Třída přesnosti

1. Proud v měřeném obvodu se pohybuje v rozmezí od 0 do 3 A. Potřebujeme ho změřit s chybou $\pm 10 \, \mathrm{mA}$. Jaká je minimální podmínka na třídu přesnosti ampérmetru, který potřebujeme?

$$P = \frac{\Delta}{R} 100 = \frac{\sqrt{3}\sigma_B}{R} 100 = \frac{\sqrt{3} \cdot 0.01 \text{ A}}{3 \text{ A}} = 0.57 \Rightarrow P = 0.5$$

2. Přesnost digitálního voltmetru s třímístným displejem na rozsahu střídavého napětí 0 – 10 V uvedená výrobcem je ± (1% + 4). Přístroj nám ukázal hodnotu napětí 8.77 V. Jaká bude systematická chyba (neurčitost typu B) této hodnoty?

$$\varepsilon_U = (8.77 \times 0.01 + 4 \times 0.01) \text{ V} = 0.13 \text{ V}$$

$$\sigma_B = \frac{\varepsilon_U}{\sqrt{3}} = 0.074 \text{ V}$$

$$U = (8.77 \pm 0.07) \text{ V}$$

Systematická chyba – Metex M-3270D

 $(32.1 \pm 0.4) \Omega$

Function	Range	Resolution	Accuracy	Test Current	Overload Protection	
Resistance	400 Ω	0.1 Ω	$\pm 0.8\% \pm 4$ digits	< 0.7mA		
	4 KQ	1 0		<0.13mA		
	40 №	10 Ω	$\pm 0.8\% \pm 2$ digits	< 13uA	500V rms	
	400 №	100 Ω		< 1.3uA		
	4 MΩ	1 KQ	±1.0% ±4 digits	< 0.13uA		
	40 MΩ	10 кұ	±1.5% ±5 digits	12		
Diode	Range	Resolution	Accuracy	Test Current	Overload Protection	
	4V	1mV	±2.0% ±4 digits	1mA approx	500V rms	
Continuity	Range	Resolution	Accuracy	Continuity Beeper	Overload Protection	
	400 Ω	0.1 Ω	<approx. 50="" td="" ♀<=""><td><2.0mA</td><td>500V rms</td></approx.>	<2.0mA	500V rms	

naměřená hodnota: $R = 32.1 \Omega$

maximální chyba: $\varepsilon_R = (32.1 \times 0.008 + 4 \times 0.1) \Omega = 0.66 \Omega$

systematická chyba: $\sigma_B = \frac{\varepsilon_R}{\sqrt{3}} = 0.38 \ \Omega$

Systematická chyba – UNI-T UT71B

 $(32.4 \pm 0.2) \Omega$

E. Resistance

We arrow to		Accu	Overload Protection		
Range	Resolution	UT71A	UT71B	Overload i rotection	
200Ω	0.01Ω	±(0.5%+20)+test leads open circuit value	±(0.4%+20)+test leads open circuit value		
2kΩ	0.0001kΩ	±(0.5%+20)	±(0.4%+20)	1000V	
20kΩ	0.001kΩ	±(0.5 % ⋅ 20)			
200kΩ	0.01kΩ	±(1%+20)	±(0.8%+20)		
2ΜΩ	0.0001ΜΩ	±(1%+40)	±(1%+40)		
20ΜΩ	0.001ΜΩ	±(1.5%+40)	±(1.5%+40)	MARKET STORES OF STREET	

F. Continuity Test

Range Resolution		Overload Protection	
+1))	0.01Ω	1000V	

Remarks:

Open circuit voltage approximate -1.2V.

ullet The buzzer does not sound when the test resistance is > 60 Ω .

• The beeper comes on continuously for open conditions, that is test resistance is $\leq 40\Omega$.

naměřená hodnota: $R = 32.36 \Omega$

maximální chyba: $\varepsilon_R = (32.36 \times 0.004 + 20 \times 0.01) \Omega = 0.33 \Omega$

systematická chyba: $\sigma_B = \frac{\varepsilon_R}{\sqrt{3}} = 0.19~\Omega$

Maximální chyba

3. Jak přesně musí měřit čas stopky v kamerách používaných pro úsekové měření rychlosti aut?

Počítejte s následujícími hodnotami: rychlost 100 km/h, délka měřeného úseku 100 m s maximální chybou 1 m, přesnost měření času (a) 0.1 s, (b) 0.01 s.

$$v=rac{l}{\Delta t}$$
 kde $\Delta t=t_2-t_1$ $arepsilon_{\Delta t}=arepsilon_{t_1}+arepsilon_{t_2}=2arepsilon_t$

relativní maximální chyba rychlosti: $\frac{\varepsilon_v}{v} = \frac{\varepsilon_l}{l} + \frac{\varepsilon_{\Delta t}}{\Delta t} = \frac{\varepsilon_l}{l} + \frac{2\varepsilon_t}{l} v$

absolutní maximální chyba rychlosti: $\varepsilon_v = \frac{\varepsilon_l}{l}v + \frac{2\varepsilon_t}{l}v^2 \Rightarrow \frac{\text{(a) } \varepsilon_v = 6.7 \text{ km/h}}{\text{(b) } \varepsilon_v = 1.6 \text{ km/h}}$

Maximální chyba

4. Hustota vzorku se při studovaném efektu mění o 10 %. Měříme vzorek o výchozí hustotě 7874 kg m⁻³. Hustotu měříme Archimedovou metodou, tj. vážením ve vodě a na vzduchu při pokojové teplotě. Jaká musí být minimální přesnost měření hmotnosti (maximální relativní nejistota) aby bylo možné daný efekt spolehlivě detekovat?

$$m_1 = \varrho \cdot V$$
 $m_2 = (\varrho - \varrho_v) \cdot V$ $\Rightarrow \varrho = \frac{m_1}{m_1 - m_2} \varrho_v$ $m_2 = \frac{\varrho - \varrho_v}{\varrho} m_1$

$$\frac{\varepsilon_{\varrho}}{\varrho} = \frac{\varepsilon_{m_1}}{m_1} + \frac{\varepsilon_{m_1 - m_2}}{m_1 - m_2} = \frac{\varepsilon_{m_1}}{m_1} + \frac{2\varepsilon_m}{m_1} \frac{\varrho}{\varrho_v} = \frac{\varepsilon_m}{m_1} \left(1 + 2\frac{\varrho}{\varrho_v}\right)$$

maximální relativní chyba vážení na vzduchu

$$\eta_{m_1} = \eta_{\varrho} \left(1 + 2 \frac{\varrho}{\varrho_{v}} \right)^{-1} = 0.6\%$$

maximální relativní chyba vážení ve vodě*

$$\eta_{m_2} = \frac{\varepsilon_m}{m_2} = \frac{\varepsilon_m}{m_1} \frac{\varrho}{\varrho - \varrho_v} = \eta_\varrho \frac{\varrho}{\varrho - \varrho_v} \left(1 + 2 \frac{\varrho}{\varrho_v} \right)^{-1} = 0.7\%$$