

Aula – 01 "Centro de Massa (C.M.)"

Prof. Elio Idalgo

Canal no YouTube: Elio Idalgo - Sucesso Na Churrascaria

Centro de massa (C.M.) Momentos de lazer – CASA – 1

ML1 – CASA) Quais as coordenadas (a) x e (b) y do centro de massa do sistema de três partículas conforme ilustrado abaixo? (c) Determine o módulo de |r_{cm}| e a direção. (d) o que acontece com o centro de massa ao se aumentar gradativamente a massa da partícula que se encontra na posição mais elevada?

Resposta:

a) $x_{cm} = 1.1 \text{ m}$

b)
$$y_{cm} = 1.3 \text{ m}$$

$$\therefore$$
 C. M. = (1,1; 1,3) m
 \therefore \vec{r}_{cm} = (1,1 \hat{i} + 1,3 \hat{j}) m

y(m)

c)
$$|\vec{r}_{cm}| = 1,702 \text{ m}$$

$$\theta = 49,76^{\circ}$$

d) Como a massa da partícula do topo aumenta, o centro de massa (C.M.) desloca naturalmente em sua direção.

Aula – 02 $\mbox{``Aceleração do}$ $\mbox{`Centro de Massa} \ (\mbox{$\vec{a}_{\rm CM}$})\mbox{''}$

Prof. Elio Idalgo

Canal no YouTube: Elio Idalgo - Sucesso Na Churrascaria

Aceleração do Centro de massa (\vec{a}_{cm}) Momentos de lazer – CASA – 2

ML2 – CASA) As três partículas ilustradas na figura estão inicialmente em repouso. Cada uma sofre a ação de uma força externa devido a corpos fora deste sistema de três partículas. As direções e sentidos estão indicados na figura e os módulos são $F_1 = 3$ N, $F_2 = 8$ N e $F_3 = 10$ N. Qual a aceleração do

centro de massa e em que direção ele se move?


```
 \vec{a}_{cm} = (-1,741 \hat{i} + 0,5 \hat{j}) \text{ m/s}^2 
 |\vec{a}_{CM}| \approx 1,811 \text{ m/s}^2 
 φ ≈ -16,02° 
2° Quadrante: Θ ≈ 163,97°
```