Michael Ehrig micha.ehrig@outlook.com michael.ehrig@bit.edu.cn

Assignment 1

We use the notations and conventions from the course, e.g. a map refers to a continuous map, a space refers to a topological space, S^1 denotes the unit circle, and D^2 the unit disc.

Let X be a space. Exercise 1.

- (a) Show that X is contractible if and only if id_X is nullhomotopic.
- (b) Assume that X is contractible and there exists $A \subset X$ together with a retraction $r: X \to A$. Show that A is contractible.
- (c) Show that the following are equivalent
 - (i) X is contractible,
 - (ii) every map $f: X \to Y$ (for a space Y) is nullhomotopic,
 - (iii) every map $f: Y \to X$ (for a space Y) is nullhomotopic.

Exercise 2. Let X be a space. Show that the following are equivalent

- (a) Every map $f: S^1 \to X$ is nullhomotopic,
- (b) every map $f: S^1 \to X$ can be extended to a map $\widetilde{f}: D^2 \to X$,
- (c) for any $x_0 \in X$ it holds $\pi_1(X, x_0)$ is trivial.

Exercise 3. Show that there exists no retraction $r: X \to A$ for the following situations

- (a) $X = \mathbb{R}^n$ and A an arbitrary subspace homeomorphic to S^1 .
- (b) $X = S^1 \times D^2$ and $A = S^1 \times S^1$ the boundary of X.
- (c) $X = D^2 \vee D^2$ and $A = S^1 \vee S^1$ for the pointed spaces $(D^2, (1,0))$ and $(S^1, (1,0))$. Hint: One can argue with the methods from the course why A has a non-trivial fundamental group without the use of the van Kampen theorem.
- (d) $X = D^2/_{\sim}$, for $(1,0) \sim (-1,0)$, and $A = \pi(S^1)$ the image of the boundary of D^2 under the quotient map π . *Hint:* There is a natural way to identify A with $S^1 \vee S^1$.
- (e) X the Möbius strip from the course, i.e. $X = I \times I/_{\sim}$ where $(0,s) \sim (1,1-s)$, and $A = \pi(I \times \{0\} \cup I \times \{1\})$ for π the quotient map. *Hint:* Find a subspace B in X such that $B \cong S^1$ and B is a deformation retract of X to obtain $\pi_1(X)$.