LAB – 3: PANDAS FILLING OUT MISSING VALUES

PANDAS:

Pandas is a Python software library for data analysis and manipulation widely used in data science and machine learning applications enabling cleansing, merging, and reshaping of data structures for big datasets, handling various file formats including Excel, JSON, Parquet, SQL database tables or queries, and CSV files.

Installation: pip install pandas

Here is a Pandas methods for filling out missing values:

1. **isnull():** Checks for missing values in a DataFrame or Series.

Syntax: df.isnull()

2. **dropna():** Removes rows with missing values from a DataFrame.

Syntax: df.dropna()

3. fillna(): Fills missing values in a DataFrame or Series with a specified value.

Syntax: df.fillna(value)

4. **fillna() "pad" method:** Fills missing values with the previous non-null value along the specified axis.

Syntax: df.fillna(method='pad')

5. **fillna() "bfill" method:** Fills missing values with the next non-null value along the specified axis.

Syntax: df.fillna(method='bfill')

6. **sum():** Computes the sum of values along a specified axis

Syntax: df.sum()

7. replace(): Replaces values with other values in a DataFrame or Series.

Syntax: df.replace(to_replace, value)

8. **fillna() "mean":** Fills missing values with the mean of the non-null values in a DataFrame or Series.

Syntax: df.fillna(df.mean())

9. **fillna() "median":** Fills missing values with the median of the non-null values in a DataFrame or Series.

Syntax: df.fillna(df.median())

10.fillna() "mode": Fills missing values with the mode (most frequent value) in a DataFrame or Series.

Syntax: df.fillna(df.mode())

11.corr(): Computes the correlation matrix of a DataFrame.

Syntax: df.corr()

Pandas Filling out Missing Values

1

False False

```
In [1]:
import pandas as pd
import numpy as np
In [2]:
dict data = {
    Field 1':[88, 90, 80 , 70],
    'Field 2': [30, 45, 50, np.nan],
    'Field 3':[np.nan, 40, 80, np.nan]
df_dict_data = pd.DataFrame(dict_data)
df_dict_data
Out[2]:
  Field 1 Field 2 Field 3
      88
           30.0
                 NaN
1
           45.0
                 40.0
      90
2
      80
           50.0
                 80.0
3
      70
          NaN
                NaN
In [3]:
df dict data.isnull()
Out[3]:
  Field 1 Field 2 Field 3
0 False False
               True
1 False
         False False
2 False
         False
                False
3 False
          True
               True
In [4]:
df dict_data.dropna()
Out[4]:
  Field 1 Field 2 Field 3
                 40.0
           45.0
                 80.0
2
     80
          50.0
In [5]:
bool series = pd.isnull(df dict data["Field 3"])
bool series
Out[5]:
     True
```

```
True
Name: Field 3, dtype: bool

In [6]:

df_dict_data[bool_series]

Out[6]:

Field 1 Field 2 Field 3

0 88 30.0 NaN

3 70 NaN NaN
```

Filling missing value with some constant (0) using fillna()

```
In [7]:

df_dict_data.fillna(23)

Out[7]:
```

	Field 1	Field 2	Field 3
0	88	30.0	23.0
1	90	45.0	40.0
2	80	50.0	80.0
3	70	23.0	23.0

Filling a missing value with previous value

```
In [8]:

df_dict_data.fillna(method='pad', axis=1)

Out[8]:
```

```
        Field 1
        Field 2
        Field 3

        0
        88.0
        30.0
        30.0

        1
        90.0
        45.0
        40.0

        2
        80.0
        50.0
        80.0

        3
        70.0
        70.0
        70.0
```

Filling a missing value with ahead value

```
In [9]:

df_dict_data.fillna(method='bfill')
Out[9]:
```

	Field 1	Field 2	Field 3
0	88	30.0	40.0
1	90	45.0	40.0
2	80	50.0	80.0
3	70	NaN	NaN

Playing with CSV

```
In [10]:
```

diabetes df = pd.read csv("https://raw.githubusercontent.com/YBI-Foundation/Dataset /main/Diabetes%20Missing%20Data.csv")

In [11]:

```
diabetes df.head()
```

Out[11]:

	Pregnant	Glucose	Diastolic_BP	Skin_Fold	Serum_Insulin	ВМІ	Diabetes_Pedigree	Age	Class
0	6	148.0	72.0	35.0	NaN	33.6	0.627	50	1
1	1	85.0	66.0	29.0	NaN	26.6	0.351	31	0
2	8	183.0	64.0	NaN	NaN	23.3	0.672	32	1
3	1	89.0	66.0	23.0	94.0	28.1	0.167	21	0
4	0	137.0	40.0	35.0	168.0	43.1	2.288	33	1

In [12]:

```
diabetes df.shape
```

Out[12]:

(768, 9)

In [13]:

```
diabetes_df.isnull().sum()
```

Out[13]:

0 Pregnant 5 Glucose 35 Diastolic BP Skin Fold 227 Serum Insulin 374 11 Diabetes Pedigree 0 Age Class dtype: int64

In [14]:

```
diabetes df.isnull().sum().sum()
```

Out[14]:

652

In [15]:

```
diabetes df.dropna().head()
```

Out[15]:

_		Pregnant	Glucose	Diastolic_BP	Skin_Fold	Serum_Insulin	ВМІ	Diabetes_Pedigree	Age	Class
	3	1	89.0	66.0	23.0	94.0	28.1	0.167	21	0
	4	0	137.0	40.0	35.0	168.0	43.1	2.288	33	1
	6	3	78.0	50.0	32.0	88.0	31.0	0.248	26	1
	8	2	197.0	70.0	45.0	543.0	30.5	0.158	53	1

```
Pregnant Glucose Diastolic BP Skin_Fold Serum_Insulin BMI Diabetes_Pedigree Age Class 13 189.0 60.0 23.0 Serum_Insulin BMI Diabetes_Pedigree Age Class
```

```
In [16]:
```

```
diabetes_df = diabetes_df.drop(['Serum_Insulin'], axis=1)
diabetes_df.head()
```

Out[16]:

	Pregnant	Glucose	Diastolic_BP	Skin_Fold	BMI	Diabetes_Pedigree	Age	Class
0	6	148.0	72.0	35.0	33.6	0.627	50	1
1	1	85.0	66.0	29.0	26.6	0.351	31	0
2	8	183.0	64.0	NaN	23.3	0.672	32	1
3	1	89.0	66.0	23.0	28.1	0.167	21	0
4	0	137.0	40.0	35.0	43.1	2.288	33	1

In [17]:

```
diabetes_df["Glucose"].isnull().sum()
```

Out[17]:

5

In [18]:

```
diabetes_df.replace(to_replace=np.nan, value=-99).tail()
```

Out[18]:

	Pregnant	Glucose	Diastolic_BP	Skin_Fold	BMI	Diabetes_Pedigree	Age	Class
763	10	101.0	76.0	48.0	32.9	0.171	63	0
764	2	122.0	70.0	27.0	36.8	0.340	27	0
765	5	121.0	72.0	23.0	26.2	0.245	30	0
766	1	126.0	60.0	-99.0	30.1	0.349	47	1
767	1	93.0	70.0	31.0	30.4	0.315	23	0

In [19]:

```
diabetes_df[20:25]
```

Out[19]:

	Pregnant	Glucose	Diastolic_BP	Skin_Fold	ВМІ	Diabetes_Pedigree	Age	Class
20	3	126.0	88.0	41.0	39.3	0.704	27	0
21	8	99.0	84.0	NaN	35.4	0.388	50	0
22	7	196.0	90.0	NaN	39.8	0.451	41	1
23	9	119.0	80.0	35.0	29.0	0.263	29	1
24	11	143.0	94.0	33.0	36.6	0.254	51	1

In [20]:

```
bool_series = pd.isnull(diabetes_df["Glucose"])
```

In [21]:

```
diabetes_df[bool_series]
```

Out[211:

```
Pregnant Glucose Diastolic_BP Skin_Fold BMI Diabetes_Pedigree Age Class
                               48.0
75
           1
                 NaN
                                         20.0 24.7
                                                                0.140
                                                                        22
                                                                               0
182
           1
                 NaN
                               74.0
                                         20.0 27.7
                                                                0.299
                                                                        21
                                                                               0
342
                 NaN
                               68.0
                                         35.0 32.0
                                                                0.389
349
           5
                 NaN
                               80.0
                                         32.0 41.0
                                                                0.346
                                                                        37
                                                                               1
                 NaN
                                         41.0 39.0
                                                                        41
502
                               68.0
                                                                0.727
```

```
In [22]:
```

```
bool_series = pd.notnull(diabetes_df["Glucose"])
```

In [23]:

```
diabetes_df[bool_series].head()
```

Out[23]:

	Pregnant	Glucose	Diastolic_BP	Skin_Fold	BMI	Diabetes_Pedigree	Age	Class
0	6	148.0	72.0	35.0	33.6	0.627	50	1
1	1	85.0	66.0	29.0	26.6	0.351	31	0
2	8	183.0	64.0	NaN	23.3	0.672	32	1
3	1	89.0	66.0	23.0	28.1	0.167	21	0
4	0	137.0	40.0	35.0	43.1	2.288	33	1

In [24]:

```
diabetes_df["Diastolic_BP"].fillna("3", inplace=True)
```

In [25]:

```
diabetes_df.isnull().sum()
```

Out[25]:

Pregnant	0
Glucose	5
Diastolic_BP	0
Skin_Fold	227
BMI	11
Diabetes_Pedigree	0
Age	0
Class	0
and the second second	

dtype: int64

Filling out with missing value with Mean

```
In [26]:
```

```
diabetes df["Glucose"].fillna(value=diabetes df["Glucose"].mean(), inplace=True)
```

In [27]:

```
diabetes_df.isnull().sum()
```

Out[27]:

```
Pregnant 0
Glucose 0
Diastolic_BP 0
Skin_Fold 227
BMI 11
```

```
0
Diabetes_Pedigree
                       0
Age
Class
dtype: int64
```

```
Filling out missing value with Median
In [28]:
diabetes df["Skin Fold"].fillna(value=diabetes df["Skin Fold"].median(), inplace=T
In [29]:
diabetes df.isnull().sum()
Out[29]:
Pregnant
Glucose
Diastolic BP
                     0
Skin Fold
                     0
                    11
BMI
Diabetes Pedigree
                    0
                    0
                     0
Class
dtype: int64
Filling out missing value with Mode
In [30]:
diabetes df["BMI"].fillna(value=diabetes df["BMI"].median(), inplace=True)
In [31]:
diabetes df.isnull().sum()
Out[31]:
```

0 Pregnant Glucose 0 Diastolic BP 0

Skin_Fold 0 0 Diabetes Pedigree Class

dtype: int64

In [32]:

```
diabetes df.corr()
```

<ipython-input-32-0aaddaacdfa9>:1: FutureWarning: The default value of numeric only in DataFrame.corr is deprecated. In a future version, it will default to False. Sel ect only valid columns or specify the value of numeric only to silence this warning

diabetes_df.corr()

Out[32]:

	Pregnant	Glucose	Skin_Fold	ВМІ	Diabetes_Pedigree	Age	Class
Pregnant	1.000000	0.127911	0.081770	0.021559	-0.033523	0.544341	0.221898
Glucose	0.127911	1.000000	0.192686	0.231128	0.137060	0.266534	0.492928
Skin_Fold	0.081770	0.192686	1.000000	0.543205	0.102188	0.126107	0.214873

ВМІ	0.021559 Pregnant	0,231128 Glucose	0.543205 Skin_Fold	1.000000 BMI	0.153438 Diabetes_Pedigree	0.025597 Age	0.312038 Class
Diabetes_Pedigree	-0.033523	0.137060	0.102188	0.153438	1.000000	0.033561	0.173844
Age	0.544341	0.266534	0.126107	0.025597	0.033561	1.000000	0.238356
Class	0.221898	0.492928	0.214873	0.312038	0.173844	0.238356	1.000000