CS205 hw5

Essam Sleiman

May 2024

1

1.1

First let's calculate the peak performance. This is calculated as Cores \times Frequency \times FLOPS per cycle per core. That is equal to: 18 cores * 3.3 GHz * 16 FLOPs/cycle = 950.4 GFLOP/s.

For the memory bandwidth, I used STREAM, which calculated that the memory bandwidth is $12569.4~\mathrm{MB/s}$ or $12.28~\mathrm{GB/s}$ or $3147~\mathrm{GFLOP/s}$. Below is the plot.

1.2

My best performance result is 239 GFLOPS/s. In my approach, I've used KERNEL_FLOPS (1000000.0 * (8.0 + 8.0)) as NLOOP * (ADD + MUL) and 18 cores * 3.3 GHz * 16 FLOPs/cycle = 950.4 GFLOP/s. Memory bandwidth could potentially be bottlenecking my speed, since I have high throughput from vectorized operations

1.3

Percentage is 25.2%.

$\mathbf{2}$

2.1

 $37364.7~\mathrm{ms}$

2.2

79.2 ms

Figure 1: Roofline Model

2.3

 $79.4~\mathrm{ms}$