Dictionary-based model reduction for state estimation

Alexandre PASCO

Centrale Nantes. Nantes Université. France In collaboration with Anthony NOUY.

 Context
 One space
 Multi-space
 Dictionary approach
 Parameterized PDEs
 Numerical conclusion conclusion

Context

ullet Parametric equation in a Hilbert space U,

$$\mathcal{F}(u,\xi) = 0,$$

 $u \in U$ the **state to recover** and $\xi \in \mathcal{P} \subset \mathbb{R}^d$ an **unknown** parameter.

ullet Parametric equation in a Hilbert space U,

$$\mathcal{F}(u,\xi) = 0,$$

 $u \in U$ the **state to recover** and $\xi \in \mathcal{P} \subset \mathbb{R}^d$ an **unknown** parameter.

Observations

of m continuous linear measurements $\ell_1(u),\cdots,\ell_m(u)$, i.e. $w=P_Wu$ with $W:=\mathrm{span}\{R_U\ell_i\}_{i=1}^m$

ullet Parametric equation in a Hilbert space U,

$$\mathcal{F}(u,\xi) = 0,$$

 $u \in U$ the **state to recover** and $\xi \in \mathcal{P} \subset \mathbb{R}^d$ an **unknown** parameter.

Observations

of m continuous linear measurements $\ell_1(u),\cdots,\ell_m(u)$, i.e. $w=P_Wu$ with $W:=\operatorname{span}\{R_U\ell_i\}_{i=1}^m$

+ Prior knowledge

on the solution manifold $\mathcal{M} := \{u(\xi) : \xi \in \mathcal{P}\}$ based on model reduction

ullet Parametric equation in a Hilbert space U,

$$\mathcal{F}(u,\xi) = 0,$$

 $u \in U$ the **state to recover** and $\xi \in \mathcal{P} \subset \mathbb{R}^d$ an **unknown** parameter.

Observations

of m continuous linear measurements $\ell_1(u),\cdots,\ell_m(u)$, i.e. $w=P_W u$ with $W:=\operatorname{span}\{R_U\ell_i\}_{i=1}^m$

+ Prior knowledge

on the solution manifold $\mathcal{M} := \{u(\xi) : \xi \in \mathcal{P}\}$ based on model reduction

Compute a recovery $A(w) \simeq u$

One space approach

One space: formulation

• Approximate \mathcal{M} by a linear subspace V,

$$\operatorname{dist}(V, \mathcal{M}) \le \varepsilon, \qquad \operatorname{dim}(V) = n$$

One space: formulation

• Approximate \mathcal{M} by a linear subspace V,

$$\operatorname{dist}(V,\mathcal{M}) \leq \varepsilon, \qquad \operatorname{dim}(V) = n$$

• Parameterized-Background Data-Weak (PBDW) [Maday et al., 2015]:

$$A_V(\mathbf{w}) := v^* + \eta^*, \quad v^* := \arg\min_{v \in V} ||P_W(u - v)||, \quad \eta^* := \mathbf{w} - P_W v^*$$

One space: formulation

Approximate \mathcal{M} by a linear subspace V,

$$\mathsf{dist}(V,\mathcal{M}) \leq \varepsilon, \qquad \mathsf{dim}(V) = n$$

Parameterized-Background Data-Weak (PBDW) [Maday et al., 2015]:

$$A_V(w) := v^* + \eta^*, \quad v^* := \arg\min_{v \in V} ||P_W(u - v)||, \quad \eta^* := w - P_W v^*$$

• Sharp error bound [Binev et al., 2017]: $||u - A_V(w)|| \le \varepsilon \mu(V, W)$

$$\mu(V, W) := \left(\inf_{v \in V} \sup_{w \in W} \frac{\langle v, w \rangle}{\|v\| \|w\|} \right)^{-1}$$

One space: Geometry

Linear MOR

$$\operatorname{dist}(V,\mathcal{M}) \leq \varepsilon$$

Dic-based MOR for state estimation

One space: Pros and cons

Pros

- Online efficiency $\mathcal{O}(n^3)$.
- No need to know ε.
- Optimal (worst case sense) when \mathcal{M} is a cylinder centered in V [Binev et al., 2017].

One space: Pros and cons

Pros

- Online efficiency $\mathcal{O}(n^3)$.
- No need to know ε .
- Optimal (worst case sense) when \mathcal{M} is a cylinder centered in V[Binev et al., 2017].

Cons

- Requires $n \leq m$.
- Trade-off between ε and $\mu(V, W)$.
- Limited by the Kolmogorov m-width, $\varepsilon > d_m(\mathcal{M})$ where

$$d_n(\mathcal{M}) := \inf_{\substack{X \subset U \\ \dim X = n}} \max_{u \in \mathcal{M}} \mathsf{dist}(X, u).$$

Multi-space approach Library-based MOR

Multi-space: library-based MOR

ullet Consider a library of spaces $\mathcal{L}_n^N := \{V_1, \cdots, V_N\}$

$$\operatorname{\mathsf{dist}}\Bigl(igcup_{k=1}^N V_k, \mathcal{M}\Bigr) \leq arepsilon, \qquad \operatorname{\mathsf{dim}}(V_k) \leq n \leq m.$$

Multi-space: library-based MOR

ullet Consider a library of spaces $\mathcal{L}_n^N := \{V_1, \cdots, V_N\}$

$$\operatorname{dist}\Bigl(igcup_{k=1}^N V_k, \mathcal{M}\Bigr) \leq arepsilon, \qquad \operatorname{dim}(V_k) \leq n \leq m.$$

• New benchmark: non-linear Kolmogorov (n,N)-width [Temlyakov, 1998]

$$d_n(\mathcal{M}, N) := \inf_{\#\mathcal{L}_N^N = N} \max_{u \in \mathcal{M}} \min_{V \in \mathcal{L}_N^N} \mathsf{dist}(V, u),$$

which is expected to decay much faster than $d_n(\mathcal{M})$.

Multi-space: library-based MOR

ullet Consider a library of spaces $\mathcal{L}_n^N := \{V_1, \cdots, V_N\}$

$$\operatorname{dist}\Bigl(igcup_{k=1}^N V_k, \mathcal{M}\Bigr) \leq arepsilon, \qquad \operatorname{dim}(V_k) \leq n \leq m.$$

• New benchmark: non-linear Kolmogorov (n,N)-width [Temlyakov, 1998]

$$d_n(\mathcal{M}, N) := \inf_{\#\mathcal{L}_N^N = N} \max_{u \in \mathcal{M}} \min_{V \in \mathcal{L}_N^N} \mathsf{dist}(V, u),$$

which is expected to decay much faster than $d_n(\mathcal{M})$.

• Aim for low ε with a low n, thus better stability.

Multi-space: How?

Each space $V \in \mathcal{L}_n^N$ gives a one-space estimate $A_V(w)...$

text One space Multi-space Dictionary approach Parameterized PDEs Numerical Conclusion 000 0000 0000 0000 0000 0000

Multi-space: How?

Each space $V \in \mathcal{L}_n^N$ gives a one-space estimate $A_V(w)$...

How to select $V^*(w)$ among this library ?

atext One space Multi-space Dictionary approach Parameterized PDEs Numerical Conclusion 000 000 0000 0000 00000 00000 0000

Multi-space: Selection

Idea [Cohen et al., 2022]: select the "closest" to ${\cal M}$

Multi-space: Selection

Idea [Cohen et al., 2022]: select the "closest" to ${\cal M}$

• Assume we have ${\mathcal S}$ such that for any $v \in U$,

$$c \operatorname{dist}(v, \mathcal{M}) \leq \mathcal{S}(v, \mathcal{M}) \leq C \operatorname{dist}(v, \mathcal{M})$$

Multi-space: Selection

Idea [Cohen et al., 2022]: select the "closest" to ${\cal M}$

 \bullet Assume we have ${\mathcal S}$ such that for any $v\in U$,

$$c \operatorname{dist}(v, \mathcal{M}) \leq \mathcal{S}(v, \mathcal{M}) \leq C \operatorname{dist}(v, \mathcal{M})$$

• Select $V^*(w)$ as

$$V^*(w) \in \underset{V \in \mathcal{L}_N^N}{\operatorname{argmin}} \ \mathcal{S}(A_V(w), \mathcal{M}).$$

Multi-space: Selection

Proposition (Near optimal selection [Cohen et al., 2022])

Assuming that P_W is injective on \mathcal{M} and that $\mu(\mathcal{M},W)<\infty$,

$$||u - A_{V^*}(w)|| \le 2 \frac{C}{c} \mu(\mathcal{M}, W) \min_{V \in \mathcal{C}^N} ||u - A_V(w)||,$$

 $\mu(\mathcal{M}, W)$ reflects how well \mathcal{M} and W are aligned.

Dictionary approach
Dictionary-based MOR

Dictionary approach: Library

• Dictionary of *K* vectors (or snapshots),

$$\mathcal{D}_K = \{v^{(1)}, \cdots, v^{(K)}\}$$

Dictionary approach: Library

• Dictionary of *K* vectors (or snapshots),

$$\mathcal{D}_K = \{v^{(1)}, \cdots, v^{(K)}\}\$$

• Take as library $\mathcal{L}_m^N = \mathcal{L}_m(\mathcal{D}_K)$, containing all the subspaces spanned by at most m vectors from \mathcal{D}_K ,

$$\mathcal{L}_{m}(\mathcal{D}_{K}) := \Big\{ \sum_{k=1}^{K} x_{k} v^{(k)} : x \in \mathbb{R}^{K}, \|x\|_{0} \leq m \Big\},$$

One space Multi-space O00 O00 O00 Parameterized PDEs Numerical Conclusion O00 O00 O00 O00 O00 O00

Dictionary approach: Library

 $\mathcal{L}_m(\mathcal{D}_K)$ is large \longrightarrow low ε but not fully explorable.

Dictionary approach: Compressive sensing

Sparse approximation given a few linear measurements

Dictionary approach: Compressive sensing

Sparse approximation given a few linear measurements

→ Compressive Sensing

Dictionary approach: Compressive sensing

Sparse approximation given a few linear measurements

→ Compressive Sensing

• Consider the Basis Pursuit Denoising problem for $\alpha > 0$

$$\mathbf{x}_{\alpha}(\mathbf{w}) := \underset{\mathbf{x} \in \mathbb{R}^K}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{C}\mathbf{x} - \mathbf{w}\|_2^2 + \alpha \|\mathbf{x}\|_1,$$

whose solution is unique and m-sparse under some assumptions.

Dictionary approach: Compressive sensing

Sparse approximation given a few linear measurements

 \rightarrow Compressive Sensing

• Consider the Basis Pursuit Denoising problem for $\alpha > 0$

$$\mathbf{x}_{\alpha}(\mathbf{w}) := \underset{\mathbf{x} \in \mathbb{R}^K}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{C}\mathbf{x} - \mathbf{w}\|_2^2 + \alpha \|\mathbf{x}\|_1,$$

whose solution is unique and m-sparse under some assumptions.

• Focus on the space spanned by the support,

$$V_{\alpha}(w) := \operatorname{span}\{v^{(i)} : \mathbf{x}_{\alpha}(w)_i \neq 0\} \in \mathcal{L}_m(\mathcal{D}_K)$$

Dictionary approach: Selection

• Use S to select $V_S(w)$ among the **smaller** library $\mathcal{L}(w) := \{V_\alpha(w) : \alpha > 0\}$ and define

$$A_{\mathcal{S}}^{\mathsf{dic}}(\boldsymbol{w}) := A_{V_{\mathcal{S}}(\boldsymbol{w})}(\boldsymbol{w})$$

Dictionary approach: Selection

• Use S to select $V_S(w)$ among the **smaller** library $\mathcal{L}(w) := \{V_\alpha(w) : \alpha > 0\}$ and define

$$A_{\mathcal{S}}^{\mathsf{dic}}(w) := A_{V_{\mathcal{S}}(w)}(w)$$

• In practice for efficiency and numerical stability reasons, we only compute $\hat{\mathcal{L}}(w) \subset \mathcal{L}(w)$ with $\#\hat{\mathcal{L}}(w) \leq \tau K$.

Dictionary approach: Selection

• Use S to select $V_S(w)$ among the **smaller** library $\mathcal{L}(w) := \{V_\alpha(w) : \alpha > 0\}$ and define

$$A_{\mathcal{S}}^{\mathsf{dic}}(w) := A_{V_{\mathcal{S}}(w)}(w)$$

• In practice for efficiency and numerical stability reasons, we only compute $\hat{\mathcal{L}}(w) \subset \mathcal{L}(w)$ with $\#\hat{\mathcal{L}}(w) \leq \tau K$.

Proposition (Near optimal selection)

Assuming that P_W is injective on \mathcal{M} and that $\mu(\mathcal{M},W)<\infty$,

$$||u - A_{\mathcal{S}}^{dic}(w)|| \le 2\frac{C}{c}\mu(\mathcal{M}, W) \min_{V \in \hat{\mathcal{L}}(w)} ||u - A_{V}(w)||,$$

Parameterized PDEs

Offline-online decomposition for dictionary-based multi-space

Parameterized PDEs: Offline-online decomposition

- Discrete framework $U = \mathbb{R}^{\mathcal{N}}$ with large \mathcal{N} .
- **Offline**: Heavy pre-computations independently on w.
- **Online**: Fast computation of $A_s^{\text{dic}}(w)$.

Parameterized PDEs: Framework

• Consider that u solves the operator equation

$$B(\xi)u(\xi) = f(\xi),$$

where the singular values of $B(\xi)$ are **uniformly bounded**,

$$0 < c \le \min_{v \in U} \frac{\|B(\xi)v\|}{\|v\|} \le \max_{v \in U} \frac{\|B(\xi)v\|}{\|v\|} \le C < \infty,$$

Parameterized PDEs: Framework

Consider that u solves the operator equation

$$B(\xi)u(\xi) = f(\xi),$$

where the singular values of $B(\xi)$ are **uniformly bounded**,

$$0 < c \le \min_{v \in U} \frac{\|B(\xi)v\|}{\|v\|} \le \max_{v \in U} \frac{\|B(\xi)v\|}{\|v\|} \le C < \infty,$$

Take S as a residual norm as in [Cohen et al., 2022],

$$S(v, \mathcal{M}) := \min_{\xi \in \mathcal{P}} ||B(\xi)v - f(\xi)||, \quad \forall v \in U,$$

which satisfies $c \operatorname{dist}(v, \mathcal{M}) < \mathcal{S}(v, \mathcal{M}) < C \operatorname{dist}(v, \mathcal{M})$.

Parameterized PDEs: Affine decomposition

• Assume the affine decompositions

$$B(\xi) = B_0 + \sum_{q=1}^d \theta_q^{(B)}(\xi) B_q \quad \text{and} \quad f(\xi) = f_0 + \sum_{q=1}^{m_f} \theta_q^{(f)}(\xi) f_q,$$

with $B_a: U \longrightarrow U'$ linear operators and $f_a \in U'$.

Parameterized PDEs: Affine decomposition

• Assume the affine decompositions

$$B(\xi) = B_0 + \sum_{q=1}^d \theta_q^{(B)}(\xi) B_q \quad \text{and} \quad f(\xi) = f_0 + \sum_{q=1}^{m_f} \theta_q^{(f)}(\xi) f_q,$$

with $B_q: U \longrightarrow U'$ linear operators and $f_q \in U'$.

ullet Then computing ${\cal S}$ requires solving the l.s. system

$$S(v, \mathcal{M}) := \min_{\xi \in \mathcal{P}} ||G(v)\theta(\xi) - g(v)||, \quad v \in U,$$

where $\theta(\xi) \in \mathbb{R}^{m_B + m_f}$, $G(v) : \mathbb{R}^{m_B + m_f} \longrightarrow U'$ and $g(v) \in U'$.

Parameterized PDEs: Offline-online decomposition

ullet Problem: precomputing the normal equation for ${\mathcal S}$ costs

$$\mathcal{O}((m_BK+m_f)^2\mathcal{N})$$

Parameterized PDEs: Offline-online decomposition

ullet Problem: precomputing the normal equation for ${\mathcal S}$ costs

$$\mathcal{O}((m_BK + m_f)^2\mathcal{N})$$

• Instead, we use a random embedding $\Theta \in \mathbb{R}^{k \times \mathcal{N}}$ and consider

$$\mathcal{S}^{\Theta}(v, \mathcal{M}) := \min_{\xi \in \mathcal{P}} \|\Theta(B(\xi)v - f(\xi))\| = \min_{\xi \in \mathcal{P}} \|G^{\Theta}(v)\theta(\xi) - g^{\Theta}(v)\|$$

where
$$G^{\Theta}(v) \in \mathbb{R}^{k \times (m_B + m_f)}$$
 and $g^{\Theta}(v) \in \mathbb{R}^k$.

Parameterized PDEs: Offline-online decomposition

ullet Problem: precomputing the normal equation for ${\mathcal S}$ costs

$$\mathcal{O}((m_BK + m_f)^2\mathcal{N})$$

ullet Instead, we use a random embedding $\Theta \in \mathbb{R}^{k imes \mathcal{N}}$ and consider

$$S^{\Theta}(v, \mathcal{M}) := \min_{\xi \in \mathcal{P}} \|\Theta(B(\xi)v - f(\xi))\| = \min_{\xi \in \mathcal{P}} \|G^{\Theta}(v)\theta(\xi) - g^{\Theta}(v)\|$$

where $G^{\Theta}(v) \in \mathbb{R}^{k \times (m_B + m_f)}$ and $g^{\Theta}(v) \in \mathbb{R}^k$.

Proposition

With $k = \mathcal{O}\left(\epsilon^{-2} \left(m_B + m_f + \log(\delta^{-1})\right)\right)$, for any $v \in U$, with probability at least $1 - \delta$ we have

$$\sqrt{1-\epsilon} \, \mathcal{S}(v,\mathcal{P}) < \mathcal{S}^{\Theta}(v,\mathcal{P}) < \sqrt{1+\epsilon} \, \mathcal{S}(v,\mathcal{P}).$$

One space

Parameterized PDEs: Computational aspects

• **Offline cost**: Using a structured embedding Θ (e.g. SRHT),

$$\mathcal{O}\big(\underbrace{\underbrace{mK\mathcal{N}}_{\mathsf{compute}} + \underbrace{\big(m_BK + m_f)\mathcal{N}\log(k)}_{\mathsf{pre-compute}}\big)}_{\mathsf{pre-compute}}\big)$$

• **Online cost**: Considering $k = \mathcal{O}(m_B + m_f)$,

$$O(\underbrace{m^2K}_{\text{LARS}} + \underbrace{k(mm_B + m_f)K}_{\text{prepare l.s.}} + \underbrace{C_{ls}K}_{\text{solve l.s.}})$$

 Numerical stability: few affine terms, thus robust to round-off errors.

Parameterized PDEs: Computational aspects

Example when $\theta(\xi) = \xi$ and $f(\xi) = f_0$.

Offline cost:

With random sketching
$$\mathcal{O}\big(mK\mathcal{N} + dK\mathcal{N}\log(k)\big) \qquad \text{VS} \qquad \begin{array}{l} \text{With normal equation} \\ \mathcal{O}\big(mK\mathcal{N} + d^2K^2\mathcal{N}\big) \end{array}$$

Online cost: Considering $k = \mathcal{O}(d)$,

With random sketching
$$\mathcal{O}(m^2K + md^2K + d^3K)$$
 VS With normal equation $\mathcal{O}(m^2K + md^2K + d^3K)$

Finite Element space $U \subset \mathcal{H}^1_{\Gamma_D}(\Omega)$ endowed with norm $\|\nabla \cdot \|_{\mathcal{L}^2(\Omega)}$

Numerical Example

Numerical: Thermal block

$$\mathcal{N} \sim 8 \; 000 \quad \text{and} \quad \begin{cases} -\nabla \cdot \left(\kappa \nabla u \right) = 1 & \text{ in } \Omega, \\ u = 0 & \text{ on } \Gamma_D, \\ \kappa = \xi_i & \text{ in } \Omega_i, \; 1 \leq i \leq 9, \end{cases}$$

Figure: Left: geometry, with sensors locations (crosses). Middle: Riesz representative of a sensor. Right: a snapshot.

Alexandre PASCO

ontext One space Multi-space Dictionary approach Parameterized PDEs Numerical Conclusion 000 000 0000 0000 0000 00000 000

Numerical: Thermal block

Figure: Evolution of the recovery errors in U-norm, on 500 test snapshots, with growing dictionary sizes K, for $m \in \{9, 36, 64\}$.

Numerical: Advection diffusion

$$\mathcal{N} \sim 150~000$$
 and

$$\mathcal{N} \sim 150\ 000 \quad \text{and} \quad \begin{cases} -0.01 \Delta u + \mathcal{V}(\xi) \cdot \nabla u = \frac{100}{\pi} \mathbbm{1}_{\Omega_S} & \text{in } \Omega, \\ \\ u = 0 & \text{on } \Gamma_D, \\ \\ n \cdot \nabla u = 0 & \text{on } \Gamma_N, \end{cases}$$

$$\mathcal{V}(\xi) = \sum_{i=1}^{5} \frac{1}{\|x - x^{(i)}\|} \left(\xi_i e_r(x^{(i)}) + \xi_{i+5} e_{\theta}(x^{(i)}) \right)$$

ontext One space Multi-space Dictionary approach Parameterized PDEs Numerical Conclusion 000 000 0000 0000 0000 0000 0000

Numerical: Advection diffusion

Figure: Evolution of the recovery errors in U-norm, on 500 test snapshots, with growing dictionary sizes K, for $m \in \{31, 61, 101\}$.

Conclusion

 One space
 Multi-space
 Dictionary approach
 Parameterized PDEs
 Numerical
 Conclusion

 000
 00000
 00000
 00000
 00000
 0000

Conclusion

- Dictionary-based multi-space approach for state estimation
- Efficient offline-online decomposition using randomized linear algebra.
- More details in [Nouy and Pasco, 2023] available at https://arxiv.org/abs/2303.10771
- Python repo available at https://github.com/alexandre-pasco/rla4mor/inverse-problems

Thank you!

Appendix

Appendix: Offline stage

- Write $A_{\alpha}(w) = \mathbf{Ua}$ with $\mathbf{a} = \mathbf{a}(w) \in \mathbb{R}^{m+K}$ and $\mathbf{U} = (\mathbf{W} \mid \mathbf{V})$.
- ullet Write the l.s. terms to compute \mathcal{S}^Θ as

$$G^{\Theta}(A_{\alpha}(w)) := \left(\Theta B^{(1)} \mathbf{Ua} \mid \cdots \mid \Theta B^{(d)} \mathbf{Ua}\right)$$
$$g^{\Theta}(A_{\alpha}(w)) := \Theta f - \Theta B^{(0)} \mathbf{Ua}.$$

- Offline: compute $\underbrace{\mathbf{C}}_{\mathcal{O}(mK\mathcal{N})} \in \mathbb{R}^{m \times K}$ and $\underbrace{\Theta B^{(q)} \mathbf{U}}_{\mathcal{O}(K\mathcal{N}\log(\parallel))} \in \mathbb{R}^{k \times (m+K)}$
- Total offline cost (without snapshot computation) is

$$\mathcal{O}\Big((d\log(\mathcal{N}) + m)K\mathcal{N}\Big)$$
 VS $\mathcal{O}\Big(d^2K^2\mathcal{N}\Big)$

Appendix: Online stage

- Step 0: Observe $w = P_w u$.
- Step 1: Run LARS to generate $\mathcal{O}(K)$ subspaces, costing $\mathcal{O}(m^2K)$.
- **Step 2**: Prepare the l.s. systems, each costing $\mathcal{O}(kmd)$.
- **Step 3**: Solve them, each costing $\mathcal{O}(kd^2)$.
- Total online cost with $k = \mathcal{O}(d)$

$$\mathcal{O}\big(\underbrace{m^2K}_{\text{LARS}} + \underbrace{md^2K}_{\text{prepare l.s.}} + \underbrace{d^3K}_{\text{solve l.s.}}\big) = \mathcal{O}\big((m^2 + md^2 + d^3)K\big).$$

References I

- Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., and Wojtaszczyk, P. (2017).

 Data Assimilation in Reduced Modeling.
 - SIAM/ASA J. Uncertainty Quantification, 5(1):1–29.
- Cohen, A., Dahmen, W., Mula, O., and Nichols, J. (2022).

 Nonlinear Reduced Models for State and Parameter Estimation.

 SIAM/ASA J. Uncertainty Quantification, 10(1):227–267.
- Maday, Y., Patera, A. T., Penn, J. D., and Yano, M. (2015). A parameterized-background data-weak approach to variational data assimilation: Formulation, analysis, and application to acoustics. *Int. J. Numer. Meth. Engng*, 102(5):933–965.
- Nouy, A. and Pasco, A. (2023).
 Dictionary-based model reduction for state estimation.

References II

Temlyakov, V. N. (1998). Nonlinear Kolmogorov widths.

Math Notes, 63(6):785-795.