Modelling hypergraphs in Julia with the Hypergraphs.jl package

Przemysław Szufel & Bogumił Kamiński

https://github.com/pszufe/SimpleHypergraphs.jl

Hypergraph

Hypergraph = a generalization of a graph where a **single edge** can connect **more than two** vertices

- Applications
 - social data analysis
 - sending a single email to several recipients
 - a customer giving reviews to several restaurants
 - security vulnerabilities in information networks
- Benefits better capture and analyze dependencies within the network than a standard graph

LightGraphs.jl library - base for the analysis

- Pure Julia
- Extensible
- Full array of standard methods for graph analysis
- Built for performance

Test G1 = Erdos-Renyi (10k, 0.1) (s) G2 = Barabassi-Albert (10k, 400) (s) Betweenness (G2[1:3000]) (s) Closeness (G2, s) Pagen Source: James Fairbanks, Seth Bromberg Source: James Fairbanks,	LightGraphs	NetworkX	twork, Ou	r Story
G1 = Erdos-Renyi (10k, 0.1) (s)	7.13	raphs: Our Ne	∠.65	19.3
G2 = Barabassi-Albert (10k, 400) (s)	(2017), Light 9	12.8	3.6	10.1
Betweenness (G2[1:3000]) (s)	er (2021)	DNF	6.77	3.34
Closeness (G2, s) : shanks, Seth Bio	35.79	DNF	82	44.2
Pager James Fall ber	28.20	5 130	75.8	30.2
Source: Source	255.53	37 400	167	270

SimpleHypergraphs.jl

- Data representation of a hypergraph (redundancy)
 - A collection of vertices belonging to hyperedges
 - A collection of hyperedges containing vertices
- API
 - hypergraph represented as a matrix where $A[v,\,h]$ indicates weight of vertex v in hyperedge h
- Algorithms
 - Modularity and community detection
 - Bipartite view of a hypergraph (zero overhead) → LightGraphs
 - Two-section view of a hypergraph (zero overhead) → LightGraphs

SimpleHypergraphs.jl

ergraph (redundancy) ging to hyperedges

⁴ ntaining vertices

matrix where A[v, h] indicates weight of vertex v

in hyperedge *h*

- Algorithm
 - Modula y and community
 - Bipartite view of a hvp rgra
 - Two-section view of a l₁ype

Yelp dataset use case

- Vertices business
- Edges users
- Hyperedge "a single user has reviewed several restaurants"

- Total:
 - ~35k restaurants and ~1M reviews

Yelp dataset use case

Stars	$H_i(V ; E)$	City	State	Alcohol	Noise Level	Take Out	Category
1	(29479; 244671)	0.8833	0.9562	0.8166	0.8104	0.8176	0.8163
2	(28055; 173140)	0.8582	0.9462	0.7744	0.7651	0.7731	0.7702
3	(30369; 177792)	0.8132	0.9226	0.7075	0.6940	0 6966	0 6965
4	(32987; 301578)				(<u> </u>	• Graphs
5	(32558; 590320)	0.8027	0.9145	0.6963	(0.2		■ Hypergrap
\mathbf{ALL}	(35856; 950488)	0.7500	0.8985	0.6162	(<u> </u>	

Source: Antelmi, A., Cordasco, G., Kamiński, B., Prałat, P., Scarano, V., Spagnuolo, C., & Szufel, P. (2019, July). SimpleHypergraphs. jl—Novel Software Framework for Modelling and Analysis of Hypergraphs. In *International Workshop on Algorithms* and Models for the Web-Graph (pp. 115-129). Springer, Cham.

NMI