Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики N 4.3.4

Преобразование Фурье в оптике

Автор:

Филиппенко Павел Б01-001

Долгопрудный, 2022

Цель работы: исследовать явление дифракции Фринеля и Фраунгофера на щели, изучить влияние дифракции наразрешающую способность оптических приборов.

В работе используются: гелий-неоновый лазер, кассета с набором сеток разного периода, щель с микрометрическим винтом, линзы, экран, линейка.

1 Введение

Анализ сложного волнового поля во многих случаях целесообразно проводить, разлагая его на простейшие составляющие, например, представляя его в виде разложения по плоским волнам. При этом оказывается, что если мы рассматриваем поле, полученное после прохождения плоской монохроматической волны через предмет или транспарант (изображение предмета на фотоплёнке или стеклянной пластинке) с функцией пропускания t(x), то разложение по плоским волнам соответствует преобразованию Фурье от этой функции. Если за предметом поставить линзу, то каждая плоская волна сфокусируется в свою точку в задней фокальной плоскости линзы. Таким образом, картина, наблюдаемая в фокальной плоскости линзы, даёт нам представление о спектре плоских волн падающего на линзу волнового поля. Поэтому можно утверждать, что с помощью линзы в оптике осуществляется пространственное преобразование Фурье.

2 Определение ширины щели

2.1 Определение ширины щели по изображению

Схема установки представлена на рис. 1. Щель переменной ширины D, снабжённая микрометрическим винтом , освещается параллельным пучком света, излучаемым лазером. Цена деления винта $10~{\rm mkm}$.

Рис. 1: Схема лабораторной установки для определения ширины щели

Увеличенное изображение щели с помощью линзы Л1 проецируется на экран Э. Величина изображения D_1 зависит от расстояний от линзы до предмета – a_1 и до изображения — b_1 , т. е. от увеличения Γ системы:

$$\Gamma = \frac{D_1}{D} = \frac{b_1}{a_1} \tag{1}$$

Снимем зависимость ширины изображения щели D_1 от D, результаты занесем в таблицу 1.

D, MKM	D_1 MM
50	2
100	4
150	6
200	7
250	8
300	10
350	12
400	13
450	14
500	15

Таблица 1: Таблица эксперементальных данных – зависимость $D_1(D)$

F=43 мм – фокусное расстояние линзы Л1 $L=(1339~\pm0.5)$ мм – расстояние от щели до экрана $a_1=(50~\pm0.5)$ мм – расстояние от щели до линзы $b_1=(1289~\pm0.5)$ мм – расстояние от линзы до экрана $D_0=630$ мкм – начало отсчета ширины щели

Используя измеренные величины a_1 и b_1 найдем увеличение линзы

$$\Gamma = \frac{b_1}{a_1} = 25.78$$

Погрешность данной величины найдем по формуле

$$\varepsilon_{\Gamma} = \sqrt{\frac{\sigma_a^2}{a^2} + \frac{\sigma_b^2}{b^2}} = 0.01$$

$$\Gamma = (25.78 \pm 0.26)$$

Решая уравнение

$$\frac{1}{a_1} + \frac{1}{L - a_1} = \frac{1}{F}$$

получаем $a_1 \approx 44.48$ мм, откуда $b_1 \approx$ мм. Таким образом, можем найти увеличение линзы

$$\Gamma = \frac{L - a_1}{a_1} \approx (29.1 \pm 0.87)$$

По эксперементальным данным построим график зависимости $D_1(D)$, по наклону графика определим увеличение линзы.

Увеличение линзы $\Gamma = (28.97 \pm 1.05)$.

Рис. 2: Зависимость D1(D)

Рис. 3: Спектр щели

2.2 Определение ширины щели по спектру

Убрав линзу, можем наблюдать на экране спектр светового луча после прохождения через щель.

Изменяя ширину щели измерим расстояние между m-ми максимумами спектрального разложения. Результаты представлены в таблице 2.

По результатам эксперемента вычислим ширину щели, используя соотношение

D, MKM	X, mm	m	Ds, mm	σ_{D_s} , MM
50	85	2	0,04	0,0002
100	53	2	0,06	0,0006
150	56	4	0,12	0,0011
200	55	6	0,19	0,0017
250	66	10	0,26	0,0019
300	39	8	0,35	0,0045
350	47	10	0,36	0,0038
400	42	10	0,40	0,0048
450	35	8	0,39	0,0055

Таблица 2

$$\Delta X = \frac{X}{2m} = \frac{\lambda}{D_s} L \tag{2}$$

где $L=(1342\,\pm\,0.5)$ мм – расстояние от щели до экрана, а λ – длина волны. Длина волны лазера He-Ne $\lambda = 632.8$ нм.

Погрешность величины $D_{\scriptscriptstyle
m I}$ найдем через относительную погрешность:

$$\varepsilon_{D_{\pi}} = \sqrt{\frac{\sigma_L^2}{L^2} + \frac{\sigma_X^2}{X^2}}$$

причем, заметим, что $\frac{\sigma_L^2}{L^2} \ll \frac{\sigma_X^2}{X^2}$ Построим на одном листе графики $D_{\pi} = f(D)$ и $D_{\rm c} = f(D)$.

Рис. 4: $D_{\pi} = f(D)$ и $D_{\rm c} = f(D)$

3 Определение периода сеток

3.1 Определение периода сеток по спектру

Поставим кассету с двумерными решётками (сетками) вплотную к выходному окну лазера. Для каждой сетки измерим расстояние X между m-ми пиками и отметим m – количество пиков. Рассчитаем расстояния ΔX между соседними максимумами и определим период каждой решётки d, используя соотношения:

$$\Delta X = \frac{X}{m} = \frac{\lambda}{d}L$$

$$\sigma_d \approx \frac{\sigma_X}{X}d$$
(3)

где $L=(1317~\pm~0.5)$ мм — расстояние от касеты до экрана. Результаты занесем в таблицу 3.

Решетка	X, mm	m	d, mm	$\sigma_d \cdot 10^{-3}$, mm
1	147	2	0.02	0.068
2	99	2	0.03	0.152
3	50	2	0.07	0.700
4	37	3	0.14	1.891
5	28	3	0.18	3.214

Решетка	X, mm	m	d, mm	$\sigma_d \cdot 10^{-3}$, mm
2	210	1	0.03	0.016
3	104	1	0.06	0.040
4	105	2	0.12	0.079
5	79	2	0.16	0.125

Таблица 3: Дифракция без линзы

Таблица 4: Дифракция с линзой

Pиc. 5: text

3.2 Определение периода сеток по увеличенному изображению спектра

Далее линзу Л2 с максимальным фокусом ($F_2 = 110$ мм поставим на расстоянии $\simeq F_2$ от кассеты. В плоскости Ф линза Л2 даёт Фурье-образ – сетки её спектр, а короткофокусная линза Л3 ($F_3 = 25$ мм) создаёт на экране увеличенное изображение этого спектра. Измерим X и m для всех сеток, где это возможно. Так как экран достаточно удалён ($b_3 \gg a_3$), то

практически $a_3=F_3$, и расстояние между линзами $\simeq F_2+F_3$. Результаты измерений представлены в таблице 4.

Вычислим увеличение линзы Л3: $\Gamma_3 = \frac{b_3}{a_3}$. $a_3 \approx F_3$, из геометрических соображений очевидно, что $b_3 = L - F_3 - 2F_1$. Тогда $b_3 = (1072 \pm 0.5)$ мм, откуда $\Gamma_3 = (42.88 \pm 0.02)$.

Тогда для нахождения периода сетки воспользуемся соотношением

$$\frac{\Delta X}{\Gamma_3} = \frac{\lambda}{d} F_2 \tag{4}$$

откуда

$$d = \frac{2m\lambda\Gamma_3 F_2}{X}$$

4 Исследование мультиплицированного изображения щели

Снова поставим тубус со щелью к окну лазера и найдем на экране резкое изображение щели с помощью линзы Π 2 ($F_2 = 110$ мм). В фокальной плоскости Ф линзы Π 2 поставим кассету с сетками, которые будут «рассекать» Фурье-образ щели — осуществлять пространственную фильтрацию.

Снимем зависимость Y (расстояние между удалёнными изображениями щели и и K (число промежутков между изображениями) от n (номер сетки) для фиксированной ширины входной щели. Данные занесем в таблицу 5.

Решетка	Y, mm	K	Δy , mm	$\sigma_{\Delta y}$, MM
1	102	4	3.58	0.010
2	72	4	2.53	0.007
3	36	4	1.26	0.004
4	27	6	0.63	0.002
5	21	6	0.49	0.002

Таблица 5: Мультиплицирование

$$L=(1339~\pm~0.5)$$
 мм – расстояние от щели до экрана $a_2=(165~\pm~0.5)$ мм – расстояние от щели до линзы $b_2=(1174~\pm~0.5)$ мм – расстояние от линзы до экрана $F_2=110$ мм –фокусное расстояние линзы $D=340$ мм – ширина щели

Увеличение линзы $\Gamma_2 \approx (7.12 \pm 0.02)$. Рассчитаем периоды Δy «фиктивных» решёток, которые дали бы такую же периодичность на экране: $\Delta y = \Delta Y/\Gamma_2$, где $\Delta Y = Y/K$. Результаты представлены в таблице 5.

Построим график зависимости $\Delta y(\frac{1}{d})$, где d – период решетки, определенный по спектру. Зависимость должна быть линейной, поскольку

$$\Delta y = \lambda F_2 \frac{1}{d} \tag{5}$$

5 Вывод

Рис. 6: Мультиплицирование

Δy , mm	· ·	-	· ·		· ·
d, mm	0,02	0,03	0,07	0,14	0,18

Рис. 7: график зависимости $\Delta y(\frac{1}{d})$