Sapienza University of Rome

Master in Artificial Intelligence and Robotics Master in Engineering in Computer Science

Machine Learning

A.Y. 2020/2021

Prof. L. locchi, F. Patrizi

L. locchi, F. Patrizi

19. Hidden Markov Models and Partially Obs

1/29

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

19. Hidden Markov Models and Partially Observable MDPs

L. locchi, F. Patrizi

Overview

- Hidden Markov Models (HMM)
- Learning in HMM
- Partially Observable Markov Decision Processes (POMDP)
- Policy trees
- Example: POMDP tiger proglem

L. locchi, F. Patrizi

19. Hidden Markov Models and Partially Obs

3 / 29

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Markov Chain

Dynamic system evolving according to the Markov property.

Future evolution depends only on the current state \mathbf{X}_t

Hidden Markov Models (HMM)

- states x_t are discrete and non-observable,
- observations (emissions) z_t can be either discrete or continuous.
- controls u_t are not present (i.e., evolution is not controlled by our system),

L. locchi, F. Patrizi

19. Hidden Markov Models and Partially Obs

5 / 29

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

HMM representation

 $\mathsf{HMM} = \langle \mathbf{X}, \mathbf{Z}, \pi_0 \rangle$

- transition model: $P(\mathbf{x}_t|\mathbf{x}_{t-1})$
- observation model: $P(\mathbf{z}_t|\mathbf{x}_t)$
- initial distribution: π_0

State transition matrix $\mathbf{A} = \{A_{ij}\}$

$$A_{ij} \equiv P(\mathbf{x}_t = j | \mathbf{x}_{t-1} = i)$$

Observation model (discrete or continuous):

$$b_k(\mathbf{z}_t) \equiv P(\mathbf{z}_t|\mathbf{x}_t=k)$$

Initial probabilities:

$$\pi_0 = P(\mathbf{x}_0)$$

HMM examples of applications

Handwriting recognition

Similar structure for speech/gesture/activity recognition.

L. locchi, F. Patrizi

19. Hidden Markov Models and Partially Obs

7 / 29

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

HMM examples of applications

HMM factorization

Application of chain rule on HMM:

$$P(\mathbf{x}_{0:T}, \mathbf{z}_{1:T}) = P(\mathbf{x}_0)P(\mathbf{z}_0|\mathbf{x}_0)P(\mathbf{x}_1|\mathbf{x}_0)P(\mathbf{z}_1|\mathbf{x}_1)P(\mathbf{x}_2|\mathbf{x}_1)P(\mathbf{z}_2|\mathbf{x}_2)\dots$$

L. locchi, F. Patrizi

19. Hidden Markov Models and Partially Obs

9 / 29

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

HMM inference

Given HMM = $\langle \mathbf{X}, \mathbf{Z}, \pi_0 \rangle$,

Filtering

$$P(\mathbf{x}_T = k | \mathbf{z}_{1:T}) = \frac{\alpha_T^k}{\sum_j \alpha_T^j}$$

Smoothing

$$P(\mathbf{x}_t = k | \mathbf{z}_{1:T}) = \frac{\alpha_t^k \beta_t^k}{\sum_j \alpha_t^j \beta_t^j}$$

Forward step

Forward iterative steps to compute

$$\alpha_t^k \equiv P(\mathbf{x}_t = k, \mathbf{z}_{1:t})$$

- For each state *k* do:
 - $\alpha_0^k = \pi_0 b_k(\mathbf{z}_0)$
- For each time t = 1, ..., T do:
 - For each state k do:
 - $\alpha_t^k = b_k(\mathbf{z}_t) \sum_j \alpha_{t-1}^j A_{jk}$

L. locchi, F. Patrizi

19. Hidden Markov Models and Partially Obs

11 / 29

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Backward step

Backward iterative steps to compute

$$\beta_t^k \equiv P(\mathbf{z}_{t+1:T}|\mathbf{x}_t = k)$$

- For each state *k* do:
 - $\beta_T^k = 1$
- For each time $t = T 1, \dots, 1$ do:
 - For each state k do:
 - $\bullet \ \beta_t^k = \sum_j \beta_{t+1}^j A_{kj} b_j(\mathbf{z}_{t+1})$

Learning in HMM

Given output sequences, determine maximum likelihood estimate of the parameters of the HMM (transition and emission probabilities).

Case 1: states can be observed at training time

Transition and observation models can be estimated with statistical analysis

$$A_{ij} = \frac{|\{i \to j \text{ transitions}\}|}{|\{i \to * \text{ transitions}\}|}$$

$$b_k(v) = \frac{|\{observe \ v \land state \ k\}|}{|\{observe \ * \land state \ k\}|}$$

L. locchi, F. Patrizi

19. Hidden Markov Models and Partially Obs

13 / 29

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Learning in HMM

Case 2: states cannot be observed at training time

Compute a **local** maximum likelihood with an Expectation-Maximization (EM) method (e.g., Baum-Welch algorithm).

POMDP agent

Combines decision making of MDP and non-observability of HMM.

L. locchi, F. Patrizi

19. Hidden Markov Models and Partially Obs

15 / 29

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

POMDP graphical model

POMDP representation

$$POMDP = \langle \mathbf{X}, \mathbf{A}, \mathbf{Z}, \delta, r, o \rangle$$

- X is a set of states
- A is a set of actions
- Z is a set of observations
- $P(\mathbf{x}_0)$ is a probability distribution of the initial state
- $\delta(\mathbf{x}, a, \mathbf{x}') = P(\mathbf{x}'|\mathbf{x}, a)$ is a probability distribution over transitions
- r(x, a) is a reward function
- $o(\mathbf{x}', a, \mathbf{z}') = P(\mathbf{z}'|\mathbf{x}', a)$ is a probability distribution over observations

L. locchi, F. Patrizi

19. Hidden Markov Models and Partially Obs

17 / 29

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Example: tiger problem

Two closed doors hide a treasure and a tiger.

- $X = \{s_L, s_R\}$
- $\mathbf{A} = \{Open_L, Open_R, Listen\}$
- $\mathbf{Z} = \{t_L, t_R\}$
- $P(\mathbf{x}_0) = <0.5, 0.5>$
- $\delta(\mathbf{x}, a, \mathbf{x}')$ Listen does not change state, Open actions restart the situation with 0.5 probability between s_L , s_R
- $r(\mathbf{x}, a) = 10$ if opening the treasure door, -100 if opening the tiger door, -1 if listening
- $o(\mathbf{x}', a, \mathbf{z}') = 0.85$ correct perception, 0.15 wrong perception

Solution concept for POMDP

Solution: policy, but we do not know the states!

Option 1: map from history of observations to actions

- histories are too long!

Option 2: belief state

- probability distribution over the current state

L. locchi, F. Patrizi

19. Hidden Markov Models and Partially Obs

19 / 29

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Belief MDP

Belief $b(\mathbf{x})$ = probability distribution over the states.

POMDP can be described as an MDP in the belief states, but belief states are infinite.

- B is a set of belief states
- A is a set of actions
- \bullet $\tau(b,a,b')$ is a probability distribution over transitions
- $\rho(b, a, b')$ is a reward function

Policy: $\pi: \mathbf{B} \mapsto \mathbf{A}$

Computing Belief States

Given current belief state b, action a and observation \mathbf{z}' observed after execution of a, compute the next belief state $b'(\mathbf{x}')$

$$b'(\mathbf{x}') \equiv SE(b, a, \mathbf{z}') \equiv P(\mathbf{x}'|b, a, \mathbf{z}')$$

$$= \frac{P(\mathbf{z}'|\mathbf{x}', b, a)P(\mathbf{x}'|b, a)}{P(\mathbf{z}'|b, a)}$$

$$= \frac{P(\mathbf{z}'|\mathbf{x}', a) \sum_{\mathbf{x} \in \mathbf{X}} P(\mathbf{x}'|b, a, \mathbf{x})P(\mathbf{x}|b, a)}{P(\mathbf{z}'|b, a)}$$

$$= \frac{o(\mathbf{x}', a, \mathbf{z}') \sum_{\mathbf{x} \in \mathbf{X}} \delta(\mathbf{x}, a, \mathbf{x}')b(\mathbf{x})}{P(\mathbf{z}'|b, a)}$$

L. locchi, F. Patrizi

19. Hidden Markov Models and Partially Obs

21 / 29

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Belief MDP transition and reward functions

Transition function

$$au(b,a,b') = P(b'|b,a) = \sum_{\mathbf{z} \in \mathbf{Z}} P(b'|b,a,\mathbf{z}) P(\mathbf{z}|b,a)$$

$$P(b'|b, a, \mathbf{z}) = 1$$
if $b' = SE(a, b, \mathbf{z})$, 0 otherwise

Reward function

$$\rho(b,a) = \sum_{\mathbf{x} \in \mathbf{X}} b(\mathbf{x}) r(\mathbf{x},a)$$

Value function in POMDP

$$V(b) = \max_{a \in \mathbf{A}} [\rho(b, a) + \gamma \sum_{b'} (\tau(b, a, b')V(b'))]$$

Replacing $\tau(b,a,b')$ and $\rho(b,a)$ and considering that $P(b'|b,a,\mathbf{z})=1$, if $b'=SE(a,b,\mathbf{z})=b_{\mathbf{z}}^a$, and 0 otherwise

$$V(b) = \max_{a \in \mathbf{A}} \left[\sum_{\mathbf{x} \in \mathbf{X}} b(\mathbf{x}) r(\mathbf{x}, a) + \gamma \sum_{\mathbf{z} \in \mathbf{Z}} P(\mathbf{z}|b, a) V(b_{\mathbf{z}}^{a}) \right]$$

L. locchi, F. Patrizi

19. Hidden Markov Models and Partially Obs

23 / 29

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Value iteration for belief MDP

- Discretize the distributions b(x)
- Apply value iteration on the discretized belief MDP

A similar method can be devised for any MDP solving technique.

Solution concept in POMDP

Policy trees

L. locchi, F. Patrizi

19. Hidden Markov Models and Partially Obs

25 / 29

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Value function for tiger problem

One-step policies: $\pi_1 = Open_L$, $\pi_2 = Open_R$, $\pi_3 = Listen$

$$\alpha_{\pi_1} = \langle -100, 10 \rangle$$

$$\alpha_{\pi_2} = \langle 10, -100 \rangle$$

$$\alpha_{\pi_3} = \langle -1, -1 \rangle$$

One-step optimal value function:

$$V^{(1)}(b) = \max_{\pi} b \, \alpha_{\pi}$$

Value function for tiger problem

Two-step policies:

```
\pi_1 = \text{Listen}; (t_L : \text{Listen}, t_R : \text{Listen}) \rightarrow \alpha_{\pi_1} = \langle -2, -2 \rangle

\pi_2 = \text{Listen}; (t_L : Open_R, t_R : Open_L) \rightarrow \alpha_{\pi_2} = \langle -7.5, -7.5 \rangle

\pi_3 = Open_L; (t_L : Open_L, t_R : Open_L) \rightarrow \alpha_{\pi_3} = \langle -145, -35 \rangle

\pi_4 = Open_L; (t_L : \text{Listen}, t_R : \text{Listen}) \rightarrow \alpha_{\pi_4} = \langle -101, 9 \rangle

\pi_5 = Open_R; (t_L : \text{Listen}, t_R : \text{Listen}) \rightarrow \alpha_{\pi_5} = \langle 9, -101 \rangle

... and many others
```

Two-step optimal value function:

$$V^{(2)}(b) = \max_{\pi} b \, \alpha_{\pi}$$

L. locchi, F. Patrizi

19. Hidden Markov Models and Partially Obs

27 / 29

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Value function for tiger problem

Three-step policies:

$$\pi_1 = Listen; Listen; (t_L, t_L : Open_R, t_R, t_R : Open_L, t_L, t_R or t_R, t_L : Listen)$$
 ... and many many others ...

Three-step optimal value function:

$$V^{(3)}(b) = \max_{\pi} b \, \alpha_{\pi}$$

References

Leslie Pack Kaelbling, Michael L. Littman, Anthony R. Cassandra. Planning and acting in partially observable stochastic domains. Artificial Intelligence, vol. 101, issues 12, 1998, pages 99134.

L. locchi, F. Patrizi

19. Hidden Markov Models and Partially Obs