Section 4.4: The Mean Value Theorem

The Mean Value Theorem is one of the most important theorems in calculus. The Mean Value Theorem says that for a function that meets its conditions, at some point the tangent line has the same slope as the secant line between the ends. For this function, there are two values c_1 and c_2 such that the tangent line to f at c_1 and c_2 has the same slope as the secant line.

The Mean Value Theorem and Its Meaning

Mean Value Theorem

Let f be continuous over the closed interval [a, b] and differentiable over the open interval (a, b). Then, there exists at least one point $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Media: Watch this <u>video</u> to learn more about the Mean Value Theorem.

Media: Watch this video example on the Mean Value Theorem of a quadratic function.

Media: Watch this video example on the Mean Value Theorem of a rational function.

Examples

1) For $f(x) = \sqrt{x}$ over the interval [0,9], show that f satisfies the hypothesis of the Mean Value Theorem, and therefore there exists at least one value $c \in (0,9)$ such that f'(c) is equal to the slope of the line connecting (0,f(0)) and (9,f(9)). Find the values c guaranteed by the Mean Value Theorem.

Since $f(x) = \sqrt{x}$ is continuous over [0, 9] and differentiable over (0, 9), f satisfies the hypotheses of the Mean Value Theorem.

So
$$f(x) = x^{\frac{1}{2}}$$
 and $f'(x) = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$

The slope connecting (0, f(0)) and (9, f(9)) is $\frac{f(9)-f(0)}{9-0}=\frac{1}{3}$ Now we find c such that $f'(c)=\frac{1}{3}$

$$\frac{1}{2\sqrt{c}} = \frac{1}{3}$$

$$2\sqrt{c} = 3$$

$$\sqrt{c} = \frac{3}{2}$$

$$c = \frac{9}{4}$$

- 2) If a rock is dropped from a height of $100 \ ft$, its position t seconds after it is dropped until it hits the ground is given by the function $s(t) = -16t^2 + 100$.
 - a. Determine how long it takes before the rock hits the ground.

Note that "hits the ground" is when s(t) = 0, so we solve $-16t^2 = -100$ $t^2 = 6.25$ $t = \pm 2.5$

The ball will hit the ground 2.5 seconds after it is dropped.

b. Find the average velocity $v_{\rm avg}$ of the rock for when the rock is released, and the rock hits the ground.

Note that "released" is when t = 0 and it hits the ground when t = 2.5

So
$$v_{avg} = \frac{s(2.5) - s(0)}{2.5 - 0} = -40$$
 ft/sec

c. Find the time t guaranteed by the Mean Value Theorem when the instantaneous velocity of the rock is $v_{\rm avg}$

Instantaneous velocity = s'(t)

We need to find a t such that $v(t) = s'(t) = v_{avg} = -40$ ft/sec Since s(t) is continuous over the interval [0,2.5] and differentiable over (0, 2.5), the Mean Value Theorem guarantees a point $c \in (0,2.5)$ such that $s'(c) = \frac{s(2.5) - s(0)}{2.5 - 0} = -49 = 0$

We have that s'(t) = -32t, so -32c = -40 and c = 1.25That is, 1.25 seconds after the rock is dropped the instantaneous velocity is the same as the average