## GRAPH

By Harsh Prakash

## Importance of Graph

## TREE VS GRAPH

#### GRAPH



G = (V,E) (Vertices and Edges)

 $V = \{V1, V2, V3, V4, V5, V6\}$ 

 $E = \{(V1, V2), (V1, V3), (V2, V4), (V3,V4), (V3,V5)\}$ 

#### DIRECTED VS UNDIRECTED GRAPH





#### DIRECTED VS UNDIRECTED GRAPH

- Directed Graph has Indegree and Outdegree for its every node, whereas undirected graph has just degree for its node.
- Degree is the number of edges passing through a node.
- Indegree is the number of incoming edges and outdegree is the number of outgoing edges from a node in directed graph.
- Sum of Indegrees and Outdegrees respectively are both equal to number of edges;
- Sum of degree in an undirected graph is twice the number of edges;

#### DIRECTED VS UNDIRECTED GRAPH

• Undirected Graph are bi-directional whereas directed graph are one-direction(they represent a single direction of flow in a relationship between two graph nodes).

• In Directed Graph (V1, V2) is an ordered pair that means (V1,V2) is not similar/equal to (V2,V1), whereas in Undirected Graph (V1,V2) is similar to (V2,V1)

 Example of Directed Graph cabe World Wide Web and example of Undirected Graph can be a Social Network of Friends and Relatives.

#### DIRECTED GRAPH VS UNDIRECTED GRAPH

Max Number of Edges in Directed Graph (|V| \* (|v|-1)), where V is number of vertices

Such a graph is known as **COMPLETE GRAPH**.

Max Number of Edges in Undirected Graph (|V| \* (|v|-1))/2;



#### WALK AND PATH



**WALK**: V1, V2, V5,v4

PATH: V1, V2, V5 (no repetition allowed

**CYCLIC:** There exists a walk that begins and ends with the same vertex.

Some textbooks name "walk "as "path" and "path" as

"Simple path"

#### NAME THE TYPES OF GRAPHS



## Name the type of this Graph



#### Weighted and Unweighted Graphs





#### Weighted Graphs:

Contains some magnitude on the edges

Example => Google Maps or any other Navigational Service

#### **Unweighted Graphs:**

Example =>Social Media Network of Friends/Colleagues.

## **GRAPH REPRESENTATION**

#### GRAPH REPRESENTATION

GRAPH CAN BE REPRESENTED BY MANY FORMS:

MOSTLY IT IS IMPLEMENTED BY TWO POPULAR METHODS -

- 1. ADJACENCY MATRIX (for directed and undirected graph)
- 2. ADJACENCY LIST (for directed and undirected graph)

### ADJACENCY MATRIX (undirected graph)



#### ADJACENCY MATRIX (undirected graph)

```
Size of Matrix = |V| * |V|
```

For undirected Graph =>

It is a symmetric matrix

```
Mat[i][j] = |1 - if there exists a edge from vertex i to vertex j
```

0 - if there is no mapping between the two vertices.

#### ADJACENCY MATRIX (directed graph)



#### ADJACENCY MATRIX (directed graph)

Size of Matrix = |V| \* |V|

For directed Graph =>

It may be a symmetric matrix or not.

Mat[i][j] = 1 - if there exists a outgoing edge from vertex i to vertex j

0 - if there is no outgoing edge from i to j.

## HOW TO HANDLE VERTICES WITH ARBITRARY NAMES?



Additional DS is required for strings.

(e.g. we can take an array)

| 0 | ABC |
|---|-----|
| 1 | BCD |
| 2 | CDE |
| 3 | EFG |

## HOW TO HANDLE VERTICES WITH ARBITRARY NAMES?



## HOW TO HANDLE VERTICES WITH ARBITRARY NAMES?

For Efficient implementation one hash Table(h) would also be required to do " **REVERSE MAPPING**".

- h{ABC} = 0
- h{BCD} = 1
- h{CDE} = 2
- h{EFG} = 3

#### Properties of Adjacency Matrix

**SPACE REQUIRED : O(V\*V)** 

#### **OPERATIONS:**

- Check if u and v are adjacent to each other: O(1)
- Find all vertices adjacent to u : O(V)
- Find all degree of u : O(V)
- Add/Remove an EDGE : O(1)
- Add/Remove a Vertex : O(V\*V) -> O(V^2)

### Adjacency List



Adjacency Matrix stores redundant data, so the need of Adjacency List arises.

### Adjacency List (for undirected graph)



| 0 (                   | ) | 1                |   |   |
|-----------------------|---|------------------|---|---|
|                       |   | 1                | 1 | 0 |
| 0 0 1 1 2 2 2 3 3 0 0 | 1 | 1<br>0<br>1<br>0 | 1 | 0 |
| 2                     | 1 | 1                | 0 | 1 |
| 3 (                   | ) | 0                | 1 | 0 |

### Adjacency List



|   | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 2 | 1 | 1 | 0 | 1 |
| 3 | 0 | 0 | 1 | 0 |

L.L / Vectors

Matrix

#### Adjacency List for undirected Graph

An array of lists, where lists are mostly represented as:

- 1. DYNAMIC SIZED ARRAYS
- 2. LINKED LISTS

#### Operations in Adjacency List

- Check if there is an edge from u to v : O(V)
- Find all adjacent of u : theta(degree(u))
- Find degree of u: theta(1)
- Add an Edge: theta(1)
- Remove an Edge : theta(V)

### Adjacency List for directed graph



Space =>

O(V + E) - Undirected Graph O(V + 2E) - Directed Graph

## Adjacency List Implementation

```
Class Test{
Static void addEdge(ArrayList<ArrayList<Integer>> adj, int u, int v){
               adj.get(u).add(v);
               adj.get(v).add(u);
Public static void main(String [] args){
        Int v = 5;
       ArrayList<ArrayList<Integer>> adj = new ArrayList<ArrayList<Integer>>(v);
        For (int i = 0; i < v; i++){}
               adj.add(new ArrayList<Integer>());
               addEdge(adj, 0, 1);
               addEdge(adj, 0, 2);
               addEdge(adj, 1, 2);
               addEdge(adj, 1, 3);
```



### Comparison of Adjacent Matrix vs List

| PARAMETERS                 | LIST             | MATRIX   |
|----------------------------|------------------|----------|
| 1 - MEMORY                 | O(V+E)           | O(V*V)   |
| 2- Check edge between      | O(V)             | theta(1) |
| U to V                     |                  |          |
|                            |                  |          |
| 3 - Find all adjacent to u | theta(degree(u)) | theta(V) |
| 4 - Add an edge            | theta(1)         | theta(1) |
| 5 - Remove an edge         | O(V)             | O(1)     |
|                            |                  |          |

# THEORY OF **GRAPH** ENDS HERE.