Express. This development opens a new phase in chemical structure searching that should be the subject of another publication.

# ACKNOWLEDGMENT

We thank Chemical Abstracts Service for their collaboration and help throughout this experiment. The number of ICI information staff involved with the experiment is large. Without their support the experiment could not have taken place, and their involvement is most gratefully acknowledged. In particular, we would thank Denise Ledgerwood, Colin MacBean, Malcolm Wilkins, Graham Cousins, and Duncan Adshead. Finally, we thank the end-user chemists and the chemistry management for their enthusiasm and interest in the project.

# REFERENCES AND NOTES

(1) Haygarth Jackson, A. R. "Online Information Handling-the User

- Perspective". Online Rev. 1983, 7(1), 25-32.

  Meadow, C. T. "Online Searching and Computer Programming, Some Behavioral Similarities (Or ... Why End-Users Will Eventually Take Over the Terminal)". Online (Weston, Conn.) 1979, 3(1) 49-52.
- (3) Richardson, R. J. "End-User Online Searching in a High Technology Engineering Environment". Online (Weston, Conn.) 1981, 5(4), 44-5
- (4) Faibisoff, S. G.; Hurych, J. "Is There a Future for the End-User in Online Bibliographic Searching?" Spec. Libr. 1981, 72, 347-355.

  (5) Haines, J. S. "Experience in Training End-User Searchers". Online
- (Weston, Conn.) 1982, 6(6), 14-19.
- (6) Adamson, G. W.; Bird, J. M.; Palmer, G.; Warr, W. A. "Use of MACCS within ICI". J. Chem. Inf. Comput. Sci. 1985, 25, 90-92.
  (7) Buntrock, R. E.; Valicenti, A. K. "End-Users and Chemical Information". J. Chem. Inf. Comput. Sci. 1985, 25, 203-207.
- (8) Buntrock, R. E. "Chemical Searching for People Who Hate Chemical
- Searching". Database 1985, 8(2), 82-83.

  (9) Attias, R. "DARC Substructure Search System: A New Approach to Chemical Information". J. Chem. Inf. Comput. Sci. 1983, 23, 102-108.
- (10) Dittmar, P. G.; Farmer, N. A.; Fisanick, W.; Haines, R. C.; Mockus, . "The CAS ONLINE Search System. 1. General System Design and Selection, Generation and Use of Search Screens". J. Chem. Inf.
- Comput. Sci. 1983, 23, 93-102.
  (11) Warr, W. A. "Online Access to Chemical Information: A Review". Database 1987, 10(3), 122-128.

# Method for Clustering Proteins by Use of All Possible Pairs of Amino Acids as Structural **Descriptors**

SHIN-ICHI NAKAYAMA,\* SATOKO SHIGEZUMI, and MASAYUKI YOSHIDA

University of Library and Information Science, Tsukuba-city, Ibaraki, 305 Japan

Received September 21, 1987

Proteins were represented as vectors, of which components were all possible pairs of amino acids. From a distance matrix between any pairs of proteins thus represented, several clusters corresponding to connected components were generated. Application of this method to three different sets of proteins showed that it was suitable for clustering closely related proteins with respect to the sequential similarity defined by Dayhoff.

# INTRODUCTION

Since sequence data of proteins are believed to have been retained dynamically over evolutionary processes, much attention has been paid to exploring the evolutionary relationships among biological species by sequential similarity between proteins. As a result, various methods of measuring the sequential similarity have been designed. 1 Most of these methods, however, include laborious steps of aligning all or parts of protein sequences to measure the sequential similarity, and thus, a similarity matrix for a large quantity of proteins is not easily obtainable.

Meanwhile, Nishikawa and Ooi expressed proteins as points in a composition space of amino acids and classified them into four groups of intra- and extracellular enzymes and nonenzymes according to the analysis of distribution of points.<sup>2</sup> The method is simple, but composition of amino acids alone is not sufficient to represent structural features of proteins. We expressed proteins using all possible pairs of amino acids as structural descriptors and clustered them on the basis of an easily obtainable distance matrix.

# METHOD OF CLUSTERING

If a protein of chain length n were divided to n-1 binary fragments, a set of occurrence counts for each species of binary fragments would form a specific pattern to the protein. The pattern of the protein, however, should differ from that of another one unless the two proteins have the same structure.

In some instances the fragments found in one protein may not be included in another one. Thus, all possible pairs of amino acids, which numbered 400, were taken as descriptors, and protein  $i(P_i)$  was then represented by a set of descriptor values as  $P_i = (x_{i1}, x_{i2}, ..., x_{i400})$ , where  $x_{ik}$  is the occurrence count for the kth descriptor of the ith protein and is readily derived from the one-dimensional structure of protein i.

Although many different methods are available to cluster a set of proteins represented above, most known methods use distance measurements between each pair of proteins in the set. Thus, for a data set comprising n proteins, a symmetric  $n \times n$  distance matrix was generated, the elements of which,  $d_{ii}$ , were the distance values between each pair of proteins i and j. In the present work, the Euclidean distance measure was chosen because of its wide use in many areas.3

The Euclidean distance measure is considerably affected by scaling factors, and standardization of data is common practice. However, since the descriptors used here were similar in property and standardization was apt to reduce betweengroup discrimination, the distance measured was used without further standardization.

To produce clusters among proteins the  $d_{ij}$  values were ordered by an algorithmic two-dimensional sorting operation to give a rearranged distance matrix.4

The clustering process generally consists of fixing a threshold T value in the  $d_{ii}$  values and grouping all pairs of objects whose  $d_{ij}$ s are less than a chosen threshold. Obviously, the  $d_{ij}$  values measured here are just numbers that are the complex function

Table I. Set of Proteins from Human Origins

| Table I. Set of Proteins from Human Origins                                                |        |
|--------------------------------------------------------------------------------------------|--------|
|                                                                                            | chain  |
| superfamilies, families, entries (abbrev)                                                  | length |
| Hormones thyrotropin $lpha$ chain related                                                  |        |
| thyrotropin, follitropin, lutropin, and                                                    |        |
| choriogonadotropin $\alpha$ chains                                                         |        |
| lutropin α chain, human (LH-a,Hu)                                                          | 89     |
| choriogonadotoropin α chain, human (CG-a,Hu)                                               | 92     |
| thryotropin $\beta$ -chain related                                                         |        |
| thyrotropin $\beta$ chain                                                                  |        |
| thyrotropin $\beta$ chain, human (TSH-b,Hu)                                                | 112    |
| follitropin $\beta$ chain                                                                  | 117    |
| follitropin $\beta$ chain, human (FSH-b,Hu) lutropin and choriogonadotropin $\beta$ chains | 117    |
| lutropin $\beta$ chain, human (LH-b,Hu)                                                    | 109    |
| choriogonadotropin $\beta$ chain, human (CG-b,Hu)                                          | 149    |
| proinsulin related                                                                         |        |
| insulin                                                                                    |        |
| proinsulin, human (Pi,Hu)                                                                  | 86     |
| insulin-like growth factors                                                                |        |
| insulin-like growth factor I, human (IGF-I,Hu)                                             | 70     |
| insulin-like growth factor II, human (IGF-II,Hu)                                           | 67     |
| Immunoglobulin-Related Proteins                                                            |        |
| immunoglobulin variable regions                                                            |        |
| Ig κ chain V regions                                                                       |        |
| Ig κ chain V region, human Ag (Ig-k,HuA)                                                   | 108    |
| Ig κ chain V region, human Cum (Ig-k,HuC)                                                  | 105    |
| Ig κ chain V region, human Pom (Ig-k,HuP)                                                  | 109    |
| Ig κ chain V region, human Len (Ig-k,HuL)                                                  | 114    |
| Ig lamda chain V regions, human Ig λ chain V region, human Ha (Ig-l, HuH)                  | 112    |
| Ig λ chain V region, human Bo (Ig-1,HuBo)                                                  | 111    |
| Ig λ chain V region, human Sh (Ig-l,HuS)                                                   | 108    |
| Ig λ chain V region, human Bau (Ig-1,HuBa)                                                 | 106    |
| Ig λ chain V region, human Del (Ig-l,HuD)                                                  | 108    |
| Ig heavy chain V region, human subgroup II                                                 |        |
| Ig heavy chain V region, human Newm (Ig-h,HuN)                                             | 117    |
| Ig heavy chain V region, subgroup III                                                      | 120    |
| Ig heavy chain V region, human Bro (Ig-h,HuB)                                              | 120    |
| Heme Carrier Proteins                                                                      |        |
| globins                                                                                    |        |
| hemoglobin $\alpha$ chain hemoglobin $\alpha$ chain, human (Hb-a,Hu)                       | 141    |
| hemoglobin $\beta$ -type chains                                                            | 141    |
| hemoglobin $\beta$ chain, human (Hb-b,Hu)                                                  | 146    |
| hemoglobin δ chain, human (Hb-d,Hu)                                                        | 146    |
| hemoglobin γ chain, human (Hb-g,Hu)                                                        | 146    |
| myoglobin                                                                                  |        |
| myoglobin, human (Mg,Hu)                                                                   | 153    |
| Lipid-Associated Proteins                                                                  |        |
| animal lipid-binding proteins                                                              |        |
| lipid-binding protein A-II                                                                 |        |
| lipid-binding protein A-II, human (LP-AII,Hu)                                              | 77     |
| lipid-binding protein C-I                                                                  |        |
| lipid-binding protein C-I, human (LP-CI,Hu)                                                | 57     |
| lipid-binding protein C-III                                                                | 70     |
| lipid-binding protein C-III, human (LP-CIII,Hu)                                            | 79     |

of the sequential similarity, amino acid composition, and chain length between pairs of proteins, and their magnitude does not afford any index for absolute extent of dissimilarity. However, it is possible to evaluate statistically how a given  $d_{ij}$  value differs significantly from other observed ones. In case the given  $d_{ii}$  value is smaller than the value predetermined by subtracting the standard deviation  $(\sigma)$  of  $d_{ij}$  values from their mean (m)  $(d_{ij} \le m - \sigma)$ , the probability of observing the given  $d_{ij}$  value is less than 16%,5 and the distance is safely said to be significantly close. Thus, the  $m - \sigma$  value was tentatively settled as the threshold T value.

A connection pattern graph between proteins was then drawn from the rearranged matrix by connecting lines between all pairs of proteins whose  $d_{ii}$  values were less than the T value. Connected components where an arbitrary path is found be-

Table II. Set of Proteins from Various Sources

| Heme Proteins of Electron Transport                                                    | length |
|----------------------------------------------------------------------------------------|--------|
|                                                                                        |        |
| cytochrome $c$ related                                                                 |        |
| cytochrome c                                                                           |        |
| cytochrome c, sunflower (Cyt-c,Su)                                                     | 111    |
| cytochrome $c_2$ cytochrome $c_2$ , Rhodopseudomonas palustris                         | 114    |
| (Cyt-c <sub>2</sub> ,Rhp)                                                              | 114    |
| cytochrome $c_2$                                                                       |        |
| cytochrome $c_2$ , Rhodospirillum rubrum (Cyt- $c_2$ ,Rhr)                             | 112    |
| cytochrome $c_2$ and $c_{550}$                                                         |        |
| cytochrome c2, Rhodopseudomonas sphaeroides                                            | 124    |
| $(Cyt-c_2,Rhs)$                                                                        |        |
| cytochromes c'                                                                         |        |
| cytochrome c'                                                                          | 127    |
| cytochrome c', Alcaligenes sp. (Cyt-c',Al) cytochrome c'                               | 141    |
| cytochrome c', Rhodospirillum rubrum (Cyt-c',Rhr)                                      | 126    |
| Ester Hydrolases                                                                       |        |
| Phospholipases A <sub>2</sub>                                                          |        |
| phospholipase A <sub>2</sub> , mammalian                                               |        |
| phospholipase A <sub>2</sub> , pig (Pl,Pi)                                             | 124    |
| phospholipase A <sub>2</sub> , viper                                                   |        |
| phospholipase A <sub>2</sub> , gaboon adder (Pl,Ad)                                    | 118    |
| phospholipase A <sub>2</sub> , elapid                                                  | 110    |
| phospholipase A <sub>2</sub> , ringhals (Pl,Ri)                                        | 119    |
| phospholipase A <sub>2</sub> , insect phospholipase A <sub>2</sub> , honey bee (Pl,Be) | 129    |
| pacterial and fungal ribonucleases                                                     | 127    |
| ribonuclease (barnase)                                                                 |        |
| ribonuclease, Bacillus amuloliquefaciens (RNase,Ba)                                    | 110    |
| ribonuclease U <sub>2</sub>                                                            |        |
| ribonuclease, Ustilago sphaerogena (RNase,Us)                                          | 113    |
| pancreatic ribonuclease related                                                        |        |
| ribonucleases                                                                          | 124    |
| ribonuclease, bovine (RNase,Bo)                                                        | 124    |
| Immunoglobulin-Related Proteins                                                        |        |
| immunoglobulin variable regions                                                        |        |
| Ig λ chain V region, human                                                             | 110    |
| Ig λ chain V region, human Ha (Ig-l,HuH)                                               | 112    |
| Ig λ chain V region, mouse Ig λ chain V region, mouse MOPC315 (Ig-l,Mo)                | 110    |
| Ig heavy chain V region, human subgroup I                                              | 110    |
| Ig heavy chain V region, human Eu (Ig-h,HuE)                                           | 114    |
| Ig heavy chain V region, human subgroup II                                             |        |
| Ig heavy chain V region, human He (Ig-h,HuH)                                           | 118    |
| Ig heavy chain V region, human subgroup II                                             |        |
| Ig heavy chain V region, human Newm (Ig-h,HuN)                                         | 117    |
| Ig heavy chain V region, subgroup III                                                  | 120    |
| Ig heavy chain V region, human Bro (Ig-h,HuB) Ig heavy chain V region, rabbit          | 120    |
| Ig heavy chain V region, rabbit BS-5 (Ig-h,Ra)                                         | 116    |

tween each protein in the component and each other protein are defined as clusters.

# RESULTS AND DISCUSSION

A large quantity of sequential information of proteins has been accumulated by Dayhoff in the Atlas of Protein Sequence and Structure,6 where proteins are organized into protein superfamilies, families, subfamilies, and entries on the basis of detectable sequential similarity. To compare the results obtained by the present method with those of Dayhoff and to examine the availability of the method, three sets of proteins listed in Tables I-III were prepared. Table I includes a set of proteins from human origins. Table II includes a set from various sources. Table III comprises a set of only heme-carrier proteins. The sequence data for each protein were collected from the Atlas of Protein Sequence and Structure.

The distance measurements between all pairs of proteins, followed by transformation of distance matrixes, resulted in

Table III. Set of Heme Carrier Proteins

| Table III. Set of Heme Carrier Freeze                   |        |
|---------------------------------------------------------|--------|
|                                                         | chain  |
| superfamilies, families, entries (abbrev)               | length |
| globins                                                 |        |
| hemoglobin $\alpha$ chains                              |        |
| hemoglobin α chain, human (Hb-a,Hu)                     | 141    |
| hemoglobin α chain, dog (Hb-a,Do)                       | 141    |
| hemoglobin α chain, gray kangaroo (Hb-a,Ka)             | 141    |
| hemoglobin α chain, echidna (Hb-a,Èc)                   | 141    |
| hemoglobin α chain, platypus (Hb-a,Pl)                  | 141    |
| hemoglobin α chain, chicken (Hb-a,Ch)                   | 141    |
| hemoglobin $\alpha$ chain, viper (Hb-a,Vi)              | 141    |
| hemoglobin α chain, newt (Hb-a,Ne)                      | 142    |
| hemoglobin α chain, carp (Hb-a,Ca)                      | 142    |
| elasmobranch hemoglobin α chain                         |        |
| hemoglobin $\alpha$ chain, Port Jackson shark (Hb-a,Sh) | 147    |
| hemoglobin $\beta$ -type chains                         |        |
| hemoglobin β chain, human (Hb-b,Hu)                     | 146    |
| hemoglobin δ chain, human (Hb-d,Hu)                     | 146    |
| hemoglobin $\beta$ chain, dog (Hb-b,Do)                 | 146    |
| hemoglobin γ chain, human (Hb-g,Hu)                     | 146    |
| hemoglobin $\beta$ chain, gray kangaroo (Hb-b,Ka)       | 146    |
| hemoglobin $\beta$ chain, echidna (Hb-b,Ec)             | 146    |
| hemoglobin $\beta$ chain, platypus (Hb-b,Pl)            | 146    |
| hemoglobin $\beta$ chain, chicken (Hb-b,Ch)             | 146    |
| hemoglobin $\beta$ chain, frog (Hb-b,Fr)                | 140    |
| myoglobins                                              |        |
| myoglobin, human (Mg,Hu)                                | 153    |
| myloglobin, dog (Mg,Do)                                 | 153    |
| myoglobin, red kangaroo (Mg,Ka)                         | 153    |
| myoglobin, platypus (Mg,Pl)                             | 153    |
| myoglobin, chicken (Mg, Ch)                             | 153    |
| lamprey globins                                         |        |
| lamprey grobin, lamprey (LG,La)                         | 146    |
| lamprey grobin, sea lamprey (LG,sLa)                    | 146    |
| gastropod mollusc globin (opisthobranchs)               |        |
| gastropod mollusc globin, Aplysia limacina (GG,Ap)      | 145    |
| gastropod mollusc globin (prosobranchs)                 |        |
| gastropod mollusc globin, Busycon canaliculatum         | 146    |
| (CG,Bu)                                                 |        |
| annelid globin                                          |        |
| annelid globin, bloodworm (AG,Bl)                       | 146    |
| insect globin                                           |        |
| insect globin, CTT-II $\beta$ midge larva (IG,CTTII)    | 143    |
| insect globin                                           |        |
| insect globin, CTT-III midge larva (IG,CTTIII)          | 135    |
| leghemoglobins                                          |        |
| leghemoglobin, broad bean (Lg,bBe)                      | 144    |
| leghemoglobin, kidney bean (Lg,kBe)                     | 145    |
| leghemoglobin, soybean (Lg,So)                          | 142    |
| leghemoglobin, yellow lupin (Lg,Lu)                     | 153    |

rearranged distance matrixes as shown in Tables IV-VI.

Fixing the T values as 12.8, 13.4, and 12.8 from the distribution of the  $d_{ij}$  values gave the connection pattern graphs for the three sets as shown in Figures 1-3, respectively. In the graphs the nodes designate proteins, and the lines between the nodes illustrate that the corresponding distances are less than the T value.

Figure 1 shows that one large cluster exists together with some small clusters and two independent proteins. The large cluster involves proteins in the superfamilies of animal lipidbinding proteins (LP-AII, Hu, LP-CI, Hu, and LP-CIII, Hu), proinsulin related proteins (Pi,Hu, IGF-I,Hu, and IGF-II,Hu), thyrotropin  $\alpha$  chain related proteins (CG-a,Hu and LH-a,Hu), and most of the immunoglobulin variable regions, which appear to be independent of the other superfamilies at a glance and consist of the two families of immunoglobulin  $\kappa$  chain V regions (Ig-k,HuA, Ig-k,HuC, Ig-k,HuP, and Ig-k,HuL) and immunoglobulin λ chain V regions (Ig-l,HuD, Ig-l,HuS, Igl, HuBa, Ig-l, HuH, and Ig-l, HuBo). Proteins belonging to the same superfamily but to different families of immunoglobulin heavy chain V regions, human subgroups II (Ig-h,HuN) and III (Ig-h,HuB), form one independent small group. The third cluster consists of the family of hemoglobin  $\beta$ -type chains

(Hb-g,Hu, Hb-b,Hu, and Hb-d,Hu) in the globins superfamily. Other globins in the families of hemoglobin  $\alpha$  chains (Hb-a,Hu) and myoglobin (Mg,Hu) are independent of each other. Proteins in the last two clusters come from the families of thyrotropin  $\beta$  chain (TSH-b,Hu) and follitropin  $\beta$  chain (FSH-b,Hu) and of lutropin and choriogonadotropin  $\beta$  chains (LH-b,Hu and CG-b,Hu) in the superfamily of thyrotropin  $\beta$  chain related.

Although there can be no absolute measure of the correctness of a classification, the cluster structure is not uniform and inconsistent with that obtained by Dayhoff. It can be altered depending on T values and graph-theoretical grouping strategies. In the present case, however, selection of a smaller T value such as  $10.8 \ (=m-2.0\sigma)$  gave seven smaller clusters (Ig-k,HuC, Ig-k,HuP, and Ig-k,HuL; Ig-l,HuBa and Ig-l,HuS; Ig-l,HuH and Ig-l,HuBo; CG-a,Hu and LH-a,Hu; IGF-I,Hu and IGF-II,Hu; Hb-b,Hu and Hb-a,Hu; LH-b,Hu and CG-b,Hu), which are expressed by bold lines in Figure 1. All other proteins became independent of each other. Choice of the cliques as clusters also gave an unsatisfactory clustering structure.

An inspection of Figure 1 indicates that proteins with relatively smaller chain lengths gather in the large cluster. Thus, it is suspected that the cluster structure is influenced by the distribution of protein chain lengths in the set, and the distance measurement in the present method gives smaller distance values than those expected from the sequential similarity by Dayhoff for proteins of smaller chain lengths.

In Table II, proteins with similar chain lengths are collected from various sources. The results shown in Figure 2 indicate a somewhat clear structure. The four clusters are generated from the three superfamilies of cytochrome c related (Cyt $c_2$ ,Rhp, Cyt- $c_2$ ,Rhs, Cyt- $c_2$ ,Rhr, and Cyt-c,Su), phospholipase A<sub>2</sub> (Pl,Ad, Pl,Ri, and Pl,Pi), and immunoglobulin V regions (Ig-h,HuN, Ig-h,HuE, Ig-h,HuB, and Ig-h,Ra, and Ig-l,HuH and Ig-l,Mo). The superfamilies of bacterial and fungal ribonucleases (RNase, Us and RNase, Ba) and cytochrome c'(Cyt-c',Rhr and Cyt-c',Al) form no clusters. Pl,Be and Igh, HuH are not grouped to the superfamilies of phospholipase A<sub>2</sub> and immunoglobulin V regions, respectively. RNase,Bo in the superfamily of pancreatic ribonuclease related proteins exists independently. These results suggest that proteins can be clustered fairly well to superfamilies as long as such proteins have similar chain lengths.

The descriptors used in the present methods are all possible pairs of amino acids and include only a bit of information on sequence. Thus, it is not unusual even if the different results are obtained in the clustering of distantly related proteins with respect to the sequential similarity. In other words, this speculation indicates that the present method gives clusters similar to those obtained by Dayhoff for closely related proteins. Indeed, the globins superfamily is well separated in each family as shown in Figure 3. Exceptions are only Hb-a,Ca in the family of hemoglobin  $\alpha$  chains and Lg,Lu in that of leghemoglobin.

In the above clustering the T value was settled as  $m-\sigma$  from a statistical point of view. If a T value were fixed smaller than  $m-\sigma$ , clusters of more closely related proteins would be produced. Indeed, new subclusters represented by bold lines appeared as shown in Figure 3 by fixing a T value as  $m-2.5\sigma$  and then linking together all pairs of proteins whose  $d_{ij} \leq m-2.5\sigma$ . The resulting subclusters correspond to the respective subfamilies in the globin family except for Hb-a,Ch.

From these results it is concluded that the present clustering method is quite successful in grouping closely related proteins to families or subfamilies by the selection of proper T values.



Figure 1. Connection pattern graph drawn from the rearranged distance matrix of Table IV. Proteins in the same superfamily are enclosed by a solid line. Bold lines indicate links whose  $d_{ii} \le m - 2.0\sigma$ .



Figure 2. Connection pattern graph drawn from the rearranged distance matrix of Table V. Proteins in the same superfamily are enclosed by a solid line.



Figure 3. Connection pattern graph drawn from the rearranged distance matrix of Table VI. Proteins in the same family are enclosed by a solid line and those in the same subfamily by a dotted line. Bold lines indicate links whose  $d_{ij} \le m - 2.5\sigma$ .

Table IV. Rearranged Distance Matrix for Proteins from Human Origins<sup>a,b</sup>

|    | 1       |         |          |           |          |             |        |       |          |           |          |          |           |           |           |           |          |       |          |          |          |         |         |         |         |            |         |       | l                                           |
|----|---------|---------|----------|-----------|----------|-------------|--------|-------|----------|-----------|----------|----------|-----------|-----------|-----------|-----------|----------|-------|----------|----------|----------|---------|---------|---------|---------|------------|---------|-------|---------------------------------------------|
| 28 |         |         |          |           |          |             |        |       |          |           |          |          |           |           |           |           |          |       |          |          |          |         |         |         |         |            | _       | 0     |                                             |
| 27 |         |         |          |           |          |             |        |       |          |           |          |          |           |           |           |           |          |       |          |          |          |         |         |         |         | _          |         | 176   | i                                           |
| 26 |         |         |          |           |          |             |        |       |          |           |          |          |           |           |           |           |          |       |          |          |          |         |         |         |         |            | 147     |       |                                             |
| 25 |         |         |          |           |          |             |        |       |          |           |          |          |           |           |           |           |          |       |          |          |          |         |         |         |         |            | 145     |       |                                             |
| 24 |         |         |          |           |          |             |        |       |          |           |          |          |           |           |           |           |          |       |          |          |          |         |         |         |         |            |         | 165   |                                             |
| 23 |         |         |          |           |          |             |        |       |          |           |          |          |           |           |           |           |          |       |          |          |          | #       | .0      | 175     | 168     | 170        | 176     | 183   |                                             |
| 22 |         |         |          |           |          |             |        |       |          |           |          |          |           |           |           |           |          |       |          |          |          | 0       | 107     | 192     | 188     | 189        | 193     | 200   |                                             |
| 21 |         |         |          |           |          |             |        |       |          |           |          |          |           |           |           |           |          |       |          | *        | 0        | 191     | 141     | 163     | 166     | 169        | 173     | 178   |                                             |
| 20 |         |         |          |           |          |             |        |       |          |           |          |          |           |           |           |           |          |       |          | 0        | 127      | 157     | 133     | 172     | 172     | 172        | 168     | 177   | ١.                                          |
| 19 | :       |         |          |           |          |             |        |       |          |           |          |          |           |           |           |           |          | *     | 0        | 158      | 152      | 168     | 152     | 170     | 177     | 177        | 177     | 183   |                                             |
| 18 |         |         |          |           |          |             |        |       |          |           |          |          |           |           |           |           |          | 0     | 124      | 170      | 171      | 187     | 171     | 175     | 183     | 185        | 188     | 187   | 7                                           |
| 17 |         |         |          |           |          |             |        |       |          |           |          |          | *         | •         | •         | •         | 0        | 147   | 144      | 146      | 153      | 175     | 153     | 165     | 158     | 191        | 175     | 169   | ٥                                           |
| 91 |         |         |          |           |          |             |        |       |          |           |          |          | *         | *         | #         | .0        | 124      | 146   | 133      | 156      | 157      | 175     | 157     | 167     | 173     | 175        | 179     | 180   | 30 50 11 011                                |
| 15 |         |         |          |           |          |             |        |       |          |           |          |          | *         | *         | 0         | 107       | 126      | 152   | 141      | 164      | 160      | 176     | 160     | 166     | 171     | 174        | 182     | 187   | b Tonfold                                   |
| 4  |         |         |          |           |          | *           |        |       | *        |           |          |          | #         | .0        | 122       | 114       | Ξ        | 146   | 136      | 147      | 149      | 168     | 149     | 151     | 164     | 162        | 172     | 162   | P.L.                                        |
| 13 |         |         |          |           |          |             |        |       | *        | *         |          |          | 0         | 86        | Ξ         | 112       | 112      | 148   | 140      | 155      | 157      | 175     | 157     | 991     | 171     | 173        | 182     | 174   | otinol.                                     |
| 12 |         |         |          |           |          |             |        |       | *        | *         | *        | 0        | 131       | 131       | 135       | 134       | 145      | 150   | 144      | 150      | 159      | 172     | 159     | 160     | 177     | 177        | 184     | 171   | 00000                                       |
| =  |         |         |          |           |          |             |        |       | *        | #         | 0        | 114      | 132       | 135       | 131       | 137       | 150      | 146   | 142      | 151      | 154      | 174     | 154     | 162     | 174     | 175        | 180     | 184   | 20.0                                        |
| 01 |         |         |          |           |          |             |        |       | #        | .0        | 108      | 117      | 122       | 135       | 134       | 133       | 147      | 147   | 147      | 153      | 162      | 174     | 162     | 170     | 178     | 081        | 178     | 9/1   | (                                           |
| 6  |         |         |          |           |          |             |        |       |          |           |          |          |           |           |           |           |          |       |          |          |          |         |         |         |         |            | 183     |       | 000                                         |
| ∞  |         |         | *        | *         |          |             |        | 0     |          |           |          |          |           |           |           |           |          |       |          |          |          |         |         |         |         |            | 173     |       | '                                           |
| 7  | *       | *       | *        | *         | *        |             | 0      |       |          |           |          |          |           |           |           |           |          |       |          |          |          |         |         |         |         |            | 170     |       | ٧                                           |
| 9  | *       | *       | *        | *         | *        | 0           |        |       |          |           |          |          |           |           |           |           |          |       |          |          |          |         |         |         |         |            | 152 1   |       | b coods                                     |
| 2  | *       | *       | *        | *         | 0        | 13          | 17     | 33 ]  | 37       | 138       | 31       | 132 1    | 143       | 34        | 147       | 140       |          |       | 141      |          |          | _       | 143     |         | 20      |            |         | 152 1 | '                                           |
| 4  | *       | *       | #        | 0         | 12       | 127         | 126    | 122   | _        | 143       | 140      | 138 1    | 149 1     | 138 1     |           |           | 140      | 153 1 |          | 137 1    | 13.7     | _       | _       | 162 1   | 162 1   |            | _       | 1 991 | 9                                           |
| 3  | *       | *       | 0        | 88        | 12 1     | 122 1       | 123 1  | 19    | 145 1    | 141       | 141      | 137 1    | 148 1     | 129 1     | 153 1     | 139 1     |          | 52 1  |          | 31 1     | 138 1    | _       | 34      | 1 09    | 62 1    |            |         | 63 1  | 4                                           |
| 2  | #       | .0      | 13       | 20        | 25 1     | 28 1        | 126    | 133 1 | 1 20 1   | 148 1     | 148      | 144      | 150       | ,         |           | 146 1     | 44       | _     | _        | _        | _        | _       | _       | _       | 1 65    | _          | _       | 172 1 | 0                                           |
| _  | 0       | 42      | 14 1     | 17 1      | 20 1     | 24          | 25 1   | 33 1  | 47 1     | 45 1      |          | ,        | _         | 139 1     | -         |           | _        | _     | _        | _        |          | _       |         | _       |         | _          |         | 1 0/  | hor                                         |
|    |         |         |          | _<br>_    | _        | _           | [u]    | _     | _        | _         |          |          |           |           |           |           | _        | _     | _        | _        |          | _       | _       | _       | _       | _          | _       | -     | 7                                           |
|    | CG-a,Hu | LH-a,Hu | IGF-I,Hu | IGF-II,Hu | LP-CI,Hu | LP-CIII, Hu | AII,Hu | 三     | Ig-k,HuL | Ig-k, HuP | Ig-k,HuC | Ig-k,HuA | Ig-l,HuBa | Ig-l, HuS | Ig-I, HuH | [g-l,HuBo | Ig-I,HuD | HuB,  | Ig-h,HuN | TSH-b,Hu | FSH-b,Hu | CG-b,Hu | .H-b,Hu | Hb-g,Hu | Hb-b,Hu | Hp-q'Hn    | Hb-a,Hu | Η̈́α  | Le on                                       |
|    | S       | Ė       | IGF      | IGF       | LP       | LP-         | LP-AI  | Pi,Hu | lg-k     | Ig-k      | Ig-k     | lg-k     | Ig-l,     | lg-l      | lg-l,     | lg-l,     | 18-1     | lg-h  | lg-h     | TSF      | FSH      | Ċ       | LH-     | Η̈́     | HÞ      | HP         | Hb-     | Mg,Hu | a Astorisks and number signs show the pairs |
| ĺ  | _       | 7       | 33       | 4         | 5        | 9           | 7      | ∞     | 6        | 10        | =        | 12       | 13        | 14        | 15        | 16        | 17       | 18    | 19       | 70       | 21       | 22      | 23      | 74      | 25      | <b>7</b> 6 | 27      | 28    | Δ α                                         |

"Asterisks and number signs show the pairs whose  $d_{ij} \le m - \sigma$  and  $m - 2.0\sigma$ , respectively. <sup>b</sup> Tenfold values of  $d_{ij}$  are given.

Table V. Rearranged Distance Matrix for Proteins from Various Sources<sup>a,b</sup>

|            | -   | 2   | 3   | 4   | 5   | 9   | 7   | 8   | 6   | 01  | =   | 12  | 13  | 14  | 15  | 91  | 17  | 18  | 19  | 70 |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|
| Cyt-c,Su   | 0   | *   | *   | *   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
| Rhp        | 128 | 0   | *   | *   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
| Rhr        | 131 | 126 | 0   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
| ζhs        | 134 | 130 | 144 | 0   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |
| E          | 139 | 156 | 153 | 160 | 0   | *   | *   | *   |     |     |     |     |     |     |     |     |     |     |     |    |
| Ig-h, HuN  | 150 | 162 | 164 | 170 | 126 | 0   | *   | *   |     |     |     |     |     |     |     |     |     |     |     |    |
|            | 142 | 160 | 164 | 168 | 131 | 117 | 0   | *   |     |     |     |     |     |     |     |     |     |     |     |    |
| B          | 157 | 163 | 172 | 174 | 131 | 124 | 133 | 0   |     |     |     |     |     |     |     |     |     |     |     |    |
| Ή          | 156 | 156 | 157 | 173 | 160 | 139 | 135 | 157 | 0   |     |     |     |     |     |     |     |     |     |     |    |
| =          | 157 | 164 | 165 | 175 | 138 | 141 | 144 | 152 | 162 | 0   | *   |     |     |     |     |     |     |     |     |    |
|            | 144 | 152 | 159 | 168 | 141 | 147 | 142 | 160 | 156 | 132 | 0   |     |     |     |     |     |     |     |     |    |
| Ωs         | 146 | 156 | 156 | 168 | 142 | 150 | 152 | 155 | 191 | 158 | 147 | 0   |     |     |     |     |     |     |     |    |
| hr         | 165 | 151 | 145 | 156 | 170 | 186 | 184 | 190 | 186 | 181 | 171 | 179 | 0   |     |     |     |     |     |     |    |
|            | 147 | 156 | 150 | 164 | 150 | 150 | 152 | 165 | 158 | 159 | 157 | 152 | 181 | 0   |     |     |     |     |     |    |
| <b>B</b> 0 | 149 | 156 | 147 | 165 | 148 | 153 | 162 | 170 | 163 | 991 | 154 | 147 | 162 | 144 | 0   |     |     |     |     |    |
|            | 157 | 166 | 156 | 170 | 157 | 161 | 167 | 168 | 175 | 165 | 162 | 150 | 178 | 153 | 145 | 0   |     | *   |     |    |
|            | 151 | 161 | 159 | 169 | 150 | 161 | 159 | 165 | 168 | 159 | 155 | 151 | 183 | 150 | 147 | 144 | 0   | *   |     |    |
|            | 146 | 157 | 151 | 160 | 157 | 157 | 156 | 167 | 167 | 154 | 158 | 147 | 177 | 147 | 147 | 130 | 130 | 0   |     |    |
| Ba         | 147 | 153 | 156 | 159 | 156 | 158 | 159 | 167 | 167 | 159 | 153 | 150 | 175 | 149 | 149 | 991 | 152 | 155 | 0   |    |
| 7          | 160 | 157 | 153 | 169 | 167 | 186 | 180 | 187 | 182 | 180 | 175 | 175 | 152 | 176 | 167 | 178 | 179 | 170 | 183 | 0  |
|            |     | -   |     | -   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |

<sup>a</sup> Asterisks show the pairs whose  $d_{ij} \le m - \sigma$ . <sup>b</sup> Tenfold values of  $d_{ij}$  are given.

Table VI. Rearranged Distance Matrix for Heme Carrier Proteins<sup>a,b</sup>

| 10         | ı       |             |         |          |         |         |            |         |         |         |         |         |         |          |          |         |         |         |          |          |        |         |       |       |        |        |       |         |       |       |       |        |       |       |       |
|------------|---------|-------------|---------|----------|---------|---------|------------|---------|---------|---------|---------|---------|---------|----------|----------|---------|---------|---------|----------|----------|--------|---------|-------|-------|--------|--------|-------|---------|-------|-------|-------|--------|-------|-------|-------|
| 4 35       |         |             |         |          |         |         |            |         |         |         |         |         |         |          |          |         |         |         |          |          |        |         |       |       |        |        |       |         |       |       |       |        |       | 0     | 4 0   |
| 3 34       |         |             |         |          |         |         |            |         |         |         |         |         |         |          |          |         |         |         |          |          |        |         |       |       |        |        |       |         |       | -     | . 44  | -14    | . 0   | 7     | 3 174 |
| 33         |         |             |         |          |         |         |            |         |         |         |         |         |         |          |          |         |         |         |          |          |        |         |       |       |        |        |       |         |       |       |       |        | 3     |       | 8 183 |
| 32         |         |             |         |          |         |         |            |         |         |         |         |         |         |          |          |         |         |         |          |          |        |         |       |       |        |        |       |         |       |       |       |        |       | 3 176 |       |
| 31         |         |             |         |          |         |         |            |         |         |         |         |         |         |          |          |         |         |         |          |          |        |         |       |       |        |        |       |         | *     | 4     |       |        |       | _     |       |
| 30         |         |             |         |          |         |         |            |         |         |         |         |         |         |          |          |         |         |         |          |          |        |         |       |       |        |        |       |         | _     | 8     | 5 94  |        |       | 4 173 |       |
| 29         |         |             |         |          |         |         |            |         |         |         |         |         |         |          |          |         |         |         |          |          |        |         |       |       |        |        |       | 0       | S     | 1 105 |       |        |       |       |       |
| 28         |         |             |         |          |         |         |            |         |         |         |         |         |         |          |          |         |         |         |          |          |        |         |       |       |        |        | 0     |         |       |       |       |        |       |       |       |
| 27         |         |             |         |          |         |         |            |         |         |         |         |         |         |          |          |         |         |         |          |          |        |         |       |       | -4.1   | 0      |       | 0 190   |       |       |       |        |       | 5 178 |       |
| 26         |         |             |         |          |         |         |            |         |         |         |         |         |         |          |          |         |         |         |          |          |        |         |       |       |        |        |       |         |       |       |       |        |       |       |       |
| 25         |         |             |         |          |         |         |            |         |         |         |         |         |         |          |          |         |         |         |          |          |        |         |       | 0     |        |        | 4 153 |         | 181   |       | 9/10  | 1.80   |       | 7 184 |       |
| 24         |         |             |         |          |         |         |            |         |         |         |         |         |         |          |          |         |         |         |          |          | _      | _       | _     |       |        |        |       | 179     | 164   | 163   | 160   |        |       |       |       |
| 23         |         |             |         |          |         |         |            |         |         |         |         |         |         |          |          |         |         |         |          |          | *      | *       | ٠     | -     | 164    | 162    | 161   | 159     | 183   | 183   | 178   | 176    |       |       |       |
| 22         |         |             |         |          |         |         |            |         |         |         |         |         |         |          |          |         |         |         |          |          | *      |         | 104   |       |        | 159    |       | 153     | 172   | 176   |       | 170    |       | 163   |       |
| 21         |         |             |         |          |         |         |            |         |         |         |         |         |         |          |          |         |         |         |          |          |        | 125     |       | _     | 167    | 165    | 174   | 169     | 171   | 168   | 170   | 174    |       | 161   |       |
| 2          |         |             |         |          |         |         |            |         |         |         |         |         |         |          |          |         |         |         |          |          |        | 155     | 163   | 162   | 159    | 155    | 151   | 172     | 163   | 167   | 166   | 168    | 159   | 168   | 165   |
| 16         |         |             |         |          |         |         |            |         |         |         |         |         |         |          |          |         |         |         | 0        | 140      | 165    | 162     | 162   | 991   | 170    | 169    | 155   | 181     | 171   | 164   | 170   | 169    | 165   | 176   | 168   |
| <b>8</b> 2 |         |             |         |          |         |         |            |         |         | *       |         | *       |         | *        |          |         |         | 0       | 179      | 169      | 168    | 162     | 691   | 170   | 183    | 178    | 189   | 165     | 181   | 174   | 167   | 691    | 163   | 172   | 881   |
| 12         |         |             |         |          |         |         |            |         |         | *       | *       | *       | *       | *        | *        |         | 0       | 144     | 174      | 951      | 155    | 155     | 167   | 162   | 11     | 891    | 183   | 165     | 081   | 175   | 173   | 175    |       | 175   |       |
| 19         |         |             |         |          |         |         |            |         |         | *       | *       | *       | *       | *        |          | 0       | 134     | 44      | 991      | 163      | 153    | 172     | 170   | 651   | 74     | 74     | 6/1   | 178     | 173   |       | 167   |        |       |       |       |
| 15         |         |             |         |          |         |         |            |         |         | *       | *       | *       | *       | *        | 0        | 129     | 123 1   | 39 1    | 17       | [ 19]    | 168    | 1. 1.91 | 1 19  | _     | 76.1   | 70     | 74 ]  | 167     | 185 1 |       |       |        |       | 175 1 |       |
| 4          |         |             |         |          |         |         |            |         |         | *       | *       | *       | #       | .0       | 127      |         | _       | _       | _        |          | 156 1  | 151     | _     | _     | 76 1   | 173 ]  | -     | 162 1   | 175 1 |       | 168 1 |        |       |       |       |
| 13         |         |             |         |          |         |         |            |         |         | *       | *       | *       | 0       | 70       | 120 1    | 118 1   | 119 1   | 30 1    | 169      | 57 1     | 51 1   | 57 1    | 57 1  | 55 1  | 71 1   | 72 1   |       | 162 1   | 174 1 |       | 64 1  | 168 1  |       | 172 1 |       |
| 12         |         |             |         |          |         |         |            |         |         | #       | :#      | .0      | 05      | <u>5</u> | 103      | 20 1    | _       | 24 1    | 1 99     | 58 1     | 51 1   | 156 1   | 64 1  | _     | 1 691  | 163 1  |       | 163     | 170 1 |       | 162.1 | ,      |       | 162 1 |       |
| =          |         |             |         |          |         |         |            |         |         | #       | .0      | 81      | 105 1   | 1.1      | 25 1     |         | _       | 128 1   | 180      | 199      | 1 65 1 | 157 1   |       | _     | _      |        | _     | _       | ,     |       | _     | _      |       |       |       |
| 2          |         |             |         |          |         |         |            |         |         |         | 46      |         | _       | 105 1    | 23 13    | 115 12  | 120     | 25 17   | 173 18   | 163 10   | 55 1   | 57 1    | _     |       | 177 18 | 73 17  | 31 6/ | 160     | 74 17 | 70 17 | 169   | 168 17 |       |       |       |
|            |         |             |         |          |         |         |            |         | 0       | 158     |         |         | _       | _        | _        | _       | 160 12  |         | 160 17   |          | 73 15  | 164 15  |       |       | _      | 163 17 | _     | _       | _     | _     | _     |        |       |       |       |
| 6          | *       |             | *       |          |         |         |            | 0       |         |         |         |         |         |          |          |         |         | 91 091  |          |          | _      | -       | _     |       |        | -      | _     | 7 163   | 0 171 |       |       |        |       |       |       |
| ∞          | *       | *           | *       | *        |         |         | 0          |         |         |         |         |         |         | 2 146    |          |         |         |         | 8 167    |          |        |         |       | ,     |        |        | _     |         | 1 170 |       |       |        |       |       | 4 185 |
| 7          |         | *           |         | *        | ىد.     | 0       | 2          | 8 135   | 2 131   | _       | 4 151   | 7 146   | 7 150   | 8 152    | 9 156    | 0 152   | 7 152   | 9 160   | 991 0    | 2 165    | 4 169  | _       | 5 172 | 7 166 | 91 1   | 0 165  | 5 177 | 3 164   | 2 17  | 4 169 | 2 165 | 691 (  | 3 166 |       | 184   |
| 9          |         | _           |         | -        | #       | ت:<br>ح | 5 145      | 138     | 162     | 5 157   | 164     | 157     | 157     | 3 158    | 91 3     | 091 1   | 157     | 166     | 180      | 172      | 164    | 165     | 165   | 177   | 161    | 160    | 175   | 163     | 172   | 174   | 172   | 170    |       | _     | 189   |
| 5          |         | <del></del> |         | <u> </u> |         | 83      | 145        | 140     | 160     | 145     | 151     | 148     | 149     | 153      | 162      | 154     | 154     | 156     | 180      | 168      | 161    | 162     | 164   | 172   | 163    | 162    | 172   | 152     | 166   | 169   | 166   | 164    | 160   |       | 186   |
| 4          | *       | #<br>       | •       |          | 1113    | 123     | 124        | 133     | 141     | 144     | 149     | 142     | 141     | 144      | 160      | 142     | 153     | 155     | 170      | 150      | 171    | 164     | 165   | 165   | 159    | 156    | 172   | 165     | 163   | 170   | 158   | 163    | 156   |       | 170   |
| 3          | #       | *           | 0       | 112      | 127     | 122     | 128        | 128     | 141     | 151     | 153     | 143     | 148     | 149      | 144      | 151     | 153     | 155     | 168      | 156      | 164    | 164     | 170   | 159   | 158    | 155    | 172   | 191     | 159   | 160   | 155   | 162    | 158   |       | 178   |
| 7          | #       | 0           | 120     | 106      | 121     | 128     | 124        | 131     | 136     | 150     | 153     | 150     | 147     | 151      | 162      | 155     | 160     | 164     | 174      | 162      | 169    | 167     | 166   | 172   | 159    | 157    | 176   | 156     | 171   | 172   | 167   | 174    | 168   | 171   | 181   |
| -          | 0       | 93          | 86      | 101      | 105     | 104     | 119        | 121     | 140     | 145     | 147     | 144     | 150     | 150      | 159      | 155     | 157     | 159     | 174      | 163      | 172    | 164     | 166   | 171   | 159    | 157    | 170   | 152     | 172   | 176   | 174   | 175    | 691   |       | 177   |
|            | 큐       | 2           | ų       | ,a       | _       | ્ય      | <u>.</u> 1 | ė       | `Ŀ      | Į,      | Į,      | ٥       | ~       | ્ય       | Ś        | Į,      | ų       | بي      | ΙΙΙ      | TIII     | ٠.     |         |       |       |        |        | _     | ج.      |       | _     |       |        |       |       |       |
|            | Hb-a,Hu | Hb-a,Do     | Hb-a,Ch | Hb-a,Ka  | Hb-a,Pl | Hb-a,Ec | Hb-a,Vi    | Hb-a,Ne | Hb-a,Ca | Hb-b,Hu | Hb-d,Hu | Hb-b,Do | Hb-b,Pl | Hb-b,Ec  | Hb-b,Ka  | Hb-g,Hu | Hb-b,Ch | Hb-b,Fr | [G,CTT]] | IG,CTTII | Lg,bBe | Lg,kBe  | Lg,So | Lg,Lu | LG,La  | LG,slA | GG,Ap | Hb-a;Sh | Mg,Ch | Mg,Hu | Mg,Do | Mg,Ka  | Mg,Pl | GG,Bu | 3,BI  |
|            | H       | 2 HI        | 3 HI    | 4 HI     | 5 HI    | HI 9    | 7 HI       | 8 H     | H 6     | H 01    | 1 H     | 12 HI   | 3 H     | 4 H      | S HI     |         | 17 HI   | 18 HI   | 19 IG    | 20 IG    |        |         |       |       |        | 26 LC  |       |         |       |       |       |        |       |       |       |
| I          | I '     | •           | ·       | •        | •       | _       | -          |         | ٠.      | =       | 1       | _       | _       | Ì        | <u> </u> | =       | _       | Ĩ       | Ť        | ন        | 21     | 22      | 23    | 24    | 25     | ন      | 27    | 78      | 29    | 30    | 31    | 32     | 33    | 34    | 35    |

**Registry No.** Pi, 9035-68-1; TSH, 9002-71-5; FSH, 9002-68-0; LH, 9002-67-9; CG, 9002-61-3; IGF-I, 67763-96-6; IGF-II, 67763-97-7; Cyt-c, 9007-43-6; Cyt-c<sub>2</sub>, 9035-43-2; Pl, 9001-84-7; RNase, 9001-99-4; Cyt-c', 9035-41-0; insulin, 9004-10-8.

# REFERENCES AND NOTES

- Davison, D.; Thompson, K. H. "A Non-Metric Sequence Alignment Program". Bull. Math. Biol. 1984, 46, 579-590, and references cited therein.
- (2) Nishikawa, K.; Ooi, T. "Correlation of the Amino Acid Composition of a Protein to Its Structural and Biological Characters". J. Biochem.

- (Tokyo) 1982, 91, 1821-1824.
- (3) Sneath, P. H. A.; Sokal, R. R. Numerical Taxonomy; W. H. Freeman: San Francisco, 1973.
- (4) Ito, T.; Kodama, Y.; Toyoda, J. "A Similarity Measure between Patterns with Nonindependent Attributes". IEEE Trans. Pat. Anal. Math. Intel. 1984, PAMI-6, 111-115.
- (5) Hoel, P. G. Introduction to Mathematical Statistics, 4th ed.; Wiley: New York, 1971.
- (6) Dayhoff, M. O. Atlas of Protein Sequence and Structure; National Biomedical Research Foundation: Washington, DC, 1972; Vol. 5 and subsequent supplements.
- (7) Augston, J. G., Minker, J. "An Analysis of Some Graph Theoretical Cluster Techniques". J. Assoc. Comput. Mach. 1970, 17, 571-588.

# A New Algorithm for Selection of Synthetically Important Rings. The Essential Set of Essential Rings for Organic Structures

# SHINSAKU FUJITA

Research Laboratories, Ashigara, Fuji Photo Film Co., Ltd., Minami-Ashigara, Kanagawa, 250-01, Japan

Received February 9, 1987

The concept of tied rings, multi-tied rings, and dependent rings is introduced, wherein transannular bonds and heterogeneity and abnormality of a ring are key classifiers. The essential set of essential rings (ESER) is defined as a set of rings other than tied, multi-tied, and dependent rings. An algorithm for detection of the ESER and its scope and limitations are discussed.

The perception of synthetically important rings is a crucial problem in the manipulation of organic structures by a computer. The smallest set of the smallest rings (SSSR) and its analogues have been widely adopted by computer systems for this purpose. The SSSR is not unique in some cases when the equivalent sets are present in a given structural formula. For example, three 6-membered rings are equivalent in compound 1 and two rings are arbitrarily selected from the three. Corey's first criterion solved this difficulty by the concept of "collection of maximum proper covering sets of rings". This approach is successful in obtaining all three rings of compound 1 but fails to select important rings for organic syntheses in some cases (e.g., 2-6). The Corey's "synthetic subset" adopted



additional rings with six or fewer members.<sup>3</sup> This criterion is also successful in selecting a 6-membered ring along with two 5-membered rings (SSSR) from compound 1 and 2. However, an 8-membered ring in compound 3 would be ignored by this procedure. Later, Wipke<sup>4</sup> chose the SSSR and all other rings with eight or fewer atoms. This principle, which is adequate for the purpose of abstracting 6- and 8-membered rings from 2 and 3, respectively, is not fruitful in the cases of compounds 4 and 5. A 10-membered ring in 4 and a 12-membered one in 5 are desirable to be adopted in a synthetic point of view. Since these rings in compounds 2-5 are in the same situation from the viewpoint of topology, they should be selected by a simple algorithm that meets our chemical sense. Fugamann's approach<sup>5</sup> gave satisfactory results in the above cases. But a more chemist-friendly algorithm is desirable.

A more delicate problem should be mentioned here. Three 6-membered rings should be selected from a carbocyclic compound (6) but a 12-membered one need not be chosen.

However, the 12-membered rings of compounds 7 and 8 are



desirable to be selected, since the center atoms are a nitrogen and a boron atom, respectively. Let us consider that compound 8 is obtained from cyclododecatriene as follows. The 12-membered ring is important synthetically. Thus, a carbocyclic ring is to be preferred synthetically.

Although the importance of the concept of the SSSR is unchangeable now and in the future, a rational extension is desirable to solve the above-described problems. We propose here the essential set of essential rings (ESER), which is a simple algorithm to settle these problems.

# DEFINITION AND ALGORITHM OF ESER

Rings are classified as essential rings and nonessential rings. First, we define nonessential rings, which are tied rings, multi-tied rings, or dependent rings. Then ESER is defined as a set of rings other than nonessential rings.

Tied Ring and Multi-Tied Ring. A tied ring is defined as a ring with one transannular bond that links directly two nonadjacent nodes of rings. For example, the 10-membered ring of compound 9 is a tied ring in which a bond between nodes 5 and 10 is a transannular bond defined as above. The tied rings are nonessential rings in any case, since they are