CS 427 Homework 1

Robert Detjens

- 1. Given the two ciphertexts below, are they alpha/bravo or delta/gamma? What was the key?
 - c1 = 00110100001111000110100011011000101100100
 - c2 = 0011011100111000011000001010100001100100

c1 is delta and c2 is gamma. Key is 010100000101100100001101110001010000101.

$$c_1 \oplus \text{'alpha'} \oplus c_2 \neq \text{'bravo'}$$

 $c_1 \oplus \text{'delta'} \oplus c_2 = \text{'gamma'}$

2. Show that non-mod-2 addition is not uniformly distributed.

With mod-2 addition (XOR), a plaintext input of 0^{λ} will generate a ciphertext somewhere in the range of $\{0,1\}^{\lambda}$, and a plaintext of 1^{λ} will also generate a ciphertext in $\{0,1\}^{\lambda}$, as expected. With normal addition, a plaintext input of 0^{λ} still generates a ciphertext somewhere in the range of $\{0,1\}^{\lambda}$, and a plaintext of 1^{λ} will instead generate a ciphertext in $\{1,2\}^{\lambda}$.

$$TEST(0^{\lambda}) \in \{0, 1\}^{\lambda}$$

 $TEST(1^{\lambda}) \in \{1, 2\}^{\lambda}$

Examining the ciphertext probability, the probability that both of these plaintext inputs will generate the same key – e.g. $c=0^{\lambda}$ – should be $\frac{1}{3^{\lambda}}$ as there are 3 possible digits in the search space. However, while the actual probability of $c=0^{\lambda}$ occurring for $TEST(0^{\lambda})$ is $\frac{1}{2^{\lambda}}$, the probability of $TEST(1^{\lambda})$ generating that same c is 0 – it cannot happen. Thus, the distribution of ciphertexts that TEST() generates is not uniformly distributed for all inputs.

3. Show that bitwise AND is not uniformly distributed.

With mod-2 addition (XOR), a plaintext input of 0^{λ} will generate a ciphertext somewhere in the range of $\{0,1\}^{\lambda}$, and a plaintext of 1^{λ} will also generate a ciphertext in $\{0,1\}^{\lambda}$, as expected. With bitwise AND, a plaintext input of 0^{λ} instead always generates a ciphertext of 0^{λ} , and a plaintext of 1^{λ} will generate a ciphertext always equal to the key.

Thus, the distribution of ciphertexts that TEST() generates with bitwise AND depends on the input plaintext and is not uniformly distributed across $\{0,1\}^{\lambda}$.

$$TEST(0^{\lambda}) = 0^{\lambda}$$

$$TEST(1^{\lambda}) \in \{0, 1\}^{\lambda}$$

Examining the ciphertext probability, the probability that both of these plaintext inputs will generate the same key – e.g. $c = 0^{\lambda}$ – should be $\frac{1}{2^{\lambda}}$ as there are 2 possible digits in the search space. However, while the actual probability of $c = 0^{\lambda}$ occurring for $TEST(1^{\lambda})$ is $\frac{1}{2^{\lambda}}$, the probability of $TEST(0^{\lambda})$ generating that same c is 1 – it always happens. Thus, the distribution of ciphertexts that TEST() generates is not uniformly distributed for all inputs.