Most - Often - Needed

1942

RADIO DIAGRAMS

and Servicing Information

PREPARED UNDER THE DIRECTION OF

M. N. BEITMAN

B.S. in Mathematics, Illinois Institute of Technology Radio Instructor, Chicago High Schools Formerly, Engineer, U. S. Signal Corps Associate, Institute of Radio Engineers Holder of Radiotelephone First Class License Anthor of Many Radio Books and Articles

SUPREME PUBLICATIONS

INDEX

Allied Rad	io	Crosley Co	orp.	Emerson Rac	1: -
D-100	8	52 -TQ	33	EC-242	
D-101	8	53-TF	26	EC-242 EC-296	39
D-109	8	55	21		39
D-170	9	62 -PA	22	EC-301	39
B-17109	8	62-PB	22	EC-314	39
B-17188	7	62 -TA	19	EC - 315	39
D-11100	•	62 -TC	19	EC-327	39
		62 -TD	19	EC-336	39
Ansley Rad		67	20	EC-347	39
51	10	68	22	EC-353	39
		70	23-24	EC-366	39
Arvin		72	25	EC-376	39
see Nobli	tt-Sp.	72 -CA	31-32	FH-413	40
		74	27	FL-415	41
Belmont Ra	dio	75	28-29	FL-416	41
4B16	11	77	30	FL-417	41
11A25	12	80	31-32	FL-418	41
579	13	82 -CP	28-29	FL-419	41
319	10	82 -CQ	28-29	FU-424	42
Charmalat		83	33	BC-425	39
Chevrolet	1.4	60		FU-427	42
985792	14			FU-428	42
985793	15-16			FY-434	44
985794	17	Detrola Ra	dio	GH-437	45
C . 11 1 .	•	N-100	35	GA-439	46
Continenta		N-200	35	FH-440	40
B6	18	389	36	GA-441	46
XB6	18	390	37	GH-447	45
		417	34	GC-448	43
Crosley Co		419	34		
02CA	21	427	34	Espey Radio	
02CB	21	428	34	2162	47
02CP	23-24	441	36		
02CQ	23-24	3782	36	Fada Radio	
37	19	Changer	35	C-34	48
52 -PA	20	January 1		P-41	49
52 -T D	30			WP-101	50
52 -TE	30			WP-102	50
52 -TF	30	D 11	.	AP-104	50
52 -T G	27	DeWald Rad		AP-105	50
52 -TG -U	27	564	38	256 5	
52 - TP	25	666	38	_	
COMPILED BY M. N.	BEITMAN, SU	JPREME PUBLICATIO	ONS		U

C		Midwest Radi	•	Philco Radio	
Farnsworth		82	66	PT-2	, 85
CC -90	52 50	112	67	PT-4	85
CK - 91	52		68	PT-7	85
CK -92	52	1 62 R	00	PT-10	88
CK-93	52	Mandanana II		PT-10 PT-87	85
		Montgomery-W		1	
Galvin Mfg		14BR-521A	70 70	PT-88	85 85
see Motor	ola	14BR-522A	70	42 -PT -2	85 85
		14BR-684A	72	42-PT-4	85 85
Gamble-Sko	**	14BR-734A	73	42 -PT -7	85
579	12	14BR - 735A	73	42-PT-10	88
1682 -A	53	14BR - 912A	75	42-PT-87	85
		14WG-518B	69	42-PT-88	85
General El		14WG-519B	69	PT-91	86
LF-115	57	14WG-624A	71	PT-92	86
LF-116	57	14WG-625A	71	PT-93	86
LB-412	54	14WG-628A	71	PT-94	86
L-500	55	14WG-808M	74	PT-95	86
L-510	55	14WG-808W	74	42-121	87
L-550	55			42-122	87
L-560	55			42-123	87
L-660	56	Motorola		42 - 32 1	88
LFC-1128	57 - 58	51X11	76	42 - 322	89
LFC-1228	57-58	51X12	76	42-350	93
		51X15	76	42 - 358	91
Howard Rad	io	51X16	76	42-706	90
718X	59	81F21	78	42-716	92
802	60	501	77	42-717	90
808	61	551	79	42-718	92
868	62	701	81	42-724	94
				42-730	95
Majestic R	adio	Noblitt-Spar	ks	42-761	96
4B22	63	RE-91	80	42-788	98
5C36	64	RE-92	80	42 - 842	97
5T10	63	RE-98	82	42-843	97
5T 1 0W	63	RE-99	82	42-844	97
6C 35	64			42-853	97
6P1, 6P2	63	Oldsmobile		42-854	97
6T23	63	982215	83	42-1001	99
7C40	65	982282	83	42-1902	100
7K60	65	,		42-1004	101
7T20	63	Packard Bell		42-1012	102
4501X	63	51	84	42-1013	102
49017	03	67	84	42-1016 103	
		1 0,	07	1 42-1010 100	,-107

Pilot Radio	o 1	Silvertone	.	Stromberg-	C arls on
TP-32	105	see Sears		600	149
173	105	See Searc	•	900	149
2.0		Sonora Rad	lio	920	150
RCA Mig. Co		LKS	133		51-152
P-5	106	LMS	132	955	153
6X2	107			1	
25BP	109	LP	133	1000	149
	109			1020	150
25X					51-152
26BP	110			1055	153
26X - 1	111	Sparton			
26X-3	111	10-21	136	Truetone	
28T	112	531-X	134	see Weste	rn
28X	113	532 -X	134		
29K	114	652 -X	135	United Mot	ors
29K-2	114	532 1	137	R=1401	154
34X	115			R-1402	154
B-50	116	5521	137	" 1.02	
5 5 X	118			Walgreen D	T110
R-56	118			T-501	155
V-105	120			562	155
	21-122	Spiegel, I	nc.	502	100
	21-122	TA-616	138	Wells-Gard	
	21-122	T-618	138		
	21-122	822	139	6A 65	156
			-	8A51	157
500	119	922	139		
501	119	EP-2450	138	Western Au	
515	117	DP-7002-3		6A50-2	159
516	123	DP-7014	139	6C18-2	158
517	123	DP-7450	138	D-1145	159
526	124			D-1176	159
527	124			D-1294	160
R-560-P	126	Cd 1 11a	_	D-4240	158
R-566-P	125	Stewart-Wa		D-4255	160
		205A	140		
Sears, Roe	buck	205B	140	Westinghou	ıse
7020	127	205F	141	WR-12K1	163
7022	127	205FA	141	WR-12X1	163
7057	128	205G	142	WR-12X2	163
7070	131	206B	143	WR-12X3	162
7083	130	206C	143	WR-12X5	162
7094	129	206D	144	WR-12X6	162
	129	206E	144	1	
101.667		206G	145	WR-12X16	161
101.682	131	207D	146	WR-42X3	164
101.686	130	•	47-148	WR-42X7	164
132.814	127		47-148		
141.418	128	1 2000 1	1-1-0		

Westinghou	se	Zenith Rad	lio	6G660	183
WR-62K1	165	5B07	176	6R631	178
WR-62K2	165	5B13	177	6R683	181
		5D611	172	6R684	181
Wilcox-Gay	Corp.	5D627	172	6R687R	181
A-104	166	5G603	176	6R688	181
A-105	166	5G617	175	6S 632	182
A-107	167	5G636	175	65646	182
		5K637	174	6S656	182
Wurlitzer		5R680	173	7B02	184
501	168	5R686	177	7B04	190-191
502	168	6B02	178	7G605	190-191
332		6B04	179	75681	184
Zenith Rad	io	6B05	180	75682	184
4B02	169	6B06	181	75685	184
4B03	169	6B08	182	8B01	185
4B04	170	6B09	183	85647	185
4B05	171	6B14	189	85961	185
4B639	170	6D612	179	10B1	186
4K616	169	6D615	180	10B2	186
4K635	169	6D620	189	105669	186
4K640	171	6D622	179	105690	186
4K658	169	6D623	180	12A6	187
5B02	172	6D628	179	12H678	187
5B03	173	6D630	180	1211679	187
5B04	174	6D 644	189	14B1	192
5B05	175	6D2620	189	S-9001	188
5B06	175	6G638	183	5-9002	188

SUPREME PUBLICATIONS

9 South Kedzie Avenue

CHICAGO, ILLINOIS

Simplified Radio Servicing by COMPARISON Method

Repair radios in minutes instead of hours. Revolutionary different COMPARISON technique permits you to do expert work on all radio sets. Most repairs can be made

without test equipment or with only a volt-ohmmeter. Many simple, point-to-point, cross-reference, circuit suggestions locate the faults instantly. Plan copyrighted. Covers every radio set—new and old models. This new servicing technique presented in handy manual form, size 8½x11 inches, 72 pages. Over 1,000 practical service hints. 26 large, trouble-shooting blueprints. Charts for circuit analysis. 114 tests using a 5c resistor. Developed \$1.50 by M. N. Beitman. New 1945 edition. Net Price

RADIO SERVICING COURSE-BOOK

Let this 22-lesson course help you fix and adjust any radio set. Easy-to-understand explanations; hundreds of simplified diagrams, pictures, practical hints. Quickly learn how to make needed tests, locate faults, complete the repair. Includes many lessons for beginners.

Learn new speed-tricks of radio fault finding, case histories of common troubles, servicing short cuts, extra profit ideas. Many large lessons on the use of regular test equipment, explanation of signal tracing, television to the ninute, recording dope. With this information you will save enough time on a single radio job to pay the special \$2.50 price for the complete course of 22 money-making lessons. Many active servicemen used this reduced price radio training for brush-up and study of new service methods. Reprinted in 1945 with information on signal-tracing, television, visual alignment, P.A., photocells, etc. All about AVC, how to use an oscilloscope, what is feedback, resonance action, and every other fact you must know to be more expert in your work. Large size: \$2.50

9

	No.	No.	Description
1			RESISTORS
	R1	13017	10M ohm-1/3 w.
	R2	1304	3 megohm—1/3 w.
	R3	1309	200M ohm—⅓ w.
	R4	130194	35M ohm—1/3 w.
	R5	13094	50M olim—1/3 w.
	R6	1304	3 megohm-1/3 w.
	R7	101250	1 megohm-Volume control and switch- ½ w.
	R8	130257	5 megohm—1/3 w.
	R9	13019	1 megohm-1/3 w.
	R10	130146	2 megohu-1/3 w.
	R11	13079	400 ohin—⅓ w.

CONDENSERS

C1	12936	.0003 mica
C2	100112	.001 x 200 v.
C3	129177	.000045Ceramicon
C4	124165	Antenna trimmer
C5	1009	.05 x 200 v.—Condenser
C6	12912	.00025 mica
C7	124165	Oscillator trimmer
C8	1009	,05 x 200 v. Condenser
C9	1006	.25 x 200 v. Condenser
C10	10020	.1 x 200 v.
C11	10017	.5 x 120 v.
C12	1191171	B 10 mid. x 150 v. Lytic
C13	1295	.0001 mica
C14	10012	.003 x 600 v. Condenser
C15	1295	.0001 mica
C16	10026	.02 x 400 v. Condenser
C17	1007	.005 x 600 v.
		C4 and C7 are in same unit.

PARTS

Antenna Coil T1 1364 T2 1364 Oscillator Coil Permeability tuning assem. 108202 Input I. F. Coil 455 Kc. 108153B Output I. F. Coil 455 Kc. **T**4 10591B Output transformer T5 114238 5" P.M. speaker T6 Switch on Volume Control Sı

Belmont Radio Corp.

THE ANTENNA COIL ASSEMBLY
IS MADE SO THAT IT IS MOVABLE
LEFT OR RIGHT. WHEN MAKING
THE ADJUSTMENT AS GIVEN IN THE
ALIGNMENT PROCEDURE MOVE COIL
ASSEMBLY VERY SLOWLY COIL ASSEMBLY VIEW

Be Imont

Radio

Alignment Procedure

- Volume control-Maximum all adjustments.
- Connect dummy antenna value in series with generator output lead.

DECICEODE

	VEDID! OVD
R13, S2	Volume Control and Switch (500M Ohms)
	Less Shaft
R17	Tone Control (1 Megohm) Less Shaft
	Shaft Only for Volume and Tone Controls
R2, R18	1 Megohm-1/3 Watt Resistor-20%
R4	300M Ohn - 1/2 Watt Resistor - 20%
R5	40M Ohm-1/3 Watt Resistor-20%
R6, R11	500 Ohm-1/2 Watt Resistor-20%
R8	12M Ohm-1/2 Watt Resistor-20%
R9, R19, R22	
R7	12M Ohm-2 Watt Resistor-10%
R15	50M Ohm-1/3 Watt Resistor-20%
R12	3 Megohm-1/3 Watt Resistor-25%
R14	5 Megohm-1/3 Watt Resistor-30%
R21	2500 Ohm-1/3 Watt Resistor-20%
R20, R23	500M Ohm-1/3 Watt Resistor-20%
R16	250M Ohm-1/3 Watt Resistor-20%
R24	300 Ohm-1 Watt Resistor-20%
R3	300 Ohm-1/3 Watt Resistor-20%
Ri	400 Ohm-1/3 Watt Resistor-20%
Rio	1 Marchin In True Cookes
KIU	1 Megohin—In Eye Socket

BAND	SIGNAL Frequency Setting	GENERATOR Dummy Antenna	Connect on to Radio	Position of Band Switch	Variable Condenser Setting	Trimmers Adjusted to Maximum (in Order Shown)
I. F.	455 Kc	.1 MFD.	Grid of 6SK7 I F.	Broadcast	Rotor full open (Plates out of mesh)	Two trimmers on top Output I. F.
I. P.	455 Kc	,1 MFD.	Grid of 6SA7 Mixer	Broadcast	Rotor full open (Plates out of mesh)	Two trimmers on top Input I. F.
SHORT	17 Mc.	400 Ohms	External Antenna and Ground	Short Wave	Set Dial at 17 Mc.	C13, S.W. Osc.
WAVE BAND	17 Mc.	400 Ohms	External Antenna and Ground	Short Wave	Set Dial at 17 Mc,	C8, S.W. R.F., C2 S. W. Antenna
	6 Mc.	400 Ohms	External Antenna and Ground	Short Wave	Set Dial at 6 Mc.	C11 S.W. Osc Series Pad See Note "A"
DROAD	1580 Kc.	200 1111111,	Grid of 6SK7 R. F. Tube	Broadcast	Rotor full open (Plates out of mesh)	C14 B.C. Osc.
BROAD- CAST BAND	540 Ke.	200 mmf,	Grid of 6SK7 R. F. Tube	Broadcast	Set Dial at 540 Kc. (Plates in Mesh)	C12 B.C. Osc. Series Pad
	1400 Kc.	200 mmf.	Grid of 6SK7 R. F. Tube	Broadcast	Set Dial at 1400 Kc.	C9 B.C R.F.
LOOP	1400 Kc.	200 mmf.	External Antenna and Ground	Broadcast	Set Dial at 1400 Kc.	C1 B.C. Ant.
ALIGN- MENT	600 Kc.	200 minf.	External. Antenna and Ground	Broadcast	Set Dial at 600 Kc.	T2 Iron Core Tracking Coil.

NOTE "A"—Turn the dial back and forth slightly (rock) and adjust trimmer until the peak of greatest intensity is obtained.

After each band is completed, repeat the procedure as a final check.

MANUAL OF 1942 MOST POPULAR SERVICE DIAGRAMS MODEL 579 Belmont

RESET LOCK SCREW

Circu Diag Ref. No.		Description	Circu Diag Ref. No.		Description
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10	1303	100 ohm—1/3 w. 100 ohm—1/3 w. 500 ohm—1/3 w. 3 megohm—1/3 w. 1 megohm volume control 5 megohm—1/3 w. 500M ohm—1/3 w.	C11 C12 C13 C14 C15 C16 C17 C18	12912 1295 10025 10031 1292 119105 10031 10078 119105 119105 10087	.00025 mica .0001 mica .002 x 600 v5 x 120 v0005 mica 15 ufd. lytic x 350 w. v01 x 200 v. 15 ufd. lytic x 350 w. v. 20 ufd. lytic x 25 w. v01 x 600 v. C14, C17 and C18 in same unit
	130199 130308 130174	1500 ohm—1 watt 750 ohm—1 watt 50 ohm—1/2 w. CONDENSERS	T1 T2	11195B 110146	PARTS Antenna Coil Oscillator Coil Input I. F. Coil—465 kc.
C C1 C2 C3 C4 C5 C6 C7 C8	10269 1293 10055 12434 12921 100115 1009 10020 10034	2 gang variable condenser .00002 mica .01 x 400 volts Adj. Antenna Trimmer .0002 mica .05 x 400 v. .05 x 200 v. .1 x 200 v. .005 x 1200 v.	T5 T6 T7 L1 L2 S1 P1	108139 108121B 104131 10567 114114-R 10568 10566	Output I. F. Coil—465 kc. Power Transformer Output Transformer

The ignition system of every automobile generates high frequency electrical disturbances which interfere to some extent with the operation of the radio receiver. This disturbance arises from the ignition coil, the distributor and associated wiring. It must either be suppressed at its origin or must be prevented from feeding into the input of the radio receiver through the common storage battery. By proper shielding and by-passing these disturbances are prevented from entering

BOTTOM VIEW OF CHASSIS 6K6G 7)-(8) 65A7 ①° VOLTAGES MEASURED WITH 1000 OHM PER VOLT VOLTMETER BETWEEN SOCKET (A) (A) (2) 0 **(4)** TERMINALS & CHASSIS. 185 V. 205 V. [B]Q 6SQ7 65 V. -60 O[8] **%**§. (A) [A] CANNOT BE MEASURED WITH VOLTMETER. WITH VOLTMETER.

[B] 6 VOLTS ± DEPENDING ON CAR BATTERY POLARITY.

[C] NECATIVE OSCILLATOR VOLTAGE USE R.F. CHORE IN SECIES OF 6X5G VIBRATOR 7)-(B) ० • (3) [B] 240 v. 5 (B) 240 V. REAR OF CHASSIS

bility method of tuning. An adjustable condenser is provided for matching the antenna The circuit used in this receiver is the superheterodyne type, employing the permeacircuit to the antenna. This adjustment is made near the high frequency end of the band (1400 kilocycles)

CIRCUIT DIAGRAM—RADIO 985792

POWER PACK PARTS LAYOUT

<u>~</u>

മ

œ

Antenna trimmer "G" must be adjusted to match the car antenna when receiver is installed. With the antenna fully extended tune in a weak station near 1400 on the dial and adjust the antenna trimmers for maximum volume.

VOLTAGE CHART—RADIO 985793

I.F. Alignment at 262 Kilocycles

- (a) Connect a 0.1 mfd. condenser between the plate prong of the 6V6GT output tube and one terminal of the output meter, to protect the meter from DC voltages. Connect the other terminal of the output meter to ground.
- (b) Connect the ground lead of the signal generator to the chassis frame.
- (c) Connect the signal lead of the signal generator to the grid (G) prong of the 6SA7 tube socket through a 0.1 mfd. condenser.
- (d) Turn the set volume control on full and rotate the tone control knob to the center (Music) position. Adjust the signal generator to 262 kilocycles, and tune the receiver to a frequency where no squeals or beat notes may be heard and so that when the tuning control is moved through narrow limits no appreciable change in output is noticeable.
- (e) Adjust the I.F. trimmers A, B, C, and D for maximum output.

CIRCUIT DIAGRAM—RADIO 985794

and 200,000 ohms from zero end.

In model B6 only, X and Y are connected together. R13, C15, and C4 are not used. C is connected to D.

RESISTORS	CONDENSERS
No. Ohms	No. Capacity (Mfd.)
R1 10,000	C2
R210,000,000	C3
R3 25,000	C5
R4 100	C6
R5 1,000,000	C7
R6 50,000	C8
R7 30,000	C10
R8 V. C 500,000	C11
R9 5,000,000	C13a30, Elect.
R10 250,000	C13b50. Elect.
R11 500,000	C14
R12 150	C15
R13 150,000	C17

Bottom View-Voltage Chart

Voltages are positive D. C. unless noted. Measured from chassis with 20,000 ohm per volt meter. On XB6 Series use floating ground instead of chassis.

Line—117 volts, 60 cycle A.C. imum. No station tuned in. Volume control at max-

On models with DOUBLE drive pulley the diat cord is in two pieces. The pointer cord is on the large pulley starting at 1 and continuing through 20 BUT in the following special order, 1, 2, 3, 4, 18, 19, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20. The drive cord is on the smaller dotted pulley, in the dotted

To clarify diat cord arrangement the diat frame is shown as transparent.

B6-XB6

FOR CROSLEY MODEL 62-TA, 62-TC, 62-TD - CHASSIS No. 37

ALIGNMENT PROCEDURE

Preliminary
Output Meter Connections
To Voice Coil Terminals of Speaker or to Plate of 35L6GT and Cathode of 35Z5GT
Generator Ground Connections
In Series with .001 MFD. Condenser
Dummy Antenna.
400 Ohm Carbon Resistor in Series with Generator Output
Position of Volume Control
Fully On

ALIGNMENT CHART

Step	Signal Generator Frequency Setting	Input	Band Switch	Tuning Cond. Setting	Trimmer Adjusted	Remarks	Location
1 1-A	456 Kc. 456	Antenna Antenna	S. B. S. B.	Fully open Fully open	2nd I-F (2) 1stI-F (2) Wave trap	Adjust for maximum output. Adjust for minimum output.	Tops of I. F. Trans. Center Section of 3 Sec. Trimmer.
2	15.3 Mc.	Antenna	s. w.	Fully open	s. w. "osc"	Adjust for maximum output.	Top of Tuning Condenser
3	15.0 Mc.	Antenna	s. w.	Approx. 15 on dial	S. W. "Ant."	Adjust for maximum output while rocking gang thru signal.	L. H. Section of 3 Sec. Trimmer.
4	1650 Kc.	Antenna	S. B.	Fully open	B. C. "OSC" (front trimmer right end of chassis)	Adjust for maximum output. Gang does not have to tune thru signal.	R. H. Section of 3 Sec. Trimmer.
5	1400 Kc.	Antenna	S. B.	Approx. 1400 on dial	B. C. "ANT"	Adjust for maximum output.	On Cabinet Back.

When aligning the short wave band "OSC" trimmer care must be exercised to see that the circuits are aligned on the correct frequency and not on the image which is approximately 910 kilocycles less as indicated on the dial. To check, increase generator output, tune-in the generator frequency and then tune-in the image frequency which should be weaker than the fundamental and come in approximately 910 kilocycles lower on the dial than the fundamental. If image cannot be tuned in, the "OSC" trimmer is adjusted to the wrong peak. (Correct peak is the second peak on trimmer from the closed position). Repeat original alignment procedure for more accurate adjustments. Always keep signal generator output low as possible to prevent action of A.S.C. circuit.

Socket Voltage is measured @ 117.5 V line

TUBE VOLTAGE CHART

(BETWEEN SOCKET PINS AND B-) WITH 1000 OHM PER VOLT-500 V. RANGE D. C. VOLTMETER

TUBE	FUNCTION PIN NUMBER								
		1	2	3	4	5	6	7	8
12SK7	R. F. Amp.			0	Neg.	0	76.		40
12SA7	Osc. Mod.			76	76	Neg.	0		Neg
12SK7	I. F. Amn.			0	Neg.	0	76		76
12SQ7	Det., Etc.		0	0	0	Neg.	16*		0
35L6	B. P. O.			92	76	0			4
35Z5	Rect.					113AC			100

All voltages may vary 10% of values indicated. Neg. indicates Neg. reading on Voltmeter Scale but of too small a value to record accurately.

*Measured on 100 V. Scale. Power consumption at 117.5 V. line, 30 watts. Drop across Speaker Field—100 V. Current thru Speaker Field—52 M.A.

For Model 52-PA — Chassis No. 67

The chassis as employed in this model portable receiver is a five tube (including rectifier), single band superheterodyne, designed to operate from an "A and B" Battery Pack, or 110 volts A.C. (50-60 cycle) or 110 volt D.C. electric circuits.

TUNING RANGE

- 550-1600 Kilocycles - 546-187.5 Meters

TUBES USED

- one 1A7GT, one-IN5GT, one-IH5GT, one-IT5GT and one-117Z6GT

BATTERIES REQUIRED — one No. CR67 Crosley "A and B" Battery Pack (6 Volt "A"-75

Volt "B") or equivalent.

Measured from "B" minus using 1000 Ω/V

Voltmeter, 100 V. Range, no signal input

	Tube		@ 117.5-V	olt Line		Battery Pack				
Туре	Function	Filament Volt	Piate Volt	Screen Volt	Cathode Volt	Filament Volt	Plate Volt	Sereen Volt	Cathode Volt	
1A7GT	Osc. Modulator	1.3	80	34	*****	1.7	75	30		
1N5GT	I. F. Amplifier	3.8	80	80		4.4	75	75		
1H5GT	DetA. S. C. 1st A. F.	2.6	7			3.0	6			
1 T 5G T	Out Put	5.1	72	80		6.0	68	75		
117 Z 6GT	Rectifier	117.5 A. C.	117.5 A. C.		100		*****			

ALIGNMENT PROCEDURE Volume Control on full Output meter connected to Plate and Screen of 1T5GT SIGNAL GENERATOR DUMMY ANTENNA TUNING COND. SETTING TRIMMERS TO ADJUST (See Fig. 1) FREQUENCY SETTING CONNECTION REMARKS TO RADIO Ant. Lead 455 Kc 0001 MF Fully open 2nd 1-F(1) front chassis flange Adjust for maximum signal. Adjust for maximum signal. Located top of 1st 1-F ass'y. Ant. Lead 455 Kc .0001 MF Fully open 1st 1-F (2) Adjust for maximum output. Gang does not have to tune 1650 Ant. Lead "OSC" Shunt on gang .0001 MF Fully open through signal. 1400 Ant. Lead .0001 MF 140 on dial "ANT" shunt on gang Adjust for maximum output. Adjust for maximum signal while rocking gang. 600 Ant. Lead 0001 MT 60 on dial Iron core in "OSC" coil

Repeat above procedures for more accurate adjustments Maximum power output @ 75 V. "B" — approx. 200 M. W. undistorted

A Battery drain @ 6 volts, .05 Amp.; "B" Battery drain @ 75 V., 9 M. A.
Power consumption @ 117.5 volts line — 20 Watts

MANUAL OF 1942 MOST POPULAR SERVICE DIAGRAMS MODELS 02CA AND 02CB — CHASSIS MODEL No. 55

•		MODI	ELS 02CA AND	02CB	CHASSIS	MODEL	No. 55
Aiign- ment iequence	Dummy Antenna	Frequency Setting	Input Connection to Receiver	Band Switch	Tuning Cond. Setting	Trimmer Adjusted	Remarks
	.02 MF.	455 Kc.	Stator ing Rear sec- tion of Gang Cond.	В. С.	Fûlly open	2nd l-F (2) 1st I-F (2)	Adjust for Maximum. Adjust for Maximum.
	l0002 MF.	1630 Kc.	Ant. Terminal	В. С.	Fully open	B. C. "OSC" Trimmer	. Adjust for peak; gang does not have to tune thru signal. Loop must be connected.
•	.0002 MF.	600 Kc.	Ant. Terminal	В. С.	Approx. 60 on dial	B. C. "OSC" Series Trimmer	Adjust for maximum output while rock- ing gang thru signal.
	Repeat Step	No. 2 to check p	oossible shift due to serie	s adjustme	nt.		
i.	.0002 MF.	1400 Kc.	Ant. Terminal	в. с.	Approx. 140 on dial	B. C. "ANT Trimmer B. C. "R-F" Trimmer	touch W C Osc Trimmer
	400 ohm (carbon)	5.3 Mc.	Ant. Terminal	Police	Fully open	Pol "OSC"	Adjust for peak; gang does not have to tune thru signal.
	400 ohm (carbon)	5.0 Mc.	Ant. Terminal	Police	Approx. 5,0	Pol "ANT" Trimmer	Adjust for maximum outputs
	400 ohm (carbon)	18.3 Mc.	Ant. Terminal	s. w.	Fully open	s. w. "osc	10 thic this significant
	400 ohm (carbon)	18.0 Mc.	Ant. Terminal	s. w.	Approx. 18	S. W. "ANT Trimmer	Adjust for maximum output while rocking gang thru signal. merator output as low as possible to prevent
	2 2 MEG - 7 3 MMF 42 7 MMF 42	100MMF	100 A THE STATE OF	F. TRANS. = 10000 2 2 2 M	# 2nd F TR: 65K7 2000000 2000000 22200 22000 3000000000 2000000000 470M 470M 470M 470M 470M 470M	OOO22 IN 200022 IN 2	GSAT GSK7 GSK7 GSK7 GSAC GSAC GSAC GSAC GSAC GSAC GSAC GSAC
LOOP ANT.	93 000 000 1 1 ANT. COILS	-Hn	000274 5000 1111	.022	25 25 25 25 25 25 25 25 25 25 25 25 25 2	STROL PUSH BUT	YELLOW SOCKET SPEAK
EXT I GND STATION SO	UNIT XET O		ELECTOR <u>Push</u> Button uni	2	CHA	BLACK BOOODS	BROWN RED SYS BROWN RED SYELLOW RED SYS BROWN RED SO THE SYS BROWN RED S
			Crosley Col			F	
COMP	TLED BY	M. N. BEIT	MAN, SUPREME	PUBLI	CATIONS		

For Models 62-PA and 62-PB — Chassis No. 68

Portable Radios for Standard Broadcast Reception

Measured from "B" minus using 1000 Ω/V

Voltmeter, 100 V. Range, no signal input

Tube			@ 117.5-V	olt Line		Battery Pack				
Туре	Function	Filament Volt	Plate Volt	Screen Volt	Cathode Volt	Filament Volt	Plate Volt	Screen Volt	Cathode Volt	
1N5GT	R. F. Amplifier	3.8				4.6	75	75		
1A7GT	Osc. Modifier	2.6	80	31		3.1	75	28		
1N5GT	I. F. Amplifier	5.0	80	80	,	6.1	75	75		
1H5GT	DetA. V. C. 1st A. F.	1.3	7			1.6	4.5			
1T5GT	Out Put	6.2	72	80	100	7.7	68	75		
117Z6GT	Rectifier	117.5 A. C.	117.5 A. C.							

ALIGNMENT PROCEDURE Volume Control on full Output meter connected to Plate and Screen of 1T5GT SIGNAL GENERATOR DUMMY ANTENNA TUNING COND. SETTING TRIMMERS TO ADJUST (See Fig. 1) FREQUENCY SETTING CONNECTION TO RADIO REMARKS 455 Kc Ant. Lead .0001 MF Fully open 2nd 1-F(1) front chassis flange Adjust for maximum signal. Adjust for maximum signal. Located top of 1st 1-F ass'y. 455 Kc Ant. Lead .0001 MF Fully open 1st 1-F (2) Adjust for maximum output. Gang does not have to tune through signal. 1650 "OSC" Shunt on gang Ant. Lead .9001 MF Fully open 1400 Ant. Lead .0001 MF 140 on dial "ANT" shunt on gang Adjust for maximum output. 1400 Ant. Lead .0001 MF 140 on dial "RF" shunt on gang Adjust for maximum output. Adjust for maximum output while rocking gang. 600 Ant. Lead .0001 MF 60 on dial Iron core in "OSC" coil

Repeat above for more accurate adjustments

Maximum power output @ 75 V. "B" — approx. 200 M. W.

A Battery drain @ 6 volts, .05 Amp.; "B" Battery drain @ 75 V., 9 M. A.; @ Power consumption @ 117.5 volts line — 25 Watts

1 2 3 4 5 5 6 7 8 A 8 B 8 C 9 10 11 12	-49775132205-1 GB-132196-1 G623-32002 G116-32001 G268-32004 Wd. Scr. (5) -132168-1 G65-39001 None	Loop Antenna Assem. Osc. Coil R.F. Trans. 1st I.F. Trans. 2nd I.F. Trans. Var. Cond. R.F. Section Var. Cond. Osc. Section Var. Cond. Ant. Sect. Cond05 Mf. 200 V.	-	25 26 27 28 29 30 31 32 33 34 35 36 37 38	G18-39002 G27-39002 G21-39002 G28-39002 G8-39002 -132502-2 G8-39002 G8-39002 G20-39002 G29-39002 G27-39002 G27-39002 G25-39002	Res. 22 Mg C. Res. 220 M Ohm Res. 220 M Ohr Res. 220 M Ohr Res. 1500 Ohm 1 Res. 1500 Ohm Res. 680 Ohm J. Res. 1500 M Ohr Res. 4.7 Meg. ORes. 680 Ohm J. Res. 680 Ohm J. Res. 680 Ohm J. Res. 680 Ohm J. Res. 2.2 Meg. ORes. 1 Meg. Oh	him ½ W. n ¼ W. ly W. ly W. candohm chim ¼ W. i W. i W. i W. him ¼ W. him ¼ W. i W. him ¼ W.	
11 12 13 14 15A 15B 15C 16 17 18 19 20 21	G67—35001 G63—39001 G69—35001 G63—39001 —132144-1 G10—39001 G67—39001 G65—39001 G10—39001 G9—39004 G10—39001	Cond. 1 Mf. 200 V. Cond. 022 Mf. 200 V. Cond. 022 Mf. 200 V. Cond. 35 Mfd. Electro Cond. 45 Mfd. Electro Cond. 45 Mfd. Electro Cond. 200 Mfd. Electro Cond. 0033 Mf. 600 V. Cond. 1 Mf. 200 V. Cond. 55 Mf. 200 V. Cond. 0033 Mf. 600 V. Cond. 0033 Mf. 600 V.	EXT ANT.	OS SOCIO	F TRANS	1 12 22 107 107 107 107 107 107 107 107 107 107	EC 34 1500- 6	660- 11 (100) (100
	IT5 IN5 eT	IN5 eT			OSC 30 COILS		SON IF 7L SMFS ~ ou .0033	22-4C 70053
	(IH5)	17726 (1A7) 17 U	BATTERY CABLE &	PLUG 8+75 v 8LUE MA-7.5 vu YELLOW A-8-			000 Home Home Home Home Home Home Home Home	
			455KC.LF	CHASSIS!	SWITC 4 AUTOMATICALLY OPERATED BY MISERTION OF A.C. PLUG			2 200mm

MANUAL OF 1942 MOST POPULAR SERVICE DIAGRAMS CROSLEY MODELS 02CP, 02CQ — CHASSIS MODEL No. 70

SOCKET VOLTAGES MEASURED AT 117.5 V. LINE (BETWEEN SOCKET PIN AND CHASSIS) WITH 1000 OHM PER VOLT, 500 V. RANGE VOLTMETER (D. C.)

CROSLEY MODELS 02CP, 02CQ — CHASSIS MODEL No. 70

THE AUTOMATIC RECORD CHANGER

This record changer will automatically play a series of twelve 10" or ten 12" records of the standard 78 R. P. M. type. The records must be all one size when loading, and may consist of less records than listed above. Records with or without a starting groove will operate the changer satisfactorily and the inside stopping groove may be a spiral or an eccentric. This means that any type of record, regardless of make, will operate the automatic mechanism. Records of any size up to 12" may be played manually.

The records are supported for automatic operation in two points, in the center by the center postand on the edge by the record holder post.

Setting	to Receiver	Band Swirch	Tuning Cond. Setting	Trimmer Adjusted	Remarks
455 Kc.	Stator lug Rear sec- tion of Gang Cond.	В. С.	Fully open	2nd I-F (2) 1st I-F (2)	Adjust for Maximum. Adjust for Maximum.
1630 Kc.	Ant. Terminal	В. С.	Fully open	B. C. "OSC" Trimmer	Adjust for peak; gang does not have to tune thru signal. Loop must he connected.
600 Kc.	Ant. Terminai	В. С.	Approx. 60 on dial	B. C. "OSC" Series Trimmer	Adjust for maximum output while rock- ing gang thru signal.
No. 2 to check	possible shift due to seri	es adjustme	·nt.		
1400 Kc.	Ant. Terminal	в. с.	Approx. 140 on dial	B. C. "ANT" Trimmer B. C. "R-F" Trimmer	Adjust for maximum output do not touch B. C. Osc. Trimmer. Adjust for maximum output.
5.3 Mc.	Ant. Terminal	P. lice	Fully open	Pol "OSC"	Adjust for peak; gang does not have to tune thru signal.
5.0 Mc.	Ant. Terminal	Police	Approx. 5.0	Pol "ANT" Trimmer	Adjust for maximum output.
18.3 Mc.	Ant. Terminal	s. w.	Fully open	s. w. "osc"	Adjust for peak. Gang does not have to tune thru signal.
18.0 Mc.	Ant. Terminal	s. w.	Approx. 18	S. W. "ANT" Trimmer	Adjust for maximum output while rocking gang thru signal.
abo A.	18.3 Mc. 18.0 Mc.	18.3 Mc. Ant. Terminal 18.0 Mc. Ant. Terminal	18.3 Mc. Ant. Terminal S. W. 18.0 Mc. Ant. Terminal S. W. we alignment procedure for more accurate adju	18.3 Mc. Ant. Terminal S. W. Fully open 18.0 Mc. Ant. Terminal S. W. Approx. 18 over alignment procedure for more accurate adjustments. Always	18.3 Mc. Ant. Terminal S. W. Fully open S. W. "OSC" 18.0 Mc. Ant. Terminal S. W. Approx. 18 S. W. "ANT" Trimmer over alignment procedure for more accurate adjustments. Always keep signal gener

When aligning the shortwave bands "OSC" trimmers care must be exercised to see that the circuits are aligned on the correct frequency and not on the image which is approximately 910 kilocycles less as indicated on the Receiver dial. To check, increase generator output, tune-in the generator frequency and then tune-in the image frequency which should be weaker than the fundamental and come in approximately 910 kilocycles lower on the Receiver dial than the fundamental. If image cannot be tuned-in, the "OSC" trimmer is adjusted to the wrong peak. (Correct peak is the second peak on trimmer from the closed position).

SETTING THE PUSH BUTTONS

The six station selector push buttons are set up by means of two adjusting screws per button. These adjusting screws are made accessible by removing the station selector push button escutcheon. Pry off carefully being careful not to scratch the main escutcheon.

Select the call letter tabs of your six favorite broadcast stations from the station call letter sheets supplied. Place the call letter tabs in the window above that push button which is to be adjusted for that station

CROSLEY RADIO MODEL 52-TP -- CHASSIS No. 72

REPLACING TUBES—To gain access to the tubes, remove cabinet back, remove two screws holding loop antenna to rear of chassis and lay antenna down. Do not disconnect antenna from chassis. If at any time it is necessary to replace one or more tubes, Figure 1 will show the correct position and function of each type of

If your receiver fails to operate make sure all tubes are pressed down in their respective sockets and that power cord plug is tight in the house receptacle. Should a visual inspection fail to indicate the trouble, call a competent radio service man—preferably your nearest Crosley dealer. Specially designed parts of the highest quality are used throughout in the construction of all Crosley products. In order that the original fine quality and excellent performance of this receiver may be maintained, it is recommended that only GENUNIE CROSLEY PARTS be used should service be required.

ALIGNMENT PROCEDURE

Preliminary

Output Meter Connections Plate and screen of 50L6 Generator Ground Connections . . . Ground Lead and Chassis Dummy Antenna to be in series with generator output

Position of Volume Control Fully on

VOLTAGES MEASURED BETWEEN SOCIET PM 6 GND SIDE OF VOL. CONT WITH 250 VOLT, 1000 OHMS, PER, VOLT METER. READINGS MAY VARY ION.

Ailgnment Sequence	Dummy Antenna	Frequency Setting	Input Connection to Receiver	Band Switch	Tuning Cond. Setting	Trimmer Adjusted	Rémarks
1.	.0001 MF.	455 KC.	Antenna Lead	ВС	Fully Open	1st 1-F(2) 2nd 1-F(2)	Adjust for maximum signal. Adjust for maximum signal.
2.	400 ohm Carbon Resistor	15.3 MC.	Antenna Lead (red)	s.w.	Fully Open	S.W. "Osc."	Adjust for maximum output.
3.	400 ohm Carbon	15.0 MC.	Antenna Lead (red)	S.W.	15 on Dial	S.W."Ant."	Adjust for maximum signal while rocking gang through it.
٦.	.0001 MF.	1650 KC.	Antenna Lead (red)	BC	Fully Open	B.C."Osc,"	Adjust for maximum output. Gang does not have to tune through signal
5.	.0001 MF.	1400 KC.	Antenna Lead (red)	BC.	i40 Dlai	B.C."Ant."	Adjust for maximum output.

When aligning the shortwave band "OSC" trimmer, care must be exercised to see that the circuit is aligned on the correct frequency and not on the image which is approximately 910 kilocycles less as indicated on the dial. To check, increase generator output, tune in the generator frequency and then tune in the image frequency which should be weaker than the fundamental and come in approximately 910 kilocycles lower on the dial than the fundamental. If image cannot be tuned in, the "OSC" trimmer is adjusted to the wrong peak. (Correct peak is the second peak on trimmer from the closed position.) Repeat original alignment procedure for more accurate adjustments. Keep signal generator output low as possible to prevent action of A.S.C. circuit.

MANUAL OF 1942 MOST POPULAR SERVICE DIAGRAMS CROSLEY RADIO MODELS 52TG. 52TG-U,—CHASSIS No. 74-74U

tem No.	Part No.	Description	Item N	o. Part No.	Description
1 2 3 4 5	-48858 L-132109 -132099-2 -132097-5 -132117-2 L-132131 -1322119-4 -51071 -132300-1 -45738 LB-132110 -132102 -23843 -236432004 -266-32004	Bulb Dial Light 6.3V. Dial Light Socket Assm. Dial Face. Dial Pointer. Celluloid Dial Lens. Drive Cord Assm. Drive Shaft. Retaining Ring—Dr. Shaft. Power Cord & Plug. Lock Plate Power Cord. Loop Assm. Antenna. Spacer—Loop Mtg. (2) Screw—Loop Mtg. (2) Coil B. C. Osc. Ist I. F. Trans. 2nd I. F. Trans.	16 17 18 19 20 21 22 23 24 25 26 27 28A 28B	NONE NONE NONE 	Res. 15 Megohm ¼ W. Res. 22,000 Ohms ¼ W. Res. 33 Megohm ¼ W. Res. 220,000 Ohms ¼ W. Res. 68,000 Ohms ¼ W. Res. 4.7 Megohm ¼ W. Res. 470,000 Ohm ½ W. Pracket—Speaker Mtg. [Vol. Control 1 Meg. [Power Switch.
7A 7B 8 0 9 0 10 0 11 0 12A 12B 13 0		2 Gang Var. Cond. (Antenna Sec. Occillator Sec. Cond022 Mfd., 200V. Cond05 Mfd., 200V. Cond1 Mfd., 200V. Cond. 200 Mmf., Mica. (Cond. 15 Mfd., 140V., Elect. Cond0033 Mfd., 160V. Cond022 Mfd., 200V. Cond05 Mfd., 200V.	UZSAT OSCIMOD. SO SO 10.5	DROP ACROSS S	3525 REGTIFIER PTION AT IKZS-SOWATTS PEAKER FELD-REVOLTS DETAVICE

ALIGNMENT PROCEDURE

Alignment Sequence	Dummy Antenna	Frequency Setting	Input Connection to Receiver	Band Switch	Tuning Cond. Setting	Trimmer Adjusted	Remarks
1.	.0001 MF.	455 KC.	Antenna Lead	ВС	Fully Open	1st 1-F(2) 2nd 1-F(2)	Adjust for maximum signal. Adjust for maximum signal.
2.	.0001 MF.	1650 KC.	Antenna Lead	ВС	Fully Open	B.C."Osc."	Adjust for maximum output. Gang does not have to tune through signal
3.	,0001 MF.	1400 KC.	Antenna Lead	ВС	140 Dial	B.C."Ant."	Adjust for maximum output.

Repeat the original alignment procedure for more accurate adjustments. Always keep signal generator output as low as possible to prevent action of the A.S.C. circuit.

MANUAL OF 1942 MOST POPULAR SERVICE DIAGRAMS FOR CROSLEY MODELS 82CP, 82CQ—CHASSIS MODEL NO. 75

STARTING THE CHANGER—Turn the control knob clockwise to the "ON" position; after the turntable has attained speed, turn the control knob all the way counter clockwise to the "REJ." position for a few seconds and release. The bottom record will fall on the turntable and the unit will automatically play the entire stack of records. If the changing cycle should fail to start, repeat the above operation.

REJECTING A RECORD—To reject a record, it is only necessary to turn the control knob counter clockwise to the "REJ." position for a few seconds and release. A record can be rejected anytime the needle is in contact with the record.

UNLOADING THE CHANGER—Turn the control knob to the "OFF" position and remove the center spindle by pulling straight up. The played records may now be easily removed after which the center post should be replaced. The center spindle must be turned when being replaced so that it drops into correct position.

TO PLAY RECORDS MANUALLY

MANUAL OPERATION—Manual operation is used for all home recordings and for single records is desired. CAUTION: For playing records of less than 10" diameter always set the record holding shelf in same position as is used for playing 12" records. Otherwise "Floating Jewel Tone System" may be damaged. 1. Remove the center spindle by pulling straight up. 2. Place record on turntable with desired selection upward. 3. Turn the control knob to the "ON" position. 4. Place pickup on record so the needle enters the outside groove of the record. 5. Adjust volume control to desired level.

50 CYCLE OPERATION—(Phonograph)—If operation is desired on 50 cycle current, a small spring, see parts list, must be added to the motor shaft.

SERVICE—If your receiver fails to operate satisfactorily, check the tubes to see that all are pushed well down into their respective sockets and that all grid clips are securely in place on the top caps of the tubes. Check the antenna (loop terminals), and power supply connections for good contact. If this visual inspection does not reveal the source of the trouble, disconnect the receiver from the power supply and call a competent service man, preferably your Crosley Dealer.

ALIGNMENT PROCEDURE

Preliminary	
Output Meter Connections	Plate to Plate of 6K6GT's
Generator Ground Connection	To Chassis or Ground Lead
Dummy Antenna to be in series with generator output	See Chart Below
Position of Volume Control	Fully On
Desition of Tone Control	Treble or Speech

Align- ment Sequ en ce	Dummy Antenna	Frequency Setting	Input Connection to Receiver	Band Switch	Tuning Cond. Setting	Trimmer Adjusted	Remarks
1.	.02 MF.	455 Kc.	Stator lug Rear sec- tion of Gang Cond.	В, С.	Fully open	2nd I-F (2) 1st I-F (2)	Adjust for Maximum. Adjust for Maximum.
2.	.0002 MF.	1650 Kc.	Ant. Terminal	В. С.	Fully open	B. C. "OSC" Trimmer	Adjust for peak; gang does not have to tune thru signal. Loop must be connected.
3.	.0002 MF.	600 Kc.	Ant. Terminal	В. С.	Approx. 60 on dial	B. C. "OSC" Series Trimmer	Adjust for maximum output while rocking gang thru signal.
4.	Repeat Step	No. 2 to check	possible shift due to ser	ies adjustm	ent.		
5,	.0002 MF.	1400 Kc.	Ant. Terminal	В. С.	Approx. 140 on dial	B. C. "ANT" Trimmer B. C. "R-F" Trimmer	Adjust for maximum output do not touch B. C. Osc. Trimmer. Adjust for maximum output.
6.	400 ohm (carbon)	18.3 Mc.	Ant. Terminal	s. w.	Fully open	s. w. "osc"	Adjust for peak. Gang does not have to tune thru signal.
7.	400 ohm (carbon)	18.0 Mc.	Ant. Terminal	s. w.	Approx. 18	S. W. "ANT" Trimmer	Adjust for maximum output while rocking gang thru signal.
8.	Repeat the action of the	above alignmer e A. V. C. citen	t procedure for more a	ccurate adj	ustments. Always	keep signal gene	rator output as low as possible to prevent

IMPORTANT ALIGNMENT NOTES—When aligning the shortwave bands "OSC" trimmers care must be exercised to see that the circuits are aligned on the correct frequency and not on the image which is approximately 910 kilocycles less as indicated on the Receiver dial. To check, increase generato; output, tune-in the generator frequency and then tune-in the image frequency which should be weaker than the fundamental and come in approximately 910 kilocycles lower on the Receiver dial than the fundamental. If image cannot be tuned-in, the "OSC" trimmer is adjusted to the wrong peak, (Correct peak is the second peak on trimmer from the closed position).

TUBE VOLTAGE CHART

SOCKET VOLTAGES MEASURED AT 117.5 V. LINE (BETWEEN SOCKET PIN AND CHASSIS) WITH 1000 OHM PER VOLT, 500 V. RANGE VOLTMETER (D. C.)

PIN NUMBER												
TUBE FUNCTI	ON	1	2		3	4	5	6	7	8		
6SK7GT—R. F. Ampli	fier	0	0		0	0	0	82	6.3 A. C.	210		
6SA7GT-OSC Mod		0	0		210	82BC	0	0	6.3 A. C.	0		
6SK7GT-I. F. Amplif	ier	0	0		0	0	-6.5BC -	82	6.3 A. C.	210		
							-0SW -					
6SQ7-Det. A. S. C. 1	st A. F	0	0		1.4	0	0	78	6.3 A. C.	0		
6J5GT-Phase Inverte	r	0	0		125	N. C.	0	0	6.3 A. C.	5.2		
6K6GT(2)-Output		0	0	J#4	200	210	0	0	6.3 A. C.	13		
5Y3G — Rectifier		N. C.	300 ~		N. C.	338	J. B.	338 A. C.	J. B.	300		

28

 MAX. POWER OUTPUT.
 6.5 WATTS

 POWER CONSUMPTION
 85 WATTS

 DROP ACROSS SPEAKER FIELD
 90 VOLTS

 N. C.—No Connection

WIRING DIAGRAM, MODELS B2CP AND B2CQ — CHASSIS MODEL No. 75

THE AUTOMATIC RECORD CHANGER—This record changer will automatically play a series of twelve 10" or ten 12" records of the standard 78 R. P. M. type. The records must be all one size when loading, and may consist of less records than listed above. Records of any size up to 12" may be played manually.

CAUTIONS—1. Never use force to start or stop the motor or any part of the record changing mechanism or pick-up arm. 2. The use of records which have become warped or damaged through improper care may cause the mechanism to jam and damage the instrument. 3. Do not leave records on the supports, as they may warp, particularly in warmer climates. 4. Never leave the pickup arm with the needle resting on a record or the turntable.

THE FLOATING JEWEL TONE SYSTEM—The "Floating Jewel Tone System" is a Crosley invention and an exclusive feature on your Crosley phono-combination. Its sapphire point literally floats across the surface of the record, reducing record wear and assuring maximum tonal fidelity. Needle noise is virtually eliminated. The "Floating Jewel Tone System" supplied with the phono-combination you have purchased is good for years of normal service.

CAUTION: Avoid dropping the tone arm on a record or the turntable. Use only the Crosley "Floating Jewel Tone System" with your set.

SETTING FOR SIZE OF RECORD—The shelf on the record holder post or the side support for the records may be turned and snaps into place in two points, one for the ten inch records, and the other for the twelve inch records. When the record holder clip (on top of the record holder post) is toward the center spindle, the number showing on the record holder clip is the size record the changer is set to automatically operate.

52TD, 52TD-U, 52TE, 52TE-U - CHASSIS No. 77

52TF, 52TF-U - CHASSIS No. 76

INSTALLATION, OPERATING AND SERVICE INSTRUCTIONS for Crosley Model 72CA — Chassis Model No. 80

Model 72CA is a seven tube, two band, superhetrodyne receiver. It is designed to operate on Alternating Current (A.C.) electric circuits as specified on the Model and License label.

SETTING THE PUSH BUTTONS

Note: When placing call tabs in the window be sure to arrange them according to their frequency (kilocycles) that is: the station whose frequency is well within the range covered by the No. 1 button, should be placed above that button and so on with the rest of the buttons to be set.

Remove station selector push button escutcheon. Turn the receiver on and let it operate for a sufficient length of time to permit the tubes to reach their normal operating conditions.

It is essential that the frequency (kilocycles) of the station selected be within the range of the push button to be set for that station. See Fig. 1.

- 1. Turn the band change switch to the "American" position. Using the station selector knob, carefully tune in the station to which the No. 1 push button is to be set. Note program.
- 2. Turn the band change switch to the "Automatic" position and using a small screw driver, carefully turn in a clockwise direction the Oscillator adjusting screw until the station previously tuned in manually is heard again. Adjust for maximum output in the speaker.
- 3. Adjust the Antenna adjusting screw for maximum volume in the speaker.
- 4. Turn band change switch from "Automatic" to "American" and back again to check if adjustment has been correctly made. There should be no change in tone quality when switched from one to the other.
- 5. Repeat above procedure for the remaining push buttons.

To tune the receiver with the push buttons, set the band change switch on "Automatic" and depress completely the button corresponding to the station you wish to hear.

TUBE YOLTAGE CHART

SOCKET VOLTAGES MEASURED AT 117.5 V. LINE (BETWEEN SOCKET PIN AND CHASSIS) WITH 1000 OHM PER VOLT, 500 V. RANGE VOLTMETER (D. C.)

	PIN NUMBER												
TUBE	FUNCTION	1	2	3	4	5	6	7	8				
6SK7—R	F. Amplifier	0	0	0	0	0	80	6.3 A. C.	235				
	C.—Mod	0	0	260	80	0	0	6.3 A. C.	0				
6SK7—I.	F. Amplifier	0	0	0	0	0	80	6.3 A. C.	26 0				
6SO7De	et. A. S. C. 1st A. F	0	0	0	0	0	. 85	6.3 A. C.	0				
-	hase Inverter	0	e	255	26 0	0	180	6.3 A. C.	23				
6F6—Out	put	0	0	255	260	0	23 5	6.3 A. C.	23				
5Y3G-R	Rectifier	N. C.	330	J. B.	300A.C.	J. B.	300 A. C.	JB.	330				

J. B.-Junction Block. N. C.-No Connection

MANUAL OF 1942 MOST POPULAR SERVICE DIAGRAMS Crosley Model 72CA — Chassis Model No. 80

ALIGNMENT PROCEDURE

Output Meter Connections Plate of 6AD7 to Plate of 6F6	
Generator Ground Connection	
Concretor Ground Connection	
See Chart Below	
Dummy Antenna to be in series with generator output	
Position of Volume Control Fully On	
Position of volume Control	
Position of Tone Control	

Align- ment Sequence	Dummy Antenna	Frequency Setting	Input Connection to Receiver	Band Switch	Tuning Cond. Setting	Trimmer Adjusted	Remarks
1.	.02 MF.	455 Kc.	Stator lug Rear sec- tion of Gang Cond.	в. с.	Fully open	2nd I-F (2) 1st I-F (2)	Adjust for Maximum. Adjust for Maximum.
2.	.02 MF.	455 Kc.	Stator lug Rear sec- tion of Gang Cond.	В. С.	Fully Open	Adj. Wave Trap Trimmer.	Adjust for Minimum.
3.	.0002 MF.	1650 Kc.	Ant. Terminal	В. С.	Fully open	B. C. "OSC" Trimmer	Adjust for peak; gang does not have to tune thru signal. Loop must be connected.
4.	.0002 MF.	600 Kc.	Ant. Terminal	В. С.	Approx. 60 on dial	B. C. "OSC" Series Trimmer	Adjust for maximum output while rocking gang thru signal.
5.	Repeat Step	No. 3 to check	possible shift due to seri	ies adjustme	ent.		
6.	.0002 MF.	1400 Kc.	Ant. Terminal	В. С.	Approx, 140 on dial	B.C. LOOP "ANT' Trimmer	Adjust for maximum output do not touch B. C. Osc. Trimmer.
7.	400 ohm (carbon)	18.3 Mc.	Ant. Terminal	s. w.	Fully open	s. w. "osc"	Adjust for peak. Gang does not have to tune thru signal.
8.	400 ohm (carbon)	18,0 Mc.	Ant. Terminai	s. w.	Approx. 18	S. W. "ANT" Trimmer	Adjust for maximum output while rocking gang thru signal. do not touch B. C. Osc. Trimmer.
9.	Repeat the above alignment procedure for more accurate adjustments. Always keep signal generator output as low as possible action of the A. S. C. circuit.						ator output as low as possible to prevent

IMPORTANT ALIGNMENT NOTES—When aligning the shortwave band "OSC" trimmer care must be exercised to see that the circuit is aligned on the correct frequency and not on the image which is approximately 910 kilocycles less as indicated on the Receiver dial. To check, increase generator output.

correct frequency and not on the image which is approximately 910 kilocycles less as indicated on the Receiver dial. To check, increase generator output, tune-in the generator frequency and then tune-in the image frequency which should be weaker than the fundamental and come in approximately 910 kilocycles lower on the Receiver dial than the fundamental. If image cannot be tuned-in, the "OSC" trimmer is adjusted to the wrong peak. (Correct peak

INSTALLATION, OPERATION AND SERVICE INSTRUCTIONS FOR CROSLEY RADIO MODEL 52-TQ - CHASSIS No. 83

THE RADIO-PHONO SWITCH (center knob) when turned to the right is for radio broadcast reception and when turned to the left cuts off the radio signals and switches in changer. The Volume Control and Line Switch of the receiver must be turned on before the motor will operate. This volume control also controls the output level of the phonograph:

THE AUTUMATIC RECORD CHANGER—The record changer built in this combination will automatically play a series of twelve 10" or ten 12" records of the standard 78 R. P. M. type. The records must be all one size when loading, and may consist of less records than listed above.

ALIGNMENT PROCEDURE CHART

Ailgnment Sequence	Dummy Antenna	Frequency Setting	Input Connection to Receiver	Phono. Radio Switch	Tuning Cond. Setting	Trimmer Adjusted	Remarks
1.	,0001 MF.	455 KC.	Antenna Lead	Radio	Fully Open	1st 1-F(2) 2nd I-F(2)	Adjust for maximum signal. Adjust for maximum signal.
2.	.0001 MF.	1650 KC.	Antenna Lead (red)	Radio	Fully Open	B,C."Osc."	Adjust for maximum output. Gang does not have to tune through signal.
3.	.0001 MF.	1400 KC.	Antenna Lead (red)	Radio	140 Dial	B,C."Ant."	Adjust for maximum output.

Repeat the original alignment procedure for more accurate adjustments. Always keep signal generator output as low as possible to prevent action of the A. S. C. circuit.

Socket Voltage is measured @ 117.5 V line

TUBE VOLTAGE CHART

(BETWEEN SOCKET PINS AND B-) WITH 1000 OHM PER VOLT-500 V. RANGE D. C. VOLTMETER

TUBE	FUNCTION				PIN NUMBER				
TOBE		1	2	3	4	5	6	7	8
12SA7	Osc. Mod.			123	78	Neg.	0		Neg
12SK7	I, F, Amp.			0	Neg.	0	78		123
12SQ7	Det., Etc.		0	0	0	Neg.	18.5*		0
50L6	B, P, O.		,	112	123	0			8,5
35Z5	Rect.					208AC			188

All voltages may vary 10% of values indicated. Neg. indicates Neg. reading on Voltmeter Scale but of too small a value to record accurately.

*Measured on 100 V. Scale. Power consumption at 117.5 V. line, 60 watts. Phono Motor 20 watts additional. Drop across Speaker Field—65 V. Current thru Speaker Field—10 M. A.

MANUAL OF 1942 MOST POPULAR SERVICE DIAGRAMS DETROLA CORPORATION

DETROIL Automatic Record Changer

Model N-100 and N-200

Turn automatic record support for the size of record to be played—10-inch or 12-inch—and flip the record alignment plate away from the turntable.

Tonearm should be moved to engage notch marked "A" (automatic) on base of tonearm (See Fig. 3).

Place a series of up to twelve ten-inch records or a series of up to ten twelve-inch records on center spindle and automatic record support. Flip record alignment plate on to records.

Move control lever to "ON" position, hold for about ½ second to start automatic

operation, then release.

THE AUTOMATIC REJECT OPERATION

If, while playing a record, you desire to skip the remainder of the recording and pass immediately to the next record of the series, move the control lever to "REJ" (reject) position, then release.

THE MANUAL REJECT OPERATION

If you desire to skip a number of records:

- 1. Lift the tonearm off the record and place in its normal or rest position, clear of the records.
- 2. Turn the manual reject knob clockwise, then release, dropping one record. Repeat until desired record is obtained, then carefully replace needle on edge of record.

TO REMOVE RECORDS

Always drop all the records from the automatic record support (see "manual-reject operation") before removing the records from the spindle.

- l. Flip record alignment plate away from records.
- 2. Remove tonearm to its normal or rest position.

3. Lift records vertically.

To play a home recording disc, up to 10 inches in diameter, move **control lever** to "OFF" position, then:

- l. Turn **automatic record support** for a 12-inch record.
- 2. Tonearm should be moved to engage notch marked "H" (home recording) on base of tonearm (See Fig. 2).
- 3. Move **control lever** to "ON" position and allow tonearm to go through its record changing cycle If the home recording disc is 10" in diameter, the tonearm will fall correctly on the record; but for smaller records, the tonearm must be placed on the record by hand.
- 4. At the conclusion of the home recording selection, either return the tonearm to the rest position by hand or move the control lever to "REJ" position, then release.

SEMI-AUTOMATIC OPERATION

Old records that have neither a standard eccentric nor spiral finishing groove do not operate the automatic trip mechanism. They may be played either in a series or singly by moving the control lever to the "REJ" position at the conclusion of each

DETROLA MODEL 441

GENERATOR	CONNECTION AT RADIO	DUMMY ANTENNA	DIAL	TRIMMER TO TUNE	REMARKS
I.F. 455 kc.	12SA7 Grid	.l míd.	H. F. end	I.F. Transformers	Tune to Max.
1720 kc	Ext. Ant. Wire	200 mmf.	H. F. end	Oscillator Trimmer	Set Limit of band
1400 kc	Ext. Änt. Wire	200 mml.	1400	Antenna Trimmer	Tune to Max.

MODEL 3782 AC-DC AND BATTERY PERSONAL RADIO

MODELS 389 SERIES

Detrola Radio I.F. 455 KC.

DETROLA CORPORATION

MODEL 390

Schematic Location	Part Number	Description	Schematic Part Location Number	Description
		CHASSIS PARTS	R3.4.14.16	Resistor, 1 Meg. 1/3 Watt
	4417	Button, Snap (Dial Mounting)	R5	Resistor, 10 Meg. 1/3 Watt
	8931	Cable, Tuning Tube	R6,7,8,9,11	Resistor, 200M. 1/3 Watt
	2163	Cable, drive	R1O	Resistor, 120 Ohm, 1/2 Watt
	3227	Cap, Grid	R12	Resistor, 1000 Ohm, 1 Watt
R18	8910	Control, Volume and Switch	R13	Resistor, 35 Ohm, 1/2 Watt
	1732	Cord, Line	R1 <i>5</i>	Resistor, 2 Meg. 1/3 Watt
	6424	Clamp, Linecord	R17	Resistor, 1 Meg (in Tuning Tube
	4314	Clamp, Tapped—For Tuning Tube		Socket)
	4315	Clamp, Plain—For Tuning Tube	R19,20,21,22	Resistor, 50M, 1/3 Watt
L3	8422	Coil, Oscillator	R23	Resistor, 4 Meg. 1/3 Watt
L1	8423	Coil, Tracking		
Cla,b	B911	Condenser, Variable (with Pulley)	RECORDING	ARM ADJUSTMENTS
C2,3	8504	Condenser, Dual Trimmer		, , , , , , , , , , , , , , , , , , , ,
C15a,b,c	8425	Condenser, Electrolytic (20-250) (20-150)(20-150)	NEEDLE	
C4		Condenser, 100 Mmf. Mica	RETAINING	
C5,14		Condenser, 1 Mfd. 200 v.	SCREW	
C6		Condenser, .05 Mfd. 200 v.	<i>Y \</i>) NEEDLE
C7		Condenser, 250 Mmf. Mica	<i>(</i>)	NEEDLE PRESSURE
CB		Condenser, 100 Mmf. Mica		SCREW
C9		Condenser, .002 Mfd. 600 v.		/ Xacusu -
C10,16		Condenser, .01 Mfd. 400 v.	11	\ \& \
CII		Condenser, .05 Mfd. 400 v.	13	
C12,13		Condenser, .001 Mfd. 600 v.	1	
C17		Condenser, .005 Mfd. 600 v.	ARM	HEIGHT
		Grommet, Tuner Assembly Mtg.	II A ADJUST	ING SCREW
	9121	Dial Chart	11 16	@ Y
	8941	Microphone Socket Assembly		
	6244	Pulley, Idler		
	5026	Pointer		
	6158	Pilot Lite		

Resistor, 20M, 1/3 Watt Resistor, 200 Ohm, 1/3 Watt

Shaft)

Retainer, "C" Washer (Holds Tuning

1207

R١ R2

De Wald Radio Mfg. Corp. New York

R1 ''	20,000 ohm ¼ watt carbon resistor
R2, R6	15 megohm 1/4 watt carbon resistor
R3	140 ohm ½ watt wire-wound resistor
R4	3 megohm ¼ watt carbon resistor
R5	Volume control .5 megohm
R7. R8	500,000 ohm 1/4 watt carbon resistor
R11	200,000 ohm 1/4 watt carbon resistor
C1, C2	Two-gang variable condenser
C3, C16	0.002 mf, 600 volt tubular condenser
C4, C15	0.0002 mf, 600 volt tubular condenser
C5, C11	Trimmers, part of variable condenser
C6, C7, C8, C9	
C10	0.05 mf, 200 volt tubular condenser
C14	0.05 mf, 400 volt tubular condenser
C17, C18	0.02 mf, 400 volt tubular condenser
C26	0.2 mf, 200 volt tubular condenser.

VOLTAGE ANALYSIS

Tube	Plate	Screen	Cathode
12SA7	88	88	0
12SK7	88	88	0
12SO7	30		0
50L6	82	88	5.6

Voltage at 35Z5 cathode-120 volts. Voltage across speaker field—32 volts. Voltage across pilot light—4.5 volts.

Emerson Radio

MODELS: EC-296, EC-301, EC-314. EC-315, EC-327. EC-336, EC-347, EC-353, EC-366, EC-242, EC-376 and **EC-425**

I-f Alignment

Swing the variable condenser to the minimum capacity position. Feed 455 kc to the grid of the 12SA7 tube through a .01 mf condenser and adjust the four i-f trimmers for maximum response.

Note: The grid of the 12SA7 tube is connected to the stator lug of the rear variable condenser section. Connection may be made with a test clip.

R-f Alignment

Set the dial pointer at 140. Set the signal generator at 1400 kc and feed its output into a loop of wira about 12 inches in diameter. Hold this radiating loop about 12 inches from and signal to the receiver loop are the output of the parallel to the receiver loop antenna. Advance the output of the signal generator until deflection is obtained on the output meter. Adjust first the oscillator trimmer (on front section of variable condenser) then the antenna trimmer (on rear section of variable condenser) for maximum response.

Tube	Plate	Screen	Cath
6SG7, 6SD7 or 7H7	92	63	0
6]5	102	1	0
6SK7 or 7A7	102	102	0
6SQ7 or 7B6	30	_	_
25L6	92	102	6.5

Alignment

Swing the variable condenser to the minimum capacity position. Feed 455 kc to the grid of the 6SD7 tube through a .01 mf condenser and adjust the four i-f trimmers for maximum response.

Note: The grid of the 6SD7 tube is the No. 4 pin.

Rotate the wave-band switch counter-clockwise to the short-wave position. Set the dial pointer at 12 megacycles and using a 400 ohm carbon resistor as a dummy antenna feed 12 megacycles from the generator to the external antenna lead emerging from the rear of the chassis. Adjust first the short-wave oscillator trimmer and then the short-wave antenna trimmer for maximum response.

Rotate the wave-band switch clockwise to the broadcast position. Set the dial pointer at 160 and feed 1600 kc from the signal generator into a loop of wire about 12 inches in diameter. Hold this radiating loop about 12 inches from the loop antenna and advance the signal generator until a deflection is obtained on the output meter. Adjust first the oscillator trimmer (rear section of the variable condenser) and then the antenna trimmer (front section of the variable condenser) for maximum

on the output meter. Adjust first the oscilla section of the variable condenser) and then mer (front section of the variable condens response.

0 0	9
R1, R11	50,000 ohm 1/4 watt carbon resistor.
R2	5,000 ohm ¼ watt carbon resistor
R3, R4	3 megohm ¼ watt carbon resistor.
R5	50,000 ohm ¼ watt carbon resistor
R6	Volume control: .5 megohm
R7	10 megohm ¼ watt carbon resistor.
R8	500,000 ohm ¼ watt carbon resistor
R9	Tone control: 400,000 ohm
R10	140 ohm 1/2 watt wire-wound resistor
R12	Ballast resistor, 155 ohm
†C6	Trimmer, part of T4.
†C7, C8, C9	Trimmers, part of i-f transformers.
†C10	Trimmer and 0.0001 mf, mica condenser
C11, C20	0.002 mf, 600 volt tubular condenser
C12	0.02 mf, 200 volt tubular condenser
C13	0.05 mf, 200 volt tubular condenser.
C15, C17	0.02 mf, 400 volt tubular condenser
C16, C18, C21	0.00022 mf, mica condenser
C28	0.05 mf, 400 volt tubular condenser
C19, C25	0.00011 mf, mica condenser
C22	0.00046 mf, mica condenser
C23	0.1 mf, 200 volt tubular condenser
C24	0.01 mf, 400 volt tubular condenser
C26, C27	Dual 20 mf, 150 volt dry electrolytic

FL-414, FL-415, FL-416, FL-417, FL-418 and FL-419

R1	20,000 ohm 1/4 watt carbon resistor
R2	10 megohm ¼ watt carbon resistor
R3	140 ohm 1/2 watt wire-wound resistor
R4	3 megohm ¼ watt carbon resistor
R5	Volume control .5 megohm
R6	15 megohm ¼ watt carbon resistor.
R7, R8	500,000 ohm ¼ watt carbon resistor
R9	50,000 ohm ¼ watt carbon resistor
R10	10,000 ohm 1/4 watt carbon resistor
R11	25,000 ohm ¼ watt carbon resistor
R12	1 megohm ¼ watt carbon resistor
C1, C2	Two-gang variable condenser
C3, C16	0.002 mf, 600 volt tubular condenser
C4	0.0002 mf, 600 volt tubular condenser.
C5, C13	0.05 mf, 200 volt tubular condenser
C6, C7, C8	Trimmers, part of i-f transformers.
C9	Trimmer and fixed condenser
C10, C11	Trimmers, part of variable condenser.
C12	0.00022 mica condenser
C14	0.05 mf, 400 volt tubular condenser
C15, C19	0.00011 mica condenser
C17	0.02 mf, 400 volt tubular condenser
C18	0.03 mf, 400 volt tubular condenser
C20, C21	Dual 20 mf, 150 volt dry electrolytic

Location of Coils and Trimmer Adjustments

The first i-f transformer is mounted on top of the chassis deck to the left of the variable condenser. The trimmers are accessible through holes in the top of the can.

The second i-f transformer is mounted on top of the chassis between the 7B7 tube and the speaker. The trimmers are accessible through holes in the top of the can.

The 455 kc wave-trap is located below the chassis deck.

The trimmers for the antenna and oscillator coils are located on the variable condenser. The trimmer on the front section is for the oscillator coil.

The oscillator coil is located underneath the chassis. The loop antenna acts as the antenna coil.

VOLTAGE ANALYSIS

Tube	Plate	Screen	Cathode
7B7 (r-f)	18	88	0
12SA7	88	88	0
7 B 7	88	85	0
12SQ7	30		0
50L6GT	82	88	5.6

Voltage at 35Z5GT cathode—120 volts. Voltage across speaker field—32 volts. Voltage across pilot light—4.5 volts.

41

MANUAL OF 1942 MOST POPULAR SERVICE DIAGRAMS EMERSON RADIO MODELS: FU-424, FU-427 and FU-428

R1 R₂ R3 R4 R5 R6 R7. R8 R9 R10 R11, R12, R14, R15 **R13** R16 D17 C1, C2, C3 C4, C5, C6 **C7** C8, C9, C10 C11, C12, C16, C17 C13, C23, C25 C14, C18, C26 C15 C16, C17 C19 C20 C21 C22 C24 C26 C27, C28

2 megohm 1/4 watt carbon resistor 200,000 ohm ¼ watt carbon resistor 5 megohm 1/4 watt carbon resistor..... 30,000 ohm ¼ watt carbon resistor 1,000 ohm 1/4 watt carbon resistor.... 47,000 ohm 1/4 watt carbon resistor 500,000 ohm ¼ watt carbon resistor 10 megohm 1/4 watt carbon resistor 4,000 ohm 1/4 watt carbon resistor 3 megohm ¼ watt carbon resistor Volume control .5 megohm 1,200 ohm 1/4 watt carbon resistor 860 ohm 1/2 watt wire-wound resistor Three-gang variable condenser..... Part of variable condenser. Padder condenser Trimmers, part of i-f transformers. 0.05 mf, 200 volt tubular condenser 0.002 mf, 600 volt condenser... 0.25 mf, 100 volt tubular condenser 0.02 mf, 200 volt tubular condenser 0.05 mf, 200 volt tubular condenser 0.0004 mf. 600 volt tubular condenser 0.02 mf. 400 volt tubular condenser 0.01 mf, 400 volt tubular condenser 0.00006 mf, mica condenser..... 0.00011 mf, mica condenser..... 0.25 mf, 100 volt tubular condenser Dual 20 mf, 150 yolt dry electrolytic 0.05 mf, 400 volt tubular condenser..... 40 mf, 25 volt dry electrolytic condenser

Location of Coils and Trimmer Adjustments

The oscillator coil is located beneath the chassis. The trimmer for the oscillator is on the middle section of the variable condenser.

The interstage coil is the shielded coil located beneath the chassis. Its trimmer is on the front section of the variable condenser.

The trimmer for the loop antenna is on the last section of the variable condenser (the section nearest the loop).

The i-f transformers are mounted on top of the chassis. The first i-f transformer is mounted next to the loop. The second i-f transformer is mounted next to the dial.

The series padder is located between the variable condenser and the shielded 1N5 tube.

Note: This receiver has an i-f of 262 kc.

Swing variable condenser to minimum capacity position.

Feed 262 kc to the grid of the 1A7 tube through a 0.01 mf condenser. Adjust the three i-f trimmers for maximum response.

Set the dial pointer at 140. Feed 1400 kc from the signal generator into a loop of wire about one foot in diameter. Hold this radiating loop approximately one foot away from and parallel to the receiver loop and advance the output of the signal generator until a suitable deflection is obtained on the output meter. Adjust first the oscillator trimmer (middle section) then the interstage and loop trimmers for maximum response. Move dial pointer to 60 and feed 600 kc into the radiating loop and edjust the series padding condenser (while rocking the variable condenser back and forth) for maximum response. Realign at 1400 kc.

C29 C30

R1, R10 R2 D3 R4, R6 R5 R7, R9 R8 R11 R12 R13 R14 R15 R16 R17 C5, C17 C6, C7, C9 C8 C10, C11 C12 C13 C14, C19 C15 C16, C21 C18 C20

3 megohm ¼ watt carbon resistor...... 100,000 ohm 1/4 watt carbon resistor. 15,000 ohm 1/4 watt carbon resistor.... 15 megohm 34 watt carbon resistor.... 75 ohm ½ watt carbon resistor..... 1 megohm 1/4 watt carbon resistor...... 5 megohm ¼ watt carbon resistor...... 2500 ohm 1 watt carbon resistor..... 10 megohm ¼ watt carbon resistor...... Volume control 3. megohm..... 500 ohm 1 watt carbon resistor..... 980 ohm 1/2 watt wire-wound, moulded 1500 ohm 5 watt wire-wound, ceramic 950 ohm 5 watt wire-wound, ceramic 0.02 mf, 100 volt tubular condenser..... 0.25 mf, 100 volt tubular condenser...... 0.00005 mf, ceramic condenser...... Trimmer, part of i-f transformer. 0.01 mf, 100 volt tubular condenser..... Fixed condenser, part of i-f transformer. 0.0001 mf, ceramic condenser.... 0.001 mf, 100 volt tubular condenser... 0.002 mf. 150 volt tubular condenser.... 40. mf, 40 volt dry electrolytic condenser 0.001 mf. 100 volt flat wound condenser

rmerson Radio

MODEL: GC-448

CHASSIS MODEL: GC

I-f Alignment

Rotate variable condenser to minimum capacity position.

Feed 455 kc to the grid of the 1R5 tube through a 0.01 mf condenser. Adjust the three i-f trimmer screws for maximum response. (Clip the i-f input to the stator lug of the larger variable condenser section.)

R-f Alignment

Set the dial pointer at 160. Set the signal generator at 1600 kc and feed its output into a loop of wire about one foot in diameter. Hold this radiating loop about one foot away from and parallel to the receiver loop antenna. Advance the output of the generator until deflection is obtained on the output meter. Adjust first the oscillator trimmer (smaller section of variable condenser) then the antenna trimmer (larger section of variable condenser) for maximum response. Set the dial pointer at 60. Feed 600 kc and rock the variable condenser while adjusting the oscillator core adjustment for maximum response. Return to 1600 and check alignment. If readjustment is necessary return to 600 and repeat entire procedure.

Emerson Radio

MODEL: FY-434

CHASSIS MODEL: FY

MODEL: FY2-434 A.C.-D.C.

CHASSIS MODEL: FY2

R1, R7, R18, R19 R2 R3 R4 R5 R6 R8, R16, R17, R20 R9, R10, R24 R11 R12 **R13** R14 R15, R23 R21, R22 R25 R26, R27, R28 C1, C2 C3, C16 C4 C5 C6, C7, C8, C9 C10 C12 C13 C14 C15 C17 C18 C19 C20, C21, C22 C23 C24, C27, C30 (C31, C32 C25 C26 C28

C29

1 megohm ¼ watt carbon resistor...... 20,000 ohm 1/4 watt carbon resistor..... 140 ohm ½ watt wire wound resistor 3 megohm 14 watt carbon resistor...... Volume control 2.5 meg..... 10 megohm 3/4 watt carbon resistor.....

500,000 ohm ¼ watt carbon resistor...

50,000 ohm ¼ watt carbon resistor.... 175 ohm 1 watt carbon resistor..... 750 ohm 1 watt wire-wound resistor. 10,000 ohm ¼ watt carbon resistor.... 25,000 ohm ¼ watt carbon resistor.... 100,000 ohm ¼ watt carbon resistor. 100,000 ohm 14 watt carbon resistor. 30,000 ohm 14 watt carbon resistor.... Ballast resistor: R26-233 ohm, 6 watt; R27-190 ohm, 5 watt; R28-250 ohm, 3 watt Two-gang variable condenser..... 0.002 mf, 600 volt tubular condenser... 0.0004 mf, 600 volt tubular condenser... Trimmer, part of loop assembly. Trimmers, part of variable condenser. Trimmer, part of variable condenser. 0.1 mf. 200 volt tubular condenser... 0.0006 mf, 600 volt tubular condenser. 0.0015 mf, 600 volt tubular condenser 0.05 mf, 400 volt tubular condenser...... 0.0002 mf, 600 volt tubular condenser 0.02 mf, 400 volt tubular condenser..... 0.00011 mf, mica condenser. 0.005 mf, 400 volt tubular condenser Multiple dry electrolytic condenser: 150 volt; C20-20 mf; C21-80 mf; C22-40 mf 0.00025 mf, mica condenser.....

0.05 mf, 200 volt tubular condenser... 0.000026 mf, mica condenser..... 0.001 mf, 600 volt tubular condenser 0.00022 mf, mica condenser..... 0.0003 mf, mica condenser.....

Emerson Radio

I-f and Wave-trap Alignment

Swing the variable condenser to the minimum capacity position. Feed 455 kc to the grid of the 12SA7 tube through a .01 mf condenser and adjust the four i-f trimmers for maximum response.

Feed 455 kc to the external antenna lead and adjust the wave-trap for minimum response.

Note: The grid of the 12SA7 tube is the No. 8 pin.

VOLTAGE ANALYSIS

Tube	Plate	Screen	Cathode
12SA7	88	88	0
12SK7	48	46	0
12SF7	89	89	0
12SJ7	8	14	_
50L6GT	108	89	5.1

MODEL: GH-437.GH-447 CHASSIS MODEL: GH MODEL: GH2-447 **CHASSIS MODEL: GH2**

Emerson Radio

R1 R2, R6 R3 R4 R5 **R5** R7, R8 R9 **R10 R11** R12, R13 **R14** C1, C2 C3, C16 C4 **C**5 C12, C19 C13 C14 C15 C17, C18 C19 C20, C21 C22 C23

20,000 ohm ¼ watt carbon resistor..... 15 megohm 1/4 watt carbon resistor..... 140 ohm ½ watt wire-wound resistor 2 megohm ¼ watt carbon ressitor...... Volume control .5 meg. (Model 431) Volume control .5 meg. (Model 439) 500,000 ohm ¼ watt carbon resistor 50,000 ohm ¼ watt carbon resistor 10,000 ohm ¼ watt carbon resistor 25,000 ohm ¼ watt carbon resistor R12-130 ohm, 12.5 watt; R13-25 ohm 220,000 ohm ¼ watt carbon resistor.... Two-gang variable condenser.... 0.002 mf, 600 volt tubular condenser. 0.0002 mf, 600 volt tubular condenser 0.05 mf, 200 volt tubular condenser 0.00022 mica condenser..... 0.05 mf. 200 volt tubular condenser. 0.05 mf, 400 volt tubular condenser. 0.04 mf, 200 volt tubular condenser. 0.02 mf, 400 volt tubular condenser. 0.00022 mica condenser..... Dual 20 mf, 150 volt, dry electrolytic Trimmer, part of L2. 0.2 mf, 200 volt tubular condenser

MODELS: GA-439 and GA-441 CHASSIS MODEL: GA

MODELS: GA1-439 and GA1-441 CHASSIS MODEL: GA1

R-f Alignment

Set the dial pointer at 140. Feed 1400 kc from the signal generator into a loop of wire about one foot in diameter. Hold this radiating loop about 12 inches away from and parallel to the receiver loop antenna. Advance the input to the loop until a satisfactory deflection is obtained on the output meter. Adjust first the oscillator trimmer then the antenna trimmer for maximum response. If the loop antenna has been replaced it may be necessary to retrack the loop inductance. With the dial set at 60 feed 600 kc to the antenna lead. A portion of the outside may be swung to either side of the center to give maximum response. Repeat the trimmer alignment at 140.

Tube	Plate	Screen	Cathode
6SG7 or 7H7	87	39	0
6S A7	87	87	0
6SK7 or 7A7	87	87	0
6SQ7 or 7B6	32		0
25L6	79	87	6.0

CONTACT 1 = MOTOR &UNIT'ON"- TREBLE TONE

GAMBLE-SKOGMO INC. Model 1682A

Generator Frequency	Connection at Radio	Dummy Antenna	Range Switch Setting	Dial Setting	Trimmers to Tune	Approx. Sensitivity .05 Watt O. P
I. F. 456 k.c.	Center Stator of Var. Cond.	.1 Mfd.	В. С.	H. F. End	I. F. Trans. Tune to Max.	65 to 75 Mv.
B. C. 1650 k.c.	Ant.	200 Mmf.	В. С.	H. F. Limit of Travel	B., C. Osc.	
1400 k.c.		66	"	1400— See Note "A"	B. C. RF. " " Loop Tune to Max.	20 Mv.
600 k.c.		66	"	600— Rock Rotor	Padder	15 Mv.
11.6 m.c.	Ant.	400 Ohms	s. w.	11.6 m.c.	S. W. Osc	40 to 50 Mv.
9.6 m.c.	Ant.	400 Ohms	S. W.	Ch	eck Dial at 9.6	Mc.
	125K7	125A7	125K7	I2SK7	12507	35L6GT

BATTERY PORTABLE ERATED

MODEL LB-412

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

ver. Adjust test oscillator and re-00 K.C. Peak 1600 K.C. oscillator tput. Change test oscillator sig-proximately 1400 K.C. Then while

output as low as a readable meter reading will permit

approximately 1400 K.C. Then with trim 1400 K.C. antenna trimmer

receiver dial to exactly littlemer for maximum output, maximum output, maximum output,

test oscillator to 455 K.C. and apply signal to lug on stator of gang condenser to which loop is connected through a. 05 Mfd. capacitor. Align the second I.F. transformer trimmers, next adjust the first I.F. transformer trimmers. Keep test oscillator

Connect an output coil. Rotate the vo

I.F. Alignment

R.F. Alignment

......1600 & 1400 K.C. meter across the voice

I.F. R.F.

Alignment Frequencies

GENERAL SELECTRIC Alignment Frequencies,

ALIGNMENT PROCEDURE

...... 455 KC

...1500 KC

MODELS L500, L510, L550, L560

BOTTOM VIEW OF CHASSIS

C1	CAPACITOR-05 mfd., 200 V. paper
	CAPACITOR—.20 mfd., 400 V. paper
	CAPACITOR-470 mmf., mica
	CONDENSER—Tuning condenser
	CAPACITOR05 mfd., 200 V. paper
	CAPACITOR—330 mmf., mica
	CAPACITOR005 mfd., 600 V. paper
	CAPACITOR—330 mmf., mica
	CAPACITOR—.01 mfd., 600 V. paper
	CAPACITOR—.02 mfd., 600 V. paper
	CAPACITOR—.02 init., too v. paper
	CAPACITOR-20 mfd., 150 V. electrolytic
C19b	CAPACITOR-30 mfd., 150 V. electrolytic
C21	CAPACITOR05 mfd., 609 V. paper
C22	CAPACITOR—100 mmf., mica
Ri	RESISTOR-330,000 ohms, W. carbon
R2	RESISTOR-22,000 ohms, W. carbon
	RESISTOR—2.2 megohms, 1/4W. carbon
	VOL. CONTROL—0.5 megohm control
	RESISTOR-4.7 megohms, 1/2W. carbon
	RESISTOR-270,000 ohms, W. carbon
	RESISTOR-470,000 ohms, W. carbon
	RESISTOR-150 ohms, 1/W. carbon
	RESISTOR-2,700 ohms, 1W. carbon
Dii	PESISTOP—13 chms 16W carbon
	C22 R1 R2 R3 R4 R5 R6 R7 R8 R9

I.F Alignment

`I.F...

R.F...

Connect an output meter across the voice coil. Turn the volume control to maximum. Set test oscillator to 455 KC and keep the oscillator output as low as a readable meter reading will permit.

The location of all trimmers is shown in Fig. 1.

Apply signal to the converter grid through a .05 mfd. capacitor and align progressively the trimmers in the 2nd and 1st I.F. transformer cans.

R.F. Alignment

Close the gang condenser by rotating the tuning control. Slide the pointer along the cord until it lines up with the first dial marking on the left. Now rotate the tuning control until the pointer is over the 1500 KC dial mark. Apply a 1500 KC signal to the receiver antenna post through a standard I.R.E. dummy antenna. Align the oscillator trimmer (C-7) to bring in the signal and peak the signal by adjusting the antenna trimmer (C-5). (See Fig. 1 for trimmer locations.)

Precaution

If the signal generator is AC operated, use an isolating transformer between the power supply and the radio receiver power input. The use of an isolating capacitor is not recommended as AC current through the capacitor will introduce hum modulation and/or create the possibility of a burned-out signal generator attenuator.

Special Service Information

The following information will be very useful in servicing receivers if a vacuum tube voltmeter or similar voltage measuring instrument is available.

- (1) Stage Gains* Antenna Post to Converter Grid....4.0 at 1000 KC I.F. on Converter Grid to I.F. on I.F.
 - I.F. Amplifier Grid to Diode Plate... 45 at 455 KC
- (2) 0.20-volt, 400-cycle signal across the volume control will give ½-watt speaker output.* (Volume control turned to maximum.)
- (3) Average DC voltage developed across oscillator grid leak....... 6 volts

* Variations of $\pm 20\%$ permissible. All readings obtained with enough signal input to give 1/4-watt speaker output.

GENERAL ELECTRIC

Six-tube Superheterodyne with Electric Tuning Keys

MODEL L-660

Alignment Frequencies

RF. 455 KC IF

The chassis must be removed from the cabinet as described above to make the following alignments. The locations of all trimmers is shown in Fig. 1.

IF Alignment

Connect an output meter across the voice coil. Turn the volume control to maximum. Set test oscillator to 455 KC and keep the oscillator output as low as a readable meter reading will permit.

Apply signal to the 12SA7 converter grid through a .05 mfd. capacitor and align progressively the trimmers in the 2nd and 1st IF transformers.

RF Alignment

When making the following alignment the loop antenna must be bolted to the chassis by the two mounting screws. Since the glass dial scale is fastened to the cabinet, it cannot be used for reference during the alignment of the chassis outside the cabinet. Use must be made therefore of the four calibration marks at the botton flange of the dial scale reflector plate (immediately below end of dial scale pointer).

These marks referring from left to right are as follows: Reference point, 580 KC, 1000 KC, and 1500 KC.

The RF signal should be capacity coupled to the receiver loop by placing a two foot piece of wire for an antenna on the test oscillator output post (high side). Keeping this antenna two feet or more from the receiver loop will generally

With the gang condenser plates completely closed, the end of the pointer should line up with the first mark to the left of the dial reflector plate. If it doesn't the pointer can be moved on the dial cord until it does. Set the signal generator to 1500 KC. Set pointer to the 1500 KC mark (extreme right flange mark) and align (C2B) to the signal. Peak (C2A) for maximum output.

Selector Switch Wiring

PARTS LIST

ymbol	Description	
1	"PM" antenna trimmer	C-74 C-75 C-76 C-77 C-76 C-79
1 2 3 4 4 5 5 6 6 7	"PM" RP trimmer	Č.78
3	"PM" Tuning condenser - RP	C-76
1	"PM" oscillator trimmer	C-77
	"FM" tuning condensar—oscills tor	C-76
	47 mmf., mice capacitor	1 C-79
!!!	10 mmf., compensating sapecitor	1 8-1
.]	"BC" band mmf., RF trimmer 3000 mmf., mics capacitor	R-2 R-3
7 1	"SW" hand RF trimmer	R-4
1 2 3	"AM" tuning condenser—RP	R-5, -6
3	220 mmf., mice capacitor	R-7
	.02 mfd., paper capacitor	1 R-6
5	.05 mfd., peper capacitor	R-9_
5 6 7	47 mmf., mica capecitor	R-10
7 1	"B" Band trimmer	R-11
8	"AM" Tuning condenser—converter "D" Band trimmer	R-12 R-13
i 1	3600 mmf., mica capacitor	R-14
ñ I	.05 mid., paper capacitor	R-15
	.05 mfd., paper capacitor "AM" Tuning condenser—oscillator	R-16
12	"D" band trimmer	R-17
10 11 12 12 13	"B" band trimmer	R-18
15	560 mmf., padder	R-19
20	65 mmf., compensating capacitor .65 mfd., paper capacitor	R-20 R-21
15 16 17 18	.005 mfd., peper capacitor	9.92
io i	"PM" Tuning condenser converter	R-22 R-23, -24
10 1132 1738 10	"FM" converter trimmer	R-26
11, -32	.02 mfd., peper capacitor	R-27
37, -38	.05 mfd., peper capacitor	R-83
10	.02 mfd., peper capacitor	R-28
: 1	.05 mfd., paper capacitor .004 mfd., paper capacitor	R-30 R-31
3, -44, -48		R-32
16	.01 mfd., peper capacitor .005 mfd., peper capacitor	R-33
17, -48, -49	100 mmf., mica capecitor	R-34
	22 f mi-s remainer	R-35 R-36
51	33 mmf., miss capacitor 47 mmf., mics capacitor	R-36
24	22 mmf., mica capecitor	R-37, -38 R-39
SA I	.02 mfd., peper capecitor	R-40
54 55 56 57, -59	47 mmf., mice capacitor	R-41, -42
61	8 mmf., compensating capacitor	R-43
41 42 43	230 mmf., mice capecitor	R-44
43	0) mid peper capecitor	R-46
-04	220 mmf., mica capacitor	R-47
64 65 66	.01 mfd., peper capacitor	R-48
6706 09	.65 mfd., paper capacitor	R-49 R-50
70	.005 mfd., peper capacitor	R-51
71, -72 -73a -73b	,002 mid., paper capacitor	R-52
.73a	35 mfd., dry electrolytic	R-55
.73b	15 mfd., dry slectrolytic	R-56
-73e -73d	10 mfd., dry electrolytic	R-57
736	20 mfd., dry electrolytic	R-68

GENERAL ELECTRIC

A-FM COMBINATION RECEIVERS Models LF-115 & LF-116

AND

A-FM PHONOGRAPH COMBINATION RECEIVERS

Models LFC-1118, LFC-1128 & LFC-1228 COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

IF ALIGNMENT WITH OSCILLOSCOPE—"FM" CHANNEL

		II ALIG	ATARTAL MILLS	COCIEECO
Step	Input Signal Connected to	Input Prequency	Band and Pointer Setting	Trimmer Adjustment
1	6SG7 converter grid in series with 22 mmf.	4.3 MC & ±200 KC Sweep	"FM" Band 42 MC	C52 C53
2	6SG7 converter grid in series with 22 mmf.	4.3 KC & ±200 KC Sweep	"FM" Band 42 MC	C35 C36
3		Repeat	Step 1	
4		Repeat	Step 2	
5	6SG7 converter grid in series with 22 mmf.	4.3 MC & ±200 KC Sweep	"FM" Band 42 MC	C60 C58
	1			

Connect high side of oscilloscope in series with 470,000 ohm resistor to R19 at point "B." Connect low side to chassis ground. Peak trimmers for resultant curve shown

Comments

Connect high side of oscilloscope in series with 470,000 ohm resistor to R36, point "A." Connect low side to chassis ground. Peak trimmers for resultant curve shown in Fig. 4. C60 is aligned when curve crosses midway in vertical plane. Proper alignment of C58 gives straightest sides to curve near crossover point.

Table II	IF	ALIGNMENT	WITH M	ETER—"FM"	CHANNEL

Step	Input Signal Connected to	Input Frequency	Band and Pointer Setting	Trimmer Adjustment			
1	6SG7 converter grid in series with 22 mmf.	Unmodu- lated 4.3 MC signal	"FM" Band 42 MC	C52 C53 C35 C36			
2	Repeat Step 1						
3	6SG7 converter grid in series with 22 mmf.	Unmodu- lated 4.3 MC signal	"FM" Band 42 MC	C60 C58			

Connect the 10-volt scale of a 20,000 ohm per volt voltmeter in series with a 470,000 ohm resistor between point "B" and ground. Peak all trimmers for maximum output using just enough input signal to give a satisfactory output reading.

Comments

Connect the 10-volt scale of a 20,000 ohm per volt voltmeter in series with a 470,000-ohm resistor between points "A" and ground. With C60 purposely detuned, peak C58 for maximum meter reading. Align C60 for the 0 voltage point where the meter reading changes from a positive to negative value. Use as low a signal input as necessary to give a satisfactory meter reading.

Table III RF ALIGNMENT—"FM" CHANNEL

Step	Input Signal Connected to	Input Frequency	Band and Pointer Setting	Trimmer Adjustment		
1	Direct to "FM" Antenna Post	Unmodu- lated 49 MC signal	"FM" Band 49 MC	C4 (Osc.)		
2	Direct to "FM" Antenna Post	Unmodu- lated 49 MC Signal	"FM" Band 49 MC	C2 C30		
3 .	Direct to "FM" Antenna Post	Unmodu- lated 43 MC Signal	"FM" Band 43 MC	C76 (Osc.)		
4	Direct to "FM" Antenna Post	Unmodu- ulated 43 MC Signal	"FM" Band 43 MC	C75 C77		
5	Direct to "FM" Antenna Post	Unmodu- ulated 46 MC Signal	"FM" Band 46 MC	C1		
6	Repeat Step 1					
7	Repeat Step 2					

Connect the 10-volt range of a 20,000 ohm per volt voltmeter in series with a 470,000-ohm resistor to point "B." The other side of the voltmeter lead connects to chassis ground. Peak trimmers for maximum meter reading using just enough signal input to give satisfactory meter reading.

Comments

Table IV IF, "BC," and "SW" ALIGNMENT—"AM" CHANNEL

Step	Input Signal Connected to	Input Frequency	Band and Pointer Setting	Trimmer Adjustment
1	6SG7 converter grid in series with .05 mfd.	455 KC Modulated	"BC" Band 550 KC	C50 C39 C34 C33
2	Capacity Coupled	17.8 MC Modulated	"SW" Band 17.8 MC	C23*
3	Capacity Coupled	17.8 MC Modulated	"SW" Band 17.8 MC	C19** C11
4	Capacity Coupled	1500 KC Modulated	"BC" Band 1500 KC	C24
5	Capacity Coupled	1500 KC Modulated	"BC" Band 1500 KC	C17 C8
6	Capacity Coupled	580 KC Modulated	"BC" Band 580 KC	C25**
7		Repeat Steps	s 4 and 5	

Connect 5.0-volt AC voltmeter across the voice coil of the speaker. Peak all trimmers for maximum output. All RF alignments must be made with the chassis in the cabinet.

*When aligning the SW oscillator trimmer, use maximum capacity peak. The image frequency should appear at 18,710 KC.

**Rock gang condenser when making alignment.

A-FM COMBINATION RECEIVERS

Models LF-115 & LF-116

A-FM PHONOGRAPH COMBINATION RECEIVERS

Models LFC-1118, LFC-1128 & LFC-1228

			ALIGNMEN! FRUCE	DUKE			
Wave-Band Switch Position	Position of Dial Pointer	Signal Generator Frequency	Signal Generator Connection	See Note	Trimmers Adjusted (In order shown)	Trimmer Function	Check for Image at
KC	540	465	Grid of 128A7	A	I ₁ ,I ₂ ,I ₃ ,I ₄	IF	
MC	14 MC	14 MC	Ant. (Brown)	В	0 ₅ ,A ₆	Osc. Ant.	13 MC
KC	1400 KC	1400 KC	Ant. (Brown)		07	Osc.	

SOCKET VOLTAGE READINGS

Voltage taken from B- with line voltage at 117 V. A.C.

High voltage reading off rectifier = 115V. Drop across speaker field = 29V. Use at least a 1000 Ohm per volt meter. High voltage reading off rectifier = 121V.

Howard Radio Co. Model 802 A- Each step of the alignment should be repeated in the original order for greater accuracy. Keep output from Signal Generator low. The I.F. trimmers are reached through the two holes on the top of each I.F. can.

B- When aligning the short wave bands, do not adjust to the IMAGE frequency. For example, if the adjustment is correctly made at 14 MC, then a weaker image will be heard at 13,070 KC, in other words 930 KC less on the dial.

The tubes are connected in series in the order as shown by the schematic diagram.

The dual section filter condenser has a common negative, but note that it does not return to ground as the can is insulated from the chassis.

TUBE	FUNCTION	CATH	\cdot	SG		PLA	TE
12SA7	Mixer		*	92	4	92	3
12SK7	I.F.Amp	2.1	5	92	6	92	8
12807	Det.		П			42	6
50L6GT	Output	6	8	92	4	82	3
35 2 50T	Rectifier	121	8				

^{*} Socket Terminal Number.

60

MODEL 6T23

Factory No. 4501X

MAJESTIC RADIO AND TELEVISION CORP. 2600 WEST 50TH STREET CHICAGO, ILLINOIS

MODEL 7T20

SCHEMATIC DIAGRAM

MAJESTIC RADIO AND TELEVISION CORP.

THE RECORD-CHANGER NEEDLE:

The needle supplied with this unit has a special durable point. No attempt should be made to use ordinary steel or fibre needles. They wear rapidly and will give poor reproduction. Only needles with a point durable enough to play 10 records or more without damaging them should be used.

LOADING THE RECORDS FOR AUTOMATIC OPERATION:

This mechanism automatically plays in sequence up to twelve 10" records or ten 12" records at one set-up. ALL RECORDS MUST BE THE SAME SIZE FOR EACH SET-UP.

MANUAL OF 1942 MOST POPULAR SERVICE DIAGRAMS Majestic Radio & Television Corporation

MODEL 7K60

Band switch sections shown in Broadcast setting.

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

65

IF - 456 KC

A - 1400 KC B - 6.6 MC C - 9.8 MC D - 11.7 MC E - 15.7 MC F - 24 MC

MODEL 82 RECEIVER

MIDWEST RADIO CORPORATION 909 Broadway Cincinnati, Ohio

- BE130100 150M ohm-1/2 w. R2 BE130279 1M ohm-1 w. R4 R5 BE1304 3 megohm—⅓ w. BE101255 500M ohm—Volume control and switch R6 BE130257 5 megohm-1/3 w. R7 BE130240 30 ohm-1/2 w. R8 BE130100 150M ohm-1/3 w. R9 R10 BE13011 250M ohm-1/3 w. R11 BE130166 150 ohm-1/2 w.
- C3 BE124137 Trimmer on antenna coil .05 x 200 v. BE1009 BE12939 .00005 mica BE10091 .15 x 400 v. 7 BE124137 Trimmer on oscillator coil **C8** BE11992 20 Mfd. lytic x 150 w.v. CO BE11992 40 mfd. lytic x 150 w. v. C10 BE10013 $.05 \times 400 \text{ v}$. C11 BE12912 .00025 mica C12 BE10025 .002 x 600 v. C13 BE1292 .0005 mica

.01 x 400 v.

- BE115597-18 Antenna plate (Walnut) BE115597-9 Antenna plate (Ivory)
- BE111181 Antenna permeability coil BE110153 Oscillator permeability coil BE108157-H Input I.F. coil—455 kc. **T3**
- **T4** BE108157-I Output I.F. coil-455 kc..
 - BE105128 Output transformer
 - BE114199 4" PM speaker
- BE114259 4" Electrodynamic speaker
- Switch on Volume control SI BE105138 R.F. choke

COIL ASSEMBLY VIEW

MODEL 14BR-521Å MODEL 14BR-522A

C14 BE10011

VOLTAGE CHART

BAND	SIGNAL GENI Frequency Setting	ERATOR Dummy Antenna	Connection to Radio	Dial Setting	Trimmers Adjusted (in Order Shown)
455 Kc. I. F.	455 Kc.	.1 MFD.	Connect to Grid of 1A7	Rotor full open (Plates out of mesh)	Input and Output Trimmers on Top of I. F. cans
BROAD-	1600 Kc.	,1 MFD.	Connect to Grid of 1A7	Rotor full open (Plates out of mesh)	Osc. Trimmer on gang (See chassis view)
CAST BAND	1400 Kc.	200 MMF.	Connect to Antenna Clip	Set dial at 1400 Kc.	Ant. Trimmer on gang (See chassis view)

• Connect B-of radio chassis to ground post of signal generator through .1 Mfd. condenser.

	SIGNAL GEN	VERATOR		7 (.).		
BAND	Frequency Setting	Dummy Antenna	Connection to Radio	Position of Band Switch	Variable Condenser Setting	Trimmers Adjusted to Maximum
I. F.	455 Kc.	.1 MFD.	Grid of 12SK7 I. F.	Broadcast	Rotor full open (Plates out of mesh)	Two trimmers on top of Output I. F.
	455 Kc.	.1 MFD,	Grid of 12SJ7 Mixer	Broadcast	Rotor full open (Plates out of mesh)	Two trimmers on top of Input I, F.
SHORT WAVE BAND	12 Mc.	400 Ohms	External Antenna and B—	Short Wave	Set Dial at 12 Mc.	S.W. Osc. trimmer C10 S.W. Ant. trimmer C3
BROAD- CAST	1600 Kc.	.1 mmf.	Grid of 12SJ7	Broadcast	Rotor full open (Plates out of mesh)	B.C. Osc. trimmer C12 on Gang
BAND	1400 Kc.	200 mmf.	External Antenna and B—	Broadcast	Set Dial at 1400 K. C.	B.C. Ant. trimmer C6

NOTE: The Oscillator Frequency is lower than the signal frequency and should be aligned accordingly.

MODEL 14BR-734A BROWN MODEL 14BR-735A IVORY

The loop antenna should be connected to the radio when making all adjustments.

	
C11	.05 x 200 Volt Tubular Condenser
C16, C21	.006 x 600 Volt Tubular Condenser
C13	1 x 200 Volt Tubular Condenser
C25 C20	.02 x 400 Volt Tubular Condenser
C1	.003 x 600 Volt Tubular Condenser
C1 C7, C14 C8 C5 C17	.1 x 400 Volt Tubular Condenser
C8	.01 x 120 Volt Tubular Condenser
C5	.05 x 120 Volt Tubular Condenser
C17	.03 x 400 Volt Tubular Condenser
	Electrolytic Filter Cond. added for 25 cycle pnly. 40 mfd. x 150 Volts across C22
	cle only. 40 mid. x 150 Voits across C22
	and 20 Mfd. x 150 Volts across C23.
C22, C23,	C24 Electrolytic Filter Condenser-40 mfd
	20 mfd.—20 mfd. x 150 Volts.
C3, C10	S. W. Antenna and Oscillator Trimmer
an an	Condenser
C9, C18	.0001 Mica Type Condenser—20%
Çiş	.0002 Mica Type Condenser—20%
C2 C4	.00015 Mica Type Condenser—3%
C19	.00025 Mica Type Condenser
-	
R10	200M phm-1/3 Watt Resistor-20%
R2, R7	50M phm-1/2 Watt Resistor-20% 2 Megohm-1/2 Watt Resistor-20%
R4	2 Megohm-13 Watt Resistor-20%
R12	200 Ohm-1/3 Watt Resistor-20%
R9	20 Ohm-1/3 Watt Resistor-20%
R13	150 Ohm—1/3 Watt Resistor—10% 5M Ohm—1/3 Watt Resistor—10% 5 Megohm—1/3 Watt Resistor—25%
R1	5M Ohm—/3 Watt Resistor—10%
R8	5 Megonm—/3 Wall Resistor—23%
R14	1200 Ohm-1 Watt Resistor-10%
R3, R5	3, 2 Megohm-1/3 Watt Resistor-20%
	2ND. DET, AVC.

RESISTORS CONDENSERS						ts		MISCELLANEOUS UNITS				
R	ОНМ	w	PART NO.	С	CAPACITY	VOL.T	PART NO.	SYMBOL	DESCRIPTION	PART NO.		
174	20 K	1/4	17-14291					TI	ANTENNA COIL	00-17130		
9	i M	1/4	17-20 8 0	193	.05	200	17-14274	T2	OSCILLATOR COIL	00-17223		
171	15 M-	1/4	17-14288	24 B	.05	400	17-14366	T3	I.F. COIL	00-17210		
5	500K	1/4	17-2070	198	.005	400	17-14279	T4	OUTPUT TRANSFORMER	00-17131		
183	150	1/4	17-14318	223	.002	400	17-14318	SPK.	SPEAKER	17-17209		
235	2 M.	v.c.	17-17(17	191	-01	400	17-14272			T		
23	250K	1/4	17-3011	1	TWO GANG .				• 01-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			
240	47	11	17-14397	2	VARIABLE	1	17-17115		FREQUENCY RANGE			
150	5 M-	1/4	17-14242	272A	40 MFD.	150		!!				
242	2000		17-14399	272B	20 MFO.	150	17~14398	il	1750 TO 540 K.C.			
				272C	20 MFD.	25	7	NOBLITT-SPARKS INDUSTRIES, INC				
		П]	197	.0001	600	17-14278	11	COLUMBUS, INDIANA			
	1	1	1	276	.00005	600	17-14404	- COLUMBUS, INDIANA				

ARVIN HOME RADIO CHASSIS RE-99

45 4 1 1 10 1	 CLIACCIC DE	~~

'n	1515	Y0	15	-11	~7	CONDENS	SERS		11	COILS & TRANSFOR	IMERS			MISCELLANEOUS UNITS	
	DIM	1	PART NO	717		CAMCIEY		MAT NO	7	DESCRIPTION	PRAT NO		SYMBOL	DESCRIPTION	MART NO
	MEG	174	7-2000	2	2	2	400	4317	1.7	ANTENNA LDOP ASSY	00 7294		56K	SMEAKER 5 INCH E.M	17 17251
	DMEC		7-14377	- 10		45000	630	7 4213	1.	OSCILLATOR CON	00-1724-9			LINE CORD & PLUG ASSY	17-17393
	20 M		7 14291	- 5	1	C+	400	97-44272	3	FRST UF CON	00 17300			SHALLIGHT - MAZDA C T TWATTS	12-1070
1	2 MEG	1/4	7 4788	1		95	1500	17-14274	4	MECONO UF CON	100 1730		5#-	VOLUME CONTACT & SW	7-172%
3	6MEG	1/4	17-14242	2	21	0002	400	F-14 748		ONTINE TRANS	305 305				
,	500K	1/4	27-207G			03	400	17-14302	160						
7	750	0.04	17-14-319	7	3	00	400	17 14276							
3	iok	1/4	17 14 36 9	745	*	*00005	400	17 M40A	1	, 'Ne.				IF PEAK 455 K C	
•	SPOK	114	(2-3Gi)	7	7	TWO CANC			II		11		BAL.	ANCE 1400 K.C CHECK AT 60	OKC.
5	MEG	νc	(7.1724	77	2	MANAGE	T.,	1		1					
_		1	1	121	NA.	40 W 0	1'50		11					IOBLITT-SPARKS INDUSTRIES, I	-
_	-	-	Ť-:	Пē		20 MFD	150	17-144.7		1	1 1	- 7			w.
_	-	Τ.	Τ.	100	s-c 3	20 MFD	1 35	1	3"	1	1 1			COLUMBUS, INDIANA	
		Τ.		15			1			1	i 1				
•	ľ	Τ.	•	7.5			7		**	I	1 1	- 1			

82

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

COLUMBUS, INDIANA

Models 982282 (similar to Model 982215 Oldsmobile

ot All of the adjustable condensers in this receiver are very accurately adjusted at antenna condenser "F" found to be necessary, the circuits can be properly adjusted only with the use If realignment generator and an output meter. unless tampered with or a defective coil has been replaced. the factory and will need no further adjustment (excepting calibrated test oscillator or signal

ø

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

PHILCO

Models PT-91, PT-92, PT-93, PT-94, PT-95

Operations	SIGNAL GENERATOR	ATOR		RECEIVER	
in Order	Output Connections to Receiver	Dial Setting	Dial Setting	Control Setting	Adjust Compensators in Order
-	Ant. Section of tuning	- 65 K.C.	540 K.C. Tuning Cond. Closed	Yol. Max.	12A, 12B, 10A, 10B
2.	Loop see above instructions	1500 K.C.	1500 K.C.	Vol. Max.	48
3.	Loop see above instructions	1500 K.C.	1500 K.C.	Vol. Mox.	44

MANUAL OF 1942 MOST POPULAR SERVICE DIAGRAMS MODELS 42-321, 42-PT-10, CODE 121

SCH		PA
No.		N
1	Loop Aerial (42-321TI)	76-11
	Loop Aerial (PT-10) Part of Cabinet.	
2	Mica Condenser (100 mmfd.)	
3	Resistor (1.0 megohms)	33-5
5	Aerial Transformer	32-3 30-4
4	Tuning Condeness	31-2
•	Pointer	
	Spring (Drive Cord)	
	Shaft Assembly (42-321)	
	Shaft Assembly (PT-10)	.31-2
	Drive Cord	31-2
7	Oscillator Transformer	
8	Condenser and Choke Assembly	
, 9	Resistor (180 ohms)	33-1 30-4
10	Condenser (.11 mfd., 200 volts) R. F. Transformer	32-3
12	Resistor (15,000 ohms)	33-3
13	Resistor (47,000 ohms)	
14	ist i. F. Transformer	32-3
15	ist I. F. Transformer Condenser (.05 mfd., 200 volts)	30-4
16	Resistor (15.000 ahms)	33.3
17	Condenser (.05 mfd., 200 volts)	30-4
IB	Znd I. F. Iransformer	32-3
19	Resistor (2.2 megahms)	
20	Volume Control	33-5 30-4
21	Condenser (.01 mfd., 400 volts) Resistor (3.3 megohms)	
23	Resistor (470,000 ohms)	
24	Condenser (.01 mfd., 400 voits)	
25	Mica Condenser (250 mmfd.)	60-1
26	Resistor (470,000 ohms)	33-4
27	Resistor (130 ahms)	33-1
28	Output Trans, (for Speaker 36-1533-9).	32-8
29	Cane Assembly (for Speaker 36-1533-9)	
30	Condenser (.02 mfd., 400 volts)	30-4
31	Electrolytic Condenser (20-20 mfd.)	30-2
32 33	Field Cail (Replace Speaker 36-1533-9) Resistor (Wirewaund, 40-80 ohms)	
34	Pilot Lamp	34-2
35	Pilot Lamp Condenser (.04 mfd., 400 volts)	30-4
-	MISCELLANEOUS PARTS	
	Cabinet (42-321T)	1056
	Cabinet (42-321T)	1056
	O 1. 1 /07 101	
	Cabinet (PT-10)	76-1

88

PHILCO MODEL 42-322, CODE 121

Opera-	SIGNAL GENER	LATOR		RECE	IVER	SPECIAL
tions In Order	Output Connections to Receiver	Dial Setting	Dial Setting	Control Setting	Adjust Compensators in Order	INSTRUCTIONS
1	Lug on the Ant. Section of Tuning	455 K.C.	540 K.C. Tuning Cond. Closed	Yol. Max. Range Switch Brdcst.	27A, 27B 26A, 26B	
2	Loop See Above Instructions	1500 K.C.	1500 K.C.	Vol. Max. Band Switch Brdcst.	7B, 7A	Nate A
3	Laap See Above Instructions	580 K.C.	580 K.C.	Vol. Max. Band Switch Brdcst.	(18)	Rolf Tuning Condenser
4	Laap See Abave Instructions		Repeat Operat	ian 2		
5	Loop See Abave Instructions	15 M.C.	IS M.C.	Band Switch S.W.	(18A, 5) Nate B	Roll Tuning Candenser When Padding S

NOTE A-DIAL POINTER CALIBRATION: In order to adjust the receiver carrectly, the pointer must be adjusted to track properly with the tuning candenser. Ta do this turn the tuning candenser to the maximum capacity (plates fully meshed). With the candenser in this position, set the tuning pointer on the first small line stamped in the scale plate on the left side.

NOTE B—Ta accurately adjust the high frequency oscillatar compensatar to the fundamental instead of the image signal, turn the oscillatar compensator (18A) to the maximum capacity position (clackwise). From this position slawly turn the campensatar caunter-clockwise until a second peak is obtained on the autput meter. Adjust the compensatar far maximum autput at this second peak.

If the above procedure is carrectly performed, the image signal will be faund (much weaker) by turning the signal generator dial 910 K.C. above the frequency being used an any high thequency range.

The aerial padder (5) must be adjusted to maximum by rolling the tuning candenser. If two signal peaks occur when turning the padder, adjust to maximum output on the first signal peak from the tight pasition (screw all the way dawn) of the podder.

90

BHILCO

Models 42-716

BHIIT CO

Model 42-724, Code 121

	SIGNA	L GENERATOR					
Operations In Order	Output Connections to Radio	Dummy Aerial Note A	Dial Setting	Dial Setting	Control Settings	Adjust Compensators	SPECIAL
· ı	Lug of aerial tuning cond.	.I mfd.	455 K.C.	580 K.C.	Band Switch "Brdest" Volmax	26A, 26B, 22A, 22B	
2	Aerial	400 ohms	21 M.C.	21 M.C.	Band Switch S. W. 3	13, 12A	Note B Note C
3	Aerial	400 ohms	12 M.C.	12 M.C.	Band Switch S. W. 2	64, 6	Note C
4	Aerial	400 ohms	6 M.C.	6 M.C.	Band Switch S. W. I	13A,	
5	Aerial	200 mmfd.	1500 K.C.	1500 K.C.	Band Switch "Brdcst"	130	
6	Aerial	200 mmfd.	580 K.C.	580 K.C.	Band Switch "Brdcst"	13B	Roll tuning condenser
7	Aerial	.200 mmf.	1500 K.C.	1500 K.C.	Band Switch "Brdcst"	13C	

NOTE A-The "Dummy Aerial" consists of a condenser or resistor connected in the dial pointer on the first mark on the left edge (low frequency end) of the series with the signal generator output lead (highside). Use the capocity or broadcast scale.

NOTE C—When adjusting the osc. compensators, be sure to tune in the fundamental signal (21 M.C.) (12 M.C.) instead of the image signal. If the commust be aligned to track properly with the tuning condenser. To adjust the dial, signal generator is correctly adjusted the image signal will be found by turning the proceed as follows: With the tuning condenser closed (maximum capacity) set 21.910 M.C. or 12.910 M.C.

2 TURNS OF DRIVE CORE
AROUND TUNING SHAFT

TUNING SHAFT

SIGNAL GENERATOR: Such as Philico Model 070, A.C. operated or Model 177 battery operated. These signal generators cover all frequencies required in aligning these models.

INDICATING DEVICE: To obtain maximum signal strength and occurate adjustments of the padders, a vacuum tube voltmeter similar to Philos Models 027 and 028 are recommended. These instruments also contain an audio output meter which may be used as an aligning indicator. The method of connecting either of these instruments is listed below.

ALIGNING TOOLS: Fibre handle screw driver, Philos Part No. 45-2610. Service Alianina Scale. Part No. 45-2909.

NOTE: The dial scale in these models is mounted on the cabinet. For convenience, when aligning the chassis outside of the cabinet, a special service aligning scale, Part No. 45-2909, is available. This service dial scale is attached to the dial background plate. If the radio is aligned in the cabinet, the cabinet dial

MANUAL OF 1942 MOST POPULAR SERVICE DIAGRAMS MODEL 42-730, CODE 121

SIGNA	AL GENERATO	R		0.00		
Ouput Connections to Radio	Dummy Aeriai Note A	Diai Setting	Diai Setting	Control Settings	Adjust Compensators	SPECIAL INSTRUCTIONS
Lug of aerial tuning cond.	.1 mfd.	455 KC.	580 KC.	Band Switch "Brdcst" Volmax	41A, 41B, 40A, 40B	
Aeriai	400 ohms	22 MC.	22 MC.	Band Switch SW 2	19H, 11B, 11A	Note B Note C
Aerial	400 ohms	7 MC.	7 MC.	Band Switch SW 1	19G	Roll tuning cond Note C
Aerial	200 mmfd.	1500 KC.	1500 KC.	Band Switch "Brdest"	19E	Roll tuning cond
Aerial	200 mmfd.	600 KC.	600 KC.	Band Switch "Brdest"	19F	Roll tuning cond
Aerial	200 mmf.	1500 KC.	1500 KC.	Band Switch "Brdcst"	19E	Roll tuning cond
Aerial	400 ohms	18 MC.	18 MC.	Band Switch 16 & 19 M.	19C, 19A	Note C
Aerial	400 ohms	12 MC.	12 MC.	Band Switch 25 to 31 M.	19D, 19B	Note C

NOTE A—The "Dummy Aerial" consists of a condenser or resistor connected in series with the signal generator output lead (highside). Use the capacity or resistance as specified in each step of the above procedure.

NOTE B—Dial Calibration: In order to adjust the receiver correctly the dial must be aligned to track properly with the tuning condenser. To adjust the dial, proceed as follows: With the tuning condenser closed (maximum capacity) set the dial pointer on the first mark on the left edge (low frequency end) of the broadcast

NOTE C—When adjusting the oscillator compensators, be sure to tune in the fundamental signal instead of the image signal. If the compensator is correctly adjusted the image signal will be found by turning the signal generator dial 910 KC. above the fundamental signal

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

Tuning Band Frequencies:

filling Dang Liednessers.	
Broadcast	540 to 1720 kc.
SW 1	2.3 to 7.5 mc.
sw 2	7.0 to 22 mc.
Spread Band 1	9.4 to 12 mc.
Spread Band 2	15.1 to 18 mc.

98

MANUAL OF 1942 MOST POPULAR SERVICE DIAGRAMS EXTERNAL NOTE: GROUND TO CHISSIS FOR LOOP OPERATION (20) TUNING CONDENSER 50L6GT 120 V. DC \mathcal{T} PM SPEAKER 4 TONE CONTROL CRYSTAL PICKUP 787 50L6GT PHONO-35) MODEL 42-1001P, CODE 121

Radio-Phonograph Model 42-1002, Codes PEILCO

PHILCO

Radio-Phonograph Model 42-1004, Code 121

Opera-	SIGNAL GENER	ATOR		RECEIYER				
tions in Order	Output Connections to Receiver	Dial Setting	Diał Setting	Control Setting	Adjust Compen- sators in Order	INSTRUCTIONS		
l.	Ant. Section of tuning	455 K.C.	540 K.C. Tuning Cond. Closed	Vol. Max.	20A, 168, 16A			
2	Loop see above instructions	1600 K.C.	1600 K.C.	Vol. Max.	38, 3A	Note A		

NOTE A:—DIAL CALIBRATION: In order to adjust the receiver correctly, the dial most be aligned to track properly with the tuning condenser. To do this, proceed as follows: Turn the tuning condenser to the maximum capacity position (plates fully meshed). With the condenser in this position, set the tuning pointer on the small dot below 540 K.C.

101

Alignment

With gang in full mesh, the pointer should be 1/16-inch to the left of the 550 kc dial mark.

Steps	Connect the high side of test- oscillator to—	Tune test-osc. to—	Turn radio dial to—	Adjust the follow- ing for max, peak output—
1	I-F grid, in series with .01 mfd.	Quiet point (2nd I-I		L10, L11 (2nd I-F trans.)
2	1st-Det. grid cap, in series with .01 mfd.	455 kc	at 1,600 kc end of dial	L8, L9 (1st I-F trans.)
8	radiated signal at 1,600 kc	1,600 kc	1,600 kc	C7 (osc.) C3 (ant.) C13 (det.)
4	radiated signal 600 kc	600 kc	600 kc	L5 (Rock in)
5	Repeat steps 3 and	d 4		

26 BP Portable

AC-DC Operation .-

This receiver will operate on 105 to 125 volts, AC 50 or 60 cycles, or DC.

A power cord is housed in the bottom right hand corner looking inside the cabinet as shown in the illustration. Open the cabinet like a suit case, first pushing to one side the little pins under the handle ends to raise the clips. Then pull the power cord plug out of its socket in the top right hand corner as shown, and take out and unroll the power cord. A slot in the bottom allows the closing of the cabinet with the power cord passing through. Close the cabinet with the cord extending and insert the plug into a convenient electrical outlet.

When returning to hattern contains the c

When returning to battery operation, be sure to replace the power plug in its socket inside the case with the cord rolled up.

NOTE.—If reception is not obtained on DC, reverse plug in outlet receptacle. This may also reduce hum on AC operation.

Using External Loop .-

Using External Loop.—

A loop antenna is housed inside the cabinet, Under normal conditions this will give satisfactory reception. If however the receiver is used in a location remote from broadcasting stations where signals are weak, or where interference is excessive, or in a shielded compartment such as an automobile, airplane or railroad train, an RCA Magic Wave Magnifier Antenna with suction cup fastener may be purchased from your dealer. This antenna has a strap connector cordending in a two-prong plug for attachment to the loop antenna frame. Open the case, plug the antenna cord into the socket (it will only go in one way), bring the strap out at the slot in the case and attach the Antenna by means of the suction cup to any convenient vertical surface. The RCA Magic Wave Magnifier may be attached inside the back case, when not in use, by means of three snap fasteners.

RCA Models 26X-1, 26X-3

Test Oscillator.—For all alignment operations, keep the output as low as possible to avoid a.v.c. action.

Output Meter Alignment.—If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.

Calibration Scale.—The glass tuning dial may be easily removed from the cabinet and temporarily attached to the dial backing plate for quick reference during alignment.

Power Supply Polarity.—For operation on d-c, the power plug must be inserted in the outlet for correct polarity. If the set does not function, reverse the plug. On a-c, reversal of the plug may reduce hum.

Precautionary Lead Dress

- Dress output tube plate lead to speaker and output bypass condenser away from terminal board and yellow lead in cable.
- Dress brown and yellow leads from 2nd I.F. transformer away from output plate and bypass condenser.
- 3. Dress .02 capacitor C12 away from output capacitor C16.
- 4. Dress all leads or parts as far as possible away from oscillator coil.
- 5. Dress lead from C13 to band switch down along front apron of
- Dress lead from trimmer condenser on loop to S.W. Ant. coil around outside of rectifier tube. Other leads between rectifier and R.F. tube.

*0	Steps	Connect high side of the test oscillator to—	Tune test	Turn radio dial to—	Adjust the follow- ing for maximum peak output		
-	**1	I.F. grid - in series with 0.1 mfd.		,	C30, C31 2nd I-F trans.		
	2	1st det. grid in series with 0.1 mfd.	455 kc	Quiet Point at 1,700 kc end of dial	C-28, C-29 1st I-F trans.		
	3	R.F. grid in series with 0.1 mfd.			C-27** Wave trap		
	4	Ant. terminal in series with 47 mmf. (link open)	15 mc	15 mc "C" Band	C-24 (osc.)* C-22 (ant.)		
	5		9.5 mc	9.5 mc "C" Band	L-10 (osc.) L-5 (ant.)		
	6	(Repeat steps 4 and 5.				
	7	Ant. terminal in series with 220 mmf, (link open)	1,300 kc	1,300 kc "A" Band	C-25 (osc.) C-23 (ant.)		
	8		600 kc	600 kc "A" Band	C-26 (osc.)		
	9	(: open)	Repeat steps 7 and 8.				

*Use minimum capacity peak if two peaks can be obtained.

**Adjust C-27 for minimum signal with 455 kc applied to R.F. grid.

Note.—Oscillator tracks 455 kc above signal on all bands.

112

Output Meter Alignment.—If this method is used connect the meter across the voice coil and turn the receiver volume control to maximum.

Electronic Voltmeter.—The electronic voltmeter in the Chanalyst or VoltOhmyst provides an unexcelled output indicator. It should be connected to the AVC bus.

Test Oscillator.—Connect the low side of the test oscillator to the receiver chassis through a .01 mfd. capacitor. When the electronic voltmeter is used as an alignment indicator the output of the test oscillator should be adjusted to produce several volts of AVC. With the output meter alignment method the test oscillator output should be kept as low as possible.

Power-Supply Polarity.—For operation on d.c, the power plug must be inserted in the outlet for correct polarity. If the set does not function, reverse the plug. On a.c, reversal of the plug may reduce hum.

Steps	Connect the high side of test- oscillator to—	Tune test-osc. to—	Turn radio dial to—	Adjust the fol- lowing for max. peak output—	
1	12SK7 grid in series with 0.1 mfd.		Quiet Point	C10, C9 2nd I-F Transformer	
2	12SA7 grid in series with 0.1 mfd,	455 kc	at 1,600 kc end of dial		
S	Antenna term, in series with 47 mmf.	10 mc*	10 mc	C21 (osc.)** C23 (ant.)	
4	Antenna term. In series with 200 mmfd.	1,600 kc	1,600 kc	C14 (osc.)	
5	Radiation Loop	1,300 kc	Resonance on Signal	C15 (ant.)	
6	Radiation Loop	600 kc	600 kc	C22 Osc. Rock in	

* It is recommended that this step be repeated us station of known frequency. ** Use minimum capacity if two peaks can be obtain	RCA 34 X	LOOP CONNECTIONS
C11-08C. C27-08C. 10 MC. 800 KC. C8-ANT 1800 NC. C10 C20 C23-ANT 10 MC. C10 C25-ANT 10 MC.	DOWN AVIOUS COME	PACK P L2 CANT. 0 0
(25K7) (25K7) (25K7) (25K7) (25K7)	sig Tumura 🕜	445

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

Keep blue plate leads coming from IF transformers short and close to the chassis.

All filament wires should be dressed close to chassis.

2. Keep AVC lead connecting C1 away from the 1A7GT plate.

1. The lead from the 8Q5 place to output transformer should be dressed under clip and away from audio input leads.

Precautionary Lead Dress .-

Alignment Procedure

Output Meter Alignment.—Connect the meter across the voice coil, and turn the receiver volume control to maximum.

Test-Oacillator.—Connect the low side of the test-oscillator to the receiver chassis, through a .01 mid. capacitor, and keep the output as low as possible.

Steps	Connect the high aide of test- oscillator to-	Tune test-osc. to	Turn radio dial to	Adjust the follow- ing for max, peak output	
1	I-F grid, in aeries with .01 mfd.	Quiet point ti		L8 and L9 2nd I-F transformer	
2	1at Det. grid in aeries with .01 mfd.	455 kc	1,600 kc end of dial	L6 and L7 lat I-F transformer	
3	Ant. terminal in acries with 200 mmfd.	1,650 kc	Gang at minimum	C25 (osc.) C31 (osc.)	
4	Radiated signal 1300 kc		Signal Frequency	C23 (ant.)	
5	Repeat ateps 3 and 4.				

RCA Model V-105

Phonograph Motor Service Data:-

The phonograph motor is of the self starting synchronous type and operates the turntable through friction drive between the motor drive spindle and the rubber tired idler on the rim of the turntable.

The motor should be lubricated once or twice a year by placing a few drops of S. A. E. 20 (or equivalent) on the turntable spindle and saturating the oil retaining felt pads on the motor shaft with S. A. E. 10 oil. Caution—The motor drive spindle and the rubber tire on the idler must be kept clean and entirely free from oil and grease at all times.

motor connections are different, as shown in separate diagram on a following page. In Model V-225, R-8 is 220,000 ohms, R-17 is 1.8 Meg., and C-21 is .0035 mfd. In Model V-219, the loop and phono

RCA Models V-215,

V-219, V-221, V-225

Cathode-Ray Alignment is the preferable method. Connections for the oscillograph are shown in the schematic diagram.

Output Meter Alignment.—If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.

Test-Oscillator.—For all alignment operations, connect the low side of the test-oscillator to the receiver chassis, and keep the output as low as possible to avoid a-v-c action.

Electronic Voltmeter.—The electronic voltmeter in the Chanalyst or VoltOhmyst provides an unexcelled output indicator. It should be connected to the AVC bus, and the test-oscillator output adjusted to produce several volts of AVC.

Calibration Scale.—The glass tuning dial may be easily removed from the cabinet and temporarily attached to the chassis for quick reference during alignment. In the event that only the chassis is returned for service, and the cabinet with its tuning dial is left in the customer's home, the full size calibration scale printed in this service note can be used as an accurate and convenient substitute for the regular dial.

Using Tuning Dial .-

- 1. Remove the dial glass from the cabinet.
- 2. With gang at full mesh move the pointer to a point (1/16) inch to the left of the reference mark at the left hand end of the dial backing plate.
- 3. Place the glass dial under the pointer so that the extreme left scale graduations coincide with the pointer. Use scotch tape to hold the glass dial in place.

Using Dial Scale Printed In This Service Note .-

Follow the procedure above, substituting the dial scale printed in this service note for the glass dial in the cabinet.

Model V-225

Steps	Connect high side of test osc. to—	Tune test	Turn radio dial to—	Adjust the follow- ing for maximum peak output—	
1	I-F grid in series with .01 mfd.	455 kc	"A" Band		
2	1st Det. grid in series with .01 mfd.	455 EC	540 kc	L10, L9 (1st I-F Trans.)	
3	Yellow loop lead	1,500 kc	"A" Band 1,500 kc	C9 (osc.)	
4	200 mmf. (link closed)	600 kc	"A" Band 600 kc	L8 (osc.)	
5		Repeat s	teps 3 and 4		
6		6.1 mc	"B" Band 6.1 mc	C8 (osc.)* C2 (ant.)	
7	Ant. terminal in series with 47 mmf.	15.2 mc	"C" Band 15.2 mc	C7 (osc.)* C6 (ant.)	
8	(link closed)	9.5 mc	"C" Band 9.5 mc	C4 (ant.)	
9	1	Repeat steps 7 and 8			
10	Install and connect chassis in cahinet, with link closed. Tune in a radiated oscillator signal at 1,500 kc and peak the "A" hand ant, trimmer C3 (on loop). Rock in L8 for peak output at 600 kc.				

* Use minimum capacity peak if two peaks can be obtained.

Oscillator tracks 455 kc above signal on all bands.

Critical Lead Dress

- Push button, R.F. and oscillator leads should be separated as much as possible to reduce degeneration on push button reception.
- 2. R.F. choke in plate circuit of 6SG7 should be dressed towards the back apron.
- Dress green push button lead under clamp and away from "C" band series capacitor.
- 4. Dress heater leads away from grids and diodes.
- 5. Dress phono, cables up and away from all wiring.
- Dress all excess leads from transformer towards back towards transformer.
- 7. Keep output plate leads short and dressed close to chassis.
- 8. Dress green lead from 6SA7 screen to electrolytic down close to chassis.
- Dress "C" band coil lead from oscillator coil to range switch down towards green lead,
- 10. Keep yellow loop lead clear of all wiring.
- 11. Dress ground bus of large electrolytic away from mounting lug.
- Remove all excess slack from pilot light assembly and dress it close to chassis base away from volume control.
- Dress oscillator grid capacitor (56 mmfd.) up and away from the screen and plate of 6SA7 socket.
- 14. A.C leads to "off-on" switch should be kept away from tone control cable to reduce hum,
- 15. Peaking coil should be dressed away from R-F grid resistor to reduce degeneration in R-F stage.
- Dress oscillator push button lead in weld clamp on front apron away from 220 mmf. series condenser.
- Keep all leads away from Phono. FM jack to prevent audio oscillation and hum. Dress underneath the shield provided.

MANUAL OF 1942 MOST POPULAR SERVICE DIAGRAMS RCA Models 526, 527

Output Meter Alignment.—If this method is used connect the meter across the voice coil and turn the receiver volume control to maximum.

Electronic Voltmeter.—The electronic voltmeter in the Chanalyst or VoltOhmyst provides an unexcelled output indicator. It should be connected to the AVC bus.

Test Oscillator.—Connect the low side of the test oscillator to the receiver chassis through a .01 mfd. capacitor. When the electronic voltmeter is used as an alignment indicator the output of the test oscillator should be adjusted to produce several volts of AVC. With the output meter alignment method the test oscillator output should be kept as low as possible.

Calibration Scale.—The glass tuning dial may be easily removed from the cabinet and temporarily attached to the dial backing plate for quick reference during alignment.

Power-Supply Polarity.—For operation on d-c, the power plug must be inserted in the outlet for correct polarity. If the set does not function, reverse the plug. On a-c, reversal of the plug may reduce hum.

Steps	Connect the high side of test- oscillator to—	Tune test-osc. to	Turn radio dial to	Adjust the fol- lowing for max. peak output
1	12SK7 grid in series with 0.1 mfd.	455.	Quiet Point	C10, C9 2nd I-F Transformer
2	12SA7 grid in series with 0.1 mfd.	455 kc	at 1,600 kc end of dial	C8, C7 1st I-F Transformer
3	Antenna term. in series with 47 mmf.	10 mc*	10 mc	C21 (osc.)** C23 (ant.)
4	Antenna term. in series with 200 mmfd.	1,600 kc	1,600 kc	C14 (osc.)
5	Radiation Loop	1,300 kc	Resonance on Signal	C15 (ant.)
6	Radiation Loop	600 kc	600 kc	C22 Osc. Rock in

 $\mbox{\$}$ It is recommended that this step be repeated using a received station of known frequency.

** Use minimum capacity if two peaks can be obtained.

RCA Model R-560-P

Output Meter Alignment,—Connect the meter across the voice coil, and turn the receiver volume control to maximum.

Test-Oscillator.—Connect the low side of the test-oscillator to the receiver chassis, through a ,01 mfd, capacitor, and keep the output as low as possible.

Phonograph Motor Service Data:-

The phonograph motor is of the self starting synchronous type and operates the turntable through friction drive between the motor drive spindle and the rubber tired idler on the rim of the turntable.

The motor should be lubricated once or twice a year by placing a few drops of S. A. E. 20 (or equivalent) on the turntable spindle and saturating the oil retaining felt pads on the motor shaft with S. A. E. 10 oil. Caution—The motor drive spindle and the rubber tire on the idler must be kept clean and entirely free from oil and grease at all times.

Power Supply.—Although this model employs an ac-dc chassis, it is not suitable for use on d.c., as this would damage the motor.

Steps	Connect the high side of test- oscillator to—	Tune test-osc. to—	Turn radio dial to	Adjust the follow- ing for max. peak output				
1	I-F grid, in series with .01 mfd.	Quiet point tran		Quiet point trans	Quiet point transi	Quiet point trans		L8 and L9 2nd I-F transformer
2	1st Det. grid in aeries with .01 mfd.	455 kc	1,800 kc end of dial	L6 and L7 1st I-F transformer				
3	Ant, terminal in series with 200 mmfd.	1,650 kc	Gang at minimum	C25 (osc.) C31 (osc.)				
4	Radiated signal	1300 kc	Signal Frequency	C23 (ant.)				
5	Repeat steps 3 as	nd 4.		<u> </u>				

Sears, Roebuck and Co. Model 7057. Factory No. 141.418

Output meter connection	Receiver chassis
Dummy antenna value to be in series with generator output	See chart below
Generator modulation	HI
Position of Dial Pointer with variable fully closed	On first mark to left of 540 kc calibration mark.

POSITION OF VARIABLE	GENERATOR FREQUENCY	DUMMY ANTENNA	GENERATOR CONNECTION	TRIMMERS ADJUSTED (IN ORDER SHOWN)	TRIMMER FUNCTION	ANT.COUPLED APPROXIMATE MICROVOLTS
Open	455 kc	.1 mfd.	7H7 Grid	T2,T1	IF	
Fully open	1720 kc	.00005 mfd.	Ant. Lead	C2B*	Osoillator	
1400 kg	1400 kc	.00005 mfd.	Ant. Lead	C2A*	Antenna	80**

IMPORTANT ALIGNMENT NOTES

- * C2 A and B are best adjusted when the receiver is in the cabinet, through holes provided in the back cover.
- ** 120 microvolts per meter using standard Hazeltine alignment loop 24 inches from receiver loop.

For operation of the chassis outside the cabinet with the phonograph plug disconnected, connect a jumper wire across the two top terminals of the phono socket, and between the two terminals marked "X" on the Recorder socket shown below.

The alignment procedure should be repeated stage by stage, in the original order, for greatest accuracy. Always keep the output from the test oscillator at its lowest possible value to make the AVG action of the receiver ineffective.

MANUAL OF 1942 MOST POPULAR SERVICE DIAGRAMS SEARS. ROEBUCK AND CO.

Model 7094. Factory No. 101.667

Output meter connections	Across loud sp	eaker voice coil
a Deel britan management company of the company		Troopy or or
a		*Dee CIMIT & DOYON
a decided with generator	output	*Dee creer a poron
m		· · · · runny on
Position of Tone Control		Brilliant

POSITION OF TUNER	GENERATOR FREQUENCY	DUMMY <u>ANT ENNA</u>	GENERATOR CONNECTION	ADJUSTMENTS (IN ORDER SHOWN)	TRIMER FUNCTION
Low Freq.Limit Low Freq.Limit Hi Freq.Limit Hi Freq.Limit Hi Freq.Limit Hi Freq. Limit Hi Freq. Limit 600 kc (rock)	455 kc 455 kc 1610 kc 2520 kc 1610 kc 1610 kc 1610 kc	.1 mfd. .1 mfd. .0005 mfd. .0005 mfd. .0005 mfd. .0005 mfd. .0005 mfd.	Transl. Grid Transl. Grid Ant. Conn. Ant. Conn. Ant. Conn. Ant. Conn. Ant. Conn. Ant. Conn.	T2, T1 C12* C16 C13* C16 C1 C4 L5	IF IF Wave Trap Oscillator Image Rejector Oscillator Antenna R.F. Padder

TRIMMER

Sears, Roebuck and Co. Model 7083. Factory No. 101.686

Sears, Roebuck and Co. Model 7070. Factory No. 101.682

Voltages shown on the circuit diagram are from socket terminals to ground buss. In measuring voltages use a voltmeter having a resistance of at least 1000 chms per volt. Allowances should be made for variations in line voltage.

ALIGNMENT PROCEDURE

GENERAL DATA. The alignment of this receiver requires the use of a test oscillator that will dover the frequencies of 456, 600, 1400 and 1720 KC and an output meter to be connected across the primary and secondary of the output transformer. If possible, all alignments should be made with the volume control on maximum and the test oscillator output as low as possible to prevent the AVC from operating and giving false readings.

CORRECT ALIGNMENT PROCEDURE. The intermediate frequency (I.F.) stages should be aligned properly as the first step. After the I.F. transformers have been properly adjusted and peaked, the broadcast band should be adjusted.

i. F. ALIGNMENT. Remove the chassis and loop antenna from the cabinet and set them up on the bench so that they occupy exactly the same respective positions on the bench as they did in the cabinet. Care should be taken to have no iron or other metal near

the loop. Do not make this set-up on a metal bench. With the gang condenser set at minimum, adjust the test oscillator to 456 KC and connect the output to the grid of the first detector tube (125A7) through a .05 or .1 mfd. condenser. The ground on the test oscillator should be connected to the ground buss, indicated on the circuit diagram. Align all three I.F. trimmers to peak or maximum reading on the output meter.

BROADCAST BAND ALIGNMENT. Connect the test oscillator to the antenna of the set through α 100 mm/d. (.0001) condenser. With the gang condenser set at minimum capacity, set the test oscillator at 1720 KC, and adjust the oscillator (or 1720 KC trimmer) on gang condenser. Next—set the test oscillator at 1400 KC, and tune in the signal on the gang condenser. Adjust the antenna trimmer (or 1400 KC trimmer) for maximum signal. Next set the test oscillator at 600 KC, and tune in signal on condenser to check alignment of colls.

132

134

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

B.C.DSC.CIRCUIT FREQUENCY IS ABOVE ANTENNA FREQ. S WOSC.CIRCUIT FREQ IS BELOW ANTENNA FREQ.

		Voltage	of Sock	Woltage of Socket Prongs to Gnd. See Prong Nos. on Schematic Dis.	3	See P	rong Nos	on Sc	heme til c	8
100	ronciton	No. 1	No. 2	No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9	No. 4	No. 5	Mo. 6	No. 7	80.8	8 0.9
7A7	R-F Amplifier	o	98	75	3.8	0	0	3.8	6.2	,
757	Osc - Converter	0	560	75	-2.3	0	0	0	6.2	,
7.87	I.F. Amplifier	0	260	75	3	0	0	3	6.2	,
786	2nd Det - AVC - 1st Audio	0	071	0	1.1	o	ż	9.	6.2	,
744	Inverter	0	223	50	0	0	17	8	* 2*9	١,
784	Viso-Glo Amplifier	0	70	160	0	275	0	1.2	* 2*9	1
9949	Power Amplifter	0	2	260	265	-17	-17.5	* 9	0	1
6V6G	Power Amplifier	0	0	260	265	-17	265	* 9	0	,
5X3C	Rectifier	0	390	0	355*	0	355*	0	390	,
6AF6G	Viso-Glo	0	0	07	17	260	0	6.2	0	1
Notes:	Notes: Voltage readings are for schematic diagram on back of sheet. Allow 158 + or - on all measurements.	atic dia	ren on	back of	sheet.	Allow ?	5% + or	- on al	THERMAN	emen fr.

Volvage remaines are for Schematic diagram on back of sheet. Allow 15% + or - on all measurements. Always use meter scale which will give greatest deflection within scale limits. All DC measurements made with 20,000 obms per volt voltmeter. All AC voltages made with rectifier type voltmeter. Unless designated otherwise, voltages in table are + DC voltages.

L I B.C. ANT. COIL-5521- C-3290-8 L B. C. ANT. COIL-5521- C-3290-9 L B.C. ANT. COIL L B.C. OSC. COIL L B.C. OSC. COIL L B.C. OSC. COIL L B. NO. I. F. COIL L B. NO. I. F. COIL A-1520-15 LT NO. Z I.F. COIL A-1500-39 LT NO. Z I.F. COIL SIA-B-C WAVE BAND SW. A-15122 S2 PHONO-RADIO SW. A-15754-1
32 - 32 - 32 - 32 - 32 - 32 - 32 - 32 -
-53 # -53 # # -53 # # -53 # -53 # -53
5885588 M
AN NA N
-4444444 -444444
C-2795-90B C-2796-76C C-2796-79A C-2796-90A C-2795-79B C-2795-79B C-2795-91B C-2795-91B C-2795-91B C-2795-91B
C-2795-80 C-2795-70 C-2795-70 C-2795-10 C-2795-10 C-2795-10 C-2795-9 C-2795-9 C-2795-9
0000040004000
000 0. 25 W. 000 0. 3 W. 000 0. 1 W. 000 0. 25 W. 100 0. 25 W.
33000 ^ 25 W. 22000 ^ 18 W. 47000 ^ 18 W. 22000 ^ 28 W. 27000 ^ 28 W.
44.24.24.25.25.44.25.24.25.24.25.24.25.24.25.25.25.25.25.25.25.25.25.25.25.25.25.
00000 PEC 00000
13 33 4 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
C-3204-38C C-720-39 C-720-39 C-720-39 C-3208-22 C-3208-86 A-14208-86 A-14208-86 C-3208-86 C-3208-86
200-3 -4-00-3 -4-00-3 -5-00-3 -6-0-3
1. MFD. 400V. 250 MMFD.MCDED. 250 MMFD.MCDED. 100 MMFD.MCDED. 250 MFD. 600V. 250 MFD. 600V. 350 MFD. 600V. 31 MFD. 600 V. 31 MFD. 600 V. 31 MFD. 600 V. 31 MFD. 600 V.
40.00 de 10.00 de 10.
M 20 M M M M M M M M M M M M M M M M M M
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
-8235 15758-1 14086-5 7200-6N 3206-26C 3206-58C
B-8235 A-15758 A-14086 B-7200 C-3206 C-3206
£
DC
E CONDENS E PADDER TRIAMER T TRIAMER T TRIAMER TRIAMER TRIAMER TRIAMER 600V. D MOLDED D 600 V
VARIABLE CONDENSER B B.C. OSC. PRODER B.C. OSC. TRIMMER S.W. OSC. TRIMMER S.W. OSC. TRIMMER S.W. OSC. TRIMMER J.W. ANT. TRIMMER NO.2 I.F. TRIMMER OS MITO. MOLDED C.OOI MED. GOOV.
MARABLE C. 0.8C. C. 0.8C. C. ANT. M. 0.8C. M. 0.1. F. O. M. M. T. O. M. T.
\$ m m d v v z z o v o
8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
0 00

Spiegel, Inc. Model TA616. (DP-7450 and EP-2450)

(DP-7014 Models 822 and 922. Spiegel, Inc.

C-3280 -7	_				*-/1001-V	A-18384-3		B-55261-4	A-14794-3	A-12084-42					
LODP ANTENNA		100 LN UN WELL BOLD	3 B.C DET COIL	[481-7.6.74-10 0.8.8-13.4]	SIR 9 - 18 SMC DET COIL	. 9 S.C. OSC COIL	[8.7-7.6,7.4-10.0,8.8-13.4	18 12 8-18.8 MC. 05C. COIL	7 NO.1 F COIL	. S NO 2 I F COH					
		_	_	=	_		_	_	_	-	•	-			-
C-8788-157	E	71.00.00	C-2785-83	C-2788-102						C-2789-75	A-15128-7	C-2788-46	C-2785- 50		C-2785-758
¥ 1	9						.25 W.	. 29 W	25 W.	20 W.	25 1466	¥ 54	28 W	P ONLT.	25 W
A 000,21	40.4	000	\$8,000 A.	Z.P. MEG.	VOL. CONTROL	0 4.7 MEG.	270.000 A.	2 470.000 A.	3 100,000 A	4 22 090 A	S TONE CONTRC	4 4	7 / 220,000 A.	28 THOM NO	RIS 22,000 A.
2		2 :		=			-	-	ě	=	ě	~	_	_	ž.
8-9265-5	A-14088-7	386-9026-3	A-14752-1	5-5200-0	A-15451-10	C-3202-38C	A -2014	C- 3204 - 22C	C-720-324	C-3204-140C	C-3204 - 35C	C-3808-50C	C- 3206 - 88C	A-20188	
Z Z				ž											
17-76574-10.0 MC. DET. PAD., 199	10-13.45 (2:0-10.5 MC. DET. TRIMMER	× 000 × 000	NO.L.F. TRIMERS	5.7-7.8 \$7.4-10.0 MC OSC PAD. 165	S W OSC. CIRCUIT PADDER	1 MFD. 200 V	40.2 1.F. TRIMMER	02 MFD. 400 V.	ROD MANE MICA	08 MFD 400 V	1 MFD. 400 V	03 MFD. 800 V	006 MFO. 600 V	8-18 MFD. ELECTROLYTIC	
-	2 :		3	250	3	55 0	C.25	250	C 23	C.2.0	C.26	030	3	200	
8-5300	- 14081 - V			V-60343	_	-			A -20343-1			8-5266-5	C-3804-38C	C-3204-35C	
TA BEC 3-GANG VARIABLE CONDENSER	S.C. ANI. TRIMMER	こうしょう はいこう こうしょう はいままには、これには、これに、これに、これに、これに、これに、これに、これに、これに、これに、これに	9.7 - 7.6 5.74 - 10.0 MC OSC	S.7-7.95 7.4 -10 0 MC DET. "	B.C. DSC TRIMMER	PADDER	6.9-13 4 5 12 6-16.8 MC ANT PADDER	5.9-1341129-169 MC .: TRIMMER	8.9-134&126-16 8 MC. DET PADDER	9.9-13.41.26-19 MC 05C	\$6-1345126-165 MC TRIMMER	57-77474-100 MC ANT. PAD., 199 MMF.	1 MFD 400 V	1 MFD. 400 V	
	8-5388 C17 07-78574-10-0 MC DET PAD, 189 MMF. 8-9265-5 R3 15,000 A. 25 W C-278-1578 L1 LODP ANTENNA C-2200-7	8-5398 C.17 07-76374-10-0 MC.DET.PAD, 199 MMF. 8-8265-5 R3 15,000 A25 W C-2785-578 L1 LODP ANTENNA A-14058-7 C.15 69-13-5429-19-3-MC.DET.TRIMMER A-14058-7 R4 470 A25 W C-2785-55 L1 LODP ANTENNA	8-5388 C.17 974874-10.0 HC.DET.PAD, 199 MAF. B-2255-5 R3 15,000 A. 29 C-2759-1518 L. CODP ANTENNA C-3280-7 A-14058-7 C.18 69-13-6129-18-18-19 C-2759-18-18-18-18-18-18-18-18-18-18-18-18-18-	8-5388 C.77 97-5874-10-0 HC.DET.PAD, 199 MAF. B-6263-5 R3 15,000 A. 25 W C-2789-1538 L1 LODP ANTENNA C-2888-7 A-14058-7 C15 69-13-4529-16-8 MC.DET.TRIMMER A-14058-7 R4 470 A. 25 W C-2783-153 L2 LODP ANTENNA D-1588-10 C28 1 M.PD. 400 V C-2264-25 R9 300 A. 3 W C-2789-168 L3 R-12-0-10-0-10-13-1 A-14590-9 C28 1 M.DD. 400 V C-2264-25 R9 300 A. 35 W C-2789-168 L3 B.C DET COL. A-153.89-1	8-5389 C.17 97-83 4-10.0 MC DET. PAD, 199 MMF. B-5283-5 R3 15,000 A. 25 M C-2759-1519 L1 LODP ANTERNA C-2580-7 C-2753-1519 L1 LODP ANTERNA C-2564-25 R3 100 A. 25 M C-2759-158 L1 LODP ANTERNA C-2564-25 R3 100 A. 25 M C-2759-158 L2 L2 100 M C-2754-1510 L1 L0DP ANTERNA L2	8-5389 C.17 9-143.74 May 189 Mark N-1608-7 R3 15,000 A. 28 W C-2789-1518 L1 LODP ANTENNA D-1589-7 C.18 69-13.45.129-18.04 L2 LODP ANTENNA D-1589-19.04 L2 LDD ANTENNA D-1589-19.04 LDD ANTENNA D-158	B-3388 C17 87-1837-4100 WC DTT PRIMARE B-2885-5 R3 15,000 A. 18 W C-2785-1819 L1 LODP ANTERNA C-3880-7		B-3388 C.17 PATS 74-100 W. DET. PAD. 189 MAF. B-2828-7 R. 1 15000 A. 139 W C-2783-1519 L. LODP ANTERNA C-2380-7 C-2783-1519 L. LODP ANTERNA C-2380-7 C-2783-1519 L. LODP ANTERNA C-2783-1510 C-2783-1510 L. LODP ANTERNA C-2783-1520 L. LODP ANTERNA	B-3388 C17 PAT874-100 NC DETTRIBUTER B-2828-5 R3 15000 A. 129 C-2759-1518 L. LODP ANTERNA C-1586-70 C-1564-100 C-1564-100 A. 129 C-2751-1518 L. LODP ANTERNA C-1586-70 C-1564-100 A. 129 C-2751-1518 L. LODP ANTERNA C-1586-70 C-1564-100 A. 129 C-1564-100 A. 120 C-1	B-3388 C17 874874-100 W. DET. PAD. 189 MAF. B-2828-5 R3 15,000 A. 139 W C-2783-1519 L1 LODP ANTERNA C-2389-7 C-2783-1519 L1 LODP ANTERNA C-2389-7 C-2382-152 R3 1500 A. 139 W C-2783-1519 L1 LODP ANTERNA C-2380-7 C-2382-152 R3 1500 A. 139 W C-2783-152 L4 LODP ANTERNA C-2783-152 L4 L2 L3 L3 L3 L3 L3 L3 L3	B-3388 C17 P74374-10 W. Dell' B-12434-5 R3 1500 0.	B-2388 C17 F74374-100 W, DET. PAD, 189 MAY. B-2828-15 R3 15,000 A. 23 W C-2759-1518 L1 LODP ANTENNA C-2369-17 C-2264-155 R3 100 A. 23 W C-2759-1518 L1 LODP ANTENNA C-2364-155 R3 100 A. 23 W C-2759-1518 L3 R2 100 A. 23 W C-2759-1518 L3 R2 100 A. 24 W C-2759-1518 L3 R2 10 A. 24 W C-2759-1518 L3 R	C-154-1519 C-15 6-13-4512-163 C-154-1519 C-154-15	C-154-1519 C-1

STEWART-WARNER 205A & 205B CHASSIS

Use a voltmeter of 1000 ohms per volt.

REAR OF

ALIGNMENT PROCEDURE

Condenser—.02 mfd. 600 volt. Condenser—.006 mfd. 600 volt. Condenser—.004 mfd. 600 volt. Transformer—lst I.F.

- Connect output meter across the voice coil; or from 50L6GT plate to B— as shown on voltage chart.
- Connect the ground lead of the signal generator to the chassis through a .25 mfd. condenser.
- 3. Set the volume control to the maximum volume position.
- Set dial pointer to lowest frequency point on dial scale with gang in full mesh.
- 5. Connect the antenna lead of the signal generator to the lug on the top of the rear section of the gang, using a 200 mmid. mica condenser in series.
- 6. Set the signal generator to 455 KC. Set receiver dial to a point where it does not affect signal. Adjust the trimmer screws on the top of each I.F. Transformer for maximum output.
- Connect the output of the signal generator in series with a 200 mmfd, mica condenser to the antenna terminal on the cabinet back. Set the receiver dial to 1500 KC.
- Set the signal generator to 1500 KC and adjust the trimmer on the front section of the gang condenser for maximum output of the oscillator signal.
- Place the loop antenna in its correct position at the rear of the cabinet and adjust the trimmer screw on the back of the chassis for maximum output at 1500 KC.

Diagram Number Number Description 27 500236 28A-28B 500256 29C-500329 30A-30B .500443 31A-31B 500480 500566 119193

MISCELLANEOUS PARTS

Part Number	Description
116467	Base for mounting electrolytic condenser
114955	Clamp for dial cord
	Clip-coil mounting
	Cord—drive supplied in 3' lengths
500562	Dial Scale
	Vani Marie Cost X & Cost Col Cost D & Cost Col
500422	Knob (for 205AA & 205AC) (205BA & 205BC)
	Knob (for 205AB & 205BB)
500527	Pointer
81145	Retaining ring for tuning shaft
116690	Socket-octal base
160392	Socket—octal (rectifier)
500499	Socket-pilot lamp (with leads)
161384	Spring—dial cord tension
	Stud-dial scale retaining
	Stud—dial scale retaining
111430	Washer spring washer for tuning shatt

119414

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

BOTTOM VIEW OF CHASSIS UNE VOLTAGE II? VOLTS

VOLTAGES MEASURED BETWEEN SOCKET TERMINALS AND B-LUG

VOLTAGE ACROSS SPEAKER FIELD HO VOLTS

Description -mica 260 mmfd..... -mica 110 mmfd..... -mica 51 mmfd..... Condenser Condenser-Condenser-Concenser—and 3 minut.

Lamp-dial (Mazda No. C7).

Resistor—carbon 47,000 ohms ½ watt

Resistor—carbon 150,000 ohms ½ watt

Resistor—carbon 690,000 ohms ½ watt

Resistor—carbon 100,000 ohms ½ watt -carbon 2.2 meg. 1/4 watt... -carbon 10 meg. 1/4 watt... Registor-Resistor—carbon 10 meg. 1/4 watt...

Speaker—dynamic (5")

Resistor—880 chms 1/4 watt...

Resistor—140 chms 1 watt W.W...

Resistor—220 chms 1 watt W.W...

Resistor—33 chms 1 watt wire wound

Condenser—05 mid. 800 volt....

Switch—"on-off" for phono motor...

Resistor—20 chms 1 watt... Condenser-.1 mfd. 600 volts.... Condenser—Ind. I.P.
Cone & Voice Coil for R-501204
specker
Condenser—01 mid. 600 volt...
Condenser—trimmer
Condenser—02 mid. 600 volt... Crystal cartridge
Condenser—.002 mfd. 600 volt......
Volume control—1 meg. (with switch) Switch—tone & phonograph
(See table for switch positions)
Resistor—2000 ohms 1 watt......
Condenser—variable tuning Transformer--lst I.P. Transformer—lst I.F.
Transformer—output for R-501204 Speaker 41 Coil—oscillator
42A-42B-42C Condenser—electrolytic, A—40 mfd.—
200 volt; B—20 mfd.—25 volt; C—200 mfd.—200 volt

Phonograph motor—table)

Resistor-carbon 220,000 ohms 1/4

REAR OF CHASSIS

Use a Voltmeter of 1000 ohms per volt.

35Z5GT RECTIFIER

STEWART-WARNER 205F

-60 cycle (less turn

STEWART-WARNER 206B & 206C CHASSIS

Receiver Models 206BA to 206BZ & 206CA to 206 CZ

Diagram	Parf	- 4 4
Number	Number	Description
1	83539	Condenser-mica. 260 mmia
3	83783	Condenser-mica, 110 mmid
3	85394	Condenser—mica, 510 mmfd
4	110552	Resistor-carbon 47,000 ohms 1/4 watt
5	110553	Resistor—curbon 220,000 ohms 4 Wull
6	110559	Resistor—carbon 470,000 ohms 1/4 watt
7		Resistor—carbon 2.2 meg. 1/4 watt
8		Resistor—carbon 68,000 ohms 1/4 watt
9		Resistor—carbon 3.3 meg. 1/4 watt
10		Registorcorbon 680 onms 4 watt
11	. 116079	Resistor—carbon 1200 ohms, 1/4 watt
12	. 116092	Resistor—140 ohms, 1 watt W.W
13		Condenser 2 mfd. 600 volt (206C)
14	116752	Resistor—33 ohms 1 watt W.W
15-17	.116819	Condenser 05 mfd. 600 volt
16		Condenser mid. 600 volt
18	.116819	Condenser
19	118824	Resistor—carbon 1,500 ohms 1/2 watt
20	118921	Lamp-dial (Mazda No. 47)
21	.119024	Transformer—2nd I.F.
22-23-24	.119193	Condenser01 mfd. 600 volt
25	.119345	Condenser—trimmer (loop)
26	.119414	Condenser02 mfd. 600 volt
27	.119817	Condenser mfd. 600 volt
28	.119875	Condenser002 mfd. 600 volt
29	.500131	Transformer—lst I.F.
30A-30B		Condenser—Electrolytic (A-40 mfd. 150 volt) B-20 mfd. 150 volt }
31	500408	Coil—oscillator
32A-32B	500400	Condenser—variable tuning with drum
33A-33B		Volume Control-1 meg. (with switch)
33V-33D	. 500400	,

ALIGNMENT PROCEDURE

- Connect the output meter across the voice coil or from the plate of the 35L6GT output tube to B— through a .25 mfd. condenser.
- Connect the ground lead from signal generator to B— through α .25 mfd. condenser for all alignment steps.
- 3. Set volume control in maximum position.
- Set dial pointer to last marking on dial with gang in full mesh.
- Connect hot lead from signal generator to stator on rear section of gang using 200 mmfd. in series as dummy.
- Set generator to 455 KC. and adjust trimmer screws on top of I.F. transformer cans for maximum output.
- Connect hot lead to antenna terminal on loop through a 200 mmfd. condenser as a dummy. Set dial to 1500 KC. and adjust trimmer on front section of gang for maximum output on a 1500 KC. generator signal.
- Place chassis in cabinet and using connections in "7," place loop in position and adjust loop trimmer at rear of chassis for maximum output while tuning dial to maximum signal.

USE A VOLTMETER OF 1000 CHMS PER VOLT

	Diagram Part Number Numbe	T Description
;	34 { 500509 500546	Switch—tone (206B only) Switch—tone (206C only)
	35 R-500587 36 R-500617	Transformer—output for R-500618 speaker
	37R-500618 (500580	Speaker—P.M. dynamic (5"). Loop Antenna & Cabinet Back (206BA & 206CA).
ı	38 500581 500678	Loop Antenna & Cabinet Back (206BB & 206CB) Loop Antenna & Cabinet Back (206BC & 206CC).
	39 83783 40 119193	Condenser—mica, 110 mmfd

MISCELLANEOUS PARTS

	MISCERFULINGOD	
Part Number 116467 160026 114955 112745 117057 500563 500422 500428 500527 11145 116690	Description Base for mounting Electrolytic Condenser (206C) Base for mounting Electrolytic Condenser (206B). Clamp—for dial cord. Clip—coil mounting Cord—Drive, supplied in 3' lengths. Dial Scale Knob—(walnut) Knob—(walnut) Knob—(ivory) Pointer Retaining ring for tuning shaft Socket—cord base	
	Pointer for tuning shaft	
	Socket-octal base	
160392	Socket-world (rectifier)	
160294	Socket—8 prong for 14H7	
500499	Socket—pilot lamp (with leads) Spring—dial cord tension	
161384	Stud—dial scale retaining	
500497 500289	Tuning Shaft	

I.F. 455 KC.

STEWART-WARNER 206G CHASSIS

Diagram Part	
Number Numbs	er Description
1 83783	Condenser, Mica, IIU Mimia
2.3.4 85061	and the Miner of Month
5 85563	Condenser Mica. 26 Mmfd
6	to -t-time Combon 47 000 Ohme 1/4 Wall
7110554	Perister Carbon-1 Meachin 1/4 Watt
8-9110556	Registor, Corpon—330 Onin /4 Wutt
10	Resistor Carbon-470.000 Ohms 44 Wall
11	Perinter Carbon-100.000 Ohms 1/4 Watt
12-13-14 110570	Parietar Carbon-22 Meg 1/4 Watt.
15-16-17 110580	Posistor Corbon-3.3 Meg. 4 WQII
18	Resistor, Carbon—6800 Ohms 1/4 Watt Resistor, Carbon—220 Ohm 1/4 Watt
19	Bosistor Carbon-220 Ohm 1/4 Watt
19	Resistor, Carbon-15,000 Ohm 1/4 Watt
20112995 21-22116013	Resistor, 50 Ohm 1 Watt
21-22	Condenser, .1 Mfd. 600 Volts
23 to 26116625	Condenser, .05 Mfd. 600 Volts
27 to 31116819	Filter Choke
32117888	Condenser, .01 Mfd. 600 Volts
33119193	Condenser, .004 Mid. 600 Volts
34	Condenser, .002 Mid. 600 Volts
35119875	Condenser, Electrolytic 50 Mfd. 25 Voit
36 161273	Condenser, Variable Tuning—with drum
37 A 37 B 500443	Volume Control, 1 Meg. (with switch)
38A to 38D 500481	Switch, AC—DC & Battery
39A to 39D. 500507	Coil, Oscillator
40 500689	Resistor, 1830 Ohms 5 Watt, Wire Wound
41500712	Neon Glow Lamp
42500713	Neon Glow Lump
43A to 43C500714	Condenser, Electrolytic— A—20 Mfd. 200 Volt
	B-20 Mid. 200 Volt }
	C-20 Mfd. 150 Volt
44A to 44C500715	Resistor, Load—
	A-1460 Ohms 10 Watt } B- 155 Ohms 1 Watt }
	C- 310 Ohms 10 Watt

This receiver is equipped with a neon lamp on the dial scale which indicates the condition of the batteries. The neon lamp is included in an oscillating (R-C) circuit which has been designed to oscillate at approximately 3 pulses per second when the batteries are in a fully charged condition. As the battery voltage decreases with use the number of pulses per second decreases.

When the battery voltage is low (approximately 72 volts) the light flickers more slowly (approximately 1 α second). The set should not be operated from battery power after this point is reached. The batteries should be charged for at least twice the time they were used—as soon as possible after they have been run down.

REAR OF CHASSIS

MOTE A: Voltage on the grid of the INSGT intermediate amplifier tube cannot be measured with a standard voltmeter because of the high resistance of resistor No. 15.

Use A Voltmeter of 1000 Ohms Per Volt.

CHARGING BATTERIES

A separate charging system consisting of a 35Z5GT rectifier and a suitable resistor voltage dividing network and filter is incorporated in this receiver. The circuit is arranged to provide a very light charging current when the receiver is operated from either AC or DC. This is just enough to maintain the batteries but will not charge up used batteries. A separate charging position is provided for rapid recharging of the batteries. The resistance voltage divider is designed to give a charging rate of approximately one third the discharge rate, this having been found to give best results. It is recommended that the batteries be left on charge at least twice the time they were used. As the batteries age it is necessary to charge for a longer period.

145

(RECEIVER MODELS 208BK AND 208CK)

STEWART-WARNER 208B & 208C CHASSIS

147

MANUAL OF 1942 MOST POPULAR SERVICE DIAGRAMS SERVICE DATA for 208B & 208C CHASSIS

ALIGNMENT EQUIPMENT & PROCEDURE

- 1. Connect the output meter across the voice coil or from the plate of one 6F6G output tube to chassis through a .1 mfd. condenser.
- 2. Connect the ground lead of the signal generator to the receiver chassis.
- 3. Check the pointer to see that it is correctly set to the low freq. end of the dial scale with gang in full mesh.
- 4. Push in the "manual" button and keep it pushed in.
- 5. Turn the volume control to the maximum volume position, and the tone control to the "Radio-Speech" position.
- 6. FOLLOW THE ORDER OF ALIGNMENT INDICATED BELOW.

Dummy Ant. in Series with Sig. Gen.	Connection of Sig. Generator Output to Receiver	Signal Generator Frequency	Band Switch Position	Receiver Dial Setting	Trimmer Number	Trimmer Description	Type of Adjustment
.1 MFD	Lug on Rear	455 KC		Any Point Where It	1-2	2nd I.F.	
Condenser	Section of Gang Cond.	455 AC	Broadcast	Does Not Affect the Signal	3-4	lst I.F.	Adjust for Maximum Output. Then re- peat Adjustment.
400 OHM Carbon Resistor	Blue Lead from Chassis	16 MC	Foreign	16 MC	5	Foreign Oscillator	Adjust for Maximum Output. Check to see if Proper Peak was Obained by Tuning in Image at Approx. 15.i MC. If Image does not appear, Realign at 16 MC, with Trimmer Screw farther out. Recheck Image.
400 OHM Carbon Resistor	Blue Lead from Chassis	16 MC	Foreign	Tune to 16 MC Generator Signal	6	Foreign Antenna	Adjust for Maximum Output, Try to Increase Output by Detuning Trimmer and Retuning Receiver Dial until Maximum Output is Obtained.
No Connection	Place Lead from Signal Gen. Near Loop	1500 KC	Broadcast	1500 KC	7	Broadcast Oscillator (Shunt)	Adjust for Maximum Output.

NOW PLACE THE CHASSIS AND LOOP ANTENNA INTO POSITION IN THE CABINET.

No Connection	Place Lead from Signal Gen, Near Loop	1500 KC	Broadcast	Tune to 1500 KC Generator Signai	8	Broadcast Antenna	Adjust for Maximum Output.
No Connection	Place Lead from Signal Gen. Near Loop	600 KC	Broadcast	Tune to 600 KC Generator Signal	9	Broadcast Oscillator (Series)	Adjust for Maximum Output. Try to Increase Output by Detuning Trimmer and Retuning Receiver Dial until Maximum Output is Obtained.

MISCELLANEOUS PARTS

Part Number	Description
501182	Cahle-motor (with receptacle)
117493	Cable-pickup
114355	Clamp for dial cord
112745	Clip coil mounting
117057	Cord—drive (specify 6 ft. lengths)
501199	Dial Scale
113402	Drum-dial cord drive
169182	Escutcheon—dial with glass
160634	Escutcheon-push button (complete)
88348	Evelet-for pointer cord
160219	Knob
12349	Nut-8-32 for mounting
116952	Pin for push buttons
119451	Pointer
160185	Push button
81145	Retaining ring for tuning shaft
113463	Rubber Bushing—chassis mounting
118606	Shait—tuning
112874	Screw-No. 10 x 11/8 chassis mounting
114314	Screw-special head for mounting escutcheon.
85827	Set Screw-8-32 Sq. Hd. for drive drum
119791	Socket-octal
114978	Socket-octal, with special ground
114876	Socket—octal (rectifier)
160294	Socket for 7H7 8 prong
500051	Socket for loop antenna
_	

148

STROMBERG-CARLSON NO. 900 AC-DC RADIO RECEIVERS

Stromberg-Carlson Models 925 and 1025

CONTINUITY TEST

NOTE: These receivers use either a 6AC7 or 7V7 tube in the modulator stage. (See wiring diagram

Remove all tubes and disconnect all plugs from the chassis before checking continuity.

Use a good meter capable of measuring accurately up to several megohms.

The resistances given are often approximate, owing

to electrolytic capacitors in the circuit. When this is the case, be sure to reverse the test leads and read the highest resistance.

Read from indicated terminals to chassis base unless otherwise specified.

				TERM	INALS OF	SOCKET	S		
Tube	Circuit	1	2	3	4	5	6	7	8
6AB7	R. F. Amplifier	S	S	S	A	150¶	50000¶	S	21000¶
6AC7	Modulator	S	S	S	В	С	80000¶	S	18000¶
or 7V7	Modifiator	S	18000¶	\$0000¶	S	S	S	С	S
6SA7	Oscillator	S	S	35000¶	35000¶	30000¶	S	S	35000¶
6SK7	I. F. Amplifier	S	S	S	2M	S	70000¶	S	18000¶
6AC7	2nd I. F. Amplifier (F. M.)	S	S	S	450000¶	D	45000¶	S	18000¶
6SJ7	1st Limiter (F. M.)	S	S	S	22000¶	S	3500¶	S	280000
6SJ7	2nd Limiter (F. M.)	S	S	S	40000¶	S	4000¶	S	240000
6H6	Discriminator (F. M.)	S	S	100000	S	100000¶	100000¶	S	180000
6SQ7	Demod., A. V. C. (A. M.), Audio Amplifier	s	10M	s	Е	s	250000	s	s
6SC7	Audio Amp. and Inverter	S	220000	9000¶	3M	200000¶	1200¶	S	S
6F6G	Output	S	S	17000¶	17000¶	400000¶	0	S	290¶
6F6G	Output	S	S	17000¶	170000¶	400000¶	0	S	290¶
5U4G	Rectifier	0	20000¶	0	50¶	0	60¶	0	20000¶
6U5	Tuning Indicator	S	1M	2M	14000¶	S	S		

Symbols shown on chart are as follows: ¶-ohms; M-megohms; S-short; O-open.

NORMAL VOLTAGE READINGS

				TERM	INALS OF	F SOCKET	S		
Tube	Circuit	1	2	3	4	5	6	7	8
6AB7	R. F. Amplifier	0	0	0	0	+2.4	+182	6.3	+275
6AC7 or	Modulator	0	0	0	0	+6	+218	6.3	+300
7 V 7		0	+300	+218	0	0	0	+6	6.3
SSA7	Oscillator	0	0	+120	+120	— 5	0	6.8	+120
SK7	I. F. Amplifler	0	0	0	0	0	+110	6.3	+290
SAC7	2nd I. F. Amplifier (F. M.)	0	0	0	0	+8	+265	6.3	+300
SJ7	1st Limiter (F. M.)	0	0	0	0	0	+54	6.3	+2
SJ7	2nd Limiter (F. M.)	0	0	0	0	0	+54	6.3	+3
H6	Discriminator (F. M.)	0	0	0	0	0	0	6.3	0
SQ7	Demod., A. V. C. (A. M.), Audio Amplifier	0	0	0	0	0	+100*	0	6.3
SC7	Audio Amp. and Inverter	0	+140*	0	0	+130*	+2	6.3	0
F6G	Output	0	0	+340	+300	0	0	6.3	+22
F6G	Output	0	0	+340	+300	0	0	6.3	+22
U4G	Rectifier	0	+450	0	415	0	415	0	+450
U5	Tuning Indicator	6.3	+80	0	+250	0	0		1400

152

*Read on 1000 volt scale of voltmeter.

Between terminals 2 and 8 of rectifier socket—5 volts A. C.

154

156

Westinghouse Radio Models WR-12X3, 12X5 & 12X6

Five-Tube, Single-Band, AC-DC, Superheterodyne Receiver

Alignment Procedure

Output Meter Alignment.—If this method is used connect the meter across the voice coil and turn the receiver volume control to maximum.

Test Oscillator.—Connect the low side of the test oscillator to the receiver chassis through a .01 mfd. capacitor. With the output meter alignment method the test oscillator output should be kept as low as possible.

Calibration Scale.—The glass tuning dial may be easily removed from the cabinet and temporarily attached to the dial hacking plate for quick reference during alignment.

Tube and Trimmer Locations

Steps	Connect the high side of test- oscillator to—	Tune test-osc. to	Turn radio dial to	Adjust the follow- ing for max. peak output—
1	I-F grid, in series with .01 mfd.	4551	Quiet point	C10, C9 2nd I-F Transformer
2	1st Det. grid in series with .01 mfd.	455 kc	1,600 kc end of dial	C8, C7 1st I-F Transformer
3	Ant. terminal in scries with 100 mmfd.	1,720 kc	Gang at minimum	C14 (osc.)
4	Radiated signal 1	1,300 kc	Signal frequency	C15 (ant.)
5	Repeat steps 3 as	nd 4.		

Westinghouse Radio

Schematic Circuit Diagram Model WR-12X1 & WR-12X2

Models WR-62K1 & WR-62K2

Alignment Procedure

Output Meter Alignment.—If this method is used, connect the meter across the voice coil, and turn the receiver volume control to maximum.

Test-Oscillator.—For all alignment operations, keep the output as low as possible to avoid a-v-c action.

Precautionary Lead Dress .-

- 1. Keep green grid leads above chassis away from each other.
- 2. All filament wires should be dressed close to chassis.
- 3, Keep blue leads from I-F transformers close to chassis.

BATTERY INSTALLATION

"A"-TWO 4.5-VOLT EVEREADY NO. 748, BURGESS NO. 6-3,
"B"-TWO 45-VOLT EVEREADY NO. 482, BURGESS NO. M-30,
RAY-O-VAO NO. P-7830, OR EQUIVALENT.

Steps	Connect the high side of test-osc, to—	Tune test	Turn radio dial to—	Adjust the following for max. peak output
1	1N5GT I-F grid cap, in series with .01 mfd.		Quiet	C16, C17 (2nd I-F transformer)
2	1A7GT 1st Det. grid cap, in series with .01 mfd.	455 kc	point at 1,600 kc end of	C14, C15 (1st I-F transformer)
3	Antenna terminal in series with 200 mmfd,		dial	C4 Wave trap for minimum output
4		600 kc	600 kc	L9 (osc.) (Rock in)
5		1,600 kc	1,600 kc	C10 (osc.)
6		1,300 kc	1,300 kc	C1 (ant.)
7	Repeat steps 4;	and 6 unt	l aligned	
8	With chassis in o	abinet and	batteries cor	nnected repeat step 6

VOLUME POWER TUNING CONTROL CONTROL

MANUAL OF 1942 MOST POPULAR SERVICE DIAGRAMS This is a typical voltage analysis made by use of standard 1000 ohm per wolt woltmeter, using the 300 wolt scale for plate and screen woltage 117 VOLTS 60 CYCLES TURNTABLE Cathode 2,2 8 1.5 13.5 0000000000 000 TO ALL HEATERS AND 0.3V. 25A. OIAL LAMPS. Screen CREEN 30* 80 236 2 2 80 45 to 65* *****06 Plate 230 215 230 lst. Det. 2nd. Det. Mike Amp. Position 8 3 Output I.F. 9000 00 - 58 <u></u> readings. NOTE: LE PEAK 458 K.C. Tube 648 **6**K6 6K7 8,7 637 ᆙ 0000s -110 --150 ---350 ---240 WILCOX-GAY CORPORATION \$30.055 | Charlotte, Michigan (sp'kr field) 00 00 00 00 or C26 to GND. to GND. Voltage--to GM 00 C27 5 00 to Pl CHORND-BLACK Line 020 dia. COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

(1) Connect signal generator to control grid of 6A8 tube. (2) Peak all trimmers for maximum reading on meter.

WILCOX-GAY CORPORATION

Charlotte, Michigan

Connect signal generator to ANT. and GND. terminals.

Trimmer on Loop - R.F. C2-0so. 1400 K.C. 1400 K.C.

167

Model A-105

THE RUDOLPH WURLITZER COMPANY

NORTH TONAWANDA, N. Y.

CHICA LINOIS G 0 IL ٠

49-449 49-450

4 B03 4 B03 4 B03

49-461

BATTERY PACK Nº Z-28

SPEAKER

MODEL

CHASSIS

Chassis No. 4B02-4B03

SPEAKER

ICSG PWR.AMP

IHSG DET:-AMP.

NSGT I.F.

1A7G CONVERTER

とうことについる	121 /F TRANS PR 121 /F " SEC 222 /F " PR 221 /F " SEC 221 /F " SEC 221 /F " SEC 221 /F " SEC 221 /F " SEC (241)	TER SER
	127 1.F. 127 1.F. 2 249 1.F. 2 24	IA7G
\		3 3
×	7000k6	R.F. S.
250000000000000000000000000000000000000	63-1235 VOLUME CONTROL-4603 63-572 4700 OHM 63-573 4700 OHM 63-573 4700 OHM 63-60 2 MEGOHM 63-60 2 MEGOHM 63-60 2 MEGOHM 63-60 2 MEGOHM 63-63 407EWM COLL 85-54 620 OHM 85-54 127 7.578MNSFORMER 95-515 249 1.5	DET-AMP
**	63-128 63-587 63-587 63-976 63-600 63-634 59584 95-8/5	1 -0 -0 -0 -
//s	£ 6666 - 004	0 21 K
	**************************************	NA CO
***********	9) TWO GANG MRIABLE - 4803 R4 2. 0.001 MFD. 6.001 R9 3. 0.001 MFD. 6.001 R9 6. 0.0 MFD. 6.05 R9 7. W. 2 7. W. 3 7. W. 2 7. W. 3 7. W. 4 7. W. 2 7. W. 2 7. W. 3 7. W. 3 7. W. 4 7. W. 5 7. W. 6 7. W. 7 7.	PWR. AMP
╗	2 monumer was	0.0

ohm per volt meter from chassis to All voltages measured with a 1000 ġ All voltages are positive D.C. socket contact indicated. ess marked otherwise.

Tuning Range—540 Kc.—1740 Kc.

SOCKET VOLTAGES—BOTTOM VIEW

Power consumption—1.3 watts.

Volume control on full

Battery Z28

Power output-.28 watts.

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

455 KC.

amola moda

ą,

 ∞

릵

VIEW
DLTAGES—BOTTOM
SOCKET VO

Model 5R680

OKA OKA

R! 63-579 220 RE 63-589 10M

Chassis No. 5B03

ALIGNMENT PROCEDURE

Operation	Connect Oscillator to	Dummy Antenna	Input Signal Frequency	Band	Set Dial At	Trimmers	Purpose
1	Con. Grid	0.5 mfd.	455 Ka	BC	600 Kc.	A, B, C, D	Align 1.F.
	R.F. Grid	0.5 mid.	435 Kc.	BC	600 Kc.	E	Adjust for minimum 455 Kc. signal
3	Ant. Z and G	400 chm	18 Mc.	BW	18 Mc.	ĸ	Scale SW Osc. at 18 meg.
1		**	18 Mc.	sw	i6 Mc.	м	Align SW antenna
5	••	**	5 Mc.	Mcd.	5.0 Mc.	N	Scale med. band osc. ai S. meg.
6	**		4.5 Mc.	Med.	4.5 Mc.	Q	Align med, band antenna
,			1600 Kc.	вс	1600 Kc.	P	Set BC Osc. to scale at 1600 Kc.
	One turn loop made with generator lead or Radex loop		1400 Kc.	BC	1400 Kc.	G	Align broadcast loop
•			600 Kc.	ВС	600 Kc.	J	Rock gang to track BC padder
10	7V7 2nd l.F. Grid	0.5 mfd.	8.3 Mc.	Man. F.M.	42.5 Mc.	A.	Align for max, deilecticn across 1/2 discrim, load
11			-			B4	Align for zero deflection across full discrim. load
12	,		~	-		As - Bs	Align for max, deflection across 1/2 discrim, load
13	7V7 1st I.F. Grid	**		-	••	A2 - B2	**
14	Converter Grid	**	•		**	A1 · B1	
15	F.M. Ant. Terminal	100 ohus	46 Mc.	-	46 Mc.	Adj. cam on gang to scale osc.	Align for zero deflection across full discrim, load
16		,,	42.5 Mc.	-	42.5 Mc.	P ₁	Align for max, deflection across 1/2 discrim, load
17			49 Mc.	-	49 Mc.	P2	**
18	м		48 Mc.	-	48 Me.	Z	

Models 12H678-12H679

Chassis No. 12A6

Stage Gains Bc. and I.F.

Ant. to R.F. grid 6.5 \times at 1000 Kc. R.F. grid to conv. grid 28.1 \times at 1000 Kc.

Conv. grid to I.F. grid $265\times$ at 455 Kc.

Overall audio 807% at 1 watt. 400 cycles.

188

240	DIAG PART NºS NºS	DESCRIPTION		SWO	G PART NS	DESCRIPTION	7	N.S.	DIAG. PART Nº	DESCRIPTION	DIAG.	G. PART	DESCRIPTION
ن	22-1308	22-1308 THREE GANG VARIABLE		682	2821-22	ELECTROLYTIC	,20 K				54	11-77	44-17 HEADPNONE JACK
CS	22-827	22-827 ./ MFD	2005	C27	80	C27 X OR X40MFD. "	25 7.						1
S	55-1130	15 MMFD.	600 K	050	6511-27	:	25 %	- /	210680	510680 BROADCAST WAYEMAGNET	ر		1\$71.F. TRANS. PRI.
7	22-13/2	22-13/2 100 MMFD. COMP.		620	22-326	C29 22-326 .CO3 MFD.	4004	N N	289013	SIOGBZ SHORTWAYE WAYEMAGHET	57 6		1511.F . SEC.
S	22-1332	22-1332 200 MMFD. COMP.						m	85-3/4	ANTENNA POLE SWITCH	0		P.M. I.F. TRANS. P.R.
90	22.705	150 MMFD. COMP					_	*	85-225	85-225 WAVENAGNET SWITCH	0		2 12 1.F SEC.
0	22-702	22-702 250 MMFD. COMP		14	63-596	63-596 330M OHM	7 7	4	0290/5	SIOGTO ANTENNA COIL ASSEM.	_	_	BROADCAST OSC. (ON GANG)
80	1161-22	22-1311 75 MMFD. COMP.		82	1+9-69	63-641 1CM ONM	7. 7.	<u>``</u>	862015	SIOZ 98 DETECTOR COIL ASSEM.	9		BROAD CAST ANT (ON GANG)
6	22-13/0	22-1310 SO MMFD. COMP		R3	63-773	63-773 180M OHM	7. 7.	^	\$82015	SIDEB& BMC. ANTENNA COIL ASSEM.	M. K		BROADCAST DET (ON GANG)
0/0	22-/62	C/0 22-162 .0001 MFD	600%	*	63-325	63-325 15 M OHM	7. 7.	80	S/0289 9MC.	9MC. : :	¥		SHORT WAYE OSC. 6 MC.
110	22-327	C11 22-327 .02 MFD.	2002	28	63-648		7. 7.	0	S 10288 12 MC.	/2 MC	¥		SHORT WAVE OSC. 9 MC.
2/5	22.289	C12 22-289 SOMMFD.	600K R6	86	63-592	63-592 33M OHM	7 1/2	9	S10296 15MC	ISMC	×		SHORTWAYE OSC. 12 MC.
5	22-829	.05 MFD.	2007	74	63-600	63-600 2.2 MEGOHM	7	:	S10297 18MC.	18MC	Α.	. 4	SHORT WAVE OSC. ISMC.
Ş	22-826	.01 MFD.	2008	88	191-69		ż	2/	182013	SIOZBI GMC. OSCILLATOR COLL ASSEM.			SHORTWAYE OSC. 18MC.
6/2	22-1207	.07 MFD.	2002	62	209-69	63-602 4.7 MEGOHM	7 7	5	S10290 9MC.	9MC			SHORT WAVE DET. 6MC.
9 /0	22-88	C/6 22-887 .00/ MFD	6007	8/0	63-583	63-583 1000 OHM	7. 7.	*	SIDEBS IEMC.	/2MC	- 7		SHORTWAVE DET. 9 MC.
Ċ	22-492	.002 MFD.	6007	1/2	63-1265	63-1265 VOLUME CONTROL	,	15	S10293 15MC.	/5MC	£7	•	SNORT WAVE DET. 12 MC.
9/0	22-953	C/8 22-953 .0002 MFD.	600K	815	63-976	63-976 15 MEGOHM	7 7	9	S10294 18MC.	18MC		_	SHORT WAVE DET. 15 MC.
ີ່ວ	22-470	.00015MFD.	600K	6/2	63-580	63-580 330 ONM	7. 7.	1/	S/0295 BC.		57		SHORT WAVE DET. 18MC.
020	22-196	.0/ MFD.	6007	4/4	63-577		7 7	8	85-3/2	85-3/2 AUTOMATIC BAND SWITCH		_	WAVEROD TRIMMER (SEE NOTE)
S	22-448	.004 MFD.	600 K	5/2	63-594	63-594 68M OHM	7 2	ó	85-322	SNORTWAVE LOOP SWITCH	_	_	WAYEROD COMPENSATOR (SEE NOTE)
CSS	22 1307	(40MFDELECTROLYTI	150 X K	8/8	63-27/	I MEGOHM	3.72	202	95-862	95-862 1ST 1.F. TRANSFORMER	\$	_	SNORT WAVE ANT. 19M.
X S S S	8	* SOMFO	150 K	2/2	63-941	REWOUND	3	2	95-863	95-863 200 1. F. TRANSFORMER	X	_	SHORT WAVE ANT. 25M.
¥20	0551-22	CZ4) 22-1530 40MFD	25 1.	8/8	63-1264	63-1264 THREE SECTION CANOOHM	-	22	85-3/3	B5-3/3 TONE CONTROL SWITCH	_	_	SHORT WAYE ANT. 31 M.
Ces	ces 22-869	.05 MFD.	400 X	818	95/1-69		XX	23	118-56	85-311 POWER CHANGE OVER SWITCH	LCH	E: TRIMM	NOTE: TRIMMERSHOM ARE MOUNTED ON STRIPZE-1230

190

All voltages measured with a 20,000 chm per volt meter from B minus to socket contact indicated.
All voltages are positive D.C. un-

less marked otherwise. Volume control full on.

Line voltage 117 A.C. or D.C. 25 to 60 cycle or Battery Pack Z-985 and two flashlight cells.

Power consumption 85 waits.

Power output ,35 waits.

Tuning ranges:

540 to 1620 Ec.

540 to 1520 Kd 6.0 to 6.5 Mc.

9.4 to 9.6 Mc.

11.7 to 11.9 Mc.

15.1 to 15.3 Mc.

17.6 to 18.0 Mc.

Stage Gains Bc, and I.F.

Ant. to R.F. grid 5× at 1000 Ec. R.F. grid to conv. grid 9× at 1000 Ec.

Conv. grid to LF. grid 86× at 455 Kc.

Overall audio $900\times$ at .05 watt. 400 cycles.

ALIGNMENT PROCEDURE

peration	Connect Oscillator to	Dummy Antenna	Input Signal Frequency	Band	Set Dial At	Trimmers	Purpose
1	Conv. grid .1 mid.		455 Ec.	BC	600 Kc.	A. B. C. D	Align I.F.
2	One Turn Loop Coupled Loosely to Broadcast Wavemagnet		1600 Kc.	BC	1600 Kc.	F	Set oscillator to scale
3			1400 Kc.	BC	1400 Kc.	H	Alignment of detector section
4			1400 Kc.	BC	1400 Kc.	G	Alignment of B.C. Wavemagnet
5	3 Feet o	d Wire	1400 Kc.	BC	1400 Kc.	G,	B,C, waverod alignment
6	Approximately 1 Foot from Extended Waverod		6.3 Mc.	49 Met.	6 2 Mc.	X,-L,	
7			9.6 Mc.	31 Met.	9.6 Mc.	RL.	Alignment of S.W. Oscillators and
8			11.8 Mc.	25 Met.	11.8 Mc.	K3-L3	Antenna Trianmers
9			15.2 Mc.	19 Met.	15.2 Mc.	X,-L,	Antenna i rasmers
10			17.8 Mc.	16 Met.	17.8 Mc.	K ₀ -L ₅	}
11	One Turn Loop Coupled Locally to Shortwave Magnet. Wavered Collapsed		15.3 Mc.	19 Met.	15.2 Mc.	M,-M.	
12			11.8 Mc.	35 Met.	11.8 Mc.	M _z	
13			9.6 Mc.	31 Met.	9.6 Mc.	M,	

COMPILED BY M. N. BEITMAN, SUPREME PUBLICATIONS

191

192