

Thermal Physics

A-level overview

<u>isaacphysics.org</u> <u>https://isaacphysics.org/pages/remote_learning</u>

Heat Capacity

Internal energy

- > Internal energy is the total potential and kinetic energies of the molecules/atoms in a substance.
- > Internal energy increases when you
 - raise the temperature (this mainly increases the kinetic energy)
 - change the state from solid to liquid or liquid to gas (this mainly changes the potential energy)
- > You can raise the internal energy by
 - putting the object in contact with something at a higher temperature (heating it), or
 - applying a force to compress it (doing work on it)

Heat capacities

- Specific heat capacity c = energy required to raise the temperature of 1kg of the material by 1°C or 1K
- > Water has a high specific heat capacity: 4180 Jkg⁻¹K⁻¹
- > Equation: $E = mc\Delta T$, where m is mass, ΔT is temp. change
- > Sometimes this equation is used together with
 - $\circ E = VIt$ if the material is electrically heated V is the voltage, I is the current, I is the time
 - $\circ E = Pt$ if you know the *P*, the power of the heater

Mixtures example 1

Specific heat capacities: water 4180Jkg⁻¹K⁻¹, iron 435Jkg⁻¹K⁻¹

What is the final temperature when you mix 2.1kg of water at 87°C with 6.4kg of water at 15°C?

Mixtures example 2

Specific heat capacities: water 4180Jkg⁻¹K⁻¹, iron 435Jkg⁻¹K⁻¹

100g of iron pellets are immersed in 3kg of 15.0°C water, and the temperature rises to 18.0°C. What was the initial temperature of the pellets?

Heat capacity practice

1. Calculate the energy released when 2.5kg of water cools from 85°C to 40°C. shc of water = 4180 J/(kg°C)

2. A 2.00kg block of aluminium was heated using a 12V, 6A heater from 25°C to 35°C in 320s. Calculate the specific heat capacity of aluminium.

3. A shower heater heats 35g of water each second using a 3.2kW heater. If the water goes in at 17°C, at what temperature does it come out?

States of matter

- Solid eggs in crate as temperature increases, atoms vibrate more vigorously. Shape and volume fixed.
- Melting regular arrangement breaks down, molecules can translate – higher potential energy as attracting molecules are now further apart.
- Liquid maggots in a tray as temperature increases, atoms move more quickly. Volume fixed, but shape is not.
- Boiling molecules break free of the bulk higher potential energy as molecules are now further apart and faster
- Gas balls in a pin ball machine as temperature increases, molecules move more quickly (have higher mean kinetic energy). No fixed volume.
 - Average kinetic energy proportional to temperature above absolute zero.

Latent heat

- > Specific latent heat of fusion = energy required to change 1kg of the material from solid to liquid without changing its temperature.
- Specific latent heat of vaporization = energy required to change 1kg of the material from liquid to gas without changing its temperature.
- > Equation: E = mL, where L is specific latent heat in J/kg

Mixtures example 3

Specific heat capacity of ice = 2100 J/(kg°C) Specific heat capacity of water = 4180 J/(kg°C) Latent heat of fusion of ice = 33.5 kJ/kg

What will the final temperature be if 40g of ice at -17°C is dropped into 150g of water initially at 25°C?

Latent heat practice

Specific heat capacity of ice = 2100 J/(kg°C) Specific heat capacity of water = 4180 J/(kg°C) Latent heat of fusion of ice = 33.5 kJ/kg Latent heat of vaporization of water = 2.26 MJ/kg

1. How much water can 1MJ boil?

- 2. How much energy needs to be given to 1.5kg of ice at
 - -17° C to heat it to boiling point?

Gases

Gas laws

$$pV = nRT$$
$$pV = Nk_BT$$

 $p(Nm^{-2})$ pressure, $V(m^3)$ volume, T(K) absolute temperature n is number of moles, $N=nN_A$ number of molecules

$$R = 8.31 \text{ JK}^{-1} \text{mol}^{-1}$$
 $k_B = 1.38 \times 10^{-23} \text{ JK}^{-1} = \frac{R}{N_A}$

 $N_{\Delta} = 6.02 \times 10^{23}$

Temperature in kelvin = Temperature in °C + 273

Amount of gas proportional to $\frac{pV}{T}$

If no gas leaks
$$\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2}$$

Density

Let mass of molecule be m(kg) and mass of mole be $M_r(kg)$

$$pV = nRT$$
, Density $\rho = \frac{\text{mass}}{\text{volume}} = \frac{nM_r}{V} = \frac{pM_r}{RT}$

$$pV = Nk_BT$$
, Density $\rho = \frac{\text{mass}}{\text{volume}} = \frac{Nm}{V} = \frac{pm}{k_BT}$

Gas practice

1. 30cm³ of gas at 101kPa and 275K is compressed to 17cm³. If the pressure is now 190kPa, what is the new temperature?

2. How many nitrogen molecules (*m*=4.65x10⁻²⁷kg) would there be in 300cm³ of nitrogen at 101kPa and 35°C?

3. Calculate the density of helium (M_r =4.00g) at 101kPa and 17°C.

Kinetic theory

Time for round trip

Frequency of collisions

Momentum change

Momentum change each second

Pressure

Kinetic theory 2

$$c^2 = u_x^2 + u_y^2 + u_z^2$$

$$\overline{c^2} = \overline{u_x^2} + \overline{u_y^2} + \overline{u_z^2}$$

$$\overline{c^2} = 3\overline{u_x^2}$$

$$p = \frac{Nmu_x^2}{V}$$

$$pV = \frac{Nm\overline{c^2}}{3}$$

Mean kinetic energy

$$pV = Nk_BT = \frac{Nm\overline{c^2}}{3}$$

$$3k_BT = m\overline{c^2}$$

Average kinetic energy =
$$\frac{m\overline{c^2}}{2} = \frac{3k_BT}{2}$$

For one mole, kinetic energy = $\frac{3RT}{2}$, so molar heat capacity= $\frac{3R}{2}$

Work done by gas

cross section area A

Work done by gas

= Force x distance

= pressure x area x distance

$$= p A \delta x = p \delta V$$

Work done on gas

$$=-p \delta V$$

Kinetic theory practice

1. Calculate the mean kinetic energy of an oxygen molecule at 30°C.

2. Calculate the energy needed to raise the temperature of 0.24m³ of 101kPa air at 280K by 3K.

Links

A Level Topic Revision

https://isaacphysics.org/pages/
a_level_topic_index#a_level_revision

Consolidation Programme

https://isaacphysics.org/pages/ summer_programmes_2021