```
In [432]:
              import pandas as pd
           2 import matplotlib.pyplot as plt
           3
              import seaborn as sns
              import numpy as np
              from scipy.stats import norm
              from sklearn.preprocessing import StandardScaler
           7
              from scipy import stats
              import warnings
           9
              import missingno as mno
          10
              from sklearn.pipeline import Pipeline
          11
          12
          13
              #warnings.filterwarnings('ignore')
          14
              %matplotlib inline
              df = pd.read_csv('LifeExpectancyData.csv')
In [218]:
           1
              df.head(10)
```

Out[218]:

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Ме
0	Afghanistan	2015	Developing	65.0	263.0	62	0.01	71.279624	65.0	
1	Afghanistan	2014	Developing	59.9	271.0	64	0.01	73.523582	62.0	
2	Afghanistan	2013	Developing	59.9	268.0	66	0.01	73.219243	64.0	
3	Afghanistan	2012	Developing	59.5	272.0	69	0.01	78.184215	67.0	
4	Afghanistan	2011	Developing	59.2	275.0	71	0.01	7.097109	68.0	
5	Afghanistan	2010	Developing	58.8	279.0	74	0.01	79.679367	66.0	
6	Afghanistan	2009	Developing	58.6	281.0	77	0.01	56.762217	63.0	
7	Afghanistan	2008	Developing	58.1	287.0	80	0.03	25.873925	64.0	
8	Afghanistan	2007	Developing	57.5	295.0	82	0.02	10.910156	63.0	
9	Afghanistan	2006	Developing	57.3	295.0	84	0.03	17.171518	64.0	

10 rows × 22 columns

```
In [698]: 1 type(df['Country'])
```

Out[698]: pandas.core.series.Series

In [219]:

df.sample(10)

Out[219]:

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	N
2104	Republic of Moldova	2014	Developing	71.8	162.0	1	9.99	0.000000	92.0	
1188	India	2013	Developing	67.6	187.0	1000	3.11	67.672304	7.0	
1685	Mexico	2013	Developing	76.6	12.0	32	5.23	150.408875	82.0	
136	Austria	2007	Developed	81.0	8.0	0	12.50	7453.864400	85.0	
1794	Myanmar	2001	Developing	62.5	239.0	72	0.38	1.917164	NaN	
2760	United Arab Emirates	2001	Developing	74.5	14.0	1	1.67	243.753913	92.0	
973	Gambia	2004	Developing	57.3	296.0	3	2.51	0.000000	95.0	
388	Bulgaria	2011	Developed	73.7	144.0	1	10.67	875.149519	96.0	
1646	Malta	2003	Developed	78.5	71.0	0	6.70	1678.392773	89.0	
260	Belize	2011	Developing	69.4	188.0	0	6.64	605.628689	95.0	

10 rows × 22 columns

```
In [220]:
              print("Names of Columns : ")
           2
              print()
           3
              for x in df.columns :
           4
                  print("{}".format(x))
           5
           6
          Names of Columns :
          Country
          Year
          Status
          Life expectancy
          Adult Mortality
          infant deaths
          Alcohol
          percentage expenditure
          Hepatitis B
          Measles
           BMI
          under-five deaths
          Polio
          Total expenditure
          Diphtheria
           HIV/AIDS
          GDP
          Population
           thinness 1-19 years
           thinness 5-9 years
          Income composition of resources
          Schooling
              print("Number of ROWS in the dataset : {} ".format(df.shape[0]))
In [221]:
           1
              print("Number of COLUMNS in the dataset : {} ".format(df.shape[1]))
           3
```

```
Number of ROWS in the dataset : 2938

Number of COLUMNS in the dataset : 22
```

```
In [222]: 1
```

df.describe()

Out[222]:

	Year	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis E
count	2938.000000	2928.000000	2928.000000	2938.000000	2744.000000	2938.000000	2385.000000
mean	2007.518720	69.224932	164.796448	30.303948	4.602861	738.251295	80.940461
std	4.613841	9.523867	124.292079	117.926501	4.052413	1987.914858	25.070016
min	2000.000000	36.300000	1.000000	0.000000	0.010000	0.000000	1.000000
25%	2004.000000	63.100000	74.000000	0.000000	0.877500	4.685343	77.000000
50%	2008.000000	72.100000	144.000000	3.000000	3.755000	64.912906	92.000000
75%	2012.000000	75.700000	228.000000	22.000000	7.702500	441.534144	97.000000
max	2015.000000	89.000000	723.000000	1800.000000	17.870000	19479.911610	99.000000

```
In [223]: 1 df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2938 entries, 0 to 2937
Data columns (total 22 columns):
Country
                                    2938 non-null object
Year
                                    2938 non-null int64
                                    2938 non-null object
Status
Life expectancy
                                    2928 non-null float64
Adult Mortality
                                    2928 non-null float64
infant deaths
                                    2938 non-null int64
Alcohol
                                    2744 non-null float64
                                    2938 non-null float64
percentage expenditure
                                    2385 non-null float64
Hepatitis B
Measles
                                    2938 non-null int64
 BMI
                                    2904 non-null float64
under-five deaths
                                    2938 non-null int64
                                    2919 non-null float64
Polio
Total expenditure
                                    2712 non-null float64
Diphtheria
                                    2919 non-null float64
HIV/AIDS
                                    2938 non-null float64
GDP
                                    2490 non-null float64
                                    2286 non-null float64
Population
 thinness 1-19 years
                                    2904 non-null float64
 thinness 5-9 years
                                    2904 non-null float64
Income composition of resources
                                    2771 non-null float64
Schooling
                                    2775 non-null float64
dtypes: float64(16), int64(4), object(2)
memory usage: 505.0+ KB
```

In [224]: 1 df.dtypes

Out[224]:	Country	object
	Year	int64
	Status	object
	Life expectancy	float64
	Adult Mortality	float64
	infant deaths	int64
	Alcohol	float64
	percentage expenditure	float64
	Hepatitis B	float64
	Measles	int64
	BMI	float64
	under-five deaths	int64
	Polio	float64
	Total expenditure	float64
	Diphtheria	float64
	HIV/AIDS	float64
	GDP	float64
	Population	float64
	thinness 1-19 years	float64
	thinness 5-9 years	float64
	Income composition of resources	float64
	Schooling	float64
	dtype: object	

```
null columns=df.columns[df.isnull().any()]
In [167]:
            1
            2
               df[null_columns].isnull().sum()
            3
            4
               labels = []
            5
               values = []
            6
               for col in null_columns:
            7
                   labels.append(col)
                   values.append(df[col].isnull().sum())
            8
            9
               ind = np.arange(len(labels))
               width = 0.1
           10
           11
               fig, ax = plt.subplots(figsize=(12,10))
           12
               rects = ax.barh(ind, np.array(values))
           13
               ax.set_yticks(ind+((width)/2.))
           14
               ax.set yticklabels(labels, rotation='horizontal')
               ax.set_xlabel("Count of missing values")
           15
               ax.set_ylabel("Column Names")
           16
               ax.set_title("Variables with missing values");
           17
           18
```



```
df.isna().sum().sort_values(ascending=False) / len(df) * 100
In [168]:
            1
            2
Out[168]: Population
                                               22.191967
          Hepatitis B
                                               18.822328
          GDP
                                               15.248468
          Total expenditure
                                                7.692308
          Alcohol
                                                6.603131
          Income composition of resources
                                                5.684139
          Schooling
                                                5.547992
           BMI
                                                1.157250
           thinness 1-19 years
                                                1.157250
           thinness 5-9 years
                                                1.157250
          Diphtheria
                                                0.646698
          Polio
                                                0.646698
          Adult Mortality
                                                0.340368
          Life expectancy
                                                0.340368
          under-five deaths
                                                0.000000
           HIV/AIDS
                                                0.000000
          Measles
                                                0.00000
          percentage expenditure
                                                0.000000
          infant deaths
                                                0.00000
          Status
                                                0.000000
          Year
                                                0.00000
          Country
                                                0.00000
          dtype: float64
```



```
In [170]:
              correlations=df.corr()
              attrs = correlations.iloc[:-1,:-1] # all except target
            2
            3
            4
              threshold = 0.5
            5
               important_corrs = (attrs[abs(attrs) > threshold][attrs != 1.0]) \
            6
                   .unstack().dropna().to_dict()
            7
               unique_important_corrs = pd.DataFrame(
            8
           9
                   list(set([(tuple(sorted(key)), important_corrs[key]) \
                   for key in important_corrs])),
           10
                       columns=['Attribute Pair', 'Correlation'])
           11
           12
                   # sorted by absolute value
           13
           14
               unique important corrs = unique important corrs.ix[
                   abs(unique_important_corrs['Correlation']).argsort()[::-1]]
           15
           16
           17
              unique important corrs
```

Out[170]:

	Attribute Pair	Correlation
5	(infant deaths, under-five deaths)	0.996629
14	(thinness 1-19 years, thinness 5-9 years)	0.939102
15	(GDP, percentage expenditure)	0.899373
1	(Income composition of resources, Life expecta	0.724776
10	(Adult Mortality, Life expectancy)	-0.696359
12	(Diphtheria , Polio)	0.673553
0	(Diphtheria , Hepatitis B)	0.611495
11	(BMI , Life expectancy)	0.567694
6	(Population, infant deaths)	0.556801
9	(HIV/AIDS, Life expectancy)	-0.556556
13	(Population, under-five deaths)	0.544423
4	(BMI, thinness 5-9 years)	-0.538911
2	(BMI , thinness 1-19 years)	-0.532025
16	(HIV/AIDS, Adult Mortality)	0.523821
8	(BMI , Income composition of resources)	0.508774
7	(Measles , under-five deaths)	0.507809
3	(Measles , infant deaths)	0.501128

```
In [171]: 1  #num_feat
```

```
In [172]:
            1
               num_feat
Out[172]: Index(['Year', 'Life expectancy ', 'Adult Mortality', 'infant deaths',
                   'Alcohol', 'percentage expenditure', 'Hepatitis B', 'Measles ', '
           BMI ',
                   'under-five deaths ', 'Polio', 'Total expenditure', 'Diphtheria ',
                   ' HIV/AIDS', 'GDP', 'Population', ' thinness 1-19 years',
                   'thinness 5-9 years', 'Income composition of resources', 'Schooli
           ng'],
                 dtype='object')
               mno.matrix(df, figsize = (20, 6))
In [173]:
            2
Out[173]: <matplotlib.axes._subplots.AxesSubplot at 0x1a295eae10>
                County test States The satestatics with the satestatics
           2938
In [175]:
            1
                #np.corrcoef?
                #(df['Year'].values, df['Life expectancy '].values)[0,0]
```

```
In [176]: 1 plt.figure(num=None, figsize=(8, 5), dpi=80, facecolor='w', edgecolor='
2
3
4
```

Out[176]: <matplotlib.axes._subplots.AxesSubplot at 0x1a29e5ec50>


```
In [177]: 1 #df.dtypes 2
```

```
In [231]:
            1
               from sklearn.preprocessing import LabelEncoder
            2
            3
               class MultiColumnLabelEncoder:
            4
                   def __init__(self,columns = None):
            5
                        self.columns = columns # array of column names to encode
            6
            7
                   def fit(self, X, y=None):
                        return self # not relevant here
            8
            9
           10
                   def transform(self,X):
           11
                       Transforms columns of X specified in self.columns using
           12
           13
                       LabelEncoder(). If no columns specified, transforms all
           14
                       columns in X.
                        1.1.1
           15
                       output = X.copy()
           16
           17
                        if self.columns is not None:
           18
                            for col in self.columns:
           19
                                output[col] = LabelEncoder().fit_transform(output[col])
           20
                        else:
           21
                            for colname,col in output.iteritems():
           22
                                output[colname] = LabelEncoder().fit_transform(col)
           23
                        return output
           24
           25
                   def fit transform(self, X, y=None):
           26
                        return self.fit(X,y).transform(X)
In [232]:
            1
               df = MultiColumnLabelEncoder(columns = ['Country', 'Status']).fit transf
            2
            1
In [233]:
               df.dtypes
Out[233]: Country
                                                  int64
          Year
                                                  int64
          Status
                                                  int64
          Life expectancy
                                                float64
          Adult Mortality
                                                float64
          infant deaths
                                                  int.64
          Alcohol
                                                float64
          percentage expenditure
                                               float64
          Hepatitis B
                                                float64
          Measles
                                                  int64
           BMT
                                                float64
          under-five deaths
                                                  int.64
          Polio
                                                float64
          Total expenditure
                                                float64
          Diphtheria
                                                float64
           HIV/AIDS
                                                float64
          GDP
                                                float64
          Population
                                                float.64
           thinness 1-19 years
                                                float64
           thinness 5-9 years
                                                float64
           Income composition of resources
                                               float64
           Schooling
                                                float64
          dtype: object
```

```
In [322]:
            1
               class MultiColumnSimpleImputer:
            2
            3
                   def __init__(self,columns = None):
            4
                       self.columns = columns # array of column names to encode
            5
            6
                   def fit(self, X, y=None):
            7
                       return self # not relevant here
            8
            9
                   def transform(self,X):
           10
                       output = X.copy()
           11
                       if (self.columns is not None):
           12
                           for col in self.columns:
           13
                                if ((output[col].dtypes == 'float64') or (output[col].d
           14
                                    output[col] = SimpleImputer(missing values=np.nan,
           15
                               else:
           16
                                    output[col] = SimpleImputer(missing_values=np.nan,
           17
                       else:
           18
                           for colname,col in output.iteritems():
           19
                               output[col] = SimpleImputer(missing values=np.nan, stra
           20
           21
                       return output
           22
           23
                   def fit_transform(self,X,y=None):
           24
                       return self.fit(X,y).transform(X)
  In [ ]:
            1
In [324]:
            1
               #MultiColumnSimpleImputer(df.columns).fit transform(df)
            2
In [304]:
               from sklearn.impute import SimpleImputer
            1
               imp mean = SimpleImputer(missing values=np.nan, strategy='mean')
            2
               df transform = imp mean.fit transform(df)
            3
               #df
In [186]:
            1
               df_transformed = pd.DataFrame(df_transform, columns = df.columns)
```

Out[186]:

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis B	Measles
0	0.0	2015.0	1.0	65.0	263.0	62.0	0.01	71.279624	65.0	1154.0
1	0.0	2014.0	1.0	59.9	271.0	64.0	0.01	73.523582	62.0	492.0
2	0.0	2013.0	1.0	59.9	268.0	66.0	0.01	73.219243	64.0	430.0
3	0.0	2012.0	1.0	59.5	272.0	69.0	0.01	78.184215	67.0	2787.0
4	0.0	2011.0	1.0	59.2	275.0	71.0	0.01	7.097109	68.0	3013.0

5 rows × 22 columns

df transformed.head()

```
In [ ]: 1
```

```
In [327]:
               mno.matrix(df_transformed, figsize = (20, 6))
Out[327]: <matplotlib.axes._subplots.AxesSubplot at 0x1a2afa9c50>
                                                                     Thines 1,19 years
                                                                        Hillings 50 years
               County Year Status life storethich
In [329]:
               df transformed.columns
Out[329]: Index(['Country', 'Year', 'Status', 'Life expectancy ', 'Adult Mortalit
          у',
                  'infant deaths', 'Alcohol', 'percentage expenditure', 'Hepatitis
           В',
                  'Measles ', ' BMI ', 'under-five deaths ', 'Polio', 'Total expendi
          ture',
                  'Diphtheria ', ' HIV/AIDS', 'GDP', 'Population',
                  'thinness 1-19 years', 'thinness 5-9 years',
                  'Income composition of resources', 'Schooling'],
                 dtype='object')
In [341]:
               from sklearn.model selection import train test split
               X = df transformed.drop(['Life expectancy '], axis=1)
               y = df transformed['Life expectancy ']
               X train, X test, y train, y test = train test split(X, y, test size=0.3
```

```
In [351]:
              from sklearn.ensemble import RandomForestRegressor
              from sklearn.model selection import RandomizedSearchCV
           2
              # Number of trees in random forest
           3
              n_estimators = [int(x) for x in np.linspace(start = 200, stop = 2000, r
              # Number of features to consider at every split
           5
              max features = ['auto', 'sqrt']
              # Maximum number of levels in tree
           7
              max depth = [int(x) for x in np.linspace(10, 110, num = 11)]
              max depth.append(None)
              # Minimum number of samples required to split a node
          10
          11
              min samples split = [2, 5, 10]
              # Minimum number of samples required at each leaf node
          12
          13
              min samples leaf = [1, 2, 4]
          14
              # Method of selecting samples for training each tree
              bootstrap = [True, False]
          15
          16
              random_grid = {'n_estimators': n_estimators,
          17
                              'max_features': max_features,
          18
                              'max depth': max depth,
          19
                              'min_samples_split': min_samples_split,
          20
                              'min samples leaf': min samples leaf,
          21
                              'bootstrap': bootstrap}
In [398]:
             rf = RandomForestRegressor()
           1
              # Random search of parameters, using 3 fold cross validation,
           2
              # search across 100 different combinations, and use all available cores
              #rf random = RandomizedSearchCV(estimator = rf, param_distributions = 1
              # Fit the random search model
              rf.fit(X_train, y_train)
Out[398]: RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
                                max features='auto', max leaf nodes=None,
                                min impurity decrease=0.0, min impurity split=None,
                                min samples leaf=1, min samples split=2,
                                min weight fraction leaf=0.0, n estimators=10,
                                n jobs=None, oob score=False, random state=None,
                                verbose=0, warm start=False)
In [404]:
              new ans = rf.predict(X test)
In [414]:
           1
              import graphviz
           2
              from sklearn.tree import DecisionTreeClassifier, export graphviz
           3
              import pydot
           4
           5
              from IPython.display import display
           6
              #forest clf = RandomForestClassifier()
           7
              #forest clf.fit(X train, y train)
              tree.export graphviz(rf.estimators [0], out file='tree from forest.dot
           9
              (graph,) = pydot.graph from dot file('tree from forest.dot')
              graph.write png('tree from forest.png')
          10
           11
              #Let's go back to our hypothetical medication study. Suppose the hypoth
In [431]:
           1
           2
            3
              #If the medicine has no effect in the population as a whole, 3% of stud
```

```
In [422]: 1
2   import numpy as np
3   import statsmodels.api as sm
4   import matplotlib.pyplot as plt
5   from statsmodels.sandbox.regression.predstd import wls_prediction_std
In [430]: 1 len(X_train['Country'])
2
```

Out[430]: 1968

```
In [423]: 1 model = sm.OLS(y_train, X_train)
2 results = model.fit()
3 print(results.summary())
```

OLS Regression Results

=========							
Dep. Variable: 0.997	Life e	expectancy	R-sq	uared (unce	entered):		
Model: 0.997		OLS	Adj.	R-squared	(uncentered):	
Method:	Lea	st Squares	F-st	atistic:			
2.764e+04 Date:	Sun, O	08 Dec 2019	Prob	(F-statist	ic):		
0.00 Time:		23:48:18	Τισα-	Likelihood:			
-5546.9			-				
No. Observations: 1.114e+04		1968	AIC:				
Df Residuals: 1.125e+04		1947	BIC:				
<pre>Df Model: Covariance Type:</pre>		21 nonrobust					
===========			=====	=======	-======	======	
===========	=======		coef	std err	t	P>	
t [0.025	0.975]						
Country		0.	.0032	0.002	1.955	0.0	
51 -9.78e-06	0.006	V •		0000	2000		
Year 0.028	0.029	0.	0283	0.000	68.254	0.0	
Status		-1.	6003	0.328	-4.880	0.0	
00 -2.244 Adult Mortality	-0.95/	-0.	0198	0.001	-19.913	0.0	
00 -0.022 infant deaths	-0.018	0.	1009	0.010	9.663	0.0	
0.080	0.121						
Alcohol 0.005	0.130	0.	0671	0.032	2.106	0.0	
percentage expend 01 -6.96e-05	iture 0.000	0.	0001	0.000	1.280	0.2	
Hepatitis B		-0.	0146	0.005	-3.044	0.0	
02 -0.024 Measles	-0.005	-2.515	5e-05	9.12e-06	-2.758	0.0	
06 -4.3e-05 BMI	-7.26e-06	0.	0407	0.006	6.690	0.0	
00 0.029	0.053						
under-five deaths 00 -0.090	-0.060	-0.	0746	0.008	-9.780	0.0	
Polio 00 0.014	0.036	0.	0249	0.006	4.390	0.0	
Total expenditure	!	0.	0218	0.041	0.525	0.5	
99 -0.060 Diphtheria	0.103	0.	0374	0.006	6.376	0.0	
0.026	0.049						

		iiie-exp)			
HIV/AIDS		-0.4	1772	0.021	-22.266	0.0
	-0.435					
GDP 80 -3.23e-06	5.7e-05	2.696	9-05	1.54e-05	1.751	0.0
Population	5.7e-05	-6 6546	_10	2.44e-09	-0.273	0.7
85 -5.45e-09	4.12e-09	-0.0340		2.446-09	-0.273	0.7
thinness 1-19 y		-0.0	796	0.060	-1.335	0.1
82 -0.197	0.037					
thinness 5-9 yea	rs	0.0	0037	0.059	0.063	0.9
50 -0.112	0.120					
Income composition		ces 6.1	L349	0.802	7.645	0.0
	7.709			0.050	10 604	0 0
Schooling	0 565	0.6	5616	0.052	12.604	0.0
00 0.559	0.765					
=====						
Omnibus:		87.099	Durb	oin-Watson:		
1.999						
Prob(Omnibus):		0.000	Jaro	que-Bera (J	B):	23
6.355						
Skew:		-0.184	Prob)(JB):		4.7
5e-52		4 657	a	1		2.0
Kurtosis: 2e+08		4.657	Conc	l. No.		3.9
∠e⊤∪ŏ ==========		======		======	======	
			 -			

=====

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.92e+08. This might indicate that the re are

strong multicollinearity or other numerical problems.

```
print('Parameters: ', results.params)
In [419]:
            1
              print('R2: ', results.rsquared)
            2
            3
          Parameters: Country
                                                           3.228836e-03
          Year
                                              2.834522e-02
          Status
                                             -1.600320e+00
          Adult Mortality
                                             -1.982795e-02
          infant deaths
                                              1.009259e-01
          Alcohol
                                              6.707656e-02
          percentage expenditure
                                              1.308046e-04
          Hepatitis B
                                             -1.458378e-02
          Measles
                                             -2.514781e-05
           BMI
                                              4.070490e-02
          under-five deaths
                                             -7.461739e-02
                                              2.485544e-02
          Polio
          Total expenditure
                                              2.179709e-02
          Diphtheria
                                              3.737595e-02
           HIV/AIDS
                                             -4.772125e-01
          GDP
                                              2.690468e-05
          Population
                                             -6.654124e-10
           thinness 1-19 years
                                             -7.962809e-02
           thinness 5-9 years
                                              3.741886e-03
          Income composition of resources
                                              6.134878e+00
          Schooling
                                              6.615710e-01
          dtype: float64
          R2: 0.9966563487669086
In [433]:
            1
              import numpy as np
              from sklearn.linear model import LinearRegression
            2
            3
              \#>>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
              \#>>> \# y = 1 * x 0 + 2 * x 1 + 3
            4
              \#>>> y = np.dot(X, np.array([1, 2])) + 3
            5
              reg = LinearRegression().fit(X train, y train)
              #reg.score(X, y)
In [434]:
              reg.score(X, y)
Out[434]: 0.8197513550724889
In [442]:
              reg.coef
Out[442]: array([ 3.21119912e-03, 2.00132715e-03, -1.57661894e+00, -1.97239820e-0
          2,
                  1.00552922e-01, 6.16509079e-02, 1.18951459e-04, -1.44508920e-0
          2,
                 -2.56680107e-05, 4.06253988e-02, -7.43388467e-02, 2.46560630e-0
          2,
                  2.73154781e-02, 3.75368626e-02, -4.80112235e-01, 2.88480648e-0
          5,
                 -6.30147861e-10, -7.79598914e-02, 2.81391552e-03, 6.26047718e+0
          0,
                  6.67670054e-011)
```

```
In [441]:
              reg.intercept_
Out[441]: 52.68181514202163
In [450]:
              y_pred = reg.predict(X_test)
           1
           2
In [458]:
              from sklearn.metrics import r2 score, mean squared error, mean absolute
           1
              from math import sqrt
           2
In [482]:
           1
              def print_score(y_test, y_pred):
                  print(" mean absolute error =
           2
                                                   {} ".format(round(mean absolute €
           3
                  print(" mean squared error
                                                   {} ".format(round(mean_squared_er
                                            =
           4
                  print(" root mean squared error = {} ".format(round(sqrt(mean squar
                  print(" r2_score =
           5
                                                   {} ".format(round(r2 score(y test
           6
In [459]:
              mean squared error?
In [510]:
              print score(y test, y pred)
           mean absolute error =
                                    2.937
          mean squared error
                                    16.022
           root_mean_squared_error = 4.003
           r2 score =
                                    0.826
              round(2.7817191, ndigits= 3)
In [466]:
Out[466]: 2.782
In [583]:
           1
              from sklearn import linear model
              clf = linear model.Lasso(alpha=1)
           2
              clf.fit(X train, y train)
Out[583]: Lasso(alpha=1, copy X=True, fit intercept=True, max iter=1000, normalize=
          False,
               positive=False, precompute=False, random state=None, selection='cyc
          lic',
               tol=0.0001, warm start=False)
 In [ ]:
           1
In [579]:
              print(clf.coef )
          8.85865351e-02 9.56471060e-02 1.66652748e-04 -1.25303024e-02
           -3.06587413e-05 5.35835119e-02 -6.58977372e-02 2.52542915e-02
            0.00000000e+00 4.32485363e-02 -4.34057521e-01
                                                          5.32035204e-05
            1.19951964e-10 -3.94846945e-02 -0.00000000e+00 0.00000000e+00
            8.27412021e-01]
```

```
In [580]:
               print(clf.intercept_)
          56.434209676507805
In [581]:
               y_pred_l = clf.predict(X_test)
In [582]:
               print_score(y_test, y_pred_1)
           mean absolute error =
                                      2.99
           mean squared error
                                      16.751
           root_mean_squared_error = 4.093
           r2_score =
                                      0.818
In [600]:
              from sklearn import linear model
            1
            2
              #sklearn.linear model.Ridge
              clf = linear model.Ridge(alpha=0.01)
            3
              clf.fit(X_train, y_train)
Out[600]: Ridge(alpha=0.01, copy_X=True, fit_intercept=True, max_iter=None,
                normalize=False, random state=None, solver='auto', tol=0.001)
In [601]:
              print(clf.coef_)
          [ 3.21118420e-03 2.00926971e-03 -1.57658134e+00 -1.97243352e-02
            1.00556085e-01 6.16596866e-02 1.18940852e-04 -1.44512583e-02
           -2.56688588e-05 4.06264691e-02 -7.43410472e-02 2.46558922e-02
            2.73047814e-02 3.75380577e-02 -4.80113387e-01
                                                             2.88533299e-05
           -6.30161628e-10 -7.79654641e-02 2.81619556e-03 6.25803872e+00
            6.67765661e-011
In [602]:
              y pred l = clf.predict(X test)
In [603]:
               print_score(y_test, y_pred_1)
           mean absolute error =
                                      2.937
           mean squared error
                                      16.022
                                =
           root mean squared error = 4.003
           r2 score =
                                      0.826
In [604]:
            1
               from sklearn.linear model import ElasticNet
            2
In [605]:
               regr = ElasticNet(random state=0)
            2
               regr.fit(X train, y train)
            3
Out[605]: ElasticNet(alpha=1.0, copy X=True, fit intercept=True, l1 ratio=0.5,
                     max iter=1000, normalize=False, positive=False, precompute=Fal
          se,
                     random state=0, selection='cyclic', tol=0.0001, warm start=Fal
          se)
In [610]:
               y pred r = regr.predict(X test)
```

```
In [607]:
            1
               print(regr.coef_)
          [ 3.07948392e-03 8.03124380e-03 -0.00000000e+00 -2.27788706e-02
            9.99014440e-02 1.28906758e-01 1.51438845e-04 -1.40664886e-02
           -2.97554470e-05 5.10817223e-02 -7.38323401e-02
                                                              2.57368590e-02
            0.00000000e+00 4.31514582e-02 -4.46882496e-01
                                                              5.28701233e-05
           -3.18901057e - 10 \quad -7.04940446e - 02 \quad -0.00000000e + 00 \quad 0.00000000e + 00
            8.08000374e-01]
In [608]:
            1
               print(regr.intercept_)
            2
            3
          40.646272811209904
In [612]:
               print score(y test, y pred r)
           mean_absolute_error =
                                      2.987
           mean squared error
                                      16.614
           root mean squared error = 4.076
           r2 score =
                                      0.819
In [637]:
               from sklearn.tree import DecisionTreeRegressor
            1
            2
            3
              # create a regressor object
              regressor = DecisionTreeRegressor(random_state = 0, max_depth = 6)
            5
               # fit the regressor with X and Y data
               regressor.fit(X train, y train)
Out[637]: DecisionTreeRegressor(criterion='mse', max depth=6, max features=None,
                                 max leaf nodes=None, min impurity decrease=0.0,
                                 min impurity split=None, min samples leaf=1,
                                 min samples split=2, min weight fraction leaf=0.0,
                                 presort=False, random state=0, splitter='best')
In [638]:
               y pred tree = regressor.predict(X test)
In [639]:
               print_score(y_test, y_pred_tree)
           mean absolute error =
           mean squared error
                                      7.032
           root mean squared error = 2.652
           r2 score =
                                      0.923
```

```
In [640]:
               from sklearn.externals.six import StringIO
            2
               from IPython.display import Image
              from sklearn.tree import export_graphviz
            3
            4
              import pydotplus
            5
              dot_data = StringIO()
              export_graphviz(regressor, out_file=dot_data,
            7
                               filled=True, rounded=True,
                               special characters=True)
            8
            9
               graph = pydotplus.graph from dot data(dot data.getvalue())
           10
               Image(graph.create_png())
Out[640]:
In [642]:
               graph.write_pdf("iris.pdf")
            1
            2
Out[642]: True
In [644]:
               #Image(graph.create png())
In [645]:
            1
               from sklearn.ensemble import ExtraTreesRegressor
In [682]:
              regressor = ExtraTreesRegressor(random state = 0, max depth = 10)
            1
            2
            3
               # fit the regressor with X and Y data
               regressor.fit(X train, y train)
Out[682]: ExtraTreesRegressor(bootstrap=False, criterion='mse', max depth=10,
                               max features='auto', max leaf nodes=None,
                               min impurity decrease=0.0, min impurity split=None,
                               min samples leaf=1, min samples split=2,
                               min weight fraction leaf=0.0, n estimators=10, n jobs
          =None,
                               oob score=False, random state=0, verbose=0,
                               warm start=False)
In [683]:
               y_pred_extra = regressor.predict(X_test)
In [684]:
               print_score(y_test, y_pred_extra)
           mean absolute error =
                                      1.311
           mean squared error
                                      3.751
           root mean squared error = 1.937
           r2 score =
                                      0.959
In [685]:
               from sklearn.ensemble import GradientBoostingRegressor
```

```
In [690]:
            1
              regressor = GradientBoostingRegressor(random_state = 0, max_depth = 11)
            2
            3
               # fit the regressor with X and Y data
               regressor.fit(X_train, y_train)
Out[690]: GradientBoostingRegressor(alpha=0.9, criterion='friedman mse', init=None,
                                     learning rate=0.1, loss='ls', max depth=11,
                                     max_features=None, max_leaf_nodes=None,
                                     min_impurity_decrease=0.0, min_impurity_split=N
          one,
                                     min_samples_leaf=1, min_samples_split=2,
                                     min_weight_fraction_leaf=0.0, n_estimators=100,
                                     n iter_no_change=None, presort='auto', random_s
          tate=0,
                                     subsample=1.0, tol=0.0001, validation_fraction=
          0.1,
                                     verbose=0, warm_start=False)
In [691]:
               y pred xg = regressor.predict(X_test)
In [692]:
               print score(y test, y pred extra)
           mean absolute error =
                                      1.058
           mean squared error
                                      2.939
           root mean squared error = 1.714
           r2_score =
                                      0.968
            1
  In [ ]:
```