Max CERF

Sommaire

- 1. Bases théoriques
- 2. Optimisation sans contraintes
- 3. Optimisation avec contraintes

Bases théoriques

Techniques d'optimisation

Sommaire

1. Bases théoriques

- 1.1 Définitions
- 1.2 Contraintes linéaires
- 1.3 Contraintes non linéaires
- 1.4 Conditions d'optimalité
- 2. Optimisation sans contraintes
- 3. Optimisation avec contraintes

- 1 Bases théoriques
- 1.1 Définitions

Sommaire

- 1. Bases théoriques
 - 1.1 Définitions
 - 1.1.1 Problème d'optimisation
 - 1.1.2 Solution
 - 1.1.3 Différentiabilité
 - 1.1.4 Convexité
 - 1.1.5 Conditionnement
 - 1.1.6 Direction de déplacement
 - 1.2 Contraintes linéaires
 - 1.3 Contraintes non linéaires
 - 1.4 Conditions d'optimalité
- 2. Optimisation sans contraintes
- 3. Optimisation avec contraintes

- 1 Bases théoriques
- 1.1 Définitions
- 1.1.1 Problème d'optimisation

1.1.1 Problème d'optimisation

- ☐ Classification des problèmes d'optimisation
 - Optimisation continue dans Rⁿ
- ☐ Formulation mathématique et notations
 - Variables
 - Critère
 - Contraintes
- ☐ Norme sur Rⁿ
 - Norme vectorielle
 - Norme matricielle
- ☐ Suite dans Rⁿ
 - Limite
 - Vitesse de convergence

- 1 Bases théoriques
- 1.1 Définitions
- 1.1.1 Problème d'optimisation

1.1.1 Classification

Optimisation fonctionnelle / paramétrique

- Inconnues = fonctions \rightarrow Optimisation fonctionnelle
 - Optimisation en dimension infinie Commande optimale
- Inconnues = entiers ou réels → Optimisation paramétrique
 Optimisation en dimension finie
 Programmation mathématique

Programmation mathématique

- Inconnues = entiers → Optimisation combinatoire
 Programmation en nombres entiers
- Inconnues = réels → Optimisation continue

 Programmation linéaire (LP)

 Programmation non linéaire (NLP)
- Inconnues = entiers et réels → Programmation mixte

- 1 Bases théoriques
- 1.1 Définitions
- 1.1.1 Problème d'optimisation

1.1.1 Formulation

Formulation mathématique

$$\min_{\mathbf{x} \in \mathbf{R}^{n}} f(\mathbf{x}) \quad \text{sous} \quad \begin{cases} c_{\mathbf{E}}(\mathbf{x}) = 0\\ c_{\mathbf{I}}(\mathbf{x}) \le 0\\ \mathbf{x} \in \mathbf{X} \end{cases}$$

→ formulation standard problème noté (PO)

Notations

• x: n variables ou paramètres ou inconnues

 \rightarrow vecteur de R^n

• f: critère ou fonction coût ou fonction objectif

→ fonction de Rⁿ dans R $x \in R^n \mapsto f(x) \in R$

• c_E: p contraintes d'égalité

→ fonction de R^n dans R^p $x \in R^n \mapsto c_F(x) \in R^p$

• c₁: q contraintes d'inégalité

→ fonction de R^n dans R^q $x \in R^n \mapsto c_1(x) \in R^q$

• X: ensemble convexe $X \subseteq \mathbb{R}^n$

→ valeurs admissibles des variables

- 1 Bases théoriques
- 1.1 Définitions
- 1.1.1 Problème d'optimisation

1.1.1 Optimisation continue

Hypothèses

Continuité : Fonctions continues de variables réelles

→ Optimisation continue

≠ Optimisation combinatoire, Programmation en nombres entiers

• Différentiabilité : Fonctions différentiables

→ Méthodes à base de gradient

≠ Méthodes sans dérivées

• Déterminisme : Les données du problème sont parfaitement connues

≠ Optimisation stochastique

• Programmation linéaire : coût linéaire et contraintes linéaires (LP)

• Programmation quadratique : coût quadratique et contraintes linéaires (QP)

• Programmation non linéaire : cas général, fonctions quelconques (NLP)

Rappels d'analyse

- Norme
- Suite Convergence

1 Bases théoriques

1.1 Définitions

1.1.1 Problème d'optimisation

Techniques d'optimisation

1.1.1 Norme

Norme vectorielle sur Rⁿ

• Fonction
$$\| . \| : \mathbb{R}^n \to \mathbb{R}$$
 vérifiant

• Norme p:
$$\|\mathbf{x}\|_{p} = \sqrt[p]{\sum_{i=1}^{n} |\mathbf{x}_{i}|^{p}}$$

• Norme
$$\infty$$
: $\|\mathbf{x}\|_{\infty} = \max_{i=1,\dots,n} |\mathbf{x}_i|$

• Norme 2 = norme euclidienne

vérifiant $\begin{cases} \|x\| \ge 0 \\ \|x\| = 0 \iff x = 0 \\ \|x + y\| \le \|x\| + \|y\| \\ \|\alpha x\| = |\alpha| \|x\| \end{cases}$

Norme matricielle

- Norme induite sur $R^{m\times n}$ par la norme vectorielle $\|\cdot\|$
- Fonction $\| \cdot \|_{m \times n} : \mathbb{R}^{m \times n} \to \mathbb{R}$ définie par $\| A \|_{m \times n} = \max_{x \in \mathbb{R}^n, x \neq 0} \frac{\| Ax \|}{\| x \|}$

- 1 Bases théoriques
- 1.1 Définitions
- 1.1.1 Problème d'optimisation

1.1.1 Suite

Suite dans Rⁿ

- Suite: $\{x_k, k=0,1,2,...\} = \{x_0, x_1, x_2,..., x_n, ...\}$
- Limite: $\lim_{k \to \infty} x_k = x^* \iff \lim_{k \to \infty} ||x_k x^*||$

Vitesse de convergence

- Convergence linéaire : $\|\mathbf{x}_{k+1} \mathbf{x}^*\| \le c \|\mathbf{x}_k \mathbf{x}^*\|$ avec $0 \le c < 1$ \rightarrow lent à partir d'un certain rang \mathbf{k}_0
- $\begin{array}{ll} \bullet & \text{Convergence superlin\'eaire}: & \left\|x_{k+1}-x^*\right\| \leq c_k \left\|x_k-x^*\right\| & \text{avec } \lim\limits_{k\to\infty} c_k = 0 \\ & \text{à partir d'un certain rang } k_0 \end{array}$
- Convergence d'ordre p : $\|x_{k+1} x^*\| \le c \|x_k x^*\|^p \quad \text{avec} \quad 0 \le c < 1$ à partir d'un certain rang k_0
- Convergence quadratique si p=2

 → rapide

- 1 Bases théoriques
- 1.1 Définitions
- 1.1.2 Solution

1.1.2 Solution

- ☐ Solution admissible
- ☐ Minimum
 - Minimum local
 - Minimum global
 - Infimum
- ☐ Problèmes équivalents
 - Transformations simples
- ☐ Contrainte active
- ☐ Point intérieur

1 Bases théoriques1.1 Définitions1.1.2 Solution

Techniques d'optimisation

1.1.2 Solution admissible

Solution admissible

x solution admissible de (PO) \Leftrightarrow x satisfait les contraintes (ou point admissible)

$$\begin{cases} c_{E}(x) = 0 \\ c_{I}(x) \le 0 \\ x \in X \end{cases}$$

Ensemble admissible

$$X_{adm} = \{x \in \mathbb{R}^{n} / c_{E}(x) = 0, c_{I}(x) \le 0, x \in X \}$$

Illustration dans R²

- $c_1(x) = 0 \rightarrow \text{courbe}$
- $c_2(x) \le 0 \rightarrow \text{région du plan}$
- $c_3(x) \le 0 \rightarrow \text{région du plan}$

Dans Rn

- c(x) = 0 \rightarrow **hypersurface** (dimension n-1)
- $a^Tx = 0 \rightarrow \text{hyperplan} \perp a \in \mathbb{R}^n$ (linéaire)

Bases théoriques

1.1 Définitions

1.1.2 Solution

Techniques d'optimisation

1.1.2 Minimum

Minimum global (= meilleure solution dans l'absolu)

- x^* minimum global de (PO) $\iff \forall x \in X_{adm}, f(x^*) \le f(x)$
- x^* minimum global strict $\Leftrightarrow \forall x \in X_{adm}, f(x^*) < f(x) \text{ si } x \neq x^*$

Minimum local (= meilleure solution dans un voisinage)

Bases théoriques
 Définitions
 1.1.2 Solution

Techniques d'optimisation

1.1.2 Infimum

Borne inférieure

$$\begin{array}{ccc} f:R^n \to R & f \ \ born\acute{e}e \ inf\'{e}rieurement \ sur \ Y \subseteq R^n \\ \Leftrightarrow \ \exists M \in R \ / \ \forall x \in Y \ , \ M \leq f(x) \end{array}$$

Infimum

- Infimum de f sur Y = plus grande borne inférieure
- Notation : $\inf_{Y} f = \inf \{ f(y), y \in Y \}$

Propriété :
$$\begin{cases} \forall x \in Y, \ \inf_{Y} f \leq f(x) \\ \text{et} \\ \forall M > \inf_{Y} f, \ \exists x \in Y \ / \ f(x) < M \end{cases}$$

Théorème de Weierstrass

- f atteint son infimum si f continue, Y compact : $\exists x^* \in Y / f(x^*) = \inf_Y f$
- Conditions réalisées en pratique : fonctions continues, intervalles fermés
 → Le problème (PO) admet une solution x*.

Bases théoriques
 Définitions
 Solution

Techniques d'optimisation

1.1.2 Problèmes équivalents

Problèmes équivalents

 (PO_1) et (PO_2) sont deux problèmes équivalents si on peut associer à tout point admissible x_1 de (PO_1) un point admissible x_2 de (PO_2) avec la même valeur pour le critère.

 (PO_1) et (PO_2) ont alors des solutions de même coût : $f_1(x_1^*) = f_2(x_2^*)$

Transformations simples

• Changement de variable : $y = \varphi(x)$ avec φ strictement croissante sur X

• Maximisation / minimisation : $\frac{\max_{x} f(x) \Leftrightarrow \min_{x} (-f(x))}{\sum_{x} f(x)}$

• Contrainte inférieur / supérieur : $c(x) \ge 0 \iff -c(x) \le 0$

• Variables positives : $x = x^+ - x^- \text{ avec } \begin{cases} x^+ \ge 0 \\ x^- \ge 0 \end{cases}$

Variables d'écart : $c(x) \le 0 \iff \begin{cases} c(x) + y = 0 \\ y \ge 0 \end{cases} \iff c(x) + z^2 = 0$

Bases théoriques 1.1 Définitions 1.1.2 Solution

Techniques d'optimisation

1.1.2 Contrainte active

Contrainte active

Une contrainte du problème (PO) est active (ou saturée) en x si elle s'annule en x.

Ensemble des contraintes actives

$$C_{act}(x) = \{j/c_{Ej}(x) = 0\} \bigcup \{j/c_{Ij}(x) = 0\}$$

- Contrainte égalité c_E : x admissible $\Rightarrow c_E(x) = 0 \Rightarrow c_E$ active en x Contrainte inégalité c_I : x admissible $\Rightarrow c_I(x) \le 0 \Rightarrow c_I$ active en x si $c_I(x) = 0$ c_{t} inactive en x si $c_{t}(x) < 0$

Intérêt

- Les contraintes inégalité inactives n'ont pas d'influence sur la solution x* du problème (PO). On peut les ignorer, si on identifie l'ensemble $C_{act}(x^*)$. Mais x^* n'est pas connu au départ ...
- Le problème (PO) est équivalent au problème (PO)_{act} réduit aux contraintes actives prises comme des contraintes égalité.

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) \text{ sous } \begin{cases} c_{E}(\mathbf{x}) = 0 \\ c_{I}(\mathbf{x}) \leq 0 \end{cases} \iff \min_{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) \text{ sous } c_{j}(\mathbf{x}) = 0, j \in C_{act}(\mathbf{x}^{*}) \quad \text{note } \boxed{\min_{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) \text{ sous } c(\mathbf{x}) = 0}$$

1 Bases théoriques

1.1 Définitions

1.1.2 Solution

Techniques d'optimisation

1.1.2 Exemple

Contrainte active

$$\min_{x \in R} x^2 + 1 \text{ sous } \begin{cases} x \ge 1 \\ x \le 2 \end{cases} \rightarrow x^* = 1$$

1. Minimum sans contrainte

$$\min_{x \in R} x^2 + 1 \rightarrow x^* = 0$$

- Respecte la contrainte $x \le 2$
- Ne respecte pas la contrainte $x \ge 1$ \rightarrow Activation de la contrainte x = 1
- 2. Minimum avec contrainte active x = 1

$$\min_{x \in R} x^2 + 1 \text{ sous } x = 1 \rightarrow x^* = 1$$

- Respecte la contrainte $x \le 2$
- Respecte la contrainte x ≥ 1
 → Solution du problème

- Minimum sans contrainte
- Minimum avec contrainte

- 3. Bilan: 1 contrainte active $x \ge 1$ 1 contrainte inactive $x \le 2$
- → transformée en égalité
- → ignorée

- Bases théoriques 1.1 Définitions
- 1.1.2 Solution

1.1.2 Point intérieur

Point intérieur

y point intérieur à Y

 \Leftrightarrow Il existe un voisinage de y contenu dans Y : $\exists \epsilon > 0 / \forall z, ||z - y|| \le \epsilon, z \in Y$ Un problème avec contraintes égalité n'admet pas de point intérieur

Solution intérieure aux contraintes

- x* minimum local du problème avec contraintes inégalité
- Si x* est un point intérieur, alors x* minimum local du problème sans contraintes

 $\min_{x \in R^n} f(x)$ sous $c_1(x) \le 0$

 $\min_{x \in R^n} f(x)$ \rightarrow plus simple

- 1 Bases théoriques
- 1.1 Définitions
- 1.1.2 Solution

1.1.2 Exemple

Point intérieur

$$\min_{x \in R} x^2 + 1 \text{ sous } x \le 1 \rightarrow x^* = 0$$

1. Ensemble admissible

$$X_{adm} = \{x \in R / x \le 1\} =]-\infty,1]$$

2. Ensemble intérieur à la contrainte

$$X_{int} = \{x \in R / x < 1\} =]-\infty, 1[$$

$$X_{int} = X_{adm} - \{1\}$$

 $x \in X_{int}$ \rightarrow voisinage de x inclus dans X_{int} \rightarrow intervalle ouvert

Minimum avec contrainte

3. Solution: $x^*=0$

 $x^* \in X_{int}$ intérieur à la contrainte \rightarrow contrainte inactive

- 1 Bases théoriques
- 1.1 Définitions
- 1.1.3 Différentiabilité

1.1.3 Différentiabilité

- ☐ Définitions
 - Dérivée partielle
 - Dérivée directionnelle
 - Gradient
 - Hessien
 - Jacobien
- ☐ Théorème de Taylor
 - Ordre 1 et 2
 - Modèle quadratique-linéaire
 - Ligne de niveau
- ☐ Dérivées numériques
 - Différences finies
 - Erreurs numériques
 - Incrément

- Bases théoriques
- Définitions
- 1.1.3 Différentiabilité

1.1.3 Gradient

Différentiabilité ordre 1

f fonction continue de Rⁿ dans R

Dérivée partielle

si la limite existe

Dérivée partielle de f en x par rapport à
$$x_i$$
: $f_{x_i}(x) = \frac{\partial f(x)}{\partial x_i} = \lim_{s \to 0} \frac{f(x_1, ..., x_i + s, ..., x_n) - f(x_1, ..., x_i, ..., x_n)}{s}$

Gradient

Gradient de f en x : $g(x) = \nabla f(x)$ $g(x) : R^n \to R^n$ si toutes les dérivées partielles existent

$$g(x) = \left(\frac{\partial f(x)}{\partial x_i}\right)_{i=1,\dots,n} = \left(\frac{\frac{\partial f(x)}{\partial x_1}}{\frac{\partial f(x)}{\partial x_n}}\right)$$

Dérivée directionnelle

Dérivée directionnelle de f en x dans la direction $d \in \mathbb{R}^n$: si la limite existe (dérivée directionnelle = produit scalaire avec le gradient)

$$f_{d}(x) = \lim_{s \to 0} \frac{f(x + sd) - f(x)}{s}$$

$$\Rightarrow \boxed{f_{d}(x) = g(x)^{T} d}$$

Fonction différentiable

f différentiable en x \Leftrightarrow f admet une dérivée directionnelle pour tout $d \in R^n$

- Bases théoriques
- **Définitions**
- 1.1.3 Différentiabilité

1.1.3 Hessien

Différentiabilité ordre 2

f fonction deux fois différentiable de Rⁿ dans R

Hessien

Hessien de f en x :
$$H(x) = \nabla^2 f(x)$$

 $H(x) : R^n \to R^{n \times n}$

$$H(x) = \left(\frac{\partial^2 f(x)}{\partial x_i \partial x_j}\right)_{i,j=1,\dots,n} = \begin{pmatrix} \frac{\partial^2 f(x)}{\partial^2 x_1} & \dots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \dots & \frac{\partial^2 f(x)}{\partial^2 x_n} \end{pmatrix}$$

Courbure

On définit pour une direction $d \in \mathbb{R}^n$ au point x la fonction φ à une variable : $\varphi(s) = f(x+sd)$ → variation de f dans la direction d

- Dérivée première : $\phi'(s) = d^T \nabla f(x + sd) \rightarrow \phi'(0) = d^T g(x)$ Dérivée seconde : $\phi''(s) = d^T \nabla^2 f(x + sd)d \rightarrow \phi''(0) = d^T H(x)d$

La courbure de f en x dans la direction d est définie par : $\frac{d^T H(x)d}{d^T d}$

- \rightarrow normalisation de φ " en s=0
 - = quotient de Rayleigh de H(x) dans la direction d

- Bases théoriques **Définitions**
- 1.1.3 Différentiabilité

1.1.3 Jacobien

Matrice gradient

c fonction continue de Rⁿ dans R^m

Gradient de c en x : $\nabla c(x)$: $R^n \to R^{n \times m}$

$$\nabla c(x) = (\nabla c_1(x), \dots, \nabla c_m(x)) = \left(\frac{\partial c_j(x)}{\partial x_i}\right)_{\substack{i=1,\dots,n\\j=1,\dots,m}} = \begin{pmatrix} \frac{\partial c_1(x)}{\partial x_1} & \dots & \frac{\partial c_m(x)}{\partial x_1} \\ \dots & \dots & \dots \\ \frac{\partial c_1(x)}{\partial x_n} & \dots & \frac{\partial c_m(x)}{\partial x_n} \end{pmatrix}$$

Matrice jacobienne (« jacobien » = déterminant de J_c)

$$\mathbf{J}_{c}(\mathbf{x}) = \nabla \mathbf{c}(\mathbf{x})^{\mathrm{T}} = \begin{pmatrix} \nabla \mathbf{c}_{1}(\mathbf{x})^{\mathrm{T}} \\ \dots \\ \nabla \mathbf{c}_{m}(\mathbf{x})^{\mathrm{T}} \end{pmatrix} = \begin{pmatrix} \frac{\partial \mathbf{c}_{i}(\mathbf{x})}{\partial \mathbf{x}_{j}} \end{pmatrix}_{\substack{i=1,\dots,n\\j=1,\dots,m}} = \begin{pmatrix} \frac{\partial \mathbf{c}_{1}(\mathbf{x})}{\partial \mathbf{x}_{1}} & \dots & \frac{\partial \mathbf{c}_{1}(\mathbf{x})}{\partial \mathbf{x}_{n}} \\ \dots & \dots & \dots \\ \frac{\partial \mathbf{c}_{m}(\mathbf{x})}{\partial \mathbf{x}_{1}} & \dots & \frac{\partial \mathbf{c}_{m}(\mathbf{x})}{\partial \mathbf{x}_{n}} \end{pmatrix}$$

Contraintes du problème (PO)

Matrice jacobienne regroupant les contraintes égalité c_E et les contraintes inégalité c_I

$$J(x): R^{n} \to R^{(p+q)\times n} \qquad J(x) = \begin{pmatrix} J_{E}(x) \\ J_{I}(x) \end{pmatrix} = \begin{pmatrix} \nabla c_{E}(x)^{T} \\ \nabla c_{I}(x)^{T} \end{pmatrix}$$

1 Bases théoriques

1.1 Définitions

1.1.3 Différentiabilité

Techniques d'optimisation

1.1.3 Théorème de Taylor

Théorème de Taylor

f fonction de R^n dans $R: x \in R^n \mapsto f(x) \in R$ $d \in R^n$: déplacement à partir de x

Ordre 1

f continument différentiable 1 fois au voisinage de x

$$f(x+d) = f(x) + \nabla f(x)^{T} d + o(||d||)$$

Il existe $s \in [0,1]$ tel que: $f(x+d) = f(x) + \nabla f(x+sd)^T d$

Ordre 2

f continument différentiable 2 fois au voisinage de x

$$f(x+d) = f(x) + \nabla f(x)^{T} d + \frac{1}{2} d^{T} \nabla^{2} f(x) d + o(||d||^{2})$$

Il existe $s \in [0,1]$ tel que : $f(x+d) = f(x) + \nabla f(x)^{T} d + \frac{1}{2} d^{T} \nabla^{2} f(x+sd) d$

1.1.3 Modèle quadratique-linéaire

Problème avec contraintes égalité

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{sous } c(x) = 0 \quad \to \text{ contrainte actives}$$

Fonction modèle

- Application du théorème de Taylor au point x₀∈Rⁿ
- Modèle quadratique du critère : $\hat{f}_0(x) = f(x_0) + \nabla f(x_0)^T (x x_0) + \frac{1}{2} (x x_0)^T \nabla^2 f(x_0) (x x_0)$
- Modèle linéaire des contraintes : $\hat{c}_0(x) = c(x_0) + \nabla c(x_0)^T (x x_0)$

Problème quadratique-linéaire local

Au voisinage de
$$x_0$$
:
$$\begin{cases} f(x) \approx \hat{f}_0(x) \\ c(x) \approx \hat{c}_0(x) \end{cases}$$

$$\min_{\mathbf{x} \in \mathbb{R}^n} \hat{\mathbf{f}}_0(\mathbf{x})$$
 sous $\hat{\mathbf{c}}_0(\mathbf{x}) = 0$ \rightarrow **Problème quadratique-linéaire**

- localement « proche » du problème initial
- plus simple à résoudre

Bases théoriques
 Définitions
 3 Différentiabilité

Techniques d'optimisation

1.1.3 Exemple

Modèle quadratique : fonction de 1 variable

• Fonction:
$$f(x) = -x^4 + 12x^3 - 47x^2 + 60x$$

• Gradient:
$$\nabla f(x) = -4x^3 + 36x^2 - 94x + 60$$

• Hessien:
$$\nabla^2 f(x) = -12x^2 + 72x - 94$$

• Modèle quadratique en
$$x_0 = 3$$
: $f(x_0) = 0$, $\nabla f(x_0) = -6$, $\nabla^2 f(x_0) = 14$

$$\hat{f}_0(x) = -6(x-3) + \frac{1}{2}14(x-3)^2 = 7x^2 - 48x + 81$$

• Modèle quadratique en
$$x_0 = 4$$
: $f(x_0) = 0$, $\nabla f(x_0) = 4$, $\nabla^2 f(x_0) = 2$

$$\hat{f}_0(x) = 4(x-4) + \frac{1}{2}2(x-4)^2 = x^2 - 4x$$

• Modèle quadratique en
$$x_0 = 5$$
: $f(x_0) = 0$, $\nabla f(x_0) = -10$, $\nabla^2 f(x_0) = -34$

$$\hat{f}_0(x) = -10(x-5) - \frac{1}{2}34(x-5)^2 = -17x^2 + 160x - 375$$

1.1.3 Exemple

Modèle quadratique : fonction de 2 variables

• Fonction:
$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2 \rightarrow \text{fonction de Rosenbrock}$$

• Gradient:
$$\nabla f(x) = \begin{pmatrix} -400(x_2 - x_1^2)x_1 - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{pmatrix}$$

• Hessien:
$$\nabla^2 f(x) = \begin{pmatrix} -400(x_2 - 3x_1) + 2 & -400x_1 \\ -400x_1 & 200 \end{pmatrix}$$

• Modèle quadratique en
$$x_0 = (1,1)$$
: $f(x_0) = 0$, $\nabla f(x_0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\nabla^2 f(x_0) = \begin{pmatrix} 802 & -400 \\ -400 & 200 \end{pmatrix}$

$$\hat{\mathbf{f}}_0(\mathbf{x}_1, \mathbf{x}_2) = \frac{1}{2} \begin{pmatrix} \mathbf{x}_1 - 1 \\ \mathbf{x}_2 - 1 \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} 802 & -400 \\ -400 & 200 \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 - 1 \\ \mathbf{x}_2 - 1 \end{pmatrix}$$

$$\Rightarrow \hat{f}_0(x_1, x_2) = 401(x_1 - 1)^2 - 400(x_1 - 1)(x_2 - 1) + 100(x_2 - 1)^2$$

Bases théoriques **Définitions** 1.1.3 Différentiabilité

Techniques d'optimisation

1.1.3 Résultats utiles

Gradient d'une fonction scalaire

Le gradient de $f: R^n \to R$ en x est le vecteur $g \in R^n$ tel que $f(x+d) = f(x) + g^{T}d + o(d), \forall d \in \mathbb{R}^{n}$

• Fonction quadratique:
$$f(x+d) = f(x) + g \cdot d + o(||a||), \forall d \in \mathbb{R}$$
• Fonction quadratique:
$$f(x) = \frac{1}{2}x^{T}Qx + c^{T}x + b$$

$$Q \text{ matrice symétrique}$$

$$f(x+d) = \frac{1}{2}(x+d)^{T}Q(x+d) + c^{T}(x+d) + b = f(x) + (Qx+c)^{T}d + \frac{1}{2}d^{T}Qd$$

$$\rightarrow \nabla f(x) = Qx + c$$
Cradient d'une fonction vectorialle

Gradient d'une fonction vectorielle

- Le gradient de f : $\mathbb{R}^n \to \mathbb{R}^p$ en x est la matrice $G \in \mathbb{R}^{n \times p}$ telle que $f(x+d) = f(x) + G^{T}d + o(||d||), \ \forall d \in R^{n}$
- Fonction composée: |f(x) = h(g(x))| avec $f: R^n \to R^p$, $g: R^n \to R^m$, $h: R^m \to R^p$ $f(x+d) = h(g(x+d)) = h(g(x) + \nabla g(x)^{\mathsf{T}} d + o(||d||)) = h(g(x)) + \nabla h(g(x))^{\mathsf{T}} \nabla g(x)^{\mathsf{T}} d + o(||d||)$ $\rightarrow \left| \nabla f(x) = \nabla g(x) \overline{\nabla h(g(x))} \right|$
- **Fonction linéaire**: $g(x) = Ax \implies g(x+d) = Ax + Ad \implies \nabla g(x) = A^T$ $f(x) = h(Ax) \rightarrow \nabla f(x) = A^{T} \nabla h(Ax)$

 $\nabla^2 f(x) = Q$

- 1 Bases théoriques
- 1.1 Définitions
- 1.1.3 Différentiabilité

1.1.3 Ligne de niveau

Définition

- Ligne (ou surface) de niveau l_0 de la fonction f $L_0 = \left\{ x \in \mathbb{R}^n / f(x) = l_0 \right\} \longrightarrow \text{hypersurface dans } \mathbb{R}^n \text{ (sous-espace de dimension n-1)}$
- Ligne de niveau passant par x_0 $L_0 = \left\{ x \in \mathbb{R}^n / f(x) = f(x_0) \right\} \text{ avec } f(x) = f(x_0) + \nabla f(x_0)^T (x - x_0) + o(\|x - x_0\|) \text{ à l'ordre 1}$

Gradient

 $x \in L_0 \implies f(x) = f(x_0) \implies \nabla f(x_0)^T (x - x_0) = 0 \implies \text{hyperplan tangent à } L_0 \text{ en } x_0$ Le gradient de f est orthogonal aux lignes de niveaux.

- 1 Bases théoriques
- 1.1 Définitions
- 1.1.3 Différentiabilité

1.1.3 Exemple

Ligne de niveau : fonction quadratique

$$f(x_1, x_2) = x_1^2 + 25x_2^2$$

1 Bases théoriques1.1 Définitions1.1.3 Différentiabilité

Techniques d'optimisation

1.1.3 Exemple

Ligne de niveau : fonction de Rosenbrock

$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

Bases théoriques 1.1 Définitions 1.1.3 Différentiabilité

Techniques d'optimisation

1.1.3 Dérivées numériques

Différences finies

Les expressions analytiques de $\nabla f(x)$ et $\nabla^2 f(x)$ ne sont généralement pas disponibles.

→ Evaluation par différences finies avec incrément h appliqué successivement sur chaque variable

$$x \to x + he_i$$
 avec $e_i = (0, \dots, 0, 1, 0, \dots, 0)^T$, $i = 1 \ a$

Gradient

aval si h>0

Différence finie simple :
$$\frac{\partial f}{\partial x_i}(x) = \frac{f(x + he_i) - f(x)}{h} + o(h)$$
amont si h<0

 \rightarrow n appels fonction pour évaluer $\nabla f(x)$

plus précis

Différence finie centrée :
$$\frac{\partial f}{\partial x_i}(x) = \frac{f(x + he_i) - f(x - he_i)}{2h} + o(h^2)$$

 \rightarrow 2n appels fonction pour évaluer $\nabla f(x)$

Hessien

Différence finie simple: $\frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \frac{f(x + he_i + he_j) - f(x + he_j) - f(x + he_j) + f(x)}{h^2} + o(h)$

 \rightarrow n(n+1)/2+n appels function pour évaluer $\nabla^2 f(x)$

- 1 Bases théoriques1.1 Définitions
- 1.1.3 Différentiabilité

1.1.3 Dérivées numériques

Sources d'erreurs

L'évaluation d'une dérivée par différence finie génère 2 types d'erreurs :

- Erreur d'arrondi (ou de conditionnement)
- Erreur de troncature

Erreur d'arrondi

Les réels sont représentés en mémoire machine calcul avec une précision finie.

La précision machine $\varepsilon_{\rm m}$ est le plus petit réel tel que : $1 + \varepsilon_{\rm m} \neq 1$

- \rightarrow erreur relative $\varepsilon_{\rm m}$ =10⁻¹⁶ sur la valeur d'un réel x en double précision
- \rightarrow erreur relative ϵ_r sur la valeur évaluée de f(x)

 $\varepsilon_r >> \varepsilon_m$ par cumul des erreurs au cours des opérations pour passer de x à f(x)

$$f_{\text{eval}}(x) = f_{\text{exact}}(x)(1 \pm \varepsilon_r) = f_{\text{exact}}(x) \pm \varepsilon_f$$
 $\rightarrow \varepsilon_f = \text{erreur absolue sur } f$

Erreur de troncature

L'évaluation d'une dérivée par différence finie tronque le développement de Taylor à l'ordre 1.

•
$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{1}{2}h^2f''(x_0 + sh)$$
 avec $s \in [0,1]$

•
$$f(x_0 + h) = f(x_0) + hf'(x_0) \pm \frac{1}{2}h^2\varepsilon_t$$
 avec $\varepsilon_t < M$ majorant de $|f''(x)|$ sur $[x_0, x_0 + d]$

Bases théoriques 1.1 Définitions 1.1.3 Différentiabilité

Techniques d'optimisation

1.1.3 Dérivées numériques

Erreur sur la dérivée

$$f'_{\text{eval}}(\mathbf{x}_0) = \frac{f_{\text{eval}}(\mathbf{x}_0 + \mathbf{h}) - f_{\text{eval}}(\mathbf{x}_0)}{\mathbf{h}}$$
 avec

$$\begin{aligned} \bullet & f_{\text{eval}}(\mathbf{x}_0) &= f_{\text{exact}}(\mathbf{x}_0) & \pm \varepsilon_{\text{f}} \\ \bullet & f_{\text{eval}}(\mathbf{x}_0 + \mathbf{h}) &= f_{\text{exact}}(\mathbf{x}_0 + \mathbf{h}) & \pm \varepsilon_{\text{f}} \end{aligned}$$

$$→ arrondi sur f_{eval}(x_0) → arrondi sur f_{eval}(x_0+$$

$$f_{\text{eval}}(\mathbf{x}_0 + \mathbf{h}) = f_{\text{exact}}(\mathbf{x}_0 + \mathbf{h})$$

$$\rightarrow$$
 arrondi sur $f_{\text{eval}}(x_0+h)$

•
$$f_{\text{exact}}(x_0 + h) = f_{\text{exact}}(x_0) + h f_{\text{exact}}(x_0) \pm \frac{1}{2} h^2 \varepsilon_t$$

 \rightarrow troncature sur $f_{\text{exact}}(x_0+h)$

En remplaçant dans l'expression de $f'_{eval}(x_0)$:

$$\Rightarrow f_{\text{eval}}(x_0) = \frac{f_{\text{exact}}(x_0 + h) - f_{\text{exact}}(x_0) \pm 2\varepsilon_f}{h} = \frac{hf_{\text{exact}}(x_0) \pm \frac{1}{2}h^2\varepsilon_t \pm 2\varepsilon_f}{h}$$

$$\Rightarrow f_{\text{eval}}(x_0) = f_{\text{exact}}(x_0) \pm \frac{h\varepsilon_t}{2} \pm \frac{2\varepsilon_f}{h}$$

L'erreur maximale sur la dérivée numérique est :

$$\varepsilon_{\rm f'} = \frac{h\epsilon_{\rm t}}{2} + \frac{2\epsilon_{\rm f}}{h}$$

1.1.3 Dérivées numériques

Incrément optimal

• On choisit l'incrément pour minimiser l'erreur : $\min_{h} \varepsilon_{f'} = \frac{h\varepsilon_{t}}{2} + \frac{2\varepsilon_{f}}{h}$

$$\frac{d\varepsilon_{f'}}{dh} = \frac{\varepsilon_{t}}{2} - \frac{2\varepsilon_{f}}{h^{2}} = 0 \quad \Rightarrow \quad h_{opt} = 2\sqrt{\frac{\varepsilon_{f}}{\varepsilon_{t}}}$$
$$\Rightarrow \quad \varepsilon_{f'} = 2\sqrt{\varepsilon_{f}\varepsilon_{t}}$$

• Règle empirique de réglage de l'incrément

En supposant que l'ordre de grandeur de la dérivée seconde est de l'ordre de 1 :

$$h_{opt} \approx \sqrt{\epsilon_f}$$

→ incrément de l'ordre de la racine de la précision d'évaluation de f

$$\epsilon_{\rm f'}~\approx \sqrt{\epsilon_{\rm f}}$$

→ précision sur f' de l'ordre de la racine de la précision d'évaluation de f (2 fois moins de chiffres significatifs)

Bases théoriques

1.1 Définitions

1.1.3 Différentiabilité

Techniques d'optimisation

1.1.3 Exemple

Dérivée numérique

$$f(x) = x^4 + x^2 \rightarrow f'(x) = 4x^3 + 2x$$

Dérivée en x=1 : f'(1) = 6

• Dérivée en x=1 : f'(1) = 6
• Dérivée numérique avec incrément h
$$\rightarrow$$
 erreur e(h) = $\left| \frac{f(x+h) - f(x)}{h} - f'(x) \right|$

h	(f(x+h)-f(x))/h	Erreur
1E-01	6,7410000000	7,410E-01
1E-02	6,0704010000	7,040E-02
1E-03	6,0070040010	7,004E-03
1E-04	6,0007000400	7,000E-04
1E-05	6,0000700004	7,000E-05
1E-06	6,0000069997	7,000E-06
1E-07	6,0000007007	7,007E-07
1E-08	6,0000000079	7,944E-09
1E-09	6,0000004964	4,964E-07
1E-10	6,0000004964	4,964E-07
1E-11	6,0000004964	4,964E-07
1E-12	6,0005334035	5,334E-04
1E-13	5,9952043330	-4,796E-03
1E-14	5,9952043330	-4,796E-03
1E-15	6,6613381478	6,613E-01

- 1 Bases théoriques1.1 Définitions
- 1.1.4 Convexité

1.1.4 Convexité

- ☐ Ensemble convexe
- ☐ Fonction convexe
- ☐ Lien avec le gradient et le hessien

- 1 Bases théoriques
- 1.1 Définitions
- 1.1.4 Convexité

1.1.4 Convexité

Ensemble convexe

 $X \subseteq \mathbb{R}^n \text{ convexe} \qquad \Leftrightarrow \qquad \forall x, y \in X, \ \forall \lambda \in [0,1], \ \lambda x + (1-\lambda)y \in X$

Interprétation géométrique : Segment inclus dans X

Fonction convexe

f fonction de Rn dans R

• f convexe $\forall x, y \in \mathbb{R}^n$, $\forall \lambda \in [0,1]$, $f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)$

• f strictement convexe $\Leftrightarrow \forall x, y \in R^n$, $\forall \lambda \in]0,1[$, $f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y)$

• f concave \Leftrightarrow -f convexe

Interprétation géométrique : Sécante au dessus de la courbe

Concavité vers le haut

- 1 Bases théoriques
- 1.1 Définitions
- 1.1.4 Convexité

1.1.4 Convexité

Convexité et gradient

f fonction différentiable de X⊆Rⁿ dans R, X ensemble convexe ouvert

- f convexe $\Leftrightarrow \forall x, y \in X, f(y) f(x) \ge (y x)^T g(x)$
- f strictement convexe $\Leftrightarrow \forall x, y \in X, f(y) f(x) > (y x)^T g(x)$

Interprétation géométrique : Tangente au dessous de la courbe

Convexité et hessien

f fonction deux fois différentiable de $X \subseteq R^n$ dans R, X ensemble convexe ouvert

- f convexe $\Leftrightarrow \forall x \in R^n$, H(x) semi-définie positive
- f strictement convexe $\Leftrightarrow \forall x \in \mathbb{R}^n$, H(x) définie positive

Matrice définie positive

 $A \in R^{n \times n}$

- A définie positive $\Leftrightarrow \forall d \in \mathbb{R}^n, d^T A d > 0$
- A semi-définie positive $\Leftrightarrow \forall d \in \mathbb{R}^n, d^T A d \ge 0$

1 Bases théoriques

1.1 Définitions

1.1.4 Convexité

Techniques d'optimisation

1.1.4 Exemple

Fonction convexe

• Fonction : $f(x) = x^2$

 $f''(x) = 2 \rightarrow \text{convexe sur } R$

• Fonction : $f(x) = x^3$

 $f''(x) = 6x \rightarrow \text{convexe sur } R^+$

 \rightarrow non convexe sur R

Ensemble convexe

• Ensemble: $X = \{(x_1, x_2) / x_1^2 + x_2^2 \le 1\}$ $\rightarrow \text{convexe}$

• Ensemble : $X = \{(x_1, x_2) / x_1^2 + x_2^2 \ge 1\}$ \rightarrow non convexe

1 Bases théoriques1.1 Définitions1.1.5 Conditionnement

Techniques d'optimisation

1.1.5 Conditionnement

- ☐ Conditionnement d'une matrice
- ☐ Conditionnement d'une fonction
- ☐ Préconditionnement
- ☐ Système linéaire perturbé
- ☐ Mise à l'échelle

- Bases théoriques 1.1 Définitions
- 1.1.5 Conditionnement

1.1.5 Conditionnement

Conditionnement d'une matrice

A matrice symétrique semi-définie positive

Valeurs propres de A :
$$\sigma_1 \ge \cdots \ge \sigma_n$$
 $\rightarrow \|A\|_2 = \sigma_1$

$$\rightarrow \|A\|_2 = \sigma_1$$

Nombre de conditionnement de A:

$$\kappa(A) = \|A\|_2 \|A^{-1}\|_2 = \frac{\sigma_1}{\sigma_n} \ge 1$$

Conditionnement d'une fonction

f fonction deux fois différentiable

Conditionnement de f en x = nombre de conditionnement de A=H(x)

Interprétation

Vecteur propre d_k associé à la valeur propre σ_k : $A_k d_k = \sigma_k d_k$

Courbure de f en x dans la direction d_k:

Théorème de Rayleigh-Ritz

 d_1 = direction de plus forte courbure (courbure = σ_1)

 d_n = direction de plus faible courbure (courbure = σ_n)

1 Bases théoriques1.1 Définitions1.1.5 Conditionnement

Techniques d'optimisation

1.1.5 Exemple

Matrice 2×2

• Inverse:
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
 avec $\det(A) = \operatorname{ad} - \operatorname{bc}$

• Valeurs propres:
$$\det(A - \sigma I) = 0 \Rightarrow (a - \sigma)(d - \sigma) - bc = 0 \Rightarrow \sigma^2 - (a + d)\sigma + \det(A) = 0$$

Conditionnement

$$\bullet \quad A = \begin{pmatrix} 0.1 & 1 \\ 0.20002 & 2 \end{pmatrix}$$

• Valeurs propres :
$$\sigma^2 - 2.1\sigma - 0.00002 = 0 \Rightarrow \begin{cases} \sigma_1 = 2.10001 \\ \sigma_2 = -0.00001 \end{cases}$$

• Conditionnement :
$$\begin{cases} \|A\|_2 = \sigma_1 \\ \|A^{-1}\|_2 = 1/\sigma_2 \end{cases} \Rightarrow \kappa(A) = \frac{\sigma_1}{\sigma_2} = 210001$$

Bases théoriques **Définitions**

1.1.5 Conditionnement

Techniques d'optimisation

1.1.5 Préconditionnement

Changement de variable

Variable: $\tilde{\mathbf{x}} = \mathbf{M}\mathbf{x}$ $(M \in \mathbb{R}^{n \times n} \text{ inversible} = \text{matrice de préconditionnement})$

Fonction: $\widetilde{f}(\widetilde{x}) = f(x) = f(M^{-1}\widetilde{x})$

 $\begin{array}{ll} \text{Gradient}: & \nabla \widetilde{f}(\widetilde{x}) = M^{\text{-T}} \nabla f(M^{\text{-1}}\widetilde{x}) & \Rightarrow \ \widetilde{g}(\widetilde{x}) = M^{\text{-T}} g(x) \\ \text{Hessien}: & \nabla^2 \widetilde{f}(\widetilde{x}) = M^{\text{-T}} \nabla^2 f(M^{\text{-1}}\widetilde{x}) M^{\text{-1}} & \Rightarrow \ \widetilde{H}(\widetilde{x}) = M^{\text{-T}} H(x) M^{\text{-1}} \end{array}$

Préconditionnement de f

Factorisation de Cholesky (si H(x) définie positive): $H(x)=LL^{T}$

Conditionnement optimal (minimal) de f en x pour : $\tilde{x} = L^T x \implies \tilde{H}(\tilde{x}) = I \implies \kappa(\tilde{H}) = 1$

Bases théoriques 1.1 Définitions 1.1.5 Conditionnement

Techniques d'optimisation

1.1.5 Système linéaire perturbé

Perturbation du second membre

- Système non perturbé : $Ax = b \rightarrow \text{solution } x^*$ Système perturbé au 2^{nd} membre : $A(x + \Delta x_b) = b + \Delta b \rightarrow \text{solution } x^* + \Delta x_b$ Système perturbé au 1^{er} membre : $(A + \Delta A)(x + \Delta x_A) = b \rightarrow \text{solution } x^* + \Delta x_A$

$$\begin{cases} Ax^* &= b \\ A(x^* + \Delta x_b) &= b + \Delta b \\ (A + \Delta A)(x^* + \Delta x_A) &= b \end{cases} \Rightarrow \begin{cases} Ax^* &= b \\ A.\Delta x_b &= \Delta b \\ A.\Delta x_A + \Delta A.x^* &= 0 \end{cases} \Rightarrow \begin{cases} b &= Ax^* \\ \Delta x_b &= A^{-1}\Delta b \\ \Delta x_A &= -A^{-1}.\Delta A.x^* \end{cases}$$

Majoration de la perturbation

$$b = Ax * \Rightarrow ||b|| \le ||A|| . ||x *|| \Rightarrow \frac{1}{||x *||} \le \frac{||A||}{||b||}$$

$$\begin{cases} \Delta x_b = A^{-1} \Delta b \\ \Delta x_A = -A^{-1} . \Delta A . x * \end{cases} \Rightarrow \begin{cases} ||\Delta x_b|| \le ||A^{-1}|| . ||\Delta b|| \\ ||\Delta x_A|| \le ||A^{-1}|| . ||\Delta A|| . ||x *|| \end{cases} \Rightarrow \begin{cases} \frac{||\Delta x_b||}{||x *||} \le ||A|| . ||A^{-1}|| . \frac{||\Delta b||}{||b||} \\ \frac{||\Delta x_A||}{||x *||} \le ||A|| . ||A^{-1}|| . \frac{||\Delta A||}{||A||} \end{cases}$$

Amplification maximale de la perturbation : $\left| \kappa(A) = \|A\| \cdot \|A^{-1}\| \right|$

Bases théoriques
 Définitions
 Sconditionnement

Techniques d'optimisation

1.1.5 Exemple

Système perturbé 2×2

• Système non perturbé

$$\begin{cases} 0.1x_1 + x_2 = 2 \\ 0.20002x_1 + 2x_2 = 4.0002 \end{cases} \Leftrightarrow \begin{pmatrix} 0.1 & 1 \\ 0.20002 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 4.0002 \end{pmatrix} \Rightarrow \begin{cases} x_1 = 10 \\ x_2 = 1 \end{cases}$$

• Perturbation δA :

$$A = \begin{pmatrix} 0.101 & 1 \\ 0.20002 & 2 \end{pmatrix} \Rightarrow \begin{cases} x_1 = -0.101 \\ x_2 = 2.010 \end{cases}$$

• Perturbation δb:

$$b = \begin{pmatrix} 2.01 \\ 4.0002 \end{pmatrix} \implies \begin{cases} x_1 = -990 \\ x_2 = 101.01 \end{cases}$$

1 Bases théoriques1.1 Définitions1.1.5 Conditionnement

Techniques d'optimisation

1.1.5 Mise à l'échelle

Principe

- Des valeurs numériques trop différentes sont sources de blocage des algorithmes. Exemple : $(1 + 10^{-20}) - 1 = 1 - 1 = 0$ au lieu de 10^{-20} avec 16 chiffres significatifs
- Pour réduire les erreurs numériques, il faut que les différentes valeurs utilisées dans les calculs aient des ordres de grandeur comparables.
- Méthode de mise à l'échelle : transformation affine $X' = \alpha X + \beta$

Quantités à mettre à l'échelle

• Variables : $x \rightarrow x' \approx 1$ (\rightarrow déplacement sur toutes les composantes de x)

• Critère : $f \rightarrow f' \approx 1$ (\rightarrow tests d'arrêt sur variation de f)

• Contraintes : $c \rightarrow c' \approx 1$ (\rightarrow contraintes de poids équivalents)

• Jacobien : $\|\nabla c\| \to \|\nabla c\| \approx 1$ (\to directions admissibles)

• Hessien: $\|\nabla^2 L\| \to \|\nabla^2 L\| \approx 1$ (\to courbure, conditionnement)

Difficultés

- On ne peut pas simultanément mettre toutes les quantités à l'échelle → choix expérimental
- Le facteur d'échelle dépend du point $x \rightarrow à$ adapter au cours des itérations (mise à l'échelle dynamique)

- 1 Bases théoriques
- 1.1 Définitions
- 1.1.6 Direction de déplacement

1.1.6 Direction de déplacement

- ☐ Direction de descente
 - Définition
 - Point de Newton
 - Point de Cauchy
- ☐ Direction admissible
- ☐ Contraintes linéaires

- 1 Bases théoriques
- 1.1 Définitions
- 1.1.6 Direction de déplacement

1.1.6 Direction de descente

Direction de descente

- Gradient de f en $x \in \mathbb{R}^n$: $g(x) = \nabla f(x)$
- Dérivée directionnelle de f en x suivant $d \in R^n$: $f_d(x) = g(x)^T d$ d est une **direction de descente** en x si : $f_d(x) = g(x)^T d < 0$
- La direction de **plus forte pente** d^+ est la direction du gradient : $d^+ = g(x)$
- La direction de **plus forte descente** d⁻ est opposée au gradient : $d^- = -g(x)$ $\forall d \in \mathbb{R}^n / \|d\| = \|d^-\|, \ g(x)^T d \ge g(x)^T d^- = -\|g(x)\|^2$

- Bases théoriques
- Définitions
- 1.1.6 Direction de déplacement

1.1.6 Direction de descente

Variation suivant une direction

- Déplacement $d \in \mathbb{R}^n$ à partir de $x_0 \in \mathbb{R}^n$: $d = sd_0$ avec $d_0 \in \mathbb{R}^n$ = direction de déplacement $s \in R$ = pas de déplacement suivant d_0
- Modèle quadratique au voisinage de x_0 :

$$\hat{f}(x_0 + sd_0) = f(x_0) + sg_0^T d_0 + \frac{1}{2}s^2 d_0^T H_0 d_0 \qquad \Rightarrow \qquad \hat{\phi}(s) = \phi(0) + s\phi'(0) + \frac{1}{2}s^2 \phi''(0)
\text{avec } \begin{cases} g_0 = \nabla f(x_0) \\ H_0 = \nabla^2 f(x_0) \end{cases} \qquad \text{avec } \begin{cases} \phi'(0) = g_0^T d_0 \\ \phi''(0) = d_0^T H_0 d_0 \end{cases}$$

Meilleure direction : $d_2 < d^- < d_1$

1 Bases théoriques

1.1 Définitions

1.1.6 Direction de déplacement

Techniques d'optimisation

1.1.6 Direction de descente

Minimisation locale

Deux points particuliers sont définis à partir du modèle quadratique de f en x_0 :

• Point de Newton : minimisation de f par rapport à $d \in \mathbb{R}^n$

 $\rightarrow x_n = x_0 + d_n$

• Point de Cauchy : minimisation de f suivant $d_0 = -g_0$

 $\rightarrow x_c = x_0 - s_c g_0$

Point de Newton

$$\min_{d \in \mathbb{R}^{n}} \hat{f}(x_{0} + d) = f(x_{0}) + g_{0}^{T}d + \frac{1}{2}d^{T}H_{0}d$$

$$\Rightarrow$$
 $d_n = -H_0^{-1}g_0$ si $H_0 > 0$

 x_n existe si $H_0 = \nabla^2 f(x_0)$ est définie positive.

Point de Cauchy

$$\min_{s \in \mathbb{R}} \hat{\varphi}(x_0 - sg_0) = \varphi(0) - s\varphi'(0) + \frac{1}{2}s^2\varphi''(0)$$

$$\Rightarrow s_c = \frac{\varphi'(0)^2}{\varphi''(0)} = \frac{\left(g_0^T g_0\right)^2}{g_0^T H_0 g_0} \text{ si } \varphi''(0) = g_0^T H_0 g_0 > 0$$

 x_c existe si f est convexe suivant g_0 (condition moins forte que H_0 définie positive).

- 1 Bases théoriques
- 1.1 Définitions
- 1.1.6 Direction de déplacement

1.1.6 Direction admissible

Direction admissible

 $d \in R^n$ direction de déplacement à partir de $x \in X_{adm}$ point admissible

Définition: d direction admissible

$$\Leftrightarrow \exists \varepsilon > 0 / \forall s, \ 0 < s \le \varepsilon \implies x + sd \in X_{adm}$$

On peut se déplacer d'au moins ϵ suivant d à partir de x en restant admissible

- Contrainte égalité : $\nabla c_{\rm F}(x)^{\rm T} d = 0 \rightarrow {\rm tangent}$
- Contrainte inégalité : $\nabla c_I(x)^T d \leq 0 \rightarrow \text{intérieur}$

Ensemble convexe

$$X_{adm}$$
 convexe, $y\neq x$, $x,y\in X_{adm}$ \Rightarrow $[x,y]\subset X_{adm}$

 \Rightarrow d=y-x est une direction admissible à partir de x

Point intérieur

x point intérieur à X_{adm}

 \Rightarrow Toute direction $d \in \mathbb{R}^n$ est admissible à partir de x

- Bases théoriques
- 1.1 Définitions
- 1.1.6 Direction de déplacement

1.1.6 Contraintes linéaires

Contraintes linéaires

Contraintes linéaires sous forme standard :
$$\begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

$$X_{adm} = \left\{ x \in \mathbb{R}^n / Ax = b, \ x \ge 0 \right\}$$

Direction admissible

$$d \in R^n \text{ direction admissible à partir de } x \text{ point admissible } \Leftrightarrow \begin{cases} Ad = 0 \\ d_i \ge 0 \text{ si } x_i = 0 \end{cases}$$

Preuve:
Pour
$$s>0$$
 petit, on doit avoir $:(x+sd) \in X_{adm} \Leftrightarrow \begin{cases} A(x+sd)=b \\ x+sd \ge 0 \end{cases} \Leftrightarrow \begin{cases} Ad=0 & car \ Ax=b \\ x+sd \ge 0 \end{cases}$

Si
$$x_i > 0$$
, alors $x_i + sd_i > 0$ pour sassez petit
Si $x_i = 0$, alors $x_i + sd_i \ge 0$ si $d_i \ge 0$

Combinaison de directions admissibles

Toute combinaison linéaire à coefficients positifs de directions admissibles est une direction admissible.

Preuve : Une combinaison linéaire à coefficients positifs vérifie également $\begin{cases} Ad = 0 \\ d_i \ge 0 \text{ si } x_i = 0 \end{cases}$

- 1 Bases théoriques
- 1.2 Contraintes linéaires

Sommaire

- 1. Bases théoriques
 - 1.1 Définitions
 - 1.2 Contraintes linéaires
 - 1.2.1 Rappels d'algèbre linéaire
 - 1.2.2 Direction admissible
 - 1.2.3 Réduction
 - 1.2.4 Projection
 - 1.3 Contraintes non linéaires
 - 1.4 Conditions d'optimalité
- 2. Optimisation sans contraintes
- 3. Optimisation avec contraintes

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.1 Rappels d'algèbre linéaire

1.2.1 Rappels d'algèbre linéaire

- ☐ Application linéaire
 - Matrice d'une application linéaire
 - Espace nul
 - Espace image
- ☐ Matrice
 - Valeurs et vecteurs propres
 - Matrices particulières
 - Factorisations
- ☐ Système linéaire
 - Solutions
 - Contraintes redondantes

- Bases théoriques
- Contraintes linéaires
- 1.2.1 Rappels d'algèbre linéaire

1.2.1 Application linéaire

Application linéaire

Une matrice $A \in R^{m \times n}$ définit une application linéaire de R^n dans R^m : $x \in R^n \mapsto y = Ax \in R^m$

Espace nul (ou noyau)

L'espace nul de A est défini par :

$$\frac{\operatorname{Ker}(A) = \left\{ x \in \mathbb{R}^{n} / Ax = 0 \right\}}{\operatorname{Ker}(A) = \left\{ 0 \right\}}$$

Si A est non singulière:

$$Ker(A) = \{0\}$$

Espace image

L'espace image de A est défini par :

$$Im(A) = \left\{ y = Ax, \ x \in \mathbb{R}^n \right\}$$

Si A est non singulière:

$$Im(A) = R^n$$

Le rang de A est la dimension de Im(A): rang(A) = dim(Im(A))

Théorème fondamental de l'algèbre

Ker(A) et $Im(A^T)$ sont supplémentaires dans R^n : $Ker(A) \oplus Im(A^T) = R^n$ Tout $x \in \mathbb{R}^n$ s'écrit de façon unique comme somme d'un élément x_7 de Ker(A) et d'un élément x_v de $Im(A^T)$

$$\forall x \in R^n, x = x_z + x_y$$
 avec
$$\begin{cases} x_z \in Ker(A) \\ x_y \in Im(A^T) \end{cases}$$
 de façon unique

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.1 Rappels d'algèbre linéaire

1.2.1 Matrice

Valeurs et vecteurs propres

Une matrice $A \in R^{n \times n}$ admet la valeur propre $\sigma \in R$ s'il existe un vecteur non nul $v \in R^n$ tel que : $Av = \sigma v$ v est un vecteur propre associé à la valeur propre σ .

Matrices particulières

• A non singulière

⇔ Aucune valeur propre de A n'est nulle.

• A symétrique

 \Leftrightarrow $A^T = A$

⇒ A admet n valeurs propres réelles (distinctes ou non)

⇒ A admet une base orthonormée de vecteurs propres

• A orthogonale

 \Leftrightarrow $AA^T = A^TA = I$

• A semi-définie positive

 \Leftrightarrow $v^T A v > 0$ pour tout $v \in R^n$

• A définie positive

 \Leftrightarrow $v^T A v \ge 0$ pour tout $v \in R^n$

• A symétrique définie positive ⇒

A admet n valeurs propres réelles positives (distinctes ou non)

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.1 Rappels d'algèbre linéaire

1.2.1 Exemple

Valeurs propres d'une matrice 2×2

• Matrice A:
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

• Valeurs propres :
$$\det(A - \sigma I) = 0 \Rightarrow \begin{vmatrix} a_{11} - \sigma & a_{12} \\ a_{21} & a_{22} - \sigma \end{vmatrix} = 0 \Rightarrow (a_{11} - \sigma)(a_{22} - \sigma) - a_{12}a_{21} = 0$$

$$\Rightarrow \sigma^2 - (a_{11} + a_{22})\sigma + a_{11}a_{22} - a_{12}a_{21} = 0$$

$$\Rightarrow \sigma = \frac{1}{2} \left(a_{11} + a_{22} \pm \sqrt{(a_{11} + a_{22})^2 - 4(a_{11}a_{22} - a_{12}a_{21})} \right)$$

• Exemple:
$$A = \begin{pmatrix} 802 & -400 \\ -400 & 200 \end{pmatrix} \Rightarrow \begin{cases} \sigma_1 = 1001.60 \\ \sigma_2 = 0.39936 \end{cases}$$

Conditionnement : $\kappa(A) = 2508$

- Bases théoriques
- Contraintes linéaires
- 1.2.1 Rappels d'algèbre linéaire

1.2.1 Exemple

Diagonalisation matrice symétrique 2×2

- Matrice Q: $Q = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ avec b = cBase orthonormée de vecteurs propres : $v_1 = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$, $v_2 = \begin{pmatrix} -\sin \alpha \\ \cos \alpha \end{pmatrix}$
- $P = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$ Matrice de passage orthogonale :

$$P^{T}QP = \begin{pmatrix} a\cos^{2}\alpha + 2b\cos\alpha\sin\alpha + d\sin^{2}\alpha & (d-a)\cos\alpha\sin\alpha + b(\cos^{2}\alpha - \sin^{2}\alpha) \\ (d-a)\cos\alpha\sin\alpha + b(\cos^{2}\alpha - \sin^{2}\alpha) & a\sin^{2}\alpha - 2b\cos\alpha\sin\alpha + d\cos^{2}\alpha \end{pmatrix}$$

- \rightarrow diagonale si $(d-a)\cos\alpha\sin\alpha + b(\cos^2\alpha \sin^2\alpha) = 0$ avec b $\neq 0$ sinon Q directement diagonale $\Rightarrow \cos \alpha \neq 0$
- Direction des axes principaux (vecteurs propres) : $\tan^2 \alpha + \frac{a-d}{b} \tan \alpha 1 = 0$ \rightarrow 2 solutions α_1 et $\alpha_2 = \alpha_1 + \pi/2$

- Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.1 Rappels d'algèbre linéaire

1.2.1 Permutation

Permutation de colonnes

 $A \in \mathbb{R}^{m \times n}$, matrice à m lignes, n colonnes

$$A = \begin{bmatrix} 1 & \cdots & j & \cdots & k & \cdots & n \\ 1 \begin{pmatrix} \times & \cdots & \times & \cdots & \times & \cdots & \times \\ \vdots & & \vdots & & \vdots & & \vdots \\ x & \cdots & \times & \cdots & \times & \cdots & \times \end{pmatrix}$$

 $E \in \mathbb{R}^{n \times n}$, matrice de permutation des colonnes j et k $E^{T} = E$

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.1 Rappels d'algèbre linéaire

1.2.1 Factorisation

Factorisation de matrice

 $A \in R^{m \times n}$, matrice à m lignes, n colonnes avec m < nA de rang plein : rang(A) = m < n

$$A = \begin{bmatrix} 1 & \cdots & j & \cdots & k & \cdots & n \\ 1 & \times & \cdots & \times & \cdots & \times & \cdots & \times \\ \vdots & & \vdots & & \vdots & & \vdots \\ m & \times & \cdots & \times & \cdots & \times \end{bmatrix}$$

3 types de factorisations sont utiles dans les algorithmes d'optimisation :

- Factorisation LU → Pour réduire le problème (variables dépendantes et indépendantes)
 Pour construire une base de l'espace nul
- Factorisation QR → Pour réduire le problème (variables dépendantes et indépendantes)
 Pour construire une base orthogonale de l'espace nul
- Factorisation $LL^T \rightarrow Pour$ une matrice définie positive ou LDL^T Pour rendre le hessien défini positif

- Bases théoriques
- Contraintes linéaires
- 1.2.1 Rappels d'algèbre linéaire

1.2.1 Factorisation LU

Factorisation LU

 $A \in \mathbb{R}^{m \times n}$, matrice à m lignes, n colonnes

$$A = : \begin{bmatrix} 1 & \cdots & j & \cdots & k & \cdots & n \\ 1 & \times & \cdots & \times & \cdots & \times & \cdots & \times \\ \vdots & & \vdots & & \vdots & & \vdots \\ x & \cdots & \times & \cdots & \times & \cdots & \times \end{bmatrix}$$

Matrice carrée n×n

$$AE = LU$$

L n×n triangulaire inférieure U n×n triangulaire supérieure

Matrice rectangulaire m×n, m< n Factorisation de A^T \rightarrow

$$EA^{T} = LU = \begin{pmatrix} L_{1} \\ L_{2} \end{pmatrix} U$$

$$L_{1} \text{ mixin triangularity}$$

$$L_{2} \text{ (n-m)} \times \text{m pleine}$$

$$U = \text{mixin triangularity}$$

$$L_{2} \text{ mixin triangularity}$$

L₁ m×m triangulaire inférieure

U m×m triangulaire supérieure

Base de l'espace nul:

$$\mathbf{Z} = \mathbf{E}^{\mathrm{T}} \begin{pmatrix} \mathbf{L}_{1}^{-\mathrm{T}} \mathbf{L}_{2}^{\mathrm{T}} \\ -\mathbf{I} \end{pmatrix} \mathbf{U}^{-\mathrm{T}}$$

Méthode de factorisation LU

→ Méthode d'élimination de Gauss (ou méthode du pivot de Gauss)

- Bases théoriques
- Contraintes linéaires
- 1.2.1 Rappels d'algèbre linéaire

1.2.1 Factorisation QR

Factorisation QR

 $A \in \mathbb{R}^{m \times n}$, matrice à m lignes, n colonnes

$$\mathbf{A} = \begin{bmatrix} 1 & \cdots & \mathbf{j} & \cdots & \mathbf{k} & \cdots & \mathbf{n} \\ \mathbf{X} & \cdots & \mathbf{X} & \cdots & \mathbf{X} & \cdots & \mathbf{X} \\ \vdots & & \vdots & & \vdots & & \vdots \\ \mathbf{m} & \mathbf{X} & \cdots & \mathbf{X} & \cdots & \mathbf{X} & \cdots & \mathbf{X} \end{bmatrix}$$

Matrice rectangulaire m×n

$$AE = QR$$

Q m×m orthogonale \rightarrow QQ^T = I

R m×n triangulaire supérieure

Base de l'espace nul \rightarrow Factorisation de A^T

 Q_1 n×m orthogonale

$$EA^{T} = QR = (Q_1 \ Q_2)R$$

 Q_1 in an orthogonale Q_2 in $Z = E^T(Q_2)$ $EA^T = QR = (Q_1 \ Q_2)R \qquad Q_2 \ n \times (n-m) \text{ orthogonale} \qquad \rightarrow \qquad Z = E^T(Q_2)$

R n×m triangulaire supérieure

Méthode de factorisation OR

→ Méthode de Householder ou méthode de Givens

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.1 Rappels d'algèbre linéaire

1.2.1 Factorisation LL^T

Factorisation LL^T

 $A \in \mathbb{R}^{n \times n}$, matrice carrée $n \times n$ symétrique définie positive

 $E^{T}AE = LL^{T}$ avec L matrice n×n triangulaire inférieure

• Lien avec la factorisation QR

$$AE = QR \implies E^{T}A^{T}AE = R^{T}Q^{T}QR = R^{T}R \qquad car \ Q \ orthogonale$$

$$\rightarrow \begin{cases} R = L \\ Q = AER^{-1} \end{cases}$$

Méthode de factorisation LL^T ou LDL^T

- Méthode de Cholesky
 - → Permet de vérifier que la matrice A est bien définie positive
- Méthode de Cholesky modifiée
 - → Permet de rendre la matrice A définie positive en la modifiant au cours de la factorisation

- Bases théoriques
- Contraintes linéaires
- 1.2.1 Rappels d'algèbre linéaire

1.2.1 Exemple

Factorisation LDL^T d'une matrice 3×3

$$\begin{pmatrix}
a_{11} & a_{21} & a_{31} \\
a_{21} & a_{22} & a_{32} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{pmatrix} \begin{pmatrix}
d_1 & 0 & 0 \\
0 & d_2 & 0 \\
0 & 0 & d_3
\end{pmatrix} \begin{pmatrix}
1 & l_{21} & l_{31} \\
0 & 1 & l_{32} \\
0 & 0 & 1
\end{pmatrix}$$

Résolution directe

$$\begin{cases} a_{11} = d_1 \\ a_{21} = d_1 l_{21} \\ a_{31} = d_1 l_{31} \\ a_{22} = d_1 l_{21}^2 + d_2 \\ a_{32} = d_1 l_{31} l_{21} + d_2 l_{32} \\ a_{33} = d_1 l_{31}^2 + d_2 l_{32}^2 + d_3 \end{cases} \Rightarrow \begin{cases} d_1 = a_{11} \\ l_{21} = \frac{a_{21}}{d_1} \\ l_{31} = \frac{a_{31}}{d_1} \\ d_2 = a_{22} - d_1 l_{21}^2 \\ l_{32} = \frac{a_{32} - d_1 l_{31} l_{21}}{d_2} \\ d_3 = a_{33} - d_1 l_{31}^2 - d_2 l_{32}^2 \end{cases}$$

$$\begin{cases} d_1 = a_{11} \\ l_{21} = \frac{a_{21}}{d_1} \\ l_{31} = \frac{a_{31}}{d_1} \\ d_2 = a_{22} - d_1 l_{21}^2 \\ l_{32} = \frac{a_{32} - d_1 l_{31} l_{21}}{d_2} \\ d_3 = a_{33} - d_1 l_{31}^2 - d_2 l_{32}^2 \end{cases}$$

- \rightarrow d₁, d₂, d₃ > 0 si A est définie positive
- \rightarrow sinon on modifie d_i en cours de factorisation $d_i = \max(\delta, d_i), \delta > 0$

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.1 Rappels d'algèbre linéaire

1.2.1 Exemple

Factorisation LDL^T d'une matrice 2×2

• Exemple

$$A = \begin{pmatrix} 802 & -400 \\ -400 & 200 \end{pmatrix} \implies L = \begin{pmatrix} 1 & 0 \\ -0.4988 & 1 \end{pmatrix}, D = \begin{pmatrix} 802 & 0 \\ 0 & 0.4988 \end{pmatrix}$$

Les éléments de la matrice diagonale D sont positifs → A est définie positive

Valeurs propres de A :
$$\begin{cases} \sigma_1 = 1001.60 \\ \sigma_2 = 0.39936 \end{cases}$$

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.1 Rappels d'algèbre linéaire

1.2.1 Factorisation LDL^T

Méthode de Cholesky modifiée

A matrice $n \times n$ symétrique \rightarrow matrice A' définie positive « proche » de A (A' = A si A est définie positive)

 $A' = LDL^T$ avec L triangulaire inférieure, D diagonale positive

• Notations : $A=(a_{ij})$, $L=(l_{ij})$, $D=(d_{ij})$, i,j=1,...,n

U7

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.1 Rappels d'algèbre linéaire

1.2.1 Système linéaire

Système linéaire

$$\begin{array}{ll} Ax = b & avec & \begin{cases} A \in R^{m \times n} & \rightarrow \text{ matrice de rang } r \ : \ rang(A) = r \\ b \in R^m & \rightarrow \text{ m \'equations} \\ x \in R^n & \rightarrow \text{ n inconnues} \end{cases}$$

Le rang de A est la dimension du sous-espace engendré par A (image de A)

$$Im(A) = \{y = Ax, x \in \mathbb{R}^n\}$$
 $\rightarrow r = dim(Im(A)) \le m,n$

Solutions possibles

- Pas de solution : système **incompatible** (m>n : plus d'équations que d'inconnues)
- Solution unique : système **non singulier** (m=n : autant d'équations que d'inconnues)
- Infinité de solutions : système sous-déterminé (m<n : moins d'équations que d'inconnues)

Problème d'optimisation

Contraintes linéaires Ax=b → système sous-déterminé (m<n)

→ n-m inconnues «libres» permettant de minimiser le critère

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.1 Rappels d'algèbre linéaire

1.2.1 Système linéaire

Contraintes redondantes

Pour un système sous-déterminé (m<n), si A est de rang déficient : rang(A) = r < m, on peut extraire de A une sous-matrice $\tilde{A} \in R^{r \times n}$ de rang plein, telle que :

$$\tilde{A}x = \tilde{b} \iff Ax = b$$

 \tilde{A} est composée des lignes $l_1, ..., l_r$ de A

Les lignes $l_{r+1},...,l_m$ sont combinaisons linéaires des lignes $l_1,...,l_r$.

Elles correspondent à des contraintes redondantes et peuvent être éliminées de la résolution.

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.2 Direction admissible

1.2.2 Direction admissible

- ☐ Polytope
- ☐ Forme standard
- **□** Sommet
- ☐ Base
- ☐ Solution de base
- ☐ Direction de base

Bases théoriques

Contraintes linéaires

1.2.2 Direction admissible

Techniques d'optimisation

1.2.2 Polytope

Définition

Polytope P dans Rⁿ

$$P = \left\{ x \in \mathbb{R}^{n} / Ax \le b \right\} \qquad A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^{m}$$

$$A \in R^{m \times n}$$
 , $b \in R^m$

Interprétation géométrique

$$Ax = b \Leftrightarrow \begin{cases} A_{1,1}x_1 + A_{1,2}x_2 + \dots + A_{1,n}x_n = b_1 & \rightarrow \text{ hyperplan 1} \\ A_{2,1}x_1 + A_{2,2}x_2 + \dots + A_{2,n}x_n = b_2 & \rightarrow \text{ hyperplan 2} \\ \dots & \dots & \dots \\ A_{m,1}x_1 + A_{m,2}x_2 + \dots + A_{m,n}x_n = b_m & \rightarrow \text{ hyperplan m} \end{cases}$$

Chaque hyperplan j sépare Rⁿ en 2 sous-espaces : $\begin{cases} A_{j,i} x \leq b_{j} \\ A_{i} x \geq b_{i} \end{cases}$

P = ensemble de points de Rⁿ délimité par m hyperplans

- \rightarrow Polytope dans $R^2 =$ polygone
- \rightarrow Polytope dans $R^3 =$ polyèdre

Bases théoriques

Contraintes linéaires

1.2.2 Direction admissible

Techniques d'optimisation

1.2.2 Forme standard

Forme standard

Polytope P dans Rⁿ sous forme standard

$$P = \left\{ x \in \mathbb{R}^n / Ax = b, \ x \ge 0 \right\}$$

 $P = \{x \in \mathbb{R}^{n} / Ax = b, x \ge 0\}$ $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ $A \text{ de rang plein (\'elimination contraintes redondantes} \to \tilde{A})$

Passage sous forme standard

Contrainte inégalité : Transformation en contrainte égalité Ajout d'une variable d'écart positive

$$c(x) \le b \iff \begin{cases} c(x) + z = b \\ z \ge 0 \end{cases} \iff \begin{cases} c'(x) = b & \text{avec} \quad c'(x) = c(x) + z \\ z \ge 0 \end{cases}$$

$$c(x) \ge b \iff \begin{cases} c(x) - z = b \\ z \ge 0 \end{cases} \iff \begin{cases} c'(x) = b & \text{avec} \quad c'(x) = c(x) - z \\ z \ge 0 \end{cases}$$

Contraintes de bornes : Changement de variable → borne inférieure Ajout d'une variable d'écart positive → borne supérieure

$$x_{1} \leq x \leq x_{u} \iff 0 \leq x - x_{1} \leq x_{u} - x_{1} \iff \begin{cases} x' = x - x_{1}, & x' \geq 0 \\ x' \leq x_{u} - x_{1} \end{cases} \Leftrightarrow \begin{cases} x' = x - x_{1}, & x' \geq 0 \\ x' + z = x_{u} - x_{1}, & z \geq 0 \end{cases}$$

Variable libre : Différence de 2 variables positives $x \in R \iff x = z - y, y, z \ge 0$

1.2.2 Exemple

Mise sous forme standard

• Problème linéaire (P)

$$\min_{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}} \mathbf{x}_{1} + 2\mathbf{x}_{2} + 3\mathbf{x}_{3} \quad \text{sous} \begin{cases} -\mathbf{x}_{1} + 3\mathbf{x}_{2} &= 5\\ 2\mathbf{x}_{1} - \mathbf{x}_{2} + 3\mathbf{x}_{3} \ge 6\\ \mathbf{x}_{1} \in \mathbf{R}, \ \mathbf{x}_{2} \ge 1, \ \mathbf{x}_{3} \le 4 \end{cases}$$

• Changement de variables pour les bornes

$$\begin{cases} x_1 \in R \\ x_2 \ge 1 \\ x_3 \le 4 \end{cases} \Leftrightarrow \begin{cases} x_1 = z_1 - y_1 & \to y_1, z_1 \ge 0 \\ x_2' = x_2 - 1 & \to x_2' \ge 0 \\ x_3' = 4 - x_3 & \to x_3' \ge 0 \end{cases}$$

Variables d'écart pour les contraintes inégalité

$$2x_1 - x_2 + 3x_3 \ge 6 \Leftrightarrow 2x_1 - x_2 + 3x_3 - z_2 = 6 \rightarrow z_2 \ge 0$$

• Problème équivalent à (P) sous forme standard

$$\min_{y_1, z_1, z_2, x_2', x_3'} z_1 - y_1 + 2x_2' - 3x_3' + 14 \quad sous \begin{cases} y_1 - z_1 + 3x_2' &= 2 \\ 2z_1 - 2y_1 - x_2' - 3x_3' - z_2 &= -5 \end{cases}$$

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.2 Direction admissible

1.2.2 Sommet

Sommet

Polytope P dans Rⁿ sous forme standard

$$P = \left\{ x \in \mathbb{R}^n / Ax = b, \ x \ge 0 \right\}$$

 $A \in R^{m \times n}, \ b \in R^m$

A de rang plein : $rang(A)=r=m \le n$

Définition

 $x \in P$ est un sommet de P

On ne peut pas trouver y,z \in P, différents de x tels que x soit combinaison convexe de y et z i.e. $x = \lambda y + (1 - \lambda)z$ avec $0 < \lambda < 1$

Existence

Tout polytope non vide possède au moins un sommet.

1.2 Contraintes linéaires

1.2.2 Direction admissible

Techniques d'optimisation

1.2.2 Base

Base

Polytope P dans R^n sous forme standard $P = \left\{ x \in R^n \ / \ Ax = b, \ x \ge 0 \right\} \qquad A \in R^{m \times n}, \ b \in R^m$

- A est de rang plein r=m≤n ⇒ Il existe m colonnes indépendantes
- On choisit une sous-matrice $B \in R^{m \times m}$ de rang plein (parmi C_n^m combinaisons possibles)

$$AE = \begin{pmatrix} m & n-m \\ B & N \end{pmatrix} = \vdots \begin{pmatrix} \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ m & x & \cdots & x & x & \cdots & x \\ \vdots & \vdots \\ m & x & \cdots & x & x & x & \cdots & x \end{pmatrix}$$

E matrice de permutation des colonnes de A : $EE^{T}=I$

 $A_{..k} = k^{eme}$ colonne de AE

- $B = \text{matrice de base} \rightarrow B \in R^{m \times m}$ inversible
- $N = matrice hors base \rightarrow N \in R^{m \times (n-m)}$

1.2.2 Solution de base

Identification des sommets

Polytope P dans Rⁿ sous forme standard

$$P = \left\{ x \in \mathbb{R}^n / Ax = b, x \ge 0 \right\} \qquad A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$$

• Choix d'une base $B \in R^{m \times m}$

$$AE = \begin{pmatrix} m & n-m \\ B & N \end{pmatrix} \qquad E^{T}x = \begin{pmatrix} x_{B} \\ x_{N} \end{pmatrix}$$

• $x_B \in R^m$ = variables en base (ou liées ou dépendantes) $x_N \in R^{n-m}$ = variables hors base (ou libres ou indépendantes)

• Point admissible:
$$x \in P \iff \begin{cases} Ax = b \\ x \ge 0 \end{cases} \iff \begin{cases} Bx_B + Nx_N = b \\ x \ge 0 \end{cases} \iff \begin{cases} x_B = B^{-1}(b - Nx_N) \\ x \ge 0 \end{cases}$$

Identification des sommets

Tout point x tel que :
$$\begin{cases} x_B = B^{-1}b \ge 0 \\ x_N = 0 \end{cases} \implies E^T x = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} \text{ est un sommet du polytope.}$$

1 Bases théoriques1.2 Contraintes linéaires

1.2.2 Direction admissible

Techniques d'optimisation

1.2.2 Solution de base

Identification des sommets

Preuve: par l'absurde

- On suppose le point $x: E^T x = \begin{pmatrix} x_B \\ x_N \end{pmatrix}$ avec $\begin{cases} x_B = B^{-1}b \ge 0 \\ x_N = 0 \end{cases}$ n'est pas un sommet de P. $x \text{ peut alors s'écrire}: x = \lambda y + (1-\lambda)z \text{ avec } 0 < \lambda < 1$ $y \text{ et } z \in P, y \ne x, z \ne x$
- En décomposant suivant les composantes B et N: $\begin{cases} x_B = \lambda y_B + (1-\lambda)z_B \\ x_N = \lambda y_N + (1-\lambda)z_N \end{cases} \text{ avec } \begin{cases} y \in P \Rightarrow y_N \ge 0 \\ z \in P \Rightarrow z_N \ge 0 \end{cases}$
- A partir de $x_N = 0$ $x_N = \lambda y_N + (1 \lambda)z_N = 0 \text{ avec } \begin{cases} y_N, z_N \ge 0 \\ 0 < \lambda < 1 \end{cases} \Rightarrow \begin{cases} y_N = 0 \\ z_N = 0 \end{cases}$
- A partir de $y \in P$: $Ay = b \Leftrightarrow By_B + Ny_N = b \Rightarrow y_B = B^{-1}b$ A partir de $z \in P$: $Az = b \Leftrightarrow Bz_B + Nz_N = b \Rightarrow z_B = B^{-1}b$ $\Rightarrow \begin{cases} y_B = x_B \\ z_B = x_B \end{cases}$
- On obtient $y=z=x=\begin{pmatrix} B^{-l}b\\0 \end{pmatrix}$ en contradiction avec l'hypothèse que x n'est pas un sommet de P

- Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.2 Direction admissible

1.2.2 Solution de base

Solution de base

Polytope P dans Rⁿ sous forme standard

$$P = \left\{ x \in \mathbb{R}^n / Ax = b, \ x \ge 0 \right\} \qquad \begin{array}{l} A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m \\ A \text{ de rang plein : } \operatorname{rang}(A) = r = m \le n \end{array}$$

Définition

 $x \in R^n$ est une solution de base de P

Il existe m indices $i_1, ..., i_m$ tels que

- La matrice $B \in \mathbb{R}^{m \times m}$ composée des colonnes i_1, \dots, i_m de A est de rang plein
- Les n-m composantes x_i , $i \neq i_1, ..., i_m$ sont nulles $\rightarrow x_N = 0$ x v'erifie Ax = b $\rightarrow x_B = B^{-1}b$

$\Rightarrow E^{T}x = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$

Solution de base admissible

Une solution de base x est admissible si toutes ses composantes sont positives ($x \in P$). x vérifie également $x \ge 0 \implies x_B = B^{-1}b \ge 0$

→ Base admissible ou réalisable, solution de base admissible ou réalisable

Solution de base dégénérée

Une solution de base x est dégénérée si plus de n-m composantes de x sont nulles. $x_N=0$ par définition (n-m composantes) $\Rightarrow x_R$ comporte des composantes nulles

1.2 Contraintes linéaires

1.2.2 Direction admissible

Techniques d'optimisation

1.2.2 Solution de base

Lien sommet – solution de base

Polytope P dans Rⁿ sous forme standard

$$P = \begin{cases} x \in \mathbb{R}^n / Ax = b, & x \ge 0 \end{cases} \qquad A \in \mathbb{R}^{m \times n}, & b \in \mathbb{R}^m \\ A \text{ de rang plein : } rang(A) = r = m \le n \end{cases}$$

- I=indices des composantes nulles en $x^* \in P$: $I^* = \{i / x_i^* = 0\}$ (= contraintes inégalités actives)
- S=variété linéaire définie par : $S^* = \{x \in R^n / Ax = b, x_i = 0, \forall i \in I^* \}$

 $x^* \in R^n$ est un sommet de $P \Leftrightarrow S^* = \{x^*\} \Leftrightarrow x^*$ est une solution de base admissible de P

Lien sommet – contraintes actives

 $x^* \in P$ est un sommet de $P \iff$ Au moins n contraintes sont actives en x^*

- m contraintes égalité : $Ax^* = b$
- n-m contraintes inégalité : $x_N^* = 0$

Les m contraintes inégalité sur x_B peuvent être actives ou non :

$$x_B^* = B^{-1}b \ge 0 \rightarrow \text{dégénérescence}$$

- Bases théoriques
- Contraintes linéaires
- 1.2.2 Direction admissible

1.2.2 Solution de base

Lien sommet – solution de base

Eléments de la démonstration : Le sens inverse est déjà démontré (identification des sommets)

Sens direct: $x \in \mathbb{R}^n$ est un sommet de $P \implies x$ est une solution de base admissible de P

- On suppose par contraposée que x n'est pas une solution de base admissible.
- En décomposant suivant les composantes B et N: $AE = \begin{pmatrix} m & n-m \\ B & N \end{pmatrix}$ $E^T x = \begin{pmatrix} x_B \\ x_N \end{pmatrix}$ avec B,N choisies telles que $x_B > 0$
- x n'est pas une solution de base admissible \Rightarrow Il existe au moins une composante $x_{Nk} \neq 0$

On construit la direction
$$d^k$$
 $E^T d^k = \begin{pmatrix} d_B^k \\ d_N^k \end{pmatrix} = \begin{pmatrix} -B^{-1}A_{.,k} \\ 0 \end{pmatrix} + e_k = \begin{pmatrix} 1 & m & m+1 & k-1 & k & k+1 & n \\ d_1 & \cdots & d_m & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{pmatrix}^T$ (dite $k^{\grave{e}me}$ direction de base)

$$Ad^{k} = Bd_{B}^{k} + Nd_{N}^{k} = -BB^{-1}A_{.,k} + Nd_{Nk} = -A_{.,k} + A_{.,k} = 0 \quad car \quad N(d_{N}^{k})_{k} = A_{.,k}$$

$$\Rightarrow A(x + \alpha d^{k}) = Ax + \alpha Ad^{k} = b$$

avec $A_{...k} = k^{ine}$ colonne de AE, d^k a toutes ses composantes hors base nulles sauf la $k^{ine} = 1$

- Comme $\begin{cases} x_B > 0 \\ x_{NL} > 0 \end{cases}$, on peut se déplacer suivant $-d^k$ et $+d^k$ d'un pas petit en conservant $\begin{cases} Ax = b \\ x \ge 0 \end{cases}$
 - \rightarrow On obtient 2 points y et z de P tels que $x = \lambda y + (1 \lambda)z$ avec $0 < \lambda < 1$
 - \rightarrow x n'est pas un sommet de P.

1.2 Contraintes linéaires

1.2.2 Direction admissible

Techniques d'optimisation

1.2.2 Exemple

Recherche des solutions de base

Polytope P dans R⁴ sous forme standard

$$P = \{(x_1, x_2, x_3, x_4) / Ax = b, x \ge 0\} \text{ avec } A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

• On utilise les contraintes pour réduire le problème à (x_1,x_2)

$$Ax = b \Leftrightarrow \begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1 - x_2 + x_4 = 1 \end{cases} \Leftrightarrow \begin{cases} x_3 = 1 - x_1 - x_2 \\ x_4 = 1 - x_1 + x_2 \end{cases}$$
$$x \ge 0 \Rightarrow \begin{cases} x_3 \ge 0 \\ x_4 \ge 0 \end{cases} \Rightarrow \begin{cases} x_1 + x_2 \le 1 \\ x_1 - x_2 \le 1 \end{cases}$$

• Polytope P' réduit dans R²

$$P' = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} / \left\{ \begin{matrix} x_1 + x_2 \le 1 \\ x_1 - x_2 \le 1 \end{matrix}, \left\{ \begin{matrix} x_1 \ge 0 \\ x_2 \ge 0 \end{matrix} \right\} \right\}$$

1.2 Contraintes linéaires

1.2.2 Direction admissible

Techniques d'optimisation

1.2.2 Exemple

Recherche des solutions de base

• Représentation de P' dans R²

$$P' = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} / \left\{ \begin{matrix} x_1 + x_2 \le 1 \\ x_1 - x_2 \le 1 \end{matrix}, \begin{cases} x_1 \ge 0 \\ x_2 \ge 0 \end{cases} \right\}$$

- → représentation des valeurs possibles de (x_1,x_2) pour $(x_1,x_2,x_3,x_4) \in P$
- Contraintes de P: $Ax = b \Leftrightarrow \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Base de P

- → choisir 2 colonnes indépendantes de A
- → 6 combinaisons possibles

Solution de base

- \rightarrow fixer les 2 variables hors base $x_N \ge 0$
- \rightarrow calculer les 2 variables de base x_B pour vérifier Ax=b
- \rightarrow base admissible si $x_B \ge 0$

1.2 Contraintes linéaires

1.2.2 Direction admissible

Techniques d'optimisation

1.2.2 Exemple

Recherche des solutions de base

Examen des 6 bases possibles de P

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 $x_B = B^{-1}b$

- **Base** $(\mathbf{x_1, x_2})$: $\mathbf{B} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, $\mathbf{B}^{-1} = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{pmatrix}$, $\mathbf{x}_{\mathbf{B}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\mathbf{x} = (1 \ 0 \ 0 \ 0)$ admissible \rightarrow **point** \mathbf{B}
- Base $(\mathbf{x_1}, \mathbf{x_3})$: $\mathbf{B} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $\mathbf{B}^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$, $\mathbf{x}_{\mathbf{B}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\mathbf{x} = (1 \ 0 \ 0 \ 0)$ admissible \rightarrow **point B**
- Base $(\mathbf{x_1, x_4})$: $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $\mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$, $\mathbf{x}_{\mathbf{B}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\mathbf{x} = (1 \ 0 \ 0 \ 0)$ admissible \rightarrow **point B**

1.2 Contraintes linéaires

1.2.2 Direction admissible

Techniques d'optimisation

1.2.2 Exemple

Recherche des solutions de base

Examen des 6 bases possibles de P

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 $x_B = B^{-1}b$

• **Base** $(\mathbf{x_2}, \mathbf{x_3})$: $\mathbf{B} = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$, $\mathbf{B}^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$, $\mathbf{x_B} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$

x = (0 -1 2 0) non admissible \rightarrow **point D**

- Base $(\mathbf{x}_2, \mathbf{x}_4)$: $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$, $\mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $\mathbf{x}_{\mathbf{B}} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $\mathbf{x} = (0 \ 1 \ 0 \ 2) \text{ admissible} \rightarrow \mathbf{point C}$
- Base $(\mathbf{x_3, x_4})$: $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\mathbf{x}_{\mathbf{B}} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\mathbf{x} = (0 \ 0 \ 1 \ 1) \text{ admissible} \rightarrow \mathbf{point A}$

Contraintes linéaires

1.2.2 Direction admissible

Techniques d'optimisation

1.2.2 Direction de base

Direction de déplacement à partir d'un sommet

Polytope P dans Rⁿ sous forme standard

$$P = \left\{ x \in \mathbb{R}^n / Ax = b, \ x \ge 0 \right\} \qquad A \in \mathbb{R}^{m \times n} \text{ de rang plein, } b \in \mathbb{R}^m$$

$$x \in R^n$$
 solution de base admissible de P:
$$E^T x = \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} \ge 0$$

d∈Rⁿ direction de déplacement :

$$E^{T}d = \begin{pmatrix} d_{B} \\ d_{N} \end{pmatrix}$$

Direction admissible

d direction admissible en x
$$\Leftrightarrow$$

$$\begin{cases} Ad = 0 \\ d_i \ge 0 \text{ si } x_i = 0 \end{cases}$$
 (contraintes linéaires)
$$Ad = 0 \Leftrightarrow Bd_B + Nd_N = 0 \Leftrightarrow d_B = -B^{-1}Nd_N$$

d direction admissible en x
$$\Leftrightarrow \begin{cases} d_B = -B^{-1}Nd_N \\ d_N \geq 0 \text{ car } x_N = 0 \\ d_{Bi} \geq 0 \text{ si } x_{Bi} = 0 \end{cases}$$
 (solution de base dégénérée)

→ « directions de base »

1.2 Contraintes linéaires

1.2.2 Direction admissible

Techniques d'optimisation

1.2.2 Direction de base

Direction de base

$$x \in R^n$$
 solution de base admissible de P: $E^T x = \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} \ge 0$

k = indice d'une variable hors-base

 $d^k = k^{\grave{e}me}$ direction de base en x:

$$E^{T}d^{k} = \begin{pmatrix} d_{B}^{k} \\ d_{N}^{k} \end{pmatrix} \text{ noté } \begin{pmatrix} d_{B} \\ d_{N} \end{pmatrix}$$

• Les composantes d_N sur les variables hors base sont toutes nulles, sauf sur la variable x_k

$$\mathbf{E}^{\mathrm{T}} \begin{pmatrix} \mathbf{0} \\ \mathbf{d}_{\mathrm{N}} \end{pmatrix} = \mathbf{e}_{\mathrm{k}} = \begin{pmatrix} \mathbf{1} & \cdots & \mathbf{k-1} & \mathbf{k} & \mathbf{k+1} \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} \end{pmatrix}^{\mathrm{T}}$$

• Les composantes d_B sur les variables en base vérifient la 1ère condition de direction admissible

$$Ad = 0 \implies Bd_{B} + Nd_{N} = 0 \implies d_{B} = -B^{-1}Nd_{N} = -B^{-1}\sum_{j \text{ hors base}} A_{.,j}d_{j}$$

$$\implies d_{B} = -B^{-1}A_{k} \qquad (A_{.,k} = k^{\text{ème}} \text{ colonne de AE})$$

- **Définition** $\text{La k}^{\grave{\text{e}}\text{me}} \text{ direction de base en x est} : E^T d^k = \begin{pmatrix} d_B^k \\ d_N^k \end{pmatrix} = \begin{pmatrix} -B^{-1}A_{.,k} \\ 0 \end{pmatrix} + e_k = \begin{pmatrix} 1 & m & m+1 & k-1 & k & k+1 & n \\ d_1 & \cdots & d_m & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{pmatrix}^T$
- Interprétation géométrique : directions de base = arêtes du polytope en x

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.2 Direction admissible

1.2.2 Direction de base

Direction de base admissible

 $x \in \mathbb{R}^n$ solution de base admissible de P, k = indice d'une variable hors-base

La
$$k^{\text{ème}}$$
 direction de base d^k en x vérifie par définition :
$$\begin{cases} Ad = 0 \\ d_N \ge 0 \end{cases}$$

Pour que d^k soit une direction admissible, il faut également vérifier : $d_{Bi} \ge 0$ si $x_{Bi} = 0$

Cas d'une base non dégénérée

x solution de base admissible non dégénérée $(x_B > 0)$

Toutes les directions de base en x sont admissibles

Combinaison de directions de base

x∈Rⁿ solution de base admissible de P

Toute direction admissible d en x est combinaison linéaire des directions de base d^k en x

$$d = \sum_{k \text{ hors base}} \alpha_k d^k$$
 avec $d^k = k^{\text{ème}}$ direction de base en x

1	Bases théoriques
1.2	Contraintes linéaires

1.2.2 Direction admissible

Techniques d'optimisation

1.2.2 Direction de base

Cas d'une base non dégénérée

Preuve : on suppose que x est une solution de base non dégénérée.

La kème direction de base d^k vérifie

$$Ad^{k} = Bd^{k}_{B} + Nd^{k}_{N} = -BB^{-1}A_{.,k} + Nd_{Nk} = -A_{.,k} + A_{.,k} = 0 \quad car \quad N(d^{k}_{N})_{k} = A_{.,k}$$

• Comme $\begin{cases} x_B > 0 \\ d_N > 0 \end{cases}$, on peut se déplacer suivant d^k à partir de x en restant admissible $\rightarrow d^k$ est une direction admissible.

Combinaison de directions de base

Preuve : on suppose que d est une direction admissible.

- En décomposant suivant les composantes B et N: $Ad = Bd_B + Nd_N = 0 \implies d_B = -B^{-1}Nd_N$
- En notant d_k les composantes de d_N dans la base canonique de R^n : $d_N = \sum d_k e_k$

• On obtient pour
$$d$$
: $d = \begin{pmatrix} d_B \\ d_N \end{pmatrix} = \sum_{k \in \mathbb{N}} d_k \begin{pmatrix} B^{-l} A_{.,k} \\ e_k \end{pmatrix}$

avec
$$d^k = \begin{pmatrix} B^{-1}A_{.,k} \\ e_k \end{pmatrix} = k^{\grave{e}me}$$
 direction de base $\rightarrow d = combinaison linéaire des $d^k$$

1.2 Contraintes linéaires

1.2.2 Direction admissible

Techniques d'optimisation

1.2.2 Exemple

Recherche des directions de base

Polytope P dans R⁴ sous forme standard

$$P = \{(x_1, x_2, x_3, x_4) / Ax = b, x \ge 0\}$$

avec
$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix}$$
, $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

- Direction de base en une solution de base admissible
 - \rightarrow choisir une variable hors base (k)
 - \rightarrow fixer la composante hors base correspondante d_{Nk} à 1

 - \rightarrow calculer les composantes en base d_B par $-B^{-1}A_{...k}$
- Si la base est non dégénérée, la direction est admissible. Sinon, il faut vérifier $d_B \ge 0$ sur les composantes $x_B = 0$
- Sommets de P
 - → 2 variables hors base à chaque sommet
 - → 2 directions de base (= arêtes du polytope)

1.2.2 Exemple

Recherche des directions de base

Examen de directions de base de P

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix}$$

• Base admissible $(\mathbf{x_2}, \mathbf{x_4})$: $\mathbf{x} = (0 \ 1 \ 0 \ 2) \rightarrow \mathbf{point} \ \mathbf{C}$

$$\mathbf{B} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \ \mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

• Direction de base d^1 correspondant à la variable hors base x_1

$$d_{B} = -B^{-1}A_{.,1} = -\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}\begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$
$$d^{1} = \begin{pmatrix} 1 & -1 & 0 & -2 \end{pmatrix} \longrightarrow \text{admissible}$$

• Direction de base d^3 correspondant à la variable hors base x_3

$$d_{B} = -B^{-1}A_{.,3} = -\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$
$$d^{3} = \begin{pmatrix} 0 & -1 & 1 & -1 \end{pmatrix} \longrightarrow \text{admissible}$$

1.2.2 Exemple

Recherche des directions de base

Examen de directions de base de P

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix}$$

Base admissible (x_1,x_4) : $x = (1 \ 0 \ 0 \ 0) \rightarrow point B$

$$\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad \mathbf{B}^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

base dégénérée

Direction de base d^2 correspondant à la variable hors base x_2

$$d_{B} = -B^{-1}A_{.,2} = -\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}\begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

$$d^2 = (-1 \ 1 \ 0 \ 2) \rightarrow admissible$$

Direction de base d 3 correspondant à la variable hors base x_3

$$d_{B} = -B^{-1}A_{.,3} = -\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

$$d^3 = (-1 \ 0 \ 1 \ 1) \rightarrow a$$

 \rightarrow admissible

1.2.2 Exemple

Recherche des directions de base

Examen de directions de base de P

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix}$$

• Base admissible $(\mathbf{x}_1, \mathbf{x}_2)$: $\mathbf{x} = (1 \ 0 \ 0 \ 0) \rightarrow \mathbf{point} \mathbf{B}$ base dégénérée

$$B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, B^{-1} = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{pmatrix}$$

Direction de base d 3 correspondant à la variable hors base x_3

$$d_{B} = -B^{-1}A_{.,3} = -\begin{pmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -0.5 \\ -0.5 \end{pmatrix}$$

 $d^3 = (-0.5 - 0.5 \ 1 \ 0) \rightarrow \text{non admissible (base dégénérée)}$

Direction de base d⁴ correspondant à la variable hors base x₄

$$d_{B} = -B^{-1}A_{.,4} = -\begin{pmatrix} 0.5 & 0.5 \\ 0.5 & -0.5 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -0.5 \\ 0.5 \end{pmatrix}$$

$$d^4 = (-0.5 \ 0.5 \ 0.1) \rightarrow admissible$$

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.3 Réduction

1.2.3 Réduction

- ☐ Principe
- ☐ Méthode générale
- ☐ Réduction avec noyau
- ☐ Choix des matrices Y et Z
- ☐ Interprétation géométrique

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.3 Réduction

1.2.3 Réduction

Problème sous contraintes linéaires

 $\min_{x \in R^n} f(x)$ sous Ax = b, $A \in R^{m \times n}$, $b \in R^m$, A de rang plein $r=m \le n$

- On cherche un déplacement p à partir d'un point initial x_0 . Le point initial x_0 n'est pas forcément admissible : $Ax_0=b_0$.
- Le nouveau point x doit être admissible et meilleur que x_0 (diminution du critère).

$$x_0 \rightarrow x = x_0 + p$$
 avec
$$\begin{cases} Ax = b \\ f(x) < f(x_0) \end{cases} \rightarrow \text{admissible}$$
 amélioration

Principe de réduction

On utilise les m contraintes pour réduire le problème à n-m variables.

Le déplacement p est décomposé en 2 termes : $\mathbf{p} = \mathbf{p_{libre}} + \mathbf{p_{li\acute{e}}}$, $p_{li\acute{e}} \in R^n$, $p_{li\acute{e}} \in R^n$

- p_{libre} dépend de n-m variables libres (ou indépendantes) \rightarrow pour minimiser le critère f
- $\bullet \quad p_{li\acute{e}} \quad d\acute{e}pend \; de \; m \quad variables \; li\acute{e}es \quad (ou \quad d\acute{e}pendantes) \quad \rightarrow \; pour \; restaurer \; l'admissibilit\acute{e}$
- p_{lié} est calculé à partir des contraintes

$$Ax = b \implies A(x_0 + p) = b \implies A(p_{libre} + p_{li\acute{e}}) = b - b_0 \implies Ap_{li\acute{e}} = b - b_0 - Ap_{libre}$$

- → Système non singulier (A de rang plein)
- \rightarrow Le problème d'optimisation est réduit à p_{libre} (n-m variables)

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.3 Réduction

1.2.3 Méthode générale

Décomposition du déplacement

• On choisit une base de Rⁿ formée de n vecteurs indépendants : (y₁...,y_m,z₁,...,z_{n-m}) Le déplacement p s'écrit comme une combinaison linéaire des vecteurs y_i et z_i :

$$p = \sum_{i=1}^{m} a_i y_i + \sum_{i=1}^{n-m} b_i z_i \iff \boxed{p = Yp_Y + Zp_Z}$$

```
\begin{array}{lll} \text{avec} & \text{matrice } Y = (y_1 \; , \ldots, y_m \;) \in R^{n \times m} & = \text{composantes des} & \text{m vecteurs } y_1, \ldots, y_m \\ & \text{matrice } Z = (z_1 \; , \ldots, z_{n-m}) \in R^{n \times (n-m)} & = \text{composantes des} & \text{m vecteurs } z_1, \ldots, z_{n-m} \\ & \text{vecteur } p_Y = (a_1 \; , \ldots, a_m) \; \in R^m & = \text{coefficients} & \text{des} & \text{m vecteurs } y_1, \ldots, y_m \\ & \text{vecteur } p_Z = (b_1 \; , \ldots, b_{n-m}) \in R^{n-m} & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{vecteurs } z_1, \ldots, z_{n-m} \\ & = \text{coefficients} & \text{des } n-m \; \text{des } n-m \; \text{des } n-m \\ & = \text{coefficients} & \text{des } n-m \; \text{des } n-m \\ & = \text{coefficients} & \text{des } n-m \; \text{des } n-m \\ & = \text{coefficients} & \text{des } n-m \; \text{des } n-m \\ & = \text{coefficients} & \text{des } n-m \;
```

Les composantes liées et libres du déplacement $p = p_{lié} + p_{libre}$ sont définies par :

```
\mathbf{p_{li\acute{e}}} = \mathbf{Y}\mathbf{p_{Y}} \in \mathbb{R}^{n} \rightarrow \mathbf{m} \text{ variables li\acute{e}es } (\mathbf{p_{Y}})
\mathbf{p_{libre}} = \mathbf{Z}\mathbf{p_{Z}} \in \mathbb{R}^{n} \rightarrow \mathbf{n} - \mathbf{m} \text{ variables libres } (\mathbf{p_{Z}})
```

• Le déplacement doit être admissible

$$\begin{split} A(x_0 + p) &= b \Rightarrow Ap_{li\acute{e}} = b - b_0 - Ap_{libre} \\ &\Rightarrow AYp_Y = b - b_0 - AZp_Z \\ &\Rightarrow p_Y = \left(AY\right)^{-1} \left(b - b_0 - AZp_Z\right) \quad \text{si la matrice AY est inversible} \end{split}$$

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.3 Réduction

1.2.3 Méthode générale

Problème équivalent sans contrainte

• Déplacement total

$$p = Yp_{Y} + Zp_{Z} \quad \text{avec} \quad p_{Y} = (AY)^{-1}(b - b_{0} - AZp_{Z}) \quad \text{si la matrice AY est inversible}$$

$$\Rightarrow \quad p = Y(AY)^{-1}(b - b_{0}) + (I - Y(AY)^{-1}A)Zp_{Z} \quad \Rightarrow \quad \text{réduction à n-m variables } p_{Z}$$

Coût réduit

$$f(x) = f(x_0 + p) = f(x_0 + Y(AY)^{-1}(b - b_0) + (I - Y(AY)^{-1} A)Zp_Z)$$

$$= \phi(p_Z) \qquad \rightarrow \text{ coût réduit } \phi = \text{ fonction de n-m variables}$$

$$\min_{p \in R^n} f(x_0 + p) \text{ sous } A(x_0 + p) = b \longrightarrow \text{n variables } p / \text{m contraintes}$$

$$\Leftrightarrow \min_{p_Z \in R^{n-m}} \phi(p_Z) \longrightarrow \text{n-m variables } p_Z / 0 \text{ contrainte}$$

Choix des matrices Y et Z

- Réduction avec noyau \rightarrow respect des contraintes avec p_Y , minimisation avec p_Z
- Matrices orthogonales → meilleur conditionnement

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.3 Réduction

1.2.3 Réduction avec noyau

Base du noyau

- On choisit pour les n−m vecteurs (z₁,...,z_{n-m}) une base de l'espace nul de A : Az_i=0

 + m vecteurs (y₁,...,y_m) pour former une base de Rⁿ

 ⇒ AZ = 0
- La matrice $(Y Z) \in \mathbb{R}^{n \times n}$ est de rang plein (base de \mathbb{R}^n)
 - \Rightarrow A(Y Z) = (AY 0) de rang plein
 - ⇒ AY matrice inversible de R^{m×m}
- Le déplacement lié se simplifie

$$p_{li\acute{e}} = Yp_Y = Y(AY)^{-1}(b - b_0 - AZp_Z) = Y(AY)^{-1}(b - b_0)$$

 \rightarrow p_{lié} est constant et indépendant de p_{libre} = Zp_Z

$$p = Yp_{Y} + Zp_{Z} = Y(AY)^{-1}(b - b_{0}) + Zp_{Z}$$

Problème réduit

$$\left| \min_{p \in \mathbb{R}^{n}} f(x_{0} + p) \text{ sous } A(x_{0} + p) = b \right| \iff \min_{p_{Z} \in \mathbb{R}^{n - m}} \phi(p_{Z}) = f(x_{0} + Y(AY)^{-1}(b - b_{0}) + Zp_{Z}) \right|$$

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.3 Réduction

1.2.3 Choix des matrices Y et Z

A partir d'une base de A

• On choisit une base $B \in \mathbb{R}^{m \times m}$ de la matrice A (= m colonnes indépendantes de A)

$$AE = \begin{pmatrix} m & n-m \\ B & N \end{pmatrix} \quad E^{T}p = \begin{pmatrix} p_{B} \\ p_{N} \end{pmatrix} \xrightarrow{} m$$
 (E = matrice de permutation de colonnes de A)

• Le déplacement p est décomposé en $p=p_{libre}+p_{li\acute{e}}$ avec $p_{li\acute{e}}\in R^n$, $p_{libre}\in R^n$, définis par :

$$E^{\mathsf{T}} p_{\mathsf{li\acute{e}}} = \begin{pmatrix} p_{\mathsf{B}} \\ 0 \end{pmatrix} \qquad E^{\mathsf{T}} p_{\mathsf{libre}} = \begin{pmatrix} 0 \\ p_{\mathsf{N}} \end{pmatrix} \qquad A p_{\mathsf{li\acute{e}}} = b - b_{\mathsf{0}} - A p_{\mathsf{libre}} \quad \Rightarrow \boxed{p_{\mathsf{B}} = B^{-1} (b - b_{\mathsf{0}}) - B^{-1} N p_{\mathsf{N}}}$$

• La décomposition correspondante dans R^n est $p = Yp_Y + Zp_Z$ avec

$$Y = \begin{pmatrix} B^{-1} \\ 0 \end{pmatrix}_{n-m}^{m} \qquad Z = \begin{pmatrix} -B^{-1}N \\ I \end{pmatrix}_{n-m}^{m} \qquad \Rightarrow p = Yp_{Y} + Zp_{Z} = \begin{pmatrix} p_{B} \\ p_{N} \end{pmatrix}$$

$$p_{Y} = b - b_{0} \qquad p_{Z} = p_{N} \qquad \Rightarrow \text{ décomposition directe selon les composantes de p}$$

Problème réduit

$$\left| \min_{p \in R^n} f(x_0 + p) \text{ sous } A(x_0 + p) = b \iff \min_{p_N \in R^{n-m}} \phi(p_N) = f(x_{0B} + B^{-1}(b - b_0 - Np_N), x_{0N} + p_N) \right|$$

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.3 Réduction

1.2.3 Choix des matrices Y et Z

A partir de matrices orthogonales

• La matrice AY doit être inversée

$$p = Yp_Y + Zp_Z = Y(AY)^{-1}(b - b_0) + Zp_Z$$

- → Il faut choisir la base (Y Z) pour obtenir le meilleur conditionnement possible
- Factorisation QR de A

$$A^TE = QR$$
 avec Q orthogonale $(QQ^T=I)$ \rightarrow méthode de Householder R triangulaire

$$A^{T}E = {}_{n} \begin{pmatrix} {}_{n} & {}_{n-m} \\ {Q}_{1} & {Q}_{2} \end{pmatrix} \begin{pmatrix} {}_{m} \\ {R} \\ {0} \end{pmatrix} {}_{n-m} \longrightarrow \begin{cases} Y = {Q}_{1} \\ Z = {Q}_{2} \end{cases}$$

Conditionnement de AY

$$A^{T}E = Q_{1}R \implies A = ER^{T}Q_{1}^{T} \implies AY = ER^{T}Q_{1}^{T}Q_{1} = ER^{T}$$

- → même conditionnement que R
- \rightarrow même conditionnement que A (car QQ^T=I \rightarrow conditionnement = 1)
 - = conditionnement minimal possible à partir de A

- Bases théoriques 1.2 Contraintes linéaires
- 1.2.3 Réduction

1.2.3 Interprétation géométrique

A partir d'une base de A

- $p_N = n-m$ composantes de x \rightarrow minimisation de f $p_B = m$ composantes de x \rightarrow restauration de Ax=b $p_B \neq 0$ car p_N ne tient pas compte les contraintes \rightarrow mauvais conditionnement si $p_B >> p_N$

A partir de matrices orthogonales

- $Zp_Z = d$ éplacement dans le noyau x \rightarrow minimisation de f
- $Yp_Y = d$ éplacement orthogonal à $Zp_Z \rightarrow restauration de <math>Ax = b$ $p_v = 0$ si x_0 est admissible car p_z conserve les contraintes \rightarrow meilleur conditionnement

- 1 Bases théoriques
- 1.2 Contraintes linéaires
- 1.2.4 Projection

1.2.4 Projection

- ☐ Projection orthogonale sur un hyperplan
- ☐ Projection sur le noyau

1.2 Contraintes linéaires

1.2.4 Projection

Techniques d'optimisation

1.2.4 Projection

Projection orthogonale sur un hyperplan

La projection orthogonale de $x_0 \in \mathbb{R}^n$ sur l'hyperplan d'équation Ax = b est le point x solution de

$$\left| \min_{x \in \mathbb{R}^n} \|x - x_0\| \right|$$
 sous $Ax = b$ \rightarrow point x_p de l'hyperplan le plus proche de x_0

• Problème quadratique équivalent

$$\min_{x \in R^{n}} \frac{1}{2} \|x - x_{0}\|^{2} = \frac{1}{2} (x - x_{0})^{T} (x - x_{0}) \text{ sous } Ax = b$$

• Lagrangien: $L(x,\lambda) = \frac{1}{2}(x-x_0)^T(x-x_0) + \lambda^T(b-Ax)$

• Condition d'ordre 1

$$\begin{cases} x - x_0 - A^T \lambda = 0 \\ Ax = b \end{cases} \Rightarrow \begin{cases} Ax - AA^T \lambda = Ax_0 \\ Ax = b \end{cases} \Rightarrow \begin{cases} \lambda = (AA^T)^{-1}(b - Ax_0) \\ x = x_0 + A^T(AA^T)^{-1}(b - Ax_0) \end{cases}$$

• Solution: $\mathbf{x}_{P} = \left(\mathbf{I} - \mathbf{A}^{T} \left(\mathbf{A} \mathbf{A}^{T}\right)^{-1} \mathbf{A} \right) \mathbf{x}_{0} + \mathbf{A}^{T} \left(\mathbf{A} \mathbf{A}^{T}\right)^{-1} \mathbf{b}$

• Projection de x_0 sur le noyau de $A : Ax=0 \rightarrow x_P = \left(I - A^T \left(AA^T\right)^{-1}A\right)x_0$

$$\rightarrow$$
 matrice de projection : $P = I - A^{T} (AA^{T})^{-1} A$

- 1 Bases théoriques
- 1.3 Contraintes non linéaires

Sommaire

- 1. Bases théoriques
 - 1.1 Définitions
 - 1.2 Contraintes linéaires
 - 1.3 Contraintes non linéaires
 - 1.3.1 Direction admissible
 - 1.3.2 Déplacement admissible
 - 1.4 Conditions d'optimalité
- 2. Optimisation sans contraintes
- 3. Optimisation avec contraintes

- 1 Bases théoriques
- 1.3 Contraintes non linéaires
- 1.3.1 Direction admissible

1.3.1 Direction admissible

- ☐ Indépendance linéaire
- ☐ Direction admissible à la limite
- ☐ Cône des directions
- ☐ Qualification des contraintes

- 1 Bases théoriques
- 1.3 Contraintes non linéaires
- 1.3.1 Direction admissible

1.3.1 Indépendance linéaire

Contraintes linéaires

Pour des contraintes linéaires Ax=b, $A \in R^{m \times n}$, si A est de rang déficient : rang(A) = r < m, on peut toujours extraire de A une sous-matrice $\tilde{A} \in R^{r \times n}$ de rang plein : $rang(\tilde{A}) = r$, telle que : $\tilde{A}x = \tilde{b} \iff Ax = b \implies$ élimination des contraintes redondantes (cf §1.2.1)

Contraintes non linéaires

Pour des contraintes non linéaires, on considère un modèle linéaire local.

- x_0 point admissible : $\begin{cases} c_E(x_0) = 0 \\ c_I(x_0) \le 0 \end{cases} \Leftrightarrow c(x_0) = 0 \qquad \text{(contraintes actives en } x_0)$
- Contraintes actives linéarisées : $\hat{c}_0(x) = c(x_0) + \nabla c(x_0)^T (x x_0)$ avec $c(x_0) = 0$ $\hat{c}_0(x) = 0 \iff \nabla c(x_0)^T x = \nabla c(x_0)^T x_0 \iff Ax = b$

On se ramène au cas de contraintes linéaires avec $A = \nabla c(x_0)^T$ (gradient des contraintes actives)

Condition d'indépendance linéaire

Les contraintes sont dites **linéairement indépendantes** en x_0 si les gradients des contraintes actives sont linéairement indépendants en x_0 . \Leftrightarrow La matrice jacobienne des contraintes actives $J(x_0) = \nabla c(x_0)$ est de rang plein.

- 1 Bases théoriques
- 1.3 Contraintes non linéaires
- 1.3.1 Direction admissible

1.3.1 Exemple

Indépendance linéaire

• 1 contrainte égalité + 1 contrainte inégalité dans R²

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \in \mathbf{R}^2 \qquad \begin{cases} \mathbf{c}_1(\mathbf{x}) = \mathbf{x}_2 - \mathbf{x}_1^2 = 0 \\ \mathbf{c}_2(\mathbf{x}) = \mathbf{x}_1^2 + (\mathbf{x}_2 - 1)^2 - 1 \le 0 \end{cases}$$

• En
$$x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\nabla c_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix} \qquad \nabla c_2 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

→ linéairement indépendants

• En
$$x = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\nabla c_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \qquad \nabla c_2 = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$

→ linéairement dépendants

- 1 Bases théoriques
- 1.3 Contraintes non linéaires
- 1.3.1 Direction admissible

1.3.1 Direction admissible

Définition générale

- x point admissible : $\begin{cases} c_{E}(x_{0}) = 0 \\ c_{I}(x_{0}) \le 0 \end{cases} \Leftrightarrow c(x_{0}) = 0 \qquad \text{(contraintes actives en } x_{0})$
- d direction admissible à partir de $x \Leftrightarrow \exists \eta > 0 / \forall s, 0 < s < \eta, x + sd$ admissible On peut se déplacer sur un segment de longueur ε suivant d à partir de x en restant admissible.

Applicabilité

• Applicable aux contraintes inégalité et aux contraintes égalité linéaires

- Inapplicable aux contraintes égalité linéaires
 - → Définition à partir de suites de points admissibles

- Bases théoriques
- Contraintes non linéaires
- 1.3.1 Direction admissible

1.3.1 Direction admissible à la limite

Suite de points admissibles

x point admissible

Définition :
$$(x_k)_{k \in \mathbb{N}}$$
 suite admissible en $x \Leftrightarrow \begin{cases} \forall k \ , \ x_k \neq x \\ \lim_{k \to \infty} x_k = x \\ \exists k_0 / \ \forall k \geq k_0 \ , \ x_k \end{cases}$ admissible

Direction admissible à la limite

- On considère la suite des directions $\mathbf{d_k}$ reliant $\mathbf{x_k}$ à \mathbf{x} : $\mathbf{d_k} = \frac{\mathbf{x_k} \mathbf{x}}{\|\mathbf{x_k} \mathbf{x}\|}$
- **Définition**
- d direction admissible à la limite en x pour la suite $(x_k)_{k \in N}$ \Leftrightarrow Il existe une sous-suite $(d_{k_i})_{i \in N}$ telle que : $\lim_{i \to \infty} d_{k_i} = d$
- **Direction admissible à la limite = direction tangente**

- Bases théoriques
- Contraintes non linéaires
- 1.3.1 Direction admissible

1.3.1 Cône des directions

Définition

x point admissible

Le cône des directions D(x) en x est l'ensemble des directions $d \in \mathbb{R}^n$ vérifiant :

- $\begin{array}{ll} \bullet & \nabla c_{Ej}(x)^T d = 0 \quad \text{pour toutes les contraintes \'egalit\'e} & c_{Ej}(x) = 0, \ j = 1 \ \grave{a} \ p \\ \bullet & \nabla c_{Ij}(x)^T d \leq 0 \quad \text{pour les contraintes in\'egalit\'e actives} : & c_{Ij}(x) = 0, \ j = 1 \ \grave{a} \ q \end{array}$

$$\begin{array}{l} d \in D(x) & \rightarrow \text{ direction } \textbf{tangente} \text{ aux contraintes \'egalit\'e} \\ \rightarrow \text{ direction } \textbf{int\'erieure} \text{ aux contraintes in\'egalit\'e} \text{ actives} \end{array}$$

Propriété

Toute direction admissible à la limite en x appartient au cône des directions en x

Pretive:
$$(x_k) \text{ suite admissible de limite } x \Rightarrow \begin{cases} c_E(x_k) = 0 \\ c_I(x_k) \leq 0 \end{cases} \rightarrow \text{directions} \quad d_k = \frac{x_k - x}{\|x_k - x\|}$$

$$c \text{ contrainte active en } x : c(x) = 0 \qquad c(x_k) = c(x) + \nabla c(x)^T (x_k - x) + o(\|x_k - x\|)$$

$$\nabla c(x)^T d_k = \frac{c(x_k) - c(x)}{\|x_k - x\|} - \frac{o(\|x_k - x\|)}{\|x_k - x\|} \Rightarrow \nabla c(x)^T d = \lim_{k \to \infty} \frac{c(x_k)}{\|x_k - x\|} \rightarrow \begin{cases} = 0 & \text{(égalité)} \\ \leq 0 & \text{(inégalité)} \end{cases}$$

$$\nabla c(x)^T d_k = \frac{c(x_k^T) - c(x)}{\|x_k - x\|} - \frac{o(\|x_k - x\|)}{\|x_k - x\|} \Rightarrow \nabla c(x)^T d = \lim_{k \to \infty} \frac{c(x_k^T)}{\|x_k - x\|} \to \begin{cases} = 0 & (\text{\'egalit\'e}) \\ \le 0 & (\text{\'in\'egalit\'e}) \end{cases}$$

- 1 Bases théoriques
- 1.3 Contraintes non linéaires
- 1.3.1 Direction admissible

1.3.1 Qualification

Caractérisation des directions admissibles

• Le cône des directions D(x) au point x admissible est simple à manipuler en pratique : $d \in D(x) \Leftrightarrow \begin{cases} \nabla c_E(x)^T d = 0 & \rightarrow \text{ pour toutes les contraintes \'egalit\'e} \\ \nabla c_I(x)^T d \leq 0 & \rightarrow \text{ pour les contraintes in\'egalit\'e actives en } x \end{cases}$

• Toutes les directions admissibles à la limite en x appartiennent à D(x), mais D(x) peut contenir également des directions non admissibles.

 \rightarrow D(x) ne caractérise pas les directions admissibles.

Qualification des contraintes

Les contraintes vérifient la **condition de qualification** au point admissible x si toute direction du cône D(x) est admissible à la limite.

→ Condition très importante dans les algorithmes

Conditions suffisantes de qualification des contraintes

• Contraintes linéaires : Ax=b

• Contraintes linéairement indépendantes en $x : \nabla c(x)$ de rang plein

→ réalisable simplement en pratique par extraction d'une sous-matrice de rang plein

- 1 Bases théoriques
- 1.3 Contraintes non linéaires
- 1.3.2 Déplacement admissible

1.3.2 Déplacement admissible

- ☐ Principes
- ☐ Elimination directe
- ☐ Réduction généralisée
- ☐ Restauration

- 1 Bases théoriques
- 1.3 Contraintes non linéaires
- 1.3.2 Déplacement admissible

1.3.2 Déplacement admissible

Problème sous contraintes non linéaires

$$\min_{x \in R^{n}} f(x) \text{ sous } \begin{cases} c_{E}(x) = 0 \\ c_{I}(x) \le 0 \end{cases}$$

• On cherche à construire un déplacement p admissible et améliorant à partir d'un point initial x_0 . On se ramène à un problème avec contraintes égalité (contraintes actives en x_0).

$$\min_{x \in \mathbb{R}^n} f(x)$$
 sous $c(x) = 0$ \rightarrow m contraintes actives en x_0

Les n composantes du déplacement p doivent vérifier : $\begin{cases} c(x_0 + p) = 0 \\ f(x_0 + p) < f(x_0) \end{cases}$

Méthodes possibles

Elimination directe

On exprime m variables à partir des n-m autres à partir des contraintes.

On substitue dans l'expression de $f \rightarrow \text{problème sans contraintes}$

• Réduction généralisée

On linéarise les contraintes en x_0 .

On applique la méthode de réduction des contraintes linéaires (matrices Y et Z).

On corrige le déplacement pour prendre en compte les non-linéarités.

- 1 Bases théoriques
- 1.3 Contraintes non linéaires
- 1.3.2 Déplacement admissible

1.3.2 Elimination directe

Principe

```
\min_{x \in R^n} f(x) sous c(x) = 0 \rightarrow m contraintes actives
```

- Les contraintes sont de la forme : $c(x) = c(x_{lié}, x_{libre}), x_{lié} \in \mathbb{R}^m, x_{libre} \in \mathbb{R}^{n-m}$
- Si l'on sait résoudre : $c(x_{lié}, x_{libre}) = 0 \Leftrightarrow x_{lié} = \psi(x_{libre})$

le problème devient :
$$\min_{x_{libre} \in R^{n-m}} \phi(x_{libre})$$
 avec $\phi(x_{libre}) = f(x_{lié}, x_{libre}) = f(\psi(x_{libre}), x_{libre})$

→ problème de dimension n-m, sans contrainte

Difficultés

- Il faut faire attention au domaine de définition des variables (contraintes implicites)
 - → voir exemples
- Il faut disposer de l'expression analytique des fonctions (rarement réalisé en pratique)

- 1 Bases théoriques
- 1.3 Contraintes non linéaires
- 1.3.2 Déplacement admissible

1.3.2 Exemples

Elimination directe

• Exemple 1:
$$\min_{x_1, x_2} x_1^2 + x_2^2$$
 sous $x_1^2 - x_2^2 = 1$

Elimination de
$$x_1$$
: $x_1^2 - x_2^2 = 1 \Rightarrow x_1^2 = 1 + x_2^2$

$$\rightarrow \min_{x_2} 1 + 2x_2^2 \Rightarrow x_2 = 0$$

Solution correcte:
$$\begin{cases} x_1 = 1 \\ x_2 = 0 \end{cases}$$

Elimination de
$$x_1$$
: $x_1^2 + 4x_2^2 = 1 \Rightarrow x_1^2 = 1 - 4x_2^2$
 $\Rightarrow \min_{x_2} 1 - 3x_2^2 \Rightarrow x_2 = \pm \infty$

Solution incorrecte

Contrainte implicite :
$$x_1^2 \ge 0 \Rightarrow 1 - 4x_2^2 \ge 0$$

 $\Rightarrow -\frac{1}{2} \le x_2 \le \frac{1}{2}$

→ à prendre en compte explicitement dans la résolution

- 1 Bases théoriques
- 1.3 Contraintes non linéaires
- 1.3.2 Déplacement admissible

1.3.2 Réduction généralisée

Principe

 $\min_{x \in \mathbb{R}^n} f(x)$ sous c(x) = 0 \rightarrow m contraintes actives

On construit le déplacement p à partir du point initial x_0 en 2 étapes : $p = p_1 + p_2$

• Etape de linéarisation + réduction

Le déplacement p_1 améliore le critère en supposant un modèle linéaire des contraintes en x_0 .

- \rightarrow linéarisation des contraintes en x_0
- → application de la méthode de réduction de contraintes linéaires

On obtient un nouveau point : $\mathbf{x_1} = \mathbf{x_0} + \mathbf{p_1}$

• Etape de restauration

Les contraintes actives (non linéaires) ne sont pas respectées en x_1 . Le déplacement p_2 restaure un point admissible à partir du point x_1 .

- → linéarisation des contraintes en x₁
- → résolution d'un système sous-déterminé

On obtient un nouveau point : $x_2 = x_1 + p_2$

• Le point x_2 doit être : - admissible pour l'ensemble des contraintes (actives et inactives en x_0)

- meilleur que x_0 ($f(x_2) < f(x_0)$)

- Bases théoriques
- Contraintes non linéaires
- 1.3.2 Déplacement admissible

1.3.2 Réduction généralisée

Etape de linéarisation + réduction

 $\min f(x)$ sous c(x) = 0 \rightarrow m contraintes actives

- On linéarise les contraintes au point initial x_0 : $\hat{c}_0(x) = c(x_0) + \nabla c(x_0)^T (x x_0)$
- Le déplacement p est admissible pour les contraintes linéaires si :

$$\hat{\mathbf{c}}_0(\mathbf{x}_0 + \mathbf{p}) = 0 \iff \mathbf{c}(\mathbf{x}_0) + \nabla \mathbf{c}(\mathbf{x}_0)^{\mathrm{T}} \mathbf{p} = 0 \iff \mathbf{A}_0 \mathbf{p} = \mathbf{b}_0 \text{ avec } \begin{cases} \mathbf{A}_0 = \nabla \mathbf{c}(\mathbf{x}_0)^{\mathrm{T}} \\ \mathbf{b}_0 = -\mathbf{c}(\mathbf{x}_0) \end{cases}$$

On applique la méthode de réduction de contraintes linéaires. Le déplacement est décomposé en $\mathbf{p} = \mathbf{Y}\mathbf{p}_{\mathbf{Y}} + \mathbf{Z}\mathbf{p}_{\mathbf{Z}}$ avec Z base du noyau de \mathbf{A}_0

$$\min_{p \in \mathbb{R}^{n}} f(x_{0} + p) \text{ sous } A_{0}p = b_{0} \iff \min_{p_{Z} \in \mathbb{R}^{n - m}} \phi(p_{Z}) = f(x_{0} + Y(A_{0}Y)^{-1}b_{0} + Zp_{Z})$$

$$\Rightarrow \text{ problème à n-m variables sans contraintes}$$

- → problème à n-m variables sans contraintes
- \rightarrow déplacement p_1
- Le nouveau point $x_1 = x_0 + p_1$
 - est meilleur que x_0 : $f(x_1) < f(x_0)$
 - ne vérifie pas les contraintes : $c(x_1) = c_1 \neq 0$

- 1 Bases théoriques
- 1.3 Contraintes non linéaires
- 1.3.2 Déplacement admissible

1.3.2 Réduction généralisée

Etape de restauration

- Les contraintes actives ne sont pas vérifiées en x₁: c(x₁) = c₁ ≠ 0
 On cherche un déplacement p₂ à partir de x₁ tel que : c(x₁+p₂) = 0
 → système non linéaire sous-déterminé de m équations à n inconnues
- On linéarise les contraintes au point x_1 : $\hat{c}_1(x) = c(x_1) + \nabla c(x_1)^T (x x_1)$ On obtient un système linéaire sous-déterminé de m équations à n inconnues :

$$\hat{c}_1(x_1 + p) = 0 \iff c(x_1) + \nabla c(x_1)^T p = 0 \iff A_1 p = b_1 \text{ avec } \begin{cases} A_1 = \nabla c(x_1)^T \\ b_1 = -c(x_1) \end{cases}$$

Résolution du système

- Il faut recalculer les gradients des contraintes en $x_1 \to très$ coûteux (m×n appels fonction) On fait l'approximation que : $\nabla c(x_1) \approx \nabla c(x_0)$
 - → approximation correcte si le déplacement p₁ est petit ou si les contraintes sont peu non linéaires
- Le système sous-déterminé admet une infinité de solutions (n-m variables libres)
 Choix possibles : solution de norme minimale (projection sur les contraintes)
 - solution de base (pour ne pas dégrader la minimisation due à p₁)

- 1 Bases théoriques
- 1.3 Contraintes non linéaires
- 1.3.2 Déplacement admissible

1.3.2 Restauration

Résolution du système

Le déplacement p_2 doit vérifier : $A_1p = b_1$ avec $\begin{cases} A_1 = \nabla c(x_1)^T \approx \nabla c(x_0)^T = A_0 \\ b_1 = -c(x_1) = -c_1 \end{cases}$

• Solution de norme minimale \rightarrow projection sur l'hyperplan tangent aux contraintes actives $\min_{p \in \mathbb{R}^n} \|p\| \text{ sous } A_1 p = b_1 \qquad \qquad \rightarrow p_2 = A_1^T \left(A_1 A_1^T \right)^{-1} b_1 \qquad \qquad (cf \S 1.2.4)$

• Solution de base \rightarrow pour ne pas dégrader la minimisation réalisée par p_Z $A_1(Yp_X + Zp_Z) = b_1 \Rightarrow p_Y = (A_1Y)^{-1}b_1 \rightarrow p_2 = Y(A_1Y)^{-1}b_1$ (cf §1.2.3)

- 1 Bases théoriques
- 1.3 Contraintes non linéaires
- 1.3.2 Déplacement admissible

1.3.2 Restauration

Itérations

• La résolution est basée sur une linéarisation du système en x₁.

$$\mathbf{A}_1 \mathbf{p} = \mathbf{b}_1 \quad \text{avec} \quad \begin{cases} \mathbf{A}_1 = \nabla \mathbf{c}(\mathbf{x}_1)^T \approx \nabla \mathbf{c}(\mathbf{x}_0)^T = \mathbf{A}_0 \\ \mathbf{b}_1 = -\mathbf{c}(\mathbf{x}_1) = -\mathbf{c}_1 \end{cases} \rightarrow \text{déplacement } \mathbf{p}_2$$

- Le point $x_2 = x_1 + p_2$ ne vérifie pas forcément les contraintes : $c(x_2) = c_2 \neq 0$ Il faut alors réitérer la résolution à partir de x_2 .
- On cherche un déplacement p_3 à partir de x_2 tel que : $c(x_2+p_3)=0$

$$A_2 p = b_2$$
 avec
$$\begin{cases} A_2 = \nabla c(x_2)^T \approx \nabla c(x_0)^T = A_0 \\ b_2 = -c(x_2) = -c_2 \end{cases} \rightarrow \text{d\'eplacement } p_3$$

- Si l'on n'obtient pas de point admissible après un nombre donné d'itérations, il faut réduire le déplacement p₁ pour rendre l'approximation linéaire suffisamment correcte.
- Si l'on obtient un point admissible x₂, il faut encore vérifier que :
 - les contraintes qui étaient inactives en x₀ sont respectées en x₂
 - le point x_2 est meilleur que le point initial x_0 (car la restauration peut dégrader le critère). Sinon il faut réduire le déplacement p_1 .

- 1 Bases théoriques
- 1.3 Contraintes non linéaires
- 1.3.2 Déplacement admissible

1.3.2 Restauration

Illustrations

Restauration en plusieurs itérations : p₂ , p₃

Restauration infructueuse (non linéarité)

- 1 Bases théoriques
- 1.3 Contraintes non linéaires
- 1.3.2 Déplacement admissible

1.3.2 Direction d'ordre 2

Effet Maratos

La restauration après le déplacement p₁ peut dégrader systématiquement le critère.

Il faut alors réduire fortement le pas p₁ pour progresser.

Ceci peut bloquer un algorithme basé sur une recherche linéaire suivant p₁ (effet Maratos).

Correction d'ordre 2

• On corrige la direction de déplacement pour prendre en compte la non-linéarité des contraintes.

 p_1 = pas d'ordre 1 (en supposant des contraintes linéaires)

 $p_2 = pas$ d'ordre 2 (correction des non linéarités constatées en $x_1 = x_0 + p_1$)

$$A_1 p_2 = b_1 \text{ avec } \begin{cases} A_1 = \nabla c(x_0)^T \\ b_1 = -c(x_0 + p_1) \end{cases} \rightarrow p_2 = A_1^T (A_1 A_1^T)^{-1} b_1$$

• Pas total : $\mathbf{p_t} = \mathbf{p_1} + \mathbf{p_2} \rightarrow \text{direction de recherche.}$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité

Sommaire

1. Bases théoriques

- 1.1 Définitions
- 1.2 Contraintes linéaires
- 1.3 Contraintes non linéaires

1.4 Conditions d'optimalité

- 1.4.1 Dualité
- 1.4.2 Problème sans contraintes
- 1.4.3 Problème avec contraintes
- 1.4.4 Problème linéaire
- 1.4.5 Problème quadratique
- 2. Optimisation sans contraintes
- 3. Optimisation avec contraintes

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.1 Dualité

1.4.1 Dualité

- ☐ Dualité critère contraintes
 - Critère augmenté
 - Lagrangien
 - Lagrangien augmenté
 - Fonction duale
- ☐ Problème dual
 - Dualité faible
 - Saut de dualité
 - Point col
 - Dualité forte
- ☐ Programmation linéaire
 - Problème primal
 - Problème dual

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.1 Dualité

1.4.1 Dualité

Problème avec contraintes égalité

```
\min_{x \in R^n} f(x) sous c(x) = 0 \rightarrow m contraintes d'égalité (= contraintes actives)
```

Dualité

Difficulté de résolution due aux 2 objectifs antagonistes :

- Minimiser le critère f(x)
- Satisfaire les contraintes c(x)=0
 - → Dualité critère-contraintes

Méthodes duales

Prise en compte des contraintes avec pondération dans la fonction coût

- Critère augmenté → pondération = pénalisation des contraintes
- Lagrangien → pondération = multiplicateurs de Lagrange
- Lagrangien augmenté \rightarrow pondération = pénalisation + multiplicateurs
 - → Problème sans contraintes plus simple
 Réglages des pondérations / Equivalence au problème avec contraintes

- Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.1 Dualité

1.4.1 Critère augmenté

Problème avec contraintes égalité

$$\min_{x \in \mathbb{R}^n} f(x)$$
 sous $c(x) = 0$ \rightarrow m contraintes d'égalité (= contraintes actives)

Critère augmenté

$$\left\| \mathbf{f}_{\rho}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) + \frac{1}{2} \rho \left\| \mathbf{c}(\mathbf{x}) \right\|^{2}$$

$$\rho =$$
coefficient de pénalisation $> 0 \rightarrow$ Pénalise la violation des contraintes

→ Pondération critère-contraintes

Problème pénalisé sans contraintes

$$\min_{x \in R^n} f_{\rho}(x)$$

 → Problème équivalent au problème avec contraintes si la pénalisation ρ est assez grande

Problème pénalisé avec contraintes

$$\min_{x \in R^n} f_{\rho}(x) \text{ sous } c(x) = 0$$

→ Problème équivalent au problème avec contraintes Renforce le poids des contraintes dans le critère

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.1 Dualité

1.4.1 Exemple

Critère augmenté

$$\min_{\mathbf{x}_1, \mathbf{x}_2} \frac{1}{2} \left(\mathbf{x}_2^2 - \mathbf{x}_1^2 \right) \text{ sous } \mathbf{x}_1 = 1$$

$$f(x) = \frac{1}{2} (x_2^2 - x_1^2) \implies x^* = (1 \ 0)$$

$$c(x) = x_1 - 1$$

$$f_{\rho}(x_1, x_2) = \frac{1}{2}(x_2^2 - x_1^2) + \frac{1}{2}\rho(x_1 - 1)^2 \implies x * (\rho) = \left(\frac{\rho}{\rho - 1} \quad 0\right)$$

-2,0

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.1 Dualité

1.4.1 Lagrangien

Problème avec contraintes égalité et inégalité

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) \text{ sous } \begin{cases} c_{E}(\mathbf{x}) = 0 \\ c_{I}(\mathbf{x}) \leq 0 \end{cases} \quad (PO) \quad \xrightarrow{} \text{ p contraintes d'égalité} \\ \rightarrow \text{ q contraintes d'inégalité}$$

Multiplicateurs de Lagrange

1 multiplicateur par contrainte

- $\lambda \in \mathbb{R}^p$ \rightarrow multiplicateurs des contraintes d'égalité
- $\mu \in \mathbb{R}^q$ \rightarrow multiplicateurs des contraintes d'inégalité

Fonction de Lagrange (ou lagrangien)

Le lagrangien du problème (PO) est la fonction L de R^{n+p+q} dans R

$$x \in R^n, \lambda \in R^p, \mu \in R^q \mapsto L(x, \lambda, \mu) \in R$$

$$L(x,\lambda,\mu) = f(x) + \lambda^{T}c_{E}(x) + \mu^{T}c_{I}(x)$$

$$\Leftrightarrow L(x,\lambda,\mu) = f(x) + \sum_{j=1}^{p} \lambda_{j}c_{Ej}(x) + \sum_{j=1}^{q} \mu_{j}c_{Ij}(x)$$

- → multiplicateurs ≈ coefficients de pénalisation des contraintes
- → interprétation comme des sensibilités aux niveaux des contraintes

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.1 Dualité

1.4.1 Lagrangien augmenté

Problème pénalisé avec contraintes égalité

• Critère augmenté : coefficient de pénalisation $\rho > 0$

$$\min_{x \in \mathbb{R}^{n}} f_{\rho}(x) \text{ sous } c(x) = 0 \quad \text{avec} \quad f_{\rho}(x) = f(x) + \frac{1}{2} \rho \|c(x)\|^{2}$$

• Lagrangien du problème pénalisé avec contraintes

$$\begin{aligned} L_{\rho}(x,\lambda) &= f_{\rho}(x) + \lambda^{T} c(x) \\ &= f(x) + \lambda^{T} c(x) + \frac{1}{2} \rho \left\| c(x) \right\|^{2} \\ &= L(x,\lambda) + \frac{1}{2} \rho \left\| c(x) \right\|^{2} \end{aligned}$$

 $L_o =$ lagrangien augmenté = lagrangien initial + pénalisation des contraintes

- Utilisation du lagrangien augmenté
 - Démonstration des conditions suffisantes d'optimalité
 - Algorithme de lagrangien augmenté = suite de minimisations sans contraintes

Bases théoriques

1.4 Conditions d'optimalité

1.4.1 Dualité

Techniques d'optimisation

1.4.1 Exemple

Lagrangien augmenté

Fonction de 2 variables $\min_{x_1, x_2} \frac{1}{2} \left(x_2^2 - x_1^2 \right) \text{sous } x_1 = 1$

$$\rightarrow$$
 minimum en $x^* = (1 \ 0)$
 $\lambda^* = 1$

Critère augmenté

$$f_{\rho}(x_1, x_2) = \frac{1}{2}(x_2^2 - x_1^2) + \frac{1}{2}\rho(x_1 - 1)^2$$

$$\rightarrow$$
 minimum en $x * (\rho) = \left(\frac{\rho}{\rho - 1} \quad 0\right)$

Lagrangien augmenté
$$L_{\rho}(x_1, x_2, \lambda) = \frac{1}{2}(x_2^2 - x_1^2) + \lambda(x_1 - 1) + \frac{1}{2}\rho(x_1 - 1)^2 \rightarrow \text{minimum en } x * (\rho, \lambda) = \left(\frac{\rho - \lambda}{\rho - 1} \quad 0\right)$$

Pour $\lambda = \lambda^* = 1$, le minimum sans contrainte du lagrangien augmenté est la solution x* du problème initial.

$$x * (\rho, \lambda^*) = \left(\frac{\rho - 1}{\rho - 1} \quad 0\right) = \begin{pmatrix} 1 & 0 \end{pmatrix}$$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.1 Dualité

1.4.1 Exemple

Lagrangien augmenté

$$\min_{x_1, x_2} \frac{1}{2} \left(x_2^2 - x_1^2 \right) \text{ sous } x_1 = 1$$

$$f(x) = \frac{1}{2} \left(x_2^2 - x_1^2 \right) \implies \boxed{x^* = \begin{pmatrix} 1 & 0 \end{pmatrix}}$$

$$c(x) = x_1 - 1$$

$$\lambda$$
* = 1

$$L_{\rho}(x_{1}, x_{2}, \lambda) = \frac{1}{2}(x_{2}^{2} - x_{1}^{2}) + \lambda(x_{1} - 1) + \frac{1}{2}\rho(x_{1} - 1)^{2} \implies x*(\rho) = \left(\frac{\rho - \lambda}{\rho - 1} \quad 0\right)$$

-1,0 -1,5 0,5 0,0 0,5 1,0 1,5 2,0

-2,0

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.1 Dualité

1.4.1 Exemple

Lagrangien augmenté

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.1 Dualité

1.4.1 Fonction duale

Fonction duale

La **fonction duale** du problème (PO) est la fonction w de R^{p+q} dans R

$$w(\lambda, \mu) = \min_{x \in \mathbb{R}^n} L(x, \lambda, \mu)$$
 \rightarrow Minimisation du lagrangien à λ et μ fixés $x = variables primales λ et $\mu = variables duales$$

• Domaine de w : $X_w = \{ \lambda \in \mathbb{R}^p, \mu \in \mathbb{R}^q / w(\lambda, \mu) > -\infty \}$ \rightarrow w bornée

Concavité - Convexité

- La fonction duale w est concave
- Le domaine X_w est convexe

Preuve : on note : $\gamma = (\lambda, \mu)$

•
$$L(x, \alpha \gamma_1 + (1-\alpha)\gamma_2) = \alpha L(x, \gamma_1) + (1-\alpha)L(x, \gamma_2)$$
 car L linéaire en λ et μ $\Rightarrow w(\alpha \gamma_1 + (1-\alpha)\gamma_2) \geq \alpha w(\gamma_1) + (1-\alpha)w(\gamma_2)$ pour le minimum/ x de chaque membre $\rightarrow w$ concave

•
$$Si \gamma_1 et \gamma_2 \in X_w$$
, $w(\alpha \gamma_1 + (1-\alpha)\gamma_2) \ge \alpha w(\gamma_1) + (1-\alpha)w(\gamma_2) > -\infty$
 $\Rightarrow \alpha \gamma_1 + (1-\alpha)\gamma_2 \in X_w$

$$\rightarrow X_w convexe$$

1 Bases théoriques

1.4 Conditions d'optimalité

1.4.1 Dualité

Techniques d'optimisation

1.4.1 Problème dual

Problème dual

• Problème primal :
$$\min_{x \in \mathbb{R}^n} f(x)$$
 sous $\begin{cases} c_E(x) = 0 \\ c_I(x) \le 0 \end{cases}$

• Fonction duale :
$$w(\lambda, \mu) = \min_{x \in \mathbb{R}^n} L(x, \lambda, \mu)$$
 $\rightarrow x(\lambda, \mu) / \nabla_x L(x, \lambda, \mu) = 0$

• Domaine de w :
$$X_w = \{ \lambda \in \mathbb{R}^p, \mu \in \mathbb{R}^q / w(\lambda, \mu) > -\infty \} \rightarrow w \text{ bornée}$$

• Problème dual :
$$\max_{\lambda \in R^p, \mu \in R^q} w(\lambda, \mu) \text{ sous } (\lambda, \mu) \in X_w , \mu \ge 0$$

$$\Leftrightarrow \max_{x \in R^n, \lambda \in R^p, \mu \in R^q} L(x, \lambda, \mu) \text{ sous } \begin{cases} \nabla_x L(x, \lambda, \mu) = 0 & \to x(\lambda, \mu) \\ (\lambda, \mu) \in X_w , \mu \ge 0 \end{cases} \to \text{ dual de Wolfe}$$

Borne sur la fonction duale

$$\begin{array}{ll} \bullet & x^* \ \ \text{solution du problème primal} \\ \bullet & (\lambda \ , \mu) \in X_w, \ \mu \geq 0 \end{array} \Rightarrow \boxed{ w(\lambda, \mu) \leq f(x^*) }$$

Preuve:

$$w(\lambda, \mu) = \min_{x \in \mathbb{R}^{n}} L(x, \lambda, \mu) \leq L(x^{*}, \lambda, \mu) = f(x^{*}) + \lambda^{T} c_{E}(x^{*}) + \mu^{T} c_{I}(x^{*})$$

$$= f(x^{*}) + \mu^{T} c_{I}(x^{*}) \quad car \ x^{*} \ admissible \Rightarrow c_{E}(x^{*}) = 0$$

$$\leq f(x^{*}) \quad car \ x^{*} \ admissible \Rightarrow c_{I}(x^{*}) \leq 0 \quad et \ \mu \geq 0$$

$$133$$

Bases théoriques

1.4 Conditions d'optimalité

1.4.1 Dualité

Techniques d'optimisation

1.4.1 Exemple

Fonction duale

• **Problème primal**:
$$\min_{x_1, x_2} \frac{1}{2} (x_2^2 - x_1^2) \text{ sous } x_1 = 1$$

• Lagrangien:
$$L(x,\lambda) = \frac{1}{2} \left(x_2^2 - x_1^2\right) + \lambda \left(x_1 - 1\right)$$
• Solution:
$$x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \lambda^* = 1$$

• Solution:
$$x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \lambda^* = 1$$

• Fonction duale:
$$w(\lambda) = \min_{x} L(x, \lambda)$$
 $\Rightarrow \frac{\partial L}{\partial x} = 0 \Rightarrow \begin{cases} -x_1 + \lambda = 0 \\ x_2 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = \lambda \\ x_2 = 0 \end{cases}$
 $\Rightarrow w(\lambda) = \frac{1}{2}\lambda^2 - \lambda \quad \text{avec} \quad \begin{cases} x_1 = \lambda \\ x_2 = 0 \end{cases}$

• Problème dual:
$$\max_{\lambda} w(\lambda)$$
 $\Rightarrow \frac{\partial w}{\partial \lambda} = 0 \Rightarrow \lambda = 1$

• Problème dual :
$$\max_{\lambda} w(\lambda)$$

• Solution : $\lambda^* = 1$, $x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.1 Dualité

1.4.1 Dualité faible

Théorème de la dualité faible

- x^* solution du problème primal $\Rightarrow w(\lambda^*, \mu^*) \le f(x^*)$
- λ^*, μ^* solution du problème dual

Preuve:
$$\forall \lambda, \forall \mu \geq 0$$
, $w(\lambda, \mu) \leq f(x^*) \implies w(\lambda^*, \mu^*) \leq f(x^*)$

Dualité et admissibilité

- Si le problème primal est non borné, le problème dual est non admissible.
- Si le problème dual est non borné, le problème primal est non admissible.

```
Preuve : en utilisant w^*(\lambda^*, \mu^*) \le f(x^*)

Existence de solutions x^*, \lambda^*, \mu^* \Rightarrow fonctions bornées
```

Saut de dualité

Le saut de dualité est la différence entre la solution du problème primal et du problème dual.

$$\delta = f(x^*) - w(\lambda^*, \mu^*) \ge 0$$

Dans le cas général δ n'est pas nul, il n'est pas équivalent de minimiser f ou maximiser w.

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.1 Dualité

1.4.1 Dualité forte

Point col

 $(x^*,\lambda^*,\mu^*\geq 0)$ est un **point col** (ou **point selle**) du lagrangien si

$$\forall (x,\lambda,\mu \geq 0), \begin{cases} L(x^*,\lambda,\ \mu) \leq L(x^*,\lambda^*,\mu^*) \\ L(x^*,\lambda^*,\mu^*) \leq L(x,\ \lambda^*,\mu^*) \end{cases} \rightarrow \text{maximisation de L par rapport à } (\lambda,\mu) \\ \rightarrow \text{minimisation de L par rapport à } (x)$$

Caractérisation

$$(x^*,\lambda^*,\mu^*\geq 0) \text{ est un point col du lagrangien si et seulement si } \begin{cases} L(x^*,\lambda^*,\mu^*) = \min_x L(x,\lambda^*,\mu^*) \\ c_E(x^*) = 0 \\ c_I(x^*) \leq 0 \\ \mu^*c_I(x^*) = 0 \end{cases}$$

Théorème de la dualité forte

Le lagrangien admet un point col (x^*,λ^*,μ^*) si et seulement si le saut de dualité est nul.

$$(x^*,\lambda^*,\mu^*\geq 0)$$
 un point col \Leftrightarrow $w(\lambda^*,\mu^*)=f(x^*)$

Il est alors équivalent de minimiser f(x) ou maximiser $w(\lambda,\mu)$.

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.1 Dualité

1.4.1 Dualité forte

Point col (ou point selle)

1 Bases théoriques

1.4 Conditions d'optimalité

1.4.1 Dualité

Techniques d'optimisation

1.4.1 Dualité forte

Optimum global

Si
$$(x^*,\lambda^*,\mu^*\geq 0)$$
 est un point col du lagrangien :
$$\begin{cases} x^* \to \min_x L(x,\lambda^*,\mu^*) \\ c_E(x^*) = 0 \ , \ c_I(x^*) \leq 0 \\ \mu^*c_I(x^*) = 0 \end{cases}$$

alors x^* est un **optimum global** du problème primal : $\min_{x \in R^n} f(x)$ sous $\begin{cases} c_E(x) = 0 \\ c_I(x) \le 0 \end{cases}$

En pratique

- Si le lagrangien admet un point col, on peut obtenir l'optimum global x*.
- Pour un problème non convexe, il n'existe en général pas de point col.

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.1 Dualité

1.4.1 Programmation linéaire

Problème primal

$$\begin{array}{ll} \underset{x}{\text{min }} c^T x \;\; \text{sous} \;\; \begin{cases} Ax = b \\ x \geq 0 \end{cases} & \rightarrow \; \text{problème linéaire sous forme standard} \\ \Leftrightarrow \; \underset{x}{\text{min }} c^T x \;\; \text{sous} \;\; \begin{cases} b - Ax = 0 \\ -x \leq 0 \end{cases} & \rightarrow \; \text{multiplicateur } \lambda \\ \rightarrow \;\; \text{multiplicateur } \mu \end{array}$$

- Fonction de Lagrange : $L(x, \lambda, \mu) = c^T x + \lambda^T (b Ax) + \mu^T (-x)$ = $(c - A^T \lambda - \mu)^T x + \lambda^T b$ \rightarrow linéaire en x
- Fonction duale : $w(\lambda, \mu) = \min_{x} L(x, \lambda, \mu)$
- Domaine de définition : $X_w = \{(\lambda, \mu) / w(\lambda, \mu) > -\infty\}$
- La fonction duale n'est définie que si $L(x, \lambda, \mu)$ est borné inférieurement. $L(x, \lambda, \mu)$ est linéaire en $x \rightarrow Le$ coefficient de x doit être nul.

$$(\lambda, \mu) \in X_w \implies c - A^T \lambda - \mu = 0$$

 $\implies L(x, \lambda, \mu) = \lambda^T b \implies w(\lambda, \mu) = \lambda^T b$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.1 Dualité

1.4.1 Programmation linéaire

Problème dual

$$\max_{\lambda,\mu} w(\lambda,\mu) \text{ sous } \begin{cases} (\lambda,\mu) \in X_w \\ \mu \ge 0 \end{cases}$$

$$\iff \max_{\lambda,\mu} \, \lambda^T b \qquad \text{sous } \begin{cases} c - A^T \lambda - \mu = 0 \\ \mu \geq 0 \end{cases} \quad \to \text{ ne dépend pas de } \mu$$

- $\Leftrightarrow \max_{\lambda} b^{T} \lambda$ sous $c A^{T} \lambda \ge 0$ \rightarrow nouveau problème linéaire en λ
- Le problème dual est également un problème linéaire dont la variable est λ . On met le problème dual sous forme standard en notant la variable y au lieu de λ

$$\min_{y} -b^{T}y \text{ sous } A^{T}y - c \le 0$$
 \rightarrow multiplicateur ν

On peut ensuite définir les fonctions associées à ce problème linéaire.

- Fonction de Lagrange notée $L_d(y, v)$: $L_d(y, v) = -b^T y + v^T (A^T y c)$ = $(Av - b)^T y - v^T c$ \rightarrow bornée si Av - b = 0
- Fonction duale notée $\mathbf{w}_{\mathbf{d}}(\mathbf{v})$: $\mathbf{w}_{\mathbf{d}}(\mathbf{v}) = \min_{\mathbf{y}} \mathbf{L}_{\mathbf{d}}(\mathbf{y}, \mathbf{v}) = -\mathbf{v}^{\mathsf{T}} \mathbf{c}$ si $\mathbf{A}\mathbf{v} \mathbf{b} = \mathbf{0}$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.1 Dualité

1.4.1 Programmation linéaire

Problème dual du problème dual

Le problème dual admet lui-même pour dual :

$$\max_{v} w_{d}(v) \text{ sous } \begin{cases} v \in X_{w_{d}} \\ v \ge 0 \end{cases}$$

$$\iff \max_{v} - v^{\mathsf{T}} c \ \ \text{sous} \ \begin{cases} Av = b \\ v \geq 0 \end{cases} \iff \min_{x} \ c^{\mathsf{T}} x \ \ \text{sous} \ \begin{cases} Ax = b \\ x \geq 0 \end{cases} \implies \text{identique au problème primal}$$

- Le problème dual du problème dual est le problème primal.
- Pour un problème linéaire, il est équivalent de résoudre le problème primal ou problème dual.
 Les solutions du problème primal et du problème dual ont le même coût → dualité forte

Solutions possibles		Dual		
		Optimum fini	Optimum infini	Sans solution
Primal	Optimum fini	dualité forte	impossible	impossible
	Optimum infini	impossible	impossible	dualité faible
	Sans solution	impossible	dualité faible	contraintes incompatibles

Bases théoriques

1.4 Conditions d'optimalité

1.4.1 Dualité

Techniques d'optimisation

1.4.1 Programmation linéaire

Correspondances primal – dual

Problème primal (P) sous forme standard :
 (P)
$$\min_{x} c^{T}x$$
 sous $\begin{cases} Ax = b \\ x \ge 0 \end{cases}$
Problème dual (D) du problème (P) :
 (D) $\max_{y} b^{T}y$ sous $A^{T}y \le c$

(D)
$$\max_{y} b^{T} y \text{ sous } A^{T} y \leq c$$

- Le nombre de variables de (P) est égal au nombre de contraintes de (D).
- Le nombre de contraintes de (P) est égal au nombre de variables de (D).
- La matrice des contraintes de (D) est la transposée de la matrice des contraintes de (P).
- Une variable $x_j \ge 0$ de coût c_j donne une contrainte \le de niveau c_j :

$$\begin{cases} c_j x_j \\ x_j \ge 0 \end{cases} \rightarrow \sum_{i=1}^m a_{ij} y_i \le c_j$$

Une contrainte = de niveau b_i donne une variable $y_j \in R$ de coût b_i :

$$\left| \sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \right| \rightarrow \begin{cases} b_{i} y_{i} \\ y_{i} \in R \end{cases}$$

→ généralisation à un problème linéaire quelconque (signe des variables, sens des contraintes)

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.1 Dualité

1.4.1 Programmation linéaire

Correspondance primal-dual

• Problème primal (P)

$$\min_{\substack{x_1 \in R^{n_1} \\ x_2 \in R^{n_2} \\ x_3 \in R^{n_3}}} c_1^T x_1 + c_2^T x_2 + c_3^T x_3 \quad \text{sous} \begin{cases} A_1 x_1 + B_1 x_2 + C_1 x_3 = b_1, \ b_1 \in R^{m_1} & \rightarrow m_1 \text{ égalités} \\ A_2 x_1 + B_2 x_2 + C_2 x_3 \leq b_2, \ b_2 \in R^{m_2} & \rightarrow m_2 \text{ inégalités inférieur} \\ A_3 x_1 + B_3 x_2 + C_3 x_3 \geq b_3, \ b_3 \in R^{m_3} & \rightarrow m_3 \text{ inégalités supérieur} \\ x_1 \geq 0 & \rightarrow n_1 \text{ variables positives} \\ x_2 \leq 0 & \rightarrow n_2 \text{ variables négatives} \\ x_3 \in R^{n_3} & \rightarrow n_3 \text{ variables libres} \end{cases}$$

• Problème dual (D)

$$\max_{\substack{y_1 \in R^{m_1} \\ y_2 \in R^{m_2} \\ y_3 \in R^{m_3}}} b_1^T y_1 + b_2^T y_2 + b_3^T y_3 \quad sous \begin{cases} A_1^T y_1 + A_2^T y_2 + A_3^T y_3 \leq c_1, \ c_1 \in R^{n_1} & \rightarrow \ n_1 \ \text{inégalités inférieur} \\ B_1^T y_1 + B_2^T y_2 + B_3^T y_3 \geq c_2, \ c_2 \in R^{n_2} & \rightarrow \ n_2 \ \text{inégalités supérieur} \\ C_1^T y_1 + C_2^T y_2 + C_3^T y_3 = c_3, \ c_3 \in R^{n_3} & \rightarrow \ n_3 \ \text{égalités} \\ y_1 \in R^{m_1} & \rightarrow \ m_1 \ \text{variables libres} \\ y_2 \leq 0 & \rightarrow \ m_2 \ \text{variables négatives} \\ y_3 \geq 0 & \rightarrow \ m_3 \ \text{variables positives} \end{cases}$$

- Bases théoriques
- Conditions d'optimalité
- 1.4.1 Dualité

1.4.1 Programmation linéaire

Correspondance primal-dual

Preuve

Lagrangien du problème primal (P)

$$L(x_{1}, x_{2}, x_{3}, \lambda_{1}, \lambda_{2}, \lambda_{3}, \mu_{1}, \mu_{2}) = c_{1}^{T} x_{1} + c_{2}^{T} x_{2} + c_{3}^{T} x_{3} \\ + \lambda_{1}^{T} (b_{1} - A_{1} x_{1} - B_{1} x_{2} - C_{1} x_{3}) & \rightarrow m_{1} \text{ multiplicateurs } \lambda_{1} \\ + \lambda_{2}^{T} (A_{2} x_{1} + B_{2} x_{2} + C_{2} x_{3} - b_{2}) & \rightarrow m_{2} \text{ multiplicateurs } \lambda_{2} \geq 0 \\ + \lambda_{3}^{T} (b_{3} - A_{3} x_{1} - B_{3} x_{2} - C_{3} x_{3}) & \rightarrow m_{3} \text{ multiplicateurs } \lambda_{3} \geq 0 \\ - \mu_{1}^{T} x_{1} + \mu_{2}^{T} x_{2} & \rightarrow n_{1} \text{ multiplicateurs } \mu_{1} \geq 0 \\ & \rightarrow n_{2} \text{ multiplicateurs } \mu_{2} \geq 0$$

On regroupe les termes en x_1, x_2, x_3 :

$$\begin{split} L(x_{1},x_{2},x_{3},\lambda_{1},\lambda_{2},\lambda_{3},\mu_{1},\mu_{2}) &= b_{1}^{T}\lambda_{1} - b_{2}^{T}\lambda_{2} + b_{3}^{T}\lambda_{3} \\ &+ \left(c_{1} - A_{1}^{T}\lambda_{1} + A_{2}^{T}\lambda_{2} - A_{3}^{T}\lambda_{3} - \mu_{1}\right)^{T}x_{1} \\ &+ \left(c_{2} - B_{1}^{T}\lambda_{1} + B_{2}^{T}\lambda_{2} - B_{3}^{T}\lambda_{3} + \mu_{2}\right)^{T}x_{2} \\ &+ \left(c_{3} - C_{1}^{T}\lambda_{1} + C_{2}^{T}\lambda_{2} - C_{3}^{T}\lambda_{3}\right)^{T}x_{3} \end{split}$$

La fonction duale est définie par : $w(\lambda, \mu) = \min L(x, \lambda, \mu)$ \rightarrow bornée si les coefficients

 $de x_1, x_2, x_3$ sont nuls

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.1 Dualité

1.4.1 Programmation linéaire

Correspondance primal-dual

•
$$L(x_1, x_2, x_3, \lambda_1, \lambda_2, \lambda_3, \mu_1, \mu_2) = b_1^T \lambda_1 - b_2^T \lambda_2 + b_3^T \lambda_3 + (c_1 - A_1^T \lambda_1 + A_2^T \lambda_2 - A_3^T \lambda_3 - \mu_1)^T x_1 + (c_2 - B_1^T \lambda_1 + B_2^T \lambda_2 - B_3^T \lambda_3 + \mu_2)^T x_2 + (c_3 - C_1^T \lambda_1 + C_2^T \lambda_2 - C_3^T \lambda_3)^T x_3$$

• L bornée
$$\Rightarrow \begin{cases} c_1 - A_1^T \lambda_1 + A_2^T \lambda_2 - A_3^T \lambda_3 - \mu_1 = 0 \\ c_2 - B_1^T \lambda_1 + B_2^T \lambda_2 - B_3^T \lambda_3 + \mu_2 = 0 \\ c_3 - C_1^T \lambda_1 + C_2^T \lambda_2 - C_3^T \lambda_3 = 0 \end{cases} \text{ avec } \begin{cases} \mu_1, \mu_2 \ge 0 \\ \lambda_2, \lambda_3 \ge 0 \end{cases}$$

• En posant:
$$\begin{cases} y_1 = \lambda_1 \\ y_2 = -\lambda_2 \le 0 \\ y_3 = \lambda_3 \ge 0 \end{cases} \Rightarrow \begin{cases} A_1^T y_1 + A_2^T y_2 + A_3^T y_3 = c_1 + \mu_1 \le c_1 & car \ \mu_1 \ge 0 \\ B_1^T y_1 + B_2^T y_2 + B_3^T y_3 = c_2 - \mu_2 \ge c_2 & car \ \mu_2 \ge 0 \\ C_1^T y_1 + C_2^T y_2 + C_3^T y_3 = c_3 \end{cases}$$

• Fonction duale:
$$w(y_1, y_2, y_3) = L(\lambda_1, \lambda_2, \lambda_3, \mu_1, \mu_2) \implies w(y_1, y_2, y_3) = b_1^T y_1 + b_2^T y_2 + b_3^T y_3$$

• Problème dual:
$$\max_{y_1, y_2, y_3} w(y_1, y_2, y_3) = b_1^T y_1 + b_2^T y_2 + b_3^T y_3$$
 sous
$$\begin{cases} A_1^T y_1 + A_2^T y_2 + A_3^T y_3 \leq c_1 \\ B_1^T y_1 + B_2^T y_2 + B_3^T y_3 \geq c_2 \\ C_1^T y_1 + C_2^T y_2 + C_3^T y_3 = c_3 \end{cases}$$

1 Bases théoriques

1.4 Conditions d'optimalité

1.4.1 Dualité

Techniques d'optimisation

1.4.1 Exemple

Correspondance primal-dual

• Problème primal (P)

(P)
$$\min_{x_1, x_2, x_3} x_1 + 2x_2 + 3x_3 \quad \text{sous} \begin{cases} -x_1 + 3x_2 &= 5\\ 2x_1 - x_2 + 3x_3 \ge 6\\ x_3 \le 4\\ x_1 \ge 0, \ x_2 \le 0, \ x_3 \in R \end{cases}$$

• Problème dual (D)

(D)
$$\max_{y_1, y_2, y_3} 5y_1 + 6y_2 + 4y_3 \quad \text{sous} \begin{cases} -y_1 + 2y_2 & \leq 1\\ 3y_1 - y_2 & \geq 2\\ 3y_2 + y_3 & = 3\\ y_1 \in \mathbb{R}, \ y_2 \geq 0, \ y_3 \leq 0 \end{cases}$$

$$\Leftrightarrow \min_{y_{1}, y_{2}, y_{3}} -5y_{1} -6y_{2} -4y_{3} \quad sous \begin{cases} y_{1} -2y_{2} & \geq -1 \\ -3y_{1} + y_{2} & \leq -2 \\ -3y_{2} - y_{3} = -3 \\ y_{1} \in R, \ y_{2} \geq 0, \ y_{3} \leq 0 \end{cases}$$

• Problème dual du dual : on retrouve le problème primal (P)

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.2 Problème sans contraintes

1.4.2 Problème sans contraintes

- ☐ Conditions nécessaires d'optimalité locale
- ☐ Conditions suffisantes d'optimalité locale
- ☐ Méthode pratique
- Exemples

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.2 Problème sans contraintes

1.4.2 Conditions nécessaires

Problème sans contraintes

$$\min_{x \in R^n} f(x)$$

Conditions nécessaires

$$x^*$$
 minimum local $\Rightarrow \begin{cases} \nabla f(x^*) = 0 \\ \nabla^2 f(x^*) \ge 0 \end{cases} \rightarrow \text{ordre 1 : point critique ou stationnaire} \\ \rightarrow \text{ordre 2 : hessien semi-défini positif}$

Preuve : avec le théorème de Taylor

• Ordre 1: $f(x^*+d) = f(x^*) + \nabla f(x^*)^T d + o(||d||)$ Si $\nabla f(x^*) \neq 0$, on peut trouver d petit tel que $\nabla f(x^*)^T d < 0$ $\Rightarrow f(x^*+d) < f(x^*)$

• Ordre 2:
$$f(x^*+d) = f(x^*) + \nabla f(x^*)^T d + \frac{1}{2} d^T \nabla^2 f(x^*) d + o(||d||^2)$$

= $f(x^*) + \frac{1}{2} d^T \nabla^2 f(x^*) d + o(||d||^2)$ $car \nabla f(x^*) = 0$

Si $\nabla^2 f(x^*)$ non semi-définie positive, on peut trouver d petit tel que $d^T \nabla^2 f(x^*) d < 0 \implies f(x^*+d) < f(x^*)$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.2 Problème sans contraintes

1.4.2 Conditions suffisantes

Problème sans contraintes

$$\min_{x \in R^n} f(x)$$

Conditions suffisantes

$$\begin{cases} \nabla f(x^*) = 0 & \to \text{ ordre 1 : point critique ou stationnaire} \\ \nabla^2 f(x^*) > 0 & \to \text{ ordre 2 : hessien défini positif} \end{cases} \Rightarrow x^* \text{ minimum local}$$

Preuve: par l'absurde

Si x^* n'est pas un minimum local, on peut trouver d petit tel que $f(x^*+d) < f(x^*)$ Théorème de Taylor à l'ordre 2 :

$$f(x^* + d) = f(x^*) + \nabla f(x^*)^T d + \frac{1}{2} d^T \nabla^2 f(x^*) d + o \left\| d \right\|^2$$

$$= f(x^*) + \frac{1}{2} d^T \nabla^2 f(x^*) d + o \left\| d \right\|^2$$

$$car \nabla f(x^*) = 0$$

$$f(x^* + d) < f(x^*) \implies d^T \nabla^2 f(x^*) d < 0 \implies contradit \ l'hypothèse \ \nabla^2 f(x^*) \ définie \ positive$$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.2 Problème sans contraintes

1.4.2 Méthode pratique

Problème sans contraintes

```
\min_{x \in R^n} f(x)
```

- Condition nécessaire du 1^{er} ordre : $\nabla f(x^*) = 0 \rightarrow \text{point critique ou stationnaire}$
- Condition nécessaire du 2^{eme} ordre : $\nabla^2 f(x^*) \ge 0 \rightarrow \text{plus difficile à vérifier}$ suffisante $\nabla^2 f(x^*) > 0$

Méthode pratique

- Recherche des **points stationnaires** en résolvant : $\nabla f(x^*) = 0$ Un point stationnaire peut être un minimum local, un maximum local ou un point selle.
- Vérification de la condition d'ordre 2 : calcul des dérivées secondes
 valeurs propres du hessien ≥ 0
 - \rightarrow garantit l'obtention d'un minimum local x*

Minimum global

x* minimum local

- **f convexe** \Rightarrow x* minimum global
- f strictement convexe \Rightarrow x* unique minimum global
- f quelconque (cas général) \Rightarrow On ne peut pas vérifier que x^* est un minimum global.

1 Bases théoriques

1.4 Conditions d'optimalité

1.4.2 Problème sans contraintes

Techniques d'optimisation

1.4.2 Exemples

Exemple 1

Fonction de Rosenbrock

$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

Gradient :

$$\nabla f(x_1, x_2) = \begin{pmatrix} 400x_1^3 - 400x_1x_2 + 2x_1 - 2 \\ 200x_2 - 200x_1^2 \end{pmatrix}$$

• Hessien:

$$\nabla^2 f(x_1, x_2) = \begin{pmatrix} 1200x_1^2 - 400x_2 + 2 & -400x_1 \\ -400x_1 & 200 \end{pmatrix}$$

- **Point stationnaire**: $\nabla f(x_1, x_2) = 0 \Rightarrow \begin{cases} 400x_1^3 400x_1x_2 + 2x_1 2 = 0 \\ 200x_2 200x_1^2 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 1 \\ x_2 = x_1^2 \end{cases} \Rightarrow x^* = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- Valeurs propres du hessien : $\nabla^2 f(x^*) = \begin{pmatrix} 802 & -400 \\ -400 & 200 \end{pmatrix} \rightarrow \begin{cases} \sigma_1 = 1001.60 \\ \sigma_2 = 0.39936 \end{cases}$
- Condition d'ordre 2 : $\nabla^2 f(x^*)$ est défini positif
- x* vérifie les conditions suffisantes de minimum local (strict)
 x* est un minimum local de f

1 Bases théoriques

1.4 Conditions d'optimalité

1.4.2 Problème sans contraintes

Techniques d'optimisation

1.4.2 Exemples

Exemple 2

Fonction: $f(x_1, x_2) = -x_1^4 - x_2^4$

• Gradient: $\nabla f(x_1, x_2) = \begin{pmatrix} -4x_1^3 \\ -4x_2^3 \end{pmatrix}$

• Hessien: $\nabla^2 f(x_1, x_2) = \begin{pmatrix} -12x_1^2 & 0 \\ 0 & -12x_2^2 \end{pmatrix}$

- Point stationnaire: $\nabla f(x_1, x_2) = 0 \Rightarrow \begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases} \Rightarrow x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
- Valeurs propres du hessien: $\nabla^2 f(x^*) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \rightarrow \begin{cases} \sigma_1 = 0 \\ \sigma_2 = 0 \end{cases}$
- x* vérifie les conditions nécessaires de minimum local
 x* ne vérifie pas les conditions suffisantes de minimum local

x* est en fait un **maximum local** de f : $f(x_1, x_2) = -x_1^4 - x_2^4 \le 0$ $\Rightarrow \forall (x_1, x_2), f(x_1, x_2) \le f(0,0)$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.2 Problème sans contraintes

1.4.2 Exemples

Exemple 3

Fonction:
$$f(x_1, x_2) = x_1^2 - x_2^3$$

• Gradient:
$$\nabla f(x_1, x_2) = \begin{pmatrix} 2x_1 \\ -3x_2^2 \end{pmatrix}$$

• Hessien:
$$\nabla^2 f(x_1, x_2) = \begin{pmatrix} 2 & 0 \\ 0 & -6x_2 \end{pmatrix}$$

- Point stationnaire: $\nabla f(x_1, x_2) = 0 \Rightarrow \begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases} \Rightarrow x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
- Valeurs propres du hessien: $\nabla^2 f(x^*) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \rightarrow \begin{cases} \sigma_1 = 2 \\ \sigma_2 = 0 \end{cases}$
- x* vérifie les conditions nécessaires de minimum local
 x* ne vérifie pas les conditions suffisantes de minimum local

 $x* n'est ni un minimum ni un maximum local de f: <math>f(0,x_2) = -x_2^3$ $\begin{cases} < 0 \text{ si } x_2 > 0 \\ > 0 \text{ si } x_2 < 0 \end{cases}$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Problème avec contraintes

- ☐ Conditions nécessaires d'optimalité locale
 - Multiplicateurs de Lagrange
 - Conditions KKT
- ☐ Conditions suffisantes d'optimalité locale
- ☐ Interprétation géométrique
- ☐ Méthode pratique
- Exemples
- ☐ Sensibilité
 - Sensibilité aux niveaux de contrainte
 - Sensibilité aux paramètres de modèle

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Conditions nécessaires

Problème avec contraintes

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{f}(\mathbf{x}) \text{ sous } \begin{cases} c_{\mathbf{E}}(\mathbf{x}) = 0 & \rightarrow \text{ p contraintes d'égalité} \\ c_{\mathbf{I}}(\mathbf{x}) \leq 0 & \rightarrow \text{ q contraintes d'inégalité} \end{cases}$$

Conditions nécessaires

 x^* minimum local $\Rightarrow \nabla f(x^*)^T d \ge 0$ pour toute direction d admissible à la limite en x^*

Méthode directe

Nécessite de connaître l'ensemble des directions admissibles en x*

- Cas de contraintes linéaires
 - → Définition des directions admissibles à partir des directions de base (§1.2.2)
- Cas de contraintes non linéaires
 - → Définition des directions admissibles à la limite
 - → Pas de caractérisation des directions admissibles dans le cas général sauf hypothèse de qualification des contraintes : cône des directions (§1.3.1)

Méthode indirecte

A partir des multiplicateurs de Lagrange

→ Conditions d'optimalité dans le cas général

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Conditions nécessaires

Problème avec contraintes

$$\min_{\mathbf{x} \in \mathbf{R}^{n}} \mathbf{f}(\mathbf{x}) \text{ sous } \begin{cases} \mathbf{c}_{\mathbf{E}}(\mathbf{x}) = 0 & \rightarrow \text{ p contraintes d'égalité} \\ \mathbf{c}_{\mathbf{I}}(\mathbf{x}) \leq 0 & \rightarrow \text{ q contraintes d'inégalité} \end{cases}$$

Conditions nécessaires

Hypothèse : Contraintes linéairement indépendantes en x^* x^* minimum local \Rightarrow Il existe un unique $\lambda^* \in R^p$ et un unique $\mu^* \in R^q$ tels que :

$$\begin{array}{ll} \bullet & \textbf{Ordre 1}: \begin{cases} \nabla_x L(x^*,\lambda^*,\mu^*) = 0 & \rightarrow \text{ conditions n\'ecessaires d'ordre 1} \\ \nabla_\lambda L(x^*,\lambda^*,\mu^*) = 0 & \rightarrow \text{ contraintes \'egalit\'e } c_E(x^*) = 0 \\ \nabla_\mu L(x^*,\lambda^*,\mu^*) \leq 0 & \rightarrow \text{ contraintes in\'egalit\'e } c_I(x^*) \leq 0 \\ \mu^* \geq 0 \\ \mu^* c_I(x^*) = 0 & \rightarrow \textbf{ conditions compl\'ementaires} \end{cases}$$

• Ordre 2: Pour toute direction d tangente aux contraintes actives $(c(x^*)=0)$: $d^T \nabla^2_{xx} L(x^*, \lambda^*, \mu^*) d \ge 0 \rightarrow \text{conditions nécessaires d'ordre 2}$ $\forall d / d^T \nabla c(x^*) = 0$

→ Conditions nécessaires de Karush-Kuhn-Tucker (conditions KKT) (1939) (1951)

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Conditions nécessaires

Eléments de la démonstration

- 1) Cas de contraintes linéaires : $c_E(x) = Ax b = 0$ $\rightarrow \nabla c_E(x) = A^T$
- On choisit une base $B \in R^{m \times n}$: $AE = \begin{pmatrix} m & n-m \\ B & N \end{pmatrix}$ $E^T x = \begin{pmatrix} x_B \\ x_N \end{pmatrix}$ $Ax = b \iff Bx_B + Nx_N = b \iff x_B = B^{-1}(b Nx_N)$ $\min_{x \in R^n} f(x) \text{ sous } Ax = b \iff \min_{\substack{x_B \in R^m \\ x_N \in R^{n-m}}} f(x_B, x_N) \text{ sous } x_B = B^{-1}(b Nx_N)$
- On se ramène à un problème sans contrainte (= **problème réduit**) $\min_{x_N \in R^{n-m}} g(x_N) = f(B^{-1}(b Nx_N), x_N)$
- Conditions nécessaires d'optimalité du problème réduit

$$x_N^*$$
 minimum local de $g(x_N)$ $\Rightarrow \begin{cases} \nabla g(x_N^*) = 0 \\ \nabla^2 g(x_N^*) \ge 0 \end{cases}$

 \rightarrow Méthode de réduction : fonction réduite $g(x_N)$ **gradient réduit** $\nabla g(x_N)$ **hessien réduit** $\nabla^2 g(x_N)$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Conditions nécessaires

Eléments de la démonstration

- 1) Cas de contraintes linéaires
- Problème réduit : $\min_{x_N \in \mathbb{R}^{n-m}} g(x_N) = f(B^{-1}(b Nx_N), x_N)$
- Condition nécessaire d'ordre 1 du problème réduit : $\nabla g(x_N^*) = 0$ $g(x_N^*) = f(B^{-1}(b Nx_N^*), x_N^*) \quad avec \quad \nabla f(x) = \begin{pmatrix} \nabla_B f(x) \\ \nabla_N f(x) \end{pmatrix}$

$$\Rightarrow \nabla g(x_N) = -(B^{-1}N)^T \nabla_B f(x) + \nabla_N f(x)$$

$$\nabla g(x_N^*) = 0 \implies \nabla_N f(x^*) + N^T \lambda^* = 0$$

$$avec \quad \nabla_R f(x^*) + B^T \lambda^* = 0$$

$$\Rightarrow \quad \nabla f(x^*) + A^T \lambda^* = 0$$

On obtient la condition nécessaire d'ordre 1 sur le lagrangien

$$\nabla_{x} L(x^*, \lambda^*) = \nabla f(x^*) + \nabla c_E(x^*) \lambda^* = 0 \qquad car \quad \nabla c_E(x^*)^T = A$$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Conditions nécessaires

Eléments de la démonstration

- 1) Cas de contraintes linéaires
- Condition nécessaire d'ordre 2 du problème réduit : $\boxed{\nabla^2 g(x_N^*) \ge 0}$ $g(x_N^*) = f\left(B^{-1}(b Nx_N^*), x_N^*\right) \quad avec \quad \nabla^2 f(x) = \begin{bmatrix} \nabla^2_{BB} f(x) & \nabla^2_{BN} f(x) \\ \nabla^2_{NB} f(x) & \nabla^2_{NN} f(x) \end{bmatrix}$

$$\Rightarrow \nabla^{2} g(x_{N}) = (B^{-1}N)^{T} \nabla_{BB}^{2} f(x) (B^{-1}N) - (B^{-1}N)^{T} \nabla_{BN}^{2} f(x) - \nabla_{NB}^{2} f(x) (B^{-1}N) + \nabla_{NN}^{2} f(x)$$

- $\begin{aligned} \bullet \quad & Pour \ d \in R \ v \'erifiant \quad Ad = 0 \ \Rightarrow d = \begin{pmatrix} d_B \\ d_N \end{pmatrix} = \begin{pmatrix} -B^{-1}N \\ I \end{pmatrix} d_N \ , \ d_N \in R^{n-m} \\ d_N^T \nabla^2 g(x_N) d_N & = d_N^T \Big(B^{-1}N \Big)^T \nabla_{BB}^2 f(x) \Big(B^{-1}N \Big) d_N d_N^T \Big(B^{-1}N \Big)^T \nabla_{BN}^2 f(x) d_N \\ & d_N^T \nabla_{NB}^2 f(x) \Big(B^{-1}N \Big) d_N + d_N^T \nabla_{NN}^2 f(x) d_N \end{aligned}$
- $\Rightarrow d_N^T \nabla^2 g(x_N) d_N = d_B^T \nabla_{BB}^2 f(x) d_B d_B^T \nabla_{BN}^2 f(x) d_N d_N^T \nabla_{NB}^2 f(x) d_B + d_N^T \nabla_{NN}^2 f(x) d_N$
- $\Rightarrow d_N^T \nabla^2 g(x_N) d_N = d^T \nabla^2 f(x) d = d^T \nabla_{xx}^2 L(x, \lambda) d \qquad car \quad \nabla_x L(x^*, \lambda^*) = \nabla f(x^*) + A^T \lambda^*$ $\Rightarrow \quad \nabla_{xx}^2 L(x^*, \lambda^*) = \nabla^2 f(x^*)$
- On obtient la condition nécessaire d'ordre 2 sur le lagrangien $\forall d \in R / Ad = 0$, $d^T \nabla^2_{xx} L(x^*, \lambda^*) d = d_N^T \nabla^2 g(x_N^*) d_N \ge 0$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Conditions nécessaires

Eléments de la démonstration

2) Cas de contraintes non linéaires : $c_E(x)=0$ $c_I(x) \le 0$

On suppose que x^* est un minimum local de $\min_{x \in R^n} f(x)$ sous $\begin{cases} c_E(x) = 0 \\ c_I(x) \le 0 \end{cases}$

- On définit pour les contraintes inégalité : $c_I^+(x) = max(0, c_I(x))$
- On considère une suite de problèmes pénalisés sans contrainte

$$\min_{x \in R^n} f_k(x) = f(x) + \frac{1}{2} k \|c_E(x)\|^2 + \frac{1}{2} k \|c_I^+(x)\|^2 + \frac{1}{2} \alpha \|x^* - x\|^2$$
 \rightarrow minimum local x_k

 $k \in \mathbb{N} \rightarrow \text{p\'enalisation de la violation des contraintes}$ $\alpha > 0 \rightarrow \text{p\'enalisation de la distance au minimum}$

• x_k minimum local de $f_k \implies f_k(x_k) \le f_k(x^*) = f(x^*)$

 \Rightarrow La suite $f_k(x_k)$ est bornée supérieurement par $f(x^*)$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Conditions nécessaires

Eléments de la démonstration

- 2) Cas de contraintes non linéaires : $c_E(x)=0$ $c_I(x) \le 0$
- La suite $f_k(x_k)$ est bornée supérieurement par $f(x^*)$

$$f_{k}(x_{k}) = f(x_{k}) + \frac{1}{2}k\|c_{E}(x_{k})\|^{2} + \frac{1}{2}k\|c_{I}^{+}(x_{k})\|^{2} + \frac{1}{2}\alpha\|x^{*} - x_{k}\|^{2} \leq f(x^{*})$$

$$\Rightarrow \begin{cases} k\|c_{E}(x_{k})\|^{2} & born\acute{e} \\ k\|c_{I}^{+}(x_{k})\|^{2} & born\acute{e} \end{cases} \Rightarrow \begin{cases} \lim_{k \to \infty} kc_{E}(x_{k}) = \lambda^{*} & \rightarrow d\acute{e}finit les multiplicateurs \lambda \\ \lim_{k \to \infty} kc_{I}^{+}(x_{k}) = \mu^{*} & \rightarrow d\acute{e}finit les multiplicateurs \mu \\ \lim_{k \to \infty} kc_{I}^{+}(x_{k}) = \mu^{*} & \rightarrow la suite (x_{k}) converge vers x^{*} \end{cases}$$

- Multiplicateurs des contraintes inégalité : $c_I^+(x) = max(0, c_I(x)) \ge 0 \implies \mu^* \ge 0$ Contrainte inégalité inactive : $c_I^-(x) = 0 \implies c_I^-(x) = 0, k > k_0 \implies \mu^* = 0$
- On regroupe les contraintes en un seul vecteur pour simplifier l'écriture

$$c(x) = \begin{pmatrix} c_E(x) \\ c_I^+(x) \end{pmatrix} \to f_k(x) = f(x) + \frac{1}{2} k \|c(x)\|^2 + \frac{1}{2} \alpha \|x^* - x\|^2$$
$$\nabla f_k(x) = \nabla f(x) + k \nabla c(x) c(x) + \alpha (x - x^*)$$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Conditions nécessaires

Eléments de la démonstration

- 2) Cas de contraintes non linéaires : $c_E(x)=0$ $c_I(x) \le 0$
- Condition nécessaire d'optimalité pour le problème sans contrainte

$$x_k$$
 minimum local de $f_k(x) \Rightarrow \nabla f_k(x_k) = 0 \Rightarrow \nabla f(x_k) + k \nabla c(x_k) c(x_k) + \alpha(x_k - x^*) = 0$

• En prémultipliant par $\nabla c(x_k)^T$

$$\Rightarrow \nabla c(x_k)^T \nabla f(x_k) + k \nabla c(x_k)^T \nabla c(x_k) c(x_k) + \alpha \nabla c(x_k)^T (x_k - x^*) = 0$$

- Les contraintes sont supposées linéairement indépendantes $\rightarrow \nabla c(x_k)^T \nabla c(x_k)$ inversible
- En prémultipliant par $\left(\nabla c(x_k)^T \nabla c(x_k)\right)^{-1}$ $\Rightarrow kc(x_k) = -\left(\nabla c(x_k)^T \nabla c(x_k)\right)^{-1} \nabla c(x_k)^T \left(\nabla f(x_k) + \alpha(x_k - x^*)\right)$
- En distinguant les contraintes égalité et inégalité

$$\Rightarrow \begin{cases} kc_{E}(x_{k}) = -(\nabla c_{E}(x_{k})^{T} \nabla c_{E}(x_{k}))^{-1} \nabla c_{E}(x_{k})^{T} (\nabla f(x_{k}) + \alpha(x_{k} - x^{*})) \\ kc_{I}^{+}(x_{k}) = -(\nabla c_{I}^{+}(x_{k})^{T} \nabla c_{I}^{+}(x_{k}))^{-1} \nabla c_{I}^{+}(x_{k})^{T} (\nabla f(x_{k}) + \alpha(x_{k} - x^{*})) \end{cases}$$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Conditions nécessaires

Eléments de la démonstration

- 2) Cas de contraintes non linéaires : $c_E(x)=0$ $c_I(x) \le 0$
- On obtient: $\begin{cases} kc_E(x_k) = -\left(\nabla c_E(x_k)^T \nabla c_E(x_k)\right)^{-1} \nabla c_E(x_k)^T \left(\nabla f(x_k) + \alpha(x_k x^*)\right) \\ kc_I^+(x_k) = -\left(\nabla c_I^+(x_k)^T \nabla c_I^+(x_k)\right)^{-1} \nabla c_I^+(x_k)^T \left(\nabla f(x_k) + \alpha(x_k x^*)\right) \end{cases}$
- Lorsque k tend vers l'infini

$$\begin{cases} \lim_{k \to \infty} kc_E(x_k) = \lambda^* = -\left(\nabla c_E(x^*)^T \nabla c_E(x^*)\right)^{-1} \nabla c_E(x^*)^T \nabla f(x^*) \\ \lim_{k \to \infty} kc_I^+(x_k) = \mu^* = -\left(\nabla c_I^+(x^*)^T \nabla c_I^+(x^*)\right)^{-1} \nabla c_I^+(x^*)^T \nabla f(x^*) \end{cases}$$

• En reportant dans l'expression du gradient de f_k en x_k

$$\begin{split} \nabla f_k(\ x_k\) &= \nabla f(\ x_k\) + k \nabla c_E(\ x_k\) c_E(\ x_k\) + k \nabla c_I^+(\ x_k\) c_I^+(\ x_k\) + \alpha (\ x_k - x^*) = 0 \\ &\xrightarrow[k \to \infty]{} \nabla f(\ x^*) + \nabla c_E(\ x^*) \lambda^* + \nabla c_I^+(\ x^*) \mu^* = 0 \\ &\Rightarrow \nabla f(\ x^*) + \nabla c_E(\ x^*) \lambda^* + \nabla c_I(\ x^*) \mu^* = 0 \quad car\ \mu^* = 0 \ pour\ les\ inégalités\ inactives \end{split}$$

• On obtient la condition nécessaire d'ordre $1: \nabla_x L(x^*, \lambda^*, \mu^*) = 0$

1 Bases théoriques

1.4 Conditions d'optimalité

1.4.3 Problème avec contraintes

Techniques d'optimisation

1.4.3 Exemple

Conditions nécessaires

$$\min_{x_1, x_2} \frac{1}{2} \left(x_2^2 - x_1^2 \right) \text{sous } x_1 \le 1$$

Lagrangien:
$$L(x_1, x_2, \mu) = \frac{1}{2}(x_2^2 - x_1^2) + \mu(x_1 - 1)$$

Conditions nécessaires d'ordre 1

$$\begin{cases} -x_1 + \mu = 0 \\ x_2 = 0 \\ x_1 \le 1 \\ \mu \ge 0 \\ \mu(x_1 - 1) = 0 \end{cases} \rightarrow \text{ v\'erifi\'ees en } x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \mu^* = 1$$

• Conditions nécessaires d'ordre 2 d direction tangente aux contraintes actives : $d^T \nabla c(x^*) = 0 \Rightarrow \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}^T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0 \Rightarrow d_1 = 0$ $d^T \nabla^2_{xx} L(x^*, \mu^*) d = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}^T \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = -d_1^2 + d_2^2 = d_2^2 \ge 0$

$$x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\mu^* = 1$ vérifie les conditions nécessaires d'ordre 1 et 2.

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Conditions suffisantes

Problème avec contraintes

$$\min_{x \in R^n} f(x) \text{ sous } \begin{cases} c_E(x) = 0 & \rightarrow \text{ p contraintes d'égalité} \\ c_I(x) \le 0 & \rightarrow \text{ q contraintes d'inégalité} \end{cases}$$

Conditions suffisantes

S'il existe $x^* \in \mathbb{R}^n$, $\lambda^* \in \mathbb{R}^p$, $\mu^* \in \mathbb{R}^q$ tels que :

• Ordre 1 :
$$\begin{cases} \nabla_x L(x^*,\lambda^*,\mu^*) = 0 & \to \text{ conditions d'ordre 1} \\ \nabla_\lambda L(x^*,\lambda^*,\mu^*) = 0 & \to \text{ contraintes \'egalit\'e } c_E(x^*) = 0 \\ \nabla_\mu L(x^*,\lambda^*,\mu^*) \leq 0 & \to \text{ contraintes in\'egalit\'e } c_I(x^*) \leq 0 \end{cases}$$

$$\mu^* \geq 0$$

$$\mu^* c_I(x^*) = 0 & \to \text{ conditions compl\'ementaires}$$

$$\mu_k^* > 0 \text{ si } c_{Ik}(x^*) = 0 & \to \text{ conditions compl\'ementaires}$$

• Ordre 2: Pour toute direction d tangente aux contraintes actives $(c(x^*)=0)$:

$$d^{T}\nabla_{xx}^{2}L(x^{*},\lambda^{*},\mu^{*})d > 0 \rightarrow \text{ conditions d'ordre 2}$$

 $\forall d / d^{T}\nabla c(x^{*}) = 0$

 \Rightarrow x* est un minimum local strict

Remarque : Pas d'hypothèse de qualification des contraintes dans les conditions suffisantes

- Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Conditions suffisantes

Eléments de la démonstration

Cas de contraintes égalité : c(x)=0

On suppose que (x^*, λ^*) vérifie les conditions suffisantes.

<u>On considère le problème sans contrainte</u>

$$\min_{x \in R^n} L_{\rho}(x, \lambda^*) = L(x, \lambda^*) + \frac{1}{2} \rho \|c(x)\|^2 = f(x) + \lambda^{*T} c(x) + \frac{1}{2} \rho \|c(x)\|^2$$

 $L_o(x,\lambda) = lagrangien augmenté$

 $\rho > 0$ = pénalisation de la violation des contraintes

$$\begin{array}{ll} \bullet & \nabla_x L_\rho(x^*,\lambda^*) = \nabla f(x^*) + \nabla c(x^*)\lambda^* + \rho \nabla c(x^*)c(x^*) \\ & = \nabla f(x^*) + \nabla c(x^*)\lambda^* & \rightarrow car \ x^* \ admissible \\ & = \nabla_x L(x^*,\lambda^*) = 0 & \rightarrow par \ hypoth\`ese \ sur \ x^*,\lambda^* \\ \bullet & \nabla^2_{xx} L_\rho(x^*,\lambda^*) = \nabla^2_{xx} L(x^*,\lambda^*) + \rho \nabla c(x^*) \nabla c(x^*)^T & \rightarrow d\acute{e}finie \ positive \ pour \ \rho \ assez \ grand \end{array}$$

- - $\Rightarrow x^*$ est un minimum local du lagrangien augmenté $L_o(x,\lambda^*)$ pour $\lambda=\lambda^*$.
- Au voisinage de x^* : $L_o(x^*, \lambda^*) \le L_o(x, \lambda^*) \implies f(x^*, \lambda^*) \le f(x, \lambda^*), \forall x / c(x) = 0$ $\Rightarrow x^*$ est un minimum local de f

Bases théoriques

1.4 Conditions d'optimalité

1.4.3 Problème avec contraintes

Techniques d'optimisation

1.4.3 Exemple

Conditions suffisantes

$$\min_{x_1, x_2} \frac{1}{2} \left(x_2^2 - x_1^2 \right) \text{sous } x_1 \le 1$$

$$x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\mu^* = 1$ vérifie les conditions nécessaires

Conditions suffisantes d'ordre 1

Contrainte active \rightarrow multiplicateur > 0

$$x*-1=0$$
 $\mu*=1>0$

Conditions suffisantes d'ordre 2

d direction tangente aux contraintes actives : $\mathbf{d}^T \nabla \mathbf{c}(\mathbf{x}^*) = 0 \Rightarrow \begin{pmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \end{pmatrix}^T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0 \Rightarrow \mathbf{d}_1 = 0$

$$d^{T}\nabla_{xx}^{2}L(x^{*},\mu^{*})d = \begin{pmatrix} d_{1} \\ d_{2} \end{pmatrix}^{T} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} d_{1} \\ d_{2} \end{pmatrix} = -d_{1}^{2} + d_{2}^{2} = d_{2}^{2} > 0 \quad car \ d = \begin{pmatrix} 0 \\ d_{2} \end{pmatrix} \neq 0 \implies d_{2} \neq 0$$

$$x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\mu^* = 1$ vérifie les conditions suffisantes d'ordre 1 et 2 \rightarrow minimum local strict.

1 Bases théoriques

1.4 Conditions d'optimalité

1.4.3 Problème avec contraintes

Techniques d'optimisation

1.4.3 Exemple

Remarque sur la condition d'ordre 2

$$d = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$
 est une direction admissible en $x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

mais la condition d'ordre 2 ne porte que sur les <u>directions tangentes</u> aux contraintes actives.

Importance de la condition de complémentarité

$$\min_{x_1, x_2} \frac{1}{2} \left(x_2^2 - x_1^2 \right) \text{ sous } x_1 \le 0$$

$$x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $\mu^* = 0$ vérifie les conditions suffisantes d'ordre 1 et 2 sauf la condition de complémentarité

Si la contrainte active est active, le multiplicateur doit être strictement positif.

x*-1=0 active et $\mu*=0$ n'est pas strictement positif

 \rightarrow x* n'est pas un minimum local (f décroit suivant x₁ < 0)

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Interprétation géométrique

Interprétation

• Condition complémentaire

$$\mu_{j}c_{Ij}(x)=0, \quad j=1,...,q \quad \Rightarrow \begin{cases} \mu_{j}=0 & \rightarrow \text{ sensibilit\'e nulle} \\ \text{ou} \\ c_{Ij}(x)=0 & \rightarrow \text{ contrainte active} \end{cases}$$

• Condition d'ordre 1

$$\begin{split} \nabla_{\mathbf{x}} L(\mathbf{x}, \lambda, \mu) &= 0 \quad \Rightarrow \quad \nabla f(\mathbf{x}) + \nabla c_{\mathbf{E}}(\mathbf{x}) . \lambda + \nabla c_{\mathbf{I}}(\mathbf{x}) . \mu = 0 \\ &\Rightarrow - \nabla f(\mathbf{x}) = \nabla c_{\mathbf{E}}(\mathbf{x}) . \lambda + \nabla c_{\mathbf{I}}(\mathbf{x}) . \mu \\ &\Rightarrow - \nabla f(\mathbf{x}) = \nabla c(\mathbf{x}) . \nu \quad \rightarrow \quad \text{contraintes actives } c(\mathbf{x}) \end{split}$$

La direction $-\nabla f(x)$ est la direction de plus forte descente en x.

Les directions $\nabla c(x)$ sont orthogonales à l'hyperplan tangent aux contraintes actives en x. Equation de l'hyperplan tangent aux contraintes actives en x : $d^T \nabla c(x) = 0$

- → Les déplacements admissibles (dans l'hyperplan tangent) sont orthogonaux au gradient.
- → Déplacements suivant les lignes de niveau de f, sans diminution du critère.

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Interprétation géométrique

Fonction de 2 variables – 1 contrainte égalité

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Interprétation géométrique

Fonction de 2 variables – 1 contrainte inégalité

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Interprétation géométrique

Fonction de 2 variables – 1 contrainte égalité – 1 contrainte inégalité

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Interprétation géométrique

Fonction de 2 variables – 2 contraintes inégalité

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Interprétation géométrique

Fonction de 2 variables – 1 contrainte inégalité

$$\min_{x_1, x_2} f(x_1, x_2)$$
 sous $c_I(x_1, x_2) \le 0$

$$\nabla f(\mathbf{x}^*) + \mu \nabla c_{\mathbf{I}}(\mathbf{x}^*) = 0$$
$$\mu \ge 0$$

Sur le schéma:

- $f(x_1, x_2)$ quadratique
- $x_0 = minimum sans contrainte$
- $\mu > 0$ $(\mu \approx 2)$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Interprétation géométrique

Fonction de 2 variables – 1 contrainte égalité – 1 contrainte inégalité

$$\min_{x_1, x_2} f(x_1, x_2) \text{ sous } \begin{cases} c_E(x_1, x_2) = 0\\ c_I(x_1, x_2) \le 0 \end{cases}$$

$$\nabla f(x^*) + \lambda \nabla c_E(x^*) + \mu \nabla c_I(x^*) = 0$$

$$\mu \ge 0$$

Sur le schéma:

- $f(x_1, x_2)$ quadratique
- $x_0 = minimum sans contrainte$
- $\lambda > 0$ $(\lambda \approx 1.5)$
- $\mu > 0$ ($\mu \approx 1.5$)

- Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Méthode pratique

Problème avec contraintes

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{f}(\mathbf{x}) \text{ sous } \begin{cases} c_{\mathrm{E}}(\mathbf{x}) = 0 & \rightarrow \text{ p contraintes d'égalité} \\ c_{\mathrm{I}}(\mathbf{x}) \leq 0 & \rightarrow \text{ q contraintes d'inégalité} \end{cases}$$

La résolution analytique ou numérique nécessite d'identifier les contraintes actives.

On se ramène à un problème avec contraintes égalité plus simple.

- → résolution des conditions KKT d'ordre 1
- → vérification des conditions réduites d'ordre 2

Identification des contraintes actives

- Résolution analytique \rightarrow problème combinatoire (conditions complémentaires)
- Résolution numérique \rightarrow mise à jour itérative de l'ensemble des contraintes actives

Stratégie itérative d'identification

- On cherche un déplacement à partir du point courant sans tenir compte des contraintes inégalité
- Le déplacement peut rendre actives certaines contraintes inégalité.
- On reprend la recherche en ajoutant la première contrainte inégalité activée.
 - → résolution d'une succession de problèmes avec contraintes égalité $\min_{x \in \mathbb{R}^n} f(x) \text{ sous } c(x) = 0$ \rightarrow m contraintes actives

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Exemple

Problème avec 2 contraintes inégalité

$$\min_{\mathbf{x}_1, \mathbf{x}_2} f(\mathbf{x}) = \mathbf{x}_1 + \mathbf{x}_2 \quad \text{sous} \quad \begin{cases} c_1(\mathbf{x}) = \mathbf{x}_1^2 + (\mathbf{x}_2 - 1)^2 - 1 \le 0 \\ c_2(\mathbf{x}) = 1 - \mathbf{x}_2 \le 0 \end{cases}$$

- Lagrangien: $L(x,\mu) = f(x) + \mu_1 c_1(x) + \mu_2 c_2(x)$ = $x_1 + x_2 + \mu_1 (x_1^2 + (x_2 - 1)^2 - 1) + \mu_2 (1 - x_2)$
- -2 -1,5 -1 -0,5 0 0,5 1 1,5 2

Conditions KKT d'ordre 1

$$\begin{cases} 1 + 2\mu_{1}x_{1} = 0 \\ 1 + 2\mu_{1}(x_{2} - 1) - \mu_{2} = 0 \\ x_{1}^{2} + (x_{2} - 1)^{2} - 1 \le 0 \\ 1 - x_{2} \le 0 \\ \mu_{1} c_{1}(x) = 0 \\ \mu_{2} c_{2}(x) = 0 \\ \mu_{1}, \mu_{2} \ge 0 \end{cases} \rightarrow \text{conditions complémentaires} : \textbf{4 combinaisons possibles}$$

Identification des contraintes actives

Problème combinatoire : il faut essayer les 4 possibilités $\begin{cases} \mu_1 = 0 \text{ ou } c_1(x) = 0 \\ \mu_2 = 0 \text{ ou } c_2(x) = 0 \end{cases}$

- Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Exemple

Problème avec 2 contraintes inégalité

$$\min_{\mathbf{x}_1, \mathbf{x}_2} f(\mathbf{x}) = \mathbf{x}_1 + \mathbf{x}_2 \quad \text{sous} \quad \begin{cases} c_1(\mathbf{x}) = \mathbf{x}_1^2 + (\mathbf{x}_2 - 1)^2 - 1 \le 0 \\ c_2(\mathbf{x}) = 1 - \mathbf{x}_2 \le 0 \end{cases}$$

• Si $\mu_1 = 0$ \rightarrow incompatible équation $1 + 2\mu_1 x_1 = 0$

 \Rightarrow $c_1(x) = 0 \rightarrow c_1$ contrainte active

 \Rightarrow $c_2(x) = 0 \rightarrow c_2$ contrainte active

Solution : $\begin{cases} x_1 = -1 \\ x_2 = 1 \\ \mu_1 = 0.5 \\ \mu_2 = 1 \end{cases}$ Vérification condition d'ordre 2 : cône admissible vide (2 contraintes actives) (2 contraintes actives)

→ minimum local

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Exemple

Changement de sens contrainte 2

$$\min_{\mathbf{x}_1, \mathbf{x}_2} f(\mathbf{x}) = \mathbf{x}_1 + \mathbf{x}_2 \quad \text{sous} \quad \begin{cases} c_1(\mathbf{x}) = \mathbf{x}_1^2 + (\mathbf{x}_2 - 1)^2 - 1 \le 0 \\ c_2(\mathbf{x}) = \mathbf{x}_2 - 1 \le 0 \end{cases}$$

- Lagrangien: $L(x,\mu) = f(x) + \mu_1 c_1(x) + \mu_2 c_2(x)$ = $x_1 + x_2 + \mu_1 (x_1^2 + (x_2 - 1)^2 - 1) + \mu_2 (x_2 - 1)$
- -2 -1,5 -1 -0,5 0 0,5 1 1,5 2

• Conditions KKT d'ordre 1

$$\begin{cases} 1 + 2\mu_{1}x_{1} = 0 \\ 1 + 2\mu_{1}(x_{2} - 1) + \mu_{2} = 0 \\ x_{1}^{2} + (x_{2} - 1)^{2} - 1 \le 0 \\ x_{2} - 1 \le 0 \\ \mu_{1} c_{1}(x) = 0 \\ \mu_{2} c_{2}(x) = 0 \\ \mu_{1}, \mu_{2} \ge 0 \end{cases} \rightarrow \text{conditions complémentaires} : \textbf{4 combinaisons possibles}$$

Identification des contraintes actives

Problème combinatoire : il faut essayer les 4 possibilités $\begin{cases} \mu_1 = 0 \text{ ou } c_1(x) = 0 \\ \mu_2 = 0 \text{ ou } c_2(x) = 0 \end{cases}$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Exemple

Changement de sens contrainte 2

$$\min_{\mathbf{x}_1, \mathbf{x}_2} f(\mathbf{x}) = \mathbf{x}_1 + \mathbf{x}_2 \quad \text{sous} \quad \begin{cases} c_1(\mathbf{x}) = \mathbf{x}_1^2 + (\mathbf{x}_2 - 1)^2 - 1 \le 0 \\ c_2(\mathbf{x}) = \mathbf{x}_2 - 1 \le 0 \end{cases}$$

- Si $\mu_1 = 0$ \rightarrow incompatible équation $1 + 2\mu_1 x_1 = 0$
 - \Rightarrow $c_1(x) = 0 \rightarrow c_1$ contrainte active

 \rightarrow incompatible condition $\mu_2 \ge 0$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Exemple

Passage contrainte 1 en égalité

$$\min_{\mathbf{x}_1, \mathbf{x}_2} f(\mathbf{x}) = \mathbf{x}_1 + \mathbf{x}_2 \quad \text{sous} \quad \begin{cases} c_1(\mathbf{x}) = \mathbf{x}_1^2 + (\mathbf{x}_2 - 1)^2 - 1 = 0 \\ c_2(\mathbf{x}) = 1 - \mathbf{x}_2 \le 0 \end{cases}$$

- Lagrangien: $L(x,\mu) = f(x) + \lambda_1 c_1(x) + \mu_2 c_2(x)$ = $x_1 + x_2 + \lambda_1 (x_1^2 + (x_2 - 1)^2 - 1) + \mu_2 (1 - x_2)$
- -2 -1,5 -1 -0,5 0 0,5 1 1,5 2

• Conditions KKT d'ordre 1

$$\begin{cases} 1+2\lambda_1x_1=0\\ 1+2\lambda_1(x_2-1)-\mu_2=0\\ x_1^2+(x_2-1)^2-1=0\\ 1-x_2\leq 0\\ \mu_2c_2(x)=0 \end{cases} \rightarrow \text{conditions complémentaires : 2 combinaisons possibles}$$

Identification des contraintes actives

Problème combinatoire : il faut essayer les 2 possibilités $\mu_2 = 0$ ou $c_2(x) = 0$

1 Bases théoriques

1.4 Conditions d'optimalité

1.4.3 Problème avec contraintes

Techniques d'optimisation

1.4.3 Exemple

Passage contrainte 1 en égalité

$$\min_{\mathbf{x}_1, \mathbf{x}_2} f(\mathbf{x}) = \mathbf{x}_1 + \mathbf{x}_2 \quad \text{sous} \quad \begin{cases} c_1(\mathbf{x}) = \mathbf{x}_1^2 + (\mathbf{x}_2 - 1)^2 - 1 = 0 \\ c_2(\mathbf{x}) = 1 - \mathbf{x}_2 \le 0 \end{cases}$$

• Si
$$\mu_2 = 0$$
 \Rightarrow
$$\begin{cases} 1 + 2\lambda_1 x_1 = 0 \\ 1 + 2\lambda_1 (x_2 - 1) = 0 \\ x_1^2 + (x_2 - 1)^2 - 1 = 0 \end{cases} \Rightarrow \lambda_1 \neq 0$$
$$\Rightarrow \begin{cases} x_1 = -1/(2\lambda_1) \\ x_2 = 1 - 1/(2\lambda_1) \\ \lambda_1 = \pm 1/\sqrt{2} \end{cases}$$

$$1 - x_{2} \le 0 \implies \begin{cases} x_{1} = 1/\sqrt{2} \\ x_{2} = 1 + 1/\sqrt{2} \\ \lambda_{1} = -1/\sqrt{2} \end{cases}$$

• Vérification condition d'ordre 2 : $\nabla^2_{xx}L(x,\mu) = \begin{pmatrix} 2\lambda_1 & 0 \\ 0 & 2\lambda_1 \end{pmatrix} < 0 \rightarrow \text{maximum local}$ (1 contrainte active) $\rightarrow \text{solution rejetée}$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Exemple

Passage contrainte 1 en égalité

$$\min_{\mathbf{x}_1, \mathbf{x}_2} f(\mathbf{x}) = \mathbf{x}_1 + \mathbf{x}_2 \quad \text{sous} \quad \begin{cases} c_1(\mathbf{x}) = \mathbf{x}_1^2 + (\mathbf{x}_2 - 1)^2 - 1 = 0 \\ c_2(\mathbf{x}) = 1 - \mathbf{x}_2 \le 0 \end{cases}$$

• Si
$$c_2(x) = 0 \implies \begin{cases} x_1 = \pm 1 \\ x_2 = 1 \end{cases} \implies \begin{cases} \lambda_1 = \mp 0.5 \\ \mu_2 = 1 \end{cases}$$

Vérification condition d'ordre 2

$$\nabla_{xx}^{2} L(x,\mu) = \begin{pmatrix} 2\lambda_{1} & 0 \\ 0 & 2\lambda_{1} \end{pmatrix}$$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Méthode pratique

Problème avec contraintes actives

$$\min_{x \in \mathbb{R}^n} f(x) \text{ sous } c(x) = 0 \longrightarrow \text{m contraintes actives}$$

Résolution des conditions KKT

On cherche $x^* \in \mathbb{R}^n$ et $\lambda^* \in \mathbb{R}^m$ vérifiant les conditions KKT.

Condition nécessaire du 1^{er} ordre

$$\begin{cases} \nabla_{\mathbf{x}} \mathbf{L}(\mathbf{x}^*, \lambda^*) = 0 & \to \text{ n équations} \\ \nabla_{\lambda} \mathbf{L}(\mathbf{x}^*, \lambda^*) = 0 & \to \text{ m équations} \end{cases}$$

Les n équations $\nabla_x L(x^*,\lambda^*)$ permettent d'exprimer $x^* \in R^n$ en fonction de $\lambda^* \in R^m$ On remplace ensuite $x^*(\lambda^*)$ dans les m équations $\nabla_{\lambda} L(x^*,\lambda^*)$.

→ système de m équations à m inconnues $\lambda^* \in \mathbb{R}^m$

• Condition nécessaire du 2^{ème} ordre

Il faut vérifier que :
$$\begin{cases} d^T \nabla^2_{xx} L(x^*, \lambda^*) d \geq 0 \\ \forall d \ / \ d^T \nabla c(x^*) = 0 \end{cases} \rightarrow \text{hessien du lagrangien semi-défini positif}$$
 sur le cône admissible

Condition difficile à vérifier sous cette forme → passage au hessien réduit

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Méthode pratique

Problème avec contraintes actives

$$\min_{x \in \mathbb{R}^n} f(x)$$
 sous $c(x) = 0$ \rightarrow m contraintes actives

Problème équivalent

• Les conditions nécessaires de minimum de f sous contraintes sont :

$$\begin{cases} \nabla_x L(x^*, \lambda^*) = 0 \\ \nabla_\lambda L(x^*, \lambda^*) = 0 \\ d^T \nabla_{xx}^2 L(x^*, \lambda^*) d \ge 0 \text{ , } \forall d \ / \ d^T \nabla c(x^*) = 0 \end{cases}$$

• On observe qu'il s'agit également des conditions nécessaires du problème :

$$\min_{x \in R^n} L(x, \lambda^*) \text{ sous } c(x) = 0$$

• Il est équivalent de minimiser f(x) ou $L(x,\lambda^*)$, si l'on connaît λ^* .

$$\min_{x \in R^n} f(x) \text{ sous } c(x) = 0 \quad \Leftrightarrow \quad \min_{x \in R^n} L(x, \lambda^*) \text{ sous } c(x) = 0$$

• On écrit les conditions nécessaires sur le modèle quadratique-linéaire local, puis on applique la technique de réduction des contraintes linéaires.

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Méthode pratique

Problème équivalent

$$\min_{x \in R^n} L(x, \lambda^*) \text{ sous } c(x) = 0$$

Modèle quadratique-linéaire

• Modèle quadratique du critère : $\hat{L}(x^*+p) = L(x^*,\lambda^*) + p^T \nabla_x L(x^*,\lambda^*) + \frac{1}{2} p^T \nabla_{xx}^2 L(x^*,\lambda^*) p$ En notant : $\begin{cases} g_L(x^*) = \nabla_x L(x^*,\lambda^*) & \to \text{ gradient du lagrangien par rapport à } x \\ H_L(x^*) = \nabla_{xx}^2 L(x^*,\lambda^*) & \to \text{ hessien du lagrangien par rapport à } x \end{cases}$ $\to \hat{L}(x^*+p) = L(x^*,\lambda^*) + p^T g_L(x^*) + \frac{1}{2} p^T H_L(x^*) p$

Modèle linéaire des contraintes : $\hat{c}(x^*+p) = c(x^*) + \nabla c(x^*)^T p$ avec $c(x^*) = 0$

 $\begin{array}{ll} \text{En notant}: & \begin{cases} A = \nabla c(x^*)^T & \text{avec} & \text{AY inversible} \\ p = Y p_Y + Z p_Z & \text{AZ} = 0 \text{ (espace nul)} \end{cases} \\ & \nabla c(x^*)^T p = 0 \iff \begin{cases} A Y p_Y = 0 \\ p_Z \text{ libre} \end{cases} \Leftrightarrow \begin{cases} p_Y = 0 \\ p_Z \text{ libre} \end{cases} \text{ car AY inversible}$

Problème réduit : $\overline{\min_{p \in R^n} \hat{L}(x^* + p) \text{ sous } \hat{c}(x^* + p) = 0} \iff \overline{\min_{p_z \in R^{n-m}} \hat{L}(x^* + Zp_z)}$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Méthode pratique

Problème réduit

$$\min_{p_Z \in \mathbb{R}^{n-m}} \hat{L}(x^* + Zp_Z) \rightarrow \text{problème sans contrainte à n-m variables } p_Z$$

$$\text{avec } \hat{L}(x^* + Zp_Z) = L(x^*, \lambda^*) + p_Z^T Z^T g_L(x^*) + \frac{1}{2} p_Z^T Z^T H_L(x^*) Zp_Z$$

Conditions nécessaires de minimum du problème réduit

$$\hat{\mathbf{L}}(\mathbf{x}^* + \mathbf{Z}\mathbf{p}_{\mathbf{Z}}) \ge \hat{\mathbf{L}}(\mathbf{x}^*), \forall \mathbf{p}_{\mathbf{Z}} \implies \mathbf{p}_{\mathbf{Z}}^{\mathsf{T}} \mathbf{Z}^{\mathsf{T}} \mathbf{g}_{\mathbf{L}}(\mathbf{x}^*) + \frac{1}{2} \mathbf{p}_{\mathbf{Z}}^{\mathsf{T}} \mathbf{Z}^{\mathsf{T}} \mathbf{H}_{\mathbf{L}}(\mathbf{x}^*) \mathbf{Z} \mathbf{p}_{\mathbf{Z}} \ge 0, \forall \mathbf{p}_{\mathbf{Z}} \implies \begin{cases} \mathbf{Z}^{\mathsf{T}} \mathbf{g}_{\mathbf{L}}(\mathbf{x}^*) &= 0 \\ \mathbf{Z}^{\mathsf{T}} \mathbf{H}_{\mathbf{L}}(\mathbf{x}^*) \mathbf{Z} \ge 0 \end{cases}$$

- Condition réduite d'ordre 1 : $Z^T g_L(x^*) = 0 \iff Z^T \nabla_x L(x^*, \lambda^*) = Z^T \Big(\nabla f(x^*) + \nabla c(x^*) \lambda^{*T} \Big) = 0$ $\iff Z^T \nabla f(x^*) = 0 \text{ car } \nabla c(x^*)^T Z = 0$
- Condition réduite d'ordre 2 : $Z^TH_L(x^*)Z \ge 0$

$$\begin{array}{ll} \bullet & \begin{cases} g_Z = Z^T g & \rightarrow \text{ gradient r\'eduit du crit\`ere} & g(x) = \nabla f(x) \\ H_Z = Z^T H_L Z & \rightarrow \text{ hessien r\'eduit du lagrangien} & H_L(x) = \nabla_{xx}^2 L(x, \lambda^*) \end{cases}$$

•
$$x^*$$
 minimum local $\Rightarrow \begin{cases} g_Z(x^*) = 0 & \to \text{ gradient r\'eduit du crit\`ere nul} \\ H_Z(x^*) \ge 0 & \to \text{ hessien r\'eduit du lagrangien semi-d\'efini positif} \end{cases}$

Bases théoriques

1.4 Conditions d'optimalité

1.4.3 Problème avec contraintes

Techniques d'optimisation

1.4.3 Exemple

Problème de la boîte

- Réaliser une boîte cylindrique de volume donné V₀ et de surface minimale
- Dimensions: hauteur = h, rayon = r

Formulation du problème

Surface: $S = 2\pi r^2 + 2\pi rh$ $\rightarrow \min_{h,r} S(h,r)$ sous $V(h,r) = V_0$

Volume : $V = \pi r^2 h$

Résolution

On note : $V_0 = 2\pi v_0$

Lagrangien: $L(h, r, \lambda) = 2\pi r^2 + 2\pi r h + \lambda (\pi r^2 h - 2\pi v_0)$

Conditions KKT

$$\begin{cases} 2\pi r + \lambda \pi r^2 &= 0 \\ 4\pi r + 2\pi h + 2\lambda \pi r h &= 0 \\ \pi r^2 h - 2\pi v_0 &= 0 \end{cases} \Rightarrow \begin{cases} \lambda r + 2 &= 0 \\ 2r + h + \lambda r h &= 0 \\ r^2 h - 2v_0 &= 0 \end{cases} \Rightarrow \begin{cases} \lambda r &= -2 \\ h &= 2r \\ r^3 &= v_0 \end{cases}$$

• Solution: $\begin{cases} r = v_0^{\frac{1}{3}} \\ h = 2v_0^{\frac{1}{3}} \end{cases} \Rightarrow S = 6\pi v_0^{\frac{2}{3}} = 3(2\pi)^{\frac{1}{3}} V_0^{\frac{2}{3}}$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Exemple

Vérification des conditions réduites

Il faut choisir une base de réduction, puis vérifier les conditions réduites de minimum local

$$\begin{cases} g_Z(x^*) = Z^T \nabla f(x^*) = 0 & \rightarrow \text{ gradient r\'eduit du crit\`ere nul} \\ H_Z(x^*) = Z^T \nabla_{xx}^2 L(x, \lambda^*) Z \ge 0 & \rightarrow \text{ hessien r\'eduit du lagrangien semi-d\'efini positif} \end{cases}$$

- Gradient du critère : $g(h,r) = \nabla_{h,r} f(h,r) = 2\pi \binom{r}{2r+h}$
- Hessien du lagrangien : $L(h,r,\lambda) = 2\pi r^2 + 2\pi r h + \lambda (\pi r^2 h 2\pi v_0)$

$$\Rightarrow g_L(h,r) = \nabla_{h,r} L(h,r,\lambda) = \pi \begin{pmatrix} 2r + \lambda r^2 \\ 4r + 2h + 2\lambda rh \end{pmatrix} , \quad H_L(h,r) = \nabla_{h,r}^2 L(h,r,\lambda) = 2\pi \begin{pmatrix} 0 & 1 + \lambda r \\ 1 + \lambda r & 2 + \lambda h \end{pmatrix}$$

Choix d'une base de réduction

- Contrainte : $c(h,r) = \pi r^2 h 2\pi v_0 = 0 \implies \nabla c^T = (\pi r^2 \quad 2\pi r h)$
- Choix de la base avec la variable h : $A = \nabla c^{T} = (\pi r^{2} \quad 2\pi rh) = \begin{pmatrix} h & r \\ B & N \end{pmatrix}$
- Base de l'espace nul : $Z = \begin{pmatrix} -B^{-1}N \\ I \end{pmatrix} = \begin{pmatrix} -2\pi rh/\pi r^2 \\ 1 \end{pmatrix} = \begin{pmatrix} -2h/r \\ 1 \end{pmatrix}$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Exemple

Vérification des conditions réduites

- Gradient réduit du critère : $g_Z(h,r) = Z^T g(h,r) = 2\pi \binom{-2h/r}{1}^1 \binom{r}{2r+h} = 2\pi (2r-h)$ On vérifie que le gradient réduit est nul : $h = 2r \implies g_Z(h,r) = 0$
- Hessien réduit du lagrangien : $H_Z(h,r) = Z^T H(h,r) Z = 2\pi \begin{pmatrix} -2h/r \\ 1 \end{pmatrix}^T \begin{pmatrix} 0 & 1+\lambda r \\ 1+\lambda r & 2+\lambda r \end{pmatrix} \begin{pmatrix} -2h/r \\ 1 \end{pmatrix}$ $\Rightarrow H_Z(h,r) = 2\pi \begin{pmatrix} 2-4\frac{h}{r}-3\lambda h \end{pmatrix}$

On vérifie que le hessien réduit est semi-défini positif

$$\begin{cases} \lambda r = -2 \\ h = 2r \end{cases} \Rightarrow H_Z(h, r) = 2\pi \left(2 - \frac{h}{r}(4 + 3\lambda r)\right) = 12\pi > 0$$

1 Bases théoriques

1.4 Conditions d'optimalité

1.4.3 Problème avec contraintes

Techniques d'optimisation

1.4.3 Exemple

Résolution par élimination

• Contrainte :
$$c(h,r) = \pi r^2 h - 2\pi v_0 = 0 \implies h = \frac{2v_0}{r^2}$$

• Elimination de la variable h :
$$S(h,r) = 2\pi r^2 + 2\pi rh \implies S(r) = 2\pi r^2 + \frac{4\pi v_0}{r}$$

• Gradient:
$$\frac{dS}{dr}(r) = 4\pi r - \frac{4\pi v_0}{r^2} = 4\pi r \left(1 - \frac{v_0}{r^3}\right)$$

• Hessien:
$$\frac{d^2S}{dr^2}(r) = 4\pi + \frac{8\pi v_0}{r^3} = 4\pi \left(1 + 2\frac{v_0}{r^3}\right)$$

• Minimum de S(r):
$$\begin{cases} \frac{dS}{dr}(r) = 0 \\ \frac{d^2S}{dr^2}(r) \ge 0 \end{cases} \Rightarrow \begin{cases} r^3 = v_0 \\ \frac{d^2S}{dr^2}(r) = 12\pi > 0 \end{cases}$$

Lien avec les conditions réduites

• Gradient réduit

$$g_Z(h,r) = 2\pi (2r - h)$$
 avec $h = \frac{2v_0}{r^2} \implies g_Z(h,r) = 2\pi \left(2r - \frac{2v_0}{r^2}\right) = 4\pi r \left(1 - \frac{v_0}{r^2}\right) = \frac{dS}{dr}(r)$

• Hessien réduit \rightarrow pas de relation directe entre H_Z et $\frac{d^2S}{dr^2}$ (contrainte non linéaire)

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Exemples

Problème du skieur

- Descendre du départ à l'arrivée le plus vite possible
- 2 zones de pentes différentes : vitesse v₁, puis v₂

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Exemples

Problème du sauveteur

- Aller secourir le baigneur qui se noie le plus vite possible
- Course sur terre, puis nage dans l'eau : vitesse v₁, puis v₂

Bases théoriques

1.4 Conditions d'optimalité

1.4.3 Problème avec contraintes

Techniques d'optimisation

1.4.3 Exemples

Problème du sauveteur

Données du problème : l_0 , l_1 , l_2 , v_1 , v_2

Distance sur terre : $d_1 = \frac{l_1}{\cos \theta_1}$

Durée de course :

Distance dans l'eau : $d_2 = \frac{l_2}{\cos \theta_2}$ Durée de nage : $t_2 = \frac{d_2}{c}$

Distance suivant x : $L = d_1 \sin \theta_1 + d_2 \sin \theta_2$

Formulation du problème

Variables: θ_1 , θ_2

Contrainte : $L = l_0$ \rightarrow atteindre le point visé

Critère : $T = t_1 + t_2 \rightarrow durée totale à minimiser$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Exemples

Problème du sauveteur

Formulation du problème

$$\min_{\theta_1, \theta_2} T(\theta_1, \theta_2) \text{ sous } L(\theta_1, \theta_2) = l_0$$

$$\Leftrightarrow \min_{\theta_1, \theta_2} T = \frac{l_1}{v_1 \cos \theta_1} + \frac{l_2}{v_2 \cos \theta_2} \quad \text{sous} \quad L = l_1 \tan \theta_1 + l_2 \tan \theta_2 = l_0$$

Résolution du problème

Lagrangien:
$$L(\theta_1, \theta_2, \lambda) = \frac{l_1}{v_1 \cos \theta_1} + \frac{l_2}{v_2 \cos \theta_2} + \lambda (l_1 \tan \theta_1 + l_2 \tan \theta_2 - l_0)$$

Conditions KKT:
$$\begin{cases} \frac{l_{1}\sin\theta_{1}}{v_{1}\cos^{2}\theta_{1}} + \lambda l_{1} \frac{1}{\cos^{2}\theta_{1}} = 0\\ \frac{l_{2}\sin\theta_{2}}{v_{2}\cos^{2}\theta_{2}} + \lambda l_{2} \frac{1}{\cos^{2}\theta_{2}} = 0 \end{cases} \Rightarrow \begin{cases} \sin\theta_{1} + \lambda v_{1} = 0\\ \sin\theta_{2} + \lambda v_{2} = 0\\ l_{1}\tan\theta_{1} + l_{2}\tan\theta_{2} = l_{0} \end{cases}$$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Exemples

Problème du sauveteur

$$\bullet \quad \text{Conditions KKT}: \begin{array}{l} \sin\theta_1 + \lambda v_1 = 0 \\ \sin\theta_2 + \lambda v_2 = 0 \\ l_1 \tan\theta_1 + l_2 \tan\theta_2 = l_0 \end{array}$$

On exprime
$$\theta_1, \theta_2$$
 en fonction de λ :
$$\begin{cases} \sin \theta_1 = -\lambda v_1 \implies \cos \theta_1 = \sqrt{1 - \lambda^2 v_1^2} \\ \sin \theta_2 = -\lambda v_2 \implies \cos \theta_2 = \sqrt{1 - \lambda^2 v_2^2} \end{cases}$$

On remplace dans la contrainte : $l_1 \tan \theta_1 + l_2 \tan \theta_2 = l_0 \Rightarrow \frac{\lambda l_1 v_1}{\sqrt{1 - \lambda^2 v_2^2}} + \frac{\lambda l_2 v_2}{\sqrt{1 - \lambda^2 v_2^2}} = -l_0$

On obtient une équation en
$$\lambda$$
:
$$\lambda l_1 v_1 \sqrt{1 - \lambda^2 v_2^2} + \lambda l_2 v_2 \sqrt{1 - \lambda^2 v_1^2} = -l_0 \sqrt{1 - \lambda^2 v_2^2} \sqrt{1 - \lambda^2 v_1^2}$$

- → équation de degré 4
- \rightarrow solution $\lambda^* \rightarrow \theta_1^*, \theta_2^*$

Bases théoriques

1.4 Conditions d'optimalité

1.4.3 Problème avec contraintes

Techniques d'optimisation

1.4.3 Sensibilité aux contraintes

Problème avec contraintes

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{f}(\mathbf{x}) \text{ sous } \begin{cases} c_{\mathbf{E}}(\mathbf{x}) = 0 & \rightarrow \text{ p contraintes d'égalité} \\ c_{\mathbf{I}}(\mathbf{x}) \leq 0 & \rightarrow \text{ q contraintes d'inégalité} \end{cases}$$

$$\Leftrightarrow \min_{x \in \mathbb{R}^n} f(x) \text{ sous } c(x) = 0$$

→ m contraintes d'égalité (= contraintes actives)

Problème initial

$$\min_{x \in R^n} f(x) \text{ sous } c(x) = 0$$

Multiplicateurs: λ^* , $\nabla_x L(x^*, \lambda^*) = 0$

Solution:

 $f(x^*) = f^*$ $c(x^*) = 0$

Problème perturbé

$$\min_{x \in R^n} f(x) \text{ sous } c(x) = \delta c$$

Variation des niveaux de contrainte $\delta c \rightarrow Variation$ de la solution δx , du coût optimal δf

 $x^*+\delta x$, $f(x^*+\delta x) = f^* + \delta f$, $\delta f \in \mathbb{R}$ Solution: $c(x^*+\delta x) = 0 + \delta c$, $\delta c \in \mathbb{R}^m$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Sensibilité aux contraintes

Variation du coût optimal

• Variation du coût et des contraintes à l'ordre 1

$$\begin{cases} f(x^* + \delta x) = f(x^*) + \nabla f(x^*)^T \delta x = f(x^*) + \delta f \\ c(x^* + \delta x) = c(x^*) + \nabla c(x^*)^T \delta x = c(x^*) + \delta c \end{cases} \Rightarrow \begin{cases} \delta f = \nabla f(x^*)^T \delta x \\ \delta c = \nabla c(x^*)^T \delta x \end{cases}$$

Condition d'optimalité d'ordre 1 du problème initial

$$\nabla_{\mathbf{x}} \mathbf{L}(\mathbf{x}^*, \lambda^*) = 0 \implies \nabla f(\mathbf{x}^*) + \nabla c(\mathbf{x}^*) \lambda^* = 0$$

• Relation entre δf et δc

$$\delta f + \lambda^{*T} \delta c = \left(\nabla f(x^*)^T + \lambda^{*T} \nabla c(x^*)^T\right) \delta x = \left(\nabla f(x^*) + \nabla c(x^*) \lambda^*\right)^T \delta x = 0$$

$$\Rightarrow \delta f = -\lambda^{*T} \delta c = -\sum_{j=1}^{m} \lambda_{j}^{*} \delta c_{j}$$

• Une variation δc_i du niveau de la contrainte j entraîne une variation $-\lambda_i * \delta c_i$ du coût optimal.

Interprétation

Le multiplicateur donne la sensibilité du coût optimal au niveau de la contrainte (au signe près)

ightarrow Convention possible de définition du lagrangien : $L = f + \lambda^T c$

ou
$$L = f - \lambda^T c$$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Sensibilité aux contraintes

Fonction de 2 variables – 1 contrainte égalité

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Exemple

Problème de la boîte

$$\min_{h,r} S(h,r) \text{ sous } V(h,r) = V_0 \text{ avec } \begin{cases} S = 2\pi r^2 + 2\pi rh \\ V = \pi r^2 h \end{cases}$$

 \rightarrow contrainte en volume de niveau V_0

Solution

$$\begin{cases} \mathbf{r} = \left(\frac{\mathbf{V}_0}{2\pi}\right)^{\frac{1}{3}} \\ \mathbf{h} = 2\left(\frac{\mathbf{V}_0}{2\pi}\right)^{\frac{1}{3}} \\ \lambda = -2\left(\frac{2\pi}{\mathbf{V}_0}\right)^{\frac{1}{3}} \end{cases} \Rightarrow \mathbf{S} = 3(2\pi)^{\frac{1}{3}} \mathbf{V}_0^{\frac{2}{3}}$$

Sensibilité au niveau de contrainte

$$\frac{dS}{dV_0} = 2(2\pi)^{\frac{1}{3}} V_0^{-\frac{1}{3}} = 2\left(\frac{2\pi}{V_0}\right)^{\frac{1}{3}} = -\lambda$$

- Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Sensibilité aux paramètres

Problème avec paramètres de modèle

$$\min_{x \in \mathbb{R}^n} f(x, p) \text{ sous } c(x, p) = 0$$

→ m contraintes d'égalité (= contraintes actives) r paramètres de modèle p∈R^r (valeurs fixées)

Problème initial

$$\min_{x \in \mathbb{R}^n} f(x, p) \text{ sous } c(x, p) = 0$$

$$\lambda^*$$
,

Multiplicateurs:
$$\lambda^*$$
, $\nabla_x L(x^*, \lambda^*, p) = 0$

Solution:

$$x^*,$$
 $f(x^*, p) = f^*$
 $c(x^*, p) = 0$

$$c(x^*, p) = 0$$

Problème perturbé

$$\min_{x \in \mathbb{R}^n} f(x, p + \delta p) \text{ sous } c(x, p + \delta p) = 0$$

- Variation des paramètres $\delta p \rightarrow Variation de la solution <math>\delta x$, du coût optimal δf
- Solution:

$$x^*+\delta x$$
, $f(x^*+\delta x)$

$$x^*+\delta x$$
, $f(x^*+\delta x, p+\delta p) = f^* + \delta f$, $\delta f \in \mathbb{R}$

$$c(x^*+\delta x, p+\delta p) = 0$$

 $c(x^*+\delta x, p+\delta p) = 0$ (même niveau de contrainte = 0)

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Sensibilité aux paramètres

Variation du coût optimal

• Variation du coût et des contraintes à l'ordre 1

$$\begin{cases} f(x^* + \delta x, p + \delta p) = f(x^*, p) + \nabla_x f(x^*, p)^T \delta x + \nabla_p f(x^*, p)^T \delta p = f(x^*, p) + \delta f \\ c(x^* + \delta x, p + \delta p) = c(x^*, p) + \nabla_x c(x^*, p)^T \delta x + \nabla_p c(x^*, p)^T \delta p = c(x^*, p) = 0 \end{cases}$$

$$\Rightarrow \begin{cases} \nabla_{\mathbf{x}} f(\mathbf{x}^*, \mathbf{p})^{\mathsf{T}} \delta \mathbf{x} + \nabla_{\mathbf{p}} f(\mathbf{x}^*, \mathbf{p})^{\mathsf{T}} \delta \mathbf{p} = \delta \mathbf{f} \\ \nabla_{\mathbf{x}} c(\mathbf{x}^*, \mathbf{p})^{\mathsf{T}} \delta \mathbf{x} + \nabla_{\mathbf{p}} c(\mathbf{x}^*, \mathbf{p})^{\mathsf{T}} \delta \mathbf{p} = 0 \end{cases}$$

• Condition d'optimalité d'ordre 1 du problème initial

$$\nabla_{\mathbf{x}} \mathbf{L}(\mathbf{x}^*, \lambda^*, \mathbf{p}) = 0 \implies \nabla_{\mathbf{x}} \mathbf{f}(\mathbf{x}^*, \mathbf{p}) + \nabla_{\mathbf{x}} \mathbf{c}(\mathbf{x}^*, \mathbf{p}) \lambda^* = 0$$

• Relation entre δf et δp

$$\delta f = \left(\nabla_{\mathbf{x}} f(\mathbf{x}^*, \mathbf{p})^{\mathrm{T}} + \lambda^{*\mathrm{T}} \nabla_{\mathbf{x}} c(\mathbf{x}^*, \mathbf{p})^{\mathrm{T}}\right) \delta \mathbf{x} + \left(\nabla_{\mathbf{p}} f(\mathbf{x}^*, \mathbf{p})^{\mathrm{T}} + \lambda^{*\mathrm{T}} \nabla_{\mathbf{p}} c(\mathbf{x}^*, \mathbf{p})^{\mathrm{T}}\right) \delta \mathbf{p}$$

$$\Rightarrow \delta f = \left(\nabla_{p} f(x^{*}, p) + \nabla_{p} c(x^{*}, p) \lambda^{*}\right)^{T} \delta p = \nabla_{p} L(x^{*}, \lambda^{*}, p)^{T} \delta p \Rightarrow \left|\frac{df(x^{*}, p)}{dp} = \nabla_{p} L(x^{*}, \lambda^{*}, p)\right|$$

- Une variation δp_j du paramètre j entraîne une variation $\frac{\partial L(x^*, \lambda^*, p)}{\partial p_j} \delta p_j$ du coût optimal
 - → sensibilité du coût aux paramètres de modèle

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.3 Problème avec contraintes

1.4.3 Exemple

Problème de la boîte

$$\min_{h,r} S(h,r) \text{ sous } M(h,r) = M_0 = \rho V_0 \text{ avec } \begin{cases} S = 2\pi r^2 + 2\pi rh \\ M = \rho V = \pi r^2 h \rho \end{cases}$$

 \rightarrow contrainte en masse M_0 au lieu de volume V_0 , avec densité ρ

Solution

$$\begin{cases} r = \left(\frac{M_0}{2\pi\rho}\right)^{\frac{1}{3}} & \Rightarrow S = 3(2\pi)^{\frac{1}{3}} M_0^{\frac{2}{3}} \rho^{-\frac{2}{3}} \\ h = 2\left(\frac{M_0}{2\pi\rho}\right)^{\frac{1}{3}} & L = S + \lambda(M - M_0) \\ \lambda = -\frac{2}{\rho} \left(\frac{2\pi\rho}{M_0}\right)^{\frac{1}{3}} & \Rightarrow \frac{\partial L}{\partial \rho} = \lambda \frac{\partial M}{\partial \rho} = \lambda \pi r^2 h \\ \lambda = -\frac{2}{\rho} \left(\frac{2\pi\rho}{M_0}\right)^{\frac{1}{3}} & \Rightarrow \frac{\partial L}{\partial \rho} = -\frac{4\pi}{\rho} \left(\frac{M_0}{2\pi\rho}\right)^{\frac{2}{3}} \end{cases}$$

Sensibilité au paramètre p

$$\frac{dS}{d\rho} = -2(2\pi)^{\frac{1}{3}} M_0^{\frac{2}{3}} \rho^{-\frac{5}{3}} = -\frac{4\pi}{\rho} \left(\frac{M_0}{2\pi\rho}\right)^{\frac{2}{3}} = \frac{\partial L}{\partial \rho}$$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.4 Problème linéaire

1.4.4 Problème linéaire

- ☐ Forme standard
- ☐ Conditions nécessaires d'optimalité
- ☐ Coûts réduits

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.4 Problème linéaire

1.4.4 Problème linéaire

Problème linéaire

$$\min_{x \in R^n} c^T x \text{ sous } \begin{cases} Ax = b \\ x \ge 0 \end{cases} \qquad A \in R^{m \times n}, b \in R^m, c \in R^n$$

→ problème linéaire sous forme standard (PL)

Conditions nécessaires d'optimalité à partir du lagrangien

Lagrangien:
$$L(x,\lambda,s) = c^T x + \lambda^T (b - Ax) - s^T x \Rightarrow \begin{cases} \nabla_x L(x,\lambda,s) = c - A^T \lambda - s \\ \nabla_{xx}^2 L(x,\lambda,s) = 0 \end{cases}$$

(x,\lambda,s) minimum local de (PL)

- Condition nécessaire d'ordre 1 : $\begin{cases} c A^T \lambda s = 0 \\ s \ge 0 \end{cases} \rightarrow \text{contraintes du problème dual}$
- Condition nécessaire d'ordre 2 : $\nabla^2_{xx} L(x, \lambda, s) \ge 0 \rightarrow \text{vérifiée}$
- Condition complémentaire : $s_i x_i = 0, i = 1,...n$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.4 Problème linéaire

1.4.4 Problème linéaire

Problème linéaire

$$\min_{x \in R^n} c^T x \text{ sous } \begin{cases} Ax = b \\ x \ge 0 \end{cases} \qquad A \in R^{m \times n}, b \in R^m, c \in R^n$$

→ problème linéaire sous forme standard (PL)

Conditions nécessaires d'optimalité à partir des dérivées directionnelles

x minimum local de (PL)

↓

↓

Pour toute direction admissible $d: \nabla f(x)^T d \ge 0 \implies c^T d \ge 0$

 Toute direction admissible d est combinaison linéaire des directions de base d_j. (contraintes linéaires)

$$d_{j} = E \begin{pmatrix} d_{jB} \\ d_{jN} \end{pmatrix} \text{ avec } \begin{cases} d_{jB} = -B^{-1}A_{j} \\ E^{T}e_{j} = \begin{pmatrix} 0 \\ d_{jN} \end{pmatrix} \implies c^{T}d_{j} = c_{B}^{T}d_{jB} + c_{N}^{T}d_{jN} = -c_{B}^{T}B^{-1}A_{j} + c_{j} \end{cases}$$

• Il suffit de vérifier : $c^T d_j \ge 0$

- Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.4 Problème linéaire

1.4.4 Problème linéaire

Coûts réduits

x solution de base admissible :
$$x = E\begin{pmatrix} x_B \\ x_N \end{pmatrix} = E\begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} \rightarrow m$$

Le **coût réduit** associé à la variable hors base x_i est défini par : $|\overline{c}_j = c^T d_j = c_j - c_B^T B^{-1} A_j|$

$$\overline{c}_{j} = c^{T}d_{j} = c_{j} - c_{B}^{T}B^{-1}A_{j}$$

- = dérivée directionnelle de f suivant la jème direction de base pour une variable hors base
- = 0 par extension pour une variable de base

$$AE = \begin{pmatrix} B & N \end{pmatrix} \Rightarrow B^{-1}AE = \begin{pmatrix} I & B^{-1}N \end{pmatrix} \Rightarrow c_B^T B^{-1}AE = \begin{pmatrix} c_B^T & c_B^T B^{-1}N \end{pmatrix} \Rightarrow \overline{c} = \begin{pmatrix} 0 & \overline{c}_N^T \end{pmatrix}$$

Conditions nécessaires d'optimalité

x* solution de base non dégénérée

$$x^*$$
 solution de PL $\Rightarrow \overline{c} \ge 0$

Conditions suffisantes d'optimalité

x* solution de base admissible

$$\overline{c} \ge 0 \implies x^* \text{ solution de PL}$$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.4 Problème linéaire

1.4.4 Problème linéaire

Lien entre multiplicateurs et coûts réduits

- Problème linéaire sous forme standard : $\min_{x \in R^n} c^T x$ sous $\begin{cases} Ax = b \\ x \ge 0 \end{cases}$
- Lagrangien: $L(x,\lambda,s) = c^{T}x + \lambda^{T}(b-Ax) s^{T}x \implies \nabla_{x} L(x,\lambda,s) = c A^{T}\lambda s$
- Conditions d'ordre 1 : $\begin{cases} A^T \lambda + s = c \\ s \ge 0 \text{ , } s_i x_i = 0 \text{ , } i = 1, \dots, n \end{cases}$
- Base B: $AE = (B \ N) \implies c = \begin{pmatrix} c_B \\ c_N \end{pmatrix}, s = \begin{pmatrix} s_B \\ s_N \end{pmatrix}, x = \begin{pmatrix} x_B = B^{-1}b \\ x_N = 0 \end{pmatrix}$

$$A^{T}\lambda + s = c \qquad \Leftrightarrow \begin{pmatrix} B^{T} \\ N^{T} \end{pmatrix} \lambda + \begin{pmatrix} s_{B} \\ s_{N} \end{pmatrix} = \begin{pmatrix} c_{B} \\ c_{N} \end{pmatrix}$$

$$s \ge 0$$
, $s_i x_i = 0$, $i = 1, \dots, n$ \Leftrightarrow
$$\begin{cases} s_B \ge 0, s_i x_i = 0, i \in B \\ s_N \ge 0, s_i x_i = 0, i \in N \end{cases}$$
 \rightarrow vérifié en prenant $s_B = 0$ \rightarrow vérifié car $s_N = 0$

$$\begin{cases} \mathbf{B}^{\mathsf{T}} \lambda = \mathbf{c}_{\mathsf{B}} \\ \mathbf{N}^{\mathsf{T}} \lambda + \mathbf{s}_{\mathsf{N}} = \mathbf{c}_{\mathsf{N}} \end{cases} \Rightarrow \begin{cases} \lambda = \mathbf{B}^{\mathsf{T}} \mathbf{c}_{\mathsf{B}} \\ \mathbf{s}_{\mathsf{N}} = \mathbf{c}_{\mathsf{N}} - (\mathbf{B}^{\mathsf{T}} \mathbf{N})^{\mathsf{T}} \mathbf{c}_{\mathsf{B}} = \overline{\mathbf{c}}_{\mathsf{N}} \ge 0 \end{cases} \Rightarrow \mathbf{s} = \begin{pmatrix} \mathbf{s}_{\mathsf{B}} \\ \mathbf{s}_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \overline{\mathbf{c}}_{\mathsf{N}} \end{pmatrix} = \overline{\mathbf{c}} \ge 0$$

• Les coûts réduits sont les multiplicateurs des variables \rightarrow $s = \overline{c} \ge 0$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.5 Problème quadratique

1.4.5 Problème quadratique

- ☐ Forme standard
- ☐ Conditions nécessaires d'optimalité
- ☐ Projection
- ☐ Directions conjuguées

1 Bases théoriques

1.4 Conditions d'optimalité

1.4.5 Problème quadratique

Techniques d'optimisation

1.4.5 Problème quadratique

Problème quadratique

- $\bullet \quad \text{Forme standard} \quad \min_{x \in R^n} \frac{1}{2} x^T Q x + c^T x \ \text{sous} \ A x = b \qquad Q \in R^{n \times n} \ , \ A \in R^{m \times n} \ , \ b \in R^m \ , \ c \in R^n$
- Gradient : g(x) = Qx + c
- Hessien: H(x) = Q

Cas d'une matrice Q non symétrique

On se peut toujours se ramener à une matrice Q' symétrique : $Q'_{ij} = Q'_{ji} = \frac{1}{2}(Q_{ij} + Q_{ji})$

$$\Rightarrow x^{T}Qx = \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{ij}x_{i}x_{j} = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (Q_{ij} + Q_{ji})x_{i}x_{j} = \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{ij}^{T}x_{i}x_{j} = x^{T}Q^{T}x$$

Cas d'une matrice Q symétrique

- Q admet **n valeurs propres réelles** (distinctes ou non)
- Q admet une base orthonormée de vecteurs propres
- Si Q est définie positive, elle admet une factorisation LDL^T (factorisation de Cholesky)

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.5 Problème quadratique

1.4.5 Problème quadratique

Conditions nécessaires d'optimalité

• Lagrangien:
$$L(x,\lambda) = \frac{1}{2}x^{T}Qx + c^{T}x + \lambda^{T}(b - Ax) \Rightarrow \begin{cases} \nabla_{x} L(x,\lambda) = Qx + c - A^{T}\lambda \\ \nabla_{xx}^{2} L(x,\lambda) = Q \end{cases}$$

• Conditions d'ordre 2 : Q définie positive \rightarrow Q inversible

• Conditions d'ordre 1 :
$$\begin{cases} Qx - A^T\lambda = -c \\ Ax = b \end{cases} \Rightarrow \begin{cases} x - Q^{-1}A^T\lambda = -Q^{-1}c \\ Ax = b \end{cases} \Rightarrow \begin{cases} Ax - AQ^{-1}A^T\lambda = -AQ^{-1}c \\ Ax = b \end{cases}$$

Solution

Par soustraction membre à membre :
$$AQ^{-1}A^{T}\lambda = AQ^{-1}c + b \Rightarrow \lambda = (AQ^{-1}A^{T})^{-1}(AQ^{-1}c + b)$$

Application

Projection d'un vecteur sur un hyperplan

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.5 Problème quadratique

1.4.5 Projection

Projection d'un vecteur sur un hyperplan

La projection de $x_0 \in \mathbb{R}^n$ sur l'hyperplan d'équation Ax = b est le point x solution de

$$\min_{\mathbf{x} \in \mathbf{R}^n} \|\mathbf{x} - \mathbf{x}_0\| \text{ sous } \mathbf{A}\mathbf{x} = \mathbf{b}$$

- \rightarrow point x_P de l'hyperplan le plus proche de x_0
- Problème quadratique équivalent

$$\min_{x \in R^{n}} \frac{1}{2} \|x - x_0\|^2 \text{ sous } Ax = b$$

$$\Leftrightarrow \min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0) \text{ sous } \mathbf{A}\mathbf{x} = \mathbf{b}$$

Solution

$$x_{P} = (I - A^{T}(AA^{T})^{-1}A)x_{0} + A^{T}(AA^{T})^{-1}b \rightarrow \text{matrice de projection}: P = I - A^{T}(AA^{T})^{-1}A$$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.5 Problème quadratique

1.4.5 Directions conjuguées

Forme quadratique définie positive

On considère une forme quadratique définie positive

$$f(x) = \frac{1}{2}x^{T}Qx + c^{T}x$$
 avec $Q \in \mathbb{R}^{n \times n}$ symétrique définie positive

Relation de conjugaison

- 2 vecteurs u et v de Rⁿ sont **conjugués** par rapport à Q si : u^TQv=0
- n vecteurs $(d_i)_{i=1,...,n}$ conjugués 2 à 2 forment une base de R^n

Preuve On cherche
$$(\alpha_i)_{i=1,...,n}$$
 tels que $: \sum_{i=1}^n \alpha_i d_i = 0$

$$\Rightarrow d_k Q \sum_{i=1}^n \alpha_i d_i = 0 \text{ , } \forall k \Rightarrow \sum_{i=1}^n \alpha_i d_k Q d_i = 0 \text{ , } \forall k \Rightarrow \alpha_k d_k Q d_k = 0 \text{ , } \forall k \text{ car } d_k Q d_i \text{ si } i \neq k$$

Q définie positive : $d_k Q d_k > 0$ si $d_k \neq 0 \implies \alpha_k = 0$ Les n vecteurs $(u_i)_{i=1,\dots,n}$ sont indépendants \rightarrow base de R^n

• Tout vecteur x de Rⁿ peut s'écrire : $x = \sum_{i=1}^{n} \alpha_i d_i$ avec $\alpha_i = \frac{d_i Qx}{d_i Qd_i}$

- 1 Bases théoriques
- 1.4 Conditions d'optimalité
- 1.4.5 Problème quadratique

1.4.5 Directions conjuguées

Méthode de directions conjuguées

On obtient le minimum de la forme quadratique définie positive $f(x) = \frac{1}{2}x^{T}Qx + c^{T}x$ en **n itérations à pas optimal suivant des directions conjuguées**.

Preuve: On part du point initial
$$x_0$$
: $x_0 = \sum_{i=1}^n \frac{d_i Q x_0}{d_i Q d_i} d_i$ dans la base $(d_i)_{i=1,\dots,n}$

Après k itérations à pas optimal α_k suivant d_1, \ldots, d_k , on obtient : $x_k = x_0 + \sum_{i=1}^k \alpha_i d_i = x_{k-1} + \alpha_k d_k$ A l'itération k, le pas optimal α_k suivant la direction d_k vérifie :

$$\min_{\alpha} f(x_{k-1} + \alpha d_k) \Rightarrow \frac{d}{d\alpha} f(x_{k-1} + \alpha d_k) = 0 \Rightarrow d_k^T \nabla f(x_{k-1} + \alpha d_k) = 0 \Rightarrow d_k^T \nabla f(x_k) = 0$$

$$\nabla f(x) = Qx + c \Rightarrow d_k^T \nabla f(x_k) = d_k^T Q\left(x_0 + \sum_{i=1}^k \alpha_i d_i\right) + d_k^T c = d_k^T (Qx_0 + c) + \alpha_k d_k^T Q d_k$$

$$d_k^T \nabla f(x_k) = 0 \Rightarrow \alpha_k = -\frac{d_k^T (Qx_0 + c)}{d_k^T Q d_k}$$

On obtient pour x_n :

$$x_{n} = x_{0} + \sum_{i=1}^{n} \alpha_{i} d_{i} = x_{0} - \sum_{i=1}^{n} \frac{d_{i}^{T} (Qx_{0} + c)}{d_{i}^{T} Q d_{i}} d_{i} = x_{0} - \sum_{i=1}^{n} \frac{d_{i}^{T} Q x_{0}}{d_{i}^{T} Q d_{i}} d_{i} - \sum_{i=1}^{n} \frac{d_{i}^{T} Q (Q^{-1}c)}{d_{i}^{T} Q d_{i}} d_{i}$$

$$= x_{0} - x_{0} - Q^{-1}c \quad dans \ la \ base \ (d_{i})$$

$$\Rightarrow x_n = -Q^{-1}c \Rightarrow \nabla f(x_n) = Q^{-1}x_n + c = 0 \rightarrow x_n = x^* \text{ minimum de } f$$

Sommaire

- 1. Bases théoriques
- 2. Optimisation sans contraintes
 - 2.1 Méthodes de descente
 - 2.2 Méthode de Newton
 - 2.3 Recherche linéaire
 - 2.4 Région de confiance
 - 2.5 Moindres carrés
 - 2.6 Méthode de Nelder-Mead
- 3. Optimisation avec contraintes

2 Optimisation sans contraintes

Problème non linéaire sans contraintes

```
\min_{x \in R^n} f(x)
                    \rightarrow problème noté (PO)
```

Méthodes globales

- Capacité à localiser plusieurs minima locaux (éventuellement le minimum global)
- Algorithmes non déterministes (déplacements aléatoires « organisés »)
- Métaheuristiques : algorithmes génétiques, recuit simulé, essaims, colonies de fourmis, recherche tabou,...
- Convergence généralement lente, peu précise

Méthodes locales

Recherche d'un minimum local à partir d'un point initial fourni par l'utilisateur

Méthodes d'ordre 0 : sans dérivées → Nelder-Mead

> d'ordre 1 : avec dérivées premières \rightarrow plus forte pente

avec dérivées premières et secondes → Newton d'ordre 2 :

rapidité de convergence (nombre d'appels de la fonction) Critères d'efficacité:

> précision de convergence robustesse à l'initialisation

- 2 Optimisation sans contraintes
- 2.1 Méthodes de descente

Sommaire

- 1. Bases théoriques
- 2. Optimisation sans contraintes
 - 2.1 Méthodes de descente
 - 2.1.1 Principes
 - 2.1.2 Itérations
 - 2.1.3 Initialisation et arrêt
 - 2.2 Méthode de Newton
 - 2.3 Recherche linéaire
 - 2.4 Région de confiance
 - 2.5 Moindres carrés
 - 2.6 Méthode de Nelder-Mead
- 3. Optimisation avec contraintes

- 2 Optimisation sans contraintes
- 2.1 Méthodes de descente
- 2.1.1 Principes

2.1.1 Méthodes de descente

Problème sans contrainte

$$\min_{x \in R^n} f(x) \qquad \qquad x^* \text{ minimum local } \quad \Rightarrow \quad \begin{cases} \nabla \ f(x^*) = 0 \\ \nabla^2 f(x^*) \ge 0 \end{cases}$$

On ne sait pas trouver le minimum global dans le cas général (f quelconque).

Méthode locale

- Initialisation x_0 \rightarrow recherche d'un minimum local au voisinage de x_0
- Itérations \rightarrow passage du point x_k au point x_{k+1} meilleur
- Arrêt \rightarrow solution x^* ou blocage

- 2 Optimisation sans contraintes
- 2.1 Méthodes de descente
- 2.1.2 Itérations

2.1.2 Itérations

Modèle local: prédiction

- Point courant x_k , $f_k = f(x_k)$
- Evaluation de $g_k = \nabla f(x_k)$ ou approximation (différences finies) $H_k = \nabla^2 f(x_k)$ ou approximation (quasi Newton)
- Modèle quadratique : $\min_{p} \hat{f}_{k}(x_{k} + p) = f_{k} + p^{t}g_{k} + \frac{1}{2}p^{t}H_{k}p \rightarrow \hat{x}_{k+1} = x_{k} + \hat{p}$ (prédiction)
 - → Méthodes de Newton ou quasi-Newton

Amélioration: correction

- Nouveau point $x_{k+1} = x_k + p$ tel que $f(x_k+p) < f(x_k)$
- Déplacement p à partir de x_k par recherche linéaire suivant $d_k = \hat{x}_{k+1} x_k$ par région de confiance dans $\|x x_k\| < r$
 - → Méthodes de globalisation
- La méthode de Newton appliquée directement ne converge pas systématiquement. La globalisation est nécessaire pour contrôler la convergence.

- 2 Optimisation sans contraintes
- 2.1 Méthodes de descente
- 2.1.3 Initialisation et arrêt

2.1.3 Initialisation et arrêt

Initialisation

- Les méthodes locales recherchent le minimum au voisinage du point de départ.
- Objectifs : rapidité de convergence précision de convergence
 - → méthodes à base de dérivées
- Le minimum local trouvé est le plus proche du point initial x_0 .
 - → initialisation à modifier pour trouver un autre minimum local
- Les **méthodes** « **globales** » explorent « aléatoirement » les solutions
 - → localisation possible de plusieurs minima locaux

Conditions d'arrêt

• Déplacement insuffisant :

 $\left\|\mathbf{x}_{k+1} - \mathbf{x}_{k}\right\| < \varepsilon_{x}$

• Amélioration insuffisante :

 $f_k - f_{k+1} < \varepsilon_f$

• Condition d'ordre 1 vérifiée :

 $\|\mathbf{g}_{\mathbf{k}}\| < \varepsilon_{\mathbf{g}}$

• Nombre maximal d'itérations ou d'appels fonction :

 N_{iter} , N_{fonc}

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton

Sommaire

- 1. Bases théoriques
- 2. Optimisation sans contraintes
 - 2.1 Méthodes de descente
 - 2.2 Méthode de Newton
 - 2.2.1 Résolution d'équations
 - 2.2.2 Minimisation
 - 2.2.3 Globalisation
 - 2.3 Recherche linéaire
 - 2.4 Région de confiance
 - 2.5 Moindres carrés
 - 2.6 Méthode de Nelder-Mead
- 3. Optimisation avec contraintes

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.1 Résolution d'équations

2.2.1 Résolution d'équations

- ☐ Principes
- ☐ Méthode de Newton
- ☐ Méthode de quasi-Newton

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.1 Résolution d'équations

2.2.1 Résolution d'équations

Système d'équations non linéaires

g(x) = 0 avec $g: R^n \to R^n$ \to système de n équations à n inconnues

Principe de la méthode de Newton

- Linéariser g au point initial x₀
- → fonction modèle linéaire ĝ « proche » de g
- Résoudre le système linéaire $\hat{g}(x)=0$
- \rightarrow nouveau point x_1

• Itérer jusqu'à vérifier g(x)=0

 \rightarrow solution x*

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.1 Résolution d'équations

2.2.1 Méthode de Newton

Fonction modèle

• Développement de Taylor à l'ordre 1 de g en x_k

$$g(x) = g(x_k) + \nabla g(x_k)^T (x - x_k) + o(||x - x_k||)$$

• Modèle linéaire de g en x_k :

$$\hat{g}_k(x) = g(x_k) + G_k(x - x_k) \quad \text{avec } G_k \in \mathbb{R}^{n \times n}$$

Choix de la matrice G_k

- Méthode de Newton $\rightarrow G_k = \nabla g(x_k)^T = \text{matrice jacobienne de g en } x_k$
- Méthode de quasi-Newton $\rightarrow G_k$ = approximation de $\nabla g(x_k)^T$

Résolution

- Système linéaire : $\hat{g}_k(x) = 0 \implies g(x_k) + G_k(x x_k) = 0$
- Itération : $x_{k+1} = x_k G_k^{-1}g(x_k)$ si G_k inversible
- Condition d'arrêt : $\|g(x_k)\| < \varepsilon$

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.1 Résolution d'équations

2.2.1 Méthode de Newton

Illustration à une variable

• Equation non linéaire : g(x) = 0

• Point initial : $x_0, y_0 = g(x_0) \rightarrow \textbf{Tangente} \text{ en } x_0 : y = y_0 + g'(x_0)(x - x_0)$

• Intersection axe x: $y = 0 \implies x_1 = x_0 - \frac{y_0}{g'(x_0)}$

• Nouveau point : $x_1, y_1 = g(x_1)$

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.1 Résolution d'équations

2.2.1 Méthode de Newton

Modèle linéaire de g en x_k

$$\hat{g}_k(x) = g(x_k) + G_k(x - x_k)$$
 avec $G_k = \nabla g(x_k)^T$

Erreur de linéarisation

M = constante de Lipschitz sur le gradient ≈ majorant de la courbure

$$\|g(x) - \hat{g}_k(x)\| \le \frac{1}{2} M \|x - x_k\|^2 \rightarrow \text{erreur quadratique}$$

Vitesse de convergence

Hypothèses sur la solution x^* : $\nabla g(x^*)$ inversible

$$\left\|\nabla g(x^*)^{-1}\right\| \leq \eta$$

Suite
$$(x_k)$$
: $x_{k+1} = x_k - G_k^{-1}g(x_k)$

- (x_k) converge vers x^* si x_0 est « assez proche » de x^* : $\exists r > 0 / \|x_0 x^*\| < r \implies \lim_{k \to \infty} x_k = x^*$
- La convergence est quadratique

$$\rightarrow \|x_{k+1} - x^*\| \le M\eta \|x_k - x^*\|^2$$

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.1 Résolution d'équations

2.2.1 Exemples

Exemple 1

• Fonction : $g(x) = x^2 - 1$

• Dérivée : g'(x) = 2x

• Solution: $x = 1 \rightarrow g'(1) = 2$

Iteration	x(k)	g(x)=x**2-1	g'(x)=2x	Erreur
0	4,00000000	1,5E+01	8,0000	3,0E+00
1	2,12500000	3,5E+00	4,2500	1,1E+00
2	1,29779412	6,8E-01	2,5956	3,0E-01
3	1,03416618	6,9E-02	2,0683	3,4E-02
4	1,00056438	1,1E-03	2,0011	5,6E-04
5	1,00000016	3,2E-07	2,0000	1,6E-07
6	1,00000000	2,5E-14	2,0000	1,3E-14

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.1 Résolution d'équations

2.2.1 Exemples

Exemple 2

• Fonction: $g(x) = (x-1)^2$

• Dérivée : g'(x) = 2(x-1)

• Solution: $x = 1 \rightarrow g'(1) = 0$

Iteration	x(k)	g(x)=(x-1)**2	g'(x)=2(x-1)	Erreur
0	4,00000000	9,0E+00	6,0000	3,0E+00
1	2,50000000	2,3E+00	3,0000	1,5E+00
2	1,75000000	5,6E-01	1,5000	7,5E-01
3	1,37500000	1,4E-01	0,7500	3,8E-01
4	1,18750000	3,5E-02	0,3750	1,9E-01
5	1,09375000	8,8E-03	0,1875	9,4E-02
6	1,04687500	2,2E-03	0,0938	4,7E-02
7	1,02343750	5,5E-04	0,0469	2,3E-02
8	1,01171875	1,4E-04	0,0234	1,2E-02
9	1,00585938	3,4E-05	0,0117	5,9E-03
10	1,00292969	8,6E-06	0,0059	2,9E-03
15	1,00009155	8,4E-09	0,0002	9,2E-05
20	1,00000286	8,2E-12	0,0000	2,9E-06

Convergence lente g'(x*) non inversible

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.1 Résolution d'équations

2.2.1 Exemples

Exemple 3

• Fonction: g(x) = Arc tan(x)

• Dérivée : $g'(x) = \frac{1}{1+x^2}$

• Solution: $x = 0 \rightarrow g''(1) = 0$

Iteration	x(k)	g(x)=Arctan(x)	g'(x)=1/(1+x**2)	Erreur
0	1,300	0,915	0,372	1,3E+00
1	-1,162	-0,860	0,426	-1,2E+00
2	0,859	0,710	0,575	8,6E-01
3	-0,374	-0,358	0,877	-3,7E-01
4	0,034	0,034	0,999	3,4E-02
5	0,000	0,000	1,000	-2,6E-05
6	0,000	0,000	1,000	1,2E-14

Convergence

Divergence

Iteration		x(k)	g(x)=Arctan(x)	g'(x)=1/(1+x**2)	Erreur
0		1,500	0,983	0,308	1,5E+00
1		-1,694	-1,038	0,258	-1,7E+00
2		2,321	1,164	0,157	2,3E+00
3		-5,114	-1,378	0,037	-5,1E+00
4		32,296	1,540	0,001	3,2E+01
5		-1575,317	-1,570	0,000	-1,6E+03
6	38	<mark>)4976,008</mark>	1,571	0,000	3,9E+06

229

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.1 Résolution d'équations

2.2.1 Méthode de Newton

Intérêt de la méthode de Newton

- Convergence quadratique au voisinage de la solution → **très rapide et précise**
- Méthode à privilégier dans les algorithmes d'optimisation

Difficultés

- Calcul explicite du gradient $\nabla g(x_k)$ à chaque itération \rightarrow coûteux (n appels fonctions)
- Convergence non garantie

→ même près de la solution

Adaptations

• Méthodes de quasi-Newton

 \rightarrow G_k = approximation du gradient $\nabla g(x_k)$ construite à partir des itérations précédentes sans calcul explicite du gradient

• Techniques de **globalisation**

→ Contrôle du point x_{k+1} (meilleur que x_k ?) $\|g(x_{k+1})\| < \|g(x_k)\|$

Si le point x_{k+1} n'est pas satisfaisant \rightarrow Méthodes de recherche linéaire ou région de confiance pour minimiser $\|g(x)\|^2$

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.1 Résolution d'équations

2.2.1 Méthode de quasi-Newton

Méthode de Broyden

On cherche à définir la matrice G_k à partir de la matrice G_{k-1} de l'itération précédente. Les matrices G_{k-1} et G_k doivent être « proches » au sens de la norme matricielle.

Variation de modèle

- Modèle linéaire de g en x_{k-1} : $\hat{g}_{k-1}(x) = g(x_{k-1}) + G_{k-1}(x x_{k-1})$
- Modèle linéaire de g en x_k : $\hat{g}_k(x) = g(x_k) + G_k(x x_k)$
- Différence entre les modèles en x_{k-1} et x_k

$$\begin{split} \hat{g}_{k}(x) &= g(x_{k}) \\ &= g(x_{k-1}) + G_{k}(x_{k} - x_{k-1}) + G_{k}(x - x_{k}) \\ &= g(x_{k-1}) + G_{k}(x_{k} - x_{k-1}) + G_{k}(x - x_{k}) \\ &= g(x_{k-1}) \\ &= \hat{g}_{k-1}(x) - G_{k-1}(x - x_{k-1}) + G_{k}(x - x_{k-1}) \\ &= \hat{g}_{k-1}(x) + (G_{k} - G_{k-1})(x - x_{k-1}) \end{split} \qquad \qquad \begin{array}{l} \text{car } g(x_{k}) = g(x_{k-1}) + G_{k}(x_{k} - x_{k-1}) \\ \text{par definition de } G_{k} \\ \text{car } \hat{g}_{k-1}(x) = g(x_{k-1}) + G_{k-1}(x - x_{k-1}) \\ \text{par definition de } \hat{g}_{k-1} \end{split}$$

$$\Rightarrow \hat{g}_k(x) - \hat{g}_{k-1}(x) = (G_k - G_{k-1})(x - x_{k-1})$$

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.1 Résolution d'équations

2.2.1 Méthode de quasi-Newton

Objectif

Conserver un modèle linéaire de g en x_k

$$\hat{g}_k(x) = g(x_k) + G_k(x - x_k)$$
 avec $G_k \approx \nabla g(x_k)^T$

sans calculer explicitement G_k

Equation de la sécante

On choisit une matrice $G_k \in \mathbb{R}^{n \times n}$ vérifiant :

$$g(x_k) - g(x_{k-1}) = G_k(x_k - x_{k-1}) \iff y_{k-1} = G_k d_{k-1} \quad \text{avec} \quad \begin{cases} d_{k-1} = x_k - x_{k-1} \\ y_{k-1} = g(x_k) - g(x_{k-1}) \end{cases}$$

 \rightarrow **équation de la sécante** entre x_{k-1} et x_k

Choix de G

Il existe une infinité de matrices G vérifiant l'équation de la sécante :

 n^2 inconnues (composantes de $G \in R^{n \times n}$) n équations

Chaque ligne de G définit un hyperplan de Rⁿ passant par x_{k-1} et x_k

→ infinité d' hyperplans possibles

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.1 Résolution d'équations

2.2.1 Méthode de quasi-Newton

Illustration à une variable

• Equation non linéaire : g(x) = 0

• Points initiaux : $x_0, y_0 = g(x_0)$ $x_1, y_1 = g(x_1)$ \rightarrow **Sécante** en x_1 : $y = y_0 - \frac{y_1 - y_0}{x_1 - x_0} (x - x_0)$

• Intersection axe x: $y = 0 \implies x_2 = x_0 - \frac{x_1 - x_0}{y_1 - y_0} y_0$

• Nouveau point : $x_2, y_2 = g(x_2)$

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.1 Résolution d'équations

2.2.1 Méthode de quasi-Newton

Mise à jour de Broyden

L'écart entre les modèles $\hat{g}_{k-1}(x)$ et $\hat{g}_k(x)$ est minimal en choisissant G_k solution de :

$$\min_{G \in \mathbb{R}^{n \times n}} \|G - G_{k-1}\| \text{ sous } y_{k-1} = G d_{k-1} \quad \text{avec} \quad \begin{cases} d_{k-1} = x_k - x_{k-1} \\ y_{k-1} = g(x_k) - g(x_{k-1}) \end{cases}$$

Formule de Broyden:
$$G_k = G_{k-1} + \frac{(y_{k-1} - G_{k-1} d_{k-1}) d_{k-1}^T}{d_{k-1}^T d_{k-1}} \longrightarrow \text{ solution optimale}$$

Convergence

- La matrice G ne converge pas forcément vers $\nabla g \rightarrow$ ne compromet pas la convergence
- Les méthodes de quasi-Newton et de Newton peuvent converger vers des solutions différentes.
- La méthode de quasi-Newton converge généralement moins vite que la méthode de Newton, mais nécessite beaucoup moins d'appels de la fonction g (pas de calcul de gradient).
 - → Peu de résultats théoriques
 - → Méthode efficace en pratique, comportement à vérifier et adapter au cas par cas

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.1 Résolution d'équations

2.2.1 Exemple

Comparaison Newton – Quasi-Newton

• Fonction: $g(x) = x^2 - 1$

• Dérivée : g'(x) = 2x

• Solution : x = 1

Quasi - Newton

Iteration	x(k)	g(x)=x**2-1	dg/dx	Erreur
	5,00000000	2,4E+01		4,0E+00
0	4,00000000	1,5E+01	9,0000	3,0E+00
1	2,33333333	4,4E+00	6,3333	1,3E+00
2	1,63157895	1,7E+00	3,9649	6,3E-01
3	1,21238938	4,7E-01	2,8440	2,1E-01
4	1,04716672	9,7E-02	2,2596	4,7E-02
5	1,00443349	8,9E-03	2,0516	4,4E-03
6	1,00010193	2,0E-04	2,0045	1,0E-04
7	1,00000023	4,5E-07	2,0001	2,3E-07
8	1,00000000	2,3E-11	2,0000	1,1E-11

Newton

Iteration	x(k)	g(x)=x**2-1	g'(x)=2x	Erreur
0	4,00000000	1,5E+01	8,0000	3,0E+00
1	2,12500000	3,5E+00	4,2500	1,1E+00
2	1,29779412	6,8E-01	2,5956	3,0E-01
3	1,03416618	6,9E-02	2,0683	3,4E-02
4	1,00056438	1,1E-03	2,0011	5,6E-04
5	1,00000016	3,2E-07	2,0000	1,6E-07
6	1,00000000	2,5E-14	2,0000	1,3E-14

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Minimisation

- ☐ Principes
- ☐ Méthode de Newton
- ☐ Méthode de quasi-Newton
- ☐ Méthode BFGS
- ☐ Méthode DFP
- ☐ Méthode SR1

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Problème de minimisation

Problème sans contrainte

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{f}(\mathbf{x}) \longrightarrow \text{gradient} : \mathbf{g}(\mathbf{x}) = \nabla \mathbf{f}(\mathbf{x})$$

$$\text{hessien} : \mathbf{H}(\mathbf{x}) = \nabla^{2} \mathbf{f}(\mathbf{x})$$

Condition nécessaire de minimum local

$$x^*$$
 minimum local $\Rightarrow \begin{cases} g(x^*) = 0 \\ H(x^*) \ge 0 \end{cases}$ (hessien semi-défini positif)

Recherche des points stationnaires

Application de la méthode de Newton au système d'équations non linéaires : g(x) = 0

$$\begin{aligned} \text{Modèle linéaire de g en } x_k: \quad \hat{g}_k(x) = g(x_k) + G_k(x - x_k) \quad \text{avec} \quad \begin{cases} g(x_k) = \nabla f(x_k) \\ G_k &= \nabla g(x_k)^T = \nabla^2 f(x_k) = H_k \end{cases} \end{aligned}$$

• Méthode de Newton : $G = H \rightarrow \text{calcul explicite du hessien à chaque itération}$

• Méthode de quasi-Newton : G = approximation de H construite à partir des itérations précédentes sans calcul explicite du hessien

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Méthode de Newton

Modèle linéaire de $g=\nabla f$ en x_k

$$\hat{g}_k(x) = g(x_k) + G_k(x - x_k) \qquad \text{avec} \quad \begin{cases} g(x_k) = \nabla f(x_k) \\ G_k = \nabla g(x_k)^T = \nabla^2 f(x_k) = H_k \end{cases}$$

- Itération : $x_{k+1} = x_k \nabla^2 f(x_k)^{-1} \nabla f(x_k) \rightarrow \text{équations de Newton}$
- Condition d'arrêt : $\|\nabla f(x_k)\| \le \varepsilon$

Difficultés

- Calcul explicite et inversion du hessien $\nabla^2 f(x_k)$ à chaque itération \rightarrow coûteux
- Convergence non garantie même près de la solution
 - → mêmes difficultés que pour la résolution d'équations
- 1ère condition nécessaire de minimum : $\nabla f(x^*)=0$
 - \rightarrow point stationnaire $x^* = minimum local$, maximum local ou point selle
 - → $2^{\text{ème}}$ condition nécessaire de minimum à vérifier : $\nabla^2 f(x^*) \ge 0$

Adaptations

- Méthodes de quasi-Newton $\rightarrow G_k = approximation$ du hessien $\nabla^2 f(x_k)$
- Techniques de globalisation \rightarrow Contrôle de la décroissance de f

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Méthode de Newton

Modèle quadratique de f en x_k

• Développement de Taylor à l'ordre 2 de f en x_k

$$f(x) = f(x_k) + \nabla f(x_k)^{T} (x - x_k) + \frac{1}{2} (x - x_k)^{T} \nabla^2 f(x_k) (x - x_k) + o(\|x - x_k\|^2)$$

Modèle quadratique en x_k

$$\hat{f}_k(x) = f_k(x_k) + g_k^T(x - x_k) + \frac{1}{2}(x - x_k)^T H_k(x - x_k)$$

• Lien entre le modèle de f et le modèle de $g = \nabla f$

$$\nabla \hat{\mathbf{f}}_{k}(\mathbf{x}) = \mathbf{g}_{k} + \mathbf{H}_{k}(\mathbf{x} - \mathbf{x}_{k}) = \hat{\mathbf{g}}_{k}(\mathbf{x})$$

Minimisation du modèle de f en x_k

- Conditions suffisantes de minimum local : $\min_{x \in R^n} \hat{f}_k(x) \Leftarrow \begin{cases} \nabla \hat{f}_k(x^*) = \hat{g}_k(x^*) = 0 \\ \nabla^2 \hat{f}_k(x^*) = H_k > 0 \end{cases}$
- Si le hessien de f en x_k est défini positif : ∇²f(x_k) > 0
 Minimisation du modèle quadratique de f en x_k
 ⇔ Méthode de Newton en x_k pour résoudre ∇f(x)=0
- Sinon la méthode de Newton n'est pas directement applicable pour une minimisation

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Exemple

Méthode de Newton

• Fonction: $f(x) = -x^4 + 12x^3 - 47x^2 + 60x$

• Dérivée : $f'(x) = -4x^3 + 36x^2 - 94x + 60 \rightarrow 3$ zéros

→ 1 minimum local, 2 maxima locaux

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Exemple

Méthode de Newton

- Modèle quadratique en $\mathbf{x_0} = \mathbf{3}$: $\hat{\mathbf{f}}_0(\mathbf{x}) = 7\mathbf{x}^2 48\mathbf{x} + 81$
- Itération de Newton en $x_0 = 3$: $\min_{x} \hat{f}_0(x) \rightarrow x_1 = \frac{24}{7}$ \rightarrow Meilleur que x_0 $f(x_1) = -1.32 < 0 = f(x_0)$

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Exemple

Méthode de Newton

- Modèle quadratique en $\mathbf{x_0} = \mathbf{4}$: $\hat{\mathbf{f}}_0(\mathbf{x}) = \mathbf{x}^2 4\mathbf{x}$
- Itération de Newton en $x_0 = 4$: $\min_{x} \hat{f}_0(x) \rightarrow x_1 = 2$ \rightarrow Moins bon que x_0 $f(x_1) = 12 > 0 = f(x_0)$

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Exemple

Méthode de Newton

- Modèle quadratique en $\mathbf{x_0} = \mathbf{5}$: $\hat{\mathbf{f}}_0(\mathbf{x}) = -17\mathbf{x}^2 + 160\mathbf{x} 375$
- Itération de Newton en $x_0 = 5$: $\min_{x} \hat{f}_0(x) \rightarrow x_1 = \frac{81}{17}$ \rightarrow Moins bon que x_0 (maximise f) $f(x_1) = 1.513 > 0 = f(x_0)$

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Méthode de quasi-Newton

Objectif

Conserver un modèle quadratique de f en \boldsymbol{x}_k

$$\hat{f}_k(x) = f_k(x_k) + g_k^T(x - x_k) + \frac{1}{2}(x - x_k)^T H_k(x - x_k)$$
 avec $H_k \approx \nabla^2 f(x_k)$

sans calculer explicitement H_k

Mise à jour de Broyden

On peut appliquer la méthode de Broyden à la résolution de $g(x)=\nabla f(x)=0$.

$$H_{k} = H_{k-1} + \frac{(y_{k-1} - H_{k-1}d_{k-1})d_{k-1}^{T}}{d_{k-1}^{T}d_{k-1}} \qquad avec \qquad \begin{cases} d_{k-1} = x_{k} - x_{k-1} \\ y_{k-1} = g(x_{k}) - g(x_{k-1}) \end{cases}$$

Inconvénients

- H_k n'est pas forcément symétrique
- H_k n'est pas forcément positive
 - \rightarrow Modifications de la méthode si l'on souhaite avoir $H_k \approx \nabla^2 f(x_k)$
 - → Formules BFGS, DFP ou SR1

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Méthode BFGS

Equation sécante

Pour la **résolution d'équations**, on cherche la matrice H_k :

- vérifiant l'équation sécante $H_k d_{k-1} = y_{k-1}$
- la plus « proche » possible de H_{k-1}

→ formule de Broyden

• sans condition particulière sur la forme de la matrice

Pour une minimisation, on impose de plus à la matrice H_k d'être :

- symétrique
- définie positive

→ formule BFGS

Méthode de résolution

La matrice H_{k-1} issue de l'itération précédente est symétrique, définie positive.

- On part de la factorisation de Cholesky de H_{k-1} : $H_{k-1} = L_{k-1}L_{k-1}^{T}$
- On cherche la matrice H_k à partir de H_{k-1} sous la forme : $H_k = A_k A_k^T$

Il faut exprimer la matrice A_k en fonction de L_{k-1} .

→ On décompose l'équation sécante en 2 équations :

$$H_k d_{k-1} = y_{k-1} \iff A_k A_k^T d_{k-1} = y_{k-1} \iff \begin{cases} x = A_k^T d_{k-1} \\ A_k x = y_{k-1} \end{cases}$$

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Méthode BFGS

Méthode de résolution de l'équation sécante

$$H_k d_{k-1} = y_{k-1} \iff A_k A_k^T d_{k-1} = y_{k-1} \iff \begin{cases} x = A_k^T d_{k-1} \\ A_k x = y_{k-1} \end{cases}$$

- 1. Pour x donné, on cherche A_k la plus « proche » possible de L_{k-1} vérifiant : $A_k x = y_{k-1}$
- 2. On détermine ensuite x en reportant l'expression de A_k dans : $x = A_k^T d_{k-1}$
- 3. On obtient $H_k = A_k A_k^T$ que l'on exprime en fonction de H_{k-1} .

Résolution

Notations sans indices :
$$L = L_{k-1}$$
, $A = A_k$
 $y = y_{k-1}$, $d = d_{k-1}$

- 1. En appliquant la formule de Broyden à Lon obtient A en fonction de x : $A = L + \frac{(y Lx)x^{T}}{x^{T}x}$
- 2. En reportant : $x = A^{T}d = L^{T}d + \frac{x(y Lx)^{T}}{x^{T}x}d = L^{T}d + \frac{(y Lx)^{T}d}{x^{T}x}x$

Il faut résoudre
$$x = L^{T}d + \frac{(y - Lx)^{T}d}{x^{T}x}x$$
 pour trouver x.

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Méthode BFGS

Résolution de l'équation sécante

On cherche
$$x \in R^n$$
 vérifiant : $x = L^T d + \frac{(y - Lx)^T d}{x^T x} x$

• Pour qu'une solution existe, le vecteur L^Td doit être colinéaire à x :

$$x = \alpha L^{T} d \implies x^{T} x = \alpha^{2} d^{T} H d$$

- En reportant dans l'équation : $\alpha L^T d = L^T d + \frac{(y Lx)^T d}{\alpha^2 d^T H d} \alpha L^T d \Rightarrow \alpha^2 L^T d = \frac{y^T d}{d^T H d}$
- Pour qu'une solution existe, on doit avoir $y^Td > 0 \rightarrow A = L + \frac{1}{y^Td} \left(\alpha y d^T L \frac{y^Td}{d^THd} H d d^T L \right)$ On obtient $H_k : H_k = A_k A_k^T$

Formule BFGS

• Mise à jour de
$$H_k$$
:
$$H_k = H_{k-1} + \frac{y_{k-1}y_{k-1}^T}{y_{k-1}^Td_{k-1}} - \frac{H_{k-1}d_{k-1}d_{k-1}^TH_{k-1}}{d_{k-1}^TH_{k-1}d_{k-1}} \quad \text{avec} \quad \begin{cases} d_{k-1} = x_k - x_{k-1} \\ y_{k-1} = g(x_k) - g(x_{k-1}) \end{cases}$$

- Mise à jour symétrique, de rang 2
- Mise à jour **définie positive** si $y_{k-1}^T d_{k-1} > 0$

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Méthode BFGS

Méthode de quasi Newton BFGS

• Le déplacement correspondant à une itération de la méthode de Newton est solution de

$$H_k d_k = -\nabla f(x_k) \implies d_k = -H_k^{-1} \nabla f(x_k)$$

- \rightarrow La matrice utile pour l'itération de Newton est l'inverse de H_k .
- On inverse les 2 membres de la formule BFGS pour obtenir H_k^{-1} en fonction de H_{k-1}^{-1} .

$$H_{k}^{-1} = \left(I - \frac{d_{k-1}y_{k-1}^{T}}{d_{k-1}^{T}y_{k-1}}\right)H_{k-1}^{-1}\left(I - \frac{y_{k-1}d_{k-1}^{T}}{d_{k-1}^{T}y_{k-1}}\right) + \frac{d_{k-1}d_{k-1}^{T}}{d_{k-1}^{T}y_{k-1}} \quad si \quad y_{k-1}^{T}d_{k-1} > 0 \quad avec \quad \begin{cases} d_{k-1} = x_{k} - x_{k-1} \\ y_{k-1} = g(x_{k}) - g(x_{k-1}) \end{cases}$$

- Méthode élaborée par Broyden, Fletcher, Goldfarb, Shanno à la fin des années 1960
 - → reconnue comme l'une des plus efficaces en pratique

Limitations

- Si la condition $y^Td > 0$ n'est pas vérifiée, on ne fait pas de mise à jour.
- Si le hessien n'est pas défini positif, la méthode BFGS ne converge pas vers le hessien
 - → cas d'un hessien indéfini
 - → optimisation avec contraintes (hessien réduit positif ≠ hessien complet)

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Méthode BFGS

Algorithme BFGS

- Direction de descente à l'itération k : $u_{k-1} = -H_{k-1}^{-1}g(x_{k-1})$
- Minimisation dans la direction u_{k-1} : $x_k = x_{k-1} + su_{k-1}$ avec $\begin{cases} u_{k-1} = -H_{k-1}^{-1}g(x_{k-1}) \\ s \to \min_{s} f(x_{k-1} + su_{k-1}) \end{cases}$
- Mise à jour de l'inverse du hessien

$$H_{k}^{-1} = \left(I - \frac{d_{k-1}y_{k-1}^{T}}{d_{k-1}^{T}y_{k-1}}\right)H_{k-1}^{-1}\left(I - \frac{y_{k-1}d_{k-1}^{T}}{d_{k-1}^{T}y_{k-1}}\right) + \frac{d_{k-1}d_{k-1}^{T}}{d_{k-1}^{T}y_{k-1}} \quad si \quad y_{k-1}^{T}d_{k-1} > 0 \quad avec \quad \begin{cases} d_{k-1} = x_{k} - x_{k-1} \\ y_{k-1} = g(x_{k}) - g(x_{k-1}) \end{cases}$$

Propriété 1

La mise à jour BFGS donne une matrice définie positive si $d_{k-1}^T y_{k-1} > 0$

Cette condition est réalisée si x_k est obtenu par minimisation exacte dans la direction— $H^{-1}_{k-1}g(x_{k-1})$

Propriété 2

Pour une fonction f quadratique: $f(x) = \frac{1}{2}x^{T}Qx + c^{T}x$

l'algorithme BFGS donne des directions successives vérifiant : $\begin{cases} u_i Q^{-1} u_j = 0 &, \ 0 \le i \ne j \le k \\ H_k^{-1} Q^{-1} u_i = u_i &, \ 0 \le i \le k \end{cases}$

- \rightarrow directions conjuguées par rapport à Q^{-1}
- \rightarrow convergence en n itérations avec à l'itération n : $H_n = Q$

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Méthode DFP

Méthode de résolution

- Résolution de l'équation sécante sous la forme « inverse » : $H_k d_{k-1} = y_{k-1} \Leftrightarrow H_k^{-1} y_{k-1} = d_{k-1}$
- Mêmes principes que BFGS appliqués à l'équation sécante inverse pour obtenir H_k-1
- Première méthode quasi-Newton élaborée par Davidon dans les années 1950

Formule DFP

• Mise à jour du hessien :
$$H_k = \left(I - \frac{y_{k-1}d_{k-1}^T}{y_{k-1}^Td_{k-1}}\right)H_{k-1}\left(I - \frac{d_{k-1}y_{k-1}^T}{y_{k-1}^Td_{k-1}}\right) + \frac{y_{k-1}y_{k-1}^T}{y_{k-1}^Td_{k-1}}$$

Comparaison DFP – BFGS

- Formules identiques en permutant d_{k-1} et y_{k-1} pour mettre à jour le hessien ou l'inverse
- Mise à jour symétrique, de rang 2
- Mise à jour **définie positive** si $d_{k-1}^T y_{k-1} > 0 \rightarrow \text{condition similaire à BFGS}$
- Méthode DFP en général moins efficace que BFGS

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Méthode DFP

Algorithme DFP

- Direction de descente à l'itération k : $u_{k-1} = -H_{k-1}^{-1}g(x_{k-1})$
- Minimisation dans la direction u_{k-1} : $x_k = x_{k-1} + su_{k-1}$ avec $\begin{cases} u_{k-1} = -H_{k-1}^{-1}g(x_{k-1}) \\ s \to \min_{s} f(x_{k-1} + su_{k-1}) \end{cases}$
- Mise à jour de l'inverse du hessien

$$H_{k}^{-1} = H_{k-1}^{-1} + \frac{d_{k-1}d_{k-1}^{T}}{d_{k-1}^{T}y_{k-1}} - \frac{H_{k-1}^{-1}y_{k-1}y_{k-1}^{T}H_{k-1}^{-1}}{y_{k-1}^{T}H_{k-1}^{-1}y_{k-1}} \quad avec \quad \begin{cases} d_{k-1} = x_{k} - x_{k-1} \\ y_{k-1} = g(x_{k}) - g(x_{k-1}) \end{cases}$$

Propriété 1

La mise à jour DFP donne une matrice définie positive si $d_{k-1}^T y_{k-1} > 0$

Cette condition est réalisée si x_k est obtenu par minimisation exacte dans la direction $-H_{k-1}^{-1}g(x_{k-1})$

Propriété 2

Pour une fonction f quadratique: $f(x) = \frac{1}{2}x^{T}Qx + c^{T}x$

l'algorithme DFP donne des directions successives vérifiant : $\begin{cases} u_i Q u_j = 0 &, \ 0 \le i \ne j \le k \\ H_k^{-1} Q u_i = u_i &, \ 0 \le i \le k \end{cases}$

- → directions conjuguées par rapport à Q
- \rightarrow convergence en n itérations avec à l'itération n : $H_n = Q$

- Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Méthode SR1

Equation sécante

La méthode SR1 construit une solution H_k de l'équation sécante $H_k d_{k-1} = y_{k-1}$

- Symétrique, de rang 1 (i.e. dépendante d'un seul vecteur u de Rⁿ)
- Non nécessairement définie positive.

Méthode de résolution

On cherche la matrice H_k à partir de H_{k-1} sous la forme

$$|H_k = H_{k-1} + uu^T|$$
 \rightarrow addition d'une matrice symétrique de rang 1

Equation sécante :
$$y_{k-1} = H_k d_{k-1} = H_{k-1} d_{k-1} + u u^T d_{k-1} \Rightarrow y_{k-1} - H_{k-1} d_{k-1} = u^T d_{k-1} u$$

 $\bullet \quad \text{On pose}: \quad \frac{1}{\nu} = u^T d_{k-1} \quad \implies y_{k-1} - H_{k-1} d_{k-1} = \frac{1}{\nu} u \quad \implies u = \gamma \big(y_{k-1} - H_{k-1} d_{k-1} \big)$

• On reporte u pour obtenir
$$\gamma$$
: $\frac{1}{\gamma} = \gamma (y_{k-1} - H_{k-1} d_{k-1})^T d_{k-1} \Rightarrow d_{k-1}^T (y_{k-1} - H_{k-1} d_{k-1}) = \frac{1}{\gamma^2}$

On exprime uu^T en fonction de d_{k-1} , y_{k-1} , H_{k-1}

$$\begin{cases} u = \gamma (y_{k-1} - H_{k-1} d_{k-1}) \\ \frac{1}{\gamma^2} = d_{k-1}^T (y_{k-1} - H_{k-1} d_{k-1}) \end{cases} \Rightarrow uu^T = \gamma^2 (y_{k-1} - H_{k-1} d_{k-1}) (y_{k-1} - H_{k-1} d_{k-1})^T \\ \Rightarrow uu^T = \frac{(y_{k-1} - H_{k-1} d_{k-1}) (y_{k-1} - H_{k-1} d_{k-1})^T}{d_{k-1}^T (y_{k-1} - H_{k-1} d_{k-1})}$$

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Méthode SR1

Formule SR1

• Mise à jour de
$$H_k$$
:
$$H_k = H_{k-1} + \frac{(y_{k-1} - H_{k-1} d_{k-1})(y_{k-1} - H_{k-1} d_{k-1})^T}{d_{k-1}^T (y_{k-1} - H_{k-1} d_{k-1})} \quad avec \quad \begin{cases} d_{k-1} = x_k - x_{k-1} \\ y_{k-1} = g(x_k) - g(x_{k-1}) \end{cases}$$

- Mise à jour symétrique, de rang 1
- Mise à jour non nécessairement définie positive
 - → Méthode alternative à la méthode BFGS (cas d'un hessien indéfini)

Limitations

- La formule SR1 peut donner des matrices H_k non définies positives, même si le hessien de la fonction est défini positif.
- Le dénominateur peut devenir petit \rightarrow empêche la mise à jour et la convergence

Propriété

Pour une fonction f quadratique : $f(x) = \frac{1}{2}x^{T}Qx + c^{T}x$

la formule SR1 donne après n déplacements suivant des directions indépendantes d_k : $H_n = Q$ \rightarrow ne nécessite pas de minimisation suivant d_k

- 2 Optimisation sans contraintes2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Comparaison

Méthodes de quasi-Newton BFGS – DFP – SR1

	BFGS	DFP	SR1
Matrice mise à jour	Hessien H _k	Inverse hessien H _k ⁻¹	Hessien H _k
Equation résolue	Sécante	Inverse sécante	Sécante
Méthode	Broyden	Broyden	Résolution directe
Forme solution	Symétrique AA ^T Rang 2 Définie positive	Symétrique AA ^T Rang 2 Définie positive	Symétrique uu ^T Rang 1 Indéfinie
Minimisation d _k	Précision moyenne	Précision forte	Précision faible
Fonction quadratique	Hessien exact : H _n =Q Directions conjuguées Q ⁻¹	Hessien exact : H _n =Q Directions conjuguées Q	Hessien exact : H _n =Q
Limitations	Hessien de f indéfini	Hessien de f indéfini Précision minimisation	Matrices H _k non définies positives

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Exemple

Méthode de quasi-Newton à une variable

Les formules BFGS et SR1 se simplifient pour une fonction à une variable.

- Fonction f(x), $x \in R$
- Mise à jour BFGS: $H_{k} = H_{k-1} + \frac{y_{k-1}y_{k-1}^{T}}{y_{k-1}^{T}d_{k-1}} \frac{H_{k-1}d_{k-1}d_{k-1}^{T}H_{k-1}}{d_{k-1}^{T}H_{k-1}d_{k-1}}$ $= H_{k-1} + \frac{y_{k-1}}{d_{k-1}} H_{k-1}$ $\Rightarrow H_{k} = \frac{y_{k-1}}{d_{k-1}} = \frac{g(x_{k}) g(x_{k-1})}{x_{k} x_{k-1}}$

• Mise à jour SR1:
$$H_{k} = H_{k-1} + \frac{(y_{k-1} - H_{k-1} d_{k-1})(y_{k-1} - H_{k-1} d_{k-1})^{T}}{d_{k-1}^{T}(y_{k-1} - H_{k-1} d_{k-1})}$$

$$= H_{k-1} + \frac{y_{k-1} - H_{k-1} d_{k-1}}{d_{k-1}}$$

$$\Rightarrow H_{k} = \frac{y_{k-1}}{d_{k-1}} = \frac{g(x_{k}) - g(x_{k-1})}{x_{k} - x_{k-1}}$$

→ On retrouve la formule de la sécante appliquée au gradient de f.

- Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Exemple

- Comparaison Newton Quasi-Newton Fonction: $f(x) = -x^4 + 12x^3 47x^2 + 60x$
- Dérivée : $f'(x) = -4x^3 + 36x^2 94x + 60$
- Quasi-Newton: $h_k = \frac{f'(x_k) f'(x_{k-1})}{x_k x_{k-1}}$
- Point initial : $x_0 = 3 \rightarrow \text{convergence}$ Autres points → divergence ou maximum de f

0,25 0,00 3,00 3,25 3,75 4,00 3,50 4,25 -0,25 -0,50 -0,75 -1,00 -1,25 -1,50

Quasi - Newton

Itération	x(k)	f(x)	f'(x)	h(k)	Erreur
0	3,00000000	0,00000000	-6,00E+00	1,000	-4,56E-01
1	2,99900000	0,00600700	-6,01E+00	14,000	-4,57E-01
2	3,42857155	-1,31945027	-3,15E-01	13,267	-2,70E-02
3	3,45230465	-1,32362420	-3,79E-02	11,672	-3,28E-03
4	3,45554876	-1,32368634	-4,68E-04	11,527	-4,06E-05
5	3,45558934	-1,32368635	-7,27E-07	11,509	-6,32E-08
6	3,45558940	-1,32368635	-1,40E-11	11,509	-1,22E-12
7	3,45558940	-1,32368635	-5,68E-14	11,462	-4,44E-15

Newton

Itération	X	f(x)	f'(x)	f"(x)	Erreur
0	3,00000000	0,00000000	-6,00E+00	14,000	-4,56E-01
1	3,42857143	-1,31945023	-3,15E-01	11,796	-2,70E-02
2	3,45526446	-1,32368574	-3,74E-03	11,513	-3,25E-04
3	3,45558935	-1,32368635	-5,77E-07	11,509	-5,01E-08
4	3,45558940	-1,32368635	-5,68E-14	11,509	-4,88E-15

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Exemple

Méthode DFP à 2 variables

- Minimisation de $f(x) = x_1 x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ \Rightarrow $g(x) = \begin{pmatrix} 1 + 4x_1 + 2x_2 \\ -1 + 2x_1 + 2x_2 \end{pmatrix}$
- Point initial : $x_0 = (0 \ 0)$

• Itération 1:
$$x_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 $H_0^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $g_0 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $\rightarrow u_1 = -H_0^{-1}g_0 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ $x_1 = x_0 + su_1 = \begin{pmatrix} -s \\ s \end{pmatrix}$ $\rightarrow \min_s F(s) = s^2 - 2s$ $\rightarrow s = 1$ $\rightarrow x_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ $\rightarrow g_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$

• Mise à jour DFP de H⁻¹

$$\begin{cases} d_0 = x_1 - x_0 \\ y_0 = g(x_1) - g(x_0) \end{cases} \rightarrow d_0 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, y_0 = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$$

$$H_1^{-1} = H_0^{-1} + \frac{d_0 d_0^T}{d_0^T y_0} - \frac{H_0^{-1} y_0 y_0^T H_0^{-1}}{y_0^T H_0^{-1} y_0} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} - \frac{1}{4} \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix} = \boxed{\frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix}}$$

• Comparaison au vrai hessien : $H(x) = \begin{pmatrix} 4 & 2 \\ 2 & 2 \end{pmatrix} \Rightarrow H^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$

2.2.2 Exemple

Méthode DFP à 2 variables

• Itération 2:
$$x_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
 $H_1^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix}$ $g_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ $\rightarrow u_2 = -H_1^{-1}g_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
$$x_2 = x_1 + su_2 = \begin{pmatrix} -1 \\ 1+s \end{pmatrix} \rightarrow \min_s F(s) = 1 - 3(1+s) + (1+s)^2 \rightarrow s = \frac{1}{2} \rightarrow x_2 = \begin{pmatrix} -1 \\ 1.5 \end{pmatrix} \rightarrow g_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

• On obtient le minimum en 2 itérations (fonction quadratique) :
$$x^* = \begin{pmatrix} -1 \\ 1.5 \end{pmatrix}$$

• Mise à jour DFP de H-1

$$\begin{cases} d_1 = x_2 - x_1 \\ y_1 = g(x_2) - g(x_1) \end{cases} \rightarrow d_1 = \begin{pmatrix} 0 \\ 0.5 \end{pmatrix}, y_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\mathbf{H}_{2}^{-1} = \mathbf{H}_{1}^{-1} + \frac{\mathbf{d}_{1}\mathbf{d}_{1}^{\mathrm{T}}}{\mathbf{d}_{1}^{\mathrm{T}}\mathbf{y}_{1}} - \frac{\mathbf{H}_{1}^{-1}\mathbf{y}_{1}\mathbf{y}_{1}^{\mathrm{T}}\mathbf{H}_{1}^{-1}}{\mathbf{y}_{1}^{\mathrm{T}}\mathbf{H}_{1}^{-1}\mathbf{y}_{1}} = \frac{1}{2}\begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix} + \frac{1}{2}\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \boxed{\frac{1}{2}\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}}$$

• Comparaison au vrai hessien : $H(x) = \begin{pmatrix} 4 & 2 \\ 2 & 2 \end{pmatrix} \implies H^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.2 Minimisation

2.2.2 Exemple

Méthode DFP à 2 variables

On vérifie les propriétés de la méthode DFP appliquée à une fonction quadratique.

$$f(x) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2 = \frac{1}{2} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^T \begin{pmatrix} 4 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \end{pmatrix}^T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \rightarrow Q = \begin{pmatrix} 4 & 2 \\ 2 & 2 \end{pmatrix}$$

- Le minimum est obtenu en 2 itérations.
- Les directions successives u₁ et u₂ sont **conjuguées** par rapport à Q

$$\mathbf{u}_{2}^{\mathrm{T}}\mathbf{Q}\mathbf{u}_{1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} 4 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} -2 \\ 0 \end{pmatrix} = 0$$

• On vérifie également :

$$\begin{split} H_1^{-1}Qu_1 &= \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 4 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2 & 0 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} = u_1 \\ H_2^{-1}Qu_2 &= \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 4 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = u_2 \qquad \text{avec} \boxed{H_2^{-1} = Q^{-1}} \end{split}$$

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.3 Globalisation

2.2.3 Globalisation

- ☐ Difficultés de la méthode de Newton
- ☐ Méthodes de globalisation
- ☐ Point de Newton et de Cauchy

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.3 Globalisation

2.2.3 Globalisation

Difficultés de la méthode de Newton

La convergence n'est pas garantie même près de la solution.

On ne peut appliquer directement l'itération de Newton.

→ techniques de globalisation pour vérifier et améliorer le point de Newton

Vérification du point de Newton

Le point x_{k+1} doit être meilleur que x_k pour être accepté.

- Pour une résolution d'équation : g(x) = 0 $\Rightarrow \|g(x_{k+1})\| < \|g(x_k)\|$
- Pour une minimisation : $\min_{x} f(x) = 0 \implies f(x_{k+1}) < f(x_k)$

Techniques de globalisation

Si le point x_N obtenu par l'itération de Newton ne vérifie pas les conditions d'amélioration, on procède à une recherche locale au voisinage de x_k .

- Méthode de **recherche linéaire** : suivant la direction du point de Newton x_N
- Méthode de région de confiance : à l'intérieur d'une sphère de centre x_k

- 2 Optimisation sans contraintes
- 2.2 Méthode de Newton
- 2.2.3 Globalisation

2.2.3 Point de Newton et de Cauchy

Points particuliers

Deux points particuliers sont définis à partir du modèle quadratique de f en x_k :

$$\hat{f}_{k}(x) = f_{k}(x_{k}) + g_{k}^{T}(x - x_{k}) + \frac{1}{2}(x - x_{k})^{T}H_{k}(x - x_{k}) \quad \text{avec} \quad \begin{cases} g_{k} = \nabla f_{k}(x_{k}) \\ H_{k} = \nabla^{2} f_{k}(x_{k}) \end{cases}$$

- Point de Newton
- Point de Cauchy
- → points utiles dans les algorithmes de globalisation

Point de Newton

Le point de Newton x_N de f en x_k minimise le modèle quadratique en x_k . x_N n'existe que si $\nabla^2 f(x_k)$ est définie positive.

$$x_N = x_k + d_N$$
 avec $\nabla^2 f(x_k) d_N = -\nabla f(x_k)$ \rightarrow d_N solution des équations de Newton

Point de Cauchy

Le point de Cauchy x_C de f en x_k minimise le modèle quadratique en x_k dans la direction $-g_k$.

$$x_C = x_k - \alpha_C g_k$$
 solution de $\min_{\alpha \ge 0} f(x_k - \alpha g_k)$ \rightarrow minimum suivant la plus forte descente
Si f est convexe suivant $-g_k$: $\alpha_C = \frac{g_k^T g_k}{g_k^T H_k g_k}$

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire

Sommaire

- 1. Bases théoriques
- 2. Optimisation sans contraintes
 - 2.1 Méthodes de descente
 - 2.2 Méthode de Newton
 - 2.3 Recherche linéaire
 - 2.3.1 Principes
 - 2.3.2 Direction de descente
 - 2.3.3 Pas de déplacement
 - 2.3.4 Algorithme
 - 2.4 Région de confiance
 - 2.5 Moindres carrés
 - 2.6 Méthode de Nelder-Mead
- 3. Optimisation avec contraintes

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.1 Principes

2.3.1 Recherche linéaire

Problème sans contrainte

$$\min_{x \in R^n} f(x)$$

Etapes principales

A chaque itération

- Construction d'une direction de descente d_k à partir du point x_k
- Réglage du pas de déplacement s_k suivant d_k

- Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.1 Principes

2.3.1 Recherche linéaire

Etapes principales

A chaque itération

- Construction d'une direction de descente d_k à partir du point x_k
- Réglage du pas de déplacement s_k suivant d_k

Direction de descente

 d_k est une direction de descente en x_k si $\nabla f(x_k)^T d_k < 0$

$$\nabla f(x_k)^T d_k < 0$$

La direction de descente est construite à partir du gradient et du hessien.

Plus forte pente

- → gradient (méthode d'ordre 1)
- **Préconditionnement**
- \rightarrow hessien (méthode d'ordre 2)

Pas de déplacement

Le pas de déplacement s_k suivant d_k doit vérifier $f(x_k + s_k d_k) < f(x_k)$

$$f(x_k + s_k d_k) < f(x_k)$$

L'algorithme de recherche linéaire résout un problème de minimisation à une variable s

- Minimisation exacte
- → dichotomie (Fibonacci, nombre d'or, interpolation)
- - Minimisation approchée → règles de pas acceptable (Armijo, Goldstein, Wolfe)

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.2 Direction de descente

2.3.2 Direction de descente

- ☐ Plus forte pente
- ☐ Préconditionnement

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.2 Direction de descente

2.3.2 Direction de descente

Plus forte pente

La direction de descente « naturelle » est celle du gradient = plus forte dérivée directionnelle

$$\mathbf{d}_{\mathbf{k}} = -\nabla \mathbf{f}(\mathbf{x}_{\mathbf{k}})$$

- Comportement caractéristique en zigzag
- Convergence très lente → méthode inefficace en général

Illustration

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.2 Direction de descente

2.3.2 Direction de descente

Plus forte pente

Les directions successives de plus forte pente avec pas optimal sont **orthogonales**.

• Itération k On cherche le minimum de f à partir de x_k suivant la direction $d_k = -\nabla f(x_k)$ Le nouveau point est $x_{k+1} = x_k + sd_k$ avec le pas s>0 solution de :

$$\min_{s \in R} f(x_k + sd_k) \implies \frac{d}{ds} f(x_k + sd_k) = 0 \implies d_k^T \nabla f(x_k + sd_k) = 0 \implies d_k^T \nabla f(x_{k+1}) = 0$$

• Itération k+1 La direction de plus forte pente en x_{k+1} est $d_{k+1} = -\nabla f(x_{k+1}) \implies d_k^T d_{k+1} = 0$

Illustration

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.2 Direction de descente

2.3.2 Exemple

Plus forte pente

• Fonction

$$f(x) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2$$

Direction

$$d = -\nabla f(x) = \begin{pmatrix} -x_1 \\ -9x_2 \end{pmatrix}$$

• Pas

$$\min_{s} f(x + sd)$$

$$\rightarrow s = \frac{x_1^2 + 81x_2^2}{x_1^2 + 729x_2^2}$$

Itération

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}_k \mathbf{d}_k$$

Iteration	x1	x2	f(x)	d1	d2	S	Erreur
0	9,000	1,000	45,000	-9,000	-9,000	0,2	9,055
1	7,200	-0,800	28,800	-7,200	7,200	0,2	7,244
2	5,760	0,640	18,432	-5,760	-5 <i>,</i> 760	0,2	5,795
3	4,608	-0,512	11,796	-4,608	4,608	0,2	4,636
4	3,686	0,410	7,550	-3,686	-3,686	0,2	3,709
5	2,949	-0,328	4,832	-2,949	2,949	0,2	2,967
10	0,966	0,107	0,519	-0,966	-0,966	0,2	0,972
20	0,104	0,012	0,006	-0,104	-0,104	0,2	0,104
30	1,11E-02	1,24E-03	6,90E-05	-1,11E-02	-1,11E-02	0,2	1,12E-02
40	1,20E-03	1,33E-04	7,95E-07	-1,20E-03	-1,20E-03	0,2	1,20E-03
50	1,28E-04	1,43E-05	9,17E-09	-1,28E-04	-1,28E-04	0,2	1,29E-04

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.2 Direction de descente

2.3.2 Direction de descente

Préconditionnement

- On se donne une matrice H_k matrice symétrique définie positive.
 - \rightarrow factorisation de Cholesky de $H_k : H_k = L_k L_k^T$
- Direction de plus forte pente pour : $\widetilde{f}(\widetilde{x}_k) = f(x_k) = f(L_k^{-T}\widetilde{x}_k)$ $\widetilde{d}_k = -\nabla \widetilde{f}(\widetilde{x}_k) = -\nabla f(L_k^{-T}\widetilde{x}_k) = -L_k^{-1}\nabla f(L_k^{-T}\widetilde{x}_k) = -L_k^{-1}\nabla f(x_k) = -L_k^{-1}d_k$
- Itération en $\tilde{\mathbf{x}}_k$: $\tilde{\mathbf{x}}_{k+1} = \tilde{\mathbf{x}}_k \mathbf{s}_k \nabla \tilde{\mathbf{f}} (\tilde{\mathbf{x}}_k)$
- Itération en x_k : $x_{k+1} = L_k^{-T} \widetilde{x}_{k+1} = L_k^{-T} \left(\widetilde{x}_k s_k \nabla \widetilde{f} (\widetilde{x}_k) \right) = L_k^{-T} \left(L_k^T x_k s_k L_k^{-1} d_k \right)$ $\Rightarrow x_{k+1} = x_k - s_k L_k^{-T} L_k^{-1} d_k = x_k - s_k H_k^{-1} d_k$
- Le préconditionnement par la matrice \mathbf{H}_k consiste à prendre comme direction de descente $\boxed{\mathbf{d}_k = -\mathbf{H}_k^{-1} \nabla f(\mathbf{x}_k)}$
- On vérifie que d_k est une direction de descente $d_k^T \nabla f(x_k) = -\nabla f(x_k)^T H_k^{-1} \nabla f(x_k) < 0$ car H_k est définie positive

- Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.2 Direction de descente

2.3.2 Direction de descente

Choix du préconditionnement

Toute matrice H_k symétrique définie positive convient.

Cas d'un hessien défini positif

Si le hessien $\nabla^2 f(x_k)$ est défini positif, on peut prendre $H_k = \nabla^2 f(x_k)^{-1}$. $d_{k} = -H_{k}^{-1}\nabla f(x_{k}) = -\nabla^{2}f(x_{k})^{-1}\nabla f(x_{k}) \implies x_{k+1} = x_{k} - s_{k}\nabla^{2}f(x_{k})^{-1}\nabla f(x_{k})$ On obtient l'itération de Newton si le pas s_k vaut 1.

On peut prendre pour H_k l'approximation du hessien donné par une méthode quasi-Newton.

Cas d'un hessien non défini positif

- On peut effectuer la factorisation de Cholesky modifiée du hessien $\nabla^2 f(x_k)$ (ou son approximation quasi Newton) pour obtenir une matrice définie positive.
- On peut ajouter un multiple de l'identité : $\boxed{H_k = \left(\nabla^2 f(x_k) + \tau I\right)^{-1}} \text{ avec } \tau > 0 \text{ assez grand}$ On peut également prendre H_k diagonale : $\left(H_k\right)_i = \max\left(\epsilon, \left(\frac{\partial^2 f}{\partial x_i^2}(x_k)\right)^{-1}\right), \ \epsilon > 0$ à partir des dérivées secondes de f

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.2 Direction de descente

2.3.2 Exemple

Préconditionnement

• Fonction:
$$f(x) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2 \implies \nabla f(x) = \begin{pmatrix} x_1 \\ 9x_2 \end{pmatrix} \implies \nabla^2 f(x) = \begin{pmatrix} 1 & 0 \\ 0 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}^T$$

• Préconditionnement :
$$L = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$
 $\Rightarrow \begin{cases} \widetilde{x}_1 = x_1 \\ \widetilde{x}_2 = 3x_2 \end{cases} \Rightarrow \widetilde{f}(\widetilde{x}) = \frac{1}{2}\widetilde{x}_1^2 + \frac{9}{2}\left(\frac{1}{3}x_2\right)^2 = \frac{1}{2}\widetilde{x}_1^2 + \frac{1}{2}\widetilde{x}_2^2$

• Direction:
$$\widetilde{\mathbf{d}} = -\nabla \widetilde{\mathbf{f}}(\widetilde{\mathbf{x}}) = \begin{pmatrix} -\widetilde{\mathbf{x}}_1 \\ -\widetilde{\mathbf{x}}_2 \end{pmatrix}$$

• Pas:
$$\min_{s} \widetilde{f}(\widetilde{x} + s\widetilde{d}) \rightarrow s = 1$$

- Itération : $\tilde{x}_{k+1} = \tilde{x}_k + s_k \tilde{d}_k = 0$
 - → convergence en 1 itération

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Pas de déplacement

- ☐ Minimisation unidimensionnelle
- ☐ Minimisation exacte
 - Méthode de dichotomie
 - Méthode de Fibonacci
 - Méthode du nombre d'or
 - Interpolation quadratique
- ☐ Minimisation approchée
 - Règle d'Armijo
 - Règle de Goldstein
 - Règle de Wolfe

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Minimisation unidimensionnelle

Problème à une variable

Méthodes

Minimisation exacte

On cherche à trouver un minimum local x* avec une précision donnée

- → réduction itérative de l'intervalle de recherche : dichotomie
- → réduction optimale : Fibonacci, nombre d'or

• Minimisation approchée

On cherche une réduction suffisante de la fonction sans déterminer précisément le minimum x*

- → règles d'acceptation (Armijo, Goldstein, Wolfe)
- → limitation du nombre d'évaluations de la fonction

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Minimisation exacte

Recherche par dichotomie

L'allure de la fonction f n'est pas connue.

On suppose qu'il existe un minimum unique dans l'intervalle de recherche [a,d]

• On évalue la fonction aux extrémités a et d :

- \rightarrow f(a), f(d)
- On évalue la fonction en 2 points b et c : a < b < c < d
- \rightarrow f(b), f(c)
- On conserve soit l'intervalle [a,c], soit l'intervalle [b,d]

On conserve [a,c]

On conserve [b,d]

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Minimisation exacte

Réduction optimale de l'intervalle

- On cherche b et c pour que l'intervalle restant soit le plus petit possible.
 La taille de l'intervalle restant ne doit pas dépendre du choix de [a,c] ou [b,d].
- On note : Δ_1 la longueur de l'intervalle initial \rightarrow $\Delta_1 = d a$ Δ_2 la longueur de l'intervalle restant \rightarrow $\Delta_2 = c - a$ si on garde [a,c] ou $\Delta_2 = d - b$ si on garde [b,d]

$$\Delta_2 = d - b = c - a$$

$$\Rightarrow a + d = b + c \Rightarrow \frac{a + d}{2} = \frac{b + c}{2}$$

Les points b et c doivent être symétriques par rapport au milieu de l'intervalle [a,d].

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Minimisation exacte

Réduction optimale de l'intervalle

- On suppose que l'intervalle restant est [a,c].
- Pour **réutiliser le point b** à l'itération suivante, on choisit le nouveau point e symétrique de b par rapport au milieu de l'intervalle [a,c].

$$\rightarrow \Delta_1 = d - a$$

$$\rightarrow$$
 $\Delta_2 = c - a = d - b$

$$\rightarrow \qquad \Delta_3^2 = b - a = c - e$$

$$d-a=(d-b)+(b-a)$$

$$\Rightarrow \Delta_1 = \Delta_2 + \Delta_3$$

Les longueurs Δ_k des intervalles successifs vérifient :

$$\Delta_{k} = \Delta_{k+1} + \Delta_{k+2}$$

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Minimisation exacte

Réduction optimale de l'intervalle

- Les intervalles successifs sont de longueur Δ_k vérifiant : $\Delta_k = \Delta_{k+1} + \Delta_{k+2}$
- Après un nombre N d'itérations, on obtient un intervalle de longueur Δ_{N-1} .
- On définit la suite de nombres F_k par : $\Delta_k = F_{N-k} \, \Delta_{N-1}$ pour $k=1,\dots,N-1$
- La suite $(F_n)_{n=1,...,N-1}$ vérifie

$$\begin{split} \Delta_k = & \Delta_{k+1} + \Delta_{k+2} \quad \Rightarrow \quad \frac{\Delta_k}{\Delta_{N-1}} = \frac{\Delta_{k+1}}{\Delta_{N-1}} + \frac{\Delta_{k+2}}{\Delta_{N-1}} \quad \Rightarrow \quad F_{N-k} = F_{N-k-1} + F_{N-k-2} \\ & \Rightarrow \quad F_n = F_{n-1} + F_{n-2} \quad \text{pour } n = N-k, \quad n = 3,4,...,N-1 \\ \Delta_{N-1} = & F_1 \Delta_{N-1} \quad \text{pour } k = N-1 \qquad \Rightarrow \quad F_1 = 1 \end{split}$$

• La suite est complètement déterminée par la valeur de F₂

$$\begin{cases} F_1 = 1 \\ F_2 & \text{à choisir} \\ F_n = F_{n-1} + F_{n-2} & \text{pour } n = 3,4,...,N-1 \end{cases}$$

- Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Minimisation exacte

Méthode de Fibonacci

Pour un nombre N d'itérations fixé, on choisit F_2 pour que Δ_{N-1} soit minimal.

$$\Delta_{N-1} = \frac{\Delta_1}{F_{N-1}}$$
 minimal $\Rightarrow F_{N-1}$ maximal $\Rightarrow F_2$ maximal

- Valeur maximale de F_2 : $\Delta_{N-1} \ge \frac{1}{2} \Delta_{N-2}$ $\left(\text{car } \Delta_k \ge \frac{1}{2} \Delta_{k-1} \right) \implies F_1 \ge \frac{1}{2} F_2 \implies F_{2 \text{max}} = 2$
- On obtient la **suite de Fibonacci**: 1, 2, 3, 5, 8, 13, 21, ...

Nombre d'itérations

La méthode de Fibonacci est optimale si l'on fixe à l'avance la précision requise sur la solution.

- Précision requise : $\Delta_{N-1} = p$ Intervalle initial [a,b] : $\Delta_1 = b-a$ $\Rightarrow \Delta_{N-1} = \frac{\Delta_1}{F_{N-1}} \Rightarrow F_{N-1} = \frac{b-a}{p} \rightarrow \text{valeur de N}$

La méthode de Fibonacci donne le nombre minimal d'itérations N pour obtenir la solution avec une précision donnée.

La disposition des premiers points b et c dépend de N : $\frac{\Delta_1}{\Lambda_2} = \frac{\mathbf{r}_{N-1}}{\mathbf{r}_{N-2}} \rightarrow \Delta_2$

- Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Minimisation exacte

Méthode du nombre d'or

La méthode de Fibonacci nécessite de changer la disposition des points à chaque itération.

La disposition des points n'est optimale que pour une précision donnée.

La méthode du nombre d'or est plus générale et plus simple à mettre en oeuvre.

On impose un rapport de réduction fixe de l'intervalle à chaque itération.

$$\frac{\Delta_{1}}{\Delta_{2}} = \frac{\Delta_{2}}{\Delta_{3}} = ... \frac{\Delta_{k}}{\Delta_{k+1}} = \frac{\Delta_{k+1}}{\Delta_{k+2}} = ... = \gamma \quad \text{avec} \quad \Delta_{k} = \Delta_{k+1} + \Delta_{k+2}$$

$$\Rightarrow \frac{\Delta_{k}}{\Delta_{k+1}} = 1 + \frac{\Delta_{k+2}}{\Delta_{k+1}} \Rightarrow \gamma = 1 + \frac{1}{\gamma} \Rightarrow \gamma^{2} - \gamma - 1 = 0$$
On obtient pour le rapport γ le nombre d'or :
$$\Rightarrow \text{Méthode du nombre d'or (ou de la section dorée)} \qquad \gamma = \frac{1 + \sqrt{5}}{2} \approx 1.618034$$

- - → Méthode du nombre d'or (ou de la section dorée)

Optimalité

- La méthode du nombre d'or n'est pas optimale pour un nombre d'itérations donné N.
- Pour un nombre d'itérations grand : $\lim_{N\to\infty} \frac{F_N}{F_{N-1}} = \gamma$
 - → La disposition des points de Fibonacci tend vers celle du nombre d'or.

- Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Minimisation exacte

Comparaison Fibonacci - Nombre d'or

Le rapport de réduction de l'intervalle après n itérations vaut :

Pour la méthode du nombre d'or : $\frac{\Delta_1}{\Delta_n} = F_n$ bre d'itération

Nombre d'itérations

Une itération de la méthode de Fibonacci ou du nombre d'or correspond à une évaluation de f.

Nombre d'évaluations

Rapport de réduction	Fibonacci	Nombre d'or	
10-2	11	13	
10-3	15	18	
10 ⁻⁴	20	22	
10 ⁻⁵	25	27	
10-6	30	31	

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Minimisation exacte

Méthode du nombre d'or

• Positionnement des points

$$\frac{\Delta_1}{\Delta_2} = \frac{\Delta_2}{\Delta_3} = \gamma = \frac{1 + \sqrt{5}}{2} \approx 1.618034$$

$$\Rightarrow \begin{cases} \Delta_2 = \frac{1}{\gamma} \Delta_1 = r\Delta_1 \\ \Delta_3 = \frac{1}{\gamma^2} \Delta_1 = r^2 \Delta_1 \end{cases} \text{ avec } r = \frac{1}{\gamma} = \frac{\sqrt{5} - 1}{2} \approx 0.618034$$

$$\Rightarrow \begin{cases} b = a + r^2 \Delta_1 \\ c = a + r\Delta_1 \\ d = a + \Delta_1 \end{cases}$$

Itération

$$Sif(b) < f(c) \rightarrow \begin{cases} d \leftarrow c \\ c \leftarrow b \\ \Delta_1 \leftarrow \Delta_2 \\ b = a + r^2 \Delta_1 \end{cases} \qquad Sif(b) > f(c) \rightarrow \begin{cases} a \leftarrow b \\ b \leftarrow c \\ \Delta_1 \leftarrow \Delta_2 \\ c = a + r \Delta_1 \end{cases}$$

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Exemple

Méthode du nombre d'or

- Minimisation de $f(x) = -x \cos(x)$, $0 \le x \le \frac{\pi}{2}$
- $\begin{array}{cccc}
 \mathbf{f} & \mathbf{0}
 \end{array}$

Itération 1

• Itération 2

f -0.4952 -0.5482 -0.4350 0 x 0.6000 0.9708 1.2000 1.5708

Itération 3

f -0.4952 -0.5601 -0.5482 -0.4350 x 0.6000 0.8292 0.9708 1.2000

• Itération 4

f -0.4952 -0.5468 -0.5601 -0.5482 x 0.6000 0.7416 0.8292 0.9708

• Itération 5

- Solution: $x^* \approx 0.8832 \rightarrow f(x^*) \approx -0.5606$ au lieu de $x^* \approx 0.8603 \rightarrow f(x^*) \approx -0.5611$

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Minimisation exacte

Interpolation quadratique

• On connaît la valeur de la fonction f en 3 points x_1, x_2, x_3 .

$$\begin{cases} y_1 = f(x_1) \\ y_2 = f(x_2) \\ y_3 = f(x_3) \end{cases}$$

• On construit le polynome q de degré 2 passant par les 3 points.

$$q(x) = y_1 \frac{(x_1 - x_2)(x_1 - x_3)}{(x_1 - x_2)(x_1 - x_3)} + y_2 \frac{(x_1 - x_3)(x_1 - x_1)}{(x_2 - x_3)(x_2 - x_1)} + y_3 \frac{(x_1 - x_1)(x_1 - x_2)}{(x_3 - x_1)(x_3 - x_2)} \rightarrow \begin{cases} q(x_1) = y_1 \\ q(x_2) = y_2 \\ q(x_3) = y_3 \end{cases}$$

Dérivée du polynome q

$$q'(x) = y_1 \frac{(2x - x_2 - x_3)}{(x_1 - x_2)(x_1 - x_3)} + y_2 \frac{(2x - x_3 - x_1)}{(x_2 - x_3)(x_2 - x_1)} + y_3 \frac{(2x - x_1 - x_2)}{(x_3 - x_1)(x_3 - x_2)}$$

On obtient une approximation du minimum de f en minimisant q.

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Minimisation exacte

Interpolation quadratique

• La dérivée du polynome q s'écrit :

$$q'(x) = y_1 \frac{(2x - x_2 - x_3)}{(x_1 - x_2)(x_1 - x_3)} + y_2 \frac{(2x - x_3 - x_1)}{(x_2 - x_3)(x_2 - x_1)} + y_3 \frac{(2x - x_1 - x_2)}{(x_3 - x_1)(x_3 - x_2)}$$

$$\Rightarrow q'(x) = \frac{-2x \left[y_1(x_2 - x_3) + y_2(x_3 - x_1) + y_3(x_1 - x_2) \right] + \left[y_1(x_2^2 - x_3^2) + y_2(x_3^2 - x_1^2) + y_3(x_1^2 - x_2^2) \right]}{(x_1 - x_2)(x_2 - x_3)(x_3 - x_1)}$$

$$\Rightarrow q'(x) = \frac{-2x \left(y_1 s_{23} + y_2 s_{31} + y_3 s_{12} \right) + \left(y_1 r_{23} + y_2 r_{31} + y_3 r_{12} \right)}{(x_1 - x_2)(x_2 - x_3)} \quad \text{avec} \quad \begin{cases} s_{ij} = x_i - x_j \\ r_{ij} = x_i^2 - x_j^2 \end{cases}$$

• On cherche la valeur x_m qui annule la dérivée du polynome q.

$$q'(x_m) = 0 \implies 2x_m [y_1 s_{23} + y_2 s_{31} + y_3 s_{12}] + [y_1 r_{23} + y_2 r_{31} + y_3 r_{12}] = 0$$

$$\Rightarrow x_m = \frac{1}{2} \frac{y_1 r_{23} + y_2 r_{31} + y_3 r_{12}}{y_1 s_{23} + y_2 s_{31} + y_3 s_{12}} \quad \text{avec} \quad \begin{cases} s_{ij} = x_i - x_j \\ r_{ij} = x_i^2 - x_j^2 \end{cases}$$

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Minimisation exacte

Interpolation quadratique

- On évalue la valeur de la fonction en $x_m \rightarrow y_m = f(x_m)$
 - \rightarrow On dispose de 4 points x_1, x_2, x_3, x_m avec les valeurs respectives de f: y_1, y_2, y_3, y_m
 - \rightarrow On conserve 3 points choisis parmi x_1, x_2, x_3, x_m selon :
 - la position de x_m par rapport à x₁, x₂, x₃
 - le minimum parmi y_m, y₁, y₂, y₃

Points retenus	$x_m < x_1$	$x_1 < x_m < x_2$	$\mathbf{x}_2 < \mathbf{x}_{\mathrm{m}} < \mathbf{x}_3$	$x_3 < x_m$
$Minimum = y_m$	$(\mathbf{x}_{\mathrm{m}}, \mathbf{x}_{1}, \mathbf{x}_{2})$	(x_1, x_m, x_2)	(x_2,x_m,x_3)	(x_2, x_3, x_m)
$Minimum = y_1$	$(\mathbf{x}_{\mathrm{m}}, \mathbf{x}_{1}, \mathbf{x}_{2})$	(x_1, x_m, x_2)	(x_1, x_2, x_m)	divergence
$Minimum = y_2$	divergence	$(\mathbf{x}_{\mathrm{m}}, \mathbf{x}_{2}, \mathbf{x}_{3})$	$(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_{\mathrm{m}})$	divergence
$Minimum = y_3$	divergence	$(\mathbf{x}_{\mathrm{m}}, \mathbf{x}_{2}, \mathbf{x}_{3})$	$(\mathbf{x}_2, \mathbf{x}_m, \mathbf{x}_3)$	$(\mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_{\mathrm{m}})$

Cas de divergence : Le polynome est trop éloigné de la fonction Il faut un balayage plus fin avant l'interpolation quadratique.

• On réitère l'interpolation quadratique avec les 3 nouveaux points jusqu'à réduire la taille de l'intervalle à la précision souhaitée.

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Exemple

Interpolation quadratique

• Minimisation de $f(x) = (x-1)(x+1)^2$, $0 \le x \le 2$

• Solution: $x^* \approx 0.3333 \rightarrow f(x^*) \approx -1.1852$

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Minimisation approchée

Principes

- Il n'est pas utile de réaliser une minimisation exacte suivant la direction de descente :
 - → nécessite un grand nombre d'évaluations de la fonction
 - → n'apporte pas une amélioration significative loin de la solution
- On peut se contenter d'une minimisation approchée
 - → 2 règles d'acceptation d'un pas de déplacement

Notations

- $x_k = point courant \rightarrow f(x_k)$
- $d_k = \text{direction de descente} \rightarrow \nabla f(x_k)^T d_k < 0$
- Variation de la fonction f dans la direction d_k : $\varphi(s) = f(x_k + sd_k), s \ge 0$

Règles d'acceptation du pas

- **Diminution suffisante** de la valeur de la fonction → condition d'Armijo 1ère condition de Wolfe
- **Déplacement suffisant** par rapport au point initial → condition de Goldstein 2ème condition de Wolfe

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Minimisation approchée

Diminution suffisante

La fonction f doit décroître suffisamment pour accepter le pas.

Dérivée directionnelle de f suivant la direction d_k

$$\varphi(s) = f(x_k + sd_k), s \ge 0 \implies \varphi'(0) = \nabla f(x_k)^T d_k < 0$$

• On impose une diminution proportionnelle à la dérivée directionnelle, avec $0 < \epsilon < c_1 < 0.5$

$$\varphi(s) < \varphi(0) + c_1 s \varphi'(0)$$
 \Leftrightarrow $\left| f(x_k + s d_k) < f(x_k) + c_1 s \nabla f(x_k)^T d_k \right| \rightarrow \text{valeur typique } c_1 = 0.1$

→ Condition d'Armijo ou 1ère condition de Wolfe ou 1ère condition de Goldstein

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Minimisation approchée

Déplacement suffisant

Le déplacement à partir du point initial doit être suffisant pour accepter le pas.

• Condition de Goldstein

$$\varphi(s) > \varphi(0) + c_2 s \varphi'(0) \Leftrightarrow \left[f(x_k + sd_k) > f(x_k) + c_2 s \nabla f(x_k)^T d_k \right] \rightarrow \text{valeur typique } c_2 = 0.9$$

Condition de Wolfe : réduction de la dérivée

$$\varphi'(s) > c_2 \varphi'(0)$$

$$\Leftrightarrow \nabla f(x_k + sd_k)^T d_k > c_2 \nabla f(x_k)^T d_k$$

 \rightarrow valeur typique c₂=0.9

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Minimisation approchée

Récapitulatif

- Conditions de Goldstein (si la dérivée de f est coûteuse)
- $\begin{cases} \varphi(s) < \varphi(0) + c_1 s \varphi'(0) & \rightarrow c_1 \approx 0.1 \\ \varphi(s) > \varphi(0) + c_2 s \varphi'(0) & \rightarrow c_2 \approx 0.9 \end{cases}$
- Conditions de Wolfe (si la dérivée de f est disponible)

$$\begin{cases} \varphi(s) < \varphi(0) + c_1 s \varphi'(0) & \rightarrow c_1 \approx 0.1 \\ \varphi'(s) > c_2 \varphi'(0) & \rightarrow c_2 \approx 0.9 \end{cases}$$

ou $|\varphi'(s)| < c_2 |\varphi'(0)|$ \rightarrow assure théoriquement la convergence

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Réglage du pas

Méthode de dichotomie

On cherche un pas s vérifiant les conditions de Goldstein : $\begin{cases} \phi(s) < \phi(0) + c_1 s \phi'(0) \\ \phi(s) > \phi(0) + c_2 s \phi'(0) \end{cases}$

Initialisation

• Intervalle initial: $[s_{min}, s_{max}]$ avec $s_{min} = 0$

s_{max} assez grand

• Valeur initiale : s=1 (pas de Newton)

Itérations

Evaluation de $\varphi(s)$ et comparaison aux droites de Goldstein

• Si s ne respecte pas la condition $1 \rightarrow$ amélioration insuffisante, pas trop grand : $s_{max}=s$

• Si s ne respecte pas la condition $2 \rightarrow$ déplacement insuffisant, pas trop petit: $s_{min}=s$

 \rightarrow Réduction de l'intervalle [s_{min} , s_{max}]

→ Essai suivant : $s = \frac{1}{2}(s_{min} + s_{max})$

Arrêt

- Si s respecte les 2 conditions \rightarrow pas acceptable
- Si l'intervalle [s_{min}, s_{max}] devient inférieur à un seuil donné

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.3 Pas de déplacement

2.3.3 Réglage du pas

Illustration

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.4 Algorithme

2.3.4 Algorithme

- ☐ Algorithme de recherche linéaire
- ☐ Convergence
- ☐ Exemple

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.4 Algorithme

2.3.4 Algorithme

Algorithme de recherche linéaire

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.4 Algorithme

2.3.4 Algorithme

Principaux résultats de convergence

- Si d est une direction de descente, et f est bornée inférieurement suivant d, alors il existe un pas s suivant d vérifiant les conditions de Wolfe
- Si les directions de descente ne deviennent pas « trop » orthogonales au gradient,
 l'algorithme de recherche linéaire avec les conditions de Wolfe est globalement convergent.
 lim ||∇f(x_k)|| = 0 → convergence vers un point stationnaire

En pratique

- Les directions de descente peuvent être construites avec BFGS ou SR1 (si matrices $H_k > 0$)
- La valeur des coefficients de Goldstein ou Wolfe c₁ et c₂ n'est pas critique pour la convergence.
- Le pas de Newton (s=1) est systématiquement testé, car il donne la solution si la fonction est proche de son modèle quadratique.
- La méthode de plus forte pente a la propriété de convergence globale, mais peut être très lente. On peut assurer la convergence globale d'un algorithme de recherche linéaire utilisant d'autres directions en effectuant périodiquement une itération de plus forte pente.

- 2 Optimisation sans contraintes
- 2.3 Recherche linéaire
- 2.3.4 Algorithme

2.3.4 Exemple

Fonction de Rosenbrock

$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

- Point initial : $\begin{pmatrix} -1.2\\1 \end{pmatrix}$
- Recherche linéaire avec BFGS ou SR1

- 2 Optimisation sans contraintes
- 2.4 Région de confiance

Sommaire

- 1. Bases théoriques
- 2. Optimisation sans contraintes
 - 2.1 Méthodes de descente
 - 2.2 Méthode de Newton
 - 2.3 Recherche linéaire
 - 2.4 Région de confiance
 - 2.4.1 Principes
 - 2.4.2 Modèle quadratique
 - 2.4.3 Rayon de confiance
 - 2.4.4 Algorithme
 - 2.5 Moindres carrés
 - 2.6 Méthode de Nelder-Mead
- 3. Optimisation avec contraintes

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.1 Principes

2.4.1 Région de confiance

Problème sans contrainte

$$\min_{x \in R^n} f(x)$$

Etapes principales

A chaque itération

- Résolution d'un modèle quadratique dans un rayon r_k autour du point $x_k \rightarrow d$ éplacement d_k
- Réglage du rayon de confiance r_k pour obtenir une amélioration de f

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.1 Principes

2.4.1 Région de confiance

Illustration

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.2 Modèle quadratique

2.4.2 Modèle quadratique

- ☐ Problème de région de confiance
- ☐ Conditions d'optimalité
- ☐ Résolution approchée
- ☐ Méthode dogleg

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.2 Modèle quadratique

2.4.2 Problème de région de confiance

Modèle quadratique

• Au point courant x_k on approxime la fonction par son modèle quadratique. $d \in \mathbb{R}^n = \text{déplacement à partir du point } x_k$

$$\hat{f}_k(x_k + d) = f(x_k) + d^T \nabla f(x_k) + \frac{1}{2} d^T \nabla^2 f(x_k) d$$

• Le modèle quadratique représente correctement la fonction au voisinage de x_k dans un rayon r_k La région de confiance est le voisinage dans lequel l'approximation est « bonne » (à définir).

Région de confiance de rayon r_k : $||d|| \le r_k$ r_k = rayon de confiance en x_k

Problème de région de confiance

• On cherche le minimum du modèle quadratique à l'intérieur de la région de confiance

$$\min_{d \in \mathbb{R}^n} \hat{f}_k(x_k + d) \text{ sous } ||d|| \le r_k \qquad \to \text{ Problème de région de confiance}$$

- On peut choisir différentes normes pour définir la région de confiance
 - Norme 2 : région de confiance circulaire
 - Norme ∞ : région de confiance rectangulaire

Optimisation sans contraintes

2.4 Région de confiance

2.4.2 Modèle quadratique

Techniques d'optimisation

2.4.2 Problème de région de confiance

Notations

Point courant:

 $egin{array}{ll} \mathbf{x}_{\mathbf{k}} & & \mathrm{not\'e} \ \mathbf{x}_{0} \\ \mathbf{f}(\mathbf{x}_{\mathbf{k}}) & & \mathrm{not\'e} \ \mathbf{f}_{0} \\ \end{array}$ Fonction:

 $\nabla f(x_k)$ noté g_0 Gradient:

Hessien: $\nabla^2 f(x_k)$ noté H₀

Déplacement à partir de x_0 : $d \in \mathbb{R}^n$

 $\hat{\mathbf{f}}(\mathbf{d}) = \mathbf{f}_0 + \mathbf{d}^{\mathrm{T}} \mathbf{g}_0 + \frac{1}{2} \mathbf{d}^{\mathrm{T}} \mathbf{H}_0 \mathbf{d}$ Fonction modèle:

Région de confiance : $\|d\| \le r$

Problème de région de confiance : $\frac{\min_{d \in \mathbb{R}^n} \hat{f}(d) = f_0 + d^T g_0 + \frac{1}{2} d^T H_0 d \text{ sous } ||d|| \le r$

- Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.2 Modèle quadratique

2.4.2 Conditions d'optimalité

Région de confiance en norme 2

Le problème de région de confiance s'écrit avec la norme 2

$$\min_{d \in \mathbb{R}^{n}} \hat{f}(d) = f_0 + d^{T}g_0 + \frac{1}{2}d^{T}H_0 d \text{ sous } \frac{1}{2} (||d||^2 - r^2) \le 0$$

$$L(d, \mu) = f_0 + d^T g_0 + \frac{1}{2} d^T H_0 d + \frac{1}{2} \mu \left\| d \right\|^2 - r^2$$

Conditions d'ordre 1 :
$$\begin{cases} \nabla_{d}L(d^{*},\mu^{*}) = g_{0} + H_{0}d^{*} + \mu^{*}d^{*} = 0 \\ \|d^{*}\| \leq r , & \mu^{*} \geq 0 \\ \mu^{*} \left(\|d^{*}\|^{2} - r^{2} \right) = 0 \iff \mu^{*} \left(\|d^{*}\| - r \right) = 0 \end{cases}$$

Contrainte de région de confiance

- Si la contrainte de région de confiance est inactive, la contrainte peut être ignorée. La solution du problème quadratique sans contrainte est le **point de Newton**.
- Si la contrainte de région de confiance est active, la solution est au bord de la région de confiance: $\|d^*\| = r \implies (H_0 + \mu^* I)d^* = -g_0$ On peut alors montrer que $H_0 + \mu * I$ est semi-définie positive. Le problème quadratique est résolu avec la méthode de Newton et la matrice $H_0 + \mu * I \ge 0$

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.2 Modèle quadratique

2.4.2 Résolution approchée

Résolution du problème quadratique

- On doit résoudre à chaque itération le problème : $\min_{d \in \mathbb{R}^n} \hat{f}(d) = f_0 + d^T g_0 + \frac{1}{2} d^T H_0 d$ sous $||d|| \le r$
- Le problème doit éventuellement être résolu pour plusieurs valeurs du rayon.
 - → résolution coûteuse si la contrainte est active
 - → **solution approximative** par une méthode simplifiée (méthode dogleg)

Point de Newton

Le **point de Newton** x_N est la solution du problème quadratique sans contrainte.

$$\min_{d \in \mathbb{R}^{n}} \hat{f}(d) = f_{0} + d^{T}g_{0} + \frac{1}{2}d^{T}H_{0}d \qquad \Rightarrow d_{N} = -H_{0}^{-1}g_{0} \Rightarrow x_{N} = x_{0} + d_{N}$$

Point de Cauchy

Le **point de Cauchy** \mathbf{x}_{C} minimise le critère quadratique suivant le gradient : $\mathbf{d}_{C} = -s\mathbf{g}_{0}$, $s \ge 0$

$$\min_{s \in \mathbb{R}} \hat{\mathbf{f}}(-s\mathbf{g}_0) = \mathbf{f}_0 - s\mathbf{g}_0^{\mathsf{T}}\mathbf{g}_0 + \frac{1}{2}s^2\mathbf{g}_0^{\mathsf{T}}\mathbf{H}_0\mathbf{g}_0 \qquad \Rightarrow \quad \mathbf{s}_{\mathsf{C}} = \frac{\mathbf{g}_0^{\mathsf{T}}\mathbf{g}_0}{\mathbf{g}_0^{\mathsf{T}}\mathbf{H}_0\mathbf{g}_0} \\
\Rightarrow \quad \mathbf{d}_{\mathsf{C}} = -\mathbf{s}_{\mathsf{C}}\mathbf{g}_0 \quad \Rightarrow \quad \mathbf{x}_{\mathsf{C}} = \mathbf{x}_0 + \mathbf{d}_{\mathsf{C}}$$

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.2 Modèle quadratique

2.4.2 Résolution approchée

Résolution du problème quadratique

$$\min_{d \in R^n} \hat{f}(d) = f_0 + d^T g_0 + \frac{1}{2} d^T H_0 d \text{ sous } ||d|| \le r \qquad \rightarrow \text{ solution } d(r) \in R^n, \ x(r) = x_0 + d(r)$$

Lorsque le rayon de confiance r varie, la solution suit une courbe x(r) allant de x_0 à x_N .

•
$$r = 0$$
 $\rightarrow x(0) = x_0$ (tangente = $-g_0$)

•
$$r > |d_N| \rightarrow x(r) = x_N$$

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.2 Modèle quadratique

2.4.2 Méthode dogleg

Chemin dogleg

Le chemin dogleg est composé de 2 segments :

- Le segment 1 joignant le point initial x_0 au point de Cauchy $x_C = x_0 + d_C$
- Le segment 2 joignant le point de Cauchy x_0 au point de Newton $x_N = x_0 + d_N$ On restreint la recherche de la solution au chemin dogleg.

Paramétrage du chemin dogleg

Le chemin dogleg est paramétré par s : $x(s) = x_0 + d(s)$, pour $s \in [0,2]$

- Segment 1 \rightarrow d(s) = sd_C pour s \in [0,1[
- Segment 2 \rightarrow d(s) = d_C + (s-1)(d_N d_C) pour s \in [1,2]

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.2 Modèle quadratique

2.4.2 Méthode dogleg

Résolution du problème quadratique

On cherche la solution du problème quadratique sous contrainte de région de confiance

$$\min_{d \in \mathbb{R}^{n}} \hat{f}(d) = f_0 + d^{T}g_0 + \frac{1}{2}d^{T}H_0d \text{ sous } ||d|| \le r$$

Le point de Newton est la solution du problème quadratique sans contrainte \rightarrow 2 cas possibles

• Si le point de Newton est à l'intérieur de la région de confiance, la contrainte est **inactive**.

$$\rightarrow$$
 La solution est $\mathbf{d}_{\mathbf{N}}$.

• Sinon, la contrainte est active et peut être formulée comme une contrainte égalité.

$$\min_{d \in \mathbb{R}^{n}} \hat{f}(d) = f_0 + d^{T}g_0 + \frac{1}{2}d^{T}H_0d \text{ sous } ||d|| = r$$

On restreint la recherche de la solution au chemin dogleg paramétré par $s \in [0,2]$.

Segment 1
$$\rightarrow$$
 d(s) = sd_C pour s \in [0,1[
Segment 2 \rightarrow d(s) = d_C + (s-1)(d_N - d_C) pour s \in [1,2]

 \rightarrow Il suffit de trouver l'intersection du chemin dogleg avec la région de confiance en résolvant $|\mathbf{d}(\mathbf{s})| = \mathbf{r}$.

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.2 Modèle quadratique

2.4.2 Méthode dogleg

Position des points dogleg

Trois situations sont possibles par rapport au rayon de confiance.

• $|\mathbf{d}_{\mathbf{C}}| \ge \mathbf{r}$

- → le point de Cauchy est à l'extérieur de la région de confiance
- $\bullet \quad |\mathbf{d}_{\mathbf{C}}| < \mathbf{r} < |\mathbf{d}_{\mathbf{N}}|$
- → le point de Cauchy est à l'intérieur de la région de confiance le point de Newton est à l'extérieur de la région de confiance

• $|d_N| \le r$

→ le point de Newton est à l'intérieur de la région de confiance

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.2 Modèle quadratique

2.4.2 Méthode dogleg

Solution du problème dogleg

La fonction |d(s)| est croissante. La solution s^* de |d(s)| = r est :

- Sur le segment 1 si $|d_C| \ge r$
- Sur le segment 2 si $|d_C| < r$

Solution sur le segment 1

$$d(s) = sd_C \text{ avec } s \in [0,1[$$

$$\|\mathbf{s} * \mathbf{d}_{\mathbf{C}}\| = \mathbf{r} \implies \mathbf{s} * = \frac{\mathbf{r}}{\|\mathbf{d}_{\mathbf{C}}\|} \implies \mathbf{d} * = \mathbf{r} \frac{\mathbf{d}_{\mathbf{C}}}{\|\mathbf{d}_{\mathbf{C}}\|} = -\mathbf{r} \frac{\mathbf{g}_{0}}{\|\mathbf{g}_{0}\|} \quad \operatorname{car} \mathbf{d}_{\mathbf{C}} // -\mathbf{g}_{0}$$

Solution sur le segment 2

$$d(s) = d_C + (s-1)(d_N - d_C)$$
 avec $s \in [1,2]$

$$\left\| d_{C} + (s^{*} - 1)(d_{N} - d_{C}) \right\| = r \implies \left(d_{C} + (s^{*} - 1)(d_{N} - d_{C}) \right)^{T} \left(d_{C} + (s^{*} - 1)(d_{N} - d_{C}) \right) = r^{2}$$

L'équation du second degré en s* admet une racine positive.

$$\Rightarrow s^* = 1 + \frac{-b + \sqrt{b^2 - 4ac}}{2a} \text{ avec } \begin{cases} a = \|d_N - d_C\|^2 \\ b = 2d_C^T (d_N - d_C) \\ c = \|d_C\|^2 - r^2 \end{cases}$$

- Optimisation sans contraintes
- Région de confiance
- 2.4.2 Modèle quadratique

2.4.2 Exemple

- Méthode dogleg Fonction $f(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2$
- Point initial: $\mathbf{x}_0 = \begin{pmatrix} 9 \\ 1 \end{pmatrix}$ $\nabla f(\mathbf{x}_0) = \begin{pmatrix} 9 \\ 9 \end{pmatrix}$ $\nabla^2 f(\mathbf{x}_0) = \begin{pmatrix} 1 & 0 \\ 0 & 9 \end{pmatrix}$
- Modèle quadratique : $\hat{f}(x_0 + p) = f(x_0) + \nabla f(x_0)^T p + \frac{1}{2} p^T \nabla^2 f(x_0) p = 45 + 9p_1 + 9p_2 + \frac{1}{2} p_1^2 + \frac{9}{2} p_2^2$
- Point de Cauchy: $\min_{s} \hat{f}(x_0 s\nabla f(x_0)) \rightarrow \min_{s} 45 18(9s) + 5(9s)^2 \rightarrow s = \frac{1}{5}$ $\Rightarrow x_C = \begin{pmatrix} 7.2 \\ -0.8 \end{pmatrix}$ Point de Newton: $x_N = x_0 (\nabla^2 f(x_0))^{-1} \nabla f(x_0) = \begin{pmatrix} 9 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1/9 \end{pmatrix} \begin{pmatrix} 9 \\ 9 \end{pmatrix}$ $\Rightarrow x_N = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
- Région de confiance de rayon r : $x_r = x_0 + r \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} = \begin{pmatrix} 9 + r \cos \theta \\ 1 + r \sin \theta \end{pmatrix} \rightarrow \text{paramétrée par } \theta$
- Chemin dogleg: segment 1 \to $x_{d1}(s) = x_0 + s(x_C x_0) = \begin{pmatrix} 9 1.8s \\ 1 1.8s \end{pmatrix}$, $0 \le s \le 1$

segment 2
$$\rightarrow$$
 $x_{d2}(s) = x_C + s(x_N - x_C) = \begin{pmatrix} 7.2 - 7.2s \\ -0.8 + 0.8s \end{pmatrix}$, $0 \le s \le 1$

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.2 Modèle quadratique

2.4.2 Exemple

Méthode dogleg

$$f(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2$$
 $x_0 = \begin{pmatrix} 9 \\ 1 \end{pmatrix} \implies x_C = \begin{pmatrix} 7.2 \\ -0.8 \end{pmatrix}$, $x_N = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

- Région de confiance de rayon r=1: $\Rightarrow x_d \approx \begin{pmatrix} 8,293 \\ 0.293 \end{pmatrix}$ sur le **segment 1**
- Région de confiance de rayon $\mathbf{r}=4$: $\Rightarrow x_d \approx \begin{pmatrix} 5,331 \\ -0.592 \end{pmatrix}$ sur le segment 2

- chemin dogleg

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.3 Rayon de confiance

2.4.3 Rayon de confiance

- ☐ Rapport de réduction
- ☐ Réglage du rayon

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.3 Rayon de confiance

2.4.3 Rapport de réduction

Validité du modèle quadratique

Le modèle quadratique est une approximation de la fonction valide dans un voisinage de x_0 .

- → Si le rayon de confiance est trop grand, le modèle quadratique n'est plus représentatif.
- → Il faut vérifier que la solution d* du modèle quadratique donne l'amélioration attendue.

Rapport de réduction

• On définit le rapport de réduction ρ entre la variation prévue : $\hat{f}(x_0) - \hat{f}(x_0 + d^*)$ et la variation réalisée : $f(x_0) - f(x_0 + d^*)$

Rapport de réduction :
$$\rho = \frac{f(x_0) - f(x_0 + d^*)}{\hat{f}(x_0) - \hat{f}(x_0 + d^*)}$$

- La valeur de ρ permet de vérifier si le modèle quadratique représente correctement la fonction, et d'adapter le rayon de confiance.
- $\rho \approx 1$ ou > 1 : amélioration réelle > amélioration prévue \rightarrow modèle bon
- $\rho \approx 0$ ou < 0 : amélioration réelle < amélioration prévue \rightarrow modèle mauvais

Le rayon est réglé de façon itérative en fonction de la valeur de ρ .

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.3 Rayon de confiance

2.4.3 Réglage du rayon

Réglage du rayon

On modifie le rayon de confiance en fonction du rapport de réduction $\rho = \frac{f(x_0) - f(x_0 + d^*)}{\hat{f}(x_0) - \hat{f}(x_0 + d^*)}$

• $\rho > \rho_2$ avec $\rho_2 = 0.9$

La fonction f décroît au moins comme prévu : le modèle est bon.

- → On accepte le nouveau point.
- → On passe à l'itération suivante en multipliant par 2 le rayon de confiance.
- $\rho < \rho_1$ avec $\rho_1 = 0.01$

La fonction f augmente au lieu de diminuer comme prévu : le modèle est mauvais.

- → On **rejette** le nouveau point.
- → On reprend l'itération en divisant par 2 le rayon de confiance.
- $\rho_1 < \rho < \rho_2$

La fonction décroît, mais moins que prévu : le modèle est correct.

- → On accepte le nouveau point.
- → On passe à l'itération suivante sans changer le rayon de confiance.

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.4 Algorithme

2.4.4 Algorithme

- ☐ Algorithme de région de confiance
- ☐ Convergence
- ☐ Exemple
 - Région de confiance norme 2
 - Région de confiance norme ∞

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.4 Algorithme

2.4.4 Algorithme

Algorithme de région de confiance

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.4 Algorithme

2.4.4 Algorithme

Principaux résultats de convergence

- Lorsque le rayon de confiance est petit, la solution dogleg est suivant le gradient. L'itération est équivalente à la méthode de plus forte pente → convergence lente
- Lorsque le rayon de confiance est grand, la solution dogleg est le point de Newton.
 L'itération est équivalente à la méthode de Newton → convergence rapide

En pratique

- On peut combiner l'algorithme de région de confiance avec BFGS ou SR1.
 Il n'est pas nécessaire que le hessien soit défini positif.
 Si le hessien n'est pas défini positif, la méthode SR1 est plus efficace.
- La valeur des seuils de réduction ρ_1 et ρ_2 pour régler le rayon n'est pas critique pour la convergence.
- Le point de Newton x_N est systématiquement testé,
 car il donne la solution s'il est à l'intérieur de la région de confiance.
 Sinon, on cherche une solution approchée sur le chemin dogleg.
- D'autres méthodes de résolution approchée du problème quadratique existent.

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.4 Algorithme

2.4.4 Exemple

Fonction de Rosenbrock

$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

- Point initial : $\begin{pmatrix} -1.2\\1 \end{pmatrix}$
- Région de confiance avec BFGS ou SR1
- Norme 2 : région de confiance circulaire

- 2 Optimisation sans contraintes
- 2.4 Région de confiance
- 2.4.4 Algorithme

2.4.4 Exemple

Fonction de Rosenbrock

$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

- Point initial : $\begin{pmatrix} -1.2\\1 \end{pmatrix}$
- Région de confiance avec BFGS ou SR1
- Norme ∞ : région de confiance rectangulaire 0

- 2 Optimisation sans contraintes
- 2.5 Moindres carrés

Sommaire

- 1. Bases théoriques
- 2. Optimisation sans contraintes
 - 2.1 Méthodes de descente
 - 2.2 Méthode de Newton
 - 2.3 Recherche linéaire
 - 2.4 Région de confiance
 - 2.5 Moindres carrés
 - 2.5.1 Formulation
 - 2.5.2 Méthode de Gauss-Newton
 - 2.5.3 Moindres carrés linéaires
 - 2.5.4 Filtre de Kalman
 - 2.5.5 Méthode du gradient conjugué
 - 2.6 Méthode de Nelder-Mead
- 3. Optimisation avec contraintes

2 Optimisation sans contraintes

2.5 Moindres carrés

2.5.1 Formulation

Techniques d'optimisation

2.5.1 Formulation

Problème de moindres carrés

$$\left| \min_{\mathbf{x} \in \mathbb{R}^{n}} \frac{1}{2} \| \mathbf{r}(\mathbf{x}) \|^{2} \right| \rightarrow \text{problème (MC)}$$

• Variables $x \in \mathbb{R}^n$: n paramètres d'ajustement d'un modèle

• Résidus $r(x) \in \mathbb{R}^m$: m écarts entre modèle et mesures

• Critère
$$f(x) \in R$$
: $f(x) = \frac{1}{2} ||r(x)||^2 = \frac{1}{2} r(x)^T r(x) = \frac{1}{2} \sum_{i=1}^m r_i(x)^2$

→ minimisation d'écart quadratique

• Gradient:
$$\nabla f(x) = \nabla r(x) r(x) = \sum_{i=1}^{m} \nabla r_i(x) r_i(x) \quad \text{avec} \quad \begin{cases} \nabla r_i(x) \in R^{n \times m} \\ \nabla r_i(x) \in R^{n \times l} \end{cases}$$

• Hessien:
$$\nabla^2 f(x) = \sum_{i=1}^m \left(\nabla r_i(x) \nabla r_i(x)^T + \nabla^2 r_i(x) r_i(x) \right)$$
$$= \nabla r(x) \nabla r(x)^T + \sum_{i=1}^m \nabla^2 r_i(x) r_i(x)$$

• Résolution : en appliquant la méthode de Newton

- 2 Optimisation sans contraintes
- 2.5 Moindres carrés
- 2.5.2 Méthode de Gauss-Newton

2.5.2 Méthode de Gauss-Newton

Méthode de Newton

L'itération de Newton au point x_k est : $\nabla^2 f(x_k) d_k = -\nabla f(x_k)$ \rightarrow déplacement d_k

Avec
$$\begin{cases} \nabla f(x) = \nabla r(x)r(x) = \sum_{i=1}^{m} \nabla r_i(x)r_i(x) \\ \nabla^2 f(x) = \nabla r(x)\nabla r(x)^T + \sum_{i=1}^{m} \nabla^2 r_i(x)r_i(x) \end{cases}$$

Méthode de Gauss-Newton

- L'évaluation du hessien nécessite les dérivées secondes des fonctions $r_i(x)$
 - → calcul très coûteux si m est grand
- Pour accélérer les calculs, on ignore le second terme : ∇²f(x) ≈ ∇r(x)∇r(x)^T
 Cette approximation du hessien n'utilise que les dérivées premières.
 La matrice obtenue est de plus toujours semi-définie positive
 → nécessaire pour la convergence de la méthode de Newton
- L'itération de Gauss-Newton au point x_k est : $\nabla r(x_k) \nabla r(x_k)^T d_k = -\nabla r(x_k) r(x_k)$

- 2 Optimisation sans contraintes
- 2.5 Moindres carrés
- 2.5.2 Méthode de Gauss-Newton

2.5.2 Méthode de Gauss-Newton

Méthode de Gauss-Newton

La méthode de Gauss-Newton équivaut à considérer un modèle linéaire des fonctions $r_i(x)$ en x_k

$$\hat{\mathbf{r}}_{i}(\mathbf{x}) = \mathbf{r}_{i}(\mathbf{x}_{k}) + \nabla \mathbf{r}_{i}(\mathbf{x}_{k})^{\mathrm{T}}(\mathbf{x} - \mathbf{x}_{k}), i = 1, \dots, m \quad \Leftrightarrow \quad \hat{\mathbf{r}}(\mathbf{x}) = \mathbf{r}(\mathbf{x}_{k}) + \nabla \mathbf{r}(\mathbf{x}_{k})^{\mathrm{T}}(\mathbf{x} - \mathbf{x}_{k})$$

Le problème devient : $\min_{x \in \mathbb{R}^n} \frac{1}{2} \|\hat{\mathbf{r}}(x)\|^2$

• Critère :
$$\hat{f}(x) = \frac{1}{2} \|\hat{r}(x)\|^2 = \frac{1}{2} \hat{r}(x)^T \hat{r}(x)$$

$$\Rightarrow \hat{f}(x) = \frac{1}{2} \left(r(x_k) + \nabla r(x_k)^T (x - x_k) \right)^T \left(r(x_k) + \nabla r(x_k)^T (x - x_k) \right)$$

$$= \frac{1}{2} r(x_k)^T r(x_k) + (x - x_k)^T \nabla r(x_k) r(x_k) + \frac{1}{2} (x - x_k)^T \nabla r(x_k) \nabla r(x_k)^T (x - x_k)$$

- Gradient: $\nabla \hat{f}(x) = \nabla r(x_k) \nabla r(x_k)^T (x x_k) + \nabla r(x_k) r(x_k)$
- Condition d'ordre 1 : $\nabla \hat{\mathbf{f}}(\mathbf{x}) = 0 \implies \nabla \mathbf{r}(\mathbf{x}_k) \nabla \mathbf{r}(\mathbf{x}_k)^{\mathrm{T}}(\mathbf{x} \mathbf{x}_k) = -\nabla \mathbf{r}(\mathbf{x}_k) \mathbf{r}(\mathbf{x}_k)$
 - → On retrouve l'**itération de Gauss-Newton**obtenue en ignorant les dérivées secondes dans le hessien

- 2 Optimisation sans contraintes
- 2.5 Moindres carrés
- 2.5.3 Moindres carrés linéaires

2.5.3 Moindres carrés linéaires

Cas linéaire

$$\min_{\mathbf{x} \in \mathbf{R}^{n}} \frac{1}{2} \| \mathbf{r}(\mathbf{x}) \|^{2} \text{ avec } \mathbf{r}(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}, \ \mathbf{A} \in \mathbf{R}^{m \times n}, \ \mathbf{b} \in \mathbf{R}^{m} \longrightarrow \text{problème (MC)}$$

• Critère:
$$f(x) = \frac{1}{2} ||r(x)||^2 = \frac{1}{2} (Ax - b)^T (Ax - b) = \frac{1}{2} x^T A^T Ax - b^T Ax + \frac{1}{2} b^T b$$

• Gradient:
$$\nabla f(x) = \nabla r(x)r(x) = A^{T}(Ax - b)$$

• Hessien:
$$\nabla^2 f(x) = A^T A$$

Dans le cas linéaire, la méthode de Gauss-Newton est identique à la méthode de Newton.

→ La convergence est obtenue en une itération.

Equations normales

• La solution x* du problème (MC) vérifie

$$\nabla f(x^*) = 0 \implies A^T (Ax - b) = 0 \implies A^T Ax = A^T b$$

$$\rightarrow$$
 système d'équations normales du problème (MC) : $\min_{x \in \mathbb{R}^n} \frac{1}{2} ||Ax - b||^2$

• Si A est de rang plein, x* est l'unique solution du problème (MC).

- 2 Optimisation sans contraintes
- 2.5 Moindres carrés
- 2.5.3 Moindres carrés linéaires

2.5.3 Exemple

Moindres carrés linéaires

On cherche à estimer l'accélération de la gravité à partir de mesures de hauteur en chute libre.

Temps (s)	Hauteur (m)
0	0,90
1	5,40
2	20,81
3	45,73
4	78,56
5	124,10
6	175,75
7	241,41
8	315,08
9	397,36
10	488,25
11	595,35
12	707,26
13	829,98
14	961,20
15	1103,14
16	1252,89
17	1415,55
18	1586,62
19	1770,20
20	1964,29

- Optimisation sans contraintes
- 2.5 Moindres carrés
- 2.5.3 Moindres carrés linéaires

2.5.3 Exemple

Moindres carrés linéaires

On résout le problème de moindres carrés linéaires : $\min_{g \in R} f(g) = \frac{1}{2} \sum_{i=1}^{m} \left(h_i - g \frac{t_i^2}{2} \right)$

Temps	H mesure	H modèle	Résidu
(s)	(m)	(m)	(m)
0	0,90	0,00	0,90
1	5,40	4,90	0,49
2	20,81	19,61	1,19
3	45,73	44,13	1,60
4	78,56	78,46	0,10
5	124,10	122,59	1,51
6	175,75	176,53	-0,78
7	241,41	240,27	1,13
8	315,08	313,82	1,25
9	397,36	397,18	0,17
10	488,25	490,35	-2,10
11	595,35	593,32	2,02
12	707,26	706,10	1,15
13	829,98	828,69	1,28
14	961,20	961,09	0,12
15	1103,14	1103,29	-0,14
16	1252,89	1255,30	-2,40
17	1415,55	1417,11	-1,56
18	1586,62	1588,73	-2,11
19	1770,20	1770,16	0,04
20	1964,29	1961,40	2,89

Modèle:
$$h_{\text{modèle}} = g \frac{t_i^2}{2}$$

Résidu:
$$r = h_{\text{mesure}} - h_{\text{modèle}} \rightarrow f(g) = \frac{1}{2} \sum_{i=1}^{m} r_i(g)^2$$

Solution moindres carrés : $g^* = 9,8070 \text{ m/s}^2 \rightarrow f(g^*) = 21,668$

- 2 Optimisation sans contraintes
- 2.5 Moindres carrés
- 2.5.4 Filtre de Kalman

2.5.4 Filtre de Kalman

Moindres carrés récursifs

• On considère un problème de moindres carrés linéaires composé de 2 blocs

$$\min_{x \in R^{n}} \left\| A_{1}x - b_{1} \right\|^{2} + \left\| A_{2}x - b_{2} \right\|^{2} \quad \text{ avec } \begin{cases} A_{1} \in R^{m_{1} \times n}, \ b_{1} \in R^{m_{1}} \\ A_{2} \in R^{m_{2} \times n}, b_{2} \in R^{m_{2}} \end{cases}$$

• Les 2 blocs correspondent à 2 séries de mesures donnant chacune des résidus respectifs.

$$\begin{cases} r_1(x) = A_1 x - b_1 & \rightarrow m_1 \text{ mesures} \\ r_2(x) = A_2 x - b_2 & \rightarrow m_2 \text{ mesures} \end{cases}$$

• Les matrices A_1 et A_2 sont supposées de rang plein $\rightarrow A_1^T A_1$ et $A_2^T A_2$ inversibles

Problème initial

- On appelle **problème initial** le problème restreint au 1^{er} bloc : $\min_{x \in \mathbb{R}^n} ||A_1 x b_1||^2$
- On note x_1 la solution du problème initial. La solution x_1 vérifie les équations normales du problème initial : $A_1^T A_1 x_1 = A_1^T b_1$
- On cherche ensuite à exprimer la solution x_2 du **problème complet** en fonction de x_1 .

- 2 Optimisation sans contraintes
- 2.5 Moindres carrés
- 2.5.4 Filtre de Kalman

2.5.4 Filtre de Kalman

Problème complet

• On réécrit le problème complet en regroupant les 2 blocs.

$$\min_{\mathbf{x} \in \mathbf{R}^{n}} \|\mathbf{A}_{1}\mathbf{x} - \mathbf{b}_{1}\|^{2} + \|\mathbf{A}_{2}\mathbf{x} - \mathbf{b}_{2}\|^{2} \iff \min_{\mathbf{x} \in \mathbf{R}^{n}} \|\mathbf{A}_{1}\mathbf{x} - \mathbf{b}_{1}\|^{2} \iff \min_{\mathbf{x} \in \mathbf{R}^{n}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^{2} \\
\operatorname{avec} \mathbf{A} = \begin{pmatrix} \mathbf{A}_{1} \\ \mathbf{A}_{2} \end{pmatrix} \in \mathbf{R}^{(m_{1} + m_{2}) \times n}, \mathbf{b} = \begin{pmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \end{pmatrix} \in \mathbf{R}^{m_{1} + m_{2}}$$

• La solution x₂ vérifie les **équations normales du problème complet**.

$$\mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x}_2 = \mathbf{A}^{\mathsf{T}} \mathbf{b} \Rightarrow \left(\mathbf{A}_1^{\mathsf{T}} \quad \mathbf{A}_2^{\mathsf{T}} \begin{pmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \end{pmatrix} \mathbf{x}_2 = \left(\mathbf{A}_1^{\mathsf{T}} \quad \mathbf{A}_2^{\mathsf{T}} \begin{pmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \end{pmatrix} \quad \Rightarrow \quad \left(\mathbf{A}_1^{\mathsf{T}} \mathbf{A}_1 + \mathbf{A}_2^{\mathsf{T}} \mathbf{A}_2 \right) \mathbf{x}_2 = \mathbf{A}_1^{\mathsf{T}} \mathbf{b}_1 + \mathbf{A}_2^{\mathsf{T}} \mathbf{b}_2$$

- La solution x_1 vérifie les **équations normales du problème initial** : $A_1^T A_1 x_1 = A_1^T b_1$
- On exprime x_2 en fonction de x_1 et des données du $2^{\text{ème}}$ bloc de mesures

$$(A_1^T A_1 + A_2^T A_2) x_2 = A_1^T b_1 + A_2^T b_2 = A_1^T A_1 x_1 + A_2^T b_2 = A_1^T A_1 x_1 + A_2^T A_2 x_1 - A_2^T A_2 x_1 + A_2^T b_2$$

$$= (A_1^T A_1 + A_2^T A_2) x_1 + A_2^T (b_2 - A_2 x_1)$$

$$\Rightarrow x_2 = x_1 + (A_1^T A_1 + A_2^T A_2)^{-1} A_2^T (b_2 - A_2 x_1)$$

- Optimisation sans contraintes
- 2.5 Moindres carrés
- 2.5.4 Filtre de Kalman

2.5.4 Filtre de Kalman

Filtre de Kalman

La solution des moindres carrés est mise à jour à chaque nouvelle mesure disponible.

→ traitement incrémental en temps réel

Initialisation: filtre H_0 (=0 par défaut)

solution x_0 (=0 par défaut)

Itération :

Mise en œuvre

- Les matrices $A_k^T A_k$ doivent être inversibles \rightarrow en prenant un nombre suffisant de mesures
- On peut introduire une **pondération** pour privilégier les mesures récentes.
 - $\rightarrow \rho = 1$ pour donner le même poids à toutes les mesures
 - $\rightarrow \rho < 1$ pour privilégier la dernière mesure

Itération:

- 2 Optimisation sans contraintes
- 2.5 Moindres carrés
- 2.5.4 Filtre de Kalman

2.5.4 Filtre de Kalman

Exemple

On applique la mise à jour de Kalman à chaque nouvelle mesure.

Mesure :
$$h_{\text{mesure}} = b$$
 $\rightarrow b_k = h_k$
Modèle : $h_{\text{modèle}} = Ax = \frac{t^2}{2}g$ $\rightarrow A_k = \frac{t_k^2}{2}$, $x_k = g_k$

• Filtre:
$$\begin{cases} H_0 = 0 \\ x_0 = 0 \end{cases} \rightarrow \begin{cases} H_k = H_{k-1} + A_k^T A_k \\ x_k = x_{k-1} + H_k^{-1} A_k^T (b_k - A_k x_{k-1}) \end{cases}$$

Temps	Matrice H	Estimation g
(s)		(m/s^2)
0	0,0	0,0000
1	0,3	10,7937
2	4,3	10,4263
3	24,5	10,2074
4	88,5	9,9269
5	244,8	9,9274
6	568,8	9,8341
7	1169,0	9,8440
8	2193,0	9,8450
9	3833,3	9,8305
10	6333,3	9,8046
11	9993,5	9,8177
12	15177,5	9,8195
13	22317,8	9,8204
14	31921,8	9,8167
15	44578,0	9,8136
16	60962,0	9,8068
17	81842,3	9,8041
18	108086,3	9,8016
19	140666,5	9,8029
20	180666,5	9,8070

331

- 2 Optimisation sans contraintes
- 2.5 Moindres carrés
- 2.5.4 Filtre de Kalman

2.5.4 Filtre de Kalman

Comparaison moindres carrés – filtre de Kalman

- Les moindres carrés sont adaptés à l'estimation de paramètres de modèle **a posteriori** (= lorsque toutes les mesures sont disponibles).
- Le filtre de Kalman est adapté à des applications en temps réel (= lorsque les mesures arrivent une à une)
- Les moindres carrés et le filtre de Kalman sont équivalents pour l'estimation de paramètres d'un modèle linéaire.
 - Le filtre de Kalman peut être appliqué à différents problèmes d'estimation.

Applications du filtre de Kalman

- Estimation de l'état d'un système dynamique linéaire, discret ou continu.
 - → état fonction du temps, mesures en temps réel
- Estimation de l'état d'un système dynamique non linéaire
 - → par linéarisation autour d'une trajectoire de référence estimée au préalable
- Méthode de filtrage largement utilisée dans les systèmes temps réels
 - → nombreuses variantes

- 2 Optimisation sans contraintes
- 2.5 Moindres carrés
- 2.5.5 Gradient conjugué

2.5.5 Gradient conjugué

Problème quadratique

On considère un problème de moindres carrés linéaires.

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} \frac{1}{2} \| \mathbf{r}(\mathbf{x}) \|^{2} \quad \text{avec} \quad \mathbf{r}(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}, \ \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$$

$$\Rightarrow \quad \frac{1}{2} \| \mathbf{r}(\mathbf{x}) \|^{2} = \frac{1}{2} (\mathbf{A}\mathbf{x} - \mathbf{b})^{T} (\mathbf{A}\mathbf{x} - \mathbf{b}) = \frac{1}{2} \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A}\mathbf{x} - \mathbf{b}^{T} \mathbf{A}\mathbf{x} + \frac{1}{2} \mathbf{b}^{T} \mathbf{b}$$

Le problème de moindres carrés revient à minimiser une forme quadratique définie positive.

$$f(x) = \frac{1}{2}x^{T}Qx + c^{T}x$$
 avec $Q \in \mathbb{R}^{n \times n}$ symétrique définie positive

Méthode de directions conjuguées

- 2 directions d_i et d_j sont **conjuguées** par rapport à Q si $d_i^T Q d_j = 0$
- On obtient le minimum de la forme quadratique définie positive en n itérations à pas optimal suivant des directions conjuguées $(d_i)_{i=1,\dots,n}$.
- La méthode du gradient conjugué consiste à construire une suite de directions conjuguées et à minimiser suivant ces directions successives pour obtenir le minimum de f.
 - → extension à une fonction f quelconque (méthode de Fletcher-Reeves)

- 2 Optimisation sans contraintes
- 2.5 Moindres carrés
- 2.5.5 Gradient conjugué

2.5.5 Gradient conjugué

Méthode du gradient conjugué

- On part d'un point initial x_0 quelconque. La direction initiale est le gradient : $d_1 = -\nabla f(x_0)$
- A chaque itération, le nouveau point x_k est obtenu par minimisation suivant d_k . $\min_{s} f(x_{k-1} + sd_k) \rightarrow x_k = x_{k-1} + s_k d_k$
- La nouvelle direction d_{k+1} est définie à partir de la précédente d_k et du gradient en x_k . $d_{k+1} = -\nabla f(x_k) + \beta_k d_k \rightarrow \text{plusieurs méthodes possibles}$
- La méthode converge en n itérations pour une fonction quadratique définie positive. Pour une fonction f quelconque, la convergence est généralement rapide car f est proche d'une fonction quadratique définie positive au voisinage de l'optimum.

- 2 Optimisation sans contraintes
- 2.5 Moindres carrés
- 2.5.5 Gradient conjugué

2.5.5 Gradient conjugué

Méthode du gradient conjugué

- La direction de descente à l'itération k est cherchée sous la forme $d_{k+1} = -\nabla f(x_k) + \beta_k d_k$ avec x_k obtenu par minimisation suivant d_k : $\min_s f(x_{k-1} + sd_k) \rightarrow x_k = x_{k-1} + s_k d_k$
- La nouvelle direction d_{k+1} doit être conjuguée à toutes les directions précédentes d_1, \ldots, d_k . $d_{k+1}^T Q d_i = 0$, $i = 1, \cdots, k$

Il existe plusieurs méthodes de construction des directions conjuguées successives $(d_i)_{i=1,...,n}$.

Directions de Fletcher-Reeves

$$d_{k+1} = -\nabla f(x_k) + \beta_k d_k \text{ avec } \beta_k = \frac{\|\nabla f(x_k)\|^2}{\|\nabla f(x_{k-1})\|^2}$$

• Directions de **Polak-Ribière**

$$d_{k+1} = -\nabla f(x_k) + \beta_k d_k \quad \text{avec} \quad \beta_k = \frac{\left(\nabla f(x_k) - \nabla f(x_{k-1})\right)^T \nabla f(x_k)}{\left\|\nabla f(x_{k-1})\right\|^2}$$

→ formules équivalentes dans le cas d'une fonction f quadratique

- 2 Optimisation sans contraintes
- 2.5 Moindres carrés
- 2.5.5 Gradient conjugué

2.5.5 Gradient conjugué

Directions de Fletcher-Reeves

$$d_{k+1} = -\nabla f(x_k) + \beta_k d_k \text{ avec } \beta_k = \frac{\left\|\nabla f(x_k)\right\|^2}{\left\|\nabla f(x_{k-1})\right\|^2} \rightarrow \text{ directions } \frac{\text{conjuguées pour}}{f(x) = \frac{1}{2}x^T Q x + c^T x}$$

Preuve: On note $g_k = \nabla f(x_k) = Qx_k + c$

• Propriété préliminaire

Si les n directions $d_1, ..., d_n$ sont conjuguées, alors $d_i^T g_k = 0$, $i = 1, \cdots, k$ pour k=1 à n. et $g_i^T g_k = 0$, $i = 1, \cdots, k-1$

A l'itération i, x_i est obtenu par minimisation suivant d_i $\min_{s} f(x_{i-1} + sd_i) \Rightarrow \frac{d}{ds} f(x_{i-1} + sd_i) = d_i^T \nabla f(x_{i-1} + sd_i) = 0 \Rightarrow d_i^T g_i = 0 \text{ , } i = 1, \dots, n$ $x_k = x_i + \sum_{j=i+1}^k s_j d_j \Rightarrow g_k = Qx_k + c = Q \left(x_i + \sum_{j=i+1}^k s_j d_j \right) + c = \nabla f(x_i) + \sum_{j=i+1}^k s_j Q d_j$ $\Rightarrow d_i^T g_k = d_i^T g_i + \sum_{j=i+1}^k s_j d_i^T Q d_j = 0 \quad car \quad \begin{cases} d_i^T g_i = 0 \\ d_i^T Q d_j = 0 \text{ si } i \neq j \end{cases}$

$$\Rightarrow g_i^T g_k = g_i^T g_k - \beta_i d_i^T g_k \quad car \quad d_i^T g_k = 0 , i = 1, \dots, k$$
$$= -d_{i+1}^T g_k = 0 \quad car \quad i < k$$

- 2 Optimisation sans contraintes
- 2.5 Moindres carrés
- 2.5.5 Gradient conjugué

2.5.5 Gradient conjugué

Directions de Fletcher-Reeves

Preuve : on montre par récurrence que d_{k+1} est conjuguée à $d_1,...,d_k$.

• Pour
$$d_{1}$$
 et d_{2} :
$$d_{2}^{T}Qd_{1} = -(g_{1} + \beta_{1}g_{0})^{T}Q\frac{x_{1} - x_{0}}{s_{1}} car\begin{cases} d_{1} = -g_{0} \\ d_{2} = -(g_{1} + \beta_{1}d_{1}) \end{cases}$$

$$\Rightarrow d_{2}^{T}Qd_{1} = -(g_{1} + \beta_{1}g_{0})^{T}\frac{g_{1} - g_{0}}{s_{1}} car g = Qx + c$$

$$\Rightarrow d_{2}^{T}Qd_{1} = -(\|g_{1}\|^{2} - \beta_{1}\|g_{0}\|)^{T} car g_{1}^{T}g_{0} = g_{1}^{T}d_{1} = 0 \quad (propriété préliminaire)$$

$$\Rightarrow d_{2}^{T}Qd_{1} = 0 car \beta_{1} = \frac{\|\nabla f(x_{1})\|^{2}}{\|\nabla f(x_{0})\|^{2}} = \frac{\|g_{1}\|^{2}}{\|g_{0}\|^{2}} \quad (par définition de \beta)$$

• On suppose $d_{1},...,d_{k}$ conjuguées: $d_{i}^{T}Qd_{j}=0$, $i \neq j$, $i, j \leq k$ Il faut montrer que $d_{i}^{T}Qd_{k+1}=0$, $i=1,\cdots,k$ $d_{i}^{T}Qd_{k+1}=-d_{i}^{T}Q\left(g_{k}-\beta_{k}d_{k}\right)=-d_{i}^{T}Qg_{k} \text{ car } d_{i}^{T}Qd_{k}=0 \qquad (par \text{ hypothèse de récurrence})$ $\Rightarrow d_{i}^{T}Qd_{k+1}=-\left(Qd_{i}\right)^{T}g_{k}=-\left(Q\frac{x_{i}-x_{i-1}}{s_{i}}\right)^{T}g_{k} \text{ car } x_{i}=x_{i-1}+s_{i}d_{i}$ $\Rightarrow d_{i}^{T}Qd_{k+1}=\left(\frac{g_{i}-g_{i-1}}{s_{i}}\right)^{T}g_{k} \text{ car } g=Qx+c$

- 2 Optimisation sans contraintes
- 2.5 Moindres carrés
- 2.5.5 Gradient conjugué

2.5.5 Gradient conjugué

Directions de Fletcher-Reeves

Preuve

• On obtient:
$$d_i^T Q d_{k+1} = \frac{1}{s_i} (g_i^T g_k - g_{i-1}^T g_k) = 0$$
 pour $i = 1, \dots, k-1$

$$car \ g_i^T g_k = 0 \ , i = 1, \dots, k-1 \quad (propriété préliminaire)$$

• Il faut encore montrer pour i=k: $d_k^T Q d_{k+1} = 0$

$$d_{k}^{T}Qd_{k+1} = 0 \Rightarrow d_{k}^{T}Q\left(-g_{k} + \beta_{k}d_{k}\right) = 0 \Rightarrow \beta_{k} = \frac{d_{k}^{T}Qg_{k}}{d_{k}^{T}Qd_{k}}$$

$$d_{k}^{T}Qg_{k} = \left(Q\frac{x_{k} - x_{k-1}}{s_{k}}\right)^{T}g_{k} = \frac{1}{s_{k}}(g_{k} - g_{k-1})^{T}g_{k} = \frac{1}{s_{k}}\|g_{k}\|^{2}$$

$$d_{k}^{T}Qd_{k} = d_{k}^{T}\left(Q\frac{x_{k} - x_{k-1}}{s_{k}}\right) = \frac{1}{s_{k}}d_{k}^{T}(g_{k} - g_{k-1}) = -\frac{1}{s_{k}}d_{k}^{T}g_{k-1} \quad car \quad d_{k}^{T}g_{k} = 0 \quad (propriété préliminaire)$$

$$\Rightarrow d_k^T Q d_k = -\frac{1}{s_k} d_k^T g_{k-1} = -\frac{1}{s_k} \left(-g_{k-1} + \beta_{k-1} d_{k-1} \right)^T g_{k-1} = \frac{1}{s_k} \left\| g_{k-1} \right\|^2 car \ d_{k-1}^T g_{k-1}$$

On obtient bien:
$$\beta_k = \frac{\|g_k\|^2}{\|g_{k-1}\|^2} \rightarrow valeur de \beta_k telle que d_k^T Q d_{k+1} = 0$$

- Optimisation sans contraintes
- Moindres carrés
- 2.5.5 Gradient conjugué

2.5.5 Exemple

Gradient conjugué

- Fonction quadratique $f(x_1, x_2) = \frac{1}{2}x_1^2 + x_1x_2 + x_2^2 \rightarrow \nabla f(x_1, x_2) = \begin{pmatrix} x_1 + x_2 \\ x_1 + 2x_2 \end{pmatrix}$
- Point initial $x^0 = \begin{pmatrix} 10 \\ -5 \end{pmatrix}$
- **Itération 1**: $d^1 = -\nabla f(x^0) = \begin{pmatrix} -5 \\ 0 \end{pmatrix} \rightarrow x^1 = x^0 + sd^1 = \begin{pmatrix} 10 5s \\ -5 \end{pmatrix} = 5 \begin{pmatrix} 2 s \\ -1 \end{pmatrix}$ $\min_{s} f(x^{0} + sd^{1}) = \frac{25}{2} (2 - s)^{2} - 25(2 - s) + 25 \implies s^{1} = 1 \implies x^{1} = \begin{pmatrix} 5 \\ -5 \end{pmatrix}, \nabla f(x^{1}) = \begin{pmatrix} 0 \\ -5 \end{pmatrix}$
- Itération 2: $d^2 = -\nabla f(x^1) + \beta^1 d^1$ avec $\beta^1 = \frac{\|\nabla f(x^1)\|^2}{\|\nabla f(x^0)\|^2} = \frac{25}{25} = 1$

$$d^{2} = \begin{pmatrix} -5 \\ 5 \end{pmatrix} \rightarrow x^{2} = x^{1} + sd^{2} = \begin{pmatrix} 5 - 5s \\ -5 + 5s \end{pmatrix} = 5(1 - s) \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\min_{s} f(x^{1} + sd^{2}) = \frac{25}{2} (1 - s)^{2} - 25(1 - s)^{2} + 25(1 - s)^{2} \implies s^{2} = 1 \implies x^{2} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \nabla f(x^{2}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

• Solution:
$$x^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $\nabla f(x^*) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

- 2 Optimisation sans contraintes
- 2.6 Méthode de Nelder-Mead

Sommaire

- 1. Bases théoriques
- 2. Optimisation sans contraintes
 - 2.1 Méthodes de descente
 - 2.2 Méthode de Newton
 - 2.3 Recherche linéaire
 - 2.4 Région de confiance
 - 2.5 Moindres carrés
 - 2.6 Méthode de Nelder-Mead
 - 2.6.1 Principes
 - 2.6.2 Algorithme
 - 2.6.3 Exemples
- 3. Optimisation avec contraintes

- 2 Optimisation sans contraintes
- 2.6 Méthode de Nelder-Mead
- 2.6.1 Principes

2.6.1 Méthode de Nelder-Mead

Problème sans contrainte

$$\min_{x \in R^n} f(x)$$

Principes

La méthode de Nelder-Mead est une méthode d'ordre 0 (sans dérivées)

- → n'utilise que des évaluations de la fonction (aucune évaluation du gradient)
- On définit un ensemble P de n+1 points de Rⁿ : $P = \{x_1, x_2, \dots, x_n, x_{n+1}\}$ P est un **polytope** ou « simplexe » de Rⁿ.
- Les points de P sont rangés du meilleur au plus mauvais : $f(x_1) \le f(x_2) \le \cdots \le f(x_n) \le f(x_{n+1})$
- A chaque itération, on cherche à remplacer le plus mauvais point par un point meilleur.

$$P = \{x_1, x_2, \dots, x_n, x_{n+1}\} \rightarrow P' = \{x_1, x_2, \dots, x_n, x_{new}\}$$

$$\rightarrow P' = \{x_1', x_2', \dots, x_n', x_{n+1}'\}$$
 après reclassement

- On obtient une suite de polytopes $(P^k)_{k \in N}$: $P^k = \{x_1^k, x_2^k, \dots, x_n^k, x_{n+1}^k\}$
- Si la méthode converge, les polytopes P^k sont de taille décroissante
 et les points du polytope convergent vers un minimum local de f.

- 2 Optimisation sans contraintes
- 2.6 Méthode de Nelder-Mead
- 2.6.1 Principes

2.6.1 Méthode de Nelder-Mead

Polytope

$$P = \{x_1, x_2, \dots, x_n, x_{n+1}\}$$

$$f(x_1) \le f(x_2) \le \dots \le f(x_n) \le f(x_{n+1})$$

Nouveau point

x_c est le barycentre des **n meilleurs points**.

$$x_c = \frac{1}{n} \sum_{i=1}^{n} x_i$$

On cherche à ramener le plus mauvais point x_{n+1} vers le barycentre x_c . On teste des points x sur la demi-droite $[x_{n+1},x_c)$ paramétrée par t>0.

$$x(t) = x_c + t(x_c - x_{n+1})$$

Points testés successivement :

- **Réflexion**: $x(t=+1) = x_r$
- **Expansion**: $x(t=+2) = x_e$
- Contraction externe : $x(t=+0.5) = x_{ce}$
- Contraction externe : $x(t=-0.5) = x_{ci}$

- 2 Optimisation sans contraintes
- 2.6 Méthode de Nelder-Mead
- 2.6.1 Principes

2.6.1 Méthode de Nelder-Mead

Nouveau point

Le polytope initial est $P = \{x_1, x_2, \dots, x_n, x_{n+1}\}$ avec $f(x_1) \le f(x_2) \le \dots \le f(x_n) \le f(x_{n+1})$

La demi-droite $[x_{n+1},x_c)$ est supposée être une direction de descente. On teste d'abord $\mathbf{x_r}$ (symétrique de x_{n+1} / x_c).

- Résultat très bon : $f(x_r) < f(x_1)$
 - \rightarrow on essaie \mathbf{x}_{e} on remplace \mathbf{x}_{n+1} par \mathbf{x}_{e} ou \mathbf{x}_{r} .
- Résultat bon : $f(x_1) \le f(x_r) < f(x_n)$
 - \rightarrow on remplace x_{n+1} par x_r .
- Résultat moyen : $f(x_n) \le f(x_r) < f(x_{n+1})$
 - \rightarrow on essaie \mathbf{x}_{ce} on remplace \mathbf{x}_{n+1} par \mathbf{x}_{ce} ou \mathbf{x}_{r} .

- Résultat mauvais : $f(x_{n+1}) \le f(x_r)$
 - \rightarrow on essaie $\mathbf{x_{ci}}$ on remplace $\mathbf{x_{n+1}}$ par $\mathbf{x_{ci}}$, ou on contracte tout le polytope P vers $\mathbf{x_1}$

- Optimisation sans contraintes
- 2.6 Méthode de Nelder-Mead
- 2.6.2 Algorithme

2.6.2 Algorithme

Itération k

$$P^{k} = \left\{ x_{1}^{k}, x_{2}^{k}, \dots, x_{n}^{k}, x_{n+1}^{k} \right\} \quad \text{avec} \quad f(x_{1}^{k}) \le f(x_{2}^{k}) \le \dots \le f(x_{n}^{k}) \le f(x_{n+1}^{k})$$

Barycentre:

$$x_{c} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{k} \rightarrow d = x_{c} - x_{n+1}^{k}$$

Réflexion:

$$x_r = x_c + d \rightarrow f(x_r)$$

3. Si $f(x_r) < f(x_1)$

 $x_e = x_c + 2d \rightarrow f(x_e)$ Expansion: Si $f(x_a) < f(x_r)$ $\rightarrow x' = x_a$

 \rightarrow x' = x.. Sinon

- Si $f(x_1) < f(x_r) < f(x_n)$ $\rightarrow x' = x_r$
- Si $f(x_n) < f(x_r) < f(x_{n+1})$

Contraction externe: $x_{ce} = x_c + d/2 \rightarrow f(x_{ce})$

Si $f(x_{ce}) < f(x_r)$ $\rightarrow x' = x_{ce}$ Sinon \rightarrow x' = x...

 $Si f(x_{n+1}) < f(x_r)$

Contraction interne: $x_{ci} = x_c - d/2 \rightarrow f(x_{ci})$

Si $f(x_{ci}) < f(x_{n+1})$ \rightarrow $x' = x_{ci}$ Sinon réduction de P vers x1 \rightarrow $x_i^{k+1} = \frac{1}{2}(x_1 + x_i^k)$

- \rightarrow polytope $P^{k+1} = \{x_1^k, x_2^k, \dots, x_n^k, x'\}$ à reclasser Nouveau point x'

 $P^{k+1} = \left\{ x_1^{k+1}, x_2^{k+1}, \dots, x_n^{k+1}, x_{n+1}^{k+1} \right\} \quad \text{avec} \quad f(x_1^{k+1}) \le f(x_2^{k+1}) \le \dots \le f(x_n^{k+1}) \le f(x_{n+1}^{k+1})$

- 2 Optimisation sans contraintes
- 2.6 Méthode de Nelder-Mead
- 2.6.2 Algorithme

2.6.2 Algorithme

Initialisation

Polytope initial $P^0 = \{x_1^0, x_2^0, \dots, x_n^0, x_{n+1}^0\}$ avec $f(x_1^0) \le f(x_2^0) \le \dots \le f(x_n^0) \le f(x_{n+1}^0)$ \rightarrow points suffisamment distants, non alignés

Itération k

$$\mathbf{P}^{k} = \left\{ x_{1}^{k}, x_{2}^{k}, \dots, x_{n}^{k}, x_{n+1}^{k} \right\} \quad \text{avec} \quad f(x_{1}^{k}) \le f(x_{2}^{k}) \le \dots \le f(x_{n}^{k}) \le f(x_{n+1}^{k})$$

- Nouveau point $x' \to \text{reclassement des points } x_1, x_2, \dots, x_n, x' \text{ par valeur de f croissante}$
- Nouveau polytope:

$$P^{k+1} = \left\{ x_1^{k+1}, x_2^{k+1}, \cdots, x_n^{k+1}, x_{n+1}^{k+1} \right\} \quad \text{avec} \quad f(x_1^{k+1}) \le f(x_2^{k+1}) \le \cdots \le f(x_n^{k+1}) \le f(x_{n+1}^{k+1})$$

Arrêt

- Taille du polytope
- Valeur de la fonction (non décroissante, identique sur tout le polytope)
- Dégénérescence du polytope (alignement des points).

- 2 Optimisation sans contraintes
- 2.6 Méthode de Nelder-Mead
- 2.6.3 Exemples

2.6.3 Exemples

Exemple 1 : fonction quadratique

- 2 Optimisation sans contraintes
- 2.6 Méthode de Nelder-Mead
- 2.6.3 Exemples

2.6.3 Exemples

Exemple 2 : fonction de Rosenbrock

Sommaire

- 1. Bases théoriques
- 2. Optimisation sans contraintes
- 3. Optimisation avec contraintes
 - 3.1 Simplexe
 - 3.2 Point intérieur
 - 3.3 Gradient projeté
 - 3.4 Lagrangien augmenté
 - 3.5 Programmation quadratique séquentielle
 - 3.6 Convergence

3 Optimisation avec contraintes

Problème non linéaire sous contraintes

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{f}(\mathbf{x}) \quad \text{sous} \quad \begin{cases} \mathbf{c}_{E}(\mathbf{x}) = 0 \\ \mathbf{c}_{I}(\mathbf{x}) \le 0 \end{cases} \longrightarrow \text{Problème noté (PO)}$$

Catégories de problèmes

- Programmation linéaire
- Programmation non linéaire
- \rightarrow Fonctions f, c_E , c_I linéaires
- \rightarrow Fonctions f, c_E , c_I quelconques

Traitement des contraintes

- Méthodes de contraintes actives
- → Identification des inégalités actives

 Transformation en un problème avec contraintes égalité

 Respect des contraintes à chaque itération
- Méthodes de point intérieur
- → Fonction barrière (pénalisation intérieure)
 Suivi d'un chemin central intérieur aux contraintes

• Méthodes de pénalisation

→ Critère augmenté (pénalisation extérieure)

Transformation en un problème sans contraintes

3 Optimisation avec contraintes

Problème non linéaire sous contraintes

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) \quad \text{sous} \quad \begin{cases} c_{E}(\mathbf{x}) = 0 \\ c_{I}(\mathbf{x}) \le 0 \end{cases} \longrightarrow \text{Problème noté (PO)}$$

Classification des méthodes

	Méthode primale	Méthode primale-duale	Méthode duale
Problème traité	problème primal	problème primal	problème dual
Objectif	min f - méthode directe - point stationnaire	solution KKT - méthode indirecte - point stationnaire	max w - méthode indirecte - point col
Itérations	admissibles	admissibles ou non	non admissibles
Variables	primales x	primales x , duales λ	primales x , duales λ
Algorithmes	simplexe (LP)gradient projetépénalisation	point intérieur (LP, NLP)séquentiel quadratiquelagrangien augmenté	- Uzawa

- 3 Optimisation avec contraintes
- 3.1 Simplexe

Sommaire

- 1. Bases théoriques
- 2. Optimisation sans contraintes
- 3. Optimisation avec contraintes
 - 3.1 Simplexe
 - 3.1.1 Problème linéaire
 - 3.1.2 Déplacement
 - 3.1.3 Initialisation
 - 3.1.4 Simplexe révisé
 - 3.1.5 Simplexe dual
 - 3.2 Point intérieur
 - 3.3 Gradient projeté
 - 3.4 Lagrangien augmenté
 - 3.5 Programmation quadratique séquentielle
 - 3.6 Convergence

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.1 Problème linéaire

3.1.1 Problème linéaire

- ☐ Forme standard
- ☐ Solution
- ☐ Recherche systématique
- ☐ Recherche optimisée
- ☐ Forme canonique

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.1 Problème linéaire

3.1.1 Problème linéaire

Problème linéaire sous forme standard

$$\min_{\mathbf{x}} \mathbf{c}^{\mathsf{T}} \mathbf{x} \text{ sous } \begin{cases} \mathbf{A} \mathbf{x} = \mathbf{b} & \mathbf{A} \in \mathbf{R}^{\mathsf{m} \times \mathsf{n}}, \ \mathbf{b} \in \mathbf{R}^{\mathsf{m}}, \ \mathbf{c} \in \mathbf{R}^{\mathsf{n}} \\ \mathbf{x} \ge \mathbf{0} & \mathrm{rang}(\mathbf{A}) = \mathbf{m} \end{cases} \rightarrow \text{problème noté (PL)}$$

Rappels

- Base B = $(A_{j1}, ..., A_{jm})$ = m colonnes indépendantes de A \Rightarrow B inversible AE = $(B \ N)$ avec E = matrice de permutation de colonnes $(EE^T = I)$
- Solution de base : $x = E \begin{pmatrix} x_B \\ x_N \end{pmatrix} \to m \text{ avec } \begin{cases} Ax = b \\ x_N = 0 \end{cases} \Rightarrow x = E \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix}$ admissible (ou réalisable) si $x_B = B^{-1}b \ge 0$
- Direction de base d_i , $j \in N$

$$d_{j} = E \begin{pmatrix} d_{jB} \\ d_{jN} \end{pmatrix} \text{ avec } \begin{cases} d_{jB} = -B^{-1}A_{j} \\ E^{T}e_{j} = \begin{pmatrix} 0 \\ d_{jN} \end{pmatrix} \end{cases} \rightarrow \text{ pour v\'erifier Ax=b}$$

$$\rightarrow \text{ composantes nulles sauf =1 sur la composante j}$$

• Coût réduit = dérivée directionnelle suivant la direction de base d_j : $\overline{c}_j = c^T d_j = c_j - c_B^T B^{-1} A_j$ Coût réduit négatif \rightarrow direction de descente

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.1 Problème linéaire

3.1.1 Solution

Problème linéaire sous forme standard

$$\min_{\mathbf{x}} \mathbf{c}^{\mathsf{T}} \mathbf{x} \text{ sous } \begin{cases} \mathbf{A} \mathbf{x} = \mathbf{b} & \mathbf{A} \in \mathbf{R}^{\mathsf{m} \times \mathsf{n}}, \ \mathbf{b} \in \mathbf{R}^{\mathsf{m}}, \ \mathbf{c} \in \mathbf{R}^{\mathsf{n}} \\ \mathbf{x} \ge 0 & \mathsf{rang}(\mathbf{A}) = \mathbf{m} \end{cases}$$

Solution

On note P le polytope associé aux contraintes : $P = \{x \in \mathbb{R}^n / Ax = b, x \ge 0\}$ Si le problème (PL) admet une solution, alors il existe un sommet optimal x^* .

Preuve: On suppose que PL admet une solution de coût f^* On considère un sommet x^* du polytope Q inclus dans $P: Q = \{x \in P / c^T x = f^*\}$ On suppose par l'absurde <u>que x^* n'est pas un sommet de P.</u>

$$x^* = \alpha * y + (1 - \alpha *)z \quad avec \underbrace{y, z \in P}_{y \neq z, 0 < \alpha * < 1}$$

$$La fonction \ linéaire \begin{cases} \varphi(\alpha) = \alpha c^T y + (1 - \alpha)c^T z \\ 0 \le \alpha \le 1 \end{cases}$$
 est minimale en $\alpha * : \begin{cases} \varphi(\alpha *) = c^T x * = f * \\ 0 < \alpha * < 1 \end{cases}$

La fonction φ est donc constante (sinon elle décroît d'un côté de α^*) \Rightarrow $c^Ty = c^Tz = f^*$ \Rightarrow $y,z \in Q$

On a donc: $x^* = \alpha * y + (1 - \alpha *)z$ avec $y, z \in Q$ $y \neq z, 0 < \alpha * < 1$ en contradiction avec l'hypothèse que x est un sommet de Q.

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.1 Problème linéaire

3.1.1 Solution

Recherche systématique

Si (PL) admet une solution x*, x* est un sommet du polytope P associé aux contraintes.

On peut donc trouver la solution : en parcourant tous les sommets de P (= bases)

en calculant les solutions de base associées

en conservant la meilleure solution de base réalisable

• Choix de m colonnes parmi les n colonnes de $A \rightarrow$ base B possible

• Vérification que la base est réalisable : B inversible et B-1b≥0

→ Solution de base admissible : $x = E\begin{pmatrix} x_B \\ x_N \end{pmatrix} = E\begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} \ge 0$

• Valeur du coût associé à la base B : $f = c^T x = c_B^T x_B + c_N^T x_N = c_B^T x_B$

• Sélection de la meilleure solution (f minimal)

Inconvénient

 $C_n^m = \frac{n!}{m!(n-m)!}$ combinaisons possibles \rightarrow inapplicable en pratique

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.1 Problème linéaire

3.1.1 Exemple

Recherche systématique

$$\min_{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4} - \mathbf{x}_1 - 2\mathbf{x}_2 \text{ sous } \begin{cases} \mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 = 1 \\ \mathbf{x}_1 - \mathbf{x}_2 + \mathbf{x}_4 = 1 \\ \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4 \ge 0 \end{cases}$$

• Représentation graphique dans R²

$$P' = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} / \left\{ \begin{matrix} x_1 + x_2 \le 1 \\ x_1 - x_2 \le 1 \end{matrix}, \begin{cases} x_1 \ge 0 \\ x_2 \ge 0 \end{cases} \right\}$$

- Solution graphique : point C (f = -2)
- Solution par énumération des sommets

Base	X	f
$\mathbf{x}_1, \mathbf{x}_2$	$(1 0 0 0) \rightarrow B$	-1
X_1, X_3	$(1 0 0 0) \rightarrow B$	-1
X_1, X_4	$(1 0 0 0) \rightarrow B$	-1
X_2,X_3	$(0 -1 2 0) \rightarrow D$	Non admissible
X ₂ ,X ₄	$(0 1 0 2) \rightarrow C$	-2
X_3, X_4	$(0 0 1 1) \rightarrow A$	0

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.1 Problème linéaire

3.1.1 Solution

Recherche optimisée

On évite l'énumération systématique en parcourant les sommets de façon ordonnée

→ Méthode du simplexe = méthode de contraintes actives

Principes

- On se déplace d'une solution de base admissible à une autre solution de base admissible.
 - → Les solutions non admissibles ne sont pas examinées.
- Les bases successives ne diffèrent que par l'une des variables (bases adjacentes)
- Le déplacement d'un sommet à un autre est choisi à partir des directions de base
 - → Déplacement suivant les arêtes du polytope
- Les **coûts réduits** déterminent les directions de descente possibles.
 - → Sélection d'une direction de déplacement (plusieurs règles de sélection possibles)
- Le problème est mis sous **forme canonique** dans la base B
 - → Permet de vérifier l'optimalité de la base B
 - → Permet de construire le déplacement vers une base adjacente

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.1 Problème linéaire

3.1.1 Forme canonique

Réduction dans la base B

$$\bullet \quad \text{Forme standard}: \quad \min_{x} c^{T}x \ \text{sous} \ \begin{cases} Ax = b \\ x \geq 0 \end{cases} \qquad \begin{array}{l} A \in R^{m \times n} \ , \ b \in R^{m} \ , \ c \in R^{n} \\ \text{rang}(A) = m \end{array}$$

• Base B:
$$AE = \begin{pmatrix} B & N \end{pmatrix}, \quad x = E \begin{pmatrix} x_B \\ x_N \end{pmatrix}_{\to n-m}^{\to m} \implies \begin{cases} Ax = Bx_B + Nx_N \\ c^T x = c_B^T x_B + c_N^T x_N \end{cases}$$

Réduction aux variables hors base

$$\begin{split} \min_{x} c^T x \text{ sous } \left\{ \begin{matrix} Ax = b \\ x \geq 0 \end{matrix} \right. & \Leftrightarrow \min_{\substack{x_B \in R^m \\ x_N \in R^{n-m}}} c_B^T x_B + c_N^T x_N \text{ sous } \left\{ \begin{matrix} Bx_B + Nx_N = b \\ x_B \geq 0, x_N \geq 0 \end{matrix} \right. \\ & \Leftrightarrow \min_{x_N \in R^{n-m}} c_B^T B^{-1} b + \left(c_N^T - c_B^T B^{-1} N \right) \! x_N \text{ sous } \left\{ \begin{matrix} x_B = B^{-1} b - B^{-1} N x_N \geq 0 \\ x_N \geq 0 \end{matrix} \right. \end{split}$$

• Forme canonique dans la base B

$$\min_{\substack{x_N \in R^{n-m} \\ x_N \geq 0}} \overline{z} + \overline{c}_N^T x_N \text{ sous } x_B = \overline{b} - B^{-1} N x_N \geq 0 \qquad \text{avec } \begin{cases} \overline{b} = B^{-1} b \\ \overline{z} = c_B^T \overline{b} \\ \overline{c}_N^T = c_N^T - c_B^T B^{-1} N \end{cases}$$

 \rightarrow Réduction à n-m variables = variables hors-base x_N

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.1 Problème linéaire

3.1.1 Forme canonique

Evaluation de la base B

La solution x* du problème linéaire correspond à un sommet = solution de base admissible

- → Evaluer l'optimalité de la solution de base associée à la base B
- → Construire le déplacement vers une nouvelle base B' meilleure que B
- Forme canonique dans B: $\min_{\substack{x_N \in \mathbb{R}^{n-m} \\ x_N \ge 0}} \overline{z} + \overline{c}_N^T x_N \text{ sous } x_B = \overline{b} B^{-1} N x_N \ge 0$
- Solution de base associée à B : $x_N = 0 \implies \begin{cases} z = \overline{z} \\ x_B = \overline{b} \ge 0 \end{cases}$ si B est admissible (ou réalisable)
- Variation du coût : $z(x_N) = \overline{z} + \overline{c}_N^T x_N = \overline{z} + \sum_{j \in N} \overline{c}_j x_j \implies \frac{\partial z}{\partial x_j} = \overline{c}_j$

Optimalité

- Coût réduit \overline{c}_j = dérivée directionnelle suivant la direction de base d_j associée à x_j , $j \in N$
- Si tous les coûts réduits sont positifs ou nuls, la solution est optimale.
- Sinon le coût décroît suivant une direction de base d_j de coût réduit négatif = direction de descente

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.2 Déplacement

3.1.2 Déplacement

- ☐ Règles de déplacement
- ☐ Changement de base
- ☐ Formules de pivotage
- ☐ Méthode des tableaux

3.1 Simplexe

3.1.2 Déplacement

Techniques d'optimisation

3.1.2 Règles de déplacement

Notations

• Matrices: B, N = matrice de base et hors base $AE = (B \ N)$

• Par extension : B, N = numéros des variables de base x_B et hors base x_N

• Solution de base associée à B: $E^{T}x = \begin{pmatrix} x_B \\ x_N \end{pmatrix}$ avec $\begin{cases} Ax = b \\ x_N = 0 \end{cases} \Rightarrow Bx_B = b$

Direction de déplacement

• Si tous les coûts réduits sont positifs ou nuls, la solution courante est optimale.

- On se déplace à partir de x d'un pas $\alpha \ge 0$ suivant la direction de base $d_e \rightarrow x' = x + \alpha d_e$
- Le nouveau point $x'=x + \alpha d_e$ doit rester admissible :

$$\begin{cases} Ax' = b \\ x' \ge 0 \end{cases} \Leftrightarrow \begin{cases} A(x + \alpha d_e) = b \\ x + \alpha d_e \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases} \alpha Ad_e = 0 & \text{car } Ax = b \\ x_N + \alpha d_{eN} \ge 0 \end{cases} \Rightarrow \begin{cases}$$

• Le déplacement est limité par le fait que les variables de base doivent rester positives.

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.2 Déplacement

3.1.2 Règles de déplacement

Pas de déplacement

Le déplacement α suivant la direction de base d_e est limité par les contraintes $x_B \ge 0$ $x_B + \alpha d_{eB} \ge 0$ \rightarrow Borne α_i pour chacune des m variables de base x_i , $i \in B$

- Si la composante d_{eB_i} est positive, le pas n'est pas borné : $\alpha_i = +\infty$
- Si la composante d_{eB_i} est négative, le pas est borné par : $\alpha_i = \frac{X_i}{-d_{eB_i}}$ (annulation de x_i)

Déplacement maximal

On note s le numéro de la 1ère variable de base x_i qui s'annule suivant la direction d_e.

- \rightarrow Le **pas maximal admissible** suivant la direction d_e est : $\alpha_s = \min_{i \in B} \alpha_i$
- Si $d_{eB} \ge 0$, le pas n'est pas borné suivant d_e
 - → Le problème PL n'a pas de solution (problème non borné).
- Sinon on réalise le pas maximal α_s suivant la direction d_e : $x' = x + \alpha_s d_e$
 - → Changement de base ou pivotage
 - \rightarrow Echange des variables x_s (variable de base sortant de la base courante)
 - et x_e (variable hors base entrant dans la nouvelle base)

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.2 Déplacement

3.1.2 Changement de base

Pivotage

La direction de base d_e associé à la variable hors base x_e est définie par :

$$E^{T}d_{e} = \begin{pmatrix} d_{eB} \\ d_{eN} \end{pmatrix} \text{ avec } \begin{cases} d_{eB} = -B^{-1}A_{e} & \rightarrow \text{ pour v\'erifier Ax=b} \\ E^{T}e_{e} = \begin{pmatrix} 0 \\ d_{eN} \end{pmatrix} & \rightarrow \text{ composantes nulles sauf =1 sur la composante e} \end{cases}$$

- Le nouveau point $x' = x + \alpha_s d_e$ est admissible car : la direction d_e est admissible le pas α_s respecte les contraintes $x' \ge 0$
- Variables de base x_i , $i \in B$: $x_i' = x_i + \alpha_s (d_{eB})_i$ $\begin{cases} \geq 0 & \text{si } i \neq s \\ = 0 & \text{si } i = s \end{cases} \rightarrow \text{car } \alpha_s \leq \alpha$ \Rightarrow par construction du pas α_s
- $\text{Variables hors base } x_j, j \in N: \quad x_j' = x_j + \alpha_s \big(d_{eB} \big)_j \quad \begin{cases} = 0 & \text{si } j \neq e \\ = \alpha_s \geq 0 & \text{si } j = e \end{cases} \quad \text{car } \big(d_{eB} \big)_j \quad \begin{cases} = 0 & \text{si } j \neq e \\ = 1 & \text{si } j = e \end{cases}$

Nouvelle base

- Nouvelles variables hors base : $\begin{cases} x_j' = 0 \text{ pour } j \in N \{e\} \\ x_s' = 0 \text{ pour } i = s \end{cases} \Rightarrow N' = N \{e\} + \{s\}$
- Nouvelles variables de base : $\begin{cases} x_i' \ge 0 \text{ pour } i \in B \{s\} \\ x_e' \ge 0 \text{ pour } j = e \end{cases} \Rightarrow B' = B \{s\} + \{e\}$

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.2 Déplacement

3.1.2 Changement de base

Variation du coût

- Le nouveau coût est : $c^T x' = c^T (x + \alpha_s d_e) = c^T x + \alpha_s \overline{c}_e \implies z' = z + \alpha_s \overline{c}_e \le z$
- Si la base n'est pas dégénérée ($x_B > 0$), toutes les directions de base sont admissibles
 - \rightarrow Déplacement non nul possible : $\alpha_s > 0$
 - ightarrow Le coût décroît strictement : z' < z car on a choisi $e \in N$ tel que $\overline{c}_e < 0$

Méthode pratique

- La nouvelle base ne diffère de la base courante que par une seule variable (= une colonne de A)
 - → Limitations des calculs correspondant à un pivotage
 - → Méthode des tableaux
- Les variables hors base sont constantes ou croissantes suivant les directions de base.
 - → Toutes les variables hors base sont candidates pour entrer dans la base.
- Plusieurs règles de choix sont possibles pour la variable entrant dans la base.
 - → Règles de pivotage
- L'algorithme nécessite une base initiale admissible.
 - → Etape préliminaire de détermination de la base initiale

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.2 Déplacement

3.1.2 Changement de base

Règles de pivotage

- Choix de la variable entrante → différents choix possibles
- Détermination de la variable sortante → imposé

Variable entrante

- La variable hors base entrant dans la base doit avoir un coût réduit négatif.
- Choix de la variable de plus petit indice
 - → Règle de Bland (évite le cyclage pouvant se produire lorsque une base est dégénérée)
- Choix de la variable de coût réduit le plus négatif (plus forte descente)
 - → 1^{ère} règle de Dantzig
- Choix de la variable conduisant à la plus forte diminution de la fonction coût
- Choix aléatoire avec une probabilité proportionnelle au coût réduit

Variable sortante

- La variable de base sortant de la base est la 1ère à s'annuler suivant la direction de base choisie
 - → 2ème règle de Dantzig

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.2 Déplacement

3.1.2 Changement de base

Illustration

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.2 Déplacement

3.1.2 Formules de pivotage

Forme canonique

On écrit le problème sous forme canonique dans la base B.

Formulation matricielle

$$\min_{\substack{x_N \in R^{n-m} \\ x_N \ge 0}} \overline{z} + \overline{c}_N^T x_N \text{ sous } x_B = \overline{b} - B^{-1} N x_N \ge 0 \qquad \text{avec } \begin{cases} \overline{b} = B^{-1} b \\ \overline{z} = c_B^T \overline{b} \\ \overline{c}_N^T = c_N^T - c_B^T B^{-1} N \end{cases}$$

• Formulation explicite en fonction des variables hors base x_i , $j \in N$

$$\min_{x_{N} \geq 0} \overline{z} + \sum_{j \in N} \overline{c}_{j} x_{j} \quad sous \quad x_{i} = \overline{b}_{i} - \sum_{j \in N} \overline{a}_{ij} x_{j} \geq 0, \ i \in B \qquad avec \quad \begin{cases} \overline{b} = B^{-1} b \\ B^{-1} N = (\overline{a}_{ij})_{i \in B, j \in N} \end{cases} \\ \overline{z} = \sum_{i \in B} c_{i} \overline{b}_{i} \\ \overline{c}_{j} = c_{j} - \sum_{i \in B} c_{i} \overline{a}_{ij} \ , \ j \in N \end{cases}$$

3.1 Simplexe

3.1.2 Déplacement

Techniques d'optimisation

3.1.2 Formules de pivotage

Changement de base

- Le pivotage consiste à remplacer la variable hors base x_e (entrante) : $B'=B-\{s\}+\{e\}$ par la variable de base x_s (sortante) : $N'=N-\{e\}+\{s\}$
- Forme canonique dans la base B: $z = \overline{z} + \sum_{j \in N} \overline{c}_j x_j$ $x_i = \overline{b}_i \sum_{j \in N} \overline{a}_{ij} x_j$, $i \in B$
 - \rightarrow Expression en fonction des variables x_i , $j \in N$
- Forme canonique dans la base B': $z = \overline{z}' + \sum_{j \in N'} \overline{c}_j' x_j$ $x_i = \overline{b}_i' \sum_{j \in N'} \overline{a}_{ij}' x_j$, $i \in B'$
 - \rightarrow Expression en fonction des variables x_i , $j \in \mathbb{N}' = \mathbb{N} \{e\} + \{s\}$

Pour passer de la forme canonique dans la base B à la forme canonique dans la base B', il faut :

- exprimer x_e en fonction de x_s ,
- remplacer x_e dans les expressions du coût z et des variables de base x_i , $i \in B' = B \{s\} + \{e\}$ On obtient les formules de pivotage.

3.1 Simplexe

3.1.2 Déplacement

Techniques d'optimisation

3.1.2 Formules de pivotage

Expression de x_e en fonction de x_s

• x_s est dans l'ancienne base B : $i=s \in B$ $\rightarrow x_s = \overline{b}_s - \sum_{j \in N} \overline{a}_{sj} x_j$

$$x_{s} = \overline{b}_{s} - \sum_{j \in N} \overline{a}_{sj} x_{j} = \overline{b}_{s} - \overline{a}_{se} x_{e} - \sum_{j \in N - \{e\}} \overline{a}_{sj} x_{j} \qquad \Rightarrow \boxed{x_{e} = \frac{\overline{b}_{s}}{\overline{a}_{se}} - \frac{1}{\overline{a}_{se}} x_{s} - \sum_{j \in N - \{e\}} \frac{\overline{a}_{sj}}{\overline{a}_{se}} x_{j}}$$

• x_e est dans la nouvelle base B': $i=e \in B'$ $\rightarrow x_e = \overline{b}_e' - \sum_{j \in N'} \overline{a}_{ej}' x_j$

En identifiant les coefficients : $\begin{cases} \overline{b}_e' = \frac{\overline{b}_s}{\overline{a}_{se}} \\ \overline{a}_{es}' = \frac{1}{\overline{a}_{se}} & \rightarrow j = s \\ \overline{a}_{ej}' = \frac{\overline{a}_{sj}}{\overline{a}_{se}} & \rightarrow j \in N - \{e\} \end{cases}$

On exprime ensuite les autres variables de base x_i , $i \in B - \{s\}$ en remplaçant x_e .

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.2 Déplacement

3.1.2 Formules de pivotage

Expression des autres variables de base

 $\bullet \quad x_i \text{ est dans l'ancienne base } B: \qquad i \in B \text{-}\{s\} \ \to \ \ x_i = \overline{b}_i - \sum_{i \in N} \overline{a}_{ij} x_j$

$$\mathbf{x_i} = \overline{\mathbf{b}_i} - \overline{\mathbf{a}_{ie}} \mathbf{x_e} - \sum_{\mathbf{j} \in \mathbf{N} - \{\mathbf{e}\}} \overline{\mathbf{a}_{ij}} \mathbf{x_j} = \overline{\mathbf{b}_i} - \overline{\mathbf{a}_{ie}} \left(\frac{1}{\overline{\mathbf{a}_{se}}} \overline{\mathbf{b}_s} - \frac{1}{\overline{\mathbf{a}_{se}}} \mathbf{x_s} - \sum_{\mathbf{j} \in \mathbf{N} - \{\mathbf{e}\}} \frac{\overline{\mathbf{a}_{sj}}}{\overline{\mathbf{a}_{se}}} \mathbf{x_j} \right) - \sum_{\mathbf{j} \in \mathbf{N} - \{\mathbf{e}\}} \overline{\mathbf{a}_{ij}} \mathbf{x_j}$$

$$\Rightarrow x_i = \overline{b}_i - \frac{\overline{a}_{ie}}{\overline{a}_{se}} \overline{b}_s + \frac{\overline{a}_{ie}}{\overline{a}_{se}} \overline{b}_s x_s - \sum_{j \in N - \{e\}} \left(\overline{a}_{ij} - \frac{\overline{a}_{ie}}{\overline{a}_{se}} \overline{a}_{sj} \right) x_j$$

• x_i reste dans la nouvelle base B': $i \in B'$ $\rightarrow \left| x_i = \overline{b}_i' - \sum_{j \in N'} \overline{a}_{ij}' x_j \right|$

 $\begin{cases} \overline{b}_i' = \overline{b}_i - \frac{\overline{a}_{ie}}{\overline{a}_{se}} \overline{b}_s \\ \overline{a}_{is}' = -\frac{\overline{a}_{ie}}{\overline{a}_{se}} & \rightarrow j = s \\ \overline{a}_{ij}' = \overline{a}_{ij} - \frac{\overline{a}_{ie}}{\overline{a}_{se}} \overline{a}_{sj} & \rightarrow j \in N - \{e\} \end{cases}$

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.2 Déplacement

3.1.2 Formules de pivotage

Expression du coût

 $\begin{array}{ll} \bullet & \text{Dans l'ancienne base B}: & z = \overline{z} + \sum_{j \in N} \overline{c}_j x_j \\ z = \overline{z} + \overline{c}_e x_e + \sum_{j \in N - \{e\}} \overline{c}_j x_j = \overline{z} + \overline{c}_e \left(\frac{1}{\overline{a}_{se}} \frac{\overline{b}_s}{\overline{b}_s} - \frac{1}{\overline{a}_{se}} x_s - \sum_{j \in N - \{e\}} \frac{\overline{a}_{sj}}{\overline{a}_{se}} x_j \right) + \sum_{j \in N - \{e\}} \overline{c}_j x_j \end{array}$

$$\Rightarrow \boxed{z = \overline{z} + \overline{c}_e \frac{\overline{b}_s}{\overline{a}_{se}} - \frac{\overline{c}_e}{\overline{a}_{se}} x_s + \sum_{j \in N - \{e\}} \left(\overline{c}_j - \overline{c}_e \frac{\overline{a}_{sj}}{\overline{a}_{se}}\right) x_j}$$

• Dans la nouvelle base B': $z = \overline{z}' + \sum_{j \in N'} \overline{c}_j' x_j$

En identifiant les coefficients : $\begin{cases} \overline{z}' = \overline{z} + \overline{c}_e \, \frac{\overline{b}_s}{\overline{a}_{se}} \\ \\ \overline{c}_s' = -\frac{\overline{c}_e}{\overline{a}_{se}} \end{cases} \rightarrow j = s$ $\overline{c}_j' = \overline{c}_j - \overline{c}_e \, \frac{\overline{a}_{sj}}{\overline{a}_{se}} \rightarrow j \in N - \{e\}$

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.2 Déplacement

3.1.2 Formules de pivotage

Récapitulatif

• Nouvelles variables de base : $i \in B' = B - \{s\} + \{e\}$

$$i = e \rightarrow \begin{cases} \overline{b}_{e}' = \frac{\overline{b}_{s}}{\overline{a}_{se}} \\ \overline{a}_{es}' = \frac{1}{\overline{a}_{se}} \\ \overline{a}_{ej}' = \frac{\overline{a}_{se}}{\overline{a}_{se}} \end{cases} \rightarrow j = s$$

$$i \in B - \{s\} \rightarrow \begin{cases} \overline{b}_{i}' = \overline{b}_{i} - \frac{\overline{a}_{ie}}{\overline{a}_{se}} \overline{b}_{s} \\ \overline{a}_{is}' = -\frac{\overline{a}_{ie}}{\overline{a}_{se}} \\ \overline{a}_{ij}' = \overline{a}_{ij} - \frac{\overline{a}_{ie}}{\overline{a}_{se}} \overline{a}_{sj} \end{cases} \rightarrow j = s$$

$$[\overline{a}_{ij}' = \overline{a}_{ij} - \frac{\overline{a}_{ie}}{\overline{a}_{se}} \overline{a}_{sj} \rightarrow j \in N - \{e\}$$

• Nouveau coût

$$\begin{cases} \overline{z}' = \overline{z} + \overline{c}_{e} \frac{\overline{b}_{s}}{\overline{a}_{se}} \\ \overline{c}_{s}' = -\frac{\overline{c}_{e}}{\overline{a}_{se}} & \rightarrow j = s \\ \overline{c}_{j}' = \overline{c}_{j} - \overline{c}_{e} \frac{\overline{a}_{sj}}{\overline{a}_{se}} & \rightarrow j \in N - \{e\} \end{cases}$$

On dispose dans un tableau les éléments nécessaires au pivotage \rightarrow tableau du simplexe.

3.1 Simplexe

3.1.2 Déplacement

Techniques d'optimisation

3.1.2 Méthode des tableaux

Tableau du simplexe

• On écrit le problème sous forme canonique dans la base B :

$$\min_{\boldsymbol{x}_{N} \geq 0} \boldsymbol{z} = \overline{\boldsymbol{z}} + \overline{\boldsymbol{c}}_{N}^{T} \boldsymbol{x}_{N} \quad sous \quad \boldsymbol{x}_{B} = \overline{\boldsymbol{b}} - \boldsymbol{B}^{-1} \boldsymbol{N} \boldsymbol{x}_{N} \geq 0 \qquad avec \begin{cases} \overline{\boldsymbol{b}} = \boldsymbol{B}^{-1} \boldsymbol{b} \\ \overline{\boldsymbol{z}} = \boldsymbol{c}_{B}^{T} \overline{\boldsymbol{b}} \\ \overline{\boldsymbol{c}}_{N}^{T} = \boldsymbol{c}_{N}^{T} - \boldsymbol{c}_{B}^{T} \boldsymbol{B}^{-1} \boldsymbol{N} \end{cases}$$

La solution de base associée à B est : $\begin{cases} x_B = \overline{b} \\ x_N = 0 \\ z = \overline{z} \end{cases}$

• Le tableau du simplexe est :
$$T = \begin{bmatrix} B^{-1}A & \overline{b} \\ \overline{c}^{T} & -\overline{z} \end{bmatrix} = \begin{bmatrix} x_1 & x_j & x_n \\ B^{-1}A_1 & \cdots & B^{-1}A_j & \cdots & B^{-1}A_n & x_B \\ \overline{c}_1 & \cdots & \overline{c}_j & \cdots & \overline{c}_n & -c_B^T x_B \end{bmatrix}$$

 $A_j = j^{\text{ème}}$ colonne de A $AE = (B \quad N)$ avec $E = \text{matrice de permutation de colonnes} \implies B^{-1}A = (I \quad B^{-1}N) E^T$

• En permutant les colonnes : $T = \begin{bmatrix} x_B & x_N \\ \hline I & B^{-1}N & \overline{b} \\ \hline 0 & \overline{c}_N^T & -\overline{z} \end{bmatrix} \rightarrow x_B + B^{-1}Nx_N = \overline{b}$

- Optimisation avec contraintes
- Simplexe
- 3.1.2 Déplacement

3.1.2 Méthode des tableaux

Description du tableau

Le tableau du simplexe est noté T(i,j): i=1 à m+1, j=1 à n+1

- T(1:m,1:n): Matrice $B^{-1}A$ \rightarrow m×n
 - $B^{-1}A = (I \quad B^{-1}N)E^{T}$ en plaçant les variables de base en premier
- T(m+1,1:n): Coûts réduits
- T(1:m,n+1): Solution de base $\rightarrow m\times 1$

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}_{\mathrm{B}} \\ \mathbf{x}_{\mathrm{N}} \end{pmatrix} = \begin{pmatrix} \overline{\mathbf{b}} \\ \mathbf{0} \end{pmatrix}$$

 $T(m+1,n+1) : Opposé du coût \rightarrow 1 \times 1$ $-z = -\overline{z} = -\overline{c}_{B}^{T}\overline{b}$

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.2 Déplacement

3.1.2 Méthode des tableaux

Utilisation du tableau

Le tableau du simplexe permet de :

- Repérer les variables de base → colonnes = matrice identité, coûts réduits nuls
- Vérifier si la base est **admissible** → valeurs positives ou nulles des variables de base
- Vérifier si la base est **optimale** → valeurs strictement positives des coûts réduits
- Sélectionner un **pivotage** pour passer à une base adjacente meilleure
- Mettre à jour la forme canonique dans la nouvelle base

Méthode de pivotage

- On choisit une variable hors base de coût réduit négatif → colonne e
- On examine la variation des variables de base suivant la direction d_e

$$x_i = \overline{b}_i - \overline{a}_{ie} x_e, i \in B$$
 s'annule pour : $x_e = \frac{\overline{b}_i}{\overline{a}_{ie}}$

- La première variable de base à s'annuler sort de la base \rightarrow ligne s
- Le pivotage e-s consiste à faire apparaître une colonne de la matrice identité en colonne e
 - → forme canonique dans la nouvelle base
 - → par combinaison linéaire des lignes du tableau

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.2 Déplacement

3.1.2 Méthode des tableaux

Réalisation du pivotage

La variable x_e entre dans la nouvelle base B'=B-{s}+{e}

Pour faire apparaître une colonne de la matrice identité en colonne e, on réalise des **combinaisons linéaires des lignes du tableau**, y compris la dernière colonne.

- Division de la ligne s par le **pivot** $\overline{a}_{se} \rightarrow \overline{a}_{se}'=1$
- Addition de la ligne s aux autres lignes pour annuler les coefficients dans la colonne e
- Annulation du coût réduit dans la colonne e

Simplexe

3.1.2 Déplacement

Techniques d'optimisation

3.1.2 Méthode des tableaux

Algorithme de pivotage

1. Choix du pivot

Variable hors base entrante $x_e = 1^{er}$ coût réduit négatif

 $\alpha_i = \frac{T(i, n+1)}{T(i, e)}, i \in B, \text{ si } T(i, e) > 0$ Pas maximal admissible pour chaque variable de base :

Variable de base sortante x_s :

$$\alpha_s = \min_{\substack{i \in B \\ T(i,e) > 0}} \alpha_i$$

2. Réalisation du pivotage

Pivot = T(s,e)

Lignes $i=1,...,m+1, i\neq s$

$$T(i,k) = T(i,k) - \frac{T(i,e)}{T(s,e)}T(s,k), k = 1,\dots, n+1$$

$$T(s,k) = \frac{T(s,k)}{T(s,e)}, k = 1,\dots, n+1$$

Ligne s du pivot

$$T(s,k) = \frac{T(s,k)}{T(s,e)}, k = 1,\dots, n+1$$

→ méthode similaire à la méthode du pivot de Gauss

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.2 Déplacement

3.1.2 Exemple

Méthode des tableaux

Problème linéaire à 3 variables x₁, x₂, x₃

$$\min_{\substack{x_1, x_2, x_3 \\ x_1, x_2, x_3}} -10x_1 - 12x_2 - 12x_3 \text{ sous } \begin{cases} x_1 + 2x_2 + 2x_3 \le 20 \\ 2x_1 + x_2 + 2x_3 \le 20 \\ 2x_1 + 2x_2 + x_3 \le 20 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- Forme standard
 - \rightarrow Variables d'écart x_4, x_5, x_6 positives

$$\min_{\substack{x_1, x_2, x_3, x_4, x_5, x_6 \\ x_1, x_2, x_3, x_4, x_5, x_6}} -10x_1 - 12x_2 - 12x_3 \text{ sous } \begin{cases} x_1 + 2x_2 + 2x_3 + x_4 = 20 \\ 2x_1 + x_2 + 2x_3 + x_5 = 20 \\ 2x_1 + 2x_2 + x_3 + x_6 = 20 \\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

3.1 Simplexe

3.1.2 Déplacement

Techniques d'optimisation

3.1.2 Exemple

Méthode des tableaux

• Tableau du simplexe

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	X_5	x_6			
1	2	2	1	0	0	20	x ₄	Base initiale admissible
2	1	2	0	1	0	20	X ₅	(x_4, x_5, x_6)
2	2	1	0	0	1	20	\mathbf{x}_{6}	
-10	-12	-12	0	0	0	0	-z	

• Solution de base **non optimale** : coûts réduits négatifs (= directions de descente)

• Variable entrante: 1^{er} coût réduit négatif $\rightarrow x_1$

• Variable sortante : $1^{\text{ère}}$ variable de base à s'annuler $\rightarrow x_5$

• Pivot: $\overline{a}_{51} = 2$

3.1 Simplexe

3.1.2 Déplacement

Techniques d'optimisation

3.1.2 Exemple

Méthode des tableaux

• 1 er pivotage : entrée x₁, sortie x₅

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	X_5	\mathbf{x}_6			Pas
1	2	2	1	0	0	20	$\mathbf{x_4}$	\rightarrow s ₁₄ =20
2	1	2	0	1	0	20	X ₅	\rightarrow s ₁₅ =10
2	2	1	0	0	1	20	\mathbf{x}_6	\rightarrow s ₁₆ =10
-10	-12	-12	0	0	0	0	Z	

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	X_5	\mathbf{x}_6			
0	1.5	1	1	-0.5	0	10	x ₄	Nouvelle base
1	0.5	1	0	0.5	0	10	\mathbf{x}_1	(x_1, x_4, x_6)
0	1	-1	0	-1	1	0	\mathbf{x}_6	
0	-7	-2	0	5	0	100	z	

3.1 Simplexe

3.1.2 Déplacement

Techniques d'optimisation

3.1.2 Exemple

Méthode des tableaux

2ème pivotage : entrée x₂, sortie x₆

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	X_5	x_6			Pas
0	1.5	1	1	-0.5	0	10	$\mathbf{x_4}$	$\rightarrow s_{24} = 20/3$
1	0.5	1	0	0.5	0	10	$\mathbf{x_1}$	\rightarrow s ₂₁ =20
0	1	-1	0	-1	1	0	\mathbf{x}_6	\rightarrow s ₂₆ =0
0	-7	-2	0	5	0	100	Z	

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	X_5	\mathbf{x}_6		_	
0	0	2.5	1	1	-1.5	10	X ₄	Nouvelle base
1	0	1.5	0	1	-0.5	10	\mathbf{x}_1	(x_1, x_2, x_4)
0	1	-1	0	-1	1	0	$\mathbf{x_2}$	
0	0	-9	0	-2	7	100	z	

3.1 Simplexe

3.1.2 Déplacement

Techniques d'optimisation

3.1.2 Exemple

Méthode des tableaux

 $3^{\text{ème}}$ pivotage : entrée x_3 , sortie x_4

\mathbf{x}_1	x ₂	X ₃	X ₄	X ₅	X ₆	
0	0	2.5	1	1	-1.5	10
1	0	1.5	0	1	-0.5	10
0	1	-1	0	-1	1	0
0	0	-9	0	-2	7	100

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	X ₅	\mathbf{x}_6	
0	0	1	0.4	0.4	-0.6	4
1	0	0	-0.6	0.4	0.4	4
0	1	0	0.4	-0.6	0.4	4
0	0	0	3.6	1.6	1.6	136

Solution optimale:
$$\overline{c} \ge 0 \longrightarrow \begin{cases} x^* = \begin{pmatrix} 4 & 4 & 0 & 0 & 0 \\ z^* = -136 \end{cases}$$

Pas

 $\mathbf{x_4}$ $\rightarrow s_{34}=4$ $\mathbf{x_1}$ $\rightarrow s_{31}=20/3$ $\mathbf{x_2}$ $\rightarrow s_{32}=+\infty$

 \mathbf{Z}

$$\mathbf{x_3}$$
 Nouvelle base $\mathbf{x_1}$ $(\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3})$ $\mathbf{x_2}$

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.2 Déplacement

3.1.2 Exemple

Méthode des tableaux

Récapitulatif des itérations

k	В		c		x ₁	X ₂	X ₃	X ₄	X ₅	X ₆		d_B		S _{max}	e	S	z
0	4 5 6	-10	-12	-12	0	0	0	20	20	20	-1	-2	-2	10	1	5	0
1	1 4 6	-7	-2	5	10	0	0	10	0	0	-1.5	-0.5	-1	0	2	6	-100
2	1 2 4	-9	-2	7	10	0	0	10	0	0	-2.5	-1.5	1	4	3	4	-100
3	1 2 3	3.6	31.6	1.6	4	4	4	0	0	0							-136

Commentaires

- La mise sous forme standard nécessite d'introduire des variables supplémentaires
 - → Variables d'écart positives
- On dispose directement d'une base initiale admissible formée des variables d'écart
 - → Ce n'est pas toujours le cas
 - → Phase préliminaire pour construire une base initiale
- Certains pivotages ne réduisent pas le coût (exemple : pivotage numéro 2)
 - → Base dégénérée + risque de cyclage (= retrouver une base précédente)
- La solution optimale ne comporte que les variables initiales
 - → Ce n'est pas toujours le cas
 - → Des pivotages supplémentaires peuvent être nécessaires

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.3 Initialisation

3.1.3 Initialisation

- ☐ Problème auxiliaire
- ☐ Tableau initial
- ☐ Méthode des 2 phases

- Optimisation avec contraintes
- Simplexe
- 3.1.3 Initialisation

3.1.3 Problème auxiliaire

Base initiale

 $\min_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^{\mathrm{T}} \mathbf{x} \text{ sous } \begin{cases} \mathbf{A} \mathbf{x} = \mathbf{b} \\ \mathbf{x} \ge 0 \end{cases}$ Le problème (PL) sous forme standard est :

L'algorithme du simplexe nécessite une base initiale admissible.

Pour trouver une solution admissible, on considère un problème auxiliaire.

Problème auxiliaire

Le problème auxiliaire (PLa) sous forme standard est :
$$\min_{\substack{x \in R^n \\ y \in R^m}} 0^T x + e^T y \text{ sous } \begin{cases} Ax + y = b \\ x, y \ge 0 \end{cases}$$

- Les variables du problème auxiliaire sont :
 - les n variables x du problème initial (PL)
 - m variables auxiliaires y \rightarrow 1 variable par contrainte
- La fonction coût du problème auxiliaire est positive, bornée inférieurement par 0 (car y≥0).
- Si x_0 est un **point admissible de (PL)**, alors ($x=x_0$, y=0) est une solution de (PLa) à coût nul donc une solution optimale de (PLa) On peut donc trouver un point admissible en résolvant le problème auxiliaire (PLa).

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.3 Initialisation

3.1.3 Problème auxiliaire

Problème auxiliaire

Le problème auxiliaire (PLa) est sous forme standard : $\min_{\substack{x \in R^n \\ y \in R^m}} 0^T x + e^T y$ sous $\begin{cases} Ax + y = b \\ x, y \ge 0 \end{cases}$

• On peut supposer b≥0 (au besoin en multipliant les contraintes égalité par -1).

Tableau initial du problème auxiliaire

- Le problème (PLa) est sous forme canonique dans la base B associée aux variables y :
 - variables de base y → matrice B=I, coûts réduits=1
 - variables hors base $x \rightarrow matrice N=A$, coûts réduits=0
- La solution de base associée à la base B (x=0, y=b) est admissible : y=b≥0
- On peut appliquer l'algorithme du simplexe au problème (PLa) à partir de la base B.
- Tableau initial du simplexe pour le problème (PLa) :

X	у		
A	I	b	у
0^{T}	e^{T}	0	-Z

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.3 Initialisation

3.1.3 Problème auxiliaire

Solution du problème auxiliaire

S'il existe un point admissible pour (PL), alors :

- le coût optimal du problème auxiliaire (PLa) est nul,
- la solution (x_0,y_0) de (Pla) donne un point x_0 admissible du problème (PL)

$$\begin{cases} 0^{T} x_{0} + e^{T} y_{0} = 0 \\ Ax_{0} + y_{0} = b \\ x_{0}, y_{0} \ge 0 \end{cases} \Rightarrow \begin{cases} y_{0} = 0 \\ Ax_{0} = b \\ x_{0} \ge 0 \end{cases} \rightarrow \text{contraintes du problème (PL)}$$

Par contraposée, si le coût optimal de (PLa) n'est pas nul, (PL) n'a pas de point admissible.

Variables auxiliaires

- Les variables y sont nulles à l'optimum. Elles sont : soit hors base
 soit en base (solution dégénérée)
- Pour obtenir une base admissible du problème (PL) qui ne contienne que des variables x, il faut échanger les variables y en base par des pivotages avec des variables x. Ces pivotages sont de pas nul, le tableau n'est pas modifié.
- On obtient une base B ne contenant que des variables x du problème (PL).

3.1 Simplexe

3.1.3 Initialisation

Techniques d'optimisation

3.1.3 Exemple

Problème auxiliaire

Problème linéaire à 4 variables x₁, x₂, x₃,x₄

$$\min_{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}} \mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3} \quad \text{sous} \begin{cases}
x_{1} + 2x_{2} + 3x_{3} &= 3 \\
-x_{1} + 2x_{2} + 6x_{3} &= 2 \\
4x_{2} + 9x_{3} &= 5 \\
3x_{3} + x_{4} &= 1 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{cases}$$

- Problème auxiliaire
 - \rightarrow Variables auxiliaires y_1, y_2, y_3, y_4 positives

$$\min_{\substack{x_1,x_2,x_3,x_4\\y_1,y_2,y_3,y_4}} y_1 + y_2 + y_3 + y_4 \text{ sous } \begin{cases} x_1 + 2x_2 + 3x_3 & +y_1 & = 3\\ -x_1 + 2x_2 + 6x_3 & +y_2 & = 2\\ 4x_2 + 9x_3 & +y_3 & = 5\\ 3x_3 + x_4 & +y_4 = 1\\ x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4 \ge 0 \end{cases}$$

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.3 Initialisation

3.1.3 Exemple

Problème auxiliaire

• Tableau initial du simplexe pour le problème auxiliaire

x ₁	\mathbf{x}_2	X ₃	X_4	\mathbf{y}_1	\mathbf{y}_2	y_3	y_4		
1	2	3	0	1	0	0	0	3	y_1
-1	2	6	0	0	1	0	0	2	y_2
0	4	9	0	0	0	1	0	5	y_3
0	0	3	1	0	0	0	1	1	y_4
0	-8	-21	-1	0	0	0	0	-11	-z

- Solution de base **non optimale** : coûts réduits négatifs (= directions de descente)
- Variable entrante
 1er coût réduit négatif → x₂
- Variable sortante
 1ère variable de base à s'annuler → y

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.3 Initialisation

3.1.3 Exemple

Problème auxiliaire

• Itérations du simplexe pour le problème auxiliaire

x ₁	x ₂	X ₃	X ₄	y ₁	\mathbf{y}_2	y ₃	y ₄	_	-
1	2	3	0	1	0	0	0	3	$\mathbf{y_1}$
-1	2	6	0	0	1	0	0	2	\mathbf{y}_2
0	4	9	0	0	0	1	0	5	\mathbf{y}_3
0	0	3	1	0	0	0	1	1	$\mathbf{y_4}$
0	-8	-21	-1	0	0	0	0	-11	-z
			-	-					
$\underline{}$ \mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	\mathbf{y}_1	y_2	y_3	V.		
		213	7.4	<i>J</i> 1	J 2		y_4		•
2	0	-3	0	1	-1	0	0	1	$\mathbf{y_1}$
-1/2	0							1	y_1 x_2
		-3	0	1	-1	0	0		
-1/2	1	-3 3	0	1 0	-1 1/2	0	0	1	\mathbf{x}_2

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.3 Initialisation

3.1.3 Exemple

 $\mathbf{x_1}$

 \mathbf{X}_2

 $\mathbf{y_3}$

 $\mathbf{y_4}$

-Z

Problème auxiliaire

• Itérations du simplexe pour le problème auxiliaire

A ₁	A 2	A 3	A ₄	y ₁	y ₂	y ₃	y ₄		_
2	0	-3	0	1	-1	0	0	1	$\mathbf{y_1}$
-1/2	1	3	0	0	1/2	0	0	1	\mathbf{x}_2
2	0	-3	0	0	-2	1	0	1	\mathbf{y}_3
0	0	3	1	0	0	0	1	1	y_4
-4	0	3	-1	0	4	0	0	-3	-Z
						-	-		•
\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	\mathbf{y}_1	\mathbf{y}_2	y_3	y_4		

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	\mathbf{y}_1	y_2	y_3	y_4	
1	0	-3/2	0	1/2	-1/2	0	0	1/2
0	1	9/4	0	1/4	1/4	0	0	5/4
0	0	0	0	-1	-1	1	0	0
0	0	3	1	0	0	0	1	1
0	0	-3	-1	2	2	0	0	-1

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.3 Initialisation

3.1.3 Exemple

Problème auxiliaire

• Itérations du simplexe pour le problème auxiliaire

_		y_4	y_3	y_2	\mathbf{y}_1	X ₄	X ₃	\mathbf{x}_2	x ₁
\mathbf{x}_1	1/2	0	0	-1/2	1/2	0	-3/2	0	1
$\mathbf{x_2}$	5/4	0	0	1/4	1/4	0	9/4	1	0
\mathbf{y}_3	0	0	1	-1	-1	0	0	0	0
y_4	1	1	0	0	0	1	3	0	0
-z	-1	0	0	2	2	-1	-3	0	0
•				•					

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	y_1	y_2	y_3	y_4		_
1	0	0	1/2	1/2	-1/2	0	1/2	1	\mathbf{x}_1
0	1	0	-3/4	1/4	1/4	0	-3/4	1/2	\mathbf{x}_{2}
0	0	0	0	-1	-1	1	0	0	\mathbf{y}_3
0	0	1	1/3	0	0	0	1/3	1/3	x ₃
0	0	0	0	2	2	0	1	0	-z

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.3 Initialisation

3.1.3 Exemple

Problème auxiliaire

• Echange des variables auxiliaires y en base avec des variables x

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X ₄	\mathbf{y}_1	y_2	y_3	y_4		
1	0	0	1/2	1/2	-1/2	0	1/2	1	$\mathbf{x_1}$
0	1	0	-3/4	1/4	1/4	0	-3/4	1/2	$\mathbf{x_2}$
0	0	0	0	-1	-1	1	0	0	y_3
0	0	1	1/3	0	0	0	1/3	1/3	\mathbf{x}_3
0	0	0	0	2	2	0	1	0	-Z

- Tous les pivots sont nuls sur la ligne 3
 - → La contrainte 3 est **redondante** (= somme des 2 premières contraintes)
 - → La matrice A n'est pas de rang plein
- La procédure permet d'identifier les contraintes redondantes
 - → Suppression de la contrainte 3
 - \rightarrow Suppression de la variable auxiliaire y_3

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.3 Initialisation

3.1.3 Exemple

Problème auxiliaire

• Tableau solution du problème auxiliaire

X ₁	\mathbf{x}_2	X ₃	X ₄	\mathbf{y}_1	y_2	y_3	y_4		
1	0	0	1/2	1/2	-1/2	0	1/2	1	$\mathbf{x_1}$
0	1	0	-3/4	1/4	1/4	0	-3/4	1/2	\mathbf{x}_2
0	0	0	0	-1	-1	1	0	0	y_3
0	0	1	1/3	0	0	0	1/3	1/3	X ₃
0	0	0	0	2	2	0	1	0	-Z

• Base x_1, x_2, x_3

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X ₄	y ₁	\mathbf{y}_2	y_4		-
1	0	0	1/2	1/2	-1/2	1/2	1	\mathbf{x}_1
0	1	0	-3/4	1/4	1/4	-3/4	1/2	\mathbf{X}_{2}
0	0	1	1/3	0	0	1/3	1/3	X ₃
0	0	0	0	2	2	1	0	-z

- → coût nul
- → point admissible du problème initial

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.3 Initialisation

3.1.3 Tableau initial

Tableau solution du problème (PLa)

• La base B solution de (PLa) est composée uniquement de variables x du problème initial (PL).

Le tableau correspondant à la solution de (PLa) est :
 × → valeurs à modifier pour passer au problème (PL)

X_{B}	X _N	У		_
I	B-1N	×	B ⁻¹ b	
0	×	×	×	

x_B

Tableau initial du problème (PL)

Pour construire le tableau du simplexe du problème (PL)

• On supprime les colonnes correspondant aux variables y :

X _B	$\mathbf{x}_{\mathbf{N}}$		_
I	B-1N	B-1b	X _B
0	×	×	-z

• On calcule les **coûts réduits** dans la base $B: \overline{c} = c - c_B^T B^{-1} A = \begin{cases} c_j - c_B^T B^{-1} A_j & \text{si } j \in N \\ 0 & \text{si } j \in B \end{cases}$

On calcule le **coût** dans la base B:

$$z = c_B^T B^{-1} b$$

Pour faciliter les calculs, on rappelle les coûts sur la 1ère ligne.

c_{B}	c_N		_		X_{B}	X _N		_
I	B-1N	B-1b	x _B		I	B-1N	B-1b	X _B
0	$c_N - c_B^T B^{-1} N$	$-c_B^T B^{-1} b$	-z		0	\overline{c}_{N}	-Z	-z

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.3 Initialisation

3.1.3 Méthode des 2 phases

Prétraitement

- Mettre le problème sous forme standard
- Prémultiplier les contraintes (2nd membre positif)

$$\min_{x \in R^n} c^T x \text{ sous } \begin{cases} Ax = b, b \ge 0 \\ x \ge 0 \end{cases}$$

Phase 1 : Problème auxiliaire

• Introduire une variable auxiliaire y par contrainte

$$\min_{\substack{x \in R^n \\ y \in R^m}} 0^T x + e^T y \text{ sous } \begin{cases} Ax + y = b \\ x, y \ge 0 \end{cases}$$

• Construire le tableau initial du problème auxiliaire

X	У		-
A	I	b	у
-e ^T A	0	-e ^T b	-z

- Résoudre le problème auxiliaire
- Faire sortir les variables auxiliaires de la base
- Supprimer les contraintes redondantes (pivots tous nuls sur une ligne)
- Supprimer les colonnes correspondant aux variables auxiliaires y
 - \rightarrow Base ne contenant que des variables x

Phase 2: Problème initial

- Calculer la dernière ligne du tableau (coûts réduits, coût)
- Résoudre le problème initial

X_{B}	x_N		
I	B-1N	B-1b	у
0	$c_N - c_B^T B^{-1} N$	$-c_B^T B^{-1} b$	-2

3.1 Simplexe

3.1.3 Initialisation

Techniques d'optimisation

3.1.3 Exemple

Méthode des 2 phases

Problème linéaire à 5 variables x₁, x₂, x₃,x₄,x₅

$$\min_{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}, \mathbf{x}_{5}} 2\mathbf{x}_{1} + 3\mathbf{x}_{2} + 3\mathbf{x}_{3} + \mathbf{x}_{4} - 2\mathbf{x}_{5} \text{ sous} \begin{cases} \mathbf{x}_{1} + 3\mathbf{x}_{2} & +4\mathbf{x}_{4} + \mathbf{x}_{5} = 2\\ \mathbf{x}_{1} + 2\mathbf{x}_{2} & -3\mathbf{x}_{4} + \mathbf{x}_{5} = 2\\ -\mathbf{x}_{1} - 4\mathbf{x}_{2} + 3\mathbf{x}_{3} & = 1\\ \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}, \mathbf{x}_{5} \ge 0 \end{cases}$$

- Problème auxiliaire
 - \rightarrow Variables auxiliaires y_1, y_2, y_3 positives

$$\min_{\substack{x_1,x_2,x_3,x_4,x_5\\y_1,y_2,y_3}} y_1 + y_2 + y_3 \text{ sous } \begin{cases} x_1 + 3x_2 & +4x_4 + x_5 + y_1 & = 2\\ x_1 + 2x_2 & -3x_4 + x_5 & +y_2 & = 2\\ -x_1 - 4x_2 + 3x_3 & +y_3 = 1\\ x_1,x_2,x_3,x_4,x_5,y_1,y_2,y_3 \ge 0 \end{cases}$$

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.3 Initialisation

3.1.3 Exemple

Méthode des 2 phases

• Tableau initial du problème auxiliaire

$\underline{}$ \mathbf{x}_1	\mathbf{x}_2	X ₃	X ₄	X ₅	\mathbf{y}_1	\mathbf{y}_2	\mathbf{y}_3		_
1	3	0	4	1	1	0	0	2	y_1
1	2	0	-3	1	0	1	0	2	y_2
-1	-4	3	0	0	0	0	1	1	y_3
-1	-1	-3	-1	-2	0	0	0	-5	-z

- Solution de base **non optimale** : coûts réduits négatifs (= directions de descente)
- Variable entrante 1^{er} coût réduit négatif $\rightarrow x_1$
- Variable sortante
 1ère variable de base à s'annuler → y

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.3 Initialisation

3.1.3 Exemple

 $\mathbf{y_1}$

 $\mathbf{y_2}$

 $\mathbf{y_3}$

-Z

Méthode des 2 phases

• Itérations du problème auxiliaire

\mathbf{x}_1	X ₂	X ₃	X_4	X ₅	\mathbf{y}_1	\mathbf{y}_2	\mathbf{y}_3	
1	3	0	4	1	1	0	0	2
1	2	0	-3	1	0	1	0	2
-1	-4	3	0	0	0	0	1	1
-1	-1	-3	-1	-2	0	0	0	-5

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	X_5	\mathbf{y}_1	y_2	y_3		
1	3	0	4	1	1	0	0	2	\mathbf{x}_1
0	-1	0	-7	0	-1	1	0	0	\mathbf{y}_2
0	-1	3	4	1	1	0	1	3	\mathbf{y}_3
0	2	-3	3	-1	1	0	0	-3	-Z

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.3 Initialisation

3.1.3 Exemple

Méthode des 2 phases

• Itérations du problème auxiliaire

X ₁	\mathbf{x}_2	\mathbf{x}_3	X ₄	X ₅	\mathbf{y}_1	\mathbf{y}_2	y_3		-
1	3	0	4	1	1	0	0	2	\mathbf{x}_1
0	-1	0	-7	0	-1	1	0	0	$\mathbf{y_2}$
0	-1	3	4	1	1	0	1	3	\mathbf{y}_3
0	2	-3	3	-1	1	0	0	-3	-Z

x ₁	\mathbf{x}_2	X ₃	X ₄	X ₅	\mathbf{y}_1	\mathbf{y}_2	y ₃	_	_
1	3	0	4	1	1	0	0	2	\mathbf{x}_1
0	-1	0	-7	0	-1	1	0	0	\mathbf{y}_2
0	-1/3	1	4/3	1/3	1/3	0	1/3	1	x ₃
0	1	0	7	0	2	0	1	0	-z

• Solution optimale du problème auxiliaire (coûts réduits positifs ou nuls)

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.3 Initialisation

3.1.3 Exemple

Méthode des 2 phases

• Base initiale : **échange** $y_2 - x_2$

\mathbf{x}_1	X ₂	X ₃	X ₄	X ₅	\mathbf{y}_1	\mathbf{y}_2	\mathbf{y}_3		_
1	3	0	4	1	1	0	0	2	$\mathbf{x_1}$
0	-1	0	-7	0	-1	1	0	0	\mathbf{y}_2
0	-1/3	1	4/3	1/3	1/3	0	1/3	1	\mathbf{x}_3
0	1	0	7	0	2	0	1	0	-Z

\mathbf{x}_1	x ₂	X ₃	X ₄	X ₅	y ₁	\mathbf{y}_2	\mathbf{y}_3		_
1	0	0	-17	1	2	3	0	2	\mathbf{x}_1
0	1	0	7	0	-1	-1	0	0	\mathbf{X}_{2}
0	0	1	3.67	1/3	2/3	-1/3	1/3	1	\mathbf{x}_3
0	0	0	0	0	1	1	1	0	-Z

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.3 Initialisation

3.1.3 Exemple

 $\mathbf{X_1}$

 \mathbf{X}_2

 $\mathbf{X_3}$

-Z

Méthode des 2 phases

• Base initiale: suppression variables auxiliaires

\mathbf{x}_1	\mathbf{x}_2	X ₃	X ₄	X ₅	_	_
1	0	0	-17	1	2	
0	1	0	7	0	0	
0	0	1	3.67	1/3	1	
0	0	0	0	0	0	

• Calcul de la dernière ligne du tableau On rappelle les coûts en 1^{ère} ligne pour faciliter le calcul (multiplication par les colonnes)

$$c = \begin{array}{|c|c|c|c|c|c|c|c|}\hline x_1 & x_2 & x_3 & x_4 & x_5\\\hline 2 & 3 & 3 & 1 & -2\\\hline 1 & 0 & 0 & -17 & 1 & 2\\\hline 0 & 1 & 0 & 7 & 0 & 0\\\hline 0 & 0 & 1 & 3.67 & 1/3 & 1\\\hline 0 & 0 & 0 & 3 & -5 & -7\\\hline \end{array}$$

$$\mathbf{x_1}$$
 $\mathbf{x_2}$
 $\mathbf{coûts} \text{ réduits } = \mathbf{c_N} - \mathbf{c_B}^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}$
 $\mathbf{x_3}$
 $\mathbf{coût}$
 $\mathbf{coût}$
 $\mathbf{coût}$
 $\mathbf{coût}$

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.3 Initialisation

3.1.3 Exemple

Méthode des 2 phases

• Itérations du problème initial

$\underline{}_{1}$	X ₂	X ₃	X ₄	X ₅	
1	0	0	-17	1	2
0	1	0	7	0	0
0	0	1	3.67	1/3	1
0	0	0	3	-5	-7

 $\mathbf{x_1}$ $\mathbf{x_2}$

 \mathbf{x}_3

-Z

x ₁	\mathbf{x}_2	\mathbf{x}_3	X_4	X ₅	
1	0	0	-17	1	2
0	1	0	7	0	0
-1/3	0	1	9.33	0	1/3
5	0	0	-82	0	3

 X_5

 \mathbf{X}_{2}

 \mathbf{X}_3

-Z

3.1 Simplexe

3.1.3 Initialisation

Techniques d'optimisation

3.1.3 Exemple

Méthode des 2 phases

• Itérations du problème initial

$\underline{}_{1}$	X ₂	X ₃	X ₄	X ₅	
1	0	0	-17	1	2
0	1	0	7	0	0
-1/3	0	1	9.33	0	1/3
5	0	0	-82	0	3

 X_5

 \mathbf{X}_2

 X_3

-Z

\mathbf{x}_1	\mathbf{x}_2	X ₃	X_4	X ₅	
1	2.43	0	0	1	2
0	0.14	0	1	0	0
-1/3	-1.33	1	0	0	1/3
5	11.71	0	0	0	3

X₅

 \mathbf{X}_4

 X_3

-2

• Solution optimale: $\overline{c} \ge 0$ $\rightarrow \begin{cases} x^* = \begin{pmatrix} 0 & 0 & 1/3 & 0 & 2 \end{pmatrix}^T \\ z^* = -3 \end{cases}$

- Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.4 Simplexe révisé

3.1.4 Simplexe révisé

Méthode révisée du simplexe

- L'algorithme du simplexe nécessite un grand nombre d'opérations matricielles
 - → problèmes de temps de calcul
 - → problèmes de place mémoire
 - → problèmes de précision numérique
- La méthode révisée du simplexe permet de réduire le nombre d'opérations.

Rappels

Forme standard:

$$\min_{\mathbf{x} \in \mathbf{R}^{n}} \mathbf{c}^{\mathsf{T}} \mathbf{x} \quad \text{sous} \quad \begin{cases} \mathbf{A} \mathbf{x} = \mathbf{b} & \to & \lambda \\ \mathbf{x} \ge \mathbf{0} & \to & \mathbf{s} \end{cases}$$

Multiplicateurs:

$$\begin{cases} \lambda = \mathbf{B}^{-T} \mathbf{c}_{\mathbf{B}} \\ \mathbf{s}_{\mathbf{N}} = \mathbf{c}_{\mathbf{N}} - (\mathbf{B}^{-1} \mathbf{N})^{T} \mathbf{c}_{\mathbf{B}} = \overline{\mathbf{c}}_{\mathbf{N}} \end{cases}$$

Forme canonique dans la base B:

$$\min_{\mathbf{x}_{N} \geq 0} \mathbf{z} = \overline{\mathbf{z}} + \overline{\mathbf{c}}_{N}^{T} \mathbf{x}_{N} \quad sous \quad \mathbf{x}_{B} = \overline{\mathbf{b}} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_{N} \geq 0$$

$$\begin{array}{ll} \text{Solution de base associée à B:} & \begin{cases} x_{_B} = \overline{b} \\ x_{_N} = 0 \\ z = \overline{z} \end{cases} & \text{avec} & \begin{cases} \overline{b} = B^{-1}b \\ \overline{z} = c_{_B}^T \overline{b} \\ \overline{c}_{_N}^T = c_{_N}^T - c_{_B}^T B^{-1} N \end{cases}$$

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.4 Simplexe révisé

3.1.4 Simplexe révisé

Itération du simplexe

- On connaît les colonnes de A correspondant à la base courante admissible → matrice B Pour réaliser une itération du simplexe, on doit déterminer :
 - la solution de base courante
 - les coûts réduits des variables hors base pour choisir la variable entrante
 - les pas maximaux sur les variables de base pour choisir la variable sortante

• Solution de base :
$$\begin{cases} x_B = \overline{b} = B^{-1}b \\ x_N = 0 \end{cases} \rightarrow Bx_B = b$$
 • Coûts réduits :
$$\overline{c}_N^T = c_N^T - c_B^T B^{-1} N = c_N^T - \lambda^T N$$

$$\rightarrow B\lambda = c_B$$

On choisit la variable hors base entrante x_e (coût réduit négatif)

 \rightarrow colonne A_e de la matrice A

• Direction de base d_e : $d_e = \begin{pmatrix} d_{eB} \\ d_{eN} \end{pmatrix}$ avec $\begin{cases} d_{eB} = -B^{-1}A_e \\ d_{eN} = \begin{pmatrix} 0 & \cdots & 1 & \cdots & 0 \end{pmatrix} \end{cases}$ \rightarrow $Bd_{eB} = -A_e$

Le **pas maximal** suivant d_e correspond au rapport x_B / d_{eB} positif, minimal La variable de base sortante x_s est la première à s'annuler.

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.4 Simplexe révisé

3.1.4 Simplexe révisé

Méthode révisée du simplexe

• Le pivotage peut être réalisé en résolvant 3 systèmes linéaires de même matrice B.

$$\begin{cases} Bx_B = b & \rightarrow x_B \\ B\lambda = c_B & \rightarrow \lambda & \rightarrow \overline{c}_N \rightarrow x_e \\ Bd_{eB} = -A_e & \rightarrow d_{eB} & \rightarrow x_s \end{cases}$$

- → réduction des calculs nécessaires
- → différentes méthodes possibles d'inversion et de stockage de la matrice B
- Il suffit de stocker en mémoire : les matrices initiales A, b,c
 - les numéros des colonnes de base.
 - → limitation de la place mémoire
 - → réduction des erreurs numériques, car on repart systématiquement des matrices initiales.
- La méthode révisée est implémentée dans les logiciels de programmation linéaire utilisant l'algorithme du simplexe.

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.5 Simplexe dual

3.1.5 Simplexe dual

Méthode du simplexe dual

L'algorithme du simplexe dual consiste à appliquer la méthode du simplexe au problème dual.

• Correspondances primal (P) – dual (D) :

Le tableau est utilisable dans les 2 sens : de (P) vers (D) ou de (D) vers (P) car le dual de (D) est (P).

Primal (P)		Dual (D)
$\min_{x \in R^n} c^T x$	1	max b ^T y
Ax = b	m	$y \in R$
$Ax \le b$	m	y ≥ 0
x ≥ 0	n	$A^T y \le c$
$x \in R$	n	$A^{\mathrm{T}}y = c$

• Forme canonique de (P) dans la base B

$$\min_{\mathbf{x}_{N} \geq 0} \mathbf{z} = \overline{\mathbf{z}} + \overline{\mathbf{c}}_{N}^{T} \mathbf{x}_{N} \quad \text{sous} \quad \begin{cases} \mathbf{x}_{B} + \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_{N} = \overline{\mathbf{b}} \\ \mathbf{x} \geq \mathbf{0} \end{cases} \quad \text{avec} \quad \begin{cases} \overline{\mathbf{b}} = \mathbf{B}^{-1} \mathbf{b} \\ \overline{\mathbf{z}} = \mathbf{c}_{B}^{T} \overline{\mathbf{b}} \\ \overline{\mathbf{c}}_{N}^{T} = \mathbf{c}_{N}^{T} - \mathbf{c}_{B}^{T} \mathbf{B}^{-1} \mathbf{N} \end{cases}$$

Pour appliquer la méthode du simplexe au problème dual, on doit écrire la forme canonique du problème dual dans la base B.

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.5 Simplexe dual

3.1.5 Simplexe dual

Forme canonique du dual

• On part de la forme canonique du problème primal (P) dans la base B.

(P)
$$\min_{\mathbf{x}_{B}, \mathbf{x}_{N}} \overline{\mathbf{z}} + \overline{\mathbf{c}}_{N}^{T} \mathbf{x}_{N}$$
 sous $\begin{cases} \mathbf{x}_{B} + \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_{N} = \overline{\mathbf{b}} \\ \mathbf{x}_{B}, \mathbf{x}_{N} \ge 0 \end{cases}$ \rightarrow m contraintes \rightarrow n variables

• On peut considérer les variables de base x_B comme des variables d'écart positives. On obtient un problème (P') ne portant que sur les variables hors base x_N .

$$(P') \quad \min_{x_N} \overline{c}_N^T x_N \quad \text{sous} \quad \begin{cases} B^{-1} N x_N \leq \overline{b} \\ x_N \geq 0 \end{cases} \quad \xrightarrow{\text{m contraintes}} \quad \xrightarrow{\text{m-m variables}}$$

• On écrit (P') comme un problème de maximisation, pour obtenir un problème de minimisation en passant au dual.

$$(P') \quad \max_{x_N} - \overline{c}_N^T x_N \quad sous \quad \begin{cases} B^{-1} N x_N \leq \overline{b} \\ x_N \geq 0 \end{cases} \quad \begin{array}{c} \rightarrow \quad m \; contraintes \\ \rightarrow \quad n-m \; variables \end{cases}$$

- On passe au dual (D') de (P')
 - → en utilisant le tableau de correspondances dans le sens de (D) vers (P)

3.1 Simplexe

3.1.5 Simplexe dual

Techniques d'optimisation

3.1.5 Simplexe dual

Forme canonique du dual

• Le dual (D') de (P') s'écrit :

$$(P') \quad \max_{x_N} - \overline{c}_N^T x_N \quad sous \quad \begin{cases} B^{-1} N x_N \leq \overline{b} \\ x_N \geq 0 \end{cases} \quad \begin{array}{c} \rightarrow \quad m \; contraintes \\ \rightarrow \quad n-m \; variables \end{cases}$$

$$\begin{array}{ll} \text{(D')} & \underset{y_B}{\min} \, \overline{b}^{\, T} y_B & \text{sous } \begin{cases} \left(B^{-1} N\right)^{\! T} y_B \leq -\overline{c}_N & \rightarrow \text{ n-m contraintes} \\ y_B \geq 0 & \rightarrow \text{ m variables} \end{cases}$$

On met (D') sous forme standard avec des variables d'écart y_N positives.
 On obtient un problème (D) à n variables.

(D)
$$\min_{y_B, y_N} \overline{b}^T y_B$$
 sous $\begin{cases} y_N - (B^{-1}N)^T y_B = \overline{c}_N \rightarrow n-m \text{ contraintes} \\ y_B, y_N \ge 0 \rightarrow n \text{ variables} \end{cases}$

• Le problème (D) est sous **forme canonique dans la base B**:

- variables de base $\rightarrow y_N$ \rightarrow notations inversées par rapport au problème primal

- variables hors base $\rightarrow y_B$

On peut écrire le tableau simplexe pour le problème (D) et appliquer les règles de pivotage.

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.5 Simplexe dual

3.1.5 Simplexe dual

Tableau simplexe du dual

• Forme canonique de (D) dans la base B.

(D)
$$\min_{y_B, y_N} \overline{b}^T y_B$$
 sous $\begin{cases} y_N - (B^{-1}N)^T y_B = \overline{c}_N \rightarrow n-m \text{ contraintes} \\ y_B, y_N \ge 0 \rightarrow n \text{ variables} \end{cases}$

• Tableau T_D du simplexe de (D) dans la base B : $T_D = \begin{bmatrix} \overline{J}_N & \overline{J}_B \\ \overline{I} & -(B^{-1}N)^T & \overline{c}_N^T \\ 0 & \overline{b} & -\overline{z} \end{bmatrix}$

 $\begin{array}{lll} \mbox{Variables de base}: \ y_N & \rightarrow \ \mbox{valeurs} & \overline{\underline{c}}_N \\ \mbox{Variables hors base}: y_B & \rightarrow \ \mbox{coûts réduits} & \overline{b} \\ \mbox{Matrice des contraintes}: \ -A^T & \rightarrow \ -(B^{-1}N)^T \end{array}$

- La solution de base associée à la base B est : $\begin{cases} y_N = \overline{c}_N \\ y_B = 0 \end{cases}$
- La base B est admissible si $y_N = \overline{c}_N \ge 0 \rightarrow$ base dual-admissible
- On applique les règles de pivotage du simplexe.
 - variable hors base entrante : coût réduit négatif
 - variable de base sortante : première variable à s'annuler

- Optimisation avec contraintes
- Simplexe
- 3.1.5 Simplexe dual

3.1.5 Simplexe dual

Pivotage sur le tableau dual

Les notations sont inversées par rapport au problème primal

- indices $B \rightarrow variables hors base$
- indices N \rightarrow variables de base

$$T_D = \begin{array}{|c|c|c|c|c|}\hline y_N & y_B \\ \hline I & -(B^{-1}N)^T & \overline{c}_N^T \\ \hline 0 & \overline{b} & -\overline{z} \\ \hline \end{array}$$

- Choix du pivot

$$\overline{b}_e < 0, e \in B$$

Variable hors base entrante $y_e = 1^{er}$ coût réduit négatif $\overline{b}_e < 0$, $e \in B$ Pas maximal admissible pour chaque variable de base : $\alpha_i = \frac{\overline{c}_{Ni}}{-\overline{a}_i}$, $i \in N$, $si - \overline{a}_{ie} > 0$

Variable de base sortante y_s:

$$\alpha_s = \min_{\substack{i \in N \\ \overline{a}_{ie} < 0}} \alpha_i$$

$$\text{Ligne s de la variable sortante:} \quad s \in N \ \rightarrow \ \min_{\substack{i \in N \\ \overline{a}_{ie} < 0}} \frac{\overline{c}_{Ni}}{-\overline{a}_{ie}} \ \Leftrightarrow \ \max_{\substack{i \in N \\ \overline{a}_{ie} < 0}} \frac{\overline{c}_{Ni}}{\overline{a}_{ie}}$$

- 2. Réalisation du pivotage
- Pivot = $\bar{a}_{se} < 0$
- Elimination pour faire apparaître des zéros sur la colonne e du pivot

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.5 Simplexe dual

3.1.5 Simplexe dual

Pivotage sur le tableau primal

• On observe que le pivotage dual peut être réalisé à partir du tableau primal sans écrire explicitement le tableau dual.

$$T_{D} = \begin{array}{c|c} y_{N} & y_{B} \\ \hline I & -(B^{-1}N)^{T} & \overline{c}_{N}^{T} \\ \hline 0 & \overline{b} & -\overline{z} \end{array}$$

- → n-m contraintes
- \rightarrow n-m variables de base y_N

$$T_{P} = \begin{array}{|c|c|c|c|c|}\hline X_{B} & X_{N} \\\hline I & B^{-1}N & \overline{b} \\\hline 0 & \overline{c}_{N}^{T} & -\overline{z} \\\hline \end{array}$$

- → m contraintes
- \rightarrow m variables de base x_B
- Choisir la 1^{ère} variable de base négative x_e :

$$\overline{b}_{e} < 0, e \in B$$

- \rightarrow ligne e
- → variable **sortante**

• Déterminer la 1^{ère} variable hors base x_s à s'annuler :

$$s \rightarrow \max_{\substack{i \in N \\ \overline{a}_{ie} < 0}} \frac{\overline{c}_{Ni}}{\overline{a}_{ie}}$$

- \rightarrow colonne s
- → variable **entrante**

• Effectuer le pivotage e-s de façon usuelle.

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.5 Simplexe dual

3.1.5 Simplexe dual

Comparaison simplexe primal et dual

• L'algorithme du simplexe primal maintient une base **primal-admissible** : $\overline{b} \ge 0$ L'optimum est atteint lorsque les coûts réduits sont positifs ou nuls : $\overline{c}_N \ge 0$

• L'algorithme du simplexe dual maintient une base dual—admissible : $\overline{c}_N \ge 0$ L'optimum est atteint lorsque les variables de base sont positives ou nulles : $\overline{b} \ge 0$

Intérêt du simplexe dual

L'algorithme du simplexe dual est adapté si l'on dispose d'une base dual-admissible.

Ceci se produit lorsque l'on modifie un problème linéaire déjà résolu par le simplexe primal.

- en ajoutant des contraintes au problème
- en modifiant les seuils des contraintes
- en fixant des variables à une valeur différente de la solution Ces modifications : - ne changent pas les coûts réduits ($\rightarrow \overline{c}_N \ge 0$) - rendent certaines variables de base négatives
 - → La solution de base n'est plus primal—admissible, mais reste dual—admissible.

Application : problèmes de programmation linéaire mixte (entiers et réels)

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.5 Simplexe dual

3.1.5 Exemple

Simplexe dual

• Problème linéaire à 5 variables x₁,x₂,x₃,x₄,x₅

$$\min_{\substack{x_1, x_2, x_3, x_4, x_5}} \ x_1 + 2x_2 + 2x_3 + 3x_4 + x_5 \ \text{sous} \begin{cases} x_1 + x_2 = 1 \\ -x_2 - x_3 + x_5 = 0 \\ -x_1 + x_3 + x_4 = 0 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

• On choisit comme base initiale (x_2,x_3,x_4) .

La solution de base associée est : $\begin{cases} x_1 = 0 \\ x_5 = 0 \end{cases} \Rightarrow \begin{cases} x_2 = 1 \\ x_3 = -1 \\ x_4 = 1 \end{cases} \rightarrow \text{base non primal admissible}$

- La matrice des contraintes est : $A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 & 1 \\ -1 & 0 & 1 & 1 & 0 \end{pmatrix}$ $b = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$
- Pour construire le tableau du simplexe, il faut mettre le problème sous **forme canonique** dans la base (x_2,x_3,x_4) en faisant apparaître des zéros par élimination dans les colonnes 2, 3 et 4.

3.1 Simplexe

3.1.5 Simplexe dual

Techniques d'optimisation

3.1.5 Exemple

Simplexe dual

• Problème linéaire à 5 variables x₁,x₂,x₃,x₄,x₅

$$\min_{x_1, x_2, x_3, x_4, x_5} \ x_1 + 2x_2 + 2x_3 + 3x_4 + x_5 \ \text{sous} \begin{cases} x_1 + x_2 = 1 \\ -x_2 - x_3 + x_5 = 0 \\ -x_1 + x_3 + x_4 = 0 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

• Tableau de départ

\mathbf{x}_1	\mathbf{x}_{2}	\mathbf{x}_3	$\mathbf{x_4}$	X_5		
1	1	0	0	0	1	
0	-1	-1	0	1	0	→ contraintes
-1	0	1	1	0	0	
1	2	2	3	1	0	→ coût

• On fait apparaître : - une matrice identité sur les colonnes de x₂ , x₃ , x₄

- des zéros sur les coûts de x₂, x₃, x₄

- 3 Optimisation avec contraintes
- 3.1 Simplexe
- 3.1.5 Simplexe dual

3.1.5 Exemple

Simplexe dual

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	X_5			\mathbf{x}_1	$\mathbf{x_2}$	\mathbf{x}_3	X_4	X_5	
1	1	0	0	0	1	Elimination v	1	1	0	0	0	1
0	-1	-1	0	1	0	Elimination x_2	1	0	-1	0	1	1
-1	0	1	1	0	0		-1	0	1	1	0	0
1	2	2	3	1	0		-1	0	2	3	1	-2
						•				•		
x ₁	x ₂	X ₃	X ₄	X ₅		1	\mathbf{x}_1	x ₂	X ₃	X ₄	X ₅	
1	1	0	0	0	1	Elimination v	1	1	0	0	0	1
1	0	-1	0	1	1	$- \underbrace{\text{Elimination } x_3}$		0	1	0	-1	-1
-1	0	1	1	0	0		0	0	0	1	1	1
-1	0	2	3	1	-2		1	0	0	3	3	0
x ₁	x ₂	X ₃	X ₄	X ₅			x ₁	x ₂	X ₃	X ₄	X ₅	
1	1	0	0	0	1	Elimination x_4	1	1	0	0	0	1
-1	0	1	0	-1	-1	Elimination x ₄	-1	0	1	0	-1	-1
0	0	0	1	1	1		0	0	0	1	1	1
1	0	0	3	3	0		1	0	0	0	0	-3

3.1 Simplexe

3.1.5 Simplexe dual

Techniques d'optimisation

3.1.5 Exemple

Simplexe dual

• Tableau du simplexe dans la base (x_2,x_3,x_4) .

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	X_5							
c =	1	2	2	3	1							
	1	1	0	0	0	1	$\mathbf{x_2}$		c_{B}	c_N		
	-1	0	1	0	-1	-1	\mathbf{x}_3		I	B-1N	B-1b	x _B
	0	0	0	1	1	1	$\mathbf{x_4}$	→	0	$c_N - c_B^T B^{-1} N$	$-c_B^T B^{-1} b$	-z
	1	0	0	0	0	-3	-Z					

- On vérifie bien que la dernière ligne correspond à $\begin{cases} \overline{c}_N = c_N c_B^T B^{-1} N \\ -z = -c_B^T B^{-1} b \end{cases}$
- La base est : non admissible pour le primal $(x_3 < 0)$
 - admissible pour le dual $(\overline{c}_N \ge 0)$

On peut appliquer l'algorithme dual du simplexe pour résoudre le problème.

3.1 Simplexe

3.1.5 Simplexe dual

Techniques d'optimisation

3.1.5 Exemple

Simplexe dual

• Tableau du simplexe dans la base (x_2,x_3,x_4) .

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	X_4	X_5			
1	1	0	0	0	1	\mathbf{x}_2	Base dual–admissible (x_2, x_3, x_4)
-1	0	1	0	-1	-1	x ₃	
0	0	0	1	1	1	X ₄	
1	0	0	0	0	-3	-z	

- Solution de base **non optimale** : variables de base négatives
- Variable sortante : $1^{\text{\`e}re}$ variable de base négative \rightarrow $\mathbf{x_3}$ $\overline{b}_e < 0$, $e \in B$
- Variable entrante : 1^{er} coût réduit à s'annuler $\rightarrow \mathbf{x_5}$ s $\rightarrow \max_{\substack{i \in N \\ \overline{a}_{is} < 0}} \frac{\overline{c}_{Ni}}{\overline{a}_{ie}}$
- Pivot: $\overline{a}_{25} = -1$

3.1 Simplexe

3.1.5 Simplexe dual

Techniques d'optimisation

3.1.5 Exemple

 \mathbf{X}_2

 X_3

 X_4

 $-\mathbf{Z}$

Simplexe dual

• 1 er pivotage : entrée x₅, sortie x₃

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	X_5	
1	1	0	0	0	1
-1	0	1	0	-1	-1
0	0	0	1	1	1
1	0	0	0	0	-3

 \mathbf{X}_2

X₅

 $\mathbf{X_4}$

-Z

Nouvelle base (x_2, x_4, x_5)

- primal-admissible

- dual-admissible

 $\overline{c}_{N} \ge 0$

 $\overline{b} \ge 0$

 \rightarrow optimale

Solution: $x^* = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ z^* = 3 & & & \end{pmatrix}$

- 3 Optimisation avec contraintes
- 3.2 Point intérieur

Sommaire

- 1. Bases théoriques
- 2. Optimisation sans contraintes
- 3. Optimisation avec contraintes
 - 3.1 Simplexe
 - 3.2 Point intérieur
 - 3.2.1 Barrière
 - 3.2.2 Chemin central
 - 3.2.3 Algorithmes
 - 3.2.4 Extensions
 - 3.3 Gradient projeté
 - 3.4 Lagrangien augmenté
 - 3.5 Programmation quadratique séquentielle
 - 3.6 Convergence

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.1 Barrière

3.2.1 Barrière

- ☐ Points intérieurs
- ☐ Fonction barrière
- ☐ Méthode barrière
- ☐ Problème linéaire
- ☐ Exemple

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.1 Barrière

3.2.1 Points intérieurs

Problème avec contraintes

$$\min_{x \in R^{n}} f(x) \text{ sous } \begin{cases} c_{E}(x) = 0 \\ c_{I}(x) \le 0 \\ x \in X \end{cases}$$

Points intérieurs

- Ensemble des points admissibles : $X_{adm} = \{x \in \mathbb{R}^n / x \in X, c_E(x) = 0, c_I(x) \le 0\}$
- Ensemble des point intérieurs : $X_{int} = \{x \in \mathbb{R}^n / x \in X, c_E(x) = 0, c_I(x) < 0\}$
 - → contraintes égalité conservées (définition élargie d'un point intérieur par voisinage)
 - → contraintes inégalité strictes

Hypothèses

- X_{int} n'est pas vide
- Tout point admissible peut être approché arbitrairement par un point intérieur

$$\forall x \in X_{adm}, \ \forall \varepsilon > 0, \ \exists \widetilde{x} \in X_{int} / \|\widetilde{x} - x\| \le \varepsilon$$

 \rightarrow hypothèses vérifiées dans le cas convexe (ensemble X_{int} et contraintes c_E, c_I)).

- Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.1 Barrière

3.2.1 Fonction barrière

Fonction barrière

Une fonction B : X_{int} dans R est une fonction barrière si

$$\lim_{x \in X_{int}, c_1(x) \to 0} B(x) = +\infty$$

La fonction barrière tend vers l'infini lorsque l'on s'approche du bord de X_{adm} i.e. lorsque les contraintes inégalité $c_I(x)$ deviennent actives.

Exemple

Contrainte de borne x < a

Fonctions barrières usuelles

Barrière logarithmique:

$$B(x) = -\sum_{k=1}^{m} ln(c_{Ik}(x))$$

Barrière inverse:

$$B(x) = -\sum_{k=1}^{m} \frac{1}{c_{1k}(x)}$$

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.1 Barrière

3.2.1 Méthode barrière

Méthode barrière

La méthode barrière consiste à combiner la fonction coût avec une fonction barrière. La fonction barrière est pénalisée par un paramètre $h > 0 \rightarrow hauteur de la barrière$

- Problème barrière associé : $\overline{\min_{\mathbf{x} \in \mathbb{R}^n} f_h(\mathbf{x}) = f(\mathbf{x}) + hB(\mathbf{x}) \text{ sous } \begin{cases} c_E(\mathbf{x}) = 0 \\ \mathbf{x} \in \mathbf{X} \end{cases} } \rightarrow \text{ solution } \mathbf{x}(h)$
 - → Problème avec contraintes égalité plus simple (contraintes actives) Pour h=0, on retrouve le problème initial

Hauteur de la barrière

- La barrière empêche la solution x(h) de s'approcher du bord du domaine admissible. (contraintes inégalités actives)
- On résout une suite de problèmes avec des hauteurs de barrières décroissantes $(h_k), h_{k+1} < h_k, \lim_{k \to \infty} h_k = 0 \to \text{solutions } x(h_k)$
- Méthodes peu utilisées sous cette forme → approche des méthodes de points intérieurs application sur problème linéaire, puis non linéaire

3.2 Point intérieur

3.2.1 Barrière

Techniques d'optimisation

3.2.1 Problème linéaire

Problème linéaire

Forme standard:
$$\min_{x \in R^n} c^T x$$
 sous $\begin{cases} Ax = b \\ x \ge 0 \end{cases}$ avec $A \in R^{m \times n}, b \in R^m, c \in R^n \rightarrow \text{problème (PL)}$

- Ensemble des point admissibles : $X_{adm} = \{x \in \mathbb{R}^n / Ax = b, x \ge 0\} = \text{polytope des contraintes}$
- Ensemble des point intérieurs : $X_{int} = \{x \in \mathbb{R}^n / Ax = b, x > 0\}$

Problème barrière

oblème barriere
Barrière logarithmique : $B(x) = -\sum_{i=1}^{n} \ln(x_i)$ Problème barrière associé : $\min_{x \in \mathbb{R}^n} f_h(x) = c^T x - h \sum_{i=1}^{n} \ln(x_i) \text{ sous } \begin{cases} Ax = b \\ x > 0 \end{cases} \rightarrow \text{ problème (PB_h)}$

Solution

- $\begin{array}{ll} \bullet & h>0 & \longrightarrow \text{ solution } x_h \\ \bullet & h=0 & \longrightarrow \text{ solution } x^* \text{ du problème initial} \end{array}$
- $h \to \infty$ \to solution $x_{\infty} =$ centre analytique du polytope P

3.2 Point intérieur

3.2.1 Barrière

Techniques d'optimisation

3.2.1 Exemple

Problème linéaire

• Forme standard:
$$\min_{x_1, x_2, x_3} x_1 + 2x_2 + 3x_3 \text{ sous } \begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

• Polytope des contraintes :
$$P = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 / \begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1, x_2, x_3 \ge 0 \end{cases} \right\}$$

Problème barrière

• Barrière logarithmique :
$$\min_{x_1, x_2, x_3} x_1 + 2x_2 + 3x_3 - h(\ln x_1 + \ln x_2 + \ln x_3)$$
 sous $\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$

• Barrière logarithmique :
$$\min_{x_1, x_2, x_3} x_1 + 2x_2 + 3x_3 - h(\ln x_1 + \ln x_2 + \ln x_3)$$
 sous $\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$
• Centre analytique \mathbf{x}_{∞} : $\min_{x_1, x_2, x_3} \mathbf{B}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = -(\ln x_1 + \ln x_2 + \ln x_3)$ sous $\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$

$$x_3 = 1 - x_1 - x_2 \rightarrow \min_{x_1, x_2} B(x_1, x_2) = -(\ln x_1 + \ln x_2 + \ln(1 - x_1 - x_2))$$

$$\begin{cases} \frac{\partial B}{\partial x_1} = -\frac{1}{x_1} + \frac{1}{1 - x_1 - x_2} = 0 \\ \frac{\partial B}{\partial x_2} = -\frac{1}{x_2} + \frac{1}{1 - x_1 - x_2} = 0 \end{cases} \Rightarrow \begin{cases} x_1 = \frac{1}{3} \\ x_2 = \frac{1}{3} \end{cases} \Rightarrow x_3 = \frac{1}{3} \Rightarrow x_3 = \frac{1}{3} \end{cases} \Rightarrow x_{\infty} = \left(\frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3}\right)$$

- Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.1 Barrière

3.2.1 Exemple

Représentation graphique

- Polytope des contraintes : $P = \left\{ \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \in \mathbb{R}^3 / \begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1, x_2, x_3 \ge 0 \end{cases} \right\}$ Centre analytique x_∞ : $x_\infty = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.2 Chemin central

3.2.2 Chemin central

□ Chemin central primal
 □ Conditions d'optimalité
 □ Chemin central primal-dual
 □ Déplacement
 □ Mesure de dualité

■ Voisinage

☐ Exemple

429

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.2 Chemin central

3.2.2 Chemin central primal

Chemin central primal

Le chemin central primal est **l'ensemble des solutions** \mathbf{x}_h lorsque la hauteur de barrière h décroît de l'infini à $0 \rightarrow \{\mathbf{x}_h, h \geq 0\}$

• Début : x_{∞} = centre analytique du polytope

• Fin : $x^* = \text{solution du problème linéaire}$

Pour construire précisément le chemin central, il faudrait résoudre l'ensemble des problèmes successifs (PB_h) sous contraintes égalité pour h≥0

$$\min_{x \in \mathbb{R}^n} f_h(x) = c^T x - h \sum_{i=1}^n \ln(x_i) \text{ sous } \begin{cases} Ax = b \\ x > 0 \end{cases}$$

→ non réalisable en pratique (trop coûteux)

Algorithme de point intérieur

On utilise le chemin central pour définir la direction du déplacement.

On cherche à rester au voisinage du chemin central sans le suivre précisément.

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.2 Chemin central

3.2.2 Conditions d'optimalité

Problème barrière

$$\min_{\mathbf{x} \in \mathbf{R}^{n}} \mathbf{f}_{h}(\mathbf{x}) = \mathbf{c}^{\mathsf{T}} \mathbf{x} - \mathbf{h} \sum_{i=1}^{n} \ln(\mathbf{x}_{i}) \text{ sous } \begin{cases} \mathbf{A} \mathbf{x} = \mathbf{b} \\ \mathbf{x} > 0 \end{cases} \longrightarrow \text{multiplicateurs } \lambda$$

• Lagrangien:
$$L(x,\lambda,s) = f_h(x) + \lambda^T (b - Ax) - s^T x$$
$$= c^T x - h \sum_{i=1}^n \ln(x_i) + \lambda^T (b - Ax) - s^T x$$

• On définit les matrices diagonales X et S à partir de x et s

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{x}_2 & \cdots & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{x}_{n-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{x}_n \end{pmatrix} \qquad \mathbf{S} = \begin{pmatrix} \mathbf{s}_1 & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{s}_2 & \cdots & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{s}_{n-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{s}_n \end{pmatrix} \qquad \mathbf{e} = \begin{pmatrix} \mathbf{1} \\ \mathbf{1} \\ \vdots \\ \mathbf{1} \\ \mathbf{1} \end{pmatrix}$$

3.2 Point intérieur

3.2.2 Chemin central

Techniques d'optimisation

3.2.2 Conditions d'optimalité

Conditions d'optimalité

• Condition d'ordre 1 :
$$\nabla_{\mathbf{x}} \mathbf{L}(\mathbf{x}, \lambda, \mathbf{s}) = 0 \implies \mathbf{c} - \mathbf{h} \mathbf{X}^{-1} - \mathbf{A}^{\mathrm{T}} \lambda - \mathbf{s} = 0$$

Condition complémentaire : $s_i x_i = 0 \implies XSe = 0$

On définit :
$$\begin{cases} s_h = s + hX^{-1} \\ S_h = S + hX^{-1} \end{cases} \implies \begin{cases} A^T\lambda + s_h - c = 0 \\ XS_h e = he \end{cases}$$

Comparaison des conditions d'ordre 1 du problème barrière (PB_h) et du problème initial (PL)

Problème barrière (PB_h)

$$\begin{cases} Ax_{h} - b = 0 \\ A^{T}\lambda_{h} + s_{h} - c = 0 \\ X_{h}S_{h} = he \rightarrow (x_{h}, \lambda_{h}, s_{h}) \\ x_{h} \ge 0 \\ s_{h} \ge 0 \end{cases} \begin{cases} Ax - b = 0 \\ A^{T}\lambda + s - c = 0 \\ XS = 0 \rightarrow (x^{*}, \lambda^{*}, s^{*}) \\ x \ge 0 \\ s \ge 0 \end{cases}$$

Problème linéaire (PL)

$$\begin{cases} Ax - b = 0 \\ A^{T}\lambda + s - c = 0 \\ XS = 0 \rightarrow (x^*, \lambda^*, s^*) \\ x \ge 0 \\ s \ge 0 \end{cases}$$

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.2 Chemin central

3.2.2 Chemin central primal-dual

Chemin central primal-dual

- Les conditions d'optimalité du problème barrière (PB_h) deviennent celles du problème initial (PL) lorsque h tend vers 0.
- On cherche à résoudre le problème linéaire en considérant l'ensemble des variables **primales et duales** (x,λ,s) dans R^{n+m+n}
- Ensemble admissible : $X_{adm} = \{(x, \lambda, s) / Ax b = 0, A^{T}\lambda + s c = 0, x \ge 0, s \ge 0\}$
- Ensemble des points intérieurs : $X_{int} = \{(x,\lambda,s)/Ax b = 0, A^T\lambda + s c = 0, x > 0, s > 0\}$
- Le chemin central primal-dual est l'ensemble des solutions (x_h, λ_h, s_h) lorsque la hauteur de barrière h décroît de l'infini à 0.
- Fin: $(x_0, \lambda_0, s_0) = (x^*, \lambda^*, s^*) = \text{solution du problème linéaire}$

Algorithme de point intérieur

On utilise le chemin central primal-dual pour définir la direction du déplacement. Le déplacement est limité pour rester dans l'ensemble des points intérieurs

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.2 Chemin central

3.2.2 Exemple

Problème linéaire

• Forme standard:
$$\min_{x_1, x_2, x_3} x_1 + 2x_2 + 3x_3$$
 sous $\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$ $A = \begin{pmatrix} 1 & 1 & 1 \\ c^T = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$

• Conditions d'ordre 1 du problème linéaire (PL)

$$XS = 0 \qquad \Rightarrow \begin{cases} x_1 s_1 = 0 \\ x_2 s_2 = 0 \\ x_3 s_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 0 \text{ ou } s_1 = 0 \\ x_2 = 0 \text{ ou } s_2 = 0 \\ x_3 = 0 \text{ ou } s_3 = 0 \end{cases} \Rightarrow 6 \text{ combinaisons possibles}$$

$$A^{T}\lambda + s = c \implies \begin{cases} \lambda + s_1 = 1 \\ \lambda + s_2 = 2 \\ \lambda + s_3 = 3 \end{cases} \implies \begin{cases} s_1 = 1 - \lambda \\ s_2 = 2 - \lambda \\ s_3 = 3 - \lambda \end{cases} \implies \begin{cases} s_1 = s_2 - 1 \\ s_2 = s_3 - 1 \end{cases}$$

$$S \ge 0 \qquad \Rightarrow \begin{cases} s_1 \ge 0 \\ s_2 \ge 1 \\ s_3 \ge 2 \end{cases} \qquad \Rightarrow \begin{cases} x_1 = 0 \text{ ou } s_1 = 0 \\ x_2 = 0 \\ x_3 = 0 \end{cases} \Rightarrow \begin{cases} combinaisons possibles \\ combinate \\ co$$

$$Ax - b = 0$$
 \Rightarrow $x_1 + x_2 + x_3 = 1$ \Rightarrow $x_1 = 1$

• Solution: $\begin{cases} x_1 = 1 \\ x_2 = 0 \\ x_3 = 0 \end{cases}, \begin{cases} s_1 = 0 \\ s_2 = 1 \\ s_3 = 2 \end{cases}, \lambda = 1$

- Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.2 Chemin central

3.2.2 Exemple

Représentation graphique

- Centre analytique du polytope : $P = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 / \left\{ \begin{array}{l} x_1 + x_2 + x_3 = 1 \\ x_1, x_2, x_3 \ge 0 \end{array} \right\} \rightarrow x_\infty = \left(\begin{array}{l} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array} \right)$ Solution du problème (PL) : $\min_{x_1, x_2, x_3} x_1 + 2x_2 + 3x_3$ sous $\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1, x_2, x_3 \ge 0 \end{cases} \rightarrow x^* = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ \rightarrow point A

3 Optimisation avec contraintes

3.2 Point intérieur

3.2.2 Chemin central

Techniques d'optimisation

3.2.2 Exemple

Problème barrière

• Problème linéaire :
$$\min_{x_1, x_2, x_3} x_1 + 2x_2 + 3x_3$$
 sous $\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$ $\begin{cases} x_1 + x_2 + x_3 = 1 \\ c^T = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \end{cases}$

• Conditions d'ordre 1 du problème barrière (PB_h)

$$\mathbf{A}^{\mathsf{T}}\lambda + \mathbf{s} = \mathbf{c} \implies \begin{cases} \lambda + \mathbf{s}_1 = 1 \\ \lambda + \mathbf{s}_2 = 2 \\ \lambda + \mathbf{s}_3 = 3 \end{cases} \implies \begin{cases} \mathbf{s}_1 = 1 - \lambda \\ \mathbf{s}_2 = 2 - \lambda \\ \mathbf{s}_3 = 3 - \lambda \end{cases}$$

$$XS = he \qquad \Rightarrow \begin{cases} x_1 s_1 = h \\ x_2 s_2 = h \\ x_3 s_3 = h \end{cases} \qquad \Rightarrow \begin{cases} x_1 = \frac{h}{1 - \lambda} = \frac{h}{\mu - 1} \\ x_2 = \frac{h}{2 - \lambda} = \frac{h}{\mu} \\ x_3 = \frac{h}{3 - \lambda} = \frac{h}{\mu + 1} \end{cases} \text{ avec } \mu = 2 - \lambda$$

$$Ax - b = 0 \implies x_1 + x_2 + x_3 = 1 \implies \frac{h}{\mu - 1} + \frac{h}{\mu} + \frac{h}{\mu + 1} = 1 \implies \mu^3 - 3h\mu^2 - \mu + h = 0$$

• On obtient une équation en $\mu \rightarrow 1$, 2 ou 3 racines

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.2 Chemin central

3.2.2 Exemple

Chemin central

• Le point du chemin central (x_h, λ_h, s_h) pour une barrière de hauteur h vérifie

$$\begin{cases} Ax_h - b = 0 \\ A^T \lambda_h + s_h - c = 0 \\ X_h S_h - he = 0 \end{cases} \text{ avec } \begin{cases} x_h \ge 0 \\ s_h \ge 0 \end{cases}$$

• En résolvant les conditions d'ordre 1 du problème barrière, on obtient

$$\begin{cases} \lambda_h = 2 - \mu & \text{avec } \mu^3 - 3h\mu^2 - \mu + h = 0 \\ s_h = \begin{pmatrix} 1 - \lambda_h & 2 - \lambda_h & 3 - \lambda_h \end{pmatrix} \\ x_h = h \begin{pmatrix} \frac{1}{1 - \lambda_h} & \frac{1}{2 - \lambda_h} & \frac{1}{3 - \lambda_h} \end{pmatrix} \end{cases}$$

- Il faut vérifier $\begin{cases} x_h \ge 0 \\ s_h \ge 0 \end{cases}$ \rightarrow choix parmi les racines possibles pour μ
- On résout le problème pour des valeurs décroissantes de la hauteur de barrière h.

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.2 Chemin central

3.2.2 Exemple

Représentation graphique

• Système de coordonnées (u₁,u₂) dans le plan (A,B,C)

$$\overrightarrow{AM} = u_1 \overrightarrow{AB} + u_2 \overrightarrow{DC} \iff \begin{pmatrix} x_1 - 1 \\ x_2 \\ x_3 \end{pmatrix} = u_1 \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} + u_2 \begin{pmatrix} -1/2 \\ -1/2 \\ 1 \end{pmatrix} \implies \begin{cases} u_1 = x_2 + \frac{1}{2}x_3 \\ u_2 = x_3 \end{cases}$$

 u_1

B

438

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.2 Chemin central

3.2.2 Exemple

Chemin central

- Centre analytique du polytope $(h \to \infty)$: $x_{\infty} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$
- Points du chemin central pour une barrière de hauteur h de 10000 à 0.

h	x1	x2	х3	s1	s2	s3	λ
10000	0,33335	0,33334	0,33333	29998,5	29999,5	30000,5	-29997,5
1000	0,33342	0,33331	0,33320	2999,2	3000,2	3001,2	-2998,2
100	0,33444	0,33332	0,33222	299,0	300,0	301,0	-298,0
10	0,34457	0,33309	0,32236	29,0	30,0	31,0	-28,0
1	0,45162	0,31112	0,23729	2,2142	3,2142	4,2142	-1,2142
0,1000	0,86308	0,08962	0,04726	0,1159	1,1159	2,1159	0,8841
0,0100	0,98507	0,00990	0,00497	0,0102	1,0102	2,0102	0,9898
0,0010	0,99863	0,00100	0,00050	0,0010	1,0010	2,0010	0,9990
0,0001	0,99970	0,00010	0,00005	0,0001	1,0001	2,0001	0,9999
0,0000	1,00000	0,00000	0,00000	0,0000	1,0000	2,0000	1,0000

Tracé dans le plan (A,B,C)

• Solution du problème linéaire (h \rightarrow 0): $x^* = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$

3 Optimisation avec contraintes

3.2 Point intérieur

3.2.2 Chemin central

Techniques d'optimisation

3.2.2 Déplacement

Méthode de Newton

• On cherche à résoudre $\begin{cases} Ax - b = 0 \\ A^{T}\lambda + s - c = 0 \\ XS - he = 0 \end{cases}$ pour h fixé avec $\begin{cases} x \ge 0 \\ s \ge 0 \end{cases}$

- On applique la méthode de Newton au système d'équations : $F(x,\lambda,s) = 0$
- Itération de Newton : $\begin{pmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ S & 0 & X \end{pmatrix} \begin{pmatrix} d_{x} \\ d_{\lambda} \\ d_{s} \end{pmatrix} = -F(x, \lambda, s)$

avec
$$F(x,\lambda,s) = \begin{pmatrix} 0 \\ 0 \\ XSe-he \end{pmatrix}$$
 si (x,λ,s) est intérieur :
$$\begin{cases} Ax-b=0 \\ A^{T}\lambda+s-c=0 \end{cases}$$

 \rightarrow direction de déplacement (d_x, d_λ, d_s)

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.2 Chemin central

3.2.2 Déplacement

Méthode de Newton

• On utilise la solution de Newton comme direction de recherche.

$$\begin{pmatrix} x_h \\ \lambda_h \\ s_h \end{pmatrix} = \begin{pmatrix} x \\ \lambda \\ s \end{pmatrix} + \alpha \begin{pmatrix} d_x \\ d_\lambda \\ d_s \end{pmatrix}, \ 0 < \alpha \le 1$$

• Le pas de déplacement α est choisi pour rester dans l'ensemble des points intérieurs X_{int} .

$$\begin{cases} x_h \ge 0 \\ s_h \ge 0 \end{cases}$$

Convergence

Pour que l'algorithme converge vers la solution du problème linéaire (PL), il faut :

- régler le pas α pour ne pas s'approcher trop rapidement du bord de l'ensemble admissible
- abaisser progressivement la hauteur de la barrière h jusqu'à 0

La solution du problème linéaire PL est obtenue lorsque : $XS = 0 \iff x_i s_i = 0$, i = 1,...,n

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.2 Chemin central

3.2.2 Mesure de dualité

Mesure de dualité

- La mesure de dualité est définie par : $v = \frac{1}{n}x^Ts = \frac{1}{n}\sum_{i=1}^n x_is_i$
 - \rightarrow distance moyenne à la condition d'optimalité $XS = 0 \Leftrightarrow x_i s_i = 0$, i = 1,...,n
- La hauteur de barrière est réglée à partir de la mesure de dualité : $h = \sigma v$
- σ est le paramètre de centrage
 Le paramètre de centrage permet de corriger la direction de déplacement
 σ = 0 : pas de barrière
 - → La direction donnée par l'itération de Newton vise à résoudre les conditions d'optimalité du problème initial (PL).
 - → Peu robuste loin de la solution, blocage au bord du polytope

$\sigma = 1$: barrière h=v

- → La direction donnée par l'itération de Newton vise à revenir sur le point du chemin central correspondant à h=v.
- → Permet de rester à l'intérieur du polytope

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.2 Chemin central

3.2.2 Exemple

Problème linéaire

• Problème linéaire :
$$\min_{x_1, x_2, x_3} x_1 + 2x_2 + 3x_3$$
 sous $\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$ $\begin{cases} x_1 + x_2 + x_3 = 1 \\ c^T = \begin{pmatrix} 1 & 1 \end{pmatrix}, b = 1 \end{cases}$

• On cherche à résoudre :
$$F(x,\lambda,s) = \begin{pmatrix} Ax - b \\ A^T\lambda + s - c \\ XS - he \end{pmatrix} = 0$$
 pour h fixé avec $\begin{cases} x \ge 0 \\ s \ge 0 \end{cases}$

→ méthode de Newton à partir d'un point intérieur initial

Point initial

• On choisit un point intérieur initial $(x, \lambda, s) \in X_{int} \Rightarrow \begin{cases} Ax - b = 0 \\ A^T \lambda + s - c = 0 \end{cases}$ et $\begin{cases} x > 0 \\ s > 0 \end{cases}$

On peut prendre
$$\begin{cases} (x_1, x_2, x_3) > 0 \text{ tel que } x_1 + x_2 + x_3 = 1 \\ \lambda = 0 \\ s = c \implies s^T = (1 \ 2 \ 3) > 0 \end{cases} \implies v = \frac{x^T s}{n} = \frac{x_1 + 2x_2 + 3x_3}{3}$$

• La hauteur de barrière h est réglée par le paramètre de centrage σ : $h = \sigma v = \frac{\sigma}{n} x^T s$

- Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.2 Chemin central

3.2.2 Exemple

Direction de déplacement

La direction de déplacement (d_x,d_λ,d_s) à partir du point initial (x,λ,s) est obtenue en résolvant les équations de Newton.

$$\begin{vmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ S & 0 & X \end{vmatrix} \begin{pmatrix} d_{x} \\ d_{\lambda} \\ d_{s} \end{vmatrix} = -F(x,\lambda,s) = \begin{pmatrix} 0 \\ 0 \\ -XS + he \end{pmatrix} \quad car \quad \begin{cases} Ax - b = 0 \\ A^{T}\lambda + s - c = 0 \end{cases}$$

$$car \begin{cases} Ax - b = 0 \\ A^{T}\lambda + s - c = 0 \end{cases}$$

$$\Leftrightarrow \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ s_1 & 0 & 0 & 0 & x_1 & 0 & 0 \\ 0 & s_2 & 0 & 0 & 0 & x_2 & 0 \\ 0 & 0 & s_3 & 0 & 0 & 0 & x_3 \end{pmatrix} \begin{pmatrix} d_{x1} \\ d_{x2} \\ d_{x3} \\ d_{s1} \\ d_{s2} \\ d_{s3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ -x_1s_1 + h \\ -x_2s_2 + h \\ -x_3s_3 + h \end{pmatrix}$$
 avec $h = \sigma v = \frac{\sigma}{n} (x_1s_1 + x_2s_2 + x_3s_3)$

avec
$$h = \sigma v = \frac{\sigma}{n} (x_1 s_1 + x_2 s_2 + x_3 s_3)$$

- Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.2 Chemin central

3.2.2 Exemple

Direction de déplacement

$$\begin{cases} d_{x1} + d_{x2} + d_{x3} = 0 \\ d_{s1} + d_{\lambda} = 0 \\ d_{s2} + d_{\lambda} = 0 \\ d_{s3} + d_{\lambda} = 0 \\ s_1 d_{x1} + x_1 d_{s1} = h - x_1 s_1 \\ s_2 d_{x2} + x_2 d_{s2} = h - x_2 s_2 \\ s_3 d_{x3} + x_3 d_{s3} = h - x_3 s_3 \end{cases}$$

$$\begin{cases} d_{x1} + d_{x2} + d_{x3} = 0 \\ d_{s1} + d_{\lambda} = 0 \\ d_{s2} + d_{\lambda} = 0 \\ d_{s3} + d_{\lambda} = 0 \\ s_1 d_{x1} + x_1 d_{s1} = h - x_1 s_1 \\ s_2 d_{x2} + x_2 d_{s2} = h - x_2 s_2 \\ s_3 d_{x3} + x_3 d_{s3} = h - x_3 s_3 \end{cases} \Leftrightarrow \begin{cases} d_{\lambda} \left(\frac{x_1}{s_1} + \frac{x_2}{s_2} + \frac{x_3}{s_3} \right) = x_1 + x_2 + x_3 - h \left(\frac{1}{s_1} + \frac{1}{s_2} + \frac{1}{s_3} \right) \\ d_{s1} = d_{s2} = d_{s3} = -d_{\lambda} \\ d_{x1} = \frac{h + x_1 d_{\lambda}}{s_1} - x_1 \\ d_{x2} = \frac{h + x_2 d_{\lambda}}{s_2} - x_2 \quad \text{avec} \begin{cases} s_1 = 1 \\ s_2 = 2 \text{ et} \\ s_3 = 3 \end{cases} \begin{cases} v = \frac{x_1 + 2x_2 + 3x_3}{3} \\ h = \sigma v \end{cases} \\ d_{x3} = \frac{h + x_3 d_{\lambda}}{s_3} - x_3 \end{cases}$$

- Le point initial (x_1, x_2, x_3) doit vérifier $\begin{cases} x_1, x_2, x_3 > 0 \\ x_1 + x_2 + x_3 = 1 \end{cases}$
- Illustrations pour 3 points initiaux : x = (0.6, 0.2, 0.2)

$$x = (0.2, 0.6, 0.2)$$

$$x = (0.2, 0.2, 0.6)$$

et pour 2 valeurs de σ : $\sigma = 0 \rightarrow \text{vers la solution du problème initial (Newton)}$

$$\sigma = 1 \rightarrow \text{vers le chemin central } (x_h, \lambda_h, s_h)$$

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.2 Chemin central

3.2.2 Exemple

Illustration 1: x = (0.6, 0.2, 0.2)

	ν	x1	x2	х3	s1	s2	s3	λ
	0,53333	0,6	0,2	0,2	1,0	2,0	3,0	0,0
σ	h	dx1	dx2	dx3	ds1	ds2	ds3	dλ
0	0,00000	0,18261	-0,06957	-0,11304	-1,30435	-1,30435	-1,30435	1,30435
1	0,53333	-0,04928	0,06957	-0,02029	-0,02899	-0,02899	-0,02899	0,02899
Chemin central	0,53333	0,54971	0,27070	0,17956	0,97020	1,97020	2,97020	0,02980

Tracé dans le plan (A,B,C)
$$\rightarrow$$

$$\begin{cases} u_1 = x_2 + x_3/2 \\ u_2 = x_3 \end{cases}$$

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.2 Chemin central

3.2.2 Exemple

Illustration 2: x = (0.2, 0.6, 0.2)

	ν	x1	x2	x3	s1	s2	s3	λ
	0,66667	0,2	0,6	0,2	1,0	2,0	3,0	0,0
σ	h	dx1	dx2	dx3	ds1	ds2	ds3	dλ
0	0,00000	0,15294	-0,07059	-0,08235	-1,76471	-1,76471	-1,76471	1,76471
1	0,66667	0,38824	-0,38431	-0,00392	0,39216	0,39216	0,39216	-0,39216
Chemin central	0,66667	0,50965	0,28884	0,20153	1,30808	2,30808	3,30808	-0,30808

Tracé dans le plan (A,B,C)
$$\rightarrow$$

$$\begin{cases} u_1 = x_2 + x_3/2 \\ u_2 = x_3 \end{cases}$$

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.2 Chemin central

3.2.2 Exemple

Illustration 3: x = (0.2, 0.2, 0.6)

	ν	x1	x2	x3	s1	s2	s3	λ
	0,80000	0,2	0,2	0,6	1,0	2,0	3,0	0,0
σ	h	dx1	dx2	dx3	ds1	ds2	ds3	dλ
0	0,00000	0,20000	0,00000	-0,20000	-2,00000	-2,00000	-2,00000	2,00000
1	0,80000	0,41333	0,10667	-0,52000	0,93333	0,93333	0,93333	-0,93333
Chemin central	0,80000	0,48130	0,30051	0,21845	1,66217	2,66217	3,66217	-0,66217

Tracé dans le plan (A,B,C)
$$\rightarrow$$

$$\begin{cases} u_1 = x_2 + x_3/2 \\ u_2 = x_3 \end{cases}$$

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.2 Chemin central

3.2.2 Mesure de dualité

Distance au chemin central

- Pour une hauteur de barrière h, le point du chemin central est tel que tous les produits $x_i s_i$ sont égaux à h : $XS = he \Leftrightarrow x_i s_i = h, i = 1,...,n$
- Au point courant la moyenne des produits $x_i s_i$ est la mesure de dualité v: $v = \frac{1}{n} x^T s = \frac{1}{n} \sum_{i=1}^n x_i s_i$
- On quantifie la distance δ du point courant au chemin central par la moyenne des écarts $(x_i s_i \nu)$

$$\delta = \frac{1}{\nu} \left\| \begin{pmatrix} x_1 s_1 \\ \vdots \\ x_n s_n \end{pmatrix} - \begin{pmatrix} v \\ \vdots \\ v \end{pmatrix} \right\| = \frac{1}{\nu} \|XSe - ve\|$$

- Pour que l'algorithme de point intérieur converge, il faut que les produits $x_i s_i$ tendent simultanément vers 0, et éviter que certains s'annulent prématurément.
- On impose de suivre approximativement le chemin central en interdisant de trop s'en écarter
 - \rightarrow contrainte de distance maximale au chemin central : $\|\delta\| \le \delta_{\rm m}$
 - → définition du voisinage du chemin central

3 Optimisation avec contraintes

3.2 Point intérieur

3.2.2 Chemin central

Techniques d'optimisation

3.2.2 Voisinage

Voisinage du chemin central

Le voisinage du chemin central est défini par une borne δ_m sur la distance $\delta: \|\delta\| \le \delta_m$

• Voisinage restreint avec la norme 2, noté $V_2(\delta_m)$

$$V_{2}(\delta_{m}) = \left\{ (x, \lambda, s) \in X_{int} / \frac{1}{\nu} \|XSe - \nu e\|_{2} \le \delta_{m} \right\} \text{ avec } 0 \le \delta_{m} < 1$$

• Voisinage large avec la norme ∞ , noté $V_{\infty}(\delta_m)$

$$\begin{split} V_{\infty}(\delta_{m}) = & \left\{ (x, \lambda, s) \in X_{int} / \frac{1}{\nu} \middle\| XSe - \nu e \middle\|_{\infty} \le \delta_{m} \right\} \text{ avec } 0 \le \delta_{m} < 1 \\ & \frac{1}{\nu} \middle\| XSe - \nu e \middle\|_{\infty} \le \delta_{m} \iff \left| x_{i}s_{i} - \nu \right| \le \nu \delta_{m}, i = 1, \dots, n \\ & \Leftrightarrow \nu (1 - \delta_{m}) \le x_{i}s_{i} \le \nu (1 + \delta_{m}), i = 1, \dots, n \end{split}$$

• On se contente de la borne inférieure, qui empêche les produits $x_i s_i$ de converger prématurément vers 0. En remplaçant δ_m par $1-\delta_m$

$$V_{-\infty}(\delta_m) = \left\{ (x, \lambda, s) \in X_{int} \ / \ x_i s_i \ge \nu \delta_m, \ i = 1, \cdots, n \right\} \ \text{avec} \ \ 0 \le \delta_m < 1$$

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.3 Algorithmes

3.2.3 Algorithmes

- ☐ Suivi du chemin central
- ☐ Algorithme à pas restreint
- ☐ Algorithme à pas long
- ☐ Algorithme de prédiction-correction
- ☐ Exemple

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.3 Algorithmes

3.2.3 Algorithmes

Suivi du chemin central

On peut envisager 3 algorithmes de suivi du chemin central

- Algorithme à pas restreint
- Algorithme à pas long
- Algorithme de prédiction-correction

Principes

• Les 3 algorithmes sont basés sur l'itération de Newton

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ S_{k} & 0 & X_{k} \end{pmatrix} \begin{pmatrix} d_{x} \\ d_{\lambda} \\ d_{s} \end{pmatrix} = -\begin{pmatrix} 0 \\ 0 \\ X_{k}S_{k}e - he \end{pmatrix} \quad \text{avec} \quad \begin{cases} h = \sigma v_{k} \\ v_{k} = \frac{1}{n}x_{k}^{T}S_{k} \end{cases}$$

$$\begin{pmatrix} X_{k+1} \\ \lambda_{k+1} \\ S_{k+1} \end{pmatrix} = \begin{pmatrix} X_{k} \\ \lambda_{k} \\ S_{k} \end{pmatrix} + \alpha \begin{pmatrix} d_{x} \\ d_{\lambda} \\ d_{s} \end{pmatrix}, \quad 0 < \alpha \le 1 \quad \text{avec } \alpha \text{ choisi tel que} \quad \begin{pmatrix} X_{k+1} \\ \lambda_{k+1} \\ S_{k+1} \end{pmatrix} \in V_{2}(\delta_{m}) \text{ ou } V_{-\infty}(\delta_{m})$$

• Les différences résident dans la stratégie de réglage du paramètre de centrage σ et du pas α .

3.2.3 Algorithme à pas restreint

Algorithme à pas restreint

• On applique systématiquement l'itération de Newton avec $\alpha = 1$.

$$\begin{pmatrix} x_{k+1} \\ \lambda_{k+1} \\ s_{k+1} \end{pmatrix} = \begin{pmatrix} x_k \\ \lambda_k \\ s_k \end{pmatrix} + \begin{pmatrix} d_x \\ d_\lambda \\ d_s \end{pmatrix}$$

• On règle le paramètre de centrage σ pour rester dans le voisinage restreint du chemin central.

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ S_{k} & 0 & X_{k} \end{pmatrix} \begin{pmatrix} d_{x} \\ d_{\lambda} \\ d_{s} \end{pmatrix} = -\begin{pmatrix} 0 \\ 0 \\ X_{k}S_{k}e - \sigma v_{k}e \end{pmatrix} \quad \text{avec } \sigma \text{ tel que } : \begin{pmatrix} X_{k+1} \\ \lambda_{k+1} \\ S_{k+1} \end{pmatrix} \in V_{2}(\delta_{m})$$

Réglages

- $\delta_{\rm m}$ =0.4 \rightarrow largeur du voisinage
- $\sigma = 1 \frac{\delta_m}{\sqrt{n}}$ \rightarrow garantit que l'itération de Newton reste dans le voisinage restreint

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.3 Algorithmes

3.2.3 Algorithme à pas restreint

Réglage du paramètre de centrage

Le nouveau point doit rester dans le voisinage restreint : $\begin{pmatrix} x_{k+1} \\ \lambda_{k+1} \\ s_{k+1} \end{pmatrix} = \begin{pmatrix} x_k \\ \lambda_k \\ s_k \end{pmatrix} + \begin{pmatrix} d_x \\ d_\lambda \\ d_s \end{pmatrix} \in V_2(\delta_m)$

$$\Rightarrow \frac{1}{\nu_{k}} \left\| X_{k+1} S_{k+1} e - \nu_{k} e \right\|_{2} \leq \delta_{m} \quad avec \quad \begin{cases} X_{k+1} = X_{k} + D_{x} &, \ D_{x} = diag(d_{x}) \;, \; d_{x} = D_{x} e \\ S_{k+1} = S_{k} + D_{s} &, \ D_{s} = diag(d_{s}) \;, \; d_{s} = D_{s} e \\ S_{k} d_{x} + X_{k} d_{s} = -X_{k} S_{k} e + \sigma \nu_{k} e \end{cases}$$

$$\Rightarrow \frac{1}{v_k} \left\| \left(X_k + D_x \right) \left(S_k + D_s \right) e - v_k e \right\|_2 \le \delta_m$$

$$\Rightarrow \frac{1}{v_k} \|X_k S_k e + X_k d_s + S_k d_x - v_k e\|_2 \le \delta_m \quad \text{à l'ordre 1 en } d_x, d_s$$

$$\Rightarrow \frac{1}{v_k} \left\| \sigma v_k e - v_k e \right\|_2 \le \delta_m$$

$$\Rightarrow \left| \sigma - 1 \right| \left\| e \right\|_{2} \le \delta_{m} \quad avec \quad \left\| e \right\|_{2} = \sqrt{n} \qquad \Rightarrow \boxed{\sigma \ge 1 - \frac{\delta_{m}}{\sqrt{n}}}$$

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.3 Algorithmes

3.2.3 Algorithme à pas long

Algorithme à pas long

• On fixe le paramètre de centrage σ

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ S_{k} & 0 & X_{k} \end{pmatrix} \begin{pmatrix} d_{x} \\ d_{\lambda} \\ d_{s} \end{pmatrix} = -\begin{pmatrix} 0 \\ 0 \\ X_{k}S_{k}e - \sigma v_{k}e \end{pmatrix}$$

• On règle le pas α pour rester dans le voisinage large du chemin central.

$$\begin{pmatrix} x_{k+1} \\ \lambda_{k+1} \\ s_{k+1} \end{pmatrix} = \begin{pmatrix} x_k \\ \lambda_k \\ s_k \end{pmatrix} + \alpha \begin{pmatrix} d_x \\ d_\lambda \\ d_s \end{pmatrix}, \ 0 < \alpha \le 1$$
 avec α tel que :
$$\begin{pmatrix} x_{k+1} \\ \lambda_{k+1} \\ s_{k+1} \end{pmatrix} \in V_{-\infty}(\delta_m)$$

Réglages

- $\delta_{\rm m} = 0.001$ \rightarrow largeur du voisinage
- $\sigma = 0.1$
- Initialisation avec $\alpha=1$ Division de α par 2 tant que le nouveau point n'est pas dans le voisinage large

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.3 Algorithmes

3.2.3 Algorithme de prédiction-correction

Algorithme de prédiction-correction

Etape de prédiction

• On prédit la direction de l'optimum avec un paramètre de centrage σ =0 (pas de barrière).

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ S_{k} & 0 & X_{k} \end{pmatrix} \begin{pmatrix} \widetilde{\mathbf{d}}_{x} \\ \widetilde{\mathbf{d}}_{\lambda} \\ \widetilde{\mathbf{d}}_{s} \end{pmatrix} = -\begin{pmatrix} 0 \\ 0 \\ X_{k} S_{k} \mathbf{e} \end{pmatrix}$$

• On règle le pas α pour rester dans le voisinage restreint du chemin central.

$$\begin{pmatrix} \widetilde{\boldsymbol{x}}_{k+1} \\ \widetilde{\boldsymbol{\lambda}}_{k+1} \\ \widetilde{\boldsymbol{s}}_{k+1} \end{pmatrix} = \begin{pmatrix} \boldsymbol{x}_{k} \\ \boldsymbol{\lambda}_{k} \\ \boldsymbol{s}_{k} \end{pmatrix} + \alpha \begin{pmatrix} \widetilde{\boldsymbol{d}}_{x} \\ \widetilde{\boldsymbol{d}}_{k} \\ \widetilde{\boldsymbol{d}}_{s} \end{pmatrix}, \ 0 < \alpha \le 1 \qquad \qquad \text{avec } \alpha \text{ tel que}: \begin{pmatrix} \widetilde{\boldsymbol{x}}_{k+1} \\ \widetilde{\boldsymbol{\lambda}}_{k+1} \\ \widetilde{\boldsymbol{s}}_{k+1} \end{pmatrix} \in V_{2}(\delta_{m \, pred})$$

Réglages

- $\delta_{\text{m pred}} = 0.5 \rightarrow \text{largeur du voisinage}$
- Initialisation avec $\alpha=1$ Division de α par 2 tant que le nouveau point n'est pas dans le voisinage restreint

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.3 Algorithmes

3.2.3 Algorithme de prédiction-correction

Algorithme de prédiction-correction

Etape de correction

• On calcule la direction du chemin central avec un paramètre de centrage σ =1

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ S_{k} & 0 & X_{k} \end{pmatrix} \begin{pmatrix} d_{x} \\ d_{\lambda} \\ d_{s} \end{pmatrix} = -\begin{pmatrix} 0 \\ 0 \\ X_{k}S_{k}e - v_{k}e \end{pmatrix}$$

• On applique un **recentrage** avec un pas α =1 pour revenir vers le chemin central.

$$\begin{pmatrix} x_{k+1} \\ \lambda_{k+1} \\ s_{k+1} \end{pmatrix} = \begin{pmatrix} \widetilde{x}_{k+1} \\ \widetilde{\lambda}_{k+1} \\ \widetilde{s}_{k+1} \end{pmatrix} + \begin{pmatrix} d_x \\ d_\lambda \\ d_s \end{pmatrix}$$

Mise en œuvre pratique

- Différentes stratégies possibles → contrôle de la distance au chemin central
 - \rightarrow réglages (σ, δ, α) à adapter au cours des itérations
- Choix du point initial \rightarrow suffisamment loin des bords ($x^Ts >> 0$) sinon blocage
- Extension à des problèmes non linéaires

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.3 Algorithmes

3.2.3 Exemple

Algorithme à pas restreint

- Point initial : x = (0.6, 0.2, 0.2) , $\lambda = 0$, s = (1, 2, 3) x = (0.2, 0.6, 0.2) x = (0.2, 0.2, 0.6)
- Paramètre de centrage : $\sigma = 1 \frac{\delta_m}{\sqrt{n}}$ avec $\delta_m = 0.4$ $\rightarrow (x, \lambda, s) \in V_2(\delta_m)$

x1	0,6	0,2	0,2	
x2	0,2	0,6	0,2	
х3	0,2	0,2	0,6	
Iteration	ν	ν	ν	
0	0,53333	0,66667	0,80000	
1	0,41017	0,51271	0,61525	
2	0,31544	0,39430	0,47316	
3	0,24259	0,30324	0,36389	
4	0,18657	0,23321	0,27985	
5	0,14348	0,17935	0,21522	
6	0,11035	0,13793	0,16552	
7	0,08486	0,10608	0,12729	
8	0,06526	0,08158	0,09790	
9	0,05019	0,06274	0,07529	
10	0,03860	0,04825	0,05790	
20	0,00279	0,00349	0,00419	
30	0,00020	0,00025	0,00030	
40	0,00001	0,00002	0,00002	
45	0,00000	0,00000	0,00001	

- Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.3 Algorithmes

3.2.3 Exemple

Algorithme à pas restreint

 $\rightarrow \begin{cases} u_1 = x_2 + x_3 / 2 \\ u_2 = x_3 \end{cases}$ C Tracé dans le plan (A,B,C)

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.3 Algorithmes

3.2.3 Exemple

Algorithme à pas long

- Point initial : x = (0.6, 0.2, 0.2) , $\lambda = 0$, s = (1, 2, 3) x = (0.2, 0.6, 0.2) x = (0.2, 0.2, 0.6)
- Paramètre de centrage : $\sigma = 0.1$ avec $\delta_m = 0.4$
- Pas: $\alpha=1 \rightarrow \alpha/2$ tant que $(x + \alpha d_x)_i (s + \alpha d_s)_i < \nu \delta_m$ $\rightarrow (x, \lambda, s) \in V_{-\infty}(\delta_m)$

x1	0,6	0,2	0,2
x2	0,2	0,6	0,2
x3	0,2	0,2	0,6
Iteration	ν	ν	ν
0	0,53333	0,66667	0,80000
1	0,29333	0,36667	0,44000
2	0,16133	0,20167	0,24200
3	0,08873	0,02017	0,02420
4	0,00887	0,00202	0,00242
5	0,00089	0,00020	0,00024
6	0,00009	0,00002	0,00002
7	0,00001	0,00000	0,00000
8	0,00000	0,00000	0,00000

- Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.3 Algorithmes

3.2.3 Exemple

Algorithme à pas long

gorithme à pas long

Tracé dans le plan (A,B,C) $\rightarrow \begin{cases} u_1 = x_2 + x_3/2 \\ u_2 = x_3 \end{cases}$

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.3 Algorithmes

3.2.3 Exemple

Comparaison

- Algorithme à pas long \rightarrow convergence beaucoup plus rapide (8 itérations au lieu de 45)
- Influence des réglages \rightarrow à adapter au cas par cas(valeurs de σ , δ , α)

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.4 Extensions

3.2.4 Extensions

- ☐ Problème linéaire
- ☐ Problème quadratique
- ☐ Problème non linéaire
- ☐ Représentation

3 Optimisation avec contraintes

3.2 Point intérieur

3.2.4 Extensions

Techniques d'optimisation

3.2.4 Problème linéaire

Problème linéaire

$$\min_{\mathbf{x} \in \mathbf{R}^{n}} \mathbf{c}^{\mathsf{T}} \mathbf{x} \quad \text{sous} \quad \begin{cases} \mathbf{A} \mathbf{x} = \mathbf{b} \\ \mathbf{x} \ge \mathbf{0} \end{cases}$$

• Lagrangien: $L(x, \lambda, s) = c^{T}x + \lambda^{T}(Ax - b) + s^{T}x$

• Conditions KKT:
$$\begin{cases} Ax - b = 0 \\ \nabla_x L(x, \lambda, s) = 0 \\ XS = 0 \\ x, s \ge 0 \end{cases} \rightarrow F(x, \lambda, s) = \begin{pmatrix} Ax - b \\ \nabla_x L(x, \lambda, s) \\ XSe - he \end{pmatrix} = 0 \rightarrow \text{barrière h}$$

• Méthode de Newton : $\nabla F(x, \lambda, s) \begin{pmatrix} d_x \\ d_\lambda \\ d_s \end{pmatrix} = -F(x, \lambda, s) \rightarrow \text{direction } \begin{pmatrix} d_x \\ d_\lambda \\ d_s \end{pmatrix}$

$$\Rightarrow \begin{pmatrix} A & 0 & 0 \\ 0 & A^{T} & I \\ S & 0 & X \end{pmatrix} \begin{pmatrix} d_{x} \\ d_{\lambda} \\ d_{s} \end{pmatrix} = -\begin{pmatrix} Ax - b \\ A^{T}\lambda + s + c \\ XSe - he \end{pmatrix} = 0 \quad \text{si admissible}$$

On peut appliquer le même algorithme à des problèmes non linéaires.

3 Optimisation avec contraintes

3.2 Point intérieur

3.2.4 Extensions

Techniques d'optimisation

3.2.4 Problème quadratique

Problème quadratique

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T Q x + c^T x \text{ sous } \begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

• Lagrangien:
$$L(x,\lambda,s) = \frac{1}{2}x^{T}Qx + c^{T}x + \lambda^{T}(Ax - b) + s^{T}x$$

• Conditions KKT:
$$\begin{cases} Ax - b = 0 \\ \nabla_x L(x, \lambda, s) = 0 \\ XS = 0 \\ x, s \ge 0 \end{cases} \rightarrow F(x, \lambda, s) = \begin{pmatrix} Ax - b \\ \nabla_x L(x, \lambda, s) \\ XSe - he \end{pmatrix} = 0 \rightarrow \text{barrière h}$$

• Méthode de Newton :
$$\nabla F(x,\lambda,s) \begin{pmatrix} d_x \\ d_\lambda \\ d_s \end{pmatrix} = -F(x,\lambda,s) \rightarrow \text{direction } \begin{pmatrix} d_x \\ d_\lambda \\ d_s \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} A & 0 & 0 \\ Q & A^{T} & I \\ S & 0 & X \end{pmatrix} \begin{pmatrix} d_{x} \\ d_{\lambda} \\ d_{s} \end{pmatrix} = -\begin{pmatrix} Ax - b \\ Qx + A^{T}\lambda + s + c \\ XSe - he \end{pmatrix}$$

• Différence avec le cas linéaire : matrice $Q = \nabla_{xx}^2 L(x, \lambda, s)$

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.4 Extensions

3.2.4 Problème non linéaire

Problème non linéaire

$$\min_{x \in R^n} f(x) \text{ sous } \begin{cases} c(x) = 0 & \to \text{ contraintes actives} \\ x \ge 0 \end{cases}$$

• Lagrangien : $L(x,\lambda,s) = f(x) + \lambda^{T}c(x) + s^{T}x$

• Conditions KKT :
$$\begin{cases} c(x) = 0 \\ \nabla_x L(x, \lambda, s) = 0 \\ XS = 0 \\ x, s \ge 0 \end{cases} \rightarrow F(x, \lambda, s) = \begin{pmatrix} c(x) \\ \nabla_x L(x, \lambda, s) \\ XSe - he \end{pmatrix} = 0 \rightarrow \text{barrière h}$$

• Méthode de Newton: $\nabla F(x,\lambda,s) \begin{pmatrix} d_x \\ d_\lambda \\ d_s \end{pmatrix} = -F(x,\lambda,s) \longrightarrow \text{direction } \begin{pmatrix} d_x \\ d_\lambda \\ d_s \end{pmatrix}$

$$\Rightarrow \begin{vmatrix} \nabla c(x)^{T} & 0 & 0 \\ \nabla_{xx}^{2} L(x, \lambda, s) & \nabla c(x) & I \\ S & 0 & X \end{vmatrix} \begin{pmatrix} d_{x} \\ d_{\lambda} \\ d_{s} \end{pmatrix} = -\begin{pmatrix} c(x) \\ \nabla_{x} L(x, \lambda, s) \\ XSe - he \end{vmatrix}$$

• Différence avec le cas linéaire : matrices $\begin{cases} \nabla_{xx}^2 L(x, \lambda, s) \\ \nabla c(x) \end{cases}$

- 3 Optimisation avec contraintes
- 3.2 Point intérieur
- 3.2.4 Extensions

3.2.4 Représentation

Tracé des itérations

Espace primal-dual: produits xs

- 3 Optimisation avec contraintes
- 3.3 Gradient projeté

Sommaire

- 1. Bases théoriques
- 2. Optimisation sans contraintes
- 3. Optimisation avec contraintes
 - 3.1 Simplexe
 - 3.2 Point intérieur
 - 3.3 Gradient projeté
 - 3.3.1 Principes
 - 3.3.2 Direction de déplacement
 - 3.3.3 Restauration
 - 3.3.4 Algorithme
 - 3.4 Lagrangien augmenté
 - 3.5 Programmation quadratique séquentielle
 - 3.6 Convergence

- 3 Optimisation avec contraintes
- 3.3 Gradient projeté
- 3.3.1 Principes

3.3.1 Gradient projeté

Problème avec contraintes égalité

$$\min_{\mathbf{x} \in \mathbf{R}^{n}} f(\mathbf{x}) \text{ sous } \begin{cases} c_{\mathbf{E}}(\mathbf{x}) = 0 \\ c_{\mathbf{I}}(\mathbf{x}) \le 0 \end{cases} \iff \min_{\mathbf{x} \in \mathbf{R}^{n}} f(\mathbf{x}) \text{ sous } c(\mathbf{x}) = 0 \to \text{m contraintes actives}$$

Etapes principales

A chaque itération

- Construction d'une direction de descente d_k à partir du point x_k
- Réglage du pas de déplacement s_k suivant d_k

Direction de descente

On construit la direction d_k dans l'hyperplan tangent aux contraintes (= espace nul) en x_k

• Gradient projeté

- → projection du gradient sur l'hyperplan tangent
- Gradient réduit
- → réduction du gradient sur une base de l'espace nul

Pas de déplacement

- Recherche linéaire suivant $d_k \rightarrow pas s_k$
- Restauration de l'admissibilité → méthode de Newton
- Règles d'acceptation du pas → Armijo, Goldstein, Wolfe

- 3 Optimisation avec contraintes
- 3.3 Gradient projeté
- 3.3.2 Direction de déplacement

3.3.2 Direction de déplacement

- ☐ Hyperplan tangent aux contraintes
- ☐ Gradient projeté
- ☐ Gradient réduit
- ☐ Exemple

- Optimisation avec contraintes
- 3.3 Gradient projeté
- 3.3.2 Direction de déplacement

3.3.2 Hyperplan tangent

Problème avec contraintes linéaires

$$\min_{x \in R^n} f(x) \text{ sous } Ax = b$$

- x_0 point admissible $\rightarrow Ax_0 = b$ déplacement admissible à partir de $x_0 \rightarrow A(x_0 + d) = b$ $\rightarrow Ad = 0$
- Ad = 0 définit l'espace nul des contraintes = hyperplan des contraintes
- Le déplacement d∈Rⁿ est admissible si d est dans l'hyperplan des contraintes.

Problème avec contraintes non linéaires

$$\min_{x \in R^n} f(x) \text{ sous } c(x) = 0$$

- On définit l'espace nul tangent ou hyperplan tangent en x_0 avec $A = \nabla c(x_0)^T \rightarrow Ad = 0$
- On cherche un déplacement $d \in \mathbb{R}^n$ dans l'hyperplan tangent : $\nabla c(x_0)^T d = 0$ Un déplacement complémentaire est ensuite nécessaire pour restaurer l'admissibilité.

- Optimisation avec contraintes
- 3.3 Gradient projeté
- 3.3.2 Direction de déplacement

3.3.2 Gradient projeté

Définition

$$\min_{x \in \mathbb{R}^n} f(x) \text{ sous } c(x) = 0$$

Le gradient projeté est la projection orthogonale du gradient de f sur l'hyperplan tangent.

Expression du gradient projeté

- Hyperplan tangent aux contraintes en x_0 admissible Ad = 0 avec A = $\nabla c(x_0)^T$
- Matrice de projection sur l'hyperplan tangent $P = I - A^{T} (AA^{T})^{-1} A$

Notations

$$g(x_0)$$
 gradient de f en $x_0 \rightarrow g(x_0) = \nabla f(x_0)$
 $g_p(x_0)$ gradient projeté $\rightarrow g_p(x_0) = Pg(x_0)$

$$g_p(x_0)$$
 gradient projeté $\rightarrow g_p(x_0) = Pg(x_0)$

$$\rightarrow g_p = \left(I - A^T \left(AA^T\right)^{-1} A\right) g \text{ avec } A = \nabla c(x_0)^T$$

•
$$g_p$$
 vérifie :
$$\begin{cases} Ag_p = 0 & \to g_p \in \text{hyperplan tangent} \\ g_p^T (g - g_p) = 0 & \to g - g_p \perp \text{hyperplan tangent} \end{cases}$$

$$\operatorname{car} \begin{cases} P^{T} = P \\ P^{2} = P \end{cases}$$

- 3 Optimisation avec contraintes
- 3.3 Gradient projeté
- 3.3.2 Direction de déplacement

3.3.2 Gradient projeté

Direction de descente

• La direction du gradient projeté est la **direction de plus forte pente dans l'hyperplan tangent** = direction dans l'hyperplan qui maximise la dérivée directionnelle de f

Preuve

La direction d dans l'hyperplan maximisant la dérivée directionnelle de f est solution de

$$\min_{d \in \mathbb{R}^n} g^{t} d \quad sous \quad \begin{cases} Ad = 0 & \to d \in hyperplan \ tangent \\ \|d\| = 1 \Leftrightarrow d^{T} d = 1 & \to norme = 1 \end{cases}$$

Lagrangien :
$$L(d, \lambda, \mu) = g^{t}d + \lambda^{T}Ad + \mu(d^{T}d - 1)$$
 avec $\lambda \in \mathbb{R}^{m}$, $\mu \in \mathbb{R}$
Conditions KKT :
$$\begin{cases} g + A^{T}\lambda + 2\mu d = 0 \rightarrow d = -(g + A^{T}\lambda)/(2\mu) \\ Ad = 0 \rightarrow Ag + AA^{T}\lambda = 0 \rightarrow \lambda = -(AA^{T})^{-1}Ag \\ \|d\| = 1 \rightarrow 2\mu = \pm \|g + A^{T}\lambda\| \end{cases}$$

d est bien un vecteur normé colinéaire à $(I - A^T (AA^T)^{-1} A)g$

- La méthode du gradient projeté équivaut à la méthode de plus forte pente appliquée dans l'espace nul des contraintes → méthode d'ordre 1 peu efficace
 - → amélioration par méthode de quasi-Newton

- 3 Optimisation avec contraintes
- 3.3 Gradient projeté
- 3.3.2 Direction de déplacement

3.3.2 Gradient réduit

Définition

$$\min_{x \in \mathbb{R}^n} f(x) \text{ sous } c(x) = 0$$

Le gradient réduit est le gradient de la fonction réduite sur une base de l'espace nul tangent.

Expression du gradient réduit

- Base Z de l'espace nul tangent aux contraintes : AZ = 0 avec $A = \nabla c(x_0)^T$
- Décomposition du déplacement : $p = Yp_Y + Zp_Z$ avec $\begin{cases} AZ = 0 \\ AY \text{ inversible} \end{cases}$
- Déplacement admissible : $Ap = 0 \implies \begin{cases} p_Y = 0 \\ p = Zp_Z \end{cases}$
- Fonction réduite f_r : $\min_{p \in \mathbb{R}^n} f(x_0 + p)$ sous $A(x_0 + p) = b \iff \min_{p_Z \in \mathbb{R}^{n-m}} f_r(p_Z) = f(x_0 + Zp_Z)$

Notations

$$\begin{split} g(x_0) & \text{ gradient de f en } x_0 & \to g(x_0) = \nabla f(x_0) & \to g \in R^n \\ g_r(x_0) & \text{ gradient réduit } & \to g_r(x_0) = \nabla f_r(p_Z = 0) & \to g_r \in R^{n-m} \quad (m = \text{ nombre de contraintes}) \\ f_r(p_Z) & = f\left(x_0 + Zp_Z\right) & \to \nabla f_r(p_Z) = Z^T \nabla f\left(x_0 + Zp_Z\right) & \to \boxed{g_r = Z^Tg} \quad \text{ en } p_Z = 0 \end{split}$$

 \rightarrow g_r est le gradient de la fonction réduite f_r (= fonction de n-m variables p_Z)

- Optimisation avec contraintes
- 3.3 Gradient projeté
- 3.3.2 Direction de déplacement

3.3.2 Gradient réduit

Direction de descente

Le déplacement à partir du point x₀ admissible est décomposé en

$$p = Yp_Y + Zp_Z$$
 avec
$$\begin{cases} AZ = 0 \\ AY \text{ inversible} \end{cases} Ap = 0 \implies \begin{cases} p_Y = 0 \\ p = Zp_Z \end{cases}$$

- Le gradient réduit g_r donne la direction de plus forte pente suivant les variables p_z. La direction de déplacement dans R^n est : $\mathbf{d} = \mathbf{Z}\mathbf{g}_r$.
- On peut choisir les matrices Y et Z
 - à partir de matrices orthogonales → factorisation QR de A
 - à partir d'une base de A

- \rightarrow B \in R^{m×m} (= m colonnes indépendantes de A)

Gradient réduit sur une base B de A

$$\bullet \quad AE = \begin{pmatrix} m & n-m \\ B & N \end{pmatrix} \qquad \Rightarrow \quad g = \begin{pmatrix} g_B \\ g_N \end{pmatrix} \qquad \quad Y = \begin{pmatrix} B^{-1} \\ 0 \end{pmatrix}_{n-m}^m \qquad \quad Z = \begin{pmatrix} -B^{-1}N \\ I \end{pmatrix}_{n-m}^m$$

(E = matrice de permutation de colonnes de A)

Le gradient réduit par rapport à la base B est : $\left| g_r = Z^T g = g_N - \left(B^{-1} N \right)^T g_B \right|$

- 3 Optimisation avec contraintes
- 3.3 Gradient projeté
- 3.3.2 Direction de déplacement

3.3.2 Direction de déplacement

Problème avec contraintes égalité

$$\min_{x \in \mathbb{R}^n} f(x)$$
 sous $c(x) = 0$ \rightarrow m contraintes actives

- On construit la direction de déplacement $d \in \mathbb{R}^n$ dans l'hyperplan tangent aux contraintes en x_0 Ad = 0 avec $A = \nabla c(x_0)^T$
 - → 2 méthodes de construction de la direction d
- Méthode du gradient projeté

La direction d est celle du gradient projeté : $d = g_p$

$$d = Pg$$
 avec $P = I - A^{T}(AA^{T})^{-1}A$ (P = matrice de projection sur l'hyperplan tangent)

• Méthode du gradient réduit

La direction d est obtenue à partir du gradient de la fonction réduite : $d = Zg_r$ avec $g_r = Z^Tg$

$$d = ZZ^{T}g$$
 avec $AZ=0$ (Z = base de l'hyperplan tangent)

• On cherche un pas de déplacement suivant –d pour minimiser f. Un déplacement complémentaire est nécessaire pour restaurer l'admissibilité.

- 3 Optimisation avec contraintes
- 3.3 Gradient projeté
- 3.3.2 Direction de déplacement

3.3.2 Exemple

Exemple

• Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 - 1)^2 - 1 = 0$

$$\nabla f(x) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \nabla c(x) = \begin{pmatrix} 2x_1 \\ 2(x_2 - 1) \end{pmatrix}$$

Changement de variables (coordonnées polaires)

$$\begin{cases} x_1 = r\cos\theta \\ x_2 = r\sin\theta + 1 \end{cases} \rightarrow \begin{cases} f(r,\theta) = r(\cos\theta + \sin\theta) + 1 \\ c(r,\theta) = r^2 - 1 \end{cases}$$

• Elimination variable r

$$r = 1 \rightarrow f(\theta) = \cos \theta + \sin \theta + 1$$

• Minimum

$$\begin{cases} f'(\theta) = -\sin\theta + \cos\theta = 0 & \to & \tan\theta = 1 \\ f''(\theta) = -\cos\theta - \sin\theta \ge 0 & \to & -\cos\theta (1 + \tan\theta) \ge 0 & \to & -\cos\theta \ge 0 \end{cases} \rightarrow \theta^* = \frac{\pi}{4} \circ u \frac{\pi}{4} + \pi$$

$$\Rightarrow \begin{cases} x_1^* = -1/\sqrt{2} \approx -0.70711 \\ x_2^* = 1 - 1/\sqrt{2} \approx 0.29289 \end{cases}$$

- Optimisation avec contraintes
- Gradient projeté
- 3.3.2 Direction de déplacement

3.3.2 Exemple

Gradient projeté

- Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 1)^2 1 = 0$ Point admissible $x_0 (r_0=1, \theta_0) \rightarrow \nabla f(x_0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\nabla c(x_0) = \begin{pmatrix} 2x_1 \\ 2(x_2-1) \end{pmatrix} = 2r_0 \begin{pmatrix} \cos \theta_0 \\ \sin \theta_0 \end{pmatrix}$
- Gradient projeté au point x₀

$$g_p = Pg$$
 avec
$$\begin{cases} A = \nabla c(x_0)^T, g = \nabla f(x_0) \\ P = I - A^T (AA^T)^{-1} A \end{cases}$$

$$A = 2r_0 (\cos \theta_0 - \sin \theta_0)$$

$$P = \begin{pmatrix} \sin^2 \theta_0 & \sin \theta_0 \cos \theta_0 \\ \sin \theta_0 \cos \theta_0 & \cos^2 \theta_0 \end{pmatrix}$$

$$\rightarrow \left| g_{p} = \left(\cos \theta_{0} - \sin \theta_{0} \right) \begin{pmatrix} -\sin \theta_{0} \\ \cos \theta_{0} \end{pmatrix} \right|$$

Direction de descente au point x_0

$$d = \frac{g_p}{\|g_p\|} = \begin{pmatrix} -\sin\theta_0 \\ \cos\theta_0 \end{pmatrix} \longrightarrow \text{tangente au cercle en } x_0$$

478

- Optimisation avec contraintes
- Gradient projeté
- 3.3.2 Direction de déplacement

3.3.2 Exemple

Gradient réduit

- Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 1)^2 1 = 0$ Point admissible $x_0 (r_0=1, \theta_0) \rightarrow \nabla f(x_0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\nabla c(x_0) = \begin{pmatrix} 2x_1 \\ 2(x_0-1) \end{pmatrix} = 2r_0 \begin{pmatrix} \cos \theta_0 \\ \sin \theta_0 \end{pmatrix}$
- Gradient réduit au point x₀

$$g_{r} = Z^{T}g \text{ avec} \begin{cases} A = \nabla c(x_{0})^{T}, g = \nabla f(x_{0}) \\ AE = (B \ N), Z = \begin{pmatrix} -B^{-1}N \\ I \end{pmatrix} \end{cases}$$

$$A = 2r_{0}(\cos\theta_{0} \sin\theta_{0}) \qquad Z = \begin{pmatrix} -\tan\theta_{0} \\ 1 \end{pmatrix}$$

$$\Rightarrow g_{r} = 1 - \tan\theta_{0}$$

$$\Rightarrow Zg_{r} = \frac{\cos\theta_{0} - \sin\theta_{0}}{\cos\theta_{0}} \begin{pmatrix} -\sin\theta_{0} \\ \cos\theta_{0} \end{pmatrix}$$

Direction de descente au point x_0

$$d = \frac{Zg_r}{\|Zg_r\|} = \begin{pmatrix} -\sin\theta_0 \\ \cos\theta_0 \end{pmatrix} \rightarrow \text{tangente au cercle en } x_0$$

479

- 3 Optimisation avec contraintes
- 3.3 Gradient projeté
- 3.3.3 Restauration

3.3.3 Restauration

- ☐ Point initial
- ☐ Itérations admissibles
- ☐ Méthode de restauration

- 3 Optimisation avec contraintes
- 3.3 Gradient projeté
- 3.3.3 Restauration

3.3.3 Restauration

Itérations admissibles

La méthode du gradient projeté ou réduit construit une suite de solutions admissibles

- → point initial admissible
- → restauration de la faisabilité à chaque itération

Point initial

• On peut construire un point initial admissible du problème $\min_{x \in R^n} f(x)$ sous $\begin{cases} c_E(x) = 0 \\ c_I(x) \le 0 \end{cases}$ en résolvant le **problème préliminaire sans contrainte** $\min_{x \in R^n} \|c_E(x)\|_2 + \|\max(0, c_I(x))\|_2$

• La solution x_0 de ce problème préliminaire est admissible si le coût est nul

$$\left\| c_{E}(x_{0}) \right\|_{2} + \left\| \max(0, c_{I}(x_{0})) \right\|_{2} = 0 \implies \begin{cases} c_{E}(x_{0}) = 0 \\ \max(0, c_{I}(x_{0})) = 0 \end{cases} \implies \begin{cases} c_{E}(x_{0}) = 0 \\ c_{I}(x_{0}) \leq 0 \end{cases}$$

Restauration de la faisabilité

- La direction de descente d est dans l'hyperplan tangent aux contraintes au point courant.
- Si les contraintes ne sont pas linéaires, un pas s suivant d donne un point non admissible
 - → Il faut restaurer la faisabilité <u>avant</u> d'évaluer si le pas s est acceptable.

- 3 Optimisation avec contraintes
- 3.3 Gradient projeté
- 3.3.3 Restauration

3.3.3 Restauration

Déplacement admissible

$$\min_{x \in \mathbb{R}^n} f(x)$$
 sous $c(x) = 0$ \rightarrow m contraintes actives

On construit le déplacement p à partir du point initial x_0 en 2 étapes : $\mathbf{p} = \mathbf{p_1} + \mathbf{p_2}$

• Le déplacement p_1 est suivant la direction de descente d dans l'hyperplan tangent : $p_1 = -sd$

 $d \in R^n = direction$ construite à partir du gradient projeté ou du gradient réduit

s > 0 = pas de déplacement suivant –d (pour minimisation)

On obtient un point $\mathbf{x}_1 = \mathbf{x}_0 + \mathbf{p}_1$ dans l'hyperplan tangent

- → non admissible si contraintes non linéaires
- Le déplacement p_2 restaure un point admissible à partir du point x_1 .
 - \rightarrow linéarisation des contraintes en x_1
 - → résolution d'un système sous-déterminé

On obtient un point $x_2 = x_1 + p_2$ admissible

c(x)=0 $c(x)=c_1$

Recherche linéaire

- On évalue le point x₂ correspondant au pas s de recherche linéaire suivant d.
- Le pas s est modifié par dichotomie jusqu'à trouver un point $x_2(s)$ acceptable
 - → règles d'Armijo, Goldstein, Wolfe,...

- 3 Optimisation avec contraintes
- 3.3 Gradient projeté
- 3.3.3 Restauration

3.3.3 Restauration

Méthode de restauration

Le déplacement p_2 doit vérifier : $A_1p = b_1$ avec $\begin{cases} A_1 = \nabla c(x_1)^T \approx \nabla c(x_0)^T = A_0 \\ b_1 = -c(x_1) = -c_1 \end{cases}$

- Solution de norme minimale \rightarrow projection sur l'hyperplan tangent aux contraintes actives $\min_{p \in \mathbb{R}^n} \|p\| \text{ sous } A_1 p = b_1 \qquad \rightarrow p_2 = A_1^T \left(A_1 A_1^T \right)^{-1} b_1 \qquad (cf \S 1.2.4)$
- Solution de base \rightarrow pour ne pas dégrader la minimisation apportée par p_1 (cf §1.2.3) $A_1(Yp_Y + Zp_Z) = b_1 \implies p_Y = (A_1Y)^{-1}b_1 \rightarrow p_2 = Y(A_1Y)^{-1}b_1$
- Plusieurs pas de restauration peuvent être nécessaires. $c(x)=0 \\ c(x)=c_1 \\ \hline v_c(x_0)$ $\nabla c(x_1)$

- 3 Optimisation avec contraintes
- 3.3 Gradient projeté
- 3.3.3 Restauration

3.3.3 Restauration

Illustrations

Restauration en plusieurs itérations : p₂ , p₃

Restauration infructueuse (non linéarité)

- 3 Optimisation avec contraintes
- 3.3 Gradient projeté
- 3.3.4 Algorithme

3.3.4 Algorithme

- ☐ Algorithme de gradient projeté / réduit
- ☐ Exemple

- 3 Optimisation avec contraintes
- 3.3 Gradient projeté
- 3.3.4 Algorithme

3.3.4 Algorithme

Algorithme de gradient projeté/réduit

Les principales étapes d'une itération de gradient projeté/réduit sont

- construire la direction de descente au point courant
- effectuer une recherche linéaire avec restauration

Direction de descente

- Sélection des contraintes actives
- Projection ou réduction dans l'hyperplan tangent
- Mise à jour du hessien (quasi-Newton)

Recherche linéaire

- Méthode de dichotomie sur le pas de déplacement
- Restauration avant évaluation du pas
- Règles d'acceptation (Armijo,...)

Principales difficultés

- Amélioration critère \rightarrow grands pas
- Restauration contraintes → petits pas
 - → difficultés sur problèmes très non-linéaires
 - → réglages à adapter au cas par cas

- Optimisation avec contraintes
- Gradient projeté
- 3.3.4 Algorithme

3.3.4 Exemple

Exemple

- Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 1)^2 1 = 0$
- Solution: $\begin{cases} x_1^* = -1/\sqrt{2} \approx -0.70711 \\ x_2^* = 1-1/\sqrt{2} \approx 0.29289 \end{cases}$

Itérations

- Point courant: $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} r \cos \theta \\ r \sin \theta + 1 \end{pmatrix}$
- Descente: $x' = x s_1 d_1$ avec $d_1 = \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix}$ $\leftarrow g_p = (\cos\theta \sin\theta) \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix}$
 - \rightarrow pas s₁ suivant le gradient projeté
- Restauration: $\mathbf{x}'' = \mathbf{x}' \mathbf{s}_2 \mathbf{d}_2$ avec $\mathbf{d}_2 = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$ $\leftarrow \nabla \mathbf{c}(\mathbf{x}) = \begin{pmatrix} 2\mathbf{x}_1 \\ 2(\mathbf{x}_2 1) \end{pmatrix}$
 - \rightarrow pas s₂ suivant le gradient des contraintes
- Réglage des pas : s_2 est calculé pour restaurer c(x'') = 0 s_1 est choisi pour vérifier une décroissance suffisante f(x'') < f(x)

3 Optimisation avec contraintes

3.3 Gradient projeté

3.3.4 Algorithme

Techniques d'optimisation

3.3.4 Exemple

Exemple

• Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 - 1)^2 - 1 = 0$

• Point initial:
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0.1 \\ 1 \end{pmatrix} \rightarrow \text{Restauration initiale} : \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Itération	X ₁	X_2	f(x)	c(x)	Descente s ₁	x ₁ '	X2'	c(x')	Restauration s ₂
1	0,10000	1,00000	1,10000	-0,99000	0,00000	0,10000	1,00000	-0,99000	4,50000
2	1,00000	1,00000	2,00000	0,00000	1,00000	1,00000	0,00000	1,00000	-0,50000
3	0,00000	0,00000	0,00000	0,00000	0,50000	-0,50000	0,00000	0,25000	-0,06699
4	-0,50000	0,13397	-0,36603	0,00000	0,18301	-0,65849	0,22548	0,03349	-0,00844
5	-0,65005	0,24011	-0,40994	0,00000	5,492E-02	-0,69178	0,27581	3,016E-03	-7,547E-04
6	-0,69080	0,27696	-0,41385	0,00000	1,612E-02	-0,70246	0,28809	2,599E-04	-6,497E-05
7	-0,70237	0,28819	-0,41418	0,00000	4,722E-03	-0,70573	0,29150	2,230E-05	-5,576E-06
8	-0,70572	0,29151	-0,41421	0,00000	1,383E-03	-0,70670	0,29249	1,913E-06	-4,783E-07
9	-0,70670	0,29249	-0,41421	0,00000	4,051E-04	-0,70699	0,29277	1,641E-07	-4,103E-08
10	-0,70699	0,29277	-0,41421	0,00000	1,187E-04	-0,70707	0,29286	1,408E-08	-3,520E-09
11	-0,70707	0,29286	-0,41421	0,00000	3,475E-05	-0,70710	0,29288	1,208E-09	-3,020E-10
12	-0,70710	0,29288	-0,41421	0,00000					

- 3 Optimisation avec contraintes
- 3.3 Gradient projeté
- 3.3.4 Algorithme

3.3.4 Exemple

Exemple

Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 - 1)^2 - 1 = 0$ Point initial **Point initial admissible** Solution

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0.1 \\ 1 \end{pmatrix} \xrightarrow{\text{restauration initiale}} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \xrightarrow{\text{itérations}} \begin{pmatrix} x_1 * \\ x_2 * \end{pmatrix} = \begin{pmatrix} -1/\sqrt{2} \approx -0.70711 \\ 1-1/\sqrt{2} \approx 0.29289 \end{pmatrix}$$

- 3 Optimisation avec contraintes
- 3.4 Lagrangien augmenté

Sommaire

- 1. Bases théoriques
- 2. Optimisation sans contraintes
- 3. Optimisation avec contraintes
 - 3.1 Simplexe
 - 3.2 Point intérieur
 - 3.3 Gradient projeté
 - 3.4 Lagrangien augmenté
 - 3.4.1 Principes
 - 3.4.2 Pénalisation
 - 3.4.3 Algorithme
 - 3.5 Programmation quadratique séquentielle
 - 3.6 Convergence

- 3 Optimisation avec contraintes
- 3.4 Lagrangien augmenté
- 3.4.1 Principes

3.4.1 Lagrangien augmenté

Problème avec contraintes égalité

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) \text{ sous } \begin{cases} c_{E}(\mathbf{x}) = 0 \\ c_{I}(\mathbf{x}) \le 0 \end{cases} \iff \min_{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) \text{ sous } c(\mathbf{x}) = 0 \longrightarrow \text{ contraintes actives}$$

La difficulté de résolution vient des 2 objectifs antagonistes :

- Minimiser le critère f(x)
- Satisfaire les contraintes c(x)=0

Méthodes de pénalisation

Les contraintes sont ajoutées à la fonction coût avec une pondération :

- Critère augmenté → pondération = pénalisation des contraintes
- Lagrangien → pondération = multiplicateurs de Lagrange
- Lagrangien augmenté → pondération = pénalisation + multiplicateurs
 - → On se ramène à un **problème sans contraintes** plus simple

Les difficultés viennent du réglage de la pondération :

- Le problème pénalisé sans contraintes doit être équivalent au problème avec contraintes.
- Le problème pénalisé est mal conditionné lorsque la pénalisation est grande.

- 3 Optimisation avec contraintes
- 3.4 Lagrangien augmenté
- 3.4.2 Pénalisation

3.4.2 Pénalisation

- ☐ Critère augmenté
- ☐ Pénalisation quadratique
- ☐ Pénalisation exacte
- ☐ Mise en œuvre
- ☐ Lagrangien augmenté

- 3 Optimisation avec contraintes
- 3.4 Lagrangien augmenté
- 3.4.2 Pénalisation

3.4.2 Critère augmenté

Problème avec contraintes égalité

$$\min_{\mathbf{x} \in \mathbf{R}^{n}} \mathbf{f}(\mathbf{x}) \text{ sous } \begin{cases} c_{\mathbf{E}}(\mathbf{x}) = 0 \\ c_{\mathbf{I}}(\mathbf{x}) \le 0 \end{cases} \iff \min_{\mathbf{x} \in \mathbf{R}^{n}} \mathbf{f}(\mathbf{x}) \text{ sous } c(\mathbf{x}) = 0 \longrightarrow \text{ contraintes actives}$$

On note x* la solution du problème avec contraintes.

Critère augmenté

On ajoute au critère un terme positif fonction de la violation des contraintes avec un coefficient de pénalisation $\rho > 0 \rightarrow 2$ méthodes usuelles de pénalisation

• Pénalisation en norme 2 (pénalisation quadratique)

$$f_{\rho}(x) = f(x) + \frac{1}{2} \rho \left\| c_{E}(x) \right\|_{2}^{2} + \left\| max(0, c_{I}(x)) \right\|_{2}^{2}$$
 $\iff f_{\rho}(x) = f(x) + \frac{1}{2} \rho \left\| c(x) \right\|_{2}^{2}$

• Pénalisation en norme 1

$$f_{\rho}(x) = f(x) + \rho \left\| c_{E}(x) \right\|_{1} + \left\| \max(0, c_{I}(x)) \right\|_{1}$$
 $\Leftrightarrow f_{\rho}(x) = f(x) + \rho \left\| c(x) \right\|_{1}$

Problème sans contraintes

$$\min_{x \in \mathbb{R}^n} f_{\rho}(x) \longrightarrow \text{solution } x_{\rho}$$

- 3 Optimisation avec contraintes
- 3.4 Lagrangien augmenté
- 3.4.2 Pénalisation

3.4.2 Pénalisation quadratique

Problème pénalisé l₂

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} f_{\rho}(\mathbf{x}) \quad \text{avec} \quad f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \frac{1}{2} \rho \left\| \mathbf{c}_{E}(\mathbf{x}) \right\|_{2}^{2} + \left\| \max(0, \mathbf{c}_{I}(\mathbf{x})) \right\|_{2}^{2} \right) \\
\Leftrightarrow \quad f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \frac{1}{2} \rho \left\| \mathbf{c}(\mathbf{x}) \right\|_{2}^{2} \quad \to \text{ contraintes actives}$$

Le critère l₂ est différentiable deux fois pour un problème avec contraintes égalité On peut appliquer les algorithmes d'optimisation sans contraintes à base de gradient.

Méthode de résolution

- On résout une suite de problèmes pénalisés avec des valeurs croissantes de la pénalisation ρ .
- Chaque problème k+1 est initialisé avec la solution précédente x_k.
- Problème k avec pénalisation ρ_k : $\min_{x \in \mathbb{R}^n} f_{\rho_k}(x) \rightarrow \text{solution } x_k$
- Il faut vérifier que la suite des solutions x_k converge vers la solution x^* du problème initial $\lim_{k\to\infty} x_k = x^*$ si $\lim_{k\to\infty} \rho_k = +\infty$
 - → 2 résultats de convergence selon que x_k est une solution exacte ou approchée

- 3 Optimisation avec contraintes
- 3.4 Lagrangien augmenté
- 3.4.2 Pénalisation

3.4.2 Pénalisation quadratique

Problème pénalisé l₂

• Problème avec contraintes :
$$\min_{x \in \mathbb{R}^n} f(x)$$
 sous $c(x) = 0 \rightarrow \text{solution } x^*$

$$\begin{array}{ll} \bullet & \text{Problème k avec p\'enalisation } \rho_k : & \min_{x \in R^n} f_{\rho_k}(x) \\ & \lim_{k \to \infty} \rho_k = + \infty \end{array} \\ & \qquad \qquad \qquad \rightarrow \text{ solution } x_k \\ & \lim_{k \to \infty} x_k = x_\infty \end{array}$$

Convergence

• Si
$$x_k$$
 est le minimum global exact, alors $\lim_{k\to\infty} x_k = x^*$

• Si
$$x_k$$
 est un **minimum local approché** : $\left\|\nabla f_{\rho_k}(x_k)\right\| \le \varepsilon_k \text{ avec } \lim_{k \to \infty} \varepsilon_k = 0$
 \to précision de résolution ε_k décroissante

alors la limite
$$x_{\infty}$$
 est : - soit un point non admissible qui minimise $\|c(x)\|_{2}^{2}$

- soit un point x* vérifiant les conditions KKT du problème initial

La solution exacte x* n'est obtenue qu'à la limite lorsque la pénalisation ρ tend vers l'infini.

- 3 Optimisation avec contraintes
- 3.4 Lagrangien augmenté
- 3.4.2 Pénalisation

3.4.2 Pénalisation quadratique

Eléments de la démonstration

$$f_{\rho}(x) = f(x) + \frac{1}{2}\rho \|c(x)\|^2 \quad \Rightarrow \quad \nabla f_{\rho}(x) = \nabla f(x) + \rho \nabla c(x)c(x)$$

• Critère d'arrêt sur x_k : $\left\| \nabla f_{\rho_k}(x_k) \right\| \le \varepsilon_k$

$$\left\| \nabla f_{\rho_{k}}(x_{k}) \right\| = \left\| \nabla f(x_{k}) + \rho_{k} \nabla c(x_{k}) c(x_{k}) \right\| \ge \left\| \rho_{k} \nabla c(x_{k}) c(x_{k}) \right\| - \left\| \nabla f(x_{k}) \right\| \quad car \|a + b\| \ge \|a\| - \|b\|$$

$$\Rightarrow \|\rho_k \nabla c(x_k) c(x_k)\| \le \varepsilon_k + \|\nabla f(x_k)\| \quad \Rightarrow \|\nabla c(x_k) c(x_k)\| \le \frac{\varepsilon_k + \|\nabla f(x_k)\|}{\rho_k} \xrightarrow[k \to \infty]{} 0$$

$$\Rightarrow \begin{cases} \nabla c(x^*) = 0 \rightarrow \min \| c(x) \| \\ ou \qquad si \ les \ gradients \ sont \ linéairement \ indépendants \\ c(x^*) = 0 \rightarrow admissible \end{cases}$$

• Multiplicateurs de Lagrange

$$\begin{aligned} \left\| \nabla f_{\rho_k}(x_k) \right\| &= \left\| \nabla f(x_k) + \rho_k \nabla c(x_k) c(x_k) \right\| \le \varepsilon_k \xrightarrow[k \to \infty]{} 0 \\ &\to \nabla f(x^*) + \nabla c(x^*) \lambda^* = 0 \quad avec \quad \lambda^* = \lim_{k \to \infty} \rho_k c(x_k) \end{aligned}$$

- 3 Optimisation avec contraintes
- 3.4 Lagrangien augmenté
- 3.4.2 Pénalisation

3.4.2 Pénalisation exacte

Problème pénalisé l₁

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} f_{\rho}(\mathbf{x}) \qquad \text{avec} \quad f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \rho \left\| \mathbf{c}_{\mathbf{E}}(\mathbf{x}) \right\|_{1} + \left\| \max(0, \mathbf{c}_{\mathbf{I}}(\mathbf{x})) \right\|_{1} \right)$$

$$\Leftrightarrow \quad f_{\rho}(\mathbf{x}) = f(\mathbf{x}) + \rho \left\| \mathbf{c}(\mathbf{x}) \right\|_{1} \qquad \to \text{ contraintes actives}$$

Le critère l₁ n'est pas différentiable.

Méthode de résolution

- On résout une suite de problèmes pénalisés avec des valeurs croissantes de la pénalisation ρ .
- Chaque problème k+1 est initialisé avec la solution précédente x_k.
- Problème k avec pénalisation ρ_k : $\min_{x \in R^n} f_{\rho_k}(x) \rightarrow \text{solution } x_k$

Convergence

- Si $\rho > \rho^* = \|\lambda^*\|_{\infty} = \max |\lambda_i|$ alors \mathbf{x}^* est un minimum local de \mathbf{f}_{ρ} avec la pénalisation \mathbf{l}_1 .
- La pénalisation l_1 est exacte si est ρ est supérieur au plus grand multiplicateur.
 - → ne nécessite pas d'augmenter indéfiniment ρ pour obtenir la solution exacte x*

- 3 Optimisation avec contraintes
- 3.4 Lagrangien augmenté
- 3.4.2 Pénalisation

3.4.2 Mise en oeuvre

Méthodes avec critère augmenté

- Type de pénalisation
 - Pénalisation $l_2 \rightarrow$ différentiable, mais nécessite une pénalisation forte pour approcher x^*
 - Pénalisation $l_1 \rightarrow \text{exacte}$, mais non différentiable
- Réglage de la pénalisation
 - Trop faible → risque de divergence (pas de minimum du problème pénalisé)
 - Trop forte → mauvais conditionnement, difficultés numériques
- Utilisation du critère augmenté
 - Difficultés pratiques si l'on veut obtenir une bonne précision sur la solution x*
 - Le critère augmenté peut servir de fonction mérite dans le cadre d'autres algorithmes pour évaluer la progression vers l'optimum.

Méthodes avec lagrangien augmenté

On cherche à se ramener à une suite de problèmes sans contraintes

- en conservant un critère différentiable
- en évitant le mauvais conditionnement du à une pénalisation trop forte
- → utilisation des multiplicateurs de Lagrange pour réduire la pénalisation

- Optimisation avec contraintes
- 3.4 Lagrangien augmenté
- 3.4.2 Pénalisation

3.4.2 Lagrangien augmenté

Problème pénalisé l₂

La méthode de pénalisation consiste à minimiser le critère augmenté.

$$\min_{x \in \mathbb{R}^{n}} f_{\rho}(x) = f(x) + \frac{1}{2} \rho ||c(x)||^{2}$$

La convergence est obtenue pour des valeurs croissantes de pénalisation.

$$\lim_{k\to\infty}\rho_k=+\infty\quad \to \begin{array}{ll} \lim_{k\to\infty}x_k=x^* & \to \text{ minimum local} \\ \lim_{k\to\infty}\rho_kc(x_k)=\lambda^* & \to \text{ multiplicateurs des contraintes actives} \end{array}$$

- La solution x_k ne respecte qu'approximativement les contraintes : $c(x_k) \approx \frac{\lambda^*}{\rho_k}$
- Pour respecter précisément les contraintes, il faut augmenter fortement la pénalisation → cause de mauvais conditionnement et de difficultés numériques
- On peut appliquer la méthode de pénalisation au problème équivalent

$$\rightarrow \min_{\mathbf{x} \in \mathbb{R}^{n}} L_{\rho}(\mathbf{x}, \lambda^{*}) = L(\mathbf{x}, \lambda^{*}) + \frac{1}{2} \rho \|\mathbf{c}(\mathbf{x})\|_{2}^{2} = f(\mathbf{x}) + \lambda^{*T} \mathbf{c}(\mathbf{x}) + \frac{1}{2} \rho \|\mathbf{c}(\mathbf{x})\|^{2}$$

- 3 Optimisation avec contraintes
- 3.4 Lagrangien augmenté
- 3.4.2 Pénalisation

3.4.2 Lagrangien augmenté

Lagrangien augmenté

• La méthode de lagrangien augmenté consiste à résoudre une suite de problèmes :

$$\begin{split} \min_{x \in R^n} L_{\rho_k}(x, \lambda_k) &= L(x, \lambda_k) + \frac{1}{2} \rho_k \left\| c(x) \right\|_2^2 = f(x) + \lambda_k^T c(x) + \frac{1}{2} \rho_k \left\| c(x) \right\|^2 \\ avec \quad \rho_k = \text{valeur de pénalisation du problème } k \\ \lambda_k &= \text{estimation des multiplicateurs pour le problème } k \end{split}$$

• Si $\lim_{k\to\infty} \lambda_k = \lambda^*$ et $\lim_{k\to\infty} \rho_k = +\infty$ les problèmes deviennent équivalents.

$$\left. \begin{array}{ll} \displaystyle \min_{x \in R^n} L(x, \lambda^*) \; sous \; c(x) = 0 & \Leftrightarrow \; \displaystyle \min_{x \in R^n} f(x) \; sous \; c(x) = 0 \\ \Leftrightarrow \; \displaystyle \min_{x \in R^n} L_\rho(x, \lambda^*) & \Leftrightarrow \; \displaystyle \displaystyle \min_{x \in R^n} f_\rho(x) \end{array} \right\} \; \rightarrow \; \lim_{k \to \infty} x_k = x^*$$

La solution x_k du problème $\min_{x \in \mathbb{R}^n} L_{\rho_k}(x, \lambda_k)$ converge vers la solution x^* du problème initial.

• La solution x_k vérifie également : $\nabla_x L_{\rho_k}(x_k, \lambda_k) = \nabla f(x_k) + \nabla c(x_k) (\lambda_k + \rho_k c(x_k)) = 0$ à comparer à x^* qui vérifie : $\nabla_x L(x^*, \lambda^*) = \nabla f(x^*) + \nabla c(x^*) \lambda^* = 0$

$$\Rightarrow \lim_{k \to \infty} \lambda_k + \rho_k c(x_k) = \lambda^*$$

(même démonstration que pour le critère augmenté avec pénalisation quadratique)

- 3 Optimisation avec contraintes
- 3.4 Lagrangien augmenté
- 3.4.2 Pénalisation

3.4.2 Lagrangien augmenté

Lagrangien augmenté

• On peut estimer les multiplicateurs à l'itération k

$$\begin{split} \lim_{k \to \infty} \lambda_k + \rho_k c(x_k) &= \lambda^* \quad \to \quad \lambda^* \approx \lambda_k + \rho_k c(x_k) \quad \text{ pour } \rho_k \text{ assez grand} \\ & \quad \to \quad \lambda_{k+1} = \lambda_k + \rho_k c(x_k) \quad \text{pour l'itération } k+1 \end{split}$$

• La valeur des contraintes à l'itération k est : $c(x_k) \approx \frac{\lambda^* - \lambda_k}{\rho_k}$ $\xrightarrow{\lambda_k \to \lambda^*} 0$

On peut parvenir à respecter les contraintes <u>sans augmenter indéfiniment la pénalisation</u> si λ_k est une bonne estimation des multiplicateurs.

- → meilleur conditionnement
- → convergence plus rapide et précise que la méthode du critère augmenté
- → méthode de lagrangien augmenté appelée aussi méthode des multiplicateurs

Convergence

Pour ρ assez grand, la solution x^* du problème initial est un minimum local du problème

$$\min_{\mathbf{x} \in \mathbb{R}^{n}} \mathbf{L}_{\rho}(\mathbf{x}, \lambda^{*}) = \mathbf{f}(\mathbf{x}) + \lambda^{*^{T}} \mathbf{c}(\mathbf{x}) + \frac{1}{2} \rho \|\mathbf{c}(\mathbf{x})\|^{2} \rightarrow \text{p\'enalisation exacte si on connaît } \lambda^{*}$$

 \rightarrow ne nécessite pas d'augmenter indéfiniment ρ pour obtenir la solution exacte x^*

- 3 Optimisation avec contraintes
- 3.4 Lagrangien augmenté
- 3.4.3 Algorithme

3.4.3 Algorithme

- ☐ Algorithme de lagrangien augmenté
- ☐ Exemple

- 3 Optimisation avec contraintes
- 3.4 Lagrangien augmenté
- 3.4.3 Algorithme

3.4.3 Algorithme

Méthode de lagrangien augmenté (ou méthode des multiplicateurs)

Les principales étapes d'une itération de lagrangien augmenté sont

- minimiser le lagrangien augmenté
- mettre à jour les paramètres de réglage

Minimisation du lagrangien augmenté

- Méthode de quasi-Newton
- Recherche linéaire ou région de confiance
- Précision d'arrêt sur gradient

Paramètres de réglage

- Multiplicateurs
- Pénalisation
- Précisions (gradient, contraintes)

Principales difficultés

- Précision contraintes → pénalisation forte
- Conditionnement → pénalisation faible
 - → convergence précise difficile
 - → réglages à adapter au cas par cas

- 3 Optimisation avec contraintes
- 3.4 Lagrangien augmenté
- 3.4.3 Algorithme

3.4.3 Algorithme

Méthode de lagrangien augmenté (ou méthode des multiplicateurs)

- Mise à jour des réglages à l'itération k+1 en fonction du respect des contraintes
 - Si $\|c(x_{k+1})\| < \eta_k$ \rightarrow mise à jour des multiplicateurs $\lambda_{k+1} = \lambda_k + \rho_k c(x_k)$ (contraintes bien respectées) \rightarrow résolution plus précise $\epsilon_{k+1} < \epsilon_k$, $\eta_{k+1} < \eta_k$
 - Si $\|c(x_{k+1})\| > \eta_k$ \rightarrow augmentation de la pénalisation $\rho_{k+1} > \rho_k \rightarrow \times 10$ (contraintes mal respectées) \rightarrow résolution moins précise $\epsilon_{k+1} > \epsilon_k$, $\eta_{k+1} > \eta_k$

- Optimisation avec contraintes
- 3.4 Lagrangien augmenté
- 3.4.3 Algorithme

3.4.3 Exemple

Exemple

- Minimisation de $f(x) = 2(x_1^2 + x_2^2 1) x_1$ sous $c(x) = x_1^2 + x_2^2 1 = 0$
- Point initial: $x = \begin{pmatrix} 0.5 \\ 1.3 \end{pmatrix}$, $\lambda = 0$ Solution: $x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\lambda = -\frac{3}{2}$

- 3 Optimisation avec contraintes
- 3.4 Lagrangien augmenté
- 3.4.3 Algorithme

3.4.3 Exemple

Exemple

• Minimisation de $f(x) = 2(x_1^2 + x_2^2 - 1) - x_1$ sous $c(x) = x_1^2 + x_2^2 - 1 = 0$

• Point initial:
$$x = \begin{pmatrix} 0.5 \\ 1.3 \end{pmatrix}$$
, $\lambda = 0$ Solution: $x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\lambda = -\frac{3}{2}$

Itération	x ₁	\mathbf{x}_2	λ	ρ	c(x)	$\left\ \nabla \mathbf{L}_{\rho}(\mathbf{x}, \lambda) \right\ $	Newton
1	0,50000	1,30000	0,00000	1	-0,71238	0,90050	1
2	0,40707	0,34917	-0,71238	10	-0,05788	0,90016	1
3	0,73467	0,63433	-1,29122	10	-0,00905	0,50091	2
4	0,91556	0,39077	-1,38175	10	0,00635	0,41807	2
5	0,98869	0,16985	-1,38175	100	0,00188	0,62061	2
6	0,99953	0,04158	-1,30283	100	-0,00188	0,01728	2
7	0,99905	-0,00320	-1,49103	100	-0,00009	0,00172	1
8	0,99995	0,00171	-1,50003	100	2,06E-06	0,00057	3
9	1,00000	0,00045	-1,50003	100	1,85E-06	0,00031	

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel

Sommaire

- 1. Bases théoriques
- 2. Optimisation sans contraintes
- 3. Optimisation avec contraintes
 - 3.1 Simplexe
 - 3.2 Point intérieur
 - 3.3 Gradient projeté
 - 3.4 Lagrangien augmenté
 - 3.5 Programmation quadratique séquentielle
 - 3.5.1 Equations KKT
 - 3.5.2 Modèle quadratique
 - 3.5.3 Globalisation
 - 3.5.4 Algorithme
 - 3.6 Convergence

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.1 Equations KKT

3.5.1 Equations KKT

- ☐ Problème non linéaire
 - Conditions de minimum local
 - Equations KKT
- ☐ Méthode de Newton

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.1 Equations KKT

3.5.1 Equations KKT

Problème avec contraintes égalité

$$\min_{\mathbf{x} \in \mathbf{R}^{n}} f(\mathbf{x}) \text{ sous } \begin{cases} c_{\mathbf{E}}(\mathbf{x}) = 0 \\ c_{\mathbf{I}}(\mathbf{x}) \le 0 \end{cases} \Leftrightarrow \min_{\mathbf{x} \in \mathbf{R}^{n}} f(\mathbf{x}) \text{ sous } c(\mathbf{x}) = 0 \to \text{m contraintes actives}$$

Conditions nécessaires de minimum local

• Lagrangien: $L(x,\lambda) = f(x) + \lambda^{T}c(x)$

• Gradient: $\nabla L(x,\lambda) = \begin{pmatrix} \nabla_x L(x,\lambda) \\ \nabla_{\lambda} L(x,\lambda) \end{pmatrix} = \begin{pmatrix} \nabla f(x) + \nabla c(x)\lambda \\ c(x) \end{pmatrix}$

• Hessien: $\nabla^{2}L(x,\lambda) = \begin{pmatrix} \nabla_{xx}^{2}L(x,\lambda) & \nabla_{x\lambda}^{2}L(x,\lambda) \\ \nabla_{\lambda x}^{2}L(x,\lambda) & \nabla_{\lambda \lambda}^{2}L(x,\lambda) \end{pmatrix} = \begin{pmatrix} \nabla_{xx}^{2}L(x,\lambda) & \nabla c(x) \\ \nabla c(x)^{T} & 0 \end{pmatrix}$

• Conditions d'ordre 1 : $\nabla L(x,\lambda) = \begin{pmatrix} \nabla_x L(x,\lambda) \\ \nabla_{\lambda} L(x,\lambda) \end{pmatrix} = 0 \rightarrow \text{équations KKT}$

On cherche à résoudre les équations KKT par la méthode de Newton.

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.1 Equations KKT

3.5.1 Equations KKT

Equations KKT

Les conditions KKT donnent un système d'équations non linéaire en variables (x,λ)

$$\nabla L(x,\lambda) = \begin{pmatrix} \nabla_x L(x,\lambda) \\ \nabla_{\lambda} L(x,\lambda) \end{pmatrix} = 0$$

Méthode de Newton

Au point (x_k, λ_k) , l'itération de Newton donne un déplacement d vérifiant

$$\nabla^2 L(x_k, \lambda_k) d = -\nabla L(x_k, \lambda_k)$$
 avec $d = \begin{pmatrix} d_x \\ d_\lambda \end{pmatrix} \in R^{n+m}$

$$\Leftrightarrow \begin{pmatrix} \nabla_{xx}^{2} L(x_{k}, \lambda_{k}) & \nabla c(x_{k}) \\ \nabla c(x_{k})^{T} & 0 \end{pmatrix} \begin{pmatrix} d_{x} \\ d_{\lambda} \end{pmatrix} = -\begin{pmatrix} \nabla f(x_{k}) + \nabla c(x_{k}) \lambda_{k} \\ c(x_{k}) \end{pmatrix}$$

$$\Leftrightarrow \begin{bmatrix} \nabla_{xx}^{2} L(x_{k}, \lambda_{k}) d_{x} + \nabla c(x_{k}) d_{\lambda} &= -\nabla_{x} L(x_{k}, \lambda_{k}) \\ \nabla c(x_{k})^{T} d_{x} &= -c(x_{k}) \end{bmatrix} \rightarrow \text{\'equations de Newton}$$

On peut écrire un **problème quadratique-linéaire** en variables (d_x,d_λ) dont les conditions d'optimalité sont les équations de Newton au point (x_k, λ_k) .

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.2 Modèle quadratique

3.5.2 Modèle quadratique

- ☐ Problème quadratique local
- ☐ Equivalence avec la méthode de Newton
- ☐ Interprétation
- ☐ Formulation simplifiée
- ☐ Résolution

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.2 Modèle quadratique

3.5.2 Modèle quadratique

Problème quadratique local

Au point (x_k, λ_k) , on considère le problème d'optimisation sur la variable $d_{QP} \in R^n$

$$\min_{d_{QP} \in \mathbb{R}^{n}} \nabla_{x} L(x_{k}, \lambda_{k})^{T} d_{QP} + \frac{1}{2} d_{QP}^{T} \nabla_{xx}^{2} L(x_{k}, \lambda_{k}) d_{QP} \text{ sous } \nabla c(x_{k})^{T} d_{QP} + c(x_{k}) = 0$$

- → problème quadratique-linéaire noté (QP)
- Lagrangien L_{QP} avec des multiplicateurs λ_{QP} sur les contraintes : $\nabla c(x_k)^T d_{QP} + c(x_k) = 0$

$$L_{QP}(d_{QP}, \lambda_{QP}) = \nabla_{x}L(x_{k}, \lambda_{k})^{T}d_{QP} + \frac{1}{2}d_{QP}^{T}\nabla_{xx}^{2}L(x_{k}, \lambda_{k})d_{QP} + \lambda_{QP}^{T}(\nabla c(x_{k})^{T}d_{QP} + c(x_{k}))$$

• Conditions d'ordre 1 :
$$\nabla L_{QP}(d_{QP}, \lambda_{QP}) = \begin{pmatrix} \nabla_d L_{QP}(d_{QP}, \lambda_{QP}) \\ \nabla_{\lambda} L_{QP}(d_{QP}, \lambda_{QP}) \end{pmatrix} = 0$$

$$\Leftrightarrow \begin{cases} \nabla_{\mathbf{x}} L(\mathbf{x}_{k}, \lambda_{k}) + \nabla_{\mathbf{x}\mathbf{x}}^{2} L(\mathbf{x}_{k}, \lambda_{k}) d_{\mathbf{QP}} + \nabla c(\mathbf{x}_{k}) \lambda_{\mathbf{QP}} = 0 \\ \nabla c(\mathbf{x}_{k})^{\mathrm{T}} d_{\mathbf{QP}} + c(\mathbf{x}_{k}) = 0 \end{cases}$$

 $\to~$ système linéaire sur les variables primales $d_{QP}{\in}R^n$ et les variables duales $\lambda_{QP}{\in}R^m$

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.2 Modèle quadratique

3.5.2 Modèle quadratique

Equivalence avec la méthode de Newton

On se place au point (x_k, λ_k) .

• L'itération de Newton pour résoudre les conditions KKT donne le système en variables (d_x,d_λ)

$$\begin{cases} \nabla_{xx}^{2} L(x_{k}, \lambda_{k}) d_{x} + \nabla c(x_{k}) d_{\lambda} = -\nabla_{x} L(x_{k}, \lambda_{k}) \\ \nabla c(x_{k})^{T} d_{x} = -c(x_{k}) \end{cases}$$

• Le problème quadratique-linéaire (QP) en variables $d_{QP} \in R^n$

$$\min_{d_{QP} \in R^{n}} \nabla_{x} L(x_{k}, \lambda_{k})^{T} d_{QP} + \frac{1}{2} d_{QP}^{T} \nabla_{xx}^{2} L(x_{k}, \lambda_{k}) d_{QP} \quad sous \quad \nabla c(x_{k})^{T} d_{QP} + c(x_{k}) = 0$$

a pour conditions d'ordre 1 le système en variables $(d_{QP}\lambda_{QP})$

$$\begin{cases} \nabla_{x} L(x_{k}, \lambda_{k}) + \nabla_{xx}^{2} L(x_{k}, \lambda_{k}) d_{QP} + \nabla c(x_{k}) \lambda_{QP} = 0 \\ \nabla c(x_{k})^{T} d_{QP} + c(x_{k}) = 0 \end{cases}$$

• Les 2 systèmes linéaires sont identiques en posant : $\begin{cases} d_{QP} = d_x \in R^n \\ \lambda_{QP} = d_\lambda \in R^m \end{cases}$

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.2 Modèle quadratique

3.5.2 Modèle quadratique

Interprétation

• L'itération de Newton au point (x_k, λ_k) équivaut à la résolution du problème quadratique local

$$\begin{aligned} \min_{d_{QP} \in R^n} \nabla_x L(x_k, \lambda_k)^T d_{QP} + \frac{1}{2} d_{QP}^T \nabla_{xx}^2 L(x_k, \lambda_k) d_{QP} & \text{sous } \nabla c(x_k)^T d_{QP} + c(x_k) = 0 \\ & \rightarrow \text{ multiplicateur } \lambda_{QP} \end{aligned} \rightarrow \begin{cases} d_x = d_{QP} \\ d_\lambda = \lambda_{QP} \end{cases}$$

• On peut formuler le problème quadratique local (QP) en

$$\min_{\mathbf{d}_{QP} \in \mathbb{R}^{n}} \widetilde{\mathbf{L}}(\mathbf{d}_{QP}) \text{ sous } \widetilde{\mathbf{c}}(\mathbf{d}_{QP}) = 0 \text{ avec } \begin{cases} \widetilde{\mathbf{L}}(\mathbf{d}_{QP}) = \mathbf{L}(\mathbf{x}_{k} + \mathbf{d}_{QP}, \lambda_{k}) + \mathbf{o} \| \mathbf{d}_{QP}^{2} \| \right) \rightarrow \mathbf{L} \text{ à l'ordre 2 en x} \\ \widetilde{\mathbf{c}}(\mathbf{d}_{QP}) = \mathbf{c}(\mathbf{x}_{k} + \mathbf{d}_{QP}) + \mathbf{o} \| \mathbf{d}_{QP} \| \right) \rightarrow \mathbf{c} \text{ à l'ordre 1 en x} \end{cases}$$

→ minimisation d'un modèle quadratique du lagrangien sous un modèle linéaire des contraintes

Récapitulatif

• Optimisation sans contrainte

Newton \Leftrightarrow Minimiser un modèle quadratique de la fonction

Optimisation avec contrainte

Newton \Leftrightarrow Minimiser un modèle quadratique du lagrangien sous un modèle linéaire des contraintes

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.2 Modèle quadratique

3.5.2 Modèle quadratique

Formulation simplifiée

• L'itération de Newton au point (x_k, λ_k) s'écrit en variables (d_x, d_λ) :

$$\begin{cases} \nabla_{xx}^{2} L(x_{k}, \lambda_{k}) d_{x} + \nabla c(x_{k}) d_{\lambda} = -\nabla_{x} L(x_{k}, \lambda_{k}) = -\nabla f(x_{k}) - \nabla c(x_{k}) \lambda_{k} \\ \nabla c(x_{k})^{T} d_{x} = -c(x_{k}) \end{cases}$$

• En faisant le changement de variable $d_l = \lambda_k + d_\lambda$, on obtient

$$\begin{cases} \nabla_{xx}^{2} L(x_{k}, \lambda_{k}) d_{x} + \nabla c(x_{k}) d_{1} = -\nabla f(x_{k}) \\ \nabla c(x_{k})^{T} d_{x} = -c(x_{k}) \end{cases}$$

• L'itération de Newton en variables (d_x,d₁) équivaut au problème quadratique local

$$\begin{array}{c} \underset{d_{QP} \in \mathbb{R}^{n}}{\text{min}} \, \nabla f(x_{k})^{T} d_{QP} + \frac{1}{2} d_{QP}^{T} \nabla_{xx}^{2} L(x_{k}, \lambda_{k}) d_{QP} \quad \text{sous} \quad \nabla c(x_{k})^{T} d_{QP} + c(x_{k}) = 0 \\ \rightarrow \quad \text{multiplicateur } \lambda_{QP} \\ \rightarrow \quad \text{même formulation avec} \quad \nabla f(x_{k}) \quad \text{au lieu de} \quad \nabla_{x} L(x_{k}, \lambda_{k}) \\ \end{array}$$

- Optimisation avec contraintes
- Quadratique séquentiel
- 3.5.2 Modèle quadratique

3.5.2 Modèle quadratique

Solution du problème quadratique

On peut calculer explicitement la solution du problème quadratique local

$$\lim_{d_{QP} \in \mathbb{R}^{n}} \nabla f(x_{k})^{T} d_{QP} + \frac{1}{2} d_{QP}^{T} \nabla_{xx}^{2} L(x_{k}, \lambda_{k}) d_{QP} \quad \text{sous} \quad \nabla c(x_{k})^{T} d_{QP} + c(x_{k}) = 0$$

- Si Q n'est pas définie positive, on remplace Q par une matrice H définie positive « proche »
 - → factorisation de Cholesky modifiée
 - \rightarrow ou H = Q + τ I avec τ suffisamment grand
- Le déplacement à partir du point courant (x_k, λ_k) est : $\begin{cases} d_x = d_{QP} \\ d_\lambda = \lambda_{QP} \lambda_k \end{cases} \rightarrow \begin{cases} x_{k+1} = x_k + d_{QP} \\ \lambda_{k+1} = \lambda_{QP} \end{cases}$
- La résolution explicite est généralement trop coûteuse à cause des inversions de matrices. On résout le problème quadratique-linéaire par un algorithme itératif dédié.

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.3 Globalisation

3.5.3 Globalisation

- ☐ Méthode de Newton
- ☐ SQP avec recherche linéaire
- ☐ SQP avec région de confiance
- ☐ Correction d'ordre 2

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.3 Globalisation

3.5.3 Globalisation

Méthode de Newton

- La résolution des équations KKT par la méthode de Newton équivaut à la résolution d'une suite de problèmes quadratiques
 - → programmation quadratique séquentielle (SQP)
- La méthode de Newton n'est pas globalement convergente.
 - → globalisation nécessaire par recherche linéaire ou région de confiance
 - → fonction mérite F mesurant la progression de l'algorithme vis-à-vis
 - de l'amélioration du critère
 - du respect des contraintes → critère augmenté, lagrangien augmenté

Globalisation

Deux grandes méthodes de globalisation

• Recherche linéaire

La solution du problème QP sert de direction de descente pour une recherche linéaire.

→ réglage du pas de déplacement pour améliorer la fonction mérite

• Région de confiance

On ajoute au problème QP une contrainte de région de confiance.

→ réglage du rayon de confiance en fonction du rapport de réduction de la fonction mérite

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.3 Globalisation

3.5.3 SQP avec recherche linéaire

Principe

- On effectue une **recherche linéaire suivant la direction d**_x de la solution du problème QP.
- L'amélioration est mesurée par une fonction mérite F. La fonction F doit prendre en compte l'amélioration du critère et le respect des contraintes.
 - → pénalisation de la violation des contraintes
 - → différents choix possibles
- La fonction F doit permettre de converger vers l'optimum du problème initial.

Fonction de mérite exacte

$$\min_{x \in R^{n}} f(x) \text{ sous } \begin{cases} c_{E}(x) = 0 \\ c_{I}(x) \le 0 \end{cases} \rightarrow \text{problème (PO)}$$

F est une **fonction de mérite exacte** si tout minimum local x* de (PO) est aussi un minimum local sans contrainte de F

$$x^*$$
 minimum local de $\min_{x \in R^n} f(x)$ sous $\begin{cases} c_E(x) = 0 \\ c_I(x) \le 0 \end{cases}$

 \Rightarrow x* minimum local de $\min_{x \in R^n} F(x)$

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.3 Globalisation

3.5.3 SQP avec recherche linéaire

Fonction mérite l₁

- Problème avec contraintes égalité $\min_{x \in \mathbb{R}^n} f(x)$ sous c(x) = 0 \rightarrow contraintes actives
- Critère augmenté avec la norme 1 : $F_{1,\rho}(x) = f(x) + \rho \|c(x)\|_1$ avec $\|c(x)\|_1 = \sum_{i=1}^m |c_i(x)|$

 $F_{1,\rho}$ est une fonction de mérite exacte lorsque le coefficient de pénalisation ρ est assez grand

Théorème

On suppose que (x^*,λ^*) vérifient les conditions suffisantes d'optimalité du problème (PO)

$$\begin{cases} \nabla L(x^*,\lambda^*) = 0 \\ d^T \nabla^2_{xx} L(x^*,\lambda^*) d \geq 0, \forall d \in D(x^*) \end{cases} \quad \text{avec } D(x^*) = \text{c\^{o}ne des directions en } x^*$$

$$F_{1,\rho} \text{ est une fonction de mérite exacte si } \rho \! > \! \max_{i=1,\cdots,m} \! \left| \lambda_i \right. * \! \left|$$

Réglage de p

- ρ trop grand \rightarrow mauvais conditionnement de la fonction mérite $F_{1,\rho}$ difficulté de convergence
- ρ trop petit \rightarrow respect insuffisant des contraintes optimum \neq problème initial (fonction mérite $F_{1,\rho}$ non exacte)

- Optimisation avec contraintes
- Quadratique séquentiel
- 3.5.3 Globalisation

3.5.3 SQP avec recherche linéaire

Dérivée directionnelle de F_{1.0}

La direction de recherche linéaire est donnée par la solution d_x du problème QP

$$\min_{d_{OP} \in \mathbb{R}^{n}} \nabla f(x_{k})^{T} d_{QP} + \frac{1}{2} d_{QP}^{T} \nabla_{xx}^{2} L(x_{k}, \lambda_{k}) d_{QP} \quad sous \quad \nabla c(x_{k})^{T} d_{QP} + c(x_{k}) = 0 \quad \rightarrow \quad d_{x} = d_{QP}$$

• $F_{1,\rho}$ n'est pas dérivable \rightarrow évaluation de la **dérivée directionnelle** suivant la direction d_x

$$F_{1,\rho}(x) = f(x) + \rho \|c(x)\|_{1} \rightarrow (F_{1,\rho})_{d_{x}}^{T} = \left(\frac{dF_{1,\rho}(x_{k} + sd_{x})}{ds}\right)_{s=0} = \nabla f(x_{k})^{T} d_{x} - \rho \|c(x_{k})\|_{1}$$

•
$$(F_{1,\rho})_{d_x}^{'}$$
 vérifie

$$\left(F_{l,\rho} \right)_{d_{x}}^{T} \leq -d_{x}^{T} \nabla_{xx}^{2} L(x_{k}, \lambda_{k}) d_{x} - \left(\rho - \left\| d_{l} \right\|_{\infty} \right) \left\| c(x) \right\|_{l} \text{ avec } d_{l} = \lambda_{k} + d_{\lambda}$$

Valeur minimale de p

- d_x est une direction de descente pour $F_{1,\rho}$ si $\rho > \|d_1\|_{\infty} \frac{d_x^1 \nabla_{xx}^2 L(x_k, \lambda_k) d_x}{\|c(x)\|}$
- Condition suffisante
- $F_{1,\rho}$ est une fonction de mérite exacte si

$$\rho > \|\mathbf{d}_1\|_{\infty}$$
 si $\nabla_{xx}^2 \mathbf{L}(\mathbf{x}_k, \lambda_k) > 0$

$$\rho > \max_{i=1,\cdots,m} |\lambda_i|^*$$

 \rightarrow conditions cohérentes car $d_1 = \lambda_k + d_\lambda$ avec $d_\lambda *=0$

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.3 Globalisation

3.5.3 SQP avec région de confiance

Principe

• On ajoute au problème quadratique local une contrainte de région de confiance.

$$\min_{d_{QP} \in \mathbb{R}^{n}} \nabla f(x_{k})^{T} d_{QP} + \frac{1}{2} d_{QP}^{T} \nabla_{xx}^{2} L(x_{k}, \lambda_{k}) d_{QP} \quad sous \quad \begin{cases} \nabla c(x_{k})^{T} d_{QP} + c(x_{k}) = 0 \\ \|d_{QP}\| \le r \end{cases}$$

- On peut exprimer la contrainte de région de confiance en norme 2 ou en norme ∞.
- L'amélioration est mesurée par une fonction mérite F. Le rayon de confiance est réglé en fonction du rapport de réduction de la fonction mérite.

Fonction de mérite l₂

• On peut prendre une fonction mérite avec pénalisation quadratique

$$F_{2,\rho}(x) = f(x) + \rho ||c(x)||_2 \text{ avec } ||c(x)||_2 = \sqrt{\sum_{i=1}^m c_i(x)^2}$$

La fonction modèle quadratique correspondante est

$$\hat{F}_{2,\rho}(d_{QP}) = \nabla f(x_k)^T d_{QP} + \frac{1}{2} d_{QP}^T \nabla_{xx}^2 L(x_k, \lambda_k) d_{QP} + \rho \left\| \nabla c(x_k)^T d_{QP} + c(x_k) \right\|_2$$

• Le rapport de réduction est défini par $\frac{F_{2,\rho}(x_k) - F_{2,\rho}(x_k + d_{PQ})}{\hat{F}_{2,\rho}(x_k) - \hat{F}_{2,\rho}(x_k + d_{PQ})}$

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.3 Globalisation

3.5.3 Correction d'ordre 2

Effet Maratos

- La direction de déplacement obtenue en résolvant le problème QP peut simultanément :
 - rapprocher de l'optimum
 - dégrader la fonction mérite basée sur l'amélioration du critère et des contraintes
- Ceci peut conduire à bloquer un algorithme SQP en rejetant des déplacements favorables.

Correction d'ordre 2

• On résout une 1ère fois le problème QP au point $x_k \rightarrow \text{solution } d_{QP}$

$$\min_{d_{QP} \in R^n} \nabla f_k^T d_{QP} + \frac{1}{2} d_{QP}^T \nabla_{xx}^2 L_k d_{QP} \quad sous \quad \nabla c_k^T d_{QP} + c_k = 0$$

- On évalue la valeur des contraintes au point $x_k + d_{QP}$ \rightarrow $c(x_k + d_{QP}) = \delta c$
- Si la valeur de $c(x_k + d_{QP})$ est trop différente de 0 (non-linéarité des contraintes), on résout une $2^{\text{ère}}$ fois le problème QP au point x_k en corrigeant la valeur des contraintes

$$\min_{d_{QP} \in R^n} \nabla f_k^T d_{QP} + \frac{1}{2} d_{QP}^T \nabla_{xx}^2 L_k d_{QP} \quad sous \quad \nabla c_k^T d_{QP} + c_k = -\delta c \qquad \rightarrow \quad correction \; d'ordre \; 2$$

• On obtient une direction de déplacement qui tient compte de la non-linéarité des contraintes.

3 Optimisation avec contraintes

3.5 Quadratique séquentiel

3.5.3 Globalisation

Techniques d'optimisation

3.5.3 Exemple

Effet Maratos

- Minimisation de $f(x) = 2(x_1^2 + x_2^2 1) x_1$ sous $c(x) = x_1^2 + x_2^2 1 = 0$
- Solution: $x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \lambda^* = -\frac{3}{2} \rightarrow \nabla^2_{xx} L(x^*, \lambda^*) = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Point courant:
$$x_k = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \rightarrow \nabla f = \begin{pmatrix} 4\cos \theta - 1 \\ 4\sin \theta \end{pmatrix}$$
, $\nabla c = \begin{pmatrix} 2\cos \theta \\ 2\sin \theta \end{pmatrix}$

- Problème QP: $\min_{d_1,d_2} (4\cos\theta 1)d_1 + 4d_2\sin\theta + \frac{1}{2}(d_1^2 + d_2^2)$ sous $d_1\cos\theta + d_2\sin\theta = 0$ en prenant $\nabla_{xx}^2 L = I$
- Solution QP: $d_{1} = -d_{2} \tan \theta \rightarrow \min_{d_{2}} d_{2} \tan \theta + \frac{1}{2 \cos^{2} \theta} d_{2}^{2} \rightarrow d_{2} = -\sin \theta \cos \theta$ $\rightarrow d_{k} = \begin{pmatrix} \sin^{2} \theta \\ -\sin \theta \cos \theta \end{pmatrix} = \sin \theta \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix}$
- Nouveau point : $x_{k+1} = \begin{pmatrix} \cos \theta + \sin^2 \theta \\ \sin \theta \sin \theta \cos \theta \end{pmatrix}$

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.3 Globalisation

3.5.3 Exemple

Effet Maratos

- Minimisation de $f(x) = 2(x_1^2 + x_2^2 1) x_1$ sous $c(x) = x_1^2 + x_2^2 1 = 0$ On évalue en $x_k = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$ et $x_{k+1} = \begin{pmatrix} \cos \theta + \sin^2 \theta \\ \sin \theta - \sin \theta \cos \theta \end{pmatrix}$
- La contrainte : $\begin{cases} c(x_k) = \cos^2 \theta & +\sin^2 \theta & -1 \\ c(x_{k+1}) = \left(\cos \theta + \sin^2 \theta\right)^2 + \left(\sin \theta \sin \theta \cos \theta\right)^2 1 \end{cases} \Rightarrow \begin{cases} c(x_k) = 0 \\ c(x_{k+1}) = \sin^2 \theta \end{cases}$
- Le critère : $\begin{cases} f(x_k) = 2c(x_k) \cos \theta \\ f(x_{k+1}) = 2c(x_{k+1}) \left(\cos \theta + \sin^2 \theta\right) \end{cases} \Rightarrow \begin{cases} f(x_k) = -\cos \theta \\ f(x_{k+1}) = \sin^2 \theta \cos \theta \end{cases}$
- L'écart à l'optimum $x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$: $\begin{cases} x_k x^* = \begin{pmatrix} \cos \theta 1 \\ \sin \theta \end{pmatrix} \implies \left\| x_k x^* \right\|^2 = 2(1 \cos \theta) \\ x_{k+1} x^* = (1 \cos \theta) \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \implies \left\| x_{k+1} x^* \right\|^2 = 1 \cos \theta \end{cases}$

Le point x_{k+1} est plus proche de l'optimum que le point x_k , alors que :

- la valeur du critère est dégradée : $f(x_{k+1}) > f(x_k)$
- la valeur de la contrainte est dégradée : $c(x_{k+1}) \neq 0$ \rightarrow déplacement rejeté

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.3 Globalisation

3.5.3 Exemple

Correction d'ordre 2

- Minimisation de $f(x) = 2(x_1^2 + x_2^2 1) x_1$ sous $c(x) = x_1^2 + x_2^2 1 = 0$ On évalue la contrainte au point $x_{k+1} = \begin{pmatrix} \cos \theta + \sin^2 \theta \\ \sin \theta - \sin \theta \cos \theta \end{pmatrix} \rightarrow c(x_{k+1}) = \sin^2 \theta = \delta c$
- Le problème QP est résolu une 2ème fois en corrigeant la valeur de la contrainte : $\min_{d_1,d_2} (4\cos\theta 1)d_1 + 4d_2\sin\theta + \frac{1}{2}(d_1^2 + d_2^2) \text{ sous } d_1\cos\theta + d_2\sin\theta = -\sin^2\theta$
- Solution QP:

$$d_{1} = -(d_{2} + \sin \theta) \tan \theta \rightarrow \min_{d_{2}} d_{2} \tan \theta + \frac{1}{2} d_{2}^{2} + \frac{1}{2 \cos^{2} \theta} (d_{2} + \sin \theta)^{2} \rightarrow d_{2} = -\sin \theta \cos \theta - \sin^{3} \theta$$

$$\rightarrow d_k = \sin \theta \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix} - \sin^2 \theta \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \rightarrow \text{correction d'ordre 2}$$

- Déplacement d'ordre 1 : tangent de norme $sin\theta \rightarrow suppose la contrainte linéaire$
- Déplacement d'ordre 2 : radial de norme $\sin^2\theta \rightarrow \text{corrige la non-linéarité}$

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.3 Globalisation

3.5.3 Exemple

Correction d'ordre 2

• Minimisation de $f(x) = 2(x_1^2 + x_2^2 - 1) - x_1$ sous $c(x) = x_1^2 + x_2^2 - 1 = 0$

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.4 Algorithme

3.5.4 Algorithme

- ☐ Algorithme SQP
- ☐ Exemples
 - Exemple 1 : comparaison Newton SQP
 - Exemple 2 : SQP sans avec globalisation
 - Exemple 3 : comparaison SQP Lagrangien augmenté

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.4 Algorithme

3.5.4 Algorithme

Algorithme SQP

Les principales étapes d'une itération SQP sont

- construire le modèle quadratique local au point courant
- résoudre le problème quadratique-linéaire
- appliquer une technique de globalisation

Modèle quadratique local

- Sélection des contraintes actives
- Mise à jour du hessien (quasi-Newton)

Résolution du problème quadratique-linéaire

- Modification pour avoir un hessien défini positif
- Algorithme spécialisé problème quadratique

Globalisation

- Mise à jour de la pénalisation de la fonction mérite
- Recherche linéaire ou région de confiance
 - → grand nombre de variantes possibles
 - → stratégies et réglages à adapter au cas par cas

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.4 Algorithme

3.5.4 Exemples

Exemple 1 : Comparaison Newton – SQP

- Minimisation de $f(x) = 2x_1^2 + 2x_2^2 2x_1x_2 4x_1 6x_2$ sous $c(x) = 2x_1^2 x_2 = 0$
- Comparaison de 3 méthodes : résolution exacte, méthode de Newton, algorithme SQP

Résolution exacte

• Lagrangien:
$$L(x,\lambda) = 2x_1^2 + 2x_2^2 - 2x_1x_2 - 4x_1 - 6x_2 + \lambda(2x_1^2 - x_2)$$

• Conditions KKT:
$$\begin{cases} 4x_1 - 2x_2 - 4 + 4\lambda x_1 = 0 \\ 4x_2 - 2x_1 - 6 - \lambda = 0 \\ 2x_1^2 - x_2 = 0 \end{cases} \rightarrow \text{solution} \begin{cases} x_1^* \approx 1.06902 \\ x_2^* \approx 2.28563 \\ \lambda^* \approx 1.00446 \end{cases}$$

Matrices utiles

• Newton:
$$F(x_1, x_2, \lambda) = \begin{pmatrix} 4x_1 - 2x_2 - 4 + 4\lambda x_1 \\ 4x_2 - 2x_1 - 6 - \lambda \\ 2x_1^2 - x_2 \end{pmatrix} \Rightarrow \nabla F(x_1, x_2, \lambda) = \begin{pmatrix} 4 + 4\lambda & -2 & 4x_1 \\ -2 & 4 & -1 \\ 4x_1 & -1 & 0 \end{pmatrix}$$

• SQP:
$$\nabla f(x) = \begin{pmatrix} 4x_1 - 2x_2 - 4 \\ 4x_2 - 2x_1 - 6 \end{pmatrix}$$
 $\nabla c(x) = \begin{pmatrix} 4x_1 \\ -1 \end{pmatrix}$ $\nabla^2_{xx} L(x, \lambda) = \begin{pmatrix} 4 + 4\lambda & -2 \\ -2 & 4 \end{pmatrix}$

Optimisation avec contraintes

Quadratique séquentiel

3.5.4 Algorithme

Techniques d'optimisation

3.5.4 Exemples

Exemple 1 : Méthode de Newton

Itération de Newton :

$$\nabla F(x_1, x_2, \lambda) \begin{pmatrix} d_{x1} \\ d_{x2} \\ d_{\lambda} \end{pmatrix} = -F(x_1, x_2, \lambda)$$

• Point initial:
$$\begin{pmatrix} x_1 \\ x_2 \\ \lambda \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \rightarrow F(x_1, x_2, \lambda) = \begin{pmatrix} -6 \\ -2 \\ -1 \end{pmatrix} \qquad \nabla F(x_1, x_2, \lambda) = \begin{pmatrix} 4 & -2 & 0 \\ -2 & 4 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

Itération 1 :
$$\begin{pmatrix} 4 & -2 & 0 \\ -2 & 4 & -1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} d_{x1} \\ d_{x2} \\ d_{\lambda} \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \\ 1 \end{pmatrix} \qquad \Rightarrow \begin{pmatrix} d_{x1} \\ d_{x2} \\ d_{\lambda} \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ -8 \end{pmatrix}$$

La méthode de Newton converge en 7 itérations, sans globalisation.

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.4 Algorithme

3.5.4 Exemples

Exemple 1 : Méthode de Newton

Itération	X_1	X ₂	λ	$f(x_1,x_2)$	$c(x_1,x_2)$	$F(x_1,x_2,\lambda)$		$dF(x_1,x_2,\lambda)$	
1	0,00000	1,00000	0,00000	-4,00000	-1,00000	-6,000 -2,000 -1,000	4,000 -2,000 0,000	-2,000 4,000 -1,000	0,000 -1,000 0,000
2	1,00000	0,00000	-8,00000	-2,00000	2,00000	-32,000 0,000 2,000	-28,000 -2,000 4,000	-2,000 4,000 -1,000	4,000 -1,000 0,000
3	1,20000	2,80000	2,80000	-9,76000	0,08000	8,640 0,000 0,080	15,200 -2,000 4,800	-2,000 4,000 -1,000	4,800 -1,000 0,000
4	1,08639	2,33466	1,16588	-10,16445	0,02582	7,4E-01 0,0E+00 2,6E-02	8,664 -2,000 4,346	-2,000 4,000 -1,000	4,346 -1,000 0,000
5	1,06933	2,28636	1,00676	-10,14342	0,00058	1,1E-02 0,0E+00 5,8E-04	8,027 -2,000 4,277	-2,000 4,000 -1,000	4,277 -1,000 0,000
6	1,06902	2,28563	1,00446	-10,14283	1,88E-07	2,8E-06 0,0E+00 1,9E-07	8,018 -2,000 4,276	-2,000 4,000 -1,000	4,276 -1,000 0,000
7	1,06902	2,28563	1,00446	-10,14283	1,60E-14	2,1E-13 0,0E+00 1,6E-14	8,018 -2,000 4,276	-2,000 4,000 -1,000	4,276 -1,000 0,000

- Optimisation avec contraintes
- Quadratique séquentiel
- 3.5.4 Algorithme

3.5.4 Exemples

Exemple 1 : Algorithme SQP

Problème quadratique linéaire :
$$\lim_{d_x \in \mathbb{R}^2} \nabla f(x)^T d_x + \frac{1}{2} d_x^T \nabla_{xx}^2 L(x, \lambda) d_x \text{ sous } \nabla c(x)^T d_x + c(x) = 0$$

• Point initial:
$$\begin{pmatrix} x_1 \\ x_2 \\ \lambda \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \rightarrow \nabla f(x) = \begin{pmatrix} -6 \\ -2 \end{pmatrix} \quad \nabla c(x) = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \quad \nabla^2_{xx} L(x, \lambda) = \begin{pmatrix} 4 & -2 \\ -2 & 4 \end{pmatrix}$$

 $\min_{\substack{d \in \mathcal{A} \\ d \in \mathcal{A}}} \begin{pmatrix} -6 \\ -2 \end{pmatrix}^{1} \begin{pmatrix} d_{x1} \\ d \end{pmatrix} + \frac{1}{2} \begin{pmatrix} d_{x1} \\ d \end{pmatrix}^{1} \begin{pmatrix} 4 \\ -2 \end{pmatrix} \begin{pmatrix} d_{x1} \\ d \end{pmatrix} sous \begin{pmatrix} 0 \\ -1 \end{pmatrix} \begin{pmatrix} d_{x1} \\ d \end{pmatrix} -1 = 0$ Itération 1 :

$$\Rightarrow \begin{cases} \min_{\mathbf{d}_{x1}} 2\mathbf{d}_{x1}^2 - 4\mathbf{d}_{x1} \\ \mathbf{d}_{x2} = -1 \end{cases} \Rightarrow \begin{cases} \mathbf{d}_{x1} = 1 \\ \mathbf{d}_{x2} = -1 \end{cases} \text{ avec } \lambda_{QP} = -8$$

Nouveau point: $\begin{vmatrix} x_1 \\ x_2 \\ \lambda \end{vmatrix} \rightarrow \begin{vmatrix} x_1 + d_{x1} \\ x_2 + d_{x2} \\ \lambda_{OB} \end{vmatrix} \Rightarrow \begin{vmatrix} x_1 \\ x_2 \\ \lambda \end{vmatrix} = \begin{vmatrix} 1 \\ 0 \\ -8 \end{vmatrix}$

$$\Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ \lambda \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -8 \end{pmatrix}$$

On retrouve les itérations de la méthode de Newton sans globalisation. Le multiplicateur λ est directement le multiplicateur λ_{OP} du problème quadratique.

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.4 Algorithme

3.5.4 Exemples

Exemple 1 : Algorithme SQP

Itération	X ₁	X ₂	λ	$f(x_1,x_2)$	$c(x_1,x_2)$	∇f	∇c	∇ L	$\nabla^2 L(x)$	(x_2,λ)
1	0,00000	1,00000	0,00000	-4,00000	-1,00000	-6,000	0,000	-6,000	4,000	-2,000
						-2,000	-1,000	-2,000	-2,000	4,000
2	1,00000	0,00000	-8,00000	-2,00000	2,00000	0,000	4,000	-32,000	-28,000	-2,000
						-8,000	-1,000	0,000	-2,000	4,000
3	1,20000	2,80000	2,80000	-9,76000	0,08000	-4,800	4,800	8,640	15,200	-2,000
						2,800	-1,000	0,000	-2,000	4,000
4	1,08639	2,33466	1,16588	-10,16445	0,02582	-4,324	4,346	0,74262	8,664	-2,000
						1,166	-1,000	0,00000	-2,000	4,000
5	1,06933	2,28636	1,00676	-10,14342	0,00058	-4,295	4,277	1,1E-02	8,027	-2,000
						1,007	-1,000	0,0E+00	-2,000	4,000
6	1,06902	2,28563	1,00446	-10,14283	1,9E-07	-4,295	4,276	2,8E-06	8,018	-2,000
						1,004	-1,000	0,0E+00	-2,000	4,000
7	1,06902	2,28563	1,00446	-10,14283	1,6E-14	-4,295	4,276	2,1E-13	8,018	-2,000
						1,004	-1,000	0,0E+00	-2,000	4,000

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.4 Algorithme

3.5.4 Exemples

Exemple 2 : SQP sans – avec globalisation

- Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 1)^2 1 = 0$
- Différents points initiaux \rightarrow globalisation nécessaire pour assurer la convergence

Résolution exacte

• Lagrangien:
$$L(x,\lambda) = x_1 + x_2 + \lambda (x_1^2 + (x_2 - 1)^2 - 1)$$

• Conditions KKT:
$$\begin{cases} 1 + 2\lambda x_1 = 0 \\ 1 + 2\lambda(x_2 - 1) = 0 \\ x_1^2 + (x_2 - 1)^2 - 1 = 0 \end{cases} \rightarrow \text{solution} \begin{cases} x_1^* = -1/\sqrt{2} \approx -0.70711 \\ x_2^* = 1 - 1/\sqrt{2} \approx 0.29289 \\ \lambda^* = 1/\sqrt{2} \approx 0.70711 \end{cases}$$

Matrices utiles

• Gradient:
$$\nabla f(x) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \nabla c(x) = \begin{pmatrix} 2x_1 \\ 2(x_2 - 1) \end{pmatrix} \qquad \nabla^2_{xx} L(x, \lambda) = \begin{pmatrix} 2\lambda & 0 \\ 0 & 2\lambda \end{pmatrix}$$

- Modification du hessien: $H = \nabla_{xx}^2 L(x,\lambda) + \tau I = (2\lambda + \tau) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ avec $2\lambda + \tau > 0$
- Recherche linéaire : pas s suivant la direction d_x (= solution du problème QP)

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.4 Algorithme

3.5.4 Exemples

Exemple 2 : SQP sans globalisation

- Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 1)^2 1 = 0$
- Point initial: $\begin{pmatrix} x_1 \\ x_2 \\ \lambda \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$
- Algorithme SQP sans globalisation
 → convergence rapide

Itération	x1	x2	λ
1	1,00000	-1,00000	1,00000
2	0,00000	-0,50000	0,50000
3	-1,00000	-0,08333	0,47222
4	-0,77401	0,24973	0,60672
5	-0,70743	0,28900	0,69818
6	-0,70714	0,29291	0,70707
7	-0,70711	0,29289	0,70711

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.4 Algorithme

3.5.4 Exemples

Exemple 2 : SQP sans globalisation

- Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 1)^2 1 = 0$
- Point initial: $\begin{pmatrix} x_1 \\ x_2 \\ \lambda \end{pmatrix} = \begin{pmatrix} -1.5 \\ 2 \\ 1 \end{pmatrix}$
- Algorithme SQP sans globalisation
 → convergence rapide

Itération	x1	x2	λ
1	-1,50000	2,00000	1,00000
2	-1,36538	1,07692	0,42308
3	-1,11784	-0,18542	0,44290
4	-0,80352	0,21615	0,57183
5	-0,70990	0,28607	0,68889
6	-0,70718	0,29293	0,70697
7	-0,70711	0,29289	0,70711

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.4 Algorithme

3.5.4 Exemples

Exemple 2 : SQP sans globalisation

- Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 1)^2 1 = 0$
- Point initial: $\begin{pmatrix} x_1 \\ x_2 \\ \lambda \end{pmatrix} = \begin{pmatrix} -0.1 \\ 1 \\ 1 \end{pmatrix}$
- Algorithme SQP sans globalisation
 → convergence lente

Itération	x1	x2	λ
1	-0,10000	1,00000	1,00000
2	-5,05000	0,50000	-44,50000
3	-2,62404	0,75032	-21,27825
4	-1,50286	0,87826	-8,90106
5	-1,08612	0,96364	-2,13558
6	-1,01047	1,19247	0,31161
7	-1,33383	-0,65614	0,39510
8	-0,96379	0,10912	0,48447
9	-0,72273	0,25387	0,63996
10	-0,70890	0,29344	0,70407
11	-0,70710	0,29289	0,70710
12	-0,70711	0,29289	0,70711

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.4 Algorithme

3.5.4 Exemples

Exemple 2 : SQP avec globalisation

- Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 1)^2 1 = 0$
- Point initial: $\begin{pmatrix} x_1 \\ x_2 \\ \lambda \end{pmatrix} = \begin{pmatrix} -0.1 \\ 1 \\ 1 \end{pmatrix}$
- Algorithme SQP avec globalisation
 → convergence plus rapide

Itération	x1	x2	λ
1	-0,10000	1,00000	1,00000
2	-1,33750	0,87500	-44,50000
3	-1,03171	0,82117	1,63129
4	-0,94371	0,58304	0,62377
5	-0,74975	0,22132	0,65803
6	-0,71035	0,29156	0,70147
7	-0,70710	0,29288	0,70708
8	-0,70711	0,29289	0,70711

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.4 Algorithme

3.5.4 Exemples

Exemple 2 : SQP avec globalisation

Itération	\mathbf{X}_1	X_{2}	λ	abla extstyle extstyl	$\nabla^2 L(x_1, x_2, \lambda)$		τ	dx	Pas s
1	-0,10000	1,00000	1,00000	9,90000	2,00000	0,00000	0,0	-4,95000	0,25
				1,00000	0,00000	2,00000	0,0	-0,50000	0,25
2	-1,33750	0,87500	-44,50000	-3,36370	-89,00000	0,00000	100,0	0,30579	1,00
				0,59218	0,00000	-89,00000	100,0	-0,05383	1,00
3	-1,03171	0,82117	1,63129	-0,28710	3,26258	0,00000	0,0	0,08800	1,00
				0,77690	0,00000	3,26258	0,0	-0,23812	1,00
4	-0,94371	0,58304	0,62377	-0,24198	1,24754	0,00000	0,0	0,19396	1,00
				0,45126	0,00000	1,24754	0,0	-0,36172	1,00
5	-0,74975	0,22132	0,65803	-0,05185	1,31605	0,00000	0,0	0,03940	1,00
				-0,09244	0,00000	1,31605	0,0	0,07024	1,00
6	-0,71035	0,29156	0,70147	-4,6E-03	1,40294	0,00000	0,0	3,2E-03	1,00
				-1,9E-03	0,00000	1,40294	0,0	1,3E-03	1,00
7	-0,70710	0,29288	0,70708	4,7E-06	1,41417	0,00000	0,0	-3,3E-06	1,00
				-1,7E-05	0,00000	1,41417	0,0	1,2E-05	1,00
8	-0,70711	0,29289	0,70711	-4,2E-10	1,41421	0,00000	0,0	3,0E-10	1,00
				2,7E-10	0,00000	1,41421	0,0	-1,9E-10	1,00

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.4 Algorithme

3.5.4 Exemples

Exemple 2 : SQP sans globalisation

- Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 1)^2 1 = 0$
- Point initial: $\begin{pmatrix} x_1 \\ x_2 \\ \lambda \end{pmatrix} = \begin{pmatrix} 0.1 \\ 1 \\ 1 \end{pmatrix}$
- Algorithme SQP sans globalisation
 - → solution = maximum local

Itération	x1	x2	λ
1	0,10000	1,00000	1,00000
2	5,05000	0,50000	-54,50000
3	2,62404	0,75028	-26,28019
4	1,50282	0,87782	-11,41974
5	1,08576	0,95907	-3,50192
6	1,00831	1,11015	-0,71030
7	0,92650	1,72824	-0,55351
8	0,70291	1,74580	-0,67324
9	0,70870	1,70662	-0,70579
10	0,70711	1,70711	-0,70710

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.4 Algorithme

3.5.4 Exemples

Exemple 2 : SQP avec globalisation

- Minimisation de $f(x) = x_1 + x_2$ sous $c(x) = x_1^2 + (x_2 1)^2 1 = 0$
- Point initial: $\begin{pmatrix} x_1 \\ x_2 \\ \lambda \end{pmatrix} = \begin{pmatrix} 0.1 \\ 1 \\ 1 \end{pmatrix}$
- Algorithme SQP avec globalisation
 → convergence

Itération	x1	x2	λ
1	0,10000	1,00000	1,00000
2	1,33750	0,87500	-54,50000
3	1,03687	0,87643	4,23389
4	0,97837	0,75123	-0,24333
5	0,94133	0,60794	-0,35556
6	0,50173	-0,43482	-0,26135
7	-0,82925	-0,67191	0,26961
8	-1,05655	-0,18790	0,45516
9	-0,80511	0,23137	0,58156
10	-0,70800	0,28512	0,69118
11	-0,70721	0,29295	0,70699
12	-0,70711	0,29289	0,70711

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.4 Algorithme

3.5.4 Exemples

Exemple 2 : SQP avec globalisation

Itération	X_1	X ₂	λ	abla extstyle extstyl	$\nabla^2 L(x)$	(x_2,λ)	τ	dx	Pas s
1	0,10000	1,00000	1,00000	-9,90000	2,00000	0,00000	0,0	4,95000	0,25
				1,00000	0,00000	2,00000	0,0	-0,50000	0,25
2	1,33750	0,87500	-54,50000	12,32567	-109,00000	0,00000	150,0	-0,30063	1,00
				-0,05847	0,00000	-109,00000	150,0	0,00143	1,00
3	1,03687	0,87643	4,23389	0,49539	8,46779	0,00000	0,0	-0,05850	1,00
				1,06014	0,00000	8,46779	0,0	-0,12520	1,00
4	0,97837	0,75123	-0,24333	0,30426	-0,48667	0,00000	1,0	-0,59272	0,06
				1,17691	0,00000	-0,48667	1,0	-2,29267	0,06
5	0,94133	0,60794	-0,35556	0,50796	-0,71112	0,00000	1,0	-1,75838	0,25
				1,20493	0,00000	-0,71112	1,0	-4,17104	0,25
6	0,50173	-0,43482	-0,26135	1,27054	-0,52271	0,00000	1,0	-2,66197	0,50
				0,22632	0,00000	-0,52271	1,0	-0,47418	0,50
7	-0,82925	-0,67191	0,26961	0,24512	0,53921	0,00000	0,0	-0,45458	0,50
				-0,52197	0,00000	0,53921	0,0	0,96802	0,50
8	-1,05655	-0,18790	0,45516	-0,22888	0,91032	0,00000	0,0	0,25143	1,00
				-0,38167	0,00000	0,91032	0,0	0,41927	1,00
9	-0,80511	0,23137	0,58156	-0,11295	1,16311	0,00000	0,0	0,09711	1,00
				-0,06252	0,00000	1,16311	0,0	0,05376	1,00
10	-0,70800	0,28512	0,69118	-1,1E-03	1,38235	0,00000	0,0	8,0E-04	1,00
				-1,1E-02	0,00000	1,38235	0,0	7,8E-03	1,00
11	-0,70721	0,29295	0,70699	-1,4E-04	1,41398	0,00000	0,0	1,0E-04	1,00
				8,0E-05	0,00000	1,41398	0,0	-5,7E-05	1,00
12	-0,70711	0,29289	0,70711	1,2E-08	1,41421	0,00000	0,0	-8,4E-09	1,00
				-2,5E-08	0,00000	1,41421	0,0	1,8E-08	1,00

- Optimisation avec contraintes
- Quadratique séquentiel
- 3.5.4 Algorithme

3.5.4 Exemples

Exemple 3 : Comparaison SQP – Lagrangien augmenté

- Minimisation de $f(x) = 2(x_1^2 + x_2^2 1) x_1$ sous $c(x) = x_1^2 + x_2^2 1 = 0$
- Point initial: $x = \begin{pmatrix} 0.5 \\ 1.3 \end{pmatrix}$, $\lambda = 0$ Solution: $x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\lambda = -\frac{3}{2}$

- 3 Optimisation avec contraintes
- 3.5 Quadratique séquentiel
- 3.5.4 Algorithme

3.5.4 Exemples

Exemple 3 : Comparaison SQP – Lagrangien augmenté

		SQP		Lagrangien augmenté			
Itération	X_1	X ₂	λ	X ₁	X_2	λ	
1	0,50000	1,30000	0,00000	0,50000	1,30000	0,00000	
2	0,59665	0,90129	-1,38660	0,40707	0,34917	-0,71238	
3	1,12042	0,46118	-1,70047	0,73467	0,63433	-1,29122	
4	1,18366	-0,19988	-1,57065	0,91556	0,39077	-1,38175	
5	1,03482	0,02190	-1,52359	0,98869	0,16985	-1,38175	
6	1,00084	-0,00103	-1,50118	0,99953	0,04158	-1,30283	
7	1,00000	0,00000	-1,50000	0,99905	-0,00320	-1,49103	
8				0,99995	0,00171	-1,50003	
9				1,00000	0,00045	-1,50003	

Convergence rapide, très précise

Convergence plus lente, moins précise

- → suivi de la contrainte
- → conditionnement

- 3 Optimisation avec contraintes
- 3.6 Convergence

Sommaire

- 1. Bases théoriques
- 2. Optimisation sans contraintes
- 3. Optimisation avec contraintes
 - 3.1 Simplexe
 - 3.2 Point intérieur
 - 3.3 Gradient projeté
 - 3.4 Lagrangien augmenté
 - 3.5 Programmation quadratique séquentielle
 - 3.6 Convergence
 - 3.6.1 Convergence globale
 - 3.6.2 Comparaison des algorithmes
 - 3.6.3 Difficultés pratiques

- 3 Optimisation avec contraintes
- 3.6 Convergence
- 3.6.1 Convergence globale

3.6.1 Convergence globale

Problème sans contraintes

$$\min_{x \in R^n} f(x)$$

Convergence globale

• Un algorithme générant une suite $(x_k)_{k \in \mathbb{N}}$ à partir du point x_0 est globalement convergent si

$$\lim_{k\to\infty} \left\| \nabla f(\mathbf{x}_k) \right\| = 0$$

- Convergence globale = convergence vers un point stationnaire ≠ convergence vers le minimum global
- Le domaine de convergence est l'ensemble des points initiaux x_0 à partir desquels on a la convergence globale.
- Le domaine de convergence peut être très réduit lorsque :
 - la fonction est très non linéaire
 - la fonction est mal conditionnée
 - → difficulté principale de la méthode de Newton

- 3 Optimisation avec contraintes
- 3.6 Convergence
- 3.6.1 Convergence globale

3.6.1 Convergence globale

Descente avec recherche linéaire

- Un algorithme à base de **recherche linéaire** génère une suite $(x_k)_{k\in\mathbb{N}}$ à partir du point x_0 :
 - suivant des directions $d_k \rightarrow x_{k+1} = x_k + s_k d_k$
 - avec des pas s_k
- On suppose que:
 - les directions d_k sont des directions de descente $\rightarrow \nabla f(x_k)^T d_k < 0$
 - les pas s_k vérifient les conditions de Wolfe $\Rightarrow \begin{cases} f(x_k + sd_k) < f(x_k) + c_1 s \nabla f(x_k)^T d_k \\ \nabla f(x_k + sd_k)^T d_k > c_2 \nabla f(x_k)^T d_k \end{cases}$
 - le gradient de la fonction est continu au sens de Lipschitz
- Si les directions ne deviennent pas « trop » orthogonales au gradient : $-\frac{\nabla f(x_k)^T d_k}{\|\nabla f(x_k)\| \|d_k\|} \ge \epsilon , \ \forall k$ alors l'algorithme est globalement convergent pour tout $x_0 \in R^n$: $\lim_{k \to \infty} \|\nabla f(x_k)\| = 0$
- → condition vérifiée par : la méthode de plus forte pente
 - la méthode de Newton si le conditionnement du hessien est borné
 - les méthodes incluant des itérations périodiques de plus forte pente
- → méthodes globalement convergentes

- 3 Optimisation avec contraintes
- 3.6 Convergence
- 3.6.1 Convergence globale

3.6.1 Convergence globale

Eléments de la démonstration

 θ_k = angle entre le gradient $\nabla f(x_k)$ et la direction de descente d_k

• Théorème de Zoutendijk:
$$\sum_{k} \cos^{2} \theta_{k} \|\nabla f_{k}\|^{2} < \infty \quad avec \quad \cos \theta_{k} = -\frac{\nabla f_{k}^{T} d_{k}}{\|\nabla f_{k}\| \|d_{k}\|}$$

$$Démontré \ a \ partir \ de: \ \|\nabla f(y) - \nabla f(x)\| \le L \|y - x\|, \ \forall x, y \qquad (condition \ de \ Lipschitz)$$

$$et \quad \begin{cases} f(x_{k} + sd_{k}) < f(x_{k}) + c_{1}s\nabla f(x_{k})^{T} d_{k} \\ \nabla f(x_{k} + sd_{k})^{T} d_{k} > c_{2}\nabla f(x_{k})^{T} d_{k} \end{cases} \quad (conditions \ de \ Wolfe)$$

$$\Rightarrow ou \quad \frac{\cos^{2} \theta_{k} \to 0}{\|\nabla f_{k}\| \to 0}$$

- Méthode de plus forte pente : $d_k = -\nabla f_k \implies \cos \theta_k = 1 \implies \lim_{k \to \infty} \|\nabla f(x_k)\| = 0$
- Méthode de Newton: $d_k = -H_k \nabla f_k \quad avec \quad \left\| H_k \right\| \left\| H_k^{-1} \right\| < M \quad (conditionnement \ born\acute{e})$ En utilisant le théorème de Rayleigh-Ritz: $\sigma_1 = \max_{x \neq 0} \frac{x^T A x}{x^T x}, \quad \sigma_n = \min_{x \neq 0} \frac{x^T A x}{x^T x}$ $(valeurs \ propres \ \sigma_1 \geq \dots \geq \sigma_n)$ $\Rightarrow \cos \theta_k > 1/M \quad \Rightarrow \quad \lim_{x \neq 0} \left\| \nabla f(x_k) \right\| = 0$

- 3 Optimisation avec contraintes
- 3.6 Convergence
- 3.6.2 Comparaison des algorithmes

3.6.2 Comparaison des algorithmes

Classification

- Méthodes primales
- Méthodes primales-duales
- Méthodes duales

	Méthode primale	Méthode primale-duale	Méthode duale
Problème traité	problème primal	problème primal	problème dual
Objectif	min f - méthode directe - point stationnaire	solution KKT - méthode indirecte - point stationnaire	max w - méthode indirecte - point col
Itérations	admissibles	admissibles ou non	non admissibles
Variables	primales x	primales x , duales λ	primales x , duales λ
Algorithmes	simplexe (LP)gradient projetépénalisation	point intérieur (LP, NLP)séquentiel quadratiquelagrangien augmenté	- Uzawa

- 3 Optimisation avec contraintes
- 3.6 Convergence
- 3.6.2 Comparaison des algorithmes

3.6.2 Comparaison des algorithmes

Méthode (auteurs, date)	Туре	Convergence	Avantages	Difficultés
Plus forte pente (Cauchy 1847)	sans contraintes	linéaire	convergence globale	convergence lente si mauvais conditionnement
Quasi-Newton (DFP 1959, BFGS 1970)	sans contraintes	superlinéaire quadratique	1 minimisation par itération	hessien défini positif stockage mémoire (n²)
Gradient conjugué (Hestenes 1951, Stiefel 1952) (Fletcher-Reeves 1964)	sans contraintes	superlinéaire quadratique	stockage mémoire réduit	hessien défini positif n minimisations par itération
Simplexe (Dantzig 1950)	problème linéaire	exponentiel	vitesse de convergence itérations admissibles	algorithme exponentiel dégénérescence
Gradient projeté, réduit (Rosen 1960, Wolfe 1962) (Abadie-Carpentier 1969)	primale		itérations admissibles	convergence lente si - mauvais conditionnement - non linéarités fortes
Séquentiel quadratique	primale-duale	quadratique (Newton)	vitesse de convergence	globalisation nécessaire itérations non admissibles
Pénalisation extérieure (Fiacco-Mc Cormick 1968)	primale	quadratique (Newton)	sans contraintes	précision contraintes conditionnement
Pénalisation intérieure Point intérieur (Karmarkar 1984)	primale-duale problème linéaire	quadratique (Newton)	algorithme polynomial (LP)	précision contraintes
Lagrangien augmenté (Hestenes 1969, Powell 1969)	primale-duale	quadratique (Newton)	sans contraintes	précision contraintes
Uzawa (1958)	duale	linéaire	sans contraintes	précision contraintes

- 3 Optimisation avec contraintes
- 3.6 Convergence
- 3.6.3 Difficultés pratiques

3.6.3 Difficultés pratiques

Qualité du minimum recherché

- Minimum global approché → méthodes aléatoires (heuristiques), dites « globales »
- Minimum local précis → méthodes déterministes (gradient), dites « locales »

Principales difficultés des méthodes locales

- Initialisation : le minimum est recherché au voisinage du point initial.
 - → Essayer plusieurs points initiaux
 - → Evaluer la qualité de la solution obtenue (<u>connaissance expérimentale du problème</u>)
- Contraintes actives : il faut identifier à chaque itération les contraintes actives (→ égalité)
 - → Stratégie d'activation / désactivation des contraintes en fonction du déplacement
- **Précision numérique** : l'évaluation du critère et des contraintes est bruitée.
 - → Adapter les incréments pour les gradients
 - → Adapter les seuils de précision et les tests d'arrêts
- Conditionnement : les valeurs numériques doivent être du même ordre de grandeur
 - → Mise à l'échelle des variables et des fonctions (critère, contraintes)
 - → Mise à l'échelle des dérivées premières (jacobien) et secondes (hessien) On ne peut pas tout mettre à l'échelle simultanément → essais

Résumé

Bases théoriques

•	Différentiabilité :	gradient, hessien, jacobien, lignes de niveau	$(\S 1.1.3)$
•	Contraintes linéaires :	base, solution de base, direction de base	(§1.2.2)
•	Conditions d'optimalité :	lagrangien, conditions KKT	(§1.4.3)

Optimisation sans contraintes

•	Méthode de Newton :	principe, quasi-Newton, globalisation	$(\S 2.2)$
•	Moindres carrés linéaires :	équations normales	(§2.5.3)

Optimisation avec contraintes

•	Programmation linéaire :	simplexe	(§3.1.3)

→ méthode des tableaux, méthode des 2 phases

• Programmation non linéaire : gradient projeté/réduit (§3.3)

lagrangien augmenté (§3.4)

SQP (§3.5)

→ principes de chaque algorithme

Difficultés pratiques

- Minima locaux
- Précision numérique

Bibliographie

Livres en français

- **Programmation mathématique** (M. Minoux)
- Introduction à l'optimisation différentiable (M. Bierlaire)
- Optimisation continue (F. Bonnans)
- Optimisation discrète (A. Billionnet)

Livres en anglais

- **Practical optimization** (P. E. Gill, W. Murray, M. H. Wright)
- Numerical optimization (J. Nocedal, S. J. Wright)
- **Practical methods of optimization** (R. Fletcher)
- Practical mathematical optimization (J. A. Snyman)
- Numerical optimization (J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, C. A. Sagastizabal)
- Numerical recipes in Fortran (W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery)
- Numerical methods for unconstrained optimization and nonlinear equations (J. E. Dennis, R. B. Schnabel)