This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

1. (Currently Amended) A compound of formula I:

wherein

n is 1 or 2:

m is 1-or 2;

 R^1 is $\underline{\text{cthyl or vinyl}}$; H, (C_{16}) alkyl, (C_{26}) alkenyl, or (C_{26}) alkynyl, wherein each of said (C_{16}) alkyl, (C_{26}) alkenyl, or (C_{26}) alkynyl are optionally substituted with from one to three halogen atoms;

 R^2 — is selected from -CH₂-R²⁰, -NH-R²⁰, -O-R²⁰, -S-R²⁰, -SO-R²⁰, -SO₂-R²⁰, -CH₂O-R²⁰, and -O-X-R²⁰, wherein

X is (C2-3)alkenyl, (C2-3)alkynyl, or (C1-3)alkyl; and

 ${\bf R}^{20}$ is $(C_6$ or C_{10})aryl or ${\bf Het}$, wherein said $(C_6$ or C_{10})aryl or ${\bf Het}$ is optionally substituted with ${\bf R}^{200}$; wherein

R²⁰⁰ is one to four substituents each independently selected from H, halogen, cyano, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl-(C₁₋₆)alkyl-, aryl, Het, oxo, thioxo, -OR²⁰¹, -SR²⁰¹, -SOR²⁰¹, -SO₂R²⁰¹, -N(R²⁰²)R²⁰¹, and -CON(R²⁰²)R²⁰¹; wherein each of said alkyl, cycloalkyl, and aryl and Het is optionally further substituted with R²⁰⁰⁰.

R²⁰¹ in each case is independently selected from H, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, and

aryl, $CO (C_{L_0})$ alkyl and $CO O (C_{L_0})$ alkyl, wherein each of said alkyl and aryl is optionally further substituted with R^{2000} :

 R^{202} in each case is independently selected from H and (C₁₋₆)alkyl;

- R^{2000} in each case is one to three substituents each independently selected from halogen, aryl, Het, $-OR^{2001}$, $-SR^{2004}$, $-SO_2R^{2004}$, cyano, $-N(R^{2002})(R^{2001})$, and R^{2003} , wherein said aryl and Het are optionally substituted with one, two or three substituents each independently selected from $(C_{1:6})$ alkyl and $-O-(C_{1:6})$ alkyl;
- \mathbf{R}^{2001} in each case is independently selected from aryl, aryl- $(C_{1:6})$ alkyl-, -C(O)- \mathbf{R}^{2003} , -C(O)O- \mathbf{R}^{2003} , - $CON(\mathbf{R}^{2002})(\mathbf{R}^{2004})$ and - \mathbf{R}^{2004} ;
- R^{2002} in each case is independently selected from H and $(C_{1\text{-}6})$ alkyl;
- R^{2003} in each case is independently selected from $(C_{1:8})$ alkyl, and $(C_{2:7})$ cycloalkyl; and $(C_{2:7})$ cycloalkyl $(C_{1:4})$ alkyl, wherein said $(C_{2:7})$ cycloalkyl and $(C_{2:7})$ cycloalkyl $(C_{1:4})$ alkyl are each optionally substituted with one to three substituents each independently selected from $(C_{1:2})$ alkyl; and

R²⁰⁰⁴ in each case is independently selected from H and R²⁰⁰³:

- $$\begin{split} R^3 & \text{ is } (C_{1.8})\text{alkyl}, \ \underline{\text{or }} (C_{3.7})\text{cycloalkyl} \ \underline{\text{or }} (C_{3.2})\text{eyeloalkyl} \cdot (C_{4.2})\text{alkyl}, \ \text{each optionally} \\ & \text{ substituted with one } \underline{\text{or }} \text{ more substituents } \underline{\text{substituent}} \ \underline{\text{each independently}} \ \underline{\text{selected}} \\ & \text{ from } (C_{4.6})\text{alkyl}, (C_{2.6})\text{alkenyl}, \ \text{halogen, eyano, }} \cdot OR^{30}, -SR^{30}, -C(=O)OR^{30}, \\ & -C(=O)NH_2, -C(=O)NH(C_{1.6})\text{alkyl}, -C(=O)N((C_{1.6})\text{alkyl})_2, -NH(C_{1.6})\text{alkyl}, \\ & -N((C_{1.6})\text{alkyl})_2, \ \underline{\text{aryl}}, \ \underline{\text{and }} \ \underline{\text{aryl}}(C_{1.6})\text{alkyl}, \ \underline{\text{aryl}}, \ \underline{\text{or }} \\ & \text{aryl}(C_{1.6})\text{alkyl}, \ \underline{\text{aryl}}, \ \underline{\text{or }} \\ & \text{aryl}(C_{1.6})\text{alkyl}, \ \underline{\text{or }} \\ \end{aligned}$$
- R^5 is selected from $B_7B_7C(=0)_7$, $B_7D_7C(=0)_7$, $B_7N(R^{51})_7C(=0)_7$; $B_7N(R^{51})_7C(=5)_7$; wherein $B_7S_7C(=5)_7$; wherein B_7S
 - (i) (C₁₋₁₀)alkyl optionally substituted with one or more substituents each selected independently from -COOH, -COO(C₁₋₆)alkyl, -OH, halogen, -OC(=O)(C₁₋₆)alkyl, -O(C₁₋₆)alkyl, -NH₂, -NH(C₁₋₆)alkyl, -N((C₁₋₆)alkyl)₂, -C(=O)NH₂, -C(=O)NH(C₁₋₆)alkyl and -C(=O)N((C₁₋₆)alkyl)₂;
 - (ii) (C₃₋₇)cycloalkyl, or (C₃₋₇)cycloalkyl-(C₁₋₄)alkyl-, each optionally

- substituted with one or more substituents each selected independently from $(C_{1.6})$ alkyl, halogen, -COOH, -COO $(C_{1.6})$ alkyl, -OH, -O $(C_{1.6})$ alkyl, -NH $_2$, -NH $(C_{1.6})$ alkyl, -N($(C_{1.6})$ alkyl) $_2$, -C(=O)NH $_2$, -C(=O)NH $(C_{1.6})$ alkyl and -C(=O)N($(C_{1.6})$ alkyl) $_2$;
- (iii) aryl or aryl(C₁₋₆)alkyl, each optionally substituted with one or more substituents each selected independently from (C₁₋₆)alkyl, OH, NH₂; NH(C₁₋₆)alkyl, N((C₁₋₆)alkyl)₂, C(=O)NH₂, C(=O)NH(C₁₋₆)alkyl-and C(=O)N((C₁₋₆)alkyl)₂;
- (iv) Het or Het (C₁₋₆)alkyl; , each optionally substituted with one or more substituents each selected independently from (C₁₋₆)alkyl, OH, NH₂; -NH(C₁₋₆)alkyl, N((C₁₋₆)alkyl)₂; -C(=O)NH₂, C(=O)NH(C₁₋₆)alkyl and -C(=O)N((C₁₋₆)alkyl)₂; and
- (v) (C₂₋₆)alkenyl, or (C₂₋₆)alkynyl, each optionally substituted with 1 to 3 halogens; and wherein

R⁵¹ is selected from H and (C_{1.6})alkyl;

provided that B is not (C_{1-10}) alkyl unsubstituted when \mathbb{R}^5 is B-O-C(=O)-;

Y is H $\frac{\text{or }(C_{1-6})\text{alkyl}}{\text{or }(C_{1-6})}$;

R⁴ and R⁶ are each independently selected from H, (C₁₋₀)alkyl, -O-(C₁₋₀)alkyl, (C₃₋₇)cycloalkyl, (C₃₋₇)cycloalkyl-(C₁₋₆)alkyl-, aryl, Het, and aryl-(C₁₋₆)alkyl-; wherein said (C₁₋₆)alkyl, -O-(C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, (C₃₋₇)cycloalkyl-(C₁₋₆)alkyl-, aryl and aryl-(C₁₋₆)alkyl- are each optionally substituted with one or more substituents each independently selected from halogen, (C₁₋₆)alkyl, hydroxy, cyano, O-(C₁₋₆)alkyl, -NH₂, -NH(C₁₋₄)alkyl, -N((C₁₋₄)alkyl)₂, -CO NH₂, CO NH(C₁₋₁)alkyl, -CO N((C₁₋₄)alkyl)₃, -COOH, and -COO(C₁₋₆)alkyl; or

R⁴ and R⁶ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle optionally fused to at least one other cycle to form a heteropolycycle, each of said heterocycle and heteropolycycle optionally containing from one to three additional heteroatoms each independently selected from N, S and O, and each of said heterocycle and heteropolycycle being optionally substituted with one or more substituents each independently selected from halogen, $(C_{1:6})$ alkyl, hydroxy, cyano, $O-(C_{1:6})$ alkyl, -NH $_2$ -NH $(C_{1:4})$ alkyl, -N($(C_{1:4})$ alkyl) $_2$ -CO-NH $_2$ -CO-NH $(C_{1:4})$ alkyl, -CO-N($(C_{1:4})$ alkyl) $_2$ -COOH, and -COO($(C_{1:6})$ alkyl;

with the proviso that when:

R5 is B O C(=O) or B N(R51) C(=O), wherein

- R⁵¹ is H; and
- B is selected from (C₁₋₁₀)alkyl, (C₂₋₇)cycloalkyl, and (C₂₋₇)cycloalkyl (C₁₋₄)alkyl,
 - a) wherein said alkyl, eyeloalkyl, and eyeloalkyl alkyl are optionally mono-, dior tri substituted with (C₁₋₃)alkyl; and
 - wherein said alkyl, eyeloalkyl, and eyeloalkyl alkyl are optionally monoor di-substituted with substituents-selected from hydroxy and O-(C_{L-})alkyl; and
 - wherein each of said alkyl groups may be mono, di-or-tri substituted with halogen; and
 - d) wherein in each of said cycloalkyl groups being 4, 5, 6 or 7 membered, one (for the 4, 5, 6, or 7 membered) or two (for the 5, 6 or 7 membered). CH₂-groups not directly linked to each other may be replaced by 0 to provide a heterocycle, such that the 0 atom is linked to the 0 C(=0) or N(R⁵¹) C(=0) group via at least two earbon atoms; and R²:c 0 R²⁰.

then

R²⁰ cannot be

wherein

 \mathbb{R}^{200a} is H, halogen, (C_{14}) alkyl, -OH, -O (C_{14}) alkyl, $-NH_2$, $-NH(C_{14})$ alkyl or $-N((C_{14})$ alkyl) $\frac{1}{2}$:

R²⁰⁰⁰, R^{200c}-are each independently halogen, cyano, (C_{1-i})alkyl, O (C_{1-i})alkyl, SO (C_{1-i})alkyl, or SO₂ (C_{1-i})alkyl, wherein each of said alkyl groups is optionally substituted with from one to three halogen atoms; and either R²⁰⁰⁰- or R^{200c} (but not both at the same time) may also be H; or

R^{200a}-and-R^{200b}-or

R^{200a} and R^{200a} may be covalently bonded to form, together with the two C-atoms to which they are linked, a 5- or 6-membered carbocyclic ring wherein one or two -CH₂ groups not being directly linked to each other may be replaced each independently by O- or NR* wherein -R* is H or (C₁₋₁)alkyl, and wherein said carbo- or heterocyclic ring is optionally mono- or disubstituted with (C₁₋₁)alkyl; and

 \mathbb{R}^{20000} is \mathbb{R}^{3003} , $\mathbb{N}(\mathbb{R}^{3003})$ COR 2003 , $\mathbb{N}(\mathbb{R}^{2003})$ COOR 2003 , $\mathbb{N}(\mathbb{R}^{2004})$, or \mathbb{R}^{2003} CON(\mathbb{R}^{2003})CON(\mathbb{R}^{2003}), wherein

R²⁰⁰² is H or methyl:

 R^{2003} is $(C_{1.6})$ alkyl, $(C_{2.7})$ eyeloalkyl or $(C_{2.7})$ eyeloalkyl $(C_{1.4})$ alkyl are optionally mono , di , or tri-substituted with $(C_{1.7})$ alkyl; and

R²⁰⁰⁴ is H or R²⁰⁰³;

wherein Het is defined as a 3- to 7-membered heterocycle having 1 to 4 heteroatoms each independently selected from O, N and S, which may be saturated, unsaturated or aromatic, and which is optionally fused to at least one other cycle to form a 4- to 14-membered heteropolycycle having wherever possible 1 to 5 heteroatoms, each independently selected from O, N and S, said heteropolycycle being saturated, unsaturated or aromatic;

or a diastereomer thereof or a salt thereof.

- 2. (Currently Amended) The compound according to claim 1 wherein
 - n is 1 or 2:
 - m is 1-or 2:
 - R^1 is $\underline{\text{ethyl or vinyl}}$; H, $(C_{\downarrow e})$ alkyl, $(C_{\downarrow e})$ alkenyl, or $(C_{\downarrow e})$ alkynyl, wherein each of $\underline{\text{said}}$ $(C_{\downarrow e})$ alkyl, $(C_{\downarrow e})$ alkenyl, or $(C_{\downarrow e})$ alkynyl are optionally substituted with from one to three halogen atoms;
 - R^2 is selected from -CH₂-R²⁰, -NH-R²⁰, -O-R²⁰, -S-R³⁰, -SO-R²⁰, -SO₃-R²⁰, -CH₃O-R²⁰, and -O-X-R²⁰, wherein
 - X is (C_{2-3}) alkenyl, (C_{2-3}) alkynyl, or (C_{1-3}) alkyl; and
 - ${\bf R}^{20}$ is $(C_6$ or C_{10})aryl or ${\bf Het}$, wherein said $(C_6$ or C_{10})aryl or ${\bf Het}$ is optionally substituted with ${\bf R}^{200}$; wherein
 - R²⁰⁰ is one to four substituents each independently selected from H, halogen, cyano, (C₁₋₆)alkyl, (C₃₋₇)cycloalkyl, aryl-(C₁₋₆)alkyl-, aryl, Het, oxo, thioxo, -OR²⁰¹, -SR²⁰¹, -SOR²⁰¹, -SO₂R²⁰¹, -N(R²⁰²)R²⁰¹, and -CON(R²⁰²)R²⁰¹; wherein each of said alkyl, cycloalkyl, and aryl and Het is optionally further substituted with R²⁰⁰⁰;
 - R²⁰¹ in each case is independently selected from H, (C₁₋₆)alkyl, (C₂₋₆)alkenyl, and aryl, CO (C₁₋₆)alkyl and CO O (C₁₋₆)alkyl, wherein each of said alkyl and aryl is optionally further substituted with R²⁰⁰⁰;
 - R^{202} in each case is independently selected from H and $(C_{1\text{-}6})$ alkyl;
 - R^{2000} in each case is one to three substituents each independently selected from halogen, aryl, Het, $-OR^{2001}$, $-SR^{2000}$, $-SOR^{2000}$, $-SO_2R^{2000}$, cyano, $-N(R^{2002})(R^{2001})$, and R^{2003} , wherein said aryl and Het are optionally substituted with one, two or three substituents each independently selected from $(C_{1:6})$ alkyl and $-O-(C_{1:6})$ alkyl;
 - R²⁰⁰¹ in each case is independently selected from aryl, aryl-(C₁₋₆)alkyl-, -C(O)-

R²⁰⁰³, C(O)O R²⁰⁰³, CON(R²⁰⁰²)(R²⁰⁰⁴) and R²⁰⁰⁴;

R²⁰⁰² in each case is independently selected from H and (C₁₋₆)alkyl;

- R^{2003} in each case is independently selected from $(C_{1.8})$ alkyl; $\frac{1}{3}$ and $(C_{3.7})$ cycloalkyl. $(C_{1.7})$ alkyl., wherein said $(C_{3.7})$ cycloalkyl and $(C_{3.7})$ cycloalkyl. $(C_{1.7})$ alkyl. are each optionally substituted with one to three substituents each independently selected from $(C_{1.3})$ alkyl; and R^{2004} in each case is independently selected from H and R^{2003} .
- $$\begin{split} R^3 & \text{ is } (C_{1.8})\text{alkyl, } (C_{3.7})\text{cycloalkyl or } + (C_{2.7})\text{cycloalkyl } + (C_{1.7})\text{alkyl-, each optionally substituted with one or more substitutents each independently selected from \\ & (C_{1.6})\text{alkyl, } + (C_{2.6})\text{alkenyl, halogen, eyano, } OR^{30}, C(=O)OR^{30}, C(=O)NH_{21}, C(=O)NH(C_{1.6})\text{alkyl, } + (C(=O)NH(C_{1.6})\text{alkyl, } + NH_{21} NH(C_{1.6})\text{alkyl, } + NH(C_{1.6})\text{alkyl, aryl, or aryl(C_{1.6})\text{alkyl, aryl, or aryl(C_{1.6})}} \end{split}$$
- R⁵ is selected from B, B-C(=0)-, B-O-C(=0)-, B-N(R⁵¹)-C(=0)+, B-N(R⁶¹)-C(=8)-,
 B-SO₂- and B-N(R⁶¹)-SO₂-; wherein B is selected from:
 - (i) (C₁₋₁₀)alkyl optionally substituted with one or more substituents each selected independently from -COOH, -COO(C₁₋₆)alkyl, -OH, halogen, -OC(=O)(C₁₋₆)alkyl, -O(C₁₋₆)alkyl, -NH₂, -NH(C₁₋₆)alkyl, -N((C₁₋₆)alkyl)₂, -C(=O)NH₃, -C(=O)NH(C₁₋₆)alkyl and -C(=O)N((C₁₋₆)alkyl)₃;
 - (ii) (C_{3.7})cycloalkyl, or (C_{3.7})cycloalkyl-(C_{1.4})alkyl-, each optionally substituted with one or more substituents each selected independently from (C_{1.6})alkyl, halogen, -COOH, -COO(C_{1.6})alkyl, -OH, -O(C_{1.6})alkyl, -NH₂, -NH(C_{1.6})alkyl, -N((C_{1.6})alkyl)₂, -C(=O)NH₂, -C(=O)NH(C_{1.6})alkyl and -C(=O)N((C_{1.6})alkyl)₂;
 - (iii) aryl or aryl(C₁₋₆)alkyl, each optionally substituted with one or more substituents each selected independently from (C₁₋₆)alkyl, OH, NH₂; -NH(C₁₋₆)alkyl, N((C₁₋₆)alkyl)₂, C(=O)NH₂, C(=O)NH(C₁₋₆)alkyl and -C(=O)N((C₁₋₆)alkyl)₂;
 - (iv) Het or Het (C1-6)alkyl, each optionally substituted with one or more

substituents each selected independently from (C_{1-6}) alkyl, OH, NH_{27} $-NH(C_{1-6})$ alkyl, $-N((C_{1-6})$ alkyl), $-C(=O)NH_2$, $-C(=O)NH(C_{1-6})$ alkyl and $-C(=O)N((C_{1-6})$ alkyl); and

 (v) — (C_{2.6})alkenyl, or (C_{2.6})alkynyl, each optionally substituted with 1 to 3 halogens; and wherein

R51 is selected from H and (C16)alkyl;

provided that B is not (C₁₋₁₀)alkyl unsubstituted when R⁵ is B-O-C(=O)-;

Y is H or (C_{1-6}) alkyl;

R4 and R6 are each independently selected from H, (C1.6)alkyl, -O-(C1.6)alkyl,

(C_{3.7})cycloalkyl, (C_{3.7})cycloalkyl-(C_{1.6})alkyl-, aryl, **Het**, and aryl-(C_{1.6})alkyl-; wherein said (C_{1.6})alkyl, -(O-(C_{1.6})alkyl, (C_{3.7})cycloalkyl.

 $(C_{3.7}) eycloalkyl-(C_{1.6})alkyl-, aryl and aryl-(C_{1.6})alkyl- are each optionally substituted with one or more substituents each independently selected from halogen, (C_{1.6})alkyl, hydroxy, eyano, O-(C_{1.6})alkyl, -NH₂, -NH(C_{1.4})alkyl, -N((C_{1.4})alkyl)₂, CO NH₂, CO NH(C_{1.4})alkyl, CO N((C_{1.4})alkyl)₂, and -COOH,$

R⁴ and R⁶ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle optionally fused to at least one other cycle to form a heteropolycycle, each of said heterocycle and heteropolycycle optionally containing from one to three additional heteroatoms each independently selected from N, S and O, and each of said heterocycle and heteropolycycle being optionally substituted with one or more substituents each independently selected from halogen, (C₁₋₆)alkyl, hydroxy, cyano, O-(C₁₋₆)alkyl, -NH₂, -NH(C₁₋₁)alkyl, -N((C₁₋₁)alkyl)₂, -CO-NH₂, -CO-NH(C₁₋₄)alkyl,

with the proviso that when:

-CO-N((C₁₋₄)alkyl)₂, -COOH, and -COO(C₁₋₆)alkyl;

and COO(CLA)alkyl; or

R⁵¹ is H; and

B is selected from (C_{1.10})alkyl, (C_{2.7})cycloalkyl, and (C_{2.7})cycloalkyl (C_{1.4})alkyl,

- a) wherein said alkyl, cycloalkyl, and cycloalkyl alkyl are optionally mono, di- or tri-substituted with (C₁₋₃)alkyl; and
- wherein said alkyl, eyeloalkyl, and eyeloalkyl alkyl are optionally monoor di-substituted with substituents selected from hydroxy and O (C₁₋₁)alkyl; and
- wherein each of said alkyl groups may be mono, di or tri substituted with halogen; and
- d) wherein in each of said cycloalkyl groups being 4,5,6 or 7 membered, one (for the 4,5,6 or 7 membered) or two (for the 5,6 or 7 membered) CH₂ groups not directly linked to each other may be replaced by O to provide a heterocycle, such that the O atom is linked to the O C(=O) or -N(R⁵¹) C(=O) group via at least two carbon atoms; and

R2 is O-R20:

then

R²⁰ cannot be

wherein

$$\begin{split} & R^{200a} : s : H, halogen, (C_{\downarrow \rightarrow}) alkyl, \quad OH, \quad O : (C_{\downarrow \rightarrow}) alkyl, \quad NH_2, \quad NH(C_{\downarrow \rightarrow}) alkyl : or \\ & -N((C_{\downarrow \rightarrow}) alkyl)_2; \end{split}$$

R²⁰⁰⁶, R²⁰⁰⁶ are each independently halogen, cyano, (C₁₋₁)alkyl, O (C₁₋₁)alkyl, SO (C₁₋₁)alkyl, or SO₂ (C₁₋₁)alkyl, wherein each of said alkyl groups is optionally substituted with from one to three halogen atoms; and either R²⁰⁰⁶ or R²⁰⁰⁶ (but not both at the same time) may also be 11- or

 \mathbf{R}^{200a} -and \mathbf{R}^{200b} -or

 \mathbf{R}^{200a} and \mathbf{R}^{200e} may be covalently bonded to form, together with the two C atoms

to which they are linked, a 5 or 6 membered carbocyclic ring wherein one or two $-CH_2$ groups not being directly linked to each other may be replaced each independently by -O or NR^n wherein R^n is H or $(C_{\downarrow\downarrow})$ alkyl, and wherein said carbo or heterocyclic ring is optionally mono or disubstituted with $(C_{\downarrow\downarrow})$ alkyl; and

$$\begin{split} R^{2009a} & \text{ is } R^{2003}, -N(R^{2002})COR^{2003}, -N(R^{2002})COOR^{2003}, -N(R^{2002})(R^{2004}), \text{ or } \\ & -N(R^{2002})CON(R^{2002})(R^{2004}), \text{ wherein} \end{split}$$

R²⁰⁰² is H or methyl:

 R^{2003} is (C_{L_2}) alkyl, $(C_{3,2})$ eyeloalkyl or $(C_{2,2})$ eyeloalkyl (C_{L_1}) alkyl are optionally mono , di , or tri-substituted with $(C_{1,2})$ alkyl and $(C_{1,2})$ alkyl and

wherein Het is defined as a 3- to 7-membered heterocycle having 1 to 4 heteroatoms each independently selected from O, N and S, which may be saturated, unsaturated or aromatic, and which is optionally fused to at least one other cycle to form a 4- to 14-membered heteropolycycle having wherever possible 1 to 5 heteroatoms, each independently selected from O, N and S, said heteropolycycle being saturated, unsaturated or aromatic:

or a diastereomer thereof or a salt thereof.

3. (Currently amended) The compound according to claim 1 wherein R⁵ is selected from B-C(=O)-, B-O-C(=O)-, and B-N(R⁵¹)-C(=O)-; wherein B and R⁵¹ are defined as in claim 1, provided that B is not (C₁₋₁₀)alkyl unsubstituted when R⁵ is B-O-C(=O)-.

- 4. (Currently Amended) The compound according to claim 3 wherein R^{SI} is H and B is selected from:
 - (i) (C_{L7})alkyl optionally substituted with one or two or three substituents each independently selected from fluoro, chloro, bromo, hydroxy, methoxy and ethoxy; or optionally substituted with -COOCH₃;
 - (ii) (C₃₋₇)cycloalkyl, or (C₃₋₇)cycloalkyl-methyl-, each optionally substituted with one
 or two substituents each independently selected from methyl, ethyl, hydroxy,
 methoxy and ethoxy;
 - (iii) benzyl; and
 - (iv) Het, wherein Het comprises a 3, 4, 5, 6, or 7-membered heterocyle having one to four heteroatoms each independently selected from O, N, and S, which may be saturated or unsaturated or aromatic;

provided that B is not $(C_{1.7})$ alkyl unsubstituted when R^5 is B-O-C(=O)-.

- 5. (Previously presented) The compound according to claim 1 wherein Y is H.
- (Currently Amended) The compound according to claim 1 wherein R³ is <u>tert-butyl</u> (C_{1-k})alkyl or (C_{2-r})cycloalkyl, the (C_{1-k})alkyl being optionally substituted with hydroxy, (C_{1-k})alkoxy or C(=0)OR³0, wherein R³0 is (C_{1-k})alkyl or aryl(C_{1-k})alkyl.
- (Currently Amended) The compound according to claim 1 wherein R² is selected from -O-R²⁰, -S-R²⁰, and -O-X-R²⁰, wherein R²⁰ and X are defined as in claim 1.
- (Original) The compound according to claim 7 wherein R² is -O-X-R²⁰, wherein X is (C₃)alkynyl and R²⁰ is (C₆ or C₁₀)aryl.

9. (Original) The compound according to claim 7 wherein \mathbb{R}^2 is -O- \mathbb{R}^{20} , wherein \mathbb{R}^{20} is

wherein

 R^{200d} is $-OR^{201}$, wherein R^{201} is (C_{1-6}) alkyl;

 \mathbf{R}^{200e} is H or $-\mathbf{OR}^{201}$, wherein \mathbf{R}^{201} is (C_{1-6}) alkyl; and

 \mathbf{R}^{200f} is $(C_{1.6})$ alkyl, halogen, $-S\mathbf{R}^{201}$, $-SO_2\mathbf{R}^{201}$, or $-O\mathbf{R}^{201}$, wherein \mathbf{R}^{201} is $(C_{1.6})$ alkyl optionally further substituted with $(C_{3.7})$ eyeloalkyl or phenyl.

- 10. (Original) The compound according to claim 9 wherein R^{200d} is $-OR^{201}$ wherein R^{201} is ethyl.
- 11. (Original) The compound according to claim 7 wherein \mathbb{R}^2 is -O- \mathbb{R}^{20} , wherein \mathbb{R}^{20} is

wherein

one of A, D, and E represents a S atom and the other two of A, D, and E represent C atoms:

---- represents a single bond between a C atom and an S atom, and represents a single bond or a double bond between two C atoms; provided that each C atom is bonded by one double bond;

 \mathbf{R}^{200g} is H or $-\mathbf{OR}^{201}$, wherein \mathbf{R}^{201} is (C_{1-6}) alkyl or (C_{2-6}) alkenyl; and

 \mathbf{R}^{200h} is one or two substituents each independently selected from H, cyano, $(C_{1.6})$ alkyl and $-SO_{2^*}(C_{1.6})$ alkyl; wherein each \mathbf{R}^{200h} is bonded to a C atom which would otherwise bear a hydrogen atom.

- 12. (Previously presented) The compound according to claim 1 wherein n is 1.
- The compound according to claim 1 wherein R1 is 13. (Currently Amended) (C2.6)alkenyl or (C2.6)alkyl vinyl.

14. (Canceled)

- 15. (Currently Amended) The compound according to claim 1 wherein:
 - \mathbf{R}^4 and \mathbf{R}^6 are each independently selected from H, $(C_{1\cdot6})$ alkyl, -O- $(C_{1\cdot6})$ alkyl, (C3.7)cycloalkyl, (C3.7)cycloalkyl-(C1.6)alkyl-, aryl and aryl-(C1.6)alkyl-; wherein said (C1.6)alkyl, -O-(C1.6)alkyl, (C3.7)cycloalkyl, (C3.7)cycloalkyl-(C1.6)alkyl-, aryl and arvl-(C1.6)alkvl- are each optionally substituted with one to three substituents each independently selected from halogen, (C1-6)alkyl, hydroxy, cyano, O-(C1-6)alkyl, and -COOH, and -COO(C1-6)alkyl; or
 - R4 and R6 are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle, said heterocycle optionally containing from one to three additional heteroatoms each independently selected from N, S and O, and said 3- to 7-membered monocyclic saturated or unsaturated heterocycle being optionally substituted with one to three substituents each independently selected from halogen, (C₁₋₆)alkyl, hydroxy, cyano, O-(C1.6)alkyl, -NH2, -NH(C1.4)alkyl, -N((C1.4)alkyl)2, -COOH, and -COO(C1.6)alkyl.
- 16. (Currently Amended) The compound according to claim 1 wherein:
 - is 1 or 2: n
 - is 1 or 2:
 - R^1 is ethyl or vinyl H. (C. Allkyl. (C. Allkenyl, or (C. Allkynyl, wherein said (C1-6)alkyl, (C2-6)alkenyl, or (C2-6)alkynyl are optionally substituted with from one to three halogen atoms;

 R^2 — is selected from -CH₂ R^{30} , NH R^{20} , -O-R 20 , -S R^{30} , -SO-R 20 , SO₂ R^{20} , CH₂O- R^{20} , and -O-X-R 20 , wherein

X is (C2-3)alkenyl, (C2-3)alkynyl, or (C1-3)alkyl; and

 R^{20} is $(C_6$ or $C_{10})$ aryl or Het, wherein said $(C_6$ or $C_{10})$ aryl or Het is optionally mono-, di-, tri- or tetra-substituted with R^{200} , wherein each R^{200} is independently selected from H, halogen, cyano, $(C_{1.6})$ alkyl, $(C_{3.7})$ cycloalkyl, aryl- $(C_{1.6})$ alkyl-, aryl, Het, oxo, thioxo, -OR^{201}, -SR^{201}, -SOR^{201}, -SO_2R^{201}, -N(R^{202})R^{201}, \text{ and } -CON(R^{202})R^{201}; wherein each of said alkyl, cycloalkyl, and aryl and Het is optionally further substituted with R^{2000} .

 R^{201} in each case is independently selected from H, $(C_{1.6})$ alkyl₁ and aryl, -CO $(C_{1.6})$ alkyl and -CO $(C_{1.6})$ alkyl, wherein each of said alkyl and aryl is optionally further substituted with R^{2000} ;

R²⁰² is H or (C₁₋₆)alkyl;

 R^{2000} is one to three substituents each independently selected from halogen, aryl, Het, $-OR^{2001}$, $-SR^{2004}$, $-SOR^{2004}$, $-SO_3R^{2004}$; cyano, $-N(R^{2002})(R^{2001})$, and R^{2003} , wherein said aryl and Het are optionally substituted with one, two or three substituents selected from $(C_{1:6})$ alkyl and $-O-(C_{1:6})$ alkyl;

 R^{2001} in each case is independently selected from aryl, aryl-(C₁₋₆)alkyl-, -C(O)- $R^{2003}, \frac{-C(O)O \cdot R^{2003}, -CON(R^{2003})(R^{2004}) \text{ and } R^{2004}}{};$

R²⁰⁰² is H or (C₁₋₆)alkyl;

 R^{2003} is $(C_{1.8})$ alkyl; and $(C_{3.7})$ cycloalkyl; or $(C_{2.7})$ cycloalkyl $(C_{1.4})$ alkyl , wherein said $(C_{3.7})$ cycloalkyl and $(C_{3.7})$ cycloalkyl $(C_{1.4})$ alkyl are optionally monoridi, or tri-substituted with $(C_{1.3})$ alkyl; and

R²⁰⁰⁴ is H or R²⁰⁰³;

$$\begin{split} R^3 & \text{ is } (C_{1:\delta}) \text{alkyl}_+(C_{3:-r}) \text{eyeloalkyl- or } (C_{3:-r}) \text{eyeloalkyl-}_+(C_{1:\delta}) \text{alkyl}_+, \text{ each-optionally} \\ & \text{ substituted with one or more substituents independently-selected from } (C_{1:\delta}) \text{alkyl}_+, \\ & (C_{2:\delta}) \text{alkenyl}_+ \text{ halogen}_+, \text{ eyano}_+ \cdot \mathbf{OR}^{30}_+, -\mathbf{SR}^{30}_+, -\mathbf{C}(=0) \mathbf{OR}^{30}_+, -\mathbf{C}(=0) \mathbf{NH}_{2:\tau} \\ & -\mathbf{C}(=0) \mathbf{NH}(C_{1:\delta}) \text{alkyl}_+, \mathbf{C}(=0) \mathbf{N}((C_{1:\delta}) \text{alkyl}_2, -\mathbf{NH}_{2:\tau} -\mathbf{NH}(C_{1:\delta}) \text{alkyl}_+, \\ \end{aligned}$$

- $N((C_{+6})alkyl)_2$, aryl, and $aryl(C_{+6})alkyl$, wherein \mathbf{R}^{30} is H, $(C_{+6})alkyl$, aryl, or $aryl(C_{+6})alkyl$ -:
- \mathbf{R}^{5} is selected from \mathbf{B} , \mathbf{B} - $\mathbf{C}(=0)$ \mathbf{B} - \mathbf{O} - $\mathbf{C}(=0)$ -, and \mathbf{B} - $\mathbf{N}(\mathbf{R}^{51})$ - $\mathbf{C}(=0)$ -; \mathbf{B} - $\mathbf{N}(\mathbf{R}^{51})$ - $\mathbf{C}(=5)$ -, \mathbf{B} - \mathbf{SO}_{2} and \mathbf{B} - $\mathbf{N}(\mathbf{R}^{51})$ - \mathbf{SO}_{2} -; wherein \mathbf{B} is selected from:
 - (i) (C₁₋₁₀)alkyl optionally substituted with one or more substituents each selected independently from -COOH, -COO(C₁₋₆)alkył, -OH, halogen, -OC(=O)(C₁₋₆)alkył, -O(C₁₋₆)alkył, -NH₂, -NH(C₁₋₆)alkył, -N((C₁₋₆)alkył)₂, -C(=O)NH₂, -C(=O)NH₃, -C(=O)NH₄, -C(=O)NH₄ -C(O)NH₄ -C(O)NH
 - (ii) (C₁₋₇)cycloalkyl, or (C₂₋₇)cycloalkyl (C₁₋₁)alkyl , each optionally substituted with one or more substituents each selected independently from (C₁₋₆)alkyl, halogen, -COOH, -COO(C₁₋₆)alkyl, -OH, -O(C₁₋₆)alkyl, -NH₂, -NH(C₁₋₆)alkyl, -N((C₁₋₆)alkyl)₂, -C(=O)NH₂, -C(=O)NH(C₁₋₆)alkyl and C(=O)N(C₁₋₆)alkyl)₂.
 - (iii) aryl or aryl(C₊₆)alkyl-, each optionally substituted with one or more substituents each selected independently from (C₊₆)alkyl, OH, NH₂; NH(C₊₆)alkyl, N((C₊₆)alkyl)₂, C(=O)NH₃, C(=O)NH(C₊₆)alkyl-and C(=O)N((C₊₆)alkyl)₂;
 - (iv) Het or Het (C₁₋₆)alkyl , each optionally substituted with one or more substituents each selected independently from (C₁₋₆)alkyl, OH, NH₂; -NH(C₁₋₆)alkyl, N((C₁₋₆)alkyl)₂, C(=O)NH₂, C(=O)NH(C₁₋₆)alkyl)₂; and C(=O)N((C₁₋₆)alkyl)₂; and
 - (v) (C₂₋₆)alkenyl, or (C₂₋₆)alkynyl, each optionally substituted with 1 to 3 halozens; and wherein
 - \mathbf{R}^{51} is selected from H and (C₁₋₆)alkyl;

provided that B is not (C_{1-10}) alkyl unsubstituted, when R^5 is B-O-C(=O)-;

- Y is H or (C_{1.6})alkyl;
- R⁴ and R⁶ are each independently selected from H, (C_{1.6})alkyl, (C_{3.7})cycloalkyl,

 (C_{3.7})cycloalkyl-(C_{1.6})alkyl-, aryl, **Het**_e and aryl-(C_{1.6})alkyl-; wherein said

 (C_{1.6})alkyl, (C_{3.7})cycloalkyl, (C_{3.7})cycloalkyl-(C_{1.6})alkyl-, aryl and aryl-(C_{1.6})alkyl-

are optionally substituted with one or more substituents independently selected from halogen, $(C_{1:6})$ alkyl, hydroxy, cyano, $O-(C_{1:6})$ alkyl, $-NH(C_{1:4})$ alkyl, $-N((C_{1:4})$ alkyl)₂, $-COOH_2$, $-COOH_2$, $-COOH_3$, and $-COO(C_{1:6})$ alkyl; or

 R^4 and R^6 are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle optionally fused to at least one other cycle to form a heteropolycycle, said heterocycle and heteropolycycle optionally containing from one to three further heteroatoms independently selected from N, S and O, and said 3- to 7-membered monocyclic saturated or unsaturated heterocycle being optionally substituted with one or more substitutents independently selected from halogen, $(C_{1:6})$ alkyl, hydroxy, cyano, $O\text{-}(C_{1:6})$ alkyl, -NH2, -NH(C_{1:4})alkyl, -N((C_{1:4})alkyl)2, -CO-NH2, -CO-NH(C_{1:4})alkyl, -CO-N((C_{1:4})alkyl)2, -COOH, and -COO(C_{1:6})alkyl;

with the proviso that when:

R5 is B O C(=O) or B N(R51) C(=O), wherein

- R54 is H: and

 $\textbf{B is selected from } (C_{1\!-\!10}) \\ \textbf{alkyl}, (C_{2\!-\!7}) \\ \textbf{eycloalkyl}, \\ \textbf{and } (C_{2\!-\!7}) \\ \textbf{eycloalkyl}, (C_{4\!-\!4}) \\ \textbf{alkyl}, \\ \textbf{and } (C_{3\!-\!7}) \\ \textbf{eycloalkyl}, \\ \textbf{and } (C_{4\!-\!7}) \\ \textbf{eycloalkyl}, \\ \textbf{$

- a) wherein said alkyl, eyeloalkyl, and eyeloalkyl alkyl are optionally mono-, di- or tri-substituted with (C+2)alkyl; and
- b) wherein said alkyl, eyeloalkyl, and eyeloalkyl alkyl are optionally monoor disubstituted with substituents selected from hydroxy and $O(C_{i\rightarrow})$ alkyl; and e) wherein each of said alkyl groups may be mono , di- or tri- substituted with
- d) wherein in each of said cycloalkyl groups being 4,5,6-or7-membered, one (for the 4,5,6-or7-membered) or two (for the 5,6-or7-membered)
 - -CH₂-groups not directly linked to each other may be replaced by O to provide a heterocycle, such that the O atom is linked to the O C(=O) or
 - -N(R⁵¹)-C(=O) group via at least two carbon atoms; and

R2-is-O-R20;

halogen; and

then

R20 cannot be

wherein

 \mathbb{R}^{200a} is H, halogen, $(C_{\downarrow\downarrow})$ alkyl, OH, O $(C_{\downarrow\downarrow})$ alkyl, NH₂, NH $(C_{\downarrow\downarrow})$ alkyl or $-N((C_{\downarrow\downarrow})$ alkyl)₃:

R²⁰⁰⁶, R²⁰⁰⁶ are each independently halogen, cyano, (C₁₊)alkyl, O (C₁₊)alkyl, SO (C₁₊)alkyl, or SO₂ (C₁₊)alkyl, wherein each of said alkyl groups is optionally substituted with from one to three halogen atoms; and either R²⁰⁰⁶ or R²⁰⁰⁶ (but not both at the same time) may also be H: or

R^{200a} and R^{200b} or

R³⁰⁰⁰ and R³⁰⁰⁰ may be covalently bonded to form, together with the two C atoms to which they are linked, a 5- or 6-membered carbocyclic ring wherein one or two CH₂ groups not being directly linked to each other may be replaced each independently by O or NR* wherein R* is H or (C₁₋₁)alkyl, and wherein said earbo-or heterocyclic ring is optionally mono-or-disubstituted with (C₁₋₁)alkyl; and

 \mathbb{R}^{2000a} is \mathbb{R}^{2003} , $\mathbb{N}(\mathbb{R}^{2002})$ COR 2003 , $\mathbb{N}(\mathbb{R}^{2002})$ COR 2003 , $\mathbb{N}(\mathbb{R}^{2002})$ (\mathbb{R}^{2004}), or $\mathbb{N}(\mathbb{R}^{2002})$ CON(\mathbb{R}^{2002}) $\mathbb{N}(\mathbb{R}^{2004})$, wherein

R²⁰⁰² is H or methyl;

 R^{2003} is $(C_{1.8})$ alkyl, $(C_{3.7})$ eyeloalkyl or $(C_{3.7})$ eyeloalkyl $(C_{1.4})$ alkyl are optionally mono , di , or tri-substituted with $(C_{1.3})$ alkyl; and

R²⁰⁰⁴ is H or R²⁰⁰³.

wherein Het is defined as a 3- to 7-membered heterocycle having 1 to 4 heteroatoms each independently selected from O, N and S, which may be saturated, unsaturated or aromatic, and which is optionally fused to at least one other cycle to form a 4- to 14-membered heteropolycycle having wherever possible 1 to 5 heteroatoms, each independently selected from O, N and S, said heteropolycycle being saturated, unsaturated or aromatic:

or a diastereomer thereof or a salt thereof

- (Currently Amended) The compound according to claim 1 wherein:
 R⁵ is selected from B-C(=O)- B-O-C(=O)-, and B-NH-C(=O)-; wherein B is selected from:
 - (i) (C₁₋₁₀)alkyl optionally substituted with one or more substituents each selected independently from -COOH, -COO(C₁₋₆)alkyl, -OH, halogen, -OC(=0)(C₁₋₆)alkyl, -O(C₁₋₆)alkyl, -NH(2, -NH(C₁₋₆)alkyl, -N((C₁₋₆)alkyl)2; -C(=0)NH₂; -C(=0)NH(C₁₋₆)alkyl and -C(=0)N((C₁₋₆)alkyl)3;
 - (ii) (C_{3.7})cycloalkyl, or (C_{3.7})cycloalkyl-(C_{1.4})alkyl-, each optionally substituted with
 one or more substituents each selected independently from (C_{1.6})alkyl, halogen,
 -COOH, COO(C_{1.6})alkyl, OH, O(C_{1.6})alkyl, NH₂, NH(C_{1.6})alkyl,
 -N((C_{1.6})alkyl)₂; -C(=O)NH₃, C(=O)NH(C_{1.6})alkyl and -C(=O)N((C_{1.6})alkyl)₃;
 - (iii) aryl or aryl(C_{1.6})alkyl, each optionally substituted with one or more substituents each selected independently from (C_{1.6})alkyl, OH, NH₂, NH(C_{1.6})alkyl, -N((C_{1.6})alkyl)₂, C(=O)NH₂, C(=O)NH(C_{1.6})alkyl and C(=O)N((C_{1.6})alkyl)₂;
 - (iv) Het or Het (C₁₋₆)alkyl, each optionally substituted with one or more substituents each selected independently from (C₁₋₆)alkyl, OH, NH₂₃—NH(C₁₋₆)alkyl,
 -N((C₁₋₆)alkyl)₂₃—C(=O)NH₂₃—C(=O)NH(C₁₋₆)alkyl and C(=O)N((C₁₋₆)alkyl)₂₅
 provided that B is not (C₁₋₁₀)alkyl unsubstituted, when R⁵ is B-O-C(=O)-:

Y is H:

 ${\bf R}^3$ is $\underline{tert$ -butyl (${\bf C}_{1-8}$)alkyl or (${\bf C}_{1-7}$)cycloalkyl, each of which are optionally substituted with one or more substituents each independently selected from (${\bf C}_{1-6}$)alkyl, ${\bf OR}^{30}$, and ${\bf C}(=0){\bf OR}^{30}$, wherein ${\bf R}^{30}$ is H, (${\bf C}_{1-6}$)alkyl, or ${\bf ary}({\bf C}_{1-6})$ alkyl-;

 R^2 is -O-X- R^{20} , wherein X is (C₃)alkynyl and R^{20} is (C₆ or C₁₀)aryl; or

 R^2 is -O- R^{20} wherein R^{20} is

wherein

 R^{200d} is $-OR^{201}$, wherein R^{201} is (C_{1-6}) alkyl;

 \mathbf{R}^{200e} is H or -OR²⁰¹, wherein \mathbf{R}^{201} is (C_{1.6})alkyl; and

R²⁰⁰f is (C₁₋₆)alkyl, halogen, -SR²⁰¹, -SO₂R²⁰¹, or -OR²⁰¹, wherein R²⁰¹ is

(C₁₋₆)alkyl optionally further substituted with (C₂₋₇)cycloalkyl or phenyl;

or \mathbb{R}^{20} is

wherein

one of A, D, and E represents a S atom and the other two of A, D, and E represent C atoms:

---- represents a single bond between a C atom and an S atom, and represents a single bond or a double bond between two C atoms; provided that each C atom is bonded by one double bond;

 R^{200g} is H or -O R^{201} , wherein R^{201} is (C_{1-6}) alkyl or (C_{2-6}) alkenyl; and R^{200h} is one or two substituents each independently selected from H, cyano, (C_{1-6}) alkyl and $-SO_{2^{\circ}}(C_{1-6})$ alkyl; wherein each R^{200h} is bonded to a C atom which would otherwise bear a hydrogen atom;

- R¹ is ethyl or vinyl (C_{2.6})alkenyl or (C_{2.6})alkyl;
- n is 1:
- m is 2; and
- R^4 and R^6 are each independently selected from H, $(C_{1\cdot 6})$ alkyl, -O-($C_{1\cdot 6})$ alkyl, $(C_{2\cdot 7}) \text{cycloalkyl}, (C_{2\cdot 7}) \text{cycloalkyl-}(C_{1\cdot 6}) \text{alkyl-}, \text{aryl and aryl-}(C_{1\cdot 6}) \text{alkyl-}; \text{wherein said } (C_{1\cdot 6}) \text{alkyl}, (C_{3\cdot 7}) \text{cycloalkyl-}(C_{1\cdot 6}) \text{alkyl-}, \text{aryl and aryl-}(C_{1\cdot 6}) \text{alkyl-} \text{are optionally substituted with one to three substituents independently selected from halogen, } (C_{1\cdot 6}) \text{alkyl}, \text{hydroxy, cyano, } O-(C_{1\cdot 6}) \text{alkyl, -COOH, and -COO(}C_{1\cdot 6}) \text{alkyl; or }$
- ${f R}^4$ and ${f R}^6$ are linked, together with the nitrogen to which they are bonded, to form a 3- to 7-membered monocyclic saturated or unsaturated heterocycle, said heterocycle optionally containing from one to three further heteroatoms each independently selected from N, S and O, and said 3- to 7-membered monocyclic saturated or unsaturated heterocycle being optionally substituted with one to three substituents each independently selected from halogen, $(C_{1:6})$ alkyl, hydroxy, cyano, O- $(C_{1:6})$ alkyl, -NH $_2$, -NH $(C_{1:4})$ alkyl, -N($(C_{1:4})$ alkyl) $_2$ -COOH, and -COO($C_{1:6}$)alkyl;

or a diastereomer thereof or a salt thereof.

- 18. (Previously presented) A pharmaceutical composition comprising an anti-hepatitis C virally effective amount of a compound according to claim 1, or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier medium or auxiliary agent.
- (Original) The pharmaceutical composition according to claim 18 additionally comprising a therapeutically effective amount of at least one other antiviral agent.
- (Withdrawn Currently amended) A method of treating or preventing a
 hepatitis C viral infection in a mammal comprising administering to the mammal an

anti-hepatitis C virally effective amount of a compound according to claim 1, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition comprising said compound or pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier medium or auxiliary agent.

21. - 22. (Canceled)

- 23. (Withdrawn) A method of inhibiting the replication of hepatitis C virus by exposing the virus to a hepatitis C viral NS3 protease inhibiting amount of the compound according to claim 1, or a pharmaceutically acceptable salt thereof.
- 24. (Canceled)
- 25. (Previously Presented) An article of manufacture comprising a composition effective to treat an HCV infection or to inhibit the NS3 protease of HCV; and packaging material comprising a label which indicates that the composition can be used to treat infection by the hepatitis C virus; wherein the composition comprises a compound according to claim 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier medium or auxiliary agent.
- 26. (Previously Presented) A process for the preparation of a compound according to claim 1, comprising:
 - a) reacting a compound of formula (II):

wherein \mathbf{R}^4 , \mathbf{R}^6 and \mathbf{m} are defined as in claim 1, with a strong base so as to form the corresponding amide anion and

b) reacting an azalactone of formula (III):

wherein \mathbf{R}^1 , \mathbf{R}^2 , \mathbf{R}^3 , \mathbf{R}^5 , \mathbf{Y} and \mathbf{n} are defined as in claim 1, with the amide anion formed in step a).

27. (Original) An azalactone intermediate compound of formula (III):

wherein R^1 , R^2 , R^3 , R^5 , Y and n are defined as in claim 1.

28. (Canceled)