102

Square classes of $(a^n-1)/(a-1)$ and a^n+1

Sichuan Daxue Xuebao, 26, 1989, 196-199.

Square Classes of $\frac{a^n-1}{a-1}$ and a^n+1

Paulo Ribenboim

(Queen's University, Kingston, Ontario, Canada)

ABSTRACT

Let a>1, $n\ge 1$ and $U_n=\frac{a^n-1}{a-1}$, $V_n=a^n+1$. In this paper, the

author investigate whether U_mU_n , respectively V_mV_n , may be a square when $m \neq n$, and gives a completed answer.

Key Wards Linear recurring sequences of order 2, Diophantine equations, Effectively computable constant, (1980 AMS Subject Classification (1985 Revision) 11D41, 11B37)

1. In 1960/4, Professor Chao Ke solved a long standing open problem, when he showed that if n>3, the Diophantine equation $X^2-Y^2=1$ has no solution in non-zero integers.

In the present paper, just like in [Rif], I shall use his result.

Let a>1, $n\geqslant 1$ and $U_n=\frac{a^n-1}{a-1}$, $V_n=a^n+1$. Thus $U_0=0$, $U_1=1$ and $U_n=(a+1)U_{n-1}-aU_{n-2}$ for $n\geqslant 2$. Similarly $V_0=2$, $V_1=a+1$, $V_n=(a+1)V_{n-1}-aV_{n-2}$ for $n\geqslant 2$.

In this paper, I shall investigate whether U_mU_n , respectively V_mV_n , may be a square when $m \neq n$. This is just a special case of the problem of determination of the square classes of linear recurring sequences of order 2. It is said that U_n , U_m (respectively V_n , V_m) are in the same square class if there exist non-zero integers k,h, such that $U_nk^2 = U_mh^2$, or equivalently $U_mU_n = \bigcup_{n \neq 1} (\text{respectively } V_nh^2 = V_mh^2)$, $V_mV_n = \bigcup_{n \neq 1} (V_nh^2 = V_nh^2)$.

For the determination of the square classes of the sequences of Fibonacci numbers and Lucas numbers, see [Ri2].

Besides the aforementioned result of Chao Ko, the following facts will be required.

As it is well-known, $gcd(U_m,U_n) = U_d$, where d = gcd(m, n).

Received March 12, 1990

Denoting by v_2 the 2-adic valuation,

$$\gcd(V_m, V_n) = \begin{cases} V_d, & \text{if } v_2(m) = v_2(n), \text{ with } d = \gcd(m, n), \\ 1 \text{ or } 2, & \text{if } v_2(m) = v_2(n). \end{cases}$$

Nagell [Na] and Ljunggren [Lj] proved:

If n>2, |x|>1, y>1 are integers and $\frac{x^n-1}{x-1}=y^2$, then $(x,n,y)=(7,4,\pm 20)$ or $(3,5,\pm 11)$.

Fermat stated that if a,x,y are integers, $a \ge 1$, and $\begin{cases} a+1=2x^2 \\ a^2+1=2y^2 \end{cases}$, then (a,x,y) = $(1,\pm 1,\pm 1)$ or $(7,\pm 2,\pm 5)$. This result was proved by Genocchi [Ge].

Finally, I shall also require the following theorem of Schinzel & Tijdeman [S-T]: Let $f \in \mathbb{Q}[X]$ be a polynomial with at least two simple zeroes. Then there exists an effectively computable constant C > 0 (depending only on f), such that if x,y,z are integers with $|y| \ge 2$, $z \ge 3$ and $f(x) = y^*$, then |x|,|y|,z < C.

2. Now I prove the new results.

A) If $1 \le m, \pi$ and $U_m U_n$ is a square, then $m = n_n$

Proof Assume that $\frac{a^n-1}{a-1} \cdot \frac{a^n-1}{a-1}$ is a square. Let $d = \gcd(m,n)$, so $\frac{a'-1}{a-1} =$

 $\gcd\left(\frac{a^n-1}{a-1}, \frac{a^n-1}{a-1}\right)$, hence $\frac{a^n-1}{a'-1}$, $\frac{a^n-1}{a'-1}$ are relatively prime and their product is a square. Let n=di, m=du (with t,u integers), let b=a. So

$$\frac{b^{c}-1}{b-1}=\square, \quad \frac{b^{c}-1}{b-1}=\square.$$

By the result of Nagell and Ljunggren, (b,t) = (7,4) or (3,5), hence d = 1, b = a, n = t, m = u, thus (a,n) = (7,4) or (3,5). So $\frac{7^{n}-1}{6} = \Box$, thus m = 4 = n, or $\frac{3^{n}-1}{2} = \Box$, thus m = 5 = n.

B) If $n \ge 1$ there does not exist m, different from n, with $v_2(m) = v_2(n)$ and such that $V_m V_n$ is a square.

Proof Assume that $v_2(m) = v_2(n)$ and $V_m V_n = \square$. Let $d = \gcd(m, n)$, n = dt, m = du, so t, u are odd. Since $V_n = \gcd(V_m, V_n)$, then

$$\frac{a^n+1}{a^2+1} = \bigcap \text{ and } \frac{a^m+1}{a^2+1} = \bigcap.$$

Let b=a>1. Since $m \neq n$ then, say, t>1. Since t is odd and $\frac{b'+1}{b+1} = \square$, hence

(-

that

McD

diffe excl

if m

the

that

gcd

a =

nu

υ_Z(

dį

)

:,4)

[].

 $\frac{(-b)'-1}{(-b)-1} = \square.$

According to the result of Nagell and Ljunggren, this is impossible.

C) If a is even and if $n \ge 1$, there does not exist m, different from n, such that V_V. is a square.

Proof I may assume that $v_2(n) = v_2(m)$. Since a is even, by the result of McDaniel, $gcd(a^n+1, a^n+1)=1$, hence $a^n+1=[]$, $a^n+1=[]$. Necessarily m,n are different from 2. Since $v_2(1) = v_2(3) = 0$, then (m,n) = (1,3) and (3,1) have been excluded. Therefore $m,n \ge 3$ and, say m > 3. By Ko's result, $a^{n} + 1 = []$ is impossible.

D) There exists an effectively computable constant C>0 such that if a is odd. if m,n are different and $V_{-}V_{n} = \square$, then a,m,n < C.

Proof Consider the polynomial $f = 2X^2 - 1$, which has two simple roots. By the theorem of Schinzel and Tijdeman, there exists an absolute constant C>7 such that if a > 1, $m \ge 3$, $|x| \ge 1$ and $2x^2 - 1 = a^2$, then $|x|, a, m \le C$.

Now assume that a is odd, $m \neq n$, and $V_n V_n = \square$. By (B), $v_2(m) \geqslant v_2(n)$, hence $gcd(V_m, V_n) = 2$. Thus $\frac{a^n + 1}{2} = \square$ and $\frac{a^n + 1}{2} = \square$.

Thus there exist positive integers x,y such that $\begin{cases} 2x^2 - 1 = a^n, \\ 2x^2 - 1 = a^n \end{cases}$

Assume, for example, that $1 \le n < m$. The following possibilities are arised.

a)
$$n=1$$
, $m=2$, hence
$$\begin{cases} a+1=2x^2, \\ a^2+1=2y^2. \end{cases}$$

By Fermat-Genocchi's result, either a=1 (which is against the hypothesis) or a=7, hence x=2, y=5.

- b) $m \ge 3$. Then $a, n, m \le C$.
- E) Let a>1 be odd, let C be defined as in (D). For every $n,1 \le n \le C$, the number of integers $m \neq n$, such that $V_m V_n = \square$, is at most equal to $\begin{bmatrix} \log C \\ \log 2 \end{bmatrix}$.

Proof Let m = n be such that $V_m V_n = \square$. By the above results, $m \le C$ and $v_2(\pi) + v_2(\pi)$.

Let
$$k = \begin{bmatrix} \frac{\log C}{\log 2} \end{bmatrix}$$
, and consider the mapping $m \mapsto v_2(m) \in \{0, 1, \dots, k\} \setminus \{v_2(n)\}$.

This mapping is injective, if m = m' and $V_s V_s = \square$, $V_s V_{st} = \square$ (with $m_s m'$ different from n) then $V_{\pi}^2 V_{\pi} V_{\pi^1} = \square$, so $V_{\pi} V_{\pi^2} = \square$; hence by (B), $v_2(m) = v_2(m')$.

Thus, the number of $m \neq n$, such that $V_n V_n = \prod$ is at most $\left[\frac{\log C}{\log 2}\right]$.

BIBLIOGRAPHY

- [Ge] Genocchi A., Démonstration d'un théorème de Fermat, Nouv. Ann. Math. Ser. 3, 2(1883), 306-310.
- [Ko1] Ko C., On the diophantine equation x2=y²+1, Acta. Sci. Natur. Univ. Szechuan 2(1960), 57-64.
- [Ko2] Ko C., On the diophantine equation $x^2=y^n+1$, Scientia Sinica (Notes) 14(1964), 457—460.
- [Li] Ljunggren W., New propositions about the indeterminiate equation $\frac{x^2-1}{x-1}=y^2$,

 Norske Mat. Tidsskrift 25(1943), 17—20.
- [McD] McDaniel W. L., The g.c.d. in Lucas sequences and Lehmer number sequences, preprint.
- [Na] Nagell T., Sur l'équation indéterminée $\frac{x^2-1}{x-1}=y^2$, Norsk Mat. For. Skr., Ser. I 3(1921), 17 pages.
- [Ril] Ribenboim P., Remarks on exponential congruences and powerful numbers, J. Nb. Th. 29(1988), 251-263.
- [Ri2] Ribenboim P., Square classes of Fibonacci and Lucas numbers, Port. Math. 46(1989), 159-175.
- [S-T] Schinzel A. & Tijdeman R., On the equation $y^{-}=P(x)$, Acta. Arithm. 31(1976), 199—204.

$$\frac{a^{n}-1}{a-1}$$
 和 $a^{n}+1$ 的平方类

P. Ribenboim

(Queen's 大学,加拿大)

汽车 東

设 a>1, $n\ge 1$, $U_*=\frac{a^*-1}{a-1}$, $V_*=a^*+1$, 本文研究当 $m\ne n$,

 $U_{\bullet}U_{\bullet}(V_{\bullet}V_{\bullet})$ 是否能够是一个完全平方的问题,得到了完全解决。

关键词 二阶线性循环序列,丢香图方程,可有效计算的常数。