Project Presentation

Topic:- Eigen Frequency analysis of finite beams

Presented By:-

Prajapati Pradyum GC

MSR-SMD, 1st Year (231050406)

Under The Guidance of:-

Dr. Akhilesh Mimani

1. CANTILEVER BEAM (Free Vibration_LANCZOS ITERATION)

Geometry

Attributes	Values
Length	0.45 m
Width	$0.02 \ m$
Height	$0.003 \ m$
Moment Of Inertia	$4.5 \times 10^{-11} m^4$ And $2 \times 10^{-9} m^4$

Material

Attributes	Values
Material Name	Structural Steel
Young Modulus (E)	$2.1 * 10^{11} Pa$
Poisson ratio (Mue)	0.3
Density	$7850\frac{Kg}{m^3}$

Boundary Condition

$$y = 0 @ x = 0$$

$$\frac{dy}{dx} = 0 @ x = 0$$

Meshing (Size = 0.01 mm)

Mode Shapes & Animation

Mode Shape

Mode Shapes

Mode Shapes

Mode Shapes

Mode Shapes

Mode Shapes

Eigen frequency comparison (Analytical vs Ansys)

Mode	Analytical (Hz)	Ansys (Hz)
1	12.0857	12.137
2	75.7407	76.047
3	80.5719	80.506
4	212.0761	212.9
5	415.5849	417.13
6	504.9379	500

Used formula for analytical result:-

2. Plate (Free Vibration_LANCZOS ITERATION)

Geometry

Attributes	Values
Length	1 m
Width	2 m
Height	$0.002 \ m$

Material

Attributes	Values
Young Modulus (E)	$70 * 10^9 Pa$
Poisson ratio (Mue)	0.33
Density	$2700\frac{Kg}{m^3}$

Boundary Condition

Fig. 1. Dimensions of the rectangular plate

1. Edge simply supported at $x = x_0$. Then

$$w=M_x=0,$$

or, in terms of deflections,

$$w = \frac{\partial^2 w}{\partial x^2} + v \frac{\partial^2 w}{\partial y^2} = 0.$$

Meshing (Size = 0.002 m)

Mode Shapes & Animation

Mode Shape

Mode Shape

Eigen frequency comparison (Analytical vs Ansys)

Mode	Analytical (Hz)	Ansys (Hz)
1	6.115	6.1147
2	9.18	9.7831
3	15.9	15.899
4	20.779	20.798
5	24.446	24.465

Used formula for analytical result:-

$$D = \frac{E.\,h^3}{12(1-v^2)}$$

$$D = \frac{E \cdot h^3}{12(1 - v^2)} \qquad \omega_{mn} = \left[\frac{\pi^4 D}{\rho_m h} \left(\frac{m^2}{a^2} + \frac{n^2}{b^2} \right)^2 \right]^{1/2} \qquad f_{mn} = \frac{\omega_{mn}}{2\pi}$$

$$f_{mn} = \frac{\omega_{mn}}{2\pi}$$

3. Simply Supported Beam (Free Vibration LANCZOS ITERATION)

Geometry

Attributes	Values
Length	0.45 m
Width	$0.02 \ m$
Height	$0.003 \ m$
Moment Of Inertia	$4.5 \times 10^{-11} m^4$ And $2 \times 10^{-9} m^4$

Material

Attributes	Values
Material Name	Structural Steel
Young Modulus (E)	$2.1\times10^{11} Pa$
Poisson ratio (Mue)	0.3
Density	$7850\frac{Kg}{m^3}$

Boundary Condition

Meshing (Size = 0.003 m)

Mode Shapes & Animation

Eigen frequency comparison (Analytical vs Ansys)

Mode	Analytical (Hz)	Ansys (Hz)
1	33.95	33.909
2	135.79	135.65
3	305.577	305.24
4	505.77	505.77
5	543.189	542.73
6	848.789	848.15

Used formula for analytical result:-

4. CANTILEVER BEAM (Point Mass At one end_LANCZOS ITERATION)

Geometry

Attributes	Values
Length	0.4064 m
Width	$0.003175 \ m$
Height	$0.0254 \ m$
Moment Of Inertia	$6.7746 \times 10^{11} m^4$

Material

Attributes	Values
Material Name	Structural Steel
Young Modulus (E)	$2.1\times10^{11} Pa$
Poisson ratio (Mue)	0.3 micron
Density	$7850\frac{Kg}{m^3}$

Boundary Condition

$$y = 0 @ x = 0$$

$$\frac{dy}{dx} = 0 @ x = 0$$

$$y = \delta @ x = L$$

Shear Force = Mg @ x = L

Meshing (Size = 0.25 mm)

Mode Shapes & Animation

Eigen frequency comparison (Analytical vs Ansys)

Mode	Analytical (Hz)	Ansys (Hz)
1 (Bending Along X-axis)	9.2108	9.5184
2 (Bending Along Y-axis)	73.37	73
3 (Bending Along X-axis)	77.2083	79.995
4 (Twisting)		227.14
5 (Bending Along X-axis)	236.1777	235.78

Used formula for analytical result:-

$$\omega_r = \lambda_r^2 \sqrt{\frac{YI}{mL^4}}$$

Mode	Frequency parameter (λ_r)	
1	1.87510407	
2	4.69409113	
3	7.85475744	
4	10.9955407	
5	14.1371684	