		Tipo de Prova Exame de Época de Recurso	Ano letivo 2016/2017	Data 06-07-2017
P.PORTO		^{Curso} Licenciatura em Segurança Informática de R Computadores	Hora 10:00	
		Unidade Curricular Matemática Discreta		Duração 2,5 horas

N.º de aluno: _____Nome: _____

Questão	1	2	3	4	5	6	7	8	9	10	11	TOTAL
Cotação	1,0+1,0+1,0	1,5	1,0+1,0	0,8+1,5	1,2	1,2	1,6	1,5	0,8+1,2	1,2+1,0	1,5	20

- **1.** Considere o conjunto $Y = \{\emptyset, a, \{a\}, b\}, \text{com } a, b \in \mathbb{N}.$
 - a) Determine # Y, $\mathcal{P}(Y)$ e # $\mathcal{P}(\mathcal{P}(Y))$.
 - b) Diga, justificando, se cada uma das seguintes afirmações é verdadeira ou falsa:

$$\emptyset \in \mathcal{P}(Y)$$

$$\{\emptyset, a\} \subseteq \mathcal{P}(Y)$$

$$\mathcal{P}(Y)\subseteq\,\mathcal{P}(\mathcal{P}(Y))$$

$$\{\{\emptyset,b\}\}\in \mathcal{P}(Y)$$

- c) Dê uma exemplo de uma função $f:\{a,b\} \to \mathcal{P}(Y)$, que seja injetiva não sobrejetiva.
- 2. Considere o conjunto universo $U = \{x \in \mathbb{Z}_0^+ \colon 10x < 31\}$ e os seus subconjuntos $A = \{x \in U \colon x^3 \le 10\}, \ B = \{x \in U \colon x \text{ \'e divisor de 3}\}$ e $C = \{x \colon x \text{ \'e primo e } x \text{ divide 2}\}.$ Determine $C \times \overline{A \cap B}$ e $(A \cup B) \oplus C$.
- **3**. Considere as seguintes relações binárias definidas sobre $\{a, b, c\}$:

$$R = \{(a,a), (b,b), (c,c), (c,a), (a,c)\} \in S = \{(a,a), (c,c), (a,c), (b,c)\} e$$

- a) Determine, caso seja possível $(R \cap S) \circ S^{-1}$ e transitivo(S).
- **b)** Verifique, justificando, quais das relações, R ou S, \acute{e} de equivalência e indique a classe de equivalência do elemento c.
- **4**. Relativamente ao grafo apresentado ao lado:
 - a) Classifique-o, indique o conjunto dos vértices e das arestas, assim como sua ordem e dimensão;

- b) Determine a matriz de adjacências e, com base nesta matriz, determine:
 - i) o grau de cada vértice
 - **ii)** o número de caminhos de comprimento sete de D para A e, casos existam, indique dois desses caminhos.
- 5. Defina o *Traveling Salesman Problem* (TSP) e apresente um exemplo de aplicação.
- 6. Dê, justificando, um exemplo de um grafo com mais de 5 vértices que seja Semi-Euleriano e não Euleriano.
- 7. Usando o Algoritmo de Euclides, determine mdc(224,43), indique, justificando os coeficientes de Bézout e com base nestes indique, se possível, o inverso de 43 mod 224.
- **8**. Escreva a sequência de números pseudoaleatórios gerada por $x_{n+1} = (23x_n + 1) \mod 11$, com raiz $x_0 = 5$.

ESTG-PR05-Mod013V2 Página1de2

	ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO	Tipo de Prova Exame de Época de Recurso	Ano letivo 2016/2017	Data 06-07-2017
P.PORTO		^{Curso} Licenciatura em Segurança Informática de R Computadores	Hora 10:00	
		Unidade Curricular Matemática Discreta		Duração 2,5 horas

N.º de aluno: _____ Nome: _____

- **9.** Considere a função encriptadora $f(n) = (7n + 1) \mod 26$ e $A \leftrightarrow 0, ..., Z \leftrightarrow 25$.
 - a) Encripte a mensagem "S".
 - b) Escreva a função de desencriptação e desencripte a mensagem "AH".
- **10**. Considere o sistema RSA com $n=43\times 59=2537$ e a=13.
 - a) Encripte a mensagem "AS".
 - b) Determine a chave privada.
- **11.** Considere rede constituída por 5 páginas web A, B, C, D, E com os links mostrados na imagem ao lado.

Suponha que, em cada passo, escolhemos de forma aleatória um link da página web onde estamos.

Escreva a matriz de transição do processo Markov subjacente e calcule a probabilidade, de começando na página D, dez passos depois estar de volta à página D.

Bom Trabalho Eliana Costa e Silva

ESTG-PR05-Mod013V2 Página 2