自然语言处理训练营(3)

点此获取更多资源

Pipeline

What we cover today

- Word Segmentation
- Spell Correction
- Stop Words Removal
- Stemming

Word Segmentation (分词)

Word Segmentation Tools

```
Jieba分词 https://github.com/fxsjy/jieba
SnowNLP https://github.com/isnowfy/snownlp
LTP http://www.ltp-cloud.com/
HanNLP https://github.com/hankcs/HanLP/
```

Segmentation Method 1: Max Matching(最大匹配)

前向最大匹配(forward-max matching)

例子: 我们经常有意见分歧

词典:["我们","经常","有","有意见","意见","分歧"]

Segmentation Method 1: Max Matching(最大匹配)

后向最大匹配(backward-max matching)

例子: 我们经常有意见分歧

词典:["我们","经常","有","有意见","意见","分歧"]

Segmentation Method 1: Max Matching(最大匹配)

最大匹配的缺点?

例子: 我们经常有意见分歧

词典:["我们","经常","有","有意见","意见","分歧"]

Segmentation Method 2: Incorporate Semantic (考虑语义)

例子: 经常有意见分歧

词典: ["有", "有意见", "意见", "分歧", "见", "意"]

Segmentation Method 2: Incorporate Semantic (考虑语义)

例子: 经常有意见分歧

词典: ["有", "有意见", "意见", "分歧", "见", "意"]

Segmentation Method 2: Incorporate Semantic (考虑语义)

怎么解决效率问题?

Ask him!

例子: "经常有意见分歧"

词典: ["有", "有意见", "意见", "分歧", "见", "意"]

解决方案:

Word Segmentation Summary

知识点总结:

- 基于匹配规则的方法
- 基于概率统计方法(LM, HMM, CRF..)
- 分词可以认为是已经解决的问题

需要掌握什么?

- 可以自行实现基于最大匹配和Unigram LM的方法

Spell Correction (拼写错误纠正)

Spell Correction (拼写错误纠正)

怎么做?

Find the words with smallest edit distance

用户输入(input) 候选(candidates) 编辑距离(edit distance)

词典

Find the words with smallest edit distance

用户输入(input) 候选(candidates)

词典

Better Way

How to Select?

问题定义: 给定一个字符串 s,我们要找出最有可能修改后的字符串 c。 并且 $c \in [w_1, w_2, ..., w_N]$ 。也就是 $\hat{c} = argmax_{c \in candidates} p(c|s)$

 $\hat{c} = argmax_{c \in candidates} p(c|s)$

= $argmax_{c \in candidates} p(s|c) * p(c)/p(s)$

= $argmax_{c \in candidates} p(s|c) * p(c)$

Words Filtering

Filtering Words

对于NLP的应用,我们通常先把**停用词、出现频率很** 低的词汇过滤掉

这其实类似于特征筛选的过程

Removing Stop Words

在英文里,比如 "the", "an", "their"这些都可以作为停用词来处理。但是, 也需要考虑自己的应用场景

Low Frequency Words

出现频率**特别低的**词汇对分析作用不大,所以一般也会去掉。把停用词、出现频率低的词过滤之后,即可以得到一个我们的词典库。

Words Normalization

Stemming: one way to normalize

went, go, going
fly, flies,
deny, denied, denying
fast, faster, fastest

意思都类似,怎么合并?

https://tartarus.org/martin/PorterStemmer/java.txt

Porter Stemmer

```
Step 1a
                                             Step 2 (for long stems)
   sses → ss
                 caresses → caress
                                                ational → ate relational → relate
   ies → i ponies → poni
                                                izer→ ize digitizer → digitize
   SS
         \rightarrow ss
                 caress → caress
                                                ator→ ate operator → operate
                  cats → cat
         \rightarrow Ø
Step 1b
                                              Step 3 (for longer stems)
   (*v*)ing \rightarrow \emptyset walking \rightarrow walk
                                                al
                                                       \rightarrow ø revival \rightarrow reviv
                     sing \rightarrow sing
                                                       \rightarrow ø adjustable \rightarrow adjust
                                                able
   (*v*)ed \rightarrow \emptyset  plastered \rightarrow plaster
                                                       \rightarrow ø activate \rightarrow activ
                                                ate
```

单词的表示 (representation)

- 最常用的表示方式: 词袋模型 (Bag-of-word Model)
- 假设我们的词典里有7个单词: [我们,去,爬山,今天,你们,昨天,运动]

• 每个单词的表示:

- 我们: [1, 0, 0, 0, 0, 0, 0]
- 爬山: [0, 0, 1, 0, 0, 0, 0]
- 运动: [0, 0, 0, 0, 0, 0, 1]
- 昨天: [0, 0, 0, 0, 0, 1, 0]

句子的表示 (representation)

最常用的表示方式: 词袋模型 (Bag-of-word Model)

假设我们的词典里有7个单词: [我们,去,爬山,今天,你们,昨天,运动]

我们今天去爬山: [1, 1, 1, 1, 0, 0, 0]

你们昨天运动: [0,0,0,0,1,1,1]

你们去爬山: [0, 1, 1, 0, 1, 0, 0]

怎么表示句子之间的相关性?

计算距离第一种方法: d = |s1-s2|

例子: 给定"我们今天去爬山"和"你们昨天运动": s1 = [1, 1, 1, 1, 0, 0, 0], s2 = [0, 0, 0, 0, 1, 1, 1] d = sqrt(1+1+1+1+1+1) = sqrt(7)

例子: 给定"我们今天去爬山"和"你们去爬山": s1 = [1, 1, 1, 1, 0, 0, 0], s2 = [0, 1, 1, 0, 1, 0, 0] d = sqrt(1+0+0+1+1+0+0) = sqrt(3)

所以, "我们今天去爬山"和"你们去爬山"更接近

怎么表示句子之间的相关性?

计算距离第一种方法: d = |s1-s2|

这种距离计算方法有什么缺点?

怎么表示句子之间的相关性?

计算距离第二种方法: d = (s1*s2) /|s1|*|s2| (余弦相似度)

例子: 给定"我们今天去爬山"和"你们昨天运动": s1 = [1, 1, 1, 1, 0, 0, 0], s2 = [0, 0, 0, 0, 1, 1, 1] d = 0/sqrt(2)*sqrt(3) =**0**

例子: 给定"我们今天去爬山"和"你们去爬山": s1 = [1, 1, 1, 1, 0, 0, 0], s2 = [0, 1, 1, 0, 1, 0, 0] d = 2/sqrt(2)*sqrt(3) = **2/sqrt(6)**

所以, "我们今天去爬山"和 "你们去爬山"更接近

回顾句子的表示方式

```
corpus = [
    'He is going from Beijing to Shanghai.',
    'He denied my request, but he actually lied.',
    'Mike lost the phone, and phone was in the car.',
]
```

回顾句子的表示方式

并不是出现的越多就越重要!并不是出现的越少就越不重要!

tf-idf表达方法

N: 语料库中文档总数

N(w): 词语w出现在多少个文档?

例子