(19) World Intellectual Property Organization

International Bureau

I IBBIR BINGIRI II BIRNE NEN BENI BENI BENI IN IN IN BENIR NEDI IBBIR BING NEN BIRL BEREN IBBI BIRL

(43) International Publication Date 31 March 2005 (31.03.2005)

PCT

(10) International Publication Number WO 2005/028624 A2

(51) International Patent Classification⁷:

C12N

(21) International Application Number:

PCT/US2004/030360

(22) International Filing Date:

15 September 2004 (15.09.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/503,277

15 September 2003 (15.09.2003) US

- (71) Applicant (for all designated States except US): PLEXXIKON, INC. [US/US]; 91 Bolivar Drive, Suite A, Berkeley, CA 94710 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ARTIS, Dean R. [US/US]; 50 Arlmont Drive, Kensington, CA 94707 (US). BREMER, Ryan, E. [US/US]; 309 4th Street, #111, Oakland, CA 94507 (US). GILLETTE, Samuel, J. [US/US]; 1042 Underhills Road, Oakland, CA 94610 (US). HURT, Clarence, R. [US/US]; 2901 Burnbrae Lane, San Ramon,

CA 94583 (US). **IBRAHIM, Prabham, L.** [IN/US]; 3380 Lubich Drive, Mountain View, CA 94040 (US). **ZUCK-ERMAN, Rebecca, L.** [US/US]; 1620 Clinton Avenue, Alameda, CA 94501 (US).

- (74) Agents: WARBURG, Richard, J. et al.; FOLEY & LARDNER LLP, P.O. Box 80278, San Diego, CA 92138-0278 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

[Continued on next page]

(54) Title: MOLECULAR SCAFFOLDS FOR KINASE LIGAND DEVELOPMENT

(57) Abstract: Molecular scaffolds for compounds active on protein kinases are described, along with methods for using such scaffolds for kinase ligand development. The use of kinase structural information, exemplified with PIM-1 crystals and structural information can, for example, be used for identifying molecular scaffolds and for developing ligands that bind to and modulate particular kinases.

WO 2005/028624 A2

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

 without international search report and to be republished upon receipt of that report WO 2005/028624 PCT/US2004/030360

MOLECULAR SCAFFOLDS FOR KINASE LIGAND DEVELOPMENT

BACKGROUND OF THE INVENTION

[0001] This invention relates to the field of development of ligands for protein kinases.

Examples of protein kinases are the PIM kinases, including PIM-1, PIM-2, and PIM-3. The PIM-1 proto-oncogene was originally identified as a genetic locus frequently activated by the proviral insertion of Moloney murine leukemia virus into mouse T cell lymphomas (Cuypers, H. T., Selten, G., Quint, W., Zijlstra, M., Maandag, E. R., Boelens, W., van Wezenbeek, P., Melief, C., and Berns, A. (1984) Murine leukemia virus-induced Tcell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 37:141-150). The PIM-1 proto-oncogene has also been implicated in human hematopoietic malignancies with its overexpression frequently detected in human hematopoietic cell lines as well as in fresh tumor cells from patients with leukemia (Nagarajan L. Louje E. Tsujimoto Y, ar-Rushdi A, Huebner K, and Croce CM. (1986) Localization of the human PIM oncogene (PIM) to a region of chromosome 6 involved in translocations in acute leukemias. Proc. Natl. Acad. Sci. USA 83:2556-2560; Meeker TC, Nagarajan L, ar-Rushdi A, Rovera G, Huebner K, and Croce CM. (1987) Characterization of the human PIM-1 gene: a putative proto-oncogene coding for a tissue specific member of the protein kinase family. Oncogene Res. 1: 87-101; Amson R, Sigaux F, Przedborski S, Flandrin G, Givol D, and Telerman A.(1989). The human proto-oncogene product p33PIM is expressed during fetal hematopoiesis and in diverse leukemias. *Proc. Natl. Acad. Sci. USA* 86: 8857-8861).

[0003] The PIM family of proto-oncogenes in human and mouse now consists of at least three members, that code for highly related serine/threonine specific protein kinases (Saris CJ, Domen J, and Berns A. (1991) The PIM-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. *EMBO J.* 10: 655-664; Eichmann A, Yuan L, Breant C, Alitalo K, and Koskinen PJ. (2000) Developmental expression of PIM kinases suggests functions also outside of the hematopoietic system. *Oncogene* 19: 1215-1224). The function of these three kinases (PIM-1, PIM-2 and PIM-3) appear to complement each other in mice, as deletion of one of the PIM family protein genes did not result in any severe defects (Laird PW, van der Lugt NM, Clarke A, Domen J, Linders K, McWhir J, Berns A, Hooper M. (1993) In vivo analysis of PIM-1 deficiency.

Nucl. Acids Res. 21:4750-4755). During embryonal development PIM genes are expressed in partially overlapping fashion in cells in both immune and central nervous system as well as in epithelia (Eichmann A, Yuan L, Breant C, Alitalo K, and Koskinen PJ. (2000) Developmental expression of PIM kinases suggests functions also outside of the hematopoietic system. Oncogene 19: 1215-1224). PIM-1, the prototypical member of the

PIM family is located both in the cytoplasm and nucleus, but its precise role in these two

locations has not been fully elucidated.

prenatally. Mol. Cell. Biol., 11: 1176-1179).

[0004] Transgenic mice with PIM-1 driven by Emu enhancer sequences demonstrated that PIM-1 function as a weak oncogene because by itself it does not lead to tumor formation but does so after a second oncogenic gene become overexpressed. In 75% of the tumors over-expressing PIM-1, the second gene found to be over-expressed is c-myc (van der Houven van Oordt CW, Schouten TG, van Krieken JH, van Dierendonck JH, van der Eb AJ, Breuer ML.(1998) X-ray-induced lymphomagenesis in E mu-PIM-1 transgenic mice: an investigation of the co-operating molecular events. *Carcinogenesis* 19:847-853). In fact when crosses were made between Emu-PIM transgenic mice and Emu-myc transgenic mice, the combination of genes is so oncogenic that the offsprings die in utero due to pre B cell lymphomas (Verbeek S, van Lohuizen M, van der Valk M, Domen J, Kraal G, and Berns A. (1991) Mice bearing the Emu-myc and Emu-PIM-1 transgenes develop pre-B-cell leukemia

[0005] Mice deficient for PIM-1 show normal synaptic transmission and short-term plasticity but failed to consolidate enduring LTP even though PIM-2 and PIM-3 are expressed in the hippocampus (Konietzko U, Kauselmann G, Scafidi J, Staubli U, Mikkers H, Berns A, Schweizer M, Waltereit R, and Kuhl D.(1999) PIM kinase expression is induced by LTP stimulation and required for the consolidation of enduring LTP. *EMBO J*. 18: 3359-3369).

[0006] Various factors are known to enhance the transcription of PIM-1 kinase in mouse and human. PIM-1 closely cooperates with another oncoprotein, c-myc, in triggering intracellular signals leading to both transformation and apoptosis and the selective inhibition of apoptotic signaling pathways leading to Bcl-2 (van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T, and Berns A. (1989) Predisposition to lymphomagenesis in PIM-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. *Cell* 56:673-682; Breuer ML, Cuypers HT, Berns A.

(1989). Evidence for the involvement of PIM-2, a new common proviral insertion site, in progression of lymphomas. EMBO J. 8:743-748.; Verbeek S, van Lohuizen M, van der Valk M, Domen J, Kraal G, and Berns A. (1991) Mice bearing the E mu-myc and E mu-PIM-1 transgenes develop pre-B-cell leukemia prenatally. Mol. Cell. Biol. 11: 1176-1179; Shirogane T, Fukada T, Muller JM, Shima DT, Hibi M, and Hirano T. (1999) Synergistic roles for PIM-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity, 11: 709-719). PIM-1 kinase is induced by T cell antigen receptor cross linking by cytokines and growth factors and by mitogens including IL2, IL3, IL6, IL9, IL12, IL15, GM-CSF, G-CSF, IFNa, INFg, prolactin, ConA, PMA and anti-CD3 antibodies (Zhu N, Ramirez LM, Lee RL, Magnuson NS, Bishop GA, and Gold MR. (2002) CD40 signaling in B cells regulates the expression of the PIM-1 kinase via the NF-kappa B pathway. J Immunol. 168: 744-754). PIM-1 expression is rapidly induced after cytokine stimulation and the proliferative response to cytokines is impaired in cells from PIM-1 deficient mice (Domen J, van der Lugt NM, Acton D, Laird PW, Linders K, Berns A.(1993) PIM-1 levels determine the size of early B lymphoid compartments in bone marrow. J. Exp. Med. 178: 1665-1673).

[0007] Recently, it has been reported that PIM family of kinases interact with Socs-1 protein, a potent inhibitor of JAK activation thereby playing a major role in signaling down stream of cytokine receptors. The phosphorylation of Socs-1 by PIM family of kinases prolongs the half-life of Socs-1 protein, thus potentiating the inhibitory effect of Socs-1 on JAK-STAT activation (Chen XP, Losman JA, Cowan S, Donahue E, Fay S, Vuong BQ, Nawijn MC, Capece D, Cohan VL, Rothman P. (2002) PIM serine/threonine kinases regulate the stability of Socs-1 protein. Proc. Natl. Acad. Sci. USA 99:2175-2180.). PIM-1 is expressed during G1/S phase of the cell cycle suggesting that it is involved in cell cycle regulation (Liang H, Hittelman W, Nagarajan L., Ubiquitous expression and cell cycle regulation of the protein kinase PIM-1. (1996) Arch Biochem Biophys. 330:259-265).). PIM-1 kinase activity and the protein level is increased in CD 40 mediated B cell signaling and this increase in PIM-1 level is mediated through the activation of NF-kB (Zhu et al. 2002. supra). PIM-1 can physically interact with NFATc transcription factors enhancing NFATc dependant transactivation and IL2 production in Jurkat cells (Rainio EM, Sandholm J, Koskinen PJ. (2002) Cutting edge: Transcriptional activity of NFATc1 is enhanced by the PIM-1 kinase. J. Immunol. 168:1524-1527). This indicates a novel phosphorylation dependant regulatory mechanism targeting NFATc1 through which PIM-1 acts as down

stream effector of ras to facilitate IL2 dependant proliferation and survival of lymphoid cells (Id.).

[0008] PIM-1 is shown to interact with many other targets. Phosphorylation of Cdc25A phosphatase, a direct transcriptional target of c-myc, increase its phosphatase activity both in-vivo and in-vitro indicating that Cdc25A link PIM-1 and c-myc in cell transformation and apoptosis (Mochizuki T, Kitanaka C, Noguchi K, Muramatsu T, Asai A, and Kuchino Y. (1999) Physical and functional interactions between PIM-1 kinase and Cdc25A phosphatase. Implications for the PIM-1-mediated activation of the c-Myc signaling pathway; J. Biol. Chem. 274:18659-18666). PIM-1 also phosphorylate PTP-U2S, a tyrosine phosphatase associated with differentiation and apoptosis in myeloid cells, decreasing its phosphatase activity and hence preventing premature onset of apoptosis following PMAinduced differentiation (Wang et al. (2001) Pim-1 negatively regulates the activity of PTP-U2S phosphatase and influences terminal differentiation and apoptosis of monoblastoid leukemia cells. Arch. Biochem. Biophys. 390:9-18). The phosphorylation of p100, a coactivator of c-myb (Weston, 1999, Reassessing the role of C-MYB in tumorigenesis. Oncogene 18:3034-3038), by 'IM-1 is involved in Ras-dependent regulation of transcription (Leverson JD, Kc kimen PJ, Orrico FC, Rainio EM, Jalkanen KJ, Dash AB, Eisenman RN, and Ness SA. (1998) MM-1 kinase and p100 cooperate to enhance c-Myb activity. Mol. Cell. 2: 417-425). The phosphorylation of another PIM-1 target, heterochromatin protein 1(HP1) has been shown to be involved in transcription repression (Koike N, Maita H, Taira T, Ariga H, Iguchi-Ariga SM. (2000) Identification of heterochromatin protein 1 (HP1) as a phosphorylation target by PIM-1 kinase and the effect of phosphorylation on the transcriptional repression function of HP-1 (1). FEBS Lett. 467: 17-21).

[0009] The information provided above is intended solely to assist the understanding of the reader. None of the information provided or references cited is admitted to be prior art to the present invention.

SUMMARY OF THE INVENTION

[0010] The present invention concerns molecular scaffolds that can be used to identify and develop ligands active on one or more kinases, for example, the PIM kinases, (e.g., PIM-1, PIM-2, and PIM-3). Compounds representing the present molecular scaffolds have

been co-crystallized with PIM-1, and the co-crystal structures have been determined to confirm the orientation of the compound within the binding site. In addition, such compounds also bind to other kinases, such that the scaffolds can be used for ligand development for other kinases also. In the description herein, PIM-1 and the use of molecular scaffolds and ligands with PIM-1 are described as examples, but the invention is not limited to PIM-1.

[0011] In a first aspect, the invention provides a kinase scaffold library comprising at least one set of compounds of a chemical structure selected from the group consisting of Formula I, II, III, IV, V, VI, and VII as described herein, Formula I, II, and III as described in U.S. Appl. 10/664,421 and corresponding PCT/US03/29415, and Formula I as described in U.S. Appl. 10/789,818 and corresponding PCT/US2004/005904, all of which are incorporated herein by reference in their entireties. (Unless specifically indicated to the contrary, reference to any of Formulas I-VII means the Formulas I-VII described with a generic structure herein.). In certain embodiments, the scaffold library contains at least one set of compounds having chemical structures of Formula I, II, III, IV, V, VI, or VII.

[0012] Libraries with large numbers of compounds can be highly useful. In particular embodiments, a library includes at least 50, 100, 200, 300, 400, 500, 600, 800, 1000 1400, or even more different compounds of the particular chemical structure; a library can include a plurality of such sets of compounds of different chemical structures selected from the indicated Formulas; a plurality of sets of compounds of different chemical structure can include any combination of the specified chemical structures, e.g., Formulas I and II, Formulas I and III, Formulas I, II, and III (including each individual combination of the 11 Formulas listed above, taken 2, 3, 4, 5,6, 7, 8, 9, 10, or 11 at a time); a plurality of sets is 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11, or more such sets; a majority of compounds in a set or sets have been demonstrated to bind to one or more kinases; one or more kinases are selected from the kinases including PIM-1, Pyk2, c-Abl, Her2, cMet, VEGFR, EGFR, cKit, Pkcβ, p38, Cdk2, Akt, Gsk3β, or other kinase listed in Table 5; the kinase domain of the kinase has at least 30%, 35%, 40% or more sequence identity to PIM-1 kinase domain.

[0013] As used herein in connection with the present compounds, the term "scaffold library" refers to a defined set of compounds in a format suitable for testing as biochemical or biological activity modulators. For example, such compounds can be in solution or dry

in wells of a plate such as a microtiter plate (or a plurality of such plates). Such a library is distinguished from conventional compound libraries and commercially available compound libraries by being selected such that at least 50, 60, 70, 80, 90, 95, 98, or 100% of the compounds in the library are derivatives of the chemical structures that have been described herein as kinase binding compounds or molecular scaffolds. Such libraries can also include compounds that are derivatives of other kinase binding compounds.

[0014] Because initial ligand identification can be carried out by fitting electronic representations of compounds in binding sites of target molecules, in another aspect the invention provides a system for fitting compounds in binding sites of one or more protein kinases. Such a system includes an electronic kinase scaffold library that includes at least one set of electronic representations of compounds of a chemical structure selected from the group consisting of Formula I, II, III, IV, V, VI, and VII as described herein, Formula I, II, and III as described in U.S. Appl. 10/664,421 and corresponding PCT/US03/29415, and Formula I as described in U.S. Appl. 10/789,818 and corresponding PCT/US2004/005904, where the kinase scaffold library is embedded in a computer memory device, the electronic representations of the compounds can be selectively retrieved and functionally connected with computer software adapted to fit electronic representations of compounds in an electronic representation of a binding site of a kinase. The system can also include at least one electronic representation of a kinase binding site (e.g., an electronic representation of a crystal structure of a kinase, kinase domain, or kinase binding site) embedded in computer memory such that the electronic representation of a kinase binding site can be functionally connected with the computer software. The system can include one or more electronic representations of binding sites of kinases selected from PIM-1, Pyk2, c-Abl, Her2, cMet, VEGFR, EGFR, cKit, Pkcβ, p38, Cdk2, Akt, Gsk3β, or another kinase from Table 5., e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more such kinases.

[0015] In a related aspect, the invention provides a method for obtaining improved ligands binding to a kinase (e.g., PIM-1, Pyk2, c-Abl, Her2, cMet, VEGFR, EGFR, cKit, Pkcβ, p38, Cdk2, Akt, Gsk3β, or other kinase from Table 5), where the method involves determining whether a derivative of a compound of any of Formulas I, II, III, IV, V, VI, or VII that binds to the kinase, binds to the kinase with greater affinity or greater specificity or both than the parent binding compound. Binding with greater affinity or greater specificity or both than the parent compound indicates that the derivative is an improved ligand. This process can also be carried out in successive rounds of selection and derivatization and/or with multiple

parent compounds to provide a compound or compounds with improved ligand characteristics. Likewise, the derivative compounds can be tested and selected to give high selectivity for the kinase, or to give cross-reactivity to a particular set of kinase targets.

[0016] In the context of the present invention, the terms "kinase" and "protein kinase" refers to an enzyme that phosphorylates other proteins. These enzymes are often grouped according to the amino acid that is phosphorylated, into tyrosine kinases, serine/threonine kinases, and histidine kinases.

[0017] The term "PIM kinase" or "PIM family kinase" means a protein kinase with greater than 45% amino acid sequence identity to PIM-1 from the same species, and includes PIM-1, PIM-2, and PIM-3. Unless clearly indicated to the contrary, use of the term "PIM kinase" constitutes a reference to any of the group of PIM kinases, specifically including individual reference to each of PIM-1, PIM-2, and PIM-3.

[0018] As used herein, the terms "ligand" and "modulator" refer to a compound that modulates the activity of a target biomolecule, e.g., an enzyme such as a kinase. Generally a ligand or modulator will be a small molecule, where "small molecule refers to a compound with a molecular weight of 1500 daltons or less, or preferably 1000 daltons or less, 800 daltons or less, or 600 daltons or less. Thus, an "improved ligand" is one that possesses better pharmacological and/or pharmacokinetic properties than a reference compound, where "better" can be defined by a person for a particular biological system or therapeutic use.

[0019] In the context of binding compounds, molecular scaffolds, and ligands, the term "derivative" or "derivative compound" refers to a compound having a chemical structure that contains a common core chemical structure as a parent or reference compound, but differs by having at least one structural difference, e.g., by having one or more substituents added and/or removed and/or substituted, and/or by having one or more atoms substituted with different atoms. Unless clearly indicated to the contrary, the term "derivative" does not mean that the derivative is synthesized using the parent compound as a starting material or as an intermediate, although in some cases, the derivative may be synthesized from the parent.

[0020] Thus, the term "parent compound" refers to a reference compound for another compound, having structural features continued in the derivative compound. Often but not always, a parent compound has a simple chemical structure than the derivative.

[0021] By "chemical structure" or "chemical substructure" is meant any definable atom or group of atoms that constitute a part of a molecule. Normally, chemical substructures of a scaffold or ligand can have a role in binding of the scaffold or ligand to a target molecule, or can influence the three-dimensional shape, electrostatic charge, and/or conformational properties of the scaffold or ligand.

[0022] The term "binds" in connection with the interaction between a target and a potential binding compound indicates that the potential binding compound associates with the target to a statistically significant degree as compared to association with proteins generally (i.e., non-specific binding). Thus, the term "binding compound" refers to a compound that has a statistically significant association with a target molecule. Preferably a binding compound interacts with a specified target with a dissociation constant (k_d) of 1 mM or less. A binding compound can bind with "low affinity", "very low affinity", "extremely low affinity", "moderate affinity", "moderately high affinity", or "high affinity" as described herein.

[0023] In the context of compounds binding to a target, the term "greater affinity" indicates that the compound binds more tightly than a reference compound, or than the same compound in a reference condition, *i.e.*, with a lower dissociation constant. In particular embodiments, the greater affinity is at least 2, 3, 4, 5, 8, 10, 50, 100, 200, 400, 500, 1000, or 10,000-fold greater affinity.

[0024] Also in the context of compounds binding to a biomolecular target, the term "greater specificity" indicates that a compound binds to a specified target to a greater extent than to another biomolecule or biomolecules that may be present under relevant binding conditions, where binding to such other biomolecules produces a different biological activity than binding to the specified target. Typically, the specificity is with reference to a limited set of other biomolecules, *e.g.*, other kinases or even other type of enzymes. In particular embodiments, the greater specificity is at least 2, 3, 4, 5, 8, 10, 50, 100, 200, 400, 500, or 1000-fold greater specificity.

WO 2005/028624 PCT/US2004/030360

[0025] As used in connection with binding of a compound with a particular kinase, the term "interact" indicates that the distance from a bound compound to a particular amino acid residue will be 5.0 angstroms or less, or 6 angstroms or less with one water molecule coordinated between the compound and the residue, or 9 angstroms or less with two water molecules coordinated between the compound and the residue. In particular embodiments, the distance from the compound to the particular amino acid residue is 4.5 angstroms or less, 4.0 angstroms or less, or 3.5 angstroms or less. Such distances can be determined, for example, using co-crystallography, or estimated using computer fitting of a compound in the kinase active site.

[0026] Reference to particular amino acid residues in PIM-1 polypeptide residue number is defined by the numbering provided in Meeker, T. C., Nagarajan, L., ar-Rushdi, A., Rovera, G., Huebner, K., Corce, C. M.; (1987) Characterization of the human PIM-1 gene: a putative proto-oncogene coding for a tissue specific member of the protein kinase family. Oncogene Res. 1:87-101, in accordance with the sequence provided in SEQ ID NO: 1. PIM-2 is as described in Baytel et al. (1998) The human Pim-2 proto-oncogene and its testicular expression, Biochim. Biophys. Acta 1442,274-285. PIM-3 from rat is described in Feldman, et al. (1998) KID-1, a protein kinase induced by depolarization in brain, J. Biol. Chem. 273, 16535-16543; and Kinietzko et al. (1999) Pim kinase expression is induced by LTP stimulation and required for the consolidation of enduring LTP, EMBO J. 18, 3359-3369. (KID-1 is the same as PIM-3.) Human PIM-3 nucleic acid and amino acid sequences are provided herein.

[0027] In a related aspect, the invention provides a method for developing ligands specific for a kinase, such as a PIM kinase, e.g., PIM-1, where the method involves determining whether a derivative of a compound that binds to a plurality of kinases has greater specificity for the particular kinase than the parent compound.

[0028] As used herein in connection with binding compounds or ligands, the term "specific for a kinase", "specific for PIM-1" and terms of like import mean that a particular compound binds to the particular kinase to a statistically greater extent than to other kinases that may be present in a particular organism. Also, where biological activity other than binding is indicated, the term "specific for a kinase" indicates that a particular compound has greater biological activity associated with binding to the particular kinase than to other kinases. Preferably, the specificity is also with respect to other biomolecules (not limited to

kinases) that may be present from an organism. A particular compound may also be selected that is specific for kinase sub-group (e.g., tyrosine kinases, serine/threonine kinases, histidine kinases), indicating that it binds to and/or has a greater biological activity associated with binding to a plurality of kinases in that sub-group than to other kinases.

[0029] In another aspect, the invention concerns a method for developing ligands binding to a particular kinase, e.g., PIM-1, where the method includes determining the orientation of at least one molecular scaffold of Formula I, II, III, IV, V, VI, or VII in co-crystals with the kinase; identifying chemical structures of one or more of the molecular scaffolds, that, when modified, alter the binding affinity or binding specificity or both between the molecular scaffold and the kinase; and synthesizing a ligand in which one or more of the chemical structures of the molecular scaffold is modified to provide a ligand that binds to the kinase with altered binding affinity or binding specificity or both. Due to the significant of sequence identity between various kinases, e.g., PIM-1 and the other PIM kinases, PIM-1 can also be used as a surrogate or in a homology model for orientation determination and to allow identification of chemical structures that can be modified to provide improved ligands.

By "molecular scaffold" is meant a core molecule to which one or more additional chemical moieties can be covalently attached, modified, or eliminated to form a plurality of molecules with common structural elements. The moieties can include, but are not limited to, a halogen atom, a hydroxyl group, a methyl group, a nitro group, a carboxyl group, or any other type of molecular group including, but not limited to, those recited in this application. Molecular scaffolds bind to at least one target molecule, and the target molecule can preferably be a protein or enzyme. Preferred characteristics of a scaffold can include binding at a target molecule binding site such that one or more substituents on the scaffold are situated in binding pockets in the target molecule binding site; having chemically tractable structures that can be chemically modified, particularly by synthetic reactions, so that a combinatorial library can be easily constructed; having chemical positions where moieties can be attached that do not interfere with binding of the scaffold to a protein binding site, such that the scaffold or library members can be modified to achieve additional desirable characteristics, e.g., enabling the ligand to be actively transported into cells and/or to specific organs, or enabling the ligand to be attached to a chromatography column for additional analysis.

[0031] By "binding site" is meant an area of a target molecule to which a ligand can bind non-covalently. Binding sites embody particular shapes and often contain multiple binding pockets present within the binding site. The particular shapes are often conserved within a class of molecules, such as a molecular family. Binding sites within a class also can contain conserved structures such as, for example, chemical moieties, the presence of a binding pocket, and/or an electrostatic charge at the binding site or some portion of the binding site, all of which can influence the shape of the binding site.

[0032] By "binding pocket" is meant a specific volume within a binding site. A binding pocket can often be a particular shape, indentation, or cavity in the binding site. Binding pockets can contain particular chemical groups or structures that are important in the non-covalent binding of another molecule such as, for example, groups that contribute to ionic, hydrogen bonding, or van der Waals interactions between the molecules.

[0033] By "orientation", in reference to a binding compound bound to a target molecule is meant the spatial relationship of the binding compound and at least some of its constituent atoms to the binding pocket and/or atoms of the target molecule at least partially defining the binding pocket.

[0034] By "co-crystals" is meant a complex of the compound, molecular scaffold, or ligand bound non-covalently to the target molecule and present in a crystal form appropriate for analysis by X-ray or protein crystallography. In preferred embodiments the target molecule-ligand complex can be a protein-ligand complex.

[0035] The phrase "alter the binding affinity or binding specificity" refers to changing the binding constant of a first compound for another, or changing the level of binding of a first compound for a second compound as compared to the level of binding of the first compound for third compounds, respectively. For example, the binding specificity of a compound for a particular protein is increased if the relative level of binding to that particular protein is increased as compared to binding of the compound to unrelated proteins.

[0036] As used herein in connection with test compounds, binding compounds, and modulators (ligands), the term "synthesizing" and like terms means chemical synthesis from one or more precursor materials.

[0037] The phrase "chemical structure of the molecular scaffold is modified" means that a derivative molecule has a chemical structure that differs from that of the molecular scaffold but still contains common core chemical structural features. The phrase does not necessarily mean that the molecular scaffold is used as a precursor in the synthesis of the derivative.

[0038] By "assaying" is meant the creation of experimental conditions and the gathering of data regarding a particular result of the experimental conditions. For example, enzymes can be assayed based on their ability to act upon a detectable substrate. A compound or ligand can be assayed based on its ability to bind to a particular target molecule or molecules.

[0039] Certain compounds have been identified as molecular scaffolds and binding compounds for protein kinases, as exemplified by PIM-1. Thus, in another aspect, the invention provides a method for identifying a ligand binding to specific kinase, that includes determining whether a derivative compound that includes a core structure selected from the group consisting of the core structures of Formula I, Formula II, Formula III, Formula IV, Formula VI, and Formula VII, as described herein binds to the kinase with altered binding affinity or specificity or both as compared to a parent compound.

[0040] In reference to compounds of any of Formula I, II, III, IV, V, VI, and VII, the term "core structure" refers to the structures shown diagramatically as part of the description of compounds of each of Formulas I-VII, but excluding non-ring variable substituents. More generally, the term "core structure" refers to a characteristic chemical structure common to a set of compounds, especially a chemical structure that carries variable substituents in the compound set.

[0041] By a "set" of compounds is meant a collection of compounds. The compounds may or may not be structurally related.

[0042] The invention further concerns co-crystals of a particular kinase and a kinase binding compound of Formula I, II, III, IV, V, VI, or VII. Advantageously, such co-crystals are of sufficient size and quality to allow structural determination to at least 3 Angstroms, 2.5 Angstroms, or 2.0 Angstroms. The co-crystals can, for example, be in a crystallography plate, be mounted for X-ray crystallography and/or in an X-ray beam. Such co-crystals are beneficial, for example, for obtaining structural information concerning interaction between the kinase and kinase binding compounds.

[0043] Kinase binding compounds can include compounds that interact with at least one of PIM-1 residues 49, 52, 65, 67, 121, 128, and 186, or any 2, 3, 4, 5, 6, or 7 of those residues. Exemplary compounds that bind to PIM-1 include compounds of any of Formulas I-VII.

[0044] Likewise, in additional aspects, methods for obtaining PIM-1 co-crystals with compounds of Formula I, II, III, IV, V, VI, and VII are provided. The method involves subjecting PIM-1 protein at 5-20 mg/ml to crystallization conditions substantially equivalent to Hampton Screen 1 conditions 2, 7, 14, 17, 23, 25, 29, 36, 44, or 49, in the presence of binding compound for a time sufficient for crystal development. The binding compound may be added at various concentrations depending on the nature of the compound, e.g., final concentration of 0.5 to 1.0 mM. In many cases, the binding compound will be in an organic solvent such as dimethyl sulfoxide solution. Exemplary co-crystallization conditions include 0.4-0.9 M sodium acetate trihydrate pH 6.5, 0.1 M imidazole; or 0.2-0.7 M. sodium potassium tartrate, 00.1 M MES buffer pH 6.5.

[0045] In another aspect, provision of compounds active on a variety of different kinases (e.g., PIM-1) also provides a method for modulating kinase activity by contacting the kinase with a compound of any of Formulas I, II, III, IV, V, VI, and VII that binds to the kinase. The compound is preferably provided at a level sufficient to modulate the activity of PIM-1 by at least 10%, more preferably at least 20%, 30%, 40%, or 50%. In many embodiments, the compound will be at a concentration of about 1 μM, 100 μM, or 1 mM, or in a range of 1-100 nM, 100-500 nM, 500-1000 nM, 1-100 μM, 100-500 μM, or 500-1000 μM. The compound can be one that interacts with one more of PIM-1 residues 49, 52, 65, 67, 121, 128, and 186.

[0046] As used herein, the term "modulating" or "modulate" refers to an effect of altering a biological activity, especially a biological activity associated with a particular biomolecule such as PIM-1. For example, an agonist or antagonist of a particular biomolecule modulates the activity of that biomolecule, e.g., an enzyme.

[0047] The term "PIM-1 activity" refers to a biochemical activity of PIM-1, particularly including kinase activity.

[0048] In the context of the use, testing, or screening of compounds that are or may be modulators, the term "contacting" means that the compound(s) are caused to be in sufficient

proximity to a particular molecule, complex, cell, tissue, organism, or other specified material that potential binding interactions and/or chemical reaction (e.g., modulating enzymatic action) between the compound and other specified material can occur.

[0049] In a related aspect, the invention provides a method for treating a patient suffering from or at risk of a kinase-mediated disease or condition or a disease or condition in which kinase modulation provides a therapeutic benefit, such as a disease or condition characterized by abnormal kinase activity, e.g., PIM-1 activity, where the method involves administering to the patient a compound of Formula I, II, III, IV, V, VI, or VII. The compound can, for example, be one that interacts with one or more of PIM-1 residues 49, 52, 65, 67, 121, 128, and 186.

[0050] In certain embodiments, the disease or condition is a proliferative disease or neoplasia, such as benign or malignant tumors, psoriasis, leukemias (such as myeloblastic leukemia), lymphoma, prostate cancer, liver cancer, breast cancer, sarcoma, neuroblastonia, Wilm's tumor, bladder cancer, thyroid cancer, neoplasias of the epithelial origin such as mammacarcinoma, or a chronic inflammatory dis ase or condition, resulting, for example, from a persistent infection (e.g., tuberculosis, syplilis, fungal infection), from prolonged exposure to endogenous (e.g., elevated plasma lipids) or exogenous (e.g., silica, asbestos, cigarette tar, surgical sutures) toxins, and from autoimmuse reactions (e.g., rheumatoid arthritis, systemic lupus erythrymatosis, multiple sclerosis, asoriasis). Thus, chronic inflammatory diseases include many common medical conditions, such as rheumatoid arthritis, restenosis, psoriasis, multiple sclerosis, surgical adhesions, tuberculosis, and chronic inflammatory lung and airway diseases, such as asthma pheumoconiosis, chronic obstructive pulmonary disease, nasal polyps, and pulmonary fibrosis. Kinase modulators may also be useful in inhibiting development of hematomous plaque and restinosis, in controlling restinosis, as anti-metastatic agents, in treating diabetic complications, as immunosuppressants, and in control of angiogenesis to the extent the kinase is involved in a particular disease or condition.

[0051] In certain embodiments, the disease or condition is one listed in Table 5; the disease or condition is one listed in Table 5. In certain embodiments, the therapeutic or prophylactic effect of the compound is due to modulation of a kinase from Table 5; the therapeutic or prophylactic effect of the compound is due to modulation of a kinase from Table 5 and the disease or condition is one that corresponds thereto in Table 5.

[0052] As used herein, the term "kinase-mediated" disease or condition and like terms

refer to a disease or condition in which the biological function of a kinase affects the development and/or course of the disease or condition, and/or in which modulation of a

kinase alters the development, course, and/or symptoms of the disease or condition.

Similarly, the phrase "kinase modulation provides a therapeutic benefit" indicates that

modulation of the level of activity of a kinase in a subject indicates that such modulation

reduces the severity and/or duration of the disease, reduces the likelihood or delays the

onset of the disease or condition, and/or causes an improvement in one or more symptoms

of the disease or condtion. Parallel terms apply to each of the kinases indicated herein.

[0053] Because molecular scaffolds are described, a large number of different kinases can be used in connection with the described scaffolds and compounds. A list of such kinases (not intended to be comprehensive) is provided in Table 6. Exemplary kinases and a major indication for which modulation of the kinase is useful include the following:

Table 6

gsk3ß

Tyrosine Kinases	<u>Indication</u>
c-abl	CML (chronic myeloid leukemia)
her2	breast cancer
c-met	cancer
VEGFR	angiogenesis
c-kit	cancer
Coming Vingage	
Serine Kinases	e a
pkcβ	retinopathy
p38	inflammation/RA
cdk2	cancer
akt	cancer/apoptosis

[0054] As crystals of PIM-1 and other kinases have been developed and analyzed, another aspect concerns an electronic representation of the kinase with an electronic representation of a kinase binding compound or a test compound in the binding site, where the compound has a chemical structure of Formula I, Formula II, Formula III, Formula IV, Formula V, Formula VII.

diabetes

[0055] Likewise, in a related aspect, the invention concerns an electronic representation of a portion of a kinase binding site, e.g., PIM-1, (which can be an active site), which includes a representation of Formula I, II, III, IV, V, VI, or VII. A binding site can be represented in various ways, e.g., as representations of atomic coordinates of residues around the binding

SUBSTITUTE SHEET (RULE 26)

site and/or as a binding site surface contour, and can include representations of the binding

character of particular residues at the binding site, e.g., conserved residues.

In another aspect, the invention provides a method for identifying potential kinase, [0056]e.g., PIM-1 or other kinase listed herein, binding compounds by fitting at least one electronic representation of a compound of Formula I, II, III, IV, V, VI, or VII in an electronic representation of a kinase, e.g., PIM-1, binding site. The representation of the binding site may be part of an electronic representation of a larger portion(s) (e.g., kinase domain) or all of a PIM molecule or may be a representation of only the binding site. The electronic representation may be as described above or otherwise described herein.

In particular embodiments, the method involves fitting a computer representation [0057] of a compound from a computer database with a computer representation of the active site of a kinase, e.g., PIM-1; and involves removing a computer representation of a compound complexed with the kinase molecule and identifying compounds that best fit the active site based on favorable geometric fit and energetically favorable complementary interactions as potential binding compounds.

[0058] In other embodiments, the method involves modifying a computer representation of a compound complexed with a kinase molecule, e.g., PIM-1, by the deletion or addition or both of one or more chemical groups; fitting a computer representation of a compound from a computer database with a computer representation of the active site of the kinase molecule; and identifying compounds that best fit the active site based on favorable geometric fit and energetically favorable complementary interactions as potential binding compounds.

In still other embodiments, the method involves removing a computer representation of a compound complexed with a kinase, such as PIM-1, and searching a database for compounds having structural similarity to the complexed compound using a compound searching computer program or replacing portions of the complexed compound with similar chemical structures using a compound construction computer program.

[0060] Fitting a compound can include determining whether a compound will interact with one or more of PIM-1 residues 49, 52, 65, 67, 121, 128, and 186.

[0061] In another aspect, the invention concerns a method for attaching a kinase binding compound of Formula I, II, III, IV, V, VI, or VII (e.g., a PIM-1 binding compound) to an

SUBSTITUTE SHEET (RULE 26)

attachment component, as well as a method for identifying attachment sites on such kinase binding compound. The method involves identifying energetically allowed sites for attachment of an attachment component; and attaching the compound or a derivative thereof to the attachment component at the energetically allowed site. In certain embodiments, the kinase is a kinase listed herein; the kinase has at least 25% amino acid sequence identity or 30% sequence similarity to wild type PIM-1, and/or includes conserved residues matching at least one of PIM-1 residues 49, 52, 65, 67, 121, 128, and 186 (i.e., matching any one, any 2, 3, 4, 5, 6, or 7 of those residues).

[0062] Attachment components can include, for example, linkers (including traceless linkers) for attachment to a solid phase or to another molecule or other moiety. Such attachment can be formed by synthesizing the compound or derivative on the linker attached to a solid phase medium e.g., in a combinatorial synthesis in a plurality of compound. Likewise, the attachment to a solid phase medium can provide an affinity medium (e.g., for affinity chromatography).

[0063] The attachment component can also include a label, which can be a directly detectable label such as a fluorophore, or an indirectly detectable such as a member of a specific binding pair, e.g., biotin.

[0064] The ability to identify energetically allowed sites on a kinase binding compound of Formula I, II, III, IV, V, VI, and VII, e.g., a PIM-1 binding compound also, in a related aspect, provides modified binding compounds that have linkers attached, for example, compounds of Formula I-VII, preferably at an energetically allowed site for binding of the modified compound to a kinase. The linker can be attached to an attachment component as described above.

[0065] Still another aspect of the invention concerns a method for developing a ligand for a kinase that includes conserved residues matching any one, 2, 3, 4, 5, 6, or 7 of PIM-1 residues 49, 52, 65, 67, 121, 128, and 186, by determining whether a compound of Formula I, II, III, IV, V, VI, or VII binds to the kinase. The method can also include determining whether the compound modulates the activity of the kinase. In certain embodiments, the kinase has at least 25% sequence identity or at least 30% sequence similarity to PIM-1, or PIM-1 kinase domain.

[0066] In particular embodiments, the determining includes computer fitting the compound in a binding site of the kinase and/or the method includes forming a co-crystal of the kinase and the compound. Such co-crystals can be used for determining the binding orientation of the compound with the kinase and/or provide structural information on the kinase, e.g., on the binding site and interacting amino acid residues. Such binding orientation and/or other structural information can be accomplished using X-ray crystallography.

[0067] The invention also provides compounds of Formula I, II, III, IV, V, VI, and VII that bind to and/or modulate (e.g., inhibit) kinase activity for a particular kinase, e.g., PIM-1. Accordingly, in aspects and embodiments involving kinase binding compounds, molecular scaffolds, and ligands or modulators, the compound is a weak binding compound; a moderate binding compound; a strong binding compound; a compound that binds at a level identified herein; the compound interacts with one or more of PIM-1 residues 49, 52, 65, 67, 121, 128, and 186; the compound is a small molecule; the compound binds to a plurality of different kinases (e.g., at least 5, 10, 15, 20 different kinases). In particular embodiments, the invention concerns compounds of Formula I, Formula III, Formula IV, Formula V, Formula VI, and Formula VII as described below.

[0068] In certain embodiments, the invention concerns compounds of Formula I:

$$\begin{array}{c|c}
R^4 \\
\hline
R^5 \\
\hline
R^6 \\
R^1
\end{array}$$
 $\begin{array}{c}
W \\
Y \\
R^2
\end{array}$

Formula I

where, with reference to Formula I:

[0069] R^1 is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocyclyoalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, $-C(X)R^{20}$, $-C(X)NR^{16}R^{17}$, $-S(O)_2R^{21}$, or $-S(O)_2NR^{16}R^{17}$.

[0070] R^2 is hydrogen, halo, optionally substituted lower alkyl (e.g., trifluoromethyl), optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted aryl, optionally substituted aryl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, $-C(X)NR^{16}R^{17}$, $-NR^{22}R^{23}$, or $-S(O)_2R^{21}$, or $-S(O)_2NR^{16}R^{17}$, with the proviso that if R^2 is attached to nitrogen, it is not $-NR^{22}R^{23}$.

[0071] R³, R⁴, R⁵ and R⁶ are independently hydrogen, halo, hydroxy, optionally substituted alkoxyl, optionally substituted thioalkoxy, optionally substituted amine, optionally substituted lower alkyl (e.g., trifluoromethyl), optionally substituted lower alkenyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl, -C(X)R²⁰, C(X)NR¹⁶R¹⁷, S(O)₂NR¹⁶R¹⁷, -NR²²R²³, or -S(O)₂R²¹;

[0072] R¹⁶ and R¹⁷ are independently hydrogen, optionally substituted lower alkyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, or R¹⁶ and R¹⁷ together form a 5-7 membered carbocyclic or heterocyclic ring;

[0073] R²⁰ is hydroxyl, optionally substituted lower alkoxy, optionally substituted amine, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl;

[0074] R²¹ is optionally substituted lower alkoxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl;

[0075] R^{22} and R^{23} are independently hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, $-C(X)R^{20}$, $C(X)NR^{16}R^{17}$, or $-S(O)_2R^{21}$;

[0076] w, y, and z are independently O, S, N, or CR²;

[0077] q is N or C;

[0078] X = O or S; and

[0079] n = 1 or 2.

[0080] In particular embodiments of compounds of Formula I, with reference to Formula I, one or more of R^1 , R^2 , R^3 , R^4 , R^5 , R^6 is H; any two of R^1 , R^2 , R^3 , R^4 , R^5 , R^6 are H; any 3 of R^1 , R^2 , R^3 , R^4 , R^5 , R^6 are H; any 4 of R^1 , R^2 , R^3 , R^4 , R^5 , R^6 are H. Specification of the preceding subgroups is intended to expressly include each possible combination of the specified substituent groups. For example, in particular embodiments, R^3 , R^4 , R^5 , and R^6 are H.

[0081] Likewise, in certain embodiments the invention concerns compounds of Formula II.

Formula II

Where, with reference to Formula II:

[0082] R¹ is hydrogen, halo, hydroxy, optionally substituted alkoxyl, optionally substituted thioalkoxy, optionally substituted amine, optionally substituted lower alkyl (e.g., trifluoromethyl), optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, or

optionally substituted heteroaralkyl, $-C(X)R^2$, $C(X)NR^3R^4$, $S(O)_2NR^3R^4$, $-NR^3R^4$, or $-S(O)_2R^5$;

[0083] a, b, c, and d are independently O, S, NR³, or CR¹¹ with the proviso that two of them are N (and not more than 2) and one (and not more than one) of them is either O or S, and the remaining one is CR¹¹;

[0084] R² is hydroxyl, optionally substituted lower alkoxy, optionally substituted amine, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl;

[0085] R³ and R⁴ are independently hydrogen, optionally substituted lower alkyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaryl;

[0086] R⁵ is optionally substituted lower alkoxy, optionally substituted amine, optionally substituted lower-alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl;

[0087] R¹¹ is hydroxy, optionally substituted alkoxyl, optionally substituted thioalkoxy, optionally substituted amine, optionally substituted lower alkyl (e.g., trifluoromethyl), optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted aryl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaryl, or optionally substituted heteroaralkyl, -C(X)R², C(X)NR³R⁴, S(O)₂NR³R⁴, -NR³R⁴, or -S(O)₂R⁵;

[0088] In particular embodiments of compounds of Formula II, with reference to Formula II, a & b, a & c, a& d, b & c, b & d, or c & d are N. In embodiments where a & b are N, c is S or O, or d is S or O; where a & c are N, b is S or O, or d is S or O; where a & d are N, b is S or O, or c is S or O; where b & c are N, a is S or O, or d is S or O; where b & d are N, a is S or O, or c is S or O, where c & d are N, a is S or O, or b is S or O. In particular

22

embodiments of each of the preceding designations of a, b, c, and d, R¹¹ is optionally substituted hydrogen or halo; R¹¹ is trifluoromethyl, hydroxy, optionally substituted alkoxyl, optionally substituted thioalkoxy; R¹¹ is optionally substituted amine; R¹¹ is optionally substituted lower alkenyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl; R¹¹ is optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; R¹¹ is -C(X)R², C(X)NR³R⁴, S(O)₂NR³R⁴, -NR³R⁴, or -S(O)₂R⁵.

[0089] In other embodiments, the invention concerns compounds of Formula III.

$$\begin{array}{c|c}
X \\
R^3 \\
N \\
R^1 \\
R^2
\end{array}$$

Formula III

where, with reference to Formula III:

[0090] R^1 , R^2 , and R^3 are independently hydrogen, halo, hydroxy, optionally substituted alkoxyl, optionally substituted thioalkoxy, optionally substituted amine, optionally substituted lower alke myl, optionally substituted lower alke myl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl, $-C(X)R^4$, $-C(X)NR^5R^6$, $-S(O)_2NR^5R^6$, $-NR^5R^6$, or $-S(O)_2R^7$;

[0091] R⁴ is hydroxyl, optionally substituted lower alkoxy, optionally substituted amine, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl;

[0092] R⁵ and R⁶ are independently hydrogen, optionally substituted lower alkyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl,

optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, or R⁵ and R⁶ together for a 5-7 membered carbocyclic or heterocyclic ring;

[0093] R⁷ is optionally substituted lower alkoxy, optionally substituted amine, optionally substituted lower alkyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl;

[0094] X = O or S; and n = 0 or 1.

[0095] In particular embodiments of compounds of Formula III, with reference to Formula III, X is O; X is S. In particular embodiments for each selection of X, R¹ is H; R² is H; R³ is H; R¹ and R² are H; R² and R³ are H. In particular embodiments for each selection of X with each selection where one of R¹, R², and R³ is H, the other two of R¹, R² and R³ are independently halo, trifluoromethyl; the other two of R¹, R² and R³ are independently hydroxy, optionally substituted alkoxyl, optionally substituted thioalkoxy: the other two of R¹, R² and R³ are independently optionally substituted amine; the other two of R¹, R² and R³ are independently optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; the other two of R^1 , R^2 and R^3 are independently $-C(X)R^4$, $-C(X)NR^5R^6$, $-S(O)_2NR^5R^6$, $-NR^5R^6$, or -S(O)₂R⁷. In particular embodiments, one of R¹, R², and R³ is halo, trifluoromethyl; one of R¹, R², and R³ is hydroxy, optionally substituted alkoxyl, optionally substituted thioalkoxy; one of R¹, R², and R³ is optionally substituted amine; one of R¹, R², and R³ is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl one of R¹, R², and R³ is -C(X)R⁴, -C(X)NR⁵R⁶, - $S(O)_2NR^5R^6$, $-NR^5R^6$, or $-S(O)_2R^7$.

[0096] In other embodiments, the invention concerns compounds of Formula IV.

Formula IV

where, with reference to Formula IV:

[0097] R¹ is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted aralkyl, optionally substituted aralkyl, optionally substituted heteroaralkyl, –NR¹⁶R¹⁷, –OR²¹, or –SR²¹;

[0098] R^2 and R^3 are independently hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, optionally substituted heteroaralkyl, $-C(X)R^{20}$, $-C(X)NR^{16}R^{17}$, $-C(X)R^{20}$, or $-C(X)NR^{16}R^{17}$;

[0099] R¹⁶ and R¹⁷ are independently hydrogen, optionally substituted lower alkyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaryl, optionally substituted heteroaryl, or R¹⁶ and R¹⁷ together form a carbocyclic or heterocyclic ring;

[0100] R²⁰ is hydroxyl, optionally substituted lower alkoxy, optionally substituted amine, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; and

[0101] R²¹ is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally

PCT/US2004/030360

substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl.

[0102] In particular embodiments of compounds of Formula IV, with reference to Formula IV, R¹ is optionally substituted lower alkyl; R¹ is optionally substituted lower alkenyl; R¹ is optionally substituted lower alkynyl, optionally substituted cycloalkyl; R¹ is optionally substituted heterocycloalkyl; R¹ is optionally substituted aryl, optionally substituted aralkyl; R¹ is optionally substituted heteroaryl, optionally substituted heteroaralkyl; R^1 is $-NR^{16}R^{17}$, $-OR^{21}$, $-SR^{21}$, $-C(X)R^{20}$, or $-C(X)NR^{16}R^{17}$. In particular embodiments, R² or R³ (but not both) is hydrogen; R² or R³ (but not the other) is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl; R² or R³ (but not the other) is optionally substituted heterocycloalkyl; R² or R³ (but not the other) is optionally substituted aryl, optionally substituted aralkyl; R² or R³ (but not the other) is optionally substituted heteroaryl, optionally substituted heteroaralkyl, or optionally substituted heteroaralkyl; R² or R³ (but not both) is -C(X)R²⁰, or -C(X)NR¹⁶R¹⁷. In particular embodiments, R² is H; R³ is H: R² and R³ are H.

[0103] The invention also concerns compounds of Formula V.

Formula V

where, with reference to Formula V:

101041 R¹ and R⁷ are independently hydrogen, hydroxyl, optionally substituted alkoxyl, optionally substituted thioalkoxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, -NR¹⁶R¹⁷, - $C(X)R^{20}$, $C(X)NR^{16}R^{17}$, $-S(O)_2NR^{16}R^{17}$, $-S(O)_2R^{21}$, or R^1 and R^7 , when one of them is -NR¹⁶R¹⁷, hydroxyl, alkoxyl, thioalkoxyl, aralkyl or heteroaralkyl and the other one is

hydrogen can combine to form =NR¹⁶, =O, =S, or =Caryl/heteroaryl, with the proviso that R^1 and R^7 both cannot be hydroxyl, alkoxyl, thioalkoxyl or -NR¹⁶R¹⁷ at the same time;

[0105] R^2 is hydrogen, halo, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, optionally substituted heteroaralkyl, $-C(X)R^{20}$, or $C(X)NR^{16}R^{17}$;

[0106] R³, R⁴, R⁵, and R⁶ are independently hydrogen, halo, hydroxyl, optionally substituted alkoxyl, optionally substituted thioalkoxy, optionally substituted amine, optionally substituted lower alkyl (e.g., trifluoromethyl), optionally substituted lower alkenyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, -C(X)R²⁰, -C(X)NR¹⁶R¹⁷, -S(O)₂NR¹⁶R¹⁷, or -S(O)₂R²¹;

[0107] R¹⁶ and R¹⁷ are independently hydrogen, optionally substituted lower alkyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, or R¹⁶ and R¹⁷ together form a carbocyclic or heterocyclic ring;

[0108] R²⁰ is hydroxyl, optionally substituted lower alkoxy, optionally substituted amine, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; and

[0109] R²¹ is optionally substituted amine, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl.

[0110] In particular embodiments of compounds of Formula V, with reference to Formula V, R^1 is H; R^2 is H; R^3 is H; R^4 is H; R^5 is H; R^6 is H; each combination of two of R^1 , R^2 , R^3 , R^4 , R^5 , and R^6 are H and the others; each combination of three of R^1 , R^2 , R^3 , R^4 , R^5 , and

R⁶ are H; each combination of 4 of R¹, R², R³, R⁴, R⁵, and R⁶ are H; each combination of 5 of R^1 , R^2 , R^3 , R^4 , R^5 , and R^6 are H.

[0111] Likewise, the invention concerns compounds of Formula VI.

Formula VI

where, with reference to Formula VI:

101121 R¹ is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, -C(X)R²⁰, - $C(X)NR^{16}R^{17}$, $-S(O)_2NR^{16}R^{17}$, or $-S(O)_2R^{21}$;

[0113] R² is hydrogen, halo, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, optionally substituted heteroaralkyl, $-C(X)R^{20}$, $-C(X)NR^{16}R^{17}$, $-S(O)_2NR^{16}R^{17}$, or $-S(O)_2R^{21}$;

[0114] R³ and R⁴ are independently hydrogen, halo, hydroxyl, optionally substituted alkoxyl, optionally substituted thioalkoxy, optionally substituted amine, optionally substituted lower alkyl (e.g., trifluoromethyl), optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, -NR¹⁶R¹⁷, -C(X)R²⁰, - $C(X)NR^{16}R^{17}$, $-S(O)_2NR^{16}R^{17}$, or $-S(O)_2R^{21}$ or R^3 and R^4 , when one of them is $-NR^{16}R^{17}$, hydroxyl, alkoxyl, thioalkoxyl, aralkyl or heteroaralkyl and the other one is hydrogen can combine to form =NR¹⁶, =0, =S, or =Caryl/heteroaryl, with the proviso that R¹ and R⁷ both cannot be hydroxyl, alkoxyl, thioalkoxyl or -NR¹⁶R¹⁷ at the same time;

10115] R¹⁶ and R¹⁷ are independently hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenvl. optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaryl, or R¹⁶ and R¹⁷ together form a carbocyclic or heterocyclic ring;

[0116] R²⁰ is hydroxyl, optionally substituted lower alkoxy, optionally substituted amine, optionally substituted lower alkyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; and

[0117] R²¹ is optionally substituted lower alkoxy, optionally substituted amine, optionally substituted lower alkyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl.

[0118] In particular embodiments of compounds of Formula VI, with reference to Formula VI, R¹ is H; R² is H; R³ is H; R¹ and R² are H; R² and R³ are H; R¹ is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl; R¹ is optionally substituted cycloalkyl, optionally substituted heterocycloalkyl; R¹ is optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaralkyl; R1 is -C(X)R20, -C(X)NR16R17, -S(O)₂NR¹⁶R¹⁷, or -S(O)₂R²¹; R² is halo; R² is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl; R² is optionally substituted cycloalkyl, optionally substituted heterocycloalkyl; R² is optionally substituted aryl. optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, or optionally substituted heteroaralkyl; R² is -C(X)R²⁰, -C(X)NR¹⁶R¹⁷, -S(O)₂NR¹⁶R¹⁷, or -S(O)₂R²¹; R³ is halo; R³ is trifluoromethyl; R³ is optionally substituted alkoxyl, optionally substituted thioalkoxy; R3 is optionally substituted amine; R3 is optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl; R³ is optionally substituted cycloalkyl, optionally substituted heterocycloalkyl; R³ is optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl: R³ is -C(X)R²⁰ - $C(X)NR^{16}R^{17}$, $-S(O)_2NR^{16}R^{17}$, or $-S(O)_2R^{21}$.

[0119] In yet other embodiments, the invention concerns compounds of Formula VII.

$$R^3$$
 R^4
 R^5
 R^6
 R^2
 N
 R^7

Formula VII

where, with reference to Formula VII:

[0120] R^1 is hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted cycloalkyl, optionally substituted heteralkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaryl, optionally substituted heteroaryl, optionally substituted heteroaryl, optionally substituted

[0121] R², R³, R⁴, R⁵, R⁶, and R⁷ are independently hydrogen, halo, optionally substituted arounce, optionally substituted alkoxy, optionally substituted thioether, optionally substituted lower alkyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaryl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, optionally substituted h

[0122] R¹⁶ and R¹⁷ are independently hydrogen, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heteroalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, optionally substituted heteroaralkyl, or R¹⁶ and R¹⁷ together form a carbocyclic or heterocyclic ring;

[0123] R²⁰ is hydroxyl, optionally substituted lower alkoxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heteroalkyl, optionally substituted

heterocycloalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl; and

- [0124] R²¹ is optionally substituted lower alkoxy, optionally substituted lower alkyl, optionally substituted lower alkenyl, optionally substituted lower alkynyl, optionally substituted cycloalkyl, optionally substituted heteroalkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroaralkyl.
- [0125] In particular embodiments of compounds of Formula VII, with reference to Formula VII, R¹ is H; R² is H; R³ is H; R⁴ is H; R⁵ is H; R⁶ is H; R⁷ is H; each combination of two of R¹, R², R³, R⁴, R⁵, R⁶, and R⁷ are H; each combination of three of R¹, R², R³, R⁴, R⁵, R⁶, and R⁷ are H; each combination of 4 of R¹, R², R³, R⁴, R⁵, R⁶, and R⁷ are H; each combination of 5 of R¹, R², R³, R⁴, R⁵, R⁶, and R⁷ are H; each combination of six of R¹, R², R³, R⁴, R⁵, R⁶, and R⁷ are H (e.g., all except for R¹ and R⁶).
- [0126] As used in connection with the present invention, unless indicated clearly to the contrary, the description of compounds and the use of such compounds, e.g., compounds of any of Formula I-VII, includes pharmaceutically acceptable salts and solvates of such compounds.
- [0127] In connection with the compounds of Formulas I-VII, the following definitions apply.
- [0128] "Halo" or "Halogen" alone or in combination means all halogens, that is, chloro (Cl), fluoro (F), bromo (Br), iodo (I).
- [0129] "Hydroxyl" refers to the group -OH.
- [0130] "Thiol" or "mercapto" refers to the group -SH.
- [0131] "Alkyl" alone or in combination means an alkane-derived radical containing from 1 to 20, preferably 1 to 15, carbon atoms (unless specifically defined). It is a straight chain alkyl, branched alkyl or cycloalkyl. Preferably, straight or branched alkyl groups containing from 1-15, more preferably 1 to 8, even more preferably 1-6, yet more preferably 1-4 and most preferably 1-2, carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, t-butyl and the like. The term "lower alkyl" is used herein to describe the straight chain alkyl groups of 1-6, 1-4, or 1-2 carbon atoms. Preferably, cycloalkyl groups are monocyclic.

bicyclic or tricyclic ring systems of 3-8, more preferably 3-6, ring members per ring, such as cyclopropyl, cyclopentyl, cyclohexyl, and the like, but can also include larger ring structures such as adamantyl. Alkyl also includes a straight chain or branched alkyl group that contains or is interrupted by a cycloalkyl portion. The straight chain or branched alkyl group is attached at any available point to produce a stable compound. Examples of this include, but are not limited to, 4-(isopropyl)-cyclohexylethyl or 2-methyl-cyclopropylpentyl. A substituted alkyl is a straight chain alkyl, branched alkyl, or cycloalkyl group defined previously, independently substituted with 1 to 3 groups or substituents of halo, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, acyloxy, aryloxy, heteroaryloxy, amino optionally mono- or di-substituted with alkyl, aryl or heteroaryl groups, aminosulfonyl optionally N-mono- or N,N-di-substituted with alkyl, aryl or heteroaryl groups, aminosulfonyl optionally N-mono- or N,N-di-substituted with alkyl, aryl or heteroaryl groups, alkylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, alkylcarbonylamino, arylcarbonylamino, or the like.

[0132] "Alkenyl" - alone or in combination means a straight, branched, or cyclic hydrocarbon containing 2-20, preferably 2-17, more preferably 2-10, even more preferably 2-8, most preferably 2-4, carbon atoms and at least one, preferably 1-3, more preferably 1-2. most preferably one, carbon to carbon double bond. In the case of a cycloalkyl group, conjugation of more than one carbon to carbon double bond is not such as to confer aromaticity to the ring. Carbon to carbon double bonds may be either contained within a cycloalkyl portion, with the exception of cyclopropyl, or within a straight chain or branched portion. Examples of alkenyl groups include ethenyl, propenyl, isopropenyl, butenyl, cyclohexenyl, cyclohexenylalkyl and the like. A substituted alkenyl is the straight chain alkenyl, branched alkenyl or cycloalkenyl group defined previously, independently substituted with 1 to 3 groups or substituents of halo, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, acyloxy, aryloxy, heteroaryloxy, amino optionally mono- or disubstituted with alkyl, aryl or heteroaryl groups, amidino, urea optionally substituted with alkyl, aryl, heteroaryl or heterocyclyl groups, aminosulfonyl optionally N-mono- or N,N-disubstituted with alkyl, aryl or heteroaryl groups, alkylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, alkylcarbonylamino, arylcarbonylamino, heteroarylcarbonylamino, carboxy, alkoxycarbonyl, aryloxycarbonyl, heteroaryloxycarbonyl, or the like attached at any available point to produce a stable compound.

- [0133] "Alkynyl" alone or in combination means a straight or branched hydrocarbon containing 2-20, preferably 2-17, more preferably 2-10, even more preferably 2-8, most preferably 2-4, carbon atoms containing at least one, preferably one, carbon to carbon triple bond. Examples of alkynyl groups include ethynyl, propynyl, butynyl and the like. A substituted alkynyl refers to a straight chain alkynyl or branched alkynyl, independently substituted with 1 to 3 groups or substituents of halo, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, acyloxy, aryloxy, heteroaryloxy, amino optionally mono- or disubstituted with alkyl, aryl or heteroaryl groups, amidino, urea optionally substituted with alkyl, aryl, heteroaryl or heteroaryl groups, aminosulfonyl optionally N-mono- or N,N-disubstituted with alkyl, aryl or heteroaryl groups, alkylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, alkylcarbonylamino, arylcarbonylamino, heteroarylcarbonylamino, or the like attached at any available point to produce a stable compound.
- [0134] "Alkyl alkenyl" refers to a group -R-CR'=CR" R"", where R is lower alkylene, or substituted lower alkylene, R', R'", R"" may independently be hydrogen, halogen, lower alk 1, substituted lower alkyl, acyl, aryl, substituted aryl, heteroaryl, or substituted hete earyl as defined below.
- [0135] "Pullyl alkynyl" refers to a groups -RCCR' where R is lower alkylene or substituted lower alkylene, R' is hydrogen, lower alkyl, substituted lower alkyl, acyl, aryl, substituted aryl, heteroaryl, or substituted heteroaryl as defined below.
- [0136] "Alkoxy" denotes the group -OR, where R is lower alkyl, substituted lower alkyl, acyl, aryl, substituted aryl, aralkyl, substituted aralkyl, heteroalkyl, heteroarylalkyl, cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, or substituted cycloheteroalkyl as defined.
- [0137] "Alkylthio" or "thioalkoxy" denotes the group -SR, -S(O)_{n=1-2}-R, where R is lower alkyl, substituted lower alkyl, aryl, substituted aryl, aralkyl or substituted aralkyl as defined herein.
- [0138] "Acyl" denotes groups -C(O)R, where R is hydrogen, lower alkyl substituted lower alkyl, aryl, substituted aryl and the like as defined herein.
- [0139] "Aryloxy" denotes groups -OAr, where Ar is an aryl, substituted aryl, heteroaryl, or substituted heteroaryl group as defined herein.

SUBSTITUTE SHEET (RULE 26)

- [0140] "Amino" or substituted amine denotes the group NRR', where R and R' may independently by hydrogen, lower alkyl, substituted lower alkyl, aryl, substituted aryl, heteroaryl, or substituted heteroaryl as defined herein, acyl or sulfonyl.
- [0141] "Amido" denotes the group -C(O)NRR', where R and R' may independently by hydrogen, lower alkyl, substituted lower alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl as defined herein.
- [0142] "Carboxyl" denotes the group -C(O)OR, where R is hydrogen, lower alkyl, substituted lower alkyl, aryl, substituted aryl, heteroaryl, and substituted heteroaryl as defined herein.
- [0143] "Carbocyclic" refers to a saturated, unsaturated, or aromatic group having a single ring (e.g., phenyl) or multiple condensed rings where all ring atoms are carbon atoms, which can optionally be unsubstituted or substituted with, e.g., halogen, lower alkyl, lower alkoxy, alkylthio, acetylene, amino, amido, carboxyl, hydroxyl, aryl, aryloxy, heterocycle, heteroaryl, substituted heteroaryl, nitro, cyano, thiol, sulfamido and the like.
- [0144] "Aryl" alone or in combination means phenyl or naphthyl optionally carbocyclic fused with a cycloalkyl of preferably 5-7, more preferably 5-6, ring members and/or optionally substituted with 1 to 3 groups or substituents of halo, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, acyloxy, aryloxy, heteroaryloxy, amino optionally mono- or disubstituted with alkyl, aryl or heteroaryl groups, amidino, urea optionally substituted with alkyl, aryl, heteroaryl or heterocyclyl groups, aminosulfonyl optionally N-mono- or N,N-disubstituted with alkyl, aryl or heteroaryl groups, alkylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, alkylcarbonylamino, arylcarbonylamino,
- [0145] "Substituted aryl" refers to aryl optionally substituted with one or more functional groups, e.g., halogen, lower alkyl, lower alkoxy, alkylthio, acetylene, amino, amido, carboxyl, hydroxyl, aryl, aryloxy, heterocycle, heteroaryl, substituted heteroaryl, nitro, cyano, thiol, sulfamido and the like.
- [0146] "Heteroaryl" alone or in combination means a monocyclic aromatic ring structure containing 5 or 6 ring atoms, or a bicyclic aromatic group having 8 to 10 atoms, containing one or more, preferably 1-4, more preferably 1-3, even more preferably 1-2, heteroatoms independently selected from the group O, S, and N, and optionally substituted

with 1 to 3 groups or substituents of halo, hydroxy, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, acyloxy, aryloxy, heteroaryloxy, amino optionally mono- or di-substituted with alkyl, aryl or heteroaryl groups, amidino, urea optionally substituted with alkyl, aryl, heteroaryl or heterocyclyl groups, aminosulfonyl optionally N-mono- or N,N-di-substituted with alkyl, aryl or heteroaryl groups, alkylsulfonylamino, arylsulfonylamino, heteroarylsulfonylamino, alkylcarbonylamino, arylcarbonylamino, heteroarylcarbonylamino, or the like. Heteroaryl is also intended to include oxidized S or N, such as sulfinyl, sulfonyl and N-oxide of a tertiary ring nitrogen. A carbon or nitrogen atom is the point of attachment of the heteroaryl ring structure such that a stable aromatic ring is retained. Examples of heteroaryl groups are pyridinyl, pyridazinyl, pyrazinyl, quinazolinyl, purinyl, indolyl, quinolinyl, pyrimidinyl, pyrrolyl, oxazolyl, thiazolyl, thienyl, isoxazolyl, oxathiadiazolyl, isothiazolyl, tetrazolyl, imidazolyl, triazinyl, furanyl, benzofuryl, indolyl and the like. A substituted heteroaryl contains a substituent attached at an available carbon or nitrogen to produce a stable compound.

[0147] "Heterocyclyl" - alone or in combination means a non-aromatic cycloalkyl group having from 5 to 10 atoms in which from 1 to 3 carbon atoms in the ring are replaced by heteroatoms of O, S or N, and are optionally benzo fused or fused heteroaryl of 5-6 ring members and/or are optionally substituted as in the case of cycloalkyl. Heterocycyl is also intended to include oxidized S or N, such as sulfinyl, sulfonyl and N-oxide of a tertiary ring nitrogen. The point of attachment is at a carbon or nitrogen atom. Examples of heterocyclyl groups are tetrahydrofuranyl, dihydropyridinyl, piperidinyl, pyrrolidinyl, piperazinyl, dihydrobenzofuryl, dihydroindolyl, and the like. A substituted hetercyclyl contains a substituent nitrogen attached at an available carbon or nitrogen to produce a stable compound.

[0148] "Heterocycle" refers to a saturated, unsaturated, or aromatic carbocyclic group having a single ring (e.g., morpholino, pyridyl or furyl) or multiple condensed rings (e.g., naphthpyridyl, quinoxalyl, quinolinyl, indolizinyl or benzo[b]thienyl) and having at least one hetero atom, such as N, O or S, within the ring, which can optionally be unsubstituted or substituted with, e.g., halogen, lower alkyl, lower alkoxy, alkylthio, acetylene, amino, amido, carboxyl, hydroxyl, aryl, aryloxy, heterocycle, heteroaryl, substituted heteroaryl, nitro, cyano, thiol, sulfamido and the like.

- [0149] "Substituted heteroaryl" refers to a heterocycle optionally mono or poly substituted with one or more functional groups, e.g., halogen, lower alkyl, lower alkoxy, alkylthio, acetylene, amino, amido, carboxyl, hydroxyl, aryl, aryloxy, heterocycle, substituted heterocycle, heteroaryl, substituted heteroaryl, nitro, cyano, thiol, sulfamido and the like.
- [0150] "Aralkyl" refers to the group -R-Ar where Ar is an aryl group and R is lower alkyl or substituted lower alkyl group. Aryl groups can optionally be unsubstituted or substituted with, e.g., halogen, lower alkyl, alkoxy, alkylthio, acetylene, amino, amido, carboxyl, hydroxyl, aryl, aryloxy, heterocycle, substituted heterocycle, heteroaryl, substituted heteroaryl, nitro, cyano, thiol, sulfamido and the like.
- [0151] "Heteroalkyl" refers to the group -R-Het where Het is a heterocycle group and R is a lower alkyl group. Heteroalkyl groups can optionally be unsubstituted or substituted with e.g., halogen, lower alkyl, lower alkoxy, alkylthio, acetylene, amino, amido, carboxyl, aryl, aryloxy, heterocycle, substituted heterocycle, heteroaryl, substituted heteroaryl, nitro, cyano, thiol, sulfamido and the like.
- [0152] "Heteroarylalkyl" refers to the group -R-HetAr where HetAr is an heteroaryl group and R lower alkyl or substituted lower alkyl. Heteroarylalkyl groups can optionally be unsubstituted or substituted with, e.g., halogen, lower alkyl, substituted lower alkyl, alkoxy, alkylthio, acetylene, aryl, aryloxy, heterocycle, substituted heterocycle, heteroaryl, substituted heteroaryl, nitro, cyano, thiol, sulfamido and the like.
- [0153] "Cycloalkyl" refers to a cyclic or polycyclic alkyl group containing 3 to 15 carbon atoms.
- [0154] "Substituted cycloalkyl" refers to a cycloalkyl group comprising one or more substituents with, e.g., halogen, lower alkyl, substituted lower alkyl, alkoxy, alkylthio, acetylene, aryl, aryloxy, heterocycle, substituted heterocycle, heteroaryl, substituted heteroaryl, nitro, cyano, thiol, sulfamido and the like.
- [0155] "Cycloheteroalkyl" refers to a cycloalkyl group wherein one or more of the ring carbon atoms is replaced with a heteroatom (e.g., N, O, S or P).
- [0156] "Substituted cycloheteroalkyl" refers to a cycloheteroalkyl group as herein defined which contains one or more substituents, such as halogen, lower alkyl, lower alkoxy,

alkylthio, acetylene, amino, amido, carboxyl, hydroxyl, aryl, aryloxy, heterocycle, substituted heterocycle, heteroaryl, substituted heteroaryl, nitro, cyano, thiol, sulfamido and the like.

- [0157] "Alkyl cycloalkyl" denotes the group -R-cycloalkyl where cycloalkyl is a cycloalkyl group and R is a lower alkyl or substituted lower alkyl. Cycloalkyl groups can optionally be unsubstituted or substituted with e.g. halogen, lower alkyl, lower alkoxy, alkylthio, acetylene, amino, amido, carboxyl, hydroxyl, aryl, aryloxy, heterocycle, substituted heterocycle, heteroaryl, substituted heteroaryl, nitro, cyano, thiol, sulfamido and the like.
- [0158] "Alkyl cycloheteroalkyl" denotes the group -R-cycloheteroalkyl where R is a lower alkyl or substituted lower alkyl. Cycloheteroalkyl groups can optionally be unsubstituted or substituted with e.g. halogen, lower alkyl, lower alkoxy, alkylthio, amino, amido, carboxyl, acetylene, hydroxyl, aryl, aryloxy, heterocycle, substituted heterocycle, heteroaryl, substituted heteroaryl, nitro, cyano, thiol, sulfamido and the like.
- [0159] An additional aspect of this invention relates to pharmaceutical formulations or compositions, that include a therapeutically effective amount of a compound of Formula I, III, IV, V, VI, or VII, (or a compound within a sub-group of compounds within any of those generic formulas) and at least one pharmaceutically acceptable carrier or excipient. The composition can include a plurality of different pharmacalogically active compounds.
- [0160] As used herein, the term "pharmaceutical composition" refers to a preparation that includes a therapeutically significant quantity of an active agent, that is prepared in a form adapted for administration to a subject. Thus, the preparation does not include any component or components in such quantity that a reasonably prudent medical practitioner would find the preparation unsuitable for administration to a normal subject. In many cases, such a pharmaceutical composition is a sterile preparation.
- [0161] In a related aspect, the invention provides kits that include a pharmaceutical composition as described herein. In particular embodiments, the pharmaceutical composition is packaged, e.g., in a vial, bottle, flask, which may be further packaged, e.g., within a box, envelope, or bag; the pharmaceutical composition is approved by the U.S. Food and Drug Administration or similar regulatory agency for administration to a mammal, e.g., a human; the pharmaceutical composition is approved for administration to a

mammal, e.g., a human for a kinase-mediated disease or condition; the kit includes written instructions or other indication that the composition is suitable or approved for administration to a mammal, e.g., a human, for a kinase-mediated disease or condition; the pharmaceutical composition is packaged in unit does or single dose form, e.g., single dose pills, capsules, or the like.

- [0162] In another related aspect, compounds of any of Formulas I-VII can be used in the preparation of a medicament for the treatment of a kinase-mediated disease or condition or a disease or condition in which modulation of a kinase provides a therapeutic benefit.
- [0163] In the present context, the term "therapeutically effective" indicates that the materials or amount of material is effective to prevent, alleviate, or ameliorate one or more symptoms of a disease or medical condition, and/or to prolong the survival of the subject being treated.
- [0164] The term "pharmaceutically acceptable" indicates that the indicated material does not have properties that would cause a reasonably prudent medical practitioner to avoid administration of the material to a patient, taking into consideration the disease or conditions to be treated and the respective route of administration. For example, it is commonly required that such a material be essentially sterile, e.g., for injectibles.
- [0165] "A pharmaceutically acceptable salt" is intended to mean a salt that retains the biological effectiveness of the free acids and bases of the specified compound and that is not biologically or otherwise unacceptable. A compound of the invention may possess a sufficiently acidic, a sufficiently basic, or both functional groups, and accordingly react with any of a number of inorganic or organic bases, and inorganic and organic acids, to form a pharmaceutically acceptable salt. Exemplary pharmaceutically acceptable salts include those salts prepared by reaction of the compounds of the present invention with a mineral or organic acid or an inorganic base, such as salts including sodium, chloride, sulfates, pyrosulfates, bisulfates, bisulfites, phosphates, monohydrogenphosphates, dihydrogenphosphates, metaphosphates, pyrophosphates, chlorides, bromides, iodides, acetates, propionates, decanoates, caprylates, acrylates, formates, isobutyrates, caproates, heptanoates, propiolates, oxalates, malonates, succinates, suberates, sebacates, fumarates, maleates, butyne-1,4 dioates, hexyne-1,6-dioates, benzoates, chlorobenzoates, methylbenzoates, dinitrobenzoates, hydroxybenzoates, methoxybenzoates, phthalates, sulfonates, xylenesulfonates, phenylacetates, phenylpropionates, phenylbutyrates, citrates,

lactates, .gamma.-hydroxybutyrates, glycollates, tartrates, methane-sulfonates, propanesulfonates, naphthalene-1-sulfonates, naphthalene-2-sulfonates, and mandelates.

[0166] The term "pharmaceutically acceptable metabolite" refers to a pharmacologically acceptable product, which may be an active product, produced through metabolism of a specified compound (or salt thereof) in the body of a subject or patient. Metabolites of a compound may be identified using routine techniques known in the art, and their activities determined using tests such as those described herein. For example, in some compounds, one or more alkoxy groups can be metabolized to hydroxyl groups while retaining pharmacologic activity and/or carboxyl groups can be esterified, e.g., glucuronidation. In some cases, there can be more than one metabolite, where an intermediate metabolite(s) is further metabolized to provide an active metabolic. For example, in some cases a derivative compound resulting from metabolic glucuronidation may be inactive or of low activity, and can be further metabolized to provide an active metabolite.

[0167] Additional aspects and embodiments will be apparent from the following Detailed Description and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0168] FIGURE 1 shows a schematic representation of AMP-PNP in the binding site of PIM-1, showing conserved interacting residues.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0169] The Tables will first be briefly described.

[0170] Table 1 provides atomic coordinates for human PIM-1. In this table and in Table 4, the various columns have the following content, beginning with the left-most column: ATOM: Refers to the relevant moiety for the table row.

Atom number: Refers to the arbitrary atom number designation within the coordinate table.

Atom Name: Identifier for the atom present at the particular coordinates.

Chain ID: Chain ID refers to one monomer of the protein in the crystal, e.g., chain "A", or to other compound present in the crystal, e.g., HOH for water, and L for a ligand or binding compound. Multiple copies of the protein monomers will have different chain Ids.

Residue Number: The amino acid residue number in the chain.

SUBSTITUTE SHEET (RULE 26)

X, Y, Z: Respectively are the X, Y, and Z coordinate values.

Occupancy: Describes the fraction of time the atom is observed in the crystal. For example, occupancy = 1 means that the atom is present all the time; occupancy = 0.5 indicates that the atom is present in the location 50% of the time.

B-factor: A measure of the thermal motion of the atom.

Element: Identifier for the element.

[0171] Table 2 provides an alignment of catalytic domains of several PIM kinases, including human PIM-1, PIM-2, and PIM-3 as well as PIM kinases from other species.

[0172] Table 2 provides an alignment of catalytic domains of several PIM kinases, including human PIM-1, PIM-2, and PIM-3 as well as PIM kinases from other species. Sequences from the following species are included in the alignment: Hs, Homo sapiens; Mm, Mus musculus; Dr, Danio rerio; Xl, Xenopus laevis; Cc, Coturnix coturnix; and Ce, Caenorhabditis elegans. Residues with >90% and >75% conservations are in red and yellow background, respectively. Phosphate binding sites are indicated by purple circles. Residues that are invariably involved in ligand binding are indicated by filled uparrows, whereas residues that can be involved in ligand binding are indicated by open uparrows. The backbone atoms of two residues (indicated by leftarrows) in the hinge region have been shown to make hydrogen bonds to ligands in many known kinase/ligand complex structures. Note that PIM family kinases all have Pro as the second residue, resulting in theloss of a hydrogen bond donor.

[0173] Table 4 provides atomic coordinates for PIM-1 with AMP-PNP in the binding site.

[0174] Table 5 provides a list of kinases which have been correlated with diseases (or pathological condition).

I. Introduction

[0175] The present invention concerns the use of certain molecular scaffolds in the development of kinase modulators, e.g., kinase inhibitors. Such development can utilize kinase structures, for example, PIM kinase structures, structural information, and related compositions for identifying compounds that modulate kinase activity and for determining structures of other kinases. The following description utilizes PIM-1 for illustrative purposes. However, the invention is not limited to PIM-1; other protein kinases can also be utilized for modulation by the present compounds, and for developing additional modulators

based on the present molecular scaffolds. The use of molecular scaffolds in connection with PIM kinases and Pyk2 is described in U.S. Appl. 10/664,421 and corresponding PCT/US03/29415, and Formula I as described in U.S. Appl. 10/789,818 and corresponding PCT/US2004/005904 respectively. Both of those applications are incorporated herein by reference in their entireties, including drawings.

[0176] Kinases, e.g., PIM-1, are involved in a variety of disease conditions, and a number have been utilized as therapeutic targets.

Exemplary Diseases Associated with Kinases

[0177] As indicated above, the present invention is exemplified in connection with PIM-1. As indicated in the Background above, PIM-1 functions as a weak oncogene. In transgenic mice with PIM-1 driven by Emu enhancer sequences, overexpression of PIM-1 by itself it does not lead to tumor formation, but does so in conjunction with overexpression of a second oncogenic gene. In 75% of tumors over-expressing PIM-1, the second gene found to be overexpressed was c-myc (van der Houven van Oordt CW, Schouten TG, van Krieken JH, van Dierendonck J I, van der Eb AJ, Breuer ML.(1998) X-ray-induced lymphomagenesis in Enne-PIM-1 transgenic mice: an investigation of the co-operating molecular events. Carcinogenesis 19:847-853). Other PIM kinases are also involved, as the functions of the various PIM kinases appears to be at least partially complementary.

[0178] Since PIM-1 is a protool cogene and it closely cooperates with other protooncogenes like c-myc in triggering intracellular signals leading to cell transformation, PIM-1 inhibitors have therapeutic applications in the treatment of various cancers, as wells as other disease states. Some examples are described below.

Prostate cancer

[0179] A significant inter-relationship between PIM-1 and a disease state was reported in prostate cancer (Dhanasekaran et al. (2001) Delineation of prognostic biomarkers in prostate cancer. *Nature* 412: 822-826.) Using microarrays of complementary DNA, the gene expression profiles of approximately 10,000 genes from more than 50 normal and neoplastic prostate cancer specimens and three common prostate cancer cell lines were examined. Two of these genes, hepsin, a transmembrane serine protease, and PIM-1, a serine/threonine kinase are upregulated to several-fold. The PIM-1 kinase is strongly expressed in the cytoplasm of prostate cancer tissues while the normal tissues showed no or weak staining

with anti-PIM-1 antibody (*Id.*) indicating PIM-1 is an appropriate target for drug development.

Leukemia

[0180] PIM-1 has been mapped to the 6p21 chromosomal region in humans. Nagarajan et al. (Nagarajan et al. (1986) Localization of the human pim oncogene (PIM) to a region of chromosome 6 involved in translocations in acute leukemias. *Proc. Natl. Acad. Sci. USA* 83:2556-2560) reported increased expression of PIM-1 in K562 erythroleukemia cell lines which contain cytogenetically demonstrable rearrangement in the 6p21 region. A characteristic chromosome anomaly, a reciprocal translocation t(6;9)(p21;q33), has been described in myeloid leukemias that may be due to involvement of PIM-1. Amson et al. (1989) also observed overexpression in 30 % of myeloid and lymphoid acute leukemia. These studies also indicate a role for PIM-1 protooncogene during development and in deregulation in various leukemias.

Kaposi Sarcoma

[0181] Analysis of gene expression profiles by microarrays in human hematopoietic cells after *in vitro* infection with human Herpes virus (HHV 8), also known as Kaposi Sarcoma associated virus (KSHV), resulted in differential expression of 400 genes out of about 10,000 analyzed. Of these four hundred genes, PIM-2 is upregulated more than 3.5 fold indicating PIM-2 as a potential target for therapeutic intervention. Thus, inhibitors selective to PIM-2 are of great therapeutic value in treating disease states mediated by HHV8 (Mikovits et al. (2001) Potential cellular signatures of viral infections in human hematopoietic cells. *Dis. Markers* 17:173-178.)

Asthma and Allergy.

evidence that eosinophils play a role in pathophysiology of asthma. Aberrant production of several different cytokines has been shown to result in eosinophilia. The cytokine IL-5 for example influences the development and maturation of eosinophils in a number of ways. Using microarray techniques, a role for PIM-1 in IL-5 signaling pathway in eosinophils was indicated. (Temple et al. (2001) Microarray analysis of eosinophils reveals a number of candidate survival and apoptosis genes. *Am. J. Respir. Cell Mol. Biol.* 25: 425-433.) Thus, inhibitors of PIM-1 can have therapeutic value in treatment of asthma and allergies.

SUBSTITUTE SHEET (RULE 26)

Inflammation

[0183] PIM-1 and/or the compounds described herein can also be useful for treatment of inflammation, either chronic or acute. Chronic inflammation is regarded as prolonged inflammation (weeks or months), involving simultaneous active inflammation, tissue destruction, and attempts at healing. (R.S. Cotran, V. Kumar, and S.L. Robbins, Saunders Co., (1989) Robbins Pathological Basis of Disease, p.75.) Although chronic inflammation can follow an acute inflammatory episode, it can also begin as a process that progresses over time, e.g., as a result of a chronic infection such as tuberculosis, syphilis, fungal infection which causes a delayed hypersensitivity reaction, prolonged exposure to endogenous or exogenous toxins, or autoimmune reactions (e.g., rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, psoriasis). Chronic inflammatory disease thus include many common medical conditions such as autoimmune disorders such as those listed above, chronic infections, surgical adhesions, chronic inflammatory lung and airway diseases (e.g., asthma, pneumoconiosis, chronic obstructive pulmonary disease, nasal polyps, and pulmonary fibrosis). For skin and airway inflammatory disease, topical or inhaled forms of drug administration can be used respectively.

[0184] While kinase-related diseases and conditions are exemplified in connection with PIM-1, numerous other kinases have been correlated with particular disease and conditions, and are identified as target in a number of current treatments. Compounds derived from the present scaffolds can be developed to target such additional kinases for treating associated diseases and conditions.

II. Crystalline Kinases

[0185] In development of kinase modulators based on molecular scaffolds, crystalline kinases (e.g., human PIM-1) include native crystals, derivative crystals and co-crystals are useful. Native crystals generally comprise substantially pure polypeptides corresponding to the kinase in crystalline form. Crystal structures for a number of different kinases (or kinase domains) have been determined and are available for use in the present methods.

[0186] It is to be understood that the crystalline kinases are not limited to naturally occurring or native kinase. Indeed, the crystals of the invention include crystals of mutants of native kinases. Mutants of native kinases are obtained by replacing at least one amino acid residue in a native kinase with a different amino acid residue, or by adding or deleting

amino acid residues within the native polypeptide or at the N- or C-terminus of the native polypeptide, and have substantially the same three-dimensional structure as the native kinase from which the mutant is derived.

[0187] By having substantially the same three-dimensional structure is meant having a set of atomic structure coordinates that have a root-mean-square deviation of less than or equal to about 2Å when superimposed with the atomic structure coordinates of the native kinase from which the mutant is derived when at least about 50% to 100% of the $C\alpha$ atoms of the native kinase domain are included in the superposition.

[0188] Amino acid substitutions, deletions and additions which do not significantly interfere with the three-dimensional structure of the kinase will depend, in part, on the region of the kinase where the substitution, addition or deletion occurs. In highly variable regions of the molecule, non-conservative substitutions as well as conservative substitutions may be tolerated without significantly disrupting the three-dimensional, structure of the molecule. In highly conserved regions, or regions containing significant secondary structure, conservative amino acid substitutions are preferred. Such conserved and variable regions can be identified by a quence alignment of a particular kinase (e.g., PIM-1) with other kinases). Such alignment of some kinases is provided in Table 3.

[0189] Conservative amino acid substitutions are well known in the art, and include substitutions made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the amino acid residues involved. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; amino acids with uncharged polar head groups having similar hydrophilicity values include the following: leucine, isoleucine, valine; glycine, alanine; asparagine, glutamine; serine, threonine; phenylalanine, tyrosine. Other conservative amino acid substitutions are well known in the art.

[0190] For kinases obtained in whole or in part by chemical synthesis, the selection of amino acids available for substitution or addition is not limited to the genetically encoded amino acids. Indeed, the mutants described herein may contain non-genetically encoded amino acids. Conservative amino acid substitutions for many of the commonly known non-genetically encoded amino acids are well known in the art. Conservative substitutions for other amino acids can be determined based on their physical properties as compared to the properties of the genetically encoded amino acids.

[0191] In some instances, it may be particularly advantageous or convenient to substitute, delete and/or add amino acid residues to a native kinase in order to provide convenient cloning sites in cDNA encoding the polypeptide, to aid in purification of the polypeptide, and for crystallization of the polypeptide. Such substitutions, deletions and/or additions which do not substantially alter the three dimensional structure of the native kinase domain will be apparent to those of ordinary skill in the art.

[0192] It should be noted that the mutants contemplated herein need not all exhibit kinase activity. Indeed, amino acid substitutions, additions or deletions that interfere with the kinase activity but which do not significantly alter the three-dimensional structure of the domain are specifically contemplated by the invention. Such crystalline polypeptides, or the atomic structure coordinates obtained therefrom, can be used to identify compounds that bind to the native domain. These compounds can affect the activity of the native domain.

[0193] The derivative crystals of the invention can comprise a crystalline kinase polypeptide in covalent association with one or more heavy metal atoms. The polypeptide may correspond to a native or a mutated kinase. Heavy metal atoms useful for providing derivative crystals include, by way of example and not limitation, gold, mercury, selenium, etc.

[0194] The co-crystals of the invention generally comprise a crystalline kinase domain polypeptide in association with one or more compounds. The association may be covalent or non-covalent. Such compounds include, but are not limited to, cofactors, substrates, substrate analogues, inhibitors, allosteric effectors, etc.

[0195] Exemplary mutations for PIM family kinases include the substitution or of the proline at the site corresponding to residue 123 in human PIM-1. One useful substitution is a proline to methionine substitution at residue 123 (P123M). Such substitution is useful, for example, to assist in using PIM family kinases to model other kinases that do not have proline at that site. Additional exemplary mutations include substitution or deletion of one or more of PIM-1 residues 124-128 or a residue from another PIM aligning with PIM-1 residues 124-128. For example, a PIM residue aligning with PIM-1 residue 128 can be deleted. Mutations at other sites can likewise be carried out, e.g., to make a mutated PIM family kinase more similar to another kinase for structure modeling and/or compound fitting purposes.

III. Three Dimensional Structure Determination Using X-ray Crystallography

[0196] X-ray crystallography is a method of solving the three dimensional structures of molecules. The structure of a molecule is calculated from X-ray diffraction patterns using a crystal as a diffraction grating. Three dimensional structures of protein molecules arise from crystals grown from a concentrated aqueous solution of that protein. The process of X-ray crystallography can include the following steps:

- (a) synthesizing and isolating (or otherwise obtaining) a polypeptide;
- (b) growing a crystal from an aqueous solution comprising the polypeptide with or without a modulator; and
- (c) collecting X-ray diffraction patterns from the crystals, determining unit cell dimensions and symmetry, determining electron density, fitting the amino acid sequence of the polypeptide to the electron density, and refining the structure.

Production of Polypeptides

[0197] The native and mutated kinase polypeptides described herein may be chemically synthesized in whole or part using techniques that are well-known in the art (see, e.g., Creighton (1983) Biopolymers 22(1):49-58).

[0198] Alternatively, methods which are well known to those skilled in the art can be used to construct expression vectors containing the native or mutated kinase polypeptide coding sequence and appropriate transcriptional/translational control signals. These methods include *in vitro* recombinant DNA techniques, synthetic techniques and *in vivo* recombination/genetic recombination. See, for example, the techniques described in Maniatis, T (1989). Molecular cloning: A laboratory Manual. Cold Spring Harbor Laboratory, New York. Cold Spring Harbor Laboratory Press; and Ausubel, F.M. et al. (1994) Current Protocols in Molecular Biology. John Wiley & Sons, Secaucus, N.J.

[0199] A variety of host-expression vector systems may be utilized to express the kinase coding sequence. These include but are not limited to microorganisms such as bacteria transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing the kinase domain coding sequence; yeast transformed with recombinant yeast expression vectors containing the kinase domain coding sequence; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus)

containing the kinase domain coding sequence; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing the kinase domain coding sequence; or animal cell systems. The expression elements of these systems vary in their strength and specificities.

[0200] Depending on the host/vector system utilized, any of a number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used in the expression vector. For example, when cloning in bacterial systems, inducible promoters such as pL of bacteriophage λ, plac, ptrp, ptac (ptrp-lac hybrid promoter) and the like may be used; when cloning in insect cell systems, promoters such as the baculovirus polyhedrin promoter may be used; when cloning in plant cell systems, promoters derived from the genome of plant cells (e.g., heat shock promoters; the promoter for the small subunit of RUBISCO; the promoter for the chlorophyll a/b binding protein) or from plant viruses (e.g., the 35S RNA promoter of CaMV; the coat protein promoter of TMV) may be used; when cloning in mammalian cell systems, promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter) may be used; when generating cell lines that contain multiple copies of the kinase domain DNA, SV4O-, BPV- and EBV-based vectors may be used with an appropriate selectable marker.

[0201] Exemplary methods describing methods of DNA manipulation, vectors, various types of cells used, methods of incorporating the vectors into the cells, expression techniques, protein purification and isolation methods, and protein concentration methods are disclosed in detail in PCT publication WO 96/18738. This publication is incorporated herein by reference in its entirety, including any drawings. Those skilled in the art will appreciate that such descriptions are applicable to the present invention and can be easily adapted to it.

Crystal Growth

[0202] Crystals are grown from an aqueous solution containing the purified and concentrated polypeptide by a variety of techniques. These techniques include batch, liquid, bridge, dialysis, vapor diffusion, and hanging drop methods. McPherson (1982) John Wiley, New York; McPherson (1990) Eur. J. Biochem. 189:1-23; Webber (1991) Adv. Protein

Chem. 41:1-36, incorporated by reference herein in their entireties, including all figures, tables, and drawings.

[0203] The native crystals of the invention are, in general, grown by adding precipitants to the concentrated solution of the polypeptide. The precipitants are added at a concentration just below that necessary to precipitate the protein. Water is removed by controlled evaporation to produce precipitating conditions, which are maintained until crystal growth ceases.

[0204] For crystals of the invention, exemplary crystallization conditions are described in the Examples. Those of ordinary skill in the art will recognize that the exemplary crystallization conditions can be varied. Such variations may be used alone or in combination. In addition, other crystallizations may be found, e.g., by using crystallization screening plates to identify such other conditions.

[0205] Derivative crystals of the invention can be obtained by soaking native crystals in mother liquor containing salts of heavy metal atoms. It has been found that soaking a native crystal in a solution containing about 0.1 mM to about 5 mM thimerosal, 4-chloromeruribenzoic acid or KAu(CN)₂ for about 2 hr to about 72 hr provides derivative crystals suitable for use as isomorphous replacements in determining the X-ray crystal structure of PIM-1.

[0206] Co-crystals of the invention can be obtained by soaking a native crystal in mother liquor containing compound that binds the kinase, or can be obtained by co-crystallizing the kinase polypeptide in the presence of a binding compound.

[0207] Generally, co-crystallization of kinase and binding compound can be accomplished using conditions identified for crystallizing the corresponding kinase without binding compound. It is advantageous if a plurality of different crystallization conditions have been identified for the kinase, and these can be tested to determine which condition gives the best co-crystals. It may also be beneficial to optimize the conditions for co-crystallization. Exemplary co-crystallization conditions are provided in the Examples.

Determining Unit Cell Dimensions and the Three Dimensional Structure of a Polypeptide or Polypeptide Complex

[0208] Once the crystal is grown, it can be placed in a glass capillary tube or other mounting device and mounted onto a holding device connected to an X-ray generator and an X-ray detection device. Collection of X-ray diffraction patterns are well documented by those in the art. See, e.g., Ducruix and Geige, (1992), IRL Press, Oxford, England, and references cited therein. A beam of X-rays enters the crystal and then diffracts from the crystal. An X-ray detection device can be utilized to record the diffraction patterns emanating from the crystal. Although the X-ray detection device on older models of these instruments is a piece of film, modern instruments digitally record X-ray diffraction scattering. X-ray sources can be of various types, but advantageously, a high intensity source is used, e.g., a synchrotron beam source.

[0209] Methods for obtaining the three dimensional structure of the crystalline form of a peptide molecule or molecule complex are well known in the art. See, e.g., Ducruix and Geige, (1992), IRL Press, Oxford, England, and references cited therein. The following are steps in the process of determining the three dimensional structure of a molecule or complex from X-ray diffraction data.

[0210] After the X-ray diffraction patterns are collected from the crystal, the unit cell dimensions and orientation in the crystal can be determined. They can be determined from the spacing between the diffraction emissions as well as the patterns made from these emissions. The unit cell dimensions are characterized in three dimensions in units of Angstroms (one $Å=10^{-10}$ meters) and by angles at each vertices. The symmetry of the unit cell in the crystals is also characterized at this stage. The symmetry of the unit cell in the crystal simplifies the complexity of the collected data by identifying repeating patterns. Application of the symmetry and dimensions of the unit cell is described below.

[0211] Each diffraction pattern emission is characterized as a vector and the data collected at this stage of the method determines the amplitude of each vector. The phases of the vectors can be determined using multiple techniques. In one method, heavy atoms can be soaked into a crystal, a method called isomorphous replacement, and the phases of the vectors can be determined by using these heavy atoms as reference points in the X-ray analysis. (Otwinowski, (1991), Daresbury, United Kingdom, 80-86). The isomorphous replacement method usually utilizes more than one heavy atom derivative. In another method, the amplitudes and phases of vectors from a crystalline polypeptide with an already determined structure can be applied to the amplitudes of the vectors from a crystalline

polypeptide of unknown structure and consequently determine the phases of these vectors. This second method is known as molecular replacement and the protein structure which is used as a reference must have a closely related structure to the protein of interest. (Naraza (1994) Proteins 11:281-296). Thus, the vector information from a kinase of known structure, such as those reported herein, are useful for the molecular replacement analysis of another kinase with unknown structure.

[0212] Once the phases of the vectors describing the unit cell of a crystal are determined, the vector amplitudes and phases, unit cell dimensions, and unit cell symmetry can be used as terms in a Fourier transform function. The Fourier transform function calculates the electron density in the unit cell from these measurements. The electron density that describes one of the molecules or one of the molecule complexes in the unit cell can be referred to as an electron density map. The amino acid structures of the sequence or the molecular structures of compounds complexed with the crystalline polypeptide may then be fitted to the electron density using a variety of computer programs. This step of the process is sometimes referred to as model building and can be accomplished by using computer programs such as Turbo/FRODO or "O". (Jones (1985) Methods in Enzymology 115:157-171).

[0213] A theoretical electron density map can then be calculated from the amino acid structures fit to the experimentally determined electron density. The theoretical and experimental electron density maps can be compared to one another and the agreement between these two maps can be described by a parameter called an R-factor. A low value for an R-factor describes a high degree of overlapping electron density between a theoretical and experimental electron density map.

[0214] The R-factor is then minimized by using computer programs that refine the theoretical electron density map. A computer program such as X-PLOR can be used for model refinement by those skilled in the art. Brünger (1992) Nature 355:472-475. Refinement may be achieved in an iterative process. A first step can entail altering the conformation of atoms defined in an electron density map. The conformations of the atoms can be altered by simulating a rise in temperature, which will increase the vibrational frequency of the bonds and modify positions of atoms in the structure. At a particular point in the atomic perturbation process, a force field, which typically defines interactions between atoms in terms of allowed bond angles and bond lengths, Van der Waals

interactions, hydrogen bonds, ionic interactions, and hydrophobic interactions, can be applied to the system of atoms. Favorable interactions may be described in terms of free energy and the atoms can be moved over many iterations until a free energy minimum is achieved. The refinement process can be iterated until the R-factor reaches a minimum value.

[0215] The three dimensional structure of the molecule or molecule complex is described by atoms that fit the theoretical electron density characterized by a minimum R-value. A file can then be created for the three dimensional structure that defines each atom by coordinates in three dimensions. An example of such a structural coordinate file is shown in Table 1.

IV. Structures of an Exemplary Kinase Domain: human PIM-1

- [0216] As an example of kinase structure, high-resolution three-dimensional structures and atomic structure coordinates of crystalline PIM-1 and PIM-1 co-complexed with exemplary binding compounds as determined by X-ray crystallography are provided. The specific methods used to obtain the structure coordinates are provided in the examples. The atomic structure coordinates of crystalline PIM-1 are listed in Table 1, and atomic coordinates for PIM-1 co-crystallized with AMP-PMP are provided in Table 4. Co-crystal coordinates can be used in the same way, e.g., in the various aspects described herein, as coordinates for the protein by itself.
- [0217] Those having skill in the art will recognize that atomic structure coordinates as determined by X-ray crystallography are not without error. Thus, it is to be understood that any set of structure coordinates obtained for crystals of PIM-1, whether native crystals, derivative crystals or co-crystals, that have a root mean square deviation ("r.m.s.d.") of less than or equal to about 1.5 Å when superimposed, using backbone atoms (N, C_{α} , C and 0), on the structure coordinates listed in Table 1 (or Table 4) are considered to be identical with the structure coordinates listed in the Table 1 (or Table 4) when at least about 50% to 100% of the backbone atoms of PIM-1 are included in the superposition.
- [0218] In addition to the PIM-1 structures provided herein, additional protein kinase structures are available and can be used, for example, publicly available structures deposited in the Protein Data Bank (PDB) (available for example, over the Internet). Higher quality structures are preferred (e.g., at least 2.5, 2.2, 2.0, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, or 1.2Å

resolution, as they provide more or more precise information for compound fitting and selection or design of derivatives.

V. Uses of the Crystals and Atomic Structure Coordinates

[0219] Kinase crystals, and particularly the atomic structure coordinates obtained therefrom, have a wide variety of uses. For example, the kinase crystals such as those described herein can be used as a starting point in any of the methods of use for kinases known in the art or later developed. Such methods of use include, for example, identifying molecules that bind to the native or mutated catalytic domain of kinases. The crystals and structure coordinates are particularly useful for identifying ligands that modulate kinase activity as an approach towards developing new therapeutic agents. In particular, the crystals and structural information are useful in methods for ligand development utilizing molecular scaffolds.

[0220] The structure coordinates described herein can be used as phasing models for determining the crystal structures of additional kinases, as well as the structures of co-crystals of such kinases with ligands such as inh bitors, agonists, antagonists, and other molecules. The structure coordinates, as well as models of the three-dimensional structures obtained therefrom, can also be used to aid the elucidation of solution-based structures of native or mutated kinases, such as those obtained via NMR.

VI. Electronic Representations of Kinase Structures

[0221] Structural information of kinases or portions of kinases (e.g., kinase active sites) can be represented in many different ways. Particularly useful are electronic representations, as such representations allow rapid and convenient data manipulations and structural modifications. Electronic representations can be embedded in many different storage or memory media, frequently computer readable media. Examples include without limitations, computer random access memory (RAM), floppy disk, magnetic hard drive, magnetic tape (analog or digital), compact disk (CD), optical disk, CD-ROM, memory card, digital video disk (DVD), and others. The storage medium can be separate or part of a computer system. Such a computer system may be a dedicated, special purpose, or embedded system, such as a computer system that forms part of an X-ray crystallography system, or may be a general purpose computer (which may have data connection with other equipment such as a sensor device in an X-ray crystallographic system. In many cases, the

information provided by such electronic representations can also be represented physically or visually in two or three dimensions, e.g., on paper, as a visual display (e.g., on a computer monitor as a two dimensional or pseudo-three dimensional image) or as a three dimensional physical model. Such physical representations can also be used, alone or in connection with electronic representations. Exemplary useful representations include, but are not limited to, the following:

Atomic Coordinate Representation

[0222] One type of representation is a list or table of atomic coordinates representing positions of particular atoms in a molecular structure, portions of a structure, or complex (e.g., a co-crystal). Such a representation may also include additional information, for example, information about occupancy of particular coordinates.

Energy Surface or Surface of Interaction Representation

[0223] Another representation is an energy surface representation, e.g., of an active site or other binding site, representing an energy surface for electronic and steric interactions. Such a representation may also include other features. An example is the inclusion of representation of a particular amino acid residue(s) or group(s) on a particular amino acid residue(s), e.g., a residue or group that can participate in H-bonding or ionic interaction.

Structural Representation

[0224] Still another representation is a structural representation, *i.e.*, a physical representation or an electronic representation of such a physical representation. Such a structural representation includes representations of relative positions of particular features of a molecule or complex, often with linkage between structural features. For example, a structure can be represented in which all atoms are linked; atoms other than hydrogen are linked; backbone atoms, with or without representation of side chain atoms that could participate in significant electronic interaction, are linked; among others. However, not all features need to be linked. For example, for structural representations of portions of a molecule or complex, structural features significant for that feature may be represented (e.g., atoms of amino acid residues that can have significant binding interaction with a ligand at a binding site. Those amino acid residues may not be linked with each other.

[0225] A structural representation can also be a schematic representation. For example, a schematic representation can represent secondary and/or tertiary structure in a schematic

manner. Within such a schematic representation of a polypeptide, a particular amino acid residue(s) or group(s) on a residue(s) can be included, e.g., conserved residues in a binding site, and/or residue(s) or group(s) that may interact with binding compounds.

VII. Structure Determination for Kinases with Unknown Structure Using Structural Coordinates

[0226] Structural coordinates, such as those set forth in Table 1, can be used to determine the three dimensional structures of kinases with unknown structure. The methods described below can apply structural coordinates of a polypeptide with known structure to another data set, such as an amino acid sequence, X-ray crystallographic diffraction data, or nuclear magnetic resonance (NMR) data. Preferred embodiments of the invention relate to determining the three dimensional structures of other PIM kinases, other serine/threonine kinases, and related polypeptides.

Structures Using Amino Acid Homology

[0227] Homology modeling is a method of applying structural coordinates of a polypeptide of known structure to the amino acid sequence of a polypeptide of unknown structure. This method is accomplished using a computer representation of the three dimensional structure of a polypeptide or polypeptide complex, the computer representation of amino acid sequences of the polypeptides with known and unknown structures, and standard computer representations of the structures of amino acids. Homology modeling generally involves (a) aligning the amino acid sequences of the polypeptides with and without known structure; (b) transferring the coordinates of the conserved amino acids in the known structure to the corresponding amino acids of the polypeptide of unknown structure; refining the subsequent three dimensional structure; and (d) constructing structures of the rest of the polypeptide. One skilled in the art recognizes that conserved amino acids between two proteins can be determined from the sequence alignment step in step (a).

[0228] The above method is well known to those skilled in the art. (Greer (1985) Science 228:1055; Blundell et al. A(1988) Eur. J. Biochemi. 172:513. An exemplary computer program that can be utilized for homology modeling by those skilled in the art is the Homology module in the Insight II modeling package distributed by Accelerys Inc.

[0229] Alignment of the amino acid sequence is accomplished by first placing the computer representation of the amino acid sequence of a polypeptide with known structure

SUBSTITUTE SHEET (RULE 26)

above the amino acid sequence of the polypeptide of unknown structure. Amino acids in the sequences are then compared and groups of amino acids that are homologous (e.g., amino acid side chains that are similar in chemical nature - aliphatic, aromatic, polar, or charged) are grouped together. This method will detect conserved regions of the polypeptides and account for amino acid insertions or deletions.

[0230] Once the amino acid sequences of the polypeptides with known and unknown structures are aligned, the structures of the conserved amino acids in the computer representation of the polypeptide with known structure are transferred to the corresponding amino acids of the polypeptide whose structure is unknown. For example, a tyrosine in the amino acid sequence of known structure may be replaced by a phenylalanine, the corresponding homologous amino acid in the amino acid sequence of unknown structure.

[0231] The structures of amino acids located in non-conserved regions are to be assigned manually by either using standard peptide geometries or molecular simulation techniques, such as molecular dynamics. The final step in the process is accomplished by refining the entire structure using molecular dynamics and/or energ minimization. The homology modeling method is well known to those skilled in the at and has been practiced using different protein molecules. For example, the three dimensional structure of the polypeptide corresponding to the catalytic domain of a serine/threonine protein kinase, myosin light chain protein kinase, was homology modeled from the cAMP-dependent protein kinase catalytic subunit. (Knighton et al. (1992) Science 258:130-135.)

Structures Using Molecular Replacement

[0232] Molecular replacement is a method of applying the X-ray diffraction data of a polypeptide of known structure to the X-ray diffraction data of a polypeptide of unknown sequence. This method can be utilized to define the phases describing the X-ray diffraction data of a polypeptide of unknown structure when only the amplitudes are known. X-PLOR is a commonly utilized computer software package used for molecular replacement. Brünger (1992) Nature 355:472-475. AMORE is another program used for molecular replacement. Navaza (1994) Acta Crystallogr. A50:157-163. Preferably, the resulting structure does not exhibit a root-mean-square deviation of more than 3Å.

[0233] A goal of molecular replacement is to align the positions of atoms in the unit cell by matching electron diffraction data from two crystals. A program such as X-PLOR can involve four steps. A first step can be to determine the number of molecules in the unit cell and define the angles between them. A second step can involve rotating the diffraction data to define the orientation of the molecules in the unit cell. A third step can be to translate the electron density in three dimensions to correctly position the molecules in the unit cell. Once the amplitudes and phases of the X-ray diffraction data is determined, an R-factor can be calculated by comparing electron diffraction maps calculated experimentally from the reference data set and calculated from the new data set. An R-factor between 30-50% indicates that the orientations of the atoms in the unit cell are reasonably determined by this method. A fourth step in the process can be to decrease the R-factor to roughly 20% by refining the new electron density map using iterative refinement techniques described herein and known to those or ordinary skill in the art.

Structures Using NMR Data

[0234] Structural coordinates of a polypeptide or polypeptide complex derived from X-ray crystallographic techniques can be applied towards the elucidation of three dimensional structures of polypeptides from nuclear magnetic resonance (NMR) data. This method is used by those skilled in the art. (Wuthrich, (1986), John Wiley and Sons, New York:176-199; Pflugrath et al. (1986) J. Mol. Biol. 189:383-386; Kline et al. (1986) J. Mol. Biol. 189:377-382). While the secondary structure of a polypeptide is often readily determined by utilizing two-dimensional NMR data, the spatial connections between individual pieces of secondary structure are not as readily determinable. The coordinates defining a three-dimensional structure of a polypeptide derived from X-ray crystallographic techniques can guide the NMR spectroscopist to an understanding of these spatial interactions between secondary structural elements in a polypeptide of related structure.

[0235] The knowledge of spatial interactions between secondary structural elements can greatly simplify Nuclear Overhauser Effect (NOE) data from two-dimensional NMR experiments. Additionally, applying the crystallographic coordinates after the determination of secondary structure by NMR techniques only simplifies the assignment of NOEs relating to particular amino acids in the polypeptide sequence and does not greatly bias the NMR analysis of polypeptide structure. Conversely, using the crystallographic coordinates to simplify NOE data while determining secondary structure of the polypeptide would bias the NMR analysis of protein structure.

VIII. Structure-Based Design of Modulators of Kinase Function Utilizing Structural Coordinates

[0236] Structure-based modulator design and identification methods are powerful techniques that can involve searches of computer databases containing a wide variety of potential modulators and chemical functional groups. The computerized design and identification of modulators is useful as the computer databases contain more compounds than the chemical libraries, often by an order of magnitude. For reviews of structure-based drug design and identification (see Kuntz et al. (1994), Acc. Chem. Res. 27:117; Guida (1994) Current Opinion in Struc. Biol. 4: 777; Colman (1994) Current Opinion in Struc. Biol. 4: 868).

[0237] The three dimensional structure of a polypeptide defined by structural coordinates can be utilized by these design methods, for example, the structural coordinates of Table 1. In addition, the three dimensional structures of kinases determined by the homology, molecular replacement, and NMR techniques described herein can also be applied to modulator design and identification methods.

[0238] For identifying modulators, structural information for a native kinase, in particular, structural information for the active site of the kinase, can be used. However, it may be advantageous to utilize structural information from one or more co-crystals of the kinase with one or more binding compounds. It can also be advantageous if the binding compound has a structural core in common with test compounds.

Design by Searching Molecular Data Bases

[0239] One method of rational design searches for modulators by docking the computer representations of compounds from a database of molecules. Publicly available databases include, for example:

- a) ACD from Molecular Designs Limited
- b) NCI from National Cancer Institute
- c) CCDC from Cambridge Crystallographic Data Center
- d) CAST from Chemical Abstract Service
- e) Derwent from Derwent Information Limited
- f) Maybridge from Maybridge Chemical Company LTD
- g) Aldrich from Aldrich Chemical Company
- h) Directory of Natural Products from Chapman & Hall

[0240] One such data base (ACD distributed by Molecular Designs Limited Information Systems) contains compounds that are synthetically derived or are natural products.

SUBSTITUTE SHEET (RULE 26)

Methods available to those skilled in the art can convert a data set represented in two dimensions to one represented in three dimensions. These methods are enabled by such computer programs as CONCORD from Tripos Associates or DE-Converter from Molecular Simulations Limited.

- [0241] Multiple methods of structure-based modulator design are known to those in the art. (Kuntz et al., (1982), J. Mol. Biol. 162: 269; Kuntz et al., (1994), Acc. Chem. Res. 27: 117; Meng et al., (1992), J. Compt. Chem. 13: 505; Bohm, (1994), J. Comp. Aided Molec. Design 8: 623).
- [0242] A computer program widely utilized by those skilled in the art of rational modulator design is DOCK from the University of California in San Francisco. The general methods utilized by this computer program and programs like it are described in three applications below. More detailed information regarding some of these techniques can be found in the Accelerys User Guide, 1995. A typical computer program used for this purpose can comprise the following steps:
 - (a) remove the existing compound from the protein;
 - (b) dock the structure of another compound into the active-site using the computer program (such as DOCK) or by interactively moving the compound into the active-site;
 - (c) characterize the space between the compound and the active-site atoms;
 - (d) search libraries for molecular fragments which (i) can fit into the empty space between the compound and the active-site, and (ii) can be linked to the compound; and
 - (e) link the fragments found above to the compound and evaluate the new modified compound.
- [0243] Part (c) refers to characterizing the geometry and the complementary interactions formed between the atoms of the active site and the compounds. A favorable geometric fit is attained when a significant surface area is shared between the compound and active-site atoms without forming unfavorable steric interactions. One skilled in the art would note that the method can be performed by skipping parts (d) and (e) and screening a database of many compounds.
- [0244]. Structure-based design and identification of modulators of kinase function can be used in conjunction with assay screening. As large computer databases of compounds

(around 10,000 compounds) can be searched in a matter of hours, the computer-based method can narrow the compounds tested as potential modulators of kinase function in biochemical or cellular assays.

- [0245] The above descriptions of structure-based modulator design are not all encompassing and other methods are reported in the literature:
 - (1) CAVEAT: Bartlett et al.,(1989), in Chemical and Biological Problems in Molecular Recognition, Roberts, S.M.; Ley, S.V.; Campbell, M.M. eds.; Royal Society of Chemistry: Cambridge, ppl82-l96.
 - (2) FLOG: Miller et al., (1994), J. Comp. Aided Molec. Design 8:153.
 - (3) PRO Modulator: Clark et al., (1995), J. Comp. Aided Molec. Design 9:13.
 - (4) MCSS: Miranker and Karplus, (1991), Proteins: Structure, Function, and Genetics 11:29.
 - (5) AUTODOCK: Goodsell and Olson, (1990), Proteins: Structure, Function, and Genetics 8:195.
 - (6) GRID: Goodford, (1985), J. Med. Chem. 28:849.

Design by Modifying Compounds in Complex with a Kinase

- [0246] Another way of identifying compounds as potential modulators is to modify an existing modulator in the polypeptide active site. For example, the computer representation of modulators can be modified within the computer representation of a PIM-1 or other PIM kinase active site. Detailed instructions for this technique can be found in the Accelerys User Manual, 1995 in LUDI. The computer representation of the modulator is typically modified by the deletion of a chemical group or groups or by the addition of a chemical group or groups.
- [0247] Upon each modification to the compound, the atoms of the modified compound and active site can be shifted in conformation and the distance between the modulator and the active-site atoms may be scored along with any complementary interactions formed between the two molecules. Scoring can be complete when a favorable geometric fit and favorable complementary interactions are attained. Compounds that have favorable scores are potential modulators.

Design by Modifying the Structure of Compounds that Bind a Kinase

[0248] A third method of structure-based modulator design is to screen compounds designed by a modulator building or modulator searching computer program. Examples of these types of programs can be found in the Molecular Simulations Package, Catalyst. Descriptions for using this program are documented in the Molecular Simulations User Guide (1995). Other computer programs used in this application are ISIS/HOST, ISIS/BASE, ISIS/DRAW) from Molecular Designs Limited and UNITY from Tripos Associates.

[0249] These programs can be operated on the structure of a compound that has been removed from the active site of the three dimensional structure of a compound-kinase complex. Operating the program on such a compound is preferable since it is in a biologically active conformation.

[0250] A modulator construction computer program is a computer program that may be used to replace computer representations of chemical groups in a compound complexed with a kinase or other biomolecule with groups from a computer data base. A modulator searching computer program is a computer program that may be used to search computer representations of compounds from a computer data base that have similar to see dimensional structures and similar chemical groups as compound bound to a particular biomolecule.

- [0251] A typical program can operate by using the following general steps:
 - (a) map the compounds by chemical features such as by hydrogen bond donors or acceptors, hydrophobic/lipophilic sites, positively ionizable sites, or negatively ionizable sites;
 - (b) add geometric constraints to the mapped features; and
 - (c) search databases with the model generated in (b).
- [0252] Those skilled in the art also recognize that not all of the possible chemical features of the compound need be present in the model of (b). One can use any subset of the model to generate different models for data base searches.

Modulator Design Using Molecular Scaffolds

[0253] The present invention can also advantageously utilize methods for designing compounds, designated as molecular scaffolds, that can act broadly across families of molecules and for using the molecular scaffold to design ligands that target individual or multiple members of those families. In preferred embodiments, the molecules can be proteins and a set of chemical compounds can be assembled that have properties such that they are 1) chemically designed to act on certain protein families and/or 2) behave more like molecular scaffolds, meaning that they have chemical substructures that make them specific for binding to one or more proteins in a family of interest. Alternatively, molecular scaffolds can be designed that are preferentially active on an individual target molecule.

[0254] Useful chemical properties of molecular scaffolds can include one or more of the following characteristics, but are not limited thereto: an average molecular weight below about 350 daltons, or between from about 150 to about 350 daltons, or from about 150 to about 300 daltons; having a clogP below 3; a number of rotatable bonds of less than 4; a number of hydrogen bond donors and acceptors below 5 or below 4; a polar surface area of less than 50 Å²; binding at protein binding sites in an orientation so that chemical substituents from a combinatorial library that are attached to the scaffold can be projected into pockets in the protein binding site; and possessing chemically tractable structures at its substituent attachment points that can be modified, thereby enabling rapid library construction.

[0255] By "clog P" is meant the calculated log P of a compound, "P" referring to the partition coefficient between octanol and water.

[0256] The term "Molecular Polar Surface Area (PSA)" refers to the sum of surface contributions of polar atoms (usually oxygens, nitrogens and attached hydrogens) in a molecule. The polar surface area has been shown to correlate well with drug transport properties, such as intestinal absorption, or blood-brain barrier penetration.

[0257] Additional useful chemical properties of distinct compounds for inclusion in a combinatorial library include the ability to attach chemical moieties to the compound that will not interfere with binding of the compound to at least one protein of interest, and that will impart desirable properties to the library members, for example, causing the library members to be actively transported to cells and/or organs of interest, or the ability to attach

to a device such as a chromatography column (e.g., a streptavidin column through a molecule such as biotin) for uses such as tissue and proteomics profiling purposes.

[0258] A person of ordinary skill in the art will realize other properties that can be desirable for the scaffold or library members to have depending on the particular requirements of the use, and that compounds with these properties can also be sought and identified in like manner. Methods of selecting compounds for assay are known to those of ordinary skill in the art, for example, methods and compounds described in U.S. Patent No. 6,288,234, 6,090,912, 5,840,485, each of which is hereby incorporated by reference in its entirety, including all charts and drawings.

[0259] In various embodiments, the present invention provides methods of designing ligands that bind to a plurality of members of a molecular family, where the ligands contain a common molecular scaffold. Thus, a compound set can be assayed for binding to a plurality of members of a molecular family, e.g., a protein family. One or more compounds that bind to a plurality of family members can be identified as molecular scaffolds. When the orientation of the scaffold at the binding site of the target molecules has been determined and chemically tractable structures have been identified, a set of ligands can be synthesized starting with one or a few molecular scaffolds to arrive at a plurality of ligands, wherein each ligand binds to a separate target molecule of the molecular family with altered or changed binding affinity or binding specificity relative to the scaffold. Thus, a plurality of drug lead molecules can be designed to preferentially target individual members of a molecular family based on the same molecular scaffold, and act on them in a specific manner.

Binding Assays

[0260] The methods of the present invention can involve assays that are able to detect the binding of compounds to a target molecule at a signal of at least about three times the standard deviation of the background signal, or at least about four times the standard deviation of the background signal. The assays of the present invention can also include assaying compounds for low affinity binding to the target molecule. A large variety of assays indicative of binding are known for different target types and can be used for this invention. Compounds that act broadly across protein families are not likely to have a high affinity against individual targets, due to the broad nature of their binding. Thus, assays described herein allow for the identification of compounds that bind with low affinity, very

low affinity, and extremely low affinity. Therefore, potency (or binding affinity) is not the primary, nor even the most important, indicia of identification of a potentially useful binding compound. Rather, even those compounds that bind with low affinity, very low affinity, or extremely low affinity can be considered as molecular scaffolds that can continue to the next phase of the ligand design process.

[0261] By binding with "low affinity" is meant binding to the target molecule with a dissociation constant (k_d) of greater than 1 μM under standard conditions. By binding with "very low affinity" is meant binding with a k_d of above about 100 μM under standard conditions. By binding with "extremely low affinity" is meant binding at a k_d of above about 1 mM under standard conditions. By "moderate affinity" is meant binding with a k_d of from about 200 nM to about 1 μM under standard conditions. By "moderately high affinity" is meant binding at a k_d of from about 1 nM to about 200 nM. By binding at "high affinity" is meant binding at a k_d of below about 1 nM under standard conditions. For example, low affinity binding can occur because of a poorer fit into the binding site of the target molecule or because of a smaller number of non-covalent bonds, or weaker covalent bonds present to cause binding of the scaffold or ligand to the binding site of the target molecule relative to instances where higher affinity binding occurs. The standard conditions for binding are at pH 7.2 at 37°C for one hour. For example, 106 μl/w. Il can be used in HEPES 50 mM buffer at pH 7.2, NaCl 15 mM, ATP 2 μM, and bovine server albumin 1 ug/well, 37°C for one hour.

[0262] Binding compounds can also be characterized by their effect on the activity of the target molecule. Thus, a "low activity" compound has an inhibitory concentration (IC₅₀) or excitation concentration (EC₅₀) of greater than 1 μ M under standard conditions. By "very low activity" is meant an IC₅₀ or EC₅₀ of above 100 μ M under standard conditions. By "extremely low activity" is meant an IC₅₀ or EC₅₀ of above 1 mM under standard conditions. By "moderate activity" is meant an IC₅₀ or EC₅₀ of 200 nM to 1 μ M under standard conditions. By "moderately high activity" is meant an IC₅₀ or EC₅₀ of 1 nM to 200 nM. By "high activity" is meant an IC₅₀ or EC₅₀ of below 1 nM under standard conditions. The IC₅₀ (or EC₅₀) is defined as the concentration of compound at which 50% of the activity of the target molecule (e.g., enzyme or other protein) activity being measured is lost (or gained) relative to activity when no compound is present. Activity can be measured using methods known to those of ordinary skill in the art, e.g., by measuring any detectable

PCT/US2004/030360

product or signal produced by occurrence of an enzymatic reaction, or other activity by a protein being measured.

[0263] By "background signal" in reference to a binding assay is meant the signal that is recorded under standard conditions for the particular assay in the absence of a test compound, molecular scaffold, or ligand that binds to the target molecule. Persons of ordinary skill in the art will realize that accepted methods exist and are widely available for determining background signal.

[0264] By "standard deviation" is meant the square root of the variance. The variance is a measure of how spread out a distribution is. It is computed as the average squared deviation of each number from its mean. For example, for the numbers 1, 2, and 3, the mean is 2 and the variance is:

$$\sigma^2 = \frac{(1-2)^2 + (2-2)^2 + (3-2)^2}{3} = 0.667$$

[0265] To design or discover scaffolds that act broadly across protein families, proteins of interest can be assayed against a compound collection or set. The assays can preferably be enzymatic or binding assays. In some embodiments it may be desirable to enhance the solubility of the compounds being screened and then analyze all compounds that show activity in the assay, including those that bind with low affinity or produce a signal with greater than about three times the standard deviation of the background signal. The assays can be any suitable assay such as, for example, binding assays that measure the binding affinity between two binding partners. Various types of screening assays that can be useful in the practice of the present invention are known in the art, such as those described in U.S. Patent Nos. 5,763,198, 5,747,276, 5,877,007, 6,243,980, 6,294,330, and 6,294,330, each of which is hereby incorporated by reference in its entirety, including all charts and drawings.

[0266] In various embodiments of the assays at least one compound, at least about 5%, at least about 10%, at least about 15%, at least about 20%, or at least about 25% of the compounds can bind with low affinity. In general, up to about 20% of the compounds can show activity in the screening assay and these compounds can then be analyzed directly with high-throughput co-crystallography, computational analysis to group the compounds into classes with common structural properties (e.g., structural core and/or shape and polarity characteristics), and the identification of common chemical structures between compounds that show activity.

[0267] The person of ordinary skill in the art will realize that decisions can be based on criteria that are appropriate for the needs of the particular situation, and that the decisions can be made by computer software programs. Classes can be created containing almost any number of scaffolds, and the criteria selected can be based on increasingly exacting criteria until an arbitrary number of scaffolds is arrived at for each class that is deemed to be advantageous.

Surface Plasmon Resonance

[0268] Binding parameters can be measured using surface plasmon resonance, for example, with a BIAcore® chip (Biacore, Japan) coated with immobilized binding components. Surface plasmon resonance is used to characterize the microscopic association and dissociation constants of reaction between an sFv or other ligand directed against target molecules. Such methods are generally described in the following references which are incorporated herein by reference. Vely F. et al., (2000) BIAcore® analysis to test phosphopeptide-SH2 domain interactions, Methods in Molecular Biology. 121:313-21; Liparoto et al., (1999) Biosensor analysis of the interleukin-2 receptor complex. Journal of Molecular Recognition. 12:316-21; Lipschultz et al., (2000) Experimental design for analysis of complex kinetics using surface plasmon resonance, Methods. 20(3):310-8; Malmqvist., (1999) BIACORE: an affinity biosensor system for characterization of biomolecular interactions, Biochemical Society Transactions 27:335-40; Alfthan, (1998) Surface plasmon resonance biosensors as a tool in antibody engineering, Biosensors & Bioelectronics. 13:653-63; Fivash et al., (1998) BIAcore for macromolecular interaction. Current Opinion in Biotechnology. 9:97-101; Price et al.; (1998) Summary report on the ISOBM TD-4 Workshop: analysis of 56 monoclonal antibodies against the MUC1 mucin. Tumour Biology 19 Suppl 1:1-20; Malmqvist et al, (1997) Biomolecular interaction analysis: affinity biosensor technologies for functional analysis of proteins, Current Opinion in Chemical Biology. 1:378-83; O'Shannessy et al., (1996) Interpretation of deviations from pseudo-first-order kinetic behavior in the characterization of ligand binding by biosensor technology, Analytical Biochemistry. 236:275-83; Malmborg et al., (1995) BIAcore as a tool in antibody engineering, Journal of Immunological Methods. 183:7-13: Van Regenmortel, (1994) Use of biosensors to characterize recombinant proteins. Developments in Biological Standardization. 83:143-51; and O'Shannessy, (1994) Determination of kinetic rate and equilibrium binding constants for macromolecular

interactions: a critique of the surface plasmon resonance literature, *Current Opinions in Biotechnology*. 5:65-71.

[0269] BIAcore® uses the optical properties of surface plasmon resonance (SPR) to detect alterations in protein concentration bound to a dextran matrix lying on the surface of a gold/glass sensor chip interface, a dextran biosensor matrix. In brief, proteins are covalently bound to the dextran matrix at a known concentration and a ligand for the protein is injected through the dextran matrix. Near infrared light, directed onto the opposite side of the sensor chip surface is reflected and also induces an evanescent wave in the gold film, which in turn, causes an intensity dip in the reflected light at a particular angle known as the resonance angle. If the refractive index of the sensor chip surface is altered (e.g., by ligand binding to the bound protein) a shift occurs in the resonance angle. This angle shift can be measured and is expressed as resonance units (RUs) such that 1000 RUs is equivalent to a change in surface protein concentration of 1 ng/mm². These changes are displayed with respect to time along the y-axis of a sensorgram, which depicts the association and dissociation of any biological reaction.

High Throughput Screening (HTS) Assays

[0270] HTS typically uses automated assays to search through large numbers of compounds for a desired activity. Typically HTS assays are used to find new drugs by screening for chemicals that act on a particular enzyme or molecule. For example, if a chemical inactivates an enzyme it might prove to be effective in preventing a process in a cell which causes a disease. High throughput methods enable researchers to assay thousands of different chemicals against each target molecule very quickly using robotic handling systems and automated analysis of results.

[0271] As used herein, "high throughput screening" or "HTS" refers to the rapid in vitro screening of large numbers of compounds (libraries); generally tens to hundreds of thousands of compounds, using robotic screening assays. Ultra high-throughput Screening (uHTS) generally refers to the high-throughput screening accelerated to greater than 100,000 tests per day.

[0272] To achieve high-throughput screening, it is advantageous to house samples on a multicontainer carrier or platform. A multicontainer carrier facilitates measuring reactions of a plurality of candidate compounds simultaneously. Multi-well microplates may be used

as the carrier. Such multi-well microplates, and methods for their use in numerous assays, are both known in the art and commercially available.

[0273] Screening assays may include controls for purposes of calibration and confirmation of proper manipulation of the components of the assay. Blank wells that contain all of the reactants but no member of the chemical library are usually included. As another example, a known inhibitor (or activator) of an enzyme for which modulators are sought, can be incubated with one sample of the assay, and the resulting decrease (or increase) in the enzyme activity used as a comparator or control. It will be appreciated that modulators can also be combined with the enzyme activators or inhibitors to find modulators which inhibit the enzyme activation or repression that is otherwise caused by the presence of the known the enzyme modulator. Similarly, when ligands to a sphingolipid target are sought, known ligands of the target can be present in control/calibration assay wells.

Measuring Enzymatic and Binding Reactions During Screening Assays

[0274] Techniques for measuring the progression of enzymatic and binding reactions, e.g., in multicontainer carriers, are known in the art and include, but are not limited to, the following.

[0275] Spectrophotometric and spectrofluorometric assays are well known in the art. Examples of such assays include the use of colorimetric assays for the detection of peroxides, as disclosed in Example 1(b) and Gordon, A. J. and Ford, R. A., (1972) The Chemist's Companion: A Handbook Of Practical Data, Techniques, And References, John Wiley and Sons, N.Y., Page 437.

[0276] Fluorescence spectrometry may be used to monitor the generation of reaction products. Fluorescence methodology is generally more sensitive than the absorption methodology. The use of fluorescent probes is well known to those skilled in the art. For reviews, see Bashford et al., (1987) Spectrophotometry and Spectrofluorometry: A Practical Approach, pp. 91-114, IRL Press Ltd.; and Bell, (1981) Spectroscopy In Biochemistry, Vol. I, pp. 155-194, CRC Press.

[0277] In spectrofluorometric methods, enzymes are exposed to substrates that change their intrinsic fluorescence when processed by the target enzyme. Typically, the substrate is nonfluorescent and is converted to a fluorophore through one or more reactions. As a non-

limiting example, SMase activity can be detected using the Amplex[®] Red reagent (Molecular Probes, Eugene, OR). In order to measure sphingomyelinase activity using Amplex[®] Red, the following reactions occur. First, SMase hydrolyzes sphingomyelin to yield ceramide and phosphorylcholine. Second, alkaline phosphatase hydrolyzes phosphorylcholine to yield choline. Third, choline is oxidized by choline oxidase to betaine. Finally, H₂O₂, in the presence of horseradish peroxidase, reacts with Amplex[®] Red to produce the fluorescent product, Resorufin, and the signal therefrom is detected using spectrofluorometry.

[0278] Fluorescence polarization (FP) is based on a decrease in the speed of molecular rotation of a fluorophore that occurs upon binding to a larger molecule, such as a receptor protein, allowing for polarized fluorescent emission by the bound ligand. FP is empirically determined by measuring the vertical and horizontal components of fluorophore emission following excitation with plane polarized light. Polarized emission is increased when the molecular rotation of a fluorophore is reduced. A fluorophore produces a larger polarized signal when it is bound to a larger molecule (i.e. a receptor), slowing molecular rotation of the fluorophore. The magnitude of the polarized signal relates quantitatively to the extent of fluorescent ligand binding. Accordingly, polarization of the "bound" signal depends on maintenance of high affinity binding.

[0279] FP is a homogeneous technology and reactions are very rapid, taking seconds to minutes to reach equilibrium. The reagents are stable, and large batches may be prepared, resulting in high reproducibility. Because of these properties, FP has proven to be highly automatable, often performed with a single incubation with a single, premixed, tracer-receptor reagent. For a review, see Owickiet al., (1997), Application of Fluorescence Polarization Assays in High-Throughput Screening, Genetic Engineering News, 17:27.

[0280] FP is particularly desirable since its readout is independent of the emission intensity (Checovich, W. J., et al., (1995) *Nature* 375:254-256; Dandliker, W. B., et al., (1981) *Methods in Enzymology* 74:3-28) and is thus insensitive to the presence of colored compounds that quench fluorescence emission. FP and FRET (see below) are well-suited for identifying compounds that block interactions between sphingolipid receptors and their ligands. See, for example, Parker et al., (2000) Development of high throughput screening assays using fluorescence polarization: nuclear receptor-ligand-binding and kinase/phosphatase assays, *J Biomol Screen* 5:77-88.

68

[0281] Fluorophores derived from sphingolipids that may be used in FP assays are commercially available. For example, Molecular Probes (Eugene, OR) currently sells sphingomyelin and one ceramide fluorophores. These are, respectively, N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene- 3-pentanoyl)sphingosyl phosphocholine (BODIPY® FL C5-sphingomyelin); N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene- 3-dodecanoyl)sphingosyl phosphocholine (BODIPY® FL C12-sphingomyelin); and N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene- 3-pentanoyl)sphingosine (BODIPY® FL C5-ceramide). U.S. Patent No. 4,150,949, (Immunoassay for gentamicin), discloses fluorescein-labelled gentamicins, including fluoresceinthiocarbanyl gentamicin. Additional fluorophores may be prepared using methods well known to the skilled artisan.

[0282] Exemplary normal-and-polarized fluorescence readers include the POLARION® fluorescence polarization system (Tecan AG, Hombrechtikon, Switzerland). General multiwell plate readers for other assays are available, such as the VERSAMAX® reader and the SPECTRAMAX® multiwell plate spectrophotometer (both from Molecular Devices).

[0283] Fluorescence resonance energy transfer (FRET) is another useful assay for detecting interaction and has been described. See, e.g., Heim et al., (1996) Curr. Biol. 6:178-182; Mitra et al., (1996) Gene 173:13-17; and Selvin et al., (1995) Meth. Enzymol. 246:300-345. FRET detects the transfer of energy between two fluorescent substances in close proximity, having known excitation and emission wavelengths. As an example, a protein can be expressed as a fusion protein with green fluorescent protein (GFP). When two fluorescent proteins are in proximity, such as when a protein specifically interacts with a target molecule, the resonance energy can be transferred from one excited molecule to the other. As a result, the emission spectrum of the sample shifts, which can be measured by a fluorometer, such as a fMAX multiwell fluorometer (Molecular Devices, Sunnyvale Calif.).

[0284] Scintillation proximity assay (SPA) is a particularly useful assay for detecting an interaction with the target molecule. SPA is widely used in the pharmaceutical industry and has been described (Hanselman et al., (1997) *J. Lipid Res.* 38:2365-2373; Kahl et al., (1996) *Anal. Biochem.* 243:282-283; Undenfriend et al., (1987) *Anal. Biochem.* 161:494-500). See also U.S. Patent Nos. 4,626,513 and 4,568,649, and European Patent No. 0,154,734. One commercially available system uses FLASHPLATE® scintillant-coated plates (NEN Life Science Products, Boston, MA).

[0285] The target molecule can be bound to the scintillator plates by a variety of well known means. Scintillant plates are available that are derivatized to bind to fusion proteins such as GST, His6 or Flag fusion proteins. Where the target molecule is a protein complex or a multimer, one protein or subunit can be attached to the plate first, then the other components of the complex added later under binding conditions, resulting in a bound complex.

[0286] In a typical SPA assay, the gene products in the expression pool will have been radiolabeled and added to the wells, and allowed to interact with the solid phase, which is the immobilized target molecule and scintillant coating in the wells. The assay can be measured immediately or allowed to reach equilibrium. Either way, when a radiolabel becomes sufficiently close to the scintillant coating, it produces a signal detectable by a device such as a TOPCOUNT NXT® microplate scintillation counter (Packard BioScience Co., Meriden Conn.). If a radiolabeled expression product binds to the target molecule, the radiolabel remains in proximity to the scintillant long enough to produce a detectable signal.

[02] 7] In contrast, the labeled proteins that do not bind to the target molecule, or bind only briefly, will not remain near the scintillant long enough to produce a signal above background. Any time spent near the scintillant caused by random Brownian motion will also not result in a significant amount of signal. Likewise, residual unincorporated radiolabel tised during the expression step may be present, but will not generate significant signal because it will be in solution rather than interacting with the target molecule. These non-binding interactions will therefore cause a certain level of background signal that can be mathematically removed. If too many signals are obtained, salt or other modifiers can be added directly to the assay plates until the desired specificity is obtained (Nichols et al., (1998) Anal. Biochem. 257:112-119).

Assay Compounds and Molecular Scaffolds

[0288] Preferred characteristics of a scaffold include being of low molecular weight (e.g., less than 350 Da, or from about 100 to about 350 daltons, or from about 150 to about 300 daltons). Preferably clog P of a scaffold is from -1 to 8, more preferably less than 6, 5, or 4, most preferably less than 3. In particular embodiments the clogP is in a range -1 to an upper limit of 2, 3, 4, 5, 6, or 8; or is in a range of 0 to an upper limit of 2,3, 4, 5, 6, or 8. Preferably the number of rotatable bonds is less than 5, more preferably less than 4. Preferably the number of hydrogen bond donors and acceptors is below 6, more preferably

below 5. An additional criterion that can be useful is a polar surface area of less than 5. Guidance that can be useful in identifying criteria for a particular application can be found in Lipinski et al., (1997) *Advanced Drug Delivery Reviews* 23 3-25, which is hereby incorporated by reference in its entirety.

[0289] A scaffold may preferably bind to a given protein binding site in a configuration that causes substituent moieties of the scaffold to be situated in pockets of the protein binding site. Also, possessing chemically tractable groups that can be chemically modified, particularly through synthetic reactions, to easily create a combinatorial library can be a preferred characteristic of the scaffold. Also preferred can be having positions on the scaffold to which other moieties can be attached, which do not interfere with binding of the scaffold to the protein(s) of interest but do cause the scaffold to achieve a desirable property, for example, active transport of the scaffold to cells and/or organs, enabling the scaffold to be attached to a chromatographic column to facilitate analysis, or another desirable property. A molecular scaffold can bind to a target molecule with any affinity, such as binding with an affinity measurable as about three times the standard deviation of the background signal, or at high affinity, moderate affinity, low affinity, very low affinity, or extremely low affinity.

[0290] Thus, the above criteria can be utilized to select many compounds for testing that have the desired attributes. Many compounds having the criteria described are available in the commercial market, and may be selected for assaying depending on the specific needs to which the methods are to be applied.

[0291] A "compound library" or "library" is a collection of different compounds having different chemical structures. A compound library is screenable, that is, the compound library members therein may be subject to screening assays. In preferred embodiments, the library members can have a molecular weight of from about 100 to about 350 daltons, or from about 150 to about 350 daltons. Examples of libraries are provided above.

[0292] Libraries of the present invention can contain at least one compound than binds to the target molecule at low affinity. Libraries of candidate compounds can be assayed by many different assays, such as those described above, e.g., a fluorescence polarization assay. Libraries may consist of chemically synthesized peptides, peptidomimetics, or arrays of combinatorial chemicals that are large or small, focused or nonfocused. By "focused" it

is meant that the collection of compounds is prepared using the structure of previously characterized compounds and/or pharmacophores.

[0293] Compound libraries may contain molecules isolated from natural sources, artificially synthesized molecules, or molecules synthesized, isolated, or otherwise prepared in such a manner so as to have one or more moieties variable, e.g., moieties that are independently isolated or randomly synthesized. Types of molecules in compound libraries include but are not limited to organic compounds, polypeptides and nucleic acids as those terms are used herein, and derivatives, conjugates and mixtures thereof.

[0294] Compound libraries of the invention may be purchased on the commercial market or prepared or obtained by any means including, but not limited to, combinatorial chemistry techniques, fermentation methods, plant and cellular extraction procedures and the like (see, e.g., Cwirla et al., (1990) *Biochemistry*, 87, 6378-6382; Houghten et al., (1991) *Nature*, 354, 84-86; Lam et al., (1991) *Nature*, 354, 82-84; Brenner et al., (1992) *Proc. Natl. Acad. Sci. USA*, 89, 5381-5383; R. A. Houghten, (1993) *Trends Genet.*, 9, 235-239; E. R. Felder, (1994) *Chimia*, 48, 512-541; Gallop et al., (1994) *J. Med. Chem.*, 37, 1233-1251; Gordon et al., (1994) *J. Med. Chem.*, 37, 1385-1401; Carell et al., (1995) *Chem. Biol.*, 3, 171-183; Madden et al., *Perspectives in Drug Discovery and Design* 2, 269-282; Lebl et al., (1995) *Biopolymers*, 37 177-198); small molecules assembled around a shared molecular structure; collections of chemicals that have been assembled by various commercial and noncommercial groups, natural products; extracts of marine organisms, fungi, bacteria, and plants.

[0295] Preferred libraries can be prepared in a homogenous reaction mixture, and separation of unreacted reagents from members of the library is not required prior to screening. Although many combinatorial chemistry approaches are based on solid state chemistry, liquid phase combinatorial chemistry is capable of generating libraries (Sun CM., (1999) Recent advances in liquid-phase combinatorial chemistry, Combinatorial Chemistry & High Throughput Screening. 2:299-318).

[0296] Libraries of a variety of types of molecules are prepared in order to obtain members therefrom having one or more preselected attributes that can be prepared by a variety of techniques, including but not limited to parallel array synthesis (Houghton, (2000) Annu Rev Pharmacol Toxicol 40:273-82, Parallel array and mixture-based synthetic combinatorial chemistry; solution-phase combinatorial chemistry (Merritt, (1998) Comb

Chem High Throughput Screen 1(2):57-72, Solution phase combinatorial chemistry, Coe et al., (1998-99) Mol Divers; 4(1):31-8, Solution-phase combinatorial chemistry, Sun, (1999) Comb Chem High Throughput Screen 2(6):299-318, Recent advances in liquid-phase combinatorial chemistry); synthesis on soluble polymer (Gravert et al., (1997) Curr Opin Chem Biol 1(1):107-13, Synthesis on soluble polymers: new reactions and the construction of small molecules); and the like. See, e.g., Dolle et al., (1999) J Comb Chem 1(4):235-82, Comprehensive survey of combinatorial library synthesis: 1998. Freidinger RM., (1999) Nonpeptidic ligands for peptide and protein receptors, Current Opinion in Chemical Biology; and Kundu et al., Prog Drug Res;53:89-156, Combinatorial chemistry: polymer supported synthesis of peptide and non-peptide libraries). Compounds may be clinically tagged for ease of identification (Chabala, (1995) Curr Opin Biotechnol 6(6):633-9, Solid-phase combinatorial chemistry and novel tagging methods for identifying leads).

[0297] The combinatorial synthesis of carbohydrates and libraries containing oligosaccharides have been described (Schweizer et al., (1999) Curr Opin Chem Biol 3(3):291-7, Combinatorial synthesis of carbohydrates). The synthesis of natural-product based combound libraries has been described (Wessjohann, (2000) Curr Opin Chem Biol 4(3):303-9, Synthesis of natural-product based compound libraries).

[0298] Libraries of nucleic acids are prepared by various techniques, including by way of non-limiting example the ones described herein, for the isolation of aptamers. Libraries that include oligonucleotides and polyaminooligonucleotides (Markiewicz et al., (2000) Synthetic oligonucleotide combinatorial libraries and their applications, Farmaco. 55:174-7) displayed on streptavidin magnetic beads are known. Nucleic acid libraries are known that can be coupled to parallel sampling and be deconvoluted without complex procedures such as automated mass spectrometry (Enjalbal C. Martinez J. Aubagnac JL, (2000) Mass spectrometry in combinatorial chemistry, Mass Spectrometry Reviews. 19:139-61) and parallel tagging. (Perrin DM., Nucleic acids for recognition and catalysis: landmarks, limitations, and looking to the future, Combinatorial Chemistry & High Throughput Screening 3:243-69).

[0299] Peptidomimetics are identified using combinatorial chemistry and solid phase synthesis (Kim HO. Kahn M., (2000) A merger of rational drug design and combinatorial chemistry: development and application of peptide secondary structure mimetics, Combinatorial Chemistry & High Throughput Screening 3:167-83; al-Obeidi, (1998) *Mol*

Biotechnol 9(3):205-23, Peptide and peptidomimetic libraries. Molecular diversity and drug design). The synthesis may be entirely random or based in part on a known polypeptide.

[0300] Polypeptide libraries can be prepared according to various techniques. In brief, phage display techniques can be used to produce polypeptide ligands (Gram H., (1999) Phage display in proteolysis and signal transduction, Combinatorial Chemistry & High Throughput Screening. 2:19-28) that may be used as the basis for synthesis of peptidomimetics. Polypeptides, constrained peptides, proteins, protein domains, antibodies, single chain antibody fragments, antibody fragments, and antibody combining regions are displayed on filamentous phage for selection.

[0301] Large libraries of individual variants of human single chain Fv antibodies have been produced. See, e.g., Siegel RW. Allen B. Pavlik P. Marks JD. Bradbury A., (2000) Mass spectral analysis of a protein complex using single-chain antibodies selected on a peptide target: applications to functional genomics, Journal of Molecular Biology 302:285-93; Poul MA. Becerril B. Nielsen UB. Morisson P. Marks JD., (2000) Selection of tumorspecific internalizing human antibodies from phage libraries. Source Journal of Molecular Biology. 301:1149-61; Amersdorfer P. Marks JD., (2001) Phage libraries for generation of anti-botulinum scFv antibodies, Methods in Molecular Biology. 145:219-40; Hughes-Jones NC. Bye JM. Gorick BD. Marks JD. Ouwehand WH., (1999) Synthesis of Rh Fv phageantibodies using VH and VL germline genes, British Journal of Haematology. 105:811-6; McCall AM. Amoroso AR. Sautes C. Marks JD. Weiner LM., (1998) Characterization of anti-mouse Fc gamma RII single-chain Fv fragments derived from human phage display libraries, Immunotechnology. 4:71-87; Sheets MD. Amersdorfer P. Finnern R. Sargent P. Lindquist E. Schier R. Hemingsen G. Wong C. Gerhart JC. Marks JD. Lindquist E., (1998) Efficient construction of a large nonimmune phage antibody library: the production of highaffinity human single-chain antibodies to protein antigens (published erratum appears in Proc Natl Acad Sci USA 1999 96:795), Proc Natl Acad Sci USA 95:6157-62).

[0302] Focused or smart chemical and pharmacophore libraries can be designed with the help of sophisticated strategies involving computational chemistry (e.g., Kundu B. Khare SK. Rastogi SK., (1999) Combinatorial chemistry: polymer supported synthesis of peptide and non-peptide libraries, *Progress in Drug Research* 53:89-156) and the use of structure-based ligands using database searching and docking, de novo drug design and estimation of ligand binding affinities (Joseph-McCarthy D., (1999) Computational approaches to

74

structure-based ligand design, *Pharmacology & Therapeutics* 84:179-91; Kirkpatrick DL. Watson S. Ulhaq S., (1999) Structure-based drug design: combinatorial chemistry and molecular modeling, *Combinatorial Chemistry & High Throughput Screening*. 2:211-21; Eliseev AV. Lehn JM., (1999) Dynamic combinatorial chemistry: evolutionary formation and screening of molecular libraries, *Current Topics in Microbiology & Immunology* 243:159-72; Bolger et al., (1991) *Methods Enz.* 203:21-45; Martin, (1991) *Methods Enz.* 203:587-613; Neidle et al., (1991) *Methods Enz.* 203:433-458; U.S. Patent 6,178,384).

Crystallography

[0303] After binding compounds have been determined, the orientation of compound bound to target is determined. Preferably this determination involves crystallography on cocrystals of molecular scaffold compounds with target. Most protein crystallographic platforms can preferably be designed to analyze up to about 500 co-complexes of compounds, ligands, or molecular scaffolds bound to protein targets due to the physical parameters of the instruments and convenience of operation. If the number of scaffolds that have binding activity exceeds a number convenient for the application of crystallography methods, the scaffolds can be placed into groups based on having at least one common chemical structure or other desirable characteristics, and representative compounds can be selected from one or more of the classes. Classes can be made with increasingly exacting criteria until a desired number of classes (e.g., 500) is obtained. The classes can be based on chemical structure similarities between molecular scaffolds in the class, e.g., all possess a pyrrole ring, benzene ring, or other chemical feature. Likewise, classes can be based on shape characteristics, e.g., space-filling characteristics.

[0304] The co-crystallography analysis can be performed by co-complexing each scaffold with its target at concentrations of the scaffold that showed activity in the screening assay. This co-complexing can be accomplished with the use of low percentage organic solvents with the target molecule and then concentrating the target with each of the scaffolds. In preferred embodiments these solvents are less than 5% organic solvent such as dimethyl sulfoxide (DMSO), ethanol, methanol, or ethylene glycol in water or another aqueous solvent. Each scaffold complexed to the target molecule can then be screened with a suitable number of crystallization screening conditions at both 4 and 20 degrees. In preferred embodiments, about 96 crystallization screening conditions can be performed in order to obtain sufficient information about the co-complexation and crystallization conditions, and the orientation of the scaffold at the binding site of the target molecule.

Crystal structures can then be analyzed to determine how the bound scaffold is oriented physically within the binding site or within one or more binding pockets of the molecular family member.

[0305] It is desirable to determine the atomic coordinates of the compounds bound to the target proteins in order to determine which is a most suitable scaffold for the protein family. X-ray crystallographic analysis is therefore most preferable for determining the atomic coordinates. Those compounds selected can be further tested with the application of medicinal chemistry. Compounds can be selected for medicinal chemistry testing based on their binding position in the target molecule. For example, when the compound binds at a binding site, the compound's binding position in the binding site of the target molecule can be considered with respect to the chemistry that can be performed on chemically tractable structures or sub-structures of the compound, and how such modifications on the compound might interact with structures or sub-structures on the binding site of the target. Thus, one can explore the binding site of the target and the chemistry of the scaffold in order to make decisions on how to modify the scaffold to arrive at a ligand with higher potency and/or selectivity. This process allows for more direct design of ligands, by utilizing structural and chemical information obtained directly from the co-complex, thereby enabling one to more efficiently and quickly design lead compounds that are likely to lead to beneficial drug products. In various embodiments it may be desirable to perform co-crystallography on all scaffolds that bind, or only those that bind with a particular affinity, for example, only those that bind with high affinity, moderate affinity, low affinity, very low affinity, or extremely low affinity. It may also be advantageous to perform co-crystallography on a selection of scaffolds that bind with any combination of affinities.

[0306] Standard X-ray protein diffraction studies such as by using a Rigaku RU-200[®] (Rigaku, Tokyo, Japan) with an X-ray imaging plate detector or a synchrotron beam-line can be performed on co-crystals and the diffraction data measured on a standard X-ray detector, such as a CCD detector or an X-ray imaging plate detector.

[0307] Performing X-ray crystallography on about 200 co-crystals should generally lead to about 50 co-crystals structures, which should provide about 10 scaffolds for validation in chemistry, which should finally result in about 5 selective leads for target molecules.

Virtual Assays
[0308] Commercially available software that generates three-dimensional graphical representations of the complexed target and compound from a set of coordinates provided can be used to illustrate and study how a compound is oriented when bound to a target. (e.g., OUANTA®, Accelerys, San Diego, CA). Thus, the existence of binding pockets at the binding site of the targets can be particularly useful in the present invention. These binding pockets are revealed by the crystallographic structure determination and show the precise chemical interactions involved in binding the compound to the binding site of the target. The person of ordinary skill will realize that the illustrations can also be used to decide where chemical groups might be added, substituted, modified, or deleted from the scaffold to enhance binding or another desirable effect, by considering where unoccupied space is located in the complex and which chemical substructures might have suitable size and/or charge characteristics to fill it. The person of ordinary skill will also realize that regions within the binding site can be flexible and its properties can change as a result of scaffold binding, and that chemical groups can be specifically targeted to those regions to achieve a desired effect. Specific locations on the molecular scaffold can be considered with reference to where a suitable chemical substructure can be attached and in which conformation, and which site has the most advantageous chemistry available.

An understanding of the forces that bind the compounds to the target proteins reveals which compounds can most advantageously be used as scaffolds, and which properties can most effectively be manipulated in the design of ligands. The person of ordinary skill will realize that steric, ionic, hydrogen bond, and other forces can be considered for their contribution to the maintenance or enhancement of the target-compound complex. Additional data can be obtained with automated computational methods, such as docking and/or Free Energy Perturbations (FEP), to account for other energetic effects such as desolvation penalties. The compounds selected can be used to generate information about the chemical interactions with the target or for elucidating chemical modifications that can enhance selectivity of binding of the compound.

[0310] Computer models, such as homology models (i.e., based on a known, experimentally derived structure) can be constructed using data from the co-crystal structures. When the target molecule is a protein or enzyme, preferred co-crystal structures for making homology models contain high sequence identity in the binding site of the

protein sequence being modeled, and the proteins will preferentially also be within the same class and/or fold family. Knowledge of conserved residues in active sites of a protein class can be used to select homology models that accurately represent the binding site.

Homology models can also be used to map structural information from a surrogate protein where an apo or co-crystal structure exists to the target protein.

[0311] Virtual screening methods, such as docking, can also be used to predict the binding configuration and affinity of scaffolds, compounds, and/or combinatorial library members to homology models. Using this data, and carrying out "virtual experiments" using computer software can save substantial resources and allow the person of ordinary skill to make decisions about which compounds can be suitable scaffolds or ligands, without having to actually synthesize the ligand and perform co-crystallization. Decisions thus can be made about which compounds merit actual synthesis and co-crystallization. An understanding of such chemical interactions aids in the discovery and design of drugs that interact more advantageously with target proteins and/or are more selective for one protein family member over others. Thus, applying these principles, compounds with superior properties can be discovered.

[0312] Additives that producte co-crystallization can of course be included in the target molecule formulation in order to enhance the formation of co-crystals. In the case of proteins or enzymes, the scaffold to be tested can be added to the protein formulation, which is preferably present at a concentration of approximately 1 mg/ml. The formulation can also contain between 0%-10% (v/v) organic solvent, e.g. DMSO, methanol, ethanol, propane diol, or 1,3 dimethyl propane diol (MPD) or some combination of those organic solvents. Compounds are preferably solubilized in the organic solvent at a concentration of about 10 mM and added to the protein sample at a concentration of about 100 mM. The protein-compound complex is then concentrated to a final concentration of protein of from about 5 to about 20 mg/ml. The complexation and concentration steps can conveniently be performed using a 96-well formatted concentration apparatus (e.g., Amicon Inc., Piscataway, NJ). Buffers and other reagents present in the formulation being crystallized can contain other components that promote crystallization or are compatible with crystallization conditions, such as DTT, propane diol, glycerol.

[0313] The crystallization experiment can be set-up by placing small aliquots of the concentrated protein-compound complex (1 μ l) in a 96 well format and sampling under 96

crystallization conditions. (Other screening formats can also be used, e.g., plates with greater than 96 wells.) Crystals can typically be obtained using standard crystallization protocols that can involve the 96 well crystallization plate being placed at different temperatures. Co-crystallization varying factors other than temperature can also be considered for each protein-compound complex if desirable. For example, atmospheric pressure, the presence or absence of light or oxygen, a change in gravity, and many other variables can all be tested. The person of ordinary skill in the art will realize other variables that can advantageously be varied and considered.

Ligand Design and Preparation

[0314] The design and preparation of ligands can be performed with or without structural and/or co-crystallization data by considering the chemical structures in common between the active scaffolds of a set. In this process structure-activity hypotheses can be formed and those chemical structures found to be present in a substantial number of the scaffolds, including those that bind with low affinity, can be presumed to have some effect on the binding of the scaffold. This binding can be presumed to induce a desired biochemical effect when it occurs in a biological system (e.g., a treated mammal). New or modified scaffolds or combinatorial libraries derived from scaffolds can be tested to disprove the maximum number of binding and/or structure-activity hypotheses. The remaining hypotheses can then be used to design ligands that achieve a desired binding and biochemical effect.

[0315] But in many cases it will be preferred to have co-crystallography data for consideration of how to modify the scaffold to achieve the desired binding effect (e.g., binding at higher affinity or with higher selectivity). Using the case of proteins and enzymes, co-crystallography data shows the binding pocket of the protein with the molecular scaffold bound to the binding site, and it will be apparent that a modification can be made to a chemically tractable group on the scaffold. For example, a small volume of space at a protein binding site or pocket might be filled by modifying the scaffold to include a small chemical group that fills the volume. Filling the void volume can be expected to result in a greater binding affinity, or the loss of undesirable binding to another member of the protein family. Similarly, the co-crystallography data may show that deletion of a chemical group on the scaffold may decrease a hindrance to binding and result in greater binding affinity or specificity.

79

[0316] It can be desirable to take advantage of the presence of a charged chemical group located at the binding site or pocket of the protein. For example, a positively charged group can be complemented with a negatively charged group introduced on the molecular scaffold. This can be expected to increase binding affinity or binding specificity, thereby resulting in a more desirable ligand. In many cases, regions of protein binding sites or pockets are known to vary from one family member to another based on the amino acid differences in those regions. Chemical additions in such regions can result in the creation or elimination of certain interactions (e.g., hydrophobic, electrostatic, or entropic) that allow a compound to be more specific for one protein target over another or to bind with greater affinity, thereby enabling one to synthesize a compound with greater selectivity or affinity for a particular family member. Additionally, certain regions can contain amino acids that are known to be more flexible than others. This often occurs in amino acids contained in loops connecting elements of the secondary structure of the protein, such as alpha helices or beta strands. Additions of chemical moieties can also be directed to these flexible regions in order to increase the likelihood of a specific interaction occurring between the protein target of interest and the compound. Virtual screening methods can also be conducted in silico to assess the effect of chemical additions, subtractions, modifications, and/or substitutions on compounds with respect to members of a protein family or class.

[0317] The addition, subtraction, or modification of a chemical structure or sub-structure to a scaffold can be performed with any suitable chemical moiety. For example the following moieties, which are provided by way of example and are not intended to be limiting, can be utilized: hydrogen, alkyl, alkoxy, phenoxy, alkenyl, alkynyl, phenylalkyl, hydroxyalkyl, haloalkyl, aryl, arylalkyl, alkyloxy, alkylthio, alkenylthio, phenyl, phenylalkyl, phenylalkylthio, hydroxyalkyl-thio, alkylthiocarbbamylthio, cyclohexyl, pyridyl, piperidinyl, alkylamino, amino, nitro, mercapto, cyano, hydroxyl, a halogen atom, halomethyl, an oxygen atom (e.g., forming a ketone or N-oxide) or a sulphur atom (e.g., forming a thiol, thione, di-alkylsulfoxide or sulfone) are all examples of moieties that can be utilized.

[0318] Additional examples of structures or sub-structures that may be utilized are an aryl optionally substituted with one, two, or three substituents independently selected from the group consisting of alkyl, alkoxy, halogen, trihalomethyl, carboxylate, carboxamide, nitro, and ester moieties; an amine of formula -NX₂X₃, where X₂ and X₃ are independently selected from the group consisting of hydrogen, saturated or unsaturated alkyl, and

80

homocyclic or heterocyclic ring moieties; halogen or trihalomethyl; a ketone of formula -COX₄, where X₄ is selected from the group consisting of alkyl and homocyclic or heterocyclic ring moieties; a carboxylic acid of formula -(X5)nCOOH or ester of formula $(X_6)_n COOX_7$, where X_5 , X_6 , and X_7 and are independently selected from the group consisting of alkyl and homocyclic or heterocyclic ring moieties and where n is 0 or 1; an alcohol of formula (X₈)_nOH or an alkoxy moiety of formula -(X₈)_nOX₉, where X₈ and X₉ are independently selected from the group consisting of saturated or unsaturated alkyl and homocyclic or heterocyclic ring moieties, wherein said ring is optionally substituted with one or more substituents independently selected from the group consisting of alkyl, alkoxy, halogen, trihalomethyl, carboxylate, nitro, and ester and where n is 0 or 1; an amide of formula $NHCOX_{10}$, where X_{10} is selected from the group consisting of alkyl, hydroxyl, and homocyclic or heterocyclic ring moieties, wherein said ring is optionally substituted with one or more substituents independently selected from the group consisting of alkyl, alkoxy, halogen, trihalomethyl, carboxylate, nitro, and ester; SO_2 , NX_{11} X_{12} , where X_{11} and X_{12} are selected from the group consisting of hydrogen, alkyl, and homocyclic or heterocyclic ring moieties; a homocyclic or hete ocyclic ring moiety optionally substituted with one, two, or three substituents independent selected from the group consisting of alkyl, alkoxy, halogen, trihalomethyl, carboxylate, carboxamide, nitro, and ester moieties; an aldehyde of formula -CHO; a sulfone of formula - NO_2X_{13} , where X_{13} is selected from the group consisting of saturated or unsaturated alk/l and homocyclic or heterocyclic ring moieties; and a nitro of formula -NO₂.

Identification of Attachment Sites on Molecular Scaffolds and Ligands

[0319] In addition to the identification and development of ligands for kinases and other enzymes, determination of the orientation of a molecular scaffold or other binding compound in a binding site allows identification of energetically allowed sites for attachment of the binding molecule to another component. For such sites, any free energy change associated with the presence of the attached component should not destablize the binding of the compound to the kinase to an extent that will disrupt the binding. Preferably, the binding energy with the attachment should be at least 4 kcal/mol., more preferably at least 6, 8, 10, 12, 15, or 20 kcal/mol. Preferably, the presence of the attachment at the particular site reduces binding energy by no more than 3, 4, 5, 8, 10, 12, or 15 kcal/mol.

[0320] In many cases, suitable attachment sites will be those that are exposed to solvent when the binding compound is bound in the binding site. In some cases, attachment sites

SUBSTITUTE SHEET (RULE 26)

can be used that will result in small displacements of a portion of the enzyme without an excessive energetic cost. Exposed sites can be identified in various ways. For example, exposed sites can be identified using a graphic display or 3-dimensional model. In a graphic display, such as a computer display, an image of a compound bound in a binding site can be visually inspected to reveal atoms or groups on the compound that are exposed to solvent and oriented such that attachment at such atom or group would not preclude binding of the enzyme and binding compound. Energetic costs of attachment can be calculated based on changes or distortions that would be caused by the attachment as well as entropic changes.

[0321] Many different types of components can be attached. Persons with skill are familiar with the chemistries used for various attachments. Examples of components that can be attached include, without limitation: solid phase components such as beads, plates, chips, and wells; a direct or indirect label; a linker, which may be a traceless linker; among others. Such linkers can themselves be attached to other components, *e.g.*, to solid phase media, labels, and/or binding moieties.

[0322] The binding energy of a compound and the effects on binding energy for attaching the molecule to another component can be calculated approximately using any of a variety of available software or by manual calculation. An example is the following:

[0323] Calculations were performed to estimate binding energies of different organic molecules to two Kinases: Pim-1 and CDK2. The organic molecules considered included Staurosporine, identified compounds that bind to PIM-1, and several linkers.

[0324] Calculated binding energies between protein-ligand complexes were obtained using the FlexX score (an implementation of the Bohm scoring function) within the Tripos software suite. The form for that equation is shown in Eqn. 1 below:

$$\Delta$$
Gbind = Δ Gtr + Δ Ghb + Δ Gion + Δ Glipo + Δ Garom + Δ Grot

[0325] where: ΔGtr is a constant term that accounts for the overall loss of rotational and translational entropy of the ligand, ΔGhb accounts for hydrogen bonds formed between the ligand and protein, $\Delta Gion$ accounts for the ionic interactions between the ligand and protein, $\Delta Glipo$ accounts for the lipophilic interaction that corresponds to the protein-ligand contact

surface, ΔG_{arom} accounts for interactions between aromatic rings in the protein and ligand, and ΔG_{rot} accounts for the entropic penalty of restricting rotatable bonds in the ligand upon

binding.

[0326] This method estimates the free energy that a lead compound should have to a target protein for which there is a crystal structure, and it accounts for the entropic penalty of flexible linkers. It can therefore be used to estimate the free energy penalty incurred by attaching linkers to molecules being screened and the binding energy that a lead compound should have in order to overcome the free energy penalty of the linker. The method does not account for solvation and the entropic penalty is likely overestimated for cases where the linker is bound to a solid phase through another binding complex, such as a biotin:streptavidin complex.

[0327] Co-crystals were aligned by superimposing residues of PIM-1 with corresponding residues in CDK2. The PIM-1 structure used for these calculations was a co-crystal of PIM-1 with a binding compound. The CDK2:Staurosporine co-crystal used was from the Brookhaven database file 1aq1. Hydrogen atoms were added to the proteins and atomic charges were assigned using the AMBER95 parameters within Sybyl. Modifications to the compounds described were made within the Sybyl modeling suite from Tripos.

[0328] These calculations indicate that the calculated binding energy for compounds that bind strongly to a given target (such as Staurosporine:CDK2) can be lower than -25 kcal/mol, while the calculated binding affinity for a good scaffold or an unoptimized binding compound can be in the range of -15 to -20. The free energy penalty for attachment to a linker such as the ethylene glycol or hexatriene is estimated as typically being in the range of +5 to +15 kcal/mol.

Linkers

[0329] Linkers suitable for use in the invention can be of many different types. Linkers can be selected for particular applications based on factors such as linker chemistry compatible for attachment to a binding compound and to another component utilized in the particular application. Additional factors can include, without limitation, linker length, linker stability, and ability to remove the linker at an appropriate time. Exemplary linkers include, but are not limited to, hexyl, hexatrienyl, ethylene glycol, and peptide linkers. Traceless linkers can also be used, e.g., as described in Plunkett, M. J., and Ellman, J. A., (1995), J. Ora Chem. 60:6006

SUBSTITUTE SHEET (RULE 26)

83

[0330] Typical functional groups, that are utilized to link binding compound(s), include, but not limited to, carboxylic acid, amine, hydroxyl, and thiol. (Examples can be found in Solid-supported combinatorial and parallel synthesis of small molecular weight compound libraries; (1998) Tetrahedron organic chemistry series Vol.17; Pergamon; p85).

Labels

[0331] As indicated above, labels can also be attached to a binding compound or to a linker attached to a binding compound. Such attachment may be direct (attached directly to the binding compound) or indirect (attached to a component that is directly or indirectly attached to the binding compound). Such labels allow detection of the compound either directly or indirectly. Attachment of labels can be performed using conventional chemistries. Labels can include, for example, fluorescent labels, radiolabels, light scattering particles, light absorbent particles, magnetic particles, enzymes, and specific binding agents (e.g., biotin or an antibody target moiety).

Solid Phase Media

[0332] Additional examples of components that can be attached directly or indirectly to a binding compound include various solid phase media. Similar to attachment of linkers and labels, attachment to solid phase media can be performed using conventional chemistries. Such solid phase media can include, for example, small components such as beads, nanoparticles, and fibers (e.g., in suspension or in a gel or chromatographic matrix). Likewise, solid phase media can include larger objects such as plates, chips, slides, and tubes. In many cases, the binding compound will be attached in only a portion of such an objects, e.g., in a spot or other local element on a generally flat surface or in a well or portion of a well.

Identification of Biological Agents

[0333] The possession of structural information about a protein also provides for the identification of useful biological agents, such as epitopes for development of antibodies, identification of mutation sites expected to affect activity, and identification of attachment sites allowing attachment of the protein to materials such as labels, linkers, peptides, and solid phase media.

[0334] Antibodies (Abs) finds multiple applications in a variety of areas including biotechnology, medicine and diagnosis, and indeed they are one of the most powerful tools

for life science research. Abs directed against protein antigens can recognize either linear or native three-dimensional (3D) epitopes. The obtention of Abs that recognize 3D epitopes require the use of whole native protein (or of a portion that assumes a native conformation) as immunogens. Unfortunately, this not always a choice due to various technical reasons: for example the native protein is just not available, the protein is toxic, or its is desirable to utilize a high density antigen presentation. In such cases, immunization with peptides is the alternative. Of course, Abs generated in this manner will recognize linear epitopes, and they might or might not recognize the source native protein, but yet they will be useful for standard laboratory applications such as western blots. The selection of peptides to use as immunogens can be accomplished by following particular selection rules and/or use of epitope prediction software.

[0335] Though methods to predict antigenic peptides are not infallible, there are several rules that can be followed to determine what peptide fragments from a protein are likely to be antigenic. These rules are also dictated to increase the likelihood that an Ab to a particular peptide will recognize the native protein.

- 1. Antigenic peptides should be located in solvent accessible regions and contain both hydrophobic and hydrophilic residues.
 - For proteins of known 3D structure, solvent accessibility can be determined using a variety of programs such as DSSP, NACESS, or WHATIF, among others.
 - o If the 3D structure is not known, use any of the following web servers to predict accessibilities: PHD, PredAcc (c) ACCpro
- 2. Preferably select peptides lying in long loops connecting Secondary Structure (SS) motifs, avoiding peptides located in helical regions. This will increase the odds that the Ab recognizes the native protein. Such peptides can, for example, be identified from a crystal structure or crystal structure-based homology model.
 - o For protein with known 3D coordinates, SS can be obtained from the sequence link of the relevant entry at the <u>Brookhaven data bank</u>. The <u>PDBsum</u> server also offer SS analysis of pdb records.

- When no structure is available secondary structure predictions can be obtained from any of the following servers: <u>PHD</u>, <u>JPRED</u>, <u>PSI-PRED</u>, <u>NNSP</u>, etc
- 3. When possible, choose peptides that are in the N- and C-terminal region of the
 protein. Because the N- and C- terminal regions of proteins are usually solvent
 accessible and unstructured, Abs against those regions are also likely to recognize
 the native protein.
- 4. For cell surface glycoproteins, eliminate from initial peptides those containing consensus sites for N-glycosilation.
 - o N-glycosilation sites can be detected using Scanprosite, or NetNGlyc

[0336] In addition, several methods based on various physio-chemical properties of experimental determined epitopes (flexibility, hydrophibility, accessibility) have been published for the prediction of antigenic determinants and can be used. The antigenic index and Preditop are example.

[0337] Perhaps the simplest method for the prediction of antigenic determinants is that of Kolaskar and Tongaonkar, which is based on the occurrence of amino acid residues in experimentally determined epitopes. (Kolaskar and Tongaonkar (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. *FEBBS Lett.* 276(1-2):172-174.) The prediction algorithm works as follows:

- 1. Calculate the average propensity for each overlapping 7-mer and assign the result to the central residue (i+3) of the 7-mer.
- 2. Calculate the average for the whole protein.
- 3. (a) If the average for the whole protein is above 1.0 then all residues having average propensity above 1.0 are potentially antigenic.
- 3. (b) If the average for the whole protein is below 1.0 then all residues having above the average for the whole protein are potentially antigenic.
- 4. Find 8-mers where all residues are selected by step 3 above (6-mers in the original paper)

[0338] The Kolaskar and Tongaonkar method is also available from the GCG package, and it runs using the companies egcg.

[0339] Crystal structures also allow identification of residues at which mutation is likely to alter the activity of the protein. Such residues include, for example, residues that interact with substrate, conserved active site residues, and residues that are in a region of ordered secondary structure of involved in tertiary interactions. The mutations that are likely to affect activity will vary for different molecular contexts. Mutations in an active site that will affect activity are typically substitutions or deletions that eliminate a charge-charge or hydrogen bonding interaction, or introduce a steric interference. Mutations in secondary structure regions or molecular interaction regions that are likely to affect activity include, for example, substitutions that alter the hydrophobicity/hydrophilicity of a region, or that introduce a sufficient strain in a region near or including the active site so that critical residue(s) in the active site are displaced. Such substitutions and/or deletions and/or insertions are recognized, and the predicted structural and/or energetic effects of mutations can be calculated using conventional software.

IX. Kinase Activity Assays

[0340] A number of different assays for kinase activity can be utilized for assaying for active modulators and/or determining specificity of a modulator for a particular kinase or group or kinases. In addition to the assays mentioned below, one of ordinary skill in the art will know of other assays that can be utilized and can modify an assay for a particular application.

[0341] An assay for kinase activity that can be used for kinases, *e.g.*, PIM-1, can be performed according to the following procedure using purified kinase using myelin basic protein (MBP) as substrate. An exemplary assay can use the following materials: MBP (M-1891, Sigma); Kinase buffer (KB = HEPES 50 mM, pH7.2, MgCl₂:MnCl₂ (200 μ M:200 μ M); ATP (γ -³³P):NEG602H (10 mCi/mL)(Perkin-Elmer); ATP as 100 mM stock in kinase buffer; EDTA as 100 mM stock solution.

[0342] Coat scintillation plate suitable for radioactivity counting (e.g., FlashPlate from Perkin-Elmer, such as the SMP200(basic)) with kinase+MBP mix (final 100 ng+300 ng/well) at 90 -µL/well in kinase buffer. Add compounds at 1 µL/well from 10 mM stock in DMSO. Positive control wells are added with 1 µL of DMSO. Negative control wells

are added with 2 μ L of EDTA stock solution. ATP solution (10 μ L) is added to each well to provide a final concentration of cold ATP is 2 μ M, and 50 nCi ATP γ [³³P]. The plate is shaken briefly, and a count is taken to initiate count (IC) using an apparatus adapted for counting with the plate selected, *e.g.*, Perkin-Elmer Trilux. Store the plate at 37°C for 4 hrs, then count again to provide final count (FC).

- [0343] Net 33P incorporation (NI) is calculated as: NI = FC IC.
- [0344] The effect of the present of a test compound can then be calculated as the percent of the positive control as: $\mbox{\ensuremath{\text{WPC}}} = [(\mbox{NI} \mbox{NC}) / (\mbox{PC} \mbox{NC})] \times 100$, where NC is the net incorporation for the negative control, and PC is the net incorporation for the positive control.
- [0345] As indicated above, other assays can also be readily used. For example, kinase activity can be measured on standard polystyrene plates, using biotinylated MBP and $ATP\gamma[^{33}P]$ and with Streptavidin-coated SPA (scintillation proximity) beads providing the signal.
- [0346] Additional alternative assays can employ phospho-specific antibodies as detection reagents with biotinylated peptides as substrates for the kinase. This sort of assay can be formatted either in a fluorescence resonance energy transfer (FRET) format, or using an AlphaScreen (amplified luminescent proximity homogeneous assay) format by varying the donor and acceptor reagents that are attached to streptavidin or the phosphor-specific antibody.

X. Organic Synthetic Techniques

[0347] The versatility of computer-based modulator design and identification lies in the diversity of structures screened by the computer programs. The computer programs can search databases that contain very large numbers of molecules and can modify modulators already complexed with the enzyme with a wide variety of chemical functional groups. A consequence of this chemical diversity is that a potential modulator of kinase function may take a chemical form that is not predictable. A wide array of organic synthetic techniques exist in the art to meet the challenge of constructing these potential modulators. Many of these organic synthetic methods are described in detail in standard reference sources utilized by those skilled in the art. One example of such a reference is March, 1994, <u>Advanced</u>
Organic Chemistry; <u>Reactions</u>, <u>Mechanisms and Structure</u>, New York, McGraw Hill. Thus,

the techniques useful to synthesize a potential modulator of kinase function identified by computer-based methods are readily available to those skilled in the art of organic chemical synthesis.

XI. Isomers, Prodrugs, and Active Metabolites

[0348] The present compounds are described herein with generic formulas and specific compounds. In addition, the present compounds may exist in a number of different forms or derivatives, all within the scope of the present invention. These include, for example, tautomers, enantiomers, stereoisomers, racemic mixtures, regioisomers, salts, prodrugs (e.g., carboxylic acid esters), solvated forms, different crystal forms or polymorphs, and active metabolites

A. Tautomers, Stereoisomers, Regioisomers, and Solvated Forms

[0349] It is understood that certain compounds may exhibit tautomerism. In such cases, the formula drawings within this specification expressly depict only one of the possible tautomeric forms. It is therefore to be understood that within the invention the formulas are intended to represent any tautomeric form of the depicted compounds and are not to be limited merely to the specific tautomeric form depicted by the formula drawings.

[0350] Likewise, some of the present compounds may con ain one or more chiral centers, and therefore, may exist in two or more stereoisomeric forms. Thus, such compounds may be present as single stereoisomers (i.e., essentially free of other stereoisomers), racemates, and/or mixtures of enantiomers and/or diastereomers. All such single stereoisomers, racemates and mixtures thereof are intended to be within the scope of the present invention. Unless specified to the contrary, all such steroisomeric forms are included within the formulas provided herein.

[0351] In certain embodiments, a chiral compound of the present invention is in a form that contains at least 80% of a single isomer (60% enantiomeric excess ("e.e.") or diastereomeric excess ("d.e.")), or at least 85% (70% e.e. or d.e.), 90% (80% e.e. or d.e.), 95% (90% e.e. or d.e.), 97.5% (95% e.e. or d.e.), or 99% (98% e.e. or d.e.). As generally understood by those skilled in the art, an optically pure compound having one chiral center is one that consists essentially of one of the two possible enantiomers (i.e., is enantiomerically pure), and an optically pure compound having more than one chiral center

is one that is both diastereomerically pure and enantiomerically pure. In certain embodiments, the company present in optically pure form.

[0352] For compounds is which synthesis involves addition of a single group at a double bond, particularly a carbon-carbon double bond, the addition may occur at either of the double bond-linked atoms. For such compounds, the present invention includes both such regioisomers.

[0353] Additionally, the formulas are intended to cover solvated as well as unsolvated forms of the identified structures. For example, the indicated structures include both both hydrated and non-hydrated forms. Other examples of solvates include the structures in combination with isopropanol, ethanol, methanol, DMSO, ethyl acetate, acetic acid, or ethanolamine.

B. Prodrugs and Metabolites

[0354] In addition to the present formulas and compounds described herein, the invention also includes prodrugs (generally pharmaceutically acceptable prodrugs), active metabolic derivatives (active metabolites), and their pharmaceutically acceptable salts.

[0355] In this context, prodrugs are compounds that may be converted under physiological conditions or by solvolysis to the specified compound or to a pharmaceutically acceptable salt of such a compound. A common example is an alkyl ester of a carboxylic acid.

[0356] As described in <u>The Practice of Medicinal Chemistry</u>, Ch. 31-32 (Ed. Wermuth, Academic Press, San Diego, CA, 2001), prodrugs can be conceptually divided into two non-exclusive categories, bioprecursor prodrugs and carrier prodrugs. Generally, bioprecursor prodrugs are compounds are inactive or have low activity compared to the corresponding active drug compound, that contain one or more protective groups and are converted to an active form by metabolism or solvolysis. Both the active drug form and any released metabolic products should have acceptably low toxicity. Typically, the formation of active drug compound involves a metabolic process or reaction that is one of the follow types:

[0357] Oxidative reactions, such as oxidation of alcohol, carbonyl, and acid functions, hydroxylation of aliphatic carbons, hydroxylation of alicyclic carbon atoms, oxidation of aromatic carbon atoms, oxidation of carbon-carbon double bonds, oxidation of nitrogen-

WO 2005/028624 PCT/US2004/030360

containing functional groups, oxidation of silicon, phosphorus, arsenic, and sulfur, oxidative N-delakylation, oxidative O- and S-delakylation, oxidative deamination, as well as other oxidative reactions.

[0358] Reductive reactions, such as reduction of carbonyl groups, reduction of alcoholic groups and carbon-carbon double bonds, reduction of nitrogen-containing functions groups, and other reduction reactions.

[0359] Reactions without change in the state of oxidation, such as hydrolysis of esters and ethers, hydrolytic cleavage of carbon-nitrogen single bonds, hydrolytic cleavage of non-aromatic heterocycles, hydration and dehydration at multiple bonds, new atomic linkages resulting from dehydration reactions, hydrolytic dehalogenation, removal of hydrogen halide molecule, and other such reactions.

[0360] Carrier prodrugs are drug compounds that contain a transport moiety, e.g., that improves uptake and/or localized delivery to a site(s) of action. Desirably for such a carrier prodrug, the linkage between the drug moiety and the transport moiety is a covalent bond, the prodrug is inactive or less active than the drug compound, the prodrug and any release transport moiety are acceptably non-toxic. For prodrugs where the transport moiety in intended to enhance uptake, typically the release of the transport moiety should be rapid. In other cases, it is desirable to utilize a moiety that provides slow release, e.g., certain polymers or other moieties, such as cyclodextrins. (See, e.g., Cheng et al., U.S. Patent publ. 20040077595, appl. 10/656,838, incorporated herein by reference.) Such carrier prodrugs are often advantageous for orally administered drugs. Carrier prodrugs can, for example, be used to improve one or more of the following properties: increased lipophilicity, increased duration of pharmacological effects, increased site-specificity, decreased toxicity and adverse reactions, and/or improvement in drug formulation (e.g., stability, water solubility, suppression of an undesirable organoleptic or physiochemical property). For example, lipophilicity can be increased by esterification of hydroxyl groups with lipophilic carboxylic acids, or of carboxylic acid groups with alcohols, e.g., aliphatic alcohols. Wermuth, The Practice of Medicinal Chemistry, Ch. 31-32, Ed. Wermuth, Academic Press, San Diego, CA, 2001.

[0361] Prodrugs may proceed from prodrug form to active form in a single step or may have one or more intermediate forms which may themselves have activity or may be inactive.

[0362] Metabolites, e.g., active metabolites overlap with prodrugs as described above, e.g., bioprecursor prodrugs. Thus, such metabolites are pharmacologically active compounds or compounds that further metabolize to pharmacologically active compounds that are derivatives resulting from metabolic process in the body of a subject or patient. Of these, active metabolites are such pharmacologically active derivative compounds. For prodrugs, the prodrug compounds is generally inactive or of lower activity than the metabolic product. For active metabolites, the parent compound may be either an active compound or may be an inactive prodrug.

[0363] Prodrugs and active metabolites may be identified using routine techniques know in the art. See, e.g., Bertolini et al, 1997, *J Med Chem* 40:2011-2016; Shan et al., *J Pharm Sci* 86:756-757; Bagshawe, 1995, *Drug Dev Res* 34:220-230; Wermuth, <u>The Practice of Medicinal Chemistry</u>, Ch. 31-32, Academic Press, San Diego, CA, 2001.

C. Pharmaceutically acceptable salts

[0364] Compounds can be formulated as or be in the form of pharmaceutically acceptable salts. Pharmaceutically acceptable salts are non-toxic sa 's in the amounts and concentrations at which they are administered. The preparation of such salts can facilitate the pharmacological use by altering the physical characteristics of a compound without preventing it from exerting its physiological effect. Useful alterations in physical properties include lowering the melting point to facilitate transmucosal admit istration and increasing the solubility to facilitate administering higher concentrations of the drug.

[0365] Pharmaceutically acceptable salts include acid addition salts such as those containing sulfate, chloride, hydrochloride, fumarate, maleate, phosphate, sulfamate, acetate, citrate, lactate, tartrate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, cyclohexylsulfamate and quinate. Pharmaceutically acceptable salts can be obtained from acids such as hydrochloric acid, maleic acid, sulfuric acid, phosphoric acid, sulfamic acid, acetic acid, citric acid, lactic acid, tartaric acid, malonic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, cyclohexylsulfamic acid, fumaric acid, and quinic acid.

[0366] Pharmaceutically acceptable salts also include basic addition salts such as those containing benzathine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine, procaine, aluminum, calcium, lithium, magnesium, potassium, sodium,

ammonium, alkylamine, and zinc, when acidic functional groups, such as carboxylic acid or phenol are present. For example, see <u>Remington's Pharmaceutical Sciences</u>, 19th ed., Mack Publishing Co., Easton, PA, Vol. 2, p. 1457, 1995. Such salts can be prepared using the appropriate corresponding bases.

[0367] Pharmaceutically acceptable salts can be prepared by standard techniques. For example, the free-base form of a compound is dissolved in a suitable solvent, such as an aqueous or aqueous-alcohol in solution containing the appropriate acid and then isolated by evaporating the solution. In another example, a salt is prepared by reacting the free base and acid in an organic solvent.

[0368] Thus, for example, if the particular compound is a base, the desired pharmaceutically acceptable salt may be prepared by any suitable method available in the art, for example, treatment of the free base with an inorganic acid, such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, or with an organic acid, such as acetic acid, maleic acid, succinic acid, mandelic acid, fumaric acid, malonic acid, pyruvic acid, oxalic acid, glycolic acid, salicylic acid, a pyranosidyl acid, such as glucuronic acid or galacturonic acid, an alpha-hydroxy acid, such as citric acid or tartaric acid, an amino acid, such as aspartic acid or glutamic acid, an aromatic acid, such as benzoic acid or cinnamic acid, a sulfonic acid, such as p-toluenesulfonic acid or ethanesulfonic acid, or the like.

[0369] Similarly, if the particular compound is an acid, the desired pharmaceutically acceptable salt may be prepared by any suitable method, for example, treatment of the free acid with an inorganic or organic base, such as an amine (primary, secondary or tertiary), an alkali metal hydroxide or alkaline earth metal hydroxide, or the like. Illustrative examples of suitable salts include organic salts derived from amino acids, such as glycine and arginine, ammonia, primary, secondary, and tertiary amines, and cyclic amines, such as piperidine, morpholine and piperazine, and inorganic salts derived from sodium, calcium, potassium, magnesium, manganese, iron, copper, zinc, aluminum and lithium.

[0370] The pharmaceutically acceptable salt of the different compounds may be present as a complex. Examples of complexes include 8-chlorotheophylline complex (analogous to, e.g., dimenhydrinate: diphenhydramine 8-chlorotheophylline (1:1) complex; Dramamine) and various cyclodextrin inclusion complexes.

[0371] Unless specified to the contrary, specification of a compound herein includes pharmaceutically acceptable salts of such compound.

D. Polymorphic forms

[0372] In the case of agents that are solids, it is understood by those skilled in the art that the compounds and salts may exist in different crystal or polymorphic forms, all of which are intended to be within the scope of the present invention and specified formulas.

XII. Administration

[0373] The methods and compounds will typically be used in therapy for human patients. However, they may also be used to treat similar or identical diseases in other vertebrates such as other primates, sports animals, and pets such as horses, dogs and cats.

[0374] Suitable dosage forms, in part, depend upon the use or the route of administration, for example, oral, transdermal, transmucosal, or by injection (parenteral). Such dosage forms should allow the compound to reach target cells. Other factors are well known in the art, and include considerations such as toxicity and dosage forms that retard the compound or composition from exerting its effects. Techniques and formulations generally may be found in Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing Co., Easton, PA, 1990 (hereby incorporated by reference herein).

[0375] Carriers or excipients can be used to produce pharmaceutical compositions. The carriers or excipients can be chosen to facilitate administration of the compound. Examples of carriers include calcium carbonate, calcium phosphate, various sugars such as lactose, glucose, or sucrose, or types of starch, cellulose derivatives, gelatin, vegetable oils, polyethylene glycols and physiologically compatible solvents. Examples of physiologically compatible solvents include sterile solutions of water for injection (WFI), saline solution, and dextrose.

[0376] The compounds can be administered by different routes including intravenous, intraperitoneal, subcutaneous, intramuscular, oral, transmucosal, rectal, or transdermal. Oral administration is preferred. For oral administration, for example, the compounds can be formulated into conventional oral dosage forms such as capsules, tablets, and liquid preparations such as syrups, elixirs, and concentrated drops.

[0377] Pharmaceutical preparations for oral use can be obtained, for example, by combining the active compounds with solid excipients, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose (CMC), and/or polyvinylpyrrolidone (PVP: povidone). If desired, disintegrating agents may be added, such as the cross—linked polyvinylpyrrolidone, agar, or alginic acid, or a salt thereof such as sodium alginate.

[0378] Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain, for example, gum arabic, talc, poly-vinylpyrrolidone, carbopol gel, polyethylene glycol (PEG), and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dye-stuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

[0379] Pharmaceutical preparations that can be used orally include push-fit capsules made of gelatin ("gelcaps"), as well as soft, sealed capsules made of gelatin, and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols (PEGs). In addition, stabilizers may be added.

[0380] Alternatively, injection (parenteral administration) may be used, e.g., intramuscular, intravenous, intraperitoneal, and/or subcutaneous. For injection, the compounds of the invention are formulated in sterile liquid solutions, preferably in physiologically compatible buffers or solutions, such as saline solution, Hank's solution, or Ringer's solution. In addition, the compounds may be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms can also be produced.

[0381] Administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be

permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, bile salts and fusidic acid derivatives. In addition, detergents may be used to facilitate permeation. Transmucosal administration, for example, may be through nasal sprays or suppositories (rectal or vaginal).

[0382] The amounts of various compound to be administered can be determined by standard procedures taking into account factors such as the compound IC₅₀, the biological half-life of the compound, the age, size, and weight of the patient, and the disorder associated with the patient. The importance of these and other factors are well known to those of ordinary skill in the art. Generally, a dose will be between about 0.01 and 50 mg/kg, preferably 0.1 and 20 mg/kg of the patient being treated. Multiple doses may be used.

XIII. Manipulation of Kinase Coding Sequences

[0383] Through the availability of the coding sequences for many different kinases, any of a variety of different molecular techniques can be performed as desired, .e.g., cloning, construction of recombinant sequences, production and purification of recombinant protein, introduction of particular kinase sequences into other organisms, and the like.

[0384] Techniques for the manipulation of nucleic acids, such as, e.g., subcloning, labeling probes (e.g., random-primer labeling using Klenow polymerase, nick translation, amplification), sequencing, hybridization and the like are well disclosed in the scientific and patent literature, see, e.g., Sambrook, ed., Molecular Cloning: a Laboratory Manual (2nd ed.), Vols. 1-3, Cold Spring Harbor Laboratory, (1989); Current Protocols in Molecular Biology, Ausubel, ed. John Wiley & Sons, Inc., New York (1997); Laboratory Techniques in Biochemistry and Molecular Biology: Hybridization With Nucleic Acid Probes, Part I. Theory and Nucleic Acid Preparation, Tijssen, ed. Elsevier, N.Y. (1993).

[0100] Nucleic acid sequences can be amplified as necessary for further use using amplification methods, such as PCR, isothermal methods, rolling circle methods, etc., are well known to the skilled artisan. See, e.g., Saiki, "Amplification of Genomic DNA" in PCR Protocols, Innis et al., Eds., Academic Press, San Diego, CA 1990, pp 13-20; Wharam et al., Nucleic Acids Res. 2001 Jun 1;29(11):E54-E54; Hafner et al., Biotechniques 2001 Apr;30(4):852-6, 858, 860 passim; Zhong et al., Biotechniques 2001 Apr;30(4):852-6, 858, 860 passim.

[0385] Nucleic acids, vectors, capsids, polypeptides, and the like can be analyzed and quantified by any of a number of general means well known to those of skill in the art. These include, e.g., analytical biochemical methods such as NMR, spectrophotometry, radiography, electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), and hyperdiffusion chromatography, various immunological methods, e.g. fluid or gel precipitin reactions, immunodiffusion, immuno-electrophoresis, radioimmunoassays (RIAs), enzyme-linked immunosorbent assays (ELISAs), immuno-fluorescent assays, Southern analysis, Northern analysis, dot-blot analysis, gel electrophoresis (e.g., SDS-PAGE), nucleic acid or target or signal amplification methods, radiolabeling, scintillation counting, and affinity chromatography.

[0386] Obtaining and manipulating nucleic acids used to practice the methods of the invention can be performed by cloning from genomic samples, and, if desired, screening and re-cloning inserts isolated or amplified from, e.g., genomic clones or cDNA clones. Sources of nucleic acid used in the methods of the invention include genomic or cDNA libraries contained in, e.g., mammalian artificial chromosomes (MAC: , see, e.g., U.S. Patent Nos. 5,721,118; 6,025,155; human artificial chromosomes, see, e.g., Rosenfeld (1997) Nat. Genet. 15:333-335; yeast artificial chromosomes (YAC); bacterial artificial chromosomes (BAC); P1 artificial chromosomes, see, e.g., Woon (1998) Genomics 50:306-316; P1-derived vectors (PACs), see, e.g., Kern (1997) Biotechniques 23:120-124; cosmids, recombinant viruses, phages or plasmids.

The nucleic acids of the invention can be operatively linked to a promoter. A [0387] promoter can be one motif or an array of nucleic acid control sequences which direct transcription of a nucleic acid. A promoter can include necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements which can be located as much as several thousand base pairs from the start site of transcription. A "constitutive" promoter is a promoter which is active under most environmental and developmental conditions. An "inducible" promoter is a promoter which is under environmental or developmental regulation. A "tissue specific" promoter is active in certain tissue types of an organism, but not in other tissue types from the same organism. The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a

second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.

[0388] The nucleic acids of the invention can also be provided in expression vectors and cloning vehicles, e.g., sequences encoding the polypeptides of the invention. Expression vectors and cloning vehicles of the invention can comprise viral particles, baculovirus, phage, plasmids, phagemids, cosmids, fosmids, bacterial artificial chromosomes, viral DNA (e.g., vaccinia, adenovirus, foul pox virus, pseudorabies and derivatives of SV40), P1-based artificial chromosomes, yeast plasmids, yeast artificial chromosomes, and any other vectors specific for specific hosts of interest (such as bacillus, *Aspergillus* and yeast). Vectors of the invention can include chromosomal, non-chromosomal and synthetic DNA sequences. Large numbers of suitable vectors are known to those of skill in the art, and are commercially available.

[0389] The nucleic acids of the invention can be cloned, if desired, into any of a variety of vectors using routine molecular biological methods; methods for cloning *in vitro* amplified nucleic acids are disclosed, *e.g.*, U.S. Pat. No. 5,426,039. To facilitate cloning of amplified sequences, restriction enzyme sites can be "built into" a PCR primer pair. Vectors may be introduced into a genome or into the cytoplasm or a nucleus of a cell and expressed by a variety of conventional techniques, well described in the scientific and patent literature. See, e.g., Roberts (1987) *Nature* 328:731; Schneider (1995) *Protein Expr. Purif.* 6435:10; Sambrook, Tijssen or Ausubel. The vectors can be isolated from natural sources, obtained from such sources as ATCC or GenBank libraries, or prepared by synthetic or recombinant methods. For example, the nucleic acids of the invention can be expressed in expression cassettes, vectors or viruses which are stably or transiently expressed in cells (e.g., episomal expression systems). Selection markers can be incorporated into expression cassettes and vectors to confer a selectable phenotype on transformed cells and sequences. For example, selection markers can code for episomal maintenance and replication such that integration into the host genome is not required.

[0390] In one aspect, the nucleic acids of the invention are administered *in vivo* for *in situ* expression of the peptides or polypeptides of the invention. The nucleic acids can be administered as "naked DNA" (see, e.g., U.S. Patent No. 5,580,859) or in the form of an expression vector, e.g., a recombinant virus. The nucleic acids can be administered by any route, including peri- or intra-tumorally, as described below. Vectors administered *in vivo*

can be derived from viral genomes, including recombinantly modified enveloped or non-enveloped DNA and RNA viruses, preferably selected from baculoviridiae, parvoviridiae, picornoviridiae, herpesveridiae, poxviridae, adenoviridiae, or picormaviridiae. Chimeric vectors may also be employed which exploit advantageous merits of each of the parent vector properties (See e.g., Feng (1997) Nature Biotechnology 15:866-870). Such viral genomes may be modified by recombinant DNA techniques to include the nucleic acids of the invention; and may be further engineered to be replication deficient, conditionally replicating or replication competent. In alternative aspects, vectors are derived from the adenoviral (e.g., replication incompetent vectors derived from the human adenovirus genome, see, e.g., U.S. Patent Nos. 6,096,718; 6,110,458; 6,113,913; 5,631,236); adeno-associated viral and retroviral genomes. Retroviral vectors can include those based upon murine leukemia virus (MuLV), gibbon ape leukemia virus (GaLV), Simian Immuno deficiency virus (SIV), human immuno deficiency virus (HIV), and combinations thereof; see, e.g., U.S. Patent Nos. 6,117,681; 6,107,478; 5,658,775; 5,449,614; Buchscher (1992) J. Virol. 66:2731-2739; Johann (1992) J. Virol. 66:1635-1640). Adeno-associated virus (AAV)-based vectors can be used to transduce cells with target nucleic acids, e.g., in the *in vitro* production of nucleic acids and peptides, and in *in* vivo and ex vivo gene therapy procedures; see, e.g., U.S. Patent Nos. 6,110,456; 5,474,935; Okada (1996) Gene Ther. 3:957-964.

them. A polypeptide of the invention can be fused to a heterologous peptide or polypeptide, such as N-terminal identification peptides which impart desired characteristics, such as increased stability or simplified purification. Peptides and polypeptides of the invention can also be synthesized and expressed as fusion proteins with one or more additional domains linked thereto for, e.g., producing a more immunogenic peptide, to more readily isolate a recombinantly synthesized peptide, to identify and isolate antibodies and antibody-expressing B cells, and the like. Detection and purification facilitating domains include, e.g., metal chelating peptides such as polyhistidine tracts and histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp, Seattle WA). The inclusion of a cleavable linker sequences such as Factor Xa or enterokinase (Invitrogen, San Diego CA) between a purification domain and the motif-comprising peptide or polypeptide to facilitate purification. For example, an expression vector can include an epitope-encoding nucleic

acid sequence linked to six histidine residues followed by a thioredoxin and an enterokinase cleavage site (see e.g., Watto (1995) Biochemistry 34:1787-1797; Dobeli (1998) Protein Expr. Purif. 12:404-414). The histidine residues facilitate detection and purification while the enterokinase cleavage site provides a means for purifying the epitope from the remainder of the fusion protein. In one aspect, a nucleic acid encoding a polypeptide of the invention is assembled in appropriate phase with a leader sequence capable of directing secretion of the translated polypeptide or fragment thereof. Technology pertaining to vectors encoding fusion proteins and application of fusion proteins are well disclosed in the scientific and patent literature, see e.g., Kroll (1993) DNA Cell. Biol. 12:441-53.

10392] The nucleic acids and polypeptides of the invention can be bound to a solid support, e.g., for use in screening and diagnostic methods. Solid supports can include, e.g., membranes (e.g., nitrocellulose or nylon), a microtiter dish (e.g., PVC, polypropylene, or polystyrene), a test tube (glass or plastic), a dip stick (e.g., glass, PVC, polypropylene, polystyrene, latex and the like), a microfuge tube, or a glass, silica, plastic, metallic or polymer bead or other substrate such as paper. One solid support uses a metal (e.g., cobalt or nickel)-comprising column which binds with specificity to a histidine tagle gineered onto a peptide.

[0393] Adhesion of molecules to a solid support can be direct (i.e., the molecule contacts the solid support) or indirect (a "linker" is bound to the support and the molecule of interest binds to this linker). Molecules can be immobilized either covalently (e.g., utilizing single reactive thiol groups of cysteine residues (see, e.g., Colliuod (1993) *Bioconjugate Chem*. 4:528-536) or non-covalently but specifically (e.g., via immobilized antibodies (see, e.g., Schuhmann (1991) *Adv. Mater.* 3:388-391; Lu (1995) *Anal. Chem.* 67:83-87; the biotin/strepavidin system (see, e.g., Iwane (1997) *Biophys. Biochem. Res.* Comm. 230:76-80); metal chelating, e.g., Langmuir-Blodgett films (see, e.g., Ng (1995) *Langmuir* 11:4048-55); metal-chelating self-assembled monolayers (see, e.g., Sigal (1996) *Anal. Chem.* 68:490-497) for binding of polyhistidine fusions.

[0394] Indirect binding can be achieved using a variety of linkers which are commercially available. The reactive ends can be any of a variety of functionalities including, but not limited to: amino reacting ends such as N-hydroxysuccinimide (NHS) active esters, imidoesters, aldehydes, epoxides, sulfonyl halides, isocyanate, isothiocyanate, and nitroaryl halides; and thiol reacting ends such as pyridyl disulfides, maleimides, thiophthalimides,

and active halogens. The heterobifunctional crosslinking reagents have two different reactive ends, e.g., an amino-reactive end and a thiol-reactive end, while homobifunctional reagents have two similar reactive ends, e.g., bismaleimidohexane (BMH) which permits the cross-linking of sulfhydryl-containing compounds. The spacer can be of varying length and be aliphatic or aromatic. Examples of commercially available homobifunctional cross-linking reagents include, but are not limited to, the imidoesters such as dimethyl adipimidate dihydrochloride (DMA); dimethyl pimelimidate dihydrochloride (DMP); and dimethyl suberimidate dihydrochloride (DMS). Heterobifunctional reagents include commercially available active halogen-NHS active esters coupling agents such as N-succinimidyl bromoacetate and N-succinimidyl (4-iodoacetyl)aminobenzoate (SIAB) and the sulfosuccinimidyl derivatives such as sulfosuccinimidyl(4-iodoacetyl)aminobenzoate (sulfo-SIAB) (Pierce). Another group of coupling agents is the heterobifunctional and thiol cleavable agents such as N-succinimidyl 3-(2-pyridyidithio)propionate (SPDP) (Pierce Chemicals, Rockford, IL).

[0395] Antibodies can also be used for binding polypeptides and peptides of the invention to a solid support. This can be done directly by binding peptide-specific antibodies to the column or it can be done by creating fusion protein chimeras comprising motif-containing peptides linked to, e.g., a known epitope (e.g., a tag (e.g., FLAG, myc) or an appropriate immunoglobulin constant domain sequence (an "immunoadhesin," see, e.g., Capon (1989) *Nature* 377:525-531 (1989).

[0396] Nucleic acids or polypeptides of the invention can be immobilized to or applied to an array. Arrays can be used to screen for or monitor libraries of compositions (e.g., small molecules, antibodies, nucleic acids, etc.) for their ability to bind to or modulate the activity of a nucleic acid or a polypeptide of the invention. For example, in one aspect of the invention, a monitored parameter is transcript expression of a gene comprising a nucleic acid of the invention. One or more, or, all the transcripts of a cell can be measured by hybridization of a sample comprising transcripts of the cell, or, nucleic acids representative of or complementary to transcripts of a cell, by hybridization to immobilized nucleic acids on an array, or "biochip." By using an "array" of nucleic acids on a microchip, some or all of the transcripts of a cell can be simultaneously quantified. Alternatively, arrays comprising genomic nucleic acid can also be used to determine the genotype of a newly engineered strain made by the methods of the invention. Polypeptide arrays" can also be used to simultaneously quantify a plurality of proteins.

[0397] The terms "array" or "microarray" or "biochip" or "chip" as used herein is a plurality of target elements, each target element comprising a defined amount of one or more polypeptides (including antibodies) or nucleic acids immobilized onto a defined area of a substrate surface. In practicing the methods of the invention, any known array and/or method of making and using arrays can be incorporated in whole or in part, or variations thereof, as disclosed, for example, in U.S. Patent Nos. 6,277,628; 6,277,489; 6,261,776; 6,258,606; 6,054,270; 6,048,695; 6,045,996; 6,022,963; 6,013,440; 5,965,452; 5,959,098; 5,856,174; 5,830,645; 5,770,456; 5,632,957; 5,556,752; 5,143,854; 5,807,522; 5,800,992; 5,744,305; 5,700,637; 5,556,752; 5,434,049; see also, e.g., WO 99/51773; WO 99/09217; WO 97/46313; WO 96/17958; see also, e.g., Johnston (1998) Curr. Biol. 8:R171-R174; Schummer (1997) Biotechniques 23:1087-1092; Kern (1997) Biotechniques 23:120-124; Solinas-Toldo (1997) Genes, Chromosomes & Cancer 20:399-407; Bowtell (1999) Nature Genetics Supp. 21:25-32. See also published U.S. patent applications Nos. 20010018642; 20010019827; 20010016322; 20010014449; 20010014448; 20010012537; 20010008765.

Host Cells and Transformed Cells Comprising Kinase Sequences

[0398] As indicated above, availability of kinase coding sequences also allows provision of a transformed cell comprising a kinase nucleic acid sequence, e.g., a sequence encoding a kinase polypeptide, or a vector. The host cell may be any of the host cells familiar to those skilled in the art, including prokaryotic cells, eukaryotic cells, such as bacterial cells, fungal cells, yeast cells, mammalian cells, insect cells, or plant cells. Exemplary bacterial cells include E. coli, Streptomyces, Bacillus subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus. Exemplary insect cells include Drosophila S2 and Spodoptera Sf9. Exemplary animal cells include CHO, COS or Bowes melanoma or any mouse or human cell line. The selection of an appropriate host is within the abilities of those skilled in the art.

[0399] Vectors may be introduced into the host cells using any of a variety of techniques, including transformation, transfection, transduction, viral infection, gene guns, or Timediated gene transfer. Particular methods include calcium phosphate transfection, DEAE-Dextran mediated transfection, lipofection, or electroporation.

[0400] Engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the genes of the invention. Following transformation of a suitable host strain and growth of the host strain

SUBSTITUTE SHEET (RULE 26)

to an appropriate cell density, the selected promoter may be induced by appropriate means (e.g., temperature shift or chemical induction) and the cells may be cultured for an additional period to allow them to produce the desired polypeptide or fragment thereof.

[0401] Cells can be harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract is retained for further purification. Microbial cells employed for expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Such methods are well known to those skilled in the art. The expressed polypeptide or fragment can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the polypeptide. If desired, high performance liquid chromatography (HPLC) can be employed for final purification steps.

[0402] Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 km at of monkey kidney fibroblasts and other cell lines capable of expressing proteins from a compatible vector, such as the C127, 3T3, CHO, HeLa and BHK cell lines.

[0403] The constructs in host cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence. Depending upon the host employed in a recombinant production procedure, the polypeptides produced by host cells containing the vector may be glycosylated or may be non-glycosylated. Polypeptides of the invention may or may not also include an initial methionine amino acid residue.

[0404] Cell-free translation systems can also be employed to produce a polypeptide of the invention. Cell-free translation systems can use mRNAs transcribed from a DNA construct comprising a promoter operably linked to a nucleic acid encoding the polypeptide or fragment thereof. In some aspects, the DNA construct may be linearized prior to conducting an *in vitro* transcription reaction. The transcribed mRNA is then incubated with an appropriate cell-free translation extract, such as a rabbit reticulocyte extract, to produce the desired polypeptide or fragment thereof.

[0405] The expression vectors can contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in *E. coli*.

[0406] For transient expression in mammalian cells, cDNA encoding a polypeptide of interest may be incorporated into a mammalian expression vector, e.g. pcDNA1, which is available commercially from Invitrogen Corporation (San Diego, Calif., U.S.A.; catalogue number V490-20). This is a multifunctional 4.2 kb plasmid vector designed for cDNA expression in eukaryotic systems, and cDNA analysis in prokaryotes, incorporated on the vector are the CMV promoter and enhancer, splice segment and polyadenylation signal, an SV40 and Polyoma virus origin of replication, and M13 origin to rescue single strand DNA for sequencing and mutagenesis, Sp6 and T7 RNA promoters for the production of sense and anti-sense RNA transcripts and a Col E1-like high copy plasmid origin. A polylinker is located appropriately downstream of the CMV promoter (and 3' of the T7 promoter).

[0407] The cDNA insert may be first released from the above phagemid incorporated at appropriate restriction sites in the pcDNAI polylinker. Sequencing across the junctions may be performed to confirm proper insert orientation in pcDNAI. The resulting plasmid may then be introduced for transient expression into a selected mammalian cell host, for example, the monkey-derived, fibroblast like cells of the COS-1 lineage (available from the American Type Culture Collection, Rockville, Md. as ATCC CRL 1650).

[0408] For transient expression of the protein-encoding DNA, for example, COS-1 cells may be transfected with approximately 8 μg DNA per 10⁶ COS cells, by DEAE-mediated DNA transfection and treated with chloroquine according to the procedures described by Sambrook et al, Molecular Cloning: A Laboratory Manual, 1989, Cold Spring Harbor Laboratory Press, Cold Spring Harbor N.Y, pp. 16.30-16.37. An exemplary method is as follows. Briefly, COS-1 cells are plated at a density of 5 x 10⁶ cells/dish and then grown for 24 hours in FBS-supplemented DMEM/F12 medium. Medium is then removed and cells are washed in PBS and then in medium. A transfection solution containing DEAE dextran (0.4 mg/ml), 100 μM chloroquine, 10% NuSerum, DNA (0.4 mg/ml) in DMEM/F12 medium is then applied on the cells 10 ml volume. After incubation for 3 hours at 37 °C, cells are washed in PBS and medium as just described and then shocked for 1 minute with 10% DMSO in DMEM/F12 medium. Cells are allowed to grow for 2-3 days in 10% FBS-

supplemented medium, and at the end of incubation dishes are placed on ice, washed with ice cold PBS and then removed by scraping. Cells are then harvested by centrifugation at 1000 rpm for 10 minutes and the cellular pellet is frozen in liquid nitrogen, for subsequent use in protein expression. Northern blot analysis of a thawed aliquot of frozen cells may be used to confirm expression of receptor-encoding cDNA in cells under storage.

[0409] In a like manner, stably transfected cell lines can also prepared, for example, using two different cell types as host: CHO K1 and CHO Pro5. To construct these cell lines, cDNA coding for the relevant protein may be incorporated into the mammalian expression vector pRC/CMV (Invitrogen), which enables stable expression. Insertion at this site places the cDNA under the expression control of the cytomegalovirus promoter and upstream of the polyadenylation site and terminator of the bovine growth hormone gene, and into a vector background comprising the neomycin resistance gene (driven by the SV40 early promoter) as selectable marker.

An exemplary protocol to introduce plasmids constructed as described above is as ollows. The host CHO cells are first seeded at a density of $5x10^5$ in 10% FBS-supplemented MEM medium. After growth for 24 hours, fresh medium is added to the plates and three hours later, the cells are transfected using the calcium phosphate-DNA coprecipitation procedure (Sambrook et al., supra). Briefly, 3 µg of DNA is mixed and incubated with buffered calcium solution for 10 minutes at room temperature. An equal volume of ourfered phosphate solution is added and the suspension is incubated for 15 minutes at room temperature. Next, the incubated suspension is applied to the cells for 4 hours, removed and cells were shocked with medium containing 15% glycerol. Three minutes later, cells are washed with medium and incubated for 24 hours at normal growth conditions. Cells resistant to neomycin are selected in 10% FBS-supplemented alpha-MEM medium containing G418 (1 mg/ml). Individual colonies of G418-resistant cells are isolated about 2-3 weeks later, clonally selected and then propagated for assay purposes.

EXAMPLES

EXAMPLE 1: Cloning of PIM-1

[0411] The PIM-1 DNA encoding amino acids 1-313 and 29-313 were amplified from human brain cDNA (Clonetech) by PCR protocols and cloned into a modified pET 29 vector (Novagen) between NdeI and SalI restriction enzyme sites. The amino acid

sequences of the cloned DNA were confirmed by DNA sequencing and the expressed proteins contain a hexa-histidine sequence at the C terminus. The protein was expressed in *E. coli* BL21(DE3)pLysS (Novagen). The bacteria were grown at 22°C in Terrific broth to 1-1.2 OD600 and protein was induced by 1 mM IPTG for 16-18 h. The bacterial pellet was collected by centrifugation and stored at -70°C until used for protein purification. PIM-2 and PIM-3 are cloned similarly.

EXAMPLE 2: Purification of PIM-1

[0412] The bacterial pellet of approximately 250-300g (usually from 16 L) expressing PIM-1 kinase domain (29-313) was suspended in 0.6 L of Lysis buffer (0.1 M potassium phosphate buffer, pH 8.0, 10 % glycerol, 1 mM PMSF) and the cells were lysed in a French Pressure cell at 20,000 psi. The cell extract was clarified at 17,000 rpm in a Sorval SA 600 rotor for 1 h. The supernatant was re-centrifuged at 17000 rpm for another extra hour. The clear supernatant was added with imidazole (pH 8.0) to 5 mM and 2 ml of cobalt beads (50% slurry) to each 40 ml cell extract. The beads were mixed at 4°C for 3-4 h on a nutator. The cobalt beads were recovered by centrifugation at 4000 rpm for 5 min. The pelleted beads were washed several times with lysis buffer and the beads were packed on a Byroad disposable column. The bound protein was eluted with 3-4 column volumes of 0.1 M imidazole followed by 0.25 M imidazole prepared in lysis buffer. The eluted protein was analyzed by SDS gel electrophoresis for purity and yield.

[0413] The eluted protein from cobalt beads was concentrated by Centriprep-10 (Amicon) and separated on Pharmacia Superdex 200 column (16/60) in low salt buffer (25 mM Tris-HCl, pH 8.0, 150 mM NaCl, 14 mM beta mercaptoethanol). The peak fractions containing PIM-1 kinase was further purified on a Pharmacia Source Q column (10/10) in 20 mM Tris-HCl pH 7.5 and 14 mM beta mercaptoethanol using a NaCl gradient in an AKTA-FPLC (Pharmacia). The PIM-1 kinase eluted approximately at 0.2 M NaCl gradient. The peak fractions were analyzed by SDS gel electrophoresis and were pooled and concentrated by Centriprep 10. The concentrated PIM-1 protein (usually 50-60 A280/ml) was aliquoted into many tubes (60ul), flash frozen in liquid nitrogen and stored at -70°C until used for crystallization. The frozen PIM-1 kinase still retained kinase activity as concluded from activity assays. PIM-2 and PIM-3 can be purified in the same way with small adjustments to conditions, e.g., elution conditions.

Example 3: Variants and Derivatives of PIM-1

[0414] In mouse, PIM-1 is expressed as two forms of 44 kDa and 33 kDa. The p44 kDa PIM-1 is encoded by the same gene as p33 kDa PIM-1 but the translation is initiated at an upstream CUG codon (Saris CJ, Domen J, and Berns A. (1991) The PIM-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J. 10: 655-664.) This results in expression of p44 PIM-1 having a unique 11 kDa N terminal extension that is followed by the p33 PIM-1 sequence. The p33 kDa PIM-1 contains almost the entire kinase domain and both p33 and p44 kDa have comparable kinase activity and both can prevent apoptosis (Lilly M, Sandholm J, Cooper JJ, Koskinen PJ, and Kraft A. (1999) The PIM-1 serine kinase prolongs survival and inhibits apoptosis-related mitochondrial dysfunction in part through a bcl-2-dependent pathway. Oncogene., 18: 4022-4031). CD40 engagement caused significant increase in the levels of both 33 and 44 kDa forms of PIM1 in cytoplasmic extracts of WEHI-231 cells (Zhu N, Ramirez LM, Lee RL, Magnuson NS, Bishop GA, and Gold MR.(2002) CD40 signaling in B cells regulates the expression of the PIM-1 kinase via the NF-kappa B pathway. J Immunol. 168: 744-754). Recently it has been shown that the p33kDa form was more strongly associated with Socs 1 than the p44 kDa form (Chen XP, Losman JA, Cowan S, Donahue E, Fay S, Vuong BQ, Nawijn MC, Capece D, Cohan VL, Rothman P. (2002) PIM serine/threonine kinases regulate the stability of Socs-1 protein. Proc Natl Acad Sci U S A., 99:2175-2180).

[0415] There are no reports of PIM-1 existing in more than one form in human. Analysis of PIM-1 gene sequence reveals that the presence of in-frame stop codons block synthesis of proteins with N terminal extensions. However, the human PIM-2 gene contains no inframe stop codon, based on the reported DNA sequence. Therefore, alternate initiation at an upstream start codon is possible. We have expressed the PIM-2 kinase domain in *E.coli* and purified the protein by the same methods as described for PIM-1 kinase.

Example 4: Crystallization of PIM-1.

PIM-1 protein crystal growth:

[0416] All materials were purchased through Hampton Research, Inc. (Laguna Niguel, CA) unless otherwise noted.PIM-1 protein @ 7 and 14 mg/ml was screened against Hampton Crystal Screen 1 and 2 kits (HS1 and HS2) and yielded successful crystals growing in at least 10 conditions from HS1 alone. Crystals were grown initially using

SUBSTITUTE SHEET (RULE 26)

sitting drops against the Hampton screening conditions set in Greiner 96 well CrystalQuick crystallization plates with 100 ul reservoir and 1 ul protein + 1 ul reservoir added per platform (1 of 3 available). Conditions from Hampton Screen 1 yielded obvious protein crystals in conditions: #2,7,14,17,23,25,29,36,44,and 49. These crystals were grown at 4°C, and grew in size to varying dimensions, all hexagonal rod shaped and hardy.

[0417] Crystals of larger dimensions, 100 uM wide x 400 uM long, were then grown in larger drop volumes and in larger dimension plates. Refined grids were performed with both hanging and sitting drop methods in VDX plates (cat. # HR3- 140) or CrysChem plates (cat. # HR3-160). There appeared to be no obvious difference of crystal size or quality between the two methods, but there was a preference to use hanging drops to facilitate mounting procedures.

[0418] We proceeded with refining conditions by gridding 4 independent reservoir conditions initially obtained from the screening kits.

- 1) HS1 # 17 was optimized to 0.2 M LiCl, 0.1 M Tris pH 8.5 and 5%- 15% Polyethylene glycol 4000;
- 2) HS1 # 25 was optimized to 0.4 M 0.9 M Sodium Acetate trihydrate pH 6.5 and 0.1 M Imidazole;
- 3) HS1 # 29 was optimized to 0.2M 0.7 M Sodium Potassium tartrate and 0.1 M MES buffer pH 6.5;
- 4) HS1 # 44 was optimized to 0.25 M Magnesium formate.

[0419] These optimized conditions produced crystals with the most consistent size and quality of appearance. Conditions were further evaluated by x-ray diffraction analysis of the resulting protein crystals, and keeping in mind the utility for forming compound co-crystals in these conditions as well (ie. salt composition and concentration effects are important to develop suitable compound solubility in the crystallization experiments). Native crystals grew as rods in many drops to large dimensions of approximately 100 um wide and 500 um long.

Seleno Methionine labeled PIM-1 protein crystal growth.

[0420] Se-Met labeled PIM protein was expressed and purified as described by Hendrickson, W. A., and Ogata, C. M. (1997) "Phase determination from multiwavelength anomalous diffraction measurements, *Methods Enzymol.*, 276, 494-523, and Hendrickson,

W. A., Horton, J. R., and LeMaster, D. M. (1990) "Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimentional structure, *EMBO J.*, 9, 1665-1672. This preparation appeared to be less soluble as evidenced by more pronounced nucleation within the screen drops and due to the hydrophobic nature of Se labeled proteins. Crystals grew small and in showers compared to the previously evaluated similar drop conditions that the native protein grew well in. Upon finer gridding, 20 μm wide x 100 μm long crystals were obtained in condition HS1 # 17 optimized at 0.2 M LiCl, 0.1 M Tris pH 8.5 and 5% -15% PEG 4000. These crystals and all others were carefully mounted in 50 – 100 uM nylon loops on copper stem magnetic bases that were flash frozen in liquid nitrogen in appropriate cryogenic buffer and taken to the Lawerence Berkeley Lab synchrotron, the Advanced Light Source (ALS) beamline 8.3.1.

PIM-1 protein/Molecular Scaffolds Co-crystal growth:

[0421] In order to add compounds to PIM-1 protein, compounds were added directly from their DMSO stocks (20-200 mM) into the protein solution at high concentration. The procedure involved adding the DMSO stocks containing compound as a thin layer to the wall of the 1.5 ml eppendorf tube that contains the protein. The solution was then gently rolled over the wall of the tube until the compound was in the protein solution. The final concentration of compounds in the PIM-1 solution usually achieved was between 0.5 and 1 mM with DMSO concentrations less than 2% being added. The solutions were then set-up in trays immediately as previously described.

PIM-1/Compound Co-crystal Screening in HS1:

[0422] Two conditions for crystal growth have resulted in the best results with PIM-1 protein and added compounds. The optimized Na-K tartrate and Na-acetate tetrahydrate solutions listed above. Crystals varied greatly in size but data has been collected on various crystals that are between 20 uM and 100 uM in width. These crystals were typically several hundred microns long and some required manipulation as well as being broken to facilitate mounting procedures into loops. Interestingly, some crystals that were grown in the presence of colored compounds were also colored the same way.

Example 5: Diffraction Analysis of PIM-1.

[0423] Crystals were first determined to diffract on a Rigaku RU-200 rotating copper anode x-ray source equipped with Yale focusing optics and an R-AXIS 2C imaging plate system. A crystal grown in the optimized condition HS1 # 17 (DY plate 12/14/01) was used to conduct initial diffraction experiments.

[0424] After x-ray diffraction was initially determined as described above, large native protein crystals grown in Mg-Formate (DY plate) and were frozen in cryoprotectant by submersion in liquid nitrogen and then tested for diffraction at ALS beamline 8.3.1. Data was originally collected, indexed and reduced using Mosflm. The spacegroup was determined to be P65.

[0425] We have collected 3 native data sets, the highest resolution obtained with good statistics after merging is to 2.0 angstroms.

[0426] We have collected a MAD data set on the Se-Met labeled PIM-1 crystal using the experimentally determined 12668 eV peak and 11000 eV remote for selenium to 3.2 angstroms. Subsequently a 2.6 angstrom Se peak data set was collected at the experimentally differentially dif

[0427] We have collected more than 50 PIM-1/binding compound co-crystal data sets. All data was indexed and reduced as indicated in the computational crystallographic work that follows.

PIM-1 Structure Determination and Refinement

Data set: Native, Resolution: 2.13 Å

[0428] The primary structure determination was carried out using Molecular Replacement method with programs

EPMR (Public domain)

AmoRe (from CCP4))

And a homology model of PIM-1 based on the protein Phosphorylase Kinase (PDB ID: 1PHK – Owen et al., 1995, Structure 3:467)

110

[0429] The molecular replacement was carried out in all of the P6 space groups (P61, P62, ... P65). The best solution was obtained in P65.

[0430] The molecular replacement solution was improved by several rounds of the cycles of

Model Building in O (from DatOno AB)

Annealing in CNX (from Accelerys)

SigmaA weighting and Solvent Flattening the resultant map with DM (from CCP4)

[0431] The statistics at the end of these cycles were $R \sim 36 \%$.

Data set: SeMet (2 wavelengths), Resolution: 3.3 Å

[0432] The MAD phased data (with SOLVE (from Los Alamos National Laboratory)) helped improve the model in the refinement with REFMAC (from CCP4).

Data set: SeMet (1 wavelength), Resolution: 2.6 Å

[0433] Further improvement of the model was obtained using SAD Phasing with SOLVE and subsequent improvement with RESOLVE produced an excellent map into which the PIM1 model could be rebuilt completely.

[0434] The newly built model refined with CNX/Anneal and then with CCP4/Refmac to give R = 27.7% and Rfree = 31.9 %

Data set: Native, Resolution: 2.1 Å

[0435] The above model has been further refined against the native data with CCP4/Refmac, giving R = 22.1 %, Rfree = 24.2 %.

Example 6: Co-Crystal Structures

[0436] Exemplary co-crystal structures have been determined for 7 compounds with PIM-1, using methods as generally described above. Those co-crystals are the following (the number indicates the compound id and the compound source is provided in parentheses):

PIM1 5321980 (Chembridge)

PIM1 RB00137 (Maybridge)

PIM1_5264241(Chembridge)

PIM1_RJF00907 (Maybridge)

PIM1 5140994 (Chembridge)

PIM1_5108305 (Chembridge)

PIM1 BTB02713 (Maybridge)

Example 7: PIM Binding Assays

[0437] Such binding assays can be performed in a variety of ways, including a variety of ways known in the art. For example, competitive binding to PIM-1 can be measured on Nickel-FlashPlates, using His-tagged PIM-1 (~ 100 ng) and ATP γ [³⁵S] (~ 10 nCi). As compound is added, the signal decreases, since less ATP γ [³⁵S] is bound to PIM1 which is proximal to the scintillant in the FlashPlate. The binding assay can be performed by the addition of compound (10 μ l; 20 mM) to PIM-1 protein (90 10 μ l) followed by the addition of ATP γ [³⁵S] and incubating for 1 hr at 37°C. The radioactivity is measured through scintillation counting in Trilus (Perkin-Elmer).

[0438] Alternatively, any method which can measure binding of a ligand to the ATP-binding site can be used. For example, a fluorescent ligand can be used. When bound to PIM1, the emitted fluorescence is polarized. Once displaced by inhibitor binding, the polarization decreases.

[0439] Determination of IC50 for compounds by competitive binding assays. (Note that K_I is the dissociation constant for inhibitor binding; K_D is the dissociation constant for substrate binding.) For this system, the IC50, inhibitor binding constant and substrate binding constant can be interrelated according to the following formula:

[0440] When using radiolabeled substrate
$$K_I = \underline{IC50}$$
, $1 + [L^*]/K_D$

the IC50 \sim K₁ when there is a small amount of labeled substrate.

Example 8: PIM Activity Assays

[0441] Inhibitory or exhitory activity of compounds binding to PIM-1 was determined using the kinase activity assay described in the detailed description.

[0442] Exemplary compounds within Formula I, Formula II, and Formula III were assayed for inhibitory activity with PIM-1. The ability to develop ligands is illustrated by 2 compounds from the quinolinone molecular scaffold group (Formula III). A compound with R1, R2, R3, R4, R5, and R6 = H, had 100% inhibition of PIM-1 at 200 μ M concentration, while a compound with R1 = phenyl group, R2, R3, R5, and R7 = H, and R4 = OCF₃, had only 3% inhibition of PIM-1 at 200 μ M.

Example 9: Synthesis of the Compounds of Formula I:

$$R^{4}$$
 R^{5}
 R^{6}
 R^{1}
 R^{2}
Formula I

1. Synthesis of the Compounds of Formula I - Scheme 1

$$R^{4}$$
 R^{5}
 R^{6}
 R^{1}
 R^{1}
 R^{1}
 R^{5}
 R^{6}
 R^{6}
 R^{1}
 R^{5}
 R^{6}
 R^{6}
 R^{1}
 R^{5}
 R^{6}
 R^{6}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{1}
 R^{5}
 R^{6}
 R^{6}
 R^{1}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{2}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{2}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{4

[0443] The 2-arylbenzimidazoles derivatives, represented by Formula I, can be prepared as shown in Scheme 1.

Step 1 Preparation of formula (3)

[0444] Compound of formula (3) was prepared by a reaction of a compound of formula (1) with an alkyl halide of formula (2)(e.g. X = Br) in an inert solvent (e.g. DMF), in the presence of a base (e.g. NaH) and heated near 100 0 C for 24-36 h. Compound of formula (3) was purified by column chromatography.

Step 2 Preparation of formula (4)

[0445] Compound of formula (4) was prepared by a reaction of a compound of formula (3) with a reducing agent (e.g. SnCl₂) in a polar solvent (e.g. EtOH) and heated near 100 °C for 5-12 h. When the reaction is completed, the product of formula (4) is isolated by conventional means (e.g. aqueous base workup).

Step 3 Preparation of formula I

[0446] Compound of formula I was prepared by the reaction of the compound of formula (4) with an imidate of formula (5) in a polar solvent (e.g. EtOH) and heated near 80°C for 12-18 h. Compound of formula I was purified by column chromatography.

2. Alternate synthesis of the Compounds of Formula I - Scheme 2

Step 1 Preparation of formula I

[0447] Compound of formula I was prepared by the reaction of the compound of formula (4) with an aldehyde of formula (6) in a polar solvent (e.g. EtOH) and heated near 80°C for 12-22 h. Compound of formula I was purified by column chromatography.

3. Alternate synthesis of the Compounds of Formula I - Scheme 3

Step 1 Preparation of formula I

[0448] Compound of formula I was prepared by the reaction of the compound of formula (4) with an aldehyde of formula (7) in an inorganic acid (e.g. polyphosphoric acid) and heating near 190-220 °C for 5-12 h. Compound of formula I was purified by column chromatography.

Example 10: Synthesis of the Compounds of Formula II:

Formula ll

[0449] Synthesis schemes for exemplary groups of compounds within Formula II are provided below. Persons skilled in chemical synthesis will readily understand how to synthesize additional compounds within Formula II.

1. Synthesis of the Compounds of Formula IIa (where a and b are nitrogen, d is sulfur, and c is \mathbb{CR}^{11}) - Scheme 4

[0450] The thiadiazole derivative, represented by formula IIa, can be prepared as shown in Scheme 4.

[0451] Compound of formula (10) was prepared by reaction of a compound of formula (8) (e.g. *m*-toluic hydrazide) with an isothiocyanate of formula (9), in a basic solvent (e.g. pyridine), typically heated near 65 °C for 2-6 hours.

[0452] Compound of formula IIa was prepared by dissolving a compound of formula (10) in POCl₃ and heated near 80 °C for 2 -4 hours. When the reaction is substantially complete, the product of formula IIa is isolated by conventional means (e.g. reverse phase HPLC).

2. Synthesis of the Compounds of Formula IIb (where a and b are nitrogen, d is oxygen, and c is CR^{11}) - Scheme 5

[0453] The oxadiazole derivatives, represented by formula IIb, can be prepared as shown in Scheme 5.

[0454] Compound of formula (10) was prepared by reaction of a compound of formula (8), e.g. m-toluic hydrazide, with an isothiocyanate of formula (9), in a basic solvent (e.g. pyridine), typically heated near 65 °C for 2-6 hours.

Step-2 Preparation of formula IIb

[0455] Compound of formula IIb was prepared by dissolving a compound of formula (10) in SOCl₂ and heated near 80 °C for 2 -4 hours. When the reaction is substantially complete, the product of formula II was isolated by conventional means (e.g. reverse phase HPLC).

Example 11: Synthesis of the Compounds of Formula IIIa, where n = 0:

$$\begin{array}{c|c}
X \\
R^3 \\
R \\
R^2
\end{array}$$

Formula IIIa

1. Synthesis of the Compounds of Formula IIIa - Scheme 6

$$R^3$$
 R^3 R^4 R^4

where the squiggly lines indicate a mixture of stereoisomers.

[0456] The Pyridazinone derivatives, represented by formula IIIa, can be prepared as shown in Scheme 6.

Step-1 Preparation of formula (12)

[0457] The compound of formula (12) was prepared by reaction of a 4-oxo-butyric acid derivative of formula (11) with hydrazine, in a basic solvent (e.g. pyridine), typically heated near 65 °C for 2-6 hours.

Step-2 Preparation of formula IIIaa

[0458] The compound of formula IIIaa was prepared by dissolving a compound of formula (12) in an inert solvent and adding an oxidizing agent (e.g. Br₂, chloranil, or Pd(C) under an air atmosphere. When the reaction is substantially complete, the product of formula IIIaa is isolated by conventional means (e.g. reverse phase HPLC).

Step-3 Preparation of Formula IIIab

[0459] Compounds of Formula IIIaa (X = 0) can be converted into compounds where X = S, by treatment with Lawesson's reagent or P_2S_5 stirred in an inert solvent at ambient temperature for 2-6 hours. When the reaction is substantially complete, the product of formula IIIb is isolated by conventional means (e.g. reverse phase HPLC).

[0460] Synthesis of the compounds of Formula IIIb, where n = 1:

Formula IIIb

2. Synthesis of Compounds of Formula IIIb (IIIba and IIIbb) - Scheme 7

$$R^2$$
 HO_2C
 R^1
 $+ NH_2NH_2$
 $Step 1$
 R^1
 R^2
 R^3
 R^1
 R^2
Formula IIIbb

[0461] The Pyridazinone derivatives, represented by formula IIIba, can be prepared as shown in Scheme 7.

Step-1 Preparation of formula IIIba

[0462] The compound of formula IIIba was prepared by reaction of an acyl-acrylic acid of formula (13) with hydrazine, in a basic solvent (e.g. aqueous NaOH), typically stirred at ambient temperature for 2-6 hours. When the reaction is substantially complete, the product of formula IIIa (X = 0) is isolated by conventional means (e.g. reverse phase HPLC).

Step-2 Preparation of Formula IIIbb

[0463] Compounds of Formula IIIba (X = 0) can be converted into compounds where X = S, by treatment with Lawesson's reagent or P_2S_5 stirred in an inert solvent at ambient temperature for 2-6 hours. When the reaction is substantially complete, the product of formula IIIbb is isolated by conventional means (e.g. reverse phase HPLC).

Example 12: Synthesis of the Compounds of Formula IV:

$$R^2$$
 N R^1

Formula IV

1. Synthesis of the Compounds of Formula IVa, where ${\bf R}^3$ is Methyl - Scheme 8

[0464] The 4-hydroxypyrimidine derivatives, represented by formula IVa, can be prepared as shown in Scheme 8.

Step-1 Preparation of formula (15)

[0465] Compound (15) was prepared by reaction of compound (14) with benzyl bromide in an inert solvent (e.g. DMF), in the presence of a base (e.g. Et₃N), at room temperature for 4 hours. Product (15) is purified by a conventional way (e.g. recrystallization).

Step-2 Preparation of formula (16)

[0466] Compound (16) was prepared by reaction of compound (15) with N-iodosuccinimide in chloroform under reflux for several hours. Product (16) was purified by a conventional way (e.g. recrystallization).

Step-3 Preparation of formula (17)

[0467] Compound (17) was prepared by reaction of compound (16) with benzyl bromide in an inert solvent (e.g. DMF), in the presence of a base (e.g. NaH) at room temperature for several hours.

Step4 Preparation of formula (18)

[0468] The compound of formula (18) was prepared by reaction of compound (17), with a suitable reagent for coupling reaction (e.g. phenylboronic acid) in a suitable mixture of solvent (e.g. dimethoxyethane and we er), in the presence of a base (e.g. K_2CO_3), typically heated to $100~^{\circ}C$ for several hours. The product was isolated by a conventional way (e.g. flash chromatography).

Step 5 Preparation of formula (19)

[0469] The compound of formula (19) was prepared by reaction of a compound of formula (18), with an oxidizing reagent (e.g. MCPBA) in a suitable solvent (e.g. CH₂Cl₂), typically at room temperature for a few hours.

Step6 Preparation of formula (20)

[0470] The compound of formula (20) was prepared by reaction of a compound of formula (19) with a nucleophilic reagent (e.g. piperazine), in the presence of a base (e.g. Cs₂CO₃) in a suitable solvent (e.g. dioxane) reflux for several hours. The product is purified in a conventional way (e.g. flash chromatography).

Step7 Preparation of formula IV

[0471] The compound of formula IVa was prepared conventionally by hydrogenation of a compound of formula (20) in the presence of a catalyst (e.g. Pd(OH)₂/C), under hydrogen in a suitable solvent (e.g. methanol) at room temperature for several hours.

2. Synthesis of the Compounds of Formula IVb - Scheme 9

[0472] The 4-hydroxypyrimidine derivatives, represented by formula IV, can be prepared as shown in Scheme 9.

Step1 Preparation of formula IVb

[0473] The compound of formula IVb was prepared by reaction of a compound of formula (21) with an electrophilic reagent (phenyl isocyanate), in the presence of a base (e.g. Et₃N) in a suitable solvent (e.g. CH₂Cl₂) at room temperature for several hours. When the reaction is substantially complete, the product of formula IVb was isolated by conventional means (e.g. flash chromatography).

3. Synthesis of the Compounds of Formula IVc - Scheme 10

[0474] The 4-hydroxypyrimidine derivatives, represented by formula IVc, were prepared as shown in Scheme 10.

Step-1 Preparation of formula (23)

[0475] The compound of formula (23) was prepared by reaction of a compound of formula (22), with an alkyl halide reagent (e.g. methyl iodide) in an inert solvent (e.g. DMF), in the presence of a base (e.g. K₂CO₃), typically heated near 80 °C for 12-36 hours.

[0476] The compound of formula (25) was prepared y by reaction of a compound of formula (23) with an alkylisothiourea (e.g. S-methylisothiourea, H₂NCNHSCH₃), while heating in a suitable solvent (e.g. ethanol) at 75 °C for several hours. When the reaction is substantially complete, the product of formula IVc was isolated by conventional means; for example, recrystallization.

4. Alternate synthesis of the Compounds of Formula IV - Scheme 11

R²
OEt
$$R^3$$
OEt
 R^3

Step-1 Preparation of formula (28)

[0477] Compound of formula (28) was prepared conventionally by reaction of a compound of formula (26), with thiourea of formula (27), in a polar solvent (e.g. ethanol), and typically heated near 80 °C for 12-36 hours and isolating the product by column chromatography.

123

Step-2 Preparation of formula (29)

[0478] Compound of formula (29) was prepared by reaction of a compound of formula (28) with an alkylating agent (e.g. ethylbromoacetate), in the presence of a base (e.g. K_2CO_3) in a suitable solvent (e.g. acetonitrile) at room temperature or reflux for several hours. When the reaction is substantially complete, the product of formula IVc was isolated by conventional means.

Example 13: Synthesis of the Compounds of Formula V:

Formula V

1. Synthesis of the Compounds of Formula Va, where R^1 , R^2 , R^3 , and R^6 are Methyl; R^4 and R^5 are Hydrogen - Scheme 12

[0479] The isoindole derivatives, represented by formula Va, can be prepared as shown in Scheme 12.

Step-1 Preparation of Formula Va

WO 2005/028624

[0480] The compound of formula (30) can be reacted with diketone compounds of formula (31), in aqueous acetic acid and typically heated near 100 °C for 12-36 hours. The compound can be isolated by conventional methods (e.g. recrystallization).

2. Synthesis of the Compounds of Formula Vb, where R³, R⁶, R⁴ and R⁵ are Hydrogen; R⁷ is hydroxy - Scheme 13

Step-1 Preparation of Formula Vb

[0481] The compound of Formula Vb is prepared conventionally by reaction of a compound of formula (32) with a Grignard reagent (e.g. Phenyl magnesium bromide), in a suitable solvent (e.g. benzene) and refluxed for 1 hour. When the reaction is substantially complete, the product of is isolated by conventional means (e.g., column chromatography).

3. Synthesis of the Compounds of Formula Vc, where where R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , and R^7 are Hydrogen - Scheme 14

$$N_3 + (R_4N)_2MoS_4$$
 Step 1 N

(34) (35) Formula Vc

Step-1 Preparation of Vc

[0482] The compound (34) and the ammonium tetrathiomolybdate of formula (35) are reacted at room temperature with aqueous CH₃CN as the solvent. When the reaction is substantially complete (typically 1 hour), the solvent is removes by evaporation at reduced

PCT/US2004/030360

pressure. The product Vc is isolated by conventional means (e.g. ether extraction). (Ramesha, et. al., J. Org. Chem., 1995,60, 7682-7683; and references therein).

Example 14: Synthesis of the Compounds of Formula VI:

Formula VI

1. Synthesis of the Compounds of Formula VIa, where $R^4 = H$ - Scheme 15

OEt Step 1

$$R^2$$
OEt R^1
 R^2
OEt R^1
 R^2
OEt R^2
(36)

 R^2
(37)

(38)

Formula Via

[0483] Pyrazolidinone derivatives, represented by formula VI, can be prepared as shown in Scheme-15.

[0484] The compound of formula (37) is prepared conventionally by reaction of a compound of formula (36), with an alkyl halide reagent (e.g. methyl iodide) in an inert solvent (e.g. DMF), in the presence of a base (e.g. K₂CO₃), typically heated near 80 °C for 12-36 hours.

Step-2 Preparation of formula VIa

[0485] Compound of formula (37) is reacted with hydrazine of formula (38) along with a catalytic amount of concentrated acid (e.g. hydrochloric acid) at 120 °C. The liberation of alcohol and water results in the formation of the product of formula VIa, can be isolated through conventional means, for example column chromatography.

WO 2005/028624 PCT/US2004/030360 126

2. Alternate synthesis of the Compounds of Formula VI, where R⁴=H: -Scheme 16

Step-1 Preparation of formula VIb

[0486] Compound of formula (36) is reacted with hydrazine of formula (38) along with a catalytic amount of concentrated acid (e.g. hydrochloric acid) at 120 °C. The liberation of alcohol and water results in the formation of the product of formula VIb, can be isolated through conventional means, for example column chromatography.

Step-2 Preparation of formula VIa:

[0487] The compound of formula VI is prepared conventionally by reaction of a compound of formula (42) with an alkylating agent of formula (43) (e.g. ethylbromoacetate), in the presence of a base (e.g. K₂CO₃) in a suitable solvent (e.g. acetonitrile) at room temperature or reflux for several hours. When the reaction is substantially complete, the product of Formula VI is isolated by conventional means; for example, recrystallization.

Example 15: Synthesis of the Compounds of Formula VII:

$$R^3$$
 R^4
 R^5
 R^6
 R^7
 R^7

Formula VII

1. Synthesis of the Compounds of Formula VII - Scheme 17

[0488] The 8-aminoquinoline derivatives, represented by formula VII, can be prepared as shown in Scheme-17. In this particular scheme, R⁵, R⁶, and R⁷ are hydrogen.

Step-1 Preparation of formula (41)

[0489] The compound of formula (41) can be prepared via a Skraup reaction by reaction of a compound of formula (39) (e.g. 2-nitroaniline), with glycerol (40), in the presence of sulfuric acid in an inert solvent (e.g. dioxane) and typically heated to > 100 °C for 2-24 hours. The addition of nitrobenzene or arsenic oxide can aid the reaction (Claus and Schoeller, *J. Prakt. Chem.* 1893, 48, 140. Mosher, H.S. et. al., Org. Syn. CV 3, 568).

Step-2 Preparation of formula (42)

[0490] The compound of formula (42) can be prepared conventionally by reaction of a compound of formula (41) with a reducing agent (e.g. hydrogen gas, ammonium formate, HCO₂NH₄), in the presence of a catalyst (e.g. Pd/C), in a suitable solvent (e.g. methanol) at room temperature for several hours. When the reaction is substantially complete, the product of formula (41) can be isolated by conventional means, (e.g. filtration through Celite).

Formula VII

Step-3 Preparation of formula VII

[0491] The compound of formula (42) can be reacted with a compound of formula (43) where X is a leaving group (e.g. bromide, chloride) or an electrophilic substituent (e.g. isocyanate, isothiocyanate), in the presence of base (e.g. K₂CO₃), in an inert solvent (e.g. DMF). Representaive examples of compounds of formula (43) include benzoyl chloride, benzenesulfonyl chloride, 3-bromo-2-methylpropane, benzyl bromide, phenyl isocyanate, and phenyl isothiocyanate. When the reaction is substantially complete, the product of formula VII can be isolated by conventional means (e.g. silica gel chromatography).

2. Alternative Exemplary Synthesis of Compounds of Formula VII - Scheme 18

[0492] The 8-aminoquinoline derivatives, represented by formula VII, can be prepared as shown in Scheme-18.

Step-1 Preparation of formula (41)

[0493] The compound of formula (41) can be prepared via a Friedländer synthesis by reaction of a compound of formula (44) (e.g. 2-amino-3-nitro-acetophenone), with a compound of formula (45) (e.g. acetone), in the presence of base (e.g. potassium hydroxide,

piperidine) in an inert solvent (e.g. ethanol) and possible with heating for 2-24 hours (Eckert, K. Angew. Chem. Int. Ed. 1981, 20, 208).

Step-2 Preparation of formula (42)

[0494] The compound of formula (42) can be prepared conventionally by reaction of a compound of formula (41) with a reducing agent (e.g. hydrogen gas, ammonium formate, HCO₂NH₄), in the presence of a catalyst (e.g. Pd/C), in a suitable solvent (e.g. methanol) at room temperature for several hours. When the reaction is substantially complete, the product of formula (42) can be isolated by conventional means, (e.g. filtration through Celite).

Step-3 Preparation of formula VII

[0495] The compound of formula (42) can be reacted with a compound of formula (48) where X is a leaving group (e.g. bromide, chloride) or an electrophilic substituent (e.g. isocyanate, isothiocyanate), in the presence of base (e.g. K₂CO₃), in an inert solvent (e.g. DMF). Representaive examples of compounds of formula (43) include benzoyl chloride, benzenesulfonyl chloride, 3-bromo-2-methylpropane, benzyl bromide, phenyl isocyanate, and phenyl isothiocyanate. When the reaction is substantially complete, the product of formula VII can be isolated by conventional means (e.g. silica gel chromatography).

Example 16: Site-directed Mutagenesis of Kinases

[0496] Mutagenesis of kinases, e.g. PIM kinases, such as the P123M mutation of PIM-1 can be carried out according to the following procedure (or other procedures available persons performing molecular biological techniques) as described in *Molecular Biology:* Current Innovations and Future Trends. Eds. A.M. Griffin and H.G.Griffin. (1995) ISBN 1-898486-01-8, Horizon Scientific Press, PO Box 1, Wymondham, Norfolk, U.K., among others.

[0497] In vitro site-directed mutagenesis is an invaluable technique for studying protein structure-function relationships, gene expression and vector modification. Several methods have appeared in the literature, but many of these methods require single-stranded DNA as the template. The reason for this, historically, has been the need for separating the complementary strands to prevent reannealing. Use of PCR in site-directed mutagenesis

accomplishes strand separation by using a denaturing step to separate the complementing strands and allowing efficient polymerization of the PCR primers. PCR site-directed methods thus allow site-specific mutations to be incorporated in virtually any double-stranded plasmid; eliminating the need for M13-based vectors or single-stranded rescue.

[0498] It is often desirable to reduce the number of cycles during PCR when performing PCR-based site-directed mutagenesis to prevent clonal expansion of any (undesired) second-site mutations. Limited cycling which would result in reduced product yield, is offset by increasing the starting template concentration. A selection is used to reduce the number of parental molecules coming through the reaction. Also, in order to use a single PCR primer set, it is desirable to optimize the long PCR method. Further, because of the extendase activity of some thermostable polymerases it is often necessary to incorporate an end-polishing step into the procedure prior to end-to-end ligation of the PCR-generated product containing the incorporated mutations in one or both PCR primers.

[0499] The following protocol provids as a facile method for site-directed mutagenesis and accomplishes the above desired features by the incorporation of the following steps: (i) increasing template concentration approximately 1000-fold over conventional PCR conditions; (ii) reducing the number of cycles from 25-30 to 5-10; (iii) adding the restriction endonuclease DpnI (recognition to get sequence: 5-Gm6ATC-3, where the A residue is methylated) to select against parental DNA (note: DNA isolated from almost all common strains of E. coli is Dam-methylated at the sequence 5-GATC-3); (iv) using Taq Extender in the PCR mix for increased reliability for PCR to 10 kb; (v) using Pfu DNA polymerase to polish the ends of the PCR product, and (vi) efficient intramolecular ligation in the presence of T4 DNA ligase.

[0500] Plasmid template DNA (approximately 0.5 pmole) is added to a PCR cocktail containing, in 25 ul of 1x mutagenesis buffer: (20 mM Tris HCl, pH 7.5; 8 mM MgCl2; 40 ug/ml BSA); 12-20 pmole of each primer (one of which must contain a 5-prime phosphate), 250 uM each dNTP, 2.5 U Taq DNA polymerase, 2.5 U of Taq Extender (Stratagene).

[0501] The PCR cycling parameters are 1 cycle of: 4 min at 94 C, 2 min at 50 C and 2 min at 72 C; followed by 5-10 cycles of 1 min at 94 C, 2 min at 54 C and 1 min at 72 C (step 1).

[0502] The parental template DNA and the linear, mutageness primer incorporating newly synthesized DNA are treated with *Dpn*I (10 U) and *Pfu* DNA polymerase (2.5U).

This results in the *DpnI* digestion of the *in vivo* methylated parental template and hybrid DNA and the removal, by *Pfu* DNA polymerase, of the *Taq* DNA polymerase-extended base(s) on the linear PCR product.

[0503] The reaction is incubated at 37 C for 30 min and then transferred to 72 C for an additional 30 min (step 2).

[0504] Mutagenesis buffer (1x, 115 ul, containing 0.5 mM ATP) is added to the *Dpn*I-digested, *Pfu* DNA polymerase-polished PCR products.

[0505] The solution is mixed and 10 ul is removed to a new microfuge tube and T4 DNA ligase (2-4 U) added.

[0506] The ligation is incubated for greater than 60 min at 37 C (step 3).

[0507] The treated solution is transformed into competent E. coli (step 4).

[0508] In addition to the PCT-based site-directed mutagenesis described above, other methods are available. Examples include those described in Kunkel (1985) *Proc. Natl. Acad. Sci.* 82:488-492; Eckstein et al. (1985) *Nucl. Acids Res.* 13:8764-8785; and using the GeneEditorTM Site-Directed Mutageneis Sytem from Promega.

[0509] All patents and other references cited in the specification are indicative of the level of skill of those skilled in the art to which the invention pertains, and are incorporated by reference in their entireties, including any tables and figures, to the same extent as if each reference had been incorporated by reference in its entirety individually.

[0510] One skilled in the art would readily appreciate that the present invention is well adapted to obtain the ends and advantages mentioned, as well as those inherent therein. The methods, variances, and compositions described herein as presently representative of preferred embodiments are exemplary and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art, which are encompassed within the spirit of the invention, are defined by the scope of the claims.

[0511] It will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the

scope and spirit of the invention. For example, variations can be made to crystallization or co-crystallization conditions for PIM proteins. Thus, such additional embodiments are within the scope of the present invention and the following claims.

[0512] The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. Thus, for example, in each instance herein any of the terms "comprising", "consisting essentially of" and "consisting of" may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims.

[0513] In addition, where features or aspects of the invention are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.

[0514] Also, unless indicated to the contrary, where various numerical values are provided for embodiments, additional embodiments are described by taking any 2 different values as the endpoints of a range. Such ranges are also within the scope of the described invention.

[0515] Thus, additional embodiments are within the scope of the invention and within the following claims.

HEADER

Table 1

```
XX-XXX-XX xxxx
   COMPND ---
 REMARK 3
REMARK 3 REFINEMENT.
REMARK 3 PROGRAM : REFMAC 5.1.19
REMARK 3 AUTHORS : MURSHUDOV, VAGIN, DODSON
REMARK 3
REMARK 3
REMARK 3
REFINEMENT TARGET : MAXIMUM LIKELIHOOD
REMARK 3
 REMARK 3 DATA USED IN REFINEMENT.
REMARK 3 RESOLUTION RANGE HIGH (ANGSTROMS): 2.00
REMARK 3 RESOLUTION RANGE LOW (ANGSTROMS): 84.52
REMARK 3 DATA CUTOFF (SIGMA(F)): NONE
REMARK 3 COMPLETENESS FOR RANGE (%): 99.27
REMARK 3 NUMBER OF REFLECTIONS : 28693
REMARK 3
REMARK 3
REMARK 3
  REMARK 3 FIT TO DATA USED IN REFINEMENT.
  REMARK 3 CROSS-VALIDATION METHOD
                                                                                                                                   : THROUGHOUT
 REMARK 3 FREE R VALUE TEST SET SELECTION : RANDOM REMARK 3 R VALUE (WORKING + TEST SET) : 0.22119 REMARK 3 R VALUE (WORKING SET) : 0.22012 REMARK 3 FREE R VALUE TEST SET SIZE (%) : 5.0 REMARK 3 FREE R VALUE TEST SET COUNT : 1498 REMARK 3
 REMARK 3
REMARK 3 FIT IN THE HIGHEST RESOLUTION BIN.
REMARK 3 TOTAL NUMBER OF BINS USED
REMARK 3 BIN RESOLUTION RANGE HIGH
 REMARK 3 TOTAL NUMBER OF BINS USED : 20
REMARK 3 BIN RESOLUTION RANGE HIGH : 2.000
REMARK 3 BIN RESOLUTION RANGE LOW : 2.052
REMARK 3 REFLECTION IN BIN (WORKING SET) : 2096
REMARK 3 BIN R VALUE (WORKING SET) : 0.344
REMARK 3 BIN FREE R VALUE SET COUNT : 102
REMARK 3 BIN FREE R VALUE : 0.359
 REMARK 3
 REMARK 3 NUMBER OF NON-HYDROGEN ATOMS USED IN REFINEMENT.
REMARK 3 ALL ATOMS : 2382
REMARK 3 B VALUES.
REMARK 3 FROM WILSON PLOT (A**2): NULL
REMARK 3 MEAN B VALUE (OVERALL, A**2): 49.236
REMARK 3 MEAN B VALUE (OVERALL, A REMARK 3 OVERALL ANISOTROPIC B VALUE.

REMARK 3 B11 (A**2): 1.32

REMARK 3 B22 (A**2): 1.32

REMARK 3 B33 (A**2): -1.99

REMARK 3 B12 (A**2): 0.66

REMARK 3 B13 (A**2): 0.00

REMARK 3 B23 (A**2): 0.00

REMARK 3 B23 (A**2): 0.00
 REMARK 3 ESTIMATED OVERALL COORDINATE ERROR.
 REMARK 3 ESU BASED ON R VALUE
REMARK 3 ESU BASED ON FREE R VALUE
                                                                                                                                                                             (A): 0.158
                                                                                                                                                                             (A): 0.142
 REMARK 3 ESU BASED ON MAXIMUM LIKELIHOOD (A): 0.127
REMARK 3 ESU FOR B VALUES BASED ON MAXIMUM LIKELIHOOD (A**2): 4.758
REMARK 3
REMARK 3 CORRELATION COEFFICIENTS.
 REMARK 3 CORRELATION COEFFICIENT FO-FC : 0.954
 REMARK 3 CORRELATION COEFFICIENT FO-FC FREE: 0.947
REMARK 3
ROUTETIONS FROM IDEAL VALUES COUNT RMS WEIGHT
REMARK 3
ROUTETIONS FROM IDEAL VALUES COUNT RMS WEIGHT
REMARK 3
ROUTETION ANGLES REFINED ATOMS (DEGREES): 3114; 1.088; 1.945
REMARK 3
REMARK 3
TORSION ANGLES, PERIOD 1 (DEGREES): 273; 3.838; 5.000
REMARK 3
REMARK 3
GENERAL PLANES REFINED ATOMS (A**3): 332; 0.081; 0.200
REMARK 3
REMARK 3
REMARK 3
REMARK 3
ROUTETION COLEFTCIENT FO-FC FREE: 0.94;
                                                                                                                                                                       RMS WEIGHT
```

134

```
3 H-BOND (X...Y) REFINED ATOMS (A): 138; 0.121; 0.200
3 SYMMETRY VDW REFINED ATOMS (A): 60; 0.282; 0.200
3 SYMMETRY H-BOND REFINED ATOMS (A): 19; 0.247; 0.200
     REMARK
     REMARK
     REMARK
     REMARK
     REMARK
                                3 ISOTROPIC THERMAL FACTOR RESTRAINTS.
                                                                                                                                                              COUNT RMS
                                3 MAIN-CHAIN BOND REFINED ATOMS (A**2): 1365; 1.058; 1.500
     REMARK
                                3 MAIN-CHAIN ANGLE REFINED ATOMS (A**2): 2212; 2.010; 2.000
     REMARK
     REMARK
                                3 SIDE-CHAIN BOND REFINED ATOMS (A**2): 931; 2.240; 3.000
3 SIDE-CHAIN ANGLE REFINED ATOMS (A**2): 902; 3.766; 4.500
      REMARK
      REMARK
                                3
     REMARK
                                3 NCS RESTRAINTS STATISTICS
      REMARK 3 NUMBER OF NCS GROUPS : NULL
      REMARK 3
      REMARK 3
      REMARK
REMARK
                                3 TLS DETAILS
                                        NUMBER OF TLS GROUPS : NULL
                                3
      REMARK 3
      REMARK 3 BULK SOLVENT MODELLING.
      REMARK 3 METHOD USED : BABINET MODEL WITH MASK REMARK 3 PARAMETERS FOR MASK CALCULATION REMARK 3 VDW PROBE RADIUS : 1.40
      REMARK 3 ION PROBE RADIUS : 0.80
      REMARK 3 SHRINKAGE RADIUS : 0.80
      REMARK 3
      REMARK
REMARK
                                 3 OTHER REFINEMENT REMARKS: NULL
      CISPEP 1 GLU A 124 PRO A 125
                                                                                                                                                                         0.00
CRYST1 99.210 99.210 0.00000 0.00000 0.00000 SCALE1 0.000000 0.01639 0.000000 0.00000 0.000000 SCALE2 0.000000 0.01639 0.000000 0.000000 0.000000 SCALE3 0.000000 0.000000 0.012456 0.000000 0.000000 ATOM 1 N PRO A 33 9.285 100.137 -4.493 1.00 93.84 ATOM 2 CA PRO A 33 8.922 99.154 -3.430 1.00 93.59 ATOM 3 CB PRO A 33 9.624 97.864 -3.896 1.00 93.79 ATOM 4 CG PRO A 33 10.732 98.328 -4.833 1.00 93.76 ATOM 5 CD PRO A 33 10.201 99.562 -5.499 1.00 93.83 ATOM 6 C PRO A 33 9.413 99.588 -2.038 1.00 93.22 ATOM 7 O PRO A 33 8.647 100.212 -1.288 1.00 93.33 ATOM 6 C PRO A 33 10.667 99.251 -1.716 1.00 92.55 ATOM 9 CA LEU A 34 11.325 99.616 -0.457 1.00 91.82 ATOM 10 CB LEU A 34 11.402 101.150 -0.303 1.00 92.11 ATOM 11 CG LEU A 34 11.402 101.150 -0.303 1.00 92.11 ATOM 12 CD1 LEU A 34 12.362 101.709 0.756 1.00 92.34 ATOM 12 CD1 LEU A 34 12.044 103.183 1.024 1.00 93.01 ATOM 14 C LEU A 34 11.164 97.828 1.157 1.00 92.34 ATOM 15 O LEU A 34 11.164 97.828 1.157 1.00 99.98 ATOM 16 N GLU A 35 9.837 99.614 1.498 1.00 93.01 ATOM 17 CA GLU A 35 9.837 99.614 1.498 1.00 99.98 ATOM 17 CA GLU A 35 9.837 99.614 1.498 1.00 89.80 ATOM 18 CB GLU A 35 10.444 101.039 4.047 1.00 88.76 ATOM 19 CG GLU A 35 10.444 101.039 4.047 1.00 88.76 ATOM 19 CG GLU A 35 10.444 101.039 4.047 1.00 88.76 ATOM 20 CD GLU A 35 10.297 99.526 3.901 1.00 88.76 ATOM 20 CD GLU A 35 10.297 99.526 3.901 1.00 88.76 ATOM 20 CD GLU A 35 10.297 99.526 3.901 1.00 88.76 ATOM 20 CD GLU A 35 10.297 99.526 3.901 1.00 88.76 ATOM 20 CD GLU A 35 10.297 99.526 3.901 1.00 88.76 ATOM 20 CD GLU A 35 10.297 99.526 3.901 1.00 88.76 ATOM 20 CD GLU A 35 10.297 99.526 3.901 1.00 88.76 ATOM 20 CD GLU A 35 10.297 99.526 3.901 1.00 88.76 ATOM 20 CD GLU A 35 10.297 99.526 3.901 1.00 88.76 ATOM 20 CD GLU A 35 10.297 99.526 3.901 1.00 88.76 ATOM 20 CD GLU A 35 10.297 99.526 3.901 1.00 88.76 ATOM 20 CD GLU A 35 10.297 99.526 3.901 1.00 88.76 ATOM 20 CD GLU A 35 10.297 99.526 3.901 1.00 88.76 ATOM 20 CD GLU A 35 10.297 99.526 3.901 1.00 88.76 ATOM 20 CD GLU A 35 10.297 99.526 3.901 1.00 88.76 ATOM 20 CD GLU
      CRYST1 99.210 99.210 80.285 90.00 90.00 120.00 P 65

      SCALE1
      0.010080
      0.005819
      0.000000
      0.00000

      SCALE2
      0.000000
      0.011639
      0.000000
      0.00000

      SCALE3
      0.000000
      0.000000
      0.012456
      0.000000

                                                                                                                                                                                                                                          N
                                                                                                                                                                                                                                          С
                                                                                                                                                                                                                                        C
                                                                                                                                                                                                                                         N
                                                                                                                                                                                                                                          C
                                                                                                                                                                                                                                          С
                                                                                                                                                                                                                                          С
                                                                                                                                                                                                                                         0
                                                                                                                                                                                                                                        С
                                                                                                                                                                                                                                          С
                                                                                                                                                                                                                                         С
                                                                                                                                                                                                                                         С
                             23 C GLU A 35
24 O GLU A 35
25 N SER A 36
26 CA SER A 36
27 CB SER A 36
28 OG SER A 36
29 C SER A 36
30 O SER A 36
31 N GLN A 37
32 CA GLN A 37
33 CB GLN A 37
34 CG GLN A 37
                                                                                                                                                                                                                                           0
                                                                                                                                                                                                                                           С
                                                                                                                                                                                                                                          С
                                                                                                5.170 100.444 2.150 1.00 81.91
3.997 100.755 2.389 1.00 81.51
5.535 99.262 1.651 1.00 79.60
4.600 98.179 1.363 1.00 77.25
                                                                                                                                                                                                                                         С
                                                                                                                                                                                                                                          0
        MOTA
       MOTA
                                                                                                                                                                                                                                          С
        ATOM
                                                                                                      5.316 97.058 0.614 1.00 77.48
        MOTE
                                34 CG GLN A 37
                                                                                                      6.195 97.509 -0.554 1.00 77.20
                                                                                                                                                                                                                                         С
       MOTA
                                                                                                      6.645 96.330 -1.414 1.00 77.20
5.827 95.483 -1.799 1.00 77.03
7.942 96.268 -1.709 1.00 76.81
                              35 CD GLN A 37
36 OE1 GLN A 37
37 NE2 GLN A 37
                                                                                                                                                                                                                                          С
        MOTA
        ATOM
        MOTA
```

7001	20	~	~~	_	2.7	2 070	97.604	2.623	1 00 75 40	^
ATOM	38	C	GLN .		37	3.970			1.00 75.49	C
ATOM	39	0	GLN .	Α.	37	2.879	97.043	2.567	1.00 75.51	0
ATOM	40	N	TYR .	A.	38	4.655	97.747	3.756	1.00 73.43	N
ATOM	41	CA	TYR .	A.	38	4.208	97.129	5.004	1.00 71.44	C
MOTA	42	CB	TYR .	A.	38	5.100	95.931	5.373	1.00 70.49	С
ATOM	43	CG	TYR		38	5,227	94.919	4.255	1.00 67.67	С
ATOM	44		TYR		38	4.258	93.929	4.067	1.00 65.14	C
							93.019	3.032		Č
MOTA	45		TYR		38	4.361			1.00 63.31	
ATOM	46	CZ	TYR	A	38	5.446	93.087	2.177	1.00 62.94	С
ATOM	47	OH	TYR	A	38	5.568	92.191	1.151	1.00 64.24	0
ATOM	48	CE2	TYR	Α	38	6.417	94.054	2.339	1.00 63.82	C
MOTA	49	CD2	TYR	A	38	6.304	94.967	3.371	1.00 65.13	С
ATOM	50	С	TYR		38	4.125	98.099	6.169	1.00 71.00	С
ATOM	51	Ō	TYR		38	5.021	98.914	6.385	1.00 70.68	0
			GLN		39	3.026	97.986	6.913	1.00 70.43	N
ATOM	52	N								C
ATOM	53	CA	GLN		39	2.797	98.756	8.124	1.00 69.86	
ATOM	54	CB	GLN	A	39	1.298	99.021	8.279	1.00 70.46	С
ATOM	55	CG	GLN	Α	39	0.934	100.007	9.385	1.00 73.80	С
ATOM	56	CD	GLN	Α	39	0.378	99.319	10.635	1.00 77.97	C
ATOM	57	OE1	GLN	A	39	-0.750	98.794	10.625	1.00 79.52	0
ATOM	58	NE2	GLN		39	1.161	99.330	11.717	1.00 78.94	N
	59	C	GLN		39	3.333	97.967	9.322	1.00 68.49	С
ATOM						2.704	97.003	9.777	1.00 68.58	Ö
ATOM	60	0	GLN		39					
MOTA	61	N	VAL		40	4.491	98.390	9.834	1.00 66.87	N
ATOM	62	CA	VAL	A	40	5.141	97.688	10.940	1.00 65.53	C
MOTA	63	CB	VAL	Α	40	6.600	98.137	11.138	1.00 65.20	С
ATOM	64	CG1	VAL	Α	40	7.310	97.201	12.100	1.00 64.63	С
ATOM	65	CG.	VAL	A	40	7.336	98.174	9.804	1.00 65.16	С
ATOM	66	C	'AL		40	4.376	97.837	12.255	1.00 64.96	С
ATOM	67	Ö	VAL		40	3.833	98.893	12.547	1.00 65.27	0
ATOM	68	N	GLY		41	4.339	96.766	13.042	1.00 64.02	N
	69	CA	CLT		41	3.640	96.764	14.310	1.00 62.22	С
ATOM						4.545	96.341	15.451	1.00 61.31	Ċ
ATOM	70	C	GL.		41	5.747	96.572	15.406	1.00 60.92	0
ATOM	71	0	GLY		41		95.725	16.478	1.00 60.62	N
ATOM	72	N	PRO		42	3.966		17.666	1.00 60.91	C
ATOM	73	CA	PRO		12	4.723	95.313		1.00 60.81	Č
ATOM	74	CB	PRO		12	3.636	94.755	18.602		C
MOTA	75	CG	PRO		12	2.347	95.332	18.089	1.00 60.97	C
MOTA	76	CD	PRO		42	2.529	95.401	16.599	1.00 60.64	
ATOM	77	С	PRO	Α	42	5.759	94.235	17.385	1.00 60.96	C
ATOM	78	0	PRO	A	42	5.626	93.478	16.424	1.00 60.93	0
ATOM	79	N	LEU	Α	43	6.783	94.180	18.226	1.00 61.11	N
ATOM	80	CA	LEU	Α	43	7.737	93.084	18.200	1.00 61.79	C
ATOM	81	CB	LEU	Α	43	8.924	93.411	19.110	1.00 61.59	C
ATOM	82	CG	LEU		43	10.162	92.511	19.107	1.00 62.19	С
ATOM	83		LEU		43	11.000	92.704	17.848	1.00 61.21	С
			LEU		43	11.003	92.782	20.344	1.00 62.67	С
ATOM	84						91.795	18.643	1.00 62.48	C
ATOM	85	C	LEU		43	7.027 6.143	91.824	19.511	1.00 62.19	ő
MOTA	86	0	LEU		43			18.030	1.00 63.26	N
ATOM	87	N	LEU		44	7.396	90.671			
ATOM	88	CA	LEU	A	44	6.811	89.378	18.387	1.00 63.89	C
MOTA	89	CB	LEU	Α	44	6.257	88.663	17.154	1.00 63.70	C
ATOM	90	CG	LEU	A	44	5.135	89.362	16.379	1.00 63.05	С
ATOM	91	CD1	LEU	Α	44	4.801	88.562	15.131	1.00 62.30	С
ATOM	92	CD2	LEU	Α	44	3.894	89.539	17.241	1.00 62.27	С
MOTA	93	С	LEU		44	7.791	88.474	19.110	1.00 64.82	C
ATOM	94	ō	LEU		44	7.386	87.669	19.951	1.00 65.08	0
ATOM	95	N	GLY		45	9.071	88.602	18.784	1.00 66.08	N
		CA	GLY		45	10.088	87.734	19.357	1.00 68.09	С
ATOM	96					11.517	88.122	19.027	1.00 69.52	Č
ATOM	97	C	GLY		45			18.124	1.00 69.05	0
ATOM	98	0	GLY		45	11.763	88.937		1.00 09.03	
MOTA	99	N	SER		46	12.448	87.517	19.774		N
MOTA	100	CA	SER		46	13.891	87.764	19.662	1.00 72.58	C
MOTA	101	CB	SER		46	14.311	88.922	20.588	1.00 72.92	C
ATOM	102	OG	SER		46	15.655	89.327	20.364	1.00 74.04	0
ATOM	103	С	SER	Α	46	14.688	86.513	20.027	1.00 73.06	С
MOTA	104	0	SER	Α	46	14.265	85.720	20.875	1.00 73.26	0
ATOM	105	N	GLY	Α	47	15.849	86.349	19.394	1.00 73.67	N
ATOM	106	CA	GLY	A	47	16.733	85.234	19.707	1.00 74.04	C

ATOM	107	С	GLY I	Ά	47	17.739	84.965	18.608	1.00	74.12	С
		0	GLY .		47	18.133	85.889	17.883		74.48	ō
MOTA	108										
ATOM	109	N	GLY A		48	18.150	83.698	18.490		73.84	N
ATOM	110	CA	GLY .	A	48	19.109	83.257	17.478	1.00	73.16	С
ATOM	111	С	GLY .	A	48	18.602	83.392	16.048	1.00	72.45	С
ATOM	112	0	GLY .	A	48	19.391	83.374	15.093	1.00	72.37	0
		N	PHE .		49	17.282	83.531	15.911		71.52	N
ATOM	113										
MOTA	114	CA	PHE .		49	16.647	83.755	14.612		70.43	C
ATOM	115	CB	PHE .	A	49	15.215	83.187	14.590	1.00	70.83	С
ATOM	116	CG	PHE .	A	49	14.301	83.752	15.661	1.00	73.19	С
ATOM	117	CD1	PHE	Δ	49	13.584	84.933	15.439	1.00	74.32	С
			PHE		49	12.738	85.453	16.419		75.71	Č
MOTA	118										
ATOM	119	CZ	PHE		49	12.587	84.787	17.638		75.96	C
MOTA	120	CE2	PHE	A	49	13.290	83.605	17.874	1.00	75.42	С
ATOM	121	CD2	PHE	Α	49	14.139	83.090	16.883	1.00	74.82	С
ATOM	122	С	PHE		49	16.696	85.231	14.157	1.00	68.55	С
								12.963		69.15	ō
MOTA	123	0	PHE		49	16.785	85.509				
MOTA	124	N	GLY	A	50	16.663	86.164	15.106		66.20	N
MOTA	125	CA	GLY	A	50	16.625	87.588	14.795	1.00	62.55	С
MOTA	126	С	GLY	Α	50	15.562	88.351	15.578	1.00	59.75	С
		Ö	GLY		50	15.316	88.056	16.754		59.86	0
ATOM	127										
ATOM	128	N	SER		51	14.945	89.332	14.916		56.20	N
ATOM	129	CA	SER	А	51	13.866	90.148	15.480	1.00	51.75	C
ATOM	130	CB	SER	A.	51	14.300	91.614	15.587	1.00	51.18	C
ATOM	131	OG	SER		51	15.454	91.750	16.401	1.00	48.30	0
						12.699	90.076	14.537		49.79	С
ATOM	132	С	SER		51						
ATOM	133	0	SER	A	51	12.848	90.341	13.344		48.22	0
ATOM	134	N	VAL	A.	52	11.538	89.724	15.064	1.00	47.77	N
ATOM	135	CA	VAL	Α	52	10.345	89.551	14.243	1.00	46.96	C
ATOM	136	CB	VAL		52	9.795	88.091	14.312	1.00	46.48	C
						8.570	87.924	13.397		45.18	C
ATOM	137		VAL		52						č
MOTA	138	CG2	VAL	A	52	10.873	87.082	13.955		45.83	
MOTA	139	C	VAL	Α	52	9.265	90.515	14.701	1.00	47.44	С
ATOM	140	0	VAL	Α	52 `	8.874	90.493	15.869	1.00	48.09	0
			TYR		53	8.784	91.346	13.779	1.00	47.68	N
ATOM	141	N						14.055		48.21	C
ATOM	142	CA	TYR		53	7.723	92.315				
MOTA	143	CB	TYR	Α	53	8.102	93.711	13.532		47.13	C
ATOM	144	CG	TYR	Α	53	9.290	94.335	14.223	1.00	46.28	. C
ATOM	145		TYR		53	10.593	93.949	13.897	1.00	43.98	C
					53	11.689	94.495	14.532	1.00	42.59	С
ATOM	146		TYR					15.521		43.72	Č
ATOM	147	\mathbf{cz}	TYR	A	53	11.498	95.475				
ATOM	148	OH	TYR	Α	53	12.598	96.012	16.159		43.55	0
MOTA	149	CE2	TYR	Α	53	10.226	95.884	15.864	1.00	44.06	C
ATOM	150		TYR		53	9.117	95.305	15.221	1.00	45.68	С
					53	6.436	91.886	13.363		49.25	С
ATOM	151	C	TYR								ō
ATOM	152	0	TYR	Α	53	6.466	91.335	12.258		48.07	
ATOM	153	N	SER	A	54	5.306	92.162	14.008		50.84	N
ATOM	154	CA	SER	Α	54	3.996	91.959	13.398	1.00	53.09	С
ATOM	155	CB	SER		54	2.889	92.092	14.445	1.00	53.24	С
						1.609	91.939	13.854		55.73	0
MOTA	156	OG	SER		54						c
MOTA	157	С	SER	A	54	3.826	93.019	12.342		54.41	
ATOM	158	0	SER	A	54	4.303	94.129	12.510		55.46	0
ATOM	159	N	GLY	Α	55	3.151	92.691	11.248	1.00	56.17	N
	160	CA	GLY		55	3.043	93.625	10.143	1.00	58.09	С
ATOM							93.391	9.327		60.22	Ċ
ATOM	161	C	\mathtt{GLY}		55	1.800					
ATOM	162	0	GLY	Α	55	1.164	92.343	9.433		60.35	0
ATOM	163	N	ILE	A	56	1.457	94.381	8.513	1.00	62.12	N
ATOM	164	CA	ILE		56	0.307	94.305	7.635	1.00	64.34	С
							95.188	8.169	1 00	64.42	С
ATOM	165	CB	ILE		56	-0.847				65.47	
ATOM	166		ILE		56	-1.391	94.639	9.500			C
ATOM	167	CD1	ILE	Α	56	-2.240	95.670	10.281		66.61	С
ATOM	168		ILE		56	-1.969	95.273	7.149	1.00	65.46	С
	169	C	ILE		56	0.759	94.780	6.267		65.56	С
ATOM								6.155		65.96	Ö
ATOM	170	0	ILE		56	1.422	95.805				
ATOM	171	N	ARG	Α	57	0.419	94.017	5.233		67.26	N
MOTA	172	CA	ARG	A	57	0.731	94.386	3.858	-	© 8.96	С
ATOM	173	СВ	ARG		57	0.628	93.161	2.946	1.00	68.74	С
	174	CG	ARG		5 <i>7</i>	1.139	93.361	1.520		68.49	.c
ATOM								0.532		68.56	c
ATOM	175	CD	ARG	A	57	0.433	92.424	0.552	1.00	50.50	C

ATOM	176	NE	ARG	Α	57	1.266	91.272	0.179	1.00	68.20	N
ATOM	177	CZ	ARG		57	0.777	90.086	-0.208	1.00		
											С
ATOM	178		ARG		57	-0.551	89.870	-0.291	1.00		И
MOTA	179	NH2	ARG	Α	57	1.616	89.106	-0.517	1.00	69.04	N
ATOM	180	С	ARG	Α	57	-0.259	95.448	3.422	1.00	70.41	С
ATOM	181	0	ARG		57	-1.430	95.146	3.171	1.00		
											0
ATOM	182	N	VAL		58	0.218	96.691	3.345	1.00	12.30	N
ATOM	183	ÇA	VAL	A	58	-0.626	97.844	2.998	1.00	73.91	С
ATOM	184	CB	VAL	Α	58	0.193	99.177	2.969	1.00	73.84	С
ATOM	185		VAL		58	-0.704					
								2.670	1.00		С
ATOM	186	CG2	VAL		58	0.924	99.394	4.297	1.00	73.45	С
ATOM	187	C	VAL	A	58	-1.348	97.602	1.666	1.00	74.98	С
ATOM	188	0	VAL	Ά	58	-2.468	98.081	1.465	1.00	75 68	Ō
ATOM	189	N	SER		59	-0.710			1.00		
							96.822	0.788			N
ATOM	190	CA	SER	A	59	-1.268	96.456	-0.521	1.00	76.51	C
MOTA	191	CB	SER	Α	59	-0.255	95.617	-1.320	1.00	76.86	C
ATOM	192	OG	SER	Α	59	1.103	96.061	-1.049	1.00	78.49	0
	193	C			59	-2.617					
ATOM			SER				95.721	-0.460		76.40	С
ATOM	194	0	SER	A	59	-3.382	95.775	-1.422	1.00	76.81	0
ATOM	195	N	ASP	Α	60	-2.902	95.026	0.645	1.00	75.89	N
MOTA	196	CA	ASP	Δ	60	-4.174	94.299	0.790	1 00	75.35	С
						-4.230					
ATOM	197	CB	ASP		60		93.077	-0.148	1.00		С
ATOM	198	CG	ASP		60	-3.124	92.064	0.126	1.00	76.95	C
ATOM	199	OD1	ASP	Α	60	-2.835	91.788	1.307	1.00	78.19	O
ATOM	200		ASP		60	-2.488	91.483	-0.788	1.00		0
MOTA	201	С	ASP		60	-4.543	93.872	2.217		74.33	С
ATOM	202	0	ASP	Α	60	-5.339	92.947	2.398	1.00	74.34	0
ATOM	203	N	ASN	Α	61	-3.965	94.541	3.215	1.00	72.99	N
ATOM	204	CA	ASN		61	-4.194	94.219	4.633		71.45	Ċ
ATOM	205	CB	ASN	A	61	-5.599	94.651	5.074		72.10	С
MOTA	206	CG	ASN	Α	61	-5.790	96.158	5.026	1.00	73.42	С
ATOM	207	OD1	ASN	Α	61	~5.333	96.885	5.926	1.00	74.58	0
ATOM	208		ASN		61	-6.471	96.636	3.975	1.00		N
ATOM	209	С	ASN	A	61	-3.928	92.759	5.035	1.00		С
ATOM	210	0	ASN	Α	61	-4.535	92.242	5.975	1.00	69.76	0
ATOM	211	N	LEU	Α	62	-3.020	92.098	4.323	1.00	67.18	N
					62	-2.623	90.738	4.680	1.00		Ċ
ATOM	212	CA	LEU								
ATOM	213	CB	LEU	A	62	-1.901	90.057	3.518	1.00		C
ATOM	214	CG	LEU	A	62	-1.291	88.685	3.821	1.00	65.22	С
ATOM	215	CD1	LEU	Α	62	-2.383	87.635	4.009	1.00	65.88	C
							88.264	2.725	1.00		c
ATOM	216		LEU		62	-0.325					
ATOM	217	С	LEU	Α	62	-1.698	90.766	5.883	1.00	61.89	С
MOTA	218	0	LEU	Α	62	-0.682	91.453	5.863	1.00	61.51	0
ATOM	219	N	PRO	Ά	63	-2.044	90.010	6.920	1.00	59.57	N
	220	CA	PRO		63	-1.164	89.840	8.083	1.00		C
ATOM											
ATOM	221	CB	PRO		63	-1.963	88.888	8.983	1.00		С
ATOM	222	CG	PRO	Α	63	-3.376	89.106	8.573	1.00	58.58	C
MOTA	223	CD	PRO		63	-3.303	89.261	7.080	1.00	59.38	С
ATOM	224	C	PRO		63	0.180	89.221	7.694	1.00		Č
MOTA	225	0	PRO		63	0.211	88.163	7.075	1.00		0
ATOM	226	N	VAL	A	64	1.274	89.902	8.025	1.00	53.21	N
ATOM	227	CA	VAL	A	64	2.609	89.375	7.773	1.00	50.67	С
	228		VAL			3.306	90.097	6.590	1.00		Č
MOTA		CB			64						
ATOM	229		VAL		64	2.441	90.040	5.326	1.00		С
ATOM	230	CG2	VAL	Α	64	3.641	91.537	6.943	1.00	49.88	C
ATOM	231	С	VAL		64	3.492	89.445	9.025	1.00	49.15	C
							90.150	9.981			
ATOM	232	0	VAL		64	3.175			1.00		0
MOTA	233	N	ALA	Α	65	4.587	88.692	9.015	1.00		N
ATOM	234	CA	ALA	A	65	5.604	88.774	10.046	1.00	44.84	С
ATOM	235	CB	ALA		65	5.881	87.384	10.654	1.00		C
ATOM	236	C	ALA		65	6.834	89.315	9.356	1.00		C
ATOM	237	0	ALA	A	65	7.123	88.912	8.218	1.00	43.40	0
ATOM	238	N	ILE	Α	66	7.547	90.233	10.012	1.00	42.88	N
ATOM	239	CA	ILE		66	8.716	90.883	9.405	1.00		Ĉ
MOTA	240	CB	ILE		66	8.494	92.410	9.252	1.00		C
MOTA	241	CG1			66	7.260	92.679	8.383	1.00		С
ATOM	242	CD1	ILE	Α	66	6.685	94.112	8.501	1.00	47.03	C
ATOM	243	CG2	ILE	Α	66	9.704	93.067	8.636	1.00		С
	244	C	ILE		66	9.958	90.572	10.214	1.00		
ATOM	244	_	جارب		00	2.330	20.312	10.214	1.00	10.25	, C

ATOM	245	0	ILE A	A 6	6	10.119	91.057	11.342		41.89	0
MOTA	246	N	LYS A		7	10.820	89.731	9.641		41.21	N
ATOM	247	CA	LYS A		7	11.971 12.052	89.193 87.664	10.353		41.66 41.05	C
ATOM ATOM	248 249	CB CG	LYS A		57 57	13.288	87.013	10.761		42.61	C C
ATOM	250	CD	LYS A		57	13.165	85.495	10.666		44.83	c
MOTA	251	CE	LYS 2			14.213	84.780	11.488		46.29	Ċ
ATOM	252	NZ	LYS A		57	14.165	83.309	11.228		46.83	N
ATOM	253	С	LYS A	А б	57	13.243	89.833	9.867	1.00	41.57	С
MOTA	254	0	LYS A	A 6	57	13.548	89.773	8.671		40.97	0
MOTA	255	И	HIS A		8	13.988	90.415	10.807		41.97	N
ATOM	256	CA	HIS A		8	15.254	91.087	10.553		43.17	C
ATOM	257	CB	HIS A		58	15.343 14.352	92.419 93.440	11.318 10.858		42.46 40.77	C
ATOM ATOM	258 259	CG ND1	HIS A		58 58	13.018	93.384	11.203		43.58	N
ATOM	260		HIS A		58	12.376	94.393	10.640		41.67	Ċ
ATOM	261		HIS		58	13.247	95.100	9.942		41.02	N
ATOM	262		HIS		58	14.489	94.522	10.062	1.00	37.93	С
ATOM	263	С	HIS A		88	16.408	90.217	10.960	1.00	45.01	С
ATOM	264	0	HIS I	A 6	58	16.466	89.744	12.089		44.97	0
ATOM	265	N	VAL		59	17.340	90.027	10.030		46.61	N
MOTA	266	CA	VAL .		59	18.516	89.225	10.272		49.40	C
MOTA	267	CB	VAL		59	18.538	87.969	9.359		49.48	C
ATOM	268		VAL		59 50	19.738 17.266	87.093 87.146	9.675 9.529		50.89 49.70	C
MOTA MOTA	269 270	CGZ	VAL X		59 59	19.746	90.103	10.038		51.36	c
ATOM	271	Ö	VAL		59	19.879	90.721	8.983		50.89	Ō
ATOM	272	N	GLU		70	20.634	90.162	11.026		53.97	N
ATOM	273	CA	GLU		70	21.870	90.924	10.896	1.00	57.27	С
MOTA	274	CB	GLU .	A 7	70	22.480	91.219	12.272		57.98	С
ATOM	275	CG	GLU	A 7	70	21.674	92.205	13.105		61.81	С
ATOM	276	CD	GLU .		70	22.524	93.240	13.839		66.09	C
ATOM	277		GLU .		70	21.982	93.928	14.744		67.00	0
ATOM	278		·GLU :		70	23.729	93.377	13.518 10.057		68.05 58.15	0 C
ATOM	279	C	GLU .		70 70	22.861 23.115	90.148 88.977	10.037		57.86	Ö
MOTA	280 281	O N	GLU .		71	23.420	90.807	9.041		60.40	N
ATOM ATOM	282	CA	LYS		71	24.433	90.193	8.174		62.67	С
ATOM	283	CB	LYS		71	24.982	91.207	7.166	1.00	62.59	С
ATOM	284	CG	LYS		71	23.999	91.544	6.056	1.00	63.22	C
MOTA	285	CD	LYS	A 7	71	24.634	92.387	4.973		64.60	C
MOTA	286	CE	LYS .	A 7	71	23.644	92.635	3.848		65.13	C
ATOM	287	NZ	LYS		71	24.159	93.586	2.831		66.01	N C
ATOM	288	C	LYS		71	25.567	89.589	8.987 8.737	1.00	64.37 64.24	0
MOTA	289	0	LYS		71 72	25.990 26.029	88.462 90.336	9.986		67.27	N
ATOM	290 291	N CA	ASP ASP		72	27.153	89.928	10.820		70.03	C
ATOM ATOM	292	CB	ASP		72	27.483	91.037	11.814		70.83	С
ATOM	293	CG	ASP		72	28.294	92.162	11.177		73.07	С
ATOM	294		ASP		72	27.828	92.764	10.174	1.00	75.44	0
ATOM	295		ASP		72	29.412	92.511	11.611		74.89	0
ATOM	296	С	ASP	A 7	72	26.923	88.614	11.551		71.40	C
MOTA	297	0	ASP		72	27.875	87.895	11.851		71.59	0
ATOM	298	N	ARG		73	25.658	88.287	11.805		73.23	И
ATOM	299	CA	ARG		73	25.304	87.068	12.540		74.86 75.53	C
MOTA	300	CB	ARG		73	24.241 24.741	87.380 88.293	13.602 14.718		79.03	C
ATOM	301	CG	ARG ARG		73 73	23.959	88.151	16.043		84.58	č
ATOM ATOM	302 303	CD NE	ARG		73 73	23.692	86.752	16.394		88.34	N
ATOM	304	CZ	ARG		73	24.598	85.901	16.878		89.85	C
ATOM	305		ARG		73	25.857	86.293	17.083	1.00	90.48	N
ATOM	306		ARG		73	24.239	84.650	17.161		90.61	N
ATOM	307	С	ARG		73	24.839	85.929	11.630		75.02	С
ATOM	308	0	ARG		73	24.067	85.067	12.054		75.13	0
ATOM	309	N	ILE		74	25.321	85.926	10.386		75.26	И
ATOM	310	CA	ILE		74	24.969	84.885	9.420		75.36 75.17	C
MOTA	311	CB CG1	ILE ILE		74 74	24.359 23.188	85.503 86.425	8.127 8.465		74.84	C
MOTA	312 313		ILE		74 74	22.660	87.204	7.280		75.37	C
ATOM	دىد	CDI	71151	Z-1		~~.000	J EU 4				C

ATOM	314	CG2	ILE	A	74	23.893	84.408	7.166	1.00	74.86	С
ATOM	315	С	ILE	A	74	26.189	84.022	9.088		75.92	Č
ATOM	316	0	ILE		74	27.201	84.519		1.00	76.08	0
MOTA	317	И	SER		75	26.090	82.730			76.26	N
ATOM	318	CA	SER		75	27.155	81.784	9.072		76.63	С
ATOM	319	CB	SER		75	27.184	80.641	10.094		77.05	С
MOTA	320 321	OG	SER		75	26.007	79.839	10.009		78.24	0
MOTA MOTA	322	С 0	SER		75	26.990	81.226			76.35	С
ATOM	323	N	SER ASP		75	27.918 25.798	81.285	6.855		76.40	0
ATOM	324	CA	ASP		76 76	25.798	80.703	7.372		75.95	N
ATOM	325	CB	ASP		76	24.528	80.025 78.875	6.109 6.332		75.64	С
ATOM	326	CG	ASP		76	25.112	77.756			76.36	C
ATOM	327		ASP		76	25.828	76.906			78.38 80.43	С
ATOM	328		ASP		76	24.900	77.642	8.391		81.66	0
MOTA	329	С	ASP		76	24.948	80.952	5.043		74.58	C
ATOM	330	0	ASP	A	76	23.946	81.635	5.262		74.37	0
MOTA	331	N	TRP	A	77	25.592	80.945	3.879		73.73	N
ATOM	332	CA	TRP	A	77	25.148	81.728	2.730		72.88	C
MOTA	333	CB	TRP	Α	77	26.159	82.826	2.398	1.00	72.08	Č
MOTA	334	CG	TRP	Α	77	26.345	83.854	3.455	1.00	68.72	С
ATOM	335	CD1			77	27.105	83.748	4.582	1.00	67.14	С
ATOM	336	NE1			77	27.038	84.911	5.313	1.00	66.79	N
ATOM	337		TRP		77	26.228	85.800	4.657	1.00	66.47	С
ATOM	338		TRP		77	25.776	85.163	3.478	1.00	66.40	С
MOTA	339		TRP		77	24.926	85.870	2.620		65.70	С
ATOM	340	CZ3			77	24.557	87.169	2.958		65.66	С
ATOM	341	CH2			77	25.023	87.770	4.139		65.79	С
ATOM ATOM	342 343	C 22	TRP		77 77	25.858	87.104	5.000		65.98	С
ATOM	344	0	TRP		77	25.020 25.727	80.808 79.802	1.529		73.58	C
ATOM	345	Ŋ	GLY		78	24.127	81.159	1.434 0.610		73.41	0
ATOM	346	CA	GLY		78	23.959	80.407	-0.623		75.77	N C
ATOM	347	C	GLY		78	23.491	81.313	-1.740		77.06	C
ATOM	348	ō	GLY		78	23.426	82.534	-1.567		77.12	0
MOTA	349	N	GLU		79	23.157	80.725	-2.887		78.52	N
ATOM	350	CA	GLU	A	79	22.685	81.517	-4.022		80.32	C
ATOM	351	CB	GLU	A	79	23.710	81.532	-5.170	1.00	80.86	С
ATOM	352	CG	GLU	Α	79	24.083	80.152	-5.723	1.00	83.43	С
ATOM	353	CD	GLU	A	79	24.713	80.234	-7.108	1.00	85.86	C
MOTA	354		GLU		79	25.813	80.822	-7.235	1.00	86.43	0
ATOM	355		GLU		79	24.107	79.708	-8.071		86.75	0
ATOM	356	C	GLU		79	21.311	81.091	-4.518		80.80	С
ATOM	357	0	GLU		79	20.948	79.917	-4.453		80.46	0
ATOM	358	N C7	LEU		80	20.558	82.069	-5.012		81.81	N
ATOM ATOM	359 360	CA	LEU		80	19.233	81.837	-5.582		82.81	С
MOTA	361	CB CG	LEU LEU		80 80	18.441 18.289	83.152 83.870	-5.596 -4.254		82.78 83.30	C
ATOM	362		LEU		80	17.545	85.189	-4.234		83.40	C C
ATOM	363		LEU		80	17.588	82.965	-3.238		83.57	C
ATOM	364	C	LEU		80	19.343	81.256	-6.998		83.29	C
ATOM	365	Ō	LEU		80	20.440	81.256	-7.570		83.54	0
MOTA	366	N	PRO		81	18.235	80.753	-7.567		83.78	N
ATOM	367	CA	PRO		81	18.221	80.340	-8.986		83.97	C
ATOM	368	CB	PRO	Α	81	16.758	79.937	-9.218		83.94	C
ATOM	369	CG	PRO	Α	81	16.267	79.535	-7.871		84.00	Č
ATOM	370	CD	PRO	A	81	16.927	80.513	-6.923	1.00	83.86	С
MOTA	371	С	PRO	Α	81	18.623	81.488	-9.926	1.00	84.09	С
ATOM	372	0	PRO	A	81	18.910	81.267	-11.102	1.00	84.07	0
ATOM	373	N	ASN		82	18.644	82.700	-9.376		84.20	N
ATOM	374		ASN		82	19.070		-10.064		83.96	С
ATOM	375		ASN		82	18.276	85.106	-9.492		84.25	С
ATOM	376		ASN		82	18.738		-10.026		85.14	С
ATOM	377	OD1			82	18.869		-11.241		85.89	0
MOTA	378	ND2			82	18.979	87.393	-9.115		84.89	N
ATOM ATOM	379 380		asn asn		82	20.586	84.137	-9.935		83.40	C
ATOM ATOM	381		GLY		82 83	21.190 21.191	84.889 83.461	-10.709		83.24	0
ATOM	382		GLY		83	22.597	83.634	-8.958 -8.626		82.90 82.10	N
	JU2	~			55	64.551	33.034	0.020	1.00	UZ.1U	С

ATOM	383	С	GLY	A	83	22.845	84.924	-7.863	1.00 81	49	С
MOTA	384	0	GLY		83	23.382	85.883	-8.430	1.00 81		Ö
MOTA	385	N	THR	A	84	22.437	84.944	-6.590	1.00 80	.61	N
ATOM	386	CA	THR	A	84	22.609	86.097	-5.687	1.00 79	.41	С
ATOM	387	CB	THR		84	21.290	86.893	-5.543	1.00 79	.60	С
ATOM	388		THR		84	20.718	87.127	-6.836	1.00 80	.05	0
ATOM	389	CG2	THR		84	21.561	88.322	-5.007	1.00 79	.91	C
ATOM	390	С	THR		84	23.081	85.643	-4.302		.07	C.
MOTA	391	0	THR		84	22.728	84.557	-3.841	1.00 78		0
ATOM	392	N	ARG		85 85	23.866	86.489	-3.643	1.00 75		N
ATOM ATOM	393 394	CA	ARG		85	24.443	86.177	~2.338	1.00 73		C
MOTA	395	CB CG	ARG ARG		85 85	25.768 26.453	86.943 86.829	-2.184	1.00 74		C
ATOM	396	CD	ARG		85	27.404	85.638	-0.833 -0.725	1.00 75	15	C
ATOM	397	NE	ARG		85	28.213	85.731	0.487	1.00 76		И
ATOM	398	CZ	ARG		85	28.957	84.739	0.972	1.00 77		C
MOTA	399		ARG		85	29.005	83.560	0.352	1.00 76		N
ATOM	400		ARG		85	29.655	84.929	2.086	1.00 77		N
MOTA	401	С	ARG	Α	85	23.457	86.502	-1.199	1.00 71		Ċ
MOTA	402	0	ARG	Α	85	23.415	87.632	-0.696	1.00 71	.91	0
MOTA	403	N	VAL	A	86	22.653	85.514	-0.809	1.00 68	.61	N
ATOM	404	CA	VAL	А	86	21.660	85.693	0.262	1.00 65	.46	С
ATOM	405	CB	VAL		86	20.191	85.642	-0.265	1.00 65		С
MOTA	406		VAL		86	19.977	86.633	-1.394	1.00 64		С
ATOM	407		VAL		86	19.822	84.250	-0.709	1.00 65		С
ATOM	408	С	VAL		86	21.866	84.656	1.372	1.00 63		C
ATOM	409	0	VAL		86	22.543	83.649	1.144	1.00 63		0
ATOM ATOM	4.0 41.1	N CA	PRO PRO		87 87	21.301 21.399	84.887 83.907	2.563 3.649	1.00 60		N C
ATOM	4 .2	CE	PRO		87	20.570	84.544	4.774	1.00 58		C
ATOM	4 .3	CG	PRO		87	20.590	85.999	4.478	1.00 59		C
MOTA	4.1.4	CD	PRO		87	20.535	86.082	2.986	1.00 60		C
ATOM	415	C	PRO		87	20.797	82.564	3.237	1.00 56		c
ATOM .	41.5	V	PRO		87	19.802	82.524	2.513	1.00 55		0
ATOM	41'7	N,	TE 1,		88	21.416	81.479	3.681	1.00 54		N
MOTA	418	CA	T' 1	A	88	20.866	80.142	3.458	1.00 53	.19	C
ATOM	419	СВ	МП	A_{i}	88 .	21.638	79.111	4.295	1.00 54	.18	С
ATOM	420	CG	MI T	A	88	21.273	77.645	4.025	1.00 57		С
ATOM	421	SD	MZT		88	21.341	77.213	2.247	1.00 65		S
MOTA	422	CE	MET		88	23.113	77.148	2.002	1.00 62		С
ATOM	423	C	MET		88	19.363	80.103	3.775	1.00 50		C
ATOM	424	0	MET		88	18.565	79.594	2.979	1.00 49		0
MOTA	425 426	N Cn	GĽŰ Gľú		89	18.982	80.688 80.754	4.918 5.317	1.00 48		N C
ATOM ATOM	427	CA CB	GLU		89 89	17.575 17.392	81.686	6.522	1.00 45		C
ATOM	428	CG	GLU		89	15.944	81.803	6.991	1.00 45		C
MOTA	429	CD	GLU		89	15.803	82.541	8.303	1.00 44		c
ATOM	430		GLU		89	16.819	83.008	8.856	1.00 47		ő
ATOM	431		GLU		89	14.671	82.638	8.790	1.00 44		Ō
ATOM	432	С	GLU		89	16.653	81.168	4.171	1.00 46		C
MOTA	433	0	GLU	A	89	15.612	80.548	3.962	1.00 46	.41	0
ATOM	434	N	VAL	A	90	17.031	82.215	3.429	1.00 46	.05	N
ATOM	435	CA	VAL		90	16.243	82.669	2.275	1.00 45		С
ATOM	436	CB	VAL		90	16.759	84.018	1.725	1.00 46		С
MOTA	437		VAL		90	15.966	84.431	0.491	1.00 45		С
ATOM	438		VAL		90	16.663	85.102	2.800	1.00 46		С
ATOM	439	C	VAL		90	16.234	81.639	1.137	1.00 45		C
ATOM	440	0	VAL		90	15.210	81.399	0.525	1.00 45		0
ATOM	441	N	JAV		91	17.389	81.053	0.851	1.00 45		N
ATOM	442 443	CA CB	VAL VAL		91 91	17.490	80.034 79.465	-0.197	1.00 46		C
ATOM ATOM	443		VAL		91 91	18.913 18.975	78.292	-0.279 -1.284	1.00 46 1.00 47		C
ATOM	445		VAL		91	19.892	80.556	-0.674	1.00 47		C C
ATOM	446	C	VAL		91	16.496	78.909	0.074	1.00 44		C
ATOM	447	ō	VAL		91	15.631	78.603	-0.729	1.00 45		0
MOTA	448	N.	LEU		92	16.591	78.352	1.302	1.00 43		И
ATOM	449	CA	LEU		92	15.704	77.260	1.749	1.00 42		C
ATOM	450	CB	LEU		92	16.106	76.772	3.137	1.00 40		Č
MOTA	451	CG	LEU	A	92	17.577	76.417	3.316	1.00 40		Ċ

MOTA	452	CD1	LEU	Α	92	17.798	75.867	4.711	1.00 37.63	C
ATOM	453		LEU		92	18.061	75.410	2.247	1.00 40.38	С
ATOM	454		LEU		92	14.245	77.641	1.742	1.00 42.09	Č
						13.401	76.888	1.243	1.00 41.96	Ö
MOTA	455		LEU		92					
ATOM	456		LEU		93	13.936	78.812	2.289	1.00 42.17	N
ATOM	457		LEU		93	12.556	79.280	2.328	1.00 43.42	C
ATOM	458	CB	LEU	A	93	12.461	80.632	3.051	1.00 42.52	С
MOTA	459	CG	LEU	Α	93	12.416	80.645	4.589	1.00 42.30	C
MOTA	460	CD1	LEU	Α	93	12.576	82.074	5.095	1.00 39.64	C
ATOM	461	CD2	LEU	Α	93	11.117	80.069	5.107	1.00 39.20	С
ATOM	462	C	LEU		93	11.947	79.382	0.921	1.00 44.51	С
			LEU		93	10.823	78.940	0.691	1.00 44.42	Ö
ATOM	463	0				12.690	79.981		1.00 46.08	N
ATOM	464	N	LYS		94			-0.012		
ATOM	465	CA	LYS		94	12.222	80.098	-1.391	1.00 47.69	C
MOTA	466	CB	LYS	Α	94	13.266	80.807	-2.254	1.00 48.80	С
ATOM	467	CG	LYS	Α	94	13.146	82.329	-2.195	1.00 52.89	С
ATOM	468	CD	LYS	Α	94	14.133	83.009	-3.126	1.00 57.20	C
MOTA	469	CE	LYS	A	94	13.761	82.810	-4.598	1.00 58.87	С
ATOM	470	NZ	LYS		94	12.411	83.360	-4.919	1.00 60.23	N
	471	C	LYS		94	11.903	78.730	-1.981	1.00 47.52	С
ATOM						10.870	78.564	-2.633	1.00 48.02	Ō
ATOM	472	0	LYS		94					
ATOM	473	N	LYS		95	12.792	77.766	-1.733	1.00 47.55	N
ATOM	474	CA	LYS	Α	95	12.615	76.380	-2.185	1.00 48.35	C
ATOM	475	CB	LYS	Α	95	13.836	75.536	-1.829	1.00 48.23	С
ATOM	476	CG	LYS	Α	95	15.023	75.801	-2.747	1.00 48.74	C
ATOM	477	CD	LYS	Α	95	16.293	75.188	-2.212	1.00 50.92	С
ATOM	478	CE	LYS		95	16.392	73.705	-2.529	1.00 53.76	С
ATOM	479		LYS		95	16.339	73.414	-3.999	1.00 55.34	N
	480	C	LYS		95	11.351	75.706	-1.659	1.00 48.52	С
ATOM						10.770	74.872	-2.358	1.00 48.90	Ō
ATOM	481	0	LYS		95				1.00 48.20	N
ATOM	482	N	VAL		96	10.921	76.056	-0.444		
ATOM	483	CA	VAL	Α	96	9.759	75.395	0.149	1.00 48.68	C
ATOM	484	CB	VAL	А	96	10.001	74.989	1.620	1.00 48.64	C
ATOM	485	CG1	VAL	А	96	11.105	73.977	1.718	1.00 45.61	C
ATOM	486	CG2	VAL	A	96	10.301	76.238	2.498	1.00 47.01	C
ATOM	487	C	VAL		96	8.469	76.211	0.082	1.00 50.79	C
	488	Ö	VAL			7.412	75.751	0.544	1.00 50.14	0
ATOM						8.547	77.419	-0.476	1.00 52.75	N
MOTA	489	N	SER		97			-0.523	1.00 55.97	Ċ
MOTA	490	CA	SER		97	7.384	78.301		1.00 56.04	č
MOTA	491	CB	SER		97	7.820	79.751	-0.306		
ATOM	492	OG	SER	Α	97	8.364	79.912	0.999	1.00 53.48	0
MOTA	493	С	SER	A	97	6.572	78.124	-1.816	1.00 58.83	С
ATOM	494	0	SER	Α	97	7.097	78.270	-2.921	1.00 60.33	0
ATOM	495	N	SER	Α	98	5.294	77.767	-1.667	1.00 61.85	N
ATOM	496	CA	SER		.98	4.397	77.478	-2.805	1.00 63.61	С
	497	CB	SER		98	5.081	76.573	-3.822	1.00 63.67	С
ATOM							75.300	-3.246	1.00 63.53	0
ATOM	498	OG	SER		98	5.317		-2.304	1.00 65.08	Č
ATOM	499	C	SER		98	3.120	76.797			Ö
MOTA	500	0	SER		98	2.764	76.902	-1.125	1.00 65.04	
ATOM	501	N	GLY	A	99	2.442	76.091	-3.204	1.00 66.21	N
ATOM	502	CA	GLY	Α	99	1.192	75.403	-2.892	1.00 67.46	С
ATOM	503	С	GLY	Α	99	0.948	74.924	-1.464	1.00 67.88	C
ATOM	504	0	GLY		99	-0.086	75.258	-0.860	1.00 68.29	0
	505	N	PHE			1.877	74.127	-0.924	1.00 68.05	N
ATOM			PHE			1.723	73.626	0.436	1.00 67.53	С
ATOM	506	CA						0.871	1.00 68.29	Č
MOTA	507	CB	PHE			2.873	72.738			c
ATOM	508	CG	PHE			2.530	71.844	2.047	1.00 69.62	
ATOM	509	CD1	PHE	Α	100	1.249	71.278	2.168	1.00 70.09	С
ATOM	510	CE1	PHE	Α	100	0.933	70.435	3.245	1.00 70.04	С
ATOM	511	CZ			100	1.906	70.147	4.214	1.00 69.68	C
ATOM	512		PHE			3.181	70.698	4.103	1.00 69.67	С
			PHE			3.488	71.552	3.025	1.00 70.39	Ċ
ATOM	513						74.720	1.453	1.00 66.54	č
ATOM	514	C			100	1.617				o
ATOM	515	0			100	1.946	75.873	1.193	1.00 68.10	
MOTA	516	N			101	1.174	74.341	2.637	1.00 64.56	N
ATOM	517	CA	SER	Α	101	0.954	75.295	3.693	1.00 61.98	C
ATOM	518	CB	SER	Α	101	-0.524	75.693	3.717	1.00 62.34	С
ATOM	519	OG	SER	Α	101	-1.344	74.533	3.712	1.00 64.11	0
ATOM	520	С			101	1.379	74.726	5.036	1.00 59.07	· C

WO 2	2005/02	28624							PC	T/US2004/0303
							142			
ATOM	521	0	SER	Α	101	0.982	75.260	6.087	1.00 60.11	0
MOTA	522	N	GLY			2.170	73.649	5.013	1.00 55.16	N C
ATOM	523	CA	GLY			2.732	73.096	6.245	1.00 49.51 1.00 46.58	C
MOTA	524	C	GLY			3.986	73.857 73.592	6.676 7.726	1.00 43.90	Ö
ATOM	525	O NT	GLY VAL			4.576 4.411	74.794	5.840	1.00 44.62	N
MOTA	526 527	N CA	VAL			5.521	75.673	6.162	1.00 44.58	C
ATOM ATOM	527 528	CB	VAL			6.738	75.384	5.255	1.00 44.89	С
ATOM	529		VAL			7.832	76.366	5.505	1.00 46.40	C
ATOM	530		VAL			7.282	73.964	5.503	1.00 45.56	C
MOTA	531	С	VAL	Α	103	5.057	77.124	6.013	1.00 43.92	C
MOTA	532	0	VAL			4.370	77.458	5.049	1.00 43.86	0
MOTA	533	N	IIE			5.427	77.982	6.961	1.00 43.35	N
ATOM	534	CA	ILE			5.168	79.411	6.824	1.00 42.66	C
MOTA	535	CB	ILE			5.520	80.165 80.057	8.122 9.077	1.00 43.40 1.00 44.47	c
ATOM	536 537		ILE			4.339 4.527	80.787	10.332	1.00 50.46	C
ATOM ATOM	538		ILE			5.877	81.660	7.853	1.00 41.37	C
MOTA	539	C	ILE			5.961	79.925	5.622	1.00 42.85	C
ATOM	540	0	ILE			7.184	79.743	5.536	1.00 41.68	0
ATOM	541	N	ARG	A	105	5.241	80.535	4.691	1.00 42.70	N
ATOM	542	CA	ARG			5.807	80.875	3.395	1.00 44.62	C
MOTA	543	CB	ARG			4.690	80.815	2.360	1.00 46.35	C
ATOM	544	CG	ARG			5.065	81.242	0.972	1.00 53.53 1.00 61.61	C
ATOM	545	CD	ARG			4.460 3.071	80.351 80.019	-0.099 0.185	1.00 65.80	N
ATOM	546 547	NE CZ	ARG ARG			2.156	79.818	-0.763	1.00 68.07	C
MOTA MOTA	548		ARG			2.489	79.894	-2.060	1.00 69.01	N
ATOM	549		ARG			0.907	79.535	-0.414	1.00 68.72	N
ATOM	550	C	ARG			6.464	82.255	3.412	1.00 43.35	C
MOTA	551	0	ARG	A	105	5.955	83.180	4.045	1.00 40.91	0
MOTA	552	N	LEU			7.597	82.359	2.722	1.00 42.75	И
MOTA	553	CA	LEU			8.288	83.624	2.481	1.00 43.28	C
MOTA	554	CB	LEU			9.746	83.349	2.126 1.905	1.00 42.30 1.00 42.45	C
ATOM	555	CG CD1	LEU			10.653 10.906	84.564 85.341	3.204	1.00 40.95	C
ATOM ATOM	556 557		LEU			11.993	84.148	1.293	1.00 40.34	C
MOTA	558	C			106	7.601	84.394	1.350	1.00 44.07	С
ATOM	559	0			106	7.620	83.960	0.206	1.00 44.25	0
ATOM	560	N	LEU	A	107	6.979	85.521	1.683	1.00 44.63	N
ATOM	561	CA			107	6.241	86.316	0.712	1.00 45.98	C
MOTA	562	CB			107	5.123	87.107	1.401	1.00 46.13	C
ATOM	563	CG			107	4.143	86.246 87.069	2.202 3.085	1.00 46.97 1.00 47.43	C
ATOM	564 565		LEU LEU			3.237 3.330	85.376	1.239	1.00 47.43	C
MOTA MOTA	565 566	CDZ			107	7.145	87.267	-0.066	1.00 46.90	Č
MOTA	567	Ö			107	6.793	87.686	-1.177	1.00 46.82	0
ATOM	568	N			108	8.302	87.601	0.511	1.00 47.11	N
MOTA	569	CA	ASP	Α	108	9.241	88.537	-0.108	1.00 47.79	С
MOTA	570	CB			108	8.543	89.875	-0.430	1.00 47.83	C
ATOM	571	CG			108	9.311	90.725	-1.464	1.00 50.15	C
ATOM	572		ASP			10.299		-2.085 -1.710	1.00 50.90 1.00 52.00	0
MOTA	573 574	C CD2	ASP		108	8.978 10.392		0.841	1.00 32.00	C
ATOM ATOM	575	0			108	10.319		2.025	1.00 46.97	ō
ATOM	576	N			109	11.453		0.318	1.00 48.18	N
MOTA	577	CA			109	12.613		1.114	1.00 48.85	C
ATOM	578	CB	TRP	Α	109	13.598	88.588	1.170	1.00 48.93	С
MOTA	579	CG			109	14.148		-0.171	1.00 51.68	C
ATOM	580		TRP			13.543		-1.137	1.00 52.64	C
MOTA	581		TRP			14.354		-2.244	1.00 54.00	С
MOTA	582		TRP TRP			15.509 15.407		-2.013 -0.715	1.00 54.40 1.00 53.99	
ATOM ATOM	583 584		TRP			16.470		-0.715	1.00 55.22	C
ATOM	585		TRP			17.577		-1.056	1.00 56.91	G
ATOM	586		TRP			17.641		-2.348	1.00 57.27	C
ATOM	587		TRP	A	109	16.621		-2.839	1.00 55.31	С
MOTA	588	C			109	13.302		0.555	1.00 49.39	
MOTA	589	0	TRP	A	109	13.160	91.316	-0.638	1.00 49.52	0

ATOM	590	N	PHE	Α	110	14.043	91.672	1.425	1 00	49.52	N
ATOM											
	591	CA			110	14.737	92.912	1.077		50.21	Ç
MOTA	592	CB	PHE	A	110	14.005	94.130	1.649	1.00	49.95	Ċ
ATOM	593	CG	PHE	Α	110	12.583	94.259	1.182	1.00	51.89	C
ATOM	594	CD1	PHE	Α	110	12.268	95.026	0.061	1.00	53.85	Ċ
ATOM	595		PHE							54.01	
						10.950	95.139	-0.376			. с
MOTA	596	cz			110	9.941	94.477	0.310		54.23	· c
MOTA	597	CE2	$_{ m PHE}$	A	110	10.249	93.710	1.426	1.00	53.04	C
ATOM	598	CD2	PHE	Α	110	11.559	93.611	1.855	1.00	52.18	С
ATOM	599	C			110			1.657		50.39	
						16.126	92.848				С
MOTA	600	0	PHE	A	110	16.331	92.251	2.711	T.00	49.25	0
ATOM	601	N	${\tt GLU}$	A	111	17.087	93.452	0.966	1.00	51.10	N
ATOM	602	CA	GLU	Α	111	18.440	93.541	1.494	1.00	52.22	С
ATOM	603	СВ	_		111	19.450	93.076	0.457		52.56	
											C
ATOM	604	CG			111	20.896	93.340	0.835		54.50	С
MOTA	605	CD	GLU	A	111	21.857	92.662	-0.109	1.00	57.61	C
ATOM	606	OE1	GLU	A	111	21.513	92.561	-1.309	1.00	60.12	0
ATOM	607	OE2	GLU	А	111	22.937	92.211	0.348		59.23	Ō
	608	C			111						
ATOM						18.751	94.974	1.938		52.56	С
MOTA	609	0			111	18.340	95.943	1.290		53.03	0
ATOM	610	N	ARG	Α	112	19.470	95.084	3.050	1.00	52.37	N
ATOM	611	CA	ARG	Α	112	19.880	96.362	3.605	1.00	52.15	С
MOTA	612	CB			112	19.204	96.601	4.957		51.55	c
ATOM	613	CG			112	17.795	97.170	4.862		50.03	C
MOTA	614	CD	ARG	A	112	17.101	97.229	6.225	1.00	49.06	C
ATOM	615	NE	ARG	A	112	15.825	97.939	6.172	1.00	47.63	N
ATOM	616	cz	ARG	Α	112	15.036	98.135	7.223	1.00	48.41	С
ATOM	617		ARG			15.379	97.664	8.420		47.11	N
ATOM	618		ARG			13.895	98.797	7.078		48.44	N
ATOM	619	С	ARG	A	112	21.380	96.312	3.789	1.00	52.90	С
ATOM	620	0	ARG	A	112	21.972	95.227	3.727	1.00	52.95	0
ATOM	621	N	PRO	Α	113	22.008	97.466	4.027	100	53.80	N
		CA				23.463	97.519	4.222		53.98	C
ATOM	622		PRO								
MOTA	623	CB	PRO	A	113	23.696	98.958	4.718		54.67	С
MOTA	624	CG	PRO	Α	113	22.595	99.746	4.065	1.00	54.14	C
ATOM	625	CD	PRO	Α	113	21.396	98.811	4.112	1.00	54.32	С
ATOM	626	С	PRO			23.998	96.489	5.220	1.00	54.07	С
											ō
ATOM	627	0	PRO			24.980	95.812	4.914		54.49	
ATOM	628	N	ASP	A	114	23.373	96.342	6.382	1.00	54.16	N
ATOM	629	CA	ASP	A	114	23.903	95.378	7.346	1.00	54.11	С
ATOM	630	CB	ASP	Α	114	24.430	96.112	8.575	1.00	55.71	С
ATOM	631	CG	ASP			25.631	96.989	8.245		58.46	С
										61.78	
ATOM	632		ASP			25.423	98.057	7.607			0
MOTA	633	OD2	ASP	Ą	114	26.805	96.681	8.573	1.00	60.03	0
ATOM	634	С	ASP	A	114	22.937	94.269	7.755	1.00	52.78	C
MOTA	635	0	ASP	Α	114	23.188	93.548	8.727	1.00	53.03	0
	636			_		21.852	94.111	6.999		50.98	N
ATOM		N	SER								
ATOM	637	CA	SER			20.856	93.105	7.331		48.41	С
ATOM	638	CB	SER	A	115	19,960	93.649	8.439	1,00	48.04	C
MOTA	639	OG	SER	Α	115	18.997	94.528	7.893	1.00	45.84	0
ATOM	640	С	SER	Α	115	19.978	92.666	6.155	1.00	47.32	С
ATOM	641	Ō	SER			19.987	93.285	5.096		46.92	Ō
MOTA	642	N	PHE			19.198	91.609	6.381		45.66	N
MOTA	643	CA	PHE	A	116	18.171	91.174	5.446		44.29	С
ATOM	644	CB	PHE	Α	116	18.457	89.746	4.994	1.00	44.76	C
MOTA	645	CG	PHE	Α	116	19.567	89.632	3.980	1.00	45.24	С
MOTA	646		PHE			20.892	89.484	4.385		45.34	Ċ
MOTA	647		PHE			21.915	89.360	3.447		47.24	С
ATOM	648	CZ	PHE	A	116	21.614	89.387	2.077	1.00	46.18	C
MOTA	649	CE2	PHE	Α	116	20.291	89.531	1.661	1.00	48.08	C
ATOM	650		PHE			19.275	89.646	2.615		47.94	C
										43.43	
MOTA	651	С	PHE			16.824	91.238	6.141			C
ATOM	652	0	PHE			16.721	90.945	7.333		42.72	0
MOTA	653	N	VAL	A	117	15.797	91.641	5.411	1.00	42.24	N
MOTA	654	CA	VAL	A	117	14.450	91.681	5.945	1.00	41.74	С
ATOM	655	CB	VAL			13.837	93.087	5.818		41.89	č
	656		VAL				93.136	6.447		41.40	
ATOM						12.473					C
ATOM	657		VAL			14.753	94.122	6.451		42.52	С
MOTA	658	C	VAL	A	117	13.578	90.652	5.209	1.00	41.80	С

ATOM	659	0	VAL .	A 117	13.507	90.660	3.974	1.00 40.77	0
MOTA	660	N		A 118	12.934	89.765	5.974	1.00 41.04	И
ATOM	661	CA		A 118	12.094	88.693	5.410	1.00 40.22	C
ATOM ATOM	662 663	CB CG		A 118	12.520	87.337	5.977	1.00 39.98	C
MOTA	664		LEU	A 118	13.795 15.014	86.695 87.562	5.423	1.00 40.10	C
ATOM	665		LEU .		14.032	85.325	5.619 6.063	1.00 42.56 1.00 39.40	C
ATOM	666	c		A 118	10.635	88.939	5.720	1.00 39.40	C
ATOM	667	0		A 118	10.275	89.223	6.861	1.00 39.35	o
MOTA	668	Й		A 119	9.795	88.842	4.700	1.00 39.45	И
ATOM	669	CA		A 119	8.370	89.028	4.876	1.00 40.37	С
MOTA	670	CB		A 119	7.774	89.921	3.756	1.00 40.19	C
ATOM ATOM	671 672		ILE .	A 119	8.555 8.540	91.248 92.131	3.612	1.00 41.49	C
ATOM	673	CG2		A 119	6.296	90.136	4.855 3.989	1.00 40.16 1.00 39.40	C
ATOM	674	C		A 119	7.748	87.638	4.823	1.00 33.40	C
ATOM	675	0	ILE .	A 119	7.793	86.966	3.788	1.00 40.59	ō
MOTA	676	N	LEU .	A 120	7.167	87.222	5.939	1.00 41.43	N
ATOM	677	CA		A 120	6.634	85.872	6.076	1.00 42.78	С
ATOM	678 679	CB		A 120	7.355	85.144	7.216	1.00 41.61	С
ATOM ATOM	680	CG CD1	LEU I	A 120	8.868 9.558	85.010 84.928	7.046	1.00 40.99	C
ATOM	681		LEU		9.234	83.785	8.402 6.187	1.00 43.47 1.00 42.48	C
ATOM	682	C		A 120	5.138	85.922	6.330	1.00 44.08	c
ATOM	683	0		A 120	4.604	86.963	6.715	1.00 44.77	ō
ATOM	684	N		A 121	4.449	84.808	6.109	1.00 45.28	N
ATOM	685	CA		A 121	3.026	84.738	6.436	1.00 47.09	С
ATOM	686	CB		A 121	2.430	83.409	5.985	1.00 47.99	С
ATOM ATOM	687 688	CG CD		A 121 A 121	2.534 1.959	83.123 81.759	4.497 4.170	1.00 49.97 1.00 53.32	С
ATOM	689	OE1		A 121	0.911	81.714	3.506	1.00 55.61	C 0
ATOM	690		GLU Z		2.548	80.735		1.00 52.97	ő
ATOM	691	С	GLU A	A 121	2.841	84.862	7.938	1.00 47.78	Ċ
MOTA	692	0		A 121	3.753	84.550	8.711	1.00 47.35	0
ATOM	693	N		A 122	1.670	85.326	8.351	1.00 48.92	N
ATOM ATOM	694 695	CA CB		A 122 A 122	1.369	85.439	9.766	1.00 50.98	C
ATOM	696	CG		A 122	1.555 1.196	86.883 87.085	10.257 11.730	1.00 50.78 1.00 51.57	C
ATOM	697	CD		A 122	1.716	88.383	12.349	1.00 51.63	C
ATOM	698	NE	ARG A	A 122	1.119	89.578	11.744	1.00 52.11	N
ATOM	699	CZ		A 122	-0.133	89.977	11.951	1.00 51.61	С
MOTA	700		ARG A		-0.937	89.274	12.741	1.00 51.42	N
ATOM ATOM	701 702	NH2 C	ARG A		-0.588	91.070	11.354	1.00 50.64	N
ATOM	703	0	ARG A	A 122	-0.054 -1.005	84.965 85.749	10.017 9.922	1.00 52.37 1.00 52.94	C 0
ATOM	704	N	PRO F		-0.211	83.682	10.328	1.00 52.54	И
ATOM	705	CA	PRO F		-1.529	83.141	10.672	1.00 54.00	c
ATOM	706	CB	PRO F	123	-1.227	81.669	10.973	1.00 54.39	С
ATOM	707	CG	PRO F		0.057	81.394	10.250	1.00 54.18	С
ATOM	708	CD	PRO A		0.845	82.652	10.398	1.00 53.87	C
ATOM ATOM	709 710	C O	PRO P		-2.012 -1.172	83.835 84.333	11.928 12.676	1.00 54.39 1.00 54.50	С
ATOM	711	N	GLU A		-3.322	83,862	12.164	1.00 54.85	O N
ATOM	712	CA	GLU A		-3.859	84.533	13.348	1.00 55.63	C
ATOM	713	CB	GLU A	124	-3.870	86.046	13.089	1.00 56.97	Ċ
MOTA	714	CG	GLU A		-3.856	86.946	14.335	1.00 62.93	С
ATOM	715	CD	GLU A		-4.020	88.417	13.933	1.00 69.90	. C
MOTA	716 717		GLU A		-4.962	88.742	13.153	1.00 72.13	0
ATOM ATOM	718	C	GLU A		-3.195 -5.270	89.256 84.018	14.385 13.671	1.00 71.98 1.00 53.97	0
MOTA	719	0	GLU A		-6.093	83.910	12.764	1.00 54.52	C 0
ATOM	720	N	PRO A		-5.563	83.673	14.930	1.00 52.32	Ŋ
MOTA	721	CA	PRO A		-4.601	83.673	16.040	1.00 51.14	C
ATOM	722	CB	PRO A		-5.504	83.553	17.275	1.00 51.19	Ċ
ATOM	723	CG	PRO A		-6.689	82.766	16.783	1.00 50.94	C
ATOM ATOM	724 725	CD C	PRO A		-6.906	83.255	15.374	1.00 51.87	C
ATOM	726	0	PRO A		-3.694 -4.057	82.453 81.436	15.970 15.379	1.00 50.27 1.00 49.98	c
ATOM	727		VAL A		-2.526	82.562	16.588	1.00 49.98	O N
								· ·	7.4

ATOM ATOM MOTA MOTA MOTA MOTA MOTA MOTA С MOTA MOTA MOTA 0 MOTA MOTA MOTA ATOM MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA ATOM MOTA ATCM ATOL' ATON I OTA С AT'C\1 0 ATO.4 N MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA С ATOM MOTA 0 ATOM MOTA MOTA MOTA MOTA MOTA 0 MOTA MOTA MOTA N MOTA С MOTA С MOTA С ATOM MOTA MOTA ATOM MOTA ATOM MOTA ATOM MOTA MOTA ATOM ATOM MOTA 794 CG2 ILE A 133 4.026 70.461 26.249 1.00 42.29 MOTA 2.514 72.780 27.054 1.00 46.10 2.046 72.191 28.023 1.00 46.11 2.514 795 С ILE A 133 ATOM 796 ILE A 133 MOTA 0

ATOM	797	N	THR	20	13/	3.231	73.894	27 162	2 00	40 40		
								27.162		48.42		N
ATOM	798	CA	THR	A	134	3.487	74.529	28.453	1.00	51.23		С
ATOM	799	CB	THR	Α	134	4.314	75.805	28.261	1.00	51.04		С
ATOM	800	വരി	THR			5.695	75.440	28.115		52.55		
ATOM	801											0
			THR			4.293	76.695	29.524	1.00	53.00		С
ATOM	802	С	THR	Α	134	2.179	74.851	29.159	1.00	52.34		С
MOTA	803	0	THR	Α	134	2.069	74.673	30.365	1.00	53.35		0
MOTA	804	N	GLU			1.188	75.303	28.400		53.42		
MOTA	805											N
		CA	GLU			-0.110	75.662	28.959	1.00	54.43		C
ATOM	806	CB	GLU	Α	135	-0.840	76.644	28.038	1.00	55.03		С
MOTA	807	CG	GLU	Α	135	-0.137	78.004	27.941	1 00	59.01		Č
ATOM	808	CD	GLU	Α	135	-0.981	79.054	27.234		62.58		
ATOM	809		GLU			-1,942						С
							78.685	26.505		64.20		0
MOTA	810	OE2	GLU			-0.675	80.254	27.412	1.00	63.63		0
ATOM	811	С	GLU	Α	135	-1.009	74.468	29.215	1.00	53.96		С
MOTA	812	0	GLU	Α	135	-1.743	74.440	30.206	1 00	54.61		ō
ATOM	813	N	ARG			-0.975	73.490	28.318				
ATOM										52.83		N
	814	CA	ARG			-1.947	72.404	28.385		51.61		С
ATOM	815	CB	ARG	A	136	-2.646	72.261	27.036	1.00	52.42		С
MOTA	816	CG	ARG	Α	136	-3.486	73.503	26.736	1.00	55.25		С
MOTA	817	CD	ARG	A	136	-4.130	73.538	25.378		58.99		C
ATOM	818	NE				-4.990						
			ARG				72.381	25.145		60.79		N
MOTA	819	CZ	ARG			-6.072	72.415	24.379	1.00	61.01		С
ATOM	820	NH1	ARG	A	136	-6.425	73.559	23.777	1.00	60.57		N
ATOM	821	NH2	ARG	Α	136	-6.793	71.310	24.207	1 . 00	60.45		N
ATOM	822	С	ARG			-1.376	71.086	28.887		50.04		
												С
ATOM	823	0	ARG			-2.116	70.144	29.119	1.00	50.37		0
ATOM	824	N	\mathtt{GLY}	A	137	-0.062	71.033	29.081	1.00	48.53		N
ATOM	825	CA	GLY	Α	137	0.597	69.799	29.477	1.00	46.78		С
ATOM	826	С	GLY	Α	137	0.532	68.744	28.381		44.89		Č
ATOM	827	0	GLY			0.183	69.046	27.232				
										45.03		0
ATOM	828	N	ALA			0.849	67.509	28.748	1.00	43.07		N
ATOM	829	CA	ALA	Α	138	0.841	66.374	27.833	1.00	41.43		С
ATOM	830	CB	ALA	Α	138	1.023	65.083	28.602	1.00	41.46		С
ATOM	831	C '	ALA	А	138	-0.433	66.321	26.990		40.58		Č
ATOM	832	ō -	ALA			-1.533						
							66.476	27.491		40.85		0
ATOM	833	N	LEU			-0.274	66.108	25.693	1.00	38.87		И
MOTA	834	CA	LEU	Α	139	-1.415	66.107	24.794	1.00	37.16		C
ATOM	835	CB	LEU	Α	139	-0.994	66.557	23.392	1.00	34.91		С
ATOM	836	CG	LEU			-0.224	67.881	23.369		36.75		Č
	837											
ATOM			LEU			0.082	68.270	21.920		35.15		C
	838	CD2	LEU	A	139	-1.002	68.999	24.124	1.00	35.61		C
ATOM	839	С	LEU	Α	139	-2.039	64.741	24.731	1.00	36.86		C
ATOM	840	0	LEU	Α	139	-1.338	63.733	24.761	1.00	37.14		0
ATOM	841	N	GLN			-3.362	64.714	24.626		37.15		N
ATOM	842	CA	GLN			-4.071	63.473	24.348		38.86		С
ATOM	843	CB	GLN	Α	140	-5.566	63.726	24.208	1.00	39.38		Ç
ATOM	844	CG	GLN	A	140	-6.266	63.885	25.540	1.00	45.52		С
ATOM	845	CD	GLN	А	140	-7.649	64.493	25.395		52.38		С
ATOM	846		GLN			-8.442	64.070	24.534		54.06		Ö
	847		GLN			-7.949	65.488	26.234		55.44		N
ATOM	848	С	GLN	A	140	-3.532	62.890	23.062	1.00	37.84		С
ATOM	849	0	GLN	Α	140	-3.192	63.643	22.141	1.00	37.63		0
ATOM	850	N	GLU	А	141	-3.449	61.559	22.996		37.43		N
	851	CA	GLU			-2.897	60.881					
								21.808		37.42		С
	852	CB	GLU			-2.849	59.373	22.030	1.00	37.84		C
ATOM	853	CG	GLU	Α	141	-1.883	59.033	23.164	1.00	38.10		С
ATOM	854	CD	GLU			-1.571	57.568	23.263	1,00	36.74		C
	855		GLU			-1.639	56.867	22.233		35.36		
												0
	856		GLU			-1.261	57.117	24.383		37.15		0
	857	С	GLU			-3.596	61.227	20.498	1.00	36.95		С
ATOM	858	0	GLU	Α	141	-2.958	61.254	19.443	1.00	36.70		0
	859	N	GLU	A	142	-4.900	61.497	20.566		36.62		N
	860	CA	GLU .			-5.654	61.865	19.373				
										36.84		C
	861		GLU .			-7.151	62.019	19.677		37.69		С
	862		GLU .			-7.957	62.396	18.443	1.00	39.42		С
ATOM	863	CD	GLU .	Α	142	-9.440	62.567	18.730	1.00	43.91		С
	864	OE1	GLU .	Α	142	-9.809	63.542	19.421		44.11		Ö
			GLU .			-10.233	61.727	18.254		45.16		
	- 					10.233	01.121	10.234	T.00	40.TD	•	.0

ATOM	866	С	GLU	A	142	-5.127	63.181	18.814	1.00 35.87	С
ATOM	867	0			142	-4.975	63.336	17.601	1.00 35.78	Ö
ATOM	868	N			143	-4.857	64.120	19.709	1.00 34.68	И
ATOM	869	CA	LEU	Α	143	-4.343	65.422	19.333	1.00 33.92	C
ATOM	870	CB	LEU	Α	143	-4.434	66.378	20.526	1.00 33.86	č
ATOM	871	CG	LEU	Α	143	-3.933	67.812	20.341	1.00 33.72	č
ATOM	872	CD1	LEU	A	143	-4.656	68.402	19.137	1.00 31.14	č
ATOM	873	CD2	LEU	Α	143	-4.227	68.624	21.591	1.00 34.84	Ċ
MOTA	874	С	LEU	Α	143	-2.898	65.304	18.842	1.00 34.15	Č
ATOM	875	0	LEU	Α	143	-2.559	65.834	17.786	1.00 34.53	ō
MOTA	876	N	ALA	Α	144	-2.060	64.586	19.596	1.00 33.23	Ŋ
MOTA	877	CA	ALA	A	144	-0.669	64.366	19.204	1.00 32.59	C
ATOM	878	CB	ALA	Α	144	0.046	63.540	20.247	1.00 32.52	Ċ
ATOM	879	С	ALA	Α	144	-0.598	63.676	17.844	1.00 32.09	C
ATOM	880	0	ALA	Α	144	0.240	64.019	17.038	1.00 31.77	0
ATOM	881	N	ARG	Α	145	-1.494	62.720	17.587	1.00 32.32	N
ATOM	882	CA	ARG	A	145	-1.545	62.050	16.293	1.00 32.91	C
ATOM	883	CB	ARG	Α	145	-2.600	60.939	16.295	1.00 33.17	C
ATOM	884	CG	ARG	Α	145	-2.769	60.208	14.961	1.00 35.72	C
ATOM	885	CD	ARG	Α	145	-3.871	59.129	14.976	1.00 37.67	С
ATOM	886	NE	ARG	А	145	-3.583	58.127	15.993	1.00 39.30	N
ATOM	887	CZ	ARG	Α	145	-4.264	57.978	17.127	1.00 41.07	С
ATOM	888	NH1	ARG	Α	145	-5.331	58.736	17.399	1.00 41.09	N
MOTA	889	NH2	ARG	A	145	-3.884	57.050	17.987	1.00 40.07	N
ATOM	890	С	ARG	A	145	-1.789	63.044	15.155	1.00 33.07	С
ATOM	891	0	ARG	Α	145	-1.063	63.050	14.158	1.00 32.72	0
ATOM	892	N	SER	Α	146	-2.797	63.897	15.310	1.00 33.62	N
ATOM	893	CA	SER	Α	146	-3.103	64.896	14.287	1.00 33.98	C
ATOM	894	CB	SER	A	146	-4.332	65.711	14.700	1.00 34.87	С
ATOM	895	OG	SER	A	146	-4.556	66.758	13.767	1.00 37.55	0
ATOM	896	С	SER	A	146	-1.920	65.837	14.058	1.00 34.16	С
MOTA	897	0	SER	Α	146	-1.518	66.064	12.917	1.00 34.41	0
MOTA	898	N	PHE	Α	147	-1.349	66.347	15.154	1.00 32.41	N
ATOM	899	CA	PHE	Ą	147	-0.235	67.278	15.088	1.00 32.56	C
ATOM	900	CB	PHE	Ά	147	0.117	67.793	16.481	1.00 32.83	С
ATOM	901	CG			147	-0.765	68.925	16.972	1.00 34.64	С
ATOM	902		PHE			-1.916	69.303	16.275	1.00 34.72	С
MOTA	903	CE1	PHE	Α	147	-2.725	70.330	16.744	1.00 37.91	С
ATOM	904	cz			147	-2.380	71.009	17.911	1.00 36.29	С
ATOM	905		PHE			-1.223	70.642	18.617	1.00 36.31	С
ATOM	906		PHE			-0.430	69.603	18.143	1.00 34.51	C
ATOM	907	С			147	1.005	66.617	14.491	1.00 32.09	С
ATOM	908	0			147	1.647	67.190	13.625	1.00 31.07	0
ATOM	909	N			148	1.357	65.436	14.992	1.00 32.05	N
ATOM	910	CA	PHE			2.516	64.706	14.486	1.00 32.29	C
ATOM	911	CB			148	2.701	63.391	15.247	1.00 32.29	C
MOTA	912	CG			148	4.061	62.783	15.070	1.00 32.26	C
ATOM	913		PHE			5.212	63.527	15.349	1.00 32.46	С
MOTA	914		PHE			6.477	62.979	15.206	1.00 29.15	C
ATOM	915	CZ			148	6.610	61.665	14.771	1.00 30.20	С
ATOM	916		PHE			5.465	60.909	14.475	1.00 30.97	C
ATOM	917		PHE			4.198	61.469	14.634	1.00 31.93	C
ATOM	918	C	PHE			2.385	64.405	12.990	1.00 32.02	C
MOTA	919	0	PHE			3.343	64.536	12.238	1.00 32.46	0
ATOM	920	N	TRP			1.196	64.006	12.571	1.00 31.64	N
MOTA	921	CA	TRP			0.960	63.687	11.169	1.00 32.22	C
ATOM	922	CB	TRP			-0.469	63.221	10.973	1.00 32.32	C
ATOM	923	CG	TRP			-0.814	62.851	9.562	1.00 33.58	C
MOTA	924		TRP			-1.276	63.695	8.583	1.00 35.97	C
ATOM	925 926		TRP			-1.497 -1.201	62.992	7.422	1.00 38.04	N
ATOM	926		TRP TRP			-1.201	61.670	7.635	1.00 35.85	C
ATOM	92 <i>1</i> 928		TRP			-0.773	61.542	8.978	1.00 32.84	C
ATOM ATOM	929		TRP			-0.396 -0.480	60.273 59.181	9.445 8.574	1.00 32.94 1.00 32.70	C
ATOM	930		TRP			-0.480	59.352	7.244	1.00 32.70	C
ATOM	931		TRP			-1.279	60.584	6.763	1.00 35.78	C C
ATOM	932	C	TRP			1.228	64.908	10.309	1.00 32.05	C
ATOM	933	0	TRP			1.926	64.810	9.309	1.00 32.03	0
ATOM	934	N	GLN			0.720	66.078	10.729	1.00 31.45	И
										14

ATOM	935	CA	GLN	Ą	150	0.948	67.309	9.966	1.00 31.22	С
MOTA	936	CB			150	0.132	68.489	10.527	1.00 30.76	C
MOTA	937	CG	GLN	Α	150	-1.376	68.335	10.336	1.00 32.09	C
MOTA	938	$^{\rm CD}$			150	-2.126	69.553	10.773	1.00 34.62	С
ATOM	939	OE1			150	-1.850	70.656	10.292	1.00 34.95	0
ATOM	940	NE2			150	-3.064	69.376	11.704	1.00 35.33	N
ATOM	941	C			150	2.414	67.686	9.932	1.00 31.38	C
MOTA	942	0			150	2.884	68.278	8.942	1.00 31.25	0
ATOM ATOM	943	N CA			151 151	3.143	67.400	11.014	1.00 30.59	N
ATOM	944 945	CB			151	4.576 5.222	67.691 67.562	11.006 12.407	1.00 31.25	C
ATOM	946		VAL			6.736	67.703	12.328	1.00 31.59 1.00 33.21	C
ATOM	947		VAL			4.661	68.652	13.325	1.00 33.21	C C
ATOM	948	C			151	5.259	66.780	9.981	1.00 30.80	C
MOTA	949	0	VAL	Α	151	6.140	67.215	9.239	1.00 30.84	ō
MOTA	950	N	LEU	Α	152	4.842	65.521	9.939	1.00 31.70	N
MOTA	951	CA	LEU	Α	152	5.429	64.564	9.000	1.00 32.14	C
ATOM	952	CB			152	4.792	63.179	9.194	1.00 32.39	C
ATOM	953	CG			152	5.513	62.176	10.123	1.00 33.85	C
ATOM	954		LEU			6.723	61.611	9.411	1.00 35.80	C
ATOM	955		LEU			5.950	62.799	11.422	1.00 36.98	C
ATOM ATOM	956 957	C			152 152	5.215	65.052	7.567	1.00 31.63	C
ATOM	958	N O			153	6.131 3.997	65.024 65.471	6.769	1.00 32.44	0
ATOM	959	CA			153	3.671	65.980	7.252 5.907	1.00 31.63 1.00 32.26	C
ATOM	960	CB			153	2.177	66.330	5.780	1.00 32.20	C
ATOM	961	CG			153	1.233	65.126	5.736	1.00 33.60	C
ATOM	962	CD			153	1.423	64.215	4.510	1.00 35.47	C
MOTA	963	OE1	GLU	A	153	1.617	64.717	3.392	1.00 38.01	0
MOTA	964	OE2	GLU	Α	153	1.380	62.991	4.659	1.00 34.71	0
MOTA	965	C			153	4.538	67.191	5.562	1.00 31.87	С
ATOM	966	0			153	5.076	67.281	4.449	1.00 30.83	0
ATOM	967	N			154	4.716	68.101	6.531	1.00 31.04	N
MOTA	968	CA CB			154	5.548	69.291	6.318	1.00 30.48	C
ATOM ATOM	969 970	CB			154 154	5.440	70.278	7.537	1.00 31.18	C
ATOM	971	0			154	7.002 7.683	68.933 69.544	6.082 5.238	1.00 31.22	C
ATOM	972	N			155	7.504	67.967	6.842	1.00 30.96 1.00 31.29	N
ATOM	973	CA	VAL			8.898	67.580	6.704	1.00 31.29	C
ATOM	974	CB			155	9.335	66.651	7.856	1.00 32.73	C
MOTA	975	CG1	VAL	Α	155	10.729	66.132	7.631	1.00 33.47	Ċ
MOTA	976	CG2	VAL	Α	155	9.292	67.439	9.189	1.00 35.41	C
MOTA	977	С	VAL			9.094	66.905	5.336	1.00 33.10	C
ATOM	978	0	VAL			10.092	67.155	4.648	1.00 33.39	0
MOTA	979	N	ARG			8.130	66.086	4.931	1.00 33.25	N
ATOM	980	CA	ARG			8.190	65.429	3.606	1.00 34.45	С
ATOM ATOM	981 982	CB CG	ARG ARG			6.992 6.999	64.490	3.396	1.00 33.21	C
MOTA	983	CD	ARG			5.778	63.221 62.320	4.219 3.937	1.00 33.42 1.00 34.78	C
MOTA	984	NE	ARG			5.644	62.064	2.494	1.00 34.78	C N
MOTA	985	CZ	ARG			4.533	61.636	1.903	1.00 33.47	C
ATOM	986		ARG			3.435	61.411	2.609	1.00 32.42	N
ATOM	987	NH2	ARG	A	156	4.525	61.437	0.594	1.00 34.38	N
MOTA	988	C	ARG	Α	156	8.211	66.491	2.501	1.00 34.92	C
MOTA	989	0	ARG			8.986	66.414	1.542	1.00 35.22	0
MOTA	990	N	HIS			7.369	67.501	2.650	1.00 36.13	N
ATOM	991	CA	HIS			7.351	68.588	1.686	1.00 36.56	С
ATOM	992	CB	HIS			6.299	69.629	2.048	1.00 37.38	C
ATOM ATOM	993 994	CG	HIS			6.362	70.863	1.197	1.00 39.12	C
ATOM ATOM	995	GE1	HIS HIS	Δ	157	7.005 6.921	72.014 72.926	1.608	1.00 41.07	N
ATOM	996		HIS			6.249	72.926	0.658 -0.358	1.00 39.75 1.00 40.88	C
ATOM	997		HIS			5.873	71.124	-0.041	1.00 40.88	С И
ATOM	998	C	HIS			8.710	69.238	1.555	1.00 36.34	C
ATOM	999	0	HIS			9.178	69.475	0.435	1.00 36.86	0
MOTA	1000	N	CYS			9.354	69.542	2.683	1.00 36.43	N
ATOM	1001	CA	CYS			10.664	70.184	2.649	1.00 36.33	С
ATOM	1002	CB	CYS			11.177	70.492	4.065	1.00 36.27	С
ATOM	1003	SG	CYS	Α	158	10.201	71.754	4.924	1.00 37.34	S

MOTA 1004 ATOM 1005 MOTA 1006 АТОМ 1007 ATOM 1008 MOTA 1009 ATOM 1010 N ATOM 1011 MOTA 1012 N MOTA 1013 С MOTA 1014 ATOM 1015 0 ATOM 1016 N ATOM 1017 С MOTA 1018 С ATOM 1019 ATOM 1020 ATOM 1021 N MOTA 1022 С MOTA 1023 0 MOTA 1024 N MOTA 1025 С MOTA 1026 С ATOM 1027 ATOM 1028 С MOTA 1029 1030 N ATOM N ATOM 1031 C MOTA 1032 С ATOM 1033 0 ATOM 1034 N 1035 ATOM С MOTA 1036 Ç С MOTA 1037 MOTA 1038 С MOTA 1039 MOTA 1040 0 MOTA 1041 N MOTA 1042 С MOTA 1043 С 1044 MOTA С MOTA 1045 1046 С MOTA 1047 ATOM 0 1048 MOTA N MOTA 1049 С MOTA 1050 ATOM 1051 С 1052 С MOTA 1053 N MOTA 1054 С MOTA MOTA 1055 N MOTA 1056 C ATOM 1057 С ATOM 1058 0 1059 MOTA N MOTA 1060 С 1061 С MOTA MOTA 1062 АТОМ 1063 MOTA 1064 N ATOM 1065 MOTA 1066 N MOTA 1067 N MOTA 1068 1069 MOTA О 1070 ATOM MOTA 1071 MOTA 1072

7 more	1077	~~			1 (7	16 253	7 / 177	15 206	1 00 44 41	
ATOM	1073	CG	ASP			16.351	74.131	15.396	1.00 44.41	С
ATOM	1074 .	OD1	ASP	A	167	16.656	73.391	16.374	1.00 44.09	0
ATOM	1075	OD2	ASP	А	167	16.111	75.349	15.606	1.00 47.46	0
MOTA	1076	С	ASP	Α	167	14.442	71.870	14.231	1.00 37.42	С
ATOM	1077	0	ASP	Α	167	13.765	72.783	14.722	1.00 38.05	0
ATOM	1078	N	ILE			13.926	70.671	13.939	1.00 36.17	N
			ILE			12.516	70.380	14.201	1.00 34.82	C
ATOM	1079	CA								
ATOM	1080	CB	ILE			12.066	69.064	13.505	1.00 35.54	С
MOTA	1081	CG1	ILE	Α	168	12.125	69.196	11.976	1.00 34.25	С
ATOM	1082	CD1	ILE	Α	168	12,194	67.836	11.258	1.00 36.78	С
ATOM	1083		ILE			10.663	68.692	13.951	1.00 34.38	C
ATOM		C	ILE			12.306	70.252	15.708	1.00 34.43	č
	1084									
MOTA	1085	0	ILE			12.914	69.409	16.350	1.00 32.59	0
ATOM	1086	N	LYS	Α	169	11.436	71.091	16.260	1.00 33.96	N
ATOM	1087	CA	LYS	A	169	11.122	71.056	17.701	1.00 33.91	С
ATOM	1088	CB	LYS	Α	169	12.281	71.647	18.511	1.00 34.23	С
ATOM	1089	CG	LYS			12.644	73.064	18.140	1.00 35.79	С
									1.00 40.57	C
MOTA	1090	CD	LYS			13.822	73.538	18.954		
MOTA	1091	CE	LYS	A	169	14.137	75.024	18.631	1.00 44.31	С
ATOM	1092	NZ	LYS	Α	169	15.134	75.616	19.597	1.00 47.28	N
ATOM	1093	С	LYS	Α	169	9.862	71.860	17.947	1.00 33.20	С
ATOM	1094	0			169	9.444	72.619	17.065	1.00 32.12	0
							71.731	19.138	1.00 33.18	N
ATOM	1095	N			170	9.272				
MOTA	1096	CA			170	8.021	72.433	19.438	1.00 35.25	C
ATOM	1097	CB	ASP	Α	170	7.517	72.132	20.839	1.00 36.00	C
ATOM	1098	CG	ASP	Α	170	8.582	72.296	21.895	1.00 38.87	C
A'TOM	1099		ASP	Ά	170	9.700	72.820	21.626	1.00 41.81	0
	1100		ASP			8.358	71.892	23.042	1.00 42.14	0
ATOM								19.226	1.00 35.41	c
ATOM	1101	С			170	8.075	73.934			
MOTA	1102	0	ASP	A	170	7.118	74.510	18.717	1.00 35.26	0
MOXE	1103	N	GLU	Α	171	9.204	74.550	19.570	1.00 36.73	N
NTOM	1104	CA	GLU	Α	171	9.370	76.005	19.446	1.00 38.95	C
	1105	CB			171	10.703	76.462	20.053	1.00 40.09	C
Al M	_							21.523	1.00 46.32	Č
ATOM	1106	CG			171	10.892	76.109			
MOTA	1107	CD	GLU	A	171	12.296	76.436	22.017	1.00 53.18	C
ATOM	1108	OE1	GLU	Α	171	13.229	75.621	21.798	1.00 56.05	0
MOTA	1109	OE2	GLU	Α	171	12.474	77.511	22.636	1.00 57.82	0
ATOM	1.110	С			171	9.340	76.438	17.983	1.00 38.68	C
					171	9.000	77.583	17.678	1.00 38.39	0
ATOM	1111	0						17.080	1.00 37.88	N
ATOM	1112	N			172	9.716	75.531			
MOTA	1113	CA	ASN	Α	172	9.752	75.848	15.653	1.00 37.39	С
ATOM	1114	CB	ASN	Α	172	11.022	75.288	15.019	1.00 37.23	С
ATOM	1115	CG	ASN	Α	172	12.270	76.063	15.433	1.00 38.63	C
ATOM	1116		ASN			12.195	77.241	15.769	1.00 38.90	0
						13.421	75.407	15.390	1.00 36.90	N
ATOM	1117		ASN							c C
ATOM	1118	С			172	8.519	75.353	14.917	1.00 36.59	
MOTA	1119	0	ASN	Α	172	8.567		13.710	1.00 36.84	0
MOTA	1120	N	ILE	Α	173	7.430	75.141	15.653	1.00 35.61	N
ATOM	1121	CA	TLE	A	173	6.143	74.742	15.085	1.00 35.39	C
	1122	CB			173	5.797	73.292	15.516	1.00 35.63	С
ATOM						6.798	72.283	14.897	1.00 36.07	C
MOTA	1123		ILE							č
ATOM	1124		ILE			6.648	70.871	15.388	1.00 33.90	
MOTA	1125	CG2	ILE	Α	173	4.356	72.954	15.161	1.00 35.62	· C
ATOM	1126	С	ILE	Α	173	5.023	75.691	15.548	1.00 36.51	C
ATOM	1127	ō			173	4.796	75.863	16.767	1.00 35.35	0
						4.319	76.286	14.588	1.00 36.38	N
ATOM	1128	N			174				1.00 37.97	
ATOM	1129	CA			174	3.223	77.192	14.900		C
ATOM	1130	CB	LEU	A	174	3.307	78.506	14.107	1.00 38.37	С
MOTA	1131	CG	LEU	Α	174	4.444	79.472	14.437	1.00 41.65	C
ATOM	1132		LEU			4.357	80.715	13.531	1.00 44.42	С
	1133				174	4.399	79.905	15.882	1.00 42.22	C
ATOM							76.518	14.642	1.00 38.02	Ċ
ATOM	1134	C			174	1.891				
MOTA	1135	0			174	1.711	75.822	13.642	1.00 37.64	0
MOTA	1136	N	ILE	Α	175	0.963	76.721	15.567	1.00 37.87	N
ATOM	1137	CA	ILE	Α	175	-0.379	76.199	15.417	1.00 38.43	С
ATOM	1138	СВ			175	-0.845	75.563	16.744	1.00 38.70	С
	1139				175	0.148	74.510	17.228	1.00 38.66	Ċ
MOTA								18.722		
ATOM	1140				175	-0.025	74.200		1.00 41.58	.c
MOTA	1141	CG2	LLE	A	175	-2.241	74.971	16.609	1.00 36.19	C

ATOM 1142 C LLE A 175 -1.342 77.313 14.997 1.00 40.30
ATOM 1444 N ASP A 176 -1.969 77.144 13.840 1.00 41.35
ATOM 1444 N ASP A 176 -1.969 77.144 13.840 1.00 41.47
ATOM 1446 CB ASP A 176 -3.337 77.853 11.926 1.00 42.28
ATOM 1446 CB ASP A 176 -3.337 77.853 11.926 1.00 42.28
ATOM 1446 CB ASP A 176 -3.337 77.853 11.926 1.00 42.28
ATOM 1448 OD LASP A 176 -4.437 78.782 11.401 1.00 44.69
ATOM 1449 OD LASP A 176 -5.440 79.033 1.2113 1.00 46.71
ATOM 1448 OD LASP A 176 -4.437 78.782 11.401 1.00 44.69
ATOM 1430 OD LASP A 176 -4.437 78.782 11.401 1.00 44.69
ATOM 1435 OD ASP A 176 -4.904 75.483 13.882 1.00 42.28
ATOM 1351 O ASP A 176 -4.904 75.483 13.882 1.00 42.40
ATOM 1352 N LEU A 177 -5.612 77.803 16.281 1.00 45.60
ATOM 1555 N LEU A 177 -5.612 77.803 16.281 1.00 45.60
ATOM 1555 C LEU A 177 -4.338 78.699 1.9374 1.00 44.51
ATOM 155 C DE LEU A 177 -4.338 78.699 1.9374 1.00 44.16
ATOM 155 C DI LEU A 177 -4.338 78.699 1.9374 1.00 44.76
ATOM 155 C DI LEU A 177 -4.235 79.850 19.374 1.00 44.76
ATOM 156 CD LEU A 177 -7.327 78.850 19.374 1.00 44.76
ATOM 156 CD LEU A 177 -7.327 78.850 19.374 1.00 44.76
ATOM 156 CD LEU A 177 -7.327 78.850 19.374 1.00 44.76
ATOM 156 CD LEU A 177 -7.327 78.850 19.374 1.00 44.76
ATOM 156 CD LEU A 177 -7.327 78.850 19.374 1.00 44.76
ATOM 156 CD LEU A 177 -7.327 78.850 19.374 1.00 44.76
ATOM 156 CD ASN A 178 -9.966 80.712 15.287 1.00 45.80
ATOM 156 CD ASN A 178 -9.966 80.712 1.00 45.80
ATOM 157 C C ASN A 178 -9.966 80.712 1.00 45.90
ATOM 157 C C ASN A 178 -9.966 80.712 1.00 45.90
ATOM 157 C C ASN A 178 -9.966 80.712 1.00 45.90
ATOM 159 C C ASN A 178 -9.966 80.712 1.00 45.90
ATOM 159 C C ASN A 178 -9.966 80.712 1.00 45.90
ATOM 159 C C ASN A 178 -9.966 80.712 1.00 45.90
ATOM 159 C C ASN A 178 -9.966 80.712 1.00 45.90
ATOM 159 C C ASN A 178 -9.966 80.712 1.00 45.90
ATOM 159 C C ASN A 178 -9.966 80.712 1.00 45.90
ATOM 159 C C ASN A 178 -9.966 80.712 1.00 45.90
ATOM 159 C C ASN A 178 -9.966 80.712 1.00 45.90
ATOM 159 C C ASN A 178 -9.97 1.00 77.70 1.00 44.91
ATOM 159 C C ASN A 178 -9.97 1.00 77.70 1.00 44.91
A С N С С С N С N С N N С

WO 2005/028624 PCT/US2004/030360

ATOM	1211	CB	LEU A	A 184	7.658	73.726	9.494	1.00 38.41	C
ATOM	1212	CG	LEU A		9.013	73.126	9.811	1.00 42.44	C
ATOM ATOM	1213 1214		LEU A		9.162	72.736	11.300	1.00 44.98	С
ATOM	1214	CDZ	LEU A		9.156 7.689	71.900 76.195	8.895 10.135	1.00 44.78	C
ATOM	1216	Õ	LEU A		7.411	76.886	9.159	1.00 37.17 1.00 34.75	C
ATOM	1217	N		185	8.546	76.590	11.085	1.00 37.08	N O
MOTA	1218	CA	ILE A	185	9.233	77.882	11.007	1.00 38.22	C
MOTA	1219	CB		185	8.589	78.967	11.964	1.00 38.24	c
ATOM	1220		ILE A		8.676	78.523	13.428	1.00 38.15	С
ATOM ATOM	1221 1222		ILE A		8.508	79.649	14.460	1.00 40.09	C
ATOM	1223	C	ILE A		7.180 10.678	79.280 77.766	11.555	1.00 37.83 1.00 38.83	C
ATOM	1224	Ō	ILE P		11.105	76.792	12.000	1.00 38.96	C 0
ATOM	1225	N	ASP A	186	11.419	78.807	10.980	1.00 39.40	N
ATOM	1226	CA	ASP F		12.822	78.985	11.315	1.00 40.27	С
ATOM	1227	CB	ASP A		13.046	79.073	12.830	1.00 41.48	C
ATOM ATOM	1228 1229	CG OD1	ASP F		14.441	79.582	13.178	1.00 45.31	C
ATOM	1230		ASP A		15.190 14.885	79.992 79.588	12.255 14.351	1.00 47.25 1.00 50.71	0
ATOM	1231	С	ASP F		13.803	78.013	10.648	1.00 40.90	0 C
ATOM	1232	0	ASP A		14.343	77.096	11.285	1.00 40.21	ō
ATOM	1233	N	PHE A		14.087	78.292	9.378	1.00 40.98	N
ATOM	1234	CA	PHE P		15.042	77.522	8.591	1.00 42.42	С
ATOM ATOM	1235 1236	CB CG	PHE P		14.602	77.517 76.662	7.140	1.00 41.27	C
ATOM	1237		PHE P		13.394 12.129	77.128	6.891 7.202	1.00 41.11 1.00 40.65	C
ATOM	1238		PHE A		11.000	76.342	6.977	1.00 39.93	C
ATOM	1239	CZ	PHE A	187	11.131	75.078	6.444	1.00 40.45	Č
ATOM	1240		PHE A		12.398	74.586	6.128	1.00 38.34	C
ATOM	1241		PHE A		13.522	75.373	6.349	1.00 40.39	C
ATOM ATOM	1242 1243	C O	PHE A		16.476 17.346	78.031 77.647	8.711 7.927	1.00 43.76 1.00 44.80	C
ATOM	1244	N	GLY A		16.723	78.868	9.716	1.00 44.80	N O
MOTA	1245	CA	GLY A		18.034	79.449	9.940	1.00 45.36	C
ATOM	1246	С	GLY A	188	19.156	78.493	10.252	1.00 45.97	С
ATOM	1247	0	GLY A		20.320	78.870	10.168	1.00 46.90	0
ATOM ATOM	1248 1249	N CA	SER A		18.830 19.853	77.260 76.240	10.631	1.00 46.13	N
ATOM	1250	CB	SER A		19.725	75.652	10.866 12.280	1.00 45.91 1.00 46.57	C C
ATOM	1251	OG	SER A		19.539	76.674	13.258	1.00 51.43	0
ATOM	1252	С	SER A	189	19.742	75.111	9.825	1.00 44.92	C
ATOM	1253	0	SER A		20.356	74.051	9.977	1.00 43.79	0
MOTA	1254 1255	N	GLY A		18.948	75.337	8.784	1.00 44.05	N
ATOM ATOM	1256	CA C	GLY A		18.720 19.851	74.310 74.120	7.784 6.783	1.00 43.67 1.00 43.35	C
ATOM	1257	Õ	GLY A		20.908	74.764	6.862	1.00 41.72	0
ATOM	1258	N	ALA A		19.614	73.222	5.825	1.00 42.84	Ŋ
MOTA	1259	CA	ALA A		20.584	72.942	4.769	1.00 41.99	C
ATOM	1260	CB	ALA A		21.722	72.067	5.294	1.00 41.84	C
ATOM ATOM	1261 1262	С 0	ALA A		19.927	72.305	3.551	1.00 42.18	C
ATOM	1263	N	LEU A		18.779 20.637	71.813 72.347	3.608 2.428	1.00 41.24 1.00 42.32	О N
ATOM	1264	CA	LEU A		20.170	71.649	1.236	1.00 42.32	C
ATOM	1265	CB	LEU A		21.059	71.977	0.031	1.00 43.21	č
ATOM	1266	CG	LEU A		21.088	73.455	-0.389	1.00 46.28	С
ATOM	1267		LEU A		22.271	73.763	-1.328	1.00 49.62	С
ATOM ATOM	1268 1269	CD2	LEU A		19.778	73.889	-1.025	1.00 46.71	C
ATOM	1270	0	LEU A		20.244 21.187	70.179 69.742	1.589 2.270	1.00 41.12 1.00 39.72	С
ATOM	1271	N	LEU A		19.227	69.428	1.190	1.00 39.72	O N
MOTA	1272	CA	LEU A		19.237	67.983	1.401	1.00 43.29	C
MOTA	1273	CB	LEU A		17.870	67.405	1.066	1.00 43.47	C
MOTA	1274 1275	CG CD1	LEU A		17.658	65.896	1.213	1.00 45.93	С
ATOM ATOM	1275		LEU A		17.805 16.279	65.456 65.518	2.671	1.00 45.54	C
ATOM	1277	C	LEU A		20.306	67.331	0.652 0.512	1.00 46.41 1.00 43.97	C
ATOM	1278	O	LEU A		20.386	67.649	-0.667	1.00 44.14	0
ATOM	1279	N	LYS A	194	21.110	66.434	1.084	1.00 44.53	N

ATOM	1280	CA	LYS	A 19	22.106	65.663	0.340	1.00 45.	14 c
ATOM	1281	CB	LYS	A 19	23.500	66.291	0.450	1.00 45.	•
ATOM	1282	CG		A 19		66.305	1.860	1.00 44.	
ATOM	1283	CD		A 19		67.144	1.961	1.00 45.	
ATOM	1284	CE		A 19		66.854	3.284	1.00 46.	
ATOM	1285	NZ		A 19					
						67.643	3.464	1.00 48.	
ATOM	1286	C		A 19		64.272	0.920	1.00 45.	
ATOM	1287	0		A 19		64.054	2.026	1.00 45.	•
ATOM	1288	N		A 19		63.335	0.188	1.00 45.	31 N
ATOM	1289	CA	ASP	A 19	22.779	61.933	0.609	1.00 45.	82 C
ATOM	1290	CB	ASP	A 19	22.653	60.999	-0.601	1.00 46.	48 C
ATOM	1291	CG	ASP	A 19	21.330	61.124	-1.303	1.00 47.	
ATOM	1292	OD1	ASP	A 19	20.279	60.858	-0.678	1.00 50.	02 0
ATOM	1293	OD2	ASP	A 19	21.243	61.469	-2.499	1.00 49.	
ATOM	1294	C	ASP	A 19	24.038	61.607	1.384	1.00 45.	-
ATOM	1295	Ō		A 19		60.519	1.950	1.00 46.	•
ATOM	1296	N		A 19		62.538	1.385	1.00 45.	-
ATOM	1297	CA		A 19		62.371	2.083	1.00 46.	= -
ATOM	1298	CB		A 19		63.091	1.322	1.00 45.	
ATOM	1299		THR			64.387	0.899	1.00 44.	
MOTA	1300		THR			62.348	0.026	1.00 46.	
ATOM	1301	С		A 19		62.902	3.518	1.00 46.	
ATOM	1302	0	THR	A 19	25.283	63.616	3.886	1.00 46.	70 o
ATOM	1303	N	VAL	A 19	27.237	62.569	4.302	1.00 47.	32 ท
ATOM	1304	CA	VAL	A 19	27.294	62.912	5.713	1.00 48.	22 C
ATOM	1305	CB	VAL	A 19	28.440	62.174	6.437	1.00 48.	
ATOM	1306		VAL	A 19		62.699	6.003	1.00 50.	
ATOM	1307		VAL			62.289	7.956	1.00 49.	
ATOM	1308	C		A 19		64.409	5.965	1.00 48.	
ATOM	1309	Ö		A 19		65.152	5.182	1.00 47.	
MOTA	1310	N		A 19		64.842	7.046	1.00 47.	
ATOM	1311	CA		A 19		66.212	7.531	1.00 47.	
MOTA	1312	CB		A 19		66.722	7.984	1.00 46.	
ATOM	1313	CG		A 19		66.951	6.891	1.00 43.	05 Ç
ATOM	1314	CD1	TYR			65.924	6.464	1.00 40.	17 C
ATOM	1315	CE1	TYR	A 19	22.631	66.123	5.466	1.00 39.0	
ATOM	1316	CZ	TYR	A 19	22.490	67.368	4.904	1.00 38.3	13 C
ATOM	1317	OH	TYR	A 19	21.539	67.577	3.933	1.00 36.	97 0
ATOM	1318	CE2	TYR	A 19	23.293	68.421	5.317	1.00 39.	95 C
ATOM	1319	CD2	TYR	A 19	24.256	68.204	6.312	1.00 41.	73 C
ATOM	1320	C		A 19		66.211	8.729	1.00 48.	
ATOM	1321	ŏ		A 19		65.349	9.597	1.00 48.	
ATOM	1322	N		A 19		67.183	8.775	1.00 50.	
ATOM	1323	CA		A 19		67.304	9.875	1.00 52.	
ATOM	1324	CB		A 19		67.267	9.364	1.00 52.	
	1325		THR				8.318	1.00 53.0	
ATOM						68.240			
ATOM	1326		THR			65.936	8.714	1.00 53.0	
ATOM	1327	C		A 19		68.606	10.636	1.00 53.	
ATOM	1328	0	THR			68.924	11.545	1.00 53.	
ATOM	1329	N	ASP			69.359	10.253	1.00 56.0	
MOTA	1330	CA	ASP .	A 20	28.005	70.568	10.977	1.00 58.3	
ATOM	1331	CB	ASP .	A 20	28.067	71.798	10.062	1.00 58.0	
MOTA	1332	CG	ASP .	A 20	26.971	71.802	9.017	1.00 59.9	95 C
ATOM	1333	OD1	ASP	A 20	26.266	72.826	8.884	1.00 61.0	08 0
ATOM	1334	OD2	ASP .	A 20	26.739	70.813	8.279	1.00 63.3	L5 O
ATOM	1335	С	ASP			70.424	11.539	1.00 59.0	
ATOM	1336	ō	ASP			69.737	10.957	1.00 58.9	
ATOM	1337	N	PHE			71.091	12.664	1.00 60.2	
	1338		PHE					1.00 61.4	
ATOM		CA				71.089	13.315		· ·
ATOM	1339	CB	PHE			69.790	14.094	1.00 61.3	_
ATOM	1340	CG	PHE .			69.717	14.805	1.00 61.7	
ATOM	1341		PHE			69.550	14.085	1.00 62.4	
ATOM	1342		PHE			69.475	14.741	1.00 62.4	
MOTA	1343	CZ	PHE .	A 20:	21.064	69.560	16.131	1.00 62.1	
MOTA	1344	CE2	PHE .	A 20:	22.242	69.727	16.856	1.00 61.5	55 C
ATOM	1345	CD2	PHE .	A 201	23.464	69.804	16.190	1.00 61.3	34 C
ATOM	1346	С		A 20:		72.286	14.245	1.00 62.4	
ATOM	1347	0	PHE			72.411	15.214	1.00 62.7	
ATOM	1348	N	ASP			73.158	13.934	1.00 63.5	_
						. –			- **

ATOM	1349	CA AS	SP A	202	23.820	74.406	14.651	1.00	64.74		C
			SP A	202	24.100	75.583	13.704	1.00	65.58		C
ATOM	1350		SP A		23.966	76.930	14.388		69.34		C
ATOM	1351						15.440		71.91		ō
MOTA	1352	OD1 AS			24.626	77.141					
MOTA	1353	OD2 AS	SP A	202	23.207	77.831	13.950		72.83		0
ATOM	1354	C AS	SP A	202	22.397	74.467	15.198	1.00	64.11		C
ATOM	1355		SP A	202	21.920	75.524	15.600	1.00	64.30		0
		·	A YL		21.716	73.324	15.202		63.47		N
MOTA	1356								62.03		C
MOTA	1357	CA GI	JY A	203	20.358	73.250	15.712				
ATOM	1358	C GI	LΥ A	203	20.346	72.947	17.200		60.94		С
MOTA	1359	O GI	LY A	203	21.392	72.972	17.854	1.00	61.08		0
	1360		HR A		19.158	72.643	17.727	1.00	59.86		N
MOTA					18.975	72.364	19.158		58.03		C
ATOM	1361		HR A						57.90		Ċ
ATOM	1362	CB TI	HR A	204	17.481	72.402	19.547			•	
ATOM	1363	OG1 T	HR A	204	16.900	73.630	19.090		56.77		0
MOTA	1364	CG2 TH	HR A	204	17.332	72.488	21.079	1.00	57.65		C
ATOM	1365		HR A		19.574	71.032	19.575	1.00	57.57		C
					19.196	69.966	19.047		56.94		0
ATOM	1366		HR A						56.60		N
ATOM	1367		RG A		20.487	71.106	20.545				
MOTA	1368	CA A	RG A	205	21.238	69.959	21.022		56.09		C
ATOM	1369	CB AI	RG A	205	22.204	70.417	22.124	1.00	56.67		C
ATOM	1370		RG A	205	22.870	69.291	22.879	1.00	59.97		C
					24.127	69.719	23.631	1 00	63.64		С
MOTA	1371		RG A						64.42		N
MOTA	1372		RG A		25.317	69.608	22.785				
MOTA	1373	CZ Al	RG A	205	26.049	68.501	22.667		65.48		C
ATOM	1374	NH1 A	RG A	205	25.712	67.410	23.340	1.00	65.75		N
MOTA	1375		RG A		27.114	68.476	21.872	1.00	64.31		N
					20.360	68.784	21.503		55.41		С
ATOM	1376		RG A						55.27		ō
ATOM	1377	_	RG A		20.536	67.630	21.069				
MOTA	1378	N V	AL A	206	19.420	69.077	22.400	1.00	54.06		N
MOTA	1379	CA V	AL A	206	18.634	68.037	23.067	1.00	52.40		C
	1380		AL A		17.704	68.640	24.178	1.00	52.71		C
ATOM						69.018	25.416		50.99		C
MOTA	1381	CG1 V			18.516						C
MOTA	1382	CG2 V	AL A	206	16.919	69.844	23.636		51.73		
MOTA	1383	C V.	AL A	206	17.799	67.291	22.048	1.00	51.99		С
ATOM	1384	0 V.	AL A	206	17.219	66.257	22.363	1.00	52.27		0
ATOM	1385		YR A		17.731	67.834	20.830	1.00	50.50		N
			YR A		17.001	67.202	19.738		49.94		C
ATOM	1386								49.34		C
ATOM	1387		YR A		16.126	68.236	19.021				
MOTA	1388	CG T	YR A	207	14.759	68.542	19.600		48.61		C
MOTA	1389	CD1 T	YR A	207	14.604	69.438	20.679	1.00	49.28		C
MOTA	1390	CE1 T	YR A	207	13.314	69.753	21.194	1.00	48.65		С
			YR A		12.182	69.164	20.590	1.00	50.59		C
ATOM	1391					69.447	21.042		47.38		0
MOTA	1392		YR A		10.901						C
MOTA	1393	CE2 T	YR A	207	12.332	68.284	19.488		48.14		
MOTA	1394	CD2 T	YR A	207	13.605	67.999	19.007	1.00	48.95		С
MOTA	1395	C T	YR A	207	17.982	66.571	18.718	1.00	49.22		C
	1396		YR A		17.560	66.165	17.621	1.00	48.88		0
ATOM			ER A		19.269	66.529	19.085		48.13		N
MOTA	1397										C
MOTA	1398		SER A		20.361	66.030	18.231		47.87		
MOTA	1399	CB S	SER A	208	21.667	66.791	18.496		48.10		С
MOTA	1400	OG S	ER A	208	22.280	66.316	19.688	1.00	49.78		0
ATOM	1401		ER A		20.620	64.566	18.503	1.00	46.42		С
					20.531	64.110	19.656		46.94		0
MOTA	1402		ER A								N
MOTA	1403		PRO A		20.941	63.826	17.449		44.93		
MOTA	1404	CA F	PRO A	209	21.043	62.374	17.545	1.00	43.05		С
MOTA	1405	CB F	PRO A	209	20.979	61.948	16.083	1.00	43.11		C
MOTA	1406		RO A		21.596	63.062	15.366	1.00	43.72		C
					21.165	64.293	16.070		45.04		С
MOTA	1407		PRO A								C
MOTA	1408		PRO A		22.334	61.918	18.200		42.08		
MOTA	1409	O F	PRO A	. 209	23.303	62.675	18.235		40.92		0
MOTA	1410	N E	PRO A	210	22.355	60.685	18.705	1.00	41.24		N
MOTA	1411		PRO A		23.546	60.167	19.374	1.00	42.13		С
	1412		PRO A		23.117	58.762	19.830		41.13		С
MOTA							18.942		41.77		C
MOTA	1413		PRO A		21.980	58.403					
MOTA	1414		PRO A		21.270	59.693	18.669		40.59		C
MOTA	1415	C E	PRO A	210	24.768	60.119	18.442		43.19		С
MOTA	1416	O I	PRO A	210	25.884	60.302	18.942	1.00	42.91		0
	1417		JLU A		24.567	59.901	17.138		43.80		N
MOTA	141/	7/ (JIIO P		21.307	22.202	_,50				

155

ATOM	1418	CA	GLU .	71	211	25.683	59.896	16.184	1.00 45.23	С
ATOM	1419		GLU .			25.253	59.400	14.780	1.00 44.59	
ATOM	1420		GLU .			24.227	60.279	14.079	1.00 42.32	Ċ
ATOM	1421		GLU .			22.796	59.821	14.334	1.00 41.06	Ċ
ATOM	1422		GLU .			22.529	59.217	15.394	1.00 38.90	Ō
ATOM	1423		GLU .			21.940	60.065	13.460	1.00 38.76	0
ATOM	1424		GLU			26.354	61.263	16.095	1.00 46.56	. C
ATOM	1425		GLU			27.563	61.353	15.883	1.00 46.98	0
ATOM	1426	Ŋ	TRP			25.585	62.331	16.284	1.00 48.34	N
ATOM	1427		TRP			26.184	63.658	16.339	1.00 50.36	С
ATOM	1428	CB	TRP			25.147	64.769	16.186	1.00 50.50	Č
ATOM	1429	CG	TRP			25.742	66.114	16.495	1.00 52.39	Ċ
ATOM	1430		TRP			25.599	66.830	17.652	1.00 53.01	Ċ
ATOM	1431		TRP			26.318	67.999	17.579	1.00 53.68	N
ATOM	1432		TRP			26.962	68.052	16.368	1.00 53.34	C
ATOM	1433		TRP			26.626	66.877	15.661	1.00 52.72	С
ATOM	1434		TRP			27.159	66.692	14.373	1.00 52.54	С
ATOM	1435		TRP			27.992	67.675	13.842	1.00 52.69	С
ATOM	1436		TRP			28.306	68.832	14.575	1.00 52.71	С
ATOM	1437		TRP			27.802	69.040	15.833	1.00 53.56	С
ATOM	1438	C	TRP			26.996	63.835	17.622	1.00 51.79	С
ATOM	1439	Õ	TRP			28.118	64.342	17.588	1.00 52.13	0
ATOM	1440	N	ILE			26.435	63.388	18.743	1.00 53.62	N
ATOM	1441	CA	ILE			27.095	63.496	20.048	1.00 55.72	С
MOTA	1442	CB	ILE			26.195	62.917	21.183	1.00 55.41	С
ATOM	1443	CG1				24.804	63.568	21.202	1.00 56.07	C
ATOM	1444		ILE			24.816	65.083	21.258	1.00 57.43	С
ATOM	1445		ILE			26.874	63.055	22.525	1.00 56.33	С
ATOM	1446	C			213	28.440	62.771	20.050	1.00 57.10	C
ATOM	1447	ŏ			213	29.461	63.335	20.447	1.00 57.22	0
ATOM	1448	N			214	28.416	61.524	19.591	1.00 58.27	N
ATOM	1449	CA	ARG			29.559	60.635	19.650	1.00 59.99	С
ATOM	1450	СВ			214	29.083	59.190	19.585	1.00 60.48	C
ATOM	1451	CG			214	28.391	58.721	20.837	1.00 64.19	C
MOTE	1452	CD			214	28.138	57.237	20.844	1.00 68.93	С
MOT	1453	NE			214	29.398	56.501	20.865	1.00 73.42	N
MOT	1454	CZ			214	29.499	55.185	21.015	1.00 76.10	C
A.J.OM	1455		ARG			28.405	54.439	21.161	1.00 76.91	N
MO'.'A	1456		ARG			30.697	54.609	21.013	1.00 76.26	N
ATOM	1457	С			214	30.579	60.864	18.546	1.00 59.96	С
ATOM	1458	0	ARG	A	214	31.774	60.803	18.812	1.00 60.37	0
MOTE	1459	N	TYR	A	215	30.116	61.106	17.318	1.00 59.65	N
ATOM	1460	CA	TYR	Α	215	31.018	61.161	16.159	1.00 59.46	C
ATOM	1461	CB	TYR	Α	215	30.751	59.997	15.196	1.00 59.78	C
MOTA	1462	CG	TYR	Α	215	30.624	58.648	15.858	1.00 61.91	C
ATOM	1463	CD1	TYR	Α	215	31.657	58.120	16.639	1.00 63.80	C
ATOM	1464	CE1	TYR	Α	215	31.532		17.247	1.00 64.01	C
ATOM	1465	CZ	TYR	Α	215	30.370	56.151	17.070	1.00 65.13	C
MOTA	1466	OH			215	30.228	54.910	17.657	1.00 66.40	0
MOTA	1467				215	29.346	56.647	16.288	1.00 64.30	C
MOTA	1468	CD2			. 215	29.475	57.885	15.692	1.00 63.31	C
ATOM	1469	С			. 215	30.984	62.453	15.364	1.00 58.84	C
MOTA	1470	0			. 215	31.672	62.556	14.356	1.00 58.96	0
ATOM	1471	N			216	30.189		15.791	1.00 57.99	Ŋ
MOTA	1472	CA			216	30.018	64.666	15.020	1.00 57.44	C
MOTA	1473	CB			216	31.238		15.198	1.00 58.54	C
ATOM	1474	CG			216	31.302		16.547	1.00 62.71	N
ATOM	1475				216	30.780		16.793	1.00 65.61	C
ATOM	1476				216	30.965		18.065	1.00 67.49	n
MOTA	1477				216	31.591		18.655	1.00 67.79	
MOTA	1478				216	31.808		17.730	1.00 65.96	C
MOTA	1479	C			216	29.721		13.524	1.00 55.81	0
MOTA	1480	0			216	30.212		12.653	1.00 55.97	И
MOTA	1481	N			217	28.910		13.243	1.00 53.48	C
MOTA	1482	CA			217	28.502		11.881	1.00 51.48	C
MOTA	1483	CB			217	29.335		11.347	1.00 51.91 1.00 54.97	
MOTA	1484	CG			217	30.818		11.121 11.180	1.00 54.97	C
ATOM	1485	CD			A 217 A 217	31.688 31.581		9.957	1.00 63.43	N
ATOM	1486	NE	MAG		11	JUUI	20.000	2.507		••

ATOM	1487	CZ	ARG	А	217	32.061	60.411	8.751	1 00	64.73	C
ATOM	1488		ARG			32.700	61.569	8.577			С
	_									66.07	N
ATOM	1489		ARG			31.892	59.602	7.709		63.46	N
ATOM	1490	С	ARG	Ą	217	27.054	62.581	11.923	1.00	48.94	С
ATOM	1491	0	ARG	Α	217	26.641	61.939	12.884	1.00	48.53	0
MOTA	1492	N	TYR	Α	218	26.300	62.893	10.875	1.00	45.99	N
ATOM	1493	CA			218	24.938	62.394	10.722		43.71	
											С
ATOM	1494	CB			218	23.976	63.126	11.694		42.32	С
MOTA	1495	CG			218	23.830	64.587	11.395	1.00	40.14	C
ATOM	1496	CD1	TYR	Α	218	24.708	65.529	11.937	1.00	39.79	С
ATOM	1497	CE1	TYR	Α	218	24.574	66.882	11.628	1.00	42.32	Ċ
ATOM	1498	CZ			218	23.562	67.298	10.770		41.14	
ATOM	1499	OH			218						C
						23.412	68.630	10.464		43.32	0
ATOM	1500		TYR			22.680	66.375	10.224	1.00	39.68	C
ATOM	1501	CD2	TYR	Ą	218	22.828	65.031	10.539	1.00	39.80	C
ATOM	1502	С	TYR	A	218	24.448	62.520	9.279	1.00	42.58	С
ATOM	1503	0	TYR	Α	218	24.959	63.323	8.492	1.00	42.66	Ō
ATOM	1504	N			219	23.434	61.732	8.947		41.95	Ŋ
ATOM	1505	CA			219	22.769	61.849	7.658		40.52	С
ATOM	1506	CB	HIS	A	219	22.655	60.465	7.030	1.00	41.07	С
MOTA	1507	CG	HIS	Α	219	23.984	59.906	6.614	1.00	42.12	C
ATOM	1508	ND1	HIS	Α	219	24.497	60.080	5.344	1.00	43.99	N
ATOM	1509		HIS			25.692	59.523	5.273		42.45	C
	1510		HIS								
ATOM						25.982	59.010	6.455		43.76	Ŋ
ATOM	1511		HIS			24.935	59.246	7.317	T.00	41.90	С
ATOM	1512	C	HIS	Α	219	21.404	62.521	7.843	1.00	39.33	С
ATOM	1513	0	HIS	Α	219	20.779	62.370	8.889	1.00	38.64	0
ATOM	1514	N	GLY	Α	220	20.965	63.270	6.836	1.00	38.11	N
ATOM	1515	CA	GLY			19.784	64.103	6.950		37.81	Č
ATOM	1516	C			220	18.527	63.394	7.405		38.27	C
ATOM	1517	0	GLY	A	220	17.931	63.745	8.429		37.53	0
ATOM	1518	N	ARG	Α	221	18.122	62.386	6.647	1.00	38.11	N
MOTA	1519	CA	ARG	Α	221	16.855	61.717	6.895	1.00	38.50	С
ATOM	1520	CB	ARG			16.542	60.729	5.767		40.47	C
ATOM	1521	CG	ARG			16.585	61.401	4.388		45.37	Č
MOTA	1522	CD	ARG			16.575	60.448	3.185		51.09	С
ATOM	1523	NE	ARG	Α	221	16.584	61.200	1.919	1.00	53.82	N
ATOM	1524	CZ	ARG	Α	221	17.690	61.495	1.222	1.00	55.73	C
ATOM	1525	NH1	ARG	Α	221	18.894	61.099	1.646	1.00	56.00	N
ATOM	1526		ARG			17.594	62.164	0.075		55.14	N
							61.050			37.41	Ċ
MOTA	1527	С	ARG			16.824		8.256			
ATOM	1528	0	ARG			15.873	61.254	9.013		37.16	0
ATOM	1529	N	SER	A	222	17.858	60.290	8.597	1.00	36.13	N
MOTA	1530	CA	SER	Α	222	17.836	59.563	9.863	1.00	35.73	C
ATOM	1531	CB	SER	Ά	222	18.900	58.448	9.890	1.00	34.73	С
ATOM	1532	OG			222	20.215	58.968	9.772		36.77	Ō
											_
ATOM	1533	С			222	17.941	60.519	11.069		35.26	С
ATOM	1534	0	SER	Α	222	17.365	60.250	12.137		35.32	0
ATOM	1535	N	ALA	Α	223	18.647	61.633	10.899	1.00	34.89	N
ATOM	1536	CA	ALA	Α	223	18.743	62.643	11.958	1.00	34.34	C
ATOM	1537	CB	ALA			19.847	63.660	11.666		32.42	С
	1538	C	ALA			17.399	63.350	12.101		34.25	Č
ATOM											
ATOM	1539	0	ALA			16.992	63.726	13.214		33.94	0
ATOM	1540	N	ALA	A	224	16.699	63.523	10.983	1.00	33.64	N
ATOM	1541	CA	ALA	Α	224	15.384	64.152	11.033	1.00	32.93	C
ATOM	1542	CB	ALA	Ά	224	14.862	64.456	9.651	1.00	33.29	C
ATOM	1543	c	ALA			14.410	63.269	11.812		33.44	Č
						13.645		12.651			
ATOM	1544	0	ALA				63.770			33.58	0
ATOM	1545	N	VAL			14.455	61.962	11.562		32.40	N
ATOM	1546	CA	VAL	A	225	13.569	61.003	12.228	1.00	31.69	C
ATOM	1547	CB	VAL	A	225	13.724	59.574	11.622	1.00	32.53	С
ATOM	1548		VAL			13.083	58.504	12.507		30.93	Ċ
ATOM	1549		VAL			13.123	59.544	10.219		32.75	
											С
ATOM	1550	C	VĄL			13.856	60.988	13.740		32.12	С
ATOM	1551	0	VAL			12.943	60.876	14.552		31.44	0
ATOM	1552	N	TRP	A	226	15.125	61.117	14.110	1.00	31.95	N
ATOM	1553	CA	TRP	A	226	15.476	61.173	15.530	1.00	32.47	С
ATOM	1554	СВ	TRP			16.990	61.279	15.721		33.06	Ċ
ATOM	1555	CG	TRP			17.322	61.494	17.183		32.56	
AI OF		CG	INE	21		11,344	01.334	T. TO2	1.00	٥٤.٥٥	С

ATOM	1556	CD1	TRP	A	226	17.334	62.682	17.851	1.00 32.49	C
MOTA	1557		TRP			17.660	62.479	19.173	1.00 32.64	N
ATOM	1558		TRP			17.834	61.134	19.383	1.00 31.73	C
MOTA	1559		TRP			17.631	60.485	18.148	1.00 31.24	C
ATOM	1560		TRP			17.757	59.089	18.094	1.00 32.89	C
ATOM ATOM	1561		TRP			18.096	58.391	19.261	1.00 32.32	С
	1562		TRP			18.286	59.080	20.478	1.00 33.34	С
ATOM ATOM	1563 1564	C	TRP		226	18.157	60.444	20.552	1.00 32.43	C
ATOM	1565	0			226	14.754	62.372	16.178	1.00 32.00	С
ATOM	1566	N			227	14.071 14.872	62.224 63.546	17.192 15.558	1.00 31.94	0
ATOM	1567	CA			227	14.217	64.752	16.073	1.00 31.65 1.00 31.57	N
ATOM	1568	CB			227	14.611	65.982	15.259	1.00 31.57	C
ATOM	1569	OG			227	13.916	66.048	14.016	1.00 31.01	C
ATOM	1570	С	SER	Α	227	12,695	64.599	16.161	1.00 31.31	0
ATOM	1571	0	SER	A	227	12.052	65.151	17.072	1.00 30.56	o
MOTA	1572	N	LEU	A	228	12.124	63.841	15.229	1.00 30.36	И
ATOM	1573	CA			228	10.701	63.545	15.217	1.00 30.48	C
ATOM	1574	CB			228	10.300	62.865	13.901	1.00 30.69	C
ATOM	1575	CG			228	10.325	63.767	12.661	1.00 31.45	С
ATOM	1576		LEU			10.069	62.947	11.389	1.00 30.81	С
ATOM	1577		LEU			9.321	64.917	12.784	1.00 30.15	С
ATOM	1578	С			228	10.315	62.661	16.394	1.00 29.84	С
ATOM	1579	O			228	9,227	62.815	16.958	1.00 30.50	0
ATOM ATOM	1580 1581	N CA			229	11.206	61.751	16.765	1.00 29.67	N
ATOM	1582	CA			229 229	11.008 10.994	60.895 61.723	17.920 19.208	1.00 29.67	C
ATOM	1583	0			229	10.169	61.486	20.105	1.00 30.52 1.00 28.98	C
ATOM	1584	N			230	11.920	62.670	19.307	1.00 28.38	O N
ATOM	1585	CA			230	11.986	63.587	20.459	1.00 30.34	C
ATOM	1586	CB	ILE			13.199	64.564	20.334	1.00 31.68	c
ATOM	1587	CG1	ILE	A	230	14.526	63.792	20.281	1.00 30.92	c
ATOM	1588	CD1	ILE	Α	230	14.824	62.992	21.546	1.00 30.66	Č
MOTA	1589	CG2	ILE	A	230	13.229	65.553	21.533	1.00 30.61	С
ATOM	1590	C	ILE	A	230	10.693	64.397	20.532	1.00 31.56	С
MOTA	1591	0	ILE			10.050	64.488	21.596	1.00 31.09	0
MOTA	1592	N	LEU			10.289	64.928	19.373	1.00 30.97	N
MOTA	1593	CA	LEU			9.050	65.711	19.257	1.00 30.14	С
ATOM	1594	CB	LEU			8.894	66.239	17.828	1.00 30.10	C
MOTA	1595 1596	CG	LEU			7.627	67.043	17.556	1.00 32.25	C
ATOM ATOM	1597		LEU LEU			7.733 7.419	68.372 67.246	18.310 16.065	1.00 30.47	C
ATOM	1598	C	LEU			7.798	64.950	19.689	1.00 30.92 1.00 30.59	C
ATOM	1599	Ö	LEU			6.949	65.484	20.439	1.00 30.39	0
ATOM	1600	N	LEU			7.655	63.721	19.210	1.00 29.58	N
ATOM	1601	CA	LEU			6.499	62,916	19.552	1.00 30.41	C
MOTA	1602	CB	LEU	A	232	6.470	61.609	18.745	1.00 30.17	c
MOTA	1603	CG	LEU			5.301	60.642	19.033	1.00 30.99	C
MOTA	1604		LEU			3.947	61.346	18.919	1.00 33.55	C
ATOM	1605		LEU			5.359	59.465	18.073	1.00 31.95	С
MOTA	1606	С	LEU			6.439	62.630	21.062	1.00 30.78	С
ATOM	1607	0	LEU			5.371	62.721	21.667	1.00 31.42	0
MOTA	1608	N	TYR			7.571	62.272	21.650	1.00 30.02	N
ATOM	1609	CA	TYR			7.646	62.042	23.103	1.00 30.55	C
ATOM ATOM	1610	CB	TYR			9.068	61.662	23.526	1.00 30.26	C
ATOM	1611 1612	CG CD1	TYR TYR			9.209 9.255	61.373	25.008	1.00 28.93	C
ATOM	1613		TYR			9.353	62.416 62.171	25.930 27.311	1.00 29.15 1.00 28.65	C
ATOM	1614	CZ	TYR			9.407	60.882	27.769	1.00 28.65	C
ATOM	1615	OH	TYR			9.505	60.681	29.132	1.00 31.81	C
ATOM	1616		TYR			9.365	59.801	26.878	1.00 30.59	o C
ATOM	1617		TYR			9.267	60.058	25.486	1.00 28.47	C
ATOM	1618	С	TYR			7.216	63.306	23.834	1.00 31.37	C
MOTA	1619	0	TYR .			6.416	63.250	24.769	1.00 32.79	Ö
ATOM	1620		ASP.			7.762	64.434	23.407	1.00 31.52	N
MOTA	1621		ASP .			7.411	65.750	23.934	1.00 33.52	C
ATOM	1622		ASP .			8.156	66.833	23.162	1.00 34.26	Ċ
ATOM	1623		ASP .			7.951	68.224	23.745	1.00 37.82	С
ATOM	1624	OD1	ASP A	A	234	8.206	68.450	24.956	1.00 39.31	0

ATOM	1625	OD2	ASP	A	234	7.531	69.156	23.030	1.00 39.97		0
ATOM	1626	C	ASP	Α	234	5.923	66.023	23.923	1.00 34.29		С
MOTA	1627	0	ASP			5.368	66.524	24.931	1.00 35.28		0
MOTA	1628	N	MET			5.258	65.695	22.810	1.00 33.03		N
MOTA	1629	CA	MET			3.819	65.904	22.713	1.00 33.96		C
ATOM	1630	CB	MET			3.293	65.625	21.305	1.00 33.12		C
ATOM	1631	CG	MET			3.641	66.708	20.286	1.00 36.42		C
ATOM	1632	SD	MET			2.965	66.246	18.692	1.00 39.55		S
ATOM	1633	CE	MET			4.174	65.260	18.147 23.703	1.00 43.23 1.00 33.96		C
ATOM	1634	С	MET			3.020 2.133	65.078 65.607	24.337	1.00 35.90		0
ATOM	1635	0	MET VAL			3.322	63.787	23.816	1.00 33.00		N
MOTA	1636	N CA	VAL			2.518	62.893	24.660	1.00 35.02		C
ATOM ATOM	1637 1638	CB	VAL			2.405	61.476	24.055	1.00 35.33		Č
ATOM	1639		VAL			1.757	61.562	22.673	1.00 34.30		Ċ
ATOM	1640		VAL			3.763	60.805	23.937	1.00 33.11		С
ATOM	1641	C	VAL			2.955	62.843	26.129	1.00 35.63		С
ATOM	1642	Ō	VAL			2.225	62.326	26.970	1.00 35.58		0
ATOM	1643	N	CYS			4.131	63.389	26.432	1.00 36.11		N
ATOM	1644	CA	CYS	A	237	4.642	63.383	27.814	1.00 36.98		С
ATOM	1645	CB	CYS	Α	237	5.972	62.630	27.909	1.00 36.35		С
ATOM	1646	SG	CYS	Α	237	5.796	60.844	27.757	1.00 38.34		S
ATOM	1647	С	CYS	A	237	4.790	64.778	28.416	1.00 37.40		C
ATOM	1648	0	CYS			4.983	64.907	29.628	1.00 38.17		0
ATOM	1649	N	GLY			4.722	65.812	27.576	1.00 36.49		N
ATOM	1650	CA	GLY			4.791	67.183	28.045	1.00 36.34		C
ATOM	1651	С			238	6.186	67.717	28.259	1.00 37,64		C
ATOM	1652	0			238	6.353	68.842	28.719	1.00 37.75 1.00 38.11		N
ATOM	1653	N			239	7.198	66.916	27.939 28.009	1.00 39.21		C
ATOM	1654	CA	ASP			8.580	67.369 67.339	29.458	1.00 40.74		c
ATOM	1655	CB			239	9.056 10.214	68.302	29.735	1.00 45.40		Č
ATOM	1656	CG OD1	ASP		239	10.586	69.135	28.867	1.00 49.01		ō
ATOM	1657 1658		ASP			10.822	68.274	30.828	1.00 50.33	7.	0
ATOM ATOM	1659	C '			239	9.418	66.434	27.142	1.00 39.28		С
ATOM	1660	ŏ			239	8.957	65.354	26.769	1.00 39.18		0
ATOM	1661	N			240	10.630	66.856	26.809	1.00 39.54		34
MOTA	1662	CA			240	11.529	66.066	25.983	1.00 39.95		С
ATOM	1663	CB	ILE	Α	240	12.641	66.964	25.440	1.00 40.83		С
MOTA	1664	CG1	ILE	Α	240	13.306	67.740	26.578	1.00 41.83		C
MOTA	1665	CD1	ILE	A	240	14.455	68.627	26.125	1.00 44.95		C
MOTA	1666	CG2	ILE	A	240	12.092	67.911	24.344	1.00 39.77		C
ATOM	1667	С			. 240	12.106	64.916	26.827	1.00 40.26		C
MOTA	1668	0			240	12.187	65.046	28.049	1.00 40.89 1.00 40.14		И
ATOM	1669	N			241	12.470	63.791 62.620	26.210 26.971	1.00 40.14		C
MOTA	1670	CA			241	12.941 12.879	61.494	25.932	1.00 40.79		č
MOTA	1671	CB			241	13.150	62.187	24.622	1.00 39.44		Č
MOTA	1672 1673	CG CD			241	12.444	63.518	24.757	1.00 39.54		C
ATOM ATOM	1674	C			241	14.361	62.737	27.548	1.00 42.89		С
ATOM	1675	Õ			241	14.639	62.109	28.571	1.00 42.98		0
ATOM	1676	N			242	15.243	63.508	26.912	1.00 44.80		N
ATOM	1677	CA			242	16.644	63.555	27.340	1.00 46.51		С
ATOM	1678	CB			242	17.589	62.944	26.285	1.00 45.41		С
ATOM	1679	CG	PHE	A	242	17.145	61.617	25.735	1.00 43.12		С
ATOM	1680	CD1	PHE	A	242	16.885		26.578	1.00 42.42		С
MOTA	1681	CE1	PHE	A	242	16.496		26.068	1.00 41.08		C
ATOM	1682	CZ	PHE	A	242	16.367		24.676	1.00 43.10		C
MOTA	1683	CE2	PHE	P	242	16.618		23.824	1.00 40.87		С
MOTA	1684				242	17.012		24.350	1.00 42.39		C
MOTA	1685	C			242	17.104		27.639	1.00 48.94		C
MOTA	1686	0			242	16.783		26.903	1.00 48.57		O N.
MOTA	1687	N			243	17.884		28.714	1.00 52.57		N.
ATOM	1688	CA			243	18.514		29.046 30.496	1.00 55.94 1.00 57.25		C C
ATOM	1689	CB			243	18.204 16.930		30.496	1.00 57.25		C
ATOM	1690 1691	CG CD			243	16.930		29.814	1.00 68.14		c
ATOM ATOM	1691				243	17.901		29.854	1.00 69.83		Ö
ATOM	1693				243	15.894		29.104	1.00 69.55		ō
AION	~ U J J	0.02		•	10	20.001					

ATOM	1694	С	GLU Z	A	243		20.022	66.364	28.813		56.70		С
MOTA	1695	0	GLU Z	A	243		20.596	67.329	28.291		57.61		0
MOTA	1696	N	HIS A				20.654	65.250	29.169		57.00		N .
MOTA	1697	CA	HIS.				22.111	65.145	29.128		57.57		С
MOTA	1698	CB	HIS .				22.634	64.653	30.484		57.93 60.15		C C
ATOM	1699	CG	HIS .				22.177	65.491 65.040	31.641 32.563		61.46		N
ATOM	1700		HIS.				21.243	65.986	33.459		61.53		C
MOTA	1701		HIS .				21.021 21.772	67.040	33.145				N
MOTA	1702		HIS				22.501	66.761	32.008		60.89		C
ATOM ATOM	1703 1704	CDZ	HIS				22.632	64.251	27.999		57.12		č
ATOM	1705	0	HIS				21.946	63.321	27.564	1.00	56.42		0
ATOM	1706	N	ASP				23.850	64.550	27.542	1.00	56.65		N
ATOM	1707	CA	ASP				24.536	63.778	26.508	1.00	56.51		С
ATOM	1708	CB	ASP	Α	245		25.982	64.254	26.364		56.84		С
MOTA	1709	CG	ASP				26.093	65.551	25.602		58.28		С
MOTA	1710		ASP				25.109	66.322	25.555		60.57		0
ATOM	1711		ASP				27.132	65.889	25.003		61.68		0 .
ATOM	1712	С	ASP				24.520	62.289	26.792	1.00	55.85		С 0
ATOM	1713	0	ASP				24.240	61.487	25.902 28.038		55.84 55.12		N
MOTA	1714	N	GLU				24.807 24.814	61.926 60.528	28.473		54.57		C
ATOM	1715	CA	GLU GLU				25.227	60.414	29.948		55.49		č
ATOM	1716 1717	CB CG	GLU				26.247	61.439	30.419		59.92		Č
ATOM ATOM	1718	CD	GLU				25.601	62.745	30.853		64.57		С
ATOM	1719	OE1					24.864	62.732	31.873		66.43		0
ATOM	1720		GLU			•	25.824	63.779	30.165	1.00	66.00		0
ATOM	1721	C	GLU				23.464	59.838	28.284	1.00	52.76		С
ATOM	1722	0	GLU	Α	246		23.405	58.637	27.998		51.94	:	0
MOTA	1723	N	GLU	Α	247		22.381	60.583	28.491		51.08		N
ATOM	1724	CA	GLU				21.037	60.031	28.289		50.00		C
ATOM	1725	CB	GLU				19.982	60.949	28.888		50.91		C
MOTA	1726	CG	ĠĿŪ				20.048	61.069	30.398	1.00	54.76		C C
MOTA	1727	CD	GLU				19.070	62.089	30.919		59.14 61.88		Q.
ATOM	1728		GLU				19.189 18.172	63.281 61.693	30.568 31.672		63.68		O;
ATOM	1729	OE2	GLU				20.734	59.785	26.810		47.56		C
MOTA	1730 1731	С 0	GLU				20.177	58.757	26.463	1.00	46.72		0 %
MOTA MOTA	1732	N			248		21.102	60.738	25.957	1.00	46.28		N
ATOM	1733	CA			248		20.964	60.598	24.498	1.00	46.12		С
ATOM	1734	СВ			248		21.446	61.876	23.754		45.90		С
ATOM	1735	CG1	ILE	Α	248		20.599	63.092	24.141		44.91		C
ATOM	1736	CD1	ILE	Α	248		21.110	64.419	23.588		44.29		C
MOTA	1737	CG2	ILE	A	248		21.444	61.658	22.233		45.48		C C
ATOM	1738	С			248		21.741	59.390	23.988		46.47		0
MOTA	1739	0			248		21.221	58.613	23.199		46.50 46.70		N
MOTA	1740	N			249		22.977 23.845	59.223 58.119	24.462 24.021		47.73		C
ATOM	1741	CA			249 249		25.315	58.342	24.516		48.27		Ċ
ATOM	1742 1743	CB CG1	ILE.				25.882	59.634	23.929		50.01		С
ATOM ATOM	1744		ILE				27.162	60.114	24.638	1.00	54.07		С
ATOM	1745		ILE				26.208	57.167	24.127	1.00	49.80		С
ATOM	1746	C			249		23.344	56.752	24.463		47.21		C
ATOM	1747	0			249		23.473	55.754	23.735		47.14		0
ATOM	1748	N	ARG	Α	250		22.798	56.697	25.671		46.59		N
ATOM	1749	CA			250		22.259	55.454	26.197		46.70		C
ATOM	1750	CB			250		22.052	55.573	27.712		46.73		C
MOTA	1751	CG			250		21.612	54.297	28.415		47.47	_	C
ATOM	1752	CD			250		21.702	54.415	29.942		49.11 50.87	-	C N
ATOM	1753	NE			250		21.290	53.191	30.631 31.429		50.66		C
ATOM	1754	CZ			250		20.217	53.076 54.117	31.429		46.65		N
ATOM	1755 1756		ARG				19.412	51.909	32.006		50.26		N
ATOM	1757	NH2 C			250		20.949	55.097	25.483		46.42		C
ATOM ATOM	1758	0			250		20.617	53.922	25.352		47.00		Ō
ATOM	1759	И			251		20.224	56.113	25.018		46.84		N
ATOM	1760	CA	GLY	Α	251		18.982	55.936	24.269		47.26		С
ATOM	1761	C			251		17.855	55.180	24.968		47.36		С
ATOM	1762	0	GLY	Α	251		16.936	54.702	24.318	1.00	47.71		.0

MOTA	1763	N GLN A	252	17.921	55.067	26.290	1.00 46.77	N
ATOM	1764	CA GLN A	252	16.872	54.400	27.058	1.00 46.61	C
	1765	CB GLN A		17.438	53.965	28.410	1.00 47.77	C
MOTA		CG GLN A		16.745	52.797	29.034	1.00 53.27	C
MOTA	1766	_		17.362	51.495	28.593	1.00 58.82	С
ATOM	1767			16.922	50.902	27.587	1.00 62.58	Ō
ATOM	1768	OE1 GLN A				29.328	1.00 52.30	N
ATOM	1769	NE2 GLN A		18.381	51.040			Ĉ
MOTA	1770	C GLN F		15.720	55.388	27.264	1.00 44.36	
ATOM	1771	O GLN F	1 252	15.914	56.458	27.842	1.00 43.90	0
ATOM	1772	N VAL A	4 253	14.534	55.036	26.789	1.00 42.26	Ŋ
ATOM	1773	CA VAL A	A 253	13.366	55.917	26.887	1.00 41.30	С
MOTA	1774	CB VAL A	A 253	12.515	55.900	25.574	1.00 40.85	С
ATOM	1775	CG1 VAL A	A 253	11.398	56.917	25.657	1.00 41.13	C
ATOM	1776	CG2 VAL A		13.386	56.184	24.330	1.00 41.05	С
ATOM	1777	C VAL A		12.452	55.558	28.080	1.00 40.21	C
ATOM	1778	O VAL A		11.870	54.475	28.128	1.00 39.18	0
		N PHE		12.312	56.494	29.004	1.00 40.53	N
ATOM	1779				56.340	30.147	1.00 41.30	C
ATOM	1780		A 254	11.415			1.00 42.46	C
MOTA	1781		A 254	12.125	56.749	31.446		Ċ
MOTA	1782		A 254	11.181	56.979	32.597	1.00 45.89	C
MOTA	1783	CD1 PHE A		10.698	55.890	33.354	1.00 48.15	
MOTA	1784	CE1 PHE A	A 254	9.794	56.087	34.453	1.00 46.65	C
MOTA	1785	CZ PHE Z	A 254	9.368	57.391	34.762	1.00 47.61	C
MOTA	1786	CE2 PHE A	A 254	9.840	58.499	33.990	1.00 48.28	С
ATOM	1787	CD2 PHE 2	A 254	10.742	58.287	32.922	1.00 47.87	C
ATOM	1788		A 254	10.192	57.216	29.960	1.00 40.77	С
MOTA	1789		A 254	10.324	58.388	29.630	1.00 40.62	0
	1790		A 255	9.011	56.656	30.202	1.00 39.76	И
ATOM				7.772	57.377	30.041	1.00 40.05	C
ATOM	1791		A 255	6.744	56.512	29.293	1.00 38.87	Ċ
MOTA	1792		A 255				1.00 38.12	C
MOTA	1793		A 255	7.047	56.408	27.844		C
MOTA	1794	CD1 PHE		6.520	57.332	26.945	1.00 37.51	
MOTA	1795	CE1 PHE	A 255	6.834	57.267	25.588	1.00 37.08	C
ATOM	1796	CZ PHE .	A 255	7.715	56.277	25.126	1.00 38.31	C
MOTA	1797	CE2 PHE .	A 255	8.251	55.353	26.034	1.00 37.42	C
ATOM	1798	CD2 PHE .	A 255	7.917	55.429	27.379	1.00 36.49	C
ATOM	1799	C PHE	A 255	7.233	57.901	31.355	1.00 40.75	C
ATOM	1800		A 255	6.974	57.139	32.280	1.00 41.63	0
MOTA	1801		A 256	7.078	59.214	31.414	1.00 42.10	N
	1802		A 256	6.613	59.911	32.614	1.00 43.68	C
ATOM				7.284	61.291	32.722	1.00 44.33	С
MOTA	1803		A 256		62.233	31.549	1.00 46.48	Ċ
MOTA	1804		A 256	7.050		31.606	1.00 49.15	c
MOTA	1805		A 256	7.915	63.508			И
ATOM	1806		A 256	9.248	63.277	31.034	1.00 53.26	C
MOTA	1807		A 256	10.334	64.018	31.293	1.00 54.62	
MOTA	1808	NH1 ARG	A 256	10.260	65.060	32.133	1.00 55.57	N
MOTA	1809	NH2 ARG	A 256	11.502	63.720	30.716	1.00 52.61	И
ATOM	1810	C ARG	A 256	5.096	60.051	32.658	1.00 43.59	C
ATOM	1811	O ARG	A 256	4.525	60.251	33.724	1.00 44.72	0
MOTA	1812	n Gln	A 257	4.454	59.930	31.498	1.00 42.63	N
ATOM	1813		A 257	3.001	59.949	31.403	1.00 41.06	C
ATOM	1814		A 257	2.538	61.061	30.445	1.00 42.46	С
ATOM	1815		A 257	2.890	62.451	30.901	1.00 46.35	C
	1816		A 257	1.908	62.984	31.916	1.00 51.18	С
MOTA				0.693	62.917	31.711	1.00 52.75	0
ATOM	1817	OE1 GLN				33.020	1.00 55.05	Ŋ
ATOM	1818	NE2 GLN		2.428	63.504		1.00 38.68	C
MOTA	1819		A 257	2.510	58.618	30.872		
MOTA	1820		A 257	3.267	57.849	30.300	1.00 38.45	0
MOTA	1821	n Arg	A 258	1.226	58.353	31.047	1.00 36.14	Ŋ
MOTA	1822	CA ARG	A 258	0.614	57.177	30.479	1.00 36.06	С
MOTA	1823	CB ARG	A 258	-0.820	57.048	30.997	1.00 34.77	C
ATOM	1824		A 258	-1.402	55.659	30.847	1.00 39.04	C
ATOM	1825		A 258	-1.624	55.230	29.442	1.00 40.99	C
ATOM	1826		A 258	-1.799	53.789	29.300	1.00 40.39	N
MOTA	1827		A 258	-2.327	53.219	28.215	1.00 43.89	С
		NH1 ARG		-2.730	53.966	27.158	1.00 45.06	N
MOTA	1828			-2.444	51.899	28.162	1.00 40.81	N
ATOM	1829	NH2 ARG				28.950	1.00 35.62	C
MOTA	1830		A 258	0.599	57.345			0
MOTA	1831	o ARG	A 258	0.071	58.325	28.463	1.00 35.32	U

ATOM	1832	N	VAL .	A	259	1.159	56.385	28.221	1.00 34.94	
MOTA	1833		VAL .			1.223	56.440	26.755	1.00 34.87	
MOTA	1834		VAL .			2.629	56.926	26.277	1.00 35.54	
ATOM	1835		VAL .			2.782 2.902	56.824 58.365	24.747 26.752	1.00 34.21	
ATOM	1836 1837		VAL .			0.967	55.033	26.235	1.00 33.65 1.00 35.75	
ATOM ATOM	1838	0	VAL .			1.579	54.062	26.728	1.00 35.74	
ATOM	1839	N	SER			0.055	54.901	25.267	1.00 35.24	
ATOM	1840	CA	SER			-0.269	53.601	24.698	1.00 36.49	
ATOM	1841	CB	SER	A	260	-1.247	53.749	23.525	1.00 36.47	7 C
MOTA	1842	OG	SER			-0.608	54.285	22.377	1.00 37.04	
MOTA	1843	С	SER			0.973	52.855	24.226	1.00 37.15	
MOTA	1844	0	SER			1.981	53.465 51.533	23.874	1.00 37.30	
ATOM	1845 1846	N CA	SER SER			0.876 2.000	50.701	24.178 23.767	1.00 37.42	
ATOM ATOM	1847	CB	SER			1.659	49.225	23.941	1.00 37.73	
ATOM	1848	OG	SER			1.475	48.939	25.316	1.00 42.42	
ATOM	1849	С	SER			2.399	50.965	22.325	1.00 37.68	3 C
ATOM	1850	0	SER	Α	261	3.578	50.914	21.997	1.00 36.60	
MOTA	1851	N	GLU			1.413	51.260	21.478	1.00 37.69	
MOTA	1852	CA	GLU			1.662	51.578	20.080	1.00 38.3	
ATOM	1853	CB	GLU			0.343 -0.522	51.655 50.401	19.307 19.444	1.00 40.0	
ATOM	1854 1855	CG CD	GLU GLU			-1.138	49.954	18.125	1.00 55.1	
ATOM ATOM	1856		GLU			-1.716	50.811	17.407	1.00 58.9	
ATOM	1857	OE2				-1.058	48.740	17.799	1.00 59.70	
ATOM	1858	С	GLU			2.469	52.878	19.945	1.00 36.6	
ATOM	1859	0	GLU	A	262	3.442	52.911	19.227	1.00 36.2	
MOTA	1860	N	CYS			2.073	53.931	20.651	1.00 35.3	
ATOM	1861	CA	CYS			2.822	55.188	20.621	1.00 34.4	
ATOM	1862	CB	CYS			2.051 2.728	56.272 57.931	21.363 21.207	1.00 34.3	
ATOM ATOM	1863 1864	SG C	CYS			4.250	55.021	21.181	1.00 34.4	
ATOM	1865	Ö	CYS			5.221	55.477	20.556	1.00 32.4	
ATOM	1866	N	GLN			4.385	54.325	22.321	1.00 33.43	
MOTA	1867	CA	GLN	A	264	5.715	54.008	22.859	1.00 33.1	
ATOM	1868	CB	GLN			5.629	53.110	24.097	1.00 33.3	
ATOM	1869	CG	GLN			5.022	53.781	25.364	1.00 35.4	
MOTA	1870	CD	GLN			5.296 6.162	52.968 52.098	26.647 26.655	1.00 37.3	
ATOM	1871 1872	NE2	GLN GLN			4.566	53.262	27.717	1.00 33.6	
ATOM ATOM	1873	C	GLN			6.578	53.314	21.795	1.00 33.1	
ATOM	1874	Ö	GLN			7.753	53.689	21.606	1.00 32.4	3 0
MOTA	1875	N	HIS	A	265	6.001	52.322	21.110	1.00 32.5	
MOTA	1876	CA	HIS			6.710	51.575	20.068	1.00 34.9	
ATOM	1877	CB	HIS			5.836	50.455	19.469	1.00 36.2 1.00 39.7	
MOTA	1878	CG	HIS			6.515	49.687 50.086	18.369 17.050	1.00 39.7	
MOTA	1879 1880		HIS HIS			6.481 7.189	49.244	16.314	1.00 40.0	
ATOM ATOM	1881		HIS			7.687	48.312	17.110	1.00 42.4	
MOTA	1882		HIS			7.286	48.570	18.402	1.00 42.8	1 C
ATOM	1883	C	HIS			7.226	52.508	18.968	1.00 34.1	
ATOM	1884	0	HIS			8.410	52.463	18.613	1.00 34.5	
MOTA	1885	N			266	6.355	53.372	18.445	1.00 32.9	
ATOM	1886	CA			266	6.778	54.306	17.394 16.896	1.00 32.4 1.00 32.4	
ATOM	1887	CB			266	5.587 5.863	55.147 56.209	15.818	1.00 32.4	
ATOM ATOM	1888 1889	CG	LEU		266	6.584	55.619	14.605	1.00 30.3	
ATOM	1890		LEU			4.511	56.820	15.367	1.00 30.0	
ATOM	1891	C			266	7.885	55.211	17.904	1.00 31.7	9 C
ATOM	1892	0			266	8.907	55.417	17.231	1.00 31.1	
MOTA	1893	N			267	7.706	55.750	19.112	1.00 31.3	
MOTA	1894	CA			267	8.702	56.661	19.666	1.00 30.4	
MOTA	1895	CB			267	8.273	57.184	21.052 20.924	1.00 29.9 1.00 30.3	
ATOM	1896		ILE			7.134 6.410	58.210 58.513	20.924	1.00 30.3	
ATOM ATOM	1897 1898		ILE			9.472	57.849	21.751	1.00 28.7	
ATOM	1899	C			267	10.052	55.956	19.782	1.00 31.8	
ATOM	1900	ō			267	11.093		19.340	1.00 32.2	2 0

MOTA	1901	N	ARG	A	268	10.0	34	54.774	20.3	388	1.00	32.17	N
MOTA	1902	CA	ARG			11.2		53.988	20.5			34.65	C
ATOM	1903	CB	ARG			10.9		52.713	21.3			35.11	c
ATOM	1904	CG	ARG			10.7		52.931	22.8			39.57	c
MOTA	1905	CD	ARG			10.3		51.637	23.0			45.10	C
ATOM	1906	NE	ARG			9.7		51.866	24.8			48.08	
ATOM	1907	CZ	ARG			10.3		52.338	25.9			49.97	N
ATOM	1908		ARG			11.6		52.609	25.8			53.48	C
ATOM	1909		ARG					52.551	27.0				N
MOTA	1910	C	ARG			9.7						48.54	N
ATOM		0	ARG			11.9		53.622	19.2 19.2			34.22	С
	1911		TRP			13.1		53.491				34.73	0
ATOM	1912	N				11.1		53.464	18.2			34.43	N
ATOM	1913	CA	TRP TRP			11.6		53.135	16.8			34.10	C
ATOM	1914	CB				10.5		52.657	15.9			34.69	C
ATOM	1915	CG	TRP			10.9		52.008	14.			36.80	C
MOTA	1916	CD1				12.1		51.632	14.3			39.30	C
ATOM	1917		TRP			12.1		51.081	13.0			38.76	N
ATOM	1918		TRP			10.8		51.071	12.6			37.50	С
ATOM	1919	CD2	TRP			10.0		51.669	13.0			36.90	С
ATOM	1920		TRP			8.7		51.787	13.3			35.95	С
ATOM	1921	CZ3				8.1		51.332	12.1			37.55	С
ATOM	1922		TRP			9.0		50.765	11.1			36.64	С
ATOM	1923		TRP			10.3		50.618	11.4			36.32	С
ATOM	1924	С			269	12.3		54.351	16.2			34.12	C
MOTA	1925	0	TRP			13.4		54.248	15.7			34.65	0
MOTA	1926	N	CYS			11.7	04	55.514	16.3		1.00	33.89	N
ATOM	1927	CA			270	12.3		56.762	15.8			33.18	C
MOTA	1928	CB	CYS			11.3		57.958	16.0			32.73	С
MOTA	1929	SG	CYS			9.8	194	57.933	14.9	980	1.00	34.78	S
ATOM	1930	C	CYS	Α	270	13.5	93	57.085	16.6	527	1.00	33.31	С
ATOM	1931	0	CYS	Α	270	14.4	171	57.759	16.0	085	1.00	33.37	0
MOTA	1932	N	LEU	Α	271	13.6	86	56.635	17.8	379	1.00	32.81	N
MOTA	1933	CA	LEU	A	271	14.8	35	56.934	18.7	711	1.00	33.61	С
ATOM	1934	CB	LEU	A	271	14.4	105	57.342	20.1	L43	1.00	33.79	С
MOTA	1935	CG	LEU	A	271	13.5	573	58.649	20.2	223	1.00	33.39	С
ATOM	1936	CD1	LEU	Α	271	13.1	.78	58.971	21.6	568	1.00	32.58	C
MOTA	1937	CD2	LEU	A	271	14.3	330	59.820	19.6	502	1.00	29.30	C
ATOM	1938	C	LEU	A	271	15.8	305	55.766	18.7	761	1.00	34.83	C
ATOM	1939	0	LEU	A	271	16.5	36	55.613	19.7	127	1.00	34.16	0
MOTA	1940	N	ALA	Α	272	15.8	336	54.958	17.7	705	1.00	35.68	N
MOTA	1941	CA	ALA	Α	272	16.7	96	53.853	17.6	558	1.00	37.00	С
ATOM	1942	CB	ALA	Α	272	16.5	63	52.994	16.4	129	1.00	37.89	С
MOTA	1943	С	ALA	Α	272	18.1	.91	54.460	17.6	558	1.00	37.13	C
MOTA	1944	0	ALA	Α	272	18.4	36	55.466	16.9	996	1.00	36.83	0
MOTA	1945	N	LEU	Α	273	19.0	87	53.886	18.4	147	1.00	38.00	N
ATOM	1946	CA	LEU	Α	273	20.4	64	54.378	18.5	537	1.00	39.46	С
MOTA	1947	CB	LEU	A	273	21.2	66	53.531	19.5	532	1.00	39.79	С
MOTA	1948	CG	LEU			20.9		53.795	21.0		1.00	40.61	С
MOTA	1949	CD1	LEU	Α	273	21.9	323	52.966	21.9	914	1.00	40.75	С
MOTA	1950	CD2	LEU	Α	273	21.1	.74	55.277	21.3	304	1.00	39.54	С
MOTA	1951	С	LEU			21.1	46	54.350	17.1	.68	1.00	40.47	C
ATOM	1952	0	LEU			21.7	42	55.331	16.7		1.00	40.46	0
ATOM	1953	N	ARG			21.0	51	53.225	16.4	170		41.49	N
MOTA	1954	CA	ARG			21.6		53.138	15.1			43.63	С
MOTA	1955	СВ	ARG			21.9	29	51.683	14.7			44.96	С
ATOM	1956	CG	ARG			22.9		50.943	15.6			51.46	Ċ
ATOM	1957	CD	ARG			23.1		49,470	15.2			60.47	Č
ATOM	1958	NE	ARG			23.4		49.354	13.8			66.38	N
ATOM	1959	CZ	ARG			23.5		48.212	13.1			69.93	C
ATOM	1960		ARG			23.3		47.048	13.7			71.16	N
ATOM	1961		ARG			23.7		48.239	11.8			72.00	N
ATOM	1962	C	ARG			20.7		53.826	14.1			42.18	C
ATOM	1963	0	ARG			19.6		53.469	13.9			42.54	0
ATOM	1964	N	PRO			21.3		54.807	13.4			41.48	. И
ATOM	1965	CA	PRO			20.5		55.529	12.3			41.53	C
ATOM	1966	CB	PRO			21.6		56.302	11.6			41.70	c
ATOM	1967	CG	PRO			22.6		56.629	12.7			41.76	C
ATOM	1968	CD	PRO			22.6		55.340	13.5			41.06	
ATOM	1969	CD	PRO			19.7		54.624	11.4			41.71	C C
117 013	エンロン	_				19.1	J 3	2023			4.00	a / .L	C

ATOM	1970	0	PRO	Δ	275	18.633	54.932	11.132	1.00 39.	61	0
MOTA	1971	Ŋ	SER			20.393	53.516	10.993	1.00 41.		Ŋ
ATOM	1972	CA	SER			19.774	52.587	10.040	1.00 42.		
	_										C
MOTA	1973	CB	SER			20.831	51.624	9.446	1.00 43.		C
ATOM	1974	OG	SER			21.290	50.683	10.419	1.00 45.		0
MOTA	1975	С	SER			18.597	51.799	10.613	1.00 41.		С
MOTA	1976	0	SER			17.786	51.287	9.845	1.00 42.		0
MOTA	1977	N	ASP			18.497	51.696	11.942	1.00 40.	48	N
ATOM	1978	CA	ASP	Α	277	17.344	51.038	12.575	1.00 39.	45	С
ATOM	1979	CB	ASP	Α	277	17.676	50.520	13.981	1.00 40.	14	С
MOTA	1980	CG	ASP	Α	277	18.671	49.374	13.974	1.00 41.	45	С
MOTA	1981	OD1	ASP	А	277	18.697	48.577	13.010	1.00 43.	47	0
ATOM	1982		ASP			19.471	49.221	14.915	1.00 43.	49	0
ATOM	1983	C	ASP			16.102	51.946	12.676	1.00 38.		č
ATOM	1984	Ō	ASP			15.010	51.486	13.014	1.00 37.		Ö
ATOM	1985	N	ARG			16.269	53.227	12.364	1.00 37.		N
	1986		ARG			15.145	54.159	12.448	1.00 35.		
MOTA		CA									C
ATOM	1987	CB	ARG			15.657	55.598	12.545	1.00 34.		C
MOTA	1988	CG	ARG			16.407	55.836	13.836	1.00 34.		C
ATOM	1989	CD	ARG			17.017	57.225	13.957	1.00 35.		С
MOTA	1990	NE	ARG			18.119	57.186	14.913	1.00 35.		N
MOTA	1991	CZ	ARG			19.163	57.996	14.913	1.00 36.		С
MOTA	1992	NH1	ARG	Α	278	19.286	58.971	14.010	1.00 34.	75	N
ATOM	1993	NH2	ARG	A	278	20.103	57.815	15.829	1.00 36.	28	N
MOTA	1994	С	ARG	Α	278	14.223	53.983	11.243	1.00 36.	80	С
ATOM	1995	0	ARG	A	278	14.687	53.610	10.156	1.00 36.	69	0
ATOM	1996	N	PRO	А	279	12.936	54.275	11.421	1.00 35.	45	N
ATOM	1997	CA	PRO			11.984	54.193	10.314	1.00 35.		С
ATOM	1998	CB	PRO			10.627	54.303	11.004	1.00 35.		Č
ATOM	1999	CG	PRO			10.915	55.147	12.224	1.00 35		Ċ
			PRO			12.284	54.710	12.677	1.00 33.		c
ATOM	2000	CD									C
ATOM	2001	C	PRO			12.174	55.322	9.311	1.00 31.		
MOTA	2002	0	PRO			12.784	56.354	9.626	1.00 35.		0
ATOM	2003	N	THR			11.661	55.107	8.101	1.00 34.		N
ATOM	2004	CA	THR	A	280	11.618	56.145	7.079	1.00 34.		С
MOTA	2005	CB	THR	A	280	11.509	55.513	5.683	1.00 34.		С
MOTA	2006	OG1	THR	Α	280	10.344	54.690	5.655	1.00 34.	43	0
MOTA	2007	CG2	THR	A	280	12.712	54.555	5.379	1.00 35.	88	C
ATOM	2008	С	THR	A	280	10.334	56.900	7.337	1.00 34.	28	С
MOTA	2009	0	THR	Α	280	9,501	56.458	8.120	1.00 33.	22	0
MOTA	2010	N	PHE			10,129	58.012	6.637	1.00 35.	30	N
MOTA	2011	CA	PHE			8.893	58.771	6.797	1.00 35.	82	С
ATOM	2012	СВ	PHE			8.892	60.020	5.907	1.00 36.	90	С
MOTA	2013	CG	PHE			9.984	61.009	6.223	1.00 38.		С
ATOM	2013		PHE			10.332	61.300	7.536	1.00 39.		c
	2015		PHE			11.320	62.234	7.823	1.00 39.		Č
MOTA							62.874	6.810	1.00 41.		
ATOM	2016	CZ	PHE			11.968					C C
MOTA	2017		PHE			11.621	62.608	5.483	1.00 43.		
MOTA	2018		PHE			10.633	61.681	5.200	1.00 41.		C
MOTA	2019	С	PHE			7.690	57.894	6.477	1.00 36.		C
ATOM	2020	0	PHE	A	281	6.671	57.924	7.179	1.00 35.		0
MOTA	2021	N	GLU	Α	282	7.815	57.101	5.414	1.00 35.		N
MOTA	2022	CA	GLU	Α	282	6.741	56.194	4.992	1.00 35.	04	С
ATOM	2023	CB	GLU	Α	282	7.154	55.461	3.700	1.00 35.	95	С
ATOM	2024	CG	GLU	A	282	6.092	54.530	3.141	1.00 38.	88	С
MOTA	2025	CD	GLU	Α	282	6.504	53.872	1.819	1.00 42.	76	С
ATOM	2026		GLU			7.654	54.056	1.362	1.00 43.	67	0
ATOM	2027		GLU			5.654	53.182	1.233	1.00 43.		ō
ATOM	2028	C	GLU			6.385	55.199	6.084	1.00 34.		č
	2029	0	GLU			5.209	54.986	6.378	1.00 34.		Ö
MOTA							54.594	6.693			
ATOM	2030	N	GLU			7.397			1.00 34.		N
ATOM	2031	CA	GLU			7.194	53.640	7.795	1.00 34.		C
ATOM	2032	CB	GLU			8.512	53.012	8.208	1.00 35.		C
ATOM	2033	CG	GLU			9.077	52.096	7.131	1.00 38.		C
ATOM	2034	CD	GLU			10.406	51.501	7.502	1.00 40.		С
ATOM	2035		GLU			11.340	52.257	7.832	1.00 41.		0
MOTA	2036		GLU			10.517	50.266	7.435	1.00 44.		0
ATOM	2037	С	GLU	A	283	6.524	54.259	9.014	1.00 33.		, C
ATOM	2038	0	GLU	A	283	5.700	53.614	9.674	1.00 33.	93	0

MOTA	2039	N	ILE	Α	284	6.859	55.517	9.298	1.00 33.26	N
ATOM	2040	CA	ILE	Α	284	6.204	56.233	10.401	1.00 31.63	С
MOTA	2041	CB	ILE	Α	284	6.889	57.590	10.650	1.00 31.52	С
ATOM	2042		ILE			8.282	57.373	11.252	1.00 29.17	С
ATOM	2043		ILE			9.195	58.585	11.190	1.00 32.09	C
ATOM	2044		ILE			6.002	58.489	11.602	1.00 29.23	C
ATOM	2045	C	ILE			4.732	56.430	10.089	1.00 31.80	C
MOTA	2046	0	ILE			3.856	56.165	10.917	1.00 31.97	0
ATOM	2047	N	GLN			4.451	56.917	8.886 8.515	1.00 32.64 1.00 32.77	и С
ATOM	2048	CA	GLN			3.070	57.204 58.099	7.280	1.00 32.77	C
ATOM	2049	CB CG	GLN GLN			3.022 3.373	59.566	7.613	1.00 32.00	C
ATOM ATOM	2050 2051	CD	GLN			3.056	60.507	6.485	1.00 35.30	c
ATOM	2052		GLN			3.637	60.401	5.395	1.00 34.32	Ö
ATOM	2052		GLN			2.122	61.423	6.725	1.00 33.69	N
ATOM	2054	C	GLN			2.239	55.948	8.334	1.00 33.74	С
ATOM	2055	Ö	GLN			1.021	55.996	8.454	1.00 34.52	0
ATOM	2056	N	ASN			2.889	54.816	8.084	1.00 34.59	N
ATOM	2057	CA	ASN			2.165	53.533	8.016	1.00 36.22	С
MOTA	2058	CB	ASN	Α	286	2.770	52.607	6.966	1.00 35.90	C
ATOM	2059	CG	ASN	Α	286	2.450	53.042	5.553	1.00 37.57	С
MOTA	2060	OD1	ASN	A	286	1.397	53.611	5.283	1.00 37.74	0
ATOM	2061	ND2	ASN	A	286	3.373	52.785	4.642	1.00 39.91	N
MOTA	2062	С			286	2.079	52.805	9.360	1.00 36.58	C
ATOM	2063	0			286	1.432	51.767	9.466	1.00 37.11	0
MOTA	2064	N			287	2.723	53.356	10.384	1.00 36.48	N
ATOM	2065	CA			287	2.677	52.771	11.717	1.00 36.00	C C
MOTA	2066	CB			287	3.525	53.596	12.697 14.029	1.00 35.69 1.00 33.97	
ATOM	2067	CG			287	3.703 4.826	52.938 52.211	14.029	1.00 35.79	. N
MOTA	2068		HIS HIS			4.706	51.749	15.592	1.00 34.10	C
MOTA	2069 2070		HIS			3.537	52.138	16.066	1.00 36.32	N
ATOM ATOM	2070		HIS			2.888	52.875	15.103	1.00 33.02	С
ATOM	2072	C			287	1.238	52.724	12.223	1.00 36.98	· c
ATOM	2073	ŏ ·			287	0.475	53.663	11.985	1.00 36.67	, 0
ATOM	2074	N			288	0.870	51.638	12.909	1.00 37.63	N
ATOM	2075	CA	PRO	Α	288	-0.465	51.480	13.468	1.00 38.40	" C
MOTA	2076	CB	PRO	Α	288	-0.318	50.203	14.315	1.00 39.46	C
ATOM	2077	CG	PRO	A	288	0.684	49.420	13.576	1.00 40.31	C
MOTA	2078	CD			288	1.699	50.447	13.174	1.00 38.01	C
ATOM	2079	С			288	-0.936	52.652	14.325	1.00 37.78	C
MOTA	2080	0			288	-2.096	53.024	14.227	1.00 38.92 1.00 37.99	O N
MOTA	2081	N			289	-0.062	53.231	15.143	1.00 37.99	C
ATOM	2082	CA			289	-0.459	54.387 54.779	15.951 16.932	1.00 30.04	c
ATOM	2083	CB			289	0.642 0.197	55.892	17.862	1.00 36.44	c
ATOM	2084	CG	TRP		289	-0.601	55.776	18.969	1.00 36.79	Č
ATOM ATOM	2085 2086				289	-0.800	57.014	19.542	1.00 35.91	Ŋ
ATOM	2087				289	-0.136	57.956	18.795	1.00 35.04	С
ATOM	2088				289	0.500	57.281	17.730	1.00 35.44	Ĉ
ATOM	2089				289	1.275	58.034	16.822	1.00 34.75	С
ATOM	2090				289	1.365	59.412	17.000	1.00 33.10	С
MOTA	2091				289	0.719	60.046	18.072	1.00 32.65	С
ATOM	2092	CZ2	TRP	Α	289	-0.024	59.337	18.980	1.00 35.41	С
ATOM	2093	С	TRP	Α	289	-0.886	55.598	15.102	1.00 37.02	C
MOTA	2094	0			289	-1.703	56.402	15.551	1.00 36.85	0
ATOM	2095	N			290	-0.375	55.704	13.875	1.00 37.67	N
MOTA	2096	CA			290	-0.681	56.857	13.002	1.00 39.50	C
MOTA	2097	СВ			290	0.475	57.119	12.038	1.00 38.69	C
ATOM	2098	CG			290	1.770	57.552	12.737	1.00 39.97	C
MOTA	2099	SD			290	2.026	59.340	12.660	1.00 43.39	s C
ATOM	2100	CE			290	0.826	59.826	13.609 12.186	1.00 36.57 1.00 41.20	C
ATOM	2101	C			290	-1.973 -2.269	56.787 57.703	11.397	1.00 41.20	0
ATOM	2102	O N			. 290 . 291	-2.269 -2.735	55.709	12.338	1.00 40.38	И
ATOM ATOM	2103 2104	N CA			291	-2.735 -3.928	55.516	11.504	1.00 45.49	C
ATOM	2104	CB			291	-4.294	54.031	11.420	1.00 46.70	Č
ATOM	2106	CG			291	-3.169		10.863	1.00 52.12	C
ATOM	2107	CD			291	-2.989		9.330	1.00 58.53	C,
										•

ATOM	2108	OE1	GIN	А	291	-3.107	54.339	8.723	1.00	59.20	0
ATOM	2109		GLN			-2.674	52.113	8.708		62.36	N
ATOM	2110	C	GLN			-5.112	56.329	12.001		45.68	C
ATOM	2111	0	GLN	Ά	291	-5.165	56.708	13.177		45.87	0
MOTA	2112	N	ASP	Α	292	-6.064	56.590	11.100	1.00	46.07	N
MOTA	2113	CA	ASP	Α	292	-7.305	57.331	11.410	1.00	46.57	С
ATOM	2114	СВ	ASP			-8.195	56.556	12.391		47.72	С
						-8.324	55.099	12.018		52.03	Č
ATOM	2115	CG	ASP								
ATOM	2116	OD1	ASP	А	292	-8.714	54.836	10.858		54.96	0
MOTA	2117	OD2	ASP	Α	292	-8.031	54.164	12.805	1.00	56.19	0
ATOM	2118	С	ASP	A	292	-7.071	58.739	11.961	1.00	45.48	С
ATOM	2119	0	ASP			-7.779	59.181	12.880	1.00	44.34	0
ATOM	2120	N	VAL			-6.067	59.433	11.424		44.87	N
ATOM	2121	CA	VAL			-5.750	60.787	11.882		44.61	C
ATOM	2122	CB	VAL	A	293	-4.495	61.338	11.181		44.85	С
ATOM	2123	CG1	VAL	Α	293	-4.791	61.662	9.735	1.00	44.77	С
ATOM	2124	CG2	VAL	Α	293	-3.989	62.568	11.896	1.00	43.11	С
ATOM	2125	С			293	-6.935	61.709	11.640	1.00	44.94	С
	2126	0			293	-7.658	61.532	10.653		45.74	Ō
ATOM								12.538			
ATOM	2127	N			294	-7.149	62.668			44.60	N
ATOM	2128	CA	LEU	Α	294	-8.209	63.650	12.354	1.00	44.83	С
ATOM	2129	CB	LEU	Α	294	-8.489	64.416	13.641	1.00	43.88	C
ATOM	2130	CG	LEU	Α	294	-9.009	63.721	14.886	1.00	44.35	С
ATOM	2131		LEU			-9.118	64.760	15.972	1.00	42.61	С
			LEU				63.036	14.632		45.06	C
ATOM	2132					-10.337					
ATOM	2133	С			294	-7.763	64.655	11.312		45.35	С
ATOM	2134	0	LEU	Α	294	-6.570	64.888	11.142	1.00	45.48	0
ATOM	2135	N	LEU	Α	295	-8.728	65.266	10.629	1.00	46.10	N
ATOM	2136	CA	LEU	Α	295	-8.444	66.358	9.712	1.00	46.34	C
ATOM	2137	CB			295	-9.645	66.586	8.790	1.00	47.42	. С
						-9.552	65.968	7.380		50.24	Č
MOTA	2138	CG			295						
ATOM	2139				295	-9.352	64.460	7.415		51.66	C
ATOM	2140	CD2	LEU	Ą	295	-10.812	66.288	6.595	1.00	54.37	С
ATOM	2141	С	LEU	Α	295	-8.123	67.612	10.527	1.00	46.02	C
ATOM	2142	0	LEU	Ά	295	-8.531	67.723	11.693	1.00	44.80	Ο,
	2143	N			296	-7.366	68.544	9.955	1 - 00	46.46	N
ATOM							69.790	10.658		47.09	C
MOTA	2144	CA			296	-7.048					
MOTA	2145	CB	PRO	A	296	-6.405	70.633	9.561		46.93	C
MOTA	2146	CG	PRO	Α	296	-5.698	69.609	8.741	1.00	45.84	С
ATOM	2147	CD	PRO	A	296	-6.708	68.496	8.638	1.00	46.93	C
MOTA	2148	С	PRO	Α	296	-8.282	70.465	11.266	1.00	48.28	C
	2149	Ö			296	-8.280	70.739	12.474	1.00	47.68	0
MOTA						-9.335	70.684	10.480		50.01	N
MOTA	2150	N			297						C
MOTA	2151	CA	GLN	A	297	-10.537	71.328	11.022		51.78	
ATOM	2152	CB	GLN	Α	297	-11.572	71.636	9.933		52.87	С
ATOM	2153	CG	GLN	Α	297	-12.552	72.781	10.298		55.96	C
MOTA	2154	CD			297	-11.858	74.122	10.632	1.00	60.05	С
	2155				297	-11.221	74.739	9.765		62.29	0
ATOM					297	-11.992	74.570	11.884		60.16	N
ATOM	2156										
ATOM	2157	C			297	-11.175	70.550	12.181		51.71	C
MOTA	2158	0	GLN	Α	297	-11.536	71.140	13.201		52.21	0
ATOM	2159	N	GLU	Α	298	-11.292	69.234	12.034	1.00	51.63	N
ATOM	2160	CA			298	-11.819	68.391	13.108	1.00	51.67	С
	2161	CB			298	-11.714	66.922	12.736		52.61	С
MOTA								11.732		56.45	č
ATOM	2162	CG			298	-12.716	66.406				
ATOM	2163	CD	GLU	Α	298	-12.568	64.908	11.552		60.37	С
ATOM	2164	OE1	GLU	Α	298	-11.606	64.480	10.874	1.00	61.21	0
ATOM	2165	OE2	GLU	Α	298	-13.403	64.160	12.112	1.00	63.66	0
ATOM	2166	C			298	-10.991	68.586	14.372	1.00	50.78	С
					298	-11.523	68.666	15.490		50.03	Ö
ATOM	2167	0									
ATOM	2168	N			299	-9.676	68.624	14.186		49.28	N
ATOM	2169	CA			299	-8.756	68.812	15.291		48.32	С
ATOM	2170	CB	THR	A	299	-7.310	68.855	14.781	1.00	48.02	C
ATOM	2171				299	-7.007	67.636	14.096	1.00	45.02	0
ATOM	2172				299	-6.324	68.910	15.951		47.18	С
							70.095	16.040		48.76	Č
ATOM	2173	C			299	-9.072					
ATOM	2174	0			299	-9.135	70.101	17.268		47.62	0
ATOM	2175	N	ALA	A	300	-9.252	71.181	15.293		49.46	N
ATOM	2176	CA	ALA	Α	300	-9.540	72.468	15.887	1.00	50.94	С

ATOM	2177	CB	ALA A	300	-9.541	73.556	14.820	1.00 50.83	C
ATOM	2178	С	ALA A	300	-10.875	72.438	16.664	1.00 51.99	C
ATOM	2179	0	ALA A	300	-10.961	72.940	17.793	1.00 51.96	0
MOTA	2180	N	GLU A		-11.896	71.832	16.064	1.00 53.05	N
MOTA	2181	CA	GLU A		-13.218	71.757	16.689	1.00 54.49	C
MOTA	2182	CB	GLU A		-14.220	71.094	15.754	1.00 55.03	C
ATOM	2183	CG	GLU A		-14.926	72.073	14.831	1.00 58.47	C
MOTA	2184	CD	GLU A		-15.129	71.518	13.429	1.00 61.94	0
MOTA	2185		GLU A		-15.418	70.303	13.287	1.00 62.49	0
ATOM	2186		-		-15.006	72.306	12.459	1.00 64.87 1.00 54.40	C
ATOM	2187	C	GLU A		-13.177	71.018 71.536	18.026 19.048	1.00 54.40	0
MOTA	2188	0	GLU A		-13.652	69.826	18.011	1.00 54.14	И
ATOM	2189	N	ILE A		-12.581 -12.487	68.970	19.196	1.00 53.52	C
ATOM	2190 2191	CA CB	ILE A		-12.124	67.529	18.791	1.00 53.66	C
ATOM ATOM	2192		ILE A		-13.150	66.981	17.795	1.00 53.26	С
ATOM	2193	CD1	ILE A		-12.813	65.609	17.254	1.00 52.59	С
ATOM	2194	CG2			-12.047	66.624	20.026	1.00 53.65	С
ATOM	2195	C	ILE A		-11.496	69.462	20.246	1.00 53.50	C
ATOM	2196	ō	ILE A		-11.800	69.422	21.440	1.00 53.33	0
ATOM	2197	N	HIS A		-10.322	69.937	19.822	1.00 53.16	N
ATOM	2198	CA	HIS A	303	-9.258	70.220	20.793	1.00 53.02	C
MOTA	2199	CB	HIS A	303	-8.018	69.390	20.459	1.00 51 <i>.</i> 63	С
MOTA	2200	CG	HIS A	303	-8.212	67.926	20.680	1.00 47.34	C
MOTA	2201	ND1	HIS A	303	-8.396	67.043	19.640	1.00 45.24	N
MOTA	2202	CE1	HIS A	303	-8.540	65.822	20.119	1.00 42.60	C
MOTA	2203		HIS A		-8.456	65.883	21.437	1.00 42.67	N
MOTA	2204		HIS A		-8.251	67.188	21.815	1.00 43.90	C
MOTA	2205	С	HIS A		-8.861	71.671	20.960	1.00 54.55	C
ATOM	2206	0	HIS A		-8.265	72.036	21.979	1.00 54.31	O N
MOTA	2207	N	LEU A		-9.168	72.500	19.966	1.00 56.55	C
MOTA	2208	CA	LEU A		-8.696	73.876	19.999	1.00 59.36 1.00 58.46	C
ATOM	2209	CB	LEU A		-7.967	74.211	18.701 18.549	1.00 58.16	C
ATOM	2210	CG	LEU A		-6.479 -6.026	73.870 72.669	19.390	1.00 55.35	C
MOTA	2211		LEU A		-6.160	73.653	17.061	1.00 56.12	c
ATOM	2212	CD2	LEU A		-9.832	74.873	20.273	1.00 62.12	Ċ
MOTA MOTA	2213 2214	0	LEU A		-9.586	76.067	20.431	1.00 62.18	0
ATOM	2214	N	HIS A		-11.061	74.361	20.340	1.00 65.89	N
MOTA	2216	CA	HIS A		-12.278	75.150	20.571	1.00 69.84	С
MOTA	2217	CB	HIS A		-12.201	75.963	21.884	1.00 70.73	C
MOTA	2218	CG	HIS A	305	-11.780	75.138	23.069	1.00 74.80	С
ATOM	2219	ND1	HIS A	A 305	-12.611	74.206	23.664	1.00 77.77	N
MOTA	2220	CE1	HIS A	305	-11.976	73.629	24.674	1.00 78.93	С
MOTA	2221	NE2	HIS A	305	-10.760	74.149	24.753	1.00 79.02	N
MOTA	2222	CD2	HIS A	305	-10.611	75.093	23.760	1.00 77.72	C
MOTA	2223	C	HIS A	305	-12.591	76.047	19.382	1.00 71.35	C
MOTA	2224	0	HIS A		-12.458	77.272	19.463	1.00 72.07	0
MOTA	2225	N	SER A		-12.998	75.426	18.275	1.00 73.04	N
MOTA	2226	CA		A 306	-13.372	76.161	17.066	1.00 74.54 1.00 74.28	C
ATOM	2227	CB	SER A		-12.563	75.685	15.850	1.00 74.28	0
MOTA	2228	OG		306	-11.270	76.309 76.061	15.843 16.804	1.00 75.41	C
ATOM	2229	C		A 306	-14.878 -15.588	77.080	16.858	1.00 76.03	Õ
MOTA	2230	0	SER A	A 306	-15.397	74.966	16.542	1.00 75.98	ō
MOTA	2231 2232	N3	IMD :		8.128	71.298	26.439	1.00 62.13	N
MOTA MOTA	2233	C4	IMD :		8.441	71.428	27.755	1.00 62.64	C
MOTA	2234	C5	IMD :		7.731	72.513	28.267	1.00 61.10	С
MOTA	2235	C2	IMD :		7.245	72.276	26.125	1.00 61.77	C
ATOM	2236	N1	IMD :		7.001	73.016	27.242	1.00 61.00	N
MOTA	2237	0	HOH I		-0.732	54.528	9.728	1.00 45.36	0
ATOM	2238	Õ	HOH I		19.630	58.716	6.576	1.00 43.01	0
ATOM	2239	ō	нон і		0.310	61.264	2.849	1.00 32.73	0
ATOM	2240	ō	нон		18.440	64.206	21.527	1.00 32.96	0
MOTA	2241	0	HOH '		12.988	80.668	8.424	1.00 39.01	0
ATOM	2242	0	HOH I	W 6	-1.368	51.617	30.489	1.00 40.35	0
MOTA	2243	0	HOH !	W 7	16.488	75.633	10.896	1.00 39.22	0
ATOM	2244	0	HOH		22.715	62.695	4.286	1.00 41.65	0
MOTA	2245	0	HOH '	W 9	15.546	67.975	9.969	1.00 34.80	0

MOTA	2246	0	W HOH	10	9.873	57.733	3.200	1.00 34.66	0
ATOM	2247	0	нон w	11	22.041	77.197	8.223	1.00 59.58	0
ATOM	2248	0	HOH W	12	13.921	68.295	7.801	1.00 43.48	0
ATOM	2249	0	HOH W	13	-2.001	49.454	29.335	1.00 40.96	0
ATOM	2250	0	HOH W	14	22.261	59.914	10.882	1.00 37.32	0
ATOM	2251	0	HOH W	15	19.419	50.734	16.966	1.00 40.82	0
ATOM	2252	0	HOH W	16	15.338	57.159	9.022	1.00 39.03	, 0
ATOM	2253	0	HOH W	17	17.961	66.549	9.882	1.00 39.50	0
ATOM	2254	0	HOH W	18	4.818	76.341	0.545	1.00 4.94	0
MOTA	2255	0	HOH W	19	8.855	79.196	7.518	1.00 39.17	0
ATOM ATOM	2256 2257	0	HOH W	20	17.072	54.130	21.844	1.00 43.20	0
ATOM	2258	0	HOH W	21 22	1.325 8.150	69.587 61.656	7.110 1.220	1.00 36.36	. 0
MOTA	2259	ŏ	HOH W	23	-4.435	66.666	10.979	1.00 40.26 1.00 43.16	0
MOTA	2260	Ö	HOH W	24	10.513	80.713	9.117	1.00 43.10	0
ATOM	2261	ō	HOH W	25	15.497	65.164	24.557	1.00 34.79	0
ATOM	2262	Ö	HOH W	26	9.900	52.831	3.589	1.00 42.40	ő
ATOM	2263	ō	HOH W	27	-0.200	71.719	8.387	1.00 41.34	Ö
ATOM	2264	O	HOH W	28	-7.398	59.982	15.551	1.00 40.20	ő
ATOM	2265	0	HOH W	29	3.492	81.322	21.013	1.00 47.98	ō
MOTA	2266	0	HOH W	30	-4.714	67.425	25.026	1.00 43.45	0
ATOM	2267	0	HOH W	31	15.251	68.122	12.673	1.00 36.68	0
ATOM	2268	0	HOH W	32	-5.709	62.260	15.119	1.00 39.90	0
ATOM	2269	0	HOH W	33	4.553	83.955	11.446	1.00 45.99	0
ATOM	2270	0	HOH W	34	18.791	57.169	28.057	1.00 43.68	0
MOTA	2271	0	HOH W	35	18.231	65.464	14.872	1.00 37.87	0
ATOM	2272	0	HOH W	36	8.971	53.789	30.860	1.00 43.70	0
ATOM	2273	0	HOH W	37	5.180	50.983	9.900	1.00 39.96	0
ATOM	2274	0	HOH W	38	-4.081	60.211	25.479	1.00 43.04	0
ATOM	2275	0	HOH W	39	-1.650	50.298	24.953	1.00 50.05	0
ATOM	2276	0	HOH W	40	-0.323	79.686	2.181	1.00 64.08	0
ATOM	2277 2278	0	HOH W	41 42	-4.014 10.273	58.332 50.306	9.232 18.899	1.00 45.77 1.00 43.91	0
ATOM ATOM	2279	0	HOH W	43	16.890	54.883	8.955	1.00 43.73	0
ATOM	2280	Ö	HOH W	44	3.730	65.993	2.097	1.00 44.04	Ö
ATOM	2281	Ö	HOH W	45	23.972	70.563	2.275	1.00 40.95	ő
ATOM	2282	Õ	HOH W	46	24.633	58.602	10.052	1.00 42.68	Õ
ATOM	2283	ō	HOH W	47	19.828	61.618	4.358	1.00 51.38	Ō
ATOM	2284	0	HOH W	48	22.517	90.823	15.952	1.00 70.96	0
MOTA	2285	0	W HOH	49	29.354	60.921	3.167	1.00 57.58	0
MOTA	2286	0	W HOH	50	11.468	82.369	12.289	1.00 50.02	0
ATOM	2287	0	HOH W	51	24.772	62.519	-4.121	1.00 45.22	0
ATOM	2288	0	HOH W	52	3.211	68.554	31.582	1.00 69.57	0
MOTA	2289	0	HOH W	53	7.936	50.002	23.124	1.00 47.40	0
MOTA	2290	0	HOH W	54	15.587	71.212	17.046	1.00 52.35	0
ATOM	2291	0	HOH W	55	15.884	79.008	-3.580	1.00 56.72	0
MOTA	2292	0	HOH W	56	25.279	56.110	10.230	1.00 44.21	0
ATOM	2293	0	HOH W	57	12.514 1.688	58.767 78.234	4.837 4.543	1.00 52.23 1.00 43.74	0
ATOM ATOM	2294 2295	0	и нон w	58 59	9.018	82.803	11.168	1.00 43.74	0
ATOM	2296	ŏ	HOH W	60	-0.217	85.742	6.096	1.00 53.93	0
ATOM	2297	ŏ	HOH W	61	-2.930	82.309	21.772	1.00 58.06	Õ
ATOM	2298	Ö	HOH W	62	5.504	51.225	5.130	1.00 48.90	ō
ATOM	2299	ō	HOH W	63	20.076	54.469	7.350	1.00 61.18	ō
ATOM	2300	0	HOH W	64	5.722	68.809	-1.934	1.00 59.42	0
ATOM	2301	0	HOH W	65	27.882	66.292	-1.512	1.00 65.79	0
MOTA	2302	0	HOH W	66	19.676	72.153	23.229	1.00 61.17	0
ATOM	2303	0	HOH W	67	-5.501	71.414	5.301	1.00 61.16	0
MOTA	2304	0	HOH W	68	15.016	58.056	6.473	1.00 49.90	0
MOTA	2305	0	HOH W	69	-2.012	55.730	6.130	1.00 56.99	0
ATOM	2306	0	HOH W	70	-9.447	70.188	7.682	1.00 57.22	0
ATOM	2307	0	HOH W	71	2.484	55.120	-0.038	1.00 49.25	0
MOTA	2308	0	нон W	72	-7.908	59.237	8.479	1.00 65.73	0
ATOM	2309	0	HOH W	73	22.353	73.255	11.764	1.00 60.74	0
ATOM	2310	0	HOH W	74	19.477	67.324	11.857	1.00 50.67	0
ATOM	2311	0	HOH W	75 76	14.505	47.970	13.280	1.00 62.36	0
ATOM ATOM	2312 2313	0	и нон И нон	76 77	16.862 13.313	47.807 53.083	8.768 32.098	1.00 52.55 1.00 54.43	0
ATOM	2314	0	HOH W	78	17.503	50.798	19.041	1.00 54.43	0
111 011	2017	~	44011 11	, 0	17.505	50.750	T7.04T	2.00 00.72	U

ATOM	2315	0	нон w 79	-12.736	62.094	18.189	1.00 53.56	0
MOTA	2316	0	HOH M 80	33.908	62.979	10.712	1.00 63.79	0
MOTA	2317	0	HOH W 81	-6.870	60.605	22.628	1.00 49.67	0
MOTA	2318	0	HOH W 82	9.987	47.582	14.046	1.00 66.52	0
MOTA	2319	0	HOH W 83	23.183	73.287	2.510	1.00 52.15	0
ATOM ATOM	2320 2321	0	HOH W 84	27.578	55.770	9.060	1.00 63.00	0
ATOM	2321	0	HOH W 85 HOH W 86	5.576 -0.509	82.970	-1.748	1.00 62.58	0
ATOM	2323	Ö	HOH W 87	13.665	84.330 91.473	3.857	1.00 59.32	0
ATOM	2324	Ö	HOH W 88	-2.861	75.397	-3.552 -2.038	1.00 61.08 1.00 63.22	0
ATOM	2325	ō	HOH W 89	10.204	73.979	29.790	1.00 65.22	0
ATOM	2326	0	нон w 90	20.070	78.983	6.971	1.00 67.67	o
MOTA	2327	0	HOH W 91	17.169	77.347	21.910	1.00 65.17	ō
ATOM	2328	0	HOH W 92	-2.870	53.045	18.163	1.00 59.47	0
MOTA	2329	0	HOH W 93	11.627	71.628	23.440	1.00 63.19	0
ATOM	2330	0	HOH W 94	8.310	74.960	-2.678	1.00 55.47	0
MOTA	2331	0	HOH W 95	-12.002	78.851	4.304	1.00 58.94	0
ATOM ATOM	2332 2333	0	HOH W 96 HOH W 97	5.566 31.358	49.157	22.796	1.00 51.78	0
ATOM	2334	0	HOH W 98	24.035	61.478 64.093	0.597 -2.091	1.00 66.61 1.00 47.25	0
MOTA	2335	ő	HOH W 99	11.294	69.111	34.295	1.00 47.23	0
ATOM	2336	ō	HOH W 100	18.999	64.123	-2.168	1.00 62.14	0
ATOM	2337	0	HOH W 101	-9.739	61.493	7.698	1.00 82.68	ő
ATOM	2338	0	HOH W 102	22.435	52.025	25.439	1.00 54.62	ō
MOTA	2339	0	HOH W 103	5.045	49.276	12.114	1.00 55.83	0
MOTA	2340	0	HOH W 104	-3.965	50.524	12.224	1.00 62.13	0
ATOM	2341	0	HOH W 105	13.472	75.945	26.250	1.00 61.94	0
ATOM	2342	0	HOH W 106	15.560	72.156	26.297	1.00 58.39	0
ATOM ATOM	2343 2344	0	HOH W 107 HOH W 108	-0.195 1.243	96.034 88.090	19.635 -4.031	1.00 69.60	0
ATOM	2345	0	HOH W 108	19.973	83.759	20.58!	1.00 62.22	0
ATOM	2346	Ö	HOH W 110	-8.152	73.486	8.288	1.00 53.47	0
ATOM	2347	ō	HOH W 111	23.420	81.722	9.233	1 (0 71.36	ō
ATOM	2348	0	HOH W 112	1.596	82.691	-0.096	1.00 71.76	0
ATOM	2349	0	HOH W 113	5.657	56.059	-1.336	1.00 6'.94	0
MOTA	2350	0	HOH W 114	13.967	51.575	8.374	1.00 5 ,56	0
ATOM	2351	0	HOH W 115	12.416	78.389	25.200	1.00 6(.19	0
MOTA	2352	0	HOH W 116	17.235	83.392	11.447	1.00 52,25	0
ATOM ATOM	2353 2354	0	HOH W 117 HOH W 118	14.767 19.075	52.852 60.231	21.314 -4.028	1.00 47.79 1.00 64.58	0
ATOM	2355	0	HOH W 118	25.476	66.800	28.823	1.00 55.96	0
ATOM	2356	Ö	HOH W 120	4.473	70.021	30.020	1.00 56.80	Ö
ATOM	2357	Ö	HOH W 121	8.400	80.051	18.580	1.00 47.86	Ō
ATOM	2358	0	HOH W 122	-0.274	81.374	6.467	1.00 70.59	0
ATOM	2359	0	HOH W 1:23	8.016	51.083	3.826	1.00 50.11	0
ATOM	2360	0	HOH W 124	-5.762	55.323	8.603	1.00 59.77	0
MOTA	2361	0	HOH W 125	24.801	94.210	-1.115	1.00 67.33	0
MOTA	2362	0	HOH W 126	9.710	48.669	26.328	1.00 63.06	0
ATOM ATOM	2363 2364	0	HOH W 127 HOH W 128	8.684 19.451	99.063 83.648	14.167 8.511	1.00 63.47 1.00 51.41	0
ATOM	2365	0	HOH W 129	-10.889	61.955	10.215	1.00 55.28	0
ATOM	2366	Ö	HOH W 130	-4.253	61.866	27.652	1.00 61.67	o
ATOM	2367	O	HOH W 131	27.030	90.340	3.848	1.00 80.85	Ö
ATOM	2368	0	HOH W 132	10.977	87.131	22.623	1.00 65.06	Ō
ATOM	2369	0	HOH W 133	14.634	65.394	-2.521	1.00 56.18	0
MOTA	2370	0	HOH W 134	-3.405	52.808	20.692	1.00 57.93	0
MOTA	2371	0	HOH W 135	-5.420	55.451	15.525	1.00 51.90	0
ATOM	2372	0	нон w 136	8.056	79.671	22.675	1.00 59.54	0 .
MOTA	2373	0	HOH W 137	28.392	57.786	4.755	1.00 78.57	0
MOTA	2374 2375	0	HOH W 138	18.312	99.689	9.767	1.00 61.28	0
ATOM ATOM	2375	0	HOH W 139 HOH W 140	33.446 24.283	63.253 56.206	17.723 17.474	1.00 59.53 1.00 54.00	0
ATOM	2377	0	HOH W 140	16.808	50.392	32.500	1.00 57.59	0
ATOM	2378	ŏ	HQH W 142	15.746	83.812	-7,461	1.00 64.85	0
ATOM	2379	0	HOH W 143	-7.082	94.424	-2.169	1.00 67.76	0
ATOM	2380	0	HOH W 144	13.631	49.312	10.749	1.00 54.19	Ö
MOTA	2381	0	HOH W 145	30.247	61.193	23.440	1.00 71.27	0
ATOM	2382	0	HOH W 146	13.010	80.075	-6.528	1.00 68.99	0

PCT/US2004/030360

	ABDYKPSFPKWARQ LPROAFPSFPKWARQ LPROAFPSKSAQ MKGL, PELEKK IQSL, AQAPKW	SLPHKNKV GYRMPR GYRMVR GYRMVC DYRMPC	GYRMDA GTRMRA GHRMDK GYRLEK GGLIDK GGYLDK	NYTEFAFPOIKAH LEALVGRHSKKNGTPELON SRGLLENISKLKFW	GYRMPC GYRMPC GYRMPR YRLPQ GYRMDA	DYKLEP GTRARA HRMDK KRMST VRNYVENRPKYAGE VRNYVENRPKYAGE	MPDYKPSFPKWARQ RQAFHSKSAQ TRBFKFPQIKAH TRBFKFPQIKAH	ARNYLLSLPHKNKV DYRMKR YRLEK AEYTE YIQSLTOMPKM NYQFGS	DPRFNDILGRESRK GYRMAK GYRMAK IDMIRF IRLYR GRIEB	GRLPC GRMDP DYVTRKSPGI . QYSLRQ YRMPC AYDFSS VDNYELYE . WDDFIL	SEQP PEPELLY DEPTLIT NILSC OLLPC COLLPC XPLQL NVSV	TPHY TPHY KLGM EQVPM ESPVIC ERLPM PAVYLSR
	JVTS. NP RIOSDAKNY NG KISSESARNY NO KISSESARNY TO KIG, PTVRNY VE							LK HEARN	11	RSSCIP.		
Ĺ	140 LPMIMS. FEGILX. LFRIEGTEDEVWEG LGKILDVIGLEGESDWE LKXIMKVTGTPPAEFVG KWVIEQLGTFCPEFMKN	LGILGSPSQEDING FR FR FR FR	KK KK KK KK KK KK KK KK KK KK KK KK KK	VEIIKVLGTPTREQIREMNP BNIMN VKIRKVGGTDGIMVYIMKRIELDPQ YILAT OIIELGELPSYLLRNGKYTRIFFN, EKNS	CE. MS. FR. AQN.	ODVINALED. EEFCRALKE EETEKLIKEG EETEKLIKEG EOOVINALESE EOOVINALESE EETEKKIGE	XXXVCEQ. XXEVMD. XXIENTGTPDEVVWPG XXILDVIGEPGEEDWFRI ZEIXVEGTPTREQIREN	HILGLEGSPSQEDLNCIINL ELLEK EKLPOG ENLENG ENLEN OUTMITGTPPAXLINRMPSHEREN PATHAGG	RIAKULGTEDLYDYIDKYN OYKILAG NXIKS NXIKS NXILAG EHIAQG	EFFEKG TIVOLLGTPEEURPEEUR TIVOLLGTPSENIWPGFSKLPLVG GOLKAG TALIGOLGGSTTPEVWPN	ISKS. PRN TQG RDG RRB IMRR IMRR INN INN INN INN INN INN INN INN INN I	TEAD LIKA SSEK SPEK ENG LIPGPG
500		XHYLDQLNHI MSNPEVIRAL MYNPEVIQNE MYNREVLDQV HIDLSQVYELL	IPLKDVVPRV KIDEEFCRRL VPVBELPKLL MTCAELYEKL LSNEOVLRFV	DSGVDQLVEI ETWQQIIENI HDNHDQLVKI ENPLRALYLI KDDDHIAQII	PSVEEMRKVV OKYERISEKK MVNREVLDQV MSNPEVIRAL MTGAQVIQMI	ATNODVINAL XIDEEFCRRI VPVEEFFKLL ATKROKYERI DYIDGHNKVI	SELDOLFRIF SELDOLFRIF SELDOLFRIF SEVEDOLFRIF SEVEDOLVEII	ENDASOVYELLER TORSOVYELLER MICAELYERE ETWOOLIENIM RECOMMINITERIM	DNYDOLVRIA MVDSTFYNKI MVDSTFYNKI FTNSETABHI TPREEKLENLI HENTINKI	LENGTREEV KSNGEVLEEV KSNGEVLEEV SDIDGLEIV SSIHGIDLIV MSNHEAFLEIV BDGHRIYQGI IHPMKVLEII	LHPMRALMLN MHPMRALFLI LAPMRVLLKI LSNTEAIDCI MAHEEVIYYY SANGEVIEWV FSNOEVIEWV FSNOEVIEWV RAHEEVEELI RATAEMYDNI RATAEMYDNI	CONTRACTOR CONTROL OF CONTROL CONTROL OF CON
1	228 YPPFVD RALFPG KTLFRG KTLFPG KTLFPG KTLFPG	RPIFPG RIPYPG RIPYPG RVPYPG MSPYPG	YPR. YPGV YCG. YQG.	QÜIFPG INPFLA EPPYLN BEPYLN VPPFRA	LLPYDLYPSD. SLPMGGLKAATKR VVPYPG VIPYPG OMPYSG VVPYPR	SET OF THE PROPERTY OF THE PRO	TITOLINESD SPYGG LIPPGG PIFFGG	DIPPER DIPPER WILL WILL WILL WILL WILL WILL WILL WIL	Perion Person Person Meyer Meyer	STYPN MEYPS MEYPS PLUEGT PLUEGT PENGG PENGG PENGG PENGG	LLCD LLCD HYO HYO YYG YYG YYG PYS PYS PYS PYS PYS PYS PYS PYS PYS PYS	PFEG PPGG PPGG PPGG PPGSAHR.
	00, 00		SFG. ASPYP SIG. ASPYP SIG. GEPYP SIG. GEPYC TIA. EQPYO	RK. EPF	RCSIGGIHEDYOLD 1.G. SLP 1.G. RVB IYG. RVB IYG. KMB			SNR	X # 6 8 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	# # # # # # # # # # # # # # # # # # #	EEG	100 1111111111111111111111111111111
200	GKEVDNWSTÜTLICH YSKAVDCWSTGVIAYTILCH YSTAVDTWSTGCIFABNTR KATPOLIWSVGCIKABNITH YRQTVDIWSVGCIMABLITH YKENVDIKSVGCIMABLITH	IDIMSVQCILAEMLSN. SDVMSFGILLMEIVTYG SDVWSFGILLTELTYHG SDVWSFGILLTITKG	SDVWSFGILLWEITS SDVWSFGVLLWEIFS SDVWSFGVLLWEIFT SDVWSFGVLLWEIFY SDVWSFGVVLWEIVS SDVWSFGVVLWEITS	IDVNSAGCVLAELLI TDMNSLGCHFAGMII LDMNSLGCHFAGMII VDIYSLGIMAIEMII ADIWSTACLIFELI VDWHALGVLIYEMA	ADIYAMGLVYMETAL DDLESGYLMYEYTY SDVWSFGILLMELY SDVWSFGILLYELI SDVWSFGILLYELI SDVWSFGILLMELY	SDVWGYGIVWEVNEYG SDVWGYGYLWEIFELG SDVWGYEWYLWEIFTLG DDLESLGYYLWYFNLGS VDIWSYGCIMGEMYRHK VDIWSYGIMGEMYRHK VDIWSYGIMGEMYRHK	ADDIAGONE RETAR SEMMSFGVENTE VDIMSVGCIFAEMY IDVMSAGCVLAELLE IDVMSAGCVLAELLE	CONSTRUCTION COUNTY COU	DMSLGCMLAS DWASLGCMLAS DVWSVGTILWE DVWSVGTILWE DIWARGVCWS DWARGCGTIWYE	SOVWERGILMETER TOTWSEGVLHRIE TOTWSEGVLHRIE TOTWSEGILAELLE SOVWERGILTHELLE VOLHACCVILYILLI TOTWSEGILTHELLE ADINGLIGITALELA	CDVMALĞITALELG SEDLWASEGUTALEMA SEDVWASEGUTALEMA SEDVWASEGUTUE SEDIWSEGUTE SEDIWSEGUTE SEDIWSEGUTE SEDIWSEGUTE SEDVWASEM VDWHCLGAVLYEML VDWHCLGAVLYEML	VDWWAFGVLMEENL NDWWSYGVLMEENL NDIECLYVLEIG NDIECLYVLEIG NDVWNSLGITCIELA SDVWAFGVLWEILI SDVWAFGVLWEVL SDVWAFGVLWEVL
1		ATK TIK FTIK SILY SILY	ATTY OHITY OHITY WITTY	YTSS VSTA YDY: YGBY HGCG	MWKHFE. SPKF COSE FTIK FTIK FTIK FSIK	PTSP DITY PHTY OSRB	MANAFESTR	SC YTK FSIL YTTY YTTY YTTY YTTY YTTY YTTY YTTY YT	M. YDYSI. YTTIS YTTIS HDISA YSSKS	PTSI PTSI PTSI TSI YGH D	KGG. YNE NPDAT. YDY WKDTP. YDY TTT YGY. YGY.	HSH HSH PPG PPG PTS1
420°	189 ESYLAPELIECSMUNHEG PGYVAPEVLAQKP LWYRAPELIGCKY LWYRAPEVLLGSK RWYRAPEVLLGSK RWYRAPEVLLGSK RWYRAPELMUNHH RYYRAPELMUNHH RYYRAPELMUNHH RYYRAPELMUNHH	. RHYRAPEIMINSK . IKWTAPEAINFGS . IKWTAPEAINYGT . IKWTAPEAALYGR . IKWTAPESLAYNK	VKWTAPEALREKK LKWMAPETIFORV VKHMAPEALFORI VRMMAIBSLNYSV VRMMSPESLKDGV	.RYYRAPELIFGAT APEYYAPEVHQHDV .RYFKGPELLVDLQ PYWHAPEVVTRKA .REYRSPEVLLGAP	. KRYMAPEVLDDSI . ARYASINTHLGIE IKHTAPEALLYGR IKHTAPEAINFGS . VKHTAPEAIRSNK	. IRWTAPEAIOYRK . LKWMAPETIEORV . VKWMAPEALEDRI . ARYASINTHLGIE . RYKAPEVTIGMG	. VRWMAPESLKDGV . LWYRAPEILLGCK . LWYRAPEILLGCK . RYYRAPELIFGAT	. RYTAPENLANCE IKWTAPESLAYNK VRWMAIBSLNYSY NPEYYAPEVHQHDW RWYKAPEIMLNWM	. RYPKGPELLVDYQ . PEYLAPEVIQSKG . PEYVAPEIILNKG . VKWSPPEVLFDHI . VKWANIESLEDHI	VKWNPPRAFWGG VKWNPPRAFWGG KWYRAPELLFGAR YKWTAPELLFGGT YKWTAPELLFGGT FGYLSPPULKKDF PFWAPEVIKKOF PFWAPEVIKGSA	. PYWMAPEVANYER - PYWMAPEVNHCER - PYWMAPEVNHCER - IRMNPPESIFYRK - IRMNPPESIFYRK - IRMNPPESIFYRK - IRRNPPESIFYRK - PEYLAPEVLEDNI - PEYLAPEVLEDN	VEYMAPETOGEN VEYMAPEVVRQG VEYMAPEVILAMD PYWMAPEVILAMD IKWMAPESINFR IRWMANECILMGK
	18 LECUCGT. PSYLL LSTACGT. PGYLL YTHEVUT. LWYR. LTSVVUT. LWYR. MYGYVUT. RWYR. MYGYVUT. RWYR.	LTEYVAT REGAKFP REGAKFP ROGAKFP HAGAKFP	ODTOKIP ODTOKIP TODARIP TOTOKIP OGGETIP GOKGILIP	NVSYICS NFELLET NVRVAS RSTMVGT YTNSIQT		ALGGKIP. IRW. KGDARLF. LKW. TTNGRLP. VKW. MYDYVVT. RYYN. RSTMWGT. BYW.	FRANKASI GEKGLE YTHEVVY TATICS NVSYICS	LTEXVAL LTEXVAL HAGAKE KIMGRLE NFRLLFT MTGXVAT	YNVRVAS TWTLCGT SKGSTFI TWTFCGT SVGSKFF REGGRIE	GGCANLE THQVOT MTRVVOT MTRVVOT WTGFAGI MTGFAGI RNTVOT RNTVICOT	RATE IGT. PYMA RATE IGT. PYMA RDSFIGT PYMA GEKTALD. IRMA NENDALD. IRMA MXTFCGT. PEUL TSTFCGT. PEUL	ASTRCGI AYSPCGI HQVATRE ANSFVGTI ASKGKLF QGRAVLE
										₹	\$	87
	PHKG1:2phk_CAMK1:1a06_CDK2:1e1xACDK2:1bxACDK6:1bxAMAPK1:1cm8AMAPK1:1cm8AMAPK10:1lmk_AAPK10:1lmk_CAMA	MAPK1:34ik_ HCK:14cfA LCK:14pcA SRC:25rC SRC:25rC SBC:14ppA EUH2:11ppA	CSK:15bgA KDR:1vrZA FGFR1:1agwA TEK:1fvrA IGF1R:1fxaA INSR:1fxaA	GSK3B:1h8fA TTN:1fklA CSNK2A1:1dawA PAK1:15mC SRPK2:1howA PRKACA:1cdkA	1GFBR1:1b6cB CSNK1P:1ckjA Src-1:5RC Src-2:HCK Src-3:FRK Src-3:FRK	EDN:EPHB2 VEGFR:KOR VEGFR:KOR CK1:CSNK1D JNK:MAPK10 PAK:PAK1	Installate CDK-1:CDK2 CDK-2:CDK6 GSK3:GSK3B FKA-1:PRKACA	ERK-1:MAPK1 Abi:ABL1 Tle:TEK MLCK:TTN D38:MAPK14	CK2.CSNK2A1 PKA-2:PRKX PDGFR:PDGFRA PKG:PRKG1 Ret:R1 Ret:R0S1	Fos:FES ALK-ALK CDK-4:CDK10 CDK-4:CDK10 SPC-4:PTK6 CDK9:CDK9 CDK9:CDK9 STLK-STK24 MST:STK24	GCK:MAPAKZ NIK:MAPAK4 LOK:STK10 Trk:NTRK1 MUSK:MUSK ROTROR1 AKEAKT1 SGK:SGK PKC-loke:PRKCL:	PKC-novaliPRKCD SGK-liRPSGKA1-1 CCRK:CCRK TAO:TAO: FAK:PTK2 DDR:DDR:1 CCK4:PTK7

					FAQIUSAINHAERKYVYVYVYTYYRADIDCSABEAA. FLEXISSIKERNEGGREVGRYVSERK FLEXIVNLAKDDIJHPSFPEVSFFHSERK	: : :	AGGEVINHERIKOTEGREEIRYPERETYKURK. MIKIGIVENIKKIKKREATTURIALYQRKVEAPFEPRESPROHENI. MIKIGIVENIKKIKKREATTURIALYQRKVEAPFEPRESPROHENI		FEYTOSVILDDFYTAREGOVOODP. FEYTOSVILDDFYTAREGOVOODP. FYOLKBROAGHIXTHELHI.	FGQIVWTLDKMIRNPISKAMARISSGINLPLDRTIP FSELVENILQANAGODGKDTIVLPISSTLSMEEDSGLSLFTSPVSCMEEBBYCDFKF	- KAUVEDLAKI VALISHQELLDISHYLDOYSSEPPTRISSTČESGEDSVERIEPLEEEPC.)	AKELLOHOFLKIAXPLSSLPPLIAAAKEAPKNNH ALRIKKTISOUSODSCIXM	FLET WILLKUDLHEVETEVEYETENKAPESBELEMEFEDMENVPLDRSSHOOREBAGG ARALIAHPFODVTKPVPHIRL AYSALSHPYFOOLGERCKENLOSHLPPSONNSEHNTA	. Pleacahsfedeledfuckphogedtpålenfttqelssnpplatilipphariqaast tikng vndknikmp	VEQALQHPWIAADYALDKNIHQSYSEQIKKNEAKSKWKQAFNATAVVRHMRKLQLGTSQE VEQALAHPVILGYVDSPEPTAREPREDENENDENDENEKKIKELIFERTRREPORTSS RASTUTAT SPOWEGNE EY ENTSTEVET PRICEDANTANIANI TANIONING AND	DBYDDLIARCHWIRKTYERPE DBYDDLIARCHRENTERPE TEAMDROUGHENTERSHT TEAMDROUGHVERSHT TEAMDROUGHVERSHT	**************************************	MKNG. ANDVKHHRMF. FYHLSEIVENLLFGQYKKSYEKIHLDFLKSDHPAVARMRVDSDNAYIGVTYKNEEDKLKD.	INTAGE VEDICATED WHITE THE PROPERTY OF THE PROPERTY OF THE PARTICULAR TO THE PARTY OF THE PARTY	THE CONTROL ENGINEERING AND LEGENS OF THE CONTROL ENGINEER OF THE CONTROL ENGI	FAILLERIEYCTODPDVINTALFIEYGELVESEEKVPVRPKOPEGVPPLIVSQQAKREEE ATQALMANFERIREGFREPGOLEPPUTUKEORITALRISMALTKRITEALEGGGLPKKLI ATGALGARFERPERPERPHENTENER DENGESTORE OF THE STATE O	FKALRERLSSFTSYENPT ABALKKIPWISHSGTVASCWHRQETVDCLKKFWARRKLKGAILTTMLATRNFSGGKSGGN	ARELIAKHET BRAKKTSVLTELI DRYKRKKAEQENDSSEBDENBETTEQASTROSKRATTRO ATOLIARDSKRKASVLTELI DRYKKTSVLTELI DRYKRKAEQENDESSEBDENBETEQASGGSDSGD ATOLIARDSKRKAVRVKTSVLTI INTAKTEV BRAKTSVLTENGANDER DEPERKARDEN FARMATER	AEKULGKIPFTYQQIPBALLIQULIDKASPPHIGTPSPERCEREYREDHEREREVPEDHIGVA. TRQULKHPFIRDQPNERQVRIQULADKASPPHIGTPSPERCEKTOTTFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		FKDINYARIASMEGISSHTISTTPSGGNATTQTTSLSASPVSNLSNPRYPNYAFPSGGITP.	LQKDRTKRLGAKDD, FMEIKSHVFF. LARINERRLGSSERD, AEDVKKQPFF.	KALMYKATAGGGPEG EKDYRERAFF EKLFEREPTKATGK FALFKRNRAMALGSGPOG AERIKRHUFY	ASKALLHQYEPTAPLPAHSEZLE PORLGGBARYAHFGPPHTIDERTORFLGGVAVEPRA SVLJAKHVIJERPRVIJERPRVIJENDORTORFJANA PPOT XXXX GTTT DE DE VA CORTENIA STANA SELDING OG STANA	TERAMQUE I LEGERANQUE EKKRRISKRIPTYSHIDSGUSDERFF KESKRIGT PS PRISSEG. FSOLKHELLEDALINTY. FSOLKHELLEDALINTY.
OOK	200 DIVKDLVSRFLVQDQKÄYT DSAKDFIRHLMEKDDEKKFT EDGRELLSQMLHYDDNKRIS ELGKDLLKKCLTENPAKRIS	PLAVDLLEKKIVLDSDKÄIT. SQARDLLSKKIVIDPAKRIS. SKALDLLDKKLTFNPHKRIE. BELYNIMMRCWKNRPEERPT.	elyolmkichkerpedrpy Sihdimcochrkepberpy Kvyelmrachomnpsdrps Alholmidchokprnhæpk	Pavyevmknchhldammps. Pemyotmldchhgepsorpt. Nelymmrdchhavpsorpt.	DEVYDLMROCWREKPYERPS DMLLELMRMCWQYNPKMRPS ERVTDLMRMCWQFNPKWRPT	BANDENDELLVERKSRUT BAIDFLDKLLRYDHOERLT	KEISDFLSPMLQLDPRKRAD KEISDFLSPMLQLDPRKRAD SULKDLLRNLLQVDLTKRFG PUMBKTMR RCHVANGABEIT	BFATYLNFCRSLRFDDKPD SLHDLMCQCWRKEPEERPT	elynimrcwknrpeerpt Qfynimlecwnaepkerpt Avyevmkncwhldaamrps	ALHQLMLDCWOXDRNHRPK EMYQTMLDCWHGEPSQRPT PLANKENDCHTHRPFORDE	erdceraty fourt LNFCRSLRFDDKPI LSKMLVIDPAKRIS	alfrdflnrcldmdvekigs Rvmakimrecwyangaarlt Buttelmenene	. EDGRSILSQMLHYDPNKRIS . EDGRSILSQMLHYDPNKRIS . ELGKDLIKCLTFNPAKRIS	EAIALCSRLLEYTPTARLT DLKDLLRNLLQVDLTKRFG	Sakuf ikalmekuperket Kaldilokmitenphirie Kvyelmracwownestios	EVYDIMROCMREKPYERPS EAMDFVORLLVKERKSRMT	TVKDLVSRFLVVQPQNRYT EALDFLDKLLRYDHQSRLT	HVKDLIKKLLVVDRTRALG EVYEIMVKCHNSEPEKAPS	naan likalokun perrig Kvytimy somhekaderpt Rmyr imioowkorpedkepu	DLWNIMTOCHAOEPDORPT AVFRIMBOCWAYRPGORPS	pvyrimtocwohopedrdn Dlidliogififnpcarit Agirlihfipmydpkkrat	SVHKLMLTCWCRDPEORPC EAKDLINKMLTINPSKRIT VALDI IDKILVI DBAGGID	KPLKEFVRACLNKEPSFÄPT DOFTDFVKKCLVKNPEORAT	CNEHHPLKLALTKNPKKRPT KKPPSFIEGCLVKNYMQRPS	VEFRDFLKIALDKNPETBPSAN PEVYAIMRGCWQREPQQRHSIX VRIYNIMBLOWSKI.DADDDS	RMYSLMTECHNEIBSRRPRFKDIHVRLRS EAKSLLSGLLKKDPXQRLGGGSED.AKEIMQHRFF	SARHLLEGLLOKDRTKRLG EAIGIMRRLLRRNPERRIG	EAVSICKGLMIKHPAKRIG ESKDILEKLFEREPTKRIGE EAOSLLRALPKRNPANRIGE	A52	SIYELMIRCHARISANAN SIYELMIRCHARESEQRPP KLYRLMQRCHALSPKORPS
The second secon	PENDDYS PYHDDIS DESKIVAPLD ELEKFUTODD DESKIVTAR		PPECCP.		PUNCP. PU			CKKGYP			PIEVICKGYP TETKLFPDSLFPADSEHNKLKA.										PLINIESTAG. PUNIKHKEPHIS				PRACE PENCE PENCE	SEDCP				
	PHKG1:2phk CAMK1:1a06 CDK2:1e1xA CDK6:1bkA MAPK12:1cm8A		SRC:2src ABL1:1lepA EPHB2:1[paA						Security Sec						ERK-1:MAPK1 Abi:ABL1	Tie:TEK MLCK:TTN p38:MAPK14	PHK:PHKG1 CK2:CSNK2A1 BKA 3-BBKY												TAO:TAO: FAK:PTK2	

RNOI QOAFVERDILIFPAE. RNOI QOAFVERDILIFPAE. RNOI QOAFVERDILIFPAE. RNOI QOAFVERDILIFPAE. RNOI ROAFVERDILIFPAE. REAL STRANKAMELD. REAL STRANKATI MAYAD. REAL STRANKAMELD. REAL STR	AGRESHALINYALGH AGRESHALINYALGH ORREAGRENDHELN EKNALITGEVER EKNALITGEVER EKNALITGEVER EKNALITGEVER VYGKELMBEAKTIKELSG VYGKELMBEAKTIKELSG RYGKELMBEAKTIKELSG RYGKELMBEAKTIKELSG
RRPPPRGTRPAEGGCIQP	ZAACHEGE
SRORFAMKKINKONLLL TRORFAMKKINKONLLL TRORFAMKKINKONLLL TRORFAMKKINKONLLL TRORFAMKKINKONLL GKKYALKEREPOLS BILKVAVKTIKERPOLS ENTERPOLS ENTERPOLS TSBEDATILEKRALT TSBENATILEKON TSBENANTILEKON TSBENA	KOLYALKYWLEERD GVEVALKOVAKCTKUR NEDVAVKRIL DGHFYALKRILGHE SGREYALKRIGHE GIRCLKKHVYN LESHSHWAVKKINFICKDHY GNDIVVKVLKVEDMS
	GGSKYPOLLNEK STROGSVYALTER BERTTUYRGNED GGERYPEURENG GGERYPEURENG GGERYPEURENG GHSGELMKGRWO.
CHRETPETDESUSSINALIARKERESDEE TIKLÜSNIGAVGNYFVRIKE APPOVODADANIVKAHHQUSHIPQQQLDIE BURETGKRYGNYBONDENDES LÜGERGYGWEGWEGENDENDEN MERTTEATUSSIGERGERKALDENLIKTURTERKIK, ÜLGEGGRYGWEGWEGENDES LÜGERGYGWEGWEGENDENDENLIKTURTERKIK, ÜLGEGGREGHWEGENDES LÜGERGYGWEGWEGENDENDENDENLIKTURTERKIK, ÜLGEGGREGHWEGTRACH MERTTEATUSSIGERGERKALDWUNDEN, LIKTLGEGREGHWEGTRACH MERTTEATUSSIGERGERKALDWUNDEN EIL LIDTLGAGERGENGENGEN NATHURTEN ESPRICESTERKALNGTENDENLIKTUL EINER MERTTEATUSSIGERGEN KANGOTERENT IN INTEGREGEREN KANGOTHOR MERTTEATUSSIGERGEN KANGOTERENT IN INTEGREGEREN KANGOTER MERTTEATUSSIGERGEN KANGOTEREN IN INTEGREGEREN KANGOTEREN MERTESTANDEN EN INTEGREGER KANGOTEREN IN INTEGREGEREN KANGOTEREN MERTESTANDEN EN INTEGREGER KANGOTEREN MERTESTANDEN INTEGREGER KANGOTEREN MERTESTANDEN INTEGREGER IN WETTGERSEN KENDEGERSEN KONGOTEREN MERTESTANDEN INTEGREGER IN MERTESTANDEN MERTESTANDEN INTEGREGER IN MERTESTANDEN MERTESTANDEN INTEGREGER IN MERTESTANDEN MERTESTANDEN INTEGREGER IN MERTESTANDEN MERTESTANDEN INTEGREGER IN MERTESTANDEN INTEGREGER INTEGRES	RELANCES LONGUESS RELANCES LONGUESS RELANCES LONGUESC SECTIVIDARRY, FILANCES LONGUESC FYGGYTVELOGERER, VRRULAGE TUCKYPRAVCHAPT, LESSLAGE TUCKYPRAVCHAPT, LESSLAGE TUKKHSGIDFRQLN, FILYKLENEN
AHLGANDSGTAETPETDESUSSINAE ARAQGESCES POTPETTDES TEGHTAE REKTERRELIGEELIVE PETEGELBE REKTERRELIGEELIVE PETEGELBE REKTERRELIGEELIVE PETEGELBE REKTERRELIGEELIVE PETEGELBE REKTERRELIGEELINS LOKARE ETUQUA REGIGANDE TERTERILE BERENDES LOKARE TRIEFSELD THE REKTROPE TRIEFSELD THE RECHTAE PETEGELBE REGIGANDE RERERERE PETEGEL PETEGELBE REGIGANDE RERERERE RERERERE ET TOKEN OF PETEGELBE TOKEN OF PETEG	SPOCHALLAFURALUS SPEELPAKLIE ILCSGSSASKAGSSPSEGODOD SALDFLÁGFGSIGGASCROGGS SALDFLÁGFGSIGGASCROGGS TAMAGGAGGAGGAGGASCS MEDISPRYPSKLÉGSKKS ILNRI PYKUTFWKGTTRTRPHNGT
SOLGLINDELEEM TUGGLGHTRDFLEE GQQQPYEFSPAFG MSKYFGGKRLTAR LISTORISHINGTO TTGYLLADTRINA TYGYLLADTRINA TYGYLLADTRINA TYGYLLADTRINA TYGYLLADTRINA TYGYLLADTRINA TYGYLLADTRINA ERREMCOKKLEKVI GLEPHYRE MYSSOKLEKPI TYGYLLADTRINA SAVNGTSSASTRIL TYGYLLADTRINA TYGYRLAN TYGYRL	. FPAPACASTPROPACHOQOQNO . YERSEFSTSPADARPCSSSTBELDA SOTSSPSTSPRASNHSLCSGSSA MKKFSRWYKSEGSSGGAAAGGAA MELLRERAEWMQNLNRIFYKI
MAST:KIAA0303 MAST:KIAA0303 MAST:ZOS:MAST205 ODKI.LODKLI LIKSHIK ALKSHIK ALKSH	MASSIMOS MASSIMOS IREERNI MPSK-STK16 GAK-GAK BIKE-BIKE TOPK-TOPK ILK:ILK

EYVEG, GDCATLMXNMGP. EYVER, GJCAATLLMIGA. ELMO, SDLHKIJVYRGW. ELMO, SDLHKIJVYRGW. ELMO, SDLHKIJVYRGW. ELMO, SSLLDRARKINGH. ELMO, SSLLDRARKINGH. FPHYM, GJARFRINGH. FPHYM, GJARFRINGH. FPHYM, GJARFRINGH. FRAMEL, GRINGYRGW. FRAMEL, GRINGYRGW. FRAMEL, GRINGYRGW. FRAMEL, GRINGYRGW. FRAMEL, GRINGYRGW. FYRMIN GRILKIFLRQCKLVEANNPQA. SYARM GRILKYTRINGS.	15525557774777777777777777	HINDS (SELDQUIKKARR) FILED STATE I I HARARR FILED STATE I I EMPROREMENTE FILED STATE I EMPROREMENTE FOR STATE I EMPROREMENTE FILED STATE I EMPROREMENTE FILED STATE I EMPROREMENTE FILED STATE I EMPORTANCE FILE STATE I EMPORTANCE FILED STATE I EMPORTANCE FIL
R. RHICMAN K. RHICMAN F. RESTAUM P. TO THE SERTION S. TO THE SERTI	NTEXTYPE NTEXTYPE	SECOND CELSTON
	1.11:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:	
MAST:XIAA0303 MAST205:MAST205 CDKL:CDKLI NLK:NLK ACK-ACKI GEFR:EGFR AKI-AXL MH:MET TGFREZ:TGFBRZ SYK:SYK PK:RYK PK:RYK PK:RYK PK:RYK RK:RYK RK:RYK RK:RYK RK:RYK RK:RYK RK:RYK	GORGESTRAN DIRPECTORY NORSTRAN MAKANAK RAGERAGE SPAKISTRAN SORKISPECKALZ SPAKISTRAN HANKINKI HANKINKI PROCIPIEN ARKARKA CHRZCHEKA CAMEKICAMIKKZ CAMEKICAMIKKZ LIGISTRKI ARSTRAN ARKUSTRKA ARKUSTRKA ARKUSTRKA ARKUSTRKA ARKUSTRKA ARKUSTRKA ARKUSTRKA ARKUSTRKA ARKUSTRKA ARKUSTRKA ARKUSTRKA	UKULKU UKULKU UKULKI VACAUPICAII-PRCM CLASCKI OYREADPRA PIPKAIPRA PIPKAIPRA PIPKAIPRA PIPKAIPRA TAKTAA TAKTAA TAKTAA IMILIMA TEKTESKI PIRKEIKA PIRAKIRAK IKKEIKA IKKEIKA PIRAKIRAK IKKEIKA PIRAKIRA IKKEIKA PIRAKIRA IKKEIKA IKKEIKA IKKEIKA IKKEIKA IKKEIKA IKKEIKA IKKEIKA IKKEIKA IKKEIKA IKKEIKA IKKEIKA IKKEIKA IKKEIKA IKKEIKA IKKEIKA IKKEIKA IKKEIKA IKKATI WASIANA IKKATI WASIANA IKKATI WASIANA IKKATI WASIANA IKKEIKA IKKATI WASIANA IKKATI WASIANA IKKEIKA IKKATI WASIANA IKKEIKA IKKATI IKKATI IKKATI

177

MASTKIAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB	DKOVICGT PEYLL YEDDYANT RAYER YEDDYANT RAYER YEGHIND YEAR KREGRIND YEAR KREGRIND YEAR KREGRIND YEAR KREGRIND YEAR KREGRIND YEAR YERLEY PEYL YERLEY TAYN YERLEY TAYN YERLEY YERLEY TAYN YERLEY TAYN YERLEY YERLEY TAYN YERLEY T	JENGUCGT PR JENGUC	YAABEVIIROG YAABEVIIROG XXA PELLMGGRH WALDESIAKTR WALD	8	KRUDMWAMGI LIYBELD KREDDWRAMGI LIYBELG HAGGIVARELG HAGGIVARELG HAGGIVARELG HAGGIVARELG HAGGIVARELG KREDDWREG TAGDWREG TAGWREG TAGDWREG TAGWREG TAGDWREG TAGWREG TAGWREG	66.000	VPPPEG VPPPEG VPPPEG SERVICE S	DEPELFGOVISD KEDVOGIVILIRKTGOLIPRIQOYSTW KENDOGIVILIRKTGOLIPRIQOYSTW GSRIQQLDILTORGTPSLEAMRTACEG INGSQLIMETORS TO STREET STREET WERS IS STEEN WERE IS STEEN WERS IS STEEN WERE IS	HATE
CALL CALL CALL CALL CALL CALL CALL CALL		YUDDOĞT RA TSQAGGI YA TSQAGGI YA GEVQESD. RA FYDIRGE I E RYDIRGE I E REKKYTI LG' RECKITE I E RECKITE I E RECKITE I E	YSPPRITYHY YIPPECTVGGEPK YANDENEEK YANDELLOGS YANDELSOGS YANDELSOG	1000 H 10	RSAAWSLETLEDWOC RKDVBROWETERPOLLY TAADWSCWILLEWA PRADIKALERALITHWOT VAADKWSEUGILLYWOAG PRADIKALERALITHWOT PRADIKALERIYYVOAG REDWALGCULYALWE REDDWALGCULYALWE PRADIKALGCULYLUCE PRADIKALGCULYLUCE PRADIKALGCULYLUCE PRADIKALGCULYLUCE PRADIKALGCULYLUCE PRADIKALGCULYLUCE PRADIKALGCULYLUCE PRADIKALGCULYLUCE REDWALGCULYLUCE REDWALGCULYLUCE REDWALGCULYLUCE	SEE	TPF PYSEC PYSEC LIPRIGG LIPRIGG LIPRIGG LIPRIGG PRIVERPE PRIVERPE TPFQUI TPFQUI TPFQUI TPFCUI TPF	ETOSME TENDANO ETOSET IEGO SOGODICENTIAL SORODICENTIAL SORODICENTIAL DOHIELTROG SAVESTITIROG SAVESTITIROG SAVESTITIROG SAVESTITIROG SAVESTITIROG SAVESTITIROG SAVESTITIROG SAVESTITIROG SOGODICENTIALOG SOGODICALOG SOGODICALOG SOGODICALOG SOGODICALOG SOGODI	ATEVOF AVENOF AV

MENTIOREP MENTIOREP MENTIOREP MENTIORE MEN	ANALVIKHSVLJSARKSRQUR, REINARZKYNSILOKERKKANARAARERALFUDRA ANALVIKHRALAPPREDOPROTELSRALIERKELLERKEELPENIADSGCTGGTEESEML. RAALKROINKLEDOPROTELSRALIERKELLERKEE RELIANDTSIKABLG RADVIKHPERSLEKARIG RADVIKHPERSLEKARIGOPPONDER EKESLOGEPVKOLERGGRAVVKMPRENITUPPL. PELLSGGLEALGPRAGOLFPGONTOTEKAAC. TREVYROLOGELAARNVHRYSTETELLEONGGYGSATLSRGPPPVGFAGSGGLALA. TROVYSTARRANGOPPSRINKCKOLIRHGALLEILIFFIGLETOLENR.
PDAQDLITLLEQURPLEBLOTGG AN PDAQDLITLLEQURPERLOTGG AN PRALICEMENTERLITE BELLEGHERICHE BERNED BELLEGHERICH BELLEGHERICH BERNED BERNED BERNED BELLEGHERICH BELLEGHERICH BERNED BERNED BELLEGHERICH BERNED BERNED BERNED BELLEGHERICH BELLEGHERICH BERNED B	POWERIEASSERNEWHERS ANALUK RELACUMTSCHAYDROGEP FAALK KELACUMTSCHAYDROGEP FEALK KELACUKSEDEKORIS IPELIA VIARLIEKHYNDPOKEPS ANALUKHYNDPOKEPS SALECULKAMUTOPOKEPS TYPHSLIEMHYNDPOKEPS TYPHSLIEMHYNDPOKEPS TYPHSLIEMSPOWERSP TALIKHYNDPOKEPS TYPHSLIEMSPOWERSP TALIKHYNDFERSP TALIKHYNDFERSP TALIKHYNDFERSP TALIKHYNDFERSP TALIKHYNDFERSP TALIKHYNDFERSP TALIKHYNDFERSP TALIKHYNDFERSP TALIKHYNDFERSP
SSOAT TAS TOS GELAKYMETVKLLD GELAKYMETVKLLD GELAKYTENCLDDKAGYWREP REKYTVWSTINPTRULADLIG REKYTVWSTINPTRULADL	PQVLS TPSC TPSC TPSC TPSC TPSC TPSC TPSC TPS
70 APK2	COLIMADS AND ANGELS AND ANGELS AND ANGELS AND ANGELS AND ANGERS AND ANGELS AN

Table 4

```
HEADER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          XX-XXX-XX xxxx
      COMPND ---
      REMARK 3
   REMARK 3 REFINEMENT.
REMARK 3 PROGRAM : REFMAC 5.1.21
REMARK 3 AUTHORS : MURSHUDOV, VAGIN, DODSON
REMARK 3
REMARK 3
REFINEMENT TARGET : MAXIMUM LIKELIHOOD
       REMARK 3
   REMARK 3 DATA USED IN REFINEMENT.

REMARK 3 RESOLUTION RANGE HIGH (ANGSTROMS): 2.03

REMARK 3 RESOLUTION RANGE LOW (ANGSTROMS): 81.65

REMARK 3 DATA CUTOFF (SIGMA(F)): NONE

REMARK 3 COMPLETENESS FOR RANGE (%): 99.81

REMARK 3 NUMBER OF REFLECTIONS : 25766
     REMARK 3
REMARK 3 FIT TO DATA USED IN REFINEMENT.
REMARK 3 CROSS-VALIDATION METHOD : THROUGH
REMARK 3 FREE R VALUE TEST SET SELECTION : RANDOM
                                                                                                                                                                                                                                                                                                                                                                                                                                                  : THROUGHOUT
REMARK 3 FREE R VALUE TEST SET SELECTION : RANDOM REMARK 3 R VALUE (WORKING + TEST SET) : 0.19077 REMARK 3 R VALUE (WORKING SET) : 0.18920 REMARK 3 FREE R VALUE : 0.22121 REMARK 3 FREE R VALUE TEST SET SIZE (%) : 5.0 REMARK 3 FREE R VALUE TEST SET COUNT : 1368 REMARK 3 FREE R VALUE TEST SET COUNT : 1368 REMARK 3 FIT IN THE HIGHEST RESOLUTION BIN. REMARK 3 TOTAL NUMBER OF BINS USED : 20 REMARK 3 BIN RESOLUTION RANGE HIGH : 2.030 REMARK 3 BIN RESOLUTION RANGE HIGH : 2.030 REMARK 3 BIN RESOLUTION RANGE LOW : 2.083 REMARK 3 REFLECTION IN BIN (WORKING SET) : 1894 REMARK 3 BIN R VALUE (WORKING SET) : 0.289 REMARK 3 BIN FREE R VALUE SET COUNT : 113 REMARK 3 BIN FREE R VALUE SET COUNT : 113 REMARK 3 BIN FREE R VALUE SET COUNT : 0.297 REMARK 3 REMARK 3 REMARE OF NON-HYDROGEN ATOMS USED IN REFINEMENT. REMARK 3 ALL ATOMS : 2400
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              REMARK 3
REM
      REMARK 3 ALL ATOMS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (A): 0.151
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               (A): 0.1...
(A): 0.105
     REMARK 3 ESU BASED ON MAXIMUM LIKELIHOOD
     REMARK 3 ESU FOR B VALUES BASED ON MAXIMUM LIKELIHOOD (A**2): 3.960
 REMARK 3
REMARK 3
REMARK 3
REMARK 3
CORRELATION COEFFICIENTS.
REMARK 3
CORRELATION COEFFICIENT FO-FC : 0.959
REMARK 3
RE
```

```
REMARK 3 TORSION ANGLES, PERIOD 1 (DEGREES): 273; 5.228; 5.000 REMARK 3 CHIRAL-CENTER RESTRAINTS (A**3): 336; 0.080; 0.200 REMARK 3 GENERAL PLANES REFINED ATOMS (A): 1800; 0.004; 0.020
REMARK 3 NON-BONDED CONTACTS REFINED ATOMS (A): 1070; 0.202; 0.200
REMARK 3 H-BOND (X...Y) REFINED ATOMS (A): 150; 0.145; 0.200
                                                                               (A): 46; 0.199; 0.200
(A): 10; 0.267; 0.200
REMARK 3 SYMMETRY VDW REFINED ATOMS
REMARK 3 SYMMETRY H-BOND REFINED ATOMS
REMARK 3
REMARK 3 ISOTROPIC THERMAL FACTOR RESTRAINTS.
REMARK 3 ISOTROPIC THERMAL FACTOR RESTRAINTS. COUNT RMS WEIGHT REMARK 3 MAIN-CHAIN BOND REFINED ATOMS (A**2): 1365; 0.799; 1.500 REMARK 3 MAIN-CHAIN ANGLE REFINED ATOMS (A**2): 2214; 1.519; 2.000 REMARK 3 SIDE-CHAIN BOND REFINED ATOMS (A**2): 969; 2.024; 3.000 REMARK 3 SIDE-CHAIN ANGLE REFINED ATOMS (A**2): 960; 3.247; 4.500
REMARK 3
REMARK 3
 REMARK 3 NCS RESTRAINTS STATISTICS
 REMARK 3 NUMBER OF NCS GROUPS : NULL
 REMARK 3
 REMARK 3
                3 TLS DETAILS
 REMARK 3 TLS DETAILS
REMARK 3 NUMBER OF TLS GROUPS : 2
 REMARK 3
 REMARK 3 TLS GROUP: 1
 REMARK 3 NUMBER OF COMPONENTS GROUP: 1
                3 COMPONENTS C SSSEQI TO C SSSEQI
3 RESIDUE RANGE: A 33 A 306
 REMARK 3 COMPONENTS C SSSEQI TO C SSSEQI
REMARK 3 RESIDUE RANGE: A 33 A 306
REMARK 3 ORIGIN FOR THE GROUP (A): 65.5800 27.1270 -0.6960
 REMARK 3 T TENSOR
 REMARK 3 T11: 0.1410 T22: 0.1266
REMARK 3 T33: 0.0824 T12: -0.0364
REMARK 3 T13: -0.0112 T23: -0.0301
REMARK 3 L TENSOR
 REMARK 3 L TENSOR

REMARK 3 L11: 1.3945 L22: 0.7253

REMARK 3 L33: 0.8680 L12: 0.1248

REMARK 3 L13: -0.3386 L23: 0.0070

REMARK 3 STENSOR

REMARK 3 S11: -0.0668 S12: 0.0858 S13: 0.0787

REMARK 3 S21: -0.0201 S22: 0.1089 S23: 0.0287

REMARK 3 S31: 0.0298 S32: 0.0689 S33: -0.0421
 REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
REMARK 3
ROMPONENTS C SSSEQI TO C SSSEQI
REMARK 3
RESIDUE RANGE: L 1
REMARK 3
RESIDUE RANGE: L 1
REMARK 3
T TENSOR
                                                                                                     1.3720
  REMARK 3 T TENSOR
REMARK 3 T11: 0.1174 T22: 0.1943
REMARK 3 T33: 0.1391 T12: -0.1003
  REMARK 3 T13: -
REMARK 3 L TENSOR
                         T13: -0.0486 T23: -0.0722
  REMARK 3 L11: 14.6629 L22: 15.7148
REMARK 3 L33: 8.9109 L12: -11.1563
REMARK 3 L13: -1.8290 L23: -15.1157
REMARK 3 S TENSOR
                      $11: 0.2483 $12: 0.1966 $13: 0.0403

$21: 0.0302 $22: 0.1725 $23: 0.8712

$31: -0.4688 $32: 0.8689 $33: -0.4208
  REMARK 3
  REMARK 3
  REMARK 3
  REMARK
  REMARK
  REMARK · 3 BULK SOLVENT MODELLING.
  REMARK 3 METHOD USED : BABINET MODEL WITH MASK
   REMARK 3 PARAMETERS FOR MASK CALCULATION
                        VDW PROBE RADIUS : 1.40 ION PROBE RADIUS : 0.80
  REMARK 3 VDW PROBE RADIUS : 1.40
REMARK 3 ION PROBE RADIUS : 0.80
REMARK 3 SHRINKAGE RADIUS : 0.80
   REMARK 3
   REMARK 3 OTHER REFINEMENT REMARKS: NULL
   REMARK 3
                  1 GLU A 124 PRO A 125
   CISPEP 1 GLU A 124 PRO A 125 0.00
CRYST1 95.566 95.566 80.862 90.00 90.00 120.00 P 65
```

	_							0.0000			
SCALE1		.0104			06041	0.000000		0.00000			
SCALE2		.0000			12083	0.000000		0.00000			
SCALE3		.0000	200 200 <i>P</i>		00000 3	89.149	40.408		1.00	67.30	N
ATOM ATOM			PRO P			88.476		-17.647		67.14	C
ATOM			PRO F		3	86.997	41.088			67.23	C
ATOM			PRO F		3	86.877		-19.088		67.40	С
ATOM			PRO F		3	88.243		-19.451		67.35	С
ATOM			PRO I		3	88.938		-16.180	1.00	66.89	С
ATOM			PRO A		3	89.154		-15.690	1.00	67.00	0
ATOM			LEU A		4	89.091		-15.519	1.00	66.32	N
ATOM			LEU A		4	89.499		-14.100	1.00	65.68	С
ATOM	10		LEU A		4	90.888		-13.835	1.00	65.85	С
ATOM	11		LEU Z		4	91.302	41.230	-12.390		66.30	С
ATOM	12	CD1			4	91.714	39.982	-11.600		66.80	С
ATOM	13	CD2			34	92.418	42.268	-12.376		67.23	С
ATOM	14	C	LEU A	A 3	34	88.454	40.795	-13.100		64.94	C
ATOM	15	0	LEU A	A 3	34	87.873		-13.284		64.93	0
ATOM	16		GLU Z		35	88.242		-12.027		63.77	N
ATOM	17	CA	GLU Z	A 3	35	87.186		-11.061		62.65	С
MOTA	18	CB	GLU 3	A 3	35	86.798	39.087	-10.270		63.13	С
MOTA	19	CG	GLU	A 3	35	87.856	38.599	-9.297		65.02	С
ATOM	20	CD	GLU	A 3	35	87.245	37.871	-8.122		67.48	C
ATOM	21	OE1	GLU .	A 3	35	87.017	38.518	-7.069		68.53	0
ATOM	22	OE2	GLU .	A. 3	35	86.987	36.654	-8.260		68.44	0
ATOM	23	С	GLU .	A 3	35	87.444	41.549	-10.130		61.12	C
ATOM	24	0	GLU .	A 3	35	86.859	41.645	-9.049		61.05	0
ATOM	25	N	SER .	A 3	36	88.299	42.477	-10.561		59.16	N
ATOM	26	CA	SER .	A :	36	88.360	43.797	-9.923		56.76	C
ATOM	27	CB	SER .	A 3	36	89.767	44.375	-9.977		57.09	C
ATOM	28	OG	SER .	A :	36	90.185	44.711	-8.665		57.93	0
ATOM	29	С	SER	A :	36	87.321		-10.537		54.68	C
ATOM	30	0	SER	A :	36	87.465		-10.482		54.42	0
MOTA	31	N	GLN	A :	37	86.278		-11.121		51.69	N
MOTA	32	CA	GLN	A :	37	85.055		-11.531		48.71	C
ATOM	33	CB	GLN	A :	37	84.288		-12.556		48.70	C
ATOM	34	CG	GLN	A :	37	85.032	43.705	-13.853		48.89	C
MOTA	35	CD	GLN	A :	37	84.357		-14.681		48.93	C O
ATOM	36		GLN		37	83.235		-15.159		48.57	N
ATOM	37	NE2	GLN		37	85.041		-14.849		49.23 46.45	C
MOTA	38	С	GLN		37	84.159		-10.309			Ö
MOTA	39	0	GLN		37	83.061		-10.425		45.80 43.79	N
MOTA	40	N	TYR		38	84.634	44.634	-9.142		41.47	Č
MOTA	41	CA	TYR		38	83.815	44.599	-7.935 -7.683		40.80	c
MOTA	42	CB	TYR		38	83.277	43.178	-8.813		37.71	Č
ATOM	43	CG	TYR		38	82.415	42.680			36.03	č
MOTA	44		TYR		38	81.078	43.060		1 00	34.69	č
MOTA	45		TYR		38	80.283	42.622	-10.940		33.35	Ċ
MOTA	46	CZ	TYR		38	80.834	41.755	-11.982		33.33	Ō
ATOM	47	OH	TYR		38	80.058	41.302	-10.861		33.59	Ċ
ATOM	48		TYR		38	82.156	41.853			35.25	Ċ
MOTA	49		TYR		38	82.941	45.110			40.70	c
ATOM	50	С	TYR		38	84.546	44.835			40.55	ō
ATOM	51	0	TYR		38	85.729	45.882			39.47	N
ATOM	52	N	GLN		39	83.820	46.331			38.56	Ċ
ATOM	53	CA	GLN		39	84.267	47.755			39.00	C
MOTA	54	CB	GLN		39	83.781	_			41.12	C
MOTA	55	CG	GLN		39	84.391	48.448	_		44.96	Č
MOTA	56	CD	GLN		39	83.988		_		45.76	Ö
ATOM	57		GLN		39	84.489	50.753 50.241			46.18	Ŋ
ATOM	58		GLN		39	83.081				37.29	C
MOTA	59	C	GLN		39	83.673	45.376			36.66	Ö
MOTA	60	0	GLN		39	82.451	45.224 44.738			35.79	и
MOTA	61	N	VAL		40	84.546				34.34	C
ATOM	62	CA	VAL		40	84.124	43.757 42.667			34.42	c
ATOM	63	CB	VAL		40	85.190	42.667			34.56	C
ATOM	64		VAL		40	84.573	42.238			34.84	Č
MOTA	65		VAL		40	85.822	44.435			33.17	·C
MOTA	66	С	VAL	A	40	83.794	44.49-	. 0.407			ŭ

MOTA	67	0	VAL	A	40	84.544	45.296	-0.021	1.00 32.8	8 0
MOTA	68	N	GLY	A.	41	82.659	44.047	0.094	1.00 31.3	
MOTA	69	CA	GLY		41	82.253	44.508	1.407	1.00 29.7	
ATOM	70	С	GLY		41	82.304	43.395	2.438	1.00 28.5	
ATOM	71	0	GLY		41	83.121	42.480	2.315	1.00 28.6	
ATOM	72	N	PRO		42	81.435	43.470	3.446	1.00 27.6	
ATOM	73	CA	PRO		42	81.406	42.494	4.543	1.00 27.0	
ATOM	74	CB	PRO		42	80.355	43.073	5.501	1.00 27.1	
ATOM	75 76	CG	PRO		42	80.182	44.506	5.089	1.00 27.3	
ATOM	76	CD	PRO		42	80.416	44.521 41.091	3.618	1.00 27.6 1.00 26.9	
ATOM	77 70	С 0	PRO		42 42	80.958 80.212	40.921	4.127 3.149	1.00 26.3	
ATOM	78 79	Ŋ	PRO LEU		43	81.421	40.114	4.905	1.00 26.2	
ATOM ATOM	80	CA.	LEU		43	81.016	38.726	4.827	1.00 26.2	
ATOM	81	CB	LEU		43	81.928	37.888	5.737	1.00 26.1	
ATOM	82	CG	LEU		43	81.741	36.367	5.836	1.00 26.7	
MOTA	83		LEU		43	81.971	35,666	4.486	1.00 25.1	
ATOM	84		LEU		43	82.656	35.790	6.911	1.00 25.6	
ATOM	85	C	LEU		43	79.573	38.592	5.292	1.00 26.2	
ATOM	86	ō	LEU		43	79.234	39.010	6.409	1.00 25.5	
ATOM	87	N	LEU		44	78.737	37.998	4.439	1.00 25.8	19 N
ATOM	88	CA	LEU		44	77.321	37.786	4.746	1.00 26.2	23 C
ATOM	89	CB	LEU		44	76.460	37.994	3.500	1.00 25.7	
ATOM	90	CG	LEU		44	76.500	39.383	2.881	1.00 25.9	04 C
ATOM	91	CD1	LEU	A	44	75.804	39.381	1.516	1.00 24.8	7 C
ATOM	92	CD2	LEU	Α	44	75,881	40.399	3.846	1.00 26.2	.4 C
ATOM	93	С	LEU	A	44	77.027	36.416	5.345	1.00 26.7	'4 C
ATOM	94	0	LEU	A	44	76. 07	36.274	6.148	1.00 26.6	3 0
ATOM	95	N	GLY	A	45	77.798	35.409	4.946	1.00 27.4	
MOTA	96	CA	GLY	A	45	77,595	34.056	5.434	1.00 28.8	
ATOM	97	C	GLY	A	45	78 6£2	33.077	4.932	1.00 29.9	
MOTA	98	0	GLY	A	45	79.267	33,254	3.854	1.00 29.3	
ATOM	99	N	ŞER	A	46	78.908	32,061	5.745	1.00 31.1	
MOTA	100	CA	SER		46	79.794	30.964	5.385	1.00 33.1	
ATOM	101	CB	SER		46	81.242	31. 82	5.786	1.00 33.2	
ATOM	102	OG	SER		46	81.336	31. 07	7.161	1.00 31.4	
ATOM	103	С	SER		46	79.263	29.533	6.104	1.00 34.6	
MOTA	104	0	SER		46	78.131	29.727	6.594	1.00 35.1 1.00 36.1	
ATOM	105	N	GLY		47	80.033	28.645 27.513	6.168 6.960	1.00 37.7	
MOTA	106	CA	GLY		47 47	79.552 78.827	26.410	6.202	1.00 38.0	
ATOM	107	С 0	GLY GLY		47	78.803	25.261	6.665	1.00 38.8	
ATOM	108 109	N	GLY		48	78.228	26.756	5.058	1.00 38.1	
ATOM ATOM	110	CA	GLY		48	77.816	25.765	4.072	1.00 37.4	
ATOM	111	C	GLY		48	79.007	25.489	3.163	1.00 37.2	
ATOM	112	Ö	GLY		48	80.154	25.459	3.631	1.00 37.2	
ATOM	113	N	PHE		49	78.757	25.324	1.865	1.00 36.6	
ATOM	114	CA	PHE		49	79.845	25.099	0.905	1.00 36.1	
ATOM	115	CB	PHE		49	79.322	24.532	-0.421	1.00 36.7	
ATOM	116	CG	PHE		49	78.733	23.153	-0.310	1.00 39.1	
MOTA	117		PHE		49	77.363	22.960	-0.454	1.00 40.0)6 C
ATOM	118		PHE		49	76.806	21.681	-0.357	1.00 42.1	
MOTA	119	CZ	PHE	Α	49	77.624	20.575	-0.105	1.00 43.0	
ATOM	120	CE2	PHE	Α	49	79.003	20.755	0.045	1.00 43.4	
ATOM	121	CD2	PHE	A	49	79.550	22.043	-0.061	1.00 42.1	
ATOM	122	С	PHE	Α	49	80.702	26.339	0.614	1.00 34.8	
ATOM	123	0	PHE	Α	49	81.884	26.195	0.286	1.00 35.1	
ATOM	124	N	GLY	A	50	80.109	27.536	0.717	1.00 32.7	
MOTA	125	CA	GLY	Α	50	80.770	28.772	0.303	1.00 30.1	.8 C
MOTA	126	С	GLY		50	80.831	29.895	1.335	1.00 28.5	
ATOM	127	0	GLY		50	80.161	29.832	2.367	1.00 28.2	
ATOM	128	N	SER	Α	51	81.676	30.895	1.061	1.00 26.4	
ATOM	129	CA	SER		51	81.722	32.156	1.803	1.00 23.8	
ATOM	130	CB	SER		51	83.157	32.509	2.190	1.00 24.1	
ATOM	131	OG	SER		51	83.773	31.474	2.937	1.00 23.8	
MOTA	132	C	SER		51	81.167	33.245	0.888	1.00 22.6	
MOTA	133	0	SER		51	81.640	33.423	-0.242	1.00 21.8	
ATOM	134	N	VAL		52	80.150	33.948	1.369	1.00 20.9	
ATOM	135	CA	VAL	A	52	79.427	34.917	0.568	1.00 20.0)9 C

MOTA	136	СВ	VAL	A	52	77.917	34.574	0.518	1.00	19.63		С
ATOM	137		VAL		52	77.182	35.536		1.00	19.68		Č
MOTA	138		VAL		52	77.705	33.133		1.00	19.27		С
ATOM ATOM	139 140	С 0	VAL VAL		52	79.629	36.330			20.59		С
ATOM	141	И	TYR		52 53	79.406	36.576 37.241			19.74		0
ATOM	142	CA	TYR		53	80.053 80.316	38.624		1.00	20.61 21.62		N
ATOM	143	CB	TYR		53	81.737	39.034			21.62		C C
ATOM	144	CG	TYR		53	82.842	38.256			22.16		c
MOTA	145	CD1	TYR	Α	53	83.201	36.980			21.94		c
ATOM	146	CE1	TYR	A	53	84.225	36.265	1.078		22.80		Ċ
ATOM	147	CZ	TYR		53	84.921	36.830		1.00	23.82		C
ATOM	148	OH	TYR		53	85.937	36.114			23.97		0
ATOM	149		TYR		53	84.597	38.099		_	23.07		С
ATOM ATOM	150 151	CD2 C	TYR TYR		53 53	83.559	38.810 39.597			23.01		C
ATOM	152	0	TYR		53	79.354 78.888	39.373			22.34 22.35		C
ATOM	153	N	SER		54	79.066	40.681			23.48		O N
ATOM	154	CA	SER		54	78.404	41.822			24.82		C
ATOM	155	CB	SER	Α	54	77.980	42.840			25.09		Ċ
MOTA	156	OG	SER	Α	54	77.307	43.939	0.545	1.00	25.39		0
ATOM	157	C	SER		54	79.384	42.461		1.00	25.68		C
ATOM	158	0	SER		54	80.586	42.513			25.83		0
ATOM	159	N	GLY		55	78.878	42.932			26.75		N
ATOM ATOM	160 161	CA C	GLY GLY		55 55	79.720	43.609			*27.76		C
ATOM	162	o	GLY		55	78.986 77.762	44.633 44.772			28.87 28.62		C
ATOM	163	N	ILE		56	79.750	45.358			30.03		O N
ATOM	164	CA	ILE		56	79.200	46.346			31.52		C
ATOM	165	CB	ILE		56	79.291	47.773			31.73		Č
ATOM	166	CG1	ILE	A	56	78.306	47.955	-3.790	1.00	32.00		С
ATOM	167		ILE		56	78.762	48.992	-2.750	1.00	34.29		C
ATOM	168	CG2	-		56	79.038	48.830			32.25		С
ATOM	169	C	ILE		56	79.927	46.274	-6.901		32.27		C
ATOM ATOM	170 171	0	ILE		56	81.153	46.245			32.20		0
ATOM	172	n ca	ARG ARG		57 57	79.147 79.664	46.225 46.308	-7.976 -9.332		33.45 34.77		N .C
ATOM	173	CB	ARG		57	78.574		-10.319		34.53		Ċ
ATOM	174	CG	ARG		57	79.075		-11.692		35.85		Ċ
MOTA	175	CD	ARG		57	78.037		-12.766		37.31		Ċ
MOTA	176	NE	ARG	A	57	77.459	44.488	-13.210	1.00	38.72		N
MOTA	177	CZ	ARG		57	76.191		-13.580	1.00	39.18		С
MOTA	178		ARG		57	75.347		-13.561		38.58		N
ATOM	179	NH2			57	75.764		-13.967		40.00		N
ATOM ATOM	180 181	С 0	ARG ARG		57 57	80.134 79.329	47.740 48.667	-9.604 -9.609		35.42 35.07		C
ATOM	182	N	VAL		5 <i>7</i> 58	81.438		-9.822		36.96		O N
ATOM	183	CA	VAL		58	82.069	49.221	-9.962		38.44		C
ATOM	184	CB	VAL		58	83.626		-10.083		38.53		č
ATOM	185		VAL		58	84.270		-10.251		38.65		Ċ
ATOM	186	CG2	VAL	A	58	84.226	48.422	-8.863	1.00	38.97		C
MOTA	187	С	VAL	A	58	81.472		-11.125	1.00	39.26		С
ATOM	188	0	VAL		58	81.243		-10.989		39.41		0
ATOM	189	N	SER		59	81.194		-12.239		40.32		N
ATOM	190	CA	SER		59	80.704		-13.459		41.50		C
ATOM ATOM	191 192	CB OG	SER SER		59 59	80.627 80.059		-14.625		41.60		C
ATOM	193	C	SER		59	79.380		-14.225 -13.310		42.83 41.87		0 C
ATOM	194	õ	SER		59	79.205		-13.933		42.28		0
ATOM	195	N	ASP		60	78.463		-12.488		42.04		N
ATOM	196	CA	ASP		60	77.147		-12.330		41.97		C
ATOM	197	CB	ASP		60	76.118		-13.223		42.37		č
ATOM	198	CG	ASP		60	75.881		-12.810		43.55	,	C
ATOM	199		ASP		60	76.449		-11.781		44.32		0
ATOM	200		ASP		60 60	75.142		-13.451		43.86		0
ATOM	201 202	C	ASP		60 60	76.631		-10.878		41.41		C
ATOM ATOM	202	О	ASP .		60 61	75.479 77.484	50.667	-10.657 -9.905		41.59 40.49		0
ATOM	204	CA	ASN .		61	77.122	50.639	-9.905 -8.475		39.60		N C
			·	- '			20.007	0.475				C

MOTA	205	CB	ASN	A	61	76.722	52.026	-7.961	1.00 39.96	С
ATOM	206	CG	ASN		61	77.888	52.981	-7.902	1.00 41.52	С
MOTA	207		ASN		61	78.785	52.837	-7.065	1.00 42.83	0
			ASN		61	77.883	53.971	-8.792	1.00 42.64	Ŋ
ATOM	208							-8.056	1.00 38.30	c
ATOM	209	С	ASN		61	76.058	49.615	-		
ATOM	210	0	ASN		61	75.557	49.667	-6.930	1.00 38.56	0
ATOM	211	N	LEU	A	62	75.724	48.685	-8.947	1.00 36.52	N
MOTA	212	CA	LEU	Α	62	74.768	47.623	-8.623	1.00 34.93	С
ATOM	213	CB	LEU	Α	62	74.519	46.720	-9.832	1.00 35.10	С
ATOM	214	CG	LEU	Α	62	73.421	45.662	-9.712	1.00 35.38	С
	215		LEU		62	72.047	46.269	-9.961	1.00 36.89	C
ATOM					62	73.679		-10.677	1.00 35.30	c
ATOM	216		LEU						1.00 33.33	č
ATOM	217	С	LEU		62	75.222	46.778	-7.425		
ATOM	218	0	LEU	A	62	76.351	46.288	-7.404	1.00 32.86	0
ATOM	219	N	PRO	А	63	74.340	46.624	-6.436	1.00 32.03	N
ATOM	220	CA	PRO	A	63	74.576	45.708	-5.312	1.00 30.66	C
ATOM	221	CB	PRO	Α	63	73.328	45.893	-4.440	1.00 30.79	С
ATOM	222	CG	PRO		63	72.770	47.219	-4.848	1.00 32.09	С
	223	CD	PRO		63	73.039	47.311	-6.319	1.00 32.13	С
ATOM								-5.804	1.00 28.94	Ċ
ATOM	224	С	PRO		63	74.657	44.263			
MOTA	225	0	PRO		63	73.788	43.821	-6.570	1.00 28.84	0
MOTA	226	N	VAL	A	64	75.705	43.554	-5.393	1.00 26.63	N
ATOM	227	CA	VAL	Α	64	75.862	42.135	-5.723	1.00 24.40	С
MOTA	228	CB	VAL	Α	64	76.903	41.905	-6.870	$1.00 \cdot 24.56$	C
ATOM	229		VAL		64	76.430	42.528	-8.195	1.00 23.44	С
	230		VAL		64	78.292	42.436	-6.471	1.00 23.53	С
ATOM						76.295	41.339	-4.488	1.00 23.30	C
ATOM	231	C	VAL		64				1.00 22.79	ő
ATOM	232	0	VAL		64	76.650	41.922	-3.451		
MOTA	233	N	ALA	А	65	76.259	40.014	-4.609	1.00 21.63	N
MOTA	234	CA	ALA	Α	65	76.828	39.124	-3.608	1.00 20.83	С
ATOM	235	CB	ALA	Α	65	75.761	38.231	-2.984	1.00 20.55	С
ATOM	236	C	ALA		65	77.892	38.290	-4.281	1.00 20.04	С
MOTA	237	o	ALA		65	77.704	37.828	-5.408	1.00 21.14	0
			ILE		66	79.015	38.111	-3.600	1.00 18.86	N
ATOM	238	N						-4.186	1.00 17.57	C
MOTA	239	CA	ILE		66	80.165	37.439		1.00 17.68	C
MOTA	240	CB	ILE		66	81.422	38.346	-4.117		
ATOM	241	CG1	$_{ m ILE}$	Α	66	81.148	39.723	-4.747	1.00 18.56	C
ATOM	242	CD1	ILE	A	66	82.220	40.772	-4.424	1.00 19.55	С
ATOM	243	CG2	ILE	A	66	82.602	37.668	-4.775	1.00 16.32	С
ATOM	244	С	ILE		66	80.402	36.161	-3.408	1.00 16.96	C
ATOM	245	ō	ILE		66	80.775	36,206	-2.227	1.00 16.17	0
		N	LYS		67	80.179		-4.077	1.00 16.24	N
ATOM	246					80.255		-3.444	1.00 15.79	С
ATOM	247	CA	LYS		67			-3.707	1.00 15.38	Č
ATOM	248	CB	LYS		67	78.975	32.905			Ċ
ATOM	249	CG	LYS	A	67	79.010		-3.119	1.00 14.88	
ATOM	250	CD	LYS	Α	67	77.664	30.772	-3.303	1.00 17.48	С
MOTA	251	CE	LYS	Α	67	77.585	29.486	-2.479	1.00 18.05	C
ATOM	252	NZ	LYS		67	76.184		-2.470	1.00 18.14	N
ATOM	253	C	LYS		67	81.478	32.943	-3.915	1.00 16.15	C
	254	Õ	LYS		67	81.667		-5.122	1.00 15.33	0
ATOM						82.293		-2.951	1.00 16.82	N
ATOM	255	N	HIS		68			-3.235	1.00 17.55	C
ATOM	256	CA	HIS		68	83.519				
ATOM	257	CB	HIS	Α	68	84.683		-2.435	1.00 17.11	C
ATOM	258	CG	HIS	Α	68	85.043		-2.818	1.00 17.46	С
ATOM	259	ND1	HIS	Α	68	84.358	34.860	-2.348	1.00 18.28	N
ATOM	260		HIS		68	84.897	35.958	-2.844	1.00 17.55	C
	261		HIS		68	85.909		-3.617	1.00 17.90	N
MOTA						86.019		-3.622	1.00 17.05	С
ATOM	262		HIS		68			-2.829	1.00 18.47	č
MOTA	263	C	HIS		68	83.319			1.00 18.47	0
MOTA	264	0	HIS		68	82.899		-1.707		
ATOM	265	N	VAL	A	69	83.628		-3.735	1.00 19.87	N
ATOM	266	CA	VAL	Α	69	83.538		-3.441	1.00 21.97	С
ATOM	267	CB	VAL		69	82.386	27.316	-4.229	1.00 22.09	С
ATOM	268		VAL		69	82.270			1.00 22.01	С
			VAL		69	81.049		-3.992	1.00 22.34	С
ATOM	269					84.870			1.00 23.59	č
ATOM	270	C	VAL		69			-4.903	1.00 23.28	ő
ATOM	271	0	VAL		69	85.331			1.00 25.28	
MOTA	272	N	GLU		70	85.474				N
ATOM	273	CA	GLU	Α	70	86.719	25.981	-2.948	1.00 29.32	С

ATOM	274	CB	GLU	Α	70	87.280	25.543	-1.599	1.00 29.52	С
ATOM	275	CG	GLU	А	70	88.286	26.512	-1.001	1.00 32.13	Č
ATOM	276	CD	CLII	Δ.		88.827	26.043	0.342	1.00 34.86	Ċ
ATOM	277		GLU	Δ.	75	89.185	24.847	0.448	1.00 34.79	Õ
ATOM	278		GLU		70	88.899	26.871	1.288	1.00 35.33	ŏ
ATOM	279	C	GLU		70	86.486	24.760	-3.834	1.00 33.33	c
ATOM	280	Ö	GLU		70	85.485	24.044	-3.674	1.00 31.10	0
ATOM	281	N	LYS		71	87.402	24.540	-4.774	1.00 33.73	N
ATOM	282	CA	LYS		71	87.292	23.422	-5.718	1.00 36.85	C
ATOM	283	CB	LYS		71	88.426	23.459	-6.734	1.00 36.40	C
ATOM	284	CG	LYS		71	88.228	24.487	-7.822	1.00 35.73	C
ATOM	285	CD	LYS		71	89.373	24.457	-8.814	1.00 35.72	C
ATOM	286	CE	LYS		71	89.168	25.490	-9.898	1.00 35.77	C
ATOM	287	NZ	LYS		71	90.289		-10.874	1.00 35.56	N
ATOM	288	С	LYS		71	87.206	22.046	-5.047	1.00 39.35	С
ATOM	289	0	LYS	A	71	86.492	21.169		1.00 39.62	0
ATOM	290	N	ASP	A	72	87.904	21.872	-3.922	1.00 42.63	N
MOTA	291	CA	ASP	Α	72	87.873	20.615	-3.161	1.00 46.03	С
ATOM	292	CB	ASP	Α	72	89.021	20.560	-2.145	1.00 46.33	С
ATOM	293	CG	ASP	Α	72	90.396	20.511	-2.811	1.00 48.21	С
ATOM	294	OD1	ASP	Α	72	90.519	19.935	-3.918	1.00 49.79	0
ATOM	295	OD2	ASP	Α	72	91.418	21.025	-2.300	1.00 50.39	0
ATOM	296	С	ASP	Α	72	86.539	20.371	-2.452	1.00 47.89	С
ATOM	297	0	ASP	Α	72	86.138	19.221	-2.253	1.00 48.61	0
ATOM	298	N	ARG	Α	73	85.861	21.457	-2.085	1.00 50.08	N
ATOM	299	CA	ARG	A	73	84.592	21.405	-1.352	1.00 52.11	С
ATOM	300	СВ	ARG		73	84.430	22.662	-0.486	1.00 52.39	С
ATOM	301	CG	ARG		73	85.333	22.711	0.739	1.00 54.59	С
ATOM	302	CD	ARG		73	84.894	23.708		1.00 58.87	C
ATOM	303	NE	ARG		73	83.451	23.686		1.00 62.15	N
ATOM	304	CZ	ARG		73	82.792	22.682		1.00 63.76	C
ATOM	305		ARG		73	83.427	21.579	3.094	1.00 64.18	Й
ATOM	306		ARG		73	81.484	22.779	2.917	1.00 63.67	N
ATOM	307	C	ARG		73	83.376	21.251	-2.272	1.00 52.88	Ċ
ATOM	308	Ö	ARG		73	82.246	21.100	-1.793	1.00 52.85	Ö
ATOM	309	N	ILE		74	83.613	21.307	-3.585	1.00 54.14	N
ATOM	310	CA	ILE		74	82.553	21.153	-4.583	1.00 55.27	Ċ
ATOM	311	CB	ILE		74	83.013	21.668	-5.983	1.00 55.13	č
ATOM	312	CG1			74	83.104	23.193	-5.985	1.00 54.96	Ċ
ATOM	313		ILE		74	83.829	23.776		1.00 55.18	Ċ
ATOM	314		ILE		74	82.053	21.205	-7.084	1.00 55.44	Č
ATOM	315	C	ILE		74	82.107	19.691	-4.638	1.00 56.17	Ċ
ATOM	316	Ö	ILE		74	82.902	18.798	-4.973	1.00 56.10	Ö
ATOM	317	N	SER		75	80.836	19.459	-4.298	1.00 57.17	N
ATOM	318	CA	SER		75	80.287	18.101	-4.234	1.00 58.19	Ċ
ATOM	319	CB	SER		75	78.943	18.064	-3.485	1.00 58.21	Ċ
ATOM	320	OG	SER		75	78.112	19.161	-3.831	1.00 58.80	Ō
ATOM	321	C	SER		75 75	80.178	17.482	-5.629	1.00 58.59	Ċ
ATOM	322	Ö	SER		75 75	80.890	16.520	-5.939	1.00 58.89	Ö
ATOM	323	N	ASP		76	79.313	18.055	-6.469	1.00 58.93	N
ATOM	324	CA	ASP		76	79.125	17.581	-7.840	1.00 59.19	C
ATOM	325	CB	ASP		76	77.646	17.265	-8.101	1.00 59.25	Č
	326	CG	ASP		76	77.174	16.004	-7.377	1.00 60.21	C
MOTA	327		ASP		76	75.950	15.733	-7.378	1.00 60.76	Ö
ATOM	328		ASP		76	77.946	15.733	-6.783	1.00 61.47	Ö
MOTA						79.655	18.576	-8.875	1.00 51.47	c
MOTA	329	C	ASP		76 76	79.536	19.794	-8.702	1.00 59.17	0
ATOM	330	0	ASP		76					
ATOM	331	N	TRP		77 77	80.245	18.043	-9.943	1.00 59.21	N
ATOM	332	CA	TRP		77	80.737		-11.059	1.00 59.31	C
ATOM	333	CB	TRP		77	82,186		-11.399	1.00 58.89	C
ATOM	334	CG	TRP		77	83.207		-10.338	1.00 57.61	C
ATOM	335		TRP		77	83.449	18.112	-9.191	1.00 56.71	C
ATOM	336		TRP		77	84.469	18.695	-8.480	1.00 56.23	N
ATOM	337		TRP		77	84.921	19.793	-9.166	1.00 55.87	C
ATOM	338		TRP		77	84.149		-10.345	1.00 55.83	C
ATOM	339		TRP		77	84.416		-11.226	1.00 54.75	C
ATOM	340		TRP		77	85.429		-10.909	1.00 54.49	C
ATOM	341		TRP		77	86.179	21.722	-9.728	1.00 54.62	, C
ATOM	342	CZ2	TRP	A	77	85.942	20.700	-8.846	1.00 54.88	. C

ATOM	343	С	TRP	Α	77	79.880	18.620 -12	2.297	1.00	59,97	С
ATOM	344	0	TRP	Α	77	79.309	17.539 -12	.479		59.95	ő
ATOM	345	N	GLY	Α	78	79.814	19.636 -13			60.60	N
ATOM	346	CA	GLY	A	78	79.019	19.573 -14	.362		61.69	c
ATOM	347	С	GLY	Α	78	79.663	20.261 -15			62.62	c
ATOM	348	0	GLY	Α	78	80.722	20.887 -15		1.00		ő
ATOM	349	N	GLU		79	79.016	20.127 -16			63.55	N
ATOM	350	CA	GLU		79	79.470	20.764 -17			64,55	C
ATOM	351	CB	GLU		79	79.841	19.724 -19			64.74	c
ATOM	352	CG	GLU		79	78.740	18.730 -19			65.56	c
ATOM	353	CD	GLU		79	78.780	18.319 -20			67.08	c
ATOM	354		GLU		79	79.892	18.197 -21			67.41	
ATOM	355		GLU		79	77.693	18.111 -21			66.84	0
ATOM	356	C	GLU		79	78.425	21.745 -18			64.93	0
ATOM	357	Õ	GLU		79	77.218	21.485 -18			64.82	C
MOTA	358	N	LEU		80	78.902	22.878 -18			65.56	0
ATOM	359	CA	LEU		80	78.039	23.875 -19			66.20	N
ATOM	360	CB	LEU		80	78.763	25.227 -19		1.00		C
ATOM	361	CG	LEU		80	79.128	25.944 -18		1.00		C
ATOM	362	CD1			80	79.914	27.225 -18			65.61	C
ATOM	363		LEU		80	77.881	26.238 -17			65.99	C
ATOM	364	C	LEU		80	77.662	23.402 -20				C
ATOM	365	Ö	LEU		80	78.387	22.585 -21			66.59 66.81	C
ATOM	366	N	PRO		81	76.539	23.885 -21			66.88	0
ATOM	367	CA	PRO			76.220	23.634 -22				N
ATOM	368	CB	PRO		81 81					66.94	C
						75.035	24.573 -23			67.02	C
ATOM	369 370	CG	PRO		81	74.363 75.477	24.703 -21 24.665 -20			67.04	C
MOTA		CD	PRO		81	77.408				66.98	C
ATOM	371	C	PRO		81		23.972 -23			66.80	C
MOTA	372	0	PRO		81	77.505	23.438 -24			66.90	0
ATOM	373	N	ASN		82	78.296	24.842 -23			66.49	N
ATOM	374	CA	ASN		82	79.543	25.182 -24			66.14	C
MOTA	375	CB	ASN		82	80.114	26.482 -23			66.36	С
ATOM	376	CG	ASN		82	81.498	26.816 -24			67.00	С
ATOM	377		ASN		82	81.734	26.837 -25			67.52	0
ATOM	378		ASN		82	82.424	27.089 -23			67.69	N
MOTA	379	C	ASN		82	80.576	24.044 -24			65.50	C
ATOM	380	0	ASN		82	81.273	23.787 -25			65.53	0
MOTA	381	N	GLY		83	80.664	23.369 -22			64.74	N
ATOM	382	CA	GLY		83	81.614	22.284 -22			63.59	C
ATOM	383	C	GLY		83	82.826	22.690 -21			62.70	C
ATOM	384	0	GLY		83	83.967	22.600 -22			62.98 61.37	0
ATOM	385	N	THR		84	82.571	23.149 -20				N
ATOM	386	CA	THR		84	83.621	23.529 -19			59.87	C
ATOM	387	CB	THR		84	83.742	25.067 -19			60.05	C
ATOM	388		THR		84	83.799	25.643 -20			60.81	0
ATOM	389		THR		84	85.080	25.468 -18			60.25	C
ATOM	390	C	THR		84	83.309	22.938 -18			58.33	C
ATOM	391	0	THR		84	82.139	22.816 -17			58.41	0
ATOM	392	N	ARG		85	84.356	22.576 -17			56.14	N
ATOM	393	CA	ARG		85	84.198	22.026 -16			53.98	C
ATOM	394	CB	ARG		85	85.445	21.223 -15			54.58	C
ATOM	395	CG	ARG		85	85.227	20.243 -14			56.25	C
ATOM	396	CD	ARG		85	86.028	18.945 -14			58.89	С
ATOM	397	NE	ARG		85	85.870	18.099 -13			60.27	N
ATOM	398	CZ	ARG		85	84.879	17.226 -13			60.85	С
ATOM	399		ARG		85	83.933	17.065 -14			61.04	N
ATOM	400		ARG		85	84.834	16.506 -12			60.48	N
ATOM	401	C	ARG		85	83.906	23.130 -15			51.86	С
ATOM	402	0	ARG		85	84.789	23.931 -14			51.74	0
ATOM	403	N	VAL		86	82.659	23.172 -14			48.87	N
MOTA	404	CA-	VAL		86	82.224	24.121 -13			45.97	С
ATOM	405	CB	VAL		86	81.335	25.276 -14			46.05	C
MOTA	406		VAL		86	82.074	26.064 -15			46.41	С
ATOM	407		VAL		86	80.008	24.755 -14			45.90	С
	408	С	VAL		86	81.462	23.409 -12			43.56	С
ATOM	409	0	VAL		86	80.984	22.292 -12			43.24	0
ATOM	410	N	PRO		87	81.345	24.040 -11			41.11	N
ATOM	411	CA	PRO	А	87	80.494	23.495 -10	.314	T.00	39.00	С

MOTA	412	CB	PRO	Α	87	80.654	24.499 -9.158	1.00 39.06	С
MOTA	413	CG	PRO	A	87	81.251	25.719 -9.759	1.00 40.31	С
MOTA	414	CD	PRO	Α	87	82.015	25.287 -10.966	1.00 40.95	С
MOTA	415	С	PRO	А	87	79.037	23.413 -10.755	1.00 36.73	С
ATOM	416	0	PRO	Α	87	78.567	24.258 -11.535	1.00 35.64	0
ATOM	417	N	MET	A	88	78.343	22.391 -10.255	1.00 34.56	N
MOTA	418	CA	MET	A	88	76.936	22.171 -10.564	1.00 32.47	С
ATOM	419	CB	MET	A	88	76.408	20.950 -9.799	1.00 33.23	С
MOTA	420	CG	MET	A	88	75.047	20.407 -10.263	1.00 36.09	С
ATOM	421	SD	MET	Α	88	74.917	19.957 -12.033	1.00 43.02	S
MOTA	422	CE	MET	Α	88	76.260	18.799 -12.218	1.00 41.30	C
ATOM	423	С	MET	A	88	76.110	23.423 -10.274	1.00 30.24	С
ATOM	424	0	MET	Α	88	75.169	23.717 -11.006	1.00 29.10	0
ATOM	425	N	GLU	Α	89	76.487	24.169 -9.231	1.00 28.21	N
ATOM	426	CA	GLU	Α	89	75.773	25.392 -8.843	1.00 26.55	С
ATOM	427	CB	GLU	Α	89	76.393	26.043 -7.576	1.00 26.83	С
ATOM	428	CG	GLU	Α	89	75.711	27.347 -7.134	1.00 27.21	C
ATOM	429	CD	GLU	Α	89	75.939	27.733 -5.670	1.00 29.78	C
MOTA	430	OE1	GĽU	Α	89	76.956	27.292 -5.073	1.00 29.01	0
ATOM	431	OE2	GLU	Α	89	75.080	28.483 -5.118	1.00 29.29	0
MOTA	432	С	GLU	Α	89	75.669	26.392 -10.000	1.00 25.41	С
ATOM	433	0	GLU	A	89	74.609	26.988 -10.223	1.00 25.07	0
ATOM	434	N	VAL	A	90	76.761	26.566 -10.744	1.00 24.25	N
ATOM	435	CA	VAL	Α	90	76.747	27.435 -11.927	1.00 23.34	C
ATOM	436	CB	VAL	Α	90	78.193	27.717 -12.452	1.00 23.97	С
ATOM	437	CG1	VAL	Α	90	78.178	28.460 -13.796	1.00 23.00	C
ATOM	438	CG2	VAL	A	90	78.989	28.530 -11.411	1.00 23.11	С
ATOM	439	С	VAL	Α	90	75.822	26.881 -13.020	1.00 22.89	С
ATOM	440	0	VAL	A	90	75.002	27.622 -13.570	1.00 22.78	0
MOTA	441	N	VAL	A	91	75.926	25.579 -13.305	1.00 22.51	N
ATOM	442	CA	VAL	A	91	75.048	24.917 -14.293	1.00 22.19	С
MOTA	443	CB	VAL	Α	91	75.316	23.382 -14.399	1.00 22.50	С
ATOM	444	CG1	VAL	Α	91	74.265	22.688 -15.314	1.00 22.61	С
ATOM	445	CG2	VAL	Α	91	76.688	23.116 -14.934	1.00 22.68	С
ATOM	446	С	VAL	Α	91	73.569	25.143 -13.965	1.00 21.66	С
ATOM	447	0	VAL	A	91	72.783	25.594 -14.807	1.00 20.36	0
ATOM	448	N	LEU	Α	92	73.215	24.856 -12.715	1.00 21.61	N
MOTA	449	CA	LEU	Α	92	71.833	24.963 -12.256	1.00 21.57	С
ATOM	450	CB	LEU	Α	92	71.682	24.326 -10.873	1.00 21.14	С
ATOM	451	CG	LEU	Α	92	72.112	22.854 -10.778	1.00 21.50	С
ATOM	452	CD1	LEU	Α	92	71.945	22.365 -9.349	1.00 20.58	С
ATOM	453	CD2	LEU	A	92	71.378	21.928 -11.767	1.00 18.41	С
MOTA	454	С	LEU	A	92	71.331	26.408 -12.255	1.00 21.79	С
ATOM	455	0	LEU	Α	92	70.212	26.671 -12.706	1.00 21.50	0
MOTA	456	N	LEU	Α	93	72.159	27.332 -11.764	1.00 22.36	N
MOTA	457	CA	LEU	A	93	71.808	28.755 -11.756	1.00 23.34	C
ATOM	458	CB	LEU	Α	93	72.861	29.584 -11.018	1.00 23.50	С
ATOM	459	CG	LEU		93	72.714	29.608 -9.482	1.00 24.22	C
MOTA	460		LEU		93	73.985	30.131 -8.852	1.00 23.74	C
ATOM	461	CD2	LEU		93	71.493	30.431 -9.048	1.00 22.10	C
ATOM	462	С	LEU	А	93	71.594	29.301 -13.162	1.00 23.97	C
MOTA	463	0	LEU	A	93	70.642	30.037 -13.409	1.00 23.67	0
ATOM	464	N	LYS		94	72.468	28.922 -14.088	1.00 24.87	N
ATOM	465	CA	LYS	A	94	72.265	29.290 -15.491	1.00 26.26	C
ATOM	466	CB	LYS	A	94	73.448	28.847 -16.356	1.00 26.36	С
MOTA	467	CG	LYS	Α	94	74.664	29.745 -16.166	1.00 29.54	С
ATOM	468	CD	LYS	A	94	75.932	29.132 -16.750	1.00 34.13	C
ATOM	469	CE	LYS	Α	94	76.210	29.633 -18.167	1.00 36.90	С
ATOM	470	NZ	LYS	Α	94	76.658	31.059 -18.181	1.00 39.00	N
ATOM	471	С	LYS	A	94	70.946	28.761 -16.045	1.00 26.31	С
ATOM	472	0	LYS		94	70.240	29.481 -16.756	1.00 26.21	0
ATOM	473	N	LYS		95	70.610	27.515 -15.712	1.00 26.64	N
ATOM	474	CA	LYS		95	69.356	26.916 -16.172	1.00 28.04	C
MOTA	475	CB	LYS		95	69.295	25.427 -15.824	1.00 27.38	C
ATOM	476	CG	LYS		95	70.096	24.557 -16.777	1.00 28.63	C
ATOM	477	CD	LYS		95	70.218	23.114 -16.294	1.00 29.42	C
MOTA	478	CE	LYS		95	68.891	22.361 -16.392	1.00 30.74	С
ATOM	479	NZ	LYS		95	68.513	22.039 -17.803	1.00 31.02	N
ATOM	480	С	LYS	A	95	68.096	27.657 -15.674	1.00 28.66	С

ATOM	481	0	LYS	A	95	67.088	27.707	-16.379	1 00	28.72		0
ATOM	482	N	VAL		96	68.167		-14.480		30.05		N
ATOM	483	CA	VAL		96	67.017		-13.899		31.67		C
ATOM	484	CB	VAL		96	66.818		-12.383		31.32		c
ATOM	485		VAL		96	66.594	27.139	-12.159		30.44		c
ATOM	486		VAL		96	67.978		-11.546		29.93		c
ATOM	487	C	VAL		96	66.997		-14.119		33.63		c
ATOM	488	ō	VAL		96	65.999		-13.783		33.80		0
ATOM	489	N	SER		97	68.074		-14.676		35.26		N
ATOM	490	CA	SER		97	68.109		-14.979		37.17		C
ATOM	491	CB	SER		97	69.490		-15.483		37.37	•	c
ATOM	492	OG	SER		97	69.844		-16.699		38.96		
ATOM	493	C	SER		97	67.009		-15.962				0
ATOM	494	0	SER		97	66.797		-16.996		38.05		
ATOM	495	Ŋ	SER		98	66.302		-15.603		38.07 39.50		O N
ATOM	496	CA	SER		98	65.224		-15.803		40.49		C
ATOM	497	CB	SER		98	64.109		-16.685				C
ATOM	498	OG	SER		98	63.105		-15.681		40.48		
	499	C	SER		98	64.671		-15.656				0
ATOM			SER		98			-14.582		40.82		С
ATOM	500	0				65.177 63.632				41.27		0
ATOM	501	N	GLY		99			-16.210		40.95		N
MOTA	502	CA	GLY		99	63.015		-15.602		40.62		C
ATOM	503	C	GLY		99	62.281		-14.283		40.18		C
ATOM	504	0	GLY		99	61.912		-13.600		40.34		0
ATOM	505	N	PHE			62.056		-13.942		39.30		N
MOTA	506	CA	PHE			61.391		-12.694		38.13		C
ATOM	507	CB	PHE			61.038		-12.709		38.35		C
ATOM	508	CG	PHE			60.296		-11.471		37.90		C
ATOM	509		PHE			59.100		-11.069		36.99		C
ATOM	510		PHE			58.411	33.801	-9.924		37.18		C
MOTA	511	CZ			100	58.922	32.727	-9.177		35.96		C
ATOM	512		PHE			60.108	32.116	-9.573		35.95		C
ATOM	513		PHE			60.792		-10.718		37.98		C
ATOM	514	С	PHE			62.266		-11.491		37.35		С
ATOM	515	0	PHE			63.365		-11.354		37.45		0
ATOM	516	N			101	61.768		-10.620		36.17		N
ATOM	517	CA	SER			62.534	37.263	-9.468		35.23		C
ATOM	518	CB			101	62.048	38.647	-9.003		35.81		C
MOTA	519	OG			101	60.697	38.612	-8.570		37.04		0
ATOM	520	С			101	62.571	36.280	-8.291		33.45		C
ATOM	521	0			101	63.260	36.544	-7.295		33.93		0
ATOM	522	N			102	61.856	35.157	-8.402		31.13		N
ATOM	523	CA	GLY			61.760	34.190	-7.310		28.02		C
ATOM	524	С	GLY			63.026	33.377	-7.066		26.06		C
MOTA	525	0	GLY			63.183	32.736	-6.040		24.79		0
ATOM	526	N	VAL			63.936	33.396	-8.030		25.16		N
ATOM	527	CA	VAL			65.213	32.726	-7.877		24.40		C
ATOM	528	CB	VAL			65.377	31.540	-8.863		24.34		С
ATOM	529	CG1	VAL	A	103	66.675	30.797	-8.585		25.25		C
ATOM	530	CG2	VAL			64.214	30.567	-8.737		23.66		С
ATOM	531	C	VAL			66.300	33.759	-8.104		24.50		С
ATOM	532	0	VAL	A	103	66.217	34.566	-9.040		24.27		0
ATOM	533	N	ILE			67.303	33.744	-7.232		23.78		N
MOTA	534	CA	ILE	Α	104	68.477	34.576	-7.383		24.18		C
MOTA	535	CB	ILE	A	104	69.526	34.185	-6.324		24.30		С
ATOM	536	CG1	ILE	Α	104	70.384	35.394	-5.954		23.11		С
ATOM	537	CD1	ILE	Α	104	69.581	36.449	-5.162	1.00	22.00		C
ATOM	538	CG2	ILE	Α	104	70.327	32.934	-6.766	1.00	23.91		С
MOTA	539	С	ILE	Α	104	69.083	34.483	-8.789	1.00	24.77		С
ATOM	540	0	ILE			69.188	33.403	-9.366	1.00	25.02		0
ATOM	541	N			105	69.479	35.619	-9.337	1.00	25.08		N
ATOM	542	CA	ARG			70.070	35.622	-10.667	1.00	26.17		С
ATOM	543	CB			105	69.566	36.833	-11.454	1.00	27.31		С
ATOM	544	CG	ARG			70.349		-12.714		32.33		С
ATOM	545	CD	ARG			69.728		-13.536		39.80		C
ATOM	546	NE	ARG			68.331		-13.891		45.22		N
ATOM	547	CZ	ARG			67.573		-14.646		47.93		Ċ
ATOM	548		ARG			68.062		-15.139		48.73		N
ATOM	549		ARG			66.319		-14.908		48.97		N
	-			-		•						=-

ATOM	550	С	ARG	Α	105	71.593	35.590	-10.594	1.00	25.19	С
ATOM	551	0	ARG			72.211	36.402	-9.885		24.65	ō
ATOM	552	N ·	LEU			72.188		-11.304		24.85	N
ATOM	553	CA	LEU			73.642		-11.499		24.90	C
ATOM	554	CB	LEU			74.136		-11.918		24.41	
								-12.127			C
ATOM	555	CG	LEU			75.651	-			24.89	C
ATOM	556		LEU			76.449		-10.796		24.67	С
ATOM	557		LEU	A	106	75.961		-12.871		23.97	С
ATOM	558	С	LEU	Α	106	74.004	35.639	-12.554	1.00	25.16	C
ATOM	559	0	LEU	Α	106	73.536	35.565	-13.695	1.00	25.41	0
ATOM	560	N	LEU	Α	107	74.825	36.604	-12.163	1.00	25.22	N
ATOM	561	CA	LEU	Α	107	75.217	37.703	-13.046	1.00	25.72	С
ATOM	562	CB	LEU			75.427		-12.240	1.00	25.54	Ċ
ATOM	563	CG	LEU			74.167		-11.524		25.95	Č
ATOM	564		LEU			74.478		-10.620		25.00	Č
	565		LEU			73.067		-12.525		27.51	c
ATOM											
ATOM	566	C	LEU			76.465		-13.847		25.66	C
ATOM	567	0	LEU			76.553		-15.040		25.68	0
ATOM	568	N	ASP			77.420		-13.177		25.47	N
ATOM	569	CA	ASP			78.699		-13.762		25.47	С
ATOM	570	CB	ASP	A	108	79.624		-13.872		25.78	C
ATOM	571	CG	ASP	А	108	80.569	37.485	-15.071	1.00	27.00	C
ATOM	572	OD1	ASP	Α	108	80.828	36.385	-15.610	1.00	27.45	0
ATOM	573	OD2	ASP	Α	108	81.111	38.501	-15.537	1.00	29.70	0
ATOM	574	С	ASP	Α	108	79.358	35.308	-12.856	1.00	25.21	С
ATOM	575	0	ASP			78.938		-11.711	1.00	23.96	0
ATOM	576	N	TRP			80.405		-13.369		25.09	N
ATOM	577	CA			109	81.235		-12.565		25.83	C
ATOM	578	CB			109	80.668		-12.565		26.03	č
						80.690		-13.918		27.82	Č
ATOM	579	CG			109						· c
ATOM	580		TRP			79.727		-14.883		28.39	
ATOM	581		TRP			80.102		-15.995		30.13	N
ATOM	582		TRP			81.332		-15.770		30.67	C
MOTA	583	CD2	TRP	A	109	81.732		-14.465		29.83	C
ATOM	584	CE3	TRP	Α	109	82.970	30.460	-13.987	1.00	30.76	C
ATOM	585	CZ3	TRP	Α	109	83.758	29.664	-14.809	1.00	32.48	C
ATOM	586	CH2	TRP	Α	109	83.334	29.313	-16.107	1.00	33.06	С
ATOM	587	CZ2	TRP	Α	109	82.126	29.739	-16.602	1.00	32.39	С
ATOM	588	С			109	82.689	33.808	-13.045	1.00	26.10	C
ATOM	589	Ö			109	82.973		-14.191		25.61	0
ATOM	590	N			110	83.599		-12.155		26.36	N
ATOM	591	CA			110	85.028		-12.449		26.90	C
	592	CB			110	85.734		-11.796		27.07	Ċ
ATOM						85.249		-12.285		28.66	č
ATOM	593	CG	PHE							30.61	C
ATOM	594		PHE			85.909		-13.330			
ATOM	595		PHE			85.464		-13.785		31.43	C
ATOM	596	CZ	PHE			84.344		-13.195		31.46	C
ATOM	597		PHE			83.679		-12.153		30.52	С
MOTA	598	CD2	PHE	A	110	84.140	36.556	-11.701		28.63	С
MOTA	599	С	PHE	Α	110	85.646	32.117	-11.924	1.00	27.02	C
ATOM	600	0	PHE	Α	110	85.227	31.591	-10.879	1.00	26.50	0
ATOM	601	N	GLU			86.638	31.614	-12.655	1.00	26.99	N
ATOM	602	CA	GLU			87.454		-12.201	1.00	27.50	C
ATOM	603	CB	GLU			87.683		-13.323		27.99	С
ATOM	604	CG			111	88.309		-12.828		28.36	Ċ
ATOM	605	CD	GLU			88.468		-13.894		29.75	č
								-14.989		31.47	ŏ
ATOM	606		GLU			87.864					
MOTA	607		GLU			89.206		-13.622		30.33	0
ATOM	608	С	GLU			88.796		-11.696		27.98	C
ATOM	609	0			111	89.415		-12.310		28.26	0
ATOM	610	N			112	89.225		-10.560		28.31	N
ATOM	611	CA	ARG	Α	112	90.541	30.760	-10.004	1.00	28.18	C
MOTA	612	CB	ARG	A	112	90.403	31.378	-8.614	1.00	28.37	С
ATOM	613	CG	ARG	A	112	90.263	32.883	-8.622	1.00	27.57	С
ATOM	614	CD			112	89.828	33.452	-7.293	1.00	27.27	С
ATOM	615	NE			112	89.976	34.899	-7.282		26.93	N
ATOM	616	CZ			112	89.758	35.671	-6.233		27.51	Ċ
ATOM	617		ARG			89.360	35.146	-5.079		28.76	· N
ATOM	618		ARG			89.932	36.979	-6.339		26.92	N
AI OF	010			- 1				5.000			14

ATOM	619	C			112	91.255	29.413		1.00 28.60	С
ATOM	620	0			112	90.627	28.379	-10.197	1.00 28.00	0
ATOM ATOM	621 622	N			113	92.556	29.402		1.00 28.77	N
ATOM	623	CA CB			113	93.282	28.129		1.00 28.93	C
ATOM	624	CG			113	94.697 94.817	28.557 29.977	-9.102 -9.608	1.00 29.22 1.00 29.25	C
ATOM	625	CD			113	93.444	30.560	-9.383	1.00 29.25	C
MOTA	626	С			113	92.642	27.163	-8.505	1.00 28.63	c
MOTA	627	0	PRO	Α	113	92.473	25.982	-8.829	1.00 28.81	ő
MOTA	628	N			114	92.239	27.664	-7.340	1.00 28.09	N
ATOM	629	CA			114	91.740	26.800	-6.269	1.00 27.57	С
ATOM	630 631	CB			114	92.605	26.991	-5.020	1.00 28.11	С
ATOM ATOM	632	CG	ASP ASP			94.078 94.959	26.644 27.360	-5.272	1.00 30.45	C
ATOM	633		ASP			94.438	25.680	-4.740 -5.998	1.00 31.83 1.00 30.94	0
ATOM	634	C	ASP			90.252	26.962	-5.921	1.00 26.62	0 C
ATOM	635	0	ASP	A	114	89.754	26.323	-4.980	1.00 26.49	0
ATOM	636	N	SER	A	115	89.549	27.806	-6.677	1.00 25.25	N
ATOM	637	CA			115	88.150	28.130	-6.382	1.00 23.81	С
ATOM	638	CB			115	88.100	29.182	-5.276	1.00 23.83	C
ATOM ATOM	639 640	OG C			115 115	88.650 87.352	30.403	-5.733	1.00 22.52	0
ATOM	641	Ö	SER			87.917	28.653 28.964	-7.586 -8.639	1.00 23.20 1.00 22.61	C
ATOM	642	N			116	86.039	28.761	-7.400	1.00 22.61	N O
ATOM	643	CA	PHE			85.175	29.515	-8.306	1.00 21.81	C
ATOM	644	CB	PHE			84.074	28.627	-8.901	1.00 21.79	Ċ
MOTA	645	CG	PHE			84.578	27.655	-9.921	1.00 22.56	С
ATOM	646		PHE			85.096	26.425	-9.532	1.00 23.50	С
ATOM	647		PHE			85.581		-10.487	1.00 25.19	C
ATOM ATOM	648 649	CZ CE2	PHE PHE			85.550 85.032		-11.835 -12.230	1.00 24.86	C
ATOM	650		PHE			84.551		-12.230	1.00 25.05 1.00 24.09	C
ATOM	651	C	PHE			84.556	30.678	-7.553	1.00 21.29	C
MOTA	652	0	PHE	A	116	84.349	30.605	-6.341	1.00 21.62	Ō
MOTA	653	N	VAL	A	117	84.280	31.757	-8.275	1.00 20.75	N
ATOM	654	CA	VAL			83.674	32.944	-7.707	1.00 19.94	С
ATOM	655	CB	VAL			84.628	34.134	-7.791	1.00 20.10	C
ATOM ATOM	656 657		VAL VAL			84.036 86.019	35.341 33.768	-7.089 -7.189	1.00 19.06	С
ATOM	658	C	VAL			82.399	33.242	-8.489	1.00 20.50 1.00 19.85	C
ATOM	659	ō	VAL			82.441	33.393	-9.713	1.00 20.09	ő
MOTA	660	N	LEU			81.276	33.327	-7.785	1.00 19.32	N
MOTA	661	CA	LEU	A	118	79.981	33.584	-8.400	1.00 19.32	С
ATOM	662	CB	LEU			78.936	32.565	-7.912	1.00 19.30	C
ATOM	663	CG	LEU			78.914	31.157	-8.510	1.00 20.91	C
ATOM ATOM	664 665	CD1	LEU LEU			80.203 77.741	30.381	-8.224 -7.949	1.00 23.74 1.00 22.22	C
ATOM	666	C	LEU			79.514	34.981	-8.051	1.00 22.22	C
ATOM	667	ō	LEU			79.574	35.387	-6.887	1.00 19.13	Ö
ATOM	668	N	ILE	A	119	79.048	35.715	-9.062	1.00 19.23	Ŋ
ATOM	669	CA	ILE			78.521	37.053	-8.860	1.00 19.06	С
ATOM	670	СВ	ILE			79.093	38.062	-9.898	1.00 19.52	С
ATOM	671		ILE			80.627		-10.022	1.00 19.59	C
ATOM	672 673		ILE			81.434	38.222	-8.736	1.00 19.03	C
ATOM ATOM	674	CGZ	ILE			78.652 77.008	39.509 36.958	-9.557 -8.938	1.00 18.88 1.00 19.43	C
ATOM	675	Ö	ILE			76.446	36.592	-9.977	1.00 19.43	C 0
ATOM	676	N	LEU			76.358	37.266	-7.823	1.00 19.78	N
ATOM	677	CA	LEU	A	120	74.913	37.097	-7.683	1.00 20.66	c
ATOM	678	CB	LEU			74.609	36.193	-6.483	1.00 20.51	C
ATOM	679	CG	LEU			75.197	34.788	-6.594	1.00 21.71	С
ATOM	680		LEU			75.218	34.103	-5.236	1.00 23.12	С
ATOM	681 682		LEU			74.403	33.967	-7.591	1.00 22.78	C
ATOM ATOM	683	С 0	LEU			74.253 74.853	38.436 39.319	-7.455 -6.848	1.00 20.91 1.00 20.71	C
ATOM	684	N	GLU			73.015	38.588	-7.919	1.00 20.71	o N
ATOM	685	CA	GLU			72.238	39.775	-7.581	1.00 22.82	C
ATOM	686	CB	GLU			70.883	39.780	-8.308	1.00 23.93	Č
ATOM	687	CG	GLU .	A	121	69.759	39.096	-7.559	1.00 26.70	C

ATOM	688	CD	GLU A	121	68.493	38.950	-8.387	1.00 30.59	C
			GLU A		67.830	39.973	-8.654	1.00 33.17	0
ATOM	689						-8.759	1.00 31.26	0
ATOM	690		GLU A		68.159	37.811			
MOTA	691	C	GLU A	121	72.062	39.836	-6.065	1.00 22.52	C
ATOM	692	0	GLU A	121	72.087	38.800	-5.391	1.00 22.12	0
		-	arg A		71.908	41.043	-5.533	1.00 22.16	N
ATOM	693							1.00 22.66	C
ATOM	694	CA	ARG A	122	71.677	41.212	-4.105		
MOTA	695	CB	ARG A	122	72.977	41.620	-3.390	1.00 21.96	С
ATOM	696		ARG A	122	72.814	41.952	-1.920	1.00 21.41	C
					74.128	42.195	-1.161	1.00 21.79	C
MOTA	697		arg A						N
MOTA	698	NE	ARG A	122	74.932	43.293	-1.726	1.00 20.54	
ATOM	699	CZ	ARG A	122	74.781	44.581	-1.418	1.00 21.80	С
	700		ARG A	122	73.860	44.973	-0.543	1.00 21.45	N
ATOM							-1.977	1.00 23.39	N
ATOM	701		ARG A		75.568	45.489			
MOTA	702	С	ARG A	122	70.575	42.249	-3.864	1.00 23.50	C
MOTA	703	0	ARG A	122	70.764	43.419	-4.156	1.00 23.59	0
	704		PRO A	123	69.429	41.818	-3.330	1.00 24.57	N
ATOM						42.756	-2.888	1.00 25.12	С
ATOM	705		PRO A		68.384				
MOTA	706	CB	PRO A	123	67.233	41.832	-2.448	1.00 25.10	C
MOTA	707	CG	PRO A	123	67.552	40.494	-3.044	1.00 25.14	С
		CD	PRO A		69.047	40.411	-3.109	1.00 24.18	C
ATOM	708							1.00 25.82	С
MOTA	709	C	PRO A		68.860	43.599	-1.703		
MOTA	710	0	PRO A	123	69.678	43.129	-0.900	1.00 25.56	0
ATOM	711	N	GLU A	124	68.358	44.830	-1.607	1.00 26.56	N
			GLU A		68.738	45.750	-0.533	1.00 27.26	C
MOTA	712	CA					-0.958	1.00 27.95	C
MOTA	713	CB	GLU A	124	69.952	46.591			
MOTA	714	CG	GLU A	124	70.730	47.274	0.171	1.00 30.91	С
MOTA	715	CD	GLU A	124	71.867	48.140	-0.367	1.00 35.36	C
					71.616	48.930	-1.311	1.00 37.56	0
ATOM	716		GLU A						Ö
MOTA	717	OE2	GLU A	124	73.017	48.036	0.134	1.00 36.68	
MOTA	718	С	GLU A	124	67.544	46.649	-0.201	1.00 26.82	C
ATOM	719	0	GLU A	124	67.053	47.358	-1.078	1.00 27.29	0
						46.617	1.045	1.00 25.92	N
ATOM	720	N	PRO A		67.061				
MOTA	721	CA	PRO A	125	67.599	45.755	2.101	1.00 24.79	С
ATOM	722	CB	PRO A	125	67.062	46.403	3.373	1.00 24.95	C
	723	CG	PRO A		65.759	46.993	2.960	1.00 24.96	C
MOTA							1.530	1.00 25.81	С
MOTA	724	CD	PRO A		65.936	47.437			
MOTA	725	C	PRO A	125	67.095	44.316	1.989	1.00 23.97	C
ATOM	726	0	PRO A	125	66.109	44.040	1.287	1.00 23.35	0
					67.789	43,412	2.670	1.00 23.02	N
MOTA	727	N	VAL A						C
MOTA	728	CA	VAL A	. 126	67.507	41.987	2.583	1.00 22.32	
MOTA	729	CB	VAL A	. 126	68.333	41.305	1.439	1.00 22.37	C
ATOM	730	CGI	VAL A	126	69.815	41.129	1.837	1.00 21.96	C
			VAL A		67.732	39.971	1.028	1.00 22.11	C
ATOM	731								Ċ
MOTA	732	C	VAL A	. 126	67.809	41.342	3.925	1.00 22.20	
MOTA	733	0	VAL A	126	68.600	41.866	4.723	1.00 22.19	0
ATOM	734	N	GLN A	127	67.159	40.209	4.166	1.00 21.35	N
					67.429	39.378	5.323	1.00 20.84	C
ATOM	735	CA	GLN A						
MOTA	736	CB	GLN A	127	66.653	39.883	6.540	1.00 20.45	C
MOTA	737	CG	GLN A	127	66.866	39.053	7.796	1.00 20.49	C
ATOM	738	CD	GLN A		66.156	39.632	8.999	1.00 22.00	C
					64.953	39.891	8.944	1.00 22.10	0
MOTA	739		GLN A						И
MOTA	740	NE2	GLN A	127	66.892	39.842	10.082	1.00 20.41	
MOTA	741	С	GLN A	127	66.996	37.952	4.963	1.00 20.56	C
ATOM	742	0	GLN A	127	65.917	37.760	4.392	1.00 20.00	0
						36.967	5.250	1.00 19.63	N
ATOM	743	N	ASP A		67.845				C
MOTA	744	CA	ASP A	128	67.454	35.593	5.008	1.00 19.54	
MOTA	745	CB	ASP A	128	68.672	34.650	4.844	1.00 19.72	С
ATOM	746	CG	ASP A		69.276	34.181	6.158	1.00 21.27	C
							7.189	1.00 22.90	O
ATOM	747		ASP A		68.578	34.093			
MOTA	748	OD2	ASP A	128	70.480	33.843	6.237	1.00 24.10	0
ATOM	749	C	ASP A	128	66.381	35.126	6.016	1.00 19.14	С
ATOM	750	ō	ASP A		66.220	35.724	7.079	1.00 18.98	0
						34.077	5.658	1.00 18.65	N
ATOM	751	N	LEU A		65.642				
MOTA	752	$^{\rm CA}$	LEU A		64.485	33.651	6.429	1.00 18.28	C
ATOM	753	CB	LEU A	129	63.611	32.662	5.619	1.00 17.80	C
ATOM	754	CG	LEU A		62.291	32.181	6.245	1.00 17.80	C
						33.350	6.565	1.00 16.86	C
ATOM	755		LEU A		61.344				
MOTA	756	CD2	LEU A	129	61.591	31.180	5.327	1.00 15.45	. С

ATOM	757	С	$_{ m LEU}$	Α	129	64.861	33.096	7.804	1.00 1	.8.57	С
ATOM	758	0	LEU	Д	129	64.095	33.220	8.760	1.00 1	8 46	0
ATOM	759	N	PHE	A.	130	66.047	32.503	7.908	1.00 1	8.90	N
ATOM	760	CA	PHE	Α	130	66.545	32.032	9.200	1.00 1	.9.18	С
ATOM	761	CB	PHE	Α	130	67.887	31.311	9.033	1.00 1	9 86	С
							30.931	10.339			
MOTA	762	CG	PHE			68.531			1.00 2		С
ATOM	763	CD1	PHE	Α	130	69.471	31.764	10.933	1.00 2	23.65	С
ATOM	764	CE1	PHE	Δ	130	70.069	31.423	12.155	1.00 2	6 57	С
MOTA	765	CZ	PHE			69.712	30.232	12.792	1.00 2		С
ATOM	766	CE2	$_{\mathrm{PHE}}$	Α	130	68.765	29.398	12.206	1.00 2	6.84	C
MOTA	767	CD2	PHE	Д	130	68.179	29.748	10.982	1.00 2	4 38	С
						66.704	33.176	10.203			c
ATOM	768	С	PHE						1.00 1		
ATOM	769	0	$_{\mathrm{PHE}}$	Α	130	66.287	33.060	11.374	1.00 1	.7.75	0
ATOM	770	N	ASP	Α	131	67.316	34.274	9.753	1.00 1	9.37	N
	771	CA	ASP			67.489	35.442	10.622	1.00 2		C
ATOM											
ATOM	772	CB	ASP	A	131	68.375	36.505	9.966	1.00 2	0.64	C
ATOM	773	CG	ASP	Α	131	69.836	36.090	9.894	1.00 2	3.72	С
ATOM	774	OD1	ASP	Δ	131	70.258	35.197	10.671	1.00 2	8 11	0
ATOM	775		ASP			70.642	36.603	9.084	1.00 2		0
MOTA	776	С	ASP	Α	131	66.136	36.030	10.947	1.00 1	.9.62	C
ATOM	777	0	ASP	Α	131	65.868	36.368	12.086	1.00 1	.9.32	0
ATOM	778	N	PHE			65.275	36.133	9.936	1.00 1	9 50	N
ATOM	779	CA	PHE	Α	132	63.969	36.758	10.094	1.00 1	.9.48	С
ATOM	780	CB	PHE	Α	132	63.233	36.740	8.754	1.00 1	.9.50	C
ATOM	781	CG	PHE	Δ	132	61.939	37.481	8.749	1.00 2	20.08	С
			PHE						1.00 2		Ċ
ATOM	782					61.906	38.839	8.455			
ATOM	783	CE1	$_{ m PHE}$	A	132	60.704	39.535	8.433	1.00 2	22.42	С
ATOM	784	CZ	PHE	Α	132	59.506	38.861	8.680	1.00 2	22.64	C
ATOM	785		PHE			59.522	37.505	8.962	1.00 2	1.42	С
											Č
ATOM	786		PHE			60.734	36.814	8.991	1.00 2		
ATOM	787	С	PHE	Α	132	63.186	36.015	11.167	1.00 2	20.30	С
ATOM	788	0	PHE	Α	132	62.643	36.642	12.088	1.00 2	80.08	0
	789	N			133	63.131	34.682	11.064	1.00 2		N
ATOM											
ATOM	790	CA	TTE	Α	133	62.411	33.875	12.064	1.00 2		С
ATOM	791	CB	ILE	Α	133	62.195	32.429	11.583	1.00 2	21.38	C
MOTA	792	CG1	ILE	Ά	133	61.215	32.402	10.402	1.00 1	9.84	С
								9.665	1.00 1		Č
ATOM	793		ILE			61.200	31.104				
ATOM	794	CG2	ILE	Α	133	61.665	31.539	12.747	1.00 2		C
ATOM	795	С	ILE	Α	133	63.097	33.868	13.438	1.00 2	22.84	C
ATOM	796	Ō			133	62.430	33.825	14.472	1.00 2	2.75	0
											N
ATOM	797	N			134	64.423	33.888	13.446	1.00 2		
ATOM	798	CA	THR	Α	134	65.167	34.000	14.696	1.00 2	25.24	C
ATOM	799	CB	THR	A	1.34	66.683	33.972	14.427	1.00 2	4.97	C
	800		THR			67.056	32.682	13.921	1.00 2	1 99	0
ATOM											
MOTA	801	CG2	THR	А	134	67.486	34.101	15.735	1.00 2		С
ATOM	802	С	THR	Α	134	64.779	35.286	15.433	1.00 2		С
ATOM	803	0	THR	2\	134	64.514	35.271	16.636	1.00 2	6.27	0
							36.386	14.693	1.00 2		Ŋ
ATOM	804	N	GLU			64.728					
ATOM	805	CA	${\tt GLU}$	Α	135	64.424	37.693	15.268	1.00 2	8.48	C
MOTA	806	CB	GLU	Α	135	64.830	38.807	14.302	1.00 2	8.91	С
ATOM	807	CG			135	66.282	39.221	14.449	1.00 3	2 . 87	С
											Č
ATOM	808	CD	GLU			66.702	40.288	13.450	1.00 3		
MOTA	809	OE1	GLU	Α	135	65.813	41.022	12.939	1.00 3	8.58	0
ATOM	810	OE2	GLU	Α	1.35	67.927	40.383	13.177	1.00 3	8.32	0
					135	62.958	37.853	15.657	1.00 2		C
MOTA	811	С									
MOTA	812	0			135	62.656	38.416	16.710	1.00 2		0
ATOM	813	N	ARG	Α	136	62.056	37.345	14.817	1.00 2	27.83	N
ATOM	814	CA	ARG	Δ	136	60.635	37.631	14.983	1.00 2	7.91	С
ATOM	815	CB			136	60.022	38.109	13.657	1.00 2		C
MOTA	816	CG			136	60.551	39.487	13.244	1.00 3		C
ATOM	817	CD	ARG	Α	136	60.046	40.034	11.909	1.00 3	3.40	C
ATOM	818	NE			136	58.583	40.081	11.805	1.00 3		N
									1.00 3		
ATOM	819	CZ			136	57.907	40.978	11.081			C
ATOM	820	NH1	ARG	Α	136	58.556	41.923	10.403	1.00 3	5.79	N
ATOM	821	NH2	ARG	Α	136	56.580	40.938	11.041	1.00 3	4.21	N
		С			136	59.836	36.488	15.594	1.00 2		C
MOTA	823	0			136	58.683	36.677	15.980	1.00 2		0
ATOM	824	N			137	60.452	35.316	15.713	1.00 2		N
ATOM	825	CA	GLY	Α	137	59.754	34.134	16.187	1.00 2	4.72	С

GLY A 137 GLY A 137 ALA A 138 MOTA 826 C 58.763 33.584 15.156 1.00 24.39 58.796 33.952 13.969 1.00 23.90 ATOM 827 O MOTA 57.880 32.699 15.615 1.00 23.04 828 N MOTA 829 CA 56.864 32.089 14.760 1.00 22.25 55.895 31.269 15.612 1.00 22.29 56.101 33.152 13.968 1.00 22.02 55.694 34.174 14.523 1.00 21.11 MOTA 830 CB C ALA A 138 56.101 33.152 13.968 1.00 22.02 O ALA A 138 55.694 34.174 14.523 1.00 21.11 N LEU A 139 55.914 32.906 12.671 1.00 20.97 CA LEU A 139 55.23 33.860 11.814 1.00 20.45 CB LEU A 139 55.673 33.676 10.358 1.00 19.75 CG LEU A 139 57.509 33.578 8.624 1.00 19.78 CD1 LEU A 139 57.509 33.578 8.624 1.00 17.80 CD2 LEU A 139 57.871 34.908 10.772 1.00 19.37 C LEU A 139 53.706 33.707 11.938 1.00 20.32 O LEU A 139 53.706 33.707 11.938 1.00 20.32 O LEU A 139 53.209 32.589 12.007 1.00 20.36 N GLN A 140 52.979 34.828 11.950 1.00 19.77 CB GLN A 140 50.958 36.210 11.624 1.00 20.35 CG GLN A 140 50.958 36.210 11.624 1.00 20.35 CG GLN A 140 50.938 37.006 12.913 1.00 24.46 CD GLN A 140 51.357 39.343 13.421 1.00 32.68 NE2 GLN A 140 51.357 39.343 13.421 1.00 32.67 C GLN A 140 51.957 34.118 9.494 1.00 18.78 O GLN A 141 49.836 38.846 11.827 1.00 32.67 CA GLN A 141 49.769 32.482 9.296 1.00 18.81 CB GLU A 141 49.769 32.482 9.296 1.00 18.81 CB GLU A 141 49.769 32.482 9.296 1.00 18.81 CB GLU A 141 49.769 32.482 9.296 1.00 18.81 CB GLU A 141 47.785 29.504 10.762 1.00 20.79 CEU GLU A 141 47.785 29.504 10.762 1.00 20.79 CEU GLU A 141 49.969 32.702 6.931 1.00 18.75 O GLU A 141 47.785 29.504 10.762 1.00 20.79 CEU GLU A 141 49.969 32.702 6.931 1.00 18.75 CB GLU A 141 49.969 32.702 6.931 1.00 18.75 CB GLU A 142 48.939 35.263 6.787 1.00 18.75 CB GLU A 142 49.048 34.454 8.002 1.00 18.75 CB GLU A 142 48.939 35.263 6.787 1.00 18.75 CB GLU A 142 48.939 35.263 6.787 1.00 18.75 CB GLU A 142 48.939 35.263 6.787 1.00 18.75 CB GLU A 142 48.939 35.263 6.787 1.00 18.75 CB GLU A 142 48.076 37.515 5.889 1.00 20.48 CB GLU A 142 48.076 37.515 5.889 1.00 20.48 CB GLU A 142 48.076 37.515 5.889 1.00 20.48 CB GLU A 142 48.076 37.515 5.889 1.00 20.48 CB GLU A 142 48.061 39.692 6.891 1.00 23.55 CB GLU A 142 48.061 39.692 6.891 1.00 23.55 CB GLU A 142 48.061 39.692 6.891 1.00 25.593 CB GLU A 142 48.061 39.692 6.891 1.00 25.593 CB GLU A 142 48.061 39.692 6.891 1.00 25.593 CB GLU A 142 48.061 39.692 6.891 1.00 25.593 CB GLU A 142 48.061 39.692 6.891 1.00 25.593 CB ATOM 831 С MOTA 832 0 ALA A 138 MOTA 833 N MOTA 834 MOTA 835 MOTA 836 MOTA 837 С MOTA 838 MOTA 839 MOTA 840 O 0 MOTA 841 N 842 MOTA С MOTA 843 ATOM 844 ATOM 845 0 846 MOTA N MOTA 847 MOTA 848 C ATOM 849 N MOTA 850 С MOTA 851 MOTA 852 С MOTA 853 ATOM 854 ATOM 855 0 ATOM 856 ATOM 857 MOTA 858 ATOM 859 С ATOM 860 С ATOM 861 С MOTA 862 С MOTA 863 ATOM 864

 48.061
 39.692
 6.891
 1.00
 23.55

 46.232
 39.017
 5.851
 1.00
 25.93

 50.329
 35.529
 6.179
 1.00
 17.83

 50.506
 35.530
 4.959
 1.00
 17.80

 51.309
 35.761
 7.037
 1.00
 16.88

 52.653
 36.029
 6.568
 1.00
 16.41

 53.497
 36.667
 7.666
 1.00
 16.81

 54.952
 36.998
 7.288
 1.00
 16.83

 54.999
 37.909
 6.049
 1.00
 15.94

 55.625
 37.670
 8.464
 1.00
 16.70

 53.307
 34.749
 6.057
 1.00
 15.72

 53
 921
 34.745
 4.983
 1.00
 15.44

 OE2 GLU A 142 ATOM 865 С GLU A 142 ATOM 866 C GLU A 142 MOTA 867 0 Ν LEU A 143 868 N ATOM LEU A 143 869 CA ATOM LEU A 143 870 CB ATOM С MOTA 871 CG LEU A 143 С CD1 LEU A 143 MOTA 872 С CD2 LEU A 143 MOTA 873 C LEU A 143
 53.307
 34.749
 6.057
 1.00
 15.72

 53.921
 34.745
 4.983
 1.00
 15.44

 53.173
 33.670
 6.824
 1.00
 14.81

 53.692
 32.364
 6.404
 1.00
 14.61

 53.444
 31.327
 7.470
 1.00
 14.33

 53.078
 31.914
 5.077
 1.00
 14.82

 53.754
 31.270
 4.253
 1.00
 14.19

 51.796
 32.235
 4.884
 1.00
 14.19

 51.000
 31.869
 3.666
 1.00
 14.19
 MOTA 874 С MOTA 875 0 LEU A 143 876 ALA A 144 MOTA N 53.44 53.078 53.754 31.2, 51.796 32.235 51.090 31.869 49.587 32.205 48.803 32.031 47.303 32.380 46.693 31.573 46.238 32.049 270 33.352 7 31.212 2.562 С 877 CA ALA A 144 MOTA CB ALA A 144 878 ATOM С ATOM 879 С ALA A 144 0 880 0 ALA A 144 MOTA 4.253 1.00 14.19 4.884 1.00 14.19 3.666 1.00 15.16 3.764 1.00 15.23 2.453 1.00 16.28 2.564 1.00 18.20 3.615 1.00 17.28 ARG A 145 MOTA 881 N C 882 CA ARG A 145 ATOM С ATOM 883 CB ARG A 145 С 884 ARG A 145 ATOM CG 885 CD ARG A 145 С ATOM N MOTA 886 NE ARG A 145 3.615 1.00 17.20 4.761 1.00 17.72 5.018 1.00 17.11 5.657 1.00 18.63 2.471 1.00 15.43 1.470 1.00 16.61 887 CZ ARG A 145 ATOM ATOM 888 NH1 ARG A 145 45.747 31.212 51.727 32.562 52.034 31.917 889 NH2 ARG A 145 ATOM ARG A 145 890 C MOTA ATOM 891 0 ARG A 145 51.941 33.868 2.578 1.00 15.08 SER A 146 N MOTA 892 N 1.491 1.00 15.89 52.557 34.618 SER A 146 893 CA ATOM 1.823 1.00 15.77 894 CB SER A 146 52.558 36.114 MOTA

ATOM	895	OG	SER	Δ	146	53.374	36.817	0.907	1.00	18.17	(0
ATOM	896	С	SER	A	146	53.976	34.104	1.170	1.00	15.75	(С
MOTA	897	0	SER	А	146	54.311	33.849	0.000	1.00	15.69	(0
ATOM							33.926	2.220		15.20		
	898	N	PHE	А	14/	54.777						N
MOTA	899	CA	$_{ m PHE}$	A	147	56.145	33.423	2.104	1.00	15.40	(C
ATOM	900	CB	PHE	Δ	147	56.801	33.392	3.487	1.00	15.25	(С
ATOM	901	CG	PHE	Α	14/	57.345	34.724	3.939	T-00	16.31	(С
MOTA	902	CD1	PHE	А	147	57.041	35.903	3.246	1.00	17.31	(С
ATOM	903	CET	PHE	А	14/	57.552	37.121	3.663		18.81	(С
ATOM	904	CZ	PHE	Α	147	58.389	37.178	4.790	1.00	18.13	(С
ATOM							36.017	5.480		17.81		
ATOM	905		PHE			58.696						С
MOTA	906	CD2	PHE	Α	147	58.176	34.793	5.052	1.00	16.34	(С
ATOM	907	С	PHE	7\	1 17	56.195	32.024	1.483	1.00	14.94	(С
MOTA	908	0	PHE	А	14/	56.927	31.786	0.522	1.00	15.80	(0
ATOM	909	N	PHE	Α	148	55.407	31.114	2.033	1.00	14.80	ì	N
						EE 254	29.733	1.549		15.37		C
ATOM	910	CA	PHE			55.354						
MOTA	911	CB	PHE	Α	148	54.409	28.887	2.418	1.00	14.71	(С
MOTA	912	CG	PHE	7\	1/18	54.574	27.399	2.224	1 00	14.42	(С
MOTA	913	CDI	PHE	Α	148	55.810	26.776	2.456	T.00	13.47	(С
ATOM	914	CE1	PHE	Α	148	55.962	25.379	2.277	1.00	10.13	(С
							24.618	1.864		12.94		C
ATOM	915	CZ	PHE			54.876						
MOTA	916	CE2	PHE	Α	148	53.635	25.237	1.625	1.00	14.02	(С
	917	CD2	PHE	70	1/18	53.495	26.622	1.813	1 00	14.27	(С
ATOM												
ATOM	918	С	PHE	A	148	54.898	29.648	0.089	1.00	15.20	(С
ATOM	919	0	PHE	Δ	148	55.459	28.902	-0.703	1.00	14.97	(0
ATOM	920	N	TRP	А	149	53.866	30.413	-0.253		15.54		N
ATOM	921	CA	TRP	Α	149	53.393	30.477	-1.634	1.00	15.37	(С
		CB				52.230	31.470	-1.739	1 00	15.34	(С
ATOM	922		TRP									
MOTA	923	CG	TRP	Α	149	51.671	31.606	-3.110	1.00	15.24	(С
ATOM	924	CD1	TRP	Δ	149	52.070	32.494	-4.075	1.00	14.51	(С
												N
ATOM	925	NE1	TRP	А	149	51.301	32.333	-5.205		15.75		
ATOM	926	CE2	TRP	Α	149	50.394	31.326	-4.998	1.00	15.41	(С
	927	CD2	TRP			50.595	30.845	-3.682	1 00	15.51	(С
ATOM												
ATOM	928	CE3	\mathtt{TRP}	Α	149	49.766	29.804	-3.210	T.00	15.20	(С
ATOM	929	CZ3	TRP	Δ	149	48.777	29.287	-4.064	1.00	14.40	(С
												С
MOTA	930	CHZ	TRP	A	149	48.614	29.788	-5.376		15.19		
ATOM	931	CZ2	TRP	А	149	49.405	30.804	-5.857	1.00	15.74	(С
		C	TRP			54.516	30.881	-2.585	1 00	15.47	(С
ATOM	932	Ç										
ATOM	933	0	TRP	Α	149	54.709	30.266	-3.637	1.00	15.67	(0
ATOM	934	N	GLN	Δ	150	55.267	31.913	-2.213	1.00	16.07	1	N
												C
ATOM	935.	CA	GLN	Α	150	56.354	32.394	-3.063		16.16		
ATOM	936	CB	GLN	Α	150	56.926	33.704	-2.522	1.00	16.54	(С
							34.904	-2.760	1 00	17.72	(С
ATOM	937	CG	GLN	Α	120	56.012						
ATOM	938	CD	GLN	Α	150	56.654	36.188	-2.309	1.00	20.82	(С
ATOM	939	OF 1	GLN	7\	150	57.668	36.594	-2.860	1.00	20.46	(О
										22.67		
MOTA	940	NE2	GLN	A	150	56.078	36.825	-1.291				Ŋ
ATOM	941	С	GLN	Α	150	57.470	31.366	-3.231	1.00	16.22	(С
						58.068	31.271	-4.311		16.09		0
ATOM	942	0	GLN									
ATOM	943	N	VAL	Α	151	57.747	30.613	-2.165	1.00	15.69	P	N
ATOM	944	CA	VAL	Α	151	58.719	29.528	-2.219	1.00	15.67	(C
												C
ATOM	945	CB	VAL	Α	121	58.973	28.914	-0.819		15.75		
MOTA	946	CG1	VAL	Α	151	59.838	27.661	-0.920	1.00	15.14	(С
			VAL			59.648	29.950	0.087	1 00	14.26	(С
ATOM	947											
ATOM	948	С	VAL	Α	151	58.232	28.454	-3.186	1.00	15.73	(C
ATOM	949	0	VAL	Δ	151	58.979	28.003	-4.048	1.00	15.25	(0
ATOM	950	N	LEU	Α	152	56.967	28.065	-3.046	1.00	16.29	Ţ	N
MOTA	951	CA	LEU	Α	152	56.348	27.138	-3.992	1.00	17.18	(С
						54.859	26.947	-3.658		17.37		C
MOTA	952	CB	LEU	Α	152	34.839						
ATOM	953	CG	LEU	Α	152	54.467	25.690	-2.874	1.00	19.91	(С
	954		LEU			54.643	24.445	-3.756		22.90		С
MOTA												
ATOM	955	CD2	LEU	Α	152	55.236	25.494	-1.621	T.00	23.13	(С
	956	С			152	56.512	27.572	-5.453	1.00	16.62	ſ	C
ATOM												
ATOM	957	0	LEU	Α	152	56.889	26.765	-6.299		16.65	. (0
ATOM	958	N	GLU	Α	153	56.217	28.841	-5.739	1.00	16.61	ì	N
							29.375	-7.096		16.62		C
ATOM	959	CA			153	56.333						
ATOM	960	CB	GLU	Α	153	55.832	30.827	-7.180	1.00	16.56	(С
	961	CG			153	54.331	30.997	-6.968		17.23		C
ATOM												
MOTA	962	CD	GLU	A	153	53.514	30.514	-8.156		17.86		C
ATOM	963	OE 1	GLU	A	153	53.901	30.807	-9.303	1.00	20.00	. (2
-14-011	2 30						-				`	

MOTA	964	OE2	GLU	А	153	52.487	29.843	-7.945	1.00 17.52	0
ATOM	965	С	GLU	Α	153	57.777	29.297	-7.568	1.00 16.68	c
MOTA	966	0	GLU	Α	153	58.038	28.986	-8.732	1.00 16.20	ō
ATOM	967	N	ALA	Α	154	58.712	29.559	-6.656	1.00 16.55	N
ATOM	968	CA	ALA	Α	154	60.140	29.496	-6.992	1.00 16.97	С
MOTA	969	CB	ALA	Α	154	61.004	30.188	-5.919	1.00 15.90	С
ATOM	970	С	ALA	Α	154	60.621	28.063	-7.243°	1.00 16.84	С
MOTA	971	0	ALA	Α	154	61.345	27.818	-8.207	1.00 17.76	0
MOTA	972	N	VAL	A	155	60.218	27.126	-6.386	1.00 16.64	N
MOTA	973	CA	VAL	Α	155	60.584	25.724	-6.564	1.00 16.78	C
ATOM	974	CB			155	60.201	24.871	-5.326	1.00 17.27	С
ATOM	975		VAL			60.395	23.386	-5.589	1.00 16.81	С
ATOM	976		VAL			61.032	25.313	-4.084	1.00 17.68	С
ATOM	977	С			155	59.958	25.163	-7.852	1.00 16.84	С
MOTA	978	0			155	60.621	24.445	-8.603	1.00 16.56	0
ATOM	979	N			156	58.690	25.491	-8.107	1.00 16.70	N
MOTA	980	CA			156	58.051	25.086	-9.374	1.00 17.03	С
ATOM	981	CB			156	56.603	25.570	-9.461	1.00 16.46	С
ATOM	982	CG			156	55.645	24.827	-8.564	1.00 17.08	С
ATOM	983	CD			156	54.201	25.302	-8.681	1.00 16.07	С
ATOM	984	NE			156	53.815		-10.087	1.00 15.86	N
ATOM	985	CZ			156	52.921		-10.591	1.00 16.05	С
ATOM	986		ARG			52.280	27.071	-9.805	1.00 14.03	N
ATOM	987		ARG			52.672		-11.895	1.00 15.89	N
ATOM	988	C			156	58.839		-10.573	1.00 17.05	C
ATOM	989	0			156	59.071		-11.529	1.00 17.34	0
ATOM	990	N			157	59.266		-10.522	1.00 17.35	N
ATOM	991	CA			157	60.090		-11.594	1.00 18.31	C
ATOM	992	CB			157	60.449		-11.330	1.00 18.48	C
ATOM	993	CG			157	61.374		-12.351	1.00 20.28	C
ATOM	994		HIS			62.696		-12.078	1.00 23.93	И
ATOM	995 006		HIS			63.262		-13.158 -14.118	1.00 23.06	C
ATOM	996		HIS HIS			62.356 61.168		-13.639	1.00 23.55 1.00 20.83	и С
ATOM	997					61.361		-11.806	1.00 20.83	C
ATOM	998	C			157 157	61.691		-12.947	1.00 17.98	0
ATOM ATOM	999 1000	N O			158	62.064		-10.715	1.00 17.38	И
ATOM	1000	CA			158	63.259		-10.800	1.00 19.66	C
ATOM	1001	CB			158	63.837	25.146	-9.413	1.00 19.79	c
ATOM	1002	SG			158	64.537	26.620	-8.683	1.00 22.60	s
ATOM	1003	C			158	62.979		-11.501	1.00 19.92	Č
ATOM	1005	Ö			158	63.677		-12.447	1.00 20.10	Ö
ATOM	1006	N			159	61.955		-11.032	1.00 20.09	N
ATOM	1007	CA	HIS			61.580		-11.612	1.00 20.50	C
ATOM	1008	СВ			159	60.484		-10.782	1.00 20.39	C
ATOM	1009	CG			159	60.934	20.995	-9.414	1.00 21.38	С
MOTA	1010	ND1	HIS	Α	159	60.503	19.834	-8.814	1.00 22.95	N
ATOM	1011		HIS			61.055	19.727	-7.616	1.00 22.06	С
ATOM	1012	NE2	HIS	Α	159	61.845	20.769	-7.426	1.00 21.41	N
MOTA	1013		HIS			61.790	21.577	-8.534	1.00 21.73	C
MOTA	1014	С	HIS	Α	159	61.175	22.194	-13.092	1.00 20.62	C
ATOM	1015	0	HIS	Α	159	61.558	21.340	-13.883	1.00 20.59	0
ATOM	1016	N	ASN	Α	160	60.433	23.240	-13.463	1.00 20.97	N
ATOM	1017	CA	ASN	А	160	60.110	23.508	-14.882	1.00 21.47	C
ATOM	1018	CB	ASN	A	160	59.230		-15.042	1.00 21.81	C
ATOM	1019		NZAA			57.985	24.688	-14.251	0.50 22.71	C
ATOM	1020		BASN			58.366		-16.318	0.50 21.42	C
MOTA	1021		AASN			57.565		-13.683	0.50 25.62	0
MOTA	1022		BASN			58.380		-17.103	0.50 21.10	0
ATOM	1023		NZAA			57.364		-14.203	0.50 26.04	N
ATOM	1024		BASN			57.598		-16.506	0.50 19.99	N
ATOM	1025	С	ASN			61.353		-15.731	1.00 21.48	С
MOTA	1026	0	ASN			61.344		-16.925	1.00 21.00	0
ATOM	1027	N	CYS			62.404		-15.115	1.00 20.77	Ŋ
ATOM	1028	CA	CYS			63.691		-15.773	1.00 21.07	C
ATOM	1029	CB	CYS			64.395		-15.231	1.00 20.76	C
ATOM	1030	SG	CYS			63.499		-15.609	1.00 26.51	S
ATOM	1031	C	CYS			64.628		-15.665 -16.052	1.00 20.01	C
ATOM	1032	0	CYS	A	TOT	65.791	23.329	10.032	1.00 19.64	0

ATOM	1033	N	GLY	Α	162	64.141	22.124	-15.130	1.00 18.99	N
ATOM	1034	CA			162	64.965		-15.005	1.00 18.24	Č
MOTA	1035	С	GLY	A	162	65.968	20.898	-13.850	1.00 17.99	Ċ
ATOM	1036	0			162	66.963		-13.878	1.00 16.70	0
ATOM	1037	N			163	65.696		-12.805	1.00 17.86	N
ATOM	1038	CA			163	66.634		-11.688	1.00 17.74	C
MOTA	1039	CB CC1			163	67.173		-11.564	1.00 18.57	С
ATOM ATOM	1040		VAL VAL			67.897		-10.215	1.00 17.79	С
ATOM	1041 1042	C			163	68.078		-12.766 -10.374	1.00 17.89	C
ATOM	1042	Ö	VAL			65.970 64.851		-10.374	1.00 17.54	С
ATOM	1044	N			164	66.673	20.550	-9.612	1.00 17.67 1.00 17.14	0
ATOM	1045	CA			164	66.235	20.142	-8.288	1.00 17.14	И С
ATOM	1046	CB			164	66.298	18.614	-8.170	1.00 17.13	C
ATOM	1047	CG			164	65.715	17.973	-6.909	1.00 18.35	c
MOTA	1048		LEU	A	164	64.183	18.038	-6.939	1.00 18.69	c
ATOM	1049	CD2	LEU	A	164	66.201	16.530	-6.783	1.00 15.82	C
MOTA	1050	С	LEU	A	164	67.151	20.802	-7.269	1.00 16.92	С
ATOM	1051	0	LEU	A	164	68.367	20.594	-7.305	1.00 17.02	0
ATOM	1052	N			165	66.574	21.583	-6.359	1.00 16.61	N
ATOM	1053	CA			165	67.356	22.378	-5.410	1.00 15.80	С
ATOM	1054	CB			165	66.462	23.440	-4.747	1.00 16.02	С
ATOM	1055	CG	HIS			67.212	24.444	-3.924	1.00 15.04	С
ATOM ATOM	1056		HIS HIS			67.698	24.155	-2.668	1.00 13.63	N
ATOM	1057 1058		HIS			68.311 68.248	25.218 26.188	-2.175	1.00 14.79	C
ATOM	1059		HIS			67.571	25.726	-3.071 -4.182	1.00 16.20 1.00 14.88	N
ATOM	1060	C	HIS			68.065	21.520	-4.152	1.00 14.88	C
ATOM	1061	ō	HIS			69.281	21.692	-4.112	1.00 15.47	0
MOTA	1062	N	ARG			67.301	20.628	-3.708	1.00 15.81	N
MOTA	1063	CA	ARG			67.802	19.692	-2.685	1.00 16.34	c
ATOM	1064	CB	ARG	Α	166	68.933	18.830	-3.231	1.00 16.34	C
MOTA	1065	CG	ARG	Α	166	68.542	17.800	-4.282	1.00 17.58	С
ATOM	1066	CD	ARG	А	166	69.743	17.471	-5.131	1.00 23.63	С
ATOM	1067	NE	ARG			70.090	16.080	-5.010	1.00 27.91	N
MOTA	1068	CZ	ARG			71.277	15.551	-5.274	1.00 28.25	С
ATOM	1069		ARG			72.327	16.299	-5.636	1.00 26.61	N
ATOM	1070		ARG			71.404	14.246	-5.142	1.00 25.73	N
ATOM ATOM	1071 1072	С 0	ARG ARG			68.284 68.778	20.261 19.491	-1.348 -0.517	1.00 17.04	C
ATOM	1072	N	ASP			68.165	21.571	-1.127	1.00 17.97 1.00 16.44	О И
ATOM	1074	CA	ASP			68.537	22.157	0.172	1.00 10.44	C
ATOM	1075	CB	ASP			70.018	22.615	0.164	1.00 16.76	Č
MOTA	1076	CG	ASP			70.639	22.733	1.576	1.00 19.52	Č
ATOM	1077	OD1	ASP	А	167	70.136	22.109	2.552	1.00 19.71	ō
MOTA	1078	OD2	ASP	Α	167	71.660	23.441	1.792	1.00 20.05	0
MOTA	1079	С	ASP			67.593	23.303	0.559	1.00 16.55	С
MOTA	1080	0	ASP			68.028	24.327	1.065	1.00 17.85	0
ATOM	1081	N	ILE			66.289	23.130	0.321	1.00 16.37	N
MOTA	1082	CA	ILE			65.304	24.165	0.643	1.00 15.43	С
ATOM	1083	CB	ILE			63.919	23.803	0.061	1.00 15.49	C
ATOM	1084		ILE			63.990	23.685	-1.467	1.00 15.11	C
ATOM	1085		ILE			62.816	22.891	-2.049	1.00 15.98	C
MOTA MOTA	1086 1087	CGZ	ILE			62.841 65.226	24.821 24.257	0.481 2.159	1.00 14.46	C
ATOM	1088	0	ILE			64.988	23.247	2.139	1.00 15.89 1.00 15.71	C
ATOM	1089	N	LYS			65.445	25.459	2.682	1.00 15.71	O N
ATOM	1090	CA	LYS			65.458	25.724	4.116	1.00 15.97	И С
ATOM	1091	CB	LYS			66.666	25.055	4.793	1.00 16.17	C
ATOM	1092	CG	LYS			68.018	25.601	4.321	1.00 18.35	c
ATOM .	1093	CD	LYS			69.165	24.636	4.595	1.00 21.69	c
MOTA	1094	CE	LYS			69.449	24.497	6.073	1.00 23.35	č
ATOM	1095	NZ	LYS			70.883	24.061	6.239	1.00 24.28	N
ATOM	1096	C	LYS			65.542	27.234	4.314	1.00 15.57	С
ATOM.	1097	0	LYS			65.954	27.971	3.392	1.00 15.50	0
ATOM	1098	N	ASP			65.213	27.676	5.526	1.00 15.04	N
ATOM	1099	CA	ASP			65.179	29.090	5.868	1.00 15.81	C
ATOM	1100	CB	ASP			64.849	29.284	7.358	1.00 15.73	C
ATOM	1101	CG	ASP	А	1 / U	65.734	28.457	8.295	1.00 18.50	С

			1.	70			
ATOM	1102	OD1 ASP A 170	66.780	27.869	7.880	1.00 19.79	0
ATOM	1103	OD2 ASP A 170	65.450	28.361	9.509	1.00 21.07	0
MOTA	1104	C ASP A 170	66.433	29.880	5.468	1.00 16.21	C
MOTA	1105	O ASP A 170	66.321	30.954	4.874	1.00 16.22	И О
MOTA	1106	N GLU A 171	67.607	29.341	5.792	1.00 16.57	C
ATOM	1107	CA GLU A 171	68.918	29.951	5.480	1.00 17.89	C
ATOM	1108	CB GLU A 171	70.040	28.959	5.796	1.00 18.41	c
MOTA	1109	CG GLU A 171	70.770	29.167	7.082	1.00 24.87 1.00 29.19	C
MOTA	1110	CD GLU A 171	71.735	28.024	7.352 8.521	1.00 29.19	0
MOTA	1111	OE1 GLU A 171	72.124	27.876 27.259	6.407	1.00 34.35	Ö
MOTA	1112	OE2 GLU A 171	72.072		3.998	1.00 16.68	č
MOTA	1113	C GLU A 171	69.096 69.853	30.224 31.125	3.626	1.00 15.52	Õ
ATOM	1114	O GLU A 171 N ASN A 172	68.468	29.391	3.171	1.00 15.92	N
ATOM	1115	N ASN A 172 CA ASN A 172	68.601	29.487	1.707	1.00 15.37	С
ATOM ATOM	1116 1117	CB ASN A 172	68.806	28.111	1.093	1.00 14.94	C
ATOM	1118	CG ASN A 172	70.122	27.517	1.493	1.00 15.14	С
MOTA	1119	OD1 ASN A 172	71.047	28.264	1.760	1.00 15.76	0
MOTA	1120	ND2 ASN A 172	70.218	26.188	1.567	1.00 13.68	N
ATOM	1121	C ASN A 172	67.454	30.228	1.026	1.00 15.23	C
ATOM	1122	O ASN A 172	67.198	30.038	-0.154	1.00 15.24	0
ATOM	1123	N ILE A 173	66.799	31.102	1.778	1.00 15.43	Ŋ
MOTA	1124	CA ILE A 173	65.714	31.920	1.252	1.00 15.78	С
MOTA	1125	CB ILE A 173	64.350	31.416	1.775	1.00 15.76	C
ATOM	1126	CG1 ILE A 173	64.066	29.987	1.287	1.00 16.39	C
ATOM	1127	CD1 ILE A 173	62.948	29.264	2.080	1.00 14.60	C
MOTA	1128	CG2 ILE A 173	63.211	32.396	1.379	1.00 15.41	C
MOTA	1129	C ILE A 173	65.947	33.363	1.701	1.00 15.85	С
MOTA	1130	O ILE A 173	66.149	33.622	2.884	1.00 15.12	0
ATOM	1131	N LEU A 174	65.914	34.285	0.741	1.00 16.29	N C
MOTA	1132	CA LEU A 174	66.139	35.707	0.992	1.00 16.81	C
ATOM	1133	CB LEU A 174	67.035	36.307	-0.105	1.00 16.84	C
ATOM	1134	CG LEU A 174	68.479	35.805	-0.189	1.00 17.08 1.00 16.20	C
ATOM	1135	CD1 LEU A 174	69.217	36.628 35.865	-1.214 1.153	1.00 16.61	Ċ
MOTA	1136	CD2 LEU A 174	69.187	36.419	0.956	1.00 17.35	C
ATOM	1137	C LEU A 174	64.816 63.963	36.085	0.127	1.00 17.94	Ö
MOTA	1138	O LEU A 174	64.641	37.387	1.850	1.00 17.74	N
MOTA	1139	N ILE A 175 CA ILE A 175	63.470	38.255	1.833	1.00 18.68	C
MOTA MOTA	$\frac{1140}{1141}$	CB ILE A 175	62.818	38.360	3.226	1.00 18.50	C
ATOM	1141	CG1 ILE A 175	62.456	36.976	3.794	1.00 18.87	C
ATOM	1143	CD1 ILE A 175	62.302	36.995	5.327	1.00 18.86	C
ATOM	1144	CG2 ILE A 175	61.576	39.278	3.167	1.00 18.77	С
ATOM	1145	C ILE A 175	63.902	39.649	1.389	1.00 19.58	C
ATOM	1146	O ILE A 175	64.664	40.322	2.095	1.00 19.31	0
MOTA	1147	N ASP A 176	63.412	40.074	0.228	1.00 20.23	N
ATOM	1148	CA ASP A 176	63.581	41.449	-0.230	1.00 21.84	C
ATOM	1149	CB ASP A 176	63.315	41.541	-1.739	1.00 22.01	C
MOTA	1150	CG ASP A 176	63.414	42.967	-2.280	1.00 23.60	C
MOTA	1151	OD1 ASP A 176	63.243	43.920	-1.502	1.00 23.50	0
MOTA	1152		63.625	43.217	-3.482	1.00 24.73	0
MOTA	1153		62.588	42.286	0.587	1.00 22.79	C 0
MOTĄ	1154		61.387	42.316	0.297	1.00 22.81	И
MOTA	1155		63.102	42.924	1.634	1.00 23.58	C
MOTA	1156		62.271	43.537	2.660	1.00 24.93	C
MOTA	1157		63.132	44.012	3.835	1.00 25.33 1.00 25.91	C
ATOM	1158		63.764	42.908	4.700	1.00 25.91	c
MOTA	1159		64.830	43.473	5.621 5.504	1.00 20.41	Č
ATOM	1160		62.715	42.118 44.658	2.164	1.00 27.00	C
MOTA	1161		61.345 60.231	44.656	2.164	1.00 25.33	Ö
MOTA	1162		61.789	44.789	1.177	1.00 25.23	N
MOTA	1163		60.985	46.525	0.607	1.00 25.07	C
ATOM	1164		61.875	47.492	-0.187	1.00 26.74	Ċ
MOTA	1165		62.544	48.534	0.690	1.00 28.71	C
MOTA	1166		62.308	48.600	1.904	1.00 31.92	0
MOTA	1167 1168		63.382	49.361	0.078	1.00 30.86	N
MOTA MOTA	1169		59.857		-0.307	1.00 26.01	С
MOTA	1170		58.771		-0.338	1.00 25.84	0
ATOM	-11,0		= = / =				

1171 N ARG A 179 60.134 44.986 -1.066 1.00 25.22
1173 CB ARG A 179 59.202 44.497 -2.073 1.00 25.26
1173 CB ARG A 179 59.951 44.089 -3.340 1.00 25.43
1174 CG ARG A 179 60.482 45.270 -4.157 1.00 26.18
1175 CD ARG A 179 61.170 44.845 -5.426 1.00 29.81
1176 NE ARG A 179 61.170 44.845 -5.426 1.00 29.81
1176 NE ARG A 179 60.987 46.869 -6.859 1.00 35.31
1179 NH2 ARG A 179 60.987 46.869 -6.859 1.00 35.31
1179 NH2 ARG A 179 59.658 46.854 -6.805 1.00 36.82
1179 NH2 ARG A 179 59.658 46.854 -6.805 1.00 36.82
1180 C ARG A 179 58.330 43.355 -1.574 1.00 24.41
1181 O ARG A 179 58.330 43.355 -1.574 1.00 24.91
1182 N GLY A 180 58.657 42.786 -0.421 1.00 24.91
1183 CA GLY A 180 58.657 42.786 -0.421 1.00 24.91
1184 C GLY A 180 58.656 40.859 -0.779 1.00 32.59
1185 O CLY A 180 58.160 40.359 -0.779 1.00 22.56
1186 C GLY A 180 58.160 40.359 -0.779 1.00 22.56
1187 CA GUI A 181 59.263 40.310 -1.524 1.00 24.91
1188 CR GLU A 181 59.263 40.310 -1.524 1.00 24.28
1189 C G GLU A 181 59.263 40.310 -1.524 1.00 24.28
1189 C G GLU A 181 59.263 40.310 -1.524 1.00 22.33
1199 CD GLU A 181 59.360 41.165 -5.827 1.00 24.38
1191 OEI GLU A 181 59.360 41.165 -5.827 1.00 22.38
1193 C G GLU A 181 59.360 41.165 -5.827 1.00 22.38
1194 O GLU A 181 59.360 41.165 -5.927 1.00 22.38
1195 C GLU A 181 59.360 41.165 -5.927 1.00 22.38
1191 OEI GLU A 181 60.031 39.767 -3.815 1.00 20.99
1193 C GLU A 181 59.360 41.165 -5.927 1.00 22.38
1194 O GLU A 181 59.360 41.165 -5.927 1.00 22.38
1195 C GLU A 181 60.031 39.767 -3.815 1.00 20.99
1195 N LEU A 182 60.570 34.791 -0.881 1.00 22.13
1199 CD LEU A 182 60.570 34.791 -0.881 1.00 22.13
1199 CD LEU A 182 60.570 34.791 -0.881 1.00 22.15
1199 CD LEU A 182 60.570 34.791 -0.881 1.00 20.07
1200 CD LEU A 182 60.570 34.791 -0.881 1.00 20.07
1212 C LEU A 182 60.570 34.791 -0.881 1.00 20.73
1220 C D LEU A 182 60.570 34.791 -0.881 1.00 20.75
1221 C LEU A 182 60.570 34.791 -0.881 1.00 20.75
1222 C BLU A 184 64.802 8.722 -2.482 1.00 21.55
1226 C LEU A 184 64.802 8.722 -2.380 1.00 16.55
1226 C LEU A 184 64.802 8.722 -2.380 1.00 16.55
1226 C L MOTA MOTA MOTA MOTA ATOM ATOM С MOTA MOTA MOTA С MOTA MOTA ATOM N С MOTA MOTA MOTA 0 MOTA С ATOM С MOTA MOTA ATOM MOTA MOTA MOTA ATOM ATOM С MOTA MOTA MOTA MOTA MOTA ATOM MOTA N MOTA ATOM ATOM С ATOM ATOM С MOTA ATOM MOTA 0 ATOM MOTA MOTA MOTA ATOM C ATOM MOTA MOTA 0 MOTA MOTA MOTA С MOTA ATOM ATOM C ATOM ATOM ATOM N ATOM С ATOM MOTA С ATOM 0 ATOM 73.571 26.572 -1.791 1.00 17.28 73.571 26.621 0.268 1.00 16.60 71.875 26.980 -3.505 1.00 17.14 71.185 26.128 -2.968 1.00 17.68 72.372 26.828 -4.721 1.00 17.98 72.163 25.603 -5.459 1.00 19.11 ATOM С ATOM ASP A 186 ATOM 1235 0 .1236 N PHE A 187 N MOTA PHE A 187 .C MOTA 1237 CA 71.813 25.935 -6.905 1.00 19.00 1238 CB PHE A 187 ATOM 70.462 26.572 -7.042 1.00 18.98 CG PHE A 187 1239 АТОМ

ATOM	1240	CD1	PHE	A	187	70.277	27.914	-6.731	1.00	17.58	С
ATOM	1241		PHE			69.010	28.508	-6.832		19.96	č
ATOM	1242	CZ			187	67.917	27.743		1.00	19.45	C
ATOM ATOM	1243 1244		PHE PHE			68.094	26.402			18.98	С
ATOM	1245	CDZ			187	69.366 73.367	25.817 24.669			19.42	C
ATOM	1246	õ			187	73.540	23.776			19.81 20.32	C
ATOM	1247	N			188	74.157	24.864			20.32	O N
ATOM	1248	CA			188	75.355	24.074			20.64	C
ATOM	1249	С	GLY	Α	188	75.130	22.581			20.89	č
ATOM	1250	0	GLY			76.061	21.795	-4.008	1.00	20.70	0
ATOM	1251	N			189	73.904	22.186		1.00	20.61	N
ATOM ATOM	1252 1253	CA CB			189	73.585	20.774			20.36	С
ATOM	1254	OG			189 189	72.891 73.701	20.598 21.035			20.68	C
ATOM	1255	Ċ			189	72.668	20.218			20.77 20.23	0
MOTA	1256	Ō			189	72.229	19.079			19.67	0
MOTA	1257	N	GLY			72.359	21.040			19.66	N
ATOM	1258	CA	GLY			71.362	20.701	-6.256		20.11	C
ATOM	1259	С	GLY			71.779	19.655		1.00	20.35	С
MOTA	1260	0	GLY			72.924	19.203			20.22	0
ATOM ATOM	1261 1262	N CA	ALA ALA			70.830	19.271			19.81	N
ATOM	1263	CB	ALA			71.085 70.902	18.339 16.875			20.13	С
MOTA	1264	C	ALA			70.130		-10.323		20.23	С
ATOM	1265	0	ALA			69.126		-10.122		20.11	0
MOTA	1266	N	LEU	A	192	70.446		-11.512	1.00		N
MOTA	1267	CA	LEU			69.504	18.154	-12.617	1.00	20.48	С
ATOM	1268	CB	LEU			70.160		-13.870	1.00		С
MOTA MOTA	1269 1270	CG	LEU			71,394		-14.460	1.00		С
ATOM	1271		LEU			72.025 71.028		-15.650 -14.922	$\frac{1.00}{1.00}$		С
ATOM	1272	C	LEU			68.301		-14.322	1.00		C
ATOM	1273	0	LEU			68.472		~11.520	1.00		Ö
MOTA	1274	N	LEU	A	193	67.092	17.787	-12.488	1.00		N
MOTA	1275	CA	LEU			65.883		-12.163	1.00	20.67	С
MOTA	1276	CB	LEU			64.626		-12.333	1.00		С
ATOM ATOM	1277	CG CD1	LEU			63.271		-11.915	1.00		С
ATOM	1278 1279		LEU LEU			63.216 62.103		-10.428 -12.303	1.00		C
ATOM	1280	C	LEU			65.770		-13.042	1.00		C
ATOM	1281	0	LEU			66.005		-14.250	1.00		ŏ
ATOM	1282	. N	LYS			65.403	14.666	-12.423	1.00	20.70	N
ATOM	1283	CA	LYS			65.191		-13.140	1.00		С
ATOM	1284	CB	LYS			66.464		-13.094	1.00		C
ATOM ATOM	1285 1286	CG CD	LYS LYS			66.780 68.169		-11.717 -11.691	1.00		С
ATOM	1287	CE	LYS			68.381		-10.385	1.00		C C
ATOM	1288	NZ	LYS			69.586		-10.403	1.00		N
ATOM	1289	С	LYS			64.025		-12.505	1.00		C
MOTA	1290	0	LYS			63.669		-11.349	1.00	19.51	0
ATOM	1291	N	ASP			63.456		-13.260	1.00		N
ATOM	1292	CA	ASP			62.308		-12.808	1.00		С
ATOM ATOM	1293 1294	CB CG	ASP ASP			61.352		-13.972	1.00 2		C
ATOM	1295		ASP			60.843 60.213		-14.573 -13.832	1.00 2		С О
ATOM	1296		ASP			61.028		-15.770	1.00 2		0
MOTA	1297	С	ASP			62.684		-12.166	1.00 2		C
MOTA	1298	0	ASP	Α	195	61.811		-11.740	1.00 2	20.16	ō
ATOM	1299	N	THR			63.979		-12.111	1.00 2		N
ATOM	1300	CA	THR			64.459		-11.519	1.00 2		С
MOTA	1301	CB OC1	THR			65.550		-12.402	1.00 2		C
ATOM ATOM	1302 1303		THR .			66.489 64.942		-12.832 -13.701	1.00 1		0
ATOM	1303	C	THR .			64.997		-10.132	1.00 2		C C
ATOM	1305	o	THR			65.059	9.515	-9.686	1.00 2		0
ATOM	1306	N	VAL			65.387	7.290	-9.447	1.00 2		N
ATOM	1307	CA	VAL			65.741	7.385	-8.039	1.00 2		С
ATOM	1308	CB	VAL	A	197	65.661	5.983	-7.364	1.00 2	2.95	С

ATOM	1309	CG1	VAL	A	197	66.823	5.098	-7.79	8 1.00	24.30	С
ATOM	1310	CG2	VAL	Α	197	65.592				23.66	
ATOM	1311	C			197	67.102				22.86	С
ATOM	1312	0			197	68.044				23.08	0
ATOM ATOM	1313 1314	N			198	67.176 68.441				22.60	N
ATOM	1315	CA CB			198 198	68.242				22.42 21.98	C
ATOM	1316	CG			198	67.927				19.83	C
ATOM	1317		TYR			66.610				18.45	c
ATOM	1318	CE1			198	66.301				16.56	Č
ATOM	1319	CZ	TYR	Α	198	67.307	7 13.909			17.06	C
MOTA	1320	OH			198	66.949			3 1.00	15.18	0
ATOM	1321		TYR			68.641				16.87	С
ATOM	1322		TYR			68.942				18.51	C
ATOM ATOM	1323 1324	С О			198 198	69.010 68.273				22.99	C
ATOM	1325	N			199	70.314				22.53	O
ATOM	1326	CA			199	71.034				25.22	C
ATOM	1327	CB			199	71.694				25.19	č
ATOM	1328	OG1	THR	Α	199	72.604	6.688	-5.92	3 1.00	25.62	0
MOTA	1329	CG2			199	70.681	5.427			25.21	C
MOTA	1330	С			199	72.113				26.00	C
ATOM	1331	0			199	72.881				25.92	0
ATOM	1332	N			200	72.170				27.25	N
MOTA	1333	CA			200 200	73.123 74.132				28.69	C
ATOM ATOM	1334 1335	CB CG			200	73.490				29.29 32.11	C
ATOM	1336		ASP			73.879				34.36	0
ATOM	1337		ASP			72.609				34.31	ŏ
ATOM	1338	С			200	72.374				28.79	C
ATOM	1339	0	ASP	A	200	71.327	12.278	-3.28		28.34	0
ATOM	1340	N	PHE	Α	201	72.904	12.350	-1.67	7 1.00	29.39	N
ATOM	1341	CA			201	72.328				30.23	С
ATOM	1342	CB			201	71.140				29.94	C
ATOM	1343	CG			201	70.534				28.00	C
ATOM ATOM	1344 1345		PHE			69.676 69.104				27.14 27.27	C
ATOM	1346	CZ			201	69.381				27.00	c
ATOM	1347		PHE			70.244				28.69	č
ATOM	1348		PHE			70.811		2.01	2 1.00	28.58	С
ATOM	1349	С	PHE	Α	201	73.381	14.192	-0.14	6 1.00	31.40	С
ATOM	1350	0			201	74.097				31.87	0
ATOM	1351	N			202	73.449				32.09	N
ATOM	1352	CA	ASP			74.428				33.18	C
ATOM	1353 1354	CB CG	ASP ASP			75.581 76.918				34.28 37.84	C
ATOM ATOM	1355		ASP			77.292				42.28	0
ATOM	1356		ASP			77.655				41.24	Ö
ATOM	1357	C	ASP			73.823				32.23	C
ATOM	1358	0	ASP	Α	202	74.550	18.471	1.45	1 1.00	32.66	0
MOTA	1359	N	GLY			72.494		1.04		31.25	N
MOTA	1360	CA	GLY			71.801		1.67		29.41	С
ATOM	1361	C	GLY			71.721				28.69	C
MOTA	1362	0	GLY			72.489				28.32	0
ATOM ATOM	1363 1364	N CA	THR THR			70.770 70.628		3.80 5.25		28.21 27.26	И
ATOM	1365	CB	THR			69.950				26.96	c
ATOM	1366		THR			70.654				26.09	Õ
MOTA	1367		THR			70.103				25.58	Ċ
ATOM	1368	С	THR			69.847				27.62	Č
ATOM	1369	0	THR	A	204	68.680	17.948	5.39	7 1.00	27.26	0
MOTA	1370	N	ARG			70.483		6.67		27.57	N
MOTA	1371	CA	ARG			69.928				27.70	С
ATOM	1372	CB	ARG			70.881				28.59	C
ATOM	1373	CG	ARG			70.306		8.883		31.06	C
ATOM ATOM	1374 1375	CD NE	ARG ARG			71.326 71.717		9.295 8.133		34.02 37.36	C
ATOM	1376	CZ	ARG			71.619		7.99		37.19	И С
ATOM	1377		ARG			71.156		8.970		36.97	N
									•	-	

ATOM	1378	NH2	ARG	A 205	71.995	10.523	6.856	1.00 36.80	И
ATOM	1379	С		A 205	68.508	16.270	7.748	1.00 27.42	С
ATOM	1380	0		A 205	67.600	15.482	7.393	1.00 27.39	0
ATOM ATOM	1381	N		A 206	68.323	17.271	8.611	1.00 26.15	N
ATOM	1382 1383	CA CB		A 206 A 206	67.088 67.268	17.452 18.408	9.368	1.00 24.94	C
ATOM	1384		VAL		68.149	17.763	10.593 11.651	1.00 25.07 1.00 24.65	C
ATOM	1385		VAL		67.842	19.792	10.167	1.00 23.92	C
ATOM	1386	c		A 206	65.986	17.956	8.455	1.00 25.16	C
ATOM	1387	0		A 206	64.835	18.077	8.883	1.00 25.56	Ö
MOTA	1388	N	TYR .	A 207	66.343	18.226	7.195	1.00 24.00	N
ATOM	1389	CA		A 207	65.363	18.533	6.169	1.00 23.56	С
ATOM	1390	CB		A 207	65.792	19.777	5.388	1.00 23.98	C
ATOM ATOM	1391 1392	CG	TYR .	A 207	65.472	21.091	6.067	1.00 23.10	С
ATOM	1393		TYR .		66.274 65.980	21.587 22.819	7.101 7.722	1.00 22.69	C
ATOM	1394	CZ		A 207	64.884	23.551	7.277	1.00 24.39 1.00 27.17	C
ATOM	1395	OH		A 207	64.556	24.776	7.844	1.00 27.17	0
ATOM	1396	CE2	TYR 2		64.080	23.064	6.243	1.00 25.83	c
ATOM	1397	CD2	TYR :	A 207	64.382	21.851	5.647	1.00 24.73	Č
MOTA	1398	C		A 207	65.141	17.371	5.198	1.00 22.93	С
ATOM	1399	0		A 207	64.299	17.469	4.285	1.00 22.62	0
ATOM	1400	N		A 208	65.906	16.292	5.382	1.00 21.96	N
ATOM	1401	CA		A 208	65.849	15.131	4.487	1.00 21.81	C
ATOM ATOM	1402 1403	CB OG		A 208 A 208	67.203 67.426	14.408	4.432	1.00 22.13	C
ATOM	1404	C		A 208	64.738	13.650 14.139	5.611 4.876	1.00 23.96 1.00 20.92	0
ATOM	1405	Ö		A 208	64.427	13.970	6.062	1.00 20.92	0
ATOM	1406	N		A 209	64.177	13.466	3.873	1.00 19.97	N
MOTA	1407	CA	PRO Z	A 209	62.999	12.620	4.067	1.00 19.59	C
ATOM	1408	CB	PRO I	A 209	62.467	12.452	2.639	1.00 19.55	С
ATOM	1409	CG		A 209	63.689	12.524	1.774	1.00 19.80	С
ATOM	1410	CD		A 209	64.644	13.447	2.470	1.00 19.85	С
ATOM	1411	C		A 209	63.380	11.269	4.690	1.00 19.33	C
ATOM ATOM	1412 1413	О И		A 209 A 210	64.554 62.415	10.867 10.592	4.623 5.304	1.00 19.13 1.00 18.92	0
ATOM	1414	CA		A 210	62.668	9.300	5.961	1.00 18.92	N C
ATOM	1415	CB		A 210	61.301	8.921	6.557	1.00 18.83	C
ATOM	1416	CG		A 210	60.302	9.737	5.821	1.00 19.11	Č
ATOM	1417	CD	PRO A	A 210	61.006	11.018	5.435	1.00 18.89	C
ATOM	1418	C	PRO A		63.164	8.203	5.012	1.00 19.74	С
ATOM	1419	0	PRO A		63.892	7.324	5.476	1.00 19.91	0
ATOM ATOM	1420 1421	n ca	GLU A		62.796 63.273	8.256	3.732	1.00 19.73	N
ATOM	1421	CB	GLU F		62.461	7.278 7.323	2.766 1.451	1.00 20.85 1.00 20.53	C C
ATOM	1423	CG	GLU A		62.554	8.649	0.684	1.00 20.57	c
ATOM	1424	CD	GLU A		61.446	9.651	1.014	1.00 20.44	č
ATOM	1425	OE1	GLU A	A 211	60.905	9.640	2.143	1.00 21.24	0
MOTA	1426	OE2	GLU A	A 211	61.122	10.474	0.132	1.00 19.92	0
ATOM	1427	C	GLU A		64.782	7.446	2.532	1.00 21.48	С
ATOM	1428	0	GLU A		65.491	6.465	2.284	1.00 21.77	0
ATOM	1429	N	TRP A		65.269	8.683	2.624	1.00 21.85	N
ATOM ATOM	1430 1431	CA CB	TRP F		66.702 67.059	8.917 10.402	2.576 2.439	1.00 22.59 1.00 21.76	C
ATOM	1432	CG	TRP F		68.537	10.402	2.439	1.00 21.76	C
ATOM	1433	CD1			69.128	11.209	3.745	1.00 23.54	C
ATOM	1434		TRP A		70.497	11.187	3.610	1.00 24.29	N
ATOM	1435		TRP F		70.828	10.556	2.441	1.00 23.65	C
MOTA	1436		TRP A		69.618	10.169	1.817	1.00 22.66	С
ATOM	1437		TRP A		69.684	9.497	0.589	1.00 22.34	С
ATOM	1438		TRP A		70.944	9.227	0.028	1.00 23.22	C
ATOM	1439		TRP A		72.129	9.621	0.680	1.00 23.33	C
ATOM ATOM	1440 1441	CZ2	TRP A		72.093 67.375	10.288	1.882	1.00 24.31	C
ATOM	1441	0	TRP A		68.368	8.324 7.609	3.814 3.695	1.00 22.99 1.00 23.46	C
ATOM	1443	N	ILE A		66.812	8.611	4.986	1.00 23.46	O N
ATOM	1444	CA	ILE A		67.375	8.166	6.265	1.00 24.57	C
MOTA	1445	СВ	ILE A		66.566	8.729	7.468	1.00 24.25	Č
ATOM	1446	CG1	ILE A	213	66.550	10.265	7.469	1.00 24.58	C

ATOM	1447	CD1	ILE	A 213	67.945	10.927	7.479	1.00 24.84	C
ATOM	1448		ILE	A 213	67.143	8.217	8.788	1.00 24.24	Č
ATOM	1449	С		A 213	67.480	6.646	6.350	1.00 25.27	С
ATOM	1450	0		A 213	68.523	6.113	6.741	1.00 25.42	0
ATOM ATOM	1451	N C7		A 214	66.409	5.963	5.955	1.00 26.19	N
ATOM	1452 1453	CA CB		A 214 A 214	66.330 64.873	4.508	6.035	1.00 27.54	С
ATOM	1454	CG		A 214	64.138	4.052 4.599	6.126 7.344	1.00 27.97 1.00 31.59	C
ATOM	1455	CD		A 214	62.621	4.436	7.296	1.00 31.39	C
MOTA	1456	NE		A 214	62,201	3.037	7.213	1.00 40.55	N
MOTA	1457	CZ		A 214	62.233	2.167	8.219	1.00 43.40	C
MOTA	1458	NH1	ARG	A 214	62.672	2.525	9.423	1.00 44.08	N
MOTA	1459			A 214	61.823	0.919	8.018	1.00 44.82	N
ATOM	1460	С		A 214	67.018	3.787	4.877	1.00 27.77	С
ATOM	1461	0		A 214	67.799	2.869	5.113	1.00 27.88	0
ATOM ATOM	1462 1463	N CA		A 215 A 215	66.731 67.151	4.195	3.641	1.00 27.94	N
ATOM	1464	CB		A 215	65.931	3.428 2.983	2.460	1.00 28.52	C
ATOM	1465	CG		A 215	64.788	2.478	1.642 2.486	1.00 28.63 1.00 30.63	C
ATOM	1466			A 215	64.884	1.262	3.177	1.00 30.03	C
MOTA	1467			A 215	63.832	0.800	3.965	1.00 33.17	C
MOTA	1468	cz	TYR	A 215	62.674	1.560	4.063	1.00 34.20	Č
ATOM	1469	OH		A 215	61.625	1.121	4.834	1.00 36.84	Ō
MOTA	1470			A 215	62.556	2.764	3.390	1.00 33.32	C
ATOM	1471			A 215	63.610	3.217	2.607	1.00 32.43	С
ATOM	1472	С		A 215	68.143	4.128	1.539	1.00 28.30	С
ATOM ATOM	1473 1474	O N		A 215 A 216	68.551 68.520	3.558	0.531	1.00 28.64	0
ATOM	1475	CA		A 216	69.431	5.360 6.133	1.870 1.027	1.00 27.98 1.00 27.92	N
ATOM	1476	CB		A 216	70.866	5.574	1.125	1.00 27.92	C
ATOM	1477	CG		A 216	71.628	6.080	2.315	1.00 32.47	C
ATOM	1478	ND1		A 216	72.993	5.922	2.453	1.00 36.05	N
MOTA	1479	CE1	HIS	A 216	73.386	6.479	3.587	1.00 37.27	Ċ
ATOM	1480	NE2	HIS	A 216	72.328	6.997	4.187	1.00 36.76	N
ATOM	1481			A 216	71.217	6.761	3.413	1.00 35.02	. С
ATOM	1482	C		A 216	68.936	6.268	-0.435	1.00 26.74	С
ATOM ATOM	1483 1484	O N		A 216	69.728	6.295	-1.383	1.00 26.90	0
ATOM	1485	CA		A 217 A 217	67.616 66.964	6.360 6.461	-0.592 -1.892	1.00 25.13 1.00 24.20	N
ATOM	1486	CB		A 217	66.380	5.106	-2.341	1.00 24.20	C
ATOM	1487	CG		A 217	67.373	3.964	-2.525	1.00 27.36	Č
MOTA	1488	CD		A 217	66.718	2.584	-2.668	1.00 31.36	Č
MOTA	1489	NE	ARG .	A 217	66.048	2.433	-3.958	1.00 34.40	N
MOTA	1490	CZ		A 217	66.633	1.967	-5.061		C
ATOM	1491			A 217	67.909	1.595	-5.043	1.00 36.66	N
ATOM	1492			A 217	65.943	1.879	-6.190	1.00 37.21	N
ATOM ATOM	1493 1494	C		A 217	65.808	7.429	-1.749	1.00 22.74	C
ATOM	1495	И О		A 217 A 218	65.124 65.580	7.420 8.240	-0.729 -2.777	1.00 23.06 1.00 20.60	. 0
ATOM	1496	CA		A 218	64.445	9.141	-2.824	1.00 20.00	N C
ATOM	1497	CB		A 218	64.674	10.371	-1.917	1.00 18.22	c
MOTA	1498	CG		A 218	65.867	11.216	-2.299	1.00 16.94	Ċ
MOTA	1499	CD1	TYR A	A 218	67.160	10.880	-1.870	1.00 15.03	C
ATOM	1500		TYR A	A 218	68.265	11.679	-2.220	1.00 14.80	С
ATOM	1501	CZ		A 218	68.064	12.802	-3.020	1.00 15.81	С
MOTA	1502			A 218	69.125	13.594	-3.393	1.00 16.21	0
ATOM	1503			A 218	66.790	13.145	-3.453	1.00 15.34	С
ATOM	1504 1505			A 218 A 218	65.705	12.355	-3.093 -4.267	1.00 15.11	C
ATOM ATOM	1505			A 218	64.212 65.112	9.584 9.486	-4.267 -5.102	1.00 18.07	C
ATOM	1507			A 219	63.006	10.075	-3.102 -4.545	1.00 17.75 1.00 17.04	. O
ATOM	1508			A 219	62.721	10.757	-5.811	1.00 17.04	N C
ATOM	1509			A 219	61.430	10.231	-6.440	1.00 16.49	· C
MOTA	1510			A 219	61.547	8.819	-6.917	1.00 18.35	C
ATOM	1511			A 219	61.677	8.489	-8.253	1.00 18.97	N
MOTA	1512			A 219	61.791	7.179	-8.368	1.00 17.84	· C
ATOM	1513			A 219	61.763	6.650	-7.157	1.00 19.10	N
ATOM	1514			A 219	61.621	7.653	-6.230	1.00 16.82	C
ATOM	1515	С	птэ 4	A 219	62.651	12.255	-5.551	1.00 16.15	С

						2	04					
MOTA	1516	0	HIS	Δ	219	62.346	12.681	-4.438	1.00	15.76		0
ATOM	1517	N	GLY			62.938	13.048	-6.576	1.00	16.23		N
ATOM	1518	CA	GLY			63.172	14.462	-6.384	1.00	16.70		C
MOTA	1519	C	GLY			61.992	15.217	-5.807	1.00	16.87	•	C
ATOM	1520	0	GLY			62.110	15.886	-4.788	1.00	16.14		0
	1521	N	ARG			60.848	15.097	-6.469	1.00	17.28		N
ATOM	1521	CA	ARG			59.691	15.923	-6.150	1.00	17.64		C
ATOM		CB	ARG			58.590	15.746	-7.185	1.00	18.45		С
MOTA	1523		ARG			59.002	16.190	~8.578		23.24		С
ATOM	1524	CG	ARG			58.156	15.591	-9.697		28.55		C
ATOM	1525	CD	ARG			58.705		-11.013		32.56		N
ATOM	1526	NE	ARG			59.512		-11.720		35.42		С
MOTA	1527	CZ	ARG			59.879		-11.241		36.89		N
ATOM	1528		ARG			59.943		-12.920		35.53		N
ATOM	1529		ARG			59.155	15.652	-4.764		16.82		С
MOTA	1530	C				58.922	16.596	-4.015		16.95		0
MOTA	1531	0	ARG			58.981	14.374	-4.417		15.97		N
ATOM	1532	N	SER			58.439	14.002	-3.111		15.37		C
ATOM	1533	CA	SER			58.036	12.510	-3.066		15.54		С
MOTA	1534	CB	SER			59.136	11.654	-3.333		15.91		0
MOTA	1535	OG	SER			59.396	14.347	-1.971		14.74		C
MOTA	1536	C	SER				14.684	-0.874		14.86		0
MOTA	1537	0	SER			58.963	14.270	-2.225		14.48		N
MOTA	1538	N	ALA			60.694	14.738	-1.253		14.36		Ĉ
ATOM	1539	CA	ALA			61.686		-1.677		14.45		Ċ
ATOM	1540	CB	ALA			63.081	14.313 16.266	-1.077		14.53		Ċ
ATOM	1541	C			223	61.619				14.59		Ö
MOTA	1542	0	ALA			61.718	16.779	-2.205		13.88		И
ATOM	1543	N			224	61.441	16.982			13.96		C
MOTA	1544	CA			224	61.310	18.444			13.04		C
ATOM	1545	CB			224	61.174	19.032			13.72		C
MOTA	1546	C			224	60.116	18.832			14.14		Ö
ATOM	1547	0			224	60.220	19.713			14.14		N
MOTA	1548	И			225	59.001	18.123					C
MOTA	1549	CA			225	57.776	18.363			13.34 13.99		c
MOTA	1550	CB			225	56.602	17.517			11.55		C
MOTA	1551		VAL			55.370	17.457					C
ATOM	1552		VAL			56.236	18.063			12.97		C
MOTA	1553	С			225	57.986	18.076			14.00 14.66		0
MOTA	1554	0			225	57.513	18.820			13.82		И
MOTA	1555	N			226	58.695	16.996			14.22		C
ATOM	1556	CA			226	59.037	16.751			14.10		C
MOTA	1557	CB			226	59.908	15.501			14.21		C
ATOM	1558	CG			226	60.362	15.305			13.01		C
ATOM	1559	CD1			226	61.444	15.888			13.97		Ŋ
ATOM	1560	NE1			226	61.516	15.488			13.33		C
MOTA	1561		TRP					6.231				C
ATOM	1562		TRP			59.723	14.510			14.66		C
MOTA	1563		TRP			58.583	13.683			14.53		C
MOTA	1564		TRP			58.254	13.024			14.25		C
MOTA	1565		2 TRP			59.020	13.173					C
MOTA	1566		TRP			60.132	13.981			15.55		C
MOTA	1567				226	59.763	17.976					0
MOTA	1568				226	59.406	18.468			14.16		И
MOTA	1569				. 227	60.764				13.20		C
MOTA	1570				. 227	61.522	19.610					C
MOTA	1571				. 227	62.793	19.886			13.28		0
MOTA	1572	OG			. 227	62.448	20.474			12.96		C
MOTA	1573				227	60.634				13.72		0
MOTA	1574	0			227	60.848				13.60		
MOTA	1575				. 228	59.614				13.17		N C
MOTA	1576				228	58.673) 13.14		C
ATOM	1577				. 228	57.807				12.32		C
MOTA	1578				. 228	58.606				11.69		C
MOTA	1579		1 LEU			57.931				13.88		C
MOTA	1580				228	58.893				10.58		C
MOTA	1581				228	57.801				12.15		0
MOTA	1582				228	57.489				12.32		
MOTA	1583				229	57.405				12.02		N C
MOTA	1584	CA	GL	Z P	229	56.693	20.556	5 5.056	1.00	12.19		C

ATOM	1585	С	GLY	A 229	57.512	20.973	6.281	1.00 12.64	С
MOTA	1586	0	GLY	A 229	56.968	21.560	7.224	1.00 12.42	ő
ATOM	1587	N	ILE	A 230	58.811	20.662	6.269	1.00 13.07	N
ATOM	1588	CA		A 230	59.718	21.050	7.357	1.00 13.99	C
MOTA	1589	CB	ILE	A 230	61.145	20.421	7.133	1.00 13.90	C
MOTA	1590		ILE		61.067	18.894	7.053	1.00 13.25	C
ATOM	1591	CD1	ILE		60.622	18.243	8.368	1.00 11.51	Ċ
MOTA	1592	CG2		A 230	62.118	20.815	8.272	1.00 14.90	С
ATOM	1593	С		A 230	59.785	22.587	7.409	1.00 14.39	C
ATOM	1594	0		A 230	59.686	23.211	8.488	1.00 14.11	0
ATOM	1595	N		A 231	59.915	23.182	6.222	1.00 14.04	N
MOTA	1596	CA		A 231	59.961	24.620	6.083	1.00 14.10	C
ATOM	1597	CB		A 231	60.197	24.995	4.609	1.00 14.16	C
MOTA	1598	CG		A 231	60.121	26.508	4.330	1.00 15.24	C
ATOM	1599		LEU .		61.292	27.224	4.967	1.00 15.13	C
ATOM	1600		LEU .		60.075	26.778	2.838	1.00 15.78	C
MOTA	1601	C		A 231	58.688	25.299	6.615	1.00 14.01	C
ATOM ATOM	1602 1603	O N		A 231	58.775	26.270	7.382	1.00 13.50	0
ATOM	1604	CA		A 232 A 232	57.515 56.256	24.796 25.394	6.217	1.00 13.22	N
ATOM	1605	CB		A 232	55.031	24.750	6.644 5.949	1.00 13.16 1.00 13.56	C
ATOM	1606	CG		A 232	53.653	25.362	6.282	1.00 13.36	C
MOTA	1607		LEU .		53.627	26.902	6.159	1.00 12.22	C
ATOM	1608		LEU .		52.521	24.721	5.419	1.00 13.85	C
ATOM	1609	C		A 232	56.112	25.294	8.164	1.00 11.03	c
ATOM	1610	ō		A 232	55.723	26.269	8.817	1.00 14.65	0
ATOM	1611	N		A 233	56.445	24.133	8.723	1.00 13.34	N
MOTA	1612	CA		A 233	56.407	23.940	10.175	1.00 13.68	C
MOTA	1613	СВ		A 233	56.870	22.524	10.551	1.00 12.73	c
ATOM	1614	CG		A 233	56.786	22.263	12.044	1.00 14.51	Ċ
MOTA	1615	CD1	TYR .		57.791	22.713	12.908	1.00 14.02	c
MOTA	1616	CE1	TYR .	A 233	57.728	22.487	14.266	1.00 13.74	Ċ
ATOM	1617	CZ	TYR .	A 233	56.647	21.796	14.798	1.00 15.95	С
ATOM	1618	OH	TYR .	A 233	56.590	21.586	16.169	1.00 17.38	0
MOTA	1619	CE2	TYR I	A 233	55.630	21.352	13.978	1.00 15.69	С
MOTA	1620	CD2	TYR .	A 233	55.705	21.588	12.594	1.00 14.19	С
ATOM	1621	C	TYR .	A 233	57.296	24.989	10.855	1.00 14.14	С
MOTA	1622	0	TYR .	A 233	56.893	25.639	11.837	1.00 14.22	0
MOTA	1623	N		A 234	58.497	25.162	10.304	1.00 14.64	N
MOTA	1624	CA		A 234	59.462	26.128	10.820	1.00 14.70	С
ATOM	1625	CB		A 234	60.741	26.074	9.986	1.00 15.23	С
ATOM	1626	CG		A 234	61.806	27.031	10.482	1.00 17.95	C
MOTA	1627		ASP A		62.134	27.038	11.693	1.00 17.66	0
ATOM	1628		ASP A		62.372	27.815	9.707	1.00 23.64	0
ATOM	1629 1630	C O	ASP A		58.902	27.550	10.842	1.00 15.14	C
ATOM	1631	N	ASP A		59.130 58.177	28.304	11.808	1.00 14.44	0
ATOM ATOM	1632	CA	MET A		57.585	27.921 29.248	9.782 9.679	1.00 14.52 1.00 15.77	N
ATOM	1633	CB	MET A		56.946	29.472	8.300	1.00 15.77	C
ATOM	1634	CG	MET A		57.955	29.567	7.157	1.00 19.29	c
ATOM	1635	SD	MET A		57.147	30.105	5.616	1.00 23.96	S
ATOM	1636	CE	MET A		56.577	28.752	5.093	1.00 24.70	C
ATOM	1637	c	MET A		56.535	29.503	10.756	1.00 15.44	č
ATOM	1638	ō	MET 2		56.551	30.545	11.395	1.00 15.28	Ö
ATOM	1639	N	VAL A		55.622	28.557	10.944	1.00 15.79	N
ATOM	1640	CA	VAL A		54.480	28.780	11.845	1.00 16.11	C.
ATOM	1641	СВ	VAL A		53.169	28.062	11.349	1.00 16.48	Č
ATOM	1642		VAL A		52.709	28.622	9.995	1.00 15.52	č
ATOM	1643		VAL A		53.327	26.521	11.277	1.00 14.68	č
ATOM	1644	C	VAL A		54.808	28.422	13.295	1.00 17.29	c
ATOM	1645	0	VAL I		54.084	28.833	14.220	1.00 17.67	Ö
MOTA	1646	N.	CYS A		55.901	27.673	13.503	1.00 17.50	N
MOTA	1647	CA	CYS F		56.276	27.261	14.863	1.00 18.98	Ċ
ATOM	1648	CB	CYS A	A 237	56.400	25.735	14.986	1.00 18.51	Ċ
MOTA	1649	SG	CYS A		54.825	24.891	14.842	1.00 22.03	S
MOTA	.1650	С	CYS F		57.548	27.914	15.366	1.00 18.98	С
MOTA	1651	0	CYS F		57.788	27.936	16.562	1.00 18.75	0
ATOM	1652	N	GLY F		58.359	28.443	14.452	1.00 19.38	N
MOTA	1653	CA	GLY F	238	59.584	29.125	14.835	1.00 20.34	С

ATOM	1654	С	GLY A	238	60.776	28.206	14.966	1.00 21.28	C
ATOM	1655		GLY A		61.871	28.677	15.269	1.00 21.63	0
ATOM	1656		ASP A		60,572	26.906	14.743	1.00 21.89	N
					61.662	25.904	14.741	1.00 23.14	Ĉ
ATOM	1657		ASP A		62.038	25.466	16.161	1.00 24.31	č
ATOM	1658		ASP A						C
ATOM	1659		ASP A		63.557	25.367	16.363	1.00 28.93	
ATOM	1660	OD1	ASP A	239	64.268	24.729	15.530	1.00 31.83	0
MOTA	1661	OD2	ASP A	239	64.126	25.919	17.333	1.00 34.08	0
MOTA	1662	С	ASP A	239	61.271	24.671	13.918	1.00 22.10	C
ATOM	1663	Q	ASP A	239	60.110	24.508	13.582	1.00 22.05	0
ATOM	1664	N	ILE A		62.241	23.823	13.590	1.00 21.41	N
			ILE A		61.995	22.616	12.803	1.00 21.20	С
ATOM	1665	CA			63.299	22.130	12.119	1.00 21.27	Ċ
MOTA	1666	CB	ILE A			21.934		1.00 22.95	Ċ
ATOM	1667		ILE A		64.418		13.162		
ATOM	1668	CD1			65.727	21.359	12.604	1.00 24.55	C
MOTA	1669	CG2	ILE A	240	63.711	23.113	11.020	1.00 22.14	C
MOTA	1670	С	ILE A	240	61.390	21.516	13.687	1.00 21.05	С
ATOM	1671	0	ILE A	240	61.628	21.507	14.896	1.00 20.43	0
ATOM	1672	N	PRO A	241	60.596	20.610	13.112	1.00 21.20	N
ATOM	1673	CA	PRO A		59.885	19.609	13.924	1.00 22.14	С
MOTA	1674	CB	PRO A		58.818	19.070	12.967	1.00 22.34	С
			PRO A		59.418	19.243	11.581	1.00 20.54	С
ATOM	1675	CG				20.461	11.670	1.00 21.11	Ċ
ATOM	1676	CD	PRO A		60.303			1.00 23.21	C
ATOM	1677	С	PRO A		60.762	18.466	14.413		
MOTA	1678	0	PRO A	241	60.432	17.885	15.443	1.00 23.48	0
ATOM	1679	N	PHE A	242	61.843	18.143	13.699	1.00 24.34	N
ATOM	1680	CA	PHE A	242	62.625	16.949	13.999	1.00 25.31	С
MOTA	1681	CB	PHE A	242	62.503	15.894	12.881	1.00 24.74	C
ATOM	1682	CG	PHE A		61.097	15.596	12.440	1.00 22.55	С
	1683		PHE A		60.115	15.212	13.354	1.00 21.74	C
ATOM			PHE A		58.812	14.916	12.923	1.00 21.18	С
ATOM	1684					15.011	11.556	1.00 21.06	С
MOTA	1685	CZ	PHE A		58.489			1.00 20.29	Č
ATOM	1686		PHE A		59.467	15.392	10.642		Č
ATOM	1687	CD2	PHE A	242	60.763	15.672	11.088	1.00 21.16	
ATOM	1688	С	PHE A	242	64.099	17.286	14.169	1.00 27.27	C
MOTA	1689	0	PHE A	242	64.671	18.038	13.370	1.00 27.35	0
ATOM	1690	N	GLU A	243	64.716	16.692	15.186	1.00 29.13	N
ATOM	1691	CA	GLU A	243	66.149	16.849	15.428	1.00 31.65	C
	1692	CB	GLU A		66.404	17.361	16.849	1.00 32.51	C
ATOM		CG	GLU A		65.779	18.723	17.153	1.00 37.83	С
MOTA	1693				66.521	19.895	16.505	1.00 43.98	С
ATOM	1694	CD	GLU A				15.260	1.00 46.61	0
ATOM	1695		GLU A		66.675	19.903		1.00 46.61	Ö
MOTA	1696	OE2	GLU A		66.941	20.824	17.241		c
ATOM	1697	С	GLU A	243	66.951	15.568	15.187	1.00 31.62	
ATOM	1698	0	GLU A	243	68.096	15.630	14.759	1.00 32.81	0
ATOM	1699	N	HIS A	244	66.361	14.409	15.454	1.00 31.55	N
MOTA	1700	CA	HIS A	244	67.089	13.146	15.307	1.00 31.42	C
ATOM	1701	CB	HIS A		67.187	12.423	16.650	1.00 32.01	С
ATOM	1702	ČG	HIS A		67.774	13.265	17.738	1.00 34.56	C
			HIS A		67.014	13.790	18.763	1.00 36.67	N
ATOM	1703				67.791	14.502	19.561	1.00 37.86	С
MOTA	1704		HIS A			14.462	19.087	1.00 37.93	И
'ATOM	1705		HIS A		69.026			1.00 36.34	c c
ATOM	1706	CD2	HIS A		69.041	13.697	17.945		
ATOM	1707	С	HIS A	244	66.482	12.235	14.243	1.00 30.37	C
MOTA	1708	0	HIS A	244	65.279	12.327	13.941	1.00 29.56	0
ATOM	1709	N	ASP A	245	67.326	11.360	13.689	1.00 29.19	N
ATOM	1710	CA	ASP A		66.909	10.373	12.691	1.00 28.54	С
ATOM	1711	CB	ASP A		68.005	9.315	12.473	1.00 28.34	C
			ASP A		69.208	9.853	11.726	1.00 28.71	С
MOTA	1712	CG OD1			69.183	11.016	11.252	1.00 28.60	Ō
MOTA	1713		ASP A				11.572	1.00 20.00	ő
ATOM	1714		ASP A		70.242	9.174			
ATOM	1715	С	ASP A		65.624	9.670	13.103	1.00 28.04	C
MOTA	1716	0	ASP A	245	64.724	9.485	12.284	1.00 27.65	0
ATOM	1717	N	GLU A	246	65.566	9.292	14.381	1.00 27.40	N
ATOM	1718	CA	GLU A		64.451	8.563	14.978	1.00 27.37	С
ATOM	1719	CB	GLU A		64.743	8.286	16.468	1.00 28.11	C
ATOM	1720	CG	GLU A		65.942	7.369	16.736	1.00 32.49	С
	1721	CD	GLU A		67.302	8.072	16.650		С
ATOM			GLU A		67.413	9.255	17.037	1.00 39.44	Ō
MOTA	1722	OEI	. GHO M	. 230	0		,		•

MOTA	1723	OF 2	GLU	7\	246	68.276	7.434	16.191	1.00 40.05	0
ATOM	1724	C	GLU			63.128	9.318	14.844	1.00 26.19	č
ATOM	1725	Ö	GLU			62.087	8.720	14.570	1.00 25.74	Ö
ATOM	1725	N	GLU			63.178	10.630	15.054	1.00 24.84	N
ATOM	1727	CA	GLU			61.997	11.473	14.925	1.00 24.64	C
	1728	CB	GLU			62.228	12.861	15.550	1.00 24.76	Ċ
ATOM		CG				62.600	12.823	17.029	1.00 27.07	Č
ATOM	1729		GLU			63.106	14.164	17.539	1.00 31.82	č
ATOM	1730	CD	GLU			63.956	14.804	16.873	1.00 31.02	Ö
MOTA	1731		GLU				14.582	18.623	1.00 31.23	Ö
ATOM	1732	OE2	GLU			62.653	11.592	13.458	1.00 23.43	c
MOTA	1733	C	GLU			61.573		13.450	1.00 23.43	0
ATOM	1734	0	GLU			60.388	11.491 11.782	12.563	1.00 22.84	N
MOTA	1735	N	ILE			62.546	11.782	11.119	1.00 22.09	C
ATOM	1736	CA	ILE			62.269		10.284	1.00 22.33	Ċ
ATOM	1737	CB			248	63.555	12.106 13.506	10.594	1.00 22.33	C
ATOM	1738		ILE			64.103	13.692	10.191	1.00 23.01	C
ATOM	1739		ILE			65.557		8.767	1.00 23.01	C
ATOM	1740		ILE			63.273	11.965 10.547	10.665	1.00 22.11	C
ATOM	1741	С			248	61.567			1.00 22.18	Ö
ATOM	1742	0			248	60.512	10.608	10.038	1.00 21.20	N
ATOM	1743	N			249	62.144	9.396	11.016	1.00 22.33	C
MOTA	1744	CA			249	61.595	8.083	10.646	1.00 23.21	C
ATOM	1745	CB			249	62.539	6.943	11.136 10.348	1.00 23.49	C
ATOM	1746		ILE			63.856	6.947	10.348	1.00 24.43	c
ATOM	1747		ILE			64.971	6.114		1.00 24.03	C
MOTA	1748		ILE			61.853	5.562	11.051		C
ATOM	1749	С			249	60.175	7.875	11.200	1.00 23.18	0
ATOM	1750	0			249	59.312	7.314	10.520	1.00 23.13	N
ATOM	1751	N			250	59.943	8.318	12.435	1.00 23.13	C
MOTA	1752	CA			250	58.614	8.204	13.044	1.00 23.56	Ċ
MOTA	1753	CB			250	58.679	8.421	14.562	1.00 23.56	C
ATOM	1754	CG			250	57.356	8.162	15.290	1.00 24.93	c
MOTA	1755	CD			250	57.504	7.770	16.760	1.00 24.93	N
MOTA	1756	NE			250	56.208	7.638	17.430	1.00 25.45	C
ATOM	1757	cz			250	55.636	8.594	18.168	1.00 23.98	N
ATOM	1758		ARG			56.234	9.770	18.349	1.00 24.37	N
ATOM	1759		ARG			54.459	8.373	18.733	1.00 23.56	C
ATOM	1760	С			250	57.621	9.159	12.375	1.00 23.53	Ö
ATOM	1761	0			250	56.468	8.802	12.165 12.022	1.00 23.63	N
ATOM	1762	N			251	58.089	10.357		1.00 24.56	C
MOTA	1763	CA			251	57.282	11.334	11.314	1.00 25.30	C
ATOM	1764	С			251	56.082	11.864	12.096	1.00 25.76	Ö
ATOM	1765	0			. 251	55.074	12.248	11.496	1.00 25.76	N
MOTA	1766	N			. 252	56.177	11.877	13.423 14.263	1.00 25.20	C
ATOM	1767	CA			252	55.082	12.373	15.593		Č
ATOM	1768	CB			252		11.603 11.937	16.488	1.00 29.12	c
ATOM	1769	CG			. 252	53.796		15.837	1.00 23.12	c
MOTA	1770	CD			252	52.439	11.649 12.506	15.854	1.00 32.13	o
MOTA	1771				252	51.537		15.264	1.00 32.42	N
ATOM	1772		GLN			52.292	10.448	14.504	1.00 32.42	Ċ
MOTA	1773	C			252	55.271	13.863	15.008	1.00 24.98	0
ATOM	1774	0			252	56.310	14.303	14.123	1.00 24.33	N
MOTA	1775	N			253	54.265	14.634		1.00 24.35	C
ATOM	1776	CA			253	54.351	16.085	14.196 12.922	1.00 24.30	c
ATOM	1777	CB			253	53.751	16.750	12.948	1.00 24.24	C
ATOM	1778				253	53.971	18.240		1.00 24.73	C
ATOM	1779	CG2			253	54.356	16.124	11.647	1.00 23.69	c
MOTA	1780	С			253	53.601	16.576	15.431		0
MOTA	1781	0			253	52.427	16.275	15.602	1.00 23.22	
ATOM	1782				254	54.297	17.321	16.278	1.00 23.14	N
MOTA	1783				254	53.683	17.993	17.403	1.00 23.19	C
ATOM	1784	CB			254	54.295	17.481	18.702	1.00 22.64	C
ATOM	1785				254	53.868	18.247	19.912	0.70 21.91	C
ATOM	1786				254	53,915	16.067	18.997	0.30 22.47	C
ATOM	1787				254	52.711	17.897	20.596		C
ATOM	1788				254	54.877	15.073	19.055		C
ATOM	1789				254	52.308	18.608	21.724		C
ATOM	1790				254	54.517	13.772	19.304		C C
MOTA	1791	CZ	APH	E P	A 254	53.054	19.677	22.163	0.70 20.33	Ü

MOTA 1792 CZ BPHE A 254 53.180 13.445 19.476 0.30 21.52 54.214 20.045 21.486 0.70 20.58 1793 CE2APHE A 254 MOTA MOTA 1794 CE2BPHE A 254 52.207 14.421 19.400 0.30 21.67 54.615 19.333 20.369 0.70 21.56 52.574 15.720 19.157 0.30 21.61 53.789 19.507 17.295 1.00 23.65 CD2APHE A 254 MOTA 1795 CD2BPHE A 254 MOTA 1796 MOTA 1797 С PHE A 254 54.876 20.055 17.059 1.00 23.03 1798 PHE A 254 MOTA 0 52.652 20.173 17.475 1.00 24.25 MOTA 1799 N PHE A 255 52.600 21.636 17.448 1.00 24.57 51.367 22.117 16.705 1.00 24.07 51.421 21.819 15.250 1.00 22.93 51.972 22.743 14.368 1.00 20.88 CA PHE A 255 MOTA 1800 MOTA 1801 CB PHE A 255 С ATOM 1802 CG PHE A 255 CD1 PHE A 255 1803 MOTA 52.048 22.466 13.018 1.00 18.91 51.585 21.254 12.540 1.00 20.61 51.047 20.307 13.426 1.00 19.19 50.974 20.595 14.762 1.00 19.54 1804 CE1 PHE A 255 MOTA С 1805 CZ PHE A 255 MOTA CE2 PHE A 255 ATOM 1806 С CD2 PHE A 255 MOTA 1807 52.668 22.239 18.830 1.00 25.43 ATOM 1808 С PHE A 255 51.839 21.958 19.691 1.00 25.30 PHE A 255 1809 0 ATOM 53.701 23.057 19.015 1.00 26.64 54.026 23.713 20.274 1.00 27.50 55.556 23.791 20.412 1.00 28.35 56.282 24.268 19.116 1.00 31.19 N ARG A 256 ATOM 1810 N ARG A 256 ATOM 1811 CA 1812 CB ARG A 256 ATOM С ARG A 256 1813 MOTA CG 56.282 24.268 19.116 1.00 31.19 57.825 24.203 19.164 1.00 35.66 58.346 23.171 18.257 1.00 38.13 59.580 22.660 18.298 1.00 40.12 60.466 23.080 19.204 1.00 40.47 59.930 21.716 17.431 1.00 38.85 ARG A 256 MOTA 1814 CD N 1815 NE ARG A 256 ATOM С 1816 CZ ARG A 256 ATOM N 1817 NH1 ARG A 256 ATOM N NH2 ARG A 256 ATOM 1818 53.444 25.122 20.255 1.00 27.08 ARG A 256

 53.444
 25.122
 20.255
 1.00
 27.08

 53.389
 25.807
 21.279
 1.00
 27.90

 53.023
 25.546
 19.068
 1.00
 26.07

 52.369
 26.834
 18.871
 1.00
 25.36

 53.126
 27.643
 17.803
 1.00
 25.81

 54.514
 28.095
 18.215
 1.00
 29.91

 54.493
 29.381
 19.019
 1.00
 35.63

 53.596
 30.222
 18.846
 1.00
 37.93

 55.480
 29.545
 19.901
 1.00
 37.58

 50.931
 26.611
 18.399
 1.00
 23.15

 50
 618
 25.574
 17.821
 1.00
 22.57

 MOTA 1819 С O ARG A 256 ATOM 1820 Ω N GLN A 257 MOTA 1821 N CA GLN A 257 С MOTA 1822 С GLN A 257 1823 CB MOTA GLN A 257 MOTA 1824 CG С CD GLN A 257 1825 MOTA 0 1826 OE1 GLN A 257 ATOM N NE2 GLN A 257 1827 ATOM С **GLN A 257** 1828 С MOTA 50.618 25.574 17.821 1.00 22.57 GLN A 257

 50.618
 25.574
 17.821
 1.00
 22.57

 50.072
 27.593
 18.633
 1.00
 21.04

 48.726
 27.571
 18.079
 1.00
 19.58

 47.862
 28.674
 18.683
 1.00
 19.69

 46.355
 28.438
 18.509
 1.00
 21.79

 45.834
 28.809
 17.134
 1.00
 24.81

 44.538
 28.195
 16.847
 1.00
 26.49

 43.844
 28.395
 15.725
 1.00
 27.04

 44.316
 29.200
 14.757
 1.00
 27.33

 42.677
 27.789
 15.570
 1.00
 25.64

 48.811
 27.738
 16.564
 1.00
 18.78

 49.282
 28.759
 16.074
 1.00
 18.29

 MOTA 1829 0 Ν ARG A 258 ATOM 1830 N С CA ARG A 258 MOTA 1831 С ARG A 258 1832 MOTA CB С ARG A 258 MOTA 1833 CG С ARG A 258 1834 CD MOTA N ARG A 258 1835 NE ATOM С CZ ARG A 258 1836 MOTA N 1837 NH1 ARG A 258 MOTA N 1838 NH2 ARG A 258 ATOM С 1839 ARG A 258 C ATOM 49.282 28.759 16.074 1.00 18.29 0 ARG A 258 1840 ATOM 0 48.367 26.716 15.843 1.00 17.49 N VAL A 259 MOTA 1841 N 48.367 26.716 15.845 1.00 17.49 48.404 26.682 14.389 1.00 17.02 49.533 25.733 13.879 1.00 16.57 49.472 25.544 12.361 1.00 15.19 50.929 26.259 14.310 1.00 17.98 47.043 26.171 13.920 1.00 16.99 С CA VAL A 259 1842 MOTA С CB VAL A 259 1843 MOTA C CG1 VAL A 259 1844 MOTA C 1845 CG2 VAL A 259 MOTA C VAL A 259 1846 С MOTA 46.541 25.190 14.460 1.00 16.43 0 1847 O VAL A 259 MOTA 46.451 26.843 12.930 1.00 17.02 45.141 26.451 12.398 1.00 17.31 44.687 27.398 11.273 1.00 17.29 45.399 27.137 10.073 1.00 17.50 N SER A 260 1848 N ATOM С 1849 CA SER A 260 MOTA С 1850 CB SER A 260 MOTA 0 1851 OG SER A 260 MOTA 45.145 25.005 11.916 1.00 17.62 SER A 260 1852 С MOTA 46.182 24.484 11.518 1.00 17.40 0 SER A 260 1853 0 MOTA 24.367 11.957 1.00 17.98 22.972 11.559 1.00 18.43 22.499 11.855 1.00 18.46 N 43.974 24.367 SER A 261 MOTA 1854 N 43.820 22.972 SER A 261 1855 ÇA MOTA 42.398 SER A 261 1856 CB MOTA 42.169 22.473 13.254 1.00 19.59 ATOM 1857 OG SER A 261 C 22.748 10.082 1.00 18.64 44.118 SER A 261 1858 С MOTA 1.00 18.31 44.630 21.694 9.701 0 SER A 261 1859 0 MOTA 43.780 23.729 9.256 1.00 19.27 GLU A 262 1860 N MOTA

CA GLU A 262 44.102 23.659
CB GLU A 262 43.461 24.807
CG GLU A 262 42.033 24.525
CD GLU A 262 41.304 25.782
OE1 GLU A 262 41.928 26.645
OE2 GLU A 262 40.101 25.915
C GLU A 262 45.615 23.663
O GLU A 262 46.131 22.851 7.829 1.00 20.49 MOTA 1861 7.058 1.00 21.45 АТОМ 1862 6.627 1.00 27.18 MOTA 1863 6.184 1.00 35.25 ATOM 1864 5.498 1.00 38.82 АТОМ 1865 6.522 1.00 39.29 7.614 1.00 19.31 MOTA 1866 MOTA 1867 6.853 1.00 18.98 46.131 22.851 0 GLU A 262 ATOM 1868 0 8.297 1.00 18.97 CYS A 263 46.318 24.561 MOTA 1869 N 8.196 1.00 18.66 CYS A 263 47.785 24.596 MOTA 1870 CA 48.359 25.805 8.937 1.00 18.56 50.133 26.031 8.731 1.00 18.69 48.385 23.275 8.703 1.00 18.45 С CYS A 263 MOTA 1871 CB 50.133 20 48.385 23.275 6... 49.223 22.664 8.024 1.00 1 47.932 22.827 9.873 1.00 18.01 48.389 21.553 10.434 1.00 18.32 47.650 21.210 11.748 1.00 17.97 48.085 22.034 12.955 1.00 18.25 47.598 21.447 14.282 1.00 20.77 47.359 20.240 14.382 1.00 19.45 22.299 15.304 1.00 19.10 2424 1.00 18.18 50.133 26.031 48.385 23.275 CYS A 263 MOTA 1872 SG С CYS A 263 MOTA 1873 С 0 1874 0 CYS A 263 MOTA GLN A 264 N 1875 MOTA N С 1876 CA GLN A 264 MOTA С GLN A 264 MOTA 1877 CB GLN A 264 С · 1878 CG MOTA С **GLN A 264** MOTA 1879 CD OE1 GLN A 264 OE1 GLN A 264 47.359 20.240 14.382 1.00 19.45 NE2 GLN A 264 47.464 22.299 15.304 1.00 19.10 C GLN A 264 48.191 20.419 9.424 1.00 18.18 O GLN A 265 47.033 20.405 8.768 1.00 18.36 CA HIS A 265 46.712 19.366 7.805 1.00 19.15 CB HIS A 265 45.269 19.505 7.310 1.00 19.80 CG HIS A 265 44.890 18.474 6.295 1.00 23.71 ND1 HIS A 265 45.269 19.505 7.310 1.00 27.52 CE1 HIS A 265 44.712 17.562 4.294 1.00 28.98 NE2 HIS A 265 44.190 16.720 5.170 1.00 29.95 CD2 HIS A 265 44.294 17.264 6.430 1.00 27.50 MOTA 1880 MOTA 1881 MOTA 1882 1883 ATOM N 1884 MOTA MOTA 1885 С MOTA 1886 С 1887 MOTA ATOM 1888 Ĉ 1889 ATOM ATOM 1890 6.430 1.00 27.50 CD2 HIS A 265 44.294 17.264 6.430 1.00 27.50 6.624 1.00 18.47 6.236 1.00 17.33 6.089 1.00 17.86 4.968 1.00 17.70 4.440 1.00 17.79 3.277 1.00 16.98 2.080 1.00 16.25 2.832 1.00 16.33 5.372 1.00 17.61 MOTA 1891 47.701 19.383 1892 C HIS A 265 ATOM 48.219 18.340 47.973 20.577 48.891 20.717 HIS A 265 1893 48.219 18.340 47.973 20.577 48.891 20.717 48.925 22.167 49.889 22.490 49.700 21.533 49.731 23.941 50.282 20.225 50.906 19.443 ATOM N LEU A 266 1894 MOTA N CA LEU A 266 MOTA 1895 С LEU A 266 MOTA 1896 CB С CG LEU A 266 ATOM 1897 CD1 LEU A 266 ATOM 1898 С CD2 LEU A 266 MOTA 1899 5.372 1.00 17.61 4.642 1.00 17.30 6.555 1.00 17.19 7.023 1.00 16.80 8.385 1.00 16.67 8.196 1.00 15.36 9.494 1.00 14.12 9.024 1.00 15.66 7.137 1.00 17.49 6.618 1.00 16.97 7.783 1.00 17.52 7.997 1.00 18.02 8.907 1.00 18.56 LEU A 266 MOTA 1900 С 50.906 19.443 0 LEU A 266 MOTA 1901 0 50.741 20.639 N ILE A 267 MOTA 1902 N C 52.072 20.263 MOTA 1903 CA ILE A 267 52.425 20.934 52.702 22.433 С CB ILE A 267 MOTA 1904 С 1905 CG1 ILE A 267 MOTA 52.656 23.273 1906 CD1 ILE A 267 MOTA С 53.626 20.245 CG2 ILE A 267 ATOM 1907 53.020 20.2.5 52.173 18.753 53.119 18.156 51.178 18.140 51.165 16.692 С C ILE A 267 MOTA 1908 0 ILE A 267 1909 0 ATOM . N N ARG A 268 1910 MOTA С MOTA CA ARG A 268 1911 49.990 16.302 8.907 1.00 18.56 ARG A 268

 49.990
 16.302
 8.907
 1.00
 18.56

 50.240
 16.587
 10.386
 1.00
 20.63

 49.234
 15.899
 11.331
 1.00
 25.57

 48.912
 16.743
 12.487
 1.00
 29.85

 49.629
 16.737
 13.585
 1.00
 31.14

 50.663
 15.929
 13.648
 1.00
 34.34

 49.331
 17.507
 14.615
 1.00
 30.34

 51.104
 15.910
 6.668
 1.00
 17.59

 51.676
 14.833
 6.544
 1.00
 16.65

 50.397
 16.470
 5.693
 1.00
 17.56

 50.336
 15.913
 4.341
 1.00
 18.74

 MOTA 1912 CB С ARG A 268 MOTA 1913 CG С ARG A 268 1914 CD MOTA N ARG A 268 ATOM 1915 NE С CZ ARG A 268 1916 MOTA N 1917 NH1 ARG A 268 ATOM NH2 ARG A 268 1918 MOTA С 1919 C ARG A 268 MOTA 0 ARG A 268 ATOM 1920 O N TRP A 269 ATOM 1921 N С 1922 CA TRP A 269 MOTA 3.490 1.00 18.77 49.340 16.717 С TRP A 269 MOTA 1923 CB 2.265 1.00 21.08 48.810 15.979 MOTA 1924 CG TRP A 269 1.914 1.00 22.56 49.030 14.662 CD1 TRP A 269 1925 MOTA 48.387 14.372 0.730 1.00 24.35 1926 NE1 TRP A 269 MOTA 0.301 1.00 23.34 С CE2 TRP A 269 47.716 15.491 1927 MOTA 1.00 22.70 1.248 С CD2 TRP A 269 47.957 16.522 MOTA 1928 1.00 23.10 47.377 17.781 1.033 CE3 TRP A 269 ATOM 1929

ATOM	1930	CZ3	TRP	Α	269	46.576	17.970	-0.102	1.00	24.93	С
ATOM	1931	CH2	TRP	А	269	46.351	16.922	-1.014	1.00	24.84	C
ATOM	1932	CZ2	TRP	A		46.911	15.679	-0.829	1.00	23.75	С
ATOM	1933	С	TRP	Α	289	51.711	15.906	3.667	1.00	17.27	Ċ
MOTA	1934	0			269	52.137	14.870	3.149	1.00	16.99	0
ATOM	1935	N			270	52.400	17.056	3.687	1.00	16.34	N
ATOM	1936	CA			270	53.759	17.173	3.134	1.00		C
ATOM	1937	СВ			270	54.294	18.607	3.275	1.00	_	c
ATOM	1938	SG			270	53.427	19.842	2.287	1.00	_	s
ATOM	1939	C			270	54.742	16.241	3.824	1.00		C
ATOM	1940	o			270	55.711	15.774	3.195	1.00		ŏ
ATOM	1941	N			271	54.488	15.978	5.112	1.00		N
ATOM	1942	CA			271	55.357	15.124	5.907		16.36	Ċ
ATOM	1943	CB			271	55.574	15.727	7.304		15.90	C
MOTA	1944	CG			271	56.248	17.116	7.361	1.00		C
ATOM	1945		LEU			56.473	17.592	8.793	1.00		C
MOTA	1946		LEU			57.590	17.113	6.570	1.00		c
ATOM	1947	C			271	54.861	13.667	6.010		16.92	C
ATOM	1948	ď			271	55.190	12.969	6.976		17.11	0
ATOM	1949	N			272	54.085	13.217	5.021	1.00		N
	1950	CA			272	53.627	11.819	4.971		18.16	C
ATOM						52.691	11.513	3.798			C
MOTA	1951	CB			272					18.05	
ATOM	1952	C			272	54.839	10.921	4.852		18.59	C
ATOM	1953	0			272	55.768	11.216	4.083	1.00		0
ATOM	1954	N			273	54.835	9.835	5.621	1.00		N
ATOM	1955	CA			273	55.953	8.894	5.630	1.00		C
MOTA	1956	CB			273	55.754	7.832	6.728	1.00		C
MOTA	1957	CG			273	56.079	8.298	8.162	1.00		C
MOTA	1958		LEU			55.894	7.176	9.193	1.00		C
ATOM	1959		LEU			57.491	8.889	8.262	1.00		C
ATOM	1960	С			273	56.178	8.254	4.258	1.00		С
MOTA	1961	0			273	57.322	8.138	3.800	1.00		0
ATOM	1962	N			274	55.090	7.849	3.605	1.00		N
ATOM	1963	CA			274	55.164	7.292	2.259	1.00		С
ATOM	1964	CB			274	53.968	6.373	1.955	1.00		С
ATOM	1965	CG			274	53.714	5.266	2.975	1.00		C
ATOM	1966	CD			274	52.588	4.263	2.576	1.00		С
ATOM	1967	NE			274	52.637	3.917	1.150	1.00		N
MOTA	1968	cz			274	51.914	2.962	0.564	1.00		С
ATOM	1969	NH1	ARG	Α	274	51.061	2.223	1.275	1.00		N
ATOM	1970	NH2	ARG	Α	274	52.047	2.741	-0.742	1.00		N
ATOM	1971	С	ARG	A	274	55.226	8.418	1.227	1.00		С
MOTA	1972	0	ARG	Α	274	54.312	9.249	1.157	1.00		0
MOTA	1973	N			275	56.297	8.452	0.435	1.00		N
ATOM	1974	CA	PRO			56.479	9.502	-0.576	1.00		С
ATOM	1975	CB	PRO			57.684	9.007	-1.384	1.00		С
ATOM	1976	CG	PRO			58.448	8.169	-0.409	1.00		C.
MOTA	1977	CD	PRO			57.432	7.509	0.469	1.00		С
MOTA	1978	С	PRO	A	275	55.245	9.709	-1.474	1.00		С
MOTA	1979	0			275	54.842	10.860	-1.692	1.00		0
MOTA	1980	N			276	54.650	8.618	-1.966	1.00	20.58	N
MOTA	1981	CA	SER	Α	276	53.454	8.693	-2.811	1.00		C
ATOM	1982	CB	SER	Α	276	53.146	7.323	-3.430	1.00		С
ATOM	1983	OG	SER	Α	276	52.516	6.487	-2.479	1.00	22.25	0
ATOM	1984	C	SER	Ά	276	52.219	9.234	-2.067	1.00	20.21	С
ATOM	1985	0	SER	Α	276	51.232	9.612	-2.697	1.00	20.43	0
ATOM	1986	N	ASP	Α	277	52.264	9.266	-0.737	1.00	19.88	N
ATOM	1987	CA	ASP	Α	277	51.173	9.875	0.027	1.00	19.72	С
ATOM	1988	CB	ASP	A	277	51.093	9.311	1.443	1.00	19.57	С
ATOM	1989	CG	ASP			50.404	7.945	1.501	1.00		C
ATOM	1990		ASP			49.751	7.540	0.504	1.00		0
ATOM	1991		ASP			50.470	7.222	2.522	1.00		ō
ATOM	1992	C	ASP			51.266	11.407	0.085	1.00		Č
ATOM	1993	0	ASP			50.295	12.068	0.483	1.00		ŏ
ATOM	1994	N	ARG			52.413	11.962	-0.308	1.00		N
ATOM	1995	CA	ARG			52.633	13.408	-0.252	1.00		C
ATOM	1996	CB	ARG			54.137	13.740	-0.277	1.00		Ċ
ATOM	1997	CG	ARG			54.859	13.330	1.009	1.00		C
ATOM	1998	CD	ARG			56.388	13.456	0.995	1.00		·C
		22				23.500		2.220			•

ATOM	1999	NE	ARG	А	278	56.954	12.458	1.908	1.00 15.33	N
ATOM	2000	CZ	ARG			58.152	11.885	1.769	1.00 15.76	С
MOTA	2001	NH1	ARG	Α	278	58.965	12.239	0.770	1.00 13.75	N
ATOM	2002	NH2	ARG	A	278	58.541	10.966	2.649	1.00 13.90	N
ATOM	2003	С	ARG	Α	278	51.908	14.104	-1.391	1.00 17.58	С
MOTA	2004	0	ARG			51.716	13.506	-2.466	1.00 17.77	0
ATOM	2005	N	PRO			51.508	15.357	-1.166	1.00 16.97	N
MOTA	2006	CA	PRO			50.820	16.142	-2.192	1.00 16.86	C
MOTA	2007	CB	PRO			50.364	17.387	-1.415	1.00 17.33	C
MOTA	2008	CG	PRO			51.426	17.533	-0.313	1.00 16.46	C
ATOM	2009	CD	PRO			51.685	16.125	0.088	1.00 16.42	C
ATOM	2010	C	PRO			51.768	16.573	-3.290 -3.021	1.00 17.64	C
MOTA	2011	0	PRO			52.967	16.757 16.735	-3.021 -4.507	1.00 17.91 1.00 17.35	O N
ATOM	2012	N	THR			51.245 51.998	17.353	-5.593	1.00 17.56	C
ATOM	2013	CA	THR			51.284	17.108	-6.937	1.00 17.70	C
ATOM	2014 2015	CB OG1				49.989	17.716	-6.885	1.00 18.13	ő
ATOM ATOM	2015	CG2	THR			50.976	15.600	-7.152	1.00 18.27	Č
ATOM	2017	C	THR			52.048	18.864	-5.326	1.00 18.09	č
ATOM	2018	Õ	THR			51.342	19.358	-4.427	1.00 18.12	0
ATOM	2019	N	PHE			52.838	19.600	-6.113	1.00 18.50	'n
ATOM	2020	CA	PHE			52.870	21.066	-6.000	1.00 19.56	C
ATOM	2021	CB	PHE			53.863	21.702	-6.994	1.00 19.97	С
ATOM	2022	CG	PHE			55.322	21.369	-6.721	1.00 22.52	С
ATOM	2023		PHE			55.834	21.383	-5.433	1.00 25.27	С
ATOM	2024		PHE			57.198	21.070	-5.177	1.00 26.96	C
ATOM	2025	CZ	PHE	Α	281	58.040	20.748	-6.235	1.00 29.27	С
ATOM	2026	CE2	PHE	Α	281	57.535	20.748	-7.553	1.00 28.17	С
ATOM	2027	CD2	PHE	Α	281	56.183	21.061	-7.781	1.00 26.44	С
MOTA	2028	С	PHE	Α	281	51.474	21.656	-6.211	1.00 19.44	С
ATOM	2029	0	PHE	Α	281	51.064	22.559	-5.481	1.00 19.75	0
MOTA	2030	N	${ t GLU}$	A	282	50.742	21.119	-7.188	1.00 18.94	N
MOTA	2031	CA	GLU	Α	282	49.396	21.592	-7.492	1.00 19.12	C
MOTA	2032	CB	GLU			48.851	20.940	-8.787	1.00 19.45	C
ATOM	2033	CG	GLU			47.360	21.133	-9.034	1.00 21.47	C
MOTA	2034	CD			282	46.874		-10.387	1.00 26.22	C
MOTA	2035	OE1				47.449		-10.886	1.00 26.51	0
ATOM	2036		GLU			45.901		-10.951	1.00 25.95	0 C
ATOM	2037	C			282	48.454	21.369	-6.307	1.00 18.61 1.00 18.93	0
ATOM	2038	0			282	47.648 48.558	20.219	-5.986 -5.640	1.00 18.93	N
ATOM	2039	N			283	47.693	19.956	-4.485	1.00 17.05	C
MOTA	2040	CA			283 283	47.744	18.489	-4.076	1.00 17.90	C
MOTA	2041 2042	CB CG			283	46.951	17.556	-4.989	1.00 18.94	c
ATOM ATOM	2042	CD	GLU			47.298	16.099	-4.752	1.00 21.25	C
ATOM	2044	OE1	GLU			48.463	15.806	-4.453	1.00 21.74	Ō
ATOM	2045		GLU			46.399	15.240	-4.852	1.00 26.34	0
ATOM	2046	C			283	47.994	20.850	-3.277	1.00 16.99	C
ATOM	2047	ŏ			283	47.090	21.208	-2.519	1.00 16.78	0
ATOM	2048	N			284	49.260	21.208	-3.109	1.00 16.34	N
ATOM	2049	CA			284	49.645	22.147	-2.057	1.00 16.23	C
ATOM	2050	CB	ILE	Α	284	51.182	22.296	-1.977	1.00 15.68	С
ATOM	2051	CG1	ILE			51.837	20.997	-1.492	1.00 15.14	C
ATOM	2052	CD1	ILE	Α	284	53.373	20.968	-1.576	1.00 13.98	С
MOTA	2053	CG2	ILE	Α	284	51.552	23.488	-1.074	1.00 15.67	C
ATOM	2054	С	ILE	Α	284	49.003	23.507	-2.320	1.00 16.48	C
ATOM	2055	0	ILE	A	284	48.371	24.076	-1.447	1.00 16.43	0
ATOM	2056	N	GLN	Α	285	49.162	24.009	-3.539	1.00 16.57	N
MOTA	2057	CA			285	48.677	25.335	-3.872	1.00 17.32	C
ATOM	2058	CB	GLN	A	285	49.376	25.867	-5.124	1.00 16.61	C
ATOM	2059	CG			285	50.848	26.173	-4.858	1.00 16.82	C
MOTA	2060	CD			285	51.485	26.941	-5.984	1.00 16.61	C
MOTA	2061		GLN			51.643	26.408	-7.087	1.00 16.49	0
MOTA	2062		GLN			51.822	28.204	-5.731	1.00 12.74	N
MOTA	2063	C			285	47.153	25.426	-3.998	1.00 17.59	C
ATOM	. 2064	0			285	46.596	26.520	-3.882	1.00 17.62	0
ATOM	2065	N			286	46.495	24.292	-4.231	1.00 17.76	N
ATOM	2066	CA			286	45.038	24.227	-4.189	1.00 18.67	C
ATOM	2067	CB	ASN	A	286	44.507	23.196	-5.199	1.00 19.01	C

				_		44 500	22 (02			a
ATOM	2068		ASN			44.599	23.683	-6.644	1.00 20.31	С
ATOM	2069	OD1	ASN	Α	286	44.581	24.890	-6.923	1.00 21.12	0
ATOM	2070	ND2				44.697	22.746	-7.566	1.00 21.21	N
					_					Ċ
MOTA	2071		ASN			44.473	23.948	-2.787	1.00 19.15	
ATOM	2072	0	ASN	Α	286	43.253	23.959	-2.585	1.00 18.66	0
MOTA	2073	N	HIS	A	287	45.362	23.711	-1.820	1.00 19.57	N
			HIS			44.943	23.402	-0.455	1.00 19.96	С
ATOM	2074									
MOTA	2075	CB	HIS	А	287	46.161	23.008	0.398	1.00 20.42	С
MOTA	2076	CG	HIS	Α	287	45.811	22.535	1.776	1.00 20.16	С
						45.771	21.201	2.120	1.00 21.24	N
MOTA	2077	ND1								
MOTA	2078	CE1	\mathtt{HIS}	A	287	45.417	21.085	3.388	1.00 20.50	С
MOTA	2079	NE2	HIS	Α	287	45.224	22.298	3.878	1.00 21.14	N
ATOM	2080		HIS			45.469	23.220	2.891	1.00 19.59	С
										c
ATOM	2081	С	HIS			44.212	24.613	0.140	1.00 20.17	
ATOM	2082	0	HIS	Α	287	44.585	25.753	-0.140	1.00 20.09	0
MOTA	2083	N	PRO	А	288	43.154	24.375	0.921	1.00 20.64	N
						42.399	25.468	1.540	1.00 20.94	С
ATOM	2084	CA	PRO							
ATOM	2085	CB	PRO	Α	288	41.409	24.741	2.463	1.00 21.25	С
ATOM	2086	CG	PRO	Α	288	41.229	23.429	1.836	1.00 21.49	С
			PRO			42.549	23.063	1.215	1.00 20.84	С
ATOM	2087	CD								
ATOM	2088	С	PRO	Α	288	43.263	26.449	2.323	1.00 20.62	С
ATOM	2089	0	PRO	Α	288	42.995	27.641	2.242	1.00 21.00	0
	2090	N	TRP			44.290	25.982	3.027	1.00 20.44	N
MOTA										
ATOM	2091	CA	TRP	A	289	45.144	26.903	3.785	1.00 20.73	С
MOTA	2092	CB	TRP	A	289	46.165	26.169	4.668	1.00 19.78	С
	2093	CG	TRP	73	288	46.932	27.139	5.535	1.00 18.93	C
ATOM										c
MOTA	2094	CD1	TRP	Α	289	46.469	27.795	6.646	1.00 17.79	
ATOM	2095	NE1	TRP	Α	289	47.450	28.617	7.152	1.00 17.69	N
ATOM	2096	CE2	TRP	Δ	289	48.560	28.535	6.348	1.00 17.45	C
								5.316	1.00 16.35	C
MOTA	2097		TRP			48.265	27.614			
ATOM	2098	CE3	TRP	Α	289	49.252	27.348	4.352	1.00 16.19	C
MOTA	2099	CZ3	TRP	Α	289	50.488	27.992	4.453	1.00 14.25	С
						50.753	28.894	5.498	1.00 15.51	С
ATOM	2100		TRP							
MOTA	2101	CZ2	TRP	A	289	49.805	29.181	6.453	1.00 16.21	С
ATOM	2102	С	TRP	Α	289	45.868	27.924	2.897	1.00 21.43	С
					289	46.219	29.005	3.371	1.00 21.35	0
ATOM	2103	0								
ATOM	2104	N	MET	Α	290	46.081	27.575	1.627	1.00 22.16	N
ATOM	2105	CA	MET	Α	290	46.795	28.432	0.672	1.00 23.41	С
	2106	CB			290	47.570	27.561	-0.328	1.00 23.44	C
ATOM									1.00 23.18	C
ATOM	2107	CG			290	48.631	26.687	0.341		
ATOM	2108	ŞD	MET	А	290	50.289	27.282	-0.016	1.00 24.31	S
ATOM	2109	CE	MET	Ά	290	50.282	28.805	0.810	1.00 21.67	С
							29.456	-0.093	1.00 24,66	С
ATOM	2110	С			290	45.935				
ATOM	2111	0	MET	Α	290.	46.465	30.229	-0.901	1.00 24.82	0
ATOM	2112	N	GLN	Α	291	44.627	29.472	0.161	1.00 25.63	N
						43.725	30.390	-0.541	1.00 27.47	С
ATOM	2113	CA			291					
ATOM	2114	CB	GLN	А	291	42.263		-0.399	1.00 28.12	С
MOTA	2115	CG	GLN	Α	291	41.931	28.612	-1.133	1.00 30.95	C
	2116	CD			291	42.797	28.376	-2.378	1.00 35.68	C
ATOM										Ō
MOTA	2117	OE1	GLN	А	291	42.599	29.038	-3.414	1.00 37.06	
MOTA	2118	NE2	GLN	Α	291	43.766	27.441	-2.277	1.00 34.40	N
ATOM	2119	С			291	43.879	31.844	-0.094	1.00 27.73	С
										0
MOTA	2120	0			291	44.222	32.122	1.059	1.00 28.09	
ATOM	2121	N	ASP	Α	292	43.651	32.765	-1.026	1.00 28.22	N
ATOM	2122	CA	ASP	Δ	292	43.678	34.207	-0.750	1.00 28.34	С
							34.596	0.224	1.00 29.02	С
MOTA	2123	CB			292	42.553				
ATOM	2124	CG	ASP	Α	292	41.176	34.236	-0.308	1.00 31.45	С
ATOM	2125	במס	ASP	Δ	292	40.817	34.731	-1.402	1.00 33.30	0
							33.452	0.291	1.00 34.49	Ō
ATOM	2126		ASP			40.400				
ATOM	2127	С	ASP	A	292	45.027	34.718	-0.245	1.00 27.65	С
ATOM	2128	0	ASP	А	292	45.098	35.446	0.761	1.00 27.28	0
					293	46.094	34.334	-0.946	1.00 26.88	N
ATOM	2129	N								
ATOM	2130	CA	VAL	A	293	47.429	34.808	-0.622	1.00 25.72	C
ATOM	2131	CB	VAL	Α	293	48.538	34.025	-1.396	1.00 26.36	С
			VAL			48.546	34.374	-2.881	1.00 26.33	С
ATOM	2132									
ATOM	2133	CG2	VAL			49.912	34.299	-0.799	1.00 24.82	C
ATOM	2134	С	VAL	Α	293	47.550	36.311	-0.877	1.00 25.50	С
	2135	ō			293	47.007	36.824	-1.848	1.00 24.70	0
MOTA								0.009	1.00 25.07	. N
ATOM	2136	N	ıııı∪	A	294	48.261	37.004	0.009	1.00 23.07	1/4

MOTA	2137	CA	LEU	Α	294	48.630	38.392	-0.226	1.00 25.15	С
ATOM	2138	CB			294	49.280	38.998	1.017	1.00 24.83	c
ATOM	2139	CG	LEU	A	294	48.500	39.140	2.329	1.00 24.86	C
ATOM	2140				294	49.412		3.371	1.00 22.85	С
ATOM	2141				294	47.199		2.148	1.00 24.42	С
ATOM	2142	C			294	49.621		-1.384	1.00 25.66	С
ATOM	2143	0			294	50.437		-1.598	1.00 25.15	0
ATOM	2144	N			295	49.539		-2.128	1.00 26.06	N
ATOM ATOM	2145	CA			295 295	50.587		-3.071	1.00 26.73	C
ATOM	2146 2147	CB CG			295	50.122 48.775		-3.981 -4.717	1.00 27.23	C
ATOM	2148				295	48.330		-5.412	1.00 29.21 1.00 31.53	C
ATOM	2149				295	48.829		-5.721	1.00 31.33	C
ATOM	2150	C			295	51.841		-2.265	1.00 26.44	C
MOTA	2151	0			295	51.729		-1.103	1.00 25.11	ŏ
ATOM	2152	N	PRO	Α	296	53.028		-2.851	1.00 27.04	N
ATOM	2153	CA	PRO	Α	296	54.277	40.535	-2.164	1.00 27.59	C
ATOM	2154	CB	PRO	A	296	55.331	40.358	-3.250	1.00 27.65	С
MOTA	2155	CG	PRO	Α	296	54.772	39.247	-4.091	1.00 27.68	С
ATOM	2156	CD			296	53.292		-4.171	1.00 26.80	C
ATOM	2157	C			296	54.265		-1.623	1.00 28.49	. С
ATOM	2158	0			296	54.608		-0.459	1.00 28.36	0
ATOM	2159	N			297	53.854		-2.430	1.00 29.34	N
ATOM	2160	CA			297	53.801		-1.960	1.00 30.65	C
ATOM ATOM	2161 2162	CB CG			297 297	53.467 53.783		-3.102 -2.787	1.00 31.10	С
ATOM	2163	CD			297	55.239		-2.767	1.00 33.83 1.00 37.47	C
ATOM	2164		GLN			56.158		-3.153	1.00 37.47	0
ATOM	2165		GLN			55.444		-1.147	1.00 30.03	N
ATOM	2166	C			297	52.830		-0.782	1.00 30.41	C
ATOM	2167	0	GLN	Α	297	53.174		0.210	1.00 30.58	Ō
MOTA	2168	N	GLU	Α	298	51.640	43.900	-0.891	1.00 30.38	N
ATOM	2169	CA	GLU	Α	298	50.699	43.839	0.235	1.00 30.73	С
ATOM	2170	CB	GLU	A	298	49.479	42.981	-0.103	1.00 31.10	С
ATOM	2171	CG			298	48.534		-1.141	1.00 33.59	. C
ATOM	2172	CD			298	47.270		-1.289	1.00 37.83	С
ATOM	2173		GLU			47.369		-1.435	1.00 36.99	0
ATOM	2174 2175		GLU			46.166		-1.272	1.00 40.82	0
ATOM ATOM	2176	C O			298 298	51.378 51.258		1.485 2.577	1.00 30.06 1.00 30.09	C 0
ATOM	2177	N			299	52.096		1.301	1.00 30.03	N
ATOM	2178	CA			299	52.857		2.360	1.00 27.61	C
ATOM	2179	CB			299	53.619		1.782	1.00 27.45	Č
ATOM	2180	OG1	THR	A	299	52.690		1.192	1.00 25.03	Ō
ATOM	2181	CG2	THR	Α	299	54.269	39.447	2.897	1.00 26.87	C
ATOM	2182	С			299	53.840		3.062	1.00 27.70	C
ATOM	2183	0			299	53.890		4.289	1.00 27.42	0
ATOM	2184	N			300	54.626		2.278	1.00 27.78	N
ATOM	2185	CA			300	55.622		2.819	1.00 28.26	C
ATOM	2186	CB			300	56.517		1.706	1.00 28.09	C
MOTA	2187	C			300	54.972		3.588	1.00 28.73	C
ATOM ATOM	2188 2189	O N			300 301	55.444 53.884		4.658 3.040	1.00 28.08 1.00 29.58	0
ATOM	2190	CA			301	53.169		3.668	1.00 29.38	N C
ATOM	2191	CB			301	52.063		2.738	1.00 31.15	C
ATOM	2192	CG			301	52.592		1.555	1.00 34.28	C
ATOM	2193	CD	GLU			51.553		0.460	1.00 37.15	č
ATOM	2194		GLU			50.659		0.219	1.00 37.47	Ö
ATOM	2195	OE2	GLU	Α	301	51.642		-0.177	1.00 38.55	Ö
MOTA	2196	С	GLU	A	301	52.610		5.042	1.00 31.10	č
MOTA	2197	0	GLU	Α	301	52.779	47.211	6.019	1.00 31.18	0
MOTA	2198	N	ILE	A	302	51.989		5.107	1.00 31.28	N
ATOM	2199	CA			302	51.371		6.340	1.00 31.59	С
MOTA	2200	CB	ILE			50.284		6.019	1.00 31.30	С
ATOM	2201		ILE			49.201		5.115	1.00 31.02	С
ATOM	2202		ILE			48.293		4.435	1.00 29.87	С
ATOM	2203		ILE			49.673		7.311	1.00 30.80	C
MOTA	2204 2205	С 0	ILE			52.384 52.263	44.286	7.373 8.560	1.00 32.02	C
MOTA	2200	U	TTE	M	202	32.203	44.577	0.500	1.00 31.80	0

MOTA	2206	N	HTS	Α	303	53.391	43.544	6.909	1.00 32.60	N
ATOM	2207	CA								
					303	54.253			1.00 33.26	С
ATOM	2208	CB			303	54.176	41.282	_	1.00 32.20	C
ATOM	2209	CG	HIS	Α	303	52.832	40.662	7.606	1.00 29.68	C
MOTA	2210	ND1	HIS	Α	303	52.385	40.293	8.857	1.00 27.26	N
ATOM	2211	CE1	HIS	Α	303	51.171	39.780	8.755	1.00 27.29	C
ATOM	2212		HIS			50.819	39.796		1.00 26.60	
										N
ATOM	2213		HIS			51.839	40.346		1.00 26.43	С
ATOM	2214	С	HIS	A	303	55.723	43.174	7.849	1.00 35.09	С
ATOM	2215	0	HIS	Α	303	56.435	42.838	8.796	1.00 34.73	0
MOTA	2216	N	LEU	Α	304	56.181	43.889	6.827	1.00 37.42	N
ATOM	2217	CA			304	57.588	44.256		1.00 40.17	C
ATOM	2218	CB	LEU				43.707			
						58.187			1.00 39.43	С
ATOM	2219	CG			304	58.574	42.224		1.00 38.74	C
ATOM	2220		LEU			57.830	41.238	6.125	1.00 34.54	С
MOTA	2221	CD2	LEU	Α	304	58.465	41.807	3.760	1.00 35.74	С
MOTA	2222	С	LEU	Α	304	57.751	45.774	6.796	1.00 42.83	C
ATOM	2223	0			304	58.861	46.286		1.00 43.07	ō
ATOM	2224	N			305	56.629	46.462		1.00 46.30	
										N
ATOM	2225	CA			305	56.516	47.933		1.00 49.71	С
ATOM	2226	CB			305	56.747	48.459	8.545	1.00 50.37	С
ATOM	2227	CG	HIS	Α	305	58.085	48.106	9.125	1.00 53.30	С
ATOM	2228	ND1	HIS	Α	305	58.344	46.886	9.716	1.00 56.26	N
ATOM	2229		HIS			59.597	46.860		1.00 57.48	c
ATOM	2230		HIS							
						60.159	48.022	9.847	1.00 57.58	N
ATOM	2231		HIS			59.234	48.820	9.216	1.00 56.22	С
ATOM	2232	С	HIS	Α	305	57.339	48.707	6.063	1.00 50.97	C
ATOM	2233	0	HIS	Α	305	58.423	49.221	6.359	1.00 51.59	0
ATOM	2234	N	SER	Α	306	56.795	48.799	4.850	1.00 52.46	N
ATOM	2235	CA			306	57.518	49.345	3.693	1.00 53.65	c
ATOM	2236									
		CB			306	56.768	49.009	2.401	1.00 53.75	С
MOTA	2237	OG	SER			57.340	47.873	1.784	1.00 54.33	0
ATOM	2238	С	SER	Α	306	57.820	50.851	3.763	1.00 54.12	C
MOTA	2239	0	SER	A	306	58.964	51.291	3.600	1.00 54.51	0
ATOM	2240	OXT	SER	Α	306	56.943	51.696	3.974	1.00 54.48	0
ATOM	2241		ANP		1	74.739	30.562	-0.833	1.00 18.02	ŏ
ATOM	2242	PA	ANP		1	74.774	30.444	0.630	1.00 19.01	P
ATOM	2243		ANP		1	73.576	29.828	1.256	1.00 17.67	0
ATOM	2244	оза	ANP	L	1	76.090	29.652	0.938	1.00 19.50	0
ATOM	2245	PB	ANP	L	1	76.391	28.426	1.887	1.00 21.38	P
ATOM	2246	01B	ANP	т.	1	77.321	27.642	1.069	1.00 18.82	Ö
ATOM	2247		ANP		1	77.348	29.007	2.991	1.00 24.75	Ö
	2248									
ATOM			ANP		1	75.190	27.617	2.664	1.00 20.02	N
ATOM	2249	PG	ANP		1	73.526	27.764	2.959	1.00 31.62	P
ATOM	2250	O3G	ANP	L	1	73.022	29.016	3.938	1.00 19.18	0
ATOM	2251	02G	ANP	L	1	73.054	27.935	1.600	1.00 20.72	0
MOTA	2252	01G	ANP	L	1	72.907	26.389	3.404	1.00 20.30	0
ATOM	2253		ANP		1	74.945	31.880	1.324	1.00 18.06	Ö
ATOM	2254		ANP			75.248	31.923			
					1			2.714	1.00 17.09	C
ATOM	2255		ANP		1	74.482	33.091	3.324	1.00 18.01	С
ATOM	2256		ANP		1	74.771	34.292	2.621	1.00 19.09	0
ATOM	2257	C1*	ANP	L	1	73.660	35.124	2.442	1.00 17.31	С
ATOM	2258	C2*	ANP	L	1	72.535	34.397	3.160	1.00 18.01	С
ATOM	2259		ANP		1	72.451	34.900	4.487	1.00 19.01	Ö
ATOM	2260		ANP		1	72.983	32.937	3.178	1.00 17.74	С
ATOM	2261		ANP		1	72.429	32.083	4.163	1.00 17.16	0
ATOM	2262	N9	ANP	L	1	73.486	35.319	0.979	1.00 17.49	N
ATOM	2263	C8	ANP	L	1	73.739	34.403	-0.019	1.00 15.85	С
ATOM	2264	N7	ANP		1.	73.458	34.943	-1.228	1.00 14.30	N
ATOM	2265	C5	ANP		1	73.025	36.193	-1.045	1.00 15.53	
										C
ATOM	2266	C6	ANP		1	72.607	37.177	-1.929	1.00 16.13	С
MOTA	2267	N6	ANP		1	72.542	36.951	-3.254	1.00 14.38	N
ATOM	2268	C4	ANP	L	1	73.039	36.448	0.334	1.00 15.81	C
ATOM	2269	ΝЗ	ANP		1	72.632	37.646	0.795	1.00 17.04	N
ATOM	2270	C2	ANP		1	72.219	38.650	-0.068	1.00 17.00	C
ATOM	2271	N1	ANP		1	72.213	38.406	-1.417		
									1.00 16.49	N
ATOM	2272	0	НОН		1	63.572	15.756	8.058	1.00 26.33	.0
ATOM	2273	0	НОН		2	61.017	10.214	-2.362	1.00 24.27	0
ATOM	2274	0	HOH	W	3	54.457	23.038	-11.444	1.00 30.92	0

WO 2005/028624 PCT/US2004/030360

ATOM	2275	0	HOH W	4	63.756	21.549	-5.585	1.00 27.71	. 0
ATOM	2276						-9.068	1.00 26.46	
		0	HOH W	5	63.196	11.516			0
ATOM	2277	0	HOH W	6	58.424	12.040	-6.552	1.00 34.61	0
ATOM	2278	0	HOH W	7	54.593	37.425	12.022	1.00 32.21	0
MOTA	2279	0	нон w	8	71.368	23.298	-3.142	1.00 29.05	Ō
ATOM		ō	HOH W	9		20.478	-0.663	1.00 26.42	
	2280				64.911	_			0
ATOM	2281	0	HOH W	10	43.132	26.500	18.254	1.00 34.21	0
ATOM	2282	0	HOH W	11	64.667	17.153	-3.465	1.00 26.68	0
MOTA	2283	0	HOH W	12	75.478	24.941	1.494	1.00 29.16	0
				13			11.098	1.00 24.60	
ATOM	2284	0	HOH W		63.267	18.804			0
MOTA	2285	0	HOH W	14	47.333	35.497	10.172	1.00 39.07	0
ATOM	2286	0	HOH W	15	41.592	25.798	13.188	1.00 29.60	0
ATOM	2287	0	HOH W	16	46.216	35.678	3.186	1.00 30.38	0
ATOM		Ö	HOH W	17	73.656	23.760	-0.205	1.00 33.83	
	2288								0
ATOM	2289	0	HOH W	18	54.975	14.884	-3.637	1.00 27.43	0
ATOM	2290	0	HOH W	19	58.350	33.360	-6.094	1.00 29.01	0
MOTA	2291	0	HOH W	20	58.458	11.832	15.075	1.00 34.06	0
ATOM	2292	0	HOH W	21	48.299	24.286	17.311	1.00 29.81	Ö
ATOM	2293	0	HOH W	22	67.356	21.562	3.234	1.00 31.16	0
ATOM	2294	0	HOH W	23	84.186	28.990	2.689	1.00 31.81	0
ATOM	2295	0	HOH W	24	43.050	31.228	3.507	1.00 47.48	0
ATOM	2296	0	нон w	25	88.316	32,615	-4.360	1.00 32.51	0
MOTA	2297	0	HOH W	26	71.447	43.185	-7.672	1.00 43.19	0
ATOM	2298	0	HOH W	27	64.646	19.993	-3.620	1.00 28.98	0
ATOM	2299	0	HOH W	28	71.618	43.781	0.688	1.00 40.30	0
ATOM	2300	0	W HOH	29	70.325	37.710	6.677	1.00 31.97	0
					71.184				
MOTA	2301	0	HOH W	30		18.590	9.525	1.00 35.40	0
ATOM	2302	0	HOH W	31	53.890	12.402	-3.734	1.00 32.44	0
ATOM	2303	0	HOH W	32	52.246	19.524	-9.419	1.00 35.84	0
ATOM	2304	0	HOH W	33	40.639	26.398	16.837	1.00 35.65	0
		Õ	HOH W	34	60.620	13.344	-8.811	1.00 44.92	Ö
ATOM	2305								
ATOM	2306	0	HOH W	35	75.110	44.117	2.424	1.00 40.04	0
ATOM	2307	0	HOH W	36	74.471	37.990	7.461	1.00 40.83	0
ATOM	2308	0	HOH W	37	59.228	35.799	-5.068	1.00 33.92	0
ATOM	2309	0	HOH W	38	57.123	17.309	16.065	1.00 40.82	0
ATOM	2310	0	HOH W	39	73.994	32.523	-2.675	1.00 33.30	0
ATCM	2311	0	HOH W	40	69.993	44.693	3.957	1.00 50.42	0
ATOM	2312	0	HOH W	41	65.864	18.120	0.377	1.00 37.77	0.
ATOM	2313	0	HOH W	42	48.834	35.741	2.440	1.00 31.77	0
				43		7.956	4.576	1.00 38.71	Ö
ATOM	2314	0	HOH W		52.185				
ATOM	2315	0	HOH W	44	64.765	11.133	-15.777	1.00 33.65	0
ATOM	2316	0	HOH W	45	48.197	17.129	-9.023	1.00 35.25	0
ATOM	2317	0	HOH W	46	71.559	9.704	-7.782	1.00 42.63	0
ATOM	2318	ō	HOH W	47	72.838	31.092	-4.833	1.00 32.07	Ō
ATOM	2319	0	HOH W	48	54.340	33.741	-9.311	1.00 38.01	0
ATOM	2320	0	HOH W	49	54.223	11.905	9.111	1.00 33.22	0
ATOM	2321	0	HOH W	50	52.887	36.641	-1.776	1.00 38.05	0
ATOM	2322	Ō	HOH W	51	58.033	32.102	18.276	1.00 41.20	0
								1.00 35.48	
MOTA	2323	0	HOH W	52	58.764	11.092	17.987		0
ATOM	2324	0	HOH W	53	56.210		-10.737	1.00 40.52	0
ATOM	2325	0	HOH W	54	75.583	29.566	5.684	1.00 42.12	0
ATOM	2326	0	HOH W	55	82.299	27.704	4.152	1.00 43.41	0
ATOM	2327	ŏ	HOH W	56	61.670	6.087		1.00 42.46	Ō
ATOM	2328	0	HOH W	57	41.909	26.005	9.492	1.00 38.52	0
ATOM	2329	0	HOH W	58	72.941	15.417	4.788	1.00 53.05	0
ATOM	2330	0	HOH W	59	56.478	27.573	-12.787	1.00 37.09	0
ATOM	2331	0	HOH W	60	83.158	40.743	6.932	1.00 41.95	0
ATOM	2332	0	HOH W	61	44.574	20.141	-2.416	1.00 38.16	0
ATOM	2333	0	HOH W	62	51.818	13.854	13.409	1.00 36.87	0
ATOM	2334	0	HOH W	63	56.901	22.491	-11.879	1.00 46.71	0
ATOM	2335	0	HOH W	64	46.066	31.890	-3.335	1.00 46.54	0
ATOM	2336	ō	HOH W	65	46.390	17.471	11.120	1.00 41.50	Ö
MOTA	2337	0	HOH W	66	73.021	18.047	7.679	1.00 45.56	0
ATOM	2338	0	HOH W	67	56.272	6.117	-3.207	1.00 47.16	0
ATOM	2339	0	HOH W	68	78.807	46.222	C.194	1.00 43.86	0
ATOM	2340	ō	HOH W	69	70.343		-11.989	1.00 41.06	Ō
ATOM	2341	0	HOH W	70	43.908	38.440	0.670	1.00 53.02	0
ATOM	2342	0	HOH W	71	40.352	28.430	2.051	1.00 45.97	0
ATOM	2343	0	HOH W	72	44.496	19.095	11.235	1.00 54.47	0

ATOM	2344	0	HOH W 73	47.165	15.788	6.720	1.00 41.01	0
ATOM	2345	0	HOH W 74	56.445	43.287	-5.157	1.00 44.15	0
MOTA	2346	0	нон м	73.363		-17.736	1.00 50.03	0
ATOM	2347	0	HOH W 767	67.665		-15.990	1.00 47.37	0
ATOM	2348	0	HOH W 77	77.512	31.796	8.477	1.00 43.71	0
MOTA	2349	0	нон ₩ 78	64.562	45.570	-0.458	1.00 42.82	0
MOTA	2350	0	HOH W 79	72.601	12.906	5.087	1.00 41.65	0
ATOM	2351	0	HOH W 80	64.569	29.017	13.834	1.00 46.57	0
MOTA	2352	0	HOH W 81	58.851	5.715	-3.038	1.00 36.10	0
MOTA	2353	0	HOH W 82	66.378	16.370	-1.785	1.00 36.18	0
MOTA	2354	0	HOH W 83	52.161	13.315	8.870	1.00 38.72	0
MOTA	2355	0	HOH W 84	84.302	27.201	-0.028	1.00 44.09	0
ATOM	2356	0	HOH W 85	49.501	13.263	-4.243	1.00 40.50	0
MOTA	2357	0	нон w 86	63.118	41.154	-5.640	1.00 44.61	0
MOTA	2358	0	HOH W 87	75.334	10.847	-0.667	1.00 41.03	0
ATOM	2359	0	нон w 88	51.946	9.440	7.089	1.00 44.13	0
MOTA	2360	0	HOH W 89	46.051	15.476	9.731	1.00 44.74 1.00 33.21	0
MOTA	2361	0	HOH W 90	60.662	7.651	-3.345	1.00 35.21	0
MOTA	2362	0	HOH W 91	78.926	37.602	8.589	1.00 43.81	0
ATOM	2363	0	HOH W 92	83.687	38.788	8.645	1.00 42.46	0
MOTA	2364	0	HOH W 93	65.774	37.305 32.798	-9.200 13.190	1.00 44.81	0
MOTA	2365	0	HOH W 94	48.890	6.982	7.124	1.00 46.01	Ö
MOTA	2366	0	HOH W 95	71.057		2.367	1.00 41.64	0
MOTA	2367	0	HOH W 96	73.156	42.259	16.920	1.00 47.09	Ö
MOTA	2368	0	HOH W 97	56.031	35.393 23.863	-3.527	1.00 47.03	ŏ
ATOM	2369	0	HOH W 98	90.130	16.375	1.499	1.00 30.23	ŏ
MOTA	2370	0	HOH W 99	64.199 52.185	30.882	13.804	1.00 45.03	ő
ATOM	2371	0	HOH W 100	78.245	25.957	-3.060	1.00 37.82	Ö
MOTA	2372	0	HOH W 101	70.395		-12.472	1.00 40.91	ŏ
ATOM	2373	0	HOH W 102	76.497	26.635	-1.230	1.00 45.90	Ö
ATOM	2374	0	HOH W 103	53.869	39.933	10.992	1.00 48.40	Ō
ATOM	2375	0	HOH W 104	52.957	42.953	-5.317	1.00 43.64	0
ATOM	2376	0	HOH W 105	81.062	46.768	-1.405	1.00 51.11	0
MOTA	2377	0	HOH W 107	85.023	38.607	-2.261	1.00 44.62	0
MOTA	2378 2379	Ö	HOH W 107	55.351	15.949	-6.982	1.00 56.30	0
ATOM	2379	0	HOH W 109	72.893		-11.510	1.00 40.24	0
ATOM	2381	Ö	HOH W 110	64.150	29.039	11.361	1.00 44.87	0
ATOM ATOM	2382	Ö	HOH W 111	70.497	11.613	14.584	1.00 42.70	0
ATOM	2383	Ö	HOH W 112	47.743	30.590	14.200	1.00 41.84	0
ATOM	2384	o	HOH W 113	67.986	19.239	2.487	1.00 45.28	0
ATOM	2385	o	HOH W 114	66.956	9.523	-15.205	1.00 44.06	0
ATOM	2386	ō	HOH W 115	71.948	39.028	3.510	1.00 48.92	0
ATOM	2387	ŏ	HOH W 116	73.384	36.583	9.395	1.00 49.46	0
ATOM	2388	ŏ	HOH W 117	69.213	13.943	11.885	1.00 43.79	0
ATOM	2389	ŏ	HOH W 118	92.376	29.991	-13.421	1.00 50.66	0
ATOM	2390	ō	HOH W 119	71.748	33.616	8.364	1.00 44.60	0
ATOM	2391	ō	HOH W 120	72.751	30.625	9.138	1.00 54.54	0
ATOM	2392	0	HOH W 121	44.373	14.896	1.763	1.00 54.90	0
ATOM	2393	0	HOH W 122	72.331	37.663	5.252	1.00 54.91	0
ATOM	2394	0	HOH W 123	85.766	37.929	7.966	1.00 45.42	0
ATOM	2395	Ō	HOH W 124	82.375		-12.952	1.00 49.98	0
ATOM	2396	0	HOH ₩ 125	69.185		-10.117	1.00 57.15	0
ATOM	2397	0	HOH W 126	72.843		-2.415	1.00 48.35	0
ATOM	2398	0	HOH W 127	58.459		-11.193	1.00 68.47	0
ATOM	2399	0	HOH W 128	64.272		-12.839	1.00 48.86	0
ATOM	2400	0	HOH W 129	59.782	37.121	-16.253	1.00 59.29	0

TABLE 5

DISEASES ASSOCIATED WITH GENETIC DEFECTS IN KINASES

Serine/Threonine Protein Kinases

CYCLIN-DEPENDENT KINASE 7; CDK7

DYSTROPHIA MYOTONICA; DM

MINIBRAIN (DROSOPHILA) HOMOLOG; MNBH

RAC SERINE/THREONINE PROTEIN KINASE

SERINE-THREONINE PROTEIN KINASE N; PKN

SERINE/THREONINE PROTEIN KINASE 2: STK2

PROTEIN KINASE, DNA-ACTIVATED, CATALYTIC SUBUNIT; PRKDC

ZIPPER PROTEIN KINASE; ZPK

PROTEIN-TYROSINE KINASE STY

BRUTON AGAMMAGLOBULINEMIA TYROSINE KINASE; BTK

MKN28 KINASE

PROTEIN KINASE, X-LINKED; PRKX

ELK-RELATED TYROSINE KINASE; ERK

RIBOSOMAL PROTEIN S6 KINASE, 90 KD, POLYPEPTIDE 3; RPS6KA3

GLYCOGEN STORAGE DISEASE VIII

DEATH-ASSOCIATED PROTEIN KINASE 1; DAPK1

PCTAIRE PROTEIN KINASE 1; PCTK1

PROTEIN KINASE, INTERFERON-INDUCIBLE DOUBLE-STRANDED RNA; PRKR

ACTIVIN A RECEPTOR, TYPE II-LIKE KINASE 1; ACVRLK1

PROTEIN KINASE, cAMP-DEPENDENT, CATALYTIC, ALPHA; PRKACA

PROTEIN KINASE, Y-LINKED; PRKY

G PROTEIN-COUPLED RECEPTOR KINASE 2 (DROSOPHILA)-LIKE; GPRK2L

PROTEIN KINASE C, THETA FORM; PRKCQ

LIM DOMAIN KINASE 1; LIMK1

PHOSPHOGLYCERATE KINASE 1; PGK1

LIM DOMAIN KINASE 2; LIMK2

C-JUN KINASE

ACTIVIN A RECEPTOR, TYPE II-LIKE KINASE 2; ACVRLK2

JANUS KINASE 1; JAK1

ELKL MOTIF KINASE; EMK1

MALE GERM CELL-ASSOCIATED KINASE; MAK

CASEIN KINASE 2, ALPHA-PRIME SUBUNIT: CSNK2A2

CASEIN KINASE 2, BETA POLYPEPTIDE; CSNK2B

CASEIN KINASE 2, ALPHA 1 POLYPEPTIDE; CSNK2A1

LEUKEMIA, CHRONIC MYELOID; CML

RET PROTO-ONCOGENE; RET

HEMATOPOIETIC PROGENITOR KINASE 1

CONSERVED HELIX-LOOP-HELIX UBIQUITOUS KINASE; CHUK

CASEIN KINASE 1, DELTA; CSNK1D

CASEIN KINASE 1, EPSILON; CSNK1E

DEATH-ASSOCIATED PROTEIN; DAP

V-AKT MURINE THYMOMA VIRAL ONCOGENE HOMOLOG 1; AKT1

TUMOR PROTEIN p53; TP53

PROTEIN PHOSPHATASE 1, REGULATORY (INHIBITOR) SUBUNIT 2; PPP1R2

SEVERE COMBINED IMMUNODEFICIENCY DISEASE-1; SCID1

HYPERLIPOPROTEINEMIA, TYPE I

COLLAGEN, TYPE I, ALPHA-1 CHAIN; COL1A1

UBIQUITIN-BINDING PROTEIN P62

TAY-SACHS DISEASE; TSD

CYSTIC FIBROSIS; CF

p160-ROCK

218

BCL2-ASSOCIATED ATHANOGENE 1; BAG1

HYPOXANTHINE GUANINE PHOSPHORIBOSYLTRANSFERASE 1; HPRT1

ONCOGENE PIM-1; PIM1; PIM

CARTILAGE-DERIVED MORPHOGENETIC PROTEIN 1

GALACTOSEMIA

GRANULOMATOUS DISEASE, CHRONIC, AUTOSOMAL CYTOCHROME-b-POSITIVE FORM I

TRANSFORMING GROWTH FACTOR-BETA RECEPTOR, TYPE II; TGFBR2

RHODOPSIN; RHO

MOTHERS AGAINST DECAPENTAPLEGIC (DROSOPHILA) HOMOLOG 2; MADH2

TRIPLE FUNCTIONAL DOMAIN; TRIO

TRANSFORMING GROWTH FACTOR-BETA RECEPTOR, TYPE I; TGFBR1

GENERAL TRANSCRIPTION FACTOR IIH, POLYPEPTIDE 1; GTF2H1

ANTI-MULLERIAN HORMONE TYPE II RECEPTOR; AMHR2

V-RAF MURINE SARCOMA VIRAL ONCOGENE HOMOLOG B1; BRAF

BONE MORPHOGENETIC RECEPTOR TYPE II; BMPR2

GLYCOGEN STORAGE DISEASE V

COMPLEX IV, CYTOCHROME c OXIDASE SUBUNIT III

V-RAF MURINE SARCOMA 3611 VIRAL ONCOGENE HOMOLOG 1; ARAF1

GAUCHER DISEASE, TYPE I; GD I

V-RAF MURINE SARCOMA 3611 VIRAL ONCOGENE HOMOLOG 2; ARAF2

CYCLIN A; CCNA

ANEMIA, HYPOCHROMIC; ANH1

GRANULOMATOUS DISEASE, CHRONIC; CGD

ACTIVIN A RECEPTOR, TYPE I; ACVR1

Serine Protein Kinases

CYCLIN-DEPENDENT KINASE 7; CDK7

DYSTROPHIA MYOTONICA; DM

MINIBRAIN (DROSOPHILA) HOMOLOG; MNBH

RAC SERINE/THREONINE PROTEIN KINASE

SERINE-THREONINE PROTEIN KINASE N; PKN

PROTEIN KINASE, SERINE/ARGININE-SPECIFIC

PROTEIN SERINE KINASE H1; PSKH1

SERINE/THREONINE PROTEIN KINASE 2; STK2

PROTEIN KINASE, DNA-ACTIVATED, CATALYTIC SUBUNIT; PRKDC

ZIPPER PROTEIN KINASE; ZPK

PROTEIN-TYROSINE KINASE STY

SYK-RELATED TYROSINE KINASE; SRK

BRUTON AGAMMAGLOBULINEMIA TYROSINE KINASE; BTK

MKN28 KINASE

NON-METASTATIC CELLS 1, PROTEIN EXPRESSED IN; NME1

ELK-RELATED TYROSINE KINASE; ERK

PROTEIN KINASE, X-LINKED; PRKX

FIBROBLAST GROWTH FACTOR RECEPTOR-2; FGFR2

RIBOSOMAL PROTEIN S6 KINASE, 90 KD, POLYPEPTIDE 3; RPS6KA3

PCTAIRE PROTEIN KINASE 1; PCTK1

DEATH-ASSOCIATED PROTEIN KINASE 1; DAPK1

ACTIVIN A RECEPTOR, TYPE II-LIKE KINASE 1; ACVRLK1

GLYCOGEN STORAGE DISEASE VIII

PROTEIN KINASE, INTERFERON-INDUCIBLE DOUBLE-STRANDED RNA; PRKR

PROTEIN KINASE, Y-LINKED; PRKY

G PROTEIN-COUPLED RECEPTOR KINASE 2 (DROSOPHILA)-LIKE; GPRK2L

LIM DOMAIN KINASE 1; LIMK1

PROTEIN KINASE, CAMP-DEPENDENT, CATALYTIC, ALPHA; PRKACA

PROTEIN KINASE C, THETA FORM; PRKCQ

C-JUN KINASE

PHOSPHOGLYCERATE KINASE 1; PGK1

LIM DOMAIN KINASE 2; LIMK2

PCT/US2004/030360

ACTIVIN A RECEPTOR, TYPE II-LIKE KINASE 2; ACVRLK2

JANUS KINASE 1; JAK1

INSULIN RECEPTOR; INSR

CASEIN KINASE 2, ALPHA 1 POLYPEPTIDE: CSNK2A1

CASEIN KINASE 2, BETA POLYPEPTIDE; CSNK2B

CASEIN KINASE 2, ALPHA-PRIME SUBUNIT; CSNK2A2

ATAXIA-TELANGIECTASIA; AT

MALE GERM CELL-ASSOCIATED KINASE; MAK

ELKL MOTIF KINASE; EMK1

LEUKEMIA, CHRONIC MYELOID; CML

HEMATOPOIETIC PROGENITOR KINASE 1

RET PROTO-ONCOGENE; RET

CASEIN KINASE 1, DELTA; CSNK1D

CASEIN KINASE 1, EPSILON; CSNK1E

CONSERVED HELIX-LOOP-HELIX UBIQUITOUS KINASE; CHUK

HYPERCHOLESTEROLEMIA, FAMILIAL; FHC

TUMOR PROTEIN p53; TP53

TAY-SACHS DISEASE; TSD

DEATH-ASSOCIATED PROTEIN; DAP

V-AKT MURINE THYMOMA VIRAL ONCOGENE HOMOLOG 1; AKT1

COLLAGEN, TYPE I, ALPHA-1 CHAIN; COLIAI

SEVERE COMBINED IMMUNODEFICIENCY DISEASE-1; SCID1

ADENOMATOUS POLYPOSIS OF THE COLON; APC

PROTEIN PHOSPHATASE 1, REGULATORY (INHIBITOR) SUBUNIT 2; PPP1R2

UBIQUITIN-BINDING PROTEIN P62

MUSCULAR DYSTROPHY, TARDIVE, DREIFUSS-EMERY TYPE, WITH CONTRACTURES

CAVEOLIN, CAVEOLAE PROTEIN, 22-KD; CAV

FIBROBLAST GROWTH FACTOR RECEPTOR-3; FGFR3

CYSTIC FIBROSIS; CF

HYPOXANTHINE GUANINE PHOSPHORIBOSYLTRANSFERASE 1: HPRT1

GROWTH FACTOR RECEPTOR-BOUND PROTEIN-10; GRB10

HYPERLIPOPROTEINEMIA, TYPE I

CREB-BINDING PROTEIN; CREBBP

THYROID AUTOANTIGEN 70 KD; G22P1

ONCOGENE PIM-1; PIM1; PIM

SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 3; STAT3

CYCLIC-AMP-RESPONSE-ELEMENT-BINDING PROTEIN-1; CREB1

BCL2-ASSOCIATED ATHANOGENE 1; BAG1

P32 SPLICING FACTOR SF2 ASSOCIATED PROTEIN

CARTILAGE-DERIVED MORPHOGENETIC PROTEIN 1

p160-ROCK

GROWTH FACTOR RECEPTOR-BOUND PROTEIN-14; GRB14

THROMBASTHENIA OF GLANZMANN AND NAEGELI

INSULIN RECEPTOR SUBSTRATE 1; IRS1

GRANULOMATOUS DISEASE, CHRONIC, AUTOSOMAL CYTOCHROME-b-POSITIVE FORM I

GUANYLATE CYCLASE 2D, MEMBRANE; GUC2D

GALACTOSEMIA

RHODOPSIN; RHO

TRANSFORMING GROWTH FACTOR-BETA RECEPTOR, TYPE II: TGFBR2

ICHTHYOSIS, X-LINKED

TRIPLE FUNCTIONAL DOMAIN; TRIO

MOTHERS AGAINST DECAPENTAPLEGIC (DROSOPHILA) HOMOLOG 2: MADH2

MCF.2 CELL LINE DERIVED TRANSFORMING SEQUENCE; MCF2

ESTROGEN RECEPTOR: ESR

V-RAF MURINE SARCOMA 3611 VIRAL ONCOGENE HOMOLOG 1; ARAF1

V-RAF MURINE SARCOMA 3611 VIRAL ONCOGENE HOMOLOG 2: ARAF2

BONE MORPHOGENETIC RECEPTOR TYPE II; BMPR2

GAUCHER DISEASE, TYPE I; GD I

TRANSFORMING GROWTH FACTOR-BETA RECEPTOR, TYPE I; TGFBR1

GENERAL TRANSCRIPTION FACTOR IIH, POLYPEPTIDE 1; GTF2H1

CHYMOTRYPSIN-LIKE PROTEASE; CTRL

220

GLYCOGEN STORAGE DISEASE V
CYCLIN A; CCNA
LETHAL GIANT LARVAE (DROSOPHILA) HOMOLOG 1; LLGL1
GRANULOMATOUS DISEASE, CHRONIC; CGD
CASEIN, BETA; CSN2
DENTIN MATRIX ACIDIC PHOSPHOPROTEIN 1; DMP1
TREACHER COLLINS-FRANCESCHETTI SYNDROME 1; TCOF1
COMPLEX IV, CYTOCHROME c OXIDASE SUBUNIT III
DIABETES MELLITUS, AUTOSOMAL DOMINANT
V-RAF MURINE SARCOMA VIRAL ONCOGENE HOMOLOG B1; BRAF
ANEMIA, HYPOCHROMIC; ANH1
ANTI-MULLERIAN HORMONE TYPE II RECEPTOR; AMHR2
PLASMINOGEN ACTIVATOR INHIBITOR, TYPE 2; PAI2
ACTIVIN A RECEPTOR, TYPE I; ACVR1

Threonine Protein Kinases

CYCLIN-DEPENDENT KINASE 7; CDK7

DYSTROPHIA MYOTONICA; DM

MINIBRAIN (DROSOPHILA) HOMOLOG; MNBH

RAC SERINE/THREONINE PROTEIN KINASE

SERINE-THREONINE PROTEIN KINASE N; PKN

SERINE/THREONINE PROTEIN KINASE 2; STK2

PROTEIN KINASE, DNA-ACTIVATED, CATALYTIC SUBUNIT; PRKDC

ZIPPER PROTEIN KINASE; ZPK

PROTEIN-TYROSINE KINASE STY

PROTEIN KINASE, MITOGEN-ACTIVATED, KINASE 1; PRKMK1

BRUTON AGAMMAGLOBULINEMIA TYROSINE KINASE; BTK

MKN28 KINASE

PROTEIN KINASE, X-LINKED; PRKX

ELK-RELATED TYROSINE KINASE; ERK

GLYCOGEN STORAGE DISEASE VIII

PYRUVATE KINASE DEFICIENCY OF ERYTHROCYTE

RIBOSOMAL PROTEIN S6 KINASE, 90 KD, POLYPEPTIDE 3; RPS6KA3

DEATH-ASSOCIATED PROTEIN KINASE 1; DAPK1

PCTAIRE PROTEIN KINASE 1; PCTK1

PROTEIN KINASE, INTERFERON-INDUCIBLE DOUBLE-STRANDED RNA; PRKR

ACTIVIN A RECEPTOR, TYPE II-LIKE KINASE 1; ACVRLK1

PROTEIN KINASE, Y-LINKED; PRKY

G PROTEIN-COUPLED RECEPTOR KINASE 2 (DROSOPHILA)-LIKE; GPRK2L

PROTEIN KINASE, cAMP-DEPENDENT, CATALYTIC, ALPHA; PRKACA

PROTEIN KINASE C, THETA FORM; PRKCQ

MUSCULAR DYSTROPHY, PSEUDOHYPERTROPHIC PROGRESSIVE, DUCHENNE AND BECKER

TYPES; DMD

LIM DOMAIN KINASE 1; LIMK1

PHOSPHOGLYCERATE KINASE 1; PGK1

LIM DOMAIN KINASE 2; LIMK2

C-JUN KINASE

ACTIVIN A RECEPTOR, TYPE II-LIKE KINASE 2; ACVRLK2

JANUS KINASE 1; JAK1

CASEIN KINASE 2, ALPHA 1 POLYPEPTIDE; CSNK2A1

CASEIN KINASE 2, BETA POLYPEPTIDE; CSNK2B

MALE GERM CELL-ASSOCIATED KINASE; MAK

MEVALONICACIDURIA

ELKL MOTIF KINASE; EMK1

CASEIN KINASE 2, ALPHA-PRIME SUBUNIT; CSNK2A2

MAP KINASE KINASE 6

CASEIN KINASE 1, EPSILON; CSNK1E

CASEIN KINASE 1. DELTA; CSNK1D

LEUKEMIA, CHRONIC MYELOID; CML

CONSERVED HELIX-LOOP-HELIX UBIQUITOUS KINASE; CHUK

HEMATOPOIETIC PROGENITOR KINASE 1

RET PROTO-ONCOGENE; RET

PROTEIN PHOSPHATASE 1, REGULATORY (INHIBITOR) SUBUNIT 2; PPP1R2

DUAL SPECIFICITY PHOSPHATASE 1; DUSP1

V-AKT MURINE THYMOMA VIRAL ONCOGENE HOMOLOG 1; AKT1

DEATH-ASSOCIATED PROTEIN; DAP

TUMOR PROTEIN p53; TP53

GLYCOGEN STORAGE DISEASE II

SEVERE COMBINED IMMUNODEFICIENCY DISEASE-1; SCID1

UBIQUITIN-BINDING PROTEIN P62

HYPERLIPOPROTEINEMIA, TYPE I

BCL2-ASSOCIATED ATHANOGENE 1; BAG1

ONCOGENE PIM-1: PIM1: PIM

HYPOXANTHINE GUANINE PHOSPHORIBOSYLTRANSFERASE 1; HPRT1

p160-ROCK

CARTILAGE-DERIVED MORPHOGENETIC PROTEIN 1

CYSTIC FIBROSIS; CF

TAY-SACHS DISEASE; TSD

COLLAGEN, TYPE I, ALPHA-1 CHAIN; COL1A1

GRANULOMATOUS DISEASE, CHRONIC, AUTOSOMAL CYTOCHROME-b-POSITIVE FORM I

NEUROMATA, MUCOSAL, WITH ENDOCRINE TUMORS

TRANSFORMING GROWTH FACTOR-BETA RECEPTOR, TYPE II; TGFBR2

GALACTOSEMIA

MOTHERS AGAINST DECAPENTAPLEGIC (DROSOPHILA) HOMOLOG 2: MADH2

TRIPLE FUNCTIONAL DOMAIN; TRIO

ANTI-MULLERIAN HORMONE TYPE II RECEPTOR; AMHR2

BONE MORPHOGENETIC RECEPTOR TYPE II; BMPR2

V-RAF MURINE SARCOMA VIRAL ONCOGENE HOMOLOG B1; BRAF

CYCLIN A; CCNA

COMPLEX IV, CYTOCHROME c OXIDASE SUBUNIT III

RHODOPSIN; RHO

V-RAF MURINE SARCOMA 3611 VIRAL ONCOGENE HOMOLOG 1; ARAF1

GRANULOMATOUS DISEASE, CHRONIC; CGD

TRANSFORMING GROWTH FACTOR-BETA RECEPTOR, TYPE I; TGFBR1

ANEMIA, HYPOCHROMIC; ANHI

GENERAL TRANSCRIPTION FACTOR IIH, POLYPEPTIDE 1; GTF2H1

GLYCOGEN STORAGE DISEASE V

GAUCHER DISEASE, TYPE I; GD I

ADENINE PHOSPHORIBOSYLTRANSFERASE; APRT

V-RAF MURINE SARCOMA 3611 VIRAL ONCOGENE HOMOLOG 2; ARAF2

ACTIVIN A RECEPTOR, TYPE I; ACVR1

Tyrosine Protein Kinases

NEUROTROPHIC TYROSINE KINASE, RECEPTOR, TYPE 1; NTRK1

PROTEIN-TYROSINE KINASE, CYTOPLASMIC; PTK2

SYK-RELATED TYROSINE KINASE; SRK

PROTEIN TYROSINE KINASE CTK; CTK

TYRO3 PROTEIN TYROSINE KINASE; TYRO3

BRUTON AGAMMAGLOBULINEMIA TYROSINE KINASE; BTK

LEUKOCYTE TYROSINE KINASE; LTK

PROTEIN-TYROSINE KINASE SYK; SYK

PROTEIN-TYROSINE KINASE STY

TEK TYROSINE KINASE, ENDOTHELIAL; TEK

ELK-RELATED TYROSINE KINASE; ERK

TYROSINE KINASE WITH IMMUNÓGLOBULIN AND EGF FACTOR HOMOLOGY DOMAINS; TIE PROTEIN TYROSINE KINASE TKF

NEUROTROPHIC TYROSINE KINASE, RECEPTOR, TYPE 3; NTRK3

MIXED-LINEAGE PROTEIN KINASE-3; MLK3

PROTEIN KINASE, MITOGEN-ACTIVATED 4; PRKM4

PROTEIN KINASE, MITOGEN-ACTIVATED 1; PRKM1

PROTEIN TYROSINE KINASE PTK7; PTK7

PROTEIN TYROSINE KINASE EEK

MINIBRAIN (DROSOPHILA) HOMOLOG; MNBH

BONE MARROW KINASE, X-LINKED; BMX

EPH-LIKE TYROSINE KINASE 1: ETK1

MACROPHAGE STIMULATING 1 RECEPTOR; MST1R

BTK-ASSOCIATED PROTEIN, 135 KD

LYMPHOCYTE-SPECIFIC PROTEIN TYROSINE KINASE; LCK

FIBROBLAST GROWTH FACTOR RECEPTOR-2; FGFR2

PROTEIN TYROSINE KINASE-3; TYK3; FER

PROTEIN TYROSINE KINASE TXK; TXK

TEC PROTEIN TYROSINE KINASE; TEC

PROTEIN TYROSINE KINASE-2; TYK2

EPH-RELATED RECEPTOR TYROSINE KINASE LIGAND 1; EPLG1

T-CELL TYROSINE KINASE EMT; EMT

EPH TYROSINE KINASE 1; EPHT1

ZONA PELLUCIDA RECEPTOR TYROSINE KINASE, 95 KD; ZRK

PROTEIN KINASE, MITOGEN-ACTIVATED, KINASE 1; PRKMK1

EPH TYROSINE KINASE 3; EPHT3

GROWTH ARREST-SPECIFIC GENE-6; GAS6

KINASE INSERT DOMAIN RECEPTOR; KDR

AXL RECEPTOR TYROSINE KINASE; AXL

FIBROBLAST GROWTH FACTOR RECEPTOR-1; FGFR1

V-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2; ERBB2

FMS-LIKE TYROSINE KINASE-3; FLT3

NEUROEPITHELIAL TYROSINE KINASE; NEP

NEUROTROPHIC TYROSINE KINASE RECEPTOR-RELATED 3; NTRKR3

EPH-RELATED RECEPTOR TYROSINE KINASE LIGAND 5; EPLG5

NEUROTROPHIC TYROSINE KINASE, RECEPTOR, TYPE 2; NTRK2

RYK RECEPTOR-LIKE TYROSINE KINASE

TYROSINE KINASE, B-LYMPHOCYTE SPECIFIC; BLK

EPH TYROSINE KINASE 2; EPHT2

EPH-RELATED RECEPTOR TYROSINE KINASE LIGAND 2; EPLG2

GLYCOGEN STORAGE DISEASE VIII

EPH-RELATED RECEPTOR TYROSINE KINASE LIGAND 7; EPLG7

JANUS KINASE 1; JAK1

FMS-RELATED TYROSINE KINASE-1; FLT1

PROTEIN KINASE, cAMP-DEPENDENT, REGULATORY, TYPE I, ALPHA; PRKAR1A

WEE-1 TYROSINE KINASE; WEE1

EPH-LIKE TYROSINE KINASE 2; ETK2

RECEPTOR TYROSINE KINASE MuSK

INSULIN RECEPTOR; INSR

JANUS KINASE 3 JAK3

FMS-RELATED TYROSINE KINASE-3 LIGAND

PROTEIN KINASE C, BETA 1; PRKCB1

TYROSINE KINASE-TYPE CELL SURFACE RECEPTOR HER3; HER3

JANUS KINASE 2; JAK2

LIM DOMAIN KINASE 1; LIMK1

DUAL SPECIFICITY PHOSPHATASE 1; DUSP1

MUSCULAR DYSTROPHY, PSEUDOHYPERTROPHIC PROGRESSIVE, DUCHENNE AND BECKER TYPES; DMD

HEMOPOIETIC CELL KINASE; HCK

TYROSINE 3-MONOOXYGENASE/TRYPTOPHAN 5-MONOOXYGENASE ACTIVATION PROTEIN, ETA POLYPEPTIDE; YWHAH

RET PROTO-ONCOGENE; RET

TYROSINE 3-MONOOXYGENASE/TRYPTOPHAN 5-MONOOXYGENASE ACTIVATION PROTEIN, ZETA POLYPEPTIDE; YWHAZ

TYROSINE 3-MONOOXYGENASE/TRYPTOPHAN 5-MONOOXYGENASE ACTIVATION PROTEIN,

BETA POLYPEPTIDE; YWHAB

HEPATOMA TRANSMEMBRANE KINASE; HTK

MAP KINASE KINASE 6

PHOSPHATIDYLINOSITOL 3-KINASE, CATALYTIC, ALPHA POLYPEPTIDE; PIK3CA

CYCLIN-DEPENDENT KINASE INHIBITOR 3; CDKN3

DIACYLGLYCEROL KINASE, DELTA, 130 KD

PROTEIN-TYROSINE PHOSPHATASE, NONRECEPTOR TYPE, 13; PTPN13

ABELSON MURINE LEUKEMIA VIRAL ONCOGENE HOMOLOG 1; ABL1

DIACYLGLYCEROL KINASE, ALPHA; DAGK1

FOCAL ADHESION KINASE 2

EPITHELIAL DISCOIDIN DOMAIN RECEPTOR 1; EDDR1

ANAPLASTIC LYMPHOMA KINASE; ALK

PHOSPHATIDYLINOSITOL 3-KINASE, CATALYTIC, GAMMA POLYPEPTIDE; PIK3CG

PHOSPHATIDYLINOSITOL 3-KINASE REGULATORY SUBUNIT; PIK3R1

EPH HOMOLOGY KINASE-1; EHK1

V-KIT HARDY-ZUCKERMAN 4 FELINE SARCOMA VIRAL ONCOGENE HOMOLOG; KIT

FIBROBLAST GROWTH FACTOR RECEPTOR-3; FGFR3

VASCULAR ENDOTHELIAL GROWTH FACTOR C; VEGFC

MACROPHAGE STIMULATING 1; MST1

HYPERCHOLESTEROLEMIA, FAMILIAL; FHC

EPIDERMAL GROWTH FACTOR RECEPTOR; EGFR

S100 CALCIUM-BINDING PROTEIN A10; S100A10

NEUROFIBROMATOSIS, TYPE I; NF1

ONCOGENE TRK

LEUKEMIA, CHRONIC MYELOID; CML

GROWTH FACTOR RECEPTOR-BOUND PROTEIN-7: GRB7

S100 CALCIUM-BINDING PROTEIN A4: S100A4

RAS p21 PROTEIN ACTIVATOR; RASA2

ADENOMATOUS POLYPOSIS OF THE COLON; APC

MET PROTO-ONCOGENE; MET

SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 3; STAT3

smg GDS-ASSOCIATED PROTEIN

UBIQUITIN-BINDING PROTEIN P62

LYMPHOCYTE CYTOSOLIC PROTEIN 2; LCP2

EPIDERMAL GROWTH FACTOR RECEPTOR PATHWAY SUBSTRATE-15; EPS15

GROWTH FACTOR RECEPTOR-BOUND PROTEIN-10; GRB10

GLIAL CELL LINE-DERIVED NEUROTROPHIC FACTOR RECEPTOR-ALPHA; GDNFRA

SHC TRANSFORMING PROTEIN; SHC1

CYSTIC FIBROSIS; CF

TROPOMYOSIN 3; TPM3

CELL DIVISION CYCLE 2, G1 TO S AND G2 TO M; CDC2

MUSCULAR DYSTROPHY, LIMB GIRDLE, TYPE 2C; LGMD2C

ASH PROTEIN

TAY-SACHS DISEASE; TSD

AGRIN; AGRN

S100 CALCIUM-BINDING PROTEIN A6; S100A6

AGRANULOCYTOSIS, INFANTILE GENETIC

TRIPLE FUNCTIONAL DOMAIN: TRIO

HYPOXANTHINE GUANINE PHOSPHORIBOSYLTRANSFERASE 1; HPRT1

CYTOVILLIN

GOLGI APPARATUS PROTEIN 1; GLG1

GROWTH FACTOR RECEPTOR-BOUND PROTEIN-14; GRB14

V-FES FELINE SARCOMA VIRAL/V-FPS FUJINAMI AVIAN SARCOMA VIRAL ONCOGENE

HOMOLOG; FES

TRANSLOCATED PROMOTER REGION
P32 SPLICING FACTOR SF2 ASSOCIATED PROTEIN

CARTILAGE-DERIVED MORPHOGENETIC PROTEIN 1

PAIRED BOX HOMEOTIC GENE 5: PAX5

INSULIN RECEPTOR SUBSTRATE 1: IRS1

SON OF SEVENLESS (DROSOPHILA) HOMOLOG 2; SOS2

WO 2005/028624 PCT/US2004/030360

PHOSPHATIDYLINOSITOL GLYCAN CLASS A; PIGA

ICHTHYOSIS, X-LINKED

RHODOPSIN; RHO

SEVERE COMBINED IMMUNODEFICIENCY DISEASE, AUTOSOMAL RECESSIVE, T-NEGATIVE/B-POSITIVE TYPE

CAS-BR-M (MURINE) ECOTROPIC RETROVIRAL TRANSFORMING SEQUENCE; CBL

TRANSFORMING GROWTH FACTOR-BETA RECEPTOR, TYPE II; TGFBR2

COLONY-STIMULATING FACTOR-1 RECEPTOR; CSF1R

PHOSPHODIESTERASE I/NUCLEOTIDE PYROPHOSPHATASE 1; PDNP1

NUCLEOPHOSMIN; NPM1

ADDUCIN 1; ADD1

NEUROMATA, MUCOSAL, WITH ENDOCRINE TUMORS

HYALURONAN-MEDIATED MOTILITY RECEPTOR; HMMR

ESTROGEN RECEPTOR; ESR

SRC-LIKE ADAPTER; SLA

BECKWITH-WIEDEMANN SYNDROME; BWS

TYLOSIS WITH ESOPHAGEAL CANCER; TOC

PLACENTAL GROWTH FACTOR; PGF

ETS VARIANT GENE 6; ETV6

MEMBRANE COMPONENT, CHROMOSOME 6, POLYPEPTIDE 2; M6P2

INTERLEUKIN-4; IL4

GARDNER-RASHEED FELINE SARCOMA VIRAL (V-FGR) ONCOGENE; FGR

FIBROBLAST GROWTH FACTOR-8; FGF8

SORTING NEXIN-1; SNX1

TRANSCRIPTION FACTOR 1, HEPATIC; TCF1

HEPATOCYTE GROWTH FACTOR; HGF

INTERLEUKIN-6 RECEPTOR; IL6R

V-YES-1 YAMAGUCHI SARCOMA VIRAL ONCOGENE; YES1

ENDOGLIN; ENG

THANATOPHORIC DYSPLASIA WITH KLEEBLATTSCHAEDEL

HEMATOPOIETIC CELL-SPECIFIC LYN SUBSTRATE 1; HCLS1

GENERAL TRANSCRIPTION FACTOR IIH, POLYPEPTIDE 1; GTF2H1

V-SIS PLATELET-DERIVED GROWTH FACTOR BETA POLYPEPTIDE; PDGFB

DIABETES MELLITUS, AUTOSOMAL DOMINANT

PROGRAMMED CELL DEATH 1; PDCD1

TRANSFORMING GROWTH FACTOR-BETA RECEPTOR, TYPE I; TGFBR1

EPIDERMAL GROWTH FACTOR RECEPTOR PATHWAY SUBSTRATE-8; EPS8

VASCULAR ENDOTHELIAL GROWTH FACTOR; VEGF

CELL ADHESION REGULATOR; CAR

ANEMIA, CONGENITAL HYPOPLASTIC, OF BLACKFAN AND DIAMOND

GAUCHER DISEASE, TYPE I; GD I

MAPLE SYRUP URINE DISEASE; MSUD

MCF.2 CELL LINE DERIVED TRANSFORMING SEQUENCE; MCF2

GRANULOMATOUS DISEASE, CHRONIC; CGD

ANGIOPOIETIN 2; ANGPT2

HYPOGAMMAGLOBULINEMIA AND ISOLATED GROWTH HORMONE DEFICIENCY, X-LINKED

GLIAL CELL LINE-DERIVED NEUROTROPHIC FACTOR RECEPTOR-BETA

H4 GENE

CLAIMS

What is claimed is:

- 1. A kinase scaffold library comprising at least one set of compounds, each set consisting essentially of a plurality of compounds of a chemical structure selected from the group consisting of Formula I, II, III, IV, V, VI, and VII.
- 2. The library of claim 1, wherein said set comprises at least 50 different compounds.
 - 3. The library of claim 1, wherein said library comprises at least 3 said sets.
- 4. The library of claim 1, wherein a majority of compounds in said set have been demonstrated to bind to one or more kinases.
- 5. The library of claim 4, wherein said kinases comprise a plurality of kinases selected from the group consisting of PIM-1, Pyk2, c-Abl, Her2, cMet, VEGFR, EGFR, cKit, Pkcβ, p38, Cdk2, Akt, Gsk3β.
- 6. The library of claim 1, wherein each said compound is in a separate well in a plate or plurality of plates.
- 7. A system for fitting compounds in binding sites of one or more protein kinases, comprising

an electronic kinase scaffold library comprising at least one collection of electronic representations of compounds of a chemical structure selected from the group consisting of Formula I, II, III, IV, V, VI, and VII, wherein said kinase scaffold library is embedded in a computer memory device, wherein said electronic representations of said compounds can be selectively retrieved and functionally connected with computer software adapted to fit electronic representations of compounds in an electronic representation of a binding site of a kinase.

- 8. The system of claim 7, further comprising at least one electronic representation of a kinase binding site embedded in computer memory such that said electronic representation of a kinase binding site can be functionally connected with said computer software.
- 9. The system of claim 8, where said electronic representation of kinase binding sites comprises electronic representations of binding sites of a plurality of kinases selected from the group consisting of PIM-1, Pyk2, c-Abl, Her2, cMet, VEGFR, EGFR, cKit, Pkcβ, p38, Cdk2, Akt, Gsk3β.
- 10. A method for obtaining improved ligands binding to a protein kinase, comprising

determining whether a derivative of a compound of Formula I, II, III, IV, V, VI, or VII binds to said kinase with greater affinity or greater specificity or both than said compound, wherein binding with greater affinity or greater specificity or both indicates that said derivative is an improved ligand.

- 11. The method of claim 10, wherein said derivative has at least 10-fold greater affinity or specificity or both than said compound.
- 12. The method of claim 10, wherein said derivative has at least 100-fold greater affinity or specificity or both.
- 13. The method of claim 10, wherein said kinase is selected from the group consisting of PIM-1, Pyk2, c-Abl, Her2, cMet, VEGFR, EGFR, cKit, Pkcβ, p38, Cdk2, Akt, Gsk3β.
- 14. A method for developing ligands specific for a particular kinase, comprising determining whether a derivative of a compound of Formula I, II, III, IV, V, VI, or VII that binds to a plurality of kinases has greater specificity for said particular kinase than said compound.

- 15. The method of claim 14, wherein said compound binds to said kinase with an affinity at least 10-fold greater than for binding to any of said plurality of kinases.
- 16. The method of claim 15, wherein said compound interacts with at least one of PIM-1 residues 49, 52, 65, 67, 121, 128, and 186.
- 17. The method of claim 14, wherein said compound binds weakly to said plurality of kinases.
- 18. The method of claim 14, wherein said kinase is selected from the group consisting of PIM-1, Pyk2, c-Abl, Her2, cMet, VEGFR, EGFR, cKit, Pkcβ, p38, Cdk2, Akt, Gsk3β.
- 19. A method for developing ligands binding to a kinase, comprising determining the orientation of at least one molecular scaffold of Formula I, II, III, IV, V, VI, or VII in co-crystals with said kinase; and

identifying chemical structures of said molecular scaffolds, that, when modified, alter the binding affinity or binding specificity or both between the molecular scaffold and said kinase; and

synthesizing a ligand wherein one or more of the chemical structures of the molecular scaffold is modified to provide a ligand that binds to said kinase with altered binding affinity or binding specificity or both.

- 20. The method of claim 19, wherein said molecular scaffold is a weak binding compound.
- 21. The method of claim 19, wherein said molecular scaffold binds to a plurality of kinases.
- 22. The method of claim 19, wherein said molecular scaffold interacts with at least 3 kinases selected from the group consisting of PIM-1, Pyk2, c-Abl, Her2, cMet, VEGFR, EGFR, cKit, Pkcβ, p38, Cdk2, Akt, and Gsk3β.
- 23. The method of claim 19, wherein said kinase is selected from the group consisting of PIM-1, Pyk2, c-Abl, Her2, cMet, cKit, Pkcβ, Cdk2, and Akt.

24. A method for developing ligands with increased specificity on a kinase, comprising

testing a derivative of a kinase binding compound of Formula I, II, III, IV, V, VI, or VII for increased specificity on said kinase, wherein increased specificity is indicative that said derivative is a ligand with increased specificity.

- 25. The method of claim 24, wherein said kinase binding compound binds to at least 5 different human kinases.
- 26. The method of claim 24, wherein said kinase binding compound binds to at least 10 different human kinases.
- 27. The method of claim 24, wherein said kinase is selected from the group consisting of PIM-1, Pyk2, c-Abl, Her2, cMet, VEGFR, EGFR, cKit, Pkcβ, p38, Cdk2, Akt, Gsk3β...
- 28. A method for identifying a ligand binding to a kinase, comprising determining whether a derivative compound that includes a core structure selected from the group consisting of Formula I, II, III, IV, V, VI, and VII binds to said kinase with altered binding affinity or specificity or both as compared to the parent compound.
- 29. A co-crystal of a kinase and a binding compound of Formula I, II, III, IV, V, VI, or VII.
- 30. The co-crystal of claim 29, wherein said binding compound interacts with at least one of PIM-1 residues 49, 52, 65, 67, 121, 128, and 186.
- 31. The co-crystal of claim 29, wherein said kinase is selected from the group consisting of PIM-1, Pyk2, c-Abl, Her2, cMet, VEGFR, EGFR, cKit, Pkcβ, p38, Cdk2, Akt, Gsk3β.
 - 32. The co-crystal of claim 29, wherein said co-crystal is in an X-ray beam.

SUBSTITUTE SHEET (RULE 26)

- 33. A method for obtaining co-crystals of PIM-1 with a binding compound of Formula I, II, III, IV, V, VI, or VII, comprising subjecting PIM-1 protein at 5-20 mg/ml to crystallization conditions substantially equivalent to Hampton Screen 1 conditions 2, 7, 14, 17, 23, 25, 29, 36, 44, or 49 in the presence of binding compound for a time sufficient for crystal development.
- 34. The method of claim 33, wherein said binding compound is added to said protein to a final concentration of 0.5 to 1.0 mM.
- 35. The method of claim 34, wherein said binding compound is in a dimethyl sulfoxide solution.
- 36. The method of claim 33, wherein said crystallization condition is 0.4-0.9 M sodium acetate trihydrate pH 6.5, 0.1 M imidazole; or 0.2-0.7 M. sodium potassium tartrate, 00.1 M MES buffer pH 6.5.
 - 37. A method for modulating kinase activity, comprising contacting said kinase with a compound of Formula I, II, III, IV, V, VI, or VII.
- 38. The method of claim 37, wherein said kinase is selected from the group consisting of PIM-1, Pyk2, c-Abl, Her2, cMet, VEGFR, EGFR, cKit, Pkcβ, p38, Cdk2, Akt, Gsk3β.
- 39. The method of claim 37, wherein said compound is at a concentration of 200 μM or less.
- 40. A method for treating a patient suffering from a disease or condition characterized by abnormal kinase activity, comprising

administering to said patient a compound of Formula I, II, III, IV, V, VI, or VII active on said kinase.

- 41. The method of claim 40, wherein said kinase is selected from the group consisting of PIM-1, Pyk2, c-Abl, Her2, cMet, VEGFR, EGFR, cKit, Pkcβ, p38, Cdk2, Akt, Gsk3β.
 - 42. The method of claim 40 wherein said disease or condition is a cancer.
- 43. The method of claim 40, wherein said disease or condition is an inflammatory disease or condition.
- 44. An electronic representation of a binding site of a kinase with a compound of a chemical structure selected from the group consisting of Formula I, II, III, IV, V, VI, and VII bound therein.
- 45. The electronic representation of claim 44, comprising a binding site surface contour.
- 46. The electronic representation of claim 44, comprising representations of the binding character of a plurality of conserved amino acid residues.
- 47. A method for identifying potential kinase binding compounds, comprising fitting at least one electronic representations of a compound of Formula I, II, III, IV, V, VI, or VII in an electronic representation of a kinase binding site.
- 48. The method of claim 47, wherein said kinase is selected from the group consisting of PIM-1, Pyk2, c-Abl, Her2, cMet, VEGFR, EGFR, cKit, Pkcβ, p38, Cdk2, Akt, Gsk3β.
 - 49. The method of claim 48, comprising

removing a computer representation of a compound complexed with said kinase and fitting a computer representation of a compound from a computer database with a computer representation of the active site of said kinase; and

identifying compounds that best fit said active site based on favorable geometric fit and energetically favorable complementary interactions as potential binding compounds.

50. The method of claim 48, comprising

modifying a computer representation of a compound complexed with said kinase by the deletion or addition or both of one or more chemical groups;

fitting a computer representation of a compound from a computer database with a computer representation of the active site of said kinase; and

identifying compounds that best fit said active site based on favorable geometric fit and energetically favorable complementary interactions as potential binding compounds.

51. The method of claim 48, comprising

removing a computer representation of a compound complexed with said kinase; and searching a database for compounds having structural similarity to said compound using a compound searching computer program or replacing portions of said compound with similar chemical structures using a compound construction computer program.

52. A method for attaching a kinase binding compound to an attachment component, comprising

identifying energetically allowed sites for attachment of a said attachment component on a kinase binding compound of Formula I, II, III, IV, V, VI, or VII; and attaching said compound or derivative thereof to said attachment component at said energetically allowed site.

- 53. The method of claim 52, wherein said attachment component is a linker for attachment to a solid phase medium, and said method further comprises attaching said compound or derivative to a solid phase medium through a linker attached at a said energetically allowed site.
- 54. The method of claim 52, wherein said kinase is selected from the group consisting of PIM-1, Pyk2, c-Abl, Her2, cMet, VEGFR, EGFR, cKit, Pkcβ, p38, Cdk2, Akt, Gsk3β.
- 55. The method of claim 52, wherein said kinase comprises conserved residues matching at least one of PIM-1 residues 49, 52, 65, 67, 121, 128, and 186.
 - 56. The method of claim 53, wherein said linker is a traceless linker.

- 57. The method of claim 53, wherein said kinase binding compound or derivative thereof is synthesized on a said linker attached to said solid phase medium.
- 58. The method of claim 57, wherein a plurality of said compounds or derivatives are synthesized in combinatorial synthesis.
- 59. The method of claim 53, wherein attachment of said compound to said solid phase medium provides an affinity medium.
 - 60. The method of claim 52, wherein said attachment component comprises a label.
 - 61. The method of claim 60, wherein said label comprises a fluorophore.
 - 62. A modified compound, comprising a compound of Formula I, II, III, IV, V, VI, or VII, with a linker moiety attached

thereto.

- 63. The compound of claim 62, wherein said linker is attached to an energetically allowed site for binding of said modified compound to a kinase selected from the group consisting of PIM-1, Pyk2, c-Abl, Her2, cMet, VEGFR, EGFR, cKit, Pkcβ, p38, Cdk2, Akt, Gsk3β.
 - 64. The compound of claim 62, wherein said linker is attached to a solid phase.
- 65. The compound of claim 62, wherein said linker comprises or is attached to a label.
 - 66. The compound of claim 62, wherein said linker is a traceless linker.
- 67. A method for developing a ligand for a kinase comprising conserved residues matching one or more of PIM-1 residues 49, 52, 65, 67, 121, 128, and 186, comprising determining whether a compound of Formula I, II, III, IV, V, VI, or VII binds to said kinase.

- 68. The method of claim 67, wherein said kinase is selected from the group consisting of PIM-1, Pyk2, c-Abl, Her2, cMet, VEGFR, EGFR, cKit, Pkcβ, p38, Cdk2, Akt, Gsk3β.
- 69. The method of claim 67, wherein said kinase comprises conserved residues matching at least 2 of PIM-1 residues 49, 52, 65, 67, 121, 128, and 186.
- 70. The method of claim 67, wherein said kinase comprises conserved residues matching PIM-1 residues 49, 52, 65, 67, 121, 128, and 186.
- 71. The method of claim 67, further comprising determining whether said compound modulates said kinase.
- 72. The method of claim 67, wherein said determining comprises computer fitting said compound in a binding site of said kinase.
- 73. The method of claim 67, further comprising forming a co-crystal of said kinase and said compound.
- 74. The method of claim 73, further comprising determining the binding orientation of said compound with said kinase.

WO 2005/028624 PCT/US2004/030360

1/1

F49

