Lecture 13

Recurrence relations:

Warm up problem: **The Carrot Cake Problem**. (page 20 or page 4 in Ecco) How can we cut a cake into 16 equal pieces using four straight (vertical) cuts?

Definition: A recurrence relation is an equation that defines a sequence where each term of the sequence is defined as a function of the preceding terms.

Example 1: Find a recurrence relation for the maximum number of pieces of cake that can be obtained using n straight (vertical) cuts. Solve the recurrence relation.

Let
$$a_n = max$$
 # of pieces using n cuts.
Now $a_0 = 1$ O $a_1 = 2$ $a_2 = 4$

Next, by stacking a_{n-1} pieces and cutting all of them with one vertical cut we obtain the max of $2a_{n-1}$ pieces.

o a_{n-1} pieces.

is the a_{n-1} recorrence relation

Solve
$$d_0 = 1 = 2^0$$
 $d_1 = 2 \cdot 1 = 2^1$
 $d_2 = 2 \cdot 2^1 = 2^2$
 $d_3 = 2 \cdot 2^1 = 2^2$

Let an = max # of pieces using n cuts.

do=1

Note: for every n-1 new intersection points we have n new pieces.

$$a_0 = 1$$

$$a_n = a_{n-1} + n$$

is the rs.

Solve

$$a_{1} = 1+1$$

$$a_{2} = 1+1+2.$$

$$a_{3} = 1+1+2+3$$

$$a_{n} = 1+(1+2+\cdots+n) = 1+\frac{n(n+1)}{2}$$

Example 3: An old puzzle called The Tower of Hanoi consists of three pegs; A, B, and C. On peg A there are n disks of different diameters arranged by decreasing size from the bottom to the top. You wish to transfer all of the n disks from peg A to peg B. The rules for moving the disks are as follows:

Only one disk may be moved at a time, and it may be moved from one peg to either of the other two pegs. No disk may be placed on top of one of smaller diameter.

Set up a recurrence relation to solve the puzzle. Then solve the recurrence relation.

Example 4: A certain basketball team can only sink foul shots and lay-ups, worth 1 and 2 points, respectively. Let a_n denote the number of ways the team can score n points. (Scoring 1 then 2 is considered to be different than scoring 2 then 1). Write down a recurrence relation for a_n with initial conditions for a_0 and a_1 ; and explain why it holds for all $n \ge 2$.

$$Q_0 = | Q_1 = | Q_1 = | Q_2 = | Q_3 = | Q_4 = | Q_4$$

...
$$a_n = 1$$

$$a_n = a_{n+1} + a_{n-2}$$
is the r.r.