多人数ゲームにおける交渉選択手法の提案

伊藤 義章 03-120394

東京大学工学部電子情報工学科

指導教員:近山 隆 教授·鶴岡 慶雅 准教授 2014年2月17日

交渉

- 背景
 - 現実社会において多種多様交渉
 - 自分の利益の<u>期待値</u>を最大化

- □ 自分が交渉を提案
 - ・受諾された
 - → 期待通りの利益を得る
 - ・拒否された
 - → 機会損失
 別の交渉案であれば利益を得られたかも

交渉

- 研究課題
 - 利益を定量的に評価できない
 - 期待値を最大化する交渉案の 選択手法が分からない
 - 実世界のモデル化

実世界のモデル化

人工知能の 基礎理論 機械学習,木探索,..

知能ゲーム 囲碁,チェス,カタン..

- 知能ゲーム
 - 実世界の重要な要素を抽出
 - 方針がたてやすい (ルールによる知識制限)
 - 結果が明確に分かる (勝敗)

実世界のモデル化:交渉の知能ゲーム

- カタンの開拓者
 - 実世界の要素を抽出
 - → 多人数(4人)、不完全情報、非決定性
 - 交渉がゲームの勝敗に重要な要素

カタンの開拓者を テストベッドに用いる

交渉

- 研究課題
 - 利益を定量的に評価できない
 - 期待値を最大化する交渉案の 選択手法が分からない
 - 実世界のモデル化

研究目的

得られる利益 見積もり

自分: プレイヤー<u>A</u>

相手: プレイヤーB

交渉案i

利益 Ra(i) RB(i)

成功確率 P(i)

交渉案 の選択 <u>案1</u>

Aの利益: 1000 Bの利益: - 500

成功確率:1%

<u>案2</u>

Aの利益:300 Bの利益:200

成功確率:50%

<u>案3</u>

Aの利益: <u>0</u> Bの利益: 400

成功確率:80%

自分の利益の期待値を最大化する 交渉案の選択手法を得る

研究目的

得られる利益 見積もり

自分: プレイヤー<u>A</u> 相手: プレイヤー B 交渉案 i 利益 R_A(i) R_B(i)

成功確率 P(i)

交渉案 の選択 案1

Aの利益:1000 Bの利益:-500

成功確率:1%

<u>案2</u>

Aの利益:300 Bの利益:200

成功確率:50%

<u>案3</u>

Aの利益:0Bの利益:400

成功確率:80%

- ① UCTアルゴリズムを利益計算に用いることを提案
- ② 交渉案の選択を行なう評価基準を提案

①提案: 利益見積もり(UCTアルゴリズム[L.Kocsis et al., 2006])

UCTアルゴリズムを利益計算に用いることを提案

 X_{\cdot} : 平均勝率

C:定数

 N_i :着手iが選ばれた回数

 $N:N_{i}$ の合計

①提案: 利益見積もり(UCTアルゴリズム[L.Kocsis et al., 2006])

UCTアルゴリズムを利益計算に用いることを提案

(利益) = (交渉を行なった場合の評価値)

- (交渉をしない場合の評価値)

②提案: 交渉案の選択手法

交渉案の期待値を計算する複数の評価基準を提案

- 評価関数
 - 交渉の評価基準を作成する重要な要素を検証

	自分の利益	相手の利益	補足
自己中心的交渉	最大化	考慮しない	ベースライン
利益優先交渉	最大化	プラスで あればよい	
受諾優先交渉	プラスで あればよい	最大化	
和交渉	プラスで あればよい	考慮しない	自分の利益と相手の 利益の <mark>和</mark> を最大化
積交渉	プラスで あればよい	プラスで あればよい	自分の利益と相手の 利益の <mark>積</mark> を最大化

①実験設定: UCTアルゴリズムの利益見積もり

自分にとって有利な交渉案を提示出来ているか

- 自分(1人)
 - 自己中心的プレイヤー UCTで推定した最大の 利益を得る交渉案を提示
- 対戦相手(3人)
 - 受諾プレイヤー全く交渉を提示しない全ての交渉を受諾

	自分の利益	相手の利益	補足
自己中心的交渉	最大化	考慮しない	ベースライン

①実験設定: UCTアルゴリズムの利益見積もり

自分にとって有利な交渉案を提示出来ているか

- 自分(1人)
 - 自己中心的プレイヤー UCTで推定した最大の 利益を得る交渉案を提示
- 対戦相手(3人)
 - 受諾プレイヤー全く交渉を提示しない全ての交渉を受諾
 - ランダムプレイヤーランダムに交渉案を選択し提案ランダムに受諾・拒否を選択

①実験設定: UCTアルゴリズムの利益見積もり

自分にとって有利な交渉案を提示出来ているか

- 自分(1人)
 - 自己中心的プレイヤー UCTで推定した最大の 利益を得る交渉案を提示
 - ルールベースプレイヤー ルールに基づいて推定 した最大の利益を得る 交渉案を提示

- 対戦相手(3人)
 - 受諾プレイヤー全く交渉を提示しない全ての交渉を受諾
 - ランダムプレイヤーランダムに交渉案を選択し提案ランダムに受諾・拒否を選択

①実験結果: UCTアルゴリズムの利益見積もり

■ 結果

(各4000戦)

	vs 受諾プレイヤー	vs ランダムプレイヤー
UCTプレイヤー (N=100)	23.6%	25.0%
ルールベース プレイヤー	42.1%	41.3%

UCTアルゴリズムの利益見積もりで有効性は示せなかった

②実験設定: 交渉案の選択手法

■設定

- 各評価基準(1人) vs 自己中心的交渉(3人)
- 利益見積もり: 全員同じルールで見積もる
- 受諾: 自分の利益がプラスになれば受諾
- 提案: それぞれの評価基準で最大の期待値の交渉案

	自分の利益	相手の利益	補足
自己中心的交渉	最大化	考慮しない	ベースライン
利益優先交渉	最大化	プラスで あればよい	_
受諾優先交渉	プラスで あればよい	最大化	
和交渉	プラスで あればよい	考慮しない	自分の利益と相手の 利益の <mark>和</mark> を最大化
積交渉	プラスで あればよい	プラスで あればよい	自分の利益と相手の 利益の <mark>積</mark> を最大化

②実験結果:自己中心的交渉との対戦結果

(各4000戦)

	利益優先交渉	受諾優先交渉	和交渉	積交渉
勝率	32.4%	23.7%	30.4%	29.9%
提案成功率	100%	100%	82.3%	100%
受諾率	10.9%	10.9%	11.6%	10.9%

■ 検証

- 自分の利益を最大にしつつ 相手の利益をプラス域で最小にする
- 同じルールの利益計算を行なっているため

②実験設定: 交渉案の選択手法

■設定

○ 各評価基準(1人) vs 自己中心的交渉(3人)

○ 利益見積もり

各評価基準:楽観的な見積もり

自己中心的:そのまま

○ 受諾: それぞれの評価基準でプラスなら受諾

○ 提案: それぞれの評価基準で最大の期待値の交渉案

②実験結果:自己中心的交渉との対戦

* 楽観的な利益見積もりを行なう場合

(各4000戦)

	もともとの 利益優先交渉	楽観的な 利益優先交渉
勝率	32.4%	24.8% ↓
提案成功率	100%	90.4% ↓
受諾率	10.9%	26.4% ↑

■ 検証

- 相手の不利な交渉を受諾してしまう
 - → "相手"の評価基準 と "自分"の評価基準の 違いにより自己中心的交渉の一部を誤って受諾

②検証: 勝率と受諾率・提案成功率の関係性

- ○「提案成功率」・「受諾率」と勝率に関係
- ○「自分の得られる利益」と「相手に与える損益」を考慮

評価関数の勝率と交渉成功率

まとめ

- ■目的
 - 「自分の利益の期待値を最大化する 交渉案の選択手法を得る」
- 提案手法
 - UCTアルゴリズムによる利益計算
 - 交渉案の期待値を計算するいくつかの評価基準

■結果

- UCTアルゴリズムの利益見積もりにおいて 有効性は示せなかった
- 評価基準作成には交渉成功率・受諾率
 - ・自分の利益・相手の損益を考慮する必要がある

今後の課題

- UCTアルゴリズムの改善
 - プレイアウト回数
- 評価基準
 - 4要素を考慮した最適な関数の作成