model:

$$Y_{ijl} = \mu + \alpha_i + r_j + c_l + \varepsilon_{ijl}$$

where

 $i=1,\ldots,k$ indexes treatment levels $j=1,\ldots,k$ indexes rows $l=1,\ldots,k$ indexes columns $\varepsilon_{ijl} \sim \mathcal{N}(0,\sigma_{\varepsilon}^2)$ corresponds to plot error, e.g. residual variation

ANOVA table

Source	$\mathrm{d}\mathrm{f}$	SS
Row	k-1	$k \sum_{j=1}^{k} (\bar{y}_{\cdot j \cdot} - \bar{y}_{\cdot \cdot \cdot})^2$
Column	k-1	$k \sum_{l=1}^{k} (\bar{y}_{\cdot \cdot l} - \bar{y}_{\cdot \cdot \cdot})^2$
Treatment	k-1	$k \sum_{i=1}^{k} (\bar{y}_{i} - \bar{y}_{})^2$
Error	(k-1)(k-2)	by subtraction
Total	$k^2 - 1$	$\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{l=1}^{k} (y_{ijl} - \bar{y}_{})^2$

- In a latin square design, there will not be values for every combination of i, j, and l: there will be k^2 values total, not k^3 . The means include only the y_{ijl} terms that exist.
- As with block designs, the tests for row or column effects require some care in interpretation. Apart from that, all tests proceed as you expect: you test an item by looking at its MS divided by MSError and compare to F.
- Randomizing a latin square design is not trivial. See Oehlert for discussion of this. In R, we can use the magic library and its function rlatin(k) to generate a random latin square with k treatments, k rows and k columns. An earlier handout had an example with k = 4.