

① Veröffentlichungsnummer: 0 590 530 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 93115418.1

2 Anmeldetag: 24.09.93

(1) Int. Cl.5: C12N 15/62, C07K 15/28, C12N 9/00, C12N 15/81, A01K 67/027, A61K 37/02, G01N 33/68, C12N 1/21, C12N 5/10

Priorität: 02.10.92 DE 4233152

Veröffentlichungstag der Anmeldung: 06.04.94 Patentblatt 94/14

Benannte Vertragsstaaten: AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

71 Anmelder: BEHRINGWERKE **Aktiengesellschaft** Postfach 1140 D-35001 Marburg(DE)

Erfinder: Gehrmann, Mathias Wingertstrasse 11

D-35457 Lollar(DE)

Erfinder: Seemann, Gerhard

Weissdornweg 32 D-35041 Marburg(DE) Erfinder: Bosslet, Klaus An der Haustatt 64 D-35037 Marburg(DE) Erfinder: Czech, Jörg

Höhenweg 3

D-35041 Marburg(DE)

Fusionsproteine zur Prodrug-Aktivierung.

Die Erfindung betrifft Verbindungen, die eine Antigenbinderegion enthalten, welche an mindestens ein Enzym gebunden ist, das eine nicht oder wenig zytotoxische Verbindung (Prodrug) in eine zytotoxische Verbindung (Drug) metabolisieren kann, wobei die Antigenbinderegion aus einer einzigen Polypeptidkette besteht. Vorteilhafterweise befinden sich an der Polypeptidkette kovalent gebundene Kohlenhydrate.

Die Erfindung betrifft Verbindungen, die eine Antigenbinderegion enthalten, welche an mindestens ein Enzym gebunden ist, das eine nicht oder wenig zytotoxische Verbindung (Prodrug) in eine zytotoxische Verbindung (Drug) metabolisieren kann, wobei die Antigenbinderegion aus einer einzigen Polypeptidkette besteht. Vorteilhafterweise befinden sich an der Polypeptidkette kovalent gebundene Kohlenhydrate.

Die Kombination von Prodrug und Antikörper-Enzym-Konjugaten zur Anwendung als therapeutisches Mittel ist in der Fachliteratur bereits beschrieben. Hierbei werden gegen ein bestimmtes Gewebe gerichtete Antikörper, an die ein Prodrug-spaltendes Enzym gebunden ist, einem Organismus injiziert, und anschließend wird eine enzym-aktivierbare Prodrug-Verbindung verabreicht. Unter der Einwirkung des am Zielgewebe gebundenen Antikörper-Enzym-Konjugates soll die Prodrug-Verbindung in eine Verbindung umgewandelt werden, die eine zytotoxische Wirkung gegen das gebundene Gewebe ausübt. Allerdings hat sich bei Arbeiten mit Antikörper-Enzym-Konjugaten gezeigt, daß diese chemischen Konjugate eine ungünstige Pharmakokinetik besitzen, so daß eine ortsspezifische tumorselektive Spaltung der Prodrug nur unzureichend erfolgt. Manche Autoren haben versucht, diesen offensichtlichen Mangel durch zusätzliche Injektion eines anti-Enzymantikörpers, der eine schnelle Eliminierung des Antikörperenzymkonjugates aus dem Plasma bewirken soll, zu beheben (Sharma et al., Brit. J. Cancer, 61, 659, 1990). Ein weiteres Problem von Antikörperenzymkonjugaten ist die begrenzte Möglichkeit, große Mengen reproduzierbar und homogen herzustellen.

Aufgabe der vorliegenden Erfindung war nun, Fusionsproteine zu finden, die in großtechnischem Maßstab hergestellt werden können und aufgrund ihrer pharmakokinetischen und pharmakodynamischen Eigenschaften für therapeutische Anwendungen geeignet sind.

Es wurde dabei gefunden, daß Verbindungen, die eine Antigenbinderegion enthalten, welche aus einer einzigen Polypeptidkette besteht, für die Herstellung und Verwendung von Fusionsproteinen, welche vorteilhaft mit Kohlenhydraten besetzt sind, bei der Prodrug-Aktivierung unervartete Vorteile besitzen.

Gegenstand der Erfindung sind daher Verbindungen, die eine Antigenbinderegion enthalten, welche an mindestens ein Enzym gebunden ist, wobei die Antigenbinderegion aus einer einzigen Polypeptidkette besteht und das Fusionsprotein vorteilhaft mit Kohlenhydraten besetzt ist.

Unter Antigenbinderegion versteht man im Sinne der Erfindung eine Region, die mindestens zwei variable Domänen eines Antikörpers enthält, vorzugsweise eine variable Domäne einer schweren Antikörperkette und eine variable Domäne einer leichten Antikörperkette (sFv-Fragment). Die Antigenbinderegion kann jedoch auch bi- oder multivalent aufgebaut sein, d.h. zwei oder mehr Binderegionen besitzen, wie beispielweise in der EP-A-0 404 097 offenbart. Besonders bevorzugt ist jedoch ein humanes oder humanisiertes sFv-Fragment, insbesondere ein humanisiertes sFv-Fragment.

Vorzugsweise bindet die Antigenbinderegion an ein tumorassoziiertes Antigen (TAA), wobei insbesondere folgende TAAs bevorzugt sind:

neural cell adhesion molecule (N-CAM), polymorphic epithelial mucin (PEM), epidermal growth factor receptor (EGF-R), Thomsen Friedenreich antigen ß (TFß), gastrointestinal tract carcinoma antigen (GICA), ganglioside GD₃ (GD₃), ganglioside GD₂ (GD₂), Sialyl-Lea, Sialyl-Lex, TAG72,

das durch MAk L6 definierte Glykoprotein mit 24-25 kDa,

CA 125 und vor allem das

carcinoembryonic antigen (CEA).

Als Enzyme sind diejenigen Enzyme bevorzugt, die eine nicht oder wenig zytotoxische Verbindung in eine zytotoxische Verbindung metabolisieren können. Beispiele sind die ß-Lactamase, Pyroglutamat-Aminopeptidase, Galactosidase oder D-Aminopeptidase wie z.B. in der EP-A2-0 382 411 oder EP-A2-0 392 745 beschrieben, eine Oxidase wie z.B. Ethanoloxidase, Galactoseoxidase, D-Aminosäureoxidase oder α -Glyceryl-Phosphatoxidase, wie z.B. in der WO 91/00108 beschrieben, eine Peroxidase gemäß z.B. EP-A2-0 361 908, eine Phosphatase, wie z.B. in EP-A1-0 302 473 beschrieben, eine Hydroxynitrillyase oder Glucosidase gemäß z.B. WO 91/11201, eine Carboxypeptidase, wie z.B. die Carboxypeptidase G2 (WO 88/07378), eine Amidase, wie z.B. die Penicillin-5-amidase (Kerr, D. E. et al. Cancer Immunol. Immunther. 1990, 31), eine Protease, Esterase oder Glycosidase, wie die bereits erwähnte Galactosidase, Glucosidase oder eine Glucuronidase, wie z.B. in der WO 91/08770 beschrieben. Bevorzugt ist eine ß-Glucuronidase, vorzugsweise aus Kobayasia nipponica oder Secale cereale und besonders bevorzugt aus E. coli oder eine humane ß-Glucuronidase. Die Substrate der einzelnen Enzyme sind in den genannten Schutzrechten

mit angegeben und sollen auch zum Offenbarungsgehalt der vorliegenden Anmeldung gehören. Bevorzugte Substrate der ß-Glucuronidase sind N-(D-Glycopyranosyl)-benzyloxycarbonyl-anthracycline und insbesondere das N-(4-Hydroxy-3-nitro-benzyloxycarbonyl)-doxorubicin bzw. daunorubicin-ß-D-glucuronid (J. C. Florent et al. (1992) Int. Carbohydr. Symp. Paris, A262, 297 oder S. Andrianomenjanahary et al. (1992) Int. Carbohydr. Symp. Paris, A 264, 299).

Ein weiterer Gegenstand der Erfindung sind Nukleinsäuren, die für die erfindungsgemäßen Verbindungen kodieren. Insbesondere bevorzugt ist eine Nukleinsäure sowie deren Varianten und Mutanten, die für ein humanisiertes sFv-Fragment gegen CEA (Carcinoembryonales Antigen) verbunden mit einer humanen ß-Glucuronidase kodiert (sFv-huß-Gluc), vorzugsweise mit der in Tabelle 1 angegebenen Sequenz.

Die Herstellung der erfindungsgemäßen Verbindungen erfolgt im allgemeinen gentechnisch, nach dem Fachmann allgemein bekannten Verfahren, wobei die Antigenbinderegion mit einem oder mehreren Enzymen entweder direkt oder über einen Linker, vorzugsweise einem Peptidlinker, verbunden sein kann. Als Peptidlinker kann beispielsweise eine "Hinge-Region" eines Antikörpers oder eine "hinge"-ähnliche Aminosäuresequenz verwendet werden. Das Enzym ist dabei vorzugsweise mit dem N-Terminus an die Antigenbinderegion direkt oder über einen Peptidlinker verbunden. Das oder die Enzyme können jedoch auch chemisch, wie z.B. in der WO 91/00108 offenbart, mit der Antigenbinderegion verbunden werden.

Die für die Aminosäuresequenz der erfindungsgemäßen Verbindungen kodierende Nukleinsäure, wird im allgemeinen in einem Expressionsvektor kloniert, in prokaryontischen oder eukaryontischen Wirtszellen, wie z.B. BHK- CHO-, COS-, HeLa-, Insekten-, Tabakpflanzen-, Hefe- oder *E.coli-*Zellen eingebracht und exprimiert. Die so hergestellte Verbindung kann anschließend isoliert und als Diagnostikum oder Therapeutikum verwendet werden. Ein weiteres allgemein bekanntes Verfahren zur Herstellung der erfindungsgemäßen Verbindung ist die Expression der dafür kodierenden Nukleinsäuren in transgenen Säugern mit Ausnahme von Mensch, vorzugsweise in einer transgenen Ziege.

Mit den erfindungsgemäßen Nukleinsäuren transfizierte BHK-Zellen exprimierten ein Fusionsprotein (sFv-huß-Gluc), welches sowohl spezifisch für CEA war als auch volle β -Glucuronidase Aktivität besitzt (siehe Bsp. 5).

Dieses Fusionsprotein wurde über Anti-idiotyp Affinitätschromatographie entsprechend der in EP O 501 215 A2 (Beispiel M) beschriebenen Methode gereinigt. Das so gereinigte Fusionsprotein besitzt unter reduzierenden Bedingungen in der SDS-PAGE ein Molekulargewicht von 100 kDa, unter nichtreduzierenden Bedingungen treten Moleküle von 100 bzw. 200 kDa auf.

Gelchromatographie unter nativen Bedingungen (TSK-3000 Gel-chromatographie) zeigte einen Protein-Peak (Bsp. 6, Abb. I), der mit dem Aktivitätspeak im Spezifitätsenzymaktivitätstest (EP O 501 215 A2) korreliert. Die Position des Peaks im Vergleich zu Standard-Molekulargwichtsmarkern deutet auf ein Molekulargewicht von ≈ 200 kDa hin. Dieser Befund, verbunden mit den Daten aus der SDS-PAGE, suggeriert, daß das funktionelle, enzymatisch aktive sFv-huβ-Gluc Fusionsprotein als "bivalentes Molekül", d.h. mit 2 Binderegionen und 2 Enzymmolekülen, vorliegt. Hier nicht beschriebene Versuche deuten darauf hin, daß das Fusionsprotein unter bestimmten Kultivierungsbedingungen auch als Tetramer, mit 4 Binderegionen und 4 Enzymmolekülen, vorliegen kann. Nachdem das sFv-huβ-Gluc Fusionsprotein gereinigt und in vitro funktionell charakterisiert war, wurde die Pharmakokinetik und die Tumorlokalisation des Fusionsproteins in nackten Mäusen bestimmt, die mit menschlichen Magenkarzinomen bestückt waren. Die Mengen an funktionell aktivem Fusionsprotein wurden in den Organen sowie dem Tumor zu unterschiedlichen Zeitpunkten nach adäquater Aufarbeitung der Organe (Beispiel 7) sowie immunologischer Bestimmung (Triple-Determinanten-Test, Beispiel 8) bestimmt. Die Ergebnisse eines repräsentativen Versuches sind in Tabelle 4 zusammengefaßt.

Erstaunlicherweise wird bereits nach 48 Stunden ein Tumor/Plasma Verhältnis von 5/1 erreicht. Zu späteren Zeitpunkten wird dieses Verhältnis noch günstiger und erreicht Werte > 200/1 (Tag 5). Die Ursache für dieses günstige pharmakokinetische Verhalten des sFv-huβ-Gluc Fusionsproteins liegt darin, daß nicht am Tumor gebundenes Fusionsprotein hauptsächlich über Rezeptoren für Mannose-6-Phosphat und Galaktose aus dem Plasma und den Normalgeweben durch Internalisation entfernt wird. (Diese Aussage läßt sich dadurch belegen, daß die β-Glucuronidase Werte intrazellulär, z.B. in der Leber, ansteigen).

45

Wie in Tabelle 5 gezeigt, enthält das sFv-huß-Gluc größere Mengen an Galaktose und vor allem Mannose, die hauptsächlich für die Anbindung an die jeweiligen Rezeptoren verantwortlich sind. Der so entstandene, über die Kohlenhydratreste des Fusionsproteins gebundene Fusionsprotein-Rezeptorkomplex wird dann durch Internalisation aus dem extrazellulären Kompartiment entfernt.

Dieser hauptsächlich über Galaktose und Mannose vermittelte schnelle Internalisationsmechanismus ist maßgeblich an der vorteilhaften Pharmakokinetik des erfindungsgemäßen Fusionsproteins beteiligt. Diese vorteilhafte Pharmakokinetik des mit Galaktose und vor allem Mannose besetzten Fusionsproteins ermög-

licht die i.v. Applikation einer sich extrazellulär verteilenden, hydrophilen Prodrug zu einem relativ frühen Zeitpunkt, ohne eine unspezifische Prodrugaktivierung hervorzurufen. Hierbei ist ein Eliminierungsschritt wie bei Sharma et al. (Brit. J. Cancer, 61, 659, 1990) beschrieben, nicht nötig. Basierend auf den Daten der Tabelle 4 ist die Injektion einer geeigneten Prodrug (S. Adrianomenjanahari et al. 1992, Int. Carbohydrate Symp., Parts A264, 299) schon 3 Tage nach Injektion des sFv-huβ-Gluc Fusionsproteins ohne Erzeugung von signifikanten Nebenwirkungen möglich (Daten nicht gezeigt).

Ein ähnlich vorteilhafter Kohlenhydratbesatz auf Fusionsproteinen ist z.B. auch durch sekretorische Expression des sFv-huβGluc Fusionsprotein in bestimmten Hefestämmen wie Saccharomyces cerevisiae oder Hansenula polymorpha zu erzielen. Diese Organismen sind in der Lage, Fusionsproteine, die entsprechende N-Glykosylierungsstellen besitzen, sehr wirkungsvoll zu mannosylieren (Goochee et al., Biotechnology, 9, 1347-1354, 1991). Solche sekretorisch in Hefezellen exprimierten Fusionsproteine zeigen einen hohen Mannosylierungsgrad und eine dem in BHK-Zellen exprimierten sFv-huβ-Gluc Fusionsprotein vergleichbare günstige Pharmakokinetik (Daten nicht gezeigt). Hierbei wird die Abwesenheit von Galaktose durch den noch höheren Mannosylierungsgrad des Fusionsproteins ausgeglichen (Tabelle 6). Das oben beschriebene sFv-huβ-Gluc Fusionsprotein wurde, wie in Beispiel 9 näher beschrieben, gentechnisch konstruiert und in Hefe exprimiert.

Anstelle der humanen ß-Glucuronidase kann man jedoch auch eine andere Glucuronidase mit vorteilhaften Eigenschaften einsetzen. Beispielsweise hat die *E.coli* ß-Glucuronidase insbesondere den Vorteil, daß ihre katalytische Aktivität bei pH 7.4 signifikant höher ist als die der humanen ß-Glucuronidase. In Beispiel 10 wurde mittels gentechnischer Methoden ein sFv-E. coli ß-Gluc Konstrukt hergestellt und in Saccharomyces cerevisiae sekretorisch als funktionell aktives mannosyliertes Fusionsprotein exprimiert. Die pharmakokinetischen Daten sind denen des sFv-huß-Gluc Moleküls, welches in Hefe bzw. in BHK-zellen exprimiert wurde (Tabelle 4), vergleichbar.

Die Glucuronidasen aus dem Pilz Kobayasia nipponica und aus der Pflanze Secale cereale haben z.B. den Vorteil, daß sie auch als Monomere aktiv sind. In Beispiel 11 ist mittels gentechnischer Methoden ein Konstrukt hergestellt worden, welches nach Expression in Saccharomyces cerevisiae ein sFv-B. cereus ß-lactamase II Fusionsprotein in vorzugsweise mannosylierter Form ausscheidet.

Dieses Fusionsprotein hat ebenfalls, wie die erfindungsgemäßen Fusionsproteine, auf ß-Glucuronidase-Basis eine für die Prodrugaktivierung günstige Pharmakokinetik (Tabelle 4).

Ferner können die erfindungsgemäßen Verbindungen nicht nur in Kombination mit einer Prodrug, sondern auch im Rahmen der gängigen Chemotherapie eingesetzt werden, bei der als Glucuronide metabolisierte und somit inaktivierte Zytostatika durch die applizierten Verbindungen wieder in ihre toxische Form umgewandelt werden können.

Die nachfolgenden Beispiele beschreiben nun die gentechnische Synthese von sFv-huß-Gluc Fusionsproteinen, sowie den Nachweis der Funktionsfähigkeit.

Ausgangsmaterial waren die Plasmide pABstop 431/26 hum V_H und pABstop 431/26 hum VH_L. Diese Plasmide enthalten die humanisierte Version des V_H- bzw. V_L-Gens des anti CEA MAK BW 431/26 (Güssow und Seemann, 1991, Meth. Enzymology, 203, 99-121). Als weiteres Ausgangsmaterial diente das Plasmid pABstop 431/26 V_H-huß-Gluc 1H (EP-A2-0 501 215), das ein V_H-Exon, einschließlich der V_H-eigenen Signalsequenz, gefolgt von einem CH1-Exon, dem Hinge-Exon eines humanen IgG3 C-Gens und die vollständige cDNA der humanen β-Glucuronidase enthält.

Beispiel 1:

5 Amplification der V_H und V_L Gene des MAk hum 431/26

Mit den Oligonukleotiden pAB-Back und Linker-Anti (Tab. 2) wird aus pABstop 431V_H hum das V_H-Gen einschließlich der V_H-Gen eigenen Signalsequenz herausamplifiziert (V_H 431/26) (Güssow und Seemann, 1991, Meth. Enzymology, 203, 99-121). Mit den Oligonukleotiden Linker-Sense und V_{L(Mut)}-For (Tab. 3) wird aus pABstop 431V_L hum das V_L-Gen herausamplifiziert (V_L 431/26).

Beispiel 2:

Zusammenfügen der V_H 431/26 und V_L 431/26 Genfragmente

Die Oligonukleotide Linker-Anti und Linker-Sense sind partiell komplementär zueinander und codieren für einen Polypeptid-Linker, der die V_{H^-} und V_L -Domäne zu einem sFv-Fragment verknüpfen soll. Um die amplifizierten V_{H^-} mit den V_L -Fragmenten zu fusionieren, werden sie gereinigt und in einer 10 Zyklen Reaktion wie folgt eingesetzt:

50	H₂O: dNTPs (2.5 mM): PCR-Puffer (10x): Taq-Polymerase (Perkin-Elmer Corp., Emmeryville, CA) (2.5 U/μΙ): 0.5 μg/μΙ DNA des V _L -Frag.:	37.5 µl 5.0 µl 5.0 µl 0.5 µl 1.0 µl
	0.5 μg/μl DNA des V _H -Frag.:	1.0 μΙ

55

PCR-Puffer (10x): 100mM Tris, pH8.3, 500mM KCl, 15 mM MgCl₂, 0.1% (w/v) Gelatin.

Die Oberfläche des Reaktionsgemisches wird mit Paraffin versiegelt und anschließend die 10 Zyklen Reaktion in einer PCR-Apparatur mit dem Programm 94°C, 1 min; 55°C, 1 min; 72°C, 2 min, durchge-

führt. Danach werden 2,5 pM der flankierenden Primer pAB-Back und V_{L(Mut)}-For zugegeben und weitere 20 Zyklen durchgeführt. Man erhält ein PCR-Fragment, das aus dem V_H-Gen besteht, welches über einen Linker mit dem V_L-Gen verbunden ist. Vor dem V_H-Gen befindet sich noch die V_H-Gen eigene Signalsequenz. Durch das Oligonukleotid V_{L(Mut)}-For wird gleichzeitig die letzte Nukleotidbase des V_L-Gens, ein C, gegen ein G ausgetauscht. Dieses PCR-Fragment codiert für einen humanisierten Single-Chain-Fv (sFv 431/26).

Beispiel 3:

Kionierung des sFv 431/26 Fragmentes in den Expressionsvektor, der das hu β -Glucuronidasegen enthält.

Das sFv-Fragment aus (2) wird mit HindIII und BamHI geschnitten und in den mit HindIII vollständig und mit BgIII partiell gespaltenen Vektor pAB 431V_H hum/CH1 + 1h/βGlc ligiert. Der Vektor pABstop 431/26V_HhuβGluc1H enthält ein V_H-Exon, einschlieβlich der V_H-eigenen Signalsequenz, gefolgt von einem CH1-Exon, dem Hinge-Exon eines humanen IgG3 C-Gens und der vollständigen cDNA der humanen β-Glucuronidase. Es wird der Plasmidklon pMCG-E1 isoliert, der den humanisierten sFv 431/26, ein Hinge-Exon und das Gen für die humane β-Glucuronidase enthält (pMCG-E1).

≅xpression des sFv-huβ-Gluc Fusionsproteins in BHK Zelien.

3eispiel 4:

Der Klon pMCG-E1 wird zusammen mit dem Plasmid pRMH 140, das ein Neomycin-Resistenzgen trägt nd dem Plasmid pSV2, das ein Methotrexat-Resistenzgen trägt, in BHK Zellen transfiziert. Daraufhin wird nn den BHK Zellen ein Fusionsprotein ausgeprägt, das sowohl die Antigenbindungseigenschaften des β -KAK BW 431/26hum als auch die enzymatische Aktivität der humanen β -Glucuronidase hat.

E∞RI

pSV 2

SV 40 ori

Amp r

pBR 322 ori Pstl

Maus dhfr

HindIII

BamHi

- BgIII

5

10

15

20

25

30

35

40

45

30

Beispiel 5:

Nachweis der Antigenbindungseigenschaften und der enzymatischen Aktivität des sFv-hu β -Gluc Fusionsproteins.

Die Fähigkeit des sFv-hu β -Gluc Fusionsproteins spezifisch an das durch den 431/26 definierte Epitop auf CEA zu binden und gleichzeitig die enzymatische Aktivität der humanen β -Glucuronidase auszuüben, wurde in einem Spezifitäts-Enzymaktivitätstest gezeigt (EP-A2-0501215). Der Test bestimmt die Freisetzung von 4-Methyl-umbelliferon aus 4-Methyl-umbelliferyl- β -Glucuronid durch den β -Glucuronidase Anteil des Fusionsproteins, nachdem das Fusionsprotein über den sFv-Anteil an ein Antigen gebunden ist. Die ermittelten Fluoreszenzwerte werden als relative Fluoreszenzeinheiten (FE) angegeben. Der Test zeigt eine signifikante Methyl-umbelliferon Freisetzung durch das Fusionsprotein in den mit CEA beschichteten Platten. Dagegen wird durch das Fusionsprotein kein Methyl-umbelliferon in mit PEM (polymorphic epithelial mucin) beschichteten Kontrollplatten freigesetzt.

Beispiel 6:

TSK-3000 Gelchromatographie

50

Von dem über Anti-idiotyp Affinitätschromatographie gereinigten sFv-huβ-Gluc Fusionsprotein wurden 200 ng in 25 μl auf einer TSK Gel G 3000 SW XL Säule (TOSO HAAS Best.Nr. 3.5Wx N3211, 7.8 mm x 300 mm) in einem geeigneten Laufmittel (PBS, pH 7.2, enthaltend 5 g/l Maltose und 4.2 g/l Arginin) mit einer Fluβrate von 0.5 ml/min chromatographiert. Die Merck Hitachi HPLC-Anlage (L-4000 UV-Detektor, L-6210 Intelligent Pump, D-2500 Chromato-Integrator) wurde mit ≈ 20 bar betrieben, die optische Dichte des Eluats wurde bei 280 nm bestimmt, und mittels eines LKB 2111 Multisac Fraktionssammlers wurden 0.5 ml Fraktionen gesammelt, die anschließend im Spezifitätsenzymaktivitätstest (SEAT) (EP 0501215 A2, Beispiel J) analysiert wurden. Das Ergebnis dieses Experimentes ist in Abb. 1 gezeigt. Es ist deutlich zu erkennen,

daβ die Position des durch optische Dichtemessung bei 280 nm detektierbaren Peaks mit dem Peak übereinstimmt, der die Spezifität und Enzymaktivität (SEAT) des Eluats bestimmt. Basierend auf den mittels Pfeilen angedeuteten Molekulargewichtspositionen von Standardproteinen kann gefolgert werden, daβ das funktionell aktive sFv-huβ-Gluc Fusionsprotein unter nativen Bedingungen ein ungefähres Molekulargewicht von ≈ 200 kDa hat.

Beispiel 7:

Aufarbeitung von Organen/Tumoren zur Fusionsproteinbestimmung

10

15

Folgende sequentielle Schritte wurden durchgeführt:

- mit Fusionsprotein bzw. Antikörperenzymkonjugat behandelte Nacktmäuse (CD1), die einen subkutanen Tumor haben, werden retroorbital entblutet und dann getötet
- das Blut wird sofort in ein Eppendorfgefäß gegeben, in dem sich schon 10 μl Liquemin 25000 (Fa. Hoffman-LaRoche AG) befindet
- dann wird 10 min bei 2500 U/min in einer Zentrifuge (Megafuge 1.0, Fa. Heraeus) zentrifugiert
- danach wird das Plasma gewonnen und bis zur Testung eingefroren
- die Organe bzw. der Tumor werden entnommen und gewogen
- dann werden sie mit 2 ml 1 % BSA in PBS, pH 7.2, vollständig homogenisiert
- die Tumorhomogenate werden mit 0.1 N HCl auf pH 4.2 eingestellt (die Probe darf nicht übertitriert werden, da die β-Glucuronidase bei pH < 3.8 inaktiviert wird!)
 - alle Homogenate werden 30 min bei 16000 g zentrifugiert
 - der klare Überstand wird abgenommen
 - die Tumorüberstände werden mit 0.1 N NaOH neutralisiert
 - die Überstände und das Plasma können nun in immunologischen Tests quantifiziert werden.

Beispiel 8:

Triple-Determinanten-Test

30

35

40

45

50

55

25

Die Testung läuft folgendermaßen ab:

- pro Loch einer Mikrotitrationsplatte (Polystyrol U-Form, Typ B, Fa. Nunc, Best.Nr. 4-60445) werden 75 μl eines mit 2 μg/ml in PBS, pH 7.2, verdünnten Maus-anti-huβ-Gluc Antikörpers (MAk 2118/157 Behringwerke) gegeben
- die Mikrotitrationsplatten werden abgedeckt und über Nacht bei R.T. inkubiert
- anschließend werden die Mikrotitrationsplatten 3x mit 250 μl 0.05 M Tris-Citrat-Puffer, pH 7.4, pro Loch gewaschen
- diese so beschichteten Mikrotitrationsplatten werden pro Loch mit je 250 μl Blocklösung (1 % Casein in PBS, pH 7.2) für 30' bei R.T. inkubiert (Blockierung unspezifischer Bindungsstellen) (nicht benötigte beschichtete Mikrotitrationsplatten werden 24 Stunden bei R.T. getrocknet und dann zusammen mit Trockenpatronen zur Langzeitlagerung in beschichtete Aluminiumbeutel eingeschweißt)
- während der Blockierung wird in einer unbehandelten 96 Loch U-Boden Mikrotiterplatte (Polystyrol, Fa. Renner, Best.Nr. 12058) 10 Proben + 2 Positivkontrollen + 1 Negativkontrolle in 1 % Casein in PBS, pH 7.2, 1:2 in 8 Stufen ausverdünnt (ausgehend von 150 μl Probe werden 75 μl Probe in 75 μl Casein-Vorlage pipettiert usw.)
- die Blocklösung wird von der mit anti-huβ-Gluc Antikörpern beschichteten Mikrotitrationsplatte abgesaugt, 50 μl der verdünnten Proben werden pro Loch von der Verdünnungsplatte auf die Testplatte übertragen und 30 min bei R.T. inkubiert
- während der Probeninkubation wird das ABC-AP Reagenz (Fa. Vectastain, Best.Nr. AK-5000) angesetzt: 2 Tropfen Reagenz A (Avidin DH) in 10 ml 1 % Casein in PBS, pH 7.2, gut mischen und 2 Tropfen Reagenz B (Biotinylierte alkalische Phosphatase) zugeben, gut mischen. (Die ABC-AP Lösung muß mindestens 30' vor Gebrauch angesetzt werden.)
- die Testplatte wird 3 mal mit ELISA Waschpuffer (Behringwerke, Best.Nr. OSEW 96) gewaschen
- pro Loch werden 50 μl Biotin markiertes Nachweisantikörpergemisch (1 + 1 Gemisch aus Maus Anti 431/26 Antikörper (MAk 2064/353, Behringwerke) und Maus anti CEA Antikörper (MAK 250/183, Behringwerke) mit einer Konzentration von je 5 μg/ml verdünnt in 1 % Casein in PBS, pH 7.2, Endkonzentration 2.5 μg/ml je Antikörper) gegeben
- die Testplatte wird 3 mal mit ELISA Waschpuffer gewaschen

- pro Loch werden 50 ul der vorbereiteten ABC-AP Lösung gegeben und 30 min bei R.T. inkubiert
- während der ABC-AP Inkubation wird das Substrat angesetzt (für jeden Test frisches Substrat: 1 mM
 4-Methylumbelliferyl Phosphat, Best.Nr. M-8883, Fa. Sigma, in 0.5 M Tris + 0.01 % MgCl, pH 9.6)
- die Testplatte wird 7 mal mit ELISA Waschpuffer gewaschen
- pro Loch werden 50 μl Substrat aufgetragen, die Testplatte abgedeckt und 2 h bei 37° C inkubiert
- danach wird zu jedem Loch 150 µl Stopplösung (0.2 M Glycin + 0.2 % SDS, pH 11.7) hinzugegeben
- die fluorometrische Auswertung erfolgt im Fluoroscan II (ICN Biomedicals, Kat.Nr. 78-611-00) bei einer Anregungswellenlänge von 355 nm und einer Ausstrahlungswellenlänge von 460 nm
- anhand der Fluoreszenzwerte der im identischen Experiment mitgeführten Positivkontrolle (Verdünnungsreihe mit gereinigtem sFv-huβ-Gluc gemischt mit CEA 5 μg/ml als Eichkurve) wird die unbekannte Konzentration von Fusionsprotein in der Probe bestimmt.

Beispiel 9:

10

15 Expression des sFv-huβ-Glucuronidase Fusionsproteins in Hefe.

Der Single-chain-Fv (sFv) aus Beispiel 2 wird mit den Oligos 2577 und 2561 (Tabelle 7) amplifiziert und in den mit Xbal/HindIII verdauten pUC19 Vektor kloniert (Abb. 2).

Das humane β-Glucuronidase Gen wird mit den Oligos 2562 und 2540 (Tabelle 8) aus dem Plasmid pAB 431/26 V_Hhum/CH1 + 1H/huβ-Gluc (Beispiel 3) amplifiziert und in das mit Bglll/Hindlll geschnittene Plasmid sFv 431/26 in pUC19 (Abb. 2) ligiert (Abb. 3).

Ein Kpnl/Ncol-Fragment wird mit den Oligos 2587 und 2627 (Tabelle 9) aus dem sFv 431/26 amplifiziert und in den mit Kpnl/Ncol verdauten Hefe-Expressionsvektor pIXY 120 kloniert (Abb. 4).

Das BstEll/HindIII Fragment aus dem Plasmid sFv 431/26 huβ-Gluc in pUC19 (Abb. 3) wird in den mit BstEll/partiell HindIII verdauten Vektor pIXY 120 ligiert, der das V_H-Gen, den Linker sowie einen Teil des V_L-Gens trägt (V_H/link/V_K part. in pIXY 120) (Abb. 5).

Das entstandene Plasmid sFv 431/26 huß-Gluc in pIXY 120 wird in Saccharomyces cerevisiae transformiert und das Fusionsprotein ausgeprägt.

Beispiel 10:

Expression des sFv-E.coli-β-Glucuronidase Fusionsproteins in Hefe.

Das E.coli β-Glucuronidase Gen wird aus pRAJ 275 (Jefferson et al. Proc. Natl. Acad. Sci, USA, 83: 8447-8451, 1986) mit den Oligos 2638 und 2639 (Tabelle 10) amplifiziert und in den mit Bglll/ Hindlll geschnittenen sFv 431/26 in pUC19 (Beispiel 9, Abb. 2) ligiert (Abb. 6).

Ein BstEll/Hindlll Fragment aus sFv 431/26 E.coli β-Gluc in pUC19 wird in den mit BstEll/Hindlll partiell verdauten Vektor V_H/link/V_Kpart in pIXY 120 (Beispiel 9, Abb. 4) kloniert (Abb. 7).

Das Plasmid sFv 431/26 E.coli β-Gluc in pIXY 120 wird in Saccharomyces cerevisiae transformiert und das Fusionsprotein ausgeprägt.

Beispiel 11:

45

Expression des sFv- β -lactamase Fusionsproteins in Hefe.

Der Single-chain-Fv (sFv) aus Beispiel 2 wird mit den Oligos 2587 und 2669 (Tabelle 11) amplifiziert^e und in den mit KpNI/HindIII verdauten pUC19 Vektor ligiert (Abb. 8).

Das β-lactamase II Gen (Hussain et al., J. Bacteriol. 164: 223-229, 1985) wird mit den Oligos 2673 und 2674 (Tabelle 11) aus Gesamt-DNA von Bacillus cereus amplifiziert und in den mit EcoRI/ HindIII verdauten pUC19 Vektor ligiert (Abb. 9). Ein BcII/ HindIII Fragment des β-lactamase Gens wird in den mit BgIII/ HindIII geschnittenen sFv 431/26 in pUC19 ligiert (Abb. 10).

Das Kpnl/HindIII sFv-β-lactamase Fragment wird in den mit Kpnl/partiell HindIII verdauten plXY 120 ligiert (Abb. 11). Das Plasmid wird in Saccharomyces cerevisiae transformiert und ein Fusionsprotein ausgeprägt, das sowohl die Antigenbindungseigenschaften des MAk 431/26 als auch die enzymatische Aktivität der β-lactamase von Bacillus cereus trägt.

Tabelle 1:

	CCAA	\GCT1	TAT (GAATA	ATGC?	AA A	CCTC	CTC	TG#	LATAI	GCA	AATO	CTCI	GA		50
5	ATCI	TACAT	rgg :	TAAA 1	ATA	G T	TGT	TATA	CCI	CAAA	ACAG	AAAA	ACAT	GA		100
	GATO	CACAC	STT (CTCT	TAC	AG TT	CACTO	SAGC	CAC	CAGGA	ACCT	CACC			TGG Trp	153
10	AGC Ser	TGT Cys	ATC Ile	ATC Ile	CTC Leu	TTC Phe	TTG Leu	GTA Val	GCA Ala	ACA Thr	GCT Ala	ACA Thr	GĢTA	AGGG	GC	199
	TCAC	CAGT	AGC Z	AGGC	TGA	G T		CAT	TAT	ratgo	GTG	ACAA	ATGAC	CAT .		249
15	CCAC	CTTTC	scc '	TTTC	CTC	CA C									G CAG	298
,,	GAG	AGC	GGT	CCA	GGT	ርጥጥ	GTG	AGA	CCT	AGC	CAG	ACC.	CTC	ACC	CTC	343
	Glu	Ser	Gly	Pro	Gly 10	Leu	Val	Arg	Pro	Ser	Gln	Thr	Leu	Ser	Leu 20	
20	ACC Thr	TGC Cys	ACC Thr	GTG Val	TCT Ser	GGC Gly	TTC Phe	ACC Thr	ATC Ile	Ser	AGT Ser	GGT Gly	TAT Tyr	AGC Ser	TGG Trp	388
	CAC	TGG	GTG	AGA	CAG	CCA	ССТ	GGA	CGA	30 GGT	Curu	GAG	тсс	ልጥጥ	CCA	433
				Arg												433
•-	TAC	ATA	CAG	TAC	AGT	GGT	ATC	ACT	AAC	TAC	AAC	CCC	TCT	CTC	AAA	478
25				Tyr			•			60					_	
	Ser	AGA	Val	ACA Thr	Met 70	Leu	GTA Val	GAC Asp	ACC	AGC Ser	AAG Lys	AAC Asn	CAG Gln	TTC Phe	AGC Ser 80	523
20	CTG	AGA	CTC	AGC	AGC	GTG	ACA	GCC	GCC	GAC	ACC	GCG	GTC	TAT	TAT	568
30	Leu	Arg	Leu	Ser	Ser	Val	Thr	Ala	Ala	Asp 90	Thr	Ala	Val	Tyr	Tyr	
	TGT	GCA	AGA	GAA	GAC	TAT	GAT	TAC	CAC	TGG	TAC	TTC	GAT	GTC	TGG	613
				Glu	100										110	
35	GGC Glv	CAA	GGG	ACC Thr	ACG	GTC	ACC	GTC	TCC	TCA	GGA	GGC	GGT	GGA	TCG	658
	Gly	GIII	Grā	. 1111	1111	val		Val	Ser	120	GIY	GIA	GIA	GIA	Ser	
	GGC	GGT	GGT	GGG	TCG	GGT	GGC	GGC	GGA	TCT	GAC	ATC	CAG	CTG	ACC	703
	Gly	Gly	Gly	Gly		Gly	Gly	Gly	Gly	Ser	Asp	Ile	Gln	Leu		
40	CAG	AGC	CCA	AGC	130	CTG	AGC	GCC	AGC	GTG.	ccm	GAC	A.C.A	CTC	140	748
	Gln	Ser	Pro	Ser	Ser	Leu	Ser	Ala	Ser	Val 150	Gly	Asp	Arg	Val	Thr	740
	ATC	ACC	TGT	AGT	ACC	AGC	TCG	AGT	GTA	AGT	TAC	ATG	CAC	TGG	TAC	793
45	Ile	Thr	Cys	Ser	Thr 160	Ser	Ser	Ser	Val	Ser	Tyr	Met	His	Trp	Tyr 170	
	CAG Gln	CAG Gln	AAG Lys	CCA Pro	GGT Gly	AAG Lys	GCT Ala	CCA Pro	AAG Lys	CTG Leu 180	CTG Leu	ATC Ile	TAC Tyr	AGC Ser	ACA Thr	838

				<u>'orts</u>				223						100	ccm	000
														AGC		883
	Ser	ASN	Leu	Ala	190	GIA	val	Pro	ser	Arg	Pne	ser.	GIY	Ser	200	
5	AGC	CCT	ACC	GAC		ACC	ጥጥር	ACC	ATC	AGC	AGC	CTC	CAG	CCA		928
J														Pro		
		1								210						
														CCC		973
	Asp	Ile	Ala	Thr	Tyr	Tyr	Cys	His	Gln	Trp	Ser	Ser	Tyr	Pro		
10					220										230	
,,,											GGT	SAGT!	AGA A	A'I"I"I'	AACȚT	1023
	Phe	GIĀ	Gin	Gly	Thr	rys	Leu	GIU	TTE	Lys 240					•	
	TGCT	ייזירכייו	CA C	፡ ሞጥር-ር	ATCT	rg ac	Таас	TCCC	: AA		erer	CTG	CA G	AG CT	C AAA	1077
	1601	. 1	·												eu Lys	
15	ACC	CCA	CTT	GGT	GAC	ACA	ACT	CAC	ACA	TGC	CCA	CGG			•	1119
73				Gly												
				_	_		250			-						
	GGT?	AAGC	CAG	CCCA	GAC.	rc Go	CCT	CCAG	C TC	AAGG	CGGG	ACA	AGAG	ccc		1169
												max	2003	maa		1210
20	TAG	AGTG	SCC 1	rgag:	rcca(GG GA	ACAG	GCCCC	CAG	CAGG	GTGC	TGA	CGCA	rec		1219
20	N C CC	פרכאים	מכר ל	יאכאי	PCCC	ים ייני	ል ል ርጥ(CCCA	у т.с.	יייטרעיניי	СПСП	GCA	GCG	GCG	GCG	1271
	ACC.	LCCA.	icc i	CAGA.		JG 17	MCI	cccn	1 10.	1101	CICI	GCA		Ala		
															260	•
	GCG	GTG	CAG	GGC	GGG	ATG	CTG	TAC	CCC	CAG	GAG	AGC	CCG	TCG	CGG	1316
05	Ala	Val	Gln	Gly	Gly	Met	Leu	Tyr	Pro	Gln	Glu	Ser	Pro	Ser	Arg	
25								•		270						
	GAG	TGC	AAG	GAG	CTG	GAC	GGC	CTC	TGG	AGC	TTC	CGC	GCC	GAC	TTC	1361
	Glu	Cys	Lys	Glu		Asp	GIA	Leu	Trp	Ser	Pne	Arg	Ala	Asp	290	
	m/m	CAC	220	CGA	280	ccc	GGC	ጥጥር	GAG	GAG	CAG	ጥርር	TAC	CGG		1406
	Ser	Asp	Asn	Arg	Ara	Ara	Glv	Phe	Glu	Glu	Gln	Trp	Tyr	Arg	Arq	
30	001			••••			1			300			-,-	•		
														ccc		1451
	Pro	Leu	Trp	Glu		Gly	Pro	Thr	Val	Asp	Met	Pro	Val	Pro		
					310						oma	000	0 m	mmm	320	1406
05	AGC	TTC	AAT	GAC	ATC	AGC	CAG	GAC	TGG	CGT	CTG	CGG	CAT	TTT	GTC Val	1496
35	ser	Pne	ASI	ASP	TTE	Ser	GIII	Asp	IIP	330		ALY	1113	Phe	V 4 1	•
	GGC	TGG	GTG	TGG	TAC	GAA	CGG	GAG	GTG			CCG	GAG	CGA	TGG	1541
	Gly	Trp	Val	Trp	Tyr	Glu	Arg	Glu	Val	Ile	Leu	Pro	Glu	Arg	Trp	
	_	_			340									•	350	
40	ACC	CAG	GAC	CTG	CGC	ACA	AGA	GTG	GTG	CTG	AGG	ATT	GGC	AGT	GCC	1:586
40	Thr	Gln	Asp	Leu	Arg	Thr	Arg	Val	Val			Ile	Gly	Ser	Ala	
	0	maa	~ ~ ~	-	.	cmc	maa	cmc	3 3 0	360		CAC	. 200	Cma	GAG	1631
	CAT	TCC	TAT	315	ATC	Unl	TGG	Ual	AAT	GGG	Val	Acn	MCC Thr	· Ten	Glu	1031
	нтэ	Set	TÄL	nia	370		TTD	497	กอแ	ULY.	v a.⊥	p		Lea	380	
45	CAT	GAG	GGG	GGC	TAC	CTC	ccc	TTC	GAG	GCC	GAC	ATC	AGC	: AAC	CTG	1676
45	His	Glu	Gly	Gly	Tyr	Leu	Pro	Phe	Glu	Ala	Asp	Ile	Ser	Asn	Leu	
•			_	_	_					390)					
	GTC	CAG	GTG	GGG	ccc	CTG	ccc	TCC	CGG	CTC	CGA	ATC	ACI	ATC	GCC	1721
	Val	Gln	Val	Gly			Pro	Ser	Arg	Leu	Arg	Ile	'l'hr	Tle	Ala	
					400										410	•
50																

Tabelle 1 (Fortsetzung):

	ATC	AAC	AAC	ACA	CTC	ACC	CCC	ACC	ACC	CTG	CCA	CCA	GGG	ACC	ATC	1766
5	Ile	Asn	Asn	Thr	Leu	Thr	Pro	Thr	Thr	Leu	Pro	Pro	Gly	Thr	Ile	
									•	420			_	-		
	CAA	TAC	CTG	ACT	GAC	ACC	TCC	AAG	TAT	CCC	AAG	GGT	TAC	TTT	GTC	1811
	Gln	Tyr	Leu	Thr	Asp	Thr	Ser	Lys	Tyr	Pro	Lys	Gly	Tyr	Phe	Val	
					430										44 O	
	CAG	AAC	ACA	TAT	TTT	GAC	TTT	TTC	AAC	TAC	GCT	GGA	CTG	CAG	CGG	1856
10	Gln	Asn	Thr	Tyr	Phe	Asp	Phe	Phe	Asn	Tyr	Ala	Gly	Leu	Gln	Arg	
										450						•
	TCT	GTA	CTT	CTG	TAC	ACG	ACA	CCC	ACC	ACC	TAC	ATC	GAT	GAC	ATC	1901
	Ser	Val	Leu	Leu	Tyr	Thr	Thr	Pro	Thr	Thr	Tyr	Ile	Asp	Asp	Ile	
					460										470	
	ACC	GTC	ACC	ACC	AGC	GTG	GAG	CAA	GAC	AGT	GGG	CTG	GTG	AAT	TAC	1946
15	Thr	Val	Thr	Thr	Ser	Val	Glu	Gln	Asp	Ser	Gly	Leu	Val	Asn	Tyr	•
			•		_					480					_	
	CAG	ATC	TCT	GTĊ	AAG	GGC	AGT	AAC	CTG	TTC	AAG	TTG	GAA	GTG	CGT	1991
	Gln	Ile	Ser	Val	Lys	Gly	Ser	Asn	Leu	Phe	Lys	Leu	Glu	Val	Arg	
					490	•	•								500	
	CTT	TTG	GAT	GCA	GAA	AAC	AAA	GTC	GTG	GCG	AAT	GGG	ACT	GGG	ACC	2036
20	Leu	Leu	Asp	Ala	Glu	Asn	Lys	Val	Val	Ala	Asn	Gly	Thr	Gly	Thr	
										510						
	CAG	GGC	CAA	CTT	.AAG	GTG	CCA	GGT	GTC	AGC	CTC	TGG	TGG	CCG	TAC	2081
	GIn	GIĀ	GIn	Leu		Val	Pro	Gly	Val	Ser	Leu	Trp	Trp	Pro	Tyr	
					520										530	
25	CTG	ATG	CAC	GAA	CGC	CCT	GCC	TAT	CTG	TAT	TCA	TTG	GAG	GTG	CAG	2126
	Leu	met	HIS	Glu	Arg	Pro	Ala	Tyr	Leu		Ser	Leu	Glu	Val	Gln	
	OM C	3.00								540						
	CIG	ACT	GCA	CAG	ACG	TCA	CTG	GGG	CCT	GTG	TCT	GAC	TTC	TAC	ACA	2171
	rea	THE	АТА	Gln	Thr	ser	Leu	GTĀ	Pro	Val	Ser	Asp	Phe	Tyr		
	CTC	CCT	CTC		550	000	3.00								560	
30	LAU	Dro	Mal.	GGG	ATC	200	ACT	GTG	GCT	GTC	ACC	AAG	AGC	CAG	TTC	2216
	Leu	PLU	Val	Gly	TIG	Arg	Thr	val	AIA		Thr	гля	Ser	GIn	Phe	
	CTC	ATC	ΔΔΤ	GGG	222	CCT	TTC.	m a m	mmo	570	ccm	CMC.			~	00.55
	Len	Tle	Acn	Glv	Tuc	D~o	Dho	TAI	TIC	CAC	GGT	GTC	AAC	AAG	CAT	2261
	a	110	ASII	Gly	580	PIO	File	TAT	Pne	HIS	GIA	vai	ASN	гĀг		
	GAG	САТ	GCG	GAC		CGA	ccc	220	ccc	mmc	C3.C	mcc	000	cmc	590	0006
35	Glu	Asp	Ala	Asp	Tle	Ara	Glv	Tye	Clv	Pho	JAD	TGG	DEC	LIG	CIG	2306
						9	O ₁	Ly 3	GLY	600	АЗР	тър	PIU	Leu	neu	
	GTG	AAG	GAC	TTC	AAC-	CTG	СТТ	CGC	тсс	CTTT	CCT	GCC	220	CCT	TOTO	2351
	Val	Lys	Asp	Phe	Asn	Leu	Leu	Ara	Tro	Len	Glv	Ala	Asn	Ala	Dhe	2331
		•			610			5			013	nru	ASII	AIG	620	•
40	CGT	ACC	AGC	CAC		ccc	TAT	GCA	GAG	GAA	GTG	ATG	CAG	ATG	TCT	2396
	Arg	Thr	Ser	His	Tyr	Pro	Tyr	Ala	Glu	Glu	Val	Met	Gln	Met	Cvs	2370
•										630		•			_	
	GAC	CGC	TAT	GGG	ATT	GTG	GTC	ATC	GAT	GAG	TGT	CCC	GGC	GTG	GGC	2441
	Asp	Arg	Tyr	Gly	Íle	Val	Val	Ile	Asp	Glu	Cvs	Pro	Glv	Val	Glv	
					640									•	650	
45	CTG	GCG	CTG	CCG	CAG	TTC	TTC	AAC	AAC	GTT	TCT	CTG	CAT	CAC	CAC	2486
	Leu	Ala	Leu	Pro	Gln	Phe	Phe	Asn	Asn	Val	Ser	Leu	His	His	His	
										660						
	ATG	CAG	GTG	ATG	GAA	GAA	GTG	GTG	CGT	AGG	GAC	AAG	AAC	CAC	CCC	2531
	Met	Gln	Val	Met	Glu	Glu	Val	Val.	Arg	Arg	Asp	Lys	Asn	His	Pro	
50					670						-				680	
50																

Tabelle 1 (Fortsetzung):

GCG GTC GTG ATG TGG TCT GTG GCC AAC GAG CCT GCG TCC CAC CTA 2576 Ala Val Val Met Trp Ser Val Ala Asn Glu Pro Ala Ser His Leu 690 GAA TOT GOT GGC TAC TAC TTG AAG ATG GTG ATC GOT CAC ACC AAA 2621 Glu Ser Ala Gly Tyr Tyr Leu Lys Met Val Ile Ala His Thr Lys 700 TCC TTG GAC CCC TCC CGG CCT GTG ACC TTT GTG AGC AAC TCT AAC 2666 Ser Leu Asp Pro Ser Arg Pro Val Thr Phe Val Ser Asn Ser Asn 720 TAT GCA GCA GAC AAG GGG GCT CCG TAT GTG GAT GTG ATC TGT TTG 2711 Tyr Ala Ala Asp Lys Gly Ala Pro Tyr Val Asp Val Ile Cys Leu 730 AAC AGC TAC TAC TCT TGG TAT CAC GAC TAC GGG CAC CTG GAG TTG 2756 Asn Ser Tyr Tyr Ser Trp Tyr His Asp Tyr Gly His Leu Glu Leu 750 ATT CAG CTG CAG CTG GCC ACC CAG TTT GAG AAC TGG TAT AAG AAG 2801 Ile Gln Leu Gln Leu Ala Thr Gln Phe Glu Asn Trp Tyr Lys Lys 760 TAT CAG AAG CCC ATT ATT CAG AGC GAG TAT GGA GCA GAA ACG ATT 2846 Tyr Gln Lys Pro Ile Ile Gln Ser Glu Tyr Gly Ala Glu Thr Ile 780 GCA GGG TTT CAC CAG GAT CCA CCT CTG ATG TTC ACT GAA GAG TAC 2891 Ala Gly Phe His Gln Asp Pro Pro Leu Met Phe Thr Glu Glu Tyr 790 CAG AAA AGT CTG CTA GAG CAG TAC CAT CTG GGT CTG GAT CAA AAA 2936 Gln Lys Ser Leu Leu Glu Gln Tyr His Leu Gly Leu Asp Gln Lys CGC AGA AAA TAT GTG GTT GGA GAG CTC ATT TGG AAT TTT GCC GAT 2981 Arg Arg Lys Tyr Val Val Gly Glu Leu Ile Trp Asn Phe Ala Asp 820 830 TTC ATG ACT GAA CAG TCA CCG ACG AGA GTG CTG GGG ATT AAA AAG 3026 Phe Met Thr Glu Gln Ser Pro Thr Arg Val Leu Gly Asn Lys Lys GGG ATC TTC ACT CGG CAG AGA CAA CCA AAA AGT GCA GCG TTC CTT 3071 Gly Ile Phe Thr Arg Gln Arg Gln Pro Lys Ser Ala Ala Phe Leu 850 TTG CGA GAG AGA TAC TGG AAG ATT GCC AAT GAA ACC AGG TAT CCC 3116 Leu Arg Glu Arg Tyr Trp Lys Ile Ala Asn Glu Thr Arg Tyr Pro 870 CAC TCA GTA GCC AAG TCA CAA TGT TTG GAA AAC AGC CCG TTT ACT 3161 His Ser Val Ala Lys Ser Gln Cys Leu Glu Asn Ser Pro Phe Thr 880

TGA GCAAGACTGA TACCACCTGC GTGTCCCTTC CTCCCCGAGT CAGGGCGACT 40 3214 TCCACAGCAG CAGAACAAGT GCCTCCTGGA CTGTTCACGG CAGACCAGAA 3264

CGTTTCTGGC CTGGGTTTTG TGGTCATCTA TTCTAGCAGG GAACACTAAA 3314

45

10

15

20

25

30

5	pAB-Back:
10	5' ACC AGA AGC TTA TGA ATA TGC AAA TC'
	Linker-Anti:
15	5' GCC ACC CGA CCC ACC ACC GCC CGA TCC ACC GCC TCC TGA
	3' GGA GAC GGT GAC CGT GGT C
20	•
25	

Tabelle 3:

Tabelle 2:

Linker-Sense:

5'
GGT GGA TCG GGC GGT GGG TCG GGT GGC GGA TCT

3'
GAC ATC CAG CTG ACC CAG AGC

40 VL(Mut)-For:

TGC AGG ATC CAA CTG AGG AAG CAA AGT TTA AAT TCT ACT

3'
CAC CTT TGA TC

50

Tabelle 4

Pharmakokinetik des sFv-hu 8 Gluc Fusionsproteins in MzSto1 tragenden CD1 nu/nu Mäusen	tik des sFv	-hu 8 Gl	uc Fusion	sproteins	in MzSto	1 tragend	en CD1 nu/r	ıu Mäusen	I I
ng sFv	ng sFv-hu ß Gluc pro Gramm Gewebe bzw ml Plasma gemessen im Tripledeterminantentest	Gramm Ge	webe bzw n	nl Plasma gei	messen im	Tripledeterm	inantentest		i
·		Maus1	Maus2	Maus3	Maus4	Maus5a	Maus5b		
	Gewebetyp	0,05Std	3Std	24Std	48Std	120Std	120Std		
	Tumor	24,8	4	7,7	2,1	2,2	6,2		
	Milz	15,4	4,1	<0,1	<0,1	¥0,1	<0,1		
	Leber	40'8	10,1	8'0	8'0	6'0	<0,1		
	Darm	5,2	4,4	1,1	1,2	9'0	<0,1		
•	Niere	44,4	7	<0,1	<0,1	V0,1	<0,1		
	Lunge	154,8	17,3	<0,1	,0°	×0,1	<0,1	•	
	Herz	148,3	8,2	<0,1	,0°	,0 <u>,</u>	<0,1		
•	Plasma	630'8	95	2,7	0,4	×0,1	<0,1		
i.v. Injektion von 0.8 un gereinigtem Frisionsprotein pro Maris	nereinintem F	Isionsprofe	in pro Marie						

Tabelle 5

Monosaccharid-Komponentenanalytik des Kohlehydratanteils des sFv-huß-Gluc Fusionsproteins aus BHK-Zellen

Das gereinigte sFv-huß-Gluc Fusionsprotein wurde auf seinen Kohlehydratanteil hin untersucht. Dabei wurden nach Hydrolyse folgende Einzelkomponenten im angegebenen Molverhältnis gefunden (mol Kohlenhydrat/mol sFv-huß-Gluc)

	Fukose	Galaktosamin	N-Acetylglukosamin	Galaktose	Glukose	Mannose	nose N-Acetylneuraminsäure
sFv-huß-Gluc	4	2	30	8	1	43	4

Aus den Molverhältnissen von Mannose, Glukosamin und Galaktose kann auf das Vorliegen von "High-Mannose Type"- und/oder "Hybrid Type"-Strukuren (neben "Complex Type"-Strukuren) geschlossen werden. Endständig treten deshalb Mannose, Galaktose, - Acetylneuraminsäure und evtl. N-Acetylglukosamin auf, wobei Mannose auch als Mannose-6-phosphat vorliegen kann.

Methoden:

Die Neuraminsäurebestimmung erfolgte nach Hermentin und Seidat (1991) GBF Monographs Volume 15, S. 185 - 188 (nach 30 min. Hydrolyse in Gegenwart von 0.1 N Schwefelsäure bei 80°C und nachfolgender Neutralisation mit 0.4 N Natronlauge) mittels "high-pH anion exchange chromatography with pulsed amperometric detection" (HPAE-PAD). Die Bestimmung der Monosaccharld-Komponenten erfolgte (nach 4 h Hydrolyse in Gegenwart von 2 N Trifluoressigsäure bei 100°C und Einengung zur Trockne in einer SpeedVac) ebenfalls mittels HPAE-PAD in Anlehnung an das von Hardy et al. (1988) Analytical Biochemistry 170, 54 - 62 beschriebene Verfahren.

50

5

10

15

20

25

30

35

40

_50

			;	
	Glukosamin	Glucose	Mannose	
sFv-hußGluc (mol/mol)	ပ	12	150	mol/mol

Monosaccharid-Komponentenanalytik des Kohlenhydratanteiles des sFv-hußGluc Fusionsproteins aus Saccharomyces cerevisiae.

Tabelle 6

	Tabelle 7:
5	Oligos für sFv 431/26 Klonierung in pUC 19
	sFv for (2561)
10	5' TTT TTA AGC TTA GAT CTC CAC CTT GGT C 3'
15	sFv back (2577)
	5' AAA AA <u>T CTA GA</u> A TGC AGG TCC AAC TGC AGG AGA G 3'
20	
25	
	Tabelle 8:
30	Oligos für hum. B-Gluc Klonierung in sFv pUC 19
	Hum.B-Gluc. back Oligo (2562)
35	5' AAA AAA G <u>TG ATC A</u> AA GCG TCT GGC GGG CCA CAG GGC GGG ATC CTG TAC 3'
	Hum.B-Gluc for Oligo (2540)
40	5' TTT TAA GCT TCA AGT AAA CGG GCT GTT 3'
45	
50	

Tab	el	le_	9:

5	Oliqos	für	sFv/	hum-B-Gluc	Klonierung	in	pIXY120

PCR Oligo VHpIXY back (2587)

10

5' TTT TGG TAC CTT TGG ATA AAA GAC AGG TCC AAC TGC AGG AGA G 3'

15

PCR Oligo VKpIXY for (2627)

20

5' A AAA CCA TGG GAA TTC AAG CTT CGA GCT GGT ACT ACA GGT 3'

25

Tabelle 10:

- Oliqos für E.coli-B-Gluc Klonierung in sFv pUC 19
- E. coli-B-Gluc. for (2639)

35

30

5' TTT TAA GCT TCC ATG GCG GCC GCT CAT TGT TTG CCT CCC TGC TG 3'

40

E. coli-ß-Gluc. back (2638)

45

5' AAA AAG ATC TCC GCG TCT GGC GGG CCA CAG TTA CGT GTA GAA ACC CCA 3'

	- 3	•	_	-
רו ביוי	0 I		- 1	
Tab	ᆫᅩ	ᇨ		

Oligos für sFv/B-lactamase Klonierung in pIXY120

PCR Oligo VHpIXY back (2587)

10

5' TTT TGG TAC CTT TGG ATA AAA GAC AGG TCC AAC TGC AGG AGA G 3'

15

PCR Oligo VKpIXY/B-lactamase for (2669)

20 5' AAA AAG CTT AGA TCT CCA GCT TGG TCC C 3'

PCR Oligo link/B-lactamase back (2673)

5' AAA <u>GAA TTC TGA TCA</u> AA<u>T CCT CGA GCT CAG GT</u>T CAC AAA AGG TAG AGA AAA CAG T 3' Linker

30

PCR Oligo B-lactamase for (2674)

35

45

5' TTT AAG CTT ATT TTA ATA AAT CCA ATG T 3'

40 Patentansprüche

- Verbindung, enthaltend eine Antigenbinderegion, welche an mindestens ein prodrug-aktivierendes Enzym gebunden ist, dadurch gekennzeichnet, daß die Antigenbinderegion aus einer einzigen Polypeptidkette besteht.
- 2. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß die Verbindung kovalent gebundene Kohlenhydrate trägt.
- Verbindung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Antigenbinderegion eine variable Domäne einer schweren Antikörperkette und eine variable Domäne einer leichten Antikörperkette enthält (sFv-Fragment).
 - 4. Verbindung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Antigenbinderegion an ein tumorassoziiertes Antigen (TAA) bindet.
- 5. Verbindung nach Anspruch 3, dadurch gekennzeichnt, daß das TAA ein N-CAM, PEM, EGF-R, Sialyl-Le^a, Sialyl-Le^x, TFB, GICA, GD₃, GD₂, TAG72, CA125, das durch den MAk L6 definierte 24-25 kDa Glycoprotein oder CEA, vorzugsweise ein CEA ist.

- 6. Verbindung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Enzym eine Lactamase, vorzugsweise eine Bacillus cereus II ß-lactamase, Pyroglutamat-Aminopeptidase, D-Aminopeptidase, Oxidase, Peroxidase, Phosphatase, Hydroxynitrillyase, Protease, Esterase, Carboxypeptidase, vorzugsweise eine Carboxypeptidase G2 aus Pseudomonas oder Glycosidase ist.
- 7. Verbindung nach Anspruch 6, dadurch gekennzeichnet, daß das Enzym eine ß-Glucuronidase, vorzugsweise eine E.coli, Kobayasia nipponica, Secale cereale oder humane ß-Glucuronidase ist.
- 8. Verbindung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet; daß die Antigenbinderegion über einen Peptidlinker mit dem Enzym verbunden ist.
 - Verbindung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Glycosylierung entweder mittels chemischer Methoden oder durch Auswahl geeigneter Expressionssysteme erfolgt.
- 15. Verbindung nach Anspruch 1-9, dadurch gekennzeichnet, daß sie sekretorisch in Saccharomyces cerevisiae bzw. vorteilhafter in Hansenula polymorpha exprimiert wird.
 - 11. Verbindung nach Anspruch 1-9, dadurch gekennzeichnet, daß sie in E. coli exprimiert wird und anschließend chemisch glycosyliert, vorzugsweise galaktosyliert und/oder mannosyliert wird.
 - 12. Verbindung nach Anspruch 1-9, dadurch gekennzeichnet, daß das sFv ß-lactamase Fusionsprotein, welches periplasmatisch in E. coli exprimiert wurde, chemisch glycosyliert, vorzugsweise galaktosyliert und/oder mannosyliert ist.
- 25 13. Verbindung nach Anspruch 1-9, dadurch gekennzeichnet, daß das sFv ß-lactamase Fusionsprotein sekretorisch in Saccharomyces cerevisiae bzw. Hansenula polymorpha exprimiert ist.
 - 14. Nukleinsäure, kodierend für eine Verbindung nach einem der Ansprüche 1 bis 8.
- 30 15. Nukleinsäure nach Anspruch 14, kodierend für ein humanisiertes sFv-Fragment gegen CEA und eine humane β-Glucuronidase.
 - 16. Nukleinsäure nach Anspruch 14 mit der Sequenz gemäß Tab. 1.
- 17. Vektor, enthaltend eine Nukleinsäure nach einem der Ansprüche 14 bis 16.
 - 18. Wirtszelle, enthaltend eine Nukleinsäure nach einem der Ansprüche 14 bis 16 oder einen Vektor nach Anspruch 17.
- 40 19. Wirtszelle nach Anspruch 18, dadurch gekennzeichnet, daß sie eine BHK-, CHO-, COS-, HeLa-, Insekten-, Tabakpflanzen-, Hefe- oder E.coli-Zelle ist.
 - Transgene Säugetiere mit Ausnahme von Mensch, enthaltend eine DNA nach einem der Ansprüche 14 bis 16 oder einen Vektor nach Anspruch 17.
 - 21. Verfahren zur Herstellung einer Verbindung nach Anspruch 1 bis 8, dadurch gekennzeichnet, daß
 - a) eine Nukleinsäure nach einem der Ansprüche 14 bis 16 oder ein Vektor nach Anspruch 17 in eine Wirtszelle eingebracht wird,
 - b) die Wirtszelle kultiviert und
 - c) die Verbindung isoliert wird.
 - 22. Verfahren zur Herstellung einer Verbindung nach Anspruch 1 bis 8, dadurch gekennzeichnet, daß
 - a) eine Wirtszelle nach Anspruch 18 oder 19 kultiviert und
 - b) die Verbindung isoliert wird.

23. Verwendung der Verbindung nach Anspruch 1 bis 13 zur Herstellung eines Arzneimittels oder eines Diagnostikums.

5

20

45

55

24.	Verwendung der Verbindung nach Anspruch 1 bis 13 zur Herstellung eines Arzneimittels zur Behandlung von Krebs.
25.	Arzneimittel, enthaltend eine Verbindung nach Anspruch 1 bis 13.
26.	Diagnostikum, enthaltend eine Verbindung nach Anspruch 1 bis 13.

 10

 15

 20

.

Abb.: 2

HindIII

Ssti Psti BamHl

Abb.: 4

Abb.: 6

Abb.: 8

Abb.: 9

Abb.: 10

