Mini project 1 preliminary submission

1. preprocessing

1.1 preprocessor

I transformed raw datasets from TXT files into CSV files, and then match them by sample numbers. Specifically, each type of sample has a range of numbers in CSV from minus 179 to plus 180. Then got 360 attributes with one 'Type'.

1.2 plotting

Plotted 8 graphs with each of the types.

1.3 cleaning

Cleaned infinity and outliers in the whole dataset.

1.4 normalizer

Then I added two data normalization methods: one is to normalize to the range [0,1], and another is to use StandardScaler().

1.5 class_imbalance_checker

Obviously, types are not balanced.

1.6.1 imbalance_remover

I implemented two removers: one is the combination of undersampler and SMOTE, and the other is just SMOTE.

1.6.2 autoencoder

AE is used in imbalanced_remover as the third way with 15 epochs.

After removing the imbalance, the shape of the data is as follows:

```
Resampled dataset shape Counter({'A': 8075, 'L': 8075, 'N': 8075, 'R': 8075, 'U': 8075, 'V': 8075})
```

1.7.1 noise_remover

Implemented two removers: Wavelet transforms using pywt library and the mean filter.

2. training

2.1 model1

The first model is lightGBM, which has 100 iterations, over 98% accuracy in the test set. Besides, here are some graphs and reports about it:

2.2 model2

MLP was used in this part, which is about 82% accuracy in the test set.

2.3 compare

	precision	recall	F1-score
lightGBM	0.98	0.98	0.98
MLPclassifier	0.83	0.83	0.83