

4. Data Preprocessing

Knowledge Discovery in Databases

Dominik Probst, Dominik.probst@fau.de
Chair of Computer Science 6 (Data Management), Friedrich-Alexander-University Erlangen-Nürnberg
Summer semester 2024

Outline

- 1. Overview
- 2. Data cleaning
- 3. Data integration
- 4. Data reduction
- 5. Data transformation and data discretization
- 6. Summary

Overview

Data Quality: Why Preprocess the Data?

- Measures for data quality: A multidimensional view:
 - Accuracy: correct or wrong, accurate or not.
 - Completeness: not recorded, unavailable.
 - Consistency: some modified but some not, dangling refs, etc.
 - Timeliness: timely updated?
 - Believability: how trustworthy is it, that the data is correct?
 - Interpretability: how easily can the data be understood?
 - And even many more!

Major Tasks in Data Preprocessing (I)

• Data cleaning:

- Fill in missing values.
- Smooth noisy data.
- · Identify or remove outliers.
- · Resolve inconsistencies.

• Data integration:

- Integration of multiple databases.
- · Data cubes or files.

Major Tasks in Data Preprocessing (II)

• Data reduction:

- Dimensionality reduction.
- Numerosity reduction.
- Data compression.

Data transformation and data discretization:

- Normalization.
- · Concept-hierarchy generation.

Data cleaning

Data Cleaning

Data in the real world is dirty. Lots of potentially incorrect data:

- E.g. instrument faulty, human or computer error, transmission error.
- Incomplete: lacking attributes, lacking certain attributes of interest or containing aggregate data.
 - E.g. occupation = "" (missing data).
- Noisy: containing noise.
 - E.g. small measurement inaccuracies with a sensor (noise)
- Errors/Outliers: containing errors or outliers.
 - E.g. scores = "2,3,0,6,1,9,95" (outlier = "95")
 - E.g. salary = "-10" (error)
- Inconsistencies: containing discrepancies in codes or names.
 - E.g. age = "42", birthday = "03/07/2010".
 - E.g. old rating = "1,2,3", new rating = "A,B,C".
 - E.g. discrepancy between duplicate records (e.g. address).
- Intentional (only default value, e.g. disguised missing data):
 - E.g. "Doe" as everyone's surname

Incomplete (Missing) Data

- Data is not always available.
 - E.g. many tuples have no recorded value for several attributes.
 - Examples are customer income in sales data.
- . Missing data may be due to:
 - Equipment malfunction.
 - Inconsistency with other recorded data and thus deleted.
 - · Data not entered due to misunderstanding.
 - Certain data may not be considered important at the time of entry.
 - Not registered history or changes of the data.
- Missing data may need to be inferred.

How to Handle Missing Data?

• Ignore the tuple:

- Usually done when class label is missing (when doing classification).
- Not effective when the percentage of missing values per attribute varies considerably.

• Fill in the missing value manually.

· Tedious or infeasible.

Fill in automatically with:

- A global constant, e.g. "unknown", maybe a new class.
- The attribute mean.
- The attribute mean for all samples belonging to the same class.
- The most probable value: Inference-based such as Bayesian formula or decision tree.

Noisy Data

• Noise:

- Random error or variance in a measured variable.
- Stored value a little bit off the real value, up or down.
- Leads to (slightly) incorrect attribute values.

May be due to:

- Faulty or imprecise data-collection instruments.
- Data-entry problems.
- · Data-transmission problems.
- Technology limitation.
- Inconsistency in naming conventions.

How to Handle Noisy Data?

• Binning:

- First sort data and partition into (equal-frequency) bins.
- Then smooth by bin mean, by bin median or by bin boundaries.

• Regression:

• Smooth by fitting the data to regression functions.

• Clustering:

- · Detect and remove outliers.
- Combined computer and human inspection:
 - Detect suspicious values and check by human.
 - E.g. deal with possible outliers.

Data Cleaning as a Process (I)

• Data discrepancy detection:

- Use metadata (e.g. domain, range, dependency, distribution).
- · Check field overloading.
- Check uniqueness rule, consecutive rule and null rule.
- Use commercial tools:
 - Data scrubbing: use simple domain knowledge (e.g. postal code, spell-check) to detect errors and make corrections.
 - Data auditing: by analyzing data to discover rules and relationships to detect violators (e.g. correlation and clustering to find outliers).

D. Probst | CS6 | KDD 4. Preprocessing

Data Cleaning as a Process (II)

- Data migration and integration:
 - Data-migration tools: allow transformations to be specified.
 - ETL (Extraction/Transformation/Loading) tools: allow users to specify transformations through a
 graphical user interface.
- Integration of the two processes.
 - Iterative and interactive (e.g. the Potter's Wheel tool).

Data integration

Data Integration

• Data integration:

• Combine data from multiple sources into a coherent store.

• Schema integration:

- E.g. A.cust-id ≡ B.cust-#.
- Integrate metadata from different sources.

• Entity-identification problem:

- Identify the same real-world entities from multiple data sources.
- E.g. Bill Clinton = William Clinton.

Detecting and resolving data-value conflicts:

- For the same real world entity, attribute values from different sources are different.
- Possible reasons:
 - Different representations (coding).
 - · Different scales, e.g. metric vs. British units.

Handling Redundancy in Data Integration

- Redundant data often occur when integrating multiple databases.
 - Object (entity) identification:

The same attribute or object may have different names in different databases.

Derivable data:

One attribute may be a "derived" attribute in another table. E.g. annual revenue.

- Redundant attributes:
 - Can be detected by correlation analysis and covariance analysis.
- Careful integration of the data from multiple sources:
 - Helps to reduce/avoid redundancies and inconsistencies and improve mining speed and quality.

Correlation Analysis for Nominal Data (I)

• Example:

We want to determine if the interests "Reads Books" and "Plays Chess" in the following table correlate with each other:

ID	Reads Books	Plays Chess
1	Y	Y
2	Y	Y
3	Y	N
1499	N	Y
1500	N	N

Correlation Analysis for Nominal Data (II)

General starting point:

- The attributes A and B to be analyzed:
 - A has n distinct values:

$$A := \{a_1, a_2, \dots, a_n\}$$
, where $n \in \mathbb{N}_{>1}$.

- B has m distinct values: $B := \{b_1, b_2, \dots, b_m\}$, where $m \in \mathbb{N}_{\geq 1}$.
- The set X of all distinct combinations:
 - X is defined as follows: $X := \{(a, b) \mid a \in A \text{ and } b \in B\}.$
- The multi set Y of all tuples:
 - The multiset Y over the set X is a mapping of X to the set of natural numbers \mathbb{N}_0 . The number $Y(x), x \in X$ tells how often x is contained in the multiset Y.

Starting point in the example:

- The attributes A and B to be analyzed:
 - A ("Reads Books") has 2 distinct values:
 A := { Y, N}
 - B ("Plays Chess") has 2 distinct values:
 B := {Y, N}
- The set X of all distinct combinations:
 - X contains 4 distinct combinations: $X := \{(Y, Y), (Y, N), (N, Y), (N, N)\}.$
- The multi set Y of all tuples:
 - Y contains 1500 tuples:
 Y := {(Y, Y), (Y, Y), ..., (N, N)}.

Correlation Analysis for Nominal Data (III)

• Actual quantity in Y:

$$c_{ii} = \#\{(a,b) \in Y \mid a = a_i, b = b_i\} = Y((a_i,b_i))$$

• Expected quantity (value of c_{ii}) in case of independence, i. e. no correlation:

$$e_{ij} = \frac{\sum_{k=1}^{m} c_{ik}}{\#Y} \cdot \frac{\sum_{l=1}^{n} c_{lj}}{\#Y} \cdot \#Y = \frac{\sum_{k=1}^{m} c_{ik} \cdot \sum_{l=1}^{n} c_{lj}}{\#Y}$$

Please note that:

• The sum of all c_{ij} over an attribute a_i (or b_i) is identical to the sum of all e_{ij} over a_i (or b_i):

$$\sum_{k=1}^m e_{ik} = \sum_{k=1}^m c_{ik}$$
 and $\sum_{l=1}^n e_{lj} = \sum_{l=1}^n c_{lj}$

Correlation Analysis for Nominal Data (IV)

• The values c_{ii} and e_{ii} are often presented in a contingency table:

	a ₁	 a _n	
<i>b</i> ₁	$c_{11}(e_{11})$	 $c_{n1}(e_{n1})$	$\sum_{i=1}^n e_{i1}$
b_m	$c_{1m}(e_{1m})$	 $c_{nm}(e_{nm})$	$\sum_{i=1}^{n} e_{im}$
	$\sum_{j=1}^m e_{1j}$	 $\sum_{j=1}^{m} e_{nj}$	$\sum_{i=1}^{n}\sum_{j=1}^{m}e_{ij}$

• In our example it would look like this:

	Plays chess	Doesn't play chess	Sum (row)
Reads books	250(90)	200(360)	450
Doesn't read books	50(210)	1000(840)	1050
Sum (column)	300	1200	1500

Correlation Analysis for Nominal Data (V)

• To determine the correlation the χ^2 -test (Chi-squared test) is applied:

$$\chi^2 = \sum_{i=1}^n \sum_{j=1}^m \frac{(c_{ij} - e_{ij})^2}{e_{ij}}.$$

Properties of the χ^2 -test

- No correlation (i.e. independence of attributes) yields χ^2 value of zero.
- The larger the χ^2 value, the more likely the variables are related.
- The cells that contribute the most to the χ^2 value are those whose actual count is very different from the expected count e_{ij} .

Correlation Analysis for Nominal Data (VI)

• Calculation of χ^2 in our example:

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93.$$

• It shows that "Reads Books" and "Plays Chess" are correlated (in our example)

Important: Correlation does not imply causality!

- E.g. # of hospitals and # of car-thefts in a city are correlated.
- Both are causally linked to the third variable: population.

Correlation Analysis of Numerical Data (I)

Numerical correlation can be determined with Pearson's product-moment coefficient:

$$\operatorname{Cor}(A,B) = \frac{\sum_{i=1}^{n} (a_i - \mu_A)(b_i - \mu_B)}{n \cdot \sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} a_i b_i - n \cdot \mu_A \mu_B}{n \cdot \sigma_A \sigma_B}.$$

where n is the number of tuples, a_i and b_i are the respective values of A and B in tuple i, μ_A and μ_B are the respective mean values of A and B, σ_A and σ_B B are the respective standard deviations of A and B

Properties of Pearson's product-moment coefficient

- If Cor(A, B) > 0: A and B are positively correlated.
 If Cor(A, B) = 0: A and B are independent.
- If Cor(A, B) < 0: A and B are negatively correlated.

Correlation Analysis of Numerical Data (II)

• It is also possible to visually detect numerical correlation:

Figure: a) Positive correlation.

Figure: b) Uncorrelated/no correlation.

Figure: c) Negative correlation.

D. Probst | CS6 | KDD 4. Preprocessing

Covariance of Numerical Data (I)

Covariance is similar to correlation:

$$Cov(A, B) = \frac{\sum_{i=1}^{n} (a_i - \mu_A)(b_i - \mu_B)}{n} = \frac{\sum_{i=1}^{n} a_i b_i}{n} - \mu_A \mu_B$$

It is possible to compute the correlation based on the covariance:

$$Cor(A, B) = \frac{Cov(A, B)}{\sigma_A \sigma_B}$$

Properties of the covariance

- If Cov(A, B) > 0: A and B tend to be either both larger or both smaller than their expected values.
- If Cov(A, B) < 0: If A is larger than its expected value, B is likely to be smaller than its expected value and vice versa.

Covariance of Numerical Data (II)

• Example:

• We examine a table containing the history of two stock prices:

Date	Stock 1	Stock 2
21.06	2	5
22.06	3	8
23.06	5	10
24.06	4	11
25.06	6	14

• If the stocks are affected by the same industry trends, will their prices rise or fall together?

$$Cov(A, B) = \frac{2 \cdot 5 + 3 \cdot 8 + 5 \cdot 10 + 4 \cdot 11 + 6 \cdot 14}{5} - 4 \cdot 9.6 = 4.$$

• Thus, A and B rise together since Cov(A, B) > 0.

Data reduction

Data Reduction (I)

What is data reduction?

 Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) results.

Why data reduction?

- A database/data warehouse may store terabytes of data.
- Complex data analysis may take a very long time to run on the complete data set.

Data reduction strategies:

- Dimensionality reduction, i.e. remove unimportant attributes.
 - · Wavelet transforms.
 - · Principal component analysis.
 - Attribute subset selection or attribute creation.

Data Reduction (II)

- Data reduction strategies (continued):
 - Numerosity reduction:
 - · Regression and log-linear models.
 - · Histograms, clustering and sampling.
 - · Data cube aggregation.
 - Data compression.

Data Reduction (I): Dimensionality Reduction

• Curse of dimensionality:

- When dimensionality increases data becomes increasingly sparse.
- Density and distance between points become less meaningful.
- The possible combinations of subspaces will grow exponentially.

• Dimensionality reduction:

- · Avoid the curse of dimensionality.
- Help eliminate irrelevant features and reduce noise.
- Reduce time and space required in data mining.
- Allow easier visualization.

Dimensionality-reduction techniques:

- Wavelet transforms.
- · Principal component analysis.
- Supervised and nonlinear techniques (e.g. feature selection).

Wavelet Transform (I)

Decomposes a signal into different frequency subbands.

Applicable to *n*-dimensional signals.

- Data transformed to preserve relative distance between objects at different levels of resolution.
- Allow natural clusters to become more distinguishable.
- Used for image compression.

Wavelet Transform (II)

• Discrete wavelet transform:

Transforms a vector X into a different vector X' of wavelet coefficients with the same length.

• Compressed approximation:

Store only a small fraction of the strongest of the wavelet coefficients.

- Similar to discrete fourier transform, but better lossy compression, localized in space.
- Method:
 - The length of the vector must be an integer power of 2 (padding with 0's if necessary).
 - Each transform has two functions: smoothing and difference.
 - Applied to pairs of data, resulting in two sets of data with half the length.
 - The two functions are applied recursively until reaching the desired length.

Example: Wavelet Transform (I)

- Initial vector:
 - X = (2, 2, 0, 2, 3, 5, 4, 4)
- First step:

 - $A_1 = (2, 1, 4, 4), D_1 = (0, -1, -1, 0)$
- Second step:
 - $(2,1) \rightarrow$ Average: 1.5, Weighted difference: 0.5 $(4,4) \rightarrow$ Average: 4, Weighted difference: 0

 - $A_2 = (1.5, 4), D_2 = (0.5, 0)$

Example: Wavelet Transform (II)

- Third step:
 - $(1.5, 4) \rightarrow$ Average: 2.75, Weighted difference: -1.25
 - $A_3 = (2.75), D_3 = (-1.25)$
- Resulting vector:
 - X' = (2.75, -1.25, 0.5, 0, 0, -1, -1, 0)
- Possible compression:
 - Small detail coefficients $(D_{1,2,3})$ can be replaced by 0's, while retaining significant coefficients.

Resolution	Averages	Detail coefficients
8	(2,2,0,2,3,5,4,4)	-
4	(2, 1, 4, 4)	(0,-1,-1,0)
2	(1.5, 4)	(0.5, 0)
1	(2.75)	(-1.25)

Why Wavelet Transform?

- Hat-shaped filters:
 - Emphasize region where points cluster.
 - Suppress weaker information in their boundaries.
- Effective removal of outliers:
 - Insensitive to noise, insensitive to input order.
- Multi-resolution:
 - Detect arbitrary shaped clusters at different scales.
- Efficient: Complexity $\mathcal{O}(N)$.

Principal Component Analysis (PCA)

Main idea:

- Given a data set with n dimensions.
- Find $k \le n$ orthogonal vectors that capture the largest amount of data.
- · Works only for numeric data.

• Example data set:

Used on the next few slides to explain the steps of a PCA:

d_1	d_2	d_3
23	6	1
9	9	5
17	5	1
3	6	1

Principal Component Analysis - 1. Step: Standardization (I)

• Procedure:

Each value x within a dimension d_n is standardized with the help of the mean (μ_{dn}) and standard deviation (σ_{dn}) of d_n:

$$x' = \frac{x - \mu_{d_n}}{\sigma_{d_n}}$$

Reason:

- Each dimension should be considered equally in the analysis.
- Dimensions with a wider range of values would dominate without this step.

Principal Component Analysis - 1. Step: Standardization (II)

• Example:

• Mean and standard deviation per dimension:

	d ₁	d_2	d_3
μ	13.000000	6.500000	2.0
σ	8.793937	1.732051	2.0

Standardized data set:

d_1	d_2	d_3
+1.137147	-0.288675	-0.5
-0.454859	+1.443376	+1.5
+0.454859	-0.866025	-0.5
-1.137147	-0.288675	-0.5

Principal Component Analysis - 2. Step: Covariance Matrix (I)

• Procedure:

 A n x n covariance matrix is generated that contains the covariance between each possible attribute pairing. When the dimensions are compared with themselves, the variance always replaces the covariance:

$$\begin{bmatrix} \operatorname{Var}(d_1) & \dots & \operatorname{Cov}(d_1, d_n) \\ \dots & \dots & \dots \\ \operatorname{Cov}(d_n, d_1) & \dots & \operatorname{Var}(d_n) \end{bmatrix}$$

Reason:

- Dimensions that are highly correlated contain redundant information.
- This step helps to identify these correlations.

Principal Component Analysis - 2. Step: Covariance Matrix (II)

• Example:

• The 3 x 3 covariance matrix of our example:

	<i>d</i> ₁	d_2	<i>d</i> ₃
d_1	+1.000000	-0.350150	-0.303239
d_2	-0.350150	+1.000000	+0.962250
d_3	-0.303239	+0.962250	+1.000000

Principal Component Analysis - 3. Step: Eigenvalues (I)

• Procedure:

• The eigenvectors and eigenvalues of the covariance matrix (C) are computed by solving the following equation:

$$C\nu = \lambda \nu$$

• If an n digit vector ν satisfies this equation for a $\lambda \in \mathbb{R}$, then ν is called an eigenvector with associated eigenvalue λ

Reason:

- The determined eigenvectors are called **principal components** of the dataset. The eigenvalues indicate which of these principal components has which importance for the significance of the dataset.
- By sorting the eigenvectors in descending order according to their eigenvalues, the principal components that contain the most information can be identified.

D. Probst | CS6 | KDD 4. Preprocessing

Principal Component Analysis - 3. Step: Eigenvalues (II)

• Example:

• Eigenvalues and eigenvectors in our example:

$$\lambda_1 = +2.14823654, \nu_1 = \begin{bmatrix} +0.37342507 \\ -0.92684562 \\ -0.03887043 \end{bmatrix}$$

$$\lambda_2 = +0.81530433, \nu_2 = \begin{bmatrix} -0.66009198 \\ -0.23604255 \\ -0.71313568 \end{bmatrix}$$

$$\lambda_3 = +0.03645914, \nu_3 = \begin{bmatrix} -0.6517916 \\ -0.2919608 \\ +0.69994757 \end{bmatrix}$$

• Sorting these three eigenvectors by their significance, we arrive at the order ν_1 , ν_2 , ν_3

Principal Component Analysis - 4. Step: Feature matrix (I)

Procedure:

- The top N eigenvectors are selected to create a feature matrix from them.
- There is no fixed rule exactly how many eigenvectors should be selected.
- The dimensionality reduction is larger the fewer eigenvectors are chosen.
- The information loss increases with each eigenvector that is discarded.

Reason:

 It must be considered carefully how much information can be given up in favor of dimensionality reduction.

D. Probst | CS6 | KDD 4. Preprocessing

Principal Component Analysis - 4. Step: Feature matrix (II)

• Example:

• In our example ν_1 carries approx. 72% of the information:

$$\frac{2.14823654}{2,14823654+0,81530433+0,03645914}=0.71607885$$

 It might be interesting to keep only the eigenvector ν₁ and discard the other two eigenvectors. Our feature matrix therefore looks as follows:

$$\begin{bmatrix} +0.37342507 \\ -0.92684562 \\ -0.03887043 \end{bmatrix}$$

D. Probst | CS6 | KDD 4. Preprocessing SS2024

Principal Component Analysis - 5. Step: Transformation (I)

• Procedure:

 The original data set (D) gets multiplied with the feature matrix (F), to create a new data set (N) with lower dimensionality:

$$N = D \cdot F$$

Reason:

- This step applies the dimensionality reduction to each tuple.
- The PCA is completed with this step.

Principal Component Analysis - 5. Step: Transformation (II)

• Example:

• Our dataset after the transformation and with the PCA completed looks like this:

$$\begin{bmatrix} +0.711632\\ -1.565948\\ +0.991963\\ -0.137647 \end{bmatrix}$$

• It is to be expected that this dataset still contains about 72% of its original information, which can be further used for data mining, while having to deal with a lot less dimensions.

Attribute-subset Selection

- Another way to reduce dimensionality of data.
- Redundant attributes:
 - Duplicate much or all of the information contained in other attributes.
 - E.g. purchase price of a product and the amount of sales tax paid.
- Irrelevant attributes:
 - contain no information that is useful for the data-mining task at hand.
 - E.g. students' ID is often irrelevant to the task of predicting students' GPA.

Heuristic Search in Attribute Selection

- There are 2^d possible attribute combinations of d attributes.
- Typical heuristic attribute-selection methods:
 - Best single attribute under the attribute-independence assumption: choose by significance tests (e.g. t-test, see Chapter 7 "Classification").
 - Best step-wise feature selection:
 - The best single attribute is picked first.
 - Then next best attribute condition to the first . . .
- Step-wise attribute elimination:
 - Repeatedly eliminate the worst attribute.
- Best combined attribute selection and elimination.
- Optimal branch and bound:
 - Use attribute elimination and backtracking.

Attribute Creation (Feature Generation)

- Create new attributes (features) that can capture the important information in a data set more
 effectively than the original ones.
- Three general methodologies:
 - Attribute extraction.
 - · Domain-specific.
 - Mapping data to new space (see: data reduction).
 - E.g. Fourier transformation, wavelet transformation, manifold approaches (not covered).
 - Attribute construction:
 - Combining features (see: discriminative frequent patterns in Chapter 5).
 - · Data discretization.

Data Reduction (II): Numerosity Reduction

- Reduce data volume by choosing alternative, smaller forms of data representation.
- Parametric methods (e.g., regression):
 - Assume the data fits some model (e.g. a function).
 - Estimate model parameters.
 - · Store only the parameters.
 - Discard the data (except possible outliers):
 - Ex. log-linear models obtain value at a point in m-dimensional space as the product of appropriate marginal subspaces.
- Non-parametric methods:
 - · Do not assume models.
 - Major families: histograms, clustering, sampling, . . .

Histogram Analysis

- Divide data into buckets and store average (sum) of each bucket.
- Partitioning rules:
 - Equal-width: equal bucket range.
 - Equal-frequency (or equal-depth).

Clustering

- Partition data set into clusters based on similarity and store cluster representation (e.g., centroid and diameter) only.
 - Can be very effective if data points are close to each other under a certain norm and choice of space.
 - Can have hierarchical clustering and be stored in multidimensional index-tree structures.
 - There are many choices of clustering algorithms.
 - Cluster analysis will be studied in depth in Chapter 7.

Sampling

- Obtain a small sample x to represent the whole data set X.
- Allow a mining algorithm to run in complexity that is potentially sub-linear to the size of the data.
- Key principle: Choose a representative subset of the data.
 - Simple random sampling may have very poor performance in the presence of skew.
 - Develop adaptive sampling methods, e.g. stratified sampling.
- Note: Sampling may not reduce database I/Os.
 - One page at a time.

Types of Sampling

- Simple random sampling.
 - There is an equal probability of selecting any particular item.
- · Sampling without replacement.
 - Once an object is selected, it is removed from the population.
- · Sampling with replacement.
 - A selected object is not removed from the population.
- Stratified sampling:
 - Partition the data set and draw samples from each partition: Proportionally, i.e. approximately the same percentage of the data.
 - Used in conjunction with skewed data.

Data-cube Aggregation

- The lowest level of a data cube (base cuboid).
 - The aggregated data for an individual entity of interest.
 - E.g. a customer in a phone-calling data warehouse.
 - Number of calls per hour, day, or week.
- Multiple levels of aggregation in data cubes.
 - Further reduce the size of data to deal with.
- Reference appropriate levels.
 - Use the smallest representation that is enough to solve the task.
- Queries regarding aggregated information should be answered using the data cube, if possible.

Data Reduction (III): Data Compression

- String compression.
 - There are extensive theories and well-tuned algorithms.
 - Typically lossless, but only limited manipulation is possible without expansion.
- Audio/video compression.
 - Typically lossy compression, with progressive refinement.
 - Sometimes small fragments of signal can be reconstructed without reconstructing the whole.
- Time sequence is not audio.
 - Typically short and varies slowly with time.
- Dimensionality and numerosity reduction may also be considered as forms of data compression.

Data transformation and data discretization

Data Transformations

- Functions applied to a finite set of samples.
- Methods:
 - Smoothing: Remove noise from data.
 - Attribute/feature construction: New attributes constructed from the given ones.
 - Aggregation: Summarization, data-cube construction.
 - Normalization: Scaled to fall within a smaller, specified range.
 - · Min-max normalization
 - Z-score normalization.
 - · Normalization by decimal scaling.
 - Discretization: concept-hierarchy climbing.

Normalization

• Min-max normalization (to some interval [min, max]):

$$a_{\mathsf{new}} = rac{a - \mathsf{min}_{\mathsf{A}}}{\mathsf{max}_{\mathsf{A}} - \mathsf{min}_{\mathsf{A}}} (\mathsf{max} - \mathsf{min}) + \mathsf{min} \,.$$

Example: let income range from \$12,000 to \$98,000 normalized to [0,1].

Then \$73,600 is mapped to $\frac{73,600-12,000}{98,000-12,000}(1-0)+0=0.716$.

• Z-score normalization:

$$a_{ ext{new}} := z(a) = rac{a - \mu_A}{\sigma_A}, ext{ with } \mu ext{ being the mean and } \sigma ext{ the standard deviation.}$$

Example: let $\mu = 54,000$ and $\sigma = 16,000$. Then $\frac{73,000-54,000}{16,000} = 1.188$.

• Normalization by decimal scaling:

$$a_{\text{new}} = \frac{a}{10^k}$$
, where k is the smallest integer such that $\max(|a_{\text{new}}|) < 1$.

D. Probst | CS6 | KDD 4, Preprocessing

Discretization

Three types of attributes:

- Nominal values from an unordered set, e.g. color, profession.
- Ordinal values from an ordered set, e.g. military or academic rank.
- Numerical numbers, e.g. integer or real numbers.

• Divide the value range of a continuous attribute into intervals:

- Interval labels can then be used to replace actual data values.
- Reduce data size by discretization.
- Supervised vs. unsupervised.
- Split (top-down) vs. merge (bottom-up).
- Discretization can be performed recursively on an attribute.
- Prepare for further analysis, e.g. classification.

Data-discretization Methods

- Typical methods:
 - All the methods can be applied recursively.
 - Binning:
 - Unsupervised, top-down split.
 - Histogram analysis:
 - Unsupervised, top-down split.
 - Clustering analysis:
 - Unsupervised, top-down split or bottom-up merge.
 - Decision-tree analysis:
 - Supervised, top-down split.
 - Correlation (e.g. χ^2) analysis:
 - Unsupervised, bottom-up merge.

Simple Discretization: Binning

• Equal-width (distance) partitioning:

- Divides the range into *N* intervals of equal size: uniform grid.
- If A and B are the lowest and highest values of the attribute, the width of intervals will be: $W = \frac{(B-A)}{N}$
- The most straightforward, but outliers may dominate presentation.
- Skewed data is not handled well.

• Equal-depth (frequency) partitioning:

- Divides the range into N intervals, each containing approximately the same number of samples.
- · Good data scaling.
- Managing categorical attributes can be tricky.

Binning Methods for Data Smoothing

Sorted data for price (in dollars):

4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34.

• Partition into equal-frequency (equal-depth) bins:

Bin 1: 4, 8, 9, 15,

Bin 2: 21, 21, 24, 25,

Bin 3: 26, 28, 29, 34.

• Smoothing by bin means:

Bin 1: 9, 9, 9, 9,

Bin 2: 23, 23, 23, 23,

Bin 3: 29, 29, 29, 29.

Smoothing by bin boundaries:

Bin 1: 4, 4, 4, 15,

Bin 2: 21, 21, 25, 25,

Bin 3: 26, 26, 26, 34.

Discretization without using Class Labels (Binning vs. Clustering)

Figure: a) Equal interval width (binning).

Figure: b) Equal frequency (binning).

Figure: c) K-means clustering.

D. Probst | CS6 | KDD 4. Preprocessing

Discretization by Classification & Correlation Analysis

• Classification:

- · E.g. decision-tree analysis.
- Supervised: Class labels given for training set e.g. cancerous vs. benign.
- Using **entropy** to determine split point (discretization point).
- Top-down, recursive split.
- Details will be covered in Chapter 6.

Correlation analysis:

- E.g. χ^2 -merge: χ^2 -based discretization.
- Supervised: use class information.
- Bottom-up merge: find the best neighboring intervals (those having similar distributions of classes, i.e., low χ^2 values) to merge.
- Merge performed recursively, until a predefined stopping condition.

Concept-hierarchy Generation

Concept hierarchy:

- Organizes concepts (i.e. attribute values) hierarchically.
- Usually associated with each dimension in a data warehouse.
- Facilitates drilling and rolling in data warehouses to view data at multiple granularity.

• Concept-hierarchy formation:

- Recursively reduce the data by collecting and replacing low-level concepts (such as numerical values for age) by higher-level concepts (such as youth, adult, or senior).
- Can be explicitly specified by domain experts and/or data-warehouse designers.
- Can be automatically formed for both numerical and nominal data.
- For numerical data, use discretization methods shown.

Concept-hierarchy Generation for Nominal Data

- Specification of a partial/total ordering of attributes explicitly at the schema level by users or experts.
 - $\#(\text{streets}) \prec \#(\text{city}) \prec \#(\text{state}) \prec \#(\text{country})$.
- Specification of a hierarchy for a set of values by explicit data grouping.
 - #({" Urbana", " Champaign", " Chicago"}) ≺ #(Illinois).
- Specification of only a partial set of attributes.
 - Only #(street) ≺ #(city), not others.
- Automatic generation of hierarchies (or attribute levels) by the analysis of the number of distinct values.
 - E.g. for a set of attributes: {street, city, state, country}.
 - · See on the next slides.

Automatic Concept-hierarchy Generation

- Some hierarchies can be automatically generated based on the analysis of the number of distinct values per attribute.
 - The attribute with the most distinct values is placed at the lowest level of the hierarchy.
 - Exceptions, e.g. weekday, month, quarter, year.
- Example:

$$\#(\text{streets}) = 674.339 > \#(\text{city}) = 3567, \ \#(\text{city}) = 3567 > \#(\text{province or state}) = 356, \ \#(\text{province or state}) = 356 > \#(\text{country}) = 15.$$

Summary

Summary

- Data quality: Accuracy, completeness, consistency, timeliness, believability, interpretability.
- Data cleaning: E.g. missing/noisy values, outliers.
- Data integration from multiple sources:
 - Entity identification problem.
 - · Remove redundancies.
 - · Detect inconsistencies.
- Data reduction:
 - Dimensionality reduction.
 - Numerosity reduction.
 - · Data compression.
- Data transformation and data discretization:
 - Normalization.
 - Concept-hierarchy generation.

Any questions about this chapter?

Ask them now or ask them later in our forum:

StudOn Forum
• https://www.studon.fau.de/frm5699567.html