CSL 356 Lecture 11, Aug 20 Continuing with sems-dynamic (only insertions) dictionary Given a set of elements 5 with 151=n, we maintain sorted arrays according to the binary representation of n. (Almost lognary) Search: O (logn.logn)=O(log2n) Insertin : Create a new array Aj with [Ajl= 2d gruen that oil lhe arrays Ao, A, ... Aj-, were full when the insertion occurred A; in created by combining all -the elements from Ao... Aj., (about 20 2/ + 1 = 20 element) Can be done in $O(2\delta)$ comparisons

28 can be large (upto n) How often do we pay the price for filling up Aj? Observation: Only once after every 28 inser-lins, tij is affected. =) Over a sequence of m insertimo the number of times, we uncur a cost for $A_j := O\left(\frac{m}{2\delta}\right)$ =) To tal cost = $\sum_{j} O(\frac{m}{2^{j}} \times 2^{j})' = O(m \log m)$ So the "amortised" cost of inserting in O (logm) (amortised wer a "large" operations)

Goal in to get a worst can
bound over a seguence of operations
and look at the amoritised cost
Counter can count to N blogn O O O O O O O O O O O O O
module N couriler
- · · · · · · · · · · · · · · · · · · ·
و و د ر ۵ م ه ي ر د د د ۱ ک ا
Worst cax cost of a single operation Say Then worst cax cost of m operations in O(T.m) T: log N m: N O(Nly N)
T: logN m=N O(NlyN)

Total # 7 bits - Shipped $\frac{1}{j} \leq \frac{N}{2\dot{\delta}} \cdot (\dot{\delta} \cdot \dot{\delta}) = N \cdot \leq \frac{\dot{\delta}}{2\dot{\delta}} \cdot O(N)$ 5 4 3 2 ¹ - 1 0 1 1 1 1 10000 Amortised Analysis Potential based amortised analysis Associate a "potential function" Ø() with the state of the data structure. Ø(i) in the potential at state i

Amortised cost at stepi = change of potential + outtral cost = $\phi(i+i) - \phi(i) + w_i$ Total amortised cost: { Amortised cost in stepi

Amortised cost of incremently the center

10 110 111 -> 10 111 000

Patulial day 1 -3+1

Amort red cost: 0(1)

Over a sequence of N

increments Ti! Amortsed cost: 0(N)