Parsers (cont.)

Depth First Traversal is suitable for top down parsing, but left recursive grammar can create infinite loop.

Left Recursion

• A grammar is *left recursive* if it has a non-terminal A such that there is a derivation.

 $A \stackrel{\scriptscriptstyle \pm}{\Rightarrow} A\alpha$ for some string α

- Top-down parsing techniques **cannot** handle left-recursive grammars.
- So, we have to convert our left-recursive grammar into an equivalent grammar which is not left-recursive.
- The left-recursion may appear in a single step of the derivation (*immediate left-recursion*), or may appear in more than one step of the derivation.

Immediate Left-Recursion

A
$$\rightarrow$$
 A α | β where β does not start with A
$$\downarrow \downarrow$$
 eliminate immediate left recursion
$$A \rightarrow \beta \ A'$$
 A $\rightarrow \alpha \ A'$ | ϵ an equivalent grammar

In general,

Immediate Left-Recursion -- Example

$$E \rightarrow E+T \mid T$$

$$T \rightarrow T^*F \mid F$$

$$F \rightarrow id \mid (E)$$

$$\downarrow \qquad \text{eliminate immediate left recursion}$$

$$E \rightarrow T E'$$

$$E' \rightarrow +T E' \mid \varepsilon$$

$$T \rightarrow F T'$$

$$T' \rightarrow *F T' \mid \varepsilon$$

$$F \rightarrow id \mid (E)$$

Left-Recursion -- Problem

- A grammar cannot be immediately left-recursive, but it still can be left-recursive.
- By just eliminating the immediate left-recursion, we may not get a grammar which is not left-recursive.

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Sc \mid d$ This grammar is not immediately left-recursive, but it is still left-recursive.

$$\underline{S} \Rightarrow Aa \Rightarrow \underline{S}ca$$
 or $\underline{A} \Rightarrow Sc \Rightarrow \underline{A}ac$ causes to a left-recursion

• So, we have to eliminate all left-recursions from our grammar

Eliminate Left-Recursion -- Algorithm

```
- Arrange non-terminals in some order: A_1 \dots A_n
- for i from 1 to n do {
      - for j from 1 to i-1 do {
          replace each production
                     A_i \rightarrow A_i \gamma
                         by
                     A_i \rightarrow \alpha_1 \gamma \mid ... \mid \alpha_k \gamma
                     where A_i \rightarrow \alpha_1 \mid ... \mid \alpha_k
     - eliminate immediate left-recursions among A<sub>i</sub> productions
```

Eliminate Left-Recursion -- Example

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid f$

- Order of non-terminals: S, A

for S:

- we do not enter the inner loop.
- there is no immediate left recursion in S.

for A:

- Replace $A \rightarrow Sd$ with $A \rightarrow Aad \mid bd$ So, we will have $A \rightarrow Ac \mid Aad \mid bd \mid f$
- Eliminate the immediate left-recursion in A

$$A \rightarrow bdA' \mid fA'$$

 $A' \rightarrow cA' \mid adA' \mid \epsilon$

So, the resulting equivalent grammar which is not left-recursive is:

$$S \rightarrow Aa \mid b$$

 $A \rightarrow bdA' \mid fA'$
 $A' \rightarrow cA' \mid adA' \mid \epsilon$

Eliminate Left-Recursion – Example 2

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid f$

- Order of non-terminals: A, S

for A:

- we do not enter the inner loop.
- Eliminate the immediate left-recursion in A

$$A \rightarrow SdA' \mid fA'$$

 $A' \rightarrow cA' \mid \epsilon$

for S:

- Replace $S \rightarrow Aa$ with $S \rightarrow SdA'a \mid fA'a$ So, we will have $S \rightarrow SdA'a \mid fA'a \mid b$
- Eliminate the immediate left-recursion in S

$$S \rightarrow fA'aS' \mid bS'$$

 $S' \rightarrow dA'aS' \mid \epsilon$

So, the resulting equivalent grammar which is not left-recursive is:

$$S \rightarrow fA'aS' \mid bS'$$

 $S' \rightarrow dA'aS' \mid \varepsilon$
 $A \rightarrow SdA' \mid fA'$
 $A' \rightarrow cA' \mid \varepsilon$

Left-Factoring

• A predictive parser (a top-down parser without backtracking) insists that the grammar must be *left-factored*.

grammar \rightarrow a new equivalent grammar suitable for predictive parsing

```
stmt \rightarrow if expr then stmt else stmt
if expr then stmt
```

• when we see if, we cannot now which production rule to choose to re-write *stmt* in the derivation.

Left-Factoring (cont.)

• In general,

$$A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$$

where α is non-empty and the first symbols of β_1 and β_2 (if they have one)are different.

• when processing α we cannot know whether expand

A to
$$\alpha\beta_1$$
 or

A to
$$\alpha\beta_2$$

• But, if we re-write the grammar as follows

$$A \rightarrow \alpha A'$$

$$A' \rightarrow \beta_1 \mid \beta_2$$

so, we can immediately expand A to $\alpha A'$

Left-Factoring -- Algorithm

• For each non-terminal A with two or more alternatives (production rules) with a common non-empty prefix, let say

$$A \rightarrow \alpha \beta_1 \mid ... \mid \alpha \beta_n \mid \gamma_1 \mid ... \mid \gamma_m$$

convert it into

$$A \rightarrow \alpha A' | \gamma_1 | \dots | \gamma_m$$

$$A' \rightarrow \beta_1 | \dots | \beta_n$$

Left-Factoring – Example 1

$$A \rightarrow \underline{a}bB \mid \underline{a}B \mid cdg \mid cdeB \mid cdfB$$

$$\downarrow \downarrow$$
 $A \rightarrow aA' \mid \underline{cdg} \mid \underline{cdeB} \mid \underline{cdfB}$

$$A' \rightarrow bB \mid B$$

$$\downarrow \downarrow$$

$$A \rightarrow aA' \mid cdA''$$

$$A' \rightarrow bB \mid B$$

$$A'' \rightarrow g \mid eB \mid fB$$

Left-Factoring – Example 2

$$A \rightarrow ad \mid a \mid ab \mid abc \mid b$$

$$\downarrow \downarrow$$

$$A \rightarrow aA' \mid b$$

$$A' \rightarrow d \mid \epsilon \mid b \mid bc$$

$$\downarrow \downarrow$$

$$A \rightarrow aA' \mid b$$

$$A' \rightarrow d \mid \epsilon \mid bA''$$

$$A'' \rightarrow \epsilon \mid c$$

A Simple Non-Recursive Predictive Parser: LL(1)

- Top-down, predictive parsing: a table-driven parser.
 - − L: Left-to-right scan of the tokens
 - L: Leftmost derivation.
 - (1): One token of lookahead

LL(1) Parser

input buffer

our string to be parsed. We will assume that its end is marked with a special symbol \$.

output

 a production rule representing a step of the derivation sequence (left-most derivation) of the string in the input buffer.

stack

- contains the grammar symbols
- at the bottom of the stack, there is a special end marker symbol \$.
- initially the stack contains only the symbol \$ and the starting symbol \$.
 \$S ← initial stack
- when the stack is emptied (ie. only \$ left in the stack), the parsing is completed.

parsing table

- a two-dimensional array M[A,a]
- each row is a non-terminal symbol
- each column is a terminal symbol or the special symbol \$
- each entry holds a production rule.

LL(1) Parser – Parser Actions

- The symbol at the top of the stack (say X) and the current symbol in the input string (say a) determine the parser action.
- There are four possible parser actions.
- 1. If X and a are \$ \rightarrow parser halts (successful completion)
- 2. If X and a are the same terminal symbol (different from \$)
 - → parser pops X from the stack, and moves the next symbol in the input buffer.
- 3. If X is a non-terminal
 - → parser looks at the parsing table entry M[X,a]. If M[X,a] holds a production rule $X \rightarrow Y_1 Y_2 ... Y_k$, it pops X from the stack and pushes $Y_k, Y_{k-1}, ..., Y_1$ into the stack. The parser also outputs the production rule $X \rightarrow Y_1 Y_2 ... Y_k$ to represent a step of the derivation.
- 4. none of the above \rightarrow error
 - all empty entries in the parsing table are errors.
 - If X is a terminal symbol different from a, this is also an error case.

LL(1) Parser – Example1

 $S \rightarrow aBa$ $B \rightarrow bB \mid \epsilon$

	a	b	\$
S	$S \rightarrow aBa$		
В	$B \to \varepsilon$	$B \rightarrow bB$	

LL(1) Parsing Table

<u>stack</u>	<u>input</u>	<u>output</u>
\$S	abba\$	$S \rightarrow aBa$
\$aB <mark>a</mark>	abba\$	
\$aB	bba\$	$B \rightarrow bB$
\$aB <mark>b</mark>	bba\$	
\$a <mark>B</mark>	ba\$	$B \rightarrow bB$
\$aB <mark>b</mark>	ba\$	
\$a <mark>B</mark>	a\$	$B \rightarrow \epsilon$
\$ <mark>a</mark>	a\$	
\$	\$	accept, successful completion

LL(1) Parser – Example2

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \rightarrow \varepsilon$	$E' \rightarrow \varepsilon$
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'		$T' \rightarrow \varepsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \varepsilon$	$T' \rightarrow \varepsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		

CS416 Compiler Design

LL(1) Parser – Example2

stack	<u>input</u>	<u>output</u>
\$ <mark>E</mark>	id+id\$	$E \rightarrow TE'$
\$E' T	id+id\$	$T \rightarrow FT'$
\$E' T' F	id+id\$	$F \rightarrow id$
\$ E' T'id	id+id\$	
\$ E' T '	+id\$	$T' \rightarrow \epsilon$
\$ E '	+id\$	$E' \rightarrow +TE'$
\$ E' T+	+id\$	
\$ E' T	id\$	$T \rightarrow FT'$
\$ E' T' F	id\$	$F \rightarrow id$
\$ E' T'id	id\$	
\$ E' T '	\$	$T' \rightarrow \epsilon$
\$ E'	\$	$E' \rightarrow \epsilon$
\$	\$	accept