$$10ns \times 0.9 + (60ns + 10ns) \times 0.1 = 16ns$$

第二题

(1)

Way: 4 ways

Cache 组数: $\frac{64\ K\times 8}{16\times 8\times 4}=2^{10}$ 组

主存每组块数: $\frac{4G \times 8}{16 \times 8 \times 1024} = 2^{18}$ 块/组

主存地址: 32位,高18位为组内块地址,中间10位为组地址,低4为块内地址

Tag: 1 位有效位 +4 位脏位 +18 位组内块地址 =23 位

(2) $(23+128) \times \frac{64\ K}{16} = 75.5\ KB$

第三题

(1) 4352 个字可分配在 68 个主存块中,Cache 的组数为 $\frac{4K}{64 \times 4} = 16$,每组 4 块,所以有 64 块在 Cache

第一次读取时必定每个都未命中,所以有 68 个块未命中,并且 Cache 内的块为 $4,5,6,\cdots,65,66,67$ 之后的循环就会有 20 块未命中,和 48 块全命中

块未命中的次数: $68 + 20 \times 9 = 248$

块命中的次数: $48 \times 9 = 432$

若块未命中: 1个字未命中, 经过替换后, 接下来的 63字必然命中

若块命中: 64 字必然命中

Cache 未命中次数: $1 \times 248 = 248$

Cache 命中次数: $63 \times 248 + 64 \times 432 = 43272$

命中率: $\frac{43272}{248+43272} = 99.43\%$

(2)

设 Cache 访问一个字的时间为 t ,则主存的访问一个字的时间为 10t

加速比 =
$$\frac{10t \cdot 64 \cdot (248 + 432)}{11t \cdot 248 + 43272t} = 9.46$$

第四题

- (1) 出现一次 Cache 缺失的存取时间为: $50~ns + 15 \times 5~ns + 2.5~ns = 127.5~ns$
- (2) 原条件的平均存取时间:

$$T=H imes T_C+(1-H)T_m=0.95 imes 2.5ns+0.05 imes 127.5ns=8.75ns$$
 改进后出现一次 Cache 缺失的存取时间: $50ns+31 imes 5ns+2.5ns=207.5~ns$ 改进后的平均存取时间:

$$T = H \times T_C + (1 - H)T_m = 0.97 \times 2.5 ns + 0.03 \times 207.5 ns = 8.65 ns$$

第五题

P	#VPN位数	#VPO位数	#PPN位数	#PPO位数
1KB	22	10	14	10
2KB	21	11	13	11
4KB	20	12	12	12
8KB	19	13	11	13

第六题

(1) 页大小: $128 = 2^7$, 页内偏移: 7位

虚拟页号: 16-7=9位

4 组 = 2^2 组, 组索引: 2 位

7	2	7	
TLB标记	TLB组索引	五山泊地	
Į.	页内偏移		

(2)

5	7
物理页号	页内偏移

6	4	2
Cache标记	Cache行索引	块内地址

(3)

访问TLB表,页表项在TLB中,获取实页号,得到物理地址。

不在TLB表,访问页表,不在页表中,就是页表缺失,说明数据不在主存,所以一定不在Cache中,从磁盘读取页。在页表中,生成物理地址。

根据映射规则和生成的物理地址,查找 Cache,不在 Cache 中从内存装入 Cache 再从 Cache 读出。

地址 067AH = 0000_0110_0111_1010B , 所以, 虚页号为 0000_0110_0B 映射到 TLB 第 00 组

将 $[0000_011B=03H]$ 与 TLB 第 0 组的四个标记比较,虽然和其中一个相等,但对应的有效位为 0 ,其余都不相等,所以 TLB 缺失,需要访问主存中的页表

直接查看 $0000_0110_08 = 00$ CH 处的页表项,有效位 1 ,取出物理页号 19H = 1100_1 B ,和页内偏移 111_1010 B 拼接成物理地址: 1100_1111_1010 B

根据中间 4 位 1110 直接找到 Cache 第 14 行,有效位为 1 ,且标记为 33H = 11_0011B ,正好等于物理地址高 6 位,故命中。

根据物理地址最低两位 10 , 取出字节 2 中的内容 4H = 0100_1010B

第七题

Cache 组数: $\frac{32KB}{256B \times 8} = 16 = 2^4$

主存每组块数: $\frac{2MB}{256B\times16} = 512 = 2^9$

主存地址每部分的位数: 21位 = $\{9$ 位组内块地址,4位组地址,8位块内地址 $\}$

Cache 的 Tag 的位数: 8 位

试问在组相联映射方式下,会否出现Cache不满,但新块需启动替换才能调入的现象?

会,因为每个数据只能被写入对应的组里。