Algorithms

Lesson #3: Greedy Algorithms (cont.)

(Based on slides by Prof. Dana Shapira)

Binary codes

Example

	α	b	С	d	е	f
Frequency	45	13	12	16	9	5

|--|

Codeword (C_1)

Variable-length	0	101	100	111	1101	1100	$L(C_2) = 224$
codeword (C_2)							

- Codes in which <u>no</u> codeword is also a <u>prefix</u> of some other codeword.
 - Example:

	a	Ь	С	d	e	f
Variable-length codeword	0	101	100	111	1101	1100

110001001101

- Easy to encode and decode using prefix-free codes.
- No Ambiguity!! Uniquely Decipherable (UD)

	а	b	С	d	е	f
Variable-length codeword	0	101	100	111	1361	1100
	0	101	100	111	110	1100

- 1100 = 110 0 = "f"
- or
- 1100 = 110 + 0 = "ea"

- Represented as a binary tree
 - each edge represents either 0 (left) or 1 (right)
 - each leaf corresponds to a codeword which is the sequence of Os and 1s traversed from the root to reach it.
- Since no prefix is shared, all codewords are at the leaves, and decoding a string means following edges, according to the sequence of Os and 1s in the string, until a leaf is reached.

	α	Ь	С	d	e	f
Frequency	45	13	12	16	9	5
Fixed-length codeword	000	001	010	011	100	101

	α	Ь	С	d	e	f
Frequency	45	13	12	16	9	5
Variable-length codeword	0	101	100	111	1101	1100

Building an optimal binary code

Problem: We are given a set of symbols with frequencies.

How can we build an optimal code for them?

V	W	X	У	Z
7	15	6	5	6

Shannon-Fano algorithm

- Sort the symbols by frequency
- Always split as close to the middle as possible (w.r.t. frequency)

V	W	X	У	Z
7	15	6	5	6

V	W	X	У	Z
7	15	6	5	6

The Shannon-Fano code:

$$L = 89$$

Is this optimal?

A better code:

$$L = 87$$

Huffman Algorithm

- Greedy
 - The <u>two smallest nodes</u> are chosen at each step, and this local decision results in a globally optimal encoding tree.
- bottom-up manner
 - Starts with a set of $|\Sigma|$ leaves and performs a sequence of $|\Sigma|$ 1 "merging" operations to create the final tree.

Professor David A. Huffman (August 9, 1925 - October 7, 1999)


```
HUFFMAN (\Sigma)
1 n \leftarrow |\Sigma|
2 Q \leftarrow \Sigma
                                       What is the running time?
3 for i \leftarrow 1 to n - 1
4
        do ALLOCATE-NODE(z)
5
         left[z] \leftarrow x \leftarrow EXTRACT-MIN(Q)
6
         right[z] \leftarrow y \leftarrow EXTRACT-MIN(Q)
         w[z] \leftarrow w[x] + w[y]
8
         INSERT (Q, z)
9 return EXTRACT-MIN(Q)
```

Huffman Algorithm

a:45

Optimality of Huffman Codes

Theorem:

Given weights $w_1,...,w_n$. Huffman Algorithm assigns code lengths $l_1,...,l_n$ such that $L = \sum w_i l_i$ is minimal.

Lemma 1:

An optimal code for a file is always represented by a <u>full</u> <u>binary tree</u>, in which every non-leaf node has <u>two</u> children.

Lemma 2:

In an optimal tree the two lowest weights w_{n-1} and w_n are in the lowest level.

Optimality of Huffman Codes

Lemma 3:

In an optimal tree the two lowest weights w_{n-1} and w_n can be assumed to be brothers.

Optimality of Huffman Codes

Proof that Huffman is optimal:

By induction on n.

Given $\Sigma = (s_1,...,s_n)$ with multiplicities $(w_1,...,w_n)$, Huffman replaces symbols s_{n-1} , s_n by a new symbol z with multiplicity $w_{n-1}+w_n$, then constructs a tree T' for $\Sigma' = (s_1,...,s_{n-2},z)$, then obtains T by replacing

By induction assumption, T' is optimal

What is the relation between L(T) and L(T')?

$$L(T) = L(T') + w_{n-1} + w_n$$
 (1)

Suppose for a contradiction that there exists a tree T* for Σ with $L(T^*) < L(T)$

W.l.o.g. s_{n-1} , s_n are neighbors in T^*

Can replace

in T* by Z

By (1), we got a tree for Σ' better than T'. Contradiction