

HIHE LOSE.

Patent

Attorney's Docket No. 031221-058
IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of

Edward F. Tokas et al.

Application No.: 09/711,567

Filed: November 13, 2000

For: Contact Metathesis Polymerization

Group Art Unit: 1733

Examiner: Geoffrey L. Knable

Confirmation No.: 8260

SUBMISSION UNDER 37 C.F.R. § 1.114

Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

In response to the Advisory Action mailed May 15, 2003, Applicants submit the Request for Continued Examination filed herewith. In addition, Applicants respectfully request consideration of the following amended claims and new claims in view of the following comments.

IN THE CLAIMS

Please amend claims 84, 85 and 90 as follows:

- 84. (Three Times Amended) A manufactured article comprising a first and second substrate and an adhesive therebetween produced by a method for bonding a first substrate surface to a second substrate surface comprising
 - (a) providing a catalyst at the first substrate surface;
- (b) providing a metathesizable material between the first substrate surface and the second substrate surface or providing a metathesizable material as a component of the second substrate; and
- (c) contacting the catalyst on the first substrate surface with the metathesizable material under normal ambient conditions without an exterior energy source so that the metathesizable material undergoes a metathesis reaction and bonds the first substrate surface to the second substrate surface.
- 85. (Twice Amended) A manufactured article that includes a first substrate surface, a second substrate surface and an adhesive layer interposed therebetween, wherein the first substrate surface comprises an elastomeric material and the