

Computer Vision

Early vision: Just one image

School of Electronic & Electrical Engineering

Sungkyunkwan University

Hyunjin Park

Image Pyramids

Image pyramid

- Image pyramid
 - Collection of representations of an image
 - Smooth and then down-sample an image repeatedly: Get a pyramidal image

Pyramidal structured image

Multiscale decomposition

Multiscale decomposition

Decomposition process

Multiscale decomposition

Multiresolution representation

Example of image pyramid

Approximation images (using Gaussian smoothing)

Prediction errors (residues)

Gaussian pyramid

- **Smooth with Gaussians**
 - Gaussian * Gaussian = another Gaussian

Gaussians are low-pass filters, so representation is redundant

GAUSSIAN PYRAMID

Gaussian pyramid

Gaussian pyramid

Used for up- or down-sampling images

- Used for multi-resolution image analysis
 - Look for an object over various spatial scales
 - Coarse-to-fine image processing
 - From blur estimate or the motion analysis on very low-resolution image, up-sample and repeat
 - Often a successful strategy for avoiding local minima in complicated estimation tasks

 Compute the difference between up-sampled Gaussian pyramid level and Gaussian pyramid level

- Band-pass filter
 - Each level represents spatial frequencies unrepresented at other level

 The information captured at each level of a Gaussian (top) and Laplacian (bottom) pyramid

• Reconstruction: Recover x_1 from L_1 , L_2 , L_3 and g_3

1D discrete wavelet transformation

2D discrete wavelet transformation

- 2D discrete wavelet transformation
 - $d = \text{Diagonal detail: filtering in both } x \text{ and } y \text{ directions using } h_{yy}(n)$
 - h = Horizontal detail: filtering in x direction using $h_{\psi}(n)$ and in y direction using $h_{\phi}(n)$
 - $v = \text{Vertical detail: filtering in } x \text{ direction using } h_{\varphi}(n)$ and in $y \text{ direction using } h_{\psi}(n)$
 - $a = \text{Approximation: filtering in both } x \text{ and } y \text{ directions using } h_{\varphi}(n)$

Original image NxN

a3v3	h3 d3	h')	h1
v2		d2	ПТ
v1			d1

Wavelet coefficients $N \times N$

Level 1

Level 2

Image pyramids

- Gaussian pyramid
 - Progressively blurred and subsampled versions of the image
 - Adds scale invariance to fixed-size algorithms

- Laplacian pyramid
 - Shows the information added in Gaussian pyramid at each spatial scale
 - Useful for noise reduction and coding

Choice of scale

Start with a small window at the point of interest

 Increase the window size until it does not cause a significant change in certain criterion

- May not result in unique scale
 - Depends on the initial window size