Análise exploratória II

Resumos numéricos - medidas de posição e dispersão.

Prof. Me. Lineu Alberto Cavazani de Freitas

CE003 - Estatística II

Departamento de Estatística Laboratório de Estatística e Geoinformação

Resumos numéricos

- Uma forma de resumir a informação contida em um conjunto de dados é por meio dos resumos numéricos.
- Resumos numéricos são basicamente números que resumem números.
- Os dois principais grupos são as medidas de posição (central e relativa) e dispersão.
- Existem outros conjuntos de medidas, como as medidas de forma e também as de relação/associação.

Medidas de posição central

- As medidas de posição central buscam expressar o centro de uma variável por meio de ideias como:
 - ► Centro de massa.
 - ► Valor que divide a amostra em partes iguais.
 - Valores de maior frequência ou densidade.

- Algumas possiblidades são
 - Média.
 - Mediana.
 - ► Moda.
 - Média geométrica.
 - Média harmônica.
 - Média aparada.

Média aritmética

- ▶ Soma de todos os valores dividida pela quantidade de elementos.
- Interpretação física de centro de gravidade.
- ► Medida influenciada por valores extremos.

Expressão

$$\overline{y} = \frac{\sum_{i=1}^{n} y_i}{n} = \frac{y_1 + y_2 + \dots + y_n}{n}.$$

Média aritmética

Exemplo

- ► Considere que uma turma possui 10 alunos.
- Estes alunos realizaram uma avaliação.
- Considere que as notas obtidas foram:

Qual foi a nota média da turma?

$$\overline{y} = \frac{60 + 65 + 77 + 95 + 56 + 94 + 97 + 81 + 80 + 48}{10} = \frac{753}{10} = 75.3$$

- ▶ Indicada para dados agrupados em tabelas de frequência ou situações em que existe motivo para unidades receberem um peso maior.
- ▶ Obtêm-se os produtos entre frequências relativas (ou pesos) e os valores que a variável assume.
- ▶ Somam-se os produtos e divide-se pela soma das frequências (quantidade de elementos).
- ▶ No caso de faixas de valores, usa-se o centro da faixa.

$$\overline{y} = \frac{\sum_{i=1}^{k} f_i \cdot y_i}{\sum_{i=1}^{k} f_i}$$

- ▶ f; representa a frequência da classe i.
- k representa o número de classes (k < n).

- ► Considere que uma prova com 10 questões de múltipla escolha foi aplicada em uma turma com 100 alunos.
- ► Só temos acesso à uma tabela de frequências do número de questões corretas.
- Qual é o número médio de questões corretas?

Tabela 1. Tabela de frequências do número de questões acertadas.

Acertos	0	1 2	3 4	5 6	7	8	9	10
Frequência	1	0 0	5 2	30 21	29	8	3	1

$$\overline{y} = \frac{(0 \times 1) + (1 \times 0) + (2 \times 0) + (3 \times 5) + \dots + (7 \times 29) + (8 \times 8) + (9 \times 3) + (10 \times 1)}{100}$$

$$\overline{y} = \frac{0+0+0+15+8+150+126+203+64+27+10}{100} = 6,03$$

- Considere a seguinte tabela de frequências da idade dos funcionários de uma empresa.
- Qual é a idade média dos funcionários?

Tabela 2. Tabela de frequências das notas obtidas pelos alunos.

Faixas	[20,25]	(25,30]	(30,35]	(35,40]	(40,45]	(45,50]	(50,55]	(55,60]	(60,65]	(65,70]
Frequên	icia 3	45	191	310	248	140	54	7	0	2

$$\overline{y} = \frac{(22,5 \times 3) + (27,5 \times 45) + (32,5 \times 191)... + (57,5 \times 7) + (62,5 \times 0) + (67,5 \times 2)}{1000}$$

$$\overline{y} = \frac{67,5 + 1237,5 + 6207,5 + 11625 + ... + 2835 + 402,5 + 0 + 135}{1000} = 39,7$$

Outros tipos de média

- ▶ Média aritmética e ponderada são os tipos de média mais comuns.
- Contudo existem outras possibilidades como
 - Média geométrica.
 - ► Média harmônica.
 - Média aparada.

- Valor que ocupa a posição intermediária dos valores ordenados.
- ▶ Divide o vetor de valores em 2 partes de mesmo tamanho.
- ▶ Metade dos valores é menor que a mediana e a outra metade maior que a mediana.
- ▶ Basta ordenar o conjunto de valores e verificar qual é o valor central.
- ► Se o número de observações for ímpar, a mediana é o valor central.
- Se o número de observações for par, a mediana é a média dos dois valores centrais.

► Passo 1: ordenar.

$$y_{(1)} \le y_{(2)} \le \cdots \le y_{(n-1)} \le y_{(n)}$$
.

▶ Passo 2: obter a mediana de acordo com o número de elementos.

$$md = \begin{cases} y_{((n+1)/2)}, & \text{se } n \text{ for impar.} \\ (y_{(n/2)} + y_{(n/2+1)})/2, & \text{se } n \text{ for par.} \end{cases}$$

- ▶ Uma concessionária está fazendo o levantamento anual de vendas.
- Considere que as vendas por mês do ano anterior estão dadas na tabela.
- Qual é o número mediano de vendas?

Tabela 3. Tabela de frequências das vendas mensais.

Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
Vendas	93	113	112	104	84	104	107	105	96	92	93	97

Exemplo

Passo 1: ordenar os valores.

Tabela 4. Vendas ordenadas.

(i)	1	2	3	4	5	6	7	8	9	10	11	12
Vendas	84	92	93	93	96	97	104	104	105	107	112	113

- Passo 2: obter a mediana de acordo com o número de elementos.
 - ▶ O número de elementos é par, portanto a mediana será a média dos dois valores centrais
 - \blacktriangleright Mediana: (97 + 104)/2 = 100.5

Moda

- Valor ou classe que apresenta maior frequência ou densidade.
- Valor mais típico, aquele que mais se repete.
- Quando todos os valores são distintos, não existe moda.
- Quando a maior frequência está associada a mais de um valor, existe mais de uma moda.

Exemplo

 Considere que os valores a seguir dizem respeito ao número de filhos por pessoa em um grupo.

- ► Qual é a moda?
 - O valor mais frequente é 1, que aparece 6 vezes.

Média, mediana e moda

- ▶ Na prática, estas medidas possuem vantagens e desvantagens.
- Caso haja valores discrepantes a média é uma medida altamente influenciada, o que não acontece com a moda e a mediana.
- ▶ Já a mediana é difícil de ser obtida quando existem muitos dados, dado que o processo de ordenação é custoso.
- ▶ A dificuldade com a moda surge quando trabalha-se com distribuições multimodais, isto é diversos valores tem a mesma frequência de ocorrência.

Média, mediana e moda

- ► A média tende a ser uma boa alternativa quando a distribuição é unimodal, simétrica e sem valores extremos.
- ► A mediana tende a ser uma boa alternativa para distribuições assimétricas ou com presença de valores extremos.
- ► A moda tende a ser uma boa alternativa quando valores se repetem, estão agrupados em classes ou trata-se de uma variável qualitativa.
- Média, moda e mediana aproximam-se em distribuições unimodais simétricas.

Média, mediana, moda e assimetria

- ▶ Vimos anteriormente como avaliar assimetria por meio de recursos gráficos.
- Podemos utilizar as medidas de posição central
 - ► Assimetria à direita: moda < mediana < média.
 - ► Assimetria à esquerda: média < mediana < moda.
 - ► Simetria: média = mediana = moda.

Figura 1. Relação medidas descritivas e assimetria

Medidas de posição relativa

- As medidas de posição relativa ou separatrizes buscam representar pontos do domínio em que a variável apresenta porções com frequências conhecidas.
- Visam encontrar valores que representam alguma parcela dos dados.

- Algumas possiblidades são
 - Quartis.
 - Decis.
 - Percentis.
 - ► Máximo.
 - Mínimo.

Quartis

- ▶ Dividem a amostra em 4 partes de mesmo tamanho.
- ► A ideia para obtenção é similar à da mediana.
- ▶ Na verdade, a mediana é um dos quartis: o segundo.
- ▶ O primeiro e terceiro quartil são as medianas das duas partes divididas pela mediana (método de Tukey).

Ouartis

- ▶ O primeiro quartil (Q_1) é o valor que marca 1/4 das observações, isto é, 25%.
- ▶ O segundo quartil (Q_2) é o valor que marca 2/4 = 1/2 das observações, isto é, 50% (a mediana).
- ▶ O terceiro quartil (O₃) é o valor que marca 3/4 das observações, isto é, 75%.
- ▶ A diferença entre primeiro e terceiro quartil é chamada de amplitude interquartílica $(AIQ = O_3 - O_1).$
- Estas quantidades são usadas para criação de um poderoso gráfico: o boxplot.

Quartis

Exemplo

Considere os seguintes valores:

- ▶ Obtenha os quartis e a amplitude interquartílica.
- Passo 1: ordenar.

Tabela 5. Valores ordenados.

Posição	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Valor	2	3	3	4	4	4	6	6	7	7	11	11	12	12	14

Ouartis

- ▶ Passo 2: obter o segundo quartil (mediana).
 - Número de elementos: 15.
 - ▶ Posição do segundo quartil: 8.
 - ► Valor do segundo quartil: 6.
- ► Passo 3: obter a mediana dos valores da primeira parcela.
 - Número de elementos: 7
 - Posição do segundo quartil: 3.
 - Valor do segundo quartil: 4.

- ► Passo 4: obter a mediana dos valores da segunda parcela.
 - Número de elementos: 7
 - Posição do segundo quartil: 3.
 - ▶ Valor do segundo quartil: 11.
- $O_1 = 4$, $O_2 = 6$, $O_3 = 11$.
- Amplitude interquartílica.

$$AIQ = Q_3 - Q_1 = 11 - 4 = 7$$

- ▶ O box-plot faz uso dos quartis para obtenção de um gráfico.
- ▶ É possível analisar a distribuição dos dados: posição, variabilidade, assimetria, valores atípicos.

Figura 2. Ilustração box-plot completo.

► A construção de um box-plot inicia-se com um retângulo em que a aresta inferior coincide com o primeiro quartil e a superior com o terceiro quartil.

Figura 3. Arestas de um box-plot.

- ► A mediana é representada por um traço entre as duas arestas.
- ▶ De Q_1 até Q_3 estão 50% das observações centrais, o que dá uma ideia a respeito de quão dispersos são os valores.

Figura 4. Arestas e mediana emum box-plot.

- ▶ Para obtenção da amplitude do box-plot além do retângulo faz-se [Q1-1,5AIQ;Q3+1,5AIQ].
- Desenha-se então uma linha até estes valores.

Figura 5. Inclusão dos limites de um box-plot.

► Valores além destes extremos são marcados como um ponto ou asterisco e são os candidatos a valores atípicos.

Figura 6. Box-plot completo.

Outras medidas

- Quartis são a forma mais famosa de particionamento dos dados.
- ▶ Porém, qualquer outro percentual pode ser obtido.
- Se temos um conjunto de n valores, organizados de forma crescente, o P-ésimo percentil é um número tal que P% dos valores estejam à sua esquerda e (100 P)% à sua direita.
- ▶ Por exemplo, se obtivermos os valores que separam a amostra em 10 partes com frequência 1/10, temos os decis.
- ▶ O mínimo e o máximo também são medidas de posição relativa e fornecem informação quanto ao domínio da variável.

Medidas de dispersão

As medidas de dispersão são utilizadas para expressar informações como o domínio da variável, grau de dispersão ao redor do centro (variabilidade), e também distanciamento dos valores com relação ao centro.

- Algumas medidas possíveis são
 - Amplitude.
 - Desvio absluto (médio ou mediano).
 - Variância.
 - Desvio padrão.
 - Coeficiente de variação.

Medidas de dispersão

- ► Em geral usamos uma medida de posição central, que nos dá uma ideia de centro dos dados.
- ► Mas conjuntos de dados com diferentes valores podem gerar as mesmas medidas de posição.
- ▶ E mesmo com medidas de posição idêncitas, um pode ser mais disperso que o outro.
- Portanto complementamos a informação a respeito do centro com uma medida de dispersão, que nos dá uma noção de quão dispersos são os dados.
- Outra utilidade das medidas de dispersão é expressar o domínio da variável.

Amplitude total

- ▶ Diferença entre o maior e o menor valor da variável.
- ► Sensível a valores extremos.
- ► Usa apenas duas medidas.

$$Amp = max(y) - min(y) = y(n) - y(1)$$

Amplitude total

Exemplo

▶ Retomando o problema das notas de 10 alunos, em que as notas obtidas foram:

A amplitude é dada pelo maior menos o menor valor:

$$Amp = 97 - 58 = 49$$

Desvio absoluto médio

- ► Um desvio absoluto médio é uma medida de distância da observação para uma medida de posição central.
- ▶ Podemos usar como referência a média ou a mediana.
- ► Tomamos todos os desvios absolutos.
- ► Calculamos a média.

desvio médio =
$$\frac{1}{n} \sum_{i=1}^{n} |(y_i - \overline{y})|$$

desvio mediano =
$$\frac{1}{n} \sum_{i=1}^{n} |(y_i - md)|$$

Desvio

Exemplo

▶ Retomando o problema das notas de 10 alunos, em que as notas obtidas foram:

60; 65; 77; 95; 56; 94; 97; 81; 80; 48

- ▶ A média é $\overline{y} = 75,3$ e a mediana é md = 78,5.
- ► Obtenha o desvio médio e mediano.

Desvio

Exemplo - desvio médio

desvio médio =
$$\frac{1}{10}$$
 (|(60 - 75,3)| + |(65 - 75,3)|... + |(80 - 75,3)| + |(48 - 75,3)|)
desvio médio = $\frac{1}{10}$ (15,3 + 10,3... + 4,7 + 27,3) = 14,44

Desvio

Exemplo - desvio mediano

desvio mediano =
$$\frac{1}{10} (|(60 - 78,5)| + |(65 - 78,5)|... + |(80 - 78,5)| + |(48 - 78,5)|)$$

desvio mediano = $\frac{1}{10} (18,5 + 13,5... + 1,5 + 30,5) = 14,1$

Variância e Desvio padrão

► Em vez dos desvios, usa a soma dos quadrados dos desvios em relação à média.

$$s^{2} = Var(y) = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} y_{i}^{2} - \frac{(\sum_{i=1}^{n} y_{i})^{2}}{n} \right)$$

- Variância populacional (σ^2): usa apenas n no demominador e é usada quando temos todos os elementos da população. Caso contrário, calculamos sempre a estimativa amostral (s^2).
- ► Para ter uma medida de dispersão com a mesma unidade de medida dos dados originais definiu-se o desvio-padrão como a raiz quadrada da variância.

$$s = \sqrt{s^2}$$

Regra empírica variância e desvio padrão

Quando a distribuição dos dados é simétrica sabemos que:

- ► Aproximadamente 68% das observações estão entre mais ou menos um desvio padrão.
- Aproximadamente 95% das observações estão entre mais ou menos dois desvios padrões.
- ► Aproximadamente 100% das observações estão entre mais ou menos três desvios padrões.

Variância e desvio padrão

Exemplo

▶ Retomando o problema das notas de 10 alunos, em que as notas obtidas foram:

60; 65; 77; 95; 56; 94; 97; 81; 80; 48

- ► A média é $\overline{y} = 75,3$.
- Obtenha o variância e desvio padrão.

Variância e desvio padrão

Exemplo

Primeira maneira:

$$s^{2} = Var(y) = \frac{1}{10 - 1} \left((60 - 75,3)^{2} + (65 - 75,3)^{2} + \dots + (80 - 75,3)^{2} + (48 - 75,3)^{2} \right)$$

$$s^{2} = Var(y) = \frac{1}{9} \left((-15,3)^{2} + (-10,3)^{2} + \dots + (4,7)^{2} + (-27,3)^{2} \right)$$

$$s^{2} = Var(y) = \frac{1}{9} \left(234,09 + 106,09 + \dots + 22,09 + 745,29 \right) = 302,68$$

$$s = \sqrt{s^{2}} = \sqrt{302,68} = 17,4$$

Variância e desvio padrão

Exemplo

► Segunda maneira:

$$s^{2} = \text{Var}(y) = \frac{1}{n-1} \left(\sum_{i=1}^{n} y_{i}^{2} - \frac{(\sum_{i=1}^{n} y_{i})^{2}}{n} \right)$$

$$s^{2} = \text{Var}(y) = \frac{1}{9} \left(59425 - \frac{753^{2}}{10} \right) = \frac{1}{9} \left(59425 - 56700.9 \right) = 302,68$$

$$s = \sqrt{s^{2}} = \sqrt{302.68} = 17.4$$

Coeficiente de variação

- ► Medida de variabilidade relativa à média.
- Quociente do desvio-padrão pela média.
- ▶ Medida adimensional, geralmente apresentada na forma de porcentagem.
- ▶ Permite comparar a variabilidade de variáveis de diferentes naturezas

$$CV = 100 \cdot \frac{s}{\overline{y}}$$

Coeficiente de variação

Exemplo

▶ Retomando o problema das notas de 10 alunos, em que as notas obtidas foram:

- A média é $\overline{y} = 75,3$ e o desvio padrão é s = 17,4.
- Obtenha o coeficiente de variação.

$$CV = 100 \cdot \frac{17,4}{75,3} = 23,11$$

Desvio, variância, desvio padrão, coeficiente de variação

- ▶ A amplitude é simples de calcular, mas é influenciada por valores extremos.
- Os desvios absolutos (médio ou mediano) são menos influenciados por valores extremos.
- ► Variância e desvio padrão são influenciados por valores extremos mas tem propriedades favoráveis.
- O coeficiente de variação permite comparar a variabilidade de variáveis em diferentes escalas.
- ► Para variáveis qualitativas existem medidas que avaliam a dispersão são funções das frequências das classes, como a entropia.

O que foi visto:

- ► Resumos numéricos.
- ► Medidas de posição central.
- ► Medidas de posição relativa.
- Medidas de dispersão.

Próximos assuntos:

- Análises bivariadas.
 - Qualitativa x qualitativa.
 - Quantitativa x quantitativa.
 - Quantitativa x qualitativa.