LAB 5

TA 陳昱丞

yucheng.cs11@nycu.edu.tw

Deadline: 2023/8/24 (Thu) 12:00

No Demo

In this lab,

Must use sample code, otherwise no credit.

Outline

Part 1: Low-dimensional Observation

Solve LunarLander-v2 using DQN (30%)

Solve LunarLanderContinuous-v2 using DDPG (30%)

Bonus: Implement DDQN (5%)

Bonus: Implement TD3 (10%)

Part 2: High-dimensional Observation

Solve BreakoutNoFrameskip-v4 using DQN (40%)

Report:

Result (0% but necessary)

Bonus: Questions (10%)

LunarLander-v2

Observation [8]

- 1. Horizontal Coordinate
- 2. Vertical Coordinate
- 3. Horizontal Speed
- 4. Vertical Speed
- 5. Angle
- 6. Angle Speed
- 7. If first leg has contact
- 8. If second leg has contact

Action [4]

- No-op
- 2. Fire left engine
- 3. Fire main engine
- 4. Fire right engine

Action [2] (Continuous)

- Main engine: -1 to 0 off, 0 to +1 throttle from 50% to 100% power. Engine can't work with less than 50% power
- Left-right: -1.0 to -0.5 fire left engine, +0.5 to
 +1.0 fire right engine, -0.5 to 0.5 off

Deep Q-Network (DQN)

Target Q:

$$Y_t^Q = r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a' | \theta)$$

Loss function:

$$L_Q(s_t, a_t | \theta) = (Y_t^Q - Q(s_t, a_t | \theta))^2$$

Gradient descent:

$$\nabla_{\theta} L_Q(s_t, a_t | \theta) = (Y_t^Q - Q(s_t, a_t | \theta)) \nabla_{\theta} Q(s_t, a_t | \theta)$$

Deep Q-Network (DQN)

Algorithm 1 – Deep Q-learning with experience replay:

Initialize replay memory *D* to capacity *N*

Initialize action-value function Q with random weights θ

Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t

otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set $y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For

Behavior and target network

 ϵ -greedy based on behavior network

Experience replay

Update behavior and target network

Deep Deterministic Policy Gradient (DDPG)

Consider continuous actions and deterministic policy: $a = \pi_{\theta}(s)$

Deterministic Policy Gradient Theorem:

$$\nabla_{\theta} V^{\pi_{\theta}}(\mu) = \frac{1}{1 - \gamma} E_{s \sim d_{\mu}^{\pi_{\theta}}} [\nabla_{\theta} \pi_{\theta}(s) \nabla_{a} Q^{\pi_{\theta}}(s, a)|_{a = \pi_{\theta}(s)}]$$

Off-policy Deterministic Policy Gradient:

$$\nabla_{\theta} J_{\beta}^{\pi_{\theta}} \approx E_{s \sim d_{\mu}^{\beta}} [\nabla_{\theta} \pi_{\theta}(s) \nabla_{a} Q^{\pi_{\theta}}(s, a)|_{a = \pi_{\theta}(s)}]$$

Deep Deterministic Policy Gradient (DDPG)

$$\nabla_{\theta} J_{\beta}^{\pi_{\theta}} \approx E_{s \sim d_{\mu}^{\beta}} [\nabla_{\theta} \pi_{\theta}(s) \nabla_{a} Q^{\pi_{\theta}}(s, a)|_{a = \pi_{\theta}(s)}]$$

Deep Deterministic Policy Gradient (DDPG)

Algorithm 1 – DDPG:

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^{μ}

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^{Q}, \theta^{\mu\prime} \leftarrow \theta^{\mu}$

Initialize replay buffer *R*

for episode = 1, M do

Initialize a random process *N* for action exploration

Receive initial observation state s_1

for t = 1, T do

Select action $a_t = \mu(s_t | \theta^{\mu}) + N_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set $y_i = r_i + \gamma Q'(s_{t+1}, \mu'(s_{t+1}|\theta^{\mu'})|\theta^{Q'})$

Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$

Update the actor policy using the sampled gradient:

 $\nabla_{\theta} \mu \mu |s_i \approx \frac{1}{N} \sum \nabla_a Q(s, a|\theta^Q)|_{s=s_i, a=\mu(s_i)} \nabla_{\theta} \mu \mu(s|\theta^\mu) |s_i|$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}$$
$$\theta^{\mu'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{\mu'}$$

2 Behavior and 2 target networks

Action drawn from deterministic policy with exploration

Experience replay

Update actor and critic

Update target networks (soft update)

end for

TODO

- Solve LunarLander-v2 using DQN.
- Solve LunarLanderContinuous-v2 using DDPG.
- Find the #TODO comments and hints, remove the raise NotImplementedError.
- Screenshot your tensorboard and testing results and put it on the report.

TODO

• Screenshot your tensorboard and testing results and put it on the report.

Scoring Criteria

- DQN performance (30%)
 - Bonus: implement DDQN (5%)
- DDPG performance (30%)
 - Bonus: implement TD3 (10%)
- Run test 10 times, average score:

	~/DLP/lab6\$ python3 dqn.pytest_only
Start Te	sting
episode :	1: 264.02
episode :	2: 237.68
episode :	3: 257.86
episode 4	4: 298.76
episode :	5: 267.87
episode (6: 315.03
episode '	7: 302.27
episode 8	8: 282.32
episode '	9: 277.29
episode :	10: 262.62
Average	Reward 276.57379065836386

average score	points
<= 0	0
0 ~ 100	5
100 ~ 150	10
150 ~ 200	20
>= 200	30

BreakoutNoFrameskip-v4

- Observation space:
 - The whole image
- Action space:

Num	Action
0	NOOP
1	FIRE
2	RIGHT
3	LEFT

TODO

- Solve BreakoutNoFrameskip-v4 using DQN.
- You can use any trick you want.
- Screenshot your tensorboard and testing results and put it on the report.

TODO

Screenshot your tensorboard and testing results and put it on the report.


```
Start Testing
episode 1: 421.00
episode 2: 414.00
episode 3: 828.00
episode 4: 427.00
episode 5: 396.00
episode 6: 430.00
episode 7: 424.00
episode 8: 798.00
episode 9: 433.00
episode 10: 427.00
Average Reward: 499.80
```

Hint: Trick 1

- Use make_Atari() and wrap_deepmind() provided by OpenAI baselines.
 - atari_wrappers.py
- Remember to set episode_life=False, clip_rewards=False while testing.

Hint: Trick 2

• Stack a sequence of four frames together.

Scoring Criteria

- Performance (40%)
- Run test 10 times, min(5 * sqrt(average score), 100).
- For example:

```
Start Testing
episode 1: 421.00
episode 2: 414.00
episode 3: 828.00
episode 4: 427.00
episode 5: 396.00
episode 6: 430.00
episode 7: 424.00
episode 8: 798.00
episode 9: 433.00
episode 10: 427.00
Average Reward: 499.80
```

```
sqrt(499.8) = 22.35

5 * 22.35 = 111.75

min(111.75, 100) = 100

40 * 100% = 40 points you get
```

Tensorboard Remote Server

- ssh -p [your port] -L 6006:localhost:6006 pp037@140.113.215.196
- tensorboard --logdir log/dqn
- Open your browser locally and input 127.0.0.1:6006

Package Version

- gym 0.15.7
- numpy 1.22.3
- pytorch 1.7.1
- tensorboard 2.10.0

Reminders

- Your network architecture and hyper-parameters can differ from the defaults.
- Ensure the shape of tensors all the time especially when calculating the loss.
- with no_grad(): scope is the same as xxx.detach()
- Be aware of the indentation of hints.
- When testing DDPG, action selection need NOT include the noise.

References

- 1. Mnih, Volodymyr et al. "Playing Atari with Deep Reinforcement Learning." ArXiv abs/1312.5602 (2013).
- 2. Mnih, Volodymyr et al. "Human-level control through deep reinforcement learning." Nature 518 (2015):529-533.
- 3. Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep Reinforcement Learning with DoubleQ-Learning." AAAI. 2016.
- 4. Lillicrap, Timothy P. et al. "Continuous control with deep reinforcement learning." CoRRabs/1509.02971 (2015).
- 5. Silver, David et al. "Deterministic Policy Gradient Algorithms." ICML (2014).
- 6. OpenAI. "OpenAI Gym Documentation." Retrieved from Getting Started with Gym: https://gym.openai.com/docs/.
- 7. OpenAI. "OpenAI Wiki for Pendulum v0." Retrieved from Github: https://github.com/openai/gym/wiki/Pendulum-v0.
- 8. PyTorch. "Reinforcement Learning (DQN) Tutorial." Retrieved from PyTorch Tutorials: https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html .