

Opera Solutions, LLC 12230 El Camino Real Suite 330 San Diego, California 92130 +1 (858) 480 3750 telephone +1 (858) 480 3727 facsimile www.operasolutions.com

KDD Cup 2012 Track 2:

Ensemble of Collaborative Filtering and Feature Engineered Models for Click Through Rate Prediction

—Methods of Opera Solutions

The Dream Team

- Jeong-Yoon Lee
- Jingjing(Bruce) Deng
- Hang Zhang
- Jacob Spoelstra
- Andreas Töscher
- Michael Jahrer

The Task

- Predicting the click-through rate (CTR) a search advertisement receives from a querying user
 - Search advertising has been one of the major revenue sources of the internet industry
 - Predicting CTR correctly helps search providers to rank/price ads correctly
 - Important to user experience improvements and revenue growth
 - Widely applicable to searching engines, online stores, online finance services, etc.
 - Evaluation metric: Area Under ROC Curve (AUC)

Preparing the data for learning

- We do some basic checks
- Decide to use random 3% of train as valid
 - Split 1.5% to Valid1
 - Split 1.5% to Valid2

Main data table

clicks	impr	adUrlID		adID	adverID	depth	pos	queryID	keyWordID	titleID	descrID	userID
0	1	126738	70462623600000	4242983	26519	2	1	47350	812	8842	25537	6023881
0	1	63990	24617856670000	21299603	36491	2	2	546	113	3225	121	6023881
1	1	126738	70462623600000	4242983	26519	1	1	47350	812	9164	7625	6023881
0	1	68775	16134389990000	20053263	2332	2	1	23447	476	3547	3397	2583834
0	4	63608	09004806360000	10164628	18209	2	2	4035850	947	74709	37226	2583834
0	4	116593	73614241500000	20934246	34882	2	1	4035850	592434	1507528	4127	2583834
1	1	176971	27834337800000	10484162	29135	2	1	1788197	147838	971553	628205	2583834
0	2	46603	87735928840000	21313239	36540	1	1	6600	11342	10208	1785	4019508
1	1	26709	52723278900000	20172874	23805	2	2	5	3	35	16	4019508
0	1	77718	84441258270000	20108617	32367	1	1	1315	316	177	64	4019508

... 150M records !! - 10Gig raw csv file + keywords + userProfiles

Opera's Approaches

- Individual models
 - Collaborative filtering (Bias model, Factor models)
 - Naïve Bayesian classifiers (NBC)
 - Feature engineering and advanced statistical models
- Blending (mix the individuals)
 - Weighted sum (linear)
 - Neural network

Collaborative filtering

- Sparse matrix
- What is the matrix?
- What is the target ?

clicks	impr	adUrlID	adID	adverID	depth	pos	queryID	keyWordID	titleID	descrID	userID
0	1	12673870462623600000	4242983	26519	2	1	47350	812	8842	25537	6023881
0	1	6399024617856670000	21299603	36491	2	2	546	113	3225	121	6023881
1	1	12673870462623600000	4242983	26519	1	1	47350	812	9164	7625	6023881
0	1	6877516134389990000	20053263	2332	2	1	23447	476	3547	3397	2583834
0	4	6360809004806360000	10164628	18209	2	2	4035850	947	74709	37226	2583834
0	4	11659373614241500000	20934246	34882	2	1	4035850	592434	1507528	4127	2583834
1	1	17697127834337800000	10484162	29135	2	1	1788197	147838	971553	628205	2583834
0	2	4660387735928840000	21313239	36540	1	1	6600	11342	10208	1785	4019508
1	1	2670952723278900000	20172874	23805	2	2	5	3	35	16	4019508
0	1	7771884441258270000	20108617	32367	1	1	1315	316	177	64	4019508

- We have 10 ID sources (adUrlID, adID, advertiserID, depth, pos, queryID, keyWID, titleID, descrID, userID)
- userID x adUrlID ?
- userID x adID ?
- userID x advertiserID ?
- ...
- ...
- ...

45

combinations

Target: clicks/impressions

Bias model

- Biases for every unique ID
 - approx. 50M biases
- Prediction is sum of M=10 biases

$$\widehat{p_i} = \sum_{m=1}^{M} b \frac{m}{k}$$
 where $\mathbf{k} = d \frac{m}{i}$ Value of column=m and row=i in data

clicks	im	pr	<u>adUrIID</u>					adID				pos	queryID	keyWordID	titleID	descrID	userID	
(C	1	126738	704	626	2360	0000	4242	2983	26519	2	1	47350	812	8842	25537	6023881	
(C	1	63990	246	178	5667	0000	21299	9603	36491	/ 2	2	546	113	3225	121	6023881	
	1	1	126/738	704	626	2360	0000	4242	2983	26519	1	1	47350	812	9164	7625	6023881	
(C	1	68775	161	343	8999	0000	20053	3263	23/32	2	1	23447	476	3547	3397	2583834	
()	4	6/3608	090	048	0636	0000	1016	628	18209	2	2	4035850	947	74709	37226	2583834	
()	4	1/16593	736	142	4150	0000	20934	1246	34882	2	1	4035850	592434	1507528	4127	2583834	
	1	1	176971	278	343	37⁄80	0000	10484	162	29135	2	1	1788197	147838	971553	628205	2583834	
(0	2	46603	877	359	2884	0000	21313	3239	36540	1	1	6600	11342	10208	1785	4019508	
	1	1	26709	527	232	7890	0000	20172	2874	23805	2	2	5	3	35	16	4019508	
(C	/1	77718	844	412	5827	0000	20108	3617	32367	1	1	1315	316	177	64	4019508	
	1	1			/													
	d	I K	- 126	73	8 7	046	526	2360	000	000		ā	adUrlII	D, line=1	1			
	d	2 1	424	2 9	83							ā	adID, li	ine=1				
>>	d	$d_{1}^{3} = 26519$										ā	adverII	D, line=	1			
	$d_{1}^{4} = 2$										(depth, line=1						

- Training with stochastic gradient descent
 - Minimizing MSE
 - Small learning rate, L2 regularization (both optimized)
 - Public Leaderboard AUC: 0.76461

Bias model improved #1

Same model

$$\widehat{p_i} = \sum_{m=1}^M b \frac{m}{k}$$
 where $k = d \frac{m}{i}$

+0.009 AUC improvement

• Separate learning rates η_m and regularizations λ_m for each of the 10 ID sources

ID NAME	η	λ
ADURLID	0.000013	0.01
ADID	0.0001	0.0135
ADVERTISERID	0.0001	0.0379
DEPTH	0.000013	0.0379
POSITION	0.009	0.002
QUERYID	0.0025	0.0379
KEYWORDID	0.0001	0.002
TITLEID	0.0001	0.0135
DESCRIPTIONID	0.0001	0.137
USERID	0.0025	0.0075

- Training with stochastic gradient descent
 - Minimizing MSE
 - Public Leaderboard AUC: 0.77336

Bias model improved #2

Same model

$$\widehat{p_i} = \sum_{m=1}^M b \, rac{m}{k}$$
 where $\mathrm{k} = d \, rac{m}{i}$

+0.015 AUC improvement

- Separate learning rates η_m and regularizations λ_m for each of the 10 ID sources
- Training with pairwise stochastic gradient descent
 - Minimizing MSE on pairs related to AUC maximization directly
 - Public Leaderboard AUC: 0.788

F	OR e = 1maxEpochs
	FOR n = 1N (all samples, e.g. N=150M for train set)
	Select a sample: a =index to positive sample
	Select b sample: b =index to negative sample
	$\widehat{p_a} = \sum_{m=1}^M b \frac{m}{d_a^m}$ a sample prediction
	$\widehat{p_b} = \sum_{m=1}^{M} b \frac{m}{d_b^m}$ b sample prediction
	$\Delta_{pred} = \widehat{p_a} - \widehat{p_b}$ difference of predictions
	$\Delta_{target} = t_a - t_b$ difference of targets
	$error = \Delta_{pred} - \Delta_{target}$ the error
	FOR m = 1M (all 10 ID sources) $k_a = d_a^m \qquad k_b = d_b^m$ $b_{k_a}^m = b_{k_a}^m - \eta_m \cdot (error + \lambda_m \cdot b_{k_a}^m) \qquad \text{update the a and b sample biases}$ $b_{k_b}^m = b_{k_b}^m - \eta_m \cdot (-error + \lambda_m \cdot b_{k_b}^m)$
	$k_b = k_b$ k_b k_b

ID NAME	2	η	λ
ADURLID		0.000013	0.01
ADID		0.0001	0.0135
ADVERTIS	SERID	0.0001	0.0379
DEPTH		0.000013	0.0379
POSITION	V	0.009	0.002
QUERYID		0.0025	0.0379
KEYWORD.	ID	0.0001	0.002
TITLEID		0.0001	0.0135
DESCRIPT	TIONID	0.0001	0.137
USERID		0.0025	0.0075
red-			

Bias model improved #3

Same model

$$\widehat{p_i} = \sum_{m=1}^M b \, rac{m}{k}$$
 where $\mathrm{k} = d \, rac{m}{i}$

- Unroll the training set based on impressionCnt
 - From 150M to 235M training samples (+56% more training samples)
 - Use only 1 (+) or 0 (-) as targets

clicks	impr	adUrlID	adID	adverID	depth	pos	queryID	keyWordID	titleID	descrID	userID
0	1	12673870462623600000	4242983	26519	2	1	47350	812	8842	25537	6023881
0	1	6399024617856670000	21299603	36491	2	2	546	113	3225	121	6023881
1	1	12673870462623600000	4242983	26519	1	1	47350	812	9164	7625	6023881
0	1	6877516134389990000	20053263	2332	2	1	23447	476	3547	3397	2583834
0	4	6360809004806360000	10164628	18209	2	2	4035850	947	74709	37226	2583834
0	4	11659373614241500000	20934246	34882	2	1	4035850	592434	1507528	4127	2583834
1	1	17697127834337800000	10484162	29135	2	1	1788197	147838	971553	628205	2583834
0	2	4660387735928840000	21313239	36540	1	1	6600	11342	10208	1785	4019508
1	1	2670952723278900000	20172874	23805	2	2	5	3	35	16	4019508
0	1	7771884441258270000	20108617	32367	1	1	1315	316	177	64	4019508

7	0	4	6360809004806360000	10164628	1
17	0	4	6360809004806360000	10164628	1
/>	0	4	6360809004806360000	10164628	1
\rightarrow	0	4	6360809004806360000	10164628	1

Gives also improvement

Unfortunately, we have no detailed notes

e.g. if impressionCnt=4
-> unroll 1 data sample
to 4 +/- samples

Factorized model

- Again, d_{i}^{m} is the value of the data at
 - m = the sourceID (1...10)
 - i = the sampleID (1...150M)
- The prediction is a sum of all dot products!

$$\widehat{p_i} = \sum_{m=1}^{M} \sum_{n=m+1}^{M} p \binom{c}{(d_i^m)}^T \cdot q \binom{c}{(d_i^n)}$$

$$\widehat{p_i} = p_0^T q_0 + p_1^T q_1 + p_2^T q_2 + \dots + p_{44}^T q_{44}$$
45 dot
products

- On every cell we have a feature matrix: F x $|d|_*^m$
 - F = number of features
 - e.g. P_0 =F x 26272 P_1 =F x 641706
 - Huge number of features!

											adUrlID	adID	adverID	depth	pos	que	eryID	keyWordID		descriD	
											1267387046262360000		26519		1		17350	812	8842		602388
											639902461785667000		36491				546	113	3225		602388
											1267387046262360000		26519				17350		9164	7625	602388
											687751613438999000		2332				23447	476	3547		258383
											636080900480636000		18209		2		35850	947	74709		258383
											1165937361424150000		34882		_1		35850		1507528		258383
											1769712783433780000 466038773592884000		29135 36540				88197 6600	147838 11342	10208	628205	401950
											267095272327890000		23805				5		10208		401950
											777188444125827000		32367				1315		177		401950
7771884441258270000 20108617	2670952723278900000	4660387735928840000	17697127834337800000	11659373614241500000	6360809004806360000	6877516134389990000	12673870462623600000	639902461/8566/0000	120/30/0402023000000	adUrlID		0	1	2	3		4	5	6	7	8
00 20108617			00 10484162			00 20053263	00 4242983	N.		(0)	5		9	10	1	1	12	13	14	15	16
22267							26519			03				17	1	8	19	20	21	22	
			2					2		depth					2	4	25	26	27 32	28	34
				١,	0	_	_	2	-	pos					П	П	30	31	32	33	32
			17	4	4					g				_	_	_	<u> </u>			_	
1315	5	6600	1788197	4035850	2 4035850	23447	47350	546	4/300									35	36	37	38
316	3	11342	147838	502/2/	947	476	812	113	210	keyWordID titleID									39	40	41
				in the			9164			titleID	5									42	43
		1785	on .			3397	7625	121		- 1 모											44
64 4019508	16 4019508	1785 4019508	2583834	2582824	2583834	2583834	6023881	6023881	1000200 /0002	userID										1.1	

Factorized model #2

- Very HUGE memory consumption
 - We were only able to train models with F=2 features
- Problems with overfitting
 - Error is minimal after 1 epoch of training!
 - High L2-regularization does not help
 - Too less time to do careful analysis
- Training with pairwise stochastic gradient descent
 - Minimizing pairwise MSE
 - Small learning rate, L2 regularization (both optimized)
 - Public Leaderboard AUC: 0.7913

Factorized model #3

- Added an 11th ID based on token overlap
 - # same tokens per instance: queryTokens -> {keywordTokens,titleTokens,descriptionTokens}
 - Public Leaderboard AUC: 0.7945
- Tried 12th ID based on
 - #pairs in tokens: hurts the model (but inside ensemble)

+0.003 AUC improvement

Other Collaborative filtering models tried

- KNN
 - Tried a few tweaks, but didn' help
- AFM
 - Uses features in "test set" to learn!
 - Helps a little (0.0001 in blend)
 - Bad performance itsself (public leaderboard AUC 0.74xx)

The prediction of a sample i was

```
\begin{array}{rcl} \hat{r}_{i} & = & \overbrace{\mathbf{p}^{T}} & \ddots & \overbrace{\mathbf{q}} \\ \mathbf{p} & = & \{sum\ of\ 7\ features\ of\ sample\ i\} \\ \mathbf{q} & = & \mathbf{q}_{u} + \sum\limits_{j \in N(u)} \sum\limits_{k=1}^{7} \{sum\ of\ 7\ features\ of\ sample\ j\} \end{array}
```

7 features are:

- adUrlID
- adID
- advertiserID
- queryID
- keyWordID
- titleID
- descriptionID

ROC curves comparisons

For classifiers, this is the important region -> operating point But for Track2 unimportant, just area under the curve

Pub. Leaderboard AUC's

FactorModel: 0.795

BiasModel: 0.788

AFM: 0.74

TokenOverlapStat:0.57

CF observations and model tweaks

- Construct a 11th ID
 - tokenMatchID
 - Use it in bias model and factor model
- >50% of userIDs in the test set are unknown
 - Bad for user-based models
- Never clip predictions to 0...1
 - Can hurt in the final blend
- Every model is re-trained on the whole data before making predictions on the testset
- Use the tokenIDs in factor models
 - queryTokens, keywordTokens, titleTokens, descriptionTokens
 - Very small improvements in the blend
- Use gender and age codes
 - Very small improvements in the blend, if all
 - Hurts if we add this as new ID source in factor models
- We have problems with overfitting in the factor model, even if regularization is high
 - Back to F=1 features

Engineered Features

Risk Features

1D: conditional probability of click given an ID was present in a record.

$$Pr(Y = 1|ID_i) = \frac{\sum_{j=1}^{n} (c_j + N_1) \times I(ID_i \in R_j)}{\sum_{j=1}^{n} (n_j + N_2) \times I(ID_i \in R_j)}$$

- 2D: conditional probabilty of click given two IDs were present in a record.
- 8 1D-risk features for adUrlID, adID, advertiserID, depth, position, userID, gender, age
- 8 2D-risk features for {adID, advertiserID, depth, position} x {gender, position}

Similarity Features

- Overlap between tokens of queryID (ID1) and keywordID/titleID/descriptionID (ID2).
 - The proportion of the tokens in ID1 that are present in ID2 tokens.
 - The proportion of the 2-consecutive tokens in ID1 that are present in ID2.
 - If there exist common tokens between ID1 and ID2, their earliest position in ID2.
 - If there exist common 2-consecutive tokens between ID1 and ID2, their earliest position in ID2
- 12 similarity features.

Feature Engineered Models

- Built on the engineered features
- Gradient Boosting Machine (GBM)
 - "gbm" package in R was used.
 - Number of trees, shrinkage, and depth were chosen based on the validation errors.
 - AUC: 0.757
- Support Vector Machine (SVM)
 - SVM_perf was used.
 - AUC loss function, linear kernel, c = 500.
 - AUC: 0.764
- Neural Network (NN)
 - NN with AUC optimization was implemented in C.
 - Single hidden layer.
 - Other parameters were chosen based on the validation errors.
 - AUC: 0.765

Blending with a linear model

- Inputs
 - P Predictors (models) as a matrix with elements p_{nj}
 - Targets as a vector t
 - Features (pos, gender, age, tokenOverlaps, supports)
- Model
 - Weights w_i
 - $\widehat{p_i} = \sum_{j=1}^{P} w_j p_{nj} + w_0$ (w_0 =0, because of pairwise ranking)
- Training
 - Gradient descent on pairs of samples
 - Public Leaderboard AUC: 0.8030

```
FOR e = 1...maxEpochs
   FOR n = 1...N (all samples, e.g. N=3,430,641 for upsampled Valid1)
   Select a positive sample: a=index to positive sample t_{(+)}=1
   Select a negative sample: b=index to negative sample t_{(-)}=0
   \widehat{p_{(+)}} = \sum_{j=1}^{P} w_j p_{aj}
                               (+) sample prediction
   \widehat{p_{(-)}} = \sum_{j=1}^{P} w_j p_{bj}
                                  (-) sample prediction
   \Delta_{pred} = \widehat{p_{(+)}} - \widehat{p_{(-)}}
                                        difference of predictions
                                        difference of targets
   \Delta_{target} = t_{(+)} - t_{(-)}
   error = \Delta_{pred} - \Delta_{target}
                                        the error
    FOR j = 1...P (all predictors, e.g. P=57)
    w_i = w_i - \eta \cdot (error \cdot (p_{ai} - p_{bi}) + \lambda \cdot w_i)
                                                                   update the weights
```

Blending with a neural network

Inputs

- P Predictors (models) as a matrix with elements p_{ni}
- Targets as a vector t
- Features (pos, gender, age, tokenOverlaps, supports)

Model

- A single neural network, 1 hidden layer, K=20 units
- $\widehat{p_i} = calcNN(p_{n*})$

Training

- Normalization of inputs to -1...+1
- Gradient descent on pairs of samples
- Public Leaderboard AUC: approx. 0.80524 (0.80824 on private)


```
FOR e = 1...maxEpochs
   FOR n = 1...N (all samples, e.g. N=3,430,641 for upsampled Valid1)
   Select a positive sample: a=index to positive sample t_{(+)}=1
   Select a negative sample: b=index to negative sample t_{(-)}=0
   \widehat{p_{(+)}} = calcNN(p_{ai})
                                      (+) sample prediction
   \widehat{p_{(-)}} = calcNN(p_{bi})
                                      (-) sample prediction
   \Delta_{pred} = \widehat{p_{(+)}} - \widehat{p_{(-)}}
                                      difference of predictions
   \Delta_{taraet} = t_{(+)} - t_{(-)}
                                      difference of targets
   error = \Delta_{pred} - \Delta_{target}
                                      the error
    Update the NN with both (+) and (-) sample
    Using backprob rule
```

+0.002 AUC improvement to linear blending

Summary of Results

Model name	Performance on public leaderboard
Bias model (rank optimization)	0.788
Factor model (rank optimization)	0.795
AFM	0.745
NBC	0.77847
ANN optimizing AUC on feature metrics	0.76535

Ensemble methods	Performance on public leaderboard
Neural Network rank blend (1x20 neurons)	0.80524
Linear rank blend	0.803

It was very close on the private leaderboard!

Conclusions

- Was a challenge to handle this HUGE dataset
- Collaborative filtering methods (for sparse data)
 - Pairwise-rank training
 - Unroll the data (150M -> 235M +/- samples)
- Feature engineering + supervised models
- Blending (mix models) is the key for accuracy
 - Pairwise rank SGD -> optimized the AUC
 - Neural network perform better than linear models

Thank you for the attention!