第6章 STC单片机CPU指令系统

何宾 2018.03

JB bit,rel

■ 该命令判断bit位中的数据是否为1,如果为1则跳转到(PC) + rel 指定的目标地址;否则,程序转向下一条指令,该操作不影响 标志位。

JB bit,rel 指令的内容

助记符	操作	标志	操作码	字节数	周期数
JB	$(PC) \leftarrow (PC) + 3$	N	00100000	2	5
bit,rel	如果 (bit) = 1,则 (PC) ← (PC) + rel	1 1	0010000	3	3

注: 在操作码后面跟着一个字节的位地址和一个字节的偏移量rel。

【例】假设端口1的数据为CAH (11001010B) , 累加器A的内容为56H (01010110B) 。则执行指令:

JB P1.2, LABEL1 ; 跳转条件不成立

JB ACC.2, LABEL2 ; 跳转条件成立

结果:

JNB bit, rel

■ 该命令判断bit中的数据是否为0,如果为0则程序跳转到(PC) + rel指定的目标地址去,否则,程序转向下一条指令,该操作不影响标志位。

JNB bit,rel 指令的内容

助记符	操作	标志	操作码	字节	周期
JNB bit ,rel	$(PC) \leftarrow (PC) + 3$ 如果 (bit) = 0,则(PC) \leftarrow (PC) + rel	N	00110000	3	5

注: 在操作码后面跟着一个字节的位地址和一个字节的偏移量rel。

【例】假设端口1的数据为CAH (11001010B) , 累加器A的内容为56H (01010110B) 。则执行指令:

JNB P1.3, LABEL1 ; 跳转条件不成立

JNB ACC.3, LABEL2; 跳转条件成立

结果:

JC rel

■ 该命令判断进位标志位CY是否为1,如果为1则跳转到 (PC)+rel 指定的目标地址;否则,程序转向下一条指令,该操作不影响 标志位。

JC rel 指令的内容

助记符	操作	标志	操作码	字节数	周期数
JC rel	$(PC) \leftarrow (PC) + 2$ 如果 $(CY) = 1$,则 $(PC) \leftarrow (PC) + rel$	N	01000000	2	3

注: 在操作码后面跟着一个字节的偏移量rel。

【例】假设进位标志为CY为0,则执行指令:

JC LABEL1 ; 跳转条件不成立

CPL C ; 取反, 进位标志CY变为1

JC LABEL2 ; 跳转条件成立

结果:

JNC rel

■ 该命令判断进位标志位CY是否为0,如果为0则跳转到(PC)+rel 指定的目标地址;否则,程序转向下一条指令,该操作不影响标 志位。

JNC rel 指令的内容

助记符	操作	标志	操作码	字节数	周期数
JNC rel	$(PC) \leftarrow (PC) + 2$ 如果 $(CY) = 0$,则 $(PC) \leftarrow (PC) + rel$	N	01010000	2	3

注: 在操作码后面跟着一个字节的偏移量rel。

【例】假设进位标志为CY为1,则执行指令:

JNC LABEL1 ; 跳转条件不成立

CPL C ; 取反, 进位标志CY变为0

JNC LABEL2 ; 跳转条件成立

结果:

JBC bit,rel

■ 该命令判断指定bit位是否为1,如果为1则将该位清零,并且跳转到(PC) + rel指定的目标地址;否则,程序转向下一条指令,该操作操作不影响标志位。

JBC bit, rel 指令的内容

助记符	操作	标志	操作码	字节数	周期数
JBC bit , rel	$(PC) \leftarrow (PC) + 3$ 如果 $(bit) = 1$,则: bit $\leftarrow 0$, $(PC) \leftarrow (PC) + rel$	N	00010000	3	5

注: 在操作码后面跟着一个字节的位地址和一个字节的偏移量rel。

【例】假设累加器A的内容为56H (01010110B) ,则执行指令:

JBC ACC.3,LABEL1 ; 跳转条件不成立

JBC ACC.2 LABEL2 ; 跳转条件成立,并且将ACC.2清零

结果:

程序跳转到标号LABEL2的地方执行,累加器A的内容变为52H (01010010B)。