Ondas y Fluidos Segundo examen parcial 22 de septiembre de 2016

UNO

Una cuerda de masa = 2 gramos y longitud = 1 metro vibra con frecuencia de 600 Hz en un modo de tres segmentos (es decir, 2 nodos fuera de los dos extremos). Calcule la tensión.

$$\lambda = 2/3 \text{ metro}$$
 V = $\lambda f = 400 \text{ m/s}$ $\mu = 2 \text{ g/m}$ T = $\mu V^2 = 320 \text{ N}$

DOS

La velocidad del sonido en el agua es 1500 m/s. Usando esto, calcule la compresibilidad del agua. (Compresibilidad = disminución fraccional del volumen por aumento de presión)

La teoría relevante está al comienzo del capítulo 20 de Marion & Hornyak.

Densidad del agua = ρ = 1000 kg/m³

Velocidad de la onda = U = $raiz(\beta/\rho)$ $\beta = \rho U^2 = 2,25 \times 10^9$ pascales

Compresibilidad = $(-\Delta V/V)/\Delta P$ = -(1/V)(dV/dP) = $1/\beta$ = $4.4 \times 10^{-10} Pa^{-1}$

TRES

Un tubo de órgano tiene 3 metros de longitud. ¿Cuál es su frecuencia natural más baja, si tiene ambos extremos abiertos? ¿Y si tiene un extremo cerrado?

Ambos extremos abiertos:	λ = 6 m	f = 56 Hz
Un extremo cerrado:	λ = 12 m	f = 28 Hz

CUATRO

A 1 metro de un parlante el sonido tiene 100 decibeles. ¿Cuántos decibeles tiene el sonido a 100 metros del mismo parlante? Asuma que el sonido se propaga isotrópicamente y que no hay pérdidas de energía.

D aumenta $100 = 10^2$ veces, luego I disminuye 10^4 veces. $10 \text{ Log}(10^4) = 40 \text{ dB}$ A 100 metros de distancia el sonido tiene 60 dB.