

Sistema de Aislamiento Limitado/Total Ferroviario

Autor:

Ing. Nahuel Espinosa

Director:

Dr. Ing. Pablo Gomez (CONICET-GICSAFe, FIUBA)

Codirector:

Mg. Ing. Martín Menendez (CONICET-GICSAFe, FIUBA)

Jurados:

Nombre y Apellido (1) (pertenencia (1))

Nombre y Apellido (2) (pertenencia (2))

Nombre y Apellido (3) (pertenencia (3))

${\rm \acute{I}ndice}$

Registros de cambios
Acta de constitución del proyecto
Descripción técnica-conceptual del proyecto a realizar
Identificación y análisis de los interesados
1. Propósito del proyecto
2. Alcance del proyecto
3. Supuestos del proyecto
4. Requerimientos
$egin{array}{cccccccccccccccccccccccccccccccccccc$
5. Entregables principales del proyecto
6. Desglose del trabajo en tareas
7. Diagrama de Activity On Node
8. Diagrama de Gantt
9. Matriz de uso de recursos de materiales
10. Presupuesto detallado del proyecto
11. Matriz de asignación de responsabilidades
12. Gestión de riesgos
13. Gestión de la calidad
14. Comunicación del proyecto
15. Gestión de compras 30
16. Seguimiento y control
17 Procesos de cierre

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
1.0	Creación del documento.	22/06/2020
1.1	Correcciones en las primeras secciones y cambios menores.	14/07/2020
1.2	Se agrega gestión del tiempo, recursos humanos y materiales.	27/07/2020
1.3	Correcciones en la gestión de recursos, modificaciones en la duración	08/08/2020
	de las tareas. Se agrega gestión de calidad, comunicación, compras	
	y procesos de cierre.	

Acta de constitución del proyecto

Buenos Aires, 22 de junio de 2020

Por medio de la presente se acuerda con el Ing. Nahuel Espinosa que su Trabajo Final de la Carrera de Especialización en Sistemas Embebidos se titulará "Sistema de Aislamiento Limitado/Total Ferroviario", consistirá esencialmente en el prototipo de un equipo que permita inhabilitar las señales de corte de tracción y frenado de emergencia en el caso de una falla en uno de los subsistemas de seguridad de una formación ferroviaria, y tendrá un presupuesto preliminar estimado de 600 hs de trabajo y \$55.000, con fecha de inicio 22 de junio de 2020 y fecha de presentación pública 21 de junio de 2021.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA Ing. Alejandro Leonetti SOFSE

Dr. Ing. Pablo Gomez Director del Trabajo Final

Nombre y Apellido (1) Jurado del Trabajo Final Nombre y Apellido (2) Jurado del Trabajo Final

Nombre y Apellido (3) Jurado del Trabajo Final

Descripción técnica-conceptual del proyecto a realizar

Las formaciones ferroviarias cuentan con diferentes sistemas de seguridad a bordo. Los mismos son equipos que se encargan de supervisar el correcto funcionamiento de los subsistemas críticos. Ejemplos de los mismos son la seguridad de puertas, el sistema de hombre vivo y la protección de coche a la deriva.

Ante una falla en uno de estos subsistemas, una formación ferroviaria se detiene inmediatamente por la activación automática de las señales de corte de tracción y frenado de emergencia. En esta situación el conductor debe llevar a la formación a un lugar seguro para que los pasajeros puedan descender y posteriormente a un taller para que pueda ser reparada.

En el año 2017, la empresa estatal Trenes Argentinos Operaciones (SOFSE) encargó al CONICET-GICSAFe el desarrollo de un equipo que le permita al conductor inhabilitar las señales de corte de tracción (CT) y frenado de emergencia (FE) sin comprometer la seguridad de la formación y sus pasajeros. Este equipo se conoce en el ámbito local como Sistema de Aislamiento Limitado/Total (SAL/T) y se considera un sistema crítico debido a que, en caso de fallar, puede ocasionar daños afectando negativamente la salud de las personas, al medio ambiente y/o generar grandes pérdidas materiales.

En el año 2019 se concluyó el desarrollo de un prototipo funcional del SAL/T en el marco del trabajo de tesis del Ing. Ivan Di Vito. En la figura 1 se puede ver cómo interactúa con las señales CT y FE. En modo de funcionamiento normal los subsistemas de seguridad tienen conexión directa con el control central. Ante la activación por parte del conductor del modo aislado limitado (AL) el SAL/T toma el control de dichas señales.

Figura 1: Diagrama conceptual de la interacción del SAL/T con los sistemas de seguridad en una formación.

El SAL/T monitorea la velocidad de la formación e informa su estado interno al registrador de eventos Hasler Teloc 1500. A su vez, se comunica con una central operativa de la cual puede recibir comandos remotos que modifiquen su comportamiento a través de un enlace redundado.

En la figura 2 se resaltan las cinco primeras fases completadas del ciclo de vida propuesto por la norma UNE-EN 50126 para aplicaciones ferroviarias. La documentación de la sexta fase, que corresponde al diseño e implementación del sistema, y las fases posteriores quedaron fuera del alcance del trabajo original.

Figura 2: Ciclo de vida de un sistema propuesto por la norma UNE-EN 50126.

Este proyecto continuará con el desarrollo del SAL/T revisando los requisitos de seguridad RAMS establecidos en la cuarta fase del trabajo original, diseñando subsistemas que se ajusten a los requisitos y verificando el nivel de integridad de seguridad (SIL).

Para el caso específico de los sistemas eléctrico-programables (EP) la fase de diseño y desarrollo se divide en dos partes relacionadas con el desarrollo del hardware y del software.

- El diseño del software buscará seguir una metodología acorde a la norma UNE-EN 50128 centrada en la calidad de los aspectos de software de los sistemas de ferrocarriles.
- En el nuevo diseño de la placa principal se reemplazará la plataforma EDU-CIAA-NXP, utilizada como base en la primera versión, por un módulo ad-hoc de procesamiento.

Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
			Gerente de Seguridad
Cliente	Ing. Alejandro Leonetti	SOFSE	Operacional
Responsable	Ing. Nahuel Espinosa	FIUBA	Alumno
			Director del Grupo
Colaboradores	Dr. Ing. Ariel Lutenberg	CONICET-GICSAFe	de Investigación
Colaboradores			Coordinador del
			Laboratorio
			Electrónico
			- Subgerencia de
	In a Consis Disloks	SOFSE	Material Rodante Línea Mitre
	Ing. Sergio Dieleke	SOFSE	
	Dr. Ing. Pablo Gomez	CONICET-	Director del Trabajo Final
Orientadores	D1. Hig. 1 abio Goinez		Trabajo Finai
		GICSAFe, FIUBA	
	Mg. Ing. Martín Menendez	CONICET-	Codirector del Trabajo Final
	Mg. mg. Martin Menendez		Trabajo Filiai
		GICSAFe, FIUBA	

SOFSE: Operadora Ferroviaria Sociedad del Estado, Trenes Argentinos Operaciones

FIUBA: Facultad de Ingeniería, Universidad de Buenos Aires

CONICET: Consejo Nacional de Investigaciones Científicas y Técnicas

GICSAFe: Grupo de Investigación en Calidad y Seguridad de las Aplicaciones Ferroviarias

1. Propósito del proyecto

El propósito de este proyecto es continuar el desarrollo de un sistema de supervisión de seguridad de formaciones ferroviarias denominado SAL/T (Sistema de Aislamiento Limitado/Total) que alcance niveles RAMS adecuados para su uso a criterio de las autoridades SOFSE y CNRT.

2. Alcance del proyecto

El desarrollo del presente proyecto incluye:

- Revisión y actualización de la documentación generada en las primeras cinco fases del ciclo de vida del proyecto original.
- Diseño, implementación y documentación del firmware siguiendo la norma UNE-EN 50128 utilizando herramientas de integración y ensayos.
- Diseño y fabricación de una nueva versión de la placa principal del hardware reemplazando la EDU-CIAA-NXP por un procesador ad-hoc.
- Estimación del nivel de integridad de seguridad (SIL) del sistema.

El presente proyecto NO incluye:

- Desarrollo de la séptima fase y posteriores del ciclo de vida del proyecto (producción, instalación, validación, etc.).
- Desarrollo del software necesario para la central operativa.
- Modificación del gabinete.
- Certificación de los sistemas a ser desarrollados.

3. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- Es posible continuar el proyecto a partir del análisis, la definición de subsistemas e interacciones y el uso de patrones de diseño del trabajo original.
- Se tendrá acceso al prototipo actual para hacer pruebas de integridad con el nuevo firmware.
- Una vez finalizado el diseño del PCB, se podrá fabricar el mismo en un tiempo razonable.
- No habrá dificultades para conseguir los componentes electrónicos necesarios.
- Se adquirirán los conocimientos necesarios sobre la normativa aplicable.
- El tiempo estipulado será suficiente para alcanzar los objetivos definidos.

4. Requerimientos

Teniendo en cuenta el estado actual del prototipo y las propuestas para continuar el desarrollo, se detallan los requerimientos agrupándolos por afinidad. A su vez se indican los códigos de referencia asociados al documento "R_DRQ_10 Distribución de los requisitos del sistema", desarrollado durante la quinta fase del ciclo de vida del proyecto, para facilitar su trazabilidad.

- 1. Grupo de requerimientos asociados con la interfaz humano-máquina
 - 1.1. La interfaz debe contar con una llave rotativa precintable para activar el modo aislado limitado. [REQ_026]
 - 1.2. La interfaz debe indicar el estado actual del sistema. [REQ_012, REQ_022]
 - 1.3. La interfaz debe mostrar la velocidad media del equipo en km/h con 4 dígitos. $[\mathrm{REQ_025}]$
 - 1.4. La interfaz debe indicar el estado de la señal de corte de tracción. [REQ_019]
 - 1.5. La interfaz debe indicar el estado de la señal de freno de emergencia. [REQ_020]
 - 1.6. La interfaz debe indicar la presencia de un comando remoto de la central operativa. $[\mbox{REQ_021}]$
 - 1.7. La interfaz debe indicar el estado de los módulos GPS. [REQ_023]
 - 1.8. La interfaz debe indicar el estado de la alimentación. [REQ_018]
- 2. Grupo de requerimientos asociados a la comunicación con el registrador de eventos
 - 2.1. El sistema debe informar al registrador de eventos la activación del modo aislado limitado. [REQ_008, REQ_037]
 - 2.2. El sistema debe informar al registrador de eventos si la alimentación es correcta. [REQ_008, REQ_037]
 - 2.3. El sistema debe informar al registrador de eventos la activación del freno de emergencia. [REQ_008, REQ_037]
 - 2.4. El sistema debe informar al registrador de eventos la activación del corte de tracción. $[REQ_008, REQ_037]$
- 3. Grupo de requerimientos asociados a la comunicación con la central operativa
 - 3.1. El sistema debe informar periódicamente (con un tiempo configurable) su estado a la central operativa a través de la red de datos GPRS, 3G ó 4G. [REQ_006]
 - 3.2. El sistema debe utilizar la antena GPRS/GPS ya disponible en la formación. $[\mathrm{REQ_002}]$
 - 3.3. Debe existir la posibilidad de usar 2 proveedores distintos de datos de manera simultánea. [REQ_029]
 - 3.4. El protocolo de comunicación con la central operativa debe ser MQTT. [REQ_028]
 - 3.5. El sistema debe ser capaz de recibir un comando remoto que anule el corte de tracción y el freno de emergencia bajo cualquier condición (modo aislado total). [REQ_003]
 - 3.6. El sistema debe ser capaz de recibir un comando remoto que active el corte de tracción y el freno de emergencia bajo cualquier condición (modo parada total). [REQ_003]
 - 3.7. El sistema debe ser capaz de recibir un comando remoto que active el corte de tracción y anule el freno de emergencia bajo cualquier condición (modo coche en deriva). [REQ_003]

- 3.8. El sistema debe ser capaz de recibir un comando remoto que active el corte de tracción y el freno de emergencia de forma intermitente en ciclos de tiempo configurables (modo intermitente). [REQ_004]
- 3.9. El sistema debe ser capaz de recibir un comando remoto que cancele cualquier comando remoto vigente. [REQ_003]
- 3.10. El sistema debe ser capaz de recibir comandos remotos que modifiquen sus parámetros internos configurables. [REQ_004]
- 3.11. Si no se recibe un nuevo comando remoto luego de un tiempo configurable (por defecto 10 segundos, máximo 1 minuto), debe volver al algoritmo de activación de corte de tracción y freno de emergencia por defecto. [REQ_003]
- 3.12. Ante un comando remoto recibido, debe enviar una confirmación de recepción que permita a la central operativa decidir si es necesaria o no una retransmisión. [REQ_005]
- 3.13. Debe utilizar algún mecanismo de encriptación para el enlace con la central operativa.
- 4. Grupo de requerimientos asociados al modo normal de funcionamiento
 - 4.1. El modo normal el sistema no debe intervenir en el funcionamiento del material rodante (prioridad alta). [REQ_010, REQ_011]
 - 4.2. El sistema debe obtener en todo momento la mejor estimación posible de la velocidad de la formación. [REQ_015]
 - 4.2.1 Debe ser capaz de recibir la velocidad a partir de una señal digital provista por el registrador de eventos Hasler Teloc 1500. [REQ_007, REQ_031]
 - 4.2.2 Debe ser capaz de calcular la velocidad a partir de un generador de impulsos ópticos instalado en una o varias ruedas de la formación. [REQ_009, REQ_032]
 - 4.2.3 Debe ser capaz de calcular la velocidad a partir de un sistema GPS integrado. $[\mathrm{REQ_027}]$
 - 4.3. El rango de velocidad soportado por el sistema tiene que estar entre 0 y 120 km/h.
 - 4.4. La estimación de velocidad debe tener una precisión del 2% de fondo de escala.
- 5. Grupo de requerimientos asociados al modo aislado limitado
 - 5.1. En modo aislado limitado el sistema debe evitar la aplicación del corte de tracción. $[\mathrm{REQ_010}]$
 - 5.2. En modo aislado limitado el sistema debe evitar la aplicación del freno de emergencia. $[\text{REQ_011}]$
 - 5.3. Ante cualquier error interno, el sistema debe dejar de intervenir en la aplicación del corte de tracción. [REQ_010, REQ_036]
 - 5.4. Ante cualquier error interno, el sistema debe dejar de intervenir en la aplicación del freno de emergencia. [REQ_011, REQ_034]
 - 5.5. En modo aislado limitado el sistema debe emitir una señal sonora intermitente a través de un buzzer. $[{\rm REQ_017}]$
 - 5.6. En modo aislado limitado el sistema debe evitar que la velocidad del material rodante supere una serie de límites configurados. [REQ_016]
 - 5.6.1 Si al pasar de modo normal a modo aislado limitado no se cuenta con una estimación de velocidad, debe activar el corte de tracción y el freno de emergencia por 30 segundos. [REQ_016]

- 5.6.2 Si se supera una velocidad configurable (por defecto 30 km/h), debe activar el corte de tracción y emitir una señal sonora continua a través de un buzzer. [REQ_016]
- 5.6.3 Si se supera una velocidad configurable (por defecto 36 km/h), debe activar el freno de emergencia. [REQ_016]
- 5.6.4 Una vez aplicado, el corte de tracción debe dejar de aplicarse si la velocidad vuelve a ser menor a una velocidad configurable (por defecto $25~\rm{km/h}).$ $[REQ_016]$
- 5.6.5 Una vez aplicado, el freno de emergencia sólo debe dejar de aplicarse luego de un tiempo configurable (por defecto 30 segundos) desde que se superó el límite. [REQ_016]
- 5.6.6 Si la lectura de velocidad es inválida, debe activar y desactivar el corte de tracción y freno de emergencia de manera alternada en ciclos de tiempo configurables. [REQ_016]
- 6. Grupo de requerimientos asociados al hardware y al gabinete
 - 6.1. El sistema debe utilizar la alimentación presente en el material rodante en el rango de 60 V a 110 V de tensión continua. [REQ_001, REQ_014]
 - 6.2. Los conectores del equipo deben ser unívocos imposibilitando la conexión incorrecta. [REQ_030, REQ_038]
 - 6.3. El sistema debe poseer una única placa de circuito impreso con el procesador y periféricos necesarios para el procesamiento de las señales del material rodante.
 - 6.4. El gabinete debe estar diseñado para ser instalado en la locomotora sobre el pupitre.
 - 6.5. El gabinete debe tener grado de seguridad IP66 o superior. [REQ_013]
- 7. Grupo de requerimientos asociados al desarrollo del software
 - 7.1. El desarrollo del software debe seguir una metodología acorde a la norma UNE-EN 50128.

Historias de usuarios (*Product backlog*)

En esta sección se deben incluir las historias de usuarios y su ponderación (history points). Recordar que las historias de usuarios son descripciones cortas y simples de una característica contada desde la perspectiva de la persona que desea la nueva capacidad, generalmente un usuario o cliente del sistema. La ponderación es un número entero que representa el tamaño de la historia comparada con otras historias de similar tipo.

5. Entregables principales del proyecto

- Código fuente y documentación del firmware
- Diagramas esquemáticos del circuito impreso
- Archivos para fabricación del circuito impreso
- Informe de avance
- Informe final

6. Desglose del trabajo en tareas

1. Planificación del proyecto	(subtotal 20 hs)
1.1. Elaboración del plan de proyecto	(20 hs)
2. Investigación preliminar	(subtotal 70 hs)
	,
2.1. Estudio de la documentación original2.2. Estudio de la arquitectura y el código fuente original	(20 hs) (20 hs)
2.3. Estudio de la normativa	(30 hs)
3. Desarrollo del software	(subtotal 235 hs)
3.1. Elaboración de la especificación de requisitos del software	(20 hs)
3.2. Elaboración de la especificación de arquitectura del software	(20 hs) $(20 hs)$
3.3. Elaboración del plan de verificación del software	(10 hs)
3.4. Elaboración del plan de validación del software	(10 hs)
3.5. Selección y configuración del entorno de desarrollo	(10 hs)
3.6. Selección de bibliotecas externas	(10 hs)
3.7. Implementación de drivers y primitivas	(20 hs)
3.8. Implementación de módulo de interfaz hombre-máquina	(20 hs)
3.9. Implementación de módulo de medición de velocidad	(30 hs)
3.10. Implementación de módulo de comunicación y localización	(30 hs)
3.11. Implementación de módulo de lógica principal	(30 hs)
3.12. Pruebas y verificación del software	(20 hs)
3.13. Elaboración de informe de verificación	(5 hs)
4. Desarrollo del hardware	(subtotal 170 hs)
4.1. Revisión y actualización de la arquitectura del hardware	(20 hs)
4.2. Selección de módulos y componentes	(10 hs)
4.3. Actualización de los diagramas esquemáticos	(20 hs)
4.4. Diseño del circuito impreso	(60 hs)
4.5. Fabricación del circuito impreso	(20 hs)
4.6. Pruebas y verificación del hardware	(40 hs)
5. Integración del sistema	(subtotal 45 hs)
5.1. Integración de módulos constitutivos	(10 hs)
5.2. Pruebas de integración y verificación del sistema	(20 hs)
5.3. Pruebas de campo y validación del sistema	(10 hs)
5.4. Elaboración de informe de validación	(5 hs)
6. Procesos de finalización	(subtotal 60 hs)
6.1. Elaboración del informe de avance	(10 hs)
6.2. Elaboración de la memoria del proyecto	(40 hs)
6.3. Preparación de la presentación final	(10 hs)

Cantidad total de horas: (600 hs)

7. Diagrama de Activity On Node

En la figura 3 se muestra el diagrama Activity on Node donde se identifica el camino crítico del proyecto.

Figura 3: Diagrama de Activity on Node

8. Diagrama de Gantt

Se elaboró el diagrama considerando que se trabajará entre 10 y 20 horas por semana, ajustando el tiempo donde fuera necesario para cumplir con la fecha de finalización del proyecto. En la tabla siguiente se pueden ver las fechas de inicio y finalización de cada tarea. En las figuras 4 y 5 se muestra el diagrama de Gantt resultante.

WBS	Nombre de la tarea	Inicio	Fin
1.1	Elaboración del plan de proyecto	2020-06-22	2020-08-09
2.1	Estudio de la documentación original	2020-06-22	2020-07-05
2.2	Estudio de la arquitectura y el código fuente original	2020-07-06	2020-07-19
2.3	Estudio de la normativa	2020-07-20	2020-08-02
3.1	Especificación de requisitos del software	2020-08-03	2020-08-16
3.2	Especificación de arquitectura del software	2020-08-17	2020-09-06
3.3	Elaboración del plan de verificación del software	2020-09-07	2020-09-16
3.4	Elaboración del plan de validación del software	2020-09-17	2020-09-27
3.5	Selección y configuración del entorno de desarrollo	2020-09-28	2020-10-01
3.6	Selección de bibliotecas externas	2020-10-02	2020-10-08
3.7	Implementación de drivers y primitivas	2020-10-09	2020-10-22
3.8	Implementación de módulo de interfaz humano-máquina	2020-10-23	2020-11-05
3.9	Implementación de módulo de medición de velocidad	2020-11-06	2020-11-19
3.10	Implementación de módulo de comunicación y localización	2020-11-20	2020-12-10
3.11	Implementación de módulo de lógica principal	2020-12-11	2020-12-24
3.12	Pruebas y verificación del software	2020-12-25	2020-12-31
3.13	Elaboración de informe de verificación	2021-01-01	2021-01-10
4.1	Revisión y actualización de la arquitectura del hardware	2021-01-11	2021-01-17
4.2	Selección de módulos y componentes	2021-01-18	2021-01-24
4.3	Actualización de los diagramas esquemáticos	2021-01-25	2021-01-31
4.4	Diseño del circuito impreso	2021-02-01	2021-02-28
4.5	Fabricación del circuito impreso	2021-03-01	2021-03-07
4.6	Pruebas y verificación del hardware	2021-03-08	2021-03-21
5.1	Integración de módulos constitutivos	2021-03-22	2021-03-28
5.2	Pruebas de integración y verificación del sistema	2021-03-29	2021-04-11
5.3	Pruebas de campo y validación del sistema	2021-04-12	2021-04-25
5.4	Elaboración de informe de validación	2021-04-26	2021-05-02
6.1	Elaboración del informe de avance	2021-05-03	2021-05-09
6.2	Elaboración de la memoria del proyecto	2021-05-10	2021-06-13
6.3	Preparación de la presentación final	2021-06-14	2021-06-20

Figura 4: Diagrama de Gantt (Primera parte)

Figura 5: Diagrama de Gantt (Segunda parte)

9. Matriz de uso de recursos de materiales

		Re	ecursos requ	ieridos (ho	oras)
				Circuito	
WDC	Nl		Prototipo	impre-	Instru-
WBS	Nombre de la tarea	PC	original	so y	men-
			del	compo-	tal
			SAL/T	nentes	
1.1	Elaboración del plan de proyecto	20			
2.1	Estudio de la documentación original	20			
2.2	Estudio de la arquitectura y el código fuente	30	20		10
	original				
2.3	Estudio de la normativa	10			
3.1	Elaboración de la especificación de requisitos	20			
3.2	Elaboración de la especificación de arquitectu-	20			
	ra				
3.3	Elaboración del plan de verificación del softwa-	10			
0.4	re	10			
3.4	Elaboración del plan de validación del software	10			
3.5	Selección y configuración del entorno de	10			
0.6	desarrollo	10			
3.6	Selección de bibliotecas externas	10	00		
3.7	Implementación de drivers y primitivas	20	20		
3.8	Implementación de módulo de interfaz	20	20		
3.9	humano-máquina Implementación de módulo de medición de	30	30		
	velocidad				
3.10	Implementación de módulo de comunicación y localización	30	30		
3.11	Implementación de módulo de lógica principal	30	30		
3.12	Pruebas y verificación del software	20	20		20
3.13	Elaboración de informe de verificación	5			
4.1	Revisión y actualización de la arquitectura del	20			
	hardware				
4.2	Selección de módulos y componentes	10			
4.3	Actualización de los diagramas esquemáticos	20			
4.4	Diseño del circuito impreso	60			
4.5	Fabricación de circuito impreso	20		20	
4.6	Pruebas y verificación del hardware	40	40	40	40
5.1	Integración de módulos constitutivos	10	10	10	
5.2	Pruebas de integración y verificación del	20	20	20	20
	sistema				
5.3	Pruebas de campo y validación del sistema	10	10	10	
5.4	Elaboración de informe de validación	5			
6.1	Elaboración del informe de avance	10			
6.2	Elaboración de la memoria del proyecto	40			
6.3	Preparación de la presentación final	10			

10. Presupuesto detallado del proyecto

A continuación se presentan los costos directos e indirectos del proyecto.

COSTOS DIRECTOS					
Descripción	Cantidad	Valor unitario	Valor total		
Relay de seguridad	10	\$ 2.500	\$ 25.000		
Otros componentes electrónicos	N/A	N/A	\$ 20.000		
Fabricación de circuito impreso	N/A	N/A	\$ 10.000		
Mano de obra	600 horas	\$ 1.000	\$ 600.000		
SUBTOTAL			\$ 655.000		
COSTOS INDIR	ECTOS				
Descripción	Cantidad	Valor unitario	Valor total		
20 % del costo directo	N/A	N/A	\$ 131.000		
SUBTOTAL			\$ 131.000		
TOTAL					

11. Matriz de asignación de responsabilidades

En esta sección se presenta la tabla de asignación de responsabilidades.

Referencias:

- \bullet P = Responsabilidad Primaria
- $\bullet \ {\bf A} = {\bf Aprobación}$
- \blacksquare I = Informado

					es del proyecto		
		Responsable	Orientador	Orientador	Colaborador	Colaborador	Cliente
WBS	Nombre de la tarea	Ing. Nahuel	Dr. Ing. Pa-	Mg. Ing.	Dr. Ing.	Ing. Sergio	Ing. Alejan-
		Espinosa	blo Gomez	Martín Menendez	Ariel Lutenberg	Dieleke	dro Leonet-
1.1	Elaboración del plan	P	Λ			I	I
1.1	de proyecto	Г	A	A	A	1	1
2.1	Estudio de la documentación original	P	С				
	Estudio de la arqui-						
2.2	tectura y el código	P					
	fuente original						
2.3	Estudio de la norma-	P			C		
	tiva Elaboración de la es-						
3.1	pecificación de requi-	Р	A	A	I		A
	sitos del software						
	Elaboración de la es-						
3.2	pecificación de arqui-	Р	A	A	I		I
	tectura del software Elaboración del plan						
3.3	de verificación del	Р	A	A	I		I
	software						
	Elaboración del plan						
3.4	de validación del	P	A	A	I	С	A
	software						
3.5	Selección y configuración del entorno de	P	I	I			
0.0	desarrollo	1	1				
3.6	Selección de bibliote-	Р	С	С			
5.0	cas externas	1	0				
3.7	Implementación de drivers y primitivas	P	I	I			
	Implementación de						
3.8	módulo de interfaz	P	I	I			
	humano-máquina						
	Implementación de			_			
3.9	módulo de medición	P	Ι	I			
	de velocidad Implementación						
2.10	de módulo de	T.		-			
3.10	comunicación y	Р	Ι	I			
	localización						
3.11	Implementación de módulo de lógica	Р	I	I			
3.11	módulo de lógica principal	ſ	1	1			
0.10	Pruebas y verifica-	D	т	т			
3.12	ción del software	P	Ι	I			
3.13	Elaboración de infor-	P	A	A			I
5.20	me de verificación	•					· .
4.1	Revisión y actualiza- ción de la arquitectu-	P	A	A	I	$^{\mathrm{C}}$	I
4.1	ra del hardware	*	11	11	_		•
4.2	Selección de módulos	P	С	С			
4.2	y componentes	Γ΄	C	C			
4.0	Actualización de	D	т.				
4.3	los diagramas esquemáticos	Р	Ι	I			
	coquematicos			l	l		

		Nombres y roles del proyecto					
		Responsable	Orientador	Orientador	Colaborador	Colaborador	Cliente
WBS	Nombre de la tarea	Ing. Nahuel Espinosa	Dr. Ing. Pablo Gomez	Mg. Ing. Martín Menendez	Dr. Ing. Ariel Lutenberg	Ing. Sergio Dieleke	Ing. Alejandro Leonetti
4.4	Diseño del circuito impreso	P	I	I			
4.5	Fabricación de cir- cuito impreso	Р	I	I			
4.6	Pruebas y verifica- ción del hardware	P	I	I			
5.1	Integración de módulos constitutivos	Р	I	I			
5.2	Pruebas de integra- ción y verificación del sistema	Р	A	A	I		I
5.3	Pruebas de campo y validación del siste- ma	Р	A	A	I	С	A
5.4	Elaboración de infor- me de validación	P	A	A	I	Ι	A
6.1	Elaboración del informe de avance	P	A	A	I		I
6.2	Elaboración de la memoria del proyec- to	Р	A	A	A		
6.3	Preparación de la presentación final	P	I	I	A		

12. Gestión de riesgos

a) Identificación de los riesgos y estimación de sus consecuencias:

Riesgo 1: Cambios en costos de componentes electrónicos importados o nacionales.

- Severidad (S): 5 (cinco)
 Severidad media, tendría un impacto en el costo estimado del proyecto.
- Probabilidad de ocurrencia (O): 8 (ocho)
 Ocurrencia alta, debido a la situación actual del país.

Riesgo 2: Pérdida de comunicación con los interesados del proyecto.

- Severidad (S): 8 (ocho)
 Severidad alta, la comunicación con los interesados es necesaria para verificar requisitos y validar la funcionalidad del sistema.
- Probabilidad de ocurrencia (O): 5 (cinco)
 Ocurrencia media, es posible que los interesados no estén disponibles en los tiempos requeridos para el proyecto.

Riesgo 3: Falta de tiempo para el desarrollo.

- Severidad (S): 8 (ocho)
 Severidad alta, puede provocar que el proyecto no se finalice en el plazo establecido.
- Probabilidad de ocurrencia (O): 6 (seis)
 Ocurrencia media, el trabajo se realizará fuera del horario laboral del responsable del proyecto.

Riesgo 4: Extensión del tiempo de cuarentena debido al COVID-19.

- Severidad (S): 5 (cinco)
 Severidad media, en la primera etapa del proyecto impide realizar pruebas de campo sobre el prototipo que ya está construído. En la segunda etapa dificultaría las tareas de validación del sistema.
- Probabilidad de ocurrencia (O): 5 (cinco)
 Ocurrencia media, se espera que se desarrolle una vacuna y se regularice la situación a nivel mundial antes de llegar a la etapa de validación del proyecto.

Riesgo 5: Rotura de computadora personal.

- Severidad (S): 8 (ocho)
 Severidad alta, es una herramienta necesaria en todas las etapas del desarrollo.
- Probabilidad de ocurrencia (O): 1 (uno)
 Ocurrencia baja, se trata de una computadora adquirida recientemente en periodo de garantía.

Riesgo 6: Falla, rotura o perdida de componentes electrónicos.

- Severidad (S): 6 (seis)
 Severidad media, tendría un impacto en el costo estimado del proyecto sumado al tiempo de reposición.
- Probabilidad de ocurrencia (O): 3 (tres)
 Ocurrencia baja, en condiciones normales no deberían romperse o perderse componentes.

Riesgo 7: Pérdida de archivos de documentación, código fuente o archivos de diseño del proyecto.

- Severidad (S): 9 (nueve)
 Severidad alta, se perdería el avance realizado provocando un retraso en la finalización del proyecto.
- Probabilidad de ocurrencia (O): 5 (cinco)
 Ocurrencia media, puede ser bastante común dependiendo del medio de almacenamiento utilizado.

b) Tabla de gestión de riesgos:

(El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*
Cambios en costos de componentes electrónicos importa-	5	8	40	3	8	24
dos o nacionales						
Pérdida de comunicación con los interesados del proyecto	8	5	32	-	-	-
Falta de tiempo para el desarrollo	8	6	40	8	3	24
Extensión del tiempo de cuarentena debido al COVID-19	5	5	25	-	-	-
Rotura de computadora personal	8	1	8	-	-	-
Falla, rotura o perdida de componentes electrónicos	6	3	18	-	-	-
Pérdida de archivos de documentación, código fuente o	9	5	45	9	1	9
archivos de diseño del proyecto						

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a 35.

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: Plan de mitigación

Se calcula el presupuesto considerando un posible aumento en el costo de los componentes.

- Severidad (S): 3 (tres)
 Severidad baja, debido a que se tiene en cuenta en la gestión de recursos materiales de la planificación.
- Probabilidad de ocurrencia (O): 8 (ocho)
 Ocurrencia alta, debido a la situación actual del país.

Riesgo 3: Plan de mitigación

La gestión de tiempos se hizo teniendo en cuenta la cantidad de horas disponibles por semana para trabajar en el proyecto.

- Severidad (S): 8 (ocho)
 Severidad alta, puede provocar que el proyecto no se finalice en el plazo establecido.
- Probabilidad de ocurrencia (O): 3 (tres)
 Ocurrencia baja, debido a que se tiene en cuenta en la gestión de tiempos de la planificación.

Riesgo 7: Plan de mitigación

Todo el contenido se almacenará en plataformas online (Google Drive, Dropbox, GitHub).

- Severidad (S): 9 (nueve)
 Severidad alta, se perdería el avance realizado provocando un retraso en la finalización del proyecto.
- Probabilidad de ocurrencia (O): 1 (uno)
 Ocurrencia baja, es muy poco probable que los archivos se pierdan o sean irrecuperables.

13. Gestión de la calidad

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, etc.

- Req #1: La interfaz debe contar con una llave rotativa precintable para activar el modo aislado limitado.
 - Verificación:

Se verificará la hoja de datos de la llave rotativa y se comprobará que cumple con niveles de seguridad adecuados para la aplicación.

Validación:

Se comprobará que con la llave precintada no hay forma de activar el modo aislado, se colocará la llave en la posición AL y se verificará que se enciendan los leds indicadores correspondientes.

- Req #2: La interfaz debe indicar el estado actual del sistema.
 - Verificación:

Se hará una prueba que encienda los leds de la interfaz humano-máquina de forma secuencial.

• Validación:

Se activará el modo aislado limitado y se verificará que enciendan los leds indicadores correspondientes.

- Req #3: La interfaz debe mostrar la velocidad media del equipo en km/h con 4 dígitos.
 - Verificación:

Se hará una prueba que encienda el display de la interfaz humano-máquina y haga un barrido de valores desde cero al límite máximo de velocidad.

Validación:

Se activará el modo aislado limitado y se verificará que se muestre el valor correcto en el display.

- Req #4: La interfaz debe indicar el estado de la señal de corte de tracción.
 - Verificación:

Se hará una prueba que encienda los leds de la interfaz humano-máquina de forma secuencial.

• Validación:

Se activará el modo aislado limitado y se verificará que enciendan los leds indicadores correspondientes.

- Req #5: La interfaz debe indicar el estado de la señal de freno de emergencia.
 - Verificación:

Se hará una prueba que encienda los leds de la interfaz humano-máquina de forma secuencial.

• Validación:

Se activará el modo aislado limitado y se verificará que enciendan los leds indicadores correspondientes.

- Req #6: La interfaz debe indicar la presencia de un comando remoto de la central operativa.
 - Verificación:

Se hará una prueba que encienda los leds de la interfaz humano-máquina de forma secuencial.

• Validación:

Se activará el modo aislado limitado y se verificará que enciendan los leds indicadores correspondientes.

- Req #7: La interfaz debe indicar el estado de los módulos GPS.
 - Verificación:

Se hará una prueba que encienda los leds de la interfaz humano-máquina de forma secuencial.

• Validación:

Se activará el modo aislado limitado y se verificará que enciendan los leds indicadores correspondientes.

- Req #8: La interfaz debe indicar el estado de la alimentación.
 - Verificación:

Se hará una prueba que encienda los leds de la interfaz humano-máquina de forma secuencial.

• Validación:

Se activará el modo aislado limitado y se verificará que enciendan los leds indicadores correspondientes.

- Req #9: El sistema debe informar al registrador de eventos la activación del modo aislado limitado.
 - Verificación:

Se medirán los contactos de la salida correspondiente y se verificará el cambio de estado cuando se activa el modo aislado limitado.

• Validación:

Se conectará el equipo al registrador de eventos Hasler y se comprobará que registra correctamente la activación del modo aislado limitado.

- Req #10: El sistema debe informar al registrador de eventos si la alimentación es correcta.
 - Verificación:

Se relizará un ensayo con una fuente de alimentación de laboratorio. Se medirán los contactos de la salida correspondiente y se verificará el cambio de estado cuando disminuye la tensión de alimentación fuera del rango aceptable.

• Validación:

Se conectará el equipo a una fuente de alimentación de una formación y al registrador de eventos Hasler. Se comprobará que registra correctamente que la alimentación está dentro del rango adecuado.

- Req #11: El sistema debe informar al registrador de eventos la activación del freno de emergencia.
 - Verificación:

	Ψ.	, .				,		
•	- \	•	116	โล	α_1	Ò.	n	٠

-	Req $\#12$: El sistema debe informar al registrador de eventos la activación del corte de tracción.
	• Verificación:
	• Validación:
	Req #13: El sistema debe informar periódicamente (con un tiempo configurable) su estado a la central operativa a través de la red de datos GPRS, $3G$ ó $4G$.
	• Verificación:
	• Validación:
•	Req #14: El sistema debe utilizar la antena GPRS/GPS ya disponible en la formación. • Verificación:
	• Validación:
	Req $\#15$: Debe existir la posibilidad de usar 2 proveedores distintos de datos de manera simultánea.
	• Verificación:
	• Validación:
	Req #16: El protocolo de comunicación con la central operativa debe ser MQTT. • Verificación:
	• Validación:
•	Req #17: El sistema debe ser capaz de recibir un comando remoto que anule el corte de tracción y el freno de emergencia bajo cualquier condición (modo aislado total).
	• Verificación:
	• Validación:

tracción y el freno de emergencia bajo cualquier condición (modo parada total).

 \blacksquare Req #18: El sistema debe ser capaz de recibir un comando remoto que active el corte de

Ting. Tvantuct Espinosa
• Verificación:
• Validación:
 Req #19: El sistema debe ser capaz de recibir un comando remoto que active el corte de tracción y anule el freno de emergencia bajo cualquier condición (modo coche en deriva).
• Verificación:
• Validación:
■ Req #20: El sistema debe ser capaz de recibir un comando remoto que active el corte de tracción y el freno de emergencia de forma intermitente en ciclos de tiempo configurable (modo intermitente).
• Verificación:
• Validación:
 Req #21: El sistema debe ser capaz de recibir un comando remoto que cancele cualquie comando remoto vigente. Verificación:
• Validación:
 Req #22: El sistema debe ser capaz de recibir comandos remotos que modifiquen su parámetros internos configurables. Verificación: Validación:
• vandacion:
■ Req #23: Si no se recibe un nuevo comando remoto luego de un tiempo configurable (po defecto 10 segundos, máximo 1 minuto), debe volver al algoritmo de activación de corte de tracción y freno de emergencia por defecto.
• Verificación:
• Validación:
■ Req #24: Ante un comando remoto recibido, debe enviar una confirmación de recepción que permita a la central operativa decidir si es necesaria o no una retransmisión.

• Verificación:

- Validación:
- Req #25: Debe utilizar algún mecanismo de encriptación para el enlace con la central operativa.
 - Verificación:
 - Validación:
- Req #26: El modo normal el sistema no debe intervenir en el funcionamiento del material rodante (prioridad alta).
 - Verificación:
 - Validación:
- Req #27: El sistema debe ser capaz de recibir la velocidad a partir de una señal digital provista por el registrador de eventos Hasler Teloc 1500.
 - Verificación:
 Se harán pruebas con un controlador externo que simule las distintas fuentes de velocidad y se verificará el valor mostrado en el display.
 - Validación: Se conectará el equipo al registrador de eventos con un generador de impulsos y se verificará el valor mostrado en el display.
- Req #28: El sistema debe ser capaz de calcular la velocidad a partir de un generador de impulsos ópticos instalado en una o varias ruedas de la formación.
 - Verificación:
 - Validación:
- Req #29: El sistema debe ser capaz de calcular la velocidad a partir de un sistema GPS integrado.
 - Verificación:
 - Validación:
- Req #30: El rango de velocidad soportado por el sistema tiene que estar entre 0 y 120 km/h.
 - Verificación:
 - Validación:

segundos.

■ Re	q $\#31$: La estimación de velocidad debe tener una precisión del 2 % de fondo de escala.
	• Verificación:
	• Validación:
	q $\#32$: En modo aislado limitado el sistema debe evitar la aplicación del corte de cción.
	• Verificación:
	• Validación:
	q $\#33$: En modo aislado limitado el sistema debe evitar la aplicación del freno de ergencia.
	• Verificación:
	• Validación:
	q $\#34$: Ante cualquier error interno, el sistema debe dejar de intervenir en la aplicación corte de tracción.
	• Verificación:
	• Validación:
	q $\#35$: Ante cualquier error interno, el sistema debe dejar de intervenir en la aplicación freno de emergencia.
	• Verificación:
	• Validación:
	q $\#36$: En modo aislado limitado el sistema debe emitir una señal sonora intermitente ravés de un buzzer.
	• Verificación:
	• Validación:
■ Re	q $\#37$: Si al pasar de modo normal a modo aislado limitado no se cuenta con una

estimación de velocidad, debe activar el corte de tracción y el freno de emergencia por 30

• Verificación:	
• Validación:	
 Req #38: Si se supera una velocidad configurable (por def corte de tracción y emitir una señal sonora continua a trav 	• •
• Verificación:	
• Validación:	
■ Req #39: Si se supera una velocidad configurable (por def freno de emergencia.	ecto 36 km/h), debe activar el
• Verificación:	
• Validación:	
■ Req #40: Una vez aplicado, el corte de tracción debe dej vuelve a ser menor a una velocidad configurable (por defec	-
• Verificación:	
• Validación:	
■ Req #41: Una vez aplicado, el freno de emergencia sólo de un tiempo configurable (por defecto 30 segundos) desde qu	
• Verificación:	
• Validación:	
■ Req #42: Si la lectura de velocidad es inválida, debe ao tracción y freno de emergencia de manera alternada en cic	
• Verificación:	
• Validación:	
■ Req #43: El sistema debe utilizar la alimentación present rango de 60 V a 110 V de tensión continua.	te en el material rodante en el
• Verificación:	
• Validación:	

- Req #44: Los conectores del equipo deben ser unívocos imposibilitando la conexión incorrecta.
 - Verificación:
 - Validación:
- Req #45: El sistema debe poseer una única placa de circuito impreso con el procesador y periféricos necesarios para el procesamiento de las señales del material rodante.
 - Verificación:
 - Validación:

14. Comunicación del proyecto

El plan de comunicación del proyecto es el siguiente:

PLAN DE COMUNICACIÓN DEL PROYECTO					
¿Qué comunicar?	Audiencia	Propósito	Frecuencia	Método de comunica- ción	Responsable
Plan de proyecto	Directores Cliente	Evaluar la definición de objetivos, alcance y gestión de recursos.	Una vez	Correo electrónico	Nahuel Espinosa
Avances semana- les	Directores	Informar el cumplimiento de tareas, resolver dudas, recibir sugerencias.	Semanal	Correo electrónico y/o video-conferencia	Nahuel Espinosa
Especificación de requisitos, plan de validación e infor- me de validación	Cliente	Aprobar la definición de requisitos y su validación.	Una vez	Correo electrónico	Nahuel Espinosa
Informe de avance	Directores Cliente	Informar el estado actual del desarrollo del proyecto.	Una vez	Correo electrónico	Nahuel Espinosa
Presentación del proyecto final	Directores Cliente Jurado	Exponer el producto fi- nal, detallando su di- seño y construcción.	Una vez	Audiencia pública	Nahuel Espinosa

15. Gestión de compras

Los componentes seleccionados se adquirirán a través de proveedores locales o extranjeros evaluando la disponibilidad, el precio y el tiempo de entrega.

Para la fabricación del circuito impreso se seleccionará el proveedor con la mejor relación preciotiempo de entrega.

16. Seguimiento y control

SEGUIMIENTO DE AVANCE						
Tarea del WBS	Indicador de avance	Frecuencia de reporte	Resp. de seguimiento	Persona a ser informada	Método de comunic.	
1.1	Porcentaje de secciones escritas	Semanal	Nahuel Espinosa	Directores Profesores de Gestión de Proyecto	Correo electrónico	
2.1	Cantidad de do- cumentos leídos	Al finalizar	Nahuel Espi- nosa	Directores	Correo electrónico	
2.2	Cantidad de módulos analizados	Al finalizar	Nahuel Espi- nosa	Directores	Correo electrónico	
2.3	Porcentaje de sec- ciones leídas	Semanal	Nahuel Espinosa	Directores	Correo electrónico	
3.1	Porcentaje de secciones escritas	Semanal	Nahuel Espinosa	Directores Profesores de Ingeniería de Software	Correo electrónico	
3.2	Porcentaje de secciones escritas	Semanal	Nahuel Espinosa	Directores Profesores de Ingeniería de Software	Correo electrónico	
3.3	Porcentaje de sec- ciones escritas	Semanal	Nahuel Espinosa	Directores Profesores de Testing	Correo electrónico	
3.4	Porcentaje de secciones escritas	Semanal	Nahuel Espinosa	Directores	Correo electrónico	
3.5	Cantidad de programas seleccionados	Al finalizar	Nahuel Espinosa	Directores	Correo electrónico	
3.6	Cantidad de bi- bliotecas seleccio- nadas	Al finalizar	Nahuel Espi- nosa	Directores	Correo electrónico	
3.7	Porcentaje de módulos implementados	Semanal	Nahuel Espi- nosa	Directores	Correo electrónico	
3.8	Porcentaje de módulos implementados	Semanal	Nahuel Espinosa	Directores	Correo electrónico	
3.9	Porcentaje de módulos implementados	Semanal	Nahuel Espinosa	Directores	Correo electrónico	

		SEGUIMIENTO	DE AVANCE		
Tarea del WBS	Indicador de avance	Frecuencia de reporte	Resp. de seguimiento	Persona a ser informada	Método de comunic.
3.10	Porcentaje de módulos implementados	Semanal	Nahuel Espinosa	Directores	Correo electrónico
3.11	Porcentaje de módulos implementados	Semanal	Nahuel Espi- nosa	Directores	Correo electrónico
3.12	Porcentaje de módulos probados	Semanal	Nahuel Espi- nosa	Directores	Correo electrónico
3.13	Porcentaje de sec- ciones escritas	Semanal	Nahuel Espi- nosa	Directores	Correo electrónico
4.1	Porcentaje de módulos revisados	Semanal	Nahuel Espi- nosa	Directores	Correo electrónico
4.2	Cantidad de módulos y componentes actualizados	Semanal	Nahuel Espinosa	Directores	Correo electrónico
4.3	Cantidad de dia- gramas actualiza- dos	Al finalizar	Nahuel Espi- nosa	Directores	Correo electrónico
4.4	Cantidad de módulos diseñados	Semanal	Nahuel Espi- nosa	Directores	Correo electrónico
4.5	Porcentaje de en- samblaje	Semanal	Nahuel Espinosa	Directores	Correo electrónico
4.6	Porcentaje de módulos probados	Semanal	Nahuel Espi- nosa	Directores	Correo electrónico
5.1	Porcentaje de tra- bajo realizado	Al finalizar	Nahuel Espi- nosa	Directores	Correo electrónico
5.2	Porcentaje de pruebas realizadas	Semanal	Nahuel Espinosa	Directores	Correo electrónico
5.3	Porcentaje de pruebas realizadas	Semanal	Nahuel Espinosa	Directores	Correo electrónico
5.4	Porcentaje de secciones escritas	Semanal	Nahuel Espi- nosa	Directores	Correo electrónico
6.1	Porcentaje de secciones escritas	Semanal	Nahuel Espi- nosa	Directores	Correo electrónico
6.2	Porcentaje de sec- ciones escritas	Semanal	Nahuel Espi- nosa	Directores	Correo electrónico
6.3	Cantidad de dia- positivas termina- das	Al finalizar	Nahuel Espinosa	Directores	Correo electrónico

17. Procesos de cierre

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 - Se revisará el cumplimiento de los requisitos analizando los informes de verificación y validación.
 - Se revisará el cumplimiento de los tiempos estimados utilizando el diagrama de Gantt.
 - Se revisará el cumplimiento del presupuesto estimado evaluando las horas trabajadas y los gastos.

Responsable: Nahuel Espinosa

- Identificación de las técnicas y procedimientos útiles e inútiles que se utilizaron, y los problemas que surgieron y cómo se solucionaron:
 - Se evaluarán las técnicas, herramientas y procedimientos utilizados.
 - Se evaluará el plan de gestión de riesgos y si surgiera alguno de los riesgos identificados, se analizará la efectividad del plan de mitigación.

Responsable: Nahuel Espinosa

- Acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores:
 - Se invitará a todas las personas involucradas en el proyecto a la presentación pública y se agradecerá su participación.

Responsable: Nahuel Espinosa