About Final Exam

Scoring Criteria

- Labs 40%
- Homework 20%
- Finial Exam 40%

- Average of labs&homeworks: ~55/60
- Average of final exam ~75/100

Final Exam

- Arranged in the afternoon on First Friday of fall semester 2023. 14:00-16:30.
- Close book test. Figures of data path, ISA, state machine is provided.
- Average score: ~75

Get at least 50 points to pass the course.

Question Type (not determined)

- Multiple Choice Questions, about 10 questions (~20%)
 - Chapter 1-10
 - Every detail in the book.
- Comprehensive Questions, 7~8 questions (~80%)
 - Chapter 2~9 each 1 question.
 - Circuits, data path, state machine, nesting routines, programming ...

- Chapter2: Binaries
 - Caculation, conversion
- Chapter3: Circuits
 - Read / Draw
 - CMOS / digital logic
 - Memory
 - Maybe combined with the following chapters.
 - Such as exercise 5.41

- Chapter 4, 5: LC-3 data path
 - Understand every detail in the state machine (P702, P713)
 - Understand every detail in the data path (P704)
 - The data path on P714 supporting interrupts, traps, and exceptions is not required.
 - Able to design new types of new instrcutions.
 - Such as exercise 5.51

- Chapter 6: Programming
 - Often in LC-3 Assembly language, maybe sometimes LC-3 machine codes.
 - Will not be very complicated.
 - Combined with other chapters.
- Chapter 7: Assembling
 - Assembling procedure, symbol tables, pseudo-ops
 - lab6a
- Chapter 8: Subroutines, Stack Recursion
 - User stack analysis
 - Programming

- Chapter 9:
 - Privilege, Priority, Memory Address Space
 - Interrupts
 - Nesting interrupt procedure
 - System stack analysis

Address	Value		
x2E01			
x2E02	x0404		
x2E03			
x2E04	x8002		

Register	Value		
R6	x2E01		
Saved.USP	xE001		
Saved.SSP			

- Chapter 9:
 - Traps
 - Memory mapped I/O
 - Details in trap routines
 - e.g. How the GETC, OUT, etc implemented?
 - Design new I/O trap routines.
 - Exceptions
 - Our How to handle?

Useful Materials

- The Appendix A and C arr VERY IMPORTENT!
- The whole centents in the textbook.
 - Waring: MUST be 3rd edition.
- Exercises on the textbook (if you have time)
 - Students Solution Manual
- Course website of the University of Texas at Austin
 - https://users.ece.utexas.edu/~patt/19f.306/

Enjoy Your Summer Vacation

(Welcome to become a TA next year)