Содержание

- 1. Вероятностные распределения
 - А. Геометрическое распределение
 - В. Распределение Максвелла

Вероятностные распределения

```
In [6]:
         1 import numpy as np
         2 import matplotlib.pyplot as plt
         3 from scipy.stats import maxwell
         4 import scipy.stats as sts
         5 from scipy.stats import geom
         6 #from random import random
         7 #from collections import Counter
         8 #import copy
         9 #import math
        10 #from math import *
        11 from random import *
        12 import pandas as pd
        13 #import calendar
        14 #import statsmodels.api as sm
        15
        16 plt.style.use('ggplot') # Красивые графики
        17 nlt rcParams['figure figsize'] = (15 5) # Pasmen каптинок
```

1.1 Геометрическое распределение

1.1.1. Описание основных характеристик распределения

Функция вероятности дискретного распределения: $P_{\xi}(x) = pq^x, x \in \{0, 1, 2, \dots\}$ Математическое ожидание:

$$M\xi = \sum_{k=1}^{\infty} kpq^{k-1} = p\sum_{k=1}^{\infty} kq^{k-1} = p\sum_{k=1}^{\infty} \frac{dq^k}{dq} = p\frac{d}{dq}(\sum_{k=1}^{\infty} q^k) = p\frac{d}{dq}(\frac{q}{1-q}) = p\frac{1}{(1-q)^2} = \frac{1}{p}$$

Дисперсия:

$$D\xi = M(\xi - M\xi)^{2} = M\xi^{2} - (M\xi)^{2} = M(\xi(\xi - 1) + \xi) - M\xi^{2} = M(\xi(\xi - 1)) + M\xi - (M\xi)^{2} = M(\xi(\xi - 1)) + M\xi - M\xi^{2} = M(\xi(\xi - 1)) + M\xi^{2} = M(\xi(\xi - 1)) + M\xi - M\xi^{2} = M(\xi(\xi - 1)) + M\xi^{2} = M(\xi(\xi - 1)) + M\xi - M\xi^{2} = M(\xi(\xi - 1)) + M\xi^{2} = M(\xi(\xi - 1)) + M\xi - M\xi^{2} = M(\xi(\xi - 1)) + M\xi^{2} = M\xi^{2} = M\xi^{2} + M\xi^{2} + M\xi^{2} = M\xi^{2} + M\xi^{2} + M\xi^{2} +$$

```
In [3]:
            1 for p in [0.1, 0.4, 0.6, 0.9]:
                    geom_rv = sts.geom(p)
sample = geom_rv.rvs(1000)
plt.hist(sample, density = True, label='p = {}'.format(p))
            5
                    plt.legend()
                    plt.show()
            7 nrint('Рис 1: 1 1 1 Гистогламма вероятностей лискретного распределения')
           0.07 -
                                                                                                                              p = 0.1
           0.06
           0.05
           0.04
           0.03
           0.02
           0.01
           0.00
                                             20
                                                                       40
                                                                                                60
                                                                                                                          80
           0.5 -
                                                                                                                              p = 0.4
           0.4
           0.3 -
           0.2 -
```

Мода M_0 - значение во множестве наблюдений, которое встречается наиболее часто, для дискретной случайной величины определяется с помощью гистограммы вероятностей.

Из гистограмм видно, что $M_0=1$

Рис. 1: 1.1.1, Гистограмма вероятностей дискретного распределения

Медиана Ме находится из уравнения $P_{\xi}(x)=0.5$ $\begin{cases} p+qp+q^2p+\ldots+q^{Me-1}p\geq \frac{1}{2} \\ q^{Me-1}p+q^{Me}p+q^{Me}p+q^{Me+1}p+\ldots\geq \frac{1}{2} \end{cases}$ $\begin{cases} p\frac{1-q^{Me}}{1-q}\geq \frac{1}{2} \\ q^{Me-1}p\frac{1}{1-q}\geq \frac{1}{2} \end{cases}$ $\begin{cases} 1-q^{Me}\geq 2^{-1} \\ q^{Me-1}\geq 2^{-1} \end{cases}$ $\begin{cases} q^{Me-1}\geq 2^{-1} \\ q^{Me-1}\geq 2^{-1} \end{cases}$ $\begin{cases} q^{Me}\leq 2^{-1} \\ q^{Me-1}\geq 2^{-1} \end{cases}$ $\begin{cases} Me\cdot log_2q\leq -1 \\ (Me-1)log_2q\geq -1 \end{cases}$ Отсюда $-\frac{1}{log_2q}\leq Me\leq 1-\frac{1}{log_2q}$

Примеры событий, которые могут быть описаны выбранными случайными величинами

Типичные интерпретации геометрического распределения: описывает количество испытаний n до первого успеха при вероятности наступления успеха в каждом испытании p. Если n подразумевается номер испытания, в котором наступил успех, то геометрическое распределение будет описываться следующей формулой:

$$Geom_p(n) = q^{n-1}p$$

Геометрическое распределение считается дискретной версией экспоненциального распределения.

Предположим, что эксперименты Бернулли проводятся через равные промежутки времени. Тогда геометрическая случайная величина X - это время, измеренное в дискретных единицах, которое проходит до того, как мы добьемся первого успеха. . Но если мы хотим смоделироватьвремя, прошедшее до того, как данное событие произойдет в непрерывном времени, то подходящим распределением для использования будетэкспоненциальное распределение. С математической точки зрения геометрическое распределение обладает тем же свойством без памяти,которым обладает экспоненциальное распределение: в экспоненциальном случае вероятность того, что событие произойдет в течениезаданного временного интервала, не зависит от того, сколько времени уже прошло, а событие не произошло; в геометрическом случаевероятность того, что событие произойдет в данный момент (дискретное) времени, не зависит от того, что произошло раньше, потому чтоэксперимент Бернулли, проведенный в каждый момент времени, не зависит от предыдущих испытаний. Геометрическое распределение полезно для определения вероятности успеха при ограниченном количестве испытаний, что очень применимо креальному миру, в котором неограниченные испытания редки. Поэтому неудивительно, что различные сценарии хорошо моделируютсягеометрическими распределениями:

- В спорте, особенно в бейсболе, геометрическое распределение полезно для анализа вероятности того, что отбивающий получит удар, прежде чем он получит три удара; здесь цель добиться успеха за 3 испытания.
- При анализе затрат и выгод, например, когда компания решает, финансировать ли исследовательские испытания, которые в случае успеха принесут компании некоторую предполагаемую прибыль, цель состоит в том, чтобы достичь успеха до того, как затраты превысят потенциальную выгоду.
- В тайм-менеджменте цель состоит в том, чтобы выполнить задачу за установленный промежуток времени. Другие приложения, подобные вышеупомянутым, также легко создаются. Фактически, геометрическое распределение применяется наинтуитивном уровне в повседневной жизни на регулярной основе.

1.1.3 Описание способа моделирования выбранных случайных величин

Существует такой способ реализации метода обратных функций, при котором трудоемкость по крайней мере формально не зависит от р. Действительно, накопленная вероятность $s_{n+1} = p_0 + \ldots + p_n$ для геометрического распределения имеет вид

$$s_{n+1} = \sum_{i=0}^{n} p(1-p)^{i} = 1 - (1-p)^{n+1}$$

Поэтому событие $\{\xi=n\}$ приобретает вид

$$\{\xi = n\} = \{s_n < \alpha \le s_{n+1}\} = \{1 - (1-p)^n < \alpha \le 1 - (1-p)^{n+1}\} = \{(1-p)^{n+1} \le 1 - \alpha < (1-p)^n\}$$

$$= \{(n+1)\ln(1-p) \le \ln(1-\alpha) < n \cdot \ln(1-p)\} = \{n < \frac{\ln(1-\alpha)}{\ln(1-p)} \le n+1\},$$

и тем самым

$$\xi = \left[\frac{ln(1-\alpha)}{ln(1-p)}\right]$$

Эту же формулу можно получить по-другому. Пусть ν - случайная величина, имеющая показательное распределение с параметром λ и $\xi = [n]$. Тогда при $n \ge 0$

$$P(\xi = n) = P(n \le \nu < n+1) = e^{-n\lambda} - e^{-(n+1)\lambda} = (1 - e^{-\lambda})e^{-n\lambda}.$$

Поскольку случайная величина $\frac{-ln(1-\alpha)}{\lambda}$ имеет показательное распределение с параметров λ , то взяв $\lambda=-ln(1-p)$, приходим к формуле $\xi=\left[\frac{ln(1-\alpha)}{ln(1-p)}\right]$

```
In [7]:

1 def sample_(N=2500, scale = 0.5):
    for x in range(N):
        je = np.log(random())//np.log(1-scale)#Генерирование случайных чисел по формуле из справ return je
    def Geom(n, p=0.5):
        x=[sample_(scale=p) for x in range(n)]
        #print(x)
        return x
        plt.hist(Geom(2500,0.5),25, width = 0.1)
        nlt show()
```


1.2 Распределение Максвелла

1.2.1. Описание основных характеристик распределения

Математическое ожидание

$$M\xi = \int_0^\infty x \sqrt{\frac{2}{\pi}} \frac{x^2}{\lambda^3} e^{-\frac{x^2}{2\lambda^2}} dx = \sqrt{\frac{2}{\pi}} \frac{1}{\lambda^3} \int_0^\infty x^3 e^{\frac{-x^2}{2\lambda^2}} dx = 2\lambda^4 \cdot \sqrt{\frac{2}{\pi}} \frac{1}{\lambda^3} = 2\lambda \sqrt{\frac{2}{\pi}}$$

Дисперсия:

$$D\xi = M(\xi - M\xi)^{2} = M\xi^{2} - (M\xi)^{2} = M(\xi(\xi - 1) + \xi) - (M\xi)^{2} = M(\xi(\xi - 1)) + M\xi - (M\xi)^{2} = M(\xi(\xi - 1)) + M\xi(1 - (M\xi))$$

$$+ M\xi(1 - (M\xi))$$

$$M(\xi(\xi - 1)) = \int_{0}^{\infty} x^{2} f(x) dx = \int_{0}^{\infty} x^{2} \sqrt{\frac{2}{\pi}} \frac{x^{2}}{4^{3}} e^{-\frac{x^{2}}{2\lambda^{2}}} = \sqrt{\frac{2}{\pi}} \frac{1}{\lambda^{3}} \int_{0}^{\infty} x^{4} e^{-\frac{x^{2}}{2\lambda^{2}}} = \sqrt{\frac{2}{\pi}} \frac{1}{\lambda^{3}} \cdot 3\lambda^{5} \sqrt{\frac{\pi}{2}} = 3\lambda^{2}$$

$$D\xi = M\xi^2 - (M\xi)^2 = 3\lambda^2 - 4\lambda^2 \cdot \frac{2}{\pi} = \frac{3\pi - 8}{\pi}\lambda^2$$

Также использовались известные интегралы, который был взят из курса физики:

$$\int_0^\infty x^3 e^{-x^2/2\lambda^2} dx = \frac{1}{2(\frac{1}{\lambda^2})^2} \cdot 4 = 2\lambda^4$$
$$\int_0^\infty x^4 e^{-x^2/2\lambda^2} dx = \frac{3}{8} \sqrt{\pi} (\frac{1}{2\lambda^2})^{-\frac{5}{2}} = 3\lambda^5 \sqrt{\frac{\pi}{2}}$$

Рис.4: График функции распределения


```
In [9]:

1 for lambd in [0.2,0.5,0.8,1.0]:

2    maxwell_rv = sts.maxwell(scale = lambd)

3    x = np.linspace(0,5,100)

4    pdf = maxwell_rv.pdf(x)

5    k = max(pdf)

6    plt.plot(x, pdf, label = 'lambda = {}'.format(lambd))

7    plt.legend()

8    print('\n')

9    print('\n')
```

Рис.5: График плотности вероятности распределения

Модой абсолютно непрерывного распределения называют любую точку локального максимума плотности распределения.

$$f'(x) = \sqrt{\frac{2}{\pi}} \frac{x^2}{\lambda^3} e^{-\frac{x^2}{2\lambda^2}} = \frac{4x}{\lambda^3 \sqrt{2\pi}} e^{-\frac{x^2}{2\lambda^2}} - \frac{2x^2}{\lambda^3 \sqrt{2\pi}} e^{-\frac{x^2}{2\lambda^2}} \frac{x}{\lambda^2} = 0$$

$$\frac{4x}{\lambda^3 \sqrt{2\pi}} e^{-\frac{x^2}{2\lambda^2}} = \frac{2x^2}{\lambda^3 \sqrt{2\pi}} e^{-\frac{x^2}{2\lambda^2}} \frac{x}{\lambda^2}$$

$$4 = 2x \frac{x}{\lambda^2}$$

$$x^2 = 2\lambda^2$$

$$x = M_0 = \lambda \sqrt{2}$$

Медиана

$$\int_{0}^{Me} \sqrt{\frac{2}{\pi}} \frac{1}{\lambda^{3}} x^{2} e^{-\frac{-x^{2}}{2\lambda^{2}}} dx = \frac{1}{2}$$

$$\int_{0}^{Me} x^{2} e^{-\frac{-x^{2}}{2\lambda^{2}}} dx = \frac{\lambda^{3}}{2} \sqrt{\frac{\pi}{2}}$$

$$(-\lambda^{2} e^{-\frac{x^{2}}{2\lambda^{2}}} x + \lambda^{3} \sqrt{\frac{\pi}{2}})|_{0}^{Me} = \frac{\lambda^{3}}{2} \sqrt{\frac{\pi}{2}}$$

$$-Me\lambda^{2} e^{\frac{-Me^{2}}{2\lambda^{2}}} = -\frac{\lambda^{3}}{2} \sqrt{\frac{\pi}{2}}$$

$$Me \cdot e^{\frac{-Me^{2}}{2\lambda^{2}}} = \frac{\lambda^{2}}{2} \sqrt{\frac{\pi}{2}}$$

$$Me \approx 1,5383\lambda$$

1.2.2. Примеры событий, которые могут быть описаны выбранными случайными величинами

Впервые распределение было определено и использовалось для описания скоростей частиц в идеализированных газах, где частицы свободноперемещаются внутри стационарного контейнера, не взаимодействуя друг с другом, за исключением очень коротких столкновений, в которыхони обмениваются энергией и импульсом друг с другом или со своим тепловым окружением. Термин «частица» в этом контексте относится только к газообразным частицам (атомам или молекулам), и предполагается, что система частиц достигла термодинамического равновесия. Энергии таких частиц следуют так называемой статистике Максвелла — Больцмана, а статистическое распределение скоростей выводится путем приравнивания энергии частиц к кинетической энергии. Распределение Максвелла — Больцмана в основном применяется к скоростям частиц в трех измерениях, но оказывается, что оно зависит только от скорости (величины скорости) частиц. Распределение вероятности скорости частицы указывает, какие скорости более вероятны: частица будет иметь скорость, выбранную случайным образом из распределения, и с большей вероятностью будет находиться в одном диапазоне скоростей, чем в другом.

При тепловом равновесии (T=const) $u_{\text{\tiny KB}}$ молекул газа остается постоянной и равной $u=\sqrt{\frac{3kT}{m}}$

Это объясняется тем, что в газе устанавливается стационарное статическое распределение молекул по значениям скоростей, называемое распределением Максвелла:

$$f(u) = \frac{dN(u)}{Ndu} = 4\pi (\frac{m}{2\pi kT})^{\frac{3}{2}} \cdot u^2 \cdot e^{-\frac{mu^2}{2kT}}$$

В теории вероятностей рассматривается распределения Максвелла, в котором x=u и $\frac{1}{\lambda^2}=\frac{m}{kT}$

Нетипичной интерпретацией распределения Максвелла будут данные, которые представляют время ремиссии (в месяцах) у пациентов с раком мочевого пузыря и первоначально использовались Lee и Wang.

Ремиссия (лат. remissio «уменьшение, ослабление») — период течения хронической болезни, который проявляется значительным ослаблением (неполная ремиссия) или исчезновением (полная ремиссия) её симптомов (признаков заболевания)

1.2.3. Описание способа моделирования выбранных случайных величин

Способ 1: Существует полярный метод (группа полярных методов предназначена для моделирования распределений, так или иначе связанных с двумерными распределениями, инвариантными относительно вращений), где моделируются две независимые случайные величины ξ_1, ξ_2 , каждая из которых имеет распределение N(0,1).

Полярные координаты. Каждая точка $X=(x,y)T\in R^2\backslash\{0\}$ может быть однозначно представлена в виде $X=||X||\overline{e}$, где $\overline{e}=1$. Полагая s=||X|| и $\overline{e}=(\cos t,\sin t)^T$, где $t\in[0,2\pi)$, получаем биекцию $\phi:(x,y)^T\to(s,t)^T$, действующую из $R^2\backslash\{0\}$ в $(0,\infty)\times[0,2\pi)$. Конечно, переменные (s, t) являются полярными координатами вектора X, а обратное отображение $\psi:(0,\infty)\times[0,2\pi)\to R^2\backslash\{0\}$ имеет вид $x=s\cos t,y=s\sin t$ с якобианом $\det\psi'(s,t)=s$.

Если теперь рассмотреть случайный вектор $\overline{\xi} \in R^2$ с плотностью распределения $p_{\xi}(x,y)$ и обозначить r, ϕ (случайные) полярные координаты этого вектора, то, так как в этом случае n = 1, мы получим из (7.1.1), что

$$p_{r,\varphi}(s,t) = sp_{\xi}(s\cos t, s\sin t)1_{(0,\infty)\times[0,2\pi)}(s,t). (1.2.3.1)$$

Выражение (1.2.3.1) выглядит особенно просто, если существует такая функция

 $f:(0,\infty) \to (0,\infty)$, что $p_{\xi}(x,y) = f(\sqrt{x^2+y^2})$. В этом случае, очевидно,

$$p_{r,\varphi}(s,t) = sf(s)I_{(0,\infty)\times[0,2\pi)}(s,t) = 2\pi sf(s)I_{(0,\infty)}(s)\frac{1}{2\pi}I_{[0,2\pi)}(t). (1.2.3.2)$$

Это значит, что случайные величины r и φ независимы, $\varphi \in U(0,2\pi)$, а r имеет плотность распределения $p_r(s)=2\pi s f(s), s>0$

Действительно, поскольку совместная плотность распределения ξ_1, ξ_2 имеет вид

$$p(x, y) = \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}}, x, y \in R,$$

то, как следовательно из вышенаписанного, полярный радиус r и полярный угол φ случайного вектора (ξ_1,ξ_2) независимы, причем полярный угол равномерно распределен на $[0,2\pi)$, а полярный радиус имеет распределение Рэлея $(p(x)=xe^{\frac{-x^2}{2}}$, x>0.).

Отсюда, применяя моделирующую формулу ($\xi=\sqrt{-2ln(lpha)}$), сразу же приходим к представлению $\xi_1=\sqrt{-2ln(lpha_1)}\cos{(2\pilpha_2)},$ $\xi_2=\sqrt{-2ln(lpha_1)}\sin{(2\pilpha_2)},$

где $\alpha_1, \alpha_2 \in U(0, 1)$

В итоге получаем следующий алгоритм:

```
In [10]:
          1 %matplotlib inline
          2 import random
          3 import pandas as pd
          4 import math
          5 from scipy import stats
          6 import sys
          7 plt.style.use('qqplot') # Красивые графики
          8 plt.rcParams['figure.figsize'] = (15, 5) # Размер картинок
          9 N=10000
         10 random.seed(123)
         11 epsilon = sys.float info.epsilon
         12
         13 def box muller():
         14
                 u1, u2 = 0.0, 0.0
         15
                 while u1 < epsilon or u2 < epsilon:
          16
                     u1 = random.random()
         17
                     u2 = random.random()
          18
         19
                 n1 = math.sqrt(-2 * math.log(u1)) * math.cos(2 * math.pi * u2)
                 n2 = math.sqrt(-2 * math.log(u1)) * math.sin(2 * math.pi * u2)
          20
         21
                 return n1, n2
         22
         23 # Use KS to test
         24 | samples = [box muller()[0] for x in range(N)]
         25 test stat, pvalue = stats.kstest(samples, 'norm', args=(0, 1), N=N)
         26
         27 # Plot our samples against our reference distribution
         28 plt.hist(samples, 30, width = 0.1)
         29 nlt show()
```


Стоит заметить, что данный способ достаточно быстр.

Я бы ещё подметил тот факт, что распределение Максвелла с параметром $\lambda=1$ очень схоже с N(0,1):

$$f(x) = \sqrt{\frac{2}{\pi}} e^{-\frac{x^2}{2}} x^2 - \text{Максвелла}$$

$$f(x) = \sqrt{\frac{2}{\pi}} e^{-\frac{x^2}{2}} \cdot \frac{1}{2} - N(0, 1)$$

$$f(x) = \sqrt{\frac{2}{\pi}} e^{-\frac{x^2}{2}} \cdot \frac{1}{2} - N(0, 1)$$

Способ 2: По определению, случайный вектор $\overline{\xi}=(\xi_1,\xi_2)^T$ равномерно распределен на единичной окружности S^1 с центром в нуле, если $\xi_1^2+\xi_2^2=1$ с вероятностью 1 и если полярный угол φ вектора $\overline{\xi}$ равномерно распределен на $[0,2\pi)$. Из этого определения сразу же следует моделирующая формула для равномерного распределения на S^1 :

$$\xi_1 = \cos(2\pi\alpha)$$

$$\xi_2 = \sin(2\pi\alpha)(1.2.3.3)$$

Вычисление двух тригонометрических функций, однако, может оказаться трудоемкой операцией. Стандартной альтернативой формуле (1.2.3.3) является использование метода отбора для моделирования равномерного распределения в единичном круге $B_1(0) = \{(x,y): x^2+y^2<1\}$ с центром в нуле с последующей нормировкой результата. Формальное обоснование этой процедуры представим ниже.

Аналогично полярным координатам на плоскости, каждый ненулевой вектор $X=(x,y,z)^T\in R^3$ может быть однозначно представлен в виде $X=||X||_{e}^{\overline{e}}$, где

$$\overline{e} = (\cos(t)\cos(u), \sin(t)\cos(u), \sin(u))^T, t \in [0, 2\pi), u \in [-\pi/2, \pi/2].$$

Это, конечно, соответствует переходу от евклидовой системы координат (x, y, z) к сферической системе (s, t, u) со сферическим радиусом s = ||X||, долготой s и широтой u. Хорошо известно, что якобиан обратного отображения равен $s^2 \cos(u)$.

Поэтому, если случайный вектор $\bar{\xi} = (\xi_1, \xi_2, \xi_3)^T$ имеет плотность распределения $p_{\xi}(x, y, z)$, то сферические координаты r, φ, θ этого вектора имеют совместную плотность

 $pr, \varphi, \theta(s, t, u) = p_{\xi}(s\cos(t)\cos(u), s\sin(t)\cos(u), s\sin(u))s^{2}\cos(u), (1.2.3.4)$

сосредоточенную в области $(0,\infty) \times [0,2\pi) \times (-\pi/2,\pi/2)$. В случае, когда

$$p_{\xi}(x, y, z) = f(\sqrt{x^2 + y^2 + z^2}), (1.2.3.5)$$

равенство (1.2.3.4) приобретает вид

$$p_{r,\varphi,\theta}(s,t,u) = 4\pi s^2 f(s^2) I_{(0,\infty)}(s) \frac{1}{2\pi} I_{(0,2\pi)} \frac{\cos(u)}{2} I_{(-\frac{\pi}{2},\frac{\pi}{2})}.$$

Таким образом, случайные величины r, φ и θ оказываются независимыми, причем долгота φ равномерно распределена на $(0,2\pi)$, плотность $p_r(s)$ распределения r равна $4\pi s^2 f(s^2)$, а плотность $p_\theta(u)$ распределения широты θ сосредоточена на $(-\frac{\pi}{2},\frac{\pi}{2})$ и равна на этом интервале $0.5\cos(u)$.

Например, если $\overline{\xi} = (\xi^1, \xi^2, \xi^3)^T$ — случайный вектор с независимыми N(0, 1)-распределенными координатами, то его

```
In [16]:
          1 def Maxwell(n.lambd = 1):
           2
                 x = [sample (scale = lambd) for x in range(n)]
           3
                 y=[sample (scale = lambd) for x in range(n)]
                 z=[sample (scale = lambd) for x in range(n)]
           5
                 l = []
                 #print(x)
                 for i in range(n):
           8
                     l.append(np.sqrt(x[i]**2+y[i]**2+z[i]**2))
                 return l
          10 # Our sample function of N(0,1) using Equation (2)
          11 def sample (N = 3000, scale = 1):
          12
                 return scale*2.0*np.sqrt(N)*(sum(randint(0,1)for x in range(N))/N-0.5)
          13 plt.hist(Maxwell(3000,5),30, width = 0.1)
         \frac{14}{n}14 show()
```

