多段階 let 挿入を行うコード生成言語の 型システムの設計

大石純平 亀山幸義

筑波大学 コンピュータ・サイエンス専攻

2016/9/9 日本ソフトウェア科学会第 33 回大会

アウトライン

- 1 概要
- 2 研究の目的
- 3 研究の内容

アウトライン

- 1 概要
- 2 研究の目的
- 3 研究の内容

概要

プログラムを生成するプログラミング言語 (=<mark>コード生成言語</mark>) の安全性を保証する研究

概要

プログラムを生成するプログラミング言語 (=<mark>コード生成言語</mark>) の安全性を保証する研究

- 効率的なコードの生成
- 安全性の保証

概要

プログラムを生成するプログラミング言語 (=コード生成言語) の安全性を保証する研究

- 効率的なコードの生成
- 安全性の保証
- ⇒ <mark>多段階 let 挿入</mark>を効率的かつ安全に扱うための型システムを 構築

コード生成

- コード生成ステージとコード実行ステージ
- コード生成をサポートするプログラム言語 ⇒ コード生成言語

コード生成

- コード生成ステージとコード実行ステージ
- コード生成をサポートするプログラム言語 ⇒ コード生成言語
- 生成するプログラムだけでなく、生成されたプログラムも型の整合性が静的に(生成前に)保証される

コード生成器 🛶* 生成されるコード

コード生成器 →* 生成されるコード (<u>int</u> 3)

コード生成器
$$\leadsto^*$$
 生成されるコード (int 3) \leadsto^* <3> (int 3) $+$ (int 5) \leadsto^* <3 + 5> $\underline{\lambda}x$. x + (int 3)

コード生成器
$$\leadsto^*$$
 生成されるコード (int 3) \leadsto^* <3> (int 3) $+$ (int 5) \leadsto^* <3 + 5> λx . x + (int 3) \leadsto^* < $\lambda x'$. x' + 3>

コード生成器
$$\leadsto^*$$
 生成されるコード
$$\underbrace{(\text{int }3) \, \leadsto^* < 3>}$$

$$\underbrace{(\text{int }3) \, \pm \, (\text{int }5) \, \leadsto^* < 3+5>}$$

$$\underline{\lambda}x. \, x \, \pm \, (\text{int }3) \, \leadsto^* < \lambda x'.x'+3>$$
 for $x=\cdots$ to \cdots do $\cdots \leadsto^*$ x'=\cdots to \cdots do $\cdots \leadsto$

コード生成器
$$\leadsto^*$$
 生成されるコード
$$\underbrace{(\text{int }3) \, \leadsto^* \, <3>}$$

$$\underbrace{(\text{int }3) \, \pm \, (\text{int }5) \, \leadsto^* \, <3+5>}$$

$$\underline{\lambda}x. \, x \, \pm \, (\text{int }3) \, \leadsto^* \, <\lambda x'.x'+3>$$
 for $x=\cdots$ to \cdots do $\cdots \leadsto^* \, <$ for $x'=\cdots$ to \cdots do $\cdots \leadsto$

゙コードコンビネータ

- 下線つきの演算子
- コードを引数にとり、コードを返す

普通の power 関数

```
\begin{aligned} \mathsf{power} &= \ \lambda x. \mathsf{fix} \ \lambda f. \lambda n. \\ &\quad \mathsf{if} \ n = 0 \ \mathsf{then} \ 1 \\ &\quad \mathsf{else} \ x \ \times \ (f \ (n-1)) \end{aligned}
```

gen_power: power コード生成器 ${\rm gen_power} = \ \underline{\lambda}x.{\rm fix} \ \lambda f.\lambda n.$ ${\rm if} \ n=0 \ {\rm then} \ (\underline{{\rm int}} \ 1)$ else $x\times (f\ (n-1))$

gen_power: power **コード生成器**

$$\begin{split} \mathsf{gen_power} &= \ \underline{\lambda} x. \mathsf{fix} \ \lambda f. \lambda n. \\ &\quad \mathsf{if} \ n = 0 \ \mathsf{then} \ (\underline{\mathsf{int}} \ 1) \\ &\quad \mathsf{else} \ x \ \underline{\times} \ (f \ (n-1)) \end{split}$$

n=5 に特化したコード生成:

gen_power: power コード生成器

$$\begin{split} \mathsf{gen_power} &= \ \underline{\lambda}x.\mathsf{fix} \ \lambda f.\lambda n. \\ &\quad \mathsf{if} \ n = 0 \ \mathsf{then} \ (\underline{\mathsf{int}} \ 1) \\ &\quad \mathsf{else} \ x \times (f \ (n-1)) \end{split}$$

n=5 に特化したコード生成:

gen_power: power コード生成器

$$\begin{split} \mathsf{gen_power} &= \ \underline{\lambda}x.\mathsf{fix} \ \lambda f.\lambda n. \\ &\quad \mathsf{if} \ n = 0 \ \mathsf{then} \ (\underline{\mathsf{int}} \ 1) \\ &\quad \mathsf{else} \ x \ \underline{\times} \ (f \ (n-1)) \end{split}$$

n=5 に特化したコード生成:

gen_power 関数によって生成されたコードは power 関数より高速

二重 for ループのコード生成器

コード生成器

$$\begin{array}{l} \underline{\textbf{for}} \ x = (\underline{\textbf{int}} \ 0) \ \underline{\textbf{to}} \ (\underline{\textbf{int}} \ n) \ \underline{\textbf{do}} \\ \underline{\textbf{for}} \ y = (\underline{\textbf{int}} \ 0) \ \underline{\textbf{to}} \ (\underline{\textbf{int}} \ m) \ \underline{\textbf{do}} \\ \underline{\textbf{set}} \ a \ (x,y) \ \text{complex calculation} \end{array}$$

二重 for ループのコード生成器

コード生成器

$$\begin{array}{l} \underline{\mathbf{for}} \ x = (\underline{\mathbf{int}} \ 0) \ \underline{\mathbf{to}} \ (\underline{\mathbf{int}} \ n) \ \underline{\mathbf{do}} \\ \underline{\mathbf{for}} \ y = (\underline{\mathbf{int}} \ 0) \ \underline{\mathbf{to}} \ (\underline{\mathbf{int}} \ m) \ \underline{\mathbf{do}} \\ \underline{\mathbf{set}} \ a \ (x,y) \ \mathrm{complex} \ \mathrm{calculation} \end{array}$$

生成されるコード

< for
$$x'=0$$
 to n do for $y'=0$ to m do
$$a[x',y'] \leftarrow \text{complex calculation} >$$

多段階 let 挿入

生成されるコード

< for
$$x'=0$$
 to n do
$$a[x',y'] \leftarrow \text{complex calculation} \\ b[x',y'] \leftarrow \text{complex calculation} >$$

多段階 let 挿入

生成されるコード

```
< let w = \text{complex calculation in}

for x' = 0 to n do

let u = \text{complex calculation in}

for y' = 0 to m do

a[x', y'] \leftarrow u

b[x', y'] \leftarrow w
```

多段階 let 挿入

生成されるコード

< let
$$w = \text{complex calculation in}$$

for $x' = 0$ to n do
let $u = \text{complex calculation in}$
for $y' = 0$ to m do
 $a[x', y'] \leftarrow u$
 $b[x', y'] \leftarrow w$

多段階 let 挿入

- 入れ子になった for ループなどを飛び越えた複数のコード移動を許す仕組み
- ループ不変式の移動等によって、<mark>効率的なコード生成</mark>に必要なプログラミング技法

危険な例

生成される危険なコード

< for
$$x'=0$$
 to n do
$$a[x',y'] \leftarrow \text{complex calculation} \\ b[x',y'] \leftarrow \text{complex calculation} >$$

生成される危険なコード

```
< let w = \text{complex calculation in}

for x' = 0 to n do

let u = \text{complex calculation in}

for y' = 0 to m do

a[x', y'] \leftarrow u

b[x', y'] \leftarrow w
```

生成される危険なコード

```
< let w = \text{complex calculation in} - w が x にも y にも依存する式 for <math>x' = 0 to n do let u = \text{complex calculation in} - u が y に依存する式 for <math>y' = 0 to m do a[x',y'] \leftarrow u b[x',y'] \leftarrow w >
```

生成される危険なコード

```
< let w = \text{complex calculation in} - w が x にも y にも依存する式  for x' = 0 to n do let u = \text{complex calculation in} - u が y に依存する式  for y' = 0 to m do a[x',y'] \leftarrow u b[x',y'] \leftarrow w >
```

complex calculation によって挿入できる場所が異なる

- 多段階 let 挿入が可能となっても、安全に挿入できる場所と そうでない場所がある
- 安全に let 挿入を行うためにどうすればよいかを考える必要がある

コード生成の利点と課題

利点

• 「保守性・再利用性の高さ」と「実行性能の高さ」の両立

コード生成の利点と課題

利点

• 「保守性・再利用性の高さ」と「実行性能の高さ」の両立

課題

- パラメータに応じて、非常に多数のコードが生成される
- 生成したコードのデバッグが容易ではない
- **⇒ コード生成の前に安全性を保証したい**

アウトライン

- 1 概要
- 2 研究の目的
- 3 研究の内容

研究の目的

表現力と安全性を兼ね備えたコード生成言語の構築

- 表現力: 多段階 let 挿入, メモ化等の技法を表現
- 安全性: 生成されるコードの一定の性質を静的に検査

研究の目的

表現力と安全性を兼ね備えたコード生成言語の構築

- 表現力: 多段階 let 挿入, メモ化等の技法を表現
- 安全性: 生成されるコードの一定の性質を静的に検査

本研究: 簡潔で強力なコントロールオペレータに基づ くコード生成体系の構築

- コントロールオペレータ shift0/reset0 を利用し、let 挿入などのコード生成技法を表現
- 型システムを構築して型安全性を保証

アウトライン

- 1 概要
- ② 研究の目的
- 3 研究の内容

表現力を上げ(コードレベル での多段階let挿入)、安全性 も保証するためにどうすれば よいのか

本研究の手法

まず表現力について

コード生成器と生成されるコード

コード生成器

... for
$$x = e1$$
 to $e2$ do
... for $y = e3$ to $e4$ do
... let $u = t$ in
... set $\langle a \rangle (x, y) u$

生成されるコード

```
 \begin{aligned} &\langle \textbf{let } u' \ = \ t' \ \textbf{in} \\ &\textbf{for } x' = e1' \ \textbf{to } e2' \ \textbf{do} \\ &\textbf{for } y' = e3' \ \textbf{to } e4' \ \textbf{do} \\ &a[x',y'] \leftarrow u' \rangle \end{aligned}
```

生成コード:

```
コード生成器: \underline{\text{for}}\ x = e1\ \underline{\text{to}}\ e2\ \underline{\text{do}} reset0 \underline{\text{for}}\ y = e3\ \underline{\text{to}}\ e4\ \underline{\text{do}} shift0 k \to \underline{\text{let}}\ u = t\ \underline{\text{in}} (throw k\ (\underline{\text{set}}\ a\ (x,y)\ u))
```

生成コード:

```
reset0 (E[\mathbf{shift0}\ k \rightarrow e]) \rightarrow e\{k \Leftarrow E\}
コード生成器
                               for x = e1 to e2 do
                       reset0 for y = e3 to e4 do
                         shift 0 k \rightarrow \text{let } u = t \text{ in }
                           (throw k (set a(x,y)(u))
                     k \Leftarrow \text{ for } y = e3 \text{ to } e4 \text{ do } []
  生成コード: \langle for x' = e1' to e2' do
                       let u' = t' in
                         for y' = e3' to e4' do
                           a[x', y'] \leftarrow u'
```

```
reset0 (E[\mathbf{shift0}\ k \rightarrow e]) \rightarrow e\{k \Leftarrow E\}
コード生成器: reset0 for x = e1 to e2 do
                                for y = e3 to e4 do
                        shift 0 k \rightarrow \text{let } u = t \text{ in }
                          (throw k (set a(x,y)(u))
  生成コード:
```

```
reset0 (E[shift0 k \rightarrow e]) \rightarrow e\{k \Leftarrow E\}
コード生成器: reset0 for x = e1 to e2 do
                                  for y = e3 to e4 do
                         shift 0 k \rightarrow \text{let } u = t \text{ in }
                           (throw k (set a(x,y)(u))
                     k \Leftarrow \text{ for } x = e1 \text{ to } e2 \text{ do for } y = e3 \text{ to } e4 \text{ do } []
   生成コード: \langle  let u' = t' in
                       for x' = e1' to e2' do
                         for y' = e3' to e4' do
                           a[x',y'] \leftarrow u'
```

コード生成器: reset0 for
$$x=e1$$
 to $e2$ do reset0 for $y=e3$ to $e4$ do shift0 $k_2 \rightarrow$ shift0 $k_1 \rightarrow$ let $u=t$ in throw k_1 (throw k_2 (set a (x,y) u)) 生成コード: 〈 let $u'=t'$ in for $x'=e1'$ to $e2'$ do for $y'=e3'$ to $e4'$ do $a[x',y'] \leftarrow u'$ 〉

reset0 (E[shift0 $k \rightarrow e]) \rightarrow e\{k \Leftarrow E\}$

次に安全性

コード生成前の段階で,安全 なコードかどうかを判断する

環境識別子 (EC) を利用したスコープ表現 [Sudo+2014]

$$\frac{\gamma 0}{\gamma 1} \begin{bmatrix}
\underline{\text{for }} x = e1 \ \underline{\text{to}} \ e2 \ \underline{\text{do}} \\
\underline{\gamma 1} \\
\underline{\text{for }} y = e1 \ \underline{\text{to}} \ e2 \ \underline{\text{do}} \\
\underline{\gamma 2} \\
\underline{\text{set}} \ a \ (x,y) \ t
\end{bmatrix}$$

スコープ	使えるコード変数
$\gamma 0$	なし
$\gamma 1$	X
$\gamma 2$	x,y

環境識別子 (EC) を利用したスコープ表現 [Sudo+2014]

型システムでコード変数のスコープを表現:

$$\begin{array}{lll} \gamma 2 \geq \gamma 1, \ x: \langle \operatorname{int} \rangle ! \gamma 1, \ y: \langle \operatorname{int} \rangle ! \gamma 2 \ \vdash \ x: \langle \operatorname{float} \rangle ! \gamma 2 & \operatorname{OK} \\ \gamma 2 \geq \gamma 1, \ x: \langle \operatorname{int} \rangle ! \gamma 1, \ y: \langle \operatorname{int} \rangle ! \gamma 2 \ \vdash \ y: \langle \operatorname{float} \rangle ! \gamma 1 & \operatorname{NG} \\ \gamma 2 \geq \gamma 1, \ x: \langle \operatorname{int} \rangle ! \gamma 1, \ y: \langle \operatorname{int} \rangle ! \gamma 2 \ \vdash \ x + y: \langle \operatorname{int} \rangle ! \gamma 2 & \operatorname{OK} \end{array}$$

コードレベルのラムダ抽象の型付け規則で, 固有変数条件を 利用:

$$\frac{\Gamma, \ \gamma_2 \geq \gamma_1, \ x: \langle t_1 \rangle ! \gamma_2 \vdash e: \langle t_2 \rangle ! \gamma_2}{\Gamma \vdash \underline{\lambda} x.e: \langle t_1 \rightarrow t_2 \rangle ! \gamma_1} \ (\gamma_2 \text{ is eigen var})$$

環境識別子(EC)を利用したスコープ表現

先行研究:

- 局所的なスコープをもつ破壊的変数をもつコード生成の体系に対する (型安全な) 型システムの構築
 [Sudo,Kiselyov,Kameyama 2014]
- グローバルなスコープをもつ破壊的変数への拡張 [Kiselyov, Kameyama, Sudo 2016]
- コントロールオペレータには非対応

問題点: shift0/reset0 などのコントロールオペレータは、スコープの包含関係を逆転させてしまう。

ここに、for ループと shift0/reset0 の例を再掲する. もとのスライドの 24 ページの絵をかく.

本研究での解決策

3 つのアイディア:

- 包含関係にない EC
- ジョイン演算子
- EC に関する多相性

• γ_1 のコードレベル変数は γ_2 では使えない

- γ_1 のコードレベル変数は γ_2 では使えない
- γ_2 のコードレベル変数は γ_1 では使えない

- γ_1 のコードレベル変数は γ_2 では使えない
- γ_2 のコードレベル変数は γ_1 では使えない
- γ_1, γ_2 のコードレベル変数は γ_3 で使える

- γ_1 のコードレベル変数は γ_2 では使えない
- γ_2 のコードレベル変数は γ_1 では使えない
- γ_1,γ_2 のコードレベル変数は γ_3 で使える
- ⇒ Sudo らの体系に ∪ を追加

コード生成+shift0/reset0 の型システム (の一部)

コードレベルのラムダ抽象:

$$\frac{\Gamma, \ \gamma_1 \geq \gamma, \ x: \langle t_1 \rangle^{\gamma_1} \vdash e: \langle t_2 \rangle^{\gamma_1}; \sigma}{\Gamma \vdash \underline{\lambda} x.e: \langle t_1 \rightarrow t_2 \rangle^{\gamma} \ ; \ \sigma} \ (\gamma_1 \text{ is eigen var})$$

reset0:

$$\frac{\Gamma \vdash e : \langle t \rangle^{\gamma} ; \langle t \rangle^{\gamma}, \sigma}{\Gamma \vdash \mathbf{reset0} \ e : \langle t \rangle^{\gamma} ; \sigma}$$

shift0:

$$\frac{\Gamma, \ k: (\langle t_1 \rangle^{\gamma_1} \Rightarrow \langle t_0 \rangle^{\gamma_0}) \sigma \vdash e: \langle t_0 \rangle^{\gamma_0}; \sigma \quad \Gamma \models \gamma_1 \geq \gamma_0}{\Gamma \vdash \mathbf{shift0} \ k.e: \langle t_1 \rangle^{\gamma_1} \ ; \ \langle t_0 \rangle^{\gamma_0}, \sigma}$$

throw:

$$\frac{\Gamma \vdash v : \langle t_1 \rangle^{\gamma_1 \cup \gamma_2}; \sigma \quad \Gamma \models \gamma_2 \geq \gamma_0}{\Gamma, \ k : (\langle t_1 \rangle^{\gamma_1} \Rightarrow \langle t_0 \rangle^{\gamma_0}) \sigma \vdash \mathbf{throw} \ k \ v : \langle t_0 \rangle^{\gamma_2}; \sigma}$$

APPENDIX

アウトライン

4 健全性の証明

健全性の証明 (Subject Reduction)

型安全性 (型システムの健全性; Subject Reduction 等の性質) を 厳密に証明する.

Subject Redcution Property

 $\Gamma \vdash M : \tau$ が導ければ (プログラム M が型検査を通れば), M を計算して得られる任意の N に対して, $\Gamma \vdash N : \tau$ が導ける (N も型検査を通り, M と同じ型, 同じ自由変数を持つ)