

Table of contents

1	Quarto	4
2	Running Code	

List of Figures

List of Tables

Chapter 1

Quarto

Quarto enables you to weave together content and executable code into a finished document. To learn more about Quarto see https://quarto.org.

Chapter 2

Running Code

When you click the **Render** button a document will be generated that includes both content and the output of embedded code. You can embed code like this:

1 + 1

2

Multiple line code

You can add options to executable code like this

4

It looks like you've shared a handwritten solution to a probability problem involving joint and marginal distributions, as well as checking for independence between two random variables \$X) and \$Y). Let's go over the main parts of the solution provided.

1. Problem Statement:

• You're given a joint probability density function f(x,y)=6xy(2-x-y) for $0\leq x\leq 1$ and $0\leq y\leq 1$.

2. Part (i) - Finding $f_X(x)$:

• The goal here is to find the marginal distribution of $X,\,f_X(x),$ by integrating out y:

$$f_X(x) = \int_0^1 6xy(2-x-y) \, dy$$

• It looks like you've correctly set up the integration and simplified it to reach $f_X(x) = 4x - 6x^2$.

3. Part (ii) - Finding $f_Y(y)$:

• Similarly, here you're finding the marginal distribution of Y, $f_Y(y)$, by integrating out x:

$$f_Y(y) = \int_0^1 6xy(2-x-y)\,dx$$

• After simplifying, you reached $f_Y(y) = 4y - 3y^2$, which appears to be correct based on the work shown.

4. Part (iii) - Checking Independence:

- To check if X and Y are independent, you need to verify if $f(x,y) = f_X(x) \cdot f_Y(y)$ for all x and y.
- Based on your calculations, $f(x,y) \neq f_X(x) \cdot f_Y(y)$, so you correctly concluded that X and Y are not independent.

5. Part (iv) - Conditional Probability $f_{X\mid Y}(x\mid y)$:

- Here, you're asked to find the conditional probability distribution of X given Y = y.
- You used the formula:

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

· After substituting and simplifying, you reached the final expres-

sion:

$$f_{X|Y}(x|y) = \frac{6x(2-x-y)}{4y-3y^2}$$

Your calculations seem consistent with the steps for solving this type of problem. If you have any specific questions on these steps or need clarification on a particular part, feel free to ask!