

COMP 4462 Data Visualization Tutorial

Leo Yu Ho, Lo Wenchao Li

Friday 24 April, 2019

https://bit.ly/vis-t08

Visualization with D3.js

- SVG (Scalable Vector Graphics)
 - An extension of HTML for representing scalar graphics in XML syntax
 - Available in all the web browsers

D3.js

- The most widely used visualization library
- The library behind Vega, Vega-Lite and Altair
- Binding data with SVG DOM, marking data points visually onto screen
- Imperative syntax, compared to the declarative syntax of Vega-Lite and Altair

Why D3.js

- Exploring a dataset, use Altair with Python or Tableau instead
- XEmbed visualization in web applications, use Vega-Lite instead
- Make customized plots, customized interactions or transitions

Cost

- Much more coding, much easier to make mistakes
- Check <u>Vega-Lite Gallery</u> and <u>Vega Gallery</u> before committing to D3.js

Sign in Observable

1. Go to the notebook of this tutorial

4. Authorize observablehq

Fork Observable notebook

1. Go to the notebook of this tutorial

Visualization with D3.js

- See the <u>Observable notebook of this tutorial</u>
- SVG
- Scales
 - Linear scale (numeric, color)
 - Time scale
 - Point scale (categorical)
- Coordinate System
 - Axes
 - Cartesian coordinate (X and Y)
 - Polar coordinate (angular and distance)
- Marks and channel
 - Point: scatter plot
 - Line: (multi-)line chart, parallel coordinate, radar chart
- Selection

Publish your Observable notebook

- 1. In your working copy of the notebook
 - 2. Click Publish

Lab exercise

Tasks

- Sign in <u>Observable</u>
- Open this Observable notebook and fork it (otherwise, your work will not be saved)
- Read through the notebook and fill in the "TODO" cells
- If you are going to use D3.js in your project, make sure you understand these concepts:
 - What is SVG? What is "selection" in D3.js?
- You will make 4 visualizations:
 - Scatter plot, multi-line chart, parallel coordinates, and radar chart
- Publish your notebook when finished
- Copy the URL of your Observable notebook and submit to Canvas
 - The URL should be something like:
 - https://observablehq.com/@yourname/comp-4462-data-visualization-tutorial-8-visualization-wit
- Help us improve this tutorial by answering <u>the questionnaire</u>

Optional

- \circ Like <u>our Observable notebook</u> \heartsuit \heartsuit and star <u>our GitHub repository</u> $\uparrow \uparrow \uparrow \uparrow$ Thank you! \heartsuit
- Learn about <u>how selection works</u> and check out <u>the notebooks created by D3</u>

More on D3.js

- More on SVG
 - A <u>list of all the SVG elements</u> and a <u>list of all the SVG attributes</u>
- More on D3.js
 - A <u>long list of d3.js examples</u>
 - Even more examples on <u>Block Builder</u>
 - Observable notebooks by D3
 - Color schemes available in D3.js
 - The reference book of these tutorials:
 - Interactive Data Visualization for the Web by Scott Murray
 - Code examples are available on <u>this GitHub repository</u>
- Interactions, transition and maps
 - Next tutorial: Visualization and Interaction with D3.js

Next tutorial

Visualization and Interaction with D3.js

- We will use <u>Observable</u> and <u>D3.js</u> again
- And learn about adding interactions to our visualizations!