QUADRINOMIO

1) Cubo di un binomio: cerco i due cubi e verifico i tripli prodotti

$$a^{3} + 3a^{2}b + 3ab^{2} + b^{3} = (a+b)^{3}$$
|
|
|
|
|
|
|
|
|
|
|

ES:
$$8x^3 - 12x^2y + 6xy^2 - y^3 = (2x - y)^3$$

2) Raccoglimento PARZIALE A FATTOR COMUNE:

raccolgo a due a due.

Funziona SE la parentesi è uguale: la raccolgo a fattor comune.

E' il caso inverso della proprietà distributiva binomio per binomio

ADDENDI

$$ax + bx + ay + by = x(a+b) + y(a+b) = (a+b) \cdot (x+y)$$

A QUESTO PUNTO NON SI
PUO' ANCORA SCOMPORRE
PERCHE' SONO ANCORA

FASE INTERMEDIA

Es:
$$a^{3}x^{3} + x^{3} + a^{3}y + y = x^{3}(a^{3}+1) + y(a^{3}+1) = (a^{3}+1)(x^{3}+y)$$

= $(a+1)(a^{2}-a+1)(x^{3}+y)$

3) SOMMA PER DIFFERENZA TRA POLINOMI

Cerco il trinomio che è lo sviluppo del quadrato di un binomio.

Il quarto monomio deve essere un quadrato e negativo.

Si scompone moltiplicando tra loro la somma e la differenza tra il binomio

e la base del 4[^] monomio

$$a^{2} + 2ab + b^{2} - c^{2} = (a+b)^{2} - c^{2} = (a+b+c) \cdot (a+b-c)$$

Es:

$$4x^{2} + 9 - 12x - 25y^{2} = (2x - 3)^{2} - (5y)^{2} = (2x - 3 + 5y) \cdot (2x - 3 + 5y)$$
4) Regola di Ruffini
$$2^{2} - 6^{2} = (9 + 6) (9 - 6)$$

Esercizi sul quadrinomio

$$1)a^2 + 9 + 6a - b^2 =$$

1)
$$a^{2} + 9 + 6a - b^{2} =$$

2) $a^{3} - 9a + a^{2}x - 9x =$ $a(a^{2} - 9) + x(a^{2} - 9) = (a^{2} - 9)(a + x)...$
3) $a^{3} - 6a^{2} + 12a - 8 =$ $(a - 2)^{3}$

$$(a-2)^{2}$$

$$4)x^3 + 4x^2y + 4xy^2 - 9x = x(x^2 + 4xy + 4y^2 - 9)$$

$$5)8x^4 - 36x^3 + 54x^2 - 27x = x(8x^3 - 36x^2 + 54x - 27) = x(2x - 3)^3$$

$$6)a^3x^3 - a^3x + 8x^3 - 8x =$$

ESERCIZI su BINOMIO, TRINOMIO, QUADRINOMIO

3)
$$27 - \frac{1}{8}x^3 =$$

4)
$$25x^{2} - 40xy + 16y^{2} =$$

$$\begin{array}{c} 3 \\ 3 \\ 27 - \frac{1}{8}x^{3} = \\ 4 \\ 25x^{2} - 40xy + 16y^{2} = \\ 5 \\ 8a^{3}b^{3} - 1 - 12a^{2}b^{2} + 6ab = \\ 6 \\ x^{2} - x - 20 = \\ 7 \\ 20x^{2} + bx^{2} - 8a - 4b = \\ \end{array}$$

6)
$$\chi^2 - \chi - 20 =$$

8)
$$x^{2} + 10x + 25 - y^{2} =$$
9) $12a^{2} - 12a + 3 =$

SOLUZIONI DEGLI ESERCIZI

SOLUZIONI DEGLI ESERCIZI

(1)
$$16x^2 - 25a^2 = (4x + 5a)(4x - 5a)$$

(2) $8ab^2 + ax^2 = a(8b^2 + x^2)$

(3) $27 - \frac{1}{8}x^3 = (3 - \frac{1}{2}x)(9 + \frac{3}{2}x + \frac{1}{4}x^2)$

(4) $25x^2 - 40xy + 16y = (5x - 4y)^2$

(5) $8a^3b^3 - 1 - 12a^2b^3 + 6ab = (2ab - 1)^3$

(6) $x^2 - x - 20 = (x - 5)(x + 4)$

(7) $2ax^2 + bx^2 - 8a - 4b = x^2(2a + b) - 4(2a + b) = (2a + b)(x - 2)(x + b)$

(8) $12x^2 + 10x + 25 + 10x^2 = (x + 5)^2 - 0x^2 = (x + 5 + 4)(x + 5 + 4)(x + 5 + 4) = (2a + b)(x - 2)(x + 5)$

(9) $12a^2 - 12a + 3 = (4a^2 - 4a + a) = 3(2a - 1)^2$

(10) $16a^2x^3 - 16x^3y^2 + 2a^2 - 2y^2 = 2(8a^2x^3 - 8x^3y^3 + a^2 - y^2) = 2(a + y)(a - y)(x + 1)(4x^2 - 2x + 1)$

(2) $12x^2 - 12x + 3 = (a + y)(a - y)(x + 1)(4x^2 - 2x + 1)$

ESERCIZI SU SCOMPOSIZIONE FINO al 2 ° CASO del QUADRINOMIO 1) $y^4 - y^3 - 2y + 2 = y^3 (y - 1) \oplus 2 (+ y \oplus 1) = (y - 1)(y^2 - 1)$ 2) 2an + 4n-3a-6 = 2n (a+2)-3 (a+2)=(a+2)(2n 3) $\frac{1}{3}x^3 - \frac{1}{3} = \frac{1}{3}(\chi^3 - 1) = \frac{1}{3}(\chi^3 - 1)(\chi^2 + \chi + 1)$ $\frac{5}{4}a - 5ax^2 = \frac{5}{4}a - 6ax^2 = \frac{5}{2}a + 6ax =$ 5) $25x^2 - 200x + 4x^2 = \chi (25x - 200 + 4x)$ $3x^2y - 6xy + 3y = 3y(x^2 - 2x + 1) = 3y(x - 1)^2$ $(\alpha^{2}+4)(\alpha^{2}-1)=(\alpha^{2}+4)(\alpha-1)(\alpha-1)$ 8) $7x^{2}-7x-14=7(x^{2}-x-2)=7(x-2)(x+1)$ 9) $2a^{3}-6a^{2}+6a-2=2(a^{3}-3a^{2}+3a-1)=2(a$ $2(\alpha^3 - 3\alpha^2 + 3\alpha - 1) = 2(\alpha$ ES. DI UTILIZZO DELLA SCOMPOSIZIONE $\frac{2x^{3}-16}{2x^{2}-10x+12}=\frac{2(x^{3}-8)}{2(x^{2}-5x+6)}$

POLINOMIO A n TERMINI

n=5 Tre di essi sono il quadrato di un binomio e i due rimanenti sono un binomio scomponibile.

Scompongo ciascun gruppo di monomi nel caso detto e raccolgo la parentesi uguale

Es:
$$x^2-10xy+25y^2-x^3+125y^3=(x-5y)^2-(x^3-125y^3)=(x-5y)^2-(x-5y)(x^2+5xy+25y^2)=(x-5y)[(x-5y)-(x^2+5xy+25y^2)]$$

n=6 1) Sviluppo del quadrato di un trinomio.

Cerco i tre quadrati e verifico che gli altri tre monomi siano i doppi prodotti

$$x^2+9+4a^2+6x-4ax-12a = (x+3-2a)^2$$

2) Raccoglimento parziale a due a due o a tre a tre.

$$ax+ay+bx+by+cx+cy= a(x+y)+b(x+y)+c(x+y)= (a+b+c)(x+y)$$

stessa cosa se raccolgo x e y tra tre monomi

3) n≥5 In ogni caso provare alla fine con la REGOLA DI RUFFINI

SCOMPOSIZIONE

1)
$$x^2$$
- $4y^2$ = $(x+2y)(x-2y)$

2)
$$8b^3+1=$$
 (2b+1) (4b²- 2b +1)

3)
$$5a^3 - 20a = 5a (a^2 - 4) = 5a (a-2)(a+2)$$

4)
$$a^2+8a+16=$$
 $(a+4)^2$

5)
$$x^4$$
- $10x^2$ +9= $(x^2$ -9) $(x^2$ -1) = $(x+3)(x-3)(x+1)(x-1)$

6)
$$ax^2+25a+10ax=$$
 $a(x^2+25+10x)=a(x+5)^2$

7)
$$8a^3$$
 - $12a^2$ + $6a$ - 1 = $(2a - 1)^3$

8)
$$a^2y - 4a^2 - 3ay + 12a =$$
 $a (ay - 4a - 3y + 12) =$ $a [a(y - 4) - 3 (y - 4)] = a (y - 4) (a - 3)$

9)
$$y^4 - y^3 - 2y + 2 = y^3 (y - 1) - 2 (y - 1) = (y - 1) (y^3 - 2)$$

10)
$$a^6x^9 - 6 a^4x^6 + 12 a^2x^3 - 8 = (a^2x^3 - 2)^3$$

ESERCIZI a gruppi

FINIRE PAGINA 378

380 DAL 92 AL 98 384 DAL 134 AL 146

FINIRE PAGINA 385 FINIRE PAGINA 387

SCHEMA FINALE DELLA SCOMPOSIZIONE di un POLINOMIO

SCOMPORRE significa trasformare un polinomio in fattori

1) RACCOGLIMENTO A FATTOR COMUNE TOTALE

TRINOMIO

- 1) Quadrato di un binomio: cerco i due quadrati e controllo che il terzo monomio sia il doppio prodotto
- 2) <u>Somma e prodotto</u>: cerco due numeri che moltiplicati diano il termine di grado zero e sommati il termine di grado intermedio (grado metà del grado massimo). Il monomio di grado massimo deve essere pari e il suo coefficiente=1
- 3) RUFFINI

QUADRINOMIO

- 1) Cubo di un binomio: cerco i due cubi e verifico i tripli prodotti
- 2) Raccoglimento parziale a due a due: raccolgo a due a due
- 3) Somma per differenza tra trinomi
- 4) REGOLA DI RUFFINI

POLINOMIO a 6 TERMINI

- 1) Quadrato di un trinomio: cerco i tre quadrati e verifico i doppi prodotti
- 2) Raccoglimento parziale a due a due o a tre a tre
- 3) REGOLA DI RUFFINI

.

TESTO FAC SIMILE 1 SOLUZIONE

$$1)x^2 - 4y^2 = (x - 2y)(x + 2y)$$

$$2)4a^2 + 25b^2 - 20ab = (2a + 5b)^2$$

$$3)8x^3y^3 - 12x^2y^2 + 6xy - 1 = (2xy - 1)^3$$

$$4)3a^2 - 3y + a^2b - by = 3(a^2 - y) + b(a^2 - y) = (a^2 - y)(3 + b)$$

$$5)x^2 - 5x - 14 = (x - 7)(x + 2)$$

$$6)x^3 + \frac{1}{8}b^3 = (x + \frac{1}{2}b)(x^2 + \frac{1}{2}bx + \frac{1}{4}b^2)$$

$$7)16 + 8a + a^2 - b^2 = (4 + a)^2 - b^2 = (4 + a + b)(4 + a - b)$$

$$8)x^3 + 6x^2 + 11x + 6 = Ruffini(x + 1)(x + 2)(x + 3)$$

$$9)a^2 + 9b^2 + c^2 - 6ab + 2ac - 6bc = (a - 3b + c)^2$$

$$10)3x^2y - 12y = 3y(x^2 - 4) = 3y(x + 2)(x - 2)$$

$$11)54x^4 - 2x = 2x(27x^3 - 1) = 2x(3x - 1)(9x^2 + 3x + 1)$$

$$12)4x^2 + 40x - 44 = 4(x^2 + 10x - 11) = 4(x - 1)(x + 11)$$

$$13)a^3x^2 - 4a^3y^2 + x^2 - 4y^2 = a^3(x^2 - 4y^2) + 1(x^2 - 4y^2) = (a^3 + 1)(x^2 - 4y^2)$$

$$(a + 1)(a^2 - a + 1)(x - 2y)(x + 2y)$$

$$14)\frac{1}{27}a^2x^3 + \frac{1}{3}a^2x^2 + a^2x + a^2 = a^2\left(\frac{1}{27}x^3 + \frac{1}{3}x^2 + x + 1\right) = a^2\left(\frac{1}{3}x + 1\right)^3$$

$$15)\frac{a^2y^2 - 3a^2y + 2a^2}{ay^2 - ay - 2a} = \frac{a^2(y^2 - 3y + 2)}{a(y^2 - y - 2)} = \frac{a^2(y - 2)(y - 1)}{a(y - 2)(y + 1)} = \frac{a(y - 1)}{y + 1}$$

$$16)\frac{16a^2b - 24ab^2 + 9b^3}{28ab - 21b^2} = \frac{b(16a^2 - 24ab + 9b^2)}{7b(4a - 3b)} = \frac{b(4a - 3b)^2}{7b(4a - 3b)} = \frac{4a - 3b}{7}$$

FAC SIMILE FINALE 2

$$1)25x^{2} - 20xy + 4y^{2} = (5x - 2y)^{2}$$

$$2)64a^{3} - 27 = (4a - 3)(16a^{2} + 12a + 9)$$

$$3)9b^{2} - 1 = (3b + 1)(3b - 1)$$

$$4)125 - 75x + 15x^{2} - x^{3} = (5 - x)^{3}$$

$$5)12a - 4b + 3ax - bx = (4 + x)(3a - b)$$

$$6)y^{2} - 5y - 14 = (y - 7)(y + 2)$$

$$7)3 - \frac{3}{4}x^{2} = (31 - \frac{1}{2}x)(1 + \frac{1}{2}x)$$

$$8)9x^{2} + y^{2} + 1 - 6xy + 6x - 2y = (3x - y + 1)^{2}$$

$$9)a^{2} + 4a + 4 - 9x^{2} = (a + 2 + 3x)(a + 2 - 3x)$$

$$10)x^{4} - 1 = (x^{2} + 4)(x^{2} - 1) = (x^{2} + 4)(x + 1)(x - 1)$$

$$11)4x^{2}y - 8x^{2} + 4xy - 8x + y - 2 = (4x^{2} + 4x + 1)(y - 2) = (2x + 1)^{2}(y - 2)$$

$$12)\frac{4a^{3}x^{2} + a^{3} - 4a^{3}x}{4a^{4}x^{2} - a^{4}} = \frac{a^{3}(4x^{2} + 1 - 4x)}{a^{4}(4x^{2} - 1)} = \frac{a^{3}(2x - 1)^{2}}{a^{4}(2x - 1)(2x + 1)}$$

$$13)\frac{8x^{3}y - 12x^{2}y + 6xy - y}{8x^{3}y^{2} - y^{2}} \frac{y^{2}(2x - 1)(4x^{2} + 2x + 1)}{y^{2}(2x - 1)(4x^{2} + 2x + 1)}$$

RUFFINI PER SCOMPORRE

Con la divisione tra polinomi, se il resto è zero, scrivendo che il

DIVIDENDO= DIVISORE • QUOZIENTE

di fatto noi scomponiamo il polinomio, perchè lo trasformiamo in un prodotto di polinomi

Es:

$$(x^3-1):(x-1)=(x^2+x+1)$$
 da cui(N.B:) $(x^3-1)=(x-1)(x^2+x+1)$

Nella scomposizione non abbiamo il divisore: lo cerchiamo usando il t<u>eorema del RESTO,</u> OVVERO CERCHIAMO UN NUMERO CHE SOSTITUITO NELLA LETTERA DIA RESTO 0!

REGOLA:

DATO UN POLINOMIO DA SCOMPORRE SI CERCA IL TERMINE NOTO DEL DIVISORE TRA I DIVISORI DEL TERMINE NOTO DEL DIVIDENDO, DEL COEFFICIENTE DI GRADO MASSIMO E I LORO POSSIBILI RAPPORTI.

$$p(x) = 2x^2 - x - 1 = 1$$
 I numeri da provare sono: ± 1 , ± 2 , ± 1 /2

p(1)=2-1-1=0 Funziona! Ovvero se metto 1 in Ruffini il resto sarà zero.

TROVATO IL TERMINE CHE DA RESTO ZERO SI APPLICA RUFFINI E SI SCOMPONE IL POLINOMIO DIVIDENDO=(x-n)(polinomio risultato della regola di Ruffini

RICORDA DI CAMBIARLO DI SEGNO!

Es: DEVO SCOMPORRE
$$2x^2-x-1=(x-1)(2x-1)$$

CERCO DIVISORI $\pm 1 \pm 2 + \frac{1}{2}$
PROVO CON 1 $= 2\cdot(1)^2-1=0$...

 $= 2 + 1 + 1 + 2 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$
 $= 2 + 1 + 1 = 0$

FAC SIMILE FINALE 3

$$\begin{aligned} 1)4x^2 - 9 &= & 1)(2x - 3)(2x + 3) \\ 2)8a^3 + 27b^3 &= & 2)(2a + 3b)(4a^2 - 6ab + 9b^2) \\ 3)25x^2 - 30x + 9 &= & 4)(a - 4)(a + 3) \\ 5)y^3 - 12y^2 + 48y - 64 &= & 6)3x(a^2 + b^2) - 1(a^2 + b^2) = (a^2 + b^2)(3x - 1) \\ 6)3a^2x + 3b^2x - a^2 - b^2 &= & 7)(a + 2)^2 - y^2 = (a + 2 + y)(a + 2 - y) \\ 7)a^2 + 4a + 4 - y^2 &= & 8)(x - 1)(x^2 - x - 6) = (x - 1)(x - 3)(x + 2) \\ 8)x^3 - 2x^2 - 5x + 6 &= & 9)(x - 2y + a)^2 \\ 9)x^2 + 4y^2 + a^2 - 4xy + 2ax - 4ay &= & 10)ax^3 + bx^3 + 2ax^2 + 2bx^2 + ax + bx = \\ 10)ax^3 + bx^3 + 2ax^2 + 2bx^2 + ax + bx &= & x[a(x^2 + 2x + 1) + b(x^2 + 2x + 1)] = \\ 11)16a^4x^3 - 8a^2x^3 + x^3 &= & 12)ax^9 - 3ax^6 + 3ax^3 - 9a = & x^3(2a - 1)^2(2a + 1)^2 \\ 13)\frac{a^3x^2 - 4a^3}{ax^2 - 4ax + 4a} &= & 12)a(x^9 - 3x^6 + 3x^3 - 9) = \\ 14)\frac{ax^3 - 3ax^2 + 3ax - a}{a^2x^2 + 6a^2x - 7a^2} &= & 12)a(x^9 - 3x^6 + 3x^3 - 9) = \\ 14)\frac{a(x^3 - 3ax^2 + 3ax - a)}{a^2x^2 + 6a^2x - 7a^2} &= & 12)a(x^9 - 3x^6 + 3x^3 - 9) = \\ 13)\frac{a^3(x^2 - 4)}{a^2(x^2 + 6a^2x - 7a^2} &= & \frac{a^3(x - 2)(x + 2)}{a(x - 2)^2} = \\ &= & \frac{a^2(x + 2)}{a(x - 7)} &= \frac{a^2(x - 1)^3}{a(x + 7)(x - 1)} = \\ &= & \frac{(x - 1)^2}{a(x + 7)} &= \frac{a(x - 1)^3}{a(x + 7)(x - 1)} = \\ &= & \frac{(x - 1)^2}{a(x + 7)} &= \frac{a(x - 1)^3}{a(x + 7)(x - 1)} = \\ &= & \frac{(x - 1)^2}{a(x + 7)} &= \frac{a(x - 1)^3}{a(x + 7)(x - 1)} = \\ &= & \frac{(x - 1)^2}{a(x + 7)} &= \frac{a(x - 1)^3}{a(x + 7)(x - 1)} = \\ &= & \frac{(x - 1)^2}{a(x + 7)} &= \frac{a(x - 1)^3}{a(x + 7)(x - 1)} = \\ &= & \frac{(x - 1)^2}{a(x + 7)} &= \frac{a(x - 1)^3}{a(x + 7)(x - 1)} = \\ &= & \frac{(x - 1)^2}{a(x + 7)} &= \frac{a(x - 1)^3}{a(x + 7)(x - 1)} = \\ &= & \frac{(x - 1)^2}{a(x + 7)} &= \frac{a(x - 1)^3}{a(x + 7)(x - 1)} = \\ &= & \frac{(x - 1)^2}{a(x + 7)} &= \frac{a(x - 1)^3}{a(x + 7)(x - 1)} = \\ &= & \frac{(x - 1)^2}{a(x + 7)} &= \frac{a(x - 1)^3}{a(x + 7)(x - 1)} = \\ &= & \frac{(x - 1)^2}{a(x + 7)} &= \frac{a(x - 1)^3}{a(x + 7)} = \\ &= & \frac{(x - 1)^3}{a(x + 7)} &= \frac{a(x - 1)^3}{a(x + 7)} = \\ &= & \frac{(x - 1)^3}{a(x + 7)} &= \frac{a(x - 1)^3}{a(x + 7)} = \\ &= & \frac{(x - 1)^3}{a(x + 7)} &= \frac{a(x - 1)^3}{a(x + 7)} = \\ &= & \frac{(x - 1)^3}{a(x + 7)} &= \frac{(x - 1)^3}{a(x + 7)} =$$

NELLE VACANZE DI PASQUA

MEDIA DEI VOTI MAGGIORE O UGUALE A 8: FINIRE LE FRAZIONI ALGEBRICHE DA SEMPLIFICARE

MEDIA DEI VOTI MAGGIORE O UGUALE A 7: FINIRE LE FRAZIONI ALGEBRICHE DA SEMPLIFICARE ESERCIZI LIBERI SUI CASI PIU' INCERTI

MEDIA DEI VOTI MAGGIORE O UGUALE A 6: FINIRE LE FRAZIONI ALGEBRICHE DA SEMPLIFICARE 1 ESERCIZIO PER OGNI CASO STUDIATO

MEDIA DEI VOTI MINORE A 6: FINIRE LE FRAZIONI ALGEBRICHE DA SEMPLIFICARE 3 ESERCIZI PER OGNI CASO STUDIATO

MEDIA DEI VOTI MINORE A 5: FINIRE LE FRAZIONI ALGEBRICHE DA SEMPLIFICARE 4 ESERCIZI PER OGNI CASO STUDIATO

MEDIA DEI VOTI MINORE A 4: FINIRE LE FRAZIONI ALGEBRICHE DA SEMPLIFICARE 5 ESERCIZI PER OGNI CASO STUDIATO

La scomp QUADRINOMIO N TERMINI E SCHEMA FINALE e compiti pasqua.no@dtobler 28, 2017