```
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
data = pd.read csv("sales.csv", encoding="latin1")
data
           Order ID Order Date Ship Date
     Row ID
                                                    Ship
Mode
         1 CA-2016-152156 11-08-2016
                                     11-11-2016
                                                  Second Class
            CA-2016-152156 11-08-2016
                                     11-11-2016
                                                  Second Class
         3 CA-2016-138688 06-12-2016 6/16/2016 Second Class
            US-2015-108966 10-11-2015
                                                Standard Class
                                     10/18/2015
            US-2015-108966 10-11-2015
                                     10/18/2015
                                                Standard Class
9989
       9990 CA-2014-110422
                           9990
       9991 CA-2017-121258
                                     03-03-2017 Standard Class
                           2/26/2017
9991
       9992 CA-2017-121258
                           2/26/2017
                                     03-03-2017 Standard Class
9992
       9993 CA-2017-121258
                           2/26/2017
                                     03-03-2017 Standard Class
       9994 CA-2017-119914
                          05-04-2017
                                     05-09-2017 Second Class
9993
    Customer ID Customer Name Segment
                                               Country
City
       CG-12520
                    Claire Gute
                                 Consumer United States
0
Henderson
       CG-12520
                    Claire Gute
                                 Consumer United States
Henderson
       DV-13045
                 Darrin Van Huff Corporate United States Los
Angeles
       S0-20335
                 Sean O'Donnell
                                 Consumer
                                         United States Fort
Lauderdale
       S0-20335
                 Sean O'Donnell
                                 Consumer United States Fort
Lauderdale
9989
       TB-21400 Tom Boeckenhauer Consumer United States
Miami
9990
       DB-13060
                    Dave Brooks
                                 Consumer
                                          United States
```

Costa Mesa 9991 DB-1 Costa Mesa	.3060	Dave Br	ooks	Consumer	United	States	
	.3060	Dave Br	ooks	Consumer	United	States	
	.2220	Chris Co	rtes	Consumer	United	States	
Po	stal Code	Region		Product ID		Category	Sub-
0 Bookcases	42420	South	FUR-B	0-10001798		Furniture	
1	42420	South	FUR-C	H-10000454		Furniture	
Chairs 2	90036	West	0FF-L	A-10000240	Office	e Supplies	
Labels 3 Tables	33311	South	FUR-T	A-10000577		Furniture	
4	33311	South	0FF-S	T-10000760	Office	e Supplies	
Storage							
9989 Furnishings	33180	South	FUR-F	U-10001889		Furniture	
9990 Furnishings	92627	West	FUR-F	U-10000747		Furniture	
9991 Phones	92627	West	TEC-P	H-10003645	-	Гесhnology	
9992 Paper	92627	West	OFF-P	A-10004041	Office	e Supplies	
9993 Appliances	92683	West	OFF-A	P-10002684	Office	e Supplies	
Product Name Sales							
Quantity \ 0 Bush Somerset Collection Bookcase 261.9600 2							
1 Hon Deluxe Fabric Upholstered Stacking Chairs, 731.9400							
<pre>Self-Adhesive Address Labels for Typewriters b 14.6200</pre>							
Bretford CR4500 Series Slim Rectangular Table 957.5775							
Eldon Fold 'N Roll Cart System 22.3680							
					•		
9989 3			Ult	ra Door Pu	ll Hand	le 25.248	30

```
9990 Tenex B1-RE Series Chair Mats for Low Pile Car...
                                                           91.9600
2
9991
                                  Aastra 57i VoIP phone 258.5760
2
9992 It's Hot Message Books with Stickers, 2 3/4" x 5"
                                                           29,6000
9993 Acco 7-Outlet Masterpiece Power Center, Wihtou... 243.1600
2
      Discount
                  Profit
0
          0.00
                 41.9136
1
          0.00 219.5820
2
          0.00
                  6.8714
3
          0.45 -383.0310
4
          0.20
                  2.5164
          . . .
                     . . .
. . .
9989
          0.20
                  4.1028
9990
          0.00
                 15.6332
9991
          0.20
                 19.3932
          0.00
                 13.3200
9992
          0.00 72.9480
9993
[9994 rows x 21 columns]
data.shape
(9994, 21)
data.isnull().sum()
Row ID
Order ID
                 0
Order Date
                 0
Ship Date
                 0
Ship Mode
                 0
Customer ID
                 0
                 0
Customer Name
Segment
                 0
                 0
Country
City
                 0
State
                 0
Postal Code
                 0
Region
                 0
                 0
Product ID
                 0
Category
Sub-Category
                 0
Product Name
                 0
Sales
                 0
Quantity
                 0
Discount
                 0
```

```
Profit
                 0
dtype: int64
data.duplicated().sum()
np.int64(0)
data cleaned = data.drop duplicates()
data cleaned['Order Date'] = pd.to datetime(data cleaned['Order
Date'], format='mixed', errors='coerce')
data_cleaned['Ship Date'] = pd.to_datetime(data_cleaned['Ship Date'],
format='mixed', errors='coerce')
sales_trends = data_cleaned.groupby('Order Date')
['Sales'].sum().reset index()
sns.lineplot(data=sales_trends, x='Order Date', y='Sales',marker="o")
plt.title('Sales Trends')
plt.xlabel('Order Date')
plt.ylabel('Total Sales')
plt.xticks(rotation=45)
plt.grid(True)
plt.show()
```



```
sns.scatterplot(data=data_cleaned, x='Discount', y='Profit',
hue='Category', alpha=0.7)
plt.title('Profit vs. Discount')
plt.xlabel('Discount', fontsize=12)
plt.ylabel('Profit', fontsize=12)
plt.grid(True)
plt.show()
```



```
region_category_sales = data_cleaned.groupby(['Region', 'Category'])
['Sales'].sum().unstack()
region category sales
Category
            Furniture Office Supplies Technology
Region
Central
          163797.1638
                            167026.415
                                         170416.312
          208291.2040
                            205516.055
                                         264973.981
East
                            125651.313
South
          117298.6840
                                        148771.908
                            220853.249 251991.832
          252612.7435
West
features = data_cleaned[['Profit', 'Discount']]
features
        Profit
                Discount
                    0.00
0
       41.9136
1
      219.5820
                    0.00
2
        6.8714
                    0.00
3
     -383.0310
                    0.45
                    0.20
4
        2.5164
        4.1028
                    0.20
9989
```

```
9990
       15.6332
                     0.00
9991
       19.3932
                     0.20
9992
       13.3200
                     0.00
9993 72.9480
                    0.00
[9994 rows x 2 columns]
target = data cleaned['Sales']
target
0
        261.9600
        731,9400
1
2
        14.6200
3
        957.5775
         22.3680
          . . .
         25.2480
9989
9990
        91.9600
9991
        258.5760
9992
        29,6000
9993
        243,1600
Name: Sales, Length: 9994, dtype: float64
from sklearn.model selection import train test split
X_train, X_test, y_train, y_test = train_test_split(features, target,
test size=\frac{0.2}{1.2}, random state=\frac{42}{1.2}
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
model = LinearRegression()
model.fit(X train, y train)
LinearRegression()
y pred = model.predict(X test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2 score(y test, y pred)
mse
np.float64(700271.8880636955)
r2
-0.18549666591248526
# Function to predict sales based on user input
def predict sales():
    print("Enter values for the features:")
```

```
profit = float(input("Profit: "))
    discount = float(input("Discount: "))

# Prepare the input as a DataFrame
    user_input = pd.DataFrame([[profit, discount]], columns=['Profit',
'Discount'])

# Make a prediction
    predicted_sales = model.predict(user_input)[0]
    print(f"Predicted Sales: {predicted_sales:.2f}")

predict_sales()

Enter values for the features:

Profit: 20
Discount: 0.1

Predicted Sales: 194.02
```