2014-2015 学年度第二学期期中练习题

年级:初二 科目:数学 班级______姓名_

- **一. 选择题**(每题 3 分, 共 30 分)
- 1. 下列图形中, 既是轴对称图形又是中心对称图形的是(
 - A. 等腰直角三角形 B. 平行四边形 C. 圆 D. 等边三角形

- 2. 一元二次方程 $x^2 2x 1 = 0$ 的根的情况为 ()
 - A. 有两个相等的实数根
- B. 有两个不相等的实数根
- C. 只有一个实数根
- D. 没有实数根
- 3. $\triangle ABC$ 中,D、E、F 分别为 AB、AC、BC 的中点,若 $\triangle DEF$ 的周长为 6,则 $\triangle ABC$ 周长为 (
 - A. 3
- B. 6
- C. 12
- 4. 下列三角形中不是直角三角形的是()

 - A. 三个内角之比为 5:6:1 B. 其中一边上的中线等于这一边的
 - C. 三边之长为 9、40、41 D. 三边之比为 1.5:2:3
- 5. 若平行四边形的一边长为7,则它的两条对角线长可以是(
- A.12和2 B. 3和4 C. 14和16
- 6. 如图所示:数轴上点A所表示的数为a,则a的值是(

 - A. $\sqrt{5} 1$ B. $-\sqrt{5} + 1$ C. $\sqrt{5} + 1$
- D. $\sqrt{5} 2$
- 7. 如图,平行四边形 ABCD 的两条对角线相交于点 O,点 $E \in AB$ 边的中点,图中与 $\triangle ADE$ 面积相等的 三角形(不包括△ADE)共有(
 - A. 3
- B. 4
- D. 6

第7题图

- 8. 如图,把边长为1的正方形 ABCD 绕顶点 A 逆时针旋转 30 到正方形 AB'C'D',则它们的公共部分的面 积等于(
- B. $\frac{\sqrt{3}}{3}$ C. $\frac{3\sqrt{3}}{2}$ D. $\frac{\sqrt{3}}{2}$
- 9. △*ABC* 中,*AB*=15,*AC*=20,*BC* 边上的高 *AD*=12,则 *BC* 的长为(
 - A.25
- B.7
- C.25 或 7 D.14 或 4

10. 如图, 在矩形 ABCD 中, AC 是对角线, 将 ABCD 绕点 B 顺时针旋转 90 到 GBEF 位置,H 是 EG 的中点,若 AB=6, *BC*=8,则线段 *CH* 的长为()

- A. $2\sqrt{5}$ B. $\sqrt{21}$ C. $2\sqrt{10}$ D. $\sqrt{41}$
- 第10题图

- **二. 填空题** (每题 2 分, 共 20 分)
- 11. 将代数式 $x^2 4x + 2$ 配方的结果是
- 12. 方程 $y^2 + 4y 45 = 0$ 的根为
- 13. 下列给出的条件中,不能判定四边形 ABCD 是平行四边形的为 (填序号 $\bigcirc AB = CD$, AD = BC $\bigcirc AD = BC$, AD / BC $\bigcirc AB = CD$, $\angle B = \angle D$ $\bigcirc AB / CD$, $\angle A = \angle C$
- 14. 如图, 宽度为1的两个长方形纸条所交锐角为60°, 则两纸条重叠部分的面积是
- 15. 如图, $\triangle DEF$ 是由 $\triangle ABC$ 绕着某点旋转得到的,则这点的坐标是

- 16. 如图,在 \Box ABCD中, \angle DAB的角平分线交 CD 于 E,若 DE:EC=3:1,AB的长为 8,则 BC的长为___
- 17. 如图,直线 l 上有三个正方形 a, b, c, 若 a, c 的面积分别为 4 和 10,则 b 的面积为
- 18. 已知关于 x 的方程 $(k-1)x^2 (2k+3)x + (k+3) = 0$ 有实数根,则 k 满足
- 19. 如图 $\Box ABCD$ 中, $\angle C = 90^{\circ}$,沿着直线 BD折叠,使点 C落在 C'处,BC'交 AD 于 E, AD=16,AB=8, 则DE的长

第17题图

第 19 题图 第2页共6页

第 20 题图

20. 如图, 点O (0,0),B (0,1)是正方形 OBB_1C 的两个顶点,以它的对角线 OB_1 为一边作正方形 $OB_1B_2C_1$,以正方形 $OB_1B_2C_1$ 的对角线 OB_2 为一边作正方形 $OB_2B_3C_2$,再以正方形 $OB_2B_3C_2$ 的对角线 OB_3 为一边作正方形 $OB_3B_4C_3$, …, 依次进行下去, 则点 OB_3 的坐标是______

三. 解答题 (共 22 分)

21. (10分)解下列一元二次方程:

(1)
$$(x-1)^2 = 2$$

(2)
$$2x^2 - 4x - 7 = 0$$

22. (6分) 已知:如图,在平行四边形 ABCD 中,E、F 是对角线 AC 上的两点,且 AE =CF. 求证:四边形 BFDE 是平行四边形.

23. (6 分) 如图, 在四边形 ABCD 中, 对角线 $AC \setminus BD$ 交于点 E , $\angle BAC$ =90° , $\angle CED$ =45° , $\angle DCE$ =30° , DE= $\sqrt{2}$, BE= $2\sqrt{2}$.求 $CD \setminus AC$ 的长 .

四. 作图题(4分)

24. 根据题意作出图形,并回答相关问题:

请**在网格中**设计一个图案(图中每个小三角形都是边长为 1 的等边三角形),要求所设计的图案既是轴对称图形,又是中心对称图形,并且图案的顶点在格点上,面积等于 $3\sqrt{3}$. 请将你所设计的图案用铅笔涂黑.

五. 解答题 (共24分)

- 25. (6分)义卖活动中某班以每件21元的价格购进一批商品,若每件商品售价为x元,则可卖出(350-10x)件. 此班计划盈利400元,因为将商品卖给本校师生,所以限定每件商品利润不得超过20%,问每件商品售价多少元?
- 26. (6 分) 设 *E*、*F* 分别在正方形 *ABCD* 的边 *BC*,*CD* 上滑动保持且∠*EAF*=45°. 若 *AB*=5,求△*ECF* 的 周长.

27. (6 分) 当 m 是什么整数时,关于 x 的一元二次方程 $mx^2 - 4x + 4 = 0$

与 $x^2 - 4mx + 4m^2 - 4m - 5 = 0$ 的根都是整数.

28. (6 分) *在* ABCD 中, $\angle A = \angle DBC$,过点 D 作 DE=DF,且 $\angle EDF = \angle ABD$,连接 EF、 EC,M、N、P 分别为 EF、EC、BC 的中点,连接 NP. 请你发现 $\angle ABD$ 与 $\angle MNP$ 满足的等量关系,并证明.

一、选择题

1	2	3	4	5	6	7	8	9	10
C	В	C	D	C	A	C	В	C	D

二、填空题

- 11, $(x-2)^2-2$ 12, -9, 5 13, ③ 14, $\frac{2}{3}\sqrt{3}$ 15, (0, 1)

- 16, 6 17, 14 18, $k \ge -\frac{21}{4}$ 19, 10 20, (-8, 0)

三、解答题

- 21, (1) $x = 1 \pm \sqrt{2}$ (2) $x = \frac{2 \pm 3\sqrt{2}}{2}$
- 22、连接 BD
- 23, CD=2, $AC = 3 + \sqrt{3}$
- 四、作图题

24,

五、解答题:

- 25, 25
- 26, 10
- 27、解: : 关于x的一元二次方程 $mx^2 4x + 4 = 0$ 与 $x^2 4mx + 4m^2 5 = 0$ 有解,

则
$$m \neq 0$$
,

$$\Delta \geq 0$$

$$mx^2-4x+4=0,$$

$$\therefore \Delta = 16 - 16m \ge 0, \quad \mathbb{H} \ m \le 1;$$

$$x^2 - 4mx + 4m^2 - 5 = 0$$

$$\Delta = 16m^2 - 16m^2 + 16m + 20 \ge 0,$$

$$\therefore 4m+5\geq 0, m\geq -\frac{5}{4};$$

所以 m=1, m=0 (舍去), m=-1 (一个为 $x^2+4x-4=0$, 另一个为 $x^2+4x+3=0$, 冲突, 故舍去),

当 m=1 时, $mx^2-4x+4=0$ 即 $x^2-4x+4=0$, 方程的解是 $x_1=x_2=2$;

$$x^2 - 4mx + 4m^2 - 5 = 0$$
 即 $x - 4x - 5 = 0$,方程的解是 $x_1 = 5, x_2 = -1$;

当 m=0 时, $mx^2-4x+4=0$ 时,方程是-4x+4=0不是一元二次方程,故舍去.

故 m=1.

28、解: $\angle ABD + \angle MNP = 180^{\circ}$

证明:如图,分别连接 BE、CF.

- : 四边形 ABCD 是平行四边形,
- $\therefore AD//BC$, AB//DC, $\angle A = \angle DCB$,
- $\therefore \angle ABD = \angle BDC$.
- $\therefore \angle A = \angle DBC$,
- $\therefore \angle DBC = \angle DCB$.
- $\therefore DB=DC.$ (1)
- $\therefore \angle EDF = \angle ABD$,
- $\therefore \angle EDF = \angle BDC$.
- $\therefore \angle BDC \angle EDC = \angle EDF \angle EDC$.

$$\mathbb{P} \angle BDE = \angle CDF$$
. ②

 $\nabla DE=DF$, ③

由①②③得△BDE≌△CDF.

- \therefore EB=FC, $\angle 1=\angle 2$.
- $: N \setminus P$ 分别为 $EC \setminus BC$ 的中点,

$$\therefore NP // EB, NP = \frac{1}{2} EB$$
.

同理可得 MN//FC, $MN=\frac{1}{2}FC$.

- $\therefore NP = NM.$
- : NP // EB,
- $\therefore \angle NPC = \angle 4$.
- $\therefore \angle ENP = \angle NCP + \angle NPC = \angle NCP + \angle 4.$
- ::MN//FC
- $\therefore \angle MNE = \angle FCE = \angle 3 + \angle 2 = \angle 3 + \angle 1.$
- $\angle MNP = \angle MNE + \angle ENP = \angle 3 + \angle 1 + \angle NCP + \angle 4$ $= \angle DBC + \angle DCB = 180^{\circ} \angle BDC = 180^{\circ} \angle ABD.$
- \therefore $\angle ABD + \angle MNP = 180^{\circ}$.

