

# Remarks on zeta functions and K-theory over $\mathbb{F}_1$

Anton Deitmar

**Abstract:** We show that the notion of zeta functions over the field of one element  $\mathbb{F}_1$ , as given in special cases by Soulé, extends naturally to all  $\mathbb{F}_1$ -schemes as defined by the author in an earlier paper. We further give two constructions of K-theory for affine schemes or  $\mathbb{F}_1$ -rings, we show that these coincide in the group case, but not in general.

## Contents

|     |                              |
|-----|------------------------------|
| 1   | $\mathbb{F}_1$ -schemes      |
| 2   | Proof of Theorem 1           |
| 3   | K-theory                     |
| 3.1 | The +-construction . . . . . |
| 3.2 | The Q-construction . . . . . |

One computes that if  $N(x) = a_0 + a_1x + \dots + a_nx^n$ , then

|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | $\zeta_{X \mathbb{F}_1}(s) = s^{a_0}(s-1)^{a_1} \cdots (s-n)^{a_n}$ .                                                                                                                                                                                                                                                                                                                                                                              |
| 3 | In the paper [1] there is given a definition of a scheme over $\mathbb{F}_1$ as well as an ascent functor $\cdot \otimes \mathbb{Z}$ from $\mathbb{F}_1$ -schemes to $\mathbb{Z}$ -schemes. We say that a $\mathbb{Z}$ -scheme is <i>defined over <math>\mathbb{F}_1</math></i> , if it comes by ascent from a scheme over $\mathbb{F}_1$ . The natural question arising is whether schemes defined over $\mathbb{F}_1$ satisfy Soulé's condition. |
| 4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## Introduction

Soulé [10], inspired by Manin [7], gave a definition of zeta functions over the field of one element  $\mathbb{F}_1$ . We describe this definition as follows. Let  $X$  be a scheme of finite type over  $\mathbb{Z}$ . For a prime number  $p$  one sets after Weil,

$$Z_X(p, T) \stackrel{\text{def}}{=} \exp \left( \sum_{n=1}^{\infty} \frac{T^n}{n} \#X(\mathbb{F}_{p^n}) \right),$$

where  $\mathbb{F}_{p^n}$  denotes the field of  $p^n$  elements. This is the local zeta function over  $p$ , and the global zeta function of  $X$  is given as

$$\zeta_{X|\mathbb{Z}}(s) \stackrel{\text{def}}{=} \prod_p Z_X(p, p^{-s})^{-1}.$$

Soulé considered in [10] the following condition: Suppose there exists a polynomial  $N(x)$  with integer coefficients such that  $\#X(\mathbb{F}_{p^n}) = N(p^n)$  for every prime  $p$  and every  $n \in \mathbb{N}$ . Then  $Z_X(p, p^{-s})^{-1}$  is a rational function in  $p$  and  $p^{-s}$ . The vanishing order at  $p = 1$  is  $N(1)$ . One may thus define

$$\zeta_{X|\mathbb{F}_1}(s) = \lim_{p \rightarrow 1} \frac{Z_X(p, p^{-s})^{-1}}{(p-1)^{N(1)}}.$$

Simple examples show that this is not the case. However, schemes defined over  $\mathbb{F}_1$  satisfy a slightly weaker condition which serves the purpose of defining  $\mathbb{F}_1$ -zeta functions as well, and which we give in the following theorem.

**Theorem 1** *Let  $X$  be a  $\mathbb{Z}$ -scheme defined over  $\mathbb{F}_1$ . Then there exists a natural number  $e$  and a polynomial  $N(x)$  with integer coefficients such that for every prime power  $q$  one has*

$$(q-1, e) = 1 \Rightarrow \#X_{\mathbb{Z}}(\mathbb{F}_q) = N(q).$$

*This condition determines the polynomial  $N$  uniquely (independent of the choice of  $e$ ). We call it the zeta-polynomial of  $X$ .*

With this theorem, we can define the zeta function of an arbitrary  $\mathbb{F}_1$ -scheme  $X$  as

$$\zeta_{X|\mathbb{F}_1}(s) = s^{a_0}(s-1)^{a_1} \cdots (s-n)^{a_n},$$

if  $N_X(x) = a_0 + a_1x + \dots + a_nx^n$  is its zeta-polynomial.

We also define its *Euler characteristic* as

$$\chi(X) = N_X(1) = a_1 + \dots + a_n.$$

This definition is due to Soulé [10]. We repeat the justification, which is based on the Weil conjectures.

Suppose that  $X/\mathbb{F}_p = X_Z \times_{\mathbb{Z}} \mathbb{F}_p$  is a smooth projective variety over the finite field  $\mathbb{F}_p$ . Then the Weil conjectures, as proven by Deligne, say that

$$Z_{X_Z}(p, T) = \prod_{l=0}^m P_l(T)^{(-1)^{l+1}},$$

with

$$P_l(T) = \prod_{j=1}^{b_l} (1 - \alpha_{l,j} T),$$

satisfying  $|\alpha_{l,j}| = p^{l/2}$ , where  $b_l$  is the  $l$ -th Betti-number.

On the other hand, suppose that  $\#X(\mathbb{F}_{p^n}) = N(p^n)$  holds for every  $n \in \mathbb{N}$ , where  $N(x) = a_0 + a_1x + \dots + a_nx^n$  is the zeta-polynomial, then one gets

$$Z_{X_Z}(p, T) = \prod_{k=0}^n (1 - p^k T)^{-a_k}.$$

Comparing these two expressions, one gets

$$b_l = \begin{cases} a_{l/2} & l \text{ even}, \\ 0 & l \text{ odd}. \end{cases}$$

So  $\sum_{k=0}^n a_k = \sum_{l=0}^m (-1)^l b_l$  is the Euler characteristic.

For explicit computations of zeta functions and Euler numbers over  $\mathbb{F}_1$ , see [6].

Next for K-theory. Based on the idea of Tits, that  $\mathrm{GL}_n(\mathbb{F}_1)$  should be the permutation group  $\mathrm{Per}(n)$ , Soulé also suggested that

$$K_i(\mathbb{F}_1) = \pi_i(B(\mathrm{Per}(\infty))^+),$$

which is known to coincide with the stable homotopy group of the spheres,  $\pi_i^s = \lim_{k \rightarrow \infty} \pi_{i+k}(S^k)$ . (The  $+$  refers to Quillen's  $+$  construction.) More general, for a monoid  $A$ , or an  $\mathbb{F}_1$ -ring  $\mathbb{F}_A$ , one has

$$\mathrm{GL}_n(A) = \mathrm{GL}_n(\mathbb{F}_A) = A^n \rtimes \mathrm{Per}(n).$$

Setting  $\mathrm{GL}(A) = \lim_{n \rightarrow \infty} \mathrm{GL}_n(A)$ , one lets

$$K_i^+(A) = \pi_i(B\mathrm{GL}(A)^+).$$

On the other hand, one considers the category  $\mathcal{P}$  of all finitely generated projective modules over  $A$  and defines

$$K_i^Q(A) = \pi_{i+1}(BQ\mathcal{P}),$$

where  $Q$  means Quillen's  $Q$ -construction. It turns out that  $\pi_1(BQ\mathcal{P})$  coincides with the Grothendieck

group  $K_0(\mathcal{P})$  of  $\mathcal{P}$ . If  $A$  is a group, these two definitions of K-theory agree, but not in general.

A calculation shows, that if  $A$  is an abelian group, then

$$K_i(A) = \begin{cases} \mathbb{Z} \times A & i = 0, \\ \pi_i^s & i > 0. \end{cases}$$

So, for general  $A$ , since one has  $K^+(A) = K^+(A^\times)$ , this identity completely computes  $K^+$ . Furthermore, for every  $A$  one has a canonical homomorphism  $K_i^+(A) \rightarrow K_i^Q(A)$ .

I thank Jeff Lagarias for his remarks on an earlier version of this paper.

## 1 $\mathbb{F}_1$ -schemes

For basics on  $\mathbb{F}_1$ -schemes we refer to [1].

In this paper, a ring will always be commutative with unit and a monoid will always be commutative. An *ideal*  $\mathfrak{a}$  of a monoid  $A$  is a subset with  $A\mathfrak{a} \subset \mathfrak{a}$ . A *prime ideal* is an ideal  $\mathfrak{p}$  such that  $S_{\mathfrak{p}} = A \setminus \mathfrak{p}$  is a submonoid of  $A$ . For a prime ideal  $\mathfrak{p}$  let  $A_{\mathfrak{p}} = S_{\mathfrak{p}}^{-1}A$  be the *localisation* at  $\mathfrak{p}$ . The *spectrum* of a monoid  $A$  is the set of all prime ideals with the obvious Zariski-topology (see [1]). Similar to the theory of rings, one defines a structure sheaf  $\mathcal{O}_X$  on  $X = \mathrm{spec}(A)$ , and one defines a *scheme over  $\mathbb{F}_1$*  to be a topological space together with a sheaf of monoids, locally isomorphic to spectra of monoids.

A  $\mathbb{F}_1$ -scheme  $X$  is of *finite type*, if it has a finite covering by affine schemes  $U_i = \mathrm{spec}(A_i)$  such that each  $A_i$  is finitely generated.

For a monoid  $A$  we let  $A \otimes \mathbb{Z}$  be the monoidal ring  $\mathbb{Z}[A]$ . This defines a functor from monoids to rings which is left adjoint to the forgetful functor that sends a ring  $R$  to the multiplicative monoid  $(R, \times)$ . This construction is compatible with gluing, so one gets a functor  $X \mapsto X_{\mathbb{Z}}$  from  $\mathbb{F}_1$ -schemes to  $\mathbb{Z}$ -schemes.

**Lemma 2** *X is of finite type if and only if  $X_{\mathbb{Z}}$  is a  $\mathbb{Z}$ -scheme of finite type.*

**Proof:** If  $X$  is of finite type, it is covered by finitely many affines  $\mathrm{spec}(A_i)$ , where  $A_i$  is finitely generated, hence  $\mathbb{Z}[A_i]$  is finitely generated as a  $\mathbb{Z}$ -algebra and so it follows that  $X_{\mathbb{Z}}$  is of finite type.

Now suppose that  $X_{\mathbb{Z}}$  is of finite type. Consider a covering of  $X$  by open sets of the form  $U_i = \mathrm{spec}(A_i)$ . then one gets an open covering of  $X_{\mathbb{Z}}$  by sets of the form  $\mathrm{spec}(\mathbb{Z}[A_i])$ , with the spectrum in the ring-sense. Since  $X_{\mathbb{Z}}$  is compact, we may assume this covering finite. As  $X_{\mathbb{Z}}$  is of finite type, each  $\mathbb{Z}[A_i]$  is a finitely generated  $\mathbb{Z}$ -algebra. Let  $S$  be a generating set of  $A_i$ . Then it generates  $\mathbb{Z}[A_i]$ ,

and hence it contains a finite generating set  $T$  of  $\mathbb{Z}[A_i]$ . Then  $T$  also generates  $A_i$  as a monoid, so  $A_i$  is finitely generated.  $\square$

## 2 Proof of Theorem 1

We will show uniqueness first.

**Lemma 3** *For every natural number  $e$  there are infinitely many prime powers  $q$  with  $(q - 1, e) = 1$ .*

**Proof:** Write  $e = 2^k m$  where  $m$  is odd. Let  $n \in \mathbb{N}$ . The number  $2^n$  is a unit modulo  $m$  and hence there are infinitely many  $n$  such that  $2^n \equiv 1$  modulo  $m$ . Replacing  $n$  by  $n+1$  we see that there are infinitely many  $n$  such that  $2^n \equiv 2$  modulo  $m$  and hence  $2^n - 1 \equiv 1$  modulo  $m$ . As  $2^n - 1$  is odd, it follows  $(2^n - 1, e) = 1$  for every such  $n$ .  $\square$

Now for the uniqueness of  $N$ . Suppose that the pairs  $(e, N)$  and  $(e', N')$  both satisfy the theorem. Then for every prime power  $q$  one has

$$(q - 1, ee') = 1 \Rightarrow N(q) = \#X(\mathbb{F}_q) = N'(q).$$

As there are infinitely many such prime powers  $q$ , it follows that  $N(x) = N'(x)$ , as claimed.

We start on the existence of  $N$ . For a finite abelian group  $E$  define its *exponent*  $m = \exp(E)$  to be the smallest number  $m$  such that  $x^m = 1$  for every  $x \in E$ . The exponent is the least common multiple of the orders of elements of  $E$ . A finitely generated abelian group  $G$  is of the form  $\mathbb{Z}^r \times E$  for a finite group  $E$ . Then  $r$  is called the *rank* of  $G$  and the exponent of  $E$  is called the *exponent* of  $G$ .

For a finitely generated monoid  $A$  we denote by  $\text{Quot}(A)$  its quotient group. This group comes about by inverting every element in  $A$ . It has a natural morphism  $A \rightarrow \text{Quot}(A)$  and the universal property that every morphism from  $A$  to a group factorizes uniquely over  $A \rightarrow \text{Quot}(A)$ . In the language of [1],  $\text{Quot}(A)$  coincides with the stalk  $\mathcal{O}_\eta = A_\eta$  at the generic point  $\eta$  of  $\text{spec}(A)$ .

We define the *rank* and *exponent* to be the rank and exponent of  $\text{Quot}(A)$ . Note that for a finitely generated monoid  $A$  the spectrum  $\text{spec}(A)$  is a finite set. Hence the underlying space of a scheme  $X$  over  $\mathbb{F}_1$  of finite type is a finite set. We then define the exponent of  $X$  to be the least common multiple of the numbers  $\exp(\mathcal{O}_\mathfrak{p})$ , where  $\mathfrak{p}$  runs through the finite set  $X$ .

Let  $X$  be a scheme over  $\mathbb{F}_1$  of finite type. We may assume that  $X$  is connected. Let  $e$  be its exponent. Let  $q$  be a prime power and let  $D_q$  be the monoid  $(\mathbb{F}_q, \times)$ . Then  $\#X_{\mathbb{Z}}(\mathbb{F}_q) = \#X(D_q)$ , where  $X(D) = \text{Hom}(D, X)$  as usual. For an integer

$k \geq 2$  let  $C_{k-1}$  denote the cyclic group of  $k-1$  elements and let  $D_k$  be the monoid  $C_{k-1} \cup \{0\}$ , where  $x \cdot 0 = 0$ . Note that if  $q$  is a prime power, then  $D_q \cong (\mathbb{F}_q, \times)$ , where  $\mathbb{F}_q$  is the field of  $q$  elements.

Fix a covering of  $X$  by affines  $U_i = \text{spec}A_i$ . Since  $\text{spec}(D_k)$  consists of two points, the generic, which always maps to the generic point and the closed point, it follows that

$$X(\text{spec}(D_k)) = \bigcup_i U_i(\text{spec}(D_k)),$$

and thus the cardinality of the right hand side may be written as an alternating sum of terms of the form

$$\#U_{i_1} \cap \cdots \cap U_{i_s}(\text{spec}(D_k)).$$

Now  $U_{i_1} \cap \cdots \cap U_{i_s}$  is itself a union of affines and so this term again becomes an alternating sum of similar terms. This process stops as  $X$  is a finite set. Therefore, to prove the theorem, it suffices to assume that  $X$  is affine.

So we assume that  $X = \text{spec}(A)$  for a finitely generated monoid  $A$ . In this case  $X(\text{spec}(D_k)) = \text{Hom}(A, D_k)$ . For a given monoid morphism  $\varphi : A \rightarrow D_k$  we have that  $\varphi^{-1}(\{0\})$  is a prime ideal in  $A$ , call it  $\mathfrak{p}$ . Then  $\varphi$  maps  $S_{\mathfrak{p}} = A \setminus \mathfrak{p}$  to the group  $C_{k-1}$ . So  $\text{Hom}(A, D_k)$  may be identified with the disjoint union of the sets  $\text{Hom}(S_{\mathfrak{p}}, C_{k-1})$  where  $\mathfrak{p}$  ranges over  $\text{spec}(A)$ . Now  $C_{k-1}$  is a group, so every homomorphism from  $S_{\mathfrak{p}}$  to  $C_{k-1}$  factorises over the quotient group  $\text{Quot}(S_{\mathfrak{p}})$  and one gets  $\text{Hom}(S_{\mathfrak{p}}, C_{k-1}) = \text{Hom}(\text{Quot}(S_{\mathfrak{p}}), C_{k-1})$ . Note that  $\text{Quot}(S_{\mathfrak{p}})$  is the group of units in the stalk  $\mathcal{O}_{X, \mathfrak{p}}$  of the structure sheaf, therefore does not depend on the choice of the affine neighbourhood. The group  $\text{Quot}(S_{\mathfrak{p}})$  is a finitely generated abelian group. Let  $r$  be its rank and  $e$  its exponent. If  $e$  is coprime to  $k-1$ , then there is no non-trivial homomorphism from the torsion part of  $\text{Quot}(S_{\mathfrak{p}})$  to  $C_{k-1}$  and so in that case  $\#\text{Hom}(S_{\mathfrak{p}}, C_{k-1}) = (k-1)^r$ . This proves the existence of  $e$  and  $N$  and finishes the proof of Theorem 1.  $\square$

**Remark 1.** We have indeed proven more than Theorem 1. For an  $\mathbb{F}_1$ -scheme  $X$  of finite type we define  $X(\mathbb{F}_q) = \text{Hom}(\text{spec}(\mathbb{F}_q), X)$ , where the Hom takes place in the category of  $\mathbb{F}_1$ -schemes, and  $\mathbb{F}_q$  stands for the multiplicative monoid of the finite field. It follows that

$$X(\mathbb{F}_q) \cong X_{\mathbb{Z}}(\mathbb{F}_q).$$

Further, for  $k \in \mathbb{N}$  one sets  $\mathbb{F}_k = D_k$  then this notation is consistent and we have proven above,

$$(k-1, e) = 1 \Rightarrow \#X(\mathbb{F}_k) = N(k),$$

where  $e$  now is a well defined number, the exponent of  $X$ . Further it follows from the proof, that

the degree of  $N$  is at most equal to the rank of  $X$ , which is defined as the maximum of the ranks of the local monoids  $\mathcal{O}_{\mathfrak{p}}$ , for  $\mathfrak{p} \in X$ .

**Remark 2.** As the proof of Theorem 1 shows, the zeta-polynomial  $N_X$  of  $X$ , does actually not depend on the structure sheaf  $\mathcal{O}_X$ , but on the subsheaf of units  $\mathcal{O}_X^\times$ , where for every open set  $U$  in  $X$  the set  $\mathcal{O}_X^\times(U)$  is defined to be the set of sections  $s \in \mathcal{O}_X(U)$  such that  $s(p)$  lies in  $\mathcal{O}_{X,p}^\times$  for every  $p \in U$ . We therefore call  $\mathcal{O}_X^\times$  the *zeta sheaf* of  $X$ .

### 3 K-theory

In this section we give two definitions of K-theory over  $\mathbb{F}_1$  and we show that they do coincide for groups, but not in general. This approach follows Quillen [9].

#### 3.1 The +-construction

Let  $A$  be a monoid. Recall from [1] that  $\mathrm{GL}_n(A)$  is the group of all  $n \times n$  matrices with exactly one non-zero entry in each row and each column, and this entry being an element of the unit group  $A^\times$ . We also write  $A^\times$  as the stalk  $A_c$  at the closed point  $c$  of  $\mathrm{spec}(A)$ . In other words, we have

$$\mathrm{GL}_n(A) \cong A_c^n \rtimes \mathrm{Per}(n),$$

where  $\mathrm{Per}(n)$  is the permutation group in  $n$  letters, acting on  $A_c^n$  by permuting the co-ordinates.

There is a natural embedding  $\mathrm{GL}_n(A) \hookrightarrow \mathrm{GL}_{n+1}(A)$  by setting the last co-ordinate equal to 1. We define the group

$$\mathrm{GL}(A) \stackrel{\text{def}}{=} \varinjlim_n \mathrm{GL}_n(A).$$

Similar to the K-theory of rings [9] for  $j \geq 0$  we define

$$K_j^+(A) \stackrel{\text{def}}{=} \pi_j(\mathrm{BGL}(A)^+),$$

where  $\mathrm{BGL}(A)$  is the classifying space of  $\mathrm{GL}(A)$ , the  $+$  signifies the  $+$ -construction, and  $\pi_j$  is the  $j$ -th homotopy group. For instance,  $K_j^+(\mathbb{F}_1)$  is the  $j$ -th stable homotopy group of the spheres [8].

#### 3.2 The Q-construction

A category is called *balanced*, if every morphism which is epi and mono, already has an inverse, i.e., is an isomorphism.

Let  $\mathcal{C}$  be a category. An object  $I \in \mathcal{C}$  is called *injective* if for every monomorphism  $M \hookrightarrow N$  the induced map  $\mathrm{Mor}(N, I) \rightarrow \mathrm{Mor}(M, I)$  is surjective.

Conversely, an object  $P \in \mathcal{C}$  is called *projective* if for every epimorphism  $M \twoheadrightarrow N$  the induced map  $\mathrm{Mor}(P, M) \rightarrow \mathrm{Mor}(P, N)$  is surjective. We say that  $\mathcal{C}$  has enough injectives if for every  $A \in \mathcal{C}$  there exists a monomorphism  $A \hookrightarrow I$ , where  $I$  is an injective object. Likewise, we say that  $\mathcal{C}$  has enough projectives if for every  $A \in \mathcal{C}$  there is an epimorphism  $P \twoheadrightarrow A$  with  $P$  projective.

A category  $\mathcal{C}$  is *pointed* if it has an object  $0$  such that for every object  $X$  the sets  $\mathrm{Mor}(X, 0)$  and  $\mathrm{Mor}(0, X)$  have exactly one element each. The zero object is uniquely determined up to unique isomorphism. In every set  $\mathrm{Mor}(X, Y)$  there exists a unique morphism which factorises over the zero object, this is called the zero morphism. In a pointed category it makes sense to speak of kernels and cokernels. Kernels are always mono and cokernels are always epimorphisms. A sequence

$$0 \longrightarrow X \xrightarrow{i} Y \xrightarrow{j} Z \longrightarrow 0$$

is called *strong exact*, if  $i$  is the kernel of  $j$  and  $j$  is the cokernel of  $i$ . We say that the sequence *splits*, if it is isomorphic to the natural sequence

$$0 \rightarrow X \rightarrow X \oplus Z \rightarrow Z \rightarrow 0.$$

Assume that kernels and cokernels always exist. Then every kernel is the kernel of its cokernel and every cokernel is the cokernel of its kernel. For a morphism  $f$  let  $\mathrm{im}(f) = \ker(\mathrm{coker}(f))$  and  $\mathrm{coim}(f) = \mathrm{coker}(\mathrm{ker}(f))$ . If  $\mathcal{C}$  has enough projectives, then the canonical map  $\mathrm{im}(f) \rightarrow \mathrm{coim}(f)$  has zero kernel and if  $\mathcal{C}$  has enough injectives, then this map has zero cokernel.

Let  $\mathcal{C}$  be a pointed category and  $\mathcal{E}$  a class of strong exact sequences. The class  $\mathcal{E}$  is called *closed under isomorphism*, or simply *closed* if every sequence isomorphic to one in  $\mathcal{E}$ , lies in  $\mathcal{E}$ . Every morphism occurring in a sequence in  $\mathcal{E}$  is called an  $\mathcal{E}$ -morphism.

A balanced pointed category  $\mathcal{C}$ , together with a closed class  $\mathcal{E}$  of strong exact sequences is called a *quasi-exact category* if

- for any two objects  $X, Y$  the natural sequence

$$0 \rightarrow X \rightarrow X \oplus Y \rightarrow Y \rightarrow 0$$

belongs to  $\mathcal{E}$ ,

- the class of  $\mathcal{E}$ -kernels is closed under composition and base-change by  $\mathcal{E}$ -cokernels, likewise, the class of  $\mathcal{E}$ -cokernels is closed under composition and base change by  $\mathcal{E}$ -kernels.

Let  $(\mathcal{C}, \mathcal{E})$  be a quasi-exact category. We define the category  $Q\mathcal{C}$  to have the same objects as  $\mathcal{C}$ , but a

morphism from  $X$  to  $Y$  in  $QC$  is an isomorphism class of diagrams of the form

$$\begin{array}{ccc} S & \hookrightarrow & Y \\ \downarrow & & \\ X, & & \end{array}$$

where the horizontal map is a  $\mathcal{E}$ -kernel in  $\mathcal{C}$  and the vertical map is a  $\mathcal{E}$ -cokernel. The composition of two  $Q$ -morphisms

$$\begin{array}{ccc} S & \hookrightarrow & Y \\ \downarrow & & \\ X, & & \end{array} \quad \begin{array}{ccc} T & \hookrightarrow & Z \\ \downarrow & & \\ Y, & & \end{array}$$

is given by the base change  $S \times_Y T$  as follows,

$$\begin{array}{ccccc} S \times_Y T & \hookrightarrow & T & \hookrightarrow & Z \\ \downarrow & & \downarrow & & \\ S & \hookrightarrow & Y & & \\ \downarrow & & & & \\ X. & & & & \end{array}$$

Every  $\mathcal{E}$ -kernel  $i : X \hookrightarrow Y$  gives rise to a morphism  $i_!$  in  $QC$ , and every  $\mathcal{E}$ -cokernel  $p : Z \twoheadrightarrow Z$  gives rise to a morphism  $p^! : X \rightarrow Z$  in  $QC$ . By definition, every morphism in  $QC$  factorises as  $i_! p^!$  uniquely up to isomorphism.

Let  $(\mathcal{C}, \mathcal{E})$  be a small quasi-exact category. Then the classifying space  $BQC$  is defined. Note that for every object  $X$  in  $QC$  there is a morphism from 0 to  $X$ , so that  $BQC$  is path-connected. We consider the fundamental group  $\pi_1(BQC)$  as based at a zero 0 of  $C$ .

**Theorem 4** *The fundamental group  $\pi_1(BQC)$  is canonically isomorphic to the Grothendieck group  $K_0(\mathcal{C}) = K_0(\mathcal{C}, \mathcal{E})$ .*

**Proof:** This proof is taken from [9], where it is done for exact categories, we repeat it for the convenience of the reader. The Grothendieck group  $K_0(\mathcal{C}, \mathcal{E})$  is the abelian group with one generator  $[X]$  for each object  $X$  of  $\mathcal{C}$  and a relation  $[X] = [Y][Z]$  for every strong exact sequence

$$0 \longrightarrow Y \hookrightarrow X \twoheadrightarrow Z \longrightarrow 0$$

in  $\mathcal{E}$ . According to Proposition 1 of [9], it suffices to show that for a morphism-inverting functor  $F : QC \rightarrow \text{Sets}$  the group  $K_0(\mathcal{C})$  acts naturally

on  $F(0)$  and that the resulting functor from the category  $\mathcal{F}$  of all such  $F$  to  $K_0(\mathcal{C})$ -sets is an equivalence of categories.

For  $X \in \mathcal{C}$  let  $i_X$  denote the zero kernel  $0 \rightarrow X$ , and let  $j_X$  be the zero cokernel  $X \rightarrow 0$ . Let  $\mathcal{F}'$  be the full subcategory of  $\mathcal{F}$  consisting of all  $F$  such that  $F(X) = F(0)$  and  $F(i_{X!}) = \text{id}_{F(0)}$  for every  $X$ . Any  $F \in \mathcal{F}$  is isomorphic to an object of  $\mathcal{F}'$ , so it suffices to show that  $\mathcal{F}'$  is equivalent to  $K_0(\mathcal{C})$ -sets. So let  $F \in \mathcal{F}'$ , for a kernel  $I : X \hookrightarrow Y$  we have  $ii_X = i_Y$ , so that  $F(i_!) = \text{id}_{F(0)}$ . Given a strong exact sequence

$$0 \longrightarrow X \xrightarrow{i} Y \xrightarrow{j} Z \longrightarrow 0,$$

we have  $j^!i_{Z!} = i_!j_X^!$ , hence  $F(j^!) = F(j_X^!) \in \text{Aut}(F(0))$ . Also,

$$F(j_Y^!) = F(j^!j_Z^!) = F(j_X^!)F(j_Z^!).$$

So by the universal property of  $K_0(\mathcal{C})$ , there is a unique homomorphism from  $K_0(\mathcal{C})$  to  $\text{Aut}(F(0))$  such that  $[X] \mapsto F(j_X^!)$ . So we have a natural action of  $K_0(\mathcal{C})$  on  $F(0)$ , hence a functor from  $\mathcal{F}'$  to  $K_0(\mathcal{C})$ -sets given by  $F \mapsto F(0)$ .

The other way round let  $S$  be a  $K_0(\mathcal{C})$ -set, and let  $F_S : QC \rightarrow \text{Sets}$  be the functor defined by  $F_S(X) = S$ ,  $F_S(i_!j^!) = \text{multiplication by } [\ker j]$  on  $S$ . To see that this is indeed a functor, it suffices to show that  $F_S(j^!i_!) = F_S(j^!)$ . It holds  $j^!i_! = i_!j_!$ , where  $i_!$  and  $j_!$  are given by the cartesian diagram

$$\begin{array}{ccc} A & \xrightarrow{i_1} & X \\ j_1 \downarrow & & \downarrow j \\ Z & \xrightarrow{i} & Y. \end{array}$$

It follows  $F_S(j^!i_!) = F_S(i_!j_!) = [\ker j_!]$ . Using the cartesian diagram one sees that  $\ker j_!$  is isomorphic to  $\ker j$ . It is easy to verify that the two functors given are inverse to each other up to isomorphism, whence the theorem.  $\square$

This theorem motivates the following definition,

$$K_i(\mathcal{C}, \mathcal{E}) \stackrel{\text{def}}{=} \pi_{i+1}(BQC).$$

For a monoid  $A$  we let  $\mathcal{P}$  be the category of finitely generated pointed projective  $A$ -modules, or rather a small category equivalent to it, and we set

$$K_i^Q(A) \stackrel{\text{def}}{=} K_i(\mathcal{P}, \mathcal{E}),$$

where  $\mathcal{E}$  is the class of sequences in  $\mathcal{P}$  which are strong exact in the category of all modules. These

sequences all split, which establishes the axioms for a quasi-exact category.

The two  $K$ -theories we have defined, do not coincide. For instance for the monoid of one generator  $A = \{1, a\}$  with  $a^2 = a$  one has

$$K_0^+(A) = \mathbb{Z}, \quad K_0^Q(A) = \mathbb{Z} \times \mathbb{Z}.$$

The reason for this discrepancy is that  $K_i^+(A)$  only depends on the group of units  $A^\times$ , but  $K_i^Q(A)$  is sensible to the whole structure of  $A$ . So these two  $K$ -theories are unlikely to coincide except when  $A$  is a group, in which case they do, as the last theorem of this paper shows,

**Theorem 5** *If  $A$  is an abelian group, then  $K_i^+(A) = K_i^Q(A)$  for every  $i \geq 0$ .*

**Proof:** For a group each projective module is free, hence the proof of Grayson [3] of the corresponding fact for rings goes through.  $\square$

So, if  $A$  is a group, this defines  $K_i(A)$  unambiguously. In particular, computations of Priddy [8] show that  $K_i(\mathbb{F}_1) = \pi_s^i$  is the  $i$ -th stable homotopy group of the spheres. Based on this, one can use the Q-construction to show that if  $A$  is an abelian group, then

$$K_i(A) = \begin{cases} \mathbb{Z} \times A & i = 0, \\ \pi_s^i & i > 0. \end{cases}$$

For an arbitrary monoid  $A$  we conclude that  $K_i^+(A) = K_i^+(A^\times) = K_i(A^\times)$ , which we now can express in terms of the stable homotopy groups  $\pi_s^i$ .

Further, for every  $A$  one has a canonical homomorphism  $K_i^+(A) \rightarrow K_i^Q(A)$  given by the map  $K^Q(A^\times) \rightarrow K^Q(A)$ . The latter comes about by the fact that every projective  $A^\times$ -module is free. Note that general functoriality under monoid homomorphism is granted for  $K^+$ , but not for  $K^Q$ . This contrasts the situation of rings, and has its reason in the fact that not every projective is a direct summand of a free module.

## References

- [1] **Deitmar, A.:** *Schemes over  $\mathbb{F}_1$ .* in: Number Fields and Function Fields - Two Parallel Worlds. Progress in Mathematics, Vol. 239 Geer, Gerard van der; Moonen, Ben J.J.; Schoof, Ren (Eds.) 2005.
- [2] **Deitmar, A.:** *Homological algebra over beilin categories and cohomology of  $F_1$ -schemes.* <http://arxiv.org/abs/math.NT/0508642>.
- [3] **Grayson, D.:** *Higher algebraic  $K$ -theory. II (after Daniel Quillen).* Algebraic  $K$ -theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), pp. 217–240. Lecture Notes in Math., Vol. 551, Springer, Berlin, 1976.
- [4] **Kato, K.:** *Toric singularities.* Amer. J. Math. 116 (1994), no. 5, 1073–1099.
- [5] **Kurokawa, B.; Ochiai, H.; Wakayama, A.:** *Absolute Derivations and Zeta Functions.* Documenta Math. Extra Volume: Kazuya Kato's Fiftieth Birthday (2003) 565–584.
- [6] **Kurokawa, N.:** *Zeta functions over  $F_1$ .* Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), no. 10, 180–184 (2006).
- [7] **Manin, Y.:** *Lectures on zeta functions and motives (according to Deninger and Kurokawa).* Columbia University Number Theory Seminar (New York, 1992). Astérisque No. 228, 4, 121–163 (1995).
- [8] **Priddy, S.:** *On  $\Omega \langle \infty \rangle S \langle \infty \rangle$  and the infinite symmetric group.* Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970), pp. 217–220. Amer. Math. Soc., Providence, R.I., 1971.
- [9] **Quillen, D.:** *Higher algebraic  $K$ -theory. I. Algebraic  $K$ -theory, I* Higher  $K$ -theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 85–147. Lecture Notes in Math., Vol. 341, Springer, Berlin 1973.
- [10] **Soulé, C.:** *Les variétés sur le corps à un élément.* Mosc. Math. J. 4, no. 1, 217–244, 312 (2004).
- [11] **Tits, J.:** *Sur les analogues algébriques des groupes semi-simples complexes.* 1957 Colloque d'algèbre supérieure, Bruxelles du 19 au 22 décembre 1956 pp. 261–289 Centre Belge de Recherches Mathématiques Établissements Ceuterick, Louvain; Librairie Gauthier-Villars, Paris.

Mathematisches Institut  
Auf der Morgenstelle 10  
72076 Tübingen  
Germany  
[deitmar@uni-tuebingen.de](mailto:deitmar@uni-tuebingen.de)