

Microprocessor Supervisory Circuits in 3-Lead SC70 and SOT-23

Data Sheet

ADM803/ADM809/ADM810

FEATURES

Specified over temperature Low power consumption: 17 µA

Precision voltage monitor: 2.5 V, 3 V, 3.3 V, 5 V options

Reset assertion down to 1 V Vcc 140 ms minimum power-on reset Open-drain RESET output (ADM803) Push-pull RESET output (ADM809) Push-pull RESET output (ADM810)

SC70 and SOT-23 packages

APPLICATIONS

Microprocessor systems Computers Controllers Intelligent instruments

GENERAL DESCRIPTION

The ADM803/ADM809/ADM810 supervisory circuits monitor the power supply voltage in microprocessor systems. They provide a reset output during power-up, power-down, and brownout conditions. On power-up, an internal timer holds reset asserted for 240 ms. This holds the microprocessor in a reset state until conditions have stabilized. The reset output remains operational with V_{CC} as low as 1 V. The ADM803 and ADM809 provide an active low reset signal (RESET), whereas the ADM810 provides an active high signal (RESET) output. The ADM809 and ADM810 have push-pull outputs, whereas the ADM803 has an open-drain output, which requires an external pull-up resistor.

Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAMS

Seven reset threshold voltage options are available, suitable for monitoring a variety of supply voltages (see Table 3).

The reset comparator features built-in glitch immunity, making it immune to fast transients on V_{CC} .

The ADM803/ADM809/ADM810 consume only 17 µA, making them suitable for low power, portable equipment. The ADM803 is available in a 3-lead SC70; the ADM809/ADM810 are available in 3-lead SOT-23 and 3-lead SC70 packages.

TABLE OF CONTENTS	
Features	Pin Configurations and Function Descriptions5
Applications1	Typical Performance Characteristics6
Functional Block Diagrams	Interfacing to Other Devices8
General Description	Ensuring a Valid Reset Output Down to V_{CC} = 0 V8
Revision History	Benefits of an Accurate Reset Threshold8
Specifications	Interfacing to Microprocessors with Multiple Interrupts8
Absolute Maximum Ratings	Outline Dimensions9
ESD Caution4	Ordering Guide
REVISION HISTORY	
10/14—Rev. H to Rev. I	5/03—Rev. B to Rev. C.
Changes to Applications Section	Added ADM803Universal
Changes to Table 24	Changes to Features1
Updated Outline Dimensions	Changes to General Description1
Changes to Ordering Guide	Changes to Figure 11
	Changes to Specifications2
8/08—Rev. G to Rev. H	Changes to Table I3
Added Figure 4; Renumbered Sequentially5	Updated Ordering Guide4
Changes to Figure 86	
Updated Outline Dimensions	1/03—Rev. A to Rev. B.
Changes to Ordering Guide	Changes to Specifications2
	Changes to Table I
9/06—Rev. F to Rev. G	Changes to Ordering Guide4
Updated Outline Dimensions	Changes to TPCs 1-3, and TPC 75
Changes to Ordering Guide	Updated Outline Dimensions
6/05—Rev. E to Rev. F.	10/02—Rev. 0 to Rev. A.
Changes to Ordering Guide 4	Addition of SC70 package
Updated Outline Dimensions	Change to General Description1
	Changes to Specifications
2/05—Rev. D to Rev. E.	Changes to Absolute Maximum Ratings3
Changes to Ordering Guide	Change to Table I3
	Change to Ordering Guide4
2/05—Rev. C to Rev. D.	Change to TPC 15
Changes to Ordering Guide	Updated Outline Dimensions7
Updated Outline Dimensions	
	4/97—Revision 0: Initial Version

SPECIFICATIONS

 V_{CC} = full operating range, T_{A} = T_{MIN} to T_{MAX} , V_{CC} typical = 5 V for L/M/J models, 3.3 V for T/S models, 3 V for R models, and 2.5 V for Z models, unless otherwise noted.

Table 1.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
V _{CC} OPERATING VOLTAGE RANGE	1.0		5.5	V	$T_A = 0$ °C to 70°C
	1.2		5.5	V	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$
Supply Current		24	35	μΑ	$V_{CC} < 5.5 \text{ V, ADM8xxL/M/J, T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
		17	30	μΑ	V_{CC} < 3.6 V, ADM8xxR/S/T/Z, $T_A = -40^{\circ}$ C to +85°C
			60	μΑ	V_{CC} < 5.5 V, ADM8xxL/M/J, T_A = 85°C to 125°C
			60	μA	V_{CC} < 3.6 V, ADM8xxR/S/T/Z, T_A = 85°C to 125° C
RESET VOLTAGE THRESHOLD					
ADM8xxL	4.56	4.63	4.70	V	T _A = 25°C
	4.50		4.75	V	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
	4.44		4.82	V	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$
ADM8xxM	4.31	4.38	4.45	V	T _A = 25°C
	4.25		4.50	V	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
	4.20		4.56	V	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$
ADM8xxJ	3.93	4.00	4.06	V	$T_A = 25$ °C (ADM809/ADM810 only)
	3.89		4.10	V	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C (ADM809/ADM810 only)}$
	3.80		4.20	V	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C (ADM809/ADM810 only)}$
ADM8xxT	3.04	3.08	3.11	V	T _A = 25°C
	3.00		3.15	V	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
	2.95		3.21	V	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$
ADM8xxS	2.89	2.93	2.96	V	T _A = 25°C
	2.85		3.00	V	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
	2.81		3.05	V	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$
ADM8xxR	2.59	2.63	2.66	V	T _A = 25°C
A DINOMI	2.55	2.03	2.70	V	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
	2.52		2.74	V	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$
ADM8xxZ	2.28	2.32	2.35	v	$T_A = 25^{\circ}C$
ADMOXAL	2.25	2.52	2.38	v	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
	2.22		2.42	v	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$
RESET THRESHOLD TEMPERATURE COEFFICIENT	2.22	30	2, 12	ppm/°C	174 10 0 10 1123 0
V _{CC} to Reset Delay		20		μs	$V_{CC} = V_{TH} \text{ to } (V_{TH} - 100 \text{ mV})$
RESET ACTIVE TIMEOUT PERIOD	140	240	460	ms	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$
NESET NETTVE TIMESOTT ENIOD	100	210	840	ms	T _A = 85°C to 125°C
RESET OUTPUT VOLTAGE LOW (ADM803/ADM809)	100		0.3	V	V _{CC} = V _{TH} min, I _{SINK} = 1.2 mA, ADM803R/S/T/Z, ADM809R/S/T/Z
			0.4	V	$V_{CC} = V_{TH} \text{ min, } I_{SINK} = 3.2 \text{ mA, ADM} 803L/M/J, ADM} 809L/M/J$
			0.3	V	$V_{CC} > 1.0 \text{ V, } I_{SINK} = 50 \mu\text{A}$
RESET OUTPUT VOLTAGE HIGH (ADM809)					
	0.8 V _{CC}			V	$V_{CC} > V_{TH}$ max, $I_{SOURCE} = 500 \mu A$, ADM809R/S/T/Z
	V _{CC} – 1.5			V	$V_{CC} > V_{TH}$ max, $I_{SOURCE} = 800 \mu A$, ADM809L/M/J
RESET OUTPUT VOLTAGE LOW (ADM810)					
			0.3	V	$V_{CC} = V_{TH} \text{ min, } I_{SINK} = 1.2 \text{ mA, } ADM810R/S/T/Z$
			0.4	V	$V_{CC} = V_{TH} \text{ min, } I_{SINK} = 3.2 \text{ mA, } ADM810L/M/J$
RESET OUTPUT VOLTAGE HIGH (ADM810)				.,	
DECET OPEN DRAIN OUTPUT	0.8 V _{CC}			V	$1.8 \text{ V} < \text{V}_{CC} < \text{V}_{TH} \text{ min, I}_{SOURCE} = 150 \mu\text{A}$
RESET OPEN-DRAIN OUTPUT			1		V > V PECET deserve !
Leakage Current (ADM803)			1	μΑ	$V_{CC} > V_{TH}$, RESET deasserted

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 2.

Parameter	Ratings		
V _{CC}	-0.3 V to +6 V		
RESET, RESET (Push-Pull)	$-0.3 \text{ V to V}_{CC} + 0.5 \text{ V}$		
RESET (Open-Drain)	-0.3 V to +6.0 V		
Input Current			
Vcc	20 mA		
Output Current			
RESET, RESET	20 mA		
Rate of Rise, V _{CC}	100 V/μs		
θ_{JA} Thermal Impedance			
SC70	146°C/W		
SOT-23	270°C/W		
Lead Temperature (Soldering, 10 sec)	300°C		
Vapor Phase (60 sec)	215°C		
Infrared (15 sec)	220°C		
Storage Temperature Range	−65°C to +150°C		

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 3. Reset Threshold Options

RESET Model	Threshold (V)
ADM8xxL	4.63
ADM8xxM	4.38
ADM8xxJ (ADM809/ADM810 Only)	4.00
ADM8xxT	3.08
ADM8xxS	2.93
ADM8xxR	2.63
ADM8xxZ	2.32

Figure 2. Power Fail Reset Timing

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. ADM803/ADM809 Pin Configuration

Figure 4. ADM810 Pin Configuration

Table 4. Pin Function Descriptions

Pin No.						
ADM803/ADM809	ADM810	Mnemonic	Description			
1	1	GND	Ground Reference for All Signals; 0 V.			
N/A	2	RESET	Active High Logic Output. RESET remains high while V_{CC} is below the reset threshold and remains high for 240 ms (typical) after V_{CC} rises above the reset threshold.			
2	N/A	RESET	Active Low Logic Output. \overline{RESET} remains low while V_{CC} is below the reset threshold and remains low for 240 ms (typical) after V_{CC} rises above the reset threshold.			
3	3	V _{CC}	Supply Voltage Being Monitored.			

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. Supply Current vs. Temperature (No Load)

Figure 6. Power-Down Reset Delay vs. Temperature, ADM8xxL/M/J

Figure 7. Power-Down Reset Delay vs. Temperature, ADM8xxT/S/R/Z

Figure 8. Power-Up Reset Timeout vs. Temperature, ADM8xxR

Figure 9. Normalized Reset Voltage Threshold vs. Temperature

Figure 10. Reset Output Voltage vs. Supply Voltage

Figure 11. Maximum Transient Duration Without Causing a Reset Pulse vs. Reset Comparator Overdrive

INTERFACING TO OTHER DEVICES

The ADM803/ADM809/ADM810 series is designed to integrate with as many devices as possible and, therefore, has a standard output dependent on $V_{\rm CC}$. This enables the parts to be used in both 3 V and 5 V, or any nominal voltage within the minimum and maximum specifications for $V_{\rm CC}$. This design simplifies interfacing the ADM803/ADM809/ADM810 to other devices.

ENSURING A VALID RESET OUTPUT DOWN TO $V_{cc} = 0 V$

When V_{CC} falls below 0.8 V, the ADM803/ADM809 RESET no longer sinks current. A high impedance CMOS logic input connected to \overline{RESET} may, therefore, drift to undetermined logic levels. To eliminate this problem, a 100 k Ω resistor should be connected from \overline{RESET} to ground.

Figure 12. Ensuring a Valid Reset Output Down to $V_{CC} = 0 V$

BENEFITS OF AN ACCURATE RESET THRESHOLD

In other microprocessors, tolerances in supply voltages lead to an overall increase in reset tolerance levels due to the deterioration of the reset circuit's power supply. In the ADM803/ADM809/ADM810, the possibility of a malfunction during a power failure is greatly reduced because the devices can operate effectively even when there are large degradations of the supply voltages. Another advantage is the very accurate internal voltage reference circuit of the ADM803/ADM809/ADM810. These benefits combine to produce an exceptionally reliable voltage monitor circuit.

INTERFACING TO MICROPROCESSORS WITH MULTIPLE INTERRUPTS

In a number of cases, it is necessary to interface many interrupts from different devices (for example, thermal, altitude, and velocity sensors). The ADM803/ADM809/ADM810 can easily be integrated into existing interrupt-handling circuits, as shown in Figure 13, or can be used as standalone devices.

Figure 13. Interfacing to Microprocessors with Multiple Interrupts

OUTLINE DIMENSIONS

Figure 14. 3-Lead Small Outline Transistor Package [SOT-23-3] (RT-3) Dimensions shown in millimeters

ALL DIMENSIONS COMPLIANT WITH EIAJ SC70

Figure 15. 3-Lead Thin Shrink Small Outline Transistor Package [SC70]

(KS-3)
Dimensions shown in millimeters

ORDERING GUIDE

ONDERING GOIDE					Package	Package
Model ¹	Reset Threshold (V)	Temperature Range	Branding ^{2, 3}	Quantity	Description	Option
ADM803LAKSZ-REEL	4.63	-40°C to +125°C	M6L	10,000	3-Lead SC70	KS-3
ADM803LAKSZ-REEL7	4.63	-40°C to +125°C	M6L	3,000	3-Lead SC70	KS-3
ADM803MAKS-REEL7	4.38	-40°C to +125°C	M03	3,000	3-Lead SC70	KS-3
ADM803MAKSZ-REEL7	4.38	-40°C to +125°C	M6J	3,000	3-Lead SC70	KS-3
ADM803RAKSZ-REEL7	2.63	-40°C to +125°C	M6M	3,000	3-Lead SC70	KS-3
ADM803SAKS-REEL7	2.93	-40°C to +125°C	M06	3,000	3-Lead SC70	KS-3
ADM803SAKSZ-REEL	2.93	-40°C to +125°C	M50	10,000	3-Lead SC70	KS-3
ADM803SAKSZ-REEL7	2.93	-40°C to +125°C	M50	3,000	3-Lead SC70	KS-3
ADM803TAKS-REEL7	3.08	-40°C to +125°C	M05	3,000	3-Lead SC70	KS-3
ADM803TAKSZ-REEL7	3.08	-40°C to +125°C	M4M	3,000	3-Lead SC70	KS-3
ADM803ZAKSZ-REEL7	2.32	-40°C to +125°C	M6N	3,000	3-Lead SC70	KS-3
ADM809JAKS-REEL7	4.00	-40°C to +125°C	M9C or 9JXX	3,000	3-Lead SC70	KS-3
ADM809JAKSZ-REEL	4.00	-40°C to +125°C	M6P	10,000	3-Lead SC70	KS-3
ADM809JAKSZ-REEL7	4.00	-40°C to +125°C	M6P	3,000	3-Lead SC70	KS-3
ADM809JARTZ-REEL7	4.00	-40°C to +125°C	M6P	3,000	3-Lead SOT-23	RT-3
ADM809LAKS-REEL7	4.63	-40°C to +125°C	M9A	3,000	3-Lead SC70	KS-3
ADM809LAKSZ-REEL	4.63	-40°C to +125°C	M6R	10,000	3-Lead SC70	KS-3
ADM809LAKSZ-REEL7	4.63	-40°C to +125°C	M6R	3,000	3-Lead SC70	KS-3
ADM809LART-REEL7	4.63	-40°C to +125°C	9LXX	3,000	3-Lead SOT-23	RT-3
ADM809LARTZ-REEL	4.63	-40°C to +125°C	9LXX	10,000	3-Lead SOT-23	RT-3
ADM809LARTZ-REEL7	4.63	-40°C to +125°C	9LXX	3,000	3-Lead SOT-23	RT-3
ADM809MAKS-REEL7	4.38	-40°C to +125°C	M9B	3,000	3-Lead SC70	KS-3
ADM809MAKSZ-REEL	4.38	-40°C to +125°C	M51	10,000	3-Lead SC70	KS-3
ADM809MAKSZ-REEL7	4.38	-40°C to +125°C	M51	3,000	3-Lead SC70	KS-3
ADM809MART-REEL7	4.38	-40°C to +125°C	9MXX	3,000	3-Lead SOT-23	RT-3
ADM809MARTZ-REEL	4.38	-40°C to +125°C	M51	10,000	3-Lead SOT-23	RT-3
ADM809MARTZ-REEL7	4.38	-40°C to +125°C	M51	3,000	3-Lead SOT-23	RT-3
ADM809RAKS-REEL	2.63	-40°C to +125°C	M9F	10,000	3-Lead SC70	KS-3
ADM809RAKS-REEL7	2.63	-40°C to +125°C	M9F	3,000	3-Lead SC70	KS-3
ADM809RAKSZ-REEL	2.63	-40°C to +125°C	M4D	10,000	3-Lead SC70	KS-3
ADM809RAKSZ-REEL7	2.63	-40°C to +125°C	M4D	3,000	3-Lead SC70	KS-3
ADM809RART-REEL	2.63	-40°C to +125°C	9RXX	10,000	3-Lead SOT-23	RT-3
ADM809RART-REEL7	2.63	-40°C to +125°C	9RXX	3,000	3-Lead SOT-23	RT-3
ADM809RARTZ-REEL	2.63	-40°C to +125°C	M4D	10,000	3-Lead SOT-23	RT-3
ADM809RARTZ-REEL7	2.63	-40°C to +125°C	M4D	3,000	3-Lead SOT-23	RT-3
ADM809SAKS-REEL	2.93	-40°C to +125°C	M9E	10,000	3-Lead SC70	KS-3
ADM809SAKS-REEL7	2.93	-40°C to +125°C	M9E	3,000	3-Lead SC70	KS-3
ADM809SAKSZ-REEL	2.93	-40°C to +125°C	M53	10,000	3-Lead SC70	KS-3
ADM809SAKSZ-REEL7	2.93	-40°C to +125°C	M53	3,000	3-Lead SC70	KS-3
ADM809SART-REEL7	2.93	-40°C to +125°C	9SXX	3,000	3-Lead SOT-23	RT-3
ADM809SARTZ-REEL	2.93	-40°C to +125°C	M53	10,000	3-Lead SOT-23	RT-3
ADM809SARTZ-REEL7	2.93	-40°C to +125°C	M53	3,000	3-Lead SOT-23	RT-3
ADM809TAKS-REEL7	3.08	-40°C to +125°C	M9D	3,000	3-Lead SC70	KS-3
ADM809TAKSZ-REEL	3.08	-40°C to +125°C	M4K	10,000	3-Lead SC70	KS-3
ADM809TAKSZ-REEL7	3.08	-40°C to +125°C	M4K	3,000	3-Lead SC70	KS-3
ADM809TART-REEL7	3.08	-40°C to +125°C	9TXX	3,000	3-Lead SOT-23	RT-3
ADM809TARTZ-REEL	3.08	-40°C to +125°C	9TXX	10,000	3-Lead SOT-23	RT-3
ADM809TARTZ-REEL7	3.08	-40°C to +125°C	9TXX	3,000	3-Lead SOT-23	RT-3
ADM809ZAKS-REEL	2.32	-40°C to +125°C	M9G	10,000	3-Lead SC70	KS-3
ADM809ZAKS-REEL7	2.32	-40°C to +125°C	M9G	3,000	3-Lead SC70	KS-3
ADM809ZAKSZ-REEL	2.32	-40°C to +125°C	M4P	10,000	3-Lead SC70	KS-3
ADIVIOUSZAKSZ-NEEL	۷.3۷	- 1 0 C to +123 C	1 ∀1 1	10,000	J-Leau JC/U	1/2-2

Model ¹	Reset Threshold (V)	Temperature Range	Branding ^{2, 3}	Quantity	Package Description	Package Option
ADM809ZAKSZ-REEL7	2.32	-40°C to +125°C	M4P	3,000	3-Lead SC70	KS-3
ADM809ZART-REEL	2.32	-40°C to +125°C	9ZXX	10,000	3-Lead SOT-23	RT-3
ADM809ZARTZ-REEL	2.32	-40°C to +125°C	M4P	10,000	3-Lead SOT-23	RT-3
ADM809ZARTZ-REEL7	2.32	-40°C to +125°C	M4P	3,000	3-Lead SOT-23	RT-3
ADM810JAKSZ-REEL7	4.00	-40°C to +125°C	M6V	3,000	3-Lead SC70	KS-3
ADM810JARTZ-REEL7	4.00	-40°C to +125°C	M6V	3,000	3-Lead SOT-23	RT-3
ADM810LAKSZ-REEL7	4.63	-40°C to +125°C	M6W or ALXX	3,000	3-Lead SC70	KS-3
ADM810LARTZ-REEL	4.63	-40°C to +125°C	M6W or ALXX	10,000	3-Lead SOT-23	RT-3
ADM810LARTZ-REEL7	4.63	-40°C to +125°C	M6W or ALXX	3,000	3-Lead SOT-23	RT-3
ADM810MAKSZ-REEL7	4.38	-40°C to +125°C	M6S	3,000	3-Lead SC70	KS-3
ADM810MARTZ-REEL7	4.38	-40°C to +125°C	M6S	3,000	3-Lead SOT-23	RT-3
ADM810RAKSZ-REEL7	2.63	-40°C to +125°C	M52 or ARXX	3,000	3-Lead SC70	KS-3
ADM810RARTZ-REEL7	2.63	-40°C to +125°C	M52 or ARXX	3,000	3-Lead SOT-23	RT-3
ADM810SAKSZ-REEL7	2.93	-40°C to +125°C	M6T	3,000	3-Lead SC70	KS-3
ADM810SARTZ-REEL7	2.93	-40°C to +125°C	M6T	3,000	3-Lead SOT-23	RT-3
ADM810TAKSZ-REEL7	3.08	-40°C to +125°C	M4V	3,000	3-Lead SC70	KS-3
ADM810TARTZ-REEL7	3.08	-40°C to +125°C	M4V	3,000	3-Lead SOT-23	RT-3
ADM810ZAKSZ-REEL7	2.32	-40°C to +125°C	M6U	3,000	3-Lead SC70	KS-3
ADM810ZARTZ-REEL7	2.32	-40°C to +125°C	M6U	3,000	3-Lead SOT-23	RT-3

¹ Z = RoHS Compliant Part.

 $^{^{2}}$ XX = Date code, may be top or bottom marked.

³ RoHS compliant part has XX branded on the bottom of the device.