```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

```
In [2]: sales = pd.read_csv(r"C:\Users\786\Downloads\advertising.csv")
    sales
```

Out[2]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

200 rows × 4 columns

In [3]: | sales.head()

Out[3]:

	IV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9

In [4]: sales.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	TV	200 non-null	float64
1	Radio	200 non-null	float64
2	Newspaper	200 non-null	float64
3	Sales	200 non-null	float64

dtypes: float64(4)
memory usage: 6.4 KB

In [5]: sales.shape

Out[5]: (200, 4)

In [6]: sales.describe()

Out[6]:

		TV	Radio	Newspaper	Sales
cou	nt	200.000000	200.000000	200.000000	200.000000
mea	ın	147.042500	23.264000	30.554000	15.130500
st	td	85.854236	14.846809	21.778621	5.283892
m	in	0.700000	0.000000	0.300000	1.600000
25	%	74.375000	9.975000	12.750000	11.000000
50	%	149.750000	22.900000	25.750000	16.000000
75	%	218.825000	36.525000	45.100000	19.050000
ma	x	296.400000	49.600000	114.000000	27.000000

```
In [7]: sns.countplot(x='TV',data=sales)
```

Out[7]: <AxesSubplot:xlabel='TV', ylabel='count'>

In [8]: sns.pairplot(sales,x_vars=['TV','Radio','Newspaper'],y_vars='Sales',kind='son'
plt.show()


```
In [9]: sales['TV'].plot.hist()
```

Out[9]: <AxesSubplot:ylabel='Frequency'>


```
In [10]: sales['Radio'].plot.hist()
```

Out[10]: <AxesSubplot:ylabel='Frequency'>


```
In [11]: sales['Newspaper'].plot.hist()
```

Out[11]: <AxesSubplot:ylabel='Frequency'>

In [12]: sns.heatmap(sales.corr(),annot=True)
 plt.show()


```
In [13]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(sales[['TV']],sales[['Sales
```

In [14]: print(x_train)

131 265.2 197.6 96 181 218.5 19 147.3 153 171.3 67 139.3 192 17.2 117 76.4 47 239.9 19.6 172

 TV

[140 rows x 1 columns]

```
In [15]: print(y_train)
```

Sales 17.7 131 16.7 96 181 17.2 19 14.6 153 16.0 67 13.4 5.9 192 117 9.4 47 23.2 172 7.6

[140 rows x 1 columns]

In [16]: print(x_test)

```
\mathsf{TV}
18
      69.2
170
      50.0
      90.4
107
98
     289.7
     170.2
177
182
      56.2
       8.7
5
     240.1
146
12
      23.8
152
     197.6
61
     261.3
125
     87.2
180
     156.6
154
     187.8
80
     76.4
7
     120.2
33
     265.6
      0.7
130
37
      74.7
74
     213.4
183
     287.6
     140.3
145
45
     175.1
159
     131.7
60
      53.5
123
     123.1
179
     165.6
185
     205.0
122
     224.0
44
      25.1
16
     67.8
55
     198.9
150
     280.7
111
     241.7
22
      13.2
189
      18.7
129
      59.6
4
     180.8
83
      68.4
106
      25.0
134
      36.9
66
      31.5
26
     142.9
     209.6
113
168
     215.4
63
     102.7
8
       8.6
75
      16.9
118
     125.7
143
     104.6
71
     109.8
124
     229.5
184
     253.8
97
     184.9
149
     44.7
```

24

62.3

30 292.9 160 172.5 40 202.5 56 7.3 In [17]: print(y_test)

	_
	Sales
18	11.3
170	8.4
107	12.0
98 177	25.4
177 182	16.7 8.7
5	7.2
146	18.2
12	9.2
152	16.6
61	24.2
125	10.6
180	15.5
154	20.6
80	11.8
7	13.2
33	17.4
130	1.6
37	14.7
74	17.0
183	26.2
145	10.3
45 150	16.1
159 60	12.9 8.1
123	15.2
179	17.6
185	22.6
122	16.6
44	8.5
16	12.5
55	23.7
150	16.1
111	21.8
22	5.6
189	6.7
129	9.7
4	17.9
83	13.6
106	7.2
134	10.8
66 26	11.0 15.0
113	20.9
168	17.1
63	14.0
8	4.8
75	8.7
118	15.9
143	10.4
71	12.4
124	19.7
184	17.6
97	20.5
149	10.1
24	9.7

```
30 21.4
160 16.4
40 16.6
56 5.5

In [18]: from sklearn.linear_model import LinearRegression
model = LinearRegression()

In [19]: model.fit(x_train,y_train)

Out[19]: LinearRegression()
```

In [20]: y_pred = model.predict(x_test)
y_pred

```
Out[20]: array([[10.93127621],
                 [ 9.88042193],
                 [12.09159447],
                 [22.99968079],
                 [16.45920756],
                 [10.21976029],
                  [ 7.6199906 ],
                 [20.28497391],
                 [ 8.4464437 ],
                 [17.95886418],
                 [21.44529217],
                 [11.91645209],
                 [15.71485245],
                 [17.42249065],
                 [11.32534656],
                 [13.72260788],
                 [21.68063975],
                 [ 7.18213465],
                 [11.23230217],
                 [18.82362968],
                 [22.88474361],
                 [14.82272095],
                 [16.72739433],
                 [14.35202581],
                 [10.07198391],
                 [13.88133066],
                 [16.20744039],
                 [18.36388094],
                 [19.40378881],
                 [ 8.51759529],
                 [10.85465142],
                 [18.03001578],
                 [22.50709285],
                 [20.3725451],
                 [ 7.86628457],
                 [ 8.16731053],
                 [10.40584907],
                 [17.03936669],
                 [10.88749061],
                 [ 8.51212209],
                 [ 9.16343282],
                 [ 8.86788005],
                 [14.96502414],
                 [18.61564811],
                 [18.93309367],
                 [12.76479799],
                 [ 7.6145174 ],
                 [ 8.06879294],
                 [14.02363385],
                 [12.86878878],
                 [13.15339515],
                 [19.70481478],
                 [21.03480222],
                 [17.26376787],
                 [ 9.59034237],
                 [10.55362545],
                 [23.17482317],
```

```
[ 7.54336581]])

In [21]: model.coef_

Out[21]: array([[0.05473199]])

In [22]: model.intercept_

Out[22]: array([7.14382225])
```

In [23]: plt.plot(y_pred)

Out[23]: [<matplotlib.lines.Line2D at 0x1eac4026130>]

[16.58509115], [18.22705095],

In []: