Exemplo

PRIMAL	DUAL				
max cx	min yb				
suj. a Ax ≤ b	suj. a yA≥c				
x ≥ 0	$y \ge 0$				
max $30x_1 + 20x_2 + 10x_3$	min $40y_1 + 150y_2 + 20y_3$				
suj. a $1x_1 + 1x_2 + 2x_3 \le 40$	suj. a $1y_1 + 2y_2 + 2y_3 \ge 30$				
$2x_1 + 2x_2 + 1x_3 \le 150$	$1y_1 + 2y_2 + 1y_3 \ge 20$				
$2x_1 + 1x_2 \leq 20$	$2y_1 + 1y_2 \ge 10$				
$x_1, x_2, x_3 \ge 0$	$y_1, y_2, y_3 \ge 0$				

Para construir o problema dual, o problema original deve estar numa das Formas:

- Problema de max com todas as restrições de ≤.
- Problema de min com todas as restrições de ≥.
- O problema dual do problema dual é o problema primal.
- No que se segue, designa-se o problema de maximização por primal.

Preço-sombra dos recursos 1 e 2

Quadro Óptimo

	Z	x_1	<i>x</i> ₂	<i>X</i> 3	<i>s</i> ₁	<i>s</i> ₂	<i>5</i> 3	
<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10
<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-1/2 -3/2	100
x_2	0	2	1	0	0	0	1	20
Z	1	5	0	0	5	0	15	500

- O preço-sombra do recurso 1 é $\delta z/\delta(-s_1)$ = +5 (o valor da função objectivo aumenta 5 unidades por cada unidade adicional do recurso 1).
- O preço-sombra do recurso 2 é $\delta z/\delta(-s_2)=+0$ (variável dual com valor nulo).
- Não há interesse em ter unidades adicionais de recurso 2: o aumento do recurso 2 não aumenta o valor da função objectivo, só aumenta a folga s₂.

Teorema fraco da dualidade

Teorema

Se \hat{x} for uma solução válida do problema primal (max.) e \hat{y} for uma solução válida do problema dual (min.), então

$$c\hat{x} \leq \hat{y}b$$

Prova:

- Se \hat{y} é uma solução válida do dual, então $\hat{y} \ge 0$, e podemos pré-multiplicar por \hat{y} as restrições $A\hat{x} \le b$, obtendo $\hat{y}A\hat{x} \le \hat{y}b$.
- Se \widehat{x} é uma solução válida do primal, então $\widehat{x} \ge 0$, e podemos pós-multiplicar por \widehat{x} as restrições $\widehat{y}A \ge c$, obtendo $\widehat{y}A\widehat{x} \ge c\widehat{x}$.
- Conjugando as duas relações, obtém-se $c\hat{x} \leq \hat{y}b$.

i.e., qualquer solução válida do problema de maximização tem um valor de função objectivo menor do que ou igual a qualquer solução válida do problema de minimização.

Teorema fraco da dualidade: exemplo

	PRIMAL	DUAL				
	max cx	min yb				
	$Ax \leq b$	$yA \ge c$				
	$x \ge 0$	$y \ge 0$				
max	$30x_1 + 20x_2 + 10x_3$	min	$40y_1 + 150y_2 + 20y_3$			
suj.	$1x_1 + 1x_2 + 2x_3 \le 40$	suj.	$1y_1 + 2y_2 + 2y_3 \ge 30$			
	$2x_1 + 2x_2 + 1x_3 \le 150$		$1y_1 + 2y_2 + 1y_3 \ge 20$			
	$2x_1 + 1x_2 \leq 20$		$2y_1 + 1y_2 \ge 10$			
	$x_1, x_2, x_3 \ge 0$		$y_1, y_2, y_3 \ge 0$			

- $(\widehat{x}_1, \widehat{x}_2, \widehat{x}_3)^t = (10, 0, 0)^t$ é um ponto válido do problema primal.
- $(\hat{y}_1, \hat{y}_2, \hat{y}_3) = (30,0,0)$ é um ponto válido do problema dual.
- cx = 30(10) + 20(0) + 10(0) = 300
- yb = 40(30) + 150(0) + 20(0) = 1200
- este par de pontos verifica o teorema fraco da dualidade: $cx \le yb$, i.e., $300 \le 1200$.

Teorema fraco da dualidade: ilustração gráfica

Teorema fraco da dualidade: caso valor óptimo ilimitado

Corolário (do teorema fraco da dualidade)

Se o problema primal de maximização tiver uma solução óptima ilimitada, então o problema dual é impossível.

Prova:

- Não pode haver nenhuma solução admissível do problema dual com um valor de função objectivo maior do que o valor da solução óptima ilimitada do problema primal,
- porque os coeficientes da função objectivo do problema dual são finitos.
- Portanto, o domínio do dual é vazio, e o problema dual é impossível.

Usando o mesmo argumento, se o problema dual de minimização tiver uma solução óptima ilimitada, então o problema primal é impossível.

Teorema forte da dualidade

Teorema (Teorema Forte da Dualidade)

Se o problema primal tiver uma solução óptima com valor finito, então o problema dual tem, pelo menos, uma solução óptima com valor finito, e os valores das soluções óptimas são iguais, i.e.,

$$cx^* = y^*b$$

sendo

- x*: solução óptima do problema primal
- y*: solução óptima do problema dual

Prova: O quadro simplex óptimo apresenta soluções válidas para o problema primal e para o problema dual com o mesmo valor <u>finito</u> de função objectivo:

$$y^*b = (c_BB^{-1})b = c_B(B^{-1}b) = cx^*.$$

Teorema forte da dualidade: quadro óptimo

				s_1			
<i>X</i> 3	-1/2	0	1	1/2	0	-1/2	10
<i>s</i> ₂	-3/2	0	0	-1/2	1	-1/2 -3/2	100
<i>x</i> ₂	2	1	0	0	0	1	20
	5	0	0	5	0	15	500

- Solução é válida para o problema primal se:
 - variáveis de decisão e de folga do primal: $B^{-1}b \ge 0$,
 - ou seja, todos os elementos do lado direito do quadro simplex não-negativos.
- Solução é válida para o problema dual se:
 - variáveis de decisão do dual: $y = c_B B^{-1} \ge 0$
 - variáveis de folga do dual: $u = c_B B^{-1} A c \ge 0$,
 - ou seja, todos os elementos da linha da função objectivo do quadro simplex não-negativos.
- No quadro óptimo, há pontos válidos dos problemas primal e do dual que têm o mesmo valor de função objectivo.
- ... São as soluções óptimas dos problemas respectivos.

Teorema forte da dualidade: ilustração gráfica

Teorema forte da dualidade: exemplo

	PRIMAL	DUAL				
	max cx	min yb				
	$Ax \leq b$		$yA \ge c$			
	$x \ge 0$	$y \ge 0$				
max	$30x_1 + 20x_2 + 10x_3$	min	$40y_1 + 150y_2 + 20y_3$			
suj.	$1x_1 + 1x_2 + 2x_3 \le 40$	suj.	$1y_1 + 2y_2 + 2y_3 \ge 30$			
	$2x_1 + 2x_2 + 1x_3 \le 150$		$1y_1 + 2y_2 + 1y_3 \ge 20$			
	$2x_1 + 1x_2 \leq 20$		$2y_1 + 1y_2 \ge 10$			
	$x_1, x_2, x_3 \ge 0$		$y_1, y_2, y_3 \ge 0$			

- $x^* = (x_1, x_2, x_3)^t = (0, 20, 10)^t$ é o ponto óptimo do problema primal.
- $y^* = (y_1, y_2, y_3) = (5,0,15)$ é o ponto óptimo do problema dual.
- $cx^* = 30(0) + 20(20) + 10(10) = 500$
- y*b = 40(5) + 150(0) + 20(15) = 500
- o óptimo é finito, e verifica o teorema forte da dualidade: $cx^* = y^*b = 500$.

Teorema da folga complementar

Teorema

No ponto óptimo, se uma variável for positiva, a variável dual correspondente é nula.

(ver no diapositivo seguinte a correspondência entre variáveis primais e duais)

Prova:

• No óptimo, $cx^* = y^*Ax^* = y^*b$. Há duas equações:

$$\begin{cases} y^*Ax^* &= y^*b \\ cx^* &= y^*Ax^* \end{cases} \begin{cases} y^*(b-Ax^*) &= 0 \\ (y^*A-c)x^* &= 0 \end{cases}$$

- Na primeira equação, $(b-Ax^*)=s^*$ é o vector das variáveis de folga do problema primal.
- Para o produto escalar $y^*s^* = 0$, como $y^* \ge 0$ e $s^* \ge 0$,
- se $y_i^* > 0 \Rightarrow s_i^* = 0$; se $s_i^* > 0 \Rightarrow y_i^* = 0$, i = 1, ..., m.

O mesmo resultado aplica-se à segunda equação $(y^*A - c)x^* = 0$.

Correspondência entre variáveis primais e duais

Regra de correspondência:

(var. folga de uma restrição) \Leftrightarrow (var. decisão dual associada à restrição).

	PRIMAL		DUAL
max	$30x_1 + 20x_2 + 10x_3$	min	$40y_1 + 150y_2 + 20y_3$
suj.	$1x_1 + 1x_2 + 2x_3 + s_1 = 40$	suj.	$1y_1 + 2y_2 + 2y_3 - \mathbf{u_1} = 30$
	$2x_1 + 2x_2 + 1x_3 + \frac{s_2}{2} = 150$		$1y_1 + 2y_2 + 1y_3 - \mathbf{u_2} = 20$
	$2x_1 + 1x_2 + s_3 = 20$		$2y_1 + 1y_2 - u_3 = 10$
	$x_1, x_2, x_3, s_1, s_2, s_3 \ge 0$		$y_1, y_2, y_3, u_1, u_2, u_3 \ge 0$

Correspondência entre Variáveis							
PRIMAL		DUAL					
	$(s_1 \Leftrightarrow y_1)$						
var. folga	$\left\{ s_2 \Leftrightarrow y_2 \right\}$	var. decisão					
	$s_3 \Leftrightarrow y_3$						
550	$\left(\begin{array}{c} x_1 \Leftrightarrow u_1 \end{array} \right)$						
var. decisão	$\left\{ \begin{array}{c} x_2 \Leftrightarrow u_2 \\ x_3 \Leftrightarrow u_3 \end{array} \right\}$	var. folga					
	$(x_3 \Leftrightarrow u_3)$						

Teorema da folga complementar: exemplo

	x_1	x_2	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
X3	-1/2	0	1	1/2	0	-1/2	10
<i>s</i> ₂	-3/2	0	0	-1/2	1	-3/2	100
<i>x</i> ₂	2	1	0	0	0	-1/2 -3/2 1	20
	5					15	

Folga complementar no quadro simplex óptimo:

- Para uma variável básica do problema primal ≥ 0 ⇒ coeficiente da linha da função objectivo (variável dual correspondente) é nulo.
- Exemplo: $x_2 = 20$, $u_2 = 0$, e $x_2u_2 = 0$.
- Para um coeficiente da linha da função objectivo (variável do problema dual) ≥ 0 ⇒ variável não-básica primal correspondente é nula.
- Exemplo: $y_3 = 15$, $s_3 = 0$, e $y_3 s_3 = 0$.

Quadro de Síntese

Relação entre os valores dos óptimos do primal e do dual

Primal		Dual
óptimo finito	\Leftrightarrow	óptimo finito
óptimo ilimitado	\Rightarrow	problema impossível
problema impossível	⇒	<pre>f óptimo ilimitado problema impossível</pre>

Método simplex dual: estratégia

Teorema: um quadro simplex é óptimo se a solução:

- for admissível para o problema primal,
- for admissível para o problema dual, e
- obedecer ao teorema da folga complementar.

ou seja: um quadro simplex é óptimo se:

- os coeficientes do lado direito forem todos ≥ 0,
- os coeficientes da linha da função objectivo forem
 - todos ≤ 0 num problema de minimização, ou
 - todos ≥ 0 num problema de maximização,
- a matriz identidade existir.

Estratégia:

 Quando existe uma solução admissível para o problema dual, o algoritmo simplex dual mantém a solução admissível para o dual, e procura encontrar uma solução admissível para o primal.

Método simplex dual: como começar?

Para obter a matriz $I_{m \times m}$ no quadro simplex:

• dado um problema de minimização em que $c \ge \widetilde{0}$:

$$min z = cx$$

$$Ax - u = b$$

$$x, u \ge 0$$

resolver:

$$min z = cx$$

$$-Ax + u = -b$$

$$x, u \ge 0$$

O quadro simplex irá apresentar:

- uma solução (primal) não-admissível, porque pode haver elementos do lado direito com valores < 0.
- uma solução dual admissível.

Exemplo

• Dado o quadro simplex sem uma matriz identidade $(I_{m \times m})$ e em que os elementos da linha da função objectivo são não-negativos:

	z_D	<i>y</i> ₁	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
	0	-1	0	3	1	1	12
	0	0	-1	2	2	0	10
z_D	1	0	0	-120	-80	-30	0

• obtém-se a $I_{m \times m}$ multiplicando as equações das restrições por (-1):

	z_D	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₁	0	1	0	-3	-1	-1	-12
<i>y</i> 2	0	0	1	-2	-2	0	-10
z_D	1	0	0	-120	-80	-30	0

A selecção do elemento pivô no método simplex dual destina-se a:

- manter os elementos da linha da função objectivo com valor ≤ 0
 (i.e., manter a solução dual admissível).
- procurar tornar os valores dos elementos do lado direito ≥ 0 (i.e., procurar obter uma solução (primal) admissível).

Algoritmo simplex dual (problema de minimização):

- Vértice dual admissível inicial (todos os coeficientes da função objectivo são não-negativos, i.e., $c \ge \widetilde{0}$) (*)
- Repetir
 - Selecção da linha pivô:
 - Coeficiente mais negativo do lado direito
 - (em caso de empate, escolha arbitrária)
 - Se não existir coef.<0, solução óptima.
 - Selecção da coluna pivô:
 - Menor valor de razão (f.objectivo/linha pivô) negativa (coef.linha<0)
 - Se não existir coef.linha <0, problema é impossível.
 - Fazer eliminação de Gauss
- Enquanto (solução não for óptima)
- nota: o elemento pivô tem sempre valor **negativo**.

^(*) ou seja, todos os coeficientes da linha da função objectivo do quadro simplex são ≤ 0 .

Exemplo: primeira iteração do método simplex dual

	z_D	<i>y</i> ₁	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₁	0	1	0	-3 -2	-1	-1	-12
<i>y</i> ₂	0	0	1	-2	-2	0	-10
z_D	1	0	0	-120	-80	-30	0

- Linha pivô: linha de y_1 (coeficiente mais negativo é -12).
- Coluna pivô: coluna de y_5 (menor valor das razões negativas é 30):
 - coluna de y_3 : -120/-3 = 40
 - coluna de y_4 : -80/-1 = 80
 - coluna de y_5 : -30/-1 = 30

410	z_D	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> 5	0	-1	0	3	1	1	12
<i>y</i> 2	0	0	1	-2	-2	0	-10
z_D	1	-30	0	-30	-50	0	360

Exemplo: restantes iterações do método simplex dual

	z_D	<i>y</i> ₁	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₅	0	-1	0	3	1	1	12
<i>y</i> ₂	0	0	1	-2	-2	0	-10
z_D	1	-30	0	-30	-50	0	360
	z_D	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>У</i> 5	
<i>y</i> ₅	0	-1	3/2	0	-2	1	-3
<i>y</i> 3	0	0	-1/2	1	1	0	5
z_D	1	-30	-15	0	-20	0	510
	z_D	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> ₅	
<i>y</i> 4	0	1/2	-3/4	0	1	-1/2	3/2
<i>y</i> 3	0	-1/2	1/4	1	0	1/2	7/2
z_D	1	-20	-30	0	0	-10	540

Solução óptima.

Método simplex dual: problema impossível

Um problema (primal) é impossível se existir:

- uma linha com um coeficiente negativo do lado direito e com todos os coeficientes das variáveis não-básicas não-negativos (≥0).
- Exemplo:

	z_D	<i>y</i> ₁	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₁	0	1	0	3	1	1	-12
у1 У2	0	0	1	-2	-2	0	-10
z_D	1	0	0	-120	-80	-30	0

- Nota: na linha de y₁, os coeficientes das variáveis y₃, y₄ e y₅ são ≥ 0 (não há um elemento pivô negativo).
- O problema é impossível, porque nenhum conjunto
 y₁, y₂, y₃, y₄, y₅ ≥ 0 satisfaz a restrição: y₁ + 3y₃ + y₄ + y₅ = -12.
- Neste caso, o problema dual tem uma solução óptima ilimitada (⇒ problema primal impossível, da teoria da dualidade).

Conclusão

- As variáveis duais traduzem o valor dos recursos, e explicam como se forma o valor de uma actividade.
- As actividades seleccionadas s\(\tilde{a}\)o aquelas que atribuem um maior valor aos recursos.
- O problema do produtor de rações é o problema dual do problema da dieta (ver Quiz sobre dualidade), e os dois problemas mostram duas perspectivas diferentes da mesma realidade.
- Há muitos outros exemplos de pares de problemas primal-dual.