Chapter 3

Manipulator Kinematics

Exercises

3.1)	α_{i-1}	a_{i-1}	T
	0	0	Г
- 1	•		1

$$\begin{array}{c|cccc} a_{i-1} & d_i & \\ \hline 0 & 0 & \\ L_1 & 0 & \\ L_2 & 0 & \\ \end{array}) \quad {}_1^0T = \begin{bmatrix} C_1 & -S_1 & 0 & 0 \\ S_1 & C_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} C_{2} & -S_{2} & 0 & L_{1} \\ S_{2} & C_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}_{3}^{2}T = \begin{bmatrix} C_{3} & -S_{3} & 0 & L_{2} \\ S_{3} & C_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{2}T = \begin{bmatrix} C_{3} & -S_{3} & 0 & L_{2} \\ S_{3} & C_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{0}T = {}_{1}^{0}T {}_{2}^{1}T {}_{3}^{2}T = \begin{bmatrix} C_{123} & -S_{123} & 0 & L_{1}C_{1} + L_{2}C_{12} \\ S_{123} & C_{123} & 0 & L_{1}S_{1} + L_{2}S_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

where:

$$C_{123} = \cos(\theta_1 + \theta_2 + \theta_3)$$

$$S_{123} = \sin(\theta_1 + \theta_2 + \theta_3)$$
, etc.

2	3	١
Э.	·Z	

α_{i-1}	a_{i-1}	d_i	θ_{i}
0	0	0	θ_1
-90°	0	d_2	θ_2
90°	0	d_3	180°
0	<i>a</i> ₃	d_2 d_3 d_4	θ_4
90	0	0	θ_5
-90	0	0	θ_6

When $d_3 = 0$ the origins of frames 2 and 3 coin-

cide. Frame 3 is fixed to link 3.

$${}_{1}^{0}T = \begin{bmatrix} C_{1} & -S_{1} & 0 & 0 \\ S_{1} & C_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} C_{2} & -S_{2} & 0 & 0 \\ 0 & 0 & 1 & d_{2} \\ -S_{2} & -C_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}_{3}^{2}T = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & -d_{3} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{4}^{3}T = \begin{bmatrix} C_{4} & -S_{4} & 0 & a_{3} \\ S_{4} & C_{4} & 0 & 0 \\ 0 & 0 & 1 & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}_{5}^{4}T = \begin{bmatrix} C_{5} & -S_{5} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ S_{5} & C_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3.2 (Continued)

$${}_{6}^{5}T = \begin{bmatrix} C_{6} & -S_{6} & 0 & 0\\ 0 & 0 & 1 & 0\\ -S_{6} & -C_{6} & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}_{6}^{0}T = {}_{3}^{0}T_{6}^{3}T$$

$${}_{3}^{0}T = \begin{bmatrix} -C_{1}C_{2} & S_{1} & C_{1}S_{2} & -d_{2}S_{1} + d_{3}C_{1}S_{2} \\ -S_{1}C_{2} & -C_{1} & S_{1}S_{2} & d_{2}C_{1} + d_{3}S_{1}S_{2} \\ S_{2} & 0 & C_{2} & d_{3}C_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{6}^{3}T = \begin{bmatrix} C_{4}C_{5}C_{6} - S_{4}S_{6} & -(C_{4}C_{5}S_{6} + S_{4}C_{6}) & -C_{4}S_{5} & a_{3} \\ (S_{4}C_{5}C_{6} + C_{4}S_{6}) & -S_{4}C_{5}S_{6} + C_{4}C_{6} & -S_{4}S_{5} & 0 \\ S_{5}C_{6} & -S_{5}S_{6} & C_{5} & d_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{6}^{0}T = \left[\begin{array}{cccc} R_{11} & R_{12} & R_{13} & P_{x} \\ R_{21} & R_{22} & R_{23} & P_{y} \\ R_{31} & R_{32} & R_{33} & P_{z} \\ 0 & 0 & 0 & 1 \end{array} \right]$$

where:

$$R_{11} = -C_1 C_2 C_4 C_5 C_6 + C_1 C_2 S_4 S_6 + S_1 S_4 C_5 C_6 + S_1 C_4 S_6 + C_1 S_2 S_5 S_6$$

$$R_{12} = C_1 C_2 C_4 C_5 S_6 + C_1 C_2 S_4 C_6 - S_1 S_4 C_5 S_6 + S_1 C_4 C_6 - S_1 S_2 S_5 S_6$$

$$R_{13} = C_1 C_2 C_4 S_5 - S_1 S_4 S_5 + C_1 S_2 C_5$$

$$R_{21} = -S_1 C_2 C_4 C_5 C_6 + S_1 C_2 S_4 S_6 - C_1 S_4 C_5 C_6 - C_1 C_4 S_6 + S_1 S_2 S_5 C_6$$

$$R_{22} = S_1 C_2 C_4 C_5 S_6 + S_1 C_2 S_4 C_6 + C_1 S_4 C_5 S_6 - C_1 C_4 C_6 - S_1 S_2 S_5 S_6$$

$$R_{23} = S_1 C_2 C_4 S_5 + C_1 S_4 S_5 + S_1 S_2 C_5$$

$$R_{31} = S_2 C_4 C_5 C_6 - S_2 S_4 S_6 + C_2 S_5 C_6$$

$$R_{32} = -S_2C_4C_5S_6 - S_2S_4C_6 - C_2S_5S_6$$

$$R_{33} = -S_2C_4C_5 + C_2C_5$$

$$P_x = -d_2S_1 + (d_3 + d_4)C_1S_2 - a_3C_1C_2$$

$$P_{y} = d_{2}C_{1} + (d_{3} + d_{4})S_{1}S_{2} - a_{3}S_{1}C_{2}$$

$$P_z = (d_3 + d_4)C_2 + a_3S_2$$

3.3)	α_{i-1}	a_{i-1}	di
	0	0	0
	90°	L_1	0
	0	La	0

$${}_{1}^{0}T = \begin{bmatrix} C_{1} & -S_{1} & 0 & 0 \\ S_{1} & C_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}_{2}^{1}T = \begin{bmatrix} C_{2} & -S_{2} & 0 & L_{1} \\ 0 & 0 & -1 & 0 \\ S_{2} & C_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3.3) (Continued)

$${}_{3}^{2}T = \begin{bmatrix} C_{3} & -S_{3} & 0 & L_{2} \\ S_{3} & C_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} {}_{w}^{B}T = {}_{3}^{0}T = {}_{1}^{0}T_{2}^{1}T_{3}^{2}T$$

$${}_{W}^{B}T = \begin{bmatrix} C_{1}C_{23} & -C_{1}S_{23} & S_{1} & L_{1}C_{1} + L_{2}C_{1}C_{2} \\ S_{1}C_{23} & -S_{1}S_{23} & -C_{1} & L_{1}S_{1} + L_{2}S_{1}C_{2} \\ S_{23} & C_{23} & 0 & L_{2}S_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3.4)

α_{i-1}	a_{i-1}	di	θ_i
0	0	$L_1 + L_2$	θ_1
90°	0	0	θ_2
0	L ₃	0	θ_3
0	L ₄	0	0

$${}_{1}^{0}T = \begin{bmatrix} C_{1} & -S_{1} & 0 & 0 \\ S_{1} & C_{1} & 0 & 0 \\ 0 & 0 & 1 & L_{1} + L_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} C_{2} & -S_{2} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ S_{2} & C_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{2}T = \begin{bmatrix} C_{3} & -S_{3} & 0 & L_{3} \\ S_{3} & C_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3.11) Mechanism lies in page as drawn. All \hat{X} -axes are normal to page.

3.13)

3.8) When $\{G\} = \{T\}$ we have:

$$_{W}^{B}T_{T}^{W}T=_{S}^{B}T_{G}^{S}T$$

so,
$$T = W^T T = W^T T^{-1}ST^ST$$

3.15)

Chapter 4

Inverse Manipulator Kinematics

4.9) This is slightly trickier than it looks at first. Approximately:

4.2) This problem can have different solutions depending how it is interpreted. I intended that a goal is specified which includes a desired orientation of the last link. In this case, the solution is fairly easy.

 $_{T}^{S}T$ is given, so compute:

$$_{W}^{B}T = _{S}^{B}T_{T}^{S}T_{T}^{W}T^{-1}$$

Now $_{W}^{B}T =_{3}^{0} T$ which we write out as:

$${}_{3}^{0}T = \begin{bmatrix} R_{11} & R_{12} & R_{13} & P_{x} \\ R_{21} & R_{22} & R_{23} & P_{y} \\ R_{31}^{3} & R_{32} & R_{33} & P_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

From the solution of exercise 3 from chapter 3 we have:

$${}_{3}^{0}T = \begin{bmatrix} C_{1}C_{23} & -C_{1}S_{23} & S_{1} & C_{1}(C_{2}L_{2} + L_{1}) \\ S_{1}C_{23} & -S_{1}S_{23} & -C_{1} & S_{1}(C_{2}L_{2} + L_{1}) \\ S_{23} & C_{23} & 0 & S_{2}L_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Equate elements (1, 3): $S_1 = R_{13}$

Equate elements (2, 3): $-C_1 = R_{23}$

$$\therefore \quad \theta_1 = \operatorname{atan2}(R_{13}, -R_{23})$$

If both $R_{13} = 0$ and $R_{23} = 0$ the goal is unattainable.

Equate elements (1, 4): $P_x = C_1(C_2L_2 + L_1)$

Equate elements (2, 4): $P_y = S_1(C_2L_2 + L_1)$

4.2) (Continued)

If
$$C_1 \neq 0$$
 then $C_2 = \frac{1}{L_2} \left(\frac{P_x}{C_1} - L_1 \right)$

Else
$$C_2 = \frac{1}{L_2} \left(\frac{P_y}{S_1} - L_1 \right)$$

Equate Elements (3,4): $P_z = S_2L_2$

so,
$$\theta_2 = \operatorname{atan2}\left(\frac{P_z}{L_2}, C_2\right)$$

Equate elements (3, 1): $S_{23} = R_{31}$

Equate elements (3, 2): $C_{23} = R_{32}$

so,
$$\theta_3 = \operatorname{atan2}(R_{31}, R_{32}) - \theta_2$$

If both R_{31} and R_{32} are zero, the goal is unattainable.

A second interpretation of the problem is that only a desired position is given (no orientation). In this there may be up to four solutions:

Assume³ $P_{\text{tool}} = L_3 \hat{X}_3$, then

$${}^{0}P_{\text{tool}} = \begin{bmatrix} P_{x} \\ P_{y} \\ P_{z} \end{bmatrix} = \begin{bmatrix} L_{1}C_{1} + L_{2}C_{1}C_{2} + L_{3}C_{1}C_{23} \\ L_{1}S_{1} + L_{2}S_{1}C_{2} + L_{3}S_{1}C_{23} \\ L_{2}S_{2} + L_{3}S_{23} \end{bmatrix}$$

First,

$$S_1 = \frac{P_y}{L_1 + L_2 C_2 + L_3 C_{23}}$$
 $C_1 = \frac{P_x}{L_1 + L_2 C_2 + L_3 C_{23}}$

so,
$$\theta_1 = \operatorname{atan2}(P_y, P_x)$$
 or $\operatorname{atan2}(-P_y, -P_x)$

Since the sign of the " $L_1 + L_2C_2 + L_3C_{23}$ " term may be + or -.

Next, define:

$$\alpha = \begin{cases} \frac{P_x}{C_1} - L_1 & \text{if } C_1 \neq 0\\ \frac{P_y}{S_1} - L_1 & \text{if } S_1 \neq 0 \end{cases}$$

And we have:

$$L_2C_2 + L_3C_{23} = \alpha$$

$$L_2S_2 + L_3S_{23} = P_z$$

Square and add these two equations to get:

$$L_2^2 + L_3^2 + 2L_2L_3C_3 = \alpha^2 + P_z^2$$

$$C_3 = \frac{1}{2L_2L_3}(\alpha^2 + P_z^2 - L_2^2 - L_3^2)$$

$$S_3 = \pm \sqrt{1 - C_3^2}; \quad \theta_3 = \text{atan2}(S_3, C_3)$$

