

KHULNA UNIVERSITY OF ENGINEERING & TECHNOLOGY

Department of Computer Science and Engineering

CSE 4128

Image Processing and Computer Vision Laboratory
Assignment-02

Date of Submission: 06 March, 2024

Submitted By	Submitted To	
Md. Zakaria Hossain	Dr. Sk. Md. Masudul Ahsan	
Roll: 1907056	Professor	
Year: 4 th Semester: 1 st	Dipannita Biswas	
Department of Computer Science and	Lecturer	
Engineering (CSE)	Department of Computer Science and	
Khulna University of Engineering and	Engineering (CSE)	
Technology (KUET), Khulna-9203	Khulna University of Engineering and	
	Technology (KUET), Khulna-9203	

Task:

Apply **Canny edge detection** for detecting edges in images.

The steps involved in implementing the Canny edge detection algorithm:

- 1. **Differential operators** along x and y axis : the value of sigma will be user input.
- 2. Non-maximum Suppression finds peaks in the image gradient
- 3. Hysteresis thresholding locates edge strings

Gradient Calculation:

1. Gaussian kernel is used to apply convolution to the grayscaled image.

Fig-1: Convolved image using gaussian kernel

2. Partial derivatives w.r.to x and y are calculated. These are the kernel_x and kernel_y. Formulas are:

$$rac{\partial G_{\sigma}(x,y)}{\partial x} = -rac{x}{\sigma^2}G_{\sigma}(x,y) \qquad rac{\partial G_{\sigma}(x,y)}{\partial y} = -rac{y}{\sigma^2}G_{\sigma}(x,y)$$

3. The gaussian convolved image is again convolved using the x_derivative and y_derivative kernels:

Fig-2: Convolved image using x_derivative(left) and y_derivative(right)

4. Magnitude at each pixel(x,y) is calculated using

$$\sqrt{((value_at_x)^2 + (value_at_y)^2)}$$

Fig-3: Merged output of previous two images

Non-maximum Suppression:

- 1. Converts the detected thick edges into thin edges.
- 2. Uses the gradient to find the pixels to compare with.

i-1,j+1	i,j+1	i+1,j+1
i-1,j	i,j	i+1,j
i-1,j-1	i,j-1	i+1,j-1

3. If the value at comparing pixel is greater than the values of other two pixels, then the value remains same, otherwise 0.

Fig-4: Result after non maximum suppression

${\bf Hysteresis\ thresholding:}$

- 1. Acquire lower and higher threshold value using some low and high threshold ratio.
- 2. If the pixel value is
 - a. larger than higher threshold, then assign 255
 - b. smaller than lower threshold, then assign 0.

c. Otherwise, assign a weak value (25).

Fig-5: Result after double thresholding

- 3. Acquire final output by performing hysteresis by the following technique: For each weak pixel of the image, if it is connected to
 - a. any strong pixel, it is made 255,
 - b. otherwise, it is made 0.

Fig-6: Final Input and Output Image