Imperial College London

Coursework 2: Hidden Markov Models

IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

495 Advanced Statistical Machine Learning and Pattern Recognition

Author:

Thomas Teh (CID: 0124 3008)

Date: February 21, 2017

1 Exercise I: Implementation Exercise

1.1 Files Submitted

Apart from the HMMGenerateData.m, I have implemented the HMM in files listed below:

m-files	Brief Description
HMMGenerateData	Data generator provided by course instructor.
HMMExpectationDiscrete	Filtering, smoothing and expectation for discrete case.
HMMExpectationContinuous	Filtering, smoothing and expectation for continuous case.
HMMMaximizationDiscrete	Maximization step for discrete case.
HMMMaximizationContinuous	Maximization step for continuous case.
HMMViterbiDiscrete	Viterbi decoding for the discrete case.
HMMViterbiContinuous	Viterbi decoding for the continuous case.
HMM	Combined function for the EM and decoding for both cases.

2 Exercise II: Parameter Estimation

2.1 Part i

Based on the stochastic automaton, we have the following transition probability $P(z_t|z_{t-1})$

$$p(\boldsymbol{z}_t|\boldsymbol{z}_{t-1}) = \begin{bmatrix} 0 & a_{12} & 0 & 0 & 0 \\ 0 & a_{22} & a_{23} & 0 & 0 \\ 0 & 0 & a_{33} & a_{34} & a_{35} \\ 0 & 0 & 0 & a_{44} & a_{45} \\ 0 & 0 & 0 & 0 & a_{55} \end{bmatrix}$$

Hence, we will have the following constraints when we get the parameter estimates via maximum likelihood

$$\begin{aligned} a_{12} &= 1 \Rightarrow a_{1j} = 0, \forall j = 1, 3, 4, 5 \\ a_{22} + a_{23} &= 1 \Rightarrow a_{2j} = 0, \forall j = 1, 4, 5 \\ a_{33} + a_{34} + a_{35} &= 1 \Rightarrow a_{3j} = 0, \forall j = 1, 2 \\ a_{44} + a_{45} &= 1 \Rightarrow a_{4j} = 0, \forall j = 1, 2, 3 \\ a_{55} &= 1 \Rightarrow a_{5j} = 0, \forall j = 1, 2, 3, 4 \end{aligned}$$

Since the model given is a bigram model, we have the following distribution of each character x_t

$$p(\mathbf{x}_t|\mathbf{x}_{t-1}) = \prod_{j=1}^{5} \prod_{k=1}^{5} a_{jk}^{x_{t-1,j}x_{t,k}}$$

$$p(x_1|\pi) = \prod_{k=1}^{5} \pi_k^{x_{1,k}}$$

For each sequence D_l , we have the probability of the sequence to be

$$p(\mathbf{x}_{1}^{l},...,\mathbf{x}_{T}^{l}) = p(\mathbf{x}_{1}^{l}) \prod_{t=2}^{T} p(\mathbf{x}_{t}^{l}|\mathbf{x}_{t-1}^{l})$$
$$= \prod_{k=1}^{5} \pi_{k}^{x_{1,k}^{l}} \prod_{t=2}^{T} \prod_{j=1}^{5} \prod_{k=1}^{5} a_{jk}^{x_{t-1,j}^{l}x_{t,k}^{l}}$$

Since we have N sequences, the probability distribution can be written as

$$p(\mathbf{D}_{1},...,\mathbf{D}_{N}) = \prod_{l=1}^{N} (\mathbf{x}_{1}^{l},...,\mathbf{x}_{T}^{l})$$

$$= \prod_{l=1}^{N} \prod_{k=1}^{5} \pi_{k}^{x_{1,k}^{l}} \prod_{t=2}^{T} \prod_{j=1}^{5} \prod_{k=1}^{5} a_{jk}^{x_{t-1,j}^{l} x_{t,k}^{l}}$$

Taking the log, we have

$$\ln p(\mathbf{D}_{1}, \dots, \mathbf{D}_{N}) = \sum_{l=1}^{N} \sum_{k=1}^{5} x_{1,k}^{l} \ln \pi_{k} + \sum_{l=1}^{N} \sum_{t=2}^{T} \sum_{j=1}^{5} \sum_{k=1}^{5} x_{t-1,j}^{l} x_{t,k}^{l} \ln a_{jk}$$

$$= \sum_{k=1}^{5} \left(\sum_{l=1}^{N} x_{1,k}^{l} \right) \ln \pi_{k} + \sum_{j=1}^{5} \sum_{k=1}^{5} \left(\sum_{l=1}^{N} \sum_{t=2}^{T} x_{t-1,j}^{l} x_{t,k}^{l} \right) \ln a_{jk}$$

$$= \sum_{k=1}^{5} N_{k}^{1} \ln \pi_{k} + \sum_{j=1}^{5} \sum_{k=1}^{5} N_{jk} \ln a_{jk}$$

where

$$N_k^1 = \sum_{l=1}^N x_{1,k}^l$$

$$N_{jk} = \sum_{l=1}^N \sum_{t=2}^T x_{t-1,j}^l x_{t,k}^l$$

Formulating the Lagrangian, we have

$$\mathcal{L}(\boldsymbol{\pi}, \boldsymbol{A}) = \sum_{k=1}^{5} N_k^1 \ln \pi_k + \sum_{j=1}^{5} \sum_{k=1}^{5} N_{jk} \ln a_{jk} - \lambda \left(\sum_{k=1}^{5} \pi_k - 1 \right) - \sum_{j=1}^{5} \left(\gamma_j \sum_{k=1}^{5} a_{jk} - 1 \right) - \sum_{j=1,3,4,5} \mu_{1j} a_{1j} - \sum_{j=1,4,5} \mu_{2j} a_{2j} - \sum_{j=1,2} \mu_{3j} a_{3j} - \sum_{j=1,2,3} \mu_{4j} a_{4j} - \sum_{j=1,2,3,4} \mu_{5j} a_{5j}$$

Taking the derivatives and setting them to zero

$$\frac{\partial \mathcal{L}}{\partial \pi_k} = \frac{N_k^1}{\pi_k} - \lambda = 0 \Rightarrow \lambda \pi_k = N_k^1$$

$$\lambda \sum_{k=1}^5 \pi_k = \sum_{k=1}^5 N_k^1 \Rightarrow \lambda = \sum_{k=1}^5 N_k^1$$

$$\pi_k = \frac{N_k^1}{\sum_{j=1}^5 N_j^1}$$

Likewise, we have

$$\frac{\partial \mathcal{L}}{\partial a_{jk}} = \frac{N_{jk}}{a_{jk}} - \gamma_j = 0 \Rightarrow \gamma_j a_{jk} = N_{jk}$$
$$a_{jk} = \frac{N_{jk}}{\sum_{k=1}^5 N_{jk}}$$

$$p(\boldsymbol{z}_t|\boldsymbol{z}_{t-1}) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & \frac{N_{22}}{N_{22} + N_{23}} & \frac{N_{23}}{N_{22} + N_{23}} & 0 & 0 \\ 0 & 0 & \frac{N_{33}}{N_{33} + N_{34} + N_{35}} & \frac{N_{34}}{N_{33} + N_{34} + N_{35}} & \frac{N_{35}}{N_{33} + N_{34} + N_{35}} \\ 0 & 0 & 0 & \frac{N_{44}}{N_{44} + N_{45}} & \frac{N_{45}}{N_{44} + N_{45}} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

2.2 Part II

2.2.1 Formulation

Consider a Hidden Markov Model where the observed variable x_t has 5 different states and the latent variable z_t has K different states:

$$p(z_1|\pi) = \prod_{k=1}^{K} \pi_k^{z_{1,k}}$$

$$p(x_t|z_t) = \prod_{j=1}^{5} \prod_{k=1}^{K} b_{j,k}^{x_{t,j}z_{t,k}}$$

$$p(z_t|z_{t-1}) = \prod_{j=1}^{K} \prod_{k=1}^{K} a_{jk}^{z_{t-1,j}z_{t,k}}$$

Consider a sequence D_l with length T

$$p(D_l) = p(\boldsymbol{x}_1^l, \dots, \boldsymbol{x}_T^l, \boldsymbol{z}_1^l, \dots, \boldsymbol{z}_T^l)$$

$$= \prod_{t=1}^T p(\boldsymbol{x}_t^l | \boldsymbol{z}_t^l) p(\boldsymbol{z}_1^l | \boldsymbol{\pi}) \prod_{t=2}^T p(\boldsymbol{z}_t^l | \boldsymbol{z}_{t-1}^l)$$

$$= \prod_{t=1}^{T} \prod_{j=1}^{5} \prod_{k=1}^{K} b_{j,k}^{x_{t,j}z_{t,k}} \prod_{k=1}^{K} \pi_{k}^{z_{1,k}} \prod_{t=2}^{T} \prod_{j=1}^{K} \prod_{k=1}^{K} a_{jk}^{z_{t-1,j}z_{t,k}}$$

Since we are given N sequences of length T, we have the following

$$P(D_1, \dots, D_N) = \prod_{l=1}^N p(D_l)$$

$$= \prod_{l=1}^N \left(\prod_{t=1}^T \prod_{j=1}^5 \prod_{k=1}^K b_{j,k}^{x_{t,j}^l z_{t,k}^l} \prod_{k=1}^K \pi_k^{z_{1,k}^l} \prod_{t=2}^T \prod_{j=1}^K \prod_{k=1}^K a_{jk}^{z_{t-1,j}^l z_{t,k}^l} \right)$$

Take log on the likelihood function

$$\ln P(D_1, \dots, D_N) = \sum_{l=1}^{N} \sum_{t=1}^{T} \sum_{j=1}^{5} \sum_{k=1}^{K} x_{t,j}^l z_{t,k}^l \ln b_{j,k} + \sum_{l=1}^{N} \sum_{k=1}^{K} z_{1,k}^l \ln \pi_k + \sum_{l=1}^{N} \sum_{t=2}^{T} \sum_{j=1}^{K} \sum_{k=1}^{K} z_{t-1,j}^l z_{t,k}^l \ln a_{jk}$$

2.2.2 The Expectation Step

Take the expectation on the above log likelihood

$$\ell = \mathbb{E}\left[\ln P(D_1, \dots, D_N)\right]$$

$$= \sum_{l=1}^{N} \sum_{t=1}^{T} \sum_{j=1}^{5} \sum_{k=1}^{K} \mathbb{E}\left[z_{t,k}^l\right] x_{t,j}^l \ln b_{j,k} + \sum_{l=1}^{N} \sum_{k=1}^{K} \mathbb{E}\left[z_{1,k}^l\right] \ln \pi_k + \sum_{l=1}^{N} \sum_{t=2}^{T} \sum_{j=1}^{K} \sum_{k=1}^{K} \mathbb{E}\left[z_{t-1,j}^l z_{t,k}^l\right] \ln a_{jk}$$

Hence we need to compute

$$p(\boldsymbol{z}_{t}^{l}|\boldsymbol{x}_{1}^{l},...,\boldsymbol{x}_{T}^{l}) = \frac{p(\boldsymbol{x}_{1:T}^{l}|\boldsymbol{z}_{t}^{l})p(\boldsymbol{z}_{t}^{l})}{p(\boldsymbol{x}_{1:T}^{l})} = \frac{p(\boldsymbol{x}_{1:t}^{l}|\boldsymbol{z}_{t}^{l})p(\boldsymbol{x}_{t+1:T}^{l}|\boldsymbol{z}_{t}^{l})p(\boldsymbol{z}_{t}^{l})}{p(\boldsymbol{x}_{1:T}^{l})} = \frac{p(\boldsymbol{x}_{1:t}^{l},\boldsymbol{z}_{t}^{l})p(\boldsymbol{x}_{t+1:T}^{l}|\boldsymbol{z}_{t}^{l})}{p(\boldsymbol{x}_{1:T}^{l})} = \frac{\alpha(\boldsymbol{z}_{t}^{l})\beta(\boldsymbol{z}_{t}^{l})}{p(\boldsymbol{x}_{1:T}^{l})} = \frac{\alpha(\boldsymbol{z}_{t}^{l})\beta(\boldsymbol{z}_{t}^{l})}{p(\boldsymbol{z}_{t}^{l})} = \frac{\alpha(\boldsymbol{z}_{t}^{l})\beta(\boldsymbol{z}_{t}^{l})}{p(\boldsymbol{z}_{t}^{l})} = \frac{\alpha(\boldsymbol{z}_{t}^{l})\beta(\boldsymbol{z}_{t}^{l})}{p(\boldsymbol{z}_{t}^{l})} = \frac{\alpha(\boldsymbol{z}_{t}^{l})\beta(\boldsymbol{z}_{t}^{l})}{p(\boldsymbol{z}_{t}^{l})} = \frac{\alpha(\boldsymbol{z}_{t}^{l})\beta(\boldsymbol{z}_{t}^{l})}{p(\boldsymbol{z}_{t}^{l})} = \frac{\alpha(\boldsymbol{z}_{t}^{l})\beta(\boldsymbol{z}_{t}^{l})}{p(\boldsymbol{z}_{t}^{l})}$$

We can compute the $\alpha(z_t^l)$ and βz_t^l recursively.

$$\begin{split} \alpha(\boldsymbol{z}_{t}^{l}) &= p(\boldsymbol{x}_{1:t}^{l}, \boldsymbol{z}_{t}^{l}) \\ &= p(\boldsymbol{x}_{1:t}^{l}|\boldsymbol{z}_{t}^{l})p(\boldsymbol{z}_{t}^{l}) \\ &= p(\boldsymbol{x}_{t}^{l}|\boldsymbol{z}_{t}^{l})p(\boldsymbol{z}_{1:t-1}^{l}|\boldsymbol{z}_{t}^{l})p(\boldsymbol{z}_{t}^{l}) \\ &= p(\boldsymbol{x}_{t}^{l}|\boldsymbol{z}_{t}^{l}) \sum_{\boldsymbol{z}_{t-1}^{l}} p(\boldsymbol{x}_{1:t-1}^{l}, \boldsymbol{z}_{t-1}^{l}, \boldsymbol{z}_{t}^{l}) \\ &= p(\boldsymbol{x}_{t}^{l}|\boldsymbol{z}_{t}^{l}) \sum_{\boldsymbol{z}_{t-1}^{l}} p(\boldsymbol{x}_{1:t-1}^{l}, \boldsymbol{z}_{t}^{l}|\boldsymbol{z}_{t-1}^{l})p(\boldsymbol{z}_{t-1}^{l}) \\ &= p(\boldsymbol{x}_{t}^{l}|\boldsymbol{z}_{t}^{l}) \sum_{\boldsymbol{z}_{t-1}^{l}} p(\boldsymbol{x}_{1:t-1}^{l}, \boldsymbol{z}_{t-1}^{l})p(\boldsymbol{z}_{t}^{l}|\boldsymbol{z}_{t-1}^{l})p(\boldsymbol{z}_{t-1}^{l}) \\ &= p(\boldsymbol{x}_{t}^{l}|\boldsymbol{z}_{t}^{l}) \sum_{\boldsymbol{z}_{t-1}^{l}} p(\boldsymbol{x}_{1:t-1}^{l}, \boldsymbol{z}_{t-1}^{l})p(\boldsymbol{z}_{t}^{l}|\boldsymbol{z}_{t-1}^{l})p(\boldsymbol{z}_{t}^{l}|\boldsymbol{z}_{t-1}^{l}) \end{split}$$

$$= p(\boldsymbol{x}_{t}^{l}|\boldsymbol{z}_{t}^{l}) \sum_{\boldsymbol{z}_{t-1}^{l}} \alpha(\boldsymbol{z}_{t-1}^{l}) p(\boldsymbol{z}_{t}^{l}|\boldsymbol{z}_{t-1}^{l})$$

The initial condition, $\alpha(z_1)$ can be computed

$$\alpha(\boldsymbol{z}_{1}^{l}) = p(\boldsymbol{x}_{1}^{l}|\boldsymbol{z}_{1}^{l})p(\boldsymbol{z}_{1}^{l}) = \prod_{k=1}^{K} \left[\pi_{k}p(\boldsymbol{x}_{1}^{l}|\boldsymbol{z}_{1}^{l})\right]^{z_{1,k}^{l}}$$

Similarly, we can manipulate $\beta(z_t)$

$$\begin{split} \beta(\boldsymbol{z}_{t}^{l}) &= p(\boldsymbol{x}_{t+1:T}^{l}|\boldsymbol{z}_{t}^{l}) \\ &= \sum_{\boldsymbol{z}_{t+1}^{l}} p(\boldsymbol{x}_{t+1:T}^{l}, \boldsymbol{z}_{t+1}^{l}|\boldsymbol{z}_{t}^{l}) \\ &= \sum_{\boldsymbol{z}_{t+1}^{l}} p(\boldsymbol{x}_{t+1:T}^{l}|\boldsymbol{z}_{t+1}^{l}, \boldsymbol{z}_{t}^{l}) p(\boldsymbol{z}_{t+1}^{l}|\boldsymbol{z}_{t}^{l}) \\ &= \sum_{\boldsymbol{z}_{t+1}^{l}} p(\boldsymbol{x}_{t+1:T}^{l}|\boldsymbol{z}_{t+1}^{l}) p(\boldsymbol{z}_{t+1}^{l}|\boldsymbol{z}_{t}^{l}) \\ &= \sum_{\boldsymbol{z}_{t+1}^{l}} p(\boldsymbol{x}_{t+1:T}^{l}|\boldsymbol{z}_{t+1}^{l}) p(\boldsymbol{z}_{t+1}^{l}|\boldsymbol{z}_{t}^{l}) \\ &= \sum_{\boldsymbol{z}_{t+1}^{l}} p(\boldsymbol{x}_{t+1}^{l}, \boldsymbol{x}_{t+2:T}^{l}|\boldsymbol{z}_{t+1}^{l}) p(\boldsymbol{z}_{t+1}^{l}|\boldsymbol{z}_{t}^{l}) \\ &= \sum_{\boldsymbol{z}_{t+1}^{l}} p(\boldsymbol{x}_{t+2:T}^{l}|\boldsymbol{z}_{t+1}^{l}) p(\boldsymbol{x}_{t+1}^{l}|\boldsymbol{z}_{t+1}^{l}) p(\boldsymbol{z}_{t+1}^{l}|\boldsymbol{z}_{t}^{l}) \\ &= \sum_{\boldsymbol{z}_{t+1}^{l}} \beta(\boldsymbol{z}_{t+1}^{l}) p(\boldsymbol{x}_{t+1}^{l}|\boldsymbol{z}_{t+1}^{l}) p(\boldsymbol{z}_{t+1}^{l}|\boldsymbol{z}_{t}^{l}) \end{split}$$

Initial condition for $\beta(z_T^l)$ is $\beta(z_T^l) = 1$.

We also need the joint probability between the latent variable (smoothed transition probability)

$$\begin{split} p(\boldsymbol{z}_{t-1}^{l}, \boldsymbol{z}_{t}^{l} | \boldsymbol{x}_{1:T}^{l}) &= \frac{p(\boldsymbol{z}_{t-1}^{l}, \boldsymbol{z}_{t}^{l}, \boldsymbol{x}_{1:T}^{l})}{p(\boldsymbol{x}_{1:T}^{l})} \\ &= \frac{p(\boldsymbol{x}_{1:T}^{l} | \boldsymbol{z}_{t-1}^{l}, \boldsymbol{z}_{t}^{l}) p(\boldsymbol{z}_{t-1}^{l}, \boldsymbol{z}_{t}^{l})}{p(\boldsymbol{x}_{1:T}^{l})} \\ &= \frac{p(\boldsymbol{x}_{1:T}^{l} | \boldsymbol{z}_{t-1}^{l}, \boldsymbol{z}_{t}^{l}) p(\boldsymbol{x}_{t}^{l} | \boldsymbol{z}_{t}^{l}) p(\boldsymbol{x}_{t+1:T}^{l} | \boldsymbol{z}_{t}^{l}) p(\boldsymbol{z}_{t}^{l} | \boldsymbol{z}_{t-1}^{l}) p(\boldsymbol{z}_{t-1}^{l})}{p(\boldsymbol{x}_{1:T}^{l})} \\ &= \frac{\alpha(\boldsymbol{z}_{t-1}^{l}) p(\boldsymbol{x}_{t}^{l} | \boldsymbol{z}_{t}^{l}) p(\boldsymbol{z}_{t}^{l} | \boldsymbol{z}_{t-1})^{l} \beta(\boldsymbol{z}_{t}^{l})}{p(\boldsymbol{x}_{1:T}^{l})} \\ &= \frac{E\left[\boldsymbol{z}_{1,k}^{l}\right] = \frac{\alpha(\boldsymbol{z}_{1}^{l}) \beta(\boldsymbol{z}_{1}^{l})}{p(\boldsymbol{x}_{1:T}^{l})} \end{split}$$

$$\mathbb{E}\left[z_{t,k}^{l}\right] = \frac{\alpha(\boldsymbol{z}_{k}^{l})\beta(\boldsymbol{z}_{k}^{l})}{p(\boldsymbol{x}_{1:T}^{l})}$$

$$\mathbb{E}\left[z_{t-1,j}^{l}z_{t,k}^{l}\right] = \frac{\alpha(\boldsymbol{z}_{t-1}^{l})\left[\prod_{j=1}^{5}b_{j,k}^{x_{t,j}^{l}}\right]a_{jk}\beta(\boldsymbol{z}_{t}^{l})}{p(\boldsymbol{x}_{1:T}^{l})}$$

2.2.3 The Maximization Step

From the above, we have

$$\ell = \mathbb{E}\left[\ln P(D_1, \dots, D_N)\right]$$

$$= \sum_{l=1}^{N} \sum_{t=1}^{T} \sum_{j=1}^{5} \sum_{k=1}^{K} \mathbb{E}\left[z_{t,k}^l\right] x_{t,j}^l \ln b_{j,k} + \sum_{l=1}^{N} \sum_{k=1}^{K} \mathbb{E}\left[z_{1,k}^l\right] \ln \pi_k + \sum_{l=1}^{N} \sum_{t=2}^{T} \sum_{j=1}^{K} \sum_{k=1}^{K} \mathbb{E}\left[z_{t-1,j}^l z_{t,k}^l\right] \ln a_{jk}$$

Now, we can formulate the Lagrangian

$$\mathcal{L}(\boldsymbol{\pi}, \boldsymbol{b}, \boldsymbol{A}) = \ell - \lambda \left(\sum_{k=1}^{K} \pi_k - 1 \right) - \sum_{k=1}^{K} \gamma_k \left(\sum_{j=1}^{5} b_{jk} - 1 \right) - \sum_{j=1}^{K} \mu_j \left(\sum_{k=1}^{K} a_{jk} - 1 \right)$$

We take the derivative with respect to the parameters

$$\frac{\partial \mathcal{L}(\boldsymbol{\pi}, \boldsymbol{b}, \boldsymbol{A})}{\partial \boldsymbol{\pi}_{k}} = \sum_{l=1}^{N} \frac{\mathbb{E}\left[\boldsymbol{z}_{1, k}^{l}\right]}{\boldsymbol{\pi}_{k}} - \lambda = 0 \Rightarrow \sum_{l=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{1, k}^{l}\right] = \lambda \boldsymbol{\pi}_{k}$$
$$\sum_{k=1}^{K} \sum_{l=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{1, k}^{l}\right] = \lambda \Rightarrow \boldsymbol{\pi}_{k} = \frac{\sum_{l=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{1, k}^{l}\right]}{\sum_{k=1}^{K} \sum_{l=1}^{N} \mathbb{E}\left[\boldsymbol{z}_{1, k}^{l}\right]}$$

$$\begin{split} \frac{\partial \mathcal{L}(\boldsymbol{\pi}, \boldsymbol{b}, \boldsymbol{A})}{\partial b_{jk}} &= \sum_{l=1}^{N} \sum_{t=1}^{T} \mathbb{E} \left[z_{t,k}^{l} \right] \frac{x_{t,j}^{l}}{b_{j,k}} - \gamma_{k} = 0 \Rightarrow \sum_{l=1}^{N} \sum_{t=1}^{T} \mathbb{E} \left[z_{t,k}^{l} \right] x_{t,j}^{l} = \gamma_{k} b_{j,k} \\ &\sum_{l=1}^{N} \sum_{t=1}^{T} \left(\sum_{j=1}^{5} x_{t,j}^{l} \right) \mathbb{E} \left[z_{t,k}^{l} \right] = \gamma_{k} \sum_{j=1}^{5} b_{j,k} \Rightarrow b_{jk} = \frac{\sum_{l=1}^{N} \sum_{t=1}^{T} \mathbb{E} \left[z_{t,k}^{l} \right] x_{t,j}^{l}}{\sum_{l=1}^{N} \sum_{t=1}^{T} \mathbb{E} \left[z_{t,k}^{l} \right] x_{t,j}^{l}} \end{split}$$

$$\frac{\partial \mathcal{L}(\boldsymbol{\pi}, \boldsymbol{b}, \boldsymbol{A})}{\partial a_{jk}} = \sum_{l=1}^{N} \sum_{t=2}^{T} \frac{\mathbb{E}\left[z_{t-1,j}^{l} z_{t,k}^{l}\right]}{a_{jk}} - \mu_{j} = 0 \Rightarrow \sum_{l=1}^{N} \sum_{t=2}^{T} \mathbb{E}\left[z_{t-1,j}^{l} z_{t,k}^{l}\right] = \mu_{j} a_{jk}$$

$$\sum_{k=1}^{K} \sum_{l=1}^{N} \sum_{t=2}^{T} \mathbb{E}\left[z_{t-1,j}^{l} z_{t,k}^{l}\right] = \mu_{j} \sum_{k=1}^{K} a_{jk} \Rightarrow a_{jk} = \frac{\sum_{l=1}^{N} \sum_{t=2}^{T} \mathbb{E}\left[z_{t-1,j}^{l} z_{t,k}^{l}\right]}{\sum_{k=1}^{K} \sum_{l=1}^{N} \sum_{t=2}^{T} \mathbb{E}\left[z_{t-1,j}^{l} z_{t,k}^{l}\right]}$$