

TABLE OF CONTENTS

IIIIIII

PROBLEM

Most hospitals require a classification for whether a scan of a possibly malignant tumor is actually malignant or whether it is benign, we want to create a model that can accurately (100% of the time) be able to

DATA ANALYSIS

CANCER.CSV

Contains numeric values based on CT Scans of Tumors

REMOVAL OF DATA POINTS

This decision was made with the intention of increasing the accuracy by decreasing the amount of variables and prioritizing the important and consistent data points

STANDARDSCALER

Standard Scaler is a module from sci-kit learn that will give every data point an equal weightage when making the predictions

DATA ANALYSIS

The Data that was provided for this project consisted of observed numerics relating to the CT Scan of a Tumor in determining whether it is Malignant or Benign, these metrics were: the average perimeter, radius, texture, area, smoothness, concavity, and symmetry of the cells in the tumor

MACHINE LEARNING MODEL

Two machine learning models were used for this project, Logistic Regression and Neural Networks, both yielding a 100% accuracy in detection which is optimal in a real medical setting

	precision	recall	f1-score	support	
0	1.00	1.00	1.00	71	
1	1.00	1.00	1.00	43	
accuracy			1.00	114	
macro avg	1.00	1.00	1.00	114	
weighted avg	1.00	1.00	1.00	114	
from sklearn. mlpc = MLPCla mlpc.fit(X_tr pred_mlpc=mlp	ssifier(hidd rain, y_train	en_layer_)		fier 11,11),max_iter=	500)
mlpc = MLPCla mlpc.fit(X_tr	assifier(hidd rain, y_train oc.predict(X_ fication_repo	len_layer_) test) rt(y_test	sizes=(11,	11,11),max_iter=	500)
mlpc = MLPCla mlpc.fit(X_tr pred_mlpc=mlp	essifier(hidd rain, y_train oc.predict(X_	len_layer_) test) rt(y_test	sizes=(11,	11,11),max_iter=	500)
mlpc = MLPCla mlpc.fit(X_tr pred_mlpc=mlp	assifier(hidd rain, y_train oc.predict(X_ fication_repo	len_layer_) test) rt(y_test	sizes=(11, , pred_mlpo f1-score	11,11),max_iter=	500)
mlpc = MLPCla mlpc.fit(X_tr pred_mlpc=mlp print(classi	assifier(hidd rain, y_train oc.predict(X_ fication_repo precision	en_layer_) test) rt(y_test recall	sizes=(11, , pred_mlpo f1-score 1.00	11,11),max_iter= :)) support	500)
<pre>mlpc = MLPCla mlpc.fit(X_tr pred_mlpc=mlp print(classif 0</pre>	essifier(hidd rain, y_train oc.predict(X_ ication_repo precision 1.00 1.00	len_layer_) test) rt(y_test recall	sizes=(11, , pred_mlpo f1-score 1.00	11,11),max_iter= ()) support 71	500)
mlpc = MLPCla mlpc.fit(X_tr pred_mlpc=mlp print(classif 0 1	essifier(hidd main, y_train pc.predict(X_ fication_repo precision 1.00 1.00	len_layer_) test) rt(y_test recall	sizes=(11, , pred_mlpo f1-score 1.00 1.00	11,11),max_iter= (1)) support 71 43	500)

QUESTIONS ANSWERED

 We have answered the correlation between certain metrics of CT Scans of tumors with the nature of the tumor

QUESTIONS LEFT UNANSWERED

- Are there any other classifications that we can make from just this data about tumors?
- Are there other machine learning models that can also perform the same task and the same accuracy and efficiency?

EXTRA DATA

 Extra data that could help this classification algorithm would be more related to predicting other data points in the data set that we were provided

slidesgo