PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-151243

(43)Date of publication of application: 13.06.1995

(51)Int.CI.

F16K 1/226

F16K 1/22

(21)Application number: 05-301724

(71)Applicant : O K M:KK

(22)Date of filing:

01.12.1993

(72)Inventor: MURAI YONEO

FUKUCHI MASAHARU

(54) BUTTERFLY VALVE

(57)Abstract:

PURPOSE: To provide a butterfly valve which can improve the sealing performance and easily work the outer peripheral surface of the valve element. CONSTITUTION: The side edge 43 of the inwardly bulging-out part 35 of a sheet ring 23 is formed into a press-contact seal surface in press contact with the obverse/reverse peripheral edge 39 of the thin blade part of a valve element 28, and the outer peripheral surface of the nearly disc-shaped valve element 28 is formed into a spherical shape, and the automatic cutting work for the outer peripheral surface is easily carried out by a lathe. The spindle insertion part of the sheet ring 23 for pressing the valve element 28 in the radial direction is formed into the recessed form corresponding to the spherical surface shape of the valve element 28. and the left and right blade parts 37 and 38 are extended A in the tangential line direction of the obverse/reverse outer peripheral surfaces of a spindle hole formation part 50 at the point symmetrical position, having the spindle

hole formation part 50 as center, and the chamfering work for the peripheral edge 39, etc., is carried out automatically, and the breakage of the inwardly bulging-out part 35 of the sheet ring 23 is prevented by the chamfering work having roundness.

LEGAL STATUS

[Date of request for examination]

15.10.1999

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3356511

[Date of registration]

04.10.2002

[Number of appeal against examiner's decision

BEST AVAILABLE COPY

http://www19.ipdl.ncipi.go.jp/PA1/result/detail/main/wAAA0caiQUDA407151243...

2005/07/15

of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

FΙ

(11)特許出願公開番号

特開平7-151243

(43)公開日 平成7年(1995)6月13日

(51) Int.Cl.*

酸別記号

庁内整理番号

技術表示箇所

F 1 6 K 1/226

K 7366-3H

1/22

R 7366-3H

審査請求 未請求 請求項の数4 OL (全 7 頁)

(21)出願番号

(22)出廟日

特願平5-301724

平成5年(1993)12月1日

(71)出顧人 391060432

株式会社オーケーエム

滋賀県務生郡日野町大字大谷446番地の1

(72)発明者 村井 米男

滋賀県蒲生郡蒲生町大字大森180番地

(72)発明者 福地 正晴

滋賀県神崎郡五個荘町大字金堂595番地の

10

(74)代理人 弁理士 大島 泰甫

(54) 【発明の名称】 パタフライパルプ

(57)【要約】

【目的】 シール性を良くし弁体の外周面の加工が容易 に行えるバタフライバルブを提供する。

【構成】 シートリング23の内方隆起部35の側縁43、44を、弁体28の薄肉羽根部の表裏周縁39、40が圧接する圧接シール面とし、略円盤状の弁体28の外周面を球面形状に形成して外周面の切削自動加工を旋盤で容易に行えるようにし、弁体28をその半径方向へ押圧するシートリング23の軸挿通部33を弁体28の球面形状に対応する凹状に形成し、左右の羽根部37、38を軸孔形成部50を中心とした点対称位置で軸孔形成部50の表裏外周面の接線方向に延設し、その周縁39、40の面取り加工を自動的に行えるようにするとともに、丸みを帯びた面取り加工によりシートリング23の内方隆起部35の損傷を防ぐ。

【特許請求の範囲】

【請求項1】 ボデーと、その内面に装着されたシート リングと、ボデーの軸孔を通して挿通した弁軸によって 開閉操作される弁体とを備え、シートリングの内面に突 出した内方隆起部の側縁を、弁体の表裏周縁が圧接する 圧接シール面としたバタフライバルブにおいて、

弁体を略円盤状に形成すると共に、その外周面を球面形 状に形成し、

一方、シートリングの軸挿通部を、弁体の球面形状に対 応する凹状に形成したことを特徴とするバタフライバル 10 **ブ**。

【請求項2】 前記弁体を、軸孔形成部を除いて薄肉形 状に形成した請求項1記載のバタフライバルブ。

【請求項3】 前配弁体は、円筒状の軸孔形成部と、と の軸孔形成部を中心とした点対称位置で、かつ軸孔形成 部の表裏外周面の接線方向に延設された両側の羽根部と を備え、両羽根部は、前記シートリングの圧接シール面 に圧接する周縁に面取り加工を施した請求項1,2記載 のバタフライバルブ。

【請求項4】 前記羽根部は、前記シートリングの圧接 20 シール面に圧接する周縁に、丸みを帯びた面取り加工を 施した請求項3記載のバタフライバルブ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】との発明は、流体の流路中に配置 されるバルブであって、特にその弁体の切削加工が容易 なバタフライバルブに関するものである。

[0002]

【従来の技術】図10及び図11に従来のバタフライバ ルブを示す。このパタフライバルブは、ボデー1と、そ 30 の内面に装着されたシートリング2と、ボデー1の軸孔 を通して挿通した弁軸3によって開閉操作される円盤状 の弁体4とを備えており、シートリング2の内面に突出 した内方隆起部5の側縁6を、弁体4の羽根部7の表真 周縁が圧接する圧接シール面としている。

【0003】従って、弁体4の表裏周縁がシートリング 2に対して最小限の摩擦力で圧接することになり、シー トリング2の寿命を延長させ、また、弁体4の開閉トル クも少なくて済むことになる。

は、弁軸3を挿入する軸孔形成部9が弁軸3を中心とし て回転するため、内方隆起部5の側縁6に圧接する構成 は採用できない。そのため、図11に示すように、軸孔 形成部9は、円盤状の弁体4の弁軸3が挿通する部分を 半月状に切り取り、平面状の軸孔形成面を形成し、との 軸孔形成部9に、シートリング2の軸挿通部10を弁軸 3の軸方向に突出させ、軸方向で軸孔形成部9を圧接す る構成を採用している。

【0005】また、弁体4は、スチール製のものであっ

グ2との圧接時のシール性を良好にするために、その外 周面S1及び圧接周縁部11,12が切削加工されてい る。

[0006]

【発明が解決しようとする課題】しかしながら、上記従 来のバタフライバルブにおいて、軸孔形成部9の軸孔形 成面が平面状であり、その両側の羽根部の外周面が円弧 状であるため、旋盤を用いて切削加工を行う場合に、軸 孔形成部9及び羽根部7の外周面を連続的に加工すると とができない。

【0007】また、両羽根部7の表裏周縁11,12に ついてもシール性を良好にするために、面取り加工を施 すが、図10に示すように、両羽根部7は軸孔形成部9 よりも薄肉に形成されており、かつ軸孔形成部9の軸中 心を通る線上Bに形成されているため、羽根部7の周縁 の面取り加工を自動的に行うには、軸孔形成部9が邪魔 になり、少なくとも軸孔形成部9との境界部13におけ る面取り加工を手加工で行わなければならないといった 難点がある。

【0008】さらに、との面取り加工は、平面状に切削 加工しているため、羽根部7の表裏周縁11,12と平 面状外周面S1とのコーナー部が角張り、これをシート リング2に圧接すると、シートリング2が損傷するおそ れがある。

【0009】そこで、この発明の目的とするところは、 シートリングとの間のシール性を良好とするとともに、 弁体の外周面の加工が容易に行えるバタフライバルブを 提供することにある。また、この場合においても、この 発明が、流体抵抗を最小限に抑えるととができるパタフ ライバルブを提供することを目的とする。さらに、この 発明は、弁体の周縁の面取り加工を自動的に行えるバタ フライバルブ、及び弁体によるシートリングの損傷を抑 えることができるパタフライパルブを提供することを目 的としている。

[0010]

【課題を解決するための手段】上記目的達成のため、と の発明においては、円盤状の弁体の外周面を軸孔形成部 を含めて全体を球面状に形成したことを最大の特徴とし ている。すなわち、との発明に係るバタフライバルブ 【0004】ところで、上記従来のバタフライバルブで 40 は、ボデーと、その内面に装着されたシートリングと、 ボデーの軸孔を通して挿通した弁軸によって開閉操作さ れる弁体とを備えており、シートリングの内面に突出し た内方隆起部の側縁を、弁体の表裏周縁が圧接する圧接 シール面とし、弁体を略円盤状に形成すると共に、その 外周面を球面形状に形成し、一方、シートリングの軸挿 通部を、弁体の球面形状に対応する凹状に形成したこと を特徴としている。

【0011】との実施態様としては、弁体を軸孔形成部 を除いて薄肉形状に形成し、弁開放時の流体抵抗を最小 て、鋳造等により製作されるものであるが、シートリン 50 限に抑える構成を採用している。さらに、との好ましい

実施態様としては、弁体が、円筒状の軸孔形成部と、と の軸孔形成部を中心とした点対称位置で、かつ軸孔形成 部の表裏外周面の接線方向に延設された両側の羽根部と を備え、両羽根部は、シートリングの圧接シール面に圧 接する周縁に面取り加工を施している。との場合、羽根 部は、シートリングの圧接シール面に圧接する周縁に、 丸みを帯びた面取り加工を施す構成も採用可能である。 [0012]

【作用】上記のように、シートリングの内方隆起部の側 縁を、弁体の表裏周縁が圧接する圧接シール面としたバ 10 タフライバルブにおいて、弁体の外周面の全体を真円に 形成すれば、外周面の切削加工が旋盤を使用した場合で も連続的に行うことができる。

【0013】との場合、弁体の軸孔形成部は、弁軸を中 心として回転するため、シートリングの内方隆起部の側 縁に圧接する形式を採用することができない。そのた め、との部分はシートリングの軸挿通部を弁体の半径方 向で内側へ押圧する形式を採用しなければならない。

【0014】とのとき、軸孔形成部の外周面を旋盤によ り単に平面状に形成すると、流体の流れ方向から見れ ば、軸挿通部と軸孔形成部とが点接触することになり、 シール性に問題を生ずる。シール性を向上させるには、 軸挿通部の内方隆起部の髙さを大にして、弁体への圧接 力を大にしなければならず、そうすると、弁体の開閉操 作力が大となるとともにシートリングが弁体により損傷 するおそれがある。

【0015】そこで、弁体の外周面を、軸孔形成部を含 めて全体を球面状に形成し、かつシートリングの軸挿通 部をその球面形状に合わせて凹状に形成することによ り、弁体の軸孔形成部とシートリングの軸挿通部の接触 30 面積が大になり、内方隆起部の高さを大にしなくともシ ール性を向上させることができる。しかも、シートリン グの軸孔形成部と軸挿通部との境界部においても、弁体 の回転に伴ってシートリングが損傷するのを最小限に抑 えることができる。従って、シートリングの内方隆起部 の高さは、弁体の羽根部及び軸孔形成部を同一高さに散 定してもシール性を保持することができ、またシートリ ングの製作も容易に行える。

[0016] 但し、シートリングの内方隆起部は、弁体 の周縁が圧接する羽根圧接部と、弁体の軸孔形成部が圧 40 接する軸挿通部とでは、圧接方向が異なり、弁体を弁軸 回りに低トルクで開閉回転するには、羽根圧接部と軸挿 通部との境界部で弁体の回転を許容する高さの内方隆起 部が必要となる。

【0017】従って、との部分では、弁体の回転方向内 側の側縁高さが、弁体の回転を許容する高さに設定され ていなければならない。勿論、との境界部でのシール性 も必要となるととろから、境界部における内方隆起部で は、弁体の回転方向外側の側縁の高さは、羽根圧接部及

望ましい。

【0018】ところで、上配の実施態様に示すように、 弁体の全開時の流体抵抗を最小限に抑えるために、弁体 を軸孔形成部を除いて薄肉形状に形成しているが、この 場合、羽根部を軸孔形成部を中心とした点対称位置で、 かつ軸孔形成部の表裏外周面の接線方向に配置すると、 シートリングの圧接シール面と圧接する両羽根部の表側 及び裏側の周縁が、弁軸の軸方向から見て、軸孔形成部 の外側で、互いに平行でかつ平面状に形成することがで

【0019】従って、羽根部の周縁の面取り加工を旋盤 により行う場合、軸孔形成部でパイトによる切削が阻害 されるととなく、自動加工が容易に行える。また、軸孔 形成部と羽根部の境界部の面取り加工も同時に行うこと ができる。さらに、この切削加工において、羽根部の周 縁に丸みを帯びた面取り加工を施せば、シートリングの 内方隆起部の圧接シール面と圧接しても、圧接シール面 が損傷するのを防止することができる。

[0020]

20 【実施例】以下、添附図面に示した実施例について説明 する。図1ないし図9は、この発明に係るバタフライバ ルブの一実施例を示すもので、図1はその分解斜視図、 図2は弁体の斜視図、図3はバタフライバルブの横断斜 視図、図4はシートリングの横断面図、図5は弁体の全 閉状態を示す縦断面図、図6はその横断面図、図7は弁 体の開放中間状態を示す横断面図、図8は弁体の全開状 態を示す横断面図、図9は弁体の全閉状態を示す拡大横 断面図である。

【0021】との発明に係るバタフライバルブ21は、 図1に示すように、ボデー22と、その内面に装着され たシートリング23と、ボデー21の軸孔24、25を 通して挿通した上下一対の弁軸26、27によって開閉 操作される弁体28とを備えている。

【0022】ボデー22は、内周面にシートリング23 を嵌合密着するリング保持部30と、弁軸26を回転自 在に保持し、上端に弁軸駆動部(図示略)を設置する設 置部31とから構成される。図面上省略した弁軸駆動部 は、レバー、ハンドルギヤ、シリンダあるいはモータに よって構成することができる。

【0023】シートリング23は、図4に示すように、 流体の流れ方向Aで前後の外面側に、ボデー22に係合 するフランジ32が形成され、また、その外面の中央 に、軸挿通部33を除いて補強用のリブ34が形成され ている。

【0024】また、シートリング23の内面には、弁体 28と圧接して流体の流路を遮断するために、内方へ突 出するリング状の内方隆起部35が形成されている。と の内方隆起部35は、図4及び図8に示すように、弁体 28の羽根部37,38の表裏周繰39,40が圧接す び軸挿通部の外周縁の高さと同等の高さに形成するのが 50 る羽根圧接部41と、軸孔形成部38を弁体28の半径

20

5

方向へ押圧する軸挿通部33とから構成されている。 【0025】羽根圧接部41は、図4に示すように、断面台形状に形成されており、その側縁43,44が圧接シール面とされている。この圧接シール面としては、図4において、流体の流れ方向が図面上A方向であるとすると、流れ方向から見て、右側(図面上左側)の羽根圧

接部41における圧接シール面は、流れ方向で後側の側 縁43に設定されている。また、流れ方向から見て左側 (図面上右側)の羽根圧接部41における圧接シール面 は、流れ方向で前側の側縁44に設定されている。

【0026】軸挿通部33は、その外周縁が羽根圧接部41の高さと等しく形成されており、中心部に軸挿通孔46が形成され、この軸挿通孔46を中心として球面状の凹部47が形成されている。

【0027】但し、羽根圧接部41と軸挿通部42との境界部48においては、外周面が球面状の弁体28を開閉操作させるときに、低トルクで回転させるために、弁体28の境界部28a(図2、3を参照)が侵入しやすい高さに設定されている。

【0028】すなわち、シートリング23の内方隆起部35は、流体の流れ方向に圧接する羽根圧接部41と弁体の半径方向へ圧接する軸挿通部33とで圧接方向が異なるため、弁体28を弁軸26.27回りに低トルクで開閉回転するには、羽根圧接部41と軸挿通部33との境界部48で弁体28の回転を許容する高さの内方隆起部が必要となる。

【0029】従って、この境界部48においては、弁体28の回転方向内側の側縁48aの高さが、弁体28の回転を許容する高さに設定されている。勿論、この境界部48でのシール性も必要となるところから、境界部48における内方隆起部では、弁体28の回転方向で外側の側縁48bの高さが、図4に示すように、羽根圧接部41及び軸挿通部42の外周縁の高さと同等の高さに形成されている。

【0030】前配弁体28は、図2に示すように、上下の弁軸26,27に対応して2分割された軸孔形成部50と、その両側の薄肉状の羽根部37,38とが半径Rの略円盤状に形成されてなり、かつその全体の外周面Sが、円盤状の弁体28の半径Rと等しい半径を有する球面Gに形成されている。

【0031】従って、旋盤の主軸にワークとしての弁体 28の中央部53を保持させて弁体28を回転させれ ば、弁体28の外周面の球面加工を旋盤を使用した場合 でも連続的に行うことができる。

【0032】上下の軸孔形成部50は、図5に示すように、その内部に軸孔51が形成され、その間の弁体中央部53は、弁体28の全開時に流体抵抗を最小限にするために、薄肉状に形成されている。

【0033】また、図6は弁体28の中央横断面を示す ものであり、両羽根部37,38は、軸孔形成部50の 50 軸孔51を中心とした点対称位置で、かつ軸孔形成部50の外周面の接線方向に配置され、シートリング23の圧接シール面41と圧接する周縁39,40が、軸孔形成部50の外側で互いに平行でかつ平面状に形成されている。

【0034】すなわち、図6及び図9に示すように弁体28の全閉状態において、流体の流れ方向Aから見て右側の羽根部37(図面上左側)が左側の羽根部38(図面上右側)よりも前方に位置しており、この右側の羽根 部37の表側の周縁39と、左側の羽根部38の裏側の周縁40とが、軸孔形成部50の外側で互いに平行でかつ平面状に形成されている。

【0035】従って、羽根部37,38の周縁の面取り加工を旋盤により行う場合、ワークとしての弁体28の中央部53を旋盤の主軸のセンターに合わせ、弁体28を回転させれば、軸孔形成部50でパイトによる切削が阻害されることがなく、容易に弁体28の周縁39,40の面取り加工が行える。また、軸孔形成部50と羽根部37,38の境界部28aの面取り加工も同時に行うことができる。図6において、符号Fで示す範囲が面取り加工を行う範囲である。

【0036】また、羽根部37、38は、シートリング23の内方隆起部35の側縁の圧接シール面に圧接する 周縁39、40が、丸みを帯びた面取り加工が施され、 シートリング23の圧接シール面41の損傷を防止して いる。

【0037】上記構成において、ハンドルギヤ等の弁駆動部からの駆動力により、弁軸26を介して弁体28を開閉駆動すると、弁体28は、図8に示す全開状態から図7の中間状態を経て図6に示す全閉状態に移行する。このとき、弁体28の羽根部37、38をシートリング23の内方隆起部35の側縁43、44に圧接する。従って、シートリング23は、弁体28をその半径方向に圧接する形式でないため、シートリング23の内方隆起部35の劣化を抑えることができ、また、この部分では、弁体28をその半径方向に押圧するものではなく、そのため開放時の操作性も良好になる。

【0038】また、弁体28の軸孔形成部50においても、この軸孔形成部50を球面状に形成し、かつシートリング23の軸揮通部33をその球面形状に合わせて凹状に形成しているので、弁体28の軸孔形成部50と軸揮通部33の接触面積が大になり、内方隆起部の高さを大にしなくともシール性が向上する。

【0039】とのとき、弁体28の周縁39.40も丸みを帯びた面取り加工が施されているので、シートリング23を損傷することなく、シール性を向上させることができる。

[0040]

【発明の効果】以上詳述したところから明らかな通り、 請求項1の発明に係るバタフライバルブによると、シー トリングの内方隆起部の側縁を、弁体の薄肉羽根部の表 裏周縁が圧接する圧接シール面とし、略円盤状の弁体の 外周面を球面形状に形成しているので、外周面の切削自 動加工を旋盤等で容易に行うことができ、また、弁体を その半径方向へ押圧するシートリングの軸挿通部を弁体 の球面形状に対応する凹状に形成しているから、シート 性も良好にすることができる。

【0041】また、請求項2の発明によると、弁体をその軸孔形成部を除いて薄肉形状に形成しているから、弁開放時の流体抵抗を最小限に抑えることができる。また、請求項3の発明によると、弁体の羽根部を軸孔形成部を中心とした点対称位置で軸孔形成部の表裏外周面の接線方向に延設しているから、その周縁の面取り加工を自動的に行うことができる。さらに、この周縁の面取り加工は、請求項4のように、丸みを帯びた加工であるため、シートリングの内方隆起部の損傷を防止することができる。

【図面の簡単な説明】

【図1】との発明に係るバタフライバルブの一実施例を 示す分解斜視図

【図2】弁体の斜視図

【図3】バタフライバルブの横断斜視図

【図4】シートリングの横断面図

【図5】パタフライバルブの全閉状態を示す中央縦断面*

*図

【図6】同じくその中央横断面図

【図7】同じく弁体の開放中間状態を示す中央横断面図

【図8】同じく弁体の全開状態を示す中央横断面図

【図9】弁体の全閉状態を示す拡大横断面図

【図10】従来のバタフライバルブの簡略化した弁体の 横断面図

【図11】同じくバタフライバルブの縦断斜視図 【符号の説明】

10 21 バタフライバルブ

22 ボデー

23 シートリング

26,27 弁軸

28 弁体

33 軸挿通部

35 内方隆起部

37,38 羽根部

39,40 周縁

41 圧接シール面

20 43,44 側縁

4.8 境界部

50 軸孔形成部

53 弁体中央部

【図1】

【図2】

【図4】

(図11)

