Simulation with Amber

Naf Guo 2025 Ontion 2: Getting source code in tar format

https://ambermd.org/GetAmber.php

从2024年的某一天开始,大善人amber学术免费了! 我们需要下载amber24和ambertools24

Option 2.	octaining soc	noc oode iii t	al Ioiiiiat		
					s distributed in source C++ and Fortran9
"Download" e4232d79e1e Note: Installa	button. The file b69f679db75c2 tion instructions	e size you shou le6ac2906.	of the <u>Amber 2</u>	out 541 MB , a	ing form and click the and the md5sum of the
	Name:			TE/7775	
	Institution:				
	Download				

Getting Amber24 for non-com	mercia	al us	е					
Read the above license: note that it contain	s restric	tions o	n usage	and re	distributio	on.		
By filling out this form, you agree to the lic that there is no license fee for non-commer			firm that	all use	e will be	non-co	ommercial. N	Vote
Name: Institution:								
Accept non-commercial license and download								
The downloaded file will be 0e9a01f2f2d5f0c1ebc75d2bdd5cde12.	about	173	MB,	and	have	an	md5sum	of
Please note: You must also download an Installation instructions are in Chapter 2 instructions for many systems may be found	2 of the	e Amb	er 2024	Refer	ence M	anual.		

Ambertools24的安装包

Amber24的安装包

Install Amber24

https://ambermd.org/Installation.php

经过gromacs的洗礼以后,我们对怎么安装软件应该有一定的熟练度了, amber官方提供了不同操作系统下的安 装教程。

Install Amber24 on Ubuntu

首先使用apt安装依赖

```
Ubuntu 18.04 - Ubuntu 20.04

The following command should install all necessary packages to compile Amber on any Ubuntu version in the range above:

apt -y update
apt -y install tcsh make \
gcc gfortran \
flex bison patch bc wget \
xorg-dev libz-dev libbz2-dev

If you want to install Amber in parallel, you can use OpenMPI through:

apt -y install openmpi-bin libopenmpi-dev openssh-client
```

之后使用amber提供的run_cnake脚本安装amber

Building with cmake

We highly recommend that you refer to Chapter 2 of the Amber 2024 Reference Manual for detailed instructions on how to install Amber 24.

Since Amber20, the build system has move to cmake. A script called run_cmake is available in the amber24_src/build directory. For most users, the options chosen in this script should be OK.

The installation of Amber is performed in two steps: cmake configuration, then building and install:

cd amber24 src/build

- # optional: edit the run_cmake script to make any needed changes;
- # most users should not need to do this
- run cmake
- # Next, build and install the code:

make install

对ubuntu24.04

sudo apt install tcsh make gcc gfortran flex bison patch bc wget xorg-dev libz-dev libbz2-dev

tar xvfj AmberTools24.tar.bz2

tar xvfj Amber24.tar.bz2

解压缩

```
# Assume this is Linux:

cmake $AMBER_PREFIX/amber24_src \
    -DCMAKE_INSTALL_PREFIX=$AMBER_PREFIX/amber24 \
    -DCOMPILER=GNUL \
    -DDPI=FALSE_-DCUDA=FALSE_DINSTALL_TESTS=TRUE \
    -DDOWNLOAD_MINICONDA=TRUE \
    2>&1 | tee cmake.log
```

之后极其重要的一步:修改build文件夹内的run_cmake脚本,修改DCUDA后为TRUE以编译支持GPU加速的pmemd

./run_cmake

make install -j 4

source /home/path-to-amber-dir/amber24/amber.sh

Amber Tutorials

Amber具有丰富的官方教程

https://ambermd.org/tutorials/

几个与模拟强相关的教程

https://ambermd.org/tutorials/basic/tutorial7/index.php https://ambermd.org/tutorials/basic/tutorial8/index.php https://ambermd.org/tutorials/basic/tutorial13/index.php https://ambermd.org/tutorials/basic/tutorial14/index.php

Amber具有详细的文档

https://ambermd.org/Manuals.php

Download PDB

https://ambermd.org/tutorials/basic/tutorial7/index.php

我们就按照官方教程,下载2YX8作为测试体系

Protein Preparation

此结构有一个有趣的地方,就是它有二个残基是MSE,所谓MSE,就是把甲硫氨酸MET里的硫(S)换成了硒(Se)

需要手动修改回MET

MOTA	167	0D2	ASP A	47	10.174	7.560	35.935	1.00 54.62	0
HETATM	168	N	MSE A	48	6.674	9.818	33.156	1.00 45.09	N
HETATM	169	CA	MSE A	48	6.049	10.959	32.490	1.00 44.83	С
HETATM	170	С	MSE A	48	4.687	10.621	31.903	1.00 44.85	С
HETATM	171	0	MSE A	48	3.782	11.457	31.884	1.00 44.46	0
HETATM	172	CB	MSE A	48	6.968	11.508	31.392	1.00 42.34	С
HETATM	173	CG	MSE A	48	8.206	12.210	31.932	1.00 37.42	С
HETATM	174	SE	MSE A	48	7.764	13.636	33.161	1.00 33.09	SE
HETATM	175	CE	MSE A	48	7.589	15.051	31.873	1.00 30.88	С
ATOM	176	N	GLU A	49	4.548	9.390	31.429	1.00 45.27	N

MOTA	167	0D2	ASP	A	47	10.174	7.560	35.935	1.00 54.62	0
MOTA	168	N	MET	A	48	6.674	9.818	33.156	1.00 45.09	N
MOTA	169	CA	MET	A	48	6.049	10.959	32.490	1.00 44.83	C
MOTA	170	C	MET	A	48	4.687	10.621	31.903	1.00 44.85	C
MOTA	171	0	MET	A	48	3.782	11.457	31.884	1.00 44.46	0
MOTA	172	CB	MET	Α	48	6.968	11.508	31.392	1.00 42.34	C
MOTA	173	CG	MET	A	48	8.206	12.210	31.932	1.00 37.42	C
MOTA	174	SD	MET	A	48	7.764	13.636	33.161	1.00 33.09	S
MOTA	175	CE	MET	A	48	7.589	15.051	31.873	1.00 30.88	C
MOTA	176	N	GLU	A	49	4.548	9.390	31.429	1.00 45.27	N

https://ambermd.org/tutorials/basic/tutorial7/index.php

Protein Preparation

之后就是熟悉的流程,使用maestro或者pdbfixer进行蛋白准备

此处需要记录一下准备好的蛋白带电量,比如-3

https://htmlpreview.github.io/?https://github.com/openmm/pdbfixer/blob/master/Manual.html

pdbfixer 4b1y.pdb --output protein.pdb --keep-heterogens=none --add-residues --verbose

Protein Preparation

之后记得处理质子化状态

使用maestro分配的质子化状态

https://github.com/Sept-naf/gromacs-tutorials/blob/main/maestro2amber.py

python maestro2amber.py maestro_format.pdb amber_readable.pdb

使用pdb2pqr分配质子化状态

https://pdb2pqr.readthedocs.io/en/latest/index.html

pip install pdb2pqr -i https://pypi.tuna.tsinghua.edu.cn/simple

对一个已经使用maestro或者pdbfixer处理好了的pdb文件

pdb2pqr input.pdb output.pdb --ffout AMBER --with-ph 7.4

此时得到的文件就带有amber力场格式的pH7.4下的质子化状态

Build Simulation System

到这里蛋白处理好了, 可以搭建模拟体系了, amber搭建体系需要用tleap

tleap

使用tleap之后会进入tleap的界面

(base) naf@yu-carve-hard-jade:~/Documents/tutorials/amber\$ tleap

- -I: Adding /home/naf/software/amber24/dat/leap/prep to search path.
- -I: Adding /home/naf/software/amber24/dat/leap/lib to search path.
- -I: Adding /home/naf/software/amber24/dat/leap/parm to search path.
- -I: Adding /home/naf/software/amber24/dat/leap/cmd to search path.

Welcome to LEaP!

(no leapro in search path)

通过左边进入tleap的提示是不是已经可以猜测amber力场参数文件都在哪找了

https://ambermd.org/tutorials/pengfei/index.php

Structure File	Library Files	Parameter Files
Molecules Atom Names	Units (Residues) Atom Names	
	Atom Types Charges	Atom Types
Connections	Connections	
Coordinates	Coordinates	2712000-0-000
	Masses	Masses
	Bonded Params	Bonded Params
	Nonbond Params	Nonbond Params

Topology	Coordinates
Units (Residues)	
Atom Names	
Atom Types	
Charges	
Connections	
	Coordinates
Masses	
Bonded Params	
Nonbond Params	

Amber官方提供了leap的教学,它将 PDB与力场参数文件组织起来,变成能 进行模拟的拓扑文件和坐标文件

Build Simulation System

tleap

在tleap内

source leaprc.protein.ff19SB 导入蛋白, 水和离子的力场参数 source leaprc.water.opc 导入做好了蛋白质准备的,处理好了质子 ramp=loadpdb 2YX8 prepared.pdb 化状态的蛋白, 且将其命名为ramp bond ramp.27.SG ramp.82.SG 手动连接所有的二硫键 bond ramp.40.SG ramp.72.SG bond ramp.57.SG ramp.104.SG 由于前面知道蛋白带负电, 这里用 addlons2 ramp Na+ 0 Na+中和电荷:对正电体系则用CI-给ramp添加水盒子 solvateOct ramp OPCBOX 10.0 addlonsRand ramp Na+ 19 Cl- 19 添加离子, 使体系盐浓度为0.15M, 计算方法在下一页 存储拓扑文件prmtop和坐标inpcrd SaveAmberParm ramp RAMP.prmtop RAMP.inpcrd

Calculating Salt in an Explicit Water System

https://ambermd.org/tutorials/basic/tutorial8/index.php

Scaling up box by a factor of 1.413369 to meet diagonal cut criterion

Solute vdw bounding box:

45.400 31.108 30.346

Total bounding box for atom centers: 73.667 73.667 73.667

(box expansion for 'iso' is 55.9%)

Solvent unit box:

18.865 18.478 19.006

The number of boxes: x= 4 y= 4 z= 4

Volume: 208141.839 A^3 (oct)

Total mass 110188.212 amu, Density 0.879 g/cc

Added 5569 residues.

2. Convert the volume of the system in Å³ to liters using the following conversion factors.

Be sure to distribute the exponents when performing the calculations.

$$208141.839\,\mathring{\mathrm{A}}^{3}x\frac{1\,m^{3}}{\left(10^{10}\mathring{\mathrm{A}}\right)^{3}}\,x\,\frac{(10^{2}cm)^{3}}{1\,m^{3}}\,x\,\frac{1\,mL}{1\,cm^{3}}\,x\,\frac{1\,L}{10^{3}\,mL} = 2.08141839\,x\,10^{-22}L$$

3. Determine how many chloride ions are present in one liter of solution at a concentration of 150 mM.

$$\frac{150 \ mmol}{1 \ L} \ x \ \frac{1 \ mol}{10^{3} mmol} \ x \ \frac{6.022 \ x \ 10^{23} \ Cl^{-} \ atoms}{1 \ mol} = 9.03 \ x \ 10^{22} Cl^{-} \ atoms/L$$

4. Determine how many chloride ions are needed in the system.

Multiply the volume of the box by the concentration of Cl⁻ ions and round to the nearest whole number.

$$2.08141839 \times 10^{-22} L \times 9.03 \times 10^{22} \frac{Cl^{-} atoms}{L} = 18.8 Cl^{-} ions \approx 19 Cl^{-} ions$$

在加水盒子时能看到整个体系的体积, 记录下来

把体积单位从立方埃换算成升

计算对这么多升溶液,需要多少离子能达到0.15M

计算具体需要的离子数目

总结其实就是Volume乘以一个确定的数值,然后四舍五入(或者四舍六入五成双)

208141.839 * 9.033e-05

More detail

> charge ramp

Total unperturbed charge:

Total perturbed charge:

我们已经做好模拟前的准备了, 但是, 出于学习的考虑, 在更进一步前, 我们看几条leap命令

> desc ramp.27.SG MOTA Normal Perturbed SG SG Name: Type: S -0.09840.000 Charge: Polarization: 0.0000 0.000 (not affected by pert) Element: S Atom flags: (decimal 196608 hex 0x30000) posfxd n posblt n posdrwn n selected n pert n notdisp n touched Y posknwn Y internal n needsmin n needsbuild n Atom position: 14.367393, -8.553670, -4.209354 Atom velocity: 0.000000, 0.000000, 0.000000 Bonded to .R<NCYX 27>.A<CB 7> by a single bond. Bonded to .R<CYX 82>.A<SG 8> by a single bond.

0.000000

0.000000

> check ramp
Checking 'ramp'....

Warning: Close contact of 1.169 angstroms between nonbonded atoms HH and HE2
----- .R<TYR 66>.A<HH 15> and .R<HIE 97>.A<HE2 13>
Checking parameters for unit 'ramp'.
Checking for bond parameters.
Checking for angle parameters.
check: Warnings: 20977
Unit is OK.

charge命令, 检查体系电量

desc命令, 检查体系部分的情况

check命令,检查体系力场是否完整

Save PDB

Amber有一个非常讨厌的地方,就是它会对你的体系残基重新编号,从1开始

> savepdb ramp out.pdb
Writing pdb file: out.pdb
 printing CRYST1 record to PDB file with box info

Warning: Converting N-terminal residue name to PDB format: NCYX -> CYX
Warning: Converting C-terminal residue name to PDB format: CSER -> SER

将体系存一份PDB

打开你会发现,蛋白残基范围变成了1-81

CRYST1	73.	069	65.678	5	8.496 90.0	00.00	90.00	P 1	er veran	ATOM	1277	N	SER	81	-10.719	14.186	7.108	1.00	0.00
MOTA	1	N	CYX	1	17.613	-8.356	-4.929	1.00	0.00	ATOM	1278	Н	SER	81	-9.994	13.541		1.00	0.00
MOTA	2	H1	CYX	1	17.543	-8.149	-5.916	1.00	0.00	ATOM	1279	CA	SER	81	-11.750	14.550	8.095	1.00	0.00
ATOM	3	H2	CYX	1	18.588	-8.478	-4.692	1.00	0.00	ATOM	1280	HA	SER	81	-12.735	14.529	7.629	1.00	0.00
MOTA	4	H3	CYX	1	17.048	-7.693	-4.418	1.00	0.00	ATOM	1281	CB	SER	81	-11.738	13.545	9.276	1.00	0.00
MOTA	5	CA	CYX	1	16.985	-9.672	-4.689	1.00	0.00	ATOM	1282	HB ₂	SER	81	-12.538	13.834	9.957	1.00	0.00
ATOM	6		CYX	1		-10.354	-4.272	1.00	0.00	ATOM	1283	HB3	SER	81	-11.949	12.558	8.866	1.00	0.00
MOTA	7	CB	CYX	1	15.798	-9.562	-3.698	1.00	0.00	ATOM	1284	OG	SER	81	-10.506	13.511	9.980	1.00	0.00
MOTA	8		CYX	1		-10.559	-3.464	1.00	0.00	ATOM	1285	HG	SER	81	-10.563	12.873	10.695	1.00	0.00
MOTA	9	0.0000000	CYX	1	16.133	-9.074	-2.782	1.00	0.00	ATOM	1286	C	SER	81	-11.518	15.982	8.552	1.00	0.00
MOTA	10	SG	CYX	1	14.367	-8.554	-4.209	1.00	0.00	ATOM	1287	0	SER	81	-12.267	16.544	9.350	1.00	0.00
ATOM	11	C	CYX	1		-10.329	-6.039	1.00	0.00	ATOM	1288	0XT	SER	81	-10.554	16.622	8.135	1.00	0.00
MOTA	12	0	CYX	1	17.022	-9.899	-7.113	1.00	0.00	TER									

体系准备好了,可以退出tleap,正式开始模拟了,首先仍然是能量最小化

pmemd -O -i 1min.in -o 1min.out -p RAMP.prmtop -c RAMP.inpcrd -r 1min.rst7 -inf 1min.info -ref RAMP.inpcrd -x mdcrd.1min

1min.in

```
minimization of solvent
&cntrl

imin = 1, maxcyc = 1000,

ncyc = 20, ntx = 1,

ntwe = 0, ntwr = 500, ntpr = 50,

ntc = 2, ntf = 2, ntb = 1, ntp = 0,

cut = 10.0,

ntr=1, restraintmask = ':1-81',

restraint_wt = 100.,

ioutfm=1, ntxo=2,

/
```

- ntr=1代表要对体系加限制
- restraintmask = ':1-81'代表对残基1-81加限制,注意这是 amber重排序过的编号,可以在上一页存出的pdb里确认
- restraint_wt = 100 限制大小100 kcal/mol*Ang^-2.

NSTEP = 648000 TIME(PS) =

1-4 NB =

Etot = -89860.5401 EKtot =

EELEC = -120003.9513 EHBOND =

0.0000 IMP =

256.8588 1-4 EEL =

能量最小化以后是体系加热

pmemd.cuda -O -i 2heat.in -o 2heat.out -p RAMP.prmtop -c 1min.rst7 -r 2heat.rst7 -inf 2heat.info -ref 1min.rst7 -x mdcrd.2heat

使用pmemd.cuda, 这是GPU加速的版本 上一步得到的坐标, 这一步的输入坐标

2heat.in

```
&cntrl
imin = 0, nstlim = 2000000, dt = 0.001,
irest = 0, ntx = 1, ig = -1,
tempi = 100.0, temp0 = 298.0,
ntc = 2, ntf = 2, tol = 0.00001,
ntwx = 10000, ntwe = 0, ntwr = 1000, ntpr = 1000,
cut = 8.0, iwrap = 0,
ntt = 3, gamma_ln=1., ntb = 1, ntp = 0,
nscm = 0,
ntr=1, restraintmask=':1-81', restraint_wt=100.0
nmropt=1,
ioutfm=1, ntxo=2,
/
&wt TYPE="TEMPO", istep1=0, istep2=1000000, value1=100., value2=298., /
&wt TYPE="END", /
```

2ns

EAMBER (non-restraint) = -100582.4742NMR restraints: Bond = 0.000 Angle = Current Timing Info Total steps: 1000000 | Completed: 648000 (64.8%) | Remaining: Average timings for last 213000 steps: Elapsed(s) = 59.92 Per Step(ms) = 0.28 ns/day = 307.15 seconds/ns = 281.29 Average timings for all steps: Elapsed(s) = 179.10 Per Step(ms) =0.28 ns/day = 312.61 seconds/ns = Estimated time remaining: 1.6 minutes.

648.000 TEMP(K) = 228.63 PRESS =

2626.6844 VDWAALS =

0.0000 RESTRAINT =

15575.7389

10302.7109 EPtot 359.9953 DIHED

0.0000 CMAP

ntb=1, 恒体积

从0到1000000步将温度从100K升到298K

NPT平衡

pmemd.cuda -O -i 3md.in -o 3md.out -p RAMP.prmtop -c 2heat.rst7 -r 3md.rst7 -inf 3md.info -ref 2heat.rst7 -x mdcrd.3md

3md.in

```
&cntrl

imin = 0, nstlim = 1000000, dt = 0.001,

irest = 1, ntx = 5, ig = -1,

temp0 = 298.0,

ntc = 2, ntf = 2, tol = 0.00001,

ntwx = 10000, ntwe = 0, ntwr = 1000, ntpr = 1000,

cut = 8.0, iwrap = 0,

ntt = 3, gamma_ln=1.0, ntb = 2, ntp = 1, barostat = 2,

nscm = 0,

ntr=1, restraintmask=':1-81', restraint_wt=100.

ioutfm=1, ntxo=2,

/
```

1ns

ntb=2, 恒压 ntp=1, 各向同性压浴 barostat=2, 蒙特卡洛压浴 pmemd.cuda -O -i 4md.in -o 4md.out -p RAMP.prmtop -c 3md.rst7 -r 4md.rst7 -inf 4md.info -ref 3md.rst7 -x mdcrd.4md

4md.in

```
&cntrl

imin = 0, nstlim = 1000000, dt = 0.001,

irest = 1, ntx = 5, ig = -1,

temp0 = 298.0,

ntc = 2, ntf = 2, tol = 0.00001,

ntwx = 10000, ntwe = 0, ntwr = 1000, ntpr = 1000,

cut = 8.0, iwrap = 0,

ntt = 3, gamma_ln=1.0, ntb = 2, ntp = 1,

nscm = 0, barostat = 2,

ntr=1, restraintmask=':1-81', restraint_wt=10.

ioutfm=1, ntxo=2,

/
```

1ns

放松限制到10

pmemd -O -i 5min.in -o 5min.out -p RAMP.prmtop -c 4md.rst7 -r 5min.rst7 -inf 5min.info -ref 4md.rst7 -x mdcrd.5min

5min.in

```
Minimization of everything excluding backbone &cntrl
imin = 1, maxcyc = 1000,
ncyc = 30, ntx = 1,
ntwe = 0, ntwr = 500, ntpr = 50,
ntc = 2, ntf = 2, ntb = 1, ntp = 0,
cut = 8.0,
ntr=1, restraintmask="@CA,N,C", restraint_wt=10.
ioutfm=1, ntxo=2,
/
```

之前约束了残基1-81的所有原子,此时只约束名为CA,N,C的原子,由于我们的体系里除了蛋白就是水和离子,所以这里实际上只约束了蛋白质的主链原子

Simulating System: NPT平衡6

pmemd.cuda -O -i 6md.in -o 6md.out -p RAMP.prmtop -c 5min.rst7 -r 6md.rst7 -inf 6md.info -ref 5min.rst7 -x mdcrd.6md

6md.in

```
&cntrl

imin = 0, nstlim = 1000000, dt = 0.001,

irest = 0, ntx = 1, ig = -1,

tempi = 298.0, temp0 = 298.0,

ntc = 2, ntf = 2, tol = 0.00001,

ntwx = 10000, ntwe = 0, ntwr = 1000, ntpr = 1000,

cut = 8.0, iwrap = 0,

ntt = 3, gamma_ln=1.0, ntb = 2, ntp = 1,

nscm = 0, barostat = 2,

ntr=1, restraintmask="@CA,N,C", restraint_wt=10.

ioutfm=1, ntxo=2,

/
```

1ns

NPT

pmemd.cuda -O -i 7md.in -o 7md.out -p RAMP.prmtop -c 6md.rst7 -r 7md.rst7 -inf 7md.info -ref 6md.rst7 -x mdcrd.7md

7md.in

```
&cntrl

imin = 0, nstlim = 1000000, dt = 0.001,

irest = 1, ntx = 5, ig = -1,

temp0 = 298.0,

ntc = 2, ntf = 2, tol = 0.00001,

ntwx = 10000, ntwe = 0, ntwr = 1000, ntpr = 1000,

cut = 8.0, iwrap = 0,

ntt = 3, gamma_ln=1.0, ntb = 2, ntp = 1,

nscm = 0, barostat = 2,

ntr=1, restraintmask="@CA,N,C", restraint_wt=1.

ioutfm=1, ntxo=2,

/
```

1ns

放松约束到1

pmemd.cuda -O -i 8md.in -o 8md.out -p RAMP.prmtop -c 7md.rst7 -r 8md.rst7 -inf 8md.info -ref 7md.rst7 -x mdcrd.8md

8md.in

```
&cntrl

imin = 0, nstlim = 1000000, dt = 0.001,

irest = 1, ntx = 5, ig = -1,

temp0 = 298.0,

ntc = 2, ntf = 2, tol = 0.00001,

ntwx = 10000, ntwe = 0, ntwr = 1000, ntpr = 1000,

cut = 8.0, iwrap = 0,

ntt = 3, gamma_ln=1.0, ntb = 2, ntp = 1,

nscm = 0, barostat = 2,

ntr=1, restraintmask="@CA,N,C", restraint_wt=0.1

ioutfm=1, ntxo=2,

/
```

1ns

放松约束到0.1

pmemd.cuda -O -i 9md.in -o 9md.out -p RAMP.prmtop -c 8md.rst7 -r 9md.rst7 -inf 9md.info -ref 8md.rst7 -x mdcrd.9md

9md.in

```
&cntrl

imin = 0, nstlim = 1000000, dt = 0.001,

irest = 1, ntx = 5, ig = -1,

temp0 = 298.0,

ntc = 2, ntf = 2, tol = 0.00001,

ntwx = 10000, ntwe = 0, ntwr = 1000, ntpr = 1000,

cut = 8.0, iwrap = 0,

ntt = 3, gamma_ln=1.0, ntb = 2, ntp = 1,

nscm = 1000, barostat = 2,

ioutfm=1, ntxo=2,

/
```

1ns

无约束平衡

pmemd.cuda -O -i md.in -o md.out -p RAMP.prmtop -c 9md.rst7 -r md.rst7 -inf md.info -ref 9md.rst7 -x mdcrd.md

md.in

```
Explicit solvent molecular dynamics constant pressure 50 ns MD &cntrl
imin=0, irest=1, ntx=5,
ntpr=50000, ntwx=50000, ntwr=50000, nstlim=25000000,
dt=0.002, ntt=3, tempi=300,
temp0=300, gamma_ln=1.0, ig=-1,
ntp=1, ntc=2, ntf=2, cut=9,
ntb=2, iwrap=1, ioutfm=1,
/
```

Membrane Protein Simulation?

Charmm-gui

Next Step: Next Step: