TAREA 3.2

Es una relación de recurrencia lineal homogénea c	on coeficientes constantes: [B]
A) $(\pi/2)a_{r-2} = 3ra_{r+1} + a_r$ B) $a_{r-2} = \pi a_{r-1} - a_r$	C) $a_r = \pi a_{r-1} - 2a_{r-2} + 3r$ D) $a_r = 2^r a_{r-1}$
2. Determine cuál de las siguientes relaciones de re	ecurrencia es lineal homogénea con coeficientes constantes
2. Determine cuar de las siguientes relaciones de l'	Ι . 1
A) $a_r - 3a_{r-1} + a_{r-2} - 8a_{r-3} = 0$ B) $2a_r - 2a_{r-1} = r2^r$	C) $4a_r + 3a_{r-1} \cdot 3a_{r-2} = 0$ D) $a_r + 5ra_{r-1} - 2a_{r-2} = 6r^2 + 5$
3. Todas de las siguientes relaciones de recurrencia son li	neales con coeficientes constantes EXCEPTO L C L
	0 C) $a_r + 5ra_{r-1} - 2a_{r-2} = 6r^2 + 5$ D) $2a_r - 2a_{r-1} = r2^r$
4. Coloque una "S" si la relación de recurrencia es lineal	
$r^{2} - 1/3 \ a_{r} + (\operatorname{sen}\pi/2)a_{r-1} = \ln(5) \ a_{r-2}$ $a_{r} + 5ra_{r-1} - 2a_{r-2} = 6r^{2} + 5$	[S] [N]
	r M 1
5. Coloque una "S" si la relación de recurrencia es lineal	con coeficientes constantes y una "N" si no lo es
$4a_r + 3a_{r-1} \cdot 3a_{r-2} = 0$ $a_{r-3} = (a_{r-2} + a_r)/5$	I N I
$a_{r-3} - (a_{r-2} + a_r) S$ $2a_r - 2a_{r-1} = r2^r$	N S
$a_r + 5ra_{r-1} - 2a_{r-2} = 6r^2 + 5$	
$a_r - 3a_{r-1} + a_{r-2} - 8a_{r-3} = 0$	[S] [S]
6. Coloque una "S" si la relación de recurrencia es lineal con coeficientes constantes y una "N" si no lo es	
$a_r = a_{r-1} \cdot a_{r-2}$	[N]
$a_r = 3a_{r-1} + a_{r-2} - 8a_{r-3}$	
$a_r = 5r^2 + 2 + 5ra_{r-1} - 2a_{r-2}$	[S]
$a_r = a_{r-1} + 3a_{r-2} a_{r-2}$	[N]
$a_r = (r3^r - 4a_{r-1})/3$	l s l
7. En cada caso se da una fórmula explícita. Encontrar los términos indicados	
A) $a_n = 2n + 3$; $a_4 =$	5/6 [B]
B) $a_n = n/(n+1)$; $a_5 =$	-27 [D]
C) $a_n = (2n-1)^2$; $a_4 =$	11 [A]
D) $a_n = (-3)^n$; $a_3 =$	49 [C]
8. Determinar la fórmula explícita que representa cada una de las siguientes progresiones	
A) 1,3,5,7,	$a_n = 20 - 3n$
B) 17,14,11,8,	$a_n = {\binom{1}{2}}^{n-1}$
C) 1,½,¼,½,	$a_n = (2n-1)^2$
D) 1, 9, 25, 49,	$a_n = 2n - 1 \qquad [$
9. Encuentre el valor del término indicado en cada sucesión	
A) $a_n = (2n-1)^2$; $a_4 =$	81 [B]
B) $a_n = (-3)^n$; $a_4 =$	
C) $a_n = 2n + 5$; $a_4 =$	13 49 [C]
10. En cada caso se da una fórmula explícita. Encuentre el valor del término indicado.	
A) $a_n = (2n-2)^2$; $a_5 =$	81 [B]
B) $a_n = (-3)^{n-1}$, $a_5 =$	15 [C]
C) $a_n = 2n + 5$; $a_5 =$	64 [A]

