Matemática Discreta

Relações Relações de equivalência

Profa. Helena Caseli helenacaseli@ufscar.br

Relações de Equivalência

Objetivos desta aula

- Apresentar o que é uma relação de equivalência
- Apresentar conceitos relacionados a uma relação de equivalência
 - Classes de equivalência
 - Partições
 - Conjunto quociente
- Capacitar o aluno a aplicar os conceitos de Relações de Equivalência na modelagem e resolução de problemas computacionais

Conjunto quociente

- Sejam
 - S = { 1, 2, 3, ..., 19, 20 } e
 - R a relação de equivalência em S definida por

$$x \equiv y \pmod{5}$$

- isto é, x-y é divisível por 5
- Dê a partição de S induzida por R, isto é, o conjunto quociente S/R

Relações

Recordando ... Resumo das propriedades

- Seja R uma relação definida em um conjunto A
 - R é reflexiva se para todo $x \in A$ temos $x \in A$
 - R é antirreflexiva se para todo $x \in A$ temos $x \not R x$
 - R é simétrica se <u>para todo</u> $x, y \in A$ temos $x R y \Rightarrow y R x$
 - R é antissimétrica se <u>para todo</u> x, y \in A temos (x R y ^ y R x) \Rightarrow x = y
 - R é transitiva se <u>para todo</u> x, y, z ∈ A temos $(xRy \land yRz) \Rightarrow xRz$

Relação de equivalência

Fonte: https://pixabay.com/

 Seja R uma relação em um conjunto A

> Dizemos que R é uma relação de equivalência se R é reflexiva, simétrica e transitiva

Relação de equivalência

- Objetos relacionados por uma relação de equivalência são objetos parecidos, ou seja, que guardam uma semelhança entre si
- Exemplos
 - Em { 1, 2, 3 }
 - Em $\{x \mid x \text{ \'e um aluno dessa turma}\}$
 - $x R y \leftrightarrow "x$ senta-se na mesma fila que y"

Relação de equivalência

 Diga quais das relações a seguir são relações de equivalência no conjunto A = { 1, 2, 3 }

```
a) R = \{ (1, 1), (2, 2), (2, 3) \}
```

b)
$$S = \{ (1, 1), (1, 2), (2, 2), (2, 3), (3, 3) \}$$

c)
$$T = \{ (1, 1), (2, 2), (3, 3) \}$$

d)
$$U = \{ (1, 1), (1, 2), (2, 1), (2, 2), (3, 3) \}$$

e)
$$V = \{ (1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3) \}$$

Relação de equivalência

 Diga quais das relações a seguir são relações de equivalência no conjunto A = { 1, 2, 3 }

```
a) R = \{ (1, 1), (2, 2), (2, 3) \}
```

b)
$$S = \{ (1, 1), (1, 2), (2, 2), (2, 3), (3, 3) \}$$

c)
$$T = \{ (1, 1), (2, 2), (3, 3) \}$$

d)
$$U = \{ (1, 1), (1, 2), (2, 1), (2, 2), (3, 3) \}$$

e)
$$V = \{ (1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3) \}$$

RESPOSTAS

- a) Não, pois não é reflexiva, falta o par (3, 3)
- b) Não, pois não é transitiva, tem os pares (1, 2) e (2, 3), mas falta o par (1,3)
- c) SIM
- d) SIM
- e) Não, pois não é simétrica, tem o par (1, 2), mas não tem o par (2, 1)

Fonte: https://pixabay.com/

- Seja R uma relação de equivalência em um conjunto A e seja a ∈ A
 - A classe de equivalência de a, denotada por [a], é o conjunto de todos os elementos do conjunto A que estão R-relacionados com a

$$[a] = \{ x \mid x \in A e x R a \}$$

- Classes de equivalência são conjuntos de elementos relacionados uns com os outros
- Qualquer b ∈ [a] é dito representante da classe de equivalência
 - Exemplo:
 - Dado o conjunto A= {1, 2, 3}, e a relação de equivalência R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}
 - Conjunto [1] = {1, 2}. Esse conjunto também pode ser chamado de [2]

- Exemplo
 - Dados
 - Conjunto de alunos de uma turma e
 - Relação R, x R y ↔ "x senta-se na mesma fila que y"
 - Se João, Carlos, José, Judite e Téo sentam-se todos na terceira fila
 - A classe de equivalência de João é [João] = {João, Carlos, José, Judite, Téo}

- Considerando-se a relação de equivalência em \mathbb{N} , $x R y \leftrightarrow "x + y \text{ \'e par"}$, qual é a classe de equivalência [0]?
 - Pela definição,

$$[0] = \{x \mid x \in \mathbb{N} \text{ e } x R 0 \leftrightarrow "x + 0 \text{ é par"} \}$$

- ou seja, esse é o conjunto de todos os números naturais x, de modo que somados a 0, resulte em par
- ... é o conjunto de todos os números pares
- → O conjunto [0] é o conjunto dos números pares
- De modo semelhante, não é difícil ver que [1] é o conjunto dos números ímpares

- A relação de equivalência em \mathbb{N} , $x \in \mathbb{N}$ $x + y \in \mathbb{N}$ par" tem apenas duas classes de equivalências:
 - O conjunto dos números naturais pares [0] e
 - O conjunto dos números naturais ímpares [1]
- Assim, as classes de equivalência dividem o conjunto sobre o qual estão definidas
 - Toda classe contém elementos que estão relacionados uns com os outros, mas não com qualquer elemento que não esteja naquela classe
 - Se duas classes de equivalência tem 1 elemento em comum, então elas são idênticas

- Classes de equivalência e Partição
 - Teorema
 - Seja R uma relação de equivalência em um conjunto A. As classes de equivalência de R são subconjuntos não-vazios de A, disjuntos dois a dois, cuja união é A
 - O conjunto das classes de equivalência de A pela R é uma partição de A

Partição

 Dado um conjunto nãovazio A, uma partição de A é uma <u>subdivisão</u> de A em <u>conjuntos não-vazios</u>, <u>disjuntos dois a dois</u>, que unidos resultam em A

Classes de equivalência e Partição

Teorema

 Seja R uma relação de equivalência em um conjunto A. As classes de equivalência de R são subconjuntos não-vazios de A, disjuntos dois a dois, cuja união é A

i. para cada $a \in A$, temos $a \in [a]$

reflexiva

ii. [a] = [b] se e somente se (a, b) $\in R$

simétrica

iii. se [a] \neq [b], então [a] e [b] são disjuntos

consequência de ii.

- Qualquer relação de equivalência determina uma partição no conjunto em que está definida
- Por outro lado, dada uma partição {A_i} do conjunto A, existe uma relação de equivalência R em A tal que os conjuntos A_i são as classes de equivalência

Conjunto quociente

Fonte: https://pixabay.com/

 É a <u>coleção de todas</u> as classes de equivalência de elementos de A por uma relação de equivalência R

 $A/R = \{ [a] | a \in A \}$

Conjunto quociente

- Exemplo
 - Dado o conjunto A= { 1, 2, 3 }, e a relação de equivalência R = { (1, 1), (2, 2), (3, 3), (1, 2), (2, 1) }
 - O conjunto quociente A/R é A/R = { [1], [3] }

Classes de equivalência e etc.

- Teorema
 - Seja R uma relação de equivalência em um conjunto A. As classes de equivalência de R são subconjuntos não-vazios de A, disjuntos dois a dois, cuja união é A
- O conjunto das classes de equivalência de A pela R é uma partição de A
- → Por outro lado, dada uma partição {A_i} do conjunto A, existe uma relação de equivalência R em A tal que os conjuntos A_i são as classes de equivalência
- Seja R uma relação de equivalência em um conjunto A, o quociente A/R é uma partição de A

Conjunto quociente

- Sejam
 - S = { 1, 2, 3, ..., 19, 20 } e
 - R a relação de equivalência em S definida por

$$x \equiv y \pmod{5}$$

- isto é, *x-y* é divisível por 5
- Dê a partição de S induzida por R, isto é, o conjunto quociente S/R

Conjunto quociente

- Sejam
 - S = { 1, 2, 3, ..., 19, 20 } e
 - R a relação de equivalência em S definida por

$$x \equiv y \pmod{5}$$

- isto é, *x-y* é divisível por 5
- Dê a partição de S induzida por R, isto é, o conjunto quociente S/R

RESPOSTA

A partição de S induzida por R é P = $\{ \{1, 6, 11, 16\}, \{2, 7, 12, 17\}, \{3, 8, 13, 18\}, \{4, 9, 14, 19\}, \{5, 10, 15, 20\} \}$

Conjunto quociente

RESPOSTA detalhada

x≡y(mod 5) (Lê-se x é congruente a y módulo 5) significa que x-y é divisível por 5, ou que a diferença entre x e y é divisível por 5 ou ainda que 5 divide x-y. Podemos escrever também 5|x-y, que por definição significa que existe um inteiro c tal que 5c = x-y.

Precisamos encontrar os pares de valores (x,y) em S tal que x-y é múltiplo de 5.

Vamos verificar alguns valores específicos:

1≡6(mod 5) pois 1-6 = -5 é múltiplo de 5, já que 5(-1) = -5

 $6 = 11 \pmod{5}$ pois 6 - 11 = -5 é múltiplo de 5, já que 5(-1) = -5

 $7 \equiv 2 \pmod{5}$ pois 7 - 2 = 5 é múltiplo de 5, já que 5(1) = 5

17≡7(mod 5) pois 17-7 = 10 é múltiplo de 5, já que 5(2) = 10

Vamos procurar a classe do [1], formada por elementos relacionados ao 1. Essa classe é formada pelos valores em S que diferem de 1 por um múltiplo de 5:

$$[1] = \{1, 6, 11, 16\}$$

E de forma análoga, encontramos as classes dos demais elementos:

 $[2] = \{2, 7, 12, 17\}$ $[3] = \{3, 8, 13, 18\}$ $[4] = \{4, 9, 14, 19\}$ $[5] = \{5, 10, 15, 20\}$ A partição de S induzida por R é P = $\{\{1, 6, 11, 16\}, \{2, 7, 12, 17\}, \{3, 8, 13, 18\}, \{4, 9, 14, 19\}, \{5, 10, 15, 20\}\}$