

University of Cagliari, Cagliari, Italy July 1-4, 2020

One-class SVM to identify candidates to Rerefence Genes based on the augment of RNA-seq data with Generative Adversarial Networks

Edwin J. Rueda Rommel Ramos

Edian F. Franco Orlando Belo Jefferson Morais

Edwin J. Rueda
Federal University of Para
edwin.rojas@icen.ufpa.br

- Introduction
- Proposed Method
- Experiments and Results
- Conclusions and Future Works

Reference Genes (RG)

- Constitutive genes
- Expressed in all cells
- Used in internal controls (gene expression analysis)

- Normalize gene expression
- Demonstrates the variability and imperfections of the technology

Identify candidates for Reference Genes

Pipeline:

- Strategies:
 - Based on clustering (Euclidean distance)
 - Based on optimization algorithms

Steps:

- 1) Generative Adversarial Networks to augment of RNA-seq data
- 2) One-Class SVM to select candidate genes

Initial step: data processing

Edwin J. Rueda

Data processing

Pipeline:

1) Normalization with RPKM:

$$RPKM = \frac{numReads*10^9}{geneLength*TMReads}$$

- 2) $\log_2 + 1$
- 3) Remove outliers based on the Coefficient of Variation (CV):

$$CV = \frac{\sigma}{\mu}$$

4) Data scaled between [-1, 1]

Generative Adversarial Networks (GAN)

Steps:

1) Training the Discriminator network and freezing their weights

2) Training the Generator network

Edwin J. Rueda

Proposed architecture

Generator network

Discriminator network

- A normal distribution N(0,1) as a noise vector
- Stochastic Gradient Descent to compute the gradients

Evaluation

A proposed Similarity metric S(x,x') to evaluate the performance of the GAN:

$$S(x, x') = \sum_{i}^{m} \sum_{j}^{n_g} \sum_{k}^{n_f} \frac{|x_i^{(k)} - x_j'^{(k)}|}{n_f n_g m} + |0.5 - \frac{1}{n_g} \sum_{j}^{n_g} \hat{y}_j|$$

- \hat{y} : Class predicted by D network for a synthetic gene
- x': Set of synthetic genes generated by the G network
- x: Set of Reference Genes
- lacktriangleq m: Number of Reference Genes
- n_q : Number of synthetic genes
- n_f : Number of features (gene expression)

Evaluation

• A proposed E(x') metric to select the best sample of synthetic data:

$$E(x') = \frac{1}{n_g} \sum_{j=1}^{n_g} \left[CV(x'_j) + \frac{1 - D(x'_j)}{D(x'_j)} \right]$$

- CV : Coefficient of variation
- x^\prime : Set of synthetic genes generated by the G network
- $n_g = 300$: Number of synthetic genes
- Other metrics: Binary Cross-Entropy, Precision score

One-Class SVM

- Implements the RBF kernel (Gaussian kernel)
- Recall score to evaluate the performance of the One-Class SVM:

$$Recall = \frac{TP}{TP + FN}$$

 \blacksquare TP: True Positives

• FN: False Negatives

- Recall score allows to measure the ability of the classifier to find all positive samples (RG)
- A Recall score close to one indicates that the classifier has a good performance

Experiments and Results

- The Escherichia coli MG1655 dataset was used
- Parameters used for training the GAN architecture

Parameter	Generator	Discriminator
Optimizer	SGD	SGD
Learning rate	0.00015	0.001
Decay rate	0.00015/1700	0.001/1700
Momentum	0.92	0.9
Epochs	1700	1700

Convergence process

Selection of synthetic genes

Edwin J. Rueda

 We generated 5000 sets of 300 synthetic genes and selected the set with the smallest value of E(x')

Experiments and Results

Selection of candidate genes

Recall score on test and training data

	Training data		Test data	
Metrics	Augmented data	Reference Genes (70%)	Reference Genes (30%)	Synthetic data
Recall	98.40%	92.85%	85.71%	98.26%

We selected the 11 most relevant candidate genes

Comparing results with augmented and unaugmented data:

Reference Genes	Recall score		
	Training data	Test data	
Augmented	98.40%	85.71%	
Unaugmented	85.71%	66.66%	

 With augmented dataset, we improved recall score of proposed classifier by 19%

- With the proposed method we were able to identify 807 possible candidate genes from a total of 4170 unclassified genes from the *Escherichia coli* MG1655 dataset.
- Augmenting the set of RG we can increase the performance of the One-class svm classifier
- Code is being maintained on GitHub: https://github.com/ejrueda/20_ICCSA_RG_GAN

- Other GAN architecture can be tested
- A more extensive hyperparameter tuning could also be applied in the training of the GAN architecture
- Other One-class classifiers can be tested (Ex: GAN)

University of Cagliari, Cagliari, Italy July 1-4, 2020

One-class SVM to identify candidates to Rerefence Genes based on the augment of RNA-seq data with Generative Adversarial Networks

Thank you!

Edwin J. Rueda

Federal University of Para edwin.rojas@icen.ufpa.br

