Lecture 2.2

Bayesian Phylogenetics I

The Bayesian framework

Bayesian phylogenetic analysis

- Bayesian phylogenetic analysis was developed in the mid 1990s
- Now one of the most widely used methods
- Bayes's theorem (1763)
- Reverend Thomas Bayes

Image probably not of Thomas Bayes

Contrast with frequentist statistics (likelihood)

Bayesian phylogenetic analysis

$$Pr(\theta \mid D) \propto Pr(\theta) Pr(D \mid \theta)$$

- Parameters have distributions
- Before the data are observed, each parameter has a prior probability distribution
 - Reflect our prior expectations (and uncertainty) about values of parameters (without knowledge of the data)
- Likelihood of the data is computed
- Prior probability distribution is combined (updated) with the likelihood to yield the posterior probability distribution

Simple example

Simple example

Simple example

Bayesian inference

Prior

Specified by user, independent of data

Likelihood

Calculated from data

$$Pr(\theta \mid D) = \frac{Pr(\theta) Pr(D \mid \theta)}{Pr(D)}$$

Posterior

This is what we want to estimate

normalising constant marginal likelihood of the data model likelihood

Bayesian inference

Bayesian hierarchical model

Priors

- Priors are chosen in the form of probability distributions
- Reflect our prior expectations (and uncertainty) about values of parameters (without knowledge of the data)
 - Past observations
 - Personal beliefs
 - Use of a biological model

- Beta
- Dirichlet

- Uniform
- Normal
- Exponential
- Lognormal
- Gamma
- Beta
- Dirichlet

Parameters

• λ = rate of decay

- Uniform
- Normal
- Exponential
- Lognormal
- Gamma
- Beta
- Dirichlet

Used to specify the prior distributions of simplex parameters

- Base frequencies
- Relative rates in GTR model

- Uniform
- Normal
- Exponential
- Lognormal
- Gamma
- Beta
- Dirichlet

Parameters

• α_1 , α_2 , ... = shape parameters

Discrete distributions

- Bernoulli distribution
- Binomial
- Multinomial
- Poisson

Default priors

	BEAST2	MrBayes
Rate matrix parameters	Gamma(0.05,10)	Dirichlet(1,1,1,1,1,1)
Base frequencies	Uniform(0,1)	Dirichlet(1,1,1,1)
Shape parameter (α)	Exponential(1)	Exponential(2)
Proportion invariable	Uniform(0,1)	Uniform(0,1)

Can specify uninformative priors where appropriate

Tree prior

- 1. Use a **flat prior** (*MrBayes*)
 - All trees have equal probability
 - Also need a prior for branch lengths or node times

- 2. Use a **biological model** (*BEAST* and *MrBayes*)
 - Among species: speciation model
 - Within species: coalescent model

Priors on rooted trees

Speciation model

 Tree shape described by a stochastic branching process

Yule process

- The root lineage splits into two
- Lineages split at a constant rate
- Simulates speciation process

Birth-death process

Allow lineages to go extinct

Speciation model

 Tree shape described by a stochastic branching process

Yule process

- The root lineage splits into two
- Lineages split at a constant rate
- Simulates speciation process

Birth-death process

Allow lineages to go extinct

Coalescent model

Constant size

Exponential growth

Choosing a tree prior

- Test whether inferences are robust to the choice of tree prior
- Mixed data sets: multiple sequences from each species
 - Birth-death prior generally works well
- Compare tree priors using Bayesian model selection

Estimating the posterior

- Impossible to obtain the posterior directly
- Instead, the posterior can be estimated using Markov chain Monte Carlo simulation
- This is usually done using the Metropolis-Hastings algorithm

Nicholas Metropolis Los Alamos, 1953

Metropolis-coupled MCMC

- Output from a Bayesian phylogenetic analysis:
 - A list of the **parameter values** visited by the Markov chain (.p file in *MrBayes*, .log file in *BEAST*)
 - A list of the **trees** visited by the Markov chain (.t file in *MrBayes*, .trees file in *BEAST*)

Take the mean of the sampled values

Mean posterior estimate

Take the 'central' 95% of the sampled values

95% credibility interval

- Majority-rule consensus tree (MrBayes)
 Shows all nodes with posterior probability >0.50
- Maximum a posteriori (MAP) tree
 Sampled tree with highest posterior probability
- Maximum clade credibility (MCC) tree (BEAST/TreeAnnotator)
 Sampled tree with highest sum or product of posterior node probabilities

Useful references

