CS156 - Pipeline - First Draft

Which Video Will I Like?

Problem Definition

The objective of this project is to predict whether I will "like" a YouTube video based solely on its metadata before watching it. By analyzing patterns in the metadata of videos I have previously liked versus those I have watched but not liked, we aim to build a machine learning model that can forecast my likelihood of liking new videos.

Motivation

With the vast amount of content available on YouTube, personalized recommendations can significantly enhance the viewing experience. Predicting which videos I am likely to like can help in:

- **Streamlining Content Consumption**: Reducing time spent searching for engaging videos.
- **Personal Insights**: Understanding my own viewing preferences and behaviors.
- **Enhancing Recommendation Systems**: Providing a framework that could be adapted for broader recommendation engines.

Objectives

- Data Acquisition: Collect metadata from a balanced dataset of liked and unliked videos.
- **Feature Extraction**: Identify and extract relevant metadata features that may influence liking behavior.
- Model Development: Train machine learning models to predict the likelihood of liking a video.
- **Evaluation**: Assess model performance using appropriate metrics.
- Analysis: Interpret the results to understand key factors influencing the predictions.

Data Collection

To build a robust predictive model, we will collect data from two categories:

- Liked Videos (Positive Class):
 - Source: Videos on which I have pressed the "like" button.
 - Quantity: 200 videos.
 - Method: Use the YouTube Data API to retrieve metadata of liked videos.
- 2. Unliked Videos (Negative Class):
 - Source: Videos I have watched but did not press the "like" button.
 - Quantity: Randomly select 200 videos from a pool of 1,000 recently watched unliked videos.
 - Method:

- Extract watch history from watch-history.html obtained via Google Takeout.
- Filter out videos that have been liked.
- Randomly select 200 unliked videos to match the number of liked videos.

Feature Extraction

Relevant metadata features to be extracted include:

Video Attributes:

- Title
- Description
- Tags
- Category ID
- Duration
- Default Audio Language
- Topic Categories

Engagement Metrics:

- View Count
- Like Count
- Comment Count

Content Details:

- Published Date and Time
- Content Rating
- Definition (HD or SD)

Data Preprocessing

To prepare the data for modeling, the following preprocessing steps will be applied:

Data Cleaning:

- Handle missing or null values.
- Remove duplicates.

Feature Engineering:

- Convert duration to total seconds.
- Extract textual features from title and description (e.g., word counts, sentiment scores).
- Categorize view counts, like counts, and comment counts into bins.

Encoding Categorical Variables:

- Use one-hot encoding for categorical features like category ID and language.
- Encode textual features using techniques like TF-IDF vectors for titles and descriptions.

Normalization and Scaling:

Scale numerical features to ensure uniformity.

Modeling

Multiple machine learning algorithms will be explored to find the best predictive model:

- Baseline Models:
 - Logistic Regression
 - Decision Trees
- Advanced Models:
 - Random Forests
 - Gradient Boosting Machines (e.g., XGBoost, LightGBM)
 - Support Vector Machines
 - Neural Networks (for more complex patterns)

Fvaluation

Models will be evaluated using cross-validation and the following performance metrics:

- Accuracy: Overall correctness of the model.
- **Precision**: Correctly predicted likes out of all predicted likes.
- Recall: Correctly predicted likes out of all actual likes.
- **F1-Score**: Harmonic mean of precision and recall.
- Confusion Matrix: To visualize true vs. predicted classifications.
- ROC Curve and AUC Score: To evaluate the model's ability to discriminate between classes.

Expected Challenges

- Imbalanced Data: Ensuring the dataset remains balanced to prevent bias.
- **Feature Selection**: Identifying which metadata features are most predictive.
- **Overfitting**: Avoiding models that perform well on training data but poorly on unseen data.
- Data Privacy: Handling personal data securely and ethically.

Results Interpretation

After training and evaluating the models, we will:

- Identify Key Predictors: Determine which features most influence the likelihood of liking a video.
- **Model Comparison**: Compare the performance of different algorithms to select the best model.
- **Practical Implications**: Discuss how the model could be used in real-world scenarios, such as enhancing YouTube's recommendation system.

Conclusion

This project aims to create a personalized predictive model for liking YouTube videos based on metadata. Successful completion could lead to improved content recommendations and a deeper understanding of personal viewing habits.

Future Work

- Expand Feature Set: Incorporate additional metadata or user interaction features.
- **Time-Series Analysis**: Analyze how preferences change over time.
- Apply to Other Users: Test the model's applicability to predict likes for other users.

Section 2: Converting data into Python dataframe

```
import google auth oauthlib.flow
import googleapiclient.discovery
import googleapiclient.errors
# Set up OAuth 2.0 authentication flow
scopes = ["https://www.googleapis.com/auth/youtube.force-ssl"]
client secrets file = "../../Desktop/client secret.json"
# Create an OAuth flow and get credentials using the local server
method
flow =
google auth oauthlib.flow.InstalledAppFlow.from client secrets file(
    client secrets file, scopes)
# Use run local server() to initiate the OAuth flow
flow.redirect uri = 'http://localhost:5001/oauth2callback'
credentials = flow.run local server(port=5001)
# Create a YouTube client
youtube = googleapiclient.discovery.build("youtube", "v3",
credentials=credentials)
# Request liked videos
request = youtube.videos().list(
    part="snippet,contentDetails",
    myRating="like"
response = request.execute()
# Process and print video details
for item in response.get("items", []):
    title = item["snippet"]["title"]
    video id = item["id"]
    print(f"Title: {title}, Video ID: {video id}")
Please visit this URL to authorize this application:
https://accounts.google.com/o/oauth2/auth?
response type=code&client id=217986578119-
0l6jjn9u267th7o7rh7bm2uqffaqqq96.apps.googleusercontent.com&redirect u
ri=http%3A%2F%2Flocalhost%3A5001%2F&scope=https%3A%2F
%2Fwww.googleapis.com%2Fauth%2Fyoutube.force-
ssl&state=rf8n0Btx7nFq7Is7dG9GrKRC83spM3&access type=offline
```

```
Title: , 100% , Video ID: aV1GcmMh-ME
Title: What Is Dynamic Programming and How To Use It, Video ID:
vYquumk4nWw
Title: 8 vs. 8 soccer: Tactics, Formation, Position (3-3-1), Video ID:
iUPthkBfjJM
Title: 🐨
              , Video ID: JzEt1rvl8EA
Title:
              , Video ID: F4pXf KIYu4
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
def get liked videos(max results=200):
    videos = []
    next page token = None
    while len(videos) < max results:</pre>
        request = youtube.videos().list(
            part="snippet,contentDetails,statistics,topicDetails",
            myRating="like",
            maxResults=50,
            pageToken=next page token
        )
        response = request.execute()
        videos.extend(response.get("items", []))
        next page token = response.get("nextPageToken")
        if not next page_token:
            break
    return videos[:max_results]
def get random videos details(video ids):
    videos = []
    for i in range(0, len(video ids), 50):
        request = youtube.videos().list(
            part="snippet,contentDetails,statistics,topicDetails",
            id=','.join(video ids[i:i+50])
        )
        response = request.execute()
        videos.extend(response.get("items", []))
    return videos
def get random videos(max results=200, regions=['US', 'KR']):
    search_terms = ["music", "technology", "news", "sports", "gaming",
"cooking", "travel", "science"]
    video ids = []
    for term in search terms:
```

```
if len(video ids) >= max results:
            break
        for region in regions:
            request = voutube.search().list(
                part="snippet",
                q=term,
                type="video",
                maxResults=25, # Reduce max results to balance
between regions
                regionCode=region
            )
            response = request.execute()
            video ids.extend([item['id']['videoId'] for item in
response.get("items", [])])
            if len(video ids) >= max results:
                break
    return get random videos details(video ids[:max results])
# Get 200 liked videos
liked videos = get liked videos(max results=200)
# Get 200 random videos from YouTube (from US and Korea)
random videos = get random videos(max results=200, regions=['US',
'KR'])
# Create DataFrame to store video information
def create dataframe(video_items, category):
    data = []
    for item in video items:
        snippet = item.get("snippet", {})
        content details = item.get("contentDetails", {})
        statistics = item.get("statistics", {})
        topic details = item.get("topicDetails", {})
        video info = {
            "category": category,
            "title": snippet.get("title", "N/A"),
            "description": snippet.get("description", "N/A"),
            "tags": snippet.get("tags", "N/A"),
            "category id": snippet.get("categoryId", "N/A"),
            "duration": content details.get("duration", "N/A"),
            "view_count": int(statistics.get("viewCount", 0)),
            "like count": int(statistics.get("likeCount", 0)),
            "comment_count": int(statistics.get("commentCount", 0)),
            "topic categories": topic details.get("topicCategories",
"N/A"),
```

```
"language": snippet.get("defaultAudioLanguage",
snippet.get("defaultLanguage", "N/A"))
        data.append(video info)
    return pd.DataFrame(data)
# Create DataFrames for liked and random videos
liked videos df = create dataframe(liked videos, "Liked")
random videos df = create dataframe(random videos, "Random")
# Combine both DataFrames
combined df = pd.concat([liked videos df, random videos df],
ignore index=True)
# Save DataFrame to CSV
combined df.to csv("combined videos.csv", index=False)
# Display the DataFrame
print(combined df.head())
# Summarize the dataset
print("\nDataset Summary:")
print(combined df.describe())
# Bar graph to compare number of liked and random videos
plt.figure(figsize=(10, 6))
sns.countplot(x="category", data=combined df)
plt.title("Number of Videos: Liked vs Random")
plt.xlabel("Category")
plt.ylabel("Count")
plt.show()
# Compare views of liked and random videos
plt.figure(figsize=(10, 6))
sns.boxplot(x="category", y="view_count", data=combined_df)
plt.title("View Count Comparison: Liked vs Random Videos")
plt.xlabel("Category")
plt.ylabel("View Count")
plt.yscale("log") # Use log scale to handle wide range of view counts
plt.show()
                                                         title \
  category
0
                                     , 100%
     Liked
                What Is Dynamic Programming and How To Use It
1
     Liked
2
     Liked 8 vs. 8 soccer: Tactics, Formation, Position (...
3
     Liked
                                            T
     Liked
                                         description \
                       \n...
```

```
**Dynamic Programming Tutorial**\nThis is a qu...
2
  This video looks at three of the basics for an...
3
4
   # # # # # # \n#Sofa4844...
                                                  tags category id
duration \
            , # , #
                      . #
                                             26
                                                 PT14M11S
   [dynamic programming tutorial, dynamic program...
                                                                27
PT14M28S
   [soocer, U9, coaching, 3-3-1- formation, kid-f...
                                                                22
PT7M20S
3
                                                   N/A
                                                                22
PT28S
   [Sofa4844, Shorts,
                                                     10
                                                            PT29S
   view count
               like count
                            comment count
0
          132
                        16
1
      1606355
                    41524
                                     1619
2
        85312
                      1167
                                       23
3
                                       15
        58832
                       986
4
      1582811
                    28947
                                     1270
                                     topic categories language
0
           [https://en.wikipedia.org/wiki/Knowledge]
           [https://en.wikipedia.org/wiki/Knowledge]
1
                                                             en
2
   [https://en.wikipedia.org/wiki/Association foo...
                                                            N/A
3
                 [https://en.wikipedia.org/wiki/Food]
                                                            N/A
4
   [https://en.wikipedia.org/wiki/Music, https://...
                                                             ko
Dataset Summary:
         view count
                        like count
                                    comment count
       4.000000e+02
                      4.000000e+02
                                       400.000000
count
                      2.467796e+05
                                      3684.720000
mean
       1.189981e+07
       4.541627e+07
                     9.671951e+05
                                     12502.592978
std
                     0.000000e+00
       1.400000e+01
                                         0.000000
min
25%
       9.369200e+04
                     2.062750e+03
                                        42,000000
50%
       6.158440e+05
                     1.080750e+04
                                       319.500000
75%
       4.381516e+06
                     7.770100e+04
                                      1763.500000
       5.690540e+08
                     1.450842e+07
                                    125802.000000
max
```



```
import pandas as pd
from datetime import datetime
import matplotlib.pyplot as plt
import seaborn as sns
def get liked videos(max results=200):
    videos = []
    next_page_token = None
    while len(videos) < max results:</pre>
        request = youtube.videos().list(
            part="snippet,contentDetails,statistics,topicDetails",
            myRating="like",
            maxResults=50,
            pageToken=next page token
        )
        response = request.execute()
        videos.extend(response.get("items", []))
        next page token = response.get("nextPageToken")
        if not next page token:
            break
    return videos[:max results]
def get random videos details(video ids):
    videos = []
    for i in range(0, len(video ids), 50):
        request = youtube.videos().list(
            part="snippet,contentDetails,statistics,topicDetails",
            id=','.join(video ids[i:i+50])
        response = request.execute()
        videos.extend(response.get("items", []))
    return videos
def get_random_videos(max results=200, regions=['US', 'KR']):
    video ids = []
    for region in regions:
        while len(video_ids) < max_results:</pre>
            request = youtube.videos().list(
                part="snippet",
                chart="mostPopular",
                regionCode=region,
                maxResults=50
            )
```

```
response = request.execute()
            video ids.extend([item['id'] for item in
response.get("items", [])])
            if len(video ids) >= max results:
    return get random videos details(video ids[:max results])
# Get 200 liked videos
liked videos = get liked videos(max results=200)
# Get 200 random videos from YouTube (from US and Korea)
random videos = get random videos(max results=200, regions=['US',
'KR'])
# Create DataFrame to store video information
def create dataframe(video items, category):
    data = []
    for item in video items:
        snippet = item.get("snippet", {})
        content details = item.get("contentDetails", {})
        statistics = item.get("statistics", {})
        topic_details = item.get("topicDetails", {})
        video info = {
            "category": category,
            "title": snippet.get("title", "N/A"),
            "description": snippet.get("description", "N/A"),
            "tags": snippet.get("tags", "N/A"),
            "category id": snippet.get("categoryId", "N/A"),
            "duration": content details.get("duration", "N/A"),
            "view count": int(statistics.get("viewCount", 0)),
            "like count": int(statistics.get("likeCount", 0)),
            "comment count": int(statistics.get("commentCount", 0)),
            "topic categories": topic details.get("topicCategories",
"N/A"),
            "language": snippet.get("defaultAudioLanguage",
snippet.get("defaultLanguage", "N/A"))
        data.append(video info)
    return pd.DataFrame(data)
# Create DataFrames for liked and random videos
liked_videos_df = create dataframe(liked videos, "Liked")
random videos df = create dataframe(random videos, "Random")
# Combine both DataFrames
combined df = pd.concat([liked videos df, random videos df],
```

```
ignore index=True)
# Save DataFrame to CSV
combined df.to csv("combined videos.csv", index=False)
# Display the DataFrame
print(combined df.head())
# Summarize the dataset
print("\nDataset Summary:")
print(combined df.describe())
# Bar graph to compare number of liked and random videos
plt.figure(figsize=(10, 6))
sns.countplot(x="category", data=combined_df)
plt.title("Number of Videos: Liked vs Random")
plt.xlabel("Category")
plt.ylabel("Count")
plt.show()
# Compare views of liked and random videos
plt.figure(figsize=(10, 6))
sns.boxplot(x="category", y="view_count", data=combined_df)
plt.title("View Count Comparison: Liked vs Random Videos")
plt.xlabel("Category")
plt.vlabel("View Count")
plt.yscale("log") # Use log scale to handle wide range of view counts
plt.show()
  category
                                                        title \
                                    , 100%
     Liked
0
1
     Liked
                What Is Dynamic Programming and How To Use It
2
     Liked 8 vs. 8 soccer: Tactics, Formation, Position (...
3
     Liked
4
     Liked
                                         description \
                       \n...
  **Dynamic Programming Tutorial**\nThis is a qu...
1
  This video looks at three of the basics for an...
3
4 # # # # # # \n#Sofa4844...
                                                tags category id
duration \
0 [# , # , # , # , # , # ...
                                            26 PT14M11S
1 [dynamic programming tutorial, dynamic program...
                                                              27
PT14M28S
                                                              22
2 [soocer, U9, coaching, 3-3-1- formation, kid-f...
PT7M20S
```

```
3
                                                    N/A
                                                                  22
PT28S
   [Sofa4844, Shorts, , ,
                                                      10
                                                              PT29S
                like count
                            comment count
   view count
0
          132
                        16
1
      1606378
                     41525
                                      1619
2
        85312
                      1167
                                        23
3
        58832
                                        15
                       986
4
                                      1270
      1582845
                     28948
                                      topic categories language
           [https://en.wikipedia.org/wiki/Knowledge]
0
                                                               ko
1
           [https://en.wikipedia.org/wiki/Knowledge]
                                                               en
2
   [https://en.wikipedia.org/wiki/Association foo...
                                                              N/A
                 [https://en.wikipedia.org/wiki/Food]
3
                                                              N/A
4
   [https://en.wikipedia.org/wiki/Music, https://...
                                                              ko
Dataset Summary:
                        like count
                                     comment count
         view count
count
       4.000000e+02
                      4.000000e+02
                                        400.000000
mean
       2.184960e+06
                      6.409394e+04
                                       2478.070000
std
       8.986955e+06
                      2.757538e+05
                                       4892.842976
       1.400000e+01
                      0.000000e+00
min
                                          0.000000
25%
       1.253030e+05
                      3.213750e+03
                                        199,000000
50%
       4.916530e+05
                      1.223200e+04
                                        656.000000
75%
       1.022161e+06
                      3.860300e+04
                                       1984.000000
       9.430828e+07
                      3.807253e+06
                                      27790.000000
max
```



```
import pandas as pd
from datetime import datetime
import matplotlib.pyplot as plt
import seaborn as sns
from bs4 import BeautifulSoup
import re
import random
def get liked videos(max results=200):
    videos = []
    next page token = None
    while len(videos) < max_results:</pre>
        request = youtube.videos().list(
            part="snippet,contentDetails,statistics,topicDetails",
            myRating="like",
            maxResults=50,
            pageToken=next page token
        )
        response = request.execute()
        videos.extend(response.get("items", []))
        next page token = response.get("nextPageToken")
        if not next page token:
            break
    return videos[:max_results]
def get random videos details(video ids):
    videos = []
    for i in range(0, len(video ids), 50):
        try:
            request = youtube.videos().list(
                part="snippet,contentDetails,statistics,topicDetails",
                id=','.join(video ids[i:i+50])
            )
            response = request.execute()
            videos.extend(response.get("items", []))
        except Exception as e:
            print(f"An error occurred: {e}")
            continue
    return videos
def get recently watched videos from html(file path,
max results=1000):
    # Read the HTML file
    with open(file path, 'r', encoding='utf-8') as f:
        soup = BeautifulSoup(f, 'lxml')
```

```
# Find all watch history entries
    entries = soup.find all('div', class = 'mdl-grid')
    video ids = []
    for entry in entries:
        # Find the anchor tag with the video URL
        a_tag = entry.find('a')
        if a tag and 'youtube.com/watch' in a tag.get('href', ''):
            url = a tag['href']
            # Extract the video ID using regex
            match = re.search(r'v=([^{\&}]+)', url)
            if match:
                video id = match.group(1)
                video ids.append(video id)
                if len(video ids) >= max results:
                    break
    # Remove duplicates while preserving order
    video ids = list(dict.fromkeys(video ids))
    return video ids
def create dataframe(video items, category):
    data = []
    for item in video items:
        snippet = item.get("snippet", {})
        content details = item.get("contentDetails", {})
        statistics = item.get("statistics", {})
        topic details = item.get("topicDetails", {})
        video info = {
            "category": category,
            "title": snippet.get("title", "N/A"),
            "description": snippet.get("description", "N/A"),
            "tags": snippet.get("tags", "N/A"),
            "category id": snippet.get("categoryId", "N/A"),
            "duration": content_details.get("duration", "N/A"),
            "view count": int(statistics.get("viewCount", 0)),
            "like count": int(statistics.get("likeCount", 0)),
            "comment count": int(statistics.get("commentCount", 0)),
            "topic categories": topic details.get("topicCategories",
"N/A"),
            "language": snippet.get("defaultAudioLanguage",
snippet.get("defaultLanguage", "N/A"))
        data.append(video info)
    return pd.DataFrame(data)
# Provide the path to your watch-history.html file
file path = '/Users/hcoh/Downloads/Takeout 3/YouTube and YouTube
```

```
Music/history/watch-history.html'
# Get 200 liked videos
liked videos = get liked videos(max results=200)
# Extract liked video IDs
liked video ids = [item['id'] for item in liked_videos]
# Get 1000 recently watched video IDs
recently watched video ids =
get recently watched videos from html(file path, max results=1000)
# Filter out liked videos
unliked video ids = [vid for vid in recently watched video ids if vid
not in liked_video_ids]
# Ensure we have enough videos to sample from
if len(unliked video ids) < 200:
    print("Not enough unliked videos to sample from.")
    # Use all available videos
    unliked sample ids = unliked video ids
else:
    unliked sample ids = random.sample(unliked video ids, 200)
# Fetch details of the unliked sampled videos
unliked videos = get random videos details(unliked sample ids)
# Create DataFrames for liked and unliked videos
liked videos df = create dataframe(liked videos, "Liked")
unliked videos df = create dataframe(unliked videos, "Not Liked")
# Combine both DataFrames
combined df = pd.concat([liked videos df, unliked videos df],
ignore index=True)
# Save DataFrame to CSV
combined_df.to_csv("combined_videos.csv", index=False)
# Display the DataFrame
print(combined df.head())
# Summarize the dataset
print("\nDataset Summary:")
print(combined df.describe())
# Bar graph to compare number of liked and unliked videos
plt.figure(figsize=(10, 6))
sns.countplot(x="category", data=combined df)
plt.title("Number of Videos: Liked vs Not Liked")
plt.xlabel("Category")
```

```
plt.ylabel("Count")
plt.show()
# Compare views of liked and unliked videos
plt.figure(figsize=(10, 6))
sns.boxplot(x="category", y="view_count", data=combined_df)
plt.title("View Count Comparison: Liked vs Not Liked Videos")
plt.xlabel("Category")
plt.ylabel("View Count")
plt.yscale("log") # Use log scale to handle wide range of view counts
plt.show()
                                                         title \
  category
                                     , 100%
0
     Liked
                What Is Dynamic Programming and How To Use It
1
     Liked
2
            8 vs. 8 soccer: Tactics, Formation, Position (...
     Liked
3
     Liked
4
     Liked
                                         description \
                # # \n...
  **Dynamic Programming Tutorial**\nThis is a qu...
1
2
  This video looks at three of the basics for an...
3
4 # # # # # # \n#Sofa4844...
                                                tags category id
duration \
   [# , # , # , # , # , #
                                            26
                                                PT14M11S
   [dynamic programming tutorial, dynamic program...
                                                               27
PT14M28S
2 [soocer, U9, coaching, 3-3-1- formation, kid-f...
                                                               22
PT7M20S
                                                  N/A
                                                               22
3
PT28S
  [Sofa4844, Shorts, , , ,
                                                    10
                                                           PT29S
   view count like count comment count \
0
          132
                       16
1
      1606381
                    41525
                                    1619
2
        85312
                     1167
                                      23
3
                                      15
        58821
                      986
4
      1583061
                    28959
                                    1270
                                    topic categories language
0
           [https://en.wikipedia.org/wiki/Knowledge]
                                                            ko
1
           [https://en.wikipedia.org/wiki/Knowledge]
                                                            en
2
   [https://en.wikipedia.org/wiki/Association foo...
                                                           N/A
                [https://en.wikipedia.org/wiki/Food]
3
                                                           N/A
   [https://en.wikipedia.org/wiki/Music, https://...
                                                            ko
```

Dataset Summary:			
	view_count	like_count	comment_count
count	3.980000e+02	3.980000e+02	398.000000
mean	7.272980e+06	1.392740e+05	1635.246231
std	3.596421e+07	8.700834e+05	11758.741734
min	1.400000e+01	0.000000e+00	0.00000
25%	9.120475e+04	1.614000e+03	38.000000
50%	5.602590e+05	1.048500e+04	246.000000
75%	3.201264e+06	5.343050e+04	687.000000
max	6.411373e+08	1.484950e+07	197831.000000

Category


```
combined df
                                                              title \
      category
0
         Liked
                                         , 100%
1
         Liked
                    What Is Dynamic Programming and How To Use It
2
         Liked 8 vs. 8 soccer: Tactics, Formation, Position (...
3
         Liked
4
         Liked
393
     Not Liked
     Not Liked
394
395
     Not Liked Crazy? Silicon Valley Software Engineer living...
     Not Liked
                                                      (Ghil Path)
396
397
     Not Liked
                                                         Potential
                                            description \
0
                   #
                      #
                         \n...
1
     **Dynamic Programming Tutorial**\nThis is a qu...
2
     This video looks at three of the basics for an...
3
4
             # # # # \n#Sofa4844...
. .
393
                   n \prod
394
     Provided to YouTube by Kwangsoo Media\n\n ...
     I have been living in my car for the past 6 mo...
```

```
396
     Provided to YouTube by Collab Asia Music\n\n ...
     Provided to YouTube by The Orchard Enterprises...
397
                                                   tags category id
duration \
     [# , # , # , # , # , # ...
                                               26
                                                   PT14M11S
                                                                  27
1
     [dynamic programming tutorial, dynamic program...
PT14M28S
     [soocer, U9, coaching, 3-3-1- formation, kid-f...
                                                                  22
PT7M20S
                                                                  22
3
                                                    N/A
PT28S
     [Sofa4844, Shorts, , , ,
                                                       10
                                                              PT29S
393
           , ootd, oodf, ootv,
                                                               PT1M
394
                          [ (HisWill), ㅅㅏㄹㅇㅏ가ㄷㅏ, ]
                                                                     10
PT4M58S
                                                                  22
                                                    N/A
395
PT7M9S
                         [LEVISTANCE, , (Ghil Path)]
396
                                                                10
PT4M55S
     [Lauv, Ari Leff, Michael Pollack, Madison Love...
                                                                  10
PT2M58S
     view count
                like count
                             comment count \
0
            132
                         16
1
        1606381
                      41525
                                       1619
2
          85312
                       1167
                                         23
3
          58821
                        986
                                         15
4
        1583061
                      28959
                                       1270
393
        3294142
                      75574
                                        413
394
        1946404
                       4461
                                          0
395
         517509
                      10414
                                       1425
396
         111208
                        807
                                          5
397
        3425649
                      25632
                                        135
                                       topic categories language
             [https://en.wikipedia.org/wiki/Knowledge]
0
1
             [https://en.wikipedia.org/wiki/Knowledge]
                                                               en
2
     [https://en.wikipedia.org/wiki/Association foo...
                                                              N/A
3
                  [https://en.wikipedia.org/wiki/Food]
                                                              N/A
4
     [https://en.wikipedia.org/wiki/Music, https://...
                                                               ko
                                                              . . .
393
     [https://en.wikipedia.org/wiki/Entertainment, ...
                                                               ko
394
     [https://en.wikipedia.org/wiki/Christian music...
                                                              N/A
395
     [https://en.wikipedia.org/wiki/Lifestyle (soci...
                                                            en-US
396
     [https://en.wikipedia.org/wiki/Christian music...
                                                              N/A
```

```
397 [https://en.wikipedia.org/wiki/Music, https://... N/A [398 rows x 11 columns]
```