Задача скачана с сайта <u>www.MatBuro.ru</u> ©МатБюро - Решение задач по высшей математике

Тема: Булевы функции

Задание. Доказать полноту (или неполноту) приведенной системы булевых функций $f_1=x_1\wedge x_2, f_2=0, f_3=x_1\!\sim\! x_2$

Решение. Воспользуемся

<u>Теоремой Поста</u> (о полноте). Для того чтобы система булевых функций была полна необходимо и достаточно, чтобы она содержала функцию, не сохраняющую 0, функцию, не сохраняющую 1, несамодвойственную функцию, немонотонную функцию, нелинейную функцию.

Составим таблицу истинности функций.

x_1	x_2	f_1	f_2	f_3
0	0	0	0	1
0	1	0	0	0
1	0	0	0	0
1	1	1	0	1

Функция f_3 не сохраняет 0 (так как $f_3(0,0) = 1$)

Функция f_2 не сохраняет 1 (так как $f_2(1,1) = 0$)

Функция f_1 несамодвойственна (так как $0=f_1(0,1)\neq \overline{f_1}(1,0)=1$)

Функция f_3 немонотонна (так как для упорядоченных наборов $(0,0) \prec (0,1)$ она принимает значения $f_3(0,0) = 1 > 0 = f_3(0,1)$).

Функция f_1 нелинейна. Покажем это. Пусть $f_1 = a_0 \oplus a_1 x_1 \oplus a_2 x_2$

$$\begin{array}{l} f_1(0,0)=a_0\oplus 0\oplus 0=0\Rightarrow a_0=0\\ f_1(0,1)=0\oplus 0\oplus a_2=0\Rightarrow a_2=0\\ f_1(1,0)=0\oplus a_1\oplus 0=0\Rightarrow a_1=0 \end{array} \Rightarrow f\equiv 0 \ , \ \mbox{что неверно}$$

Таким образом, по *теореме Поста* система $\{f_1, f_2, f_3\}$ *полна*, так как включает в себя функцию, не сохраняющую 0, функцию, не сохраняющую 1, несамодвойственную функцию, нелинейную функцию, немонотонную функцию.