REAL ANALYSIS QUALIFYING EXAM November 7, 1983

- 1. (a) Give a definition of Lebesgue outer measure λ on IR.
 - (b) Use your definition in (a) to prove that $\lambda([0,1]) = 1$.
 - (c) Prove that if $\epsilon > 0$, then there is a closed subset A of [0,1] containing no rational number such that $\lambda(A) > 1 \epsilon$.
- 2. Let $f: \mathbb{R} \to \mathbb{C}$ be continuous. Suppose that

$$\int_{\mathbb{R}} f(x)g(x)dx = 0$$

whenever g: $\mathbb{R} \to \mathbb{C}$ is continuous with compact support. Prove that f(x) = 0 for all x ϵ \mathbb{R} .

Let $(f_n)_{n=1}^{\infty}$ be a sequence of Lebesgue integrable functions on IR such that

$$\sum_{n=1}^{\infty} \int_{\mathbb{IR}} |f_n(x)| dx < \infty.$$

Prove that there is a Lebesgue integrable function f on IR such that

(a)
$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$
 a.e. on IR,

(b)
$$\lim_{N\to\infty} \int_{\mathbb{R}} |f(x) - \sum_{n=1}^{N} f_n(x)| dx = 0$$
,

and

(c)
$$\int_{\mathbb{IR}} f(x) dx = \sum_{n=1}^{\infty} \int_{\mathbb{IR}} f_n(x) dx.$$

- 4. State the following:
 - (a) The Riesz representation theorem for nonnegative linear functionals.
 - (b) Fubini's theorem on multiple integrals.
 - (c) The Radon-Nikodým Theorem.
 - (d) The Hahn-Banach Theorem.

- 5. Let (X,M) be a measurable space and let μ and ν be finite measures on it. Prove that the following two assertions are equivalent:
 - (a) $\mu(E) = 0$ whenever $E \in M$ and $\nu(E) = 0$.
 - (b) To each $\epsilon > 0$ corresponds some $\delta > 0$ such that $\mu(E) < \epsilon$ whenever E ϵ M and $\nu(E) < \delta$.
- 6. Let X be an infinite compact Hausdorff space. Prove that the Banach space C(X) is not reflexive. [Hint: For an appropriate a ϵ X, define L on the space M(X) of complex regular Borel measures on X by $L(\mu) = \mu(\{a\})$.]
- 7. Let f,g ϵ L₁(IR). Prove that the formula

$$h(x) = \int_{-\infty}^{\infty} f(x - t)g(t)dt$$

defines h almost everywhere on IR, that h ϵ L₁(IR), and that $||h||_1 \stackrel{\leq}{=} ||f||_1 \cdot ||g||_1$.

8. Let (X,M) be a measurable space and let $f:X \to [0,\infty]$ be M-measurable. Prove that there exist sequences $(a_n)_{n=1}^{\infty} \subset [0,\infty[$ and $(A_n)_{n=1}^{\infty} \subset M$ such that

$$f(x) = \sum_{n=1}^{\infty} a_n \xi_{A_n}(x)$$

for all x ϵ X. Here $\xi_{B}^{}$ is the characteristic function of B.

- 9. Let (X,M,μ) be a finite measure space and let F be a nonvoid subfamily of M. Prove that there is a set $B \in M$ satisfying both
 - (a) $\mu(F \setminus B) = 0$ for all $F \in F$

and

(b) if $A \in M$ and $\mu(F \setminus A) = 0$ for all $F \in F$, then $\mu(B \setminus A) = 0$.

[Hint: Consider the number $\beta = \sup\{\mu(U): U \text{ is a countable union of members of } F\}.$]

10. (a) Let $(n_j)_{j=1}^\infty$ be a sequence of integers such that $|n_1|<|n_2|<\dots$ Prove that the set E of all x ϵ IR such that

$$\lim_{j\to\infty} \inf_{i} x$$

exists must have Lebesgue measure 0. [Hint: Let f(x) be the above limit if $x \in E$ and f(x) = 0 otherwise. Consider the Fourier coefficients of f.]

(b) Prove that if $n_i = j!$, then E is uncountable.