HW5

Please type or photograph your solution and turn it into a pdf before submitting it to Canvas. The first two problems will be graded for correctness.

- 1. Show that the map $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined as $(t,x) \mapsto xe^t$ is a left $(\mathbb{R},+)$ action on \mathbb{R} . Write down the corresponding permutation representation. Is the action effective? Is the action transitive? Is the action free?
- 2. Let G be a group, X and Y be two left G sets.
 - (a) Show that $\cdot: G \times (X \times Y) \to X \times Y$ defined as (g,(x,y)) = (gx,gy) is a left G action on $X \times Y$.
 - (b) If $f: X \to Y$ is a map, show that f is G equivariant if and only if $\{(x, f(x)) : x \in X\}$ is a G invariant subset of the left G set $(X \times Y, \cdot)$.
- 3. Let G be a group with more than one elements, X be a non empty left G set. Show that $\cdot: G \times P(X) \to P(X)$ defined as $(g,A) \mapsto \{ga: a \in A\}$ is a left G action on P(A). Can this action be free? Can this action be transitive?
- 4. Any non empty set X is a left S_X set via the action $\cdot: S_X \times X \to X$, $(\sigma, x) \mapsto \sigma(x)$. Show that if X has 3 or more elements then the only S_X equivariant map from X to X is the identity.
- 5. Write down a group G, two left G sets X and Y, such that there are no G equivariant map from X to Y.

Answer:

- 1. $t \mapsto (x \mapsto xe^t)$. The kernel is $\{0\}$ so it is effective. The stablizer of 0 is \mathbb{R} so it is not free. There are no real number t such that $e^t \times 1 = 0$ so it is not transitive.
- 2. (a) $e \cdot (x,y) = (ex, ey) = (x,y), a \cdot (b \cdot (x,y)) = a \cdot (bx, by) = (abx, aby) = (ab) \cdot (x,y).$
 - (b) If f is G-equivariant, for any (x, f(x)), $g \cdot (x, f(x)) = (gx, gf(x)) = (gx, f(gx))$, so the set $\{(x, f(x) : x \in X\}$ is G-invariant. If the set $\{(x, f(x)) : x \in X\}$ is G invariant, for any $g \in G$, $x \in X$, $g \cdot (x, f(x)) = (gx, gf(x)) \in \{(x, f(x)) : x \in X\}$, hence gf(x) = f(gx), which implies that f is G equivariant.

- 3. $e \cdot A = \{ea : a \in A\} = A$. $g \cdot (h \cdot A) = g \cdot \{ha : a \in A\} = \{gha : a \in A\} = (gh) \cdot A$. The action is neither free nor transitive, because the stablizer of $X \in P(X)$ is G, and no $g \in G$ has $g \cdot \emptyset = X$.
- 4. If there is such a S_X equivariant map f, let $x \in X$, we must have $(S_X)_x \subseteq (S_X)_{f(x)}$. We will now show that f(x) = x. Suppose not, let $a \in X$ be an element which is neither x nor f(x), let $g \in S_X$ be the element that switches f(x) and a while fixing every other element, then $g \in (S_X)_x \setminus (S_X)_{f(x)}$, a contradiction.
- 5. Let G be a group with more than one elements, X be a set with a single element x and the group action is trivial, Y be G with left action. Then if f is such an equivariant map, let $g \neq e$, then $f(x) = f(gx) = gf(x) \neq f(x)$, a contradiction.