MP - MS, similar marks of points and segments where points are inside segments.

Tracks

- 1. Track 1: marked points
- 2. Track 2: marked segments

We assume that either the marks in both tracks are categorical or the marks in both tracks are continuous, discrete, ordered categorical and not ordered categorical.

Question

Are the marks of the points in track 1 that are inside segments of track 2 independent?

Comment:

- We assume the position of the points in track 1 and the entire track 2 are fixed. We permutate only the marks of the points in track 1.
- Significance is determined by means of p-values. Small p-values identify bins where the marks of the points in track 1 are not independent of the marks of the segments of track 2.
- The p-values are found by an analytic calculation or MC simulation.

Bins

The genome (or the areas of the genome under study) are divided into small regions, called bins. The tests are performed in each bin.

Hypothesis tested

For each bin i we have the null hypothesis

 \mathbf{H}_0 : The marks of the points in track 1 that are inside segments of track 2, are independent of the marks of the segments.

The alternative hypothesis is:

 \mathbf{H}_1 : The marks of the points in track 1 that are inside segments of track 2 depend on the marks of the segments.

Statistics and rejection of the null hypothesis, categorical variables

In this section we assume both points in track 1 and segments of track 2 have categorical marks. Let r be the number of categories for marks in points in track 1 and let c be the number of categories for marks in segments in track 2. Furthermore, let $O_{i,j}$ be the number of observations of points from track 1 with mark equal i that are inside segment from track 2

with mark j. In this test we neglect all points of track 1 that are not inside segments of track 2. The table with the $O_{i,j}$ values is denoted a contingency table with r rows and c columns.

Let N be the total number of points from track 1 that are inside segments in track 2, i.e. $N = \sum_{i=1}^{r} \sum_{j=1}^{c} O_{i,j}$. If the marks of the points are independent of the marks of the segments, we expect $O_{i,j} \approx E_{i,j}$ where

$$E_{i,j} = \frac{1}{N} \sum_{k=1}^{r} O_{k,j} \sum_{k=1}^{c} O_{i,k}.$$

Let

$$X = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}}.$$

Under the null hypothesis X is χ^2 -distributed with (r-1)(c-1) degrees of freedom. This is an approximation that is considered accurate if all $O_{i,j} > 10$. (ref. Wikipedia/Pearson's chi-square test). We find the p-value from this distribution. The combinations of i and j that give the largest contribution to the double sum in X are the cells where the deviation from independence assumptions is largest.

Statistics and rejection of the null hypothesis, continuous or discrete variables

In this section we assume both points in track 1 and segments of track 2 have continuous or discrete marks. Let X_i be the mark of a point in track 1 that is inside a segment in track 2 with mark Y_i for $i = 1, 2, \dots, n$. We use the following test statistics:

The sample correlation

$$r_{x,y} = \frac{\sum_{i=1}^{n} (X_i - \bar{X}_i)(Y_i - \bar{Y})}{(n-1)s_x s_y} = \frac{\sum_{i=1}^{n} X_i Y_i - n\bar{X}\bar{Y}}{(n-1)s_x s_y}$$

where $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ and $s_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ and $s_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$.

Spearman's rank correlation is defined as the sample correlation except that it uses the ranks x_i and y_i instead of the original data X_i and Y_i .

Kendall τ rank correlation is then defined as

$$\tau = \frac{2(n_c - n_d)}{n(n-1)}.$$

where n_c is the number of concordant pairs i.e. the number of pairs where $(X_i - X_j)(Y_i - Y_j) > 0$ and n_d is the number of disconcordant pairs i.e. the number of pairs where $(X_i - X_j)(Y_i - Y_j) < 0$. The pairs where both $X_i = X_j$ and $Y_i = Y_j$ are both condordant and disconcordant, but are in fact not critical for the definition of Kendall τ .

The distribution for the sample correlation, Spearman's rank correlation and Kendall τ are known and we may find the p-value from these distributions.

In addition, we may use the test statistics

$$Z_1 = \sum_{i=1}^{n} (X_i - Y_i)^2,$$

and

$$Z_2 = \sum_{i=1}^{n} |X_i - Y_i|$$

The distribution for these test statistics are not know and it is necessary with MC simulations in order to decide whether to reject the hypothesis.