Parameters	Patient -I (23 old)		Patient -II (69 old)	
	Lying	Stand	Lying	Stand
CardioRhythm:				
Frequency of cardio contraction (FCC), pound/min	56	80	57	61
Mean duration of normalised cardiointervals (TNN), ms	1070	750	1060	980
Standard deviation NN of intervals (SDNN), ms	51	59	26	21
Mode NN of intervals (MoNN), ms	1080	765	1045	970
Amplitude of mode of NN- intervals (AMoNN), %	44.1	28.0	67.5	51.5
Fraction of different adjacent intervals (pNN50), %	30,8	8,9	0	0
Cardiohemodynamics:				
Normalized PAP (PAPn), mm Hg/s	47	47	45	46
Standard deviation PAPn (SD PAPn), mm Hg/s	5.5	4.6	5.2	7.5
Accelerated anacrotic increment AD (ΔADAaccel.), mm Hg/s	28	24	15	19
Mean velocity of increment ADA (VADAaccel.), mm Hg/s	335	352	210	214
Maximum velocity of this increment PAP (VmaxADA), mm Hg/s	703	801	437	519
Cardiohemodynamic index CHDI	1.51	1.08	0.47	0.69
Resilient-elastic properties of the arterial bed vessels				
Rigidity index of aorta walls (RIAo), %	-	-	38.5	23.2
Arterial wall tone index (TIA)	0.308	0.743	0.632	0.497

Table 1

Influence of orthostatic loading on parameters of the functional condition of cardiovascular system of young and aged men $\,$

Table 2

Influence of orthostatic loading on the spectrum analysis parameters characterizing the features of vegetative regulation of cardiovascular system of young and aged men

Parameters of spectrum analysis of	Patient - I	(23 old)	Patient - II	(69 old)
variability				
	Lying	Stand	Lying	Stand
a) of heart rhythm :				
Cumulative spectrum power (TP), ms ²	4000	6681	1297	885
Spectrum power of high frequencies (HF), ms ²	1255	407	100	77
Spectrum power of high frequencies (HF), %	31	6	8	9
Spectrum power of low frequencies (LF), ms ²	1845	3576	258	296
Spectrum power of low frequencies (LF), %	46	54	20	33
Spectrum power super-low frequencies (VLF), ms ²	391	1738	456	203
Spectrum power super-low frequencies (VLF), %	10	26	35	23
Spectrum power ultralow frequencies (ULF), ms ²	510	960	483	309
Spectrum power ultralow frequencies (ULF), %	13	14	37	35
Sympathovagal parameter (index) (SVI)	1.5	8.8	2.6	3.9
δ) of PAPn magnitude:				
Cumulative spectrum power (TP), [mm Hg] ²	29.6	31.9	10.3	24.0
Spectrum power of high frequencies (HF), [mm Hg] ²	2.9	8.5	1.1	8.0
Spectrum power of high frequencies (HF), %	9.9	27	11	33
Spectrum power of low frequencies (LF), [mm Hg] ²	3.2	13.1	1.8	9.9
Spectrum power of low frequencies (LF), %	11	41	17	41
Spectrum power super-low frequencies (VLF), [mm	2.7	7.2	0.7	1.9
Hg] ²				
Spectrum power super-low frequencies (VLF), %	9.2	23	7	8
Spectrum power ultralow frequencies (ULF), [mm Hg] ²	20.8	3.1	6.7	4.2
Spectrum power ultralow frequencies (ULF), %	70	10	65	18
Sympathovagal parameter (index) (SVI)	1.1	1.5	1.6	1.2