課題研究bレポート

加納基晴

以下では (Ω, \mathcal{F}, P) を確率空間とする.

1 末尾事象と infinte often

定義 1. 末尾事象 (tail event)

 X_1, X_2, \dots を確率変数列とする.

 $E \in \sigma(X_1, X_2, \dots)$ が末尾事象 (tail event) であるとは $E \in \sigma(X_n, X_{n+1}, \dots)$ ($\forall n \in \mathbb{N}$) が成立することである.

末尾加法族 $(tail\ \sigma\text{-}field)\ \delta\ \delta\ \delta = \bigcap_{n\in\mathbb{N}} \sigma(X_n,X_{n+1},\dots)$ と定める.

定義から末尾加法族の元 $E \in \delta$ は末尾事象となる.

定理 2. 近似定理

 X_1, X_2, \dots を確率変数列とする.

 $\forall A_1 \in \sigma(\mathbf{X}), \forall \varepsilon > 0$ に対して、ある $n \in \mathbb{N}, A_2 \in \mathcal{F}(X_1, X_2, \dots, X_n)$ が存在して $P(A_1 \triangle A_2) \leq 0$ となる. (ただし $A \triangle B := (A - B) \cup (B - A)$)

Proof.

 $\forall A_1 \in \sigma(\mathbf{X}), \forall \varepsilon > 0$ を固定する.

$$\mathscr{F}_0 = \bigcup_{n \in \mathbb{N}} \sigma(X_1, X_2, \dots, X_n), \ \mathfrak{C} = \{A \in \mathfrak{F}| \ ^\forall \varepsilon > 0 \$$
に対して、 $^\exists B \in \mathscr{F}_0 \ s.t. \ P(A \triangle B) \leq \varepsilon \}$ と定める.

 $\mathscr{F}_0 \subset \mathscr{C}$ は明らかだから、 \mathscr{C} が σ 加法族であることを示せば、 $\sigma(\mathscr{F}_0) \subset \mathscr{C}$ で、 $\sigma(\mathscr{F}_0) = \sigma(\mathbf{X})$ であることから、 $A_1 \in \sigma(\mathbf{X}) \subset \mathscr{C}$ なので、 $\exists A_2 \in \mathscr{F}_0$ s.t. $P(A_1 \triangle A_2) \leq \varepsilon$ となり、定理が成立するのがわかる.

- \mathfrak{C} が σ 加法族であること示す.
 - (i) $\Omega \in \mathcal{C}$ (: $\Omega \in \mathscr{F}_0$)
 - (ii) $\forall A \in \mathcal{C}$ に対して、 $A^c \in \mathcal{C}$
 - $:: ^{\forall} \varepsilon > 0$ を固定する. このとき $B \in \mathcal{F}_0$ が取れて, $P(A \triangle B) \leq \varepsilon$ となる. \mathcal{F}_0 の定め方から, $B^c \in \mathcal{F}_0$ であって, $P(A^c \triangle B^c) = P((A^c \cap B) \cup (A \cap B^c)) = P((B A) \cup (A B)) = P(A \triangle B) \leq \varepsilon$ $\therefore A^c \in \mathcal{C}$
 - $(iii) \ ^\forall \{A_n\}_{n\in\mathbb{N}}\subset \mathfrak{C}, \forall \varepsilon>0 \ \text{をとる}. \ \{B_n\}_{n\in\mathbb{N}}\subset \mathfrak{F}_0 \ \text{を}\ P(A_n\triangle B_n)\leq \frac{\varepsilon}{2^{n+1}} \ \text{となるようにとる}.$ また、測度の上からの連続性から ある $N\in\mathbb{N}$ が取れて、 $P(\bigcup_{n=N+1}^\infty A_n)\leq \frac{\varepsilon}{2}$ となる.

ここで、
$$\bigcup_{n=1}^N B_n \triangle \bigcup_{n=1}^\infty A_n \subset (\bigcup_{n=1}^N B_n \triangle A_n) \cup \bigcup_{n=N+1}^\infty A_n$$
 を示せれば、単調性と劣加法性から、

定理 3. Kolmogorov zero-one law

 X_1, X_2, \dots を独立な確率変数とする.この時, $E \in \delta$ であるとすれば P(E) は 0, 1 のいずれかの値をとる.

Proof.

 $orall E\in\delta$ をとる. $E\in\sigma(\mathbf{X})$ 、であるから、定理 2 により各 $n\in\mathbb{N}$ に対して、ある $E_n\in\sigma(X_1,X_2,\ldots,X_n)$ が取れて $P(E\triangle E_n)\to 0$ となる.このことから $P(E_n)\to P(E)$ 、 $P(E_n\cup E)\to P(E)$ がわかる.

•.•

 \bullet $P(E_n) \to P(E)$

 $P(E_n) \leq P((E_n - E) \cup E) \leq P(E_n - E) + P(E)$ から $P(E_n) - P(E) \leq P(E_n - E) \leq P(E_n \triangle E) \rightarrow 0$ ($n \to \infty$). 同様にして $P(E) - P(E_n) \leq P(E - E_n) \leq P(E_n \triangle E) \rightarrow 0$ がわかる.

 $\bullet P(E_n \cup E) \to P(E)$

 $P(E \cup E_n) \leq P((E_n - E) \cup E) \leq P(E_n - E) + P(E) \leq P(E_n \triangle E) + P(E)$ から $P(E \cup E_n) - P(E) \leq P(E_n \triangle E) \rightarrow 0 \ (n \rightarrow \infty)$. また, $E \subset (E \cup E_n) \cup (E \triangle E_n)$ だから $P(E) - P(E \cup E_n) \leq P(E \triangle E_n) \rightarrow 0 \ (n \rightarrow \infty)$

この時, $E \in \delta$ だから, $E \in \sigma(X_{n+1}, X_{n+2}, \dots)$ である.つまり, $E \ E_n$ は独立であることがわかる. $P(E \cap E_n) = P(E)P(E_n)$ であり.

各辺で $n \to \infty$ とすれば、 $P(E) = P(E)^2$ であるから、P(E) = 0,1 となることがわかった.

定義 4. infinite often

$$\left\{A_n
ight\}_{n\in\mathbb{N}}\subset \mathscr{F}$$
 とする. $\left\{A_n\ i.o.
ight\}$ を $\left\{A_n\ i.o.
ight\}=\lim_{m o\infty}\bigcup_{n>m}A_n$ と定める.

 $\{A_n \ i.o.\}$ は $\{\omega \mid \omega \in A_n$ となる n が無限個存在する. $\}$ ともかける.

 $\because \omega \in \lim_{m o \infty} \ \bigcup \ A_n$ を任意にとる. 1 に対して $\omega \in A_{n_1}$ となる $n_1 \in \mathbb{N}$ をとる. 続いて n_1 に対して $\omega\in A_{n_2}$ となる $n_2\in\mathbb{N}$ をとる. これを続ければ $\omega\in A_n$ となる n の列として $\{n_k\}_{k\in\mathbb{N}}$ が取れるので, $\omega \in \{\omega' \mid \omega' \in A_n$ となる n が無限個存在する.} である.

 $\omega \in \{\omega \mid \omega \in A_n$ となる n が無限個存在する.} を任意にとる. このとき任意の $m \in \mathbb{N}$ に対して $\omega \in A_n$ となる n > m が無限個存在する. よって $\omega \in \lim_{m o \infty} \bigcup_{n > m} A_n$

補題 5. Borel-Ccantelli Lamma

- $(\mathbf{I}),\,\{A_n\}_{n\in\mathbb{N}}\in\mathfrak{F}$ について, $\sum_{n=1}^{\infty}P(A_n)<\infty$ ならば, $P(A_n\ i.o.)=0$ が成立する.
- $(\mathbf{II}), \{A_n\}_{n\in\mathbb{N}}\in\mathfrak{F}$ について, $\{A_n\}_{n\in\mathbb{N}}$ が独立かつ, $\sum_{n=1}^{\infty}P(A_n)=\infty$ ならば, $P(A_n\ i.o.)=1$ が成立する.

Proof.

 $P(A_n \ i.o.) = P(\lim_{m \to \infty} \bigcup_{n=m}^{\infty} A_n) = \lim_{m \to \infty} P(\bigcup_{n=m}^{\infty} A_n) \le \lim_{m \to \infty} (\sum_{n=m}^{\infty} P(A_n))$ (∵ 二つ目の等号は測度の連続性

$$m\to\infty$$
 $n=m$ $m\to\infty$ $n=m$ $m\to\infty$ $n=m$ $m\to\infty$ $n=m$,不等号には劣加法性を使った)
$$\sum_{n=1}^{\infty} P(A_n) < \infty$$
 であるから $\lim_{m\to\infty} (\sum_{n=m}^{\infty} P(A_n)) = 0$ $\therefore P(A_n \ i.o.) = 0$ (II)

 $\forall m \in \mathbb{N}$ に対して、 $P(\bigcap^{\infty}A_n{}^c)=0$ を示せば、 $P((A_n\ i.o.)^c)=P(\bigcup_{n \in \mathbb{N}}\bigcap^{\infty}A_n{}^c)=\lim_{m \to \infty}P(\bigcap^{\infty}A_n{}^c)=\lim_{n \to \infty}P(\bigcap^{\infty}A_n{}^c)=\lim_{n$ 0, つまり $P(A_n i.o.) = 1$ がわかる.

$$\forall m \in \mathbb{N}$$
 を固定する. $\{A_n\}_{n \in \mathbb{N}}$ は独立なので $P(\bigcap_{n=m}^{\infty} A_n{}^c) = \prod_{n=m}^{\infty} P(A_n{}^c) = \prod_{n=m}^{\infty} (1 - P(A_n))$ である. ここで $\log(1-x) \le -x$ $(0 \le x \le 1)$ を使うと, $\log(\prod_{n=m}^{\infty} (1 - P(A_n))) = \sum_{n=m}^{\infty} \log(1 - P(A_n)) \le -x$

ここで
$$\log{(1-x)} \leq -x \ (0 \leq x \leq 1)$$
 を使うと、 $\log{(\prod_{n=m}^{\infty}(1-P(A_n)))} = \sum_{n=m}^{\infty}\log{(1-P(A_n))} \leq x$

$$-\sum_{n=m}^{\infty}P(A_n)=-\infty. \ \text{よって} \ P(\bigcap_{n=m}^{\infty}A_n{}^c)=0 \ \ (^{\forall}m\in\mathbb{N}) \ \text{が示せた}.$$

いくつか応用例を挙げる.

(例 1) コイントスを考える. $\mathbf s$ を長さ $\mathbf k$ の $\mathbf H$, $\mathbf T$ (表, 裏) が要素の列とする. $A_n = \{\omega ; (\omega_n, \dots, \omega_{n+k-1}) = \mathbf s\}$ と定める.

命題 6. $P(A_n \ i.o.) = 1$

Proof. $B_1=\{\omega\;;(\omega_1,\ldots,\omega_k)=\mathbf{s}\}, B_2=\{\omega\;;(\omega_{k+1},\ldots,\omega_{2k})=\mathbf{s}\},\;\ldots\;$ とおく. このとき, $\{B_n\}_{n\in\mathbb{N}}$ は 独立となる.また、 $\{B_n\ i.o.\}\subset \{A_n\ i.o.\}$ である $(\cdot\cdot\cdot\ B_l=A_{(l-1)k+1})$. $P(B_n)=P(B_1)=rac{1}{2^k}>0$ なので $\sum_{i=1}^{\infty} P(B_n) = \infty$. 以上のことから補題 $5(\mathbf{II})$ を使うと、 $P(B_n \ i.o.) = 1 \le P(A_n \ i.o.)$ $\therefore P(A_n \ i.o.) = 1$

命題 7. $P(Head) \neq \frac{1}{2}$ とする. このとき $P(Z_n = 0 \ i.o.) = 0$ となる.

Proof.

P(Head) = p とおく.

 $\sum_{n=0}^{\infty}P(Z_n=0)<\infty$ であることが示せれば、補題 $5(\mathbf{I})$ から $P(Z_n=0\ i.o.)=0$ がわかる. Stirling の近似 公式から、十分大きい n に対して、 $_{2n}C_n=2^{2n}rac{1+\delta_n}{\sqrt{\pi n}}$ (ただし $\delta_n\downarrow 0$) であり、また、 $p
eq rac{1}{2}$ なので $2^2p(1-p)$ <1 より, ある $0<\lambda<1$ が存在して $2^2p(1-p)<\frac{1}{\lambda}2^2p(1-p)<1$ となる. $\delta_n\downarrow 0$ だから十分大きい n に対して は $\delta_n < \frac{\lambda}{2^2 n(1-n)} - 1$ が成立する.

以上で
$$N \in \mathbb{N}$$
 を, $n \ge N$ で $P(Z_{2n}) =_{2n} C_n p^n (1-p)^n = 2^{2n} \frac{1+\delta_n}{\sqrt{\pi n}} p^n (1-p)^n$ かつ $\delta_n < \frac{\lambda}{2^2 p (1-p)} - 1$ を満たすようにとる. $a_n = 2^{2n} \frac{1+\delta_n}{\sqrt{\pi n}} p^n (1-p)^n$ とおく. $n \ge N$ において $\frac{a_{n+1}}{a_n} = 2^2 \frac{1+\delta_{n+1}}{1+\delta_n} \sqrt{\frac{n}{n+1}}$ $p(1-p) \le 2^2 \sqrt{\frac{n}{n+1}} \frac{\lambda}{2^2 p (1-p)} p (1-p) = \lambda \sqrt{\frac{n}{n+1}} \le \lambda$ だから, $a_{n+1} \le (1-\lambda)a_n \le \dots \le (1-\lambda)^{n+1-N} a_N$

$$\sum_{n=1}^{\infty} P(Z_{2n} = 0) = \sum_{n=1}^{N} P(Z_{2n} = 0) + \sum_{n=N+1}^{\infty} P(Z_{2n} = 0) \le \sum_{n=1}^{N} P(Z_{2n} = 0) + \sum_{n=N+1}^{\infty} \lambda^{n-N} a_{N}$$

$$\le \sum_{n=1}^{N} P(Z_{2n} = 0) + a_{N} \sum_{n=1}^{\infty} \lambda^{n} = \sum_{n=1}^{N} P(Z_{2n} = 0) + a_{N} \frac{\lambda}{1 - \lambda} < \infty \ (\because \ 0 < \lambda < 1)$$
以上で
$$\sum_{n=1}^{\infty} P(Z_{n} = 0) = \sum_{n=1}^{\infty} P(Z_{2n} = 0) < \infty$$
 がかかった.

定理 8. $P(Head) = \frac{1}{2}$ とする. このとき $P(Z_n = 0 \ i.o.) = 1$ となる.

Proof.

 $n_1 < n_2 < \ldots$ の自然数列とする. また、各 $k \in \mathbb{N}$ に対して、 $n_k < m_k < n_{k+1}$ となるように $m_1 < m_2 < \ldots$ をとる. $C_k = \{Y_{n_k+1} + \dots + Y_{m_k} \le -n_k\} \bigcap \{Y_{m_k+1} + \dots + Y_{n_{k+1}} \ge m_k\}$ と定める.

 $Y_i=-1,1$ だから $-n\leq Z_n\leq n$ となることを使うと, $\omega\in C_k$ に対して, $Z_{m_k}(\omega)=(Y_1+\cdots+Y_{m_k})(\omega)=(Y_1+\cdots+Y_{m_k})(\omega)$ $(Y_1 + \dots + Y_{n_k})(\omega) + (Y_{n_k+1} + \dots + Y_{m_k})(\omega) \le n_k - n_k = 0$

また $Z_{n_{k+1}}(\omega) = (Y_1 + \dots + Y_{m_k})(\omega) + (Y_{m_k+1} + \dots + Y_{n_{k+1}})(\omega) \ge -m_k + m_k = 0$ よって, $\omega\in C_k$ に対して $Z_{m_k}(\omega)\leq 0, Z_{n_{k+1}}(\omega)\geq 0$ であり, $Z_{n+1}=Z_n\pm 1$ となることから

$$C_k \subset \{Z_n = 0; n_k + 1 \le \exists n \le n_{k+1}\} = \bigcup_{i=1}^{n-1} \{Z_n = 0\}$$

$$C_k \subset \{Z_n = 0; n_k + 1 \leq \exists n \leq n_{k+1}\} = \bigcup_{\substack{n = n_k + 1 \\ n = n_k + 1}}^{n_{k+1}} \{Z_n = 0\}$$

$$\{C_n \ i.o.\} = \bigcap_{m=1}^{\infty} \bigcup_{\substack{k = m \\ k = m}}^{\infty} C_k \subset \bigcap_{\substack{m = 1 \\ \infty}}^{\infty} \bigcup_{\substack{k = m \\ n = n_k + 1}}^{\infty} \{Z_n = 0\} \subset \bigcap_{m=1}^{\infty} \bigcup_{\substack{n = n_m + 1 \\ n = n_m + 1}}^{\infty} \{Z_n = 0\} = \{Z_n = 0 \ i.o.\}$$

Borel-Ccantelli Lamma から $\sum_{n=0}^{\infty} P(C_n) = \infty$ となれば $1 = P(C_n \ i.o.) \leq P(Z_n = 0 \ i.o.)$ となる. つまり

$$\sum_{n=1}^{\infty} P(C_n) = \infty \ \text{となるような自然数列} \ \{n_k\}, \{m_k\} \ \text{が取れることを示せばよい}.$$

$$\bullet^{\forall} \alpha \in (0,1), \ \forall k \in \mathbb{N} \ \text{に対して}, ^{\exists} \varphi(k) \geq 1 \ \text{s.t.} \ P(|Z_{\varphi(k)}| < k) \leq \alpha \ \text{となる}.$$

$$(proof)^{\forall} \alpha \in (0,1), \ \forall k \in \mathbb{N}, \ \forall j \in \mathbb{Z} \ \text{を固定する}, P(Z_n = j) \to 0 \ (n \to \infty) \ \text{であるから}, \sum_{|j| < k} P(Z_n = j) \to 0 \ (n \to \infty) \ \text{であるから}, \sum_{|j| < k} P(Z_n = j) \to 0 \ (n \to \infty) \ \text{であるから}, \sum_{|j| < k} P(Z_n = j) \to 0 \ (n \to \infty) \ \text{であるから}, \sum_{|j| < k} P(Z_n = j) \to 0 \ (n \to \infty) \ \text{であるから}, \sum_{|j| < k} P(Z_n = j) \to 0 \ (n \to \infty) \ \text{であるから}, \sum_{|j| < k} P(Z_n = j) \to 0 \ (n \to \infty) \ \text{であるから}, \sum_{|j| < k} P(Z_n = j) \to 0 \ (n \to \infty) \ \text{であるから}, \sum_{|j| < k} P(Z_n = j) \to 0 \ (n \to \infty) \ \text{であるから}, \sum_{|j| < k} P(Z_n = j) \to 0 \ (n \to \infty) \ \text{であるから}, \sum_{|j| < k} P(Z_n = j) \to 0 \ (n \to \infty) \ \text{であるから}, \sum_{|j| < k} P(Z_n = j) \to 0 \ (n \to \infty) \ \text{であるから}, \sum_{|j| < k} P(Z_n = j) \to 0 \ (n \to \infty) \ \text{であるから}, \sum_{|j| < k} P(Z_n = j) \to 0 \ (n \to \infty) \ \text{であるから}, \sum_{|j| < k} P(Z_n = j) \to 0 \ \text{であるから}, \sum_{|j| < k} P(Z_n = j) \to 0 \ \text{であるから}, \sum_{|j| < k} P(Z_n = j) \to 0 \ \text{であるから}, \sum_{|j| < k} P(Z_n = j) \to 0 \ \text{でoptions}, \sum_{|j| < k} P(Z_n = j) \to 0 \ \text{でoptions}, \sum_{|j| < k} P(Z_n = j) \to 0 \ \text{でoptions}, \sum_{|j| < k} P(Z_n = j) \to 0 \ \text{options}, \sum_{|j| < k} P(Z_n = j) \to 0 \ \text{options}, \sum_{|j| < k} P(Z_n = j) \to 0 \ \text{options}, \sum_{|j| < k} P(Z_n = j) \to 0 \ \text{options}, \sum_{|j| < k} P(|Y_1 + \dots + Y_{\varphi(k)}| < k) \leq \alpha \ \text{なので}$$

$$P(|Y_1 + \dots + Y_{\varphi(k)}| \geq k) \geq 1 - \alpha$$
以上で
$$\sum_{k=1}^{\infty} P(C_k) \geq \sum_{k=1}^{\infty} \frac{1}{4} (1 - \alpha)^2 = \infty \ \text{となって}, P(Z_n = 0 \ i.o.) = 1 \ \text{が示せた}.$$

2 独立確率変数に対する大数の法則

定理 9. X_1, X_2, \ldots を独立確率変数とする.

このとき,

$$\sum_{k=1}^{n} X_k$$
 が確率収束する $\Leftrightarrow \sum_{k=1}^{n} X_k$ が概収束する が成立する.

まず、補題を示す.

補題 10. $N\in\mathbb{N}$ を固定する. X_1,X_2,\ldots,X_N を独立確率変数とし, $S_n=X_1+\cdots+X_n$ とおく.

$$\forall \alpha > 0$$
 に対して,
$$\sup_{1 \le j \le N} P(|S_N - S_j| > \alpha) = c < 1 \text{ となるとき,}$$

$$P(\sup_{1 \le j \le N} |S_j| > 2\alpha) \le \frac{1}{1 - c} P(|S_N| > \alpha)$$
 となる.

Proof.

 $j^*(\omega)$ を $|S_j(\omega)| > 2\alpha$ となる $1 \leq j \leq N$ で一番小さいものとする. 存在しないときは 0 とする. ここで $\bigcup_{1 \leq j \leq N} \{j^* = j\} = \emptyset$ であるとき $P(\sup_{1 \leq j \leq N} |S_j| > 2\alpha) = 0$ なので, $P(\sup_{1 \leq j \leq N} |S_j| > 2\alpha) = 0 \leq \frac{1}{1-c} P(|S_N| > \alpha)$ が成立する. よって, $\bigcup_{1 \leq j \leq N} \{j^* = j\} \neq \emptyset$ のときを考える.

$$P(|S_N| > \alpha, \sup_{1 \le j \le N} |S_j| > 2\alpha) = \sum_{j=1}^N P(|S_N| > \alpha, j^* = j) \ge \sum_{j=1}^N P(|S_N - S_j| \le \alpha, j^* = j)$$

∵ •
$$\bigcup_{1\leq j\leq N}\{j^*=j\}=\{\sup_{1\leq j\leq N}|S_j|>2\alpha\}$$
 を示せば、一つ目の等号が成立する. (C)

 $\omega \in ($ 左辺) とすれば, $1 \leq \exists j \leq N \ s.t. \ j^*(\omega) = k$ だから $|S_k(\omega)| > 2\alpha$ なので $\sup_{1 \leq j \leq N} |S_j| \geq |S_k(\omega)| > 2\alpha$ となって、 $\omega \in (右辺)$

 (\supset)

 $\omega\in$ (右辺) とすれば、 $\sup_{1\leq j\leq N}|S_j(\omega)|>2\alpha$ であるから、 $^{\exists}\{k_1,k_2,\ldots,k_K\}\subset\{1,2,\ldots,N\}$ s.t. $|S_{k_m}|>2\alpha$ $(m=1,2,\ldots,K)$ となる。 $j^{**}(\omega)=\min\{k_1,k_2,\ldots,k_K\}$ とすれば $j^*(\omega)=j^{**}(\omega)$ となるか

 $ら,\omega \in (左辺)$ となる.

• 各 k $\in \{1, 2, ..., N\}$ に対して, $\{|S_N| > \alpha\} \cap \{j^* = j\} \supset \{|S_N - S_j| \le \alpha\} \cap \{j^* = j\}$ となるのを示せば 2つ目の不等号が示せる

 $\mathbf{k} \in \{1, 2, \dots, N\}$ を固定しておく. $\omega \in (右辺)$ をとる. $|S_N(\omega) - S_j(\omega)| \leq \alpha$ かつ $j^*(\omega) = j$ であるから, $|S_j(\omega)| - |S_N(\omega)| \le \alpha$ מים $|S_j(\omega)| > 2\alpha \Leftrightarrow |S_j(\omega)| - \alpha \le |S_N(\omega)|$ מים $|S_j(\omega)| > 2\alpha$ $\Rightarrow 2\alpha - \alpha = \alpha < |S_N(\omega)|$

以上で
$$\{|S_N| > \alpha\} \cap \{j^* = j\} \supset \{|S_N - S_j| \leq \alpha\} \cap \{j^* = j\}$$

以上で
$$\{|S_N| > \alpha\} \cap \{j^* = j\} \supset \{|S_N - S_j| \le \alpha\} \cap \{j^* = j\}$$
 $\{j^* = j\} = (\bigcap_{k=1}^{j-1} \{|S_k| > 2\alpha\}^c) \cap \{|S_j| > 2\alpha\}$ なので, $\{j^* = j\} \in \sigma(X_1, \dots, X_j)$,

 $\{|S_N-S_j| \leq \alpha\} \in \sigma(X_{j+1},\ldots,X_N)$ であるから, $\{j^*=j\}$ と $\{|S_N-S_j| \leq \alpha\}$ は独立. 仮定から $P(|S_N-S_j|>\alpha) \leq c$ なので $1-P(|S_N-S_j|>\alpha) = P(|S_N-S_j|\leq \alpha) \geq 1-c$

$$\sum_{j=1}^{N} P(|S_N - S_j| \le \alpha, \ j^* = j) = \sum_{j=1}^{N} P(|S_N - S_j| \le \alpha) P(j^* = j) \ge (1 - c) \sum_{j=1}^{N} P(j^* = j)$$

$$= (1 - c) P(\sup_{1 \le j \le N} |S_j| > 2\alpha)$$

$$(1-c)P(\sup_{1\leq j\leq N}|S_j|>2\alpha)\leq \sum_{j=1}^N P(|S_N-S_j|\leq \alpha,\ j^*=j)\leq P(|S_N|>\alpha,\ \sup_{1\leq j\leq N}|S_j|>2\alpha)$$

$$\leq P(|S_N|>\alpha)\quad \therefore P(\sup_{1\leq j\leq N}|S_j|>2\alpha)\leq \frac{1}{1-c}P(|S_N|>\alpha)$$

補題 10 を使って, 定理 9 の証明をする.

Proof.

(←) 概収束するならば確率収束するので成立する.

$$(\Rightarrow)$$
 $\sum_{k=1}^n X_k$ は確率収束するとする.ここで $\sum_{k=1}^n X_k$ が概収束しないと仮定する.(背理法) ここで実数列 $\{s_n\}$ が収束しないとすれば $\{s_n\}$ は Cauchy 列でないので

 $\exists \varepsilon > 0 \text{ s.t. } \forall N \in \mathbb{N}, \ \forall n, m \geq N \land |s_n - s_m| > \varepsilon$ であるから、

 $\exists \varepsilon > 0 \ s.t. \ \forall m \in \mathbb{N}, \ \sup_{n > m} |s_n - s_m| > \varepsilon$ となる. $\sum_{k=1}^n X_k$ はほとんど確実に Cauchy 列でないから,

$$\exists \varepsilon > 0, \ \exists \delta \in (0,1] \ s.t. \ \left[\forall m \in \mathbb{N}, \ P\left(\sup_{n>m} |\sum_{k=1}^n X_k - \sum_{k=1}^m X_k| > \varepsilon \right) \geq \delta \right]$$
 となる. この $\varepsilon, \ \delta$ を固定する.

$$\sum_{k=1}^{n} X_k$$
 は確率収束するので $\sum_{k=1}^{N} X_k - \sum_{k=1}^{m} X_k \stackrel{P}{
ightarrow} 0$ となる.

系 11.

$$E[X_k]=0 \ (^orall k\in \mathbb{N}), \ \sum_{k=1}^\infty E[X_k^2]<\infty$$
 とする. このとき $\sum_{k=1}^n X_k$ は概収束する.

Proof.

$$X_1,X_2,\ldots$$
 は独立なので, $\sum_{k=1}^n X_k$ が確率収束することを示せば定理 9 から $\sum_{k=1}^n X_k$ は概収束する.

$$\sum_{k=1}^\infty E[X_k^2] = s^2$$
 (ただし $s \geq 0$) とする. $^\forall \varepsilon > 0$ に対して Chebyshev の不等式から

$$\begin{split} P\left(\left|\sum_{k=1}^{n}X_{k}-s\right|>\varepsilon\right) &\leq \frac{1}{\varepsilon^{2}}E\left[\left|\sum_{k=1}^{n}X_{k}-s\right|^{2}\right] \text{ となる. } E\left[\left|\sum_{k=1}^{n}X_{k}-s\right|^{2}\right] \to 0 \text{ } (n\to\infty) \text{ を示したい.} \\ E\left[\left|\sum_{k=1}^{n}X_{k}-s\right|^{2}\right] &= E\left[\left|\sum_{k=1}^{n}X_{k}\right|^{2}\right] - 2sE\left[\sum_{k=1}^{n}X_{k}\right] + s^{2} \\ &= E\left[\sum_{k=1}^{n}X_{k}^{2} + 2\sum_{i < j}X_{i}X_{j}\right] - 2sE\left[\sum_{k=1}^{n}X_{k}\right] + s^{2} \text{ ここで}, X_{1}, X_{2}, \dots \text{ は独立だから} \\ &\sum_{i < j}E\left[X_{i}X_{j}\right] &= \sum_{i < j}E\left[X_{i}\right]E\left[X_{j}\right] \text{ が成立する. } \text{ また } E\left[X_{k}\right] = 0 \text{ } (\forall k \in \mathbb{N}) \text{ なので} \end{split}$$

定理 12. 独立確率変数に対する大数の法則

 X_1,X_2,\dots を独立確率変数とする. $E\left[X_k\right]=0,\; E\left[X_k^2\right]<\infty$ $\left(orall k\in\mathbb{N}
ight)$ であるとする. 正数列 $\{b_n\}_{n\in\mathbb{N}}$ が $b_n\uparrow\infty$ かつ $\sum_{k=1}^\infty E\left[rac{X_k^2}{b_k^2}
ight]<\infty$ を満たすとき, $rac{X_1+\dots+X_n}{b_n} \stackrel{a.s.}{\longrightarrow} 0$ が成立する.

証明の前に一つ補題を示す.

補題 13. Kronecker's Lemma

 x_1,x_2,\dots を $\sum_{k=1}^n x_k \to s < \infty$ を満たす実数列とする. このとき, $b_n \uparrow \infty$ となる整数列 $\{b_n\}_{n \in \mathbb{N}}$ が取れて, $\frac{1}{b_n}\sum_{k=1}^n b_k x_k \to 0$ となる.

$$r_n = \sum_{k=n+1}^{\infty} x_k, \ r_0 = s \ \text{とおく}. \ \text{このとき} \ x_n = r_{n-1} - r_n, \ n = 1, 2, \dots \ \text{また}, \sum_{k=1}^n b_k x_k = \sum_{k=1}^n b_k (r_{k-1} - r_k) = \sum_{k=0}^{n-1} b_{k+1} r_k - \sum_{k=1}^n b_k r_k = \sum_{k=1}^{n-1} (b_{k+1} - b_k) r_k + b_1 s - b_n r_n \ \text{となるから}$$

$$\left| \sum_{k=1}^n b_k x_k \right| \leq \sum_{k=1}^{n-1} (b_{k+1} - b_k) |r_k| + b_1 |s| + b_n |r_n| \ (\because \Xi \text{角不等式}, \ b_n \ \text{は単調増加なので} \ b_{n+1} - b_n \geq 0)$$
 ここで $\forall \varepsilon > 0$ をとる. $\sum_{k=1}^\infty x_k \ \text{は収束するから} \ r_k \ \text{の定め方から} \ N \in \mathbb{N} \ \text{を} \ \forall n \geq N \ \text{に対して}, \ |r_k| \leq \varepsilon \ \text{となる boson constraints}$ るように取れる. この N を固定する. $\tilde{r} := \max\{|r_1|, \dots, |r_{N-1}|, \varepsilon\} \ \text{とする}. \ n > N \ \text{において},$
$$\sum_{k=1}^{n-1} (b_{k+1} - b_k) |r_k| \leq \sum_{k=1}^{N-1} (b_{k+1} - b_k) |r_k| + \varepsilon \sum_{k=N}^{n-1} (b_{k+1} - b_k) \leq \tilde{r}(b_N - b_1) + \varepsilon(b_n - b_N) \ \text{よって}$$

$$\left| \frac{\sum_{k=1}^n b_k x_k}{b_n} \right| \leq \frac{1}{b_n} (\tilde{r}(b_N - b_1) + \varepsilon(b_n - b_N) + b_1 |s| + b_n \varepsilon) \rightarrow \varepsilon \ \text{つま b} \ \overline{\lim}_{n \to \infty} \left| \frac{\sum_{k=1}^n b_k x_k}{b_n} \right| \leq \varepsilon \ \text{となるから}$$

$$\lim_{n \to \infty} \left| \frac{\sum_{k=1}^n b_k x_k}{b_n} \right| \leq \varepsilon \ \text{がわかった}. \ \text{ここで} \ \varepsilon \downarrow 0 \ \text{とすれば}, \frac{1}{b_n} \sum_{k=1}^n b_k x_k \rightarrow 0 \ \text{が示された}.$$

この補題を使って定理12を証明する.

Proof.

Kronecker's Lemma により、
$$\sum_{k=1}^n \frac{X_k}{b_k}$$
 がほとんど確実に収束すれば、 $\frac{1}{b_k}\sum_{k=1}^n b_k \frac{X_k}{b_k} = \frac{1}{b_k}\sum_{k=1}^n X_k \xrightarrow{a.s.} 0$ となる。 仮定から、 X_1, X_2, \ldots は独立確率変数, $E\left[\frac{X_k}{b_k}\right] = 0$ 、 $\sum_{k=1}^\infty E\left[\frac{X_k^2}{b_k^2}\right] < \infty$ であるから、系 9 から $\sum_{k=1}^n \frac{X_k}{b_k}$ は概収束する。 $\therefore \frac{X_1 + \cdots + X_n}{b_n} \xrightarrow{a.s.} 0$

再帰状態と格子状に分布する確率変数 3

以下では X_1, X_2, \ldots を独立同一分布に従う確率変数列とする. $S_n = \sum_{k=1}^n X_k$ と定める.

定義 14. 再帰状態 (recurrent state)

 $x \in \mathbb{R}$ とする. x が再帰状態 (recurrent state) であるとは, x の任意の開近傍 I に対して $P(S_n \in I \ i.o.) = 1$ となることである.

定義 15. 格子上に分布する確率変数

X が格子 $L_d=\{nd\mid n\in\mathbb{Z}\}\,,\;(d>0)$ 上に分布するとは, $\sum_{n\in\mathbb{Z}}P(X=nd)=1$ かつ $\exists l>d\;s.t.\sum_{n\in\mathbb{Z}}P(X=nl)=1$ とならないことである.

X が格子上に分布しないとき, $L_0 = \mathbb{R}$ とかいて, X は L_0 上に分布するという.

定理 16. X_1, X_2, \ldots を L_d $(d \ge 0)$ 上に分布する確率変数列とする.

このとき L_d に含まれる状態は全て再帰的または全て非再帰的である.

Proof.

 $G = \{x \in L_d | x$ は再帰的 $\}$ とおくと, G は閉集合となる.(G が空のときは全ての状態が非再帰的なので $G \neq \emptyset$ とする.)

 $:: {}^{\forall} \{x_n\}_{n=1}^{\infty} \subset G$ をとって $x_n \to x$ とする. このとき $x \in G$ を示したい.

x の開近傍 I を任意にとる.I に対して n を十分大きく取れば $x_n \in I$ となる. この n を固定する.I は x_n の近 傍でもあるから, $P(S_n \in I \ i.o.) = 1 \ \therefore x \in G$

 $y \in \mathbb{R}$ が y の任意の近傍 I に対して $k \in \mathbb{N}$ が存在して $P(S_k \in I) > 0$ となるとき y は候補状態であるとする.

x が再帰的かつ y が候補状態 $\Rightarrow x - y$ は再帰的である.

 $\forall \varepsilon > 0$ をとって, $k \in \mathbb{N}$ を $P(|S_k - y| < \varepsilon) > 0$ を満たすようにとる.

$$x$$
 は再帰的より $P(\bigcap_{n \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \{|S_n - x| < \varepsilon\}) = 1$ となるから,

$$0 = P(\bigcup_{m \in \mathbb{N}} \bigcap_{n > m} \{ |S_n - x| \ge \varepsilon \}) \ge P(|S_k - y| < \varepsilon, \bigcup_{m \in \mathbb{N}} \bigcap_{n > m} \{ |S_{k+n} - S_k - (x - y)| \ge 2\varepsilon \})$$

$$0 = P(\bigcup_{m \in \mathbb{N}} \bigcap_{n > m} \{|S_n - x| \ge \varepsilon\}) \ge P(|S_k - y| < \varepsilon, \bigcup_{m \in \mathbb{N}} \bigcap_{n > m} \{|S_{k+n} - S_k - (x - y)| \ge 2\varepsilon\})$$

$$= P(|S_k - y| < \varepsilon)P(\bigcup_{m \in \mathbb{N}} \bigcap_{n > m} \{|S_{k+n} - S_k - (x - y)| \ge 2\varepsilon\}) = P(|S_k - y| < \varepsilon)P(\bigcup_{m \in \mathbb{N}} \bigcap_{n > m} \{|S_n - (x - y)| \ge 2\varepsilon\})$$

$$\therefore \forall \omega \in \{|S_k - y| < \varepsilon\} \cap \bigcup_{m \in \mathbb{N}} \bigcap_{n > m} \{|S_{k+n} - S_k - (x - y)| \ge 2\varepsilon\} \not\approx \xi \not\simeq \xi, \exists m \in \mathbb{N} \ s.t.$$

 $\forall n \geq m, \ |S_{k+n}(\omega) - S_k(\omega) - (x-y)| \geq 2\varepsilon$ となる. $2\varepsilon \leq |S_{k+n}(\omega) - x| + |S_k(\omega) - y| < |S_{k+n}(\omega) - x| + \varepsilon$ から $\varepsilon \leq |S_{k+n}(\omega) - x|$ ($\forall n \geq m$), N = k + m とおけば,

$$\forall n \ge N$$
 に対して, $|S_n(\omega) - x| \ge \varepsilon$ なので $\omega \in \bigcup \bigcap \{|S_n - x| \ge \varepsilon\}$

$$\therefore \bigcup_{m \in \mathbb{N}} \bigcap_{n > m} \{ |S_n - x| \ge \varepsilon \} \supset \{ |S_k - y| < \varepsilon \} \cap \bigcup_{m \in \mathbb{N}} \bigcap_{n > m} \{ |S_{k+n} - S_k - (x - y)| \ge 2\varepsilon \}$$

$$\exists r \in S \in S | S_{k+n}(\omega) - x | \quad (n \ge m), \quad N = n + m \in S S Y G,$$
 $\forall n \ge N \$ に対して、 $|S_n(\omega) - x| \ge \varepsilon$ なので $\omega \in \bigcup_{m \in \mathbb{N}} \bigcap_{n > m} \{|S_n - x| \ge \varepsilon\}$ $\therefore \bigcup_{m \in \mathbb{N}} \bigcap_{n > m} \{|S_n - x| \ge \varepsilon\} \supset \{|S_k - y| < \varepsilon\} \cap \bigcup_{m \in \mathbb{N}} \bigcap_{n > m} \{|S_{k+n} - S_k - (x - y)| \ge 2\varepsilon\}$ また X_1, X_2, \ldots は独立なので、 $S_k \ge S_{k+n} - S_k = \sum_{m = k+1}^{k+n} X_m$ は独立、また同一分布性から

 $P(\bigcup \ \bigcap \ \{|S_{k+n}-S_k-(x-y)|\geq 2arepsilon\})=P(\bigcup \ \bigcap \ \{|S_n-(x-y)|\geq 2arepsilon\})$ も成立する. $P(|S_k - y| < \varepsilon) > 0$ なので $P(\bigcup_{m \in \mathbb{N}} \bigcap_{n > m} \{|S_n - (x - y)| \ge 2\varepsilon\}) = 0$ つまり $P(\{|S_n-(x-y)|<2arepsilon\}\ i.o.)=1$ $I_{arepsilon}=(x-y-2arepsilon,x-y+2arepsilon)$ とおけば, $P(|S_n|\in I_{arepsilon}\ i.o.)=1$ $\varepsilon > 0$ は任意だったから x - y は再帰的である.

 $x \in G$ は候補状態である $\because \forall x \in G$ をとる. x の開近傍 I を任意にとる. $P(S_n \in I \ i.o.) = 1$ であるか ら, $^{\forall}k\in\mathbb{N}$ に対して $P(S_k\in I)=0$ であるとすれば $\sum_{k=1}^{\infty}P(S_k\in I)<\infty$ より Borel-Ccantelli Lamma から $P(S_k \in I \ i.o.) = 0$ これは $P(S_n \in I \ i.o.) = 1$ に矛盾する. よって $\exists m \in \mathbb{N} \ s.t. \ P(S_k \in I) > 0$ となる. よって $x-x=0\in G$ である. このことから G は群である.G が \mathbb{R} 上で閉なので G は \mathbb{R} 上の閉部分群であ る. 全ての候補状態 y に対して $0-y=y\in G$ となる.

- d>0 のとき $P(X_1=nd)>0$ かつ $P(X_1=(n+1)d)>0$ となる $n\in\mathbb{Z}$ が存在しないとき $0\in G$ なので 0 は候補状態なので $\sum P(X_1=(2d)n)=1$ となって, d の最大性に反する. よってある $n\in\mathbb{Z}$ が取れて $nd, (n+1)d \in G$ となる. G は群なので $(n+1)d - nd = d \in G$ このことから $L_d \subset G$ である.
- ullet d=0 のとき このとき G に対して $\exists l>0$ s.t. $G=\{nl|n\in\mathbb{Z}\}$ となると仮定する (背理法). 候補状態は Gの元なので $\sum_{n\in\mathbb{Z}}P(X_1=nl)=1$ となり、これは d=0 に矛盾する.よって $G=\mathbb{R}=L_0$ 以上で $d\geq 0$ に対して $L_d=G$ となり、 L_d の全ての状態は再帰的となる.

定理 17. X_1, X_2, \ldots を L_d 上に分布する確率変数列とする (ただし $d \geq 0$).

- (i) もし,有界区間 $J\subset\mathbb{R}$ が存在して $J\cap L_d\neq\emptyset$ かつ $\sum_{n=1}^\infty P(S_n\in J)<\infty$ を満たせば,再帰状態は存在しな
- (ii)もし、有界区間 $J\subset\mathbb{R}$ で 0 < $^\forall\varepsilon$ < $\frac{||J||}{2}$ に対して、 $^\exists x\in\mathbb{R}$ s.t. $I=(x-\varepsilon,x+\varepsilon)\subset J$ かつ $^\infty$ $\sum^{\infty} P(S_n \in I) = \infty$ となるものが存在すれば, L_d の全ての状態は再帰状態である.

Proof.

- から $P(S_n \in J i.o.) = 0$ となって、 L_d は少なくとも再帰的でない状態が含まれる.
- $\because x \in Ld \cap J$ をとれば、x の開近傍 $I \subset J$ がとれて、 $P(S_n \in I \ i.o.) \leq P(S_n \in J \ i.o.) = 0$ となって x は再 帰的でない L_d の元である.

定理 16 から L_d の元は全て再帰状態にはならない. つまり再帰状態は存在しない.

(ii) 長さ l の有界区間 $J\subset\mathbb{R}$ で 0< $\forall \varepsilon<\frac{l}{2}$ に対して、 $^\exists x\in\mathbb{R}$ s.t. $I=(x-\varepsilon,x+\varepsilon)\subset J$ かつ $\sum_{n=1}^\infty P(S_n\in I)=\infty$ となるものがとれたとする。 $0\in L_d$ なので、0 が再帰的であることがわかれば

$$n=1$$
 定理 16 から L_d の全ての状態が再帰的である. $A_k = \begin{cases} \{S_k \in I, \ S_{n+k} \notin I \ n=1,2,\dots\} & (k \geq 1) \\ \{S_n \notin I \ n=1,2,\dots\} & (k=0) \end{cases}$

```
S_i(\omega) \in I となるものが存在するときその最大値を k とすれば, S_k(\omega) \in I, S_n(\omega) \notin I (\forall n \geq k) が成立する.
 よって、\omega \in A_k となる. S_i \notin I (1 \leq \forall i \leq m-1) のときは、\omega \in \{S_n \notin I \mid n=1,2,\ldots\} = A_0 以上で
\omega \in (右辺)
(\mathfrak{I})^{\forall}\omega\in(\mathfrak{H}\mathbb{Z}) ( \mathfrak{I} ) \forall \omega\in(\mathfrak{H}\mathbb{Z}) とする. \exists k\in\mathbb{N}\ s.t.\ \omega\in A_k となる. k\geq 1 のとき \omega\in A_k\subset\{S_{n+k}\notin n=1,2,\ldots\}=\bigcap_{n=k+1}^\infty\{S_n\notin I\}\ ,\ k=0 のとき \omega\in A_0=\bigcap_{n=1}^\infty\{S_n\notin I\}
定め方から A_0,A_1,\ldots は非交和なので,P(\bigcup_{m\in\mathbb{N}}\bigcap_{n>m}\{S_n\notin I\})=P(\bigcup_{k=0}^\infty A_k)=\sum_{k=0}^\infty P(A_k) k\geq 1 のとき,P(A_k)\geq P(S_k\in I,\;|S_{n+k}-S_k|\geq 2\varepsilon,\;n=1,2,\ldots)
 : \omega \in \{S_k \in I\} \cap \{|S_{n+k} - S_k| \ge 2\varepsilon, n = 1, 2, \ldots\} を任意にとる.
S_k(\omega) \in I かつ (S_{n+k}(\omega) - S_k(\omega) \le -2\varepsilon または 2\varepsilon \le S_{n+k}(\omega) - S_k(\omega), \ n = 1, 2, \ldots)
I の定め方から, x - \varepsilon < S_k < x + \varepsilon だから
 \Rightarrow S_k(\omega) \in I かつ (S_{n+k}(\omega) \le (x+\varepsilon) - 2\varepsilon または 2\varepsilon + (x-\varepsilon) \le S_{n+k}(\omega), \ n=1,2,\ldots)
 \Leftrightarrow S_k(\omega) \in I かつ (S_{n+k}(\omega) \le x - \varepsilon または x + \varepsilon \le S_{n+k}(\omega), n = 1, 2, \ldots)
 \Leftrightarrow S_k(\omega) \in I かつ (S_{n+k}(\omega) \notin I, n = 1, 2, \dots) \Leftrightarrow \omega \in A_k
 P(S_k \in I, |S_{n+k} - S_k| \ge 2\varepsilon, n = 1, 2, \dots) = P(S_k \in I) P(|S_{n+k} - S_k| \ge 2\varepsilon, n = 1, 2, \dots) :: 独立性
  =P(S_k \in I)P(|S_n| \ge 2\varepsilon, \ n=1,2,\dots) :: 同一分布性
P(\bigcup_{m \in \mathbb{N}} \bigcap_{n > m} \{S_n \notin I\}) = \sum_{k=0}^{\infty} P(A_k) \ge P(A_0) + \sum_{k=1}^{\infty} P(A_k) \ge P(A_0) + P(|S_n| \ge 2\varepsilon, \ n = 1, 2, \dots) \sum_{k=1}^{\infty} P(S_k \in I)  ここで, \sum_{k=1}^{\infty} P(S_k \in I) = \infty であるから
P(|S_n| \geq 2\varepsilon, \ n=1,2,\dots) = 0. 以上で 0 < {}^orall \varepsilon < rac{l}{2} \ , P(|S_n| \geq 2\varepsilon, \ n=1,2,\dots) = 0 となる (*)
0< ^{\forall} arepsilon < rac{l}{2} を新しく固定する. I=(-arepsilon,\ arepsilon) として, \{A_k\}_{k=0}^{\infty} を先と同様にとる. I_{\delta}=(-\delta,\delta) (ただし, \delta<arepsilon) とする. ^{\forall} k\geq 1 として A_k=\lim_{\delta\uparrowarepsilon}\{S_k\in I_{\delta},\ S_{n+k}\notin I\ n=1,2,\ldots\} となるから
P(A_k) = P(\lim_{\delta \uparrow \varepsilon} \{ S_k \in I_\delta, \ S_{n+k} \notin I \ n = 1, 2, \dots \}) 連続性から
              =\lim_{\delta \to a} P(\{S_k \in I_\delta, \ S_{n+k} \notin I \ n=1,2,\dots\})
P(S_k \in I_\delta, S_{n+k} \notin I \ n=1,2,\ldots) \le P(S_k \in I_\delta, |S_{n+k} - S_k| \ge \varepsilon - \delta \ n=1,2,\ldots) となる.
 :: \omega \in \{S_k \in I_\delta, S_{n+k} \notin I \ n=1,2,\ldots\} を任意のとる.
 -\delta < S_k(\omega) < \delta, S_{n+k}(\omega) \le -\varepsilonまたは \varepsilon \le S_{n+k}(\omega) (n = 1, 2, ...) となる.
S_{n+k}(\omega) - S_k(\omega) \le -\varepsilon - S_k(\omega) < -\varepsilon + \delta  $\tau_t \tau_k \tau_k \tau \in S_k(\omega) \le S_{n+k}(\omega) - S_k(\omega)
  よって |S_{n+k}(\omega) - S_k(\omega)| \ge \varepsilon - \delta ∴ \omega \in \{S_k \in I_\delta, \ |S_{n+k} - S_k| \ge \varepsilon - \delta \ n = 1, 2, \dots\}
  独立性と同一分布性から
P(S_k \in I_\delta, |S_{n+k} - S_k| \ge \varepsilon - \delta |n = 1, 2, \dots) = P(S_k \in I_\delta) P(|S_{n+k} - S_k| \ge \varepsilon - \delta |n = 1, 2, \dots)
 =P(S_k \in I_\delta)P(|S_n| \ge \varepsilon - \delta \ n = 1, 2, \dots) = 0\because 0 < \frac{\varepsilon - \delta}{2} < \frac{l}{2} なので (*) より \ P(|S_n| \ge \varepsilon - \delta \ n = 1, 2, \dots) = 0
 以上で P(A_k) = 0 \ (\forall k \ge 1) となる.
0<\varepsilon<rac{l}{2} だから 0<rac{\varepsilon}{2}<rac{l}{2} なので P(A_0)=P(S_n\notin I\ n=1,2,\dots)=P(|S_n|\geq \varepsilon\ n=1,2,\dots)=0 これ
 までのことから 0 < \forall \varepsilon < \frac{l}{2}, I = (-\varepsilon, \varepsilon) に対して, P(S_n \in I i.o.) = 1
```

よって,0 は再帰的となる $...L_d$ の全ての状態は再帰的である...

系 18.

 $\{S_n\}_{n\in\mathbb{N}}$ に対して、次の(i),(ii) のいずれかが成立する.

- (i) $L_d \cap I \neq \emptyset$ を満たす全ての有界区間 I に対して, $P(S_n \in I \ i.o.) = 1$
- (ii) $L_d \cap I \neq \emptyset$ を満たす全ての有界区間 I に対して, $P(S_n \in I i.o.) = 0$

Proof.

 $L_d\cap I\neq\emptyset$ となる全ての有界区間 I に対して $\sum_{n=1}^\infty P(S_n\in I)=\infty$ となるとき、定理 17 から L_d の全ての状態は再帰的である。 つまり $L_d\cap I\neq\emptyset$ となる任意の有界区間 I とすれば、 $\forall x\in L_d\cap I$ として $P(S_n\in I\ i.o.)\geq P(S_n=x\ i.o.)=1$ (∵ x は再帰的)となる.

 $L_d\cap I\neq\emptyset$ となる有界区間 I が存在して $\sum_{n=1}^\infty P(S_n\in I)<\infty$ となるとき、定理 17 から再帰状態は存在しない. よって任意の有界区間 I $(L_d\cap I\neq\emptyset)$ に対して I を含む開区間 J とすれば $P(S_n\in I\ i.o.)\leq P(S_n\in J\ i.o.)=0$ (∵ J は L_d のある元の開近傍)

定義 19.

 $\{S_n\}_{n\in\mathbb{N}}$ が系 18 (i) を満たすとき、 再帰的という. また、 系 18 (ii) を満たすとき、 非再帰的という.

定理 20.

 $E[X_1] = 0$ となるとき, $S_1, S_2, ...$ は再帰的となる.

証明の前にまず命題を一つ示す.

命題 21.

$$I$$
 が長さ a の区間であるとき, $\sum_{n=1}^{\infty} P\left(S_n \in I\right) \leq 1 + \sum_{n=1}^{\infty} P\left(|S_n| \leq a\right)$ となる.

Proof

I を長さ a の任意の区間としてとる. $N:=\sum_{n=1}^\infty 1_{\{S_n\in I\}}$ とおくと,N は和 S_1,S_2,\ldots の中で I に含まれるものを数えたものとなる.

$$\int_{\{n^*=k\}} N(\omega) P(d\omega) \leq \int_{\{n^*=k\}} \left(1 + \sum_{n=1}^{\infty} 1_{\{(S_{k+n} - S_k)(\omega) \in [-a,a]\}} \right) P(d\omega) \quad \text{単調収束定理から},$$

$$= P(n^* = k) + \sum_{n=1}^{\infty} \int_{\{n^*=k\}} 1_{\{S_{k+n}(\omega) - S_k(\omega) \in [-a,a]\}} P(d\omega) = P(n^* = k) + \sum_{n=1}^{\infty} P\left(\{n^* = k\} \cap \{S_{k+n} - S_k \in [-a,a]\}\right)$$

$$= P(n^* = k) + \sum_{n=1}^{\infty} P(n^* = k) P(S_{k+n} - S_k \in [-a,a]) \qquad (\because \text{独立性から}) \quad \text{また同一分布性から}$$

$$= P(n^* = k) + P(n^* = k) \sum_{n=1}^{\infty} P(|S_n| \leq a) \quad \text{ここで両辺} \ k \text{ で和をとると}, \ \text{左辺は単調収束定理を使って},$$

$$\sum_{k=1}^{\infty} \int_{\{n^*=k\}} N(\omega) P(d\omega) = \int_{\Omega} \sum_{n=1}^{\infty} 1_{\{S_n(\omega) \in I\}} P(d\omega) = \sum_{n=1}^{\infty} P(S_n \in I) \text{ となって},$$

$$\sum_{n=1}^{\infty} P(S_n \in I) \leq 1 + \sum_{n=1}^{\infty} P(|S_n| \leq a) \quad \text{が成立する}.$$

命題 21 を使って, 定理 20 を証明する.

Proof.

$$\forall M \in \mathbb{N} \text{ ε \subseteq 2.} \sum_{n=1}^{\infty} P(|S_n| < M) = \sum_{k=-M}^{M-1} \sum_{n=1}^{\infty} P(S_n \in (k, k+1)) \text{ find } 21 \text{ } \text{ξ } \text{ψ }$$

例

コイントスを考える.

このとき Y_1,Y_2,\dots は独立同一分布に従い, L_1 上に分布する. $E\left[Y_1\right]=0$ なので, $\left\{Z_n\right\}_{n\in\mathbb{N}}$ は再帰的になる. また, 定理 $8,\,P(Z_n=0\;i.o.)=1$ となることからも,系 18 により $\left\{Z_n\right\}_{n\in\mathbb{N}}$ は再帰的になることがわかる.