CE077 - Análise de Sobrevivência Modelo de Regressão de Cox

Silva, J.L.P.

Abril, 2024

Objetivos do Módulo

Objetivos do Módulo

- Introduzir o modelo semiparamétrico de riscos proporcionais de Cox como alternativa aos modelos paramétricos.
- Discutir estimação do modelo com base na função de verossimilhança parcial, testes de hipóteses e diagnóstico/adequação.
- Discutir a interpretação dos coeficientes estimados e as suposições do modelo de riscos proporcionais.
- Apresentar extensões do modelo de Cox: covariáveis repetidas no tempo e violação da suposição básica de taxas proporcionais.
- Exemplificar o uso do modelo por meio de aplicações de dados reais.
- Por fim, discutir direções para outras situações não abordadas.

Introdução

Introdução

Discutimos a modelagem de dados de sobrevivência no contexto paramétrico por meio de distribuições como a exponencial, Weibull ou log-normal.

Um modelo bastante utilizado na prática por sua versatilidade é o modelo de taxas de falhas proporcionais de Cox, ou simplesmente modelo de Cox (Cox, 1972):

- Abriu uma nova fase na modelagem de dados de sobrevivência.
- Atualmente é o modelo mais popular na análise de dados de sobrevivência na área clínica/biológica.
- Permite incorporar facilmente covariáveis dependentes do tempo, que ocorrem com frequência em várias áreas de aplicação.

 O modelo de Cox assume a seguinte forma para a função de taxa de falha:

$$\lambda(t) = \lambda_0(t)g(x'\beta),$$

em que $g(\cdot)$ é uma função não-negativa tal que g(0)=1.

- O componente não-paramétrico, $\lambda_0(t)$, não é especificado e é uma função não-negativa do tempo.
- $\lambda(t) = \lambda_0(t)$, função de base, pode ser obtida para x = 0.
- O componente paramétrico é frequentemente usado na seguinte forma multiplicativa:

$$g(x'\beta) = \exp(x'\beta) = \exp(\beta_1 x_1 + \ldots + \beta_p x_p),$$

em que β é o vetor de parâmetros associado às covariáveis.

 A suposição de taxas de falhas proporcionais significa que, para dois indivíduos diferentes i e j, temos que,

$$\frac{\lambda_i(t)}{\lambda_j(t)} = \frac{\lambda_0 \exp(x_i'\beta)}{\lambda_0 \exp(x_j'\beta)} = \exp\left\{x_i'\beta - x_j'\beta\right\}$$

não depende do tempo.

 Ou seja, se um indivíduo no início do estudo tem taxa de morte igual a duas vezes a taxa de um segundo indivíduo, então esta razão é a mesma para todo o período de acompanhamento.

Ajustando o Modelo de Cox

Modelo de Cox:

$$\lambda(t|x) = \lambda_0(t) \exp\{x'\beta\}.$$

- O modelo de regressão de Cox é caracterizado pelos coeficientes β 's, que medem os efeitos das covariáveis sobre a função de taxa de falha.
- Queremos fazer inferência nos coeficientes β a partir das observações amostrais.
- A presença do componente não-paramétrico $\lambda_0(t)$ na função de verossimilhança, traz dificuldades ao processo inferencial.

Sabe-se que

$$L(\beta) = \prod_{i=1}^{n} [f(t_i|x_i)]^{\delta_i} [S(t_i|x_i)]^{1-\delta_i}$$
$$= \prod_{i=1}^{n} [\lambda(t_i|x_i)]^{\delta_i} [S(t_i|x_i)].$$

No modelo de Cox

$$S(t_i|x_i) = \exp\left\{-\int_0^{t_i} \lambda_0(u) \exp\left\{x_i'\beta\right\} du\right\} = \left[S_0(t_i)\right]^{\exp\left\{x_i'\beta\right\}}.$$

Assim, aplicando este resultado na função de verossimilhança, temos

$$L(\beta) = \prod_{i=1}^{n} \left[\lambda_0(t_i) \exp\left\{x_i'\beta\right\} \right]^{\delta_i} \left[S_0(t_i) \right]^{\exp\left\{x_i'\beta\right\}}.$$

A função de verossimilhança usual do modelo de Cox envolve o componente não paramétrico $\lambda_0(t)$.

Cox (1975) desenvolveu uma alternativa que condiciona no conhecimento da história passada de falhas e censuras, eliminando o componente não paramétrico da função de verossimilhança (parcial).

Considerando que, para um amostra de tamanho n, existam $k \leq n$ falhas distintas nos tempos $t_1 < t_2 < \ldots < t_k$, a construção da verossimilhança parcial é obtida do argumento condicional: a probabilidade condicional da i-ésima unidade vir a falhar no tempo t_i conhecendo quais observações estão sob risco em t_i .

No tempo de falha t_i , a contribuição para a verossimilhança parcial é

$$\begin{split} L_i(\beta) = & P(\text{indiv}\text{iduo } i \text{ falhar}|\text{uma falha em } R(t_i)) \\ = & \frac{P(\text{indiv}\text{iduo } i \text{ falhar}|\text{em risco em } t_i)}{\sum_{j \in R(t_i)} P(\text{indiv}\text{iduo } j \text{ falhar}|\text{em risco em } t_i)} \\ = & \frac{\lambda_i(t|x_i)}{\sum_{j \in R(t_i)} \lambda_j(t|x_j)} \\ = & \frac{\lambda_0(t) \exp\left\{x_i'\beta\right\}}{\sum_{j \in R(t_i)} \lambda_0(t) \exp\left\{x_j'\beta\right\}} \\ = & \frac{\exp\left\{x_i'\beta\right\}}{\sum_{j \in R(t_i)} \exp\left\{x_j'\beta\right\}}. \end{split}$$

Condicional à história de falhas e censuras até o tempo t_i , o componente não paramétrico $\lambda_0(t)$ desaparece.

A função de verossimilhança parcial é dada pelo produto de todos os termos da expressão anterior associados aos tempos distintos de falha.

Assim,

$$L(\beta) = \prod_{i=1}^{k} L_i(\beta)$$

$$= \prod_{i=1}^{k} \frac{\exp\{x_i'\beta\}}{\sum\limits_{j \in R(t_i)} \exp\{x_j'\beta\}}$$

$$= \prod_{i=1}^{n} \left(\frac{\exp\{x_i'\beta\}}{\sum\limits_{j \in R(t_i)} \exp\{x_j'\beta\}}\right)^{\delta_i}.$$

O EMVP (Estimador de Máxima Verossimilhança Parcial) é o valor de $\hat{\beta}$ que maximiza $L(\beta)$.

EMVP é obtido resolvendo-se o sistema de equações definido por $U(\beta) = 0$, em que $U(\beta)$ é o vetor escore de primeiras derivadas da função $I(\beta) = \log L(\beta)$.

Isto é,

$$U(\beta) = \sum_{i=1}^{n} \delta_i \left[x_i - \frac{\sum_{j \in R(t_i)} x_j \exp\left\{x_j' \hat{\beta}\right\}}{\sum_{j \in R(t_i)} \exp\left\{x_j' \hat{\beta}\right\}} \right] = 0.$$

- A função de verossimilhança parcial, $L(\beta)$ estabelecida anteriormente, não pressupõe a possibilidade de empates nos tempos observados de falha.
- Empates podem, contudo, ocorrer nos tempos de falhas devido a medições imprecisas.
- Aproximações para $L(\beta)$, quando ocorrem empates, foram propostas, dentre outros, por Breslow (1972), Peto (1972), Efron (1977).
- A função coxph do pacote survival do R assume a aproximação de Efron (1977) como padrão.

Sob certas condições de regularidade, os estimadores de máxima verossimilhança parcial são consistentes e assintoticamente normais.

Para fazer inferências no modelo de Cox é possível, então, usar as estatísticas de Wald, da Razão de Verossimilhança e Escore.

O teste de Wald é o mais usado para testar hipóteses relativas a um único parâmetro, isto é

$$H_0: \beta_j = \beta_{0j}, \ j = 1, \ldots, p.$$

Interpretação dos Coeficientes

Interpretação dos Parâmetros

- No modelo de Cox, o efeito das covariáveis é de acelerar ou desacelerar a função de taxa de falha.
- A propriedade de taxas de falhas proporcionais do modelo é utilizada para interpretar os coeficientes estimados.
- Tomando a razão das taxas de falha de dois indivíduos i e j que têm os mesmos valores para as covariáveis com exceção da l-ésima, tem-se

$$\frac{\lambda_i(t)}{\lambda_i(t)} = \exp\left\{\beta_l(x_{il} - x_{jl})\right\},\,$$

que é interpretado como a razão de taxas de falhas.

Interpretação dos Parâmetros

- Por exemplo, suponha que x_l seja uma covariável dicotômica indicando pacientes hipertensos. A taxa de morte entre os hipertensos é $\exp(\beta_l)$ vezes a taxa daqueles com pressão normal, mantidas fixas as outras covariáveis.
- Uma interpretação similar é obtida para covariáveis contínuas. Se, por ex., o efeito de idade é significativo e $e^{\hat{\beta}}=1,05$ para este termo, tem-se com o aumento de 1 ano na idade, que a taxa de morte fica aumentada em 5%.
- Estimativa para $\exp(\beta_I)$ é obtida utilizando a propriedade de invariância do estimador de máxima verossimilhança parcial. O intervalo de 95% de confiança é dado por: $\exp\left\{\hat{\beta}\pm 1,96\times\widehat{EP}(\hat{\beta})\right\}$.

As funções relacionadas a $\lambda_0(t)$ referem-se basicamente a

$$\Lambda_0(t) = \int_0^t \lambda_0(u) du$$
 e $S_0(t) = \exp\left\{-\Lambda_0(t)\right\}$.

A função de sobrevivência

$$S(t_i|x_i) = [S_0(t_i)]^{\exp\{x_i'\beta\}}$$

também é importante para o cálculo de percentis associados a grupos de indivíduos.

Como $\lambda_0(t)$ não é especificado parametricamente, os estimadores para estas quantidades são de natureza não-paramétrica.

Um estimador simples proposto para a função de taxa de falha basal acumulada $\Lambda_0(t)$, proposto por Breslow (1972) é uma função escada, com saltos nos distintos tempos de falha, e é expresso por:

$$\widehat{\Lambda}_0(t) = \sum_{j: t_j < t} \frac{d_j}{\sum_{l \in R_j} \exp\left\{x_l'\beta\right\}},$$

em que d_i é o número de falhas em t_i .

Consequentemente, as funções de sobrevivência $S_0(t|x)$ e S(t|x) podem ser estimadas por, respectivamente,

$$\widehat{S}_0(t) = \exp\left\{-\widehat{\Lambda}_0(t)
ight\} \quad \mathrm{e} \quad \widehat{S}(t) = \left[\widehat{S}_0(t)
ight]^{\exp\{x'eta\}}.$$

Na ausência de covariáveis, temos

$$\widehat{\Lambda}_0(t) = \sum_{j:t_j < t} \left(\frac{d_j}{n_j} \right),$$

que é o estimador de Nelson-Aalen descrito anteriormente.

Por este fato, o estimador é também referenciado como estimador de Nelson-Aalen-Breslow.

Adequação do Modelo de Cox

Adequação do Modelo de Cox

- O modelo de Cox não se ajusta a qualquer situação e, como qualquer outro modelo estatístico, requer o uso de técnicas para avaliar a sua adequação.
- A violação da suposição básica de proporcionalidade das taxas de falhas pode acarretar em sérios vícios na estimação dos coeficientes do modelo (Struthers e Kalbfleisch, 1986).
- As técnicas de avaliação do modelo são baseadas em resíduos, como em outros modelos.
- Os resíduos de Schoenfeld (1982) são atualmente os mais utilizados para verificar a adequação do modelo de Cox, em especial, a suposição de proporcionalidade das taxas de falhas.

Resíduos de Schoenfeld (1982)

• Para o *i*-ésimo indivíduo, correspondente a um evento, com covariáveis $x_i = (x_{i1}, \ldots, x_{ip})'$, o vetor de resíduos de Schoenfeld denotado por $r_i = (r_{i1}, \ldots, r_{ip})'$ e definido para cada componente $r_{iq}, \ q = 1, \ldots, p$, por:

$$r_{iq} = x_{iq} - \frac{\sum_{j \in R(t_i)} x_{jq} \exp\left\{x_j' \hat{\beta}\right\}}{\sum_{j \in R(t_i)} \exp\left\{x_j' \hat{\beta}\right\}}.$$

• Os resíduos padronizados de Schoenfeld são dados por:

$$s_i^* = [\mathcal{I}(\hat{\beta})]^{-1} \times r_i,$$

em que $\mathcal{I}(\hat{\beta})$ é a matriz de informação observada.

Avaliação da Proporcionalidade das Taxas – Gráfico

• Grambsch e Therneau (1994) sugerem a utilização de s_i^* para avaliar a suposição de proporcionalidade dos riscos.

Considere o modelo de Cox dinâmico:

$$\lambda(t) = \lambda_0(t) \exp \left\{ x' \beta(t) \right\},\,$$

- a restrição $\beta(t) = \beta$ corresponde à proporcionalidade das taxas.
 - Se a suposição de proporcionalidade é válida, o gráfico de $\beta_q(t) \times t$ deve ser uma linha horizontal.
 - Sugestão: usar o gráfico de $(s_{iq}^* + \hat{\beta}) \times t$ ou alguma função do tempo, g(t), (q = 1, ..., p).

Avaliação da Proporcionalidade das Taxas – Gráfico

- Para auxiliar na detecção de uma possível falha da suposição de riscos proporcionais, uma curva suavizada (splines), com bandas de confiança, é adicionada a este gráfico.
- As figuras abaixo ilustram estes gráficos (primeira, adequada e a segunda, inadequada) para g(t) = t.

Avaliação da Proporcionalidade das Taxas - Testes

Testes de hipóteses associado aos resíduos de Schoenfeld:

• O coeficiente de correlação de Pearson (ρ) entre os resíduos padronizados de Schoenfeld e g(t) para cada covariável é uma dessas medidas.

- Valores de ρ próximos de zero mostram evidências a favor da suposição de riscos proporcionais.
- Estão disponíveis testes globais e locais para avaliação da proporcionalidade dos riscos.

Avaliação da Proporcionalidade das Taxas - Testes

Um teste para a hipótese global de proporcionalidade de riscos no modelo de Cox, e assumindo que $g_q(t) = g(t)$, é obtido a partir da forma quadrática:

$$T = \frac{(g - \bar{g})' S^* \mathcal{I} S^{*'} (g - \bar{g})}{d \sum_k (g_k - g)^2} \sim \chi_p^2,$$

em que \mathcal{I} é a matriz de informação observada, d é o número de falhas e $S^* = dR\mathcal{I}^{-1}$, sendo R a matriz $d \times q$ dos resíduos de Schoenfeld não padronizados.

Avaliação da Proporcionalidade das Taxas - Testes

Para testar a hipótese de taxas proporcionais para a q-ésima covariável $(q=1,\ldots,p)$ utiliza-se a estatística de teste:

$$T_q = \frac{d\left(\sum_k (g_k - g)s_{qk}^*\right)^2}{\mathcal{I}_q^{-1}\sum_k (g_k - g)^2} \sim \chi_1^2,$$

em que \mathcal{I}_q^{-1} é o q-ésimo elemento da diagonal do inverso da matriz de informação observada.

Algumas opções estão disponíveis g(t) na função cox.zph(), sendo km (uma versão contínua à esquerda da curva de sobrevivência de Kaplan-Meier) a opção padrão.

Avaliação de Outros Aspectos do Modelo de Cox

Além da suposição de proporcionalidade, outros aspectos do modelo podem ser também avaliados.

Dentre eles, se destacam:

- Avaliação da melhor forma funcional de uma dada covariável.
- Presença de potenciais indivíduos atípicos (outliers).
- Influência que cada indivíduo exerce no modelo ajustado.

As técnicas de diagnóstico se baseiam, essencialmente, nos resíduos *martingal* e *deviance*, que foram definidos anteriormente para os modelos paramétricos.

Pontos Atípicos e Forma Funcional das Covariáveis

Os resíduos martingal, modificação dos resíduos de Cox-Snell, são frequentemente usados para tais finalidades.

Quando os dados apresentam censuras à direita e todas as covariáveis são fixadas no início do estudo, estes são definidos, para i = 1, ..., n, por:

$$\hat{m}_i = \delta_i - \widehat{\Lambda}_0(t_i) \exp\left\{\sum_{k=1}^p x_{ik} \hat{\beta}_k\right\} = \delta_i - \hat{e}_i, \quad i = 1, \dots, n.$$

- Para, por exemplo, a covariável contínua x_q , o gráfico de \hat{m}_i versus x_{iq} é utilizado para que se possa avaliar a forma funcional desta covariável.
- Na prática, as interpretações desses gráficos não são muito simples em razão da distribuição assimétrica desses resíduos.

Pontos Atípicos e Forma Funcional das Covariáveis

Outro resíduo geralmente usado para detecção de pontos atípicos (*outliers*) é o resíduo deviance, definido para o modelo de Cox por

$$\hat{d}_i = \operatorname{sinal}(\hat{m}_i) \left[-2 \left(\hat{m}_i + \delta_i \log(\delta_i - \hat{m}_i) \right) \right]^{1/2},$$

que não são tão assimétricos como os resíduos martingal.

O gráfico de \hat{d}_i versus o preditor linear $\sum_{l=1}^p x_{il}\beta_l$, $i=1,\ldots,n$ é utilizado, nesse caso, para avaliar a presença de dados atípicos.

Pontos Influentes

Uma medida global de efeito das observações pode ser obtida por:

$$\Delta \beta_i = (\hat{\beta} - \hat{\beta}_{(i)}) \left[\mathcal{I}(\hat{\beta}) \right]^{-1} (\hat{\beta} - \hat{\beta}_{(i)}), \quad i = 1, \ldots, n,$$

com $\Delta \beta_i$ a mudança no vetor de coeficientes estimados obtida pela remoção, uma de cada vez, das observações.

O gráfico desses resíduos versus i pode ser útil na detecção de observações influentes.

Esta medida é usualmente chamada de D-Cook na literatura.

Pontos Influentes

Também é possível obter tais resíduos para cada covariável.

Para a q-ésima covariável $(q=1,\ldots,p)$ no modelo de Cox, tem-se, para $i=1,\ldots,n$,

$$\Delta \beta_{i,q} = (\hat{\beta}_q - \hat{\beta}_{q(i)}) \left[\mathcal{I}(\hat{\beta}) \right]_{qq}^{-1} (\hat{\beta}_q - \hat{\beta}_{q(i)}), \quad i = 1, \ldots, n,$$

A matriz D de dimensão $n \times p$ composta das p colunas dos resíduos é denominada de resíduos *dfbetas*.

Gráficos dos respectivos resíduos associados a cada covariável versus os valores da respectiva covariável são usados para a identificação de pontos influentes.

Exemplos de Aplicação

Exemplos de Aplicação

Aplicação 1: sobrevida de pacientes com leucemia aguda.

Aplicação 2: sobrevida de pacientes com câncer de encéfalo.

Aplicação 3: dados de aleitamento materno.

Aplicação 4: dados de câncer de laringe.

Extensões do Modelo de Cox

Extensões do Modelo de Cox

 Algumas situações práticas envolvem covariáveis que são monitoradas durante o estudo, e seus valores podem mudar ao longo desse período. Tais covariáveis são chamadas de dependentes do tempo e o modelo de Cox pode ser estendido para incorporá-las.

 Em outras situações, a suposição de taxas proporcionais é violada e o modelo de Cox não é adequado. Modelos alternativos existem para enfrentar esta situação. Um deles é uma extensão do próprio modelo de Cox chamado de modelo de riscos proporcionais estratificado.

Modelo de Cox com Covariáveis Dependentes do Tempo

Covariáveis Dependentes do Tempo

 Covariáveis que alteram seu valor ao longo do período podem ser incorporadas ao modelo de regressão de Cox:

$$\lambda(t|x(t)) = \lambda_0(t) \exp\left\{x'(t)\beta\right\}.$$

 Definido desta forma, este modelo não é mais de taxas de falhas proporcionais pois a razão das funções de taxa de falha no tempo t para dois indivíduos quaisquer i e j fica sendo

$$\frac{\lambda(t|x_i(t))}{\lambda(t|x_j(t))} = \exp\left\{x_i'(t)\beta - x_j'(t)\beta\right\}.$$

que é dependente do tempo.

Covariáveis Dependentes do Tempo

- A interpretação dos coeficientes β do modelo deve considerar o tempo t. Cada coeficiente $\beta_I, I=1,\ldots,p$, pode ter a interpretação usual, mantendo as demais covariáveis fixas no mesmo tempo.
- O ajuste do modelo é obtido estendendo-se o logaritmo da função de verossimilhança parcial. Isto é feito usando-se:

$$U(\beta) = \sum_{i=1}^{n} \delta_i \left[x_i(t_i) - \frac{\sum_{j \in R(t_i)} x_j(t_i) \exp\left\{x_j'(t_i)\hat{\beta}\right\}}{\sum_{j \in R(t_i)} \exp\left\{x_j'(t_i)\hat{\beta}\right\}} \right] = 0.$$

 Os estimadores obtidos são consistentes e assintoticamente normais, sob certas condições de regularidade. As estatísticas de Wald e da razão de verossimilhança são usadas de forma usual.

Modelo de Cox Estratificado

Modelo de Cox Estratificado

- O modelo de Cox não pode ser usado se a suposição de RTP for violada. Nestes casos, uma solução é estratificar os dados de modo que a suposição seja válida em cada estrato.
- A análise estratificada consiste em dividir os dados de sobrevivência em m estratos, de acordo com uma indicação de violação da suposição.
- O modelo é então expresso como

$$\lambda(t|x_{ij}) = \lambda_{0_j}(t) \exp\left\{x'_{ij}\beta\right\},$$

para $j=1,\ldots,m$ e $i=1,\ldots,n_j$, sendo n_j o número de observações no j-ésimo estrato. As funções de base $\lambda_{0_1},\ldots,\lambda_{0_m}$ são arbitrárias e completamente não relacionadas.

Inferência no Modelo de Cox Estratificado

- A estratificação não cria nenhuma complicação na estimação do vetor de parâmetros β .
- Uma função verossimilhança parcial é construída para cada estrato e a estimação é baseada na soma dos logaritmos das funções de verossimilhanças parciais:

$$\ell(\beta) = [\ell_1(\beta) + \ldots + \ell_m(\beta)],$$

com $\ell_j(\beta) = \log(L_j(\beta))$ obtida usando somente os dados dos indivíduos no j-ésimo estrato, e $\ell(\beta)$ é maximizada com respeito a β .

• As propriedades assintóticas dos estimadores são obtidas a partir dos estimadores do modelo não estratificado (Colosimo, 1997).

Modelo de Cox Estratificado

- O modelo de Cox estratificado assume que as covariáveis atuam de modo similar na função de taxa de falha base de cada estrato. Ou seja, β é assumido ser comum para todos os estratos.
- Esta suposição pode ser testada usando, por exemplo, o teste da razão de verossimilhanças:

$$TRV = -2 \left[\ell(\hat{\beta}) - \sum_{j=1}^{m} \ell_j(\hat{\beta}_j) \right],$$

sendo $\ell(\hat{\beta})$ o logaritmo da função de verossimilhança parcial sob o modelo que assume β 's comuns e $\sum_{j=1}^m \ell_j(\hat{\beta}_j)$ o logaritmo dessa função sob o modelo que assume β 's distintos em cada estrato.

Modelo de Cox Estratificado

• Sob a hipótese nula e para grandes amostras, a estatística segue distribuição qui-quadrado com (m-1)p graus de liberdade em que m é o número de estratos e p a dimensão do vetor β .

 O modelo estratificado deve somente ser usado caso realmente necessário, ou seja, na presença de violação da suposição de taxas de falha proporcionais.

 O uso desnecessário da estratificação acarreta em uma perda de eficiência das estimativas obtidas.

Exemplos de Aplicação

Exemplos de Aplicação

Aplicação 5: sinusite em pacientes HIV.

Aplicação 6: hormônio de crescimento.

E se nada der certo?

- A suposição de taxas de falhas proporcionais não é satisfeita.
- Não podemos utilizar o modelo estratificado.
- Os modelos paramétricos não se ajustam aos dados.

Uma solução: O modelo aditivo (não-paramétrico) de Aalen, discutido no capítulo 7 do Livro ASA.

Como lidar com respostas altamente discretas?

- Poucos empates: aproximações para a verossimilhança parcial (Breslow e Efron).
- Muitos empates: aproximações ficam ruins. Temos que reconhecer a natureza discreta das respostas.

Uma solução: Modelos Discretos e Censura Intervalar (Capítulo 8).

Como lidar com respostas dependentes: mesmo indivíduo ou conglomerado?

- Modelos de efeitos aleatórios (Modelo de Fragilidade).
- Modelos do tipo GEE. Corrigindo a variância dos estimadores. Capítulo 9 do Livro ASA.

Como lidar com respostas dependentes: eventos recorrentes?

- Processo de Contagem (Processo de Poisson).
- O objetivo do estudo deve nortear a modelagem estatística.
 - Identificação de marcadores de risco: usar "gap times": modelos de fragilidade e GEE;
 - Caracterização de sistemas reparáveis: tempo global: modelagem de processos de contagem (lei de potência, mais utilizado).

Diferentes Desenhos e Objetivos

Desenho do Estudo

- Assume-se que a amostra foi coletada em um esquema de "amostragem aleatória simples";
- O estudo longitudinal pode ser observado uma unica vez: "Current status data".

Objetivo do Estudo

- Usualmente o objetivo é identificar marcadores ou comparar grupos;
- Predições.
 - Predição Clínica;
 - Caracterização de produtos industriais: Testes de Degradação.

Conceitos Importantes em Análise de Sobrevivência

- Indivíduo "sob risco": assume-se que ao ser censurado a observação estava sob risco do evento.
- Censura não informativa: T e C são independentes.

Referências

Referências

Colosimo, E. A., & Giolo, S. (2006). *Análise de Sobrevivência Aplicada*. São Paulo: Editora Edgard Blücher.

Colosimo, E. A., *Análise de Sobrevivência Aplicada*. Notas de Aula. Disponível em https://www.est.ufmg.br/~enricoc/metodos_estatisticos_a nalise_sobrevivencia.htm.