ECT* Workshop deliverable

MASS-RADIUS AND MASS-LAMBDA REPOSITORY

MEETINGAGENDA

- **Purpose**
- > People involved
- **Choose a name**
- **Action list and priorities**
- Types of sources and events
- **Some longer term ideas**
- > Next meeting

GOALS

- Facilitate the interaction between observers and nuclear physicists / modellers
- ig> Offer a uniform/unified repository of M-R or M- Λ constraints from NS and NS-NS mergers
- > Stay as close as possible to the astrophysical data, free of EOS pre-modelling
- > Offer easy conversions from the different type of inputs (MCMC samples, posteriors, ...)
- In the long term, encourage the observer community to provide their full posteriors

Present

Excused

PEOPLE INVOLVED

- **Collin Capano**
- Debarati Chatterjee
- > Thankful Cromartie
- **Bruno Giacomazzo**
- **Sebastien Guillot**
- Jérôme Margueron
- > Melissa Mendes
- Cole Miller

- Joonas Nättilä
- **Geert Raaijmakers**
- Jocelyn Read
- **Tuomo Salmi**
- > Ingo Tews
- David Tsang
- Serana Vinciguerra
- **Anna Watts**

CHOOSE A NAME

- CompARE as a reference to CompOSE
- **NSDB**
- **Neutron Tsars**
- CompDAT
- CompROMAT

ACTION LIST (SET PRIORITIES)

- (1) Gather source/event list and constraints
 - O Collect caveats, assumptions, model dependencies
- **Define all database entries**
- **Define possible input formats**
- **Define tools provided**
 - O Make all script open access
- Choose location of repository (eg. Github)
- Define the scope of a manual / paper

TYPES OF SOURCES / EVENTS

- 1. Fastest NS (ONLY 1)
- 2. Most massive NSs (above threshold?)
- 3. NS-NS mergers (possibly confirmed with EM counterpart)
- 4. MSP with lightcurve modelling
- 5. Quiescent LMXBs (spectral analysis)
- 6. Type I X-ray bursts (touchdown, cooling tail, or direct spectral ???)
- 7. Cooling of accretion NS

1. THE FASTEST NEUTRON STAR

- Only the fastest is provided
- > PSR J1748-2446ad in Terzan 5:
 - O Period = 0.00139595482(6) sec
- **Caveat:**
 - O Conversion to M-R has uncertainties (Haensel et al. 2009)
- > Model dependencies
 - O Timing model (minimal impact on M-R)
 - O Assumes uniform rotation

2. THE MOST MASSIVE NEUTRON STAR

- The few most massive above threshold
- Make list of massive pulsars:
 - O Either all above 1.908 or all pulsars masses
- To be conservative:
 - O <u>Measurements from radio timing only</u> (no other model dependencies)
- Model dependencies
 - O General Relativity
 - O Timing model (DM variation, red noise model, ...)

3. GW FROM NS-NS MERGERS

- \blacktriangleright Confirmed NS if Λ precise enough or those with EM counterpart
- No NS-BH mergers unless confirmed?
- **Be clear about the assumptions taken**
 - Different set of constraints for the same event under different assumptions
 - We could provide contraints data with 2 levels (1 level with as little assumptions M-Lambda, and 1 level for M-R constraints under some EOS models.
- Model dependencies
 - O GR
 - 0 ???

4. PULSE PROFILE MODELLING OF MSP

- How to deal with multiple M-R constraint per MSP
 - O Which surface pattern?
 - O For ex.: 1 default constraint set, and additional sets with Bayes factors)
 - O NICER team subgroup?
 - O Provide both being clear about differences
- > We will need help from the observers to provide the multiple data set
 - O But we want to avoid having too many data sets for a single source
- **Assumptions:**
 - O Atmospheric composition
 - O Low-B field
- Model dependencies
 - O Surface pattern geometry
 - O Atmosphere model
 - O ISM absorption model

5. QUIESCENT LMXBS

- Only one M-R constraint per source
 - O From which publication?
- **Assumptions:**
 - O Atmospheric composition
 - O Low-B field
 - O Isotropic surface emission
 - O Slow rotation
 - O Distance
- Model dependencies
 - O Atmosphere model
 - O ISM absorption model

6. TYPE I X-RAY BURSTS

- Only one M-R constraint per source
 - O From which method (touchdown, direct spectral analysis, cooling tail?)
- **Assumptions:**
 - O Atmospheric composition
 - O Distance
- Model dependencies
 - O Atmosphere model?
 - O ISM absorption model?

7. COOLING FROM ACCRETING NS AND ISOLATED NS

- Which constraints?
 - O Quiescent luminosity & Mdot?
- Which sources?
 - O How to select? Pulsating? Non-pulsating?
 - O Accreting
 - O Isolated

DATABASE ENTRIES

FOR EACH ENTRY

- Date, reference, contact person? + DOI
- Data type (mcmc sample density, posteriors, 1-2-3 sigma contours?)
 - > Standard type
- **Caveats**
 - Try to assess the systematic vs statistical errors
- > Analysis/models assumptions (references, if different)
- **Curator?**
- Dataset number (for incremented dataset)
- (Reliability grade? How to define it?) hard to rank!
- > S/N ratio, detection significance ?

DATA INPUT TYPE

- Mcmc sample density,
- Marginalised likelihood posteriors
- 1-2-3 sigma contours?
- > Centroid + errors
- For Fastest and Most Massive NS:
 - O Provide the limit or some probability density on the limit?

TOOLS TO PROVIDE (OPEN ACCESS)

- Example scripts to read the data (python notebook)
- > Scripts to convert inputs into unique output format (e.g. as python library)
- > Scripts for plots (with option for contour level choice, e.g., 90%)
- Example tools for quickplots (e.g., like gwplotter) not priority

LOCATION OF REPOSITORY

- **GitHub**
 - O Collaborative
 - O Wiki
 - O Collect issues from the community
 - O Link to Zenodo / DOI
 - O GIT Large File Size?
- Institute-hosted webpage
 - O More freedom?
 - O Less space limited?

Conclusion:

We will start on GitHub for development, but it might become a limitation as the database grows.

But we will assess that when the time come

SCOPE OF MANUAL / PAPER

- > Present purpose of the repository
- List all sources and reference of the initial release
- > Present the tools provided
 - O Conversion tools

LONG TERM IDEAS

- Include EOS model contraints
 - O e.g. cEFT
 - O For plotting purposes only
- Include universal relations?
- Include upcoming constraints (expected) ??
 - O e.g., moment of inertia, ...
- > Provide a repository for user-provided analyses that made use the database (to store in the repository)

ACTIONS

- **▶** Define what we want / format —> White Paper
 - > Setup Overleaf SG
 - > Use overleaf to define the sub-groups everyone
 - > Volunteer needed for subgroup leaders?
- **Everyone** sub-groups per source type to reach out to observers
- > Setup Github SG (on my account for now will migrate to community account later)
 - > Specify file format (simple txt file)
 - **Directory per source type**
 - **>** Be careful with the flexibility (use HDF files)
- > Call to the community to contribute

NEXT MEETING?

2nd half of September

