Neural nets for NLP: Attention Mechanism

Neural Networks

RNNs Learn p(Y)

Decompose

$$p(Y) = \prod p(y_t | y_{t-1}, y_{t-2}, ..., y_1)$$

Model the probabilities using a recurrent relation

$$p(y_t|y_{t-1}, y_{t-2}, ..., y_1) = g(s_t)$$

$$s_t = f(s_{t-1}, y_{t-1})$$

g(), f() are implemented using neural networks, i.e. they are flexibly parameterized, smooth functions.

How to condition an RNN?

RNN gives us p(Y) but we want p(Y|X)

- Idea #1: conditioned through the first hidden state
- Idea #2: condition separately on every step

Idea #1 condition through the 1st hidden state

Idea #1 condition through the 1st hidden state

Idea #2: Attention

1. Choose relevant frames

$$e_f = \text{score}(x_f, s_{t-1})$$

 $\alpha_f = \text{SoftMax}(e)_f$

2. Summarize into context

$$c = \sum_{f} \alpha_f x_f$$

3. Compute next state

$$s_t = f(s_{t-1}, y_{t-1}, c)$$

Attention mechanism in RNNs

from his travels it might have been from his travels it might have been from his travels it might have been

- This is a network to generate handwriting
- At each step the network looks at a context c
- c is a summarization of a small fragment of the input sequence

Graves, A., 2013. Generating Sequences With Recurrent Neural Networks. arXiv:1308.0850 [cs]

Characters

Outputs

Hidden 2

Window

Hidden 1

Inputs

Attention mechanism in translation

La croissance économique s' est ralentie ces dernières années .

Attention mechanism for captioning

Convex Hulls & TSP

http://papers.nips.cc/paper/5866-pointer-networks.pdf

Reasoning – facts in memory

Story (16: basic induction)	Support	Hop 1	Hop 2	Hop 3	
Brian is a frog.	yes	0.00	0.98	0.00	
Lily is gray.		0.07	0.00	0.00	
Brian is yellow.	yes	0.07	0.00	1.00	
Julius is green.		0.06	0.00	0.00	
Greg is a frog.	yes	0.76	0.02	0.00	
What color is Greg? Answer: yellow	nat color is Greg? Answer: yellow Prediction: yellow				

http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf

Current NLP King: Transformer AKA Attention is All You Need

Output Probabilities

Softmax

Linear

RNN: compress history into the state vector

UniRNN: attention over history!

BiRNN: attention over whole sequence

A. Vasvani et al. https://arxiv.org/pdf/1706.03762.pdf