线性代数-14

主讲: 吴利苏

wulisu@sdust.edu.cn

山东科技大学, 数学学院

本次课内容

1. 向量空间

2. 向量的内积

向量空间的定义

- 设 V 为 n 维向量的集合, $V \neq \emptyset$,若 V 对向量的加法和数乘两种运算封闭,即 $\forall \alpha, \beta \in V, \lambda \in \mathbb{R}$,有
 - 1. $\alpha + \beta \in V$;
 - 2. $k \cdot \alpha \in V$.

则称 V 为一个向量空间.

向量空间的定义

- 设 V 为 n 维向量的集合, $V \neq \emptyset$,若 V 对向量的加法和数乘两种运算封闭,即 $\forall \alpha, \beta \in V, \lambda \in \mathbb{R}$,有
 - 1. $\alpha + \beta \in V$;
 - 2. $k \cdot \alpha \in V$.

则称 V 为一个向量空间.

- 向量空间: 非空向量组 + 线性结构:
 - $\star \ \forall \alpha, \beta \in V, \forall k, l \in \mathbb{R}, \ \mathbb{N} \ k\alpha + l\beta \in V.$

向量空间的定义

- 设 $V \to n$ 维向量的集合, $V \neq \emptyset$, 若 V 对向量的加法和数乘两种运算封闭, 即 $\forall \alpha, \beta \in V, \lambda \in \mathbb{R}$, 有
 - 1. $\alpha + \beta \in V$;
 - 2. $k \cdot \alpha \in V$.

则称 V 为一个向量空间.

- 向量空间:非空向量组 + 线性结构:
 - * $\forall \alpha, \beta \in V, \forall k, l \in \mathbb{R}$, \mathbb{N} $k\alpha + l\beta \in V$.
- Chapter 6 (选学) -线性空间: 非空集合 + 线性结构.
- 欧式空间:非空集合 + 线性结构 + 内积结构.

例

下列哪些向量组构成向量空间,

- 1. n 维向量全体 \mathbb{R}^n ;
- 2. $A = \{X = \{0, x_2, \cdots, x_n\}^T \mid x_2, \cdots, x_n \in \mathbb{R}^n\};$
- 3. $A = \{X = \{1, x_2, \cdots, x_n\}^T \mid x_2, \cdots, x_n \in \mathbb{R}^n\};$
- 4. 齐次线性方程组的解集 $S = \{X \mid AX = 0\};$
- 5. 非齐次线性方程组的解集 $S = \{X \mid AX = \beta\}$;
- 6. α, β 为已知 n 维向量,集合 $L = \{\lambda \alpha + \mu \beta \mid \lambda, \mu \in \mathbb{R}\}.$

例

下列哪些向量组构成向量空间,

- 1. n 维向量全体 \mathbb{R}^n ; $\sqrt{}$
- 2. $Arr A = \{X = \{0, x_2, \cdots, x_n\}^T \mid x_2, \cdots, x_n \in \mathbb{R}^n\}; \checkmark$
- 3. $A = \{X = \{1, x_2, \dots, x_n\}^T \mid x_2, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_2, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \dots, x_n\}^T \mid x_1, \dots, x_n \in \mathbb{R}^n\};$
- 4. 齐次线性方程组的解集 $S = \{X \mid AX = 0\}; \checkmark$
- 5. 非齐次线性方程组的解集 $S = \{X \mid AX = \beta\}; \times$
- 6. α, β 为已知 n 维向量,集合 $L = \{\lambda \alpha + \mu \beta \mid \lambda, \mu \in \mathbb{R}\}.$

例

下列哪些向量组构成向量空间,

- 1. n 维向量全体 \mathbb{R}^n ; $\sqrt{}$
- 2. $Arr A = \{X = \{0, x_2, \cdots, x_n\}^T \mid x_2, \cdots, x_n \in \mathbb{R}^n\}; \checkmark$
- 3. $A = \{X = \{1, x_2, \cdots, x_n\}^T \mid x_2, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_2, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_2, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_2, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_2, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_2, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_2, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_2, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_2, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_2, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_2, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_2, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_2, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_2, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\}; \times \{X = \{1, x_1, \cdots, x_n\}^T \mid x_1, \cdots, x_n \in \mathbb{R}^n\};$
- 4. 齐次线性方程组的解集 $S = \{X \mid AX = 0\}; \sqrt{\langle \text{解空间} \rangle}$
- 5. 非齐次线性方程组的解集 $S = \{X \mid AX = \beta\}; \times$
- 6. α, β 为已知 n 维向量,集合 $L = \{\lambda \alpha + \mu \beta \mid \lambda, \mu \in \mathbb{R}\}.$ \checkmark (向量 α, β 生成的空间 >

等价向量组生成相同向量空间

由向量组 $\alpha_1, \cdots, \alpha_m$ 生成的空间为

$$L = \{X = \lambda_1 \alpha_1 + \dots + \lambda_m \alpha_m \mid \lambda_1, \dots, \lambda_m \in \mathbb{R}\}.$$

通常可以记为 $L(\alpha_1, \cdots, \alpha_m)$ 或 $\operatorname{span}(\alpha_1, \cdots, \alpha_m)$.

等价向量组生成相同向量空间

由向量组 $\alpha_1, \cdots, \alpha_m$ 生成的空间为

$$L = \{X = \lambda_1 \alpha_1 + \dots + \lambda_m \alpha_m \mid \lambda_1, \dots, \lambda_m \in \mathbb{R}\}.$$

通常可以记为 $L(\alpha_1, \dots, \alpha_m)$ 或 $\operatorname{span}(\alpha_1, \dots, \alpha_m)$.

例 (例 23)

设向量组 $\alpha_1, \cdots, \alpha_m$ 和 β_1, \cdots, β_s 等价, 记

$$L_1 = \{ X = \lambda_1 \alpha_1 + \dots + \lambda_m \alpha_m \mid \lambda_1, \dots, \lambda_m \in \mathbb{R} \}$$

$$L_2 = \{X = \mu_1 \beta_1 + \dots + \mu_s \beta_s \mid \mu_1, \dots, \mu_s \in \mathbb{R}\}$$

证明: $L_1 = L_2$.

等价向量组生成相同向量空间

由向量组 $\alpha_1, \cdots, \alpha_m$ 生成的空间为

$$L = \{X = \lambda_1 \alpha_1 + \dots + \lambda_m \alpha_m \mid \lambda_1, \dots, \lambda_m \in \mathbb{R}\}.$$

通常可以记为 $L(\alpha_1, \dots, \alpha_m)$ 或 $\operatorname{span}(\alpha_1, \dots, \alpha_m)$.

例 (例 23)

设向量组 $\alpha_1, \dots, \alpha_m$ 和 β_1, \dots, β_s 等价, 记

$$L_1 = \{ X = \lambda_1 \alpha_1 + \dots + \lambda_m \alpha_m \mid \lambda_1, \dots, \lambda_m \in \mathbb{R} \}$$

$$L_2 = \{X = \mu_1 \beta_1 + \dots + \mu_s \beta_s \mid \mu_1, \dots, \mu_s \in \mathbb{R}\}$$

证明: $L_1 = L_2$.

• 等价向量组生成的向量空间相同.

子空间的定义

• 设 V是一个向量空间, V_1 为 V的一个非空子集. 若 V_1 也是一个向量空间,则称 V_1 为向量空间 V的子空间.

子空间的定义

- 设 V 是一个向量空间, V_1 为 V 的一个非空子集. 若 V_1 也是一个向量空间,则称 V_1 为向量空间 V 的子空间.
- 例: $V = \{X = (0, x_2, \dots, x_n)^T \mid x_2, \dots, x_n \in \mathbb{R}^n\}$ 为 \mathbb{R}^n 的子空间.
- 例: α, β 为已知 n 维向量,集合 $L = \{\lambda \alpha + \mu \beta \mid \lambda, \mu \in \mathbb{R}\}$ 为 \mathbb{R}^n 的子空间.

基和维数的定义

- 向量组 ^{+线性结构} 一向量空间.
- 向量组的最大无关组 —— 向量空间的基.
- 向量组的秩 —— 向量空间的维数.

基和维数的定义

- 向量组 ^{+线性结构} 向量空间.
- 向量组的最大无关组 —— 向量空间的基.
- 向量组的秩 — 向量空间的维数.

定义

设 V 为向量空间, 若 r 个向量 $\alpha_1, \dots, \alpha_r \in V$, 满足

- (i) $\alpha_1, \dots, \alpha_r$ 线性无关;
- (ii) V 中的任一向量可由 $\alpha_1, \dots, \alpha_r$ 线性表示,则称向量组 $\alpha_1, \dots, \alpha_r$ 为向量空间的一组基,r 称为向量空间 V 的维数, 记为 dim V = r, 并称 V 为 r 维向量空间.

例

下列向量空间的维数.

- 1. n 维向量全体 \mathbb{R}^n ;
- 2. $V = \{X = (0, x_2, \dots, x_n)^T \mid x_2, \dots, x_n \in \mathbb{R}^n\};$
- 3. 齐次线性方程组的解空间 $S = \{X \mid AX = 0\}$;
- 4. n 维向量组 $A: \alpha_1, \dots, \alpha_m$ 的生成空间 $L = L(\alpha_1, \dots, \alpha_m)$.

例

下列向量空间的维数.

- 1. n 维向量全体 \mathbb{R}^n ; dim $\mathbb{R}^n = n$
- 2. $V = \{X = (0, x_2, \dots, x_n)^T \mid x_2, \dots, x_n \in \mathbb{R}^n\};$
- 3. 齐次线性方程组的解空间 $S = \{X \mid AX = 0\}$;
- 4. n 维向量组 $A: \alpha_1, \dots, \alpha_m$ 的生成空间 $L = L(\alpha_1, \dots, \alpha_m)$.

例

下列向量空间的维数.

- 1. n 维向量全体 \mathbb{R}^n ; dim $\mathbb{R}^n = n$
- 2. $V = \{X = (0, x_2, \dots, x_n)^T \mid x_2, \dots, x_n \in \mathbb{R}^n\};$ $\dim V = n - 1$
- 3. 齐次线性方程组的解空间 $S = \{X \mid AX = 0\}$;
- 4. n 维向量组 $A: \alpha_1, \dots, \alpha_m$ 的生成空间 $L = L(\alpha_1, \dots, \alpha_m)$.

例

下列向量空间的维数,

- 1. n 维向量全体 \mathbb{R}^n ; dim $\mathbb{R}^n = n$
- 2. $V = \{X = (0, x_2, \dots, x_n)^T \mid x_2, \dots, x_n \in \mathbb{R}^n\};$ $\dim V = n - 1$
- 3. 齐次线性方程组的解空间 $S = \{X \mid AX = 0\}$; dim S = n R(A)
- 4. n 维向量组 $A: \alpha_1, \dots, \alpha_m$ 的生成空间 $L = L(\alpha_1, \dots, \alpha_m)$.

例

下列向量空间的维数,

- 1. n 维向量全体 \mathbb{R}^n ; dim $\mathbb{R}^n = n$
- 2. $V = \{X = (0, x_2, \dots, x_n)^T \mid x_2, \dots, x_n \in \mathbb{R}^n\};$ $\dim V = n - 1$
- 3. 齐次线性方程组的解空间 $S = \{X \mid AX = 0\}$; dim S = n R(A)
- 4. n 维向量组 $A: \alpha_1, \dots, \alpha_m$ 的生成空间 $L = L(\alpha_1, \dots, \alpha_m)$. dim $L = R_A$.

坐标的定义

定义 (定义 9)

取定向量空间的一组基 $\alpha_1, \dots, \alpha_r$, 则 V 中任一向量 β 可唯一表示为

$$\beta = \lambda_1 \alpha_1 + \dots + \lambda_r \alpha_r,$$

数组 $\lambda_1, \dots, \lambda_r$ 称为向量 β 在基 $\alpha_1, \dots, \alpha_r$ 下的坐标.

坐标的定义

定义 (定义 9)

取定向量空间的一组基 $\alpha_1, \cdots, \alpha_r$, 则 V 中任一向量 β 可唯一表示为

$$\beta = \lambda_1 \alpha_1 + \dots + \lambda_r \alpha_r,$$

数组 $\lambda_1, \dots, \lambda_r$ 称为向量 β 在基 $\alpha_1, \dots, \alpha_r$ 下的坐标.

关于坐标的一些常用写法:

$$\beta = \lambda_1 \alpha_1 + \dots + \lambda_r \alpha_r = (\alpha_1, \dots, \alpha_r) \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_r \end{pmatrix} = (\alpha_1, \dots, \alpha_r) X_{\beta}$$

例 (Lecture-12)

设向量组 $B: \beta_1, \dots, \beta_r$ 可由向量组 $A: \alpha_1, \dots, \alpha_s$ 线性表示为

$$(\beta_1, \cdots, \beta_r) = (\alpha_1, \cdots, \alpha_s) K_{s \times r},$$

向量组 A 线性无关. 证明: $R_B = R(K)$.

考虑线性空间 $V = L(\alpha_1, \dots, \alpha_s)$. 设 β_i 在基 $\alpha_1, \dots, \alpha_s$ 下的坐标为 X_i , 即

$$\beta_i = (\alpha_1, \cdots, \alpha_s) X_i,$$

则

$$K = (X_1, \cdots, X_r).$$

 $R_B = R(K)$, 则 $L(\beta_1, \dots, \beta_r)$ 的维数为坐标向量组的秩.

例 24

例

设

$$A = (\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix}, \quad B = (\beta_1, \beta_2) = \begin{pmatrix} 1 & 4 \\ 0 & 3 \\ -4 & 2 \end{pmatrix}$$

证明 $\alpha_1, \alpha_2, \alpha_3$ 为 \mathbb{R}^3 的一组基, 并求 β_1, β_2 在这组基下的坐标.

解法:对 (A,B) 进行初等行变换.

设 $\mathbb{R}^3 = L(\alpha_1, \alpha_2, \alpha_3) = L(\beta_1, \beta_2, \beta_3)$, 向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关. 所以向量组 $\alpha_1, \alpha_2, \alpha_3$ 和 $\beta_1, \beta_2, \beta_3$ 都为 \mathbb{R}^3 的基.

• 向量组 $B:\beta_1,\beta_2,\beta_3$ 可由向量组 $A:\alpha_1,\alpha_2,\alpha_3$ 线性表示为

$$(\beta_1,\beta_2,\beta_3)=(\alpha_1,\alpha_2,\alpha_3)P,$$

上式称为 \mathbb{R}^3 从基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的基变换公式.

• 其中矩阵 $P = A^{-1}R$ 称为从其 $\alpha_1, \alpha_2, \alpha_3$ 到其 $\beta_1, \beta_2, \beta_3$ 的过渡

- 其中矩阵 $P=A^{-1}B$ 称为从基 $\alpha_1,\alpha_2,\alpha_3$ 到基 β_1,β_2,β_3 的过渡 矩阵.
- 任意向量 $X = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = (\beta_1, \beta_2, \beta_3) \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix}$,则

$$\begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = P^{-1} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

称为两组基之间的坐标变换公式.

例 26

例

设 \mathbb{R}^3 的两组基为

$$I: \alpha_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \alpha_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix};$$
$$II: \beta_1 = \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \beta_2 = \begin{pmatrix} 2\\3\\3 \end{pmatrix}, \beta_3 = \begin{pmatrix} 3\\7\\1 \end{pmatrix}$$

- 1. 求从基 I 到基 II 的过渡矩阵;
- 2. 向量 X 在基 I 下的坐标为 $(-2,1,2)^T$, 求向量 X 在基 II 下的坐标.

内积的定义

定义

设 n 维向量

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

称 $[X, Y] = x_1y_1 + \cdots + x_ny_n$ 为向量 X 与 Y 的内积.

- 内积也可以记为 < X, Y >.
- $\bullet \ [X, Y] = X^T Y = Y^T X.$

内积的定义

定义

设 n 维向量

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

称 $[X, Y] = x_1y_1 + \cdots + x_ny_n$ 为向量 X 与 Y 的内积.

- ▶ 内积也可以记为 < X, Y >.
- $[X, Y] = X^T Y = Y^T X$.
- 向量组 ^{+线性结构} 一向量空间 ^{+内积} 欧式空间.
- 有了内积之后,就可以讨论长度,角度,垂直(正交)等几何概念.

内积的性质

- 对称性: [X, Y] = [Y, X];
- 线性性质:
 - $[\lambda X, Y] = \lambda [X, Y], \lambda \in \mathbb{R};$
 - $[X_1 + X_2, Y] = [X_1, Y] + [X_2, Y];$
- 半正定性/非负性: $X = 0 \Leftrightarrow [X, X] = 0, X \neq 0 \Leftrightarrow [X, X] > 0$;
- Schwarz 不等式

$$[X, Y]^2 \le [X, X] \cdot [Y, Y]$$

长度的定义

称

$$||X|| = \sqrt{[X, X]} = \sqrt{x_1^2 + \dots + x_n^2}$$

为n维向量X的长度(或范数).

- 向量长度满足以下性质:
 - $\mathfrak{k} \in X = 0 \Leftrightarrow [X, X] = 0, X \neq 0 \Leftrightarrow [X, X] > 0$;
 - 齐次性: $||\lambda X|| = |\lambda| \cdot ||X||$
- 若 ||X|| = 1, 则称 X 为单位向量.
- 若 $\alpha \neq 0$, 则 $X = \frac{\alpha}{||\alpha||}$ 为一个单位向量,此过程称为单位化.

夹角和正交的定义

• 设X, Y为n维非零向量,则

$$\theta = \arccos \frac{[X, Y]}{||X|| \cdot ||Y||}$$

称为向量 X, Y 的夹角.

• 若 [X, Y] = 0, 则称向量 X 和 Y 正交.

小结

- 向量空间、解空间、生成空间、子空间、基、维数、坐标;
- 基变换公式、过渡矩阵、坐标变换公式;
- 内积、长度、夹角、正交.

作业

• P113: 33、37、38

欢迎提问和讨论

吴利苏 (http://wulisu.cn)

Email: wulisu@sdust.edu.cn

2022年10月19日