CLAIMS

What is claimed is:

1	1.	A method for forming a pole tip, comprising:
2		forming a pole tip layer of magnetic material;
3		adding a layer of polyimide precursor material above the pole tip layer;
4		curing the polyimide precursor material;
5		adding an oxygen etch resistant resist layer above the layer of polyimide precursor
6		material;
7		patterning the etch resistant layer;
8		exposing the polyamide precursor material layer to oxygen-containing plasma;
9		removing exposed portions of the cured polyimide precursor material for
10		exposing portions of the pole tip layer; and
11		removing the exposed portions of the pole tip layer for forming a pole tip.
1	2.	A method as recited in claim 1, wherein the curing converts at least a substantial
2		portion of the polyimide precursor material to at least one of a polyimide and a
3		polyimide-like material.
1	3.	A method as recited in claim 1, wherein the oxygen etch-resistant layer is a
2		silicon-containing resist.

- 1 4. A method as recited in claim 1, wherein the oxygen etch-resistant layer consists of a sputtered film.
- 1 5. A method as recited in claim 1, wherein the exposed portions of the cured polyimide precursor material are removed by reactive ion etching.
- 1 6. A method as recited in claim 1, wherein the exposed portions of the pole tip layer
 2 are removed by milling.
- 1 7. A method as recited in claim 1, further comprising adding a first layer of material resistant to chemical mechanical polishing above the pole tip layer.
- 1 8. A method as recited in claim 1, further comprising adding a layer of nonmagnetic
 2 material for substantially encapsulating the pole tip.
- 9. A method as recited in claim 8, further comprising adding a second layer of
 material resistant to chemical mechanical polishing above the layer of
 nonmagnetic material.
- 1 10. A method as recited in claim 1, wherein the remaining portion of the pole tip layer
 2 has a width of less than about 100 nm.
- 1 11. A pole tip formed according to the method recited in claim 1.

1	12.	A method for forming a pole tip, comprising:
2		forming a pole tip layer of magnetic material;
3		adding a first layer of material resistant to chemical mechanical polishing above
4		the pole tip layer;
5		adding a layer of polyimide precursor material above the first layer of material
6		resistant to chemical mechanical polishing;
7		baking the polyimide precursor material;
8		adding an etch resistant layer above the layer of polyimide precursor material;
9		patterning the etch resistant layer;
0		removing exposed portions of the polyimide precursor material for exposing
1		portions of the pole tip layer;
12		removing the exposed portions of the pole tip layer for forming a pole tip;
13		adding a layer of nonmagnetic material for substantially encapsulating the pole
14		tip;
15		adding a second layer of material resistant to chemical mechanical polishing
16		above the layer of nonmagnetic material; and
17		polishing for removing material above the first layer of material resistant to
18		polishing.
1	13.	A method for forming a magnetic structure, comprising:
2		forming a layer of magnetic material;

3		adding a first layer of material resistant to chemical mechanical polishing abov
4		the pole tip layer;
5		adding a layer of polyimide precursor material above the first layer of material
6		resistant to chemical mechanical polishing;
7		baking the polyimide precursor material;
8		adding an etch resistant layer above the layer of polyimide precursor material;
9	•	patterning the etch resistant layer;
10		removing exposed portions of the polyimide precursor material for exposing
11		portions of the layer of magnetic material;
12		removing the exposed portions of the layer of magnetic material;
13		adding a layer of nonmagnetic material for substantially encapsulating the
14		remaining portion of the layer of magnetic material; and
15		polishing for removing material above the first layer of material resistant to
16		polishing.
1	14.	A method as recited in claim 13, wherein the etch resistant layer is formed of a
2		silicon-containing resist.
1	15.	A method as recited in claim 13, wherein the etch resistant layer is a glass-like
2		material.

- 1 16. A method as recited in claim 13, wherein the baking converts at least a substantial portion of the polyimide precursor material to at least one of a polyimide and a polyimide-like material.
- 1 17. A method as recited in claim 13, wherein the layer of nonmagnetic material has a thickness at least as great as a thickness of the layer of magnetic material.
- 1 18. A method as recited in claim 13, wherein the layer of nonmagnetic material has a
 2 thickness greater than a thickness of the layer of magnetic material, wherein the
 3 layer of nonmagnetic material forms a plane that is above a top surface of the
 4 layer of magnetic material.
- 1 19. A method as recited in claim 13, further comprising adding a second layer of
 2 material resistant to chemical mechanical polishing above the layer of
 3 nonmagnetic material.
- 1 20. A method as recited in claim 19, wherein a lower surface of the second layer of
 2 material resistant to chemical mechanical polishing lies above a plane positioned
 3 above a plane extending along an upper surface of the pole tip.
- 1 21. A method as recited in claim 13, wherein the magnetic structure has a width of less than 100 nm.

1	22.	A magnetic storage system, comprising:
2		magnetic media;
3		at least one head for reading from and writing to the magnetic media, each head
4		having a pole tip formed according to the method of claim 1;
5		a slider for supporting the head; and
6		a control unit coupled to the head for controlling operation of the head.
1	23.	A perpendicular pole tip structure, comprising:
2		a pole tip layer of magnetic material having a top surface, a bottom surface, and
3		sides extending between the top and bottom surface;
4		layers of non-magnetic materials surrounding the layer of magnetic material
5		towards the sides of the pole tip layer; and
6		interface layers above the non-magnetic material, portions of the interface layers
7		lying along a plane substantially parallel to the top surface of the pole tip
8		layer;
9		wherein portions of the interface layers taper towards the pole tip layer at a slope
10		that is from about one to about five times a thickness of the pole tip layer
11		where the thickness of the pole tip layer is defined between the top and
12		bottom surfaces thereof.
1	24.	A perpendicular pole tip structure as recited in claim 23, wherein each of the
2		interface layers includes a layer of chemical mechanical polishing resistant
3		material

1	25.	A perpendicular pole tip structure as recited in claim 23, further comprising a
2		layer of chemical mechanical polishing resistant material above the top surface of
3		the pole tip layer.
1	26.	A magnetic storage system, comprising:
2		magnetic media;
3		at least one perpendicular head for reading from and writing to the magnetic
4		media, the head comprising:
5		a pole tip layer of magnetic material having a top surface, a bottom
6		surface, and sides extending between the top and bottom surface;
7		layers of non-magnetic materials surrounding the layer of magnetic
8		material towards the sides of the pole tip layer; and
9		interface layers above the non-magnetic material, portions of the interface
10		layers lying along a plane substantially parallel to the top surface
11		of the pole tip layer, wherein portions of the interface layers taper
12		towards the pole tip layer at a slope that is from about one to about
13		five times a thickness of the pole tip layer, where the thickness of
14		the pole tip layer is defined between the top and bottom surfaces
15		thereof;
16		a slider for supporting the head; and
17		a control unit coupled to the head for controlling operation of the head.

- 1 27. A magnetic storage system as recited in claim 26, wherein each of the interface
- 2 layers includes a layer of chemical mechanical polishing resistant material.
- 1 28. A magnetic storage system as recited in claim 26, further comprising a layer of
- 2 chemical mechanical polishing resistant material above the top surface of the pole
- 3 tip layer.