KINEMATIKA

ilmu yang mempelajari gerak benda tanpa ingin tahu penyebab gerak

TINJAUAN

Gerak satu dan dua dimensi:

- ✓ Gerak lurus beraturan dan tidak beraturan
- ✓ Gerak benda jatuh
- ✓ Gerak parabola
- ✓ Gerak melingkar
- √ Gerak rotasi

GERAK

Gerak: perubahan kedudukan benda terhadap titik acuan

GERAK 1 DIMENSI —— gerak lurus

OPQ - Jarak tempuh : panjang seluruh lintasan yang dilalui benda (skalar)

OQ \longrightarrow perpindahan: pergeseran benda dari titik acuan (vektor)

kecepatan rata-rata:
$$\overline{v} = \frac{\Delta s}{\Delta t} = \frac{s}{t}$$
 — waktu tempuh waktu tempuh

percepatan rata-rata:
$$\overline{a} = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{t - t_0}$$
 (2)

untuk
$$t_0 = 0$$
: $v = v_0 + \bar{a}t$ (3)

$$\overline{v} = \frac{v_0 + v}{2} \tag{4}$$

$$\overline{v} = v_0 + \frac{1}{2}\overline{a}t \tag{5}$$

$$s = v_0 t + \frac{1}{2} \overline{a} t^2 \tag{6}$$

$$v^2 = v_0^2 + 2as (7$$

kecepatan sesaat:

kemiringan garis yang menyinggung kurva s terhadap t pada saat itu

$$v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$$

percepatan sesaat :
$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \frac{d^2s}{dt^2}$$

GERAK LURUS BERATURAN

GLB: $\overline{v} = \text{konstan terhadap t} \rightarrow \overline{a} = 0$

GERAK LURUS BERUBAH BERATURAN

GLBB: \overline{v} tidak konstan terhadap t, dan \overline{a} = konstan terhadap t

Integrasi

→ untuk a = konstan

$$\frac{dv}{dt} = a \implies \int_{v_0}^{v} dv = \int_{0}^{t} a \ dt \implies v = v_0 + at$$

$$\frac{ds}{dt} = v \implies ds = (v_0 + at)dt$$

$$\int_{s_0}^{s} ds = \int_{0}^{t} (v_0 + at)dt$$

$$s = s_0 + v_0 t + \frac{1}{2}at^2$$

contoh soal

1. Sebuah mobil berada di $s_1 = 100$ m pada saat $t_1 = 20$ s. Pada saat $t_2 = 30$ s, mobil berada di $s_2 = 60$ m. Tentukan perpindahan dan kecepatan rata-rata mobil.

Solusi:

perpindahan :
$$\Delta s = s_2 - s_1 = 60 \text{ m} - 100 \text{ m} = -40 \text{ m}$$

Kecepatan rata-rata:
$$\bar{v} = \frac{\Delta s}{\Delta t} = \frac{s_2 - s_1}{t_2 - t_1} = \frac{-40}{10} = -4 \text{ m/s}$$

tanda (-) menunjukkan ke arah s negatif

2. Seseorang berlari menempuh jarak 150 m dalam waktu 10 s. Orang tersebut kemudian berjalan berbalik arah menempuh jarak 50 m dalam waktu 30 s.Tentukan kelajuan rata-rata dan kecepatan rata-rata untuk seluruh perjalanan orang tsb.

<u>Solusi</u>

jarak tempuh total : 150 m + 50 m = 200 m

perpindahan total : 150 m - 50 m = 100 m

waktu total : 10 s + 30 s = 40 s

Kelajuan rata-rata: $v_{rata-rata} = \frac{s_1 + s_2}{\Delta t} = \frac{200 \text{ m}}{40 \text{ s}} = 5 \text{ m/s}$

kecepatan rata-rata: $\bar{v} = \frac{s_2 - s_0}{\Delta t} = \frac{100 \ m - 0}{40 \ s} = \frac{10}{4} \ m/s = 2.5 \ m/s$

3. Sebuah mobil balap dipercepat dari 0 sampai 90 km/j dalam selang waktu 5 s. Tentukan percepatan rata-rata mobil tersebut.

solusi:

$$90 \text{ km/j} = 90.000 \text{ m/3600 s} = 25 \text{ m/s}$$

percepatan rata-rata :
$$\overline{a} = \frac{\Delta v}{\Delta t} = \frac{25 \ m/s - 0}{5 \ s} = 4 \ m/s^2$$

Gerak Benda Jatuh Bebas

GJB: $v_0 = 0$, $\overline{a} = g = konstan terhadap t dan s = h$

pers. (6):
$$h = \frac{1}{2} gt^2 \longrightarrow t = \sqrt{\frac{2h}{g}}$$

pers. (1):
$$h = \overline{v} \sqrt{\frac{2h}{g}} \quad \text{pers. (4)} : \overline{v} = v/2$$

GERAK 2 DAN 3 DIMENSI

> Vektor Kecepatan

Vektor posisi:
$$\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$$

Vektor kecepatan rata-rata:

$$\overline{\vec{v}} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\Delta x}{\Delta t} \hat{i} + \frac{\Delta y}{\Delta t} \hat{j} + \frac{\Delta z}{\Delta t} \hat{k} = \overline{v}_x \hat{i} + \overline{v}_y \hat{j} + \overline{v}_z \hat{k}$$

Vektor kecepatan sesaat:

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \lim_{\Delta t \to 0} \left(\frac{\Delta x}{\Delta t} \hat{i} + \frac{\Delta y}{\Delta t} \hat{j} + \frac{\Delta z}{\Delta t} \hat{k} \right) = \frac{dx}{dt} \hat{i} + \frac{dy}{dt} \hat{j} + \frac{dz}{dt} \hat{k}$$

$$\vec{v} = v_x \hat{i} + v_y \hat{j} + v_z \hat{k}$$

Vektor Kecepatan

Vektor percepatan rata-rata:

$$\overline{\vec{a}} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\Delta v_x}{\Delta t} \hat{i} + \frac{\Delta v_y}{\Delta t} \hat{j} + \frac{\Delta v_z}{\Delta t} \hat{k} = \overline{a}_x \hat{i} + \overline{a}_y \hat{j} + \overline{a}_z \hat{k}$$

Vektor percepatan sesaat:

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \lim_{\Delta t \to 0} \left(\frac{\Delta v_x}{\Delta t} \hat{i} + \frac{\Delta v_y}{\Delta t} \hat{j} + \frac{\Delta v_z}{\Delta t} \hat{k} \right) = \frac{d^2 x}{dt^2} \hat{i} + \frac{d^2 y}{dt^2} \hat{j} + \frac{d^2 z}{dt^2} \hat{k}$$

$$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$$

GERAK PARABOLA

lintasan gerak berupa parabola

$$v_{0x} = v_0 \cos \theta \implies v_0 \text{ ke arah } x$$

 $v_{0y} = v_0 \sin \theta \implies v_0 \text{ ke arah } y$

gerak horizontal:

$$v_x = konstan \rightarrow a_x = 0$$

- \bullet $V_x = V_{0x}$

gerak vertikal:

$$a_y = -g = konstan$$

$$\bullet$$
 $V_y = V_{0y} - gt$

•
$$y = y_0 + v_{0y}t - 1/2 gt^2$$

•
$$v_y^2 = v_{0y}^2 - 2gy$$

tinggi maksimum (h_{max}) dicapai jika $v_y = 0 \rightarrow t = t_h$

$$v_y = v_{0y} - gt = 0$$

$$t_h = \frac{v_{0y}}{g} \qquad y = y_0 + v_{0y}t - \frac{1}{2}gt^2$$

$$y = h_{max}$$
: $h_{max} = y_0 + \frac{1}{2} \frac{v_{0y}^2}{g}$

jika
$$y_0 = 0$$
 $h_{max} = \frac{1}{2} \frac{v_{0y}^2}{g}$

Jarak terjauh (R) dicapai jika $y = 0 \rightarrow t = t_R$

$$y = y_0 + v_{0y}t - \frac{1}{2}gt^2 = 0$$
 $\rightarrow t = t_R$
 $gt_R^2 - 2v_{0y}t_R - 2y_0 = 0$

$$t_R = \frac{2v_{0y} \pm \sqrt{4v_{0y}^2 + 8gy_0}}{2g}$$

jika
$$y_0 = 0 \rightarrow t_R = \frac{2v_{0y}}{g}$$

$$x = R \rightarrow R = x_0 + v_{0x}t_R$$

GERAK MELINGKAR

Gerak Melingkar Beraturan \rightarrow v = konstan, tapi $\overrightarrow{v} \neq$ konstan

Kecepatan linier :
$$v = \frac{\Delta s}{\Delta t}$$

$$\Delta S = \Delta \theta R \rightarrow v = (\Delta \theta / \Delta t)R = \omega R$$

Secara vektor:
$$\vec{\mathbf{v}} = \vec{\dot{\mathbf{w}}} \times \vec{\mathbf{R}}$$

kecepatan sudut

$$\Delta \vec{v} \bigvee_{V_1} \vec{v}_2$$

jika
$$\Delta t = t_2 - t_1 \approx 0 \rightarrow \Delta \theta \approx$$

$$\vec{v}_1 \qquad \vec{v}_1 / \vec{v}_2 \quad dan \quad \Delta \vec{v} / R$$

jika
$$\Delta t = t_2 - t_1 \approx 0 \rightarrow \Delta \theta \approx 0$$

$$ec{\mathrm{v}}_{_1}$$
 // $ec{\mathrm{v}}_{_2}$ dan $\Delta ec{\mathrm{v}}$ // R

$$\Delta \vec{V}$$
 \longrightarrow arahnya menuju pusat lingkaran

$$\vec{a}_R = \frac{\Delta \vec{v}}{\Delta t}$$
 Percepatan sentripetal

untuk
$$\Delta\theta << : \Delta\theta = \frac{\Delta s}{R} = \frac{|\Delta \vec{v}|}{v} \longrightarrow |\Delta \vec{v}| = v \frac{\Delta s}{R}$$

$$|\overrightarrow{a}_{R}| = \frac{|\overrightarrow{\Delta V}|}{\Lambda t} \longrightarrow a_{R} = \frac{V^{2}}{R}$$

$$|\vec{a}_R| = \frac{|\Delta \vec{v}|}{\Delta t} \longrightarrow a_R = \frac{v^2}{R}$$
Percepatan sudut : $\vec{\alpha} = \frac{\Delta \vec{\omega}}{\Delta t} \longrightarrow \alpha = \frac{\Delta \omega}{\Delta t}$

GERAK ROTASI

perpindahan (sudut) : $\overrightarrow{\Delta\theta}$ (rad)

selang waktu perpindahan : $t_2 - t_1 = \Delta t$

kecepatan sudut : $\bar{\omega} = \Delta\theta / \Delta t \text{ (rad/s)} \rightarrow \omega = d\theta / dt$

percepatan sudut : $\bar{\alpha} = \Delta\omega / \Delta t \, (rad^2/s) \rightarrow \alpha = d\omega/dt$

Besaran	G. linier	G. Rotasi	Hubungan
perpindahan	S	θ	$s = \theta R$
			R : jejari
kecepatan	V	ω	$V = \omega R$ $\overrightarrow{\nabla} = \overrightarrow{\omega} \times \overrightarrow{R}$
			$\nabla = \vec{\omega} \times \vec{R}$
percepatan	a _T	α	$\mathbf{a}_{T} = \alpha R$ $\vec{a}_{T} = \vec{\alpha} \times \vec{R}$
			$\vec{a}_T = \vec{\alpha} \times \vec{R}$

Persamaan gerak:

LINIER	ROTASI	
$v = v_0 + \overline{a}t$	$\omega = \omega_0 + \alpha t$	
$s = s_0 + v_0 t + \frac{1}{2} \overline{a} t^2$	$\theta = \theta_0 + \omega_0 t + 1/2 \alpha t^2$	
$v^2 = v_0^2 + 2as$	$\omega^2 = \omega_0^2 + 2\alpha\Delta\theta$	

contoh soal

1. Sebuah benda dilempar vertikal ke atas dengan kecepatan 100 m/s dari atas suatu bangunan dengan tinggi 100 m ($g = 10 \text{ m/s}^2$). Tentukan (a) tinggi maksimum benda dari atas tanah, (b) kecepatan ketika sampai di tanah

Solusi:

$$v_0 = 100 \text{ m/s}, h_0 = 100 \text{ m}$$

a) Tinggi maksimum dicapai jika v = 0

$$v = v_0 - gt \rightarrow 0 = 100 - 10t \rightarrow t = 10 s (t mencapai h maksimum)$$

 $h = h_0 + v_0 t - \frac{1}{2} gt^2 = 100 + (100)(10) - \frac{1}{2} (10)(10)^2 = 600 m$

b)
$$v = \sqrt{2gh} = \sqrt{2(10)(600)} = 109,54 \text{ m/s} \approx 110 \text{ m/s}$$

benda mencapai tanah \rightarrow h = 0.

$$0 = 100 + (100)(10) - \frac{1}{2}(10)(t)^2 \rightarrow t = 21 \text{ s}$$

$$v = v_0 - gt = 100 - (10)(21) = -110 \text{ m/s}$$

tanda (-) menunjukkan arah bawah

Sebuah benda dilemparkan dengan sudut elevasi 30°. Jika kecepatan awalnya 20 m/s, tentukan (a) koordinat benda setelah 1 s, (b) tinggi maksimum yang dicapai benda
 Solusi:

a)
$$v_{0x} = v_0 \cos 30^0 = 20 \ \frac{1}{2}\sqrt{3} = 10 \ \sqrt{3} \ \text{m/s}$$

$$v_{0y} = v_0 \sin 30^0 = 20 \ \frac{1}{2} = 10 \ \text{m/s}$$

$$t = 0 \ \rightarrow x_0 = y_0 = 0$$

$$x = x_0 + v_{0x}t = 0 + 10 \ \sqrt{3}(1) = 10\sqrt{3} \ \text{m}$$

$$y = y_0 + v_{0y}t - \frac{1}{2} \ \text{gt}^2 = 0 + 10 \ (1) - \frac{1}{2} \ (10)(1)^2 = 5 \ \text{m}$$
 koordinat peluru saat $t = 1$ adalah $(10 \ \sqrt{3} \ , 5)$ m

b) Peluru mencapai tinggi maksimum \rightarrow $v_y = 0$ $v_y = v_{0y} - gt_{hmax} \rightarrow 0 = 10 - (10)t \rightarrow t_{hmax} = 1$ $h = v_{0y} - gt^2 = 5 \text{ m}$

3. Sebuah cakram berputar dengan percepatan sudut konstan sebesar $\alpha = 2 \text{ rad/s}^2$. Jika cakram dimulai dari keadaan diam, tentukan jumlah putarannya dalam selang waktu 10 s.

Solusi:

$$\omega_0 = 0 \, \text{dan} \, t_0 = 0$$

sudut yang ditempuh dalam waktu 10 s:

$$\theta - \theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2 = 0 + \frac{1}{2} (2 \text{ rad/s}^2) (10 \text{ s})^2 = 100 \text{ rad}$$

jml putaran = (1 putaran/
$$2\pi$$
 rad) x 100 rad
= 15,9 \approx 16 putaran

Thank You!

www.themegallery.com