wherein A is

N\$30

R³, R⁴, R⁵ and R⁶ are each, independently, H, halogen, NO₂,

C₁₋₁₀- alkyl, optionally substituted by halogen up to perhaloalkyl,

C₁₋₁₀-alkoxy, optionally substituted by halogen up to perhaloalkoxy,

C₁₋₁₀- alkanoyl, optionally substituted by halogen up to perhaloalkanoyl,

 C_{6-12} aryl, optionally substituted by C_{1-10} alkyl or C_{1-10} alkoxy, or

 $C_{5\text{-}12}\,$ hetaryl, optionally substituted by $C_{1\text{-}10}\,$ alkyl or $C_{1\text{-}10}\,$ alkoxy,

and either

one of R^3 , R^4 , R^5 and R^6 is $-M-L^1$; or

two adjacent of R^3 , R^4 , R^5 and R^6 together are an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C_{1-10} -alkyl, , halo-substituted C_{1-10} -alkyl up to perhaloalkyl, C_{1-10} -alkoxy, halo-substituted C_{1-10} -alkoxy up to perhaloalkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl, C_{6-12} -aryl, C_{5-12} -hetaryl; C_{6-12} -aralkyl, C_{6-12} -alkaryl, halogen; NR^1R^1 ; $-NO_2$; $-CF_3$; $-COOR^1$; $-NHCOR^1$; -CN; $-CONR^1R^1$; $-SO_2R^2$; $-SOR^2$; $-SR^2$;

in which

 R^1 is H or C_{1-10} -alkyl, optionally substituted by halogen up to perhaloalkyl and R^2 is C_{1-10} -alkyl, optionally substituted by halogen, up to perhaloalkyl,

2

BAYER 6 P1

 δ

R^{3'}, R^{4'}, R^{5'} and R^{6'} are independently H, halogen,

 C_1 - C_{10} alkyl, optionally substituted by halogen up to perhaloalkyl,

 C_1 – C_{10} alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$, together with the base phenyl, form a naphthyl group, optionally substituted by halogen up to perhalo, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkanoyl, C_{6-12} aryl, C_{5-12} hetaryl or C_{6-12} aralkyl;

M is -CH₂-, -S-, -N(CH₃)-, -NHC(O)- -CH₂-S-, -S-CH₂-, -C(O)-, or -O-; and

 L^1 is phenyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃, NO₂ or,

Co MO

pyridyl, optionally substituted by $C_{1\text{-}10}$ -alkyl, $C_{1\text{-}10}$ -alkoxy, halogen, OH, -SCH₃, or NO₂, naphthyl, optionally substituted by $C_{1\text{-}10}$ -alkyl, $C_{1\text{-}10}$ -alkoxy, halogen, OH, -SCH₃ or NO₂, pyridone, optionally substituted by $C_{1\text{-}10}$ -alkyl, $C_{1\text{-}10}$ -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrazine, optionally substituted by $C_{1\text{-}10}$ -alkyl, $C_{1\text{-}10}$ -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrimidine, optionally substituted by $C_{1\text{-}10}$ -alkyl, $C_{1\text{-}10}$ -alkoxy, halogen, OH, -SCH₃ or NO₂, benzodioxane, optionally substituted by $C_{1\text{-}10}$ -alkyl, $C_{1\text{-}10}$ -alkoxy, halogen, OH, -SCH₃ or NO₂, benzopyridine, optionally substituted by $C_{1\text{-}10}$ -alkyl, one $C_{1\text{-}10}$ -alkoxy, halogen, OH, -SCH₃ or NO₂,

or

benzothiazole, optionally substituted by, C₁₋₁₀ alkyl C₁₋₁₀ alkoxy, halogen, OH, -SCH₃ or NO₂

3

 $\hat{\rho}_{i}$

BAYER 6 P1

3. (Amended) A compound according to claim 1, wherein

 R^3 is H, halogen or C_{1-10} - alkyl, optionally substituted by halogen, up to perhaloalkyl;

R⁴ is H, halogen or NO₂;

 R^5 is H, halogen or C_{1-10} - alkyl;

R⁶ is H, C₁₋₁₀- alkoxy, thiophene, pyrole or methyl substituted pyrole,

 $R^{3'}$ is H, halogen, C_{4-10} -alkyl, or CF_3 and

R^{6'} is H, halogen, CH₃, CF₃ or -OCH₃.

4. (Amended) A compound according to claim 1, wherein

 $R^{3'}$ is C_{4-10} -alkyl, Cl, F or CF_3 ;

R^{4'} is H, Cl or F;

 $R^{5'}$ is H, Cl, F or C₄₋₁₀-alkyl; and

 $R^{6'}$ is H or OCH₃.

- 5. (Amended) A compound according to claim 4, wherein R³ or R⁵ is t-butyl.
- 6. (Amended) A compound according to claim 1, wherein M is $-CH_2$ -, $-N(CH_3)$ or -NHC(O)-.
 - 7. (Amended) A compound according to claim 6, wherein L^1 is phenyl or pyridyl.
 - 8. (Amended) A compound according to claim 1, wherein M is -O-.

by.

BAYER 6 P1

- 9. (Amended) A compound according to claim 8, wherein L^1 is phenyl, pyridyl pyridone or benzothiazole.
 - 10. (Amended) A compound according to claim 1, wherein M is -S-.
 - 11. (Amended) A compound according to claim 10, wherein L¹ is phenyl or pyridyl.
- 15. (Amended) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of formula II:

N860

or a pharmaceutically acceptable salt thereof wherein

A is

B is a substituted or unsubstituted, up to bicyclic aryl or heteroaryl moiety of up to 12 carbon atoms with at least one 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is substituted it is substituted by one or more substituents selected from the group consisting of halogen, up to per-halo, and W_n , wherein n is 0-3 and each W is independently selected from the group consisting of -CN, $-CO_2R^7$, $-C(O)NR^7R^7$,

-C(O)-R⁷, -NO₂, -OR⁷, - SR⁷, - NR⁷R⁷, -NR⁷C(O)OR⁷, -NR⁷C(O)R⁷, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₁-C₁₀ alkenoyl, C₁-C₁₀ alkoxy, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₇-C₂₄ alkaryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₃-C₁₃ heteroaryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₄-C₂₃ alkheteroaryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₄-C₂₃ alkheteroaryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₄-C₂₃ alkheteroaryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₄-C₂₃ alkheteroaryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₄-C₂₃ alkheteroaryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₄-C₂₃ alkheteroaryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₄-C₂₃ alkheteroaryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₄-C₂₃ alkheteroaryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₄-C₂₃ alkheteroaryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₄-C₂₃ alkheteroaryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkoxy; C₄-C₂₃ alkheteroaryl, optionally substituted with halogen, C₁-C₁₀ alkyl, or C₁-C₁₀ alkyl

8

BAYER 6 P1

 C_{10} alkyl, or C_1 - C_{10} alkoxy; substituted C_1 - C_{10} alkyl, substituted C_2 - C_{10} alkenyl, substituted C_1 - C_{10} alkoxy, substituted C_3 - C_{10} cycloalkyl, substituted C_4 - C_{23} alkheteroaryl and -M- L^1 ;

wherein if W is a substituted group which does not contain aryl or hetaryl moieties, it is substituted by one or more substituents independently selected from the group consisting of – CN, $-CO_2R^7$, $-C(O)R^7$, $-C(O)NR^7R^7$, $-OR^7$, $-SR^7$, $-NR^7R^7$, NO_2 , $-NR^7C(O)R^7$, $-NR^7C(O)OR^7$ and halogen up to per-halo;

wherein each R⁷ is independently selected from H, C₁-C₁₀ alkyl, C₂-C₁₀ alkenyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ hetaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, up to perhalosubstituted C₁-C₁₀ alkyl, up to per-halosubstituted C₂-C₁₀ alkenyl, up to per-halosubstituted C₃-C₁₀ cycloalkyl, up to per-halosubstituted C₆-C₁₄ aryl and up to per-halosubstituted C₃-C₁₃ hetaryl,

wherein Q M is - O-, -S-, -N(R⁷)-, -(CH₂)-m, -C(O)-, -CH(OH)-, -(CH₂)mO-, -NR⁷C(O) NR⁷R⁷-, -NR⁷C(O)-, -C(O)NR⁷-, -(CH₂)mS-, -(CH₂)mN(R⁷)-, -O(CH₂)m-, -CHX^a, -CX^a₂-, -S-(CH₂)m- and -N(R⁷)(CH₂)m-,

m = 1-3, and X^a is halogen; and

 L^1 is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur, which is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Z_{n1} , wherein n_1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO₂R⁷,

 $-C(O)NR^7R^7$, $-C(O)-NR^7$, $-NO_2$, $-OR^7$, $-SR^7$, $-NR^7R^7$, $-NR^7C(O)OR^7$, $-C(O)R^7$,

-NR 7 C(O)R 7 , C₁-C₁₀ alkyl, C₃-C₁₀ cycloalkyl, C₆-C₁₄ aryl, C₃-C₁₃ hetaryl, C₇-C₂₄ alkaryl, C₄-C₂₃ alkheteroaryl, substituted C₁-C₁₀ alkyl, substituted C₃-C₁₀ cycloalkyl, substituted C₇-C₂₄ alkaryl and substituted C₄-C₂₃ alkheteroaryl; wherein the one or more substituents of Z is selected from the group consisting of -CN, -CO₂R 7 ,

-C(O)NR 7 R 7 , -OR 7 , -SR 7 , -NO $_2$, -NR 7 R 7 , -NR 7 C(O)R 7 and -NR 7 C(O)OR 7 ,

wherein R^{3'}, R^{4'}, R^{5'} and R^{6'} are each independently H, halogen, C₁₋₁₀-alkyl, optionally substituted by halogen up to perhaloalkyl,

8

BAYER 6 P1

 C_1 – C_{10} alkoxy, optionally substituted by halogen up to perhaloalkoxy or two adjacent of $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ together with the base phenyl, form a naphthyl group, optionally substituted by halogen up to perhalo, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkanoyl, C_{6-12} aryl, C_{5-12} hetaryl or C_{6-12} aralkyl.

16. (Amended) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of formula IIa:

$$R^4$$
 R^5
 R^6
 R^6
 R^6

IIa

wherein A is

BAYER 6 P1

R³, R⁴, R⁵ and R⁶ are each independently H, halogen, NO₂,

C₁₋₁₀- alkyl, optionally substituted by halogen up to perhaloalkyl,

C₁₋₁₀-alkoxy, optionally substituted by halogen up to perhaloalkoxy,

C₁₋₁₀- alkanoyl, optionally substituted by halogen up to perhaloalkanoyl,

 C_{6-12} aryl, optionally substituted by C_{1-10} alkyl or C_{1-10} alkoxy, or

 C_{5-12} hetaryl, optionally substituted by C_{1-10} alkyl or C_{1-10} alkoxy,

and either

one of R^3 , R^4 , R^5 and R^6 is $-M-L^1$; or

two adjacent of R^3 , R^4 , R^5 and R^6 together are an aryl or hetaryl ring with 5- 12 atoms, optionally substituted by C_{1-10} -alkyl, halo-substituted C_{1-10} -alkyl up to perhaloalkyl, C_{1-10} -alkoxy, halo-substituted C_{1-10} -alkoxy up to perhaloalkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl; C_{6-12} -aryl, C_{5-12} -hetaryl, C_{6-12} -alkaryl, halogen; -NR $^1R^1$; -NO $_2$; -CF $_3$;-COOR 1 ; -NHCOR 1 ; -CN; -CONR $^1R^1$; -SO $_2R^2$; -SOR 2 ; -SR 2 ;

in which

R1 is H or C1-10-alkyl, optionally substituted by halogen, up to perhalo and

 R^2 is C_{1-10} -alkyl, optionally substituted by halogen,

 $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$ are independently H, halogen,

C₁ - C₁₀ alkyl, optionally substituted by halogen up to perhaloalkyl,

BO

BAYER 6 P1

 C_1 – C_{10} alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of $R^{3'}$, $R^{4'}$, $R^{5'}$ and $R^{6'}$, together with the base phenyl, form a naphthyl group optionally substituted by halogen up to perhalo, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkanoyl, C_{6-12} aryl, C_{5-12} hetaryl or C_{6-12} aralkyl, halogen up to perhalo;

M is
$$-CH_2$$
-, $-S$ -, $-N(CH_3)$ -, $-NHC(O)$ - $-CH_2$ -S-, $-S$ - $-CH_2$ -, $-C(O)$ -, or $-O$ -; and

 L^1 is phenyl, pyridyl, naphthyl, pyridone, pyrazine, pyrimidine, benzodiaxane, benzopyridine or benzothiazole, each optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃, NO₂ or, where Y is phenyl, by

Malo

$$-N$$

or a pharmaceutically acceptable salt thereof.

17. (Amended) A method according to claim 16, wherein

 R^3 is halogen or C_{1-10} - alkyl, optionally substituted by halogen, up to perhaloalkyl;

R⁴ is H, halogen or NO₂;

 R^5 is H, halogen or C_{1-10} - alkyl;

R⁶ is H, C₁₋₁₀- alkoxy, thiophene, pyrole or methylsubstituted pyrole

 $R^{3'}$ is H, halogen, $C_{4\text{-}10}$ -alkyl, or CF_3 and

 $R^{6'}$ is H, halogen, CH_3 , CF_3 or OCH_3 .

BAYER 6 P1

- 18. (Amended) A method according to claim 16, wherein M is -CH₂- ,-S-, $N(CH_3)$ or -NHC(O)- and L^1 is phenyl or pyridyl.
- 19. (Amended) A method according to claim 16, wherein M is -O- and L^1 is phenyl, pyridone, pyrimidine, pyridyl or benzothiazole.

 $\hat{\beta}_{\mathcal{J}}$

BAYER 6 P1