## Формальные языки

## домашнее задание до 23:59 09.03

## Колмогорова Валерия

1. Построить полный минимальный детерминированный конечный автомат, распознающий язык:

$$\{\omega \in \{a,b\}^* \mid |\omega|_a \ge 2, |\omega|_b \ge 2\}$$



2. Построить полный минимальный ДКА, эквивалентный данному:



3. Построить минимальный конечный автомат, распознающий язык натуральных чисел в десятичной системе без лидирующих нулей, делящихся на 4 и имеющих сумму цифр, равную 2.

## Пример применения алгоритма минимизации

Минимизируем данный автомат:



Автомат полный, в нем нет недостижимых вершин — продолжаем. Строим обратное  $\delta$  отображение.

| $\delta^{-1}$ | 0   | 1        |
|---------------|-----|----------|
| A             |     | В        |
| В             | _   | A        |
| $\mathbf{C}$  | ΑВ  | _        |
| D             | С   | С        |
| $\mathbf{E}$  | D   | _        |
| $\mathbf{F}$  | E F | DFG      |
| G             | G   | ${ m E}$ |

Отмечаем в таблице и добавляем в очередь пары состояний, различаемых словом  $\varepsilon$ : все пары, один элемент которых — терминальное состояние, а второй — не терминальное состояние. Для данного автомата это пары

$$(A,F),(B,F),(C,F),(D,F),(E,F),(A,G),(B,G),(C,G),(D,G),(E,G)$$

Дальше итерируем процесс определения неэквивалентных состояний, пока очередь не оказывается пуста.

(A, F) не дает нам новых неэквивалентных пар. Для (B, F) находится 2 пары: (A, D), (A, G). Первая пара не отмечена в таблице — отмечаем и добавляем в очередь. Вторая пара уже отмечена в таблице, значит, ничего делать не надо. Переходим к следующей паре из очереди. Итерируем дальше, пока очередь не опустошится.

Результирующая таблица (заполнен только треугольник, потому что остальное симметрично) и порядок добавления пар в очередь.

|   | Α            | В            | С        | D            | $\mathbf{E}$ | F | G |
|---|--------------|--------------|----------|--------------|--------------|---|---|
| Α |              |              |          |              |              |   |   |
| В |              |              |          |              |              |   |   |
| С | <b>√</b>     | <b>√</b>     |          |              |              |   |   |
| D | $\checkmark$ | $\checkmark$ | ✓        |              |              |   |   |
| E | <b>√</b>     | <b>√</b>     | <b>√</b> | <b>√</b>     |              |   |   |
| F | $\checkmark$ | $\checkmark$ | ✓        | $\checkmark$ | ✓            |   |   |
| G | <b>√</b>     | <b>√</b>     | <b>√</b> | <b>√</b>     | <b>√</b>     |   |   |

Очередь:

$$(A, F), (B, F), (C, F), (D, F), (E, F), (A, G), (B, G), (C, G), (D, G), (E, G), (B, D), (A, D), (A, E), (B, E), (C, E), (C, D), (D, E), (A, C), (B, C)$$

В таблице выделились классы эквивалентных вершин:  $\{A,B\},\{C\},\{D\},\{E\},\{F,G\}$ . Остается только нарисовать результирующий автомат с вершинами-классами. Переходы добавляются тогда, когда из какого-нибудь состояния первого класса есть переход в какое-нибудь состояние второго класса. Минимизированный автомат:

