Homework 8

Erik Brakke

November 10, 2015

Collaborators:

Answer 1

(a) First, let's assume we have an experiment where D sends two messages m_0, m_1 and gets back an encryption of one of these messages where b is chosen at random. b is the message that is encrypted.

We know that Pr[D outputs b|exp - b] = 1/2 + neg

That is, D does not have any advantage by seeing (y, d) in choosing b

Let's assume this is not the case

Given a y_b, d_b from m_b where m_b is one of m_0, m_1 chosen by D, $Pr[D \text{ outputs } b|exp - b] = 1/2 + \epsilon$ Where ϵ is some non-negligible probability

This means that D is able to distinguish (y_0, d_0) from (y_1, d_1) with some non-negligible advantage ϵ

Let the event E be the event that D queries H on $r = f^{-1}(y)$ If \bar{E} , then that means D never asked for H(r).

Because d_0 is just $p \oplus m$, and p is H(r), D needs to know H(r) to have any kind of advantage on distinguishing

Thus, if E, then D does not have any advantage on distinguishing regardless of b

Because he has no advantage, then $Pr[Guessing correctly|\bar{E}] = 1/2$ If we let S be the event that D guesses b correctly, we have $Pr[S] = Pr[S|E] Pr[E] + Pr[S|\bar{E}] Pr[\bar{E}]$

We know that $Pr[S] = 1/2 + \epsilon$

```
1/2 + \epsilon = \Pr[S|E] \Pr[E] + 1/2(1 - \Pr[E])
```

 $1/2 + \epsilon = \Pr[E] + 1/2 - \Pr[E]/2$ (Because if E, then D will distinguish)

 $2 * \epsilon \leq \Pr[E]$

(b) Let's use D to build a function R that can reverse the OWF f

We will give R the inputs PK, y and will expect that R can use D to output $f^{-1}(y)$ with non-negligible probability

F will then ask q_{hash} queries to H and q_{enc} queries to Enc(m) and distinguish between them We can assume that F will query H for $H(a_j)$ before asking for $Enc(m_j)$ because without the hash information, he cannot tell anything about the response he will get

We can also assume that before generating m_0, m_1 F will ask H for the hash of two number $r_0, r_1 \in D_i$ because F will need this info to distinguish the output of Enc

R must create $H(a_i)$ as such:

If a_j has been queried before, then output the same value s_j . If not then output a random $s \in D_i$ and store the value

R must create $Enc(m_i)$ in the following way:

Find a_i, s_i and output $(f_i(a_i), s_i \oplus m_i)$ where f is the OWF

When D is ready to guess, he will send $Enc(m_0)$ and $Enc(m_1)$

R will return $(y, H(r_0) \oplus m_0)$

If D returns 0, then R can output r_0 as the inverse of y, else abort

This gives R a probability of ϵ chance of inverting y

This is because we know that there is a non-negligible chance that D has to ask H(r) where $r = f^{-1}(y)$

Therefore, if we choose m_0 to be the message we encrypt and send y to D along with $H(r) \oplus m_0$, and F says that this message is m_0 , then that means that D was able to distinguish this because r was chosen correctly.

We know that D has a probability of ϵ of asking for r by the previous part

And now we have a 1/2 chance of choosing the correct m to encrypt. Therefore R has an $\epsilon/2$ chance of reverting f, which is non-negligible

This is a contradiction, because we assumed f was a OWF, therefore this encryption scheme is polynomially secure

Answer 2

Given a random oracle H we can construct another random oracle H' to hash to arbitrary lengths by doing the following:

```
\begin{aligned} h_1 &= H(n||s) \\ h_2 &= H(n||h_1) \\ &\dots \\ h_i &= H(n||h_{i-1}) \\ \text{Then you have } h &= h_1||h_2||\dots||h_i \text{ and output } n \text{ bits } h_1\dots h_n \\ \text{In this case } i &= \lceil n/l \rceil \end{aligned}
```

The outputs will always be independent of each other because either s will be different or n will be different between two pains (n, s)

Because we take H(n||s) first, we are guarenteed that this will be unique (i.e. no collisions with greater than negligible probability)

This means that $h_2...h_i$ will also be unique, so concatonating them together will give us indepent outputs

References

None