Roofline and Matrix Multiplication PAPI Analysis

José Alves, Rui Brito

Universidade do Minho

Braga, November 2012

Index

Sources for Machine Specifications

Sources used for a complete profile:

Linux System Information (/proc/cpuinfo, /proc/meminfo) To gather specifications on hardware;

Web (ark.intel.com, crucial.com) For micro architecture and memory specifications;

Linux Tools and Packages (dmidecode, sysctl, bandwidth) To gather memory, cpu and bandwidth info;

Apple
MacBook Pro late 2008
Intel
Core
Core 2 Duo T9600
2
2.80 GHz
44.8 GFlops/s

Table: MacBook Pro late 2008 specifications

Cache	
Level:	1
Size:	32KB + 32KB
Line Size:	64 B
Associative:	8-way
Memory Access Bandwidth:	40 GB/s
Level:	2
Size:	6 MB
Line Size:	64 B
Associative:	24-way
RAM	-
Type:	SDRAM DDR3 PC3-8500
Frequency:	1067 MHz
Size:	4 GB
Num. Channels:	2
Latency:	13.13 ns

Manufacter:	HP
Model:	Pavillion dv6-2190ep
Processor	
Manufacturer:	Intel
Arch:	Nehalem
Model:	i7-720QM
Cores:	4
Clock Frequency:	1.60 GHz
FP Performance's Peak:	51.2 GFlops/s
Processor Manufacturer: Arch: Model: Cores: Clock Frequency:	Intel Nehalem i7-720QM 4 1.60 GHz

Table: HP Pavillion dv6-2190ep specifications

Cache	
Level:	1
Size:	32KB + 32KB
Line Size:	64 B
Associative:	4/8-way
Memory Access Bandwidth:	22 GB/s
Level:	2
Size:	256 KB
Line Size:	64 B
Associative:	8-way
Level:	3
Size:	6 MB
Line Size:	64 B
Associative:	12-way
RAM	

SDRAM DDR3 PC3-10600 Type: Frequency: 1333 MHz

Problem

Analyse the performance of a matrix multiplication algorithm,

$$MatrixA * MatrixB = MatrixC$$
 (1)

wich contains a triple nested loop with the indexes i,j and k (line,column and position).

The implementation used runs two versions of the problem, one multipying matrixA with matrixB, and another multipying matrixA with the transpose of matrixB.

Algorithm

Standard implementation of a matrix multiplication in C.

```
for (i = 0; i < size; i++) {
   for (j = 0; j < size; j++) {
      for(k = 0; k < size; k++) {
        acc += matrixA[i][k] * matrixB[k][j];
      }
      matrixC[i][j] = acc;
      acc = 0;
   }
}</pre>
```

Counters Used

```
Used counters gathered by PAPI:
PAPI TOT CYC Total cycles;
PAPI TOT INS Total instructions
PAPI LD INS Load Instructions
PAPI SR INS Store Instructions
PAPI FML INS Multiply instructions
PAPI FDV INS Division instructions
PAPI VEC INS Vector Instructions
PAPI FP OPS Floating point operations
PAPI L1 DCA L1 data cache accesses
PAPI L1 DCM L1 data cache misses
PAPI L2 DCA L2 data cache accesses
PAPI L2 DCM L2 data cache misses
```

Test cases

Test cases were selected to fit on the multiple memory levels. Each Test case was run 4 times for each version of the problem.

Memory	Size	Matrix Size
L1	30 KB	50
L2	255 KB	146
L3	3 MB	500
RAM	7.68 MB	800

Table: Test cases

Memory Accesses

The following table shows the number of memory accesses, through PAPI readings.

Test	PAPI	Accesses/Inst
L1 1	380844	0.49033
L1_2	258412	0.33270
L2 1	9411279	0.42860
L2_2	6318058	0.33449
L3_1	7761996	0.00885
L3_2	152192	0.00020

Conclusion

- Some difficulties measuring memory ceilings;
- Lack of analysis of output from PAPI;

Roofline and Matrix Multiplication PAPI Analysis

José Alves, Rui Brito

Universidade do Minho

Braga, November 2012