6. Differentiation: Basic Rules and Product & Quotient Rules

Lec 5 mini review.

The Derivative at a Point:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

slope of a tangent at x = a

instantaneous rate of change at a

differentiability how functions fail to be differentiable

 $differentiability \Longrightarrow continuity$

The Derivative as a Function:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

relationship between f(x) and f'(x)

domain of f'(x)

notation for derivative of y = f(x): f'(x) y' $\frac{dy}{dx}$ $\frac{df}{dx}$ $\frac{d}{dx}f(x)$ $D_x(f(x))$

higher-order derivatives: f' f''' f'''' $f^{(4)}$

BASIC RULES

Constants

Powers

n = 0

n = 1

n=2

^{*} These notes are solely for the personal use of students registered in MAT1320. ©EJM All rights reserved.

$n \in \mathbb{N}$
▶ Later, we'll use <i>Logarithmic Differentiation</i> to prove the power rule actually works just as well for any power $n \in \mathbb{R}$.
► For now, we will state the rule and use it!
The Power Rule ($n \in \mathbb{R}$)
Constant Multiples

Sums and Differences

Example 6.1. Find the first and second derivatives of each of the following functions.

a.
$$g(x) = 2x^3 + -\sqrt{x} - 5$$

b.
$$f(x) = \frac{\pi + \sqrt[3]{x} - x^8}{x^{4/3}}$$

DERIVATIVE OF EXPONENTIAL FUNCTIONS

Let $f(x) = b^x$ for some base b > 0, $b \ne 1$. Then

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{b^{x+h} - b^x}{h} = \lim_{h \to 0} b^x \left(\frac{b^h - 1}{h}\right) = \lim_{h \to 0} b^x \left(\frac{b^{0+h} - b^0}{h}\right) = b^x \left(\lim_{h \to 0} \frac{b^{0+h} - b^0}{h}\right) = b^x \left(f'(0)\right)$$

Derivative of the Natural Exponential Function

Example 6.2. Let f(x) be a piecewise function defined as follows, where a,b, and c are constants:

$$f(x) = \begin{cases} ae^x + x + 1 & \text{if } x \le 0\\ 3 & \text{if } x = 0\\ bx + c & \text{if } x > 0 \end{cases}$$

Find all values of the constants a and b for which

• f(x) is continuous at x = 0

• f(x) is differentiable at x = 0

Example 6.3. Find the derivative of $h(t) = e^{t+1}$.				
THE PRODUCT RULE				
The Product Rule				

Example 6.4. Find the derivative of $y = (2e^x + x^2)\sqrt{x}$. What is $y'(4)$?
THE QUOTIENT RULE
The Quotient Rule

Example 6.5. Differentiate each of the following:

a.
$$q(x) = \frac{4x^{5/2} + 8e^x}{x^3 + 2x - \sqrt{2}}$$

b.
$$g(x) = h(x) \left(\frac{x^2}{f(x)} \right)$$
 where $h(x)$ and $f(x)$ are differentiable functions.

If
$$h(2) = 10$$
, $f(2) = 1$, $h'(2) = 2$, and $f'(2) = -1$, then what is $g'(2)$?

STUDY GUIDE

Constant Multiple Rule:

for any
$$k \in \mathbb{R}$$
, $\frac{d}{dx}[kf(x)] = kf'(x)$

Sum/Difference Rule:

$$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$$

Constant Rule:

for any
$$c \in \mathbb{R}$$
, $\left[\frac{d}{dx} [c] = 0 \right]$

Power Rule:

for any
$$n \in \mathbb{R}$$
, $\frac{d}{dx}[x^n] = nx^{n-1}$

Derivative of d

Product Rule:

$$\frac{d}{dx}[fg] = f'g + fg'$$

Quotient Rule:

$$\boxed{\frac{d}{dx} \left[\frac{f}{g} \right] = \frac{f'g - fg'}{g^2}}$$