Malware-detection using Hardware Performance Counters (HPCs)

Kenneth Chen, Daniel Horan, Alejandro Torres, Nicholas Tran, Srushti Gaikaiwari

Introduction

- Modern processors face threats from many, increasingly complex forms of malicious software (malware)
- Detection approaches have limitations, with some only able to detect well-known malware
- Hardware Performance Counters (HPCs) are specialized registers in a CPU used to monitor and measure aspects of a computer's performance
- This project aimed to test the use of HPCs to detect malware by creating simple malware and benign software (benign-ware)

Background

- Malware intentionally harm machines by the following
 - Stealing sensitive data
 - Damaging security measures
 - Accessing unapproved systems to cause financial losses
- To combat these we use HPCs which can be read by:
 - Sampling events at regular intervals
 - Polling which can be read instantly but must be configured properly
- HPCs provide low-level insights into a computer's hardware operation
- Several advantages of HPCs
 - Real-time monitoring
 - Monitor micro-architectural events
 - Potential to monitor system behavior with less overhead
- Disadvantages
 - Non-deterministic nature
 - Overcounting

Methods

Encryption

#!/usr/bin/env python3 2 import os

```
from cryptography.fernet import Fernet
        for file in files:
           if file in ['encryption.py', 'thekey.key', 'decryption.py']:
           file path = os.path.join(root, file)
            if os.path.isfile(file path):
                with open(file path, 'rb') as thefile:
                   contents = thefile.read()
               with open(file_path, 'wb') as thefile:
                print(f'Encrypted: {file_path}')
with open('thekey.key', 'wb') as thekey:
start_directory = '/home/horandt/Desktop' # Changed to this directory to make it less agressive
encrypt_files(start_directory, key)
print('All files on the desktop have been encrypted. Enter a passcode to decrypt your files')
```

Decryption

```
from cryptography.fernet import Fernet
   user_phrase = input('Enter phrase: \n')
   if user phrase != secretphrase:
        print('Wrong passphrase!')
   for root, dirs, files in os.walk(start path):
       for file in files:
           if file in ['encryption.py', 'thekey.key', 'decryption.py']:
           if os.path.isfile(file path):
               with open(file path, 'rb') as thefile:
                   contents = thefile.read()
                   with open(file path, 'wb') as thefile:
                        thefile.write(contents decrypted)
                   print(f'Decrypted: {file path}')
               except Exception as e:
                   print(f'Failed to decrypt {file_path}: {e}')
start directory = '/home/horandt/Desktop'
```

Methods

Backup

Recover

```
import os
                                                                            import os
import shutil
                                                                            import shutil
                                                                            def recover files(backup dir, start path):
def backup files(start path, backup dir):
                                                                                user phrase = input('Enter recovery phrase: \n')
                                                                                recovery phrase = 'Recover'
        for file in files:
                                                                                if user phrase != recovery phrase:
            if file in ['backup.py', 'recover.py']:
                                                                                    print('Incorrect recovery phrase!')
            file path = os.path.join(root, file)
                                                                                for file in os.listdir(backup dir):
            shutil.copy2(file path, os.path.join(backup dir, file))
                                                                                    if file in ['backup.py', 'recover.py']:
            print(f'Backed up: {file path}')
                                                                                    file path = os.path.join(backup dir, file)
start directory = '/home/horandt/Desktop'
                                                                                    shutil.copy2(file path, os.path.join(start path, file))
                                                                                    print(f'Restored: {file path}')
backup directory = '/home/horandt/Desktop/backup folder'
                                                                            backup directory = '/home/horandt/Desktop/backup folder'
if not os.path.exists(backup directory):
                                                                            start directory = '/home/horandt/Desktop'
    os.makedirs(backup_directory)
backup_files(start_directory, backup_directory)
                                                                            print("Recovery completed.")
print("Backup completed.")
```

Methods

Example Output

horandt@beazzle-monster:~/Desktop/malware script\$ sudo perf stat -e cycles ./enc ryption.py [sudo] password for horandt: Encrypted: /home/horandt/Desktop/malware script/context switches.txt Encrypted: /home/horandt/Desktop/malware script/cache misses L3.txt Encrypted: /home/horandt/Desktop/malware script/cache misses L1.txt Encrypted: /home/horandt/Desktop/malware_script/cpu_spikes.txt Encrypted: /home/horandt/Desktop/malware script/instructions per cycle.txt Encrypted: /home/horandt/Desktop/random files/bye Encrypted: /home/horandt/Desktop/random files/hello Encrypted: /home/horandt/Desktop/random files/why Encrypted: /home/horandt/Desktop/benignware_script/context_switches.txt Encrypted: /home/horandt/Desktop/benignware_script/backup.py Encrypted: /home/horandt/Desktop/benignware script/cache misses L3.txt Encrypted: /home/horandt/Desktop/benignware script/cache misses L1.txt Encrypted: /home/horandt/Desktop/benignware script/cpu spikes.txt Encrypted: /home/horandt/Desktop/benignware script/recover.py Encrypted: /home/horandt/Desktop/benignware script/instructions per cycle.txt Encrypted: /home/horandt/Desktop/backup folder/context switches.txt Encrypted: /home/horandt/Desktop/backup folder/cache misses L3.txt Encrypted: /home/horandt/Desktop/backup folder/bye Encrypted: /home/horandt/Desktop/backup folder/cache misses L1.txt Encrypted: /home/horandt/Desktop/backup folder/cpu spikes.txt Encrypted: /home/horandt/Desktop/backup folder/hello Encrypted: /home/horandt/Desktop/backup folder/instructions per cycle.txt Encrypted: /home/horandt/Desktop/backup folder/why You have been hacked. Enter a passcode to decrypt your files Performance counter stats for './encryption.py': 345,688,338 cycles 0.150608341 seconds time elapsed

Commands that were mainly used

instructions.cycles ./program name

CPU spikes: sudo perf stat -e cycles ./program_name
Cache Misses (L1): sudo perf stat -e
L1-dcache-load-misses ./program_name
Cache Misses (L3): sudo perf stat -e LLC-load-misses
./program_name
Context Switches: sudo perf stat -e context-switches
./program_name
Instructions Per Cycle (IPC): sudo perf stat -e

Data Collected

Average Malware Performance

	Encryption	Decryption
Instructions	327,971,639	327,399,851
Cycles	370,321,425	356,236,688
Instructions Per Cycle	0.894	0.92
CPU Spikes (Cycles)	70,552,590	70,473,257.2
Context Switches	4.2	1.4
Cache Misses L1	2,343,022	2,354,683
Cache Misses L3	163,114	164,005

Average Benign-ware Performance

	Backup	Recovery
Instructions	330,635,506	78,194,133
Cycles	378,708,948	103,735,896
Instructions Per Cycle	0.881	0.784
CPU Spikes (Cycles)	313,905,394	82,428,445
Context Switches	7	36
Cache Misses L1	6,761,024	1,831,242
Cache Misses L3	700,783	193,294

Analysis

Of particular note in the data are three categories. CPU Spikes, L1 Cache Performance, and L3 Cache Performance, The benign-ware value were drastically higher than the malware equivalent. L1 cache misses were approximately 3 times higher in the benign-ware backup stage than the malware encryption stage. Benign-ware L3 cache misses and cpu spike cycles were approximately 4.5 times higher than their counterparts in the malware program.

Lessons Learned

Pros:

- We learned how to collaborate to research sources, test methodology, and create the reports.
- Learned in depth Linux knowledge and about HPCs, and how they can be used for malware detection.

Cons:

- The data was collected using simple malware and benign-ware, this data might not be able
 to be extrapolated to more complex programs. If the programs were more complex, different
 parameters might have large differences.
- The HPCs used might have different results of the same execution of malware and benign-ware on different machines due to different architectures utilized.

Conclusion

- L1 and L3 cache misses, along with CPU spike cycles, crucial in differentiating malware and benign-ware.
- HPCs enable the detection of potential malware attacks through hardware performance metrics.
- HPCs provide valuable insights into malware and benign-ware execution.
- Focus on cache misses and CPU spike cycles may enhance malware detection capabilities.

References

- [1] S. Das, J. Werner, M. Antonakakis, M. Polychronakis and F. Monrose, "SoK: The Challenges, Pitfalls, and Perils of Using Hardware Performance Counters for Security," 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2019, pp. 20-38, doi: 10.1109/SP.2019.00021.
- [2] Ö. A. Aslan and R. Samet, "A Comprehensive Review on Malware Detection Approaches," in IEEE Access, vol. 8, pp. 6249-6271, 2020, doi: 10.1109/ACCESS.2019.2963724.
- [3] D. Spinellis, "Reliable identification of bounded-length viruses is NP-complete", IEEE Trans. Inf. Theory, vol. 49, no. 1, pp. 280-284, Jan. 2003.
- [4]. V. M. Weaver, D. Terpstra and S. Moore, "Non-determinism and overcount on modern hardware performance counter implementations", IEEE International Symposium on Performance Analysis of Systems and Software, pp. 215-224, 2013.
- [5] A. P. Namanya, A. Cullen, I. U. Awan and J. P. Disso, "The World of Malware: An Overview," 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud), Barcelona, Spain, 2018, pp. 420-427.
- [6] Dancuk, Milica. "Linux Perf: How to Use the Command and Profiler: Phoenixnap KB." Knowledge Base by phoenixNAP, 24 Aug. 2023, phoenixnap.com/kb/linux-perf#ftoc-heading-18.
- [7] Gregg, Brendan. "Perf Examples." Linux Perf Examples, www.brendangregg.com/perf.html.
- [8] "Tutorial." Tutorial Perf Wiki, perf.wiki.kernel.org/index.php/Tutorial..
- [9] "Apple." Official Apple Support, support.apple.com/kb/SP714?locale=ru_RU&viewlocale=en_US.
- [10] Canonical. Ubuntu 22.04.3 Lts (Jammy Jellyfish), releases.ubuntu.com/jammy/.
- [11] Friend or Foe: Discerning Benign vs Malicious ... NSF Public Access, par.nsf.gov/servlets/purl/10295062. Accessed 6 Dec. 2023.