Complex Variables and Distributions Subject Code: 18MA4GCCVD Module - 1 Linear Algebra and Graph Theory

QNO	Question				
1.	A non empty subset W of a vector space V over a Field F is called				
	a) Column space b) Null space c) Linear transformation d) Subspace				
2.	If V be the vector space over the field F the mapping $T: U \rightarrow V$ is said to be linear				
	transformation and $a, b \in U$ then				
	a)T(a+b) = T(a)+T(b) $b)T(a+b) = T(a)*T(b)$ $c)T(a*b) = T(a)*T(b)$ $d)T(a+b) = T(a)*T(b)$				
	T(a)- $T(b)$				
3.	The dimension of the null space $\mathcal{N}(A)$ of a matrix A is called				
	a)Nullity of A b) rank of A c) Both of these d) none				
4.	If S and T are two subspace of vector space V, Then which one of the following is a subspace of				
	V also				
	a) SUT b) S \cap T c) S $-$ T d) T $-$ S				
_	A subset D of a vector space V/E\ is called a Dasis of V if D is				
5.	A subset B of a vector space V(F) is called a Basis of V, if B is a) Linearly Independent b) Linearly Dependent c) Both a) & b) d) None of these				
	a) Emourly independent b) Emourly Dependent c) Both a) to b)				
6.	If no self loop & no parallel edges are present in a graph, the graph is known as				
	a) Simple graph b) Pseudograph c) Multigraph d)None of these				
7.	A vertex with degree zero is known as				
	a) Pendant vertex b) Isolated vertex c) Node d) Junction				
8.	The sum of the degrees of the vertices of a graph is				
	a) Equal to no. of edges b) Half the no. of edges				
	c) Twice the no. of edges d) Thrice the no. of edges				
9.	Degree of any vertex of a simple graph with n vertices is at the most				
	a) n b) (n+1) c) (n-1) d) 2n				
10.	A graph with all vertices having equal degree is known as a				
	a) Multi Graph b) Regular Graph c) Simple Graph d) Complete Graph				

Complex Variables and Distributions

Subject Code: 18MA4GCCVD Module – 2

Complex Variable

Q.NO	QUESTION
1	Limit of the function $f(z) = \frac{\sin z}{z}$ as $z \to 0$ is
	a) 1 b) 0 c) ∞ d) not exist
2	Choose the function $f(z)$ which is not differentiable at $z = 0$
	a) $f(z) = \sin z$ b) $f(z) = z - 1$ c) $f(z) = e^z$ d) $f(z) = \frac{1}{z}$
3	If $f(z) = u(r, \theta) + i v(r, \theta)$ is analytic then which of the following is always true
	a) $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}$ b) $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial u}{\partial \theta} = \frac{1}{r} \frac{\partial v}{\partial r}$
	av. 1 av. av. av. 1 av. av. av.
	c) $\frac{\partial u}{\partial r} = -\frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial u}{\partial \theta} = r \frac{\partial v}{\partial r}$ d) $\frac{\partial u}{\partial \theta} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial u}{\partial r} = -r \frac{\partial v}{\partial r}$ If $f(z) = u(x, y) + i v(x, y)$ is analytic then which of the following is always true
4	If $f(z) = u(x,y) + i v(x,y)$ is analytic then which of the following is always true
	a) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial v}{\partial x} = -\frac{\partial v}{\partial y}$ b) $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$
	$\int \partial x \ \partial y \ \partial x \ \partial y \ \int \partial x \ \partial y \ \partial x$
	c) $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \frac{\partial \mathbf{v}}{\partial \mathbf{y}}$ and $\frac{\partial \mathbf{u}}{\partial \mathbf{y}} = -\frac{\partial \mathbf{v}}{\partial \mathbf{y}}$ d) $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} = \frac{\partial \mathbf{v}}{\partial \mathbf{y}}$ and $\frac{\partial \mathbf{u}}{\partial \mathbf{y}} = -\frac{\partial \mathbf{u}}{\partial \mathbf{y}}$ If $\mathbf{v} = g(\mathbf{x}, \mathbf{y})$ is harmonic then
5	If $v = g(x, y)$ is harmonic then
	$a) \frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{v}}{\partial \mathbf{y}^2} = 0 \qquad b) \frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} - \frac{\partial^2 \mathbf{v}}{\partial \mathbf{y}^2} = 0 \qquad c) \frac{\partial^2 \mathbf{v}}{\partial \mathbf{y}^2} - \frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} = 0 \qquad d) \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = 0$
6	A function is harmonic if it is satisfy equation.
	a) Cauchy's Riamann h) Heat a) Lanlace's d) Waye
7	a) Cauchy's Riemann b) Heat c) Laplace's d) Wave A function is Analytic if it is satisfy equation.
_	a) Cauchy's Riemann b) Heat c) Laplace's d) Wave
8	Construct the analytic function $f(z)$ by substituting $x = z$; $y = 0$ (or) $r = z$; $\theta = 0$ is
	known as method.
9	a) Milne Thompson b) Analytical c) Complex d) Laplace's If $f(z) = u(x, y) + iv(x, y)$ is analytic then
	a) $f'(z) = \left(\frac{\partial u}{\partial y} + i\frac{\partial u}{\partial x}\right)$ b) $f'(z) = \left(\frac{\partial u}{\partial x} + i\frac{\partial u}{\partial y}\right)$ c) $f'(z) = \left(\frac{\partial u}{\partial y} - i\frac{\partial u}{\partial x}\right)$
	d) $f'(z) = \left(\frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y}\right)$
10	If $f(z) = u(r, \theta) + iv(r, \theta)$ is analytic then
	a) $f'(z) = e^{-i\theta} \left(\frac{\partial u}{\partial r} + i \frac{\partial u}{\partial \theta} \right)$ b) $f'(z) = e^{i\theta} \left(\frac{\partial u}{\partial r} + i \frac{\partial u}{\partial \theta} \right)$ c) $f'(z) = e^{-i\theta} \left(\frac{\partial u}{\partial r} - i \frac{\partial u}{\partial \theta} \right)$
	d) $f'(z) = e^{i\theta} \left(\frac{\partial u}{\partial r} - i \frac{\partial u}{\partial \theta} \right)$
	\01 \00/

Complex Variables and Distributions Subject Code: 18MA4GCCVD Module - 3

Probability Distribution

Q.No		Quest	ion	
1.		takes finite or countab	oly infinite numbe	er of values then it is
	called rand (a) Discrete	om variable. (b) Continuous	(c) Stochastic	(d) None of these
2	The mean of the Geo	metric distribution is _	·	
	(a) pq	(b) $\frac{1}{q}$	(c) \sqrt{qp}	$(d)\frac{1}{p}$
3.	The S D of the Geome	etric distribution is		
	(a) $\sqrt{\left(\frac{q}{p}\right)}$	(b) $\sqrt{\left(\frac{p}{q}\right)}$	(c) $\frac{\sqrt{q}}{p}$	(d) $\frac{\sqrt{p}}{q}$
4.	The S.D of Poisson d			
	(a) m^2	(b) \sqrt{m}	(c) m	(d) None of these
5.		ice of a Poisson distrib		(d) Na a a Cula a a
	(a) same	(b) 0	• •	(d) None of these
6.	The p.d .f of a continut the value of k is	uous random variable i	$\operatorname{is} f(x) = \begin{cases} kx^2 ; \\ 0 ; \end{cases}$	1 < x < 3 , then otherwise
		(b) 26/3	(c) 3/26	(d) 26
7.		onential distribution i		
	$(a)^{\frac{1}{\alpha}}$	(b) $\frac{1}{\alpha^2}$	(c) $\frac{1}{\sqrt{\alpha}}$	(d) ∝
8.		an exponential distrib		
	(a) equal	(b) 0	(c)different	(d) None of these
9.		S D of the normal distri	ibution are	to the mean,
	(a) equal	ne given distribution. (b) 0	(c)different	(d) None of these
10.		whole normal curve is		
	(a) 1	(b) 0.5	(c) -0.5	(d) 0

Complex Variables and Distributions Subject Code: 18MA4GCCVD Module - 4 Sampling Distribution

Q.No	Question			
1.	Sample error of sample mean with μ as the population mean , σ as the standard deviation and sample size n is given by			
	(a) σ (b) σ/n (c) σ/\sqrt{n} (d) none of these			
2.	A hypothesis is true, but is rejected. Then this is an error of type			
	(a) II (b) I (c) both I & II (d) none of these			
3.	A hypothesis is false but accepted, then there is an error of type			
	(a) II (b) I (c) both I & II (d) none of these			
4.	The finite population correction factor is			
	(a) n-N/N-1 (b) N-n/N-1 (c) N-1/N-n (d) none of these			
5.	The probability distribution of a statistic is called distribution.			
	(a)Normal (b)Binomial (c) Sampling (d) none of these			
6.	Sample is a subset of			
	(a)Data (b) group (c) population (d) distribution			
7.	Any numerical value computed from population is called			
	(a)Statistic (b) bias (c) sampling error (d) parameter			
8.	In a random sampling, the probability of selecting an item from the population is			
	(a) Unknown (b) undecided (c) known (d) zero			
9.	In sampling with replacement ,a sampling unit can be selected			
	(a)Only once (b) more than once (c) less than once (d) none of above			
10.	Sampling in which a sampling unit cannot be repeated more than once is called			
	(a) Sampling without replacement (b) simple sampling			
	(c) Sampling with replacement (d) none of above			

Complex Variables and Distributions

Subject Code: 18MA4GCCVD

Module - 5 (Joint Probability Distribution & Markov Chains)

	dule - 5 (Joint Probability Distribution & Markov Chains)
SI.NO	QUESTIONS
1	Find the value of c, given the joint probability distribution of two random variables X and Y is
	X Y 0 1 2 3
	0 0 c 2c 3c
	1 2c 3c 4c 5c
	2 4c 5c 6c 7c
	(a) 42 (b) $\frac{1}{42}$ (c) $\frac{1}{24}$ (d) 24
2	The correlation coefficient of discrete random variables X and y is
	(a) $\rho(X,Y) = \frac{cov(X,Y)}{\sigma_X}$ (b) $\rho(X,Y) = \frac{cov(X,Y)}{\sigma_X\sigma_Y}$ (c) $\rho(X,Y) = \frac{\sigma_{X+Y}}{\sigma_X\sigma_Y}$ d) None of these When the random variable X and Y are independent, its co-variance is:
3	When the random variable X and Y are independent, its co-variance is: (a) One (b) Negative (c) Zero (d) Positive
4	When the random variable X and Y are independent, then $E(XY) =$
	(a) $E(X)E(Y)$ (b) $\frac{E(X)}{E(Y)}$ (c) Zero (d) $E(X+Y)$
5	If the joint density function of two continuous random variables X and Y is
	$f(x,y) = \begin{cases} kxy : 0 \le x \le 4, 1 < y < 5 \\ otherwise \end{cases}$ then the value of k is
	(a) 1 (b) 96 (c) $\frac{1}{96}$ (d) 0
6	A certain farm produces two kinds of eggs on any given day; organic and non-organic.
	Let these two kinds of eggs be represented by the random variables X and Y respectively.
	Given that the joint probability density function of these variables is given by $f(x,y) =$
	$\begin{cases} \frac{2}{3}(x+2y), & 0 \le x \le 1, 0 \le y \le 1 \\ 0 & otherwise \end{cases}$, The marginal PDF of X is
	(0) otherwise
	(a) $g(x) = \frac{3}{2}(x+1)$ (b) $g(x) = \frac{2}{3}(x+1)$ (c) $(x+1)$ (d) None of these
7	An Identity matrix is an example of
	(a) Stochastic Matrix (b) Regular Stochastic Matrix (c) Probability vector (d) All of
8	In an absorbing state of a Markov chain the transition probabilities neare such that
0	In an absorbing state of a Markov chain the transition probabilities p_{ij} are such that $p_{ij-1} = p_{ij-1} $ $p_{ij-1} = p_{ij} $
	$(a) \begin{cases} p_{ij=1 \text{ for } i=j} \\ p_{ij=0 \text{ otherwise}} \end{cases} $ (b) $\begin{cases} p_{ij=-1 \text{ for } i=j} \\ p_{ij=0 \text{ otherwise}} \end{cases} $ (c) $Both(a) and(b)$ (d) None of these
9	A Markov chain is said to be irreducible if the associated transition probability matrix is
	(a) Regular (b) Stochastic (c) Regular Stochastic (d) None of these
10	The fixed probability vectors for the regular stochastic matrix $\begin{bmatrix} 0.7 & 0.3 \\ 0.8 & 0.2 \end{bmatrix}$ are
	(a) $\left[\frac{8}{11}, \frac{3}{11}\right]$ (b) $\left[\frac{1}{11}, \frac{3}{11}\right]$ (c) $\left[\frac{8}{11}, \frac{1}{11}\right]$ (d) $\left[\frac{1}{11}, \frac{2}{11}\right]$