

planetmath.org

Math for the people, by the people.

BN-pair

Canonical name BNpair

Date of creation 2013-03-22 15:30:11 Last modified on 2013-03-22 15:30:11 Owner tedgar (10630)

Last modified by tedgar (10630)

Numerical id 11

Author tedgar (10630)
Entry type Definition
Classification msc 20F55
Synonym Tits Systems

Let G be a group. Then G has a BN-pair or a Tits system if the following conditions hold:

- 1. B and N are subgroups of G such that $G = \langle B, N \rangle$.
- 2. $B \cap N = T \triangleleft N$ and N/T = W is a group generated by a set S.
- 3. $sBw \subseteq BwB \cup BswB$ for all $s \in S$ and $w \in W$.
- 4. $sBs^{-1} \not\subseteq B$ for all $s \in S$.

Where BwB is a double coset with respect to B. It can be proven that S is in fact made up of elements of order 2, and that W is a Coxeter group.

Example: Let $G = GL_n(\mathbb{K})$ where \mathbb{K} is some field. Then, if we let B be the subgroup of upper triangular matrices and N be the subgroup of monomial matrices (i.e. matrices having one nonzero entry in each row and each column, or more precisely the stabilizer of the lines $\{[e_1], ..., [e_n]\}$). Then, it can be shown that B and N generate G and that T is the subgroup of diagonal matrices. In turn, it follows that W in this case is isomorphic to the symmetric group on n letters, S_n .

For more, consult chapter 5 in the book Buildings, by Kenneth Brown