Geometria proiettiva

Spazi e trasformazioni proiettive

Sia \mathbb{K} un campo e sia V uno spazio proiettivo. Sia \sim la seguente relazione di equivalenza su $V \setminus \{0\}$ tale per cui

$$v \sim w \stackrel{\text{def}}{\iff} \exists \lambda \in \mathbb{K}^* \mid v = \lambda w.$$

Allora si definisce lo **spazio proiettivo** associata a V, denotato con $\mathbb{P}(V)$, come:

$$\mathbb{P}(V) = V \setminus \{0\}/\sim.$$

In particolare esiste una bigezione tra gli elementi dello spazio proiettivo e le rette di V (i.e. i sottospazi di V con dimensione 1). Si definisce la dimensione di $\mathbb{P}(V)$ come:

$$\dim \mathbb{P}(V) := \dim V - 1.$$

Gli spazi proiettivi di dimensione 1 sono detti rette proiettive, mentre quelli di dimensione 2 piani. Si dice **spazio proiettivo standard di dimensione** n lo spazio proiettivo associato a \mathbb{K}^{n+1} , e viene denotato come $\mathbb{P}^n(\mathbb{K}) := \mathbb{P}(\mathbb{K}^{n+1})$. Si indica con π la proiezione al quoziente tramite \sim , ossia:

$$\pi(W) = \{ [\underline{w}] \mid \underline{w} \in W \}.$$

Si dice sottospazio proiettivo un qualsiasi sottoinsieme S di $\mathbb{P}(V)$ tale per cui esista un sottospazio vettoriale W di V tale per cui $S = \pi(W \setminus \{\underline{0}\})$, e si scrive $S = \mathbb{P}(W)$, con:

$$\dim S = \dim W - 1.$$

In particolare, tramite π si descrive una bigezione tra i sottospazi vettoriali di V e i sottospazi proiettivi di $\mathbb{P}(V)$.

L'intersezione di sottospazi proiettivi è ancora un sottospazio proiettivo ed è indotto dall'intersezione degli spazi vettoriali che generano i singoli sottospazi proiettivi. Pertanto, se $F \subseteq \mathbb{P}(V)$, è ben definito il seguente sottospazio:

$$L(F) = \bigcap_{\substack{F \subseteq S_i \\ S_i \text{ ssp. pr.}}} S_i,$$

ossia l'intersezione di tutti i sottospazi proiettivi che contengono F. Si scrive $L(S_1, \ldots, S_n)$ per indicare $L(S_1 \cup \cdots \cup S_n)$. Se $S_1 = \mathbb{P}(W_1), \ldots, S_n = \mathbb{P}(W_n)$, allora vale che:

$$L(S_1,\ldots,S_n)=\mathbb{P}(W_1+\ldots+W_n).$$

Vale pertanto la formula di Grassmann proiettiva:

$$\dim L(S_1, S_2) = \dim S_1 + \dim S_2 - \dim(S_1 \cap S_2).$$

Allora, se dim $S_1 + \dim S_2 \ge \dim \mathbb{P}(V)$ (si osservi che è \ge e non > come nel caso vettoriale, dacché un sottospazio di dimensione zero è comunque un punto in geometria proiettiva), vale necessariamente che:

$$S_1 \cap S_2 \neq \emptyset$$
,

Scheda riassuntiva di Geometria 2

infatti $\dim S_1 \cap S_2 = \dim S_1 + \dim S_2 - \dim L(S_1, S_2) \ge \dim S_1 + \dim S_2 - \dim \mathbb{P}(V) \ge 0$. In particolare, in $\mathbb{P}^2(\mathbb{K})$, questo implica che due rette proiettive distinte si incontrano sempre in un unico punto (infatti $1+1\ge 2$).

Sia W uno spazio vettoriale. Una mappa $f: \mathbb{P}(V) \to \mathbb{P}(W)$ si dice **trasformazione proiettiva** se è tale per cui esiste un'applicazione lineare $\varphi \in \mathcal{L}(V,W)$ che soddisfa la seguente identità:

$$f([\underline{v}]) = [\varphi(\underline{w})],$$

dove con $[\cdot]$ si denota la classe di equivalenza in $\mathbb{P}(V)$. Si scrive in questo caso che $[\varphi]=f$. Una trasformazione proiettiva invertibile da $\mathbb{P}(V)$ in $\mathbb{P}(W)$ si dice **isomorfismo proiettivo**. Una trasformazione proiettiva da $\mathbb{P}(V)$ in $\mathbb{P}(V)$ si dice **proiettività**.

- Se f è una trasformazione proiettiva, allora φ è necessariamente iniettiva (altrimenti l'identità non sussisterebbe, dacché [0] non esiste – la relazione d'equivalenza ~ è infatti definita su V \ {0}).
- Allo stesso tempo, un'applicazione lineare φ iniettiva induce sempre una trasformazione proiettiva f,
- Se f è una trasformazione proiettiva, allora f è in particolare anche iniettiva (infatti $[\varphi(\underline{v})] = [\varphi(\underline{w})] \implies \exists \, \lambda \in \mathbb{K}^* \mid \underline{v} = \lambda \underline{w} \implies \underline{v} \sim \underline{w}),$
- La composizione di due trasformazioni proiettive è ancora una trasformazione proiettiva ed è indotta dalla composizione delle app. lineari associate alle trasformazioni di partenza.
- L'identità Id è una proiettività di P(V), ed è indotta dall'identità di V.

Poiché allora nelle proiettività di V esiste un'identità, un inverso e vale l'associatività nella composizione, si definisce $\mathbb{P}\mathrm{GL}(V)$ come il gruppo delle proiettività di V rispetto alla composizione. In particolare si pone la seguente definizione

$$\mathbb{P}\mathrm{GL}_{n+1}(\mathbb{K}) := \mathbb{P}\mathrm{GL}(\mathbb{K}^{n+1}).$$

Sono inoltre equivalenti i seguenti fatti:

- (i) f è surgettiva,
- (ii) f è bigettiva,
- (iii) $\dim \mathbb{P}(V) = \dim \mathbb{P}(W)$,
- (iv) f è invertibile e f^{-1} è una trasformazione proiettiva.

In particolare φ^{-1} induce esattamente f^{-1} .

- I punti fissi di f sono indotti esattamente dalle rette di autovettori di φ (infatti $\varphi(v) = \lambda v \implies f([v]) = [v]$),
- In particolare, $f \in \mathbb{P}GL(\mathbb{P}^n(\mathbb{R}))$ ammette sempre un punto fisso se n è pari (il polinomio caratteristico di φ ha grado dispari, e quindi ammette una radice in \mathbb{R}),
- Se \mathbb{K} è algebricamente chiuso, f ammette sempre un punto fisso (il polinomio caratteristico di φ ha tutte le radici in \mathbb{K}).

Riferimenti proiettivi, teorema fondamentale della geometria proiettiva e coordinate omogenee

Più punti $P_1, ..., P_k$ si dicono **indipendenti** se e solo se i vettori delle loro classi di equivalenza sono tra di loro linearmente indipendenti. In particolare, $P_1, ..., P_k$ sono indipendenti se e solo se dim $L(P_1, ..., P_k) = k - 1$. Analogamente al caso vettoriale, se dim $\mathbb{P}(V) = n$, presi più di n+1 punti, questi sono sicuramente non indipendenti.

Un insieme $\{P_1,\ldots,P_k\}$ si dice in posizione generale se e solo se ogni suo sottoinsieme di $h \leq n+1$ punti è indipendente. Se $k \leq n+1$, un insieme è in posizione generale se e solo se è indipendente. Altrimenti, l'insieme è in posizione generale se ogni sottoinsieme di n+1 punti è indipendente.

Si dice **riferimento proiettivo** una qualsiasi (n+2)-upla di punti $P_1, ..., P_{n+2}$ in posizione generale. In particolare, si dice che i punti $P_1, ..., P_{n+1}$ sono i **punti fondamentali** del riferimento, mentre P_{n+2} è il **punto unità**. Una base $\mathcal{B} = \{\underline{v_1}, ..., \underline{v_{n+1}}\}$ di V si dice **base normalizzata** rispetto a $P_1, ..., P_{n+2}$ se:

$$P_i = [v_i] \ \forall i \le n+1$$
 $P_{n+2} = [v_1 + \ldots + v_n].$

Una base normalizzata per R esiste sempre ed è unica a meno di riscalamento simultaneo (ossia a meno di moltiplicare ogni vettore della base per uno stesso $\lambda \in \mathbb{K}^*$). In particolare, se $P_i = [\underline{v_i}]$ con $i \leq n+1$ e $P_{n+2} = [\underline{v}]$, dacché $\{\underline{v_1}, \ldots, \underline{v_{n+1}}\}$ è una base di V esistono $\alpha_i \in \mathbb{K}$ per cui:

$$\underline{v} = \alpha_1 \underline{v_1} + \ldots + \alpha_{n+1} v_{n+1},$$

con $\alpha_i \neq 0$ (altrimenti si avrebbero n+1 vettori linearmente dipendenti, contraddicendo la posizione generale). Allora $\{\alpha_1 \underline{v}_1, \dots, \alpha_{n+1} \underline{v}_{n+1}\}$ è una base normalizzata per il riferimento proiettivo.

Sia d'ora in poi $R=\{P_1,\ldots,P_{n+2}\}$ un riferimento proiettivo e $\mathcal{B}=\{\underline{v_1},\ldots,v_{n+1}\}$ una base normalizzata rispetto ad R. Se $f=[\varphi], g=[\psi]$ sono trasformazioni da $\mathbb{P}(V)$ in $\mathbb{P}(W)$, sono equivalenti i seguenti fatti:

- $\varphi = \lambda \psi \text{ per } \lambda \in \mathbb{K}^*,$
- f = g,
- $f(P_i) = g(P_i)$ per $1 \le i \le n + 2$.

Come conseguenza di questo fatto, vale che:

$$\mathbb{P}GL(V) \cong GL(V)/N$$
,

dove $N = \{\lambda \operatorname{Id}_V \mid \lambda \in \mathbb{K}^*\}$ (è sufficiente considerare l'omomorfismo $\zeta: GL(V) \to \mathbb{P}\operatorname{GL}(V)$ tale per cui $f \stackrel{\zeta}{\mapsto} [f]$). Il **teorema fondamentale della geometria proiettiva** asserisce che se $R = \{P_1, \ldots, P_{n+2}\}$ e $R' = \{Q_1, \ldots, Q_{m+2}\}$ sono due riferimenti proiettivi di V e W e vale che dim $\mathbb{P}(W) \geq \dim \mathbb{P}(V)$, allora, per ogni scelta di n+2 punti Q_1', \ldots, Q_{n+2}' da R', esiste un'unica trasformazione proiettiva

tale per cui:

$$f(P_i) = Q_i', \quad \forall 1 \le i \le n+2.$$

Se n=m, il teorema asserisce semplicemente che esiste un'unica trasformazione che mappa ordinatamente R in R'.

Si può costruire su R un sistema di coordinate, dette **coordinate omogenee**, per cui

$$P = [a_1, \ldots, a_n] = [a_1 : \cdots : a_n]$$
 se e solo se $P = [a_1 \underline{v_1} + \ldots + a_{n+1} \underline{v_n}]$ dove $\mathcal{B} = \{\underline{v_1}, \ldots, \underline{v_{n+1}}\}$ è una base normalizzata associata a R . Per $\mathbb{P}^n(\mathbb{K})$, si definisce il riferimento standard come il riferimento dato da $[e_1], \ldots$,

 $[e_{n+1}]$ e
 $[\underline{e_1}+\ldots+e_{n+1}].$ In tal caso vale la seguente identità:

$$[a_1, \ldots, a_n] = [(a_1, \ldots, a_n)].$$

Si osserva che $[0,\dots,0]$ non è mai associato a nessun punto e che due punti hanno le stesse coordinate in un riferimento proiettivo a meno di riscalamento di tutte le coordinate per uno stesso $\lambda \in \mathbb{K}^*$.

Ad opera di Gabriel Antonio Videtta, https://poisson.phc.dm.unipi.it/~videtta/. Reperibile su https://notes.hearot.it, nella sezione Secondo anno \rightarrow Geometria 2 \rightarrow Scheda riassuntiva.