Правительство Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Высшая школа экономики" Московский институт электроники и математики им. А.Н. Тихонова Департамент прикладной математики

МЕЖДИСЦИПЛИНАРНАЯ КУРСОВАЯ РАБОТА

по теме:

Исследование вопросов оптимизации методов анализа некоторых схем шифрования сохраняющих формат (промежуточный)

Руководитель курсовой работы	Д.Б. Фомин
Академический руководитель	
образовательной программы	А.Б. Лось

СПИСОК ИСПОЛНИТЕЛЕЙ

Выполнил студент	 Щеглова П.Н.

СОДЕРЖАНИЕ

Определения, обозначения и сокращения	4
Обозначения и сокращения	4
Определения	4
Функции	4
1 Линейный метод	5
1.1 Схема и обозначения	5
1.2 Теорема ([1])	6
1.3 Алгоритм метода	6
2 Эксперименты	8
2.1 Эксперимент № 1	8
2.1.1 Реализация эксперимента	11
Список использованных источников	12

ОПРЕДЕЛЕНИЯ, ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

В настоящей работе применяются следующие термины с соответствующими определениями и сокращениями:

Обозначения и сокращения

с.в. случайная величина ;

Определения

Функции

$$a \oplus b = \begin{cases} 0, (a,b) \in \{(0,0), (1,1)\} \\ 1, (a,b) \in \{(0,1), (1,0)\} \end{cases}$$

$$Ind(Expr) = \begin{cases} 1, Expr = True \\ 0, Expr = False \end{cases}$$

$$(\alpha, b) = (\alpha_1 \cdot b_1) \oplus ... \oplus (\alpha_N \cdot b_N); \alpha = [\alpha_1, ..., \alpha_N], b = [b_1, ..., b_N];$$

1 Линейный метод

1.1 Схема и обозначения

Сначала опишем общую схему алгоритма и обозначения для применения линейного метода криптоанализа.

Известно T пар открытых текстов и соответствующих шифртекстов $(a^{(i)},c^{(i)}),i\in\overline{1,T}$, каждый из которых состоит из N бит: $a_1^{(i)},...,a_N^{(i)}$ и $c_1^{(i)},...,c_N^{(i)}$. Пусть схема шифропреобразования с ключом K разбита на две последовательные части F_{K_1} и F_{K_2} , как показано на рисунке 1.

Рисунок 1 — Схема разбиения алгоритма на два блока для проведения линейного криптографического анализа

В первой из них используется часть исходного ключа K_1 , во второй, соответсвенно, K_2 (при этом K_1 может частично совпадать с K_2). $F_{K_1'}(a^{(i)}) = b^{(i)} = b_1^{(i)}, ..., b_N^{(i)}$ – промежуточный шифртекст, зашифрованный на некотором ключе K_1' . $\alpha = \alpha_1, ..., \alpha_N; \beta = \beta_1, ..., \beta_N$ – битовые маски, которые мы будем накладывать на промежуточный и итоговый шифртексты, соответственно. Наложение маски подразумевает скалярное произведение двух векторов: $(\alpha, b^{(i)})$.

Для отбраковывания ложных ключей линейный метод предполагает проверку выполнения некоторого соотношения с нужной вероятностью. Для двух масок $\alpha \in \mathbb{F}_2^n$ и $\beta \in \mathbb{F}_2^m$ и функции $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ определим следующую величину:

$$C_{\alpha,\beta}^{F} = 2 \cdot P\left(\left(\alpha, x\right) = \left(\beta, F(x)\right), x \in \mathbb{F}_{2}^{n}\right) - 1 = 2 \cdot \left(\frac{\sum_{x \in \mathbb{F}_{2}^{n}} \left(-1\right)^{\left(\alpha, x\right) \oplus \left(\beta, F(x)\right)}}{2 \cdot 2^{n}} + \frac{1}{2}\right) - 1 = \frac{1}{2^{n}} \sum_{x \in \mathbb{F}_{2}^{n}} \left(-1\right)^{\left(\alpha, x\right) \oplus \left(\beta, F(x)\right)}$$

и назовем ее преобладанием.

Для равномерно распределенной функции $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ справедлива следующая теорема:

1.2 Теорема ([1])

Пусть определено преобладание $C_{\alpha,\beta}^F$ для равномерно распределенной функции $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$. Тогда случайная величина $\xi = 2^{n-1}(C_{\alpha,\beta}^F + 1)$ (у [1] речь идет о $Imb(\alpha,\beta) = 2^{n-1} \cdot C_{\alpha,\beta}^F$) имеет биномиальное распределение $Bi(2^n,\frac{1}{2})$ с математическим ожиданием $M\xi = 2^{n-1}$ и дисперсией $D\xi = 2^{n-2}$. В частности, при $n \to \infty$ распределение $2^{n/2}C_{\alpha,\beta}^F$ сходится к стандартному нормальному распределению $\mathcal{N}(0,1)$ (об этом в [1] ничего нет).

Осталось вывести переход к $C_{\alpha,\beta}^{F_1,\ldots,F_r}$.

1.3 Алгоритм метода

Перейдем к описанию алгоритма. α и β заданы, вычислено теоритическое значение $C^F_{\alpha,\beta}$, вычислен доверительный интервал. Для каждого K_1' :

- а) Полагаем $\overline{P} = 0$;
- б) Для каждого $a^{(i)}, i \in \overline{1,T}$, вычисляем $b^{(i)} = F_{K_1'}(a^{(i)});$

- в) Проверяем выполнено ли равентсво $(\alpha, b^{(i)}) = (\beta, c^{(i)}).$
- г) Если равенство выполнилось, полагаем $\overline{P}=\overline{P}+1$
- д) После перебора материала полагаем $\overline{P}=\frac{\overline{P}}{T};$
- е) Если $\overline{P} \simeq P$, считаем, что часть ключа $K_1 = K_1'$, при необходимости продолжаем работу с F_{K_2} по той же схеме.
- ж) Иначе, отбрасываем ключ K_1' как ложный, выбираем новый и повторяем все итерации.

Чем больше при этом T и $|C_{\alpha,\beta}^F|$, тем большая доля значений $K_1^{'}$ будет отбракована на каждой итерации, вплоть до однозначного определения $K_1^{'}$.

Для того, чтобы применить вычисляемую оценку для отбраковывания ложных ключей, необходим различитель, который на основе теоритической $C_{\alpha,\beta}^F$ определяет, выполнилось ли соотношение с нужной вероятностью. Чтобы построить различитель, воспользуемся результатами, полученными в [2].

2 Эксперименты

Оценивание значения преобладания $C_{\alpha,\beta}^F$ позволяет оценить и эффективность линейного метода. Обычно вместо непосредственно преобладания оценивают величину $(C_{\alpha,\beta}^F)^2$. В качестве оценки указанной случайной величины используем статистику:

$$S = \left(\frac{2}{T} \cdot \sum_{i=1}^{T} v_i - 1\right)^2$$

где T - количество материала, $v_i = Ind\Big((\alpha, x_i) = (\beta, F(x_i))\Big)$ - реализация независимых случайных величин, распределенных по биномиальному закону с вероятностью 0 равной $\frac{C_{\alpha,\beta}^F+1}{2}$, а $x_i, F(x_i)$ – і-ые текст и соответствующий шифртекст. Характеристики статистики S зависят от функции F, поэтому рассмотрим различные случаи и проведем для них эксперименты, чтобы подтвердить корректность теоритических вычислений.

2.1 Эксперимент № 1

Целью первого типа экспериментов является рассмотрение статистики S в случае, когда функция F - биективное отображение (перестановка на множестве текстов) $\mathbb{F}_2^n \to \mathbb{F}_2^n$. $v_i = Ind\Big((\alpha, x_i) = (\beta, F(x_i))\Big)$, $\overline{v} = (v_1, v_2, ..., v_{2^n})$ – вектор из $\mathbb{F}_2^{2^n}$, для дальнейшего использования полученных значений при отсеивании ложных ключей.

Возьмем случайную величину $\xi = \sum_{i=1}^{2^n} v_i, \xi \in \{0, 1, ..., 2^n\}$, соответствующую количеству единиц в векторе \overline{v} в зависимости от истинной подстановки. Тогда всего существует $\binom{2^n}{\xi}$ возможных векторов, для которых количество единиц совпадает с истинным.

При применении линейного метода криптоанализа проверяются лишь первые T координат вектора \overline{v} , число T соответствует количеству материала, т.е. количеству известных пар открытого и шифрованного

текстов. В таком случае, при наблюдениях происходит переход к случайной величине $\xi_T = \sum_{i=1}^T v_i, \xi_T \in \{0, 1, ..., T\}$. Найдем математическое ожидание для с.в. $\eta = \varphi(\xi_T)$, где φ - произвольная функция определенная на множестве целых чисел \mathbb{Z} :

$$E\eta = E\varphi(\xi_T) = \sum_{j=0}^{T} \varphi(j) \cdot P(\xi_T = j)$$

Вероятность события $\xi_T=j$ можно представить в виде суммы вероятностей с помощью формулы Байеса, где гипотезы $\{\xi=k\}_{k=\overline{0},2^n}$ образуют полную группу событий:

$$E\eta = \sum_{j=0}^{T} \varphi(j) \cdot P(\xi_T = j) = \sum_{j=0}^{T} \varphi(j) \cdot \sum_{k=0}^{2^n} P(\xi_T = j | \xi = k) P(\xi = k)$$

Условную вероятность $P(\xi_T=j|\xi=k)$ можно подсчитать по классической вероятностной схеме, так как вероятности значений координат в векторах \overline{v} идентичны для случайных величин ξ и ξ_T : всего вариантов выбрать координаты вектора, значение которых 1, равно $\binom{2^n}{k}$, число вариантов выбрать при этом ровно j первых T координат: $\binom{T}{j}\binom{2^n-T}{k-j}$. Соответственно:

$$E\eta = \sum_{j=0}^{T} \varphi(j) \cdot \sum_{k=0}^{2^n} P(\xi = k) \frac{\binom{T}{j} \binom{2^n - T}{k - j}}{\binom{2^n}{k}}$$

В случае когда $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ - случайная и равновероятная (т.е. выбор образа для заданного элемента множества открытых текстов считаем сделанным по равновероятной схеме), (α, x_i) и $(\beta, F(x_i))$ также распредены по равновероятной схеме (наложение маски не влияет на общее распределение, так как ...did not get), а значит и $Ind(\alpha, x_i) = (\beta, F(x_i))$.

Таком образом, получаем, что с.в. $\xi = \sum_{i=1}^{2^n} v_i$ распределена по биномиальному закону — $Bi\left(2^n,\frac{1}{2}\right)$ и

$$P(\xi = k) = {2^n \choose k} \cdot \left(\frac{1}{2}\right)^k \cdot \left(\frac{1}{2}\right)^{2^n - k} = \frac{1}{2^{2^n}} {2^n \choose k}.$$

В таком случае, математическое ожидание для с.в. $\eta = \varphi(\xi_T)$ принимает следующий вид:

$$E\eta = \sum_{j=0}^{T} \varphi(j) \cdot \sum_{k=0}^{2^{n}} \frac{1}{2^{2^{n}}} {2^{n} \choose k} \frac{{T \choose j} {2^{n} - T \choose k - j}}{{2^{n} \choose k}} =$$

$$= \frac{1}{2^{2^n}} \sum_{j=0}^{T} \varphi(j) \cdot {\binom{T}{j}} \sum_{k=0}^{2^n} {\binom{2^n - T}{k - j}}$$

С помощью выведенной формулы получаем матожидание статистики $(\varphi(\xi_T) = (2\xi_T/T - 1)^2)$:

$$E\left(\frac{2}{T} \cdot \sum_{i=1}^{T} v_i - 1\right)^2 = \frac{1}{2^{2^n}} \sum_{j=0}^{T} \left(\frac{2j}{T} - 1\right)^2 \cdot \binom{T}{j} \sum_{k=0}^{2^n} \binom{2^n - T}{k - j}$$

Теперь посчитаем его для различных небольших n и T:

n	$\mid T \mid$	S
8	2^{8}	$0.00390625 = 2^{-8}$
8	2^7	$0.0078125 = 2^{-7}$
8	2^{6}	$0.015625 = 2^{-6}$
12	2^{12}	$0.000244141 \approx 2^{-12}$
12	2^{11}	$0.000488281 \approx 2^{-11}$
12	2^{10}	$0.0009765625 \approx 2^{-10}$
24	2^{24}	$5.96046e - 08 \approx 2^{-24}$
24	2^{22}	$2.38419e - 07 \approx 2^{-22}$
24	2^{16}	$1.52588e - 05 \approx 2^{-16}$

Отметим, что статистика для таких функций зависит именно от объема материала T, в то время как для самой случайной величины значение преобладания зависим только от n.

2.1.1 Реализация эксперимента

Теперь проведем эксперимент: возьмем все возможные тексты размера $n=8,\,12$ и 24 бит, сгенерируем несколько случайных подстановок F (100-1000, для получения усредненных значений) и будем проводить шифрование, применяя получившуюся функцию на выбранном объеме материала. Фиксируем произвольную маску и для каждой F вычисляем статистику S (и на входе, и на выходе маска берется одна и та же) на заданном количестве материала.

Реализацию эксперимента можно найти по ссылке. Полученные результаты совпадают с вычисленными теоритически.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Daemen Joan, Rijmen Vincent. Probability distributions of correlation and differentials in block ciphers // Journal of Mathematical Cryptology. 2007. Vol. 1, no. 3. P. 221–242. Access mode: https://doi.org/10.1515/JMC.2007.011.
- 2. Beyne Tim. Linear Cryptanalysis of FF3-1 and FEA. 2021. Access mode: https://www.esat.kuleuven.be/cosic/publications/article-3384.pdf (online; accessed: 25.05.2022).