DSA210 TERM PROJECT

INTRODUCTION

This project will be about investigating how data can be used to determine a patient's lung cancer status based on important medical signs. The goal is to find the most crucial elements that go into a diagnosis by looking for trends in patient data. Understanding which characteristics—such as demographics, mental difficulties, or chronic diseases—are most predictive and how a data-driven strategy might support early detection are the main goals of this study.

Import necessary libraries and pull the data of the first dataset

```
In [1]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import chi2_contingency
```

In [2]:

```
file_path = "dataset.csv"
df = pd.read_csv(file_path)
df.head()
```

Out[2]:

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC_DISEASE	FATIGUE	ALLI
0	М	65	1	1	1	2	2	1	
1	F	55	1	2	2	1	1	2	
2	F	78	2	2	1	1	1	2	
3	М	60	2	1	1	1	2	1	
4	F	80	1	1	2	1	1	2	
4									⋙ ▶

In [3]:

```
df.info()
```

```
RangeIndex: 3000 entries, 0 to 2999
Data columns (total 16 columns):
   Column
                           Non-Null Count Dtype
  GENDER
                           3000 non-null object
0
1 AGE
                           3000 non-null int64
                           3000 non-null int64
   SMOKING
   YELLOW FINGERS
 3
                           3000 non-null
                                         int64
 4 ANXTETY
                           3000 \text{ non-null} int 64
```

<class 'pandas.core.frame.DataFrame'>

```
CHRONIC_DISEASE
7 FATIGUE
                        3000 non-null int64
8
  ALLERGY
                        3000 non-null int64
                        3000 non-null int64
  WHEEZING
9
10 ALCOHOL_CONSUMING 3000 non-null int64
11 COUGHING
                        3000 non-null int64
12 SHORTNESS_OF_BREATH 3000 non-null int64
13 SWALLOWING DIFFICULTY 3000 non-null int64
14 CHEST PAIN
                       3000 non-null int64
                3000 non-null object
15 LUNG CANCER
dtypes: int64(14), object(2)
memory usage: 375.1+ KB
In [4]:
df.describe()
```

3000 non-null int64

3000 non-null int64

Out[4]:

5

6

PEER PRESSURE

	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC_DISEASE	FATIG
count	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000	3000.000000	3000.000
mean	55.169000	1.491000	1.514000	1.494000	1.499000	1.509667	1.489
std	14.723746	0.500002	0.499887	0.500047	0.500082	0.499990	0.499
min	30.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000
25%	42.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000
50%	55.000000	1.000000	2.000000	1.000000	1.000000	2.000000	1.000
75%	68.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000
max	80.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000
4)

Changing the number 1s and 2s into No's and Yes's, M to Male and F to Female for better visualization.

```
In [5]:
```

```
binary columns = [
    "SMOKING", "YELLOW FINGERS", "PEER PRESSURE", "CHRONIC DISEASE",
    "FATIGUE", "ALLERGY", "WHEEZING", "ALCOHOL CONSUMING", "ANXIETY",
    "COUGHING", "SHORTNESS_OF_BREATH", "SWALLOWING DIFFICULTY", "CHEST PAIN"
]
# Map 1 -> 'No', 2 -> 'Yes'
df[binary columns] = df[binary columns].replace({1: "No", 2: "Yes"})
df["GENDER"] = df["GENDER"].replace({"M": "Male", "F": "Female"})
```

Total distribution of cancer patients and healthy patients.

```
In [6]:
```

```
sns.countplot(x='LUNG CANCER', data=df,)
plt.title('Target Distribution');
```

Target Distribution

Plotting the most common assumptions for the causes of Lung Cancers.

In [7]:

```
plt.figure(figsize=(10, 5))
sns.countplot(x="SMOKING", hue="LUNG_CANCER", data=df)
plt.title("Smoking vs Lung Cancer")
plt.xlabel("Smoking")
plt.ylabel("Number of Patients")
plt.show()

plt.figure(figsize=(10, 5))
sns.countplot(x="CHRONIC_DISEASE", hue="LUNG_CANCER", data=df)
plt.title("Chronic Diseases vs Lung Cancer")
plt.xlabel("Chronic Disease")
plt.ylabel("Number of Patients")
plt.show()
```


Age distributions of patients for Lung Cancer and Smoking

```
In [8]:
```

```
plt.figure(figsize=(10, 5))
sns.histplot(data=df, x="AGE", hue="LUNG CANCER", kde=True, bins=50, palette="viridi
plt.title("Age Distribution by Lung Cancer Diagnosis")
plt.xlabel("Age")
plt.ylabel("Frequency")
plt.show()
plt.figure(figsize=(10, 5))
sns.histplot(data=df, x="AGE", hue="SMOKING", kde=True, bins=50, palette="coolwarm")
plt.title("Age Distribution by Smoking")
plt.xlabel("Age")
plt.ylabel("Frequency")
plt.show()
mean age = df['AGE'].mean()
median age = df['AGE'].median()
mode age = df['AGE'].mode()[0]
print(f"Mean Age: {mean age}")
print(f"Median Age: {median age}")
print(f"Mode Age: {mode_age}")
```

Age Distribution by Lung Cancer Diagnosis

Mean Age: 55.169 Median Age: 55.0 Mode Age: 54

Male/Female Ratio

In [9]:

```
df["GENDER"] = df["GENDER"].replace({"M": "Male", "F": "Female"})
gender_counts = df["GENDER"].value_counts()
colors = ["#dcbeaf", "#e7e0ee"]
explode = (0.05, 0)
plt.figure(figsize=(6, 6))
plt.pie(
    gender_counts,
    labels=gender_counts.index,
    autopct="%1.1f%%",
    startangle=90,
    colors=colors,
    explode=explode,
    shadow=True
)
plt.title("Gender Distribution")
plt.axis("equal")
plt.show()
```

Gender Distribution

Some Columns of Possible Causes vs Age Using Violin Graphs

Lung Cancer vs Age

In [10]:

```
fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(15, 10))
sns.violinplot(hue="LUNG CANCER", y="AGE", data=df, inner="quartile", ax=axes[0][0],
palette="Reds", legend=False)
axes[0][0].set title("Lung Cancer vs Age")
sns.violinplot(hue="SMOKING", y="AGE", data=df, inner="quartile", ax=axes[0][1], pal
ette="Blues", legend=False)
axes[0][1].set title("Smoking vs Age")
sns.violinplot(hue="ALCOHOL CONSUMING", y="AGE", data=df, inner="quartile", ax=axes[
0][2], palette="Greens", legend=False)
axes[0][2].set title("Alcohol Consumption vs Age")
sns.violinplot(hue="CHRONIC DISEASE", y="AGE", data=df, inner="quartile", ax=axes[1]
[0], palette="Purples", legend=False)
axes[1][0].set title("Chronic Disease vs Age")
sns.violinplot(hue="CHEST PAIN", y="AGE", data=df, inner="quartile", ax=axes[1][1],
palette="Oranges", legend=False)
axes[1][1].set_title("Chest Pain vs Age")
sns.violinplot(hue="ANXIETY", y="AGE", data=df, inner="quartile", ax=axes[1][2], pal
ette="crest", legend=False)
axes[1][2].set title("Anxiety vs Age")
plt.show()
```

Smoking vs Age

Alcohol Consumption vs Age

All Columns vs Lung Cancer

1.0

0.8

. 5.0 E Lung Cancer

0.8

Lung Cancer

0.8

```
In [11]:
```

```
features = [
    "SMOKING", "YELLOW FINGERS", "ANXIETY", "PEER PRESSURE", "CHRONIC DISEASE",
    "FATIGUE", "ALLERGY", "WHEEZING", "ALCOHOL CONSUMING", "COUGHING",
    "SHORTNESS OF BREATH", "SWALLOWING DIFFICULTY", "CHEST PAIN", "GENDER", "AGE"
]
fig, axes = plt.subplots(3, 5, figsize=(17.5, 10))
axes = axes.flatten()
for i, feature in enumerate (features):
    if feature == "AGE":
        axes[i].axis('off')
        continue
    crosstab = pd.crosstab(df[feature], df["LUNG CANCER"], normalize='index')
    crosstab.plot(kind='bar', stacked=True, ax=axes[i], color=["#F44336", "#4CAF50"]
)
    axes[i].set title(f"{feature.replace(' ', ' ').title()} vs Lung Cancer")
    axes[i].set ylabel("Proportion")
    axes[i].set xlabel("")
    axes[i].legend(title="Lung Cancer", loc='upper right')
    axes[i].set xticklabels(axes[i].get xticklabels(), rotation=0)
for j in range(i+1, len(axes)):
    axes[j].axis('off')
plt.tight layout()
plt.show()
     Smoking vs Lung Cancer
                      Yellow Fingers vs Lung Cancer
                                          Anxiety vs Lung Cancer
                                                            Peer Pressure vs Lung Cancer
                                                                              Chronic Disease vs Lung Cancer
```

1.0

0.8

9.0

Lung Cancer

1.0

0.8

<u>5</u> 0.6

Lung Cancer
NO
YES

Lung Cancer

Correlation Matrix of Lung Cancer Dataset 1

```
In [12]:
```

```
df encoded = df.copy()
yes no map = {"Yes": 1, "No": 0}
gender map = {"Male": 1, "Female": 0}
yes no columns = [
    "SMOKING", "YELLOW FINGERS", "ANXIETY", "PEER PRESSURE",
    "CHRONIC DISEASE", "FATIGUE", "ALLERGY", "WHEEZING", "ALCOHOL CONSUMING",
    "COUGHING", "SHORTNESS OF BREATH", "SWALLOWING DIFFICULTY", "CHEST PAIN", "LUNG
CANCER"
]
df encoded[yes no columns] = df encoded[yes no columns].map(yes no map.get)
df encoded["GENDER"] = df encoded["GENDER"].map(gender map)
df numeric = df encoded.select dtypes(include=["number"])
corr matrix = df numeric.corr()
plt.figure(figsize=(13, 10))
sns.heatmap(
    corr_matrix,
    annot=True,
    fmt=".2f",
    cmap="RdYlBu",
    center=0,
    linewidths=0.5,
    square=True,
    cbar kws={"shrink": 0.75}
)
plt.title("Correlation Matrix of Lung Cancer Dataset", fontsize=16)
plt.xticks(rotation=45)
plt.yticks(rotation=0)
plt.tight layout()
plt.show()
```

Correlation Matrix of Lung Cancer Dataset

									_						
GENDER -	1.00	0.01	-0.03	0.01	-0.02	0.01	0.01	0.00	0.01	-0.01	-0.01	-0.01	0.01	-0.02	-0.00
AGE -	0.01	1.00	-0.02	0.02	0.03	0.00	-0.03	-0.00	0.02	-0.02	-0.02	-0.02	-0.02	-0.00	-0.01

Pulling the data from the second dataset and visualizing it

```
In [13]:
```

```
file_path2 = "dataset2.csv"
df2 = pd.read_csv(file_path2)
df2.head()
```

Out[13]:

	index	Patient Id	Age	Gender	Air Pollution	Alcohol use		OccuPational Hazards	Genetic Risk	chronic Lung Disease	 Fatigue	Weight Loss	•
0	0	P1	33	1	2	4	5	4	3	2	 3	4	
1	1	P10	17	1	3	1	5	3	4	2	 1	3	
2	2	P100	35	1	4	5	6	5	5	4	 8	7	
3	3	P1000	37	1	7	7	7	7	6	7	 4	2	
4	4	P101	46	1	6	8	7	7	7	6	 3	2	

5 rows × 26 columns

In [14]: df2 = df2.iloc[:, 2:]

In [15]:

df2.head()

Out[15]:

	Age	Gender	Air Pollution	Alcohol use		OccuPational Hazards	Genetic Risk	chronic Lung Disease	Balanced Diet	Obesity	 Fatigue	Weig Lo:
0	33	1	2	4	5	4	3	2	2	4	 3	
1	17	1	3	1	5	3	4	2	2	2	 1	
2	35	1	4	5	6	5	5	4	6	7	 8	
3	37	1	7	7	7	7	6	7	7	7	 4	
4	46	1	6	8	7	7	7	6	7	7	 3	

5 rows × 24 columns

4 P

In [16]:

df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 24 columns):

#	Column		Null Count	Dtype
0	Age	1000	non-null	 int64
1	Gender		non-null	
2	Air Pollution		non-null	
3	Alcohol use	1000	non-null	int64
4	Dust Allergy	1000	non-null	int64
5	OccuPational Hazards	1000	non-null	int64
6	Genetic Risk	1000	non-null	int64
7	chronic Lung Disease	1000	non-null	int64
8	Balanced Diet	1000	non-null	int64
9	Obesity	1000	non-null	int64
10	Smoking	1000	non-null	int64
11	Passive Smoker	1000	non-null	int64
12	Chest Pain	1000	non-null	int64
13	Coughing of Blood	1000	non-null	int64
14	Fatigue	1000	non-null	int64
15	Weight Loss	1000	non-null	int64
16	Shortness of Breath	1000	non-null	int64
17	Wheezing	1000	non-null	int64
18	Swallowing Difficulty	1000	non-null	int64
19	Clubbing of Finger Nails	1000	non-null	int64
20	Frequent Cold	1000	non-null	int64
21	Dry Cough	1000	non-null	int64
22	3	1000	non-null	int64
23	Level	1000	non-null	object
dt vne	e° int64(23) object(1)			

dtypes: int64(23), object(1)
memory usage: 187.6+ KB

In [17]:

df2.iloc[:, 0:11].describe()

	Age	Gender	Air Pollution	Alcohol use	Dust Allergy	OccuPational Hazards	Genetic Risk	chronic Lung Disease	
count	1000.000000	1000.000000	1000.0000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	10
mean	37.174000	1.402000	3.8400	4.563000	5.165000	4.840000	4.580000	4.380000	
std	12.005493	0.490547	2.0304	2.620477	1.980833	2.107805	2.126999	1.848518	
min	14.000000	1.000000	1.0000	1.000000	1.000000	1.000000	1.000000	1.000000	
25%	27.750000	1.000000	2.0000	2.000000	4.000000	3.000000	2.000000	3.000000	
50%	36.000000	1.000000	3.0000	5.000000	6.000000	5.000000	5.000000	4.000000	
75%	45.000000	2.000000	6.0000	7.000000	7.000000	7.000000	7.000000	6.000000	
max	73.000000	2.000000	8.0000	8.000000	8.000000	8.000000	7.000000	7.000000	
4									F

```
In [18]:
```

```
df2.iloc[:, 12:].describe()
```

Out[18]:

	Chest Pain	Coughing of Blood	Fatigue	Weight Loss	Shortness of Breath	Wheezing	Swallowing Difficulty	Clubbing of Finger Nails
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000 1
mean	4.438000	4.859000	3.856000	3.855000	4.240000	3.777000	3.746000	3.923000
std	2.280209	2.427965	2.244616	2.206546	2.285087	2.041921	2.270383	2.388048
min	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
25%	2.000000	3.000000	2.000000	2.000000	2.000000	2.000000	2.000000	2.000000
50%	4.000000	4.000000	3.000000	3.000000	4.000000	4.000000	4.000000	4.000000
75%	7.000000	7.000000	5.000000	6.000000	6.000000	5.000000	5.000000	5.000000
max	9.000000	9.000000	9.000000	8.000000	9.000000	8.000000	8.000000	9.000000
4								Þ

```
In [19]:
```

df2.shape

Out[19]:

(1000, 24)

Preparing the second dataset for visualization

```
In [20]:
```

```
sns.set(style="whitegrid")
plt.figure(figsize=(10, 6))
df2['Gender'] = df2['Gender'].map({1: 'Male', 2: 'Female'})
df2['Level'] = df2['Level'].astype("category")
```

<Figure size 1000x600 with 0 Axes>

Plotting the age distribution of the patients

In [21]:

```
plt.figure(figsize=(12, 9))
sns.histplot(df2['Age'], bins=50, kde=True, color='skyblue')
plt.title('Age Distribution')
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()

mean_age = df2['Age'].mean()
median_age = df2['Age'].median()
mode_age = df2['Age'].mode()[0]

print(f"Mean Age: {mean_age}")
print(f"Median Age: {median_age}")
print(f"Mode Age: {mode_age}")
```


Mean Age: 37.174 Median Age: 36.0 Mode Age: 35

Plotting the gender distributions of the patients

In [22]:

```
gender_counts = df2["Gender"].value_counts()

colors = ["#dcbeaf", "#e7e0ee"]
explode = (0.05, 0)
```

```
plt.figure(figsize=(6, 6))
plt.pie(
    gender_counts,
    labels=gender_counts.index,
    autopct="%1.1f%%",
    startangle=90,
    colors=colors,
    explode=explode,
    shadow=True
)
plt.title("Gender Distribution")
plt.axis("equal")
plt.show()
```

Gender Distribution

Plotting the risks of Lung Cancer of the patients

```
In [23]:
```

```
sns.countplot(data=df2, x='Level', palette='Set2')
plt.title('Lung Cancer Risk Levels')
plt.show();
<ipython-input-23-80d4d314cecc>:1: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14
.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(data=df2, x='Level', palette='Set2')
```

Lung Cancer Risk Levels

Age vs Lung Cancer Boxplot

In [24]:

```
plt.figure(figsize=(10, 6))
sns.boxplot(data=df2, x='Level', y='Age', palette='coolwarm')
plt.title('Age vs Lung Cancer Risk Level')
plt.show()

<ipython-input-24-db9e4c8384cb>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14
.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.boxplot(data=df2, x='Level', y='Age', palette='coolwarm')
```


Pairplot of the selected columns

```
In [25]:
```

```
selected = ['Age', 'Smoking', 'Alcohol use', 'Genetic Risk', 'Air Pollution', 'Level
']
df_jittered = df2.copy()
jitter_cols = ['Smoking', 'Alcohol use', 'Genetic Risk', 'Air Pollution']

for col in jitter_cols:
    df_jittered[col] = df_jittered[col] + np.random.normal(0, 0.1, size=len(df2))

sns.pairplot(df_jittered[selected], hue='Level', palette='husl', plot_kws={'alpha': 0.6});
```


Correlation between the columns

In [26]:

```
categorical_cols = df2.drop(columns=['Age', 'Gender', 'Level']).columns
plt.figure(figsize=(12, 10))
```

```
corr_matrix = df2[categorical_cols].corr()
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f", square=True)
plt.title("Correlation Between Categorical Risk Factors")
plt.show()
```


Hypothesis Tests

This section will be about some hypothesis on the causes of lung cancer. The two datasets will be compared using hypothesis tests on the same hypotheses.

- 1. Hypothesis: Smoking regularly affects the risk of lung cancer.
- Null Hypothesis (Ho): Smoking and lung cancer are independent
- Alternative Hypothesis (H1): Smoking and lung cancer are associated

Dataset 1

```
In [27]:
```

```
df["SMOKING"] = df["SMOKING"].map({"Yes": 1, "No": 0})
df["LUNG_CANCER"] = df["LUNG_CANCER"].map({"YES": 1, "NO": 0})
```

```
contingency table = pd.crosstab(df["SMOKING"], df["LUNG CANCER"])
# --- Run chi-square test ---
chi2, p, dof, expected = chi2 contingency(contingency table)
# --- Print results ---
print("Contingency Table:\n", contingency_table)
print("\nChi-square Statistic:", chi2)
print("Degrees of Freedom:", dof)
print("P-value:", p)
# --- Interpret result ---
alpha = 0.05
if p < alpha:</pre>
   print("Reject the null hypothesis: Smoking is associated with lung cancer.")
else:
    print ("Fail to reject the null hypothesis: No significant association between
smoking and lung cancer.")
Contingency Table:
LUNG CANCER 0
SMOKING
             765 762
             717 756
1
Chi-square Statistic: 0.5510111488430194
Degrees of Freedom: 1
P-value: 0.45790483338496013
Fail to reject the null hypothesis: No significant association between smoking and
lung cancer.
Dataset 2
```

```
In [28]:
```

```
df2["Level"] = df2["Level"].map({"Low": 0, "Medium": 1, "High": 2})
contingency_table = pd.crosstab(df2['Smoking'], df2['Level'])

# Perform the Chi-Square test
chi2, p_value, dof, expected = chi2_contingency(contingency_table)

# Output results
print("Contingency Table:\n", contingency_table)
print("Contingency Table:\n", chi2)
print("Degrees of Freedom:", dof)
print("P-Value:", p_value)

# Interpret the result
alpha = 0.05
if p_value < alpha:
    print("Reject the null hypothesis: Smoking is associated with lung cancer.")
else:
    print("Fail to reject the null hypothesis: No significant association between smoking and lung cancer.")</pre>
```

```
Contingency Table:
Level
          2 0
                    1
Smoking
          0 61 120
1
2
         70
             81
                  71
3
         0
             71
                101
4
         19
             40
                  0
5
          0
              0
                  10
```

```
7 187 20 0
8 79 0 10
Chi-Square Statistic: 684.4965209399204
Degrees of Freedom: 14
P-Value: 5.246169667913276e-137
Reject the null hypothesis: Smoking is associated with lung cancer.
```

According to the first dataset, smoking regularly does not have a significant relation with lung cancer. However, the test for the second dataset tells us the otherwise.

- 1. Hypothesis: Having chronic lung diseases affect the risk of lung cancer.
- Null Hypothesis (H₀): Chronic lung diseases and lung cancer are independent
- Alternative Hypothesis (H1): Chronic lung diseases and lung cancer are associated

Dataset 1

In [29]:

```
df["CHRONIC DISEASE"] = df["CHRONIC DISEASE"].map({"Yes": 1, "No": 0})
contingency table = pd.crosstab(df["CHRONIC DISEASE"], df["LUNG CANCER"])
# --- Run chi-square test ---
chi2, p, dof, expected = chi2 contingency(contingency table)
# --- Print results ---
print("Contingency Table:\n", contingency_table)
print("\nChi-square Statistic:", chi2)
print("Degrees of Freedom:", dof)
print("P-value:", p)
# --- Interpret result ---
alpha = 0.05
if p < alpha:</pre>
   print ("Reject the null hypothesis: Chronic diseases are associated with lung
cancer.")
else:
   print ("Fail to reject the null hypothesis: No significant association between
chronic diseases and lung cancer.")
Contingency Table:
LUNG CANCER
CHRONIC DISEASE
                 719 752
0
                 763 766
1
```

Dataset 2

Degrees of Freedom: 1

P-value: 0.6002433756617297

diseases and lung cancer.

Chi-square Statistic: 0.27462898733847857

```
In [30]:
contingency_table = pd.crosstab(df2['chronic Lung Disease'], df2['Level'])
# Perform the Chi-Square test
```

Fail to reject the null hypothesis: No significant association between chronic

```
chi2, p_value, dof, expected = chi2_contingency(contingency_table)

# Output results
print("Contingency Table:\n", contingency_table)
print("Chi-Square Statistic:", chi2)
print("Degrees of Freedom:", dof)
print("P-Value:", p_value)

# Interpret the result
alpha = 0.05
if p_value < alpha:
    print("Reject the null hypothesis: Chronic diseases are associated with lung cancer.")
else:
    print("Fail to reject the null hypothesis: No significant association between chronic diseases and lung cancer.")</pre>
```

```
Contingency Table:
                       2 0
                               1
Level
chronic Lung Disease
                       0 50
                              0
2
                       0 82
                              91
3
                      0 81 60
                      70 20
4
                             51
5
                     10 40 30
6
                     198 10 100
7
                      87
                         20
                             0
Chi-Square Statistic: 585.1295399409582
Degrees of Freedom: 12
P-Value: 1.5853456732363079e-117
Reject the null hypothesis: Chronic diseases are associated with lung cancer.
```

According to the first dataset, chronic lung diseases regularly do not have a significant relation with lung cancer. However, the test for the second dataset tells us the otherwise.

- 1. Hypothesis: Gender has a relation with lung cancer.
- Null Hypothesis (Ho): Gender and lung cancer is independent
- Alternative Hypothesis (H1): Gender and lung cancer is associated

Dataset 1

```
In [31]:
```

```
df["GENDER"] = df["GENDER"].map({"Male": 1, "Female": 2})
contingency_table = pd.crosstab(df["GENDER"], df["LUNG_CANCER"])
# --- Run chi-square test ---
chi2, p, dof, expected = chi2_contingency(contingency_table)
# --- Print results ---
print("Contingency Table:\n", contingency_table)
print("\nChi-square Statistic:", chi2)
print("Degrees of Freedom:", dof)
print("P-value:", p)
# --- Interpret result ---
alpha = 0.05
if p < alpha:
    print("Reject the null hypothesis: Gender is associated with lung cancer.")</pre>
```

```
else:
   print ("Fail to reject the null hypothesis: No significant association between
gender and lung cancer.")
Contingency Table:
LUNG CANCER 0
GENDER
1
            760 754
            722 764
Chi-square Statistic: 0.7158403950228966
Degrees of Freedom: 1
P-value: 0.3975117338177119
Fail to reject the null hypothesis: No significant association between gender and 1
ung cancer.
Dataset 2
In [32]:
contingency table = pd.crosstab(df2['Gender'], df2['Level'])
```

```
contingency_table = pd.crosstab(df2['Gender'], df2['Level'])

# Perform the Chi-Square test
chi2, p_value, dof, expected = chi2_contingency(contingency_table)

# Output results
print("Contingency Table:\n", contingency_table)
print("Chi-Square Statistic:", chi2)
print("Degrees of Freedom:", dof)
print("P-Value:", p_value)

# Interpret the result
alpha = 0.05
if p_value < alpha:
    print("Reject the null hypothesis: Gender is associated with lung cancer.")
else:
    print("Fail to reject the null hypothesis: No significant association between gender and lung cancer.")</pre>
```

```
Contingency Table:
Level 2 0 1

Gender

Female 113 154 135

Male 252 149 197

Chi-Square Statistic: 27.22494142912069

Degrees of Freedom: 2

P-Value: 1.2251212802771069e-06

Reject the null hypothesis: Gender is associated with lung cancer.
```

According to the first dataset, gender regularly do not have a significant relation with lung cancer. However, the test for the second dataset tells us the otherwise.

Even though all of the test results were different for both datasets, the reason may only be the sizes of them. If both of the datasets had 10k+ patients, the result might have been similar.

Creating machine learning models using sklearn

In [33]:

```
from sklearn.model_selection import train_test_split
```

```
from sklearn.linear model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy score, classification report, confusion matrix,
roc curve, auc
from sklearn.preprocessing import StandardScaler, LabelEncoder
# Set seaborn style
sns.set(style="whitegrid")
```

In [34]:

df.head()

Out[34]:

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC_DISEASE	FATIGUE	ALLI
0	1	65	0	No	No	Yes	1	No	
1	2	55	0	Yes	Yes	No	0	Yes	
2	2	78	1	Yes	No	No	0	Yes	
3	1	60	1	No	No	No	1	No	
4	2	80	0	No	Yes	No	0	Yes	
4									Þ

In [35]:

df2.head()

Out[35]:

	Age	Gender	Air Pollution	Alcohol use	Dust Allergy	OccuPational Hazards	Genetic Risk	chronic Lung Disease	Balanced Diet	Obesity	 Fatigue	Weig Lo:
0	33	Male	2	4	5	4	3	2	2	4	 3	
1	17	Male	3	1	5	3	4	2	2	2	 1	
2	35	Male	4	5	6	5	5	4	6	7	 8	
3	37	Male	7	7	7	7	6	7	7	7	 4	
4	46	Male	6	8	7	7	7	6	7	7	 3	

5 rows × 24 columns

In [36]:

```
# Replace categorical 'Yes'/'No' and '1'/'2' with 1/0
df = df.replace({"Yes": 1, "No": 0, "2": 1, "1": 0})
# Split features (X) and target (y)
X = df.drop("LUNG CANCER", axis=1)
y = df["LUNG CANCER"]
# Check the distribution of the target variable
print(f"Target distribution:\n{y.value counts()}")
```

Target distribution:

LUNG CANCER

1 5 1 0

```
Name: count, dtype: int64

<ipython-input-36-e98bae2b7c38>:2: FutureWarning: Downcasting behavior in `replace`
is deprecated and will be removed in a future version. To retain the old behavior,
explicitly call `result.infer_objects(copy=False)`. To opt-in to the future
behavior, set `pd.set_option('future.no_silent_downcasting', True)`
    df = df.replace({"Yes": 1, "No": 0, "2": 1, "1": 0})
```

```
In [37]:
```

0

1482

```
df.head()
```

Out[37]:

	GENDER	AGE	SMOKING	YELLOW_FINGERS	ANXIETY	PEER_PRESSURE	CHRONIC_DISEASE	FATIGUE	ALLI
0	1	65	0	0	0	1	1	0	
1	2	55	0	1	1	0	0	1	
2	2	78	1	1	0	0	0	1	
3	1	60	1	0	0	0	1	0	
4	2	80	0	0	1	0	0	1	
4									>

```
In [38]:
```

```
# Split the data into training and testing sets (80% training, 20% testing)
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42, stratify=y
)
# Check the shape of train/test datasets
print(f"Training set: {X_train.shape}")
print(f"Testing set: {X_test.shape}")
```

Training set: (2400, 15)
Testing set: (600, 15)

This section of the code focuses on training and evaluating several common machine learning classification models using the prepared data. The goal is to see which model performs best at predicting the target variable, which in this case is likely related to lung cancer status.

In [39]:

```
%%time
# Define the classification models
models = {
    "Logistic Regression": LogisticRegression(max_iter=1000),
        "Random Forest": RandomForestClassifier(),
        "SVM": SVC(probability=True),
        "k-NN": KNeighborsClassifier()
}

# Store results
results = {}
y_probs = {}

# Train each model and evaluate performance
for name, model in models.items():
        model.fit(X_train, y_train)
```

```
y_pred = model.predict(X_test)
    acc = accuracy_score(y_test, y_pred)
    report = classification report(y test, y pred)
    results[name] = {
        "accuracy": acc,
        "classification_report": report,
        "conf matrix": confusion matrix(y test, y pred)
    }
    if hasattr(model, "predict proba"):
        y probs[name] = model.predict proba(X test)[:, 1]
    print(f"\n{name}")
    print(f"Accuracy: {acc:.2f}")
    print("Classification Report:\n", report)
Logistic Regression
Accuracy: 0.52
Classification Report:
               precision recall f1-score
                                             support
           0
                   0.52
                            0.45
                                       0.48
                                                  296
                   0.53
                             0.59
                                       0.56
           1
                                                  304
   accuracy
                                       0.52
                                                  600
                                      0.52
                  0.52
                            0.52
                                                  600
  macro avg
                                      0.52
                                                  600
weighted avg
                  0.52
                            0.52
Random Forest
Accuracy: 0.55
Classification Report:
              precision recall f1-score support
           0
                   0.54
                            0.54
                                       0.54
                                                  296
           1
                  0.55
                             0.56
                                       0.56
                                                  304
                                       0.55
                                                  600
   accuracy
                                      0.55
                  0.55
                             0.55
                                                  600
  macro avg
weighted avg
                  0.55
                             0.55
                                       0.55
                                                  600
SVM
Accuracy: 0.52
Classification Report:
              precision
                          recall f1-score support
                             0.44
                                       0.48
                                                  296
           0
                   0.52
                   0.52
                             0.60
                                       0.56
           1
                                                  304
                                       0.52
                                                  600
   accuracy
  macro avg
                  0.52
                            0.52
                                       0.52
                                                  600
                  0.52
                            0.52
                                      0.52
                                                  600
weighted avg
```

k-NN

Accuracy: 0.55

Classification Report:

	precision	recall	f1-score	support
0	0.54	0.56	0.55	296
1	0.55	0.54	0.55	304
accuracy			0.55	600

```
0.55
                                0.55
                                           0.55
                                                       600
   macro avg
weighted avg
                     0.55
                                0.55
                                           0.55
                                                       600
```

CPU times: user 2.34 s, sys: 79 ms, total: 2.41 s

Wall time: 2.29 s

In [40]:

```
# Plotting model accuracy comparison
accuracies = [results[m]["accuracy"] for m in models]
plt.figure(figsize=(8, 5))
sns.barplot(x=list(models.keys()), y=accuracies, palette="viridis")
plt.title("Model Accuracy Comparison")
plt.ylabel("Accuracy")
plt.ylim(0, 1)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
<ipython-input-40-5f2253f25700>:4: FutureWarning:
Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14
.O. Assign the `x` variable to `hue` and set `legend=False` for the same effect.
  sns.barplot(x=list(models.keys()), y=accuracies, palette="viridis")
```


In [41]:

```
# Plot confusion matrices for each model
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
axes = axes.flatten()
for idx, name in enumerate(models):
    sns.heatmap(results[name]["conf_matrix"], annot=True, fmt="d", cmap="Blues", ax=
axes[idx])
    axes[idx].set title(f"{name} Confusion Matrix")
    axes[idx].set xlabel("Predicted")
    axes[idx].set ylabel("Actual")
```

```
plt.suptitle("Confusion Matrices", fontsize=16)
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.show()
```

Confusion Matrices

In [42]:

```
# Plot ROC curves for each model
plt.figure(figsize=(8, 6))
for name, probs in y_probs.items():
    fpr, tpr, = roc_curve(y_test, probs)
    roc_auc = auc(fpr, tpr)
    plt.plot(fpr, tpr, label=f"{name} (AUC = {roc_auc:.2f})")

# Random line for comparison
plt.plot([0, 1], [0, 1], "k--", label="Random")
plt.title("ROC Curves")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.legend()
plt.grid()
plt.tight_layout()
plt.show()
```

ROC Curves

Overall results show that different types of training models of the first dataset have between 0.50-0.55 accuracy, highest being 0.55 usign k-NN as a the base model. Since the first dataset was relatively simple (as we can see from the correlation matrix), this output was expected.

```
In [43]:
df2['Gender'] = df2['Gender'].map({'Male': 1, 'Female': 2})
# Split features (X) and target (y)
X = df2.drop("Level", axis=1)
y = df2["Level"]
# Check the distribution of the target variable
print(f"Target distribution:\n{y.value counts()}")
Target distribution:
Level
     365
     332
1
     303
Name: count, dtype: int64
In [44]:
# Split the data into training and testing sets (80% training, 20% testing)
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test size=0.2, random state=42, stratify=y
```

This section of the code trains and evaluates several different machine learning models on the second

Check the shape of train/test datasets
print(f"Training set: {X_train.shape}")
print(f"Testing set: {X test.shape}")

Training set: (800, 23)
Testing set: (200, 23)

data. The goal is to see now well each model can predict the target variable.

```
In [45]:
%%time
# Define the classification models
models = {
    "Logistic Regression": LogisticRegression(max iter=1000),
    "Random Forest": RandomForestClassifier(),
    "SVM": SVC (probability=True),
    "k-NN": KNeighborsClassifier()
# Store results
results = {}
y probs = {} {}
# Train each model and evaluate performance
for name, model in models.items():
    model.fit(X train, y train)
    y pred = model.predict(X test)
    acc = accuracy_score(y_test, y_pred)
    report = classification report(y test, y pred)
    results[name] = {
        "accuracy": acc,
        "classification_report": report,
        "conf_matrix": confusion_matrix(y_test, y_pred)
    }
    if hasattr(model, "predict_proba"):
        y probs[name] = model.predict proba(X test)[:, 1]
    print(f"\n{name}")
    print(f"Accuracy: {acc:.2f}")
    print("Classification Report:\n", report)
Logistic Regression
Accuracy: 1.00
Classification Report:
               precision recall f1-score support
           0
                   1.00
                            1.00
                                       1.00
                                                    61
           1
                  1.00
                            1.00
                                       1.00
                                                   66
                   1.00
                             1.00
                                       1.00
                                                   73
                                       1.00
                                                  200
   accuracy
  macro avg
                  1.00
                            1.00
                                      1.00
                                                  200
weighted avg
                  1.00
                            1.00
                                      1.00
                                                  200
```

Random Forest Accuracy: 1.00

Classification Report:

01400111040101	precision	recall	f1-score	support
0	1.00	1.00	1.00	61
1	1.00	1.00	1.00	66
2	1.00	1.00	1.00	73
accuracy			1.00	200
macro avg	1.00	1.00	1.00	200
weighted avg	1.00	1.00	1.00	200

	O	± • 0 0	0.07	0.00	0 1	
	1	0.97	0.98	0.98	66	
	2	0.99	1.00	0.99	73	
					-	
	accuracy			0.98	200	
	macro avg	0.99	0.98	0.98	200	
	ighted avg	0.99	0.98	0.98	200	
we.	igiited avg	0.99	0.90	0.90	200	
	73.7					
k-1						
	curacy: 0.99					
Cla	assification	-				
		precision	recall	f1-score	support	
	0	1.00	0.97	0.98	61	
	1	0.97	1.00	0.99	66	
	2	1.00	1.00	1.00	73	
	accuracy			0.99	200	
	macro avg	0.99	0.99	0.99	200	
we	ighted avg	0.99	0.99	0.99	200	
	3					
СР	J times: use	r 2.76 s, sy	s: 8.33 m	s, total: 2	2.77 s	
	Ll time: 2.4	_		-,		
In	[46]:					
#	Platting mad	el accuracy	comparia	n n		
	_	_	_			
		results[m]["	accuracy"] IOF III III	moders	
_	t.figure(fig					
	_	list(models.	_	_	es, palette=	"viridis")
		el Accuracy	Comparisc	n")		
pl.	t.ylabel("Ac	curacy")				
pl.	t.ylim(0, 1)					
pl	t.xticks(rota	ation=45)				
	t.tight layo					
_	t.show()	~ ~ ()				
PI	C • 5110 W ()					
<i7< td=""><td>oython-input</td><td>-46-5f2253f2</td><td>5700>:4:</td><td>FutureWarn</td><td>ing:</td><td></td></i7<>	oython-input	-46-5f2253f2	5700>:4:	FutureWarn	ing:	
1	_				_	

precision recall f1-score support

0.98

61

1.00 0.97

SVM

Accuracy: 0.98

Classification Report:

0

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14 .0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x=list(models.keys()), y=accuracies, palette="viridis")

In [47]:

```
# Plot confusion matrices for each model
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
axes = axes.flatten()

for idx, name in enumerate(models):
    sns.heatmap(results[name]["conf_matrix"], annot=True, fmt="d", cmap="Blues", ax=
axes[idx])
    axes[idx].set_title(f"{name} Confusion Matrix")
    axes[idx].set_xlabel("Predicted")
    axes[idx].set_ylabel("Actual")

plt.suptitle("Confusion Matrices", fontsize=16)
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.show()
```

Confusion Matrices

In [48]:

```
from sklearn.preprocessing import label_binarize
# Binarize the output for multiclass ROC
y test bin = label binarize(y test, classes=np.unique(y test))
n_classes = y_test bin.shape[1]
# Prepare plot
plt.figure(figsize=(8, 6))
# Plot ROC for each model
for name, model in models.items():
    if hasattr(model, "predict proba"):
        y score = model.predict proba(X test)
    elif hasattr(model, "decision function"):
        y score = model.decision function(X test)
        # If 1D, reshape to 2D
        if y_score.ndim == 1:
            y score = y score.reshape(-1, 1)
    else:
        print(f"{name} does not support probability/decision score; skipping ROC.")
        continue
    if n classes == 1:
        print(f"{name}: Only one class present; skipping.")
        continue
    # Compute ROC curve and AUC for each class
    fpr = dict()
    tpr = dict()
    roc auc = dict()
    for i in range(n classes):
        fpr[i], tpr[i], = roc curve(y test bin[:, i], y score[:, i])
        roc auc[i] = auc(fpr[i], tpr[i])
    # Average macro AUC
    all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
    mean tpr = np.zeros like(all fpr)
    for i in range (n classes):
        mean_tpr += np.interp(all_fpr, fpr[i], tpr[i])
    mean_tpr /= n_classes
    roc auc["macro"] = auc(all fpr, mean tpr)
    # Plot macro-average ROC
    plt.plot(all fpr, mean tpr, label=f"{name} (AUC = {roc auc['macro']:.2f})")
# Plot settings
plt.plot([0, 1], [0, 1], 'k--', label='Random')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curves for All Models')
plt.legend(loc='lower right')
plt.grid(True)
plt.tight layout()
plt.show()
```


Overall results show that different types of training models of the second dataset have between 0.98-1.00 accuracy, highest being 1.00 usign Logistic Regression and Random Forest as a the base model. The result was unexpected and the accuracy level of 1.00 indicates an error most of the times. Since the dataset used can be considered small, a certain column could have had an effect on the output. This could be checked using correlation matrix.

RESULTS

This concludes the comparison between the datasets. As a result, the second dataset achieved far better solutions from my expectations. The main reason is most likely the lack of data in the dataset. If both datasets had more data to process on, the results would differ as well. Nevertheless, the outputs show that the second dataset is better for lung cancer detection.

In [48]: