数据的大小端和对齐存储

大小端模式

多字节数据在内 存里一定是占连 续的几个字节

最低有效 字节(LSB)

4字节 int: 01 23 45 67 H

19088743 D

0000 0001 0010 0011 0100 0101 0110 0111 B

便于人	
类阅读	

大端方式

 0800H	0801H	0802H	0803H	
 01H	23H	45H	67H	

便于机 器处理

0

小端方式

 0800H	0801H	0802H	0803H	
 67H	45H	23H	01H	

边界对齐

现代计算机通常是按字节编址,即每个字节对应1个地址 通常也支持按字、按半字、按字节寻址。 假设存储字长为32位,则1个字=32bit,半字=16bit。每次访存只能读/写1个字

字节1	字节 2	字节 3	填充	
半字 1		半字2		
半	字 3	填充		
字1				

访问一个字/半字都只需一次访存

图 2.10 边界对齐方式

字节 1	字节 2	字节 3	半字 1-1
半字 1-2	半	半字 3-1	
半字 3-2	字 1-1		
字 1-2			

访问一个字/半字可能要两次访存

图 2.11 边界不对齐方式