EMPLOYEE MANAGEMENT SYSTEM

INTRODUCTION: The Employee Management System (EMS) SQL project is designed to streamline and automate the management of employee records within an organization. This system consists of three primary tables: Departments, Employees, and Salaries. Each table plays a vital role in organizing and maintaining the company's employee data.

ABSTRACT: The system is built around three core tables: Departments, Employees, and Salaries, each serving a distinct purpose in organizing and maintaining essential employee data. The Departments table categorizes employees into various organizational units, while the Employees table stores personal and professional details such as names, departments, hire dates, and birthdates. The Salaries table records salary amounts and tracks changes over time. This system provides comprehensive functionality for administrative tasks, including querying employee details, calculating employee tenure, and analysing salary distributions.

Problem Statements

- 1. Retrieve the first and last names of all employees born between 1980 and 1990
- 2. Find the first and last names of employees who share the same last name as at least one other employee.
- 3. Retrieve the first names of employees who were hired after the youngest employee was born
- 4. Find the employees with minimum age in company
- 5. Find the employee who have been with company the longest.
- 6. List the employees in descending order by their age share only the top 10 oldest.
- 7. Find the employee with highest salary.
- 8. Count the number of employees in each department.
- 9. List al employees, showing their ages calculated by their Date of Birth.
- 10. Find the employee born on the same date.
- 11. Retrieve the employee with most recent hire date.
- 12. Retrieve the last name of employee but with the first character lower
- 13. Find the employees with the first name longer than their last name.
- 14. Find average age of employees
- 15. Count the number of employees hired each year.
- 16. Find number of employees with same last name.
- 17. Find employees with salaries that are less than the average salary (68120).
- 18. Get Employees who do not have salary record.
- 19. Calculate age and salary of employee older than 30. Query must return first name last name age and salary.
- 20. Find employees born in the 1990s
- 21. Get a list of employees along with their hire dates, but only those hired in 2015.
- 22. Retrieve employee name and their respective salaries. Filtering out those with salaries below 30k.
- 23. Retrieve all employees and their salaries, show the difference between highest salary in department and each employee's salary.
- 24. Get a list of all employees and their salaries and identify maximum salary from their respective departments.
- 25. Find number of employees in each department including department name.
- 26. Retrieve employee who same hire date as any other employee.
- 27. List all the employees and their department

Query to create a database/schema.

create database EmployeeManagementSystem;

• Query to use the EmployeeManagementSystem database for further operations.

use EmployeeManagementSystem;

• Query to create table named Departments

```
CREATE TABLE Departments (

DepartmentID INT PRIMARY KEY,

DepartmentName VARCHAR(100)
);
```

• Query to create table named Employees

```
CREATE TABLE Employees (
EmployeeID INT PRIMARY KEY,
FirstName VARCHAR(50),
LastName VARCHAR(50),
DepartmentID INT,
DateOfBirth DATE,
HireDate DATE,
FOREIGN KEY (DepartmentID) REFERENCES Departments(DepartmentID)
);
```

• Query to create table named Salaries

```
CREATE TABLE Salaries (

SalaryID INT PRIMARY KEY AUTO_INCREMENT,

EmployeeID INT,

SalaryAmount DECIMAL(10, 2),
```

```
EffectiveDate DATE,
FOREIGN KEY (EmployeeID) REFERENCES Employees(EmployeeID));
```

Query to insert records into Departments table

```
INSERT INTO Departments (DepartmentID, DepartmentName) VALUES (1, 'Human Resources'),
(2, 'Finance'),
(3, 'Engineering'),
(4, 'Marketing'),
(5, 'Sales'),
(6, 'IT'),
(7, 'Customer Service'),
(8, 'Research and Development'),
(9, 'Legal'),
(10, 'Administration');
```

Query to insert records into Employees table

INSERT INTO Employees (EmployeeID, FirstName, LastName, DepartmentID, DateOfBirth, HireDate) VALUES

```
(1, 'Aarav', 'Sharma', 1, '1985-05-15', '2010-01-10'),
(2, 'Vivaan', 'Gupta', 2, '1990-06-20', '2015-02-15'),
(3, 'Aditya', 'Reddy', 3, '1988-07-25', '2012-03-20'),
(4, 'Ananya', 'Kumar', 4, '1992-08-30', '2016-04-18'),
(5, 'Kabir', 'Mehta', 5, '1987-09-10', '2011-05-05'),
(6, 'Ishaan', 'Patel', 6, '1989-10-12', '2014-06-22'),
(7, 'Saanvi', 'Verma', 7, '1995-11-15', '2019-07-30'),
(8, 'Kaira', 'Bhatia', 8, '1991-12-18', '2013-08-12'),
(9, 'Riya', 'Chopra', 9, '1984-01-20', '2009-09-01'),
(10, 'Mira', 'Joshi', 10, '1993-02-25', '2017-10-14'),
(11, 'Nikhil', 'Singh', 1, '1986-03-30', '2011-11-11'),
(12, 'Pooja', 'Ahuja', 2, '1982-04-05', '2010-12-25'),
```

- (13, 'Raj', 'Malhotra', 3, '1994-05-10', '2015-01-20'),
- (14, 'Tanya', 'Kapoor', 4, '1990-06-15', '2016-02-05'),
- (15, 'Sam', 'Chopra', 5, '1988-07-20', '2014-03-30'),
- (16, 'Karan', 'Dutta', 6, '1995-08-25', '2018-04-15'),
- (17, 'Neha', 'Sethi', 7, '1992-09-30', '2019-05-10'),
- (18, 'Rohit', 'Ghosh', 8, '1987-10-05', '2013-06-20'),
- (19, 'Diya', 'Rao', 9, '1994-11-10', '2016-07-25'),
- (20, 'Krishna', 'Nair', 10, '1991-12-15', '2017-08-30'),
- (21, 'Arjun', 'Nanda', 1, '1983-01-12', '2012-03-05'),
- (22, 'Aditi', 'Desai', 2, '1996-02-22', '2017-04-15'),
- (23, 'Vikram', 'Chawla', 3, '1984-03-18', '2011-05-25'),
- (24, 'Ritika', 'Sharma', 4, '1990-04-30', '2018-06-30'),
- (25, 'Kartik', 'Singhal', 5, '1987-05-05', '2013-07-15'),
- (26, 'Sneha', 'Tiwari', 6, '1992-06-15', '2019-08-25'),
- (27, 'Dev', 'Mishra', 7, '1988-07-20', '2015-09-10'),
- (28, 'Mansi', 'Jain', 8, '1991-08-25', '2016-10-20'),
- (29, 'Uday', 'Bansal', 9, '1995-09-30', '2020-11-15'),
- (30, 'Lavanya', 'Agarwal', 10, '1983-10-05', '2012-12-25'),
- (31, 'Amol', 'Pawar', 1, '1989-11-12', '2017-01-30'),
- (32, 'Priya', 'Reddy', 2, '1993-12-18', '2014-02-28'),
- (33, 'Siddharth', 'Kohli', 3, '1985-01-25', '2016-03-10'),
- (34, 'Tisha', 'Mohan', 4, '1990-02-20', '2018-04-15'),
- (35, 'Gaurav', 'Shukla', 5, '1986-03-15', '2019-05-20'),
- (36, 'Ayesha', 'Bhatia', 6, '1991-04-10', '2015-06-25'),
- (37, 'Vishal', 'Thakur', 7, '1995-05-05', '2020-07-30'),
- (38, 'Chaitanya', 'Yadav', 8, '1992-06-01', '2013-08-15'),
- (39, 'Neeraj', 'Gautam', 9, '1994-07-08', '2016-09-20'),
- (40, 'Tanvi', 'Malik', 10, '1988-08-15', '2011-10-25'),
- (41, 'Rahul', 'Kumar', 1, '1991-09-20', '2015-11-30'),
- (42, 'Meera', 'Sen', 2, '1993-10-25', '2017-12-05'),
- (43, 'Shivam', 'Sood', 3, '1986-11-30', '2019-01-10'),

```
(44, 'Kavya', 'Sharma', 4, '1990-12-15', '2016-02-18'),
(45, 'Advik', 'Rao', 5, '1985-01-25', '2014-03-25'),
(46, 'Rohan', 'Malhotra', 6, '1992-02-15', '2020-04-30'),
(47, 'Aanya', 'Kapoor', 7, '1987-03-20', '2015-05-10'),
(48, 'Kunal', 'Singh', 8, '1995-04-05', '2019-06-15'),
(49, 'Simran', 'Verma', 9, '1988-05-10', '2012-07-20'),
(50, 'Devansh', 'Gupta', 10, '1994-06-15', '2016-08-25');
```

(18, 59000.00, '2013-06-20'),

(19, 72000.00, '2016-07-25'),

(20, 75000.00, '2017-08-30'),

(21, 64000.00, '2012-03-05'),

```
Query to insert records into Salaries table
 INSERT INTO Salaries (EmployeeID, SalaryAmount, EffectiveDate) VALUES
 (1,60000.00, '2010-01-10'),
 (2, 70000.00, '2015-02-15'),
 (3, 80000.00, '2012-03-20'),
 (4, 75000.00, '2016-04-18'),
 (5, 62000.00, '2011-05-05'),
 (6, 65000.00, '2014-06-22'),
 (7,55000.00, '2019-07-30'),
 (8, 58000.00, '2013-08-12'),
 (9, 90000.00, '2009-09-01'),
 (10, 72000.00, '2017-10-14'),
 (11, 61000.00, '2011-11-11'),
 (12, 69000.00, '2010-12-25'),
 (13, 80000.00, '2015-01-20'),
 (14, 75000.00, '2016-02-05'),
 (15, 68000.00, '2014-03-30'),
 (16, 56000.00, '2018-04-15'),
 (17, 60000.00, '2019-05-10'),
```

- (22, 70000.00, '2017-04-15'),
- (23, 78000.00, '2011-05-25'),
- (24, 85000.00, '2018-06-30'),
- (25, 61000.00, '2013-07-15'),
- (26, 67000.00, '2019-08-25'),
- (27, 59000.00, '2015-09-10'),
- (28, 63000.00, '2016-10-20'),
- (29, 55000.00, '2020-11-15'),
- (30, 62000.00, '2012-12-25'),
- (31, 68000.00, '2017-01-30'),
- (32, 74000.00, '2014-02-28'),
- (33, 70000.00, '2016-03-10'),
- (34, 78000.00, '2018-04-15'),
- (35, 65000.00, '2019-05-20'),
- (36, 62000.00, '2015-06-25'),
- (37, 58000.00, '2020-07-30'),
- (38, 62000.00, '2013-08-15'),
- (39, 70000.00, '2016-09-20'),
- (40, 72000.00, '2011-10-25'),
- (41, 75000.00, '2015-11-30'),
- (42, 78000.00, '2017-12-05'),
- (43, 80000.00, '2019-01-10'),
- (44, 74000.00, '2016-02-18'),
- (45, 68000.00, '2014-03-25'),
- (46, 65000.00, '2020-04-30'),
- (47, 60000.00, '2015-05-10'),
- (48, 59000.00, '2019-06-15'),
- (49, 70000.00, '2012-07-20'),
- (50, 72000.00, '2016-08-25');

1) Retrieve the first and last names of all employees born between 1980 and 1990.

select firstName,lastName

from employees

WHERE DateOfBirth > '1980-01-01' AND '1990-12-31';

Output:

firstName	lastName
Aarav	Sharma
Vivaan	Gupta
Aditya	Reddy
Ananya	Kumar
Kabir	Mehta
Ishaan	Patel
Saanvi	Verma
Kaira	Bhatia
Riya	Chopra
Mira	Joshi
Nikhil	Singh
Pooja	Ahuja
Raj	Malhotra

2) Find the first and last names of employees who share the same last name as at least one other employee.

SELECT FirstName, LastName

FROM Employees

WHERE LastName IN (

SELECT LastName

FROM Employees

GROUP BY LastName

HAVING COUNT(*) > 1);

LastName
Sharma
Gupta
Reddy
Kumar
Verma
Bhatia
Chopra
Singh
Malhotra
Kapoor
Chopra

Diya	Rao
Ritika	Sharma
Priya	Reddy
Ayesha	Bhatia
Rahul	Kumar
Kavya	Sharma
Advik	Rao
Rohan	Malhotra
Aanya	Kapoor
Kunal	Singh
Simran	Verma
Devansh	Gupta

3) Retrieve the first names of employees who were hired after the youngest employee was born

SELECT FirstName

FROM Employees

WHERE HireDate > (SELECT MIN(DateOfBirth) FROM Employees);

Output:

FirstName

Aarav

Vivaan

Aditya

Ananya

Kabir

Ishaan

Saanvi

Kaira

Riya

4) Find the employee with the maximum age in the company.

SELECT FirstName, LastName, DateOfBirth

FROM Employees

WHERE DateOfBirth = (SELECT MIN(DateOfBirth) FROM Employees);

Output:

```
FirstName LastName DateOfBirth
Pooja Ahuja 05-04-1982
```

5) Find the employee who have been with the company the longest.

SELECT FirstName, LastName, HireDate

FROM Employees

ORDER BY HireDate ASC

LIMIT 1;

Output:

FirstName LastName HireDate Riya Chopra 01-09-2009

6) List employees in descending order by their age, showing only the top 10 oldest.

SELECT FirstName, LastName, DateOfBirth

FROM Employees

ORDER BY DateOfBirth ASC

LIMIT 10;

Output:

FirstName	LastName	DateOfBirth
Pooja	Ahuja	05-04-1982
Arjun	Nanda	12-01-1983
Lavanya	Agarwal	05-10-1983
Riya	Chopra	20-01-1984
Vikram	Chawla	18-03-1984
Siddharth	Kohli	25-01-1985
Advik	Rao	25-01-1985
Aarav	Sharma	15-05-1985
Gaurav	Shukla	15-03-1986
Nikhil	Singh	30-03-1986

7) Find the employee with the highest salary.

SELECT FirstName, LastName, SalaryAmount

FROM Employees

JOIN Salaries ON Employees.EmployeeID = Salaries.EmployeeID

ORDER BY SalaryAmount DESC

LIMIT 1;

Output:

FirstName LastName SalaryAmount

Riya Chopra 90000

8) Count the number of employees in each department.

SELECT d.DepartmentName, COUNT(e.EmployeeID) AS EmployeeCount

FROM Departments as d

LEFT JOIN Employees as e ON d.DepartmentID = e.DepartmentID

GROUP BY d.DepartmentID, d.DepartmentName;

Output:

DepartmentName	EmployeeCount
Human Resources	5
Finance	5
Engineering	5
Marketing	5
Sales	5
IT	5
Customer Service	5
Research and Development	5
Legal	5
Administration	5

9) List all employees, showing their ages calculated from their DateOfBirth

SELECT FirstName, LastName, YEAR(CURRENT_DATE) - YEAR(DateOfBirth) AS Age FROM Employees;

Output:

FirstName L	astName	Age
-------------	---------	-----

Aarav	Sharma	39
Vivaan	Gupta	34
Aditya	Reddy	36
Ananya	Kumar	32
Kabir	Mehta	37
Ishaan	Patel	35
Saanvi	Verma	29
Kaira	Bhatia	33
Riya	Chopra	40

10) Find the employee who were born on the same date

SELECT FirstName, LastName, DateOfBirth

FROM Employees

```
WHERE DateOfBirth IN (

SELECT DateOfBirth

FROM Employees

GROUP BY DateOfBirth

HAVING COUNT(*) > 1

);
```

Output:

 $First Name\ Last Name\ Date Of Birth$

 Sam
 Chopra
 20-07-1988

 Dev
 Mishra
 20-07-1988

 Siddharth
 Kohli
 25-01-1985

 Advik
 Rao
 25-01-1985

11) Retrieve the employee with the most recent hire date.

SELECT FirstName, LastName, HireDate

FROM Employees

ORDER BY HireDate DESC

LIMIT 1;

Output:

FirstName LastName HireDate
Uday Bansal 15-11-2020

12) Retrieve the last name of employees, but with the first character lower

SELECT FirstName, CONCAT(lower(LEFT(LastName, 1)), LOWER(SUBSTRING(LastName, 2))) AS loweredLastName

FROM Employees;

Output:

FirstName loweredLastName

Aarav sharma Vivaan gupta Aditya reddy Ananya kumar Kabir mehta Ishaan patel Saanvi verma Kaira bhatia Riya chopra

13) Find employees with first names longer than their last names.

SELECT FirstName, LastName

FROM Employees

WHERE LENGTH(FirstName) > LENGTH(LastName);

Output:

FirstName LastName

Vivaan Gupta Aditya Reddy Ananya Kumar Patel Ishaan Saanvi Verma Nikhil Singh Diya Rao Krishna Nair Mansi Jain

14) Find the average age of employees.

SELECT round(AVG(YEAR(CURRENT_DATE) - YEAR(DateOfBirth))) AS AverageAge FROM Employees;

Output:

AverageAge

34

15) Count the number of employees hired each year.

SELECT YEAR(HireDate) AS HireYear, COUNT(*) AS NumberOfHires

FROM Employees

GROUP BY YEAR(HireDate);

HireYear	NumberOfHires
2010	2
2015	6
2012	4
2016	8
2011	4
2014	4
2019	6
2013	4
2009	1
2017	5
2018	3
2020	3

16) Find the number of employees with the same last name.

SELECT lastName, COUNT(*) AS Count

FROM Employees

GROUP BY lastName

HAVING COUNT(*) > 1;

Output:

lastName Count	
Sharma	3
Gupta	2
Reddy	2
Kumar	2
Verma	2
Bhatia	2
Chopra	2
Singh	2
Malhotra	2
Kapoor	2
Rao	2

17) Find employees with salaries that are less than the average salary(68120)

SELECT FirstName, LastName, SalaryAmount

FROM Employees e

JOIN Salaries s ON e.EmployeeID = s.EmployeeID

WHERE s.SalaryAmount < (SELECT AVG(SalaryAmount) FROM Salaries);

Output:

FirstName LastName SalaryAmount

Aarav	Sharma	60000
Kabir	Mehta	62000
Ishaan	Patel	65000
Saanvi	Verma	55000
Kaira	Bhatia	58000
Nikhil	Singh	61000
Sam	Chopra	68000
Karan	Dutta	56000
Neha	Sethi	60000

18) Get employees who do not have a salary record.

SELECT FirstName, LastName

FROM Employees e

LEFT JOIN Salaries s ON e.EmployeeID = s.EmployeeID

WHERE s.SalaryAmount IS NULL;

Output:

19)Calculate age and salary of employees older than 30. Query must return First name last name age and salary

SELECT firstname, lastname, (YEAR(CURRENT_DATE) - YEAR(e.DateOfBirth)) as AGE, s. Salary Amount AS salary

FROM Employees e

JOIN Salaries s ON e.EmployeeID = s.EmployeeID

WHERE (YEAR(CURRENT_DATE) - YEAR(e.DateOfBirth)) > 30;

firstname	lastname	AGE	sa	lary
Aarav	Sharma		39	60000
Vivaan	Gupta		34	70000
Aditya	Reddy		36	80000
Ananya	Kumar		32	75000
Kabir	Mehta		37	62000
Ishaan	Patel		35	65000
Kaira	Bhatia		33	58000
Riya	Chopra		40	90000
Mira	Joshi		31	72000

20) Find employees who were born in the 1990s.

SELECT FirstName, LastName, DateOfBirth

FROM Employees

WHERE YEAR(DateOfBirth) BETWEEN 1990 AND 1999;

Output:

FirstName	LastName	DateOfBirth
Vivaan	Gupta	20-06-1990
Ananya	Kumar	30-08-1992
Saanvi	Verma	15-11-1995
Kaira	Bhatia	18-12-1991
Mira	Joshi	25-02-1993
Raj	Malhotra	10-05-1994
Tanya	Kapoor	15-06-1990
Karan	Dutta	25-08-1995
Neha	Sethi	30-09-1992

- -- Joins
- -- Inner Join

21) Get a list of employees along with their hire dates, but only those hired in 2015

SELECT e.FirstName, e.LastName, e.HireDate

FROM Employees e

INNER JOIN Salaries s ON e.EmployeeID = s.EmployeeID

WHERE YEAR(e.HireDate) = 2015;

Output:

FirstName LastName HireDate

Vivaan	Gupta	15-02-2015
Raj	Malhotra	20-01-2015
Dev	Mishra	10-09-2015
Ayesha	Bhatia	25-06-2015
Rahul	Kumar	30-11-2015
Aanya	Kapoor	10-05-2015

22) Retrieve employee names and their respective salaries, filtering out those with salaries below 30,000.

```
SELECT e.FirstName, e.LastName, s.SalaryAmount
FROM Employees e
INNER JOIN Salaries s ON e.EmployeeID = s.EmployeeID
WHERE s.SalaryAmount >= 30000;
```

Output:

FirstName	LastName	SalaryAmount
Aarav	Sharma	60000
Vivaan	Gupta	70000
Aditya	Reddy	80000
Ananya	Kumar	75000
Kabir	Mehta	62000
Ishaan	Patel	65000
Saanvi	Verma	55000
Kaira	Bhatia	58000
Riya	Chopra	90000

-- left Join

23) Retrieve all employees and their salaries, show the difference between the highest salary in the department and each employee's salary.

```
SELECT e.FirstName, e.LastName, s.SalaryAmount,

(SELECT MAX(s2.SalaryAmount)

FROM Salaries s2

JOIN Employees e2 ON s2.EmployeeID = e2.EmployeeID

WHERE e2.DepartmentID = e.DepartmentID) - s.SalaryAmount AS SalaryDifference

FROM Employees e

LEFT JOIN Salaries s ON e.EmployeeID = s.EmployeeID;
```

FirstName	LastName	SalaryAmount SalaryDifference		
Aarav	Sharma	60000	15000	
Vivaan	Gupta	70000	8000	
Aditya	Reddy	80000	0	
Ananya	Kumar	75000	10000	
Kabir	Mehta	62000	6000	
Ishaan	Patel	65000	2000	
Saanvi	Verma	55000	5000	
Kaira	Bhatia	58000	5000	
Riya	Chopra	90000	0	

24) Get a list of all employees and their salaries and identify the maximum salary from their respective departments.

SELECT e.FirstName, e.LastName, s.SalaryAmount,

(SELECT MAX(s2.SalaryAmount)

FROM Salaries s2

JOIN Employees e2 ON s2.EmployeeID = e2.EmployeeID

WHERE e2.DepartmentID = e.DepartmentID) AS MaxDepartmentSalary

FROM Employees e

LEFT JOIN Salaries s ON e.EmployeeID = s.EmployeeID;

FirstName	LastName	SalaryAmount MaxDepa	ırtmentSalary
Aarav	Sharma	60000	75000
Vivaan	Gupta	70000	78000
Aditya	Reddy	80000	80000
Ananya	Kumar	75000	85000
Kabir	Mehta	62000	68000
Ishaan	Patel	65000	67000
Saanvi	Verma	55000	60000
Kaira	Bhatia	58000	63000
Riya	Chopra	90000	90000

-- Right Join

-- 25) Find the number of employees in each department, including department name

SELECT d.DepartmentName, COUNT(e.EmployeeID) AS NumberOfEmployees

FROM Departments d

RIGHT JOIN Employees e ON d.DepartmentID = e.DepartmentID

GROUP BY d.DepartmentName;

Output:

NumberOfEmployees
5
5
5
5
5
5
5
5
5
5

-- Self Join

-- 26)Retrieve employees who have the same hire date as any other employee.

SELECT e1.FirstName, e1.LastName, e1.HireDate

FROM Employees e1

JOIN Employees e2 ON e1.HireDate = e2.HireDate

WHERE e1.EmployeeID <> e2.EmployeeID;

Output:

FirstName LastName HireDate

Tisha Mohan 15-04-2018 Karan Dutta 15-04-2018

-- union

27) List all employees and their departments

```
SELECT
  e.EmployeeID,
  e.FirstName,
  e.LastName,
  d.DepartmentName
FROM Employees e
LEFT JOIN Departments d ON e.DepartmentID = d.DepartmentID
UNION
SELECT
  NULL AS EmployeeID,
  NULL AS FirstName,
  NULL AS LastName,
  d. Department Name \\
FROM
  Departments d
WHERE
  d.DepartmentID NOT IN (SELECT DepartmentID FROM Employees);
```

EmployeeID	FirstName	LastName	DepartmentName
1	Aarav	Sharma	Human Resources
2	Vivaan Gu	ota Finance	
3	Aditya	Reddy	Engineering
4	Ananya	Kumar	Marketing
5	Kabir	Mehta	Sales
6	Ishaan	Patel	IT
7	Saanvi	Verma	Customer Service
8	Kaira	Bhatia	Research and Development
9	Riya	Chopra	Legal
10	Mira	Joshi	Administration