BEST AVAILABLE COPY

詳細專利內容 - 中華民國專利資訊網

-00239229 -- 核准公告專利公報資料

**本系統專利資料僅供參考,不作爲准駁依據,所有資料以經濟部智慧財產局公告爲準 中文造字安裝程式:(約1.6M)

減少光單使用	之互補式金氧半場效電晶體製造方法
專利公告號	00239229 說明審影像/圖式影像/權利異動/雜項資料/型
卷號	22
期號	3
公告日期	1995/01/21
專利類型·	愛 明
國際專利分類號	H01L 21/335
申請案號	0083107464
申請日期	1994/08/13
申請人	台灣茂矽電子股份有限公司;新竹市科學工業園區研發一路一號
	王志賢;新竹市園後街八十四號
商要	一種互補式(COMPLEMENTARY)金氧半場效電晶體的製造
·	方法,可減少所使用的光單,使製程簡化;成本降低,而且
	所得產品特性穩定、品質良好・本發明包括下列步驟:(a)
	提供一矽基板,其上至少已形成P型井區,N型井區、複數
	個閘極、和閘極氧化層:(b)以該複數個閘極爲光罩,對
	於該矽基板全面性進行第一N型離子植入,其中該第一N型
	離子植入之植入角度與垂直該矽基板方向相距不小於20度
	: (c)形成側壁:(d)應用第一光罩・遮住欲形成該P通道
-	場效電晶體之區域,進行第二N型離子植入:(e)應用第二、
•	光單,遮住欲形成酸N通道場效電晶體之部份,進行第一P
	型離子植入,且進行第二P型離子植入,其中該第二P型離
·- ·- ·- ·-	子植入之植入角度與垂直骸矽基板方向相距不小於20度。
中請專利範圍	● 1.一種減少光單使用的互補式金氧半場效電品體製造方法 ,其可在一矽基板上形成N通道場效電品體和P通道場電品 體,包括下列步驟:(a)提供該矽基板,其上至少已形成P

詳細專利內容 - 中華民國專利資訊網

第2頁,共2頁

型井區,N型井區、複數個閘極、和閘極氧化層:(b)以該 複數個閘極爲光單,對於該矽基板全面性進行第一N型離 子植入,以形成第一N型離子植入區,其中該第一N型離子 植入之植入角度與垂直該矽基板方向相距不小於20度,而 且該第一N型離子植入區部分延伸至閘極的正下方;(c)形 成側壁:(d)應用第一光罩,遮住欲形成數P通道場效電晶 體之區域,進行第二N型離子植入,以形成第二N型離子植 入區,其中該第二N型離子植入區之濃度大於該第一N型離 子植入區之濃度,而且該第一N型離子植入區延伸至N通道 場效電晶體閛極正下方的部分仍然存在:(e)應用第二光 單,遮住欲形成該N通道場效電晶體之部份,進行第一P型 離子植入,以形成第一P型離子植入區,且進行第二P型離 子植入,以形成第二P型離子植入區;其中該第二P型離子 植入的植入角度與垂直眩矽基板方向相距不小於20度:而 且該第一P型離子植入區的濃度大於該第二P型離子植入區 的濃度,而該第二P型離子植入區部分延伸至該P通道場效 電晶體閘極的正下方,故該第二P型離子植入區延伸至該P 通道場效電晶體閘極正下方之部分仍然存在:該第二P型 離子植入區之深度較該第一N型離子植入區爲淺,故在第 二P型離子植入區下方部分第一N型離子植入區仍然存在。

- 2.如申請專利範圍第1項所述之製造方法,其中該第一N型離子植入之植入角度與垂直該矽基板方向相距較佳約30度至45度。
- 3.如申讀專利範圍第1項所述之製造方法,其中該第一N型雕子植入之植入物種爲磷,植入濃度約1×10\$^13\$cm\$^-2\$至3×10\$^13\$cm\$^-2\$間,植入能量約20KeV和60KeV間
- 4.如申請專利範圍第1項所述之製造方法,其中該第二N型離子植入之植入角度與垂直該矽基板方向相距約0度至7 度・
- 5.如申請專利範圍第1項所述之製造方法,其中該第二N型雕子植入之植入物種爲磷,植入濃度約3×10\$^15\$cm\$^-2\$至5×10\$^15\$cm\$^-2\$間,植入能量約20KeV和60KeV間
- 6.如申請專利範圍第1項所述之製造方法,其中數第一P型離子植入之植入角度與垂直該矽基板方向相距約0度至7度。
- 7.如申請專利範圍第1項所述之製造方法:其中該第一P 型離子植入之植入物種爲硼,植入濃度約爲3×10\$^15\$cm \$^2\$至5×10\$^15\$cm\$^2\$,植入能量約爲20KeV至d0KeV
- 8.如申請專利範圍第1項所述之製造方法,其中酸第二P型離子植入之植入角度與垂直該矽基板方向相距較佳約40度至70度。
- 9.如申請專利範圍第1項所述之製造方法,其中該第二正型離子植入之植入物種爲硼,植入濃度約1×10\$^13\$cm\$^.2\$至3×10\$^13\$cm\$^-2\$,植入能量約爲20KeV至60KeV。
- 10.如申請專利範圍第1項所述之製造方法,其中步驟(a) 更包括進行埋藏通道離子植入,該離子植入之植入物種爲 硼,植入濃度約爲5×105^125cm\$△25、植入能量爲50keV.
- 11.如申請專利範圍第1項所述之製造方法,其中酸第一N型離子植入之植入物種爲砷。
- 12.如申請專利範圍第1項所述之製造方法,其中該第二N型離子植入之植入物種爲砷。第1A圖到第1H圖係傳統淡接汲極(LDD)結構互補式金氧半場效體的製程剖面圖:第2A

連穎科技股份有限公司 (c) Copyright 2003 Learningtech Corp. TEL:+886-3-402-4200 · 402-4201 Fax:+886-3-402-4632

缐

239229

申坊	日期	83.8.13
絫	鋭	83107464
類	別	HOIL 21/335

中文 減少光單使用之互補式金氧半場效電晶體製造方法 英文 基	(1	以上各欄由本局填註)
安明 名稱 英文 文 王志賢 因 務 中華民國 在、居所 新竹市園後街84號 在 《名称》 在 《名称》 在 一		發明 專利說明書
英文 拉名 王志賢 國籍 中華民國 在、居所 新竹市園後街84號 在、居所 新竹市園後街84號 在 名 (244) 由	、發明 新型	中文 減少光單使用之互補式金氧半場效電晶體製造方法
图 籍 中華民國 位、居所 新竹市園後街84號 在、居所 新竹市園後街84號 在 名 (248) 由 普 中華民國 中華民國 中華民國 中華民國		英文
登明人 住、居所 新竹市園後街84號 姓 名 名 台灣茂 矽電子 股 份 有 限 公 司 國 籍 中華民國 中華民國	·登明 · 創作	^{姓 名} 王志賢
住、居所 新竹市園後街84號 姓 名 台灣茂矽電子股份有限公司 國 将 中華民國 中華民國 (4.8所 新竹市科學工業園區研發一路一號		國 籍 中華民國
(2科) 日 内 戊 少 電 丁 股 切 有 限 乙 司 國 籍 中華民國 · 中赫人 住、居所 新价市科學工 置 图 區 研 發 一 路 一 號		住、居所 新竹市園後街84號
·申請人 住、居所 新价市科學工量関區研發一路一號		
· 中請人 住、居所 (事務所) 新竹市科學工業園區研發一路一號		國 若 中華民國
1 1		住、居所 新竹市科學工業園區研發一路一號 (事務所)
代表人胡洪九姓名		

本紙最尺度適用中國國家標準 (CNS) A4規格 (210×297公签)

經濟部中央標準局員工消費合作社印製

A5 B5

四、中主發明摘要(發明之名稱: 減少光單使用之互補式金氧半場效電品體製造方法

一種互補式 (COMPLEMENTARY) 金氧半場效電晶體的製造方法,可減少所使用的光罩,使製程簡化、成本降低,而且所得產品特性穩定、品質良好。本發明包括下列步驟:(a)提供一矽基板,其上至少已形成P型井區,N型井區、複數個關極、和關極氧化層;(b)以該複數個關極爲光罩,對於該矽基板全面性進行第一N型離子植入,其中該第一N型離子植入之植入角度與垂直該矽基板方向相距不小於20度;(c)形成側壁;(d)應用第一光罩,遮住欲形成該P通道場效電晶體之區域,進行第二N型離子植入;(e)應用第二光罩,遮住欲形成該N通道場效電晶體之部份,進行第一P型離子植入,且進行第二P型離子植入,其中該第二P型離子植入,其中該第二P型離子植入,其中該第二P型離子植入之植入角度與垂直該矽基板方向相距不小於20度。

英文發明摘要 (發明之名稱:

(請先閱讀背面之注意事項再填寫本頁各欄

)

經濟部中央標準局員工消費合作社印製

A7 B7

五、發明説明(1)

(一) 發明的技術領域

本發明是一種有關金氧半場效電晶體(MOSFET)的製造方法,尤其是一種互補式(COMPLEMENTARY) 金氧半場效電晶體的製造方法。

(二) 發明背景

在半導體領域中,由於元件結構日趨小型化和精細製程的不斷發展,元件整合的理論和技術自然突飛猛進,日新又新。

當元件尺寸不斷縮小之際,閘極長度隨之縮減,自然通道(CHANNEL) 長度也不斷縮減。在通道長度在次微米以下時,即產生短通道效應(SHORT CHANNEL EFFECTS)。 種種短通道效應中,最值得注意的是 N 通道 MOS 電晶體中的熱載子效應(HOT CARRIER EFFECT)和 P 通道 MOS 電晶體中的穿透效應(PUNCHTHROUGH EFFECT)。

如果元件尺寸縮減,而電源仍然保持定值,則元件中 横向的電場會大量增加,而且集中汲極附近,於是熱栽子 效應便隨之產生。上述強大的電場會使 N 通道中的電子 獲得大量的動能,因而產生了電子一電洞對,部分的熱载 子受垂直電場影響而注入閘極薄氧化層。於是造成元件臨 限電壓 V_t (THRESHOLD VOLTAGE) 的改變。

热戰子注入閘極氧化層後,除了元件臨限電壓V_t 改變之外, MOS 電晶體的其他特性表現也會受到影響,像 是:

1) 飽合電流 (SATURATION CURRENT) 會減少;

诗先阅读背面之注意事項再填寫本頁)

83. 3. 10,000

坊先囚被背面之注意事項再填寫本頁

239229

A7 B7

五、發明説明(2)

- 2) 轉移電導 (TRANSCONDUCTANCE) 會減少:
- 3) 載子移動率 (CARRIER MOBILITY) 會因為 INTERFACE STATE 而降低。

以現今的技術而言,淡摻汲極 (LIGHTLY DOPED DRAIN, LDD) 結構最常用來改善 N 通道 MOS 電晶體中的熱戰子效應。

就 PMOS 而冒 ,在通道長度小於 0.6 μm 時 , 穿透 效應就非常嚴重 , 此外熟載子效應也會使得 P通道元件臨限電 壓改變 (使得 | V₊ |減少) , 而產生漏電流 .

爲減少穿透效應,傳統製程採用淡掺汲極結構以及有效穿透阻止 (effective punchthrough stopper, EPS) 結構 (或稱 pocket 結構)以降低 PMOS 元件之源極/汲極接面深度 (JUNCTION DEPTH)。

由於電力消耗、可靠度、線路設計和成本種種的考量, -CMOS 技術遂成 VLSI 和 ULSI 技術的主流。 故以下對具有 P 通道和 N通道 LDD MOS 電晶體元件的製程作一詳細的說明:

- -(1) 提供一矽基板42 (見第1A圖);
- (2) 形成場氧化體 44· P 型井區 46·N 型井區 48·及 埋藏通道 45 (見第1A閩);
- (3) 成長一閘極氧化層50 (見第1A圖);
- (4) 沉積閘極多晶層52並接入雜質(見第1B圖);
- (5) 光罩 A: 界定多晶矽閘極54·56(見第1C圖):
- (6) 光罩 B : 應用光罩55, 進行 n 一 離子植入57, 形成 n -

型 LDD 離子植入區58 (見第1D圖);

83. 3. 10,000

A7 B7

五、發明説明(3)

- (7) 光罩 C : 應用光罩59進行 p 一 離入植入 61 · 形 成 p 型 LDD 離子植入區62 (見第1E圖);
- (8) 形成側壁 66 (見第1F圖);
- (9) 光罩 D : 應用光罩68,進行 n ⁺ 離子植入67,形 成 n ⁺ 源極/汲極植入區70 (見第16圖);
- (10)光罩 E : 應用光罩72, 進行 p ⁺ 離子植入74, 形成 p ⁺ 源極/汲極植入區76.(見第1H圖);

由第 1A 圖到第 1H 圖,我們已完成 P 通道和 N 通道 LDD MOS 電晶體, 經由四次光單 (即 光單 B, C, D, E) 完成 LDD 結構。如上所述,為了避免熟數子的問題,LDD結構被用來減少通道電場:藉由淡接(lightly doped) 的部分源極、 汲極的壓降來減低通道電場密度。但由於多了淡接的部分源極、 汲極, 比較起傳統無 LDD 結構的 MOS 元件, 就多了兩次光單應用 (即上述光罩 B, 光罩 C)。

光罩應用的增加不但增加製程的複雜性、 成本、 及 時間 , 更在額外的光罩應用下 , 引進額外的製程變數 , 造成產品特性的不穩定 , 於是發展一種既能減少熟載子 效應 , 又能儘量減少使用光罩次數的製程便是一項非常 重要的課題 ,

(三) 發明的簡要說明

本案之一目的在提供一種互補式金氧半場效電晶體的 製造方法, 該製造方法減少使用的光罩數目而使製程大爲 簡化。 **请先阅读背面之注意事項再填寫本頁)**

挤先阅读背面之注意事項再填寫本頁

A7 B7

五、發明説明(4)

本案之另一目的在提供一種互補式金氧半場效電晶體 體的製造方法,其特別適用於短通道元件(SHORT CHANNEL DEVICE),可有效減低熱戰子效應和穿透效應。

本製造方法包括下列步骤:(a)提供一矽基板,其上至少已形成 P型井區, N型井區、複數個閘極、和閘極氧化層:(b)以該複數個閘極爲光罩,對於該矽基板全面性進行第一 N型離子植入,以形成第一 N型離子植入區;(c)形成側壁;(d)應用第一光罩,遮住欲形成該 P通道場效電晶體之區域,進行第二 N型離子植入,以形成第二 N型離子植入。以形成第二 N型離子植入。以形成第一 P型離子植入。以形成第一 P型離子植入區,且進行第二 P型離子植入,以形成第二 P型離子植入區。

當然,其中該第一 N 型離子植入及第二 P 型離子植入之植入角度與垂直該矽基板方向相距不小於 20度, 而該第一 N型離子植入之植入物種爲磷,植入濃度約 1×10^{13} cm $^{-2}$ 至 3×10^{13} cm $^{-2}$ 間,其中該第二 N 型離子植入之植入物種爲磷,植入濃度約 3×10^{15} cm $^{-2}$ 至 5×10^{15} cm $^{-2}$ 間,該第一P型離子植入之植入物種爲硼,植入濃度約爲 3×10^{15} cm $^{-2}$ 至 5×10^{15} cm $^{-2}$ 2 5×10^{15} cm $^{-2}$ 3 。 該第二正型離子植入之植入物種爲 硼,植入濃度約 1×10^{13} cm $^{-2}$ 2 至 3×10^{13} cm $^{-2}$ 3 ·

茲舉一最佳實施例配合圖示說明如下,相信本創作的目的、特徵及優點可由之得一具體濟析的瞭解。

(四) 圖式之簡要說明

持先因读背面之注意事項再填寫本頁

239229

A7 B7

五、發明説明(5)

第1A圖到第1H圖係傳統淡接汲極 (LDD) 結構互補式 金氧半場效體的製程剖面圖;

第2A圖到第2G圖係本發明之製程剖面圖。

(五) 較佳實施例的詳細說明

首先請參照第2A圖,如同傳統製程,首先我們提供一一矽基板 142,應用傳統隔離技術形成場氧化體 144, P型井區 146,n型井區 148,接著形成埋藏通道區域 145,在此我們使用能量 50 KeV 、 濃度 5×10¹² cm⁻² 的硼雅子植入,然後成長一閘極氧化層 150。

參見第 2B 圖, 沉積一層閘極多晶矽層 152, 並接入 n⁺ 雜質 POCI₃ (濃度 5×10²⁰ cm⁻²), 接著如第 2C圖 所示,以傳統光罩蝕刻技術界定多晶矽閘極 154,156。

然後對整個基板 142 上 N 通道 MOS 電晶體和 P 通 道 MOS 電晶體進行 n 離子植入 158 而形成 n 一 離子植 一入區 160 、 164 · 而且該 n 一 離子植入區部分延伸至 閘極的正下方。 特別注意的是, 在此我們使用大角度 (large-tilt-angle) 離子植入。 傳統的小角度離子植入,為了減少通道效應 (CHANNELING EFFECT) 其角度一般設定於偏離垂直基板方向 7 度左右。 然而,若應用大角度離子植入,其角度可在偏離垂直基板方向 20 度至 60 度之間,就本實施例而言,此大角度離子植入係以垂直基板方向 20 至 45 度的角度植入, 所使用的植入物種爲濃度 1×10¹³ 至 3×10¹³ cm⁻²,能量 30 至 60 KeV 的磷離子。現今有許多種機臺可執行這種大角度離子植入, 在此我們所使用的機臺是 Nissin 的 NH 20 SR。

A7 B7

五、發明説明(6)

在完成 n 離子植入後, 以傳統方式形成一層 CVD-SiO₂ 層, 然後運用非等向性蝕刻 (anisotropic etching) 技術蝕刻 CVD-SiO₂ 層而形成側壁 166 (如第 2E圖所示)。

接著參見第2F圖,應用光罩 194 遮住基板 142 上飲 形成 P 通道 MOS 電晶體的部分,進行 n^+ 型離子植入 168,以形成 n^+ 離子植入區 170,在此我們使用的物種 為磷 (phosphorus),劑量大約為 3×10^{15} 至 5×10^{15} cm^{-2} , 能量為 20 至 60 KeV , 而植入離子方式採用傳統小角度離子植入(植入角度為偏離垂直基板方向 7 度左右)。

此外,我們要特別注意的是: n⁺ 離子植入區 170 之濃度大於 n⁻ 型離子植入區 160 之濃度,而且 n⁻ 離子植入區 160 延伸至 N 通道場效電晶體閘極 154 正下方的部分仍然存在,至此, 我們已形成互補式金氧半場效電晶體-中n通道 MOS電晶體的 LDD 結構。

如第 26圖所示,在形成 N 通道 MOS 電晶體 LDD 結構後, 應用光罩 172,遮住基板 142 上已完成 N 通道 MOS 電晶體的部分,來進行離子植入。 p⁺ 離子植入 174 首先進行, 在此我們應用傳統的小角度雖子植入,(植入角度爲偏離垂直基板方向 7 度左右),而植入物種爲硼,濃度可爲 3×10¹⁵ cm⁻² 到 5×10¹⁵ cm⁻², 能量爲 20 至 60 KeV。接著進行 p⁻ 離子植入 176,此時則應用大角度離子植入, 植入角度可在偏離垂直基板方向 20度到 60度之間, 就本實施例而言, 此大角度離子

83. 3. 10,000

A7 B7

五、發明説明(7)

植入 176 係以垂直基板方向 40至 70 度的角度植入烏較佳, 所應用的植入物種爲硼,其濃度可爲 1×10^{13} cm⁻²至 3×10^{13} cm⁻²之間,而能量則爲 20 至 60 KeV ·由 這二次的離子植入,我們形成了 p⁻ 離子植入區 182,和 p⁺離子植入區 180·先前如第 3D 圖所示之 n⁻離子植入 158 也形成 n⁻ 離子植入區 164 ·前後三次的離子植入,我們完成具有 LDD 結構的 P 通道 MOS 電晶體,更重要的是完成了有效穿透阻止 (EFFECTIVE PUNCHTHROUGH STOPPER) 結構 (或稱 pocket 結構)。

換買之,由於 p- 離子植入區 182部分延伸至該 P 通道場效電晶體隔極 156 的正下方,故 p- 離子植入區 182延伸至 P 通道場效電晶體隔極 156 正下方之部分仍然存在;而 p- 離子植入區 182 之深度較 n-型離子植入區 164 為 後,故在p- 型離子植入區 182 下方部分 n-型離子植入區 164 仍然存在。

其中,p⁻ 離子植入 和p⁺ 離子植入的順序可以對調 - ,故我們先進行 p⁻ 離子植入,再進行 p⁺ 離子植入, 其結果並不受影響。

仔細審視第26圖,傳統的 LDD 結構 P通道 MOS 電晶體,其電流路徑 (CURRENT PATH) 依序為 左邊的 p⁺ 離子植入區 180,左邊的離子植入區 182,埋藏通道區 145,左邊的離子植入區 182,左邊的離子植入區 180,當元件尺寸縮小時,短通道效應隨之浮現,穿透現象容易產生而導致漏電情形。但在本發明中,引入了大角度 n⁻ 離子植入區 164 結構 (即 pocket 結構),則可大幅減低穿透效應。

(請先閱讀背面之注意事項再填寫本頁

特先阅读背面之注意事項再填寫本頁

239229

A7 B7

五、發明説明(8)

回到第 2D 和 2F 圖,應用大角度離子植入 158 所形成的 n- 離子植入區,其植入深度較傳統小角度離子植入爲深,而且位於多晶矽閘極 154正下方的區域 160A , 其電阻較小,故由源極流過來的電子流,大部分會流經區域 160A 如前面所述,在短通道元件中, 強大電場大部分集中在汲極附近,經由本發明所得之 n 通道 MOS 電晶體,電子流大部分流過區域 160A,而避開了電場強度最強的部分,故熱較子效應就可以大幅減低。

為了更清楚地了解本發明的要義· 我們依序列出本發明所需步驟流程:

- (1) 提供一矽基板 142 (見第2A圖);
- (2) 形成場氧化體 144·P 型井區 146· N 型井區 148· 及埋藏通道 145(見第2A圖):
- (3) 成長一閘極氧化層 150 (見第2A圖):
- (4) 沉積閘極多晶矽層 152 並掺入雜質(見第 28 圖);
- (5) 光罩 A': 界定多晶矽閘極 154,156 (見第 2C圖);
- (6) 對矽基板 142 全面性進行 n 大角度離子植 入 158 而形成 n 型 LDD 離子植入區 160・164・(見第2D圖);
- (7) 形成側壁166 (見第2E 圖);
- (8) 光罩 B' : 應用光罩 192進行小角度 n⁺ 離子 植入168、形成 n⁺ 源極/汲極離子植入區 170 (見第2F圖):
- (9) 光單 C : 應用光罩 172 進行小角度 p + 離

83. 3. 10,000

A7 B7

五、發明説明(9)

子植入 174,形成 p⁺ 源極/沒極離子植入區 180,接著進行大角度 p⁻ 離子植入 176,形成 p⁻ 型 LDD 離子植入區 182 (見第 2G 圖):

前述傳統製程(見第 2A 圖-第 2H 圖) 一共用了4道 光罩來完成 LDD 結構,然而,從第3A圖到第3G圖觀之, 本發明僅用了 2 道光罩(即光罩 B', C')來完成 LDD 結 構,比較起傳統 LDD MOS 電晶體的製造方法,本發明節省 了兩道光罩的使用,不但簡化了製程,減少額外製程變數的 引入,排除部份因額外光罩使用而產生的產品不穩定性,更 節省了可觀的成本、時間。

此外,依據本發明除了簡化製程之外,所得之 P 通 道和 N 通道 MOS 電晶體,完全能夠克服種種短通道效應 ,尤其是熱戰子效應和穿透效應,得到元件特性表現均非 常優良。當然,本發明所提出之實施例,其中各步驟所引 用的數據並不能限制其所欲保設的範圍。在元件尺寸不斷 斷縮小之際,此種節省光單的互補式金氧半場效電晶體的 製程仍然非常有效,僅其中離子植入物種、能量、濃度有 所不同。熱習於此技藝之人士,於詳細閱完本說明書,當 得任施匠思而爲諸般修飾,然皆不脫如附申請專利範圍所 欲得保護者。

·A8 B8 C8 D8

六、申請專利範圍

- 1. 一種減少光罩使用的互補式金氧半場效電晶體製造方法,其可在一矽基板上形成 N通道場效電晶體和 P通道場 電晶體,包括下列步驟:
- (a) 提供該矽基板,其上至少已形成 P 型井區, N 型井區、複數個閘極、和閘極氧化層;
- (b) 以該複數個單極為光罩,對於該矽基板全面性進行第一 N 型離子植入,以形成第一 N 型離子植入區, 其中該第 一 N 型離子植入之植入角度與垂直該矽基板方向相 距不小於 20度,而且該第一 N 型離子植入區部分延伸至 闡極的正下方;
- (c) 形成側壁; ...
- (d) 應用第一光罩,遮住欲形成該 P 通道場效電晶體之區域,進行第二 N 型離子植入,以形成第二 N 型離子植入區,其中該第二 N 型離子植入區之濃度大於該第一 N 型離子植入區之濃度,而且該第一 N 型離子植入區延伸至 N通道場效電晶體閘極正下方的部分仍然存在;
- (e) 應用第二光罩,遮住欲形成該 N 通道場效電晶體之部份,進行第一 P 型離子植入, 以形成第一 P 型離子植入區,且進行第二 P 型離子植入, 以形成第二 P 型離子植入區;其中該第二 P 型離子植入的植入角度與垂直該矽基板方向相距不小於20度;而且該第一 P 型離子植入區的濃度大於該第二 P 型離子植入區的濃度,而該第二 P型離子植入區部分延伸至該 P 通道場效電晶體閘極的正下方, 故該第二 P型離子植入區延伸至該 P 通道場效電晶體閘極的正下方, 故該第二 P型離子植入區延伸至該 P 通道場效電晶體閘極下方之部分仍然存在;該第二 P 型離子植入區之深度較該第一 N 型離子植入區爲淺,故在第二 P 型離子植入區下方部分第一 N 型離子植入區仍然存在。

請先閱讀背面之注意事項再填寫本頁

239229

A8 B8 C8 D8

六、申請專利範圍

- 2. 如申請專利範圍第1項所述之製造方法,其中該第一N 型離子植入之植入角度與垂直該矽基板方向相距較佳約30度至45度。
- 3. 如申請專利範圍第1項所述之製造方法,其中該第一N 型離子植入之植入物種爲磷,植入濃度約 1×10¹³ cm⁻²至 3×10¹³ cm⁻²間,植入能量約 20 KeV 和 60 KeV 間
- 4. 如申請專利範圍第1項所述之製造方法,其中該第二 N 型離子植入之植入角度與垂直該矽基板方向相距約0度 至7度。
- 5. 如申請專利範國第1項所述之製造方法,其中該第二N型離子植入之植入物種爲磷,植入濃度約3×10¹⁵ cm⁻²至 5×10¹⁵ cm⁻²間,植入能量約 20 KeV 至 60 KeV間。
- 6. 如申請專利範圍第1項所述之製造方法,其中該第一 P型離子植入之植入角度與垂直該矽基板方向相距約0度 至7度。
- 7. 如申請專利範圍第1項所述之製造方法,其中該第一 P 型離子植入之植入物種爲硼、植入濃度約爲 3×10^{15} cm $^{-2}$ 至 5×10^{15} cm $^{-2}$, 植入能量約爲 20 KeV 至 60 KeV・
- 8. 如申請專利範圍第1項所述之製造方法,其中該第二

·A8 B8 C8 D8

六、申請專利範圍

- P 型離子植入之植入角度與垂直該矽基板方向相距較佳約40度 至 70 度。
- 9. 如申請專利範圍第 1 項所述之製造方法,其中該第二 正型離子植入之植入物種爲硼,植入濃度約 1×10^{13} cm⁻² 至 3×10^{13} cm⁻²,植入能量約爲 20 KeV 至 60KeV。
- 10.如申請專利範圍第1項所述之製造方法,其中步驟(a) 更包括進行埋藏通道離子植入,該離子植入之植入物 種爲硼,植入濃度約爲 5×10^{12} cm⁻²,植入能量爲 50 KeV
- 11. 如申請專利範圍第1項所述之製造方法,其中該第一 N 型離子植入之植入物種爲砷。
- 12. 如申請專利範圍第 1 項所述之製造方法,其中該第二 N 型離子植入之植入物種爲砷·

經濟部中央標準局員工消费合作社印製

本紙張尺度適用中國國家標準 (CNS) A4規格 (210×297公釐)

A9 B9 C9 D9

本紙張尺度適用中國國家標準 (CNS) A4规格 (210×297公整)

A9 B9 C9 D9

本紙張尺度適用中國國家標準 (CNS) A4規格 (210×297公營)

A9 B9 C9 D9

經濟部中央標準局買工消費合作社印製

A9 B9 C9 -

經濟部中央標準局員工消費合作社印製

本紙張尺度適用中國國家標準 (CNS) A4規格 (210×297公產)

A9 B9 C9 D9

本纸張尺度通用中國國家標準 (CNS) A4規格 (210×297公接)

A9 B9 C9 D9

超濟部中央標準局員工消費合作社印製

本紙張尺度週用中國國家標準 (CNS) A4規格 (210×297公發)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.