6.2 Jo項による摂動

Jn (n≥3) を無視して、J。項nみを教る。

地球重力場を表すポラン冷ルは、

$$\Box = -\frac{GME}{r} \left\{ 1 - \overline{J_2} \left(\frac{dE}{r} \right)^2 P_2 (AnQ) \right\}$$

$$= -\frac{GME}{r} + \frac{GME dE^2}{r^3} \overline{J_2} P_2 (AnQ)$$

$$? 13$$

すめも摂動関数Rは

$$= -\frac{GM_E \Omega_E^2}{r^3} J_2 \left(\frac{3}{2} J_{in}^2 \varphi - \frac{1}{2} \right) \cdots (6.2) \qquad (:: P.243)$$

摂動論が適用できるようたするには、摂動関数尺を軌道要素で表現しなければならない。

球面三角の公式 (D.2参照)よ)、

$$\frac{\sin Q}{\sin I} = \frac{\sin (f(\omega))}{\sin \frac{\pi}{2}}$$

この(6.3)を(6.2)人代入する

$$R = -\frac{GMe \Omega e^2}{r^3} J_2 \left(\frac{3}{2} An^2 I An^2 (ft\omega) - \frac{1}{2} \right)$$

$$= \frac{M R^{2}}{h^{3}} \int_{2} \left\{ -\frac{3}{2} \text{Ain}^{2} \int_{0}^{1} \text{Ain}^{2} (f_{t}\omega) + \frac{1}{2} \right\}$$

$$= -\frac{3}{2} \text{Ain}^{2} \left[\cdot \frac{1}{2} \left[1 - 0 \Omega_{2} (f_{t}\omega) \right] + \frac{1}{2} \right]$$

$$= -\frac{3}{4} \text{Ain}^{2} \left[+\frac{3}{4} \text{Ain}^{2} \int_{0}^{1} \cdot 0 \Omega_{2} (f_{t}\omega) + \frac{1}{2} \right]$$

$$= \frac{1}{4} \left(-3 \text{Ain}^{2} \int_{0}^{1} + 2 \right) + \frac{3}{4} \text{Ain}^{2} \int_{0}^{1} \cdot 0 \Omega_{2} (f_{t}\omega)$$

$$= \frac{1}{4} \left(-3 \Omega_{2}^{2} \int_{0}^{1} + 2 \right) + \frac{3}{4} \text{Ain}^{2} \int_{0}^{1} \cdot 0 \Omega_{2} (f_{t}\omega)$$

$$= \frac{1}{4} \left(-3 \Omega_{2}^{2} \int_{0}^{1} -1 \right) + \frac{3}{4} \text{Ain}^{2} \int_{0}^{1} \cdot 0 \Omega_{2} (f_{t}\omega)$$

$$R = \frac{M L_{E}^{2}}{r^{3}} J_{2} \left\{ \frac{1}{4} (3\alpha L_{I}^{2} I - I) + \frac{3}{4} L_{I}^{2} I \alpha L_{I}^{2} (f + \omega) \right\} ... (6.4)$$

$$L = G M_{E}$$

このRとケブプラー要素を用いた運動方程式(5.123)~(5.128)を用いて、1次の周期摂動と1次の水料摂動をおめていく。

6.2.1 J.項によるA年摄動

まずは、提動関数Rを (S. 264)のようた

時間に依存は、

如(短時間("变化は、)

分けて、Rsについておれる。Rsをおめるには尺を時間について手的なはいい。

$$R_{S} = \frac{1}{2\pi} \int_{0}^{2\pi} R dl$$

$$= \frac{M G_{E}^{2}}{G^{3}} \int_{2}^{2\pi} \left[\frac{1}{2\pi} \int_{0}^{2\pi} \left(\frac{a}{b} \right)^{3} \left\{ \frac{1}{4} (30A^{2}I - 1) + \frac{3}{4} A_{in}^{2}I (0A2faA2\omega - Ain2fAn2\omega) \right\} \right]$$

$$R_{S} = \frac{M_{0}E^{2}}{\Omega^{3}} \int_{2} \left[\frac{1}{4} (3\alpha \Delta^{2}I - I) \cdot \frac{1}{2\pi} \int_{0}^{2\pi} \left(\frac{\Delta}{F} \right)^{3} dl \right]$$

$$+ \frac{3}{4} \Delta n^{2} I \left[\alpha \Delta \omega \cdot \frac{1}{2\pi} \int_{0}^{2\pi} \left(\frac{\Delta}{F} \right)^{3} \Delta 2f dl - \Delta n \Delta \omega \cdot \frac{1}{2\pi} \int_{0}^{2\pi} \left(\frac{\Delta}{F} \right)^{3} \Delta n 2f dl \right]$$

$$= \frac{M_{0}E^{2}}{\Omega^{3}} \int_{2} \left[\frac{1}{4} (3\alpha \Delta^{2}I - I) \left(\frac{(\Delta)^{3}}{F} \right)^{3} + \frac{3}{4} \Delta n^{2} I \left[\left(\frac{\Delta}{F} \right)^{3} \Delta n 2f \right) \alpha \Delta 2c \right]$$

$$- \left(\frac{(\Delta)^{3}}{F} \Delta n 2f \right) \Delta n 2\omega$$

$$- \left(\frac{(\Delta)^{3}}{F} \Delta n 2f \right) \Delta n 2\omega$$

$$\frac{\left\langle \left(\frac{\alpha}{F}\right)^{3}\right\rangle = \frac{1}{2\pi} \int_{0}^{2\pi} \left(\frac{\alpha}{F}\right)^{3} dl}{\left(\frac{\alpha}{F}\right)^{3} dl} = \frac{1}{2\pi} \left(\frac{1}{2\pi} + 26-2\right) \left(\frac{1}{2\pi} + 26-2\right)$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \left(\frac{\alpha}{F}\right)^{3} \alpha d2f dl$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1 + e\alpha df}{n^{2}} \alpha d2f df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + e\alpha df \alpha d2f\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha d3f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha d3f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha d3f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha d3f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha d3f\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha d3f\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha d3f\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha d3f\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha d3f\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha d3f\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha d2f + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha df + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha df + \frac{e}{2} \alpha df\right) df$$

$$= \frac{1}{2\pi n^{3}} \int_{0}^{2\pi} \left(\alpha df + \frac{e}{2} \alpha df\right$$

$$R_{S} = \frac{M_{E}^{2}}{Q^{3}} J_{2} \cdot \frac{1}{4} (30 A^{2} \tilde{I} - 1) \cdot \frac{1}{\eta^{3}}$$

$$= \frac{M_{E}^{2}}{4 Q^{3} \eta^{3}} J_{2} (30 A^{2} \tilde{I} - 1) \qquad \cdots (6.12)$$

こで、Rollto、W、Aからまれていないので

$$\frac{\partial R_s}{\partial \alpha} = 0$$
, $\frac{\partial R_s}{\partial \omega} = 0$, $\frac{\partial R_s}{\partial \Omega} = 0$... (6.13)

1"ある。すなわさ a, e, I の時間飲分は o となる。(6.5, 6.6, 6.7参照) よ1、a, e, I に水年頃はない、ことかれるる。

のにか1の方程式は(6.8)よ)

$$\frac{da}{dt} = -\frac{2}{na} \frac{\partial R_{c}}{\partial a} - \frac{n^{2}}{na^{2}e} \frac{\partial R_{s}}{\partial e}$$

$$= -\frac{2}{na} \cdot \frac{Ma_{E}^{2}}{4n^{3}} J_{2} (3\alpha A^{2}I - 1)(-3a^{-4})$$

$$-\frac{v^{2}}{na^{2}e} \cdot \frac{Ma_{E}^{2}}{4a^{3}} J_{2} (3\alpha A^{2}I - 1) \cdot \frac{d}{de} (n^{-3})$$

$$= \frac{M l_{E}^{2} J_{2}}{4} (30 l_{I}^{2} J_{-1}) \left(\frac{2}{N l_{1}} \frac{3}{l_{1}^{4} \eta_{3}} - \frac{\eta^{2}}{N l_{2}^{2}} \frac{3e}{l_{3}^{3} \eta_{5}} \right) \frac{d \eta}{d \eta} \frac{d \eta}{d e} = -3 \eta^{-4} \frac{1}{2} (l_{1} - e^{2})^{\frac{1}{2}} (l_{2} - e^{2})^{$$

$$\frac{do}{dt} = \frac{3}{4} J_2 (30 a^2 I - 1) \cdot N d e^2 \cdot \frac{n}{p^2}$$

$$= \frac{3}{4} J_2 \left(\frac{de}{p}\right)^2 n n (30 a^2 I - 1) = n, \quad \dots (6.14)$$

同様にして、W. Aにいての方程式は(6.9),(6.10)より

$$\frac{d\omega}{dt} = \frac{n}{n\alpha^{2}e} \frac{\partial R_{s}}{\partial e} - \frac{\cot i}{n\alpha^{2}n} \frac{\partial R_{s}}{\partial i}$$

$$\begin{pmatrix} \frac{(6.14)}{4\alpha^{2}} & \frac{\partial R_{s}}{\partial e} - \frac{\partial R_{s}}{\partial i} \\ \frac{\partial R_{s}}{\partial i} & \frac{\partial R_{s}}{\partial i} - \frac{\partial R_{s}}{\partial i} \\ \frac{\partial R_{s}}{\partial i} & \frac{\partial R_{s}}{\partial i} & \frac{\partial R_{s}}{\partial i} \\ \frac{\partial R_{s}}{\partial i} & \frac{\partial R_{s}}{\partial i} & \frac{\partial R_{s}}{\partial i} & \frac{\partial R_{s}}{\partial i} \\ \frac{\partial R_{s}}{\partial i} & \frac{\partial R_{s}}{\partial i} & \frac{\partial R_{s}}{\partial i} & \frac{\partial R_{s}}{\partial i} & \frac{\partial R_{s}}{\partial i} \\ \frac{\partial R_{s}}{\partial i} & \frac{\partial R_{s}}{\partial i} &$$

$$\frac{d\Omega}{dt} = \frac{1}{N\Omega^2 N \, \text{Am} \hat{I}} \frac{\partial R_s}{\partial \hat{I}} \qquad \int \left(\frac{d\omega}{dt} \, \text{nishing} \, \hat{R}_s t'\right) \right)$$

$$= \frac{1}{N\Omega^2 N \, \text{Am} \hat{I}} \left(-\frac{3 \, \text{M} \, \Omega_s^2}{4 \, \Omega^3 \, \text{N}^3} \, \hat{J}_2 \, \text{Ain} 2\hat{I}\right)$$

$$= -\frac{3 \, \Omega_s^2 \, (N^2 \Omega^3)}{4 \, \Omega^5 \, N^4 \, N} \cdot \frac{1}{\text{Ain} \hat{I}} \cdot \hat{J}_2 \cdot 2 \, \text{Ain} \hat{I} \, \text{CAI}$$

$$= -\frac{3}{2} \, \hat{J}_2 \, \left(\frac{\Omega_s}{p}\right)^2 N \, \text{CAI} \quad \equiv N_s \quad \cdots \quad (6.16)$$

以上で成計 (6.14)~(6.16)の放射建教であるので、の、の、なは時間にかり、1次式で表される。

$$\alpha = N_1 t + C_0 \qquad ...(6.17)$$
 $\omega = N_2 t + \omega_0 \qquad ...(6.18)$
 $\Omega = N_3 t + \Omega_0 \qquad ...(6.19)$

摄動関数尺の周期成分、Riola、既に摂動関数尺とての対域Rpの具体的な形がれかくいるので、以下のように表せる。

$$\begin{split} R_{p} &= R - R_{3} \\ &= \frac{M d e^{2}}{r^{3}} J_{2} \left(\frac{1}{4} (3 \alpha A^{2} I - 1) + \frac{3}{4} A n^{2} I \alpha A 2 (f + \omega) \right) \\ &- \frac{M d e^{2}}{4 R^{2} n_{3}^{3}} J_{2} \left(3 \alpha A^{2} I - 1 \right) \cdots \left(: 6.4 , 6.12 \right) \\ &= \frac{M d e^{2}}{d^{3}} J_{2} \left\{ \left(\frac{R^{3}}{r^{3}} - \frac{1}{n^{3}} \right) \cdot \frac{1}{4} (3 \alpha A^{2} I - 1) + \frac{3}{4} A n^{2} I \cdot \frac{R^{3}}{r^{3}} \alpha A 2 (f + \omega) \right\} \\ &= \frac{M d e^{2}}{d^{3}} J_{2} C_{1} P_{1} + \frac{M d e^{2}}{d^{3}} J_{2} C_{2} P_{2} \cdots \left(6.22 \right) \\ &= N^{2} d e^{2} J_{2} C_{1} P_{1} + N^{2} d e^{2} J_{2} C_{2} P_{2} \cdots \left(6.22 \right) \\ &= R_{p_{1}}^{2} + R_{p_{2}}^{2} \\ &= R_{p_{1}}^{2} \\ &= R_{p_{2}}^{2} + R_{p_{2}}^{2} \\ &= R_{p_{1}}^{2} \\ &= R_{p_{2}}^{2} + R_{p_{2}}^{2} \\ &= R_{p_{1}}^{2} \\ &= R_{p_{2}}^{2} + R_{p_{2}}^{2} \\ &= R_{p_{1}}^{2} + R_{p_{2}}^{2} \\ &= R_{p_{2}}^{2} + R_{p_{2}}^{2} \\ &= R_{p_{1}}^{2} + R_{p_{2}}^{2} \\ &= R_{p_{2}}^{2} + R_{p_{2}}^{2} \\ &= R_{p_{2}}^$$

今後の計算(特に 6.30)拳趾の際は (6.22)の形の起残しないた 方が言り質してすいことかったかった。 (6.30)を計算な際にRMをQでビアンなるが、 (6.22)たでといる。 MaeJaCiPi就(な) 、 一品(n2)・QeJaCiPi とはる。この言質は (6.22)の方が楽になる。

6.2-9

今回は、Rpiによる摂動を詳しく取)扱い、Rpiによる寄与は結果のみ与えることにする。

。まず、軌道長程の摂動は (5.259)と(6.5)よ)

$$\Delta_{1} \alpha = \int \frac{dA}{dt} dt$$

$$= \frac{2}{n\alpha} \int \frac{\partial R_{p1}}{\partial \alpha} dt \cdots 0$$

$$= \frac{2}{n\alpha} \int \frac{\partial R_{p1}}{\partial \lambda} dt \cdots (6.25)$$

$$= \frac{2}{n\alpha} \int \frac{\partial R_{p1}}{\partial \lambda} dt \cdots (6.25)$$

$$= \frac{2}{n\alpha} \int \frac{\partial R_{p1}}{\partial \lambda} dt \cdots (6.25)$$

$$= \frac{2}{n^{2}\alpha} R_{p1} \cdots (6.26)$$

$$= \frac{2}{n^{2}\alpha} R_{p1} \cdots (6.26)$$

$$= \frac{2}{n^{2}\alpha} n^{2} \alpha e^{2} \int_{2} \frac{1}{4} (3c_{1} \lambda^{2} I - 1) \left\{ \left(\frac{\alpha}{L}\right)^{3} - \frac{1}{n^{3}} \right\}$$

$$= \int_{2} \left(\frac{\alpha}{L}\right)^{2} \alpha \left(1 - \frac{3}{2} \lambda^{2} I\right) \left\{ \left(\frac{\alpha}{L}\right)^{3} - \frac{1}{n^{3}} \right\} \cdots (6.27)$$

·次、離心率ern.1の摂動は、(5.259)と(6.6)よ)

$$= \int \left\{ \frac{1^2}{ha^2e} \frac{\partial Rp}{\partial a} - \frac{1}{ha^2e} \frac{\partial Rp}{\partial a} \right\} dt$$

$$= \frac{n^2}{ha^2e} \int \frac{\partial Rp}{\partial a} dt$$

•

$$A.e = \frac{N^{2}}{NA^{2}e} \cdot \frac{NA}{2} A_{1}A$$

$$= \frac{N^{2}}{2Ae} A_{1}A \qquad (4.6.26)$$

$$= \frac{1}{2} J_{2} \left(\frac{A_{E}}{A} \right)^{2} \frac{N^{2}}{e} \left(1 - \frac{3}{2} A_{1}^{2} I \right) \left\{ \left(\frac{A}{F} \right)^{3} - \frac{1}{N^{3}} \right\} \dots (6.28)$$

·同様にして、軌道傾斜角」についくの提動は、(5.259)と(6.7)より、

$$\Delta_{1}\hat{I} = \int \frac{d\hat{I}}{dt} dt$$

$$= \int \left\{ \frac{\cot \hat{I}}{n \Omega^{2} n} \frac{\partial Rp_{1}}{\partial \omega} - \frac{1}{n \Omega^{2} n} \frac{\partial Rp_{1}}{\partial \Omega} \right\} dt$$

$$= O \dots (6.29)$$

さらに、の、心、ひについても同様にしておれていくが、これらについてはられての、の、見についてはられてのこれが、これらについてはられての、これらについてはられてのことが、これらについてはられてある。

。まずは、(5.259)へ(6.8)~(6.10)を代入して、1,0,10,10,10,10,10)な代入して、1,0,10,10,10,10

$$\Delta \cdot \alpha = \int \frac{d\alpha}{dt} dt$$

$$= \int \left\{ -\frac{2}{n\alpha} \frac{\partial R_{pi}}{\partial \alpha} - \frac{n^2}{n\alpha^2 e} \frac{\partial R_{pi}}{\partial e} \right\} dt$$
(2)

$$2 - \frac{\partial}{\partial \alpha} \left(\frac{\mu \alpha_{E}^{2}}{\alpha^{3}} J_{2} C_{1} P_{1} \right)$$

$$= \mu \alpha_{E}^{2} J_{2} C_{1} P_{1} \frac{\partial}{\partial \alpha} \left(\frac{1}{\alpha^{3}} \right)$$

$$\begin{cases} P_1 \neq \left(\frac{\alpha}{r}\right)^3 & \text{ if } c \text{ it }$$

$$3 = \frac{\partial}{\partial e} \left(\frac{\mu \Omega_{E}^{2}}{\Omega^{3}} J_{2} C_{1} P_{1} \right)$$

$$= \frac{\mu \Omega_{E}^{2}}{\Omega^{3}} J_{2} C_{1} \frac{\partial P_{1}}{\partial e}$$

$$\Delta_{10} = \int \left\{ -\frac{2}{N\Omega} M_{0}^{2} J_{2} C_{1} P_{1} \frac{\partial}{\partial \Omega} \left(\frac{1}{\Omega^{3}} \right) - \frac{v^{2}}{N\Omega^{2}} \frac{M_{0}^{2}}{\Omega^{3}} J_{2} C_{1} \frac{\partial P_{1}}{\partial e} \right\} dt$$

$$= -M_{0}^{2} J_{2} C_{1} \left\{ \frac{v^{2}}{N\Omega^{5}} e^{-\int \frac{\partial P_{1}}{\partial e} dt} + \frac{2}{N\Omega} \frac{\partial}{\partial \Omega} \left(\frac{1}{\Omega^{5}} \right) \int P_{1} dt \right\}$$

$$\cdots (6.30)$$

$$\int_{-1}^{1} \frac{d\omega}{dt} dt$$

$$= \int_{-1}^{1} \frac{1}{n \ell_{e}^{2} e} \frac{\partial R_{ph}}{\partial \ell_{e}} - \frac{\partial t_{1}}{n \ell_{e}^{2} n} \frac{\partial R_{ph}}{\partial I} dt$$

$$= \int_{-1}^{1} \frac{1}{n \ell_{e}^{2} e} \left(n_{e}^{2} \ell_{e}^{2} \int_{-1}^{2} \frac{\partial R_{e}}{\partial \ell_{e}} \right) - \frac{\cot I}{n \ell_{e}^{2} n} \left(n_{e}^{2} \ell_{e}^{2} \int_{-1}^{2} \frac{\partial C_{I}}{\partial I} P_{I} \right) dt$$

$$= n \int_{2}^{1} \left(\frac{\ell_{e}}{\ell_{e}} \right)^{2} \left\{ -\frac{\alpha \ell_{e}^{2} I}{n \ell_{e}^{2} n} \frac{\partial C_{I}}{\partial I} \right\} P_{I} dt + \frac{n \ell_{e}^{2} I}{e} \frac{\partial P_{I}}{\partial e} dt \right\} \cdots (631)$$

$$= \frac{\ell_{e}^{2} \ell_{e}^{2} I}{\ell_{e}^{3} n} \int_{-1}^{1} \frac{\partial C_{I}}{\partial I} P_{I} dt + \frac{n \ell_{e}^{2} I}{n \ell_{e}^{2} n} \frac{\partial P_{I}}{\partial e} dt \right\} \cdots (631)$$

$$\Delta_{I}\Omega = \int \frac{d\Omega}{dt} dt$$

$$= \int \left\{ \frac{1}{N\Omega^{2}N \operatorname{AinI}} \frac{\partial R_{PI}}{\partial I} \right\} dt$$

$$= \int \left\{ \frac{1}{N\Omega^{2}N \operatorname{AinI}} N^{2}\Omega_{E}^{2} J_{2} \frac{\partial C_{I}}{\partial I} P_{I} \right\} dt$$

$$= \frac{N}{N \operatorname{AinI}} \left(\frac{\Omega_{E}}{\Omega} \right)^{2} J_{2} \frac{\partial C_{I}}{\partial I} \int P_{I} dt \cdots (6.32)'$$

*:on (6.30),(631)(6.32) について、さらに計算を進めていきた、 62-13 わけだが、まずはこれらで満している JR. 此と 「会会 此 部分を 先に計算してよく、

$$\int P_{1} dt = \int \left(\frac{a}{F}\right)^{3} - \frac{1}{N^{3}} dt$$

$$= \int \left(\frac{a}{F}\right)^{3} dt - \int \frac{1}{N^{3}} dt$$

$$= \int \left(\frac{a}{F}\right)^{3} \cdot \frac{F^{2}}{a^{2}NN} dt \cdots (2.74)$$

$$= \frac{1}{NN} \int \frac{a}{F} dt$$

$$= \frac{1}{NN} \int \frac{1 + e c df}{N^{2}} dt \cdots (2.56)$$

$$= \frac{1}{NN^{3}} \left(f + e d nf\right) \cdots (6.34)$$

$$G = \int \frac{1}{N^{3}} \frac{1}{N} dt$$

$$= \frac{1}{NN^{3}} d$$

$$= \frac{1}{n n^3} (f - l + e \ln f) ... (6.35)$$

$$= \frac{1}{n n^3} B$$

$$\int \frac{\partial P_i}{\partial e} dt = \int \frac{\partial}{\partial e} \left(\frac{a}{r} \right)^3 - \frac{1}{\eta^3} dt$$

$$\begin{aligned}
& (6) = 0^{3}(-3)^{-4} \frac{\partial f}{\partial e} + 3\eta^{-4} \frac{\partial f}{\partial e} \\
& = -3 \frac{0^{3}}{1^{4}} \left(-0.004 + 3 \frac{1}{1^{4}} \cdot \frac{1}{2} (1 - e^{2})^{-\frac{1}{2}} (-2e) \right) \\
& = 3 \frac{0^{4}}{1^{4}} 0 2 + 3 \frac{e}{1^{5}} \\
& = 3 \left(\frac{a}{f} \right)^{4} 0 2 + \frac{e}{1^{5}} \right) \dots (6.33)
\end{aligned}$$

$$\int \frac{\partial P}{\partial e} dt = 3 \left(\int \left(\frac{a}{F} \right)^4 dt - \int \frac{e}{15} dt \right)$$

$$\begin{aligned}
(9) &= \int (A)^{4} c A f dt \\
&= \int (A)^{4} c A f \frac{r^{2}}{c^{2}nn} df \\
&= \frac{1}{nn} \int (A)^{2} c A f df \quad (2c.274) \\
&= \frac{1}{nn} \int (\frac{1+ecAf}{n^{2}})^{2} c A f df \\
&= \frac{1}{nn} \int (1+ecAf)^{2} c A f df \\
&= \frac{1}{nn} \int (1+ecAf)^{2} c A f df
\end{aligned}$$

。以上を(6.30)~(6.32)人代入し(整理する)。

(6.31),(6.32)にいては、(6.31)、(6.32)、人代入した大か分本かいい。)

$$\Delta_{1} O = -M \int_{e}^{2} J_{2} C_{1} \left\{ \frac{\eta^{2}}{N \Omega^{5} e} \cdot \frac{3}{N \eta^{5}} (eB+Q) + \frac{2}{N \Omega} (-3\Omega^{-4}) \cdot \frac{1}{N \eta^{3}} B \right\}$$

$$= -N^{2} \Omega^{3} \int_{e}^{2} J_{2} C_{1} \left\{ \frac{3}{N^{2} \Omega^{5} \eta^{3}} (B+\frac{Q}{e}) - \frac{\delta}{N^{2} \Omega^{5} \eta^{3}} B \right\}$$

$$= 3 J_{2} \left(\frac{A_{E}}{A} \right)^{2} \frac{C_{1}}{\eta^{3}} \left(B - \frac{Q}{e} \right) \qquad (6.42)$$

$$\Delta_{1}\omega = NJ_{2}\left(\frac{\partial_{E}}{\partial x}\right)^{2}\left\{-\frac{cAI}{LAmI}\left(-\frac{3}{2}cAIAmI\right)\frac{1}{NN^{2}}B\right. \\
+ \frac{N}{e}C_{1}\cdot\frac{3}{NN^{5}}\left(eB+Q\right)\right\} \\
= NJ_{2}\left(\frac{\partial_{E}}{\partial x}\right)^{2}\frac{3}{NN^{4}}\left\{\frac{1}{2}cA^{2}I\cdot B+C_{1}\left(B+\frac{Q}{e}\right)\right\} \\
= 3J_{2}\left(\frac{\partial_{E}}{\partial x}\right)^{2}\frac{1}{N^{4}}\left\{\left(\frac{1}{2}cA^{2}I+C_{1}\right)B+\frac{C_{1}}{e}Q\right\} \\
= 3J_{2}\left(\frac{\partial_{E}}{\partial x}\right)^{2}\left\{\left(\frac{1}{2}cA^{2}I+\frac{3}{4}cA^{2}I-\frac{1}{4}\right)B+\frac{1}{4e}(3cA^{2}I-1)Q\right\} \\
= 3J_{2}\left(\frac{\partial_{E}}{\partial x}\right)^{2}\left\{\left(\frac{5}{4}cA^{2}I-\frac{1}{4}\right)B+\frac{3cA^{2}I-1}{4e}Q\right\} \\
= 3J_{2}\left(\frac{\partial_{E}}{\partial x}\right)^{2}\left\{\left(1-\frac{5}{4}cA^{2}I-\frac{1}{4}\right)B+\frac{3cA^{2}I-1}{4e}Q\right\} \qquad (6.41)$$

$$\Delta_{1}\Omega = \frac{n}{N \text{ An } I} \left(\frac{\Delta E}{A}\right)^{2} J_{2} \left(-\frac{3}{2} \text{ CAI Ain } I\right) \frac{1}{N N^{3}} B$$

$$= -\frac{3}{2} J_{2} \left(\frac{\Delta E}{A N^{2}}\right)^{2} B \text{ CAI}$$

$$= -\frac{3}{2} J_{2} \left(\frac{\Delta E}{P}\right)^{2} B \text{ CAI} \qquad (6.40)$$

一方、混合水年項人出1:2、ように惑星方程式を修正は

$$\frac{d^2 S}{dt^2} = -\frac{3}{G^2} \frac{\partial R}{\partial \Omega I} \qquad (5.142)$$

を時間に、、、12回横分打と、

$$A_1 S = -3J_2 \left(\frac{AE}{A}\right)^2 \frac{C_1}{\eta_3} B \qquad (6.43)$$

£\$3.

$$\frac{df}{dt} = \int \frac{d^{3}f}{dt^{2}} dt$$

$$= \int \left(-\frac{3}{a^{3}} \frac{\partial R_{pi}}{\partial a^{2}}\right) dt$$

$$= \int \left(-\frac{3}{a^{3}} \frac{\partial R_{pi}}{\partial a^{2}}\right) dt$$

$$= -\frac{3}{a^{3}} \int \frac{\partial R_{pi}}{\partial a^{2}} dt$$

$$= -\frac{3}{na^{3}} R_{pi} at$$
(1.6.25-76.26)

のかもう一度、時間について積分 イパー「引きれ

$$= \int \left(-\frac{3}{Na^2} R_{pl}\right) dt$$

$$= -\frac{3}{na^2} \int Rpi dt$$

$$\Delta_{1}S = -\frac{3}{NQ^{2}} n^{2} Q_{E}^{2} J_{2} C_{1} P_{1} dt$$

$$= -3N J_{2} C_{1} \left(\frac{Q_{E}}{Q}\right)^{2} \cdot \frac{1}{NN^{3}} B$$

$$= -3J_{2} \left(\frac{Q_{E}}{Q}\right)^{2} \frac{C_{1}}{N^{3}} B \qquad (6.43)$$

であるから、平均近点、触角の周期提動は、

$$\Delta_{1}J = \Delta_{1}O + \Delta_{1}S \qquad (5.35, 5.36, 5.37)$$

$$= 3J_{2}\left(\frac{\Delta_{E}}{\Delta}\right)^{2}\frac{C_{1}}{\eta^{3}}\left(B - \frac{Q}{e}\right) - 3J_{2}\left(\frac{\Delta_{E}}{\Delta}\right)^{2}\frac{C_{1}}{\eta^{3}}B$$

$$= -3J_{2}\left(\frac{\Delta_{E}}{\Delta}\right)^{2}\frac{C_{1}}{\eta^{3}e}Q \qquad (6.44)$$

1.43.

l+wの周期類動については

$$\Delta_{1}(l+\omega) = \Delta_{1}l + \Delta_{1}\omega$$

$$= -3J_{2}\left(\frac{Q_{E}}{Q}\right)^{2}\frac{C_{1}}{\eta^{3}e}Q + 3J_{2}\left(\frac{Q_{E}}{P}\right)^{2}\left(l - \frac{5}{4}A_{N}^{2})B + \frac{30A^{2}I - l}{4e}Q\right)$$

$$= 3J_{2}\left(\frac{Q_{E}}{P}\right)^{2}\left((l - \frac{5}{4}A_{N}^{2}I)B + \left(\frac{30A^{2}I - l}{4e} - \frac{30A^{2}I - l}{4e}N\right)Q\right)$$

$$= 3J_{2}\left(\frac{Q_{E}}{P}\right)^{5}\left((l - \frac{5}{4}A_{N}^{2}I)B + \frac{30A^{2}I - l}{4} - \frac{l - N}{e}Q\right) \cdots (6.45)$$

$$= 3J_{2}\left(\frac{Q_{E}}{P}\right)^{5}\left((l - \frac{5}{4}A_{N}^{2}I)B + \frac{30A^{2}I - l}{4} - \frac{e}{l + N}Q\right)$$

6.2.3 解析解を用いての位置の計算

known, lo, Co, Lo, Oo, Wo, Do, t

$$\therefore N_0 = J^{\frac{1}{2}} Q_0^{-\frac{3}{2}} \dots (6.58)$$

(2) (6.17)~(6.19) 左用、7、补摄動之取)入水水平均近点解角、近点引发

$$= \left\{ 1 + \frac{3}{4} J_{2} \left(\frac{A_{E}}{P_{o}} \right)^{2} N_{o} (30A^{2} \bar{I}_{o} - 1) \right\} N_{o} t + \sigma_{o} \qquad \dots (6.59)$$

$$\omega^{*} = N_{2}t + \omega_{0}$$

$$= \left\{\frac{3}{4}J_{2}\left(\frac{Q_{E}}{p_{0}}\right)^{2}(5\alpha A^{2}I_{0} - 1)\right\} N_{0}t + 0_{0} \qquad \cdots (6.60)$$

$$\Omega^* = N_3 t + \Omega_o$$

$$= -\left\{\frac{3}{2} \bar{J}_2 \left(\frac{\Omega_E}{P_o}\right)^2 \alpha \lambda \bar{I}_o\right\} N_o t + \Omega_o \qquad \cdots (6.61)$$

(3) 脚類を計算する
今日は(6.46)~(6.57)で与えられている。

(4)接触轨道要素总計算する

$$A = A_0 + A_1A + A_2A$$
 ... (6.62)
 $e = e_0 + A_1e + A_2e$... (6.63)
 $I = I_0 + A_1I + A_2I$... (6.64)
 $I = \int_{-\infty}^{k} + A_1A + A_2A$... (6.65)
 $\omega = \omega^{k} + A_1\omega + A_2\omega$... (6.66)
 $\Omega = \Omega^{k} + A_1\Omega + A_2\Omega$... (6.67)
 $\Omega = \Omega^{k} + A_1\Omega + A_2\Omega$... (6.67)

- (5)ケーライ程式 U-emu=1…(6.60) を解いて 以(魅心近点離角)を求める。ケーラー方程式の解法は、2.7章(でした。様々な解せるかれるが、 が(近似解法。
- (6) いかれかれば、軌道面上での位置も求められる。 近点方向をX*軸と引動と、

(1) 慣性系1的位置は、28.2 参考にして座標回転扶はよい。

6.2 -21

。動催、緯度、程度の摂動表現」から、直接に位置を 計算することもできる。

例x11.動程上1次对す3摄動表現包求的143。

(ちなみたとはa,e,lのみの関数)

11= or 12 12 + or 1e + or 1

 $r = \frac{a!}{1 + ec.4f} - (2.56)$ r = a(1 - ec.4u) - (2.59)

 $\frac{\partial f}{\partial u} = \frac{e}{v} f \int \frac{1 - e a u}{1 - e a u}$ $\frac{\partial f}{\partial u} = \frac{e}{v} f \int \frac{1}{1 - e a u} \int \frac{1}{v} \frac{1}$ = de sinf

= x sa-aast se + ae sint se ...(6.70)

この(6.70)人(6.46),(6.47),(6.49),(6.52),(6.53),(6.55)を代入 11.

At= & (sia+sea) - acat (sie+see) + de sont (sil+sel)

Y言模17.-Hば下は対移摄動表現は私的名分 計算量が多いので今回はがれなく。

6.2.4 ケプラーの第3法則×横分定数

摂動を受けた平均運動は.

$$N^{*} = N_{o} + N_{i}$$

$$= N_{o} + \frac{3}{4} J_{2} \left(\frac{J_{E}}{P_{o}} \right)^{2} N_{o} N_{o} (30 L^{2} I_{o} - 1)$$

$$= N_{o} + \frac{3}{4} J_{2} \left(\frac{J_{E}}{P_{o}} \right)^{2} N_{o} N_{o} (2 - 3 L_{n}^{2} I_{o})$$

$$= N_{o} \left(1 + \frac{3}{2} J_{2} \left(\frac{J_{E}}{P_{o}} \right)^{2} N_{o} \left(1 - \frac{3}{2} L_{n}^{2} I_{o} \right) \right) \dots (6.72)$$

摂動を受けて、る人工衛星のケプラーの第3法則は、

$$N^{*2} d_{3}^{3} = N_{0}^{2} \left\{ 1 + \frac{3}{2} J_{2} \left(\frac{d_{E}}{P_{0}} \right)^{2} N_{0} \left(1 - \frac{3}{2} d_{n}^{2} \tilde{I} \right) \right\}^{2} d_{0}^{3}$$

$$= M \left\{ 1 + \frac{3}{2} J_{2} \left(\frac{d_{E}}{P_{0}} \right)^{2} N_{0} \left(1 - \frac{3}{2} d_{n}^{2} \tilde{I} \right) \right\}^{2} d_{0}^{3}$$

$$= M \left\{ 1 + 3J_{2} \left(\frac{d_{E}}{P_{0}} \right)^{2} N_{0} \left(1 - \frac{3}{2} d_{n}^{2} \tilde{I} \right) \right\}^{2} d_{0}^{3}$$

$$= M \left\{ 1 + 3J_{2} \left(\frac{d_{E}}{P_{0}} \right)^{2} N_{0} \left(1 - \frac{3}{2} d_{n}^{2} \tilde{I} \right) \right\}^{2} d_{0}^{3}$$

$$= M \left\{ 1 + 3J_{2} \left(\frac{d_{E}}{P_{0}} \right)^{2} N_{0} \left(1 - \frac{3}{2} d_{n}^{2} \tilde{I} \right) \right\}^{2} d_{0}^{3}$$

$$= M \left\{ 1 + 3J_{2} \left(\frac{d_{E}}{P_{0}} \right)^{2} N_{0} \left(1 - \frac{3}{2} d_{n}^{2} \tilde{I} \right) \right\}^{2} d_{0}^{3}$$

(6.71)(一成株務経上の周期提動の平均近点、廃進再で平均をとると、

$$\langle CAf \rangle = -e$$
 (:問題2.19)
 $\langle \pm \rangle = 1 + \pm e^2$ (:2.212)
 $\langle CA2l \rangle = 0$

$$\langle \Delta \Gamma \rangle = J_{2} \frac{\partial e^{2}}{P_{o}} \left\{ -\frac{1}{2} \left(1 - \frac{3}{2} A n^{2} \tilde{I}_{o} \right) \left[1 + \frac{1 - l_{o}}{e} (-e) + \frac{2}{l_{o}} \left(1 + \frac{1}{2} e^{2} \right) \right] + \frac{6.2 - 23}{4 A n^{2} \tilde{I}_{o}} \right\}$$

$$= \tilde{J}_{2} \frac{\partial e^{2}}{P_{o}} \left\{ -\frac{1}{2} \left(1 - \frac{3}{2} A n^{2} \tilde{I}_{o} \right) \left(\frac{l_{o}}{l_{o}} + \frac{2}{l_{o}} + \frac{e^{2}}{l_{o}} \right) \right\}$$

$$= -\frac{3}{2} \tilde{J}_{2} \frac{\partial e^{2}}{P_{o}} \frac{1}{l_{o}} \left(1 - \frac{3}{2} A n^{2} \tilde{I}_{o} \right)$$

$$= -\frac{3}{2} \tilde{J}_{2} \left(\frac{\partial e}{P_{o}} \right)^{2} l_{o} \left(1 - \frac{3}{2} A n^{2} \tilde{I}_{o} \right) d_{o} \qquad (6.74)$$

という定義項がでくくる。するわち動程とにいっも定数項の提動からいたいかくいることになり、これは、Jaから、投動かないときの軌道からなったに大きな味む。この後の言葉のことを考慮して a を以下のように補正しておく。(Goのままでもようく理論をつくることはできるが、cをの方かのは、a Coのようにとることはできるか、cをの方かいできる。)(なっとイン)

=
$$l_0 + \langle JF \rangle$$

= $l_0 - \frac{3}{2} \bar{J}_2 \left(\frac{A_E}{P_0} \right)^2 l_0 \left(1 - \frac{3}{2} A_n^2 \bar{I}_0 \right) l_0$
= $l_0 \left(1 - \frac{3}{2} \bar{J}_2 \left(\frac{A_E}{P_0} \right)^2 l_0 \left(1 - \frac{3}{2} A_n^2 \bar{I}_0 \right) \right) \dots (6.75)$

このひを使うと、ケアラーの第3法則は、

$$N^{*2} Q^{*3} = N_{o}^{2} \left\{ 1 + \frac{3}{2} J_{2} \left(\frac{Q_{E}}{P_{o}} \right)^{2} N_{o} \left(1 - \frac{3}{2} A_{n}^{2} \tilde{I}_{o} \right) \right\}^{2}$$

$$\cdot Q_{o}^{3} \left\{ 1 - \frac{3}{2} J_{2} \left(\frac{Q_{E}}{P_{o}} \right)^{2} N_{o} \left(1 - \frac{3}{2} A_{n}^{2} \tilde{I}_{o} \right) \right\}^{3}$$

$$M^{*2}Q^{*3} = M_{\circ}^{2}Q_{\circ}^{3}\left[1+3J_{2}\left(\frac{Q_{E}}{P_{o}}\right)^{2}\eta_{\circ}\left(1-\frac{3}{2}\Delta_{n}^{2}J_{\circ}\right)\right] \\
-\left\{1-\frac{9}{2}J_{2}\left(\frac{Q_{E}}{P_{o}}\right)^{2}\eta_{\circ}\left(1-\frac{3}{2}\Delta_{n}^{2}J_{\circ}\right)\right\} + O(J_{2}^{2})$$

$$= M\left\{1+\left(3-\frac{9}{2}\right)J_{2}\left(\frac{Q_{E}}{P_{o}}\right)^{2}\eta_{\circ}\left(1-\frac{3}{2}\Delta_{n}^{2}J_{\circ}\right)\right\} + O(J_{2}^{2})$$

$$= M\left\{1-\frac{3}{2}J_{2}\left(\frac{Q_{E}}{P_{o}}\right)^{2}\eta_{\circ}\left(1-\frac{3}{2}\Delta_{n}^{2}J_{\circ}\right)\right\} + O(J_{2}^{2})$$

$$= M\left\{1-\frac{3}{2}J_{2}\left(\frac{Q_{E}}{P_{o}}\right)^{2}\eta_{\circ}\left(1-\frac{3}{2}\Delta_{n}^{2}J_{\circ}\right)\right\} + O(J_{2}^{2}) \cdots (6.76)$$

地球の赤道面内を円運動して、3衛星の運動を行る。 円運動の角速度Nは、

$$N = \begin{bmatrix} \frac{1}{4t} & (l + \omega + \Omega) \\ \frac{1}{4t} & + \frac{1}{4t} & + \frac{1}{4t} \end{bmatrix} e_{o} = \hat{l}_{o} = 0$$

$$= \begin{bmatrix} \frac{1}{4t} & + \frac{1}{4t} & + \frac{1}{4t} \\ \frac{1}{4t} & + \frac{1}{4t} & + \frac{1}{4t} \end{bmatrix} e_{o} = \hat{l}_{o} = 0$$

$$= \begin{bmatrix} (l + \frac{3}{4} J_{2} (\frac{1}{R_{o}})^{2} N_{o} (30 A^{2} \hat{l}_{o} - 1) & + (\frac{3}{4} J_{2} (\frac{1}{R_{o}})^{2} (50 A^{2} \hat{l}_{o} - 1) & + (\frac{3}{4} J_{2} (\frac{1}{R_{o}})^{2} (50 A^{2} \hat{l}_{o} - 1) & + (\frac{3}{4} J_{2} (\frac{1}{R_{o}})^{2} (50 A^{2} \hat{l}_{o} - 1) & + (\frac{3}{4} J_{2} (\frac{1}{R_{o}})^{2} (50 A^{2} \hat{l}_{o} - 1) & + (\frac{3}{4} J_{2} (\frac{1}{R_{o}})^{2} N_{o} - (\frac{3}{4} J_$$

円運動の機Aは

$$A = \left[\mathcal{A}^{\dagger} \right] e_{\bullet} = J_{\bullet} = 0$$

$$= \mathcal{A}_{\bullet} \left[\left[-\frac{3}{2} J_{2} \left(\frac{\mathcal{A}_{E}}{\mathcal{A}_{\bullet}} \right)^{2} \right] \cdots (6.78)$$

したから、1赤道面内を円運動して、3衛星のケブウラーの第3法則は、

$$N^{2}A^{3} = N_{o}^{2} \left\{ \left[+ 3J_{2} \left(\frac{a_{E}}{a_{o}} \right)^{2} \right]^{2} a_{o}^{3} \left\{ \left[- \frac{3}{2}J_{2} \left(\frac{a_{E}}{a_{o}} \right)^{2} \right]^{3} \right\}$$

$$= N_{o}^{2} a_{o}^{3} \left\{ \left[+ 6J_{2} \left(\frac{a_{E}}{a_{o}} \right)^{2} \right] \left[- \frac{9}{2}J_{2} \left(\frac{a_{E}}{a_{o}} \right)^{2} \right] + O(J_{2}^{2}) \right\}$$

$$= M \left\{ \left[+ \left(6 - \frac{9}{2} \right) J_{2} \left(\frac{a_{E}}{a_{o}} \right)^{2} \right] + O(J_{2}^{2}) \right\}$$

$$= M \left\{ \left[+ \frac{3}{2}J_{2} \left(\frac{a_{E}}{a_{o}} \right)^{2} \right] + O(J_{2}^{2}) \cdots (6.79)$$

赫.别应場からも(6.79)を華. (43。 超面上を運動する衛星の運動方程式は.

$$\begin{cases} \ddot{\chi} = -\frac{1}{7^3}\chi + \frac{\partial R}{\partial \chi} & \dots \\ \ddot{y} = -\frac{1}{7^3}\chi + \frac{\partial R}{\partial \chi} & \dots \end{cases}$$

2分什多。

摄動関数 Rは (6.2)よ)

$$R = -\frac{M\Omega_{E}^{2}}{r^{3}} J_{2} \left(\frac{3}{2} An^{2} \varphi - \frac{1}{2} \right)$$

とわかり、3ので、木に赤道面上での運動と、う条件(9=0)を加えると、

よ1. ok x oR n形は

$$\frac{\partial R}{\partial X} = \frac{\partial R}{\partial r} \frac{\partial r}{\partial X}$$

$$= -\frac{M \int_{\mathbb{R}^{2}}^{2}}{2} \frac{\partial}{\partial r} \left(\frac{1}{r^{3}}\right) \cdot \frac{\partial}{\partial X} \left(\sqrt{X^{2} + y^{2}}\right)$$

$$= -\frac{3 \int_{\mathbb{R}^{2}}^{2}}{2r^{4}} \frac{J_{2}}{J_{2}} \cdot \frac{X}{r}$$

$$= -\frac{3}{2} \int_{\mathbb{R}^{2}}^{2} \frac{M \int_{\mathbb{R}^{2}}^{2}}{r^{5}} X$$

凤模ICCT.

以上より、の、回は以下のようになる

$$\begin{cases} \ddot{\chi} = M \left\{ -\frac{1}{13}\chi - \frac{3}{2}J_{2}\frac{dE^{2}}{15}\chi \right\} \qquad (6.80)$$

$$\ddot{\chi} = M \left\{ -\frac{1}{13}\chi - \frac{3}{2}J_{2}\frac{dE^{2}}{15}\chi \right\} \qquad (6.81)$$

6.2-27

(6.80)(6.81) 17-10年衡解("去3円運動支柱的3。

{X=AQLO J=ALinO *2(6.80), (6.81) MEX \$3

(6=0)

$$\begin{cases} -A\dot{\Theta}^{2}CoA\Theta = -\mu C_{2}A\Theta \left\{ \frac{1}{A^{2}} + \frac{3}{2}J_{2}\frac{AE^{2}}{A^{4}} \right\} \\ -A\dot{\Theta}^{2}Ain\Theta = -\mu Ain\Theta \left\{ \frac{1}{A^{2}} + \frac{3}{2}J_{2}\frac{AE^{2}}{A^{4}} \right\} \end{cases}$$

=>
$$\dot{\Theta}^2 A^3 = M \left\{ 1 + \frac{3}{2} J_2 \left(\frac{l_E}{A} \right)^2 \right\}$$
 ... (6.82)