8.1	
	Intuspeeich interactions -> Predation
	& Predator < speci-list
	dt = TN - aNP r~ pry growth rate
	di = baNP-MP an capture efficiency of pry
	aN = # of prog killed per unit time (capture)
	be efficient that prograss
	Dinear fresenal response 15 traved once 60 predator
	Capture at mar Natural mortality of predah
	Pry abundance N 2p The name pry, the greater rate of captible
	Take of of
	tird F.P.
	TN = aNP > r = aP > P = T ? When does
	bapp=mp
	4 6 n N (= m (=)
	N= M 3 When does
	Nous me have 2 isochers: one for pay, one for pul

dr > or when FN-aNP>0 r.N. > aNP 7/2>P (or) P = = Predator Isochie at = palen N = Ma dt > gr when baNP-nP > gr banfamp Combre Godina to baN> M uncom dynamics Predator-pmg cycles! Ediffent mile andiben

(each to different eyeler as)

liffent amplitudes liffert applitudes

Similarly,
$$\dot{\eta} = \frac{2}{3} \left[\frac{1}{4} + \frac{1}{3} \frac{1}{3} \right]_{a} + \frac{1}{10} \frac{1}{3} \frac{1}{3} \frac{1}{3} + \frac{1}{10} \frac{1}{3} \frac{1}$$

(c) Committee the system:

$$J = \begin{pmatrix} 24 & 34 & 24 \\ 34 & 24 & 34 \\ 34 & 34 \end{pmatrix} = \begin{pmatrix} 24 & -1+3x^2 & 4 \\ 24 & 24 & 34 \\ 34 & 34 \end{pmatrix} = \begin{pmatrix} 24 & -1+3x^2 & 4 \\ 24 & -2 \end{pmatrix}$$

Now - examine near F.P.

New (1, 12) $\begin{pmatrix} \dot{e} \\ \dot{\eta} \end{pmatrix} = \begin{pmatrix} 2 & 4 & 4 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} e \\ 7 \end{pmatrix}$

New (1, 12) $\begin{pmatrix} \dot{e} \\ \dot{\eta} \end{pmatrix} = \begin{pmatrix} 2 & 4 & 4 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} e \\ 7 \end{pmatrix}$

New (-1, 12) $\begin{pmatrix} \dot{e} \\ \dot{\eta} \end{pmatrix} = \begin{pmatrix} 2 & 4 & 4 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} e \\ 7 \end{pmatrix}$

(c) Solutions to Linean Systems

(d) = $\frac{24}{7}$, and solution and $\frac{24}{3}$

In 2-D (really, n-D), we have the yound have form:

 $\dot{\eta} = J\eta$ and we seek solutions of the form:

 $\dot{\eta} = J\eta$ and we seek solutions of the form:

 $\dot{\eta} = J\eta$ and we seek solutions of the form:

 $\dot{\eta} = J\eta$ and we seek solutions of the form:

 $\dot{\eta} = J\eta$ and $\dot{\eta} = J\eta$ = $J\eta$ =

50: J

We seek solutions in formation of the seek of the seek of the seek of the formation of the seek of the we correctly have T= Jn > Jrent SO: & Reat = eaty = JF = 27 3 18 F 15 an eigenvector of I, work with correspondy eigenelve 2, ten linear solutions exist. The eigenvalue of I will give us the growth Debus of the st linear approximation to dynamics around the Fixed point (*). Focus on eigenvalues... How do you find the eigenvalues of y? la giver by Re Characteristic equation: det (J-2I): doct 25 EXTEN What is 7-2I? if J= (ab), F= (p) and $J - \lambda I = \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$ What is det(.)? for matrix (a 5), det. is ad-6c 50: det (J-7I) = (a-2)(1-2) - 60 Another characteristic of matrices is Trace: at d for 2x2

tun 2, = 2+122-40, 2= 2-522-40 -Notice true me 2 eigenvelves for the 2-D system, and they depend only on the trace and determinant of I! - Eizenvalues are distinct (generally), and eizenvectors are linearly independent, which allows us to write general solution for 7/16) as vi(t) = Gentit Czentit where G, Cz we constate. Consider to the they stated at = IN - aNP = g(N,P) dP = baNP-mP = g(N,P) (Ø, Ø) There are 2 fixed points! (ta, =) What is the Jacobian? -aN J= (24 26) = (- AP)

DAP

DAP

DAP baN-m)

J= (r-aP -aN baP baN-m) $\begin{array}{c} \left(\frac{1}{2} - A\left(\frac{1}{2}\right) - A\left$ J(0,0) = (0 J/(60/2)= (80 - 1/2) 71,2= 2 + 122-40 = 1 (1-m + 1(m+r)2) Postbur branch: 2,28
(0,0) 2 In Find Figuralnes BOUNT 7,2/(th, =) = + 1-Mr = + i JMr } eizenvaluer
porely magnage 2 = MC From graphical analysis: ((Nr. P") is a center - any initial condition lands to a cycle

8.9	
0	In 2-0, this is always true: $\lambda_{1,2} = \frac{2 \pm \sqrt{2^2 - 4\Delta}}{2}$
	$\Delta = \lambda_1 \lambda_2$ -if one eigenvalue is (+), and $\gamma = \beta_1 + \lambda_2$ one is regarine, $\Delta = (-1)$ -if both eight are (+,+) or (-,-), $\Delta = (-1)$
	LA Klacest Stability requires that D 15 (+), but is not a sufficient Condition to get governtue it.
0	-Wen ~ < \$, both eigenvalues have regarive real prils, solf fixed point 15 STABLE. if \$ > \$ -blen ~ > \$, and \$> \$, both eigenvalues are have positive real prits a UNSTABLE
	-ib 22-42 < \$, three are maginary parts to eigenvalues
	PUT TOGETHER NY UNSHALL 722-42=18 Unstable spirals
(Saddle points. Shalle spirals 22-44=8
O. V	(illushular of point) Shalle nodes