МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, РАДИОТЕХНИКИ И ЭЛЕКТРОНИКИ" (МИРЭА)

Гольдман М.Л., Сивкова Е.О.

Аналитическая геометрия. Векторы Учебное пособие

ББК 22.151.5 Г 63 УДК 51

Авторы: Гольдман М.Л., Сивкова Е.О.

Научный редактор: доктор физ.-мат. наук, профессор Тихомиров В.М.

Учебное пособие охватывает раздел "Геометрические векторы" общего курса линейной алгебры и аналитической геометрии. В нем изложены основные понятия алгебры геометрических векторов: линейные операции над векторами, понятия проекции вектора на прямую, числовой проекции вектора на ось, их основные свойства. Рассмотрены понятия декартовой системы координат на плоскости и в пространстве, декартовых координат вектора и точки, а также выражения линейных операций над векторами в координатах. Разобраны основные свойства скалярного, векторного и смешанного произведения векторов, их геометрический смысл и выражения в координатах. Приведены необходимые для понимания сведения об определителях 2-го и 3-го порядка. В пособие включено большое количество упражнений, контрольных вопросов и задач для самостоятельного решения с ответами. Пособие предназначено для студентов технических университетов с усиленной программой по математике.

Аналитическая геометрия. Векторы

Учебное пособие

Рецензенты:

доктор физ.-мат. наук, профессор А.В. Фурсиков, МГУ им. М.В. Ломоносова доктор физ.-мат. наук, профессор Э.М. Галеев, МГУ им. М.В. Ломоносова

Минимальный системные требования:

Поддерживаемые ОС: Windows 2000 и выше

Память: ОЗУ 128МБ Жесткий диск: 20 Мб

Устройства ввода: клавиатура, мышь

Дополнительные программные средства: Программа Adobe Reader

Оглавление

Геом	летрические векторы
1.1.	Векторы
1.2.	Линейные операции над векторами
1.3.	Проекция вектора на ось. Свойства проекций
1.4.	Упражнения
1.5.	Задачи для самостоятельного решения
1.6.	Ответы к задачам для самостоятельного решения
Пря	моугольные декартовы координаты
2.1.	Прямоугольные декартовы координаты на плоскости
2.2.	Прямоугольные декартовы координаты в пространстве
2.3.	Декартовы координаты точек. Расстояние между точками на плоско-
	сти и в пространстве
2.4.	Деление отрезка в заданном отношении
2.5.	Упражнения
2.6.	Задачи для самостоятельного решения
2.7.	Ответы к задачам для самостоятельного решения
Ска	лярное, векторные, смешанное произведения
3.1.	Скалярное произведение
3.2.	Свойства скалярного произведения
3.3.	Координатное выражение скалярного произведения
3.4.	Определители второго и третьего порядка
3.5.	Векторное произведение
3.6.	Свойства векторного произведения
3.7.	Координатное выражение векторного произведения
3.8.	Смешанное произведение
3.9.	Свойства смешанного произведения
3.10.	Координатное выражение смешанного произведения
3.11.	Упражнения
	Задачи для самостоятельного решения
3.13.	Ответы к задачам для самостоятельного решения
Спис	сок литературы

Геометрические векторы

1.1. Векторы

Пусть в пространстве заданы две точки A и B. Bектором называется направленный отрезок \overrightarrow{AB} с началом в точке A и концом в точке B.

Если точки A и B совпадают, то вектор \overrightarrow{AA} называется *нулевым вектором* и обозначается $\overrightarrow{0}$. Длина нулевого вектора равна нулю, а его направление не определено.

Векторы \overrightarrow{AB} и \overrightarrow{CD} называются коллинеарными (пишем $\overrightarrow{AB} \parallel \overrightarrow{CD}$), если они лежат на одной прямой или на параллельных прямых.

Коллинеарные векторы могут быть сонаправлены $(\overrightarrow{AB} \uparrow \uparrow \overrightarrow{CD})$ или противонаправлены $(\overrightarrow{AB} \uparrow \downarrow \overrightarrow{CD})$ (пояснения на рис. 1.2).

Рис. 1.2. Коллинеарные векторы

Нулевой вектор $\overrightarrow{0}$ считается коллинеарным любому вектору \overrightarrow{AB} .

Векторы \overrightarrow{AB} и \overrightarrow{CD} равны между собой (пишем $\overrightarrow{AB} = \overrightarrow{CD}$), если они сонаправлены и имеют одинаковую длину.

Рис. 1.3. Равные векторы

Таким образом, равные векторы — это такие векторы, которые получаются один из другого параллельным переносом. В векторной алгебре отождествляют равные векторы и говорят, что они определяют один csofodhuй sekmop \overrightarrow{d} , который можно откладывать уже от любого начала.

Линейные операции над векторами 1.2.

Определим операции сложения векторов и умножения вектора на число.

Определение 1.1. Суммой векторов $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$ называется вектор $\stackrel{\rightarrow}{a}$ + $\stackrel{\rightarrow}{b}$, получаемый по следующему правилу, которое называется правилом параллелограмма: приведем векторы \overrightarrow{a} и \overrightarrow{b} к общему началу O и построим на этих векторах параллелограмм OACB. Тогда $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{OC}$ (рис. 1.4). Разностью векторов \overrightarrow{a} \overrightarrow{u} \overrightarrow{b} называется вектор $\overrightarrow{a} - \overrightarrow{b} = \overrightarrow{BA}$ (puc. 1.5).

Рис. 1.4. Сложение векторов по правилу параллелограмма

Так как $\overrightarrow{AC} = \overrightarrow{OB} = \overrightarrow{b}$, то векторы \overrightarrow{a} и \overrightarrow{b} можно складывать по npaeuny замыкания цепочки векторов (рис. 1.6).

Рис. 1.6. Правило замыкания цепочки из двух векторов

Это правило распространяется на любое число слагаемых: если векторы $\stackrel{
ightarrow}{a} =$ \overrightarrow{OA} , $\overrightarrow{b} = \overrightarrow{AB}$, $\overrightarrow{c} = \overrightarrow{BC}$, ..., $\overrightarrow{l} = \overrightarrow{KL}$ образуют ломаную OAB...KL, то суммой этих векторов является вектор \overrightarrow{OL} , замыкающий ломаную (рис. 1.7).

Рис. 1.7. Правило замыкания цепочки из нескольких векторов

Определение 1.2. Произведением вектора \overrightarrow{a} на число α называется вектор $\alpha \overrightarrow{a}$, такой что

1) $|\alpha \overrightarrow{a}| = |\alpha| \cdot |\overrightarrow{a}|$,

2) $\alpha \overrightarrow{a} \uparrow \uparrow \overrightarrow{a}$, $ecnu \alpha > 0$; $\alpha \overrightarrow{a} \uparrow \downarrow \overrightarrow{a}$, $ecnu \alpha < 0$. $\Pi pu \alpha = 0$ $unu \overrightarrow{a} = \overrightarrow{0}$ $nonosecum \alpha \overrightarrow{a} = \overrightarrow{0}$.

Рис. 1.8. Умножение вектора на число

Очевидно, что $\overrightarrow{a} - \overrightarrow{b} = \overrightarrow{a} + (-1) \cdot \overrightarrow{b}$ (рис. 1.9).

Puc. 1.9

Определение 1.3. Вектор, длина которого равна единице, называется единичным вектором или ортом и обозначается \overrightarrow{a}^0 .

Если $\overrightarrow{a} \neq \overrightarrow{0}$, то вектор

$$\overrightarrow{a}^0 = \frac{1}{|\overrightarrow{a}|} \cdot \overrightarrow{a} = \frac{\overrightarrow{a}}{|\overrightarrow{a}|}$$

есть единичный вектор, сонаправленный вектору \overrightarrow{a} .

Свойства сложения векторов и умножения их на числа

- $1) \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a} \text{коммутативность сложения,}$ $2) \overrightarrow{a} + \left(\overrightarrow{b} + \overrightarrow{c}\right) = \left(\overrightarrow{a} + \overrightarrow{b}\right) + \overrightarrow{c} \text{ассоциативность сложения,}$ $3) \overrightarrow{a} + \overrightarrow{0} = \overrightarrow{a}, \ \forall \overrightarrow{a},$ $4) \ \forall \overrightarrow{a} \ \exists \ \left(-\overrightarrow{a}\right) \ \text{(противоположный вектор):} \ \overrightarrow{a} + \left(-\overrightarrow{a}\right) = \overrightarrow{0},$

- 5) $1 \cdot \overrightarrow{a} = \overrightarrow{a}$, $\forall \overrightarrow{a}$.

Все эти свойства легко проверяются. Покажем это.

1) При сложении векторов по правилу параллелограмма каждый из векторов $\overrightarrow{a} + \overrightarrow{b}$ и $\overrightarrow{b}+\overrightarrow{a}$ изображается диагональю \overrightarrow{OC} (см. рис. 1.4) параллелограмма, построенного на векторах \overrightarrow{a} и \overrightarrow{b} , отложенных от одного начала. Следовательно, $\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{b}+\overrightarrow{a}$. 2) Правило замыкания цепочки из трех векторов (рис. 1.10) показывает, что \overrightarrow{a} + $(\overrightarrow{b} + \overrightarrow{c}) = (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c}$.

Puc. 1.10. Ассоциативность сложения векторов

- 3)-5) Свойства очевидны.
- 6) По определению

$$|(\alpha\beta)\overrightarrow{a}| = |\alpha\beta| \cdot |\overrightarrow{a}| = |\alpha| \cdot |\beta| \cdot |\overrightarrow{a}| = |\alpha| \cdot |\beta\overrightarrow{a}|,$$

т. е. векторы $(\alpha\beta)\overrightarrow{a}$ и $\alpha(\beta\overrightarrow{a})$ имеют одинаковую длину. Если $\alpha\beta=0$, то оба эти вектора нулевые. Пусть теперь $\alpha\beta>0$, т. е. α и β имеют одинаковый знак. Тогда $(\alpha\beta)\overrightarrow{a}\uparrow\uparrow\overrightarrow{a}$. Если α , $\beta>0$, то

$$\begin{cases} \beta \overrightarrow{a} \uparrow \uparrow \overrightarrow{a} \\ \alpha(\beta \overrightarrow{a}) \uparrow \uparrow \beta \overrightarrow{a} \end{cases} \Rightarrow \alpha(\beta \overrightarrow{a}) \uparrow \uparrow \overrightarrow{a}.$$

Если α , $\beta < 0$, то

$$\begin{cases} \beta \overrightarrow{a} \uparrow \downarrow \overrightarrow{a} \\ \alpha(\beta \overrightarrow{a}) \uparrow \downarrow \beta \overrightarrow{a} \end{cases} \Rightarrow \alpha(\beta \overrightarrow{a}) \uparrow \uparrow \overrightarrow{a}.$$

Итак, векторы $(\alpha\beta)\overrightarrow{a}$ и $\alpha(\beta\overrightarrow{a})$ сонаправлены и имеют одинаковую длину, т. е. они равны. Случай, когда $\alpha\beta<0$, разбирается аналогично.

Упражнение. Свойства 7)-8) проверить самостоятельно.

1.3. Проекция вектора на ось. Свойства проекций

Пусть в пространстве заданы прямая L и точка A. Проекцией точки A на прямую L называется точка A', в которой пересекаются прямая L и плоскость, проходящая через точку A перпендикулярно прямой L (рис. 1.11).

Рис. 1.11. Проекция точки на прямую

Определение 1.4. Проекцией вектора $\overrightarrow{a} = \overrightarrow{AB}$ на прямую L называется вектора $\overrightarrow{A'B'}$, где точки A' и B' — проекции на прямую L точек A и B соответственно (рис. 1.12).

Проекцию вектора \overrightarrow{a} на прямую L будем обозначать $\overrightarrow{pr_L} \overrightarrow{a}$.

Рис. 1.12. Проекция вектора на прямую

Проекцией нулевого вектора на прямую L является нулевой вектор: $\overrightarrow{pr_L} \overrightarrow{0} = \overrightarrow{0}$.

Свойства проекций

1)
$$\overrightarrow{pr_L(\lambda \overrightarrow{a})} = \lambda \overrightarrow{pr_L \overrightarrow{a}}$$

Доказательство. a)
$$\lambda = 0$$

$$\begin{cases} \lambda \overrightarrow{a} = \overrightarrow{0} \\ \lambda \overrightarrow{pr_L \overrightarrow{d}} = \overrightarrow{0} \end{cases} \Rightarrow \overrightarrow{pr_L(\lambda \overrightarrow{d})} = \lambda \overrightarrow{pr_L \overrightarrow{d}}.$$

b) $\lambda > 0$ (см. рис. 1.13)

$$\begin{cases} \overrightarrow{pr_L \overrightarrow{a}} = \overrightarrow{A'B'} \\ \overrightarrow{pr_L(\lambda \overrightarrow{a})} = \overrightarrow{A'C'} \\ \left| \overrightarrow{A'C'} \right| = \lambda \left| \overrightarrow{A'B'} \right| \text{ (по теореме о} \\ \text{пропорциональных отрезках)} \end{cases} \Rightarrow \overrightarrow{pr_L(\lambda \overrightarrow{a})} = \lambda \overrightarrow{pr_L \overrightarrow{a}},$$

с) $\lambda < 0$ (см. рис. 1.14)

$$\begin{cases} \overrightarrow{pr_L \overrightarrow{a}} = \overrightarrow{A'B'} \\ \overrightarrow{pr_L(\lambda \overrightarrow{a})} = \overrightarrow{C'A'} \\ \left| \overrightarrow{C'A'} \right| = |\lambda| \left| \overrightarrow{A'B'} \right| \text{ (по теореме о пропорциональных отрезках)} \end{cases} \Rightarrow \overrightarrow{pr_L(\lambda \overrightarrow{a})} = \lambda \overrightarrow{pr_L \overrightarrow{a}}.$$

2)
$$\overrightarrow{pr_L}(\overrightarrow{a} + \overrightarrow{b}) = \overrightarrow{pr_L} \overrightarrow{a} + \overrightarrow{pr_L} \overrightarrow{b}$$

Доказательство. См. рис. 1.15

$$\begin{cases}
\overrightarrow{pr_L} \overrightarrow{a} = \overrightarrow{A'B'} \\
\overrightarrow{pr_L} \overrightarrow{b} = \overrightarrow{B'C'} \\
\overrightarrow{pr_L} (\overrightarrow{a} + \overrightarrow{b}) = \overrightarrow{A'C'} \\
\overrightarrow{A'C'} = \overrightarrow{A'B'} + \overrightarrow{B'C'}
\end{cases}
\Rightarrow \overrightarrow{pr_L} (\overrightarrow{a} + \overrightarrow{b}) = \overrightarrow{pr_L} \overrightarrow{a} + \overrightarrow{pr_L} \overrightarrow{b}.$$

Рис. 1.15. Проекция суммы векторов

3)
$$\overrightarrow{pr_L} (\overrightarrow{a} - \overrightarrow{b}) = \overrightarrow{pr_L} \overrightarrow{a} - \overrightarrow{pr_L} \overrightarrow{b}$$

Доказательство.

$$\overrightarrow{a} - \overrightarrow{b} = \overrightarrow{a} + (-1) \cdot \overrightarrow{b} \Rightarrow$$

$$\overrightarrow{pr_L} \left(\overrightarrow{a} - \overrightarrow{b} \right) = \overrightarrow{pr_L} \left(\overrightarrow{a} + (-1) \cdot \overrightarrow{b} \right) = \overrightarrow{pr_L} \overrightarrow{a} + \overrightarrow{pr_L} (-1) \cdot \overrightarrow{b} =$$

$$\overrightarrow{pr_L} \overrightarrow{a} + (-1) \cdot \overrightarrow{pr_L} \overrightarrow{b} = \overrightarrow{pr_L} \overrightarrow{a} - \overrightarrow{pr_L} \overrightarrow{b}.$$

Таким образом, *линейные операции над векторами* (сложение векторов и умножение вектора на число) *переместительны с операцией проектирования на прямую*.

Выберем на прямой L направление. Направленную прямую будем обозначать \mathbf{L} и называть *осью*.

Из любой точки пространства проведем два луча в направлении оси \mathbf{L} и ненулевого вектора \overrightarrow{a} . Угол ω ($0 \le \omega \le \pi$), образованный этими двумя лучами, называется углом между вектором \overrightarrow{a} и осью \mathbf{L} .

Определение 1.5. $\ \ \,$ $\ \,$ $\ \ \,$ дение длины вектора \overrightarrow{d} на косинус угла ω между вектором \overrightarrow{d} и осью L:

$$pr_{\mathbf{L}}\overrightarrow{a} = |\overrightarrow{a}| \cdot \cos \omega. \tag{1.1}$$

 $\Pi pu \stackrel{\longrightarrow}{a} = \stackrel{\longrightarrow}{0} \text{ положим } pr_{\mathbf{L}} \stackrel{\longrightarrow}{a} = 0.$

Рассмотрим следующие частные случаи: 1)
$$\overrightarrow{a} = \overrightarrow{0}$$
 или $\omega = \frac{\pi}{2} \implies pr_{\mathbf{L}} \overrightarrow{a} = 0$,

Puc. 1.17

2)
$$0 \le \omega < \frac{\pi}{2}$$

Puc. 1.18

$$pr_{\mathbf{L}}\overrightarrow{a} = \left|\overrightarrow{AB}\right|\cos\omega = |AC| = |A'B'| = \left|\overrightarrow{pr_L a'}\right| > 0,$$

$$3) \ \frac{\pi}{2} < \omega \le \pi$$

Puc. 1.19

$$pr_{\mathbf{L}}\overrightarrow{a} = \left|\overrightarrow{AB}\right|\cos\omega = -\left|\overrightarrow{AB}\right|\cos(\pi - \omega) = -|AC| = -|A'B'| = -\left|\overrightarrow{pr_L}\overrightarrow{a}\right| < 0.$$

Таким образом:

- Таким ооразом:

 1) $pr_{\mathbf{L}} \overrightarrow{a} = 0$, если $\overrightarrow{pr_L} \overrightarrow{a} = \overrightarrow{0}$,

 2) $pr_{\mathbf{L}} \overrightarrow{a} = \begin{vmatrix} \overrightarrow{pr_L} \overrightarrow{a} \end{vmatrix}$, если вектор $\overrightarrow{pr_L} \overrightarrow{a}$ сонаправлен оси \mathbf{L} ,

 3) $pr_{\mathbf{L}} \overrightarrow{a} = \begin{vmatrix} \overrightarrow{pr_L} \overrightarrow{a} \end{vmatrix}$, если вектор $\overrightarrow{pr_L} \overrightarrow{a}$ противонаправлен оси \mathbf{L} .

Направление на оси ${\bf L}$ можно задать с помощью единичного вектора \overrightarrow{e} , направленного так же, как L.

Тогда связь между проекцией вектора на прямую L и его числовой проекцией на ось ${\bf L}$ выражается следующим очевидным равенством:

$$\overrightarrow{pr_L \overrightarrow{a}} = pr_L \overrightarrow{a} \cdot \overrightarrow{e}. \tag{1.2}$$

Свойства числовой проекции вектора на ось

1)
$$pr_{\mathbf{L}}\left(\overrightarrow{a} \pm \overrightarrow{b}\right) = pr_{\mathbf{L}}\overrightarrow{a} \pm pr_{\mathbf{L}}\overrightarrow{b}$$
.

Доказательство. По формуле (1.2) и по свойствам проекции вектора на прямую получаем:

$$\overrightarrow{pr_{L}} \left(\overrightarrow{a} \pm \overrightarrow{b} \right) = \overrightarrow{pr_{L}} \overrightarrow{a} \pm \overrightarrow{pr_{L}} \overrightarrow{b} \iff$$

$$pr_{L} \left(\overrightarrow{a} \pm \overrightarrow{b} \right) \cdot \overrightarrow{e} = pr_{L} \overrightarrow{a} \cdot \overrightarrow{e} \pm pr_{L} \overrightarrow{b} \cdot \overrightarrow{e} = \left(pr_{L} \overrightarrow{a} \pm pr_{L} \overrightarrow{b} \right) \cdot \overrightarrow{e} \iff$$

$$pr_{L} \left(\overrightarrow{a} \pm \overrightarrow{b} \right) = pr_{L} \overrightarrow{a} \pm pr_{L} \overrightarrow{b} .$$

2) $pr_{\mathbf{L}}(\lambda \overrightarrow{a}) = \lambda pr_{\mathbf{L}} \overrightarrow{a}$.

Доказательство. По формуле (1.2) и по свойствам проекции вектора на прямую получаем:

$$\overrightarrow{pr_{L}(\lambda \overrightarrow{a})} = \lambda \overrightarrow{pr_{L} \overrightarrow{a}} \Leftrightarrow pr_{L}(\lambda \overrightarrow{a}) \cdot \overrightarrow{e} = \lambda (pr_{L} \overrightarrow{a} \cdot \overrightarrow{e}) = (\lambda pr_{L} \overrightarrow{a}) \cdot \overrightarrow{e} \Leftrightarrow pr_{L}(\lambda \overrightarrow{a}) = \lambda pr_{L} \overrightarrow{a}.$$

3) Если $\overrightarrow{a} = \overrightarrow{b}$, то $pr_{\mathbf{L}} \overrightarrow{a} = pr_{\mathbf{L}} \overrightarrow{b}$ (то есть равные векторы имеют равные проекции).

Доказательство.

$$\begin{cases} pr_{\mathbf{L}}\overrightarrow{a} = |\overrightarrow{a}|\cos\omega \\ pr_{\mathbf{L}}\overrightarrow{b} = |\overrightarrow{b}|\cos\omega \Rightarrow pr_{\mathbf{L}}\overrightarrow{a} = pr_{\mathbf{L}}\overrightarrow{b}. \\ |\overrightarrow{a}| = |\overrightarrow{b}| \end{cases}$$

Если направление оси $\mathbf L$ задано с помощью вектора \overrightarrow{e} то числовую проекцию вектора \overrightarrow{d} на ось $\mathbf L$ обозначают также $pr_{\overrightarrow{e}}$ \overrightarrow{d} .

1.4. Упражнения

Упражнение 1.1. B параллелограмме ABCD $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AD} = \overrightarrow{b}$. Выразить через векторы \overrightarrow{a} \overrightarrow{u} \overrightarrow{b} векторы \overrightarrow{MA} , \overrightarrow{MB} , \overrightarrow{MC} , \overrightarrow{MD} , где M — точка пересечения диагоналей параллелограмма.

Поскольку диагонали параллелограмма делятся точкой пересечения пополам, то по определению операций сложения и вычитания векторов получаем (см. рис. 1.22):

$$\overrightarrow{MC} = \frac{1}{2}\overrightarrow{AC} = \frac{1}{2}\left(\overrightarrow{a} + \overrightarrow{b}\right),$$

$$\overrightarrow{MA} = -\overrightarrow{MC} = -\frac{1}{2}\left(\overrightarrow{a} + \overrightarrow{b}\right),$$

$$\overrightarrow{MB} = \frac{1}{2}\overrightarrow{DB} = \frac{1}{2}\left(\overrightarrow{a} - \overrightarrow{b}\right),$$

$$\overrightarrow{MD} = -\overrightarrow{MB} = -\frac{1}{2}\left(\overrightarrow{a} - \overrightarrow{b}\right).$$

Упражнение 1.2. B тетраэдре OABC выразить через векторы \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} вектор \overrightarrow{OF} , где F — точка пересечения медиан основания ABC.

По правилу замыкания цепочки векторов:

$$\overrightarrow{OF} = \overrightarrow{OA} + \overrightarrow{AF}.$$

Пусть M — середина стороны BC. Тогда AM — медиана треугольника ABC, проведенная из вершины A, OM — медиана треугольника OBC, проведенная из вершины O. Следовательно,

$$\overrightarrow{AF} = \frac{2}{3} \overrightarrow{AM}, \quad \overrightarrow{AM} = \overrightarrow{OM} - \overrightarrow{OA}, \quad \overrightarrow{OM} = \frac{1}{2} \left(\overrightarrow{OB} + \overrightarrow{OC} \right).$$

Значит,

$$\overrightarrow{AM} = \frac{1}{2} \left(\overrightarrow{OB} + \overrightarrow{OC} \right) - \overrightarrow{OA}, \quad \overrightarrow{AF} = \frac{1}{3} \left(\overrightarrow{OB} + \overrightarrow{OC} \right) - \frac{2}{3} \overrightarrow{OA},$$

$$\overrightarrow{OF} = \frac{1}{3} \left(\overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OA} \right).$$

Упражнение 1.3. Вне плоскости параллелограмма ABCD взята точка O. Выразить через векторы \overrightarrow{OA} , \overrightarrow{OB} и \overrightarrow{OC} вектор \overrightarrow{OK} , где K — середина стороны AD.

$$\overrightarrow{OK} = \overrightarrow{OA} + \overrightarrow{AK},$$

$$\overrightarrow{AK} = \frac{1}{2} \overrightarrow{AD},$$

$$\overrightarrow{AD} = \overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB},$$

$$\overrightarrow{OK} = \overrightarrow{OA} + \frac{1}{2} \left(\overrightarrow{OC} - \overrightarrow{OB} \right).$$

Упражнение 1.4. ABCD — параллелограмм, точка K лежит на стороне AD, $|AK|=rac{1}{5}\;|AD|\;,\; m$ очка L лежит на диагонали $AC,\;|AL|=rac{1}{6}\;|AC|\;$. Доказать, что векторы \overrightarrow{KL} и \overrightarrow{LB} коллинеарны.

Выразим векторы \overrightarrow{KL} и \overrightarrow{LB} через векторы \overrightarrow{AB} и \overrightarrow{AD} , образующие стороны парал-

$$\overrightarrow{KL} = \overrightarrow{AL} - \overrightarrow{AK}, \quad \overrightarrow{LB} = \overrightarrow{AB} - \overrightarrow{AL},$$

$$\overrightarrow{AK} = \frac{1}{5} \overrightarrow{AD}, \quad \overrightarrow{AL} = \frac{1}{6} \overrightarrow{AC} = \frac{1}{6} \left(\overrightarrow{AB} + \overrightarrow{AD} \right),$$

$$\overrightarrow{KL} = \frac{1}{6} \overrightarrow{AB} - \frac{1}{30} \overrightarrow{AD}, \quad \overrightarrow{LB} = \frac{5}{6} \overrightarrow{AB} - \frac{1}{6} \overrightarrow{AD}.$$

Значит,

$$\overrightarrow{LB} = 5\overrightarrow{KL}$$
.

Следовательно, векторы \overrightarrow{KL} и \overrightarrow{LB} коллинеарны.

Упражнение 1.5. Доказать, что для любых заданных векторов \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} векторы \overrightarrow{a} + \overrightarrow{b} , \overrightarrow{b} + \overrightarrow{c} \overrightarrow{u} \overrightarrow{c} - \overrightarrow{a} компланарны.

Векторы называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях.

Компланарность векторов

Задачи для самостоятельного решения

- 1.1. Пусть M- точка пересечения медиан треугольника ABC. Доказать, что $\overrightarrow{AM}=$ $\frac{1}{2}\left(\overrightarrow{AB} + \overrightarrow{AC}\right).$
- 1.2. Пусть M точка пересечения медиан треугольника ABC. Докажите, что $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$. Докажите также, что если имеет место равенство $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$, то M точка пересечения медиан треугольника ABC.
- 1.3. Пусть \overrightarrow{ABC} и $\overrightarrow{A_1B_1C_1}$ два треугольника на плоскости. Докажите, что если $\overrightarrow{AA_1}$ + $\overrightarrow{BB_1}$ + $\overrightarrow{CC_1}$ = $\overrightarrow{0}$, то точки пересечения медиан этих треугольников совпадают.
- 1.4. Известно, что \overrightarrow{AK} , \overrightarrow{BM} медианы треугольника \overrightarrow{ABC} . Выразить через векторы $\overrightarrow{AK} = \overrightarrow{a}$ и $\overrightarrow{BM} = \overrightarrow{b}$ векторы \overrightarrow{AB} , \overrightarrow{BC} и \overrightarrow{CA} .
- 1.5. Пусть M и N точки пересечения медиан треугольников ABC и PQR соответственно. Докажите, что $\overrightarrow{MN} = \frac{1}{3}\left(\overrightarrow{AP} + \overrightarrow{BQ} + \overrightarrow{CR}\right)$.

- 1.6. Точки E и F середины сторон AD и BC четырехугольника ABCD. Доказать, что $\overrightarrow{EF}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{DC}\right)$. Вывести отсюда теорему о средней линии трапеции.
- 1.7. Стороны параллелограмма разделены по обходу в равных отношениях. Доказать, что точки деления служат вершинами параллелограмма, а центры этих параллелограммов совпадают.
- 1.8. В четырехугольнике ABCD точка E середина AB, точка K середина CD. Докажите, что середины отрезков AK, CE, BK и DE являются вершинами параллелограмма.
- 1.9. Две взаимно перпендикулярные хорды AB и CD окружности с центром в точке O пересекаются в точке M. Докажите, что $\overrightarrow{OM} = \frac{1}{2} \left(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} \right)$.
- 1.10. Дан правильный шестиугольник \overrightarrow{ABCDEF} . Выразить через векторы $\overrightarrow{AB} = \overrightarrow{a}$ и $\overrightarrow{BC} = \overrightarrow{b}$ векторы \overrightarrow{CD} , \overrightarrow{DE} , \overrightarrow{EF} , \overrightarrow{FA} , \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{AE} .
- 1.11. Дан правильный пятиугольник \overrightarrow{ABCDE} . Выразить через векторы $\overrightarrow{AB} = \overrightarrow{a}$ и $\overrightarrow{AE} = \overrightarrow{b}$ векторы \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{DE} .
- 1.12. В пятиугольнике ABCDE точки M,~K,~N и L середины сторон BC,~CD,~DE и EA соответственно. Докажите, что отрезок, соединяющий середины отрезков MN и KL параллелен стороне AB и равен $\frac{1}{4}\,|AB|$.
- 1.13. Пусть M точка пересечения медиан треугольника \overrightarrow{ABC} , O произвольная точка пространства. Доказать, что $\overrightarrow{OM} = \frac{1}{3} \left(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} \right)$.
- 1.14. Задан тетраэдр OABC. Выразить через векторы $\overrightarrow{OA}, \overrightarrow{OB}$ и \overrightarrow{OC} вектор \overrightarrow{DE} , где точки D и E середины ребер OA и BC соответственно.
- 1.15. Вне плоскости параллелограмма ABCD взята точка O. Выразить через векторы $\overrightarrow{OA}, \ \overrightarrow{OB}$ и \overrightarrow{OC} вектор $\overrightarrow{OM},$ где M точка пересечения диагоналей параллелограмма.
- 1.16. Пусть M точка пересечения диагоналей AC и BD параллелограмма ABCD, O произвольная точка. Докажите, что $\overrightarrow{OM} = \frac{1}{4} \left(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} \right)$.
- 1.17. Даны два параллелограмма ABCD и $A_1B_1C_1D_1$, у которых O и O_1 точки пересечения диагоналей. Доказать, что $\overrightarrow{OO_1} = \frac{1}{4}\left(\overrightarrow{AA_1} + \overrightarrow{BB_1} + \overrightarrow{CC_1} + \overrightarrow{DD_1}\right)$.
- 1.18. Каким условием должны быть связаны векторы \overrightarrow{a} и \overrightarrow{b} , чтобы вектор $\overrightarrow{a} + \overrightarrow{b}$ делил угол между ними пополам? Полагается, что все три вектора приведены к общему началу.

- 1.19. Пусть векторы \overrightarrow{a} и \overrightarrow{b} неколлинеарны, и $\overrightarrow{AB} = \frac{\alpha}{2} \overrightarrow{a}$, $\overrightarrow{BC} = 4 \left(\beta \overrightarrow{a} \overrightarrow{b} \right)$, $\overrightarrow{CD} = -4\beta \overrightarrow{b}$, $\overrightarrow{DA} = \overrightarrow{a} + \alpha \overrightarrow{b}$. Найти α и β и доказать коллинеарность векторов \overrightarrow{BC} и \overrightarrow{DA} .
- 1.20. В треугольнике \overrightarrow{ABC} $\overrightarrow{\overrightarrow{AM}} = \alpha \overrightarrow{\overrightarrow{AB}}$ и $\overrightarrow{AN} = \beta \overrightarrow{AC}$. При каком соотношении между α и β векторы \overrightarrow{MN} и \overrightarrow{BC} коллинеарны?
- 1.21. В треугольнике \overrightarrow{ABC} $\overrightarrow{AM} = \alpha \overrightarrow{AB}$ и $\overrightarrow{AN} = \beta \overrightarrow{AC}$. Пусть α и β таковы, что векторы \overrightarrow{MN} и \overrightarrow{BC} неколлинеарны. Полагая $\overrightarrow{BC} = \overrightarrow{p}$ и $\overrightarrow{MN} = \overrightarrow{q}$, выразить векторы \overrightarrow{AB} и \overrightarrow{AC} через \overrightarrow{p} и \overrightarrow{q} .
- 1.22. Даны три некомпланарных вектора \overrightarrow{a} , \overrightarrow{b} , и \overrightarrow{c} . Доказать, что векторы \overrightarrow{a} + $2\overrightarrow{b}$ \overrightarrow{c} , $3\overrightarrow{a}$ \overrightarrow{b} + \overrightarrow{c} , $-\overrightarrow{a}$ + $5\overrightarrow{b}$ $3\overrightarrow{c}$ компланарны.

1.6. Ответы к задачам для самостоятельного решения

1.4.
$$\overrightarrow{AB} = \frac{2}{3}\overrightarrow{a} - \frac{2}{3}\overrightarrow{b}$$
, $\overrightarrow{BC} = \frac{2}{3}\overrightarrow{a} + \frac{4}{3}\overrightarrow{b}$, $\overrightarrow{CA} = -\frac{4}{3}\overrightarrow{a} - \frac{2}{3}\overrightarrow{b}$.

1.10.
$$\overrightarrow{CD} = \overrightarrow{b} - \overrightarrow{a}, \overrightarrow{DE} = -\overrightarrow{a}, \overrightarrow{EF} = -\overrightarrow{b}, \overrightarrow{FA} = \overrightarrow{a} - \overrightarrow{b}, \overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b}, \overrightarrow{AD} = 2\overrightarrow{b}, \overrightarrow{AE} = 2\overrightarrow{b} - \overrightarrow{a}.$$

$$1.11. \ \overrightarrow{AC} = \frac{\sqrt{5}+1}{2} \overrightarrow{a} + \overrightarrow{b}, \ \overrightarrow{AD} = \frac{\sqrt{5}+1}{2} \overrightarrow{b} + \overrightarrow{a}, \ \overrightarrow{BC} = \frac{\sqrt{5}-1}{2} \overrightarrow{a} + \overrightarrow{b},$$

$$\overrightarrow{CD} = \frac{\sqrt{5}+3}{2} (\overrightarrow{a} + \overrightarrow{b}), \ \overrightarrow{DE} = \frac{1-\sqrt{5}}{2} \overrightarrow{b} - \overrightarrow{a}.$$

1.14.
$$\overrightarrow{DE} = \frac{1}{2} \left(-\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} \right)$$
.

1.15.
$$\overrightarrow{OM} = \frac{1}{2} \left(\overrightarrow{OA} + \overrightarrow{OC} \right)$$
.

1.18. $\left| \overrightarrow{a} \right| = \left| \overrightarrow{b} \right|$, т.к. диагональ параллелограмма является биссектрисой его угла тогда и только тогда, когда параллелограмм является ромбом.

1.19.
$$\alpha = 2, \ \beta = -\frac{1}{2}.$$

1.20.
$$\alpha = \beta$$
.

1.21.
$$\overrightarrow{AB} = \frac{1}{\alpha - \beta} \left(\beta \overrightarrow{p} - \overrightarrow{q} \right), \overrightarrow{AC} = \frac{1}{\alpha - \beta} \left(\alpha \overrightarrow{p} - \overrightarrow{q} \right).$$

Прямоугольные декартовы координаты

2.1. Прямоугольные декартовы координаты на плоскости

Введем на плоскости прямоугольную систему координат x, y: возьмем две взаимно перпендикулярные оси, проходящие через некоторую точку, которую обозначим O.

Выберем для данной системы координат единичный отрезок, с помощью которого измеряются все прочие отрезки.

Точка O называется началом координат, а оси — осями координат Ox, Oy.

Направление осей координат можно задать с помощью единичных векторов \overrightarrow{i} , \overrightarrow{j} направленных так же, как оси Ox, Oy соответственно. Векторы \overrightarrow{i} , \overrightarrow{j} называются ортами координатных осей Ox, Oy.

Рис. 2.1. Декартова система координат на плоскости

Упорядоченную пару \overrightarrow{i} , \overrightarrow{j} называют *ортонормированным базисом* на плоскости.

Пусть \overrightarrow{a} — вектор на плоскости. Числовые проекции вектора \overrightarrow{a} на оси Ox, Oy назовем $координатами вектора <math>\overrightarrow{a}$ в базисе \overrightarrow{i} , \overrightarrow{j} и обозначим a_x , a_y . То, что вектор \overrightarrow{a} имеет координаты a_x , a_y будем записывать $\overrightarrow{a}(a_x, a_y)$ или $\overrightarrow{a} = (a_x, a_y)$.

2.2. Прямоугольные декартовы координаты в пространстве

Аналогичным образом введем в пространстве прямоугольную систему координат x, y, z: выберем три взаимно перпендикулярные оси, проходящие через некоторую точку, которую обозначим O.

Выберем для данной системы координат единичный отрезок, с помощью которого измеряются все прочие отрезки.

Точка O называется началом координат, а оси — осями координат Ox, Oy, Oz.

Направление осей координат будем задавать с помощью *ортов* \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} направленных так же, как оси Ox, Oy, Oz соответственно.

Рис. 2.2. Декартова система координат в пространстве

Упорядоченную тройку \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} назовем *ортонормированным базисом* в пространстве.

Пусть \overrightarrow{a} — вектор в пространстве. Числовые проекции вектора \overrightarrow{a} на оси Ox, Oy, Oz назовем $координатами вектора <math>\overrightarrow{a}$ в базисе \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} и обозначим a_x , a_y , a_z соответственно. То, что вектор \overrightarrow{a} имеет координаты a_x , a_y , a_z будем записывать \overrightarrow{a} (a_x , a_y , a_z) или $\overrightarrow{a} = (a_x, a_y, a_z)$.

Из свойств числовых проекций следует, что равные векторы имеют равные координаты.

Теорема 2.1. Рассмотрим векторы $\overrightarrow{a} = (a_x, a_y, a_z)$ $u \overrightarrow{b} = (b_x, b_y, b_z)$. Тогда:

1)
$$\overrightarrow{a} \pm \overrightarrow{b} = (a_x \pm b_x, a_y \pm b_y, a_z \pm b_z)$$
 (2.1)

2)
$$\lambda \overrightarrow{a} = (\lambda a_x, \lambda a_y, \lambda a_z)$$
 (2.2)

Доказательство. Используем свойства проекции вектора на ось

1)
$$pr_{\mathbf{L}} (\overrightarrow{a} \pm \overrightarrow{b}) = pr_{\mathbf{L}} \overrightarrow{a} \pm pr_{\mathbf{L}} \overrightarrow{b} \Rightarrow \begin{cases} pr_{\overrightarrow{i}} (\overrightarrow{a} \pm \overrightarrow{b}) = pr_{\overrightarrow{i}} \overrightarrow{a} \pm pr_{\overrightarrow{i}} \overrightarrow{b} \\ pr_{\overrightarrow{j}} (\overrightarrow{a} \pm \overrightarrow{b}) = pr_{\overrightarrow{j}} \overrightarrow{a} \pm pr_{\overrightarrow{j}} \overrightarrow{b} \\ pr_{\overrightarrow{k}} (\overrightarrow{a} \pm \overrightarrow{b}) = pr_{\overrightarrow{j}} \overrightarrow{a} \pm pr_{\overrightarrow{j}} \overrightarrow{b} \end{cases} \Rightarrow \Rightarrow \overrightarrow{a} \pm \overrightarrow{b} = (a_x \pm b_x, \ a_y \pm b_y, \ a_z \pm b_z)$$

2)
$$pr_{\mathbf{L}}(\lambda \overrightarrow{a}) = \lambda pr_{\mathbf{L}} \overrightarrow{a} \Rightarrow \begin{cases} pr_{\overrightarrow{i}}(\lambda \overrightarrow{a}) = \lambda pr_{\overrightarrow{i}} \overrightarrow{a} \\ pr_{\overrightarrow{j}}(\lambda \overrightarrow{a}) = \lambda pr_{\overrightarrow{j}} \overrightarrow{a} \\ pr_{\overrightarrow{i}}(\lambda \overrightarrow{a}) = \lambda pr_{\overrightarrow{i}} \overrightarrow{a} \end{cases} \Rightarrow \lambda \overrightarrow{a} = (\lambda a_x, \lambda a_y, \lambda a_z) \square$$

Теорема 2.2.
$$\overrightarrow{a} = (a_x, a_y, a_z) \Leftrightarrow \overrightarrow{a} = a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}$$
.

Доказательство. Поскольку $\overrightarrow{i} = (1, 0, 0), \ \overrightarrow{j} = (0, 1, 0), \ \overrightarrow{k} = (0, 0, 1),$ то по формулам (2.1), (2.2) получаем:

$$\overrightarrow{a} = (a_x, a_y, a_z) = (a_x, 0, 0) + (0, a_y, 0) + (0, 0, a_z) = a_x(1, 0, 0) + a_y(0, 1, 0) + a_z(0, 0, 1) = a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k}.$$

Определение 2.1. Представление вектора \overrightarrow{d} в виде

$$\overrightarrow{a} = a_x \overrightarrow{i} + a_y \overrightarrow{j} + a_z \overrightarrow{k} \tag{2.3}$$

называется разложением по координатным ортам или разложением по базису \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} .

Очевидно, что для каждого вектора \overrightarrow{a} координаты в базисе \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} определены однозначно, то есть разложение (2.3) единственно. Отсюда легко получить (оставим это в качестве упражнения), что векторы $\overrightarrow{a}=(a_x,\,a_y,\,a_z)$ и $\overrightarrow{b}=(b_x,\,b_y,\,b_z)$ равны тогда и только тогда, когда равны их координаты:

$$\overrightarrow{a} = \overrightarrow{b} \iff \begin{cases} a_x = b_x \\ a_y = b_y. \\ a_z = b_z \end{cases}$$
 (2.4)

Сформулируем теперь условие коллинеарности векторов. Пусть $\overrightarrow{a} \neq \overrightarrow{0}$, $\overrightarrow{b} \neq \overrightarrow{0}$. Тогда по формулам (2.2), (2.4) получаем:

$$\begin{cases}
\overrightarrow{a} \neq \overrightarrow{0} \\
\overrightarrow{b} \neq \overrightarrow{0} \\
\overrightarrow{a} \parallel \overrightarrow{b}
\end{cases}
\Leftrightarrow \exists \lambda \in \mathbb{R} : \overrightarrow{a} = \lambda \overrightarrow{b} \Leftrightarrow \begin{cases}
a_x = \lambda b_x \\
a_y = \lambda b_y, \\
a_z = \lambda b_z
\end{cases}$$

то есть у коллинеарных векторов координаты пропорциональны. Полученные условия принято записывать в виде пропорции:

$$\overrightarrow{a} \parallel \overrightarrow{b} \Leftrightarrow \frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z}.$$
 (2.5)

Замечание. Если одна или две координаты вектора \overrightarrow{b} равны нулю, то соответствующие координаты вектора \overrightarrow{a} также равны нулю. В этом случае должны быть пропорциональны лишь ненулевые координаты. Например: $\overrightarrow{a}=(0,\,1,\,2),\ \overrightarrow{b}=(0,\,2,\,4),\ \frac{1}{2}=\frac{2}{4} \Rightarrow \overrightarrow{a} \parallel \overrightarrow{b}$.

Пусть $\overrightarrow{a} = (a_x, a_y, a_z)$ — произвольный ненулевой вектор пространства. Легко показать (см. рис. 2.3), что

$$|\overrightarrow{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2} \tag{2.6}$$

Puc. 2.3

Оставим доказательство формулы (2.6) в качестве упражнения.

Далее, обозначим через α , β , γ углы между вектором \overrightarrow{a} и осями Ox, Oy, Oz соответственно. Тогда по формуле (1.1) получаем

$$\begin{cases} a_x = |\overrightarrow{a}| \cdot \cos \alpha \\ a_y = |\overrightarrow{a}| \cdot \cos \beta. \\ a_z = |\overrightarrow{a}| \cdot \cos \gamma \end{cases}$$

Числа $\cos \alpha$, $\cos \beta$, $\cos \gamma$ называются направляющими косинусами вектора \overrightarrow{a} .

Для орта \overrightarrow{a}^0 по формулам (2.2), (2.6) имеем

$$\overrightarrow{a}^{0} = \frac{\overrightarrow{a}}{|\overrightarrow{a}|} \iff \begin{cases} a_{x}^{0} = \frac{a_{x}}{|\overrightarrow{a}|} = \frac{a_{x}}{\sqrt{a_{x}^{2} + a_{y}^{2} + a_{z}^{2}}} = \cos \alpha \\ a_{y}^{0} = \frac{a_{y}}{|\overrightarrow{a}|} = \frac{a_{y}}{\sqrt{a_{x}^{2} + a_{y}^{2} + a_{z}^{2}}} = \cos \beta, \\ a_{z}^{0} = \frac{a_{z}}{|\overrightarrow{a}|} = \frac{a_{z}}{\sqrt{a_{x}^{2} + a_{y}^{2} + a_{z}^{2}}} = \cos \gamma \end{cases}$$

или

$$\overrightarrow{a}^0 = \cos \alpha \cdot \overrightarrow{i} + \cos \beta \cdot \overrightarrow{j} + \cos \gamma \cdot \overrightarrow{k}, \qquad (2.7)$$

то есть направляющие косинусы вектора \overrightarrow{a} совпадают с координатами орта \overrightarrow{a}^0 .

2.3. Декартовы координаты точек. Расстояние между точ-ками на плоскости и в пространстве

Зададим в пространстве произвольную точку A. Вектор \overrightarrow{OA} (где точка O — начало координат) называется paduyc—вектором точки A, а его координаты — координатами точки A.

Пусть заданы координаты точек $A(x_1, y_1, z_1)$ и $B(x_2, y_2, z_2)$. Найдем координаты вектора \overrightarrow{AB} .

Puc. 2.4

Поскольку

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}, \quad \overrightarrow{OB} = (x_2, y_2, z_2), \quad \overrightarrow{OA} = (x_1, y_1, z_1),$$

то по формулам (2.1), (2.6) получаем

$$\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1, z_2 - z_1),$$
 (2.8)

$$|AB| = |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$
 (2.9)

В частности, если $A(x_1, y_1)$ и $B(x_2, y_2)$ — точки плоскости, то

$$|AB| = |\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$
 (2.10)

2.4. Деление отрезка в заданном отношении

Пусть $\lambda \neq -1$, $A_1 \neq A_2$.

Определение 2.2. Точка A делит отрезок A_1A_2 в отношении λ , если $\overrightarrow{A_1A} = \lambda \overrightarrow{AA_2}$.

Пример. Пусть точка A принадлежит отрезку A_1A_2 ($\lambda>0$) и делит его на две части A_1A и AA_2 . Говорят, что точка A является "золотым сечением", если отношение длины большей из полученных частей к длине меньшей части равно отношению длины всего отрезка к длине большей из частей. Найти отношение, в котором точка A делит отрезок A_1A_2 .

Пусть A_1A — больший из полученных отрезков ($\lambda > 1$). Тогда по условию получаем

$$\begin{cases}
\overrightarrow{A_1 A} = \lambda \overrightarrow{A A_2} \\
\overrightarrow{A_1 A_2} = \lambda \overrightarrow{A_1 A}
\end{cases} \Leftrightarrow \begin{cases}
\overrightarrow{A_1 A} = \lambda \overrightarrow{A A_2} \\
\overrightarrow{A_1 A} + \overrightarrow{A A_2} = \lambda \overrightarrow{A_1 A}
\end{cases} \Leftrightarrow \begin{cases}
\overrightarrow{A_1 A} = \lambda \overrightarrow{A A_2} \\
\overrightarrow{A A_2} = (\lambda - 1)\overrightarrow{A_1 A}
\end{cases} \Leftrightarrow \lambda - 1 = \frac{1}{\lambda} \Leftrightarrow \lambda = \frac{1 \pm \sqrt{5}}{2}.$$

Так как $\lambda > 1$, то $\lambda = \frac{1 + \sqrt{5}}{2}$.

Теорема 2.3. Пусть заданы координаты точек $A_1(x_1, y_1, z_1)$ и $A_2(x_2, y_2, z_2)$, и $A_1 \neq A_2$. Если точка A(x, y, z) делит отрезок A_1A_2 в отношении λ , то

$$x = \frac{x_1 + \lambda x_2}{1 + \lambda}, \quad y = \frac{y_1 + \lambda y_2}{1 + \lambda}, \quad z = \frac{z_1 + \lambda z_2}{1 + \lambda}.$$
 (2.11)

Доказательство. Найдем координаты векторов $\overrightarrow{A_1A}$ и $\overrightarrow{AA_2}$:

$$\overrightarrow{A_1A} = (x - x_1, y - y_1, z - z_1), \quad \overrightarrow{AA_2} = (x_2 - x, y_2 - y, z_2 - z).$$

Тогда

$$\overrightarrow{A_1 A} = \lambda \overrightarrow{A A_2} \Leftrightarrow$$

$$\begin{cases} x - x_1 = \lambda(x_2 - x) \\ y - y_1 = \lambda(y_2 - y) \\ z - z_1 = \lambda(z_2 - z) \end{cases} \Leftrightarrow \begin{cases} x(1 + \lambda) = x_1 + \lambda x_2 \\ y(1 + \lambda) = y_1 + \lambda y_2 \\ z(1 + \lambda) = z_1 + \lambda z_2. \end{cases}$$

Так как $\lambda \neq -1$, то

$$x = \frac{x_1 + \lambda x_2}{1 + \lambda}, \quad y = \frac{y_1 + \lambda y_2}{1 + \lambda}, \quad z = \frac{z_1 + \lambda z_2}{1 + \lambda}.$$

Следствие 2.1. *Координаты середины отрезка* ($\lambda = 1$):

$$x = \frac{x_1 + x_2}{2}, \quad y = \frac{y_1 + y_2}{2}, \quad z = \frac{z_1 + z_2}{2}.$$
 (2.12)

Следствие 2.2. Пусть заданы координаты $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$, $C(x_3, y_3, z_3)$ вершин треугольника. Тогда координаты центра тяжести $\triangle ABC$ равны:

$$x = \frac{x_1 + x_2 + x_3}{3}, \quad y = \frac{y_1 + y_2 + y_3}{3}, \quad z = \frac{z_1 + z_2 + z_3}{3}.$$
 (2.13)

Доказательство. Центр тяжести треугольника совпадает с точкой M пересечения его медиан. Пусть AA_1 — медиана, проведенная из точки A. Тогда координаты точки A_1 равны

$$x^* = \frac{x_2 + x_3}{2}, \quad y^* = \frac{y_2 + y_3}{2}, \quad z^* = \frac{z_2 + z_3}{2}.$$

Далее, точка M делит медиану AA_1 в отношении 2:1, считая от вершины. Отсюда по формулам (2.11) ($\lambda=2$) получаем

$$\begin{cases} x = \frac{x_1 + 2x^*}{3} = \frac{x_1 + x_2 + x_3}{3} \\ y = \frac{y_1 + 2y^*}{3} = \frac{y_1 + y_2 + y_3}{3} \\ z = \frac{z_1 + 2z^*}{3} = \frac{z_1 + z_2 + z_3}{3} \end{cases}.$$

2.5. Упражнения

Упражнение 2.1. Пусть $\overrightarrow{a} = (1, 1, -2), \ \overrightarrow{b} = (1, -3, 0), \ \overrightarrow{c} = (-4, 2, 1).$ Разложить вектор $\overrightarrow{d} = (-11, 11, -1)$ по векторам $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$.

Пусть

$$\overrightarrow{d} = x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c}.$$

Подставим вместо векторов \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} и \overrightarrow{d} их координаты (в данном случае координаты векторов удобнее записывать в столбцы):

$$\begin{pmatrix} -11\\11\\-1 \end{pmatrix} = x \begin{pmatrix} 1\\1\\-2 \end{pmatrix} + y \begin{pmatrix} 1\\-3\\0 \end{pmatrix} + z \begin{pmatrix} -4\\2\\1 \end{pmatrix}.$$

Отсюда по формулам (2.1), (2.2) получаем систему линейных уравнений:

$$\begin{cases} x + y - 4z = -11 \\ x - 3y + 2z = 11 \\ -2x + z = -1, \end{cases}$$

решением которой являются $x=2,\ y=-1,\ z=3.$ Значит,

$$\overrightarrow{d} = 2\overrightarrow{a} - \overrightarrow{b} + 3\overrightarrow{c}$$
.

Упражнение 2.2. Пусть $\overrightarrow{a} = (-1, 2, 0), \overrightarrow{b} = (2, 3, 1).$ Коллинеарны ли векторы $\overrightarrow{c} = 3\overrightarrow{a} - 4\overrightarrow{b}$ \overrightarrow{u} $\overrightarrow{d} = 12\overrightarrow{b} - 9\overrightarrow{a}$?

По формулам (2.1), (2.2) найдем координаты векторов \overrightarrow{c} и \overrightarrow{d} :

$$\overrightarrow{c} = 3\overrightarrow{a} - 4\overrightarrow{b} = 3(-1, 2, 0) - 4(2, 3, 1) = (-11 - 6, -4),$$

$$\overrightarrow{d} = 12\overrightarrow{b} - 9\overrightarrow{a} = 12(2, 3, 2) - 9(-1, 2, 0) = (33, 18, 12).$$

Проверим условие (2.5) коллинеарности векторов:

$$\frac{-11}{33} = \frac{-6}{18} = \frac{-4}{12} \implies \overrightarrow{c} \parallel \overrightarrow{d}.$$

Упражнение 2.3. Пусть $\overrightarrow{a}=(-2,\,2,\,1), \ \overrightarrow{b}=(3,\,2,\,1), \ \overrightarrow{c}=(2,\,1,\,1), \ \overrightarrow{d}=\overrightarrow{a}-2\overrightarrow{b}+3\overrightarrow{c}$. Найти 1) длину и направляющие косинусы вектора \overrightarrow{a} , 2) $pr_{\overrightarrow{i}}\overrightarrow{d}$, $pr_{\overrightarrow{j}}\overrightarrow{d}$, $pr_{\overrightarrow{k}}\overrightarrow{d}$.

1) Длину и направляющие косинусы вектора \overrightarrow{a} найдем по формулам (2.6), (2.7):

$$|\overrightarrow{a}| = \sqrt{(-2)^2 + 2^2 + 1^2} = 3,$$

$$\overrightarrow{a}^0 = \frac{\overrightarrow{a}}{|\overrightarrow{a}|} = \left(-\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)$$

$$\cos \alpha = -\frac{2}{3}, \cos \beta = \frac{2}{3}, \cos \gamma = \frac{1}{3}.$$

2) По формулам (2.1), (2.2) найдем координаты вектора \overrightarrow{d} :

$$\overrightarrow{d} = \overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c} = (-2, 2, 1) - 2(3, 2, 1) + 3(2, 1, 1) = (-2, 1, 2).$$

Значит, $pr_{\overrightarrow{i}}\overrightarrow{d}=-2$, $pr_{\overrightarrow{j}}\overrightarrow{d}=1$, $pr_{\overrightarrow{k}}\overrightarrow{d}=2$.

Упражнение 2.4. Найти вектор \overrightarrow{x} , образующий с ортом \overrightarrow{j} угол 60° , с ортом \overrightarrow{k} — угол 120° , если $|\overrightarrow{x}| = 5\sqrt{2}$.

Пусть $\overrightarrow{x} = (x_1, x_2, x_3)$. Тогда по определению координат вектора получаем

$$x_2 = pr_{\overrightarrow{j}} \overrightarrow{x'} = |\overrightarrow{x'}| \cdot \cos \beta = 5\sqrt{2} \cdot \cos \frac{\pi}{3} = \frac{5\sqrt{2}}{2},$$
$$x_3 = pr_{\overrightarrow{k}} \overrightarrow{x'} = |\overrightarrow{x}| \cdot \cos \gamma = 5\sqrt{2} \cdot \cos \frac{2\pi}{3} = -\frac{5\sqrt{2}}{2}.$$

Координату x_1 найдем по формуле (2.6):

$$|\overrightarrow{x}| = \sqrt{x_1^2 + \left(\frac{5\sqrt{2}}{2}\right)^2 + \left(-\frac{5\sqrt{2}}{2}\right)^2} = 5\sqrt{2}, \quad x_1 = \pm 5.$$

Значит,
$$\overrightarrow{x} = \left(\pm 5, \ \frac{5\sqrt{2}}{2}, \ -\frac{5\sqrt{2}}{2}\right).$$

Упражнение 2.5. Даны три последовательные вершины параллелограмма A(5, -5, 12), B(-3, 2, 3), C(3, 1, 2). Найти координаты четвертой вершины D.

Обозначим координаты вершины D(x, y, z). По формуле (2.8) найдем координаты векторов \overrightarrow{AD} и \overrightarrow{BC} :

$$\overrightarrow{AD} = (x - 5, y + 5, z - 12), \quad \overrightarrow{BC} = (6, -1, -1).$$

 $\overrightarrow{AD} = \overrightarrow{BC}$. Запишем данное равенство в координатном виде:

$$\begin{pmatrix} x & -5 \\ y & +5 \\ z & -12 \end{pmatrix} = \begin{pmatrix} 6 \\ -1 \\ -1 \end{pmatrix} \Leftrightarrow \begin{cases} x = 11 \\ y = -6 \\ z = 11 \end{cases}$$

Упражнение 2.6. На оси абсиисс найти точку M, равноудаленную от точек A(1, -4, 7) и B(5, 6, -5).

Обозначим координаты вершины M(x, 0, 0). По формуле (2.8) найдем координаты векторов \overrightarrow{AM} и \overrightarrow{BM} :

$$\overrightarrow{AM} = (x - 1, 4, 7), \quad \overrightarrow{BM} = (x - 5, -6, 5).$$

Далее, по формуле (2.9)

$$\left| \overrightarrow{AM} \right| = \left| \overrightarrow{BM} \right|,$$

$$\sqrt{(x-1)^2 + 4^2 + 7^2} = \sqrt{(x-5)^2 + (-6)^2 + 5^2},$$

$$(x-1)^2 + 65 = (x-5)^2 + 61, \quad x^2 - 2x + 5 = x^2 - 10x + 25, \quad x = \frac{5}{2}.$$

Значит, $M\left(\frac{5}{2}, 0, 0\right)$.

Упражнение 2.7. Найти координаты точек, делящих отрезок AB, A(4, -1), B(7, 5) на три равные части.

Пусть точки $C(x_1, y_1)$ и $D(x_2, y_2)$ делят отрезок AB на три равные части.

$$\stackrel{\bullet}{A}$$
 $\stackrel{\bullet}{C}$ $\stackrel{\bullet}{D}$ $\stackrel{\bullet}{B}$ $Puc. 2.6$

Поскольку $\overrightarrow{AC} = \frac{1}{2}\overrightarrow{CB}$, то точка C делит отрезок AB в отношении $\lambda = \frac{1}{2}$. Отсюда по формулам (2.11) получаем:

$$x_1 = \frac{4 + \frac{1}{2} \cdot 7}{1 + \frac{1}{2}} = 5, \quad y_1 = \frac{-1 + \frac{1}{2} \cdot 5}{1 + \frac{1}{2}} = 1, \quad C(5, 1).$$

Аналогично, $\overrightarrow{AD}=2\overrightarrow{DB},$ и точка D делит отрезок AB в отношении $\lambda=2.$ Значит,

$$x_2 = \frac{4+2\cdot7}{1+2} = 6$$
, $y_2 = \frac{-1+2\cdot5}{1+2} = 3$, $D(6, 3)$.

Упражнение 2.8. Даны координаты вершин A(3, -6, 9), B(0, -3, 6) и координаты точки M(4, -7, 10) пересечения медиан треугольника ABC. Найти координаты вершины C.

Пусть координаты вершины C(x, y, z). По формулам (2.13) получаем:

$$= \frac{3+0+x}{3}, \quad -7 = \frac{-6-3+y}{3}, \quad 10 = \frac{9+6+z}{3},$$
$$x = 9, \quad y = -12, \quad z = 15.$$

Значит, C(9, -12, 15).

Упражнение 2.9. Даны вершины треугольника A(2, -5), B(1, -2) и C(4, 7). Найти 1) длину медианы BM, 2) точку пересечения биссектрисы угла при вершине Bсо стороной AC.

1) Пусть M(x, y) — середина стороны AC. По формулам (2.12) найдем координаты точки M:

$$x = \frac{2+4}{2} = 3$$
, $y = \frac{-5+7}{2} = 1$.

Далее, по формулам (2.8), (2.9) имеем:

$$\overrightarrow{BM} = (2, 3), |BM| = \left| \overrightarrow{BM} \right| = \sqrt{13}.$$

2) Пусть L(x, y) — точка пересечения биссектрисы угла B со стороной AC. Найдем длины сторон BA и BC и воспользуемся свойством биссектрисы угла треугольника:

$$\overrightarrow{BA} = (1, -3), \quad \left| \overrightarrow{BA} \right| = \sqrt{10}, \quad \overrightarrow{BC} = (3, 9), \quad \left| \overrightarrow{BC} \right| = 3\sqrt{10},$$
$$\frac{|AL|}{|LC|} = \frac{|BA|}{|BC|} = \frac{\sqrt{10}}{3\sqrt{10}}, \quad \overrightarrow{AL} = \frac{1}{3}\overrightarrow{LC}.$$

Значит, точка L делит отрезок AC в отношении $\lambda = \frac{1}{3}$. Отсюда по формулам (2.11) получаем

$$x = \frac{2 + \frac{1}{3} \cdot 4}{1 + \frac{1}{3}} = \frac{5}{2}, \quad y = \frac{-5 + \frac{1}{3} \cdot 7}{1 + \frac{1}{3}} = -2, \quad L\left(\frac{5}{2}, -2\right).$$

2.6. Задачи для самостоятельного решения

- 2.1. Пусть $\overrightarrow{a}=(-1,\,2),\ \overrightarrow{b}=(2,\,0).$ Выразить вектор $\overrightarrow{c}=(-8,\,4)$ через векторы \overrightarrow{a} и \overrightarrow{b} .
- 2.2. Пусть $\overrightarrow{a}=(0,1,2), \ \overrightarrow{b}=(1,0,1), \ \overrightarrow{c}=(-1,2,4).$ Выразить вектор $\overrightarrow{d}=(-2,4,7)$ через векторы $\overrightarrow{a}, \ \overrightarrow{b}, \ \overrightarrow{c}$.
- 2.3. Коллинеарны ли векторы $\overrightarrow{c}=4\overrightarrow{a}-2\overrightarrow{b}$ и $\overrightarrow{d}=\overrightarrow{b}-2\overrightarrow{a}$, построенные на векторах $\overrightarrow{a}=(1,-2,5)$ и $\overrightarrow{b}=(3,-1,0)$?

- 2.4. Коллинеарны ли векторы $\overrightarrow{c}=3\overrightarrow{a}+\overrightarrow{b}$ и $\overrightarrow{d}=2\overrightarrow{b}-4\overrightarrow{a}$, построенные на векторах $\overrightarrow{a}=(3,\,2,\,0)$ и $\overrightarrow{b}=(1,\,1,\,-5)$?
- 2.5. При каких значениях α и β векторы $\overrightarrow{a} = -2\overrightarrow{i} + 3\overrightarrow{j} + \alpha \overrightarrow{k}$ и $\overrightarrow{b} = \beta \overrightarrow{i} 6\overrightarrow{j} + 2\overrightarrow{k}$ коллинеарны?
- 2.6. Даны точки $A(1,2,1),\ B(2,-1,3),\ C(3,\alpha,\beta).$ При каких значениях α и β точка C лежит на прямой AB?
- 2.7. Даны три последовательные вершины параллелограмма A(1, 1, 4), B(2, 3, -1), C(-2, 2, 0). Найти координаты четвертой вершины D.
- 2.8. Доказать, что четырехугольник с вершинами A(1, 2, 3), B(3, 3, 1), C(6, 1, 7), D(4, 0, 9) есть параллелограмм. Найти длины его сторон.
- 2.9. Даны вершины треугольника A(1, -4, 10), B(2, -1, 0), C(-6, -3, 8). Найти длину медианы, проведенной из вершины A.
- 2.10. Даны вершины треугольника A(-5, 7, 2), B(1, 4, -1) и C(7, 4, 5). Найти расстояние от начала координат до точки пересечения медиан треугольника.
- 2.11. Даны две смежные вершины параллелограмма A(-2, 6), B(2, 8) и точка пересечения его диагоналей M(2, 2). Найти две другие вершины.
- 2.12. Найти координаты вершин треугольника, если известны середины его сторон $K(2,-2),\ M(4,2),\ N(3,6).$
- 2.13. Определить координаты концов отрезка AB, который точками C(1, 1, 2) и D(4, -2, 1) разделен на три равные части.
- 2.14. Даны вершины треугольника A(3, -5), B(-3, 3) и C(-1, -2). Найти точку пересечения биссектрисы угла при вершине A со стороной BC.
- 2.15. Даны вершины треугольника $A(3,-2,2),\ B(4,0,3)$ и C(-3,1,-1). Найти длину биссектрисы угла при вершине A.
- 2.16. Найти вектор \overrightarrow{x} , коллинеарный вектору $\overrightarrow{a}=2\overrightarrow{i}-\overrightarrow{j}+4\overrightarrow{k}$, образующий с ортом \overrightarrow{k} тупой угол и имеющий длину $|\overrightarrow{x}|=3\sqrt{21}$.
- 2.17. Найти вектор \overrightarrow{x} , сонаправленный биссектрисе угла между векторами $\overrightarrow{a}=4\overrightarrow{i}-7\overrightarrow{j}-4\overrightarrow{k}$ и $\overrightarrow{b}=-7\overrightarrow{i}+6\overrightarrow{j}+6\overrightarrow{k}$, если $|\overrightarrow{x}|=3\sqrt{110}$.

2.7. Ответы к задачам для самостоятельного решения

$$2.1. \ \overrightarrow{c} = 2\overrightarrow{a} - 3\overrightarrow{b}.$$

2.2.
$$\overrightarrow{d} = 2\overrightarrow{a} - \overrightarrow{b} + \overrightarrow{c}$$
.

$$2.3. \overrightarrow{c} \parallel \overrightarrow{d}.$$

$$2.4. \overrightarrow{c} \not \parallel \overrightarrow{d}.$$

2.5.
$$\alpha = -1, \ \beta = 4.$$

2.6.
$$\alpha = -4, \ \beta = 5.$$

$$2.7. D(-3, 0, 5).$$

2.8.
$$|AB| = |CD| = 3$$
, $|AD| = |BC| = 7$.

2.10.
$$\sqrt{30}$$
.

2.11.
$$C(6, -2), D(2, -4).$$

2.12.
$$A(1, 2), B(3, -6), C(5, 10).$$

2.13.
$$A(-2, 4, 3), B(7, -5, 0).$$

2.14.
$$\left(-\frac{5}{3}, -\frac{1}{3}\right)$$
.

2.15.
$$\frac{3\sqrt{10}}{4}$$
.

2.16.
$$\overrightarrow{x} = (-6, 3, -12).$$

2.17.
$$\overrightarrow{x} = (-19, -23, 10).$$

Скалярное, векторные, смешанное произведения

3.1. Скалярное произведение

Определение 3.1. Скалярным произведением ненулевых векторов \overrightarrow{a} u \overrightarrow{b} называется число $(\overrightarrow{a}, \overrightarrow{b})$, равное произведению длин этих векторов на косинус угла между ними:

$$\left(\overrightarrow{a}, \overrightarrow{b}\right) = \left|\overrightarrow{a}\right| \cdot \left|\overrightarrow{b}\right| \cdot \cos \omega. \tag{3.1}$$

Eсли $\overrightarrow{a} = \overrightarrow{0}$ или $\overrightarrow{b} = \overrightarrow{0}$, положим

$$\left(\overrightarrow{a}, \overrightarrow{b}\right) = 0.$$

Геометрический смысл скалярного произведения

Поскольку

$$\left| \overrightarrow{a} \right| \cdot \cos \omega = pr \overrightarrow{b} \overrightarrow{a}$$

— проекция вектора $\stackrel{\longrightarrow}{a}$ на направление, определяемое вектором $\stackrel{\longrightarrow}{b}$, а

$$\left|\overrightarrow{b}\right| \cdot \cos \omega = pr_{\overrightarrow{d}} \overrightarrow{b}$$

— проекция вектора \overrightarrow{b} на направление, определяемое вектором \overrightarrow{a} , то

$$\left(\overrightarrow{a}, \overrightarrow{b}\right) = \left|\overrightarrow{a}\right| \cdot pr_{\overrightarrow{a}} \overrightarrow{b} = \left|\overrightarrow{b}\right| \cdot pr_{\overrightarrow{b}} \overrightarrow{a}. \tag{3.2}$$

Замечание. Пусть $\overrightarrow{a}=(a_x,\ a_y,\ a_z)$. Из формулы (3.2) следует, что

$$\begin{cases} a_x = pr \xrightarrow{i} \overrightarrow{a} = \begin{pmatrix} \overrightarrow{i}, \overrightarrow{a} \\ \overrightarrow{i}, \overrightarrow{a} \end{pmatrix} \\ a_y = pr \xrightarrow{j} \overrightarrow{a} = \begin{pmatrix} \overrightarrow{j}, \overrightarrow{a} \\ \overrightarrow{j}, \overrightarrow{a} \end{pmatrix} \\ a_z = pr \xrightarrow{k} \overrightarrow{a} = \begin{pmatrix} \overrightarrow{k}, \overrightarrow{a} \end{pmatrix}.$$

Механический смысл скалярного произведения

Пусть материальная точка перемещается под действием силы \overrightarrow{F} вдоль вектора \overrightarrow{S} .

Из курса физики известно, что работа W силы \overrightarrow{F} при перемещении материальной точки вдоль пути \overrightarrow{S} равна

$$W = \left| \overrightarrow{F} \right| \cdot \left| \overrightarrow{S} \right| \cdot \cos \omega,$$

где $\left|\overrightarrow{F}\right|$ — величина силы, $\left|\overrightarrow{S}\right|$ — длина пути, ω — угол между векторами \overrightarrow{F} и \overrightarrow{S} .

 $W = (\overrightarrow{F}, \overrightarrow{S}),$

то есть работа силы \overrightarrow{F} при перемещении материальной точки вдоль пути \overrightarrow{S} равна скалярному произведению векторов \overrightarrow{F} и \overrightarrow{S} .

3.2. Свойства скалярного произведения

Алгебраические свойства скалярного произведения

1)
$$(\overrightarrow{a}, \overrightarrow{b}) = (\overrightarrow{b}, \overrightarrow{a}),$$

2) $(\overrightarrow{a}, \overrightarrow{b} + \overrightarrow{c}) = (\overrightarrow{a}, \overrightarrow{b}) + (\overrightarrow{a}, \overrightarrow{c}),$
 $(\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{c}) = (\overrightarrow{a}, \overrightarrow{c}) + (\overrightarrow{b}, \overrightarrow{c}),$
3) $(\lambda \overrightarrow{a}, \overrightarrow{b}) = \lambda (\overrightarrow{a}, \overrightarrow{b}),$
 $(\overrightarrow{a}, \lambda \overrightarrow{b}) = \lambda (\overrightarrow{a}, \overrightarrow{b}).$

3)
$$(\lambda \stackrel{a}{a}, \stackrel{b}{b}) = \lambda (\stackrel{a}{a}, \stackrel{b}{b}),$$

 $(\stackrel{\rightarrow}{a}, \lambda \stackrel{\rightarrow}{b}) = \lambda (\stackrel{\rightarrow}{a}, \stackrel{\rightarrow}{b}).$

Геометрические свойства скалярного произведения

4)
$$(\overrightarrow{a}, \overrightarrow{a}) \ge 0$$
, $|\overrightarrow{a}| = \sqrt{(\overrightarrow{a}, \overrightarrow{a})}$.

5) Пусть ω — угол между векторами $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$. Тогда

$$\left(\overrightarrow{a} \,,\, \overrightarrow{b} \right) > 0 \iff 0 \leq \omega < \frac{\pi}{2} \,,$$

$$\left(\overrightarrow{a} \,,\, \overrightarrow{b} \right) < 0 \iff \frac{\pi}{2} < \omega \leq \pi.$$

6) Пусть
$$\overrightarrow{a} \neq \overrightarrow{0}$$
, $\overrightarrow{b} \neq \overrightarrow{0}$. Тогда $(\overrightarrow{a}, \overrightarrow{b}) = 0 \Leftrightarrow \overrightarrow{a} \perp \overrightarrow{b}$.

Доказательство.

- 1) Следует из формулы (3.1).
- 2) По свойству проекций $pr_{\overrightarrow{d}}\left(\overrightarrow{b}+\overrightarrow{c}\right)=pr_{\overrightarrow{d}}\overrightarrow{b}+pr_{\overrightarrow{d}}\overrightarrow{c}$. Тогда

$$(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}) = (\overrightarrow{c}, \overrightarrow{a} + \overrightarrow{b}) = (\overrightarrow{c}, \overrightarrow{a} + \overrightarrow{b}) = (\overrightarrow{c}, \overrightarrow{a}) + (\overrightarrow{c}, \overrightarrow{b}) = (\overrightarrow{a}, \overrightarrow{c}) + (\overrightarrow{b}, \overrightarrow{c}).$$

3) По свойству проекций $pr_{\overrightarrow{a}}\left(\lambda\overrightarrow{b}\right)=\lambda pr_{\overrightarrow{a}}\overrightarrow{b}$. Тогда

$$\left(\overrightarrow{a},\,\lambda\,\overrightarrow{b}\right) = \left|\overrightarrow{a}\right| \cdot pr_{\overrightarrow{d}}\left(\lambda\,\overrightarrow{b}\right) = \left|\overrightarrow{a}\right| \cdot \left(\lambda pr_{\overrightarrow{d}}\,\overrightarrow{b}\right) = \lambda\left(\left|\overrightarrow{a}\right| \cdot pr_{\overrightarrow{d}}\,\overrightarrow{b}\right) = \lambda\left(\overrightarrow{a},\,\overrightarrow{b}\right).$$

Далее,

$$\left(\lambda \overrightarrow{a}, \overrightarrow{b}\right) = \left(\overrightarrow{b}, \lambda \overrightarrow{a}\right) = \lambda \left(\overrightarrow{b}, \overrightarrow{a}\right) = \lambda \left(\overrightarrow{a}, \overrightarrow{b}\right).$$

4) Положим в формуле (3.1) $\overrightarrow{b} = \overrightarrow{a}$:

$$\left(\overrightarrow{a}, \overrightarrow{a}\right) = \left|\overrightarrow{a}\right| \cdot \left|\overrightarrow{a}\right| \cdot \cos 0 = \left|\overrightarrow{a}\right|^2 \ge 0, \quad \left|\overrightarrow{a}\right| = \sqrt{\left(\overrightarrow{a}, \overrightarrow{a}\right)}.$$

5) Пусть $\overrightarrow{a} \neq \overrightarrow{0}, \ \overrightarrow{b} \neq \overrightarrow{0}$. Выразим из формулы (3.1) $\cos \omega$:

$$\cos \omega = \frac{\left(\overrightarrow{a}, \overrightarrow{b}\right)}{\left|\overrightarrow{a}\right| \cdot \left|\overrightarrow{b}\right|}.$$
 (3.3)

Так как $\left|\overrightarrow{a}\right| > 0, \; \left|\overrightarrow{b}\right| > 0, \; \text{то}$

$$\left(\overrightarrow{a} \,,\,\, \overrightarrow{b} \right) > 0 \;\Leftrightarrow\; \cos \omega > 0 \;\Leftrightarrow\; 0 \leq \omega < \frac{\pi}{2} \,,$$

$$\left(\overrightarrow{a} \,,\,\, \overrightarrow{b} \right) < 0 \;\Leftrightarrow\; \cos \omega < 0 \;\Leftrightarrow\; \frac{\pi}{2} < \omega \leq \pi.$$

6) Из формулы (3.3):

$$\left(\overrightarrow{a}, \overrightarrow{b}\right) = 0 \iff \cos \omega = 0 \iff \omega = \frac{\pi}{2}, \overrightarrow{a} \perp \overrightarrow{b}.$$

Пример 3.1. Рассмотрим выражение $(\overrightarrow{a} - \overrightarrow{b}, \overrightarrow{a} - \overrightarrow{b})$. По свойствам 1—3 имеем

$$\left(\overrightarrow{a}-\overrightarrow{b},\overrightarrow{a}-\overrightarrow{b}\right)=\left(\overrightarrow{a},\overrightarrow{a}\right)-2\left(\overrightarrow{a},\overrightarrow{b}\right)+\left(\overrightarrow{b},\overrightarrow{b}\right).$$

Пользуясь свойством 4 и определением скалярного произведения, получаем

$$\left| \overrightarrow{a} - \overrightarrow{b} \right|^2 = \left| \overrightarrow{a} \right|^2 - 2 \left| \overrightarrow{a} \right| \cdot \left| \overrightarrow{b} \right| \cos \omega + \left| \overrightarrow{b} \right|^2, \tag{3.4}$$

где ω — угол между векторами \overrightarrow{a} и \overrightarrow{b} . Рассмотрим треугольник с вершинами в точках $A,\,B$ и C.

Пусть $\overrightarrow{a}=\overrightarrow{CB}, \ \overrightarrow{b}=\overrightarrow{CA}$. Тогда $\overrightarrow{AB}=\overrightarrow{a}-\overrightarrow{b}$. Положим $\omega=\angle ACB$. Из равенства (3.4) получаем известную теорему косинусов

$$|AB|^2 = |AC|^2 - 2|AC| \cdot |BC| \cos \omega + |BC|^2.$$

3.3. Координатное выражение скалярного произведения

Теорема 3.1. Пусть $\overrightarrow{a} = a_1 \overrightarrow{i} + a_2 \overrightarrow{j} + a_3 \overrightarrow{k}$, $\overrightarrow{b} = b_1 \overrightarrow{i} + b_2 \overrightarrow{j} + b_3 \overrightarrow{k}$. Тогда

$$\left(\overrightarrow{a}, \overrightarrow{b}\right) = (a_1 \ a_2 \ a_3) \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array}\right) = a_1b_1 + a_2b_2 + a_3b_3. \tag{3.5}$$

Доказательство. Для скалярных произведений ортов координатных осей имеют место равенства

$$(\overrightarrow{i}, \overrightarrow{i}) = (\overrightarrow{j}, \overrightarrow{j}) = (\overrightarrow{k}, \overrightarrow{k}) = 1 \cdot 1 \cdot \cos 0 = 1,$$

$$(\overrightarrow{i}, \overrightarrow{j}) = (\overrightarrow{i}, \overrightarrow{k}) = (\overrightarrow{j}, \overrightarrow{k}) = 1 \cdot 1 \cdot \cos \frac{\pi}{2} = 0.$$

Отсюда по свойствам скалярного произведения получаем

$$\begin{pmatrix} \overrightarrow{a}, \overrightarrow{b} \end{pmatrix} = \begin{pmatrix} a_1 \overrightarrow{i} + a_2 \overrightarrow{j} + a_3 \overrightarrow{k}, b_1 \overrightarrow{i} + b_2 \overrightarrow{j} + b_3 \overrightarrow{k} \end{pmatrix} =
a_1b_1 \begin{pmatrix} \overrightarrow{i}, \overrightarrow{i} \end{pmatrix} + a_2b_2 \begin{pmatrix} \overrightarrow{j}, \overrightarrow{j} \end{pmatrix} + a_3b_3 \begin{pmatrix} \overrightarrow{k}, \overrightarrow{k} \end{pmatrix} + (a_1b_2 + a_2b_1) \begin{pmatrix} \overrightarrow{i}, \overrightarrow{j} \end{pmatrix} +
(a_1b_3 + a_3b_1) \begin{pmatrix} \overrightarrow{i}, \overrightarrow{k} \end{pmatrix} + (a_2b_3 + a_3b_2) \begin{pmatrix} \overrightarrow{j}, \overrightarrow{k} \end{pmatrix} = a_1b_1 + a_2b_2 + a_3b_3.$$

Следствие 3.1. Длина вектора $\overrightarrow{a}=(a_1,\ a_2,\ a_3)$ равна

$$|\overrightarrow{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}. {3.6}$$

 $\begin{picture}{ll} \begin{picture}{ll} \be$

$$\begin{cases} (\overrightarrow{a}, \overrightarrow{a}) = a_1^2 + a_2^2 + a_3^2 \\ |\overrightarrow{a}| = \sqrt{(\overrightarrow{a}, \overrightarrow{a})} \end{cases} \Rightarrow |\overrightarrow{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}.$$

Заметим, что в лекции 2 мы уже получили данную формулу, исходя из геометрических соображений.

Следствие 3.2. Косинус угла ω между ненулевыми векторами $\vec{a}=(a_1,\ a_2,\ a_3)$ и $\vec{b}=(b_1,\ b_2,\ b_3)$ равен

$$\cos \omega = \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \cdot \sqrt{b_1^2 + b_2^2 + b_3^2}}.$$
 (3.7)

Доказательство. Следует из формул (3.3), (3.5), (3.6).

Следствие 3.3. Пусть ось L составляет углы α , β , γ с осями координат, $\overrightarrow{a} = (a_1, a_2, a_3)$. Тогда проекция вектора \overrightarrow{a} на ось L равна

$$pr_{\mathbf{L}}\overrightarrow{a} = a_1 \cos \alpha + a_2 \cos \beta + a_3 \cos \gamma.$$
 (3.8)

Доказательство. Пусть \overrightarrow{e} — единичный вектор, сонаправленный оси **L**. Тогда по формуле (2.7)

$$\overrightarrow{e} = (\cos \alpha, \cos \beta, \cos \gamma).$$

Далее, по формулам (3.2), (3.5)

$$(\overrightarrow{a}, \overrightarrow{e}) = |\overrightarrow{e}| \cdot pr_{\overrightarrow{e}} \overrightarrow{a},$$
$$pr_{\overrightarrow{e}} \overrightarrow{a} = \frac{(\overrightarrow{a}, \overrightarrow{e})}{|\overrightarrow{e}|} = a_1 \cos \alpha + a_2 \cos \beta + a_3 \cos \gamma.$$

3.4. Определители второго и третьего порядка

Рассмотрим таблицу, состоящую из четырех чисел, которая называется квадратной матрицей второго порядка:

$$A = \left(\begin{array}{cc} a_1 & a_2 \\ b_1 & b_2 \end{array}\right).$$

Числа a_1 , a_2 , b_1 , b_2 называются элементами матрицы. Пара элементов a_1 , b_2 образует главную диагональ матрицы, пара a_2 , b_1 — побочную диагональ.

Определение 3.2. Определителем квадратной матрицы А второго порядка (или просто определителем второго порядка) назовем число

$$\underbrace{\det A = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}_{\text{observations}} = a_1 b_2 - a_2 b_1.$$
(3.9)

Таким образом, для вычисления определителя второго порядка нужно из произведения a_1b_2 элементов главной диагонали вычесть произведение a_2b_1 элементов побочной диагонали. Схематически это правило можно изобразить так:

$$\begin{vmatrix} \cdot & \cdot \\ \cdot & \cdot \end{vmatrix} = \begin{vmatrix} \cdot & \cdot \\ - & \cdot \end{vmatrix}$$
Puc. 3.3

Пример 3.2.

$$\left| \begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right| = 1 \cdot 4 - 2 \cdot 3 = 4 - 6 = -2.$$

Рассмотрим теперь таблицу, состоящую из девяти чисел, которая называется квадратной матрицей третьего порядка:

$$A = \left(\begin{array}{ccc} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{array}\right).$$

Числа a_i , b_i , c_i , i=1,2,3 называются элементами матрицы. Тройка элементов a_1 , b_2 , c_3 образует главную диагональ матрицы, тройка a_3 , b_2 , c_1 — побочную диагональ.

Определение 3.3. Определителем квадратной матрицы А третьего порядка (или просто определителем третьего порядка) называется число

$$\det A = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 - a_3 b_2 c_1 - a_1 b_3 c_2 - a_2 b_1 c_3.$$
 (3.10)

Схематически правило вычисления определителя третьего порядка можно представить следующим образом:

Пример 3.3.

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 1 \cdot 5 \cdot 9 + 4 \cdot 8 \cdot 3 + 7 \cdot 2 \cdot 6 - 7 \cdot 5 \cdot 3 - 1 \cdot 8 \cdot 6 - 4 \cdot 2 \cdot 9 = 0.$$

Рассмотрим определитель третьего порядка:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 - a_3 b_2 c_1 - a_1 b_3 c_2 - a_2 b_1 c_3 =$$

$$a_1 (b_2 c_3 - b_3 c_2) + b_1 (a_3 c_2 - a_2 c_3) + c_1 (a_2 b_3 - a_3 b_2) \stackrel{(3.9)}{=}$$

$$a_1 \cdot \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \cdot \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}.$$

Таким образом, доказана формула

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \cdot \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \cdot \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}, \tag{3.11}$$

которая называется разложением определителя по первой строке. Схематически формулу (3.11) можно изобразить так:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \cdot \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} - a_2 \cdot \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} + a_3 \cdot \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Пример 3.4.

$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \cdot \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = 1 \cdot (45 - 48) - 2 \cdot (36 - 42) + 3 \cdot (32 - 35) = 0.$$

3.5. Векторное произведение

Векторы называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях.

Упорядоченная тройка некомпланарных векторов \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} называется $npaso\check{u}$, если из конца вектора \overrightarrow{c} кратчайший поворот от вектора \overrightarrow{a} к вектору \overrightarrow{b} виден совершающимся против часовой стрелки. Иначе упорядоченная тройка \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} называется левой.

Определение 3.4. Пусть векторы \overrightarrow{a} и \overrightarrow{b} не равны $\overrightarrow{0}$ одновременно. Векторным произведением вектора \overrightarrow{a} на вектор \overrightarrow{b} называется вектор $\overrightarrow{c} = \left[\overrightarrow{a}, \overrightarrow{b}\right]$, длина и

Puc. 3.5

направление которого определяются следующими условиями:

1) $\begin{vmatrix} \overrightarrow{c} \\ = \end{vmatrix} \overrightarrow{a} \cdot \begin{vmatrix} \overrightarrow{b} \\ \end{bmatrix} \cdot \sin \omega$, где ω – угол между векторами \overrightarrow{a} и \overrightarrow{b} , 2) $\overrightarrow{c} \perp \overrightarrow{a}$, $\overrightarrow{c} \perp \overrightarrow{b}$ (т.е. вектор \overrightarrow{c} перпендикулярен плоскости векторов \overrightarrow{a} и \overrightarrow{b}), 3) упорядоченная тройка \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} – правая.

Eсли $\vec{a} = \overset{\rightarrow}{0}$ или $\vec{b} = \overset{\rightarrow}{0}$, положим

$$\left[\overrightarrow{a}, \overrightarrow{b}\right] = \overrightarrow{0}.$$

Свойства векторного произведения

Алгебраические свойства векторного произведения

1)
$$\begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} \end{bmatrix} = -\begin{bmatrix} \overrightarrow{b}, \overrightarrow{a} \end{bmatrix}$$

2) $\begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} \end{bmatrix} + \begin{bmatrix} \overrightarrow{a}, \overrightarrow{c} \end{bmatrix},$
 $\begin{bmatrix} \overrightarrow{a} + \overrightarrow{b}, \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a}, \overrightarrow{c} \end{bmatrix} + \begin{bmatrix} \overrightarrow{b}, \overrightarrow{c} \end{bmatrix}.$
3) $\begin{bmatrix} \overrightarrow{a}, \lambda \overrightarrow{b} \end{bmatrix} = \lambda \begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} \end{bmatrix},$
 $\begin{bmatrix} \lambda \overrightarrow{a}, \overrightarrow{b} \end{bmatrix} = \lambda \begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} \end{bmatrix}.$

Геометрические свойства векторного произведения

4) Если векторы \overrightarrow{a} и \overrightarrow{b} не коллинеарны, то $\left|\left[\overrightarrow{a}, \overrightarrow{b}\right]\right| = S$, где S — площадь парал-

лелограмма, построенного на векторах \overrightarrow{a} и \overrightarrow{b} .

5) $\overrightarrow{a} \parallel \overrightarrow{b}$ (векторы \overrightarrow{a} и \overrightarrow{b} коллинеарны) $\Leftrightarrow \left[\overrightarrow{a}, \overrightarrow{b}\right] = \overrightarrow{0}$.

$$\mathcal{A}$$
оказательство.
1) Пусть $\begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} \end{bmatrix} = \overrightarrow{c}, \ \begin{bmatrix} \overrightarrow{b}, \overrightarrow{a} \end{bmatrix} = \overrightarrow{d}$. Тогда

$$\begin{cases} a) & \overrightarrow{|c|} = \overrightarrow{|d|} = \overrightarrow{|a|} \cdot \overrightarrow{|b|} \cdot \sin \omega \\ b) & \overrightarrow{c} \perp \overrightarrow{a}, \quad \overrightarrow{c} \perp \overrightarrow{b}, \quad \overrightarrow{d} \perp \overrightarrow{a}, \quad \overrightarrow{d} \perp \overrightarrow{b} \\ c) & \overrightarrow{a}, \quad \overrightarrow{b}, \quad \overrightarrow{c} - \text{правая тройка}, \quad \overrightarrow{b}, \quad \overrightarrow{a}, \quad \overrightarrow{d} - \text{правая тройка} \end{cases} \Rightarrow \overrightarrow{c} = -\overrightarrow{d}.$$

Puc. 3.6

2) Данное свойство будет доказано в п. 3.9.

3) Пусть
$$\overrightarrow{c} = \left[\overrightarrow{a}, \overrightarrow{b}\right], \ \overrightarrow{d} = \left[\overrightarrow{a}, \lambda \overrightarrow{b}\right]$$
. Тогда при $\lambda > 0$ $\lambda \overrightarrow{b} \uparrow \uparrow \overrightarrow{b}$, и

$$\left\{ \begin{array}{ll} a) & \overrightarrow{c} \middle| = \overrightarrow{a} \middle| \cdot \overrightarrow{b} \middle| \cdot \sin \omega, \ |\overrightarrow{d} \middle| = \overrightarrow{a} \middle| \cdot \cancel{\lambda} \overrightarrow{b} \middle| \cdot \sin \omega = \lambda \overrightarrow{c} \middle| c \middle| \\ b) & \overrightarrow{c} \perp \overrightarrow{a}, \overrightarrow{c} \perp \overrightarrow{b}, \overrightarrow{d} \perp \overrightarrow{a}, \overrightarrow{d} \perp \lambda \overrightarrow{b}, \overrightarrow{d} - \text{правая тройка} \end{array} \right. \Rightarrow \overrightarrow{d} = \lambda \overrightarrow{c}$$

Puc. 3.7

При
$$\lambda < 0$$
 $\lambda \overrightarrow{b} \uparrow \downarrow \overrightarrow{b}$, и

$$\begin{cases} a) & |\overrightarrow{c}| = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \omega, \\ |\overrightarrow{d}| = |\overrightarrow{a}| \cdot |\lambda \overrightarrow{b}| \cdot \sin(\pi - \omega) = |\lambda| \cdot |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \omega = |\lambda| \cdot |\overrightarrow{c}| \\ b) & \overrightarrow{c} \perp \overrightarrow{a}, \quad \overrightarrow{c} \perp \overrightarrow{b}, \quad \overrightarrow{d} \perp \overrightarrow{a}, \quad \overrightarrow{d} \perp \lambda \overrightarrow{b}, \\ c) & \overrightarrow{a}, \quad \overrightarrow{b}, \quad \overrightarrow{c} - \text{правая тройка}, \quad \overrightarrow{a}, \quad \lambda \overrightarrow{b}, \quad \overrightarrow{d} - \text{правая тройка} \end{cases}$$
 $\Rightarrow \overrightarrow{d} = \lambda \overrightarrow{c}.$

При
$$\lambda = 0$$
 $\lambda \overrightarrow{b} = \overrightarrow{0}$ \Rightarrow $\overrightarrow{d} = \overrightarrow{0}$ \Rightarrow $\overrightarrow{d} = \lambda \overrightarrow{c}$. Далее, $\left[\lambda \overrightarrow{a}, \overrightarrow{b}\right] = -\left[\overrightarrow{b}, \lambda \overrightarrow{a}\right] = -\lambda \left[\overrightarrow{b}, \overrightarrow{a}\right] = \lambda \left[\overrightarrow{a}, \overrightarrow{b}\right]$.

4) Рассмотрим параллелограмм, построенный на векторах $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$. Его площадь вычисляется по формуле

$$S = \left| \overrightarrow{a} \right| \cdot \left| \overrightarrow{b} \right| \cdot \sin \omega \quad \Rightarrow \quad S = \left| \left[\overrightarrow{a}, \overrightarrow{b} \right] \right|.$$

Следовательно, площадь треугольника, построенного на векторах $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$, вычисляется по формуле

$$S_{\triangle} = \frac{1}{2} \left| \overrightarrow{a} \right| \cdot \left| \overrightarrow{b} \right| \cdot \sin \omega = \frac{1}{2} \left| \left[\overrightarrow{a}, \overrightarrow{b} \right] \right|.$$

 $5) \left[\overrightarrow{a} \,,\, \overrightarrow{b} \right] = \overrightarrow{0} \,\Leftrightarrow\, \left| \left[\overrightarrow{a} \,,\, \overrightarrow{b} \right] \right| = 0 \,\Leftrightarrow\, \left| \overrightarrow{a} \right| \cdot \left| \overrightarrow{b} \right| \cdot \sin \omega = 0.$ Последнее равенство возможно в следующих случаях:

b)
$$\sin \omega = 0 \Leftrightarrow \omega = 0$$
 или $\omega = \pi \Rightarrow \overrightarrow{a} \parallel \overrightarrow{b}$.

Пример 3.5. Пусть \overrightarrow{a} и \overrightarrow{b} — неколлинеарные векторы. Вычислим произведение $\left[\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{a} - \overrightarrow{b}\right]$. Пользуясь тем, что $\left[\overrightarrow{a}, \overrightarrow{a}\right] = \left[\overrightarrow{b}, \overrightarrow{b}\right] = \overrightarrow{0}$ (как произведение

$$\left[\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{a} - \overrightarrow{b}\right] = \left[\overrightarrow{b}, \overrightarrow{a}\right] - \left[\overrightarrow{a}, \overrightarrow{b}\right] = 2\left[\overrightarrow{b}, \overrightarrow{a}\right].$$

Отсюда

$$S_{\text{параллелограмма}} = \frac{1}{2} \left| \left[\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{a} - \overrightarrow{b} \right] \right| = \frac{1}{2} \left| \overrightarrow{a} + \overrightarrow{b} \right| \cdot \left| \overrightarrow{a} - \overrightarrow{b} \right| \cdot \sin \varphi,$$
 где φ — угол между векторами $\overrightarrow{a} + \overrightarrow{b}$ и $\overrightarrow{a} - \overrightarrow{b}$.

Puc. 3.10

Тем самым доказано, что площадь параллелограмма равна половине произведения длин диагоналей на синус угла между ними.

3.7. Координатное выражение векторного произведения

Теорема 3.2. Пусть
$$\overrightarrow{a} = a_1 \overrightarrow{i} + a_2 \overrightarrow{j} + a_3 \overrightarrow{k}$$
, $\overrightarrow{b} = b_1 \overrightarrow{i} + b_2 \overrightarrow{j} + b_3 \overrightarrow{k}$. Тогда
$$\left[\overrightarrow{a}, \overrightarrow{b}\right] = (a_2b_3 - a_3b_2) \overrightarrow{i} - (a_1b_3 - a_3b_1) \overrightarrow{j} + (a_1b_2 - a_2b_1) \overrightarrow{k}, \qquad (3.12)$$

или в символической записи

$$\begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} \end{bmatrix} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}. \tag{3.13}$$

Доказательство. Для векторных произведений ортов координатных осей имеют место равенства, которые следуют непосредственно из определения векторного произведения (а также очевидны из геометрических соображений):

Тогда по свойствам векторного произведения получаем

$$\begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} \end{bmatrix} = \begin{bmatrix} a_1 \overrightarrow{i} + a_2 \overrightarrow{j} + a_3 \overrightarrow{k}, b_1 \overrightarrow{i} + b_2 \overrightarrow{j} + b_3 \overrightarrow{k} \end{bmatrix} =$$

$$a_1b_1 \begin{bmatrix} \overrightarrow{i}, \overrightarrow{i} \end{bmatrix} + a_1b_2 \begin{bmatrix} \overrightarrow{i}, \overrightarrow{j} \end{bmatrix} + a_1b_3 \begin{bmatrix} \overrightarrow{i}, \overrightarrow{k} \end{bmatrix} + a_2b_1 \begin{bmatrix} \overrightarrow{j}, \overrightarrow{i} \end{bmatrix} + a_2b_2 \begin{bmatrix} \overrightarrow{j}, \overrightarrow{j} \end{bmatrix} +$$

$$a_2b_3 \begin{bmatrix} \overrightarrow{j}, \overrightarrow{k} \end{bmatrix} + a_1b_1 \begin{bmatrix} \overrightarrow{k}, \overrightarrow{i} \end{bmatrix} + a_3b_2 \begin{bmatrix} \overrightarrow{k}, \overrightarrow{j} \end{bmatrix} + a_3b_3 \begin{bmatrix} \overrightarrow{k}, \overrightarrow{k} \end{bmatrix} =$$

$$(a_2b_3 - a_3b_2) \overrightarrow{i} - (a_1b_3 - a_3b_1) \overrightarrow{j} + (a_1b_2 - a_2b_1) \overrightarrow{k} =$$

$$\begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \overrightarrow{k} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.$$

3.8. Смешанное произведение

Определение 3.5. Векторно-скалярным (смешанным) произведением векторов \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} называется число, равное скалярному произведению вектора \overrightarrow{a} на векторо $[\overrightarrow{b},\overrightarrow{c}]$:

$$\left\langle \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right\rangle = \left(\overrightarrow{a}, \left[\overrightarrow{b}, \overrightarrow{c} \right] \right).$$

3.9. Свойства смешанного произведения

Геометрические свойства смешанного произведения

1) Пусть некомпланарные векторы \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} приведены к общему началу, и V — объем параллелепипеда, построенного на векторах \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} . Тогда

$$\left\langle \overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right\rangle = \left\{ \begin{array}{l} V, \text{ если тройка } \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} - \text{правая}, \\ -V, \text{ если тройка } \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} - \text{левая}. \end{array} \right.$$

2) Векторы \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} компланарны \Leftrightarrow $\left\langle \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right\rangle = 0$.

Алгебраические свойства смешанного произведения

3) Для любых векторов $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$ и $\stackrel{\rightarrow}{c}$

$$\left\langle \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right\rangle = \left\langle \overrightarrow{b} \overrightarrow{c} \overrightarrow{a} \right\rangle = \left\langle \overrightarrow{c} \overrightarrow{a} \overrightarrow{b} \right\rangle = -\left\langle \overrightarrow{a} \overrightarrow{c} \overrightarrow{b} \right\rangle = -\left\langle \overrightarrow{c} \overrightarrow{b} \overrightarrow{a} \right\rangle = -\left\langle \overrightarrow{b} \overrightarrow{a} \overrightarrow{c} \right\rangle.$$

4)
$$\left\langle \left(\lambda_1 \overrightarrow{a_1} + \lambda_2 \overrightarrow{a_2}\right) \overrightarrow{b} \overrightarrow{c} \right\rangle = \lambda_1 \left\langle \overrightarrow{a_1} \overrightarrow{b} \overrightarrow{c} \right\rangle + \lambda_2 \left\langle \overrightarrow{a_2} \overrightarrow{b} \overrightarrow{c} \right\rangle$$
.

Аналогичное свойство имеет место для остальных множителей

$$\left\langle \overrightarrow{a} \left(\lambda_1 \overrightarrow{b_1} + \lambda_2 \overrightarrow{b_2} \right) \overrightarrow{c} \right\rangle = \lambda_1 \left\langle \overrightarrow{a} \overrightarrow{b_1} \overrightarrow{c} \right\rangle + \lambda_2 \left\langle \overrightarrow{a} \overrightarrow{b_2} \overrightarrow{c} \right\rangle,$$

$$\left\langle \overrightarrow{a} \overrightarrow{b} \left(\lambda_1 \overrightarrow{c_1} + \lambda_2 \overrightarrow{c_2} \right) \right\rangle = \lambda_1 \left\langle \overrightarrow{a} \overrightarrow{b} \overrightarrow{c_1} \right\rangle + \lambda_2 \left\langle \overrightarrow{a} \overrightarrow{b} \overrightarrow{c_2} \right\rangle.$$

Доказательство. 1) Пусть векторы \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} некомпланарны. Тогда по определению смешанного произведения и формуле (3.2) имеем

$$\left(\overrightarrow{a}\,,\,\left[\overrightarrow{b}\,,\,\overrightarrow{c}\,\right]\right) = \left|\left[\overrightarrow{b}\,,\,\overrightarrow{c}\,\right]\right| \cdot pr_{\left[\overrightarrow{b}\,,\,\overrightarrow{c}\,\right]}\overrightarrow{a} = \underbrace{\left|\overrightarrow{b}\,\right| \cdot \left|\overrightarrow{c}\,\right| \cdot \sin\omega}_{Sochobahug} \cdot \underbrace{pr_{\left[\overrightarrow{b}\,,\,\overrightarrow{c}\,\right]}\overrightarrow{a}}_{+h}.$$

Далее, если тройка \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} — правая, то φ — острый угол (см. рис. 3.11). Значит,

$$pr_{\left[\overrightarrow{b},\overrightarrow{c}\right]}\overrightarrow{a} = \left|\overrightarrow{a}\right|\cos\varphi > 0 \implies pr_{\left[\overrightarrow{b},\overrightarrow{c}\right]}\overrightarrow{a} = h \implies \left(\overrightarrow{a}, \left[\overrightarrow{b},\overrightarrow{c}\right]\right) = S_{\text{ОСНОВАНИЯ}} \cdot h = V_{\text{Параллелепипеда}}$$

Puc. 3.11

Если тройка \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} — левая, то φ — тупой угол (см. рис. 3.12). Значит,

$$pr_{\left[\overrightarrow{b},\overrightarrow{c}\right]}\overrightarrow{a}=|\overrightarrow{a}|\cos{\varphi}<0 \Rightarrow pr_{\left[\overrightarrow{b},\overrightarrow{c}\right]}\overrightarrow{a}=-h \Rightarrow$$
 $\left(\overrightarrow{a},\left[\overrightarrow{b},\overrightarrow{c}\right]\right)=S_{\mathrm{OCHOBAHUS}}\cdot(-h)=-V_{\mathrm{Параллелепипеда}}.$

Puc. 3.12

2) Выше показано, что если векторы \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} некомпланарны, то

$$\langle \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \rangle = \pm V \neq 0.$$

a)
$$\overrightarrow{a} = \overrightarrow{0} \Rightarrow (\overrightarrow{a}, [\overrightarrow{b}, \overrightarrow{c}]) = 0,$$

Пусть теперь векторы \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} компланарны. Рассмотрим три частных случая: a) $\overrightarrow{a} = \overrightarrow{0} \Rightarrow \left(\overrightarrow{a}, \left[\overrightarrow{b}, \overrightarrow{c}\right]\right) = 0$, b) векторы \overrightarrow{b} и \overrightarrow{c} коллинеарны $\Rightarrow \left[\overrightarrow{b}, \overrightarrow{c}\right] = \overrightarrow{0} \Rightarrow \left(\overrightarrow{a}, \left[\overrightarrow{b}, \overrightarrow{c}\right]\right) = 0$. c) векторы \overrightarrow{b} и \overrightarrow{c} неколлинеарны, вектор \overrightarrow{a} параллелен плоскости векторов \overrightarrow{b} и \overrightarrow{c} \Leftrightarrow $\overrightarrow{a} \perp \left[\overrightarrow{b}, \overrightarrow{c}\right] \Rightarrow \left(\overrightarrow{a}, \left[\overrightarrow{b}, \overrightarrow{c}\right]\right) = 0$.

Следствие. Пусть некомпланарные векторы \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} приведены к общему началу. Тогда объем пирамиды, построенной на векторах \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , равен

$$V = \frac{1}{6} \left| \left\langle \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right\rangle \right|. \tag{3.14}$$

Puc. 3.13

Действительно,

$$V = \frac{1}{3} S_{\triangle} \cdot h = \frac{1}{3} \cdot \left(\frac{1}{2} S_{\text{параллелограмма}} \right) \cdot h =$$
 $\frac{1}{6} V_{\text{параллеленипеда}} = \frac{1}{6} \left| \left\langle \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right\rangle \right|.$

3) Из предыдущего свойства вытекает, что при перестановке сомножителей в смешанном произведении может измениться лишь знак произведения. Остается заметить, что тройки, получаемые по схеме из рис. 3.14 (начиная с любого вектора), имеют одинаковую ориентацию.

Puc. 3.14

При движении по этой схеме в противоположном направлении ориентация меняется.

4) Пользуясь свойствами скалярного произведения, получаем

$$\left\langle \left(\lambda_{1} \overrightarrow{a_{1}} + \lambda_{2} \overrightarrow{a_{2}} \right) \overrightarrow{b} \overrightarrow{c} \right\rangle = \left(\left(\lambda_{1} \overrightarrow{a}_{1} + \lambda_{2} \overrightarrow{a}_{2} \right), \left[\overrightarrow{b}, \overrightarrow{c} \right] \right) =$$

$$\lambda_{1} \left(\overrightarrow{a}_{1}, \left[\overrightarrow{b}, \overrightarrow{c} \right] \right) + \lambda_{2} \left(\overrightarrow{a}_{2}, \left[\overrightarrow{b}, \overrightarrow{c} \right] \right) = \lambda_{1} \left\langle \overrightarrow{a}_{1} \overrightarrow{b} \overrightarrow{c} \right\rangle + \lambda_{2} \left\langle \overrightarrow{a}_{2} \overrightarrow{b} \overrightarrow{c} \right\rangle,$$

Последнее равенство доказывается аналогично.

Докажем теперь свойство 2) векторного произведения, т.е. равенства

$$\begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} + \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} \end{bmatrix} + \begin{bmatrix} \overrightarrow{a}, \overrightarrow{c} \end{bmatrix}, \\ \begin{bmatrix} \overrightarrow{a} + \overrightarrow{b}, \overrightarrow{c} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a}, \overrightarrow{c} \end{bmatrix} + \begin{bmatrix} \overrightarrow{b}, \overrightarrow{c} \end{bmatrix}.$$

Доказательство. Из свойства 4) смешанного произведения вытекает, что для любого вектора \overrightarrow{d}

Беря в качестве \overrightarrow{d} векторы \overrightarrow{i} , \overrightarrow{j} и \overrightarrow{k} , получаем, что координаты векторов $\left[\overrightarrow{a}, \overrightarrow{b} + \overrightarrow{c}\right]$ и $\left[\overrightarrow{a}, \overrightarrow{b}\right] + \left[\overrightarrow{a}, \overrightarrow{c}\right]$ совпадают (см. замечание п. 3.1). Из этого следует, что эти векторы равны.

Второе равенство доказывается аналогично.

3.10. Координатное выражение смешанного произведения

Теорема 3.3. Пусть $\overrightarrow{a} = a_1 \overrightarrow{i} + a_2 \overrightarrow{j} + a_3 \overrightarrow{k}$, $\overrightarrow{b} = b_1 \overrightarrow{i} + b_2 \overrightarrow{j} + b_3 \overrightarrow{k}$, $\overrightarrow{c} = c_1 \overrightarrow{i} + c_2 \overrightarrow{j} + c_3 \overrightarrow{k}$. Тогда

$$\left\langle \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right\rangle = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}. \tag{3.15}$$

Доказательство. По формулам (3.5), (3.12) имеем:

$$\begin{bmatrix} \overrightarrow{b}, \overrightarrow{c} \end{bmatrix} = (b_2c_3 - b_3c_2) \overrightarrow{i} - (b_1c_3 - b_3c_1) \overrightarrow{j} + (b_1c_2 - b_2c_1) \overrightarrow{k},
(\overrightarrow{a}, [\overrightarrow{b}, \overrightarrow{c}]) = a_1(b_2c_3 - b_3c_2) - a_2(b_1c_3 - b_3c_1) + a_3(b_1c_2 - b_2c_1) =
a_1 \cdot \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \cdot \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}.$$

Таким образом, геометрический смысл определителя третьего порядка $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ — это объем параллелепипеда, построенного на векторах $\overrightarrow{a} = (a_1, a_2, a_3), \overrightarrow{b} = (b_1, b_2, b_3)$ и $\overrightarrow{c} = (c_1, c_2, c_3)$, взятый со знаком (+), если тройка \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} — правая и со знаком (-), если тройка \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} — левая.

Упражнение. Доказать, что геометрический смысл определителя второго порядка $\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$ — это площадь параллелограмма, построенного на векторах $\overrightarrow{a} = (a_1, a_2)$ и $\overrightarrow{b} = (b_1, b_2)$, взятая со знаком (+), если кратчайший поворот от вектора \overrightarrow{a} к вектору \overrightarrow{b} происходит против часовой стрелки, и со знаком (—) в противном случае.

3.11. Упражнения

Упражнение 3.1. Дано: $\begin{vmatrix} \overrightarrow{a} \end{vmatrix} = 2$, $\begin{vmatrix} \overrightarrow{b} \end{vmatrix} = 3$, $(\overrightarrow{a}, \overrightarrow{b}) = \frac{2\pi}{3}$. Найти: 1) $(\overrightarrow{a} + \overrightarrow{b})^2$, 2) $(2\overrightarrow{a} - 3\overrightarrow{b}, \overrightarrow{a} + 2\overrightarrow{b})$, 3) $|2\overrightarrow{a} - \overrightarrow{b}|$.

Используем определение и свойства скалярного произведения.

1)
$$(\overrightarrow{a} + \overrightarrow{b})^2 = (\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{a} + \overrightarrow{b}) = (\overrightarrow{a}, \overrightarrow{a}) + 2(\overrightarrow{a}, \overrightarrow{b}) + (\overrightarrow{b}, \overrightarrow{b}) = |\overrightarrow{a}|^2 + 2|\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos\frac{2\pi}{3} + |\overrightarrow{b}|^2 = 7,$$

2)
$$\left(2\overrightarrow{a} - 3\overrightarrow{b}, \overrightarrow{a} + 2\overrightarrow{b}\right) = 2\left(\overrightarrow{a}, \overrightarrow{a}\right) + 4\left(\overrightarrow{a}, \overrightarrow{b}\right) - 3\left(\overrightarrow{b}, \overrightarrow{a}\right) - 6\left(\overrightarrow{b}, \overrightarrow{b}\right) = 2\left(\overrightarrow{a}, \overrightarrow{a}\right) + \left(\overrightarrow{a}, \overrightarrow{b}\right) - 6\left(\overrightarrow{b}, \overrightarrow{b}\right) = 3\left|\overrightarrow{a}\right|^2 + \left|\overrightarrow{a}\right| \cdot \left|\overrightarrow{b}\right| \cdot \cos\frac{2\pi}{3} - 6\left|\overrightarrow{b}\right|^2 = -49,$$

3)
$$\left| 2\overrightarrow{a} - \overrightarrow{b} \right| = \sqrt{\left(2\overrightarrow{a} - \overrightarrow{b}, 2\overrightarrow{a} - \overrightarrow{b} \right)} = \sqrt{4\left(\overrightarrow{a}, \overrightarrow{a} \right) - 4\left(\overrightarrow{a}, \overrightarrow{b} \right) + \left(\overrightarrow{b}, \overrightarrow{b} \right)} = \sqrt{4\left| \overrightarrow{a} \right|^2 - 4\left| \overrightarrow{a} \right| \cdot \left| \overrightarrow{b} \right| \cdot \cos\frac{2\pi}{3} + \left| \overrightarrow{b} \right|^2} = \sqrt{37}.$$

Упражнение 3.2. Определить угол между векторами \overrightarrow{a} и \overrightarrow{b} , если известно, что $\left|\overrightarrow{a}\right|=2,\ \left|\overrightarrow{b}\right|=1,\ \left(\overrightarrow{a}-2\overrightarrow{b}\right)^2+\left(2\overrightarrow{a}-\overrightarrow{b}\right)^2=17.$

Используем определение и свойства скалярного произведения.

$$\left(\overrightarrow{a} - 2\overrightarrow{b}\right)^{2} + \left(2\overrightarrow{a} - \overrightarrow{b}\right)^{2} = 5\left(\overrightarrow{a}, \overrightarrow{a}\right) - 8\left(\overrightarrow{a}, \overrightarrow{b}\right) + 5\left(\overrightarrow{b}, \overrightarrow{b}\right) = 5\left|\overrightarrow{a}\right|^{2} - 8\left|\overrightarrow{a}\right| \cdot \left|\overrightarrow{b}\right| \cdot \cos\omega + 5\left|\overrightarrow{b}\right|^{2} = 25 - 16\cos\omega = 17,$$

$$\cos\omega = \frac{1}{2}, \quad \omega = \frac{\pi}{3}.$$

Упражнение 3.3. Пусть $\overrightarrow{a}=(3,\ -2,\ -5),\ \overrightarrow{b}=(1,\ -3,\ 4).$ Найти: 1) $(\overrightarrow{a},\ \overrightarrow{b}),$ 2) $(\overrightarrow{a}-3\overrightarrow{b},\ 3\overrightarrow{a}+2\overrightarrow{b}),\ 3)$ $pr_{(\overrightarrow{a}+2\overrightarrow{b})}(4\overrightarrow{a}-\overrightarrow{b}).$

1) По формуле (3.5) получаем

$$(\overrightarrow{a}, \overrightarrow{b}) = (3 - 2 - 5) \begin{pmatrix} 1 \\ -3 \\ 4 \end{pmatrix} = 3 + 6 - 20 = -11.$$

2) По формулам (2.1), (2.2) найдем координаты векторов $\overrightarrow{a} - 3\overrightarrow{b}$ и $3\overrightarrow{a} + 2\overrightarrow{b}$:

$$\overrightarrow{a} - 3\overrightarrow{b} = (3, -2, -5) - 3(1, -3, 4) = (0, 7, -17),$$

$$3\overrightarrow{a} + 2\overrightarrow{b} = 3(3, -2, -5) + 2(1, -3, 4) = (11, -12, -7).$$

Далее, по формуле (3.5) получаем

$$\left(\overrightarrow{a} - 3\overrightarrow{b}, \ 3\overrightarrow{a} + 2\overrightarrow{b}\right) = (0 \ 7 \ -17) \left(\begin{array}{c} 11 \\ -12 \\ -7 \end{array}\right) = -84 + 119 = 35.$$

3) Аналогично п.2):

$$\overrightarrow{a} + 2\overrightarrow{b} = (3, -2, -5) + 2(1, -3, 4) = (5, -8, 3),$$

$$4\overrightarrow{a} - \overrightarrow{b} = 4(3, -2, -5) - (1, -3, 4) = (11, -5, -24).$$

$$(\overrightarrow{a} + 2\overrightarrow{b}, 4\overrightarrow{a} - \overrightarrow{b}) = (5, -8, 3) \begin{pmatrix} 11 \\ -5 \\ -24 \end{pmatrix} = 55 + 40 - 72 = 23.$$

Далее, по формуле (3.2)

Упражнение 3.4. Найти острый угол между диагоналями параллелограмма, построенного на векторах $\overrightarrow{a}=(2,\,1,\,0)$ и $\overrightarrow{b}=(0,\,-1,\,1).$

По определению операций сложения и вычитания векторов (см. рис. 1.4 и 1.5 п. 1.1):

$$\overrightarrow{d}_1 = \overrightarrow{a} + \overrightarrow{b} = (2, 0, 1), \quad \overrightarrow{d}_2 = \overrightarrow{a} - \overrightarrow{b} = (2, 2, -1).$$

Далее, по формулам (3.3), (3.7)

$$\cos \omega = \frac{\left(\overrightarrow{d}_{1}, \overrightarrow{d}_{2}\right)}{\left|\overrightarrow{d}_{1}\right| \cdot \left|\overrightarrow{d}_{2}\right|} = \frac{3}{3\sqrt{5}} = \frac{1}{\sqrt{5}}.$$

Поскольку $\cos\omega>0,$ то $\omega=\arccos\frac{1}{\sqrt{5}}$ — острый угол между диагоналями параллелограмма.

Упражнение 3.5. Даны вершины треугольника A(6, 3, -2), B(6, 2, -3), C(7, 1, -3). Найти величину внешнего угла при вершине B.

Искомый угол — это угол между векторами $\overrightarrow{BA} = (0, 1, 1)$ и $\overrightarrow{CB} = (-1, 1, 0)$ (см. рис. 3.15), обозначим его через β .

Тогда по формулам (3.3), (3.7), получаем:

$$\cos \beta = \frac{\left(\overrightarrow{BA}, \overrightarrow{CB}\right)}{\left|\overrightarrow{BA}\right| \cdot \left|\overrightarrow{CB}\right|} = \frac{1}{\sqrt{2} \cdot \sqrt{2}} = \frac{1}{2}, \quad \beta = \frac{\pi}{3}.$$

Упражнение 3.6. Даны координаты вершин треугольника A(1, 1, 2), B(1, 6, 3) и C(4, 5, 2). Найти координаты проекции точки B на сторону AC.

Пусть B'(x, y, z) — проекция точки B на сторону AC (см. рис. 3.16).

Puc. 3.16

Тогда по формуле (3.2)

$$\left|\overrightarrow{AB'}\right| = pr_{\overrightarrow{AC}}\overrightarrow{AB} = \frac{\left(\overrightarrow{AB}, \overrightarrow{AC}\right)}{\left|\overrightarrow{AC}\right|}.$$

Имеем

$$\overrightarrow{AB} = (0, 5, 1), \overrightarrow{AC} = (3, 4, 0),$$

 $\left| \overrightarrow{AC} \right| = 5, \left(\overrightarrow{AB}, \overrightarrow{AC} \right) = 20, \left| \overrightarrow{AB'} \right| = 4.$

Поэтому

$$\overrightarrow{AB'} = \frac{4}{5} \overrightarrow{AC}.$$

Запишем полученное равенство в координатном виде:

$$\begin{pmatrix} x & -1 \\ y & -1 \\ z & -2 \end{pmatrix} = \frac{4}{5} \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} x = 17/5 \\ y = 21/5 \\ z = 2 \end{cases}$$

Значит,

$$B' = (17/5, 21/5, 2).$$

Упражнение 3.7.

Упростить выражение
$$\begin{bmatrix} 2\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{c} - \overrightarrow{a} \end{bmatrix} + \begin{bmatrix} \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{a} + \overrightarrow{b} \end{bmatrix}$$
.

Воспользуемся определением и алгебраическими свойствами векторного произведения:

$$\begin{split} \left[2\overrightarrow{a}+\overrightarrow{b},\overrightarrow{c}-\overrightarrow{a}\right]+\left[\overrightarrow{b}+\overrightarrow{c},\overrightarrow{a}+\overrightarrow{b}\right]=\\ \left(2\left[\overrightarrow{a},\overrightarrow{c}\right]-2\left[\overrightarrow{a},\overrightarrow{a}\right]+\left[\overrightarrow{b},\overrightarrow{c}\right]-\left[\overrightarrow{b},\overrightarrow{a}\right]\right)+\\ \left(\left[\overrightarrow{b},\overrightarrow{a}\right]+\left[\overrightarrow{b},\overrightarrow{b}\right]+\left[\overrightarrow{c},\overrightarrow{a}\right]+\left[\overrightarrow{c},\overrightarrow{b}\right]\right)=\\ 2\left[\overrightarrow{a},\overrightarrow{c}\right]+\left[\overrightarrow{b},\overrightarrow{c}\right]-\left[\overrightarrow{a},\overrightarrow{c}\right]-\left[\overrightarrow{b},\overrightarrow{c}\right]=\left[\overrightarrow{a},\overrightarrow{c}\right],\\ \text{T.K. }\left[\overrightarrow{a},\overrightarrow{a}\right]=\left[\overrightarrow{b},\overrightarrow{b}\right]=\overrightarrow{0},\;\left[\overrightarrow{c},\overrightarrow{a}\right]=-\left[\overrightarrow{a},\overrightarrow{c}\right],\;\left[\overrightarrow{c},\overrightarrow{b}\right]=-\left[\overrightarrow{b},\overrightarrow{c}\right]. \end{split}$$

Упражнение 3.8.

Дано:
$$\left|\overrightarrow{a}\right| = 2, \ \left|\overrightarrow{b}\right| = 3, \ \left(\overrightarrow{a}, \ \overrightarrow{b}\right) = \frac{\pi}{3}$$
. Найти $\left|\left[2\overrightarrow{a} - \overrightarrow{b}, 3\overrightarrow{a} + 2\overrightarrow{b}\right]\right|$.

Так же, как в предыдущей задаче, упростим выражение:

$$\begin{bmatrix}
2\overrightarrow{a} - \overrightarrow{b}, 3\overrightarrow{a} + 2\overrightarrow{b}
\end{bmatrix} = 6\begin{bmatrix}\overrightarrow{a}, \overrightarrow{a}\end{bmatrix} - 3\begin{bmatrix}\overrightarrow{b}, \overrightarrow{a}\end{bmatrix} + 4\begin{bmatrix}\overrightarrow{a}, \overrightarrow{b}\end{bmatrix} - 2[\overrightarrow{b}, \overrightarrow{b}] = 3\begin{bmatrix}\overrightarrow{a}, \overrightarrow{b}\end{bmatrix} + 4\begin{bmatrix}\overrightarrow{a}, \overrightarrow{b}\end{bmatrix} + 4\begin{bmatrix}\overrightarrow{a}, \overrightarrow{b}\end{bmatrix} = 7[\overrightarrow{a}, \overrightarrow{b}].$$

Далее, по определению векторного произведения получаем:

$$\left| \left[2\overrightarrow{a} - \overrightarrow{b}, 3\overrightarrow{a} + 2\overrightarrow{b} \right] \right| = 7 \left| \left[\overrightarrow{a}, \overrightarrow{b} \right] \right| = 7 \left| \overrightarrow{a} \right| \cdot \left| \overrightarrow{b} \right| \cdot \sin \frac{\pi}{3} = 21\sqrt{3}.$$

Упражнение 3.9. Какому условию должны удовлетворять векторы \overrightarrow{a} u \overrightarrow{b} , чтобы векторы \overrightarrow{a} + \overrightarrow{b} u \overrightarrow{a} - \overrightarrow{b} были коллинеарны?

По свойству векторного произведения

$$\overrightarrow{a} + \overrightarrow{b} \parallel \overrightarrow{a} - \overrightarrow{b} \iff \left[\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{a} - \overrightarrow{b} \right] = \overrightarrow{0}.$$

Далее,

$$\left[\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{a} - \overrightarrow{b}\right] = -2\left[\overrightarrow{a}, \overrightarrow{b}\right] = \overrightarrow{0} \iff \left[\overrightarrow{a}, \overrightarrow{b}\right] = \overrightarrow{0} \iff \overrightarrow{a} \parallel \overrightarrow{b}.$$

Значит, векторы $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$ должны быть коллинеарны.

Замечание. Задачу можно было решить, просто воспользовавшись определением операций сложения и вычитания векторов (см. рис. 1.4 и 1.5 п. 1.1).

Упражнение 3.10. Пусть
$$\overrightarrow{a} = (2, -1, 3), \overrightarrow{b} = (-1, 2, 0).$$
 Найти $1) \begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} \end{bmatrix}$, $2) \begin{bmatrix} 2\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{a} - 3\overrightarrow{b} \end{bmatrix}$.

1) По формуле (3.13) имеем:

$$\begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} \end{bmatrix} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & -1 & 3 \\ -1 & 2 & 0 \end{vmatrix} = \begin{vmatrix} -1 & 3 \\ 2 & 0 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 2 & 3 \\ -1 & 0 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 2 & -1 \\ -1 & 2 \end{vmatrix} \overrightarrow{k} = -6 \overrightarrow{i} - 3 \overrightarrow{j} + 3 \overrightarrow{k}.$$

2) Найдем координаты векторов $2\overrightarrow{a} + \overrightarrow{b}$ и $\overrightarrow{a} - 3\overrightarrow{b}$:

$$2\overrightarrow{a} + \overrightarrow{b} = 2(2, -1, 3) + (-1, 2, 0) = (3, 0, 6),
\overrightarrow{a} - 3\overrightarrow{b} = (2, -1, 3) - 3(-1, 2, 0) = (5, -7, 3).$$

Далее,

$$\begin{bmatrix} 2\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{a} - 3\overrightarrow{b} \end{bmatrix} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 3 & 0 & 6 \\ 5 & -7 & 3 \end{vmatrix} = \begin{vmatrix} 0 & 6 & | \overrightarrow{j} - | & 3 & 6 \\ -7 & 3 & | \overrightarrow{i} - | & 3 & 6 & | \overrightarrow{j} + | & 3 & 0 & | \overrightarrow{k} = 42\overrightarrow{i} + 21\overrightarrow{j} - 21\overrightarrow{k}.$$

Упражнение 3.11. Найти площадь параллелограмма, построенного на векторах $\overrightarrow{a}=(2,\,1,\,0)$ и $\overrightarrow{b}=(0,\,-1,\,1).$

Вычислим векторное произведение векторов \overrightarrow{a} и \overrightarrow{b} :

$$\begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} \end{bmatrix} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & 1 & 0 \\ 0 & -1 & 1 \end{vmatrix} = \overrightarrow{i} - 2\overrightarrow{j} - 2\overrightarrow{k}.$$

Далее, по свойству 4 векторного произведения:

$$S_{\text{параллелограмма}} = \left| \begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} \end{bmatrix} \right| = \sqrt{1^2 + (-2)^2 + (-2)^2} = 3.$$

Упражнение 3.12. Найти площадь треугольника, построенного на векторах $\overrightarrow{a} = 3\overrightarrow{p} + 2\overrightarrow{q}$ и $\overrightarrow{b} = 2\overrightarrow{p} - \overrightarrow{q}$, если $|\overrightarrow{p}| = 4$, $|\overrightarrow{q}| = 3$, $(\overrightarrow{p}, \overrightarrow{q}) = \frac{3\pi}{4}$.

По свойствам векторного произведения:

$$\begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} \end{bmatrix} = \begin{bmatrix} 3\overrightarrow{p} + 2\overrightarrow{q}, 2\overrightarrow{p} - \overrightarrow{q} \end{bmatrix} = -7 \begin{bmatrix} \overrightarrow{p}, \overrightarrow{q} \end{bmatrix};$$

$$S_{\triangle} = \frac{1}{2} \left| \begin{bmatrix} \overrightarrow{a}, \overrightarrow{b} \end{bmatrix} \right| = \frac{7}{2} \left| \begin{bmatrix} \overrightarrow{p}, \overrightarrow{q} \end{bmatrix} \right| = \frac{7}{2} \left| \overrightarrow{p} \right| \cdot \left| \overrightarrow{q} \right| \cdot \sin \frac{3\pi}{4} = 21\sqrt{2}.$$

Упражнение 3.13. Даны вершины треугольника A(3,2,-3), B(5,1,-1), C(1,-2,1). Найти 1) площадь треугольника ABC, 2) длину высоты BD, опущенной из точки B на сторону AC.

Найдем векторное произведение векторов $\overrightarrow{AB}=(2,\,-1,\,2)$ и $\overrightarrow{AC}=(-2,\,-4,\,4)$:

$$\left[\overrightarrow{AB}, \overrightarrow{AC}\right] = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 2 & -1 & 2 \\ -2 & -4 & 4 \end{vmatrix} = 4\overrightarrow{i} - 12\overrightarrow{j} - 10\overrightarrow{k}.$$

Далее,

$$S_{\triangle ABC} = \frac{1}{2} \left| \left[\overrightarrow{AB}, \overrightarrow{AC} \right] \right| = \frac{1}{2} \sqrt{4^2 + (-12)^2 + (-10)^2} = \frac{\sqrt{260}}{2} = \sqrt{65}.$$

Для того, чтобы найти длину высоты BD, используем формулу площади треугольника $S=\frac{a\cdot h_a}{2}$. Следовательно,

$$S_{\triangle ABC} = \frac{|AC| \cdot |BD|}{2},$$
$$|BD| = \frac{2S_{\triangle ABC}}{|AC|} = \frac{2\sqrt{65}}{6} = \frac{\sqrt{65}}{3}.$$

Упражнение 3.14. Векторы \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} образуют левую тройку, взаимно перпендикулярны $u \mid \overrightarrow{a} \mid = 4$, $\mid \overrightarrow{b} \mid = 2$, $\mid \overrightarrow{c} \mid = 3$. Найти $\langle \overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c} \rangle$.

Воспользуемся свойствами смешанного произведения. Так как $\stackrel{\rightarrow}{a},\stackrel{\rightarrow}{b},\stackrel{\rightarrow}{c}$ — левая тройка, то

 $\left\langle \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right\rangle = -V,$

где V — объем параллелепипеда, построенного на векторах $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$, $\stackrel{\rightarrow}{c}$. Далее, поскольку данные векторы взаимно перпендикулярны, то объем параллелепипеда равен

 $V = \left| \overrightarrow{a} \right| \cdot \left| \overrightarrow{b} \right| \cdot \left| \overrightarrow{c} \right| = 24.$

Значит, $\left\langle \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right\rangle = -24$.

Упражнение 3.15. Компланарны ли векторы $\overrightarrow{a} = 2\overrightarrow{i} + 3\overrightarrow{j} - \overrightarrow{k}$, $\overrightarrow{b} = 3\overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}$ $\overrightarrow{a} = 2\overrightarrow{i} + 7\overrightarrow{j} - 4\overrightarrow{k}$?

Вычислим смешанное произведение векторов $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$, $\stackrel{\rightarrow}{c}$:

$$\langle \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \rangle = \begin{vmatrix} 2 & 3 & -1 \\ 3 & -1 & 2 \\ 1 & 7 & -4 \end{vmatrix} = 0.$$

Следовательно, векторы $\stackrel{\rightarrow}{a},\stackrel{\rightarrow}{b}$ и $\stackrel{\rightarrow}{c}$ компланарны.

Упражнение 3.16. Даны вершины тетраэдра A(3, 2, -3), B(5, 1, -1), C(1, -2, 1),D(2, 0, 1). Найти 1) объем тетраэдра, 2) длину высоты, опущенной из точки D на грань ABC.

1) Рассмотрим три вектора, исходящие из одной вершины тетраэдра (см. рис. 3.17). Например,

$$\overrightarrow{DA} = (1, 2, -4),$$

$$\overrightarrow{DB} = (3, 1, -2),$$

$$\overrightarrow{DC} = (-1, -2, 0).$$

h В Α

Puc. 3.17

Найдем их смешанное произведение:

$$\left\langle \overrightarrow{DA} \, \overrightarrow{DB} \, \overrightarrow{DC} \right\rangle = \left| \begin{array}{ccc} 1 & 2 & -4 \\ 3 & 1 & -2 \\ -1 & -2 & 0 \end{array} \right| = 20.$$

По свойствам смешанного произведения

$$V_{
m Terpa ext{
m 2} Jpa} = rac{1}{6} \left| \left\langle \overrightarrow{DA} \overrightarrow{DB} \overrightarrow{DC}
ight
angle
ight| = rac{10}{3} \, .$$

2) Для нахождения высоты тетраэдра используем формулу объема $V=\frac{1}{3}\,S_{\rm OCH.}\cdot h.$ Отсюда получаем:

$$V=rac{1}{3}\,S_{\triangle ABC}\cdot h,\;\;S_{\triangle ABC}=\sqrt{65}$$
 (см. упражнение 13),
$$h=rac{3V}{S_{\triangle ABC}}=rac{10}{\sqrt{65}}=rac{2\sqrt{65}}{13}\,.$$

3.12. Задачи для самостоятельного решения

- 3.1. Дано: $\left|\overrightarrow{a}\right| = 3$, $\left|\overrightarrow{b}\right| = 2$, $\left(\overrightarrow{a}, \overrightarrow{b}\right) = \frac{2\pi}{3}$. Найти: 1) $\left(4\overrightarrow{a} + 3\overrightarrow{b}, 3\overrightarrow{a} 2\overrightarrow{b}\right)$, 2) $\left(3\overrightarrow{a} + \overrightarrow{b}\right)^2$, 3) $\left|\overrightarrow{a} \overrightarrow{b}\right|$.
- 3.2. Вычислить длину диагоналей параллелограмма, построенного на векторах $\overrightarrow{a}=2\overrightarrow{p}-\overrightarrow{q}$, $\overrightarrow{b}=3\overrightarrow{p}+2\overrightarrow{q}$, если известно, что $\left|\overrightarrow{p}\right|=2$, $\left|\overrightarrow{q}\right|=3$, $\left(\overrightarrow{p},\overrightarrow{q}\right)=\frac{\pi}{3}$.
- 3.3. Дано: $\begin{vmatrix} \overrightarrow{a} \\ \overrightarrow{a} \alpha \end{vmatrix} = 3$, $\begin{vmatrix} \overrightarrow{b} \\ \overrightarrow{b} \end{vmatrix} = 5$. Определить, при каком значении α векторы $\overrightarrow{a} + \alpha \overrightarrow{b}$ и $\overrightarrow{a} \alpha \overrightarrow{b}$ будут перпендикулярны.
- 3.4. Определить угол между векторами \overrightarrow{a} и \overrightarrow{b} , если известно, что $\left(3\overrightarrow{a}-2\overrightarrow{b}\right)^2+\left(\overrightarrow{a}+\overrightarrow{b}\right)^2=35$ и $\left|\overrightarrow{a}\right|=\sqrt{2},\ \left|\overrightarrow{b}\right|=1.$
- 3.5. Определить угол, образованный единичными векторами \overrightarrow{a} и \overrightarrow{b} , если известно, что векторы $\overrightarrow{p}=3$ $\overrightarrow{a}+2$ \overrightarrow{b} и $\overrightarrow{q}=\overrightarrow{a}-4$ \overrightarrow{b} перпендикулярны.
- 3.6. Пусть $\overrightarrow{a}=(-2,\,1,\,2), \ \overrightarrow{b}=(3,\,-2,\,6).$ Найти 1) угол между векторами \overrightarrow{a} и $\overrightarrow{b},\,2)$ $pr_{\overrightarrow{a}}\overrightarrow{b},\,3)$ $pr_{\overrightarrow{b}}\overrightarrow{a},\,4)$ $\left(\overrightarrow{a}-\overrightarrow{b}\right)^2,\,5)$ $pr_{\left(\overrightarrow{a}-\overrightarrow{b}\right)}\left(2\,\overrightarrow{a}+\overrightarrow{b}\right).$
- 3.7. Обозначив через $\stackrel{\rightarrow}{a}$ и $\stackrel{\rightarrow}{b}$ стороны ромба, выходящие из общей вершины, докажите, что диагонали ромба взаимно перпендикулярны.
- 3.8. Найти длины сторон и величины углов треугольника с вершинами A(1, -3, 7), B(-2, -3, 3), C(5, -3, 4).
- 3.9. Даны вершины треугольника A(-1, -2, 4), B(-4, -2, 0), C(3, -2, 1). Найти величину его внешнего угла при вершине B.

- 3.10. В треугольнике с вершинами A(0, 0, 0), B(-1, 2, 3) и C(1, 3, 4) проведена высота AH. Выяснить, принадлежит ли точка H стороне BC, или ее продолжению.
- 3.11. Доказать, что четырехугольник с вершинами $A(-1,\ 4,\ 9),\ B(3,\ -6,\ 10),$ $C(10,\ -4,\ 2)$ и $D(6,\ 6,\ 1)$ квадрат.
- 3.12. Даны вершины четырехугольника A(1, 2, 3), B(4, 1, 9), C(4, -2, 2), D(6, 4, 3). Доказать, что его диагонали взаимно перпендикулярны.
- 3.13. Проверить, что точки A(3, -2, 4), B(-2, 1, 8), C(-8, 7, 5), D(2, 1, -3) служат вершинами трапеции. Найти длины ее параллельных сторон и угол при вершине C.
- 3.14. Найти угол между диагоналями параллелограмма ABCD, если заданы три его вершины A(-1, 3, 4), B(2, 4, 0) и C(-6, 5, -2).
- 3.15. Найти координаты вектора \overrightarrow{x} , коллинеарного вектору $\overrightarrow{a}=(3,-2,1)$ и удовлетворяющего условию $(\overrightarrow{x},\overrightarrow{a})=-7$.
- 3.16. Даны вершины треугольника A(-1, -2, 4), B(-4, -1, 2), C(-5, 6, -4), BD его высота. Найти координаты точки D.
- 3.17. Найти угол α при вершине равнобедренного треугольника, зная, что медианы, проведенные из концов основания этого треугольника, взаимно перпендикулярны.
- 3.18. Упростить выражение: 1) $\begin{bmatrix} \overrightarrow{i}, \overrightarrow{j} + \overrightarrow{k} \end{bmatrix} \begin{bmatrix} \overrightarrow{j}, \overrightarrow{i} + \overrightarrow{k} \end{bmatrix} + \begin{bmatrix} \overrightarrow{k}, \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k} \end{bmatrix}$, 2) $\begin{bmatrix} \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{c} \end{bmatrix} + \begin{bmatrix} \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}, \overrightarrow{b} \end{bmatrix} + \begin{bmatrix} \overrightarrow{b} \overrightarrow{c}, \overrightarrow{a} \end{bmatrix}$.
- 3.19. Доказать, что $\begin{bmatrix} \overrightarrow{a} \overrightarrow{b}, \ \overrightarrow{a} + \overrightarrow{b} \end{bmatrix} = 2 \begin{bmatrix} \overrightarrow{a}, \ \overrightarrow{b} \end{bmatrix}$. Выяснить геометрический смысл этого тождества.
- 3.20. Векторы \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} связаны условием \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = $\overrightarrow{0}$. Доказать, что $\left[\overrightarrow{a},\overrightarrow{b}\right] = \left[\overrightarrow{b},\overrightarrow{c}\right] = \left[\overrightarrow{c},\overrightarrow{a}\right]$. Каков геометрический смысл этого результата?
- 3.21. Доказать компланарность векторов \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} , зная, что $\left[\overrightarrow{a}, \overrightarrow{b}\right] + \left[\overrightarrow{b}, \overrightarrow{c}\right] + \left[\overrightarrow{c}, \overrightarrow{a}\right] = \overrightarrow{0}$.
- 3.22. Дано: $\left|\overrightarrow{a}\right|=3,\;\left|\overrightarrow{b}\right|=2,\;\left(\overrightarrow{\overrightarrow{a},\;\overrightarrow{b}}\right)=\frac{\pi}{4}$. Найти $\left|\left[4\overrightarrow{a}+3\overrightarrow{b},\,3\overrightarrow{a}-2\overrightarrow{b}\right]\right|$.
- 3.23. Известно, что $\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right| = 1$, $\left(\overrightarrow{a}, \overrightarrow{b}\right) = \frac{\pi}{3}$. Вычислить площадь параллелограмма, построенного на векторах $\overrightarrow{a} + 2\overrightarrow{b}$ и $2\overrightarrow{a} + \overrightarrow{b}$.

- 3.24. Известно, что $\left|\overrightarrow{a}\right|=2, \left|\overrightarrow{b}\right|=1, \left(\overrightarrow{a}, \overrightarrow{b}\right)=\frac{3\pi}{4}$. Вычислить площадь треугольника, построенного на векторах $2\overrightarrow{a}-\overrightarrow{b}$ и $4\overrightarrow{a}+3\overrightarrow{b}$.
- 3.25. Вычислить площадь параллелограмма, диагоналями которого служат векторы $2\overrightarrow{a} 5\overrightarrow{b}$ и $2\overrightarrow{a} + 3\overrightarrow{b}$, где \overrightarrow{a} и \overrightarrow{b} единичные векторы и $(\overrightarrow{a}, \overrightarrow{b}) = \frac{2\pi}{3}$.
- 3.26. Дано: $\overrightarrow{a}=(1,\,-1,\,2),\ \overrightarrow{b}=(5,\,-6,\,2).$ Найти: 1) $\left[\overrightarrow{a},\,\overrightarrow{b}\right],2)$ $\left[\overrightarrow{3}\overrightarrow{a}-\overrightarrow{b},\,\overrightarrow{a}+\overrightarrow{b}\right].$
- 3.27. Даны координаты вершин треугольника A(1, 1, 1), B(2, 3, 4), C(-1, 2, 3). Вычислить: 1) площадь треугольника, 2) длину высоты, опущенной из вершины B на сторону AC.
- 3.28. Найти вектор \overrightarrow{x} , если известно, что он перпендикулярен векторам $\overrightarrow{a}=2\overrightarrow{i}+2\overrightarrow{j}-\overrightarrow{k}$, $\overrightarrow{b}=\overrightarrow{i}-\overrightarrow{j}+2\overrightarrow{k}$, образует с ортом \overrightarrow{j} острый угол и имеет длину $|\overrightarrow{x}|=10\sqrt{2}$.
- 3.29. Вектор $\begin{bmatrix} \overrightarrow{a}, [\overrightarrow{b}, \overrightarrow{c}] \end{bmatrix}$ называется двойным векторным произведением заданных векторов. Доказать, что справедливо равенство

$$\left[\overrightarrow{a}, \left[\overrightarrow{b}, \overrightarrow{c}\right]\right] = \left(\overrightarrow{a}, \overrightarrow{c}\right) \overrightarrow{b} - \left(\overrightarrow{a}, \overrightarrow{b}\right) \overrightarrow{c}.$$

3.30. Доказать тождество

$$\left\langle \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right) \left(\overrightarrow{a} - 2\overrightarrow{b} + 2\overrightarrow{c}\right) \left(4\overrightarrow{a} + \overrightarrow{b} + 5\overrightarrow{c}\right) \right\rangle = 0.$$

- 3.31. Доказать, что $\left|\left\langle \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right\rangle\right| \leq \left|\overrightarrow{a}\right| \cdot \left|\overrightarrow{b}\right| \cdot \left|\overrightarrow{c}\right|$. В каком случае имеет место равенство?
- 3.32. Векторы \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} образуют правую тройку, $\left|\overrightarrow{a}\right| = 2$, $\left|\overrightarrow{b}\right| = 3$, $\left|\overrightarrow{c}\right| = 4$ и $\left(\overrightarrow{a}, \overrightarrow{b}\right) = \frac{2\pi}{3}$, $\overrightarrow{c} \perp \overrightarrow{a}$, $\overrightarrow{c} \perp \overrightarrow{b}$. Вычислить $\left\langle \overrightarrow{a} \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{c} \right\rangle$.
- 3.33. Дано: $\overrightarrow{OA} = \overrightarrow{i} \overrightarrow{j} + 2\overrightarrow{k}$, $\overrightarrow{OB} = 5\overrightarrow{i} 6\overrightarrow{j} + 2\overrightarrow{k}$, $\overrightarrow{OC} = \overrightarrow{i} + 3\overrightarrow{j} \overrightarrow{k}$. Вычислить: 1) объем параллелепипеда, построенного на векторах \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} , 2) объем тетраэдра OABC.
- 3.34. Даны вершины тетраэдра $O(-1,\,1,\,1),\;A(5,\,2,\,0),\,B(2,\,5,\,0),\,C(1,\,2,\,4).$ Найти: 1) объем тетраэдра $OABC,\,2)$ длину высоты, опущенной из точки O на грань ABC.
- 3.35. Компланарны ли векторы 1) $\overrightarrow{a} = 5 \overrightarrow{i} \overrightarrow{j} + 3 \overrightarrow{k}$, $\overrightarrow{b} = 3 \overrightarrow{j} + 4 \overrightarrow{k}$, $\overrightarrow{c} = -10 \overrightarrow{i} + 9 \overrightarrow{j} 2 \overrightarrow{k}$, $\overrightarrow{c} = \overrightarrow{i} + 3 \overrightarrow{j} k$?

- 3.36. При каком значении λ векторы $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{b}$, $\stackrel{\rightarrow}{c}$ будут компланарны? 1) $\stackrel{\rightarrow}{a} = (1, 2, \lambda)$, $\stackrel{\rightarrow}{b} = (4, 5, 2)$, $\stackrel{\rightarrow}{c} = (7, 8, 3)$, 2) $\stackrel{\rightarrow}{a} = (2, 5, 7)$, $\stackrel{\rightarrow}{b} = (0, 3, 4)$, $\stackrel{\rightarrow}{c} = (-5, \lambda, -1)$.
- 3.37. Проверить, лежат ли точки A(3, 2, -2), B(-3, 3, 1), C(6, -5, 3), D(0, 2, 0) в одной плоскости.
- 3.38. Доказать, что при любых векторах $\stackrel{\rightarrow}{a}$, $\stackrel{\rightarrow}{p}$, $\stackrel{\rightarrow}{q}$ и $\stackrel{\rightarrow}{r}$ векторы $\begin{bmatrix} \stackrel{\rightarrow}{a} & \stackrel{\rightarrow}{p} \end{bmatrix}$, $\begin{bmatrix} \stackrel{\rightarrow}{a} & \stackrel{\rightarrow}{q} \end{bmatrix}$, $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{r} \end{bmatrix}$ компланарны.

Ответы к задачам для самостоятельного решения

- 3.1. 1) 81, 2) 67, 3) $\sqrt{19}$.
- 3.2. $\sqrt{139}$, $\sqrt{103}$.
- 3.3. $\alpha = \pm \frac{3}{5}$.
- 3.4. $\frac{3\pi}{4}$.
- 3.5. $\frac{2\pi}{2}$.
- 3.6. 1) $\arccos \frac{4}{21}$, 2) $\frac{4}{3}$, 3) $\frac{4}{7}$, 4) 50, 5) $-\frac{7\sqrt{2}}{2}$.
- 3.8. $|AB| = |AC| = 5, \ |BC| = 5\sqrt{2}, \ \angle A = \frac{\pi}{2}, \ \angle B = \angle C = \frac{\pi}{4}.$
- 3.9. $\frac{3\pi}{4}$.
- 3.10. Точка H принадлежит продолжению стороны BC, т.к. угол при вершине B —
- 3.13. $|AB| = 5\sqrt{2}$, $|CD| = 10\sqrt{2}$, $\angle C = \arccos \frac{2\sqrt{2}}{5}$.
- 3.14. $\arccos \frac{43}{25\sqrt{13}}$.
- 3.15. $\overrightarrow{x} = \left(-\frac{3}{2}, 1, -\frac{1}{2}\right)$.
- 3.16. D(-2, 0, 2).
- 3.17. $\arccos \frac{4}{5}$.
- 3.18. 1) $-2\overrightarrow{i} + 2\overrightarrow{k}$, 2) $2 \left[\overrightarrow{a}, \overrightarrow{c}\right]$.

3.22.
$$51\sqrt{2}$$
.

3.23.
$$\frac{3\sqrt{3}}{2}$$
.

3.24.
$$5\sqrt{2}$$
.

3.25.
$$4\sqrt{3}$$
.

$$3.26. \ 1) \ (10, \ 8, \ -1), \ \ 2) \ (40, \ 32, \ -4).$$

3.27.
$$S = \frac{3\sqrt{10}}{2}$$
, $h = \sqrt{10}$.

3.28.
$$\overrightarrow{x} = (-6, 10, 8).$$

3.32.
$$12\sqrt{3}$$
.

3.33. 35,
$$\frac{35}{6}$$
.

3.34.
$$V = 12, h = 2\sqrt{3}$$
.

3.36. 1)
$$\lambda = 1$$
, 2) $\lambda = -1/8$.

3.37. Точки лежат в одной плоскости.

Список литературы

- [1] Александров П.С. Лекции по аналитической геометрии. М.: Наука, 1968.
- [2] Ильин В.А., Ким Г.Д. Линейная алгебра и аналитическая геометрия. М. : МГУ, 1998.
- [3] Краснов М.Л., Киселев А.И. и др. Вся высшая математика. Том І. М.: Эдиториал УРСС, 2000.
- [4] Моденов П.С., Пархоменко А.С. Сборник задач по аналитической геометрии. М.: Наука, 1976.
- [5] Беклемишева Л.А., Петрович А.Ю., Чубаров И.А. Сборник задач по аналитической геометрии и линейной алгебре М.: Физматлит, 2004.
- [6] Болгов В.А., Демидович Б.П. и др. Сборник задач по математике для ВТУЗов. Ч. І. Линейная алгебра и основы математического анализа. — М.: Физматлит, 1981.