Introduction to Reinforcement Learning

Part 6: Core Theory II: Bellman Equations and Dynamic Programming

Bellman Equations

Recursive relationships among values that can be used to compute values

The tree of transition dynamics

The web of transition dynamics

The web of transition dynamics

4 Bellman-equation backup diagrams

representing recursive relationships among values

- O state
- action
- possible path

Bellman Equation for a Policy π

The basic idea:

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma \left(R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots \right)$$

$$= R_{t+1} + \gamma G_{t+1}$$

So:
$$v_{\pi}(s) = E_{\pi} \left\{ G_{t} | S_{t} = s \right\}$$
$$= E_{\pi} \left\{ R_{t+1} + \gamma v_{\pi} \left(S_{t+1} \right) | S_{t} = s \right\}$$

Or, without the expectation operator:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s') \right]$$

More on the Bellman Equation

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s') \right]$$

This is a set of equations (in fact, linear), one for each state. The value function for π is its unique solution.

Backup diagrams:

Gridworld

- Actions: north, south, east, west; deterministic.
- \square If would take agent off the grid: no move but reward = -1
- \Box Other actions produce reward = 0, except actions that move agent out of special states A and B as shown.

State-value function for equiprobable random policy; $\gamma = 0.9$

Bellman Optimality Equation for q_*

$$q_*(s, a) = \mathbb{E} \left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = s, A_t = a \right]$$
$$= \sum_{s', r} p(s', r | s, a) \left[r + \gamma \max_{a'} q_*(s', a') \right].$$

The relevant backup diagram:

 q_* is the unique solution of this system of nonlinear equations.

Dynamic Programming

Using Bellman equations to compute values and optimal policies (thus a form of planning)

Iterative Methods

$$v_0 \to v_1 \to \cdots \to v_k \to v_{k+1} \to \cdots \to v_\pi$$

$$\text{a "sweep"}$$

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s') \right] \qquad \forall s \in \mathcal{S}$$

A Small Gridworld

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

$$R = -1$$
 on all transitions

$$\gamma = 1$$

- An undiscounted episodic task
- \square Nonterminal states: 1, 2, ..., 14;
- One terminal state (shown twice as shaded squares)
- Actions that would take agent off the grid leave state unchanged
- □ Reward is −1 until the terminal state is reached

Iterative Policy Eval for the Small Gridworld

 V_k for the Random Policy

k = 0

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

 π = equiprobable random action choices

$$k = 1$$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

$$R = -1$$
 on all transitions

$$\gamma = 1$$

	0.0	-1.7	-2.0	-2
k = 2	-1.7	-2.0	-2.0	-2
$\kappa = 2$	-2.0	-2.0	-2.0	- 1
	-2.0	-2.0	-1.7	0

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-24	0.0

☐ An undiscounted episodic task

 \square Nonterminal states: 1, 2, . . . , 14;

One terminal state (shown twice as shaded squares)

Actions that would take agent off the grid leave state unchanged

□ Reward is −1 until the terminal state is reached

k	=	1	0

$$k = \infty$$

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Iterative Policy Evaluation - One array version

Input π , the policy to be evaluated Initialize an array V(s) = 0, for all $s \in S^+$ Repeat $\Delta \leftarrow 0$ For each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number) Output $V \approx v_{\pi}$

Iterative Policy Eval for the Small Gridworld

 V_k for the Random Policy

Greedy Policy w.r.t. V_k

 π = equiprobable random action choices

$$k = 1$$

$$R = -1$$
 on all transitions

k

 $k = \infty$

$$\gamma = 1$$

	0.0	-2.4	-2.9	-5.0
k = 3	-2.4	-2.9	-3.0	-2.9
ζ = 3	-2.9	-3.0	-2.9	-2.4
	-3.0	-2.9	-2.4	0.0

- ☐ An undiscounted episodic task
- \square Nonterminal states: 1, 2, . . ., 14;
- One terminal state (shown twice as shaded squares)
- Actions that would take agent off the grid leave state unchanged
- □ Reward is –1 until the terminal state is reached

	0.0	-6.1	-8.4	-9.0
= 10	-6.1	-7.7	-8.4	-8.4
- 10	-8.4	-8.4	-7.7	-6.1

-20.

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Gambler's Problem

- Gambler can repeatedly bet \$ on a coin flip
- Heads he wins his stake, tails he loses it
- □ Initial capital $\in \{\$1,\$2,...\$99\}$
- ☐ Gambler wins if his capital becomes \$100 loses if it becomes \$0
- Coin is unfair
 - Heads (gambler wins) with probability p = .4
- ☐ States, Actions, Rewards?

Gambler's Problem Solution

Gambler's Problem Solution

Generalized Policy Iteration

Generalized Policy Iteration (GPI):

any interaction of policy evaluation and policy improvement, independent of their granularity.

A geometric metaphor for convergence of GPI:

Jack's Car Rental

- □ \$10 for each car rented (must be available when request rec'd)
- ☐ Two locations, maximum of 20 cars at each
- Cars returned and requested randomly
 - Poisson distribution, *n* returns/requests with prob $\frac{\lambda^n}{n!}e^{-\lambda}$
 - 1st location: average requests = 3, average returns = 3
 - 2nd location: average requests = 4, average returns = 2
- Can move up to 5 cars between locations overnight
- ☐ States, Actions, Rewards?
- ☐ Transition probabilities?

Jack's Car Rental

Solving MDPs with Dynamic Programming

- ☐ Finding an optimal policy by solving the Bellman Optimality Equation requires the following:
 - accurate knowledge of environment dynamics;
 - we have enough space and time to do the computation;
 - the Markov Property.
- ☐ How much space and time do we need?
 - polynomial in number of states (via dynamic programming methods; Chapter 4),
 - BUT, number of states is often huge (e.g., backgammon has about 10²⁰ states).
- ☐ We usually have to settle for approximations.
- ☐ Many RL methods can be understood as approximately solving the Bellman Optimality Equation.

Efficiency of DP

- ☐ To find an optimal policy is polynomial in the number of states...
- □ BUT, the number of states is often astronomical, e.g., often growing exponentially with the number of state variables
- We need to use approximation, but unfortunately classicalDP is not sound with approximation (later)
- ☐ In practice, classical DP can be applied to problems with a few millions of states.
- ☐ It is surprisingly easy to come up with MDPs for which DP methods are not practical.
- ☐ Biggest limitation of DP is that it requires a *probability model* (as opposed to a generative or simulation model)

Unified View

