GOD IS LOVE

QUESTION ONE

- 1) A is the point (-2, -1). B is the point (1, 5). Find the co-ordinates of the point Q, 2marks which divides AB externally in the ratio 5:3.
- 2) If $(a-3)x^2 (b-1)x + (c-2) = x^2 + 4x + 5$ for all real x, find a, b and c. 3marks
- Solve the equation $\cos 2A = \cos A$ where $0 \le A \le 360^{\circ}$.
- 4) i. Express $\cos \theta \sqrt{3} \sin \theta$ in the form $R \cos(\theta + \alpha)$. 2marks ii. Hence solve the equation $\cos \theta \sqrt{3} \sin \theta = 1$ for θ in the interval $0 \le \theta \le 360$. 2marks

QUESTION TWO

- Determine if the roots of the quadratic equation $15x^2 41x + 14 = 0$ are real or unreal, rational or irrational, equal or unequal.
- 6) Let α and β be the roots of the equation $x^2 + 7x + 3 = 0$. Without solving, find the value of: a. $\alpha + \beta$; b. $\alpha\beta$; c. $(\alpha + 2)(\beta + 2)$. 2marks
- 7) Find all angles θ for which $\sin 2\theta = \cos \theta$. 4marks
- 8) Show that $\frac{\cos x \cos(x + 2\theta)}{2\sin\theta} = \sin(x + \theta)$. 4marks

QUESTION THREE

- 9) Solve the inequality $\frac{x}{x^2 1} > 0$. 2marks
- 10) A is the point (-4, 1) and B is the point (2, 4). Q is the point which divides AB internally in the ratio 2:1 and R is the point which divides AB externally in the ratio 2:1. P(x, y) is a variable point which moves so that PA = 2PB.
 - i. Find the co-ordinates of Q and R.
 ii. Show that the locus of P is a circle on QR as diameter.
 2 marks
 2 marks
- Using the "t" results, find all the angles θ with $0 \le \theta \le 360$ for which $\sin \theta + \cos \theta = -1$. 3marks
- For the equation $4x^2 + 4(r 3)x + (19 3r) = 0$: Find the values of r for which the equation has real roots.

GOD IS LOVE

QUESTION FOUR

14) Solve
$$3^{2x+1} - 28(3^x) + 9 = 0$$

3marks

15)

A and B are the points (0, 3) and (4, -3) respectively.

1mark Find the distance between A and B. a. If C is the point (-5, 0), find the co-ordinates of the midpoint of b. the interval joining B and C. 1 mark Show that the equation of the line AB is 3x + 2y - 6 = 0. 2marks c. Hence find the equation of the line perpendicular to AB and passing through C. 2marks d. Find the point of intersection of the line AB with the line x - 4y + 5 = 0. 1mark e. Write down three inequalities to describe the shaded region given above. 2marks f.

QUESTION FIVE

- One root of the equation $x^2 (r + 3)x + (5r 3) = 0$ is twice the other root. Find the two possible values of r.
- 17) Prove that $8 \cos^4 x \equiv 3 + 4 \cos 2x + \cos 4x$.

 4 marks
- ABC is a triangle inscribed in the circle. P is a point on the minor arc AB. The points L, M and N are the feet of the perpendiculars from P to CA produced, AB, and BC respectively.

 Show that L, M and N are collinear.

 5marks

[End Of Qns]

GOD IS LOVE

[Answers]

1)
$$1 \le x < 5$$

2)
$$Q(5\frac{1}{2}, 14)$$

3)
$$A = 0^{\circ}$$
, 120° , 240° or 360°

4) i) Proof ii)
$$\theta = 0$$
, $\frac{4\pi}{3}$ or 2π

5) Real, rational, unequal

6) a)
$$-7$$
 b) 3 c) -7

7)
$$\theta = \frac{\pi}{2} \pm n\pi \text{ or } \theta = n\pi + (-1)^n \sin^{-1} \frac{1}{4}$$

8) Proof

9)
$$-1 < x < 0$$
 or $x > 1$

11)
$$\theta = 0, \frac{\pi}{2}, 2\pi$$

12) a)
$$r \le -2$$
, $r \ge 5$

13)
$$\frac{3}{2}$$
 or 15

14) a)
$$2\sqrt{13}$$
 units b) $(-\frac{1}{2}, -\frac{3}{2})$ c) Proof

d)
$$2x - 3y + 10 = 0$$
 e) $(1, \frac{3}{2})$ f) $y \le 0$,

$$x \le 4$$
, $3x + 2y - 6 \ge 0$

15) 4, -3, 7

ii) iii) Proof

In order to prove that L,

M and N are collinear, it is sufficient to show that $\angle LMA = \angle NMB$. For this purpose we show, that $\angle NMB = \angle BPN = \angle SPA = \angle LMA$. The first step: $\angle NMB = \angle BPN$. The triangles PKM and BKN are rectangular and $\angle PKM = \angle BKN \Rightarrow \Delta PKM$ are similar $\Delta BKN \Rightarrow$

$$\frac{BK}{PK} = \frac{NK}{MK}$$
. But $\angle PKB = \angle MKN \Rightarrow \Delta PKB$ are similar

 $\triangle MKN \Rightarrow \angle NMB = \angle BPN$. The second step: $\angle BPN = \angle SPA$. The point P lies on the circle $\Rightarrow PACB$ is a cyclic quadrilateral $\Rightarrow \angle PAC + \angle PBC = 180^{\circ}$. But $\angle PAC + \angle PAL = 180^{\circ}$. Hence $\angle PBC = \angle PAL$. From here, as the triangles PNB and PLA are rectangular, we have The third step: $\angle SPA = \angle LMA$. It is obvious that $\triangle ALS$ is similar $\triangle PMS$, as these rectangular triangles have the common angle $\angle PSM$.

Hence
$$\frac{PS}{AS} = \frac{MS}{LS} \Rightarrow \Delta MLS$$
 is similar $\Delta PAS \Rightarrow \angle SPA = \angle LMA$.

 $\triangle PNB$ are similar $\triangle PLA \Rightarrow \angle BPN = \angle APL$.