Slides of Discrete Mathematics based on Susanna Epp's Textbook

Moses A. Boudourides¹

Visiting Associate Professor of Computer Science Haverford College

1 Moses.Boudourides@cs.haverford.edu

Chapter 2

The Logic of Compound Statements

September 1, 2021

2.1 Logical Forms

Definition

A **statement** (or **proposition**) is a sentence that is true or false but not both.

Examples

- ▶ Delaware River runs through Pittsburgh. (False.)
- ▶ 2 + 3 = 7. (False.)
- ▶ 4 is a positive number and 3 negative. (False.)
- ▶ If set S consists of n elements, then it contains 2^n subsets. (*True*.)
- ▶ There exists an integer n such that $2^n = n^2$. (*True*.)
- ▶ x + y = y + x, for every $x, y \in \mathbb{R}$. (*True*.)
- ▶ If $A^2 = 0$, then, A = 0, for every A. (Indeterminate.)
- Every even integer greater than 2 is the sum of two prime numbers.
 (Goldbach's Conjecture.)
- ▶ There exist infinitely many integers n such that $2^n + n$ is a prime number. (*Unknown to be true or false*.)

2.1 Logical Connectives

Notation of symbols of common logical connectives

- ► **Negation** (**not**) (prefix): ~
- ► Conjuction (and) (prefix): ∧
- **▶ Disjuction (or) (prefix):** ∨
- ► Conditional (if . . ., then . . .): →
- **▶** Biconditional (if and only if): ←→

Connectives	Precedence
~	1
٨	2
V	3
\longrightarrow	4
\longleftrightarrow	5

2.1 Truth Tables

Notation of truth values of a statement

► T: True

► F: False

Truth Table for $\sim p$

p	\sim p	
F	Т	
Т	F	

Truth Table for $p \land q$, $p \lor q$, $p \longrightarrow q$, $p \longleftrightarrow q$

p	q	$p \wedge q$	$p \lor q$	$p \longrightarrow q$	$p \longleftrightarrow q$
F	F	F	F	Т	Т
F	Т	F	Т	Т	F
Т	F	F	Т	F	F
Т	Т	Т	Т	Т	Т

2.1 The Exclusive Or

Definition

The **exclusive or** (or **XOR**) logical connective of two statement variables p, q, denoted $p \oplus q$, is defined by the composite statement:

$$p \oplus q = (p \vee q) \wedge \sim (p \wedge q).$$

Truth Table for $p \oplus q$

p	q	p⊕q
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

2.1 An Example of a Statement Form (Composite Statement)

Truth Table for $(\boldsymbol{p} \wedge \boldsymbol{q}) \lor \sim \boldsymbol{r}$

p	q	r	$q \wedge q$	$\sim r$	$(p \wedge q) \lor \sim r$
Т	Т	Т	Т	F	Т
Т	Т	F	Т	Т	Т
Т	F	Т	F	F	F
Т	F	F	F	Т	Т
F	Т	Т	F	F	F
F	Т	F	F	Т	Т
F	F	Т	F	F	F
F	F	F	F	Т	Т

2.1 Tautologies and Contradictions

Definition

- ➤ A composite statement is called tautology if it is always true for all truth values of the individual statements included in it.
- ► A composite statement is called **contradiction** if it is always false for all truth values of the individual statements included in it.

Example

The statement form $p \lor \sim p$ is a tautology and the statement form $p \land \sim p$ is a contradiction.

p	$\sim p$	$oldsymbol{p}ee\sim oldsymbol{p}$	<i>p</i> ∧ ∼ <i>p</i>
Т	F	Т	F
F	Т	Т	F

2.1 Logical Equivalences

Definition

Two statement forms P and Q are called **logically equivalent**, denoted $P \equiv Q$, if they have identical truth values for each possible substitution of the truth values of all individual statements included in them.

Example:
$$\sim (\sim p) \equiv p$$

p	\sim p	$\sim (\sim m{p})$
Т	F	Т
F	Т	F

Example: $\sim (p \land q) \not\equiv \sim p \land \sim q$

p	q	\sim p	\sim q	$p \wedge q$	$\sim (m{p} \wedge m{q})$	$\sim p \wedge \sim q$
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	Т	F
F	Т	Т	F	F	Т	F
F	F	Т	Т	F	Т	Т

2.1 De Morgan's Laws

Theorem (De Morgan's Laws)

$$\sim (p \land q) \equiv \sim p \lor \sim q$$
$$\sim (p \lor q) \equiv \sim p \land \sim q$$

Example: $\sim (p \land q) \equiv \sim p \lor \sim q$

p	q	\sim p	\sim q	$p \wedge q$	$\sim (m{p} \wedge m{q})$	\sim p \lor \sim q
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	Т	Т
F	Т	Т	F	F	Т	Т
F	F	Т	Т	F	Т	Т

2.1 Summary of Logical Equivalences

Theorem 2.1.1 Logical Equivalences

Given any statement variables p, q, and r, a tautology \mathbf{t} and a contradiction \mathbf{c} , the following logical equivalences hold.

hold.			
1. Commutative laws:	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$	
2. Associative laws:	$(p \land q) \land r \equiv p \land (q \land r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	

3. Distributive laws:
$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r) \qquad p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

4. Identity laws:
$$p \wedge \mathbf{t} \equiv p$$
 $p \vee \mathbf{c} \equiv p$

5. Negation laws:
$$p \lor \sim p \equiv \mathbf{t}$$
 $p \land \sim p \equiv \mathbf{c}$

6. Double negative law:
$$\sim (\sim p) \equiv p$$

7. Idempotent laws:
$$p \land p \equiv p$$
 $p \lor p \equiv p$
8. Universal bound laws: $p \lor \mathbf{t} \equiv \mathbf{t}$ $p \land \mathbf{c} \equiv \mathbf{c}$

9. De Morgan's laws:
$$\sim (p \land q) \equiv \sim p \lor \sim q$$
 $\sim (p \lor q) \equiv \sim p \land \sim q$

10. Absorption laws:
$$p \lor (p \land q) \equiv p$$
 $p \land (p \lor q) \equiv p$

11. Negations of
$$\mathbf{t}$$
 and \mathbf{c} : $\sim \mathbf{t} \equiv \mathbf{c}$ $\sim \mathbf{c} \equiv \mathbf{t}$

2.2 Conditional Statements (a)

Definition

- If p and q are two statements, the conditional of q by p is the statement form "if p then q" or "p implies q" and it is denoted by p → q.
- ▶ If p is true and q is false, the conditional $p \longrightarrow q$ is false, while in all other truth values of p and q it is true.
- In a conditionial p → q, p is called hypothesis (or antecedent) of the conditional and q is called conclusion (or consequent) of the conditional.

Truth Table for $p \longrightarrow q$

р	q	$p \longrightarrow q$
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

2.2 Conditional Statements (b)

Proposition (Representation of Conditional as Or)

$$p \longrightarrow q \equiv \sim p \vee q$$
.

Proposition (Negation of Conditional)

$$\sim (p \longrightarrow q) \equiv p \wedge \sim q.$$

2.2 Conditional Statements (c)

Definition

- ▶ The **contrapositive** of $p \longrightarrow q$ is $\sim q \longrightarrow \sim p$.
- ▶ The **converse** of $p \longrightarrow q$ is $q \longrightarrow p$.
- ▶ The **inverse** of $p \longrightarrow q$ is $\sim p \longrightarrow \sim q$.

Proposition

- ► A conditional statement is logically equivalent to its contrapositive.
- ► A conditional statement and its converse are not logically equivalent.
- ► A conditional statement and its inverse are not logically equivalent.
- ► The converse and the inverse of a conditional statement are logically equivalent to each other.

2.2 The Biconditional Statement

Definition

- ▶ If p and q are two statements, the **biconditional of** p and q is the statement form "p if and only if q" and it is denoted by $p \longleftrightarrow q$.
- ▶ If both p and q have the same truth value, the biconditional $p \longleftrightarrow q$ is true, while otherwise it is false.

Truth Table for $p \longleftrightarrow q$

p	q	$p \longleftrightarrow q$
F	F	Т
F	Т	F
Т	F	F
Т	Т	Т

2.2 Necessary and Sufficient Conditions

Definition

Let *r* and *s* be two statements. Then:

- r is a **sufficient condition** for s means "if r then s."
- ► *r* is a **necessary condition** for *s* means "if *s* then *r*; it also means "if not *r* then not *s*."
- r is a necessary and sufficient condition for s means "r if and only if s."

2.3 Arguments (a)

Definition

- ► An **argument** is a sequence of statements.
- ► All statements in an argument, except for the final one, are called **premises** (or **assumptions** or **hypotheses**) and the final statement of is called the **conclusion**. The symbol :., read "therefore," is normally placed just before the conclusion.
- ► An argument is **valid** if the conclusion necessarily follows from the premises in the sense that if the premises are all true, then the conclusion is also true.

2.3 Arguments (b)

Example

Is the following argument valid?

$$\begin{array}{ccc} p & \longrightarrow q \lor \sim r \\ q & \longrightarrow p \land r \end{array}$$

$$q \longrightarrow p \wedge r$$

$$\therefore p \longrightarrow r$$

2.3 Invalid Argument!

						prem	conclusion	
p	q	r	~r	$q \lor \sim r$	$p \wedge r$	$p \rightarrow q \vee \sim r$	$q \rightarrow p \wedge r$	$p \rightarrow r$
T	T	T	F	T	Т	T	Т	T
T	Т	F	T	T	F	T	F	
T	F	T	F	F	Т	F	Т	
T	F	F	Т	T	F	T	T	F
F	T	T	F	T	F	Т	F	
F	T	F	T	T	F	Т	F	
F	F	T	F	F	F	Т	T	T
F	F	F	Т	T	F	Т	T	T

2.3 Valid Arguments

Proposition

► Modus ponens (or method of affirming):

$$p \longrightarrow q$$
 p
 $\therefore q$

► Modus tollens (or method of denying):

$$egin{aligned} p & \longrightarrow q \ & \sim q \ & \ddots & \sim p \end{aligned}$$

2.3 Fallacies

Definition

A **fallacy** is an error in reasoning that results in an invalid argument.

Proposition (Two fallacies)

► The fallacy of affirming the consequent:

$$p \longrightarrow q$$
 q

► The fallacy of denying the antecedent:

$$\begin{array}{c} p \longrightarrow q \\ \sim p \\ \therefore \sim q \end{array}$$

2.3 Validity versus Truth

Valid argument with false conclusion

Note that valid and invalid are not synonymous with true and false! The following argument is valid but its conclusion is false:

If John Lennon was a rock star, then John Lennon had red hair.

John Lennon was a rock star.

: John Lennon had red hair.

2.3 Proof by Contradiction

Proposition (Reductio ad impossibile)

If you can show that assuming p is false leads to a contradiction, then you can conclude that p is true. Formally:

$$\sim p \longrightarrow c$$

$$p$$

Theorem (Euclid's Theorem)

There are infinitely many prime numbers.

Proof: Suppose that $p_1=2 < p_2=3 < \ldots < p_r$ were all of the primes. Let $P=p_1p_2\cdots p_r+1$ and let p be a prime dividing P. Then p can not be any of p_1,p_2,\ldots,p_r , otherwise p would divide the difference $P-p_1p_2\cdots p_r=1$, which is impossible. So this prime p is still another prime, and p_1,p_2,\ldots,p_r would not be all of the primes. \blacksquare