



## **Biomedical Data Analysis**

Assume we are concated by a bio-medical lab



They have collected data about patients with a certain condition





### **Our Dataset**

#### This use case is based on a real-world example

...But for privacy and simplicity reasons we are going to use synthetic data

In [21]: data, name\_map = util.generate\_data(size=500, seed=42)
 data

Out[21]:

|     | u0  | <b>u1</b> | u2  | u3  | u4        | u5        | u6       | u7        | u8        | u9       | u10 | u11 | u12       | u13       | u:  |
|-----|-----|-----------|-----|-----|-----------|-----------|----------|-----------|-----------|----------|-----|-----|-----------|-----------|-----|
| 0   | 0.0 | 4.052587  | 0.0 | 0.0 | 1.069842  | -1.541433 | 0.984682 | 2.069759  | -0.998354 | 1.615419 | 1.0 | 0.0 | 3.905281  | 1.422892  | 0.  |
| 1   | 0.0 | 2.520945  | 1.0 | 0.0 | -1.924131 | -2.583550 | 4.663292 | -1.633941 | 0.324484  | 0.426927 | 1.0 | 0.0 | 1.319270  | 1.771152  | 0.  |
| 2   | 0.0 | 1.061444  | 0.0 | 1.0 | 0.288059  | -0.974309 | 2.641967 | 0.823806  | 1.340944  | 1.498628 | 1.0 | 0.0 | -1.072016 | -0.750879 | 0.  |
| 3   | 1.0 | 0.523647  | 1.0 | 1.0 | 1.824137  | -2.841816 | 4.099077 | -2.287757 | 1.230311  | 1.628930 | 1.0 | 1.0 | 1.299762  | 2.085999  | 1.  |
| 4   | 0.0 | 2.010178  | 0.0 | 0.0 | -0.050319 | -2.620961 | 3.162254 | -0.803245 | -0.840076 | 0.507807 | 0.0 | 0.0 | 0.307414  | -0.884796 | 0.  |
| ••• | ••• | •••       | ••• | ••• | •••       | •••       | •••      | •••       | •••       | •••      | ••• | ••• | •••       | •••       | ••• |
| 495 | 1.0 | 7.434214  | 1.0 | 1.0 | -1.948899 | -1.283335 | 2.303599 | 0.505025  | 2.488334  | 1.713777 | 1.0 | 0.0 | 5.451237  | 0.257810  | 1.  |
| 496 | 0.0 | 7.857776  | 1.0 | 0.0 | 0.239719  | -1.181798 | 2.301580 | -1.150514 | -0.703677 | 2.100331 | 0.0 | 0.0 | 4.269326  | 0.760440  | 0.  |
| 497 | 1.0 | 3.348010  | 0.0 | 0.0 | 0.147685  | -2.541503 | 2.887376 | -0.372831 | 1.435787  | 0.967976 | 0.0 | 0.0 | 0.576445  | 0.450504  | 0.  |
| 498 | 1.0 | 2.784484  | 0.0 | 0.0 | -2.082640 | -1.224654 | 4.271790 | -0.269379 | 0.876229  | 0.745919 | 1.0 | 1.0 | 0.424243  | -1.446797 | 0.  |
| 499 | 1.0 | 1.808553  | 1.0 | 0.0 | -2.458112 | -0.695131 | 3.231171 | -2.915948 | -0.078209 | 2.988293 | 1.0 | 1.0 | -0.618186 | -0.810217 | 1.  |

500 rows × 16 columns



How do we start?





### **Our Dataset**

#### Let's have a first look at the dataset

In [22]: data.describe()

Out[22]:

|       | u0         | u1         | u2         | u3         | u4         | u5         | u6         | u7         | u8         | u9       |
|-------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------|
| count | 500.000000 | 500.000000 | 500.000000 | 500.000000 | 500.000000 | 500.000000 | 500.000000 | 500.000000 | 500.000000 | 500.0000 |
| mean  | 0.396000   | 1.828261   | 0.514000   | 0.330000   | -0.030795  | -1.420177  | 2.995727   | -0.361947  | 0.449518   | 1.080533 |
| std   | 0.489554   | 2.112032   | 0.500305   | 0.470684   | 1.440194   | 0.961449   | 1.008219   | 1.463672   | 0.980352   | 1.300855 |
| min   | 0.000000   | 0.055230   | 0.000000   | 0.000000   | -4.699421  | -4.244599  | 0.033381   | -5.647642  | -3.000955  | -2.88385 |
| 25%   | 0.000000   | 0.547481   | 0.000000   | 0.000000   | -1.034566  | -2.138448  | 2.289419   | -1.295046  | -0.186973  | 0.188749 |
| 50%   | 0.000000   | 1.127278   | 1.000000   | 0.000000   | 0.023120   | -1.403097  | 3.044132   | -0.320448  | 0.412165   | 1.058317 |
| 75%   | 1.000000   | 2.127061   | 1.000000   | 1.000000   | 0.927888   | -0.836187  | 3.714111   | 0.561467   | 1.071871   | 1.974449 |
| max   | 1.000000   | 13.486418  | 1.000000   | 1.000000   | 3.747794   | 1.706728   | 5.906263   | 4.334036   | 3.401382   | 5.526514 |

- lacktriangle There is one target binary variable Y, representing the condition under study
- All other columns represent potentially correlate variables
- We are going to refer to them as "potential correlates"





### Categorial and Numerical Variables

Some of the potential correlates are numeric, others are categorical

```
In [23]: # Identify numeric and categorical columns
num_cols = [c for c in data.columns[:-1] if len(data[c].unique()) > 2]
cat_cols = [c for c in data.columns[:-1] if len(data[c].unique()) == 2]
print(f'Numeric: {num_cols}')
print(f'Categorical: {cat_cols}')

Numeric: ['u1', 'u4', 'u5', 'u6', 'u7', 'u8', 'u9', 'u12', 'u13']
Categorical: ['u0', 'u2', 'u3', 'u10', 'u11', 'u14']
```

- In this synthetic dataset, all categorical variables are binary
- ...Which explains the simple filter we used to identify them

In a real world setting, you'd need to talk to a domain expert for this



Let's check the distribution of the numerical candidate correlates

```
In [24]: __, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(num_cols)//2)), figsize=figsize)
         for ax, cname in zip(axes.ravel(), num_cols):
             data.hist(cname, ax=ax)
         plt.tight_layout()
          200
          100 -
          100
                                                                                   100
```





Let's check the distribution of the numerical candidate correlates

```
In [24]: __, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(num_cols)//2)), figsize=figsize)
         for ax, cname in zip(axes.ravel(), num_cols):
             data.hist(cname, ax=ax)
         plt.tight_layout()
          200
          100 -
          100
                                                                                   100
```



Most of them seem to follow a Normal distribution

Let's check the distribution of the binary candidate correlates

```
In [25]: _, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(cat_cols)//2)), figsize=figsize)
         for ax, cname in zip(axes.ravel(), cat_cols):
              data.hist(cname, ax=ax, bins=2)
          plt.tight_layout()
           200
                                                                               200
                                             100 -
           100
           300
           200
                                             200 -
           100
                                                                           1.0
                                         1.0
```



Let's check the distribution of the binary candidate correlates

```
In [25]: _, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(cat_cols)//2)), figsize=figsize)
         for ax, cname in zip(axes.ravel(), cat_cols):
              data.hist(cname, ax=ax, bins=2)
          plt.tight_layout()
           200
                                                                              200
                                            100
           100
           300
           200
                                            200 -
           100
                                                                           1.0
                                         1.0
```

Let's check the target distribution

```
In [26]: data.hist('y', bins=2, figsize=figsize)
          plt.tight_layout()
           250
           200
           150
           100
           50
```





Let's check the target distribution



The target distribution quite balanced



### **Checking Univariate Dependencies**

Let's check the fraction of Y=1 for the categorical candidates

```
In [27]: __, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(cat_cols)//2)), figsize=figsize)
         for ax, cname in zip(axes.ravel(), cat_cols):
              data_groupby(cname)['y']_mean()_plot_bar(ax=ax)
          plt.tight_layout()
                                                                              0.2
           0.2
                                            0.2
                                            0.4
                                                                              0.4
           0.4
                                            0.2
                                                                              0.2
           0.2
                                                             u11
```



### **Checking Univariate Dependencies**

Let's check the fraction of Y=1 for the categorical candidates

```
In [27]: __, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(cat_cols)//2)), figsize=figsize)
         for ax, cname in zip(axes.ravel(), cat_cols):
              data.groupby(cname)['y'].mean().plot.bar(ax=ax)
         plt.tight_layout()
                                                                             0.2
          0.2
                                            0.2
                                            0.4
                                                                             0.4
          0.4
                                            0.2
                                                                             0.2
          0.2
```

### **Checking Univariate Dependencies**

Let's check the fraction of y = 1 for the numerical candidates

```
In [28]: __, axes = plt.subplots(nrows=2, ncols=int(np.ceil(len(num_cols)//2)), figsize=figsize)
        for ax, cname in zip(axes.ravel(), num_cols):
             bin_size = (data[cname].max() - data[cname].min()) / 10
             data['y'].groupby(data[cname] // bin_size).mean().plot.bar(ax=ax)
        plt.tight_layout()
```

## **Checking Linear Correlations**

#### It's worth checking how all features are correlated

One way to do it is by plotting a correlation matrix (e.g. Pearson)

```
In [29]: plt.figure(figsize=figsize)
            sn.heatmap(data.corr(method='pearson'), annot=True, vmin=-1, vmax=1, cmap='RdBu');
                                                                                                               1.00
                                                                                                              - 0.75
                                                                                        0.039
                                                                                        0.036
                                                                                             0.094
                                                                                                              - 0.50
                                                                                                               0.25
                                                       -0.088 -0.076
                                                                        -0.045
                                                             0.023
                                                                       -0.036
                                                                                                              - 0.00
                                                                                                              - -0.25
                                                                                                               -0.50
                                  0.069
                                  0.036
                                                                                                               -0.75
                             0.63
                                  0.094
                                       0.055
                                                 -0.0005
```



# So far we have just inspected our dataset, but... what is exactly our goal?



### **Use Case Objective**

#### Unlike in classical ML tasks, we don't have an estimation problem

Rather, our goal is understanding the process behind the data

- We want to identify the true correlates among our candidates
- lacktriangle We want to see how they are linked to the target y

#### In an ideal world, we'd like to know about causal relationships

...But in practice, we'll need to be happy with correlations

- Studying causality is indeed possible (a good start is <u>Judea Pearl's book</u>)
- ...But also very challenging, and there's no general and mature tool available

So, we'll count on the domain expert to check the correlations



### **Use Case Objective**

#### Our setup also explains a quirk in the dataset

All variables except the target are called  $U_j$  , for "unknown"

- This is synthetic data, so nothing is really unknown
- lacktriangle In fact, the ground truth process linking Y to U is avaialable

#### However, for the sake of this exercise, such process will be hidden

- We will analyze the data pretending we have no such knowledge
- At the end of our exercise we'll check the ground truth

...And we'll see how close we got to the truth!









### A Baseline Approach

#### Our goal is understading the process behind the data

Of of many possible ways to do it consist in:

- Training an approximate model via Machine Learning
- Studying the model as a proxy for the real process

Basically, we use a ML model as an analysis tool

#### For this approach to work, we need the ML model to be explainable

- A few model naturally enjoy this property (e.g. linear models, simple DTs)
- Explaining other models is not obvious (e.g. Neural Networks, large ensembles)



### **Data Preprocessing**

#### We start with the usual data preprocessing

We will treat all candidate correlates as inputs

```
In [30]: # Input-output separation
X, y = data[data.columns[:-1]].copy(), data[data.columns[-1]].copy()
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Input standardization
scaler = StandardScaler()
X_train[num_cols] = scaler.fit_transform(X_train[num_cols])
X_test[num_cols] = scaler.transform(X_test[num_cols])
```

Even if we don't care about estimates, we need a test set

This will allow us to check the model for overfitting

We also need to standardize all numeric features

-

This will make the model coefficients more easily interpretable

### On the Danger of Overfitting

#### We plan to use our model as proxy for the true process

...Which makes overfitting is especially bad

- Our results will stricly apply only to the model
- ...And they will be as general as the model

#### We will use L1 regularization on this purpose

Scikit learn support L1 regularizers for Logistic Regression in the form:

$$\operatorname{argmin}_{\theta} H(y, f(x, \theta)) + \frac{1}{C} \|\theta\|_{1}$$

- We encourage the weights to be close to 0
- ...And we attempt to sparsify the weights

## Training our "Proxy" Model

#### We can calibrate the C parameter via cross-validation

We'll need the <u>SAGA solver</u> to train our model with L1 regularization

```
In [31]: base_est = LogisticRegression(penalty='l1', solver='saga')
    param_grid={'C': 1. / np.linspace(1e-1, 1e4, 100)}
    gscv = GridSearchCV(base_est, param_grid=param_grid, scoring='roc_auc')
    gscv.fit(X_train, y_train)
    lr, lr_params = gscv.best_estimator_, gscv.best_params_
```

#### Then we can check the performance of the refitted estimator

```
In [32]: lr_score_cv, lr_score_test = gscv.best_score_, roc_auc_score(y_test, lr.predict_proba(X_test
print(f'AUC score for C={lr_params["C"]:.2f}: {lr_score_cv:.2f} (cross-validation), {lr_score}
AUC score for C=10.00: 0.64 (cross-validation), 0.60 (test)
```



We use the AUC score, since this is not a real classification problem

# **Coefficient Analysis**

#### Finally, we can analyze the model coefficients

```
In [33]: lr_coefs = pd.Series(index=X.columns, data=lr.coef_[0])
          util.plot_bars(lr_coefs, figsize=figsize)
            1.0
            0.8
            0.6
            0.4
            0.2
           -0.2
```

- Some variables seem to be more important than others
- The sign tells us how they are linked to the target



# This baseline approach has many issues Can you spot a few ones?



# Three Key Issues with our Baseline

#### Issue 1: our model has poor accuracy

- An AUC score of 0.6 is not much above random
- ...Hence, studying our model will say little about the data





### Three Key Issues with our Baseline

#### Issue 1: our model has poor accuracy

- An AUC score of 0.6 is not much above random
- ...Hence, studying our model will say little about the data

#### Issue 2: our model can only capture linear correlations

- We can capture neither non-linear effects
- ...Nor interactions among the variables



## Three Key Issues with our Baseline

#### Issue 1: our model has poor accuracy

- An AUC score of 0.6 is not much above random
- ...Hence, studying our model will say little about the data

#### Issue 2: our model can only capture linear correlations

- We can capture neither non-linear effects
- ...Nor interactions among the variables

#### Issue 3: the coefficients are not sparse

- The L1 terms needs both to sparsify and to prevent overfitting
- ...And it cannot do both things effectively
- Additionally: it's unclear what a good level of sparsification might be





### Dealing with Non-Linearities

#### We'll start by switching to a non-linear model

By doing so:

- We can still account for non-linear correlations
- We can account for interactions among variables
- We might reach a much better accuracy
- ...And hence have a more representative proxy model





### Dealing with Non-Linearities

#### We'll start by switching to a non-linear model

#### By doing so:

- We can still account for non-linear correlations
- We can account for interactions among variables
- We might reach a much better accuracy
- ...And hence have a more representative proxy model

#### Of course there is a price to pay

- Non-linear models are less easy to interpret
- ...And they are at a much higher risk of overfitting





#### We'll train a Gradient Bossted Trees model

We'll rely on the Extreme Gradient Boosting package (XGBoost) for this

```
In [34]: base_est = xgboost.XGBRegressor(objective='reg:logistic', tree_method='hist', importance_type param_grid={'max_depth': [2, 3, 4], 'n_estimators': list(range(20, 41, 5)), 'reg_lambda': npe gscv = GridSearchCV(base_est, param_grid=param_grid, scoring='roc_auc') gscv.fit(X, y) xbm, xbm_params = gscv.best_estimator_, gscv.best_params_
```

#### XGBoost is a library for fast, distributed, training of GBT models

It has support for multiple loss functions

We are using "reg:logistic", which refers binary cross-entropy

...And for regularization (often missing in tree-based models)

The "reg\_lambda" parameter refers to the weight of an L2 regularization term



It's easier to see how regularization work by checking a tree in the ensemble



- lacktriangle Assuming T is the number of leaves and  $w_j$  is the label assigned to each leaf
- ...Then the regularization term is in the form  $\sum_{k=1}^T w_j^2$





On our dataset, a GBT model has substantially better performance

```
In [36]: xbm_score_cv, xbm_score_test = gscv.best_score_, roc_auc_score(y_test, xbm.predict(X_test))
print(f'AUC score for {xbm_params}: {xbm_score_cv:.2f} (cross-validation), {xbm_score_test:.

AUC score for {'max_depth': 3, 'n_estimators': 25, 'reg_lambda': 200.0}: 0.81 (cross-validation), 0.79 (test)
```

- The AUC score is much higher now
- There is no significant overfitting

It seems we finally have a model that we can trust





#### On our dataset, a GBT model has substantially better performance

```
In [36]: xbm_score_cv, xbm_score_test = gscv.best_score_, roc_auc_score(y_test, xbm.predict(X_test))
print(f'AUC score for {xbm_params}: {xbm_score_cv:.2f} (cross-validation), {xbm_score_test:.

AUC score for {'max_depth': 3, 'n_estimators': 25, 'reg_lambda': 200.0}: 0.81 (cross-validation), 0.79 (test)
```

- The AUC score is much higher now
- There is no significant overfitting

#### It seems we finally have a model that we can trust

However, we know have an ensemble of many non-linear models





# Feature Importances

The first option one can probably think of is using feature importances

In [37]: xbm\_imp = pd.Series(index=X.columns, data=xbm.feature\_importances\_) util.plot\_bars(xbm\_imp, figsize=figsize) 0.3 0.2 0.1

- The scores differ significanly from those obtained for linear regression (as expected)
- ...But what do they represent?



# Which Feature Importances?

## Feature importance is typicaly presented as this:

- ullet For each input  $x_i$ , we sum the associated gain at training time
- Once training is over, we normalize the scores so that they sum up to 1

### However, there are other ways to define importance

XGBoost supports 5 different approaches:

- "weight": number of times an attribute is used to split
- "gain": average gain associated to splits over an attribute
- "cover": average number of examples for which an attribute is used to decide
- "total\_gain": as above, but replacing the average with a sum
- "total\_cover": as above, but replacing the average with a sum



# Which Feature Importances?

The values of the multiple feature importances can be quite different:

```
In [38]: __, axes = plt.subplots(nrows=2, ncols=3, figsize=figsize)
         for ax, imp_type in zip(axes.ravel(), ['weight', 'gain', 'cover', 'total_gain', 'total_cover')
              pd.Series(xbm.get_booster().get_score(importance_type=imp_type)).plot.bar(ax=ax, title=i
         plt.tight_layout()
                          weight
           20
                         total gain
                                                          total cover
           150
                                                                             0.75
           100
                                                                             0.50
           50
                                                                             0.25
                  u5
u7
u8
                                                   4 €
                                                        u6
u7
u8
```



# Importance and Data

### Moreover, most importance scores are computed w.r.t. a dataset:

E.g. in XGBoost "gain", "cover", "total\_gain", and "total\_cover"

- For this reason, they are not really properties of the model
- ...But rather of the model and a reference sample

This means that the score semantic depends on the reference sample

## By default, importances are computed on the training set

...Which means they are susceptible to overfitting

- The model might split on an attribute because it really is importance
- ...But also due to a <u>spurious correlation</u>



# Permutation Importance

We can improve things by changing the way we compute importance

Given a reference sample  $\{x_i, y_i\}_{i=1}^m$ 

- We can evaluate the performance of our model on the sample
- ...With that of a modified sample where the j-th input is made unimportant

## For example, we can achieve that by permuting the values of the input

- This will preserve the distribution of the input
- ...But it will break all its correlations

## Then, we look at the change in the model performance

- If it is small, the attribute is really unimportant
- Otherwise, the attribute is important



# **Permutation Importance**

## Permutation importances are robust w.r.t. spurious correlations

- We just need to repeat the process multiple times
- ...And record means and standard deviations

It's unlikely that we get a high score very often by accident

### They allow us to choose our reference sample:

On the training set, the model might have overfit over the data

- The performance gap will be wider
- ...And the score will reflect how the model is using the data

On the test set, overfitting will make less of a different

...And the score will reflect how correlated the attribute is with the target

# Permutation Importances, on our Example

Let's check the training permutation importances in our case study

```
In [44]: r_train = permutation_importance(xbm, X_train, y_train, n_repeats=30, random_state=42)
         xbm_p_imp = pd.Series(index=X.columns, data=r_train.importances_mean)
          util.plot_bars(xbm_p_imp, figsize=figsize, std=r_train.importances_std, title='Permutation F
                                                     Permutation Feature Importance (train)
           0.14
           0.12
           0.10
           0.08
           0.06
           0.04
           0.02
           0.00
```

The closely resemble those XGB "total\_gain", but they are more sparse



# Permutation Importances, on our Example

Let's check the test permutation importances in our case study



A few low-importance features become even less relevant on the test data







# What we Gained, What we Lost

## When we switched from Logistic Regression to GBTs we gained a lot

- A reliable proxy model
- A well defined and transparent feature importance definition
- Sparse and reliable importance scores



# What we Gained, What we Lost

## When we switched from Logistic Regression to GBTs we gained a lot

- A reliable proxy model
- A well defined and transparent feature importance definition
- Sparse and reliable importance scores

### However, we also lost something:

With Linear Regression, we used to be able to:

- Identify the direction of the correlation (through the coefficient sign)
- ...And explain individual examples, by looking at the difference:

$$\theta^T x - \mathbb{E}_{x' \in P(X)} \left[ \theta^T x' \right]$$





# **Explaining Individual Examples**

## Let's look again at the last equation:

$$\theta^T x - \mathbb{E}_{x' \in P(X)} \left[ \theta^T x' \right]$$

- Assuming P(X) is approximated by using a sample...
- ...Then  $\mathbb{E}_{x' \in P(X)} \left[ \theta^T x' \right]$  is just the average prediction on the data

I.e. it is the prediction we could make without access to any input value

## Therefore, the difference above represents the gap between:

- ...What we can predict given all information on one example
- ...And what we can predict with no such information

It's the collective value of all available information



## **Additive Feature Attribution**

Given an example x, we can try to to the same:

$$g(z, x) = \phi_0 + \sum_{j=1}^{n} \phi_j(x) z_j$$
 with:  $z_j \in \{0, 1\}$ 

- Where  $z_i = 1$  is the value of attribute j is known
- ... $z_i = 0$  is the value of attribute j is unknown
- ...And  $\phi_i(x)$  is the effect of attribute j on the example x

## Intuitively, we build a linear explaination for the model local behavior

- lacktriangle There are a few approaches to approximate the effect  $oldsymbol{\phi}_j(x)$
- The one we'll use work by averaging the effect of unknown attributes
- The idea is based on the Game Theory notion of Shapely Value

## **SHAP**

## Using Shapely values for explanation became prominent with this paper

The work makes a number of contributions:

- It introduces the general idea of additive feature attribution
- It shows how several previous approaches fall into that category
- It show how Shapely values provide "ideal" attribution scores
- It introduces multiple techniques to approximate the values

### Computing Shapely values can be very expensive:

...But the can still be approximated in the general case. We will:

- Consider limited size of example for averaging out unknown attributes
- Obtain a Shapely value approximation by training a local linear model



## **SHAP in Action**

## The authors of the SHAP paper maintain a nice Python package

...Which we are going to use to explain our non-linear model

- We'll focus on the test data, since we want to find the true correlates
- For classifiers, it easier to explain logits rather than probabilities
- The process can be slow, and using a small background set is recommended
- The result contains the Shapely values, the base values, and the original data



## **Waterfall Plots**

## The SHAP library allows us to build waterfall plots

In [48]: shap.plots.waterfall(shap\_values[0], max\_display=6)



■ The bars represent the Shapely values, the colors their sign



## **Force Plots**

### Waterfall plots can be "compacted" into force plots

Here we have again a plot for example 0:

```
In [49]: shap.initjs()
shap.plots.force(shap_values[0])
```



#### Out [49]:

#### Visualization omitted, Javascript library not loaded!

Have you run `initjs()` in this notebook? If this notebook was from another user you must also trust this notebook (File -> Trust notebook). If you are viewing this notebook on github the Javascript has been stripped for security. If you are using JupyterLab this error is because a JupyterLab extension has not yet been written.

...And have a plot for example 99

```
In [51]: shap.plots.force(shap_values[99])
```



#### Visualization omitted, Javascript library not loaded!

## **Global Force Plots**

## Force plots can be stacked to inspect many examples at once:

In [52]: shap.plots.force(shap\_values)

Out[52]:

#### Visualization omitted, Javascript library not loaded!

Have you run `initjs()` in this notebook? If this notebook was from another user you must also trust this notebook (File -> Trust notebook). If you are viewing this notebook on github the Javascript has been stripped for security. If you are using JupyterLab this error is because a JupyterLab extension has not yet been written.



## **Scatter Plots**

We can use scatter plots to show the effect of a single feature

```
In [53]: plt.figure(figsize=figsize)
           shap.plots.scatter(shap_values[:, 'u13'], ax=plt.gca())
                0.2
                0.1
            SHAP value for u13
                -0.2
                -0.3
                                       -1
                                                                  u13
```

■ The gray area is the histogram of the chosen feature



# Beeswarm (Summary) Plot

We can stack (and color) multiple scatter plots to obtain a beeswarm plot:



By checking the color distribution we can indentify linear and non-linear effects



# Scatter (Dependency) Plots

We can color scatter plots by using another feature to highlight dependency

```
In [55]: plt.figure(figsize=figsize)
          shap.plots.scatter(shap_values[:, 'u12'], color=shap_values[:, 'u4'], ax=plt.gca())
                0.4
                                                                                                   0.5
           SHAP value for
u12
                0.2
                                                                                                    -1.0
                                                                                                   -1.5
               -0.4
                                                       u12
```

■ In this case we are coloring the "u12" values by using "u4"



# Scatter (Dependency) Plots

We can let the library choose the best coloring feature

```
In [56]: plt.figure(figsize=figsize)
          shap.plots.scatter(shap_values[:, 'u12'], color=shap_values, ax=plt.gca())
                0.4
           SHAP value for
u12
                0.2
               -0.2
               -0.4
                                                      u12
```

■ The chosen coloring feature changes how "u12" impacts the output in a noticeable way



# Global Feature Analysis via SHAP

## SHAP explanations can be aggreated to get global importance scores

By default, this is done by averaring absolute SHAP values:

$$\bar{\phi}_j(x) = \frac{1}{n} \sum_{i=1}^m |\phi_j(x_i)|$$

Other aggregation functions can also be used (e.g. max)

### By using aggregated SHAP scores

...We ensure that our local and global analysis have a similar semantic

- Permutation Importance are a perfectly viable approach
- ...And sometimes may be more appropriate than SHAP



# Global Feature Analysis via SHAP

## The SHAP library provide convenience functions to plot aggregated values

Here's how to plot mean (absolute) SHAP values:











u  $U_1$  seems to have mostly an anti-monotonic effect

# We can now inspect the ground truth process

So we can check whether our results actually hold





The ground-truth process is described by this causal graph:



- lacktriangle The Y variable (in blue) is the target
- The variables in **black** are those that are relevant
- The variables in **gray** are not observable, i.e. latent
- The variables in **red** are irrelevant



The process was engineered to contain several classical cases



 $X_2$  is a mediator beween  $X_0, X_1$  and Y

- lacktriangle The variable partially hides the effect of  $X_0$  and  $X_1$
- ullet If it does that completely, even Boruta cannot mark  $X_0$  and  $X_1$  as important
- Depending on the use case, this might be an issue

The process was engineered to contain several classical cases



 $X_2$  is also a complete mediator for  $Z_0$ 

- ...But in this case it is a good thing!
- ullet  $Z_0$  is not observed, but we can account for that at least indirectly



The process was engineered to contain several classical cases



- $oldsymbol{Z}_1$  is a confounder and causes a correlation between  $oldsymbol{X}_1$  and  $oldsymbol{X}_0$
- ullet It is totally mediated by  $X_1$  , which is a good thing
- lacksquare ...But it also causes a correlation between  $X_0$  and  $X_4$
- This might trick a model into considering  $X_4$  as important

In detail, the data is generated as follows:

$$Z_0 \sim \mathcal{N}(\mu = 0, \sigma = 1.5)$$
  
 $Z_1 \sim \mathcal{N}(\mu = 0, \sigma = 1)$   
 $X_0 \sim \mathcal{N}(\mu = 0, \sigma = 1) + Z_1$   
 $\log X_1 \sim \mathcal{N}(\mu = 0, \sigma = 1)$   
 $X_2 = \frac{1}{2}(X_0 + X_1) + Z_0$   
 $X_3 \sim B(p = 0.6)$   
 $\log itY \sim (-1 + 2X_3)X_2 + 0.4X_0 - 0.4X_1$ 

- All other variables are follow either a Normal or Bernoulli distribution
- ...And they have sparse correlations among themselves



Now let's check how accurate our importance estimate is:



```
In [63]: accepted = ['u1', 'u10', 'u12', 'u13']
    print(f'The most relevant features are {accepted}')
    print(f'...And correspond to {[name_map[f] for f in accepted]}')

The most relevant features are ['u1', 'u10', 'u12', 'u13']
...And correspond to ['X1', 'X3', 'X2', 'X0']
```





## **A Few Final Remarks**

### ML models are not just for prediction!

- They can be used for generation, anomaly detection, decision support
- ...And also as tools for a scientific analysis!

## Explainability is an important topic in Al

- It is one of the main approaches to make an AI model transparent
- This critical when AI systems need to interact with human users
- ...And for some domains it is also required by existing regulations

#### Beware of correlated features

- Strongly correlated features (e.g mediated-mediator) may mislead algorithms
- Dealing with those is still a partially open problem!