Resolução da questão 6

(a) Da convergência de $\sum_{n=1}^{+\infty} a_n$ sai que $\lim_{n \to +\infty} a_n = 0$, logo existe $n_0 \in \mathbb{N}$ tal que $|a_n| < 1$ para $\mathbb{N} \ni n \ge n_0$. Consequentemente, para os mesmos valores de n, $a_n^2 = |a_n|^2 < |a_n| = a_n$, a última igualdade seguindo da hipótese de a_n ser não negativo. O Critério de comparação então garante que $\sum_{n=1}^{+\infty} a_n^2$ também converge, atendendo também ao facto de os termos desta série serem não negativos.

(b) Observe-se primeiro que da desigualdade trivial $(\sqrt{a_n}-\sqrt{b_n})^2\geq 0$ sai que $a_n-2\sqrt{a_n}\sqrt{b_n}+b_n\geq 0$, logo $2\sqrt{a_nb_n}\leq a_n+b_n$, e portanto também

$$0 \leq \sqrt{a_n b_n} \leq rac{1}{2} (a_n + b_n), \quad orall n \in \mathbb{N}.$$

Temos então, da hipótese de as séries de termo geral a_n e b_n serem convergentes, que a série cujo termo geral é a combinação linear $\frac{1}{2}(a_n+b_n)$ é também convergente. O Critério de comparação, agora aplicado à desigualdade acima destacada, permite concluir a convergência da série $\sum_{n=1}^{+\infty} \sqrt{a_n b_n}$.

(c) A resposta é afirmativa. As hipóteses da alínea anterior garantem que $\sum_{n=1}^{+\infty} \sqrt{a_n b_n}$ converge, como acabámos de ver. Aplicando agora o resultado da alínea (a) com $\sqrt{a_n b_n}$ no lugar de a_n , obtém-se que $\sum_{n=1}^{+\infty} (\sqrt{a_n b_n})^2$ — isto é, $\sum_{n=1}^{+\infty} a_n b_n$ — também converge.