

Aplicação do Trabalho do Pagerank

ERICK BRITO B41254@fgv.edu.br

GERMANO ANDRADE B41314@fgv.edu.br

23 de Novembro de 2020

5 Aplicação em uma base de dados

A base escolhida trata sobre o Campeonato Brasileiro de Futebol das temporadas de 2013 a 2020. Ela contém todas as partidas realizadas e, dentre outros dados, os nomes dos times, data da partida, ano, total de gols de cada time, vencedor da partida, etc.

```
[1]: #Importando pacotes necessários
import pandas as pd
import numpy as np
```

```
[2]: #Importando base de dados
br = pd.read_csv("../Databases/BRA.csv")
```

```
[3]: #Criando uma função para filtrar a base por ano (temporada) e turno.

#Também escolhemos algumas colunas mais interessantes para a gente.

def filtrar_base(ano, turno):
    filtro = br["Season"] == ano
    if turno == 1:
        return br[filtro][["Home", "Away", "HG", "AG", "Res"]].

→head(190)
    elif turno == 2:
```



```
return br[filtro][["Home", "Away", "HG", "AG", "Res"]].

→tail(190)
```

Agora vamos, filtrar a base apenas pelo primeiro turno do ano de 2017

```
[4]: br = filtrar_base(2017, 1)
```

e ficamos com

```
[5]: br.head()
```

```
[5]:
                 Home
                                  Away
                                         HG
                                              AG Res
          Flamengo RJ
    1900
                           Atletico-MG
                                        1.0
                                             1.0
                                                   D
    1901
          Corinthians
                       Chapecoense-SC
                                        1.0
                                             1.0
                                                   D
    1902
           Fluminense
                                        3.0
                                             2.0
                                Santos
                                                   Η
    1903
                               Vitoria 0.0 0.0
                 Avai
                                                   D
    1904
                Bahia
                           Atletico-PR 6.0 2.0
                                                   Η
```

Nesse momento, estamos rumo à criação da matriz.

Primeiramente, vamos criar um *DataFrame* apenas com as colunas de *Winner* e *Loser*.

```
[6]: winner = []
loser = []

for index, row in br.iterrows():
    if row['Res'] == "H":
        winner.append(br.loc[index, 'Home'])
        loser.append(br.loc[index, 'Away'])
    elif row['Res'] == "A":
        winner.append(br.loc[index, 'Away'])
        loser.append(br.loc[index, 'Home'])

    elif row["Res"] == "D":
        winner.append(br.loc[index, 'Home'])
        loser.append(br.loc[index, 'Away'])

        winner.append(br.loc[index, 'Away'])
        loser.append(br.loc[index, 'Home'])
```


Feito isso, temos as colunas da nossa tabela apenas com os vencedores e perdedores em cada coluna.

```
[7]: #Criando DataFrame
w_l = pd.DataFrame({"Winner": winner, "Loser": loser})
w_l.head()
```

```
[7]:
               Winner
                                Loser
          Flamengo RJ
                          Atletico-MG
          Atletico-MG
    1
                          Flamengo RJ
    2
          Corinthians Chapecoense-SC
    3
      Chapecoense-SC
                          Corinthians
    4
           Fluminense
                               Santos
```

Nesse ponto, estamos começando a desenhar a nossa matriz de transição

```
[8]: # 'index' se refere aos times distintos que participaram dessa⊔
→edição do brasileirão.

# ela já está em ordem alfabética
index = sorted(w_1["Winner"].unique())

#Criação do DataFrame que servirá como matriz de transição
matriz = pd.DataFrame(index=index, columns=index)

#Mostrando uma submatriz 5x5 com apenas as primeiras 5 linhas e 5⊔
→colunas da matriz.
matriz.head()[matriz.columns[:5]]
```

```
[8]:
                   Atletico GO Atletico-MG Atletico-PR Avai Bahia
     Atletico GO
                            NaN
                                         NaN
                                                       NaN NaN
     Atletico-MG
                            NaN
                                         {\tt NaN}
                                                       NaN NaN
                                                                    NaN
     Atletico-PR
                                         NaN
                                                       NaN NaN
                                                                    NaN
                            NaN
     Avai
                                         {\tt NaN}
                                                       NaN NaN
                                                                    NaN
                            {\tt NaN}
     Bahia
                            NaN
                                         NaN
                                                       NaN
                                                            NaN
                                                                    NaN
```

Criando uma função que verifica se o time da coluna perdeu para o time que está a linha.

Caso isso ocorra, o **NaN** é substituido pelo número 1.

[9]:		Atletico GO	Atletico-MG	Atletico-PR	Avai	Bahia
	Atletico GO	0.0	0.0	0.0	1.0	0.0
	Atletico-MG	1.0	0.0	0.0	1.0	0.0
	Atletico-PR	1.0	1.0	0.0	1.0	0.0
	Avai	0.0	0.0	0.0	0.0	1.0
	Bahia	1.0	1.0	1.0	1.0	0.0

Nesse ponto, podemos finalizar nossa matriz \mathbf{A} , dividindo cada coluna pela sua soma

```
[10]: finalizada = pd.DataFrame()
    for i in transicao:
        finalizada[i] = transicao[i] / sum(transicao[i])

finalizada.head()[finalizada.columns[:5]].round(3)
```

[10]:		Atletico GO	Atletico-MG	Atletico-PR	Avai	Bahia
	Atletico GO	0.000	0.000	0.000	0.067	0.000
	Atletico-MG	0.062	0.000	0.000	0.067	0.000
	Atletico-PR	0.062	0.077	0.000	0.067	0.000
	Avai	0.000	0.000	0.000	0.000	0.077
	Bahia	0.062	0.077	0.083	0.067	0.000

Finalmente, podemos transformar o *DataFrame* para um *array* **numpy**, ou seja, transformá-la em um formato de matriz como estamos habituados.

```
[11]: A = finalizada.to_numpy()
```

Como visto, para melhores resultados, podemos calcular a matriz M = (1 - p).

$$A + p \cdot B$$
, onde $B = \frac{1}{n} \cdot \begin{bmatrix} 1 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 1 \end{bmatrix}$ e p é escolhido igual a 0.15.

```
[12]: p = 0.15
n = A.shape[0]

B = (1/n)*np.ones((n, n))
M = (1-p)*A + p*B
```

```
[13]: Times Pagerank
7 Corinthians 0.329069
10 Flamengo RJ 0.283475
```


15	Santos	0.254503
12	Gremio	0.247502
3	Avai	0.246925
9	Cruzeiro	0.245660
2	Atletico-PR	0.238486
11	Fluminense	0.237158
17	Sport Recife	0.228049
8	Coritiba	0.218695
6	Chapecoense-SC	0.216743
5	Botafogo RJ	0.216452
13	Palmeiras	0.210694
14	Ponte Preta	0.203577
1	Atletico-MG	0.196003
4	Bahia	0.179209
18	Vasco	0.173636
16	Sao Paulo	0.172670
19	Vitoria	0.160491
0	Atletico GO	0.123012

Agora, filtrando pelo ano de 2018:

```
[14]: br = filtrar_base(2018, 1)
```

LITJ.	01	TITUTAL_DASC(Z	010, 17
[14]:		Times	Pagerank
	11	Gremio	0.289166
	13	Palmeiras	0.287783
	16	Sao Paulo	0.285372
	12	Internacional	0.274504
	9	Flamengo RJ	0.256528
	6	Chapecoense-SC	0.245159
	10	Fluminense	0.218257
	1	Atletico-MG	0.212538
	3	Bahia	0.211568
	17	Sport Recife	0.209950
	4	Botafogo RJ	0.207756
	8	Cruzeiro	0.206139
	2	Atletico-PR	0.200230
	5	Ceara	0.200108
	18	Vasco	0.196409
	7	Corinthians	0.192012
	0	America MG	0.184698
	14	Parana	0.184136
	15	Santos	0.182909
	19	Vitoria	0.162806

E então, pelo ano de 2019:

```
[15]: br = filtrar_base(2019, 1)
```

2200.	1110101_000(2	, -/
[15]:	Times	Pagerank
8	Corinthians	0.296163
1	6 Palmeiras	0.294798
1	8 Sao Paulo	0.293707
3	Bahia	0.277608
1	O Flamengo RJ	0.277288
1	5 Internacional	0.263889
1	4 Gremio	0.249776
1	7 Santos	0.247148
1	9 Vasco	0.206318
9	Cruzeiro	0.193982
5	CSA	0.193178
1	Atletico-MG	0.190953
6	Ceara	0.188077
0	Athletico-PR	0.186296
1	1 Fluminense	0.180202
1	2 Fortaleza	0.171392
4	Botafogo RJ	0.169045
2	Avai	0.166602
1	3 Goias	0.161079
7	Chapecoense-SC	0.154503