

TRƯỜNG ĐẠI HỌC VINH VINH UNIVERSITY

Noi tạo dụng tương lai cho tuổi trẻ

Chương 3. Quá trình quá độ trong mạch điện tuyến tính

TS. Nguyễn Tiến Dũng

Vinh, 2019

Chương 3. Quá trình quá độ trong mạch điện tuyến tính

- 3.1. Giới thiệu
- 3.2. Sơ kiện
- 3.3. Phương pháp tích phân cổ điển
- 3.4. Quá trình quá độ trong mạch RL, RC, RLC
- 3.5. Phương pháp toán tử
- 3.6. Giải một số bài toán quá trình quá độ bằng máy tính
- 3.7. Bài tập

3.1. Giới thiệu

- Chế độ xác lập: mọi thông số trong mạch điện (dòng điện, điện áp, công suất, năng lượng) đều là hằng số (mạch một chiều) hoặc biến thiên chu kỳ (mạch xoay chiều).
- Quá độ (Từ điển tiếng Việt): chuyển từ chế độ này sang chế độ khác.
- Quá trình quá độ (kỹ thuật điện): quá trình mạch điện chuyển từ chế độ xác lập này sang chế độ xác lập khác.

 Quá trình quá độ (kỹ thuật điện): quá trình mạch điện chuyển từ chế độ xác lập này sang chế độ xác lập khác.

 Quá trình quá độ (kỹ thuật điện): quá trình mạch điện chuyển từ chế độ xác lập này sang chế độ xác lập khác.

- Quá trình quá độ xảy ra khi có thay đổi đột ngột về cấu trúc hoặc thông số của các mạch điện quán tính.
- Quán tính: có cuộn dây hoặc/và tụ điện.
- Một số giả thiết đơn giản hóa:
 - Các phần tử lý tưởng (điện trở của cuộn dây bằng 0, điện trở của tụ điện vô cùng lớn),
 - Động tác đóng mở lý tưởng:
 - Thay khóa (K) bằng R,
 - R chỉ nhận các giá trị 0 (khi K đóng) & ∞ (khi K mở),
 - Thời gian đóng mở bằng 0.
 - Luật Kirchhoff luôn đúng.

Chế độ cũ	t = 0	Chế độ mới
$a \longleftarrow b$	$a \longrightarrow b$	$a \longrightarrow b$
$R_{ab} o \infty$	·	$R_{ab}=0$
$a \longrightarrow b$	$a \longrightarrow b$	$a \longleftarrow b$
$R_{ab}=0$	•	$R_{ab} o \infty$
$R_{ac} = 0$ $R_{bc} \rightarrow \infty$	$\frac{b}{c}$ $\frac{2}{c}$ $\frac{1}{c}$	$ \begin{array}{c} b 2 \\ \hline & c \\ R_{ac} \rightarrow \infty \\ R_{bc} = 0 \end{array} $

3.2. Sơ kiện

- Định nghĩa: giá trị (& đạo hàm các cấp) ngay sau thời điểm đóng mở của dòng điện qua cuộn cảm & điện áp trên tụ điện.
- $i_L(0)$, $u_C(0)$, $i'_L(0)$, $u'_C(0)$, $i''_L(0)$, $u''_C(0)$, ...
- Việc tính sơ kiện dựa vào:
 - Thông số mạch ngay trước thời điểm đóng mở (chế độ cũ): i_L(-0), u_C(-0),
 - Hai luật Kirchhoff,
 - Hai luật đóng mở.

Sơ kiện

Sơ kiện

Hàm bước nhảy đơn vị 1(t) (hoặc u(t)):

$$1(t) = \begin{vmatrix} 0 & t < 0 \\ 1 & t \ge 0 \end{vmatrix}$$

$$\frac{1(t-\tau)}{1} = \begin{vmatrix} 0 & t < \tau \\ 1 & t \ge \tau \end{vmatrix}$$

Hàm Dirac $\delta(t)$

$$\delta(t) = \frac{d}{dt} 1(t) = \begin{vmatrix} 0 & t \le -0 & t \ge +0 \\ \to & -0 < t < +0 \end{vmatrix}$$

$$\int_{-\infty}^{+\infty} \delta(t) = 1$$

$$\delta(t-\tau) = \frac{d}{dt} \mathbf{1}(t-\tau)$$

 Luật/quy tắc đóng mở 1: dòng điện trong một cuộn cảm ngay sau khi đóng mở i_L(+0) bằng dòng điện trong cuộn cảm đó ngay trước khi đóng mở i_L(-0)

$$i_L(+0) = i_L(-0)$$

 Luật/quy tắc đóng mở 2: điện áp trên một tụ điện ngay sau khi đóng mở u_C(+0) bằng điện áp trên tụ điện đó ngay trước khi đóng mở u_C(-0)

$$u_C(+0) = u_C(-0)$$

 $E = 12 \text{ VDC}; R = 6 \Omega; L = 2 \text{ H. Tính } i_L(0) \& i'_L(0)$?

$$E = 12 \text{ VDC}; R = 6 \Omega; L = 2 \text{ H. Tính } i_L(0) \& i'_L(0)$$
?

Chế độ cũ

$$\begin{cases} i_L(-0) = 0 \\ i_L(0) = i_L(-0) \end{cases}$$

$$\rightarrow i_L(0) = 0$$

Chế độ mới

$$Ri_L + Li_L' = E$$

$$\rightarrow Ri_L(0) + Li'_L(0) = E$$

$$\rightarrow i'_L(0) = \frac{E - Ri_L(0)}{L} = \frac{12 - 0}{2} = \boxed{6 \text{ A/s}}$$

 $E = 12 \text{ VDC}; R = 6 \Omega; L = 2 \text{ H. Tính } i_L(0) \& i'_L(0)?$

VD₂

$$E = 12 \text{ VDC}; R = 6 \Omega; L = 2 \text{ H. Tính } i_L(0) \& i'_L(0)$$
?

Chế độ mới

$$\rightarrow i'_L(0) = \frac{E - Ri_L(0)}{L} = \frac{12 - 6.4}{2} = \boxed{-6 \text{ A/s}}$$

 $E = 12 \text{ VDC}; R = 6 \Omega; C = 1 \mu \text{ F. Tính } u_C(0) \& u'_C(0)$?

$$E = 12 \text{ VDC}; R = 6 \Omega; C = 1 \mu \text{ F. Tính } u_C(0) \& u'_C(0)$$
?

$$u_C(0) = u_C(-0)$$
$$= \boxed{0 \text{ V}}$$

Chế độ mới

$$Ri_{C} + u_{C} = E$$

$$i_{C} = Cdu_{C} / dt$$

$$\rightarrow RCu'_{C}(0) + u_{C}(0) = E$$

$$\rightarrow u'_{C}(0) = \frac{E - u_{C}(0)}{RC} = \frac{12 - 0}{6.1.10^{-6}} = 2.10^{6} \text{ V/s}$$

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

$$E = 12 \text{ VDC}; R_1 = 6 \Omega; R_2 = 3 \Omega;$$

 $C = 1 \mu \text{ F. Tính } u_C(0) \& u'_C(0)$?

$$E = 12 \text{ VDC}; R_1 = 6 \Omega; R_2 = 3 \Omega;$$

 $C = 1 \mu \text{ F. Tinh } u_C(0) \& u'_C(0)$?

Chế độ mới

$$\begin{cases} i_{1} - i_{2} - i_{C} = 0 \\ R_{1}i_{1} + R_{2}i_{2} = E \\ R_{2}i_{2} - u_{C} = 0 \end{cases}$$

$$i_{C} = Cdu_{C} / dt$$

Phương pháp tích phân kinh điển phân tích quá trình quá độ

$$E = 24 \text{ VDC}$$
; $R = 25 \Omega$; $L = 5 \text{ H}$; $C = 50 \text{ mF}$.

1.
$$i_L(0) = 0$$
; $i'_L(0) = 4.8$ A/s;

2.
$$i_{xl}(t) = 0$$
;

a)
$$LCp^2 + RCp + 1 = 0$$
,
 $\Rightarrow p_1 = -4, p_2 = -1$;

b)
$$i_{td}(t) = Ae^{-4t} + Be^{-t}$$
;

4.
$$A = -1.6$$
; $B = 1.6$;

5.
$$i(t) = 0 - 1.6e^{-4t} + 1.6e^{-t} A$$

- Tính các sơ kiên;
- Tìm nghiệm xác lập x_{xl}(t);
- 3. Tîm nghiệm tự do:
- a) lập phương trình đặc trưng & giải;
- b) viết nghiệm tự do $x_{td}(t)$;
- 4. Tìm các hằng số tích phân;
- 5. Tổng hợp kết quả: $x(t) = x_{xl}(t) + x_{td}(t)$.

- 1. Tính các sơ kiện (đã có ở phần trước);
- 2. Tìm nghiệm xác lập (dùng các phương pháp (dòng nhánh, thế nút, dòng vòng, xếp chồng, mạng một cửa, mạng hai cửa,...) trong Lý thuyết mạch I);
- 3. Tîm nghiệm tự do:
 - a) Lập phương trình đặc trưng & giải;
 - b) Viêt nghiệm tự do;
- 4. Tìm các hằng số tích phân;
- 5. Tổng hợp kết quả: $x(t) = x_{xl}(t) + x_{td}(t)$.

Phương pháp tích phân kinh điển: lập phương trình đặc trưng

$$E = 24 \text{ VDC}; R = 25 \Omega; L = 5 \text{ H}; C = 50 \text{ mF.}$$

$$Ri_{td} + u_L + u_C = 0$$

$$\rightarrow Ri_{td} + Li'_{td} + \frac{1}{C} \int i_{td} dt = 0$$

$$i_{td} = Ae^{pt}$$

$$\rightarrow RAe^{pt} + LApe^{pt} + \frac{A}{Cp}e^{pt} = 0$$

$$\rightarrow R + Lp + \frac{1}{Cp} = 0$$

$$\rightarrow LCp^2 + RCp + 1 = 0$$

$$E = 24 \text{ VDC}; R = 25 \Omega; L = 5 \text{ H}; C = 50 \text{ mF}.$$

$$Ri_{td} + Li'_{td} + \frac{1}{C} \int i_{td} dt = 0 \rightarrow \boxed{LCp^2 + RCp + 1 = 0}$$

$$Z_{ab} = R + Lp + \frac{1}{Cp} = 0 \rightarrow \boxed{LCp^2 + RCp + 1 = 0}$$

$$E = 24 \text{ VDC}; R = 25 \Omega; L = 5 \text{ H}; C = 50 \text{ mF}.$$

- Xét mạch điện ở trạng thái mới (khóa đã chuyển sang vị trí mới);
- Tắt (các) nguồn độc lập (nếu có);
- 3. Toán tử hóa các phần tử:

$$\left(R \to R; L \to Lp; C \to \frac{1}{Cp}\right);$$

- Chọn hai điểm bất kỳ sát nhau a
 b, tính tổng trở vào Z_{ab}(p);
- 5. Cho $Z_{ab}(p) = 0 \rightarrow p/tr$ đặc trưng.

$$Z_{ab} = R + Lp + \frac{1}{Cp} = 0 \rightarrow \boxed{LCp^2 + RCp + 1 = 0}$$

$$E_1$$
 = 120 V; E_2 = 40 V; R_1 = 10 Ω ; R_2 = 20 Ω ; R_3 = 30 Ω ; L = 1 H; C = 1 mF.

$$Z_{ab} = R_1 + Lp + \frac{R_3 \left(R_2 + \frac{1}{Cp}\right)}{R_3 + R_2 + \frac{1}{Cp}} = \frac{p^2 + 42p + 800}{p + 20}$$

$$Z_{ab} = 0 \rightarrow p^2 + 42p + 800 = 0$$

$$Z_{cd} = R_2 + \frac{1}{Cp} + \frac{R_3(R_1 + Lp)}{R_3 + R_1 + Lp} = \frac{50(p^2 + 42p + 800)}{p(p + 40)}$$

$$Z_{ef} = R_3 + \frac{(R_1 + Lp)\left(R_2 + \frac{1}{Cp}\right)}{R_1 + Lp + R_2 + \frac{1}{Cp}} = \frac{50(p^2 + 42p + 800)}{p^2 + 30p + 1000}$$

$$J = 5 \text{ A (DC)}; R_1 = 10 \Omega; R_2 = 20 \Omega; L = 2 \text{ H};$$

 $C = 5 \text{ mF}.$

$$Z_{ab} = \frac{1}{Cp} + \frac{R_1 Lp}{R_1 + Lp} = \frac{10(p+10)^2}{p(p+5)}$$

$$Z_{ab} = 0 \rightarrow 10(p+10)^2 = 0$$

$$E = 12 \text{ VDC}; R_1 = 6 \Omega; R_2 = 3 \Omega; L = 2 \text{ H};$$

 $C = 5 \text{ mF}.$

$$Z_{ab} = R_{td} + Lp + \frac{1}{Cp}$$

$$E = 12 \text{ VDC}; R_1 = 6 \Omega; R_2 = 3 \Omega; L = 2 \text{ H};$$

 $C = 5 \text{ mF}.$

$$Z_{ab} = R_{td} + Lp + \frac{1}{Cp}$$

$$Arr > R_{td} = 1,2 \Omega$$

$$Arr > Z_{ab} = 1,2 + 2p + \frac{1}{5.10^{-3}p}$$

$$= \frac{2p^2 + 1,2p + 200}{p}$$

Viết nghiệm tự do

$$ap^{2} + bp + c = 0 \rightarrow p_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-b \pm \sqrt{\Delta}}{2a}$$

$$\Delta > 0$$
: $x(t) = Ae^{p_1 t} + Be^{p_2 t}$

$$\Delta = 0$$
: $x(t) = (A + Bt)e^{pt}$

$$\Delta < 0, p_{1,2} = -\alpha \pm j\omega : x(t) = (A\cos\omega t + B\sin\omega t)e^{-\alpha t}$$
$$= Me^{-\alpha t}\cos(\omega t + \theta)$$

$$0,25p^{2}+1,25p+1=0 \rightarrow p_{1} = -1; p_{2} = -4$$
$$\rightarrow x(t) = Ae^{-t} + Be^{-4t}$$

VD2

$$10(p+10)^{2} = 0 \qquad \to p_{1} = p_{2} = -10$$
$$\to x(t) = (A+Bt)e^{-10t}$$

$$p^{2} + 42p + 800 = 0 \rightarrow p_{1,2} = -21,00 \pm j18,95$$
$$\rightarrow x(t) = (A\cos 18,95t + B\sin 18,95t)e^{-21t}$$
$$= Me^{-21t}\cos(18,95t + \theta)$$

Tìm các hằng số tích phân

$$\begin{cases} x(t=0) = x(0) \\ x'(t=0) = x'(0) \end{cases} \to A, B$$

$$0,25p^{2}+1,25p+1=0; i(0) = 0,18 \text{ A}; i'(0) = 0; i_{xl}(t) = 0$$

$$p_{1} = -1; p_{2} = -4 \rightarrow i_{td}(t) = Ae^{-t} + Be^{-4t}$$

$$\rightarrow i(t) = i_{xl}(t) + i_{td}(t) = 0 + Ae^{-t} + Be^{-4t} = Ae^{-t} + Be^{-4t}$$

$$\begin{cases} i(t=0) = (Ae^{-t} + Be^{-4t}) \Big|_{t=0} = A + B = 0,18 \\ i'(t=0) = (-Ae^{-t} - 4Be^{-4t}) \Big|_{t=0} = -A - 4B = 0 \end{cases} \rightarrow \begin{cases} A = 0,24 \\ B = -0,06 \end{cases}$$

Ví dụ:

$$E = 12 \text{ VDC}; R_1 = 20 \Omega; R_2 = 45 \Omega; L = 20 \text{ mH};$$

 $C = 4 \text{ mF}.\text{Tính dòng quá độ?}$

$$i_L(0) = 0.18 \,\mathrm{A}; \, i_L'(0) = 0$$

$$LCp^2 + R_1Cp + 1 = 0$$

- ✓ 1. Tính các sơ kiện;
- ✓ 2. Tìm nghiệm xác lập x_{xl}(t);
 - 3. Tìm nghiệm tự do:
- ✓ a) lập phương trình đặc trưng & giải;
- ✓ b) viết nghiệm tự do $x_{td}(t)$;
 - 4. Tìm các hằng số tích phân;
 - 5. Tổng hợp kết quả: $x(t) = x_{xl}(t) + x_{td}(t)$.

$$\rightarrow (20.10^{-3})(4.10^{-3})p^2 + 20(4.10^{-3})p + 1 = 0 \rightarrow p_1 = -987, 3; p_2 = 12,66$$

$$\rightarrow i_{td}(t) = Ae^{-987,3t} + Be^{-12,66t}$$

$$E = 12 \text{ VDC}; R_1 = 20 \Omega; R_2 = 45 \Omega; L = 20 \text{ mH};$$

 $C = 4 \text{ mF}.\text{Tính dòng quá độ?}$

$$i_L(0) = 0.18 \text{ A}; i'_L(0) = 0$$

$$i_{xl}(t) = 0; i_{td}(t) = Ae^{-987,3t} + Be^{-12,66t}$$

$$i(t) = i_{xl}(t) + i_{td}(t)$$

$$= 0 + Ae^{-987,3t} + Be^{-12,66t}$$

$$= Ae^{-987,3t} + Be^{-12,66t}$$

$$\begin{cases} i(0) = A + B = 0.18 \\ i'(0) = -987, 3A - 12, 66B = 0 \end{cases}$$

- 1. Tính các sơ kiện;
- ✓ 2. Tìm nghiệm xác lập x_{xl}(t);
 - 3. Tîm nghiệm tự do:
- a) lập phương trình đặc trưng & giải;
- ✓ b) viết nghiệm tự do $x_{td}(t)$;
- ✓ 4. Tìm các hằng số tích phân;
- ✓ 5. Tổng hợp kết quả: $x(t) = x_{xl}(t) + x_{tul}(t)$.

$$\rightarrow A = -0,0023; B = 0,1823 \rightarrow i(t) = -0,0023e^{-987,3t} + 0,1823e^{-12,66t} A$$

$$E = 12 \text{ VDC}; R_1 = 20 \Omega; R_2 = 45 \Omega; L = 20 \text{ mH};$$

 $C = 4 \text{ mF}.\text{Tính dòng quá độ?}$

$$i(t) = -0,0023e^{-987,3t} + 0,1823e^{-12,66t}$$
 A

$$E_1 = 120 \text{ V}; E_2 = 40 \text{ V}; R_1 = 10 \Omega; R_2 = 20 \Omega; R_3 = 30 \Omega;$$
 $L = 1 \text{ H}; C = 1 \text{ mF. Tính } u_C(t)$?

$$u_c(0) = 30 \text{ V}; \ u'_c(0) = -800 \text{ V/s}$$

$$\begin{cases} a: i_1 + i_2 - i_3 = 0 \\ R_1 i_1 - R_2 i_2 - u_C + u_L = E_2 \\ R_2 i_2 + R_3 i_3 + u_C = E_1 - E_2 \end{cases}$$

$$u_L = 0; i_2 = 0$$

$$p^2 + 42p + 800 = 0 \rightarrow p_{1,2} = -21,00 \pm j18,95$$

$$\rightarrow u_{td}(t) = e^{-21t} (A\cos 18, 95t + B\sin 18, 95t)$$

$$\to u_C(t) = u_{xl}(t) + u_{td}(t)$$

$$= -10 + e^{-21t} (A\cos 18, 95t + B\sin 18, 95t)$$

VD₂

$$E_{1} = 120 \text{ V}; E_{2} = 40 \text{ V}; R_{1} = 10 \Omega; R_{2} = 20 \Omega; R_{3} = 30 \Omega;$$

$$L = 1 \text{ H}; C = 1 \text{ mF. Tinh } u_{C}(t)?$$

$$u_{C}(0) = 30 \text{ V}; u'_{C}(0) = -800 \text{ V/s}$$

$$u_{C}(t) = -10 + e^{-21t} (A\cos 18, 95t + B\sin 18, 95t)$$

$$u_{C}(0) = -10 + e^{-21t} (A\cos 0 + B\sin 0) = -10 + A = 30$$

$$A = 40 \rightarrow u_{C}(t) = -10 + e^{-21t} (40\cos 18, 95t + B\sin 18, 95t)$$

$$u'_{C}(t) = -21e^{-21t} (40\cos 18, 95t + B\sin 18, 95t)$$

$$+ e^{-21t} (-18, 95.40\sin 18, 95t + 18, 95B\cos 18, 95t)$$

$$+ e^{-21t} (-18, 95.40\sin 18, 95t + 18, 95B\cos 18, 95t)$$

$$-21.40 + 18, 95B = -800 \rightarrow B = 2, 11$$

$$\rightarrow u_{C}(t) = -10 + e^{-21t} (40, 00\cos 18, 95t + 2, 11\sin 18, 95t) \text{ V}$$

$$J = 5 \text{ A (DC)}; R_1 = 10 \Omega; R_2 = 20 \Omega; L = 2 \text{ H};$$

 $C = 5 \text{ mF. Tính } i_L(t)$?

$$i_L(0) = 1,67 \text{ A}; \ i'_L(0) = 16,67 \text{ A/s}$$

$$i_{xl}(t) = 0$$

$$10(p+10)^2 = 0 \rightarrow p_1 = p_2 = -10$$

$$\rightarrow i_{td}(t) = (A + Bt)e^{-10t}$$

$$i_L(t) = i_{xt}(t) + i_{td}(t) = 0 + (A + Bt)e^{-10t} = (A + Bt)e^{-10t}$$

$$i_L(0) = (A + B.0)e^{-10.0} = A = 1,67$$

$$i_t'(t) = Be^{-10t} - 10(A + Bt)e^{-10t}$$

$$\rightarrow i'_L(0) = B - 10A = B - 16,67 = 16,67 \rightarrow B = 33,33$$

$$\rightarrow i_L(t) = (1,67+33,33t)e^{-10t} \text{ A}$$

 $J = 5 \text{ A (DC)}; R_1 = 10 \Omega; R_2 = 20 \Omega; L = 2 \text{ H};$ $C = 5 \text{ mF. Tính } i_L(t)$?

Phương pháp toán tử giải bài toán quá độ

Phương pháp toán tử: Biến đổi thuận Laplace

Phương pháp toán tử: Biến đổi thuận Laplace

x(t)	$\delta(t)$	1(<i>t</i>)	e^{-at}	t	te ^{-at}	sin at	cos at
X(p)	1	$\frac{1}{p}$	$\frac{1}{p+a}$	$\frac{1}{p^2}$	$\frac{1}{(p+a)^2}$	$\frac{a}{p^2 + a^2}$	$\frac{p}{p^2 + a^2}$

Tính chất	x(t)	X(p)		
1. Ti lệ biên độ	Ax(t)	AX(p)		
2. Cộng/trừ	$x_1(t) \pm x_2(t)$	$X_1(p) \pm X_2(p)$		
3. Tî lệ thời gian	x(at)	$\frac{1}{a}X\left(\frac{p}{a}\right)$		
4. Dịch thời gian	$x(t-a)l(t-a), a \ge 0$ $x(t)l(t-a), a \ge 0$	$e^{-ap}X(p)$ $e^{-ap}L[x(t+a)]$		
5. Dịch tần số	$e^{-at}x(t)$	X(p+a)		
6. Vi phân		$p^{n}X(p) - p^{n-1}x(-0) - p^{n-2}x^{(1)}(-0) \dots$		
7. Nhân với <i>t</i>	$t^{n}x(t)$	$(-1)^n d^n X(p) / dp^n$		
8. Chia cho t	x(t)/t	$\int_{p}^{\infty} X(\lambda) d\lambda$		
9. Tích phân	$\int_0^t x(\lambda)d\lambda$	X(p) / p		
10. Nhân chập	$x_1(t) * x_2(t) = \int_0^t x_1(\lambda) x_2(t-\lambda) d\lambda$	$X_1(p)X_2(p)$		

Tìm ành Laplace của $x(t) = 5 + e^{-10t} - \cos 20t$?

$$x_{1}(t) \pm x_{2}(t) \rightarrow X_{1}(p) \pm X_{2}(p)$$

$$\rightarrow X(p) = L[5] + L[e^{-10t}] - L[\cos 20t]$$

$$Ax(t) \rightarrow AX(p)$$

$$\rightarrow L[5] = 5L[1]$$

$$L[1] = \frac{1}{p}$$

$$L[e^{-10t}] = \frac{1}{p+10}$$

$$L[\cos 20t] = \frac{p}{p^{2} + 20^{2}} = \frac{p}{p^{2} + 400}$$

$$\rightarrow X(p) = \frac{5}{p} + \frac{1}{p+10} - \frac{s}{p^{2} + 400} = \frac{5p^{3} + 2400p + 4000}{p(p+10)(p^{2} + 400)}$$

Thương pháp toàn từ: Biến đổi thuận

VD1

Tìm ành Laplace của $x(t) = 5 + e^{-10t} - \cos 20t$?

$$x_{1}(t) \pm x_{2}(t) \rightarrow X_{1}(p) \pm X_{2}(p)$$

$$\rightarrow X(p) = L[5] + L[e^{-10t}] - L[\cos 20t]$$

$$Ax(t) \rightarrow AX(p)$$

$$\rightarrow L[5] = 5L[1]$$

$$L[1] = \frac{1}{p}$$

$$\rightarrow L[5] = \frac{5}{p}$$

$$L[e^{-10t}] = \frac{1}{p+10}$$

$$L[\cos 20t] = \frac{p}{p^{2} + 20^{2}} = \frac{p}{p^{2} + 400}$$

$$\rightarrow X(p) = \frac{5}{p} + \frac{1}{p+10} - \frac{s}{p^{2} + 400} = \frac{5p^{3} + 2400p + 4000}{p(p+10)(p^{2} + 400)}$$

Thương pháp toàn từ: Biến đổi thuận

Phương pháp toán tử: Biến đổi thuận Laplace

 Dùng bảng các cặp biến đổi (có sẵn) và tính chất của biến đổi thuận Laplace để tìm ảnh Laplace X(p) từ gốc thời gian x(t).

x(t)	$\delta(t)$	1(t)	e ^{-at}	t	te ^{-at}	sin at	cosat
<i>X</i> (<i>p</i>)	1	$\frac{1}{p}$	$\frac{1}{p+a}$	$\frac{1}{p^2}$	$\frac{1}{(p+a)^2}$	$\frac{a}{p^2 + a^2}$	$\frac{p}{p^2 + a^2}$

Phương pháp toán tử: Biến đổingượcLaplace

$$L^{-1}[X(p)] = x(t) = \frac{1}{2\pi j} \int_{\sigma - j\omega}^{\sigma + j\omega} X(p) e^{pt} dp$$

$$X(p) = \frac{N(p)}{D(p)} = \frac{a_n p^n + a_{n-1} p^{n-1} + \dots + a_1 p + a_0}{b_m p^m + b_{m-1} p^{m-1} + \dots + b_1 p + b_0}$$

dổi ngược Laplace – nghiệm

$$X(p) = \frac{p+8}{p(p+2)(p+4)^2} = \frac{K_1}{p} + \frac{K_2}{p+2} + \frac{K_3}{(p+4)^2} + \frac{K_4}{p+4}$$
$$\Rightarrow x(t) = K_1 + K_2 e^{-2t} + K_3 t e^{-4t} + K_4 e^{-4t}$$

- Tính K_1 , K_2 , K_3 , K_4 ?
- Cách tính phụ thuộc vào kiểu nghiệm của mẫu số:
 - · Nghiệm thực phân biệt,
 - · Nghiệm thực lặp (kép),
 - Nghiệm phức.

Phương pháp toàn từ: Biến đổi ngược

$$La \qquad X(p) = \frac{N(p)}{D(p)} = \frac{K_1}{p+p_1} + \frac{K_2}{p+p_2} + \dots + \frac{K_i}{p+p_i} + \dots + \frac{K_n}{p+p_n}$$

$$\rightarrow (p+p_i) \frac{N(p)}{D(p)} = \frac{K_1(p+p_i)}{p+p_1} + \frac{K_2(p+p_i)}{p+p_2} + \dots + \frac{K_i(p+p_i)}{p+p_i} + \dots + \frac{K_n(p+p_i)}{p+p_n}$$

$$\rightarrow (p+p_i) \frac{N(p)}{D(p)} = \frac{K_1(p+p_i)}{p+p_1} + \frac{K_2(p+p_i)}{p+p_2} + \dots + K_i + \dots + \frac{K_n(p+p_i)}{p+p_n}$$

$$\rightarrow \left[(p+p_i) \frac{N(p)}{D(p)} \right]_{p=-p_i} = \left[\frac{K_1(p+p_i)}{p+p_1} + \frac{K_2(p+p_i)}{p+p_2} + \dots + K_i + \dots + \frac{K_n(p+p_i)}{p+p_n} \right]_{p=-p_i}$$

$$\rightarrow \left[(p+p_i) \frac{N(p)}{D(p)} \right]_{p=-p_i} = 0 + 0 + \dots + K_i + \dots + 0$$

$$\rightarrow K_i = \left[(p+p_i) \frac{N(p)}{D(p)} \right]_{p=-p_i}$$

dổi ngược Laplace – nghiệm

$$\frac{VD2}{X(p) = \frac{25p^2 + 300p + 640}{p(p+4)(p+8)}} = \frac{K_1}{p} + \frac{K_2}{p+4} + \frac{K_3}{p+8} = \frac{20}{p} + \frac{10}{p+4} - \frac{5}{p+8}$$

$$K_1 = \frac{25p^2 + 300p + 640}{p(p+4)(p+8)} \Big|_{p=0} = \frac{25.0^2 + 300.0 + 640}{(0+4)(0+8)} = 20$$

$$K_2 = \frac{25p^2 + 300p + 640}{p(p+4)(p+8)} \Big|_{p=-4} = \frac{25(-4)^2 + 300(-4) + 640}{(-4)(-4+8)} = 10$$

$$K_3 = \frac{25p^2 + 300p + 640}{p(p+4)(p+8)} \Big|_{p=-8} = \frac{25(-8)^2 + 300(-8) + 640}{(-8)(-8+4)} = -5$$

$$\rightarrow X(t) = \frac{20 + 10e^{-4t} - 5e^{-8t}}{10}$$

đổi ngược Laplace – nghiệm

$$X(p) = \frac{20p+120}{2p^2+8p+6} = \frac{10p+60}{p^2+4p+3} = \frac{10p+60}{(p+1)(p+3)} = \frac{K_1}{p+1} + \frac{K_2}{p+3}$$

$$K_1 = \frac{10p + 60}{(p+3)}\Big|_{p=-1} = \frac{10(-1) + 60}{-1 + 3} = 25$$

$$K_2 = \frac{10p+60}{(p+1)(p+3)} \bigg|_{p=-3} = \frac{10(-3)+60}{-3+1} = -15$$

$$\rightarrow x(t) = 25e^{-t} - 15e^{-3t}$$

Phương pháp toán tứ: Biển đối ngược Laplace – nghiệm thực

$$|\mathbf{\tilde{a}p}| \qquad X(p) = \frac{N_1(p)}{[D_1(p)](p+p_1)^n} = \frac{K_{11}}{(p+p_1)} + \frac{K_{12}}{(p+p_1)^2} + \dots + \frac{K_{1n}}{(p+p)^n} + \dots$$

$$\left[(p + p_1)^n X(p) \right]_{p = -p_1} = K_{1n}$$

$$\left\{ \frac{d}{dp} [(p+p_1)^n X(p)] \right\} \bigg|_{p=-p_1} = K_{\ln -1}$$

$$\left. \left\{ \frac{d^2}{dp^2} \left[(p + p_1)^n X(p) \right] \right\} \right|_{p = -p_1} = (2!) K_{1n-2}$$

$$K_{1j} = \left\{ \frac{1}{(n-j)!} \frac{d^{n-j}}{dp^{n-j}} [(p+p_1)^n X(p)] \right\}_{p=-p_1}$$

Phương pháp toán tứ: Biển đối ngược Laplace – nghiệm thực

$$||\mathbf{A}|| = \frac{10p^2 + 34p + 27}{p(p+3)^2} = \frac{K_{11}}{p+3} + \frac{K_{12}}{(p+3)^2} + \frac{K_2}{p} = \frac{7}{p+3} - \frac{5}{(p+3)^2} + \frac{3}{p}$$

$$K_{12} = \frac{10p^2 + 34p + 27}{p(p+3)^2} = -5$$

$$K_{11} = \left[\frac{d}{dp} \left(\frac{10p^2 + 34p + 27}{p(p+3)^2} \right) \right]_{p=-3} = \frac{p(20p + 34) - (10p^2 + 34p + 27)}{p^2} \Big|_{p=-3} = 7$$

$$K_2 = \frac{10p^2 + 34p + 27}{p(p+3)^2} \Big|_{p=0} = 3$$

$$\Rightarrow x(t) = \frac{3 + 7e^{-3t} - 5te^{-3t}}{p^2}$$

8/12/2019 59

Phương pháp toán tứ: Biển đối ngược Laplace – nghiệm thực

lặp

$$\frac{VD5}{X(p) = \frac{5(p+3)}{(p+1)(p+2)^2}} = \frac{K_{11}}{p+2} + \frac{K_{12}}{(p+2)^2} + \frac{K_2}{p+1} = \frac{-10}{p+2} - \frac{5}{(p+2)^2} + \frac{10}{p+1}$$

$$K_{12} = \frac{5(p+3)}{(p+1)(p+2)^2} \Big|_{p=-2} = -5$$

$$K_{11} = \left[\frac{d}{dp} \left(\frac{5(p+3)}{(p+1)(p+2)^2} \right) \right]_{p=-2} = \frac{(p+1)5 - (5p+15)}{(p+1)^2} \Big|_{p=-2} = -10$$

$$K_2 = \frac{5(p+3)}{(p+2)^2} \Big|_{p=-1} = 10$$

$$\Rightarrow X(t) = 10e^{-t} - 10e^{-2t} - 5te^{-2t}$$

Phương pháp toán tử: Biến đối ngược Laplace – nghiệm phức $x_{(p)=\frac{N_i(p)}{2}=\frac{K_i}{2}+\frac{K_i^*}{2}+$

$$X(p) = \frac{N_{1}(p)}{[D_{1}(p)](p + \alpha - j\beta)(p + \alpha + j\beta)} = \frac{K_{1}}{p + \alpha - j\beta} + \frac{K_{1}^{*}}{p + \alpha + j\beta} + \dots$$

$$[(p + \alpha - j\beta)X(p)]_{p = -\alpha + j\beta} = K_{1} = |K_{1}| \underline{/\theta}$$

$$K_{1}^{*} = |K_{1}| \underline{/-\theta}$$

$$X(p) = \frac{|K_{1}| \underline{/\theta}}{p + \alpha - j\beta} + \frac{|K_{1}| \underline{/-\theta}}{p + \alpha + j\beta} + \dots = \frac{|K_{1}|e^{j\theta}}{p + \alpha - j\beta} + \frac{|K_{1}|e^{-j\theta}}{p + \alpha + j\beta} + \dots$$

$$\rightarrow x(t) = |K_{1}|e^{j\theta}e^{-(\alpha - j\beta)t} + |K_{1}|e^{-j\theta}e^{-(\alpha + j\beta)t} + \dots = |K_{1}|e^{-\alpha t}[e^{j(\beta t + \theta)} + e^{-j(\beta t + \theta)}] + \dots$$

$$e^{j\theta} = \cos\phi + j\sin\phi$$

$$\rightarrow x(t) = |K_{1}|e^{-\alpha t}[\cos(\beta t + \theta) + j\sin(\beta t + \theta) + \cos(-\beta t - \theta) + j\sin(-\beta t - \theta)] + \dots$$

$$= 2|K_{1}|e^{-\alpha t}\cos(\beta t + \theta) + \dots$$

Phương pháp toán tứ: Biển đối ngược Laplace – nghiệm

phú
$$X(p) = \frac{4p^2 + 76p}{(p+2)(p^2 + 6p + 25)} = \frac{K_1}{p+3-j4} + \frac{K_2}{p+3+j4} + \frac{K_3}{p+2}$$
$$= \frac{10/-53,1^{\circ}}{p+3-j4} + \frac{10/53,1^{\circ}}{p+3+j4} - \frac{8}{p+2}$$

$$K_{1} = \frac{4p^{2} + 76p}{(p+2)(p+3+j4)} \bigg|_{p=3+j4} = 10/-53,1^{\circ}$$

$$K_3 = \frac{4p^2 + 76p}{(p^2 + 6p + 25)}\Big|_{p=-2} = -8$$

$$\Rightarrow x(t) = 2.10e^{-3t}\cos(4t - 53, 1^{\circ}) - 8e^{-2t} = 20e^{-3t}\cos(4t - 53, 1^{\circ}) - 8e^{-2t}$$

8/12/2019 62

Phương pháp toán tử: Biến đổi ngược Laplace - nghiệm phức

VD7

$$X(p) = \frac{5(p+2)}{p(p^2+4p+5)} = \frac{K_1}{p+2-j} + \frac{K_2}{p+2+j} + \frac{K_3}{p}$$
$$= \frac{1,12/-153,4^{\circ}}{p+2-j} + \frac{1,12/153,4^{\circ}}{p+2+j} + \frac{2}{p}$$

$$K_1 = \frac{5(p+2)}{p(p+2+j)}\Big|_{p=-2+j} = 1,12/-153,4^{\circ}$$

$$K_3 = \frac{5(p+2)}{(p^2+4p+5)}\Big|_{p=0} = 2$$

$$\rightarrow x(t) = 2.1,12e^{-2t}\cos(t - 153,4^{\circ}) + 2 = 2 + 2,24e^{-2t}\cos(t - 153,4^{\circ})$$

VD1

 $E = 12 \text{ VDC}; R_1 = 20 \Omega; R_2 = 45 \Omega; L = 20 \text{ mH};$ C = 4 mF. Tính dòng quá độ?

$$i_L(-0) = 0.18 \text{ A}; \ u_C(-0) = 8.31 \text{ V}$$

Chế độ mới:

$$R_{1}i + Li' + u_{C} = E \iff L[R_{1}i + Li' + u_{C}] = L[E]$$

$$\Rightarrow L[R_{1}i] + L[Li'] + L[u_{C}] = L[E]$$

$$i \iff I(p)$$

$$R_{1}i \iff R_{1}I(p)$$

$$x'(t) \leftrightarrow pX(p) - x(-0) \rightarrow i' \leftrightarrow pI(p) - i_L(-0) \rightarrow Li' \leftrightarrow L[pI(p) - i_L(-0)]$$

$$i = Cu_C' \leftrightarrow I(p) = C[pU_C(p) - u_C(-0)] \rightarrow U_C(p) = \frac{I(p)}{Cp} + \frac{u_C(-0)}{p}$$

$$E = 12 \text{ VDC}; R_1 = 20 \Omega; R_2 = 45 \Omega; L = 20 \text{ mH};$$

 $C = 4 \text{ mF}.\text{Tính dòng quá độ?}$

$$i_L(-0) = 0.18 \text{ A}; \ u_C(-0) = 8.31 \text{ V}$$

$$R_{l}i + Li' + u_{C} = E$$

$$E \leftrightarrow \frac{E}{p}$$

$$R_{l}i \leftrightarrow R_{l}I(p)$$

$$Li' \leftrightarrow L[pI(p) - i_{L}(-0)]$$

$$u_{C} \leftrightarrow \frac{I(p)}{Cp} + \frac{u_{C}(-0)}{p}$$

$$\frac{Cp}{Cp} + \frac{C}{p}$$

$$\rightarrow R_1 I(p) + Lp I(p) - Li_L(-0) + \frac{I(p)}{Cp} + \frac{u_C(-0)}{p} = \frac{E}{p}$$

VD1

$$E = 12 \text{ VDC}; R_1 = 20 \Omega; R_2 = 45 \Omega; L = 20 \text{ mH};$$

$$C = 4 \text{ mF. Tinh doing quá độ?}$$

$$i_L(-0) = 0.18 \text{ A}; u_C(-0) = 8.31 \text{ V}$$

$$R_1 i + L i' + u_C = E$$

$$\Rightarrow \left(R_1 + L p + \frac{1}{Cp}\right) I(p) = \frac{E}{p} + L i_L(-0) - \frac{u_C(-0)}{p}$$

$$\Rightarrow \left(20 + 20.10^{-3} p + \frac{1}{4.10^{-3} p}\right) I(p) = \frac{12}{p} + 20.10^{-3}.0, 18 - \frac{8.31}{p}$$

$$\Rightarrow I(p) = \frac{9p + 9225}{50(p^2 + 1000 p + 12500)} \text{ A} \Rightarrow i(t) = -0.0023e^{-987.3t} + 0.1823e^{-12.66t} \text{ A}$$

Phương pháp toán tử

	Tổng quát	Một chiều	Xoay chiều	Quá độ
$\stackrel{i}{\longrightarrow} \stackrel{R}{\longrightarrow}$	u = Ri	u = Ri	$\dot{U} = R\dot{I}$	U(p) = RI(p)
$\stackrel{L}{\xrightarrow{u}}^{i}$	u = Li'	u = 0	$\dot{U} = j\omega L\dot{I}$	U(p) = LpI(p) - Li(-0)
$\stackrel{C}{\longrightarrow} \stackrel{i}{\longrightarrow}$	i = Cu'	i=0	$\dot{U} = \frac{1}{j\omega C}\dot{I}$	$U(p) = \frac{I(p)}{Cp} + \frac{u(-0)}{p}$

Phương pháp toán tử

VD1

$$E = 12 \text{ VDC}; R_1 = 20 \Omega; R_2 = 45 \Omega; L = 20 \text{ mH};$$

 $C = 4 \text{ mF}. \text{Tính dòng quá độ?}$

$$i_L(-0) = 0.18 \text{ A}; \ u_C(-0) = 8.31 \text{ V}$$

- 1. Tính $i_L(-0)$ & $u_C(-0)$ khi khóa ở vị trí \tilde{cu} ,
- Toán tử hoá sơ đổ mạch điện khi khóa ở vị trí mới (sơ đồ toán tử),
- 3. Giải sơ đồ toán tử (bằng một trong số các phương pháp giải mạch một chiều) để tìm thông số X(p),
- 4. Tìm gốc thời gian x(t) từ ảnh X(p).

$$I(p) = \frac{\frac{E}{p} + Li_L(-0) - \frac{u_C(-0)}{p}}{R_1 + Lp + \frac{1}{Cp}} = \frac{3}{0,18p + 184,50} \underbrace{A \cdot \text{Tim goc thời gian } x(t) \text{ từ anh } X(p).}_{0,18p + 184,50}$$

$$\rightarrow i(t) = -0,0023e^{-987,3t} + 0,1823e^{-12,66t} \text{ A}$$

8/12/2019 73

tử

tử

Giải một số bài toán quá độ bằng máytính

- Sử dụng các phần mềm:
- **UMATLAB**
- **TINA**
- **PROTEUS**