Spektralsequenzen und der Satz von Serre

Tim Baumann

Geboren am 15. Juni 1994 in Friedberg 30. Juli 2015

Bachelorarbeit Mathematik

Betreuer: Prof. Dr. Bernhard Hanke

Zweitgutachter: Prof. Dr. X Y

Institut für Mathematik

MATHEMATISCH-NATURWISSENSCHAFTLICH-TECHNISCHE FAKULTÄT
UNIVERSITÄT AUGSBURG

1 Spektralsequenzen

1.1 Faserungen

Definition 1. Eine Serre-Faserung ist eine stetige Abbildung $p: E \to B$, welche die Homotopieliftungseigenschaft (HLE) für die Scheiben D^n besitzt, d. h. für alle $n \ge 0$ und für alle stetigen Abbildungen H, H_0 wie unten, sodass das äußere Quadrat kommutiert, gibt es eine stetige Abbildung \tilde{H} , sodass die beiden Dreiecke kommutieren:

$$D^{n} \xrightarrow{H_{0}} E$$

$$\downarrow_{i_{0}} \downarrow \tilde{H} \xrightarrow{X} \downarrow_{p}$$

$$D^{n} \times I \xrightarrow{H} B$$

Dabei ist i_0 die Inklusion von D^n in $D^n \times I$ als $D^n \times \{0\}$. Eindeutigkeit von \tilde{H} wird nicht gefordert.

Lemma 1. Es sei $p: E \to B$ eine stetige Abbildung. Dann sind äquivalent:

- a) p ist eine Serre-Faserung
- b) p besitzt die relative Homotopieliftungseigenschaft für CW-Paare, d. h. für alle CW-Paare (X, A) und für alle H_0 und H wie unten, sodass das äußere Quadrat kommutiert, gibt eine stetige Abbildung \tilde{H} , sodass die beiden Dreiecke kommutieren:

$$X \times \{0\} \cup A \times I \xrightarrow{H_0} E$$

$$\downarrow p$$

$$X \times I \xrightarrow{H} B$$

Bemerkung. Eine Hurewicz-Faserung ist eine Serre-Faserung, welche die Homotopieliftungseigenschaft sogar für alle topologischen Räume besitzt.

Beweis. "b) \implies a)" Folgt sofort mit $(X, A) := (D^n, \emptyset)$.

"a) \Longrightarrow b)" Wir behandeln zunächst den Fall $(X,A)=(D^n,S^{n-1}),\ n\in\mathbb{N}$. Dann ist $(D^n\times I,D^n\times\{0\}\cup S^{n-1}\cup I)\approx(D^n)$ homö
omorph als Raumpaar. Somit ist die relative Homotopieliftungseigenschaft in diesem Fall gleichbedeutend zur Homotopieliftungseigenschaft für die Scheibe D^n .

Es sei nun (X,A) ein beliebiges Raumpaar. Dann kann man induktiv die Homotopie H auf die i-Zellen e^i_α von $X \setminus A$ fortsetzen. Dabei ist die Homotopie auf $S^{n-1} = \partial D^n$ durch die Komposition der bisher konstruierten Homotopie mit der anheftenden Abbildung $\phi_\alpha: S^{n-1} \to X^{n-1}$ vorgegeben. Man erhält die Fortsetzung durch Anwenden des zuerst bewiesenen Falls.

Lemma 2. Es seien $p: E \to B$ eine Serre-Faserung, $b_0 \in B$, $F := p^{-1}(b_0)$ die Faser über b_0 und $f_0 \in F$. Dann gibt es eine lange exakte Sequenz

$$\dots \to \pi_n(F, f_0) \xrightarrow{i_*} \pi_n(E, f_0) \xrightarrow{p_*} \pi_n(B, b_0) \xrightarrow{\partial} \pi_{n-1}(F, f_0) \to \dots \to \pi_1(B, b_0)$$

von Homotopiegruppen. Dabei ist $i: F \hookrightarrow E$ die Inklusion.

Beweis. Die gesuchte exakte Sequenz ist die lange exakte Homotopiesequenz

$$\ldots \to \pi_n(F, f_0) \xrightarrow{i_*} \pi_n(E, f_0) \to \pi_n(E, F, f_0) \xrightarrow{\partial} \pi_{n-1}(F, f_0) \to \ldots \to \pi_1(E, F, f_0)$$

des Raumpaares (E, F). Es bleibt zu zeigen: $\pi_n(E, F, f_0) \cong \pi_n(B, b_0)$ als Gruppe für n > 1 und als punktierte Menge für n = 1. Der Isomorphismus muss außerdem so gewählt werden, dass

$$p_* = \left(\pi_n(E, f_0) \to \pi_n(E, F, f_0) \xrightarrow{\cong} \pi_n(B, b_0)\right).$$

Wir zeigen: $p_*: \pi_n(E, F, f_0) \to \pi_n(B, b_0)$ ist der gesuchte Isomorphismus (damit ist obige Gleichung erfüllt).

Surjektivität: Sei $[g:(I^{n+1},\partial I^{n+1},b_0)\to (B,\{b_0\},b_0)]\in \pi_{n+1}(B,b_0),\ n\geqslant 0.$ Sei \tilde{g} der Lift im folgenden relativen HLE-Diagramm:

$$U \xrightarrow{\text{konst } f_0} E$$

$$\downarrow \qquad \qquad \downarrow p$$

$$I^n \times I \xrightarrow{g} B$$

wobei $U := I^n \times \{0\} \cup (\partial I^n) \times I \subset I^{n+1}$. Dann kann man \tilde{g} als eine Abbildung $(I^{n+1}, \partial I^{n+1}, U) \to (E, F, \{f_0\})$ von Raumtripeln auffassen, welche ein Element von $\pi_{n+1}(E, F, f_0)$ repräsentiert. Es gilt $p_*[\tilde{g}] = [p \circ \tilde{g}] = [g]$.

Injektivität: Seien $[h_0], [h_1] \in \pi_{n+1}(E, F, f_0)$ mit $p_*[h_0] = p_*[h_1]$. Sei

$$H: I \times I^{n+1}, \quad (t, x) \mapsto H_t(x)$$

eine Homotopie mit $H_0 = p \circ h_0$, $H_1 = p \circ h_1$, welche zu jedem Zeitpunkt $t \in I$ eine Abbildung $H_t : (I^{n+1}, \partial I^{n+1}) \to (B, \{b_0\})$ von Raumpaaren ist. Betrachte folgendes HLE-Diagramm:

$$V \xrightarrow{h} E$$

$$\downarrow p$$

$$I^{n+1} \times I \xrightarrow{H} B$$

mit $V := I^{n+1} \times \{0\} \cup (\partial I^{n+1}) \times I \subset I^{n+2}$ und

$$h|_{\{0\}\times I^{n+1}} := h_0, \quad h|_{\{1\}\times I^{n+1}} := h_1, \quad h|_{I\times U} := \text{konst } f_0.$$

Nun ist \tilde{H} eine Homotopie von h_0 nach h_1 , welche zu jedem Zeitpunkt t eine Abbildung \tilde{H}_t : $(I^{n+1}, \partial I^{n+1}, U) \to (E, F, \{b_0\})$ von Raumtripeln ist.

Definition 2. Es seien $p: E \to B$ und $g: X \to B$ stetig. Der Pullback von p entlang g ist die Abbildung $g^*(p): g^*(E) \to X$, wobei $g^*(E) := X \times_B E$ das Faserprodukt von X und E über B vermöge g und p ist.

Bemerkung. Pullback ist funktoriell: $(g \circ f)^* = f^* \circ g^*$ und id $^* = id$.

Lemma 3. Pullbacks von Serre-Faserungen sind Serre-Faserungen.

Beweis. Sei $p:E\to B$ eine Serre-Faserung und $g:X\to B$ stetig. Wir müssen die Existenz des Morphismus \tilde{H} im folgenden Diagramm zeigen:

$$D^{n} \xrightarrow{H_{0}} g^{*}(E) \xrightarrow{h} E$$

$$\downarrow i_{0} \qquad \qquad \downarrow i_{0} \qquad \qquad \downarrow i_{0} \qquad \qquad \downarrow p$$

$$D^{n} \times I \xrightarrow{H} X \xrightarrow{g} B$$

Aus der HLE von p erhält wie folgt einen Morphismus K:

$$D^{n} \xrightarrow{H_{0}} X \times_{B} E \xrightarrow{h} E$$

$$\downarrow i_{0} \downarrow \qquad \qquad \downarrow p$$

$$D^{n} \times I \xrightarrow{H} X \xrightarrow{g} B$$

Nun ist $D^n \times I$ vermöge H und K ein Kegel über dem Diagramm $(X \xrightarrow{g} B \xleftarrow{p} E)$. Die universelle Eigenschaft von $g^*(E)$ induziert einen Morphismus $\tilde{H}: D^n \times I \to X \times_B E$ mit $g^*(p) \circ \tilde{H} = H$ und $h \circ \tilde{H} = K$. Aus der univ. Eigenschaft von $g^*(E)$ (Eindeutigkeit) folgt nun $\tilde{H} \circ i_0 = H_0$. \square

Definition 3. Ein Morphismus $(g, \tilde{g}): p' \to p$ von Serre-Faserungen $p': E' \to B'$ und $p: E \to B$ ist ein kommutatives Quadrat der Form

$$E' \xrightarrow{\tilde{g}} E$$

$$\downarrow^{p'} \qquad \downarrow^{p}$$

$$B' \xrightarrow{g} B$$

Beispiel 1. Pullback einer Serre-Faserung p entlang einer stetigen Abbildung g induziert einen Morphismus $(g, \tilde{g}) : g^*(p) \to p$ von Serre-Faserungen.

Lemma 4. Die langen exakten Sequenzen der Homotopiegruppen von Faserungen sind natürlich: Es sei $(g, \tilde{g}): p' \to p$ ein Morphismus von Serre-Faserungen $p': E' \to B'$ und $p: E \to B, b'_0 \in B', b_0 := g(b'_0), F' := p'^{-1}(b'_0), F := p^{-1}(b_0), f'_0 \in F', f_0 := \tilde{g}(f'_0)$. Dann gibt es eine "Leiter" bestehend aus kommutativen Quadraten zwischen den Homotopiesequenzen:

$$\dots \longrightarrow \pi_n(F', f_0') \xrightarrow{i_*'} \pi_n(E', f_0') \xrightarrow{p_*'} \pi_n(B', b_0') \xrightarrow{\widehat{\partial}} \pi_{n-1}(F', f_0') \longrightarrow \dots$$

$$\downarrow^{(\widetilde{g}|_{F'})*} \qquad \downarrow^{\widetilde{g}_*} \qquad \downarrow^{g_*} \qquad \downarrow^{(\widetilde{g}|_{F'})*}$$

$$\dots \longrightarrow \pi_n(F, f_0) \xrightarrow{i_*} \pi_n(E, f_0) \xrightarrow{p_*} \pi_n(B, b_0) \xrightarrow{\widehat{\partial}} \pi_{n-1}(F, f_0) \longrightarrow \dots$$

Beweis. Folgt aus der Natürlichkeit der langen exakten Homotopiesequenz von Raumpaaren. \Box

Es sei $p:E\to B$ eine Serre-Faserung, $\gamma:I\to B$ ein stetiger Weg. Betrachte die lange exakte Sequenz

$$\ldots \to \pi_n(F_{\gamma(0)}) \to \pi_n(\gamma^*(E)) \to \pi_n(I) \to \pi_{n-1}(F_{\gamma(0)}) \to \ldots$$

der Homotopiegruppen von $\gamma^*(p): \gamma^*(E) \to I$ mit Faser

$$F_{\gamma(t)} := \gamma^*(p)^{-1}(t) \subset \gamma^*(E) = \{(t,e) \in I \times E \,|\, \gamma(t) = p(e)\}.$$

In dieser Sequenz sind die Gruppen $\pi_n(I)$ trivial. Folglich sind die Abbildungen $(i_{\gamma(t)})_*$: $\pi_n(F_{\gamma(t)},*) \to \pi_n(\gamma^*(E),*)$ Isomorphismen. In anderen Worten: $i_{\gamma(t)}$ ist eine schwache Äquivalenz. Aus einem Korollar des Whitehead-Theorems folgt nun, dass i_t auch in Homologie und Kohomologie Isomorphismen induziert (vgl. Spanier, AT, S. 406, Cor 7.6.25). Wir untersuchen den Isomorphismus

$$T_{\gamma} \coloneqq (i_{\gamma(1)})^* \circ ((i_{\gamma(0)})^*)^{-1} \ : \ H^*(F_{\gamma(0)}) \xrightarrow{\cong} H^*(F_{\gamma(1)}).$$

Lemma 5. T_{γ} hängt lediglich von der Weghomotopieklasse von γ ab, d. h. ist η ein zweiter Weg mit $\gamma \simeq \eta$, so gilt $T_{\gamma} = T_{\eta}$.

Beweis. Sei $H: I \times I \to B$ eine Homotopie zw. den Wegen γ und η , d.h. $H_0 := H(0, -) = \gamma$, $H_1 = \eta$, $H(-, 0) \equiv x$ und $H(-, 1) \equiv y$ mit $x := \gamma(0) = \eta(0)$ und $y := \gamma(1) = \eta(1)$. Für festes $s \in I$ sei $i_s: I \to I \times I$, $t \mapsto (s, t)$ die Inklusion als $\{s\} \times I$. Betrachte das kommutative Diagramm

$$H_s^*(E) \xrightarrow{\tilde{i}_s} H^*(E) \longrightarrow E$$

$$H_s^*(p) \downarrow \qquad H^*(p) \downarrow \qquad \downarrow p$$

$$I \xrightarrow{i_s} I \times I \xrightarrow{H} B$$

$$H_s$$

Sei $t \in I$ fest. Sei $F_{s,t} := (H_s^*(p))^{-1}(t) = (H^*(p))^{-1}((s,t))$ und $f_0 \in F$. Das linke komm. Diagramm induziert einen Morphismus zw. den langen ex. Homotopieseq. von $H_t^*(p)$ und $H^*(p)$:

$$\dots \longrightarrow \pi_{n+1}(I,t) \xrightarrow{\widehat{\partial}} \pi_n(F_{s,t},f_0) \xrightarrow{(i'_{s,t})^*} \pi_n(H_s^*(E),f_0) \xrightarrow{H_s^*(p)_*} \pi_n(I,t) \longrightarrow \dots$$

$$\downarrow^{i_{s*}} \qquad \qquad \downarrow \qquad \downarrow^{(\widetilde{i}_s)_*} \qquad \downarrow^{i_{s*}}$$

$$\dots \longrightarrow \pi_{n+1}(I \times I,(s,t)) \xrightarrow{\widehat{\partial}} \pi_n(F_{s,t},f_0) \xrightarrow{(i_{s,t})_*} \pi_n(H^*(E),f_0) \xrightarrow{H^*(p)_*} \pi_n(I \times I,(s,t)) \longrightarrow \dots$$

In diesen Sequenzen verschwinden die Gruppen $\pi_n(I,t)$ bzw. $\pi_n(I \times I,(s,t))$. Folglich induzieren die Abbildungen $\widetilde{i_s}$ Isomorphismen in Homotopie und in Kohomologie. Es gilt nun

$$T_{\gamma} = (i'_{0,1})^* \circ ((i'_{0,0})^*)^{-1} = (i'_{0,1})^* \circ (\widetilde{i_0})^* \circ (\widetilde{i_0})^{-1} \circ ((i'_{0,0})^*)^{-1}$$

$$= (i_{0,1})^* \circ ((i_{0,0})^*)^{-1} \stackrel{(\star)}{=} (i_{1,1})^* \circ ((i_{1,0})^*)^{-1}$$

$$= (i'_{1,1})^* \circ (\widetilde{i_1})^* \circ (\widetilde{i_1})^{-1} \circ ((i'_{1,0})^*)^{-1} = (i'_{1,1})^* \circ ((i'_{1,0})^*)^{-1} = T_{\eta}.$$

Die Gleichung (*) gilt wegen $i_{0,1} \simeq i_{1,1}$ und $i_{0,0} \simeq i_{1,0}$.

Mit ganz ähnlicher Technik kann man zeigen:

Lemma 6. Seien $\gamma, \eta: I \to B$ stetige Wege mit $\gamma(1) = \eta(0)$. Dann gilt

$$T_{\eta} \circ T_{\gamma} = T_{\gamma \bullet \eta} : H^*(F_{\gamma(0)}) \xrightarrow{\cong} H^*(F_{\eta(1)}).$$

Dabei ist die Komposition $\gamma \bullet \eta$ von γ und η folgender Weg:

$$\gamma \bullet \eta: I \to B, \quad s \mapsto \begin{cases} \gamma(2s), & \text{falls } s \in [0, \frac{1}{2}], \\ \eta(2s-1), & \text{falls } s \in [\frac{1}{2}, 1]. \end{cases}$$

Beweis. Betrachte folgendes kommutatives Diagramm:

$$\gamma^*(E) \stackrel{\widetilde{j}}{\longleftarrow} (\gamma \bullet \eta)^*(E) \longrightarrow E$$

$$\gamma^*(p) \downarrow \qquad \qquad \qquad \qquad \downarrow^p$$

$$I \stackrel{j}{\longleftarrow} I \stackrel{\gamma \bullet \eta}{\longrightarrow} B$$

Dabei ist $j: I \to I$ die Abbildung $s \mapsto s/2$. Analog zum letzten Lemma sieht man anhand des Leiterdiagramms der langen exakten Sequenzen der Faserungen $\gamma^*(p)$ und $(\gamma \bullet \eta)^*(p)$, dass \tilde{j} einen Isomorphismus in Homotopie und Kohomologie induziert. Es gibt ein ähnliches Diagramm

mit η statt γ und $k: I \to I$, $s \mapsto (1+s)/2$ statt j. Es induziert auch \widetilde{k} einen Isomorphismus in Kohomologie. Es gilt nun

$$\begin{split} T_{\eta} \circ T_{\gamma} &= (i_{\eta(1)})^* \circ ((i_{\eta(0)})^*)^{-1} \circ (i_{\gamma(1)})^* \circ ((i_{\gamma(0)})^*)^{-1} \\ &= (i_{\eta(1)})^* \circ \tilde{k}^* \circ (\tilde{k}^*)^{-1} \circ ((i_{\eta(0)})^*)^{-1} \circ (i_{\gamma(1)})^* \circ \tilde{j}^* \circ (\tilde{j}^*)^{-1} \circ ((i_{\gamma(0)})^*)^{-1} \\ &= (\tilde{k} \circ i_{\eta(1)})^* \circ ((\tilde{k} \circ i_{\eta(0)})^*)^{-1} \circ (\tilde{j} \circ i_{\gamma(1)})^* \circ ((\tilde{j} \circ i_{\gamma(0)})^*)^{-1} \\ &= (i_{\gamma \bullet \eta(1)})^* \circ ((i_{\gamma \bullet \eta(1/2)})^*)^{-1} \circ (i_{\gamma \bullet \eta(1/2)})^* \circ ((i_{\gamma \bullet \eta(0)})^*)^{-1} \\ &= (i_{\gamma \bullet \eta(1)})^* \circ ((i_{\gamma \bullet \eta(0)})^*)^{-1} = T_{\gamma \bullet \eta}. \end{split}$$

1.2 Lokale Koeffizienten

Definition 4. Ein lokales Koeffizientensystem \underline{A} auf einem topologischen Raum B besteht aus abelschen Gruppen $(A_b)_{b\in B}$ und Isomorphismen $T_{\gamma}: A_{\gamma(0)} \xrightarrow{\cong} A_{\gamma(1)}$ für jeden stetigen Weg $\gamma: I \to B$, sodass gilt:

- Sind zwei Wege $\gamma, \eta: I \to B$ homotop modulo Endpunkte, so gilt $T_{\gamma} = T_{\eta}$.
- Für komponierbare Wege $\gamma, \eta: I \to B$ gilt $T_{\gamma \bullet \eta} = T_{\eta} \circ T_{\gamma}$.
- Für den konstanten Weg $\gamma \equiv b$ gilt $T_{\gamma} = \mathrm{id}_{A_b}$.

Bemerkung. Man kann ein lokales Koeffizientensystem auf B auch als Funktor von dem Fundamentalgruppoid von B in die Kategorie der abelschen Gruppen auffassen.

Beispiel 2. Im letzten Abschnitt wurde gezeigt: Bei einer Serre-Faserung $p: E \to B$ bilden die q-ten Kohomologiegruppen $A_b := H^q(p^{-1}(b))$ der Fasern ein lokales Koeffizientensystem. Mit dem universellen Koeffizententheorem sieht man, dass gleiches auch für die Homologiegruppen $A_b := H^q(p^{-1}(b); G)$ mit Koeffizienten in einer abelschen Gruppe G gilt. Wir bezeichnen dieses Koeffizientensystem im Folgenden mit $\mathcal{H}^q(F_p; G)$.

Beispiel 3. Für jede abelsche Gruppe G gibt es das konstante Koeffizientensystem \underline{G} mit $G_b := G$ für alle $b \in B$ und $T_{\gamma} = \mathrm{id}_G$ für alle $\gamma : I \to B$.

Sei im Folgenden $\Delta_n(B)$ die Menge der n-Simplizes in B, also die Menge der stetigen Abbildungen $\Delta^n \to B$ mit $\Delta^n := \operatorname{spann}\{e_0, \dots, e_n\} \subset \mathbb{R}^{n+1}$, und

$$d_n: \Delta_n(B) \to \Delta_{n-1}(B) \quad \sigma \mapsto \sigma_{\langle e_0, \dots, \hat{e_i}, \dots, e_n \rangle} \qquad (0 \leqslant i \leqslant n),$$

die Abbildung auf die *i*-Seite. Für einen *n*-Simplex σ bezeichne $\sigma_i := \sigma_{\langle e_i \rangle} \in \Delta_0(B) = B$ die *i*-te Ecke und $\sigma_{ij} := \sigma_{\langle e_i, e_j \rangle} \in \Delta_1(B)$ den Weg von von σ_i nach σ_j entlang der *ij*-Kante von σ $(0 \le i \le j \le n)$.

Definition 5. Sei B ein topologischer Raum, \underline{A} ein lokales Koeffizientensystem auf B. Der Kokomplex der singulären Koketten auf B mit Koeffizienten in A ist folgendermaßen definiert:

$$C^n(B;\underline{A}) \coloneqq \prod_{\sigma \in \Delta_n(B)} A_{\sigma_0}, \quad \delta^n \left((a_\tau)_{\tau \in \Delta_n(B)} \right)_{\sigma \in \Delta_{n+1}(B)} \coloneqq T_{\sigma_{01}}^{-1}(a_{d_0(\sigma)}) + \sum_{i=1}^{n+1} (-1)^i a_{d_i(\sigma)}.$$

Man überprüft leicht, dass $\delta^{n+1} \circ \delta^n = 0$ gilt. Die Kohomologie $H^*(B; \underline{A}) := H^*(C^*(B; \underline{A}))$ dieses Kettenkomplexes heißt singuläre Kohomologie von B mit Koeffizienten in A.

Beobachtung 1. Für das konstante Koeffizientensystem \underline{G} gilt $H^*(B;\underline{G}) \cong H^*(B;G)$. Gewöhnliche Kohomologie mit Koeffizienten ist also ein Spezialfall von Kohomologie mit Koeffizienten in einem lokalen System.

Definition 6. Es sei \underline{R} ein lokales Koeffizientensystem, in dem die Gruppen R_b sogar Ringe und die Abbildungen T_{γ} Ringisomorphismen sind. Dann definiert

ein Produkt, das sogenannte Cup-Produkt.

1.3 Spektralsequenzen

Es sei A im Folgenden ein kommutativer Ring mit Eins.

Definition 7. Eine (kohomologische) Spektralsequenz besteht aus

- A-Moduln $E_r^{p,q}$ für alle $p, q \in \mathbb{Z}$ und $r \geqslant 1$,
- A-Modul-Homomorphismen $d_r^{p,q}: E_r^{p,q} \to E_r^{p+r,q-r+1}$ mit $d_r^{p+r,q-r+1} \circ d_r^{p,q} = 0$
- und Isomorphismen $\alpha_r^{p,q}: H^{p,q}(E_r) := \ker(d_r^{p,q}) / \operatorname{im}(d_r^{p-r,q+r-1}) \xrightarrow{\cong} E_{r+1}^{p,q}.$

Bemerkung. • Die Homomorphismen $d_{p,q}^r$ heißen Differentiale.

- Die Gesamtheit der Module $E^r_{p,q}$ und Differentiale d^{pq}_r mit $r \in \mathbb{N}$ fest heißt r-te Seite E^r .
- Man stellt Seiten für gewöhnlich in einem 2-dimensionalen Raster dar:

Definition 8. Eine Spektralsequenz konvergiert, falls für alle $p, q \in \mathbb{Z}$ ein $R \in \mathbb{N}$ existiert, sodass für alle $r \geq R$ die Differentiale von und nach $E_r^{p,q}$ null sind und damit $E_{p,q}^{\infty} \coloneqq E_R^{p,q} \cong E_{R+1}^{p,q} \cong \ldots$ Der Grenzwert der SS ist die Unendlich-Seite $E_{\infty} \coloneqq \{E_{\infty}^{p,q}\}_{p,q}$.

Bemerkung. Viele Spektralsequenzen sind im ersten Quadranten konzentriert, d. h. $E_r^{p,q}$ ist nur für $p,q \ge 0$ ungleich Null. Solche Spektralsequenzen konvergieren immer, denn für alle $p,q \in \mathbb{Z}$ führen für $r \ge \max(p+1,q+2)$ alle Differentiale von $E_r^{p,q}$ aus dem ersten Quadranten heraus und alle dort eintreffenden Differentiale kommen von außerhalb des ersten Quadranten und sind daher Null.

Definition 9. Eine Filtrierung eines A-Moduls M ist eine absteigende Folge

$$M \supseteq \ldots \supseteq F^{p-1}M \supseteq F^pM \supseteq F^{p+1}M \supseteq \ldots$$

von Untermoduln von $M, p \in \mathbb{Z}$. Eine Filtrierung heißt

- ausschöpfend, falls $M = \bigcup_p F^p$,
- Hausdorffsch, wenn $0 = \bigcap_n F^p M$ und
- regulär, wenn sie ausschöpfend und Hausdorffsch ist.

Definition 10. Eine Spektralsequenz E konvergiert gegen einen graduierten A-Modul $M = \bigoplus_{n \in \mathbb{Z}} M^n$ (notiert $E_r^{p,q} \Rightarrow M^{p+q}$), falls E überhaupt konvergiert und reguläre Filtrierungen

$$M^n \supseteq \ldots \supseteq F^{p-1}M^n \supseteq F^pM^n \supseteq F^{p+1}M^n \supseteq \ldots$$

existieren, sodass $E^{pq}_{\infty} \cong F^p M^{p+q} / F^{p+1} M^{p+q}$ für alle $p,q \in \mathbb{Z}$.

1.4 Die Spektralsequenz eines filtrierten Komplexes

Definition 11. Eine Filtrierung eines Kokettenkomplexes C^{\bullet} ist eine absteigende Folge

$$C^{\bullet} \supseteq \ldots \supseteq F^{p-1}C^{\bullet} \supseteq F^{p}C^{\bullet} \supseteq F^{p+1}C^{\bullet} \supseteq \ldots$$

von Unterkomplexen.

Lemma 7. Es sei C^{\bullet} ein filtrierter Kokettenkomplex. Es gibt eine Spektralsequenz mit

$$E_1^{pq} = H^{p+q}(F^p C^{\bullet}/F^{p+1}C^{\bullet}).$$

Angenommen, die Filtrierung ist

- a) gradweise nach unten beschränkt, d. h. für alle $q \in \mathbb{Z}$ gibt es ein $p \in \mathbb{Z}$ mit $F^pC^q = 0$,
- b) ausschöpfend, d. h. für alle $q \in \mathbb{Z}$ ist $\bigcup_{p} F^{p}C^{q} = C^{q}$ und
- c) für alle $q \in \mathbb{Z}$ gibt es ein $P \in \mathbb{Z}$, sodass für alle $p \leq P$ gilt: Die Inklusion $F^pC^{\bullet} \hookrightarrow C^{\bullet}$ induziert einen Isomorphismus $H^q(F^pC^{\bullet}) \cong H^q(C^{\bullet})$ in Kohomologie.

Dann konvergiert die Spektralsequenz gegen $H^*(C^{\bullet})$.

Wir führen zunächst etwas neue Notation ein. Diese hilft, den Beweis verständlicher zu formulieren. Wir fassen im Folgenden den Kettenkomplex als ein einziges Modul $C := \bigoplus_{n \in \mathbb{Z}} C^n$ anstatt als Folge von Modulen auf. Dieses Modul ist filtriert durch die Untermodule $F^p := \bigoplus_{n \in \mathbb{Z}} F^p C^n$. Wir setzen $F^{-\infty} := C$ und $F^{\infty} := 0$. Die Korandabbildung fassen wir als Homomorphismen $d: C \to C$ mit $d \circ d = 0$ auf, der die Filtrierung von C respektiert.

Wir sind interessiert an der Kohomologie von C^{\bullet} , also an $H^*(C) := \ker(d)/\operatorname{im}(d)$ und an der Kohomologie von F^p/F^{p+1} , also $H^*(F^p/F^{p+1}) \cong (d|_{F^p})^{-1}(F^{p+1})/d(F^p)$. Wir geben nun eine Verallgemeinerung der Definition der Kohomologie von C^{\bullet} und der Kohomologie des Quotientenkomplexes F^p/F^q : Statt Zykeln (d. h. Elementen $c \in C$ mit d(c) = 0) betrachten wir z-Zykel, das sind Elemente $c \in C$ mit $d(c) \in F^z$. Wir teilen diese durch die Menge $d(F^b)$ der b-Ränder anstatt durch die Menge d(C) der Ränder. Wir setzen

$$S[z,q,p,b] := \frac{F^p \cap d^{-1}(F^z)}{(F^p \cap d^{-1}(F^z)) \cap (F^q + d(F^b))}.$$

Wir haben als Spezialfälle

$$S[p,q,p,q] \cong F^p/F^q$$
 und $S[q,q,p,p] \cong H^*(F^p/F^q)$.

Lemma 8. Es sei $z_1 \ge q_1 \ge p_1 = z_2 \ge b_1 = q_2 \ge p_2 \ge b_2$. Dann ist folgende Abbildung ein wohldefinierter Homomorphismus:

$$d^*: S[z_2, q_2, p_2, b_2] \to S[z_1, q_1, p_1, b_1], [c] \mapsto [d(c)].$$

Beweis. Falls [c] = 0 in $S[z_2, q_2, p_2, b_2]$, so existieren $x \in F^{q_2}$ und $y \in F^{b_2}$ mit c = x + d(y). Somit gilt $d^*[c] = [dc] = [d(x) + d^2(y)] = [d(x)] = 0$ in $S[z_1, q_1, p_1, b_1]$, da $F^{b_1} = F^{q_2}$.

Lemma 9. Es seien Filtrierungsindizes wie folgt gegeben:

Fittrierungsindizes wie loigt gegeben:
$$z_3 \ \geqslant \ q_3 \ \geqslant \ p_3 \ \geqslant \ b_3$$

$$|| \qquad || \qquad ||$$

$$z_2 \ \geqslant \ q_2 \ \geqslant \ p_2 \ \geqslant \ b_2$$

$$|| \qquad || \qquad ||$$

$$z_1 \ \geqslant \ q_1 \ \geqslant \ p_1 \ \geqslant \ b_1$$

Dann ist

$$\alpha: S[q_1, q_2, p_2, p_3] \to \frac{\ker(d^*: S[z_2, q_2, p_2, b_2] \to S[z_1, q_1, p_1, b_1])}{\operatorname{im}(d^*: S[z_3, q_3, p_3, b_3] \to S[z_2, q_2, p_2, b_2])}, \quad [c] \mapsto [c]$$

ein wohldefinierter Isomorphismus.

Beweis. Sei A der Quotient auf der rechten Seite.

Wohldefiniertheit: Sei [c] = 0 in $S[q_1, q_2, p_2, p_3]$, d.h. es gibt $e \in F^{q_2} = F^{b_1}$ und $f \in F^{p_1}$ mit c = e + d(f). Dann ist $d^*[c] = [d(c)] = [d(e)] = 0$ in $S[z_1, q_1, p_1, b_1]$, also $c \in \ker(d^*)$ $S[z_2, q_2, p_2, b_2] \to S[z_1, q_1, p_1, b_1]$. Nun ist $f \in d^{-1}(F^{z_3})$, da $d(f) = c - e \in F^{p_2} = F^{z_3}$. Es gilt $[c] = [e + d(f)] = [d(f)] = d^*[f] = 0 \text{ in } A.$

Injektivität: Sei $c \in F^{p_2} \cap d^{-1}(F^{q_1})$ mit [c] = 0 in A. Das heißt, es gibt $e \in F^{q_2}$, $f \in F^{b_2}$ und $g \in F^{p_3} \cap d^{-1}(F^{z_3})$ mit c = e + d(f) + d(g). Dann ist [c] = [e + d(f + g)] = 0 in $S[q_1, q_2, p_2, p_3]$, da $f + g \in F^{p_3}$.

 $Surjektivit \ddot{a}t$: Sei $\tilde{c} \in F^{p_2} \cap d^{-1}(F^{z_2})$ mit $[\tilde{c}] \in \ker(d^*: S[z_2, q_2, p_2, b_2] \to S[z_1, q_1, p_1, b_1])$. Das heißt, es gibt $e \in F^{q_1}$ und $f \in F^{b_1} = F^{q_2}$ mit $d(\tilde{c}) = e + d(f)$. Dann ist $[\tilde{c}] = [\tilde{c} - f]$ in $S[q_1, q_2, p_2, p_3]$ mit $\tilde{c} - f \in F^{p_2} \cap d^{-1}(F^{q_1})$, da $d(\tilde{c} - f) = e \in F^{q_1}$.

Beweis des Lemmas über Existenz der Spektralsequenz. Wir beachten jetzt wieder, dass C und damit S[z,q,p,b] graduiert und d ein Differential vom Grad +1 ist. Es sei $S[z,q,p,b]^n$ die n-te Komponente. Setze

$$E_r^{pq} := S[p+r, p+1, p, p-r+1]^{p+q}.$$

Die Differentiale sind

$$d_r^{pq} : \underbrace{S[p+r,p+1,p,p-r+1]^{p+q}}_{=E_r^{p,rq}} \to \underbrace{S[p+2r,p+r+1,p+r,p+1]^{p+q+1}}_{=E_r^{p+r,q-r+1}}, \quad [c] \mapsto [d(c)].$$

Sie sind wohldefiniert nach Lemma 8. und wegen Lemma 9 ist

$$\alpha_r^{pq}: H^{p,q}(E_r) = \ker(d_r^{pq})/\operatorname{im}(d_r^{p-r,q+r-1}) \to E_{r+1}^{pq}, \quad [c] \mapsto [c]$$

ein wohldefinierter Isomorphismus.

Beweis der Konvergenz: Es seien $p,q\in\mathbb{Z}$. Wegen Bedingung a) gibt es ein $R_1\geqslant 0$, sodass $F^{p+R_1}C^{p+q+1}=0$. Für $r\geqslant R_1$ ist damit $E_r^{p+r,q-r+1}$ als Subquotient (d. h. Quotient eines Untermoduls) von $F^{p+R_1}C^{p+q+1}$ Null. Folglich verschwindet auch das Differential d_r^{pq} . Wegen Bedingung c) gibt es ein $S \in \mathbb{Z}$, sodass $F^sC^{\bullet} \hookrightarrow C^{\bullet}$ und somit auch $F^sC^{\bullet} \hookrightarrow F^{s-1}C^{\bullet}$ für $s \leq S$ einen Isomorphismus in H^{p+q-1} und H^{p+q} induziert. Anhand der langen exakten Sequenz zu $0 \to F^sC^{\bullet} \to F^{s-1}C^{\bullet} \to F^{s-1}C^{\bullet}/F^sC^{\bullet} \to 0$ sieht man, dass $H^{p+q-1}(F^{s-1}C^{\bullet}/F^sC^{\bullet}) = 0$. Somit ist $E_r^{p-r,q+r-1}$ für $r \ge R_2 := p-s+1$ als Submodul von $H^{p+q-1}(F^{p-r}C^{\bullet}/F^{p-r+1}C^{\bullet})$ Null. Folglich verschwindet auch $d_r^{p-r,q+r-1}$. Mit $R := \max(R_1, R_2)$ gilt dann $E_R^{pq} \cong E_{R+1}^{pq} \cong \dots \cong E_{\infty}^{pq}$. Sei $H^n(C^{\bullet})$ absteigend filtriert durch $F^pH^n(C^{\bullet}) := \operatorname{im}(i^* : H^n(F^pC^{\bullet}) \to H^n(C^{\bullet}))$. Für

 $r \geqslant R$ ist

$$E^{pq}_{\infty} \cong E^{pq}_r = \frac{F^p C^{p+q} \cap d^{-1}(0)}{(F^p C^{p+q} \cap d^{-1}(0)) \cap (F^{p+1} C^{p+q} + d(F^{p-r+1} C^{p+q-1}))} = S[\infty, p+1, p, p-r+1]^{p+q}.$$

Es ist daher $F^pH^{p+q}(C^{\bullet})/F^{p+1}H^{p+q}(C^{\bullet}) \cong S[\infty, p+1, p, -\infty]^{p+q}$ ein Quotient von E^{pq}_{∞} . Tatsächlich gilt $S[\infty, p+1, p, -\infty]^{p+q} \cong E_{\infty}^{pq}$, denn: Sei $c \in F^pC^{p+q} \cap d^{-1}(0)$ mit [c] = 0 in $S[\infty, p+1]$ $[1,p,-\infty]^{p+q}$. Dann gibt es ein $e\in F^{p+1}C^{p+q}$ und ein $f\in C^{p+q-1}$ mit c=e+d(f). Wegen Bedingung b) gibt es ein $\tilde{p} \in \mathbb{Z}$ mit $f \in F^{\tilde{p}}C^{p+q+1}$. Wähle r so, dass $r \geqslant R$ und $p-r+1 \leqslant \tilde{p}$. Dann ist [c] = [e] + [d(f)] = 0 in $E_r^{pq} \cong E_\infty^{pq}$.

1.5 Die Serre-Spektralsequenz

Satz 1 (Jean-Pierre Serre). Es sei G eine abelsche Gruppe. Für jede Serre-Faserung $p:E\to B$ existiert eine Spektralsequenz mit

$$E_2^{p,q} = H^p(B; \mathcal{H}^q(F_p; G)),$$

welche gegen $H^*(E)$ konvergiert.

Beweis. TODO:

1.6 Multiplikative Struktur der Serre-Spektralsequenz

Satz 2. Es sei R ein Ring, $p: E \to B$ eine Serre-Faserung. Dann gibt es bilineare Abbildungen

$$m_r: E_r^{p,q} \times E_r^{s,t} \to E_r^{p+s,q+t}, (x,y) \mapsto m_r(x,y) =: xy$$

mit folgenden Eigenschaften:

- (i) d_r ist derivativ: $d_r^{p+s,q+t}(xy) = (d_r^{p,q}x)y + (-1)^{p+q}x(d_r^{s,t}y)$
- (ii) Es gilt $m_{r+1}([x], [y]) = [m_r(x, y)]$ für alle $x \in \ker(d_r^{p,q}), y \in \ker(d_r^{s,t}).$
- (iii) $m_2: E_2^{p,q} \times E_2^{r,s} \to E_2^{p+s,q+t}$ ist das $(-1)^{qs}$ -fache des Cup-Produkts

$$H^p(B; \mathcal{H}^q(F; R)) \times H^s(B; \mathcal{H}^t(F; R)) \to H^{p+s}(B; \mathcal{H}^{q+t}(F; R)),$$

welches für $a = [(a_{\sigma})_{\sigma \in \Delta_m(B)}] \in H^p(B; \mathcal{H}^q(F; R))$ und $b = [(b_{\sigma})_{\sigma \in \Delta_n(B)}] \in H^s(B; \mathcal{H}^t(F; R))$ definiert ist durch

$$(a \cup b)_{\sigma \in \Delta_{p+s}(B)} := a_{\sigma_{\langle e_1, \dots, e_m \rangle}} \cup T_{\sigma_{0m}}^{-1}(b_{\sigma_{\langle e_m, \dots, e_{m+n} \rangle}}).$$

(iv) Das Cup-Produkt auf $H^*(B;R)$ respektiert die Filtrierungen von $H^n(B;R)$ und schränkt daher ein zu Abbildungen $F_p^m \times F_s^n \to F_{p+s}^{m+n}$. Die induzierte Abbildung auf dem Quotienten $F_p^m/F_{p+1}^m \times F_s^n/F_{s+1}^n \to F_{p+s}^{m+n}/F_{p+s+1}^{m+n}$ entspricht dem Grenzwert $m_\infty: E_\infty^{p,m-p} \times E_\infty^{s,n-s} \to E_\infty^{p+s,m+n-p-s}$ der Multiplikationen m_r .

Beweis. $\overline{\text{TODO}}$:

1.7 Die Serre-Spektralsequenz für Homologie

Es gibt eine Version des Satzes für Serre für Homologie anstatt Kohomologie. In Homologie wird eine andere Indizierung für Spektralsequenzen verwendet:

Definition 12. Eine homologische *Spektralsequenz* besteht aus

- A-Moduln $E_{p,q}^r$ für alle $p, q \in \mathbb{Z}$ und $r \ge 1$,
- A-Modul-Homomorphismen $d_{p,q}^r: E_{p,q}^r \to E_{p-r,q+r-1}^r$ mit $d_{p-r,q+r-1}^r \circ d_{p,q}^r = 0$
- und Isomorphismen $\alpha^r_{p,q}: H_{p,q}(E^r) := \ker(d^r_{p,q}) / \operatorname{im}(d^r_{p+r,q-r+1}) \xrightarrow{\cong} E^{r+1}_{p,q}$

Jede homologische Spektralsequenz E liefert eine kohomologische Spektralsequenz, wenn man $E^{p,q}_r := E^r_{-p,-q}$ setzt.

Definition 13. Eine homologische Spektralsequenz E konvergiert gegen einen graduierten AModul $M = \bigoplus_{n \in \mathbb{Z}} M_n$ (notiert $E^r_{p,q} \Rightarrow M_{p+q}$), falls E überhaupt konvergiert und reguläre Filtrierungen

$$0 \subseteq \ldots \subseteq F^{p-1}M_n \subseteq F^pM_n \subseteq F^{p+1}M_n \subseteq \ldots$$

existieren, sodass $E_{pq}^{\infty} \cong F^p M_{p+q}/F^{p-1} M_{p+q}$ für alle $p, q \in \mathbb{Z}$.

Satz 3 (Jean-Pierre Serre). Es sei G eine abelsche Gruppe. Für jede Serre-Faserung $p: E \to B$ existiert eine (homologische) Spektralsequenz mit

$$E_{p,q}^2 = H_p(B; \mathcal{H}_q(F_p; G)),$$

welche gegen $H_*(E)$ konvergiert.

Dabei bilden die q-ten Homologiegruppen der Fasern ein lokales Koeffizientensystem mit $\mathcal{H}_q(F_p; G)_b = H_q(p^{-1}(b))$. Homologie mit einem Koeffizientensystem \underline{A} ist ähnlich definiert wie Homologie. Falls B einfach zusammenhängend ist oder allgemeiner $\pi_1(B)$ trivial auf den Homologiegruppen der Faser wirkt, so gilt $H_p(B; \mathcal{H}_q(F_p; G)) \cong H_p(B; H_q(F_p; G))$.

1.8 Die Pfadfaserung

Definition 14. Der *Pfadraum* eines punktierten topologischer Raum (X, x_0) ist

$$PX := \{ \gamma \in X^I \mid \gamma(0) = x_0 \} \subset X^I$$

mit der Unterraumtopologie des Raumes X^I , welcher die Kompakt-Offen-Topologie besitzt. Der Basispunkt von PX ist der konstante Weg $y_0: I \to X, \ t \mapsto x_0$.

Bemerkung. Der Raum PX ist zusammenziehbar: Die Abbildung

$$H: I \times PX \to PX, \quad (t, \gamma) \mapsto \gamma(t \cdot -)$$

ist eine Homotopie zwischen der konstanten Abbildung mit Wert γ_0 und id_{PX}.

Lemma 10. Die Abbildung $p: PX \to X, \ \gamma \mapsto \gamma(1)$ ist eine Hurewicz-Faserung.

Beweis. Es sei ein topologischer Raum A und stetige Abbildungen $H_0: A \to PX, H: I \times A \to X$ mit $H \circ i_0 = p \circ H_0$ gegeben. Dann ist eine Homotopieliftung gegeben durch

$$\tilde{H}: I \times A \to PX,$$

$$(s,a) \mapsto \gamma_{s,a}, \quad \gamma_{s,a}(t) := \begin{cases} H_0(a)(t \cdot (1+s)) & \text{falls } t \cdot (1+s) \leqslant 1, \\ H(t \cdot (1+s) - 1, a) & \text{falls } t \cdot (1+s) \geqslant 1. \end{cases}$$

Die Faserung $p: PX \to X$ wird Pfadfaserung genannt.

Bemerkung. Die Faser von p über x_0 ist

$$\Omega X := \{ \gamma \in X^I \mid \gamma(0) = \gamma(1) = x_0 \}.$$

Der Raum ΩX heißt Schleifenraum von X.

Bemerkung. Seien (X, x_0) und (Y, y_0) punktierte Räume. Es gibt eine in X und Y natürliche Bijektion

$$\operatorname{Hom}((\Sigma X, x_0), (Y, y_0)) \cong \operatorname{Hom}((X, x_0), (\Omega Y, \gamma_0)),$$

$$f \mapsto (x \mapsto t \mapsto f([(x, t)])),$$

$$([(x, t)] \mapsto g(x)(t)) \leftarrow g.$$

Lemma 11. Man kann jede stetige Abbildung $f: X \to Y$ schreiben als Komposition

$$X \xrightarrow{i} E_f \xrightarrow{p} Y$$

einer Homotopie
äquivalenz i und einer Hurewicz-Faserung p. Genauer gilt

$$E_f := \{(x, \gamma) \in X \times X^I \mid f(x) = \gamma(0)\} \subset X \times Y^I,$$

$$i(x) := (x, t \mapsto f(x)),$$

$$p(x, \gamma) := \gamma(1).$$

Beweis. Offensichtlich sind i und p stetig und es gilt $p \circ i = f$. Das Homotopie-Inverse von i ist $j: E_f \to X$, $(x,\gamma) \mapsto x$. Es gilt $j \circ i = \mathrm{id}_X$ und eine Homotopie zwischen $i \circ j$ und id_{E_f} ist gegeben durch

$$H: I \times E_f \to E_f, \quad (s, (x, \gamma)) \mapsto (x, \gamma(s \cdot -)).$$

Es bleibt zu zeigen, dass p eine Faserung ist. Es sei dazu ein topologischer Raum A und Abbildungen $H_0:A\to E_f$ und $H:I\times A\to Y$ mit $H\circ i_0=p\circ H_0$ gegeben. Dann ist folgende Abbildung eine Homotopieliftung:

$$\begin{split} \ddot{H}: I \times A \to E_f, \\ (s,a) \mapsto \gamma_{s,a}, \quad \gamma_{s,a}(t) \coloneqq \begin{cases} H_0(a)(t \cdot (1+s)) & \text{falls } t \cdot (1+s) \leqslant 1, \\ H(t \cdot (1+s) - 1, a) & \text{falls } t \cdot (1+s) \geqslant 1. \end{split}$$

1.9 Eilenberg-MacLane-Räume

Definition 15. Sei G eine Gruppe, $n \ge 1$. Ein Eilenberg-MacLane-Raum vom Typ K(G, n) ist ein punktierter, zusammenhängender topologischer Raum (X, x_0) mit

$$\pi_q(X, x_0) = \begin{cases} G & \text{falls } q = n, \\ 0 & \text{falls } q \neq n. \end{cases}$$

Lemma 12. Sei G eine abelsche Gruppe, $n \ge 2$. Dann existiert ein CW-Komplex (X, x_0) vom Typ K(G, n).

Beweis.
$$\overline{\text{TODO}}$$
:

Bemerkung. Sei (X, x_0) ein K(G, n). Dann ist ΩX ein K(G, n-1), denn

$$\pi_q(\Omega X, \gamma_0) \cong \operatorname{Hom}((S^q, *), (\Omega X, \gamma_0)) \cong \operatorname{Hom}((\Sigma S^q, *), (X, x_0)) \cong \pi_{q+1}(X, x_0)$$

$$\cong \begin{cases} G & \text{falls } q+1 = n \iff q = n-1 \\ 0 & \text{falls } q+1 \neq n. \end{cases}$$

1.10 Das Hurewicz-Mod-C-Theorem

Sei (X, x_0) ein punktierter topologischer Raum. Für $n \ge 1$ liefert der Hurewicz-Homomorphismus $h_n : \pi_n(X, x_0) \to H_n(X; \mathbb{Z})$ einen Zusammenhang zwischen der n-ten Homotopiegruppe und der n-ten Homologiegruppe von X. Er ist definiert durch $h_n([f]) := H_n(f)(\alpha)$ für einen fest gewählten Erzeuger $\alpha \in H_n(S^n; \mathbb{Z})$.

Satz 4 (Hurewicz). Sei (X, x_0) ein (n-1)-zusammenhängender topologischer Raum, d. h. $\pi_i(X, x_0) = 0$ für i < n. Dann ist $h_i : \pi_i(X, x_0) \to H_i(X; \mathbb{Z})$ ein Isomorphismus für $0 < i \le n$. Insbesondere gilt $H_i(X; \mathbb{Z}) = 0$ für 0 < i < n.

Ein Beweis dieses Satzes wird in [Hat02, S. 366ff] geführt.

Definition 16. Eine Klasse \mathcal{C} von abelschen Gruppen heißt Serre-Klasse, falls

- 1. Für jede kurze exakte Sequenz $0 \to A \to B \to C \to 0$ von abelschen Gruppen gilt: $B \in \mathcal{C} \iff A, B \in \mathcal{C}$.
- 2. Für $A, B \in \mathcal{C}$, sind auch $A \otimes B \in \mathcal{C}$ und $Tor(A, B) \in \mathcal{C}$.

Bemerkung. Aus der ersten Eigenschaft folgt, dass Bilder, Untergruppen und Quotienten einer Gruppe aus \mathcal{C} wieder in \mathcal{C} sind. Genauer gilt für eine ab. Gruppe B und eine Untergruppe A < B: $B \in \mathcal{C} \iff A, B/A \in \mathcal{C}$. Durch Induktion kann man zeigen, dass für eine Gruppe A mit endlicher Filtrierung $A = F^0 A \supseteq F^1 A \supseteq \ldots \supseteq F^k A = 0$ gilt: $A \in \mathcal{C} \iff F^0 A/F^1 A, \ldots, F^{k-1} A/F^k A \in \mathcal{C}$. Außerdem ist die direkte Summe zweier Gruppen aus \mathcal{C} wieder in \mathcal{C} .

Definition 17. Es sei \mathcal{C} eine Serre-Klasse. Ein Morphismus $f:A\to B$ zwischen abelschen Gruppen heißt *Isomorphimus modulo* \mathcal{C} , falls $\ker(f)$, $\operatorname{coker}(f)\in\mathcal{C}$.

Bemerkung. Dies ist äquivalent zur Existenz einer exakten Sequenz $K \to A \xrightarrow{f} B \to C$ mit $K, C \in \mathcal{C}$. Eine Gruppe, welche modulo- \mathcal{C} -isomorph zu einer Gruppe aus \mathcal{C} ist, ist selbst in \mathcal{C} .

Beispiele 1. Man kann leicht zeigen, dass folgende Klassen die Definition erfüllen:

- $\mathcal{FG} := \{ \text{ endlich erzeugte Gruppen } \}$
- $\mathcal{F} := \{ \text{ endliche Gruppen } \}$

Satz 5 ("Hurewicz-mod- \mathcal{C} -Theorem"). Es sei $\mathcal{C} \in \{\mathcal{FG}, \mathcal{F}\}$ und (X, x_0) ein einfach zusammenhängender topologischer Raum. Angenommen, $\pi_i(X, x_0) \in \mathcal{C}$ für 0 < i < n. Dann ist $h_i : \pi_i(X, x_0) \to H_i(X; \mathbb{Z})$ ein Isomorphismus modulo \mathcal{C} für $i \leq n$. Insbesondere gilt $H_i(X; \mathbb{Z}) \in \mathcal{C}$ für 0 < i < n.

Korollar 1. Es sei $\mathcal{C} \in \{\mathcal{FG}, \mathcal{F}\}$ und (X, x_0) ein einfach zusammenhängender topologischer Raum. Dann gilt für alle $N \in \mathbb{N} \cup \{\infty\}$:

$$\forall 0 \le n < N : \pi_n(X, x_0) \in \mathcal{C} \iff \forall 1 \le n < N : H_n(X; \mathbb{Z}) \in \mathcal{C}.$$

Beweis. Die Aussage folgt aus Satz 5 durch Induktion über N.

Aus dem Korollar folgt, dass die Homotopiegruppen der Sphären alle endlich erzeugt sind, da die Homologiegruppen der Sphären endlich erzeugt sind.

Definition 18. Es sei \mathcal{C} eine Serre-Klasse. Wir nennen einen topologischen Raum X \mathcal{C} -azyklisch, falls $\widetilde{H}_i(X) \in \mathcal{C}$ für alle $i \geq 0$.

Lemma 13. Es sei $F \to X \to B$ eine Faserung und die Räume F, X und B wegzusammenhängend. Wirke $\pi_1(B)$ trivial auf $H_*(F)$. Dann gilt folgende 2-aus-3-Eigenschaft: Falls zwei der Räume F, X und B C-azyklisch sind, so auch der dritte.

Beweis. Wir betrachten die Serre-Spektralsequenz zu der Faserung mit Koeffizienten in \mathbb{Z} . Die Aussage, dass die Homologiegruppe $H_n(X)$ in \mathcal{C} liegt, ist äquivalent dazu, dass die Gruppen $E_{i,n-i}^{\infty}$ für $i=0,\ldots,n$ in \mathcal{C} liegen, denn diese Gruppen sind die Quotienten einer endlichen Filtrierung von $H_n(X)$.

Fall 1: F und B sind C-azyklisch: Die universelle Koeffizientenformel liefert

$$E_{pq}^2 \cong H_p(B; H_q(F; \mathbb{Z})) \cong (H_p(B) \otimes H_q(F)) \oplus \operatorname{Tor}(H_{p-1}(B), H_q).$$

Man sieht durch Unterscheidung der Fälle p=0, p=1 und p>1 sowie q=0 und q>0, dass $E_{pq}^2 \in \mathcal{C}$ für $(p,q) \neq (0,0)$. Als Subquotient von E_{pq}^2 , einer Gruppe aus \mathcal{C} , ist dann auch $E_{pq}^{\infty} \in \mathcal{C}$ für $(p,q) \neq (0,0)$. Dies zeigt die Behauptung nach der Bemerkung am Anfang des Beweises.

Fall 1: F und X sind C-azyklisch: : Wir zeigen nun durch Induktion über k, dass $H_p(B) \in \mathcal{C}$ für $0 . Gelte dies für <math>k \ge 1$. Wir wollen zeigen, dass dann auch $H_k(B)$ in \mathcal{C} liegt. Für alle $r \ge 2$ gibt es eine kurze exakte Sequenz

$$0 \to \ker(d_{k,0}^r) \to E_{k,0}^r \overset{d_{k,0}^r}{\to} \operatorname{im}(d_{k,0}^r) \to 0$$

$$\parallel \qquad \qquad \downarrow \subseteq$$

$$E_{k,0}^{r+1} \qquad \qquad E_{k-r,r-1}^r$$

Man sieht unter Verwendung der Induktionsannahme und der universellen Koeffizientenformel, dass $E^2_{k-r,r-1}$ und somit auch $E^r_{k-r,r-1}$ in $\mathcal C$ liegen. Folglich gilt auch im $(d^r_{k,0}) \in \mathcal C$, also $E^r_{k,0} \in \mathcal C \iff E^{r+1}_{k,0} \in \mathcal C$. Da aber $E^R_{k,0} \cong E^\infty_{k,0} \in \mathcal C$ für R groß genug, gilt $E^r_{k,0} \in \mathcal C$ für alle $r \ge 2$. Insbesondere $H_k(B;\mathbb Z) \cong H_k(B;H_0(F;\mathbb Z)) \cong E^2_{k,0} \in \mathcal C$.

Fall 1: B und X sind C-azyklisch: : Analog zum vorherigen Fall zeigt man induktiv, dass $H_q(F) \in \mathcal{C}$ für 0 < q < k. Dazu verwendet man die kurze exakte Sequenz $0 \to \operatorname{im}(d^r_{r,k-r+1}) \hookrightarrow E^r_{0,k} \to E^{r+1}_{0,k}$.

Lemma 14. Es sei $G \in \mathcal{C} \in \{\mathcal{FG}, \mathcal{F}\}$. Dann ist K(G, n) \mathcal{C} -azyklisch für alle $n \ge 1$.

Beweis. Sei zunächst n=1.

- Falls $G = \mathbb{Z}$, so stimmt die Aussage, denn der Kreis S^1 ist ein $K(\mathbb{Z}, 1)$ und $H_*(S^1; \mathbb{Z}) \in \mathcal{FG}$.
- Falls $G = \mathbb{Z}_m$, TODO: begründen damit, dass der "unendliche Linsenraum" ein $K(\mathbb{Z}_m, 1)$ ist
- Falls $G = G_1 \oplus G_2$, dann ist $K(G_1, 1) \times K(G_2, 1)$ ein K(G, 1). Wenn die Aussage für G_1 und G_2 stimmt, so folgt aus dem letzten Lemma, angewendet auf die Produktfaserung $K(G_1, 1) \to K(G_1, 1) \times K(G_2, 1) \to K(G_2, 1)$, dass sie auch für G gilt.

Da man jede endlich erzeugte abelsche Gruppe als direkte Summe von endlich vielen Summanden der Form \mathbb{Z} und \mathbb{Z}_m schreiben kann, gilt die Aussage für n=1.

Induktiv zeigen wir nun, dass die Aussage für n beliebig gilt. Dazu verwenden wir die Pfadraumfaserung $K(G,n) \to P \to K(G,n+1)$. Es gilt $H_k(P) = 0 \in \mathcal{C}$ und $H_k(K(G,n)) \in \mathcal{C}$ für $k \ge 1$ nach Induktionshypothese, also $H_k(K(G,n+1)) \in \mathcal{C}$ für alle $k \ge 1$ nach dem vorherigen Lemma.

Definition 19. Ein Postnikov-Turm eines wegzusammenhängenden Raumes X ist ein kommutatives Diagramm wie rechts, für das gilt:

π_i(X → X_n) ist ein Isomorphismus für i ≤ n und
π_i(X_n) = 0 für i > n.

TODO: Bemerkung zur Konstruktion von Postnikov-Türmen

Bemerkung. Es sei ein Postnikov-Turm ... $\to X_2 \to X_1$ gegeben. Dann kann man durch wiederholtes Anwenden der in Lemma 11 beschriebenen Konstruktion einen neuen Postnikovturm ... $\to X_2' \to X_1'$ und Homotopieäquivalenzen $X_i \simeq X_i'$ konstruieren, sodass die Abbildungen $X_{i+1}' \to X_i'$ Hurewicz-Faserungen sind. Man sieht anhand der langen exakten Sequenz von Homotopiegruppen, dass die Faser von $X_{i+1}' \to X_i'$ ein $K(\pi_{n+1}(X), n+1)$ ist.

Lemma 15. Es sei $\mathcal{C} \in \{\mathcal{FG}, \mathcal{F}\}$ und X einfach zusammenhängend mit $\pi_i(X, x_0) \in \mathcal{C}$ für alle $i \geq 0$. Dann ist X \mathcal{C} -azyklisch, d. h. es gilt $H_i(X) \in \mathcal{C}$ für $i \geq 1$.

Beweis. Es sei ... $\to X_{i+1} \to X_i \to ... \to X_1$ ein Postnikov-Turm von X, dessen Abbildungen $X_{i+1} \to X_i$ Hurewicz-Faserungen sind. Wir zeigen, dass $H_i(X_k; \mathbb{Z}) \in \mathcal{C}$ für alle i, k > 0. Die Aussage stimmt für k = 1, da alle Homotopiegruppen und somit auch Homologiegruppen von X_1 gleich Null sind. Gelte die Aussage nun für ein $k \geq 1$. Wir verwenden die Faserung $K(\pi_{k+1}(X), k+1) \to X_{k+1} \to X_k$. Nach Lemma 14 sind die Homologiegruppen der Faser in \mathcal{C} . Gleiches gilt für den Basisraum nach Induktionsvoraussetzung, und somit auch für X_k nach Lemma 13.

Es gilt $H_i(X; \mathbb{Z}) \cong H_i(X_k; \mathbb{Z}) \in \mathcal{C}$ für $k \geqslant i$, da $\pi_i(X \to X_k)$ und nach einem Korollar der relativen Version des Hurewicz-Theorems damit auch $H_i(X \to X_k)$ ein Isomorphismus für $i \leqslant k$ ist.

Beweis von Satz 5. Aufgrund der Natürlichkeit des Hurewicz-Homomorphismus kommutiert folgendes Diagramm:

$$\pi_n(X) \xrightarrow{\cong} \pi_n(X_n)$$

$$\downarrow^{h_n} \qquad \qquad \downarrow^{h_n}$$

$$H_n(X) \xrightarrow{\cong} H_n(X_n)$$

Es genügt daher zu zeigen, dass $h_n: \pi_n(X_n) \to H_n(X_n; \mathbb{Z})$ ein Isomorphismus modulo \mathcal{C} ist. Wir betrachten die Serre-Spektralsequenz zur Faserung $F_n \to X_n \to X_{n-1}$.

$$E_{pq}^2 \cong H_p(X_{n-1}; \underbrace{H_q(K(\pi_n(X), n); \mathbb{Z})}_{=0 \text{ für } 0 < q < n}),$$

Es verschwinden also alle Einträge zwischen der 0-ten und der n-ten Zeile. Für diese gilt Wir betrachten die exakte Sequenz

welche sich aus zwei kurzen Sequenzen zusammensetzt:

- Die linke Sequenz ist exakt, da $E_{0,n}^{\infty} \cong E_{0,n}^{n+1} \cong \ker(d_{0,n}^r) / \operatorname{im}(d_{n+1,0}^r) = E_{0,n}^n / \operatorname{im}(d_{n+1,0}^r)$.
- Die rechte Sequenz ist exakt, da $E_{0,n}^{\infty} = F^0 H_n(X_n)$ und $E_{n,0}^{\infty} = F^n H_n(X_n)/F^{n-1} H_n(X_n)$ für eine Filtrierung $0 = F^{-1} H_n(X_n) \subseteq F^0 H_n(X_n) \subseteq \ldots \subseteq F^n H_n(X_n) = H_n(X_n)$. Da $F^p H_n(X_n)/F^{p-1} H_n(X_n) = E_{p,n-p}^{\infty} = 0$ für $p = 1, \ldots, n-1$, gilt $F^0 H_n(X_n) = \ldots = F^{n-1} H_n(X_n)$.

Aus Lemma folgt, dass $E_{n+1,0}^n, E_{n,0}^\infty \in \mathcal{C}$. Somit ist der mittlere Morphismus $H_n(F_n) = E_{0,n}^n \to H_n(X_n)$ ein Isomorphismus modulo \mathcal{C} . TODO: Begründen, warum dieser Morphismus genau der von der Inklusion $F_n \hookrightarrow X_n$ induzierte Morphismus ist. Betrachte nun das kommutative Diagramm

$$\pi_n(F_n) \xrightarrow{\cong} \pi_n(X_n)$$

$$\cong \downarrow^{h_n} \qquad \qquad \downarrow^{h_n}$$

$$H_n(F_n) \longrightarrow H_n(X_n)$$

Dabei sind die vertikalen Morphismen die Hurewicz-Homomorphismen und die horizontalen Morphismen werden durch die Inklusion induziert. Der linke Hurewicz-Homomorphismus ist nach dem Hurewicz-Theorem ein Isomorphismus, da F_n (n-1)-zusammenhängend ist. Der obere Morphismus ist ein Isomorphismus, wie man anhand der langen exakten Sequenz der Faserung $F_n \to X_n \to X_{n-1}$ sehen kann. Der untere Morphismus ist ein Isomorphismus modulo \mathcal{C} , wie wir gerade eben gesehen haben. Somit ist auch der rechte Morphismus im Diagramm ein Isomorphismus modulo \mathcal{C} .

Bemerkung. Man kann in diesem Kapitel die Voraussetzung, dass X einfach zusammenhängend ist, ersetzen durch die Forderung, dass X wegzusammenhängend und abelsch ist, d. h. die Wirkung der Fundamentalgruppe $\pi_1(X)$ auf den höheren Homotopiegruppen $\pi_n(X)$ trivial ist.

1.11 Rationale Kohomologie von Räumen vom Typ $K(\mathbb{Z},n)$

Satz 6. Für $n \ge 1$ gilt

$$H^*(K(\mathbb{Z}, n); \mathbb{Q}) \cong \begin{cases} \mathbb{Q}[x], & \text{falls } n \text{ gerade,} \\ \Lambda_{\mathbb{Q}}[x], & \text{falls } n \text{ ungerade} \end{cases}$$

als graduierte Ringe mit Erzeuger $x \in H^n(K(\mathbb{Z}, n); \mathbb{Q})$. Dabei bezeichnet $\Lambda_{\mathbb{Q}}[x]$ die äußere Algebra mit Erzeuger x.

Beweis. Durch Induktion über n. Der Satz gilt für n=1, denn der Kreis S^1 ist ein $K(\mathbb{Z},1)$ und es gilt bekanntermaßen $H^*(S^1;R) \cong \Lambda_R[x]$ für $R=\mathbb{Z}$ und somit auch für $R=\mathbb{Q}$. Im Induktionsschritt nutzen wir die Pfadraumfaserung $F:=K(\mathbb{Z},n-1)\to P\to B:=K(\mathbb{Z},n)$. Da $K(\mathbb{Z},n)$ für $n\geqslant 2$ einfach zusammenhängend ist, gilt für deren zugehörige Serre-Spektralsequenz $E_2^{p,q}\cong H^p(B;H^q(F))$.

Falls n gerade: Dann sieht die Spektralsequenz auf der Seite E_r , $r \leq n$ aus wie rechts skizziert (dabei stehen die Gitterpunkte für die Nullgruppe). Das sieht man folgendermaßen: Zunächst ist $E_2^{pq} = 0$ und somit $E_r^{pq} = 0$ außer für $q \in \{0, n-1\}$, denn nach Induktionsvoraussetzung gilt $H^*(F; \mathbb{Q}) \cong \Lambda_{\mathbb{Q}}[x]$. Es folgt, dass nur auf der n-ten Seite E_n nicht verschwindende

Differentiale existieren können und $E_2\cong E_n$ und $E_{n+1}\cong E_\infty$ gilt. Außerdem ist $E_n^{0,0}\cong E_2^{0,0}\cong \mathbb{Q}$ und $E_n^{0,n-1}\cong E_2^{0,n-1}\cong \mathbb{Q}$, da B zusammenhängend ist. Die Spektralsequenz konvergiert gegen $H^*(P;\mathbb{Q})$. Da P zusammenziehbar ist, gilt $H^0(P;\mathbb{Q})=\mathbb{Q}$ und $H^n(P;\mathbb{Q})=0$ für n>0. Folglich ist $E_{n+1}^{pq}\cong E_\infty^{pq}=0$ außer für p=q=0. Insbesondere gilt $E_{n+1}^{0,n-1}\cong E_\infty^{0,n-1}=0$. Das eingezeichnete Differential $d_n^{0,n-1}:E_n^{0,n-1}\to E_n^{n,0}$ ist nun injektiv, denn $\ker(d_n^{0,n-1})\cong E_{n+1}^{0,n-1}=0$. Dieses Differential ist auch surjektiv, denn $\operatorname{coker}(d_n^{0,n-1})\cong E_{n+1}^{n,0}\cong E_\infty^{0}=0$, also ein Isomorphismus. Somit $H^n(B;\mathbb{Q})\cong E_2^{n,0}\cong E_n^{n,0}\cong E_n^{0,n-1}\cong \mathbb{Q}$. Der zweite Isomorphismus kommt daher, da für $r\leqslant n-1$ alle Differentiale von und nach $E_n^{n,0}$ Null sind. Damit ist $E_2^{n,n-1}\cong H^n(B;H^{n-1}(F;\mathbb{Q}))\cong H^n(B;\mathbb{Q})\cong \mathbb{Q}$. Induktiv sieht man nun, dass die Abbildungen $d_n^{kn,n-1}$ Isomorphismen sind und dass $H^{kn}(B;\mathbb{Q})\cong E_2^{kn,0}\cong E_2^{kn,n-1}\cong \mathbb{Q}$ für alle $k\geqslant 0$. Damit haben wir gezeigt, dass die graduierte, additive Struktur von $H^*(B;\mathbb{Q})$ wie behauptet ist. Es sei nun $a\in E_n^{0,n-1}\cong H^0(B;H^{n-1}(F;\mathbb{Q}))$ ungleich Null und $x:=d_n^{0,n-1}(a)\in E_n^{n,0}\cong H^n(B;H^0(F;\mathbb{Q}))\cong H^n(B;\mathbb{Q})$. Dann gilt auch $x\neq 0$ und $ax:=m_r(a,x)\neq 0$, da wegen (ii) und $ax:=n_r(a,x)\neq 0$, da wegen (ii) und

Es sei nun $a \in E_n^{0,n-1} \cong H^0(B; H^{n-1}(F; \mathbb{Q}))$ ungleich Null und $x := d_n^{0,n-1}(a) \in E_n^{n,0} \cong H^n(B; H^0(F; \mathbb{Q})) \cong H^n(B; \mathbb{Q})$. Dann gilt auch $x \neq 0$ und $ax := m_r(a, x) \neq 0$, da wegen (ii) und (iii) das Produkt m_r gerade dem kanonischen Produkt $H^n(B; H^0(F; \mathbb{Q})) \times H^0(B; H^{n-1}(F; \mathbb{Q})) \to H^n(B; H^{n-1}(F; \mathbb{Q}))$ entspricht. Es gilt $0 \neq d_n^{n,n-1}(ax) = d_n^{0,n-1}(a)x - ad_n^{n,0}(x) = xx$. Da das Produkt $xx \in E_n^{2n,0}$ gerade dem Cup-Produkt $x \cup x \in H^{2n}(B; \mathbb{Q})$ entspricht, ist $x \cup x \neq 0$, also ein Erzeuger von $H^{2n}(B; \mathbb{Q})$. Induktiv ist nun $0 \neq d_n^{kn,n-1}(ax^k) = x^{k+1} \in E_n^{kn,0}$ da ja $0 \neq ax^k$. Somit ist für alle k das k-fache Cup-Produkt $x^k \in H^{kn}(B; \mathbb{Q})$ ein Erzeuger.

Falls n ungerade: Dann ist $E_r^{p,q} = 0$ für alle q, die kein Vielfaches von n-1 sind. Somit verschwinden alle Differentiale auf E_r für r < n und $E_2 \cong E_n$. Für 0 < m < n verschwinden alle Differentiale von und nach $E_r^{m,0}$ und daher ist $H^m(B;\mathbb{Q}) \cong E_2^{m,0} \cong E_\infty^{m,0} = 0$ und folglich $E_2^{m,k} = 0$ für alle $k \geqslant 0$. Selbiges $n-1 \begin{tabular}{ll} E_2 &\cong E_\infty$ &= 0 und folglich E_2 &= 0 für alle $k\geqslant 0$. Selbiges gilt folglich auch für $n < m < 2n$ und allgemeiner für solche m, die kein Vielfaches von n sind. Analog wie im vorherigen Fall sieht man, dass das eingezeichnete Differential $d_n^{0,n-1}$ ein Isomorphismus ist. Somit $H^n(B;\mathbb{Q})\cong H^n(B;H^0(F;\mathbb{Q}))\cong \mathbb{Q}$ und $E_2^{n,k(n-1)}\cong \mathbb{Q}$ für alle $k\geqslant 0$. Sei $a\in H^0(B;H^{n-1}(F;\mathbb{Q}))$ ungleich Null und $x\coloneqq d_n^{0,n-1}$. Dann ist auch $a^2\neq 0\in E_n^{0,2n-2}$ und $d_n^{0,2n-2}(a^2)=d_n^{0,n-1}(a)a+d_n^{0,n-1}(a)a=xa+ax=(-1)^{0\cdot n+(n-1)\cdot 0}ax+ax=2ax\neq 0$. Also ist $d_n^{0,2n-2}$ ein Isomorphismus. Analog sieht man, dass $d_n^{0,k(n-1)}$ für alle $k\geqslant 1$ ein Isomorphismus ist. Fa bleibt zu zeigen dess $H^{kn}(P;\mathbb{Q})=0$ für $h\geqslant 1$. Des singige potential giehttriviale Differential giehttriviale giehttrivale giehttriviale giehttriviale giehttriviale giehttriviale gieh$

Es bleibt zu zeigen, dass $H^{kn}(B;\mathbb{Q})=0$ für k>1. Das einzige potentiell nichttriviale Differential, das bei $E_r^{2n,0}$ ankommt, ist $d_n^{n,n-1}$. Dieses ist aber Null, da $\ker(d_n^{n,n-1})=\operatorname{im}(d_n^{0,2n-2})=E_n^{n,n-1}$. Also $H^{2n}(B;\mathbb{Q})\cong E_2^{2n,0}\cong E_\infty^{2n,0}=0$ und $E_2^{2n,k}=0$ für alle $k\geqslant 0$. Für k>2 sieht man durch Induktion, dass alle Differentiale von und nach $E_r^{2n,0}$ verschwinden und daher $H^{kn}(B;\mathbb{Q})=0$.

1.12 Satz von Serre

Lemma 16. Es sei $n \ge 3$ ungerade und X ein (n-1)-zusammenhängender topologischer Raum. Angenommen, $H^k(X;\mathbb{Z})=0$ für k>n und $H_n(X)\cong\pi_n(X)$ ist die direkte Summe von \mathbb{Z} und einer endlichen Gruppe. Dann sind die Homotopiegruppen $\pi_k(X,x_0), k > n$ endlich.

Beweis. Durch Töten der höheren Homotopiegruppen bekommen wir eine Abbildung $f:X\to$ $K(\pi_n(X), n) \approx K(\mathbb{Z}, n) \times K(G, n)$, wobei G eine endliche Gruppe ist. Wir führen die in Lemma 11 beschriebene Konstruktion durch und erhalten einen zu X homotopieäquivalenten Raum X' und eine Hurewicz-Faserung $p: X' \to K(\pi_n(X), n)$ mit Faser F. Anhand der langen exakten Sequenz dieser Faserung sehen wir, dass

$$\pi_i(F) \cong \begin{cases} 0, & \text{für } i \leq n, \\ \pi_i(X') \cong \pi_i(X), & \text{für } i > n. \end{cases}$$

Wir wenden diesselbe Konstruktion auf die Inklusion $F \hookrightarrow X'$ an und bekommen einen zu F homotopieäquivalenten Raum F' und eine Faserung $q:F'\to X'$. Aus der langen exakten Homotopiesequenz ergibt sich, dass die Faser \tilde{F} dieser Faserung ein $K(\pi_n(X), n-1)$ ist.

Wir wollen die Serre-Spektralsequenz der Faserung $\tilde{F} \to F' \to X'$ mit Koeffizienten in \mathbb{Q} verwenden. Dazu untersuchen wir zunächst die rationale Kohomologie von Faser und Basisraum. Lemma 14 impliziert, dass die Homotopiegruppen und wegen Korollar 1 auch die reduzierten Homologiegruppen von K(G, n-1) endlich sind. Nach der universellen Koeffizientenformel verschwinden somit alle reduzierten Kohomologiegruppen von K(G, n-1) mit Koeffizienten in \mathbb{Q} . Wir sehen nun an der Serre-Spektralsequenz der Produktfaserung $K(G, n-1) \to$ $K(\pi_n(X), n-1) \to K(\mathbb{Z}, n-1)$ und Lemma 6, dass $H^*(K(\pi_n(X), n-1); \mathbb{Q}) \cong H^*(K(\mathbb{Z}, n-1); \mathbb{Q}) \cong H^*(K(\mathbb{Z}, n-1); \mathbb{Q})$ $\mathbb{Q}[x]$ mit Erzeuger $x \in H^{n-1}(K(\pi_n(X), n-1); \mathbb{Q})$. Für den Basisraum folgt aus der universellen Koeffizientenformel, dass die rationale Kohomologie von X' gleich \mathbb{Q} ist in Grad 0 und in Grad n, und Null sonst.

Wir wissen nun, dass $E_2^{pq}=0$ außer falls $p\in\{0,n\}$ und $n-1\mid q$ gilt. Die Spektralsequenz besitzt also auf der E_2 -Seite und damit auch auf der E_n -Seite die gleichen Einträge wie die Spektralsequenz aus dem zweiten Fall (n ungerade) des vorhergehenden Lemmas. Genau wie dort schließen wir, dass $d_n^{0,n-1}$ ein Isomorphismus ist (denn $H^n(X';\mathbb{Q})=0$) und dass aufgrund der multiplikativen Struktur der Spektralsequenz auch die Differentiale $d_n^{0,k(n-1)}$ für $k \geqslant 1$ Isomorphismen sind. Somit ist $E_{n+1}^{pq}=0$ außer für p=q=0. Es folgt, dass $H^n(F';\mathbb{Q})=0$ für n>0. Somit gilt auch $H_n(F';\mathbb{Z})\times\mathbb{Q}\cong H_n(F';\mathbb{Q})\cong H^n(F';\mathbb{Q})=0$, es ist also $H_n(F';\mathbb{Z})$ eine Torsionsgruppe. Da $X' \simeq X$ und $K(\pi_n(X), n)$ \mathcal{FG} -azyklisch sind, ist auch $F' \simeq F$ \mathcal{FG} azyklisch, d. h. die Homologiegruppen $H_n(F';\mathbb{Z})$, n>0 sind endlich erzeugt. Somit sind diese Homologiegruppen schon endlich. Nach Korollar 1 sind damit alle Homotopiegruppen von F'endlich. Diese entsprechen im Grad k > n aber gerade den Homotopiegruppen von X.

Satz 7. Die Homotopiegruppen $\pi_i(S^n, *)$, i > n, sind endlich bis auf die Gruppen $\pi_{4k-1}(S^{2k})$, $k \ge 1$, welche jeweils isomorph zu einer direkten Summe von \mathbb{Z} mit einer endlichen Gruppe sind.

Zusammengefasst wissen wir also

$$\pi_i(S^n, *) \cong \begin{cases} 0, & \text{für } i < n, \\ \mathbb{Z}, & \text{für } i = n, \\ \mathbb{Z} \oplus \text{endliche Gruppe}, & \text{für } i = 2n - 1 \text{ und } n \text{ gerade}, \\ \text{endliche Gruppe}, & \text{sonst.} \end{cases}$$

Beweis. Im Fall n=1 stimmt die Aussage, denn die universelle Überlagerung von S^1 ist \mathbb{R} . Wir können daher $n \ge 2$ annehmen. Im Fall, dass $n \ge 3$ ungerade ist, folgt die Aussage aus dem vorhergehenden Lemma. Es bleibt der Fall, dass $n \ge 2$ gerade ist.

Wir wenden diesselbe Konstruktion wie im Beweis des vorhergehenden Lemmas für den Raum $X=S^n$ an. Da n gerade ist, haben wir aber $H^*(K(\pi_n(X),n-1))\cong H^*(K(\pi_n(X),n-1))\cong n-1$ $\Lambda[x]$. Die E_n -Seite der Serre-Spektralsequenz der Faserung $K(\pi_n(X),n-1)\to F'\to X'$ ist daher wie rechts abgebildet. Der Eintrag $\mathbb Q$ auf Position $E_2^{n,n-1}$ überlebt die Spektralsequenz. Somit ist $H^*(F';\mathbb Q)\cong \Lambda[b]$ mit $b\in H^{2n-1}(F';\mathbb Q)$. Es folgt $H_i(F';\mathbb Z)\otimes \mathbb Q\simeq H_i(F';\mathbb Q)=0$ für $i\in \mathbb Z_n$ $H_i(F';\mathbb{Z})\otimes\mathbb{Q}\cong H_i(F';\mathbb{Q})=0$ für i<2n-1. Da die Homologie-

$$n-1
\bigcirc \mathbb{Q}a \quad \cdot \quad \cdot \quad \mathbb{Q}ax \quad \cdot \\
\vdots \\
0
\bigcirc \mathbb{Q}1 \quad \cdot \quad \cdot \quad \mathbb{Q}x \quad \cdot \\
0 \quad \cdots \quad n$$

gruppen von F' endlich erzeugt sind, ist $H_i(F';\mathbb{Z}) \in \mathcal{F}$ für i < 2n-1 und $H_{2n-1}(F';\mathbb{Z}) \cong \mathbb{Z} \oplus G$, wobei G eine endliche Gruppe ist. Das Hurewicz-modulo- \mathcal{C} -Theorem impliziert, dass damit auch die Homotopiegruppen $\pi_i(F')$ endlich sind für i < 2n-1 und dass $\pi_{2n-1}(F) \cong \mathbb{Z} \oplus G'$ für eine endliche Gruppe G'. Indem wir höhere Homotopiegruppen killen, erhalten wir eine Abbildung $F' \to Y$, wobei $\pi_i(Y) = 0$ für $i \ge 2n - 1$. Wir konvertieren diese Abbildung zu einer Faserung $F'' \to Y$ mit Faser Z. Anhand der langen exakten Homotopiesequenz dieser Faserung sehen wir, dass

$$\pi_m(Z) = \begin{cases} 0, & \text{für } m < 2n - 1, \\ \pi_m(F'') \cong \pi_m(F) \cong \pi_m(S^n), & \text{für } m \geqslant 2n - 1. \end{cases}$$

Wir bemerken, dass alle Homotopiegruppen und somit auch Homologiegruppen von Y endlich sind. Daher gilt $H^*(Y;\mathbb{Q}) = 0$. Da die Serre-Spektralsequenz zur Faserung $Z \to F'' \to Y$ mit Koeffizienten in \mathbb{Q} auf der E_2 -Seite also nur Einträge in der Spalte p=0 besitzt, gilt $H^*(Z;\mathbb{Q}) \cong H^*(F'';\mathbb{Q}) \cong \Lambda[b]$. Die Aussage folgt nun aus dem vorhergehenden Lemma mit X := Z.

Literatur

[Hat02] Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[Hat04]Allen Hatcher. "Spectral Sequences in Algebraic Topology". 2004. URL: http://www. math.cornell.edu/~hatcher/SSAT/SSATpage.html.

[Ser51] Jean-Pierre Serre. "Homologie singulière des espaces fibrés". In: Annals of Mathematics. Second Series 54.3 (1951), S. 425–505.