

Data sheet acquired from Harris Semiconductor SCHS135F

CD54HC75, CD74HC75, CD54HCT75

Dual 2-Bit Bistable Transparent Latch

March 1998 - Revised October 2003

Features

- True and Complementary Outputs
- · Buffered Inputs and Outputs
- Fanout (Over Temperature Range)
 - Standard Outputs............ 10 LSTTL Loads
 - Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range ... -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility,
 V_{IL}= 0.8V (Max), V_{IH} = 2V (Min)
 - CMOS Input Compatibility, $I_I \le 1\mu A$ at V_{OL} , V_{OH}

Description

The 'HC75 and 'HC775 are dual 2-bit bistable transparent latches. Each one of the 2-bit latches is controlled by separate Enable inputs ($\overline{1E}$ and $\overline{2E}$) which are active LOW. When the Enable input is HIGH data enters the latch and appears at the Q output. When the Enable input ($\overline{1E}$ and $\overline{2E}$) is LOW the output is not affected.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD54HC75F3A	-55 to 125	16 Ld CERDIP
CD54HCT75F3A	-55 to 125	16 Ld CERDIP
CD74HC75E	-55 to 125	16 Ld PDIP
CD74HC75M	-55 to 125	16 Ld SOIC
CD74HC75MT	-55 to 125	16 Ld SOIC
CD74HC75M96	-55 to 125	16 Ld SOIC
CD74HC75NSR	-55 to 125	16 Ld SOP
CD74HC75PW	-55 to 125	16 Ld TSSOP
CD74HC75PWR	-55 to 125	16 Ld TSSOP
CD74HCT75E	-55 to 125	16 Ld PDIP
CD74HCT75M	-55 to 125	16 Ld SOIC
CD74HCT75PWT	-55 to 125	16 Ld TSSOP

NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250.

Pinout

CD54HC75, CD54HCT75 (CERDIP) CD74HC75 (PDIP, SOIC, SOP, TSSOP) CD74HCT75 (PDIP, SOIC, TSSOP) TOP VIEW

1Q0 1 16 1Q0 15 1Q1 1D0 2 14 TQ1 1D1 2E 13 1E Vcc 12 GND 11 2Q0 2D0 6 10 2Q0 2D1 7 2Q1 8 9 2Q1

Functional Diagram

TRUTH TABLE

INP	UTS	OUTPUTS					
D	Ē	q	Q				
L	Н	L	Н				
Н	Н	Н	L				
Х	L	Q0	Q0				

H= High Level L= Low Level

X= Don't Care

Q0 = The level of Q before the transition of \overline{E} .

Logic Diagram

ΙĒ LE

FIGURE 1. LOGIC DIAGRAM

FIGURE 2. LATCH DETAIL

Operating Conditions

Temperature Range, T _A 55°C to 125°C
Supply Voltage Range, V _{CC}
HC Types2V to 6V
HCT Types
DC Input or Output Voltage, V _I , V _O
Input Rise and Fall Time
2V
4.5V 500ns (Max)
6V

Thermal Information

Package Thermal Impedance, θ _{JA} (see Note 1)
E (PDIP) package67°C/W
M (SOIC) package
NS (SOP) package64 ^o C/W
PW (TSSOP) package108 ^o C/W
Maximum Junction Temperature (Hermetic Package or Die) 175°C
Maximum Junction Temperature (Plastic Package) 150°C
Maximum Storage Temperature Range65°C to 150°C
Maximum Lead Temperature (Soldering 10s)300°C
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

			ST ITIONS			25°C		-40°C T	O 85°C	-55°C T	O 125 ⁰ C	
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES												
High Level Input	V _{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	٧
Voltage				4.5	3.15	-	-	3.15	-	3.15	-	٧
				6	4.2	-	-	4.2	-	4.2	-	٧
Low Level Input	V _{IL}	-	-	2	-	-	0.5	-	0.5	-	0.5	٧
Voltage				4.5	-	-	1.35	-	1.35	-	1.35	٧
				6	-	-	1.8	-	1.8	-	1.8	٧
High Level Output	V _{OH}	V _{IH} or V _{IL}	-0.02	2	1.9	-	-	1.9	-	1.9	-	V
Voltage CMOS Loads				4.5	4.4	-	-	4.4	-	4.4	-	٧
				6	5.9	-	-	5.9	-	5.9	-	٧
High Level Output			-	-	-	-	-	-	-	-	-	V
Voltage TTL Loads			-4	4.5	3.98	i	-	3.84	-	3.7	-	V
			-5.2	6	5.48	-	-	5.34	-	5.2	-	V
Low Level Output	V _{OL}	V _{IH} or	0.02	2	ı	ı	0.1	-	0.1	-	0.1	V
Voltage CMOS Loads		V _{IL}		4.5	ı	i	0.1	1	0.1	-	0.1	V
				6	1	-	0.1	-	0.1	-	0.1	V
Low Level Output			-	-	-	-	-	-	-	-	-	V
Voltage TTL Loads			4	4.5	1	-	0.26	-	0.33	-	0.4	V
			5.2	6	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	lı	V _{CC} or GND	-	6	1	-	±0.1	-	±1	-	±1	μА

DC Electrical Specifications (Continued)

			ST ITIONS			25°C		-40°C T	O 85°C	-55°C TO 125°C		
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Quiescent Device Current	Icc	V _{CC} or GND	0	6	-	-	4	-	40	-	80	μА
HCT TYPES												
High Level Input Voltage	V _{IH}	-	-	4.5 to 5.5	2	-	-	2	-	2	-	V
Low Level Input Voltage	V _{IL}	-	-	4.5 to 5.5	-	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	V _{OH}	V _{IH} or V _{IL}	- 0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	II	V _{CC} and GND	-	5.5	-		±0.1	-	±1	-	±1	μА
Quiescent Device Current	Icc	V _{CC} or GND	0	5.5	-	-	4	-	40	-	80	μА
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	ΔI _{CC} (Note 2)	V _{CC} - 2.1	-	4.5 to 5.5	-	100	360	-	450	-	490	μΑ

NOTE:

HCT Input Loading Table

INPUT	UNIT LOADS
D0, D1	0.8
1E, 2E	1.2

NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Specifications table, e.g., $360\mu A$ max at $25^{\circ}C$.

Prerequisite For Switching Specifications

		TEST	v _{cc}	25°C		-40°C TO 85°C		-55°C TO 125°C			
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES									_		
Pulse Width Enable Input	t _W	-	2	80	-	-	100	-	120	-	ns
			4.5	16	-	-	20	-	24	-	ns
			6	14	-	-	17	-	20	-	ns
Setup Time D to Enable	t _{SU}	-	2	60	-	-	75	-	90	-	ns
		4.5	12	-	-	15	-	18	-	ns	
			6	10	-	-	13	-	15	-	ns

^{2.} For dual-supply systems theoretical worst case (V_I = 2.4V, V_{CC} = 5.5V) specification is 1.8mA.

Prerequisite For Switching Specifications (Continued)

		TEST	TEST V _{CC}		25°C		-40°C TO 85°C		-55°C TO 125°C		
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Hold Time Enable to D	t _H	-	2	3	-	-	3	-	3	-	ns
			4.5	3	-	-	3	-	3	-	ns
			6	3	-	-	3	-	3	-	ns
HCT TYPES	•										
Pulse Width Enable Input	t _W	-	4.5	16	-	-	20	-	24	-	ns
Setup Time D to Enable	t _{SU}	-	4.5	12	-	-	15	-	18	-	ns
Hold Time Enable to D	t _H	-	4.5	3	-	-	3	-	3	-	ns

Switching Specifications Input $t_{\rm f},\,t_{\rm f}=6{\rm ns}$

		TEST	Vcc		25°C		-40°C T	O 85°C	-55°C TO 125°C		
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES											
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	-	110	ı	140	-	165	ns
Data to Q		C _L = 50pF	4.5	-	-	22	ı	28	-	33	ns
		C _L = 15pF	5	-	9	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	19	ı	24	-	28	ns
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	-	130	ı	165	-	195	ns
Data to Q		C _L = 50pF	4.5	-	-	26	-	33	-	39	ns
		C _L = 15pF	5	-	10	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	22	-	28	-	33	ns
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	-	130	-	165	-	195	ns
Enable to Q		C _L = 50pF	4.5	-	-	26	-	33	-	39	ns
		C _L = 15pF	5	-	10	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	22	-	28	-	33	ns
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	-	130	-	165	-	195	ns
Enable to Q		C _L = 50pF	4.5	-	-	26	-	33	-	39	ns
		C _L = 15pF	5	-	11	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	22	-	28	-	33	ns
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	2	-	-	75	-	95	-	110	ns
		C _L = 50pF	4.5	-	-	15	-	19	-	22	ns
		C _L = 50pF	6	-	-	13	-	16	-	19	ns
Input Capacitance	C _I	-	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 3, 4)	C _{PD}	-	5	-	46	-	-	-	-	-	pF
HCT TYPES										•	
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	-	28	-	35	-	42	ns
Data to Q		C _L = 15pF	5	-	11	-	-	-	-	-	ns
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	-	28	-	35	-	42	ns
Data to Q		C _L = 15pF	5	-	11	-	-	-	-	-	ns
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	-	28	-	35	-	42	ns
Enable to Q		C _L = 15pF	5		11	-	-	-	-	-	ns

Switching Specifications Input t_r , $t_f = 6ns$ (Continued)

		TEST	v _{cc}		25°C		-40°C T	O 85°C	-55°C T	O 125°C	
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	-	30	-	38	-	45	ns
Enable to Q		C _L = 15pF	5	-	12	-	-	-	-	-	ns
Output Transition Time	t _{TLH} , t _{THL}	C _L = 50pF	4.5	-	-	15	-	19	-	22	ns
Input Capacitance	Cl	-	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 3, 4)	C _{PD}	-	5	-	46	1	-	-	-	-	pF

NOTES:

- 3. $C_{\mbox{\scriptsize PD}}$ is used to determine the dynamic power consumption, per latch.
- 4. $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where f_i = input frequency, C_L = output load capacitance, V_{CC} = supply voltage.

Test Circuits and Waveforms

NOTE: Outputs should be switching from 10% V_{CC} to 90% V_{CC} in accordance with device truth table. For f_{MAX} , input duty cycle = 50%.

FIGURE 3. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

FIGURE 5. HC AND HCU TRANSITION TIMES AND PROPAGA-TION DELAY TIMES, COMBINATION LOGIC

NOTE: Outputs should be switching from 10% V_{CC} to 90% V_{CC} in accordance with device truth table. For f_{MAX} , input duty cycle = 50%.

FIGURE 4. HCT CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

FIGURE 6. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

Test Circuits and Waveforms (Continued)

FIGURE 7. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS

FIGURE 8. HCT SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AC.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated