

Photogrammetry & Robotics Lab

Control for Self-Driving Cars

Nived Chebrolu

Part of the Course: Techniques for Self-Driving Cars by C. Stachniss, J. Behley, N. Chebrolu, B. Mersch, I. Bogoslavskyi

Self-Driving Car Scenario

Control Strategy

How to follow a trajectory?

What controls are needed?

Understanding Motion

Kinematic Modelling

2D Bicycle Model

Rolling Condition for Wheels

Kinematic Constraint

$$v = r\omega$$

Instantaneous Center of Curvature

For rolling motion to occur, each wheel has to move along its y-axis

Bicycle Model Kinematics

Desired point is center of rear axle

$$\dot{x} = v \cos(\theta)$$

$$\dot{y} = v \sin(\theta)$$

$$\dot{\theta} = \frac{v \tan(\delta)}{L}$$

$$ICC \delta \qquad R \qquad U$$

$$(x, y)$$

Bicycle Model

State:

$$[x, y, \theta, \delta]^{T}$$

$$\delta = tan^{-1}(\frac{L}{R})$$

Kinematics:

$$\dot{x} = v \cos(\theta)$$

$$\dot{y} = v \sin(\theta)$$

$$\dot{\theta} = \frac{v \tan(\delta)}{L}$$

Control:

Bicycle Model

Constraints:

 $v < v_{\text{max}}$

$$\delta < |\delta_{\rm max}|$$

Kinematic Vs. Dynamic Modeling

Vehicle Actuation

Steering Model

Vehicle Actuation

Throttle/Brake

Feedback Control

Open Loop vs. Feedback Control

Feedback Control

Feedback Control

PID Controller

Position Control Task

- Move the robot to the desired goal location x_{des}
- How to generate the suitable control signal u?
- Robot location estimated via sensor measurements z

Kinematics For A Point Mass

- Consider the robot as a point mass
- Moving freely in 1D space

Position Control Task

• Position control task is to reach the desired position $x_{des} = 1$ and stop there

• At each time instant, we apply a control u_t

• How to achieve this task using a PID controller?

Kinematics of a rigid body

- System model : $x_t = x_{t-1} + \dot{x}\Delta t$
- Initial state: $x_0 = 0, \dot{x}_0 = 0$

Proportional control law

$$u_t = K_P(x_{des} - x_t)$$

• Proportional-derivative control law $u_1 = K_{-}(x_1, \dots, x_n) + K_{-}(\dot{x}_1, \dots, \dot{x}_n)$

$$u_t = K_P(x_{des} - x_t) + K_D(\dot{x}_{des} - \dot{x}_t)$$

- Proportional-derivative control law $u_t = K_P(x_{des} x_t) + K_D(\dot{x}_{des} \dot{x}_t)$
- What happens with high gains?

- Proportional-derivative control law $u_t = K_P(x_{des} x_t) + K_D(\dot{x}_{des} \dot{x}_t)$
- What happens with low gains?

- What happens when there is a systematic bias?
- Ex: robot wheels are not same size ...

• Idea: Estimate the systematic error ...

$$u_{t} = K_{P}(x_{des} - x_{t}) + K_{D}(\dot{x}_{des} - \dot{x}_{t})$$

$$+K_{I} \int_{0}^{t} (x_{des} - x_{t}) dt$$

PID Controller

• Idea: Estimate the systematic error ...

PID Controller

• Idea: Estimate the systematic error ...

$$u_{t} = K_{P}(x_{des} - x_{t}) + K_{D}(\dot{x}_{des} - \dot{x}_{t}) + K_{I} \int_{0}^{t} (x_{des} - x_{t}) dt$$

- Reasonable for steady state system
- May be dangerous to error build up (wind-up effect)

PID Control - Summary

- P = simple proportional control, sufficient in most cases.
- PD = reduce overshoot (e.g. when acceleration can be controlled)
- PI = compensate for systematic error/bias
- PID = combination of the above properties.

Following A Trajectory

How to follow a trajectory?

Longitudinal Control

Longitudinal PID Controller

Longitudinal PID Controller

Longitudinal PID Controller throttle **Feedforward Controller** velocity v_{ref} Sensor

Lateral Control

Cross-track error

Lateral Control

Heading/orientation error

Lateral PID Controller

Lateral PID Controller

Geometric Steering Control

Cross-track error

Stanley Controller

 Used successfully in the Darpa Grand Challenge

Stanley Controller

- Reduce both the error in heading and the nearest point on the reference trajectory
- Align Heading:

$$\delta = \psi$$

Cross-track error:

$$\delta = \tan^{-1} \left(\frac{k \, e_{cte}}{v} \right)$$

Steering limit:

$$\delta \in [\delta_{min}, \delta_{max}]$$

Stanley Controller

Combined control law:

$$\delta = \psi + \tan^{-1} \left(\frac{k \, e_{cte}}{v} \right)$$

$$\delta \in [\delta_{min}, \delta_{max}]$$

$$e_{cte}$$

Model Predictive Control

Model Predictive Control (MPC)

 Uses a model of the system to make future predictions for the system

Model Predictive Control (MPC)

 Uses a model of the system to make future predictions for the system

Model Predictive Control (MPC)

 Uses a model of the system to make future predictions for the system

Handle multiple inputs/outputs jointly

60

Handle multiple inputs/outputs jointly

Handle Constraints

Preview capability

Control as Optimization Problem

- Find the controller that minimizes some cost function.
- How to define this cost function?
- What would be a good cost function?
 - Minimize the error to reference?
 - Minimize the controls necessary?
 - Combination of both?

Model Predictive Control

 Discrete-time linear/non-linear system

$$x_{t+1} = f(x_t, u_t)$$

Quadratic cost function

$$J = \sum (e_t^T Q e_t + u_t^T R u_t)$$
$$e_t = x_{des} - x_t$$

 Goal: Finds the control with the lowest cost.

Model Predictive Control

Pros:

Cost matrix has an intuitive meaning

Cons:

- Typically no closed form solution
- Must be solved numerically
- Feasible only for small planning horizon

Requirements for MPC

- Fast processing power
- Large memory

• What should be the control such that the car follows the center line?

Simulation/Prediction

$$J = \sum_{i=1}^{p} e_t^T Q e_t + \sum_{i=0}^{p-1} \Delta u_t^T R \Delta u_t$$

s.t. All constraints are satisfied

Receding Horizon Control

- Prediction Horizon
- Control Horizon
- Sample Time
- Constraints
- Weights

Prediction Horizon

Prediction Horizon

Prediction Horizon

Control Horizon

Weights (Error vs Control)

Adaptive (Linearized) MPC

• What if the system has non-linear dynamics?

Non-linear MPC

• What if the constraints are also nonlinear?

Running MPC Faster

- Prediction Horizon
- Control Horizon
- Sample Time
- Constraints
- Number of iterations

Explicit (Offline) MPC

Summary

- Kinematic modeling for a car
- Idea of feedback control
- Trajectory control using PID control
- Lateral control strategy based on geometry
- Dynamic control strategy using Model Predictive Control (MPC)

Resources

- "Robotics, Control and Vision" by Dr. Peter Corke
- "Introduction to Self-driving Cars" by Steven Waslander
- "Visual navigation for flying robots" by Dr. Jürgen Strum

Link: https://www.edx.org/course/autonomous-navigation-flying-robots-tumx-autonavx-0

 "Control for Mobile Robots" by Dr. Magnus Egerstedt

Link: https://www.coursera.org/learn/mobile-robot

Thank you for your attention