18.745 Introduction to Lie Algebras Fall 2004 Lecture 12 - October 19th, 2004 Professor Victor Kač Scribe: David Meyer

Definition. An Abstract Jordan Decomposition of an element of a Lie Algebra \mathfrak{g} is a decomposition of the form $a = a_s + a_n$ where $ad(a_s)$ is a semisimple operator and $ad(a_n)$ is a nilpotent operator (on \mathfrak{g}), and $[a_s, a_n] = 0$.

Example. If $\mathfrak{g} = gl_N(\mathbb{F})$, where \mathbb{F} is algebraically closed, then $A = A_s + A_n \in \mathfrak{g}$ (the concrete Jordan decomposition) is also an abstract Jordan decomposition, since $ad(A_s)$ is semisimple, $ad(A_n)$ is nilpotent, and $[ad(A_s), ad(A_n)] = ad[A_s, A_n] = 0$.

Remark. Note that $A'_s = A_s + \lambda I$, $A'_n = A_n - \lambda I$ is another abstract Jordan decomposition, for any $\lambda \in \mathbb{F}$. Thus we see that the abstract Jordan decomposition is not unique itself. The uniqueness fails in this case because I is a central element.

Claim. An abstract Jordan decomposition is unique (if it exists) if $center(\mathfrak{g}) = 0$. For if $a = a_s + a_n = a'_s + a'_n$ are two abstract Jordan decompositions, then:

$$ad(a) = ad(a_s) + ad(a_n) = ad(a'_s) + ad(a'_n),$$

both usual Jordan decompositions of ad(a). Hence by the uniqueness of the usual Jordan decomposition, $ad(a_s) = ad(a'_s)$ and $ad(a_n) = ad(a'_n)$, or $ad(a_s - a'_s) = ad(a_n - a'_n) = 0$. Then since $center(\mathfrak{g}) = 0$, we conclude that $a_s = a'_s$ and $a_n = a'_n$.

Remark. In some situations, an abstract Jordan decomposition may not exist, but it is difficult to construct examples of this.

Exercise 12.1. If \mathfrak{g} is the Lie Algebra of an algebraic group over an algebraically closed field \mathbb{F} , then any $a \in \mathfrak{g}$ has an abstract Jordan decomposition.

Proof. Beyond the scope of this write up.

Exercise 12.2. Using Levi's Theorem, show that any 4-dimensional Lie Algebra over an algebraically closed field of characteristic 0 is solvable or $sl_2(\mathbb{F}) \oplus \{$ one dimensional abelian $\}$.

Proof. Let \mathfrak{g} be a 4-dimensional Lie Algebra over an algebraically closed field of characteristic 0. By Levi's Theorem, there exists a semisimple subalgebra S of \mathfrak{g} such that $\mathfrak{g} = S \oplus R(\mathfrak{g})$, where $R(\mathfrak{g})$ is the radical of \mathfrak{g} , and $S \cap R(\mathfrak{g}) = 0$. If \mathfrak{g} is solvable, we are done, so let us consider the case where \mathfrak{g} is not solvable. In this case, dim(S) > 0. The cases

of dim(S) = 1 and dim(S) = 2 are not possible, since then S would be solvable. Suppose dim(S) = 3. By exercises 8.2 and 8.3, we note that the only semisimple 3-dimensional Lie Algebra (over an algebraically closed field of characteristic 0) is $sl_2(\mathbb{F})$. So $S = sl_2(\mathbb{F})$, and we have a homomorphism $sl_2(\mathbb{F}) \longrightarrow Der(R(\mathfrak{g}))$. However, $Der(R(\mathfrak{g}))$ is one dimensional, and so the kernel of this map will be an ideal of $sl_2(\mathbb{F})$ of dimension 2 or 3. If of dimension 2, the kernel would be solvable, violating the semisimplicity of $sl_2(\mathbb{F})$. So the kernel must have dimension 3, and so $sl_2(\mathbb{F})$ commutes with $R(\mathfrak{g})$. Thus $\mathfrak{g} = sl_2(\mathbb{F}) \oplus \{$ one dimensional abelian $\}$.

All that remains is to handle the case where dim(S) = 4. We wish to show there are no semisimple 4-dimensional Lie algebras.

Assume $\mathfrak g$ is semisimple. Choose a Cartan subalgebra $\mathfrak h$ of $\mathfrak g$ (note that $\mathfrak h$ must be non-zero), and write the generalized root space decomposition. Note that by Theorem 1(b) in Lecture 12, roots come in pairs, and so $dim(\mathfrak h)$ is even.

Case $dim(\mathfrak{h}) = 2$: Then $\mathfrak{g} = \mathfrak{h} + \mathfrak{g}_{\alpha} + \mathfrak{g}_{-\alpha}$. Choose nonzero $E \in \mathfrak{g}_{\alpha}$ and nonzero $F \in \mathfrak{g}_{-\alpha}$. Let $H = [E, F] \in \mathfrak{h}$. Then, the Jacobi identity,

$$[H, [E, F]] + [E, [F, H]] + [F, [H, E]] = 0,$$

implies: [E, [F, H]] = [[H, E], F], with both sides in \mathfrak{h} . Since ad(H) cannot be 0, we must have one (and thus both) of [F, H] and [H, E] nonzero.

Write [H, E] = cE, for nonzero $c \in \mathbb{F}$. This forces [F, H] = cF. Now we can choose a final basis vector B for \mathfrak{h} and subtract away a multiple of H such that [B, B] = 0, [B, H] = 0, and [B, E] = 0. But by the Jacobi identity, we have [B, [E, F]] + [E, [F, B]] + [F, [B, E]] = 0 which implies [F, B] = 0, and thus ad(B) = 0 which contradicts semisimplicity.

Case $dim(\mathfrak{h}) = 4$: Not possible, since \mathfrak{g} is not nilpotent.

Proposition. Let \mathfrak{g} be a Lie Algebra (over an algebraically closed field \mathbb{F}) with center 0, such that all derivations of \mathfrak{g} are inner. (In particular, \mathfrak{g} is semisimple). Then any element of \mathfrak{g} admits a (unique) abstract Jordan decomposition.

Proof. Take $a \in \mathfrak{g}$. Then $A = ad(a) = A_s + A_n$ (the usual Jordan decomposition) where $A_s, A_n \in gl_{\mathfrak{g}}$, A_s semisimple, A_n nilpotent, and $A_sA_n = A_nA_s$. (In $End(\mathfrak{g})$). Let $\mathfrak{g} = \bigoplus \mathfrak{g}_{\lambda}$, λ taken over the eigenvalues of A_s , be the eigenspace decomposition of \mathfrak{g} with respect to A_s .

Let us prove that $A_s = ad(a_s)$ for some element $a_s \in \mathfrak{g}$. To do this, we must check that A_s is a derivation of \mathfrak{g} , ie, that $A_s([x,y]) = [A_sx,y] + [x,A_sy]$. Luckily, it suffices to check this for a basis of eigenvectors of

 A_s . Take $x \in \mathfrak{g}_{\lambda}$ and $y \in \mathfrak{g}_{\mu}$. Recall that $[x, y] \in \mathfrak{g}_{\lambda+\mu}$, since \mathfrak{g}_{λ} and \mathfrak{g}_{μ} are generalized eigenspaces of ad(a). Now it is easy to see:

LHS =
$$A_s([x, y]) = (\lambda + \mu)[x, y]$$

RHS = $[A_s x, y] + [x, A_s y] = \lambda[x, y] + \mu[x, y] = (\lambda + \mu)[x, y].$

So A_s is a derivation of \mathfrak{g} . Since all derivations of \mathfrak{g} are inner, we have that $A_s = ad(a_s)$ for some $a_s \in \mathfrak{g}$. Hence, letting $a_n = a - a_s$, we see that $ad(a_n) = ad(a - a_s) = A - A_s = A_n$ is nilpotent, and $[ad(a_s), ad(a_n)] = 0 = ad[a_s, a_n]$. Since $center(\mathfrak{g}) = 0$, it follows that $[a_s, a_n] = 0$. Thus $a = a_s + a_n$ is an abstract Jordan decomposition of a. Uniqueness follows from $center(\mathfrak{g}) = 0$.

From now on, we will assume that \mathbb{F} is an algebraically closed field of characteristic 0, and that \mathfrak{g} is a finite-dimensional semisimple Lie Algebra over \mathbb{F} .

Let \mathfrak{h} be a Cartan subalgebra and let $\mathfrak{g} = \bigoplus_{\alpha \in \mathfrak{h}^*} \mathfrak{g}_{\alpha}$ be the generalized root space decomposition, where:

$$\mathfrak{g}_{\alpha} = \{ a \in \mathfrak{g} | (ad(h) - \alpha(h)I)^N a = 0 \text{ for some } N > 0, \text{ for all } h \in \mathfrak{h} \}.$$

Recall that $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}]\subset\mathfrak{g}_{\alpha+\beta}$, and $\mathfrak{g}_0=\mathfrak{h}$. For semisimple algebras, we can say much more however.

Theorem 1.

- (a) With respect to the Killing Form, \mathfrak{g}_{α} , \mathfrak{g}_{β} are orthogonal (ie, $K(\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta})=0$), if $\alpha+\beta\neq0$.
- (b) $K \mid_{\mathfrak{g}_{-\alpha}+\mathfrak{g}_{\alpha}}$ is a non-degenerate bilinear form. In particular, $K \mid_{\mathfrak{h}}$ is non-degenerate, and K defines a non-degenerate pairing of \mathfrak{g}_{α} and $\mathfrak{g}_{-\alpha}$.
- (c) \mathfrak{h} is a maximal abelian subalgebra of \mathfrak{g} .
- (d) \mathfrak{h} consists of semisimple elements. (ie, ad(h) is semisimple for all $h \in \mathfrak{h}$).

Proof.

(a) holds in any finite-dimensional Lie Algebra. Let $a \in \mathfrak{g}_{\alpha}$, $b \in \mathfrak{g}_{\beta}$. Then for arbitrary γ :

$$(ad(a))(ad(b))(\mathfrak{g}_{\gamma}) \subset \mathfrak{g}_{\gamma+\alpha+\beta}.$$

Hence, $((ad(a))(ad(b)))^N(\mathfrak{g}_{\gamma}) \subset \mathfrak{g}_{\gamma+N(\alpha+\beta)} = 0$ for N sufficiently large since $\alpha + \beta \neq 0$ and since there are only finitely many γ for which $\mathfrak{g}_{\gamma} \neq 0$. So (ad(a))(ad(b)) is a nilpotent operator on \mathfrak{g} . Hence tr(ad(a)ad(b)) = 0. Thus, $K(\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}) = 0$.

(b) follows from (a) and the fact that K is non-degenerate on \mathfrak{g} , since by (a) the kernel of $K|_{\mathfrak{g}_{-\alpha}+\mathfrak{g}_{\alpha}}$ lies in the kernel of $K|_{\mathfrak{g}}$.

- (c) By the easy part of Cartan's Criterion, $K(\mathfrak{h}, [\mathfrak{h}, \mathfrak{h}]) = 0$, since \mathfrak{h} is solvable. But by (b), $[\mathfrak{h}, \mathfrak{h}] = 0$ since $K|_{\mathfrak{h}}$ is non-degenerate. So \mathfrak{h} is abelian. Also, \mathfrak{h} is maximal abelian since it is maximal among nilpotent subalgebras (being a Cartan subalgebra).
- (d) Take $h \in \mathfrak{h}$, and write the abstract Jordan decomposition $h = h_s + h_n$. For each $h' \in \mathfrak{h}$, [ad(h), ad(h')] = ad([h, h']) = 0, hence $ad(h_s)$ and $ad(h_n)$ commute with ad(h') (see remark below). Hence since $center(\mathfrak{g}) = 0$, $[h_s, h'] = 0$ and $[h_n, h'] = 0$. Therefore, $h_s \in \mathfrak{h}$ and $h_n \in \mathfrak{h}$, since \mathfrak{h} is maximal abelian. To show $h_n = 0$, we compute:

$$K(h_n, h') = tr(ad(h_n)ad(h')) = 0.$$

(since $ad(h_n)$ is nilpotent, and ad(h') commutes with $ad(h_n)$, their composition is nilpotent). Hence $K(h_n, \mathfrak{h}) = 0$. Hence by (b), $h_n = 0$, and $h = h_s$ is semisimple.

Remark. We used the following fact from Linear Algebra:

If A and B are commuting operators on a finite-dimensional vector space V, then A_s and B are also commuting. Indeed, consider the generalized eigenspace decomposition for A, $V = \bigoplus_{\lambda} V_{\lambda}$. Each V_{λ} is B-invariant. But A_s on V_{λ} is just λI , hence $A_s B = B A_s$ on V_{λ} for each λ . Hence $A_s B = B A_s$ on V.

Theorem 1 says that the generalized root space decompositions are just regular root spaces:

$$\mathfrak{g}_{\alpha} = \{ a \in \mathfrak{g} | [h, a] = \alpha(h)a \text{ for all } h \in \mathfrak{h} \}$$

since all ad(h) are semisimple operators.

Let $\Delta = \{\alpha \in \mathfrak{h}^* | \alpha \neq 0, \mathfrak{g}_{\alpha} \neq 0\}$. An element of Δ is called a *root* of \mathfrak{g} , and \mathfrak{g}_{α} the attached root space. $(\alpha(h))$ is the eigenvalue of ad(h), hence the word "root")

The root space decomposition now becomes:

$$\mathfrak{g} = \mathfrak{h} \oplus \Big(\bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}\Big), \text{ where}$$

$$\mathfrak{g}_{\alpha} = \{a \in \mathfrak{g} | [h, a] = \alpha(h)a \text{ for all } h \in \mathfrak{h}\},$$

and \mathfrak{h} is the maximal abelian subalgebra of \mathfrak{g} .

Remark. We have a linear map $\nu : \mathfrak{h} \longrightarrow \mathfrak{h}^*$ defined by $(\nu(h))(h') = K(h, h')$. But K is non-degenerate, hence ν is an isomorphism. This gives us a bilinear form on \mathfrak{h}^* :

$$K(\nu(h), \nu(h')) = K(h, h') = \nu(h)(h') = \nu(h')(h).$$

Theorem 2.

- (a) If $\alpha \in \Delta$, $e \in \mathfrak{g}_{\alpha}$, $f \in \mathfrak{g}_{-\alpha}$, then $[e, f] = K(e, f)\nu^{-1}(\alpha) \in \mathfrak{h}$.
- (b) If $\alpha \in \Delta$, then $K(\alpha, \alpha) \neq 0$.

Proof.

(a) $[e, f] \in [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}] \subset \mathfrak{g}_0 = \mathfrak{h}$, so $[e, f] - K(e, f)\nu^{-1}(\alpha) \in \mathfrak{h}$. To prove that it is 0, we need to check that

$$K([e, f] - K(e, f)\nu^{-1}(\alpha), h') = 0, \ \forall h' \in \mathfrak{h}.$$

But this is just a computation:

$$K([e,f]-K(e,f)\nu^{-1}(\alpha),h') = K([e,f],h') - K(e,f)K(\nu^{-1}(\alpha),h') = K(e,[f,h']) - K(e,f)\alpha(h') = \alpha(h')K(e,f) - K(e,f)\alpha(h') = 0.$$

(b) Assume the contrary, that $K(\alpha, \alpha) = 0$, ie, $\alpha(\nu^{-1}(\alpha)) = 0$. Consider the following 3-dimensional subalgebra of \mathfrak{g} :

$$\mathbb{F}e + \mathbb{F}f + \mathbb{F}\nu^{-1}(\alpha),$$

where $e \in \mathfrak{g}_{\alpha}$, $f \in \mathfrak{g}_{-\alpha}$, and K(e, f) = 1. (we can choose such elements by Theorem 1(b)).

By (a), $[e, f] = \nu^{-1}(\alpha)$. Also, we have:

$$[\nu^{-1}(\alpha), e] = \alpha(\nu^{-1}(\alpha))e = 0,$$

$$[\nu^{-1}(\alpha), f] = -\alpha(\nu^{-1}(\alpha))f = 0.$$

Hence this 3-dimensional subalgebra is solvable (even nilpotent). Hence by Lie's Theorem, in its adjoint representation, it can be represented by upper triangular matrices in some basis. Hence its derived algebra, $\mathbb{F}\nu^{-1}(\alpha)$ can be represented by strictly upper-triangular matrices, which is impossible since $\nu^{-1}(\alpha) \in \mathfrak{h}$ is a semisimple element.