第三章 假设检验

假设检验的基本概念见讲义§1.4.2。

只涉及一个分布的假设称为简单假设(simple hypothesis); 涉及多个分布的假设称为复合假设(composite hypothesis)。

§3.1 构造检验的方法

一、似然比方法

定义3.1.1 设 X 的分布族为 $(\mathcal{X}, \mathcal{B}_X, \mathcal{P} = \{P_{\theta}: \theta \in \Theta = \Theta_H \cup \Theta_K\})$, \mathcal{P} 关于 σ -有限测度 ν 可控,记 $p(x;\theta) = dP_{\theta}(x)/d\nu(x), \forall \theta \in \Theta$ 。对于假设检验问题 $H: \theta \in \Theta_H \ v.s. \ K: \theta \in \Theta_K$,称

$$\lambda(x) = \frac{\sup_{\theta \in \Theta_H} L(\theta; x)}{\sup_{\theta \in \Theta} L(\theta; x)}$$

为似然比检验统计量(likelihood ratio test statistic), 其中似然函数 $L(\theta;x) = p(x;\theta), \theta \in \Theta$ 。称形为

$$\phi(x) = \begin{cases} 1, & \text{if } \lambda(x) < c, \\ 0, & \text{if } \lambda(x) > c, \end{cases}$$

的检验为似然比检验(likelihood ratio test, LRT), 其中 $c \in [0,1]$ 是常数。

LRT 可视为Neyman-Pearson 引理的结论在复合假设情况下的推广,构造思路直观,易于处理讨厌参数(nuisance parameters),且性质良好。当UMPT或UMPUT存在时,LRT往往与此类最优检验一致。在大样本情况下,LRT有良好的渐近性质。因而,LRT与MLE一样应用广泛。

LRT 主要适用于参数模型。与MLE 一样,在一些特殊的场合似然比检验统计量也存在可测性问题。当不能得到原假设成立下似然比检验统计量的精确分布时,可以根据Wilks 定理导出渐近的似然比检验,其渐近性质与Wald 检验、Rao's score 检验等价。

若

$$\hat{\theta}_H = \arg\max_{\theta \in \Theta_H} L(\theta; x), \quad \hat{\theta}_{MLE} = \arg\max_{\theta \in \Theta} L(\theta; x),$$

则

$$\lambda(x) = \frac{L(\hat{\theta}_H; x)}{L(\hat{\theta}_{MLE}; x)}.$$

若似然比检验统计量 $\lambda(x)$ 关于统计量G(x) 单调增,则LRT 亦可表达为

$$\phi(x) = \begin{cases} 1, & \text{if } G(x) < c', \\ 0, & \text{if } G(x) > c'. \end{cases}$$

(Casella et al., p377/Th8.2.4) 若 T(X) 是 ${\mathcal P}$ 的充分统计量,则 $\lambda(x)=\lambda^*(T(x))$ 。

例3.1.1 (p375/eg 8.2.2 单参数、双边假设检验) X_1, \dots, X_n i.i.d. $N(\theta, 1), \theta \in \mathbb{R}$ 未知。欲检验 $H: \theta = \theta_0 \ v.s. \ K: \theta \neq \theta_0$,其中 θ_0 是已知的常数。

例3.1.2 (p375/eg 8.2.3 单参数、单边假设检验) X_1, \dots, X_n i.i.d. $Exp(\theta, 1)$,其共同的pdf 为 $f(x; \theta) = e^{-(x-\theta)}I_{\theta,\infty}(x)$,其中 $\theta \in \mathbb{R}$ 未知。欲检验 $H: \theta \leq \theta_0 \ v.s. \ K: \theta > \theta_0$,其中 θ_0 是已知的常数。

例3.1.3 (p378/eg 8.2.6 含讨厌参数的假设检验) X_1, \dots, X_n i.i.d. $N(\mu, \sigma^2)$, 其中 $\mu \in \mathbb{R}, \sigma^2 > 0$ 均未知。欲检验

$$\begin{aligned} H_1 : \mu &= \mu_0 & \text{v.s.} & K_1 : \mu \neq \mu_0 \\ H_2 : \mu &\leq \mu_0 & \text{v.s.} & K_2 : \mu > \mu_0 \\ H_3 : \sigma^2 &= \sigma_0^2 & \text{v.s.} & K_3 : \sigma^2 \neq \sigma_0^2 \\ H_4 : \sigma^2 &\leq \sigma_0^2 & \text{v.s.} & K_4 : \sigma^2 > \sigma_0^2 \end{aligned}$$

其中 μ_0, σ_0^2 是已知的常数。

二、并-交法与交-并法

在原假设为复合假设的情况下,有时候可以通过对简单原假设的检验来构造检验方法。并-交法与交-并法就属于这类方法。线性模型及多元分析中的许多检验法由此可得。

并-交法可能适用于解决下列形式的假设检验问题:

$$H: \theta \in \bigcap_{\gamma \in \Gamma} \Theta_{\gamma} \quad \text{v.s.} \quad K: \theta \in \bigcup_{\gamma \in \Gamma} \bar{\Theta}_{\gamma},$$

$$H_{\gamma}: \ \theta \in \Theta_{\gamma} \quad \text{v.s.} \quad K_{\gamma}: \ \theta \in \bar{\Theta}_{\gamma}$$

的拒绝域为 $\{x:T_{\gamma}(x)\in R_{\gamma}\}$,那么由并-交法可得假设检验问题 H v.s. K 的拒绝域形为

$$\bigcup_{\gamma \in \Gamma} \{x : T_{\gamma}(x) \in R_{\gamma}\}.$$

特别地,若每一个 H_{γ} v.s. K_{γ} 问题的拒绝域为 $\{x:T_{\gamma}(x)\geq c\}$,其中 c 与 γ 无 关,那么由并-交法所得 H v.s. K 的拒绝域为

$$\bigcup_{\gamma \in \Gamma} \{x : T_{\gamma}(x) \ge c\} = \{x : \sup_{\gamma \in \Gamma} T_{\gamma}(x) \ge c\}.$$

由此导出 H v.s. K 的检验统计量 $T(x) = \sup_{\gamma \in \Gamma} T_{\gamma}(x)$ 。 有的问题中 T(x) 具有简单的形式。

例3.1.4 (p380/eg 8.2.8 双边t检验) 设 X_1, \dots, X_n i.i.d. $N(\mu, \sigma^2)$, 其中 $\mu \in \mathbb{R}, \sigma^2 > 0$ 均未知。欲检验 $H: \mu = \mu_0$ v.s. $K: \mu \neq \mu_0$,其中 μ_0 是给定的常数。我们可以将原假设、备择假设写成

$$H: \mu \in (-\infty, \mu_0] \cap [\mu_0, \infty)$$
 v.s. $K: \mu \in (\mu_0, \infty) \cup (-\infty, \mu_0)$.

用似然比方法分别可得: 检验 $H_L: \mu \in (-\infty, \mu_0]$ v.s. $K_L: \mu \in (\mu_0, \infty)$ 的拒绝域为

$$\left\{x: \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \ge t_L\right\},\,$$

检验 $H_U: \mu \in [\mu_0, \infty)$ v.s. $K_U: \mu \in (-\infty, \mu_0)$ 的拒绝域为

$$\left\{x: \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \le t_U\right\}.$$

再由并-交法可得, 检验 H v.s. K 的拒绝域形为

$$\left\{x: \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \le t_U \quad \text{or} \quad \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \ge t_L\right\}.$$

若取 $t_L = -t_U > 0$,则上述拒绝域可简化为

$$\left\{x: \frac{|\bar{X} - \mu_0|}{S/\sqrt{n}} \ge t_L\right\},\,$$

与LRT 相同。

例3.1.5 (Hotelling's T^2 检验)设 X_1, \dots, X_n i.i.d. $N_k(\mu, \Sigma)$, 其中 $\mu \in \mathbb{R}^k, \Sigma > 0$ 均未知。欲检验 $H: \mu = \mu_0$ v.s. $K: \mu \neq \mu_0$,其中 μ_0 是给定的k 维向量。我们可以将原假设、备择假设写成

$$H: \bigcap_{\gamma \in \mathbb{R}^k, \gamma \neq 0} \{ \mu : \gamma' \mu = \gamma' \mu_0 \} \quad \text{v.s.} \quad K: \bigcup_{\gamma \in \mathbb{R}^k, \gamma \neq 0} \{ \mu : \gamma' \mu \neq \gamma' \mu_0 \}.$$

对于每一个 $\gamma \in \mathbb{R}^k, \gamma \neq 0$, 易知 $\gamma' X_1, \cdots, \gamma' X_n$ i.i.d. $N(\gamma' \mu, \gamma' \Sigma \gamma)$, 由t检验法 得检验

$$H_{\gamma}: \gamma'\mu = \gamma'\mu_0$$
 v.s. $K_{\gamma}: \gamma'\mu \neq \gamma'\mu_0$

的拒绝域形为

$$\left\{x: \frac{n(\gamma'\bar{X}-\gamma'\mu_0)^2}{\gamma'S\gamma} \ge c\right\},$$

这里 $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, S = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})'$,取相同的临界值 c 可使每个检验的真实水平均相同。由并-交法知,检验 H v.s. K 的拒绝域形为

$$\left\{x: \ T^2 = \sup_{\gamma \in \mathbb{R}^k, \gamma \neq 0} \frac{n(\gamma' \bar{X} - \gamma' \mu_0)^2}{\gamma' S \gamma} \ge c\right\},\,$$

易知, $T^2 = n(\bar{X} - \mu_0)'S^{-1}(\bar{X} - \mu_0)$ 即为Hotelling's T^2 检验统计量。

若假设检验问题形为

$$H: \ \theta \in \bigcup_{\gamma \in \Gamma} \Theta_{\gamma} \quad \text{v.s.} \quad K: \ \theta \in \bigcap_{\gamma \in \Gamma} \bar{\Theta}_{\gamma},$$

其中 Γ 是任意的指标集,则有可能使用交-并法来构造检验。若对于每一个 $\gamma \in$ Γ ,已知检验

$$H_{\gamma}: \theta \in \Theta_{\gamma} \quad \text{v.s.} \quad K_{\gamma}: \theta \in \bar{\Theta}_{\gamma}$$

的拒绝域为 $\{x: T_{\gamma}(x) \in R_{\gamma}\}$,那么由交-并法可得假设检验问题 H v.s. K 的拒绝域形为

$$\bigcap_{\gamma \in \Gamma} \{x : T_{\gamma}(x) \in R_{\gamma}\}.$$

特别地,若每一个 H_{γ} v.s. K_{γ} 问题的拒绝域为 $\{x: T_{\gamma}(x) \geq c\}$,其中 c 与 γ 无 关,那么由交-并法所得 H v.s. K 的拒绝域为

$$\bigcap_{\gamma \in \Gamma} \{x : T_{\gamma}(x) \ge c\} = \{x : \inf_{\gamma \in \Gamma} T_{\gamma}(x) \ge c\}.$$

由此导出 H v.s. K 的检验统计量 $T(x) = \inf_{\gamma \in \Gamma} T_{\gamma}(x)$ 。

例3.1.6 (p382/eg 8.2.9 Acceptance sampling) 评价室内装饰织物的质量有两个重要参数: 平均断裂强度 θ_1 和通过易燃性测试的概率 θ_2 。当 θ_1 大于50 磅及 θ_2 大于0.95 两者同时合格时,产品才被接受。因而买卖双方在交验产品时需要根据抽样测量数据检验

$$H: \theta_1 < 50 \text{ or } \theta_2 < 0.95 \text{ v.s. } K: \theta_1 > 50 \text{ and } \theta_2 > 0.95,$$

当原假设 H 被拒绝时才接受该批产品。

设断裂强度测试样本 X_1, \dots, X_n i.i.d. $N(\theta_1, \sigma^2)$,易燃性测试样本 Y_1, \dots, Y_m i.i.d. $B(1, \theta_2)$ 。 把检验 $H_1: \theta_1 \leq 50$ v.s. $K_1: \theta_1 > 50$ 的拒绝域 $\{\sqrt{n}(\bar{X} - 50)/S \geq c_1\}$,与检验 $H_2: \theta_2 \leq 0.95$ v.s. $K_2: \theta_2 > 0.95$ 的拒绝域 $\{\sum_{i=1}^m Y_i \geq c_2\}$ 结合起来,由交-并法得 H v.s. K 的拒绝域形式为

$$\left\{ (x,y): \frac{\sqrt{n}(\bar{X} - 50)}{S} \ge c_1 \quad \text{and} \quad \sum_{i=1}^m Y_i \ge c_2 \right\}.$$

三、Bayes方法

贝叶斯统计推断依据的模型包括两个方面:

- 1) X 的分布族 (假定关于 ν 可控), 即假定 $X|\theta \sim p(x;\theta), \theta \in \Theta$;
- 2) 视未知参数 θ 为随机变量(向量),假定其先验分布(一般也假定关于某 λ 有密度存在)为 $\theta \sim \pi(\theta)$ 。

贝叶斯推断主要根据给定 X = x 时 θ 的后验分布(假定关于 λ 有密度)

$$\pi(\theta|x) = \frac{p(x;\theta)\pi(\theta)}{m(x)}$$

进行, 其中 $m(x) = \int_{\Theta} p(x; \theta) \pi(\theta) d\lambda(\theta)$ 。

考虑下列假设检验问题

$$H: \theta \in \Theta_H \quad v.s. \quad K: \theta \in \Theta_K,$$

其中 Θ_H 与 Θ_K 是 Θ 的分割,均非空。用贝叶斯方法解决假设检验问题的思路 比较直接,就是通过比较原假设与备择假设的后验概率,即

$$P(\theta \in \Theta_H | x) = \int_{\Theta_H} \pi(\theta | x) d\lambda(\theta) \quad \boxminus \quad P(\theta \in \Theta_K | x) = 1 - P(\theta \in \Theta_H | x)$$

两者的大小来下检验结论。通常拿两者之比与设定的某临界值比较大小来决定拒绝/接受原假设。但有人认为 θ 的后验概率中含有先验分布的信息,这部分信息是人为设定的、有主观性,最好在做假设检验时把这部分主观信息尽可能排除出去。于是人们提出了下列贝叶斯因子(Bayes Factor)的概念

BF =
$$\frac{P(\theta \in \Theta_H | x) / \pi(\theta \in \Theta_H)}{P(\theta \in \Theta_K | x) / \pi(\theta \in \Theta_K)},$$

并采用贝叶斯因子与设定的临界值比较大小来下检验结论。直观上,贝叶斯因子是两个假设的后验概率比与先验概率比之比,它看上去排除了主观先验的影响,主要体现了数据对于两个假设的支持程度。尤其当 $\Theta_H = \{\theta_H\}$ 且 $\Theta_K = \{\theta_K\}$ 即原假设和备择假设都是简单假设时,

BF =
$$\frac{P(\theta = \theta_H | x) / \pi(\theta_H)}{P(\theta = \theta_K | x) / \pi(\theta_K)} = \frac{p(x | \theta_H)}{p(x | \theta_K)},$$

贝叶斯因子就是似然比。在复合假设情况下,贝叶斯因子可视为加权似然比,即原假设、备择假设各自成立时似然函数的加权平均之比。

§3.2 UMPT(Uniformly Most Powerful Test)

设X的分布族为 $(\mathcal{X},\mathcal{B}_X,\mathcal{P}=\{P_{\theta}:\theta\in\Theta\})$,记

$$\mathscr{F} = \{ \phi : \phi \bowtie (\mathscr{X}, \mathscr{B}_X) \rightarrow ([0, 1], \mathscr{B}_{[0,1]}) \text{ in } \exists \emptyset \},$$

为 $(\mathcal{X},\mathcal{B}_X)$ 上所有检验函数形成的集合。称

$$\beta_{\phi}(\theta) = E_{\theta}(\phi(X)), \quad \theta \in \Theta$$

为检验函数 ϕ 的势函数。在 N-P 理论中,势函数包含了检验的全部性质。若两个检验的势函数相同,则称它们等价。

设 Θ_H, Θ_K 是参数空间 Θ 的一个分割。按 N-P 原则,解决假设检验问题

$$H: \theta \in \Theta_H \quad \text{v.s.} \quad K: \theta \in \Theta_K$$
 (3.2.1)

就相当于求解下列优化问题:

$$\max_{\phi \in \mathscr{F}} E_{\theta} \phi(X), \ \forall \theta \in \Theta_K,$$

s.t.
$$\sup_{\theta \in \Theta_H} E_{\theta} \phi(X) \le \alpha.$$
 (3.2.2)

定义3.2.1 称满足 (3.2.2) 的解 $\phi^*(x)$ 为假设检验问题 (3.2.1) 的水平为 α 的UMPT。

仅有少数问题有UMPT。下面讨论求得UMPT 的基本思路。

● 当备择假设为简单假设时, UMPT 往往存在。

定理3.2.1 (Lehmann,TSH,附录4) 若样本空间 $(\mathcal{X},\mathcal{B}_X)$ 是欧氏的,或 \mathcal{B}_X 是可列生成的, $\{P_{\theta},\theta\in\Theta\}$ 受控于某 σ -有限测度,备择假设是简单的,则 $\forall \alpha\in[0,1]$,必存在水平为 α 的 UMPT。

• 当备择假设 K 为复合假设时, $\forall \theta_1 \in \Theta_K$,若 ϕ^* 是

$$H: \theta \in \Theta_H \quad \text{v.s.} \quad K_1: \theta = \theta_1$$

的水平为 α 的MPT,且 ϕ^* 不依赖于 θ_1 ,则 ϕ^* 也是 H v.s. K 的水平为 α 的UMPT;若不依赖于 θ_1 的 ϕ^* 不存在,则 H v.s. K 不存在UMPT。

• 对于检验问题

$$H_1: \theta = \theta_0$$
 v.s. $K_1: \theta = \theta_1 \quad (\theta_0 \in \Theta_H),$

若 ϕ^* 是 H_1 v.s. K_1 的水平为 α 的MPT,且 ϕ^* 也是 H v.s. K_1 的水平为 α 的检验,则 ϕ^* 也是 H v.s. K_1 的水平为 α 的MPT。

§3.2.1 Neyman-Pearson 引理

N-P 引理解决的是当原假设、备择假设都是简单假设时MPT的求解问题,即求解 $H: P_0$ v.s. $K: P_1$ 的MPT。

先考虑 P_i , i=0,1 都是离散型概率测度的情况。设它们的分布列为

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline X & x_1 & x_2 & x_3 & \cdots \\\hline P_0 & p_0(x_1) & p_0(x_2) & p_0(x_3) & \cdots \\ P_1 & p_1(x_1) & p_1(x_2) & p_1(x_3) & \cdots \\\hline \end{array}$$

若不考虑随机化检验,那么求解该问题的水平为 α 的MPT,等价于求 $\{x_1, x_2, \ldots\}$ 的一个子集S(拒绝域),满足

$$\sum_{x \in S} p_0(x) \le \alpha \quad \mathbb{H} \quad \sum_{x \in S} p_1(x) = \max!.$$

若将 $p_0(x)$ 比喻为购买商品 x 的价格, $p_1(x)$ 为获得商品 x 的效用,则上述问题相当于:拿 α 元钱去选购若干件商品,要求使总的效用最大化。

直观的选购思路是: 优先挑选单位效用便宜的商品,即可按

$$r(x) = \frac{p_1(x)}{p_0(x)}, \quad x = x_1, x_2, \dots$$

从大到小的顺序去选购商品,直到花完 α 元钱为止。因此,S 具有形式:

$$S = \{x : r(x) > c\},$$

其中 c 满足 $\sum_{x \in S} p_0(x) \le \alpha$ 。

该思路的困难在于,上式中"="未必能达到。有三种解决方法:

- 1. 买到 $\sum_{x \in S} p_0(x) < \alpha$ 时停止;
- 2. 打破 r(x) 从大到小的购买顺序;
- 3. 把最后一件商品分割开来,只买一部分。

定理3.2.2 (Neyman-Pearson 引理) 设 P_0 , P_1 是两个概率测度, 关于控制测度 ν 具有 pdf p_0 , p_1 。 对于检验问题 $H:P_0$ v.s. $K:P_1$, 及给定的显著性水平 $\alpha \in [0,1]$,

i) (存在性) \exists 检验函数 ϕ 及常数 k, 使得

$$E_0\phi(X) = \alpha, (3.2.3)$$

$$\mathbb{A} \quad \phi(x) = \begin{cases} 1, & \text{if} \quad p_1(x) > k \cdot p_0(x), \\ 0, & \text{if} \quad p_1(x) < k \cdot p_0(x). \end{cases}$$
(3.2.4)

- ii) (充分性) 若存在某 k 及 ϕ , 使 (3.2.3) 和 (3.2.4)成立,则 ϕ 必是水平为 α 的 MPT。
- iii) (必要性) 若 ϕ 是水平为 α 的MPT, 则必存在常数 k, 使 ϕ 满足 $(3.2.4)(a.e. \nu)$; 若 $E_1\phi(X) < 1$, 则 ϕ 必满足 (3.2.3); 若 $E_1\phi(X) = 1$, 则 $E_0\phi(X) \leq \alpha$ 。

注1. 若MPT 的势函数唯一,则 (3.2.3)与 (3.2.4)充分必要。若MPT 的势函数不唯一,则满足 (3.2.3) 与 (3.2.4)的必是MPT;而MPT 一定满足 (3.2.4),未必满足 (3.2.3)。

注2. MPT 在 $\{x: p_1(x) \neq kp_0(x)\}$ 上完全确定,在 $\{x: p_1(x) = kp_0(x)\}$ 上可以任意定,只须保证检验的水平为 α 。这可以随机化决定,也可以将 $\{x: p_1(x) = kp_0(x)\}$ 作适当的分割。

证明. 不妨约定 $0 \cdot \infty = 0$ 。 当 $\alpha = 0$ 时,若允许 $k = \infty(\mathbb{P}_0(x) > 0$ 的全接受),则定理成立。 当 $\alpha = 1$ 时,取 $k = -1(\mathbb{P}_{p_1}(x) > 0$ 的全拒绝),则定理成立。

下面讨论 $0 < \alpha < 1$ 的情况。

i) 对于 $0 < \lambda < \infty$,记

$$\alpha(\lambda) = P_0(p_1(X) > \lambda \cdot p_0(X))$$

$$= 1 - P_0(p_1(X) \le \lambda \cdot p_0(X))$$

$$\stackrel{\hat{}}{\le} 1 - G(\lambda),$$

其中

$$G(\lambda) = P_0\left(\frac{p_1(X)}{p_0(X)} \le \lambda, \ p_0(X) > 0\right)$$

是某个随机变量的分布函数,非降、右连续、 $G(\infty) = 1$ 。相应地, $\alpha(\lambda)$ 非增、右连续、 $\alpha(\infty) = 0$ 。

(b) 若 $\alpha(0) = \alpha$,则取 $\phi(x) = I_{(p_1(x)>0)}$ 。

(c) 若
$$\alpha(0) < \alpha$$
,则取 $\phi(x) = \begin{cases} 1, & p_1(x) > 0, \\ \frac{\alpha - \alpha(0)}{1 - \alpha(0)}, & p_1(x) = 0. \end{cases}$

如此构造的 ϕ 必同时满足 (3.2.3)和 (3.2.4)。

ii) 设 ϕ 同时满足(3.2.3)和(3.2.4),往证 ϕ 是MPT。 设 $\tilde{\phi}$ 是任一水平为 α 的检验。记

$$S^{+} = \{x : \phi(x) > \tilde{\phi}(x)\},\$$

$$S^{-} = \{x : \phi(x) < \tilde{\phi}(x)\}.$$

显然,

$$x \in S^+ \Rightarrow \phi(x) > \tilde{\phi}(x) \Rightarrow \phi(x) > 0 \Rightarrow p_1(x) \ge kp_0(x),$$

 $x \in S^- \Rightarrow \phi(x) < \tilde{\phi}(x) \Rightarrow \phi(x) < 1 \Rightarrow p_1(x) < kp_0(x).$

因此,

$$[\phi(x) - \tilde{\phi}(x)][p_1(x) - kp_0(x)] \ge 0, \ \forall x \in S^+ \cup S^-.$$

由此可得

$$\int_{S^{+}\cup S^{-}} [\phi(x) - \tilde{\phi}(x)][p_{1}(x) - kp_{0}(x)]d\nu(x)$$

$$= \int_{\mathscr{X}} [\phi(x) - \tilde{\phi}(x)][p_{1}(x) - kp_{0}(x)]d\nu(x)$$

$$= \int_{\mathscr{X}} [\phi(x) - \tilde{\phi}(x)]p_{1}(x)d\nu(x) - k \int_{\mathscr{X}} [\phi(x) - \tilde{\phi}(x)]p_{0}(x)d\nu(x)$$

$$\geq 0.$$

所以, $E_1\phi(X) \geq E_1\tilde{\phi}(X)$,即 ϕ 是水平为 α 的MPT。

iii) 设 $\tilde{\phi}$ 是水平为 α 的MPT。

由 i)知,存在满足 (3.2.3)和 (3.2.4)的 ϕ 。如 ii) 定义 S^+ 、 S^- ,令 $S = S^+ \cup S^-$, $S_1 = S \cap \{x : p_1(x) \neq kp_0(x)\}$ 。往证: $\mu(S_1) = 0$ 。

因为

$$[\phi(x) - \tilde{\phi}(x)][p_1(x) - kp_0(x)] > 0, \ \forall x \in S_1,$$

若 $\mu(S_1) > 0$,则有

$$0 < \int_{S_{1}} [\phi(x) - \tilde{\phi}(x)][p_{1}(x) - kp_{0}(x)]d\nu(x)$$

$$= \int_{\mathscr{X}} [\phi(x) - \tilde{\phi}(x)][p_{1}(x) - kp_{0}(x)]d\nu(x)$$

$$= E_{1}\phi(X) - E_{1}\tilde{\phi}(X) - k[E_{0}\phi(X) - E_{0}\tilde{\phi}(X)]$$

$$\leq E_{1}\phi(X) - E_{1}\tilde{\phi}(X),$$

即 $E_1\phi(X) > E_1\tilde{\phi}(X)$ 。 这与 $\tilde{\phi}(X)$ 是 MPT 矛盾。 因此, $\nu(S_1) = 0$,即 $\phi \neq \tilde{\phi}$ 仅在 $\{x: p_1(x) = kp_0(x)\} \cup \nu$ 零测集 上成立。 因而证得 $\tilde{\phi}$ 必具有形式 (3.2.4) a.e. ν 。

若 $E_0\tilde{\phi}(X) < \alpha$ 且 $E_1\tilde{\phi}(X) < 1$,则总可以提高某些点上的拒绝概率,使 $E_0\tilde{\phi}(X) = \alpha$ 或 $E_1\tilde{\phi}(X) = 1$ 。这样,一个MPT 或者达到 (3.2.3),或者使 $E_1\phi(X) = 1$ 。

推论3.2.1 若 ϕ 是 $H: P_0$ v.s. $K: P_1$ 的水平为 α 的MPT, 则必有 $E_1\phi(X) \geq \alpha$ 。 若 $0 < \alpha < 1$ 且 $P_0 \neq P_1$, 则 $E_1\phi(X) > \alpha$ 。

证明. 取 $\tilde{\phi} \equiv \alpha$,它是水平为 α 的检验。由于 ϕ 是MPT,则必有 $E_1\phi(X) \geq E_1\tilde{\phi}(X) = \alpha$ 。

当 $0 < \alpha < 1$, $P_0 \neq P_1$ 时,若 $E_1\phi(X) = \alpha$,那么 $\tilde{\phi}(\cdot)$ 也是MPT,由定理 3.2.2知, $\tilde{\phi}$ 应有形式 (3.2.4)。因为 $0 < \alpha < 1$,故 $p_1(x) = kp_0(x)$ a.e. ν 。这只有当 k = 1, $p_1(x) \equiv p_0(x)$ a.e. ν 时成立,与 $P_0 \neq P_1$ 矛盾。

根据定理 3.2.2寻找MPT的程序:

1. 计算
$$r(x) = \frac{p_1(x)}{p_0(x)}$$
;

2. 取
$$\phi(x) = \begin{cases} 1, & \text{if } r(x) > \lambda_0, \\ \gamma, & \text{if } r(x) = \lambda_0, \\ 0, & \text{if } r(x) < \lambda_0, \end{cases}$$
 其中 $0 < \gamma < 1$ 、 λ_0 待定;

3. 由 $E_0\phi(X)=\alpha$ 解出 λ_0 , γ 。 其中 λ_0 满足

$$\left\{ \begin{array}{l} P_0(r(X) > \lambda_0) \leq \alpha, \\ P_0(r(X) \geq \lambda_0) \geq \alpha. \end{array} \right. \quad \overrightarrow{\mathrm{fij}} \quad \gamma = \frac{\alpha - \alpha(\lambda_0)}{\alpha(\lambda_0 -) - \alpha(\lambda_0)}.$$

例3.2.1 X_1, \ldots, X_n i.i.d. $N(\theta, 1)$ 。 求 $H: \theta = \theta_0$ v.s. $K: \theta = \theta_1$ 的水平为 α 的MPT,其中 $\theta_1 > \theta_0$ 。

 \mathbf{m} : 不妨设 $\theta_0 = 0$, $\theta_1 > 0$ 。由 X_1, \ldots, X_n 的联合密度

$$p(x_1, \dots, x_n; \theta) = (2\pi)^{-\frac{n}{2}} \exp\{-\frac{1}{2} \sum_{i=1}^{n} (x_i - \theta)^2\}$$

知

$$r(x) = \frac{p(x; \theta_1)}{p(x; 0)} = \exp\{\theta_1 \cdot n\bar{x} - \frac{n}{2}\theta_1^2\}$$

关于 \bar{x} 严增,故 $r(x) > \lambda_0 \Longleftrightarrow \bar{x} > c$ 。 求 λ_0 ,等价于求 c 使 $P_0(\bar{X} > c) = \alpha$ 。

因为 H 真时, $\bar{X} \sim N(0, \frac{1}{n})$, 分布是连续型的, 故

$$P_0(\bar{X} \ge c) = P_0(\bar{X} > c) = \alpha$$
 $\exists L$ $\sqrt{nc} = u_{1-\alpha}$.

因此,水平为 α 的MPT为

$$\phi(x) = \begin{cases} 1, & \text{if } \bar{x} \ge u_{1-\alpha}/\sqrt{n}, \\ 0, & \text{if } \bar{x} < u_{1-\alpha}/\sqrt{n}. \end{cases}$$

例3.2.2 设 $X \sim Poi(\theta)$ 。 求 $H: \theta = 1$ v.s. $K: \theta = 1.5$ 的水平为 α 的MPT。

解:因为

$$r(x) = \frac{p_1(x)}{p_0(x)} = \frac{1.5^x \cdot e^{-1.5}/x!}{1^x \cdot e^{-1}/x!} = 1.5^x \cdot e^{-0.5}$$

关于x 严增,故

$$r(x) > \lambda_0 \iff x > c$$
.

给定 α , 通过求解

$$\begin{cases} P_{\theta=1}(X>c) \le \alpha, \\ P_{\theta=1}(X\ge c) \ge \alpha, \end{cases}$$

可得 c 与 γ 。 比如, $\alpha = 0.05$ 时,

$$\begin{cases} P_1(X > 3) = 0.019 < 0.05, \\ P_1(X \ge 3) = 0.08 > 0.05. \end{cases}$$

因此,水平为0.05的MPT为

$$\phi(x) = \begin{cases} 1, & \text{if } x > 3, \\ \frac{0.05 - 0.019}{0.08 - 0.019}, & \text{if } x = 3, \\ 0, & \text{if } x < 3. \end{cases}$$

注3. N-P引理导出的MPT 符合充分性原则。设T 是充分统计量,则

$$r(x) = \frac{p(x; \theta_1)}{p(x; \theta_0)} = \frac{g_{\theta_1}(T(x)) \cdot h(x)}{g_{\theta_0}(T(x)) \cdot h(x)} = r^*(T(x)),$$

它是T的函数,故N-P引理导出的MPT 检验函数也是T的函数。

另一方面,若 $\phi(x)$ 是任一水平为 α 的检验函数,则 $\Psi(T) = E(\phi(X)|T)$ 也是水平为 α 的检验,且两者的势函数相同,即 $E_{\theta}\Psi(T) = E_{\theta}\phi(X), \forall \theta \in \Theta$ 。

注4. 若 r(X) 的分布是连续型的,则 $P_0(r(X) > \lambda) = P_0(r(X) \ge \lambda)$,MPT 是非随机化的。反之,可能需要考虑随机化检验。

注意,X的分布连续,但r(X)的分布不一定连续。

例3.2.3 X_1, \ldots, X_n i.i.d. $U(0, \theta)$, $\theta > 0$ 。 求 $H: \theta = \theta_0$ v.s. $K: \theta = \theta_1$ 的水平为 α 的MPT,其中 $\theta_1 > \theta_0$ 。

解:

$$r(x) = \frac{\theta_1^{-n} I_{(0 \le x_{(n)} \le \theta_1)}}{\theta_0^{-n} I_{(0 \le x_{(n)} \le \theta_0)}} = \begin{cases} \frac{\left(\frac{\theta_0}{\theta_1}\right)^n}{\theta_0}, & \text{if } x_{(n)} \le \theta_0, \\ \infty, & \text{if } \theta_0 < x_{(n)} \le \theta_1, \\ \hline{ \wedge } \overrightarrow{\sqcap} \overrightarrow{\mid} \overrightarrow{\mid} \overrightarrow{\mid} \overrightarrow{\mid} \overrightarrow{\mid}, & \text{else.} \end{cases}$$

因此,

$$\lambda_0 = \left(\frac{\theta_0}{\theta_1}\right)^n, \qquad \left\{ \begin{array}{l} P_{\theta_0}(r(X) > \lambda_0) = 0, \\ P_{\theta_0}(r(X) \ge \lambda_0) = 1. \end{array} \right.$$

所以水平为 α 的MPT 为

$$\phi(x) = \begin{cases} 1, & \text{if} \quad r(x) > \left(\frac{\theta_0}{\theta_1}\right)^n, \\ \alpha, & \text{if} \quad r(x) = \left(\frac{\theta_0}{\theta_1}\right)^n, \end{cases}$$
$$= \begin{cases} 1, & \text{if} \quad x_{(n)} > \theta_0, \\ \alpha, & \text{if} \quad x_{(n)} \le \theta_0. \end{cases}$$

§3.2.2 单调似然比族

本节将N-P 引理应用于单参数单调似然比分布族,获得一些UMPT。

定义3.2.2 设 $\{p_{\theta}(x): \theta \in \Theta \subset \mathbb{R}\}$ 是一族pdf (关于 ν)。若存在实函数 T(x),对 $\forall \theta_1 < \theta_2, \ \theta_1, \ \theta_2 \in \Theta$,有

- (i) $p_{\theta_1}(\cdot)$ 与 $p_{\theta_2}(\cdot)$ 不同;
- (ii) 似然比 $r(x) = \frac{p_{\theta_2}(x)}{p_{\theta_1}(x)}$ 仅依赖于 θ_1 , θ_2 及 T(x),且关于 T(x) 单调非降。则称该分布族关于 T(x) 具有单调似然比(Monotone Likelihood Ratio, MLR)。

一、单边检验

定理3.2.3 设 $X \sim \mathcal{P} = \{p_{\theta}(x) : \theta \in \Theta \subset \mathbb{R}\}, \mathcal{P}$ 关于 T(x) 具有 MLR。

i) 对于单边假设检验问题

$$H: \theta \le \theta_0 \ v.s. \ K: \theta > \theta_0, \tag{3.2.5}$$

存在一个形如

$$\phi(x) = \begin{cases} 1, & if \quad T(x) > c, \\ \gamma, & if \quad T(x) = c, \\ 0, & if \quad T(x) < c, \end{cases}$$
 (3.2.6)

的水平为 α 的UMPT,其中 γ ,c满足

$$E_{\theta_0}\phi(X) = \alpha. \tag{3.2.7}$$

- ii) 该检验的势函数 $\beta_{\phi}(\theta) = E_{\theta}\phi(X)$ 在 Θ 上单调非降,且在 $\{\theta: 0 < \beta_{\phi}(\theta) < 1\}$ 上严增。
- iii) $\forall \theta' \in \Theta$, i) 中的检验 ϕ 也是 H': $\theta \leq \theta'$ v.s. K': $\theta > \theta'$ 的水平为 $\alpha' = \beta_{\phi}(\theta')$ 的 UMPT。
- iv) 若 $\tilde{\phi}$ 满足 $E_{\theta_0}\tilde{\phi}(X) = \alpha(<1)$,则

$$\beta_{\phi}(\theta) \le \beta_{\tilde{\phi}}(\theta), \quad \forall \theta \le \theta_0, \ \theta \in \Theta.$$

证明. 先证i), ii)。任取 $\theta_1 > \theta_0$,考虑检验 $H': \theta = \theta_0$ v.s. $K': \theta = \theta_1$ 。用类似于N-P 引理的方法证: 对 $\forall \alpha \in (0,1)$,存在形如 (3.2.6) 且满足 (3.2.7) 的检验 $\phi(\cdot)$,它是 H' v.s. K' 的水平为 α 的MPT。

记 $\alpha(\lambda) = P_{\theta_0}(T(X) > \lambda) = 1 - P_{\theta_0}(T(X) \leq \lambda)$,则必存在 $c \in (-\infty, \infty)$, 使得 $\alpha(c-0) \geq \alpha \geq \alpha(c)$ 。取

$$\gamma = \begin{cases} 0, & \text{if } \alpha(c-0) = \alpha(c), \\ \frac{\alpha - \alpha(c)}{\alpha(c-0) - \alpha(c)}, & \text{else.} \end{cases}$$

则由 c, γ 得到的形如 (3.2.6)的 ϕ 必满足 (3.2.7)。

记
$$\left. \frac{p_{\theta_1}(x)}{p_{\theta_0}(x)} \right|_{T(x)=c} = k$$
。 由MLR 知,

$$r(x) < k \Longrightarrow T(x) < c, \qquad r(x) > k \Longrightarrow T(x) > c.$$

故形如 (3.2.6) 的 φ 必满足

$$\phi(x) = \begin{cases} 1, & p_{\theta_1}(x)/p_{\theta_0}(x) > k, \\ 0, & p_{\theta_1}(x)/p_{\theta_0}(x) < k. \end{cases}$$

因此, 由N-P引理知, $\phi(x)$ 是 H' v.s. K' 的水平为 α 的MPT。

又因为 ϕ 与 θ_1 无关,若 ϕ 还是 H v.s. K 的水平为 α 的检验,则即可证明 ϕ 是H v.s. K 的水平为 α 的UMPT。这就转化为证ii)。

- ii) $\forall \theta_1 < \theta_2$,考虑 $H'': \theta = \theta_1$ v.s. $K'': \theta = \theta_2$ 。由i) 的证明可知, ϕ 是 H'' v.s. K'' 的水平为 $\beta_{\phi}(\theta_1)$ 的MPT。由N-P 引理的推论3.2.1 知 $\beta_{\phi}(\theta_1) \leq \beta_{\phi}(\theta_2)$;且若 $0 < \beta_{\phi}(\theta_1) < 1$, P_{θ_1} 与 P_{θ_2} 不同,则 $\beta_{\phi}(\theta_1) < \beta_{\phi}(\theta_2)$ 。
 - iii) 由i),ii) 的证明即得。
- iv) $\forall \theta_1 < \theta_0$, 记 $\tilde{\alpha} = \beta_{\phi}(\theta_1)$ 。 由i), ii) 的证明知, ϕ 是 $\theta = \theta_1$ v.s. $\theta = \theta_0$ 的水平为 $\tilde{\alpha}$ 的MPT。若 $\tilde{\phi}$ 是任一检验,满足

$$\beta_{\tilde{\phi}}(\theta_0) = \beta_{\phi}(\theta_0) \quad \mathcal{R} \quad \beta_{\tilde{\phi}}(\theta_1) < \tilde{\alpha},$$

则 $\tilde{\phi}$ 也是 $\theta = \theta_1$ v.s. $\theta = \theta_0$ 的水平为 $\tilde{\alpha}$ 的MPT。

由于 $\beta_{\phi}(\theta_0) = \alpha < 1$,由定理3.2.2 的iii) 知,应有 $\beta_{\tilde{\phi}}(\theta_1) = \tilde{\alpha}$,这与 $\beta_{\tilde{\phi}}(\theta_1) < \tilde{\alpha}$ 矛盾。因此 iv) 得证。

注1. 对于 $H: \theta = \theta_0$ v.s. $K: \theta > \theta_0$,定理 3.2.3 的结论依然成立。

注2. 对于 $H: \theta \geq \theta_0$ v.s. $K: \theta < \theta_0$,或 $H: \theta = \theta_0$ v.s. $K: \theta < \theta_0$,定理 3.2.3 的结论应相应地修改为:

i)
$$\phi(x) = \begin{cases} 1, & \text{if } T(x) < c, \\ \gamma, & \text{if } T(x) = c, \\ 0, & \text{if } T(x) > c. \end{cases}$$

- ii) $\beta_{\phi}(\theta)$ 在 Θ 上单调非增,在 $\{\theta: 0 < \beta_{\phi}(\theta) < 1\}$ 上严降。
- iii) 若 $\tilde{\phi}$ 满足 $E_{\theta_0}\tilde{\phi}(X) = \alpha(<1)$,则

$$\beta_{\phi}(\theta) \le \beta_{\tilde{\phi}}(\theta), \quad \forall \theta \ge \theta_0, \ \theta \in \Theta.$$

推论3.2.2 设 X 关于控制测度 ν 具有 pdf

$$p_{\theta}(x) = B(\theta) \exp\{Q(\theta)T(x)\}h(x), \quad \theta \in \Theta \subset \mathbb{R}.$$

若 $Q(\theta)$ 在 Θ 上严增,则对给定的 $\alpha \in (0,1)$,检验问题 $H: \theta \leq \theta_0 \ v.s. \ K: \theta > \theta_0$ 存在形如 (3.2.6) 且满足 (3.2.7)的 α -UMPT,该检验也满足定理 3.2.3 的 ii), iii), iv)。

注3.

- a) 若 $Q(\theta)$ 严格单调降,则以 $-Q(\theta)$ 、-T(x) 替代 $Q(\theta)$ 、T(x);
- b) 对于其他的单边检验问题,结论应作相应的修改。
- **例3.2.4** (1) 例3.2.1 中的 ϕ 亦是 $H: \theta \leq \theta_0$ v.s. $K: \theta > \theta_0$ 的 α-UMPT;
 - (2) 例3.2.2 中的 ϕ 亦是 $H: \theta \leq \theta_1$ v.s. $K: \theta > \theta_1$ 的 α -UMPT.
- 例3.2.5 设 X_1, \ldots, X_n i.i.d. $p_{\theta}(x)$, 检验 $H: \theta \leq \theta_0$ v.s. $K: \theta > \theta_0$ 。 水平取 α 。
 - (1) $p_{\theta}(\cdot)$ 为 $N(a, \theta^2)$ 的pdf,其中 a 已知, $\theta > 0$ 是未知参数。

因为 $\{p_{\theta}(x): \theta > 0\}$ 是符合推论3.2.2 的指数族,由推论3.2.2 知 α -UMPT 为

$$\phi(x) = \begin{cases} 1, & \text{if } \sum_{i=1}^{n} (x_i - a)^2 \ge \theta_0 \chi_{1-\alpha}^2(n), \\ 0, & \text{else.} \end{cases}$$

(2) $p_{\theta}(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}} I_{(x>0)}, \ \theta > 0.$

由推论3.2.2 知 α -UMPT 为

$$\phi(x) = \begin{cases} 1, & \text{if } \bar{x} \ge \frac{\theta_0}{2n} \chi_{1-\alpha}^2(2n), \\ 0, & \text{else.} \end{cases}$$

(3) $p_{\theta}(x) = \frac{\theta^x}{x!} e^{-\theta}, \ x = 0, 1, 2, \dots, \ \theta > 0.$

由推论3.2.2 知 α -UMPT 为

$$\phi(x) = \begin{cases} 1, & \text{if } \sum_{i=1}^{n} x_i > c, \\ \gamma, & \text{if } \sum_{i=1}^{n} x_i = c, \\ 0, & \text{if } \sum_{i=1}^{n} x_i < c. \end{cases}$$

其中的c, γ 满足

$$e^{-n\theta_0} \left[\sum_{i=1}^{c-1} (n\theta_0)^i / i! + (1-\gamma)(n\theta_0)^c / c! \right] = 1 - \alpha.$$

例3.2.6 (超几何分布) 设 N 个产品中有 M 个次品,N 已知,M未知,需作推断。为此,不放回地抽 n 个产品检查,记其中的次品数为 X。取水平为 α ,检验 $H: M \leq M_0$ v.s. $K: M > M_0$ 。

显然,X 服从超几何分布,pdf 为

$$p_M(x) = P_M(X = x) = \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}}, \ x = (0 \lor n - (N-M)), \dots, (M \land n).$$

该分布族的支撑依赖于 M,故非指数族。但可证分布族关于 x 具有MLR,因为

$$\frac{P_{M+1}(x)}{P_M(x)} = \dots = \frac{M+1}{N+1} \cdot \frac{N-M-n+x}{M+1-x}$$

关于 x 单调增。由定理 3.2.3,H v.s. K 的水平为 α 的UMPT 为

$$\phi(x) = \begin{cases} 1, & \text{if } x > c, \\ \gamma, & \text{if } x = c, \\ 0, & \text{if } x < c. \end{cases}$$

其中 γ, c 满足

$$E_{M_0}\phi(X) = \sum_{i=c+1}^{\min(M_0,n)} p_{M_0}(i) + \gamma p_{M_0}(c) = \alpha.$$

例3.2.7 样本 X_1, \ldots, X_n i.i.d. $U(0, \theta), \ \theta > 0$ 。 求检验 $H: \ \theta \leq \theta_0$ v.s. $K: \ \theta > \theta_0$ 的 α -UMPT。

对于 $\forall \theta_1 > \theta_0 > 0$, 似然比

$$\frac{p_{\theta_1}(x)}{p_{\theta_0}(x)} = \begin{cases} \left(\frac{\theta_0}{\theta_1}\right)^n, & \text{if } x_{(n)} \le \theta_0, \\ \infty, & \text{else.} \end{cases}$$

关于 $x_{(n)}$ 单调非降。因此分布族关于 $x_{(n)}$ 具有MLR。由定理 3.2.3, α -UMPT 为

$$\phi(x) = \begin{cases} 1, & \text{if } x_{(n)} \ge \theta_0 (1 - \alpha)^{\frac{1}{n}}, \\ 0, & \text{else.} \end{cases}$$

注意与例3.2.3 的结论的比较。本例中的检验是非随机化检验,例3.2.3 中的检验是随机化的,但它们用来检验本例中的问题,势函数相同,因而是等价的。

二、N-P引理的推广

撇开统计意义不谈,则N-P 引理解决的无非是一个条件极值问题,它可以推广到更一般的形式。

定理3.2.4 设 f_i , $i=1,\ldots,m+1$ 是定义在欧氏可测空间 $(\mathcal{X},\mathcal{B}_X)$ 上的实值函数,且关于 σ -有限测度 ν 可积。给定常数 α_1,\ldots,α_m ,记

$$\mathcal{C} = \left\{ \phi \mathcal{L}(\mathcal{X}, \mathcal{B}_X) \perp \text{的检验函数} : \int_{\mathcal{X}} \phi f_i d\nu = \alpha_i, \ i = 1, \dots, m \right\},$$
 $\mathcal{C}_0 = \left\{ \phi \mathcal{L}(\mathcal{X}, \mathcal{B}_X) \perp \text{的检验函数} : \int_{\mathcal{X}} \phi f_i d\nu \leq \alpha_i, \ i = 1, \dots, m \right\}.$

设 $\mathcal{C} \neq \emptyset$ 。

(i) (充分条件) 若存在 $\phi^* \in \mathcal{C}$ 及常数 k_1, \ldots, k_m , 使得

$$\phi^*(x) = \begin{cases} 1, & \not\Xi & f_{m+1}(x) > \sum_{i=1}^m k_i f_i(x), \\ 0, & \not\Xi & f_{m+1}(x) < \sum_{i=1}^m k_i f_i(x). \end{cases}$$
(3.2.8)

 $\mathbb{N} \phi^* = \arg\max_{\phi \in \mathscr{C}} \int_{\mathscr{X}} \phi f_{m+1} d\nu_{\bullet}$

(ii) 若存在 $\phi^* \in \mathcal{C}$ 及 $k_i \ge 0, i = 1, ..., m$,使 ϕ^* 具有形式 (3.2.8),则 $\phi^* = \arg \max_{\phi \in \mathcal{C}_0} \int_{\mathcal{X}} \phi f_{m+1} d\nu$.

(iii) (存在性与必要性) m 维空间点集

$$M = \left\{ \left(\int_{\mathscr{X}} \phi f_1 d\nu, \dots, \int_{\mathscr{X}} \phi f_m d\nu \right) : \phi \mathcal{L}(\mathscr{X}, \mathscr{B}_X)$$
上的检验函数 $\right\}$

是凸的闭集。若 $(\alpha_1, \ldots, \alpha_m)$ 是 M 的内点,则存在 k_1, \ldots, k_m 及 $\phi \in \mathscr{C}$ 满足 (3.2.8); 而且 \mathscr{C} 中最大化 $\int_{\mathscr{X}} \phi f_{m+1} d\nu$ 的 ϕ^* 必具有形式 (3.2.8) a.e. ν 。

(i), (ii) 的证明类似于定理 3.2.2。(iii) 的证明较复杂, 见Lehmann (1986, TSH, 97-99)。

根据定理 3.2.4,可以构造 $H:\theta\in\{\theta_1,\cdots,\theta_m\}$ v.s. $K:\theta=\theta_{m+1}$ 的MPT, 关键是找到 $k_i\geq 0, i=1,\cdots,m$ 。进而可以用于构造下面定理所述的双边检验的UMPT。

定理3.2.5 设 X 关于控制测度 ν 具有单参数指数型的 pdf,即

$$p_{\theta}(x) = B(\theta) \exp\{Q(\theta)T(x)\}h(x), \quad \theta \in \Theta \subset \mathbb{R},$$

其中 $Q(\theta)$ 严增。则对

$$H: \theta \leq \theta_1 \text{ or } \theta \geq \theta_2 \quad v.s. \quad K: \theta \in (\theta_1, \theta_2)$$

及水平 $\alpha \in (0,1)$,

(i) 存在形如

$$\phi(x) = \begin{cases} 1, & when \quad c_1 < T(x) < c_2, \\ \gamma_i, & when \quad T(x) = c_i, \ i = 1, 2, \\ 0, & otherwise. \end{cases}$$
(3.2.9)

的一个水平为 α 的UMPT,其中 c_1 , c_2 , γ_1 , γ_2 满足

$$E_{\theta_i}\phi(X) = \alpha, \ i = 1, 2.$$
 (3.2.10)

- (ii) 对于任意满足 (3.2.10) 的检验函数 $\tilde{\phi}$, 有势函数 $\beta_{\phi}(\theta) \leq \beta_{\tilde{\phi}}(\theta)$, $\forall \theta \leq \theta_1$ 或 $\theta > \theta_2$ 。
- (iii) $\exists \theta_0 \in (\theta_1, \theta_2)$, ϕ 在 θ_0 处势最大, 当 θ 偏离 θ_0 时, 势函数 $\beta_{\phi}(\theta)$ 减小。除非存在 t_1, t_2 , 使得 $P_{\theta}(T(x) = t_1) + P_{\theta}(T(x) = t_2) = 1, \forall \theta$ 。

§3.2.3 无偏检验(Unbiased Test)

UMPT 不常有,所以通常需要考虑在满足一定限制条件的检验中寻找UMPT。无偏性是一种恰当的限制。

一、无偏性

定义3.2.3 对于检验问题 $H: \theta \in \Theta_H$ v.s. $K: \theta \in \Theta_K$,及显著性水平 $\alpha \in [0,1]$,若检验 ϕ 的势函数 $\beta_{\phi}(\theta)$ 满足

$$\begin{cases} \beta_{\phi}(\theta) \leq \alpha, & \forall \theta \in \Theta_H, \\ \beta_{\phi}(\theta) \geq \alpha, & \forall \theta \in \Theta_K, \end{cases}$$

则称 ϕ 是水平为 α 的无偏检验(UT)。若 ϕ^* 是所有UT 中的UMPT,则称 ϕ^* 是一致最优势无偏检验(UMPUT)。

注:

- 1) 无偏性的直观含义:正确拒绝原假设的概率总不小于错误拒绝原假设的概率。
 - 2) 在某种损失下,该无偏性可与风险无偏的概念联系起来。

例: 设 $X \sim N(\theta, 1)$, 检验 $H: \theta = 0$ v.s. $K: \theta \neq 0$ 。

显然, $\phi_1(x) = I_{(x>u_{1-\alpha})}$ 是一个水平为 α 的检验。它在 $\{\theta: \theta > 0\}$ 上势一致最优,但对于 $\theta < 0$, $\beta_{\phi_1}(\theta) < \alpha$ 。

同样, $\phi_2(x) = I_{(x < u_\alpha)}$ 也是一个水平为 α 的检验。它在 $\{\theta : \theta < 0\}$ 上势一致最优,但对于 $\theta > 0$, $\beta_{\phi_2}(\theta) < \alpha$ 。因此,该检验问题不存在UMPT。

再看检验 $\phi(x) = I_{(|x|>u_{1-\alpha/2})}$ 。 容易验证,它是一个水平为 α 的无偏检验。虽然在 $\{\theta: \theta>0\}$ 上它的势不如 $\phi_1(x)$,在 $\{\theta: \theta<0\}$ 上势不如 $\phi_2(x)$,但是它同时照顾了 $\{\theta: \theta>0\}$ 与 $\{\theta: \theta<0\}$ 处的势。而且,还可以验证,它是UMPUT。

- 3) 若 ϕ 是UMPT,则 ϕ 必是无偏检验,而且必是UMPUT。
- 4) 很多问题中, UMPUT存在, 但UMPT 不存在。例如: 双边检验、多参数情况下的单个参数的单边、双边检验等。

若 ϕ 是水平为 α 的UT, 势函数 $\beta_{\phi}(\theta)$ 是 θ 的连续函数, 且 Θ_H 与 Θ_K 的公共边界 ω 非空,则必有 $\beta_{\phi}(\theta) = \alpha$, $\forall \theta \in \omega$ 。一般将 ω 包含在 Θ_H 中。

定义3.2.4 若检验 ϕ 的势函数 $\beta_{\phi}(\theta)$ 在 $\theta \in \omega \subset \Theta$ 上保持不变,则称 ϕ 在 ω 上是相似的。若 ω 是 Θ_H 与 Θ_K 的公共边界,则称 ϕ 是边界相似的(Similar on the boundary)。

引理3.2.1 设 $\{P_{\theta}, \theta \in \Theta\}$ 使任一检验的势函数连续, ω 是 Θ_H 与 Θ_K 的公共边界。若 ϕ_0 是 $\{\phi: \beta_{\phi}(\theta) = \alpha, \forall \theta \in \omega\}$ 中的 UMPT,且它是水平为 α 的检验,则 ϕ_0 是 UMPUT。

二、单参数指数族的UMPUT

对于单参数指数族

$$p_{\theta}(x) = B(\theta) \exp\{\theta T(x)\} h(x), \ \theta \in \Theta \subset \mathbb{R},$$

双边检验问题

- (a) $H: \theta \in [\theta_1, \theta_2]$ v.s. $K: \theta \in [\theta_1, \theta_2]$,
- (b) $H: \theta = \theta_0$ v.s. $K: \theta \neq \theta_0$

都不存在UMPT,但都有UMPUT。

定理3.2.6 若检验φ 满足

$$\beta_{\phi}(\theta_i) = \alpha, \ i = 1, 2, \tag{3.2.11}$$

且具有形式

$$\phi(x) = \begin{cases} 1, & when \quad T(x) < c_1 \text{ or } T(x) > c_2 \ (c_1 < c_2), \\ r_i, & when \quad T(x) = c_i, i = 1, 2, \\ 0, & when \quad c_1 < T(x) < c_2, \end{cases}$$

$$(3.2.12)$$

则 ϕ 是问题(a) 的水平为 α (\in (0.1)) 的UMPUT。

证明思路: 1° 任取 $\theta_3 \in [\theta_1, \theta_2]$,考虑 $H': \theta \in \{\theta_1, \theta_2\}$ v.s. $K': \theta = \theta_3$ 。

由定理 3.2.4知,若存在常数 k_1, k_2 (可能依赖于 θ_3),使

$$\phi(x) = \begin{cases} 1, & \text{when } p_{\theta_3}(x) > k_1 p_{\theta_1}(x) + k_2 p_{\theta_2}(x), \\ 0, & \text{when } p_{\theta_3}(x) < k_1 p_{\theta_1}(x) + k_2 p_{\theta_2}(x). \end{cases}$$
(3.2.13)

且 ϕ 满足 (3.2.11),则在满足 (3.2.11) 的 H' v.s. K' 的检验中, ϕ 是MPT。

由 θ_3 的任意性及 ϕ 与 θ_3 无关知, ϕ 是 H' v.s. K 的边界相似检验中的UMPT。

 2° 若再证得 ϕ 是 H v.s. K 的水平为 α 的检验,则 ϕ 是 H v.s. K 的水平为 α 的UT。(why?)

 3° 对于指数族,任意检验函数的势函数都连续,因此,任意UT 必边界相似,于是证得 ϕ 是 H v.s. K 的水平为 α 的UMPUT。

证明. 1. 往证满足 (3.2.12)的检验具有形式 (3.2.13)。

对于 $\forall \theta_3 \in [\theta_1, \theta_2]$ (不妨先设 $\theta_3 > \theta_2$),考虑 k_1, k_2 的方程组

$$\begin{cases} B(\theta_3)e^{\theta_3c_1} = k_1B(\theta_1)e^{\theta_1c_1} + k_2B(\theta_2)e^{\theta_2c_1}, \\ B(\theta_3)e^{\theta_3c_2} = k_1B(\theta_1)e^{\theta_1c_2} + k_2B(\theta_2)e^{\theta_2c_2}. \end{cases}$$

系数行列式为

$$\begin{vmatrix} B(\theta_1)e^{\theta_1c_1} & B(\theta_2)e^{\theta_2c_1} \\ B(\theta_1)e^{\theta_1c_2} & B(\theta_2)e^{\theta_2c_2} \end{vmatrix} = B(\theta_1)B(\theta_2)[e^{\theta_1c_1+\theta_2c_2} - e^{\theta_1c_2+\theta_2c_1}].$$

因为 $(\theta_1c_1 + \theta_2c_2) - (\theta_1c_2 + \theta_2c_1) = (\theta_2 - \theta_1)(c_2 - c_1) > 0$,所以 k_1, k_2 有唯一解,对于 $\forall \theta_3$ 。

记

$$H(t) = B(\theta_3)e^{(\theta_3 - \theta_2)t} - k_1B(\theta_1)e^{(\theta_1 - \theta_2)t} - k_2B(\theta_2),$$

则 H(t) 关于 t 严凸, 且 $H(c_1) = H(c_2) = 0$ 。 所以,

$$H(t) < 0$$
, when $c_1 < t < c_2$;
 $H(t) > 0$, when $t > c_2$ or $t < c_1$.

故 φ 满足 (3.2.13)。

又易证: $k_1 < 0$, $k_2 > 0$ (不全为正)。故由定理 3.2.4知, ϕ 只是满足 (3.2.11)的检验中最优的一个。

因为 c_1, c_2, r_1, r_2 与 θ_3 无关,故 ϕ 是H' v.s. K 的边界相似检验中的UMPT。

2. 再证 $\beta_{\phi}(\theta) \leq \alpha$, $\forall \theta \in [\theta_1, \theta_2]$ 。

任取 $\theta_3 \in [\theta_1, \theta_2]$,考虑 $H'': \theta \in \{\theta_1, \theta_2\}$ v.s. $K'': \theta = \theta_3$ 。

取

$$\phi^*(x) = 1 - \phi(x) = \begin{cases} 1, & \text{when } c_1 < T(x) < c_2, \\ \gamma_i^*, & \text{when } T(x) = c_i, i = 1, 2, \\ 0, & \text{when } T(x) < c_1 \text{ or } T(x) > c_2, \end{cases}$$

再由1.中的方法可证, $\phi^*(x)$ 也具有 (3.2.13) 的形式,故 ϕ^* 是 H'' v.s. K'' 的水平为 $1-\alpha$ 的MPT。且有 $E_{\theta_i}\phi^*=E_{\theta_i}(1-\phi)=1-\alpha, i=1,2; E_{\theta_3}\phi^*\geq 1-\alpha\Rightarrow E_{\theta_3}\phi\leq\alpha$ 。

因此, ϕ 是H v.s. K 的水平为 α 的无偏检验。

由指数族的性质知,任一检验 $\tilde{\phi}$, $\beta_{\tilde{\phi}}(\theta)$ 关于 θ 连续。因此由引理 3.2.1知, ϕ 是 α -UMPUT。

定理3.2.7 若检验φ满足

$$E_{\theta_0}\phi(X) = \alpha, \tag{3.2.14}$$

$$E_{\theta_0}[T(X)\phi(X)] = \alpha E_{\theta_0}T(X),$$
 (3.2.15)

且具有形式 (3.2.12), 则 ϕ 是问题 (b) 的水平为 α 的 UMPUT。

证明. 1°往证:任一UT φ 必满足 (3.2.14), (3.2.15)。

由指数族性质知, $\forall \theta$, $\beta_{\phi}(\theta)$ 必关于 θ 可微。若 ϕ 是(b) 的水平为 α 的UT,则

- (a) 由UT 的定义即知, ϕ 满足 (3.2.14)。
- (b) θ_0 是 $\beta_{\phi}(\theta)$ 的极小值点。故

$$\left. \frac{d}{d\theta} \beta_{\phi}(\theta) \right|_{\theta = \theta_0} = 0. \tag{3.2.16}$$

而

$$\frac{d}{d\theta}\beta_{\phi}(\theta) = \int_{\mathcal{X}} \frac{d}{d\theta} \left[\phi(x)B(\theta)e^{\theta T(x)} \cdot h(x) \right] d\nu(x)$$

$$= \frac{B'(\theta)}{B(\theta)} E_{\theta}\phi(X) + E_{\theta}[T(X)\phi(X)],$$
又
$$E_{\theta}T(X) = -\frac{B'(\theta)}{B(\theta)}, (取 \phi \equiv \alpha 即可得).$$
∴
$$\frac{d}{d\theta}\beta_{\phi}(\theta) = E_{\theta}[T(X)\phi(X)] - E_{\theta}T(X)E_{\theta}\phi(X).$$

由 (3.2.16)及 (3.2.14)即得 (3.2.15)。

 2° 任取 $\theta_1 \neq \theta_0$,考虑H': $\theta = \theta_0$ v.s. K': $\theta = \theta_1$ 。 取

$$f_1(x) = B(\theta_0)e^{\theta_0 T(x)}h(x), \quad \alpha_1 = \alpha,$$

$$f_2(x) = B(\theta_0)e^{\theta_0 T(x)}T(x)h(x), \quad \alpha_2 = \alpha E_{\theta_0}T(X),$$

$$f_3(x) = B(\theta_1)e^{\theta_1 T(x)}h(x).$$

由定理 3.2.4知, 若∃*ϕ** 满足

- (a) $\phi^* \in \mathscr{C} = \{ \phi$ 是检验函数: $\int_{\mathscr{X}} \phi(x) f_i(x) d\nu(x) = \alpha_i, i = 1, 2 \};$
- (b) $\exists k_1, k_2$, 使 ϕ^* 具有形式:

$$\phi^*(x) = \begin{cases} 1, & \text{when} \quad f_3(x) > k_1 f_1(x) + k_2 f_2(x), \\ 0, & \text{when} \quad f_3(x) < k_1 f_1(x) + k_2 f_2(x). \end{cases}$$
(3.2.17)

则 ϕ^* 最大化 $\int_{\mathscr{X}} \phi(x) f_3(x) d\nu(x), \forall \phi \in \mathscr{C}$ 。

再证: (3.2.12)中的 ϕ 满足 (3.2.17)。 考虑方程组

$$\begin{cases} B(\theta_1)e^{\theta_1c_1} = B(\theta_0)e^{\theta_0c_1}(k_1 + c_1k_2), \\ B(\theta_1)e^{\theta_1c_2} = B(\theta_0)e^{\theta_0c_2}(k_1 + c_2k_2). \end{cases}$$

系数行列式 $\propto \begin{vmatrix} 1 & c_1 \\ 1 & c_2 \end{vmatrix} = c_2 - c_1 > 0$,故 k_1, k_2 有唯一解。记

$$H(t) = \frac{B(\theta_1)}{B(\theta_0)} e^{(\theta_1 - \theta_0)t},$$

当 $t=c_i$, i=1,2 时, $H(t)=k_1+k_2t$,又 $e^{(\theta_1-\theta_0)t}$ 严凸,所以

当 $t \in [c_1, c_2]$ 时, $H(t) > k_1 + k_2 t$.

因此,(3.2.12)中的 ϕ 满足(3.2.17)。

注:

1. 定理 3.2.7中,若在 $\theta = \theta_0$ 处,T 的分布关于 δ_0 对称,则UMPUT 为

$$\phi(x) = \begin{cases} 1, & \text{when} \quad |T(x) - \delta_0| > c, \\ \gamma, & \text{when} \quad |T(x) - \delta_0| = c, \\ 0, & \text{when} \quad |T(x) - \delta_0| < c. \end{cases}$$

其中 (c,γ) 由 $E_{\theta_0}\phi(X) = \alpha$ 决定。

这里,只需验证 $E_{\theta_0}[\phi(X)T(X)]) = \alpha E_{\theta_0}T(X)$ 。(因为 $E_{\theta_0}[(T(X)-\delta_0)\phi(X)] = 0$)。)

- 2. 定理 3.2.6, 3.2.7中, 若 $\theta \to Q(\theta)$, $Q(\theta)$ 可微, 严增, 则结论依然成立。
- 3. $\forall \alpha \in (0,1)$,满足 (3.2.11), (3.2.12)或者 (3.2.12), (3.2.14), (3.2.15) 的 ϕ 是否存在? (必存在,由定理 3.2.4(iii)可证。)

也可以说明:满足 (3.2.11)形为 (3.2.12)的 ϕ 中的 c_i , γ_i , i=1,2有解;满足 (3.2.14)、(3.2.15) 形为 (3.2.12)的 ϕ 中的 c_i , γ_i , i=1,2 有解。

例3.2.8 1. $X_i \stackrel{iid}{\sim} N(\theta, \sigma^2)$, σ^2 已知,检验(a),(b)。 $T(x) = \sum_{i=1}^n x_i$ 。

(a)
$$\phi(x) = \begin{cases} 1, & \sum_{i=1}^{n} x_i \le c_1 \text{ 或 } \sum_{i=1}^{n} x_i \ge c_2, \\ 0, & \text{其他.} \end{cases}$$
 其中 c_1, c_2 满足:

$$\begin{cases}
\Phi\left(\frac{c_2 - n\theta_1}{\sqrt{n}\sigma}\right) - \Phi\left(\frac{c_1 - n\theta_1}{\sqrt{n}\sigma}\right) = 1 - \alpha, \\
\Phi\left(\frac{c_2 - n\theta_2}{\sqrt{n}\sigma}\right) - \Phi\left(\frac{c_1 - n\theta_2}{\sqrt{n}\sigma}\right) = 1 - \alpha.
\end{cases}$$

(b)
$$\phi(x) = I_{(\sqrt{n}|\bar{x} - \theta_0| \ge \sigma \cdot u_{1-\alpha/2})^{\circ}}$$

- 2. $X_i \stackrel{iid}{\sim} N(a, \theta^2)$, a 已知, 检验(a),(b)。
- 3. $X_i \stackrel{iid}{\sim} \frac{1}{\theta} e^{-\frac{x}{\theta}} I_{(x>0)}, B(1,\theta), Poisson(\theta)$,检验(a),(b)。

§3.2.4 多参数指数族的UMPUT

很多场合,待检验的假设是针对单个参数的,但随机观测的分布却还依赖于其他一些讨厌参数(nuisance parameters)。此时即使对最简单的假设检验问题也很难找到UMPT或者UMPUT。对于指数族,这类检验问题的UMPUT 往往还是存在的,而且仍然可以从相似检验中找到。

设 X 的模型为($\mathcal{X}, \mathcal{B}_X, \mathcal{P} = \{P_{\lambda} : \lambda = (\theta, \varphi), \theta \in \Theta \subset \mathbb{R}, \varphi \in M\}$)。 考虑如下一些有关参数 θ 的假设检验问题:

 $\begin{array}{lll} H_1: \theta = \theta_0 & \text{v.s.} & K_1: \theta = \theta_1 \\ H_2: \theta \leq \theta_0 & \text{v.s.} & K_2: \theta > \theta_0 \\ H_3: \theta \geq \theta_0 & \text{v.s.} & K_3: \theta < \theta_0 \\ H_4: \theta = \theta_0 & \text{v.s.} & K_4: \theta \neq \theta_1 \\ H_5: \theta \in [\theta_0, \theta_1] & \text{v.s.} & K_5: \theta \notin [\theta_0, \theta_1] \end{array}$

此时 φ 就是讨厌参数。一般情况下,即使对最简单的假设检验问题 H_1 v.s. K_1 ,也很难找到UMPT或者UMPUT。

若存在统计量 T = T(X),它对于每一个 $\theta \in \Theta$ 形成的分布子族

$$\mathscr{P}_{\theta} = \{ P_{\lambda} : \lambda = (\theta, \varphi), \varphi \in M \}$$

都是充分统计量,那么给定 T=t 的条件下,对于每一个 \mathcal{P}_{θ} 而言,X 的条件分布都与讨厌参数 φ 无关,X|T=t 的条件分布只依赖于参数 θ 。因此可以设想根据 X|T=t 的条件分布族 $\{Q_t(x;\theta):\theta\in\Theta\}$ 去构造检验,寻找上述问题的UMP 相似检验。

记 $\omega_j = \{(\theta_j, \varphi) : \varphi \in \mathcal{M}\}, j = 0, 1$ 。 对于 $H_1 : \theta = \theta_0$ v.s. $K_1 : \theta = \theta_1$,先在给定 T = t 条件下考虑

$$\tilde{H}_1: X|T = t \sim Q_t(x; \theta_0)$$
 v.s. $\tilde{K}_1: X|T = t \sim Q_t(x; \theta_1)$.

因为 \tilde{H}_1 与 \tilde{K}_1 都是简单假设,故由Neyman-Pearson 引理易得水平为 α 的MPT $\phi^*(x;t)$,它在所有满足

$$\int_{\mathscr{X}} \phi(x) dQ_t(x; \theta_0) = E_{\lambda}[\phi(X)|T = t] \le \alpha, \quad \forall \lambda \in \omega_0$$
 (3.2.18)

的检验函数 $\phi(x)$ 中使得下式

$$\int_{\mathcal{X}} \phi(x) dQ_t(x; \theta_1) = E_{\lambda}[\phi(X)|T = t], \quad \forall \lambda \in \omega_1$$

一致达到最大的一个。如果对每一个 t 都存在这样的 $\phi^*(x;t)$,那么 $\phi^*(x;T(x))$ 是否可能是 H_1 v.s. K_1 的水平为 α 的UMPT 呢?

虽然

$$E_{\lambda}[\phi^*(X;T(X))] = E_{\lambda}[E_{\lambda}(\phi^*(X;T(X))|T)] \le \alpha, \quad \forall \lambda \in \omega_0,$$

但是, 若检验函数 $\phi(x)$ 满足

$$E_{\lambda}[\phi(X)] \le \alpha, \quad \forall \lambda \in \omega_0$$
 (3.2.19)

那么是否一定有

$$E_{\lambda}[\phi(X)] \le E_{\lambda}[\phi^*(X;T(X))], \quad \forall \lambda \in \omega_1?$$
 (3.2.20)

这不一定! 只有当满足 (3.2.19) 的 $\phi(x)$ 必满足 (3.2.18) 时,才有 (3.2.20)。这个条件很难保证,所以才产生了Neyman结构的思路。当 T 对于 \mathcal{P}_{θ_0} 充分且有界完备时,任意满足

$$E_{\lambda}[\phi(X)] = \alpha, \quad \forall \lambda \in \omega_0$$

的检验函数 $\phi(x)$ 必满足

$$E_{\lambda}[\phi(X)|T=t] = \alpha \quad \text{a.s.} P_{\lambda}^{T}, \ \forall \lambda \in \omega_{0}.$$

那么, ϕ^* 必定是所有 ω_0 相似检验中的UMPT。

定义3.2.5 设T 是 $\{P_{\lambda}: \lambda \in \omega\}$ 的充分统计量,若检验 ϕ 满足

$$E_{\lambda}(\phi(X)|T=t) = \alpha \text{ a.e. } P_{\lambda}, \ \lambda \in \omega,$$

则称 ϕ 关于 (T,ω) 具有Neyman结构(条件相似)。

定理3.2.8 (1) ϕ 关于 (T,ω) 具有Neyman 结构,则 ϕ 关于 ω 相似。

(2) T 关于{ P_{λ} : $\lambda \in \omega$ } 是充分的,则所有在 ω 上相似的检验具有Neyman 结构的充要条件是T 有界完备。

证明. (1) 显然。

(2) 证充分性。设 $\phi(x)$ 关于 ω 相似,即

$$E_{\lambda}\phi(X) = \alpha, \quad \forall \lambda \in \omega.$$

则

$$E_{\lambda}\{E_{\lambda}[\phi(X)|T] - \alpha\} = 0, \quad \forall \lambda \in \omega.$$

$$\psi(t) = \alpha \quad a.s. \quad P_{\lambda}^T, \ \forall \lambda \in \omega.$$

即

$$E_{\lambda}[\phi(X)|T=t]=\alpha, \quad a.s. \quad P_{\lambda}, \ \forall \lambda \in \omega.$$

故 ϕ 关于 (T,ω) 具有Neyman结构。

必要性的证明留作练习。

什么样的分布族 $\mathscr{P} = \{P_{\lambda} : \lambda = (\theta, \varphi), \theta \in \Theta \subset \mathbb{R}, \varphi \in M\}$) 同时满足前面谈到的下列条件呢?

- 1) 存在统计量 T,它对于每一个子族 \mathcal{P}_{θ} 都充分;
- 2) T 对于边界子族 \mathcal{P}_{θ_0} 有界完备;
- 3) 任意检验函数 $\phi(x)$ 其势函数 $\beta_{\phi}(\lambda)$ 都连续,即 $\{\phi: \phi \text{ \mathcal{E}UT}\} \subset \{\phi: \phi \text{ \mathcal{E}} \partial \mathcal{E} \mathcal{E} \partial \mathcal{E} \mathcal{E} \partial \mathcal{E} \partial \mathcal{E} \mathcal{E} \partial \mathcal{E} \math$

指数族满足这些条件。

设 \mathscr{P} 关于 σ -有限测度 ν 可控,

$$p_{\lambda}(x) = dP_{\lambda}(x)/d\nu(x) = A(\theta, \varphi) \exp\{\theta \cdot U(x) + \varphi^{\tau} \cdot T(x)\}, \tag{3.2.21}$$

其中 θ 是一维的目标参数, φ 是k 维的讨厌参数, $k \geq 1$, $\lambda = (\theta, \varphi^{\tau}) \in \Lambda \subset \mathbb{R}^{k+1}$, Λ 有内点。

考虑下列检验问题

 $\begin{array}{lll} H_1: \; \theta \leq \theta_0 & \text{v.s.} & K_1: \; \theta > \theta_0 \\ H_2: \; \theta \bar{\in} (\theta_1, \theta_2) & \text{v.s.} & K_2: \; \theta \in (\theta_1, \theta_2) \\ H_3: \; \theta \in [\theta_1, \theta_2] & \text{v.s.} & K_3: \; \theta \bar{\in} [\theta_1, \theta_2] \\ H_4: \; \theta = \theta_0 & \text{v.s.} & K_4: \; \theta \neq \theta_0 \end{array}$

该指数族的性质:

1. (U,T) 是充分完备统计量, ipdf (关于 μ) 为

$$p_{\lambda}(u,t) = A(\theta,\varphi) \cdot \exp\{\theta \cdot u + \varphi^{\tau} \cdot t\}.$$

2. U|T=t 的条件分布与 φ 无关,条件pdf (关于 $\mu_t(u)$) 为

$$p_{\theta}^{U|T}(u) = A_t(\theta) \cdot \exp\{\theta \cdot u\}.$$

3. 对于任意给定的 θ' , T 是 $\{p_{\lambda}(\cdot): \lambda = (\theta', \varphi^{\tau}) \in \Lambda\}$ 的充分完备统计量。

上述四个检验问题的在边界

$$\omega_j = \{\lambda = (\theta_j, \varphi^{\tau}) : \lambda \in \Lambda\}, j = 0, 1, 2$$

上相似的检验,均关于 (T,ω_j) 具有Neyman 结构。故只须在固定T=t 时,构造出条件相似的最优检验,即可获得最优相似检验。再由 $\beta_{\phi}(\lambda)$ 的连续性可知,所得的最优相似检验也即UMPUT。

定理3.2.9 设X 具有指数型分布族 (3.2.21),参数空间 $\Lambda \in \mathbb{R}^{k+1}$,其内点集 Λ_0 非空。检验问题 H_i v.s. K_i , $i=1,\ldots,4$ 中的 θ_j ,j=0,1,2 均满足: \mathbb{R}^{k+1} 中的超平面 $\theta=\theta_j$ 与 Λ_0 有非空交集。则下列各个检验 ϕ_i , $i=1,\ldots,4$ 分别是 H_i v.s. K_i 的水平为 α 的 UMPUT:

$$1^{\circ} \phi_1(u,t) = \begin{cases}
1, & u > c(t) \\
\gamma(t), & u = c(t) \\
0, & u < c(t)
\end{cases}$$

其中c(t), $\gamma(t)$ 满足 $E_{\theta_0}[\phi_1(U,T)|T=t]=\alpha$.

$$\mathscr{Z}$$
 $\phi_2(u,t) = \begin{cases} 1, & c_1(t) < u < c_2(t) \\ \gamma_i(t), & u = c_i(t), i = 1, 2 \\ 0, & 其他 \end{cases}$

其中 $c_i(t), \gamma_i(t), i = 1, 2$ 满足 $E_{\theta_i}[\phi_2(U, T)|T = t] = \alpha, i = 1, 2$ 。

$$\mathcal{S}$$
 $\phi_3(u,t) = \begin{cases} 1, & u > c_2(t) \ 3u < c_1(t) \\ \gamma_i(t), & u = c_i(t), \ i = 1, 2 \\ 0, & 其他 \end{cases}$

其中 $c_i(t), \gamma_i(t), i = 1, 2$ 满足 $E_{\theta_i}[\phi_3(U, T)|T = t] = \alpha, i = 1, 2$ 。

 4° $\phi_4(u,t)$ 与 ϕ_3 形式相同, 其中 $c_i(t), \gamma_i(t), i=1,2$ 满足

$$\begin{cases} E_{\theta_0}[\phi_4(U,T)|T=t] = \alpha, \\ E_{\theta_0}[U \cdot \phi_4(U,T)|T=t] = \alpha E_{\theta_0}[U|T=t]. \end{cases}$$

证明思路:

30

• $E_{\lambda}\phi(U,T) = E_{\lambda}\{E_{\theta}[\phi(U,T)|T=t]\}$ 。 在T=t 时, $\phi(u,t)$ 是条件相似检验中的 α -UMPT。

- $\beta_{\phi}(\lambda)$ 的连续性、 θ 取定时T 的充分完备性可知: UT 必具有Neyman 结构。
- $\phi_i, i = 1, ..., 4$ 可测。

例3.2.9 $X \sim P(\lambda), Y \sim P(\mu), X, Y$ 独立, 比较 λ, μ 的大小

解: jpdf 为

$$\begin{split} P(X=x,Y=y) &= \frac{e^{-(\lambda+\mu)}}{x!y!} \exp\{x\ln\lambda + y\ln\mu\} \\ &= \frac{e^{-(\lambda+\mu)}}{x!y!} \exp\{x\cdot\ln\frac{\lambda}{\mu} + (x+y)\ln\mu\}. \end{split}$$

 $记 \theta = \ln \frac{\lambda}{\mu}, \ \varphi = \ln \mu, \ U(x,y) = x, \ T(x,y) = x + y.$ 对于 H_i : v.s. K_i , $i = 1, \cdots, 4$,由条件分布U|T = t来求UMPUT。

$$\begin{split} P(U=u|T=t) &= \frac{P(U=u,T=t)}{P(T=t)} = \frac{P(U=u,Y=t-u)}{P(X+Y=t)} \\ &= \frac{\frac{e^{-(\lambda+\mu)}}{u!(t-u)!} \exp\{u\cdot\theta+t\cdot\varphi\}}{\frac{e^{-(\lambda+\mu)}}{t!} \exp\{t\cdot\ln(\mu+\lambda)\}} \\ &= \binom{t}{u} \exp\left\{u\cdot\ln\frac{\lambda}{\mu}+t\cdot\ln\frac{\mu}{\lambda+\mu}\right\}, \end{split}$$

因此, $U|T=t\sim B\left(t,\frac{\lambda}{\lambda+\mu}\right)$ 。 再由定理 3.2.9可得到具体的 ϕ_i 。

例3.2.10 $X \sim B(m, p_1)$, $Y \sim B(n, p_2)$, X, Y 独立,比较 p_1, p_2 。 $记q_i = 1 - p_i, i = 1, 2$ 。

解: jpdf 为

$$P(X=x,Y=y) = \binom{m}{x} \binom{n}{y} \cdot q_1^m q_2^n \exp\left\{x \cdot \ln\left(\frac{p_1}{q_1} / \frac{p_2}{q_2}\right) + (x+y) \ln\frac{p_2}{q_2}\right\}.$$

记 $\theta = \ln\left(\frac{p_1}{q_1}\Big/\frac{p_2}{q_2}\right),\ U(x,y) = x,\ \varphi = \ln\frac{p_2}{q_2},\ T(x,y) = x+y$ 。 因为 θ 关于 p_1/p_2 严增,故比较 p_1,p_2 可转化为检验 H_i v.s. K_i 。

当 $p_1 = p_2$ 时, U|T = t 的条件分布为

$$P(U = u | T = t) = \dots = \frac{\binom{m}{u} \binom{n}{t-u}}{\binom{m+n}{t}}, \quad u = \max(0, t-n), 1, \dots, \min(t, u),$$

即U|T=t 服从超几何分布。但当 $p_1\neq p_2$ 时,U|T=t 的条件分布复杂。

对于正态分布等一些连续型的指数族,直接用定理 3.2.9 求UMPUT 并不方便。若能找到V = h(U,T) 满足:

- 1. 在 $\theta = \theta_0, \theta_1, \theta_2$ 处, V 与T 独立;
- 2. V 在T = t 时,关于U 单调。

则求UMPUT 只须涉及V 的分布,较为方便。

定理3.2.10 对于定理 3.2.9中的分布族, 若存在V = h(U,T) 满足

1. 在 $\theta = \theta_0$ 处, V,T 独立, 且对给定的t, V 关于U 严增, 则 H_1 v.s. K_1 的 UMPUT存在,为

$$\phi_1(V) = \begin{cases} 1, & when \quad V > c, \\ \delta, & when \quad V = c, \\ 0, & when \quad V < c. \end{cases}$$

其中 c,δ 不依赖于t, 由 $E_{\theta_0}\phi_1(V)=\alpha$ 决定。

2. 在 $\theta = \theta_1, \theta_2$ 处, V, T 独立, 且对给定的t, V 关于U 严增, 则 H_2 v.s. K_2 的 UMPUT存在, 为

$$\phi_2(V) = \begin{cases} 1, & when \quad c_1 < V < c_2, \\ \delta_i, & when \quad V = c_i, \ i = 1, 2, \\ 0, & otherwise. \end{cases}$$

其中 c_i, δ_i 不依赖于t,由 $E_{\theta_i} \phi_2(V) = \alpha, \ i = 1, 2$ 决定。

对于 H_3 v.s. K_3 , UMPUT 为 $\phi_3(V) = 1 - \phi_2(V)$, 其中 c_i , δ_i 由 $E_{\theta_i}\phi_3(V) = \alpha$, i = 1, 2 决定。

3. 在 $\theta = \theta_0$ 处,V,T 独立,且V 是U 的线性函数,i.e. $V = a(t)U + b(t), a(t) > 0, \forall t, 则<math>H_4$ v.s. K_4 的UMPUT ϕ_4 形如 ϕ_3 ,其中 c_i, δ_i 由

$$\begin{cases} E_{\theta_0} \phi_4(V) = \alpha, \\ E_{\theta_0}(V \phi_4(V)) = \alpha E_{\theta_0} V, \end{cases}$$

决定。

例3.2.11 X_i , $i=1,\ldots n$ i.i.d. $N(\mu,\sigma^2)$, μ 为讨厌参数,欲检验 $H: \sigma^2 \leq \sigma_0^2$ v.s. $K: \sigma^2 > \sigma_0^2$ 。

解: jpdf 为

$$p_{(\mu,\sigma^2)}(x) \propto \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2 + \frac{\mu}{\sigma^2} \sum_{i=1}^n x_i\right\}.$$

记 $\theta = -\frac{1}{2\sigma^2}$, $\varphi = \frac{\mu}{\sigma^2}$, $U = \sum_{i=1}^n x_i^2$, $T = \sum_{i=1}^n x_i$ 。 因为当 θ 给定时,T 是充分、完备统计量,所以可由定理 3.2.9 或 3.2.10 求UMPUT。

取

$$V = \sum_{i=1}^{n} X_i^2 - \left(\frac{\sum_{i=1}^{n} X_i}{n}\right) = \sum_{i=1}^{n} (X_i - \bar{X})^2 = U - \left(\frac{T}{n}\right)^2,$$

其分布与 μ 无关。因此在 σ^2 给定时,V 与T 独立。同时,V 又是U 的线性函数,且关于U 严增,故可由定理 3.2.10 求得UMPUT。也就得到通常的 χ^2 检验。

类似地,可求出关于参数 μ 的t检验。对于两样本问题,可导出两均值的比较的t检验、两方差的比较F检验等常用结果。