GEOMETRY HOMEWORK 7

B96201044 黃上恩, B98901182 時丕勳, K0020100x 劉士瑋

November 1, 2011

Problem 2. 若 F(x,y,z)=0 定義一 surface, 證明 $\nabla f \neq 0$ 的地方 Gauss curvature $K=\frac{\nabla F^t A \nabla f}{\|\nabla f\|^4}$ 。其中 A 為 $\partial^2 F=\begin{pmatrix} F_{xx} & F_{xy} & F_{xz} \\ F_{yx} & F_{yy} & F_{yz} \\ F_{zx} & F_{zy} & F_{zz} \end{pmatrix}$ 的 adjoint Matrix, i.e. $A=\det(\partial^2 F)(\partial^2 F)^{-1}$

Proof.

Problem 3 (Ex P168 4). Determine the asymptotic curves and the lines of curvature of z = xy.

Proof. \Box

Problem 4. 已知 $\mathbb{X}(u,v)$ 為一 $surface \subset \mathbb{R}^3$ 且 $E=G=(1+u^2+v^2)^2, F=0$ 而且 $e=1, f=\sqrt{3}, g=-1$

- (a) 求在 X(1,1) 的 K 與 H
- (b) 如何決定過 X(1,1) 的 line of curvature 與 asymptotic curve (如果有的 話)

Proof. (a) at (1,1), E = G = 9, F = 0.

$$[-dN] = \begin{bmatrix} E & F \\ F & G \end{bmatrix}^{-1} \begin{bmatrix} e & f \\ f & g \end{bmatrix}$$

$$= \begin{bmatrix} 9 & 0 \\ 0 & 9 \end{bmatrix}^{-1} \begin{bmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{9} & \frac{1}{3\sqrt{3}} \\ \frac{1}{3\sqrt{3}} & -\frac{1}{9} \end{bmatrix}$$

So $K = \det([-dN]) = -\frac{4}{81}$, $H = \operatorname{tr}([-dN]) = 0$.

Problem 5. $\mathbb{X}(u,v) = (v\cos u, v\sin u, u)$, $\diamondsuit \gamma(t) = \mathbb{X}(t,1)$

- (a) 求 $\gamma(t)$ 的 $\kappa_n, \kappa_g, \tau_g$
- (b) 與 $\gamma(t)$ 的 κ, τ 有何關係

Proof.

Problem 6. 令 $(x(t), y(t)) = (t - \tanh t, \operatorname{sech} t)$ 這基本就是 p7(4) 的 tratrix

- (a) 將此曲線化作長度參數
- (b) 利用上小題,求此曲線繞 x 軸旋轉的旋轉體的 K

Proof.