

Machine Learning

Product Clustering & Classification

by: Kelompok 8 (IF-46-04)

- Efhram Lazuardi Vidya Agus 1301220346
- Audrey Nasywaa Harimaydina 1301220347

Dataset 4: Product Clustering and Classification

Dataset ini berisi informasi tentang produk yang mungkin termasuk atribut seperti

- ID Produk
- Judul Produk
- ID Merchant
- ID Kluster
- Label Kluster
- ID Kategori
- Label Kategori.

Dataset ini dapat digunakan untuk tugas klasifikasi produk yaitu mengkategorikan produk-produk ke dalam kategori atau kelas yang telah ditentukan sebelumnya dan klastering yaitu mengelompokkan produk-produk yang memiliki karakteristik serupa ke dalam kelompok atau klaster.

Kami, membagi data train dan test dengan cara mengimport test_spilt.

1.Import Dataset

```
import pandas as pd
data=pd.read_csv("pricerunner_aggregate.csv")
```

2. Menampilkan Data

Product	t ID	Product Title	Merchant ID	Cluster ID	Cluster Label	Category ID	Category Label
0	1	apple iphone 8 plus 64gb silver	1	1	Apple iPhone 8 Plus 64GB	2612	Mobile Phones
1	2	apple iphone 8 plus 64 gb spacegrau	2	1	Apple iPhone 8 Plus 64GB	2612	Mobile Phones
2	3 арр	le mq8n2b/a iphone 8 plus 64gb 5.5 12mp sim	3	1	Apple iPhone 8 Plus 64GB	2612	Mobile Phones
3	4	apple iphone 8 plus 64gb space grey	4	1	Apple iPhone 8 Plus 64GB	2612	Mobile Phones
4	5 a	pple iphone 8 plus gold 5.5 64gb 4g unlocked	5	1	Apple iPhone 8 Plus 64GB	2612	Mobile Phones

3. Plotting

```
from matplotlib import pyplot as plt
data[' Category ID'].plot(kind='hist', bins=20, title='Category ID')
plt.gca().spines[['top', 'right',]].set_visible(False)
```

- sumbu X untuk menunjukkan nilai kategori ID
- sumbu Y untuk menunjukkan frekuensi kemunculan kategori ID

4. Deskripsi Data

	Product ID	Merchant ID	Cluster ID	Category ID
count	35311.000000	35311.000000	35311.000000	35311.000000
mean	26150.800176	120.501883	30110.687633	2618.142930
std	13498.191220	117.045557	18410.265642	3.600708
min	1.000000	1.000000	1.000000	2612.000000
25%	14958.500000	17.000000	6123.000000	2615.000000
50%	27614.000000	75.000000	40630.000000	2619.000000
75%	37508.500000	253.000000	44059.000000	2622.000000
max	47358.000000	371.000000	47525.000000	2623.000000

```
data.describe()
```

code ini berfungsi untuk mendeskripsikan dataset tersebut, terdapat jumlah data, rata rata, standar deviasa(ukuran penyebaran data), nilai minimum, quartil 1, median, quartil 3 dan nilai maximum.

5. Info Data

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 35311 entries, 0 to 35310
Data columns (total 7 columns):
    Column
                    Non-Null Count Dtype
    Product ID
                    35311 non-null int64
    Product Title 35311 non-null object
     Merchant ID 35311 non-null int64
     Cluster ID 35311 non-null int64
     Cluster Label 35311 non-null object
     Category ID 35311 non-null int64
     Category Label 35311 non-null
                                   object
dtypes: int64(4), object(3)
memory usage: 1.9+ MB
```

```
data.Info()
```

code ini berfungsi untuk mendeteksi data

6. Boxplot

plt.show()

```
import seaborn as sns
plt.figure(figsize=(10, 6))

# Membuat boxplot menggunakan seaborn
frequency = data[' Category Label'].value_counts().reset_index()
frequency.columns = ['Category', 'Frequency']

# Membuat figure dan axis
plt.figure(figsize=(10, 6))

# Membuat boxplot menggunakan seaborn
sns.boxplot(x='Category', y='Frequency', data=frequency)

# Menambahkan judul dan label
plt.title('Boxplot Berdasarkan Frekuensi Kategori')
plt.xlabel('Kategori')
plt.ylabel('Frekuensi')

# Menampilkan plot
```


Boxplot diatas berdasarkan kategori dan frekuensi Boxplot diatas menunjukkan banyak sebaran datanya.

Naive Bayes

- Algoritma pembelajaran induktif yang paling efektif dan efesien untuk machine learning.
- Metode pengklasifikasiannya berdasarkan probabilitas sederhana dan dirancang agar dapat dipergunakan dengan variable penjelas saling bebas(independen).
- Tipe Algoritma yang kami gunakan yaitu Gaussian Naive Bayes. Asumsi pendistribusian nilai kontinu yang terkait dengan setiap fitur berisi nilai numerik.

```
df=data
X=df[['Product ID',' Merchant ID', ' Cluster ID']]
y=df[' Category ID']
```

datanya berdasarkan X yaitu product ID, Merchant ID dan Cluster ID yang akan dicari (tujuan) yaitu Y = kategori ID

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2,random_state=109)
print("Train: ",X_train.shape,y_train.shape,"Test: ",(X_test.shape,y_test.shape))
```

- → Train: (28248, 3) (28248,) Test: ((7063, 3), (7063,))
- code tersebut fungsinya untuk membagi data train dan data testing.
- Dari percobaan ini, kita mendapatkan 80% sebagai data traing dan 20% sebagai data testing
- Data train yang didapatkan adalah 28248 dan data testing yang didapatkan adalah 7063

```
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()
y_pred = gnb.fit(X_train,
y_train).predict(X_test)
```

Code tersebut untuk mengimport model Gaussian Naive setelah di inisialisasikan (gnb), lalu akan diimplementasikan. gnb.fit(X_train, y_Train) sebagai pembelajarannya(learning) dan ketika sudah didapatkan, akan menejalakan predict(X_test) yaitu testing.

Code tersebut untuk mengevaluasi kinerja model klasifikasi dengan menunjukkan jumlah prediksinya.

Con	fusio	n Ma	trix	Naive	Bave	2ς					
	829	0	0	0	9	. 0	0	0	0	0]	
1	0	680	31	0	0	0	0	0	0	øj	
į	0	6	767	0	0	0	0	0	0	øj	
j	0	0	0	529	29	0	0	0	0	øj	
Ĩ	0	0	0	0	439	21	0	0	0	øj	
Ē	0	0	0	0	0	666	34	0	0	øj	
Ī	0	0	0	0	0	0	738	36	0	ø <u>j</u>	
[0	0	0	0	0	0	0	389	17	0]	
Ī	0	0	0	0	0	0	0	0 1	L081	38]	
[0	0	0	0	0	0	0	0	0	733]]	
			pre	ecision	1	recal	l f1	-score	<u> </u>	upport	
		2612		1.00	3	1.0	9	1.00)	829	
		2614		0.99	9	0.9	6	0.97	7	711	
		2615		0.96	5	0.9	9	0.98	3	773	
		2617		1.00	3	0.9	5	0.97	7	558	
		2618		0.94	1	0.9	5	0.95	·	460	
		2619		0.97	7	0.9	5	0.96	5	700	
		2620		0.96	5	0.9	5	0.95	,	774	
		2621		0.92	2	0.9	6	0.94		406	
		2622		0.98	3	0.9	7	0.98	3	1119	
		2623		0.9	9	1.0	9	0.97	7	733	
		racy						0.97		7063	
	nacro	·		0.97		0.9		0.97		7063	
wei	ghted	avg		0.97	/	0.9	7	0.97	7	7063	
AKUI	RASI	NB:	0.976)							

Hasil dan Analisis

Hasil dari analisis yang telah dilakukan, didapatkan hasil bahwa akurasi dengan metode Naive Bayes ini

970/0

mampu memprediksi dengan benar

Kesimpulan

Kesimpulan dari analisis ini, dengan menggunakan metode Naive Bayes pada machine learning menggunakan dataset product clustering and classification dapat memprediksi dengan benar sebanyak 97% tingkat akurasinya.

THANK YOU