End-Semester Test (AY21/22 S1)

EP0605 - Advanced Physics

Time Allowed: 1½ hour

Instructions to Candidates

Max Marks: 100

- 1. All the Singapore Polytechnic examination rules must be strictly adhered to.
- 2. This paper consists of **6** questions. You are allowed the handwritten A4 cheat sheet.
- 3. Answer all the questions in this question booklet. All working must be shown.
- 4. This paper consists of **8** pages (inclusive of the cover page).
- 5. Fill in your personal particulars below.

Name:			
Admission No:		S/No	
Class:	EL/EP0605/FT/01	Date:	

Question	Marks
1	
2	
3	
4	
5	
6	
Total	

AY21/22 S1 1

- 1. An electric potential difference of 1000 V is applied to a pair of parallel plates that is separated by 1.00 cm. A particle of positive charge 9.60×10^{-19} C, initially at rest, is released from the positive plate. You can ignore the weight of the particle.
 - a) What is the magnitude of the uniform electric field between the plates?
 - b) If the mass of the particle is 2.16×10^{-15} kg, what is the kinetic energy of the particle as it reaches the other plate?
 - c) What is the speed of the particle as it reaches the other plate?

- 2. A particle with charge -2.00×10^{-9} C is moving in a uniform magnetic field $\mathbf{B} = (-1.50 \text{ T}) \mathbf{k}$. The magnetic force acting on the particle is found to be $\mathbf{F} = -(4.50 \times 10^{-7} \text{ N}) \mathbf{i} + (6.00 \times 10^{-7} \text{ N}) \mathbf{j}$.
 - a) Calculate the x- and y- components of the particle's velocity.
 - b) Explain why the z- component of the particle's velocity cannot be determined.
 - c) If the x-y plane motion is circular, what is the radius of the circle? The mass of the particle is 1.00×10^{-12} kg.

- 3. A person runs from point A to point E (via B, C and D) in 1.00 minute as shown in the figure.
 - a) Write each of the 4 displacement vectors in terms of unit vectors i and j.
 - b) What is the person's final displacement relative to A?
 - c) What is the person's average speed?
 - d) What is the magnitude and direction of the person's average velocity?

4. The diagram shows a positive and a negative charge, each of magnitude $q = 1.0 \times 10^{-6}$ C. They are separated by a distance, d = 0.20 m along the y-axis. An electron, e, is initially at a distance r = 1.0 m from the origin O. The charge on an electron is -1.6×10^{-19} C while the Coulomb's constant is 8.99×10^{9} N m²/C².

- a) What is the electric field due to the two charges at the location of the electron? State its magnitude and direction.
- b) What is the electric potential due to the two charges at the location of the electron? Explain your answer.

- 5. A particle of mass 4.00 kg is subjected to a net force $F = (\alpha + \beta x^2)$ N that acts along the x-axis. The numerical value of α is -7.00 while that of β is 0.600. The particle is initially at the origin, and moves at 4.00 m/s away from the origin along the negative x-axis.
 - (a) What are the SI units of α and β ?
 - (b) What is the speed of the particle when it reaches x = 8.00 m?
 - (c) Is the force \vec{F} conservative? Explain your answer with suitable calculations.

6. In the figure below, an object of mass m moves with a speed u on a flat frictionless surface AB. It then encounters an incline BC. The incline is rough where the coefficient of kinetic friction is μ_k . After the object reaches the top of the incline, it continues to move on a second flat frictionless surface CD. The length of BC is d and that of CD is x, the angle of inclination is θ and the acceleration due to gravity is g. The answers should be in terms of the variables given.

- a) Draw the free body diagram of the object when it is on the incline.
- b) What is the work done by the force of friction?
- c) What is the speed of the object at point D?

(15 marks)

Answers:

1(a)	$1.00 \times 10^5 \text{ V/m}$
1(b)	$9.60 \times 10^{-16} \mathrm{J}$
1(c)	0.943 m/s
2(a)	$v_x = -200 \text{ m/s}, v_y = -150 \text{ m/s}$
2(b)	v_z is not affected by the field, so it is not determined from force measurements.
2(c)	0.083 m
3(a)	$\overrightarrow{AB} = 40.0 \hat{\imath}, \overrightarrow{BC} = 25.0 \hat{\imath} + 43.3 \hat{\jmath}, \overrightarrow{CD} = -69.3 \hat{\imath} - 40.0 \hat{\jmath}, \overrightarrow{DE} = -30.0 \hat{\jmath}$
3(b)	$(-4.30 \hat{\imath} - 40.0 \hat{\jmath}) \mathrm{m}$
3(c)	3.33 m/s
3(d)	0.450 m/s, 80.9° south of west
4(a)	1800 N/C, along positive y-axis
4(b)	0 V
5(a)	α : N; β : N/m ²
5(b)	6.26 m/s
5(c)	Yes
6(b)	$-\mu_k mgd\cos\theta$
6(c)	$\sqrt{u^2 - 2gd(\sin\theta + \mu_k\cos\theta)}$

AY21/22 S1