Central subalgebras of the centralizer of a nilpotent element

George McNinch

Department of Mathematics Tufts University

Special session in Athens GA - March 2016

Contents

Overview

Fibers of modules over a Dedekind domain

Outline

Overview

Fibers of modules over a Dedekind domain

Introduction

- ► This talk reports on a joint paper with Donna Testerman, EPFL, which will appear in Proc. AMS (already available online)
- ▶ Let *G* a "standard" reductive alg gp over the field *k*.
- ▶ Let $X \in \text{Lie}(G)$ nilpotent.
- ▶ There is an "optimal" parabolic subgroup P with $X \in \text{Lie}(R_u P)$; P has Levi factor $M = C_G(\text{im}(\phi))$.

Main result

Suppose X is even. In that case, dim $C_G(X) = \dim M$.

Theorem (M.-Testerman)

If X is even, $\dim Z(C_G(X)) \ge \dim Z(M)$. [Where Z(-) means "the center of -"].

- ▶ In fact, Lawther-Testerman already proved that equality holds (for G semisimple). Their methods were "case-by-case".
- ▶ The argument I'll describe here is more direct.
- Reason for interest: let the unipotent u correspond to X via a Springer isomorphism. In char. p > 0, one has in general no well-behaved exponential map, but one might still hope to embed u in a "nice" abelian connected subgroup. $Z(C_G(X))^0 = Z(C_G(u))^0$ is a starting point.

Outline

Overview

Fibers of modules over a Dedekind domain

Modules over a Dedekind domain

- ▶ Let A be a Dedekind domain e.g. a principal ideal domain.
- For a maximal ideal $\mathfrak{m} \subset A$ and an A-module N, write $k(\mathfrak{m}) = A/\mathfrak{m}$, and $N(\mathfrak{m}) = N/\mathfrak{m}N = N \otimes_A k(\mathfrak{m})$,
- ▶ let K be the field of fractions of A and write $N_K = N \otimes_A K$.
- ▶ Let M be a fin. gen A-module. Then $M = M_0 \oplus M_{tor}$ where M_{tor} is torsion and M_0 is projective.

Homomorphisms (notation)

- Let $\phi: M \to N$ be an A-module homom where M and N are f.g. projective A-modules.
- let $P = \ker \phi$ and $Q = \operatorname{coker} \phi$.
- write $Q = Q_0 \oplus Q_{tor}$ as before.
- ▶ M/P is torsion free and thus projective, so for any max'l ideal \mathfrak{m} , we may view $P(\mathfrak{m})$ as a subspace of $M(\mathfrak{m})$.
- ▶ Write $\phi(\mathfrak{m}): M(\mathfrak{m}) \to N(\mathfrak{m})$ for $\phi \otimes 1_{k(\mathfrak{m})}$.

Fibers of a kernel

Recall $\phi: M \to N$, $P = \ker \phi$, and $Q = \operatorname{coker} \phi$.

Theorem

- (a) $P(\mathfrak{m}) \subset \ker \phi(\mathfrak{m})$, with equality $\iff Q_{\mathsf{tor}} \otimes k(\mathfrak{m}) = 0$.
- (b) $P(\mathfrak{m}) = \ker \phi(\mathfrak{m})$ for all but finitely many \mathfrak{m} .
 - ► Pf of (a) uses the following fact: for a finitely generated *A*-module *M*

$$(\clubsuit)$$
 $\operatorname{Tor}_{\mathcal{A}}^1(M, k(\mathfrak{m})) \simeq M_{\operatorname{tor}} \otimes k(\mathfrak{m})$

.

- ▶ For (b), one just notes that Q_{tor} has finite length.
- ▶ If one knows that $\dim_{k(\mathfrak{m})} \ker \phi(\mathfrak{m})$ is equal to a constant d for all \mathfrak{m} in some infinite set Γ of prime ideals, then $d = \dim_K \ker \phi(K)$.

Fibers of the center of an A-Lie algebra

- ► Let *L* be a Lie algebra over *A* which is f.g. projective as *A*-module.
- ▶ Let $Z = \{X \in L \mid [X, L] = 0\}$ be the center of L.

Theorem

- (a) L/Z is torsion free.
- (b) $\dim_{k(\mathfrak{m})} Z(\mathfrak{m})$ is constant.
- (c) For each maximal $\mathfrak{m} \subset A$, $Z(\mathfrak{m}) \subset \mathfrak{z}(L(\mathfrak{m}))$, and equality holds for all but finitely many \mathfrak{m} .
 - ▶ Here $\mathfrak{z}(L(\mathfrak{m}))$ means the center of the $k(\mathfrak{m})$ -Lie algebra $L(\mathfrak{m})$.
 - ▶ The result essentially follows from the result for kernels.

Center example

- Let A = k[T] for alg. closed k, and identify maximal ideals of A with elements in k.
- ▶ let L = Ae + Af, with e and f an A-basis where $[e, f] = T \cdot f$.
- Now Z(L) = 0, and $\mathfrak{z}(L(t)) = 0$ for $t \neq 0$.
- ▶ But L(0) is abelian, i.e $\mathfrak{z}(L(0)) = L(0)$.

Outline

Overview

Fibers of modules over a Dedekind domain

Nilpotent elements

Let G standard reductive group and $X \in Lie(G)$ nilpotent.

- ▶ There are cocharacters ϕ : $\mathbf{G}_m \to G$ associated to X defined using *Geom Inv Theory* which play the role of the semisimple element in an $\mathfrak{sl}(2)$ -triple.
- lacktriangle any such ϕ determines the same parabolic P by the condition:

$$Lie(P) = \sum_{i \ge 0} Lie(G)(\phi; i)$$

► X is even if Lie(G)(ϕ ; i) $\neq 0 \implies i \in 2\mathbf{Z}$.

Smoothness results

Keep the above assumptions: G standard, X nilpotent. Write $\mathfrak{g} = \text{Lie}(G)$.

- $ightharpoonup C_G(X)$ is a smooth group scheme.
- ▶ $Z(C_G(X))$ is a smooth group scheme [M.-Testerman '09].
- ▶ The centralizer $C_G(u) = C_G(X)$ has a Levi factor $B = C_G(u)^S$ where S is the image of the cochar ϕ .
- One knows that

$$\operatorname{\mathsf{Lie}}(Z(C_G(u))) = \mathfrak{z}(\operatorname{\mathsf{Lie}}(C_G(u))^{\operatorname{\mathsf{Ad}}(B)} = \mathfrak{z}(\mathfrak{c}_{\mathfrak{g}}(X)) \cap \mathfrak{g}^{\operatorname{\mathsf{Ad}}(B)}$$

- ▶ In particular, to prove the main result, it is enough to argue that $\dim \mathfrak{z}(\mathfrak{c}_{\mathfrak{g}}(X)) \cap \mathfrak{g}^{\mathrm{Ad}(B)} \geq \dim \mathfrak{z}(\mathrm{Lie}(M))$.
- ► (This reduction requires to know: the center of the standard reductive group *M* is smooth!)

Centralizers

Let ε be a Springer isomorphism, and $u = \varepsilon(X) \in G(k)$ unip. element.

- Let $A = k[\mathbf{G}_m] = k[T, T^{-1}]$; so A is Dedekind. Identify maximal ideals of A with points $t \in \mathbf{G}_m = k^{\times}$.
- ▶ Consider $\mathfrak{g} = \text{Lie}(G)$ and $L = \mathfrak{g} \otimes_k A$.
- ▶ View the cocharacter ϕ as an element of G(A), and consider $u \cdot \phi \in G(A)$. Via Ad, this element acts A-linearly on L.
- ▶ Form the Lie algebra $D = \ker(\operatorname{Ad}(u \cdot \phi) 1_L) \subset L$.
- (in char. 0, one can instead take A = k[T] and $D = \ker(\operatorname{ad}(X + T \cdot H))$

Proposition

Assume that X is even.

- $D(1) = \mathfrak{c}_{\mathfrak{a}}(u) = \mathfrak{c}_{\mathfrak{a}}(X).$
- ▶ For almost all $1 \neq t \in k^{\times}$, the algebra D(t) identifies with $\mathfrak{c}_{\mathfrak{g}}(\phi(t)u)$ which in turn is conjugate to $\mathfrak{g}(\phi;0) = \mathsf{Lie}(M)$.

Center of the centralizer

Keep the notation from the previous slide.

- ▶ Write Z for the center of the A-Lie algebra D.
- ▶ And write $H = \mathfrak{g}^B \otimes A \subset L$.
- ▶ Ultimately, must argue that

$$(Z\cap H)(1)\subset \mathfrak{z}(\mathfrak{c}_{\mathfrak{g}}(X))\cap \mathfrak{g}^B$$

while for almost all $t \neq 1$,

$$(Z \cap H)(t) = Z(t) = \mathfrak{c}_{\mathfrak{g}}(\phi(t)u).$$

► This implies the "main result".