Electro-Mechanical Systems and their Representations

Block Diagram for a SDOF SYSTEM

Two Integrators

Complete Diagram

Angular Position Servo and Signal Flow Graph: Source Wikipedia

-H(s)

Elements of Signal-Flow Graph

- > <u>Node</u>. A node is a point representing a variable of' signal.
- > <u>Transmittance.</u> a real gain or complex gain between two nodes. Such gains can be expressed in terms of the transfer function between two nodes.
- **Branch**. a directed line segment joining two nodes. The gain of a branch is a transmittance.
- > <u>Input mode or source</u>. An input node or source is a node that has only outgoing branches.
 - This corresponds to an independent variable.
- > <u>Output node or sink</u>. An output node or sink is the node that has only incoming branches.
 - This corresponds to a dependent variable.

- > <u>Mixed node</u>. both incoming and outgoing branches.
- ➤ <u>Path.</u> A path is a traversal of connected branches in the direction of the branch arrows. If no node is crossed more than once, the path is **open**. If the path ends at the same node from which it began and does not cross any other node more than once, it is **closed**.

Loop. A loop is a closed path.

- ➤ <u>Loop gain</u>. The loop gain is the product of the branch transmittances of a loop.
- Nontouching loops. Loops are nontouching if they do not possess any common nodes.
- Forward path. A forward path is a path from an input node (source) to an output node (sink) that does not cross any nodes more than once.
- Forward path gain. A forward path gain is the product of the branch transmittances of a forward path.

Signal Flow Graph

- Signals travel along branches only in the direction of the arrows.
- A signal travelling along any branch is multiplied by the transmission of that branch.
- The value of any node variable is the sum of all signals entering the node.
- The value of any node variable is transmitted on all branches leaving that node.

Signal-graph basic rules

- The value of a node with one incoming branch and gain 'a' is. $x_2 = ax_1$
- The total transmittance of cascaded branches is equal to the product of the branch transmittances. Cascaded branches can thus be combined into a single branch by multiplying the transmittances
- Parallel branches may, be combined by adding the transmittances
- Mixed nodes and loops may be eliminated to calculate the complete transfer function, for example, a loop may be eliminated at junction 2 in the last figure by noting that

$$x = bx_2$$
 , $x_2 = ax_1 + cx_3$

Signal Flow Graphs and Simplifications

(b)
$$x_1$$
 x_2 x_3 x_4 x_5

(c)
$$x_1$$
 y_2 y_3 y_4 y_4 y_5 y_5

$$(d) \begin{array}{c} x_1 \\ x_2 \\ \end{array} \begin{array}{c} C \\ x_3 \\ \end{array} \begin{array}{c} x_4 \\ \end{array} \begin{array}{$$

(e)
$$x_1$$
 x_3 x_4 x_5 x_5 x_6 x_6 x_7 x_8 x_8 x_8 x_8 x_8 x_8 x_8

For a complex signal flow graph, evaluation of the transfer function based on first principles is quite cumbersome. An algorithmic way of evaluating the same based on Graph Theory is known as **Mason's rule**.

Mason's rule - Key points

- Forward Path Gain Product of branch Gains found by traversing a path from the input to output node in the direction of signal flow
- Non-touching Loops Loops that do not have any nodes in common
- Non-touching Loop Gain The product of loop gains from non-touching loops

Mason's Rule

$$G(s) = \frac{\sum_{i=1}^{k} T_i \Delta_i}{\Delta}$$

k = number of forward path gain

 T_i = the i-th forward path gain

 $\Delta = 1 - \Sigma$ loop gains + Σ non-touching loop gains taken two at a time + Σ non-touching loop gains taken three at a time etc.

 $\Delta_{i} = \Delta - \Sigma$ loop gain terms in Δ that touch the i-th forward path

A Servo Motor Problem

c.
$$T_1 = \left(\frac{10}{\pi}\right)(K)(150)\left(\frac{1}{s}\right)(0.8)\left(\frac{1}{s}\right)\left(\frac{1}{s}\right)(0.2) = \frac{76.39}{s^3}$$

$$G_{L1} = \frac{-150}{s}; \ G_{L2} = \frac{-1.32}{s}; \ G_{L3} = (K)(150)\left(\frac{1}{s}\right)(0.8)\left(\frac{1}{s}\right)\left(\frac{1}{s}\right)(0.2)\left(\frac{-10}{\pi}\right) = \frac{-76.39K}{s^3}$$

Nontouching loops:

$$G_{L1}G_{L2} = \frac{198}{s^2}$$

$$\Delta = 1 - [G_{L1} + G_{L2} + G_{L3}] + [G_{L1}G_{L2}] = 1 + \frac{150}{s} + \frac{1.32}{s} + \frac{76.39K}{s^3} + \frac{198}{s^2}$$

$$\Delta_1 = 1$$

$$T(s) = \frac{T_1 \Delta_1}{\Delta} = \frac{76.39K}{s^3 + 151.32s^2 + 198s + 76.39K}$$

Dynamic Response of First Order Systems

Leaking Tank: A First Order System

A = Cross-sectional

Area of Tank

Incompressible Fluid

 $d/dt (A h(t)) = -Q_{out} = -(1/R)h(t)$

d/dt(h) = (-1/AR) h

X=h, $X_o = h_o$, d/dt(X) = AX

MFR = $1/R(p_1 - p_2)^{1/\alpha}$ $\alpha = 1$ for Re <1000

A Low-Pass RC Filter

Low-pass RC Filter

d/dt
$$(V_2) = 1/RC (V_1 - V_2)$$

 $V_1 = 0$
d/dt $(V_2) = (-1/RC) V_2$

Free-Response of a First Order System

Graph of eat for Ranges of a

$$x(t) = e^{at} x_0$$

a= 0, Open circuit condition

T= - 1/a time constant, time taken

to reach 1/e of the initial value

Forced Excitation (Unit Step)

Step Input Function and a Switch as Function Generator

d/dt (x(t)) = a x(t) + b u(t)

$$x_f(t) = \int_0^t e^{a(t-\tau)} b u(\tau) d\tau$$

Forced Response (Unit Step)

Step Response

 $x_f(t) = (bu_0T)[1-e^{-t/T}] U_s(t)$

Forced Excitation (Ramp Input)

Ramp Input Function

$$x_f(t) = bu_o T^2 (e^{-t/T} + t/T - 1)$$

Forced Response (Pulse Input)?

Pulse Response as Sum of Step Responses

First Order Systems

A first order system has a differential equation of the form

$$\tau \frac{dy}{dt} + y = kr$$

$$\mathbf{Y}(\mathbf{s}) = \mathbf{G}(\mathbf{s}) \, \mathbf{R}(\mathbf{s}) = \mathbf{k} \, \left(\frac{\frac{1}{\tau}}{s + \frac{1}{\tau}} \right)$$

$$y = k \, \left(1 - e^{-t/\tau} \right)$$

Traditional Thermocouple Measurement

Example:

A thermocouple which has a transfer function linking its voltage output and temperature input of T as

$$G(s) = \frac{30 \times 10^{-6}}{10s + 1} V/{^{0}C}$$

Determine the response of the system when it is suddenly immersed in a water bath at 100° C

The output as an 's' function is

$$V(s) = G(s)$$
 input (s)

The output as an 's' function is
$$V(s) = G(s)$$
 * input (s)

The sudden immersion of the thermometer gives a step input of size 100° C

and so the input as an **s** function as 100/**s**. Thus

$$\mathbf{V} = \frac{30 \times 10^{-6}}{10s + 1} \times \frac{100}{s} \qquad \frac{30 \times 10^{-4} \times 0.1}{s(s + 0.1)}$$

The fraction element of the form a/s(s+a) and so the output as a function of time is:

$$V = 30 \times 10^{-4} \left(1 - e^{-0.1t} \right)$$

Various Basic Second Order Systems

TABLE 6.4 SECOND-ORDER SYSTEMS				
Name	Schematic	Differential Equation	Natural Frequency	Damped Ratio
Mass-spring-viscous damper	k m $F(t)$	$m\ddot{x} + c\dot{x} + kx = F(t)$	$\sqrt{\frac{k}{m}}$	$\frac{c}{2\sqrt{mk}}$
Series LRC circuit	$\begin{array}{c c} L \\ + \\ v \\ - \\ \end{array}$	$L\frac{di}{dt} + Ri + \frac{1}{C} \int_{0}^{t} i dt = v(t)$		$\frac{R}{2}\sqrt{\frac{C}{L}}$
Parallel LRC circuit	$ \begin{array}{c c} & & \\$	$\int_{C} C \frac{dv}{dt} + \frac{v}{R} + \frac{1}{L} \int_{0}^{t} v dt = i(t)$	$\frac{1}{\sqrt{LC}}$	$\frac{1}{2R}\sqrt{\frac{L}{c}}$

Standard Forms of a 2nd order system

In terms of the time constant T

$$\frac{\theta_o}{\theta i}(s) = \frac{k}{T^2 s^2 + 2 T \delta s + 1}$$

In terms of the natural frequency
$$\omega_n = \frac{\theta_o}{\theta i}(s) = \frac{\omega_n^2 k}{s^2 + 2 \delta \omega_n s + \omega_n^2}$$

In terms of the poles (polynomial)
$$\frac{\theta_o}{\theta i}(s) = \frac{\omega_n^2 k}{(s-p_1)(s-p_2)}$$

In terms of two parameters
$$\sigma$$
 and ω_r $\frac{\theta_o}{\theta i}(s) = \frac{\omega_n^2 k}{(s+\sigma)^2 + \omega_r^2} = \frac{\omega_r^2 + \sigma \omega_r^2}{(s+\sigma)^2 + \omega_r^2}$

Remember that δ is the damping ratio (ζ in other texts)

Unit Impulse Response

Transient response of a second order system

A 3-D representation of unit step response

Unit step response

$$PO = \frac{M_p - fv}{fv} \times 100\%$$

 $e^{-\zeta\omega_nT_s}<0.02$

$$T_{s} = \frac{4}{\zeta \omega_{r}}$$

PO: A Measure of Closeness of response $PO = 100 e^{-\zeta\pi/(\sqrt{(1-\zeta^2)})}$

Peak Time: A Measure of swiftness $T_{p} = \frac{\pi}{\omega_{n} \sqrt{(1-\zeta^{2})}}$

Normalised Rise-time

Effect of additional zero

$$T(s) = \frac{(\omega_n^2/a)(s+a)}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

System with Additional Pole and Zero

$$T(s) = \frac{(\omega_n^2/a)(s+a)}{(s^2 + 2\zeta\omega_n s + \omega_n^2)(1+\tau s)}$$

Find out the effect of 'a' and 'T' on the system response corresponding to a step input

THANK YOU