Berechenbarkeit

Vorlesung 2: Grundlagen Turingmaschinen

13. April 2023

Termine — Modul Berechenbarkeit

Übungen	Vorlesung
11.4.	13.4. Turingmaschine I (Übungsblatt 1)
18.4. Übung 1 B-Woche	20.4. Turingmaschine II
25.4. Übung 1 A-Woche	27.4. Loop-Programme (Übungsblatt 2)
2.5. Übung 2 B-Woche (Montag Feiertag)	4.5. While-Programme
9.5. Übung 2 A-Woche	11.5. Rekursion I (Übungsblatt 3)
16.5. Übung 3 B-Woche	18.5.
23.5. Übung 3 A-Woche	25.5. Rekursion II

Übungen	Vorlesung
30.5. Übung 4 B-Woche (Montag Feiertag)	1.6. Entscheidbarkeit
6.6. Übung 4 A-Woche	8.6. Unentscheidbarkeit (Übungsblatt 5)
13.6. Übung 5 B-Woche	15.6. Spez. Probleme
20.6. Übung 5 A-Woche	22.6. Klasse P (Übungsblatt 6)
27.6. Übung 6 B-Woche	29.6. NP-Vollständigkeit
4.7. Übung 6 A-Woche	6.7. Komplexitätsklassen
11.7. Abschlussübung beide Wochen	13.7. (Reserve)

Übungen

Hinweise

- 1. Übungsserie auf Moodle verfügbar
- Hausaufgabenabgabe als Gruppe (max. 2 Teilnehmer) möglich
- Quiz im Moodle verfügbar (auch für letzte Woche)
 (zur Selbstkontrolle)

Übungen

Hinweise

- 1. Übungsserie auf Moodle verfügbar
- Hausaufgabenabgabe als Gruppe (max. 2 Teilnehmer) möglich
- Quiz im Moodle verfügbar (auch für letzte Woche)
 (zur Selbstkontrolle)

Raumänderung

• Übungsgruppe c (Di. 11:15–12:45 Uhr) am 18. April einmalig in Raum S-202 (Seminargebäude)

Prüfung

Prüfung

- schriftliche Klausur, 60 min
- Termin

Mittwoch, 19. Juli 2023 von 9-10 Uhr

• Räume: AudiMax, Hs. 7, Hs. 9

(vorläufig)

• <u>Hilfsmittel:</u> 1 DIN-A4 Blatt mit Notizen

(geschrieben oder gedruckt)

§2.1 Definition (partielle Funktion; engl. partial function)

Seien A, B Mengen. Relation $\rho \subseteq A \times B$ ist partielle Funktion, geschrieben $\rho \colon A \dashrightarrow B$, falls für jedes $a \in A$ höchstens ein $b \in B$ mit $(a, b) \in \rho$ existiert.

§2.1 Definition (partielle Funktion; engl. partial function)

Seien A, B Mengen. Relation $\rho \subseteq A \times B$ ist partielle Funktion, geschrieben $\rho \colon A \dashrightarrow B$, falls für jedes $a \in A$ höchstens ein $b \in B$ mit $(a, b) \in \rho$ existiert.

Notizen

- Übliche Funktionsschreibweisen auch für partielle Funktionen
- Jede Funktion ist partielle Funktion

§2.1 Definition (partielle Funktion; engl. partial function)

Seien A, B Mengen. Relation $\rho \subseteq A \times B$ ist partielle Funktion, geschrieben $\rho \colon A \dashrightarrow B$, falls für jedes $a \in A$ höchstens ein $b \in B$ mit $(a, b) \in \rho$ existiert.

Notizen

- Übliche Funktionsschreibweisen auch für partielle Funktionen
- Jede Funktion ist partielle Funktion
- Definitionsbereich partieller Funktion $f: A \longrightarrow B$ ist $f^{-1}(B)$ (Elemente des Vorbereiches A, für die f definiert ist)

$$f^{-1}(B) = \left\{ a \in A \mid \exists b \in B \colon f(a) = b \right\}$$

• $f^{-1}(B) = A$ für jede Funktion $f: A \to B$

Vereinbarungen

• Beschränkung auf partielle Funktionen

```
f \colon \mathbb{N}^k \dashrightarrow \mathbb{N} und g \colon \Sigma^* \dashrightarrow \Delta^* (für Alphabete \Sigma, \Delta)
```

• 2 Kodierungen für natürliche Zahlen

Vereinbarungen

Beschränkung auf partielle Funktionen

```
f \colon \mathbb{N}^k \dashrightarrow \mathbb{N} und g \colon \Sigma^* \dashrightarrow \Delta^* (für Alphabete \Sigma, \Delta)
```

- 2 Kodierungen für natürliche Zahlen
 - ▶ Unäre Kodierung: $n \in \mathbb{N}$ repräsentiert durch $a^n = \underbrace{a \cdots a}_{n \text{ mal}}$

Aus
$$f: \mathbb{N}^k \longrightarrow \mathbb{N}$$
 wird $g: \{a, \#\}^* \longrightarrow \{a\}^*$ mit
$$g(a^{n_1} \# a^{n_2} \# \cdots \# a^{n_k}) = a^{f(n_1, \dots, n_k)}$$

Vereinbarungen

Beschränkung auf partielle Funktionen

```
f \colon \mathbb{N}^k \dashrightarrow \mathbb{N} und g \colon \Sigma^* \dashrightarrow \Delta^* (für Alphabete \Sigma, \Delta)
```

- 2 Kodierungen für natürliche Zahlen
 - ▶ Unäre Kodierung: $n \in \mathbb{N}$ repräsentiert durch $a^n = \underbrace{a \cdots a}_{n \text{ mal}}$

Aus
$$f: \mathbb{N}^k \longrightarrow \mathbb{N}$$
 wird $g: \{a, \#\}^* \longrightarrow \{a\}^*$ mit
$$g(a^{n_1} \# a^{n_2} \# \cdots \# a^{n_k}) = a^{f(n_1, \dots, n_k)}$$

▶ Binäre Kodierung: $n \in \mathbb{N}$ repräsentiert durch $bin(n) \in \{0,1\}^*$

Aus
$$f: \mathbb{N}^k \dashrightarrow \mathbb{N}$$
 wird $g: \{0, 1, \#\}^* \to \{0, 1\}^*$ mit $g(\text{bin}(n_1) \# \text{bin}(n_2) \# \cdots \# \text{bin}(n_k)) = \text{bin}(f(n_1, \dots, n_k))$

11

Kodierung von f(3, 4) = 7

Unäre Kodierung

$$g(\underbrace{aaa}_{3} \# \underbrace{aaaa}_{4}) = \underbrace{aaaaaaaa}_{7}$$

Binäre Kodierung

$$g(\underbrace{11}_{2+1} \# \underbrace{100}_{4+0+0}) = \underbrace{111}_{4+2+1}$$

Kodierung von f(3, 4) = 7

Unäre Kodierung

$$g(\underbrace{aaa}_{3} \# \underbrace{aaaa}_{4}) = \underbrace{aaaaaaaa}_{7}$$

Binäre Kodierung

$$g(\underbrace{11}_{2+1} \# \underbrace{100}_{4+0+0}) = \underbrace{111}_{4+2+1}$$

• Andere berechenbare Kodierungen auch möglich

Dezimalkodierung: $g: \{0,1,\ldots,9,\#\}^* \longrightarrow \{0,1,\ldots,9\}^*$

Kodierung von Sprachen

§2.2 Definition (Sprachenkodierung)

Für jede Sprache $L\subseteq \Sigma^*$ ist $\mathrm{id}_L\colon \Sigma^* \dashrightarrow \Sigma^*$ gegeben durch

$$\mathsf{id}_L = \big\{ (w, w) \mid w \in L \big\}$$

Kodierung von Sprachen

§2.2 Definition (Sprachenkodierung)

Für jede Sprache $L\subseteq \Sigma^*$ ist $\mathrm{id}_L\colon \Sigma^* \dashrightarrow \Sigma^*$ gegeben durch

$$\mathsf{id}_L = \big\{ (w, w) \mid w \in L \big\}$$

Notizen

- 'undef' (oder ⊥) steht für nicht definierte Funktionswerte
- Alternative Definition

$$\operatorname{id}_L(w) = \begin{cases} w & \text{falls } w \in L \\ \text{undef sonst} \end{cases}$$

• Also $\operatorname{id}_{l}^{-1}(\Sigma^{*}) = L$

Algorithmus = endliche & eindeutige Handlungsbeschreibung

§2.3 Definition (intuitive Berechenbarkeit; engl. computability)

Funktion $f: \Sigma^* \dashrightarrow \Delta^*$ intuitiv berechenbar (engl. computable), falls Algorithmus A_f existiert, so dass für jede Eingabe $w \in \Sigma^*$

- A_f produziert Ergebnis nach endlicher Zeit gdw. $w \in f^{-1}(\Delta^*)$
- A_f produziert Ergebnis f(w) falls $w \in f^{-1}(\Delta^*)$

Algorithmus = endliche & eindeutige Handlungsbeschreibung

§2.3 Definition (intuitive Berechenbarkeit; engl. computability)

Funktion $f: \Sigma^* \dashrightarrow \Delta^*$ intuitiv berechenbar (engl. computable), falls Algorithmus A_f existiert, so dass für jede Eingabe $w \in \Sigma^*$

- A_f produziert Ergebnis nach endlicher Zeit gdw. $w \in f^{-1}(\Delta^*)$
- A_f produziert Ergebnis f(w) falls $w \in f^{-1}(\Delta^*)$

Notizen

- $w \in f^{-1}(\Delta^*)$ bedeutet "f(w) definiert"
- A_f muss bei Eingabe $w \in f^{-1}(\Delta^*)$ Ergebnis f(w) liefern
- A_f darf bei Eingabe $w \in \Sigma^* \setminus f^{-1}(\Delta^*)$ kein Ergebnis liefern (Endlosschleife, Absturz, Exception, etc.)

Weitere Notizen

- Mathematische Existenz ausreichend
 (kann Funktion 2 Formen annehmen, also entweder f = f₁ oder f = f₂, dann reicht intuitive Berechenbarkeit von f₁ und f₂)
- Beschreibungssprache beliebig (C++, Java, Pseudokode, etc.)
- Hardware irrelevant (Architektur, Ablaufmechanismus, etc.)
- Keine Zeit- oder Speicherbeschränkung (aber A_f muss bei Eingabe $w \in f^{-1}(\Delta^*)$ letztlich terminieren)

Erklärungsversuch

- E sei Eigenschaft der Welt und $f: \Sigma^* - \to \Delta^*$ (z.B. E = Goldbachsche Vermutung)
- Weiterhin gelten $E \to \mathsf{Berechenbar}(f)$ und $\neg E \to \mathsf{Berechenbar}(f)$

Erklärungsversuch

- E sei Eigenschaft der Welt und $f: \Sigma^* \longrightarrow \Delta^*$ (z.B. E = Goldbachsche Vermutung)
- ullet Weiterhin gelten $E o \mathsf{Berechenbar}(f)$ und $eg E o \mathsf{Berechenbar}(f)$

```
(E 	o Berechenbar(f)) \land (\neg E 	o Berechenbar(f))

\equiv (\neg E \lor Berechenbar(f)) \land (E \lor Berechenbar(f))

\equiv (\neg E \land E) \lor Berechenbar(f)

\equiv Berechenbar(f)
```

Also gilt Berechenbar(f)

- ullet Addition: Funktion $+\colon \mathbb{N}^2 \to \mathbb{N}$ intuitiv berechenbar
 - Schulmethode
 - x_1 mal Erhöhung von x_2 für $x_1 + x_2$

- Addition: Funktion $+: \mathbb{N}^2 \to \mathbb{N}$ intuitiv berechenbar
 - Schulmethode
 - x_1 mal Erhöhung von x_2 für $x_1 + x_2$

• Format-Prüfung: Funktion id_L : $\{0,1,\#\}^* \longrightarrow \{0,1,\#\}^*$ mit

$$L = \underbrace{\frac{1(0|1)^*(\# 1(0|1)^*)^*}{(1, \text{ beliebig viele 0 und 1, } \# \text{ und weitere solche Blöcke)}}_{}^*}$$

intuitiv berechenbar

(L regulär)

$$\pi[n]=$$
 erste n Stellen in Dezimalbruchdarstellung von π für alle $n\in\mathbb{N}$

$$\pi[3] = 314$$

$$\pi[3] = 314$$
 $\pi[6] = 314159$

$$\pi[1]=3$$

$$\pi[n] = \text{erste } n$$
 Stellen in Dezimalbruchdarstellung von π für alle $n \in \mathbb{N}$

$$\pi[3] = 314$$

$$\pi[3] = 314$$
 $\pi[6] = 314159$

$$\pi[1] = 3$$

• Approximation π : Funktion $\pi: \{a\}^* \to \{0,1,\ldots,9\}^*$ mit

$$\pi(a^n) = \pi[n]$$

für alle $n \in \mathbb{N}$

 $\pi[n] = \text{erste } n \text{ Stellen in Dezimalbruchdarstellung von } \pi \text{ für alle } n \in \mathbb{N}$

$$\pi[3] = 314$$

$$\pi[3] = 314$$
 $\pi[6] = 314159$

$$\pi[1] = 3$$

• Approximation π : Funktion $\pi: \{a\}^* \to \{0, 1, \dots, 9\}^*$ mit

$$\pi(a^n) = \pi[n]$$

für alle $n \in \mathbb{N}$

intuitiv berechenbar

- ightharpoonup Approximationsalgorithmus für π
- ► Ausaabe erste *n* Stellen sobald ausreichende Genauigkeit

• Teilstrings von π : Funktion $\operatorname{sub}_{\pi} \colon \{0,1,\ldots,9\}^* \longrightarrow \{0,1\}^*$ mit

$$\mathsf{sub}_{\pi}(w) = \begin{cases} 1 & \text{falls } w \text{ in } \pi \text{ vorkommt} \\ 0 & \text{sonst} \end{cases}$$

$$\mathsf{für alle } w \in \{0, \dots, 9\}^*$$

Intuitive Berechenbarkeit

$$sub_{\pi}(314) = 1$$

$$sub_{\pi}(15) = 1$$

$$sub_{\pi}(41)=1$$

• Teilstrings von π : Funktion $\operatorname{sub}_{\pi} \colon \{0,1,\ldots,9\}^* \longrightarrow \{0,1\}^*$ mit

$$\mathsf{sub}_\pi(w) = \begin{cases} 1 & \mathsf{falls} \ w \ \mathsf{in} \ \pi \ \mathsf{vorkommt} \\ 0 & \mathsf{sonst} \end{cases}$$
 für alle $w \in \{0, \dots, 9\}^*$

<u>Intuitive Berechenbarkeit</u> <u>unklar</u>

$$sub_{\pi}(314) = 1$$
 $sub_{\pi}(15) = 1$ $sub_{\pi}(41) = 1$

• Teilstrings von π : Funktion $\operatorname{sub}_{\pi} : \{0,1,\ldots,9\}^* \longrightarrow \{0,1\}^*$ mit

$$\mathsf{sub}_{\pi}(w) = \begin{cases} 1 & \text{falls } w \text{ in } \pi \text{ vorkommt} \\ & \text{undef} \end{cases}$$
 sonst
$$\text{für alle } w \in \{0, \dots, 9\}^*$$

Intuitive Berechenbarkeit

$$sub_{\pi}(314) = 1$$
 $sub_{\pi}(15) = 1$ $sub_{\pi}(41) = 1$

• Teilstrings von π : Funktion $\operatorname{sub}_{\pi} : \{0,1,\ldots,9\}^* \longrightarrow \{0,1\}^*$ mit

$$\mathsf{sub}_{\pi}(w) = \begin{cases} 1 & \text{falls } w \text{ in } \pi \text{ vorkommt} \\ & \text{undef} \end{cases}$$

$$\mathsf{für alle } w \in \{0, \dots, 9\}^*$$

<u>Intuitive Berechenbarkeit</u> <u>intuitiv berechenbar</u>

$$sub_{\pi}(314) = 1$$
 $sub_{\pi}(15) = 1$ $sub_{\pi}(41) = 1$

• Länge von Nichtteilstrings von π : Funktion $\ell_{\pi} : \mathbb{N} \dashrightarrow \mathbb{N}$ mit

$$\ell_\pi(n) = egin{cases} n & ext{falls Sequenz der Länge n existiert,} \ & ext{die nicht in π vorkommt} & ext{für alle $n \in \mathbb{N}$} \ & ext{undef sonst} \end{cases}$$

Intuitive Berechenbarkeit

• Länge von Nichtteilstrings von π : Funktion $\ell_{\pi} \colon \mathbb{N} \dashrightarrow \mathbb{N}$ mit

$$\ell_\pi(n) = egin{cases} n & ext{falls Sequenz der Länge n existiert,} \ & ext{die nicht in π vorkommt} & ext{für alle $n \in \mathbb{N}$} \ & ext{undef} & ext{sonst} \end{cases}$$

Intuitive Berechenbarkeit intuitiv berechenbar

• Länge von Nichtteilstrings von π : Funktion $\ell_{\pi} \colon \mathbb{N} \dashrightarrow \mathbb{N}$ mit

$$\ell_\pi(n) = egin{cases} n & ext{falls Sequenz der Länge } n ext{ existiert,} \ & ext{die nicht in } \pi ext{ vorkommt} & ext{für alle } n \in \mathbb{N} \ & ext{undef sonst} \end{cases}$$

Intuitive Berechenbarkeit intuitiv berechenbar

- ▶ Falls alle Sequenzen in π vorkommen, (Eigenschaft E) dann ℓ_{π} überall undefiniert & intuitiv berechenbar
- Sonst existiert kürzeste Sequenz der Länge k, die nicht in π vorkommt & ℓ_π intuitiv berechenbar, da

$$\ell_{\pi}(n) = f_k(n) = \begin{cases} n & \text{falls } n \ge k \\ \text{undef sonst} \end{cases}$$

$$(\neg E o \exists k ig((\ell_\pi = f_k) \land \mathsf{Berechenbar}(f_k)ig) \; \mathsf{also} \; \neg E o \mathsf{Berechenbar}(\ell_\pi))$$

ullet Wortproblem einer Sprache $L\subseteq \Sigma^*$: Funktion $\chi_L\colon \Sigma^* o \{0,1\}^*$ mit

$$\chi_L(w) = egin{cases} 1 & \text{falls } w \in L \ 0 & \text{sonst} \end{cases}$$
 für alle $w \in \Sigma^*$

Intuitive Berechenbarkeit

L kontextsensitiv:

ullet Wortproblem einer Sprache $L\subseteq \Sigma^*$: Funktion $\chi_L\colon \Sigma^* o \{0,1\}^*$ mit

$$\chi_L(w) = egin{cases} 1 & ext{falls } w \in L \ 0 & ext{sonst} \end{cases}$$
 für alle $w \in \Sigma^*$

Intuitive Berechenbarkeit

▶ L kontextsensitiv: intuitiv berechenbar

ullet Wortproblem einer Sprache $L\subseteq \Sigma^*$: Funktion $\chi_L\colon \Sigma^* o \{0,1\}^*$ mit

$$\chi_L(w) = egin{cases} 1 & \text{falls } w \in L \ 0 & \text{sonst} \end{cases}$$
 für alle $w \in \Sigma^*$

Intuitive Berechenbarkeit

- L kontextsensitiv: intuitiv berechenbar
- ► Typ-0-Sprache *L*:

ullet Wortproblem einer Sprache $L\subseteq \Sigma^*$: Funktion $\chi_L\colon \Sigma^* o \{0,1\}^*$ mit

$$\chi_L(w) = egin{cases} 1 & ext{falls } w \in L \ 0 & ext{sonst} \end{cases}$$
 für alle $w \in \Sigma^*$

Intuitive Berechenbarkeit

- L kontextsensitiv: intuitiv berechenbar
- ► Typ-0-Sprache *L*: unklar/nicht intuitiv berechenbar

• Aufzählung einer Sprache $L \subseteq \Sigma^*$: Funktion $\rho_L \colon \Sigma^* \dashrightarrow \{0,1\}^*$ mit

$$ho_L(w) = egin{cases} 1 & ext{falls } w \in L \ & ext{undef} & ext{sonst} \end{cases}$$
 für alle $w \in \Sigma^*$

Intuitive Berechenbarkeit

- L kontextsensitiv:
- ► Typ-0-Sprache *L*:

• Aufzählung einer Sprache $L \subseteq \Sigma^*$: Funktion $\rho_L \colon \Sigma^* \dashrightarrow \{0,1\}^*$ mit

$$ho_L(w) = egin{cases} 1 & ext{falls } w \in L \ & ext{undef} & ext{sonst} \end{cases}$$
 für alle $w \in \Sigma^*$

Intuitive Berechenbarkeit

- L kontextsensitiv: intuitiv berechenbar
- ► Typ-0-Sprache *L*:

• Aufzählung einer Sprache $L \subseteq \Sigma^*$: Funktion $\rho_L \colon \Sigma^* \dashrightarrow \{0,1\}^*$ mit

$$\rho_L(w) = \begin{cases} 1 & \text{falls } w \in L \\ \text{undef} & \text{sonst} \end{cases}$$
 für alle $w \in \Sigma^*$

Intuitive Berechenbarkeit

- L kontextsensitiv: intuitiv berechenbar
- ► Typ-0-Sprache *L*: intuitiv berechenbar

Problem

 Wie argumentiert man "nicht intuitiv berechenbar"? (muss für beliebige Algorithmen funktionieren)

Problem

 Wie argumentiert man "nicht intuitiv berechenbar"? (muss für beliebige Algorithmen funktionieren)

Ansatz der modellbezogenen Berechenbarkeit

- Festlegung Berechnungsmodell (Grammatik, Turingmaschine, etc.)
- Klärt Begriff 'Algorithmus'

Beispiel (§1.4)

Typ-0-Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EE oup \varepsilon$

Ableitungsschritte

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Typ-0-Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S \rightarrow S'E$$
 $S' \rightarrow aS'a$ $S' \rightarrow bS'b$ $S' \rightarrow E$
 $Ea \rightarrow EA$ $Aa \rightarrow aA$ $Ab \rightarrow bA$ $AE \rightarrow Ea$
 $Eb \rightarrow EB$ $Ba \rightarrow aB$ $Bb \rightarrow bB$ $BE \rightarrow Eb$
 $EE \rightarrow \varepsilon$

Ableitungsschritte

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Typ-0-Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S \rightarrow S'E$$
 $S' \rightarrow aS'a$ $S' \rightarrow bS'b$ $S' \rightarrow E$
 $Ea \rightarrow EA$ $Aa \rightarrow aA$ $Ab \rightarrow bA$ $AE \rightarrow Ea$
 $Eb \rightarrow EB$ $Ba \rightarrow aB$ $Bb \rightarrow bB$ $BE \rightarrow Eb$

Ableitungsschritte

 $EE \rightarrow \varepsilon$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Typ-0-Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S \rightarrow S'E$$
 $S' \rightarrow aS'a$ $S' \rightarrow bS'b$ $S' \rightarrow E$
 $Ea \rightarrow EA$ $Aa \rightarrow aA$ $Ab \rightarrow bA$ $AE \rightarrow Ea$
 $Eb \rightarrow EB$ $Ba \rightarrow aB$ $Bb \rightarrow bB$ $BE \rightarrow Eb$

Ableitungsschritte

 $EE \rightarrow \varepsilon$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Typ-0-Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EE oup \varepsilon$

Ableitungsschritte

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Typ-0-Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$

Ableitungsschritte

 $EE \rightarrow \varepsilon$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Typ-0-Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EE oup \varepsilon$

Ableitungsschritte

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Typ-0-Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$
 $EE oup \varepsilon$

Ableitungsschritte

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Typ-0-Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$

Ableitungsschritte

 $EE \rightarrow \varepsilon$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Beispiel (§1.4)

Typ-0-Grammatik $G = (\{S, S', A, B, E\}, \{a, b\}, S, P)$ mit Produktionen P

$$S oup S'E$$
 $S' oup aS'a$ $S' oup bS'b$ $S' oup E$
 $Ea oup EA$ $Aa oup aA$ $Ab oup bA$ $AE oup Ea$
 $Eb oup EB$ $Ba oup aB$ $Bb oup bB$ $BE oup Eb$

Ableitungsschritte

 $EE \rightarrow \varepsilon$

$$S \Rightarrow_G S'E \Rightarrow_G aS'aE \Rightarrow_G abS'baE \Rightarrow_G abEbaE$$

 $\Rightarrow_G abEBaE \Rightarrow_G abEaBE \Rightarrow_G abEaEb \Rightarrow_G abEAEb$
 $\Rightarrow_G abEEab \Rightarrow_G ab\varepsilon ab = abab$

Analyse der Funktionsweise

- Ziel ww mit $w \in \{a, b\}^*$
- Erzeuge zunächst wEwRE

$$S \rightarrow S'E$$

$$S o S'E$$
 $S' o aS'a$ $S' o bS'b$ $S' o E$

$$S' \rightarrow bS'b$$

$$S' \rightarrow E$$

Analyse der Funktionsweise

- Ziel ww mit $w \in \{a, b\}^*$
- Erzeuge zunächst wEwRE

$$S o S'E$$
 $S' o aS'a$ $S' o bS'b$ $S' o E$

Symbol hinter linkem E direkt hinter rechtes E bewegen

$$Ea
ightharpoonup EA \qquad Aa
ightharpoonup aA \qquad Ab
ightharpoonup bA \qquad AE
ightharpoonup Ea \ Eb
ightharpoonup EB \qquad Ba
ightharpoonup aB \qquad Bb
ightharpoonup bB \qquad BE
ightharpoonup Eb \ Ba
ightharpoonup aB \ Ba
ightharpoonup aB$$

Invertiert w^R; liefert w und Satzform wEEw

Analyse der Funktionsweise

- Ziel ww mit $w \in \{a, b\}^*$
- Erzeuge zunächst wEw^RE

$$S o S'E$$
 $S' o aS'a$ $S' o bS'b$ $S' o E$

• Symbol hinter linkem *E* direkt hinter rechtes *E* bewegen

$$Ea
ightarrow EA$$
 $Aa
ightarrow aA$ $Ab
ightarrow bA$ $AE
ightarrow Ea$ $Eb
ightarrow EB$ $Ba
ightarrow aB$ $Bb
ightarrow bB$ $BE
ightarrow Eb$

- Invertiert w^R; liefert w und Satzform wEEw
- ullet Löschen Begrenzer $E\!E$ mit Produktion $E\!E o arepsilon$

Notizen

- Beidseitig unbeschränktes Arbeitsband
- Endliche Kontrolle

(zustandsgesteuert)

<u>Notizen</u>

- Beidseitig unbeschränktes Arbeitsband
- Endliche Kontrolle
- Mobiler Lese- & Schreibkopf
- Eingabe auf Band; Symbole überschreibbar

(zustandsgesteuert)

(Speicher)

Alan Turing (* 1912; † 1954)

- Engl. Informatiker
- Brach dtsch. Enigma-Verschlüsselung
- Verurteilt wegen Homosexualität;
 akzeptierte Kastration; 2013 offiziell rehabilitiert

§2.4 Definition (Turingmaschine; engl. *Turing machine*)

Turingmaschine ist Tupel $M = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$

- endl. Menge Q von Zuständen (engl. states) mit $Q \cap \Gamma = \emptyset$
- ullet endl. Menge Σ von Eingabesymbolen (engl. input symbols)
- ullet endl. Menge Γ von Arbeitssymbolen (engl. work symbols) mit $\Sigma \subseteq \Gamma$
- Übergangsrelation (engl. transition relation) $\Delta \subseteq \Big((Q \setminus \{q_+, q_-\}) \times \Gamma \Big) \times \Big(Q \times \Gamma \times \{\triangleleft, \triangleright, \diamond\} \Big)$
- Leersymbol (engl. blank) $\square \in \Gamma \setminus \Sigma$
- ullet Startzustand (engl. initial state) $q_0 \in Q$
- ullet Akzeptierender Zustand (engl. accepting state) $q_+ \in Q$
- Ablehnender Zustand (engl. rejecting state) $q_- \in Q$

 \triangleleft = gehe nach links; \triangleright = gehe nach rechts; \diamond = keine Bewegung

 $(\Gamma_M = \Gamma \setminus \{\Box\})$

Damit programmieren?

- Einfaches Modell (vereinfacht Beweise Nichtberechenbarkeit)
- Gleichmächtig wie gebräuchliche Programmiersprachen (C++, Java, Perl, Python, etc.)
- Nicht komfortabel

Damit programmieren?

- Einfaches Modell (vereinfacht Beweise Nichtberechenbarkeit)
- Gleichmächtig wie gebräuchliche Programmiersprachen (C++, Java, Perl, Python, etc.)
- Nicht komfortabel

(kein Direktzugriff)

Notation: $(q, \gamma) \rightarrow (q', \gamma', d) \in \Delta$ statt $((q, \gamma), (q', \gamma', d)) \in \Delta$

§2.5 Beispiel (Turingmaschine = TM)

 $\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$ mit den Übergängen Δ $(q_0, a) \rightarrow (q_a, \square, \triangleright)$ $(q_0,b) \rightarrow (q_b,\Box,\triangleright)$ $(q_0,\Box) \rightarrow (f,\Box,\diamond)$ $(q_a, a) \rightarrow (q_a, a, \triangleright)$ $(q_a, \Box) \rightarrow (q'_a, \Box, \lhd)$ $(q_a, b) \rightarrow (q_a, b, \triangleright)$ $(q_h, a) \rightarrow (q_h, a, \triangleright)$ $(q_b, b) \rightarrow (q_b, b, \triangleright)$ $(q_h,\Box) o (q_h',\Box,\lhd)$ $(q_b', b) \rightarrow (q, \square, \triangleleft)$ $(q'_{a}, a) \rightarrow (q, \square, \triangleleft)$ $(q, a) \rightarrow (q, a, \triangleleft)$ $(q,b) \rightarrow (q,b,\triangleleft)$ $(q,\Box) \rightarrow (q_0,\Box,\triangleright)$

Notizen

- Übergang $(q, \gamma) \rightarrow (q', \gamma', d)$
 - Vorbedingungen:
 - Aktueller Zustand q
 - 2 Zeichen γ in Bandzelle, auf der der Kopf steht
 - Konsequenzen:
 - TM wechselt in Zustand q'
 - 2 γ' überschreibt Inhalt aktueller Bandzelle (ersetzt γ)
 - Kopf bewegt sich Richtung d

⊲ = gehe nach links; ▷ = gehe nach rechts; ◇ = keine Bewegung

Notizen

- Übergang $(q, \gamma) \rightarrow (q', \gamma', d)$
 - Vorbedingungen:
 - Aktueller Zustand q
 - 2 Zeichen γ in Bandzelle, auf der der Kopf steht
 - Konsequenzen:
 - TM wechselt in Zustand q'
 - 2 γ' überschreibt Inhalt aktueller Bandzelle (ersetzt γ)
 - Kopf bewegt sich Richtung d

⊲ = gehe nach links; ▷ = gehe nach rechts; ◇ = keine Bewegung

Notizen

- Übergang $(q, \gamma) \rightarrow (q', \gamma', d)$
 - Vorbedingungen:
 - Aktueller Zustand q
 - 2 Zeichen γ in Bandzelle, auf der der Kopf steht
 - Konsequenzen:
 - TM wechselt in Zustand q'
 - 2 γ' überschreibt Inhalt aktueller Bandzelle (ersetzt γ)
 - Kopf bewegt sich Richtung d
- ullet Übergänge mit aktuellem Zustand $q\in\{q_+,q_-\}$ verboten (Übergänge aus Finalzustand heraus nicht erlaubt)

- Ausgangssituation
 - ► Eingabe auf Band
 - ► TM in Startzustand q₀
 - ▶ Kopf auf erstem Symbol der Eingabe

(andere Zellen \square)

(auf □ falls Eingabe leer)

- Ausgangssituation
 - Eingabe auf Band
 - ► TM in Startzustand q₀
 - Kopf auf erstem Symbol der Eingabe
- ② Übergänge gemäß △

(andere Zellen □)

(auf □ falls Eingabe leer)

- Ausgangssituation
 - Eingabe auf Band
 - ► TM in Startzustand q₀
 - ▶ Kopf auf erstem Symbol der Eingabe

(auf □ falls Eingabe leer)

(andere Zellen □)

- Übergänge gemäß A
- Haltebedingung
 - \blacktriangleright Aktueller Zustand final; akzeptierend q_+ oder ablehnend q_-
 - lacktriangle Kein passender Übergang ightarrow TM hält <u>nicht</u> ordnungsgemäß (Ausnahme)

- Ausgangssituation
 - Eingabe auf Band
 - (andere Zellen □) ► TM in Startzustand q₀
 - ► Kopf auf erstem Symbol der Eingabe
 - (auf □ falls Eingabe leer)
- ② Übergänge gemäß △
- Haltebedingung
 - Aktueller Zustand final; akzeptierend q_{+} oder ablehnend q_{-}
 - ightharpoonup Kein passender Übergang ightarrow TM hält nicht ordnungsgemäß (Ausnahme)

Akzeptanz Eingabe

Existenz Übergänge von Ausgangssituation in akzeptierenden Zustand

Beispiel (§2.5)

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$$

$$(q_0, a) \rightarrow (q_a, \Box, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \qquad (q_0, \Box) \rightarrow (f, \Box, \diamond)$$

$$(q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \Box) \rightarrow (q_a', \Box, \triangleleft)$$

$$(q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \Box) \rightarrow (q_b', \Box, \triangleleft)$$

$$(q_a', a) \rightarrow (q, \Box, \triangleleft) \qquad (q_b', b) \rightarrow (q, \Box, \triangleleft)$$

$$(q, a) \rightarrow (q, a, \triangleleft) \qquad (q, b) \rightarrow (q, b, \triangleleft) \qquad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

Beispiel (§2.5)

$$\mathsf{TM}\,\mathsf{M} = \begin{pmatrix} \{q_0,q,q_a,q_a',q_b,q_b',f,\bot\},\{a,b\},\{a,b,\Box\},\Delta,\Box,q_0,f,\bot \end{pmatrix} \\ (q_0,a) \to (q_a,\Box,\triangleright) \qquad (q_0,b) \to (q_b,\Box,\triangleright) \qquad (q_0,\Box) \to (f,\Box,\diamond) \\ (q_a,a) \to (q_a,a,\triangleright) \qquad (q_a,b) \to (q_a,b,\triangleright) \qquad (q_a,\Box) \to (q_a',\Box,\lhd) \\ (q_b,a) \to (q_b,a,\triangleright) \qquad (q_b,b) \to (q_b,b,\triangleright) \qquad (q_b,\Box) \to (q_b',\Box,\lhd) \\ (q_a',a) \to (q,\Box,\lhd) \qquad (q_b',b) \to (q,\Box,\lhd) \\ (q,a) \to (q,a,\lhd) \qquad (q,b) \to (q,b,\lhd) \qquad (q,\Box) \to (q_0,\Box,\triangleright) \\ \end{pmatrix}$$

Beispiel (§2.5)

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) \qquad (q'_b, b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$$

$$(q_0, a) \rightarrow (q_a, \Box, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \qquad (q_0, \Box) \rightarrow (f, \Box, \diamond)$$

$$(q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft)$$

$$(q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft)$$

$$(q'_a, a) \rightarrow (q, \Box, \triangleleft) \qquad (q'_b, b) \rightarrow (q, \Box, \triangleleft)$$

$$(q, a) \rightarrow (q, a, \triangleleft) \qquad (q, b) \rightarrow (q, b, \triangleleft) \qquad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

Beispiel (§2.5)

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \qquad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft) \\ (q'_a, a) \rightarrow (q, \Box, \triangleleft) \qquad (q'_b, b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \qquad (q, b) \rightarrow (q, b, \triangleleft) \qquad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

b

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \} \\ (q_0, a) \to (q_a, \Box, \triangleright) & (q_0, b) \to (q_b, \Box, \triangleright) & (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) & (q_a, b) \to (q_a, b, \triangleright) & (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) & (q_b, b) \to (q_b, b, \triangleright) & (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) & (q'_b, b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) & (q, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \\ \end{pmatrix}$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) \qquad (q'_b, b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) \qquad (q'_b, b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$$

$$(q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond)$$

$$(q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q_a', \Box, \triangleleft)$$

$$(q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q_b', \Box, \triangleleft)$$

$$(q_a', a) \to (q, \Box, \triangleleft) \qquad (q_b', b) \to (q, \Box, \triangleleft)$$

$$(q_a, a) \to (q, a, \triangleleft) \qquad (q_b', b) \to (q, b, \triangleleft) \qquad (q_b, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$$

$$(q_0, a) \rightarrow (q_a, \Box, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \qquad (q_0, \Box) \rightarrow (f, \Box, \diamond)$$

$$(q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft)$$

$$(q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft)$$

$$(q'_a, a) \rightarrow (q, \Box, \triangleleft) \qquad (q'_b, b) \rightarrow (q, \Box, \triangleleft)$$

$$(q, a) \rightarrow (q, a, \triangleleft) \qquad (q, b) \rightarrow (q, b, \triangleleft) \qquad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$$

$$(q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond)$$

$$(q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q_a', \Box, \triangleleft)$$

$$(q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q_b', \Box, \triangleleft)$$

$$(q_a', a) \to (q, \Box, \triangleleft) \qquad (q_b', b) \to (q, \Box, \triangleleft)$$

$$(q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

Beispiel (§2.5)

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$$

$$(q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond)$$

$$(q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q_a', \Box, \triangleleft)$$

$$(q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q_b', \Box, \triangleleft)$$

$$(q_a', a) \to (q, \Box, \triangleleft) \qquad (q_b', b) \to (q, \Box, \triangleleft)$$

$$(q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

b

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$$

$$(q_0, a) \rightarrow (q_a, \Box, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \qquad (q_0, \Box) \rightarrow (f, \Box, \diamond)$$

$$(q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \Box) \rightarrow (q_a', \Box, \lhd)$$

$$(q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \Box) \rightarrow (q_b', \Box, \lhd)$$

$$(q_a', a) \rightarrow (q, \Box, \lhd) \qquad (q_b', b) \rightarrow (q, \Box, \lhd)$$

$$(q, a) \rightarrow (q, a, \lhd) \qquad (q, b) \rightarrow (q, b, \lhd) \qquad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \qquad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft) \\ (q'_a, a) \rightarrow (q, \Box, \triangleleft) \qquad (q'_b, b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \qquad (q, b) \rightarrow (q, b, \triangleleft) \qquad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM}\, \mathcal{M} = \big(\{q_0,q,q_a,q_a',q_b,q_b',f,\bot\},\{a,b\},\{a,b,\Box\},\Delta,\Box,q_0,f,\bot\big)$$

$$(q_0,a) \to (q_a,\Box,\triangleright) \qquad (q_0,b) \to (q_b,\Box,\triangleright) \qquad (q_0,\Box) \to (f,\Box,\diamond)$$

$$(q_a,a) \to (q_a,a,\triangleright) \qquad (q_a,b) \to (q_a,b,\triangleright) \qquad (q_a,\Box) \to (q_a',\Box,\lhd)$$

$$(q_b,a) \to (q_b,a,\triangleright) \qquad (q_b,b) \to (q_b,b,\triangleright) \qquad (q_b,\Box) \to (q_b',\Box,\lhd)$$

$$(q_a',a) \to (q,\Box,\lhd) \qquad (q_b',b) \to (q,\Box,\lhd)$$

$$(q,a) \to (q,a,\lhd) \qquad (q,b) \to (q,b,\lhd) \qquad (q,\Box) \to (q_0,\Box,\triangleright)$$

$$\mathsf{TM}\, \mathcal{M} = \big(\{q_0,q,q_a,q_a',q_b,q_b',f,\bot\},\{a,b\},\{a,b,\Box\},\Delta,\Box,q_0,f,\bot\big)$$

$$(q_0,a) \to (q_a,\Box,\triangleright) \qquad (q_0,b) \to (q_b,\Box,\triangleright) \qquad (q_0,\Box) \to (f,\Box,\diamond)$$

$$(q_a,a) \to (q_a,a,\triangleright) \qquad (q_a,b) \to (q_a,b,\triangleright) \qquad (q_a,\Box) \to (q_a',\Box,\lhd)$$

$$(q_b,a) \to (q_b,a,\triangleright) \qquad (q_b,b) \to (q_b,b,\triangleright) \qquad (q_b,\Box) \to (q_b',\Box,\lhd)$$

$$(q_a',a) \to (q,\Box,\lhd) \qquad (q_b',b) \to (q,\Box,\lhd)$$

$$(q,a) \to (q,a,\lhd) \qquad (q,b) \to (q,b,\lhd) \qquad (q,\Box) \to (q_0,\Box,\triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) \qquad (q'_b, b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) \qquad (q'_b, b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) \qquad (q'_b, b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

Beispiel (§2.5)

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) \qquad (q'_b, b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

 q_b

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$$

$$(q_0, a) \rightarrow (q_a, \Box, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \qquad (q_0, \Box) \rightarrow (f, \Box, \diamond)$$

$$(q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft)$$

$$(q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft)$$

$$(q'_a, a) \rightarrow (q, \Box, \triangleleft) \qquad (q'_b, b) \rightarrow (q, \Box, \triangleleft)$$

$$(q, a) \rightarrow (q, a, \triangleleft) \qquad (q, b) \rightarrow (q, b, \triangleleft) \qquad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \qquad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft) \\ (q'_a, a) \rightarrow (q, \Box, \triangleleft) \qquad (q'_b, b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \qquad (q, b) \rightarrow (q, b, \triangleleft) \qquad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$$

$$(q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond)$$

$$(q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q'_a, \Box, \triangleleft)$$

$$(q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q'_b, \Box, \triangleleft)$$

$$(q'_a, a) \to (q, \Box, \triangleleft) \qquad (q'_b, b) \to (q, \Box, \triangleleft)$$

$$(q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\cdots$$
 \Box \Box \Box b a a b b \Box \Box \Box \cdots

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$$

$$(q_0, a) \rightarrow (q_a, \Box, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \qquad (q_0, \Box) \rightarrow (f, \Box, \diamond)$$

$$(q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \Box) \rightarrow (q_a', \Box, \triangleleft)$$

$$(q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \Box) \rightarrow (q_b', \Box, \triangleleft)$$

$$(q_a', a) \rightarrow (q, \Box, \triangleleft) \qquad (q_b', b) \rightarrow (q, \Box, \triangleleft)$$

$$(q, a) \rightarrow (q, a, \triangleleft) \qquad (q, b) \rightarrow (q, b, \triangleleft) \qquad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q_a', \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q_b', \Box, \triangleleft) \\ (q_a', a) \to (q, \Box, \triangleleft) \qquad (q_b', b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\cdots$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$$

$$(q_0, a) \rightarrow (q_a, \Box, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \qquad (q_0, \Box) \rightarrow (f, \Box, \diamond)$$

$$(q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \Box) \rightarrow (q_a', \Box, \triangleleft)$$

$$(q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \Box) \rightarrow (q_b', \Box, \triangleleft)$$

$$(q_a', a) \rightarrow (q, \Box, \triangleleft) \qquad (q_b', b) \rightarrow (q, \Box, \triangleleft)$$

$$(q, a) \rightarrow (q, a, \triangleleft) \qquad (q, b) \rightarrow (q, b, \triangleleft) \qquad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \qquad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \Box) \rightarrow (q_a', \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \Box) \rightarrow (q_b', \Box, \triangleleft) \\ (q_a', a) \rightarrow (q, \Box, \triangleleft) \qquad (q_b', b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \qquad (q, b) \rightarrow (q, b, \triangleleft) \qquad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) \qquad (q'_b, b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q_a', \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q_b', \Box, \triangleleft) \\ (q_a', a) \to (q, \Box, \triangleleft) \qquad (q_b', b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$$

$$(q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond)$$

$$(q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q_a', \Box, \triangleleft)$$

$$(q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q_b', \Box, \triangleleft)$$

$$(q_a', a) \to (q, \Box, \triangleleft) \qquad (q_b', b) \to (q, \Box, \triangleleft)$$

$$(q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \square\}, \Delta, \square, q_0, f, \bot \big)$$

$$(q_0, a) \rightarrow (q_a, \square, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \square, \triangleright) \qquad (q_0, \square) \rightarrow (f, \square, \diamond)$$

$$(q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \square) \rightarrow (q_a', \square, \triangleleft)$$

$$(q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \square) \rightarrow (q_b', \square, \triangleleft)$$

$$(q_a', a) \rightarrow (q, \square, \triangleleft) \qquad (q_b', b) \rightarrow (q, \square, \triangleleft)$$

$$(q, a) \rightarrow (q, a, \triangleleft) \qquad (q, b) \rightarrow (q, b, \triangleleft) \qquad (q, \square) \rightarrow (q_0, \square, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \} \\ (q_0, a) \to (q_a, \Box, \triangleright) & (q_0, b) \to (q_b, \Box, \triangleright) & (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) & (q_a, b) \to (q_a, b, \triangleright) & (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) & (q_b, b) \to (q_b, b, \triangleright) & (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) & (q'_b, b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) & (q, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \\ \end{pmatrix}$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q_a', \Box, \lhd) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q_b', \Box, \lhd) \\ (q_a', a) \to (q, \Box, \lhd) \qquad (q_b', b) \to (q, \Box, \lhd) \\ (q, a) \to (q, a, \lhd) \qquad (q, b) \to (q, b, \lhd) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \} \\ (q_0, a) \to (q_a, \Box, \triangleright) & (q_0, b) \to (q_b, \Box, \triangleright) & (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) & (q_a, b) \to (q_a, b, \triangleright) & (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) & (q_b, b) \to (q_b, b, \triangleright) & (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) & (q'_b, b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) & (q, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \\ \end{pmatrix}$$

$$\mathsf{TM} \ \mathcal{M} = \begin{pmatrix} \{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \} \\ (q_0, a) \to (q_a, \Box, \triangleright) & (q_0, b) \to (q_b, \Box, \triangleright) & (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) & (q_a, b) \to (q_a, b, \triangleright) & (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) & (q_b, b) \to (q_b, b, \triangleright) & (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) & (q'_b, b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) & (q, b) \to (q, b, \triangleleft) & (q, \Box) \to (q_0, \Box, \triangleright) \\ \end{pmatrix}$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q_a', \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q_b', \Box, \triangleleft) \\ (q_a', a) \to (q, \Box, \triangleleft) \qquad (q_b', b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \qquad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \Box) \rightarrow (q_a', \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \Box) \rightarrow (q_b', \Box, \triangleleft) \\ (q_a', a) \rightarrow (q, \Box, \triangleleft) \qquad (q_b', b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \qquad (q, b) \rightarrow (q, b, \triangleleft) \qquad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$$

$$(q_0, a) \rightarrow (q_a, \Box, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \qquad (q_0, \Box) \rightarrow (f, \Box, \diamond)$$

$$(q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft)$$

$$(q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft)$$

$$(q'_a, a) \rightarrow (q, \Box, \triangleleft) \qquad (q'_b, b) \rightarrow (q, \Box, \triangleleft)$$

$$(q, a) \rightarrow (q, a, \triangleleft) \qquad (q, b) \rightarrow (q, b, \triangleleft) \qquad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$$

$$(q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond)$$

$$(q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q_a', \Box, \lhd)$$

$$(q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q_b', \Box, \lhd)$$

$$(q_a', a) \to (q, \Box, \lhd) \qquad (q_b', b) \to (q, \Box, \lhd)$$

$$(q, a) \to (q, a, \lhd) \qquad (q, b) \to (q, b, \lhd) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$$

$$(q_0, a) \rightarrow (q_a, \Box, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \qquad (q_0, \Box) \rightarrow (f, \Box, \diamond)$$

$$(q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \Box) \rightarrow (q_a', \Box, \triangleleft)$$

$$(q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \Box) \rightarrow (q_b', \Box, \triangleleft)$$

$$(q_a', a) \rightarrow (q, \Box, \triangleleft) \qquad (q_b', b) \rightarrow (q, \Box, \triangleleft)$$

$$(q, a) \rightarrow (q, a, \triangleleft) \qquad (q, b) \rightarrow (q, b, \triangleleft) \qquad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$$

$$(q_0, a) \rightarrow (q_a, \Box, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \qquad (q_0, \Box) \rightarrow (f, \Box, \diamond)$$

$$(q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft)$$

$$(q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft)$$

$$(q'_a, a) \rightarrow (q, \Box, \triangleleft) \qquad (q'_b, b) \rightarrow (q, \Box, \triangleleft)$$

$$(q, a) \rightarrow (q, a, \triangleleft) \qquad (q, b) \rightarrow (q, b, \triangleleft) \qquad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) \qquad (q'_b, b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \rightarrow (q_a, \Box, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \qquad (q_0, \Box) \rightarrow (f, \Box, \diamond) \\ (q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \Box) \rightarrow (q'_a, \Box, \triangleleft) \\ (q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \Box) \rightarrow (q'_b, \Box, \triangleleft) \\ (q'_a, a) \rightarrow (q, \Box, \triangleleft) \qquad (q'_b, b) \rightarrow (q, \Box, \triangleleft) \\ (q, a) \rightarrow (q, a, \triangleleft) \qquad (q, b) \rightarrow (q, b, \triangleleft) \qquad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) \qquad (q'_b, b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$$

$$(q_0, a) \rightarrow (q_a, \Box, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \qquad (q_0, \Box) \rightarrow (f, \Box, \diamond)$$

$$(q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \Box) \rightarrow (q_a', \Box, \triangleleft)$$

$$(q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \Box) \rightarrow (q_b', \Box, \triangleleft)$$

$$(q_a', a) \rightarrow (q, \Box, \triangleleft) \qquad (q_b', b) \rightarrow (q, \Box, \triangleleft)$$

$$(q, a) \rightarrow (q, a, \triangleleft) \qquad (q, b) \rightarrow (q, b, \triangleleft) \qquad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q_a', \Box, \lhd) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q_b', \Box, \lhd) \\ (q_a', a) \to (q, \Box, \lhd) \qquad (q_b', b) \to (q, \Box, \lhd) \\ (q, a) \to (q, a, \lhd) \qquad (q, b) \to (q, b, \lhd) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

<u>Satzform</u>

- Globale Systemsituation als Wort (Arbeitsband, Position des Kopfes und interner Zustand)
- Kürzen von □ vom linken und rechten Rand, aber nicht unter Kopf

Satzform

- Globale Systemsituation als Wort (Arbeitsband, Position des Kopfes und interner Zustand)
- Kürzen von □ vom linken und rechten Rand, aber nicht unter Kopf
- Satzform ist u q w
 - **①** Arbeitsbandbereich $\upsilon \in \Gamma^*$ links des Kopfes
 - 2 Zustand $q \in Q$
 - **3** Arbeitsbandbereich $w \in \Gamma^+$ unter und rechts des Kopfes
- Situation abb q aabba

§2.6 Definition (Ableitungsrelation — keine Bewegung)

$$u q \gamma w \vdash_{M} u q' \gamma' w$$

falls
$$(q, \gamma) \rightarrow (q', \gamma', \diamond) \in \Delta$$

§2.6 Definition (Ableitungsrelation — Schritt nach links)

falls
$$(q, \gamma) \rightarrow (q', \gamma', \triangleleft) \in \Delta$$

§2.6 Definition (Ableitungsrelation — Schritt nach rechts)

falls
$$(q, \gamma) \rightarrow (q', \gamma', \triangleright) \in \Delta$$

$$\vdash_{\mathcal{M}}$$

$$\cdots \quad \Box \quad \Box \quad | \quad \upsilon_1 \quad | \quad \cdots \quad | \quad \upsilon_k \quad | \quad \gamma' \quad | \quad w_1 \quad | \quad \cdots \quad | \quad w_n \quad \Box \quad | \quad \Box \quad | \quad \cdots \quad | \quad$$

§2.7 Definition (akzeptierte Sprache; engl. accepted language)

Akzeptierte Sprache von TM $M = \left(Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-\right)$ ist

$$L(M) = \left\{ w \in \Sigma^* \mid \exists u, v \in \Gamma^* \colon \varepsilon \ q_0 \ w \Box \ \vdash_M^* \ u \ q_+ \ v \right\}$$

§2.7 Definition (akzeptierte Sprache; engl. accepted language)

Akzeptierte Sprache von TM $\mathcal{M} = \left(Q, \Sigma, \Gamma, \Delta, \Box, q_0, q_+, q_-\right)$ ist

$$L(M) = \{ w \in \Sigma^* \mid \exists u, v \in \Gamma^* \colon \varepsilon \ q_0 \ w \Box \ \vdash_M^* \ u \ q_+ \ v \}$$

Akzeptanz Eingabe

- Ausgangssituation ε q_0 w für Eingabe w
- TM akzeptiert Eingabe w falls Übergänge von Ausgangssituation ε q_0 w in akzeptierenden Zustand q_+ existieren

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big)$$

$$(q_0, a) \rightarrow (q_a, \Box, \triangleright) \qquad (q_0, b) \rightarrow (q_b, \Box, \triangleright) \qquad (q_0, \Box) \rightarrow (f, \Box, \diamond)$$

$$(q_a, a) \rightarrow (q_a, a, \triangleright) \qquad (q_a, b) \rightarrow (q_a, b, \triangleright) \qquad (q_a, \Box) \rightarrow (q_a', \Box, \lhd)$$

$$(q_b, a) \rightarrow (q_b, a, \triangleright) \qquad (q_b, b) \rightarrow (q_b, b, \triangleright) \qquad (q_b, \Box) \rightarrow (q_b', \Box, \lhd)$$

$$(q_a', a) \rightarrow (q, \Box, \lhd) \qquad (q_b', b) \rightarrow (q, \Box, \lhd)$$

$$(q, a) \rightarrow (q, a, \lhd) \qquad (q, b) \rightarrow (q, b, \lhd) \qquad (q, \Box) \rightarrow (q_0, \Box, \triangleright)$$

Beispiel (§2.5)

$$\mathsf{TM}\, \mathsf{M} = \big(\{q_0,q,q_a,q_a',q_b,q_b',f,\bot\},\{a,b\},\{a,b,\Box\},\Delta,\Box,q_0,f,\bot\big) \\ (q_0,a) \to (q_a,\Box,\triangleright) \qquad (q_0,b) \to (q_b,\Box,\triangleright) \qquad (q_0,\Box) \to (f,\Box,\diamond) \\ (q_a,a) \to (q_a,a,\triangleright) \qquad (q_a,b) \to (q_a,b,\triangleright) \qquad (q_a,\Box) \to (q_a',\Box,\lhd) \\ (q_b,a) \to (q_b,a,\triangleright) \qquad (q_b,b) \to (q_b,b,\triangleright) \qquad (q_b,\Box) \to (q_b',\Box,\lhd) \\ (q_a',a) \to (q,\Box,\lhd) \qquad (q_b',b) \to (q,\Box,\lhd) \\ (q,a) \to (q,a,\lhd) \qquad (q,b) \to (q,b,\lhd) \qquad (q,\Box) \to (q_0,\Box,\triangleright)$$

 q_a

$$\mathsf{TM} \ \mathcal{M} = \big(\{q_0, q, q_a, q'_a, q_b, q'_b, f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q'_a, \Box, \triangleleft) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q'_b, \Box, \triangleleft) \\ (q'_a, a) \to (q, \Box, \triangleleft) \qquad (q'_b, b) \to (q, \Box, \triangleleft) \\ (q, a) \to (q, a, \triangleleft) \qquad (q, b) \to (q, b, \triangleleft) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

$$\mathsf{TM} \ \mathsf{M} = \big(\{q_0, q, q_a, q_a', q_b, q_b', f, \bot\}, \{a, b\}, \{a, b, \Box\}, \Delta, \Box, q_0, f, \bot \big) \\ (q_0, a) \to (q_a, \Box, \triangleright) \qquad (q_0, b) \to (q_b, \Box, \triangleright) \qquad (q_0, \Box) \to (f, \Box, \diamond) \\ (q_a, a) \to (q_a, a, \triangleright) \qquad (q_a, b) \to (q_a, b, \triangleright) \qquad (q_a, \Box) \to (q_a', \Box, \lhd) \\ (q_b, a) \to (q_b, a, \triangleright) \qquad (q_b, b) \to (q_b, b, \triangleright) \qquad (q_b, \Box) \to (q_b', \Box, \lhd) \\ (q_a', a) \to (q, \Box, \lhd) \qquad (q_b', b) \to (q, \Box, \lhd) \\ (q, a) \to (q, a, \lhd) \qquad (q, b) \to (q, b, \lhd) \qquad (q, \Box) \to (q_0, \Box, \triangleright)$$

Zusammenfassung

- Intuitive Berechenbarkeit
- Grundlagen Turingmaschinen

Erste Übungsserie bereits im Moodle