HOMEWORK 8

MATH 2001

QI WANG

ABSTRACT. This is the first homework assignment. The problems are from Hammack [Ham18, Ch. 1, $\S1.1$]:

• **Chapter 7** Exercises: 19, 20, 21

• **Chapter 8** Exercises: 2, 6, 10, 12, 14, 16, 18

CONTENTS

Chapter 7	2
Ch.7, Exercise 19	2
Ch.7, Exercise 20	2
Ch.8, Exercise 2	2
Ch.8, Exercise 6	3
Ch.8, Exercise 10	3
Ch.8, Exercise 12	4
Ch.8, Exercise 14	4
Ch.8, Exercise 16	5
Ch.8, Exercise 18	5
References	5

Date: March 13, 2020.

2 QI

CHAPTER 7

Ch.7, Exercise 19. If $n \in \mathbb{Z}$, then $2^0 + 2^2 + 2^3 + \cdots + 2^n = 2^{n+1} - 1$.

Solution to Ch.7, Exercise 19.

Proposition If $n \in \mathbb{Z}$, then $2^0 + 2^2 + 2^3 + \cdots + 2^n = 2^{n+1} - 1$.

Proof:

 $n = 0: 2^0 = 2^1 - 1 = 1$

 $n = 1: 2^0 + 2^1 = 2^2 - 1 = 3$

 $n = 2: 2^0 + 2^1 + 2^2 = 2^3 - 1 = 7$

Assume:

$$n = k - 1$$
: $2^0 + 2^1 + 2^2 + \dots + 2^{k-1} = 2^k - 1$

Induction Proof:

$$n = k$$
: $2^0 + 2^1 + 2^2 + \dots + 2^{k-1} + 2^k = 2^k - 1 + 2^k = 2^{k+1} - 1$

Ch.7, Exercise 20. There exists an $n \in \mathbb{N}$ for which $11|(2^n - 1)$.

Solution to Ch.7, Exercise 20.

Proposition There exists an $n \in \mathbb{N}$ for which $11|(2^n - 1)$.

Proof (direct) Because zero divides by eleven equals to zero, we have 11|0. Let $2^n - 1 = 0$, so we get n = 0. Thus, there exist an n when n = 0 for $11|(2^n - 1)$.

Ch.8, Exercise 2. Prove that $\{6n : n \in \mathbb{Z}\} = \{2n : n \in \mathbb{Z}\} \land \{3n : n \in \mathbb{Z}\}.$

Solution to Ch.8, Exercise 2.

Proposition Prove that $\{6n : n \in \mathbb{Z}\} = \{2n : n \in \mathbb{Z}\} \land \{3n : n \in \mathbb{Z}\}.$

Proof

Step 1: Suppose $a \in \{6n : n \in \mathbb{Z}\}$, we have a = 6n = 2(3n). Thus a = 2(b) where $b = 3n \in \mathbb{Z}$, so $a \in \{2n : n \in \mathbb{Z}\}$. We also have a = 6n = 3(2n), so a = 3c where $c = 2n \in \mathbb{Z}$. Thus $a \in \{3n : n \in \mathbb{Z}\}$. Therefor $\{6n : n \in \mathbb{Z}\} \subseteq \{2n : n \in \mathbb{Z}\} \land \{3n : n \in \mathbb{Z}\}$.

Step 2: Suppose $a \in \{2n : n \in \mathbb{Z}\} \land \{3n : n \in \mathbb{Z}\}$. Then, we have a = 2b and a = 3c where $b, c \in \mathbb{Z}$. Thus 2|a and 3|a, so (2*3)|a = 6|a. Therefore a = 6d for $d \in \mathbb{Z}$. Thus $a \in \{6n : n \in \mathbb{Z}\}$, so $\{2n : n \in \mathbb{Z}\} \land \{3n : n \in \mathbb{Z}\} \subseteq \{6n : n \in \mathbb{Z}\}$.

Ch.8, Exercise 6. Suppose $x, y \in \mathbb{R}$. Then $x^3 + x^2y = y^2 + xy$ if and only if $y = x^2$ or y = -x.

Solution to Ch.1, §1.1, Exercise 30.

Proposition Suppose $x, y \in \mathbb{R}$. Then $x^3 + x^2y = y^2 + xy$ if and only if $y = x^2$ or y = -x.

Proof Rearranging the equation $x^3 + x^2y = y^2 + xy$, we get $x^3 - xy = y^2 - x^2y$. Thus $x(x^2 - y) = y(y - x^2)$, so we have $x(x^2 - y) = -y(x^2 - y)$. Therefore we solve the equation get either $y = x^2$ or y = -x.

Ch.8, Exercise 10. If $a \in \mathbb{Z}$, then $a^3 \equiv a \pmod{3}$.

Solution to Ch.8, Exercise 12.

Proposition If $a \in \mathbb{Z}$, then $a^3 \equiv a \pmod{3}$.

Proof (proof by case)

case 1: Suppose $a \equiv 1 \pmod{3}$. We get $a = 3n + 1, n \in \mathbb{Z}$. Thus

4 QI

 $a^3 = 27n^3 + 27n^2 + 9b + 1 = 3(9b^3 + 9b^2 + 3b) + 1$ where $9b^3 + 9b^2 + 3b \in \mathbb{Z}$, so $a^3 \equiv 1 \pmod{3}$. Therefor $a^3 \equiv a \pmod{3}$.

case 2: Suppose $a \equiv 2 \pmod{3}$. We get $a = 3n + 2, n \in \mathbb{Z}$. Thus $a^3 = 27n^3 + 54n^2 + 36b + 8 = 3(9b^3 + 18b^2 + 12b + 2) + 2$ where $9b^3 + 18b^2 + 12b + 2 \in \mathbb{Z}$, so $a^3 \equiv 2 \pmod{3}$. Therefor $a^3 \equiv a \pmod{3}$. **case 3:** Suppose $a \equiv 0 \pmod{3}$. We get $a = 3n, n \in \mathbb{Z}$. Thus $a^3 = 27n^3 = 3(9b^3)$ where $9b^3 \in \mathbb{Z}$, so $a^3 \equiv 0 \pmod{3}$. Therefor $a^3 \equiv a \pmod{3}$.

For each case $a^3 \equiv a \pmod{3}$.

Ch.8, Exercise 12. There exist a positive real number x for which $x^2 < \sqrt{x}$.

Solution to Ch.8, Exercise 12.

Proposition There exist a positive real number x for which $x^2 < \sqrt{x}$. *Proof* Assume x = 0.25, then $x^2 = 0.0625$ and $\sqrt{x} = 0.5$.

Ch.8, Exercise 14. Suppose $a \in \mathbb{Z}$. Then $a^2|a$ if and only if $a \in \{-1,0,1\}$.

Solution to Ch.8, Exercise 14.

Proposition Suppose $a \in \mathbb{Z}$. Then $a^2 | a$ if and only if $a \in \{-1, 0, 1\}$.

Proof Assume $a^2|a$, we get $a/a^2=n$, where $n \in \mathbb{Z}$. By solving the equation, we get a=1, a=-1 or a=0.

Ch.8, Exercise 16. Suppose $a, b \in \mathbb{Z}$. If ab is odd, then $a^2 + b^2$ is even.

Solution to Ch.8, Exercise 16.

Proposition Suppose $a, b \in \mathbb{Z}$. If ab is odd, then $a^2 + b^2$ is even.

Proof Suppose a and b are odd. We have a = 2n + 1 and b = 2m + 1.

Thus $a^2 + b^2 = 4n^2 + 4n + 1 + 4m^2 + 4m + 1 = 2(2n^2 + 2n + 2m^2 + 2n^2 +$

2m + 1) where $2n^2 + 2n + 2m^2 + 2m + 1 \in \mathbb{Z}$. Therefore $a^2 + b^2$ is

even.

Ch.8, Exercise 18. There is a set *X* for which $\mathbb{N} \in X$ and $\mathbb{N} \subseteq X$.

Solution to Ch.8, Exercise 18.

Proposition There is a set *X* for which $\mathbb{N} \in X$ and $\mathbb{N} \subseteq X$.

Proof There is $\wp \mathbb{N}$ which $\mathbb{N} \in \wp \mathbb{N}$ and $\mathbb{N} \subseteq \wp \mathbb{N}$.

REFERENCES

[Ham18] Richard Hammack, Book of Proof, 3 ed., Creative Commons, 2018.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309-0395

Email address: casa@math.colorado.edu