Proposizioni

P	Q	$P \implies Q$
V	V	V
V	F	F
F	V	V
F	F	V

P	Q	$P \iff Q$
V	V	V
V	F	F
F	V	F
F	F	V

Massimo e minimo

 $A\subset \mathbb{R}, A
eq \emptyset$

- Può non esistere
- Se esiste è unico
- $M \in A$ si dice massimo per A ($M = \max(A)$) se $\forall x \in A$ $M \geq x$
- $m \in A$ si dice minimo per A ($m = \min(A)$) se $\forall x \in A \ m \leq x$

Estremo

 $A\subset\mathbb{R}, A\neq\emptyset$

• $ar{x} \in \mathbb{R}$ si dice estremo superiore di A ($ar{x} = \sup A$) se è il più piccolo dei maggioranti, ovvero

$$\begin{cases} \forall x \in A \ x \leq \bar{x} \\ \forall \epsilon > 0 \ \exists x \in A : x - \epsilon < \bar{x} \end{cases}$$

• $\underline{x} \in \mathbb{R}$ si dice estremo inferiore di A ($\underline{x} = \inf A$) se è il più grande dei minoranti, ovvero

$$\begin{cases} \forall x \in A \ x \geq \underline{x} \\ \forall \epsilon > 0 \ \exists x \in A : x - \epsilon > \underline{x} \end{cases}$$

Disuguaglianza triangolare

 $orall x_1,x_2\in\mathbb{R} \quad |x_1+x_2|\leq |x_1|+|x_2|$

Trasformazioni di funzioni

- Riflessione rispetto all'asse delle x: -f(x)
- Riflessione rispetto all'asse delle y: f(-x)
- Valore assoluto di f: |f(x)|
- Parte positiva di f:

$$f_+(x) = egin{cases} f(x) & f(x) \geq 0 \ 0 & f(x) < 0 \end{cases}$$

· Parte negativa di f:

$$f_-(x)egin{cases} -f(x) & f(x) \leq 0 \ 0 & f(x) > 0 \end{cases}$$

- Traslazione verticale: f(x) + a
- Traslazione orizzontale: f(x + a)
- Riscalamento verticale: $k \cdot f(x)$
 - dilatazione se k>1
 - ullet compressione se 0 < k < 1
- Riscalamento orizzontale: $f(k \cdot x)$
 - dilatazione se 0 < k < 1
 - compressione se k>1

Numeri complessi

- Forme:
 - Cartesiana: z = x + yi
 - Trigonometrica: $z = |z|(\cos \theta + i \sin \theta)$
 - Esponenziale: $z = |z|e^{i\theta}$
- Coniugato: $\bar{z} = x iy$
- Modulo: $|z| = \sqrt{x^2 + y^2}$
- Reciproco: $z^{-1} = \frac{\bar{z}}{|z|}$
- Somma:

$$ullet z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$$

- Prodotto:
 - $z \cdot a = ax + iay$
 - $ullet z_1 \cdot z_2 = (x_1x_2 y_1y_2) + i(x_1y_2 + x_2y_1)$
 - $z_1 \cdot z_2 = |z_1||z_2|(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$
 - $z_1 \cdot z_2 = |z_1||z_2|e^{i(\theta_1+\theta_2)}$
- Quoziente:

$$rac{\overline{z_1}}{\overline{z_2}} = rac{|z_1|}{|z_2|}(\cos(heta_1 - heta_2) + i\sin(heta_1 - heta_2))$$

$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} e^{i(\theta_1 - \theta_2)}$$

- Elevamento a potenza:
 - $\quad \bullet \quad z^n = |z|^n (\cos(n \cdot \theta) + i \sin(n \cdot \theta)) \\$
 - $z^n = |z|^n e^{i \cdot n \cdot \theta}$
- Proprietà:
 - $\overline{z+w} = \bar{z} + \bar{w}$
 - $\overline{z \cdot w} = \bar{z} \cdot \bar{w}$
 - $z + \bar{z} = 2 \operatorname{Re}(z)$
 - $z-ar{z}=2i{
 m Im}(z)$
 - $\bullet \ |z|=0 \iff z=0$
 - $\bullet \ |z+w| \leq |z| + |w|$
 - $z \cdot \bar{z} = |z|^2$
 - $|z \cdot w| = |z| \cdot |w|$

Fattoriale

 $n! := 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$

Proprietà:

•
$$n! = n \cdot (n-1)!$$

$$\frac{n!}{(n-k)!}=n\cdot (n-1)\cdot\ldots\cdot (n-k+1)$$

Coefficiente binomiale

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-1)!} = \frac{n \cdot (n-1) \cdot \ldots \cdot (n-k-1)}{k!}$$

Proprietà:

$$\binom{n}{0} = \binom{n}{n} = 1$$

$$egin{pmatrix} n \ k \end{pmatrix} = egin{pmatrix} n \ n-k \end{pmatrix}$$

$$egin{pmatrix} n \ k \end{pmatrix} = egin{pmatrix} n-1 \ k-1 \end{pmatrix} + egin{pmatrix} n-1 \ k \end{pmatrix}$$

Binomio di Newton

$$(a+b)^n = \sum_{k=0}^n inom{n}{k} \cdot a^{n-k} \cdot b^k$$

Successioni

Limitatezza delle successioni convergenti:

$$a_n o l \implies orall n \in \mathbb{N} \; \exists M \in \mathbb{R} : |a_n| \le M$$

Successione di Nepero:

$$\exists \lim_{n \to +\infty} \left(1 + \frac{1}{n}\right)^n = e$$

$$\lim_{n o +\infty} |a_n| = +\infty \implies \lim_{n o +\infty} \left(1 + rac{1}{a_n}
ight)^{a_n} = e$$

$$lpha \in \mathbb{R} \quad \lim_{n o +\infty} \left(1 + rac{lpha}{a_n}
ight)^{a_n} = e^lpha$$

• Permanenza del segno:

$$x_n o l > 0 \implies \exists ar{n} : \forall n \geq ar{n} \ x_n > 0$$

Confronto:

$$a_n \to a, \ b_n \to b \ \exists \bar{n} : \forall n \geq \bar{n} \ a_n \leq b_n \implies a \leq b$$

Due carabinieri:

$$a_n o a, \; b_n o b \; \exists ar{n} : orall n \geq ar{n} \; a_n \leq c_n \leq b_n \ \Longrightarrow \; c_n o l$$

Criterio del rapporto:

$$orall n \in \mathbb{N}, \ a_n > 0 \ rac{a_{n+1}}{a_n} o l$$

•
$$l > 1 \implies a_n \to +\infty$$

•
$$l < 1 \implies a_n \rightarrow 0$$

• Gerarchia di infiniti: $\log_a(n)$; n^{α} ; a^n ; n!; n^n

Limiti notevoli

$$\lim_{x o 0}rac{\sin(x)}{x}=1$$

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

$$\lim_{x\to 0}\frac{\tan(x)}{x}=1$$

$$\lim_{x\to\pm\infty}\left(1+\frac{1}{x}\right)^x=e$$

$$\lim_{x\to 0}(1+x)^{1/x}=e$$

$$\lim_{x o 0}rac{\ln(1+x)}{x}=1$$

$$\lim_{x\to 0}\frac{e^x-1}{x}=1$$

$$\lim_{x o 0}rac{a^x-1}{x}=\ln(a)$$

$$\lim_{x o 0}rac{(1+x)^lpha-1}{x}=lpha$$

Sin e cos

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	1
$\cos \theta$	1	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	0

$\sin(-x) = -\sin(x)$	$\cos(-x) = \cos(x)$	$\tan(-x) = -\tan(x)$
$\sin\left(\frac{\pi}{2}\pm x\right)=\mp\cos(x)$	$\cos\left(rac{\pi}{2}\pm x ight)=\mp\sin(x)$	$ an\left(rac{\pi}{2}\pm x ight)=\mp\cot(x)$
$\sin(\pi\pm x)=\mp\sin(x)$	$\cos(\pi\pm x)=-\cos(x)$	$ an(\pi\pm x)=\pm an(x)$

$$\sin(x \pm y) = \sin(x)\cos(x) \pm \cos(x)\sin(y)$$

 $\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y)$
 $\sin(2x) = 2\sin(x)\cos(x)$
 $\cos(2x) = \cos^2(x) - \sin^2(x) = 2\sin^2(x) - 1$