

X Education - Lead Scoring Case Study

Detection of Hot Leads to concentrate more of marketing efforts on them, improving conversion rates for X Education

Table of Contents

- Background of X Education Company
- Problem Statement & Objective of the Study
- Suggested Ideas for Lead Conversion
- Analysis Approach
- Data Cleaning
- EDA
- Data Preparation
- Model Building (Regression Binominal Class, VIF & Manual fine tuning)
- Model Evaluation
- Recommendations

Background of X Education Company

- An education company named X Education sells online courses to industry professionals.
- On any given day, many professionals who are interested in the courses land on their website and browse for courses.
- The company markets its courses on several websites and search engines like Google.
- Once these people land on the website, they might browse the courses or fill up a form for the course or watch some videos.
- When these people fill up a form providing their email address or phone number, they are classified to be a lead.
- Once these leads are acquired, employees from the sales team start making calls, writing emails, etc.
- Through this process, some of the leads get converted while most do not.
- The typical lead conversion rate at X education is around 30%.

Problem Statement & Objective of the Study

Problem Statement:

- X Education gets a lot of leads, its lead conversion rate is very poor at around 30%
- X Education wants to make lead conversion process more efficient by identifying the most potential leads, also known as Hot Leads
- Their sales team want to know these potential set of leads, which they will be focusing more on communicating rather than making calls to everyone.

Objective of the Study:

- To help X Education select the most promising leads, i.e., the leads that are most likely to convert into paying customers.
- The company requires us to build a model wherein we need to assign a lead score to each of the leads such that the customers with a higher lead score have a higher conversion chance and the customers with a lower lead score have a lower conversion chance.
- The CEO has given a ballpark of the target lead conversion rate to be around 80%.

Suggested Ideas for Lead Conversion

Leads Grouping

- Leads are grouped based on their propensity or likelihood to convert.
- This results in a focused group of hot leads.

Better Communication

 We could have a smaller pool of leads to communicate with, which would allow us to have a greater impact.

Boost Conversion

 We would have a greater conversion rate and be able to hit the 80% objective since we concentrated on hot leads that were more likely to convert.

Since we have a target of 80% conversion rate, we would want to obtain a high **sensitivity** in obtaining hot leads.

Analysis Approach

Data Cleaning:

Loading Data Set, understanding & cleaning data

EDA:

Check imbalance, Univariate & Bivariate analysis

Data Preparation

Dummy variables, test-train split, feature scaling

Model Building:

VIF & Manual Feature Reduction & finalizing model

Model Evaluation:

Confusion matrix, Cutoff Selection, assigning Lead Score

Predictions on Test Data:

Compare train vs test metrics, Assign Lead Score and get top features

Recommendation:

Suggest top 3 features to focus for higher conversion & areas for improvement

Data Cleaning

- "Select" level represents null values for some categorical variables, as customers did not choose any
 option from the list so convert to most appearing value.
- Columns with over 40% null values were dropped.
- Missing values in categorical columns were handled based on value counts and certain considerations.
- Drop columns that don't add any insight or value to the study objective (tags, country)
- Imputation was used for some categorical variables.
- Additional categories were created for some variables.
- Columns with no use for modeling (Prospect ID, Lead Number) or only one category of response were dropped.
- Category Variables are minimized to smaller number of values
- Numerical data was imputed with mode after checking distribution.

Data Cleaning

- Skewed category columns were checked and dropped to avoid bias in logistic regression models.
- Outliers in TotalVisits and Page Views Per Visit were treated and capped.
- Invalid values were fixed and data was standardized in some columns, such as lead source.
- Low frequency values were grouped together to "Others" in all category variables.
- Binary categorical variables were mapped.
- Other cleaning activities were performed to ensure data quality and accuracy.
 - Fixed Invalid values & Standardizing Data in columns by checking casing styles, etc. (lead source has Google, google)

EDA

Data is imbalanced while analyzing target variable.

Conversion rate is of 38.5%, meaning only 38.5% of the people have converted to leads.(Minority)

While 61.5% of the people didn't convert to leads. (Majority)

EDA

Univariate Analysis - Categorical Variables

• Lead Source: 59.1% Lead source is from Google & Direct Traffic combined.

• Last Activity: 66.9% of customers contribution in SMS Sent & Email Opened activities.

EDA

Univariate Analysis – Categorical Variables

• Lead Origin: "Landing Page Submission" identified 52.8% of customers, "API" identified 38.8%.

 Current_occupation: It has 89.7% of the customers as Unemployed.

EDA - Bivariate Analysis for Numerical Variables

 Past Leads who spends more time on the Website have a higher chance of getting successfully converted than those who spends less time as seen in the box-plot

Data Preparation before Model building

- Binary level categorical columns were already mapped to 1 / 0 in previous steps
- Created dummy features (one-hot encoded) for categorical variables Lead Origin, Lead Source,
 Last Activity, Specialization, Current_occupation
- Splitting Train & Test Sets
 - 70:30 % ratio was chosen for the split
- Feature scaling
 - Standardization method was used to scale the features.
- Checking the correlations
 - Predictor variables which were highly correlated with each other were dropped (Lead Origin_Lead Import and Lead Origin_Lead Add Form).

Model Building

Feature Selection

- The data set has lots of dimension and large number of features.
- This will reduce model performance and might take high computation time.
- Hence it is important to perform variance_inflation_factor (VIF) & RFE and to select only the important columns.
- Then we can manually fine tune the model.
- RFE outcome
 - Pre RFE 34 columns & Post RFE 17 columns

Model Building

- Manual Feature Reduction process was used to build models by dropping variables with p value greater than 0.05.
- Model 4 looks stable after four iteration with:
 - significant p-values within the threshold (p-values < 0.05) and
 - No sign of multicollinearity with VIFs less than 5
- Hence, reg5 will be our final model, and we will use it for Model Evaluation which further will be used to make predictions.

Model Evaluation

Confusion Matrix & Evaluation Metrics with 0.355 as cutoff

Confusion Matrix & Evaluation Metrics with 0.41 as cutoff

Train Data Set

It was decided to go ahead with 0.35 as cutoff after checking evaluation metrics coming from both plots

Model Evaluation

ROC Curve - Train Data Set

- Area under ROC curve is 0.88 out of 1 which indicates a good predictive model.
- The curve is as close to the top left corner of the plot, which represents a model that has a high true positive rate and a low false positive rate at all threshold values.

ROC Curve - Test Data Set

- Area under ROC curve is 0.87 out of 1 which indicates a good predictive model.
- The curve is as close to the top left corner of the plot, which represents a model that has a high true positive rate and a low false positive rate at all threshold values.

Recommendation based on Final Model

- As per the problem statement, increasing lead conversion is crucial for the growth and success of X Education. To achieve this, we have developed a regression model that can help us identify the most significant factors that impact lead conversion.
- We have determined the following features that have the highest positive coefficients, and these features should be given priority in our marketing and sales efforts to increase lead conversion.
 - Lead Source_Reference: 3.4907
 - Current_occupation_Working Professional: 2.47
 - Last Activity SMS Sent: 0.4457
 - Total Time Spent on Website: 1.0919
 - Last Activity_Email Opened: 0.94
 - Lead Source_Olark Chat: 0.6880

Recommendation based on Final Model

To increase our Lead Conversion Rates

- Focus on features with positive coefficients for targeted marketing strategies.
- Develop strategies to attract high-quality leads from top-performing lead sources.
- Optimize communication channels based on lead engagement impact.
- Engage working professionals with tailored messaging.
- More budget/spend can be done on Google Website in terms of advertising, etc.
- Incentives/discounts for providing reference that convert to lead, encourage providing more references.
- Working professionals to be aggressively targeted as they have high conversion rate and will have better financial situation to pay higher fees too.

To identify areas of improvement

- Analyze negative coefficients in specialization offerings.
- Review landing page submission process for areas of improvement.

