DATA-DRIVEN INSIGHTS FOR **AGRICULTURE**

Intellihack CyperZ

Task 01

Dhanushi Dewmindi Amanda Hansamali

WEATHER PREDICTION MODEL REPORT

Contents

1. Introduction	3
2. Dataset Overview	3
3. Data Preprocessing	
4. Exploratory Data Analysis (EDA)	4
5. Model Development	
6. Prediction Results	
7. Conclusions	5
8. Recommendations	
9. Appendix	

1. Introduction

Accurate weather predictions are crucial for farmers to effectively plan irrigation, planting, and harvesting. Traditional weather forecasts often lack the granularity needed for hyper-local predictions. This report details the development of a machine learning model that predicts the probability of rain based on historical weather data.

2. Dataset Overview

The dataset consists of 300 daily weather observations with the following features:

- avg temperature: Average temperature in °C
- **humidity**: Humidity in percentage
- avg wind speed: Average wind speed in km/h
- rain or not: Binary target variable (1 = rain, 0 = no rain)
- date: Date of observation

3. Data Preprocessing

3.1 Handling Missing Values

- The dataset was inspected for missing values and cleaned using SimpleImputer with the mean strategy.
- Non-numeric or improperly formatted values were converted to numeric using pd.to numeric with error coercion.
- Rows with invalid or missing essential data were dropped.
- After cleaning, the dataset was verified to ensure it was not empty and contained sufficient samples for training.

3.2 Data Formatting

- The date column was converted to a proper datetime format.
- Non-numeric columns were excluded from the correlation matrix to avoid processing errors.

4. Exploratory Data Analysis (EDA)

4.1 Correlation Matrix

- A heatmap was generated to visualize correlations between numerical features.
- No strong linear correlations were observed, indicating the need for a robust model to capture non-linear patterns.

4.2 Target Variable Distribution

• The distribution of rain vs. no rain was visualized using a count plot, showing a balanced dataset which is ideal for model training.

5. Model Development

5.1 Model Selection

• A RandomForestClassifier was chosen for its robustness and ability to handle both linear and non-linear relationships.

5.2 Model Training

- The dataset was split into training (80%) and testing (20%) sets using train_test_split.
- Feature scaling was applied using StandardScaler to normalize input features.

5.3 Model Evaluation

- The initial model achieved an accuracy score of X%.
- The confusion matrix and classification report showed balanced precision and recall for both classes.

5.4 Hyperparameter Tuning

- Grid search (GridSearchCV) was performed to optimize model parameters including:
 - o n_estimators: Number of trees in the forest
 - o max_depth: Maximum depth of the trees
 - o min_samples_split: Minimum samples required to split a node
- The best parameters found were:

{'n_estimators': 100, 'max_depth': None, 'min_samples_split': 2}

• The optimized model achieved an accuracy score of Y% on the test set.

6. Prediction Results

6.1 Future 21-Day Rain Probability

- The model generated probability predictions for rain over the next 21 days.
- These predictions offer actionable insights for farmers to make informed decisions.

7. Conclusions

- The machine learning model provides reliable rain probability forecasts, with an accuracy improvement of **Z%** after hyperparameter tuning.
- Future enhancements could include incorporating additional features such as cloud cover and pressure data, if available.

8. Recommendations

- Integrate this model with an API for real-time data updates.
- Deploy the model within a smart agriculture platform to provide automated alerts to farmers.

9. Appendix

• Full code and detailed analysis are included in the accompanying Jupyter Notebook.