华东理工大学 2010—2011 学年第二学期

《电磁学》课程期终考试试卷 (A卷)

2011.6

开课学院 理学院	专业 应用物理	_考试形式:闭卷,	所需时间:	120_分钟
老比妣夕.	学早.	形年 <i>4</i> 78。	任 理	

题 序 一	 =						总 分
	16	17	18	19	20	21	
得 分							
评卷人							

一、选择题(共45分)

1、半径为 R 的均匀带电球体的静电场中各点的电场强度的大小 E 与距球心的距离 r 的关系曲线为:

- 2、已知一高斯面所包围的体积内电荷代数和 $\Sigma q=0$,则可肯定:
 - (A) 高斯面上各点场强均为零.
 - (B) 穿过高斯面上每一面元的电场强度通量均为零.
 - (C) 穿过整个高斯面的电场强度通量为零.
 - (D) 以上说法都不对.
- 3、有N个电荷均为q的点电荷,以两种方式分布在相同半径的圆周上:一种是无规则地分布,另一种是均匀分布。比较这两种情况下在过圆心O并垂直于圆平面的z轴上任一点P(如图所示)的场强与电势,则有

- (B) 场强不等, 电势不等.
- (C) 场强分量 E_z 相等, 电势相等.
- (D) 场强分量 Ez相等, 电势不等.

Γ]

4、半径为 R 的金属球与地连接. 在与球心 O 相距 d=2R 处有一电 荷为q的点电荷.如图所示,设地的电势为零,则球上的感生电荷q'为

- (A) 0.
- (C) $-\frac{q}{2}$.
- 5、 一"无限大"均匀带电平面 A, 其附近放一与它平行的有一定厚 度的"无限大"平面导体板B,如图所示. 已知A上的电荷面密度为 $+\sigma$,则在导体板B的两个表面1和2上的感生电荷面密度为:

(A) $\sigma_1 = -\sigma_i$ $\sigma_2 = +\sigma_i$

$$\sigma_2 = + \sigma$$

- (B) $\sigma_1 = -\frac{1}{2}\sigma$, $\sigma_2 = +\frac{1}{2}\sigma$.
- (C) $\sigma_1 = -\frac{1}{2}\sigma$, $\sigma_1 = -\frac{1}{2}\sigma$.
- (D) $\sigma_1 = -\sigma_i$ $\sigma_2 = 0$.

Γ]

- 6、一导体球外充满相对介电常量为 ε ,的均匀电介质,若测得导体表面附近场强为E,则导 体球面上的自由电荷面密度σ为
 - (A) $\varepsilon_0 E$.
- (B) $\varepsilon_0 \varepsilon_r E$.
- (C) $\varepsilon_r E$.
- (D) $(\varepsilon_0 \varepsilon_r \varepsilon_0)E$.
- Γ

]

7、 C_1 和 C_2 两空气电容器并联以后接电源充电. 在电源保持联接 的情况下,在 C_1 中插入一电介质板,如图所示,则

- (A) C_1 极板上电荷增加, C_2 极板上电荷减少.
- (B) C_1 极板上电荷减少, C_2 极板上电荷增加.
- (C) C_1 极板上电荷增加, C_2 极板上电荷不变.
- (D) C_1 极板上电荷减少, C_2 极板上电荷不变.
- Γ]
- 8、在相对介电常量分别为 ε_{r1} 和 ε_{r2} (ε_{r2} > ε_{r1})的两种各向同性均匀电介质 1 和 2 的分 界面上(分界面处无自由电荷), 电场线的偏折情况是

9、、一电场强度为 \vec{E} 的均匀电场, \vec{E} 的方向与沿x 轴正向,如图 所示.则通过图中一半径为R的半球面的电场强度通量为

- (A) $\pi R^2 E$.
- (B) $\pi R^2 E / 2$.
- (C) $2\pi R^2 E$.
- (D) 0.

]

10、如图,两根直导线 ab 和 cd 沿半径方向被接到一个截面处处 相等的铁环上,稳恒电流 I 从 a 端流入而从 d 端流出,则磁感强 度 \bar{B} 沿图中闭合路径L的积分 \bar{b} 记 \bar{l}

(B)
$$\frac{1}{3}\mu_0 I$$
.

(C)
$$\mu_0 I / 4$$
.

(D)
$$2\mu_0 I/3$$
.

]

11、如图,一个电荷为+q、质量为m的质点,以速度 \bar{v} 沿x轴射 入磁感强度为 B 的均匀磁场中,磁场方向垂直纸面向里,其范围 从 x=0 延伸到无限远,如果质点在 x=0 和 y=0 处进入磁场,则 它将以速度 $-\bar{v}$ 从磁场中某一点出来,这点坐标是x=0和

(A)
$$y = +\frac{mv}{aB}$$

(B)
$$y = +\frac{2mv}{aB}$$

(A)
$$y = +\frac{mv}{qB}$$
. (B) $y = +\frac{2mv}{qB}$.
(C) $y = -\frac{2mv}{qB}$. (D) $y = -\frac{mv}{qB}$.

(D)
$$y = -\frac{mv}{qB}$$
.

120°

12、在无限长载流空心螺线管内同轴地插入一块圆柱形顺磁 介质. 若 1、2 点为圆柱介质居中面上靠近柱面而分居柱面两 边的两个点,在 1、2 点处的磁感强度分别为 B_1 、 B_2 ,磁场强 度分别为 H_1 、 H_2 ,则它们之间的关系为:

- (A) $B_2 > B_1$, $H_2 = H_1$.
- (B) $B_2 > B_1$, $H_2 > H_1$.
- (C) $B_2 < B_1$, $H_2 = H_1$.
- (D) $B_2 < B_1$, $H_2 > H_1$.

Γ]

13、一根长度为 L 的铜棒,在均匀磁场 \bar{B} 中以匀角速度 ω 绕通过其 \times 一端O的定轴旋转着, \bar{B} 的方向垂直铜棒转动的平面,如图所示. 设 t=0 时,铜棒与 Ob 成 θ 角(b 为铜棒转动的平面上的一个固定点),则 在任一时刻 t 这根铜棒两端之间的感应电动势是:

(B)
$$\frac{1}{2}\omega L^2B\cos\omega t$$
.

(C)
$$2\omega L^2 B \cos(\omega t + \theta)$$
. (D) $\omega L^2 B$.

(D)
$$\omega L^2 B$$
.

(E)
$$\frac{1}{2}\omega L^2 B$$
.

14、有两个线圈,线圈 1 对线圈 2 的互感系数为 M_{21} , 而线圈 2 对线圈 1 的互感系数为 M_{12} . 若 它们分别流过 i_1 和 i_2 的变化电流且 $\left|\frac{\mathrm{d}\,i_1}{\mathrm{d}\,t}\right| > \left|\frac{\mathrm{d}\,i_2}{\mathrm{d}\,t}\right|$,并设由 i_2 变化在线圈 1 中产生的互感电动 势为 ε_{12} ,由 i_1 变化在线圈 2 中产生的互感电动势为 ε_{21} ,判断下述哪个论断正确.

- (A) $M_{12} = M_{21}$, $\varepsilon_{21} = \varepsilon_{12}$.
- (B) $M_{12} \neq M_{21}$, $\varepsilon_{21} \neq \varepsilon_{12}$.
- (C) $M_{12} = M_{21}$, $\varepsilon_{21} > \varepsilon_{12}$.
- (D) $M_{12} = M_{21}$, $\varepsilon_{21} < \varepsilon_{12}$.

15、真空中两根很长的相距为 2a 的平行直导线与电源组成闭合回路如 图. 已知导线中的电流为 I,则在两导线正中间某点 P 处的磁能密度为

(A)
$$\frac{1}{\mu_0} (\frac{\mu_0 I}{2\pi a})^2$$

(A)
$$\frac{1}{\mu_0} (\frac{\mu_0 I}{2\pi a})^2$$
 (B) $\frac{1}{2\mu_0} (\frac{\mu_0 I}{2\pi a})^2$ By $\frac{1}{2\pi a}$

(C)
$$\frac{1}{2\mu_0} (\frac{\mu_0 I}{\pi a})^2$$
. (D) 0. $\frac{1}{2\mu_0} (\frac{\mu_0 I}{\pi a})^2 = \frac{1}{2\mu_0} (\frac{\mu_0 I}{\pi a})^2$

二、计算题(共55分)

16、一"无限大"平面,中部有一半径为 R 的圆孔,设平面上均匀带 电,电荷面密度为 σ .如图所示,试求通过小孔中心O并与平面垂直 的直线上各点的场强和电势(选O点的电势为零). $\overline{ \bigcirc G_{0} }$ $\overline{ \bigcirc G_{0} }$

两个同心的导体球壳,半径分别为 R_1 =0.145 m 和 R_2 =0.207 m,内球壳上带有负电 荷 $q=-6.0\times10^{-8}$ C. 一电子以初速度为零自内球壳逸出. 设两球壳之间的区域是真空,试 计算电子撞到外球壳上时的速率. (电子电荷 $e = -1.6 \times 10^{-19}$ C, 电子质量 $m_e = 9.1 \times 10^{-31}$ kg, $\mathcal{E}_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2 /\,\mathrm{N} \cdot \mathrm{m}^2$)

18、半径为R的半圆线圈ACD通有电流 I_2 ,置于电流为 I_1 的无限长直线电 流的磁场中,直线电流 I_1 恰过半圆的直径,两导线相互绝缘。求半圆线圈 受到长直线电流 L的磁力.

19、如图, 一无限长圆柱形直导体, 横截面半径为 R, 在导体内有一半径 为a的圆柱形孔,它的轴平行于导体轴并与它相距为b,设导体载有均匀 分布的电流 I, 求孔内任意一点 P 的磁感强度 B 的表达式.

- 20、一无限长载有电流 I 的直导线旁边有一与之共面的矩形线圈,线 圈的边长分别为l和b,l边与长直导线平行.线圈以速度 \bar{v} 垂直离开 直导线,如图所示.求当矩形线圈与无限长直导线间的互感系数
- $M = \frac{\mu_0 l}{2\pi}$ 时,线圈的位置及此时线圈内的感应电动势的大小.

的常量) 变化时, 试在图上标明 a, b 两点感应电场的方向并证明在正方 形导线框上的每一点,感应电场沿导线的切向分量 E,皆有相同的值(用 题给已知量表示结果).

