Résumé sur les fonctions circulaires réciproques

Fonction arcsinus (arcsin)

Bijection croissante de [-1, 1] sur $[-\pi/2, \pi/2]$

$$\arcsin(\sin x) = x$$
 si $x \in [-\pi/2, \pi/2]$

$$\sin(\arcsin x) = x$$
 si $x \in [-1, 1]$

Fonction impaire : si $x \in [-1, 1]$ on a $\arcsin(-x) = -\arcsin x$.

Fonction dérivable sur]-1, 1[:
$$f'(x) = \frac{1}{\sqrt{1-x^2}}$$
.

Fonction arccosinus (arccos)

Bijection décroissante de [-1, 1] sur $[0, \pi]$

$$\arccos(\cos x) = x \quad \text{si} \quad x \in [0, \pi]$$

$$\cos(\arccos x) = x \quad \text{si} \quad x \in [-1, 1]$$

Fonction dérivable sur] 0,
$$\pi$$
 [: $f'(x) = \frac{-1}{\sqrt{1-x^2}}$.

Fonction arctangente (arctan)

Bijection croissante de **R** sur] $-\pi/2$, $\pi/2$ [

$$\arctan(\tan x) = x \text{ si } x \in]-\pi/2, \pi/2[$$

$$\tan(\arctan x) = x \quad \text{si} \quad x \in]-\infty, \infty[$$

Fonction impaire : si $x \in \mathbf{R}$ on a $\arctan(-x) = -\arctan x$.

Fonction dérivable sur
$$\mathbf{R}: f'(x) = \frac{1}{x^2 + 1}$$
.

Limites à l'infini :
$$\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$
 et $\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$

Formule utile : si
$$x > 0$$
, $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$.

Tableau de valeurs à savoir retrouver rapidement

x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\arcsin x$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\arccos x$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	0

x	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$+\infty$
$\arctan x$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$

a) $\arcsin x$

b) $\arccos x$

-1