Marks and Visual Channels

Basic building blocks of visualisation

Finite number

Understand their relevance

Basic graphical element in an image

Basic graphical element in an image

Geometric primitives

Basic graphical element in an image

Geometric primitives

Defined by dimension

Basic graphical element in an image

Geometric primitives

Defined by dimension

0 Dimension - point

Basic graphical element in an image

Geometric primitives

Defined by dimension

0 Dimension - point

1 Dimension - line

Basic graphical element in an image

Geometric primitives

Defined by dimension

0 Dimension - point

1 Dimension - line

2 Dimensions - area

Can also have	three dimensiona	al primitives

Can also have three dimensional primitives.....

But we avoid for later reasons

Visual channel

Visual channel

a way to control the appearance of marks, independent of the dimensionality of the geometric primitive.

Visual channel

a way to control the appearance of marks, independent of the dimensionality of the geometric primitive.

Many synonyms for this term!

Examples of Visual Channels

Bar plot of diamond prices in a small range of carats

Scatter plot of diamond prices vs carat is same range

Scatter plot of same data now coloured according to clairity

Points "jittered" to see pattern

Size of points varied according to cut

Limitations

Cannot "mix and match" channels and marks entirely arbitrarily

Example - cannot adjust length of lines as already `taken'

Can't adjust bar plot height in diamond data

Adjust width?

Channel types

Two kinds of sensory modalities

Identity channels - what something is; where it is

What-where (metathetic)

Magnitude channels - how much there is

How much (prothetic)

Examples

Identity channels

Can tell where the mark is on e.g. a grid, geometry or map

Magnitude channels

Two lines - which is longer?

Brightness

Tilt

Area

Channels are not all equally useful.

Want channels to be

Expressive

Effective

Expressiveness principle
the visual encoding should express all of, and only, the information in the dataset attributes
Ordered data should be seen in a way we perceive as ordered
Unordered data should <i>not</i> be seen in a way we perceive as ordered

Example - Not Expressive

Representing a set of heights with a set of symbols

< 1.0 m - Use a Star

> 1.0 m and < 2.0 m - Use a plus

Effectiveness principle	
The most important attributes should be encoded with the most <i>noticeable</i> channe	Is
Decreasingly important attributes are matched with less noticeable channels.	

Channels: Expressiveness Types and Effectiveness Ranks

Magnitude Channels: Ordered Attributes Position on common scale Position on unaligned scale Length (1D size) Tilt/angle Area (2D size) Depth (3D position) Color luminance Color saturation Curvature Volume (3D size)

Motion

Aspects of effectiveness

Accuracy

How close is human perceptual judgment to some objective measure?

Relatively simple Mathematical model

Steven's Psychophysical Power Law

$$S \propto I^n$$

S - Perceived Sensation

I - Physical Intensity

Nobody's ever figured out to use Electric Shock in Visualisation

Well almost nobody

Figure 4: Proportional judgment results (Exp. 1A & B). Top: Cleveland & McGill's [7] lab study. Bottom: MTurk studies. Error bars indicate 95% confidence intervals.

Discriminability

How perceptible are differences between items to a human?

Example width of a line

Good for three to four ordered values

Not for hundreds!

Separability

Channels can interact with each other

Popout

How well a distinct item stands out from many others immediately.

Colour much better than shape.

Weber's Law (1834)

Human perception based on relative, not absolute, changes

Example (taken from https://bit.ly/2E0HgNa)

Suppose you are lifting weights and you are blindfolded

Initially holding 2 Kg

How much more needs to be added before you notice a change?

Suppose you only notice a change after extra 0.2 Kg added.

What if you are now holding 5 Kg - what is smallest noticeable change?

Find only notice a change after extra 0.5 Kg added.

Smallest Noticeable Change | Constant Intensity

Weber's Law

Holds also for channels in visualisation

Upshot - need to think carefully about how to relative comparisons

Situation even harder with colour and contrast....

