FORMAL LANGUAGES AND AUTOMATA, 2025 FALL SEMESTER

Lec 06. More MSO & Properties of Regular Languages

Eunjung Kim

MSO LOGIC ON STRINGS

We first express a string $s \in \Sigma^*$ as a logical structure (often called "relational structure").

STRING W AS A LOGICAL STRUCTURE

Universe = [n], where n is the length of the string.

• That is, each "position" (from 1 to n) in the string is an element in the universe. If $w = \epsilon$, the universe is \emptyset .

A binary relation < and $|\Sigma|$ unary relations P_a for all $a \in \Sigma$ on the universe.

- x < y: "the x-th position precedes the y-th position in the string."
- $P_0(x)$ is true if "the x-th symbol is 0."

 $\tau = \{<\} \cup \{P_a \mid a \in \Sigma\}$ is called the vocabulary on Σ -strings.

MSO LOGIC ON STRINGS

MSO-FORMULA ON Σ -STRINGS

An Mso-formula on strings is a <u>well-formed</u> string that can be constructed using from <u>atomic formulas</u> for (infinite supply of) individual variables x, y, z..., and set variables X, Y, Z... i.e.

- x < y; note that $< \in \tau$,
- $P_a(x)$ for each $a \in \Sigma$,
- x = y, and $x \in X$.

by applying

- the logical connectives $\land, \lor, \neg, \rightarrow$; $\varphi_1 \land \varphi_2, \neg \varphi$, etc,
- the universal and existential quantifier \forall , \exists ; in the form $\exists x \varphi$, $\exists X \varphi$, etc.

An Mso-formula in which all variables are quantified (by \forall or \exists) is called an Mso-sentence.

MSO LOGIC ON STRINGS

A property = the set of all Σ -strings which has the property.

A PROPERTY ON STRINGS AS AN MSO-SENTENCE

We say that a property $L\subseteq \Sigma^*$ on strings (a.k.a. a language) is <u>expressible</u>, <u>or equivalently definable</u>, in <u>Mso</u> if there is an Mso-sentence φ on Σ -strings such that

$$w \in L$$
 if and only if $w \models \varphi$

for every string $w \in \Sigma^*$.

$$\varphi = \forall x \forall y \ \big((x < y) \rightarrow \big(\exists z \ (x < z < y) \lor P_0(x) \lor P_0(y) \big) \big)$$

MSO LOGIC ON STRINGS, BY EXAMPLE

Let us express the property L on $\{0,1\}$ -strings having even number of 1's, i.e.

 $L = \{w \in \{0,1\}^* \mid \text{there are even number of 1's in } w\}.$

Use the fact that $w \in L$ if and only if

- either $w = \epsilon$,
- or the positions of 1's in w can be "uniquely colored" in RED or BLUE so that the colors alternate, and the first 1 is RED and the last 1 is in BLUE.

MSO LOGIC ON STRINGS, BY EXAMPLE

MSO-FORMULA DEFINING L

- $\bullet \ \varphi_{\epsilon} = \neg \exists x \ (x = x)$
- $\varphi_{color}(R,B) = \forall x \ (P_1(x) \rightarrow (x \in R \lor x \in B)) \land (P_0(x) \rightarrow \neg (x \in R \lor x \in B))$
- $\bullet \ \varphi_{\textit{unique}}(R,B) = \forall x \ (x \in R \to \neg x \notin B) \land (x \in B \to \neg x \notin R)$
- $\varphi_{alternate}(R,B) = ??????$
- $\varphi_{firstlast}(R,B) = ??????$

Finally, we get a sentence φ_L defining L as

$$\varphi_L = \varphi_\epsilon \vee \exists R \; \exists B \; \varphi_{color}(R,B) \wedge \varphi_{unique}(R,B) \wedge \varphi_{alternate} \wedge \varphi_{firstlast}$$

Büchi's Theorem 1960

RECOGNIZABILITY EQUALS DEFINABILITY ON STRINGS

A language is regular if and only if it is definable in Mso.

Proof sketch of (\Rightarrow) .

- Show that for each atomic regular expressions $(\emptyset, \epsilon, a \text{ for each } a \in \Sigma)$, the corresponding language can be defined in Mso.
- Show that the languages of $R_1 \cup R_2$, $R_1 \circ R_2$ and R_1^* can be defined in Mso, assuming that $L(R_1)$, $L(R_2)$ can be defined in Mso.

BÜCHI'S THEOREM 1960

How to define the language of an atomic regular expression in Mso.

- Ø
- €
- a for each $a \in \Sigma$.

BÜCHI'S THEOREM 1960

How to define the language of \cup , \circ , * in Mso assuming that $L(R_1)$, $L(R_2)$ are defined in Mso.

- \bullet $R_1 \cup R_2$
- \bullet $R_1 \circ R_2$
- R₁*

MSO LOGIC ON STRINGS, BY EXAMPLE

Define in Mso

$$L = L_1 \circ L_2$$

where $L_1 = L((00)^+)$ and $L_2 = L((11)^+)$.

QUESTIONS TO EXAMINE

- **II** Given an NFA M, decide if $L(M) = \emptyset$ or not.
- 2 Given two regular languages L_1 and L_2 , decide if $L_1 = L_2$.
- Is Prefix(L) is regular when L is regular?
- \blacksquare How about Suffix(L)?
- **5** Quotient of *L* by a symbol $a \in \Sigma$, denoted by L/a, is regular when *L* is?
- 6 How about $a \setminus L$?
- Fix a DFA M and a state $s \in Q$. The set of all strings w such that the (accepting) computation history of w visits the state s, is it regular?
- Fix a DFA *M*. The set of all strings *w* such that the (accepting) computation history of *w* visits all the state of *M*, is it regular?

DECIDING IF $L = \emptyset$

Given a regular language L, we want to decide if $L = \emptyset$ or not.

L IS GIVEN BY NFA N

 $L(N) \neq \emptyset$ if and only if there is a directed path from the initial state q_0 to OOOOOOOO in the transition diagram of N.

Recall: $w \in \Sigma^*$ satisfies $\delta^*(q_0, w) = q$ if and only if there is a (q_0, q) -walk in the transition diagram labelled by w (ϵ -label allowed).

Deciding if $L = \emptyset$

Given a regular expression R, we want to decide if $L(R) = \emptyset$ or not. You can convert R into an NFA and apply the previous criteria, or do the following.

L IS GIVEN BY A REGULAR EXPRESSION R

If there is no occurrence of \emptyset in R, $L(R) \neq \emptyset$.

Otherwise, check if $L(R) = \emptyset$ inductively:

- 2 $L(R_1 \cdot R_2) = \emptyset$ if and only if $L(R_1) = \emptyset$ or $L(R_2) = \emptyset$.
- 3 $L(R^*) \neq \emptyset$ (even when $R = \emptyset$).

WHEN L IS REGULAR, SO IS Prefix(L)?

Given two strings $x, w \in \Sigma^*$, x is a prefix of w if w = xy for some $y \in \Sigma^*$. For a language $L \subseteq \Sigma^*$, let $Prefix(L) = \{x \in \Sigma^* : x \text{ is a prefix of } w \in L\}$.

If L is regular, Prefix(L) is regular

Let M be an DFA with L = L(M). Notice that

 $w \in L$ can be written as w = xy if and only if $\hat{\delta}(q_0, x) = q$ for some state $q \in Q$ such that

Figure 1.43, Sipser 2012

WHEN L IS REGULAR, SO IS Prefix(L)?

Let M be an DFA with L = L(M). Then

$$Prefix(L) = \bigcup_{q \in Q \text{ such that....}} L_q$$

where $L_q = \{x \in \Sigma^* : \hat{\delta}(q_0, x) = q\}.$

- If L_q is regular, then Prefix(L) is regular (why?)
- Is L_q regular?
- properPrefix(L) be the set of all proper prefixes of some $w \in L$; x is a proper prefix of w if w = xy for some $y \in \Sigma^+$.
- Is properPrefix(L) regular?

WHEN L IS REGULAR, SO IS Suffix(L)?

Given two strings $x, w \in \Sigma^*$, x is a suffix of w if w = yx for some $y \in \Sigma^*$. For a language $L \subseteq \Sigma^*$, let $Suffix(L) = \{x \in \Sigma^* : x \text{ is a suffix of } w \in L\}$.

If L is regular, Suffix(L) is regular

Let reverse(L) be the set of all strings each of which is a reversal w^R of some string $w \in L$.

- If L is regular, reverse(L) is regular as well; homework.
- Suffix(L) can be obtained by applying ???? and ???? operations on L.

QUOTIENT L/a **FOR** $a \in \Sigma$

Given a language L over Σ and a symbol $a \in \Sigma$, the quotient of L by a denoted as L/a is the language

$$\{x \in \Sigma^* : xa \in L\}.$$

Is L/a regular?

Figure 1.43, Sipser 2012

- For a state $q \in Q$, if $x \in L_q$ satisfies $xa \in L$ for some x, then for all $y \in L_q$ we have $ya \in L$.
- That is, $L_q \subseteq L/a$ or $L_q \cap L/a = \emptyset$.
- How to tell if $L_a \subseteq L/a$?

The Language $a \setminus L$ for $a \in \Sigma$

Given a language L over Σ and a symbol $a \in \Sigma$, the language $a \setminus L$ is defined as

$$\{x \in \Sigma^* : ax \in L\}.$$

Is $a \setminus L$ regular?

Idea: Express $a \setminus L$ using the operations we examined so far to immediately conclude.

- Fix a DFA M and a state $s \in Q$.
- Let P_s be the set of all string $w \in L$ such that the accepting computation history of w visits the state s.
- Is P_s regular?

Figure 1.21, Sipser 2012

First approach.

- For any string w, $w \in P_s$ if and only if it can be written as w = xy with $\hat{\delta}(q_0, x) = s$ and $\hat{\delta}(s, y) \in F$.
- That is $P_s = L_s \cdot A_s$, where L_q and A_q are defined for all $q \in Q$ as

$$L_q = \{x \in \Sigma^* : \hat{\delta}(q_0, x) = q\}.$$

$$A_q = \{x \in \Sigma^* : \hat{\delta}(q, x) \in F\}.$$

Is any one of L_q and A_q regular?

Second approach: use Myhill-Nerode Theorem.

MYHILL-NERODE THEOREM

L is regular if and only if the number of equivalence classes of \equiv_L is finite.

Idea: use the DFA M recognizing L to identify the equivalence relation \equiv_{P_s} , (or a refinement of it) of finite index.

- For $Z \subseteq Q$ and $q \in W$, let $L_{Z,q}$ be the set of all strings w such that the computation history of w on M visits precisely the states in Z and end in q.
- $\bullet \ \Sigma^* = \dot{\bigcup}_{Z \subseteq Q, q \in Z} L_{W,q}.$
- We want to argue that any strings $x, y \in L_{Z,q}$ are indistinguishable by P_s . But for proving this claim, we need to try all strings z which might potentially distinguish x and y... or do we?

Second approach: use Myhill-Nerode Theorem and test for a finite number of extensions z (and argue that it suffices).

MYHILL-NERODE THEOREM, IN ACTION

 P_s is regular if for any $Z \subseteq Q$ and $q \in Z$,

- any $x, y \in L_{Z,q}$ are indistinguishable by P_s , or equivalently
- for any $x, y \in L_{Z,q}$ and for any $z \in \Sigma^*$, $xz \in P_s$ if and only if $yz \in P_s$.

What are the key property of z which will make $xz \in P_s$ (or not) for $x \in L_{Z,q}$?

Second approach: use Myhill-Nerode Theorem and test for a finite number of extensions z (and argue that it suffices).

MYHILL-NERODE THEOREM, IN ACTION

 P_s is regular if for any $Z \subseteq Q$ and $q \in Z$,

- any $x, y \in L_{Z,q}$ are indistinguishable by P_s , or equivalently
- for any $x, y \in L_{Z,q}$ and for any $z \in \Sigma^*$, $xz \in P_s$ if and only if $yz \in P_s$.

What are the key property of z which will make $xz \in P_s$ (or not) for $x \in L_{Z,q}$?

- II whether $\delta^*(q, z) \in F$ or not: this dictates whether $xz \in L$.
- whether the states visited by the computation history of $\delta^*(q,z)$ include s or not: this affects whether the computation history of xz from q_0 visits s or not.

A BIT MORE EXOTIC LANGUAGE

Fix a DFA M. The set of all strings w such that the (accepting) computation history of w visits all the state of M, is it regular?

EVEN MORE EXOTIC LANGUAGE

Why do we care about the second approach using Myhill-Nerode theorem when the first approach seems much simpler?

Even more exotic language. Fix two states s_1, s_2 of a DFA M. Let P_{s_1, s_2} be the set of strings $w \in L$ whose computation history visits both s_1, s_2 and visiting s_2 only after visiting s_1 .

Is P_{s_1,s_2} regular?