Машинное обучение

Лекция 13

Поиск аномалий

НИУ ВШЭ, 2021

План

• Несбалансированные данные

• Оценка качества и построение качественных моделей на несбалансированных выборках

• Методы балансировки данных

Несбалансированные данные

Задача классификации

• Посмотрим на баланс классов:

Задача классификации

• Посмотрим на баланс классов:

Ожидание

Задача классификации

• Посмотрим на баланс классов:

Примеры

- <u>Детектирование «неискренних» вопросов</u>
- Обнаружение мошеннических транзакций
- Классификация рентгеновских снимков
- Предсказание сейсмической активности
- Выявление аномалий на производстве (predictive maintenance)
- Фильтрация спама
- Предсказание оттока клиентов
- Предсказание CTR (Click-Through Rate)

• Определение дефектных деталь на производстве

• Вы построили модель, которая корректно определяет, дефектная ли деталь, в 99.9% случаев

• Хорошая ли это модель?

• Определение дефектных деталь на производстве

• Вы построили модель, которая корректно определяет, дефектная ли деталь, в 99.9% случаев

• Хорошая ли это модель?

• Ответ: необязательно.

- Хороший случай:
 - 30% деталей дефектны
 - 70% деталей не дефектны

• Модель, которая дает 99.9% правильных ответов — вполне осмысленная

- Плохой случай:
 - 0.1% деталей дефектны
 - 99.9% деталей не дефектны

• Модель, которая дает 99.9% правильных ответов — не особо осмысленная

• Она просто выдает константные предсказания!

• Данные несбалансированы, если число наблюдений одного класса сильно больше, чем число наблюдений других классов

• Данные несбалансированы, если число наблюдений одного класса сильно больше, чем число наблюдений других классов

• Что значит сильно больше?

• Данные несбалансированы, если число наблюдений одного класса сильно больше, чем число наблюдений других классов

• Что значит сильно больше?

• Явного порога нет, это зависит от задачи

• Данные несбалансированы, если число наблюдений одного класса сильно больше, чем число наблюдений других классов

• Что значит сильно больше?

• Явного порога нет, это зависит от задачи

• Соотношение классов 10:1 можно считать несбалансированностью

Резюме

• В задаче классификации данные могут быть несбалансированы, то есть наблюдений одного класса существенно больше, чем других

• Если модель дает много правильных ответов, это не значит, что она хорошая

• Проверьте баланс классов

Метрики качества

Accuracy

$$accuracy = \frac{\#(correct predictions)}{\#(observations)}$$

- (x_i, y_i) наблюдения и метки классов
- ℓ общее число наблюдений
- *а* классификатор

accuracy =
$$\frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

- Число дефектных деталей (класс 1): 10
- Число нормальных деталей (класс -1): 10001

$$\forall x: a(x) = -1$$

• Хорошая ли это модель?

- Число дефектных деталей (класс 1): 10
- Число нормальных деталей (класс -1): 10001

$$\forall x: a(x) = -1$$

• Хорошая ли это модель?

• Ответ: в терминах ассuracy – да, в терминах бизнеса – нет

- Что хуже?
 - Ошибиться, назвав нормальную деталь дефектной
 - Ошибиться, назвав дефектную деталь нормальной
- Одна ошибка в нормальных деталях: $\approx -0.01\%$ accuracy
- Одна ошибка в дефектных деталях: $\approx -0.01\%$ accuracy

• Возможно, ошибка в дефектной детали хуже

• Алгоритму удобно предсказывать мажоритарный класс для всех наблюдений

• Мы должны изменить процедуру обучения и/или метрику качества

	y = 1	y = -1
a(x) = 1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN)

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

• Точность (precision) показывает, насколько сильно мы можем доверять нашему алгоритму, если он предсказывает положительный класс

• Полнота (recall) показывает долю наблюдений положительного класса, верно предсказываемых алгоритмом

- Число дефектных деталей (класс 1): 10
- Число нормальных деталей (класс -1): 10001

- Модель корректно распознает 4 дефектных детали из 10
- Модель корректно распознает 10000 нормальных деталей из 10001

• Хорошая ли это модель?

- Число дефектных деталей (класс 1): 10
- Число нормальных деталей (класс -1): 10001

- Модель корректно распознает 4 дефектных детали из 10
- Модель корректно распознает 10000 нормальных деталей из 10001
- Хорошая ли это модель?

• Ответ: зависит от того, что вы хотите.

	y = 1	y = -1
a(x) = 1	4	1
a(x) = -1	6	10000

$$precision = \frac{4}{4+1} = 0.8$$

recall =
$$\frac{4}{4+6} = 0.4$$

accuracy =
$$\frac{\text{TP} + \text{TN}}{\text{TP} + \text{FP} + \text{TN} + \text{FN}} = \frac{4 + 10000}{10011} \approx 0.9993$$

- Случай 1. Низкая точность, высокая полнота
 - Часто отмечаем нормальные детали как дефектные
 - Зато редко пропускаем дефектные детали
- Случай 2. Высокая точность, низкая полнота
 - Редко отмечаем нормальные детали как дефектные
 - Зато часто пропускаем дефектные детали

F-мера

• F-мера является гармоническим средним точности и полноты

$$F - score = 2 \frac{precision \times recall}{precision + recall}$$

• F_{eta} -мера является взвешенной версией F-меры, где можно сделать больший акцент на точность либо полноту

$$F_{\beta}$$
 – score = $(1 + \beta^2) \frac{\text{precision} \times \text{recall}}{\beta^2 \times \text{precision} + \text{recall}}$

F-мера: проблемы

• Точность, полнота и F-мера не учитывают True Negatives (TN) – количество верных предсказаний для наблюдений отрицательного класса

• Однако, если вас не интересуют True Negatives, это вполне нормально

F-мера: проблемы

• Какой случай лучше?

	y = 1	y = -1
a(x) = 1	4	1
a(x) = -1	6	10000

	y = 1	y = -1
a(x) = 1	4	1
a(x) = -1	6	10

F-мера: проблемы

• Какой случай лучше?

	y = 1	y = -1
a(x) = 1	4	1
a(x) = -1	6	10000

	y = 1	y = -1
a(x) = 1	4	1
a(x) = -1	6	10

$$precision = 0.8$$

$$recall = 0.4$$

precision
$$= 0.8$$

$$recall = 0.4$$

Balanced accuracy

• True Positive Rate (полнота):

$$TPR = \frac{TP}{TP + FN}$$

• True Negative Rate (специфичность):

$$TNR = \frac{TN}{TN + FP}$$

Balanced accuracy

• Balanced accuracy – это среднее TPR and TNR

Balanced accuracy =
$$\frac{TPR + TNR}{2}$$

Balanced accuracy

	y = 1	y = -1
a(x) = 1	4	1
a(x) = -1	6	10000

$$TPR = 0.4$$
$$TNR \approx 0.9999$$

Balanced accuracy ≈ 0.7

	y = 1	y = -1
a(x) = 1	4	1
a(x) = -1	6	10

$$TPR = 0.4$$
$$TNR \approx 0.91$$

Balanced accuracy ≈ 0.65

MCC

• Matthews correlation coefficient (MCC) — это сбалансированная метрика, которая отражает корреляцию между правильными ответами и предсказаниями

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}} \in [-1, 1]$$

MCC

	y = 1	y = -1
a(x) = 1	4	1
a(x) = -1	6	10000

	y = 1	y = -1
a(x) = 1	4	1
a(x) = -1	6	10

 $MCC \approx 0.566$

 $MCC \approx 0.362$

Метрики качества ранжирования

• Пусть классификатор b(x) выдает вероятности принадлежности классам

• Подобрав порог t, можно построить следующий классификатор:

$$a(x) = sign(b(x) - t)$$

Метрики качества ранжирования

• Значения точности и полноты зависят от порога t

y	1	-1	1	-1	-1	1	1
b(x)	0.1	0.2	0.25	0.4	0.45	0.7	0.9

- t = 0.3:
 - precision = 0.5
 - recall = 0.5
- t = 0.8:
 - precision = 1
 - recall = 0.25

PR-кривая и AUC-PR

• При изменении t меняются значения точности и полноты

• AUC-PR — площадь под PR-кривой

ROC-кривая и AUC-ROC

• При изменении t меняются значения TPR и FPR

$$TPR = \frac{TP}{TP + FN}$$

$$FPR = \frac{FP}{FP + TN}$$

• AUC-ROC — площадь под ROC-кривой

AUC-PR vs AUC-ROC

- AUC-PR и AUC-ROC зачастую ведут себя похоже
- В случае сильного дисбаланса, если хочется учитывать TN, возможно, стоит использовать AUC-ROC
- Если не хочется учитывать TN, то AUC-ROC может вводить в заблуждение
- AUC-PR может быть более интерпретируемой и подходящей метрикой, если задачу нужно решить в терминах точности/полноты

Резюме

- Есть много метрик для проверки качества модели на несбалансированных данных какую именно использовать, зависит от постановки задачи
- Accuracy может вводить в заблуждение
- Точность, полнота и F-мера учитывают стоимость ошибки
- Balanced accuracy и MCC также учитывают True Negatives
- Метрики качества ранжирования: AUC-PR и AUC-ROC

Балансирование данных

$$L(y,z) = -[y = 1] \times \log(z) - [y = -1] \times \log(1 - z)$$

$$L(y,z) = -[y = 1] \times \log(z) - [y = -1] \times \log(1 - z)$$

• Функция потерь для логистической регрессии

$$L(y, z) = -[y = 1] \times \log(z) - [y = -1] \times \log(1 - z)$$

• Функция потерь для логистической регрессии

• Класс 1: 10 наблюдений, класс -1: 10000 наблюдений

$$L(y, z) = -[y = 1] \times \log(z) - [y = -1] \times \log(1 - z)$$

• Функция потерь для логистической регрессии

- Класс 1: 10 наблюдений, класс -1: 10000 наблюдений
- class_weight = {1: 1000, -1: 1} (#negatives/#positives)

$$L(y, z) = -[y = 1] \times \log(z) - [y = -1] \times \log(1 - z)$$

• Функция потерь для логистической регрессии

- Класс 1: 10 наблюдений, класс -1: 10000 наблюдений
- class_weight = {1: 1000, -1: 1} (#negatives/#positives)

$$L(y, z) = -1000[y = 1] \times \log(z) - [y = -1] \times \log(1 - z)$$

$$L(y,z) = -[y = 1] \times \log(z) - [y = -1] \times \log(1-z)$$

- Штраф за ошибку в положительном наблюдении: $-\log(z)$
- Штраф за ошибку в отрицательном наблюдении: $-\log(1-z)$

$$L(y, z) = -[y = 1] \times \log(z) - [y = -1] \times \log(1 - z)$$

- Штраф за ошибку в положительном наблюдении: $-\log(z)$
- Штраф за ошибку в отрицательном наблюдении: $-\log(1-z)$

$$L(y, z) = -1000[y = 1] \times \log(z) - [y = -1] \times \log(1 - z)$$

- Штраф за ошибку в положительном наблюдении: $-\mathbf{1000} imes \log(z)$
- Штраф за ошибку в отрицательном наблюдении: $-\log(1-z)$

- Логистическая регрессия, SVM, случайный лес: class_weight
- XGBoost, LightGBM, CatBoost: scale_pos_weight

Undersampling

• Undersampling — это техника балансирования данных, при которой уменьшается число наблюдений мажоритарного класса

Random undersampling

• Простейший метод: random undersampling (удаляем случайные объекты мажоритарного класса)

Random undersampling

- Простейший метод: random undersampling (удаляем случайные объекты мажоритарного класса)
- Скорее всего, повлечет за собой потерю качества (можем удалить важные объекты)

- Хотим контролировать процесс удаления объектов мажоритарного класса и сделать его менее случайным
- Будем использовать расстояния между объектами положительного и отрицательного классов
- Используем алгоритм kNN (k Nearest Neighbors) для определения близких и далеких объектов

• Сохраняем *М* объектов мажоритарного класса, имеющих наименьшее среднее расстояние до *k* самых близких объектов миноритарного класса

• Пример: M = #(minority class observations), k = 3

• Сохраняем *М* объектов мажоритарного класса, имеющих наименьшее среднее расстояние до *k* самых дальних объектов миноритарного класса

- Сделаем «шорт-лист» объектов мажоритарного класса, наиболее близких к объектам миноритарного класса
- Сохраним *M* объектов мажоритарного класса **из «шорт-листа»** с **наибольшим** средним расстоянием до *k* **ближайших** объектов миноритарного класса

- Сделаем «шорт-лист» объектов мажоритарного класса, наиболее близких к объектам миноритарного класса
- Сохраним *M* объектов мажоритарного класса **из «шорт-листа»** с **наибольшим** средним расстоянием до *k* **ближайших** объектов миноритарного класса

Связи Томека

• Вместо сэмплирования напрямую, используем эвристики, которые позволят нам очистить данные

• Между объектами x и y разных классов существует **связь Томека**, если они являются ближайшими соседями друг друга:

$$\forall z$$
: $d(x,y) < d(x,z)$ and $d(x,y) < d(y,z)$

- *z* другой объект
- d(x,y) расстояние между x и y

Связи Томека

• Не хотим хранить избыточные объекты мажоритарного класса, которые находятся слишком близко к миноритарному классу

Связи Томека

• Не хотим хранить избыточные объекты мажоритарного класса, которые находятся слишком близко к миноритарному классу

• Найдя связь Томека, мы можем либо удалить объект мажоритарного класса, либо оба объекта

Oversampling

• Oversampling — это техника балансирования данных, при которой увеличивается число наблюдений миноритарного класса

Random oversampling

• Простейший метод: random oversampling (случайно клонируем объекты миноритарного класа)

SMOTE: Synthetic Minority Over-sampling Technique

- **Шаг 1.** Для каждого объекта миноритарного класса x_i найти k его ближайших соседей
- **Шаг 2.** Для каждого x_i выбрать среди его соседей M случайных: $x_i^{(1)}, \dots, x_i^{(M)}$
- **Шаг 3.** Для каждой пары $(x_i, x_i^{(j)})$ сгенерировать новый объект: $x_i^{(j)\prime} = x_i + \lambda \left(x_i^{(j)} x_i\right)$,

где $\lambda \in [0, 1]$ – случайное число.

• SMOTE: Synthetic Minority Over-sampling TEchnique

• SMOTE: Synthetic Minority Over-sampling Technique

• Шаг 1. Ищем соседей

• SMOTE: Synthetic Minority Over-sampling Technique

- Шаг 1. Ищем соседей
- **Шаг 2.** Выбираем случайных соседей

 SMOTE: Synthetic Minority Over-sampling Technique

- Шаг 1. Ищем соседей
- **Шаг 2.** Выбираем случайных соседей
- Шаг 3. Генерируем объекты

• SMOTE: Synthetic Minority Over-sampling Technique

- Шаг 1. Ищем соседей
- **Шаг 2.** Выбираем случайных соседей
- Шаг 3. Генерируем объекты

 SMOTE: Synthetic Minority Over-sampling Technique

- Шаг 1. Ищем соседей
- **Шаг 2.** Выбираем случайных соседей
- Шаг 3. Генерируем объекты

ADASYN

ADASYN: ADAptive SYNthetic Sampling Approach

- SMOTE:
 - **Шаг 2.** Для каждого объекта x_i сгенерировать M новых наблюдений

- ADASYN:
 - **Шаг 2.** Для каждого объекта x_i сгенерировать g_i новых наблюдений

ADASYN

- $c_{
 m maj}$, $c_{
 m min}$ число наблюдений мажоритарного/миноритарного классов
- $\beta \in [0,1]$ балансирующий параметр

• Общее число объектов, которые нужно сгенерировать:

$$G = (c_{\text{maj}} - c_{\text{min}}) \times \beta$$

ADASYN

- $c_{
 m maj}$, $c_{
 m min}$ число наблюдений мажоритарного/миноритарного классов
- Δ_i число соседей x_i мажоритарного класса
- G общее число объектов, которые нужно сгенерировать

• Число объектов, которые нужно сгенерировать для x_i :

$$g_i = \frac{\Delta_i}{\sum_{j=1}^{c_{\min}} \Delta_j} \times G$$

• Для моделей классификации очень важно выучить границу между классами

- Для моделей классификации очень важно выучить границу между классами
- Объекты около границ крайне важны

- Для моделей классификации очень важно выучить границу между классами
- Объекты около границ крайне важны
- Следовательно, давайте генерировать объекты возле границ

- Для моделей классификации очень важно выучить границу между классами
- Объекты около границ крайне важны
- Следовательно, давайте генерировать объекты возле границ
- Как определить границы?

- Найти k ближайших соседей для каждого объекта x_i миноритарного класса
- Затем для каждого x_i вычислить $k' \in [0, k]$ число соседей, принадлежащих к мажоритарному классу

- Найти k ближайших соседей для каждого объекта x_i миноритарного класса
- Затем для каждого x_i вычислить $k' \in [0, k]$ число соседей, принадлежащих к мажоритарному классу
- 1. Если k'=k, то x_i считаем шумом

- Найти k ближайших соседей для каждого объекта x_i миноритарного класса
- Затем для каждого x_i вычислить $k' \in [0, k]$ число соседей, принадлежащих к мажоритарному классу
- 1. Если k'=k, то x_i считаем шумом
- 2. Если $k' \in \left[0, \frac{k}{2}\right)$, то x_i «надежный» объект (далеко от границы)

- Найти k ближайших соседей для каждого объекта x_i миноритарного класса
- Затем для каждого x_i вычислить $k' \in [0, k]$ число соседей, принадлежащих к мажоритарному классу
- 1. Если k'=k, то x_i считаем шумом
- 2. Если $k' \in \left[0, \frac{k}{2}\right)$, то x_i «надежный» объект (далеко от границы)
- 3. Если $k' \in \left[\frac{k}{2}, k\right)$, то x_i объект «в опасности» (близко к границе)

$$x_i^{(j)\prime} = x_i + \lambda \left(x_i^{(j)} - x_i \right)$$

- Borderline-SMOTE1: используем для генерации объекты «в опасности» и их соседей миноритарного класса
- Borderline-SMOTE2: аналогично, но также использовать соседи мажоритарного класса, с $\lambda \in [0, 0.5]$

Fig. 1. (a) The original distribution of Circle data set. (b) The borderline minority examples (*solid squares*). (c) The borderline synthetic minority examples (*hollow squares*).

SMOTE: другие вариации

SVM SMOTE

- определить границы классов с помощью SVM
- сгенерировать объекты на основе опорных векторов

K-Means SMOTE

- кластеризовать объекты
- посчитать дисбаланс классов в кластерах
- сгенерировать объекты внутри кластеров с большим числом объектов миноритарного класса
- чтобы определить, сколько объектов сгенерировать, определить разреженность кластера

K-Means SMOTE

• В обоих методах модифицируется обучающая выборка — не валидация/тест!

- В обоих методах модифицируется обучающая выборка не валидация/тест!
- Как вы думаете, разбиение на фолды для кросс-валидации нужно делать до oversampling, после или можно и так, и так?

- В обоих методах модифицируется обучающая выборка не валидация/тест!
- Разбиение на фолды для кросс-валидации нужно делать **до** oversampling

- В обоих методах модифицируется обучающая выборка не валидация/тест!
- Разбиение на фолды для кросс-валидации нужно делать **до** oversampling
- Комбинация из undersampling и oversampling может неплохо сработать

Резюме

- Можно балансировать данные множеством разных методов:
 - установка весов классов внутри алгоритмов
 - undersampling (random, NearMiss, связи Томека)
 - oversampling (random, методы на основе SMOTE)

Определение аномалий

Определение аномалий

- Целенаправленное определение аномалий (выбросов, новизны) объектов, которые не подходят под оригинальное распределение
- Очень большой дисбаланс в данных
- Может формулироваться как задача обучения без учителя
- Примеры: обнаружение вторжений в систему, предсказание сбоев и поломок

Определение аномалий

Популярные техники [править | править код]

В литературе было предложено несколько техник выявления аномалий^[7]. Вот некоторые популярные техники:

- Техники, основанные на плотности (k-ближайшие соседи^{[8][9][10]}, локальный уровень выброса^[11], изолирующие леса^[12] и многие другие варианты этой концепции^[13]).
- Обнаружение выбросов на основе подпространств^[14] и на основе корреляции^[15] для данных высокой размерности^[16].
- Метод опорных векторов для одного класса^[17].
- Репликатор нейронных сетей^[18].
- Байесовские сети^[18].
- Скрытые марковские модели (СММ) [18].
- Выявление выбросов на основе кластерного анализа[19][20].
- Отклонения от ассоциативных правил и часто встречающихся наборов.
- Выявление выбросов на основе нечёткой логики.
- Техника создания ансамблей, использующая бэггинг признаков^{[en][21][22]}, усреднение оценки^{[23][24]} и различение источников несхожести^{[25][26]}.

Эффективность различных методов зависит от данных и параметров и имеют слабые систематические преимущества один перед другим, если сравнивать по многим наборам данных и параметров^{[27][28]}.

Методы на основе kNN

- Используем алгоритм kNN для детекции объектов, которые лежат далеко от остальных
- Метод 1: как далеко находится объект от своего k-ого ближайшего соседа
- **Метод 2:** какое среднее расстояние от объекта до k ближайших соседей?

Local Outlier Factor

LOF: Local Outlier Factor

• Наблюдение аномально, если его локальная плотность намного меньше локальной плотности его ближайших соседей

Isolation Forest

- Isolation Forest «изолирует» наблюдения, делая случайные разбиения в решающих деревьях
- Идея: если наблюдение аномально, то чтобы его изолировать, нужно очень мало разбиений
- Построим лес и посчитаем оценку аномальности для каждого наблюдения

Isolation Forest

(a) Isolating x_i

(b) Isolating x_o

Резюме

- Определение аномалий специфичная задача с дисбалансом данных
- Есть много методов для решения такой задачи
- kNN, Local Outlier Factor, Isolation Forest