AとBの公約数の集合をRとおき、AとBの共通の素因数の集合と $\{1\}$ との和集合をSとおく。すなわち、たとえばA=12, B=18のときは、

$$R = \{1, 2, 3, 6\}, S = \{1, 2, 3\}$$

である。

R の部分集合でその要素が対ごとに素であるような集合を「問題の集合」と呼ぶことにし、「問題の集合」のうち要素の個数が最大のものを R_0 とおくと、 R_0 の要素の個数が求める値である。

R,S に対して次が成り立つ:

性質 i) $S \subset R$

性質 ii) R に含まれる任意の合成数 c について,c の素因数はすべて S に含まれる

性質 i) について, $p \in S$ ならば p は A も B も割り切るので $p \in R$, ゆえに $S \subset R$ である。

性質 ii) について,R に含まれる任意の合成数 c とその任意の素因数 p をとると,p が c を割り切ることと,c が A も B も割り切ることから,p は A も B も割り切る。したがって p は A と B の共通の素因数なので,p \in S である。よって性質 ii) が成り立つ。

ここで, R_0 に合成数 c が含まれると仮定すると, R_0 から c を除いて代わりに c の素因数を含めた集合を R_0' とおけば,性質 ii)によって R_0' もまた「問題の集合」であるが,その要素の個数は R_0 より多いので, R_0 の定義に矛盾する。よって R_0 は合成数を含まない。

したがって、 R_0 は R に含まれる素因数の集合と $\{1\}$ との和集合であり、性質 i) によって $R_0=S$ である。