Problem 1

1. Methods Analysis

CLIP is trained on data accompanied by textual descriptions, employing contrastive learning. As a result, it possesses the capability to effectively process a greater amount of information.

2. Prompt-text Analysis

Accuracy	
"This is a photo of {object}"	0.6080
"This is not a photo of {object}"	0.6532
"No {object}, no score."	0.5636

1. Quantitative Analysis

Problem 2-1

1. Best Settings

The encoder is vit_huge_patch14_clip_336, with adapter added in every blocks of the decoder

	CIDEr	CLIPScore
Best	0.8322	0.7081

2. Different Attempts of PEFT

	CIDEr	CLIPScore
Adapter	0.8322	0.7081
Prefix Tuning	X	X
Lora	0.4113	0.5206

I don't know why but my LoRa disrupts

Problem 2-2

1. Attention Maps

SHEEP: a herd of sheep standing together in a grassy area.

SKI: a group of people skiing down a mountain.

Umbrella: a women with curly hair sits down with her husband.

Bike: a women riding a bike with her umbrella attached to her bike.

2. Visualization of Best and Worst Image

Best Worst

a man wearing a suit and tie holding a banana. (0.98)

a woman in a red shirt holding a red hat. (0.37)

3. Analyzation

It can be observed that in the worst-case scenario, the attention head may not capture the correct features effectively.