Task 4 {Basmala}

Measures of spread:

gives an idea of how students differ.

"it's concerned with how far are points from one another."

- **▼ MEASURES OF SPREAD:**
 - Range
 - Interquartile range
 - Standard deviation
 - Variance

<< Range & Interquartile range>>

HISTOGRAM:

"Most common visual for quantitative data".

How it works:

- ▼ The histogram creator chooses how the binning occurs.
 - -Binning: the process of making a category from which the certain elements lies between certain limits.

Ex: the values 1,2,2,4 lies in a bin called from 1-4.

▼ The number of values determine the hight of each histogram bin.

5 number summary:

one of the most common ways to measure the spread.

"Gives values for calculating the range and interquartile range".

▼ Consists of:

- Minimum.
- First Quartile (Q1).
- Second Quartile "median" (Q2).
- Third Quartile(Q3).
- Maximum.

Side Note:

- First we order the values → which makes it easier to detect the minimum, maximum and the median(Q2)
- Second Quartile (median)→ "50% of the data or 2/4 fall bellow this value".
- First & Third Quartile \rightarrow "Are considered the medians of the data on either sides of Q2".
- First Quartile \rightarrow "25% of the data fall bellow this value".
- Third Quartile \rightarrow "75% of the data fall bellow this value".

```
THE RANGE = MAX - MIN

Interquartile range = Q3 - Q1
```

Box plot:

"the values of five number summary marked"

"Useful for quickly comparing the spread of two data sets across some key metrics like quartiles, maximum and minimum."

<< Variance & Standard deviation>>

"the most common way to measure the spread with only one value"

Standard deviation

Also called "root mean square error"

- → On average ,how much each point varies from the mean of the points in a dataset.
- → gives a measure of variation, or spread within this dataset.
- → used to compare spreads of different groups.
- → If there had been more variation between points, the standard deviation would have been even larger.
- → if there had been less variation the standard deviation would have been smaller.
- → is often deemed as a more useful measurement of spread as it shares the units of the original data set, while the variance shares units of original data set squared which doesn't make sense.

s.n:

when data concerns money or economy having higher Standard deviation is associated with higher risk

for comparison to be fair : all data should be in the same unit

Variance

Standard deviation = sqrt(Variance)

"Average square different of each observation from the mean $(xi - x bar)^2$ /number of elements"

Shape:

Give a more complete picture.

"histograms are used to determine shape associated with data".

"shape of distribution can tell us a lot about the measures and spread".

Shapes of histogram:

1. Left skewed:

- has shorter bins on the left and taller ones on the right.
- mean < median.
- Ex on Left-skewed distribution:
- GPA
- Age of death
- Asset price changes

2. Right skewed:

- has taller bins on the left and shorter ones on the right.
- mean > median
- Ex on Right-skewed distribution:
- · Amount of drug left in blood
- Wealth distribution
- Athletic abilities

3. Symmetric distribution:

- the right side mirrors the left side.
- ex: normal distribution (bell curve)(Gaussian distribution).
- mean = median = mode.
- Ex on Bell-shaped distribution:
- Heights

- Weights
- Scores
- Precipitation
- Mean of a distribution
- Errors in manufacturing process

Outliers:

Data points that fall very far from the rest of the values in our dataset.

- standard deviation & mean are not great measures in this case.
- The median is a better measure of the center.
- outliers greatly increase the mean& standard deviation.
- Reporting the five maximum summary is better than the mean and standard deviation when outliers exist.

Bell-shaped data:

- You can find every little detail about the data by finding the mean and standard deviation.

Skewed data:

- Five-number summary is the best for this case.

Descriptive statistics:

Describing the data we've collected

"used regularly by scientists to briefly summarize the key features of a dataset or population".

Scientists typically use descriptive statistics to:

- 1. Concisely summarize the characteristics of a population or dataset.
- 2. Determine the distribution of measurement errors or experimental uncertainty

Inferential statistics:

Drawing conclusions about a population based on data collected from a sample of individuals from that population.

Population \rightarrow entire group of interest.

Sample \rightarrow subset from our population.

Statistics \rightarrow any numeric summary calculated from the sample.

Parameter \rightarrow any numeric summary from the population.