вариант	ф. н	номер	група	поток	курс	специалност
1						
Име:		1	.,			

Контролно по Бързи алгоритми върху структури от данни 1.12.2022 г.

Задача 1. За свързан неориентиран претеглен граф $G = (V, E, c), c : E \to \mathbb{R}$ и път π в G, с $Cap_G(\pi)$ бележим максималната стойност на ребро, което участва в π , тоест:

$$Cap_G(\pi) = \begin{cases} \max_{e \in \pi} c(e) \text{ ако } \pi \text{ не е тривиален} \\ \infty \end{cases}$$

Нека $cap_G: V \times V \in \mathbb{R}$ е функцията, която на всеки два върха $u, v \in V$ съпоставя най-малката стойност $Cap_G(\pi)$ измежду всички пътища π , които свързват u с v (в графа G), тоест:

$$cap_G(u,v) = \min\{Cap_G(\pi) \mid \pi : u \to_G^* v\}.$$

Разглеждаме следния проблем Cap(G, u, v):

Дадено: $G=(V,E,c),\ c:E o\mathbb{R}$

Вход: $u,v \in V$ Изход: $cap_G(u,v)$

- 1. (0,2 т.) Нека $s \in V$ е фиксиран връх, който е даден предварително. Да се предложи алгоритъм, който обработва входните данни G = (V, E, c) и $s \in V$ за време $O(|V| \log |V| + |E|)$ и отговаря на всяка заявка от вида Cap(G, s, v) за време O(1).
- 2. (0,4 т.) Да се предложи алгоритъм, който обработва входните данни G = (V, E, c) за време $O(|V| \log |V| + |E|)$ и отговаря на всяка заявка от вида Cap(G, u, v) за време O(1).
- 3. (0.5 т.) Да се предложи алгоритъм, който обработва входните данни G = (V, E, c) за време $O(|V| \log |V| + |E|)$, използва O(|V|) допълнителна памет и отговаря на всяка заявка от вида Cap(G, u, v) за време O(1).
- 4. (0,5 т.) Да разгледаме следния динамичен вариант на проблема Cap(G,u,v), който ще бележим с $Cap^+(G,u,v,u',v',x)$:

Дадено: $G=(V,E,c),\ c:E o\mathbb{R}$

Вход: $u, v, u', v' \in V$ и $x \in \mathbb{R}$

Изход: $cap_{G'}(u,v)$,

където G' = (V, E', c') е графът с ребра $E' = E \cup \{\{u', v'\}\}$ и ценова функция $c' : E' \to \mathbb{R}$:

$$c'(e) = \begin{cases} c(e), \text{ ако } c \neq \{u', v'\} \\ x, \text{ иначе} \end{cases}$$

Да се предложи алгоритъм, който обработва входните данни G=(V,E,c) за време $O(|V|\log |V|+|E|)$ и отговаря на всяка заявка от вида $Cap^+(G,u,v,u',v',x)$ за време O(1).

Забележка: Алгоритмите, разглеждани по време на курса, могат да използват без допълнителна верификация. Забележка: Обърнете внимание, че пътищата, посредством които се дефинира понятието $Cap_G(\pi)$ не са задължително прости. Тогава, лесно се съобразява, че $cap_G(v,v) = \min\{c(\{u,v\}) | \{u,v\} \in E\}$. Ако изясните това съображение и скицирате как то може да бъде имплементирано ефективно, може да се концентрирате на случая, когато при всички заявки върховете $u,v \in V$ са различни.

вариант	ф. н	номер	група	поток	курс	специалност
1						
Име:		1	.,			

Контролно по Бързи алгоритми върху структури от данни 1.12.2022 г.

Задача 1. За свързан неориентиран претеглен граф $G = (V, E, c), c : E \to \mathbb{R}$ и път π в G, с $Cap_G(\pi)$ бележим максималната стойност на ребро, което участва в π , тоест:

$$Cap_G(\pi) = \begin{cases} \max_{e \in \pi} c(e) \text{ ако } \pi \text{ не е тривиален} \\ \infty \end{cases}$$

Нека $cap_G: V \times V \in \mathbb{R}$ е функцията, която на всеки два върха $u, v \in V$ съпоставя най-малката стойност $Cap_G(\pi)$ измежду всички пътища π , които свързват u с v (в графа G), тоест:

$$cap_G(u,v) = \min\{Cap_G(\pi) \mid \pi : u \to_G^* v\}.$$

Разглеждаме следния проблем Cap(G, u, v):

Дадено: $G=(V,E,c),\ c:E o\mathbb{R}$

Вход: $u,v \in V$ Изход: $cap_G(u,v)$

- 1. (0,2 т.) Нека $s \in V$ е фиксиран връх, който е даден предварително. Да се предложи алгоритъм, който обработва входните данни G = (V, E, c) и $s \in V$ за време $O(|V| \log |V| + |E|)$ и отговаря на всяка заявка от вида Cap(G, s, v) за време O(1).
- 2. (0,4 т.) Да се предложи алгоритъм, който обработва входните данни G = (V, E, c) за време $O(|V| \log |V| + |E|)$ и отговаря на всяка заявка от вида Cap(G, u, v) за време O(1).
- 3. (0.5 т.) Да се предложи алгоритъм, който обработва входните данни G = (V, E, c) за време $O(|V| \log |V| + |E|)$, използва O(|V|) допълнителна памет и отговаря на всяка заявка от вида Cap(G, u, v) за време O(1).
- 4. (0,5 т.) Да разгледаме следния динамичен вариант на проблема Cap(G,u,v), който ще бележим с $Cap^+(G,u,v,u',v',x)$:

Дадено: $G=(V,E,c),\ c:E o\mathbb{R}$

Вход: $u, v, u', v' \in V$ и $x \in \mathbb{R}$

Изход: $cap_{G'}(u,v)$,

където G' = (V, E', c') е графът с ребра $E' = E \cup \{\{u', v'\}\}$ и ценова функция $c' : E' \to \mathbb{R}$:

$$c'(e) = \begin{cases} c(e), \text{ ако } c \neq \{u', v'\} \\ x, \text{ иначе} \end{cases}$$

Да се предложи алгоритъм, който обработва входните данни G=(V,E,c) за време $O(|V|\log |V|+|E|)$ и отговаря на всяка заявка от вида $Cap^+(G,u,v,u',v',x)$ за време O(1).

Забележка: Алгоритмите, разглеждани по време на курса, могат да използват без допълнителна верификация. Забележка: Обърнете внимание, че пътищата, посредством които се дефинира понятието $Cap_G(\pi)$ не са задължително прости. Тогава, лесно се съобразява, че $cap_G(v,v) = \min\{c(\{u,v\}) | \{u,v\} \in E\}$. Ако изясните това съображение и скицирате как то може да бъде имплементирано ефективно, може да се концентрирате на случая, когато при всички заявки върховете $u,v \in V$ са различни.