ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-k-Cut Problems

Yeqing Qiu¹² Ye Xue¹² Akang Wang¹² Yiheng Wang¹² Qingjiang Shi¹³ Zhi-Quan Luo¹²

Abstract

The Max-k-Cut problem is a fundamental combinatorial optimization challenge that generalizes the classic \mathcal{NP} -complete Max-Cut problem. While relaxation techniques are commonly employed to tackle Max-k-Cut, they often lack guarantees of equivalence between the solutions of the original problem and its relaxation. To address this issue, we introduce the Relax-Optimize-and-Sample (ROS) framework. In particular, we begin by relaxing the discrete constraints to the continuous probability simplex form. Next, we pre-train and fine-tune a graph neural network model to efficiently optimize the relaxed problem. Subsequently, we propose a sampling-based construction algorithm to map the continuous solution back to a high-quality Max-k-Cut solution. By integrating geometric landscape analysis with statistical theory, we establish the consistency of function values between the continuous solution and its mapped counterpart. Extensive experimental results on random regular graphs, the Gset benchmark, and the real-world datasets demonstrate that the proposed ROS framework effectively scales to large instances with up to 20,000 nodes in just a few seconds, outperforming state-of-the-art algorithms. Furthermore, ROS exhibits strong generalization capabilities across both in-distribution and out-of-distribution instances, underscoring its effectiveness for large-scale optimization tasks.

1. Introduction

The Max-k-Cut problem involves partitioning the vertices of a graph into k disjoint subsets in such a way that the

Proceedings of the 42^{nd} International Conference on Machine Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025 by the author(s).

total weight of edges between vertices in different subsets is maximized. This problem represents a significant challenge in combinatorial optimization and finds applications across various fields, including telecommunication networks (Eisenblätter, 2002; Gui et al., 2019), data clustering (Poland & Zeugmann, 2006; Ly et al., 2023), and theoretical physics (Cook et al., 2019; Coja-Oghlan et al., 2022). The Max-k-Cut problem is known to be \mathcal{NP} -complete, as it generalizes the well-known Max-Cut problem, which is one of the 21 classic \mathcal{NP} -complete problems identified by Karp (1972).

Significant efforts have been made to develop methods for solving Max-k-Cut problems (Nath & Kuhnle, 2024). Ghaddar et al. (2011) introduced an exact branch-and-cut algorithm based on semi-definite programming, capable of handling graphs with up to 100 vertices. For larger instances, various polynomial-time approximation algorithms have been proposed. Goemans & Williamson (1995) addressed the Max-Cut problem by first solving a semi-definite relaxation to obtain a fractional solution, then applying a randomization technique to convert it into a feasible solution, resulting in a 0.878-approximation algorithm. Building on this, Frieze & Jerrum (1997) extended the approach to Max-k-Cut, offering feasible solutions with approximation guarantees. de Klerk et al. (2004) further improved these guarantees, while Shinde et al. (2021) optimized memory usage. Despite their strong theoretical performance, these approximation algorithms involve solving computationally intensive semi-definite programs, rendering them impractical for large-scale Max-k-Cut problems. A variety of heuristic methods have been developed to tackle the scalability challenge. For the Max-Cut problem, Burer et al. (2002) proposed rank-two relaxation-based heuristics, and Goudet et al. (2024) introduced a meta-heuristic approach using evolutionary algorithms. For Max-k-Cut, heuristics such as genetic algorithms (Li & Wang, 2016), greedy search (Gui et al., 2019), multiple operator heuristics (Ma & Hao, 2017), and local search (Garvardt et al., 2023) have been proposed. While these heuristics can handle much larger Max-k-Cut instances, they often struggle to balance efficiency and solution quality.

Recently, *machine learning* techniques have gained attention for enhancing optimization algorithms (Bengio et al.,

¹Shenzhen Research Institute of Big Data, Shenzhen, China. ²The Chinese University of Hong Kong, Shenzhen, China. ³Tongji University, Shanghai, China. Correspondence to: Ye Xue <xueye@cuhk.edu.cn>.

2021; Gasse et al., 2022; Chen et al., 2024). Several studies, including Khalil et al. (2017); Barrett et al. (2020); Chen et al. (2020); Barrett et al. (2022), framed the Max-Cut problem as a sequential decision-making process, using reinforcement learning to train policy networks for generating feasible solutions. However, RL-based methods often suffer from extensive sampling efforts and increased complexity in action space when extended to Max-k-Cut, and hence entails significantly longer training and testing time. Karalias & Loukas (2020) focuses on subset selection, including Max-Cut as a special case. It trains a graph neural network (GNN) to produce a distribution over subsets of nodes of an input graph by minimizing a probabilistic penalty loss function. After the network has been trained, a randomized algorithm is employed to sequentially decode a valid Max-Cut solution from the learned distribution. A notable advancement by Schuetz et al. (2022) reformulated Max-Cut as a quadratic unconstrained binary optimization (QUBO), removing binarity constraints to create a differentiable loss function. This loss function was used to train a GNN, followed by a simple projection onto integer variables after unsupervised training. The key feature of this approach is solving the Max-Cut problem during the training phase, eliminating the need for a separate testing stage. Although this method can produce high-quality solutions for Max-Cut instances with millions of nodes, the computational time remains significant due to the need to optimize a parameterized GNN from scratch. The work of Tönshoff et al. (2023) first formulated the Max-Cut problem as a Constraint Satisfaction Problem (CSP) and then proposed a novel GNN-based reinforcement learning approach. This method outperforms prior neural combinatorial optimization techniques and conventional search heuristics. However, to the best of our knowledge, it is limited to unweighted Maxk-Cut problems. NeuroCUT (Shah et al., 2024) is a partitioning method based on reinforcement learning, whereas DGCLUSTER (Bhowmick et al., 2024) and DMoN (Tsitsulin et al., 2023) utilize GNNs to optimize clustering objectives. However, these methods are specifically designed for graph clustering, which focuses on minimizing inter-cluster connections—contrary to Max-k-Cut, where the goal is to maximize inter-partition connections. Consequently, they are not directly applicable to our problem. Although NeuroCUT claims support for arbitrary objective functions, its node selection heuristics are tailored exclusively for graph clustering, rendering it unsuitable for Max-k-Cut.

In this work, we propose a GNN-based *Relax-Optimize-and-Sample* (ROS) framework for efficiently solving the Max-*k*-Cut problem with arbitrary edge weights. The framework is depicted in Figure 1. Initially, the Max-*k*-Cut problem is formulated as a discrete optimization task. To handle this, we introduce *probability simplex relaxations*, transforming the discrete problem into a continuous one. We then op-

timize the relaxed formulation by training parameterized GNNs in an unsupervised manner. To further improve efficiency, we apply *transfer learning*, utilizing pre-trained GNNs to warm-start the training process. Finally, we refine the continuous solution using a *random sampling algorithm*, resulting in high-quality Max-k-Cut solutions.

The key contributions of our work are summarized as follows:

- **Novel Framework.** We propose a scalable ROS framework tailored to the weighted Max-k-Cut problem with arbitrary signs, built on solving continuous relaxations using efficient learning-based techniques.
- Theoretical Foundations. We conduct a rigorous theoretical analysis of both the relaxation and sampling steps. By integrating geometric landscape analysis with statistical theory, we demonstrate the consistency of function values between the continuous solution and its sampled discrete counterpart.
- Superior Performance. Comprehensive experiments on public benchmark datasets show that our framework produces high-quality solutions for Max-k-Cut instances with up to 20,000 nodes in just a few seconds. Our approach significantly outperforms state-of-the-art algorithms, while also demonstrating strong generalization across various instance types.

2. Preliminaries

2.1. Max-k-Cut Problems

Let $\mathcal{G}=(\mathcal{V},\mathcal{E})$ represent an undirected graph with vertex set \mathcal{V} and edge set \mathcal{E} . Each edge $(i,j)\in\mathcal{E}$ is assigned an arbitrary weight $\mathbf{W}_{ij}\in\mathbb{R}$, which can have any sign. A *cut* in \mathcal{G} refers to a partition of its vertex set. The Max-k-Cut problem involves finding a k-partition $(\mathcal{V}_1,\ldots,\mathcal{V}_k)$ of the vertex set \mathcal{V} such that the sum of the weights of the edges between different partitions is maximized.

To represent this partitioning, we employ a k-dimensional one-hot encoding scheme. Specifically, we define a $k \times N$ matrix $\boldsymbol{X} \in \mathbb{R}^{k \times N}$ where each column represents a one-hot vector. The Max-k-Cut problem can be formulated as:

$$\max_{\boldsymbol{X} \in \mathbb{R}^{k \times N}} \quad \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \boldsymbol{W}_{ij} \left(1 - \boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{X}_{\cdot j} \right)$$
s. t.
$$\boldsymbol{X}_{\cdot j} \in \{ \boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \dots, \boldsymbol{e}_{k} \} \qquad \forall j \in \mathcal{V},$$

where $X_{\cdot j}$ denotes the j^{th} column of X, W is a symmetric matrix with zero diagonal entries, and $e_{\ell} \in \mathbb{R}^k$ is a one-hot vector with the ℓ^{th} entry set to 1. This formulation aims to maximize the total weight of edges between different partitions, ensuring that each node is assigned to exactly one

Figure 1: The Relax-Optimize-and-Sample framework.

partition, represented by the one-hot encoded vectors. We remark that weighted Max-k-Cut problems with arbitrary signs is a generalization of classic Max-Cut problems and arise in many interesting applications (De Simone et al., 1995; Poland & Zeugmann, 2006; Hojny et al., 2021).

2.2. Graph Neural Networks

GNNs are powerful tools for learning representations from graph-structured data. GNNs operate by iteratively aggregating information from a node's neighbors, enabling each node to capture increasingly larger sub-graph structures as more layers are stacked. This process allows GNNs to learn complex patterns and relationships between nodes, based on their local connectivity.

At the initial layer (l=0), each node $i\in\mathcal{V}$ is assigned a feature vector $\boldsymbol{h}_i^{(0)}$, which typically originates from node features or labels. The representation of node i is then recursively updated at each subsequent layer through a parametric aggregation function $f_{\Phi^{(l)}}$, defined as:

$$m{h}_i^{(l)} = f_{\mathbf{\Phi}^{(l)}}\left(m{h}_i^{(l-1)}, \{m{h}_j^{(l-1)}: j \in \mathcal{N}(i)\}\right),$$
 (2)

where $\Phi^{(l)}$ represents the trainable parameters at layer l, $\mathcal{N}(i)$ denotes the set of neighbors of node i, and $\boldsymbol{h}_i^{(l)}$ is the node's embedding at layer l for $l \in \{1, 2, \cdots, L\}$. This iterative process enables the GNN to propagate information throughout the graph, capturing both local and global structural properties.

3. A Relax-Optimize-and-Sample Framework

In this work, we leverage continuous optimization techniques to tackle Max-k-Cut problems, introducing a novel ROS framework. Acknowledging the inherent challenges of discrete optimization, we begin by relaxing the problem to probability simplices and concentrate on optimizing this relaxed version. To achieve this, we propose a machine learning-based approach. Specifically, we model the relaxed problem using GNNs, pre-training the GNN on a curated graph dataset before fine-tuning it on the specific target instance. After obtaining high-quality solutions to the relaxed continuous problem, we employ a random sampling procedure to derive a discrete solution that preserves the same objective value.

3.1. Probability Simplex Relaxations

To simplify the formulation of the problem (1), we remove constant terms and negate the objective function, yielding an equivalent formulation expressed as follows:

$$\min_{\boldsymbol{X} \in \mathcal{X}} \quad f(\boldsymbol{X}; \boldsymbol{W}) \coloneqq \text{Tr}(\boldsymbol{X} \boldsymbol{W} \boldsymbol{X}^{\top}), \tag{P}$$

where $\mathcal{X} := \{ \boldsymbol{X} \in \mathbb{R}^{k \times N} : \boldsymbol{X}_{\cdot j} \in \{\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_k\}, \forall j \in \mathcal{V} \}$. It is important to note that the matrix \boldsymbol{W} is indefinite due to its diagonal entries being set to zero.

Given the challenges associated with solving the discrete problem \mathbf{P} , we adopt a naive relaxation approach, obtaining the convex hull of \mathcal{X} as the Cartesian product of N k-dimensional probability simplices, denoted by Δ_k^N . Consequently, the discrete problem \mathbf{P} is relaxed into the follow-

ing continuous optimization form:

$$\min_{\boldsymbol{X} \in \Delta_k^N} \quad f(\boldsymbol{X}; \boldsymbol{W}). \tag{\overline{P}}$$

Before optimizing problem $\overline{\mathbf{P}}$, we will characterize its *geometric landscape*. To facilitate this, we introduce the following definition.

Definition 3.1. Let \overline{X} denote a point in Δ_k^N . We define the neighborhood induced by \overline{X} as follows:

$$\mathcal{N}(\overline{\boldsymbol{X}}) := \left\{ \boldsymbol{X} \in \Delta_k^N \, \middle| \, \sum_{i \in \mathcal{K}(\overline{\boldsymbol{X}}_{\cdot j})} \boldsymbol{X}_{ij} = 1, \quad \forall j \in \mathcal{V} \quad \right\},$$

where
$$\mathcal{K}(\overline{\boldsymbol{X}}_{\cdot j}) := \{i \in \{1, \dots, k\} \mid \overline{\boldsymbol{X}}_{ij} > 0\}.$$

The set $\mathcal{N}(\overline{X})$ represents a neighborhood around \overline{X} , where each point in $\mathcal{N}(\overline{X})$ can be derived by allowing each nonzero entry of the matrix \overline{X} to vary freely, while the other entries are set to zero. Utilizing this definition, we can establish the following theorem.

Theorem 3.2. Let X^* denote a globally optimal solution to \overline{P} , and let $\mathcal{N}(X^*)$ be its induced neighborhood. Then

$$f(X; W) = f(X^*; W), \quad \forall X \in \mathcal{N}(X^*).$$

Theorem 3.2 states that for a globally optimal solution X^* , every point within its neighborhood $\mathcal{N}(X^*)$ shares the same objective value as X^* , thus forming a *basin* in the geometric landscape of f(X; W). If $X^* \in \mathcal{X}$ (i.e., an integer solution), then $\mathcal{N}(X^*)$ reduces to the singleton set $\{X^*\}$. Conversely, if $X^* \notin \mathcal{X}$, there exist $\prod_{j \in \mathcal{V}} |\mathcal{K}(X^*_{\cdot j})|$ unique integer solutions within $\mathcal{N}(X^*)$ that maintain the same objective value as X^* . This indicates that once a globally optimal solution to the relaxed problem $\overline{\mathbf{P}}$ is identified, it becomes straightforward to construct an optimal solution for the original problem \mathbf{P} that preserves the same objective value.

According to Carlson & Nemhauser (1966), among all globally optimal solutions to the relaxed problem $\overline{\mathbf{P}}$, the integer solution always exists. Theorem 3.2 extends this result, indicating that if the globally optimal solution is fractional, we can provide a straightforward method to derive its integer counterpart. We remark that it is highly non-trivial to guarantee that the feasible Max-k-Cut solution obtained from the relaxation one has the same quality.

Example. Consider a Max-Cut problem (k = 2) associated with the weight matrix W. We optimize its relaxation and obtain the optimal solution X^* .

$$\boldsymbol{W} \coloneqq \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \boldsymbol{X}^{\star} \coloneqq \begin{pmatrix} p & 1 & 0 \\ 1 - p & 0 & 1 \end{pmatrix},$$

where $p \in [0, 1]$. From the neighborhood $\mathcal{N}(\boldsymbol{X}^*)$, we can identify the following integer solutions that maintain the same objective value.

$$\boldsymbol{X}_1^{\star} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \boldsymbol{X}_2^{\star} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Given that $\overline{\mathbf{P}}$ is a non-convex program, identifying its global minimum is challenging. Consequently, the following two critical questions arise.

- **Q1.** Since solving $\overline{\mathbf{P}}$ to global optimality is \mathcal{NP} -hard, how to efficiently optimize $\overline{\mathbf{P}}$ for high-quality solutions?
- **Q2.** Given $\overline{X} \in \Delta_k^N \setminus \mathcal{X}$ as a high-quality solution to $\overline{\mathbf{P}}$, can we construct a feasible solution $\hat{X} \in \mathcal{X}$ to \mathbf{P} such that $f(\hat{X}; \mathbf{W}) = f(\overline{X}; \mathbf{W})$?

We provide a positive answer to **Q2** in Section 3.2, while our approach to addressing **Q1** is deferred to Section 3.3.

3.2. Random Sampling

Let $\overline{X} \in \Delta_k^N \setminus \mathcal{X}$ be a feasible solution to the relaxation $\overline{\mathbf{P}}$. Our goal is to construct a feasible solution $X \in \mathcal{X}$ for the original problem \mathbf{P} , ensuring that the corresponding objective values are equal. Inspired by Theorem 3.2, we propose a random sampling procedure, outlined in Algorithm 1. In this approach, we sample each column $X_{\cdot i}$ of the matrix X from a categorical distribution characterized by the event probabilities $\overline{X}_{\cdot i}$ (denoted as $\mathrm{Cat}(x; p = \overline{X}_{\cdot i})$ in Step 3 of Algorithm 1). This randomized approach yields a feasible solution \hat{X} for \mathbf{P} . However, since Algorithm 1 incorporates randomness in generating \hat{X} from \overline{X} , the value of $f(\hat{X}; W)$ becomes random as well. This raises the critical question: is this value greater or lesser than $f(\overline{X}; W)$? We address this question in Theorem 3.3.

Algorithm 1 Random Sampling

- 1: Input: $\overline{X} \in \Delta_k^N$
- 2: **for** i = 1 to N **do**
- 3: $\hat{m{X}}_{\cdot i} \sim \mathrm{Cat}(m{x}; m{p} = \overline{m{X}}_{\cdot i})$
- 4: end for
- 5: Output: $\hat{X} \in \mathcal{X}$

Theorem 3.3. Let \overline{X} and \hat{X} denote the input and output of Algorithm 1, respectively. Then, we have $\mathbb{E}_{\hat{X}}[f(\hat{X}; W)] = f(\overline{X}; W)$.

Theorem 3.3 states that $f(\hat{X}; W)$ is equal to $f(\overline{X}; W)$ in expectation. This implies that the random sampling procedure operates on a fractional solution, yielding Max-k-Cut feasible solutions with the same objective values in a probabilistic sense. While the Lovász-extension-based

method (Bach, 2013) also offers a framework for continuous relaxation, achieving similar theoretical results for arbitrary k and edge weights $W_{i,j} \in \mathbb{R}$ is not always guaranteed. In practice, we execute Algorithm 1 T times and select the solution with the lowest objective value of f as our best result. We remark that the theoretical interpretation in Theorem 3.3 distinguishes our sampling algorithm from the existing ones in the literature (Karalias & Loukas, 2020; Tönshoff et al., 2021; Michael et al., 2024).

3.3. GNN Parametrization-Based Optimization

To solve the problem $\overline{\mathbf{P}}$, we propose an efficient learning-to-optimize (L2O) method based on GNN parametrization. This approach reduces the laborious iterations typically required by classical optimization methods (e.g., mirror descent). Additionally, we introduce a "pre-train + fine-tune" strategy, where the model is endowed with prior graph knowledge during the pre-training phase, significantly decreasing the computational time required to optimize $\overline{\mathbf{P}}$.

GNN Parametrization. The Max-k-Cut problem can be framed as a node classification task, allowing us to leverage GNNs to aggregate node features, and obtain high-quality solutions. Initially, we assign a random embedding $\boldsymbol{h}_i^{(0)}$ to each node i in the graph \mathcal{G} . We adopt the GNN architecture proposed by Morris et al. (2019), utilizing an L-layer GNN with updates at layer l given by:

$$m{h}_i^{(l)} \coloneqq \sigma \left(m{\Phi}_1^{(l)}m{h}_i^{(l-1)} + m{\Phi}_2^{(l)} \sum_{j \in \mathcal{N}(i)} m{W}_{ji}m{h}_j^{(l-1)}
ight),$$

where $\sigma(\cdot)$ is an activation function, and $\Phi_1^{(l)}$ and $\Phi_2^{(l)}$ are the trainable parameters at layer l. This formulation facilitates efficient learning of node representations by leveraging both node features and the underlying graph structure. After processing through L layers of GNN, we obtain the final output $\boldsymbol{H}_{\Phi}^{(L)} \coloneqq [\boldsymbol{h}_1^{(L)}, \dots, \boldsymbol{h}_N^{(L)}] \in \mathbb{R}^{k \times N}$. A softmax activation function is applied in the last layer to ensure $\boldsymbol{H}_{\Phi}^{(L)} \in \Delta_k^N$, making the final output feasible for $\overline{\boldsymbol{P}}$.

"Pre-train + Fine-tune" Optimization. We propose a "pre-train + fine-tune" framework for learning the trainable weights of GNNs. Initially, the model is trained on a collection of pre-collected datasets to produce a pre-trained model. Subsequently, we fine-tune this pre-trained model for each specific testing instance. This approach equips the model with prior knowledge of graph structures during the pre-training phase, significantly reducing the overall solving time. Furthermore, it allows for out-of-distribution generalization due to the fine-tuning step.

In the pre-training phase, the trainable parameters $\Phi \coloneqq (\Phi_1^{(1)}, \Phi_2^{(1)}, \dots, \Phi_1^{(L)}, \Phi_2^{(L)})$ are optimized using the Adam

optimizer with random initialization, targeting the objective

$$\min_{m{\Phi}} \quad \mathcal{L}_{ ext{pre-training}}(m{\Phi}) \coloneqq rac{1}{M} \sum_{m=1}^{M} f(m{H}_{\Phi}^{(L)}; m{W}_{ ext{train}}^{(m)}),$$

where $\mathcal{D} \coloneqq \{ \boldsymbol{W}_{\text{train}}^{(1)}, \dots, \boldsymbol{W}_{\text{train}}^{(M)} \}$ represents the pretraining dataset. In the fine-tuning phase, for a problem instance $\boldsymbol{W}_{\text{test}}$, the Adam optimizer seeks to solve

$$\min_{oldsymbol{\Phi}} \quad \mathcal{L}_{ ext{fine-tuning}}(oldsymbol{\Phi}) \coloneqq f(oldsymbol{H}_{\Phi}^{(L)}; oldsymbol{W}_{ ext{test}}),$$

initialized with the pre-trained parameters.

Moreover, to enable the GNN model to fully adapt to specific problem instances, the pre-training phase can be omitted, enabling the model to be directly trained and tested on the same instance. While this direct approach may necessitate more computational time, it often results in improved performance regarding the objective function. Consequently, users can choose to include a pre-training phase based on the specific requirements of their application scenarios.

4. Experiments

4.1. Experimental Settings

We compare the performance of ROS against traditional methods as well as L2O algorithms for solving the Max-k-Cut problem. Additionally, we assess the impact of the "Pretrain" stage in the GNN parametrization-based optimization. The source code is available at https://github.com/NetSysOpt/ROS.

Baseline Algorithms. We denote our proposed algorithms by ROS and compare them against both traditional algorithms and L2O methods. When the pre-training step is skipped, we refer to our algorithm as ROS-vanilla. The following traditional Max-k-Cut algorithms are considered as baselines: (i) GW (Goemans & Williamson, 1995): an method with a 0.878-approximation guarantee based on semi-definite relaxation; (ii) BQP (Gui et al., 2019): a local search method designed for binary quadratic programs; (iii) Genetic (Li & Wang, 2016): a genetic algorithm specifically for Max-k-Cut problems; (iv) MD: a mirror descent algorithm that addresses the relaxed problem $\overline{\mathbf{P}}$ with a convergence tolerance at 10^{-8} and adopts the same random sampling procedure; (v) LPI (Goudet et al., 2024): an evolutionary algorithm featuring a large population organized across different islands; (vi) MOH (Ma & Hao, 2017): a heuristic algorithm based on multiple operator heuristics, employing various distinct search operators within the search phase. For the L2O method, we primarily examine the state-of-the-art baseline algorithms: (vii) PI-GNN (Schuetz et al., 2022): an unsupervised method for QUBO problems, which can model the weighted Max-Cut problem, delivering commendable performance. (viii) ECO-DQN (Barrett et al., 2020): a reinforcement L2O method introducing test-time exploratory refinement for Max-Cut problems. (ix) ANYCSP (Tönshoff et al., 2023): an unsupervised GNN-based search heuristic for CSPs, which can model the unweighted Max-k-Cut problem, leveraging a compact graph representation and global search action with the default time limit of 180 seconds.

Datasets. We conduct experiments on the following datasets.

- r-Random regular graphs (Schuetz et al., 2022): Each node has the same degree r. Edge weights are either 0 or 1.
- Gset (Ye, 2003): A well-known Max-k-Cut benchmark comprising toroidal, planar, and random graphs with $800 \sim 20,000$ nodes and edge densities between 2% and 6%. Edge weights are either 0 or ± 1 .
- **COLOR** (Micheal, 2002): A collection of dense graphs derived from literary texts, where nodes represent characters and edges indicate co-occurrence. These graphs have large chromatic numbers ($\chi \approx 10$), making them suitable for Max-k-Cut. Edge weights are either 0 or 1.
- **Bitcoin-OTC** (Kumar et al., 2016): A real-world signed network with 5, 881 nodes and 35, 592 edges, weighted from -10 to 10, capturing trust relationships among Bitcoin users.

The construction of the training and testing datasets is summarized in Table 1. The training set consists of 500 3regular, 500 5-regular graphs, and 500 7-regular graphs with 100 nodes each, corresponding to the cases k = 2, k = 3, and k = 10 respectively. The test set of random regular graphs includes 20 3-regular and 20 5-regular graphs for each $k \in \{2, 3\}$, with node counts of 100, 1,000, and 10,000. For the Gset benchmark, we evaluate both unweighted and weighted variants. The unweighted test set includes all Gset instances, with results reported in Tables 6 and 7 in Appendix D. For the weighted variant, we generate perturbations of the four largest Gset graphs (G70, G72, G77, G81) by multiplying each edge weight by $\sigma \sim \mathcal{U}[l, u]$, creating 10 perturbed instances per graph. We examine three distinct perturbation regimes: (i) mild perturbations ([0.9, 1.1]), (ii) moderate variations ([0, 10]), and (iii) extreme modifications ([0, 100]). The moderate perturbation results ([0, 10]) are presented in Table 3, with the remaining cases available in Appendix E. Additionally, we evaluate performance on three COLOR benchmark instances: anna, david, and huck.

Model Settings. ROS is designed as a two-layer GNN, with both the input and hidden dimensions set to 100. To address

(c) COLOR datasets and Bitcoin-OTC datasets

Figure 2: The computational time comparison of Max-*k*-Cut problems.

the issue of gradient vanishing, we apply graph normalization as proposed by Cai et al. (2021). The ROS model is pre-training using Adam with a learning rate of 10^{-2} for one epoch. During fine-tuning, the model is further optimized using the same Adam optimizer and learning rate, applying early stopping with a tolerance of 10^{-2} and patience of 100 iterations. Training terminates if no improvement is observed. Finally, in the random sampling stage, we execute Algorithm 1 for T=100 trials and return the best solution.

Evaluation Configuration. All our experiments were conducted on an NVIDIA RTX 3090 GPU, using PyTorch 2.2.0.

Table 1: Statistics of the training and testing datasets.

	Dataset	Graph Type	N	# Graphs	Weight Type
Train	Random Regular Graph	regular	100	500	unweighted
	Random Regular Graph	regular	100, 1,000, 10,000	60	unweighted
Test	Gset	random, planar, toroidal	$800 \sim 20{,}000$	71	unweighted, weighted
Test	COLOR	real-world	74, 87, 138	3	unweighted
	Bitcoin-OTC	real-world	5,881	1	weighted

Table 2: Cut value comparison of Max-k-Cut problems on random regular graphs.

Methods	N=1	L00	N=1,	000	N=10	,000
11101110110	k=2	k = 3	k=2	k = 3	k=2	k = 3
GW	$130.20_{\pm 2.79}$	_	N/A	_	N/A	_
BQP	$131.55_{\pm 2.42}$	$239.70_{\pm 1.82}$	$1324.45_{\pm 6.34}$	$2419.15_{\pm 6.78}$	N/A	N/A
Genetic	$127.55_{\pm 2.82}$	$235.50_{\pm 3.15}$	$1136.65_{\pm 10.37}$	$2130.30_{\pm 8.49}$	N/A	N/A
MD	$127.20_{\pm 2.16}$	$235.50_{\pm 3.29}$	$1250.35_{\pm 11.21}$	$2344.85_{\pm 9.86}$	$12428.85_{\pm 26.13}$	$23341.20_{\pm 32.87}$
PI-GNN	$122.95_{\pm 3.83}$	-	$1210.45_{\pm 44.56}$	-	$12655.05_{\pm 94.25}$	-
ECO-DQN	$135.60_{\pm 1.53}$	_	$1366.20_{\pm 5.20}$	_	N/A	_
ANYCSP	$131.65_{\pm 3.35}$	$247.90_{\pm 0.89}$	$1366.05_{\pm 5.25}$	$2494.50_{\pm 2.99}$	$13692.35_{\pm 11.27}$	$24929.80_{\pm 7.53}$
ROS-vanilla	$132.80_{\pm 1.99}$	$243.20_{\pm 1.80}$	$1322.95_{\pm 6.57}$	$2443.9_{\pm 4.10}$	$13239.80_{\pm 14.71}$	$24413.30_{\pm 16.02}$
ROS	$128.20 {\scriptstyle \pm 2.82}$	$240.30 {\scriptstyle \pm 2.59}$	$1283.75_{\pm 6.89}$	$2405.75{\scriptstyle\pm5.72}$	$12856.85 {\scriptstyle \pm 26.50}$	$24085.95{\scriptstyle\pm21.88}$

4.2. Performance Comparison against Baselines

4.2.1. COMPUTATIONAL TIME

We evaluated ROS against seven baseline algorithms: GW, BQP, Genetic, MD, PI-GNN, ECO-DQN, and ANYCSP on random regular graphs, comparing computational time for both Max-Cut and Max-3-Cut tasks. Experiments covered three problem scales: N=100, N=1,000, and N=10,000, with results shown in Figure 2a. For larger instances, Figure 2b compares the scalable methods (MD, ANYCSP, and PI-GNN) on weighted Gset graphs ($N \geq 10,000$) with edge weight perturbations in [0, 10]. Figure 2c extends this comparison to real-world networks (COLOR and Bitcoin-OTC graphs). Instances marked "N/A" indicate timeout failures (30-minute limit). Complete results for unweighted Gset benchmarks, including comparisons with state-of-the-art methods LPI and MOH, are provided in Tables 6 and 7 (Appendix D).

The results depicted in Figure 2a indicate that ROS efficiently solves all problem instances within seconds, even for large problem sizes of N=10,000. In terms of baseline performance, the approximation algorithm GW performs efficiently on instances with N=100, but it struggles with larger sizes due to the substantial computational burden associated with solving the underlying semi-definite programming problem. Heuristic methods such as BQP and Genetic can manage cases up to N=1,000 in a few hundred seconds, yet they fail to solve larger instances with N=10,000 because of the high computational cost of

each iteration. Notably, MD is the only traditional method capable of solving large instances within a reasonable time frame; however, when N reaches 10, 000, the computational time for MD approaches 15 times that of ROS. Regarding L2O methods, PI-GNN necessitates retraining and prediction for each instance, with test times exceeding dozens of seconds even for N=100. ECO-DQN relies on expensive GNNs at each decision step and can not scale to large problem sizes of N=10,000. ANYCSP needs hundreds of seconds even for N=100 due to the global search operation and long sampling trajectory. In contrast, ROS solves these large instances in merely a few seconds throughout the experiments, requiring only 10% of the computational time utilized by other L2O baselines. Figure 2b and Figure 2c illustrate the results for the weighted Gset benchmark and real-world datasets, respectively, where ROS efficiently solves the largest instances in just a few seconds, while other methods take tens to hundreds of seconds for equivalent tasks. Remarkably, ROS utilizes only about 1% of the computational time required by PI-GNN.

4.2.2. CUT VALUE

We evaluate ROS's performance on random regular graphs, the Gset benchmark, and real-world datasets, measuring solution quality for Problem (1). Results appear in Tables 2 (random graphs), 3 (weighted Gset), and 4 (real-world data), where "—" denotes methods incompatible with Max-k-Cut problems.

Table 3: Cut value comparison of Max-k-Cut problems on weighted Gset instances, where the noise factor $\sigma \sim [0, 10]$.

Methods	G70 (N=	10,000)	G72 (N=	10,000)	G77 (N=	14,000)	G81 (N=	20,000)
	k=2	k = 3	k=2	k = 3	k=2	k = 3	k=2	k = 3
GW	N/A	_	N/A	_	N/A	_	N/A	_
BQP	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Genetic	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MD	45490.21	49615.85	33449.49	38798.78	47671.94	55147.26	67403.00	78065.07
PI-GNN	44275.72	-	31469.65	-	44359.72	-	62439.97	-
ECO-DQN	N/A	_	N/A	_	N/A	_	N/A	_
ANYCSP	46420.48	48831.32	-280.74	-208.01	845.72	988.96	-13.52	271.01
ROS-vanilla	a 47140.07	49826.90	36697.11	42067.80	52226.53	59636.36	74051.42	84498.44
ROS	46707.60	49813.45	35733.11	40987.92	50790.44	58253.31	72057.24	82450.68

Table 4: Cut value comparison of Max-k-Cut problems on COLOR datasets and Bitcoin-OTC Datasets.

Methods	COLO	R anna	COLO	R david	COLO	R huck	В	itcoin-O	ГС
Wethous	k=2	k = 3	k = 2	k = 3	k = 2	k = 3	k=2	k = 3	k = 10
MD	339	421	259	329	184	242	39076	47595	53563
PI-GNN	279	_	228	_	166	_	37216	_	_
ANYCSP	330	423	263	328	166	139	10431	14265	19372
ROS-vanilla ROS	351 351	429 423	266 266	336 324	191 191	246 242	40576 39850	48214 48980	53758 53778

The results demonstrate that ROS consistently produces high-quality solutions for both k = 2 and k = 3 across all scales. While GW performs well for Max-Cut (k = 2) at N=100, it fails to generalize to arbitrary k. Traditional methods like BQP and Genetic support k=3 but often converge to suboptimal solutions. Although MD handles general k, it consistently underperforms ROS. Among learningbased methods, PI-GNN proves unsuitable for k=3 due to QUBO incompatibility and unreliable heuristic rounding, while ECO-DQN lacks k=3 support entirely. While ANYCSP achieves strong results on unweighted graphs, it cannot process weighted instances. These experiments collectively show that ROS offers superior generalizability and robustness for weighted Max-k-Cut tasks, outperforming both traditional and learning-based approaches in solution quality and flexibility.

To further assess ROS's scalability, we conduct comprehensive benchmarking against scalable baselines using challenging real-world datasets, including the COLOR and Bitcoin-OTC networks. The results in Table 4 demonstrate that both ROS and its simplified variant ROS-vanilla consistently outperform competing methods across most experimental settings. This performance advantage is particularly pronounced for the weighted Bitcoin-OTC instances, where our approach achieves superior solution quality while maintaining computational efficiency.

4.3. Effect of the "Pre-train" Stage in ROS

To evaluate the impact of the pre-training stage in ROS, we compared it with ROS-vanilla, which omits pre-training (see Section 3.3). We assessed both methods based on cut values and computational time. Figure 3 illustrates the ratios of these metrics between ROS-vanilla and ROS. In this figure, the horizontal axis represents the problem instances, while the left vertical axis (green bars) displays the ratio of objective function values, and the right vertical axis (red curve) indicates the ratio of computational times.

As shown in Figure 3a, ROS-vanilla achieves higher objective function values in most settings on the random regular graphs; however, its computational time is approximately 1.5 times greater than that of ROS. Thus, ROS demonstrates a faster solving speed compared to ROS-vanilla. Similarly, in experiments conducted on the Gset benchmark (Figure 3b), ROS reduces computational time by around 40% while maintaining performance comparable to that of ROS-vanilla. Notably, in the Max-3-Cut problem for the largest instance, G81, ROS effectively halves the solving time, showcasing the significant acceleration effect of pre-training. It is worth mentioning that the ROS model was pre-trained on random regular graphs with N=100and generalized well to regular graphs with N=1,000and N = 10,000, as well as to Gset problem instances of varying sizes and types. This illustrates ROS's capability to

Figure 3: The ratio of computational time and cut value comparison between ROS-vanilla and ROS.

generalize and accelerate the solving of large-scale problems across diverse graph types and sizes, emphasizing the strong out-of-distribution generalization afforded by pre-training.

In summary, while ROS-vanilla achieves slightly higher objective function values on individual instances, it requires longer solving times and struggles to generalize to other problem instances. This observation highlights the trade-off between a model's ability to generalize and its capacity to fit specific instances. Specifically, a model that fits individual instances exceptionally well may fail to generalize to new data, resulting in longer solving times. Conversely, a model that generalizes effectively may exhibit slightly weaker performance on specific instances, leading to a marginal decrease in objective function values. Therefore, the choice between these two training modes should be guided by the specific requirements of the application.

5. Conclusions

In this paper, we propose ROS, an efficient method for addressing the Max-k-Cut problem with arbitrary edge weights. Our approach begins by relaxing the constraints of the original discrete problem to probabilistic simplices. To effectively solve this relaxed problem, we propose an optimization algorithm based on GNN parametrization and in-

corporate transfer learning by leveraging pre-trained GNNs to warm-start the training process. After resolving the relaxed problem, we present a novel random sampling algorithm that maps the continuous solution back to a discrete form. By integrating geometric landscape analysis with statistical theory, we establish the consistency of function values between the continuous and discrete solutions. Experiments conducted on random regular graphs, the Gset benchmark, and real-world datasets demonstrate that our method is highly efficient for solving large-scale Max-k-Cut problems, requiring only a few seconds, even for instances with tens of thousands of variables. Furthermore, it exhibits robust generalization capabilities across both in-distribution and out-of-distribution instances, highlighting its effectiveness for large-scale optimization tasks. Exploring other sampling algorithms to further boost ROS performance is a future research direction. Moreover, the ROS framework with theoretical insights could be potentially extended to other graph-related combinatorial problems, and this direction is also worth investigating as future work.

Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. There are many potential societal consequences of our work, none of which we feel must be specifically highlighted here.

Acknowledgement

This work was supported by the National Key R&D Program of China under grant 2022YFA1003900. Ye Xue acknowledges support from the National Natural Science Foundation of China (Grant No. 62301334), the Guangdong Major Project of Basic and Applied Basic Research (No. 2023B0303000001), Akang Wang also acknowledges support from the National Natural Science Foundation of China (Grant No. 12301416), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2024A1515010306).

References

Andrade, C. E., Pessoa, L. S., and Stawiarski, S. The physical cell identity assignment problem: A practical optimization approach. *IEEE Transactions on Evolutionary Computation*, 28(2):282–292, 2024.

Bach, F. Learning with Submodular Functions: A Convex Optimization Perspective. Now Publishers Inc., Hanover, MA, USA, 2013. ISBN 1601987560.

Barrett, T., Clements, W., Foerster, J., and Lvovsky, A. Exploratory combinatorial optimization with reinforcement learning. *Proceedings of the AAAI Conference on Artificial Intelligence*, 34(04):3243–3250, 2020.

- Barrett, T. D., Parsonson, C. W., and Laterre, A. Learning to solve combinatorial graph partitioning problems via efficient exploration. *arXiv preprint arXiv:2205.14105*, 2022.
- Bengio, Y., Lodi, A., and Prouvost, A. Machine learning for combinatorial optimization: A methodological tour d'horizon. *European Journal of Operational Research*, 290(2):405–421, 2021. ISSN 0377-2217.
- Bhowmick, A., Kosan, M., Huang, Z., Singh, A., and Medya, S. Dgcluster: A neural framework for attributed graph clustering via modularity maximization. *Proceedings of the AAAI Conference on Artificial Intelligence*, 38 (10):11069–11077, 2024.
- Burer, S., Monteiro, R. D. C., and Zhang, Y. Rank-two relaxation heuristics for max-cut and other binary quadratic programs. *SIAM Journal on Optimization*, 12(2):503–521, 2002.
- Cai, T., Luo, S., Xu, K., He, D., Liu, T.-Y., and Wang, L. Graphnorm: A principled approach to accelerating graph neural network training. In *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 1204–1215. PMLR, 18–24 Jul 2021.
- Carlson, R. and Nemhauser, G. L. Scheduling to minimize interaction cost. *Operations Research*, 14(1):52–58, 1966.
- Chen, M., Chen, Y., Du, Y., Wei, L., and Chen, Y. Heuristic algorithms based on deep reinforcement learning for quadratic unconstrained binary optimization. *Knowledge-Based Systems*, 207:106366, 2020. ISSN 0950-7051.
- Chen, X., Liu, J., and Yin, W. Learning to optimize: A tutorial for continuous and mixed-integer optimization. *Science China Mathematics*, pp. 1–72, 2024.
- Coja-Oghlan, A., Loick, P., Mezei, B. F., and Sorkin, G. B. The ising antiferromagnet and max cut on random regular graphs. *SIAM Journal on Discrete Mathematics*, 36(2): 1306–1342, 2022.
- Cook, C., Zhao, H., Sato, T., Hiromoto, M., and Tan, S. X.-D. Gpu-based ising computing for solving max-cut combinatorial optimization problems. *Integration*, 69: 335–344, 2019. ISSN 0167-9260.
- de Klerk, E., Pasechnik, D. V., and Warners, J. P. On approximate graph colouring and max-k-cut algorithms based on the θ -function. *Journal of Combinatorial Optimization*, 8:267–294, 2004.
- De Simone, C., Diehl, M., Jünger, M., Mutzel, P., Reinelt, G., and Rinaldi, G. Exact ground states of ising spin

- glasses: New experimental results with a branch-and-cut algorithm. *Journal of Statistical Physics*, 80:487–496, 1995.
- Eisenblätter, A. The semidefinite relaxation of the k-partition polytope is strong. In *Integer Programming and Combinatorial Optimization*, pp. 273–290, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.
- Frieze, A. and Jerrum, M. Improved approximation algorithms for max k-cut and max bisection. *Algorithmica*, 18(1):67–81, 1997.
- Garvardt, J., Grüttemeier, N., Komusiewicz, C., and Morawietz, N. Parameterized local search for max c-cut. In Elkind, E. (ed.), *Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23*, pp. 5586–5594. International Joint Conferences on Artificial Intelligence Organization, 8 2023. Main Track.
- Gasse, M., Bowly, S., Cappart, Q., Charfreitag, J., Charlin, L., Chételat, D., Chmiela, A., Dumouchelle, J., Gleixner, A., Kazachkov, A. M., et al. The machine learning for combinatorial optimization competition (ml4co): Results and insights. In *NeurIPS 2021 competitions and demon*strations track, pp. 220–231. PMLR, 2022.
- Ghaddar, B., Anjos, M. F., and Liers, F. A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem. *Annals of Operations Research*, 188(1):155–174, 2011.
- Goemans, M. X. and Williamson, D. P. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. *Journal of the ACM (JACM)*, 42(6):1115–1145, 1995.
- Goudet, O., Goëffon, A., and Hao, J.-K. A large population island framework for the unconstrained binary quadratic problem. *Computers & Operations Research*, 168:106684, 2024. ISSN 0305-0548.
- Gui, J., Jiang, Z., and Gao, S. Pci planning based on binary quadratic programming in lte/lte-a networks. *IEEE Access*, 7:203–214, 2019.
- Hojny, C., Joormann, I., Lüthen, H., and Schmidt, M. Mixedinteger programming techniques for the connected max-kcut problem. *Mathematical Programming Computation*, 13(1):75–132, 2021.
- Karalias, N. and Loukas, A. Erdos goes neural: an unsupervised learning framework for combinatorial optimization on graphs. In *Advances in Neural Information Processing Systems*, volume 33, pp. 6659–6672. Curran Associates, Inc., 2020.

- Karp, R. M. Reducibility among Combinatorial Problems, pp. 85–103. Springer US, Boston, MA, 1972. ISBN 978-1-4684-2001-2.
- Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song, L. Learning combinatorial optimization algorithms over graphs. In *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.
- Kumar, S., Spezzano, F., Subrahmanian, V. S., and Faloutsos, C. Edge weight prediction in weighted signed networks. In *2016 IEEE 16th International Conference on Data Mining (ICDM)*, pp. 221–230, 2016.
- Li, P. and Wang, J. Pci planning method based on genetic algorithm in lte network. *Telecommunications Science*, 32(3):2016082, 2016.
- Ly, A., Sawhney, R., and Chugunova, M. Data clustering and visualization with recursive goemans-williamson maxcut algorithm. In 2023 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 496–500. IEEE, 2023.
- Ma, F. and Hao, J.-K. A multiple search operator heuristic for the max-k-cut problem. *Annals of Operations Research*, 248:365–403, 2017.
- Michael, R., Bartels, S., González-Duque, M., Zainchkovskyy, Y., Frellsen, J., Hauberg, S., and Boomsma, W. A continuous relaxation for discrete bayesian optimization. *arXiv preprint arXiv:2404.17452*, 2024.
- Micheal, T. The color datasets. https://mat.tepper.cmu.edu/COLOR02/, 2002.
- Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., and Grohe, M. Weisfeiler and leman go neural: Higher-order graph neural networks. *Proceedings of the AAAI Conference on Artificial Intelligence*, 33(01): 4602–4609, Jul. 2019.
- Nath, A. and Kuhnle, A. A benchmark for maximum cut: Towards standardization of the evaluation of learned heuristics for combinatorial optimization. *arXiv* preprint *arXiv*:2406.11897, 2024.
- Poland, J. and Zeugmann, T. Clustering pairwise distances with missing data: Maximum cuts versus normalized cuts.
 In *International Conference on Discovery Science*, pp. 197–208. Springer, 2006.
- Schuetz, M. J., Brubaker, J. K., and Katzgraber, H. G. Combinatorial optimization with physics-inspired graph neural networks. *Nature Machine Intelligence*, 4(4):367–377, 2022.

- Shah, R., Jain, K., Manchanda, S., Medya, S., and Ranu, S. Neurocut: A neural approach for robust graph partitioning. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '24, pp. 2584–2595, New York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400704901.
- Shinde, N., Narayanan, V., and Saunderson, J. Memory-efficient approximation algorithms for max-k-cut and correlation clustering. In *Advances in Neural Information Processing Systems*, volume 34, pp. 8269–8281. Curran Associates, Inc., 2021.
- Tönshoff, J., Ritzert, M., Wolf, H., and Grohe, M. Graph neural networks for maximum constraint satisfaction. *Frontiers in artificial intelligence*, 3:580607, 2021.
- Tönshoff, J., Kisin, B., Lindner, J., and Grohe, M. One model, any csp: Graph neural networks as fast global search heuristics for constraint satisfaction. In *Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23*, pp. 4280–4288. International Joint Conferences on Artificial Intelligence Organization, 8 2023. Main Track.
- Tsitsulin, A., Palowitch, J., Perozzi, B., and Müller, E. Graph clustering with graph neural networks. *Journal of Machine Learning Research*, 24(127):1–21, 2023.
- Ye, Y. The gset dataset. https://web.stanford.edu/~yyye/yyye/Gset/, 2003.

A. Related Works

Relaxation-based methods have been central to the algorithmic design for Max-Cut and its generalizations. In Table 5, we compare our proposed probability simplex relaxation with several representative approaches along key dimensions: variable complexity (# Var.), applicability to general Max-k-Cut, polynomial-time solvability, objective value consistency with the original problem, and scalability to large instances.

Relaxation	# Var.	Max-k-Cut	Polynomial Solvable?	Obj. Value Consistency?	Scalable?
Lovasz Extension (Bach, 2013)	$\mathcal{O}(N)$	Х	×	✓	√
SDP Relaxation (Goemans & Williamson, 1995)	$\mathcal{O}(N^2)$	×	\checkmark	×	×
SDP Relaxation (Frieze & Jerrum, 1997)	$\mathcal{O}(N \times k)$	\checkmark	\checkmark	×	X
Rank-2 Relaxation (Burer et al., 2002)	$\mathcal{O}(N)$	×	×	×	\checkmark
QUBO Relaxation (Andrade et al., 2024)	$\mathcal{O}(N)$	×	×	×	\checkmark
Probability Simplex Relaxation (ours)	$\mathcal{O}(N \times k)$	\checkmark	×	✓	\checkmark

Table 5: Comparison between Different Relaxations

The Lovász extension (Bach, 2013), originally designed for submodular optimization, admits scalable convex formulations but does not extend naturally to general Max-k-Cut problems. Seminal SDP-based methods, such as Goemans-Williamson (Goemans & Williamson, 1995) for Max-Cut and its k-way extension (Frieze & Jerrum, 1997), offer polynomial-time approximation guarantees. However, their reliance on large-scale semidefinite programming limits practical scalability and makes them less effective on modern large-scale instances. Non-convex formulations, including the rank-2 relax-ation (Burer et al., 2002) and QUBO-based relaxation (Andrade et al., 2024), provide scalable alternatives for Max-Cut but lack theoretical guarantees for Max-k-Cut and are typically solved locally. These methods often exhibit poor objective consistency and limited generalization.

In contrast, our probability simplex relaxation introduces a non-convex yet tractable formulation for Max-k-Cut with $\mathcal{O}(N \times k)$ variables. While it is not globally solvable in polynomial time, its optimal value aligns exactly with that of the original Max-k-Cut problem. Empirically, our GNN-based solver produces high-quality fractional solutions, which serve as effective initializations for randomized sampling. Overall, the proposed relaxation strikes a favorable balance between expressiveness, consistency, and scalability, offering a practical and theoretically grounded solution framework for large-scale Max-k-Cut problems.

B. Proof of Theorem 3.2

Proof. Before proceeding with the proof of Theorem 3.2, we first define the neighborhood of a vector $\bar{x} \in \Delta_k$, and establish results of Lemma B.2 and Lemma B.3.

Definition B.1. Let $\bar{x} = (\bar{x}_1, \dots, \bar{x}_k)$ denote a point in Δ_k . We define the neighborhood induced by \bar{x} as follows:

$$\widetilde{\mathcal{N}}(ar{m{x}}) \coloneqq \left\{ (m{x}_1, \cdots, m{x}_k) \in \Delta_k \left| \sum_{j \in \mathcal{K}(ar{m{x}})} m{x}_j = 1
ight.
ight\},$$

where $K(\bar{x}) = \{j \in \{1, \dots, k\} \mid \bar{x}_j > 0\}.$

Lemma B.2. Given $X_{\cdot i} \in \widetilde{\mathcal{N}}(X_{\cdot i}^{\star})$, it follows that

$$\mathcal{K}(\boldsymbol{X}_{\cdot i}) \subseteq \mathcal{K}(\boldsymbol{X}_{\cdot i}^{\star}).$$

Proof. Suppose there exists $j \in \mathcal{K}(X_{\cdot i})$ such that $j \notin \mathcal{K}(X_{\cdot i}^{\star})$, implying $X_{ji} > 0$ and $X_{ji}^{\star} = 0$.

We then have

$$\sum_{l \in \mathcal{K}(\boldsymbol{X}_{:i}^{\star})} \boldsymbol{X}_{li} + \boldsymbol{X}_{ji} \leq \sum_{l=1}^{k} \boldsymbol{X}_{li} = 1,$$

which leads to

$$\sum_{l \in \mathcal{K}(\boldsymbol{X}_{\cdot i}^{\star})} \boldsymbol{X}_{li} \leq 1 - \boldsymbol{X}_{ji} < 1,$$

contradicting with the fact that $X_{\cdot i} \in \widetilde{\mathcal{N}}(X_{\cdot i}^{\star})$.

Lemma B.3. Let X^* be a globally optimal solution to \overline{P} , then

$$f(X; W) = f(X^*; W),$$

where X has only the i^{th} column $X_{\cdot i} \in \widetilde{\mathcal{N}}(X_{\cdot i}^{\star})$, and other columns are identical to those of X^{\star} . Moreover, X is also a globally optimal solution to \bar{P} .

Proof. The fact that X is a globally optimal solution to \bar{P} follows directly from the equality $f(X; W) = f(X^*; W)$. Thus, it suffices to prove this equality. Consider that X^* and X differ only in the i^{th} column, and $X_{\cdot i} \in \widetilde{\mathcal{N}}(X_{\cdot i}^*)$. We can rewrite the objective value function as

$$f(\boldsymbol{X}; \boldsymbol{W}) = g(\boldsymbol{X}_{\cdot i}; \boldsymbol{X}_{\cdot - i}) + h(\boldsymbol{X}_{\cdot - i}),$$

where X_{-i} represents all column vectors of X except the i^{th} column. The functions g and h are defined as follows:

$$g(\boldsymbol{X}_{\cdot i}; \boldsymbol{X}_{\cdot - i}) = \sum_{j=1}^{N} \boldsymbol{W}_{ij} \boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{X}_{\cdot j} + \sum_{j=1}^{N} \boldsymbol{W}_{ji} \boldsymbol{X}_{\cdot j}^{\top} \boldsymbol{X}_{\cdot i} - \boldsymbol{W}_{ii} \boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{X}_{\cdot i},$$
$$h(\boldsymbol{X}_{\cdot - i}) = \sum_{l=1, l \neq i}^{N} \sum_{j=1, j \neq i}^{N} \boldsymbol{W}_{lj} \boldsymbol{X}_{\cdot l}^{\top} \boldsymbol{X}_{\cdot j}$$

To establish that $f(X; W) = f(X^*; W)$, it suffices to show that

$$g(\boldsymbol{X}_{\cdot i}; \boldsymbol{X}_{\cdot -i}) = g(\boldsymbol{X}_{\cdot i}^{\star}; \boldsymbol{X}_{\cdot -i})$$

as $X_{\cdot -i} = X_{\cdot -i}^{\star}$.

Rewriting $g(\boldsymbol{X}_{\cdot i}; \boldsymbol{X}_{\cdot -i})$, we obtain

$$g(\boldsymbol{X}_{\cdot i}; \boldsymbol{X}_{\cdot - i}) = \sum_{j=1}^{N} \boldsymbol{W}_{ij} \boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{X}_{\cdot j} + \sum_{j=1}^{N} \boldsymbol{W}_{ji} \boldsymbol{X}_{\cdot j}^{\top} \boldsymbol{X}_{\cdot i}$$

$$= 2 \sum_{j=1}^{N} \boldsymbol{W}_{ij} \boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{X}_{\cdot j}$$

$$= 2 \boldsymbol{X}_{\cdot i}^{\top} \sum_{j=1, j \neq i}^{N} \boldsymbol{W}_{ij} \boldsymbol{X}_{\cdot j}$$

$$= 2 \boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{Y}_{\cdot i},$$

where $Y_{i} := \sum_{j=1, j \neq i}^{N} W_{ij} X_{ij}$.

If $|\mathcal{K}(X_{\cdot i}^{\star})| = 1$, then there is only one non-zero element in $X_{\cdot i}^{\star}$ equal to one. Therefore, $g(X_{\cdot i}^{\star}; X_{\cdot -i}) = g(X_{\cdot i}; X_{\cdot -i})$ since $X_{\cdot i} = X_{\cdot i}^{\star}$.

For the case where $|\mathcal{K}(\boldsymbol{X}_{\cdot i}^{\star})| > 1$, we consider any indices $j, l \in \mathcal{K}(\boldsymbol{X}_{\cdot i}^{\star})$ such that $\boldsymbol{X}_{ji}^{\star}, \boldsymbol{X}_{li}^{\star} \in (0, 1)$. Then, there exists $\epsilon > 0$ such that we can construct a point $\widetilde{\boldsymbol{x}} \in \Delta_k$ where the j^{th} element is set to $\boldsymbol{X}_{ji}^{\star} - \epsilon$, the l^{th} element is set to $\boldsymbol{X}_{li}^{\star} + \epsilon$, and all other elements remain the same as in $\boldsymbol{X}_{\cdot i}^{\star}$. Since \boldsymbol{X}^{\star} is a globally optimum of the function $f(\boldsymbol{X}; \boldsymbol{W})$, it follows that $\boldsymbol{X}_{\cdot i}^{\star}$ is also a global optimum for the function $g(\boldsymbol{X}_{\cdot i}^{\star}; \boldsymbol{X}_{\cdot -i})$. Thus, we have

$$\begin{split} g(\boldsymbol{X}_{\cdot i}^{\star}; \boldsymbol{X}_{\cdot - i}) &\leq g(\widetilde{\boldsymbol{x}}; \boldsymbol{X}_{\cdot - i}) \\ \boldsymbol{X}_{\cdot i}^{\star \top} \boldsymbol{Y}_{\cdot i} &\leq \widetilde{\boldsymbol{x}}^{\top} \boldsymbol{Y}_{\cdot i} \\ &= \boldsymbol{X}_{\cdot i}^{\star \top} \boldsymbol{Y}_{\cdot i} - \epsilon \boldsymbol{Y}_{ji} + \epsilon \boldsymbol{Y}_{li}, \end{split}$$

which leads to the inequality

$$Y_{ii} \le Y_{li}. \tag{3}$$

Next, we can similarly construct another point $\hat{x} \in \Delta_k$ with its j^{th} element equal to $X_{ji}^{\star} + \epsilon$, the k^{th} element equal to $X_{ki}^{\star} - \epsilon$, and all other elements remain the same as in X_{i}^{\star} . Subsequently, we can also derive that

$$g(\boldsymbol{X}_{\cdot i}^{\star}; \boldsymbol{X}_{\cdot - i}) \leq g(\hat{\boldsymbol{x}}; \boldsymbol{X}_{\cdot - i})$$
$$= \boldsymbol{X}_{\cdot i}^{\star \top} \boldsymbol{Y}_{\cdot i} + \epsilon \boldsymbol{Y}_{ji} - \epsilon \boldsymbol{Y}_{li},$$

which leads to another inequality

$$Y_{li} \le Y_{ji}. \tag{4}$$

Consequently, combined inequalities (3) and (4), we have

$$Y_{ii} = Y_{li}$$
,

for $j, l \in \mathcal{K}(\boldsymbol{X}_{\cdot i}^{\star})$.

From this, we can deduce that

$$oldsymbol{Y}_{j_1i} = oldsymbol{Y}_{j_2i} = \cdots = oldsymbol{Y}_{j_{|\mathcal{K}(oldsymbol{X}^{\star}_{i})|}i} = t,$$

where $j_1, \dots, j_{|\mathcal{K}(\boldsymbol{X}_{\cdot,i}^{\star})|} \in \mathcal{K}(\boldsymbol{X}_{\cdot,i}^{\star})$.

Next, we find that

$$g(\boldsymbol{X}_{\cdot i}^{\star}; \boldsymbol{X}_{\cdot -i}) = 2\boldsymbol{X}_{\cdot i}^{\star \top} \boldsymbol{Y}_{\cdot i}$$

$$= 2 \sum_{j=1}^{k} \boldsymbol{X}_{j i}^{\star} \boldsymbol{Y}_{j i}$$

$$= 2 \sum_{j=1, j \in \mathcal{K}(\boldsymbol{X}_{\cdot i}^{\star})}^{N} \boldsymbol{X}_{j i}^{\star} \boldsymbol{Y}_{j i}$$

$$= 2t \sum_{j=1, j \in \mathcal{K}(\boldsymbol{X}_{\cdot i}^{\star})}^{N} \boldsymbol{X}_{j i}^{\star}$$

$$= 2t.$$

Similarly, we have

$$\begin{split} g(\boldsymbol{X}_{\cdot i}; \boldsymbol{X}_{\cdot - i}) &= 2\boldsymbol{X}_{\cdot i}^{\top} \boldsymbol{Y}_{\cdot i} \\ &= 2\sum_{j=1}^{k} \boldsymbol{X}_{ji} \boldsymbol{Y}_{ji} \\ &= 2\sum_{j=1, j \in \mathcal{K}(\boldsymbol{X}_{\cdot i})} \boldsymbol{X}_{ji} \boldsymbol{Y}_{ji} \\ &\stackrel{\text{Lemma B.2}}{=} 2t \sum_{j=1, j \in \mathcal{K}(\boldsymbol{X}_{\cdot i})} \boldsymbol{X}_{ji} \\ &= 2t \end{split}$$

Accordingly, we conclude that

$$g(\boldsymbol{X}_{\cdot i}; \boldsymbol{X}_{\cdot -i}) = g(\boldsymbol{X}_{\cdot i}^{\star}; \boldsymbol{X}_{\cdot -i}),$$

which leads us to the result

$$f(\boldsymbol{X}; \boldsymbol{W}) = f(\boldsymbol{X}^*; \boldsymbol{W}),$$

where
$$X_{\cdot i} \in \widetilde{\mathcal{N}}(X_{\cdot i}^{\star}), X_{\cdot -i} = X_{\cdot -i}^{\star}$$
.

Accordingly, for any $X \in \mathcal{N}(X^*)$, we iteratively apply Lemma B.3 to each column of X^* while holding the other columns fixed, thereby proving Theorem 3.2.

C. Proof of Theorem 3.3

Proof. Based on \overline{X} , we can construct the random variable \widetilde{X} , where $\widetilde{X}_{i} \sim \operatorname{Cat}(x; p = \overline{X}_{i})$. The probability mass function is given by

$$\mathbf{P}(\widetilde{X}_{\cdot i} = e_{\ell}) = \overline{X}_{\ell i},\tag{5}$$

where $\ell = 1, \dots, k$.

Next, we have

$$\mathbb{E}_{\widetilde{\boldsymbol{X}}}[f(\widetilde{\boldsymbol{X}}; \boldsymbol{W})] = \mathbb{E}_{\widetilde{\boldsymbol{X}}}[\widetilde{\boldsymbol{X}}\boldsymbol{W}\widetilde{\boldsymbol{X}}^{\top}] = \mathbb{E}_{\widetilde{\boldsymbol{X}}}[\sum_{i=1}^{N} \sum_{j=1}^{N} \boldsymbol{W}_{ij} \widetilde{\boldsymbol{X}}_{\cdot i}^{\top} \widetilde{\boldsymbol{X}}_{\cdot j}]$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N} \boldsymbol{W}_{ij} \mathbb{E}_{\widetilde{\boldsymbol{X}}_{\cdot i} \widetilde{\boldsymbol{X}}_{\cdot j}} [\widetilde{\boldsymbol{X}}_{\cdot i}^{\top} \widetilde{\boldsymbol{X}}_{\cdot j}]$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N} \boldsymbol{W}_{ij} \mathbb{E}_{\widetilde{\boldsymbol{X}}_{\cdot i} \widetilde{\boldsymbol{X}}_{\cdot j}} [\mathbb{1}(\widetilde{\boldsymbol{X}}_{\cdot i} = \widetilde{\boldsymbol{X}}_{\cdot j})]$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N} \boldsymbol{W}_{ij} \mathbb{P}(\widetilde{\boldsymbol{X}}_{\cdot i} = \widetilde{\boldsymbol{X}}_{\cdot j})$$

$$= \sum_{i=1}^{N} \sum_{j=1, j \neq i}^{N} \boldsymbol{W}_{ij} \mathbb{P}(\widetilde{\boldsymbol{X}}_{\cdot i} = \widetilde{\boldsymbol{X}}_{\cdot j}). \tag{6}$$

Since $\widetilde{\boldsymbol{X}}_{\cdot i}$ and $\widetilde{\boldsymbol{X}}_{\cdot j}$ are independent for $i \neq j$, we have

$$\mathbb{P}(\widetilde{X}_{\cdot i} = \widetilde{X}_{\cdot j}) = \sum_{\ell=1}^{k} \mathbb{P}(\widetilde{X}_{\cdot i} = \widetilde{X}_{\cdot j} = e_{\ell})$$

$$= \sum_{\ell=1}^{k} \mathbb{P}(\widetilde{X}_{\cdot i} = e_{\ell}, \widetilde{X}_{\cdot j} = e_{\ell})$$

$$= \sum_{\ell=1}^{k} \mathbb{P}(\widetilde{X}_{\cdot i} = e_{\ell}) \mathbb{P}(\widetilde{X}_{\cdot j} = e_{\ell})$$

$$= \sum_{\ell=1}^{k} \overline{X}_{\ell i} \overline{X}_{\ell j}$$

$$= \overline{X}_{\cdot i}^{\top} \overline{X}_{\cdot j}.$$
(7)

Substitute (7) into (6), we obtain

$$\mathbb{E}_{\widetilde{\boldsymbol{X}}}[f(\widetilde{\boldsymbol{X}};\boldsymbol{W})] = \sum_{i=1}^{N} \sum_{j=1}^{N} \boldsymbol{W}_{ij} \overline{\boldsymbol{X}}_{\cdot i}^{\top} \overline{\boldsymbol{X}}_{\cdot j} = f(\overline{\boldsymbol{X}};\boldsymbol{W}).$$
(8)

D. The Results on Unweighted Gset Instances

Table 6: Complete results on Gset instances for Max-Cut.

- 1																																			
ROS	Time (s) ↓	1.7	1.8	1.9	2.1	1.7	1.7	1.8	1.8	1.9	1.8	1.5	1.4	1.5	1.8	1.4	1.3	1.5	1.7	1.5	1.8	1.6	2.7	1.9	2.4	1.9	3.5	2.1	1.9	1.9	2.9	1.9	1.7	1.7	1.6
X	Obj. ↑	11395	11467	11370	11459	11408	1907	1804	1775	1876	1755	464	464	524	2953	2871	2916	2914	905	772	788	848	13007	12936	12933	12947	12954	2971	2923	3089	3025	2943	1226	1208	1220
ııııa	Time (s) ↓	5.6	5.6	2.7	5.6	5.6	2.5	5.6	2.8	2.6	5.6	1.8	1.9	1.9	1.5	1.8	1.7	1.9	2.1	7	2.1	2.1	5.6	2.9	1.9	7	2.5	2.8	5.6	2.9	2.8	2.1	2.2	2.3	2.3
ROS-vanilla	_	11423	1462	11510	1416	11505	1994	1802	1876	1839	1811	496	498	518	2932	2920	2917	2932	903	808	843	858	13028	13048	13035	13040	13054	2993	2985	3056	3004	3015	1240	1224	1238
	Time (s) ↓ (7	∞	10	7	7	14	7	10	13	10	=	16	23	119	80	69	104	40	49	31	32	413	150	234	258	291	152	197	293	410	412	330	349	302
ГЬГ	_	1624	1620	1622	1646	1631	178	9007	5005	1054	000	564	556	582	1064	050	1052	1047	992	906	941	931	3359	3342	3337	3340	3328	341	1298	1405	413	310	1410	382	38.4
	Time (s) ↓ C					_																			_								65.8		
MOH	←		_		_																		_			_							1410 6		
	→ 																																		
ANYCSP	ĮĪ.																																0 180.1		
	o →																																, 1360		
ECO-DON	Time (s)	23.4	25.2	26.1	26.8	24.2	23.3	25.5	25.5	26.8	27.1	25.6	27.2	26.9	23.4	26.2	26.8	25.8	25.6	27.2	28.6	25.2	198.4	196.7	349.2	202.6	201.4	200.2	201.1	204.3	200.0	201.4	198.7	194.3	001
Ä	∫ Obj. ↑	11482	11516	11543	11522	11485	2095	1957	1955	2044	1930	545	541	565	2807	2741	2757	2754	925	828	897	864	13169	13096	13096	13146	13126	3212	3160	3312	3287	3215	1349	1330	1220
BQP	Time (s)	11.3	11.7	11.0	11.2	11.0	11.4	11.1	1.1	14.6	10.9	11.0	11.0	10.8	11.1	11.1	14.3	12.1	11.2	11.4	11.9	14.1	92.6	92.6	95.0	102.6	6.96	6.86	8.96	96.4	99.3	6.3	92.7	89.3	2 30
	Obj. ↑	11406	11426	11397	11430	11406	1661	1780	1758	1845	1816	540	534	260	2985	2966	2987	2967	922	816	860	837	13004	12958	13002	12968	12966	3062	2963	3044	3074	2998	1338	1302	1214
Genetic	Time (s) ↓	587.4	588.3	8.965	580.5	598.2	581.2	587.5	591.8	582.3	589.5	509.4	514.8	520.0	564.2	547.7	541.3	558.9	567.0	571.2	565.8	572.2	N/A	N/A	NT/A										
Gene	Obj. ↑	10929	10926	10933	10945	10869	1435	1273	1241	1345	1313	406	388	426	2855	2836	2848	2829	643	571	633	620	N/A	N/A	N1/ A										
NNS	ïme (s) ↓	214.3	212.7	215.1	216.0	214.1	214.4	215.4	215.4	211.7	212.7	216.2	215.0	214.2	211.5	213.0	212.9	186.7	212.9	206.5	213.4	209.3	212.9	211.7	214.5	214.3	217.2	216.3	214.9	216.5	214.3	216.3	214.9	213.4	710
PI-GNN	Obj.↑ Ti	10680	10533	10532	10805	10417	1748	1524	1566	1545	1445	464	470	480	2484	2416	2604	2456	763	725	740	740	12283	12314	11606	12233	12141	2509	2563	2578	2559	2539	1106	1068	1106
	Time (s) ↓	5.1	5.3	5.3	8.4	3.7	6.9	5.9	6.1	8.0	7.3	3.0	2.4	3.0	3.1	3.1	3.8	3.3	3.7	3.6	3.5	3.0	12.2	10.2	10.0	11.7	8.01	11.2	11.2	12.3	11.7	11.5	8.9	9.9	0 4
MD	_	1320	1255	1222	1280	1156	1755	1635	1651	1720	1700	466	466	486	2930	2932	2937	2922	825	740	191	784	TTT7	2688	2721	2725	2725	2632	2762	2736	2774	2736	1136	1106	1110
	\rightarrow	_																															N/A		
GW.	Obj.↑ Tin	_	_	_																															
3	_																											_	_	_			4000		
<u> </u>																																	2000 4		
Instance																																G31 2			

Table 6: Continued.

ROS	Time (s) ↓	1.5	1.5	1.8	1.7	2.5	2.2	2.4	1.7	1.7	1.7	2.5	1.8	2.1	2.2	1.9	1.7	1.6	1.6	1.3	5.9	2.5	2.5	1.8	4.7	7	7	2.8	1.5	3	2.5	3.3	1.9	3.4	3.9	8.1	9.3
R	Obj. ↑	7107	7141	7173	2165	2128	2139	2235	6471	6472	6486	6499	6486	5498	5452	5582	3677	3641	3658	3642	6276	3475	3078	17574	5407	13402	5011	4294	24270	7657	4826	5580	6010	8916	6102	8740	12332
nilla	Fime (s) ↓	2.4	1.7	1.6	2.5	2.7	1.6	2.2	2.7	2.5	2.4	2.5	2.5	3.2	3.1	3.2	1.5	1.3	1.5	1.6	2.1	7	1.7	2.3	1.9	7	3.8	3.8	1.7	2.3	4.4	5.5	6.2	4.9	6.2	6	13.7
ROS-vanilla	Obj. ↑ 1	7235	7164	7114	2107	2207	2120	2200	6239	6498	6528	6498	6497	5640	5580	9999	3629	3526	3633	3653	6186	3444	3040	17632	5343	13433	5037	4252	24185	7508	4878	5570	0609	9004	9909	8678	12260
I.	Time (s) ↓	5790	4082	614	347	314	586	328	19	70	19	21	22	\$	93	6	145	119	182	140	6594	49445	3494	65737	65112	44802	74373	26537	52726	49158	21737	34062	61556	28820	42542	66662	66691
LPI	Obj.↑	0892	7691	8892	2408	2400	2405	2481	0999	0599	6654	6649	299	0009	0009	5880	3848	3851	3850	3852	10299	4017	3494	19294	8809	14190	8615	4872	27033	8752	5562	6364	6948	9594	7004	9356	14030
	Fime (s) ↓ (664.5	652.8	7.677	7.787	472.5	377.4	777.4	1.2	5.3	6.9	67.3	43.3	0.0	0.0	532.1	189.2	209.7	299.3	190.4	230.4	990.4	528.3	522.3	8.864	945.4	603.3	9.895	492.1	1011.1	5.607	9061.9	1214.3	732.4	9.9859	9.693	0422.0
MOH	Jbj.↑ Ti																																•		8669		
	Fime (s) ↓ O																																		180.2 6		
ANYCSP	←																																				
	.) ↓ Obj.																																		9289		
ECO-DON	Time (s)	195.	204	200.	198.8	199.8	203.	200	44.3	42.2	41.3	43.8	46.8	881.	871.	876.	45.0	41.9	38.3	44.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A/N
田	Obj. ↑	6602	6555	9655	1904	2171	1925	2152	6585	6577	6581	6570	6575	5879	5879	5807	3413	3441	3469	3485	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
BQP	Time (s) ↓	95.3	95.4	9.001	94.4	97.3	105.8	95.5	18.0	18.5	22.4	18.4	18.4	300.4	303.0	299.8	17.7	18.5	18.0	18.0	1142.1	1147.6	1120.8	1176.6	1183.4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
ш	Obj. ↑	7490	7498	7507	2196	2169	2183	2255	6209	6463	6489	6485	6491	0009	0009	5880	3759	3771	3752	3753	862	3710	3310	18813	5490	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Genetic	Time (s) ↓	N/A	914.4	914.3	921.5	916.2	912.4	N/A	N/A	N/A	887.9	2.768	872.8	880.1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A						
Gen	Obj. ↑	N/A	9265	6009	9009	5978	5948	N/A	N/A	N/A	3568	3575	3545	3548	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A						
NN	ime (s) ↓	214.8	185.3	212.8	215.5	216.0	218.6	206.3	186.9	190.8	189.6	188.6	184.8	191.4	192.0	192.3	188.5	183.8	170.6	189.3	201.5	201.8	203.0	202.8	202.6	214.0	213.9	214.0	213.9	212.9	220.4	223.1	258.9	217.5	217.6	291.0	494.1
PI-GNN	Obj. ↑ T	6424	6224	6841	1853	1855	1898	1933	6049	6609	1609	5594	6049	4958	4938	4948	3293	3185	3029	3201	9110	2939	2650	17115	4674	11430	4225	3720	22224	9199	4208	4816	5312	8404	5386	7352	10582
	Fime (s) ↓	10.1	9.3	9.8	9.2	0.6	9.1	9.5	5.0	5.0																									44.2		
MD	Obj. ↑ Ti	7336	7400	7343	1998	1971	6961	2075	5380	5327	5329	5300	5369	9009	9809	5156	3693	3695	3670	3682	9462	3203	2770	8452	2099	3004	4592	3922	2938	7283	4520	5100	5592	8551	5638	7934	1226
	Fime $(s) \downarrow$										_																								N/A		
GW										_																									N/A		
3	-	١.																																	20000		
																									•				•	•						•	•
e 7		200	200	200	200	200	200	200	100	100	100	100	100	300	300	300	100	100	100	100	500	500	500	500	500	700	700	700	700	700	800	906	100	100	10000	140	2000
Instance		G36	G37	G38	G39	G40	G41	G42	G43	G44	G45	G46	G47	G48	G49	G50	G51	G52	G53	G54	G55	G56	G57	G58	G59	09D	G61	G62	G63	G64	G65	995	C95	G70	G72	C177	G81

Table 7: Complete results on Gset instances for Max-3-Cut.

ROS	Time (s) \downarrow	1.9	2.3	1.9	1.9	2.9	1.8	2.4	2.1	2.2	2.3	1.4	1.5	1.4	2.1	2	1.6	1.6	1.7	1.7	1.8	1.5	2.2	2.1	Э	1.8	2	2	2.1	2	3.4	2.5	1.7	2	1.7	1.7
	Obj. ↑	14961	14932	14914	14961	14962	2361	2188	2171	2185	2181	591	582	629	3892	3838	3845	3852	1067	296	993	975	16601	16702	16754	16673	16665	3532	3414	3596	3654	3525	1482	1454	1435	9536
ROS-vanilla	Time (s) ↓	2.8	2.8	2.9	3.3	3.2	2.8	2.1	2.8	2.8	2.9	2	2	2	2.8	1.9	2.3	2.4	2.2	2.1	2.2	2.2	3.3	3.9	3.6	2.1	3.1	1.7	ю	3.4	3.1	ю	2.5	2.5	2.4	2
ROS-v	Obj. ↑	14949	15033	15016	14984	15006	2436	2188	2237	2246	2201	616	604	617	3914	3817	3843	3841	1094	972	1006	1011	16790	16819	16801	16795	16758	3517	3507	3634	3656	3596	1488	1449	1418	9225
МОН	Time (s) ↓	557.3	333.3	269.6	300.6	98.2	307.3	381.0	456.5	282.0	569.3	143.8	100.7	459.4	88.2	80.3	1.3	7.8	0.3	0.2	13.3	55.8	28.5	45.1	16.3	64.8	44.8	53.2	38.9	68.2	150.4	124.7	160.1	62.6	6.88	66.2
	Obj. ↑	15165	15172	15173	15184	15193	2632	2409	2428	2478	2407	699	099	989	4012	3984	3991	3983	1207	1081	1122	1109	17167	17168	17162	17163	17154	4020	3973	4106	4119	4003	1653	1625	1607	10046
ANYCSP	Time (s) ↓	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1	180.1
AN.	Obj. ↑	15115	15088	15111	15115	15092	1164	932	1007	1164	919	650	633	663	3973	3975	3945	3955	666	915	861	895	17098	17049	17042	17085	17014	2846	2778	3035	3032	2881	1590	1550	1525	8966
BQP	Time (s) ↓	16.5	17.0	17.0	17.1	17.3	25.0	16.6	19.3	16.5	18.2	16.4	17.4	18.9	16.9	17.3	18.2	20.2	18.7	17.0	17.0	17.5	135.5	135.6	137.7	141.8	136.3	134.3	136.4	136.2	133.6	131.0	129.3	126.2	126.0	138.1
	Obj. ↑	14880	14845	14872	14886	14847	2302	2081	2096	2099	2055	624	809	638	3900	3885	3896	3886	1083	962	717	984	16599	16626	16591	16661	16608	3475	3433	3582	3578	3439	1545	1517	1499	9816
Genetic	Time (s) ↓	595.3	595.3	588.6	588.7	591.9	604.4	589.9	589.7	604.4	593.3	554.5	543.6	550.8	571.1	567.6	561.5	558.7	584.0	584.2	576.8	576.3	N/A													
Gen	Obj. ↑	14075	14035	14105	14055	14104	1504	1260	1252	1326	1266	414	388	425	3679	3625	3642	3640	704	595	589	612	N/A	N/A	N/A	N/A	N/A	Z/A	Z/A	N/A	N/A	N/A	N/A	N/A	N/A	ΝA
MD	Time (s) \downarrow	9.6	8.4	6.5	6.9	8.1	7.8	8.9	7.7	8.2	7.5	4.0	4.4	4.0	5.0	8.4	5.3	5.3	4.5	4.4	4.5	4.9	15.2	15.0	16.1	16.2	15.3	16.4	16.1	16.0	16.2	17.0	11.1	10.7	10.9	14.2
	Obj. ↑	14735	14787	14663	14716	14681	2161	2017	1938	2031	1961	553	530	558	3844	3815	3825	3815	992	698	928	936	16402	16422	16452	16407	16422	3250	3198	3324	3320	3243	1342	1284	1292	9644
<u> </u>	<u>)</u>	19176	19176	19176	19176	19176	19176	19176	19176	19176	19176	1600	1600	1600	4694	4661	4672	4667	4694	4661	4672	4667	19990	19990	19990	19990	19990	19990	19990	19990	19990	19990	4000	4000	4000	11778
3	_	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
Instance		GI	G2	G3	G4	G5	95	G7	85	69	G10	G11	G12	G13	G14	G15	G16	G17	G18	G19	G20	G21	G22	G23	G24	G25	G26	G27	G28	G29	G30	G31	G32	G33	G34	G35

Table 7: Continued.

Obj. ↑ Time (s) ↓ Obj. ↑ Time (s) ↓ Obj. ↑ Time (s) ↓ Obj. ↑ 9786 138.6 9972 180.1 10039 74.3 9372 9821 139.2 9983 180.1 10040 14.3 9372 2600 132.8 2998 180.1 10040 116.6 9489 2600 132.8 2498 180.1 10040 116.6 9489 2600 132.9 2416 8.4 2870 82.8 2474 2600 129.9 2416 8.4 2887 828 2474 2606 129.9 2486 32.8 2474 2881 2606 129.9 8518 8871 816.2 8298 8144 8326 27.7 8513 180.1 8571 8144 8397 8326 27.7 8513 180.1 8571 8144 8397 <t< th=""><th>MD</th><th></th><th></th><th></th><th>Genetic</th><th></th><th>ВОР</th><th>` </th><th>ANYCSP</th><th>_ </th><th>МОН</th><th>ROS-</th><th>ROS-vanilla</th><th>ROS</th><th></th></t<>	MD				Genetic		ВОР	`	ANYCSP	_	МОН	ROS-	ROS-vanilla	ROS	
138.6 9972 180.1 10039 74.3 9372 139.2 9983 180.1 10052 3.4 8893 142.3 9980 180.1 10040 116.6 9489 132.8 2498 180.1 10040 116.6 9489 132.8 2498 180.1 10040 116.6 9489 132.9 2416 8.4 2870 82.8 2471 129.9 2516 8.5 2870 82.8 2474 129.9 8531 180.1 8573 380.3 8414 27.7 8515 180.1 8568 215.3 840 27.8 8501 180.1 8568 215.3 840 27.8 8501 180.1 8568 215.3 840 27.8 8501 180.2 6000 0.9 5938 404.0 5974 180.2 6000 0.9 5938 27.8 5002	Obj. \uparrow Time (s) \downarrow Obj. \uparrow Time (s) \downarrow	Obj. ↑	←	Time (s) ↓	- 1	Obj. ↑	Time (s) ↓	Obj. ↑	Time (s) ↓	Obj. ↑	Time (s) ↓	Obj. ↑	Time (s) \downarrow		
139.2 9983 180.1 10052 3.4 8893 142.3 9980 180.1 10040 1166 9489 132.8 2497 180.1 10040 1166 9489 131.2 2497 180.1 2903 9.0 2621 131.2 2497 8.4 2887 87.7 2521 129.2 2685 32.8 2980 2.5 2638 29.9 8531 180.1 8573 87.7 2531 20.9 8531 180.1 8568 2.5 2638 27.7 8515 180.1 8568 215.3 8409 27.8 8501 180.1 8568 215.3 8409 27.8 8513 180.2 8568 215.3 8409 27.8 8513 180.2 8600 0.4 8564 404.0 5985 180.2 6000 0.9 5534 427.1 5889 <t< td=""><td>9600 13.6 N/A</td><td>N/A</td><td></td><td>N/A</td><td></td><td>98/6</td><td>138.6</td><td>9972</td><td>180.1</td><td>10039</td><td>74.3</td><td>9372</td><td>2.1</td><td>9581</td><td>2.3</td></t<>	9600 13.6 N/A	N/A		N/A		98/6	138.6	9972	180.1	10039	74.3	9372	2.1	9581	2.3
142.3 9980 180.1 10040 116.6 9489 132.8 2497 180.1 2903 9.0 2621 131.2 2428 8.6 2970 9.0 2621 131.2 2428 8.6 2870 82.8 2474 129.9 2416 8.4 2887 87.7 2521 129.9 8531 180.1 8578 87.7 2538 29.9 8531 180.1 8568 186.2 8369 27.7 8515 180.1 8568 186.2 8397 27.8 8501 180.1 8568 185.2 8368 27.3 8513 180.2 8600 0.4 8364 27.8 8501 180.2 6000 0.9 8368 427.1 5894 180.2 6000 0.9 8364 427.1 5895 180.2 6000 0.9 8364 427.1 5896 1	9632 14.9 N/A	N/A		N/A		9821	139.2	9983	180.1	10052	3.4	8893	1.4	9422	1.5
132.8 2497 180.1 2903 9.0 2621 131.2 2428 8.6 2870 82.8 2474 131.2 2428 8.6 2870 82.8 2474 139.2 2685 32.8 2980 2.5 2638 29.9 8531 180.1 8571 616.8 836 29.9 8531 180.1 8576 186.2 2638 27.7 8515 180.1 8576 186.2 8397 27.8 8501 180.1 8576 186.2 8397 394.8 5985 180.2 6000 0.9 5934 404.0 5974 180.2 6000 0.9 5938 404.0 5974 180.2 6000 0.9 5938 404.0 5974 180.2 6000 0.9 5938 404.0 5974 180.2 6000 0.9 5938 407.1 180.2 1	9629 14.0 N/A	N/A		N/A		9775	142.3	0866	180.1	10040	116.6	9489	2.5	9370	1.5
131.2 2428 8.6 2870 82.8 2474 129.9 2416 8.4 2887 87.7 2521 129.9 2416 8.4 2887 87.7 2521 29.9 8531 180.1 8573 616.8 8569 27.7 8515 180.1 8566 186.2 8397 27.8 8501 180.1 8568 215.3 8409 27.8 8501 180.1 8568 215.3 8409 27.8 8502 180.2 6000 0.9 5938 404.0 5974 180.2 6000 0.9 5938 427.1 5989 180.2 6000 0.9 5938 427.1 5989 180.2 6000 0.9 5938 427.1 5989 180.2 6000 0.9 5938 427.1 5989 180.2 5040 0.7 4796 27.8 5002 180	2368 13.4 N/A	N/A		N/A		2600	132.8	2497	180.1	2903	0.6	2621	2.5	2557	2.2
129.9 2416 8.4 2887 87.7 2521 129.2 2685 32.8 2980 2.5 2638 129.9 8531 180.1 8573 380.3 8414 27.7 8515 180.1 8573 616.8 8369 34.2 8530 180.1 8566 186.2 8397 27.3 8513 180.1 8566 186.2 8397 27.3 8513 180.1 8566 186.2 8397 27.3 8513 180.2 6000 0.4 5938 404.0 5974 180.2 6000 0.9 5938 427.1 5989 180.2 6000 0.9 5938 28.6 4990 180.2 6000 0.9 5938 28.6 4990 180.2 5040 0.7 4796 27.8 5005 180.2 5039 223.9 4846 27.8 5005 1	2315 13.3 N/A	N/A		N/A		2568	131.2	2428	9.8	2870	82.8	2474	2	2524	2.4
2682 129.2 2685 32.8 2980 2.5 2638 8329 29.9 8531 180.1 8573 380.3 8414 8326 27.7 8535 180.1 8566 186.2 8369 8326 34.2 8530 180.1 8568 215.3 8409 8312 27.3 8513 180.1 8568 215.3 8409 8322 27.3 8513 180.2 8600 0.4 8369 8322 27.3 8513 180.2 6000 0.4 8369 5998 404.0 5974 180.2 6000 0.9 5938 6000 477.1 5989 180.2 6000 0.9 5938 4920 28.6 4990 180.2 5040 0.7 4796 4920 27.8 500.2 180.2 5039 4846 4920 13.1 4180.2 5039 134.0 47.9 <td>2386 12.7 N/A</td> <td>N/A</td> <td></td> <td>√ N</td> <td>_</td> <td>2606</td> <td>129.9</td> <td>2416</td> <td>8.4</td> <td>2887</td> <td>87.7</td> <td>2521</td> <td>3.2</td> <td>2584</td> <td>2.5</td>	2386 12.7 N/A	N/A		√ N	_	2606	129.9	2416	8.4	2887	87.7	2521	3.2	2584	2.5
8329 29.9 8531 180.1 8573 380.3 8414 8326 34.7 8515 180.1 8571 616.8 8399 8326 34.2 8530 180.1 8566 185.2 8397 8312 27.8 8531 180.2 8566 185.3 8409 8322 27.3 8513 180.2 8566 185.3 8409 5998 394.8 5985 180.2 6000 0.4 5954 5998 404.0 5974 180.2 6000 0.9 5938 6000 427.1 5989 180.2 6000 0.9 5938 4910 27.8 590.2 180.2 6000 0.9 5938 4920 180.2 600 0.9 5938 4846 4814 4921 30.1 4998 180.2 5039 223.9 4846 4921 30.1 180.2 5039 223.9	2490 13.1 N/A	N/A		ž	√.	2682	129.2	2685	32.8	2980	2.5	2638	2.7	2613	2.2
8326 27.7 8515 180.1 8571 616.8 8369 8396 34.2 8530 180.1 8566 186.2 8397 8312 27.3 8531 180.1 8566 186.2 8397 8322 27.3 8513 180.2 86000 0.4 8386 5998 394.8 5985 180.2 6000 0.9 5938 6000 427.1 5989 180.2 6000 0.9 5938 6000 427.1 5989 180.2 6000 0.9 5938 4920 27.8 5002 180.2 5039 17.9 4814 4920 27.8 5002 180.2 5039 223.9 4846 4921 30.1 4998 180.2 5039 223.9 4846 4921 30.1 4998 180.2 5036 134.0 4833 12042 134.1 408 180.2 5036	8214 8.1 7624	7624		926	2.7	8329	29.9	8531	180.1	8573	380.3	8414	2.6	8349	2.3
8296 34.2 8530 180.1 8566 186.2 8397 8312 27.8 8501 180.1 8568 215.3 8409 8322 27.3 8513 180.2 6000 0.4 5954 5998 394.8 5985 180.2 6000 0.9 5938 6000 427.1 5989 180.2 6000 0.9 5938 6000 427.1 5989 180.2 6000 0.9 5938 6000 427.1 5989 180.2 6000 119.2 5938 4920 28.6 4990 180.2 5040 0.7 4796 4920 130.1 4998 180.2 5039 134.0 4846 4921 30.1 4998 180.2 5039 134.0 4885 4921 131.2 4408 180.2 5039 223.9 4846 4005 1317.1 4408 180.2 5039	8187 7.0 7617	7617	-	919	0.	8326	27.7	8515	180.1	8571	8.919	8369	2.6	8311	1.7
8312 27.8 8501 180.1 8568 215.3 8409 8322 27.3 8513 180.2 8572 239.4 8386 5988 394.8 5985 180.2 6000 0.4 5954 5998 404.0 5974 180.2 6000 0.9 5938 6000 427.1 5989 180.2 6000 0.9 5938 4920 28.6 4990 180.2 5040 0.7 4796 4920 27.6 5005 180.2 5040 0.7 4796 4920 27.6 5005 180.2 5039 223.9 4846 4921 130.1 4998 180.2 5039 134.0 4846 4921 130.1 4998 180.2 5039 134.0 4846 4921 130.1 4908 180.2 5039 223.9 4846 4922 130.1 180.2 5039 223.9	8226 7.7 7602	7602		926	7.	8296	34.2	8530	180.1	8566	186.2	8397	2.9	8342	1.8
8322 27.3 8513 180.2 8572 239.4 8386 5998 394.8 5985 180.2 6000 0.4 5954 6000 404.0 5974 180.2 6000 0.9 5938 6000 427.1 5989 180.2 6000 0.9 5938 4920 28.6 4990 180.2 5040 0.7 4796 4920 27.6 5005 180.2 5040 0.7 4796 4920 27.6 5005 180.2 5039 223.9 4846 4921 30.1 4998 180.2 5036 134.0 4846 4921 30.1 4998 180.2 5036 123.9 4846 4921 130.0 12355 180.2 5036 134.0 4833 11042 1317.2 3913 180.2 5039 223.9 4846 4050 1255 180.2 1760 27.5	8229 7.5 7635	7635		918	.7	8312	27.8	8501	180.1	8268	215.3	8409	2.6	8339	1.7
5998 394.8 5985 180.2 6000 0.4 5954 5998 404.0 5974 180.2 6000 0.9 5938 6000 427.1 5989 180.2 6000 0.9 5938 4910 27.8 4990 180.2 5040 0.7 4796 4920 27.8 5005 180.2 5040 0.7 4796 4920 27.6 5005 180.2 5039 223.9 4846 4921 30.1 4998 180.2 5036 134.0 4833 12042 1341.5 4408 180.2 5036 134.0 4846 4921 1317.2 3913 180.2 4752 569.2 4085 3817 1317.2 3913 180.2 25195 576.0 22748 46631 1377.1 6178 180.2 5195 576.0 2748 6631 1377.1 6178 180.2 51	8211 7.2 7619	7619		326	0.9	8322	27.3	8513	180.2	8572	239.4	8386	2.6	8357	2.2
5998 404,0 5974 180.2 6000 0.9 5938 6000 427.1 5989 180.2 6000 119.2 5938 4920 27.6 4990 180.2 5004 0.7 4796 4920 27.6 5002 180.2 5039 223.9 4814 4921 27.6 5002 180.2 5036 134.0 4846 4921 30.1 4998 180.2 5036 134.0 483 4921 1341.5 4408 180.2 5036 134.0 483 4205 1341.5 3413 180.2 4752 569.2 488 4205 1341.2 3413 180.2 448 180.2 576.0 27.4 4408 180.2 4752 589.2 488 587 6138 6631 137.1 6178 180.2 75.0 27.4 488 N/A N/A 1674 180.2	5806 14.7 N/A	N/A		Ż	Ą	2665	394.8	5885	180.2	0009	0.4	5954	2.8	5912	7
6000 427.1 5989 180.2 6000 119.2 5938 4922 28.6 4990 180.2 5037 47.9 4814 4910 27.8 5002 180.2 5040 0.7 4796 4920 27.6 5005 180.2 5036 134.0 4846 4921 30.1 4998 180.2 5036 134.0 4833 12042 1506.0 12355 180.2 12429 383.1 12010 4205 1341.5 4408 180.2 4752 569.2 4085 2405 1341.5 4408 180.2 4752 569.2 4085 3817 1317.2 3913 180.2 4752 569.2 4085 6631 1377.1 6178 180.2 25195 576.0 22748 6631 1377.1 6178 180.2 25195 576.0 277.8 N/A N/A 180.4 180.2	5794 14.4 N/A	N/A		Ż	Α,	2665	404.0	5974	180.2	0009	6.0	5938	2.8	5914	1.8
4922 28.6 4990 180.2 5037 47.9 4814 4910 27.8 5002 180.2 5040 0.7 4996 4920 27.6 5005 180.2 5040 0.7 4996 4921 30.1 4998 180.2 5039 223.9 4846 4205 134.0 4998 180.2 5036 134.0 4833 4205 134.1.5 4408 180.2 4752 569.2 4085 24603 1468.3 25025 180.2 4752 569.2 4085 24603 1468.3 25025 180.2 4083 535.6 3597 AMA N/A 16974 180.2 25195 576.0 22748 6631 1377.1 6178 180.2 756.2 27.5 6133 N/A N/A 5444 180.2 5685 24.24 4983 N/A N/A 480.4 180.2 35	5823 14.5 N/A	N/A		Ż	Ą	0009	427.1	5989	180.2	0009	119.2	5938	2.9	5918	1.8
4910 27.8 5002 180.2 5040 0.7 4796 4920 27.6 5005 180.2 5039 223.9 4846 4921 30.1 4998 180.2 5036 134.0 4843 12042 1506.0 12355 180.2 1729 383.1 12010 4005 1317.2 3913 180.2 4083 535.6 389.7 24603 1468.3 25025 180.2 4083 535.6 3597 24603 1468.3 25025 180.2 4083 535.6 3597 N/A N/A 16974 180.2 25195 576.0 22748 6631 1377.1 6178 180.2 7262 27.5 6133 N/A N/A 5444 180.2 5685 242.4 4983 N/A N/A 4544 180.2 568.5 242.4 4983 N/A N/A 4544 180.2 <t< td=""><td>4805 6.6 4582</td><td>4582</td><td></td><td>88</td><td>3.5</td><td>4922</td><td>28.6</td><td>4990</td><td>180.2</td><td>5037</td><td>47.9</td><td>4814</td><td>2.4</td><td>4820</td><td>1.7</td></t<>	4805 6.6 4582	4582		88	3.5	4922	28.6	4990	180.2	5037	47.9	4814	2.4	4820	1.7
4920 27.6 5005 180.2 5039 223.9 4846 4921 30.1 4998 180.2 5036 134.0 4833 12042 1506.0 12355 180.2 17249 383.1 12010 4205 1341.5 4408 180.2 4752 569.2 4833 24603 1468.3 25025 180.2 4083 535.6 3597 24603 1468.3 25025 180.2 25195 576.0 22748 6631 1377.1 6178 180.2 7262 27.5 6133 N/A N/A 16974 180.2 7262 27.5 6133 N/A N/A 5444 180.2 5685 242.4 4983 N/A N/A 5444 180.2 5685 242.4 4983 N/A N/A 4857 180.4 10443 186.9 324.7 5735 N/A N/A 7827 <td< td=""><td>4849 6.4 4571</td><td>4571</td><td></td><td>8</td><td>3.1</td><td>4910</td><td>27.8</td><td>5002</td><td>180.2</td><td>5040</td><td>0.7</td><td>4796</td><td>1.9</td><td>4866</td><td>1.9</td></td<>	4849 6.4 4571	4571		8	3.1	4910	27.8	5002	180.2	5040	0.7	4796	1.9	4866	1.9
4921 30.1 4998 180.2 5036 134.0 4833 12042 1506.0 12355 180.2 12429 383.1 12010 405 1341.5 4408 180.2 4752 569.2 4085 3817 1317.2 3913 180.2 4083 535.6 3597 24603 1468.3 25025 180.2 25195 576.0 22748 6631 1377.1 6178 180.2 7262 27.5 6133 N/A N/A 16974 180.2 7262 27.5 6133 N/A N/A 5444 180.2 683.0 16467 N/A N/A 5444 180.2 568.5 242.4 4983 N/A N/A 450 180.2 542.4 4983 400 N/A N/A 4557 180.4 10443 186.9 891 N/A N/A 7827 180.4 1443 186.9	4845 6.8 4568	4568		868	9.9	4920	27.6	5005	180.2	5039	223.9	4846	2.6	4808	1.6
12042 1506.0 12355 180.2 12429 383.1 12010 4205 1341.5 34408 180.2 4752 569.2 4085 4205 1341.5 3413 180.2 4783 535.6 3597 24603 1468.3 25025 180.2 25195 576.0 22748 6631 1377.1 6178 180.2 7262 27.5 6133 N/A N/A 16974 180.2 7262 27.5 6133 N/A N/A 16974 180.2 7262 27.5 6133 N/A N/A 5444 180.2 7853 503.1 5881 N/A N/A 35070 180.2 35322 658.5 3246.4 983 N/A N/A 4527 180.1 6490 324.7 5735 N/A N/A 7227 180.1 6490 324.7 5735 N/A N/A 7827 146	4836 6.4 4562	4562		911	.7	4921	30.1	4998	180.2	5036	134.0	4833	2.2	4785	4.1
4205 1441.5 4408 180.2 4752 569.2 4085 3817 1317.2 3913 180.2 4083 535.6 3597 24603 1468.3 250.25 180.2 25195 576.0 22748 6631 1377.1 6178 180.2 726.2 27.5 6133 N/A N/A 16974 180.2 776.0 22748 N/A N/A 180.2 17076 683.0 16467 N/A N/A 5444 180.2 5685 242.4 4983 N/A N/A 3570 180.2 5685 242.4 4983 N/A N/A 3557 180.4 10443 186.9 8911 N/A N/A 782.7 180.1 6490 324.7 5735 N/A N/A 782.7 146.5 8086 756.7 7001 N/A N/A 782.7 146.5 8099 7.8 9982<	11612 37.9 N/A	N/A		Ż	Ą	12042	1506.0	12355	180.2	12429	383.1	12010	2.1	11965	5.6
3817 1317.2 3913 180.2 4083 535.6 3597 24603 1468.3 25025 180.2 25195 576.0 22748 6631 1377.1 6178 180.2 756.0 22748 N/A N/A 16974 180.2 775. 6133 N/A N/A 16974 180.2 683.0 16467 N/A N/A 5444 180.2 6883 242.4 4983 N/A N/A 3570 180.2 5685 242.4 4983 N/A N/A 3557 180.1 6490 324.4 4983 N/A N/A 7129 180.1 6490 324.7 5735 N/A N/A 7827 146.5 8090 7.8 9982 N/A N/A 7828 180.2 271.2 7210 N/A N/A 7824 180.2 11578 164.9 9992 N/A N/A 11128 180.2 11578 164.9 10191 N/A <td>3716 38.5 N/A</td> <td>N/A</td> <td></td> <td>Ż</td> <td>Α,</td> <td>4205</td> <td>1341.5</td> <td>4408</td> <td>180.2</td> <td>4752</td> <td>569.2</td> <td>4085</td> <td>3.3</td> <td>4037</td> <td>2.1</td>	3716 38.5 N/A	N/A		Ż	Α,	4205	1341.5	4408	180.2	4752	569.2	4085	3.3	4037	2.1
24603 1468.3 25025 180.2 25195 576.0 22748 6631 1377.1 6178 180.2 7262 27.5 6133 N/A N/A 16974 180.2 7262 27.5 6133 N/A N/A 16974 180.2 683.0 16467 N/A N/A 5446 180.2 6885 242.4 4983 N/A N/A 35070 180.2 5685 242.4 4983 N/A N/A 3557 180.1 6490 324.7 5735 N/A N/A 7129 159.6 7416 542.5 6501 N/A N/A 7129 159.6 7416 542.5 6501 N/A N/A 7827 146.5 8999 7.8 9982 N/A N/A 7894 180.2 11578 154.9 10191 N/A N/A 11128 180.2 11578 164.9	3246 33.0 N/A	N/A		2	I/A	3817	1317.2	3913	180.2	4083	535.6	3597	3.3	3595	2.8
6631 1377.1 6178 180.2 726.2 27.5 6133 N/A N/A 16974 180.2 17076 683.0 16467 N/A N/A 6426 180.2 683.3 16467 N/A N/A 5444 180.2 568.3 242.4 4983 N/A N/A 35070 180.2 5352.2 658.5 32868 N/A N/A 8557 180.4 10443 186.9 8911 N/A N/A 6232 180.1 6490 324.7 5735 N/A N/A 7129 159.6 7416 542.5 6501 N/A N/A 7827 146.5 8086 75.7 7001 N/A N/A 7894 180.2 9999 7.8 9982 N/A N/A 11128 180.2 11578 154.9 10191 N/A N/A 1558 180.2 16321 331.2 14418 7	24099 47.1 N/A	N/A		Z	I/A	24603	1468.3	25025	180.2	25195	276.0	22748	2.1	23274	1.9
N/A N/A 16974 180.2 17076 683.0 16467 N/A N/A 6426 180.2 6853 503.1 5881 N/A N/A 5444 180.2 6853 503.1 5881 N/A N/A 5444 180.2 5685 242.4 4983 N/A N/A 35070 180.2 35322 658.5 32868 N/A N/A 8557 180.4 10443 186.9 8911 N/A N/A 7129 159.6 7416 542.5 6501 N/A N/A 7827 146.5 8086 75.7 7001 N/A N/A 7893 180.2 271.2 7210 N/A N/A 11128 180.2 11578 154.9 10191 N/A N/A 15658 180.2 16321 331.2 14418 7	6057 46.3 N/A	N/A		Z	Α/	6631	1377.1	6178	180.2	7262	27.5	6133	1.7	6448	3.5
N/A N/A 6426 180.2 685.3 503.1 5881 N/A N/A 5444 180.2 568.5 242.4 498.3 N/A N/A 35070 180.2 568.5 242.4 498.3 N/A N/A 35070 180.2 558.5 242.4 498.3 N/A N/A 35070 180.2 186.9 891.1 891.1 N/A N/A 7129 159.6 7416 542.5 6501 N/A N/A 7827 146.5 8086 75.7 7001 N/A N/A 7893 180.2 8192 271.2 7210 N/A N/A 11128 180.2 11578 154.9 10191 N/A N/A 15658 180.2 16321 331.2 14418 7	15993 58.5 N/A	N/A		Z	Α/	N/A	N/A	16974	180.2	17076	683.0	16467	2.6	16398	2.3
N/A N/A 5444 180.2 5685 242.4 4983 N/A N/A 35070 180.2 35322 658.5 32868 N/A N/A 8557 180.4 10443 186.9 8911 N/A N/A 7129 159.6 7416 542.5 6501 N/A N/A 7827 146.5 8086 75.7 7001 N/A N/A 7893 180.2 9999 7.8 9982 N/A N/A 11128 180.2 11578 154.9 10191 N/A N/A 11558 180.2 16321 331.2 14418 7	5374 57.7 N/A	N/A		_	I/A	N/A	N/A	6426	180.2	6853	503.1	5881	2.5	5861	3.6
N/A N/A 35070 180.2 3532.2 658.5 32868 N/A N/A 8557 180.4 10443 186.9 8911 N/A N/A 623.2 180.1 6490 324.7 5735 N/A N/A 7129 159.6 7416 542.5 6501 N/A N/A 7827 146.5 8086 75.7 7001 N/A N/A 9848 180.2 9999 7.8 9982 N/A N/A 7893 180.2 8192 271.2 7210 N/A N/A 11128 180.2 11578 154.9 10191 N/A N/A 15658 180.2 16321 331.2 14418 7	4497 49.7 N/A	N/A		Z	//A	N/A	N/A	5444	180.2	2885	242.4	4983	3.4	2086	2.7
N/A N/A 8557 180.4 10443 186.9 8911 N/A N/A 6232 180.1 6490 324.7 5735 N/A N/A 7129 159.6 7416 542.5 6501 N/A N/A 7827 146.5 8086 756.7 7001 N/A N/A 9848 180.2 9999 7.8 9982 N/A N/A 7893 180.2 8192 271.2 7210 N/A N/A 11128 180.2 11578 154.9 10191 N/A N/A 15658 180.2 16321 331.2 14418 7	33861 73.4 N/A	N/A		Z	Α/	N/A	N/A	35070	180.2	35322	658.5	32868	4	31926	1.9
N/A N/A 6232 180.1 6490 324.7 5735 N/A N/A 7129 159.6 7416 542.5 6501 N/A N/A 7827 146.5 8086 756.7 7001 N/A N/A 9848 180.2 999 7.8 9982 N/A N/A 7893 180.2 8192 271.2 7210 N/A N/A 11128 180.2 11578 154.9 10191 N/A N/A 15658 180.2 16321 331.2 14418 3	8773 73.4 N/A	N/A		Ż	Ą	N/A	N/A	8557	180.4	10443	186.9	8911	2.8	9171	2.5
N/A N/A 7129 159.6 7416 542.5 6501 N/A N/A 7827 146.5 8086 756.7 7001 N/A N/A 9848 180.2 8999 77.8 9982 N/A N/A 7893 180.2 8192 271.2 7210 N/A N/A 11128 180.2 11578 154.9 10191 N/A N/A 15658 180.2 16321 331.2 14418	5212 59.6 N/A	N/A		ž	√.	N/A	N/A	6232	180.1	6490	324.7	5735	3.5	5775	5.6
N/A N/A 7827 146.5 8086 756.7 7001 N/A N/A 9848 180.2 9999 7.8 9982 N/A N/A 7893 180.2 8192 271.2 7210 N/A N/A 11128 180.2 11578 154.9 10191 N/A N/A 15658 180.2 16321 331.2 14418	5948 69.0 N/A	N/A		Z	//A	N/A	N/A	7129	159.6	7416	542.5	6501	5.4	6610	3.9
N/A N/A 9848 180.2 9999 7.8 9982 N/A N/A 7893 180.2 8192 271.2 7210 N/A N/A 11128 180.2 11578 154.9 10191 N/A N/A 15658 180.2 16321 331.2 14418	6545 79.0 N/A	N/A		_	1/A	N/A	N/A	7827	146.5	9808	756.7	7001	3.5	7259	4.1
N/A N/A 7893 180.2 8192 271.2 7210 N/A N/A 11128 180.2 11578 154.9 10191 N/A N/A 15658 180.2 16321 331.2 14418	9718 74.8 N/A	N/A			N/A	N/A	N/A	9848	180.2	6666	7.8	866	4.2	9971	2.5
N/A N/A 11128 180.2 11578 154.9 10191 N/A N/A 15658 180.2 16321 331.2 14418 ;	6612 79.2		N/A		N/A	N/A	N/A	7893	180.2	8192	271.2	7210	5.1	7297	3.5
N/A N/A 15658 180.2 16321 331.2 14418	28000 9294 142.3 N/A N	3 N/A		Z	/A	N/A	N/A	11128	180.2	11578	154.9	10191	8.6	10329	8.5
	13098 241.1 N/A	N/A		Ż	Α/	N/A	N/A	15658	180.2	16321	331.2	14418	20.2	14464	6.7

Figure 4: The computational time comparison of Max-k-Cut problems.

Table 8: Cut value comparison of Max-k-Cut problems on weighted Gset instances with perturbation ratio [0.9, 1.1].

Methods	G70 (N=	=10,000)	G72 (N=	=10,000)	G77 (N=	=14,000)	G81 (N=	20,000)
Wiedlods	k=2	k = 3	k=2	k = 3	k=2	k = 3	k=2	k=3
MD	8594.38	9709.56	5647.28	6585.04	8051.81	9337.31	11326.30	13179.33
PI-GNN	8422.79	-	5309.65	-	7470.89	_	10416.44	_
ANYCSP	5198.87	5375.92	-15.57	-25.33	81.76	114.36	33.49	-4.25
ROS-vanilla	9177.21	9991.95	6542.78	7733.87	9265.65	10944.35	13132.52	15456.28
ROS	8941.80	9970.72	6165.62	7366.54	8737.59	10359.25	12325.85	14570.04

E. The Results on Weighted Gset Instances

The computational time on weighted Gset with perturbation ratio of [0.9, 1.1] and [0, 100] are shown in Fig. 4a and Fig. 4b respectively. The cut values are shown in Table 8 and Table 9 respectively.

F. Ablation Study

F.1. Model Ablation

We conducted additional ablation studies to clarify the contributions of different modules.

Effect of Neural Networks: We consider two cases: (i) replace GNNs by multi-layer perceptrons (denoted by ROS-MLP) in our ROS framework and (ii) solve the relaxation via mirror descent (denoted by MD). Experiments on the Gset dataset show that ROS consistently outperforms ROS-MLP and MD, highlighting the benefits of using GNNs for the relaxation step.

Effect of Random Sampling: We compared ROS with PI-GNN, which employs heuristic rounding instead of our random sampling algorithm. Results indicate that ROS generally outperforms PI-GNN, demonstrating the importance of the sampling procedure.

These comparisons, detailed in Tables 10 and 11, confirm that both the GNN-based optimization and the random sampling algorithm contribute significantly to the overall performance.

F.2. Sample Effect Ablation

We investigated the effect of the number of sampling iterations and report the results in Tables 12, 13, 14, and 15.

Cut Value (Table 12, Table 14): The cut values stabilize after approximately 5 sampling iterations, demonstrating strong performance without requiring extensive sampling.

Sampling Time (Table 13, Table 15): The time spent on sampling remains negligible compared to the total computational

$ROS: A\ GNN-based\ Relax-Optimize- and-Sample\ Framework\ for\ Max-k-Cut\ Problems$

Table 9: Cut value comparison of Max-k-Cut problems on weighted Gset instances with perturbation ratio [0, 100].

Methods	G70 (N=	10,000)	G72 (N=	10,000)	G77 (N=	14,000)	G81 (N=	20,000)
Wediods	k=2	k = 3	k=2	k = 3	k=2	k = 3	k=2	k = 3
MD	456581.30	497167.48	338533.07 312802.48 -1903.50	392908.80	482413.19	558264.21	682809.47	790089.41
PI-GNN	442650.59	-		-	442354.44	-	623256.74	-
ANYCSP	467696.98	491654.75		-2498.86	9712.13	10130.89	2842.64	2845.46
ROS-vanilla	472067.14	498273.60	367795.62	421189.97	524010.92	597597.50	742432.41	846395.85
ROS	470268.97	498269.90	362910.89	415905.88	515991.31	590312.40	731468.67	835424.19

Table 10: Cut values returned by each method on Gset.

Methods	G	70	G	72	G [']	77	G8	31
1110011000	k=2	k = 3	k=2	k = 3	k=2	k = 3	k=2	k = 3
ROS-MLP	8867	9943	6052	6854	8287	9302	12238	12298
PI-GNN	8956	_	4544	_	6406	_	8970	_
MD	8551	9728	5638	6612	7934	9294	11226	13098
ROS	8916	9971	6102	7297	8740	10329	12332	14464

time, even with an increased number of samples.

These results highlight the efficiency of our sampling method, achieving stable and robust performance with little computational cost.

Table 11: Computational time for each method on Gset.

Methods	G70		G72		G77		G81	
1,10011000	k=2	k = 3	k=2	k = 3	k = 2	k = 3	k=2	k = 3
ROS-MLP	3.49	3.71	3.93	4.06	8.39	9.29	11.98	16.97
PI-GNN	34.50	_	253.00	_	349.40	-	557.70	_
MD	54.30	74.80	44.20	79.20	66.00	142.30	130.80	241.10
ROS	3.40	2.50	3.90	3.50	8.10	8.50	9.30	9.70

Table 12: Cut value results corresponding to the times of sample T on Gset.

T	G70		G72		G	77	G81	
	k=2	k = 3	k=2	k = 3	k=2	k = 3	k=2	k = 3
0	8912.62	9968.11	6099.88	7304.45	8736.58	10323.61	12328.83	14458.09
1	8911	9968	6100	7305	8736	10321	12328	14460
5	8915	9969	6102	7304	8740	10326	12332	14462
10	8915	9971	6102	7305	8740	10324	12332	14459
25	8915	9971	6102	7307	8740	10326	12332	14460
50	8915	9971	6102	7307	8740	10327	12332	14461
100	8916	9971	6102	7308	8740	10327	12332	14462

Table 13: Sampling time results corresponding to the times of sample T on Gset.

T	G70		G72		G77		G81	
	k=2	k = 3						
1	0.0011	0.0006	0.0011	0.0006	0.0020	0.0010	0.0039	0.0020
5	0.0030	0.0029	0.0029	0.0030	0.0053	0.0053	0.0099	0.0098
10	0.0058	0.0059	0.0058	0.0058	0.0104	0.0104	0.0196	0.0196
25	0.0144	0.0145	0.0145	0.0145	0.0259	0.0260	0.0489	0.0489
50	0.0289	0.0289	0.0288	0.0289	0.0517	0.0518	0.0975	0.0977
100	0.0577	0.0577	0.0576	0.0578	0.1033	0.1037	0.1949	0.1953

Table 14: Cut value results corresponding to the times of sample T on random regular graphs.

T	n = 100		n = 1	1,000	n = 10,000	
	k=2	k = 3	k=2	k = 3	k=2	k = 3
0	126.71	244.77	1291.86	2408.71	12856.53	24102.22
1	127	245	1293	2408	12856	24103
5	127	245	1293	2410	12863	24103
10	127	245	1293	2410	12862	24103
25	127	245	1293	2410	12864	24103
50	127	245	1293	2410	12864	24103
100	127	245	1293	2410	12864	24103

Table 15: Sampling time results corresponding to the times of sample T on random regular graphs.

T	n =	100	n = 1	1,000	n = 10,000		
_	k = 2	k = 3	k = 2	k = 3	k=2	k = 3	
1	0.0001	0.0001	0.0001	0.0001	0.0006	0.0006	
5	0.0006	0.0006	0.0007	0.0007	0.0030	0.0030	
10	0.0011	0.0011	0.0014	0.0013	0.0059	0.0059	
25	0.0026	0.0026	0.0033	0.0031	0.0145	0.0145	
50	0.0052	0.0052	0.0065	0.0060	0.0289	0.0289	
100	0.0103	0.0103	0.0128	0.0122	0.0577	0.0578	