CS105 Lab 10: Data Mining II

Brian Borucki - bborucki@bu.edu

R₀

Say I'm trying to classify whether people are coffee drinkers or not

ID	State	Color	Coffee?
1	MA	Red	Yes
2	NH	Red	No
3	MA	Magenta	Yes

 R0 just ignores all input attributes and just looks at the output

R₀

Say I'm trying to classify whether people are coffee drinkers or not

ID	State	Color	Coffee?
_	-	_	Yes
-	-	_	No
-	-	_	Yes

- R0 just ignores all input attributes and just looks at the output
- Which is the most common output?
- Always predict the most common output

We can do better than R0 ... R1!

ID	State	Color	Coffee?
1	MA	Red	Yes
2	NH	Red	No
3	MA	Magenta	Yes

- For each value of each input attribute, find the most frequent class and create a rule
- Choose the rules with the higest accuracy

We can do better than R0 ... R1!

ID	State	Color	Coffee?
1	MA	Red	Yes
2	NH	Red	No
3	MA	Magenta	Yes

• State: $MA \rightarrow Yes (2/2)$

 $NH \rightarrow No (1/1)$

Overall Accuracy = 3/3

We can do better than R0 ... R1!

ID	State	Color	Coffee?
1	MA	Red	Yes
2	NH	Red	No
3	MA	Magenta	Yes

Color: Magenta → Yes (1/1)
Red → No (1/2)

Overall Accuracy = 2/3

- State had an overall accuracy of 100%
- Color had an overall accuracy of 66.66%

So we create the following classifier:

Building a Tree

IC		State	Color		Coffee?	
1		MA	Red		Yes	
2		NH	Red		No	
3		MA	Magent	ta	No	
4		ME	Red		Yes	
5		ME	Magent	ta	No	
Color:	Red	\rightarrow Yes	(2/3)	Ov	erall Acc = 4/5	
	Magenta	$a \rightarrow No$	(2/2)	Go	odness = $4/5$	
State:	MA	\rightarrow Yes	(1/2)	\bigcirc	Overall Acc = 3/5	
N	NH	\rightarrow No	(1/1)		odness = $3/10$	
	ME	\rightarrow Yes	(1/2)			

Building a Trees

- State had an overall goodness of 30%
- Color had an overall goodness of 90%

So we create the following classifier:

Building a Trees

 The "Red" subgroup still had some inaccuracies, can go back, recalculate goodness scores for remaining attributes, and further subdivide

Wait ... what?

- We're just trained a model which now determines whether someone is a coffee drinker based on their favorite color....
- How does this make sense?

 There isn't enough training data and there aren't enough input attributes to 'filter' out the color attribute

Awesome Segue

- Choosing a data set is very important
- You need to have enough information to filter out noise (irrelevant information/anomalies)
- You need a problem that fits your dataset and a dataset that fits your problem
 - I can't model a generic person if I only have data on people from a specific place
 - If I only have data on people from a specific place, I shouldn't choose to try and model a generic person

Lab

 Nothing to submit, but I recommend you work through the questions and ask for help

You may also use lab time to work on your proposals

• Questions?