LA FONCTION INVERSE E01

Vous pouvez vous aider du complément de cours.

Méthode n°1. À connaître

Énoncé:

Soit f la fonction définie sur $\mathbb{R}^* =]-\infty$; $0[\cup]0$; $+\infty[$ par : $f(x) = \frac{7}{x} + 4$.

- 1) Déterminer la limite de f en $+\infty$.
- 2) Déterminer la limite de f en 0^- .

Réponse :

Pour $x \in \mathbb{R}^*$, on peut écrire $f(x) = 7 \times \frac{1}{x} + 4$

1)
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$
 donc $\lim_{x \to +\infty} 7 \times \frac{1}{x} = 0$
d'où $\lim_{x \to +\infty} 7 \times \frac{1}{x} + 4 =$ $\lim_{x \to +\infty} f(x) = 4$
d'où $\lim_{x \to 0} 7 \times \frac{1}{x} + 4 =$ $\lim_{x \to 0} f(x) = 4$
d'où $\lim_{x \to 0} 7 \times \frac{1}{x} + 4 =$ $\lim_{x \to 0} f(x) = -\infty$

EXERCICE N°1

Soit f la fonction définie sur l'intervalle]0; $+\infty[$ par $f(x) = \frac{-5}{x}$. Déterminer la limite de la fonction f en 0 puis celle . $+\infty$

EXERCICE N°2

f est la fonction définie sur l'intervalle]0; $+\infty[$ par $f(x)=8+\frac{11}{x}$ Déterminer la limite de la fonction f en 0 puis celle $+\infty$.

EXERCICE N°3

Soit f la fonction définie sur l'intervalle $]-\infty$; 0[par $f(x)=\frac{-5}{x}$. Déterminer la limite de la fonction f en 0 puis celle $-\infty$.

EXERCICE N°4

Soit f la fonction définie sur l'intervalle $]-\infty$; 0[par . $f(x)=8+\frac{11}{x}$ Déterminer la limite de la fonction f en 0 puis celle $-\infty$.

EXERCICE N°5

On donne ci-contre la courbe représentative de la fonction f définie sur :

$$\mathbb{R}^* =]-\infty \; ; \; 0[\; \cup \;]0 \; ; +\infty[\quad \text{par} \quad f(x) = -\frac{4}{x}]$$

- 1) Lire graphiquement les limites de f aux bornes de son ensemble de définition.
- 2) Interpréter graphiquement ces résultats.

LA FONCTION INVERSE E01

Vous pouvez vous aider du complément de cours.

Méthode n°1. À connaître

Énoncé:

Soit f la fonction définie sur $\mathbb{R}^* =]-\infty$; $0[\cup]0$; $+\infty[$ par : $f(x) = \frac{7}{x} + 4$.

- 1) Déterminer la limite de f en $+\infty$.
- 2) Déterminer la limite de f en 0^- .

Réponse :

Pour $x \in \mathbb{R}^*$, on peut écrire $f(x) = 7 \times \frac{1}{x} + 4$

1)
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$
 donc $\lim_{x \to +\infty} 7 \times \frac{1}{x} = 0$
d'où $\lim_{x \to +\infty} 7 \times \frac{1}{x} + 4 =$ $\lim_{x \to +\infty} f(x) = 4$
d'où $\lim_{x \to 0} 7 \times \frac{1}{x} + 4 =$ $\lim_{x \to 0} f(x) = 4$
d'où $\lim_{x \to 0} 7 \times \frac{1}{x} + 4 =$ $\lim_{x \to 0} f(x) = -\infty$

EXERCICE N°1

Soit f la fonction définie sur l'intervalle]0; $+\infty[$ par $f(x) = \frac{-5}{x}$. Déterminer la limite de la fonction f en 0 puis celle . $+\infty$

EXERCICE N°2

f est la fonction définie sur l'intervalle]0; $+\infty[$ par $f(x)=8+\frac{11}{x}$ Déterminer la limite de la fonction f en 0 puis celle $+\infty$.

EXERCICE N°3

Soit f la fonction définie sur l'intervalle $]-\infty$; 0[par $f(x)=\frac{-5}{x}$. Déterminer la limite de la fonction f en 0 puis celle $-\infty$.

EXERCICE N°4

Soit f la fonction définie sur l'intervalle $]-\infty$; 0[par . $f(x)=8+\frac{11}{x}$ Déterminer la limite de la fonction f en 0 puis celle $-\infty$.

EXERCICE N°5

On donne ci-contre la courbe représentative de la fonction f définie sur :

$$\mathbb{R}^* =]-\infty \; ; \; 0[\; \cup \;]0 \; ; +\infty[\quad \text{par} \quad f(x) = -\frac{4}{x}]$$

- 1) Lire graphiquement les limites de f aux bornes de son ensemble de définition.
- 2) Interpréter graphiquement ces résultats.

