Model Checking

INTRODUCTION

Problème du Model Checking

Formule LTL, CTL,... φ Modèle (structure de Kripke K)

Model Checking

Introduction

- Les formules LTL sont des formules qui portent sur les chemins d'exécution.
- Un automate, représentant le modèle à vérifier, même fini, donne souvent lieu à une infinité d'exécutions différentes de longueur infinie.
- Pour procéder au model checking de LTL, il faut se baser sur la théorie des langages.

□ Soient un modèle M et une formule

 φ : GFp (toujours il y aura un état tel que p).

- Soient un modèle M et une formule
 φ : GFp (toujours il y aura un état tel que p).
- Une exécution de M $q_0, q_1, ...$ vérifiant ϕ doit contenir une infinité de positions $q_{n1}, q_{n2}, ...$ où p est vérifiée.

 q_0 91 q_2 q_{n-1} q_n q_{n+1} q_{n+2}

- Soient un modèle M et une formule
 φ : GFp (toujours il y aura un état tel que p).
- Une exécution de M $q_0, q_1, ...$ vérifiant ϕ doit contenir une infinité de positions $q_{n1}, q_{n2}, ...$ où p est vérifiée.

- Soient un modèle M et une formule
 φ : GFp (toujours il y aura un état tel que p).
- Une exécution de M $q_0, q_1, ...$ vérifiant ϕ doit contenir une infinité de positions $q_{n1}, q_{n2}, ...$ où p est vérifiée.
- □ Entre ces positions il peut y avoir un nombre fini d'états vérifiant $\neg p$. on dit que l'exécution est de la forme $((\neg p)^*p)^\omega$. ω désigne un nombre infini.

- Soient un modèle M et une formule
 φ : GFp (toujours il y aura un état tel que p).
- Une exécution de M $q_0, q_1, ...$ vérifiant ϕ doit contenir une infinité de positions $q_{n1}, q_{n2}, ...$ où p est vérifiée.
- □ Entre ces positions il peut y avoir un nombre fini d'états vérifiant $\neg p$. on dit que l'exécution est de la forme $((\neg p)^*p)^\omega$. ω désigne un nombre infini.

Une exécution ne vérifiant pas φ, doit, à partir d'une certaine position de l'exécution ne plus vérifier p et donc à partir de ce moment tous les états doivent vérifier ¬p.

- Une exécution ne vérifiant pas φ, doit, à partir d'une certaine position de l'exécution ne plus vérifier p et donc à partir de ce moment tous les états doivent vérifier ¬p.
- □ Cette exécution est de la forme $(p|\neg p)^*(\neg p)^\omega$.

```
q_0 p
q_1p
q_2 p
q_{n-1}p
q_n \neg p
q_{n+1} p
q_{n+2} \neg p
```


<u>Illustration</u>

- Une exécution ne vérifiant pas φ, doit, à partir d'une certaine position de l'exécution ne plus vérifier p et donc à partir de ce moment tous les états doivent vérifier ¬p.
- □ Cette exécution est de la forme $(p|\neg p)^*(\neg p)^{\omega}$.
- Il s'agit de ω-régulières, par analogie avec les expressions régulières, mais pour représenter des mots infinis.
- ω signifie répétition un nombre infini de fois.

```
q_0 p
 q_1p
q_2 p
q_{n-1}p
q_n \neg p
q_{n+1} p
q_{n+2} \neg p
```


Mots infinis

- Un mot infini est un mot qui peut s'écrire sous la forme uv[∞].
- Un modèle M ne satisfait pas φ (M\beta\φ) s'il existe toujours une trace uv^ω de M tel que uv^ω \beta\φ.

Mots infinis

- Un mot infini est un mot qui peut s'écrire sous la forme uv[∅].
- Un modèle M ne satisfait pas φ (M\beta\φ) s'il existe toujours une trace uv^ω de M tel que uv^ω \beta\φ.
- Reprenons l'exemple avec ϕ =GFp, ici $uv^{\omega} = (p|\neg p)^*(\neg p)^{\omega}$, p n'apparait pas dans v $(\neg p)^{\omega}$ donc M\(\beta\)GFp.

MODEL CHECKING LTL

Principe de base

- L'algorithme est du à Lichtenstein, Puneli, Vardi et Wolppoer.
- Associer à toute formule ϕ de LTL un ω -automate B_{ϕ} représenté par une expression ω -régulière décrivant la forme que doit respecter une exécution pour satisfaire ϕ .
- □ Représenter le modèle par un automate B_M de toutes les exécutions infinies de M.
- La question « A-t-on $B_M \models \phi$? » se ramène donc à la question « est-ce que toutes les exécutions maximales et initiales de B_M respectent B_{ϕ} ?».

Algorithme (informel)

- □ A partir d'une formule ϕ , construire un automate $B_{\neg \phi}$:
 □ L($\neg \phi$)={ $\sigma \in (2^{AP}) | \sigma \triangleright \phi$ }
- Construire un automate B_M de toutes les exécutions infinies de M.
- Construire l'automate reconnaissant $L(B_M) \cap L(B_{\neg \phi})$. C'est le résultat d'une synchronisation où les deux automates avancent simultanément. Le résultat est $B_{\otimes}=B_M\otimes B_{\neg \phi}$.
 - $\square L(B_{\otimes}) = \{ \sigma | \sigma \in exec(M) \cap L(B_{\neg \phi}) \} = \{ \sigma | \sigma \in exec(M) \text{ et } \sigma | \neq \phi \}.$
- □ Si $B_{\otimes} = \emptyset$ alors $M \models \phi$ sinon $M \triangleright \phi$.

Model checking LTL (schéma global)

Propriété **♦ →** w-automate *B* **→ ♦**

Produit synchronisé $B_M \otimes B_{\neg \phi}$

φvérifie M M ⊨φ

oui

$$L(B_M) \cap L(B_{\neg \phi}) = \emptyset$$

Contre exemple $M \in L(B_M \otimes B_{\neg \phi})$

Algorithme (informel)

- En appliquant cet algorithme, on obtient un automate dont les seuls comportements sont ceux de M qui sont tolérés par $B_{\neg \phi}$: les exécutions de M ne vérifiant pas ϕ .
- Le problème de MC :
 - □A⊨ ♦ ? devient
 - $\Box L(B_M \otimes B_{\neg \phi}) = \emptyset$?
- Mais pour appliquer cet algorithme on a besoin d'automates reconnaissant des mots infinis : automates de Büchi.

Automates de Büchi

- Un automate de Büchi est un n-uplet $B=(Q, \Sigma, q_0, T, F)$ avec
 - □Q un ensemble fini d'états.
 - ^ΔΣ un alphabet fini.
 - $\square q_0 \in Q$ l'état initial.
 - $\Box T \subseteq Q \times \Sigma \times Q$ la relation de transition.
 - □F⊆Q un ensemble d'états acceptants (ou répétés) appelés « *Büchi states* ».

Automates de Büchi (exécution reconnaissance)

- Soient un automate de Büchi B=(Q, Σ , q₀, T, F) et un mot infini w $\in \Sigma^w$.
- Une exécution σ de B sur $w=w_0w_1w_2...$ est une séquence infinie $q_0q_1q_2...$ d'états tel que pour tout $i\geq 0$, $(q_i,w_i,q_{i+1})\in T$.
- Une exécution σ est acceptée si pour tout i
 ≥0, il existe j>i tel que q_i∈B.
- Un mot w est accepté s'il existe une exécution acceptée sur w.

Acceptation (informelle)

Un mot infini w est accepté si l'automate commence par un état initial, respecte la relation de transition et passe infiniment souvent par un état acceptant f∈B.

□w1=accccccc...

■w1=accccccc... Acceptée

- ■w1=accccccc... Acceptée
- □w2=acbcbcb...

- w1=accccccc... Acceptée
- w2=acbcbcb... Acceptée

- w1=accccccc... Acceptée
- w2=acbcbcb... Acceptée
- □w3=acbbbbbbbb...

- w1=accccccc... Acceptée
- w2=acbcbcb... Acceptée

vraie p q_0 vraie q q_0 p q_0

Structure de Kripke et automate de Büchi

- Une structure de Kripke peut être vue comme un simple automate de Büchi.
- \square K=(S,s₀,Prop,T,I) correspond à l'automate de Büchi B=(Q, Σ, q₀, δ, F) avec :
 - $\Sigma = 2^{\text{Prop}}$
 - $\square Q=S$
 - $\Box q_0 = s_0$
 - \square (s,a,s') \in δ ssi (s,s') \in T et a \in I(s)
 - □F=S

Structure de Kripke K

Automate de Büchi B généralisé

$$\square \Sigma = 2^{\{p,q\}} = \{\emptyset, \{p\}, \{q\}, \{p,q\}\}.$$

Model Checking LTL: exemple

- □ Soit la formule φ :
 - « une occurrence de p est toujours suivie plus loin d'une occurrence de q tout au long de l'exécution ».
- □ φ peut s'écrire en LTL :
 - \square **G**($p \Rightarrow XFq$).
- $\square \neg \phi$ signifie:
 - « il existe une occurrence de p après laquelle on ne rencontrera plus jamais q ».

Model Checking LTL: exemple

- Soit la formule :
 - « une occurrence de p est toujours suivie plus loin d'une occurrence de q tout au long de l'exécution ».
- □ φ peut s'écrire en LTL :
 - \square **G**($p \Rightarrow XFq$).
- $\square \neg \phi$ signifie:
 - « il existe une occurrence de p après laquelle on ne rencontrera plus jamais q ».

Model Checking LTL: exemple

□Soit le modèle B_M

-Une transition $t \otimes u_1$ n'est possible que si t part d'un état vérifiant p -Une transition $t \otimes u_2$ n'est possible que si t part d'un état vérifiant $\neg q$.

Model Checking LTL: exemple

Model Checking LTL: exemple

- $\Box L(B_M \otimes B_{\neg \phi}) \neq \emptyset.$
- Il existe une exécution qui visite les états acceptants une infinité de fois.
- **□**M**⊭***φ*.

Complexité de LTL

- La complexité de la construction de l'automate intersection (dans les pires cas) :
 - $\square B_{\neg \phi}$ est de taille $O(2|\phi|)$.
 - $\square B_M \otimes B_{\neg \phi}$ est de taille $O(|B_M| \times |B_{\neg \phi}|)$.
 - Le model checking M $\models \varphi$ peut être résolu en temps O($|B_M| \times 2^{|\phi|}$).

LTL à Automate de Büchi (AB)

- Il existe plusieurs algorithmes pouvant être utilisés pour convertir une formule en un automate de Büchi.
- Dans le cadre de ce cours, nous utilisons une méthode simplifiée.

LTL à AB

Forme normale négative (négation uniquement sur les propositions atomiques):

$$\Box \neg (\phi U \psi) = \neg \phi R \neg \psi$$

$$\Box \neg (\phi \mathbf{R} \psi) = \neg \phi \mathbf{U} \neg \psi$$

$$\Box \neg G(\phi) = F(\neg \phi)$$

$$\Box \neg F(\phi) = G(\neg \phi)$$

Rappel $\phi R \psi$ signifie ψ est vrai jusqu'à ϕ . ψ est vrai aussi dans l'état où ϕ est vrai.

$$\varphi R \psi \equiv \neg (\neg \varphi U \neg \psi)$$

LTL à AB

- Règles d'expansion
 - $\Box \phi \mathbf{U} \psi = \psi \vee (\phi \wedge \mathbf{X}(\phi \mathbf{U} \psi))$

 - \Box $\mathbf{G} \psi = \psi \wedge \mathbf{X}(\mathbf{G} \psi)$
 - \Box $\mathbf{F} \psi = \psi \lor X(\mathbf{F} \psi)$
- On a aussi:
 - $\square(X \varphi) U (X \psi) \equiv X (\varphi U \psi)$
 - $\square(\mathbf{X} \varphi) \wedge (\mathbf{X} \psi) \equiv \mathbf{X} (\varphi \wedge \psi)$
 - $\Box \mathbf{GF} \ \phi \wedge \mathbf{GF} \ \psi \equiv \mathbf{GF} \ (\phi \wedge \psi)$

LTL à AB (algorithme simplifié)

- 1. L'état initial s est étiqueté par vrai∧Xφ.
- 2. Développer φ jusqu'à obtenir une formule composée de sous-formules commençant par X, PAs (propositions atomiques ou une négation de PA) et des connecteurs booléens.
- 3. Réécrire sous forme normale disjonctive (disjonction de conjonctions), chaque disjonction est composée de deux sortes de formules :
 - a. Formules atomiques (vraies ou fausses dans l'état courant).
 - b. Formules portants sur le prochain état ($\mathbf{X}\psi$) qui doivent être vraies au prochain état.
- 4. Créer un état s' pour chacune des disjonctions.
- 5. Ajouter une transition de s vers tout état s' pour chaque symbole t dans 2^{AP} vérifiant les formules de a) et une transition T (true) si $\mathbf{X}\psi = \mathbf{T}$.
- 6. Répéter les étapes 2 à 5 pour toute formule ψ de s'.
- 7. Ajouter les états d'acceptation B_i: tout état B_i ne doit pas être étiqueté par Xφ_i tel que φ_i contient une U-sous-formule (une U-formule est une formule où U est l'opérateur racine de l'arbre syntaxique de la formule : exécuté en dernier).

 $\phi = G(a \Rightarrow Fb)$: tout a est suivi plus tard par un b.

1.

$$φ = (¬a ∧ Xφ) ∨ (b ∧ Xφ) ∨ (XFb∧Xφ)$$
 $φ = (¬a ∧ Xφ) ∨ (b ∧ Xφ) ∨ (True ∧ X(Fb∧φ))$
4.

¬а, Хф

b , **X**φ

T, X(Fb $\land \phi$)

5.

6. Itération sur s'φ= (¬a ∧ Xφ) ∨ (b ∧ Xφ) ∨ (True ∧ X(Fb∧φ))

6. Itération sur s'

 $\varphi = (\neg a \land X \varphi) \lor (b \land X \varphi) \lor (True \land X(Fb \land \varphi))$

6. Itération sur s'
φ= (¬a ∧ Xφ) ∨ (b ∧ Xφ) ∨ (True ∧ X(Fb∧φ))

6. Itération sur s'
 φ= (¬a ∧ Xφ) ∨ (b ∧ Xφ) ∨ (True ∧ X(Fb∧φ))

6. Itération sur s'

φ = (¬a ∧ Xφ) ∨ (b ∧ Xφ) ∨ (True ∧ X(Fb∧φ))

6. Itération sur s'
φ= (¬a ∧ Xφ) ∨ (b ∧ Xφ) ∨ (True ∧ X(Fb∧φ))

6. Itération sur s' $\phi = (\neg a \land X\phi) \lor (b \land X\phi) \lor (True \land X(Fb \land \phi))$

6. Itération sur s'

 ψ = Fb \wedge ϕ = Fb \wedge G(a \Rightarrow Fb) = Fb \wedge (a \Rightarrow Fb) \wedge X ϕ = Fb \wedge X ϕ = (b \wedge X ϕ) \vee (X(Fb \wedge ϕ))

6. Itération sur s'

 ψ = Fb \wedge ϕ = Fb \wedge G(a \Rightarrow Fb) = Fb \wedge (a \Rightarrow Fb) \wedge X ϕ = Fb \wedge X ϕ = (b \wedge X ϕ) \vee (X(Fb \wedge ϕ))

7. Etats acceptants

Minimisation

MODEL CHECKING CTL

Introduction

- ■Soient M une structure de kripke et p une formule CTL.
- Il existe essentiellement deux techniques de model-checking CTL :
 - ☐ Technique de marquage : utilisation d'un algorithme d'étiquetage des états par les sous formules de *p* qu'ils satisfont.

Introduction

- Model-checking symbolique :
 - □ Technique de points fixes : calcul de l'ensemble caractéristique de *p* (l'ensemble des états du modèle M qui satisfont *p*).
 - □ Diagramme de décision binaire (BDD).

Model checking CTL par marquage des états

- □ Soient une structure de kripke $M = (Q, q_0, E, T, Prop, I)$ et une formule CTL ϕ .
- L'algorithme est dû à Queille, Sifakis, Clarke, Emerson et Sistla, il consiste à :
 - pour chaque sous-formule φ' de φ, en commençant par la plus interne, marquer les états de M vérifiant φ' (q.φ') : q = φ'
 - □ procéder récursivement en réutilisant les marquages des sous-formules plus internes pour une sous-formule plus externe.
 - \square M satisfait ϕ ssi son état initial q_0 est marqué par ϕ (q_0, ϕ) .

Schéma global de l'algorithme de marquage

- $\Box \text{Entrées : } \phi, \ \mathsf{M} = (Q, q_0, E, T, Prop, I)$
- □Sortie : ensemble des états satisfaisant φ.
 - □ϕ':=Normaliser(ϕ) (l'écrire en terme de AU, EU, EX, ∧,¬ et T(vrai)).
 - \square Marquage(ϕ ',M).
 - \square Retourner $q_0.\phi$.

Normalisation

Utiliser les règle suivantes pour normaliser les formules:

$$\Box F = T^{?}$$

$$\Box$$
 AF ϕ = \Box **AU** ϕ

$$\Box \mathbf{AG}\phi = \mathbf{EF}\neg \phi$$

$$\Box \mathbf{EF}\phi = \mathbf{TEU}\phi$$

$$\Box$$
 EF ϕ = \Box EU ϕ

$$\Box$$
 EG ϕ = AF $\neg \phi$

- \square Entrées : formule CTL ϕ , M= (Q,q₀,E,T,Prop,I)
- Cas 1 : φ=p
 pour tout q∈Q faire
 si p ∈I(q) alors q.φ:=vrai
 sinon q.φ:=faux fin si

fin pour tout

Cas 2 : φ=¬ψ
faire marquage(ψ,M) ;
pour tout q∈Q faire
q.φ:=not(q.ψ) ;
fin pour tout


```
Entrées : formule CTL \phi, M= (Q,q<sub>0</sub>,E,T,Prop,I)
\Box Cas 3: \phi = \psi_1 \wedge \psi_2
   faire marquage(\psi_1,M); marquage(\psi_2,M);
   pour tout q∈Q faire
         q.\phi := et(q.\psi_1,q.\psi_2)
   fin pour tout
\Box Cas 4: \phi=EX \psi
  faire marquage(\psi,M);
   pour tout q∈Q faire q.φ:=faux fin pour tout
   pour tout (q,q') ∈T faire
         si q'.ψ=vrai alors q.φ:= vrai
   fin pour tout
```



```
Entrées : formule CTL \phi, M= (Q,q<sub>0</sub>,E,T,Prop,I)
Cas 5: \phi = \psi_1 EU \psi_2
faire marquage(\psi_1,M); marquage(\psi_2,M);
pour tout q∈Q faire
        q.φ:=faux;
        q.dejavu:=faux;
fin pour tout
L:=Ø
pour tout q \in Q faire si q.\psi_2=vrai alors L:=L\cup{q} fin si fin pour tout
tant que L≠Ø faire
        prendre un q \in L;
        L:=L\setminus\{q\};
         q.\phi:=vrai;
        pour tout (q',q) ∈ Tfaire
                      si q'.dejavu=faux alors
                         q'.dejavu := vrai;
                          si q'.\psi_1=vrai alors L:=L\cup{q'} finsi
                      fin si
```



```
Entrées : formule CTL \phi, M= (Q,q<sub>0</sub>,E,T,Prop,I)
Cas 6: \phi = \psi_1 AU \psi_2
faire marquage(\psi_1,M); marquage(\psi_2,M);
L:=Ø
pour tout q∈Q faire
       q.nb:=degre(q); q.\phi:=faux;
       si q.\psi_2=vrai alors L:=L\cup{q} fin si
fin pour tout
tant que L≠Ø faire
       prendre un q \in L;
       L:=L\setminus\{q\};
        q.φ:=vrai;
       pour tout (q',q) ∈Tfaire
                    q'.nb:=q'.nb-1
                    si (q'.nb=0) et (q'.\psi_1=vrai) et (q'. \phi =faux) alors L:=L \cup{q'} fin si
       fin pour tout
fin tant que
```


Considérez le système M modélisé suivant et la formule φ= AG(ρ⇒AFq) :

Construire les états dans lesquels la formule φ est vérifiée.

□ Aucun état ne vérifie la formule : Ml\+

Algorithme de marquage pour l'application

$$\Box \phi = AG(\rho \Longrightarrow AFq)$$

- $\square AFq = TAUq$

M

Algorithme de marquage pour l'application

- $\Box \phi = AG(\rho \Longrightarrow AFq)$
- $\Box AFq = TAUq$
- Les états qui satisfont la formule $\varphi = \neg (p \land \neg \mathbf{AFq})$ sont colorés en jaune.

$\Box \mathbf{AG} \varphi = \neg \mathbf{EF} \neg \varphi = \neg (T\mathbf{EU} \neg \varphi)$

Algorithme de marquage pour l'application

Algorithme de marquage pour l'application

- $\Box \phi = AG(\rho \Longrightarrow AFq)$
- $\Box AFq = TAUq$
- Les états qui satisfont la formule $\varphi = \neg (p \land \neg \mathbf{AFq})$ sont colorés en jaune.
- Trouver les états qui satisfont **AG** φ .

Complexité

- Le model checking CTL demande un temps linéaire en chacune des composants (automate et formule).
- Pourquoi est-il plus efficace que pour LTL:
 - □CTL permet l'expression de formules d'états.
 - □ Il suffit donc de trouver quel état vérifie telle formule au lieu de considérer les exécutions.
- Le model checking d'une formule CTL par marquage peut se faire en O(|M|∧|φ|).

Conclusion

- Attention au problème d'explosion du nombre d'états (state explosion problem).
- Pour éviter ce problème il est possible de faire recours au model checking symbolique : représenter les états et les transitions du système de façon symbolique comme les diagrammes de décision binaire (BDD).
- □ Il est possible aussi d'appliquer des méthodes d'abstraction pour simplifier les modèles à vérifier.