Bài tập Đạo hàm của các hàm số lượng giác - Toán 11

I. Bài tập trắc nghiệm

Bài 1: Hàm số $y = (1 + \sin x)(1 + \cos x)$ có đạo hàm là:

A. $y' = \cos x - \sin x + 1$.

B. $y' = \cos x + \sin x + \cos 2x$.

C. $y' = \cos x - \sin x + \cos 2x$.

D. $y' = \cos x + \sin x + 1$.

Lời giải:

Ta có:

$$y = (1 + \sin x)(1 + \cos x)$$

 $=1+\sin x+\cos x+\sin x.\cos x$

$$=1+\sin x+\cos x+\frac{1}{2}\sin 2x$$

Suy ra: $y' = \cos x - \sin x + \cos 2x$

Chọn đáp án C

Bài 2: Cho hàm số $y = f(x) = \sin \sqrt{x} + \cos \sqrt{x}$. Giá trị $f'(\frac{\pi^2}{16})$ bằng:

A. 0. B. $\sqrt{2}$. C. $\frac{2}{\pi}$. D. $\frac{2\sqrt{2}}{\pi}$.

$$f'(x) = \frac{1}{2\sqrt{x}} \cos \sqrt{x} - \frac{1}{2\sqrt{x}} \sin \sqrt{x}$$

$$= \frac{1}{2\sqrt{x}} \left(\cos \sqrt{x} - \sin \sqrt{x}\right)$$

$$f'\left(\frac{\pi^2}{16}\right) = \frac{1}{2\sqrt{\left(\frac{\pi}{4}\right)^2}} \left(\cos \sqrt{\left(\frac{\pi}{4}\right)^2} - \sin \sqrt{\left(\frac{\pi}{4}\right)^2}\right)$$

$$= \frac{1}{2 \cdot \frac{\pi}{4}} \left(\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\right) = 0$$

Chọn đáp án A

Bài 3: Cho hàm số $y = f(x) = \sqrt{\tan x + \cot x}$. Giá trị $f'\left(\frac{\pi}{4}\right)$ bằng:

A. $\sqrt{2}$.

B. $\frac{\sqrt{2}}{2}$.

C.0

D. $\frac{1}{2}$.

$$y = \sqrt{\tan x + \cot x} \Rightarrow y^2 = \tan x + \cot x$$

$$\Rightarrow y' \cdot 2y = \frac{1}{\cos^2 x} - \frac{1}{\sin^2 x}$$

$$\Rightarrow y' = \frac{1}{2\sqrt{\tan x + \cot x}} \left(\frac{1}{\cos^2 x} - \frac{1}{\sin^2 x} \right).$$

$$f'\left(\frac{\pi}{4}\right) = \frac{1}{2\sqrt{\tan \frac{\pi}{4} + \cot \frac{\pi}{4}}} \left(\frac{1}{\cos^2\left(\frac{\pi}{4}\right)} - \frac{1}{\sin^2\left(\frac{\pi}{4}\right)} \right)$$

$$= \frac{1}{2\sqrt{2}} (2 - 2) = 0$$

Chọn đáp án C

Bài 4: Cho hàm số
$$y = f(x) = \frac{1}{\sqrt{\sin x}}$$
. Giá trị $f'(\frac{\pi}{2})$ bằng:

A.1

B.
$$\frac{1}{2}$$

C. 0

D. Không tồn tại.

Ta có:

$$y = \frac{1}{\sqrt{\sin x}} \Rightarrow y^2 = \frac{1}{\sin x} \Rightarrow y' 2y = \frac{-\cos x}{\sin^2 x}.$$

$$\Rightarrow y' = \frac{1}{2y} \cdot \left(\frac{-\cos x}{\sin^2 x}\right)$$

$$= \frac{1}{2\sqrt{\sin x}} \left(\frac{-\cos x}{\sin^2 x}\right) = \frac{-\sqrt{\sin x}}{2} \cdot \frac{\cos x}{\sin^2 x}.$$

$$f'\left(\frac{\pi}{2}\right) = \frac{-\sqrt{\sin\left(\frac{\pi}{2}\right)}}{2} \cdot \frac{\cos\left(\frac{\pi}{2}\right)}{\sin^2\left(\frac{\pi}{2}\right)} = \frac{-1}{2} \cdot \frac{0}{1} = 0.$$

Chọn đáp án C

Bài 5: Cho hàm số $y = \frac{\cos x}{1 - \sin x}$. Tính $y'\left(\frac{\pi}{6}\right)$ bằng:

A.
$$y'\left(\frac{\pi}{6}\right) = 1$$
. B. $y'\left(\frac{\pi}{6}\right) = -1$.

C.
$$y'\left(\frac{\pi}{6}\right) = 2$$
. D. $y'\left(\frac{\pi}{6}\right) = -2$.

Ta có:

$$y' = \frac{-\sin x (1 - \sin x) + \cos^2 x}{(1 - \sin x)^2}$$

$$= \frac{-\sin x + \sin^2 x + \cos^2 x}{(1 - \sin x)^2}$$

$$= \frac{-\sin x + 1}{(1 - \sin x)^2} = \frac{1}{1 - \sin x}$$

$$y' \left(\frac{\pi}{6}\right) = \frac{1}{1 - \sin \frac{\pi}{6}} = 2$$

Chọn đáp án C

Bài 6: Cho hàm số
$$y = f(x) = \frac{\cos^2 x}{1 + \sin^2 x}$$
. Biểu thức $f'\left(\frac{\pi}{4}\right)$ bằng

A.
$$-3$$
. B. $\frac{8}{3}$.

C.
$$-\frac{8}{9}$$
 D. $-\frac{8}{3}$

Lời giải:

$$f'(x) = \frac{-2\cos x \sin x (1 + \sin^2 x) - 2\cos x \sin x \cos^2 x}{(1 + \sin^2 x)^2}$$

$$= \frac{-2\cos x \sin x (1 + \sin^2 x + \cos^2 x)}{(1 + \sin^2 x)^2} = \frac{-4\cos x \sin x}{(1 + \sin^2 x)^2}$$

$$\Rightarrow f'(\frac{\pi}{4}) = \frac{-8}{9}$$

Chọn đáp án C

 $y = \frac{\sin x - x \cos x}{\cos x + x \sin x}$ có đạo hàm bằng

A.
$$\frac{-x^2 \cdot \sin 2x}{(\cos x + x \sin x)^2}$$

B.
$$\frac{-x^2 \cdot \sin^2 x}{(\cos x + x \sin x)^2}$$

C.
$$\frac{-x^2 \cdot \cos 2x}{(\cos x + x \sin x)^2}$$

$$D. \left(\frac{x}{\cos x + x \sin x} \right)^2$$

Lời giải:

Ta có:

$$y' = \frac{(\sin x - x \cos x)' (\cos x + x \sin x) - (\cos x + x \sin x)' (\sin x - x \cos x)}{(\cos x + x \sin x)^2}$$

$$= \frac{(\cos x - \cos x + x \sin x) (\cos x + x \sin x) - (-\sin x + \sin x + x \cos x) (\sin x - x \cos x)}{(\cos x + x \sin x)^2}$$

$$= \frac{x \sin x (\cos x + x \sin x) - x \cos x (\sin x - x \cos x)}{(\cos x + x \sin x)^2}$$

$$= \frac{x^2 \sin^2 x + x^2 \cos^2 x}{(\cos x + x \sin x)^2} = \left(\frac{x}{\cos x + x \sin x}\right)^2$$

Chọn đáp án D

Bài 8: Cho hàm số $y = \cot^2 \frac{x}{4}$. Khi đó nghiệm của phương trình là:

A. $\pi + k2\pi$.

B. $2\pi + k4\pi$.

C.
$$2\pi + k\pi$$
.

D.
$$\pi + k\pi$$
.

Lời giải:

Ta có:

$$y' = \left(\cot^2 \frac{x}{4}\right)' = 2\cot \frac{x}{4} \left(\cot \frac{x}{4}\right)' = \frac{1}{2}\cot \frac{x}{4} \left(1 + \cot^2 \frac{x}{4}\right)$$

$$M\grave{a}: \ y' = 0 \Leftrightarrow \frac{1}{2}\cot \frac{x}{4} \left(1 + \cot^2 \frac{x}{4}\right) = 0$$

$$\Leftrightarrow \cot \frac{x}{4} = 0 \Leftrightarrow \frac{x}{4} = \frac{\pi}{2} + k\pi \Leftrightarrow x = 2\pi + k4\pi, \ k \in \mathbb{Z}$$

Chọn đáp án B

Bài 9: Hàm số $y = 2\sqrt{\sin x} - 2\sqrt{\cos x}$ có đạo hàm là:

A.
$$y' = \frac{1}{\sqrt{\sin x}} - \frac{1}{\sqrt{\cos x}}$$
.

B.
$$y' = \frac{1}{\sqrt{\sin x}} + \frac{1}{\sqrt{\cos x}}$$
.

C.
$$y' = \frac{\cos x}{\sqrt{\sin x}} + \frac{\sin x}{\sqrt{\cos x}}$$
.

D.
$$y' = \frac{\cos x}{\sqrt{\sin x}} - \frac{\sin x}{\sqrt{\cos x}}$$
.

Ta có:

$$y' = 2(\sqrt{\sin x})' - 2(\sqrt{\cos x})'$$

$$= 2 \cdot \cos x \cdot \frac{1}{2\sqrt{\sin x}} + 2 \sin x \cdot \frac{1}{2\sqrt{\cos x}}$$

$$= \frac{\cos x}{\sqrt{\sin x}} + \frac{\sin x}{\sqrt{\cos x}}$$

Chọn đáp án C

Bài 10: Tính đạo hàm của hàm số sau: $y = 2\sin^2 4x - 3\cos^3 5x$.

A.
$$y' = \sin 8x + \frac{45}{2} \cos 5x \cdot \sin 10x$$

B.
$$y' = 8 \sin 8x + \frac{5}{2} \cos 5x \cdot \sin 10x$$

C.
$$y' = 8\sin x + \frac{45}{2}\cos 5x \cdot \sin 10x$$

D.
$$y' = 8\sin 8x + \frac{45}{2}\cos 5x \cdot \sin 10x$$

Bước đầu tiên áp dụng $(u+v)^{\prime}$

$$y' = (2\sin^2 4x)' - 3(\cos^3 5x)'$$

Tính $(\sin^2 4x)'$:

Áp dụng $(u^{\alpha})'$, với $u = \sin 4x$,

Ta được:

$$(\sin^2 4x)^{'} = 2\sin 4x.(\sin 4x)^{'} = 2\sin 4x.\cos 4x(4x)^{'}$$

= 8.\sin 4x.\cos4x = 4\sin 8x.

Tương tự:

$$(\cos^3 5x)' = 3\cos^2 5x.(\cos 5x)'$$

$$= 3\cos^2 5x.(-\sin 5x).(5x)'$$

$$= -15\cos^2 5x.\sin 5x = \frac{-15}{2}\cos 5x.\sin 10x.$$

Kết luận:
$$y' = 8 \sin 8x + \frac{45}{2} \cos 5x \cdot \sin 10x$$

Chọn đáp án D

II. Bài tập tự luận có lời giải

Bài 1: Tính đạo hàm của hàm số sau: $y = (2 + \sin^2 2x)3$.

Áp dụng
$$(u^{\alpha})'$$
, với $u = 2 + \sin^2 2x$.
 $y' = 3(2 + \sin^2 2x)^2 (2 + \sin^2 2x)'$
 $= 3(2 + \sin^2 2x)^2 (\sin^2 2x)'$.

Tính
$$(\sin^2 2x)'$$
,

Áp dụng $(u^{\alpha})^{\prime}$, với $u = \sin 2x$.

$$\left(\sin^2 2x\right)' = 2.\sin 2x \left(\sin 2x\right)'$$

$$= 2.\sin 2x.\cos 2x(2x)^{\prime} = 2\sin 4x.$$

$$\Rightarrow y' = 6\sin 4x \left(2 + \sin^2 2x\right)^2.$$

Bài 2: Đạo hàm của hàm số $y = \sqrt{2 + \tan\left(x + \frac{1}{x}\right)}$ là

Lời giải:n

Ta có:

$$y' = \frac{\left[2 + \tan\left(x + \frac{1}{x}\right)\right]'}{2\sqrt{2 + \tan\left(x + \frac{1}{x}\right)}} = \frac{1 + \tan^2\left(x + \frac{1}{x}\right)}{2\sqrt{2 + \tan\left(x + \frac{1}{x}\right)}} \cdot \left(x + \frac{1}{x}\right)'$$

$$= \frac{1 + \tan^2\left(x + \frac{1}{x}\right)}{2\sqrt{2 + \tan\left(x + \frac{1}{x}\right)}} \cdot \left(1 - \frac{1}{x^2}\right)$$

$$y = \cot^2(\cos x) + \sqrt{\sin x - \frac{\pi}{2}}$$
 Bài 3: Đạo hàm của hàm số

$$y' = 2\cot(\cos x) \cdot (\cot(\cos x))' + \frac{\left(\sin x - \frac{\pi}{2}\right)'}{2\sqrt{\sin x - \frac{\pi}{2}}}$$

$$= 2\cot(\cos x) \cdot \frac{-1}{\sin^2(\cos x)} \cdot (\cos x)' + \frac{\cos x}{2\sqrt{\sin x - \frac{\pi}{2}}}$$

$$= 2\cot(\cos x) \cdot \frac{1}{\sin^2(\cos x)} \cdot \sin x + \frac{\cos x}{2\sqrt{\sin x - \frac{\pi}{2}}}$$

Bài 4: Hàm số $y = \frac{\cos x}{2\sin^2 x}$ có đạo hàm bằng:

Lời giải:

$$y' = \left(\frac{\cos x}{2\sin^2 x}\right)'$$

$$= \frac{2\sin^2 x (\cos x)' - (2\sin^2 x)' \cdot \cos x}{4\sin^4 x}$$

$$= \frac{-2\sin^3 x - 2.2\sin x \cdot \cos x \cdot \cos x}{4\sin^4 x}$$

$$= -\frac{\sin^2 x + 2\cos^2 x}{2\sin^3 x} = -\frac{(\sin^2 x + \cos^2 x) + \cos^2 x}{2\sin^3 x}$$

$$= -\frac{1 + \cos^2 x}{2\sin^3 x}$$

Bài 5: Tính đạo hàm của hàm số sau: $y = \left(\frac{\sin x}{1 + \cos x}\right)^3$.

Bước đầu tiên ta áp dụng công thức $(u^{\alpha})^{\prime}$

với
$$u = \frac{\sin x}{1 + \cos x}$$

 $y' = 3\left(\frac{\sin x}{1 + \cos x}\right)^2 \cdot \left(\frac{\sin}{1 + \cos x}\right)^4$
Tính:

Tính :

$$\left(\frac{\sin x}{1+\cos x}\right)' = \frac{(\sin x)' (1+\cos x) - (1+\cos x)' \cdot \sin x}{(1+\cos x)^2}$$

$$= \frac{\cos x (1+\cos x) + \sin^2 x}{(1+\cos x)^2}$$

$$= \frac{\cos x + \cos^2 x + \sin^2 x}{(1+\cos x)^2} = \frac{\cos x + 1}{(1+\cos x)^2} = \frac{1}{1+\cos x}.$$

$$V_{ay}^2 y' = 3\left(\frac{\sin x}{1+\cos x}\right)^2 \cdot \frac{1}{1+\cos x} = \frac{3\sin^2 x}{(1+\cos x)^3}.$$

Bài 6: Tính đạo hàm của hàm số sau: $y = \sin(\cos^2 x \cdot \tan^2 x)$.

Áp dụng
$$(\sin u)'$$
, với $u = \cos^2 x \tan^2 x$
 $y' = \cos(\cos^2 x \cdot \tan^2 x) \cdot (\cos^2 x \cdot \tan^2 x)'$.
Tính $(\cos^2 x \cdot \tan^2 x)'$, bước đầu sử dụng $(u \cdot v)'$
sau đó sử dụng $(u^{\alpha})'$.
 $(\cos^2 x \cdot \tan^2 x)' = (\cos^2 x)' \cdot \tan^2 x + (\tan^2 x)' \cdot \cos^2 x$
 $= 2\cos x (\cos x)' \tan^2 x + 2\tan x (\tan x)' \cos^2 x$
 $= -2\sin x \cos x \tan^2 x + 2\tan x \cdot \frac{1}{\cos^2 x} \cos^2 x$
 $= -\sin 2x \tan^2 x + 2\tan x$.
Vậy $y' = \cos(\cos^2 x \cdot \tan^2 x) (-\sin 2x \tan^2 x + 2\tan x)$

Bài 7: Tính đạo hàm của hàm số sau: $y = \frac{\sin 2x + \cos 2x}{2\sin 2x - \cos 2x}$

Lời giải:

$$y' = \frac{(\sin 2x + \cos 2x)' \cdot (2\sin 2x - \cos 2x) - (2\sin 2x - \cos 2x)' \cdot (\sin 2x + \cos 2x)}{(2\sin 2x - \cos 2x)^2}$$

$$y' = \frac{(2\cos 2x - 2\sin 2x)(2\sin 2x - \cos 2x) - (4\cos 2x + 2\sin 2x)(\sin 2x + \cos 2x)}{(2\sin 2x - \cos 2x)^2}$$

$$= \frac{4 \cdot \cos 2x \cdot \sin 2x - 2\cos^2 2x - 4\sin^2 2x + 2 \cdot \sin 2x \cdot \cos 2x}{(2\sin 2x - \cos 2x)^2}$$

$$-\frac{(4\cos 2x \cdot \sin 2x + 4\cos^2 2x + 2\sin^2 2x + 2\sin 2x \cdot \cos 2x)}{(2\sin 2x - \cos 2x)^2}$$

$$y' = \frac{-6\cos^2 2x - 6\sin^2 2x}{(2\sin 2x - \cos 2x)^2} = \frac{-6}{(2\sin 2x - \cos 2x)^2}.$$

Bài 8: Tính đạo hàm của hàm số sau: $y = \sin^2(\cos(\tan^4 3x))$

Đầu tiên áp dụng
$$(u^{\alpha})'$$
, với $u = \sin(\cos(\tan^4 3x))$
 $y' = 2\sin(\cos(\tan^4 3x)).[\sin(\cos(\tan^4 3x))]'$
Sau đó áp dụng $(\sin u)'$, với $u = \cos(\tan^4 3x)$
 $y' = 2\sin(\cos(\tan^4 3x)).\cos(\cos(\tan^4 3x)).(\cos(\tan^4 3x))'$
Áp dụng $(\cos u)'$, với $u = \tan^4 3x$.
 $y' = -\sin(2\cos(\tan^4 3x)).(\sin(\tan^4 3x)).(\tan^4 3x)'$.
Áp dụng $(u^{\alpha})'$, với $u = \tan 3x$
 $y' = -\sin(2\cos(\tan^4 3x)).(\sin(\tan^4 3x)).4\tan^3 3x.(\tan 3x)'$.
 $y' = -\sin(2\cos(\tan^4 3x)).(\sin(\tan^4 3x)).4\tan^3 3x.(1+\tan^2 3x).(3x)'$.
 $y' = -\sin(2\cos(\tan^4 3x)).(\sin(\tan^4 3x)).4\tan^3 3x.(1+\tan^2 3x).(3x)'$.

Bài 10:

$$\lim_{x\to 0} \frac{\sin 2x}{\tan 3x}$$
 bằng:

Lời giải:

$$\lim_{x \to 0} \frac{\sin 2x}{\tan 3x} = \lim_{x \to 0} \frac{2x \cdot \frac{\sin 2x}{2x} \cdot \cos 3x}{3x \cdot \frac{\sin 3x}{3x}}$$
$$= \lim_{x \to \infty} \frac{2 \cdot 1 \cdot \cos 3x}{3 \cdot 1} = \frac{2}{3}$$

Bài 10: Đạo hàm của hàm số

$$y = \sin 2x + \cos \frac{x^2 + 1}{2} - \tan \sqrt{x}$$

bằng biểu thức nào?

Lời giải:

$$y' = 2\cos 2x - x\sin\frac{x^2 + 1}{2} - \frac{1}{2\sqrt{x}\cos^2\sqrt{x}}$$

III. Bài tập vận dụng

Bài 1 Đạo hàm của hàm số

$$y = \sin 2x \cos^4 x - \cot \frac{1}{x^2} - \sin 2x \cdot \sin^4 x$$

bằng biểu thức nào sau đây?

Bài 2 Tính đạo hàm của hàm số y = x.cosx.

Bài 3 Tính đạo hàm của hàm số sau: $y = \sin^3(2x + 1)$.

Bài 4 Tính đạo hàm của hàm số sau: $y = \sin \sqrt{2 + x^2}$

Bài 5 Tính đạo hàm của hàm số sau: $y = \sqrt{\sin x + 2x}$

Bài 6 Hàm số $y = f(x) = \frac{2}{\cos(\pi x)}$ có f'(3) bằng?

Bài 7 Cho hàm số y = $\cos 3x \cdot \sin 2x$. Tính

Bài 8 Cho hàm số $y = \frac{\cos 2x}{1 - \sin x}$. Tính $y'\left(\frac{\pi}{6}\right)$

Bài 9 Cho hàm số $f(x) = \tan\left(x - \frac{2\pi}{3}\right)$. Giá trị bằng?

Bài 10 Cho hàm số $y = f(x) = \frac{\cos x}{1 + 2\sin x}$. Tính f'(x)