Robert Christie MATHS 340

S2 2023

Assignment 3 <u>Du</u>e: 26-08-2023

Q1

(a) Let z = x + iy, then:

$$|z + \overline{z}| = |2x|$$

Hence the region corresponds to |x| > 5 (Due to the strict inequality boundary points are not included.)

(b) Let $z = re^{i\theta}$. Note that at z = 0, the region's existence is not well-defined. However, in the limit as $z \to 0$, $\frac{1}{|z|} \to +\infty$, while $|\overline{z}| \to 0$, so we redefine the region R as:

$$R = \left\{ z \in \mathbb{C} \setminus \{0\} \mid \frac{1}{|z|} \le |\overline{z}| \right\} \subset \mathbb{C}$$

Since $\overline{z} = re^{-i\theta}$, $|z| = |\overline{z}| = r$, and:

$$\frac{1}{r} \le r \iff 1 \le r^2 \iff 1 \le r$$

Thus the region is given by:

$$R = \left\{ re^{i\theta} \in \mathbb{C} \setminus \{0\} \mid 1 \le r \right\}$$

(c) Let z = x + yi, then:

$$\begin{split} R_1 &= \left\{ x + yi \in \mathbb{C} \mid \sqrt{(x-1)^2 + y^2} \le 1 \right\} \\ R_2 &= \left\{ x + yi \in \mathbb{C} \mid \sqrt{(x-1)^2 + (y+1)^2} > 1 \right\} \end{split}$$

Thus we see that R_1 , is a closed circle of radius 1 about z = 1 + 0i and R_2 is all of \mathbb{C} excluding a circle of radius 1 around z = 1 - 1i, the boundary of R_2 is open.

Plotting R_1 (blue) and R_2 (red):

Thus, plotting the intersection of the regions:

Note that the points where the two boundaries meet are not included in the region as they are closer that 1 to 1 - i and thus not part of R_2 and hence not present in $R_1 \cap R_2$.