Um modelo de programação matemática para o problema Weighted Minimum Broadcast Time

Alfredo Lima M. S.¹
Luiz Satoru Ochi¹
Bruno Nogueira²
Rian G. S. Pinheiro²

Universidade Federal Fluminense¹ Instituto de Computação Universidade Federal de Alagoas² Instituto de Computação

WBCI, 2022

alfredolima@id.uff.br, satoru@ic.uff.br, {bruno,rian}@ic.ufal.br

3 de agosto de 2022

Sumário

Introdução

Weighted Minimum Broadcast Time

Definição

Aplicações

Trabalhos Relacionados

Modelo de programação matemática para o WMBT

Resultados computacionais

Característica do Experimento

Tabela de Resultados

Conclusão e Trabalhos Futuros

References

Introdução

Weighted Minimum Broadcast Time

O *Minimum Broadcast Time* (MBT) é um problema clássico de disseminação de dados em rede/grafos. Ele é apresentado no livro *Computers and Intractability* (Garey and Johnson, 1979)[ND-49] como \mathcal{NP} -difícil.

O *Weighted Minimum Broadcast Time* é uma variante do MBT com pesos, os quais podem ser somente nos vértices, somente nas arestas ou em ambos.

Exemplo do MBT

Solução viável para o MBT

Solução ótima para o MBT

Exemplo WMBT

Vértices	g_1	d_1	d_2	d ₃
Pesos	1	0	2	1

Tabela: Pesos dos vértices.

Arestas	(g_1,d_1)	(g_1,d_2)	(d_2,d_3)
Pesos	7	2	1

Tabela: Pesos das arestas.

Solução viável para o WMBT

Solução ótima para o WMBT

Definição do WMBT

```
G = (V, S, A, W_v, W_e) – Grafo ponderado;
V – Conjunto de vértices do grafo:
A – Conjunto de arestas do grafo;
S – Conjunto de vértices que detém a informação inicialmente (S \subseteq V);
W_{\nu}(u) – Função de pesos não-negativos para todo vértice u \in V;
W_e(a) – Função de pesos positivos para toda aresta a \in A:
T_{max} – Tempo de transmissão máximo (upper bound);
T – Tempo de transmissão mínimo:
t – Discretização do tempo (1 \leq t \leq T_{max});
V_t - Conjunto de vértices que recebem a mensagem no tempo t ou anteriormente;
E_t – Conjunto de vértices que podem transmitir a partir do tempo t.
```

O WMBT tem como objetivo diminuir o tempo de transmissão de uma mensagem que será "transmitida" a partir do conjunto S para V. Em outras palavras, encontrar uma sequência $V_0, A_1, V_1, A_2, \ldots, A_T, V_T$ que minimize T, tal que $V_T = E_T = V$. Inicialmente, todo vértice $s \in S$ pertence ao conjunto $E_{W_v(s)}$. Além disso, para cada $t \in \{1, \ldots, k\}$, as seguintes restrições são válidas:

- (i) toda aresta $a \in A_t$ possui exatamente um nó em $E_{t-W_e(a)}$
- (ii) toda aresta $a \in A_t$ não compartilha um extremo em comum com os conjuntos A_z , em que $t+1 \le z \le t+W_e(a)$,
- (iii) $V_t \subseteq E_z$, em que $t + W_v(v) \le z \le T_{max}$, e
- (iv) $V_t = V_{t-1} \cup \{v : (u, v) \in A_t, u \in E_{t-W_e((u,v))}\}.$

Aplicações

Redes de Sensores Sem Fio – (Shang et al., 2010);

Comunicação entre Multiagentes - (Ivanova, 2019);

Redes de Satélites – (Ivanova, 2019);

Atualização de dispositivos em redes P2P - (Lima et al., 2022).

Trabalhos Relacionados

Trabalhos Relacionados MBT

Bounds:
$$\lceil \log_2 \frac{|V|}{|V_0|} \rceil \le T \le |V| - |V_0| - \text{(Ivanova, 2019)}$$
:

Polinomiais:

Grafos do tipo árvore e $|V_0|=1$ – (Slater et al., 1981); Grafos do grade completa e $|V_0|=1$ – (Wojciechowska and Scoy, 1999).

Algoritmos exatos:

Programação Dinâmica com *Maximum Matching* – (Scheuermann and Wu, 1984);

Programação Linear Inteira (PLI) – (de Sousa et al., 2018; Ivanova, 2019).

Algoritmos aproximativos:

$$\mathcal{O}(\sqrt{n})$$
-aproximação aditiva (Kortsarz and Peleg, 1992); $\mathcal{O}\left(\frac{\log n}{\log\log n}\right)$ -aproximação (Elkin and Kortsarz, 2003).

Algoritmos heurísticos:

```
LWMM e AM – (Scheuermann and Wu, 1984); 
TreeBlock – (de Sousa et al., 2018).
```

Algoritmos meta-heurísticos:

```
Genético – (Hoelting et al., 1996);
Colônia de Formiga – (Hasson and Sipper, 2004);
Genético (BRKGA) – (Lima et al., 2022).
```

Algoritmo matheuristic (BRKGA + PLI) - (Lima et al., 2022).

Trabalhos Relacionados WMBT

Algoritmo polinomial para grafo do tipo árvore com pesos nas arestas e $|V_0| = 1$ – (Koh and Tcha, 1991);

Algoritmo heurístico para grafo com pesos nos vértices – (Harutyunyan and Kamali, 2008);

Algoritmo meta-heurístico para grafo com pesos nos vértices – (Harutyunyan and Kamali, 2008).

Modelo de programação matemática para o WMBT

Constantes e Variáveis

Constantes:

```
T_{max} – Tempo de transmissão máximo (Pior caso);
```

 K_i – Indica se o vértice i é uma fonte ou não;

N(i) – Representa o conjunto de vizinhos do vértice $i \in V$.

Variáveis:

T – Tempo de transmissão;

 x_{ij}^t – Indica se o vértice i inicia o envio para j no tempo t.

Modelo

min
$$T$$
 (1)
s. a $K_i + \sum_{j \in N(i)} \sum_{t=1}^{T_{max}} x_{ji}^t = 1$ $\forall i \in V$ (2)

$$\sum_{j \in N(i)} x_{ij}^t = 0, \forall i \in V_0$$
 $\forall t \in [0, W_v(i))$ (3)

$$\sum_{j \in N(i)} x_{ij}^t \le 1$$
 $\forall i \in V, \forall t \in [0, T_{max}]$ (4)

$$x_{ik}^{\tau} \le 1 - x_{ij}^t$$
 $\forall (i,j) \in A, \forall t \in [0, T_{max}],$ (5)

$$\forall k \in N(i), \forall \tau \in [t+1, t+W_e((i,j))]$$

$$x_{ij}^{t} \leq K_{i} + \sum_{k \in N(i) \setminus \{j\}} \sum_{\tau=0}^{t-W_{e}((k,i))-W_{v}(i)} x_{ki}^{\tau} \qquad \forall (i,j) \in A, \ \forall t \in [0,T_{max}] \qquad (6)$$

$$\sum_{t=0}^{T_{max}} (t + W_{e}((i,j)) + W_{v}(j)) \cdot x_{ij}^{t} \leq T \qquad \qquad \forall (i,j) \in A \qquad (7)$$

$$T \in \mathbb{N} \qquad \qquad (8)$$

$$x_{ij}^{t} \in \mathbb{B} \qquad \qquad \forall (i,j) \in A, \ \forall t \in [0,T_{max}] \qquad (9)$$

Observações

O modelo anterior descrito é para a versão com pesos nos vértices e nas arestas. Para a versão com pesos somente nos vértices deve ser considerado algumas mudanças:

- (i) as restrições (5) devem ser removidas,
- (ii) os valores $W_e((k,i))$ e $W_e((i,j))$ nas restrições (6) e (7) devem ser alterados para o valor 1.

Para a versão com pesos somente nas arestas as seguintes mudanças devem ser consideradas:

- (i) as restrições (2) devem ser removidas,
- (ii) os valores $W_{\nu}(i)$ e $W_{\nu}(j)$ nas restrições (6) e (7) devem ser alterados para o valor 0.

Resultados computacionais

Máquina Utilizada

Todos os experimentos nesta seção foram conduzidos em um Intel Core i7-6700 com 3,40 GHz, 32 GB de RAM, rodando Ubuntu 18.04.5.

Tecnologias utilizadas

A adaptação da Harutyunyan and Kamali (2008) foi codificada em C++ com compilador g++ 7,5 e com as *flag* '-O3'. Além disso, foi utilizado o IBM Cplex 12.9 para resolver o modelo PLI com limite de tempo de 3600 s (1 h) para o Cplex para resolver cada instância.

Instâncias

Os algoritmos foram testados em um total de 44 instâncias, todas as instâncias são grafos aleatórios, composto por uma árvore aleatória com união de um grafo aleatório. A quantidade dos vértices do grafo variou entre 24 e 256, e a densidade foi entre grafo de união foi entre 0 e 90%.

HARUTYUNYAN: Adaptação do algoritmo heurístico proposto por Harutyunyan and Kamali (2008) para versão com pesos nas arestas e vértices;

HARUTYUNYAN+BL: Algoritmo adaptado de Harutyunyan and Kamali (2008) com refinamento da proposta de Koh and Tcha (1991);

PLI: Modelo de programação linear inteira para o WMBT.

Método de avaliação	HARUTYUNYAN	HARUTYUNYAN+BL	PLI
# Melhor	2	17	31
Média t (s)	_	_	1478.64

Conclusão e Trabalhos Futuros

Conclusão

Proposta de um modelo de programação linear inteira (PLI) para o problema *Weighted Minimum Broadcast Time* (WMBT);

Das 44 instâncias testadas, o modelo PLI encontrou 31 melhores soluções, e provou a otimalidade de 26 delas. A utilização de uma busca local na heurística construtiva da literatura melhorou 39 soluções das 44 instâncias.

Trabalhos Futuros

- (i) Estudar a viabilidade de novas heurísticas e meta-heurísticas para WMBT;
- (ii) Encontrar novas instâncias, as quais possam representar sistemas distribuídos como redes de sensores e internet das coisas.

Obrigado! Dúvidas?

References I

- de Sousa, A., Gallo, G., Gutierrez, S., Robledo, F., Rodríguez-Bocca, P., and Romero, P. (2018). Heuristics for the minimum broadcast time. *Electronic Notes in Discrete Mathematics*, 69:165–172.
- Elkin, M. and Kortsarz, G. (2003). Sublogarithmic approximation for telephone multicast: Path out of jungle. *Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 76–85.
- Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA.
- Harutyunyan, H. A. and Kamali, S. (2008). Efficient broadcasting in networks with weighted nodes. In 2008 14th IEEE International Conference on Parallel and Distributed Systems, pages 879–884.

References II

- Hasson, Y. and Sipper, M. (2004). A novel ant algorithm for solving the minimum broadcast time problem. In Yao, X., Burke, E. K., Lozano, J. A., Smith, J., Merelo-Guervós, J. J., Bullinaria, J. A., Rowe, J. E., Tiňo, P., Kabán, A., and Schwefel, H.-P., editors, *Parallel Problem Solving from Nature PPSN VIII*, pages 501–510, Berlin, Heidelberg. Springer Berlin Heidelberg.
- Hoelting, C. J., Schoenefeld, D. A., and Wainwright, R. L. (1996). A genetic algorithm for the minimum broadcast time problem using a global precedence vector. In *Proceedings of the 1996 ACM Symposium on Applied Computing*, SAC '96, page 258–262, New York, NY, USA. Association for Computing Machinery.
- Ivanova, M. (2019). Optimization problems in communication networks and multi-agent path finding. *Bergen Open Research Archive*.
- Koh, J. and Tcha, D. (1991). Information dissemination in trees with nonuniform edge transmission times. *IEEE Transactions on Computers*, 40(10):1174–1177.

References III

- Kortsarz, G. and Peleg, D. (1992). Approximation algorithms for minimum time broadcast. In Dolev, D., Galil, Z., and Rodeh, M., editors, *Theory of Computing and Systems*, pages 67–78, Berlin, Heidelberg. Springer Berlin Heidelberg.
- Lima, A., Aquino, A. L. L., Nogueira, B., and Pinheiro, R. G. S. (2022). A matheuristic approach for the minimum broadcast time problem using a biased random-key genetic algorithm. *International Transactions in Operational Research*.
- Scheuermann and Wu (1984). Heuristic algorithms for broadcasting in point-to-point computer networks. *IEEE Transactions on Computers*, C-33(9):804–811.
- Shang, W., Wan, P., and Hu, X. (2010). Approximation algorithms for minimum broadcast schedule problem in wireless sensor networks. *Frontiers of Mathematics in China*, 5(1):75–87.
- Slater, P. J., Cockayne, E. J., and Hedetniemi, S. T. (1981). Information dissemination in trees. *SIAM Journal on Computing*, 10(4):692–701.
- Wojciechowska, I. and Scoy, F. L. (1999). *Broadcasting in Grid Graphs*. PhD thesis, West Virginia University, USA. AAI9967246.