

Location Anomalies Detection for Connected and Autonomous Vehicles

Xiaoyang Wang¹, Ioannis Mavromatis¹, Andrea Tassi¹, Raúl Santos-Rodríguez¹ and Robert J. Piechocki^{1,2}

¹ University of Bristol, Bristol, UK

² The Alan Turing Institute, London, UK

{xiaoyang.wang, ioan.mavromatis, a.tassi, enrsr, r.j.piechocki}@bristol.ac.uk

23/09/2019 @ Honolulu, Hawaii

Background

Data Generation

Methodology

Experiments

Background

Data Generation

Methodology

Experiments

Background

Connected and Autonomous Vehicles (CAVs), more generally Intelligent Transportation
 Systems (ITS) will form highly interconnected system

- CAVs collect and disseminate information
- Safety of vehicles relies on the knowledge from connected environment – no constant human intervention
- Early stage anomaly detection a key security feature
- Self-reported location (CAM/BSM) anomalies

Vehicles sharing locations and driving intentions^[1]

[1] http://www.flourishmobility.com/gallery

Previous Work

SMARTER - Simulation Framework for City-Scale Experimentation^[1,2]

[1] https://github.com/ioannismavromatis/smarterSimulator

Background

Data Generation

Methodology

Experiments

Simulation Scenario

- ~2km * 2km area in central Bristol, with ~150 vehicles driving for ~2,000s
- Each vehicle generate one beacon per second an UPD packet of 140B
- Broadcasting to surrounding vehicles
- IEEE 802.11p transceiver, 5.9 GHz

Background

Data Generation

Methodology

Experiments

Problem Description

Self-reported CAV locations (contained in CAM/BSM)

- T Transmitter
- R Receiver
- T' Falsified location

- A self-learning system for self-location anomaly detection
- Received Signal Strength Indicator (RSSI)
- State description:

$$X = [l_R, V_{\text{RSSI}}, l_{T(T')}] \in R^{1 \times 5}$$

Methodology

Unsupervised learning

- Data/pattern mining
- No labels required
- Less human intervention

Autoencoder

Methodology

Unsupervised learning

- Data/pattern mining
- No labels required
- Less human intervention

Methodology

The seven-layer, fully-connected deep autoencoder structure designed in this work

Parameters	Value
Bottle neck size	20
Learning rate	0.00095
Number of layers	7
Training epochs	1000

Background

Data Generation

Methodology

Experiments

Experiments

- Anomaly data Generating falsified TX locations T^\prime

RX locations and RSSI remain untouched

Evaluation Metrics – Receiver Operating Characteristic (ROC) curve
 False Positive vs True Positive
 Area Under Curve

Baseline Method – One Class SVM
 A classic unsupervised method for anomaly detection

Experiments

• $D_{T,T'}$, the distance between real TX and the falsified TX (meters)

Experiments

When $|D_{T',R} - D_{T,R}| < \epsilon$

$$D_{T,T'} > 30 \text{m}$$

while $|D_{T',R} - D_{T,R}| < 1 \text{m}$

$$D_{T,T'} > 30 \text{m}$$
 $D_{T,T'} > 30 \text{m}$ while $|D_{T',R} - D_{T,R}| < 1 \text{m}$ while $|D_{T',R} - D_{T,R}| \in [10, 20] \text{m}$

Background

Data Generation

Methodology

Experiments

Conclusion and Future Work

- Autoencoder-based approach
 Self-learning approach for self-reported location anomaly detection
- The limitation of using only locations and RSSI
- Early state anomaly detection could help improve the security of CAVs
- Further improve the performance on more "smarter" anomalies

This work is partially funded by the Next-Generation Converged Digital Infrastructure (NG-CDI) Project, supported by British Telecommunications Group and Engineering and Physical Sciences Research Council (EPSRC), Grant ref. EP/R004935/1. It was also supported in part by the Innovate UK Grant No. 102582 (Flourish Project).

Thanks!

Q&A

{xiaoyang.wang, ioan.mavromatis, a.tassi, enrsr, r.j.piechocki}@bristol.ac.uk

