Álgebra I $\label{eq:Algebra I}$ Tomás Agustín Hernández

Conjuntos

Los conjuntos almacenan elementos, no se consideran repetidos y responde a la pregunta de "¿está el elemento?", esto último quiere decir que no tenemos forma de tomar un elemento sino predicar acerca de si está o no.

Pertenecencia a un Conjunto

Si consideramos cualquier elemento x, decimos que está en un conjunto A si x pertenece a A.

La pertenencia de un elemento a un conjunto la denotamos como: $x \in A$

Importante: La relación está dada por Elemento en Conjunto

Véase ánexo para ejemplos más didácticos.

Inclusión a un Conjunto

Sean A y D conjuntos cualesquiera. Decimos que D es un subconjunto de A sí y solo sí todos los elementos de D están en A.

La inclusión en un conjunto la denotamos como $D \subseteq A$

Es posible leer el símbolo \subseteq de tres maneras:

- "D es un subconjunto de A"
- "D está incluido en A"
- "D está contenido en A"

Los subconjuntos posibles no salen más que haciendo combinaciones con sus elementos, es decir, agruparlos de diferentes formas.

Véase <u>ánexo</u> para ejemplos más didácticos.

Cardinal de un Conjunto

Sea A un conjunto, el cardinal de un conjunto indica la cantidad de elementos en el conjunto. Se denota como: #A

Cantidad de Subconjuntos posibles dado un Conjunto

Sea un conjunto A, la cantidad de subconjuntos D para el conjunto A es: $2^{\#A}$

Elemento Vacío

Se representa con el símbolo de \emptyset . El elemento vacío está **incluido** en todos los conjuntos. **Importante**: El elemento vacío NO pertenece a todos los conjuntos sino que está incluido en todos.

Cuantificadores

Nos permiten predicar acerca de los elementos de un conjunto dado.

- \blacksquare \forall x: Para todo x.
 - Para que sea verdadero todos deben cumplir la condición dada.
 - Es falso si existe un caso en que no se cumple.
- \blacksquare \exists x: Existe un x
 - Para que sea verdadero alcanza con encontrar un caso verdadero.
 - Es falso si no hay ningun caso que cumpla la condición

Importante: El símbolo de : o \ significa "tal que"

Véase <u>ánexo</u> para ejemplos más didácticos.

Operaciones entre Conjuntos

Sean A y B conjuntos cualesquiera. La cantidad de filas que tendrá una tabla de verdad es: $2^{cantVariables}$ Importante: Las operaciones entre conjuntos que vamos a ver están relacionadas con la lógica proposicional.

Unión $(A \cup B)$

Es exactamente igual como en la lógica proposicional. La unión es un o lógico. En el conjunto resultante quedan los elementos de A y B.

A	В	$A \cup B$
V	V	V
V	F	V
F	V	V
F	F	F

Tabla 1: Unión de conjuntos

Cada fila se puede generalizar para un x cualquiera en las operaciones lógicas.

Ej.: $x \in A \lor x \in B$ entonces $x \in A \cup B$ esto claramente nos dice que estamos en el caso de la fila 1.

Ej.: $x \notin A \lor x \in B$ entonces $x \in A \cup B$ esto claramente nos dice que estamos en el caso de la fila 3.

Intersección $(A \cap B)$

Es exactamente igual como en la lógica proposicional. La unión es un "y" lógico. En el conjunto resultante quedan los elementos que están tanto en A y en B.

A	В	$A \cap B$
V	V	V
V	F	F
F	V	F
F	\mathbf{F}	F

Tabla 2: Intersección de conjuntos

Cada fila se puede generalizar para un x cualquiera en las operacines lógicas.

Ej.: $x \in A \land x \in B$ entonces $x \in A \cap B$ esto claramente nos dice que estamos en el caso de la fila 1.

Ej.: $x \notin A \land x \in B$ entonces $x \notin A \cap B$ esto claramente nos dice que estamos en el caso de la fila 3.

Complemento $(A \cap B)$

En la lógica proposicional, el complemento es la negación. Lo que está en un conjunto universal V pero no en el conjunto.

A	$\neg A$
V	F
V	F
F	V
F	V

Tabla 3: Complemento en Conjuntos

Cada fila se puede generalizar para un x cualquiera en las operaciones lógicas.

Ej.: $x \in A$ entonces termina siendo $x \notin A$ esto claramente nos dice que estamos en el caso de la fila 1.

Sea
$$A = \{1, 2\}, B = \{3, 4, 5\}, C = \{8, 9\}, V = \{A, B, C\} \implies A^c = \{3, 4, 5, 8, 9\}$$

Importante: Nótese que siempre se hace el complemento en base a los elementos que hay en el universo y se excluyen algunos. En este caso, del universo V nos quedamos con los que NO están en A.

Anexo

Pertenencia en Conjuntos

Sea A el conjunto: $\{1, 2, \{C, B\}, F, \{10, 15\}\}\$

- $1 \in A, 2 \in A, F \in A$
- $C \notin A, B \notin A$

 $\{C, B\}, \{10, 15\} \in A$

¿Por qué $C \notin A$? Pues C no es un elemento de A.

Notar que C es parte del elemento $\{C, B\}$ en A, pero C no es un elemento independiente.

Inclusión en Conjuntos

Ex. 1: Sea $A = \{1, 2, 3\}$ y $D = \{1, 3\}$. ¿Es D un subconjunto de A?

Sí, lo es pues $1 \in A$ y $3 \in A$ **Ex. 2**: Sea $A = \{1, \{1, 4\}, 3, 10\}$

- $\{1,4\} \not\subseteq A$ pues no existen 1 y 4 como elementos en A
- $\{1,4\} \in A$ pues $\{1,4\}$ esunelementode A
- $\{1,3\} \subseteq A$ pues $1 \in A, 3 \in A$, lo mismo sucede con $\{1,10\}$ o $\{3,10\}$

Cuantificadores

Ex. 1: $A = \{2, 4, 6, 8\}$

Algunos ejemplos utilizando cuantificadores

- $\forall x \in A \setminus x \%2 = 0 \text{ (Todos pares en A)}$
- ¬ $\exists x \in A \setminus x \%2 \neq 0$ (No existe ningún impar en A)
- $\exists x \in A \setminus x = 4$ (Existe un elemento en A que es exactamente 4)