Produit scalaire dans le plan.

1 Produit scalaire (Rappel)

1.1 Définitions

Définition 1(Expression trigonométrique)

Le produit scalaire de deux vecteurs \vec{u} et \vec{v} est le nombre réel : $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cdot \cos\left(\overrightarrow{\vec{u}}, \overrightarrow{\vec{v}}\right)$

Propriétés

Pour tous vecteurs \vec{u}, \vec{v} et \vec{w} , pour tout réel k, on a :

1.
$$\vec{u} \cdot \vec{u} = ||\vec{u}||^2 = \vec{u}^2$$
.

2.
$$\vec{u}.\vec{v} = \vec{v}.\vec{u}$$
.

3.
$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

4.
$$(k\vec{u}).\vec{v} = \vec{u}.(k\vec{v}) = k\vec{u}.\vec{v}$$

5.
$$\vec{u}.\vec{v} = 0 \Leftrightarrow \vec{u} \perp \vec{v}$$
.

Définition 2(La projection orthogonale)

- 1. Soient \overrightarrow{AB} et \overrightarrow{CD} deux vecteurs.C' et D' les projetés orthogonaux de C et D sur la droite (AB). \overrightarrow{AB} . $\overrightarrow{CD} = \overrightarrow{AB}$. $\overrightarrow{C'D'}$.
 - Si \overrightarrow{AB} et $\overrightarrow{C'D'}$ ont le même sens, alors : $\overrightarrow{AB}.\overrightarrow{CD} = AB \times C'D'$
 - Si \overrightarrow{AB} et $\overrightarrow{C'D'}$ ont un sens contraire, alors : $\overrightarrow{AB}.\overrightarrow{CD}=-AB\times C'D'$

- 2. Soient \overrightarrow{AB} et \overrightarrow{AC} deux vecteurs.H est le projeté orthogonal sur la droite (AB). $\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AH}$.
 - Si \overrightarrow{AB} et \overrightarrow{AH} ont le même sens, alors : $\overrightarrow{AB}.\overrightarrow{AC} = AB \times AH$
 - Si \overrightarrow{AB} et \overrightarrow{AH} ont un sens contraire, alors : $\overrightarrow{AB}.\overrightarrow{AC} = -AB \times AH$

1.2 Expression du produit scalaire à l'aide des normes uniquement-Identités remarquables

Pour tous vecteurs \vec{u} et \vec{v} On a :

1.
$$||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + 2\vec{u}.\vec{v} + ||\vec{v}||^2$$
.

$$\begin{aligned} &1. \ ||\vec{u}+\vec{v}||^2 = ||\vec{u}||^2 + 2\vec{u}.\vec{v} + ||\vec{v}||^2 \\ &3. \ \vec{u}.\vec{v} = \frac{1}{2}[||\vec{u}+\vec{v}||^2 - ||\vec{u}||^2 - ||\vec{v}||^2]. \end{aligned}$$

$$\begin{array}{l} 2. \ ||\vec{u}-\vec{v}||^2 = ||\vec{u}||^2 - 2\vec{u}.\vec{v} + ||\vec{v}||^2. \\ 4. \ (\vec{u}+\vec{v})(\vec{u}-\vec{v}) = ||\vec{u}||^2 - ||\vec{v}||^2 \end{array}$$

4.
$$(\vec{u} + \vec{v})(\vec{u} - \vec{v}) = ||\vec{u}||^2 - ||\vec{v}||^2$$

Applications du produit scalaire

1.3.1 Les relations métriques dans un triangle rectangle

Propriété

ABC est un triangle rectangle en A et H le projeté orthogonal de A sur (BC) alors on a :

- 1. $BC^2 = AB^2 + AC^2$ (Théorème de Pythagore).
- 2. $BA^2 = BH \times BC$

3.
$$CA^2 = CH \times CB$$

4.
$$AH^2 = HB \times HC$$

Propriété

Soit ABC un triangle.On a :

1.
$$\overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2)$$
. 2. $\overrightarrow{BA}.\overrightarrow{BC} = \frac{1}{2}(AB^2 + BC^2 - AC^2)$. 3. $\overrightarrow{CA}.\overrightarrow{CB} = \frac{1}{2}(AC^2 + BC^2 - AB^2)$.

1.3.2 Théorème d'Alkashi

Théorème

Soit ABC un triangle ,on a :

1.
$$BC^2 = BA^2 + AC^2 - 2AB \times AC \times \cos \hat{A}$$

2.
$$AC^2 = AB^2 + BC^2 - 2AB \times BC \times \cos \hat{B}$$

3.
$$AB^2 = AC^2 + BC^2 - 2AC \times BC \times \cos \hat{C}$$

1.3.3 Théorème de la médiane

Théorème

Soit ABM un triangle ,si I est le milieu de [AB] alors :

1.
$$\overrightarrow{MA}.\overrightarrow{MB} = MI^2 - \frac{1}{4}AB^2$$
. 2. $MA^2 - MB^2 = 2\overrightarrow{IM}.\overrightarrow{AB}$.

$$2. MA^2 - MB^2 = 2\overrightarrow{IM}.\overrightarrow{AB}$$

3.
$$MA^2 + MB^2 = 2MI^2 + \frac{1}{2}AB^2$$
.

Expression analytique du produit scalaire

2.1base et repère orthonormé

Définitions

Soit $(\vec{i}; \vec{j})$ une base du plan, et O un point du plan.

- On dit que $(\vec{i}; \vec{j})$ est une base orthonormée si $\vec{i}.\vec{j} = 0$ et $||\vec{i}|| = ||\vec{j}|| = 1$.
- On dit que $(O; \vec{i}; \vec{j})$ est un repère orthonormé si $(\vec{i}; \vec{j})$ est une base orthonormée.
- Si $(\vec{i}; \vec{j})$ est une base orthonormée et $(\vec{i}; \vec{j}) \equiv \frac{\pi}{2} [2\pi]$ alors $(O; \vec{i}; \vec{j})$ est appelé un repère orthonormé direct.

Dans toute la suite, on se place dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

Expression analytique du produit scalaire

Propriété

Soient $\vec{u}(x;y)$ et $\vec{v}(x';y')$ deux vecteurs du plan.On a : $\vec{u}.\vec{v} = xx' + yy'$.

Exemples

Calculer $\vec{u}.\vec{v}$

1. $\vec{u}(1;2)$ et $\vec{v}(2;3)$.

2.
$$\vec{u}(-1;4)$$
 et $\vec{v}(3;-2)$.

3.
$$\vec{u}(2;4)$$
 et $\vec{v}(-6;3)$.

Remarques

Soient $\vec{u}(x;y)$ et $\vec{v}(x';y')$ deux vecteurs du plan.On a :

- 1. $||\vec{u}|| = \sqrt{x^2 + y^2}$.
- 2. Si \vec{u} et \vec{v} deux vecteurs non nuls, alors :

$$\cos(\overline{\vec{u};\vec{v}}) = \frac{\vec{u}.\vec{v}}{||\vec{u}|| \times ||\vec{v}||} = \frac{xx' + yy'}{\sqrt{x^2 + y^2}\sqrt{x'^2 + y'^2}} \text{ et } \sin(\overline{\vec{u};\vec{v}}) = \frac{\det(\vec{u};\vec{v})}{||\vec{u}|| \times ||\vec{v}||} = \frac{xy' - yx'}{\sqrt{x^2 + y^2}\sqrt{x'^2 + y'^2}}$$

3. Si $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points du plan alors $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_B)^2}$.

Exercice d'application 1

Le plan est muni d'un repère orthonormé $(O; \vec{i}; \vec{j})$. Soient $\vec{u}(\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2})$ et $\vec{v}(\frac{-\sqrt{2}}{2}; \frac{\sqrt{2}}{2})$. 1. Montrer que \vec{u} et \vec{v} ne sont pas colinéaires. 2. Montrer que $(O; \vec{u}; \vec{v})$ est un repère orthonormé direct.

Exercice d'application 2

Le plan est muni d'un repère orthonormé $(0; \vec{i}; \vec{j})$. On considère les points $A(2; 2\sqrt{3}), B(1; \sqrt{3})$ et C(2; 0).

- 1. Déterminer la mesure de l'angle $(\overrightarrow{AB}; \overrightarrow{AC})$.
- 2. Déterminer la mesure de l'angle $(\overrightarrow{BA}; \overrightarrow{BC})$.
- 3. Déterminer la mesure de l'angle géométrique \overline{ACB} .

Applications 3

3.1 Equation d'une droite

Définitions

- On appelle vecteur directeur d'une droite tout vecteur non nul qui possède la même direction que cette droite.
- Si (D) est une droite passant par A et de vecteur directeur \vec{u} alors pour tout point M du plan :

$$M \in (D) \Leftrightarrow \det(\overrightarrow{u}; \overrightarrow{AM}) = 0$$

 $\Leftrightarrow \exists t \in \mathbb{R} : \overrightarrow{AM} = t\overrightarrow{u}$

- On appelle vecteur normal d'une droite tout vecteur non nul orthogonal à un vecteur directeur de cette droite.
- Si (D) est une droite passant par A et de vecteur normal \vec{u} alors pour tout point M du plan :

$$M \in (D) \Leftrightarrow \overrightarrow{n}.\overrightarrow{AM} = 0$$

Propriétés

- Une équation cartésienne de la droite (D) passant par $A(x_A; y_A)$ et de vecteur directeur $\vec{u}(a; b)$ est $(D): b(x - x_A) - a(y - y_A) = 0.$
- Une équation cartésienne de la droite (D) passant par $A(x_A; y_A)$ et de vecteur normal $\vec{n}(a; b)$ est $(D): a(x - x_A) + b(y - y_A) = 0.$
- Une représentation paramétrique de la droite (D) passant par $A(x_A; y_A)$ et de vecteur directeur $\vec{u}(a; b)$ est le système:

$$(D): \begin{cases} x = x_A + at \\ y = y_A + bt \end{cases} (t \in \mathbb{R})$$

Remarques

- 1. Un vecteur directeur de la droite (D) d'équation cartésienne ax + by + c = 0 est $\vec{u}(-b; a)$.
- 2. Un vecteur normal de la droite (D) d'équation cartésienne ax + by + c = 0 est $\vec{n}(a;b)$.

Exercice d'application 1

Soit (D) une droite passant par A(2;-1) et de vecteur directeur $\vec{u}(3;2)$.

- 1. Déterminer une équation cartésienne de la droite (D).
- 2. Donner un vecteur normal de la droite (D).
- 3. Soit (Δ) une droite perpendiculaire à (D) en A.Donner une équation cartésienne de (Δ) .
- 4. Donner une représentation paramétrique de (Δ) et (D).

Exercice d'application 2

On considère les points A(1;1),B(-2;0) et C(3;5).

- 1. Déterminer une équation de la droite (D), médiatrice du segment [AC].
- 2. Déterminer une équation de la droite (Δ) hauteur du triangle ABC issue de C.

3.2 Distance d'un point à une droite

Définition

 $\operatorname{Soit}(D)$ une droite,A un point du plan et H le projeté orthogonal de A sur (D). Le nombre positif AH est appelé la distance du point A à la droite (D). Et on écrit :d(A,(D))=AH.

Propriété

Soit (D) une droite d'équation : ax + by + c = 0 et $A(x_A; y_A)$ un point du plan .La distance du point A à la droite (D) est $: d(A, (D)) = \frac{|ax_A + by_A + c|}{\sqrt{a^2 + b^2}}$.

Exemples

3.3 Équation cartésienne d'un cercle.

3.3.1 Équation d'un cercle défini par son centre et son rayon.

Propriétés

- L'ensemble des points M du plan qui vérifient $\Omega M = R$ est le cercle de centre Ω et de rayon R.
- Une équation cartésienne du cercle (C) de centre $\Omega(a;b)$ et de rayon R (R>0) est de la forme : $(x-a)^2+(y-b)^2=R^2$.

3.3.2 Équation d'un cercle définie par son diamètre

Propriétés

- Soient A et Bdeux points distincts du plan, il existe un et un seul cercle (C) de diamètre [AB]. Le centre du cercle (\mathcal{C}) est le point Ω milieu du segment [AB] et son rayon R est la distance $\frac{AB}{2}$.
- L'ensemble des points M du plan vérifiant $\overrightarrow{AM}.\overrightarrow{BM} = 0$ est un cercle (C) de diamètre [AB].
- Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points.Une équation du cercle (\mathcal{C}) de diamètre [AB] est

$$(C): (x - x_A)(x - x_B) + (y - y_A)(y - y_B) = 0$$

Représentation paramétrique d'un cercle

Définition

Le cercle (C) de centre $\Omega(a;b)$ et de rayon r est l'ensemble des points M(x;y) du plan qui vérifient le système :

$$(C): \begin{cases} x = a + r\cos\theta \\ y = b + r\sin\theta \end{cases} (\theta \in \mathbb{R})$$

Exercice d'application

- 1. Donner l'équation du cercle (\mathcal{C}) de centre $\Omega(-1;2)$ et de rayon $\sqrt{3}$.
- 2. Donner l'équation du cercle (\mathcal{C}) de centre $\Omega(1;2)$ et $A(4;-2) \in (\mathcal{C})$.
- 3. Donner l'équation du cercle (\mathcal{C}) de diamètre [AB] avec A(1;2) et B(-3;5).
- 4. Donner la représentation paramétrique du cercle (\mathcal{C}) de centre $\Omega(-1; -3)$ et de rayon 5.

Étude de l'ensemble des points M(x;y) du plan tels que $x^2 + y^2 + ax + by + c = 0$.

Soient a,b et c trois nombres réels. On considère l'ensemble (E) définie par : $(E) = M(x;y)/x^2 + y^2 + ax + by + c = 0$. Soit M(x; y) un point du plan, on a :

Solit
$$M(x,y)$$
 thi point du plan, on a:
$$M(x,y) \in (E) \quad \Leftrightarrow \quad x^2 + y^2 + ax + by + c = 0 \\ \Leftrightarrow \quad (x^2 + ax) + (y^2 + by) + c = 0 \\ \Leftrightarrow \quad \left(x + \frac{a}{2}\right)^2 + \left(y + \frac{b}{2}\right)^2 = \frac{a^2 + b^2 - 4c}{4}$$
 On pose $\Omega\left(-\frac{a}{2}, -\frac{b}{2}\right)$ et $k = \frac{a^2 + b^2 - 4c}{4}$, on a: $M(x,y) \in (E) \quad \Leftrightarrow \quad \Omega M^2 = k$

On pose
$$\Omega\left(-\frac{a}{2}, -\frac{b}{2}\right)$$
 et $k = \frac{a^2 + b^2 - 4c}{4}$, on a : $M(x, y) \in (E)$ \Leftrightarrow $\Omega M^2 = k$

Propriété

- 1. Si k < 0 alors (E) est l'ensemble vide.
- 2. Si k = 0 alors $(E) = \{\Omega(\frac{-a}{2}; \frac{-b}{2})\}.$
- 3. Si k > 0 alors (E) est un cercle de centre $\Omega\left(\frac{-a}{2}; \frac{-b}{2}\right)$ et de rayon \sqrt{k} .

Exercice d'application

Déterminer dans chaque cas la nature de l'ensemble (E), des points M(x;y) du plan vérifiant l'équation :

- 1. $x^2 + y^2 x + 3y 4 = 0$
- 2. $x^2 + y^2 6x + 2y + 10 = 0$
- 3. $x^2 + y^2 4x + 5 = 0$

3.3.5 Intérieur et extérieur d'un cercle

Définition

Soit (C) un cercle de centre Ω et de rayon R et A un point du plan .

- Le point A est sur le cercle (C) ssi $:\Omega A = R$.
- Le point A est à l'intérieur du cercle (\mathcal{C}) ssi : $\Omega A < R$.
- Le point A est à l'extérieur du cercle (\mathcal{C}) ssi : $\Omega A > R$.

Soit (C) un cercle d'équation $:x^2 + y^2 + ax + by + c = 0$. Pour tout point $A(x_A; y_A)$ du plan, on a :

- Le point A est sur le cercle (C) ssi $:x_A^2 + y_A^2 + ax_A + by_A + c = 0$.
- Le point A est à l'intérieur du cercle (\mathcal{C}) ssi $:x_A^2+y_A^2+ax_A+by_A+c<0.$
- Le point A est à l'extérieur du cercle (C) ssi $:x_A^2 + y_A^2 + ax_A + by_A + c > 0$.

3.3.6 Positions relatives d'une droite et d'un cercle.

Pour étudier la position relative d'un cercle (C) de centre Ω et de rayon R avec une droite (D), il suffit de calculer la distance $d(\Omega,(D))$ et la comparer au rayon R.

La droite (D) coupe le cercle (\mathcal{C}) en deux points distincts

La droite (D) est tangente au cercle (\mathcal{C}) en un seul point

La droite (D) ne coupe pas le cercle (C).

Exercice d'application

Étudier la position relative du cercle (C) de centre $\Omega(1;2)$ et de rayon R=2 et la droite (D) dans chacun des cas suivants :

- 1. (D): x + y + 2 = 0
- 2. (D): x y + 2 = 0
- 3. $(D): \sqrt{3}x + y + 2 \sqrt{3} = 0$

Remarques

- 1. Les coordonnées des points d'intersection d'un cercle (C) avec une droite (D), s'ils existent, sont les solutions du système d'équations de chacun d'eux.
- 2. Les coordonnées du point H le projeté de Ω sur la droite (D) sont les solutions du système composé de l'équation de la droite (D) et la droite passant par Ω et dirigée par un vecteur normal de (D).
- 3. Tout point M de la droite tangente au cercle \mathcal{C} en un point A vérifie : $\overrightarrow{AM}.\overrightarrow{A\Omega}=0$.