Find a feedback (α, β) and a coordinate transformation Ξ transforming the full system including the autput into a linear ere.

$$\begin{cases} \dot{x} = \dot{g}(x) + g(x) \\ \dot{y} = \dot{g}(x) \end{cases} \xrightarrow{\left(\dot{a}_{f} \dot{B} \right)} \begin{cases} \dot{\dot{\epsilon}} = A + B \cdot u \\ \dot{y} = C \cdot e \end{cases}$$

Theorem Consider a system with relative degree of $X = x_0$. Suppose $f(x_0) = 0$ and $h(x_0) = 0$.

I (a, B) and z = E(x) solving the full feedback linearizat; on probblem if and only it:

(i) not $(e(x_0), od_1 e(x_0), ..., od_1^{n-1}e(x_0)) = v$ (ii) f(x) = f(x) + e(x) a(x) and $g(x) = e(x) \beta(x)$ with $a(x) = -\frac{L_1 h(x)}{LeL_2^{n-1}h(x)}$ $\beta(x) = \frac{1}{LeL_2^{n-1}h(x)}$

ore such that $\left[\operatorname{ad}_{j} \widehat{e} \right] = 0 \quad \forall i,j \ni 0 \leq i,j \leq n$ and all x near x.

Renot:

· (ii) is the condition that ollows a u-x feedback to linearize a u-x feedback linear system.