Approximate (3)

(4²/₃ = (64³)² = 16

1. By Linearization L(x) =
$$f(x)+f(x)$$
. (2-a)

2. By Differentials further

2. By Differentials Method.

2. By Mentials Method.

1. $7 f(x) = x^{2/3}$, $f(x) = \frac{2}{3} \frac{1}{x^{2}}$; $a = 64$

Linearization A + at 64 is

L(x) = $f(64) + f(64)$. (x-64) = $16 + \frac{1}{6}$ (x-64)

1. $f(6) = 63^{3} \times L(61) = 16 + \frac{1}{6}(-1) = 16 - \frac{1}{6} = 94$

1. $f(6) = 63^{3} \times L(61) = 16 + \frac{1}{6}(-1) = 16 - \frac{1}{6} = 94$

2. $63^{2/3} = f(64-1) \times f(64) + f(64)$. (-1) = 94 /

 $f(x+dx) \times f(x) + f'(x)$ dex

1. Let $x = 63^{3/3} = 5(x) = x^{2/3}$. $f(x) = \frac{1}{3}(x + \frac{1}{3}x)$

N(x) = $x - f(x) = x - \frac{1}{3}(x + \frac{1}{3}x)$

STEPT Size $f(x) = f(x) = x - \frac{1}{3}(x + \frac{1}{3}x) = x - \frac{1}{3}(x + \frac{1}{3}x)$

STEPT Let $x_1 = x_1 - \frac{1}{3}(x_1) = x - \frac{1}{3}(x_2) = x - \frac{1}{3}(x_1) = x - \frac{1}{3}$

24= . - . - N(X4) = 15,812896