GTTGCCTTG CTAGAGTTG 250
 GAGCAGGGCC TCAGATTGGC CAAAATGGGA AGGATTGGAT TCCACTCTCT 300
 TCCACGAAGA GTCAATGGGA CTGGCTAAGA TCAAAGTCTG AGGCTTTTC 350
 CATCAGTAAT CAGTCCCTT TTGCTTCTT TTACGACCAC ATGAAACTTG 400
 AGAACGCCACC TAAAGCTATA TCATTTAGTG GAGTTGGGCA GTTCCCAAGT 450
 GTCCAACAAG AAGGCCTGGT TAGGCTGCG ATGCCACTG TCATTCTGG 500
 TGATTTGTCA GAAGTAAGAG ATACCCAGAA AGTCCCTTCA GGGAAACGTA 550
 AGCGTGGTGA AACCAAACCA AGAAAAAAACT TTCCTTGCCA ACTGTGTGAC 600
 AAGGCCTTTA ACAGTGTGAA GAAATTAAAG GTTCACTCCT ACTCTCACAC 650
 AGGAGAGAGG CCCTACAAGT GCATACAACA AGACTGCACC AAGGCCTTTG 700
 TTTCTAAGTA CAAATTACAA AGGCACATGG CTACTCATTC TCCTGAGAAA 750
 ACCCACAAGT GTAATTATTG TGAGAAAATG TTTCACCGGA AAGATCATCT 800
 GAAGAATCAC CTCCATACAC ACGACCCTAA CAAAGAGACG TTTAAGTGC 850
 AAGAATGTGG CAAGAACTAC AATACCAAGC TTGGATTTAA ACGTCACTTG 900
 GCCTTGCATG CCGCAACAAAG TGGTGACCTC ACCTGTAAGG TATGTTTGCA 950
 AACTTTGAA AGCACGGGAG TGCTTCTGGA GCACCTTAA TCTCATGCAG 1000
 GCAAGTCGTC TGGTGGGGTT AAAGAAAAAA AGCACCAGTG CGAACATTGT 1050
 GATCGCCGGT TCTACACCCG AAAGGATGTC CGGAGACACA TGGTGGTGCA 1100
 CACTGGAAGA AAGGACTTCC TCTGTCAGTA TTGTCACAG AGATTTGGGC 1050
 GAAAGGATCA CCTGACTCGA CATATGAAGA AGAGTCACAA TCAAGAGCTT 1200
 CTGAAGGTCA AAACAGAACC AGTGGATTC CTTGACCCAT TTACCTGCAA 1250
 TGTGTCTGTG CCTATAAAAG ACGAGCTCCT TCCGGTGATG TCCTTACCTT 1300
 CCAGTGAACT GTTATCAAAG CCATTCAACAA ACACTTTGCA GTTAAACCTC 1350
 TACAACACTC CATTTCAGTC CATGCAGAGC TCGGGATCTG CCCACCAAAT 1400
 GATCACAACCT TTACCTTGG GAATGACATG CCCAATAGAT ATGGACACTG 1450
 TTCATCCCTC TCACCACCTT TCTTCAAAT ATCCGTTCAAG TTCTACCTCA 1500
 TATGCAATTG CTATTCTGAA AAAAGAACAG CCATTAAAGG GGGAAATTGA 1550
 GAGTTACCTG ATGGAGTTAC AAGGTGGCGT GCCCTCTTCA TCCCAGATT 1600
 CTCAACGCATC GTCATCATCT AAGCTAGGGT TGGATCCTCA GATTGGGTCC 1650
 CTAGATGATG GTGCAGGAGA CCTCTCCCTA TCCAAAAGCT CTATCTCCAT 1700
 CAGTGACCCC CTAAACACAC CAGCATTGGA TTTTCTCAG TTGTTTAATT 1750
 TCATACCTTT AAATGGTCCT CCCTATAATC CTCTATCAGT GGGGAGCCTT 1800
 GGAATGAGCT ATTCCCAGGA AGAACGCACAT TCTTCTGTTT CCCAGCTCCC 1850
 CACACAAACA CAGGATCTTC AGGATCCTGC AAACACTATA GGGCTTGGGT 1900
 CTCTGCACTC ACTGTCAGCA GCTTTCACCA GCAGTTAAG CACAAGTACC 1950
 ACCCTCCCAC GTTTCCATCA AGCTTTCAAG TAGGATTCTG GGACATGGAT 2000
 TCATTACAGA AATGTATGTG TAGCTGTGCC CTAGATGACC ATTTTTATTT 2050
 TAGTGCCTAC TTTAAAACAG TATAAAAATT TCTGTTTTG TATAATACAA 2100
 ATTTTCATTA AGCCAGTATA AAATAGAAAC TAGCTTTAA ACTGAGCTTT 2150
 GGAACCATTG GTGTCAGTT AAGTTACCT GGGTATTTG TCCTGATTCA 2200
 CTGCCAATTG TCACATTAA AGACTTTTT TTTTCCATA TAGGAAAGCC 2250
 ATTATTAGTA GTAAACCTTT ACAAAATCCCA TTTTCAAATT ACTTTTAGAT 2300
 CTTAAAATTG TCATTTTGT CTAATAACAG TGGCTCTACC TTTTGACATC 2350
 TGGCTCATTAA AAAAATTAG CAATAGAATG TAAATTGTAT AAAAAGTTG 2400
 TGAATAACTC AAGGGTTTAA ATTTTCTTAC TAGCTTCTAA ATGGATTAAT 2450
 AATCAAGTGC TTCAAATGAA TTAAGAGTCC AGTTTCGGAA GATAATAAT 2500
 GTTTGTTAGA TACACCATAA TTTCAGATCA GTATATTCTG AAGACTCTCT 2550
 GTTGTCTGGC TAAAATATTG GCCATCTTTA TTATGAGCCT TTAAGGAAAA 2600
 CAAACCTAA ACACAAAGCA TCAGTATTAA TAGCAAAAAG AGACTCTGTT 2650

6/19 FIG. 4A (continued)

AGGTGACATG	GCATTTCGTG	TCACCTTAATA	GTTGGCCCTA	AATTAGTACA	2700
CAGGATATTT	TGTCGTGTTT	CATCCTTCTT	AACATGCTAT	CTTTTCATT	2750
AATAATAGTA	ATAGTGTATG	GCATTGGGGT	CTTCAGAGTC	GATATATAGG	2800
TAGATCTCTT	TAGTCTTTTC	CACCTTTCAC	ATCCAAGGGG	TGGGTCAAGT	2850
GCAGCCAGCA	ATTTATTTC	ATTGTTGCC	CACGGTTAGT	CCATAATCTA	2900
GAGCCATTGT	GGAACTGCAG	CCATGAGGTG	TGTTTATCCC	ACAGTGGATT	2950
GAECTCAGCCT	CTGTGGGTGA	CAGACTTCTA	AGCAGGAAGA	TAGACGTGAA	3000
GCACATGGTT	ACATTGGGA	ACTTGTGTAG	GGATCATGGC	CCCTGTAGCC	3050
AGGGTTAAAAA	ACTGGACTTT	TTAGAAGTAA	AGTAAAAGCA	TAKCGCTTAT	3100
ATCATTCTT	GCTGAATTG	ATATGTTTT	CTTCCCTTA	AGAATCAAAA	3150
GCAGAAAACA	AAAACAACAG	TCCTACTCCG	ATGTTATCTT	TCTGATTCAA	3200
TGTGAATCCA	TCTTCCCTTG	CAATATTTG	GATGGAGAAT	TTGAAGTTAA	3250
ATGCATTAGA	AAACTACCTG	ATGAACTACC	ACAAAGTTT	AAGTGAETAG	3300
AAATATATAC	AGTAAAATCC	CACTTCATG	CATCTCTGGG	AAATGATAGG	3350
AGTATTGCAA	ATAAGTTGAG	TTTGTAGAGG	GTAACAAAGT	AAAGTAAAAC	3400
AAACCTATCT	TGGTTAACAT	GAAAATAACA	ATTGAGAATA	TATTATATTC	3450
ACTGAATAAT	TATAGGCTTT	TCCTCACATT	AGACAACCAA	CATAATCTTC	3500
TTAAAGGTCT	AATTAATATA	TTTTTCTAAG	GGTCAGTTGG	GACATTAACC	3550
TAAGAAACAT	ATCTATTAAG	CACTTGTAA	CACCTTATT	TAGGACCCCTT	3600
TCCGTTGGGG	ATGGGGGCAA	GGGTGGGAGG	TTTTTAGAAG	AGTATATATC	3650
TCTTTAAAAA	AAAACAGAAA	GAAAATATT	TCTGAGCACT	CATTAGCCCT	3700
ATATGGAAAC	TTCTTCTT	TTTGTAGGGC	CAGTTATCAC	TGCAGATTGC	3750
AATGTTTACC	AAGAATTCT	AAAATGAGT	GCAGATTACT	GAATATAATA	3800
CATTATTTAA	AATATTGGG	AGTAGTATAA	TTTGTGAGA	AATGTAATT	3850
GTAATAATGT	AAATGGGGGG	CTTCAATATA	TATATATAAT	ACACACACAC	3900
ACACACATGC	ACACATACCG	CACTTCATAG	AATCAAAGTT	GCTCTCTGAA	3950
GGAGCTTGG	CTCCTGATAT	TTTATCATGC	TCCTATATT	TTTTAATCCT	4000
TGGAGCAGTA	GTTTTATAC	TTATGTATT	AAATTTATT	ATGAAAATT	4050
ACATTTATTA	AAAAAGTGTG	TTCCAAGGC	ATTAATTA	TATATGTTAA	4100
TAAGGAAGTA	CATTTTAAA	TTTTCAAAC	TGCTCCTAGC	TTTGATTAG	4150
GAGAATATT	TTTCTGAAAG	TAGGCTTTTC	GCTCTGCTTC	ATTACTGCTT	4200
CCTTTAGTT	CTATGAAACA	GATTGCTTAC	CTAAATCTT	AGTTGAATGA	4250
TTAGTGTCA	ATATTGCTT	AATCACCATA	AAAAGGAAA	AAAATTGGTG	4300
ACAGAGCACA	AATAGAAAAC	CTATTTTAA	ATAGAAATCA	CAAATAGCAA	4350
GTGTGGAAGC	ACTACTTTAT	CTGTAAA	ATGTACTTAA	GAAGTCATCA	4400
AATTAGTGA	CTGAGACATT	GGCCTTAGTA	GGCTGTATT	ACTGCTAATT	4450
TAAAAAAGGG	AGTACCAAGGA	TTTATTAAGT	AAAGCATT	GGAAATGGGG	4500
AATAGCGCCA	TATATGTATG	TATGTGTATG	TGTGTGTGTG	GTGTGTGTAT	4550
ATATACACAC	ACACATACAT	ACTTAAATCT	TGCCCTGCAT	GAATTCAAA	4600
TACATGGAGG	CACATCTTCA	GGGCACCAGT	GTAAAATT	TGGAGTCTTA	4650
ATTTCATGT	GTACACCTCT	TTGCCCTGTT	CCACCCCCAG	ACTTGAAATA	4700
ACACTTCAGA	GTAAGAGGGG	ATTCAGCTAA	TTGTTTTA	AAATTGACTG	4750
TAGTGGTCAC	TAACCCCTT	TTGAGAGAAT	TTCTATTAA	GATGAGGCAG	4800
ACTCGCTTAT	TTGAATTGCA	CAATGTTCTA	ACAAGGATGT	AACACAGAAT	4850
TGGCTTTTT	TTCCCTAGAA	AAAGATTGTT	TGTTTCTATG	TCAACTAGAT	4900
ATGATTAAAA	ATAAGTATTG	CCAATGCTGT	TTTCATTCTC	TAGTGGCCAG	4950
AATCATTATC	CTTGAAATT	CTGGTAGTGC	CTTAGCTTG	TTAAAAAAA	4500
AAAAAAAAAA	AAAAAAAAG	GGATTAACAT	TAAATAAAAG	TAGTTAGAA	4550
TTTGGGCCTC	AGACAAGATA	TTGAACCTCA	TTCAAGTTCA	CTTCCACATG	5100
TATGTACAAG	TTAGGTCAACC	AAACACGGAA	GTTGAGTGTG	GAAGGATCTT	5150
GGCACTGTAA	GCAATGCTAT	CCATTGATGT	ATACAAGTAC	CTTATAGTT	5200
ATCGATCACT	GTAAAACCT	TCATTTAAA	ATCCTATTAC	CAAGTTCACT	5250
TTTTAAAAC	TTCAATTGTC	CTGGCTGATT	ATGCATCACT	CTGTGTGCAA	5300
CTTTTTATT	TCATTTAGTG	TTCTTCTCAA	GCTGTGTATT	TTTGCTTATT	5350
TGTTGCTTGT	GCTTTATT	TCTTAGTCAT	TTGTGGAATA	TAGTGATATA	5400

7/19

FIG. 4A (continued)

TTGTGTTAAT	TTGGACAGTA	GCGGTTTTA	AAAACCATA	ACTGACTGAA	5450
ACATGAGCCA	GAGCCGATTG	CTTTATTAAG	CTAATAATGA	ATGTTAAAGA	5500
GTACATATTT	TCAGGATCGT	TCATCTAGTG	AGCAATACAC	ATATTATAGG	5550
CCAATATTTT	TTTAAAAAAAT	AGAGCTTGGT	CAACCTCTAT	ACTACACATA	5600
TTACAAGATA	TAGCACTTTC	AAAATGAATC	TAACACCTTA	CAGAAACTTT	5650
CTTATAGGTT	ATGCCTTTA	TTTTAAGACT	TATTATAATT	CAAGTGCCAT	5700
TAGATGATAT	ATATGTAGGC	CTTTGATATA	TAATGCTTG	TGTACAAAAA	5750
TGGTAGATGG	TATTTTAAAC	AGGTACATT	TTACAGTGT	TTCTTATCAA	5800
TTTGCTATAT	TGCACAGAAT	CAGTGTGTG	CTTTTCATAA	GGTTTTACAA	5850
TGGTTTATTT	TTTACAAGG	TTTACGTGTC	TCAAAGCACA	CTGTCCTCCC	5900
AGTACGTAAG	TTAAAAAAATA	CCAGTTCAC	CAAGTTGCTT	CTAGCCTACT	5950
GAGATCCATG	TGACATTGGA	GGAGATCTT	TAAATGTTA	GTATTGTC	6000
TTAGCAATGG	CTGGCTGTTA	GTTCTGGTAA	ATGTGTGCCT	AAGTTGAATT	6050
TGTCTTGT	TTCTCACACT	GTGTCA	CCATGTCTAC	AACACAGATA	6100
AGTCTGTTGT	GATCACATAG	ATCTACATAA	GTTGTGCAGT	TTTGTGCTAA	6150
AAACCCATAG	GGAGCTCCTT	TGGGATCATA	GAAAAGAAGA	TCATGCAACC	6200
AGCATTGGTG	AAGGCACACT	CAGATTGCAC	TTAGGGCCTT	TCTATGATGT	6250
TGTCAACCCCT	CTGAGGATGG	AAGGCAGTGT	CTTTGATGT	TATCTAGCCT	6300
AGAAATGACA	CAGAACTATT	GCTAATGTAT	AAAACACTTC	ATTATATAAG	6350
CTTCAGTGGT	ACAGATGAAC	CAGAACAT	GTTTATCTTC	TCAGAAACAC	6400
TCCTTCATAA	TTATATTGGA	TCATGCTGCT	AATGTAAC	GGGCTACAAC	6450
TCTTCATGGT	GCTACAAACT	TCTCTGTCTC	ATTCA	TTTTTTTAT	6500
CCATAGAAAAA	AGGACTACAT	TAGGTGTAAA	AGTGTACAAT	ATATTTTAT	6550
ACTGTGACTT	AATTTGTCA	TAACAAACT	TTACACCACC	ACAATGTATT	6600
CATGTGCACT	TGCAAAAGGA	GATCTCGGAC	ATGCAAATGT	TACCAGAAC	6650
AACCCAGCTT	TTGTCCACAA	GGTGA	ACTCAGAATG	GAAAGTGGGC	6700
TTTATAATAG	GGTGTGGAGT	GAAGAACATG	CTGTATGTTA	CTAACAGCCC	6750
TTTGAATT	ACAAAAACTG	GGAATCCATT	AGGAAACGG	TTGCATCATA	6800
CCTGAACATA	AGCTGGACTG	CTGAAATTGT	ATTTTAGCT	AATGAAAAAG	6850
TGTTTGGACT	AGTACTCTAA	AAATGTTCTA	ATGATAAAGT	TTTGAGTCAA	6900
AATAGAAAAG	AAAAAAATCT	GCATTCCAGG	CCGAATT	TATATTTTA	6950
TTGCATTAA	AATTGCTATT	CTGTAATATT	GGGAAATCAA	GTGGCTTATC	7000
ATGTATATCG	TGTACTTAAA	ATGTATT	AAACTACTGT	TGTATTTGTA	7050
TTAAATATAG	ACAAAGATCA	TATTTTTGT	GTGTGTATAA	GCTCTGTAAA	7100
ATAGCAATCA	CATTATGAAG	CTGCAGTGT	ACTACATT	AAACATTAC	7150
ATCCAAAGAA	GCAGACTATT	TATTGTCAT	ATACCA	GATTTATAA	7200
ATTTGCTGCT	AATTAATAA	TAGTACTGCA	GCTTCTTGTG	GCCTACAGT	7250
TTATGTTGC	TGTAAGAATA	AGATATGTGA	ATTCCACAAA	ATATATGAAT	7300
AAAATCTCGT	GCC	7313			

8/19

PLAG1 Finger 1	FPC..QLCDKA	NSVEKLKVHSSY	S.HTGERP
PLAG1 Finger 2	YKCIQQDCTKAFVSKY	LQRMAT.HSPEKT	
PLAG1 Finger 3	HKC..NYCEKMFHRKDHLKNHLHT.	HDPNKET	
PLAG1 Finger 4	FKCEE..CGKNNNTKLGFKRHLAL.	HAATSGD	
PLAG1 Finger 5	LTC..KVCLQTTESTGVILLEHLKS.	HAGKSSGGVKEKK	
PLAG1 Finger 6	HQCEH..CDRRFYTRKDVRMHMVV.	HTGRKD	
PLAG1 Finger 7	FLC..QYCAQRFGRKDHLTRMKKSHNQELL		
PLAG1 Consensus	.C....C....F.....L..H....H.....		
C2H2 Consensus	FxCxxxxCxxyFxxxxxxLxxHxxxxxHxxxxx		
		Y	

FIG. 4B

09/242772

WO 98/07748

PCT/EP97/04759

9 / 19

Normal				CG368			
B	E	H	P	B	E	H	P

FIG. 5

09/242772

PCT/EP97/04759

WO 98/07748

10/19

CG368
CG588
CG644
CG682.
CG752
CG753
T9587
CG580

1 2 3 4 5 6 7 8

↑↑
A B

1 2 3 4 5 6 7 8

↑↑
C D

FIG. 6A

11/19

FIG. 6B

09/242772

PCT/EP97/04759

WO 98/07748

12/19

FIG. 7

13/19

FIG. 8A**PLAG2 cDNA and Open Reading Frame (underlined)**

AGGCTCAAGATAAGACCTTAAGATAACTTTGTGTCTTCCCTTCTAGTATTGCATAGGAATCAGAGGA
 GTTAATCTTGTCTTCTCACAGGTTGAATCTTCAGACAACACTCTGGGAGGACTCGGTCCCTGCCAGCA
 GATGTTCCCTGTCACTCAGTAGGCATATGGCTACCATTCTCCCAGAAATCTCACCGAGCTCGTCACTGGTGA
 AGACGTTCAACCGGAAAGACCACTGAAAAAACCACCTCCAGACCCACGACCCAAACAAATGGCCTTGGGTGTC
 AGGAGTGTGGGAAGGAAGTACAACCAACCATGCTGGCTATAAGAGGCCACCTGGCCCTCCATGGGCCAGGAGTGGG
 ACCTCACCTGTGGGTCTGTGCCCTGAGCTGGGAGCTAGGGAGCCACCTGAGCTGGGAGCTAACGGCCATGGGG
 AAGAGAAAGCCCCCTAGCGGAACCAAGGAAAGACCCAGTGGGACCAACTGTGAAGATGCTTCAACCCGGA
 AGGATGTGGCACGCCACCTGGTGTCCACACGGATGCAAGGACTTCCGTGCCAGTGGCCAGAGATTC
 GGGCCAAGGGTTCACCTCACCCGGCATACCAAAGAACCCACTCACAGGAGCTGTATGAAAGAGAGCTGGAGACCC
 GAGACCTTCCTGAGCACCTCCACACCATTCCGCTCTCACACTCCCAACTGAGGGCTGCTGCCCTGCCCT
 TAGGAGCTTCTGCCCCAGAACGGGCTTGGCAAGTAGGTGCTGCCAGTGTGGCTGAGGCTCACAGCCCCAG
 AACAAAGCCGCCAGCCCATGCAAGCCCTGCCCCCTGGCTGGCCAGAGTCCCTGGGTATCCCTGGCTCTC
 CTCGGCCACCCCTTCCCAATCACAAAGTAAACACCACTTCACTCTCACCTCATACTCCCCACCTTGC
 AAGCAGATACTTAAAGCTTTCGCAATATCAAGTTGCTTTCAGGAACTTGCTCTGCAAGCCCTCAAGCTCAAA
 AGCTCAACCCAGGTTTGATCTGGCTAACGGGAATGCTGGTAAGATAACCTGCCCTCACTGAGCTGGAGATC
 CTGTGAACCTAACAAATACCTGCCCTCTGGACCTGTCCCCCTGGCTGGGCTCTGGCACCTGGCC
 CCCAAATACTTGGGAATAGGCACTCTTGGCCACTGGCTCTGCCCATCTGCCCTCATITCCATCGCATT
 GGCAGGAGGCCAGAACCCCCAACCTTGGCAATGGGCACTGTGACCCCTGGGCTGGGAATCTTGGCC
 ATGTGTTCTCACGCTGGCACTGGCTCTGCCATCTGCCCTCATITCCATCGCATT
 TGTTATTTTCCGTATTCTGGTAAGAGCTTAAAGCAATTAAATGTCAAGTTAAAG
 AACGGAGACTGGACTATGGCTTATTCACTGCTGAGTGTCACTGCTTGTACCAATTAAACCTT
 GTGCCAATCTGTCCTGAGTGTCACTGCTTGTACCAATTAAAGAAATAACCTT
 ATTGTCAACCAACATCCAAATGACGGCTGCTATATAAAGTGTGTTGTCC
 CCATGGATCCATAATGTTAACCTAACAAATGCTTGTGGCACTGCTTAAGGGAAACT
 TTCTCCAAATCTGGAGAATTCTCAAAATAAGAAATAACCTT
 TCTTTCAAGGGATTCTACCTCTAGGGTTGGATCTAGTTAGTACTATTACCA
 CATATACATTCTCTGGGAGCAATTAGGTTACAGGTTACGTT
 ACAAGATGCTGCAATGTGAGTTATCACTCATTATCTTAAGAAAGACTAA
 AGAAAAAAATACTGTTAACAGGGAAATTAAAGGAAATTATTAACCTGG
 CTGACTTTAAATATTGATTATATTCTCTGGGAGCAATTAGGTT
 TATTAAAACAGAAATTCTCCATTGCTGAGCTTAACCTAACCTCAAG
 TTGTTTGTAAATCACCAATAATAAGTGCATTGTAAATTCACTAGT
 GTTAAAGCTAACATACTCTGTGAATTGGTATCTTAAATGAG
 TTAAAGCTCCATTGTCTTATGTTAGAGGCTTTCGTAACATATCT
 TCTTGGCAATT

PLAG2_protein

MATHSPQKSHQCAHCEKTFRNRKDHLDLKHNLQTHDPNKMAGF GCEECGKKYNTMLGYKRHLALHAASSGDLTCGVCAL
ELGSTEVLLDHLKAHAEEKPPSGTKEKKHQCDHCERCFYTRKDVRRLHUVHTGCKDFLCQFCAQRFGRKVHLTRH
TKKTHSQELEMKESLQQTGDLLSTFHTISPSPQLKAALALPPFPLGASAONGGLASSLPAEVHSLTLSPPEQAAQPMQP
LPESLASLHPSVSPGSVSPPLPNHKYNTTTSYSPLASLPLKAADTKGFCNIISLFEDLPLQEPLQESLPHRLSCLGQQQQEPLA
KGNAGKVNLPKELPADAVNLTIPASLDLSPLLGFWQLPPPATQNTFGNSTLAIICPGESLPHRLSCLGQQQQEPLA
AMGTVSLGQLPLPPIP HVFSAGTGSAILPHFHAFR.

FIG. 8B

15 / 19

FIG. 9

Nucleotide sequence of cDNA of CTNNB1 (β -catenin)

16/19

FIG. 9 (continued)

1801 gcagggtgcc attccacgac tagttcaagtt gcttgcgt gcacatcagg ataccagg
 1861 ccgtacgtcc atgggtggaa cacagcagca attttgtggag ggggtccgca tggaaagaaat
 1921 agtttaagggt tgtacccggag cccttcatat ctagctgg gatgttcaca accgaatttgt
 1981 tatcagagga ctaaatacca ttccatgtt tggtcgactg ctttatttc ccattgaaaa
 2041 catccaaaga gtagtgtcgag ggttccctcg tgaacttgtt cagacaagg aagctgcaga
 2101 agctatttga gctggaggagg ccacagtcc tctgacagag ttacttcaat cttagaatga
 2161 agggtgtgg acatatcgag ctgctgtttt gtccgaaatg tctgaggaca agccacaaga
 2221 ttacaagaaa cggctttagt ctaggtcgac cagctcttc ttcaagaacag agccaatggc
 2281 ttggaaatgg actgtgtatc ttggacttga tattttgtcc cagggaaac cccttgata
 2341 tcgcccaggat gatccttagt atcggtttt tcactctgtt ggatatggcc agatgcctt
 2401 gggtatggac cccatgtgg aacatggat ggttggccac caccctgtt ctgactatcc
 2461 agttgtatgg ctgcccggatc tggggcatgc ccaggaccc tcatggatggc tgccctccagg
 2521 tgacagcaat cagctggccct ggtttgatac tgacctgtta atcattttt agctgtattt
 2581 tctgaacttg catttgtatt ggccctgtaga gttgtgtgaga gggctcgagg ggtggctgg
 2641 tatctcagaa agtgccgtac acactaaacca agtgcgtt cctatggaa caattgaagt
 2701 aaaccttttg ttctggctctt ggggttgcg aacaaatggaa ttttggatg
 2761 gactcaagaa gtgaagaatg cacaagaatg gatcacaaga tggaaattttggaaatgg
 2821 ccttgcttgtt taaaattttt tttttaagaat atctgttaatg gtactgtactt
 2881 tgcttgctt gaagtagctc ttttttttt tttttttt tttttttt gtaactgtt ctaattttta
 2941 tttaaagtctc tcgtaatgtt aagttatgtt gaaatgtt acagcaattt ctaattttta
 3001 agaatttgatg aatgggttag aacacttaat aattcataat cactctaatt aattgttaatc
 3061 tgaataaaatgt gtaacaatgt tgtagccctt ttgtataaaa tagacaataa gaaaatggc
 3121 caatttagttt ccttttttaat atgcttaaaa taagcagggt gatctatttc atgttttg
 3181 tcaaaaacta ttggatgtt gtatgggtat ggttaatcg taagagggtt tatttggaaac
 3241 ctggttttgg acagtttacc agttgcctt tattttttt tttttttt tttttttt tttttttt
 3301 acgatgcttc aagagaaaat gcggttataaa aaaatggtttca agaaatggtttca ttttaattca
 3361 tt

FIG. 10

17/19

STSs used to generate the 300 kb cosmid contig mapping at chromosome 8q12 and encompassing PLAG1

STS CH129

GAATTCTAAAACCATTATAAATCATACTGAATCCCAGAACAAATATTTAAACAACCTAA
AAAAAAGAACAAAATAAGCAAAACATTAAAGAGTGTAGATTCTTGAAATTAAAGG
ACATACTTACCCCTGTAGT

STS CH280

GAATTCTGCACCGGTTTTCTTATCAGTGTGGCTGATGTTCCATTAACGTGGTGTAAAT
TTGAGTATAGTCACTGACTGATTCTAGATATTTCAAGAGGGTCAAGACTTTCTAAGACCT
TTATATGTGGTTGAATTCTTGTCTGGTTCACAGAAGGTATATTAGCAAAGCATTGG
TGTTGAAGCTTGGTCTGTGATCTAGT

STS CH33

GAATTCTTTTATTTGACAAGCACATGAAGCCTTATCAGACGGAGGCCTCAATCCTTGCG
TGGGGTTTATAAGCAGGTAGCGCTAGACCTTCCCATTCTACATAAGCTGATGGGCACGGTAA
TAGCTGGGGTTTCTCACAAAGTCAAAGACAAATTGTCTGTTCAAGCGTGTGAAACAGTT
WAAWACGTTGAGGTCTCTCTGTTCATAGGCCATCTGGCTCAGACATTCTACAGMCA

STS EM156

TCTGAGCAACAAGAGCGAAACTCCATCTCAAAATATATATATAGGTAATTGTTGTCAT
TAATATTAATGTAGTAGCAGCAGCACAGTCATGGTAGCAATATTGCTCTATTGGGAGGCA
ACTTATAATTATTAACTGTGGAATATCTTGGAAAATGTTTNGCAGAMGTTATGTTCCA
TTCCTGACTGGMGCTCATTATAAATACCCATCTCTGAATAGCGCAAGGACTTTGAAA
AGTGTCTGAGTAAAC

STS EM195

ACAATCAATTAGAAAGTAATCATTACCCCCAAACTGAAACCCCTGTACCTGTTAGCA
CTCACTCCCCTTTCATTACTTTTATTATTTTTGAGAGAGACTTGCTCTATC
GCCCNNGCNVCAGTCAGTGGCACAAaTCTCAACTCACTGCAACCTCTGCCAGGGTCAA
GTGATTCTTGTGCCTCAGAGTCCCAGTACCTGGATTACAGGCATAAGCCACACGCCCTGG
CTAAATTGTTGATTTCAGTAGTGAAGGGTTTCAACCATGTTGGCCAGGCTGTCTCAAACCTG
CTGACCTCAGGTAAATCCACCCCTCAGCCTCCCAGAGTTCTGGGATTACAGGCGTGACACC
GTGCCTGGCTCATTTATTAGAGATCTCACTCKWTGCCCAGGCTTCAGTGC
ATTGGCGTCATGATGGCTCACTGCAGGCTTCAGCTGGCTCAAaGCATCCTTCCGCCTCA

STS EM208

CTAGGGCACAGAGCAAGACTCTGTCTCAARGAAAAAaAAAAAaVRAAAAAAATTACCAAAAC
TGACTACAGAAAAAVGVARGGTGAATAGCCTTACATTGGVAAATAATTAAATTAAAT
TAAAGATATTAAATAAAAAVTACTCTAGGCCATAAGGCTTCACAGGTTAATTGTATTAA
TATTTAAGGAAAAATAATACCAATCTTATTCAAGTCTTCAAGAAAATAGAGGCGTATCCA
TTTTCTAACCTTTAAGAAATAGCATCTAATATCAAAGCAACAAAGMCATTGC
AAAGAAGAAGGGAGAGAAGGAAGAGGAAGAGGAGAAAGGGAGCAGGAGATGGAGAAGA
AGGAAGCCAGGTACAGTGAATATTCTCATGAACATAAACACAATTAAAGTATTAM
CAGGCTGGCTTGGCTCTCACCCGTAAATCCCAGCMTTGGAAGGCCAAGGCAGGTGG
GHCACAAGGTCAAGGGTTCGAG

18/19

FIG. 10 (continued)

STS EM216

TACTRACTGCTGTGCAGTTBTCCTGCAGTCAGTCCAGAGGTCAATTCTAACGTTGCACTAT
 GGGKCTATTTAATAGGTTCTAAAGAACAAACATATCTCTTAbAGTTACTCAGAGGGTAC
 ACAATGATGATGTCACACAATTAAATTACCTATTAAAGACTGAAATCCAGCAATGCATAGKGTG
 TGGAACCTTACGCACATCCAGAAAAAGTTCTAGCACAAATTGTTTHGTMTYATATATTCAG
 AAGCCATAGAAACACTATTAAAGCCCTCCATACTTAGGGATGCAAAaTCAATAT

STS EM317

GACCAACAAAGGCACACAAAGATTGGTTGCTTCTGAAGAATCTAAAATGGCATTGGGTAT
 AGGAGTTGGGAAGCAAGTTGATAGGCACCTACACTTAAGATAATTGTCATTATACAAA
 TAATTTAAAGTTAACGCCCTTCTGACATGACACGTCCATGGTCCTTCACCCCTTYttK
 KTCTCCTSCAGAGCTCCAGTCTGCCYYTTTKSCTCTGAGCTCCAAAAMCA GTGAWTCCCC
 TGAAGTTACCTAGMCCCACATACAGTTGTGACTCCCTA WMCcGGGGTACCyTCCCATGY
 CTGGCTAATAyTGABTYTTGTDACC GTGGCTTCTGTGTTACTACATTGTTARTGGAAT
 TWATwAArgGGGAAGCCTATCAA

STS EM416

GAGCAACTGAaCDNAGATTGGGTGAGGTAAAGATGTGGGCTGCACAGGTGAGGCTGGAGAGGT
 GGGGAGTGCCTCCAGTCGGGGAGAAGAAAGAAAAGGGCAGACTAGGGTAGAAATGCTTATW
 ACTcCTGTGACTGGAGCTGATGGTGTCTTAAGGAAAGTGGTGGGAAGGGAGGVCTGCAGAAA
 GGCAGGCTGGAGTCGACTGAAGGCTGGAGAGGCCACTGCTTAAACAAGTGTAMCTGGAGATG
 GAAGGGGCTGCAGGACAGGTCACTCAGCCAGTKGTGTGGARGCAATCTCAC

STS EM443

TTGATATTGTTCTAACTCCACATTAACATTGACAAATACTCTAAATTGAGCTACCATCT
 GTTACGTAGCTAGCAGGTACCCCTAACAGCAATGGGT CAGCTTTGAGTAGCGTTCAACCCT
 GTTACCTCGAGTACGGTGTGGT GAGGCCAGACGCAGATGGAGAGAAAGAAACAGAATCGAGC
 ATTTCATTTGTTGCTCACAGTCCCAGGGCAAACACAGCACAGCCTACAGGACCATG
 AAGGGGAGCACTGGGTCACTCATGAAGCAGGGAGGTGGGCCAGTGGTGGGGGgCCTTTAT
 GTGTTTCTCAGGAAGGAATGGCAAGGCAGGGTAAGCATGTTAGGACTGGTTAATTGAA
 ATAACCTCAGGGGGgCTCTAGGGCCTGgRGGCTGCCCTGGTTCTGGTACCYgGSCCTG

STS EM46

ATATCAATCTGGGTCTATGTATGTTTGCTTTCCCCAGTGTCCAGGCATGATGCTAAG
 GATATAGGGATGATGAAATATATGCTGCTGAATATGGGAATAAGAATTATTTATGATCA
 GAHTTTTTTTTTGAGATGGAGTCTCGCTCTGTCACNMaGGCTVGTGTGCAGTGGCATGAT
 CTCAGCTCACWGCAACCTCTGVCTCCTGGTTCAAGT GATT

STS EM47

GTAGAGACACACTAGGCATGCACAGACCA GTGCAGAATGAACAAATTTGTTACATGTGTAG
 TTCTTATGGTTACAAAAC TCTCCCAGCCATTATCTCTT CAGCCTTATAAAAGACAGAG
 CATATTTATTATCTCATTACCTWHTCTAGTAAGGCATT TTTCTTTCTTACTAGA
 GATATAAGGCTTAGGAAAAAGTGAATACTACGATAAAATGAATACTAGGAAAAGACATCACA
 ATCACAAATTATTAATATCAGAAAACAGDTTTAAGAATAAAATWTTCAAWAARgAAA

19/19

FIG. 10 (continued)

STS END2

TAATTTATCACTACCGAATTCTGTGCAGTGAGATCAAAGAGCTGTGTATGCCCATATAATGTGA
TTTACAGCCATTTGTAAAAACTGTAAAATACCTTAATATTCAATTGGCTTAAGGTACAT
TGAGGACTCTGGTTGAAAATTACAGAGTGGTGAAGATTC

Known STSs

PENK

D8S285

MOS

STSs part of PLAG1

EM265

KK64

KK63/EM209

KK55/CH283

EM224

EM387