Anderson's Mixing for Nonlinear Magnetostatic Poisson Problem

Alexander Zhiliakov

Department of Mathematics University of Houston

Math 6376 Numerical Linear Algebra, November 28, 2017

Problem Description

Figure: z cross-section: iron magnet (gray), copper wires (red & blue)

Problem: given current density $\mathbf{J}=(0,0,J_z),\ J_z:=\pm j\left[A\,m^{-2}\right]$ in wires, and magnetic permeability $\mu\left[N\,A^{-2}\right]$ of the magnet, find resulting magnetic field $\mathbf{B}\left[T\right]$

Magnetic Permeability

One may write $\mu = \mu_0 \, \hat{\mu}$ with $\mu_0 := 4 \, \pi \, 10^{-7} \, \big[\text{N} \, \text{A}^{-2} \big]$ permeability of vacuum. If we assume $\hat{\mu}_{\text{iron}} = 1000$, resulting problem will be **linear**. However, in reality $\hat{\mu}_{\text{iron}}$ depends on **B**:

In this case we end up with nonlinear problem.

Mathematical Model

- **1** Start with Maxwell's equations $\nabla \times \frac{1}{\mu} \mathbf{B} = \mathbf{J}, \ \nabla \cdot \mathbf{B} = 0$
- ② Introduce vector potential **A** via $\mathbf{B}=\nabla\times\mathbf{A}$ and rewrite (1) as $\nabla\times\frac{1}{\mu}\nabla\times\mathbf{A}=\mathbf{J}$
- Assume that magnet is very long in z-direction and note that only z-component J_z of J is nonzero and J_z = J_z(x, y); then
 (2) simplifies to Poisson problem -∇ · (¹/_u∇A_z) = J_z
- Equip (3) with appropriate boundary conditions and discretize using e.g finite elements; then we have to solve
 - Linear system $\mathbf{S} \mathbf{x} = \mathbf{b} [\mu = \mu(x, y)]$ or
 - Nonlinear system $\mathbf{S}(\mathbf{x})\mathbf{x} = \mathbf{b} \ [\mu = \mu(||\mathbf{B}|| = ||\nabla A_z||)]$

Linear Post-processing

Figure: A_z

For linear problem ($\hat{\mu}_{\text{iron}} = 1000$) only scaling changes as we change current density

Nonlinear Solvers (1/2)

We need to solve f(x) = 0 (x = g(x)):

Fixed Point Method:

$$x^{(k+1)} = g(x^{(k)})$$

• Anderson's Mixing:

$$x^{(k+1)} = \sum_{i=0}^{m} \alpha_i g(x^{(k-i)})$$

with
$$\alpha = \arg\min_{\sum_{i=0}^{m} \alpha_i = 1} ||\sum_{i=0}^{m} \alpha_i f(x^{(k-i)})||_2$$
.

This unconstrained minimization problem may be written as a small least-squares problem. We solve it (e.g using Gaussian elimination or (better) Householder reflections) at each iteration

Nonlinear Solvers (2/2)

In our case f(x) := x - S(x) x. For the iteration function we may choose

- $\mathbf{g}(\mathbf{x}) \coloneqq \mathbf{S}^{-1}(\mathbf{x}) \, \mathbf{b}$ (Simplified Newton's method / Picard's method) or
- $\mathbf{g}_{\omega}(\mathbf{x}) := \omega \mathbf{S}^{-1}(\mathbf{x}) \mathbf{b} + (1 \omega) \mathbf{x}$ with $0 < \omega \le 1$ (relaxed version).

In practice, especially for strong nonlinearities, ${\bf g}$ rarely satisfies contraction property. Thus we need to introduce a relaxation parameter ω

Fixed Point vs. Anderson's Mixing

Table: Numb of iterations / execution time for different methods

$ J_z $	10 ⁶	10 ⁷	10 ⁸	10^{9}	10^{10}	10^{11}
Picard	1	6	_	_	203	7
	0.4 s	1.3 s	_	_	25.2 s	1 s
Relaxed Picard	1	6	84	70	164	7
	0.5 s	2 s	71 s	52.4 s	54.3 s	2.6 s
Anderson's Mixing	1+0	0+4	22+20	21+21	35+6	4+2
	0.7 s	1 s	20 s	14.5 s	11.4 s	1.9 s

We used linear Lagrange elements with a mesh from the first slide (362 DOFs). We stopped when $\mathbf{f}(\mathbf{x}^{(k)}) < 10^{-8}$. For Anderson's Mixing k=i+j means i relaxed Picard's iterations $(\mathbf{f}(\mathbf{x}^{(i)}) < 10^{-4})$ and j accelerated Picard's iterations. We used numb of mixings m=10.

Nonlinear Post-processing

Figure: $|J_z| = 10^6, 10^7, \dots, 10^{11} A m^{-2}$