BİÇİMSEL DİLLER VE OTOMATLAR, Uygulama 5

- 1.
- **a.** Aşağıda tanımlı dili kabul eden yığın yapılı otomatı oluşturunuz. $L(M) = \{a^i \ b^j \mid 0 \le j \le i \ \}$

b. aaabbb ve aaab aabb katarlarının bu otomat tarafından nasıl kabul edildiğini gösteriniz.

ÇÖZÜM:

```
 \begin{split} & \overset{\bullet}{\textbf{a.}} \ Q = \{q0,\,q1,\,q2\} \\ & \varepsilon = \{a,\,b\} \quad \textbf{\Gamma} = \{a\} \\ & F = \{q1,\,q2\} \\ & \Delta = \{[(q0,\,a,\,\Lambda)\,\,(q0,a)],\,[(q0,\,\Lambda,\Lambda)\,\,(q1,\Lambda)],\,[(q0,\,b,a)\,\,(q2,\,\Lambda)],\,[(q1,\Lambda,a),\,\,(q1,\Lambda)],\,[(q2,\,b,a),\,\,(q2,\Lambda)],\,[(q2,\Lambda,\,a),\,\,(q1,\Lambda)],\,[(q2,\Lambda,\,\Lambda),\,\,(q2,\,\Lambda)]\} \end{split}
```

aaaabbbb katarı için gösterelim; diğerleri de benzer şekilde kabul edilir:

Durum	Katar	Yığın
q0	aaaabbbb	Λ
q0	aaabbbb	a
q0	aabbbb	aa
q0	abbbb	aaa
q0	bbbb	aaaa
q2	bbb	aaa
q2	bb	aa
q2	b	a
q2	Λ	Λ
Durum	Katar	Yığın
qo	aaab	Λ
q0	aab	a
q0	ab	aa
q0	b	aaa
q2	Λ	aa
q1	Λ	a
q1	Λ	Λ
Durum	Katar	Yığın
qo	aabb	Λ
q0	abb	a
q0	bb	aa
q2	b	a
q2 q2	Λ	Λ
44	11	11

- **2.** a. $L = \{a^ib^j \mid 0 \le i \le j \le 2i \}$ olarak verilen ifadenin ait olduğu gramerin kurallarını veriniz
- b. Yukarıdaki düzenli ifadeyi tanıyan sonlu durumlu otomatın geçiş kurallarını veriniz.
- c. aabbbb katarının bu otomat tarafından nasıl tanındığını gösteriniz.

ÇÖZÜM:

a. Gramerin üretim kuralları: $S \rightarrow aSB \mid \Lambda$ $B \rightarrow bb \mid b$ Bu dili tanıyan PDA'nın tanımı

$$Q = \{q0, q1, q2, q3\}$$

 $\epsilon = \{a, b\}$ Yığın alfabesi= $\{a\}$
 $F = \{q2, q3\}$

$$\Delta = \{ [(q0, a, \Lambda) \ (q1, a)], \ [(q0, \Lambda, \Lambda) \ (q3, \Lambda)], \ [(q0, a, \Lambda) \ (q0, a)], \ [(q0, b, a), \ (q2, \Lambda)], \ [(q1, \Lambda, \Lambda), \ (q0, a)], \ [(q2, b, a), \ (q2, \Lambda)] \}$$

C.		
Durum	Katar	Yığın
q0	aabbbb	Λ
q1	abbbb	a
q0	abbbb	aa
q1	bbbb	aaa
q0	bbbb	aaaa
q2	bbb	aaa
q0 q2 q2 q2 q2	bb	aa
q2	b	a
q2	Λ	Λ

3. n bit uzunluğunda ikili kodlanmış bir sayıyı giriş olarak alan ve çıkışta da bu sayının sonuna, 1'lerin sayısı tek ise 1, çift ise 0 ilave eden bir fonksiyonu gerçekleyen bir Turing makinası tasarlayınız. Tasarladığınız Turing makinasının çalışmasını paritesi tek olan ve çift olan birer katar üzerinde gösteriniz.

$$K = \{q0, q1, q2, h\}$$

$$\epsilon = \{a, b, \#\}$$

$$s = q0$$

Final durum= h

δ	0	1	#
q0	(q2,R)	(q1,R)	
q1	(q1,R)	(q2,R)	(h,1)
q2	(q2,R)	(q1,R)	(h,0)
h	(h,R)	(h,R)	(h,#)

Örnek:

1001 katarını ele alalım

$$(q0, \underline{1001}) \rightarrow (q1, \underline{1001}) \rightarrow (q1, \underline{1001}) \rightarrow (q1, \underline{1001}) \rightarrow (q2, \underline{1001\#}) \rightarrow (h, \underline{10010}) \rightarrow (h, \underline{10010\#})$$

1101 katarını ele alalım

$$(q0, \underline{1}101) \rightarrow (q1, 1\underline{1}01) \rightarrow (q2, 11\underline{0}1) \rightarrow (q2, 110\underline{1}) \rightarrow (q1, 1101\underline{\#}) \rightarrow (h, 1101\underline{1}) \rightarrow (h, 11011\underline{\#})$$

4. n bit uzunluğunda ikili kodlanmış bir sayı şerit üzerinde a0a1a2....an-1 şeklinde yer alsın. Giriş olarak bu sayıyı alan, çıkışta ise, bu sayının 2'ye tümleyenini en düşük anlamlı bit en solda yer alacak şekilde şeride yazan bir Turing makinası tasarlayınız.

i.
$$\underline{1}101 \rightarrow \dots \rightarrow 1010 \underline{\#}$$

ii. $0000 \rightarrow \dots \rightarrow 00001 \underline{\#}$

Soldan sağa doğru tüm karakterleri tara

$$K = \{q0, q1, q2, q3, q4, h\}$$

$$\epsilon = \{0, 1, \#\}$$

$$s = q0$$
Final durum= h

δ	0	1	#
q0	(q1,R)	(q2,0)	
q1	(q1,R)	(q2,1)	(h,1)
q2	(q2,1)	(q3,R)	
q3	(q4,1)	(q4,0)	(h,#)
q4	(q3,R)	(q3,R)	
h	-	(h,R)	(h,#)

1001 katarını ele alalım

$$\begin{array}{l} (\textbf{q0},\underline{1}001) \rightarrow (\textbf{q2},\underline{0}001) \rightarrow (\textbf{q2},\underline{1}001) \rightarrow (\textbf{q3},1\underline{0}01) \rightarrow (\textbf{q4},1\underline{1}01) \rightarrow (\textbf{q3},11\underline{0}1) \rightarrow (\textbf{q4},11\underline{1}1) \rightarrow (\textbf{q3},111\underline{1}) \rightarrow (\textbf{q4},111\underline{0}) \rightarrow (\textbf{q3},1110\underline{\#}) \rightarrow (\textbf{h},1110\underline{\#}) \end{array}$$

0000 katarını ele alalım
$$(q0, 0000) \rightarrow (q1, 0000) \rightarrow (q1, 0000) \rightarrow (q1, 0000\#) \rightarrow (h, 00001) \rightarrow (h, 00001\#)$$