1	The rate of flow	O of a liquid alon	g a narrow pine o	of length I and	radius <i>r</i> is given by
	THE TALE OF HOW	Q OI a liuulu aloi i	u a Hallow bibe o	n i c iiuui <i>L</i> aiiu	Taulus I is ulvell by

row pipe of length
$$Q = \frac{\alpha r^4}{L}$$

where α is a constant.

An experiment is carried out to determine the value of α . The data from the experiment are shown in Table 1.1.

Table 1.1

quantity	value	percentage uncertainty	
Q	$2.72 \times 10^{-8} \mathrm{m}^3 \mathrm{s}^{-1}$	±3%	
r	7.1 × 10 ⁻⁵ m	±2%	
L	2.5 × 10 ⁻² m	±4%	

(a) Use information in Table 1.1 to show that the SI base unit of α is s⁻¹.

[1]

(b) Show that the percentage uncertainty in α is 15%.

[1]

(c) Calculate α with its absolute uncertainty. Give your answer to an appropriate number of significant figures.

$$\alpha = ($$
 \pm $) \times 10^7 \,\mathrm{s}^{-1}$ [3]

[Total: 5]