

Chimie

Chapitre 5 – Equilibres Acide-Base

1) Définitions d'un acide et d'une base

Acide: Espèce chimique (molécule ou ion) capable de céder un ou plusieurs protons H⁺.

Un acide capable de céder plusieurs protons est un polyacide.

AH

A− + H+

acide base Proton conjuguée

Base : Espèce chimique capable de capter un ou plusieurs protons H⁺.

Une base capable de capter plusieurs protons est une polybase.

Couple acide-base noté acide/base : AH / A⁻ A⁻ étant la base conjuguée de l'acide AH.

2) Ampholyte (ou Amphotère)

Ampholyte (ou amphotère) : Espèce chimique qui peut jouer le rôle de base dans un couple acide-base et d'acide dans un autre couple.

Exemple: L'eau H2O est un ampholyte.

- ➤ Rôle de base : $AH + H_2O \leftrightarrow A^- + H_3O^+$ Couples A-B : H_3O^+/H_2O et AH/A^-
- \triangleright Rôle d'acide : B + H₂O \leftrightarrow BH⁺ + OH⁻ Couples A-B : H₂O/OH⁻ et BH⁺/B

Un proton H⁺ n'existe pas sous forme isolée en solution (énergie trop considérable). Il se lie toujours à une base.

Si on met un acide AH en solution dans l'eau (solvant):

3) Réactions acide-base : transfert de protons

Réaction acide-base : Réaction de transfert de proton entre :

- Un acide (donneur de proton) d'un couple A-B
- Une base (accepteur de proton) d'un autre couple A-B.

Soient 2 couples acide-base : Acide(1) / Base(1) et Acide(2) / Base(2)

Equation-bilan:

Acide(1)
$$\rightleftarrows$$
 Base(1) + H⁺

Base(2) + H⁺ \rightleftarrows Acide(2)

Acide(1) + Base(2) \rightleftarrows Base(1) + Acide(2)

Réaction acide-base

4) <u>Définition du pH</u>

Le pH d'une solution est défini par la concentration en H3O+ tel que : $pH = \log [H_3O^+]$. Il mesure l'acidité (ou la basicité) d'une solution et non la force de l'acide et de la base en solution.

Dans l'eau (utilisée comme solvant), le pH est défini dans l'intervalle :

5) Constante d'acidité Ka

$$K_a = \frac{[A^-] \times [H_3 O^+]}{[AH]}$$

Pour un couple acide-base AH / A⁻:

$$Pk_a = -log(K_a)$$

6) Force des acides et des bases

Le pK_a traduit la force d'un acide (ou d'une base).

• Plus un acide AH est fort (plus sa base conjuguée A est faible), plus le proton est libéré facilement.

Acide AH fort: libération totale du proton AH + $H_2O \rightarrow A^- + H_3O^+$ (réaction totale) l'acide AH est totalement dissocié dans l'eau. Acide AH faible: libération partielle du proton AH + $H_2O \rightleftharpoons A^- + H_3O^+$ (réaction équilibrée) l'acide AH est partiellement dissocié dans l'eau.

• Plus une base B est forte (plus son acide conjugué BH⁺ est faible), plus le proton est capté facilement.

Base B forte : elle capte totalement un proton $B + H_2O \rightarrow BH^+ + OH^-$ (réaction totale) Base B faible : elle capte partiellement un proton $B + H_2O \rightleftharpoons BH^+ + OH^-$ (réaction équilibrée)

7) Constante d'équilibre K

$$Acide(1) + Base(2) \rightleftharpoons Base(1) + Acide(2)$$

Soient deux couples A-B:

• Acide(1) / Base(1) pKa1

Acide(2) / Base(2) pKa2

$$K = 10^{\Delta p K_a}$$

Avec $\Delta p K_a = p K_{a2} - p K_{a1}$ Si K > $10^4 \Rightarrow$ La réaction est totale.

8) Diagramme de prédominance

