

Memristor Crossbar Based Low Power Computing

June 30, 2016

Tarek M. Taha

Electrical and Computer Engineering Department
University of Dayton

Areas of Research

Application acceleration:

- Cognitive computing: Autonomous agent for UAVs and decision making
- Cybersecurity

Neuromorphic applications:

- Porting algorithms to IBM TrueNorth, and our internal neuromorphic architectures
- Examples: cognitive agent, cybersecurity, image processing

Neuromorphic multicore architectures:

- Digital CMOS (verified via FPGA implementation)
- Memristor crossbar
- Both learning and recognition
- Specialized versions for: deep learning, cybersecurity, convolution networks, controls

Memristor devices:

- SPICE Modeling
- Fabrication

Device Modeling

Device SPICE Model

C.Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, "Memristor SPICE Model and Crossbar Simulation Based on Devices with Nanosecond Switching Time," IEEE International Joint Conference on Neural Networks (IJCNN), August 2013. [BEST PAPER AWARD]

Integrated into Sandia XYCE

Wed 1/20/2016 1:02 PM

XYCE <xyce@sandia.gov>

Xyce version 6.4 has been released.

The Xyce (TM) team is pleased to announce the release of Xyce (TM) Version 6.4. This release fixes a number of bugs in Xyce (TM) 6.3 and includes improvements to existing features of Xyce (TM) 6.4. Please see the Release Notes for a complete list of new features and enhancements.

Highlights for Xyce Release 6.4 include:

New Devices and Device Model Improvements

- *VBIC version 1.3, 3- and 4-terminal variants (Q levels 11 and 12)
- * MEXTRAM 504.11 with self-heating (Q level 505)
- * New memristor device using the **Yakopcic model**
- * Support for Reactive Power limits in the Power Grid Generator Bus model.

Circuit Design

Memristor Based Neuron

Memristor crossbar emulates multiply-add operation in analog domain.

Analog Memristor Classifier

- 2 layer CLA network using analog memristor circuit
 - Based on memristor crossbars
 - Iteratively trained through MATLAB and SPICE
 - Each weight represented by two memristors (for both signs)

System Design

NC = Neural Core

R = Router

Mixed-Signal Neural Processor

Mixed-Signal Neural Processor

Mixed-Signal Neural Processor

System Comparison

Deep Network

	Number	Area	Power	Power efficiency
	of core	(mm^2)	(<u>mW</u>)	over RISC
RISC	46	127.42	41,400.0	1
NN SRAM	31	1.91	16.3	2,540
NN Memristor	31	0.08	1.2	34,968

Edge Detection

6							
	Number	Area	Power	Power efficiency			
	of core	(mm^2)	(\underline{mW})	over RISC			
RISC	43	119.11	38,700.00	1			
NN SRAM	19	1.17	9.75	3,874			
NN Memristor	146	0.38	5.6	6,941			

Motion Estimation

	Number	Area	Power	Power efficiency
	of core	(mm^2)	(<u>mW</u>)	over RISC
RISC	2	5.54	1800.00	1
NN SRAM	2	0.12	1.05	1712
NN Memristor	4	0.01	0.15	11,783

Optical Character Recognition

<u> </u>						
	Number Area		Power	Power efficiency		
	of core	(mm^2)	(<u>mW</u>)	over RISC		
RISC	42	116.34	37,800.0	1		
NN SRAM	31	1.91	16.3	2,319		
NN Memristor	31	0.08	1.2	31,928		

System Comparison

Deep	Networ	k

	Number	Area	Power	Power efficiency
	of core	(mm^2)	(<u>mW</u>)	over RISC
RISC	46	127.42	41,400.0	1
NN SRAM	31	1.91	16.3	2,540
NN Memristor	31	0.08	1.2	34,968

Edge]	Detection

	Number	Area	Power	Power efficiency			
	of core	(mm^2)	(\underline{mW})	over RISC			
RISC	43	119.11	38,700.00	1			
NN SRAM	19	1.17	9.75	3,874			
NN Memristor	146	0.38	5.6	6,941			

Motion Estimation

	Number	Area	Power	Power efficiency
	of core	(mm^2)	(<u>mW</u>)	over RISC
RISC	2	5.54	1800.00	1
NN SRAM	2	0.12	1.05	1712
NN Memristor	4	0.01	0.15	11,783

Optical Character Recognition

	Number	Area	Power	Power efficiency
	of core	(mm^2)	(<u>mW</u>)	over RISC
RISC	42	116.34	37,800.0	1
NN SRAM	31	1.91	16.3	2,319
NN Memristor	31	0.08	1.2	31,928

	De	ep Net	Edge		Motion		OCR	
	mJ	Energy eff	<u>mJ</u>	Energy <u>eff</u>	<u>mJ</u>	Energy eff	<u>mJ</u>	Energy <u>eff</u>
RISC	41,400	1	38,700	1	1800	1	37,800	1
NN SRAM	6.888	6,010	8.533	4,536	0.667	2,700	6.888	5,488
NN Memristor	0.032	1,303,491	0.197	196,734	0.003	585,627	0.032	1,190,144

On-chip Learning

Backpropagation Circuit

Backpropagation Circuit

Backpropagation Circuit

Unsupervised Clustering

Anomaly Detection in Network Traffic

2500

- ▶ 96.6% of the anomalous packets detected
- ▶ 4% false positive detection

Deep Learning Architecture

1. Pre-training layer 1

2. Pre-training layer 2

3. Supervised training of the whole network.

Large Crossbar Simulation

Deep Learning

Performance vs. Tesla K20

Training

	Energy eff. Speedup				
MNIST	26,597	6.9			
Isolate	12,822	4.6			
KDD	239,435	3.0			

Recognition Accuracy 100 95 90 85 Wine KDD Iris Wisconsin Isolate **MNIST** (99, 51)(140, 60)(118, 60)(6238, (20000, (10000, 1559) 5000) 5000) ■ Memristive ■ Matlab

Recognition

	Energy eff. Speedup	
MNIST	314,299	41.0
Isolate	147,308	50.5
KDD	375,252	10.2

Related Projects

Classification Accuracy (%)

Convolution Neural Network

Cybersecurity

Signature Based Detection

- Large collection of state machines
- 2.2 nW per rule
- 3.8 Gbps

Regex : user\s[^\n]{10}

Anomaly Detection

Device Fabrication

- Memristor device is based on a LiNbO₃ switching oxide
- IV curve shows repeatable switching

Device Structure

SEM/TEM results

Autonomous Agent

- Cognitively Enhanced Complex Event Processing (CECEP) Architecture:
- Consists of the following central net-centric components:
- <u>soaDM:</u> an associative memory application that allows agents to store and retrieve declarative knowledge.
- soaCDO: a knowledge representation and mining application that allows agents to store and exploit domain knowledge.
- Esper: a complex event processing framework that allows agents to base actions on context assessment and procedural knowledge.

Acknowledgements

Research Engineers:

- Raqib Hasan, PhD
- Chris Yakopcic, PhD
- Wei Song, PhD
- Tanvir Atahary, PhD

Doctoral Students:

- Zahangir Alom
- Hua Chen
- Chong Chen
- Rasitha Fernando
- Ted Josue
- Will Mitchell
- Yangjie Qi
- Nayim Rahman

Sponsors:

http://homepages.udayton.edu/~ttaha1