

Himpunan

Definisi

- Himpunan (set): Kumpulan objek (unik) yang tidak memperhatikan urutan anggota.
- Elemen atau anggota: objek di dalam himpunan
- Notasi a ∈ A :
 - a adalah elemen dari himpunan A
- Notasi a ∉ A:
 - a bukan elemen dari himpunan A

Penyajian Himpunan

Metode Roster (dengan daftar)

Himpunan semua huruf vokal

$$V = \{a, e, i, o, u\}$$

Himpunan bilangan ganjil positif kurang dari 10

$$O = \{1, 3, 5, 7, 9\}$$

Himpunan bilangan bulat kurang dari 50

$$B = \{1, 2, 3, ..., 49\}$$

Tanda elipsis "..." digunakan jika pola dari elemen-elemen sudah jelas.

Penyajian Himpunan

Notasi Set Builder

- Menyatakan kriteria yang harus dipenuhi setiap anggota himpunan.
 - Contoh: $O = \{x \mid x \text{ adalah bilangan bulat ganjil positif kurang dari 10}\}$
- Menggunakan predikat: H = {x | P(x)}
 - Contoh: $S = \{x \mid Prime(x)\}$

Some Important Sets

```
N = natural \ numbers = \{0,1,2,3....\}
```

$$Z$$
= integers = {...,-3,-2,-1,0,1,2,3,...}

$$Z^{\dagger}$$
 = positive integers = {1,2,3,....}

R = set of real numbers

 R^+ = set of positive real numbers

C = set of complex numbers

Q = set of rational numbers

Himpunan Kosong

- **Himpunan kosong (empty set)**: sebuah himpunan spesial yang tidak mempunyai elemen.
- Sebuah himpunan kosong dinyatakan dengan Ø atau { }.

Kesamaan Himpunan

Himpunan A dan B sama (equal) jika dan hanya jika mereka mempunyai elemen-elemen yang sama.

A = B jika dan hanya jika $\forall x (x \in A \leftrightarrow x \in B)$

- · Contoh:
- $A = \{1, 3, 5\}$
- $B = \{3, 5, 1\}$
- $C = \{1, 3, 5, 7\}$

Himpunan Bagian

- Notasi: A ⊆ B
- Definisi:

 $A \subseteq B$ Jika dan hanya jika $\forall x (x \in A \rightarrow x \in B)$

- $\{1,2\} \subseteq \{1,2,3\}$
- S ⊆ S (sebuah himpunan S adalah himpunan bagian dari dirinya sendiri)
- $\emptyset \subseteq S$ (himpunan kosong adalah himpunan bagian dari himpunan S)
- Himpunan bilangan bulat ganjil positif ⊆ himpunan bilangan bulat positif
- $\{1, 2, 3\} \nsubseteq \{1, 3, 4, 5\}$

Teorema

Untuk sembarang himpunan A berlaku hal-hal sebagai berikut:

- (a) A adalah himpunan bagian dari A itu sendiri (A ⊆ A).
- (b) Himpunan kosong merupakan himpunan bagian dari A (Ø ⊆ A)
- (c) Jika $\mathbf{A} \subseteq \mathbf{B}$ dan $\mathbf{B} \subseteq \mathbf{C}$, maka $\mathbf{A} \subseteq \mathbf{C}$

Himpunan Bagian Sejati (Proper Subset)

Notasi: A ⊂ B

Himpunan A merupakan himpunan bagian **sejati** dari B jika dan hanya jika A adalah himpunan bagian dari B, **tetapi A** ≠ **B**.

 $A \subset B$ Jika dan hanya jika $\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$

"ada sebuah elemen x di B yang bukan elemen himpunan A"

- $\{1, 2\} \subseteq \{1, 2, 3\}$
- $\{1,2\} \subset \{1,2,3\}$
- $\{1, 2, 3\} \subseteq \{1, 2, 3\}$
- {1, 2, 3} **\(\psi\)** {1, 2, 3}

Kardinalitas Himpunan

Himpunan Berhingga (Finite Set)

- Misal S adalah sebuah himpunan:
 - Jika ada tepat n elemen berbeda di S, di mana n adalah bilangan bulat bukan negatif, maka himpunan S berhingga (finite set). Selain itu, himpunan S tak berhingga (infinite set)
 - n adalah kardinalitas dari himpunan S, dinyatakan dengan |S|

```
A = \{m \in N \mid m < 10 \text{ dan } m \text{ ganjil}\}. |A| = 5
B = \{n \mid n \text{ adalah semua alfabet inggris}\}. |B| = 26
|\emptyset| = 0
|\{\emptyset\}| = 1
|\{\{\emptyset\}\}| = ...
|\{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}| = ...
```

Himpunan Kuasa (Power Set)

Power set dari himpunan S, P(S), merupakan himpunan yang anggotanya adalah semua himpunan bagian dari S.

Contoh:

 $\mathcal{P}(\{0, 1, 2\})$: $\{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$

 $\mathcal{P}(\emptyset)$: $\{\emptyset\}$

 $P(\{\emptyset\}): \{\emptyset, \{\emptyset\}\}$

Teorema:

Jika himpunan **S** mempunyai **n** elemen, anggota $\mathcal{P}(S)$ mempunyai sebanyak 2^n elemen,

atau $|\mathcal{P}(S)| = 2^n$.

Ordered n-tuples

 Terkadang, urutan elemen di dalam sebuah kumpulan data bisa jadi sangat penting. Oleh karena itu, kita butuh struktur lain (selain himpunan) yang mampu merepresentasikan hal ini.

Ordered n-tuple
$$(a_1, a_2, ..., a_n)$$

- ordered n-tuple $(a_1, a_2, ..., a_n)$ dan $(b_1, b_2, ..., b_n)$ dikatakan setara jika dan hanya jika $a_m = b_m$ untuk m = 1, 2, ..., n.
- 2-tuples disebut sebagai ordered pairs (bentuk khusus ordered n-tuples dengan n = 2)

Cartesian Product

Misal, A dan B adalah himpunan. Cartesian Product dari A dan B, dinyatakan dengan A x B, adalah himpunan seluruh ordered pairs (a, b), di mana $a \in A$ dan $b \in B$.

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

- 1. $C = \{1, 2, 3\}, D = \{y, z\}$ a. $C \times D = \{(1, y), (1, z), (2, y), (2, z), (3, y), (3, z)\}$ b. $D \times C = ...$
- 2. $A = \{0,1\}, B = \{1,2\}, C = \{0,1,2\}$ $A \times B \times C = ...$

Cartesian Product dari banyak himpunan

Produk kartesius dari himpunan A_1 , A_2 , ..., A_n adalah ordered n-tuples $(a_1, a_2, ..., a_n)$ dengan aturan:

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_i \in A_i \text{ untuk } i = 1, 2, ..., n\}$$

Relasi

Sebuah relasi R dari himpunan A ke himpunan B: himpunan bagian dari
 A x B, dengan kata lain R ⊆ A x B.

$$R \subseteq A \times B$$

- $A = \{1, 2, 3\}$ dan $B = \{2, 3, 4, 5\}$ $R = \{(1, 3), (1, 5), (2, 2), (2, 4), (3, 3), (3, 5)\}$
- Ordered pairs dari relasi R: "lebih kecil dari" dalam himpunan A = {0, 1, 2, 3} adalah:
 - $-R = \{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)\}.$

Truth Sets of Quantifiers

 Diberikan predikat P dan domain D, truth set dari P adalah himpunan elemen di domain D yang membuat P(x) bernilai true.

$$\{x \in D|P(x)\}$$

- P(x): "|x| = 1", domain x adalah bilangan bulat. Truth set dari P(x) adalah $\{-1, 1\}$
- Tentukan truth set dari Q(x) and R(x), di mana domain x adalah bilangan bulat dan Q(x): " $x^2 = 2$," dan R(x): "|x| = x"?

Gabungan (Union)

Definisi:

Gabungan dari himpunan **A** dan **B**, dinyatakan dengan **A** U **B**, adalah sebuah himpunan yang elemennya merupakan anggota dari **A** atau **B**, atau keduanya.

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

$$\{1, 2, 3\} \cup \{3, 4, 5\} = \{1, 2, 3, 4, 5\}$$

Irisan (Intersection)

Definisi

Irisan dari himpunan **A** dan **B**, dinyatakan dengan **A** \cap **B**, adalah sebuah himpunan yang elemennya merupakan anggota dari **A** dan **B**.

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

Dua buah himpunan A dan B dikatakan saling lepas (disjoint) jika irisannya adalah himpunan kosong, A ∩ B = Ø

$$\{1, 3, 5\} \cap \{1, 2, 3\} = \{1, 3\}$$

 $\{1, 3\}$ dan $\{2, 4\}$ disjoint karena $\{1, 3\} \cap \{2, 4\} = \emptyset$

Selisih (Difference)

Definisi:

Selisih/difference dari himpunan **A** dan **B**, dinyatakan dengan **A** – **B**, adalah himpunan yang elemennya anggota dari **A**, tetapi bukan anggota **B**.

$$A - B = \{x \mid x \in A \land x \notin B\}$$

$$\{1, 3, 5\} - \{1, 2, 3\} =$$

 $\{1, 2, 3\} - \{1, 3, 5\} =$

Komplemen (Complement)

Definisi:

Komplemen dari A relatif terhadap U, dinyatakan dengan \overline{A} atau A^c , adalah himpunan yang elemennya berasal himpunan universal, tetapi **bukan** anggota **A**.

$$\overline{A} = \mathbf{U} - \mathbf{A}$$

$$\overline{A} = \{ x \in U \mid x \notin A \}$$

Contoh:

Misal U adalah himpunan bilangan bulat positif

$$A = \{x \in Z^+ \mid x > 10\}$$

$$\bar{A} = \{1, 2, 3, 4, ..., 10\}$$

Symmetric Difference

 Definisi: Symmetric difference dari himpunan A dan B, dinotasikan dengan A ⊕ B adalah (A – B) ∪ (B – A)

$$U = \{0,1,2,3,4,5,6,7,8,9,10\}$$

 $A = \{1,2,3,4,5\}$ $B = \{4,5,6,7,8\}$
 $A \oplus B = ...$

Generalized Unions and Intersections

- Misalnya A₁, A₂, ..., A_n adalah himpunan
- Secara umum, gabungan dari himpunan A₁, A₂, ..., A_n:

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \ldots \cup A_n$$

Secara umum, irisan dari himpunan A₁, A₂, ..., A_n:

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \ldots \cap A_n$$

Set Identities

Identity law	$A \cup \emptyset = A$,	$A \cap U = A$
Domination laws	$A \cup U = U$,	$A \cap \emptyset = \emptyset$
Idempotent laws	$A \cup A = A$,	$A \cap A = A$
Complementation law	$(A^C)^C = A$	
Complement laws	$A \cup A^C = U$,	$A\capA^C=\emptyset$
Commutative laws	$A \cup B = B \cup A$,	$A \cap B = B \cap A$
Associative laws	$(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$	
Distributive laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
De Morgan's laws	$(A \cup B)^{C} = A^{C} \cap B^{C}$ $(A \cap B)^{C} = A^{C} \cup B^{C}$	
Absorption laws	A ∪ (A ∩ B) = A A ∩ (A ∪ B) = A	

Latihan 1

 $U = \{a, b, c, d, e\}, A = \{a, b, c\}, B = \{b, c, d\}, C = \{b, c, e\}.$

- AUBUC
- (A ∩ B ∩ C)^C

- (A B) C
- A (B C)

Latihan 2

Untuk k = 1, 2, 3, ..., himpunan A_k didefinisikan sebagai $\{k, k + 1, k + 2, k + 3, ...\}$

Tentukan:

$$\bigcup_{k=1}^{10000} A_k$$

dan

$$\bigcap_{k=1}^{10000} A_k$$

Pembahasan $\bigcup_{k=1}^{10000} A_k$

$$A_k = \{k, k + 1, k + 2, k + 3, ...\}$$
 $A_{k+1} = \{k + 1, k + 2, k + 3, k + 4, ...\}$
 $A_{k+2} = \{k + 2, k + 3, k + 4, k + 5, ...\}$
...
 $A_{10000} = \{10000, 10001, 10002, 10003, ...\}$

Kita dapatkan bahwa $A_{k+1} \subseteq A_k$, sehingga:

$$A_k \cup A_{k+1} = A_k$$
, dan $A_{k+1} \cup A_{k+2} = A_{k+1}$, dst....
 $A_k \cup A_{k+1} \cup A_{k+2} \cup A_{k+3} \cup ... = A_k$

$$\bigcup_{k=1}^{10000} A_k = A_1 \cup A_2 \cup A_3 \cup ... \cup A_{10000} = A_1$$