MYSQL – CLIENTE-SERVIDOR E DOMÍNIO DE DADOS

LUCAS LAMOUNIER GONCALVES DUARTE - 2016012688

KEVIN VIEIRA PEREIRA - 2016015385

RODRIGO APARECIDO SILVA MAIA - 2016013095

LISTA DE FIGURAS

Figura 1 - Instalando Serviço do MySQL no S.O	4
Figura 2 - Executando Services.msc	5
FIGURA 3- PAGINA DE SERVIÇOS DO WINDOWS, COM O SERVIÇO DO MYSQL SELECIONADO .	5
Figura 4- Propriedades do Serviço MySQL	6
FIGURA 5- PAINEL DE CONTROLE DO WINDOWS	6
Figura 6- Selecionando Firewall do Windows	7
Figura 7- Firewall do Windows	7
Figura 8 - Página de Regras do Firewall do Windows	7
Figura 9- Criação de nova Regra para porta	8
Figura 10 - Definindo Protocolos e Portas	9
Figura 11- Definindo ação para nova regra	9
Figura 12- Definindo onde será aplicada a regra	10
FIGURA 13 - DEFININDO NOME PARA REGRA.	10
Figura 14 - Fazendo Login na Base de Dados	11
FIGURA 15- CRIANDO USUÁRIOS PARA OS CLIENTES	11
FIGURA 16- CRIANDO BANCO DE DADOS "COM231"	12
FIGURA 17 - PERMITINDO QUE NOVOS USUÁRIOS REALIZE QUALQUER OPERAÇÃO NO BANCO	
"COM231"	12
Figura 18- Acessando arquivos MySQL (Kevin)	13
FIGURA 19 - CONECTADO AO SERVIDOR DA BASE DE DADOS (KEVIN)	13
Figura 20 - Senha Fornecida, conexão realizada (Kevin)	14
Figura 21- Aplicado Teste I (Kevin)	14
Figura 22- Aplicado Teste II (Kevin)	15
Figura 23 - Tabelas do banco (Kevin)	15
Figura 24- Acessando arquivos MySQL (Lucas)	
Figura 25- Conectado ao Servidor da base de dados (Lucas)	16
Figura 26- Definindo banco a ser utilizado	16
Figura 27- Aplicado Teste I (Lucas)	17
Figura 28- Aplicado Teste II (Lucas)	17
Figura 29- Aplicado Teste III (Lucas)	18
Figura 30 - Screenshot dos usuários ativos no servidor	18

LISTA DE TABELAS

TABELA 1 - TIPOS DE STRINGS	18
Tabela 2- Tipos numéricos.	19
TABELA 3- TIPOS JSON (JAVASCRIPT OBJECT NOTATION)	20
TABELA 4- TIPOS DATA/TEMPO'S	
TABELA 5- TIPOS BLOB (LARGE OBJECT)	22
Tabela 6 - Tipos Espaciais	

QUESTÃO 1: Estudar como se configura a arquitetura cliente-servidor em seu SGBD e implementá-la. Para tanto, um membro do grupo deverá ser servidor e os demais clientes.

O MySql é um SGBD relacional de código aberto que se faz presente em vários pacotes de ferramentas para servidores como XAMPP e WAMP. Nesse relatório será abordada uma instância do MySQL que foi instalada juntamente com o pacote de ferramentas XAMPP, dessa forma algumas das configurações de instalação já foram pré-definidas.

A. Configuração do Servidor (Rodrigo)

Quando MySql é instalado através do Xampp ele é iniciado a através do painel do mesmo, então inicialmente deve se cadastrar o MySQL como serviço do S.O que está sendo utilizando no servidor para que ele se inicie assim que a máquina seja ligada (Nosso caso é o Windows 10 64bits).

 Abrindo o terminal do Windows seguir até a pasta onde se encontra os arquivos do MySQL no servidor e em seguida através da linha mysqld -install, instalar o serviço MySQL no Windows.

Figura 1 - Instalando Serviço do MySQL no S.O

2. Em seguida verificar se instalação foi concluída com êxito, acessado a página de serviços do Windows através do comando executável **services.msc.**

Figura 2 - Executando Services.msc

3. Na página de serviços do Windows buscar o serviço chamado **MySQL** e verificar se na coluna **Tipo de inicialização** está definido o valor **Automático**.

Figura 3- Pagina de serviços do Windows, com o Serviço do MySQL Selecionado

3.1. Caso não esteja definido automático, clique duas vezes sobre o serviço, será aberta a janela de **Propriedades do Serviço MySQL** na aba **Geral**, em **Tipo de inicialização** definir o valor **Automático**.

Figura 4- Propriedades do Serviço MySQL

- 4. Reinicie o Windows para que as configurações sejam aplicadas.
- 5. Para que as conexões do MySQL possam ser feitas com sucesso é preciso liberar no firewall a porta 3306. Então no painel de controle do Windows em **Sistema e Segurança**, na opção **firewall do Windows** ir em **Configurações avançadas.**

Figura 5- Painel de Controle do Windows

Figura 6- Selecionando Firewall do Windows

Figura 7- Firewall do Windows

 No menu esquerdo da janela clicar sobre Regras de Entrada e escolher a opção Nova regra.

Figura 8 - Página de Regras do Firewall do Windows

7. Na janela que será aberta pelo procedimento acima na primeira aba **Tipo de regra** escolher a opção **Porta**.

Figura 9- Criação de nova Regra para porta.

7.1.Na aba Protocolos e Portas escolher a opção TCP em "Essa regra se aplica a TCP ou UDP?" e em "Essa regra se aplica a todas as portas locais ou portas locais especificas?" escolher a opção Portas locais especificas e preencher no campo de texto o número da porta a ser liberada, 3306.

Figura 10 - Definindo Protocolos e Portas

7.2.Na Aba **Ação** definir a opção **Permitir conexão**.

Figura 11- Definindo ação para nova regra.

7.3. Na aba **Perfil** manter selecionado apenas a opção **Domínio.**

Figura 12- Definindo onde será aplicada a regra.

7.4. Na aba **Nome** colocar um nome sugestivo com uma descrição sucinta.

Figura 13 - Definindo nome para regra.

- 8. Efetuar o mesmo procedimento para Regras de Saída.
- 9. Seguir ao diretório onde os arquivos do MySQL estão presentes, no caso desse computador é o caminho **C:\xampp\mysql\bin**, e logar na base dados do MySQL

presente no próprio servidor através da linha de comando **mysql – u <usuário> –h localhost,** onde **–u** representa o usuário com qual será efetuado o login e o **–h** o local onde está presente a base de dados, mas como esse comando estão sendo efetuado no servidor será colocado como link para a base de dados a frase **localhost** que aponta para o próprio servidor.

Por padrão do XAMPP o MySQL vem com usuário root já cadastrado no SGBD e ele não possui senha.

Figura 14 - Fazendo Login na Base de Dados

10. Após efetuado o login na base de dados, será criando dois novos usuários para que possam ser utilizados pelos clientes. Através da linha SQL "CREATE USER '<novousuario>' IDENTIFIED BY '<senha>';", serão criados os dois novos usuários.

```
Commandation of the form of th
```

Figura 15- Criando Usuários para os clientes

11. Agora será criando um banco de dados com nome **com231** para ser usado pelos dois usuários recém-criado.


```
Rodrigo Maia@LAPTOP-N9UR32SE c:\xampp\mysql\bin
# mysql -u root
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 2
Server version: 10.1.21-MariaDB mariadb.org binary distribution
Copyright (c) 2000, 2016, Oracle, MariaDB Corporation Ab and others.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
MariaDB [(none)]> CREATE USER 'userOne' IDENTIFIED BY 'master1';
Query OK, 0 rows affected (0.19 sec)
MariaDB [(none)]> CREATE USER 'userTwo' IDENTIFIED BY 'master2';
Query OK, 0 rows affected (0.00 sec)
MariaDB [(none)]> create database com231;
```

Figura 16- Criando Banco de Dados "com231"

12. Conceder permissões aos usuários para que possam acessar, consultar e modificar o banco **com231**.

Essa concessão será efetuada pela linha SQL "GRANT ALL PRIVILEGES ON <NomedoBanco».<NomedaTabela» to <usuário»; ", onde o nome do banco será com231, o nome da tabela receberá o valor "*" para simbolizar que o usuário obterá permissões para todas as tabelas do banco e no final será especificado o usuário que receberá essas permissões.

Figura 17 - Permitindo que novos usuários realize qualquer operação no banco "com231"

B. Configuração do cliente - cliente 1 (Kevin):

1- Primeiro é necessário abrir o terminal de comando do computador, então utiliza-se o comando cd mais o caminho necessário para chegar na pasta bin contida em MySQL, que se encontra no Xampp, sendo que este caminho pode variar de computador para computador. No caso deste computador o comando é cd C:\xampp\mysql\bin, após

aplicar este comando será possível continuar o procedimento para ser configurado como cliente. Para poder simular uma rede local foi utilizado o programa Hamachi que inclusive encontra-se ao lado para demonstrar que este computador está conectado com o computador que está funcionando como servidor;

Figura 18- Acessando arquivos MySQL (Kevin)

2- Então utiliza-se o comando **mysql -u (nome do usuário) -h (o ip do servidor) -p** para conectar com o computador que está funcionando como servidor;

Figura 19 - Conectado ao Servidor da base de dados (Kevin)

3- Depois é necessário fornecer a senha do servidor;

Figura 20 - Senha Fornecida, conexão realizada (Kevin)

4- Então para utilizar um banco de dados desse servidor é necessário fornecer o nome da base de dados, no caso desta demonstração chama-se com231;

Figura 21- Aplicado Teste I (Kevin)

5- Após selecionado o banco de dados pode-se utilizar todos os comandos que o MySQL possibilita, no caso foi utilizado o comando **select** para mostrar que a tabela teste foi criada anteriormente, como resultado do **select** foi mostrado que não possui nenhum registro na tabela teste;

Figura 22- Aplicado Teste II (Kevin)

6- Logo após foi utilizado o comando **show tables** para mostrar que a tabela teste existe na base de dados;

Figura 23 - Tabelas do banco (Kevin)

C. Configuração do cliente - cliente 2 (Lucas):

1- Primeiro é necessário abrir o terminal de comando do computador, então utiliza-se o comando cd mais o caminho necessário para chegar na pasta bin contida em MySQL, que se encontra no Xampp, sendo que este caminho pode variar de computador para computador. No caso deste computador o comando é cd C:\xampp\mysql\bin, após aplicar este comando será possível continuar o procedimento para ser configurado como cliente. Como já citado anteriormente, para poder simular uma rede local foi utilizado o programa Hamachi que inclusive encontra-se ao lado para demonstrar que este computador está conectado com o computador que está funcionando como servidor;

Figura 24- Acessando arquivos MySQL (Lucas)

2- Então utiliza-se o comando **mysql -u (nome do usuário) -h (o ip do servidor) -p** para conectar com o computador que está funcionando como servidor e digite a senha predefinida;

Figura 25- Conectado ao Servidor da base de dados (Lucas)

3- Então para utilizar um banco de dados desse servidor é necessário fornecer o nome da base de dados, no caso desta demonstração chama-se com231;

Figura 26- Definindo banco a ser utilizado

4- Após selecionado o banco de dados pode-se utilizar todos os comandos que o MySQL possibilita, no caso foi utilizado o comando select para mostrar que a tabela teste foi criada anteriormente, como resultado do select foi mostrado que não possui nenhum registro na tabela teste;

Figura 27- Aplicado Teste I (Lucas)

5- Usando agora o comando **insert** para saber se o cliente está realmente inserindo valores na tabela.

Figura 28- Aplicado Teste II (Lucas)

6- E agora repetindo o comando **select** para analisar se a linha foi inserida com sucesso no banco.

Figura 29- Aplicado Teste III (Lucas)

D. Status do Servidor

Para as demonstrações acima foi retirado do servidor um screenshot que exibi os dois clientes conectados a base de dados.

Figura 30 - Screenshot dos usuários ativos no servidor

QUESTÃO 2: Estudar os tipos de dados e seus domínios no SGBD. Existe algum tipo específico, que os integrantes do grupo desconheciam? Para que ele serve?

A seguir encontra-se em forma de tabela os tipos de dados que o MySQL dá suporte, separados em categorias tipo String, Numérico, Data/Tempo, LOB (Large Object) e JSOL (JavaScript Object Notation).

	Tabela 1 - Tipos de Strings.	
\cap	TAMANHO	

SINTAXE DO	TAMANHO	DESCRIÇÃO
TIPO DE DADO:	MÁXIMO(números):	
*CHAR (Tamanho)	Tamanho	Permite o armazenamento de
CHAR (Tallialillo)	multiplicado de pelo	caracteres e palavras. Alguns

	número de bytes que	tipos são ajustáveis ao
	o maior caractere	tamanho da palavra inserida,
	ocupa.	já tipo como CHAR e
	Maior caractere é	BINARY possuem o
	aquele que ocupa o	tamanho definido guardado
	maior espaço em	na memória, independente
	bytes.	da informação armazenada
	Tamanho + 1 se	ali ocupar ou não todo o
	necessário até 255	espaço. O restando dos tipos,
VARCHAR	bytes.	se adequam ao número de
(Tamanho)	Tamanho + 2 se	caracteres que deverá
	necessário acima de	guardar, tendo o Tamanho
	255 bytes.	apenas como um limitador
TINYTEXT	Tamanho + 1 bytes	superior de caracteres, ou
•	onde o tamanho deve	seja, não pode exceder o
(Tamanho)	ser menor que 2^8	tamanho predefinido.
	Tamanho + 2 bytes	
TEXT (Tamanho)	onde o tamanho deve	
	ser menor que 2^16	
MEDIUMTEXT	Tamanho + 3 bytes	
(Tamanho)	onde o tamanho deve	
(Talliailio)	ser menor que 2^24	
LONGTEXT	Tamanho + 4 bytes	
	onde o tamanho deve	
(Tamanho)	ser menor que 2^32	
*BINARY	Número de bytes	
·	igual ao tamanho	
(Tamanho)	definido	
	Tamanho + 1 se	
	necessário até 255	
VARBINARY	bytes.	
(Tamanho)	T 1 2	
	Tamanho + 2 se	
	necessário acima de	

^{* -} O tipo não varia conforme o tamanho da string digitada, ou seja, todo o tamanho definido será separado para guardar a string mesmo que não ocupe todo o espaço.

Tabela 2- Tipos numéricos.

SINTAXE DO TIPO DE DADO:	TAMANHO MÁXIMO(números):	DESCRIÇÃO
BIT(N)	64 ((N+7)/8Bytes)	
TINYINT	255 (1 Byte)	Trabalham apenas com números inteiros, não tendo
SMALLINT	65.535(2Bytes)	parte decimal
MEDIUMINT	16.777.215(3Bytes)	

INT e INTEGER	4.294.967.295(4Bytes)	
BIGINT	2^64-1(8Bytes)	
DECIMAL (N, D) DEC (N, D) NUMERIC (N, D) FIXED (N, D)	4.294.967.295(4Bytes)	Tratam os dados com enfoque na precisão; N é o número total de dígitos, e D é a quantidade de dígitos decimais
FLOAT (N, D) FLOAT (N) DOUBLE (N, D) DOUBLE PRECISION (N, D) REAL (N, D)	2^64-1(8Bytes)	Utilizam de ponto flutuante; N é o número total de dígitos, e D é a quantidade de dígitos decimais
BOOL BOOLEAN	0 e 1, sendo 0 igual a Falso e qualquer outro valor é igual a Verdadeiro (1Byte)	Utiliza-se para armazenamento o Tinyint(1)

Tabela 3- Tipos JSON (JavaScript Object Notation)

SINTAXE DO TIPO DE DADO:	TAMANHO MÁXIMO:	DESCRIÇÃO:
JSON	4.294.967.295 bytes (4GB)	Tipo JSON (JavaScript Object Notation) permite o armazenamento de forma eficiente de objetos, funcionando praticamente como um array, o que permite uma busca pela chave ou pelo índice, que torna a busca nesse tipo mais eficiente por não ter que ler todos os valores dentro do documento

Tabela 4- Tipos DATA/TEMPO's

SINTAXE DO TIPO DE DADO:	TAMAN HO MÁXIM O:	DESC	CRIÇÃO:
DATE	3 Bytes	O tipo Date é usado quando você precisa de valores que contém informações de data e também hora. Formato: YYYY-MM-DD HH:MM:SS	
DATETIME	8 Bytes	O tipo DATATIMA se assemelha ao DATE porém ele não guarda informações de horas, minutos e segundos	
TIMESTAMP (N)	4 Bytes	pode ser u automaticament como insert e u hor	AMP é um tipo que utilizado para se marcar operações apdate com a data e a atual. TIMESTAMP com Formato do Display YYYYMMDDHHMMSS YYMMDDHHMMSS
		TIMESTAMP (10) TIMESTAMP (8) TIMESTAMP (6) TIMESTAMP (4) TIMESTAMP (2) os valores de N	YYMMDDHHMM YYYYMMDD YYMMDD YYMM YY entre os parênteses:
TIME	3 Bytes	O tipo TIME guarda apenas informações sobre a hora no formato HH:MM:SS	
YEAR[(2 4)]	1 Byte	O tipo YEAR guarda informações de ano, podendo variar entre dois e quatros caracteres, por exemplo, 96 ou 1996.	

Tabela 5- Tipos BLOB (Large Object)

SINTAXE DO TIPO DE DADO:	TAMANHO MÁXIMO:	DESCRIÇÃO
TINYBLOB	255 bytes	O tipo BLOB (Binary Large Object) é utilizado para armazenamento de qualquer
BLOB (Size)	65.535 bytes	tipo de dados em formato binário, como por exemplo uma imagem. No MySql os campos
MEDIUMBLOB	16.777.215 bytes	BLOBs são implementados através de campos de texto (TEXT) não case-sensitive e
LONGBLOB	4.294.967.295 bytes (4GB)	não podem ser usados como chave primária exceto o TINYBLOB.

Tabela 6 - Tipos Espaciais

SINTAXE DO TIPO DE DADO:	TAMANHO MÁXIMO:	DESCRIÇÃO
GEOMETRY	4 Bytes	Pode armazenar qualquer tipo espacial, exceto GEOMETRYCOLLECTION.
POINT	4 Bytes	Armazena um ponto geométrico.
LINESTRING	4 Bytes	Armazena uma linha, guardando em si os pontos que a constituem.
POLYGON	4 Bytes	Armazena dimensões de um polígono.
MULTIPOINT	4 GB	Armazena uma coleção de POINT's.
MULTILINESTR ING	4 GB	Armazena uma coleção de LINESTRING's.
MULTIPOLYGO N	4 GB	Armazena uma coleção de POLYGON's.
GEOMETRYCO LLECTION	4 GB	Pode armazenar uma coleção de objetos espaciais de qualquer tipo.

^{*}Tipos desconhecidos pelo grupo: JSOL, Espaciais, e BLOB, eram desconhecidos por todos os membros do grupo, dentro dos tipos numéricos e textuais os tipos precedidos por tiny foram

uma novidade para os membros também por estarem acostumados a linguagens como Java que não os havia;

REFERÊNCIA:

MySQL 5.7 Reference Manual, Oracle, 2018. Disponível em: https://dev.mysql.com/doc/refman/5.7/en/data-types.html >. Acesso em 11/03/2018.