EMBEDDED

Question: l and m are two parallel lines intersected by another pair of parallel lines p and $q(figure\ 1)$, show that $\triangle ABC \cong \triangle CDA$.

Figure:

Figure 1: Required parallelogram

Solution:

Symbol	Description	Value
В	Vertex at origin	0
a	Side of the parallelogram, $BC = DA$	6
b	Side of the parallelogram, $AB = CD$	$\sqrt{29}$
θ	Angle of the parallelogram, $\angle ABC$	$\sin^{-1}\left(\frac{5}{\sqrt{29}}\right)$

Table 1: Table of input parameters ${\cal L}$

Symbol	Description	Value
\mathbf{C}	Vertex of parallelogram	$a\mathbf{e_1}$
A	Vertex of parallelogram	$b\begin{pmatrix} \cos\theta\\ \sin\theta \end{pmatrix}$
D	Vertex of parallelogram	$\mathbf{C} + \mathbf{A}$

Table 2: Table of output parameters $\,$

From figure 1 between $\triangle ABC$ and $\triangle CDA$

$$\cos \angle BAC = \frac{\langle \mathbf{B} - \mathbf{A}, \mathbf{A} - \mathbf{C} \rangle}{\|\mathbf{B} - \mathbf{A}\| \|\mathbf{A} - \mathbf{C}\|}$$
(1)

$$= \frac{(\mathbf{B} - \mathbf{A})^{T} (\mathbf{A} - \mathbf{C})}{\|\mathbf{B} - \mathbf{A}\| \|\mathbf{A} - \mathbf{C}\|}$$

$$= \frac{ab \cos \theta + b \sin \theta}{b\sqrt{a^{2} - 2ab \cos \theta + b^{2}}}$$
(2)

$$= \frac{ab\cos\theta + b\sin\theta}{b\sqrt{a^2 - 2ab\cos\theta + b^2}}$$
 (3)

$$=\frac{17}{\sqrt{29}\sqrt{41}}\tag{4}$$

$$= \frac{17}{\sqrt{29}\sqrt{41}}$$

$$\cos \angle ACD = \frac{\langle \mathbf{D} - \mathbf{C}, \mathbf{A} - \mathbf{C} \rangle}{\|\mathbf{D} - \mathbf{C}\| \|\mathbf{A} - \mathbf{C}\|}$$
(5)

$$= \frac{\left(\mathbf{D} - \mathbf{C}\right)^{T} \left(\mathbf{A} - \mathbf{C}\right)}{\|\mathbf{D} - \mathbf{C}\| \|\mathbf{A} - \mathbf{C}\|}$$
(6)

$$= \frac{b^2 - ab\cos\theta}{b\sqrt{a^2 - 2ab\cos\theta + b^2}} \tag{7}$$

$$=\frac{17}{\sqrt{29}\sqrt{41}}\tag{8}$$

$$So, \angle BAC = \angle ACD.$$
 (9)

$$\cos \angle ACB = \frac{\langle \mathbf{B} - \mathbf{C}, \mathbf{A} - \mathbf{C} \rangle}{\|\mathbf{B} - \mathbf{C}\| \|\mathbf{A} - \mathbf{C}\|}$$
(10)

$$= \frac{(\mathbf{B} - \mathbf{C})^{T} (\mathbf{A} - \mathbf{C})}{\|\mathbf{B} - \mathbf{C}\| \|\mathbf{A} - \mathbf{C}\|}$$
(11)

$$= \frac{a^2 - ab\cos\theta}{a\sqrt{a^2 - 2ab\cos\theta + b^2}} \tag{12}$$

$$=\frac{24}{6\sqrt{41}}\tag{13}$$

$$\cos \angle CAD = \frac{\langle \mathbf{A} - \mathbf{D}, \mathbf{A} - \mathbf{C} \rangle}{\|\mathbf{A} - \mathbf{D}\| \|\mathbf{A} - \mathbf{C}\|}$$
(14)

$$= \frac{\left(\mathbf{A} - \mathbf{D}\right)^{T} \left(\mathbf{A} - \mathbf{C}\right)}{\|\mathbf{A} - \mathbf{D}\| \|\mathbf{A} - \mathbf{C}\|}$$
(15)

$$= \frac{a^2 - ab\cos\theta}{a\sqrt{a^2 - 2ab\cos\theta + b^2}} \tag{16}$$

$$=\frac{24}{6\sqrt{41}}$$
 (17)

$$So, \angle ACB = \angle CAD. \tag{18}$$

And CA is common side . So, $\triangle ABC\cong\triangle CDA.\,(byA-A-S)\,(proved)$