

Data Science

Lecture 10 - Regression

Asst. Prof. Dr. Santitham Prom-on

Department of Computer Engineering, Faculty of Engineering King Mongkut's University of Technology Thonburi

Motivation: why regression

• Consider the relationship between the human development index (HDI) and the corruption perception index (CPI) in Economist data.

- CPI seems to correlate with HDI
- Question: Given a desirable HDI, can we estimate the country CPI which reflects the cost?

• Consider modeling the CPI y_i as an "approximate" linear function of their HDI x_i .

$$y = mx + b + error$$

- There is an error term because this linear relationship is not perfect.
- y depends on other things besides x that we do not observe in our samples

- Why are we approaching the problem in this way? Here are three reasons.
 - 1. Sometimes you know x and just need to predict y (prediction)
 - 2. The conditional distribution is an excellent way to think about the relationship between two variables
 - 3. Linear relationships are easy to work with and are a good approximation in lots of real world problems

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$

 $\varepsilon_i \sim N(0, \sigma^2)i.i.d.$
 ε_i is independent of X_i

- The intercept is α
- The slope is β
- We use the normal distribution to describe the "error"

Simple linear regression: remarks

- The parameters of our models are α , β and σ .
- The slope of β measures the change in y when x increases by 1 unit.
- The intercept α is the value y takes when x = 0
- The linear relationship holds for each pair (X_i, Y_i) . Consequently, it is common to drop the subscripts and write $Y = \alpha + \beta X + \varepsilon$.
- The assumption that X is independent of ε is important. It implies that they are uncorrelated.

Interpretation of the regression parameters α , β and σ

• Given a specific value X = x, how do we interpret α , β and σ .

 β tells us: if the value we saw for X was one unit bigger, how much would our prediction for Y changes?

 α tells us: what would we predict for Y if x = 0?

 σ tells us: if $\alpha + \beta x$ is our prediction for Y given x, how big is the error associated with this prediction?

Interpretation of the regression parameters α , β and σ

β: measures the slope of the line

α : How do we get y_1 given a specific value of $X_1 = x_1$

Each ε_i is i.i.d. $N(0,\sigma^2)$

 σ^2 measures the spread of the normal distribution, i.e. the error

In practice, we only observe the data!

What role does the variance σ^2 play?

- The variance σ^2 of the error describes how big the error on average
- When σ^2 is smaller (right) the data are closer to the "true" regression line.
- The variance will determine how "wide" (or narrow) our predictive intervals are

Prediction using regression

Given a specific value for X = x, we can predict

- Simple linear regression model has one input *x* and one output *y*.
- The relationship can be explain as the following equation

$$f(\mathbf{x}) = w_0 + w_1 x$$

• Mathematically, parameters are obtained by least square method

Multiple regression

• Multiple linear regression model structure is exactly the same as the linear regression

$$f(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \cdots$$

• Mathematically, parameters are obtained by least square method

Multiple regression with interaction

- Adding interaction terms to a regression model can greatly expand understanding of the relationships among the variables in the model
- This occurs when two or more variables depend on one another for the outcome

$$f(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1 x_2 + \cdots$$

Method of least squares

- Choose the β 's so that the sum of the squares of the errors, ε_i , are minimized
- The least squares function is

$$S = \sum_{i=1}^{n} \varepsilon_i^2$$

$$= \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$

OLS solution

Minimum of a function is the point where the slope is zero

Learning model parameters

$$S = \sum_{i=1}^{n} \varepsilon_i^2$$

$$= \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$

 $\frac{\partial S}{\partial \alpha}$

unknown: α , β

Solving system of equations

calculated: α , β

Derivative of the error functions

The function S is to be minimized with respect to β_0 , β_1

$$\frac{\partial S}{\partial \alpha} = -2\sum_{i=1}^{n} (y_i - \alpha - \beta x_i) = 0$$

and

$$\frac{\partial S}{\partial \beta} = -2\sum_{i=1}^{n} (y_i - \alpha - \beta x_i) x_i = 0$$

Least square normal equation

$$n\alpha + \beta \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$$

$$\alpha \sum_{i=1}^{n} x_{i} + \beta \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} x_{i} y_{i}$$

Find alpha (intercept)

$$\alpha = \frac{\left| \sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i} \right|}{\left| \sum_{i=1}^{n} x_{i} y_{i} \sum_{i=1}^{n} x_{i}^{2} \right|} = \frac{\sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} x_{i} y_{i} \sum_{i=1}^{n} x_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$= \frac{\sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} x_{i} y_{i} \sum_{i=1}^{n} x_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

Find beta (slope)

$$\beta = \frac{\left| \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} y_{i} \right|}{\left| \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} \right|} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i}^{2}$$

Coefficient of determination (r²)

The coefficient of determination is a number that indicates the proportion of the variance in the dependent variable that is predictable from the independent

Coefficient of determination

• The coefficient of determination R² (or sometimes r²) is another measure of how well the least squares equation

$$Y = \alpha + \beta X$$

perform as a predictor of y

• R² is computed as:

$$R^{2} = \frac{SS_{yy} - SSE}{SS_{yy}} = \frac{SS_{yy}}{SS_{yy}} - \frac{SSE}{SS_{yy}} = 1 - \frac{SSE}{SS_{yy}}$$

- R^2 measures the relative sizes of SS_{yy} and SSE.
- The smaller SSE, the more reliable the predictions obtained from the model.

Coefficient of determination

• SS_{yy} measures the deviation of the observations from their mean:

$$SS_{yy} = \sum_{i} (y_i - \overline{y})^2$$

• SSE measures the deviation of observations from their predicted values

$$SSE = \sum_{i} (y_i - Y_i)^2$$

Coefficient of determination

- The higher the R², the more useful the model
- R² takes on values between 0 and 1
- Essentially, R² tells us how much better we can do in predicting y by using the model and computing Y than by just using the mean of y as a predictor.
- Note that when we use the model and compute Y the prediction depends on X because $Y = \alpha + \beta X$.
- Thus, we act as if x contains information about y.
- If we just use the mean of y to predict y, then we are saying that x does not contribute information about y and thus our predictions of y do not depend on x.

Evaluation: MAE, MAPE

$$MAE = \frac{1}{N} \sum |y_{true} - y_{pred}|$$

$$MAPE = \frac{1}{N} \sum \frac{|y_{true} - y_{pred}|}{|y_{true}|} \times 100$$

Lab: Load data

https://colab.research.google.com/drive/1gOQexVOk3mNwzlYsg S3jrMx1QjTnZdpq?usp=sharing

```
from sklearn.datasets import fetch california housing
import pandas as pd
import numpy as np
housing = fetch california housing()
housing
{'data': array([[ 8.3252 , 41. , 6.98412698, ..., 2.55555556,
         37.88 , -122.23
                             ],
      [ 8.3014 , 21. ,
                                  6.23813708, ..., 2.10984183,
         37.86 , -122.22
      7.2574 , 52.
                                  8.28813559, ..., 2.80225989,
         37.85
                 , -122.24
      [ 1.7 , 17.
                                  5.20554273, ..., 2.3256351,
         39.43 , -121.22
      [ 1.8672 , 18.
                                  5.32951289, ..., 2.12320917,
         39.43 , -121.32
                 , 16.
                                  5.25471698, ..., 2.61698113,
      2.3886
                              11),
         39.37
                 , -121.24
 'target': array([4.526, 3.585, 3.521, ..., 0.923, 0.847, 0.894]),
```


Repackage the data

```
X = pd.DataFrame(housing['data'], columns=housing['feature_names'])
X.head()
```

	MedInc	HouseAge	AveRooms	AveBedrms	Populatio	n Ave	Occup Latitude	Longitud	de				
0	8.3252	41.0	6.984127	1.023810	32	y = p	d.Series(hous:	ing['targ	et'],				
1	8.3014	21.0	6.238137	0.971880	240	у	name	=housing[ng['target_names'][0])				
2	7.2574	52.0	8.288136	1.073446	49	У							
3	5.6431	52.0	5.817352	1.073059	55	0 1	4.526 3.585						
4	3.8462	52.0	6.281853	1.081081	56	2	3.521 3.413						
х.	shape					4 20635	3.422 0.781						
(2	0640 , 8))				20636 20637 20638	0.771 0.923						
						20639 Name:	0.894 MedHouseVal,	Length:	20640,	dtype:	float64		

EDA Distribution of y

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.histplot(y)
plt.show()
```


EDA Association with features

EDA Feature correlation plot

Train/test split

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7)

X_train.shape, y_train.shape

((14447, 8), (14447,))

X_test.shape, y_test.shape

((6193, 8), (6193,))
```


Modeling statmodels

```
from statsmodels.api import OLS
```

lm = OLS(y_train, X_train).fit()

lm.summary()

Dep. Variable:	MedHouseVal	R-squared (uncentered):	0.893
Model:	OLS	Adj. R-squared (uncentered):	0.893
Method:	Least Squares	F-statistic:	1.502e+04
Date:	Sat, 30 Jul 2022	Prob (F-statistic):	0.00
Time:	21:40:59	Log-Likelihood:	-16823.
No. Observations:	14447	AIC:	3.366e+04
Df Residuals:	14439	BIC:	3.372e+04
Df Model:	8		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
MedInc	0.5182	0.005	100.904	0.000	0.508	0.528
HouseAge	0.0158	0.001	28.437	0.000	0.015	0.017
AveRooms	-0.1927	0.008	-25.579	0.000	-0.208	-0.178
AveBedrms	0.8584	0.035	24.452	0.000	0.790	0.927
Population	6.287e-07	6.03e-06	0.104	0.917	-1.12e-05	1.24e-05
AveOccup	-0.0042	0.001	-7.333	0.000	-0.005	-0.003
Latitude	-0.0643	0.004	-14.973	0.000	-0.073	-0.056
Longitude	-0.0169	0.001	-12.435	0.000	-0.020	-0.014

Evaluation

R2: 0.540

MAE: 0.579

MAPE: 0.349

```
from sklearn.metrics import r2_score, mean_absolute_error, mean_absolute_percentage_error
r2 = r2_score(y_true=y_test, y_pred=y_pred)
mae = mean_absolute_error(y_true=y_test, y_pred=y_pred)
mape = mean_absolute_percentage_error(y_true=y_test, y_pred=y_pred)
print('R2: %0.3f'%r2)
print('MAE: %0.3f'%mae)
print('MAPE: %0.3f'%mape)
```


Modeling scikit-learn

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X_train, y_train)
LinearRegression()
y_pred_lr = lr.predict(X_test)
y_pred_lr
array([3.39091271, 2.57418805, 3.33535536, ..., 2.43561109, 1.85466479,
       2.79648288])
```


Evaluation

```
r2 = r2_score(y_true=y_test, y_pred=y_pred_lr)
mae = mean_absolute_error(y_true=y_test, y_pred=y_pred_lr)
mape = mean_absolute_percentage_error(y_true=y_test, y_pred=y_pred_lr)
print('R2: %0.3f'%r2)
print('MAE: %0.3f'%mae)
print('MAPE: %0.3f'%mape)
```

R2: 0.599

MAE: 0.540

MAPE: 0.324

Summary

- Simple linear regression
- Multiple regression
- Error measurements
- Implementation of regression in statmodels
- Implementation of regression in scikit-learn

Activity

- Data:
 - https://www.kaggle.com/datasets/shivachandel/kc-house-data
- Build a model to predict the house price
- Evaluate the model
- Explain relevant variables

Thank you

Question?

