2-14 *B*-Trees

Hengfeng Wei

hfwei@nju.edu.cn

June 02, 2020

Organization and Maintenance of Large Ordered Indexes

R. BAYER and E. McCREIGHT

Received September 29, 1971

Summary. Organization and maintenance of an index for a dynamic random access file is considered. It is assumed that the index must be kept on some pseudo random access backup store like a disc or a drum. The index organization described allows retrieval, insertion, and deletion of keys in time proportional to $\log_k I$ where I is the size of the index and k is a device dependent natural number such that the performance of the scheme becomes near optimal. Storage utilization is at least 50% but generally much higher. The pages of the index are organized in a special data-structure, so-called B-trees. The scheme is analyzed, performance bounds are obtained, and a near optimal k is computed. Experiments have been performed with indexes up to 1000000 keys. An index of size 15000 (100000) can be maintained with an average of 9 (at least 4) transactions per second on an IBM 360/44 with a 2311 disc.

Organization and Maintenance of Large Ordered Indexes

R. BAYER and E. McCreight

Received September 29, 1971

Summary. Organization and maintenance of an index for a dynamic random access file is considered. It is assumed that the index must be kept on some pseudo random access backup store like a disc or a drum. The index organization described allows retrieval, insertion, and deletion of keys in time proportional to $\log_k I$ where I is the size of the index and k is a device dependent natural number such that the performance of the scheme becomes near optimal. Storage utilization is at least 50% but generally much higher. The pages of the index are organized in a special data-structure, so-called B-trees. The scheme is analyzed, performance bounds are obtained, and a near optimal k is computed. Experiments have been performed with indexes up to 100000 keys. An index of size 15000 (100000) can be maintained with an average of 9 (at least 4) transactions per second on an IBM 360/44 with a 2311 disc.

"Bayer and McCreight introduced B-trees in 1972;

they did not explain their choice of name."

Organization and Maintenance of Large Ordered Indexes

R. BAYER and E. McCREIGHT

Received September 29, 1971

Summary. Organization and maintenance of an index for a dynamic random access file is considered. It is assumed that the index must be kept on some pseudo random access backup store like a disc or a drum. The index organization described allows retrieval, insertion, and deletion of keys in time proportional to $\log_k I$ where I is the size of the index and k is a device dependent natural number such that the performance of the scheme becomes near optimal. Storage utilization is at least 50% but generally much higher. The pages of the index are organized in a special data-structure, so-called B-trees. The scheme is analyzed, performance bounds are obtained, and a near optimal k is computed. Experiments have been performed with indexes up to 1000000 keys. An index of size 15000 (100000) can be maintained with an average of 9 (at least 4) transactions per second on an IBM 360/44 with a 2311 disc.

ID	Name	Gender	Age	
----	------	--------	-----	--

"Bayer and McCreight introduced B-trees in 1972;

they did not explain their choice of name."

2-way vs. multi-way

Fig. 29. A large binary search tree can be divided into "pages."

indexes (keys) vs. pages

Minimum (TC 18.2-3)

Explain how to find the $\underline{\text{minimum}}$ key stored in a B-tree.

Minimum (TC 18.2-3)

Explain how to find the $\underline{\text{minimum}}$ key stored in a B-tree.

the leftmost key in the leftmost node

B-tree with 37 characters.

B-tree with 37 characters.

$$x.leaf = 0$$

B-tree with 37 characters.

$$x.leaf = 0$$

$$H$$
 N S V

Explain how to find the predecessor of a given key (x, i) stored in a B-tree.

B-tree with 37 characters.

$$x.leaf = 0$$

$$H \qquad N \qquad S \qquad V$$

find the rightmost key in $x.c_i$

x.leaf = 1

$$x.leaf = 1$$

$$i \ge 2 \implies (x, i - 1)$$

 $i=1 \implies \text{ find } (y,j) \text{ such that } x \text{ is the leftmost key in } y.c_{j+1}$

$$x.leaf = 1$$

$$P$$
 U T O A

$$i \ge 2 \implies (x, i - 1)$$

 $i=1 \implies \text{find } (y,j) \text{ such that } x \text{ is the leftmost key in } y.c_{j+1}$

A is the only key which has no predecessor.

1: **procedure** B-Tree-Predecessor $(T, x, i) \rightarrow x.key_i$ in B-tree T

- 2: **if** x.leaf = 0 **then**
- 3: **return** the rightmost key in $x.c_i$

1: **procedure** B-Tree-Predecessor(T, x, i) $\triangleright x.key_i$ in B-tree T

2: **if** x.leaf = 0 **then**

5:

3: **return** the rightmost key in $x.c_i$

4: else if $i \ge 2$ then $\triangleright x.leaf = 1$

return (x, i-1)

```
1: procedure B-Tree-Predecessor(T, x, i)
                                                                    \triangleright x.key_i in B-tree T
         if x.leaf = 0 then
 2:
              return the rightmost key in x.c_i
 3:
         else if i \ge 2 then
                                                                                \triangleright x.leaf = 1
 4:
              return (x, i-1)
 5:
                                                                      \triangleright x.leaf = 1 \land i = 1
         else
 6:
 7:
              y \leftarrow x.p
              while y \neq T.root \land x = y.c_1 do \triangleright exit: y = T.root \lor x \neq y.c_1
 8:
 9:
                  x \leftarrow y
10:
                  y \leftarrow y.p
```

```
1: procedure B-Tree-Predecessor(T, x, i)
                                                                    \triangleright x.key_i in B-tree T
         if x.leaf = 0 then
 2:
 3:
             return the rightmost key in x.c_i
         else if i \ge 2 then
                                                                                \triangleright x.leaf = 1
 4:
             return (x, i-1)
 5:
                                                                      \triangleright x.leaf = 1 \land i = 1
         else
 6:
 7:
             y \leftarrow x.p
             while y \neq T.root \land x = y.c_1 do \triangleright exit: y = T.root \lor x \neq y.c_1
 8:
 9:
                  x \leftarrow y
10:
                  y \leftarrow y.p
             if x = y.c_1 then
                                                                \triangleright y = T.root \land x = y.c_1
11:
                  return "no predecessor"
12:
```

```
1: procedure B-Tree-Predecessor(T, x, i)
                                                                     \triangleright x.key_i in B-tree T
           if x.leaf = 0 then
   2:
   3:
               return the rightmost key in x.c_i
          else if i \ge 2 then
                                                                                 \triangleright x.leaf = 1
  4:
               return (x, i-1)
   5:
                                                                       \triangleright x.leaf = 1 \land i = 1
          else
  6:
   7:
               y \leftarrow x.p
               while y \neq T.root \land x = y.c_1 do \triangleright exit: y = T.root \lor x \neq y.c_1
  8:
  9:
                    x \leftarrow y
 10:
                    y \leftarrow y.p
 11:
               if x = y.c_1 then
                                                                 \triangleright y = T.root \land x = y.c_1
                    return "no predecessor"
 12:
               else
                                                                                  \triangleright x \neq y.c_1
 13:
                    i \leftarrow 2
 14:
                    while y.c_i \neq x do
 15:
                        j \leftarrow j + 1
 16:
                    return (y, j-1)
 17:
                                                               x = y.c_{i}
Hengfeng Wei (hfwei@nju.edu.cn)
                                           2-14 B-Trees
                                                                            June 02, 2020
                                                                                             8 / 27
```

Insertion (TC 18.2-4 \star)

Suppose that we insert the keys $\{1, 2, ..., n\}$ in increasing order into an empty B-tree with minimum degree 2.

How many nodes, denoted X_n , does the final B-tree have?

Insertion (TC 18.2-4 \star)

Suppose that we insert the keys $\{1, 2, ..., n\}$ in increasing order into an empty B-tree with minimum degree 2.

How many nodes, denoted X_n , does the final B-tree have?

$$X_0 = 1$$

By Yangjing Dong (June 2018)

https://maxmute.com/TC18.2-4.html

Only **SPLIT** can create new nodes.

Only **SPLIT** can create new nodes.

root split

+2

Only **SPLIT** can create new nodes.

root split

+2

non-root SPLIT

+1

- (I) Which nodes will split? S
- (II) When does each node $s \in S$ SPLIT? $T_s = \langle s_1, s_2, \dots \rangle$
- (III) How does it SPLIT, as a root or a non-root? $T_s = s_R \uplus s_{NR}$

- (I) Which nodes will split? S
- (II) When does each node $s \in S$ SPLIT? $T_s = \langle s_1, s_2, \dots \rangle$
- (III) How does it split, as a root or a non-root? $T_s = s_R \uplus s_{NR}$

$$X_n = 1 + \sum_{s \in S} \left(2 |s_R| + |s_{NR}| \right)$$

- (I) Which nodes will split? S
- (II) When does each node $s \in S$ SPLIT? $T_s = \langle s_1, s_2, \dots \rangle$
- (III) How does it split, as a root or a non-root? $T_s = s_R \uplus s_{NR}$

$$X_n = 1 + \sum_{s \in S} \left(2 |s_R| + |s_{NR}| \right)$$

$$X_n = 1 + \sum_{s \in S} \left(2 |s_R| + |s_{NR}| \right)$$

(I) Which nodes will Split?

$$X_n = 1 + \sum_{s \in S} \left(2 |s_R| + |s_{NR}| \right)$$

(I) Which nodes will SPLIT?

$$1, 2, \ldots, 30$$

 $S = \{ \text{the nodes in the rightmost chain} \}$

→□▶ ◆□▶ ◆■▶ ◆■▶ ● 釣らで

(II) When does each node $s \in S$ SPLIT?

$$T_s = \langle s_1, s_2, \dots \rangle$$

(II) When does each node $s \in S$ SPLIT?

$$T_s = \langle s_1, s_2, \dots \rangle$$

Let's focus the rightmost node first, denoted A.

1 2 1 2 3

 $A \text{ SPLIT} : 4, \quad 6, \quad 8, \quad 10, \quad 12, \quad \dots$

Let's consider the parent of A, denoted $B \triangleq p(A)$.

Let's consider the parent of A, denoted $B \triangleq p(A)$.

Every time A splits, B obtains a new key.

8

 $A \; \text{Split} : 4, \quad 6, \quad 8, \quad 10, \quad 12, \quad \dots$

 $B \; \text{Split} : 9, \quad 13, \quad 17, \quad 21, \quad 25, \quad \dots$

Let's consider the parent of B, denoted C = p(B).

 $A \text{ SPLIT} : 4, \quad 6, \quad 8, \quad 10, \quad 12, \quad \dots$

 $B \; \text{Split} : 9, \quad 13, \quad 17, \quad 21, \quad 25, \quad \dots$

C Split: 18, 26, 34, 42, 50, ...

 $A \text{ SPLIT} : 4, \quad 6, \quad 8, \quad 10, \quad 12, \quad \dots$

 $B \text{ SPLIT} : 9, \quad 13, \quad 17, \quad 21, \quad 25, \quad \dots$

C Split: 18, 26, 34, 42, 50, ...

A:1 B:2 C:3

 T_i : the first time point the *i*-th node splits

- $A \text{ SPLIT} : 4, \quad 6, \quad 8, \quad 10, \quad 12, \quad \dots$
- $B \text{ SPLIT} : 9, \quad 13, \quad 17, \quad 21, \quad 25, \quad \dots$
- C SPLIT: 18, 26, 34, 42, 50, ...
 - $A:1 \qquad B:2 \qquad C:3$

 T_i : the first time point the *i*-th node splits

$$T_1 = 4$$

$$A \text{ SPLIT} : 4, \quad 6, \quad 8, \quad 10, \quad 12, \quad \dots$$

$$B \text{ SPLIT} : 9, \quad 13, \quad 17, \quad 21, \quad 25, \quad \dots$$

$$C$$
 Split: 18, 26, 34, 42, 50, ...

$$A:1$$
 $B:2$ $C:3$

 T_i : the first time point the *i*-th node splits

$$T_1 = 4$$

$$T_i = \underbrace{T_{i-1}}_{\text{its right child first split}} + \underbrace{2 \times 2^{i-1}}_{\text{its right child split twice more}} + \underbrace{1}_{\text{insert one more}}$$

its right child split twice more its right child first split

$$A \text{ SPLIT} : 4, \quad 6, \quad 8, \quad 10, \quad 12, \quad \dots$$

$$B \text{ SPLIT} : 9, \quad 13, \quad 17, \quad 21, \quad 25, \quad \dots$$

$$C$$
 Split: 18, 26, 34, 42, 50, ...

$$A:1$$
 $B:2$ $C:3$

 T_i : the first time point the *i*-th node splits

$$T_1 = 4$$

$$T_i = \underbrace{T_{i-1}}_{\text{its right child first split}} + \underbrace{2 \times 2^{i-1}}_{\text{its right twice more}} + \underbrace{1}_{\text{insert one more}}$$

its right child first split

$$T_i = 2^{i+1} + i - 1$$

$$X_n = 1 + \sum_{s \in S} \left(2 |s_R| + |s_{NR}| \right)$$
$$(T_s = s_R \uplus s_{NR})$$

(III) How does it SPLIT, as a root or a non-root?

$$X_n = 1 + \sum_{s \in S} \left(2 |s_R| + |s_{NR}| \right)$$
$$(T_s = s_R \uplus s_{NR})$$

(III) How does it Split, as a root or a non-root?

$$s_R = \{s_1\}$$
 $s_{NR} = \{s_2, s_3, \dots\}$
 $|s_R| = 1$ $|s_{NR}| = |T_s| - 1$

$$X_n = 1 + \sum_{s \in S} \left(2 |s_R| + |s_{NR}| \right)$$
$$(T_s = s_R \uplus s_{NR})$$

(III) How does it SPLIT, as a root or a non-root?

$$s_R = \{s_1\}$$
 $s_{NR} = \{s_2, s_3, \dots\}$
 $|s_R| = 1$ $|s_{NR}| = |T_s| - 1$

$$X_n = 1 + \sum_{s \in S} (2 + |T_s| - 1) = 1 + \sum_{s \in S} (|T_s| + 1)$$

$$X_n = 1 + \sum_{s \in S} (|T_s| + 1)$$
 $T_i = 2^{i+1} + i - 1$

$$X_n = 1 + \sum_{s \in S} (|T_s| + 1)$$
 $T_i = 2^{i+1} + i - 1$

$$X_n = 1 + \sum_{s \in S} (|T_s| + 1)$$
 $T_i = 2^{i+1} + i - 1$

$$X_n = 1 + \sum_{i=1}^{\infty} \left[T_i \le n \right] \left(\left(\left\lfloor \frac{n - T_i}{2^i} \right\rfloor + 1 \right) + 1 \right)$$

$$X_n = 1 + \sum_{s \in S} (|T_s| + 1)$$
 $T_i = 2^{i+1} + i - 1$

$$X_n = 1 + \sum_{i=1}^{\infty} [T_i \le n] \left(\left(\left\lfloor \frac{n - T_i}{2^i} \right\rfloor + 1 \right) + 1 \right)$$
$$= 1 + \sum_{i=1}^{\infty} [T_i \le n] \left(\left\lfloor \frac{n - T_i}{2^i} \right\rfloor + 2 \right)$$

$$X_n = 1 + \sum_{s \in S} (|T_s| + 1)$$
 $T_i = 2^{i+1} + i - 1$

$$X_n = 1 + \sum_{i=1}^{\infty} \left[T_i \le n \right] \left(\left(\left\lfloor \frac{n - T_i}{2^i} \right\rfloor + 1 \right) + 1 \right)$$

$$= 1 + \sum_{i=1}^{\infty} \left[T_i \le n \right] \left(\left\lfloor \frac{n - T_i}{2^i} \right\rfloor + 2 \right)$$

$$= 1 + \sum_{i=1}^{\infty} \left[T_i \le n \right] \left(\left\lfloor \frac{n - 2^{i+1} - i + 1}{2^i} \right\rfloor \right)$$

$$X_n = 1 + \sum_{s \in S} (|T_s| + 1)$$
 $T_i = 2^{i+1} + i - 1$

$$X_n = 1 + \sum_{i=1}^{\infty} \left[T_i \le n \right] \left(\left(\left\lfloor \frac{n - T_i}{2^i} \right\rfloor + 1 \right) + 1 \right)$$

$$= 1 + \sum_{i=1}^{\infty} \left[T_i \le n \right] \left(\left\lfloor \frac{n - T_i}{2^i} \right\rfloor + 2 \right)$$

$$= 1 + \sum_{i=1}^{\infty} \left[T_i \le n \right] \left(\left\lfloor \frac{n - 2^{i+1} - i + 1}{2^i} \right\rfloor \right)$$

$$= 1 + \sum_{i \ge 1} \left\lfloor \frac{n - i + 1}{2^i} \right\rfloor$$

$$X_n = 1 + \sum_{s \in S} (|T_s| + 1)$$
 $T_i = 2^{i+1} + i - 1$

$$X_n = 1 + \sum_{i=1}^{\infty} \left[T_i \le n \right] \left(\left(\left\lfloor \frac{n - T_i}{2^i} \right\rfloor + 1 \right) + 1 \right)$$

$$= 1 + \sum_{i=1}^{\infty} \left[T_i \le n \right] \left(\left\lfloor \frac{n - T_i}{2^i} \right\rfloor + 2 \right)$$

$$= 1 + \sum_{i=1}^{\infty} \left[T_i \le n \right] \left(\left\lfloor \frac{n - 2^{i+1} - i + 1}{2^i} \right\rfloor \right)$$

$$= 1 + \sum_{\substack{i \ge 1 \\ 2^{i+1} + i - 1 \le n}} \left\lfloor \frac{n - i + 1}{2^i} \right\rfloor$$

$$= 1 + \sum_{\substack{i \ge 1 \\ 2^{i+1} - i \le n}} \left\lfloor \frac{n - i}{2^{i+1}} \right\rfloor$$

Thank You!

Office 302

Mailbox: H016

hfwei@nju.edu.cn