12.1 Computing alignments in only linear space

20160329

Chanyoung Song

•
$$S_1 = cacd$$

•	S_2	=	cad	lb
---	-------	---	-----	----

S	а	b	С	d	1
a	1	ကု	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

V(I,j)	-	С	a	С	d
-					
С					
а					
d					
b					

- $S_1 = cacd$
- $S_2 = cadb$

S	a	b	С	d	1
a	1	ကု	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

V(I,j)	-	С	а	С	d
-	0 +	- -2 ←	3 ← -2-2 =	- -5 ←	- -6
С	-2		0+0=	_	
а			-2-2 =	-4	
d					
b					

- $S_1 = cacd$
- $S_2 = cadb$

S	а	b	С	d	1
a	1	ကု	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

V(I,j)	ı	С	а	С	d	
1	0 +	- -2 ←	- -3 ←	- -5 ←	- -6	
С	-2	0				
a		oute	3-time	a ma)	3 poir	iters
d	. Co	mpuc pace fo	3-time r 1 valu	, e,		
b						

- $S_1 = cacd$
- $S_2 = cadb$

S	a	b	С	d	1
a	1	ကု	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

V(I,j)	-	С	а	С	d
-	0 +	- -2 ←	- -3 -	- -5 ←	- -6
С	-2	0 +	- -1 ←	-3	– -4
а	-3	-1	1 +	-1 +	- -2
d	-4	-2	0	-2	2
b	-4	-2	0	-2	2

Computing Alignments

- Dynamic Programming ($|S_1| = n$, $|S_2| = m$)
 - Time Complexity: O(nm)
 - Space Complexity : O(nm) O(m)

How about computing only V(n,m), Not an alignment?

•
$$S_1 = cacd$$

•
$$S_2 = cadb$$

S	a	b	С	d	1
a	1	ကု	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

V(I,j)	-	С	а	С	d
-	0	-2	-3	-5	-6
С					
а					
d					
b					

- $S_1 = cacd$
- $S_2 = cadb$

S	а	b	С	d	1
a	1	-3	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

V(I,j)	-	С	а	С	d
-	0	-2	-3	-5	-6
С	-2				
а					
d					
b					

•
$$S_1 = cacd$$

•
$$S_2 = cadb$$

S	a	b	С	d	1
a	1	-3	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

V(I,j)	-	С	а	С	d
-	0	-2	-3	-5	-6
С	-2				
а					
d					
b					

•
$$S_1 = cacd$$

•
$$S_2 = cadb$$

S	a	b	С	d	ı
a	1	က	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

V(I,j)	-	С	а	С	d
-	0	-2	-3	-5	-6
С	-2	0			
а					
d					
b					

- $S_1 = cacd$
- $S_2 = cadb$

S	a	b	С	d	1
a	1	ကု	-2	0	-1
b		3	-2	-1	0
С			0	-4	-2
d				3	-1
-					0

V(I,j)	-	С	а	С	d
-	0	-2	-3	-5	-6
С (-2	0	-1	-3	-4
а					i-th rov
d	0	NLY NE	ED i-1-	th ROV	N OW
b	FOF	COM	ED 1-17		

Definition

• For any string α ,

let α^r denote the **reverse of string** α

$$\alpha$$
 = abcde α^r = edcba

Definition

- Given strings S₁ and S₂,
- Define V^r(i, j) as the similarity of
 - 1) the string consisting of the first i characters of S₁^r, and
 - 2) the string consisting of the first j characters of S_2^r .
- Equivalently V^r(i, j) is the similarity of
 - 1) the last i characters of S₁ and
 - 2) the last j characters of S₂

$$S_1$$
 = aboddd S_2 = aboddd S_2 = aboddd S_2 = ddddba S_2 = dcdcba S_2 | S

•
$$V(n, m) = \max_{0 <=k <=m} [V(n/2, k) + V^{r}(n/2, m-k)]$$

$$Ex> S_1 = abdddd, S_2 = abcdcd$$

- $V(6, 6) = \max_{0 < k < m} [V(3, k) + V^{r}(3, m-k)]$
- $V(3, k): S_1 = abdddd S_2 = abcdcd$
- $V^{r}(3, m-k)$: $S_{1} = abdddd$ $S_{2} = abcdcd$ $S_{2} = abcdcd$ $S_{37} = abcdcd$
- $V(3, k) + V^r(3, m-k)$

•
$$V(n, m) = \max_{0 \le k \le m} [V(n/2, k) + V^r(n/2, m-k)]$$

Proof>

- $S_t[1,...,i]$: the prefix of S_t (the first i characters)
- $S_t^r[1,...,i]$: the reverse of the suffix of S_t (the last i characters)

$$t = \{1, 2\}$$

For fixed any position k' in S₂,

An alignment of
$$S_1[1,...,n/2]$$
 and $S_2[1,...,k']$ \longrightarrow $V(n/2,k')$

An alignment of
$$S_1[n/2+1,...,n]$$
 and $S_2[k'+1,...,m] \rightarrow V^r(n/2, m-k')$

$$V(n/2, k') + V^{r}(n/2, m - k') \le \max_{0 \le k \le m} [V(n/2, k) + V^{r}(n/2, m-k)] \le V(n, m)$$

•
$$V(n, m) = max_{0 <=k <=m} [V(n/2, k) + V^{r}(n/2, m-k)]$$

Proof>

An optimal alignment of S₁ and S₂.

Let k' be the right-most position in S₂ that is aligned with a character at or before position n/2 in S₁

$$S_1[1,...,n/2] \text{ and } S_2[1,...,k'] \implies p \le V(n/2,k')$$

$$\rightarrow$$
 p \leq V(n/2,k')

$$S_1[n/2+1,...,n]$$
 and $S_2[k'+1,...,m]$ \Rightarrow $q \leq V^r(n/2, m - k')$

$$V(n, m) \le V(n/2, k') + V^{r}(n/2, m - k') \le \max_{0 \le k \le m} [V(n/2, k) + V^{r}(n/2, m - k)]$$

Definition

Let k* be a position k
 that maximizes [V(n/2, k) + V^r(n/2, m-k)]

By Lemma 12.1.1,

There is an optimal alignment whose traceback path in the full dynamic programming table goes through cell (n/2, k*)

V(I,j)	-	С	а	С	d
-	0 +	- -2 ←	-2 -3		- -6
С	-2	0 ←	- -1 ←	-3 ←	- -4
а	-3	-1	1 -	- -1 ←	- -2
d	-4	-2	0 +	2	2
b	-4	-2	0	-2	2

Definition

Let L_{n/2} be the subpath of L that
 starts with the last node of L in row n/2-1 and
 ends with the first node of L in row n/2 + 1

	V(I,j)	-	C	а	С	d
n/2 →	1	0	-2	3	-5	-6
	С	-2		-1	-3	-4
	а	-3	-1	_		-2
	d	-4	-2	0	-2	
	b	-4	-2	0	-2	2

- A position k* in row n/2 can be found in O(nm) time and O(m) space.
- Moreover, a subpath $L_{n/2}$ can be found and stored in those time and space bounds.

1) Find a position k* in row n/2 in O(nm) time and O(m) space

1) For V(n/2, k), $0 \le k \le m$

- Time : O(nm/2)

- Space : O(m)

- Pointer set at row n/2

Let k* be a position k
 that maximizes [V(n/2, k) + V^r(n/2, m-k)]

1) Find a position k* in row n/2 in O(nm) time and O(m) space

1) For V(n/2, k), $0 \le k \le m$

- Time : O(nm/2)

- Space : O(m)

- Pointer set at row n/2

Let k* be a position k
 that maximizes [V(n/2, k) + V^r(n/2, m-k)]

Find a position k* in row n/2 in O(nm) time and O(m) space

1) For V(n/2, k), $0 \le k \le m$

- Time : O(nm/2)

- Space : O(m)

- Pointer set at row n/2

2) For $V^{r}(n/2, m-k)$, $0 \le k \le m$

- Time : O(nm/2)

- Space : O(m)

- Pointer set at row n/2

1) Find a position k* in row n/2 in O(nm) time and O(m) space

Let k* be a position k
 that maximizes [V(n/2, k) + V^r(n/2, m-k)]

- 1) For V(n/2, k), $0 \le k \le m$
 - Time : O(nm/2)
 - Space : O(m)
 - Pointer set at row n/2
- 2) For $V^{r}(n/2, m-k)$, $0 \le k \le m$
 - Time : O(nm/2)
 - Space : O(m)
 - Pointer set at row n/2

A position k* in row n/2 can be found in O(nm) time and O(m) space.

 k_1 : Col. Idx of 1st cell in n/2 - 1 row from cell (n/2, k*)

 k_1 : Col. Idx of 1st cell in n/2 - 1 row from cell (n/2, k^*)

 k_2 : Col. Idx of 1st cell in n/2 + 1 row from cell (n/2, k^*)

■ L_{n/2} (subpath)

A subpath L_{n/2} can be found and stored in O(nm) time and O(m) space.

 k_1 : Col. Idx of 1st cell in n/2 - 1 row from cell (n/2, k^*)

 k_2 : Col. Idx of 1st cell in n/2 + 1 row from cell (n/2, k^*)

- L_{n/4} (subpath)
 k*, k₁, k₂

Algorithm Summary

```
    Procedure OPTA(r, r', c, c')
    Begin
```

```
h := (r + r')/2
```

Find index k*, k₁, k₂, and subpath L_{h.} (By Dynamic Programing)

Call OPTA(r, h-1, c, k₁)
Output subpath L_h
Call OPTA(h+1, r', k₂, c')

End

Row Size: n

-> depth : logn

Theorem 12.1.1

• Using the procedure OPTA, an optimal alignment of two strings of length n and m can be found in $\sum_{i=1}^{logn} cnm/2^{i-1} \leq 2cnm$ time and O(m) space.