Formale Grundlagen: Übung 4

Alexander Waldenmaier, Tutorin: Constanze Merkt

5. Dezember 2020

Aufgabe 4.1

Es gibt insgesamt $2^n + 1$ numerisch monotone Boolesche Funktionen $f: \mathcal{B}^n \to \mathcal{B}$.

Begründung: Im einfachsten Fall, n=1 gibt es exakt 3 monotone Funktionen: $f_1(x)=0, f_2(x)=x, f_3(x)=1$. Die Funktion $f_4(x)=\overline{x}$ erfüllt die Bedingung nicht, da $f_4(x)=1\nleq 0=f_4(y)$ mit x=0<1=y. Aus einer Wertetabelle kann man leicht das Verhalten für höhere n ablesen:

$(x_1,x_2,\ldots,x_n)_{10}$	x_1	x_2		x_n	$ f_1 $	f_2	• • •	f_{2n+1}
0	0	0		0	0			1
1	0	0		1	0	0		1
:	:	:	:	:	:	:	÷	÷
2n-1	1	1		1	0	1		1

Betrachtet man die möglichen Funktionen f_i in der Tabelle rechts, so erkennt man, dass für größer werdende i die "Grenze", bei der die Funktion nicht mehr 0 sondern 1 herausgibt, sich je um eins nach oben verschiebt, bis irgendwann für jeden beliebigen Input x der Funktionswert stets 1 ergibt.

Aufgabe 4.2

Zunächst muss f in Ringsummennormalform (RSNF) umgewandelt werden, da darin nur \oplus und \wedge enthalten sind. Wir nutzen ein KV-Diagramm um eine orthogonale Form von f herzustellen:

$$f(x,y,z) = (x\overline{z}) \lor (x\overline{y}) \lor (\overline{x}yz) \qquad z,x$$

$$\stackrel{\mathrm{KV}}{=} x\overline{y}\overline{z} \lor x\overline{y}z \lor xy\overline{z} \lor \overline{x}yz \qquad 00 \quad 01 \quad 11 \quad 10$$

$$= x\overline{y}\overline{z} \oplus x\overline{y}z \oplus xy\overline{z} \oplus \overline{x}yz$$

$$= x(y \oplus 1)(z \oplus 1) \oplus x(y \oplus 1)z \oplus xy(z \oplus 1) \oplus (x \oplus 1)yz \qquad 0$$

$$= xyz \oplus xy \oplus xz \oplus x \oplus xyz \oplus xz \oplus xyz \oplus xyz \oplus yz \qquad y$$

$$= x \oplus yz \qquad 1 \qquad 0 \qquad 1 \qquad 0 \qquad 1$$

Damit lässt sich die folgende Schaltung implementieren:

Aufgabe 4.3

Wir betrachten zunächst die folgende einfache Multiplikation zweier Binärzahlen:

	$1011 \cdot \textcolor{red}{1010}$	=
	1011000	
+	0000000	
+	0010110	
+	0000000	
\mathbf{c}	0100000	
S	1101110	

Die rechte Zahl hat eine 1 an der 1. und der 3. Stelle (0-basiert). Demnach wird die linke Zahl einmal um 3 Bits nach links verschoben (rechts mit Nullen aufgefüllt) bzw. einmal um 1 Bit nach links verschoben. Beide resultierenden Zahlen (grün markiert) werden dann addiert, um das Ergebnis der Multiplikation zu erhalten. Für jede 0 in der rechten Zahl muss nichts addiert werden (rot markiert).

Generell lässt sich also sagen. Das Ergebis der Multiplikation, m, wird zunächst mit 0 initialisiert. Dann werden alle Stellen b_i von b vom LSB bis hin zum MSB durchgegangen. Mit jeder Erhöhung von i wird die Zahl a um ein Bit nach links verschoben und rechts mit einer Null ergänzt. An jeder Stelle i, an der $b_i = 1$ ist, wird die derzeitige (verschobene) Version von a zu m hinzuaddiert (ansonsten wird 0 addiert). Sobald alle Stellen von b durchgegangen sind, ist die Multiplikation beendet und das Ergebnis m kann ausgelesen werden.

Um zwei n-stellige Binärzahlen a und b zu addieren, benötigt es n miteinander verschaltetete Volladdierer (siehe Abbildung 1). Dabei bekommt der Volladdierer (VA), der die beiden Least Significant Bits (LSB) addiert, einen "Carry-In" von 0 und gibt seinen "Carry-Out" an den darauffolgenden VA weiter. Diese Kette führt sich fort, bis am Ende alle Stellen s_i der Summe s bekannt sind, sowie ein optionaler Carry-Out aus dem letzten VA. Dies würde gleichzeitig einen Overflow signalisieren. Die Größe eines Volladdierers (wie im Skript) beträgt C(add) = 5, die Tiefe D(add) = 3. Für den n-stelligen Volladdierer gilt: $C(\text{nadd}) = n \cdot C(\text{add}) = 5n$, $D(\text{nadd}) = n \cdot D(\text{add}) = 3n$ (da jeder VA zunächst auf den Carry-In vom vorigen VA warten muss).

Abbildung 1: n-stelliger Volladdierer (NVA)

Um den Multiplikator in einer Schaltung umzusetzen, wird zusätzlich noch ein Multiplexer "selector" benötigt. Abhängig von einer Variable x (in diesem Fall b_i) wird entweder a oder b ausgewählt (in diesem Fall a_j oder 0). Ein solcher Selektor ist in Abbildung 2a dargestellt. Seine Größe beträgt C(sel) = 3 und seine Tiefe D(sel) = 2. Die n-stellige Variante verbindet n solcher Selektoren und ist in Abbildung 2b dargestellt. Die Größe beträgt $C(\text{nsel}) = n \cdot C(\text{sel}) = 3n$ und die Tiefe D(nsel) = 2.

Mit den n-stelligen Volladdierern und Multiplexern lässt sich nun der Multiplikator zusammenbauen, der in Abbildung 3 dargestellt ist. Das Ergebnis der Multiplikation zum i-ten Schritt steckt jeweils in der Variable $m^{(i)}$, die der Reihe nach an die n n-stelligen Volladdierer (NVA) übergeben wird. Diese erhalten als zweiten Summanden die um i Bits verschobene Zahl a, oder 0 (wenn b_i 0 war). Es ist eine Menge an Verdrahtung notwendig, um die Zahl n Bits der Zahl a "aufzudröseln" und an die n Selektoren zu übergeben.

Abbildung 2: Multiplexer

Die Größe des Multiplikators beträgt $C(\text{nmult}) = n \cdot (C(\text{nsel}) + C(\text{nadd})) = n \cdot (5n + 3n) = 8n^2$ und die Tiefe $D(\text{nmult}) = n \cdot D(\text{nadd}) + D(\text{nsel}) = 3n^2 + 2$ (da der letzte Volladdierer zunächst auf das Ergebnis aller vorigen NVA warten muss).

Abbildung 3: n-stelliger Multiplikator

Aufgabe 4.4

a)

$$\begin{split} f(x,y,z) &= () + () \\ &= () \cdot () + () \cdot () \\ &= \overline{()} \cdot () + () \cdot \overline{()} \\ &= \overline{z} \cdot (() + ()) + z \cdot \overline{(() + ())} \\ &= \overline{z} \cdot (() \cdot () + () \cdot ()) + z \cdot \overline{() \cdot () + () \cdot ()} \\ &= \overline{z} \cdot \overline{()} \cdot x + y \cdot \overline{()} + z \cdot \overline{\overline{()} \cdot x + y \cdot \overline{()}} \\ &= \overline{z} \cdot \overline{(y} x + y \overline{x}) + z \cdot \overline{y} \overline{x} + y \overline{x} \end{split}$$

Die leeren Klammern stellen jeweils einen Platzhalter für weiterfolgende Teile der Schaltung dar.

- b) Größe: 4x NOT, 4x AND, 2x OR $\Rightarrow C(S) = 10$
 - Tiefe (Längster Pfad): x \rightarrow NOT \rightarrow AND \rightarrow OR \rightarrow NOT \rightarrow AND \rightarrow OR \Rightarrow D(S)=6