PROBLEM SET #3

(1) Is $\mathbb{Z}[\sqrt[3]{37}]$ a regular ring? What about $\mathbb{Z}[\sqrt[3]{43}]$?

Proof. Write $R = \mathbb{Z}[\sqrt[3]{37} \cong \mathbb{Z}[x]/(x^3 - 37)$. First, we show that $R_{\mathfrak{p}}$ is regular for many primes \mathfrak{p} . The prime ideals of R correspond to prime ideals of $\mathbb{Z}[x]$ containing $(x^3 - 37)$. Note that $x^3 - 37$ is irreducible by Eisenstein's criterion, so it is prime. Then the prime ideals of $\mathbb{Z}[x]$ properly containing (x^3-37) must be of the form (p,g(x)), where g is a polynomial that divides x^3-37 modulo p. For $R_{\mathfrak{p}}$ to not be regular, we must have $x^3-37\in(p,g)^2\subseteq(p,g^2)$. Then for degree reasons, g must be linear, so of the form x-a, and a must be a double root of x^3-37 in \mathbb{F}_p . But then x-adivides $\frac{dg}{dx} = 3x^2$, so $a \equiv 0 \mod p$ unless p = 3, but if 0 is a root of $x^3 - 37$ in \mathbb{F}_p , then p = 37, but $x^3 - 37 \notin (37, x)^2$, so we must have p = 3, and then $a \equiv 1 \mod p$.

Thus, we reduce to checking whether $x^3 - 37 \in (3, x - 1)^2$. We have $(3, x - 1)^2 = (9, 3(x - 1), (x - 1)^2)$. By long division, write $x^3 - 37 = (x+2)(x-1)^2 + 3x - 39$. Then 3x - 39 = 3(x-1) - 36 = 3(x-1) - 4.9, so $x^3 - 37 \in (3, x - 1)^2$, and $\mathbb{Z}[\sqrt[3]{37}]_{(3,1+\sqrt[3]{37})}$ and hence $Z[\sqrt[3]{37}]$ are not regular.

For $S = \mathbb{Z}[\sqrt[3]{43}]$, everything is the same up to checking whether $x^3 - 43 \in (3, x - 1)^2$. By long division, write $x^3 - 43 = (x+2)(x-1)^2 + 3x - 45$. Then $3x - 45 = 3(x-1) - 42 = 3(x-1) - 5 \cdot 9 + 3$, so $x^3 - 43 \equiv 3 \mod (3, x - 1)^2$. But $3 \notin (3, x - 1)^2$, so $x^3 - 43 \notin (3, x - 1)^2$, and hence $\mathbb{Z}[\sqrt[3]{43}]$ is regular.

- (2) Let R be an A-algebra, $f(x_1,\ldots,x_n) \in A[x_1,\ldots,x_n]$ a polynomial with coefficients in A, and $r_1,\ldots,r_n,s_1,\ldots,s_n\in R.$

 - (a) Prove the *chain rule* for the universal derivation: $d_{R|A}(f(r_1,\ldots,r_n)) = \sum_i \frac{df}{dx_i}(r_1,\ldots,r_n)dr_i$. (b) Prove the *Taylor expansion* formula: $f(r_1+s_1,\ldots,r_n+s_n) = \sum_{\alpha \in \mathbb{N}^n} \frac{1}{|\alpha|!} \frac{d^{|\alpha|}f}{dx_1^{\alpha_1}\cdots dx_n^{\alpha_n}}(r_1,\ldots,r_n)s_1^{\alpha_1}\cdots s_n^{\alpha_n}$.
- (3) Facts about *p*-bases/ *p*-degree:
 - (a) Let L be a field of positive characteristic. Let T be a p-basis for L. Show that for any e, the set $T^{[< p^e]}$ is a basis for L.
 - (b) Let $K \subseteq L$ be a finite extension of fields of positive characteristic. Show that $p \deg(K) = 1$
 - (c) Let $L = K(x_1, \ldots, x_m)$ be a field of rational functions in m variables over K. Show that $p\deg(L) = p\deg(K) + m.$

Proof ideas. (a) By induction on e, with e = 1 as the definition. If the claim is true for e, so $T^{[<p^e]}$ is a basis for L/L^{p^e} , taking pth powers we have that $(T^p)^{[<p^e]}$ is a basis for $L^p/L^{p^{e+1}}$. But $T^{[< p^{e+1}]} = (T^p)^{[< p^e]} T^{[< p]}$ (i.e., the first set is the set of products of the two sets on the right-hand side), so from field theory, the left hand side is a basis for $L/L^{p^{e+1}}$

(b) Consider the diagram

From field theory $[L:K][K:K^p] = [L^p:K^p][L:L^p]$, and $[L^p:K^p] = [L:K]$, so $[K:K^p] = [L:L^p]$. Then $p \deg(K) = \log_p([K:K^p]) = \log_p([L:L^p]) = p \deg(L)$.

- (c) Take a p-basis T for K. One checks that $T \cup \{x_1, \ldots, x_m\}$ is a p-basis for L.
- (4) Let k be a field of positive characteristic with a finite p-basis, R be a finitely generated k-algebra, and $\mathfrak{p} \subseteq \mathfrak{q}$ be prime ideals of R. Show that

$$\dim R_{\mathfrak{q}}/\mathfrak{p}R_{\mathfrak{q}} = p \deg(\kappa(\mathfrak{p})) - p \deg(\kappa(\mathfrak{q})).$$

Proof. We will show that $\dim(R/\mathfrak{p}) = p \deg(\kappa(\mathfrak{p})) - p \deg(k)$; the formula above then follows. We can replace R by R/\mathfrak{p} and assume R is a domain and $\mathfrak{p} = 0$, Take a Noether normalization A for R. By part (2) of the previous problem, $p \deg(\kappa(\mathfrak{p})) = p \deg(\operatorname{frac}(R)) = p \deg(\operatorname{frac}(A))$. By part (3) of the previous problem, $p \deg(\operatorname{frac}(A)) = \dim(A) + p \deg(k) = \dim(R) + p \deg(k)$. The conclusion then follows.

(5) Let K be a field.

2

- (a) Let R = K[x] be a polynomial ring in one variable and $M = R^{\oplus \mathbb{N}}$ be a free R-module on a countable basis. Compute the (x)-adic completion of M.
- (b) Let $R = K[x_1, x_2, ...]$ be a polynomial ring in countably many variables and $\mathfrak{m} = (x_1, x_2, ...)$. Describe the elements of $\hat{R}^{\mathfrak{m}}$. Find an element in the maximal ideal of $\hat{R}^{\mathfrak{m}}$ that is *not* an element of $\mathfrak{m}\hat{R}^{\mathfrak{m}}$.
- (6) Let $K \subseteq L$ be an extension of fields.
 - (a) Suppose that L is a finitely generated over K as fields. Show that L is formally unramified over K if and only if the extension is separable algebraic.
 - (b) Show that the finite generation hypothesis is strictly necessary in part (1).
 - Proof. (a) We just need to show that unramified implies separable algebraic. Any transcendental element is a p-independent set, which contradicts unramified, so unramified implies algebraic. Write $K \subseteq F \subseteq L$, with $F \subseteq L$ purely inseparable. By finite generation plus algebraic, this is finite. We can then choose some f with $f \in L \setminus F$ and $f^p \in F$ using finiteness. Then f is p-independent in L over F, contradicting unramified.
 - (b) Take $K = \mathbb{F}_p(t)$ and $L = \bigcup_{e \in \mathbb{N}} \mathbb{F}_p(t^{1/p^e})$.