Math 154: Probability Theory, HW 2

DUE FEB 6, 2024 BY 9AM

Remember, if you are stuck, take a look at the lemmas/theorems/examples from class, and see if anything looks familiar.

1. Some practice

- 1.1. Poisson and binomial distributions show up everywhere. Let X and Y be independent Poisson random variables with parameters λ and μ , respectively.
- (1) By computing the pmf of X + Y, show that X + Y is a Poisson random variable with parameter $\lambda + \mu$
- (2) By computing $\mathbb{P}(X=k|X+Y=n)$, show that $\mathbb{P}(X=k|X+Y=n)=p(k)$, where p(k) is the pmf for a Binomial distribution (with parameters that you must compute).
- 1.2. What? Suppose X is a geometric random variable. Show that $\mathbb{P}(X = n + k | X > 1)$ $n = \mathbb{P}(X = k)$ for any integers $k, n \ge 1$. (This is called the "memorylessness" property.)
- 1.3. For some reason, probabilists like urns. An urn contains N balls, b of which are blue and r = N - b of which are red. Let us randomly take n of the N balls (without replacement). If R is the number of red balls drawn, explain briefly why

$$\mathbb{P}(R=k) = \frac{\binom{r}{k} \binom{N-r}{n-k}}{\binom{N}{n}}.$$

This is the hypergeometric distribution. Now, take the limit $b, N, r \to \infty$ and suppose $\frac{r}{N} \to p$ (and thus $\frac{b}{N} \to 1-p$). (In words, keep a constant fraction of blue and red balls.) Compute the limit of $\mathbb{P}(R=k)$ as $N \to \infty$, i.e. confirm that

$$\mathbb{P}(R=k) \to \binom{n}{k} p^k (1-p)^{n-k}. \tag{1.1}$$

(This is saying that in the limit of infinitely many balls, sampling with and without replacement is the same, as long as the number of samples n and the proportion of colors is fixed.) (*Hint*: it may help to prove $\binom{X}{y} \to \frac{1}{y!} X^y$ as $X \to \infty$ and y is fixed, i.e. not large.)

2. Some Lemmas (and another urn)

- 2.1. The "layer-cake formula" (and an application).
- (1) Suppose X is a discrete random variable that takes values in the non-negative integers. Show that $\mathbb{E}(X) = \sum_{n=0}^{\infty} \mathbb{P}(X > n)$.
- (2) An urn contains b blue and r red balls. Balls are removed from the urn at random one-by-one. Compute the expected number of turns that we must take until the first red balls is drawn. (You should get $\frac{b+r+1}{r+1}$, but show your work.)

- 2.2. **Maximum disorder.** Let X_1, \ldots, X_n be independent Bernoulli random variables with parameters $p_1, \ldots, p_n \in [0, 1]$, respectively. Define $Y = X_1 + \ldots X_n$.
- (1) Show that \(\mathbb{E}(Y) = \sum_{k=1}^n p_k \) and \(\text{Var}(Y) = \sum_{k=1}^n p_k (1 p_k) \).
 (2) Suppose we fix the value of \(\mathbb{E}(Y) \) (to be, say, \(E \)). Show that the choice of \(p_1, \ldots, p_n \) which maximizes Var(Y) satisfies $p_1 = \ldots = p_n$. (This part has nothing random in it. You can do it by Lagrange multipliers or by plugging in $p_n = E - (p_1 + \ldots + p_{n-1})$ into the variance formula and maximizing over n-1 variables without any constraints by using calculus.)
- 2.3. An old friend, the covariance matrix. Let X_1, \ldots, X_n be (possibly dependent) random variables. Define the matrix $Cov(\mathbf{X})$ as an $n \times n$ matrix with entries $Cov(\mathbf{X})_{ij} =$ $Cov(X_i, X_j)$. Let $\mathbf{X} = (X_1, \dots, X_n)$ be the vector with entries X_1, \dots, X_n .
- (1) Show that for any $\mathbf{v} = (v_1, \dots, v_n)$, we have $\mathbf{v} \text{Cov}(\mathbf{X}) \mathbf{v}^T = \text{Var}(\mathbf{v} \cdot \mathbf{X}) \geqslant 0$.
- (2) Show that Cov(X) is invertible if and only if the following is satisfied:
 - If $\mathbf{v} \cdot \mathbf{X}$ is a constant random variables, then \mathbf{v} is the zero vector. (*Hint*: what condition on the null-space is equivalent to a square matrix being invertible?)