FCC RF Test Report

APPLICANT : Zebra Technologies Corporation

EQUIPMENT: Digital Scanner

BRAND NAME : Zebra
MODEL NAME : DS8178

FCC ID : UZ7DS8178

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DSS) Spread Spectrum Transmitter

The product was received on Aug. 02, 2016 and testing was completed on Aug. 30, 2016. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 1 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAF	RY OF TEST RESULT	4
1	GEN	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	
	1.3	Product Feature of Equipment Under Test	
	1.4	Product Specification of Equipment Under Test	
	1.5	Modification of EUT	6
	1.6	Testing Location	
	1.7	Applicable Standards	7
2	TES1	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Descriptions of Test Mode	8
	2.2	Test Mode	10
	2.3	Connection Diagram of Test System	11
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	
	2.6	Measurement Results Explanation Example	12
3	TEST	T RESULT	13
	3.1	Number of Channel Measurement	13
	3.2	Hopping Channel Separation Measurement	15
	3.3	Dwell Time Measurement	22
	3.4	20dB and 99% Bandwidth Measurement	
	3.5	Peak Output Power Measurement	
	3.6	Conducted Band Edges Measurement	
	3.7	Conducted Spurious Emission Measurement	
	3.8	Radiated Band Edges and Spurious Emission Measurement	
	3.9	AC Conducted Emission Measurement	
	3.10	Antenna Requirements	67
4	LIST	OF MEASURING EQUIPMENT	68
5	UNC	ERTAINTY OF EVALUATION	69
ΑP	PEND	IX A. RADIATED SPURIOUS EMISSION	
ΑP	PEND	IX B. RADIATED SPURIOUS EMISSION PLOTS	
ΑP	PEND	IX C. SETUP PHOTOGRAPHS	

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 2 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No. : FR680207A

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR680207A	Rev. 01	Initial issue of report	Sep. 14, 2016

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 3 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 1.1

Report No. : FR680207A

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	NA	Pass	-
3.4	-	99% Bandwidth	-	Pass	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 10.86 dB at 883.800 MHz
3.9	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 6.00 dB at 0.518 MHz
3.10	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 4 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No. : FR680207A

1 General Description

1.1 Applicant

Zebra Technologies Corporation

1 Zebra Plaza, Holtsville, NY 11742

1.2 Manufacturer

Zebra Technologies Corporation

1 Zebra Plaza, Holtsville, NY 11742

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Digital Scanner			
Brand Name	Zebra			
Model Name	DS8178			
FCC ID	UZ7DS8178			
EUT supports Radios application	Bluetooth EDR/LE			
HW Version	Rev A			
SW Version	Rev A			
MFD	12JUL16			
EUT Stage	Identical Prototype			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range 2402 MHz ~ 2480 MHz				
	Bluetooth BR(1Mbps) : 3.20 dBm (0.0021 W)			
Maximum Output Power to Antenna	Bluetooth EDR (2Mbps) : 5.51 dBm (0.0036 W)			
	Bluetooth EDR (3Mbps) : 6.04 dBm (0.0040 W)			
	Bluetooth BR(1Mbps): 0.840MHz			
99% Occupied Bandwidth	Bluetooth EDR (2Mbps): 1.196MHz			
	Bluetooth EDR (3Mbps) : 1.168MHz			
Antenna Type / Gain	SMD Antenna type with gain 0.00 dBi			
	Bluetooth BR (1Mbps) : GFSK			
Type of Modulation	Bluetooth EDR (2Mbps) : π /4-DQPSK			
	Bluetooth EDR (3Mbps) : 8-DPSK			

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 5 of 69

Report Issued Date : Sep. 14, 2016

Report Version : Rev. 01

Report No.: FR680207A

Specification of Accessories							
DS8178	Battery	Brand Name	Zebra	Part Number	82-17890-01		
	12V Adapter (Sanhua)	Brand Name	Zebra	Part Number	PWR-BGA12V50W0WW		
	12V Adapter (Phihong)	Brand Name	Zebra	Part Number	PWRBGAV50W0WW		
	5V Adapter	Brand Name	Zebra	Part Number	PWR-WUA5V4W0US		
CR8178-SC	R I-50-RS232 Cable 1	Brand Name	Zebra	Part Number	PWR-WUA5V6W0WW		
CR8178-PC		Brand Name	Zebra	Part Number	CBA-R21-S15PAR		
	RJ-50-RS232 Cable 2	Brand Name	Zebra	Part Number	CBA-R01-S07PAR		
	IR.I-50 to USB Cable 1	Brand Name	Zebra	Part Number	CBA-U21-S07ZBR		
	RJ-50 to USB Cable 2	Brand Name	Zebra	Part Number	CBA-U47-S15ZAR		

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site SPORTON INTERNATIONAL INC.					
	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,				
Test Site	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.				
Location	TEL: +886-3-327-3456				
	FAX: +886-3-328-4978				
Toot Site No		Sporton Site No.			
Test Site No.	TH05-HY	CO05-HY	03CH07-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 6 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 7 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

Preliminary tests were performed in different data rates and recorded the RF output power in the following table:

		Blue	etooth Average Output Po	ower
Channel	Frequency		GFSK / 1Mbps	
		DH1	DH3	DH5
Ch00	2402MHz	2.76 dBm	2.71 dBm	2.72 dBm
Ch39	2441MHz	2.69 dBm	2.65 dBm	2.63 dBm
Ch78	2480MHz	<mark>2.88</mark> dBm	2.83 dBm	2.83 dBm

		Blue	tooth Average Output Po	ower
Channel	Frequency		π /4-DQPSK / 2Mbps	
		2DH1	2DH3	2DH5
Ch00	2402MHz	2.76 dBm	2.65 dBm	2.64 dBm
Ch39	2441MHz	2.72 dBm	2.62 dBm	2.59 dBm
Ch78	2480MHz	<mark>2.92</mark> dBm	2.81 dBm	2.79 dBm

		Blue	etooth Average Output Po	ower
Channel	Frequency		8-DPSK / 3Mbps	
		3DH1	3DH3	3DH5
Ch00	2402MHz	2.72 dBm	2.65 dBm	2.65 dBm
Ch39	2441MHz	2.71 dBm	2.63 dBm	2.60 dBm
Ch78	2480MHz	<mark>2.93</mark> dBm	2.80 dBm	2.79 dBm

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 8 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

		Blu	uetooth Peak Output Pov	ver
Channel	Frequency		GFSK / 1Mbps	
		DH1	DH3	DH5
Ch00	2402MHz	3.14 dBm	3.13 dBm	3.08 dBm
Ch39	2441MHz	3.08 dBm	3.00 dBm	2.99 dBm
Ch78	2480MHz	<mark>3.20</mark> dBm	3.15 dBm	3.17 dBm

		Blu	uetooth Peak Output Pov	ver
Channel	Frequency		π/4-DQPSK / 2Mbps	
		2DH1	2DH3	2DH5
Ch00	2402MHz	5.29 dBm	5.26 dBm	5.28 dBm
Ch39	2441MHz	5.30 dBm	5.29 dBm	5.28 dBm
Ch78	2480MHz	<mark>5.51</mark> dBm	5.48 dBm	5.46 dBm

		Bluetooth Peak Output Power 8-DPSK / 3Mbps		
Channel	Frequency			
		3DH1	3DH3	3DH5
Ch00	2402MHz	5.78 dBm	5.77 dBm	5.75 dBm
Ch39	2441MHz	5.83 dBm	5.82 dBm	5.81 dBm
Ch78	2480MHz	<mark>6.04</mark> dBm	6.00 dBm	5.97 dBm

Remark: The data rate was set in 3Mbps for all the test items due to the highest RF output power.

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels, and different data rates were conducted to determine the final configuration (Y plane as worst plane) from all possible combinations, and the worst mode of radiated spurious emissions is Bluetooth 3Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 9 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases				
	Data Rate / Modulation				
Test Item	Bluetooth BR 1Mbps	Bluetooth EDR 2Mbps	Bluetooth EDR 3Mbps		
	GFSK	π /4-DQPSK	8-DPSK		
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz		
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz		
Test Cases	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz		
	Bluetooth EDR 3Mbps 8-DPSK				
Radiated Mode 1: CH00_2402 MH		Mode 1: CH00_2402 MHz			
Test Cases	Mode 2: CH39_2441 MHz				
		Mode 3: CH78_2480 MHz			
AC	Made 4 .FLIT (District Coor	anon) aboration with Drasouts	tion Cradle . Dresentation		
Conducted	, ,	nner) charging with Presenta	tion Cradie + Presentation		
Emission	Cradle RJ-50 to USB Cable 2 + USB 5V Adapter				
Remark: For	emark: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this				
data	data rate has the highest RF output power at preliminary tests, and the conducted spurious				
emi	emissions and conducted band edge measurement for each data rate are no worse than				
3MI	3Mbps, and no other significantly frequencies found in conducted spurious emission.				

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 10 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

2.3 Connection Diagram of Test System

<Bluetooth Tx Mode>

<AC Conducted Emission Mode>

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 11 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Presentation	Zebra	CR8178-PC	UZ7CRD8178PC	N/A	N/A
	Cradle					

2.5 EUT Operation Test Setup

For Bluetooth function, programmed RF utility, "BT Regulatory Test App - 1.3.8.0" installed in the notebook make the EUT provide functions like channel selection and power level for continuous transmitting and receiving signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).
=
$$4.2 + 10 = 14.2$$
 (dB)

Report No.: FR680207A

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

3.1.5 Test Result of Number of Hopping Frequency

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Engineer :	Aking Chang and An Wu	Relative Humidity :	48~51%

Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79	20	> 15	Pass

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 13 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Number of Hopping Channel Plot on Channel 00 - 78

Date: 10.AUG.2016 18:18:01

Date: 10.AUG.2016 18:24:26

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 14 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings:
 - Span = wide enough to capture the peaks of two adjacent channels;
 - RBW = 300kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 15 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.2.5 Test Result of Hopping Channel Separation

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Engineer :	Aking Chang and An Wu	Relative Humidity :	48~51%

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.002	0.6187	Pass
39	2441	1.002	0.6320	Pass
78	2480	1.002	0.6347	Pass

Channel Separation Plot on Channel 00 - 01

Date: 10.AUG.2016 14:37:13

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 16 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Channel Separation Plot on Channel 39 - 40

Date: 10.AUG.2016 14:41:07

Channel Separation Plot on Channel 77 - 78

Date: 10.AUG.2016 14:42:55

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 17 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Engineer :	Aking Chang and An Wu	Relative Humidity :	48~51%

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.002	0.8800	Pass
39	2441	1.002	0.8840	Pass
78	2480	1.002	0.8840	Pass

Channel Separation Plot on Channel 00 - 01

Date: 10.AUG.2016 14:47:20

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 18 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Channel Separation Plot on Channel 39 - 40

Date: 10.AUG.2016 14:49:47

Channel Separation Plot on Channel 77 - 78

Date: 10.AUG.2016 14:52:24

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 19 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Engineer :	Aking Chang and An Wu	Relative Humidity :	48~51%

Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.002	0.8360	Pass
39	2441	1.002	0.8600	Pass
78	2480	1.002	0.8640	Pass

Channel Separation Plot on Channel 00 - 01

Date: 10.AUG.2016 14:55:47

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 20 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Channel Separation Plot on Channel 39 - 40

Date: 10.AUG.2016 14:57:49

Channel Separation Plot on Channel 77 - 78

Date: 10.AUG.2016 14:59:29

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 21 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 22 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.3.5 Test Result of Dwell Time

Test Mode :	DH5	Temperature :	24~26 ℃
Test Engineer :	Aking Chang and An Wu	Relative Humidity :	48~51%

Mode	Channel	Hops Over Occupancy Time(hops)	IIMA	Dwell Time (sec)	Limits (sec)	Pass/Fail
Normal	79	106.67	2.90	0.31	0.4	Pass
AFH	20	53.33	2.90	0.15	0.4	Pass

Remark:

- In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels.
 With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s),
 Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 23 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Package Transfer Time Plot

Report No.: FR680207A

Date: 4.AUG.2016 00:12:27

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 24 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
 - Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 - RBW \geq 1% of the 20 dB bandwidth; VBW \geq RBW; Sweep = auto; Detector function = peak;
 - Trace = \max hold.
- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 - Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 - RBW \geq 1% of the 99% bandwidth; VBW \geq RBW; Sweep = auto; Detector function = peak;
 - Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 25 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.4.5 Test Result of 20dB Bandwidth

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Engineer :	Aking Chang and An Wu	Relative Humidity :	48~51%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	0.928
39	2441	0.948
78	2480	0.952

20 dB Bandwidth Plot on Channel 00

Date: 10.AUG.2016 15:23:29

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 26 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Date: 10.AUG.2016 15:26:01

20 dB Bandwidth Plot on Channel 78

Date: 10.AUG.2016 16:20:04

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 27 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Test Mode :	2Mbps	Temperature :	24~26℃
Test Engineer :	Aking Chang and An Wu	Relative Humidity :	48~51%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	1.320
39	2441	1.326
78	2480	1.326

Date: 10.AUG.2016 16:23:17

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 28 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Date: 10.AUG.2016 16:25:12

20 dB Bandwidth Plot on Channel 78

Date: 10.AUG.2016 16:29:20

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 29 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Engineer :	Aking Chang and An Wu	Relative Humidity :	48~51%

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
00	2402	1.254
39	2441	1.290
78	2480	1.296

Date: 10.AUG.2016 16:31:55

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 30 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Date: 10.AUG.2016 16:33:52

20 dB Bandwidth Plot on Channel 78

Date: 10.AUG.2016 16:35:39

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 31 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.4.6 Test Result of 99% Occupied Bandwidth

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Engineer :	Aking Chang and An Wu	Relative Humidity :	48~51%

Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)
00	2402	0.836
39	2441	0.840
78	2480	0.840

99% Occupied Bandwidth Plot on Channel 00

Date: 10.AUG.2016 16:40:34

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 32 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Date: 10.AUG.2016 16:41:38

99% Occupied Bandwidth Plot on Channel 78

Date: 10.AUG.2016 16:42:45

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 33 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Engineer :	Aking Chang and An Wu	Relative Humidity :	48~51%

Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)
00	2402	1.176
39	2441	1.180
78	2480	1.196

Date: 10.AUG.2016 16:43:47

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 34 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Date: 10.AUG.2016 16:45:27

99% Occupied Bandwidth Plot on Channel 78

Date: 10.AUG.2016 16:46:37

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 35 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Engineer :	Aking Chang and An Wu	Relative Humidity :	48~51%

Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)
00	2402	1.160
39	2441	1.168
78	2480	1.160

Date: 10.AUG.2016 16:47:39

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 36 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

99% Occupied Bandwidth Plot on Channel 39

Date: 10.AUG.2016 16:48:34

99% Occupied Bandwidth Plot on Channel 78

Date: 10.AUG.2016 16:50:04

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 37 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.5 Peak Output Power Measurement

3.5.1 Limit of Peak Output Power

Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps, 2Mbps, 3Mbps and AFH modes are 0.125 watts.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 38 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.5.5 Test Result of Peak Output Power

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Engineer :	Aking Chang and An Wu	Relative Humidity :	48~51%

	F	RF Power (dBm)		
Channel		Frequency GFSK (MHz)		Dece/Feil
	(IVITIZ)	1 Mbps	(dBm)	Pass/Fail
00	2402	3.14	20.97	Pass
39	2441	3.08	20.97	Pass
78	2480	3.20	20.97	Pass

Note: For AFH mode using 20 hopping channels, the maximum output power limit is 20.97dBm.

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Engineer :	Aking Chang and An Wu	Relative Humidity :	48~51%

	Fraguenay	RF Power (dBm)		
Channel	Channel Frequency (MHz)		Max. Limits	Page/Fail
	(IVITIZ)	2 Mbps	(dBm)	Pass/Fail
00	2402	5.29	20.97	Pass
39	2441	5.30	20.97	Pass
78	2480	5.51	20.97	Pass

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Engineer :	Aking Chang and An Wu	Relative Humidity :	48~51%

	F	RF Power (dBm)		
Channel	nnel Frequency 8-DPSK		Max. Limits	Pass/Fail
	(IVITIZ)	3 Mbps	(dBm)	Fa55/Fall
00	2402	5.78	20.97	Pass
39	2441	5.83	20.97	Pass
78	2480	6.04	20.97	Pass

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 39 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100kHz, VBW = 300kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2. and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 40 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.6.5 Test Result of Conducted Band Edges

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Channel :	00 and 78	Relative Humidity :	48~51%
		Test Engineer :	Aking Chang and An Wu

Low Band Edge Plot on Channel 00

Date: 10.AUG.2016 19:22:12

High Band Edge Plot on Channel 78

Date: 10.AUG.2016 19:22:55

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 41 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Channel :	00 and 78	Relative Humidity :	48~51%
		Test Engineer :	Aking Chang and An Wu

Low Band Edge Plot on Channel 00

Date: 10.AUG.2016 19:24:28

High Band Edge Plot on Channel 78

Date: 10.AUG.2016 19:25:57

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178

Page Number : 42 of 69 Report Issued Date: Sep. 14, 2016 Report Version : Rev. 01

Report No.: FR680207A

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Channel :	00 and 78	Relative Humidity :	48~51%
		Test Engineer :	Aking Chang and An Wu

Low Band Edge Plot on Channel 00

Date: 10.AUG.2016 19:26:44

High Band Edge Plot on Channel 78

Date: 10.AUG.2016 19:28:18

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 43 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.6.6 Test Result of Conducted Hopping Mode Band Edges

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Engineer :	Aking Chang and An Wu	Relative Humidity :	48~51%

1Mbps Hopping Mode Low Band Edge Plot

Date: 10.AUG.2016 19:07:50

1Mbps Hopping Mode High Band Edge Plot

Date: 10.AUG.2016 19:09:44

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 44 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

2Mbps Hopping Mode Low Band Edge Plot

Date: 10.AUG.2016 19:13:31

2Mbps Hopping Mode High Band Edge Plot

Date: 10.AUG.2016 19:15:37

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 45 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Engineer :	Aking Chang and An Wu	Relative Humidity :	48~51%

3Mbps Hopping Mode Low Band Edge Plot

Date: 10.AUG.2016 19:19:07

3Mbps Hopping Mode High Band Edge Plot

Date: 10.AUG.2016 19:21:27

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178

Page Number : 46 of 69 Report Issued Date: Sep. 14, 2016 Report Version : Rev. 01

Report No.: FR680207A

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 47 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.7.5 Test Result of Conducted Spurious Emission

Test Mode :	1Mbps	Temperature :	24~26 ℃
Test Channel :	00	Relative Humidity :	48~51%
		Test Engineer :	Aking Chang and An Wu

1Mbps CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 10.AUG.2016 16:52:14

1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 10.AUG.2016 16:52:36

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 48 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Test Mode :	1Mbps	Temperature :	24~26℃
Test Channel :	39	Relative Humidity :	48~51%
		Test Engineer :	Aking Chang and An Wu

1Mbps CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 10.AUG.2016 16:57:28

1Mbps CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 10.AUG.2016 16:57:50

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178

Page Number : 49 of 69 Report Issued Date: Sep. 14, 2016 Report Version : Rev. 01

Report No.: FR680207A

Test Mode :	1Mbps	Temperature :	24~26℃
Test Channel :	78	Relative Humidity :	48~51%
		Test Engineer :	Aking Chang and An Wu

1Mbps CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 10.AUG.2016 16:59:05

1Mbps CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 10.AUG.2016 16:59:27

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178

Page Number : 50 of 69 Report Issued Date: Sep. 14, 2016 Report Version : Rev. 01

Report No.: FR680207A

ь.	-	 		

Test Mode :	2Mbps	Temperature :	24~26℃
Test Channel :	00	Relative Humidity :	48~51%
		Test Engineer :	Aking Chang and An Wu

2Mbps CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 10.AUG.2016 17:02:09

2Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 10.AUG.2016 17:02:31

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 51 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

SPORTON LAB.	FCC RF Test Report

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Channel :	39	Relative Humidity :	48~51%
		Test Engineer :	Aking Chang and An Wu

2Mbps CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 10.AUG.2016 17:05:03

2Mbps CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 10.AUG.2016 17:05:25

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178

Page Number : 52 of 69 Report Issued Date: Sep. 14, 2016 Report Version : Rev. 01

Report No.: FR680207A

Test Mode :	2Mbps	Temperature :	24~26 ℃
Test Channel :	78	Relative Humidity :	48~51%
		Test Engineer :	Aking Chang and An Wu

2Mbps CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 10.AUG.2016 17:14:00

2Mbps CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 10.AUG.2016 17:14:22

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178

Page Number : 53 of 69 Report Issued Date: Sep. 14, 2016 Report Version : Rev. 01

Report No.: FR680207A

Test Mode :	3Mbps	Temperature :	24~26℃
Test Channel :	00	Relative Humidity :	48~51%
		Test Engineer :	Aking Chang and An Wu

3Mbps CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 10.AUG.2016 18:05:29

3Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 10.AUG.2016 18:05:51

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178

Page Number : 54 of 69 Report Issued Date: Sep. 14, 2016 Report Version : Rev. 01

Report No.: FR680207A

Test Mode :	3Mbps	Temperature :	24~26℃
Test Channel :	39	Relative Humidity :	48~51%
		Test Engineer :	Aking Chang and An Wu

3Mbps CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 10.AUG.2016 18:08:08

3Mbps CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

Date: 10.AUG.2016 18:08:30

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 55 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Test Mode :	3Mbps	Temperature :	24~26 ℃
Test Channel :	78	Relative Humidity :	48~51%
		Test Engineer :	Aking Chang and An Wu

3Mbps CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 10.AUG.2016 18:09:30

3Mbps CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 10.AUG.2016 18:09:52

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 56 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 57 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.8.3 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c). Duty cycle = On time/100 milliseconds

On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

Average Emission Level = Peak Emission Level + 20*log(Duty cycle)

6. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (24.73dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

Report No.: FR680207A

3.8.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 59 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

For radiated emissions above 1GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 60 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.8.6 Duty cycle correction factor for average measurement

3DH5 on time (One Pulse) Plot on Channel 39

3DH5 on time (Count Pulses) Plot on Channel 39

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = $2 \times 2.90 / 100 = 5.80 \%$
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.73 dB
- 3. 3DH5 has the highest duty cycle worst case and is reported.

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 61 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

 $2.90 \text{ ms } \times 20 \text{ channels} = 58.0 \text{ ms}$

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100ms / 57.6ms] = 2 hops

Thus, the maximum possible ON time:

2.90 ms x 2 = 5.80 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

 $20 \times log(5.80 \text{ ms}/100\text{ms}) = -24.73 \text{ dB}$

3.8.7 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A and B.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix A and B.

Page Number : 62 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Fraguency of emission (MUz)	Conducted limit (dBµV)		
Frequency of emission (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*}Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.9.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 63 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.9.4 Test Setup

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 64 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.9.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1	e 1 Temperature :				
Test Engineer :	Eric Jeng and Kai-Chun Chu	Relative Humidity :	51~53%			
Test Voltage :	120Vac / 60Hz Phase :		Line			
Function Type :	EUT (Digital Scanner) charging with Presentation Cradle + Presentation Cradle RJ-50 to USB Cable 2 + USB 5V Adapter					

Final Result : Quasi-Peak

Frequency (MHz)	Quasi-Peak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	46.6	Off	L1	19.6	19.4	66.0
0.166000	44.5	Off	L1	19.6	20.7	65.2
0.222000	42.0	Off	L1	19.6	20.7	62.7
0.470000	40.0	Off	L1	19.6	16.5	56.5
0.502000	40.8	Off	L1	19.6	15.2	56.0
0.518000	44.9	Off	L1	19.6	11.1	56.0
4.014000	31.4	Off	L1	19.8	24.6	56.0
10.094000	35.3	Off	L1	20.1	24.7	60.0

Final Result : Average

Frequency (MHz)	Average (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	35.0	Off	L1	19.6	21.0	56.0
0.166000	34.5	Off	L1	19.6	20.7	55.2
0.222000	32.3	Off	L1	19.6	20.4	52.7
0.470000	32.4	Off	L1	19.6	14.1	46.5
0.502000	34.7	Off	L1	19.6	11.3	46.0
0.518000	40.0	Off	L1	19.6	6.0	46.0
4.014000	24.3	Off	L1	19.8	21.7	46.0
10.094000	23.1	Off	L1	20.1	26.9	50.0

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 65 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

Test Mode :	Mode 1	Temperature :	22~24 ℃			
Test Engineer :	est Engineer : Eric Jeng and Kai-Chun Chu		51~53%			
Test Voltage :	120Vac / 60Hz	Phase :	Neutral			
Function Type :	EUT (Digital Scanner) charging with Presentation Cradle + Presentation Cradle RJ-50 to USB Cable 2 + USB 5V Adapter					

Final Result : Quasi-Peak

Frequency (MHz)	Quasi-Peak (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	49.1	Off	N	19.6	16.9	66.0
0.166000	46.6	Off	N	19.6	18.6	65.2
0.238000	42.9	Off	N	19.6	19.3	62.2
0.462000	41.0	Off	N	19.6	15.7	56.7
0.510000	44.7	Off	N	19.6	11.3	56.0
0.966000	35.5	Off	N	19.6	20.5	56.0
1.942000	32.7	Off	N	19.7	23.3	56.0
9.662000	33.4	Off	N	20.1	26.6	60.0

Final Result : Average

Frequency (MHz)	Average (dBµV)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	35.3	Off	N	19.6	20.7	56.0
0.166000	34.3	Off	N	19.6	20.9	55.2
0.238000	31.8	Off	N	19.6	20.4	52.2
0.462000	34.4	Off	N	19.6	12.3	46.7
0.510000	35.8	Off	N	19.6	10.2	46.0
0.966000	28.3	Off	N	19.6	17.7	46.0
1.942000	25.4	Off	N	19.7	20.6	46.0
9.662000	22.0	Off	N	20.1	28.0	50.0

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 66 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report No.: FR680207A

3.10 Antenna Requirements

3.10.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.10.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Report No.: FR680207A

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Agilent	E4416A	GB412923 44	300MHz~40GH z	Jan. 08, 2016	Aug. 03, 2016 ~ Aug. 17, 2016	Jan. 07, 2017	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US404415 48	300MHz~40GH z	Jan. 07, 2016	Aug. 03, 2016 ~ Aug. 17, 2016	Jan. 06, 2017	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Nov. 23, 2015	Aug. 03, 2016 ~ Aug. 17, 2016	Nov. 22, 2016	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Aug. 28, 2016 ~ Aug. 30, 2016	N/A	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Dec. 02, 2015	Aug. 28, 2016 ~ Aug. 30, 2016	Dec. 01, 2016	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Dec. 14, 2015	Aug. 28, 2016 ~ Aug. 30, 2016	Dec. 13, 2016	Conduction (CO05-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY54130 085	20Hz ~ 8.4GHz	Nov. 04, 2015	Aug. 28, 2016 ~ Aug. 30, 2016	Nov. 03, 2016	Conduction (CO05-HY)
Bilog Antenna	TESEQ	CBL 6111D	35419	30MHz to 1GHz	Jan. 13, 2016	Aug. 15, 2016 ~ Aug. 16, 2016	Jan. 12, 2017	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	00075962	1GHz ~ 18GHz	Aug. 21, 2015	Aug. 15, 2016 ~ Aug. 16, 2016	Aug. 20, 2016	Radiation (03CH07-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY54130 085	20Hz ~ 8.4GHz	Nov. 04, 2015	Aug. 15, 2016 ~ Aug. 16, 2016	Nov. 03, 2016	Radiation (03CH07-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Sep. 02, 2015	Aug. 15, 2016 ~ Aug. 16, 2016	Sep. 01, 2016	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590075	1GHz ~ 18GHz	Apr. 15, 2016	Aug. 15, 2016 ~ Aug. 16, 2016	Apr. 14, 2017	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10MHz-1GHz	Mar. 18, 2016	Aug. 15, 2016 ~ Aug. 16, 2016	Mar. 17, 2017	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A023 62	1GHz~ 26.5GHz	Oct. 19, 2015	Aug. 15, 2016 ~ Aug. 16, 2016	Oct. 18, 2016	Radiation (03CH07-HY)
Spectrum Analyzer	Agilent	N9010A	MY534701 18	10Hz~44GHz	Feb. 27, 2016	Aug. 15, 2016 ~ Aug. 16, 2016	Feb. 26, 2017	Radiation (03CH07-HY)
Antenna Mast	Max-Full	MFA520BS	N/A	1m~4m	N/A	Aug. 15, 2016 ~ Aug. 16, 2016	N/A	Radiation (03CH07-HY)
Turn Table	ChainTek	Chaintek 3000	N/A	0~360 Degree	N/A	Aug. 15, 2016 ~ Aug. 16, 2016	N/A	Radiation (03CH07-HY)
Loop Cable	Rohde & Schwarz	N/A	N/A	9KHz~30MHz	Dec. 03, 2015	Aug. 15, 2016 ~ Aug. 16, 2016	Dec. 02, 2016	Radiation (03CH07-HY)
Preamplifier	MITEQ	JS44-1800400 0-33-8P	1840917	18GHz ~ 40GHz	Jun. 14, 2016	Aug. 15, 2016 ~ Aug. 16, 2016	Jun. 13, 2017	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917 0584	18GHz- 40GHz	Nov. 02, 2015	Aug. 15, 2016 ~ Aug. 16, 2016	Nov. 01, 2016	Radiation (03CH07-HY)

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 68 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 1.1

Report No. : FR680207A

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.26
of 95% (U = 2Uc(y))	2.20

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.70
of 95% (U = 2Uc(y))	5.70

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.50
of 95% (U = 2Uc(y))	5.50

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.20
of 95% (U = 2Uc(y))	5.20

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: UZ7DS8178 Page Number : 69 of 69
Report Issued Date : Sep. 14, 2016
Report Version : Rev. 01

Report Template No.: BU5-FR15CBT Version 1.1

Report No.: FR680207A