MATH 51 Homework #5 Tamir Enkhjargal April 2019

Section 1.5

40.

- a) $x = 0, \ 0 * y \neq 1$
- b) x = 0, y = 11, 121 0 > 100
- c) x = 1, y = 1, $1^2 = 1^3$

44.

$$\forall a \forall b \forall c \exists x \exists y, \ a,b,c,x,y \in \mathbb{R}, \ [(a \neq 0) \land (ax^2 + bx + c = 0) \land (ay^2 + by + c = 0) \land [\forall z ((x = z) \lor (y = z)) \lor (az^2 + bz + c \neq 0)]]$$

Section 1.6

20.

- a) This is not a valid argument because it needs to be true for all values a. Any example where a is negative works for a^2 being positive, but that doesn't mean a needs to be positive.
- b) If $x^2 \neq 0$ means $x \neq 0$, then $a \in \forall x$ where x is a real number is the same as $a^2 \neq 0 \rightarrow a \neq 0$

24.

On steps 3 and 5, since it is in the form $P(c) \vee Q(c)$, we can't directly simplify to just P(c) or Q(c), you would have to make sure *both* are true, so if it was $P(c) \wedge Q(c)$ then it would be okay to simplify.

34.

P is "Logic is difficult to many students".

Q is "Many students like logic".

R is "Mathematics is easy".

- 1. $P \vee \neg Q$
- 2. $R \rightarrow \neg P$
 - a) $Q \to \neg R$, this is true because it is logically equivalent to $\neg Q \lor \neg R$ which is logically equivalent to the resolution of statement 1. and $\neg R \lor \neg P$
 - b) $\neg R \to \neg Q$ is false. If $Q \to \neg R$, then $\neg Q \vee \neg R \equiv \neg R \vee \neg Q \equiv R \to \neg Q$, and this statement does not match.
 - c) $\neg R \lor P \equiv R \to P$, but this contradicts with statement 2., so this is false.
 - d) $\neg P \lor \neg R \equiv \neg R \lor \neg P \equiv R \to \neg P$ which is the same as statement 2., this is true.
 - e) $\neg Q \to (\neg R \vee \neg P)$. From problem a, we determined that $\neg Q \vee \neg R$ which is logically equivalent to $\neg R \vee \neg Q$. Bringing in statement 1., $(P \vee \neg Q) \wedge (\neg R \vee \neg Q) \equiv \neg Q \vee (P \wedge \neg R) \equiv Q \to (P \wedge \neg R)$. From this, we can see that the statement above contradicts this, so this is false.