

Condition of Common Root

Quadratic Equations

$$\alpha + \beta = \frac{-b}{a}$$

$$\alpha\beta = \frac{c}{a}$$

$$|\alpha - \beta| = \frac{\sqrt{D}}{|a|}$$

Sameer Chincholikar B.Tech, M.Tech - IIT-Roorkee

- **♦ 10+** years Teaching experience
- Taught 1 Million+ Students
- ✓ 100+ Aspiring Teachers Mentored

Q Search

livedaily.me/jee

- **+** LIVE Polls & Leaderboard
- + LIVE Doubt Solving
- + LIVE Interaction

Performance Analysis

Weekly Test Series DPPs & Quizzes

♣ India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Top Results T

99.95

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Aravindan K Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

Vaishnovi Arun 99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Shrish 99.28

Yash Bhaskar 99.10

99.02

98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

LET'S BEGIN!!!

Common Root

Find the value of k for which the equations $3x^2 + 4kx + 2 = 0$ and $2x^2 + 3x - 2 = 0$ have a common root.

$$2\pi^{2} + 3\pi - 2 = 0$$

$$2\pi^{2} + 4\pi - \pi - 2 = 0$$

$$(2\pi - 1)(\pi + 2) = 0$$

$$\pi - \frac{1}{2}, -2$$

Ţ jee

Common loot =>
$$n=-2$$

 $3\chi^2 + 4\kappa\chi + 2 = 5$

$$12 + (-8)K + 2 = 0$$

Common Root

1. Both Roots Common

Consider two quadratic equations, $a_1x^2 + b_1x + c_1 = 0$ & $a_2x^2 + b_2x + c_2 = 0$.

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} .$$

$$\sum_{x=0}^{\infty} (x-2)(x-3)=0$$

$$2x^{2} - 10x + 12 = 0$$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

If the equation $k(6x^2 + 3) + rx + 2x^2 - 1 = 0$ and

🔀 jee

 $6k(2x^2 + 1) + px + 4x^2 - 2 = 0$ have both the roots common, then the value of 2r - p is

B. 1

D. None of these

$$\begin{cases} K(6,x^{2}+3) + 2x + 2x^{2} - 1 = 0 \\ 6K(2x^{2}+1) + 2x + 4x^{2} - 2 = 0 \end{cases}$$

$$(6K+2)n^{2}+9x+(3K-1)=0$$

 $(12K+4)n^{2}+px+(6K-2)=0$

$$\frac{1}{2} = \frac{9}{p} = \frac{1}{2}$$

NOTE: Cross Multiplication Method

$$a_1x + b_1y + c_1 = 0$$

$$a_1$$
 b_1 c_2 a_2 b_3 a_4 b_4 b_4 b_5

$$a_2x + b_2y + c_2 = 0$$

$$\frac{x}{b_1c_2-b_2c_1} = \frac{-y}{a_1c_2-a_2c_1} = \frac{1}{a_1b_2-a_2b_1}$$

Common Root

2. One Root Common:

Consider two quadratic equations,

$$a_1x^2 + b_1x + c_1 = 0 &$$

 $a_2x^2 + b_2x + c_2 = 0.$

if α is a common root, then $a_1\alpha^2 + b_1\alpha + c_1 = 0$ $a_2\alpha^2 + b_2\alpha + c_2 = 0$

$$\frac{\alpha^2}{b_1 c_2 - b_2 c_1} = \frac{-\alpha}{a_1 c_2 - a_2 c_1} = \frac{1}{a_1 b_2 - a_2 b_1}$$

A value of b for which the equations $x^2 + bx - 1 = 0$, $x^2 + x + b = 0$ having one root in common is

JEE Adv. 2011

$$\frac{\alpha}{\alpha} = -\alpha = \frac{1}{\alpha}$$

$$\alpha^2 = \frac{b^2 + 1}{1 - b^2}$$
, $\alpha = -\frac{b^2 + 1}{1 - b^2}$

$$\int_{X^{2}} + \int_{X} X - 1 = 0$$

$$\frac{b^{2}+1}{(1-b)^{2}} = \frac{(b+1)^{2}}{(1-b)^{2}}$$

$$\frac{(b^{2}+1)^{2}}{(1-b)^{2}} = 0$$

$$=)(5^{2}+1)(1-6) = (5+1)^{2}$$

$$=)(5^{2}+1)(1-6) = (5+1)^{2}$$

$$=)(5^{2}+1)(1-6) = (5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=(5+1)^{2}$$

$$=$$

If it is known that a, b, c are real and the quadratic equations $ax^2 + bx + c = 0$ and $2x^2 + 3x + 4 = 0$ have a common root then a:b:c is equal to:

$$\begin{cases} an^{2}+bn+c=0 \\ 2n^{2}+3n+4=0 \\ 0 = 5-6 \end{cases}$$

$$\begin{vmatrix} a = 5-6 \\ 0 = 0 \end{vmatrix}$$

$$\sum_{x=1}^{\infty} (n-1)(n-i) = 0 \qquad x_{1} = 1$$

$$x^{2} - ix - x + i = 0$$

$$x^{2} - (1+i)x + i = 0$$

$$(x-1)(x-2i) = 0 \qquad x_{1} = i$$

$$x_{1} = i$$

If the equation $x^2 + ax + 12 = 0$; $x^2 + bx + 15 = 0$; $x^2 + (a + b)x + 36 = 0$ have a common positive root, the values of a and b, respectively, are

$$x^{2} + ax + 1z = 0$$

$$x^{2} + ax + 1z = 0$$

$$x^{2} + bx + 15 = 0$$

$$x^{2} + (a+b)x + 36 = 0$$

$$x^{2} + (a+b)x + 36 = 0$$

$$x^{2} + 27 - 36 = 0$$

$$\alpha = 9$$

$$\alpha = \pm 3$$

$$\alpha = 3$$

$$\alpha = 3$$

$$\alpha = -3$$

$$\Rightarrow x = 3$$

$$\Rightarrow x = 4$$

$$\Rightarrow x = 3$$

$$\Rightarrow x = 3$$

$$\Rightarrow x = 3$$

$$\Rightarrow x = 3$$

$$\frac{use \ \alpha = 3 \text{ in } 5^{1}(1)}{9 + 3 \alpha + 12 = 0}$$

$$\frac{\alpha = -7}{4 + 3 \beta + 15 = 0}$$

$$\frac{3 \alpha + 12 = 0}{6 - 8}$$

If the quadratic equation $x^2 + bx + c = 0$ and $x^2 + cx + b = 0$ ($b \neq c$) have a common root then prove that their uncommon roots are the roots of the equation $x^2 + x + bc = 0$

jee

$$\begin{cases} x^{2} + bx + c = 0 \\ x^{2} + cx + b = 0 \\ x^{2} + cx + b = 0 \\ x + y = -b \\ x + y = -c \\ x +$$

$$\alpha \beta = C & \alpha = (=) \beta = C$$

$$x^{2} - (b+c)x + bc = 0$$

$$x^{2} + x + bc = 0$$

$$x^{2} + bx + c = 0$$

jee

$$\begin{cases}
\pi^{2} + (k-29)\pi - k = 0 & -(1) \\
2\pi^{2} + (2k-43)\pi + k = 0 & -(2)
\end{cases}$$

$$\begin{cases}
2\pi^{2} + (k-29)\pi - k = 0 \\
2\pi^{2} + (2k-43)\pi + k = 0
\end{cases}$$

$$\begin{cases}
2\pi^{2} + (2k-43)\pi + k = 0 \\
2\pi^{2} + (2k-23)\pi - 2k = 0
\end{cases}$$

$$\begin{cases}
2\pi^{2} + (2k-3)\pi - 2k = 0 \\
2\pi^{2} + (2k-3)\pi - 2k = 0
\end{cases}$$

$$\begin{cases}
2\pi^{2} + (2k-3)\pi - 2k = 0 \\
2\pi^{2} + (2k-3)\pi - 2k = 0
\end{cases}$$

$$\begin{cases}
2\pi^{2} + (2k-3)\pi - 2k = 0 \\
2\pi^{2} + (2k-3)\pi - 2k = 0
\end{cases}$$

$$\begin{cases}
2\pi^{2} + (2k-3)\pi - 2k = 0 \\
2\pi^{2} + (2k-3)\pi - 2k = 0
\end{cases}$$

$$\begin{cases}
2\pi^{2} + (2k-3)\pi - 2k = 0 \\
2\pi^{2} + (2k-3)\pi - 2k = 0
\end{cases}$$

$$\begin{cases}
2\pi^{2} + (2k-3)\pi - 2k = 0 \\
2\pi^{2} + (2k-3)\pi - 2k = 0
\end{cases}$$

$$\begin{cases}
2\pi^{2} + (2k-3)\pi - 2k = 0 \\
2\pi^{2} + (2k-3)\pi - 2k = 0
\end{cases}$$

$$= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] = 0$$

$$= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] = 0$$

$$= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] = 0$$

$$= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] = 0$$

$$= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] = 0$$

$$= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] = 0$$

$$= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} \right] \right] = 0$$

If one root of the equation $x^2 + ax + b = 0$ is also a root of $x^2 + mx + n = 0$, show that its other root is a root of $x^2 + (2a - m)x + a^2 - am + n = 0$.

#JEELiveDaily Schedule

Namo Sir | Physics

6:00 - 7:30 PM

Ashwani Sir | Chemistry

7:30 - 9:00 PM

Sameer Sir | Maths

9:00 - 10:30 PM

12th

Jayant Sir | Physics

1:30 - 3:00 PM

Anupam Sir | Chemistry

3:00 - 4:30 PM

Nishant Sir | Maths

4:30 - 6:00 PM

livedaily.me/jee

- + LIVE Polls & Leaderboard
- + LIVE Doubt Solving
- **LIVE** Interaction

Performance Analysis

+ Weekly Test Series DPPs & Quizzes

♣ India's **BEST** Educators

Unacademy Subscription

If you want to be the **BEST** "Learn" from the **BEST**

Top Results T

99.95

Ashwin Prasanth 99.94

Tanmay Jain 99.86

Kunal Lalwani 99.81

Utsav Dhanuka 99.75

Aravindan K Sundaram 99.69

Manas Pandey 99.69

Mihir Agarwal 99.63

Akshat Tiwari 99.60

Sarthak Kalankar 99.59

Vaishnovi Arun 99.58

Devashish Tripathi 99.52

Maroof 99.50

Tarun Gupta 99.50

Siddharth Kaushik 99.48

Mihir Kothari 99.39

Sahil 99.38

Vaibhav Dhanuka 99.34

Pratham Kadam 99.29

Shivam Gupta 99.46

Shrish 99.28

Yash Bhaskar 99.10

99.02

98.85

Ayush Gupta 98.67

Megh Gupta 98.59

Naman Goyal 98.48

MIHIR PRAJAPATI 98.16

Step 1

ALL STARS BATCH FOR JEE MAIN 2021

Batch Starting from 9th June

EMERGE 3.0 BATCH

JEE Main & Advanced 2023 Started on 12th May

All Stars Batch: JEE Main 2021

Upcoming Batches in June

Evolve Batch (Class 12th): JEE Main & Advanced 2022 Starts on 2nd June 2021

Emerge Batch (Class 11th): JEE Main & Advanced 2023 Starts on 8th June 2021

Evolve Batch (Class 12th): JEE Main & Advanced 2022 Starts on 9th June 2021

Starts on 9th June 2021

Emerge Batch (Class 11th) : JEE Main & Advanced 2023 Starts on 16th June 2021

INDIA'S BIGGEST WEEKLY SCHOLARSHIP TEST

SCAN NOW TO ENROLL

For IIT-JEE Aspirants

Enroll for Free

Win Scholarship from a pool of

₹ 4 Crore
Terms and conditions apply*

Take it live from android

IIT-JEE COMBAT

Every Sunday at 11 AM

To unlock, use code

SAMEERLIVE

Thank you

#JEE Live Daily

unacademy

unacademy

unacademy

Download Now!