GS TTL DATA BOOK

- LOW POWER SCHOTTKY TTL
- SCHOTTKY TTL

ELECTRONIC MANUFACTURERS' AGENTS

309 Jordan Lane, N.W. Huntsville, Alabama 35805 (205) 830-4030 (800) 633-2920

GS TTL DATA BOOK

- LOW POWER SCHOTTKY TTL
- SCHOTTKY TTL

Notice!

GoldStar Semiconductor reserves the right to make changes to any Information here in at any time without notice, such changes are not common and are usually minor.

GS assumes no responsibility for any problem involving a patent arising out of the application or use of any product or circuit described here in.

PRELIMINARY data sheet is issued in advanced of the availability of samples and generally indicates that at the time of printing the device is not characteried. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed.

TABLE OF CONTENTS

1.	NUMERICAL/FUNCTIONAL INDEX A. Low Power Schottky TTLs B. Schottky TTLs C. Miscellaneous	1-3
2.	FUNCTIONAL INDEX/SELECTION GUIDE	2-1
3.	TTL CHARACTERISTICS A. Terms and Definitions	3-3
	 DYNAMIC CHARACTERISTICS CLASSIFICATION OF CIRCUIT COMPLEXITY FUNCTIONAL DESCRIPTION EXPLANATION OF FUNCTION TABLES 	
	B. TTL Characteristics • TTL LOGIC FAMILY • INPUT CHARACTERISTICS • UNUSED INPUTS • OUTPUT CHARACTERISTICS • FANOUT CAPABILITY • NOISE MARGIN • OPEN COLLECT OUTPUTS	3-7
	C. Parameter Measurement Information	3-11
4.	GD74LS FAMILY CIRCUITS	4-1
5.	GD74S FAMILY CIRCUITS	5-1
6.	QUALITY ASSURANCE MANUAL	6-1
7.	ORDERING INFORMATION & PACKAGE DIMENSIONS	7-1
8	GOLDSTAR SEMICONDUCTOR SALES NETWORK	8-1

FUNCTIONAL INDEX/SELECTION GUIDE	2
TTL CHARACTERISTICS	3
GD74LS FAMILY CIRCUITS	4
GD74S FAMILY CIRCUITS	5
QUALITY ASSURANCE MANUAL	6
ORDERING INFORMATION & PACKAGE DIMENSION	7
GOLDSTAR SEMICONDUCTOR SALES NETWORK	8

A. LOW POWER SCHOTTKY TTLS

UNDER DEVELOPMENT

TYPE NO	FUNCTION	AVAILABILITY	PAGE
GD54/74LS00	Quad 2 Input NAND Gate	NOW	4-3
GD54/74LS02	Quad 2 Input NOR Gate	NOW	4-6
GD54/74LS04	Hex Invert	NOW	4-8
GD54/74LS05	Hex Invert, OC, 5.5V	NOW	4-10
GD54/74LS06	Hex Invert, OC, 30V	NOW	4-12
GD54/74LS07	Hex Buffer, OC, 30V	NOW	4-14
GD54/74LS08	Quad 2 Input AND Gate	NOW	4-16
GD54/74LS09	Quad 2 Input AND Gate, OC	NOW	4-18
GD54/74LS10	Triple 3 Input NAND Gate	NOW	4-20
GD54/74LS11	Triple 3 Inpt AND Gate	NOW	4-22
GD54/74LS14	Hex Schmitt Trigger Inverter	NOW	4-24
GD54/74LS15	Triple 3 Input AND Gate, OC	NOW	4-28
GD54/74LS16	Hex Inverter OC, 15V	NOW	4-30
GD54/74LS17	Hex Buffer, OC, 15V	NOW	4-32
GD54/74LS20	Dual 4 Input NAND Gate	NOW	4-34
GD54/74LS21	Dual 4 Input AND Gate	NOW	4-36
GD54/74LS26	Quad 2 Input NAND Gate, OC, 15V	#	4-38
GD54/74LS27	Triple 3 Input NOR Gate	NOW	4-40
GD54/74LS30	8 Input NAND Gate	NOW	4-42
GD54/74LS32	Quad 2 Input OR Gate	NOW	4-44
GD54/74LS38	Quad 2 Input AND Buffer, OC	#	4-46
GD54/74LS42	4 to 10 Decoder, BCD to Decimal	#	4-48
GD54/74LS51	AND OR Inverter Gate	NOW	4-51
GD54/74LS55	2 Wide 4 Input AND OR Invert Gate	#	4-53
GD54/74LS73	Dual JK F/F (Negative Edge)	NOW	4-55
GD54/74LS74A	Dual D Type F/F	NOW	4-58
GD54/74LS75	4 Bit Bistable Latch	NOW	4-61
GD54/74LS85	4 Bit Magnitude Comparator	#	4-63
GD54/74LS86	Quad 2 Input EOR Gate	NOW	4-67
GD54/74LS90	Decade Counter	#	4-69
GD54/74LS92	Divide by 12 Counter	#	4-72
GD54/74LS93	4 Bit Binary Counter	NOW	4-75
GD54/74LS95B	4 Bit Shift Register	#	4-78
GD54/74LS107A	Dual JK F/F	#	4-81
GD54/74LS109A	Dual JK F/F	#	4-85
GD54/74LS112	Dual JK Negative Edge F/F	NOW	4-88
GD54/74LS123	Dual Monostable Multivibrator	NOW	4-91
GD54/74LS125A	Quad Bus Buffer Gate, 3S	NOW	4-94
GD54/74LS132	Quad 2 Input NAND Schmitt Trigger	#	4-96
GD54/74LS138	3 to 8 Line Decoder/Demultiplexer	NOW	4-98
GD54/74LS139	Dual 2 to 4 Line Decoder/Demultiplexer	NOW	4-101
GD54/74LS145	BCD to Decimal Decoder/Driver	#	4.103
GD54/74LS148	8 To 3 Line Octal Priority Encoder	#	4-105
GD54/74LS151	1 of 8 Data Selector/Multiplexer	NOW	4-108
GD54/74LS153	Dual 4 to 1 Data Selector	NOW	4-111

TYPE NO	FUNCTION	AVAILABILITY	PAGE
GD54/74LS154	4 to 16 Line Decoder/Demultiplexer	NOW	4-113
GD54/74LS155	Decoder/Demultiplexer	NOW	4-111
GD54/74LS157	Quad 2 to 1 Line Data Selector	NOW	4-119
GD54/74LS158	Quad 2 to 1 Line Data Selector, Inverted	NOW	4-121
GD54/74LS161A	Sync 4 Bit Counter Binary	NOW	4-123
GD54/74LS163A	Sync 4 Bit Counter Binary, Sync Clear	NOW	4-128
GD54/74LS164	8 Bit Parllel Output Shift Reg.	NOW	4-132
GD54/74LS165	Parallel Load 8 Bit Shift Reg.	NOW	4-137
GD54/74LS166	8 Bit Shift Reg. PISO	NOW	4-141
GD54/74LS174	Hex D Type F/F	NOW	4-145
GD54/74LS175	Quad D Type F/F	NOW	4-148
GD54/74LS191	Sync Up/Down Counter, Binary	#	4-151
GD54/74LS193	Sync Up/Down Dual Clock Counter	NOW	4-156
GD54/74LS194A	4 Bit Bidirectional shift Reg.	NOW	4-162
GD54/74LS195A	4 Bit Parallel Access Shift Reg.	NOW	4-166
GD54/74LS221	Dual Monostable Multivibrator	#	4-170
GD54/74LS240	Octal Buffer, Inverted, 3S	NOW	4-176
GD54/74LS241	Octal Buffer, Noninverted, 3S	NOW	4-179
GD54/74LS242	Octal Bus Transceiver Inverted, 3S	NOW	4-182
GD54/74LS243	Quad Bus Transceiver, Noninverted, 3S	#	4-185
GD54/74LS244	Octal Buffer, Noninverted, 3S	NOW	4-188
GD54/74LS245	Octal Bus Transceiver, Noninverted 3S	NOW	4-191
GD54/74LS251	8 to 1 Line Data Select/MUX, 3S	#	4-194
GD54/74LS257A	Quad Data Selector, Noninverted, 3S	NOW	4-197
GD54/74LS258	Quad Data Selector, Inverted 3S	#	4-200
GD54/74LS259	8 Bit Addressable Latch	#	4-203
GD54/74LS273	Octal Type F/F	NOW	4-207
GD54/74LS280	9 Bit Odd/Even Parity Generator/Checker	NOW	4-210
GD54/74LS283	4 Bit Binary Full Adder	#	4-212
GD54/74LS298	Quad 2 Input MUX with Storage	#	4-216
GD54/74LS299	8 Bit Shift/Storage Register	NOW	4-218
GD54/74LS322	8 Bit Shift Reg. with Sign Extend	NOW	4-222
GD54/74LS365A	Hex Bus Driver, Noninverted 3S	NOW	4-226
GD54/74LS366A	Hex Bus Driver, Inverted, 3S	NOW	4-229
GD54/74LS367A	Hex Bus Driver, Noninverted, 3S	NOW	4-232
GD54/74LS368A	Hex Bus Driver, Inverted, 3S	NOW	4-235
GD54/74LS373	Octal D Type Latch	NOW	4-238
GD54/74LS374	Octal D Type F/F	NOW	4-241
GD54/74LS377	Octal D Type F/F	#	4-244
GD54/74LS390	Dual Decade Counter	#	4-247
GD54/74LS393	Dual 4 Bit Binary Counter	NOW	4-251
GD54/74LS395A	4 Bit Universal Shift Register, 3S	NOW	4-254
GD54/74LS541	Octal Buffer AND Line Driver, 3S	#	4-257
GD54/74LS590	8 Bit Binary Counter/Register	NOW	4-260
GD54/74LS612	Memory Mapper, 3S	NOW	4-264
GD54/74LS640	Octal Bus Transceiver, Inverted 3S	#	4-268
GD54/74LS646	Octal Bus Transceiver, Noninverted, 3S	NOW	4-272
GD54/74LS670	4 By 4 Register File, 3S	NOW	4-275
GD54/74LS688	8 Bit Magnitude Comparator	#	4-281

B. SCHOTTKY TTLS

TYPE NO	FUNCTION	AVAILABILITY	PAGE
GD54/74S00	Quad 2 Input NAND Gate	NOW	5-3
GD54/74S02	Quad 2 Input NOR Gate	NOW	5-5
GD54/74S04	Hex Inverter	NOW	5-7
GD54/74S05	Hex Inverter, OC	NOW	5-9
GD54/74S08	Quad 2 Input AND Gate	NOW	5-11
GD54/74S10	Triple 3 Input NAND Gate	NOW	5-13
GD54/74S20	Dual 4 Input NAND Gate	NOW	5-15
GD54/74S30	8 Input NAND Gate	NOW	5-17
GD54/74S32	Quad 2 Input OR Gate	NOW	5-19
GD54/74S51	AND OR Invert Gate	NOW	5-21
GD54/74S64	4-2-3-2 Input AND OR Invert Gate	#	5-23
GD54/74S74	Dual D Type F/F	NOW	5-24
GD54/74S85	4 Bit Magnitude Comparator	#	5-28
GD54/74S86	Quad 2 Input EOR Gate	NOW	5-32
GD54/74S112	Dual JK Negative Edge Triggered F/F	NOW	5-34
GD54/74S133	13 Input NAND Gate	NOW	5-37
GD54/74S138	3 to 8 Line Decoder/Demultiplexer	NOW	5-39
GD54/74S139	Dual 2 to 4 Line Decoder/Demultiplexer	NOW	5-41
GD54/74S153	Dual 4 To 1 Data Selector/multiplexer	#	5-43
GD54/74S157	Quad 2 to 1 Line Data Selector	#	5-45
GD54/74S158	Quad 2 to 1 Line Data Selector, Inverted	#	5-47
GD54/74S163A	Sync 4 Bit Counter, Binary	#	5-49
GD54/74S169A	4 Bit up/down Sync Counter, Binary	#	5-53
GD54/74S174	Hex D Type F/F	NOW	5-58
GD54/74S175	Quad D Type F/F	#	5-61
GD54/74S240	Octal Buffer, Inverted, 3S	#	5-64
GD54/74S242	Quad Bus Transceiver, Inverted, 3S	#	5-69
GD54/74S243	Quad Bus Transceiver, Noninverted, 3S	#	5-69
GD54/74S251	DATA Selector/Multiplexer, 3S	NOW	5-72
GD54/74S257	Quad Data Selector/MUX Noninverted, 3S	#	5-75
GD54/74S280	9 Bit Odd/Even Parity Generator/Checker	NOW	5-78
GD54/74S299	8 Bit Shift/Storage Register	#	5-81
GD54/74S374	Octal D Type F/F, 3S	NOW	5-85

NUMERICAL/FUNCTIONAL INDEX	1
FUNCTIONAL INDEX/SELECTION GUIDE	2
TTL CHARACTERISTICS	3
GD74LS FAMILY CIRCUITS	4
GD74S FAMILY CIRCUITS	5
QUALITY ASSURANCE MANUAL	6
ORDERING INFORMATION & PACKAGE DIMENSION	7
GOLDSTAR SEMICONDUCTOR SALES NETWORK	8

Function	Type of output		Type No	Typical propagation	Typical power	package	Page
	Totem pole	open- collector	Type No	delay time (ns)	Dissipation per gate(mw)		, ago

1. INVERTERS and NAND GATES

Quad 2 Input NAND	0		54/74LS00	8,5	2	14 DIP	4-3
	0		54/74S00	3	19	14 DIP	5-3
	0		54/74LS26	16	2	14 DIP	4-38
	0		54/74LS10	9.5	2	14 DIP	4-20
Triple 3 Input NAND	0		54/74S10	3	19	14 DIP	5-13
Dual 4 Input NAND	0		54/74LS20	9.5	2	14 DIP	4-34
	o		54/74S20	3	19	14 DIP	5-15
	0		54/74LS30	10.5	2.4	14 DIP	4-42
8 Input NAND	0		54/74S30	6	21.25	14 DIP	5-17
13 Input NAND	0		54/74S133	6	21.25	16 DIP	5-37
	0		54/74LS04	9.5	2	14 DIP	4-8
Hex Inverter	0		54/74S04	3	19	14 DIP	5-7
		0	54/74LS05	16	2	14 DIP	4-10
Hex Inverter		o	54/74805	5	17.5	14 DIP	5-9

2. NOR GATES

Quad 2 Input	0	54/74LS02	10	2.75	14 DIP	4-6
	0	54/74S02	3.5	29	14 DIP	5-5
Triple 3 Input	0	54/74LS27	10	4.5	14 DIP	4-40

3. AND GATES

Quad 2 Input	0	0	54/74LS08 54/74S08 54/74LS09	12 4.75 20	4.25 32 4.25	14 DIP 14 DIP 14 DIP	4-16 5-11 4-18
Triple 3 Input	0	0	54/74LS11 54/74LS15	12 20	4.25 4.25	14 DIP 14 DIP	4-22 4-28
Dual 4 Input		0	54/74LS21	12	4.25	14 DIP	4-36

4. OR GTES

	0	54/74LS32	12	5	14 DIP	4-44
Quad 2 Input	0	54/74S32	4	35	14 DIP	5-19

5. EXCLUSIVE OR GATES

Quad 2 Input	0	54/74LS86 54/74S86	10 7	30 250	14 DIP 14 DIP	4-67 5-32
dada z mpar	0	54/74586	′	230	14 011	0 02

6. AND-OR-INVERT GATES

Dual 2-Wide 2/3 Input	0	54/74LS51	12.5	2.75	14 DIP	4-51
Dual 2-Wide 2/5 lilput	0	54/74 S51	3.5	28	14 DIP	5-21
2 Wide 4 Input	0	54/74LS55	12.3	2.75	14 DIP	4-53
4 Wide 4-2-3-2 Input	0	54/74 S64	3.5	29	14 DIP	5-23

7. BUFFERS/LINE DRIVERS

I: With Inverted Output, N: With Noninverted Output

					vitir involved				
	Ту	pe of Outp	out		Тур	Max	Max		
Function	totem pole	open collector	3- State	Type No.	Propaga -tion Delay Time (ns)	Source Current (mA)	Sink Current (mA)	Package	Page
			- 1	74LS240	10	-15	24	20 DIP	4-176
			1	54LS240	10	-12	12	20 DIP	4-176
			1	74S240	5	-15	64	20 DIP	5-64
			ı	54S240	10	-12	48	20 DIP	5-64
Octal Buffers/Line Drivers			N	74LS241	10	-15	24	20 DIP	4-179
			N	54LS241	10	-12	12	20 DIP	4-179
			N	74LS244	10	-15	24	20 DIP	4-188
			N	54LS244	10	-12	12	20 DIP	4-188
			N	74LS541	9.5	-15	24	20 DIP	4-257
	-		N	54LS541	9.5	-12	12	20 DIP	4-257
			N	74LS365	9.5	-2.6	24	16 DIP	4-226
			N	54LS365	9.5	-1	12	16 DIP	4-226
lex Buffers/Line Drivers			ı	74LS366	9.5	-2.6	24	16 DIP	4-229
			1	54LS366	9.5	-1	12	16 DIP	4-229
			N	74LS367	9.5	-2.6	24	16 DIP	4-232
			N	54LS367	9.5	-1	12	16 DIP	4-232
			ı	74LS368	9.5	-2.6	24	16 DIP	4-235
,			1	54LS368	9.5	-1	12	16 DIP	4-235
Quad Bus Buffers/Drivers			N	74LS125	8	-2.6	24	14 DIP	4-94
			N	54LS125	8	-1	12	14 DIP	4-94
			1	74LS242	11	-15	24	14 DIP	4-182
				54LS242	11	-12	12	14 DIP	4-182
			_!	74S242	5.5	-15	64	14 DIP	5-69
Quad Transceiver			1	54S242	5.5	-12	48	14 DIP	5-69
			N	74LS243	12	-15	24	14 DIP	4-185
-			N	54LS243	12	-12	12	14 DIP	4-185
			N	74S243	5.5	-15	64	14 DIP	5-69
			N	54S243	6.0	-12	48	14 DIP	5-69
Quad 2-Input NAND Buffer		!		74LS38	19	24		14 DIP	4-46
		1		54LS38	19			14 DIP	4-46

	Ту	pe of Outp	out		Тур	Max	Max		
Function	totem pole	open collector	3- State	Type No	Propaga -tion Delay Time (ns)	Source Current (mA)	Sink Current (mA)	Package	Page
			N	74LS245	12	-16	24	20 DIP	4-191
Octal			N	54LS245	12	-12	12	20 DIP	4-191
Octai			1	74LS640	7	-15	24	20 DIP	4-268
Transceiver			ı	54LS640	7	-12	48	20 DIP	4-268
			N	74LS646	12.5	-15	24	24 DIP	4-272
			N	54LS646	12.5	-12	12	20 DIP	4-272

^{1:} With Inverted Output, N: With Noninverted Output

8. SCHMITT TRIGGER NAND GATES/INVERTS

Function	Type		Туре	Type Typical Typical		Package	Page
Function	totem pole	3- state	No	Delay Time(ns)	Hysteresis	Package	raye
Hex S/T Inverts	0		54/74LS14	15	0.8	14 DIP	4-24
Quad 2-Input NAND S/T	0		54/74LS132	15	0.8	14 DIP	4-96

9. J-K FLIP/FLOPS

Function	Туре	Clock	Data	Times		oical teristics	Package	Page
Function	No	Edge	Setup (ns)	Hold (ns)	f _{max} (MHz)	PW/FF (mW)	1 ackage	1 age
Dual J/K with Clear	54/74LS73 54/74LS107	+	20 20	0	45 45	20 10	14 DIP 14 DIP	4-55 4-81
Dual J/K with Set & Clear	54/74LS112 54/74S112	+	20 3	0 0	45 125	10 75	16 DIP 16 DIP	4-88 5-34
Dual J/K with Set & Clear	54/74LS109	1	20	5	33	10	16 DIP	4-85

[↓] Negative Edge ↑ Positive Edge

10. D TYPE FLIP/FLOPS

F. making	Type	Clock	Data T	imes	١ .	oical teristics	Package	Page
Function	No	Edge	Setup (ns)	Hold (ns)	f _{max} (MHz)	PW/FF (mW)	rachage	1 490
Dual with Set a Clear	54/74LS74 S74	† †	25 3	5 2	33 110	10 75	14 DIP 14 DIP	4-58 5-24
Hex D Type with Clear	54/74LS174 S174	† †	20 5	5 3	40 110	10.6 75	16 DIP 16 DIP	4-145 5-58
Duad Q and Q outputs	54/74LS175 S175	†	20 5	5 3	40 110	10.6 75	16 DIP 16 DIP	4-148 5-61
Octal D Type with Clear	54/74LS273	1	20	5	40	10.6	20 DIP	4-207

	Type	Clock	Data	Times		oical teristics	Package	Page
Function	No	Edge	Setup (ns)	Hold (ns)	f _{max} (MHZ)	PW/FF (mW)	1 donage	, ago
Octal D Type, 3S	54/74LS374 54/74 S374	†	20 5	0 2	50 100	17 56	20 DIP 20 DIP	4-241
Octal D Type, with Enable	54/74LS377	1	20	5	40	10.6	20 DIP	4-244

11. LATCHES, REGISTERS

Function	Type No.	En- able	Pre- Set	Typ Delay Time(ns)	Typ Power Diss(mW)	No of Bits	Outputs	Package	Page
Dual 2-Bit with Indep Enable	54/74LS75	Л	_	11	32	4	Q,Q	16 DIP	4-61
Transparent	54/74LS373	7	_	19	120	8	Q	20 DIP	4-238
Addressable	54/74LS259	_	7	17	110	8	Q	16 DIP	4-203

: Active high Level : Active Low Level

12. SHIFT REGISTERS

Function	Type	No of	Shift Freq		M	odes		Package	Page
FullClion	No	Bits	(MHz)	S-R	S-L	Load	Hold	1 donage	, ago
Parallel In Parallel Out	54/74LS299	8	25	0	0	0	0	20 DIP	4-218
(Bidirectional)	54/74S299	8	50	0	0	0	0	20 DIP	5-86
(Bidirectional)	54/74LS194A	4	25	0	0	0	0	16 DIP	4-162
	54/74LS322	8	30	0	_	0	0	20 DIP	4-222
Parallel In Parallel Out	54/74LS195	4	30	0	_	0	_	16 DIP	4-166
Parallel III Parallel Out	54/74LS395A	4	30	0	_	0	_	16 DIP	4-254
	54/74LS95	4	30	0	_	0	_	14 DIP	4-78
Serial In/Parallel Out	54/74LS164	8	25	0	_	_	_	14 DIP	4-132
Parallel-In/Serial Out	54/74LS165	8	25	0	_	_	_	16 DIP	4-137
	54/74LS166	8	25	0	_	-	_	16 DIP	4-141

13. ASYNCHRONOUS COUNTERS

Function	Type No	Count freq (MHz)	Parallel Load	Trigger	Clear	Package	Page
Decade	54/74LS90	32	Set to 9	+	7	14 DIP	4-69
4 Bit	54/74LS93	32	None	+	7.	14 DIP	4-75
Divide By 12	54/74LS92	32	None	↓	Л	14 DIP	4-72
Dual Decade	54/74LS390	25	None	1	77	16 DIP	4-247
Dual 4 Bit Binary	54/74LS393	25	None	+	九	14 DIP	4-251

14. SYNCHRONOUS COUNTERS

Function	Type No	Count freq (MHz)	Parallel Load	Trigger	Clear	Package	Page
	54/74LS161A	25	Sync	1	Async-L	16 DIP	4-123
4 Bit Binary	54/74LS163A	25	Sync	1	Sync-L	16 DIP	4-128
	54/74S163A	40	Sync	1	Sync-L	16 DIP	5-49
	54/74LS191	20	Async	1	None	16 DIP	4-151
4 Bit Binary UP/Down	54/74LS193	25	Async	1	Aync-H	16 DIP	4-156
	54/74S169	40	Sync	1	Sync-L	16 DIP	5-53

15. MONOSTABLE MULTIVIBRATORS

Function	Type No	Direct Clear	Output Pulse Range	Typ Total Power	Package	Page
	54/74LS123	Yes	116ns-∞	60mW	16 DIP	4-91
Dual	74LS221	Yes	20ns-70s	119mW	16 DIP	4-170
	54LS221	Yes	20ns-49s	119mW ·	16 DIP	4-170

16. COMPARATOR

Function	Type No	Typical Compare time(ns)	Typ Total Power Dissipation(mW)	Package	Page
4 Bit Magnitude	54/74LS85	11.5	365	16 DIP	4-63
4 bit Magrittude	54/74\$85	25	52	16 DIP	5-28

17. DATA SELECTORS/MULTIPLEXERS

		Type	Typica	l Delay Time	es		
Function	Type of Output	Data to INV Output	Data to NONINV Output	From Enable	Package	Page	
	54/74LS151	28	11	18	27	16 DIP	4-108
8 Line To 1 Line	54/74LS251	38	17	21	21	16 DIP	4-194
	54/74S251	38	4.5	8	14	16 DIP	5-72
5 141: T 41:	54/74LS153	28	_	14	17	16 DIP	4-111
Dual 4 Line To 1 Line	54/74S153	28	_	6	9.5	16 DIP	5-43
	54/74LS157	28	_	9	14	16 DIP	4-119
	S157	28		5	8	16 DIP	5-45
	54/74LS158	28	7	_	12	16 DIP	4-121
Quad 2 Line To 1 Line	S158	28	4	_	7	16 DIP	5-47
	54/74LS257	38	_	12	20	16 DIP	4-197
	S257	38	_	5	14	16 DIP	5-75
	54/74LS258	38	12	_	20	16 DIP	4-200
Quad 2 To 1, with Storage	54/74LS298	28	_	20	_	16 DIP	4-216

18. DECODERS/DEMULTIPLEXERS

Function	Type No	Type of Output	Typ Select Time (ns)	Typ Enable Time (ns)	Package	Page
4 Line To 16 Line	54/74LS154	Totempole	23	19	24 DIP	4-113
4 Line To 10 Line	54/74LS42	"	17	_	16 DIP	4-48
3 Line To 8 Line	54/74LS138	"	22	21	16 DIP	4-98
	54/74 S138	n n	8	7	16 DIP	5-39
	54/74LS139	"	22	19	16 DIP	4-101
Dual 2-Line To 4 Line	54/74 S139	"	7.5	6	16 DIP	5-41
	54/74LS155	n .	18	15	16 DIP	4-116

19. PRIORITY ENCODERS

	Function	Type No	Typ delay Time	Typ Power Diss	Package	Page
L	Cascadable Octal	54/74LS148	15ns	60mW	16 DIP	4-105

20. ADDER

Function	Type No	Typ delay Time Carry Time		Typ delay Time		Typ Power	Package	Page
				Diss		. ago		
Single 4-Bit Full ADDER	54/74LS283	11ns	15ns	24 mW	16 DIP	4-212		

21. PARITY GENERATOR/CHECKER

Function	Type No	Typ delay Time	Typ Power Diss	Package	Page
9 Bit Odd/Even Parity Gen/ Checker	54/74LS280	31ns	80mW	14 DIP	4-210
	54/74S280	13ns	335mW	14 DIP	5-78

22. REGISTER FILES

		Тур	Typ del	ay Time		
Function	Type No	power Diss	Write Time	Read Time	Package	Page
4 By 4, with 3S Output	54/74LS670	135mw	24ns	19ns	20 DIP	4-275

NUMERICAL/FUNCTIONAL INDEX	1
FUNCTIONAL INDEX/SELECTION GUIDE	2
TTL CHARACTERISTICS	3
GD74LS FAMILY CIRCUITS	4
GD74S FAMILY CIRCUITS	5
QUALITY ASSURANCE MANUAL	6
ORDERING INFORMATION & PACKAGE DIMENSION	7
GOLDSTAR SEMICONDUCTOR SALES NETWORK	8

A. TERMS AND DEFINITIONS

VOLTAGES

V_{IH} High-level input voltage

An input voltage level within the more positive (less negative) of the two ranges of values used to represent the binary variables. A minimum value is specified which is the least-positive (most-negative) value of high-level input voltage for which operation of the logic element within specification limits is guaranteed.

V_{II} Low-level input voltage

An input voltage level with the less positive (more negative) of the two ranges of values used to represent the binary variables. A maximum value is specified which is the most-positive (least-negative value of low-level input voltage for which operation of the logic element within specification limits is guaranteed.

V_{T+} Positive-going threshold voltage

The voltage level at a transition-operated input that causes operation of the logic element according to specification as the input voltage rises from a level below the negative-going threshold voltage, V_{T-} .

V_T Negative-going threshold voltage

The voltage level at a transition-operated input that causes operation of the logic element according to specifiction as the input voltage falls from a level above the positive-going threshold voltage, V_{T+} .

V_{OH} High-level output voltage

The voltage at an output terminal for a specified output current I_{OH} with input conditions applied that according to the product specification will establish a high level at the output.

Voi Low-level output voltage

The voltage at an output terminal for a specified output current I_{OL} with input conditions applied that according to the product specification will establish a low level at the output.

V_{O(on)} On-state output voltage

The voltage at an output terminal for a specified output current with input conditions applied that according to the product specification will cause the output switching element to be in the on state.

Note: This characteristic is usually specified only for outputs not having internal pull-up elements.

V_{O(off)} Off-state output voltage

The voltage at an output terminal for a specified output current with input conditions applied that according to the product specification will cause the output switching element to be in the off state.

Note: This characteristics is ususally specified only for outputs not having internal pull-up elements.

CURRENT

High-level input current

The current flowing into* an input when a specified high-level voltage is applied to that input.

In Low-level input current

The current flowing into* an input when a specified low-level voltage is applied to that input.

I_{OH} High-level output current

The current flowing* the output with a specified high-level output voltage VOH applied.

Note: This parameter is usually specified for open-collector outputs intended to drive other logic circuits.

* Current flowing out of a terminal is a negative value.

I_{OL} Low-level output current

The current flowing the output with a specified Low-level output voltage V_{OL} applied.

I_{O(off)} Off-state output current

The current flowing into* an output with a specified output voltage applied and input conditions applied that according to the product specification will cause the output switching element to be in the off state.

Note: This parameter is usually specified for open-collector outputs intended to drive devices other than logic circuits or for three-state outputs.

Ins Short-circuit output current

The current flowing into* an output when that output is short-circuited to ground (or other specified potential) with input conditions applied to establish the output logic level farthest from ground potential (or other specified) potential).

I_{CCH} Supply current, output(s) high

The current flowing into* the V_{CC} supply terminal of a circuit when the reference output(s) is (are) at a high-level voltage.

I_{CCL} Supply current, output(s) low

The current flowing into* the V_{CC} supply terminal of a circuit when the reference output(s) is (are) at a low-level voltage.

DYNAMIC CHARACTERISTICS

f_{max} Maximum clock frequency

The highest rate at which the clock input of a bistable circuit can be driven through its required sequence while maintaining stable transitions of logic level at the output with input conditions established that should cause a change of output state with each clock pulse.

t_{PHZ} Output disable time (of a three-state output) from high level

The time between the specified reference points on the input and output voltage waveforms with the threestate output changing from the defined high level to a high-impedance (off) state.

t_{PLZ} Output disble time (of a three-state output) from low level

The time between the specified reference points on the input and output voltage waveforms with the threestate output changing from the defined low level to a high-impedance (off) state.

t_{PLH} Propagation delay time, low-to-high-level output

The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined low level to the defined high level.

t_{PHL} Propagation delay time, high-to-low-level output

The time between the specified reference points on the input and output voltage waveforms with the output changing from the defined high level to the defined low level.

t_{TLH} Transition time, low-to-high-level output

The time between a specified low-level voltage and a specified high-level voltage on a waveform that is changing from the defined low level to the defined high level.

t_{THL} Transition time, high-to-low-level output

The time between a specified high-level voltage and a specified low-level voltage on a waveform that is changing from the defined high level to the defined low level.

tw Average pulse width

The time between 50-percent-amplitude points on the leading and trailing edges of a pulse.

t_{hold} Hold time

The time interval for which a signal or pulse is retained at a specified input terminal after an active transition occurs at another specified input terminal.

t_{release} Release time

The time interval between the release from a specified input terminal of data intended to be recognized and the occurrence of an active transition at another specified input terminal.

t_{setup} Setup time

The time interval for which a signal is applied and maintained at a specified input terminal before an active transition occurs at another specified input terminal.

t_{PZH} Output enable time (of a three-state output) to high level

The time between the specified reference points on the input and output voltage waveforms with the threestate output changing form a high-impedance (off) state to the defined high level.

t_{PZL} Output enable time (of a three-state output) to low level

The time between the specified reference points on the input and output voltage waveforms with the threestate output chaning from a high-impedance (off) state to the defined low level.

^{*} Current flowing out of a terminal is a negative volue.

CLASSIFICATION OF CIRCUIT COMLEXITY

Gate equivalent circuit

À basic unit-of-measure of relative digital-circuit complexity. The number of gate equivalent circuits is that number of individual logic gates that would have to be interconnected to perform the same function.

LSI Large-scale integration

A concept whereby a complete major subsystem or system function is fabricated as a single microcircuit. In this context a major subsystem or system, whether logical or linear, is considered to be one that contains 100 or more equivalent gates or circuitry of similar complexity.

MSI Medium-scale integration

A concept whererby a complete subsystem or system function is fabricated as a single microcircuit. The subsystem or system is smaller than for LSI, but whether digital or linear, is considered to be one that contains 12 or more equivalent gates or circuitry of similar complexity.

SSI Small-scale integration

Integrated circuits of less complexity than medium-scale integration (MSI)

FUNCTIONAL DESCRIPTIONS

Buffer: A logic gate with high output drive capability, or fan-out. Buffers are used where a. single circuit must drive a large number of loads.

Comparator: A logic circuit that will compare two separate input signals and produce an output based on that comparison. A simple comparator is the Exculsive-NOR gate, which produces a high level output only when its two inputs are identical.

Counter: A logic circuit that counts the number of input pulses it receives. Counters can be used for frequency division, counting, and sequencing digital operations. Common counter configurations are Binary, where the device counts from 0 to 15 and Decade, where the device counts from 0 to 9.

Data Selector/Multiplexer: A logic circuit that will select one of several input signals and feed that signal onto a common bus line. It can be thought of as a multipole, multiposition switch with each switch pole representing one output and each switch position representing one input.

Decoder/Demultiplexer: A logic circuit that is the complement of the Data Selector/Multiplexer; that is, this circuit takes an input signal and feeds it to any one of several output lines depending on the information placed on its steering, or control, inputs.

Driver: Same as Buffer, above.

Flip-Flop: A logic circuit that is used to store information. A flip-flop is called "bistable" since it has two stable states.

Gate: The basic building block of all logic circuits; an element whose output is a Boolean function of its inputs. The basic functions are the AND, OR, and NOT. By combining these functions, NAND, NOR, and Exclusive-OR and Exclusive-NOR gates are built.

Latch: A bistable element that latches, or holds, data which is present at its input at the time the Enable input goes to its inactive state. When the Enable input is active, the data, present at the input, is passed directly to the output, similar to the operation of a gate.

One-Shot: Monostable multivibrator; a flip-flop that only has one stable state. When triggered by an input transient, it flips to its unstable state for a time period determined by an external R-C network connected to its timing inputs, and then returns to its stable state.

Shift Register: A series of flip-flops in which the data signal is shifted out of one flip-flop and into the succeeding flip-flop during an active transition on the clock input.

Transceiver: A logic circuit that can transmit data onto a bus line and receive data off of the bus line using the same terminal as an input and output. The direction of signal flow is determined by logic levels present at a Direction Control input.

Other Terms

Asynchronous: A mode of operation that does not require any specific timing relationship between different control inputs.

Open Collector: Output configuration that has no internal pullup. This configuration enables outputs that are connected together (wire-OR) to assume opposite states without incurring damage.

Schmitt Trigger: An input configuration that has a different threshold point depending on whether the input signal is rising or falling. This is especially useful in electrically noisy environments.

Synchronous: A mode of operation where specific timing requirements must be met between control inputs before an indicated action can occur.

Totem Pole: An output configuration that contains an internal pullup structure, usually a transistor pullup allowing higher output drive capability than is available with open collector outputs.

TRI-STATE: A registered trademark for a circuit configuration in which the device output can be switched 'off' during which time the output presents a very high impedance to the bus it is connected to. this allows multiple outputs to be connected to a bus line while only one output drives the line, the other outputs being switched into their high impedance states.

EXPLANATION OF FUNCTION TABLES

The following symbols are used in the function tables found in data sheets:

H = high logic level(steady state)

L = low logic level (steady state)

= transition from low to high logic level

↓ = transition from high to low logic level

X = irrelevant (any level, including transitions)

Z = off (high impedance) state of a TRI-STATE output

a...h = the level of steady state inputs at inputs A through H respectively

Q_o = the level of Q before the indicated steady state input conditions were established

 $\overline{\mathbf{Q}}_{\mathrm{o}}$ = complement of \mathbf{Q}_{o} or level of Q before the indicated steady state input conditions were established

Q_n = level of Q before the most recent active transtion indicated by ↑ or ↓

= one high level pulse = one low level pulse

toggle = each output changes to te complement of its previous level on each active transition indicated by ↑ or ↓

If, in the input columns, a row contains only the symbols H, L, and/or X, this means the indicated output is valid whenever the input configuration is achieved regardless of the sequence in which it is achieved. The output persists so long as the input configuration is maintained.

B. TTL CHARACTERISTICS

1. TTL LOGIC FAMILY

Series 54/74 transistor-transistor logic has, since its introduction in 1965, become the most popular digital intergrated cirucit logic family ever offered and is probably the easiest to use medium-to-high performance logic circuits available.

Digital integrated circuits have historically been characterised for both speed and power, Each families have advantages and disadvantages over the previos families. Today Gold Star Semiconductor provides two basic bipolar logic families.

Low Power Schottky(GD 54/74 LSxxx) Schottky (GD 54/74 Sxxx)

1) Low Power Schottky

Low-power Schottky TTL integrated circuits are now firmly established as the standard logic configuration for new high performance system designs. They have essentially entirely replaced standard "gold-doped" TTL devices in all applications. In addition, they have relegated the other logic speed (ECL) or low power for battery operated operation (CMOS) is mandatory.

GD 54/74LS Series

- Typical tpd 9.5ns/gate at 2mw
- Typical Register fmax = 40 MHz

The first application of the low power technology to a commercially available product was to redesign the most popular elements of the standard, gold-doped 54/74 TTL family in LS. This provided a set of functions pin-for-pin and speed compatible with the earlier TTL parts, but requiring as little as 20% of the power. The basic gate design for a 54LS/74LS element is shown in Figure 1. This offers a typical propagation delay of 10ns at 2mW power dissipation. Similar improvements have been made in power requirements for flip-flops and MSI functions.

This LS family offers many advantages to the system designers over the older standard TTL functions.

- Lower supply currents permit the use of smaller, lower cost power supplies.
- Reduced power dissipation generates less heat and simplifies cooling needs and allows increased board packing density.
- Lower on-chip operating temperatures decrease IC failure rates, thus improving system reliability.
- Lower operating currents reduce outputs spiking, leading to a decrease in noise generation and associated system problems.
- As the input load current requirements of Low-Power Schottky are only 25% of standard TTL, the new circuits are easier to interface with MOS elements, such as memories and microprocessors.

Figure 1. GD 74LS TTL Gate

 Provided input and output loading rules are obeyed, as the functions and pin-outs are identical to those of the earlier TTL families, it is easy to upgrade existing systems.

2) Schottky

This family features the high switching speed of unsaturated bipolar emitter-coupled logic, but consumes more power than standard TTL devices.

GD54/74 S Series

- Typical tpd 3ns/gate at 20 mw
- Typical Register fmax = 70 MHz

To achieve this high speed, the schottky barrier diode is incorporated as a clamp to divert the excess base current and to prevent the transistor from reaching deep saturation.

2. INPUT CHARACTERISTICS

Figure 3-1 shows the input characteristics of an LS-TTL circuit. Input diode breakdown is typically greater than 15V and input leakage current above 1.5V is negligible. As the input voltage falls below 1.3V, gate current starts flowing out of the input, denoting the transition region. For input voltage between 1.0V and -0.3V, the I-V characteristics has the slope of the 24K Ω gate pull-up resistor. The clamping diode conducts and the current increases rapidly when the input voltage goes below about -0.3V. Typical transfer characteristics can be found in Figure 3-2 and input threshold variation with tamperature information is provied in Table 3-1.

Fig. 3-1 LS-TTL Input Characteristics Figure

Fig. 3-2 Typical Output vs Input Voltage Characteristic

TYPE	-55°C	+25°C	+125°C
S	1.5	1.3	1.1
LS	1.2	1.0	0.8

TABLE 3-1

TYPICAL INPUT THRESHOLD VARIATION WITH TEMPERATURE

3. UNUSED INPUTS

An unused input to an AND or NAND gate should not be left floating as it can act as an antenna for noise. On devices with storage, such as latches, registers and counters, it is particularly important to terminate unused inputs (MR. PE, PL, CP) properly since a noise spike on these inputs might change the contents of the memory. This technique optimizes switching speed as the distributed capacitance associated with the floating input, bond wire and package leads is eliminated. To terminate, the input should be held between 2.4V and the maximum input voltage. One method of achieving this is to connect the unused input to V_{CC}. Most LS inputs have a breakdown voltage >7V and require no series resistor. Devices specified with a maximum 5.5 volt breakdown should use a $1k\Omega$ to $10k\Omega$ current limiting series resistor to protect against V_{CC} transients. Another mehtod is to connect the unused input to the output of an unused gate that is forced HIGH. Do not connect an unused input to another input of the same NAND or AND function. Although recommended for standard TTL with LS this increases the input coupling capacitance and reduces A.C. noise immunity.

4. OUTPUT CHARACTERISTICS

The typical V_{OL} versus I_{OL} characteristics of LS devices are shown in Figure 5-1. MOST 74LS functions are specified at V_{OL} =0.4V at I_{OL} =4mA and 0.5V at 8mA. Some newer designs are being guaranteed at I_{OL} of 12mA and 24mA. The typical V_{OH} versus I_{OH} curves are shown in Figure 5-2.

5. FAN OUT CAPABILITY

The fan-out capability of a logic family indicates the number of inputs which can be driven by a single output. The input and output loding parameter of all families are defined as follow.

- 1 TTL Unit Load(U.L) = 40μ A in the High State (Logic H)
- 1 TTL Unit Load(U.L) = 1.6mA in the Low State (Logic L)

PINS	54/74 S(U.L) HIGH / LOW	54/74 LS(U.L) HIGH / LOW
Inputs	1.25 / 1.25	0.5 / 0.25
Outputs	25 / 12.5	10 / 5.0

Example) Input Load.

 * The GD74LS00 gate which has an I $_{\rm IL}$ of 0.4mA and an I $_{\rm IH}$ of 20 $\mu\rm A$, has an input Low load factor of

$$\frac{0.4 \text{ mA}}{1.6 \text{ mA}} = 0.25 \text{ U.L.}$$

an input High Load factor of

$$\frac{20 \mu A}{40 \mu A} = 0.5 \text{ U.L.}$$

Example) Output Load

* The output of the GD74LS00 gate will sink 8.0 mA in the Low State and SOUIRCE 400 μ A in the High State. The normalized output Low driver factor is

$$\frac{8.0 \text{ mA}}{1.6 \text{ mA}} = 5.0 \text{ U.L}$$

and the output High driver factor is

$$\frac{400 \mu A}{40 \mu A} = 10 \text{ U.L.}$$

6. NOISE MARGIN

The D.C. Noise margin of a digital system are defined as follows.

These parameters for LS devices are shown Table 6-1

PARAMETERS	54LS/74	LS LOW-	POWE	R SCI	HOTTKY	
	CONDITIONS		MIN	TYP	MAX	UNITS
Vol	I _{OL} =4.0mA				0.4	V
000	I _{OL} =8.0mA (COM	/I'L only)			0.5	
VoH	I _{OH} = -400μA	MIL	2.5	3.4		٧
- 011	1011	COM'L	2.7	3.4		
VII	t	MIL			0.7	V
	Logic Low COM'L				0.8	
V _{IH}	Logic High		2.0			٧
I _{IL}	V _{IN} =0.4V				-0.38	mΑ
I _{IH}	V _{IN} =2.7V				20	μΑ

Table 6-1a

PARAMETER	54S/74S SCHOTTKY TTL							
	CONDITION	NS	MIN	TYP	MAX	UNITS		
V _{OL}	I _{OL} =20mA			0.3	0.5	٧		
V _{OH}	I _{OH} =-1.0mA	MIL	2.5	3.4		٧		
· On	l on	COM'L	2.7	3.4				
V _{IL}	Logic LOW				0.8	V		
V _{IH}	Logic HIGH		2.0			V		
V _{IL}	V _{IN} =0.5V				-2.0	mA		
l _{iH}	V _{IN} =2.7V				50	μΑ		

Table 6-2a

Table 6-2 compares the guaranteed noise margin values for the LS and S devices.

Table 6-2a LOW Level Noise Margins (Military)

From	LS	s	Units
LS	300	400	mV
S	200	300	mV

From V_{OL} to V_{IL}

Table 6-2b

HIGH Level Noise Margins (Military)

From	LS	s	Units
LS	500	500	mV
S	500	500	mV

From V_{OH} to V_{IH}

Table 6-2c

LOW Level Noise Margins (Commercial)

From	LS	S	Units
LS	700	700	mV
S	700	700	mV

From VOH to VIH

Table 6-2d

HIGH Level Noise Margins (Commercial)

From	LS	S	Units
LS	300	300	mV
S	300	300	mV

From VOL to VIL

7. Open Collector Outputs

Open-collector devices are totem pole outputs where the upper output (usually a Darlington transistor) is left out of the circuit. As such, these devices have no active logic high drive and cannot be used to drive a line high. The advantage to open-collector devices is that a number of outputs can be directly tied together.

When dealing with open-collector devices, it must be noted that each output requires a resistive pull-up, usually tied to $V_{\rm CC}$. (By using high voltage outputs, one can tie the resistor pull-up to a voltage higher than $V_{\rm CC}$.) Desingers often try to get away with tying the output to an input and relying on the $I_{\rm IL}$ curent to pull up the output. This is unwise, as it is just like leaving inputs floating: the input is very susceptible to noise and can easily give false signals. Shown below are two equations that can be used to determine the min/max range of the pull-up resistor.

$$R_{MAX} = \frac{(V_{CC(MIN)} - V_{OH})}{(N1 \cdot I_{OH} + N2 \cdot I_{IH})}$$

$$R_{MIN} = \frac{(V_{CC(MIN)} - V_{OL})}{(I_{OL} - N2 \cdot I_{IL})}$$

whree: N1= the number of open-collector devices tied together.

N2= the number of inputs being driven on the line

FIG. 6-1 VOLTAGE TRANSFER FUNCTION OF AN S-TTL GATE

FIG. 6-1 VOLTAGE TRANSFER FUNCTION OF AN LS-TTL GATE

Figure 6-1 and 6-2 shows the transfer characteristics of S-TTL, LS-TTL inverting gates, respectively. The steepest part of a particular curve, where the output changes rapidly, for small changes in input, is called the threshold voltage input signals above or below this region cause little or no change in output and thus are of no concern. Problems can occur when an input voltage, where steady-state, transient or a combination of both, causes an output voltage to rise or fall into the threshold region of its driven loads. Thus, noise of check this magnitude can propagate, which is a useful criterion.

C-1. PARAMETER MEASUREMENT INFORMATION (GD74LS DEVICES)

LOAD CIRCUIT FOR BI-STATE TOTEM-POLE OUTPUTS

LOAD CIRCUIT FOR OPEN-COLLECTOR OUTPUTS

LOAD CIRCUIT FOR THREE-STATE OUTPUTS

VOLTAGE WAVEFORMS

VOLTAGE WAVEFORMS PULSE WIDTHS

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, THREE STATE OUTPUTS

NOTES: C.Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that output is high encept when disabled by the output control.

NOTES: D.When measuring propagation dealy times of 3-state outputs, switches S₁ and S₂ are closed.

NOTES: E. All input pulses are supplied by generators having the following characteristics: PRR≤1 MHz, Z_{ou}≈50Q and:

For Series 54LS/74LS, t,≤15 ns, t,≤6 ns.

C-1. PARAMETER MEASUREMENT INFORMATION (GD74S DEVICES)

- A. C_L includes probe and lig capacitance
- B. All diodes are 1N916 or 1N3064.
- C. Waveform 1 is for an output with internal conditions such that the output is low except whern disabled by the output control.
- Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. When measuring propagation delay times of 3-state outputs, switches S1 and S2 are closed.
- F. All input pulses are supplied by generators having the following characteristics: PRR \leqslant 1 MHz, $Z_{oui}\approx50\Omega$ and: For Series 54S/74S, $t_i\leqslant$ 2.5 ns. $t_i\leqslant$ 2.5 ns.

		NUMERICAL/FUNCTIONAL INDEX
		FUNCTIONAL INDEX/SELECTION GUIDE
		TTL CHARACTERISTICS
	GD74LS FAMILY CIRCUITS	
	GD74S FAMILY CIRCUITS	
		QUALITY ASSURANCE MANUAL
		ORDERING INFORMATION & PACKAGE DIMENSION
		GOLDSTAR SEMICONDUCTOR SALES NETWORK

NUMERICAL/FUNCTIONAL INDEX
FUNCTIONAL INDEX/SELECTION GUIDE
TTL CHARACTERISTICS
GD74LS FAMILY CIRCUITS

GD54/74LS00

QUADRUPLE 2-INPUT POSITIVE NAND GATES

Description

This device contains four independent 2-input NAND gates. It performs the Boolean functions $Y = \overline{A} \cdot \overline{B}$ or $Y = \overline{A} + \overline{B}$ in positive logic.

Function Table (each gate)

INP	UTS	OUTPUT
Α	В	Y
Н	Н	L
L	X	Н
Х	L	Н

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage		7V
•	Operating free-air temperature range	54LS	-55°C to 125°C
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
	V _{CC} Supply voltage		4.5	5	5.5	V
V_{CC}			4.75	5	5.25	V
Гон	High-level output current	54,74			-400	μΑ
<u> </u>		54			4	mA
I _{OL}	Low-level output current	74			8	IIIA
			-55		125	°C
T _A	Operating free-air temperature	74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER TEST CONDITION		NDITIONS		MIN (I	TYP Note 1)	MAX	UNIT	
V _{IH}	High-level input vo	oltage				2			٧
	<u> </u>				54			0.7	V
V_{IL}	Low-level input vo	oltage			74			0.8	V
V _{IK}	Input clamp voltag	је	V _{CC} =Min,	I _I =-18mA	\			-1.5	٧
			V _{CC} =Min,	V _{II} =Max	54	2.5	3.4		V
V _{OH}	High-level output	voltage	I _{OH} =Max, V _{IH} =Min		2.7	3.4			
			V _{CC} =Min I _{OL} =4mA		54, 74		0.25	0.4	.,
V _{OL}	Low-level output v	voltage	V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	V
l _i	Input current at n input voltage	naximum	V _{CC} =Max,	V ₁ =7V				0.1	mA
I _{IH}	High-level input current		V _{CC} =Max,	$V_1 = 2.7V$				20	μΑ
I _{IL}	Low-level input c	Low-level input current		V _I =0.4V				-0.4	mA
los	Short-circuit output current		V _{CC} =Max (Note 2)		-20		-100	μΑ	
Іссн	Supply ourrest	Total with outputs high	V _{CC} =Max				0.8	1.6	mA
I _{CCL}	Supply current	Total with outputs low	V _{CC} =Max				2.4	4.4	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed ond second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	0 15-5 B - 0k0		9	15	ns
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L=15pF, R_L=2k\Omega$		10	15	ns

[#]For load circuit and voltage waveforms, see page 3-11.

Application Example

Crystal Clock Generator

(1) GD74LS00

Frequency (MHz)	C ₁ (pF)	C ₂ (pF)
1∼ 3	47	24
3∼ 4	47	22
4∼ 6	22	24
6∼ 8	22	22
8~10	10	20
10~13	0	20
13~16	0	18

(2) GD74LS04

GD54/74LS02

QUADRUPLE 2-INPUT POSITIVE-NOR GATES

Description

This device contains four independent 2-input NOR gates. It performs the Boolean functions $Y = \overline{A} + \overline{B}$ or $Y = \overline{A} + \overline{B}$ in positive logic.

Function Table

INP	JTS	OUTPUT
Α	В	Y
Н	Χ	L
X	Н	L
L	L	Н

Absolute Maximum Ratings

•	Supply voltage, Vcc		71/
•	Input voltage		7\/
•	Operating free-air temperature range	54LS	-55°C to 125°C
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM -	MAX	UNIT
	54		4.5	5	5.5	V
V _{cc}	Supply voltage	74	4.75	5	5.25	V
I _{OH}	High-level output current	54,74			-400	μΑ
		54			4	mA
lOL	Low-level output current	74			8	IIIA
T _A	Operating free-air temperature	54	-55		125	, °C
		74	0		70	

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

SYMBOL	PARAME	TER	TEST CO	NDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input vo	oltage				2			٧
	Low-level input vo	oltage			54			0.7	٧
V _{IL}	Low-level input vo	Mage			74			0.8	
V _{IK}	Input clamp voltag	ge	V _{CC} =Min, I	_=-18mA				-1.5	٧
			V _{CC} =Min,	V -May	54	2.5	3.4		V
V _{OH}	High-level output	voitage	$I_{OH} = Max$, $V_{IL} = Ma$	v _{IL} =Max	74	2.7	3.4		
			V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	v
V _{OL}	I low-level output voltage	I _{OL} =8mA	74		0.35	0.5			
l _l	Input current at maximum input voltage		V _{CC} =Max,	V ₁ =7V				0.1	mA
I _{IH}	High-level input c	urrent	V _{CC} =Max,	V _I =2.7V				20	μΑ
I _{IL}	Low-level input or	urrent	V _{CC} =Max,	V _I =0.4V				-0.4	mA
los	Short-circuit outp	ut current	V _{CC} =Max (Note 2)		-20		-100	mA	
Іссн	Supply current	Total with outputs high	V _{CC} =Max				1.6	3.2	mA
I _{CCL}	Cuppiy current	Total with outputs low	V _{CC} =Max				2.8	5.4	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER TEST CONDITION#		MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	C _L =15pF, R _L =2kΩ -		10	15	ns
t _{PHL}	Propagation delay time, high-to-low-level output			10	15	ns

[#]For load circuit and voltage waveforms, see page 3-11.

GD54/74LS04

HEX INVERTERS

Description

This device contains six independent inverters. It performs the Boolean function $Y = \overline{A}$.

Function Table (each inverter)

INPUT	ОИТРИТ
А	Υ
Н	L
L	Н

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage		7V
•	Operating free-air temperature range	54LS	-55°C to 125°C
		74LS	
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage 54		4.5	5	5.5	
•00	Cupply voltage	74	4.75	5	5.25	V
I _{OH}	High-level output current	54,74			-400	μΑ
l _{OL}	Low-level output current	54			4	mA
·OL	Low-level output current	74			8	
T _A	Operating free-air temperature	54	-55		125	0.0
	Operating nee-air temperature	74	0		70	°C

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

SYMBOL	PARAM	IETER	TEST CO	NDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input	voltage				2			V
V _{IL}	Low-level input v	oltage			54			0.7	v
					74			0.8	ľ
V _{IK}	Input clamp volta	ige	V _{CC} =Min, I	_I =-18mA				-1.5	٧
V _{OH}	High-level output	voltage	V _{CC} =Min,	V _{IL} =Max	54	2.5	3.4		V
			I _{OH} =Max		74	2.7	3.4		•
V _{OL}	V _{OL} Low-level output voltage		V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	
▼ OL	Low-level output	voltage	V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	V
l ₁	Input current at maximum input voltage		V _{CC} =Max,	V _I =7V	•			0.1	mA
I _{IH}	High-level input of	current	V _{CC} =Max,	V _I =2.7V				20	μΑ
l _{IL}	Low-level input o	urrent	V _{CC} =Max,	V _I =0.4V				-0.4	mA
los	Short-circuit outp	out current	V _{CC} =Max (Note 2)		-20		-100	mA
Іссн	Supply current	Total with outputs high	V _{CC} =Max				1.2	2.4	mA
I _{CCL}	Total with		V _{CC} =Max				3.6	6.6	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	C _L =15pF, R _L =2kΩ -		9	15	ns
t _{PHL}	Propagation delay time, high-to-low-level output			10	15	ns

#For load circuit and voltage waveforms, see page 3-11.

GD54/74LS05

HEX INVERTERS WITH OPEN-COLLECTOR OUTPUTS

Description

This device contains six idenpendent inverts. It performs the Boolean function $Y = \overline{A}$. The open collector outputs require pull-up resistor to perform correctly. Open-collector devices are often used to generate higher V_{OH} levels.

Function Table (each inverter)

INPUT	OUTPUT
А	Υ
Н	L
L	Н

Pull-Up Resistor Equations

$$R_{MAX} = \frac{V_{CC}(Min) - V_{OH}}{N_1(I_{OH}) + N_2(I_{IH})}$$

$$R_{MIN} = \frac{V_{CC}(Max) - V_{OL}}{I_{OL} - N_3(I_{IL})}$$

Where: $N_1(I_{OH})$ =total maximum output high current for all outputs tied to pull-up resistor $N_2(I_{IH})$ =total maximum input high current for all inputs tied to pull-up resistor $N_3(I_{IL})$ =total maximum input low current for all inputs tied to pull-up resistor

Absolute Maximum Ratings

•	Supply voltage, Vcc		/ V
•	Input voltage		7V
•	output voltage		7V
		54LS	
		74LS	
•			

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
V _{cc}	Supply voltage	54	4.5	5	5.5	V	
		74	4.75	5	5.25		
V _{OH}	High-level output voltage	54,74			5.5	٧	
la.	Low-level output current	54			. 4		
lor		74			8	mA	
T _A	Operating free-air temperature	54	-55		125	0.0	
		74	0		70	°C	

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

SYMBOL	PARAM	ETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input v	oltage		***		2			٧
V _{IL} Low-level input voltage				54			0.7	V	
					74			0.8	·
V _{IK}	Input clamp voltage		V _{CC} =Min, I _I =-18mA					-1.5	V
Іон	High-level output	current	V _{CC} =Min, V _{OH} =Max	V _{IL} =Min				100	μΑ
V _{OL}	Low-level output voltage		V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	V
• OL	20W level output	voltage	V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	
l _l	Input current at maximum input voltage		V _{CC} =Max,	V₁= 7∨	,			0.1	mA
I _{IH}	High-level input current		V _{CC} =Max,	V _I =2.7V				20	μΑ
I _{IL}	Low-level input current		V _{CC} =Max,	V _I =0.4V				-0.4	mA
Іссн	Supply current	Total with outputs high	V _{CC} =Max				1.2	2.4	mA
I _{CCL}		Total with outputs low	V _{CC} =Max				3.6	6.6	mA

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	C _L =15pF, R _L =2kΩ		17	32	ns
t _{PHL}	Propagation delay time, high-to-low-level output			15	28	ns

[#]For load circuit and voltage waveforms, see page 3-11.

HEX INVERTED BUFFERS WITH OPEN-COLLECTOR OUTPUTS

Features

- High Output Voltage(30V)
- High Speed(t_{PD}=8.5nS typical)
- Low Power Dissipation (P_D=18mW per Gate)

Description

This device contains hex inverted buffers with open-collector. It performs the Boolean function $Y = \overline{A}$ in positive Logic.

Function Table(each inverter)

INPUT	OUTPUT
А	Υ
H L	L H

•	Supply voltage, V _{CC}	
		5.5V
•	Output voltage	30V
	Operating free-sir temperature range 541 S	−55°C to 125°C
•	741 S	0°C to 70°C
•		_65°C to 150°C

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V _{CC}	0	54	4.5	5	5.5	V
	Supply voltage	74	4.75	5	5.25	·
V _{OH}	High-level output voltage	54,74			30	V
	Low-level output current	54			30	mA
loL		74			40	
T _A	Operating free-air temperature	54	-55		125	°C
		74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT		
STIVIBUL	FALIAIVI	-'-''	1201 0	,0,1,5,1,1,0,1,0			(Note 1)		
V _{IH}	High-level input	voltage				2			V
	Low lovel input y	voltage			54			0.8	v
V _{IL}	Low-level input voltage				74			0.8	
V _{IK}	Input clamp volta	ige	V _{CC} =Min, I _I =	-12mA				-1.5	٧
Іон	High-level output current		V _{CC} =Min, V _{IL} =Max, V _{OH} =Max				250	μΑ	
	V _{OL} Low-level output voltage		V _{CC} =Min	I _{OL} =16mA				0.4	v
VOL			V _{IH} =Min	I _{OL} =Max				0.7	
l _i	Input current at maximum input voltage		V _{CC} =Max, V _I	=5.5V				1	mA
l _{IH}	High-level input	current	V _{CC} =Max, V _I	=2.7V				20	μΑ
I _{IL}	Low-level input current		V _{CC} =Max, V _I	=0.4V				-0.2	mA
Іссн	Supply current	Total with outputs high	V _{CC} =Max				9	18	mA
I _{CCL}	Supply current	Total with outputs low	V _{CC} =Max				35	60	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Switching Characteristics, V_{CC} = 5V, T_A = 25°C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	$C_{l} = 15pF, R_{L} = 110\Omega$		7	15	ns
t _{PHL}	Propagation delay time, high-to-low-level output			10	20	

[#]For load circuit and voltage waveforms, see page 3-11.

GD54/74LS07 HEX NON-INVERTED BUFFERS WITH OPEN-COLLECTOR OUTPUTS

Features

- High Output Voltage(30V)
- High Speed(t_{PD}=12 nS typical)
- Low Power Dissipation (P_D=13mW per Gate)

Description

This device contains hex non inverted buffers with open-collector. It performs the Boolean function Y=A in positive Logic.

Function Table(each inverter)

INPUT	OUTPUT
Α	Y
Н	Н
L	L

Circuit Schematics (each inverter)

Vcc

1.6KQ
2.8KQ
OUTPUT Y

SND

•	Supply voltage, Vcc			7\/
•	Input voltage		 5	5V
•	Output voltage		 	ROV
•	Operating free-air temperature range	54LS	 -55°C to 125	5°C
		74LS	 0°C to 70)°C
•	Storage temperature range		 -65°C to 150)°C

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
	Our about the co	54	4.5	5	5.5	\ _V	
V_{CC}	Supply voltage	74	4.75	5	5.25	•	
V _{OH}	High-level output voltage	54,74			30	٧	
	Low-level output current	54			30	mA	
l _{OL}		74			40	1117	
_	Operating free-air temperature	54	54	-55		125	°C
T _A		74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER		TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT	
V _{IH}	High-level input	voltage				2			٧
	Low-level input v	voltage			54			0.8	v
V _{IL}	Low-level input v	Ollage			74			0.8	Y
V _{IK}	Input clamp volta	age	V _{CC} =Min, I _I =	-12mA				-1.5	٧
l _{OH}	High-level output current		V _{CC} =Min, V _{IH}	=Min, V _{OH} =M	ax			250	μΑ
	Low-level output voltage		V _{CC} =Min	I _{OL} =16mA				0.4	v
V _{OL}			V _{IL} =Max	I _{OL} =Max				0.7	
I _I	Input current at input voltage	Input current at maximum input voltage		=5.5V				1	mA
I _{IH}	High-level input	current	V _{CC} =Max, V _I	=2.7V				20	μΑ
Ι _Ι Ε	Low-level input	current	V _{CC} =Max, V _I	=0.4V				-0.2	mA
Іссн	Supply current	Total with outputs high	V _{CC} =Max				7	14	mA
I _{CCL}	Supply current	Total with outputs low	V _{CC} =Max				25	45	mA

Note 1: All typical values are at V_{CC} =5V, T_A =25°C.

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	$C_1 = 15pF, R_1 = 110\Omega$		6	10	ns
t _{PHL}	Propagation delay time, high-to-low-level output			18	30	

[#]For load circuit and voltage waveforms, see page 3-11.

QUADRUPLE 2-INPUT POSITIVE AND GATES

Description

This device contains four independent 2-input AND gates. It performs the Boolean functions $Y=A \cdot B$ or $Y=\overline{A}+\overline{B}$ in positive logic.

Function Table (each gate)

INPU	TS	OUTPUT
Α	В	Υ
Н	Н	н
L	Χ	L
Х	L	L

•	Supply voltage, Vcc		
•	Input voltage	7	V \/
•	Operating free-air temperature range	54LS55°C to 125°C	0
•	Storage temperature range	74LS 0°C to 70°C	0

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
V	Supply voltage	54	4.5	5	5.5	.,	
V _{CC}	Supply voltage	74	4.75	5	5.25	V	
l _{он}	High-level output current	54,74			-400	μΑ	
	Law taval autaut aurant	54			4		
l _{OL}	Low-level output current	74			8	mA	
т т	Operating free-air temperature	54	-55		125	°C	
T _A		74	. 0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAM	ETER	TEST CO	TEST CONDITIONS			TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input v	oltage				2			٧
V _{IL}	Low-level input v	oltage		•	54			0.7	v
TL.		onago			74			0.8	'
V _{IK}	Input clamp volta	ge	V _{CC} =Min, I	_I =-18mA				-1.5	٧
V _{OH}	High-level output	voltage	V _{CC} =Min,	V _{IH} =Min	54	2.5	3.4		v
*ОН	I light level output	ronago	I _{OH} =Max		74	2.7	3.4		
	Low-level output voltage		V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	V
V _{OL}	Low-level output	voltage	V _{IL} =Max	I _{OL} =8mA	74		0.35	0.5	\ \
l ₁	Input current at r input voltage	naximum	V _{CC} =Max,	V ₁ =7V			٠.	0.1	mA
l _{IH}	High-level input of	current	V _{CC} =Max,	V _I =2.7V				20	μΑ
I _{IL}	Low-level input c	urrent	V _{CC} =Max,	V _I =0.4V				-0.4	mA
los	Short-circuit outp	ut current	V _{CC} =Max (V _{CC} =Max (Note 2)		-20		-100	mA
Іссн	Supply current	Total with outputs high	V _{CC} =Max				2.4	4.8	mA
I _{CCL}	Copp., ouron	Total with outputs low	V _{CC} =Max				4.4	8.8	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	- C ₁ = 15pF, R ₁ = 2kΩ		8	15	ns
t _{PHL}	Propagation delay time, high-to-low-level output	G _L =15pr, H _L =2ks2		10	20	ns

[#]For load circuit and voltage waveforms, see page 3-11.

QUADRUPLE 2-INPUT POSITIVE AND GATES WITH OPEN-COLLECTOR OUTPUTS

Description

This device contains four independent 2-input AND gates. It performs the Boolean functions $Y=A\cdot B$ or $Y=\overline{A}+\overline{B}$ in positive logic. The open-collector outputs require pull up resistor to perform correctly. Open collector devices are often used to generate higher V_{OH} levels.

Function Table (each gate)

INP	JTS	OUTPUT
Α	В	Υ
н	Н	Н
L	X	L
×	L	L

Pull-Up Resistor Equations

$$R_{MAX} = \frac{V_{CC}(Min) - V_{OH}}{N_1(I_{OH}) + N_2(I_{IH})}$$

$$R_{MIN} = \frac{V_{CC}(Max) - V_{OL}}{I_{OL} - N_3(I_{IL})}$$

Where: $N_1(I_{OH})$ =total maximum output high current for all outputs tied to pull-up resistor $N_2(I_{IH})$ =total maximum input high current for all inputs tied to pull-up resistor $N_3(I_{IL})$ =total maximum input low current for all inputs tied to pull-up resistor

•	Supply voltage, Vcc		7V
•	Input voltage		7V
•	output voltage		7V
•	Operating free-air temperature range	54LS	55°C to 125°C
		74LS	
•	Storage temperature range		65°C to 150°C

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	54	4.5	5	5.5	.,
	- Cappy Voltage	74	4.75	5	5.25	V
V _{OH}	High-level output voltage	54,74			5.5	٧
,	Law-layel output ourrent	54			4	mA
lol	Low-level output current	74			8	
T _A	Operating free-air temperature	54	-55		125	
	Operating free-all temperature	74	0		70	°C

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAM	ETER	TEST CONDITION		MIN	TYP (Note 1)	MAX	UNIT	
V _{IH}	High-level input v	oltage				2			V
V_{IL}	Low-level input v	oltage			54			0.7	V
					74			8.0	
V _{IK}	Input clamp voltage		V _{CC} =Min, I	₁ = -18mA				-1.5	V
I _{OH}	High-level output	current	V _{CC} =Min,V V _{OH} =Max	_{iH} =Min				100	μΑ
V _{OL}	Low-level output	voltage	V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	V
- OL	Low level output	voltage	V _{IL} =Max	I _{OL} =8mA	74		0.35	0.5	·
l _i	Input current at n input voltage	naximum	V _{CC} =Max,	V _I =7V				0.1	mA
I _{IH}	High-level input c	urrent	V _{CC} =Max,	V ₁ =2.7V				20	μΑ
l _{IL}	Low-level input co	urrent	V _{CC} =Max,	V ₁ =0.4V				-0.4	mA
Іссн	Supply current	Total with outputs high	V _{CC} =Max				2.4	4.8	mA
I _{CCL}	Total with outputs low		V _{CC} =Max				4.4	8.8	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	$C_1 = 15 pF, R_1 = 2 k\Omega$		20	35	ns
t _{PHL}	Propagation delay time, high-to-low-level output			17	35	ns

 $^{^{\#}}$ For load circuit and voltage waveforms, see page 3-11.

TRIPLE 3-INPUT POSITIVE NAND GATES

Description

This device contains three independent 3-input NAND gates. It performs the Boolean functions $Y = \overline{A} \cdot \overline{B} \cdot \overline{C}$ or $Y = \overline{A} + \overline{B} + \overline{C}$ in positive logic.

Function Table (each gate)

INP	UTS	OUTPUT
Α	N*	Υ
L	L	Н
н	L	н
L	Н	Н
н	Н	L

^{*} N=B.C

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage		7V
		54LS	
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V	Cunniture	54	4.5 5	5.5	V	
V _{CC}	Supply voltage	74	4.75	5	5.25	•
Іон	High-level output current	54,74			-400	μΑ
1-	Low-level output current	54			4	mA
loL		74			8	IIIA
т	Operating free-air temperature	54	-55		125	°C
T _A		74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAME	TER	TEST CO	ONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input volt	age				2			٧
V _{IL}	Low-level input volta	age			54			0.7	٧
* IL		-9-			74			0.8	
VIK	Input clamp voltage	out clamp voltage		=-18mA				-1.5	٧
	Mich level cubrut ve	lta-sa	V _{CC} =Min,	V =May	54	. 2.5	3.4		v
V _{OH}	High-level output vo	ortage	I _{OH} =Max, V _{IL} =Max		74	2.7	3.4		V
Vol	Low-level output vo	Itage	V _{CC} =Min	I _{OL} =4mA	74		0.25	0.4	٧
- 02		welever output voltage		V _{IH} =Min I _{OL} =8mA 74	74		0.35	0.5	
l _t	Input current at max input voltage	kimum	V _{CC} =Max, V	/ _i =7V				0.1·	mA
l _{iH}	High-level input cur	rent	V _{CC} =Max, V	/ _i =2.7V				20	μΑ
l _{IL}	Low-level input curr	ent	V _{CC} =Max, V	/ _I =0.4V				-0.4	mA
los	Short-circuit output	current	V _{CC} =Max (N	lote 2)		-20		-100	mA
Іссн	Supply current	Total with outputs high	V _{CC} =Max				0.6	1.2	mA
IccL		Total with outputs low					1.8	3.3	mA

Note 1: All typical values are at V_{cc} =5V, T_A =25°C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	C _L =15pF, R _L =2kΩ		9	15	ns
t _{PHL}	Propagation delay time, high-to-low-level output			10	15	ns

[#]For load circuit and voltage waveforms, see page 3-11.

TRIPLE 3-INPUT POSITIVE AND GATES

Description

This device contains three independent 3-input AND gates. It <u>performs</u> the Boolean functions $Y=A\cdot B\cdot C$ or $Y=\overline{A}+\overline{B}+\overline{C}$ in positive logic.

Function Table (each gate)

INF	PUTS	OUTPUT
Α	N*	Y
L	L	L
Н	L	L
L	н	L
Н	Н	н

^{*} N=B.C

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Operating free-air temperature range	54LS	-55°C to 125°C
		74LS	
•			

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT		
V	V _{CC} Supply voltage	54	4.5	5	5.5	V		
V _{CC}	Supply voltage	74		5	5.25	V		
I _{OH}	High-level output current	54,74			-400	μΑ		
		54	,		4	mA		
lOL	Low-level output current	74			8			
т	T _△ Operating free-air temperature		54	54	-55		125	°C
T _A	Operating nee-all temperature	74	0		70			

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAM	ETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
V _{IH}	High-level input v	roltage				2	(Note 1)		V
	r light level linput v	onage			54			0.7	
V _{IL}	Low-level input v	oltage						0.7	٧
					74			0.8	
V _{IK}	Input clamp volta	ge	$V_{CC}=Min, I_I=-18mA$					-1.5	V
V _{OH}	High-level output	voltage	V _{CC} =Min	V _{IH} =Min	54	2.5	3.4		v
, 011			I _{OH} =Max			2.7	3.4		
V	Low-lovel output	level output voltage $V_{CC}=Min$ $I_{OL}=4mA$ 54		V _{CC} =Min I _{OL} =4mA			0.25	0.4	V
V _{OL}	Low-level output	voltage	V _{IL} =Max	I _{OL} =8mA	74		0.35	0.5	
l _l	Input current at n input voltage	naximum	V _{CC} =Max,	V _I =7V				0.1	mA
I _{IH}	High-level input of	urrent	V _{CC} =Max,	V _I =2.7V				20	μΑ
I _{IL}	Low-level input c	urrent	V _{CC} =Max,	V _I =0.4V				-0.4	mA
los	Short-circuit outp	ut current	V _{CC} =Max (Note 2)		-20		-100	mA	
Іссн	Supply current	Total with outputs high	V _{CC} =Max				1.8	3.6	mA
I _{CCL}		Total with outputs low	V _{CC} =Max				3.3	6.6	mA

Note 1: All typical values are at V_{CC} =5V, T_A =25°C. Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	C _L =15pF, R _L =2kΩ		8	15	ns
t _{PHL}	Propagation delay time, high-to-low-level output			10	20	ns

[#]For load circuit and voltage waveforms, see page 3-11.

HEX SCHMITT-TRIGGER INVERTERS

Description

This device contains six independent gates each of which performs the logic INVERT function. Each input has hysteresis which increases the noise immunity and transforms a slowly changing input signal to a fast changing, jitter free output.

Function Table (each inverter)

INPUT	ОИТРИТ
Α	Υ
L	Н
н	L

Parameter Measurement Information

Load Circuit

Note: A. All diodes are IN916 or IN3064

B. C_i includes probe and jig capacitance

Pin Configuration Vcc 6A 6Y 5A 5Y 4A 4Y 14 13 12 11 10 9 8 1 2 3 4 5 6 7 1A 1Y 2A 2Y 3A 3Y GND Suffix-Blank: Plastic Dual In Line Package Suffix-J : Ceramic Dual In Line Package

Note C: Generator characteristics and reference voltage are

Gene	Generator Characteristics Reference Voltage					age	
Z _{OUT}	PRR	tr	tf	V _I ref(H)	(H) V _I ref(L) V		
50Ω	1MHz	15ns	6ns	1.6V	0.8V	1.3V	

•	Supply voltage, Vcc		7V
•	Input voltage		7V
•	Operating free-air temperature range	54LS	-55°C to 125°C
		74LS	0°C to 70°C
•	Storage temperature range	•••••	-65°C to 150°C

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V	Supply voltage	54	4.5	5	5.5	V
V _{cc}	Supply voltage 74		4.75	5	5.25	V
I _{OH}	High-level output current	54,74			-400	μΑ
	Low level output ourrent	54			4	
IOL	Low-level output current	74			8	mA
т	T Operating from air temperature		-55		125	*0
T _A	Operating free-air temperature	74	0		70	°C

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMI	ETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT
V _{T+}	Positive-Going In Threshold Voltag		V _{CC} =5V	V _{CC} =5V			1.6	1.9	٧
V _T -	Negative-Going In Threshold Voltag		V _{CC} =5V			0.5	0.8	1	٧
V _{IK}	Input clamp volta	ge	V _{CC} =Min, I _I =	=-18mA				-1.5	٧
$V_{T+}-V_{T-}$	Input Hysteresis	(Note 1)	V _{CC} =5V			0.4	0.8		٧
			V _{CC} =Min		54	2.5	3.4		v
V _{OH}	High-level output	voltage	I _{OH} =Max	$V_I = V_T - Min$	74	2.7	3.4		·
°M	Lauriaual autaut	· · clta	V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	v
V _{OL}	Low-level output	voltage	$V_1 = V_{T+} Max$	I _{OL} =8mA	74		0.35	0.5	
I _{T+}	Input Current at Positive-Going Th	nreshold	V _{CC} =5V, V _I =	=V _{T+}			-0.14		mA
I _T _	Input Current at Negative-Going T	hreshold	V _{CC} =5V, V _I =	=V _T _			-0.18		mA
l _l	Input current at ninput voltage	naximum	V _{CC} =Max, V	₁ =7V				0.1	mA
I _{IH}	High-level input of	urrent	V _{CC} =Max, V	=2.7V				20	μΑ
IIL	Low-level input c	urrent	V _{CC} =Max, V	V _{CC} =Max, V _I =0.4V				-0.4	mA
los	Short-circuit outp	ut current	V _{CC} =Max (Note 2)			-20		-100	mA
Іссн	Supply current	Total with outputs high	V _{CC} =Max				8.6	16	mA
I _{CCL}	Cuppiy current	Total with outputs low	V _{CC} =Max				12	21	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Note more than one output should be shorted at a time, and the duration should not exceed one second.

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	$C_1 = 15pF, R_1 = 2kQ$		15	22	ns
t _{PHL}	Propagation delay time, high-to-low-level output			15	22	ns

[#]For load circuit and voltage waveforms, see page 3-11.

Typical Characteristics

POSITIVE-GOING THRESHOLD VOLTAGE V_S FREE-AIR TEMPERATURE

HYSTERESIS V_S FREE-AIR TEMPERATURE

TA Free-Air Temperature - °C

THRESHOLD VOLTAGE AND HYSTERESIS $V_{\rm S}$ SUPPLY VOLTAGE

V_{CC}-Supply Voltage — V

NEGATIVE-GOING THRESHOLD VOLTAGE VS FREE-AIR TEMPERATURE

DISTRIBUTION OF UNIT V_S FOR HYSTERESIS

OUTPUT VOLTAGE V_S INPUT VOLTAGE

Typical Application Data

TYPICAL APPLICATION DATA

MULTIVIBRATOR

THRESHOLD DETECTOR

PULSE STRETCHER

TRIPLE 3-INPUT POSITIVE AND GATES WITH OPEN-COLLECTOR OUTPUTS

Description

This device contains three independent gates each of which performs the logic AND function. Y=ABC The open-collector outputs require external pull-up resistors for proper logical operation.

Function Table (each gate)

	Inputs		Output
Α	В	С	Υ
Х	Х	L	L
X	L	X	L
L	x	X	L
Н	Н	Н	Н

Pull-Up Resistor Equations

$$R_{MAX} = \frac{V_{CC}(Min) - V_{OH}}{N_1(I_{OH}) + N_2(I_{IH})}$$

$$R_{MIN} = \frac{V_{CC}(Max) - V_{OL}}{I_{OL} - N_3(I_{IL})}$$

Where: N₁ (I_{OH})=total maximum output high current for all outputs tied to pull-up resistor N₂ (I_{IH})=total maximum input high current for all inputs tied to pull-up resistor N₃(I_{IL})=total maximum input low current for all inputs tied to pull-up resistor

Absolute Maximum Ratings

 • Supply voltage, V_{CC}
 7V

 • Input voltage
 7V

 • Output voltage
 7V

 • Operating free-air temperature range 54LS
 −55°C to 125°C

 74LS
 0°C to 70°C

 • Storage temperature range
 −65°C to 150°C

SYMBOL	PARAMÈTER		MIN	NOM	MAX	UNIT
V	O. and the second	54	4.5	5	5.5	
V _{cc}	Supply voltage	74	4.75	5	5.25	V
V _{OH}	High-level output voltage	54, 74			5.5	V
	Low-level output current	54			4	mA
lor		74			8	111/4
_	Operating free-air temperature	54	-55		125	°C
TA		74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAM	ETER	TEST CONDITIONS		MIN TYF	MAX	UNIT		
V _{IH}	High-level input	voltage				. 2		٧	
					54		0.7	v	
V _{IL}	Low-level input	voitage			74		0.8	\ \ \	
V _{IK}	Input clamp volt	age	V _{CC} =Min, I _I	=-18mA			-1.5	٧	
I _{OH}	High-level outpu	it current	V _{CC} =Min, V	_{OH} =Max, V _{IH} =	=2V		100	μΑ	
			V _{CC} =Min	I _{OL} =4mA	54, 74	0.25	5 0.4		
V _{OL}	Low-level outpu	t Voltage	V _{IL} =Max	I _{OL} =8mA	74	0.35	5 0.5	٧	
I _I	Input current at maximum input voltage		V _{CC} =Max, \	/ _I =7V			0.1	mA	
l _{IH}	High-level input	current	V _{CC} =Max, \	/ _I =2.7V			20	μΑ	
I _{IL}	Low-level input current		V _{CC} =Max, \	/ _I =0.4V			-0.4	mA	
Іссн	0	Total with outputs high	V _{CC} =Max			1.8	3.6	mA	
I _{CCL}	Supply curret	Total with outputs low	V _{CC} =Max			3.3	6.6	mA	

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	C =1555 B = 2k0		20	35	ns
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L=15pF, R_L=2k\Omega$		17	35	ns

[#]For load circuit and voltage waveforms, see page 3-11.

HEX INVERTED BUFFERS WITH OPEN-COLLECTOR OUTPUTS

Features

- High Output Voltage (15V)
- High Speed (t_{PD}=8.5nS typical)
- · Low Power Dissipation

Description

This device contains hex inverted buffers with open collector. It performs the Boolean function $Y = \overline{A}$ in positive Logic.

Function Table (each inverter)

INPUT	OUTPUT
Α	Y
Н	L
L	Н

•	Supply voltage, V _{CC}	7V
•	Input voltage	7V
•	Operating free-air temperature range 54LS	55°C to 125°C
	74LS	0°C to 70°C
•	Storage temperature range	65°C to 150°C

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V	Cupply voltage	54	4.5	5	5.5	
V _{cc}	Supply voltage	74	4.75	5	5.25	V
V_{OH}	High-level output voltage	54, 74			15	V
1	Low-level output current	54			30	
lol		74			40	mA
T _A	Operating free-air temperature	54	-55		125	°C
		74	0		70	٠. ر

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	· PARAM	ETER,	TEST CONDITIONS			TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input	voltage			2			٧
V _{IL}	Low-level input	voltage					0.8	٧
V _{IK}	Input clamp volt	age	V _{CC} =Min, I _I :	=-12mA			-1.5	٧
I _{OH}	High-level outpu	ut current	V _{CC} =Min	V _{OH} =Max V _{IL} =Max			250	μΑ
V	Law layer autou	t voltogo	V _{CC} =Min	I _{OL} =16mA			0.4	V
V _{OL}	Low-level output voltage		V _{IH} =Min	I _{OL} =Max			0.7	V
I _I	Input current at input voltage	Input current at maximum input voltage		/ _I =5.5V			1	mA
I _{IH}	High-level input	current	V _{CC} =Max, V	/ _i =2.7V			20	μΑ
I _{IL}	Low-level input current		V _{CC} =Max, V _I =0.4V				-0.2	mA
Іссн	outputs nign		V _{CC} =Max			9	18	mA
I _{CCL}	Supply curret	Total with outputs low	V _{CC} =Max			35	60	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	C _L =15pF, R _L =110Ω —		7	15	ns
t _{PHL}	Propagation delay time, high-to-low-level output			10	20	ns

[#]For load circuit and voltage waveforms, see page 3-11.

HEX NONINVERTED BUFFERS WITH OPEN-COLLECTOR OUTPUTS

Feature

- High Output Voltage (15V)
- High Speed (tpp=9nS typical)
- Low Power Dissipation

Description

This device contains hex noninverted buffers with open collector.

It performs the Boolean function Y=A in positive Logic.

Function Table

INPUT	OUTPUT
Α	Υ
Н	Н
· L	L

•	Supply voltage, V _{CC}
	Input voltage
	Operating free-air temperature range 54LS
	74LS
•	Storage temperature range — 65°C to 150°C

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
	Cumply walks as	54	4.5	5	5.5	
V _{cc}	Supply voltage	74	4.75	5	5.25	V
V _{OH}	High-level output voltage	54, 74			15	V
	Low-level output current	54			30	mA
OL		74			40	IIIA
T _A	Operating free-air temperature	54	-55		125	°C
		74	0		70	0

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CO	MIN TYP (Note 1)	мах	UNIT	
V _{IH}	High-level input voltage			2		٧
V _{IL}	Low-level input voltage			0	.8	٧
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =	-12mA	-1	.5	V
I _{ОН}	High-level output current	V _{CC} =Min, V _{IH} V _{OH} =15V	V _{CC} =Min, V _{IH} =2.0V V _{OH} =15V		50	μΑ
		V _{CC} =Min,	V _{CC} =Min, I _{OL} =16mA		.4	V
V_{OL}	Low-level output voltage	$V_{IL}=Max$, $I_{OL}=Max$ 0.7		.7	V	
I _I	Input current at maximum input voltage	V _{CC} =Max, V ₁	=5.5V		1	mA
l _{ін}	High-level input current	V _{CC} =Max, V _{II}	⊣=2.7V	2	20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _{II}	V _{CC} =Max, V _{IL} =0.4V		.2	mA
Іссн	Supply current total with outputs high	V _= 5 25 V		7	14	mA
I _{CCL}	Supply current total with outputs low	V _{CC} =5.25V	25 4	45	mA	

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output			6	10	ns
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L=15pF, R_L=110\Omega$		18	30	ns

[#]For load circuit and voltage waveforms, see page 3-11.

GD54/74LS20 DUAL 4-INPUT POSITIVE NAND GATES

Description

This device contains two independent 4-input NAND gates. It performs the Boolean functions $Y = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$ or $Y = \overline{A} + \overline{B} + \overline{C} + \overline{D}$ in positive logic.

Function Table (each gate)

ı	NPUTS	OUTPUT		
Α	N*	Υ		
L	L	н		
Н	L	н		
L	Н	н		
Н	Н	L		

^{*} N=B.C.D

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage	•	7V
•	Operating free-air temperature range	54LS	-55°C to 125°C
		74LS	0°C to 70°C
	Storage temperature range		- 65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V _{cc}	Supply voltage	54	4.5	5	5.5	
*CC	74		4.75	5	5.25	V
I _{OH}	High-level output current	54,74			-400	μΑ
1	Low-level output current	54			4	
lOL	Low-level output current	74			8	mA
T _A	Operating free-air temperature	54	-55		125	0.0
· A	operating neerall temperature	74	0		70	°C

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMI	ETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input v	oltage				2			٧
V _{IL}	Low-level input ve	.ow-level input voltage			54			0.7	V
"-					74			0.8	
V _{IK}	Input clamp volta	ge	V _{CC} =Min,	I _I =-18mA				-1.5	٧
V _{OH}	High-level output	High-level output voltage		V _{II} = Max	54	2.5	3.4		V
011			I _{OH} =Max	IL	74	2.7	3.4		
V	Low lovel output	\		I _{OL} =4mA	54,74		0.25	0.4	V
V _{OL}	Low-level output	ow-level output voltage V _{IH} =Min I _{OL} =8mA	74		0.35	0.5	V		
I _I	Input current at n input voltage	naximum	V _{CC} =Max,	V _I =7V				0.1	mA
I _{IH}	High-level input c	urrent	V _{CC} =Max,	V _I =2.7V				20	μΑ
I _{IL}	Low-level input co	urrent	V _{CC} =Max,	V _I =0.4V				-0.4	mA
los	Short-circuit outp	ut current	V _{CC} =Max (Note 2)			-20		-100	mA
Іссн	Supply current	Total with outputs high	V _{CC} =Max				0.4	0.8	mA
I _{CCL}		Total with outputs low	V _{CC} =Max				1.2	2.2	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25^{\circ}C$. Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Switching Characteristics, V_{CC} = 5V, T_A = 25°C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	0 - 15-5 B - 81-0		9	15	ns
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L=15pF, R_L=2k\Omega$		10	15	ns

[#]For load circuit and voltage waveforms, see page 3-11.

DUAL 4-INPUT POSITIVE AND GATES

Description

This device contains two independent 4-input AND gates. It performs the Boolean functions $Y=A\cdot B\cdot C\cdot D$ or $Y=\overline{A}+\overline{B}+\overline{C}+\overline{D}$ in positive logic.

Function Table (each gate)

I	NPUTS	OUTPUT
Α	N*	Υ
L	L	L
н	L	L
L	Н	L
н	Н	н

^{*} N=B.C.D

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage		7V
•	Operating free-air temperature range	54LS	-55°C to 125°C
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
V	Supply voltage	54	4.5	5	5.5	.,	
V_{CC}	74		4.75	5	5.25	V	
Гон	High-level output current	54,74			-400	μΑ	
ı	Low-level output current	54			4	4 mA	
lOL	Low-lever output current	74			8		
т	Operating free-air temperature	54	-55		125		
T _A	Operating nee-an temperature	74	0		70	°C	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMI	ETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	ÜNIT
V _{IH}	High-level input v	oltage				2			V
V _{IL}	Low-level input v	oltage			54			0.7	V
IL.	·	3.			74			0.8	
V_{IK}	Input clamp volta	ge	V _{CC} =Min, I	_I =-18mA				-1.5	٧
V _{OH}	High-level output	voltage	V _{CC} =Min,	V _{CC} =Min, V _{IH} =Min L _{OH} =Max,		2.5	3.4		V
ОП			I _{OH} =Max,					2.7	3.4
V	Low lovel output	. level entent veltere		I _{OL} =4mA	54,74		0.25	0.4	.,
V _{OL}	Low-level output	voltage	V _{IL} =Max	I _{OL} =8mA	74		0.35	0.5	V
l _l	Input current at n input voltage	naximum	V _{CC} =Max,	V _I =7V				0.1	mA
I _{IH}	High-level input c	current	V _{CC} =Max,	V _I =2.7V				20	μΑ
I _{IL}	Low-level input c	urrent	V _{CC} =Max,	V _I =0.4V				-0.4	mA
los	Short-circuit outp	Short-circuit output current		Note 2)		-20		-100	mA
Іссн	Supply current	Total with outputs high	V _{CC} =Max				1.2	2.4	mA
I _{CCL}	1,1,0	Total with outputs low	V _{CC} =Max				2.2	4.4	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.
Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	C =15=5 B =0k0		8	15	ns
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L=15pF, R_L=2k\Omega$		10	20	ns

#For load circuit and voltage waveforms, see page 3-11.

QUAD 2-INPUT NAND GATES WITH HIGH VOLTAGE OPEN-COLLECTOR OUTPUTS

Features

- · Usable in AND-Tie connection
- High Output Voltage (15V)

Description

This device contains four independent gates each of which performs the logic NAND function. The open-collector outputs require external pull-up resistors for proper logical operation.

Function Table (each gate)

$$Y = \overline{AB}$$

Inp	uts	Output
Α	В	Υ
TIT	LHLH	H H L

Pull-Up Resistor Equations

$$R_{MAX} = \frac{V_{CC}(Min) - V_{OH}}{N_1(I_{OH}) + N_2(I_{IH})}$$

$$\mathsf{R}_{\mathsf{MIN}} = \ \frac{\mathsf{V}_{\mathsf{CC}}(\mathsf{Max}) \! - \! \mathsf{V}_{\mathsf{OL}}}{\mathsf{I}_{\mathsf{OL}} \! - \! \mathsf{N}_{\mathsf{3}}(\mathsf{I}_{\mathsf{IL}})}$$

Where: $N_1(I_{OH})$ =total maximum output high current for all outputs tied to pull-up resistor N_2 (I_{IH})=total maximum input high current for all inputs tied to pull-up resistor $N_3(I_{IL})$ =total maximum input low current for all inputs tied to pull-up resistor

Absolute Maximum Ratings

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V	Cupply voltage	54	4.5	5	5.5	V
V _{cc}	Supply voltage	74	4.75	5	5.25	V
V _{OH}	High-level output voltage	54, 74			15	V
		54			4	mA
I _{OL} Low-level out	Low-level output current	74			8	IIIA
T _A	Operating free-air temperature	54	-55		125	°C
		74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CO	ONDITIONS	MIN TYP MAX	UNIT		
V _{IH}	High-level input voltage			2	V		
V _{IL}	Low-level input voltage			0.8	V		
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =	-12mA	-1.5	V		
1	High-level output current	V _{CC} =Min,	V _{OH} =12V	50	μΑ		
Гон	riigh-level output current	V _{IL} =Max	V _{OH} =15V	1000	μη.		
V	Levelevel entent voltage	V _{CC} =Min,	I _{OL} =4mA	0.25 0.4	V		
V _{OL}	Low-level output voltage	V _{IL} =Max,	I _{OL} = Max	0.35 0.5			
l _l	Input current at maximum input voltage	V _{CC} =Max, V _I	= 7V	0.1	mA		
I _{IH}	High-level input current	V _{CC} =Max, V _I	H=2.7V	20	μΑ		
I _{IL}	Low-level input current	V _{CC} =Max, V _I	V _{CC} =Max, V _{IL} =0.4V		mA		
Іссн	Supply current total with outputs high	V 5.05V				0.8 1.6	mA
I _{CCL}	Supply current total with outputs low	V _{CC} =5.25V		2.4 4.4	mA		

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	$ C_L=15pF$, $R_L=2k\Omega$ $-$		17	32	ns
t _{PHL}	Propagation delay time, high-to-low-level output			15	28	ns

[#]For load circuit and voltage waveforms, see page 3-11.

TRIPLE 3-INPUT POSITIVE-NOR GATES

Description

This device contains three independent gates each of which performs the logic NOR function.

 $Y = \overline{A + B + C}$

Function Table(each gate)

Input		Output
A N*		Y
L	L	Н
L	н	L
Н	L	L
Н	Н	L

•	Supply voltage, Vcc		7V
•	Input voltage		7V
		54LS	
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

SYMBOL	PARAMETER	PARAMETER		NOM	MAX	UNIT
V_{CC}	Supply voltage	54	4.5	5	5.5	,,
		74	4.75	5	5.25	\ \ \
I _{ОН}	High-level output current	54,74			-400	μΑ
I _{OL}	Low-level output current	54			4	
		74			8	mA
T _A	Operating free-air temperature	54	-55		125	00
		74	0		70	°C

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAM	1ETER	ТЕ	EST CONDITION	NS	MIN	TYP (Note 1)	MAX	UNIT	
V _{IH}	High-level input v	voltage				2			V	
V _{IL}	Low-level input v	oltage			54			0.7	v	
					74			0.8		
V _{IK}	Input clamp volta	ige	V _{CC} =Min,	I _i =-18 mA	-			-1.5	V	
V _{OH}	High-level output	voltage	V _{CC} =Min,	V _{IL} =Max,	54	2.5	3.4		V	
*OH			I _{OH} =Max,		74	2.7	3.4			
V	OL Low-level output voltage		V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	v	
VOL				74		0.35	0.5			
l _t	Input current at r input voltage	naximum	V _{CC} =Max,	V ₁ =7V				0.1	mA	
l _{iH}	High-level input of	current	V _{CC} =Max,	V _I =2.7V				20	μΑ	
I _{IL}	Low-level input c	urrent	V _{CC} =Max,	V _I =0.4V				-0.4	mA	
los	Short-circuit outp	Short-circuit output current				-20		-100	mA	
Іссн	Supply current	Total with outputs high	V _{CC} =Max				2	4	mA	
I _{CCL}	,	Total with outputs low	V _{CC} =Max				3.4	6.8	mA	

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	$C_1 = 15pF, R_1 = 2K\Omega$		10	15	200
t _{PHL}	Propagation delay time, high-to-low-level output	S[1391, N[-2132		10	15	ns

#For load circuit and voltage waveforms, see page 3-11.

8-INPUT POSITIVE NAND GATE

Description

This device contains a single 8-input NAND gate and performs the following Boolean functions in positive logic.

$$Y = \overline{A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H}$$
 or $Y = \overline{A} + \overline{B} + \overline{C} + \overline{D} + \overline{E} + \overline{F} + \overline{G} + \overline{H}$

Function Table

INPUTS A THRU H	OUTPUT Y
All inputs H One or more inputs L	L H

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage		7V
		54LS	
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
V	Supply voltage	54	4.5	5	5.5	V	
V _{cc}	Supply voltage	74	4.75	5	5.25	~ V	
I _{OH}	High-level output current	54,74			-400	μΑ	
	Low level output ourrent	54			4	A	
loL	Low-level output current	74			8	mA	
т	Operating free-air temperature	54	54	-55		125	00
T _A		74	0		70	°C	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAME	ETER	TEST CO	NDITIONS		MIN	TYP (Note 1)	MAX	UNIT	
V _{IH}	High-level input v	oltage				2			٧	
VIL	Low-level input ve	nitage			54			0.7	V	
▼IL.	Low level input	onago			74			0.8		
V _{IK}	Input clamp voltage	ge	V _{CC} =Min, I	₁ =-18mA				-1.5	٧	
V _{OH}	High-level output	High-level output voltage		V _{CC} =Min, V _{II} =Max		2.5	3.4		V	
VOH	Trigit-level output	Voltage	I _{OH} =Max,		74	2.7	3.4			
			V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	v	
V _{OL}	Low-level output	voltage	V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	V	
l ₁	Input current at n input voltage	naximum	V _{CC} =Max,	V _I =7V				0.1	mA	
I _{IH}	High-level input of	urrent	V _{CC} =Max,	V ₁ =2.7V				20	μΑ	
I _{IL}	Low-level input c	urrent	V _{CC} =Max,	V _I =0.4V				-0.4	mA	
los	Short-circuit outp	ut current	V _{CC} =Max (Note 2)		-20		-100	mA	
Іссн	Supply current	Total with outputs high	V _{CC} =Max				0.36	0.5	mA	
I _{CCL}	Cappi, outlone	Total with outputs low	V _{CC} =Max				0.6	1.1	mA	

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time low-to-high-level output,	$C_1 = 15pF, R_1 = 2k\Omega$		8	15	ns
t _{PHL}	Propagation delay time high-to-low-level output,	- O[=13β1, N[=2κω		13	20	ns

[#]For load circuit and voltage waveforms, see page 3-11.

QUADRUPLE 2-INPUT POSITIVE OR GATES

Description

This device contains four independent 2-input OR gates. It performs the Boolean functions $Y = \overline{A} \cdot \overline{B}$ or Y = A + B in positive logic.

Function Table (each gate)

INPL	JTS	OUTPUT
Α	В	Y
L	L	L
Н	L	н
L	Н	н
н	Н	н

•	Supply voltage, Vcc		7V
			55°C to 125°C
		74LS	0°C to 70°C
•	Storage temperature range		65°C to 150°C

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
V	Supply veltage	54	4.5	5	5.5	V	
V _{cc}	Supply voltage	74	4.75	5	5.25	v	
I _{ОН}	High-level output current	54,74			-400	μΑ	
		54			4	mA	
OL	Low-level output current	74			8	mA	
T	Operating free six temperature	54	-55		125	°C	
' A	T _A Operating free-air temperature		0		- 70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAME	ETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input v	oltage				2			٧
V _{IL}	Low-level input voltage				54			0.7	V
* IL	Low lovel input vi	onago			74			0.8	
V _{IK}	Input clamp voltage	ge	V _{CC} =Min, I	_I =-18mA				-1.5	٧
V _{OH}	High-level output	High-level output voltage		V _{IH} =Min	54	2.5	3.4		V
*ОН	Tilgit lovol output	vollage	I _{OH} =Max	, IH	74	2.7	3.4		
.,		- 14	V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	v
V_{OL}	Low-level output	voitage	V _{IL} =Max	I _{OL} =8mA	74		0.35	0.5	v
I ₁	Input current at n input voltage	naximum	V _{CC} =Max,	V ₁ =7V				0.1	mA
I _{IH}	High-level input o	urrent	V _{CC} =Max,	$V_1 = 2.7V$				20	μΑ
I _{IL}	Low-level input c	urrent	V _{CC} =Max,	V _I =0.4V				-0.4	mA
Ios	Short-circuit outp	ut current	current V _{CC} =Max (Note			-20		-100	mA
Іссн	Supply current	Total with outputs high	V _{CC} =Max				3.1	6.2	mA
I _{CCL}	Japp., Janon	Total with outputs low	V _{CC} =Max				4.9	9.8	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	$C_L=15pF, R_L=2k\Omega$		14	22	ns
t _{PHL}	Propagation delay time, high-to-low-level output			14	22	ns

#For load circuit and voltage wave forms, see page 3-11.

QUAD 2-INPUT NAND BUFFERS WITH OPEN-COLLECTOR OUTPUTS

Features

- · Usable in AND-Tie connection
- High fan-out (I_{OL}=24mA max)

Description

This device contains four independent gates each of which performs the logic NAND function. The open-collector outputs require external pull-up resistors for proper logical operation.

Function Table (each gate)

$$Y = \overline{AB}$$

Inp	uts	Output
Α	В	Υ
L	L H	H Ĥ
H	L	H
Н	Н	L

Pull-Up Resistor Equations

$$R_{MAX} = \frac{V_{CC}(Min) - V_{OH}}{N_1(I_{OH}) + N_2(I_{JH})}$$

$$R_{MIN} = \frac{V_{CC}(Max) - V_{OL}}{I_{OL} - N_3(I_{II})}$$

Where: $N_1(I_{OH})$ =total maximum output high current for all outputs tied to pull-up resistor N_2 (I_{IH})=total maximum input high current for all inputs tied to pull-up resistor $N_3(I_{IL})$ =total maximum input low current for all inputs tied to pull-up resistor

•	Supply voltage, V _{CC}	
•	Input voltage	······ 7V
•	Output voltage	······ 7V
		0°C to 70°C
•	Storage temperature range	

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
V	0	54	4.5	5	5.5		
V _{cc}	Supply voltage	74	4.75	5	5.25	V	
V _{OH}	High-level output voltage	54, 74			5.5	V	
	Law lawal autant augraph	54			12	mA	
OL	Low-level output current	74			24	IIIA	
т	Operating free sir temperature	54	-55		125	°C	
T _A	Operating free-air temperature	74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAM	ETER	TEST CONDITIONS			MIN TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input	voltage				2		٧
					54		0.7	V
V _{IL}	Low-level input	voltage			74		0.8	V
V _{IK}	Input clamp volt	age	V _{CC} =Min, I	_I =-18mA			-1.5	٧
I _{ОН}	High-level output	t current	V _{CC} =Min, V _{OH} =Max, V _{IL} =Max				250	μΑ
			V _{CC} =Min	I _{OL} =12mA	54, 74	0.25	0.4	v
V _{OL}	Low-level outpu	t voitage	V _{IH} =Min	I _{OL} =24mA	74	0.35	0.5	V
l _l	Input current at input voltage	maximum	V _{CC} =Max,	V _I =7V			0.1	mA
I _{IH}	High-level input	current	V _{CC} =Max,	V _I =2.7V			20	μΑ
I _{IL}	Low-level input	ow-level input current V _{CC} =Max, V _I =0.4V					-0.4	mA
Іссн		Total with outputs high	V _{CC} =Max			0.9	2	mA
I _{CCL}	Supply curret	Total with outputs low	V _{CC} =Max			6	12	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	- C _L =45pF, R _L =667 Ω		20	32	ns
t _{PHL}	Propagation delay time, high-to-low-level output			18	28	ns

[#]For load circuit and voltage waveforms, see page 3-11.

BCD/DECIMAL DECODERS

Features

- Diode clamped inputs
- Also for application as 4-line-to-16-line decoders;
 3-line-to-8-line decoders
- All outputs are high for invalid input conditions
- Usable as a 3-bit binary/octal decoders

Description

These BCD-to-decimal decoders consist of eight inverters and ten, four-input NAND gates. The inverters are connected in pairs to make BCD input data available for decoding by the NAND gates. Full decoding of input logic ensures that all outputs remain off for all invalid (10-15) input conditions.

Function Table

No.		BCD	Inpu	ıt				De	cimal	Out	put			
140.	D	С	В	Α	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н
1	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н
2	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н
3	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н
4	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н	Н	Н
5	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
6	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н
7	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	н
8	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
9	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L
	Н	L	Н	L	н	Н	Н	Н	Н	Н	Н	Н	Н	Н
□	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	н
A A	Н	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	н
INVALID	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	н
=	H	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	H
	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	н

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	7V
•	Input voltage	7V
•	Operating free-air temperature range 54LS	-55°C to 125°C
	74I S	0°C to 70°C
•	Storage temperature range	-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
V _{cc}	Cupality voltage	54	4.5	5	5.5	.,	
	Supply voltage	74	4.75	5	5.25	٧ .	
I _{OH}	High-level output current	54, 74		-	-400	μΑ	
	Low lovel output ourrest	54			4	mA	
loL	Low-level output current	74	·		8		
T _A	Operating free-air temperature	54	-55		125	°C	
	Operating free-air temperature	74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			٧
.,		. 54				0.7		
V _{IL}	Low-level input voltage		74				0.8	V
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =-18mA					-1.5	·V
	Lish lavel autout valtage	V _{CC} =Min	V _{IL} =Max	54	2.5	3.4		V
V _{OH}	High-level output voltage	I _{OH} =Max	$V_{IH} = Min$	74	2.7	3.4		٧.
			I _{OL} =4mA	54, 74		0.25	0.4	V
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	V
I _I	Input current at maximum input voltage	V _{CC} =Max,	V ₁ =7V				0.1	mA
I _{IH}	High-level input current	V _{CC} =Max,	V _{CC} =Max, V _I =2.7V				20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.4V					-0.4	mA
I _{os}	Short-circuit output current	V _{CC} =Max (Note 2)			-20		-100	mA
Icc	Supply current	V _{CC} =Max (I	Note 3)			7	13	mA

Note 1: All typical values are at V_{CC} =5V, T_A =25°C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 3: I_{CC} is measured with all outputs open, and all inputs grounded.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL*	FROM (INPUT)	TO (OUTUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	D-4-	2 Levels			15	25	ns
t _{PHL}	Data	of Logic	0 -45-5 D01-0		15	25	
t _{PLH}		3 Levels	$C_L=15pF, R_L=2k\Omega$		20	30	
t _{PHL}	Data	of Logic			20	30	ns

t_{PLH}=Propagation delay time, low-to-high-level output

tphL=Propagation delay time, high-to-low-level output

APPLICATION EXAMPLES

(1) 4-bit binary/hexadecimal decoder

(2) 3-bit binary/octal decoder with enable input

AND-OR-INVERT GATES

Description

This device contains a NOR gate with two 2-input AND gates as the inputs and a NOR gate with two 3-input AND gates as the inputs.

It performs the following Boolean functions;

$$1Y = \overline{1A \cdot 1B \cdot 1C} + 1D \cdot 1E \cdot 1F$$

$$2Y = \overline{2A \cdot 2B} + 2C \cdot 2D$$

Function Table

N*	M*	1Y
L	L	Н
Н	L	L
L	Н	L
Н	Н	L

^{*}N=1A·1B·1C *M=1D·1E·1F

N*	M*	1Y
L	L	н
Н	L	L
L	Н	L
Н	Н	L

*N=2A · 2B *M=2C · 2D

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage		7V
		54LS	
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
V _{CC}	Supply voltage	4.5	5	5.5	V		
▼CC	Supply voltage	74	4.75	5	. 5.25	\ \ \	
I _{OH}	High-level output current	54,74			-400	μΑ	
L	Low-level output current 54				4		
OL	Low-level output current	74			8	mA	
T _A	Operating free-air temperature	54	-55		125	°C	
'A .	Operating free-all temperature	74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAM	ETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT	
V _{IH}	High-level input v	oltage							٧	
V _{IL}	Low-level input v	oltage	54 74				0.7	V		
- 10		·					0.8	1 1		
V _{IK}	Input clamp volta	ge	V _{CC} =Min, I	I _I =-18mA				-1.5	V	
V _{OH}	High-level output	voltage	V _{CC} =Min	V _{CC} =Min V _{IH} =Max		2.5	3.4	V		
· OH		ronago			74	2.7	3.4		1 1	
			V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4		
V _{OL}	Low-level output	voitage	V _{IH} =Min	$I_{OL} = 8mA$	74		0.35	0.5	V	
I _I	Input current at r input voltage	naximum	V _{CC} =Max, V _I =7V					0.1	mA	
I _{IH}	High-level input of	current	V _{CC} =Max, V _I =2.7V					20	μΑ	
I _{IL}	Low-level input c	urrent	V _{CC} =Max,	V ₁ =0.4V				-0.4	mA	
los	Short-circuit outp	ut current	V _{CC} =Max (V _{CC} =Max (Note 2)				-100	mA	
Іссн	Supply current Total with outputs high		V _{CC} =Max				0.8	1.6	mA	
I _{CCL} .		Total with outputs low	V _{CC} =Max				1.4	2.8	mA	

Note 1: All typical values are at V_{CC} =5V, T_A =25 $^{\circ}$ C. Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	C =15pE P =2kO		12	20	ns
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L=15pF, R_L=2k\Omega$		12.5	20	ns

[#]For load circuit and voltage waveforms, see page 3-11.

2WIDE 4-INPUT AND-OR-INVERT GATES

Description

This device contains a combination of gates each of which performs the logic AND-OR-INVERT function.

Y=ABCD+EFGH

Function Table

	Inputs								
Α	В	С	D	Ε	F	G	Н	Υ	
Н	Н	Н	Н	Х	Х	Х	Х	L	
Х	Х	Х	Х	Н	Н	Н	Н	L	
		All o	ther c	ombir	ations	3		H	

Absolute Maximum Ratings

 Supply voltage, V_{CC}
 7V

 Input voltage
 7V

 Operating free-air temperature range 54S
 −55° to 125°C

 74S
 0°C to 70°C

 Storage temperature range
 −65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
	Supply voltage	54	4.5	5	5.5	v	
V _{cc}		74	4.75	5	5.25	V	
I _{OH}	High-level output current	54,74			-400	μΑ	
	Low-level output current	54			4	^	
OL		74			8	mA	
	Operating free-air temperature	54	-55		125	°C	
T _A		74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMI	ETER	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT	
V _{IH}	High-level input v	voltage				2			V
.,,	La	- 11			54			0.7	,,
V _{IL}	Low-level input v	oltage			74			8.0	V
V _{IK}	Input clamp volta	ge	V _{CC} =Min,	I _I =-18m/	Ä			-1.5	٧
V	High-level output	voltogo	$V_{CC} = Min, V_{II} = N$	V _{IL} =Max	54	2.5	3.4		v
V _{OH}	nign-ievei output	voltage	I _{OH} =Max,	ix, V _{IH} =Min	74	2.7	3.4		
.,				I _{OL} =4mA	54, 74		0.25	0.4	.,
V _{OL}	Low-level output	voltage	V _{IH} =Min V _{IL} =Max	I _{OL} =8mA	74		0.35	0.5	٧
I _I	Input current at r input voltage	maximum	V _{CC} =Max,	V _I =7V	4			0.1	mA
I _{IH}	High-level input of	current	V _{CC} =Max,	V _I =2.7V				20 ·	μΑ
I _{IL}	Low-level input c	urrent	V _{CC} =Max,	V _I =0.4V				-0.4	mA
los	Short-circuit outp	Short-circuit output current				-20		-100	μΑ
Іссн	Supply ourrest	Total with outputs high	V _{CC} =Max				0.4	0.8	mA
I _{CCL}	Supply current	Supply current Total with outputs low					0.7	1.3	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed ond second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	C -15-5 B -0k0		12	20	ns
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L=15pF, R_L=2k\Omega$		12.5	20	ns

[#]For load circuit and voltage waveforms, see page 3-11.

GD54/74LS73A

DUAL NEGATIVE EDGE-TRIGGERED MASTER-SALVE J-K FLIP-FLOPS WITH CLEAR AND COMPLEMENTARY OUTPUTS

Description

This device contains two independent negative-edge-triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flops on the falling edge of the clock pulse. The clock triggering occurs at a voltage level and is not directly related to the transition time of the negative going edge of the clock pulse. The data on the J and K inputs is allowed to change while the clock is high or low without affecting the outputs as long as setup and hold times are not violated. A low logic level on the clear input will reset the outputs regardless of the levels of the other inputs.

Function Table(each gate)

	Inputs	3		Outputs
CLR	CLK	J	К	Q Q
H H H	X	X L H L	X L H	L H Q Q H L L H Toggle
H	Ĥ	X	X	Q _o Q _o

X= Either Low or High Logic Level

↓=Negative going edge of pulse

 $\mathbf{Q}_{\mathrm{O}}{=}\mathsf{The}$ output logic level before the indicated input conditions were established.

Toggle=Each output changes to the complement of its previous level on each falling edge of the clock pulse.

Absolute Maximum Ratings

•	Supply voltage. Vcc		7V
		54LS	
		74LS	
•	Storage temperature range		

Recommended Operating Conditions

SYMBOL	PARA	METER		MIN	NOM	MAX	UNIT	
V	Supply voltage		54	4.5	5	5.5	v	
V _{cc}	Supply Voltage		74	4.75	5	5.25		
l _{он}	High-level output Currer	nt	54, 74			-400	μΑ	
	Low-level output curren	•	54			4	mA	
lOL	Low-level output current		74			8		
f _{clock}	Clock frequency			0		30	MHz	
	Clock high			20				
t _w	Pluse width Preset low	Preset low		25			ns	
	Clear low			25			1	
t _{su}	Clear inactive-state setu	ıp time		20↓			ns	
t _h	Data hold time			Oţ			ns	
	Operating free-air tempo	O		-55		125	°C	
T _A	Operating free-air temp	er atur c	74	0		70	°C	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAME	TER	TEST	TEST CONDITIONS			TYP (Note 1)	MAX	UNIT	
V _{IH}	High-level input v	oltage				2			٧	
V _{IL}	Low-level input vo	oltage			54			0.7	v	
					74			0.8]	
V _{IK}	Input clamp voltage	nput clamp voltage		_i =-18 mA				-1.5	٧	
V _{OH}	High-level output voltage		V _{CC} =Min,	V _{IL} =Max	54	2.5	3.4		v	
ОН	a superior of the superior	romago	I _{OH} =Max,	V _{IH} =Min	74	2.7	3.4			
.,				I _{OL} =4mA	54,74		0.25	0.4		
V _{OL}	Low-level output voltage		V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	V	
	Input current	J,K						0.1		
l _i	at maximum	Clear	V _{CC} =5.25	_{CC} =5.25V, V _I =7V				0.3	mA	
	input voltage	Clock						0.4		
		J,K						20		
I _{IH}	High-level	Clear	V _{CC} =5.25	V, V _I =2.7V				60	μΑ	
	input current	Clock						80		
	Low-level	J,K						-0.4		
IIL	input current	Clear	V _{CC} =5.25\	V _{CC} =5.25V, V _I =0.4V				-0.8	mA	
		Clock						-0.8		
los	Short-circuit outpo	ut current	V _{CC} =Max (Note 2)		-20		-100	mA	
Icc	Supply current		V _{CC} =Max (Note 3)			4	6	mA	

Note 1: All typical values are at V_{CC} =5V, T_A =25°C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 3: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input is grounded.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL*	FROM(INPUT)	TO(OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
f _{max}			0 -15 -5	30	45		MHz
t _{PLH}	Clear, Clock	Q or $\overline{\mathbb{Q}}$	$C_L=15 \text{ pF}$ $R_I=2K\Omega$		15	20	ns
t _{PHL}	,		_		15	20	

#For load circuit and voltage waveforms, see page 3-11.

Application Example

HIGH-SPEED 1/3 DIVIDER

f_{max}=maximum clock frequency
 tp_{LH}=propagation delay time, low-to-high-level output.
 tp_{HL}=propagation delay time, high-to-low-level output.

GD54/74LS74A DUAL D-TYPE POSITIVE EDGE-TRIGGERD FLIP-FLOPS WITH PRESET AND CLEAR

Description

This device contains two independent D-type positive edge triggered flip-flops.

A low level at the preset or clear inputs sets or resets the outputs regardless of the levels of the other inputs. When preset and clear are inactive (high), data at the D input meeting the setup time requirements are transferred to the outputs on the positive-going edge of the clock pulse. Clock trigering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the D input may be changed without affecting the levels at the outputs.

Function Table

* The output levels in this configuration are not guaranteed to meet the minimum levels for V_{OH} if the lows at preset and clear are near V_{IL} maximum, Furthermore, this configuration is nonstable; that is it will not persist when either preset or clear returns to its inactive (high) level.

	INPUT	3		OU.	TPUTS	3
PRESET	CLEAR	CLOCK	D	Q	₫	
L	Н	Х	Χ	Н	L	
Н	L	X	X	L	Н	
L	L	X	Х	H*	H*	
Н	Н	↑	Н	Н	L	
Н	н	†	L	L	Н	
Н	Н	L	Χ	Qo	\overline{Q}_{O}	

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage		7V
		54LS	
		74LS	
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL		PARAMETER		MIN	NOM	MAX	UNIT	
V _{CC}	Supply voltage		54	4.5	5	5.5	V	
• 66	Cuppiy ronage		74	4.75	5	5.25		
Гон	High-level outp	out current	54,74			-400	μΑ	
l _{OL}	Low-level output current 54 74				4	mA		
·OL					8			
f _{clock}	Clock frequency			. 0		25	MHz	
t _w	Pulse width Clock high Preset or clear low			25			ns	
-44				25				
t	Setup time	high-level data		201*			ns	
t _{SU}	low-level data			201*				
t _h	Hold time			5↑*			ns	
T _A	Operating free	Operating free-air temperature 54		-55		125	°C	
· A	Operating nee-air temperature		74	0		70		

^{* †} for rising edge

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		S	MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High level input voltage				2			٧
V _{IL}	Low-level input voltage	,		54			0.7	V
* IL				74			0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I	=-18mA				-1.5	٧
V _{OH}	High level output voltage	V _{CC} =Min,	V _{IL} =Max	54	2.5	3.4		V
·OH	Thigh to to to to a specific to thing of	I _{OH} =Max,	V _{IH} =Min	75	2.7	3.4		
V	Low level output voltage	V _{CC} =Min V _{IL} =Max	I _{OL} =4mA	54,74		0.25	0.4	V
V _{OL}	Low level output voltage	V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	
l _r	Input current at maximum	V _{CC} =Max	D, CK				0.1	mA
71	input voltage	V _I =7V	PR, CLR				0.2	
I _{IH}	High-level input current	V _{CC} =Max	D, CK				. 20	μΑ
-1111		$V_I=2.7V$	PR, CLR				40	
IIL	Low-level input current	V _{CC} =Max	D, CK				-0.4	mA
'IL		V _I =0.4V	PR, CLR			,	-0.8	
los	Short-circuit output current	V _{CC} =Max (Note 2)			-20	,	-100	mA
Icc	Supply current	V _{CC} =Max (Note 3)				_ 4	8	mA

Note 1: All typical values are at $V_{\rm CC}$ =5V, $T_{\rm A}$ =25°C. Note 2: Not more than one should be shorted at a time, and the duration should not exceed one second. Note 3: $I_{\rm CC}$ is measured with all inputs grounded and all outputs open.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
f _{max}			C ₁ = 15pF	25	33		MHz
t _{PLH}	Clear, preset or Clock	Q or Q	$R_1 = 2K\Omega$		13	25	ns
t _{PHL}	(as appropriate)		11[-21/32		25	40	113

f_{max}=maximum clock frequency

Application Example 1/4 divider

[#]For load circuit and voltage waveforms, see page 3-12.

 $t_{\rm PLH} =$ propagation delay time, low-to-high-level output.

t_{PHL}=propagation delay time, high-to-low-level output.

[#]For load circuit and voltage waveforms, see page 3-11.

4-BIT BISTABLE LATCH

Features

- · Enable inputs common to two circuits each
- Q ad Q outputs

Description

This device contains 4 D-type latch circuits and is provided with enable inputs E common to 2 circuits each. When E is high, the information from the data input D appears in the outputs Q and \overline{Q} . When the D signal changes, the signal that appears in outputs Q and \overline{Q} also changes. When E changes from high to low, the status of D immediately before the change is latched. While E is low, the status of Q and \overline{Q} does not change even if D is changed.

Function Table (Note 1)

E	D	Q	Q
Н	Н	Н	L
Н	L	L	Н
L	Х	Q°	Q٠

Note 1 Q°, \overline{\Omega} : Level of Q and \overline{\Omega} before the indicated steady-state input conditions were established.

X: Irrelevant

Absolute Maximum Ratings

	Supply voltage, V _{CC}	
•	Input voltage	7V
	Operating free-air temperature range 54LS	
	74LS	
	Storage temperature range	-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V _{cc}	Supply voltage	54	4.5	5	5.5	٧
·cc	Cappiy Vollage	74	4.75	5	5.25	
Іон	High-level output current 54,74				-400	μΑ
I _{OL}					4	mA
,OL				8		
t _W	Width of enable pulse		20			ns
t _{SU}	Set up time		20			ns
t _h	Hold time		5			ns
T _A	Operating free-air temperature	54	-55		125	°c
^		74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN (Note	1) MAX	UNIT		
V _{IH}	High-level input voltage				2		V	
V	Low lovel innut valtage			54		0.7	V	
V_{IL}	Low-level input voltage			74		0.8	ľ	
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I	=-18mA			-1.5	٧	
٧.	High lovel output Valtage	V _{CC} =Min	V _{IL} =Max	54	2.5 3.5		V	
V _{OH}	High-level output Voltage	I _{OH} =Max	V _{IH} =Min	74	2.7 3.5		V	
V	Low lovel output veltere	V _{CC} =Min	I _{OL} =4mA	54, 74	0.25	0.4	V	
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min	1	I _{OL} =8mA	74	0.35	0.5) v
	Input current at maximum	V _{CC} =Max	D	,		0.1		
I _I	input voltage	V ₁ =7V	E			0.4	mA	
	High level in a decimal	V _{CC} =Max	D			20		
l _{IH}	High-level input current	V _I =2.7V	E			80	μΑ	
	Law lavel is not someth	V _{CC} =Max	D			-0.4		
l _{IL}	Low-level input current	V _I =0.4V	Е			-1.6	mA	
los	Short-circuit output current	V _{CC} =Max (Note 2)	•		-20	-100	mA	
Icc	Supply current	V _{CC} =Max (N	lote 3)		6.3	12	mA	

Note 1: All typicals are at V_{CC} =5V, T_A =25°C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 3: I_{CC} is measured with all outputs open and all inputs grounded

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25^{\circ}$, unless otherwise noted

SYMBOL	PARAMETER	TEST CONDITIONS		UNIT		
		1201 001101110110	MIN	TYP	MAX	1 0,111
t _{PLH}	Low-to-high-level, high-to-low-level output propagation			15	27	ns
t _{PHL}	time, from input D to output Q			9	17	ns
t _{PLH}	Low-to-high-level, high-to-low-level output propagation			12	20	ns
t _{PHL}	time, from input D to output Q			7	15	ns
t _{PLH}	Low-to-high-level, high-to-low-level output propagation	$C_L=15pF, R_L=2k\Omega$		15	27	ns
t _{PHL}	Time, from input E to output Q			14	25	ns
t _{PLH}	Low-to-high-level, high-to-low-level output propagation			16	30	ns
t _{PHL}	time, from input E to output Q			7	15	ns

4-BIT MAGNITUDE COMPARATORS

Features

- Typical power dissipation 52 mW
- Typical delay (4-bit words) 24 ns

Description

These four-bit magnitude comparators perform comparison of straight binary or BCD codes. Three fullydecoded decisions about two 4-bit words (A. B) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The A>B, A<B, and A=B outputs of a stage handling less-significant bits are connected to the corresponding inputs of the next stage handling more-significant bits. The stage handling the least-significant bits are connected to the corresponding inputs of the next stage handling moresignificant bits. The stage handling the leastsignificant bits must have a high-level voltage applied to the A=B input. The cascading path is implemented with only a two-gate-level delay to reduce overall comparison times for long words.

Function Table

	Comparing Inputs			Casca	ding Inp	outs		Outputs	
A3, B3	A2, B2	A1, B1	A0, B0	A>B	A <b< td=""><td>A=B</td><td>A>B</td><td>A<b< td=""><td>A=B</td></b<></td></b<>	A=B	A>B	A <b< td=""><td>A=B</td></b<>	A=B
A3>B3	Х	Х	Х	Х	X	X	Н	L	L
A3 <b3< td=""><td>l X</td><td>X</td><td> X</td><td>X</td><td>X</td><td>Х</td><td>L</td><td>н</td><td>L</td></b3<>	l X	X	X	X	X	Х	L	н	L
A3=B3	A2>B2	X	X	X	X	Х	Н	L	L
A3=B3	A2 <b2< td=""><td>Х</td><td>X</td><td>Х</td><td>X</td><td>Х</td><td>L</td><td>Н</td><td>L</td></b2<>	Х	X	Х	X	Х	L	Н	L
A3=B3	A2=B2	A1>B1	X	Х	X	Х	Н	L	L
A3=B3	A2=B2	A1 <b1< td=""><td>X</td><td>X</td><td>X</td><td>Х</td><td>L</td><td>Н</td><td>L</td></b1<>	X	X	X	Х	L	Н	L
A3=B3	A2=B2	A1=B1	A0>B0	X	X	X	н	L	L
A3=B3	A2=B2	A1=B1	A0 <b0< td=""><td>X</td><td>X</td><td>Х</td><td>L</td><td>Н</td><td>L</td></b0<>	X	X	Х	L	Н	L
A3=B3	A2=B2	A1=B1	A0=B0	н	L	L	н	L	L
A3=B3	A2=B2	A1=B1	A0=B0	L	Н	L	L	Н	L
A3=B3	A2=B2	A1=B1	A0=B0	L	L	H	L	L	Н
A3=B3	A2=B2	A1=B1	A0=B0	X	X	H	L	L	H
A3=B3	A2=B2	A1=B1	A0=B0	н	Н	Ĺ	L	L	E ,
A3=B3	A2=B2	A1=B1	A0=B0	L	L	L,	н	Н	L `

H=High Level, L=Low Level, X=Don't Care

Absolute Maximum Ratings

 Supply voltage, V_{CC}
 7V

 Input voltage
 7V

 Operating free-air temperature range 54LS
 −55°C to 125°C

 74LS
 0°C to 70°C

 Storage temperature range
 −65°C to 150°C

Function Block Diagram

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
V _{cc}	Supply voltage	54	4.5	5	5.5		
▼CC	Supply voltage	rtage 74		5	5.25	V	
l _{OH}	High-level output current	54, 74			-400	μΑ	
la.	Low-level output current	54			4	4	
l _{OL}	Low-level output current	74			8	mA	
T _A	Operating free-air temperature	54	-55		125	0.0	
'A	Operating free-air temperature	74	0		70	°C	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TES	TEST CONDITIONS			ST CONDITIONS		MIN (Note	P MAX	UNIT
V _{IH}	High-level input voltage				2		٧			
V _{IL}	Low-level input voltage			54		0.7	V			
VIL.	Low-level input voltage			74		0.8]			
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I :	=-18mA			-1.5	٧			
V _{OH}	High-level output Voltage	V _{CC} ≐Min	V _{IL} =Max	54	2.5 3.4		v			
▼он	riigii-ievei output voitage	I _{OH} =Max	V _{IH} =Min	74	2.7 3.4		v			
V _{OL}	Low-level output voltage	V _{CC} =Min V _{II} =Max	I _{OL} =4mA	54, 74	0.25	0.4	V			
VOL	Low-level output voltage	V _{IL} =Min	I _{OL} =8mA	74	0.35	0.5	ľ			
	Input current at maximum	V _{CC} =Max	A <b, a="">B</b,>			0.1				
I _I	input voltage	$V_1 = 7V$	others			0.3	mA			
	High level input ourrent	V _{CC} =Max	A <b, a="">B</b,>			20				
Iн	High-level input current	V ₁ =2.7V	others			60	μΑ			
	1 1 1	V _{CC} =Max	A <b, a="">B</b,>			-0.4				
l _{IL}	Low-level input current	V _I =0.4V	others			-1.2	mA			
l _{os} .	Short-circuit output current	V _{CC} =Max (Note 2)			-20	-100	mA			
Icc	Supply current	V _{CC} =Max (N	lote 3)		10	20	mA			

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 3: I_{CC} is measured with all inputs at 4.5V, and all outputs open, A=B grounded.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER	FROM INPUT	TO OUTPUT	NUMBER OF GATE LEVELS	TEST CONDITIONS	MIN TYP	MAX	UNIT
			1		14		
t _{PLH}	Any A or B data input	A <b, a="">B</b,>	2		19		ns
YPLH	, and the second		3		24	36	
		A=B	4		27	45	
			1		11		
		A <b, a="">B</b,>	2	$C_L=15pF$, $R_L=2k\Omega$,	15		ns
t _{PHL}	Any A or B data input		3	11[-2832,	20	30	
		A=B	4		23	45	
t _{PLH}	A <b a="B</td" or=""><td>A>B</td><td>1</td><td></td><td>14</td><td>22</td><td>ns</td>	A>B	1		14	22	ns
t _{PHL}	A <b a="B</td" or=""><td>A>B</td><td>1</td><td></td><td>11</td><td>17</td><td>ns</td>	A>B	1		11	17	ns
t _{PLH}	A=B	A=B	2]	13	20	ns
t _{PHL}	A=B	A=B	2]	13	26	ns
t _{PLH}	A>B or A=B	A <b< td=""><td>1</td><td>1</td><td>14</td><td>22</td><td>ns</td></b<>	1	1	14	22	ns
t _{PHL}	A>B or A=B	A <b< td=""><td>1</td><td></td><td>11</td><td>17</td><td>ns</td></b<>	1		11	17	ns

QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

Description

This device contains four independent 2-input Exclusive-OR gates. It performs the Boolean functions $Y=A \oplus B=\overline{A}B+A\overline{B}$ in positive logic.

Function Table (each gate)

INF	PUT	OUTPUT
Α	В	Y
L	L	L
L	Н	н
н	L	н
Н	Н	L

Absolute Maximum Ratings

•	Input voltage		7V
•	Operating free-air temperature range	54LS	55°C to 125°C
	oporating need an eemperature range	74LS	0°C to 70°C
			−65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
.,	Supply voltage	54	4.5	5	5.5	V	
V _{cc}	Supply voltage	74	4.75	5	5.25	\ \ \	
Гон	High-level output current	54,74			-400	μΑ	
	Low-level output current	54			4	A	
lOL		74			8	mA	
т	Operating free-air temperature	54	-55		125		
T _A		74	0		70	°C	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMI	ETER	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT	
V _{IH}	High-level input v	oltage				2			٧
V _{IL}	Low-level input ve	oltage			54			0.7	v
				74				0.8	
V _{IK}	Input clamp volta	ge	V _{CC} =Min,	i=-18mA				-1.5	٧
Vou	/ _{OH} High-level output voltage		V _{CC} =Min	V _{IL} =Max	54	2.5	3.4		V
OH			I _{OH} =Max	$V_{IH} = Min$	74	2.7	3.4		
V	OL Low-level output voltage		V _{CC} =Min V _{IL} =Max V _{IH} =Min	I _{OL} =4mA	54,74		0.25	0.4	v
V OL			V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	V
l _l	Input current at n input voltage	naximum	V _{CC} =Max,	V _I =7V				0.2	mA
I _{IH}	High-level input of	urrent	V _{CC} =Max,	V _I =2.7V				40	μΑ
I _{IL}	Low-level input c	urrent	V _{CC} =Max,	V _I =0.4V				-0.8	mA
Ios	Short-circuit outp	ut current	V _{CC} =Max	Note 2)		-20		-100	mA
I _{CCH}	Supply current	Total with outputs high	V _{CC} =Max				6.1	10	mA
I _{CCL}	2 3,50,7 33.1311	Total with outputs low	V _{CC} =Max				9	15	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TEST COND	MIN	TYP	MAX	UNIT	
t _{PLH}	A or B	Other input low			12	23	ns
t _{PHL}	7, 0, 5	Other input low	$C_L = 15 pF$		10	17	113
t _{PLH}	A or B	Other input high	R _L =2KΩ		20	30	20
t _{PHL}	7. 51 B	Carer input night			13	22	ns

^{*} t_{PLH}=propagation delay time, low-to-high-level output.

^{*} t_{PHL}=propagation delay time, high-to-low-level output.

[#]For load circuit and voltage waveforms, see page 3-11.

GD54/74LS90 DECADE COUNTERS

Description

Each of these monolithic counters contains four masterslave flipflops and additional gating to provide a divide-by-two counter and a three-stage binary counter for which the count cycle length is divide-by-five for the LS90.

All of these counters have a gated zero reset and the LS90 also has gated set-to-nine inputs for use in BCD nine's complement applications.

To use their maximum count length (decade, divide-by-twelve, or four bit binary), the B input is connected to the $\mathbf{Q}_{\mathtt{A}}$ output. The input count pulses are applied to input A and the outputs are as described in the appropriate truth table. A symmetrical divide-by-ten count can be obtained from the LS90 counters by connecting the $\mathbf{Q}_{\mathtt{D}}$ output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output $\mathbf{Q}_{\mathtt{A}}$.

Function Table

RESET/COUNT TRUTH TABLE

	Reset	Inputs	Output						
R0(1)	R0(2)	R9(1)	R9(2)	QD	Qc	Q _B	Q _A	_	
Н	Н	L	Х	L	L	L	L	_	
н	Н	X	L	L	L	L	L		
Х	Х	н	Н	Н	L	L	Н		
Х	L	X	L		COL	UNT			
L	X	L	X	COUNT					
L	Х	Х	L	COUNT					
Х	L	L	Х	COUNT					

BCD COUNT SEQUENCE (See Note A)

BI-QUINARY (5-2) (See Note B)

Count	Output			Count	Output					
	Q _D	Q_{C}	Q_{B}	Q _A			Q _D	Q_{C}	Q_{B}	Q_A
0	L	L	L	L	П	0	L	L	L	L
1	L	L	L	Н	Ш	1	L	L	L	Н
2	L	L	Н	L		2	L	L	Н	L
3	L	L	Н	Н	Н	3	L	L	Н	Н
4	L	Н	L	L		4	L	Н	L	L
5	L	Н	L	Н		5	H	L	L	Н
6	L	Н	Н	L		6	Н	L	L	H
7	L	Н	Н	Н	П	7	H	L	Н	L
8	Н	L	L	L	П	8	Н	L	Н	Н
9	Н	L	L	Н		9	Н	Н	L	L

Note A: Output QA is connected to input B for BCD count.

 $\mbox{\bf B}$: Output $\mbox{\bf Q}_{\mbox{\bf D}}$ is connected to input A for bi-quinary.

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	7V
•	Input voltage	7V
	Operating free-air temperature range 54LS	-55°C to 125°C
•	74LS	0°C to 70°C
•	Storage temperature range	-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER	?		MIN	NOM	MAX	UNIT	
V	Supply voltage		54	4.5	5	5.5	V	
V _{cc}	Supply voltage		74	4.75	5	5.25		
I _{OH}	High-level output current	54, 74			-400	μΑ		
1	Low-level output current		54			4	mA	
l _{OL}	Low-level output current		74			8		
4	Count Frequency A to Q _A B to Q _B			0		32	MHz	
Tcount				0		16] """ [2	
		A input		15				
l t _w	Pulse width	B input		30			ns	
	Reset input			15]	
t _{REL}	Reset Release Time			25			ns	
	Operating free-air temperature		54	-55		125	°c	
T _A			74	0		70	1 "	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TES	T CONDITION	IS	MIN	TYP (Note 1)	MAX	UNIT				
V _{IH}	High-level input voltage				2			V				
V/	Law level innut valtage			54			0.7	V				
V _{IL}	Low-level input voltage			74			0.8	V				
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I	=-18mA				-1.5	V				
V _{OH}	High lavel autout veltage	V _{CC} =Min,	$V_{II} = Max$	54	2.5	3.4		V				
	High-level output voltage	I _{OH} =Max,	V _{IH} =Min	74	2.7	3.4		V				
		V _{CC} =Min	I _{OL} =4mA	54, 74		0.25	0.4					
V _{OL}						V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	V
	Input current at maximum input voltage	V _{CC} =Max	Reset				0.1					
l _i		$V_i = 7V$ $V_{CC} = Max$	Α				0.2	mA				
		V₁=5.5V	В				0.4					
		V _{CC} =Max	Reset				20					
I _{IH}	High-level input current	V ₁ =2.7V	Α .				40	μΑ				
			В				80					
		V _{CC} =Max	Reset				-0.4					
I _{IL}	Low-level input current	V _I =0.4V	Α				-2.4	mA				
			В				-3.2					
los	Short-circuit output current	V _{CC} =Max (Note 2)			-20		-100	mA				
Icc	Supply current	V _{CC} =Max (I	Note 3)			9	15	mA				

Note.1: All typical values are at V_{cc} =5V, T_A =25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{cc} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V and all other inputs grounded.

Note 4: G_A^c outputs are tested at I_{oL} =Max plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM(INPUT)	TO(OUTPUT)	TEST CONDITION	MIN	TYP	MAX	UNIT
	Α	Q _A		32	42		MHz
f _{max}	В	Q _B		16			IVITIZ
t _{PLH}	A	0			10	16	ns
t _{PHL}	1 ^	A Q _A			12	18	115
t _{PLH}	A	Q_D			32	48	ns
t _{PHL}	^	Q _D	C _L =15pF		34 50	50	
t _{PLH}	В	Q _B	$R_L=2k\Omega$		10	16	ns
t _{PHL}		Ŭ _B	11[-2/36		14	21	113
t _{PLH}	В	0			21	32	ns
t _{PHL}] B	Q _C			23	35	113
t _{PLH}	- В	0			21	32	ns
t _{PHL}] B	Q_D			23	35	115
t _{PHL}	Set-to-0	Any			26	40	ns
t _{PLH}	Set-to-9	Q_A,Q_D			20	30	ne
t _{PHL}	361-10-9	Q _B ,Q _C			26	40	ns

<sup>thing = maximum count frequency
thing = propagation delay time, low-to-high-level output.
thing = propagation delay time, high-to-low-level output.</sup>

DIVIDE-BY-TWELVE COUNTER

Features

- · Direct reset input provided
- Usable independently as binary and divide-by-six counter

Description

This device is composed of independent binary and divide-by-6 counters. Clock input A and output Q_A are employed for use as a binary counter while clock input B and $Q_B,\,Q_C$ and Q_D are employed for use as a divide-by-6 counter. When employed as a divide-by-12 counter, Q_A and B are connected and by making A the input, the output appears in outputs $Q_A,\,Q_B,\,Q_C$ and Q_D in accordance with the function table. The code appearing in the output is not pure binary code. Counting is performed when A and B are changed from high to low.

The binary and divide-by-6 counters can be reset simultaneously by setting direct reset inputs $R_{0(1)}$ and $R_{0(2)}$ high. For use as a counter, either $R_{0(1)}$ or $R_{0(2)}$ or both set low.

Reset/Count Function Table

RESET	RESET INPUTS			OUTPUT				
Ro(1)	Ro(2)	Q_D	Qc	Q _B	Q _A			
Н	Н	L	L	L	L			
L	Χ	COUNT						
Χ	L		COI	JNT				

COUNT SEQUENCE (See Note 1)

Count		Out	tput	
	Q_D	Q_{C}	Q_B	Q _A
0	L	L	L	L
1	L	L	L	н
2	L	L	Н	L
2 3 4 5 6	L	L	Н	н
4	L	Н	L	L
5	L	Н	L	н
	Н	L	L	L
7	Н	L	L	н
8	Н	L	Н	L
9	Н	L	Н	н
10	Н	Н	L	L
11	Н	H	L	Н

^{*}Note 1: Output Q is connected to input B.

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	7V
•	Input voltage	
	R inputs	7\ <i>/</i>
	A and B inputs	5 5V
•	Operating free-air temperature range 54LS	- 55°C to 105°C
	74LS	
•	Storage temperature range	-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETE	R		MIN	NOM	MAX	UNIT	
v_{cc}	Supply voltage		54	4.5	5	5.5	V	
			74	4.75	5	5.25]	
I _{OH}	High-level output current 54, 74				-400	μΑ		
l _{OL}	Low-level output current		54			4	mA	
·OL			74			8	1 ""	
f _{count}	Count frequency A input B input			0		32	MHz	
Count				0		16		
	A input			15				
t_w	Pulse width	B input		30			ns	
	Reset input			15			1	
t _{SU}	Reset inactive-state setul	p time		25			ns	
TA	Operating free-air temperature		54	-55		125	°C	
- A			74	0		70	1	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST	CONDITION	S	MIN	TYP (Note 1)	мах	UNIT
V _{IH}	High-level input voltage				2			V
VIH.	Tingit to to mip at a same			54			0.7	v
V _{IL}	Low-level input voltage			74			0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min, I ₁ :	=-18 mA				-1.5	٧
▼IK	mpat stamp remage	V _{CC} =Min	V _{IL} =Max	54	2.5	3.4		v
V_{OH}	High-level output voltage	I _{OH} =Max	V _{IH} =Min	74	2.7	3.4		V
			I _{OL} =4mA	54, 74		0.25	0.4	
V _{OL}	Low-level output voltage (Note 4)	V _{CC} =Min V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	V
	Input current at maximum	V _{CC} =Max V _I =7V	Reset				0.1	mA
l _l	input voltage	V _{CC} =Max V₁=5.5V	< A				0.2	
	input voltage	V _i ≅5.5V	В				0.4	
			Reset				20	1
	High-level input current	V _{CC} =Max	Α				40	μΑ
I _{IH}	riigii lovoi ilipat salvelli	V ₁ =2.7V	В				80	
			Α				-0.4	
	Low-level input current	V _{CC} =Max	В				-2.4	mA
l _{IL}	Low-level hiput current	V _I =0.4V	Reset				-3.2	
los	Short-circuit output current	V _{CC} =Max (Note 2)		-20		-100	mA
Icc	Supply current	V _{CC} =Max				9	15	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V and all other inputs grounded.

Note 4: Q_A outputs are tested at $I_{QL}=Max$ plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

Switching Characteristics, $V_{CC} = 5V$, TA = 25°C

PARAMETER*	FROM(INPUT)	TO(OUTPUT)	TEST CONDITION	MIN	TYP	MAX	UNIT
	Α	Q _A		32	42		MHz
f _{max}	В	Q _B		16			1411.12
t _{PLH}		0			10	16	ns
t _{PHL}	Α	Q _A			12	18	113
t _{PLH}					32	48	ns
t _{PHL}	A	Q _D	C _L =15pF		34	50	113
t _{PLH}			$R_L=2k\Omega$		10	16	ns
t _{PLH}	В	Q _B	H _L =2KS2		14	21	
t _{PLH}	-	0			10	16	ns
t _{PHL}	В	Q _C			14	21	113
t _{PLH}		0			21	32	ne
t _{PHL}	В	Q _D		23	35	ns	
t _{PHL}	Set-to-0	Any		**	26	40	ns

* f_{max}=maximum count frequency

* t_{PLH}=propagation delay time, low-to-high-level output.

* t_{PHL}=propagation delay time, high-to-low-level output.

4-BIT BINARY COUNTER DIVIDE-BY-TWO AND DIVIDE-BY-EIGHT

Description

This is an asynchronous 4-bit binary (hexadecimal) counter function with direct reset inputs.

This device is composed of independent binary and octal counters. Clock input A and output \mathbf{Q}_{A} are employed for use as a binary counter while clock input B and $\mathbf{Q}_{B},\,\mathbf{Q}_{C}$ and \mathbf{Q}_{D} are employed for use as an octal counter. When employed as a hexadecimal counter, the pure binary code output appears in the $\mathbf{Q}_{A},\,\mathbf{Q}_{B},\,\mathbf{Q}_{C},\,$ and \mathbf{Q}_{D} outputs by connecting \mathbf{Q}_{A} and B, and making A the input. Counting is performed when A and B change from high to low. The binary and octal counters can be reset simultaneously by set-

The binary and octal counters can be reset simultaneously by setting direct reset inputs $R_{O(1)}$ or $R_{O(2)}$ high. For use as a counter, either $R_{O(1)}$ or $R_{O(2)}$, or both, is set low.

Count Sequence

Count		Out	put	
Count	Q_D	Q _C	QB	Q_A
0	L	L	L	L
1	L	L	L	Н
2	L	L	Н	L
3	L	L	Н	Н
4	L	Н	L	L
5	L	Н	L	Н
6	L	Н	Н	L
7	L	Н	Н	Н
8	н	L	L	L
9	н	L	L	Н
10	н	L	Н	L
11	н	L	Н	Н
12	н	Н	L	L
13	н	Н	L	Н
14	н	Н	H	L
15	Н	Н	Н	Н

Reset/Count Function Table

Reset	Reset Inputs			Output				
RO(1)	RO(2)	QD	Q_{C}	Q_{B}	Q_A			
н	Н	L	L	L	L			
L	X	COUNT						
×	L	COUNT						

* Output Q is connected to input B.

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage: R inputs		7V
	A and B inputs		5.5V
•	Operating free-air temperature range	54LS	-55°C to 125°C
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER	3	MIN	NOM	MAX	UNIT
V _{cc}	Supply voltage		4.75		5.25	V
I _{OH}	High-level output current	54,74			-400	μΑ
1	Law lavel autaut aurant	54			4	A
l _{OL}	Low-level output current	74			8	mA
f _{count}	Count frequency	A input	0		32	N41.1-
'count		B input	0		16	MHz
		A input	15			
t _W	Pulse width	B input	30			ns
	Reset in		15			
t _{SU}	Reset inactive-state setup time		25			ns
T _A	Operating free-air temperate	Operating free-air temperature			70	°C

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

SYMBOL	PARAM	ETER	TEST CC	NDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input v	oltage				2			٧
V _{IL}	Low-level input v	oltage			54			0.7	v
- 10			74				0.8	1 "	
V _{IK}	Input clamp volta	ge	V _{CC} =Min,	I _I =-18mA				-1.5	٧
V _{OH}	High-level output voltage		V _{CC} =Min	V _{IL} =Max	54	2.5	3.4		v
ОН			I _{OH} =Max	V _{IH} =Min	74	2.7	3.4		
	Low-level output	Low-level output voltage (Note 4)		I _{OL} =4mA	54,74		0.25	0.4	
V _{OL}				I _{OL} =8mA	74		0.35	0.5	V
	Input current at maximum	Any reset	V _{CC} =Max,				0.1	mA	
l _l	input voltage	A or B input	V _{CC} =Max,	V _I =5.5V				0.2	
L	High-level	Any reset	V _{CC} =Max,	V.=2 7V				20	μΑ
I _{IH}	input current	A or B input	vec max,	•, =•				80	μ.
	Low-level	Any reset						-0.4	
I _{IL}	input current	A input B input	$V_{CC}=Max, V_I=0.4V$					-2.4 -1.6	mA
los	Short-circuit outp	ut current	V _{CC} =Max (Note 2)			-20		-100	mA
Іссн	Supply current		V _{CC} =Max (Note 3)			9	15	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Note 3: I_{CC} is measured with all outputs open, RO inputs grounded following momentary connection to 4.5V and all other inputs grounded.

Note 4: O_A outputs are tested at I_{OL}=max plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION	MIN	TYP	MAX	UNIT
f _{max}	Α	Q _A		32	42		
'max	В	Q _B		16			MHz
t _{PLH}	A	Q _A			10	16	no
t _{PHL}	^	G _A			12	18	ns
t _{PLH}	Α	Q_{D}	C _L =15pF -		46	70	ns
t _{PHL}	^	G D			46	70	115
t _{PLH}	В	1	$R_L = 2k\Omega$		10	16	ns
t _{PHL}		Q_{B}	nzks		14	21	
t _{PLH}	В				21	32	
t _{PHL}	В	Q _C			23	35	ns
t _{PLH}		B Q _D			34	51	
t _{PHL}	В				34	51	ns
t _{PHL}	Set-to-0	Any			26	40	ns

f_{max}=maximum count frequency

t_{PLH}=propagation delay time, low-to-high-level output.
 t_{PHL}=propagation delay time, high-to-low-level output.

GD54/74LS95B

4-BIT PARALLEL-ACCESS SHIFT REGISTERS

Feature

- Synchronous, expandable shift right
- · Synchronous shift left capability
- · Synchronous parallel load
- Separate shift and load clock inputs
- · Input clamp diodes limit high speed termination effects

Description

These 4-bit registers feature parallel and serial inputs, parallel outputs, mode control, and two clock inputs. The registers have three modes of operation:

Parallel (broadside) load

Shift right (the direction QA toward QD)

Shift left (the direction QD toward QA)

Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock-2 input. During loading, the entry of serial data is inhibited.

Shift right is accomplished on the high-to-low-transition of clock 1 when the mode control is low; shift left is accomplished on the high-to-low transition of clock 2 when the mode control is high by connecting the output of each flip-flop to the parallel input of the previous flip-flop (Q_D to input C, etc.) and serial data is entered at input D. The clock input may be applied commonly to clock 1 and clock 2 if both modes can be clocked from the same source. Changes at the mode control input should normally be made while both clock inputs are low; however, conditions described in the last three lines of the function table will also ensure that register contents are protected.

Function Table

	INPUTS								OUTF	PUTS	
MODE	CLO	CKS	CEDIAL	P	ARAL	LEL		QA	QB	Qc	QD
CONTROL	2 (L)	1 (R)	SERIAL	Α	В	С	D	C/A	Сев	Q()	Gυ
Н	Н	X	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Qco	Q _{DO}
Н	4	X	X	а	b	С	d	а	b	С	d
н	. ↓	X	X	Q _B †	Qct	$Q_D t$	d	Q _{Bn}	Q _{Cn}	Q_{Dn}	d
L	L	н	Х	Х	X	X	Χ	Q _{A0}	Q _{B0}	Q_{C0}	Q_{D0}
L	×	1	н	Х	X	X	Χ	н	Q_{An}	Q_{Bn}	Q _{Cn}
L	l x	4	L	X	X	X	Χ	L	Q_{An}	Q_{Bn}	Q _{Cn}
1 +	L	L	x	х	X	Х	Χ	Q _{AO}	Q_{B0}	Qco	Q_{D0}
+	L	L	X	X	X	X	Χ	QAO	Q _{B0}	Qco	Q_{D0}
1	L	Н	X	Х	X	X	Х	Q _{A0}	Q _{B0}	Qco	Q_{D0}
1 +	н	L	X	х	X	X	Х	Q _{A0}	Q_{B0}	Qco	Q_{DO}
t	н	Н	X	X	X	X	Х	Q _{A0}	Q_{B0}	Qco	Q_{D0}

 $^{^{}t}$ Shifting left requires external connection of Q_{B} to A, Q_{C} to B, and Q_{D} to C. Serial data is entered at input D. H=high level (steady state), L=low level (steady state), X=irrelevant (any input, including transitions) +=transition from high to low level, †=transition from low to high level.

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
	Input voltage		7V
•	Operating free-air temperature range	54LS	-55°C to 125°C
	operating transfer to	74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
		54	4.5	5	5.5	V	
V_{CC}	Supply voltage	74	4.75	5	5.25	٧	
Гон	High-level output current	54, 74			-400	μΑ	
011		54			4	mA	
I _{OL}	Low-level output current	74			8	IIIA	
f _{clock}	Clock frequency		0		25	MHz	
t _w	Width of clock or clear input pulse		20			ns	
t _{SU}	Data set up time		20			ns	
		54	20			ns	
t _h	Data hold time	74	10			110	
		54	-55		125	°c	
T_A	Operating free-air temperature	74	0		70		

a, b, c, d=the level of steady-state input at inputs A, B, C, or D, respectively.

a, b, c, contine level of steady-state input at imports a, b, c, or b, respectively.

Q_{A0}, Q_{B0}, Q_{C0}, Q_{D0}= the level of Q_A, Q_B, Q_C, or Q_D, respectively, before the indicated steady-state input conditions were established.

Q_{An}, Q_{Bn}, Q_{Cn}, Q_{Dn}= the level of Q_A, Q_B, Q_C, or Q_D, respectively, before the most-recent ↓ transition of the clock.

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TES	MIN	TYP (Note 1)	MAX	UNIT		
V _{IH}	High-level input voltage							٧
V				54			0.7	.,
V _{IL}	Low-level input voltage			74			0.8	V
V _{IK}	Input clamp voltage	V _{CC} =Min, I	V _{CC} =Min, I _I =-18mA				-1.5	٧
V	Vcc=	V _{CC} =Min	/ _{CC} =Min V _{II} =Max		2.5	3.4		.,
V _{OH}	High-level output voltage	I _{OH} =Max V _{IH} =	V _{IH} =Min	74	2.7	3.4		٧
V _{OL}	Low-level output voltage	V _{CC} =Min V _{IL} =Max V _{IH} =Min	I _{OL} =4mA	54, 74		0.25	0.4	v
▼OL	Low-level output voltage		I _{OL} =8mA	74		0.35	0.5	·
l _l	Input current at maximum input voltage	V _{CC} =Max,	V _{CC} =Max, V _I =7V				0.1	mA
I _{IH}	High-level input current	V _{CC} =Max,	V ₁ =2.7V				20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.4V					-0.4	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)			-20		-100	mA
Icc	Supply current	V _{CC} =Max (Note 3)				13	21	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency			36		MHz
t _{PLH}	Propagation delay time, low-to- high-level Q outputs from clock input	$C_L=15pF, R_L=2k\Omega$		18	27	ns
t _{PHL}	Propagation delay time, high-to- low-level Q outputs from clock input			21	32	ns

[#]For load circuit and voltage waveforms, see page 3-11.

Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Note 3: I_{CC} is measured with all outputs and serial input open; A, B, C, and D inputs grounded, mode control at 4.5V, and a momentary 3V, then ground, applied to both clock inputs.

GD54/74LS107A

DUAL NEGATIVE-EDGE-TRIGGERED MASTER-SLAVE J-K FLIP-FLOPS WITH CLEAR, AND COMPLEMENTARY OUTPUTS

Features

- Negative edge-triggering
- Independent input/output terminals for each flip-flop.
- Direct reset input
- Q and Q outputs

Description

This device contains two independent negative-edge-triggered J-K flip-flops with complementary outputs. The J and K inputs must be stable one setup time prior to the High-to-Low clock transition for predictable operation. The clock triggering occurs at a voltage level and is not directly related to the transition time of the negative going edge of the clock pulse. The data on the J and K inputs may change while the clock is high or low without affecting the outputs as long as setup and hold times are not violated. A low logic level on the clear input will reset the outputs regardless of the logic levels of the other inputs.

Function Table

	Outp	outs			
CLR	CLK	J	К	Q	ā
	X → → → H	X L H L H X	X L H H X	L Q _o H L Tog Q _o	H Q° L H gle Q°

↓=Negative going edge of pulse

Qo=The output logic level before the indicated input conditions were established.

Toggle=Each output changes to the complement of its previous level on each falling edge of the clock pulse.

Absolute Maximum Ratings

•	Supply voltage, V _{CC}		/V
	Operating free-air temperature range	54LS	-55°C to 125°C
•	Operating nee-all temperature range	74LS	0°C to 70°C
•	Storage temperature range		-03 C to 130 C

Recommended Operating Conditions

SYMBOL	PARAMETER				NOM	MAX	UNIT	
V _{CC}	Supply voltage		54	4.5	5	5.5	v	
			74	4.75	5	5.25	•	
Гон	High-level output current 54, 74					-400	μΑ	
	Low-level output current		54			4	mA	
l _{OL}			74			8	IIIA	
f _{clock}	Clock frequency			0		30	MHz	
	Pulse Width/enable pulse Clock Hig Clear Lov		gh	20			ns	
t _w			w	25				
t _{su}	Data setup time			20↓			ns	
t _h	Data hold time			Oţ			ns	
TA	Operating free-air temperature		54	-55		125	°C	
			74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TES	T CONDITION	MIN	TYP (Note 1)	MAX	UNIT	
V _{IH}	High-level input voltage				2			V
V _{IL}	Low-level input voltage			54			0.7	1,,
· IL	Low-level input voltage		74				8,0	٧
V _{IK}	Input clamp voltage	V _{CC} =Min, I	_I =-18mA				-1.5	V
V _{OH}	High-level output voltage	V _{CC} =Min	V _{IL} =Max	54	2.5	3.4		
•ОН	riigii-level output voltage	I _{OH} =Max	V _{IH} =Min	74	2.7	3.4		V
.,	Law lavel autout welters	V _{CC} =Min V _{IL} =Max V _{IH} =Min	I _{OL} =4mA	54,74		0.25	0.4	
V _{OL}	Low-level output voltage		I _{OL} =8mA	74		0.35	0.5	٧
	Input current at maximum input voltage	V _{CC} =Max V _I =7V	J.K Clear				0.1	
4							0.3	mA
			Clock				0.4	
	High-level input current	V _{CC} =Max V _I =2.7V	J.K Clear				20	
I _{IH}							60	μΑ
			Clock				80	
			J,K Clear			-	-0.4	
IIL	Low-level input current	V _{CC} =Max V _I =0.4V					-0.8	
		'	Clock				-0.8	
los	Short-circuit output current	V _{CC} =Max (Note 2)	C			-	-100	mA
l _{cc}	Supply current	V _{CC} =Max (I	V _{CC} =Max (Note 3)			4	6	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed $V_o = 2.25V$ and 2.125V for 54 and 74 series, respectively, with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatc test equipment. Note 3: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement the clock is grounded.

Switching Characteristics, V_{CC} = 5V, T_A = 25°C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
f _{max}				30	45		MHz
t _{PLH}	Clear	ā	C ₁ = 15pF		15	20	
t _{PHL}	Olear	Q	$C_L=15pF$ $R_L=2kQ$		15	20	ns
t _{PLH}	Clock	Q or Q			15	20	ns
t _{PHL}	Olock				15	20	113

f_{max}=maximum clock frequency; tested with all outputs loaded.

t_{PLH}=propagation delay time, low-to-high-level output.

 $t_{\rm PHI}$ = propagation delay time, high-to-low-level output.

^{*}For load circuit and voltage waveforms, see page 3-11.

Application Example 2BIT SHIFT REGISTER

GD54/74LS109A

DUAL POSITIVE-EDGE-TRIGGERED J-K FLIP-FLOPS

Feature

- Positive Edge-Triggering
- · Direct Set and reset inputs
- J and K inputs
- Q and Q outputs

Description

This device contains two independent positive-edge-triggered J- \overline{K} flip-flops with complementary outputs. The J and \overline{K} data is accepted by the flip-flop on the rising edge of the clock pulse. The triggering occurs at a voltage level and is not directly related to the transition time of the rising edge of the clock. The data on the J and \overline{K} inputs may be changed while the clock is high or low as long as setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Function Table

	Inputs					
PR	CLR	CLK	J	ĸ	Q Q	
L	Н	Х	Х	Х	H L	
Н	L	Х	Х	Х	LH	
L	L	Х	Х	Х	H* H*	
Н	н	1	L	L	LH	
Н	н	†	Н	L	Toggle	
н	Н	†	L	Н	Q _o Q̄ _o	
н	н	t	н	н	H L	
н	н	L	Х	Х	Q ₀ Q̄ ₀	

- X = Either Low or High Logic Level
- t = Rising Edge of Pulse
- = This configuration is nonstable; that is, it will not persist when preset and/or clear inputs return to their inactive (high) state.
- \mathbf{Q}_{o} = The output logic level of Q before the indicated input conditions were established.
- Toggle = Each output changes to the complement of its previous level on each active transition of the clock pulse.

Absolute Maximum Ratings

•	Supply voltage, V _{CC}		
			7V
			55°C to 125°C
	74	1LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER			MIN	NOM	MAX	UNIT	
V	Supply voltage		54	4.5	5	5.5	V	
V _{CC}	Supply voltage		74	4.75	5	5.25		
Гон	High-level output curre	nt	54,74			-400	μΑ	
	I am land a day to a second		54			4	mA	
lor	LOW-level output curren	74				8		
f _{clock}	Clock frequency	ock frequency		0		25	MHz	
CICON	CIOCK		gh	18				
t _w	Pulse Width	dth Preset Low		15			ns	
,,		Clear Lov	N	15				
•	Setup Time	Data High	n	30t			ns	
t _{SU}	Setup Time	Data Low		201				
t _H	Hold Time		01			ns		
	Operating free-air temperature		54	-55		125	°C	
T _A			74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			٧
V _{IL}	Low-level input voltage			54			0.7	٧
* IL	20W lover input vertage						0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min, I	=-18mA	^			-1.5	٧
V _{OH}	High level output voltage	V _{CC} =Min, V	_L =Max	54	2.5	3.4		٧
• ОН	Thigh lover earpar remage	I _{OH} =Max, V	I _{OH} =Max, V _{IH} =Min		2.7	3.4		
		V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	٧
V _{OL}	Low-level output voltage		I _{OL} =8mA	74		0.35	0.5	
l _i ·	Input current at maximum input voltage		J,K				0.1	
		V _{CC} =Max V _I =7V	Clock				0.1	mA
1			Preset				0.2	
			Clear				0.2	
			J,K				20	
I _{IH}	High-level	V _{CC} =Max	Clock	lock			20	μΑ
1111	input current	V ₁ =2.7V	Preset				40	
			Clear				40	
			J,K				-0.4	
I _{IL}	Low-level	V _{CC} =Max	Clock				-0.4	mA
'IL	input current	V ₁ =0.4V	Present				-0.8	
			Clear				-0.8	
los	Short-circuit output current	V _{CC} =Max (Note 2)			-20		-100	mA
Icc	Supply current	V _{CC} =Max (Note 3)			4	8	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from the outputs, where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where V_C=2.25V and 2. 125V for 54 and 74 series, respectively, with the minimum and and maximum limits reduced by one half from their stated values.
This is very useful when using automastic test equipment.
Note 3: With all outputs open, I_{CC} is measured with the Q and Q outputs high in turn. At the time of measurement the clock is grounded.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION	MIN	TYP	MAX	UNIT
f _{max}				25	33		MHz
t _{PLH}	Clock	Q or Q			17	25	ns
t _{PHL}					22	30	ns
t _{PLH}	Clear	۵	C _L =15pF,		17	25	ns
t _{PHL}		Q	$R_L = 2k\Omega$		22	30	115
t _{PLH}	Preset	Q			16	25	ns
t _{PHL}		Q			22	30	

DUAL J-K NEGATIVE EDGE-TRIGGERED FLIP FLOPS WITH SET AND RESET

Features

- Negative edge-triggering
- · Diode clamped inputs
- Independent input/output terminals for each flip-flop.
- Direct set and reset inputs
- Q and Q outputs

Description

This device contains two independent negative-edge-triggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flops on the falling edge of the clock pulse. The clock triggering occurs at a voltage level and is not directly related to the transition time of the negative going edge of the clock pulse. Data on the J and K inputs can be changed while the clock is high or low without affecting the outputs as long as setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

^{*=}This configuration is nonstable: that is, it will not persist when preset and/or clear inputs return to their inactive (high) level.

 Q_O =The output logic level before the indicated input conditions were established.

Toggle=Each output changes to the complement of its previous level on each falling edge of the clock pulse.

Function Table

	Inputs					
PR	CLR	CLK	J	K	Q Q	
L	Н	Х	X	Х	H L	
Н	L	Х	X	Х	LH	
L	L	X	X	X	н• н•	
Н	Н	1	L	L	$Q_{o} \overline{Q}_{o}$	
Н	Н	1	H	L	H L	
Н	Н	1	L	Н	L H	
Н	Н	+	Н	Н	Toggle	
Н	Н	Н	X	X	$Q_0 \overline{Q}_0$	

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	7V
•	Input voltage	7V
•	Operating free-air temperature range	0°C to 70°C
•	Storage temperature range	-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	MAX	UNIT	
V _{CC}	Supply voltage		4.75	5.25	V	
I _{OH}	High-level output current	High-level output current		-0.4	mA	
l _{OL}	Low-level output current			8	mA	
		clock high	20			
t_w	Pulse width	clock low	25		ns	
		clear or preset low	25			
f _{clock}	Clock frequency		0	30	MHz	
t _{su}	Set up time		20↓*		ns	
t _h	Input hold time		O 1*		ns	
T _A	Operating free-air temperature		0	70	°C	

^{*} For falling edge.

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT	
V _{IH}	High-level input voltage				2			٧	
	Low-level input voltage			54			0.7	V	
V _{IL}	Low-level input voltage			74			0.8		
V _{IK}	Input clamp voltage	V _{CC} =Min, I	_I =-18mA				-1.5	٧	
	Lich level output voltage	V _{CC} =Min ,	V _{IL} =Max	54	2.5	3.4		v	
V_{OH}	High-level output voltage	I _{OH} =Max, V _{IH} =Min		74	2.7	3.4			
		V _{CC} =Min	I _{OL} =4mA	54, 74		0.25	0.4	v	
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	,	
			J,K				0.1		
	Input current	V _i =7V		Clear				0.3	mA.
l _l	at maximum input voltage			Preset				0.3	"'^
			Clock				0.4		
			J,K				20]	
	High-level	V _{CC} =Max	Clear				60	μΑ	
I _{IH}	Input current	V ₁ =2.7	Preset				60]	
			Clock				80		
			J,K				-0.4		
	Low-level	V _{CC} =Max	Clear				-0.8		
I _{IL}	input current	V _I =0.4V	Preset				-0.8	mA	
			Clock				-0.8		
Ios	Short-circuit output current	V _{CC} =Max (Note 2)			-20		-100	mA	
Icc	Supply current	V _{CC} =Max (Note 3)			4	6	mA	

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. For devices, with feedback from outputs where shorting the outputs to ground may cause the outputs to change logic state an equivalent test may be performed where V_o=2.25V and 2.125V for, 54 and 74 series, respectively, with the minimum and maximum limits reduced by one half from their stated values. This is very useful when using automatic test equipment.

Note 3: With all outputs open, ICC is measured with the Q and Q outputs high in turn. At the time of measurement the clock is grounded.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
f _{max}			0 -15 -5	30	45		MHz
t _{PLH}	Clear, preset	Q or Q	$C_L=15 \text{ pF}$ $R_I=2K\Omega$		15	20	ns
t _{PHL}	Clock	Q 01 Q	_		15	20	,,,,

*f_{max}=maximum clock frequency

^{*}t_{PLH}=propagation delay time, low-to-high-level output.

^{*}t_{PHL}=propagation delayt ime, high-to-low-level output.

[#]For load circuit and voltage waveforms, see page 3-11.

DUAL RETRIGGERABLE MONOSTABLE MULTIVIBRATORS WITH CLEAR

Feature

- D-C Triggered from active-high or active-low gated logic inputs
- Retriggerable for very long output pulses, up to 100% duty cycle
- · Overriding clear terminates output pulse
- Compensated for V_{CC} and temperature variations

Description

This D-C triggered multivibrator features output pulse width control by three methods. The basic pulse time is programmed by selection of external resistance and capacitance values.

The LS123 is provided enough Schmitt hysteresis to ensure jitter-free triggering from the B input with transition rates as slow as 0.1 millivolt per nanosecond.

Output Pulse Width, tw

The output pulse width tw is set by Rext and Cext

- A. When Cext is greater than 1000 pF.
 tw= 0.45 Rext Cext (ns), Rext: kΩ, Cext; pF.
- B. When Cext is equal to or less than 1000 pF, See Figure 1.

Figure 1. Typical Output Pulse Width VS External Timing Cpacitiance

Function Table

INI	PUT		OUT	PUTS
CLEAR	Α	В	Q	ā
L	Х	X	L	Н
×	Н	X	L.	Н
X	X	L	L	Н
н	L	↑		7.
Н	. ↓	Н		7
†	L	Н		7

Figure 2. Connection of Cext and Rext

Absolute Maximum Ratings

Supply voltage, Vcc
 Input voltage
 Operating free-air temperature range
 Storage temperature range
 Storage temperature range

7V

 7V
 7V
 7V
 7V
 7V
 7V
 7V
 7V
 7V
 7V
 7V
 125°C
 125°C
 125°C
 150°C
 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
		54	4.5	5	5.5	v
V _{cc}	Supply voltage	74	4.75	5	5.25	٧
Іон	High-level output current	54,74			-400	μΑ
	los Low-level output current	54			4	^
loL	Low-level output current	74			8	mA
t _w	Pulse width		40			ns
R _{ext}	External timing resistance		5		260	ΚΩ
C _{ext}	External capacitance			No restriction	1	
-	On analism from air termoreture	54	-55		125	°C
TA	Operating free-air temperature	74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CO	TEST CONDITIONS			TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			٧
	Low-level input voltage			54			0.7	v
V _{IL}	Low-level input voltage			74			0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min, I	=-18mA				-1.5	٧
	High-level output voltage	V _{CC} =Min,	V _{IL} =Max	54	2.5	3.4		V
V _{OH}	riigirievei output voitage	I _{OH} =Max,	V _{IH} =Min	74	2.7	3.4		
		V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	V
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	V
l ₁	Input current at maximum input voltage	V _{CC} =Max,	V ₁ =7V				0.1	mA
I _{IH}	High-level input current	V _{CC} =Max,	$V_1 = 2.7V$				20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max,	V _{CC} =Max, V _I =0.4V				-0.4	mA
los	Short-circuit output current	V _{CC} =Max (V _{CC} =Max (Note 2)		-20		-100	mA
Icc	Supply current	V _{CC} =5.25	V (Note 3)			12	20	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Note 3: With all outputs open and 4.5V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5V is applied to clock.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
	Α	Q			23	33	
t _{PLH}	В	Q			23	44	ns
	Α	īq	0 -0 B -51-0		32	45	
t _{PHL}	В	$C_{ext}=0, R_{ext}=5k\Omega$ $C_{L}=15pF, R_{L}=2k\Omega$		34	56	ns	
t _{PHL}	Clear	Q			20	27	
t _{PLH}	Olear	ĪQ			28	45	ns
t _w Q (min)	A or B	Q			116	200	ns
t _w Q	A or B	Q	C_{ext} =1000pF, R_{ext} =10k Ω C_{L} =15pF, R_{L} =2k Ω	4	4.5	5	μs

t_{PLH}=propagation delay time, low-to-high-level output.
 t_{PHL}=propagation delay time, high-to-low-level output.
 t_wQ=width of pulse at output Q

[#]For load circuit and voltage waveforms, see page 3-11.

GD54/74LS125A

QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS

Description

This device contains 4 buffers with 3-state outputs and is provided with an output control input C which is independent for each buffer.

Function Table

INP	UTS	OUTPUT
С	Α	Υ
L	L	L
L	Н	H
Н	X	Z

- X: Irrelevant
- Z: High Impedance
- Output is off (disabled) when C is high

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
		54LS	
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V _{cc}	Supply voltage	54	4.5	5	5.5	
• CC	Supply voltage		4.75	5	5.25	V
1 _{0H}	High-level output current	54			-1	4
ЮН	riigii-level output current				-2.6	mA
1	Low-level output current	54			12	
OL		74			24	mA
T _A	Operating free-air temperature	54	-55		125	0.0
		74	0		70	°C

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage			2			V
VII	Low-level input voltage		54			0.7	v
	,		74			0.8	1
V_{IK}	Input clamp voltage	$V_{CC}=Min, I_I=-18mA$				-1.5	V
V _{OH}	High-level output voltage	V _{CC} =Min, V _{IL} =Max	54	2.5	3.4		v
		I _{OH} =Max, V _{IH} =Min	74	2.7	3.4		•
V _{OL}	Low-level output voltage	V _{CC} =Min V _{II} =Max	54,7	4	0.25	0.4	,,
♥ OL	Low-level output voltage	V _{IH} =Min I _{OL} =24mA	74		0.35	0.5	V
l ₁	Input current at maximum input voltage	V _{CC} =Max, V _I =7V			****	0.1	mA
I _{IH}	High-level input current	V _{CC} =Max, V _I =2.7V				20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.4V				-0.4	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)		-40		-225	mA
loz	Off-state (high-impedance	V _{CC} =Max, V _{IH} =Min	$V_0 = 2.4$			20	Δ
-02	state) output current	V _{IL} =Max,	$V_0 = 0.4$	/		-20	μΑ
lcc	Supply current	V _{CC} =Max Data Input=0V Output control=4.5V			11	20	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output			9	15	ns
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L = 45pF$ $R_L = 667\Omega$		7	18	ns
t _{PZH}	Output enable time to high level	H _L =66/Ω		12	20	ns
t _{PZL}	Output enable time to low level			15	25	ns
t _{PHZ}	Output disable time from high level	C _L =5pF			20	ns
t _{PLZ}	Output disable time from low level	$R_L = 667\Omega$			20	ns

[#]For load circuit and voltage waveforms, see page 3-11.

QUAD 2-INPUT NAND GATES WITH SCHMITT TRIGGER INPUTS

Features

- · Suitable for waveforms shaping applications
- Wide hysteresis width (0.8V typical) and high noise margin

Description

This device contains four independent gates each of which performs the logic NAND function. Each input has hysteresis which increases the noise immunity and transforms a slowly changing input signal to a fast changing, jitter free output.

When inuts A and B are high, output Y is low, and when either or both inputes are low, Y is high.

V_{IN} VERSUS V_{OUT} TRANSFER FUNCTION

Fig. 1

Function Table

Α	В	Υ
L	L	Н
Н	L	Н
L	Н	Н
Н	Н	L
Y=ĀB		

Absolute Maximum Ratings

•	Supply voltage, V _{CC}
•	Input voltage
	Operating free-air temperature range 54LS
	74LS 0°C to 70°C
•	Storage temperature range

Recommended Operating Conditions

SYMBOL	PÄRAMETER		MIN	NOM	MAX	UNIT	
V _{cc}	Supply voltage	54	4.5	5	5.5	V	
• 66	Cappi, tanage	74	4.75	5	5.25		
I _{OH}	High-level output current	54,74			-400	μΑ	
l _{OL}	Low-level output current	54			4	mA	
OL		74			8		
T _A	Operating free-air temperature	54	-55		125	°C	
· A	Sporating was all temperature	74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAM	ETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT
V _{T+}	Positive-Going In Threshold Voltage	•	V _{CC} =5V			1.4	1.6	1.9	٧
V _T _	Negative-Going Threshold Voltage	Input je (Note 1)	V _{CC} =5V			0.5	0.8	1	٧
V _{IK}	Input clamp volt	age	V _{CC} =Min, I _I	=-18mA				-1.5	٧
$V_{T+,}V_{T-}$	Input Hysteresis	(Note 1)	V _{CC} =5V			0.4	0.8		V
V _{OH}	High-level outpu	t voltage	V _{CC} =Min I _{OH} =Max,	V _I =V _T _Min	54 74	2.5	3.4		٧
V _{OL}	Low-level output voltage		V _{CC} =Min V _I =V _{T+} Max	$I_{OL} = 4mA$ $I_{OL} = 8mA$	54,74 74		0.25 0.35	0.4	٧
I _{T+}	Input Current at Positive-Going T		V _{CC} =5V, V _I =V _{T+}			-0.14		mA	
I _T _	Input Current at Negative-Going		V _{CC} =5V, V _I	=V _T _			-0.18		mA
I _I	Input current at input voltage	maximum	V _{CC} =Max, V	₁ =7V				0.1	mA
I _{IH}	High-level input	current	V _{CC} =Max, V	/ _I =2.7V				20	μΑ
I _{IL}	Low-level input	current	V _{CC} =Max, V	' _i =0.4V				-0.4	mA
los	Short-circuit output current		V _{CC} =Max (Note 2)			-20		-100	mA
Іссн	Supply current Total with outputs high		V _{CC} =Max				5.9	11	mA
I _{CCL}		Total with outputs low					8.2	14	mA

Note 1: All typical values are at V_{CC} =5V, T_A =25°C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	$C_1 = 15pF, R_1 = 2k\Omega$		15	22	ns
t _{PHL}	Propagation delay time, high-to-low-level output			15	22	ns

[#]For load circuit and voltage waveforms, see page 3-11.

3-TO-8-LINE DECODERS/DEMULTIPLEXERS

Feature

- Designed Specifically for High Speed Memory Decoders and Data Transmission Systems
- Incorporate 3 Enable Inputs to Simplify Cascading AND/OR Data Reception
- Schottky Clamped for High Performance

Description

This schottky-clamped TTL MSI circuit is designed to be used in high-performance memory-decoding or data-routing applications requiring very short propagation delay time. In high-performance memory systems this decode can be used to minimize the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit the delay times of this decoder and the enable time of the memory are usually less than the typical access times of the memory. This means that the effective system delay introduced by the schottky-clampled system decoder is negligible.

Function Table

	INP	UTS						דווכ	PUT	· s		
ENA	BLE	SE	LE	СТ			`	501		0		
G1 (G2*	С	В	Α	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X L H H H H H H	H X	XXLLLITIT	XXLLHHLLHH	XXLHLHLHLH	TILITITI	TITLITITI	TITLLITI	TITILITI	TITITITI	TILLITILI	THHHHHH	

^{*} G2=G2A+G2B

Pin Configuration DATA OUTPUTS Vcc Yo Y1 Y2 Y3 Y4 Y5 Y6 16 15 14 13 12 11 10 9 Yo Y1 Y2 Y3 Y4 Y5 A Y6 B C G2A G2B G1 Y7 SELECT ENABLE OUTPUT Suffix-Blank: Plastic Dual In Line Package Suffix-J : Ceramic Dual In Line Package

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage		7V
		54LS	
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Application Example 4-LINE TO 16-LINE DECORDER/DEMULTIPLEXER

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
	Complex college	54	4.5	5	5.5	.,
V_{CC}	Supply voltage	74	4.75	5	5.25	V
I _{OH}	High-level output current	54,74			-400	μΑ
	Law L	54			4	4
IOL	Low-level output current	74			8	mA
_	Operating free six temperature	54	-55		125	°C
TA	Operating free-air temperature	74	0		70	30

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CO	ONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage			2			٧	
V _{IL}	Low-level input voltage				0.7	V		
- 12					0.8			
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I	V _{CC} =Min, I _I =-18mA				-1.5	٧
V _{OH}	High-level output voltage	V _{CC} =Min	V _{IL} =Max	54	2.5	3.4		٧
		I _{OH} =Max	V _{IH} =Min	74	2.7	3.4		
.,		V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	v
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	V
l _l	Input current at maximum input voltage	V _{CC} =Max, \	/ _I =7V				0.1	mA
I _{IH}	High-level input current	V _{CC} =Max, \	/ _I =2.7V				20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.4V					-0.4	mA
los	Short-circuit output current	V _{CC} =Max (I	-20		-100	mA		
Icc	Supply current	V _{CC} =Max Outputs ena	bled and open			6.3	10	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LEVEL	TEST CONDITION#	MIN TYP	MAX	UNIT
t _{PLH}			2		13	20	ns
t _{PHL}	Binary		2		27	41	ns
t _{PLH}	Select	Any	3	C _L =15pF	18	27	ns
t _{PHL}				_	26	39	ns
t _{PLH}			2	$R_L=2k\Omega$	12	18	ns
t _{PHL}	Enable	Any	2		21	32	ns
t _{PLH}	Litable	Ally	3		17	26	ns
t _{PHL}					25	38	ns

[#]For load circuit and voltage waveforms, see page 3-11.

DUAL 2-TO-4-LINE DECODERS/DEMULTIPLEXERS

Feature

- Designed Specifically for High Speed Memory Decoders and Data Transmission Systems
- Schottky Clamped for High Performance

Description

This schottky-clamped TTL MSI circuit is designed to be used in high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems this decoder can be used to minimize the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit the delay times of this decoder and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by schottky-clamped system decoder is neglible.

Pin Configuration ENABLE SELECT DATA OUTPUTS VCC 2G 2A 2B 2Y0 2Y1 2Y2 2Y3 16 15 14 13 12 11 10 9 G A B Y0 Y1 Y2 Y3 THE SELECT DATA OUTPUTS Suffix-Blank: Plastic Dual In Line Package Suffix-J : Ceramic Dual In Line Package

Function Table

INPL	JTS			OUTI	PUTS		
ENABLE	SEL	ECT					
G	В	Α	Y0	Y1	Y2	Y3	
Н	Х	Х	Н	Н	Н	Н	
L	L	L	L	Н	Η,	Н	
L	L	Н	Н	L	Н	Н	
L	н	L	Н	Н	L	н	
L	Н	Н	Н	Н	Н	L	

- H: High level
- L: Low level
- X: Irrelevant

Absolute Maximum Ratings

Supply voltage, Vcc
 Input voltage
 Operating free-air temperature range
 54LS
 75°C to 125°C
 74LS
 0°C to 70°C
 Storage temperature range
 -65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V	Supply voltage	54	4.5	5	5.5	v
V _{cc}	Supply voltage	74	4.75	5	5.25	V
I _{ОН}	High-level output current	54,74			-400	μΑ
	Low lovel output ourset	54			4	4
lor	Low-level output current	74			8	mA i
TA	Operating free-air temperature	54	-55		125	°C
'A	Operating free-air temperature	74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CO	NDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			٧
V _{IL}	Low-level input voltage			54			0.7	V
				74			0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min, I	_I =-18mA	•			-1.5	٧
V _{OH}	High-level output voltage	V _{CC} =Min,	V _{IL} =Max	54	2.5	3.4		V
L		I _{OH} =Max,	V _{IH} =Min	74	2.7	3.4		ľ
V	Low-level output voltage	V _{CC} =Min V _{IL} =Max	I _{OL} =4mA	54,74		0.25	0.4	V
V _{OL}	Low-level output voltage	V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	, v
l _l	Input current at maximum input voltage	V _{CC} =Max,	V ₁ =7V				0.1	mA
I _{IH}	High-level input current	V _{CC} =Max,	V ₁ =2.7V				20	μΑ
l _{IL}	Low-level input current	V _{CC} =Max,	V _I =0.4V				-0.4	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)		-20		-100	mA
Icc	Supply current	V _{CC} =5.25\ Outputs enab	/ pled and open			6.8	1,1	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LEVEL	TEST CONDITION#	MIN T	/P	MAX	UNIT
t _{PLH}					. 1	3	20	ns
t _{PHL}	Binary	Any	2		2	2	33	ns
t _{PLH}	Select	-		C _L =15pF	1	8	29	ns
t _{PHL}			3	$R_L = 2k\Omega$	2	5	38	ns
t _{PLH}	Enable	Any	2		1	6	24	ns
t _{PHL}					2	1	32	ns

#For load circuit and voltage waveforms, see page 3-11.

BCD-TO-DECIMAL DECODER/DRIVER

Features

- Full Decoding of Input Logic
- 80-mA Sink-Current Capability
- All Outputs Are Off for Invalid BCD Input Conditions
- Low Power Dissipation of 'LS145...35 mW Typical

Description

These monolithic BCD-to-decimal decoder/drivers consist of eight inverters and ten four-input NAND gates. The inverters are connected in pairs to make BCD input available for decoding by the NAND gates. Full decoding of valid BCD input logic ensures that all outputs remains off for all invalid binary input conditions. These decoders feature high-performance, n-p-n output transistors designed for use as indicator/relay drivers or as open-collector logic-circuit drivers.

The outputs are open collector types with a breakdown voltage of 15V and an I_{OL} of 80mA (with $V_{OL} \leq 3V$) This device is therefore suitable for use as an LSTTL/MOS interface, display tube and relay driver.

Function Table

NO.	١	NP	UTS	3				C	TUC	PU	TS			
	D	С	В	Α	0	1	2	3	4	5	6	7	8	9
0	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н
1	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	н
2	L	L	н	L	н	Н	L	н	Н	Н	Н	н	Н	н
3	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	H
4	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н	Н	Н
5	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
6	L	н	Н	L	н	Н	Н	Н	Н	Н	L	Н	Н	H
7	L	Н	Н	Н	н	Н	Н	Н	Н	Н	Н	L	Н	н
8	Н	L	L	L	н	Н	Н	Н	Н	Н	Н	Н	L	н
9	н	L	L	Н.	н	Н	Н	Н	Н	Н	Н	Н	Н	L
10	Н	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
11	н	L	Н	Н	н	Н	Н	Н	Н	Н	Н	Н	Н	н
12	Н	н	L	L	н	Н	н	Н	Н	Н	Н	н	н	н
13	Н	Н	L	Н	н	Н	Н	Н	Н	Н	Н	н	н	н
14	Н	Н	Н	L	н	Н	Н	Н	Н	Н	Н	н	н	н
15	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н

H=high level (off), L=low level (on)

Absolute Maximum Ratings

•	Supply voltage, V _{CC}		 •	7V
•	Input voltage	· · · · · · · · · · · · · · · · · · ·	 	7V
•	Operating free-air temperature range	54LS	 -55°C to 125°	°C
		74LS	 0°C to 70	°C
•	Storage temperature range		-65°C to 150°	°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V _{cc}	Supply voltage	54	4.5	5	5.5	V
		74	4.75	5	5.25	
Vo	Off-State output voltage	54,74			15	V
T _A	Operating free-air temperature	54	-55		125	°C
^	, g	74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			MIN TYP (Note 1) MAX	UNIT
V _{IH}	High-level input voltage				2		٧
VIL	Low-level input voltage			54		0.7	v
				74		0.8	'
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I	=-18mA		-1.5	٧	
I _{O(Off)}	Off-state output current	V _{CC} =Min, V	OH=Max		250	μА	
	On-state output voltage	V _{CC} =Min	I _{OL} =12mA	54,74	0.25	0.4	
$V_{O(ON)}$		V _{IL} =Max	I _{OL} =24mA	74	0.35	0.5	v
		V _{IH} =Min	I _{OL} =80mA	74	2.3	3.0	
l _l	Input current at maximum input voltage	V _{CC} =Max, \	/ _I =7V			0.1	mA
Iн	High-level input current	V _{CC} =Max, \	/ _I =2.7V		20	μΑ	
I _{IL}	Low-level input current	V _{CC} =Max, \	/ _I =0.4V		-0.4	mA	
Icc	Supply current	V _{CC} =Max (N	lote 2)		7	13	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: I_{CC} is measured with all inputs grounded and outputs open.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	C _L =45pF, R _L =665Ω	50	ns
t _{PHL}	Propagation delay time, high-to-low-level output	GE 1651, ME 3332	50	ns

[#]For load circuit and voltage waveforms, see page 3-11.

GD54/74LS148 8-TO-3 LINE PRIORITY ENCODER

Features

- Priority Decoding of the Data Inputs
- Code conversions
- Decimal-to-BCD Converter
- Group Serial Output active when any input is low

Description

These priority encoder provide on 8 line to 3 line priority encoder function and priority sequence function.

A priority is given to each input the highest level input pin signal is encoded when two or more inputs are simultaneously active.

The number of input data can be easily increased by using the enable inupt E output enable $\overline{\text{E0}}$ and group serial output $\overline{\text{GS}}$.

This device is suitable for use as a key board encoder.

Pin Configuration OUTPUT INPUT OUTPUT ENABLE FO ĎЗ D2 DO 16 15 14 13 12 9 10 ED **ENABLE** OUTPUT Sufix-Blank: Plastic Dual In Line Package : Ceramic Dual In Line Package

Function Table

	INPUTS									Ol	JTPI	JTS	
E1	DO	D1	D2	D3	D4	D5	D6	D7	A2	A1	ΑO	GS	ΕO
н	х	Х	Х	Х	Х	Х	Х	Х	н	Н	Н	н	н
L	н	Н	Н	Н	Н	Н	Н	Н	н	Н	Н	н	L
L	Х	Х	Х	Χ	Х	Х	Х	L	L	L	L	L	н
L	X	Χ	Х	Χ	Χ	Χ	L	Н	L	L	Н	L	н
L	X	Χ	Χ	Χ	Х	L	Н	Н	L	Н	L	L	н
L	Х	Х	Χ	Χ	L	Н	Н	Н	L	Н	Н	L	н
L	x	Χ	Х	L	Н	Н	Н	Н	н	L	L	L	н
L	X	Χ	L	Н	Н	Н	Н	н	н	L	Н	L	н
L	х	L	Н	Н	Н	Н	Н	Н	н	Н	L	L	н
L	L	Н	Н	Н	Н	Н	Н	Н	н	Н	Н	L	Н

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	 	7V
•	Input voltage	 	7V
	Operating free-air temperature range		
	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V	Supply voltage	54	4.5	5	5.5	v
V _{CC}	Supply voltage	74	4.75	5	5.25	v
I _{OH}	High-level output current	54,74			-400	μΑ
	Low-level output current	54			4	mA
OL	Low-level output current	74			8	1110
т	Operating free-air temperature	54	-55		125	°C
T _A	Operating nee-all temperature	74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TES	T CONDITION	IS	MIN	Typ (Note 1)	MAX	UNIT	
V _{IH} '	High-level input voltage				2			V	
\/	Low lovel input velters			54			0.7	.,	
V _{IL}	Low-level input voltage			74			0.8	٧	
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =-18mA					-1.5	V	
V _{OH}	High-level output voltage	V _{CC} =Min I _{OH} =Max	V _{IL} =Max V _{IH} =Min	54	2.5	3.4		V	
VOH	riigii-level output voltage	I _{OH} =Max	V _{IH} =Min	74	2.7	3.4		٧	
V _{OL}	Low-level output voltage	V _{CC} =Min V _{IL} =Max	I _{OL} =4mA	54,74		0.25	0.4	0.4 _V	
*OL	Low level output voltage	V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	•	
1	Input current at maximum	V _{CC} =Max	Input D0~[7			0.2	mA	
l ₁	input voltage	$V_1 = 7V$	All other inputs				0.1	IIIA	
1	High-level input current	V _{CC} =Max	Input D0~[07			40	μΑ	
I _{IH}	riigii-level iliput current	$V_1=2.7V$	All other in	outs			20	μΑ	
I _{IL}	Low-level input current	V _{CC} =Max	Input D0~[07			-0.8	mΛ	
'IL	Low level input current	V _i =0.4V All other inputs					-0.4	mA	
los	Short-circuit output current	V _{CC} =Max (Note 2)			-20		-100	mA	
I _{CC}	Supply current	V _{CC} =Max	Condition A	\		12	20	mA	
-00	Cappi, Carrent	(Note 3)	Condition E	3		10	17	'''^	

Note 1: All typical values are at $V_{CC} = 5V$, $T_A = 25$ °C.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Note 3: Condition A: I_{CC} is measured with input D4 and E1 grounded, other inputs and outputs oepn.

Condition B: \mathbf{I}_{CC} is measured with all inputs and outputs open.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	D1∼D7	Y1, Y2, Y3			14	18	
t _{PHL}	(levels of	delay 2)			15	25	ns
t _{PLH}	D1∼D7	Y1, Y2, Y3			20	36	
t _{PHL}	(level of	delay 3)			16	29	ns
t _{PLH}	D0~D7	E0			7	18	ns
t _{PHL}	(levels of	delay 3)			25	40	115
t _{PLH}	D0∼D7	GS	C _L =15pF		35	55	ns
t _{PHL}	(levels of	delay 2)	$R_L=2k\Omega$		9	21	110
t _{PLH}	E1	Y1, Y2, Y3			16	25	
t _{PHL}	(levels of	delay 2)			12	25	ns
t _{PLH}	E1	GS			12	17	
t _{PHL}	(levels of	delay 2)			14	36	ns
t _{PLH}	E1	EO			12	21	
t _{PHL}	(levels of	delay 2)			23	35	ns

^{*} t_{PLH} =propagation delay time, low-to-high-level output * t_{PHL} =propagation delay time, high-to-low-level output

[#] For load circuit and voltage waveforms, see page 3-11.

DATA SELECTOR/MULTIPLEXER

Features

- · Select one-of-eight data lines
- · Performs parallel-to-serial conversion
- Permits multiplexing from N lines to one line
- Also for use Boolean function generator

Description

This data selector/multiplexer contains full on-chip decoding to select the desired data source. The LS151 selects one-of-eight data sources. The LS151 has a strobe input which must be at a low logic level to enable these devices. A high level at the strobe forces the W output high, and the Y output low.

The LS151 features complementary W and Y outputs.

Function Table

	l	nputs		Outputs		
	Select	1	Strobe	Υ	W	
С	В	Α	S			
Х	Х	X	Н	L	Н	
L	L	L	L	DO	DO	
L	L	Н	L	D1	D1	
L	Н	L	L	D2	D2	
L	Н	Н	L	D3	D3	
Н	, L	L	L	D4	D4	
H	L	Н	L	D5	D5	
Н	Н	L	L	D6	D6	
Н	Н	Н	L	D7	D7	

H=High Level, L=Low Level, Irrelevant D0,D1...D7=the level of the respective D input

Absolute Maximum Ratings

•	Supply voltage, V _{CC}		/ V
•	Input voltage		7V
		54LS	
		74LS	
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V _{cc}	Supply voltage	54	4.5	5	5.5	V
	Supply voltage	74	4.75	5	5.25	
Гон	High-level output current	54,74			-400	μΑ
1	Low-level output current	54			4	mA
¹ OL		74			8	
т.	Operating free-air temperature	54	-55		125	°C
T _A	Operating need an temperature	74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			٧
V _{IL}	Low-level input voltage			54			0.7	V
- 10	g	74		74			0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =-18mA					-1.5	٧
V _{OH}	High-level output voltage	V _{CC} =Min, V _{IL} =Max 54			2.5	3.4		V
· OH	g rotor output rottage	I _{OH} =Max, V	_{IH} =Min	74	2.7	3.4		
V	Levelevel event veltage	V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	V
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	
l _i	Input current at maximum input voltage	V _{CC} =Max, ∖	/ _I =7V				0.1	mA
I _{IH}	High-level input current	V _{CC} =Max, \	V _{CC} =Max, V _I =2.7V				20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _i =0.4V					-0.4	mA
los	Short-circuit output current	V _{CC} =Max (N	-20		-100	mA		
I _{cc}	Supply current	V _{CC} =Max (N	lote 3)			6	10	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with all outputs open, strobe and data select inputs at 4.5V, and all other inputs open.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION #	MIN	TYP	MAX	UNIT
t _{PLH}	A,B or C(4 levels)	Y			27	43	ns
t _{PHL}	,				18	30	
t _{PLH}	A,B or C(3 levels)	w			14	23	ns
t _{PHL}					20	32	
t _{PLH}	Any D	Y	0 -15-5		20	32	ns
t _{PHL}	Ally D	•	C _L =15pF		16	26	
t _{PLH}	Any D	w	$R_L = 2K\Omega$		13	21	ns
t _{PHL}	•	•	_		12	20	
t _{PLH}	Strobe	Y			26	42	ns
t _{PHL}		·			20	32	
t _{PLH}	Strobe	w			15	24	ns
t _{PHL}					18	30	

^{*} tPLH= propagation delay time, low-to-high-level output
* tPHL= propagation delay time, high-to-low-level output

For load circuit and voltage waveforms, see page 3-11.

DUAL 4-LINE TO 1 - LINE DATA SELECTORS/MULTIPLEXERS

Feature

- Permits Multiplexing from N Lines to 1 Line
- Performs Parallel-to-Serial Conversion
- Strobe (Enable) Line Provided for Cascading (N Lines to n Lines)
- High-Fan-Out, Low-Impedance, Totem Pole Outputs
- Fully Compatible with Most TTL and DTL Circuits

Description

This monolithic data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip binary decoding data selection to the AND/OR invert gates. Separate strobe inputs are provided for each of the two four line sections.

Function Table

SEL		DA	TA	INPL	JTS	STROBE	ОИТРИТ
В	Α	CO	C1	C2	СЗ	G	Y
Х	Х	Х	Х	Х	Х	Н	L
L	L	L	Χ	Χ	Χ	L	L
L	L	н	Χ	Χ	X	L	н
L	Н	X	L	Χ	X	L	L
L	Н	×	Н	Χ	X	L	н
Н	L	×	X	L	X	L	L
Н	L	X	Χ	Н	X	L	Н
Н	Н	X	Χ	Χ	L	L	L
Н	Н	Х	Χ	Χ	Н	L	Н

Schematics of Inputs and Outputs

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage		7V
		54LS	
		74LS	
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
.,	Complex colleges	54	4.5	5	5.5	V
V _{cc}	Supply voltage	74	4.75	5	5.25	V
I _{OH}	High-level output current	54,74			-400	μΑ
	Laurianal andre Alaurana	54			4	A
OL	Low-level output current	74			8	mA
-	Onesaking from air town and we	54	-55		125	°C
TA	Operating free-air temperature	74	0		70	- 0

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CC	NDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2			٧
V _{IL}	Low-level input voltage			54			0.7	v
	, , , , ,			74			0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min,	I _I =-18mA				-1.5	٧
V _{OH}	High-level output voltage	V _{CC} =Min,	V _{IL} =Max	54	2.5	3.4		v
	3	I _{OH} =Max,	V _{IH} =Min	74	2.7	3.4		
V _{OL}	Low-level output voltage	V _{CC} =Min V _{II} =Max	I _{OL} =4mA	54,74		0.25	0.4	v
▼ OL	Low-level output voltage	V _{IL} -Max	I _{OL} =8mA	74		0.35	0.5	\ \
I _I	Input current at maximum input voltage	V _{CC} =Max,	V _I =7V				0.1	mA
l _{iH}	High-level input current	V _{CC} =Max,	V _I =2.7V				20	μА
I _{IL}	Low-level input current	V _{CC} =Max,	V _I =0.4V				-0.4	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)		-20		-100	·mA
I _{CCL}	Supply current	y _{CC} =5.25	V (Note 3)			7.4	12	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2 Not more than one output should be shorted at a time, and duration should not exceed one second. Note 3: I_{CCL} is measured with the outputs open and all inputs grounded.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Data	Υ			10	15	ns
t _{PHL}	Data	Y			17	26	ns
t _{PLH}	Select	Υ	0.45.5.0.00		19	29	ns
t _{PHL}	Select	Υ	$C_L=15 \text{ pF, } R_L=2\text{k}\Omega$		25	38	ns
t _{PLH}	Strobe	Υ			16	24	ns
t _{PHL}	Strobe	Υ		-	21	32	ns

^{*}For load circuit and voltage waveforms, see page 3-11.

4-LINE TO 16-LINE DECODERS/DEMULTIPLEXERS

Feature

- Decodes 4 Binary-Coded Inputs into One of 16 Mutually Exclusive Outputs
- Performs the Demultiplexing Function by Distributing Data from One Input Line to Any One of 16 Outputs
- Input Clamping Diodes Simplify System Design
- High Fan-Out, Low-Impedance, Totem-Pole Outputs
- Fully Compatible with Most TTL, DTL and MSI Circults

Description

This monolithic 4-line to 16 line decoder utilizes TTL circuitry to decode four binary-coded inputs into one of sixteen mutually exclusive outputs when both the strobe inputs, G_1 and G_2 are low. The demultiplexing function is performed by using the 4 input lines to address the output line, passing data from one of the strobe inputs with the other strobe

input low. When either strobe input is high, all outputs are high.

Function Table

	10	NPUT	S											OUT	PUT	s					
G1	G2	D	С	В	Α	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	L	Н	н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	Н	L	L	н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н
L	L	L	Н	L	Н	н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	Н	Н	L	н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	н
L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н
L	L	Н	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
L	L	Н	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	H
L	L	H	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L
L	Н	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H
H	L	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
l H	Н	X	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н

H: High level L: Low level X: Irrelevant

Function Block Diagram

Schematics of Inputs and Outputs

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Operating free-air temperature range	54LS	-55°C to 125°C
•	Storage temperature range	74LS	0°C to 70°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V	Supply velters	54	4.5	5	5.5	
V _{CC}	Supply voltage	74	4.75	5	5.25	V
I _{ОН}	High-level output current	54,74			-400	μΑ
1	Levelous subsubsument	54			4	4
, I _{OL}	Low-level output current	74			8	mA
TA	Operating free sir temperature	54	-55		125	°C
'A	Operating free-air temperature	74	0		70	- 0

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CO	ONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			٧
VIL	Low-level input voltage			54			0.7	V
				74			0.8	
V_{IK}	Input clamp voltage	V _{CC} =Min,	I _I =-18mA				-1.5	٧
V _{OH}	High-level output voltage	V _{CC} =Min	V _{IL} =Max	54	2.5	3.4		V
011		I _{OH} =Max	V _{IH} =Min	74	2.7	3.4		·
V _{OL}	Low-level output voltage	V _{CC} =Min V _{IL} =Max	I _{OL} =4mA	54,74		0.25	0.4	v
*OL	Low-level output voltage	V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	V
l _l	Input current at maximum input voltage	V _{CC} =Max,	V _i =7V				0.1	mA
I _{IH}	High-level input current	V _{CC} =Max,	V _I =2.7V				20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max,	V _I =0.4V				-0.4	mA
los	Short-circuit output current	V _{CC} =Max	V _{CC} =Max (Note 2)				-100	mA
I _{CC}	Supply current	V _{CC} =Max	(Note 3)			9	14	mA

Note 1: All typicals are at V_{CC}=V, T_A=25°C

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with the inputs grounded and all outputs open.

Switching Characteristics $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	TEST CONDI	TIONS#	MIN	TYP	MAX	UNIT
t _{PLH}	Data to output			22	- 36	ns
t _{PHL}	Data to output	C _L =15pF		22	33	ns
t _{PLH}	Strobe to output	R _L =2kQ		18	30	ns
t _{PHL}	Strobe to output	1		16	27	ns

[#]For load circuit and voltage waveforms, see page 3-11.

DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS

Features

Applications:

Dual 2-to-4-line decoder
Dual 1-to-4-line demultiplexer
3-to-8-line decoder

- 1-to-8-line demultiplexer
- Individual strobes simplify cascading for decoding or demultiplexing larger words
- · Input clamping diodes simplify system design

Description

These TTL circuits feature dual 1-line-to-4-line demultiplexers with individual strobes and common binary-address inputs in a single 16-pin package. When both sections are enabled by the strobes, the common address inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit activating or inhibiting each of the 4-bit sections as desired. Data applied to input C1 is inverted at its outputs and data applied at $\overline{C}2$ is true through its outputs. The inverter following the C1 data input permits use as a 3-to-8-line decoder, or 1-to-8-line demultiplexers, without external gating. Input clamping diodes are provided on these circuits to minimize transmission-line effects and simplify system design.

Function Tables

2-Line-to-4-Line Decoder or 1-Line-to-4-Line Demultiplexer

		Inputs			puts		
Sel	ect	Strobe	Data				
В	Α	G1	C1	1Y0	1Y1	1Y2	1Y3
Х	Х	Н	X	Н	Н	Н	Н
L	L	L	Н	L	н	н	H
Ē.	н	L	н	н	L	н	н
H	L	Ī	н	н	н	L	н
н	H	Ĺ	н	Н	н	н	L
X	X	x	l L	Н	н	н	Н

		Inputs			Out	puts	
Sel	lect	Strobe	Data				
В	A	G2	C2	2Y0	2Y1	2Y2	2Y3
X	Х	Н	X	Н	Н	Н	H
L	L	l L	l L	Ł	н	н	н
L	н	L	L	н	L	н	н
H	L	L	L	н	H	L	н
н	H	l ī	l L	н	н	н	Ł
X	X	X	н	н	н	н	н

3-Line-to-8-Line Decoder or 1-Line-to-8-Line Demultiplexer

Γ			Input	s ·		Outputs							
	s	elec	t	Strobe Or Data	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Γ	C*	В	Α	G**	2Y0	2Y1	2Y2	2Y3	1Y0	1Y1	1Y2	1Y3	
T	Х	Х	X	н	Н	н	н	Н	Н	Н	Н	Н	
- 1	L	L	L	L	L	н	н	н	н	н	н	н	
- 1	L	L	н	L	н	L	н	н	н	н	н	Н	
-1	L	н	L	L	Н	Н	L	Н	н	н	н	Н	
-	L	н	н	L	Н	н	H	L	н	н	н	Н	
1	Н	L	L	L r	н	н	н	н	L	н	н	н	
-	н	L	н	L '	Н	н	H	Н	Н	L	н	н	
-	Н	н	L	L	н	н	н	н	н	Н	L	н	
	Н	Н	Н	L	Н	н	Н	Н	Н	Н	Н	L	
- 7				-									

 C^* = inputs $\underline{C1}$ and $\underline{\overline{C2}}$ connected together G^{**} = inputs $\underline{\overline{G1}}$ and $\underline{\overline{G2}}$ connected together H = high level L = low level X = don't care

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	/
•	nput voltage	/
•	Operating free-air temperature range 54LS55°C to 125°C)
	74LS 0°C to 70°C	
•	Storage temperature range65°C to 150°C	2

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
V	Cupality votogo	54	4.5		5.5	V	
V _{CC}	Supply votage	74	4.75	5	5.25	•	
Гон	High-level output current	54,74			-400	μΑ	
	Low level output ourrent	54			4	mA	
lor	Low-level output current	74			8	IIIA	
т	Operating free-air temperature	54	-55		125	- °C	
T _A	Operating free-air temperature	74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			>
V _{IL}	Low-level input voltage			54			0.7	V
* IL	Low lover input voltage			74			0.8	·
V _{IK}	Input clamp voltage	V _{CC} =Min,	I _I =-18mA				-1.5	٧
V _{OH}	High-level output voltage	V _{CC} =Min, I _{OH} =Max,	V _{IL} =Max V _{IH} =Min	54	2.5	3.4		V
₹ОН	High-level output voltage			74	2.7	3.4		
		V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	V
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	
l _l .	Input current at maximum	V _{CC} =Max,	V ₁ =7V				0.1	mA
	input voltage							
I _{IH}	High-level input current	V _{CC} =Max,	$V_1=2.7V$				20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max,	V _I =0.4V				-0.4	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)		54	-20		-100	mA
.08	Silon Silon Salpar Salita			74	-20		-100	
I _{CC}	Supply current	V _{CC} =Max (Note 3)				6.1	10	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with all outputs open, A, B, and C1 inputs at 4.5V, and $\overline{C}2$, $\overline{G}1$, and $\overline{G}2$ inputs grounded.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LEVELS OF LOGIC	TEST CONDITIONS	54LS155 74LS155 MIN TYP MAX		UNIT
t _{PLH}	A, B, C2 G1 or G2	Y	2		10	15	ns
t _{PHL}	A, B, C2 G1 or G2	Υ	2	$C_L=15pF$, $R_L=2k\Omega$,	19	30	ns
t _{PLH}	A or B	Υ	3	See Note 4	17	26	ns
t _{PHL}	A or B	Y	3		19	30	ns
t _{PLH}	C1	Υ	3		18	27	ns
t _{PHL}	C1	Υ	3		18	27	ns

t_{PLH} = propagation delay time, low-to-high-level output

t_{PHL}=propagation delay time, high-to-low-level output

NOTE 4: Load circuit and voltage waveforms are shown on page 3-11.

Application Example

4-PHASE CLOCK PULSE GENERATOR

QUADRUPLE 2-TO-1-LINE DATA SELECTORS/MULTIPLEXERS (NON INVERTED DATA OUTPUTS)

Feature

- · Buffered Inputs and Outputs
- · Common Strobe/Select input for all 4 circuits.

Descriptions

This monolitic data selector/multiplexer contains inverters and drivers to supply full on-chip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. The LS157 has the same functions and pin connections as the LS257 but the latter is provided with 3-state outputs.

Applications

- Expand Any Data Input Point
- Multiplex Dual Data Buses
- Generate Four Functions of Two Variables (One Variabes Is Common)
- Source Programmable Counters

Pin Configuration OUTPUT OUTPUT V_{CC} STROBE 4A 15 14 13 12 10 9 4B 3Y 1B SELECT 2R Suffix-Blank: Plastic Dual In Line Package Suffix-J : Ceramic Dual In Line Package

Function Table

	OUTPUT			
STROBE	SELECT	Α	В	Y
Н	Х	Х	Х	L
L	L	L	Х	L
L	L	H	Х	H
L	Н	X	L	L
L	Н	Х	Н	Н

Schematics of Inputs and Outputs

•	Supply voltage, Vcc		7V
•	Input voltage		
•	Operating free-air temperature range	54LS	-55°C to 125°C
Ť	Operating nee an temperature range	74LS	0°C to 70°C
•			

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
V	Cumply valtage	54	4.5	5	5.5	V	
V _{cc}	Supply voltage	74	4.75	5	5.25	٧	
Іон	High-level output current	54,74			-400	μΑ	
	Law L	54			4	mA	
IOL	Low-level output current	74			8		
_	Operating free six temperature	54	-55		125	°C	
T _A	Operating free-air temperature	74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDI	TEST CONDITION			TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			٧
V _{IL}	Low-level input voltage			54			0.7	٧
				74			0.8	
V _{IK}	Input clamp voltage	$V_{CC}=Min, I_{I}=-12mA$	V _{CC} =Min, I _I =-12mA				-1.5	V
V _{OH}	High-level output voltage	V _{CC} =Min, V _{IH} =Min V _{IL} =Max, I _{OH} =Max		54	2.5	3.4		μΑ
TOH	This is the same of the same o			74	2.7	3.4		,
· //	Low-level output voltage	V _{CC} =Min I _{OL} =4m/	4	54,74		0.25	0.4	v
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min I _{OL} =8m/	I _{OL} =8mA 7			0.35	0.5	V
l _l	Input current at maximum	V _{CC} =Max, V _I =7V	S or	G input			0.2	mA
"	input voltage			B input			0.1	
I _{IH}	High-level input current	$V_{CC}=Max, V_{I}=2.7V$	S or	G input			40	μΑ
и т		00	A or	B input			20	"
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.4V	S or	G input			-0.8	mA
-		100	A or	B input			-0.4	''''
los	Short-circuit output current	V _{CC} =Max (Note 2)			-20		-100	mA
lcc	Supply current	V _{CC} =Max (Note 3)				9.6	16	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with all outputs open, and 4.5V applied to all inputs.

Switching Characteristics, $V_{CC}5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Data			9	14	ns
t _{PHL}	Data			9	14] "
t _{PLH}	Strobe			13	20	ns
t _{PHL}	Ollobe	$C_L = 15pF$ $R_L = 2k\Omega$		14	21	113
t _{PLH}	Select			15	23	ns
t _{PHL}	Ocicot			18	27	113

^{*} t_{PLH}=propagation delay time, low-to-high-level output.

^{*} t_{PHL}=propagation delay time, high-to-low-level output.

[#] For load circuit and voltage waveforms, see page 3-11.

QUADRUPLE 2-TO-1-LINE DATA GD54/74LS158 SELECTORS/MULTIPLEXERS (INVERTED DATA OUTPUTS)

Features

- Buffered Inputs and Outputs
- Converted outputs provided.

Applications

- Expand Any Data Input Point
- Multiplex Dual Data Buses
- Generate Four Functions of Two Variables (One Variables is Common)
- Source Programmable Counters

Pin Configuration V_{cc} STROBE OUTPUT -OUTPUT 4B 3В ЗА 4Y 3Y 13 12 10 9 SELECT 1A 2B OUTPUTS OUTPUTS: INPUTS INPUTS Suffix-Blank: Plastic Dual In Line Package Suffix-J Ceramic Dual In Line Package

Description

This monolitic data selector/multiplexer contains inverters and drivers to supply full on-chip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. The LS 158 presents inverted data to minimize propagation delay time.

Function Table

	INPUTS			OUTPUT
STROBE	SELECT	Α	В	Y
Ι	X	Х	Х	L
L	L	L	Х	н
L	L	Н	X	L
L	н	Χ	L	н
L	Н	Х	Н	L

	Supply voltage Vcc	A	7V
	Janut voltage		7V
•	input voitage	54LS	-55°C to 125°C
•	Operating free-air temperature range	74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
		54	4.5	5	5.5	V	
V _{cc}	Supply voltage	74	4.75	5	5.25	V	
Гон	High-level output current	54,74			-400	μΑ	
	Low-level output current	54			4	mA.	
lor		74			8	IIIA	
	Operating free-air temperature	54	-55		125	°C	
T_A		74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TE	TEST CONDITION			MIN	TYP	MAX	UNIT
V _{IH}	High-level input voltage					2			V
V _{IL}	Low-level input voltage				54			0.7	V
*IL	Low love, input voilage				74			8.0	
V _{IK}	Input clamp voltage	V _{CC} =Min,	$l_1 = -12 \text{mA}$					-1.5	.V
V _{OH}	High-level output voltage	V _{CC} =Min, V _{IL} =Max,	V _{IH} =Min		54	2.5	3.4		μА
VOH	Tilgit level batpat voltage				74	2.7	3.4		,
	Low-level output voltage	V _{CC} =Min V _{IL} =Max	I _{OL} =4mA	١	54,74		0.25	0.4	v
V _{OL}		V _{IL} =Max V _{IH} =Min I _{OL} =8mA		1	54		0.35	0.5	L V
	Input current at maximum		ırrent at maximum V _{CC} =Max, V _I =7V		r G input			0.2	mA
l _l	Input voltage	1	.,	A or	r B input			0.1	
I _{IH}	High-level input current	V _{CC} =Max,	V ₁ =2.7V	So	r G input			40	μΑ
,1H	The state of the s	100		A o	r B input			20	·
I _{IL}	Low-level input current	V _{CC} =Max,	V.=0.4V	So	r G input			-0.8	mA
'IL		100	.,	A o	r B input			-0.4	
los	Short-circuit output current	V _{CC} =Max	(Note 2)			-20		-100	mA
	Summit automat		V _{CC} =Max (Note 3)				4.8	8	m^
Icc	Supply current	V _{CC} =Max	(Note 4)				6.5	11	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with all outputs open, and all inputs at 4.5V

Note 4: I_{CC} is measured with all A inputs at 4.5V and all other inputs at 0V.

Switching Characteristics, $V_{CC}5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Data	$C_L = 15pF$ $R_L = 2k\Omega$		7	14	ns
t _{PHL}	Dala			10	14	110
t _{PLH}	Strobe			11	20	ns
t _{PHL}	Strobe			18	21	
t _{PLH}	Salaat			13	23	ns
t _{PHL}	Select			16	27	1115

^{*} t_{PLH}=propagation delay time, low-to-high-level output.

^{*} t_{PHL}=propagation delay time, high-to-low-level output.

[#] For load circuit and voltage waveforms, see page 3-11.

GD54/74LS161A

SYNCHRONOUS 4 BIT COUNTERS; BINARY, DIRECT CLERAR

Feature

- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Synchronous Counting
- Synchronously Programmable
- Load Control Line
- Diode-Clamped Inputs

Description

This synchronous, presettable counter features an internal carry look-ahead for application in high-speed counting designs. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change conicident with each other when so instructed by the count-enable inputs and internal gating.

This mode of operation eliminates the output counting spikes that are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input wave form.

This counter is fully programmable; that is the outputs may be preset to either level. As presetting is synchronous setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two counter-enable inputs and a riple carry output. Both countenable inputs (ENABLE P and ENABLE T) must be high to count, and ENABLE T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high level portion of the Ω_A output. The high-level overflow riple carry pulse can be enable successive cascaded stages. Transitions at the ENP or ENT are allowed regardless of the level of the clock input.

Function Table (Note 1)

CLR	LOAD	E _T	E _P	СК	Q _A	QB	Q_{C}	QD	RCO		
L	х	х	х	Х	L	L	L	L	L		
Н	L	L	Х	†	,			D _A D _B D _C		0	٦
Н	L	н	х	†	D _A	В	D _C	DD	L*		
н	н	н	н	†	Count				L*		
Н	н	L	х	х	Inhibit	Inhibit		L			
Н	н	н	L	х	Inhibit		L*				

Note 1: 1: Indicates a transition from low to high (positive edge triggering).

 $RCO = Q_A \cdot Q_B \cdot Q_C \cdot Q_D \cdot E_T$

X : irrelevant

 $^{^{\}star}$: RCO is normally low but is high when all Q outputs and E_{T} are high simultaneously, i.e.,

Typical Clear, Preset, Count, and Inhibit Sequences

Illustrated below is the following sequence:

- 1. Clear outputs to zero (asynchronous)
- 2. Preset to binary twelve
- 3. Count to thirteen, fourteen fifteen, zero, one, and two
- 4. Inhibit

•	Supply voltage, Vcc		7V
•	Input voltage		7V
•	Operating free-air temperature range	54LS	-55°C to 125°C
		74LS	
	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAN	METER		MIN	NOM	MAX	UNIT	
	6 1 1		54	4.5	5	5.5	V	
V _{cc}	Supply voltage		74	4.75	5	5.25	V	
Гон	High-level output curren	54,74			-400	μΑ		
	Low-level output current		54			4	A	
l _{OL}			74		, , , , , , , , , , , , , , , , , , , ,	8	mA	
f _{clock}	Clock frequency		0		25	MHz		
tw _(clock)	Width of clock pulse			25			ns	
tw _(clear)	Width of clear pulse			20			ns	
		Data inputs A,B,C,D.		20				
t _{SU}	Setup time	Enable P or T		20			ns	
		Load		20				
t _h	Hold time at any input		3			ns		
	Operating free-air temperature		54	-55		125	°C	
T _A			74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage			2			٧	
			54				0.7	
V_{IL}	Low-level input voltage			74			0.8	V
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I	=-18mA				-1.5	٧
		V _{CC} =Min,	V _{II} = Max	54	2.5	3.4		.,
V _{OH}	High-level output voltage	I _{OH} =Max,	V _{IH} =Min	74	2.7	3.4		٧
		V _{CC} =Min	V _{CC} =Min I _{OL} =4mA			0.25	0.4	v
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	v
l _i	Input current	V _{CC} =Max	Data or enable P				0.1	mA
'1	at maximum	V₁=7V	Load, clock	or enable T			0.2	
	input voltage		Clear				0.1	
I _{IH}	High-level input current	V _{CC} =Max	Data or ena	able P			20	μΑ
'IH	Thigh level input content	V ₁ =2.7V	Load, clock	or enable T			40	i i
			Clear				20	
I _{IL}	Low-level input current	V _{CC} =Max	Data or ena	able P			- 0.4	mA
'IL	2011 10101 111,001	V _I =0.4V	Load, clock Clear	or enable T			- 0.8	
los	Short-circuit output current	V _{CC} =Max (Note 2)		-20		-100	mÁ
I _{CCH}	Supply current, all outputs high	V _{CC} =Max (18	31	mA
ICCL	Supply current, all outputs low	V _{CC} =Max (Note 4)			18	32	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CCH} is measured with the load high, then again with the load low, with all other inputs high and all outputs open.

Note 4: I_{CCL} is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION	MIN	TYP	MAX	UNIT
f _{max}				25	32		MHz
t _{PLH}	Clask	Dinnle corn			20	35	ns
t _{PHL}	Clock	Ripple carry			18	35	115
t _{PLH}	Clock		C ₁ = 15pF		13	24	
t _{PHL}	(load input high)	Any Q	_		18	27	ns
t _{PLH}	Clock	Any Q	R _L =2kΩ		13	24	ns
t _{PHL}	(load input low)	Ally Q	On a Nata 4		18	27	115
t _{PLH}	Fachle T	Dinale corn	See Note 1		9	14	
t _{PHL}	Enable T	Ripple carry			9	14	ns
t _{PHL}	Clear	Any Q			20	28	ns

^{*} f_{max}=maximum clock frequency

Function Block Diagram

^{*} t_{PLH}=propagation delay time, low-to-high-level output.

the propagation delay time, high-to-low-level output.

Note 1: propagation delay for clearing is measured from the clear input for the LS161A

Parameter Measurement Information

Application Example PROGRAMMABLE DIVIDER

1/4GD74LS02 LOAD E_P QA QB \mathbf{Q}_{D} CLEAR ENABLE INPUT -GD74LS161A RCO ET COUTN PULSE -T CLR OUTPUT DB D_D D CLEAR -**PROGRAM**

D _A	D _B	Dc	D _D	Divide rate
L	L	L	L	1/16
Н	L	L	L	1/15
L	Н	L	L	1/14
Н	Н	L	L	1/13
L	L	Н	L	1/12
Н	L	Н	L	1/11
L	Н	Н	L	1/10
Н	Н	Н	L	1/9
L	L	L	н	1/8
Н	L	L	Н	1/7
L	Н	L	Н	1/6
Н	Н	L	Н	1/5
L	L	Н	Н	1/4
Н	L	Н	Н	1/3
L	Н	Н	Н	1/2

Note: Reset is performed by applying count pulse with reset input high $\overline{\text{RD}}$ pin can't be used since $Q_A \cdot Q_D$ should be set low.

GD54/74LS163A

SYNCHRONOUS 4-BIT COUNTER: BINARY, SYNCHRONOUS CLEAR

Feature

- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Synchronous Counting
- Synchronously Programmable
- Load Control Line
- Diode-Clamped Inputs

Description

This synchronous, presettable counter features an internal carry look-ahead for application in high-speed counting designs. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating.

This mode of operation eliminates the output counting spikes that are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input wave form.

This counter is fully programmable; that is the outputs may be preset to either level. As presetting is synchronous setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs.

of the levels of the enable inputs.

The clear function is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of the clear function is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of the clear function is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of the clear function is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of the clear function is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of the clear function is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of the clear function is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of the clear function is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of the clear flip of the clear flip of the clear flip output sets all flip of the clear flip output sets all flip outputs.

of the clock, load, or enable inputs.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two counter-enable inputs and a ripple carry output. Both countenable inputs (ENABLE P and ENABLE T) must be high to count, and ENABLE T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will T) must be high level output pulse with a duration approximately equal to the high level portion of the Q_A output. The high-level overflow produce a high-level output pulse with a duration approximately equal to the high level portion of the Q_A output. The high-level overflow produce a high-level output pulse with a duration approximately equal to the high level portion of the Q_A output. The high-level overflow produce a high-level output pulse with a duration approximately equal to the high level portion of the Q_A output. The high-level overflow produce a high-level output pulse with a duration approximately equal to the high level portion of the Q_A output. The high-level overflow produce a high-level output pulse with a duration approximately equal to the high level portion of the Q_A output. The high-level overflow produce a high-level output pulse with a duration approximately equal to the high level portion of the Q_A output. The high-level overflow produce a high-level output pulse with a duration approximately equal to the high level portion of the Q_A output. The high-level overflow produce a high-level output pulse with a duration approximately equal to the high level portion of the Q_A output. The high-level output high level portion of the Q_A output high level portion

Function Table (Note 1)

							_	
LOAD	E _T	E _P	СК	Q _A	QB	Q_{C}	Q_D	RC€
Х	х	х	†	L	L	L	L	L
L	L	х	1	D.	Dn	Do	Dn	L
L	н	х	1	1	- 6			L*
н	н	н	1	Count				L*
н	L	x	x	Inhibit				L
н	н	L	Х	Inhibit				L*
	X L L H	X X L L H H H	X X X L L X H H X H H H X	X X X † L L X † L H X † H H H † H L X X	L L X ↑ L H X ↑ H H H ↑ Count H L X X Inhibit	X X X ↑ L L L X ↑ DA DB H H H ↑ Count H L X X Inhibit	X X ↑ L L L L L X ↑ DA DB DC L H H H ↑ Count H L X X Inhibit	X X X ↑ L L L L L X ↑ DA DB DC DD H H H H ↑ Count H L X X Inhibit

Note 1: †: Indicates a transition from low to high (positive edge triggering).

- RCO output is normally low-level, but RCO output is high-level when E₇ input is high-level while the counter is in its maximum count state (HHHH).
- X : irrelevant

Typical Clear, Preset, Count, and Inhibit Sequences

Illustrated below is the following sequence:

- 1. Clear outputs to zero synchronous
- Preset to binary twelve
 Count to thirteen, fourte
 Inhibit Count to thirteen, fourteen fifteen, zero, one, and two

Application Example

VARIABLE MODULO COUNTER

Divide rate	Outputs connect to inputs of GATE
3	Q _B
5	Q _C
6	Q _A , Q _C
7	Q _B , Q _C
9	Q _D
10	Q _A , Q _D
11	Q _B , Q _D
12	Q _A , Q _B , Q _D
13	Q _C , Q _D
14	Q _A , Q _C , Q _D
15	Q _B , Q _C , Q _D

•	Supply voltage, Vcc		7V
	Input voltage		
•	Operating free-air temperature range	54LS	55°C to 125°C
	oporating need an iemperature range	74LS	0°C to 70°C
•	Storage temperature range		

Recommended Operating Conditions

SYMBOL	PARA	METER		MIN	NOM	MAX	UNIT
			54	4.5	5	5.5	V
v_{cc}	Supply voltage		74	4.75	5	5.25	•
l _{OH}	High-level output current 54,74					-400	μΑ
			54			4	mA
l _{OL}	Low-level output currer	nt	74			8	1117
f _{clock}	Clock frequency		•	0		25	MHz
tw _(clock)	Width of clock pulse			25			ns
tw _(clear)	Width of clear pulse			20			ns
		Data inputs A,B,C,D.		20			
t _{SU}	Setup time	Enable P or T		20			ns
		Load, Clear		20			
th	Hold time at any input			3			ns
÷			54	-55		125	°C
TA	Operating free-air temp	Operating free-air temperature		0		70	Ū

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST	CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			V
V _{IL}	Low-level input voltage			54			0.7	V
· IL				74			0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min,	$I_i = -18mA$				-1.5	٧
V _{OH}	High-level output voltage	V _{CC} =Min	V _{IL} =Max	54	2.5	3.4		V
OH	Thigh letter date to large	I _{OH} =Max	V _{IH} =Min	74	2.7	3.4		
		V _{CC} =Min V _{IL} =Max	I _{OL} =4mA	54,74		0.25	0.4	V
V_{OL}	Low-level output voltage	V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	
	Input current	V _{CC} =Max	Data or enable P				0.1	
l _l	at maximum	$V_1 = 7V$	Load, clock or ena	ble T			0.2	mA
	input voltage		Clear				0.2	
		V _{CC} =Max	Data or enable P			·-	20	
I _{IH}	High-level input current	V _I =2.7V Load, clock or enable T				40	μΑ	
			Clear				40	
		V _{CC} =Max	Data or enable P				-0.4	
l _{IL}	Low-level input current	V _I =0.4V	Load, clock or ena	ıble T			-0.8	mA
			Clear				-0.8	
los	Short-circuit output current	V _{CC} =Max	(Note 2)		-20		-100	mA
I _{CCH}	Supply current, all outputs high	V _{CC} =Max	(Note 3)			18	31	mA
ICCL	Supply current, all outputs low	V _{CC} =Max	(Note 4)			18	32	mA

Note 1: All typicals are at $V_{CC}=5V$, $T_A=25^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CCH} is measured with the load high, then again with the load low, with all other inputs high and all outputs open.

Note 4: loct is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION	MIN	TYP	MAX	UNIT
f _{max}				25	32		MHz
t _{PLH}	Clock	Dinnle corn			20	35	ns
t _{PHL}	CIOCK	Ripple carry			18	35	115
t _{PLH}	Clock	Any	C _L =15pF		13	24	
t _{PHL}	(load input high)	Any Q	_		18	27	ns
t _{PLH}	Clock		$R_L=2k\Omega$		13	24	ns
t _{PHL}	(load input low)	Any Q	Can Nata 1		18	27	115
t _{PLH}	Enable T	Dianle corre	See Note 1		9	14	
t _{PHL}	Enable I	Ripple carry			9	14	ns
t _{PHL}	Clear	Any Q			20	28	ns

^{*} f_{max}=maximum clock frequency

Function Block Diagram

^{*} t_{PLH}=propagation delay time, low-to-high-level output.

the propagation delay time, high-to-low-level output.

Note 1: propagation delay for clearing is measured from the clock transition for the LS163A.

GD54/74LS164

8-BIT PARALLEL OUTPUT SERIAL SHIFT REGISTER

Feature

- · Gated (Enable/Disable) Serial Inputs
- Fully Buffered Clock and Serial Inputs
- Asynchronous Clear

Description

This 8-bit shift register features gated serial inputs and an asynchronous clear. The gated serial inputs (A and B) permit complete control over incoming data as a low at either (or both) input(s) inhibits entry of the new data and resets the first flip flop to the low level at the next clock pulse. A high level input enables the other input which will then determine the state of the first flip-flop. Data at the serial inputs may be changed while the clock is high or low, but only information meeting the setup requirements will be entered clocking occurs or the low-to-high level transition of the clock input. All inputs are diode-clamped to minimize transmission-line effects.

Function Table

	INPUTS				UTPUTS
CLEAR	CLOCK	Α	В	Q _A	$Q_B \cdots Q_H$
L	х	х	Х	L	L L
Н	L	Х	Χ	Q _{AO}	$Q_{BO} \! \cdots \! Q_{HO}$
н	↑	н	Н	н	$Q_Gn \dots Q_Gn$
Н	†	L	Х	L	$\mathbf{Q}_{An} \cdots \mathbf{Q}_{Gn}$
Н	1	Х	L	L	$Q_{An}\cdotsQ_{Gn}$

H=high level (steady state), L=low level (steady state)

X=irrelevant (any input, including transitions)

†=transition from low-to-high-level

 Q_{AO} , Q_{BO} , Q_{HO} =the level of Q_{A} , Q_{B} or Q_{H} respectively, before the indicated steady-state input conditions were established.

 Q_{An} , Q_{Gn} =the level of Q_{A} or Q_{G} before the most recent \dagger transition of the clock indicates a one-hit shift

Schematics of Inputs and Outputs

EQUIVALENT OF EACH INPUT Vcc INPUT CLEAR, CLOCK: 17KQ NOM SERIAL: 25KΩ NOM

Typical Clear, Shift, and Clear Sequences

Function Block Diagram

•	Supply voltage, Vcc		7V
•	Input voltage		7V
		54LS	
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT		
V	Supply voltage	54	4.5	5	5.5			
V _{cc}	Supply voltage	74	4.75	5	5.25	V		
I _{OH}	High-level output current	54,74			-400	μΑ		
	Law layer autout autout	54			4	mA		
I _{OL}	Low-level output current	74			8			
f _{clock}	Clock frequency		0		25	MHz		
t _w	Width of clock or clear input pulse		20			ns		
t _{su}	Data set up time		15			ns		
t _h	Data hold time		5			ns		
т	Operating free six temperature	54	-55		125			
¹ A	T _A Operating free-air temperature		74	74	0		70	°C

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CO	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			٧
V _{IL}	Low-level input voltage			54			0.7	v
				74			0.8	•
V _{IK}	Input clamp voltage	V _{CC} =Min, I	V _{CC} =Min, I _I =-18mA				-1.5	V
V _{OH} High-level output voltage	V _{CC} =Min	V _{IL} =Max	54	2.5	3.4		v	
		I _{OH} =Max	V _{IH} =Min	74	2.7	3.4		·
V _{OL}	Low-level output voltage	V _{CC} =Min V _{II} =Max	I _{OL} =4mA	54,74		0.25	0.4	v
▼OL	Low-level output voltage	V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	· ·
l _l	Input current at maximum input voltage	V _{CC} =Max,	V _I =7V				0.1	mA
I _{IH}	High-level input current	V _{CC} =Max,	V _I =2.7V				20	mA
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.4V					-0.4	mA
los	Short-circuit output current	V _{CC} =Max (V _{CC} =Max (Note 2)				-100	mA
lcc	Supply current	V _{CC} =5.25\	/ (Note 3)			16	27	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Note 3: I_{CC} is measured with outputs open, serial inputs grouned, the clock input at 2.4V, and a momentary ground, then 4.5V applied.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency		25	36		MHz
t _{PHL}	Propagation delay time, high-to- low-level Q outputs from clear input	- C _L =15pF, R _L =2kΩ		24	36	ns
t _{PLH}	Propagation delay time, low-to- high-level Q outputs from clock input	See Figure 1		17	27	ns
t _{PHL}	Propagation delay time, high-to- low-level Q outputs from clock input			21	32	ns

[#]For load circuit and voltage waveforms, see page 3-11.

Parameter Measurement Information

TEST CIRCUIT

Note A: The pulse generators have the following characteristics: duty cycle \leq 50%, $Z_{out} \approx 500$; $t_i \leq$ 15ns, $t_i \leq$ 6ns.

Note B: C_L includes probe and jig capacitance. Note C: All diodes are 1N3064 or 1N916

Note D: QA output is illustrated. Relationship of serial input A and B data to other Q outputs is illustrated in the typical shift sequence.

Note E: Outputs are set to the high level prior to the measurement of t_{PHL} from the clear input.

Note F: V_{ref}=1.3V

Figure 1 Switching Times

GD54/74LS165 PARALLEL-LOAD 8-BIT SHIFT REGISTERS WITH COMPLEMENTARY OUTPUTS

Feature

- Complementary Outputs
- Direct Overriding Load (Data) Inputs
- Gated Clock Inputs
- Parallel-to-Serial Data Conversion

Description

This device is 8 bit serial shift registers that shift the data in the direction of Q_A toward Q_H when clocked. Parallel-in access to each stage is made available by eight individual direct data inputs that are enabled by a low level at the shift/load input. These registers also feature gated clock inputs and complementary outputs from the eight bit. All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design.

Clocking is accomplished through a 2-input positive-NOR gate, permitting one input to be used as a clock-inhibit function. Holding either of the clock inputs high inhibits clocking and holding either clock input low with the shift/load input high enables the other clock input. The clock-inhibit input should be changed to the high level only while the clock input is high. Parallel loading is inhibited as long as the shift/load input is high. Data at the parallel inputs are loaded directly into the register on a high-to-low transition of the shift/load input independently of the levels of the clock, clock inhibit, or serial inputs.

Function Table

		INPUT	S		INTE	RNAL	OUTPUT
SHIFT/	CLOCK	CLOOK	SERIAL	PARALLEL	оиті	PUTS	Q _H
LOAD	INHIBIT	CLOCK	SERIAL	AH	Q _A Q _B		-н
L	Х	Х	Х	ah	а	b	h
н	L	L	×	Х	Q _{AO}	\mathbf{Q}_{BO}	Q _{HO}
н	L	1	н	Х	н	Q_{An}	Q _{Gn}
н	L	t	L	х	L	\boldsymbol{Q}_{An}	Q_{Gn}
Н	н	×	X	Х		Q_{BO}	Q _{HO}

H=High Level (steady state), L=Low Level (steady state) X=Irrelevant (any input, including transitions) † =Transition from low to high level a...h=The level of steady-state input at inputs A through H, respectively QaO, QBO, QHO=The level of Qa, QB, QH, respectively, before the indicated steady-stae input conditions were established Qan, Qgn=The level of Qa, Qg, respectively, before the most recent † transition of the clock.

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
		54LS	
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER				NOM	MAX	UNIT	
V _{CC}	Supply voltage		54	4.5	- 5	5.5	V	
V CC	Cupply Vollage		74	4.75	5	5.25		
Іон	High-level output current		54,74			-400	μΑ	
	Low-level output current		54			4	mA	
l _{OL}	Low level output outrone		74			8		
f _{clock}	Clock frequency					25	MHz	
t _w	Pulse Width Clock			25			ns	
·w				15				
	Paralle Setup Time Serial		el	10				
t _{SU}				20			ns	
'SU	. Setup Time	Enable	•	30			1	
			45			1		
t _H	Hold Time			0			ns	
TA	Operating free-temperature		54	-55		125	°C	
'A			74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TES	TEST CONDITION		MIN	TYP (Note 1)	MAX	UNIT		
V _{IH}	High-level input voltage				2			٧		
V _{IL}	Low-level input voltage			54			0.7	V		
▼ IL	Low-level input voltage			74			0.8			
V _{IK}	Input clamp voltage	V _{CC} =Min, I	=-12mA				-1.5	٧		
	Llich lovel evitovit veltere	V _{CC} =Min, \	/ _{IH} =Min	54	3.5	2.5		V		
V _{OH}	High-level output voltage	I _{OH} =Max \	/ _{IL} =Max	74	2.7	3.5		\ \ \		
.,	V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	v			
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min	V _{IL} =Max V _{IH} =Min	V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	V
1	Input current at maximum	V _{CC} =Max,	Shift/load				0.3			
l _l	input voltage	V ₁ =7V	Other inputs				0.1	mA		
		V _{CC} =Max,	Shift/load				60			
I _{IH}	High-level input current	V _I =2.7V	Other inputs				20	μΑ		
	1 1 1	V _{CC} =Max,	Shift/load				-1.2	A		
I _{IL}	Low-level input current	V _I =0.4V	Other inputs			-	-0.4	mA		
los	Short-circuit output current	V _{CC} =5.25V (Note 2)			-20		-100	mA		
Icc	Supply current	V _{CC} =Max (Note 3)			18	30	mA		

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Note 3: With all outputs open, clock inhibit and shift/load at 4.5V, and a clock pulse applied to the CLOCK input, I_{CC} is measured first with the parallel inputs at 4.5V, then again grounded.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION	MIN	TYP	MAX	UNIT
f _{max}				25	35		MHz
t _{PLH}	Load	Any			21	35	ns
t _{PHL}	Load	Ally			26	35	ns
t _{PLH}	Clock	Any	C =15=E B =040		14	25	
t _{PHL}	Olock		$C_L=15pF, R_L=2k\Omega$		16	25	ns
t _{PLH}	н	Q _H	See Fig. 1.0		13	25	
t _{PHL}	''		See Fig 1-3.		24	30	ns
t _{PLH}	н	ō			19	30	
t _{PHL}	F1	Q _H			17	25	ns

 $f_{\rm max} = {\rm maximum}$ clock frequency.

Typical Shift, Load, and Inhibit Sequences

 $t_{\rm PLH}$ =propagation delay time, low-to-high-level output. $t_{\rm PLH}$ =propagation delay time, high-to-low-level output.

Parameter Measurement Information

- Notes: A. The remaining six data inputs and the serial input are low.
 - B. Prior to test, high-level data is loaded into H input.
 - C. The input pulse generators have the following characteristics: PRR≤1MHz, duty cycle≤50% Z_{out}≈50Ω; t_i≤15ns. t_i≤6ns.
 - D. V_{ref}=1.3V.

Figure 1-Voltage Waveforms

- Notes: A. The eight data inputs and the clock-inhibit input are low. Results are monitored at output Q_H at t_{n+7} .
 - B. The input pulse generators have the following characteristics PRR≤1MHz, duty cycle≤50%, Z_{out}≈50Ω; t₁≤15ns, t₁≤6ns.
 - C. V_{ref}=1.3V

Figure 2-Voltage Waveforms

Notes: A. C_L includes probe and jig capacitance.

B. All diodes are 1N3064.

Figure 3-Load Circuit for Switching Tests

GD54/74LS166 8-BIT SHIFT REGISTERS PARALLEL/ SERIAL INPUT SERIAL OUTPUT

Feature

- Synchronous Load
- Direct Overriding Clear
- Parallel to Serial Conversion

Description

This 8-bit shift register is compatible with most other TTL and DTL logic families. All inputs are buffered to lower the drive requirements. Input clamping diodes minimize switching transients and simplify system design.

These parallel-in or serial-in, serial-out shift registers have a complexity of 77 equivalent gates on a monolithic chip. They feature gated clock inputs and an overriding clear input. The

Pin Configuration PARALLEL PARALLEL INPUTS SHIFT/ INPUT OUTPUT CLEAR LOAD G 10 9 16 15 14 12 SHIFT/ H LOAD SERIAL CLEAR INPUT CLOCK INHIBIT 3 6 SERIAL В CLOCK CLOCK GND INPUT INHIBIT PARALLEL INPUTS Suffix-Blank: Plastic Dual In Line Package Ceramic Dual In Line Package

parallel-in or serial-in modes are established by the shift/load input. When high, this input enables the serial data input and couples the eight flip-flops for serial shifting with each clock pulse. When low, the parallel (broadside) data inputs are enabled and synchronous loading occurs on the next clock pulse. During parallel loading, serial data flow is inhibited. Clocking is accomplished on the low-to-high-level edge of the clock pulse through a two-input positive NOR gate permitting one input to be used as a clock-enable or clock-inhibit function. Holding either of the clock inputs high inhibits clocking, holding either low enables the other clock input. This of course, allows the system clock to be free-running and the register can be stopped on command with the other clock input. The clock-inhibit input should be changed to the high level only while the clock input is high. A buffered, direct clear input overrides all other inputs including the clock, and sets all flip-flops to zero.

Function Table

			INTERNAL					
CLEAR	SHIFT/	CLOCK	CLOCK	SERIAL	PARALLEL	OUT	PUTS	OUTPUT
JEE-41	LOAD	INHIBIT	SET IN L		A H	QA	QB	
L	х	х	×	×	Х	L	L	L
н	×	L	L	×	х	QAG	Q _{BO}	Qно
н	L	L	t	х	ah	a	b	h
н	н	L	t	н	X	н	Q _{An}	Q _{Gn}
н	н	L	†`	L	×	L	Q_{An}	Q _{Gn}
н	х	н	†	×	×	Q _{AC}	Q _{BO}	Q _{HO}

H=High Level (steady state). L=Low Level (steady state)

X=Don't Care (any input, including transitions)

t=Transition from low to high level

a...h=The level of steady-state input at inputs A through H, respectively

Q_{AO}, Q_{BO}, Q_{HO}=The level of Q_A, Q_B, Q_H, respectively before the indicated steady-state input conditions were established

Q_{An}, Q_{Gn}=The level of Q_A, Q_G respectively, before the most recent † transition of the clock

Schematics of Inputs and Outputs

•	Supply voltage, Vcc		7V
		54LS	
		74LS	0°C to 70°C
•	Storage temperature range	•••••	-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
.,	0	54	4.5	5	5.5	٧
V _{cc}	Supply voltage	74	4.75	5	5.25	V
Іон	High-level output current	54,74			-400	μΑ
	Law l	54			4	^
lor	Low-level output current	74			8	mA
f _{clock}	Clock frequency		0		25	MHz
t _{su}	Mode-control set up time		30			ns
t _w	Width of clock or clear pulse		20			ns
t _h	Data hold time		0			ns
_	Operation from air temperature	54	-55		125	°C
T _A	Operating free-air temperature	74	0		70	C

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT
V _{iH}	High-level input voltage	1.5			2			٧
V _{IL}	Low-level input voltage			54			0.7	V
ic.				74			0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min, I	_I =-18mA				-1.5	٧
V _{OH}	High-level output voltage	V _{CC} =Min,	V _{IL} =Max	54	2.5	3.4		v
· OH	and the second s	I _{OH} =Max,	V _{IH} =Min	74	2.7	3.4		'
V	Low-level output voltage	V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	v
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	\ \
l _i	Input current at maximum input voltage	V _{CC} =Max,	V ₁ =7V				0.1	mA
I _{IH}	High-level input current	V _{CC} =Max,	V _{CC} =Max, V _I =2.7V				20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.4V					-0.4	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)			-20		-100	mA
Icc	Supply current	V _{CC} =Max (Note 3)			20	32	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Note 3: With all outputs open, 4.5V applied to the serial input, all other inputs except the CLOCK grounded, I_{CC} is measured after a momentary ground, then 4.5V, is applied to the CLOCK.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency	C _L =15pF, R _L =2kΩ See Figure 3	25	35		MHz
t _{PHL}	Propagation delay time, high-to- low-level outputs from clear			19	30	ns
t _{PHL}	Propagation delay time, high-to- low-level outputs from clock		7	14	25	ns
t _{PLH}	Propagation delay time, low-to- high-level outputs from clock		5	11	20	ns

Function Block Diagram

Figure 1.

Typical Clear, Shift, Load, Inhibit, and Shift Sequences

Figure 2.

Parameter Measurement Information

LOAD FOR OUTPUT UNDER TEST

Test Table for Synchronous Inputs

DATA INPUT FOR TEST	SHIFT/LOAD	OUTPUT TESTED (SEE NOTEF)
Н	ov	Q _H at t _{n+1}
Serial Input	4.5V	Q _H at t _{n+8}

VOLTAGE WAVEFORMS

Figure 3.

Notes: A. All pulse generators have the following characteristics; Z_{out}~50Q, tr≤15ns and t_t≤6ns.

- B. The clock pulse has the following characteristics; tw (clock) < 20ns and PRR=1MHz. The clear pulse has the following characteristics; t_w (clear) \geqslant 20ns and t_{hold} =0ns, when testing f_{max} , vary the clock PRR.
- C. C_L includes probe and jig capacitance.
- D. All diodes are 1N3064 or 1N916.
- E. A clear pulse is applied prior to each test.
- F. Propagation delay times (t_{PLH} and t_{PHL}) are measured at t_{n+1}. Proper shifting of data is verified at t_{n+8} with a functional test.
- G. t_n=bit time before clocking transistion. t_{n+1}=bit time after one clocking transition.
 - t_{n+8}=bit time after eight clocking transition.
- H. V_{ref}=1.3V.

GD54/74LS174

HEX D-TYPE FLIP-FLOPS, COMMON CLEAR

Feature

- Contains Six Flip-Flops with Single-Rail Outputs
- Buffered Clock and Direct Clear Inputs
- Individual Data Input to Each Flip-Flop
- Application Include: Buffer/Storage Registers
 Shift Registers
 Pattern Generators

Description

These monolitic, positive-edge triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic.

Information at the D inputs meeting the setup time requirements is transferred to the outputs on the positive going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

Function Table (Each F/F)

ı	NPUTS	OUTPUTS	
CLEAR	CLOCK	D	Q
L	×	Х	L
Н	† *	Н	Н
H	† *	L	L
н	L	X	Q ₀

- *†=transition from low to high level.
- *Q_o = the level of Q before the indicated steady-state input conditions were established.

Schematics of Inputs and Outputs EQUIVALENT OF EACH INPUT TYPICAL OF ALL OUTPUTS Vcc INPUT Clock Req = 17 kQ NOM Clear D Req = 20 kQ NOM

Absolute Maximum Ratings

Recommended Operating Conditions

SYMBOL	PARAMETER			MIN	NOM	MAX	UNIT
		54	4.5	5	5.5	V	
V _{cc}	Supply voltage		74	4.75	5	5.25	•
I _{OH}	High-level output curren	t	54,74			-400	μΑ
			54			4	mA
lor	Low-level output current		74			8	
f _{clock}	Clock frequency	Clock frequency				30	MHz
t _w	Width of clock or clear	pulse		20			ns
		Data input		20			ns
t _{su}	Set up time Clear inactive-state			25			113
t _h	Data hold time			5			ns
	54			-55		125	°C
T _A	T _A Operating free-air temperature		74	0	,	70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS-			MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			٧
V _{IL}	Low-level input voltage			54			0.7	V
V IL	Low level input voltage			74			0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min, I	_I =-18mA				-1.5	٧
	High-level output voltage	V _{CC} =Min,	V _{IL} =Max	54	2.5	3.4		V
V _{OH}	riigirievei output voitage	I _{OH} =Max,	$V_{IH} = Min$	74	2.7	3.4		
		V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	.,
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	\ \ \
1,	Input current at maximum input voltage	V _{CC} =Max,	V _I =7V				0.1	mA
I _{IH}	High-level input current	V _{CC} =Max, V _I =2.7V					20	μΑ
IIL	Low-level input current	V _{CC} =Max, V _I =0.4V					-0.4	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)			-20		-100	mA
I _{CC}	Supply current	V _{CC} =5.25	V, (Note 3)			16	26	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Note 3: With all outputs open, 4.5V applied to the serial input, all other inputs except the CLOCK grounded, I_{CC} is measured after a momentary ground, then 4.5V, is applied to the CLOCK.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency		30	40		MHz
t _{PHL}	Propagation delay time, high-to- low-level output from clear	$C_L=15pF, R_L=2k\Omega$		23	35	ns
t _{PLH}	Propagation delay time, low-to- high-level output from clock			20	30	ns
t _{PHL}	Propagation delay time, high-to- low-level output from clock			21	30	ns

[&]quot;For load circuit and voltage waveforms, see page 3-11.

Function Block Diagram

Application Example

(6-BIT SHIFT REGISTER)

GD54/74LS175 QUAD D-TYPE FLIP-FLOPS

Feature

- Contains Four Flip-Flops with Double-Rail Outputs
- Buffered Clock and Direct Clear Inputs
- Individual Data Input to Each Flip-Flop
- Applications: Buffer/Storage Registers
 Shift Registers

Description

This monolithic, positive edge-triggered flip-flops utilize, TTL circuitry to implement D-type flip-flop logic.

Pattern Generators

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

Function Table

li li	INPUTS				
CLEAR	CLOCK	D	Q	ā	
L	X	Х	L	Н	
н	↑ *	Н	н	L	
Н	† *	L	L	Н	
н	L	Χ	Q _o .	\bar{Q}_{O}	

^{*} f=transition from low to high level.

Schematics of Inputs and Outputs

 $^{^{\}star}\mathrm{Q}_{\mathrm{O}}\!=\!$ the level of Q before the indicated steady-state input conditions were established.

Supply voltage, Vcc		7V
Input voltage		7V
Operating free-air temperature range	54LS	-55°C to 125°C
	74LS	
Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAM	ETER		MIN	NOM	MAX	UNIT
V _{cc}	Supply voltage		54	4.5	5	5.5	٧
	*CC Outphy voltage		74	4.75	5	5.25	V
Іон	High-level output curren	t	54,74			-400	μΑ
la.	Low-level output ourron		54			4	
lor	Low-level output current					8	mA
f _{clock}	Clock frequency			0		30	MHz
t _w	Width of clock or clear	oulse		20			ns
	Set up time	Data input		20			
t _{su}	Clear inactive-state			25			ns
t _h	Data hold time			5			ns
т.	T _A Operating free-air temperature			-55		125	00
' A				0		70	°C

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2		λ ₁	٧
V _{IL}	Low-level input voltage			54		-	0.7	V
, L				74			0.8	•
VIK	Input clamp voltage	V _{CC} =Min,	I _I =-18mA				-1.5	٧
V _{OH}	High-level output voltage	V _{CC} =Min	V _{IL} =Max	54	2.5	3.4		V
·OH	g to to to talpat to tago	I _{OH} =Max	V _{IH} =Min	74	2.7	3.4		
V	Law laval autaut valtara	V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	.,
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	V
l _i	Input current at maximum input voltage	V _{CC} =Max,	V _{CC} =Max, V _I =7V				0.1	mA
I _{IH}	High-level input current	V _{CC} =Max,	V _{CC} =Max, V _I =2.7V				20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.4V					-0.4	mA
los	Short-circuit output current	V _{CC} =Max (V _{CC} =Max (Note 2)				-100	mA
lcc	Supply current	V _{CC} =5.25	V, (Note 3)			11	18	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Note 3: With all outputs open and 4.5V applied to all data and clear inputs. I_{CC} is measured after a momentary ground, then 4.5V is applied to clock.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency		30	40		MHz
t _{PLH}	Propagation delay time, low-to- high-level output from clear			20	30	ns
t _{PHL}	Propagation delay time, high-to- low-level output from clear	$C_L=15pF, R_L=2k\Omega$		20	30	ns
t _{PLH}	Propagation delay time, low-to- high-level output from clock			13	25	ns
t _{PHL}	Propagation delay time, high-to- low-level output from clock			16	25	ns

[#] For load circuit and voltage waveforms, see page 3-11.

Function Block Diagram

Application Example

TIMING PULSE GENERATOR

GD54/74LS191 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS WITH MODE CONTROL

Features

- Single down/up count control line
- Count enable control input
- Ripple clock output for cascading
- Asynchronously presettable with load control
- Parallel outputs
- Cascadable for n-bit applications
- Average propagation delay 20 ns
- Typical clock frequency 25 MHz
- Typical power dissipation 100mW

Description

These circuits are synchronous, reversible, up/down counters. The LS191 is a 4-bit binary counter. Synchronous operation is provided by having all flip-flops clocked simultaneously, so that the outputs change simultaneously when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple clock) counters.

The outputs of the four master-slave flip-flops are triggered on a low-to-high level transition of the clock input, if the enable input is low. A high at the enable input inhibits counting. Level changes at either the enable input or the down/up input should be made only when the clock input is high. The direction of the count is determined by the level of the down/up input. When low, the counter counts up and when high, it counts down.

These counters are fully programmable; that is, the outputs may be preset to either level by placing a low on the load input and entering the desired data at the data inputs. The output will change independent of the level of the clock input. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

The clock, down/up, and load inputs are buffered to lower the drive requirement; which significantly reduces the number of clock drivers, etc., required for long parallel words.

Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum count. The later output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock output produces a low-level output pulse equal in width to the low-level portion of the clock input when an overflow or underflow condition exists. The counters can be easily cascaded by feeding the ripple clock output to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. The maximum/minimum count output can be used to accomplish look-ahead for high-speed operation.

Function Table

LOAD	G	DN/UP	СК	QA	QB	Qc	QD
L	Х	×	·X	DA	DB	DC	DD
Н	L	L	1	Count Up			
Н	L	Н	1	Count Down			
Н	Н	Х	Х	Inhihi	t		

G	MAX/ *	СК	RK
L	Н	L	L
L	Н	Н	Н
Н	X	×	Н
Х	L	X	Н

^{*} Min/Max is output but the signal generated internally the following logical

•	Supply voltage, V _{CC}		 7V
•	Input voltage		 7V
	Operating free-air temperature range		
		74LS	 0°C to 70°C
•	Storage temperature range		 -65°C to 150°C

LS191 Binary Counters Typical Load, Count, and Inhibit Sequences

Sequence:

- (1) Load (preset) to binary thirteen
- (2) Count up to fourteen, fifteen, zero, one, and two
- (3) Inhibit
- (4) Count down to one, zero, fifteen, fourteen, and thirteen

Function Block Diagram

LS191 Binary Counters

Recommended Operating Conditions

SYMBOL	BOL PARAMETER			MIN	NOM	MAX	UNIT	
	O l Valtago	Valtago		4.5	5	5.5	V	
V _{CC}	Supply Voltage		74	4.75	5	5.25		
Гон	High-level output current		54,74			-400	μΑ	
	Low-level output current		54			4	mA	
IOL			74			8		
f _{clock}	Clock frequency			0		20	MHz	
		Clock		25			ns	
. t _W	Pulse width Load			35				
t _{su}	Data setup time		20			ns		
t _h				5			ns	
t _{EN}	Enable time to clock		40			ns		
	Operating free-air temp	erature	54	-55		125	· °C	
TA	Operating free-all temp	cialuic	74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT	
V _{IH}	High level input voltage				2			٧	
V	Low-level input voltage				54			0.7	v
V _{IL}	Low-level iliput voltage	74						0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =-18mA					-1.5	٧	
V _{OH}	High level output voltage	V _{CC} =Min,V _{IL} =Max 54			54	2.5	3.4		V
VOH	Trigit level output voltage	$I_{OH} = Max, V_{IH} = Min$ 74			74	2.7	3.4		
V _{OL}	Low level output voltage	V _{CC} =Min V _{IL} =Max	I _{OL} =4mA	54,74			0.25	0.4	V
♥ OL		V _{IH} =Min	I _{OL} =8mA		74		0.35	0.5	
l ₁	Input current at maximum	1.00		Enable	Э			0.3	mA
*1	input voltage			Other)thers			0.1	
l _{IH}	High-level input current	V _{CC} =Max V _I =2.7V Enab		Enable				60	μΑ
чн				s			20	1	
1	Low-level input current	V _{CC} =Max Enable V _I =0.4V Others		Enable	9			-1.2	mA
I _{IL}	Low-level input current			s			-0.4		
Ios	Short-circuit output current	V _{CC} =Max (Note 2)				-20		-100	mA
Icc	Supply current	V _{CC} =Max (Note 3)				25	35	mA	

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with all inputs grounded and all outputs open.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM(INPUT)	TO(OUTPUT)	TEST CONDITION	MIN TYF	MAX	UNIT
f _{max}				20 25		MHz
t _{PLH}	Load	Any Q		22	33	ns
t _{PHL}				33	50	
t _{PLH}	Data	Any Q	C _L =15pF	20	32	ns
t _{PHL}			R _{L=} 2kΩ	27	40	
t _{PLH}	Clock	Ripple		13	20	ns
t _{PHL}		Clock	See Note 1	16	24	
t _{PLH}	Clock	Any Q		16	24	ns
t _{PHL}				24	36	
t _{PLH}	Clock	Max/Min		28	42	ns
t _{PHL}				37	52	
t _{PLH}	Down/Up	Ripple		30	45	ns
t _{PHL}		Clock		30	45	
t _{PLH}	Down/Up	Max/Min		21	33	ns
t _{PHL}				22	33	
t _{PLH}	Enable	Ripple Clock		21	33	ns
t _{PHL}				22	33	

Application Examples

GD54/74LS193

SYNCHRONOUS UP/DOWN DUAL CLOCK COUNTERS; BINARY WITH CLEAR

Feature

- · Cascading Circuitry Provided Internally
- Synchronous Operation
- Individual Preset to Each Flip-Flop
- Fully Independent Clear Input

Description

The LS193 is synchronous, reversible up/down counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs, change coincidently with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple-clock) counters.

The outputs of the four master-slave flip-flops are triggered by a low-to-high-level transition of either count (clock) input. The direction of counting is determined by which count input is pulsed while the other count input is high.

All four counters are fully programmable; that is, each output may be preset to either level by entering the desired data at the data inputs while the load input is low. The output will change to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

A clear input has been provided which forces all outputs to the low level when a high level is applied. The clear function is independent of the count and load inputs. The clear, count, and load inputs are buffered to lower the drive requirements. This reduces the number of clock drivers, etc., required for long words.

These counters were designed to be cascaded without the need for external circuit. Both borrow and carry outputs are available to cascade both the up-and down-counting functions. The borrow output produces a pulse equal in width to the count-down input when the counter underflows. Similarly, the carry output produces a pulse equal in width to the count-up input when an overflow condition exists. The counters can then be easily cascaded by feeding the borrow and carry outputs to the count-down and count-up inputs respectively of the succeeding counter.

FUNCTION TABLE

			INPUTS	3						0	UTPU	ITS		CONDITIONS
С	lock			Data										CONDITIONS
Up	Down	Clear	Load	Α	В	С	D	Q _A	Q _B	Q _C	Q_D	Borrow	Carry	
X	ΙI	H H	×	X	×	X X	X	L L	L L	L L	L L	L H	H	Clear
Х	Х	L	L	Do	D ₁	D_2	D_3	Do	D ₁	D_2	D ₃	Х	Х	Load
Н	1	L	Н	Х	Х	Х	Х	(Count	Dow	า	Н	Н	Except at borrow
H	LΗ	L L	H H	X	X X	X	X	L L	L L	L L	L L	L H	H	Borrow
†	Ι	L	Н	Х	Χ	Х	Х		Cour	nt up		Н	Н	Except at carry
H	H	L L	H	X	X X	X	×			Carry				

Typical Clear, Load, and Count Sequences

Illustrated below is the following sequence:

- 1. Clear outputs to zero
- 2. Load (preset) to binary thirteen
- 3. Count up to fourteen, fifteen, carry, zero, one, and two
- 4. Count down to one, zero, borrow, fifteen, fourteen, and thirteen.

Notes: A. Clear overrides load, data, and count inputs.

B. When counting up, count-down input must be high, when counting down, count-up input must be high.

Application Example

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage		7V
•	Operating free-air temperature range	54LS	-55°C to 125°C
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V	Constitution of	54	4.5	5	5.5	V
V _{cc}	Supply voltage	74	4.75	5	5.25	V
Гон	High-level output current	54,74			-400	μΑ
	Law lavel autaut aureat	54			4	^
lor	Low-level output current	74			8	mA
f _{clock}	Clock frequency		0		25	MHz
t _w	Width of any input pulse		20			ns
t _{su}	Clear inactive-state set up time		40			ns
t _{th}	Data hold time		5			ns
т	Operating free air temperature	54	-55		125	°C
T _A	Operating free-air temperature	74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST	CONDITION	S	MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			٧
V_{IL}	Low-level input voltage			54			0.7	V
IL.				74			0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min, I	_I =-18mA				-1.5	٧
V _{OH}	High-level output voltage	V _{CC} =Min,	V _{IL} =Max	54	2.5	3.4		V
On		I _{OH} =Max,	$V_{IH} = Min$	74	2.7	3.4		,
V	Low-level output voltage	V _{CC} =Min V _{IL} =Max	I _{OL} =4mA	54,74		0.25	0.4	.,
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	V
I _I	Input current at maximum input voltage	V _{CC} =Max,	V ₁ =7V				0.1	mA
I _{IH}	High-level input current	V _{CC} =Max,	V _I =2.7V				20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max,	V _I =0.4V				-0.4	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)		-20		-100	mA
Icc	Supply current	V _{CC} =5.25\	/, (Note 3)			19	34	mA

Note 3: Icc is measured with all outputs open, clear and load inputs grounded, and all other inputs at 4.5V.

Note 1: All typical values are at V_{CC} =5V, T_A =25 $^{\circ}$ C. Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST CIBDITION	MIN	TYP	MAX	UNIT
f _{max}				25	32		MHz
t _{PLH}	Coutn up	Carry			17	26	ns
t _{PHL}	Codin up	Carry			18	24	113
t _{PLH}	Count down	Borrow	$C_L=15pF, R_L=2k\Omega$		16	24	ns
t _{PHL}	Count down	Bollow	See Figure 1 and 2		15	24	113
t _{PLH}	Either Count	Q	See rigule r and 2		27	38	ns
t _{PHL}	Littler Count	Q			30	47	110
t _{PLH}	Load	Q			24	40	ns
t _{PHL}		"			25	40	
t _{PHL}	Clear	Q			23	35	ns

 $f_{\rm max} = {\rm maximum}$ clock frequency.

Function Block Diagram

 $t_{\rm PLH}$ =propagation delay time, low-to-high-level output $t_{\rm PHL}$ =propagation delay time, high-to-low-level output

109

Parameter Measurement Information

VOLTAGE WAVEFORMS

Notes: A. The pulse generators have the following characteristics; Z_{out}≈50Ω and for the data pulse generator PRR≤500kHz duty cycle=50%, for the load pulse generator PRR is two times data PRR, duty cycle=50%.

- B. C_L includes probe and jig capacitance.
- C. Diodes are 1N3064
- D. t, and t, ≤7 ns E. v_{ref} is 1.3 volts

Figure 1. Clear Load and Set Up Times

Q OUTPUT

GD54/74LS194A

4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTER

Feature

- · Parallel Inputs and Outputs
- Four Operating Modes; Synchronous Parallel Load Right Shift Left Shift Do Nothing
- · Positive Edge-Triggered Clocking
- Direct Overding Clear

Description

This bidirectional shift register is designed to incorporate virtually all of the features a system designer may want in a shift register. The circuit contains 46 equivalent gates and features parallel inputs, parallel outputs, right-shift and left shift serial inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

Parallel (broadside) load Shift right (in the direction Q_A toward Q_D) Shift left (in the direction Q_D toward Q_A) Inhibit clock (do nothing)

Synchronous parallel loading is accomplished by applying the four bits of data and taking both mode control inputs, S0 and S1, high. The data are loaded into the associated flip-flops and appear and outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when S0 is high and S1 is low. Serial data for this mode is entered at the shift-right data input. When S0 is low and S1 is high, data shifts left synchronously and new data is entered at the shift-left serial input.

Function Table

			INP	UTS						OUTPUTS			
CLEAR MOD			CLOCK	SERIAL		P/	\R/	\LL	EL	Q	0-	Qc	Q _D
022/11/	S1 S0		CLOCK	LEFT	RIGHT	Α	В	С	D		αв	CaC .	0
L	×	X	×	×	X	×	Х	X	×	L	L	L	L
н	Х	Χ	L	x x :		Х	Х	Х	Х	Q _{AO}	\mathbf{Q}_{BO}	Q_{CO}	Q_{DO}
н	Н	Н	†	Х	×	а	b	С	d	а	b	С	d
H	L	Н	t	Х	н	Х	Χ	Х	Х	Н	Q_{An}	Q_{Bn}	Q _{Cn}
H	L	Н	†	Х	L	Х	Х	Х	Х	L	\mathbf{Q}_{An}	Q_{Bn}	Q _{Cn}
H	н	L	†	Н	X	Х	Х	Х	Х	Q _{Bn}	\mathbf{Q}_{Cn}	\mathbf{Q}_{Dn}	н
н	н	L	t			Х	Χ	Х	Х	Q _{Bn}	\mathbf{Q}_{Cn}	Q_{Dn}	L
H	L	L	×	Х	X	Х	Χ	Х	Х	Q _{AO}	Q_{BO}	Q_{CO}	Q_{DO}

H=high level (steady state)

L=low level (steady state)

X=irrelevant (any input, including transitions)

t=transition from low to high level

a,b,c,d=the level of steady state input at inputs A, B, C, or D, respectively. Q_{AO} , Q_{BO} , Q_{CO} , Q_{DO} =the level of Q_{A} , Q_{B} , Q_{C} or Q_{D} , respectively, before the indicated steady state input conditions were established.

 Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} =the level of Q_A , Q_B , Q_C or Q_D respectively, before the mostrecent † transition of the clock.

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage		7V
		54LS	
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Function Block Diagram

Typical Clear, Load, Right-Shift, Inhibit, and Clear Sequences.

Recommended Operating Conditions

SYMBOL	PARA	METER		MIN	NOM	MAX	UNIT
.,			54	4.5	5	5.5	V
V _{cc}	Supply voltage		74	· 4.75	5	5.25	٧
I _{OH}	High-level output curren	t	54,74			-400	μΑ
			54			4	A
lor.	Low-level output curren	t	74			8	mA
f _{clock}	Clock frequency			0		25	MHz
t _w	Width of clock or clear	pulse		20			ns
		Mode control		30			ns
t _{su}	Set up time	Serial and parallel data		20			ns
		Clear inactive-state		25			
t _h	Hold time at any input			0			ns
-	On another from air town		54	-55		125	°C
TA	Operating free-air tempor	erature	74	0		70	C

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CO	NDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			٧
V _{IL}	Low-level input voltage			54			0.7	v
▼IL	Low lover input voltage			74			0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min, I	_=-18mA	•			-1.5	٧
V _{OH}	High-level output voltage	V _{CC} =Min,	V _{IL} =Max	54	2.5	3.4		V
Y OH	Thigh level output vellage	I _{OH} =Max,	V _{IH} =Min	74	2.7	3.4		·
.,	Law lawel autout valtage	V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	v
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	
l _i	Input current at maximum input voltage	V _{CC} =Max,	V ₁ =7V				0.1	mA
I _{IH}	High-level input current	V _{CC} =Max,	V _I =2.7V				20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max,	V _I =0.4V				-0.4	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)		-20		-100	mA
I _{cc}	Supply current	V _{CC} =5.25\	/, (Note 3)			15	23	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Note 3: With all outputs open and 4.5V applied to all data and clear inputs. I_{CC} is measured after a momentary ground, then 4.5V is applied to clock.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency		25	36		MHz
t _{PHL}	Propagation delay time, high-to-low level output from clear			19	30	ns
t _{PLH}	Propagation delay time, low-to-high level outputs from clock	$C_L=15pF, R_L=2k\Omega$ See Figure 1		14	22	ns
t _{PHL}	Propagation delay time, high-to-low level output from clock			17	26	ns

Parameter Measurement Information

LOAD FOR OUTPUT UNDER TEST

Test Table for Synchronous Inputs

Data Input For Test	S1	S0	Output Tested (See Note E)
Α	4.5V	4.5V	Q _A at t _{n+1}
В	4.5V	4.5V	Q _B at t _{n+1}
С	4.5V	4.5V	Q _C at t _{n+1}
D	4.5V	4.5V	Q _D at t _{n+1}
L Serial Input	4.5V	OV	Q _A at t _{n+4}
R Serial Input	ov	4.5V	Q _D at t _{n+4}

- Note: A. The clock pulse generator has the following characteristics: Z_{out} ≈ 500Ω and PRR≤1MHz, tr≤15ns and tf≤6ns
 - B. C_L includes probe and jig capacitance.
 - C. All diodes are 1N3064 or 1N916
 - D. A clear pulse is applied prior to each test.
 - E. $V_{ref} = 1.3V$
 - F. Propagation delay times (tplH and tpHL) are measured at tn+1. Proper shifting of data is verified at tn+4 with a function test
 - G. t_n=bit time before clocking transition. tn+,=bit time after one clocking transition.
 - tn+4=bit time after four clocking transition.

Figure 1. Switching Times

GD54/74LS195A

4-BIT PARALLEL ACCESS SHIFT REGISTERS

Features

- Synchronous parallel load
- · Positive-edge-triggered clocking
- · Parallel inputs and outputs from each flip-flop
- · Direct overriding clear
- J and K inputs to first stage
- · Complementary outputs from last stage
- For use in high-performance: accumulators/processors serial-to-parallel, parallel-to-serial converters
- · Typical clock frequecy 39 MHz
- Typical power dissipation 70mW

General Description

These 4-bit registers feature parallel inputs, parallel outputs, J-K serial inputs, shift/load control input, and a direct overriding clear. All inputs are buffered to lower the input drive requirements. The registers have two modes of operation:

Parallel (broadside) load

Shift (in the direction QA toward QD)

Parallel loading is accomplished by applying the four bits of data and taking the shift/load control input low. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shifting is accomplished synchronously when the shift/load control input is high. Serial data for this mode is entered at the J- \overline{K} inputs. These inputs permit the first stage to perform as a J- \overline{K} , D, or T-type flip-flop as shown in the function table.

Function Table

			Inp	outs	Outputs								
Clear	Shift/	Clock	Se	rial		Par	alle	١.	QA		_		
	Load		J	K	Α	В	С	D	Q _A	Q _B	Q_{C}	Q_D	\overline{Q}_D
L	X	Х	X	Х	Х	Х	Х	Х	L	L	L	L	Н
Н	L	1	Х	Χ	a	b	С	d	a	b	С	d	d
Н	Н	L	Х	Χ	Х	Χ	Χ	Χ	Q _{AO}	Q_{B0}	Qco	Q_{D0}	\overline{Q}_{DO}
Н	н	1	L	Н	Х	Χ	Χ	Х	Q _{AO}	Q_{AO}	Q _{Bn}	Q _{Cn}	Q _{Cn}
Н	н	1	L	L	Х	Χ	Χ	Х	L	Q _{An}	Q _{Bn}	Q _{cn}	Q _{Cn}
Н	н	t	Н	н	Χ	Χ	Χ	Х	Н	Q _{An}	Q _{Bn}	Q _{Cn}	Q _{Cn}
Н	Н	1	Н	L	Х	Χ	Χ	Х	Q _{An}	Q _{An}	Q _{Bn}	Q _{Cn}	QCO

H=High Level (steady state), L=Low Level (steady state), X=Don't Care (any input, including transitions) ↑=Transition from low to high level

a,b,c,d=The level of steady state input at A, B, C, or D, respectively.

 Q_{A_0} , Q_{B_0} , Q_{C_0} , Q_{D_0} =The level of Q_A , Q_B , Q_C , or Q_D , respectively, before the indicated steady state input conditions were established. Q_{A_0} , Q_{B_0} , Q_{C_0} = The level of Q_0 , Q_B , Q_C , respectively, before the most recent transition of the clock.

Timing Diagram

TYPICAL CLEAR, SHIFT, AND LOAD SEQUENCES

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	/ V
	Input voltage	
_	Operating free-air temperature range 54LS	-55°C to 125°C
•	74LS	0°C to 70°C
•	Storage temperature range	-65 C to 150 C

Recommended Operating Conditions

SYMBOL	PARAMETER			MIN	NOM	MÁX	UNIT	
.,	0 1 1		54	4.5	5	5.5	V	
V_{CC}	Supply voltage		74	4.75	5	5.25	V	
I _{OH}	High-level output current		54, 74			-400	μΑ	
	Low-level output current		54		1	4	A	
l _{OL}			74			8	mA	
f _{clock}	Clock frequency	Clock frequency		0		30	MHz	
	Cle		k	16				
t _w	Pulse Width	Clea	r	12			ns	
	0-1	Shift	/Load	25				
t _{su}	Setup Time	Data		15			ns	
t _H	Hold Time			0			ns	
	Shift/Load Release Time			10				
t _{REL}	Clear Release Time			25			ns	
т	Operation from air temperature			-55		125	0.0	
T _A	Operatig free-air teperature		74	0		70	°C	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TES	TEST CONDITIONS			TYP (Note 1)	MAX	UNIT	
V _{IH}	High-level input voltage				2			٧	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Law lavel innut valtage			54			0.7	.,	
V _{IL}	Low-level input voltage			74			0.8	V	
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =-18mA					-1.5	٧	
.,	Libertaria antonia di	V _{CC} =Min,	V _{II} =Max	54	2.5	3.4			
V _{OH}	High-level output voltage	I _{OH} =Max, V _{IH} =		74	2.7	3.4		V	
V	Low-level output voltage	Low lovel output veltage	V _{CC} =Min	I _{OL} =4mA	54, 74		0.25	0.4	.,
V _{OL}		V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	\ \	
l _i	Input curret at maximum input voltage	V _{CC} =Max, \	V ₁ =7V				0.1	mA	
I _{IH}	High-level input current	V _{CC} =Max, \	V ₁ =2.7				20	μΑ	
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.4V					-0.4	mA	
los	Short-circuit output current	V _{CC} =Max (Note 2)			-20		-100	mA	
Icc	Supply current	V _{CC} =Max (I	Note 3)			14	21	mA	

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Note3: With all outputs open, SHIFT/LOAD grounded, and 4.5V applied to the J,R, and data inputs, I_{CC} is measured by applying a momentary ground, then 4.5V to the CLEAR and then applying a momentary ground then 4.5V to the CLOCK.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency		30	39	,,,	MHz
t _{PHL}	Propagation delay time, high-to- low-level Q outputs from clear input			19	30	ns
t _{PLH}	Propagation delay time, low-to- high-level Q outputs from clock input	$C_L=15pF, R_L=2k\Omega$		14	22	ns
t _{PHL}	Propagation delay time, high-to low-level Q outputs from clock input			17	26	ns

[#]For load circuit and voltage waveforms, see page 3-11.

GD54/74LS221

DUAL MONOSTABLE MULTIVIBRATORS WITH SCHMITT—TRIGGER INPUTS

Feature

- Pin Out is identical to the LS123
- B input has hysterisis for improved noise immunity
- Overriding Reset terminates outpulse

Description

The LS221 contains two monostable multivibrator circuits with direct reset input.

Pulse triggering occurs at a particular voltage level and is not directly related to the transition time to the input pulse A proper transition by either the CLR.A or B input, as shown in the function will cause the Q output to go high and remain high for the pulse time tw.

Output Pulse Width, tw

The output pulse width is set using R_{ext} and C_{ext} by the following formula

$$tw = 0.7C_{ext}.R_{ext}[ns]$$

Figure 1.

Function Table

INF	PUT		OUTPUTS			
CLEAR	Α	В	Q	Q		
L	Х	Χ	L	Н		
X	Н	X	L	Н		
X	X	L	L	Н		
H	L	↑		~		
Н	1	Н		~		
1	L	Н	77	7		

Figure 2. Connection of Cext and Rext

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Operating free-air temperature range	54LS	55°C to 125°C
	Storage temperature range	7420	-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAME	TER		MIN	NOM	MAX	UNIT	
V _{CC}	Supply voltage		54	4.5	5	5.5	v	
•66	Oupply Voltage		74	4.75	5	5.25	1 V	
l _{OH}	High-level output current	54, 74			-400	μΑ		
I	I _{OI} Low-level output current	54			4	m A		
loL			74			8	mA	
dv/dt	Rate of rise or fall of	Schmitt. B		1			v/s	
uv/ut	input pulse	Logic Inp	out. A	1			V/μS	
t _W	tw Input pulse width			50			ns	
·w	Input puise width	Clear		40			1 115	
t _{SU}	Clear-inactive-state setup	time		15			ns	
R _{ext}	External timing resistance			1.4		100	kΩ	
C _{ext}	External capacitance			0.		1000	μF	
O.D.C	Output duty cycle		$R_T=2k\Omega$			50	%	
0.0.0	J.D.O Output duty cycle		R _T =Max R _{ext}			90	1 70	
т	Operating Free-air Temp.		54	-55		125	0.0	
' A			74	0		70	°C	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise note)

SYMBOL	PARAMET	ΓER	TES	ST CONDITIO	DNS	MIN	Typ (Note 1)	MAX	UNIT
V _{T+}	Positive-Going Input Threshold Voltage		V _{CC} =Min				1.0	2.0	٧
V _T _	Negative-Going Inp Threshold Voltage		V _{CC} =Min			0.8	1.0		٧
V _{T+}	Positive-Going Inpo Threshold Voltage		V _{CC} =Min				1.0	2.0	V
V _T _	Negative-Going Inp Threshold Voltage		V _{CC} =Min			0.8	0.9		٧
V _{IK}	Input clamp voltage	е	V _{CC} =Min,	$I_1 = -18mA$			•	-1.5	V
	V- High-level output v	oltaga	V _{CC} =Min,	V _{IL} =Max	54	2.5	3.4		V
V _{OH}	High-level output voltage		I _{OH} =Max,	V _{IH} =Min	74	2.7	3.4		ľ
V			V _{CC} =Min	I _{OL} =4mA	54, 74		0.25	0.4	V
V _{OL}	Low-level output v	oltage	V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	V
I _I	Input Current at M Input Voltage	aximum	V _{CC} =Max,	V _I =7V				0.1	mA
I _{IH}	High-level input cu	rrent	V _{CC} =Max,	$V_1 = 2.7V$				20	μΑ
	Low-level	Input A						-0.4	
I _{IL}	Input Current	Input B	V _{CC} =Max,	$V_1 = 0.4V$				-0.8	mA
	•	Clear						-0.8	
los	Short-circuit outpu	t current	V _{CC} =Max (Note 2)		-20		-100	mA
Icc	Supply Current		V _{CC} =Max		Quiescent		4.7	11	mA
00			00		Triggered		19	27	

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM(INPUT)	TO(OUTPUT)	TES	MIN	TYP	MAX	UNIT	
	Α		C _L =15pF	0 -00-5		48	70	ns
t _{PLH}	В	Q		$R_{\text{ext}} = 2k\Omega$		35	55	113
	Α	Q NL-2k32	H _{ext} -2K32		50	80	ns	
t _{PHL}	В	l u				40	65	113
t _{PHL}	Clear	Q	See Fig 1			35	55	ns
t _{PLH}	Clear	Q				44	65	1.0
out	A or B	Q]	C_{ext} =80pF, R_{ext} =2k Ω	70	120	150	
				$C_{ext}=0$, $R_{ext}=2k\Omega$	20	47	70	ns
t _w Q(out)	A or B	Q		C_{ext} =100pF, R_{ext} =10k Ω	670	740	810	
				$C_{ext} = 1 \mu F, R_{ext} = 10 k\Omega$	6	6.9	7.5	ms

^{*} t_{PLH} =propagation delay time, low-to-high-level output.

#For load circuit and voltage waveforms, see page 3-11.

FIGURE 3

FIGURE 4

^{*} t_{PHL}=propagation delay time, high-to-low-level output.

^{*} t_Q=width of pulse at output Q

PARAMETER MEASUREMENT INFORMATION

PARAMETER MEASUREMENT INFORMATION

NOTES: A. Input pulses are supplied by ganerators having the following characteristics: PRR<1 MHz, Z_{out}~50Q: for 221, t_i<7 ns, t_i<7 ns, for LS221, t_i<15 ns, t_i<6 ns.

Figure 1 Switching Characteristics

B. All measurements are made between the 1.5 V points of the indicated transitions for the 221 or between the 1.3V points for the LS221.

Application Examples

(1) Delay circut

By connecting an integration circuit to the B input, a rectangular waveform applied to the input is changed to the waveform shown at B and delayed by time t_d . The width of the pulse output at Q and Q is determined as usual by the values of C_{ext} , R_{ext} connected externally to the circuit.

(2) ANTI-CHATTERING CIRCUIT

GD54/74LS240

OCTAL BUFFERS/LINE DRIVERS/LINE RECEIVERS INVERTED 3-STATE OUTPUTS

Feature

- 3-State outputs Drive Bus Lines or Buffer Memory Addres Registers
- P-N-P Inputs Reduce D-C Loading
- Hysteresis at Inputs Improves Noise Margins

Description

These octal buffers and line drivers are designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

This device features high fan-out, improved fanin and 400mV noise margin.

It can be used to drive terminated lines down to 133 ohms

Pin Configuration Voc. 2G 1Y1 2A4 1Y2 2A3 1Y3 2A2 1Y4 2A1 20 19 18 17 16 15 14 13 12 11 1 2 3 4 5 6 7 8 9 10 1G 1A1 2Y4 1A2 2Y3 1A3 2Y2 1A4 2Y1 GND Suffix-Blank: Plastic Dual In Line Package Suffix-J : Ceramic Dual In Line Package

Function Table

INP	UTS	OUTPUT
G	Α	Y
Н	Х	Z
L	Н	L
L	L	Н

Note: All devices have input hysteresis.

Absolute Maximum Ratings

Supply voltage, Vcc
 Input voltage
 Operating free-air temperature range
 54LS
 74LS
 0°C to 70°C
 Storage temperature range
 Storage temperature range

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V _{cc}	Supply voltage	54	4.5	5	5.5	٧
*cc		74	4.75	5	5.25	
1	High-level output current	54			-12	mA
І он	nigri-lever output current	74			-15	
,	Low level output ourrent	54			12	mA
l _{OL}	Low-level output current	74			24	
, T _A	Operating free-air temperature	54	-55		125	°C
'A		74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PA	ARAMETER	TEST	CONDITIONS	6	MIN (TYP Note 1)	MAX	UNIT
V _{IH}	High-level in	out voltage				2			٧
V _{IL}	Low-level inp	out voltage			54 74			0.7	٧
V _{IK}	Input clamp	voltage	V _{CC} =Min, I _I =	=-18mA				-1.5	V
$V_{T+}-V_{T-}$	Hysteresis		V _{CC} =Min,			0.2	0.4		V
V _{OH}	High-level ou	itout voltage	e $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.7				
011	,g love. ce	npat voltage			2.4	3.4		v	
			V _{CC} =Min	I _{OL} =12mA	54, 74		0.25	0.4	
V _{OL}	Low-level ou	tput voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =24mA	74		_	V	
I _{OZH}	Off-state out		V _{CC} =Max, V V _{IH} =Min, V _{IL}					20	μΑ
I _{OZL}	Off-state out		V _{CC} =Max, V V _{IH} =Min, V _{IL}					-20	μΑ
l _l	Input current input voltage	at maximum	V _{CC} =Max, V	_I =7V				0.1	mA
I _{IH}	High-level in	out current	V _{CC} =Max, V	=2.7V				20	μΑ
I _{IL}	Low-level inp	out current	V _{CC} =Max, V	=0.4V				-0.2	mA
los	Short-circuit	output current	V _{CC} =Max (Note 2)		-40		-225	mA	
	Supply	Outputs high					17	27	
Icc	Current	Outputs low	V _{CC} =5.25V Outputs open				26	44	mA
		All outputs disabled					29	50	

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C. Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
Propagation delay time, t _{PLH} low-to-high-level output				9	14	ns
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L = 45pF, R_L = 667\Omega$		12	18	ns
t _{PZL}	Output enable time to low level			20	30	ns
t _{PZH}	Output enable time to high level			15	23	ns
t _{PLZ}	t _{PLZ} Output disable time from low level			15	25	ns
t _{PHZ}	Output disable time from high level	$C_L=5pF, R_L=667\Omega$		10	18	ns

[#] For load circuit and voltage waveforms, see page 3-11.

GD54/74LS241 OCTAL BUFFER/LINE DRIVERS/ LINE RECEIVERS NON INVERTED 3-STATE OUTPUTS OUTPUTS

Feature

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- P-N-P Inputs Reduce D-C Loading
- Hysteresis at Inputs Improves Noise Margins

Description

These octal buffers and line drivers are desinged specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and busoriented receivers and transmitters.

This device features high fan-out, improved fanin, and 400mV noise margin.

It can be used to drive terminated lines down to 133 ohms

Pin Configuration 2G 1Y1 2A4 1Y2 2A3 1Y3 2A2 1Y4 2A1 17 16 15 14 5 6 1A1 2Y4 1A2 2Y3 1A3 2Y2 1A4 2Y1 GND Suffix-Blank: Plastic Dual In Line Package Ceramic Dual In Line Package Suffix-J

Function Table (Note 1)

1A	1 Ğ	1Y
L	L	L
н	L	н
х	н	Z

	L	L		L	Н	L
	L	Н		Н	Н	Н
	н	Z		Х	L	Z
_			'			

2A

2 **G**

2Y

Note 1 Z: High-impedance X: irrelevant

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Operating free-air temperature range	54LS	-55°C to 125°C
		74LS	0°C to 70°C
•			

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
	Constitution of the consti	54	4.5	5	5.5	V	
V_{CC}	Supply voltage 74		4.75	5	5.25	V	
	LE-b-le-sel-sel-sel-sel-sel-sel-sel-sel-sel-	54			-12	m ^	
ГОН	High-level output current 74	74			-15	mA	
		54			12	Λ	
lOL	Low-level output current	74			24	mA	
T	Operating free-air temperature 54 74	54	-55		125	°C	
T_A		74	0		70	°C	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PA	ARAMETER	TEST	TEST CONDITIONS			TYP Note 1)	MAX	UNIT
V _{IH}	High-level inp	out voltage				2			٧
V _{IL}	Low-level inp	out voltage		54 74				0.7	٧
V _{IK}	Input clamp v	voltage	V _{CC} =Min, I _I =	- 18mA	, , ,			-1.5	V
V _{T+} -V _{T-}	Hysteresis		V _{CC} =Min,			0.2	0.4		V
V _{OH}	High-level ou	itput voltage	V _{CC} =Min, V _{II}	$V_{CC} = Min, V_{IH} = Min$ $V_{IL} = Max, I_{OH} = -1 mA$ 74					
On				$\begin{array}{ll} V_{CC} = Min, \ V_{IH} = Min \\ V_{IL} = Max, \ I_{OH} = -3mA \end{array} \qquad 54,74 \\ V_{CC} = Min, \ V_{IH} = Min \\ V_{IL} = 0.5V, \ I_{OH} = Max \end{array} \qquad 54,74$		2.4	3.4		v
						2			
· ·	Low lovel out	tout valtage	V _{CC} =Min	I _{OL} =12mA	54, 74		0.25	0.4	v
V _{OL}	Low-level out	tput voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =24mA	74		0.35	0.5	\ \
I _{OZH}	Off-state outphigh-level vol		V _{CC} =Max, V ₀ V _{IH} =Min, V _{IL}					20	μΑ
I _{OZL}	Off-state out		V _{CC} =Max, V ₀ V _{IH} =Min, V _{IL}					-20	μΑ
4	Input current input voltage		V _{CC} =Max, V _I	=7V				0.1	mA
I _{IH}	High-level inp	out current	V _{CC} =Max, V _I	=2.7V				20	μА
I _{IL}	Low-level inp	out current	V _{CC} =Max, V _I					-0.2	mA
los	Short-circuit	output current	V _{CC} =Max (Ne			-40		-225	mA
	Supply	Outputs high					17	27	
Icc	Current	Outputs low	V _{CC} =5.25V,	Outputs open			26	46	mA
		All outputs disabled					32	54	

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output			12	18	ns
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L = 45pF, R_L = 667\Omega$		12	18	ns
t _{PZL}	Output enable time to low level			20	30	ns
t _{PZH}	Output enable time to high level			15	23	ņs
t _{PLZ}	Output disable time from low level	C -505 B -6670		15	25	ns
t _{PHZ}	Output disable time from high level	$C_L=5pF, R_L=667\Omega$		10	18	ns

[#] For load circuit and voltage waveforms, see page 3-11.

GD54/74LS242

QUADRUPLE BUS TRANSCEIVERS

Features

- Two-Way Asynchronous Communication Between Data Buses
- P-N-P Inputs Reduce D-C Loading
- Hysteresis (Typically 400 mV) at Inputs Improves Noise Margin
- High Fan out (I_{OL}=24mA)

Description

These four data line transceivers are designed for asynchronous two-way communications between data buses. They can be used to drive terminated lines down to 133 ohms.

Function Table

CONTROL INPUTS		'LS2 DATA STA	PORT
ĞАВ	GBA	Α	В
Н	Н	ō	ı
L	Н	*	*
H L		ISOL	ATED
L	L	1	ō

^{*}Possibly destructive oscillation may occur if the transceivers are enabled in both directions at once.

| Second | Description | Description

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	7V
•	Input voltage Any G	7V
	A or B	5.5V
•	Operating free-air temperature range	0°C to 70°C
•	Storage teperature rage	-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
.,	Supply voltage 54 74	54	4.5	5	5.5	٧	
V _{cc}		4.75	5	5.25	V		
	High-level output current 54	54			-12		
Гон		74			-15	mA	
	Low-level output current	54			12	m A	
loL		74			24	mA	
-	Operating free-air temperature	54	54	-55		125	°C
T _A		74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	F	PARAMETER	TEST CONDITIONS		MIN (TYP Note 1)	MAX	UNIT	
V _{IH}	High-leve	l input voltage				2			٧
					54			0.7	٧
V _{IL}	Low-level	I input voltage			74			0.8	٧
V _{IK}	Input clar	mp voltage	V _{CC} =Min, I	_=-18mA				-1.5	٧
V _{T+} - V _{T-}	Hysteres	is	V _{CC} =Min			0.2	0.4		٧
			-	V_{CC} =Min, V_{IH} =Min V_{IL} =Max, I_{OH} =-1mA		2.7			
V _{OH}	High-level output voltage		V _{CC} =Min, \ V _{IL} =Max, I _C		54, 74	2.4	3.4		٧
		V=Mip V=Mip			54, 74	2			
			V _{CC} =Min	I _{OI} = 12mA	54, 74		0.25	0.4	
V _{OL}	Low-leve	l output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =Max	74		0.35	0.5	V
I _{OZH}	1	output curret I voltage applied	V _{CC} =Max, V _{IH} =Min, V					40	μΑ
I _{OZL}	-	output current voltage applied	V _{CC} =Max, V _{IH} =Min, V	•				-200	μΑ
l _i	Input cur input volt	rent at maximun tage	V _{CC} =Max,	V _I =7V				0.1	mA
I _{IH}	High-leve	el input current	V _{CC} =Max,	V _I =2.7V				20	μΑ
I _{IL}	Low-leve	l input current	V _{CC} =Max,	V _I =0.4V				-0.2	mA
Ios	Short-cir	cuit output current	V _{CC} =Max (Note 2)		-40		-225	mA	
		Output high			•		22	38	
Icc	Supply	Outputs low	V _{CC} =5.25V			29	50	mA	
	Current	All outputs disabled		Outputs open			29	50	

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAETER	TEST CONDITION			'LS24	2	UNIT
				MIN	TYP	MAX	
t _{PLH}	Propagation delay time, low-to-high-level output				9	14	ns
t _{PHL}	Propagation delay time, high-to-low-level output	C _L =45pF,	$R_L = 667\Omega$,		12	18	ns
t _{PZL}	Output enable time to low level				20	30	ns
t _{PZH}	Output enable time to high level				15	23	ns
t _{PLZ}	Output disable time from low level	$C_1 = 5pF$	$R_1 = 667\Omega$		15	25	ns
t _{PHZ}	Output disable time from high level	$C_L = 5pF$, $R_L = 667\Omega$,			10	18	ns

[#]For load circuit and voltage waveforms, see page 3-11.

GD54/74LS243 QUADRUPLE BUS TRANSCEIVERS

Features

- Two-Way Asynchronous Communication Between Data Buses
- P-N-P Inputs Reduce D-C Loading
- Hysteresis (Typically 400 mV) at Inputs Improves Noise Margin
- High Fan out (I_{OI} = 24mA)

Description

These four data line transceivers are designed for asynchronous two-way communications between data buses. They can be used to drive terminated lines down to 133 ohms.

Function Table

CONTROL		DATA	243 PORT TUS
GAB GBA		Α	В
Н	Н	0	ı
L	Н	*	*
Н	L	ISOL	ATED
L	L	1	0

^{*}Possibly destructive oscillation may occur if the transceivers are enabled in both directions at once.

|=input. O=Output.

Schematics of Inputs and Outputs EQUIVALENT OF EACH INPUT Vcc T7/kQ INPUT OUTPUT GND

Absolute Maximum Ratings

 Supply voltage, V_{CC}
 7V

 Input voltage Any G
 7V

 A or B
 5.5V

 Operating free-air temperature range
 0°C to 70°C

 −55°C to 25°C

 Storage teperature rage
 −65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
V _{CC}		54	4.5	5	5.5	V	
	Supply voltage	74	4.75	5	5.25	V	
		54			-12	mA	
Іон	High-level output current	I _{OH} High-level output current 74	74			-15	IIIA
		54			12	mA	
l _{OL}	Low-level output current	74			24	IIIA	
_	Operating free-air temperature		54	-55		125	°C
T _A		74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	Р	ARAMETER	TES	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-leve	l input voltage				2			٧
V	Low lovel	l input voltage		5				0.7	v
V _{IL}	LOW-level	iliput voltage			74			0.8	·
V _{IK}	Input clar	np voltage	V _{CC} =Min, I _I	=-18mA				-1.5	٧
V _{T+} - V _{T-}	Hysteres	is	V _{CC} =Min			0.2	0.4		٧
				V _{CC} =Min, V _{IH} =Min V _{IL} =Max, I _{OH} =-1mA		2.7			
V _{OH}	High-leve	el output voltage	V _{CC} =Min, \ V _{IL} =Max, I _C		54, 74	2.4	3.4		v
			V _{CC} =Min, V _{IH} =Min V _{IL} =0.5V, I _{OH} =Max		54, 74	2			
			V _{CC} =Min	I _{OL} =12mA	54, 74		0.25	0.4	.,
V _{OL}	Low-leve	I output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =Max	74		0.35	0.5	V
l _{ozh}		output curret I voltage applied	V _{CC} =Max, V _{IH} =Min, V	•				40	μΑ
I _{OZL}	1	output current voltage applied	V _{CC} =Max, V _{IH} =Min, V					-200	μΑ
I _I	Input cur input volt	rent at maximun tage	V _{CC} =Max,	V _I =7V				0.1	mA
I _{IH}	High-leve	el input current	V _{CC} =Max,	V _{CC} =Max, V _I =2.7V				20	μΑ
I _{IL}	Low-leve	l input current	V _{CC} =Max,	V _i =0.4V				-0.2	mA
los	Short-cir	cuit output current	V _{CC} =Max (Note 2)			-40		-225	mA
		Outputs high					22	38	
I _{CC}	Supply	Outputs low	V _{CC} =5.25\ Outputs op				29	50	mA
	33	All outputs disabled	Culpute open			32	54		

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25^{\circ}C$. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAETER	TEST CO	TEST CONDITION #		LS243		UNIT				
					TYP	MAX					
t _{PLH}	Propagation delay time, low-to-high-level output				12	18	ns				
t _{PHL}	Propagation delay time, high-to-low-level output	C _L =45pF,	C _L =45pF,	C _L =45pF,	C _L =45pF, R _L =	C _L =45pF,	R _L =667Ω,		12	18	ns
t _{PZL}	Output enable time to low level							20	30	ns	
t _{PZH}	Output enable time to high level				15	23	ns				
t _{PLZ}	Output disable time from low level	C _L =5pF,	$R_i = 667\Omega$		15	25	ns				
t _{PHZ}	Output disable time from high level	υ <u>υ</u> 3μι,	307 22,		10	18	ns				

[#]For load circuit and voltage waveforms, see page 3-11.

OCTAL BUFFERS/LINE DRIVERS/LINE RECEIVERS NONINVERTED 3-STATE OUTPUTS

Feature

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- · P-N-P Inputs Reduce D-C Loading
- Hysteresis at Inputs Improves Noise Margins

Description

These octal buffers and line drivers and designed specifically to improve both the performance and density of three-state memory address drivers, clock drivers, and busoriented receivers and transmitters.

This device features high fan-out, improved fanin, and 400mV noise margin.

It can be used to drive terminated lines down to 133 ohms

Function Table

Α	Ğ	Υ
L	L	L
Н	L	н
X	н	z

- X: Irrelevant
- Z: High Impedance

Pin Configuration Vcc 2\overline{G} 1Y1 2A4 1Y2 2A3 1Y3 2A2 1Y4 2A1 2D 19 18 17 16 15 14 13 12 11 11 12 11 11 12 11 11 12 11

Schematics of Inputs and Outputs

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
		54LS	
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
		54	4.5	5	5.5	V	
v_{cc}	Supply voltage	74	4.75	5	5.25	V	
			54	54		-12	mA
IOH	High-level output current	I _{OH} High-level output current 7	74			-15	IIIA
		54			12	mA	
OL	Low-level output current	74			24	ША	
_		54	-55		125	°C	
T_A	Operating free-air temperature	74	0		70	C	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PA	RAMETER	TEST CONDITIONS			MIN (TYP Note 1)	MAX	UNIT	
V _{IH}	High-level inp	ut voltage				2			V	
V _{IL}	Low-level inpu	ut voltage			54 74			0.7	٧	
V _{IK}	Input clamp v	oltage	V _{CC} =Min, I _I =	=-18mA	_ , ,			-1.5	V	
V _{T+} - V _{T-}	Hysteresis		V _{CC} =Min			0.2	0.4		٧	
V _{OH}	High-level out	tout voltage	V _{CC} =Min, V _{II}	V_{CC} =Min, V_{IH} =Min V_{IL} =Max, I_{OH} =-1mA 74		2.7				
VOH	Tilgit-level out	put voltage	V _{CC} =Min, V _{II} V _{IL} =Max, I _{OH}	-Min	54,74	2.4	3.4		٧	
				V _{CC} =Min, V _{IH} =Min V _{IL} =0.5V, I _{OH} =Max		2				
			V _{CC} =Min	I _{OL} =12mA	54, 74		0.25	0.4	v	
V _{OL}	Low-level out	put voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =24mA	74		0.35	0.5	V	
l _{OZH}	Off-state outp		V _{CC} =Max, V _I V _{IH} =Min, V _{IL}					20	μА	
I _{OZL}	Off-state outp		V _{CC} =Max, V _I V _{IH} =Min, V _{IL}					-20	μΑ	
l _l	Input current input voltage	at maximum	V _{CC} =Max, V	=7V				0.1	mA	
I _{IH}	High-level inp	ut current	V _{CC} =Max, V	=2.7V				20	μΑ	
I _{IL}	Low-level inp	ut current	V _{CC} =Max, V _I =0.4V				-0.2	mA		
los	Short-circuit of	output current	V _{CC} =Max (Note 2)		-40		-225	mA		
	Supply	Outputs high					17	27		
Icc	Current	Outputs low	V _{CC} =5.25V	Outputs open	1		27	46	_ mA	
		All outputs disabled					32	54		

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output			12	18	ns
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L = 45pF, R_L = 667\Omega$	2 12 18 20 30	18	ns	
t _{PZL}	Output enable time to low level			20	30	ns
t _{PZH}	Output enable time to high level			15	23	ns
t _{PLZ}	Output disable time from low level	0 5 5 5 0 0070		15	25	ns
t _{PHZ}	Output disable time from high level	$C_L=5pF, R_L=667\Omega$		10	18	ns

[#] For load circuit and voltage waveforms, see page 3-11.

GD54/74LS245

OCTAL BUS TRANSCEIVER; NON-INVERTED 3-STATE OUTPUTS

Feature

- Bidirectional Bus Transceiver in a High-Density 20-Pin Package
- 3-State Outputs Dirve Bus Lines Directly
- P-N-P Inputs D-C Loading on Bus Lines
- Hysteresis at Bus Inputs Improve Noise Margins
- Typical Propagation Delay Times; Port to Port ...
 8 ns

Description

These octal bus transceiver are designed for asynchronous two-way communication between data buses. The control function implementation minimizes external timing requirements.

The device allows data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic level at the directional control (DIR) input. The enable input (\overline{G}) can be used to disable the device so that the buses are effectively isolated.

Schematics of Inputs and Outputs

Function Table

ENABLE G	DIRECTION CONTROL DIR	OPERATION
L	L	B data to A bus
L	Н	A data to B bus
н	X	Isolation

EQUIVALENT OF EACH INPUT TYPICAL OF ALL OUTPUTS

Absolute Maximum Ratings

Cupply voltage Vec

•	Supply voltage, vcc		· · · · · · · · · · · · · · · · · · ·
•	Input voltage		7V
•	Off-state output voltage		5.5V
•	Operating free-air temperature range	54LS	-55°C to 125°C
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

7V

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
.,		54	4.5	5	5.5	V	
V _{cc}	Supply voltage	74	4.75	5	5.25	V	
		54			-12	mA	
Гон	High-level output current	74			-15	IIIA	
		54			12	mA	
l _{OL}	Low-level output current	Low-level output current	74			24	IIIA
-	54	54	-55		125	°C	
T _A	Operating free-air temperature	74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER			TEST CONDITIONS			MIN (TYP Note 1)	MAX	UNIT
V _{IH}	High-level input voltage						2			٧
V _{IL}	Low-level input voltage					54			0.7	
						74			0.8	
V _{IK}	Input clamp voltage			V _{CC} =Min, I _I =-18mA					-1.5	V
$V_{T+}-V_{T-}$	Hysteresis			V _{CC} =Min,			0.2	0.4		٧
V _{OH}	High-level output voltage			V_{CC} =Min, V_{IH} =Min V_{IL} =Max, I_{OH} =-1mA 74		2.7			v	
I OH				$ \begin{array}{c} V_{CC} = Min, \ V_{IH} = Min \\ V_{IL} = Max, \ I_{OH} = -3mA \end{array} $ 54,74		2.4	3.4			
				$\begin{array}{c} V_{CC} = Min, \ V_{IH} = Min \\ V_{IL} = 0.5V, \ I_{OH} = Max \end{array} \hspace{0.5in} 54,74$			2			
V _{OL}	Low-level output voltage			V _{CC} =Min I _{OL} =12m/		54, 74		0.25	0.4	v
				V _{IL} =Max V _{IH} =Min	I _{OL} =24m	A 74		0.35	0.5	
l _{ozh}	Off-state output current high-level voltage applied			=Max, V _O =2.7V Min, V _{IL} =Max \$\overline{G}\$ at 2V				20	μА	
I _{OZL}	Off-state out			V _{CC} =Max, V _O =0.4V V _{IH} =Min, V _{IL} =Max		G at 2V			-200	μΑ
I _I	Input current at maximum A or B maximum input voltage DIR or \overline{G}		V=Max		$V_1 = 5.5V$ $V_1 = 7V$			0.1	mA	
I _{IH}	High-level input current			V _{CC} =Max, V _I =2.7V					20	μΑ
I _{IL}	Low-level input current			V _{CC} =Max, V _I =0.4V					-0.2	mA
los	Short-circuit output current			V _{CC} =Max (Note 2)			-40		-225	mA
I _{cc}	Supply Current	Outputs high		V _{CC} =5.25V, Outputs open				48	70	4 I
		Outputs low						62	90	
		All outputs disabled						64	95	

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output			8	12	ns
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L = 45pF, R_L = 667\Omega$		8	12	ns
t _{PZL}	Output enable time to low level			27	40	ns
t _{PZH}	Output enable time to high level			25	40	ns
t _{PLZ}	Output disable time from low level	C -5-5 B -6670		15	25	ns
t _{PHZ}	Output disable time from high level	$C_L=5pF, R_L=667\Omega$		15	25	ns

[#] For load circuit and voltage waveforms, see page 3-11.

8-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUT

Features

- 3-State Versions of LS151
- Three-State Outputs Interface Directly with System Bus
- Performs Parallel-to-Serial Conversion
- Complemently Outputs Provide True and Inverted Data
- Fully Compatible with Most TTL Circuits

Description

These monorithic data selectors/multiplexers contain full on chip binary decoding to select one-of-. eight data sources and feature a strobe controlled three state output. The strobe must be at a low logic level to enable these devices. The three-state outputs permit a numer of outputs to be connected to a common bus. When the strobe input is high, both outputs are in a high impedance state in which both the upper and lower transistors of each totem-pole output are off and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL

totem pole outputs.

GD54/74LS 251 has the same functions and pin connections as GD54/74LS151 but the latter is provided with active pull-up resistors outputs.

Function Table

	INPUTS			ΟU	TPUTS
SI	ELEC	T	STROBE		
С	В	Α	S	Y	w
Х	X	Χ	Н	Z	Z
L	L	L	L	DO	DO
L	L	Н	L	D1	D1
L	Н	L	L	D2	D2
L	Н	Н	L	D3	D3
Н	L	L	L	D4	D4
Н	L	Н	L	D5	D5
Н	Н	L	L	D6	D6
Н	Н	Н	L	D7	D7

H=high logic level, L=low logic level X=irrelevant, Z=high impedance (off)

D0.D1...D7=the level of the respective D input

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	7\/
•	Input voltage	7 V
•	Off-state output voltae	/ V
•	● Operating free-air temperature range 54LS −55°C to 1	/ v 125°C
	74LS	70°C
•	Storage temperature range	50°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	54	4.5	4	5.5	V
		74	4.75	5	5.25	, v
loh	High-level output current	54			-1	mA
		74			-2.6	111/4
loL	Low-level output current	54			12	mA
		74			24	111/5
TA	Operating free-air temperature	54	-55		125	°C
	•	74	0		70	O

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CO	TEST CONDITIONS			TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			V
V_{IL}	Low-level input voltage			54			0.7	V
				74			0.8	1
V _{IK}	Input clamp voltage	V _{CC} =Min, I	_I =-18mA				-1.5	V
V_{OH}	High-level output voltage	V _{CC} =Min, V	V _{IL} =Max	54	2.4	3.4		V
		I _{OH} =Max, \	/ _{IH} =Min	74	2.4	3.1		1
V	Low lovel output valtage	V _{CC} =Min	$I_{OL} = 12mA$	54,74		0.25	0.4	
V _{OL}	Low-level output voltage	V_{IL} =Max V_{IH} =Min I_{OI} =24mA		74		0.35	0.5	V
I _{OZH}	Off-state output current high-level voltage applied	V _{CC} =Max, V _{IH} =Min, V					20	μΑ
l _{ozL}	Off-state output current low-level voltage applied	V _{CC} =Max, V _{IH} =Min, V					-20	μΑ
l _i	Input current at maximum input voltage	V _{CC} =Max,	v ₁ =7V				0.1	mA
l _{iH}	High-level input current	V _{CC} =Max, V _I =2.7V					20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.4V				-0.4	mA	
los	Short-circuit output current	V _{CC} =Max (Note 2)			-20		-100	mA
Icc	Supply current	V _{CC} =Max	Condition A			6.1	10	mA
00		(Note 3)	VCC - IVIAX			7.1	12	IIIA

Condition B: ICC is measured with the outputs open, and all inputs at 4.5V

Note 1: All typical values are at V_{CC} =5V, T_A =25 $^{\circ}$ C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: Condition A: Icc is measured with the outputs open, strobe grounded, and all other inputs at 4.5V.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	A,B or C(4 levels)	Y			29	45	ns
t _{PHL}	A,B of C(4 levels)	·			28	45	
t _{PLH}	A.P. or C.(3 lovels)	W			20	33	ns
t _{PHL}	A,B, or C (3 levels)		C _L =15pF		21	33	
t _{PLH}	A D	Υ	$R_L = 2k\Omega$		17	28	ns
t _{PHL}	Any D	'			18	28	
t _{PLH}	A D	w			10	15	ns
t _{PHL}	Any D	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			9	15	1
t _{PZH}	Charles	Y			30	45	ns
t _{PZL}	Strobe				26	40	
t _{PZH}	Strobe	w			17	27	ns
t _{PZL}	Strobe				24	40	
t _{PHZ}	Strobe	Y			30	45	ns
t _{PLZ}	Janobe	'	C _L =5pF		15	25	
t _{PHZ}	Otraha	w	$R_L = 2k\Omega$		37	55	ns
t _{PLZ}	Strobe	VV			15	25	1

^{*} tpLH=propagation delay time, low-to-high-level output

^{*} t_{PHL}=propagation delay time, high-to-low-level output

^{*} t_{PZH}=output enable time to high level

^{*} tpzL=output enable time to low level

^{*} t_{PHZ}=output disable time from high level * t_{PLZ}=output disable time from low level

[#]For load circuit and voltage waveforms, see page 3-11.

GD54/74LS257A

QUAD DATA SELECTORS/MULTIPLEXERS; NON-INVERTED 3-STATE OUTPUTS

Feature

- Three-State Outputs Interface Directly with System Bus
- Provides Bus Interface from Multiple Sources in High-Performance System
- 3-State Versions LS157 with Same Pin Outs

Description

This device is designed to multiplex singals from four bit data sources to four-output data lines in busorganized systems. The 3-state outputs will not load the data lines when the output control pin (\overline{G}) is at high-logic level.

Funciton Table

	OUTPUT			
OUTPUT CONTROL	SELECT	Α	В	Y
Н	Х	Х	Х	Z
L	L	L	Χ	L
L	L	Н	Χ	н
L	Н	Χ	L	L
L	Н	Х	Н	Н

Schematics of Inputs and Outputs

TYPICAL OF ALL OUTPUTS EQUIVALENT OF EACH INPUT $\begin{array}{c} V_{CC} \\ \hline INPUT \\ \hline \\ Select. \ R_{eq} = 9.5 \ k\Omega \ NOM \\ All \ other \ inputs. \ R_{eq} = 19 \ k\Omega \ NOM \\ \end{array}$

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Off-state output voltage		5.5V
•	Operating free-air temperature range	54LS	-55°C to 125°C
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
.,		54	4.5	5	5.5	V
V _{cc}	Supply voltage	74	4.75	5	5.25	٧
	I Park I and a second	54			-1	mA
ОН	High-level output current	74			- 2.6	IIIA
		54			12	mA
lor	Low-level output current	74			24	IIIA
-	54	54	-55		125	°C
'A	T _A Operating free-air temperature		0		70	- 0

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAM	ETER	TES	T CONDITION	s	MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input volt	age				2			٧
V _{IL}	Low-level input volta	age			54 74			0.7	٧
V _{IK}	Input clamp voltage		V _{CC} =Min,	=-18mA				-1.5	٧
V _{OH}	High-level output vo	oltage	V _{CC} =Min, I _{OH} =Max,	V _{IL} =Max V _{III} =Min	54 74	2.4	3.4 3.1		٧
V _{OL}	Low-level output vo	Itage	V _{CC} =Min V _{II} =Max	I _{OL} =12mA	54 74	2.4	0.25	0.4	v
VOL	Low level output vo	nage	V _{IH} =Min	I _{OL} =24mA	74		0.35	0.5	\ \ \
l _{OZH}	Off-state output cur high-level voltage a		V _{CC} =Max, V _{IH} =Min, V					20	μΑ
l _{OZL}	Off-state output cur low-level voltage ap		V _{CC} =Max, V _{IH} =Min, V					-20	μΑ
l _l	Input current at maximum input volta	age	V _{CC} =Max, V _I =7V	S input Any oth	ner			0.2	mA
	High-level		V _{CC} =Max,	S input				40	
I _{IH}	Input current		$V_1 = 2.7V$	Any oth	ner			20	μΑ
4	Low-level		V _{CC} =Max, S input				-0.8	4	
I _{IL}	Input current		V _I =0.4V Any other				-0.4	mA	
los	Short circuit output	current	V _{CC} =Max		-20		-100	mA	
	Supply	All outputs high	V _{CC} =5.25	,			6.2	10	
lcc	Current	All outputs low	(Note 3)	,			10	16	mA
	00.1011	All outputs off	(11010 0)	(Note 3)			12	19	

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Note 3: I_{CC} is measured with all outputs open and all possible inputs grounded while achieving the stated output conditions.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN TYP	MAX	UNIT
t _{PLH}	Data	Any		8	18	
t _{PHL}	Data	Ally		13	18	ns
t _{PLH}	Select	Any	C = 45pF	18	28	
t _{PHL}	Select	Any	C _L =45pF	22	35	ns
t _{PZH}	Output	Any		14	22	
t _{PZL}	Control	Any		22	35	ns
t _{PHZ}	Output	Any	C ====	16	26	20
t _{PLZ}	Control	Ally	C _L =5pF	22	35	ns

^{*} t_{PLH} =propagation delay time, low-to-high-level output, t_{PZL} =output enable time to low level

Application Example

8-Bit shift register

SA

L

L

Н

Н

 S_B

L

Н

L

^{*} t_{PHL} =propagation delay time, high-to-low-level output, t_{PHZ} =output disable time from high level.

^{*} t_{PZH} =output enable time to high level, t_{PLZ} =output disable time from low level.

[#]For load circuit and voltage waveforms, see page 3-11.

GD54/74LS258B

QUAD DATA SELECTORS/MULTIPLEXERS WITH 3-STATE OUTPUTS (INVERTED)

Features

- TRI-STATE versions LS158 with same pin-outs
- Schottky-clamped for significant improvement in A-C performance
- Inverted outputs
- Output control input common to all four circuits
- · Select input common to all four circuits
- 3-state outputs

Description

These Schottky-clamped high-performance multiplexers feature TRI-STATE outputs that can interface directly with data lines of bus-organized systems. With all but one of the common outputs disabled (at a high impedance state), the low impedance of the single enabled output will drive the bus line to a high or low logic level. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the output enable circuitry is designed such that the output disable times are shorter than the output enable times. This TRI-STATE output feature means that n-bit (paralleled) data selectors with up to 258 sources can be implemented for data buses. It also permits the use of standard TTL registers for data retention

Function Table

throughout the system.

	OUTPUT		
OUTPUT CONTROL	SELECT	А В	Y
Н	Х	хх	Z
L	L	LX	Н
L	L	нх	L
L	Н	X L	Н
L	Н	хн	L

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	7V
•	Input voltage	7V
•	Operating free-air temperature range 54LS	-55°C to 125°C
	74LS	0°C to 70°C
•	Storage temperature range	-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT		
V _{cc}	Supply voltage	4.5	5	5.5				
		74	4.75	5	5.25	V		
I _{OH}	High-level output current	54			-1	mA		
		74			-2.6	111/2		
l _{OL}	Low-level output current	54			12	mA		
	•	74			24	IIIA		
TA	T _A Operating free-air temperature		-55		125	°C		
		74	0		70	1		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL		PARAMETER	TEST (TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT	
V _{IH}	High-lev	el input voltage					2			٧
V_{IL}	Low-leve	Low-level input voltage				54			0.7	V
						74			0.8	
V _{IK}	Input cla	amp voltage	V _{CC} =Min,	$I_1 = -18$	mA				-1.5	٧
V_{OH}	High lev	el output voltage	V _{CC} =Min,	V _{IL} =N	lax	54	2.4	3.4		.,
011			I _{OH} =Max,	V _{IH} =N	lin	74	2.4	3.1		V
V _{OL}	Low-level output voltage		V _{CC} =Min V _{II} =Max	I _{OL} =1	2mA	54,74		0.25	0.4	V
· OL		V _{IH} =Min	I _{OL} =2	4mA	74		0.35	0.5	v	
I _{OZH}	Off-state output current high-level voltage applied		V_{CC} =Max, V_{O} =2.7V V_{IH} =Min, V_{IL} =Max					20	μΑ	
l _{OZL}		output current el voltage applied	V_{CC} =Max, V_{O} =0.4V V_{IH} =Min, V_{II} =Max					-20	μΑ	
l _i	Input cu	rrent at maximum	V _{CC} =Max	V _{CC} =Max S input V _I =7V Any other					0.2	mA
•	input vol	tage	$V_I = 7V$					0.1		
I _{IH}	High-leve	el input current	V _{CC} =Max		S input				40	μΑ
			V _I =2.7V	V _I =2.7V Any other		er			20	,
I _{IL}	Low-leve	el input current	V _{CC} =Max		S input				-0.8	mΑ
			V _I =0.4V		Any other	er			-0.4	
los	Short-circuit output current		V _{CC} =Max	(Note 2)			-20		-100	mA
	Supply Outputs high Current Outputs low		V _{CC} =5.25V, See Note 3				4.5	7	mA	
Icc							8.8	14		
		All outputs disabled					12	19		

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: Icc is measured with all output open and all possible inputs grounded while achieving the stated output conditions.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN T	ΥP	MAX	UNIT
t _{PLH}	, , ,	Any			8	18	ns
t _{PHL}	Data	Any			13	18	
t _{PLH}	Calaat	Any	$C_L = 45pF$		18	28	ns
t _{PHL}	Select		22	35	110		
t _{PZH}	Output	Any			14	22	ns
t _{PZL}	Control	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			22	35	,,,,
t _{PHZ}	Output	Any	C ₁ = 5pF		16	26	ns
t _{PLZ}	Control	,	R _L =667Ω		22	35	

t_{PLH}=propagation delay time, low-to-high-level output, t_{PZL}=output enable time to low level
 t_{PHL}=propagation delay time, high-to-low-level output, t_{PHZ}=output disable time from high level.
 t_{tPZH}=output enable time to high level, t_{PLZ}=output disable time from low level.

[#]For load circuit and voltage waveforms, see page 3-11.

8-BIT ADDRESSABLE LATCHES

Features

- 8-Bit Parallel-Out Storage Register Performs Serial-to-Parallel Conversion With Storage
- Asynchronous Parallel Clear
- Active High Decoder
- Enable/Disable Input Simplifies Expansion
- Direct Replacement for Fairchild 9334
- Expandable for N-Bit Applications
- Four Distinct Function Modes

Description

These 8-bit addressable latches are designed for general purpose storage applications in digital systems. Specific uses include working registers, serial-holding registers, and active-high decoders or demultiplexers. They are multifunctional devices capable of storing single-line data in eight addressable latches, and being a 1-of-8 decoder or demultiplexer with active-high outputs.

Four distinct modes of operation are selectable by controlling the clear and enable inputs as enumerated in the function table. In the addressable-latch mode, data at the data-in terminal is written into the addressed latch. The addressed latch will follow the data input with all unaddressed latches remaining in their previous states. In the memory mode, all latches remain in their previous states and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data in the latches, the enable should be held high (inactive) while the address lines are changing. In the 1-of-8 decoding or demultiplexing mode, the addressed cutput will follow the level of the D input with all other outputs low. In the clear mode, all outputs are low and unaffected by the address and data inputs.

Absolute Maximum Ratings

•	Supply voltage, V _{cc}		7V
	Input voltage		7V
•	Operation from oir temporature range	54LS	-55°C to 125°C
•	Operating free-air temperature range	74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

MODE SELECT TABLE

G	CLR	MODE
L	Н	Addressable Latch
Н	Н	Memory
L	L	Active HIGH 8-Channel Demultiplexer
Н	L	Clear

Function Table

	INPUTS					INPUTS OUTPUTS				MODE				
CLR	G	D	Α	В	С	Q_o	Qı	Q₂	Q_3	Q ₄	Q_5	Q ₆	Q,	
L	Н	Х	Х	Х	Х	L	L	L	. L	L	L	L	L	Clear
L	L	L	L	L	L	L	L	L	L	L	L	L	L	Demultiplex
L	L	Н	L	L	L	Н	L	L	L	L	L	L	L	
L	L	L	н	L	L	L	L	L	L	L	L	L	L	
L	L	Н	н	L	L	L	Н	L	L	L	L	L	L	
									•					
									•					
				•					. :					
:	:			·					·					
				٠										
L	Ĺ	н	Н	H	Н	L	L	L	Ĺ	L	L	L	Н	
Н	Н	X	X	X	X									Memory
П	-					Q _{t-1}	Q _{t-1}							
Н	L	L	L	L	L	L	Q_{t-1}	Q_{t-1}	Q_{t-1}	Q_{t-1}	Q_{t-1}	Q_{t-1}	Q_{t-1}	Addressable
н	L	Н	L	L	L	Н	Q_{t-1}	Q_{t-1}	Q_{t-1}	Q_{t-1}	Q_{t-1}	Q_{t-1}	Q_{t-1}	Latch
Н	L	L	Н	L	L	Q _{t-1}	L	Q_{t-1}	Q_{t-1}	Q_{t-1}	Q_{t-1}	Q_{t-1}	Q_{t-1}	
H	L	Н	Н	L	L	Q _{t-1}	Н	Q_{t-1}	Q_{t-1}	Q_{t-1}	Q_{t-1}	Q_{t-1}	Q_{t-1}	
		· ·		•				•						
:	:													
.														
				•										
+ :	:	:												
	:	.												
H	Ĺ	Ĺ	Н	Н	н		0		0	0	0	0	L	
Н	L	Н	Н	Н	H	Q _{t-1} Q _{t-1}	Н							

 $\begin{array}{lll} Q_{t-1} \! = \! \text{Previous Output State} & X = \text{Immaterial} \\ H = \text{High Voltage Level} & Z = \text{High Impedance} \\ L = \text{Low Voltage Level} & \end{array}$

Recommended Operating Conditions

SYMBOL	PARAMETER	MIN	NOM	MAX	UNIT			
V _{cc}	Supply voltage		54	4.5	5	5.5	V	
•00	Cuppiy remage		74	4.75	5	5.25		
I _{OH}	High-level output current		54,74			-400	μΑ	
l _{OL}	Low-level output current		54			. 4	mA	
,OL			74	74 8				
t _W	Pulse Width	Enable		15			ns	
-vv		Clear		15				
t _{SU}	Data setup time	Data		15↑			ns	
'SU	Data Gotap time	Select		15↓				
t _H	Data hold time	Data		Of			ns	
th Sata risia time		Select		Of				
т	Operating free-air temperature		54	-55		125	°C	
T _A	Operating free-air temperature		74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			V
V				54			0.7	٧
V _{IL}	Low-level input voltage			74			0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min, I	_=-18mA				-1.5	٧
V _{OH}	High-level output voltage	V _{CC} =Min, V _{IL} =Max		54	2.5	3.4		V
∨ ОН	Thigh level output voltage	I _{OH} =Max,V	_{IH} =Min	74	2.7	3.4		
	Low-level output voltage	V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	V
V _{OL}		V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	
I _I	Input current at maximum input volrage	V _{CC} =Max, V _I =7V					0.1	mA
I _{IH}	High-level input current	V _{CC} =Max, V _I =2.7V					20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.4V				^	-0.4	mA
Ios	Short-circuit output current	V _{CC} =Max (Note 2)			-20		-100	mA
Icc	Supply current	V _{CC} =Max (Note 3)			22	36	mA

Note 1: All typical values are at V_{CC} =5V, T_A =25°C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 3: I_{CC} is measured with all inputs at 4.5V, and all outputs open.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST' CONDITION#	MIN TYP	MAX	UNIT
t _{PLH}	Enable	Output		22	35	ns
t _{PHL}	,			15	24	
t _{PLH}	Data	Output	C _L =45pF	20	32	ns
t _{PHL}		·	$R_L = 2k\Omega$	13	21	113
t _{PLH}	Select Output			24	38	ns
t _{PHL}				18	29	
t _{PHL}	Clear	Output		17	27	

[#]For load circuit and voltage waveforms, see page 3-11.

Application Example

16-BIT ADDRESSABLE LATCH

OCTAL D-TYPE FLIP-FLOPS COMMON CLOCK SINGLE-RAIL OUTPUTS

Feature

- · Contains Eight Flip-Flops with Single-Rail Outputs
- Buffered Clock and Direct Clear Inputs
- Individual Data Input to Each Flip-Flop
- Applications Include:

Buffer/Storage Registers

Shift Registers

Pattern Generators

Description

These monolithic, positive edge triggered flipflops utilize TTL circuitry to implement D-type flipflop logic with a direct clear input.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

These flip-flops are guaranteed to respond to clock frequencies ranging from 0 to 30 megahertz while maximum clock frequency is typically 40 megahertz. Typical power dissipation is 10 milliwatts.

Function Table

11	NPUTS	OUTPUT	
CLEAR	CLOCK	D	Q
L	X	Χ	L
Н	†	Н	Н
Н	1	L	L
н	L	X	Qo

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage		7V
•	Operating free-air temperature range	54LS	-55°C to 125°C
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARA	AMETER		MIN	NOM	MAX	UNIT	
\ <u>\</u>	Supply voltage	54	4.5	5	5.5	V		
V _{cc}	Supply voltage		74	4.75	5	5.25	'	
I _{OH}	High-level output c	urrent	54,74			-400	μΑ	
	Low lovel output ourrest					4	A	
loL	Low-level output co	Low-level output current				8	mA	
f _{clock}	Clock frequency	Clock frequency				30	MHz	
t _w	Width of clock or c	lear pulse		20			ns	
t _{su}	Set up time	Data input						
'su	Oet up time	Clear inactive-state		25↑			ns	
t _h	Data hold time		5↑			ns		
T _A	Operating free-air t	Operating free six temperature		-55		125	۰,	
' A	Operating free-air temperature		74	0		70	°C	

 $^{^{\}star}$ \uparrow The arrow indicates that the rising edge of the clock pulse is used for reference.

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage							٧
V _{IL}	Low-level input voltage			54			0.7	v
				74			0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =-18mA					-1.5	V
V _{OH}	High-level output voltage	V _{CC} =Min,	V _{IL} =Max	54	2.5	3.4		V
011		I _{OH} =Max ,	$V_{IH} = Min$	74	2.7	3.4		ľ
V _{OL}	Low-level output voltage	V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	.,
VOL	Low-level output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	V
l _l	Input current at maximum input voltage	V _{CC} =Max,	V ₁ =7V				0.1	mA
I _{IH}	High-level input current	V _{CC} =Max,	V _I =2.7V				20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.4V					-0.4	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)			-20		-100	mA
Icc	Supply current	V _{CC} =5.25\	(Note 3)			17	27	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Note 3: With all outputs open and 4.5V applied to all data and clear inputs, I_{CC} is measured after a momentary grounded, then 4.5V is applied to clock.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency		30	40		MHz
t _{PHL}	Propagation delay time, high-to- low-level output from clear	C _L =15pF		18	27	ns
t _{PLH}	Propagation delay time, low-to- high-level output from clock	R _L =2kΩ		17	27	ns
t _{PHL}	Propagation delay time, high-to- low-level output from clock			18	27	ns

 $^{^{\#}}$ For load circuit and voltage waveforms, see page 3-11.

9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS

Feature

- Generates Either Odd or Even Parity for Nine Data Lines
- · Cascadable for n-Bits
- Can Be Used to upgrade Existing Systems Using MSI Parity Circuits
- Typical Power Dissipation: 80mW

Description

These universal, monolithic, nine-bit parity generators/checkers utilize schottky-clamped TTL high performance circuitry and feature odd/even outputs to facilitate operation of either odd or even parity application. The wordlength capability is easily expanded by cascading.

This device can be used to upgrade the performance of most systems utilizing the 180 parity generator/checker. Although the LS280 is implemented without expander inputs, the corresponding function is provided by the availability of an input at pin 4 and the absence of any internal connection at pin 3.

Schematics of Linputs and Outputs

Function Table

NUMBER OF INPUTS A	OUTPUTS			
THRU I THAT ARE HIGH	ΣΕΥΕΝ	ΣODD		
0, 2, 4, 6, 8	Н	L		
1, 3, 5, 7, 9	L	Н		

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage		7V
•	Operating free-air temperature range	54LS	-55°C to 125°C
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V _{cc}	Supply voltage		4.5	5	5.5	V
	Supply voltage	74	4.75	5	5.25	1 V
l _{OH}	High-level output current	54,74			-400	μΑ
	Low lovel output ourset	54			4	4
OL	Low-level output current	74			8	mA
T _A	Operating free air temperature	54	-55		125	°C
	Operating free-air temperature	74	0		70	• 0

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST	TEST CONDITIONS			TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			٧
V _{IL}	Low-level input voltage			54			0.7	V
				74			0.8	·
V _{IK}	Input clamp voltage	V _{CC} =Min, I	V _{CC} =Min, I _I =-18mA				-1.5	٧
V _{OH}	High-level output voltage	V _{CC} =Min,	V _{CC} =Min, V _{IL} =Max		2.5	3.4		V
On		I _{OH} =Max,	V _{IH} =Min	7.4	2.7	3.4		
.,	Levelevel and a development	V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	.,,
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	V
4	Input current at maximum input voltage	V _{CC} =Max,	V _I =7V				0.1	mA
I _{IH}	High-level input current	V _{CC} =Max,	V _{CC} =Max, V _I =2.7V				20	μΑ
IIL	Low-level input current	V _{CC} =Max,	V _{CC} =Max, V _I =0.4V				-0.4	mA
los	Short-circuit output current	V _{CC} =Max (V _{CC} =Max (Note 2)				-100	mA
Icc	Supply current	V _{CC} =5.25\	/, (Note 3)			16	27	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

Note 3: Icc is measured with all inputs grounded and all outputs open.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Data	Σ Even			33	50	
t _{PHL}	Data	2 Even	$C_L=15pF, R_L=2k\Omega$		29	45	ns
t _{PLH}	Doto	Data Σ Odd			23	35	
t _{PHL}	Data				31	50	ns

 t_{PLH} =propagation delay time low to high level output t_{PHL} =propagation delay time, high to low level output

^{*}For load circuit and voltage waveforms, see page 3-11.

4-BIT BINARY ADDERS WITH FAST CARRY

Features

- · Full-carry look-ahead across the four bits
- Systems achieve partial look-ahead performance with the economy of ripple carry
- Typical add times
 Two 8-bit words 25 ns
 Two 16-bit words 45 ns
- Typical power dissipation per 4-bit adder 95 mW

Descriptions

These full adders perform the addition of two 4-bit binary numbers. The sum (Σ) outputs are provided for each bit and the resultant carry (C4) is obtained from the fourth bit. These adders feature full internal look ahead across all four bits. This provides the system designer with partial lookahead performance at the economy and reduced package count of a ripple-carry implementation.

The adder logic, including the carry, is implemented in its true form meaning that the end-around carry can be accomplished without the need for logic or level inversion.

Function Table

							Out	tput		
		Inp	out		When C0=L			When C0=H		
							When C2=L			When C2=H
	A1 A3	B1 B3	A2 A4	B2 B4	Σ1 Σ3	Σ2 Σ4	C2 C4	Σ1 Σ3	Σ2 Σ4	C2 C4
	L	L	L	L	L	L	٦.	H	L	L
	H	H		-	H	[ן נ	H	
	Ä	н	Ĺ	Ē	Ë	H H	Ĺ	н	н	Ĺ
	L	L	Н	L	L	н	L	н	н	L
1	H	L	Н	L	Н	H	L	L L	L	H
	H	H	H	<u> </u>	H	H	Н	H	-	H
	, H	- 7	1 7	Ь	-	н	7	H	Ь	l "
	Ä	ו ו	l i	н	H	H	ī	lï	Ë	н
	L	н	Ĺ	н	н	н	L	L	L	н
	н	н	L	н	L	L	н	н	L	н
	L	L	Н	H	L	L	H	H	L	H
	н	L.	H	H	H	<u> </u>	H	L	H	H
	L	H	H	H	H	ਜ	H	H	H	H
	H	H	H	"	"	"	"	П П	"	1 "

H=High Level, L=Low Level

Note

Input conditions at A1, B1, A2, B2, and C0 are used to determine outputs Σ 1 and Σ 2 and the value of the internal C2. The velues at C2, A3, B3, A4, and B4 are then used to determine outputs Σ 3, Σ 4, and C4.

Function Block Diagram

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	/ V
•	Input voltage	7V
	Operating free-air temperature range 54LS	
	74LS	
	Storage temperature range	

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
	0	54	4.5	5	5.5	V
V _{CC}	Supply voltage	74	4.75	5	5.25	V
Іон	High-level output current	54,74			-400	μΑ
		54			4	- mA
OL	Low-level output current	74			8	
_	Operating free-air teperature	54	-55		125	- °C
T _A		74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TES	TEST CONDITION			TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			٧
V	Law lavel input valtage			54			0.7	V
V _{IL}	Low-level input voltage			74			0.8	V
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I	=-18mA				15	٧
V	I link lavel average value	V _{CC} =Min,	V _{IL} =Max	54	2.5	3.4		.,
V _{OH}	High-level output voltage	I _{OH} =Max,	V _{IH} =Min	74	2.7	3.4		٧
	Law law law and a sale and	V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	v
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min		74		0.35	0.5	V
	Input current at maximum	V _{CC} =Max	A,B				0.2	
l _i	input voltage	V ₁ =7V	CO		1		0.1	V
1.	High-level input current	V _{CC} =Max	A,B				40	μΑ
lн		V _L =2.7V	C0				20	
	Low-level input current	V _{CC} =Max	A,B				-0.8	mA
I _{IL}		V _I =0.4V	CO				-0.4	''''
los	Short-circuit output current	V _{CC} =Max (Note 2)			-20		-100	mA
	Supply current	\/May	(Note 3)	I _{CC1}		19	34	mA
Icc	очррку синени	V _{CC} =Max	(Note 4)	I _{CC2}		22	39	111/4

Note 1: All typical values are at V_{CC} =5V, T_A =25 $^{\circ}$ C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC1} is measured with all outputs open, all B input low and all other inputs at 4.5V, or all inputs at 4.5V. Note 4: I_{CC2} is measured with all outputs open and all inputs grounded.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN TYP	MAX	UNIT
t _{PLH}	CO	Σ1, Σ2, Σ3, Σ4		16	24	
t _{PHL}		21, 22, 23, 24		15	24	ns
t _{PLH}	Ai or Bi	Σί	C. = 15pF	15	24	
t _{PHL}	711 01 21	21	$C_L = 15pF$, $R_L = 2k\Omega$	15	24	ns
t _{PLH}	CO	C4		11	17	
t _{PHL}		04		11	22	ns
t _{PLH}	Ai or Bi	C4		11	17	
t _{PHL}	A OI BI	04		12	17	ns

[#]For load circuit and voltage waveforms, see page 3-11.

QUAD 2 INPUT MULTIPLEXER WITH SRORAGE

Feature

- Select From 2 Data Source
- Edge Triggered Operation

Description

The LS298 is four 2-line to 1-line multiplexers followed by a quad 4 bit edge triggered register.

When the word select input is low, data input D1(A1,B1,C1,D1) is selected, and when it is high, data input D2 (A2,B2,C2,D2) is selected.

The selected data is transferred to the output Q synchronous when the clock input (CK) changes from high to low.

Function Table

		INP	UTS		OUTPUTS
(CK	S	D ₁	D ₂	Q
	↓	L	L	Х	L
	↓	L	Н	Χ	Н
	↓	Н	X	L	L
	↓	Н	X	Н	Н

H: High level

L: Low level

X: Irrelevant

 $D_1 = A_1, B_1, C_1, D_1$

 $D_2 = A_2, B_2, C_2, D_2$

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage		7V
		54LS	
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER	3		MIN	NOM	MAX	UNIT
V _{cc}	Supply voltage		54	4.5	5	5.5	V
			74	4.75	5	5.25]
Іон	High-level output current		54,74			-400	μΑ
l _{OL}	Low-level output current		54			4	·
	2011 Total Suspen Surrent		74			8	mA
t _{SU}	Data setup time	Data		15			
-30	Data octop timo	Select		25			ns
t _H	Data hold time	Data		5			
-11	Data Hold time	Select		0			ns
TA	Operating free-air temperature		54	-55		125	°C
A	operating need an temperature		74	0		70	- 0

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIO)NS	MIN	TYP (Note 1)	MAX	UNIT
V _{IH} ! !	High-level input voltage			2			V
V _{IL}	Low-level input voltage		54			0.7	V
, IL	20W lovel input voltage		74			0.8	\ \ \
V _{IK}	Input clamp voltage	$V_{CC}=Min, I_I=-18mA$				-1.5	V
V _{OH}	High-level output voltage	V _{CC} =Min, V _{IL} =Max	54	2.5	3.4		V
- 04	riigiriovor output voitage	I _{OH} =Max, V _{IH} =Min	74	2.7	3.4		V
V _{OL}	Low-level output voltage	$V_{CC} = Min$ $V_{II} = Max$ $I_{OL} = 4m$	A 54,74		0.25	0.4	V
· OL	Low level output voltage	V _{IH} =Min I _{OL} =8m.	74		0.35	0.5	
l ₁	Input current at maximum input voltage	V _{CC} =Max, V _I =7V				0.1	mA
I _{IH}	High-level input current	$V_{CC}=Max, V_{I}=2.7V$				20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _i =0.4V				-0.4	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)	-20		-100	mA	
I _{cc}	Supply current	V _{CC} =Max (Note 3)			13	21	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{cc} is measured with S, A1 \sim D₂ inputs grounded and a momentary 4.5V, then grounded, applied \overline{CK} input.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PRAAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	$C_1 = 15pF, R_1 = 2k\Omega$		18	27	ns
t _{PHL}	Propagation delay time, high-to-low-level output	OL-TOPF, NL-2KS		21	32	ns

[#]For load circuit and voltage waveforms, see page 3-11.

8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS

Features

- Multiplexed Inputs/Outputs Provide Improved Bit Density
- Four Modes of Operation:
 Hold (Store) Shift Left

Shift Right Load Data

- Operates with Outputs Enabled or at High Z
- · 3-State Outputs Drive Bus Lines Directly
- Can Be Cascaded for N-Bit Word Lengths
- · Applications:

Stacked or Push-Down Registers.

Buffer Storage, and

Accumulator Registers

Description

These Schottky TTL eight-bit universal registers feature multiplexed inputs/outputs to achieve full eight bit data handling in a single 20-pin package. Two function-select inputs and two output-control inputs can be used to choose the modes of operation listed in the function table.

Synchronous parallel loading is accomplished by taking both function-select lines, S0 and S1, high. This places the three-state outputs in a high-impedance

state, which permits data that is applied on the input/output lines to be clocked into the register. Reading out of the register can be accomplished while the outputs are enabled in any mode. A direct overriding input is provided to clear the register whether the outputs are enabled or off.

Function Table

				INPU	TS						IN	PUTS/C	OUTPU	TS			OUT	PUT
MODE	CLEAR	FUNC		OUT		CLOCK	SEF	RIAL	A/Q _A	B/Q _B	C/Q _c	D/Q _D	E/Q _E	F/Q _F	G/Q _G	H/Q _H	Q _A .	Q _H ,
		S1	SO	Ğ1*	Ğ2 *		SL	SR										
Clear	L	Х	L	L	L	×	х	Х	L	L	L	L	L	L	L	L	L	L
Clear	L	L	Х	L	L	×	Х	Х	L	L	L	L	L	L	L	L	L	L
Hold	н	L	L	L	L	×	Х	Х	Q _{AO}	Q _{BO}	Qco	Q _{DO}	Q_{EO}	\mathbf{Q}_{FO}	Q_{GO}	Q_{HO}	Q _{AO}	Q _{HO}
Hold	Н	Х	X	L	L	. L	Х	Χ	Q _{AO}	Q_{BO}	Qco	Q_{DO}	Q _{EO}	Q _{FO}	Q _{GO}	Q _{HO}	Q _{AO}	Q _{HO}
OLIH DI-LL	Н	L	Н	L	L	1	Х	Н	н	Q _{An}	Q_{Bn}	Q _{Cn}	Q_{Dn}	Q_{En}	\mathbf{Q}_{Fn}	Q_{Gn}	н	Q_{Gn}
Shift Right	н	L	Н	L	L	1	Х	L	L	Q_{An}	Q _{Bn}	Q_{Cn}	Q_{Dn}	Q_{En}	Q _{Fn}	Q_{Gn}	L	\mathbf{Q}_{Gn}
Object - 4	н	Н	L	L	L	t	н	Х	Q _{Bn}	Q _{Cn}	Q_{Dn}	Q_{En}	Q_{Fn}	Q _{Gn}	Q_{Hn}	Н	Q _{Bn}	н
Shift Left	н	н	L	L	L	1	L	Х	Q _{Bn}	Q _{Cn}	\mathbf{Q}_{Dn}	\mathbf{Q}_{En}	Q_{Fn}	\mathbf{Q}_{Gn}	Q_{Hn}	L	Q _{Bn}	L
Load	Н	Н	Н	х	Х	1	х	Х	а	b	С	d	е	f	g	h	a	h

When one or both output controls are high the eight input/output terminals are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected.

Function Block Diagram

Absolute Maximum Ratings

•	Supply voltage, v _{CC}		7V
•	Input voltage		7V
•	Operating free-air temperature range	54LS	-55°C to 125°C
		74LS	0°C to 70°C
•	Ctorogo tomporatura range		0500

Recommended Operating Conditions

			5	4LS29	99	7	4LS29		UNIT
SYMBOL	PARAHETER		MIN	NOM	MAX	MIN	MOM	MAX	
V _{cc}	Supply voltage,		4.5	5	5.5	4.75	5	5.25	V
		Q _A thru Q _H			-1			-2.6	mA
I _{OH}	High-level output current,	Q _A or Q _H			-0.4			-0.4	1117
		Q _A thru Q _H			12			24	mA
lOL	Low-level output current,	Q _A or Q _H			4			8	
fclock	Clock frequency,		0		25	0		25	MHz
CIOCK		Clock high	30			30			ns
t _{w(clock)}	Width of clock pulse,	Clock low	10			10			110
t _{w(clear)}	Width of clear pulse	Clear low	20			20			ns
-W(Clear)	•	Select	35↑			35↑			
		High-level data	20↑			201			ns
t _{su}	Setup time,	Low-level data	20↑			201] '''
		Clear inactive-state	20↑			201			
		Select	10↑			101			ns
t _h	Hold time,	Data	01			01			
T _A	Operating free-air temperature,		-55		125	0		7.0	°C

^{*} Data includes the two serial inputs and the eight input output data lines.

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMET	ER	TEST CC	NDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage					2.0			V
V _{IL}	Low-level input voltage				54			0.7	V
· IL					74			0.8	
V _{IK}	Input clamp voltage		V _{CC} =MIN,	$I_j = -18mA$				- 1.5	V
		Q _A thru Q _H			54	2.4	3.2		
V_{OH}	High-level output voltage	-AH	V _{CC} =MIN,	$V_{IH} = 2V$	74	2.4	3.1		V
Он		Q _a , or Q _b , V _{IL} =MAX I _{OH} =MAX	$I_{OH} = MAX$	54	2.5	3.4		"	
		Q _A , or Q _H ,			74	2.7	3.4		
		Q _A thru Q _H	\/ _ NAINI	I _{OL} =12mA	54,74		0.25	0.4	
V _{OL}	Low-level output voltage	H	V _{CC} =MIN V _{II} =MAX	I _{OL} =24mA	74		0.35	0.5	v
-OL		Q _{A' Or} Q _{H'}	V _{IH} =MIN	I _{OL} =4mA	54,74		0.25	0.4	1
		GA' OF GH'	I THE IVERT	I _{OL} =8mA	74		0.35	0.5	
l _{ozh}	Off-state output current, high-level voltage applied	Q _A thru Q _H	V _{CC} =MAX V _O =2.7V	V _{IH} =2V				40	μΑ
I _{OZL}	Off-state output current low-level voltage applied	Q _A thru Q _H	V _{CC} =MAX V _O =0.4V	V _{IH} =2V				-400	μΑ
		S0,S1		V ₁ =7V				200	
I ₁	Input current at maximum Input voltage	A thru H	V _{CC} =MAX	V _I =5.5V				100	μΑ
	input voltage	Any other		V _I =7V				100	
I _{IH}	High-level input current	A thru H, S0, S1	V _{CC} =MAX	V ₁ =2.7V				40	μΑ
""		Any other		'				20] [
I _{IL}	Low-level input current	S0, S1	V _{CC} =MAX	V ₁ =0.4V				-0.8	mA
		Any other						-0.4]
los	Short-circuit output current QA thru QH		V _{CC} =MAX (N	ote 2)		-30		-130	mA
	Q _{A'} or Q _{H'}			C-MIDY (MOIG 5)				-100	
Icc	Supply current		V _{CC} =MAX		_		33	53	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
f _{max}			See Note3		25	35		MHz
t _{PLH}	Clock	Q _A ' or Q _H '	C ₁ = 15 pF	$R_i = 2 k\Omega$		22	33	ns
t _{PHL}	J Olook	CA OF CH	See Note3			26	39	""
t _{PHL}	Clear	Q _a ′ or Q _H ′]			27	40	ns
t _{PLH}	Clock	Q _A thru Q _H				17	25	ns
t _{PHL}	Olock	QA IIII QH	C ₁ = 45 pF	R _L =665 Ω		26	39	
t _{PHL}	Clear	Q _A thru Q _H	See Note3			26	40	ns
t _{PZH}	G1, G2	Q _A thru Q _H	000 110100			13	21	ns
t _{PZL}	1 01, 02	GA THU CH				19	30	
t _{PHZ}	G 1, G 2	Q _A thru Q _H	C _L =5 pF	R _L =665 Ω		10	15	ns
t _{PLZ}	3., 42	α _A α α _H	See Note3			10	15	

f_{max}=maximum clock frequency.

tplh=propagation delay time, low to-high-level output.

 $t_{\text{PHL}} = \text{propagatio delay time, high-to-low-level output.}$

 $t_{\mbox{\scriptsize PZH}} = \mbox{\scriptsize output}$ enable time to high level

t_{PZL}=output enable time to low level

 t_{PHZ} = output disable time from high level

t_{PLZ}=output disable time from low level

Note 3: For testing f_{max} all outputs are loaded simultaneously, each with C_L and R_L as specified for the propagation times. See load circuits and waveforms on page 3-11.

8-BIT SHIFT REGISTERS WITH SIGN EXTEND

Feature

- Multiplexed Inputs/Outputs Provide Improved Bit Density
- 3-State Outputs Drive Bus Lines Directly
- Sign Extend Function
- Direct Overriding Clear

Description

These low-power Schottky eight-bit shift registers features multiplexed input/output data ports to achieve full eight-bit data handling in a single 20-pin package. Serial data may be entered into the shift-right register through either the D0 or the D1 input as selected by the data select input. A serial output (Q_H^*) is also provided to facilitate expansion. Synchronous parallel loading is accomplished by taking

both the register enable and the S/\overline{P} inputs low. This places the three-state input/output ports in the data input mode. Data are entered on the low-to-high transition of the clock. The data extend function repeats the sign in the Q_A flip-flop during shifting. A direct overriding clear input clears the internal registers when taken low whether the outputs are enabled or off. The output enable does not interfere with synchronous operation of the register.

Function Table

OPERATION				INPUTS	3			INP	UTS/C	OUTPL	JTS	OUTPUT
	CLEAR CLR	REGISTER ENABLE G	S/P	SIGN EXTEND SE	DATA SELECT DS	OUTPUT ENABLE OE	CLOCK	A/Q _A	B/Q _B	C/Q _C	H/Q _H	
Clear	L	H X	Х	X	X	L L	X	L	L	L	L	L L
Hold	Н	Н	Х	×	×	L	×	Q _{AO}	Q _{BO}	Qco	Q _{HO}	Q _{HO}
Shift Right	HH	LL	II	ΙΙ	ıΙ		†	D0 D1	Q _{An} Q _{An}	Q _{Bn} Q _{Bn}	Q _{Gn} Q _{Gn}	Q _{Gn} Q _{Gn}
Sign Extend	Н	L	Ι	L	Х	L	†	Ω_{An}	Q _{An}	Q _{Bn}	Q _{Gn}	Q _{Gn}
Load	Н	L	L	Х	Х	Х	†	а	b	С	h	h

When the output enable is high, the eight input/output terminals are disabled to the high-impedance state, however, sequential operation or clearing of the register is not affected. If both the register enable input and the S/\overline{P} input are low while the clear input is low, the register is cleared while the eight input/output terminals are disabled to the high-impedance state.

- H = high level (steady state)
- L = low level (steady state)
- X = irrelevant (any input, including transitions)
- t = transition from low to high level
- QA0...QH0 = the level of QA through QH, respectively, before the indicated steady state conditions were established
- Q_{An...}Q_{Hn} = the level of Q_A through Q_H, respectively, before the most recent † transition of the clock
- D0, D1 = the level of steady state inputs at inputs D0 and D1 respectively
- a...h = the level of steady state inputs at inputs A through H respectively.

Absolute Maximum Ratings

 Supply voltage, V_{cc} 		7V
	54LS	
	74LS	0°C t 70°C
Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAN	METER		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		54	4.5	5	5.5	V
*66			74	4.75	5	5.25	
I _{OH}		$Q_A \sim Q_H$	54			-1	
	High Level Output		74			-2.6	mA
	Current	Q _H '	54			-0.4	
		''	74			-0.4	
		$Q_A \sim Q_H$	54			12	
l _{OL}	Low Level Ourput		74			24	mA
	Current	Q _H ′	54			4	""
			74			8	
f _{clock}	Clock frequency			0		25	MHz
t _{w(clock)}	Width of clock pulse	clock high		30			ns
W(GIGGR)				10			
t _{w(clear)}	Width of clear pluse	clear low		20			ns
		Data select		10↑			
		High level data*		20 ↑			
t _{su}	Set up time	Low level of	lata*	20 ↑			ns
		clear inacti	ve state	20 ↑			
t _h	Hold time	Data select		10 ↑			ns
11		Data*		0 1			
TA	Operating free-air temp	air temperature		-55		125	°C
				0		70	

^{*} Data includes the two serial inputs and the eight input/output data lines. † The arrow indicates that the rising edge of the clock pulse is used for reference.

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

SYMBOL	PARAMETER		TEST	CONDITIONS		MIN TYP (Note 1)		MAX	UNIT
V _{IH}	High-level input voltage				.2			٧	
V _{IL}	Low-level input voltage				54			0.7	V
					74			0.8	
V _{IK}	Input clamp voltage		V _{CC} =Min,	I _I =-18mA				-1.5	٧
		$Q_A \sim Q_H$			54	2.4	3.2		
V_{OH}	High-level	-д чн	V _{CC} =Min \		74	2.4	3.1		v
	Output voltage	O _H ′	I _{OH} =Max '	V _{IH} =Min	54	2.5	3.4		
					74	2.7	3.4		
		$Q_A \sim Q_H$	V _{CC} =Min	I _{OL} =12mA	54,74		0.25	0.4	
V_{OL}	Low-level	GA GGH	V _{IH} =Min	I _{OL} =24mA	74		0.35	0.5	V
OL.	Output voltage	Q _H ′		I _{OL} =4mA	54,74		0.25	0.4	
			V _{IL} =Max	I _{OL} =8mA	74		0.35	0.5	
l _{OZH}	Off-state output current high-level voltage applied	$Q_A \sim Q_H$	V _{CC} =Max, V _O =2.7V V _{IH} =Min,					40	μΑ
I _{OZL}	Off-state output current low-level voltage applied	$Q_A \sim Q_H$	V _{CC} =Max, V _{IH} =Min,	V _O =0.4V				-400	μΑ
	Input current	A∼H		V _I =5.5V				0.1	
I _I	at maximum	Data Select	V _{CC} =Max	V _I =7V				0.2	mA
7	input voltage	Sign extend	TOC MAX	V _I =7V				0.3	
	input voltage	Any other		V ₁ =7V			-	0.1	1
	High-level	A∼H, DS						40	
I _{IH}	input current	Sign extend	V _{CC} =Max,	$x, V_1 = 2.7V$				60	μΑ
	input current	Any other	-					20	1
	Low-level	Data select	V _{CC} =Max			<u> </u>		-0.8	
I _{IL}	input current	Sign extend	$V_i = 0.4V$					-1.2	mA
	pat ouriont	Any other	1., 5.44					-0.4	1
Ios	Short-circuit	$Q_A \sim Q_H$	V _{CC} =Max			-30		-130	mA
	output current	Q _H ′	(Note 2)			-20		-100	
lcc	Supply current		V _{CC} =Max				35	60	mA

Note 1: All typical values are at V_{CC} =5V, T_A =25°C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics, $V_{cc} = 5V$, $T_A = 25$ °C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}			See Note 1	20	35		MH _Z
t _{PLH}	Clock	Q _H '			22	33	ns
t _{PHL}			$C_L=15pF$, $R_L=2K\Omega$		26	35	
t _{PHL}	Clear	Q _H ′			27	35	ns
t _{PLH}	Clock	Q _A thru Q _H			16	25	ns
t _{PHL}		, , , , , , , , , , , , , , , , , , ,	$C_L = 45_p F, R_L = 665 \Omega$		22	33	
t _{PHL}	Clear	Q _A thru Q _H	,		22	35	ns
t _{PZH}	Output enable	Q _A thru Q _H			15	35	ns
t _{PZL}		A			15	35	
t _{PHZ}	Output disable	Q _A thru Q _H	$C_L = 5_P F, R_L = 665 \Omega,$		15	25	ns
t _{PLZ}	,	,n			15	25	

Note 1: For testing f_{max}, all outputs are loaded simultaneously, each with C_L and R_L as specified for the propagation times.

Function Block Diagram

GD54/74LS365A

HEX-BUS DRIVERS; 3-STATE OUTPUTS, NON-INVERTED DATA OUTPUTS

Feature

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- · Choice of True or Inverting Outputs

Description

These hex buffers and line drivers are designed specifically to improve both the performance and density of three state memory address drivers, clock drivers, and bus oriented receivers and transmitters. The desingers has a choice of selected combinations of inverting and noninverting outputs, symmetrical $\overline{\mathbf{G}}$ (active-low control) inputs

Function Table

Ğ1	G2	Α	Υ
L	L	L	L
L	L	Н	L
Н	Х	Х	Z
X	Н	Х	Z

Absolute Maximum Ratings

•	Supply voltage, vcc	7V
•	Input voltage	
•	Voltage applied to a disabled 3-state output	5.5V
•	Operating free-air temperature range 54LS	-55°C to 125°C
		0°C to 70°C
•	Storage temperature range	-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
V _{cc}	Supply voltage	54	4.5	5	5.5	.,	
	Cappi, Vollage	74	4.75	5	5.25	V	
I _{OH}	High-level output current	54			-1	mA	
'ОН		74			-2.6		
la.	Low-level output current	54			12		
lor		74			24	mA	
T _A	Operating free-air temperature	54	-55		125	0.0	
	Operating nee-all temperature	74	0		70	°C	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMET	ER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input vo	oltage				2			V
\ \ \	Low lovel input ve	ltana			54			0.7	.,
V _{IL}	Low-level input vo	nage			74			0.8	V
V _{IK}	Input clamp voltag	je	V _{CC} =Min, I	=-18mA	•			-1.5	V
V	High lavel entruit	· cltoro	V _{CC} =Min.	V _{II} = Max	54	2.4	3.3		,,,
V _{OH}	High-level output	voitage	I _{OH} =Max.	V _{IH} =Min	74	2.4	3.1		V
V _{OL}	Low-level output v	voltago	V _{CC} =Min V _{II} =Max	I _{OL} =12mA	54 74		0.25	0.4	V
VOL	Low-lever output v	ronage	V _{IL} =Min	I _{OL} =24mA	74		0.35	0.5	V
l _i	Input current at m input voltage	aximum	V _{CC} =Max,	V ₁ =7V				0.1	mA
l _{iH}	High-level input cu	urrent	V _{CC} =Max,	V _I =2.7V				20	μΑ
			V _{CC} =Max V _I =0.5V Either G inputs at 2V					-20	μΑ
I _{IL}	Low-level input current	A inputs	V _{CC} =Max Both G inpu					-0.4	mA
		G inputs	V _{CC} =Max	$V_1 = 0.4V$				-0.4	mA
l _{ozh}	Off-state output con high-level voltage		V_{CC} =Max, V_{O} =2.4V V_{IH} =Min, V_{IL} =Max					20	μΑ
I _{OZL}	Off-state output co		V_{CC} =Max, V_{O} =0.4V V_{IH} =Min, V_{IL} =Max					-20	μΑ
Ios	Short-circuit outpu	it current	V _{CC} =Max (Note 2)	V _{CC} =Max				-225	mA
Icc	Supply current		V _{CC} =Max (I	Note 3)			14	24	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5V

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output			10	16	ns
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L = 45 pF, R_L = 667 \Omega$		9	22	ns
t _{PZL}	Output enable time to low level			19	35	ns
t _{PZH}	Output enable time to high level			24	40	ns
t _{PLZ}	Output disable time from low level	$C_1 = 5pF, R_1 = 667\Omega$			30	ns
t _{PHZ}	Output disable time from high level	OL-30F, NL=6672			35	ns

t_{PLH}=propagation delay time, low-to-high-level output.
 t_{PHL}=propagation delay time, high-to-low-level output.
 # For load circuit and voltage waveforms, see page 3-11.

GD54/74LS366A

HEX 3-STATE INVERTING BUFFERS

Description

This device contains six independent gates each of which performs an inverting buffer function. The outputs have the TRI-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard LS output with additional drive capability to permit the driving of bus lines without external resistors. When disabled, both the output transistors are turned off presenting a high-impedance state to the bus line. Thus the output will act neither as a significant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Features

Y= ⊼							
	INPUT	OUTPUT					
Ğ1	Ğ2	Α	Y				
Н	Х	Х	Z				
Х	Н	Х	Z				
L	L	L	Н				
L	L	Н	L				

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	7V
	Input voltage	
•	Off-state output voltage	5.5V
•	Operating free-air temperature range 54LS	-55°C to 125°C
	74LS	
•	Storage temperature range	

Recommended Operating Conditions

SYMBOL	PARAMETER	!	MIN	NOM	MAX	UNIT
V _{cc}	Supply voltage	54	4.5	5	5.5	V
V CC	Supply voltage	74	4.75	5	5.25	· ·
la	High-level output current	54			-1	mA
loн	riigiriever eatpat eatrett	74			-2.6	
lo	Low-level output current	54			12	mA
OL	200 10101 001,001	74			24	
TA	Operating free-air temperature		-55		125	°C
		74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAME	TER	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT	
V _{IH}	High-level input	voltage				2			٧
V _{II}	Low-level input	voltage			54			0.7	V
* IL	Low lover input	vollago			74			0.8	
V _{IK}	Input clamp volt	age	V _{CC} =Min, I	_I =-18mA				-1.5	٧
V _{OH}	High-level outpu	ıt voltage	V _{CC} =Min,V	_{IL} =Max	54	2.4	3.4		V
*OH	lg is to a same		I _{OH} =Max,V	_{IH} =Min	74	2.4	3.1		
			V _{CC} =Min	I _{OL} =12mA	54,74		0.25	0.4	.,
V _{OL}	Low-level outpu	t voltage	V _{IL} =Max V _{IH} =Min I _{OL} =24mA		74		0.35	0.5	V
I _I	Input current at input voltage	maximum	V _{CC} =Max, V _I =7V					0.1	mA
I _{IH}	High-level input	current	V _{CC} =Max,	V _I =2.7V				20	μΑ
I _{IL}	Low-level	A inputs	V _{CC} =Max \ Either G inp					-20	μΑ
ЧL	input current		V _{CC} =Max \ Both G inpu					-0.4	mA
		G inputs	V _{CC} =Max,	V _I =0.4V				-0.4	mA
I _{OZH}	Off-state output high-level voltag		V_{CC} =Max, V_{O} =2.4V V_{IH} =Min, V_{IL} =Max					20	μΑ
I _{OZL}	Off-state output low-level voltage		V_{CC} =Max, V_{O} =0.4V V_{IH} =Min, V_{IL} =Max				-20	μΑ	
los	Short-circuit out	put current	V _{CC} =Max (Note 2)		-40		-225	mA
Icc	Supply current		V _{CC} =Max (Note 3)			12	21	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5V.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time low-to-high-level output			7	15	ns
t _{PHL}	Propagation delay time high-to-low-level output	$C_L=45pF, R_L=667\Omega$		12	18	ns
t _{PZH}	Output enable time to high level	o[.op.,[oo.a.		18	35	ns
t _{PZL}	Output enable time to low level			28	45	ns
t _{PHZ}	Output disable time from high level	$C_1 = 5pF, R_1 = 667\Omega$			32	ns
t_{PLZ}	Output disable time from low level				35	ns

[#]For load circuit and voltage waveforms, see page 3-11.

GD54/74LS367A

HEX BUS DRIVERS WITH 3-STATE OUTPUTS

Feature

- 3-State Outputs Drive Bus Line or Buffer Memory Address Registers
- · Choice of True or Inverting Outputs

Description

These hex buffers and line drivers are designed specifically to improve both the performance and density of three state memory address drivers, clock drivers, and bus oriented receivers and transmitters. The designers has a choice of selected combinations of inverting and noniverting outputs, symmetrical $\overline{\mathbf{G}}$ (active-low control) inputs.

Function Table

Α	G	Υ
L	L	L
Н	L	Н
X	Н	Z

Absolute Maximum Ratings

•	Supply voltage, Vcc	71/
•	Input voltage	/V
•	Voltage applied to a disabled 3-state output	/ V
•	Operating free-air temperature range 54LS	-55°C to 125°C
	74LS	0°C to 70°C
•	Storage temperature range	-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V_{CC}	Supply voltage	54	4.5	5	5.5	
	74		4.75	5	5.25	V
lou	он High-level output current				-1	4
					-2.6	mA
loL	Low-level output current	54			12	
-OL	Low level output current	74			24	mA
T_A	T _A Operating free-air temperature		-55		125	
- А	temperature	74	0		70	°C

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMET		TES	TEST CONDITIONS			TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input v	oltage				2			V
V_{IL}	Low-level input vo	oltage			54 74			0.7	V
V _{IK}	Input clamp voltag	ge	V _{CC} =Min, I	=-18mA				-1.5	V
V _{OH}	High-level output	voltage	V _{CC} =Min,	V _{II} = Max	54	2.4	3.4		
тон	riigiriever output	voltage	I _{OH} =Max,	V _{IH} =Min	74	2.4	3.1		٧
V _{OL}	Low-level output v	/oltage	V _{CC} =Min V _{II} =Max	I _{OL} =12mA	54,74		0.25	0.4	,,
- 01		ronage	V _{IH} =Min	I _{OL} =24mA	74		0.35	0.5	V
l _l	Input current at m input voltage	aximum	V _{CC} =Max,	V _{CC} =Max, V _I =7V				0.1	mA
l _{IH}	High-level input cu	urrent	V _{CC} =Max, V	/ _I =2.7V				20	μΑ
	Low-level	A inputs	V _{CC} =Max Either G inp	V _I =0.5V uts at 2V				-20	μΑ
l _{IL}	input current		V _{CC} =Max Both G inpu	V _I =0.4V ts at 0.4V				-0.4	mA
		G inputs	V _{CC} =Max					-0.4	mA
I _{OZH}	Off-state output co high-level voltage		V _{CC} =Max, V _O =2.4V V _{IH} =Min, V _{IL} =Max				20	μΑ	
l _{OZL}	Off-state output colow-level voltage a		V_{CC} =Max, V_{O} =0.4V V_{IH} =Min, V_{IL} =Max				-20	μΑ	
los	Short-circuit outpu	t current	V _{CC} =Max (Note 2)			-40	-	-225	mA
Icc	Supply current		V _{CC} =Max (N	lote 3)			14	24	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5V.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output			10	16	ns
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L = 45pF, R_L = 667\Omega$		9	22	ns
t _{PZL}	Output enable time to low level			24	40	ns
t _{PZH}	Output enable time to high level			19	35	ns
t _{PLZ}	Output disable time from low level	0 -5-F B -6670			35	ns
t _{PHZ}	Output disable time from high level	$C_L=5pF, R_L=667\Omega$			30	ns

[#] For load circuit and voltage waveforms, see page 3-11.

GD54/74LS368A HEX TRI-STATE INVERTING BUFFERS

Description

This device contains six independent gates each of which performs an inverting buffer function. The outputs have the TRI-STATE feature. When enabled, the outputs exhibit the low impedance characteristics of a standard LS output with additional drive capability to permit the driving of bus lines without external resistors. When disabled, both the output transistors are turned off presenting a high-impedance state to the bus lines. Thus the output will act neither as a significant load nor as a driver. To minimize the possibility that two outputs will attempt to take a common bus to opposite logic levels, the disable time is shorter than the enable time of the outputs.

Function Table

In	put	Output
Α	G	Υ
L	L	Н
Н	L	L
X	Н	Z

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	
•	Input voltage	7V
•	Operating free-air temperature range 54LS	55°C to 125°C
	74LS	
•	Storage temperature range	65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
		54	4.5	5	5.5	٧	
V _{cc}	Supply voltage	74	4.75	5	5.25	V	
		54			-1	mA	
loн	High-level output current	High-level output current 74	74			-2.6	IIIA
		54			12	mA	
loL	Low-level output current	74			24	IIIA	
_	T _A Operating free-air temperature	54	-55		125	°C	
'A		74	0		70	U	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAME	TER	TES	T CONDITION	S	MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input	voltage				2			٧
					54			0.7	v
V _{IL}	Low-level input	voitage			74			0.8	\ \ \
V _{IK}	Input clamp volt	age	V _{CC} =Min, I	=-18mA				-1.5	٧
	High lavel even	t voltage	V _{CC} =Min, \	/ _{IL} =Max	54	2.5	3.4		v
V _{OH}	High-level outpu	voltage	I _{OH} =Max, \	/ _{IH} =Min	74	2.7	3.1		V
.,			V _{CC} =Min	I _{OL} =12mA	54, 74		0.25	0.4	v
V _{OL}	Low-level outpur	t voltage	$V_{IL}=Max$ $V_{IH}=Min$ $I_{OL}=24mA$ 74			0.35	0.5	\ \	
I ₁	Input current at input voltage	maximum	V _{CC} =Max, V _I =7V				0.1	mA	
I _{IH}	High-level input	current	V _{CC} =Max,	V _I =2.7V				20	μΑ
			V _{CC} =Max Either G ipu					-20	μΑ
I _{IL}	Low-level input current	A inputs	V _{CC} =Max Both G inpu					-0.4	mA
		G inputs	V _{CC} =Max	V _I =0.4V				-0.4	mA
l _{ozh}	Off-state output high-level voltag		00	V _{CC} =Max, V _O =2.4V V _{IH} =Min, V _{IL} =Max				20	μΑ
l _{OZL}	Off-state output low-level voltage		V _{CC} =Max, V _O =0.4V V _{IH} =Min, V _{IL} =Max				-20	μΑ	
los	Short-circuit out	put current	V _{CC} =Max (V _{CC} =Max (Note 2)		-40		-225	mA
I _{CC}	Supply current		V _{CC} =Max (Note 3)			12	21	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted at a time, and duration should ot not exceed one second.

Note 3: I_{CC} is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5V.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAETER	TEST CONDITION	MIN TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output		7	15	ns
t _{PHL}	Propagation delay time, high-to-low-level output	C -4525 B -6670	12	18	ns
t _{PZH}	Output enable time to high level	$C_L=45pF, R_L=667\Omega$	18	35	ns
t _{PZL}	Output enable time to low level		28	45	ns
t _{PHZ}	Output disable time from high level	C -5nE B -6670		32	ns
· t _{PLZ}	Output disable time from low level	$C_L=5pF, R_L=667\Omega$		35	ns

[#]For load circuit and voltage waveforms, see page 3-11

GD54LS373/GD74LS373 OCTAL D-TYPE LATCHES; 3-STATE OUTPUTS COMMON OUTPUT CONTROL COMMON ENABLE

Feautre

- · 8 Latches in a Single Package
- · 3-State Bus-Driving Outputs
- Full Paralle-Access for Loading
- Buffered Control Inputs
- Clock/Enable input Has Hysteresis to Improve Noise Rejection
- P-N-P Inputs Reduce D-C Loading on Data Lines

Description

These 8-bit latches feature three-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

The eight latches of the LS373 are transparent D-type latches. While the enable (G) is high the Q outputs will follow the data (D) inputs, when the enable is taken low, the Q outputs will be latched at the levels that were set up at the D inputs.

A buffered output control input can be used to place the eight outputs in either normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The high-impedance third state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull-up components.

The output control does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are off.

Function Table (Each Latch)

	INPUTS		OUTPUT Q
ОС	ENABLE G	D	OOIFOI Q
L	Н	Н	Н
L	Н	L	L
L	L	X	Qo
Н	X	X	Z

Schematic of Inputs and Outputs

EQUIVALENT OF DATA INPUTS

EQUIVALENT OF ENABLE AND OUTPUT CONTROL INPUTS

TYPICAL OF ALL OUTPUTS

Absolute Maximum Ratings

•	Supply voltage, Vcc	•••••	7V
•	Input voltage		7V
•	Operating free-air temperature range	54LS	-55°C to 125°C
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER			MIN	NOM	MAX	UNIT	
	O		54	4.5	5	5.5	V	
V_{CC}	Supply voltage		Supply voltage 74	74	4.75	5	5.25	V
	OH High-level output current		54			-1	mA	
ЮН			IOH righ-level output current	74			-2.6	IIIA
			gh	15				
t _w	Width of clock/enable pulse	Lo)W	15			ns	
t _{su}	Data setup time			5↓			ns	
th	Data hold time			20↓			ns	
_			54	-55		125	°C	
¹ A	T _A Operating free-air temperature		74	0		70	C	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TES	TEST CONDITIONS			TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2	VIII		٧
.,			54				0.7	V
V_{IL}	Low-level input voltage			74			0.8	V
V _{IK}	Input clamp voltage	V _{CC} =Min, I	=-18mA				-1.5	٧
		V _{CC} =Min	V _{CC} =Min V _{IL} =Max I _{OH} =Min		2.4	3.4		V
V _{OH}	High-level output voltage	I _{OH} =Max			2.4	3.1		V
		V _{CC} =Min I _{OL} =12mA		54,74		0.25	0.4	.,
V _{OL}	Low-level output voltage	V ₁₁ = Max	I _{OL} =24mA	74		0.35	0.5	V
l _{OZH}	Off-state output current high-level voltage applied	V _{CC} =Max, V _{IH} =Min, V					20	μΑ
I _{OZL}	Off-state output current low-level voltage applied	V _{CC} =Max, V _{IH} =Min, V	•				-20	μΑ
l _l	Input current at maximum input voltage	V _{CC} =Max,	V ₁ =7V				0.1	mA
I _{IH}	High-level input current	V _{CC} =Max,	V _{CC} =Max, V _I =2.7V				20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max,	V _I =0.4V				-0.4	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)		-30		-130	mA	
I _{CC}	Supply current	V _{CC} =Max(I	Note 3)			24	40	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with the DATA inputs grounded and the OUTPUT CONTROLS at 4.5V.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Data	Any Q			12	18	
t _{PHL}	Data	Ally Q	0 - 45-5 D - 0070		12	18	ns
t _{PLH}	Clock or enable	Any Q	$C_L=45pF, R_L=667\Omega$		20	30	20
t _{PHL}	Clock of enable	Ally Q	See Note 1		18	30	ns
t _{PZH}	Output control	Any Q			15	28	no
t _{PZL}	Output control	Ally Q			25	36	ns
t _{PHZ}	Output control	Any Q	$C_1 = 5pF, R_1 = 667\Omega$		12	20	no
t _{PLZ}	Catpat control	Ally Q	- ο[-ορί , h[-00/Ω		15	25	ns

^{*}f_{max}=maximum clock frequency; tested with all outputs loaded.

Note 1: Maximum clock frequency is tested with all outputs loaded.

Function Block Diagram

t_{PLH}=propagation delay time, low-to-high-level output.

t_{PHL}=propagation delay time, high-to-low-level output.

t_{PZH}=output enable time to high level.

 t_{PZL} =output enable time to low level.

t_{PHZ}=output disable time from high level. t_{PLZ}=output disable time from low level.

[#]For load circuit and voltage waveforms, see page 3-11.

GD54/74LS374

OCTAL D TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS

Feature

- D-Type-Flops in a Single Package
- 3-State Bus-Driving Outputs
- · Full Parallel Access for Loading
- Buffered Control Inputs
- Clock/Enable Input Has Hysteresis to Improve Noise Rejection

Description

These 8-bit flip-flops feature three-state outputs designed specifically for driving high capacitive or relatively low-impedance loads. This is particulally suitable for implementing buffer registers, I/O port, bidirectional bus drivers, and working registers.

The eight flip-flops of the LS374 are edge-triggered D-type flipflops. On the positive transition of the clock the Q outputs will be set to the logic levels that were set up at the D inputs.

A buffered output-control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The high-impedance third state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull up components.

The output control does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

Function Table

OUTPUT CONTROL	CLOCK (CK)	D	OUTPUT Q
L	↑	Н	Н
L	†	L	L
L	L	Х	Q_{o}
Н	Х	Х	Z

Schematic of Inputs and Outputs

TYUPICAL OF ALL OUTPUTS

Absolute Maximum Ratings

Supply voltage, Vcc	
	7V
	7V
Operating free-air temperature range	54LS55°C to 125°C
	74LS 0°C to 70°C
Storage temperature range	−65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V	Supply valtage	54	4.5	5	5.5	V
V _{cc}	Supply voltage	74	4.75	5	5.25	v
	I Ret level extent extent				-1	A
І он	High-level output current	74			-2.6	mA
	Width of clock/enable pulse	High	15			
t _w		Low	25			ns
t _{su}	Data setup time		20↑			ns
t _h	Data hold time		Of			ns
т	Operating free-air temperature	54	-55	_	125	°C
T _A	Operating free-air temperature	74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TES	TEST CONDITIONS			TYP (Note 1)	MAX	UNIT
V_{IH}	High-level input voltage				2			٧
V	Low-level input voltage		54				0.7	V
V _{IL}	Low-level input voltage			74			0.8) V
V _{IK}	Input clamp voltage	V _{CC} =Min, I	=-18mA				-1.5	٧
V	High lovel autout valters	V _{CC} =Min	V _{CC} =Min V _{II} =Max		2.4	3.4		.,
V _{OH}	High-level output voltage	I _{OH} =Max V _{IH} =Min		74	2.4	3.1		V
V	Low-level output voltage	V _{CC} =Min	I _{OL} =12mA	54,74		0.25	0.4	.,
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =24mA	74		0.35	0.5	V
l _{ozh}	Off-state output current high-level voltage applied	V _{CC} =Max, V _{IH} =Min, V					20	μΑ
l _{OZL}	Off-state output current low-level voltage applied	V _{CC} =Max, V _{IH} =Min, V	•				-20	μΑ
I ₁	Input current at maximum input voltage	V _{CC} =Max,	V ₁ =7V				0.1	mA
I _{IH}	High-level input current	V _{CC} =Max,	V _{CC} =Max, V _I =2.7V				20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.4V				-0.4	mA	
los	Short-circuit output current	V _{CC} =Max (Note 2)			-30	-	-130	mA
Icc	Supply current	V _{CC} =Max (Output control	at 4.5V)		27	40	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
f _{max}				25	35		MHz
t _{PLH}	Clock or enable	Any Q			15	28	
t _{PHL}			$C_L = 45 pF, R_L = 667 \Omega$		⁻ 19	28	ns
t _{PZH}	Output control	Any Q	See Note 1		20	28	
t _{PZL}	Output Control	Ally Q			21	28	ns
t _{PHZ}	Output control	Any Q	C =525 B =6670		12	20	
t _{PLZ}	Catpat control	Ally Q	$C_L=5pF, R_L=667\Omega$		14	25	ns

^{*}f_{max}=maximum clock frequency; tested with all outputs loaded.

Note 1: Maximum clock frequency is tested with all outputs loaded.

Application Example

8-BIT SHIFT REGISTER

t_{PLH}=propagation delay time, low-to-high-level output.

t_{PHL}=propagation delay time, high-to-low-level output.

t_{PZH}=output enable time to high level.

t_{PZL}=output enable time to low level.

t_{PHZ}=output disable time from high level.

t_{PLZ}=output disable time from low level.

[#]For load circuit and voltage waveforms, see page 3-11.

GD54/74LS377

OCTAL POSITIVE EDGE-TRIGGERED D-TYPE FLIP FLOP WITH ENABLE

Features

- · Eight-bit, high speed parallel registers
- · Positive, edge-triggered, D-type flip-flops
- Buffered common clock and buffered common clock enable

Description

This device contains 8 edge-triggered D-type flipflop circuits and it is provided with clock input and enable input \overline{G} common to all 8 circuits. When CK changes in each flip-flop from low to high, the data input signal D immediately before the change appears in output Q.

When \overline{G} is set high, the output status does not change irrespective of the status of the other input signals. Malfunctioning does not result even if \overline{G} is set from high to low or from low to high.

Function Table (Note 1)

Ğ	СК	D	Q
Н	Х	Х	Q°
L	1	Н	Н
L	1	L	L
Х	L	Х	Q°

Note 1 1: Transition for low to high (positive edge trigger)

Q0 : Level of Q before the indicated stead-state input conditions were established.

X : Irrelevant

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	7V
•	Input voltage	7V
•	Operating free-air temperature range 54LS	-55°C to 125°C
	74LS	0°C to 70°C
•	Storage temperature range	-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAME	TER		MIN	NOM	MAX	UNIT	
.,	0 1 1		54	4.5	5	5.5	V	
V _{cc}	Supply voltage		74	4.75	5	5.25	V	
I _{OH}	High-level output cur	rent	ent 54			-400	μΑ	
		Low level output ourrent				4	m 1	
lor	I _{OL} Low-level output curr		74			8	mA	
f _{clock}	Clock frequecy			0		30	MHz	
t _w	Width of clock or cle	ar pulse		20			ns	
		Data input		201				
t _{su}	Set up time	Enable activ	e-state	251			ns	
		Enable inac	tive-state	101				
t _h	Hold time	Data and Enable		51			ns	
			54	-55		125	°C	
TA	Operating free-air ter	Operating free-air temperature		0		70	1	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			٧
							0.7	v
V_{IL}	Low-level input voltage	Low-level input voltage 74					0.8	\ \ \
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I	=-18mA				-1.5	V
		VCC-IVIIII, VIL-IVIAX		54	2.5	3.5		V
V _{OH}	High-level output voltage			74	2.7	3.5		
		V _{CC} =Min				0.25	0.4	V
V _{OL}	Low-level output voltage	V _{IL} =Max V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	v
I _I	Input current at maximum input voltage	V _{CC} =Max, \	V _I =7V				0.1	mA
I _{IH}	High-level input current	V _{CC} =Max, \	√ _I =2.7V				20	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.4V					-0.4	mA
Ios	Short-circuit output current	V _{CC} =Max (Note 2)		-20		-100	mA	
I _{cc}	Supply current	V _{CC} =Max (N	Note 3)			17	28	mA

Note 1: All typical Values are at V_{CC} =5V, T_A =25°C. Note 2: Not more than one output should be shorted at a time, and duration should ot not exceed one second.

Note 3: With all outputs open and ground applied to all data and enable inputs, I_{CC} is measured after a momentary ground, then 4.5V, is applied to clock.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency	$C_1 = 15pF, R_1 = 2k\Omega$	30	40		MHz
t _{PHL}	Propagation delay time, high-to- low-level outputs from clock	0[-15pr, n[-2ks		18	27	ns
t _{PLH}	Propagation delay time, low-to- high-level outputs from clock			17	27	ns

[#]For load circuit and voltage waveforms, see page 3-11.

GD54/74LS390

DUAL 4-BIT DECADE AND BINARY COUNTERS

Features

- Dual Versions of the Popular 'LS90
- 'LS390... Individual Clocks for A and B Flip-Flops Provide Dual ÷ 2 ÷ 5 and Counters
- · Direct Clear for Each 4-Bit Counter
- Dual 4-Bit Version Can Significantly Improve System Densities by Reducing Counter Package Count by 50%
- Typical Maximum Count Frequency...35MHz
- Buffered Output Reduce Possibility of Collector Commutation

Description

Each of these monolithic circuits contains eight masterslave flip-flops and additional gating to implement two individual four-bit counters in a single package. The 'LS390 incorporates dual divide-by-two and divide-by-five counters, which can be used to implement cycle lengths equal to any whole and/or cumulative multiples of 2 and/or 5 up to divide-by-100. When connected as a biquinary counter, the separate divide-by-two circuit

can be used to provide symmetry (a square wave) at the final output stage. The 'LS390 has parallel outputs from each counter stage so that any submultiple of the input count frequency is available for system-timing singals.

Function Table

BCD COUNT SEQUENCE (EACH COUNTER) (See Note A)

Count		Out	tput	
	Q_D	Qc	QB	Q_A
0	L	L	L	L
1	L	L	L	н
2	L	L	Н	L
3	L	L	Н	Н
4	L	Н	L	L
5	L	Н	L	н
6	L	Н	Н	L
7	L	Н	Н	н
8	н	L	L	L
9	Н	L	L	Н

BI-QUINARY (5-2) (EACH COUNTER) (See Note B)

Count		Out	put	
	QA	Q_{D}	Qc	QB
0	L	L	L	L
1	L	L	L	Н
2	L	L	Н	L
3	L	L	Н	н
4	L	Н	L	L
5	н	L	L	Н
6	Н	L	L	Н
7	Н	L	Н	L
8	н	L	Н	Н
9	н	Н	L	L

Note A: Output QA is connected to input B for BCD count

B: Output QD is connected to input A for bi-quinary count

C:H=high level. L=low level

Function Block Diagram

Absolute Maximum Ratings

•	Supply voltage, V _{CC}		7V
	Input voltage Clear		
•	Operating free-air temperature range 54LS		-55°C to 125°C
	74LS	***************************************	0°C to 70°C
•	Storage temperature range	***************************************	-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
V _{CC}	Supply voltage		54	4.5	5	5.5	v
			74	4.75	5	5.25	1
Іон	High-level output current	54,74				-400	μΑ
Ioi	I _{OL} Low-level output current		54			4	mA
			74			8	""
f _{clock}	Clock frequency A to C		A	0		25	MHz
3.55.1		B to C	В	0		12.5	IVITIZ
		Α		20			
t _W	Pulse Width	В		40			ns
	Clear High		High	20			
t _{su}	Clear inactive-state set up time	set up time		25↓			ns
T _A	Operating free-air temperature		54	-55		125	°C
			74	0		70	O

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CO	TEST CONDITIONS			TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage							V
V _{IL}	Low-level input voltage		54				0.7	V
				74			0.8	'
V _{IK}	Input clamp voltage	V _{CC} =Min,	i=-18mA				-1.5	V
V _{OH}	High-level output voltage	V _{CC} =Min V	′ _{IL} =Max	54	2.4	3.4		V
		I _{OH} =Max V	_{IH} =Min	74	2.7	3.4		
		V _{CC} =Min	I _{OL} =4mA	54,74		0.25	0.4	
V _{OL}	Low-level output voltage		I _{OL} =8mA	74		0.35	0.5	٧
	Input current at maximum	V _{CC} =Max V _I =7V	Clear				0.1	
h	input voltage	V _{CC} =Max	Α				0.2	mA
		V _I =5.5V	В				0.4	
		V _{CC} =Max	Clear				20	
I _{IH}	High-level input current	V ₁ =2.7V	Α				100	μΑ
		•	В				200	
		V _{CC} =Max	Clear				-0.4	
I _{IL}	Low-level input current	V _I =0.4V	Α				-1.6	mA
			В				-2.4	
los	Short-circuit output current	V _{CC} =Max (V _{CC} =Max (Note 2)		-20		-100	mA
Icc	Supply current	V _{CC} =Max (Note 3)			15	26	mA

Note 1: All typical values are at V_{CC}=V, T_A=25°C

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} measured with all outputs open, both CLEAR inputs grounded following momentary connection to 4.5 and all other inputs grounded.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER	TEST (INPUT)	TO (OUTPUT)	CONDITION#	MIN	TYP	MAX	UNIT
f _{max}	Α	Q _A		25	35		MHz
max	В	Q _B		20	30		
t _{PLH}	А	Q _A	$C_L=15pF, R_L=2k\Omega$		12	20	ns
t _{PHL}	, î		S[, Gp. , v.[13	20	
t _{PLH}	Α	Q _C	See Fig. 1		37	60	ns
t _{PHL}	^	QC			39	60	
t _{PLH}	В	Q _B]		13	21	ns
t _{PHL}					14	21	
t _{PLH}	В	Q _C			24	39	ns
t _{PHL}	- B				26	39	110
t _{PLH}	В	Q_D	1		13	21	ns
t _{PHL}	В	40			14	21	
t _{PHL}	Clear	Any			24	39	ns

^{*}For load circuit and voltage waveforms, see page 3-11.

PARAMETER MEASUREMENT INFORMATION

Fig 1 Voltage Waveforms

GD54/74LS393 DUAL 4-BIT BINARY COUNTERS

Feature

- Dual 4-Bit Binary Counter with Individual Clocks
- All Have Direct Clear for Each 4-Bit Counter
- Dual 4-Bit Versions Can Significantly Improve System Densities by Reducing Counter Package Count by 50%
- Typical Maximum Count Frequency ... 35 MHz

Description

Each of this monolithic circuit contains eight master slave flip-flops and additional gating to implement two individual four-bit counters in a single package. It comprises two independent four-bit binary counters each having a clear and a clock input. N-bit binary counters can be implemented with each package providing the capability of divide by 256. It has parallel outputs from each counter stage so that any submultiple of the input count frequency is available for system-timing signals.

Count Sequence (Each Counter)

COUNT		OUTPUT						
000141	Q _D	Qc	Q _B	Q _A				
0 12 3 4 5 6 7 8 9 10 11 13 14 15								

Schematics of Inputs and Outputs

Absolute Maximum Ratings

Supply voltage, Vcc		/ V
Clear input voltage		7V
Any A or B clock input voltage		5.5V
Operating free-air temperature range	54I S	
Operating free air temperature range	74LS	0°C to 70°C
Storage temperature range		

Recommended Operating Conditions

SYMBOL	PARA	PARAMETER			NOM	MAX	UNIT	
			54	4.5	5	5.5	V	
V_{CC}	Supply voltage		74		5	5.25		
Іон	High-level output cur	54,74			-400	μΑ		
	Low-level output current		54			4	mA	
IOL			74			8		
fCOUNT	Count frequency	A input		0		25	MHz	
	Dules with	A input high or low		20			ns	
t_w	Pulse with	Pulse with Clear high		20			115	
t _{SU}	Clear inactive-state s	Clear inactive-state setup time					ns	
00	Operating free-air temperature 54		54	-55		125	°C	
T_A			74	0		70	·	

[→] The arrow indicates the falling edge of the clock pulse is used for reference.

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			MIN	Typ (Note 1)	MAX	UNIT	
V _{IH}	High-level input voltage				2			V	
V _{IL}	Low-level input voltage			54 74			0.7	٧	
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =	= - 18mA	/4			-1.5	٧	
		V _{CC} =Min	V _{II} =Max	54	2.5	3.4		.,	
V _{OH}	High-level output voltage	I _{OH} =Max	V _{IH} =Min	74	2.7	3.4		٧	
	Low-level output voltage	$ \begin{array}{c c} & V_{CC} = Min \\ \text{Low-level output voltage} & V_{IL} = Max \\ V_{IH} = Min \end{array} $		I _{OL} =4mA	54, 74		0.25	0.4	v
V _{OL}				I _{OL} =8mA	74		0.35	0.5	
	Input current at maximum	V _{CC} =Max	CLEAR				0.1		
l _l	input voltage	V _I =7V	INPUT A				0.2	mΑ	
	11:	V _{CC} =Max	CLEAR				20		
I _{IH}	High-level input current	V _I =2.7V	INPUT A				100	μΑ	
		V _{CC} =Max	CLEAR				-0.4		
I _{IL}	Low-level input current	V _I =0.4V	- INPUT A				-1.6	mA	
los	Short-circuit output current	V _{CC} =Max (Note 2)			-20		-100	mA	
Icc	Supply current	V _{CC} =Max (Note 3)				15	26	mA	

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with all outputs open, both clear inputs grounded following momentary connection to 4.5V, and all other inputs grounded.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
f _{max}	Α	Q _A		25	35		MHz
t _{PLH}	٨	0	0 -15pE B -2k0		12	20	
t _{PHL}	A	Q _A	$C_L = 15pF, R_L = 2k\Omega$		13	20	ns
t _{PLH}	^	0	See Fig. 1		40	60	
t _{PHL}	A	Q_D			40	60	ns
t _{PHL}	Clear	Any			24	39	ns

[#]For load circuit and voltage waveforms, see page 3-11.

Parameter Measurement Information

Note A: Input pulses are supplied by a generator having the following characteristic t,≤15ns, t,≤6ns, PRR≤1 MHz, duty cycle=50%, Z_{out}≈50 ohms.

Figure 1 Voltage Waveforms.

^{*}f_{max}=maximum count frequency

 t_{PLH} =propagation delay time low-to-high-level output

 $t_{\mbox{\scriptsize PHL}} = \mbox{\scriptsize propagation}$ delay time high-to-low-level output

GD54/74LS395A

4-BIT UNIVERSAL SHIFT REGISTERS; 3 STATE OUTPUT

Feature

- Three-State, 4 Bit, Cascadable, Parallel-In, Parallel-Out Registers
- Low Power Dissipation ... 75mW Typical (Enable)
- Applications: N-Bit Serial-to-Parallel Converter
 N-Bit Parallel-to-Serial Converter
 N-Bit Storage Register

Description

This 4-bit register features parallel inputs, parallel outputs, cascadable output, and clock, serial load/shift, output control, and direct overriding clear inputs.

Shifting is accomplished when the load/shift control is low. Parallel loading is accomplished by applying the four bits of data and taking the load/shift control input high. The data are loaded into the associated flip-flops and appear at the outputs after the high-to-low transition of the clock input. During parallel loading, the entry of serial data is inhibited.

When the output control is low, the nomal logic levels of the four outputs are available for driving the loads or bus lines. The outputs are disabled independently of the level of the clock by a high logic

level at the output control input. The outputs then present a high impedance and neither load nor drive the bus line; however, sequential operation of the registers is not affected. During the high-imedance mode, the output at Q_D is still available for cascading.

Function Table

	INPUT							3-STATE OUTPUTS				CASCADE		
CLEAR	LOAD/SHIFT	CLOCK	SERIAL	PARALLEL		Q _A Q _B		0.	0.	QA	0. 0-		QD	OUTPUT Q _D
0 =	CONTROL	OLOGIK	SETTAL A B C D		⊶ _A	$Q_A Q_B Q$		Q D	₩ D					
L	X	X	X	Х	Χ	Х	Χ	L	L	L	L	L		
H	Н	Н	Х	Х	Χ	Χ	Χ	Q_{AO}	Q_{BO}	Q_{CO}	Q_{DO}	Q _{DO}		
Н	Н	↓	X	а	b	С	d	а	b	С	d	d		
Н	L	Н	X	Х	Χ	Χ	Χ	Q _{AO}	Q_{BO}	Q_{CO}	Q_{DO}	Q_{DO}		
н	L	1	H	Х	Χ	Χ	Χ	Н	Q_{An}	Q_{Bn}	Q_{Cn}	Q _{Cn}		
Н	L	↓	L	Х	Χ	Χ	Χ	L	\mathbf{Q}_{An}	Q_Bn	Q_{Cn}	Q_{Cn}		

When the output control is high, the 3-state outputs are disable to the high-impedance state; however, sequential operation of the registers and the output at Q_D are not affected.

Absolute Maximum Ratings

•	Supply voltage, Vcc	•••••	7V
•	Input voltage		7V
•	Operating free-air temperature range	54LS	-55°C to 125°C
		74LS	
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER	PARAMETER			95A	GD74LS395A			UNIT	
					MAX	MIN	TYP	MAX		
V _{CC}	Supply voltage		4.5	5	5.5	4.75	5	5.25	V	
1	High-level output current	Q _A , Q _B , Q _C , Q _D			-1			-2.6	0	
Гон	nigh-level output current	Q′ _D			-0.4			-0.4	mA	
	Law lawal autout auront	Q _A , Q _B , Q _C , Q _D			12			24		
IOL	Low-level output current	Q′ _D			4			8	mA	
f _{clock}	Clock frequency		0		30	0		30	MHz	
t _{w(clock)}	Width of clock pulse		16			16			ns	
	Set up time, high-level or	Load/shift input	40			40				
t _{su}	low-level data	All other inputs	20			20			ns	
t _h	Hold time, high-level or low-level data					10			ns	
T _A	Operating free-air temperature)	-55		125	0		70	°C	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER		TES	ST COND	ITIONS		TYP Note 1	MAX)	UNIT
V_{IH}	High-level input voltage					2			٧
V _{IL}	Low-level input voltage						0.8	٧	
V _{IK}	Input clamp voltage		V _{CC} =4.75V, I _I	=-18m/	A			-1.5	٧
V	High lovel output voltage		V _{CC} =4.75V, V	_{IH} =2V	Q _A , Q _B , Q _C , Q _D	2.4	3.4		V
V _{OH}	High-level output voltage		V _{IL} =0.8V, I _{OH} =	=MAX	Q′ _D	2.7	3.4		\
		54,74	V _{CC} =4.75V	Q _A , Q _B	I _{OL} =12mA		0.25	0.4	
V _{OL}	Low-level output voltage	74	V _{II} = 0.8V	Q _C , Q _D	I _{OL} =24mA		0.35	0.5	_v
*OL	Low level output voltage	54,74	V _{IH} =2V	Q _D	I _{OL} =4mA		0.25	0.4	
		74	V _{IH} =2V	Δ _D	I _{OL} =8mA		0.35	0.5	
l _{ozh}	Off-state output current h voltage applied	igh-level	$egin{array}{c} V_{CC} = Max, \ V_{IH} = 2V \\ V_{O} = 2.7V \end{array} \qquad egin{array}{c} Q_{A}, \ Q_{B}, \ Q_{C}, \ Q_{D} \end{array}$		Q _A , Q _B , Q _C , Q _D			20	μΑ
I _{OZL}	Off-state output current lovoltage applied	ow-level	$egin{array}{c} V_{CC} = Max, \ V_{IH} = 2V \\ V_O = 0.4V \end{array}$ $egin{array}{c} Q_A, \ Q_B, \ Q_C, \ Q_D \end{array}$		Q _A , Q _B , Q _C , Q _D			-20	μΑ
l ₁	Input current at maximum input voltage		V _{CC} =Max, V _i =7V					0.1	mA
I _{IH}	High-level input current		V _{CC} =Max, V _I =2.7V					20	μΑ
I _{IL}	Low-level input current		V _{CC} =Max, V _I =	0.4V				-0.4	mA
	Chart singuit autout surrou		V -May (Not	0.2)	Q _A , Q _B , Q _C , Q _D	-30		-130	
los	Short-circuit output currer	π	V _{CC} =Max (Note 2)		Q _D '	-20		-100	mA
	I _{CC} Supply current		Voc=Max (Note 3)		Condition A		22	34	
¹cc					Condition B		21	31	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Note 3: I_{CC} is measured with the outputs open, the serial input and mode control at 4.5V, and the data inputs grounded under the conditions:

A. Output control at 4.5V and a momentary 3V, then ground, applied to clock input.

B. Output control and clock input grounded.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency		30	45		MHz
t _{PHL}	Propagation delay time, high-to-low-level outptu from clear			22	35	ns
t _{PLH}	Propagation delay time, low-to-high-level output	Q_A , Q_B , Q_C , Q_D outptus; $R_I = 667\Omega$, $C_I = 45pF$		15	30	ns
t _{PHL}	Propagation delay time, high-to-low-level output	Q_0' output ; $R_1 = 2k\Omega$, $C_1 = 15pF$		20	30	ns
t _{PZH}	Output enable time to high level	N_=2KS2, O_=15PF		15	25	ns
t _{PZL}	Output enable time to low level			17	25	ns
t _{PHZ}	Output disable time from high level	C =5×5		11	17	ns
t _{PLZ}	Oupput disable time from low level	C _L =5pF		12	20	ns

[#]For load circuit and voltage waveforms, see page 3-11.

Function Block Diagram

Sechmatics of Inputs and Outputs

GD54/74LS541

OCTAL BUFFER/LINE DRIVER WITH 3-STATE OUTPUT (NONINVERTED)

Features

- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- · P-N-P Inputs Reduce D-C Loading
- Hysteresis at Inputs Improves Noise Margins
- Data Flow-thru Pinout (All Inputs on Opposite Side from Outputs)
- High FanOut (I_{OL}=24mA)
- Typical Power Dissipation (120mW)

Description

The GD54/74LS541 is a semiconductor integrated circuit containing 1 buffer block with 3-state non-inverted outputs and is provided with output control inputs which are common to 8 circuits and which are independent.

When \overline{OC}_1 or \overline{OC}_2 is low, low appears in output Y if input A is low, and high appears in Y if A is high.

All outputs are set to the high-impedance state when \overline{OC}_1 and \overline{OC}_1 are in any other state.

The input and output pins are arranged for facilitated board layout (data flow-thru pin out).

Function Table (Note 1)

Α	OC,	OC ₂	Υ
L	L	L	L
Н	L	L	Н
Х	L	Н	Z
Х	Н	L	Z
Х	Н	Н	Z

Note 1 Z : High-impedance X : Irrelevant

Absolute Maximum Ratings

•	Supply voltage, V _{CC}		7V
	Input voltage Any G		
•	Operating free-air temperature range		
		74LS	
•	Storage temperature range		65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
V	O. and the same	54	4.5	5	5.5	V	
V _{cc}	Supply voltage	74	4.75	5	5.25	V	
	I Political and a second	54			-12	mA	
Іон	High-level output current	74			-15	IIIA	
		54			12	mA	
lOL	Low-level output current	74			24	IIIA	
T. One atting to a sign		54	-55		125	°C	
T _A	Operating free-air temperature	74	0		70		

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAETER	TEST CONDITION #		'LS541			UNIT	
				MIN	TYP	MAX		
t _{PLH}	Propagation delay time, low-to-high-level output				9	15	ns	
t _{PHL}	Propagation delay time, high-to-low-level output	C _L =45pF,	R _L =667Ω,		10	18	ns	
t _{PZL}	Output enable time to low level				25	38	ns	
t _{PZH}	Output enable time to high level				20	32	ns	
t _{PLZ}	Output disable time from low level	C _L =5pF,	$R_1 = 667\Omega$		18	29	ns	
t _{PHZ}	Output disable time from high level	,			10	18	ns	

[#] For load circuit and voltage waveforms, see page 3-11

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL		PARAMETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT	
V _{IH}	High-leve	el input voltage				2			V	
V.,	V _{IL} Low-level input voltage				54			0.7	v	
*IL	LOW ICVO	or input voltage		7				0.8	V	
V _{IK}	Input cla	mp voltage	V _{CC} =Min, I	=-18mA				-1.5	V	
V _{OH} High-level output voltage		V _{CC} =Min, \ V _{IL} =Max, I _C		54, 74	2.4	3.4		.,		
		er output voltage	V _{CC} =Min, \V _{IL} =0.5V, I		54, 74	2			V	
V			V _{CC} =Min	I _{OL} =12mA	54, 74		0.25	0.4		
V _{OL}	Low-leve	el output voltage	$V_{IL}=Max$ $V_{IH}=Min$ $I_{OL}=24mA$		74		0.35	0.5	V	
l _{ozh}	l .	output current I voltage applied	V _{CC} =Max, V _O =2.7 V _{IH} =Min, V _{IL} =Max,					20	μΑ	
I _{OZL}	l	output current voltage applied	V _{CC} =Max, V _{IH} =Min, V _I	•				-20	μΑ	
I _I	Input cur	rent at maximun tage	V _{CC} =Max,	V ₁ =7V				0.1	mA	
I _{IH}	High-leve	el input current	V _{CC} =Max, ¹	V ₁ =2.7V				20	μΑ	
I _{IL}	Low-leve	I input current	V _{CC} =Max, V _I =0.4V					-0.2	mA	
los	Short-circuit output current V _{CC} =Max (Note 2)			-40		-225	mA			
		Outputs high					18	32		
Icc	Supply Current	Outputs low	V _{CC} =5.25V Outputs ope				30	52	mA	
	Juneill	All outputs disabled	Catpats Ope	711			32	55		

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

GD54/74LS590

8-BIT BINARY COUNTERS WITH OUTPUT REGISTERS

Features

- 8-Bit Counter with Register
- · Parallel Register Outputs
- Counter has Direct Clear
- 3-State Outputs
- Guaranteed Counter Frequency
 DC to 20 MHz

Description

These devices contain an 8-bit binary counter that feeds an 8-bit storage register. The storage register has parallel outputs. Separate clocks are provided for both the binary counter and storage register. The binary counter features a direct clear input \overline{CCLR} and a count enable input \overline{CCKEN} . For cascading a ripple carry output \overline{RCO} is provided. Expansion is easily accomplished by tying \overline{RCO} of the first stage to \overline{CCKEN} of the second stage, etc.

Both the counter and register clocks are positiveedge triggered. If the user wishes to connect both clocks together, the counter state will always be one count ahead of the register. Internal circuitry prevents clocking from the clock enable.

Schematics of Inputs and Outputs

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	 7V
•	Input voltage	 7V
	Off-state output voltage	
	Operating free-air temperature range 54LS	
	74LS	 0°C to 70°C
•	Storage temperature range	-65°C to 150°C

Function Block Diagram

Recommended Operating Conditions

	DARAMATTER			54LS	G	D74L	.S	UNIT
SYMBOL	PARAMAETER		MIN N	OM MAX	MIN	MON	MAX	ONIT
V _{CC}	Supply voltage,		4.5	5 5.5	4.75	5	5.25	V
		RCO		-400			-400	μΑ
I _{ОН}	High-level output current,	Q		-1			-2.6	mΑ
		RCO		8			16	mA
I _{OL} Low-level output current,	Q		12			24		
f _{CCK}	Counter clock frequency,			20	0		20	MHz
t _{W(CCK)}	Width of counter clock pulse,	Width of counter clock pulse,			25			ns
t _{w(CCLR)}	Width of counter clear pulse,		20		20			ns
t _{w(RCK)}	Width of counter clear pulse,		20		20			ns
t _{enable}	Count enable time, CCKEN		20		20			ns
t _{su}	Clear inactive-state setup time,	CCLR↑ to CCK↑	20		20			ns
t _{su}	Setup time, (see Note 1)	CCK↑ to RCK↑	40		40			ns
TA	Operating free-air temperature,		-55	125	0		70	°C

NOTE 1: This setup time ensures the register will see stable data from the counter outputs. The clocks may be tied together in which case the register state will be one clock pulse behind the counter.

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	PARAMETER				MIN (TYP Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			V	
V _{IL}	Low-level input voltage				54			0.7	V
1 L					74			0.8	
V _{IK}	Input clamp voltage		V _{CC} =Min, I _I	=-18mA				-1.5	V
	High Level Output	Q	V_{CC} =Min	I _{OH} =-1mA	54	2.4	3.2		
V _{OH}	Voltage		$V_{IL}=Max$	$I_{OH} = -2.6 \text{mA}$	74	2.4	3.1		V
		RCO	V _{IH} =Min	$I_{OH} = -1 \text{mA}$	54,74	2.4	3.2		
	Low Level Output	Q	V _{CC} =Min	$I_{OL} = 12mA$	54,74		0.25	0.4	V
V _{OL}	Voltage		V _{IH} =Min,	I _{OL} =24mA	74		0.35	0.5	
""	_	RCO	V _{IL} =Max	I _{OL} =8mA	54,74		0.25	0.4	V
		1100		I _{OL} =16mA	74		0.35	0.5	
l _{ozh}	Off-state output current high-level voltage applied	Q	V _{CC} =Max, V _{IH} =Min, V	V _O =2.7V. _{IL} =Max				20	μΑ
I _{OZL}	Off-stage output current low-level voltage applied	Q	V _{CC} =Max, V _{IH} =Min, V	V _O =0.4V				-20	μΑ
l ₁	Input current at maximum input voltage		V _{CC} =Max,	V _I =7V				0.1	mA
I _{IH}	High-level input current		V _{CC} =Max,	V _I =2.7V				20	μΑ
IIL	Low-level input current	CCK	V _{CC} =Max,	V ₁ =0.4V				-0.8	mA
"-	•	Others		<u>'</u>				-0.2	
los	Short-circuit	Q	V _{CC} =Max,	$V_0 = 0V$		-30		-130	mA
	output current	RCO	(Note)			-20		-100	
			V _{CC} =Max	Outputs high			33	55	
Icc	Supply current			Outputs low			44	65	mA
				Output at high im	pedance		46	65	

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Note more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. Note 3: All possible inputs grounded. All inputs open.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER	FROM	ТО	TEST CONDITIONS #		LS590)		
7,40,44121211	(INPUT)	(OUTPUT)	TEST CONDITIONS #	MIN	TYP	MAX	UNIT	
f _{max}	CCK	RCO	$R_L=1k\Omega$, $C_L=30pF$	20	35		MHz	
t _{PLH}	CCK†	RCO			15	22	ns	
t _{PHL}	CCK†	RCO			20	30	ns	
t _{PLH}	CCLR↓	RCO			30	45	ns	
t _{PLH}	RCK†	Q	R _L =667Ω, C _L =45pF		12	18	ns	
t _{PHL}	RCK↑	Q			22	33	ns	
t _{PZH}	Ğ↓	Q			25	38	ns	
t _{PZL}	Ğ↓	Q			30	45	ns	
t _{PHZ}	Ğ↑	Q	R _L =667Ω, C _L =5pF		20	30	ns	
t _{PLZ}	Ğ↑	Q			25	38	ns	

[#] For load circuits and voltage wareforms, see page 3-11.

GD54/74LS612

MEMORY MAPPERS WITH 3-STATE MAP OUTPUTS

Feature

- Expands 4 Address Lines to 12 Address Lines
- Designed for Paged Memory Mapping

Descriptions

These memory-mapper integrated circuits contain a 4-line to 16-line decoder, a 16-word by 12-bit RAM, 16 channels of 2-line to 1-line multiplexers, and other miscellaneous circuitry on a monolithic chip.

The memory mappers are designed to expand a microprocessor's memory address capability by eight bits. Four bits of the memory address bus (see the figure below) can be used to select one of 16 map registers that contain 12 bits each. These 12 bits are presented to the system memory address bus through the map output buffers along with the unused memory address bits from CPU. However, addressable memory space without reloading the map registers is the same as would be available with the memory mapper left out. The addressble

Pin Configuration 40 Vcc RS2 1 39 MA2 MA3 2 38 RS1 RS3 3 37 MA1 CS 4 STROBE 5 36 RS0 35 MAO R/W 6 34 D11 D0 7 33 D10 D1 8 32 D9 D2 9 DATA BUS 1/0 DATA BUS I/O 31 D8 D3 10 30 D7 D4 11 29 D6 D5 12 28 NC MM 13 27 MO1 MO0 14 26 MO10 MO1 15 25 MO9 MO2 16 MAP OUTPUTS MAP OUTPUTS MO3 17 24 MO8 23 MO7 MO4 18 MO5 19 22 MO6 21 ME Suffix-Blank: Plastic Dual In Line Package Ceramic Dual In Line Package Suffix-J

memory space is increased only by periodically reloading the map registers from the data bus.

This configuration lends itself to memory utilization of 16 pages of 2(n-4) registers each without reloading (n= number of address bits available from CPU).

These devices have four modes of operation (read, write, map, and pass). Data may be read from or loaded into the map register selected by the register select inputs (RSO thru RS3) under control of R/\overline{W} whenever chip select (\overline{CS}) is low. The data I/O takes place on the data bus DO thru D7. The map operation will output the contents of the map register selected by the map address inputs (MAO thru MA3) when \overline{CS} is high and \overline{MM} (map mode control) is low. The LS612 output stages are transparent in this mode.

When \overline{CS} and \overline{MM} are both high (pass mode), the address bits on MAO thru MAO appear at MO8-MO11, respectively, (assuming appropriate latch control) with low levels in the other bit positions of the map outputs.

LS612 have 3-state (V) map outputs.

PIN FUNCTION TABLE

PIN	PIN NAME	FUNCTIONAL DESCRIPTION
7-12, 29-34	D0 thru D11	I/O connections to data and control bus used for reading from and writing to the map register selected by RSO-RS3 when $\overline{\text{CS}}$ is low. Mode controlled by R/ $\overline{\text{W}}$.
36,38,1,3	RS0 thru RS3	Register select inptus for 1/0 operations.
6	R/W	Read or write control used in 1/0 operations to select the condition of the data bus. When high, the data bus outputs are active for reading the map register. When low, the data bus is used to write into the register.
5	STROBE	Strobe input used to enter data into the selected map register during I/O operations.
4	ĊŚ	Chip select input. A low input level selects the memory mapper (assuming more than one used) for an I/O operation.
35,37,39,2	MAO thru MA3	Map address inputs to select one of 16 map registers when in map mode (MM low and CS high)
14-19 22-27	MO0 thru MO11	Map outputs. Present the map register contents to the system memory address bus in the map mode. In the pass mode, these outputs provide the map address data on MO8-MO11 and low levels on MO0-MO7.
13	MM	Map mode input. When low, 12 bits of data are transferred from the selected map register to the map outputs. When high (pass mode), the 4 bits present on the map address inputs MAO-MA3 are passed to the map outputs MO8-MO11, respectively, while MO0-MO7 are set low,
21	ME	Map enable for the map outputs. A low level allows the outputs to be active while a high input level puts the outputs at high impedance.
28	NC	No internal connection
40.20	Vcc,GND	5-V power supply and network ground (substrate) pins.

Note 1: Voltage values are with respect to network ground terminal.

•	Supply voltage, Vcc(see Notge 1)		7V
•	Input voltage: Data Bus 1/0		5.5V
	All other inputs		7V
•	Operating free-air temperature range:	GD54LS	-55°C to 125°C
		GD74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

	DADAMETED		54	4LS61	2	7			
	PARAMETER		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage,		4.5	5	5.5	4.75	5	5.25	V
	High level cutout current	МО			-12			-15	mA
І он	High-level output current,	D			-1			-2.6	111/4
	Fow level output current				12			24	mA
IOL	Low-level output current,	D			4			8	"""
t _{SLSH}	Width of strobe input pulse,		75			75			ns
t _{CSLSL}	CS setup time (CS low to strobe low),		20			20			ns
t _{WLSL}	R/W setup time (R/W low to strobe low),		20			20			ns
t _{RVSL}	RS setup time (RS valid to strobe low),	See	20			20			ns
t _{DVSH}	Data setup time (D0-D11 valid to strobe high),	Figure 1	75			75			ns
t _{SHCSH}	CS hold time (Strobe high to CS high),		20			20			ns
t _{SHWH}	R/W hold time (Strobe high to R/W high),		20			20			ns
t _{SHRX}	RS hold time (Strobe high to RS invalid),]	20			20			ns
t _{SHDX}	Data hold time (Strobe high to D0-D11 invalid),		20			20			ns
T _A	Operating free-air temperature,		-55		125	0		70	°C

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER		TE	ST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage					2			٧
					54			0.7	V
VIL	Low-level input Voltage				74			0.8	V
V _{IK}	Input clamp voltage		V _{CC} = Min, I _I =-18mA					-1.5	٧
			V _{CC} =Min	$I_{OH} = -3mA$		2.4			
V_{OH}	High Level Output Voltage	МО	V _{IL} =Max	I _{OH} =Max		2			V
		D	V _{IH} =Min	I _{OH} =Max	2.4				
		МО	V _{CC} =Min V _{IH} =Min, V _{IL} =Max	I _{OL} =12mA	54, 74		0.25	0.4	V
Vol	Low Level Output			I _{OL} =24mA	74		0.35	0.5	
V OL	Voltage			I _{OL} =4mA	54,74		0.25	0.4	- V
				I _{OL} =8mA	74		0.35	0.5	
l _{OZH}	Off-state output current high-level voltage applied		V _{CC} =Max, V V _{IH} =Min, V _{IL}					20	μА
	Off-stage output current	МО	V _{CC} =Max, V _O =0.4V					-20	
lozL	low-level voltage applied	D	V _{IH} =Min, V _{IL}	= Max				-400	μΑ
	Input current at maximum	D	V _{CC} =Max,	V ₁ =5.5V				100	μΑ
l _l	input voltage	All others	VCC-IVIAX,	V ₁ =7V				100	μ/.
l _{IH}	High-level input current		V _{CC} =Max, V	/ _I =2.7V				20	μΑ
I _{IL}	Low-level input current		V _{CC} =Max, V	/ _I =0.4V				-0.4	mA
los	Short-circuit output current	МО	V _{CC} =Max			-40		-225	mA.
'OS	Chort-circuit output current	Short-circuit output current			(Note 2)			-130	111/4
				Outputs high			112	180	
Icc	Supply current	Supply current					112	180	mA
					Output at high impedance			230	

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Note more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, TA = 25°C

SYMBOL	PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	'LS61 MIN TYP		UNIT
t _{CSLDV}	Access (enable) time	CS↓	D 0-11		26	50	ns
t _{WHDV}	Access (enable) time	R/W↑	D 0-11	$R_L = 2k\Omega$	20	35	ns
t _{RVDV}	Access time	RS	D 0-11	See Figure 1,	39	75	ns
t _{WLDZ}	Disable time	R/W↓	D 0-11	See Note 2	30	50	ns
t _{CSHDZ}	Disable time	CS↑	D 0-11		38	65	ns
t _{ELQV}	Access (enable) time	ME↓	MO 0-11		17	30	ns
t _{CSHQV}	Access time	CS↑	MO 0-11		48	85	ns
t _{MLQV}	Access time	MM↓	MO 0-11	R _L =667Ω	22	40	ns
t _{AVQV1}	Access time (MM low)	МА	MO 0-11	See Note 2	39	70	ns
t _{MHQV}	Access time	MM↑	MO 0-11		22	40	ns
t _{AVQV2}	Propagation time (MM high)	MA	MO 8-11		13	30	ns
t _{EHQZ}	Disable time	ME↑	MO 0-11		14	25	ns

Note 2: Access times are tested as t_{PLH} and t_{PHL} or t_{PZH} or t_{PZL} . Disable times are tested as t_{PHZ} and t_{PLZ} .

Explanation of Letter Symbols

This data sheet uses a new type of letter symbol to describe time intervals. The format is:

t_{AB-CD}

where: subscripts A and C indicate the names of the signals for which changes of state or level or establishment of state or level constitute signal events assumed to occur first and last, respectively, that is, at the beginning and end of the time interval.

Subscripts B and D indicate the direction of the transitions and/or the final states or levels of the sinals represented by A and C, respectively. One or two of the following is used:

H= high or transition to high

L= low or transition to low

V= a valid steady-state level

X= unknown, changing, or "don't care" level

Z= high-impedance (off) state.

The hyphen between the B and C subscripts is omitted when no confusion is likely to occur. For these letter symbols on this data sheet, the signal names are further abbreviated as follows:

SIGNAL	B or D
NAME	SUBSCRIPT
C CS	C
CS	CS
DO-11	D
MAO-MA3	Α
MO0-MO11	Q
ME	E
MM	M
R/\overline{W}	W
RS0-RS3	R
STROBE	S

GD54/74LS640, GD74LS640-1 OCTAL BUS TRANSCEIVERS

WITH 3-STATE OUTPUT (INVERTED

Features

- Inverting 3-STATE buffer outputs
- · Bi-directional Bus Transceivers in High-Density 20-Pin Packages
- Hysteresis at Bus Inputs Improves Noise Margins
- High Fan Out LS640: I_{OL}=24mA $LS640-1: I_{OI} = 48mA$

Description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The devices transmit data, from the A bus to the B bus or from the B bus to the A bus depending upon the level at the direction control (DIR) input. The enable input (\overline{G}) can be used to disable the device so that the buses are effectively isolated.

Function Table

CONTROL INPUTS	OPERATION
Ğ DIR	LS640, LS640-1
L L	B data to A bus
L H	Ā data to b bus
н х	Isolation

Schematics of Inputs and Outputs

EQUIVALENT OF EACH INPUT

SYMBOL	/MBOL PARAMETER		LS640			LS640-1			UNIT	
			MIN	TYP	MAX	MIN	TYP	MAX		
V	Supply voltage 54		4.5	5	5.5					
V _{cc}	Supply voltage	74	4.75	5	5.25	4.75	5	5.25	٧	
	High level output ourrent				-12					
Іон	High-level output current	74			-15			-15	mA	
	Low-level output current	54			12					
loL	Low-level output current	74			24			48	mA	
TA	Operating free-air temperature	54	-55		125				°C	
'A	Operating nee-all temperature	74	0		70	0		70		

LS640
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARA	AMETER	TEST CONDITIONS				MIN	TYP (Note 1)	MAX	UNIT	
V _{IH}	High-level in	nput voltage					2			٧	
V _{IL}	Low-level in	put voltage				54			0.5	V	
· IL		- Far vallage				74			0.6	•	
V _{IK}	Input clamp	voltage	V _{CC} =Min,	I _I =-18mA					-1.5	٧	
V _{OH}	High-level output voltage		V _{CC} =Min.\	/ _{IL} =Max	I _{OH} =	-3mA	2.4	3.4		v	
· On			I _{OH} =Max V _{IH} =Min I _{OH} =Max			2			·		
.,	Low-level output voltage		V _{CC} =Min V _{II} =Max	I _{OL} =12mA	·	54,74		0.25	0.4	V	
V _{OL}				I _{OL} =24mA		74		0.35	0.5	•	
l _{ozh}	l	itput current oltage applied		V _{CC} =Max, V _O =2.7V					20	μΑ	
I _{OZL}	1	itput current ltage applied	V _{CC} =Max, G at 2V	V _O =0.4V					-400	μΑ	
I,	Input currer	nt at maximum	V _{CC} =Max	V _I =5.5V	A or	В			0.1	mA	
"	input voltag	е	ACC-INITY	V _I =7V	DIR or G				0.1	ША	
I _{IH}	High-level in	put curent	V _{CC} =Max,	$V_1 = 2.7V$					20	μΑ	
I _{IL}	Low-level in	put current	V _{CC} =Max,	V _I =0.4V					-0.4	mA	
los	Short-circuit	output current	V _{CC} =Max	CC=Max (Note 2)			-40		-225	mA	
	Total	Outputs high	V _{CC} =Max				48	70			
Icc	Supply Outpute low		Outputs Open					62	90	mA	
	Current	Outputs at Z		Culpula Open				64	95		

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

GD54/74LS640, GD74LS640-1

LS640-1
Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMI	ETER	TEST CO	ONDITIONS	MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input v	oltage			2			٧
V _{IL}	Low-level input v	oltage					0.6	٧
V _{IK}	Input clamp voltag	ge	V _{CC} =Min, I	I _I =-18mA			-1.5	٧
			V _{CC} =Min			3.4		V
V _{OH}	High-level output	voltage	V _{IH} =Min V _{IL} =Max	I _{OH} =Max	2			·
			V _{CC} =Min	I _{OL} =12mA		0.25	0.4	
V_{OL}	Low-level output voltage		V _{IL} =Max	I _{OL} =24mA		0.35	0.5	V
			V _{IH} =Min	I _{OL} =48mA		0.4	0.5	
I _{OZH}	Off-state output of high-level voltage		V _{CC} =Max, G at 2V	V _O =2.7V			20	μА
l _{OZL}	Off-state output of low-level voltage		V _{CC} =Max, G at 2V	V _O =0.4V			-400	μΑ
I _I	Input current at n input voltge	naximum	V _{CC} =Max, V _I =5.5V	V _I =7V or			0.1	mA
I _{IH}	High-level input o	urrent	V _{CC} =Max,	V _I =2.7V			20	μΑ
I _{IL}	Low-level input c	urrent	V _{CC} =Max,	V _I =0.4V			-0.4	mA
los	Short-circuit outp	ut current	V _{CC} =Max	(Note 2)	-40		-225	mA
·	Total	Outputs high	V _{CC} =Max			48	70	
Icc	Supply	Outputs low	Outputs, o	pen		62	90	mA
	Current	Outputs at Z]	r		64	95	

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

SYMBOL	PARAMETER	PARAMETER FROM TO TEST CONDITIONS	'LS640	'LS6	340—1	UNIT		
		(INPUT)	(OUTPUT)		MIN	TYP	MAX]
t _{PLH}	Propagation delay time,	Α	В			6	10	ns
TUN	low-to-high-level output	В	Α	C _L =45pF,		6	10]
t _{PHL}	Propagation delay time,	Α	В			8	15	ns
THE	high-to-low-level output	В	Α	R _L =667Ω,		8	15]
t _{PZL}	Output enable time to low level	G, DIR	Α			31	40	ns
FZL		Ğ, DIR	В			31	40]
t _{PZH}	Output enable time to high level	Ğ, DIR	Α		***************************************	23	40	ns
TZN		G, DIR	В			23	40	1
t _{PLZ}	Output disable time from low level	Ğ, DIR	Α	C _i =5pF,		15	25	ns
PLZ		G, DIR	В	$R_1 = 667\Omega$		15	25	1
t _{PHZ}	Output disable time from high level	G, DIR	Α .	1 307 22,		15	25	ns
-F112		Ğ, DIR	. В			15	25	1

TYPICAL CHARACTERISTICS

54LS'
INVERTING OUTPUT VOLTAGE
VS
INPUT VOLTAGE

74LS'
INVERTING OUTPUT VOLTAGE
VS
INPUT VOLTAGE

OCTAL BUS TRANSCEIVERS AND REGISTERS

Features

- Independent Registers for A and B Buses
- Multiplexed Real-Time and Stored Data
- True Data Paths
- 3-State Outputs

Description

These devices consist of bus transceiver circuits with 3-state circuitry arranged for multiplexed transmission of data directly from the input bus or from the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes to a high logic level. Control G and direction pins are provided to control the transceiver function. In the transceiver mode, data present at the high-impedance port may be stored in either the A or the B register or in both. The select controls can multiplex stored and real-time (transparent mode) data. The direction control determines which bus will receive data when the enable control G is active (low). In the isolation mode (control G high), A data may be stored in the B register and/or B data may be stored in the A register.

When an output function is disabled, the input function is still enabled, and may be used to store and transmit data. Only one of the two buses, A or B may be driven at a time.

Function Table

		INP	JTS			DATA	A I/O	OPERATION OR FUNCTION
G	DIR	CAB	СВА	SAB	SBA	A1 THRU A8	B1 THRU B8	'LS646
Н	X X	H or L	H or L	X X	X X	Input	Input	Isolation Store A and B Data
L L	L	X X	X X	X X	L H	Output	Input	Real Time B Data to A Bus Stored B Data to A Bus
L L	Н	X H or L	X X	L H	X X	Input	Output	Real Time A Data to B Bus Stored A Data to B Bus

H=high level L=low level X=Irreievant †=low-to-high-level transition

• The date output function may be enabled or disabled by various signals at the G and DIR Inputs. Data input function are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

Function Block Diagram

Absolute Maximum Ratings at 25°C Free-air Temperature (Unless Otherwise Noted)

•	Supply voltage, Vcc(see Note 1)		7V
•	Input voltage (Control Inputs)		7V
•	Off-state Output Voltage (A and B Pol	rts)	5.5V
		54LS	
		74LS	
	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER			MIN	NOM	MAX	UNIT
V	Supply voltage		54	4.5	5	5.5	v
V _{CC}	Supply voltage		74	4.75	5	5.25	
ı	High-level output current					-12	mA
Іон	riigiriever output ourrent		74			-15	
	Low-level output current		54			12	- mA
lor	Low-level output current	74			24		
t _w	Width of any input pulse			20			ns
t _{su}	Clear inactive-state set up time	Bus	to clock	20			ns
t _{th}	Data hold time Bus from		om clock	0			ns
т	Operating free-air temperature	One setting from air temporature		-55		125	- °c
T _A	Operating free-air temperature		74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARA	METER		TEST C	ONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input v	oltage	-				2			٧
V _{IL}	Low-level input vo	oltage				54 74			0.5	v
V _{IK}	Input clamp voltage	ge		V _{CC} =Min, I _I =-18 mA					-1.5	V
V _{T+} V _T -	Hysteresis			V _{CC} =Min,		54	0.1	0.4		V
-1+ -1	Trysteresis		VCC IVIIII,		74	0.2	0.4			
V _{OH}	High-level output	voltage		V _{CC} =Min, V _{IH} =Min	$I_{OH} = -3mA$	54,74	2.4	3.4		V
*ОН	I ingrition output voltage		V _{IL} =Max	I _{OH} =Max	54,74	2				
				V _{CC} =Min	I _{OL} =12mA	54,74		0.25	0.4	V
V _{OL}	Low-level output	voltage		V _{IL} =Max V _{IH} =Min	I _{OL} = 24mA	74		0.35	0.5	
l _{ozh}	Off-state output of high-level voltage			$V_{CC}=Max, V_O=2.7V$					-20	μΑ
I _{OZL}	Off-state output of low-level voltage			V _{CC} =Max, V _O =0.4V					-400	μА
	Input current at n	naximum	A or B	V -May V - 5 5V	V _I =5.5V				0.1	mA
I ₁	input voltage		All others	$V_{CC} = Max, V_1 = 5.5V$	V ₁ =7V				0.1	IIIA
I _{IH}	High-level input of	current		$V_{CC}=Max, V_{I}=2.7V$					20	μΑ
I _{IL}	Low-level input c	urrent		V _{CC} =Max, V _i =0.4V			,		-0.4	mA
I _{os}	Short-circuit outp	out currer	nt	V _{CC} =Max (Note 2)			-40		-255	mA
		Output	high					91	145	
Icc	Supply	Output	s low	V _{CC} =5.25V				103	165	mA
	Current	Output	s at Hi-z	Outputs open				103	165	

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$

Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		646 (P MAX	UNIT		
t _{PLH}	OlI			1	5 25	ns		
t _{PHL}	Clock	Bus		2	3 35	ns		
t _{PLH}	Bire	Pue	Bus	1	2 18	ns		
t _{PHL}	Bus	Bus			1	3 20	ns	
t _{PLH}	Select, with	Bus		2	6 40	ns		
t _{PHL}	bus input high†		$R_1 = 667\Omega$	$R_L = 667\Omega$	2	1 35	ns	
t _{PLH}	Select, with		$C_L=45pF$,	3	3 50	ns		
t _{PHL}	bus input low†			1	4 25	ns		
t _{PZH}	Enable				. 3	3 55	ns	
t _{PZL}	Lilable	Bus		4	2 65	ns		
t _{PZH}	Direction	Bus	Bus	Dus		2	8 45	ns
t _{PZL}	Direction			3	9 60	ns		
t _{PHZ}	Enoble			2	3 35	ns		
t _{PLZ}	Enable	Bus	$R_L = 667\Omega$,	2	2 35	ns		
t _{PHZ}		Bus	$C_L=5pF$,	2	0 30	ns		
t _{PLZ}	Direction			1	9 30	ns		

[†] These parameters are messured with the internal output state of the storage register opposite to that of the bus input.

TRI-STATE 4-by-4 REGISTER FILES

Features

- · For use as:
 - Scratch pad memory
 - Buffer storage between processors
 - Bit storage in fast multiplication designs
- Separate read/write addressing permits simultaneous reading and writing
- Organized as 4 words of 4 bits
- Expandable to 512 words of n-bits

Description

These register files are organized as 4 words of 4 bits each, and separate on-chip decoding is provided for addressing the four word locations to either write-in or retrieve data. This permits writing into one location, and reading from another word location, simultaneously.

Four data inputs are available to supply the word to be stored. Location of the word is determined by the write select inputs A and B, in conjunction with a write-enable signal. Data applied at the inputs should be in its true form. That is, if a high level signal is desired from the output, a high level is applied at the data input for that particular bit location. The latch inputs are arranged so that new data will be accepted only if both inter nal address gate inputs are high. When this condition exists, data at the D input is transferred to the latch output. When, the write-enable input, \overline{G}_{W} , is high, the data will be accepted only if both internal address gate inputs are the information stored in the internal latches. When the read-enable input, \overline{G}_{R} , is high, the data outputs are inhibited and go into the high impedance state.

The individual address lines permit direct acquisition of data stored in any four of the latches. Four individual decoding gates are used to complete the address for reading a word. When the read address is made in conjunction with the read-enable signal, the word appears at the four outputs.

This arrangement—data entry addressing separate from data read addressing and individual sense line—eliminates recovery times, permits simultaneous reading and writing, and is limited in speed only by the write time (27 ns typical) and the read time (24 ns typical). The register file has a non-volatile readout in that data is not lost when addressed.

All inputs (except read enable and write enable) are buffered to lower the drive requirements to one normal Series 54LS/74LS load, and input clamping diodes minimize switching transients to simplify system design. High speed, double ended ANO-OR-INVERT gates are employed for the read-address function and have high sink current. TRI-STATE outputs Up to 128 of these outputs may be wire-AND connected for increasing the capacity up to 5 12 words. Any number of these registers may be paralleled to provide n-bit word length.

Function Table

Write Table (See Notes A.B. and C)

Wr	ite Inp	outs	Word					
W _B	W _A	\overline{G}_W	0	1	2	3		
L	L	L	Q = D	Qo	Qo	Qo		
L	Н	L	Q _O	Q = D	Q_{O}	Q_{O}		
Н	L	L	Qo	Q_{O}	Q = D	Q_{O}		
Н	Н	L	Q_{o}	Q_{O}	Q_{O}	Q = D		
X	Χ	Н	Qo	Q_O	Q_{O}	Q_{O}		

Read Table (See Notes A and D)

Rea	ad Inp	outs		Outputs					
R _B	R _A	\overline{G}_R	Q1	Q2	Q3	Q4			
L	L	L	W0B1	W0B2	W0B3	W0B4			
L	Н	L	W1B1	W1B2	W1B3	W1B4			
Н	L	L	W2B1	W2B2	W2B3	W2B4			
Н	Н	L	W3B1	W3B2	W3B3	W3B4			
X	Χ	Н	Z	Z	Z	Z			

Note A: H = High Level. L = Low Level. X = Don't Care.

Z = High Impedance (off)

Note B: (Q = D) = The four selected internal flip-flop outputs will assume the states applied to the four external data inputs

Note C: Q_0 = The level of Q before the indicated input conditions were established

Note D: WOB1 = The first bit of word O, etc.

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage		7V
	Off state output voltage		5.5V
	Operating free-air temperature range	54LS	-55°C to 125°C
•	Operating need an temperature range	74LS	0°C to 70°C
•	Storage temperature range		

Logic Diagram

SYMBOL	PARAMET	ER		MIN	NOM	MAX	UNIT	
V _{CC}	Supply voltage		54	4.5	5	5.5	V	
	- IFF, Totage		74	4.75	5	5.25] V	
I _{OH}	High-level output current		54			-1	mA	
	- Mg. 1878. Supar Surrent		74			-2.6	1111/	
l _{OL}	Low-level output current		54			4		
OL.			74			8	mA	
t _W	Write Enable or Read Enable Po	ulse Width		25			ns	
t _{SU}	Setup Time			10				
-50				15			ns	
t _H	Hold Time	Data		15			200	
"	(Note 1)	W _A ,W _B		5			ns	
t _{LATCH}	Latch Time for New Data(Note 2)			25			ns	
TA	Operating free-air temperature		54	-55		125	°C	
· A	Operating nee-air temperature		74	0		70	30	

Note 1: Times are with respect to the Write-Enable input. Write-Select time will protect the data written into the previous address. If protection of data in the previous address. tsrue(W,We) can be ignored. As any address selection sustained for the final 30 ns of the Write-Enable pulse and during th(WaWe) will result in data being written into that location. Depending on the duration of the input conditions, one or a number of previous addresses may have been written into.

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
· t _{PLH}	Read select	Any Q	$C_L=15pF, R_L=2k\Omega$		23	40	
t _{PHL}		,	See Figures 1 and 2		25	45	ns
t _{PLH}	Write enable	Any Q			26	45	ns
t _{PHL}			$C_L=15pF, R_L=2k\Omega$		28	50	110
t _{PLH}	Data	Any Q	See Figures 1 and 3		25	45	ns
t _{PHL}		·			23	40	1.0
t _{PZH}			$C_L=15pF, R_L=2k\Omega$		15	35	ns
t _{PZL} Read	Read enable	AnyQ	See Figures 1 and 4		22	40	
t _{PHZ}		•	$C_L=5pF, R_L=2k\Omega$		30	50	ns
t _{PLZ}			See Figures 1 and 4		16	35	

Note 2: Latch time is the time allowed for the internal output of the latch to assume the state of new data. This is important only when attempling to read from a location immediately after that location has received new data.

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TES	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage							٧
	Low-level input voltage		54				0.7	v
V_{IL}	Low-level input voltage			74			0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I	= -8mA				-1.5	V
V	High level output voltage	V _{CC} =Min,V	_L =Max	54	2.4	3.4		V
V _{OH}	High level output voltage	I _{OH} =Max, V _I	_H =Min	74	2.4	3.1		
V _{OL}	Low-level output voltage	V _{CC} =Min V _{IL} =Max	I _{OL} =4mA	54,74		0.25	0.4	V
♥OL	Low level output voltage	V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	
l _i	Input current at maximum	V _{CC} =Max,	D,R or W				0.1	
'I	input voltage	$V_1 = 7V$	\overline{G}_{W}				0.2	mA
			\overline{G}_R				0.3	
	High-level input current	V _{CC} =Max, V _I =2.7V	D,R or W				20	
I _{IH}			\overline{G}_{W}				40 μι	
			Ğ _R				60	
		V _{CC} =Max,	D,R or W				-0.4	
IIL	Low-level input current	V _I =0.4V	₫ _w			A40-00	-0.8	mA
			Ḡ _R				-1.2	
I _{OZH}	Off-state output current high-level voltage applied	V _{CC} =Max, V _{IH} =Min	$V_0=2.7V$				20	μΑ
l _{OZL}	Off-state output current low-level voltage applied	V _{CC} =Max, V _{IH} =Min	V _O =0.4V				-20	μА
I _{OS}	Short-circuit output current	V _{CC} =Max (Note 2)			-30		-130	mA
I _{cc}	Supply current	V _{CC} =Max(N	Note 3)			30	50	mA

Note 1: All typical values are at $V_{CC}=5V$. $T_A=25\,^{\circ}C$

Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Note 3: Maximum I_{CC} is guaranteed for the following worst case conditions: 4.5V is applied to all data inputs and both enable inputs, all address inputs are grounded and all outputs are open.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance. B. All diodes are 1N916 or 1N3064.

LOAD CIRCUIT

FIGURE 1

VOLTAGE WAVEFORMS (S1 AND S2 ARE CLOSED)

- NOTES: A. High-level input pulses at the select and data inputs are illustrated however, times associated with low level pulses are measured from the same reference points.
 - B. When measuring delay times from a read select input, the read enable input is low.
 - C. Input waveforms are supplied by generators having the following characteristics: PRR \leq 2 MHz. Zout \sim 50 Ω , duty cycle \leq 50%, $t_r \leq$ 15 ns. $t_l \leq$ 6 ns.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. Each select address is tested. Prior to the start of each of the above tests both write and read address inputs are stabilized with WA = RA

and $^{\prime}W_B = R_B$ During the test G_R is low.

B. Input waveforms are supplied by generators having the following characteristics PRR \leq 1 MHz, Zout \sim 50 Ω duty cycle \leq 50%, $t_r \leq$ 15 ns. $t_i \leq$ 6 ns.

ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

NOTES: A. Waveforms 1 is for an output with internal conditions such that the output is low except when disabled by the read enable input. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the read enable input.

- B. When measuring delay times from the read enable input, both read select inputs have been established at steady states.
- C. Input waveforms are supplied by generators having the following characteristics: $PRR \le 1 MHz$. Zout $\sim 50 \Omega$ duty cycle $\le 50^\circ$ e, $t_r \le 15$ ns. $t_r \le 6$ ns.

8-BIT MAGNITUDE COMPARATORS WITH TOTEM-POLE OUTPUTS

Feature

- · Compares two 8 bit words
- · Totem pole outputs
- Hysteresis is at P and Q intputs

Description

The LS688 contanis 8 bit words comparator function with enable input.

When the enable input E is low, two eight bit binary or BCD words are applied at inputs P0~P7 and Q0~Q7.

The results are shown in function table.

Function Table

INPU'	OUTPUT		
P.Q	P=Q		
P=Q	L	L	
P>Q	L	н	
P <q< td=""><td>L</td><td>н</td></q<>	L	н	
X	Н	Н	

•	Supply voltage, V _{CC}	 7V
•	Input voltage	 7V
•	Operating free-air temperature range 54LS	 -55°C to 125°C
•	Storage temperature range	-65°C to 150°C

Function Block Diagram

PARAMETER	FROM(INPUT)	TO(OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	P	P=Q			12	18	ns
t _{PHL}	<u>'</u>	r-Q			17	23	113
t _{PLH}	Q	P=Q	$C_L=45pF$ $R_L=667\Omega$		12	18	ns
t _{PHL}	l "	, -Q	all other inputs low state		17	23	113
t _{PLH}	F	P=Q	1011 01410		12	18	ne
t _{PHL}		F=Q			13	20	ns

[#] For load circuit and voltage waveforms, see page 3-11.

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V _{cc}	Supply voltage	54	4.5	5	5.5	V
• 66	Cuppiy Voltage	74	4.75	5	5.25	\ \ \
l _{OH}	High-level output current	54			-400	
'OH	riigii level datpat carrent	74		, ,	-400	μΑ
la.	Low-level output current	54			12	A
loL		74			24	mA
TA	Operating free-air temperature	54	-55		125	°C
'A		74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT	
V _{IH}	High-level input voltage				2			٧
V _{IL}	Low-level input voltage			54			0.7	V
V IL	Low-level input voltage			74			0.8	\ \
V _{IK}	Input clamp voltage	V _{CC} =Min, I	=-18mA				-1.5	V
$V_{T+}-V_{T-}$	Hysteresis	V _{CC} =Min			0.2	0.4		V
V _{OH}	High-level output voltage	V _{CC} =Min, V _{IH} =Min		54	2.5	3.4		V
*OH	r light level output voltage	V _{IL} =Max, I _{OH}	_{DH} =Max,	74	2.7	3.4		"
V _{OL}	Low-level output voltage	V _{CC} =Min V _{IL} =Max V _{IH} =Min	I _{OL} =12mA	54,74		0.25	0.4	V
*OL	Low level output voltage	V _{IH} =Min	I _{OL} =24mA	54		0.35	0.5	*
l _l	Input current at maximum	V _{CC} =Max,	V _I =5.5V Q in	puts			0.1	mA
'1	input voltage	VCC-IVIAX,	V _I =7V other inputs				0.1	
I _{IH}	Hlgh-level input current	V _{CC} =Max,	V _I =2.7V				20	μΑ
1	Low lovel input overent	V -May	V _I =0.4V Q in	puts			-0.4	A
IIL	Low-level input current	$V_{CC}=Max$, $V_{I}=0.4V$ Q inputs $V_{I}=0.4V$ other input		r inputs			-0.2	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)			-20		-100	mA
I _{CC}	Supply current	V _{CC} =5.25V	V _{CC} =5.25V, (Note 3)			40	65	mA

Note 1: All typical values are at V_{cc} =5V, T_A =25 °C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with any \overline{E} inputs grounded, all other inputs at 4.5V, and all outputs open.

	NUMERICAL/FUNCTIONAL INDEX	1
N	FUNCTIONAL INDEX/SELECTION GUIDE	2
	TTL CHARACTERISTICS	3
	GD74LS FAMILY CIRCUITS	4
	GD74S FAMILY CIRCUITS	5
	QUALITY ASSURANCE MANUAL	6
	ORDERING INFORMATION & PACKAGE DIMENSION	7
V	GOLDSTAR SEMICONDUCTOR SALES NETWORK	8

QUADRUPLE 2-INPUT POSITIVE NAND GATES

Description

This device contains four independent 2-input NAND gates. It performs the Boolean functions $Y=\overline{A}+\overline{B}$ or $Y=\overline{A}+\overline{B}$ in positive logic.

Function Table (each gate)

INP	JTS	OUTPUT
Α	В	Υ
Н	Н	L
L	X	Н
X	L	Н

•	Supply voltage, Vcc		
•	Input voltage		5.5V
			55°C to 125°C
		74LS	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
	54		4.5	5	5.5	V
V _{cc}	Supply voltage	74	4.75	5	5.25]
I _{OH}	High-level output current Low-level output current				-1	mA
I _{OL}					20	mA
_		54	-55		125	°C
T _A	Operating free-air temperature		0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER		TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input v	oltage			2			V
		-14		54			0.8	v
V _{IL}	Low-level input v	oitage		74			0.8	V
V _{IK}	Input clamp volta	ge	$V_{CC}=Min, I_1=-18mA$				-1.2	V
	Lich level cutout	veltone	V _{CC} =Min, V _{IL} =Max	54	2.5	3.4		v
V _{OH}	High-level output	voitage	I _{OH} =Max,	74	2.7	3.4	-	
V _{OL}	Low-level output voltage		V _{CC} =Min, I _{OL} =Max, V _{IH} =Min				0.5	٧
l ₁	Input current at r input voltage	naximum	V _{CC} =Max, V _I =5.5V				1	mA
I _{IH}	High-level input of	urrent	$V_{CC}=Max, V_{I}=2.7V$				50	μΑ
I _{IL}	Low-level input c	urrent	V _{CC} =Max, V _I =0.5V				-2	mA
los	Short-circuit output current		V _{CC} =Max (Note 2)		-40		-100	mA
Іссн	Supply current	Total with outputs high	V _{CC} =Max			10	16	mA
I _{CCL}	Toal with outputs low		V _{CC} =Max			20	36	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	0 -157F B -0900		3	4.5	
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L=15pF, R_L=280\Omega$		3	5	ns

[#]For load circuit and voltage waveforms, see page 3-12.

QUADRUPLE 2-INPUT POSITIVE-NOR GATES

Description

This device contains four independent 2-input NOR gates. It performs the Boolean functions $Y = \overline{A} \cdot \overline{B}$ or $Y = \overline{A} + \overline{B}$ in positive logic.

Function Table

INP	UTS	OUTPUT
Α	В	Y
Н	Х	L
×	Н	L
L	L	Н

•	Supply voltage, V _{CC}	7V
•	Input voltage	5.5V
	Operating free-air temperature range 54S	
	74S	0°C to 70°C
•	Storage temperature range	-65°C to 150°C

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
.,	54		4.5	5	5.5	V
V _{cc}	Supply voltage	74	4.75	5	5.25	V
I _{OH}	High-level output current	54, 74			-1	mA
I _{OL}	Low-level output current	54, 74			20	mA
_	Operating free-air temperature	54	-55		125	°C
T _A		74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER		TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input	voltage			2			٧
V	Law laws line wh	lha a		54			0.8	V
V _{IL}	Low-level input	voitage		74			0.8	V
V _{IK}	Input clamp volt	age	V _{CC} =Min, I _I =-18mA				-1.2	٧
	High lovel even	t veltere	V _{CC} =Min, V _{IL} =Max	54	2.5	3.4		v
V _{OH}	High-level outpu	t voltage	I _{OH} =Max,	74	2.7	3.4		\ \
V _{OL}	Low-level output voltage		V _{CC} =Min, I _{OL} =Max, V _{IH} =Min				0.5	٧
l ₁	Input current at input voltage	maximun	V _{CC} =Max, V _i =5.5V				1	mA
I _{IH}	High-level input	current	V _{CC} =Max, V _I =2.7V	-			50	μΑ
I _{IL}	Low-level input	current	V _{CC} =Max, V _I =0.5V				-2	mA
I _{OS}	Short-circuit output current		V _{CC} =Max (Note 2)		-40		-100	mA
Іссн	Cumply compact	Total with outputs high	V _{CC} =Max			17	29	mA
ICCL	Supply current	Total with outputs low	V _{CC} =Max			26	45	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

SYMBOL	PARAETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	0 45.5 5 0000		3.5	5.5 ·	
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L=15pF, R_L=280\Omega$		3.5	5.5	ns

[#]For load circuit and voltage waveforms, see page 3-12.

HEX INVERTERS

Description

This device contains six independent inverters. It performs the Boolean function $Y = \overline{A}$.

Function Table (each inverter)

INPUT	ОИТРИТ
Α	Y
Н	L
L	Н

•	Supply voltage, Vcc		/ V
•	Input voltage		5.5V
		54S	
		74S	
•			

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
.,	V _{CC} Supply voltage		4.5	5	5.5	V
Vcc			4.75	5	5.25	V
l _{OH}	I _{OH} High-level output current				-1	mA
I _{OL}	Low-level output current				20	mA
_	T 0		-55		125	°C
T _A	Operating free-air temperature	74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER		TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input v	oltage			2			٧
V	Low level input v	altaga		54			0.8	v
V _{IL}	Low-level input v	ollage		74			0.8	\ \ \
V _{IK}	Input clamp volta	ge	V _{CC} =Min, I _I =-18mA				-1.2	V
	I link lavel a Acot		V _{CC} =Min, V _{IL} =Max	54	2.5	3.4		V
V _{OH}	High-level output	voltage	I _{OH} =Max,		2.7	3.4		*
V _{OL}	Low-level output voltage		V _{CC} =Min, I _{OL} =Max, V _{IH} =Min				0.5	٧
l ₁	Input current at r input voltage	maximum	V _{CC} =Max, V _I =5.5V				1	mA
I _{IH}	High-level input of	current	V _{CC} =Max, V _I =2.7V				50	μΑ
I _{IL}	Low-level input c	urrent	V _{CC} =Max, V _I =0.5V				-2	mA
los	Short-circuit output current		V _{CC} =Max (Note 2)		-40		-100	mA
ССН	Supply current	Total with outputs high	V _{CC} =Max			15	24	mA
Iccl		Toal with outputs low	V _{CC} =Max			30	54	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	0 -15-5 B -0000		3	4.5	
t _{PHL}	Propagation delay time, high-to-low-level output	C _L =15pF, R _L =280Ω		3	5	ns

[#]For load circuit and voltage waveforms, see page 3-12.

HEX INVERTERS WITH OPEN-COLLECTOR OUTPUTS

Description

This device contains six independent inverters. It performs the Boolean function $Y = \overline{A}$. The open collector outputs require pull-up resistor to perform correctly. Open-collector devices are often used to generate higher V_{OH} levels.

Function Table (each inverter)

INPUT	OUTPUT
Α	Υ
Н	L
L	Н

Pull-Up Resistor Equations

$$R_{MAX} = \frac{V_{CC}(Min) - V_{OH}}{N_1(I_{OH}) + N_2(I_{IH})}$$

$$R_{MIN} = \frac{V_{CC}(Max) - V_{OL}}{I_{OL} - N_3(I_{IL})}$$

Where: N₁ (I_{OH})=total maximum output high current for all outputs tied to pull-up resistor N₂ (I_{IH})=total maximum input high current for all inputs tied to pull-up resistor N₃(I_{IL})=total maximum input low current for all inputs tied to pull-up resistor

- Storage temperature range −65°C to 150°C

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
			4.5	5	5.5	.,
V _{cc}	Supply voltage	74		5	5.25	V
V _{OH}	High-level output voltage	54, 74			5.5	٧
I _{OL}	Low-level output current	54, 74			20	mA
	T _A Operating free-air temperature		-55		125	
I A			0		70	°C

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAME	TER	TEST CONDITIONS	MIN	TYP ote 1)	MAX	UNIT
V _{IH}	High-level input vo	Itage		2			٧
V _{IL}	Low-level input vol	Itage				0.8	٧
V _{IK}	Input clamp voltage	e	V _{CC} =Min, I _I =-18mA			-1.2	٧
Гон	High-level output of	current	V _{CC} =Min, V _{OH} =Max, V _{IL} =Max			250	μΑ
V _{OL}	Low-level output v	oltage	V _{CC} =Min I _{OL} =Max, V _{IH} =Min			0.5	٧
I _I	Input current at ma	aximun	V _{CC} =Max, V _I =5.5V			1	mA
I _{IH}	High-level input cu	ırrent	V _{CC} =Max, V _I =2.7V			50	μΑ
I _{IL}	Low-level input cu	rrent	V _{CC} =Max, V _I =0.5V			-2	mA
Іссн	0	Total with outputs high	V _{CC} =Max		9.0	19.8	mA
I _{CCL}	Supply current Total with outputs low		V _{CC} =Max		30	54	mA

Note 1: All typical values are at $V_{CC} = 5V$, $T_A = 25 \,^{\circ}\,C$.

SYMBOL	PARAETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time low-to-high-level output			5	7.5	
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L=15pF, R_L=280\Omega$		4.5	7	ns

[#]For load circuit and voltage waveforms, see page 3-12.

QUADRUPLE 2-INPUT POSITIVE AND GATES

Description

This device contains four independent 2-input AND gates. It performs the Boolean functions $Y=A \bullet B$ or $Y=\overline{A+B}$ in positive logic.

Function Table(each gate)

INF	PUT	OUTPUT
Α	В	Υ
Н	Н	Н
L	X	L
X	L	L

•	Supply voltage, Vcc		
•	Input voltage		5.5V
	-		65°C to 150°C
		74 S	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
.,	Supply voltage	54	4.5	5	5.5	V
V _{CC}		74	4.75	5	5.25	·
Іон					-1000	μΑ
l _{OL}					20	mA
	Operating free sir temperature	54	-55		125	°C
T _A	Operating free-air temperature	74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAME	ETER	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input vo	oltage			2			٧
	Low-level input vo	ltage		54			0.8	V
V_{IL}	Low-level input vo	nage		74			0.8	
V _{IK}	Input clamp voltag	e	V _{CC} =Min, I _I =-18 mA				-1.2	V
V	High level output	voltage	V _{CC} =Min,	54	2.5	3.4		v
• он			I _{OH} =Max,V _{IH} =Min	74	2.7	3.4		
V _{OL}	Low-level output voltage		V _{CC} =Min, V _{IL} =Max I _{OL} =Max				0.5	٧
l _i	Input current at m input voltage	aximum	V _{CC} =Max, V _I =5.5V				1	mA
l _{IH}	High-level input co	urrent	V _{CC} =Max, V _I =2.7V				50	μΑ
I _{IL}	Low-level input cu	ırrent	V _{CC} =Max, V _I =0.5V				-2	mA
I _{os}	Short-circuit output current		V _{CC} =Max		-40		-100	mA
			(Note 2)					
Іссн	Supply current	Total with outputs high	V _{CC} =Max			18	32	mA
IccL		Total with outputs low	V _{CC} =Max			32	57	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	$C_1 = 15 pF, R_1 = 280 \Omega$		4.5	7	ns
t _{PHL}	Propagation delay time, high-to-low-level output			5	7.5	

[#]For load circuit and voltage waveforms, see page 3-12.

TRIPLE 3-INPUT POSITIVE NAND GATES

Description

This device contains three independent 2-input NAND gates. It performs the Boolean functions $Y = \overline{A} \cdot \overline{B} \cdot \overline{C}$ or $Y = \overline{A} + \overline{B} + \overline{C}$ in positive logic.

Function Table (each gate)

INP	UTS	OUTPUT	
A N*		Y	
L	L	Н	
Н	L	Н	
L	н	Н	
Н	Н	L	

^{*} N=B·C

•	Supply voltage, V _{CC}	7V
•	Input voltage	5.5V
	Operating free-air temperature range 54S	
	74S	0°C to 70°C
•	Storage temperature range	-65°C to 150°C

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
		54	4.5	5	5.5	V
V _{cc}	Supply voltage 7	74	4.75	5	5.25	V
Іон	High-level output current	High-level output current			-1	mA
l _{OL}	Low-level output current				20	mA
	Operating free-air temperature	54	-55		125	°C
T _A		74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	L PARAMETER		TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input	voltage			2			٧
				54			0.8	V
V _{IL}	Low-level input	voltage		74			0.8	V
V _{IK}	Input clamp volt	age	V _{CC} =Min, I _I =-18mA				-1.2	٧
-			V _{CC} =Min,	54	2.5	3.4		v
V _{OH}	High-level outpu	t voltage.	I _{OH} =Max, V _{IH} =Min	74	2.7	3.4		V
V _{OL}	Low-level output voltage		V _{CC} =Min, I _{OL} =Max, V _{IH} =Min				0.5	٧
l _l	Input current at maximun input voltage		V _{CC} =Max, V _I =5.5V				1	mA
I _{IH}	High-level input	current	V _{CC} =Max, V _I =2.7V				50	μΑ
I _{IL}	Low-level input	current	V _{CC} =Max, V _I =0.5V				-2	mA
I _{os}	Short-circuit output current		V _{CC} =Max (Note 2)		-40		-100	mA
Іссн	- Supply current	Total with outputs high	V _{CC} =Max			7.5	12	mA
Iccl	Supply current	Total with outputs low	V _{CC} =Max			15	27	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

SYMBOL	PARAETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	$C_1 = 15pF, R_1 = 280\Omega$		3	4.5	ns
t _{PHL}	Propagation delay time, high-to-low-level output	OL 10pi , NL 2002		3	5	110

[#]For load circuit and voltage waveforms, see page 3-12.

DUAL 4-INPUT POSITIVE NAND GATES

Description

This device contains two independent 4-input NAND gates. It performs the Boolean functions, $Y = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$ or $Y = \overline{A} + \overline{B} + \overline{C} + \overline{D}$ in positive logic.

Function Table (each gate)

INP	UTS	OUTPUT		
Α	N*	Y		
L L		Н		
Н	L	Н		
L	н	Н		
Н	Н	L		

^{*}N=B.C.D

•	Supply voltage, V _{CC}	7V
•	Input voltage	5.5V
•	Operating free-air temperature range 54S	55°C to 125°C
	748	0°C to 70°C
•	Storage temperature range	−65°C to 150°C

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V	Supply voltage 54 74	54	4.5	5	5.5	V
V _{cc}		74	4.75	5	5.25	v
Іон	High-level output current				-1	mA
l _{OL}	I _{OL} Low-jevel output current				20	mA
т	Operating free-air temperature	54	-55		125	°C
'A		74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER		TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT		
V _{IH}	High-level input	voltage				2			٧	
V	Low-level input voltage				54			0.8		
V _{IL}					74			0.8	V	
V _{IK}	Input clamp volt	age	V _{CC} =Min, I	₁ =-18mA				-1.2	٧	
V	V _{OH} High-level output voltage		V _{CC} =Min,	V _{IL} =Max	54	2.5	3.4			
V _{OH}	riigii-level outpu	n vonage	I _{OH} =Max,	ıL	74	2.7	3.4		V	
V _{OL}	Low-level output voltage		V _{CC} =Min, I _{OL} =Max,	V _{IH} =Min				0.5	٧	
I _I	Input current at maximun input voltage		V _{CC} =Max,	V _I =5.5V				1	mA	
I _{IH}	High-level input current		V _{CC} =Max,	V _I =2.7V				50	μΑ	
I _{IL}	Low-level input current		V _{CC} =Max,	V _I =0.5V				-2	mA	
l _{os}	Short-circuit output current		V _{CC} =Max (Note 2)			-40		-100	mA	
Іссн	Supply current Supply current Total with outputs high Total with outputs low		V _{CC} =Max				5	8	mA	
I _{CCL}			V _{CC} =Max				10	18	mA	

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

SYMBOL	PARAETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	C _L =15pF, R _L =280Ω		3	4.5	
t _{PHL}	Propagation delay time, high-to-low-level output			3	5	ns

[#]For load circuit and voltage waveforms, see page 3-12.

8-INPUT POSITIVE NAND GATE

Description

This device contains a single 4-input NAND gate and performs the following Boolean functions in positive logic.

$$Y = \overline{A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H}$$
 or $Y = \overline{A + B + C + D + E + F + G + H}$

Function Table

INPUTS A THRU H	OUTPUT
All inputs H	L
One or more inputs L	H

•	Supply voltage, V _{CC}	7V
	Input voltage	
	Operating free-air temperature range 54S	
	748	0°C to 70°C
•	Storage temperature range	-65°C to 150°C

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage 54		4.5	5	5.5	V
			4.75	5	5.25	V
Іон	High-level output current				-1	mA
loL	Low-level output current				20	mA
T _A		54	-55		125	°C
	Operating free-air temperature	74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAM	ETER	TEST CONDITIONS		MIN	Typ (Note 1)	MAX	UNIT
V _{IH}	High-level input	voltage			2			٧
	Low-level input voltage			54			0.8	V
V _{IL}				74			0.8	
V _{IK}	Input clamp volta	age	$V_{CC}=Min, I_I=-18mA$				-1.2	٧
			V _{CC} =Min, V _{IL} =Max	54	2.5	3.4		V
V _{OH}	High-level outpu	t voltage	I _{OH} =Max	74	2.7	.3.4		V
V _{OL}	Low-level output voltage		V _{CC} =Min, V _{IH} =Min I _{OL} =Max				0.5	٧
I _I	Input current at maximun input voltage		V _{CC} =Max, V _I =5.5V				1	mA
I _{IH}	High-level input	current	V _{CC} =Max, V _I =2.7V				50	μΑ
I _{IL}	Low-level input	current	V _{CC} =Max, V _I =0.5V				-2	mA
I _{os}	Short-circuit output current		V _{CC} =Max (Note 2)		-40		-100	mA
ГССН	Supply ourrant	Total with outputs high	V _{CC} =Max			3	5	mA
I _{CCL}	Supply current	Total with outputs low	V _{CC} =Max			5.5	10	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

SYMBOL	PARAETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	0 -15-F B -2000		4	6	ns
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L = 15 pF, R_L = 280 \Omega$		4.5	7	113

[#]For load circuit and voltage waveforms, see page 3-12.

QUADRUPLE 2-INPUT POSITIVE OR GATES

Description

The use of schottky TTL technology has enabled the achievement of high input/output voltages and high speed.

This device contains four independent 2-input OR gates. It performs the Boolean functions $Y = \overline{A} \cdot \overline{B}$ or Y = A + B in positive logic.

Function Table (Each Gate)

INP	JTS	OUTPUT
Α	В	Y
н	Х	Н
Х	Н	Н
L	L	L

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage		5.5V
•	Operating free-air temperature range	54S	-55°C to 125°C
		74S	0°C to 70°C
	Storage temperature range		-65°C to 150°C

SYMBOL	PARAMETER	MIN	NOM	MAX	UNIT		
	Supply voltage 54		4.5	5	5.5	v	
V _{cc}			4.75	5	5.25] "	
Гон	High-level output current			-1	mA		
loL	Low-level output current				20	mA	
		54	-55		125	°C	
T _A	Operating free-air temperature	74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAME	TER	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT	
V _{IH}	High-level input v	oltage				2			٧
					54			0.8	V
V _{IL}	Low-level input voltage				74			0.8	V
V _{IK}	Input clamp volta	ge	V _{CC} =Min, I _I =-	18mA				-1.2	٧
			V _{CC} =Min, V _{IH}	=Min	54	2.5	3.4		V
V _{OH}	High-level output	voitage	I _{OH} =Max		74	2.7	3.4		
V _{OL}	Low-level output voltage		V _{CC} =Min, V _{IL} = I _{OL} =Max	=Max				0.5	٧
l _l	Input current at n input voltage	naximum	V _{CC} =Max, V _I =	5.5V				1	mA
l _{iH}	High-level input of	urrent	V _{CC} =Max, V _I =	2.7V				50	μΑ
I _{IL}	Low-level input c	urrent	V _{CC} =Max, V _I =	0.5V				-2	mA
Ios	Short-circuit output current		V _{CC} =Max (Note 2)			-40		-100	mA
Іссн	Supply current Total with outputs high Total with outputs low		V _{CC} =Max				18	32	mA
I _{CCL}			V _{CC} =Max				38	68	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	0 45 5 5 0000		4	7	ns
t _{PHL}	Propagation delay time, high-to-low-level output	$C_L = 15 pF, R_L = 280 \Omega$		4	7	lis

[#]For load circuit and voltage waveforms, see page 3-12.

DUAL 2-WIDE 2-INPUT AND-OR-INVERT GATES

Description

This device contains two independent combinations of gates each of which performs the logic AND-OR-INVERT function.

 $Y = \overline{AB + CD}$

Function Table

	Inp	Output		
Α	В	С	D	Υ
Н	Н	X	Х	L
Х	Х	Н	Н	L
	All c	н		

H=High Logic Level L=Low Logic Level X=Irrelevant

Absolute Maximum Ratings

•	Supply voltage, V _{CC}		
•	Input voltage		5.5V
			-55°C to 125°C
	74	4S	0°C to 70°C
•	Storage temperature range		−65°C to 150°C

SYMBOL	PARAMETER	MIN	NOM	MAX	UNIT		
	Supply voltage 54 74		4.5	5	5.5	v	
V _{CC}			4.75	5	5.25] "	
I _{OH}	High-level output current				-1	mA	
I _{OL}	Low-level output current				20	mA	
	·	54	-55		125	°C	
TA	Operating free-air temperature	74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER		TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input	voltage			2			٧
				54			0.8	V
V _{IL} Low-level input voltage		voltage		74			0.8	V
V _{IK}	Input clamp volta	age	V _{CC} =Min, I _I =-18mA				-1.2	٧
			V _{CC} =Min, V _{IL} =Max	54	2.5	3.4		v
V _{OH}	High-level outpu	t voltage	I _{OH} =Max,	74	2.7	3.4		V
V _{OL}	Low-level output voltage		V _{CC} =Min, V _{IH} =Min I _{OL} =Max,				0.5	٧
l _i	Input current at input voltage	maximun	V _{CC} =Max, V _I =5.5V				1	mA
I _{IH}	High-level input	current	V _{CC} =Max, V _I =2.7V				20	μΑ
I _{IL}	Low-level input	current	V _{CC} =Max, V _I =0.5V				-2	mA
los	Short-circuit output current		V _{CC} =Max (Note 2)		-40		-100	mA
Іссн	Supply current Total with outputs high Total with outputs low		V _{CC} =Max			8.2	17.8	mA
IccL			V _{CC} =Max			14	22	mA

Note 1: All typical values are at V_{CC} =5V, T_A =25°C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

SYMBOL	PARAETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	$C_1 = 15pF, R_1 = 280\Omega$		3.5	5.5	ns
t _{PHL}	Propagation delay time, high-to-low-level output	O[=15pi , N[=280s		3.5	5.5	110

[#]For load circuit and voltage waveforms, see page 3-12.

4-WIDE AND-OR-INVERT GATES

Description

This device contains two independent combinations of gates each of which performs the logic AND-OR-INVERT function.

Y=ABCD+EF+GHI+JK

Function Table

	Inputs							Output			
Α	В	С	D	Е	F	G	Н	1	J	K	Υ
Н	Н	Н	Н	Х	Х	Х	Х	Х	Х	Х	L
X	Х	Х	X	Н	Н	X	X	Х	X	Х	L
X	Х	Х	Х	Х	Х	Н	Н	Н	Х	Х	L
Х	x x x x x x x x H H							н	L		
	All other combinations H										

H=High Logic Level

L=Low Logic Level

X=Either Low or High Logic Level

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	
•	Input voltage	5.5V
	· · · · · · · · · · · · · · · · · · ·	55° to 125°C
	748	0°C to 70°C
•	Storage temperature range	-65°C to 150°C

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
.,		54	4.5	5	5.5	V
V _{cc}	Supply voltage	74	4.75	5	5.25	V
Гон	High-level output current				-1	mA
loL	Low-level output current				20	mA
		54	-55		125	°C
T _A	Operating free-air temperature	74	0		70	- 0

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAM	ETER	TEST C	ONDITIONS	S	MIN	TYP (Note 1)	MAX	UNIT		
V _{IH}	High-level input	voltage				2			٧		
	Law lawal innut.	veltere			54			0.8	v		
V _{IL}	Low-level input	voitage			74			0.8	*		
V _{IK}	Input clamp volt	age	V _{CC} =Min, I _I =-18mA				-1.2	٧			
V	I link in the land	A	V _{CC} =Min, V _I	V _{CC} =Min, V _{IL} =Max		/ _{II} = Max 54 2.		2.5	3.4		v
V _{OH}	High-level outpu	it voitage	I _{OH} =Max		74	2.7	3.4		\ \		
V _{OL}	Low-level output voltage		V _{CC} =Min, V _I	_H =Min				0.5	٧		
I _I	Input current at input voltage	Input current at maximun input voltage		5.5V				1	mA		
I _{IH}	High-level input	current	V _{CC} =Max, V _I =	2.7V				20	μА		
I _{IL}	Low-level input	current	V _{CC} =Max, V _I =	0.5V				-2	mA		
los	Short-circuit output current		V _{CC} =Max (Note 2)			-40		-100	mA		
Іссн	Supply ourrent	Total with outputs high	V _{CC} =Max				7	12.5	mA		
I _{CCL}	Supply current	Total with outputs low	V _{CC} =Max				8.5	16	mA		

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

SYMBOL	PARAETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	$C_1 = 15pF, R_1 = 280Q$		3.5	5.5	no
t _{PHL}	Propagation delay time, high-to-low-level output	OL-196F, NL-2802		3.5	5.5	ns

[#]For load circuit and voltage waveforms, see page 3-12.

DUAL D-TYPE POSITIVE EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR

Description

This device contains two independent D-type positive edge triggered flip-flops. A low level at the preset or clear inputs sets or resets the outputs regardless of the levels of the other inputs. When preset and clear are inactive (high), data at the D input meeting the setup time requirements are transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the D input may be changed without affecting the levels at the outputs.

Function Table (each flip-flop)

OUT	PUTS	INPUTS			
Q	Qt	CLEAR	CLOCK	D	
L	н	L	X	Х	
н	L	н	^ *	н	
L	н	н	† *	L	
Qo	Q_{O}	н	L	×	

Schematics of Inputs and Outputs

* The output levels in this configuration are not guaranteed to meet the minimum levels for V_{OH} if the lows at preset and clear are near V_{IL} maximum, Furthermore, this configuration is nonstable; that is it will not persist when either preset or clear returns to its inactive (high) level.

Absolute Maximum Ratings

•	Supply voltage, Vcc	·	7V
•	Input voltage		7V
•	output voltage		7V
•	Operating free-air temperature range	54S	-55°C to 125°C
		74S	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAME	TER	1	MIN	NOM	MAX	UNIT	
V	Complexion		54	4.5	5	5.5		
V _{CC}	Supply voltage			4.75	5	5.25	V	
I _{ОН}	High-level output current					-1	mA	
loL	Low-level output current					20	mA	
		clock high		6				
t _w	Pulse width	clock low					ns	
		clear or preset low		7				
	lanut actua tima	High-level data		31		***		
t _{SU}	Input setup time	Low-level data		31			ns	
t _h	Input hold time			2†			ns	
т	Operation from the town of			-55		125	°C	
TA	Operating free-air temperature		74	0		70		

¹ For rising edge

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMI	ETER	TEST CONDITIO	ONS	MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input vo	oltage			2			٧
V _{IL}	Low-level input vo	ltago		54			0.8	
VIL.	Low-level input vo	itage		74			0.8	V
V _{IK}	Input clamp voltage		$V_{CC}=Min, I_I=-18mA$				-1.2	٧
V	High lovel evenue.	مح مفاّم	V _{CC} =Min V _{II} =Max	54	2.5	3.4		.,
V _{OH}	High-level output v	/oitage	I _{OH} =Max V _{IH} =Min	74	2.7	3.4		V
V _{OL}	Low-level output voltage		V _{CC} =Min V _{IL} =Max I _{OL} =Max V _{IH} =Min				0.5	v
I _I	Input current at maximum input voltage		V _{CC} =Max, V _I =5.5V				1	mA
		J, K or D					50	
I _{IH}	High-level	Clear	V -May V-0.7V				150	
"	input current	Preset	$V_{CC}=Max V_1=2.7V$				100	μΑ
		Clock					100	
		J, K or D					-2	
111	Low-level	Clear*	V -May V-0.5V				-6	
'IL ir	input current	Preset*	$V_{CC}=Max V_1=0.5V$				-4	mA
	Clock					-4	-4	
los	Short-circuit output	t current	V _{CC} =Max		-40		-100	mA
Icc	Supply current (av	erage per F/F)	V _{CC} =Max (Note 3)			15	25	mA

Note 1: All typial values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and duration should not exceed one second.

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
f _{max}				75	110		MHz
t _{PLH}	Preset or clear	Q or Q			4	6	ns
t _{PHL}	Preset or clear (clock high)		C =15pE		9	13.5	ns
			C _L =15pF R _L =280Ω		5	8	113
t _{PLH}	Cleak	Q or Q			6	9	ns
t _{PHL}	Clock	QorQ			6	9	115

^{*} f_{max}=maximum clock frequency t_{P-M}=propagation delay time, low-to-high-level output. t_{P-M}=propagation delay time, high-to-low-level output. *For load circuit and voltage waveforms, see page 3-12.

4-BIT MAGNITUDE COMPARATORS

Description

These four-bit magnitude comparators perform comparison of straight binary or BCD codes. Three fully-decoded decisions about two, 4-bit words (A,B) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The A>B, A<B, and A=B outputs of a stage handling less-significant bits are connected to the corresponding inputs of the next stage handling more-significant bits. The stage handling the least-significant bits must have a high-level voltage applied to the A=B input. The cascading path is implemented with only a two-gate-level delay to reduce overall comparison times for long words.

Function Table

	Comp	paring		Caso	ading	Inputs	C	Outputs	3
A3,B3	A2,B2	A1,B1	A0,B0	A>B	A <b< td=""><td>A=B</td><td>A>B</td><td>A<b< td=""><td>A=B</td></b<></td></b<>	A=B	A>B	A <b< td=""><td>A=B</td></b<>	A=B
A3>B3	Х	Х	Х	Х	Х	Х	Н	L	L
A3 <b3< td=""><td>X</td><td>X</td><td>X</td><td>Х</td><td>X</td><td>X</td><td>L</td><td>н</td><td>L</td></b3<>	X	X	X	Х	X	X	L	н	L
A3=B3	A2>B2	X	X	X	X	X	н	L	L
A3=B3	A2 <b2< td=""><td>×</td><td>X</td><td>Х</td><td>X</td><td>Х</td><td>L</td><td>Н</td><td>L</td></b2<>	×	X	Х	X	Х	L	Н	L
A3=B3	A2=B2	A1>B1	X	Х	X	X	н	L	L
A3=B3	A2=B2	A1 <b1< td=""><td>X</td><td>Х</td><td>X</td><td>X</td><td>L</td><td>н</td><td>L</td></b1<>	X	Х	X	X	L	н	L
A3=B3	A2=B2	A1=B1	A0>B0	X	X	X	н	L	L
A3=B3	A2=B2	A1=B1	A0 <b0< td=""><td>Х</td><td>X</td><td>X</td><td>L</td><td>н</td><td>L</td></b0<>	Х	X	X	L	н	L
A3=B3	A2=B2	A1=B1	AO=BO	Н	L	L	н	L	L
A3=B3	A2=B2	A1=B1	A0=B0	L	н	L	L	н	L
A3=B3	A2=B2	A1=B1	A0=B0	L	L	н	L	L	н
A3=B3	A2=B2	A1=B1	AO=BO	X	X	н	L	L	н
A3=B3	A2=B2	A1=B1	AO=BO	н	н	L	L	L	L
A3=B3	A2=B2	A1=B1	AO=BO	L	L	L	н	н	L

H=High Level, L=Low Level, X=Don't Care

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	******	
	Input voltage		
	Operating free-air temperature range 54S	S	-55°C to 125°C
	748	S	0°C to 70°C
•	Storage temperature range	•••••	-65°C to 150°C

Function Block Diagram

SYMBOL	PARAMETER		MIN	TYP	MAX	UNIT
	0	54	4.5	5	5.5	V
V_{CC}	Supply voltage	74	4.55	5	5.25	
l _{OH}	High-level output current				-1	mA
loL	Low-level output current				20	mA
	OL .		-55		125	· °C
T _A	Operating free-air temperature	74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PAR	AMETER	TEST CONDITIONS	5	MIN	Typ (Note 1)	MAX	UNIT
V _{IH}	High level inpu	t voltage			2			٧
				54			0.8	v
V _{IL}	Low level inpu	t voltage		74			0.8	· ·
V _{IK}	Input clamp vo	ltage	V _{CC} =Min, I _I =-18mA				-1.2	٧
	11: 1 1	t.voltan	V _{CC} =Min, V _{IL} =Max	54	2.5	3.4		V
V _{OH}	OH High level output voltge		I _{OH} =Max, V _{IH} =Min	74	2.7	3.4		
V _{OL}	Low-level output voltage		V _{CC} =Min, V _{IL} =Max I _{OL} =Max, V _{IH} =Min				0.5	٧
l _l	Input current a input voltage	at maximum	V _{CC} =Max, V _I =5.5V				1	mA
	High-level	A <b, a="">B inputs</b,>	$V_{CC}=Max, V_1=2.7V$				50	μΑ
I _{IH}	input current	all other inputs	VCC-Wax, V				150	·
	Low-level	A <b, a="">B inputs</b,>	V _{CC} =Max, V _I =0.5V				-2	mA
I _{IL}	input current	all other inputs	- *CC - WILLY, * 0.0*				-6	
I _{OS}	Short-circuit output current		V _{CC} =Max (Note 2)		-40		-100	mA
Icc	Supply curren	t	V _{CC} =Max (Note 3)			73	115	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25^{\circ}C$. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with outputs open, A=B grounded, and all other inputs at 4.5V.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER	FROM INPUT	TO OUTPUT	NUMBER OF GATE LEVELS	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
			1			5			
		A <b, a="">B</b,>	2			7.5		ns	
t _{PLH}	Any A or B data input		3			10.5	16	113	
		A=B	4			12	18		
			1			5.5			
		A <b, a="">B</b,>	2			7			
t _{PHL}	Any A or B data input		3	C _L =15pF,		11	16.5	ns	
		A=B	4	R _L =280Ω,		11	16.5		
t _{PLH}	A <b a="B</td" or=""><td>A>B</td><td>1</td><td>_</td><td></td><td>5</td><td>7.5</td><td>ns</td>	A>B	1	_		5	7.5	ns	
t _{PHL}	A <b a="B</td" or=""><td>A>B</td><td>1</td><td>1</td><td></td><td></td><td>5.5</td><td>8.5</td><td>ns</td>	A>B	1	1			5.5	8.5	ns
t _{PLH}	A=B	A=B	2			7	10.5	ns	
t _{PHL}	A=B	A=B	2			5	7.5	ns	
t _{PLH}	A>B or A=B	A <b< td=""><td>1</td><td></td><td></td><td>5</td><td>7.5</td><td>ns</td></b<>	1			5	7.5	ns	
t _{PHL}	A>B or A=B	A <b< td=""><td>1</td><td></td><td></td><td>5.5</td><td>8.5</td><td>ns</td></b<>	1			5.5	8.5	ns	

 t_{PLH} =propagation delay time, low to high level output t_{PHL} =propagation delay time, high to low level output

APPLICATIONS—Figure A shows a high speed method of comparing two 24-bit words with only two levels of device delay. With the technique shown in Figure b six levels of device delay result when comparing two 24-bit words. The parallel technique can be expanded to any number of bits, see Table 1.

TABLE 1

WORD LENGTH	NUMBER OF PKGS.
1-4 Blts	1
5-24 Bits	2-6
25-120 Bits	8-31

NOTE:

The 54/74S85 can be used as a 5-bit comparator only when the outputs are used to drive the A_0 - A_3 and B_0 - B_3 inputs of another 54/74LS as shown in Figure B in positions #1,2,3, and 4.

QUADRUPLE 2-INPUT EXCULSIVE-OR GATES

Description

This device contains four independent 2-input Exclusive-OR gates. It performs the Boolean functions $Y=A \oplus B=\overline{A}B+A\overline{B}$ inpositive logic.

When both inputs A and B either low or high, output Y is low, and when A and B are high and low and low and high respectively, Y is high.

Function Table (each gate)

INPL	JTS	OUTPUT
Α	В	Υ
L	L	L
L	Н	н
н	L	н
н	Н	L

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage		5.5V
		54S	
		74S	
•	Storage temperature range		-65°C to 150°C

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
V _{cc}	Supply voltage 54		4.5	5	5.5	.,	
▼CC			4.75	5	5.25	V	
I _{ОН}	High-level output current				-1	mA	
loL	Low-level output current				20	mA	
TA	Operating free-air temperature	54	-55		125		
' A	Operating free-all temperature	74	0		70	°C	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage			2			٧
			54			8.0	.,
V _{IL}	Low-level input voltage		74			0.8	V
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =-18mA				-1.2	٧
.,	I link lovel avenue valence	V _{CC} =Min V _{IL} =Max	54	2.5	3.4		v
V _{OH}	High-level output voltage	I _{OH} =Max V _{IH} =Min	74	2.7	3.4		ľ
V _{OL}	Low-level output voltage	V _{CC} =Min V _{IL} =Max I _{OL} =Max V _{IH} =Min				0.5	٧
l _l	Input current at maximum input voltage	V _{CC} =Max, V _I =5.5V				1	mA
l _{IH}	High-level input current	$V_{CC}=Max, V_1=2.7V$				50	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.5V				-2	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)		-40		-100	mA
lcc	Supply current	V _{CC} =5.25V, See Note 3			50	75	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Note 3: I_{CC} is measured with the inputs grounded and outputs open.

PARAMETER*	FROM (INPUT)	TEST CONDITION#		MIN	TYP	MAX	UNIT
t _{PLH}	A or B	Other input low			7	10.5	ns
t _{PHL}	A or B		C _L =15pF		6.5	10	115
t _{PLH}	A on D	Other is not bish	R _L =280Ω		7	10.5	20
t _{PHL}	A or B	Other input high			6.5	10	ns

 t_{PLH} =propagation delay time, low-to-high-level output t_{PHL}=propagation delay time, high-to-low-level output

^{*}For load circuit and voltage waveforms, see page 3-12.

DUAL J-K NEGATIVE EDGE-TRIGGERED FLIP FLOPS WITH SET AND RESET

Features

- · Negative edge-triggering
- · Independent input/output terminals for each flip-flop.
- · Direct set and reset inputs
- Q and Q outputs

Description

This device contains two independent negative-edgetriggered J-K flip-flops with complementary outputs. The J and K data is processed by the flip-flops on the falling edge of the clock pulse. The clock triggering occurs at a voltage level and is not directly related to the transition time of the negative going edge of the clock pulse. Data on the J and K inputs can be changed while the clock is high or low without affecting the outputs as long as setup and hold times are not violated. A low logic level on the preset or clear inputs will set or reset the outputs regardless of the logic levels of the other inputs.

Function Table

	Inputs					
PR	CLR	CLK	J	К	Q	Q
L	Н	Х	Х	Х	Н	٦
Н	L	Х	Х	Х	L	Н
L	L	Х	Х	Х	н*	Н*
Н	Н	↓	L	L	Q_o	\overline{Q}_{o}
Н	Н	↓	Н	L	н	L
Н	Н	↓	L	Н	L	Н
Н	Н	1	н	Н	Tog	gle
Н	Н	Н	Х	Х	Qo	ℚ

↓=Negative Going Edge Pulse

 ${}^{\bullet}$ =This configuration is nonstable; that is, it will not persist when preset and/or clear inputs return to their inactive(high) level. \mathbf{Q}_{o} =The output logic level before the indicated input conditions were established.

Toggle=Each output changes to the complement of its previous level on each falling edge of the clock pulse.

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Operating free-air temperature range	54 S	-55°C to 125°C
		74 S	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL		PARAMETER		MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	Supply voltage 54		4.5	5	5.5	v
• 66	Cupply Voltage			4.75	5	5.25	\ \ \
I _{OH}	High-level output	current	1.00			-1	mA
I _{OL}	Low-level output	current				20	mA
		clock high		6			
tw	tw Pulse width	clock low		6.5			ns
		clear or preset low		8			
t	Input setup time	High-level data	High-level data				ns
t _{SU}	input setup time	Low-level data		3↓			115
t _h	Input hold time			Of			ns
TA	Operating free-air temperature		54	-55		125	°C
. A			74	0		70	1

PARAMETER*	FROM(INPUT)	TO(OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
f _{max}				80	125		MHz
t _{PLH}	Preset or clear	Q or Q			4	7	ns
t _{PHL}	Preset or clear (clock high)	Q or $\overline{\mathbb{Q}}$	C _L =15pF		5	7	ns
PHL	Preset or clear (clock low)	Q or Q	R _L =280Ω		5	7	
t _{PLH}	Clock	Q or Q			4	7	ns
t _{PHL}					5	7	

 $[*]f_{max} = maximum clock frequency$

t_{PLH}= propagation delay time, low-to-high-level output.

t_{PHL}= propagation delay time, high-to-low-level output.

[#]For load circuit and voltage waveforms, see page 3-12.

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

						TVD		
SYMBOL	PARAMETER	TEST CONDITIONS			MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			V
V _{IL}	Low-level input voltage			54			0.8	V
V IL	Low-level input voitage			74			0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =	=-18 mA				-1.2	٧
V _{OH}	High-level output voltage	V _{CC} =Min,V _{II}	=Max	54	2.5	3.4		·v
VOH	Thigh level output voltage	I _{OH} =Max,V _{II}	-Min	74	2.7	3.4		
V _{OL}	Low-level output voltage	V _{CC} =Min,V _{II}	=Max				0.5	v
· OL		I _{OL} =Max, V _{IH} =Min					0.5	
I ₁	Input current at maximum input voltage	V _{CC} =Max, V _I =5.5V					1	mA
			J,K				50	
I _{IH}	High-level	V _{CC} =Max,	Clear				100	μΑ
111	input current	V ₁ =2.7V	Preset				100	,
			Clock				100	
			J,K				-1.6	
I _{IL}	Low-level input current	V _{CC} =Max,	Clear				-7	mA
	input current	V _I =0.4V (Note 4)	Preset				-7	
			Clock				-4	
los	Short-circuit output current	V _{CC} =Max (Note 2)			-40		-100	mA
Icc	Supply current	V _{CC} =Max (f	Note 3)			30	50	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted a time, and the duration should not exceed one second.

Note 3: With all output open, I_{CC} is measured with the Q and Q output high in turn. At the time of measurement, the clock input is grounded.

Note 4: Clear is tested with preset high and preset is tested with clear high.

13-INPUT NAND GATE

Description

This device contains a single gate which performs the logic NAND function.

Y=ABCDEFGHIJKLM

Function Table

Inputs	Output
A thru M	Υ
All Inputs H	L
One or More Input L	Н

H=High Logic Level L=Low Logic Level

Absolute Maximum Ratings

•	Supply voltage, V _{CC}		7V
•	Input voltage		5.5V
		548	
		74S	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
	54		4.5	5	5.5	V
V_{CC}	Supply voltage	74	4.75	5	5.25	v
l _{OH}	High-level output current	54, 74			-1	mA
loL	Low-level output current	54, 74			20	mA
T _A	Operating free-air temperature	54	-55		125	°C
		74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER		TEST CONDITIONS		MIN	TYP Note 1)	MAX	UNIT
V _{IH}	High-level input	voltage			2			V
				54			0.8	V
V _{IL}	Low-level input voltage			74			8.0	V
V _{IK}	Input clamp volta	age	V _{CC} =Min, I _I =-18mA				-1.2	٧
			V _{CC} =Min, V _{IL} =Max	54	2.5	3.4		V
V _{OH}	High-level outpu	t voltage	I _{OH} =Max	74	2.7	3.4		V
V _{OL}	Low-level output voltage		V _{CC} =Min I _{OL} =Max, V _{IH} =Min				0.5	٧
I ₁	Input current at input voltage	maximun	V _{CC} =Max, V _I =5.5V				1	mA
I _{IH}	High-level input	current	$V_{CC}=Max, V_{I}=2.7V$				50	μΑ
I _{IL}	Low-level input	current	V _{CC} =Max, V _I =0.5V				-2	mA
los	Short-circuit output current		V _{CC} =Max (Note 2)		-40		-100	mA
Іссн	Total with outputs high		V _{CC} =Max			3	5	mA
Iccl	Supply current	Total with outputs low	V _{CC} =Max			5.5	10	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

SYMBOL	PARAETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output	$C_1 = 15 pF, R_1 = 280 \Omega$			6	ns
t _{PHL}	Propagation delay time, high-to-low-level output	0_= 13pr , N_= 200s2		4.5	7	113

[#]For load circuit and voltage waveforms, see page 3-12.

3-TO-8 LINE DECODERS/DEMULTIPLEXERS

Feature

- Designed Specifically for High Speed Memory Decodes and Data Transmission Systems
- Incorporate 3 Enable Inputs to Simplify Cascading and/or Data Rejection
- Contains Two Fully Independent 2-to-4 Line Decoders/ Demultiplexers.

Description

This device is designed to be used in high performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems this decoder can be used to minimize the effects of system decoding. When employd with high-speed memories utilizing a fast enable circuit the delay times of this decoder and the enable time of the memory are usually less than the typical access time of the memory.

This means that the effect system delay introduced by the schottky-clamped system decoder is negligible.

The S138 decodes one of eight lines dependent on the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverts when expanding. A 24-line decoder can be implemented without external inverters and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

Schematics of Inputs and Outputs

Function Table

	INPUTS				INPUTS							
EN.	ENABLE		SELECT					001	PUI	5		
G1	G2*	С	В	Α	YO	Y1	Y2	Υ3	Y4	Y5	Y6	Y7
X	Н	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	н
L	X	х	Х	X	н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	Н	н	L	Н	Н	Н	Н	Н	Н
Н	L	L	Н	L	н	Н	L	Н	Н	Н	Н	Н
Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
·Н	L	н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

^{*} G2=G2A+G2B

Absolute Maximum Ratings

	Supply voltage Vcc	······································	7V
	Input voltage		5.5V
•	Operation from six temporature range	54S	-55°C to 125°C
•	Operating free-air temperature range	74S	0°C to 70°C
•	Storage temperature range	740	-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
		54	4.5	5	5.5	V	
V _{CC}	V _{CC} Supply voltage		4.75	5	5.25	V	
Гон	High-level output current				-1	mA	
loL	Low-level output current				20	mA	
			-55		125	°C	
T _A	Operating free-air temperature	74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage			2			V
			54			0.8	l v l
V _{IL}	Low-level input voltage		74			0.8	V
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =-18mA				-1.2	V
		V _{CC} =Min V _{IL} =Max	54	2.5	3.4		v
V _{OH}	High-level output voltage	oltage I _{OH} =Max V _{IH} =Min		2.7	3.4		
V _{OL}	Low-level output voltage	V _{CC} =Min V _{IL} =Max I _{OL} =Max V _{IH} =Min				0.5	V
l ₁	Input current at maximum input voltage	V _{CC} =Max, V _I =5.5V				1	mA
I _{IH}	High-level input current	$V_{CC}=Max, V_I=2.7V$				50	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.5V				-2	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)		-40		-100	mA
Icc	Supply current	V _{CC} =5.25V, See Note 3			50	90	mA

Note 1: All typical values are at $V_{cc}=5V$, $T_A=25$ °C. Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	LEVELS of DELAY	TEST CONDITION#	MIN TYP	MAX	UNIT
t _{PLH}			0		4.5	7	
t _{PHL}			2		7	10.5	
t _{PLH}	Binary Select	Any	Any 3	0 -15-5	7.5	12	ns
t _{PHL}				$C_L = 15pF$	8	12	
t _{PLH}			_	R _L =280Ω	5	8	
t _{PHL}			2		7	11	
t _{PLH}	Enable	Any			7	11	ns
t _{PHL}			3		7	11	

^{*} tpLH=propagation delay time, low-to-high-level output* tpHL=propagation delay time, high-to-low-level-output

#For load circuit and voltage waveforms, see page 3-12.

DUAL 2-TO-4-LINE DECODERS/DEMULTIPLEXERS

Feature

- Designed Specifically for High Speed:
 Memory Decoders
 Data Transmission Systems
- Schottky Clamped for High Performance

Description

This schottky-clamped TTL MSI circuit is designed to be used in high-performance memory-decoding or data routing applications requiring very short propagation delay times. In high-performance memory systems this decoder can be used to minimize the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit the delay times of this decoder and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the schottky-clamped system decoder is neglible.

The S139 comprises two separate two-line-to-four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.

All of the decoders/demultiplexers feature fully buf-

fered inputs, presenting only one normalized load to its driving circuit. All inputs are clamped with high-performance Schottky diodes to suppress lineringing and simplify system design.

Function Table

IN		OUTPUTS				
ENABLE	SEL	ECT				
Ğ	В	Α	YO	Y1	Y2	Y3
Н	Х	Х	Н	Н	Н	Н
L	L	L	L	Н	Н	н
L	L	Н	Н	L	Н	н
L	Н	L	Н	Н	L	н
L	Н	Н	Н	Н	Н	L

Absolute Maximum Ratings

Supply voltage Vcc		7V
Operating free-air temperature range	54S	-55°C to 125°C
- Operating need an temperature range	74\$	
Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V	Cumply voltage	54	4.5	5	5.5	V
V _{cc}	Supply voltage	74	4.75	5	5.25	ľ
Гон	High-level output current				-1	mA
l _{OL}	Low-level output current	Low-level output current			20	mA ,
т	Operating free six temperature	54	-55		125	°C
T _A	Operating free-air temperature	74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage			2			٧
			54			0.8	.,
V_{IL}	Low-level input voltage	put voltage				0.8	٧
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =-18 mA				-1.2	٧
.,		V _{CC} =Min V _{IL} =Max	54	2.5	3.4		v
V _{OH}	High level output voltage	I _{OH} =Max V _{IH} =Min	74	2.7	3.4		L v
V _{OL}	Low-level output voltage	V _{CC} =Min V _{IL} =Max I _{OL} =Min V _{IH} =Min				0.5	٧
l ₁	Input current at maximum input voltage	V _{CC} =Max, V _I =5.5V				1	mA
I _{IH}	High-level input current	$V_{CC}=Max, V_{I}=2.7V$				50	μΑ
I _{IL}	Low-level input current	$V_{CC}=Max, V_I=0.5V$				-2	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)		-40		-100	mA
lcc	Supply current	V _{CC} =Max			60	90	mA

Note 1: All typical values are at V_{CC} =5V, T_A =25°C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics, V_{CC} = 5V, T_A = 25°C

PARAMETER*	FROM(INPUT)	TO(OUTPUT)	Levels of Delay	TEST CONDITION#	MIN TYP	MAX	UNIT
t _{PLH}			2		5	7.5	
t _{PHL}	Binary Select	Any	2	$C_L = 15pF$ $R_L = 280\Omega$	6.5	10	ns
t _{PLH}			3		7	12] 115
t _{PHL}			3		8	12	
t _{PLH}	Enable	Any	2		5	8 .	ns
t _{PḤL}	Enable	2 2			6.5	10	113

*For load circuit and voltage waveforms, see page 3-12.

DUAL 4-LINE TO 1-LINE DATA SELECTORS/MULTIPLEXERS

Feature

- Permits Multiplexing from N lines to 1 line
- Performs Parallel-to-Serial Conversion
- Strobe (Enable) Line Provided for Cascading (N Lines to n Lines)
- High-Fan-Out, Low-Impedance, Totem-Pole Outputs
- Fully Compatible with most TTL and DTL Circuits

Description

This monolithic data selectors/multiplexers contains inverters and drivers to supply fully complementary, on-chip binary decoding data selection to the AND/OR invert gates. Separate strobe inputs are provided for each of the two four line sections.

Function Table

SELI		DA	TA	INPL	JTS	STROBE	ОИТРИТ
В	Α	CO	C1	C2	СЗ	G	Y
Х	Χ	Х	Х	Х	Х	Н	L
L	L	L	Χ	Χ	Χ	L	L
L	L	Н	Χ	Χ	X	L	Н
L	Н	Х	L	Χ	X	L	L
L	Н	Х	Н	Χ	X	L	Н
Н	L	Х	Χ	L	X	L	L
Н	L	Χ	Χ	Н	X	L	Н
Н	Н	Х	Χ	Χ	L	L	L
Н	Н	Х	Χ	Χ	Н	L	Н

Schematics of Inputs and Outputs

Absolute Maximum Ratings

•	Supply voltage, Vcc		7V
•	Input voltage		5.5V
		54S	
		74S	
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
V _{cc}	Complexications	54	4.5	5	5.5		
	Supply voltage	74	4.75	5	5.25	_ v	
Іон	High-level output current				-1	mA	
I _{OL}	Low-level output current				20	mA	
т	Operating free-air temperature	54	-55		125	°C	
T _A		74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage			2			٧
V	Lew level input veltage		54			0.8	V
V _{IL}	Low-level input voltage		74			0.8	\ \ \
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =-18mA				-1.2	٧
V	High level output voltage	V _{CC} =Min V _{IL} =Max I _{OH} =Min	54	2.5	3.4		V
V _{OH}	High-level output voltage		74	2.7	3.4		
V _{OL}	Low-level output voltage	V _{CC} =Min V _{IL} =Max I _{OL} =Max V _{IH} =Min				0.5	٧
l _l	Input current at maximum input voltage	V _{CC} =Max, V _I =5.5V	-			1	mA
Į.	High-level input current	V _{CC} =Max, V _i =2.7V				50	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.5V				-2	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)		-40		-100	mA
lcc	Supply current	V _{CC} =5.25V, (Note 3)			45	70	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: $I_{\rm CC}$ is measured with the outputs open, and all inputs ground.

SYMBOL	FROM(INPUT)	TO(OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Data	Υ	C =1555 B = 2000		6	9	ns
t _{PHL}	Data	Υ			6	9	ns
t _{PLH}	Select	Υ			11.5	18	ns
t _{PHL}	Select	Y	$C_L=15pF, R_L=280\Omega$		12	18	ns
t _{PLH}	Strobe	Υ			10	15	ns
t _{PHL}	Strobe	Y			9	13.5	ns

[#]For load circuit and voltage waveforms, see page 3-12.

QUADRUPLE 2-TO-1-LINE DATA SELECTORS/MULTIPLEXERS

Features

- Buffered Inputs and Outputs
- Schottky clamp provides improved AC performance.
- Selects four of eight data inputs with single select line and over-riding strobe.

Applications

- Expand Any Data Input Point
- Multiplex Dual Data Buses
- Generate Four Functions of Two Variables (One Variables is Common)
- Source Programmable Counters

Description

This monolitic data selector/multiplexer contains inverters and drivers to supply full on-chip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs.

A single select line, S, is used to select one of the two multiplexer input words. When the select is LOW, the A input word is present at the output. When the select is HIGH, the B input word is present at the output.

Function Table

	INPUTS			OUTPUT	
STROBE	SELECT	Α	В	Υ	
Н	X	X	Х	L	
L	L	L	X	L	
L	L	Н	X	н	
L	Н	X	L	L	
L	Н	X	Н	Н	

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
		54	4.5	5	5.5	V
V _{cc}	Supply voltage	74	4.75	5	5.25	v
I _{OH}	High-level output current				-1	Α
loL	Low-level output current				20	mA
		54	-55		125	°C
T _A	Operating free-air temperature	74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		S	MIN	TYP Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			V
				54			0.8	v
V _{IL}	Low-level input voltage			74			0.8	'
V _{IK}	Input clamp voltage	V _{CC} =Min, I	=-18mA				-1.2	٧
		V _{CC} =Min	V _{II} =Max	54	2.5	3.4		v
V _{OH}	High-level output voltage	I _{OH} =Max V _{IH} =Min 74	74	2.7	3.4		Ů	
V _{OL}	Low-level output voltage	V _{CC} =Min I _{OL} =Max	V _{IL} =Max V _{IH} =Min				0.5	V
l _l	Input current at maximun input voltage	V _{CC} =Max,	V _I =5.5V				1	mA
1	High-level input current	V _{CC} =Max	S or G input				100	μΑ
I _{IH}	r light-level input current	$V_1 = 2.7V$	A or B input				50	ľ
	Low-level input current	V _{CC} =Max	S or G input				-4	mA
I _{IL}	Low-level input current	V _I =0.5V A or B input					-2	
los	Short-circuit output current	V _{CC} =Max (Note 2)		-40		-100	mA	
Icc	Supply current	V _{CC} =Max (Note 3)				50	70	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with 4.5V applied to all inputs and all outputs open.

PARAMETER*	FROM (INPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Data			5	7.5	ns
t _{PHL}	Juliu Juliu	C _L =15pF R _L =280Ω		4.5	6.5	110
t _{PLH}	Strobe			8.5	12.5	ns
t _{PHL}	Strobe			7.5	12	
t _{PLH}	Select	1 -		9.5	15	ns
t _{PHL}	Joseph			9.5	15	110

^{*} tpLH=propagation delay time, low-to-high-level output.

^{*}tpHL=propagation delay time, high-to-low-level output.

For load circuit and voltage waveforms, see page 3-12.

QUADRUPLE 2-TO-1-LINE DATA SELECTORS/MULTIPLEXERS (INVERTED DATA OUTPUTS)

Features

- Buffered Inputs and Outputs
- Converted outputs provided.

Applications

- Expand Any Data Input Point
- Multiplex Dual Data Buses
- Generate Four Functions of Two Variables (One Variables is Common)
- Source Programmable Counters

Pin Configuration OUTPUT V_{cc} STROBE OUTPUT 4B зв 44 34 3Y 16 15 13 12 SELECT 2Y GND **INPUTS** Suffix-Blank: Plastic Dual In Line Package Suffix-.1 Ceramic Dual In Line Package

Description

This monolitic data selector/multiplexer contains inverters and drivers to supply full on-chip data selection to the four output gates. A separate strobe input is provided. A 4-bit word is selected from one of two sources and is routed to the four outputs. The S158 presents inverted data to minimize propagation delay time.

Function Table

	INPUTS			OUTPUT
STROBE	SELECT	Α	В	Y
Н	X	Х	Х	L
L	L	L	X	Н
L	L	Н	X	L
L	Н	X	L	н
L	Н	X	Н	L

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
	Supply voltage 54		4.5	5	5.5	v	
V _{cc}			4.75	5	5.25		
I _{OH}	High-level output current				-1	mA	
I _{OL}	Low-level output current			20	mA		
T _A		54	-55		125	°C	
	Operating free-air temperature 74		0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TES	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			٧
				54			0.8	\/
V _{IL}	Low-level input voltage			74			\ \ \	
V _{IK}	Input clamp voltage	V _{CC} =Min, I	=-18mA				-1.2	٧
\/	I link land a day A called	V _{CC} =Min,	V _{IL} =Max	54	2.5	3.4		v
V _{OH}	High-level output voltage	I _{OH} =Max,		74	2.7	3.4		_ v
V _{OL}	Low-level output voltage	V _{CC} =Min, I _{OL} =Max,					0.5	V
l ₁	Input current at maximun input voltage	V _{CC} =Max,	V _I =5.5V				1	mA
I _{IH}	High-level input current	V _{CC} =Max	S or G input				100	μΑ
"IH	Thigh lover input current	$V_1 = 2.7V$	A or B input				50	
I _{IL}	Low-level input current	V _{CC} =Max	S or $\overline{\mathbf{G}}$ input				-4	mA
'IL		V _I =0.5V	V _I =0.5V A or B input				-2	
los	Short-circuit output current	V _{CC} =Max (Note 2)		-40		-100	mA
Icc	Supply current	V _{CC} =Max	Note 3			39	61	mA
'CC		Note 4					81	

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with 4.5V applied to all inputs and all outputs open.

Note 4: A inputs at 4.5V, B,G,S, inputs at or, and all outputs open.

PARAMETER*	FROM (INPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	Data			4	6	ns
t _{PHL}	24.4			4	6	110
t _{PLH}	Strobe	C _L =15pF		6.5	11.5	ns
t _{PHL}	3525	C _L =15pF R _L =280Ω		7	12	1.0
t _{PLH}	Select	1		8	12	ns
t _{PHL}	1			8	12	,,,,

^{*} tpLH=propagation delay time, low-to-high-level output.

^{*} tpHL=propagation delay time, high-to-low-level output.

[#]For load circuit and voltage waveforms, see page 3-12.

GD54/74S163A

SYNCHRONOUS 4-BIT COUNTER: BINARY, SYNCHRONOUS CLEAR

Feature

- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Synchronous Counting
- Synchronously Programmable
- Load Control Line
- Diode-Clamped Inputs

Description

This synchronous, presettable counter features an internal carry look-ahead for application in high-speed counting designs. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating.

This mode of operation eliminates the outputs counting spikes that are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four flip-flops on the rising (positive-going) edge of the clock input with form.

This counter is fully programmable; that is the outputs may be preset to either level. As presetting is synchronous setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs.

The clear function is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regard less of the levels of the clock, load, or enable inputs

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two counter-enable inputs and a ripple carry output. Both count-enable inputs (ENABLE P and ENABLE T) must be high to count, and ENABLE T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high level portion of the Q_A output. The high-level overflow ripple carry pulse can be used to enable successive cascaded stages. Transitions at the ENP or ENT are allowed regardless of the level of the clock input.

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	/ V
•	Input voltage	5.5V
•	Operating free-air temperature range 54S	-55°C to 125°C
•	748	0°C to 70°C
	Storage temperature range	
	Storage temperature range	00 0 10 100 0

71/

Typical, Clear, Preset, Count, and Inhibit Sequences

Illustrated below is the following sequence:

- 1. Clear outputs to zero (synchronous)
- 2. Preset to binary twelve
- 3. Count to thirteen, fourteen fifteen, zero, one, and two
- 4. Inhibit

SYMBOL	PARAMETER			MIN	NOM	MAX	UNIT	
V _{cc}	Supply voltage		54	4.5	5	5.5	V	
					5	5.25		
I _{OH}	High-level output curr	ent	54,74			-1	mA	
loL	Low-level output curre	ent	54			20	mA	
J OL		74			20	''''		
f _{clock}	Clock frequency		•	0		40	MHz	
t _W	Width of clock or clear pulse			10	•		ns	
t _{release}	Width of clear pulse Release time					4	ns	
			4			ns		
t _{SU}	Setup time	Enable P or T	Enable P or T					
00	•	Load		14				
			14					
t _h	Hold time Data Others			3			ns	
"				0				
T _A	Operating free-air temperature		54	-55 .		125	°C	
			74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TE	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage				2			٧
V	Law lawel law A welfers			54			0.8	.,
V _{IL}	Low-level input voltage			74			0.8	\ \ \
V _{IK}	Input clamp voltage	V _{CC} =Min, I	=-18mA				-1.2	٧
	Libertana antoni	V _{CC} =Min, \	/ _{IL} =Max	54	2.5	3.4		
V _{OH}	High-level output voltage	I _{OH} =Max, V _{IH} =Min 74		2.7	3.4		٧	
V _{OL}	Low-level output voltage	V _{CC} =Min, V _{IL} =Max I _{OL} =Max, V _{IH} =Min				0.5	٧	
l ₁	Input current at maximun input voltage	V _{CC} =Max,	V _{CC} =Max, V _I =5.5V				1	mA
I _{IH}	High-level input current	V _{CC} =Max	enable T				100	μА
1111	3	V _I =2.7V other inputs					50] "
I _{IL}	Low-level input current	V _{CC} =Max	V _{CC} =Max enable T				-4	mA
11-		V _I =0.5V other inputs				-2		
los	Short-circuit output current	V _{CC} =Max (Note 2)		-40		-100	mA	
Icc	Supply current	V _{CC} =Max	V _{CC} =Max			95	160	mA

Note 1: All typical values are at V_{CC} =5V, T_A =25°C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
f _{max}				40	70		MHz
t _{PLH}	Clock	Ripple carry			14	25	ns
t _{PHL}	0.00	, iippio ouivy	C _L =15pF		17	25	
t _{PLH}	Clock	Any Q	R _L =280Ω		8	15	ns
t _{PHL}	O IOOK	7, G			10	15	
t _{PLH}	Enable T	Ripple carry			10	15	ns
t _{PHL}		, iippio darry			10	15	

^{*} f_{max}=maximum clock frequency

Function Block Diagram

^{*} t_{PLH}=propagation delay time, low-to-high-level output.

the propagation delay time, high-to-low-level output.

Note 1: propagation delay for clearing is measured from the clock transition for the S163A.

[#]For load circuit and voltage waveforms, see page 3-12.

GD54/74S169A

SYNCHRONOUS 4-BIT UP/DOWN COUNTERS

Features

- 'LS169A—binary counter
- Fully synchronous operation for counting and programming.
- Internal look-ahead for fast counting.
- Carry output for n-bit cascading.
- Fully independent clock circuit.

Description

These synchronous presettable counters feature an internal carry look-ahead for cascading in high-speed counting applications. Synchronous operation is provided by having all F/Fs-clocked simultaneously, so that the outputs all change at the same time when so instructed by the countenable inputs and internal gating. This mode of operation helps eliminate the output counting spikes that are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four master-slave flip-flops on the rising edge of the clock waveform.

These counters are fully programmable; that is, the outputs may each be preset either high or low. The load input circuitry allows loading with the carry-enable output of cascaded counters. As loading is synchronous, setting up a low level at the load-input disables the counter and causes the outputs to agree with the data inputs after the next clock pulse.

The carry look-ahead circuitry permits cascading counters for n-bit synchronous applications without additional gating. Both count-enable inputs (\bar{P} and \bar{T}) must be low to count. The direction of the count is determined by the level of the up/down input 9 When the input is high, the counter counts up; when low, it counts down. Input T is fed forward to enable the carry outputs. The carry output thus enabled will produce a low-level output pulse with a duration approximately equal to the high portion of the Q_A output when counting up, and approximately equal to the low portion of the Q_A output when counting down. This low-level overflow carry pulse can be us-

ed to enable successively cascaded stages. Transitions at the enable \overline{P} or \overline{T} inputs are allowed regardless of the level of the clock input. All inputs are diode clamped to minimize transmission-line effects, thereby simplifying system design.

These counters feature a fully independent clock circuit. Changes at control inputs (enable \overline{P} , enable \overline{T} , load, up/down), which modify the operating mode, have no effect until clocking occurs. The function of the counter (when enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

Mode Select Table

LOAD	P	Ŧ	U/D	Action on Rising Clock Edge
L	Х	Х	X	Load (i→Q _i)
Н	L	L	Н	Count up
Н	L	L	L	Count down
Н	Н	X	X	No change (Hold)
Н	Χ	Н	Χ	No change (Hold)

i: Data Inputs Qi: Outputs

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	7\
	Input voltage	
	Operating free-air temperature range 54S	
	748	0°C to 70°C
•	Storage temperature range	-65°C to 150°C

Function Block Diagram

54S169A, 74S169A BINARY COUNTERS

Timing Diagram

S169A Binary Counters
Typical Load, Count, and Inhibit Sequences

Sequence 1: Load (preset) to binary thirteen

Sequence 2: Count up to fourteen, fifteen, zero, one and two

Sequence 3: Inhibit

Sequence 4: Count down to one, zero, fifteen, fourteen and thirteen

Recommended Operating Conditions

SYMBOL	PARAME	PARAMETER		MIN	NOM	MAX	UNIT	
.,			54	4.5	5	5.5	V	
V _{cc}	Supply voltage		74	4.75	5	5.25	V	
Іон	High-level output cur	High-level output current				-1	mA	
	Low-level output current		54			20	mA	
lor			74			20	1116	
f _{clock}	Clock frequecy			0		40	MHz	
t _w	Width of clock pulse			10			ns	
		Data inputs	A,B,C,D.	4				
		Enable P o	T	14			200	
t _{su}	Set up time	Load		6			ns	
		Up/Down						
t _h	Data hold time	ata hold time		1			ns	
-			54	-55		125		
T _A	Operating free-air ter	Operating free-air temperature		0		70	°C	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	TYP Note 1)	MAX	UNIT	
V _{IH}	High-level input voltage				2			٧
.,	Law lawel is not welled			54			0.7	v
V _{IL}	Low-level input voltage			74			0.8	V
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I	=-18mA				-1.5	٧
	Library Lovel Control Control	V _{CC} =Min, V	' _{IL} =Max	54	2.5	3.4		V
V _{OH}	High-level output voltage	I _{OH} =Max, V		74	2.7	3.4		v
V _{OL}	Low-level output voltage	V_{CC} =Min, V_{IL} =Max I_{OL} =Max, V_{IH} =Min				0.5	٧	
I _I	Input current at maximum input voltage	V _{CC} =Max, V	V _I =7V				1	mA
			Load		-10		-200	
l _{IH}	High Level Input Current	V _{CC} =Max V ₁ =2.7V	Enable T				100	μΑ
	Current	V 2	Other inpu	its			50	
	Low Level Input	V _{CC} =Max	Enable T				-4	mA
I _{IL}	Current	V _I =0.4V Other inputs				-2	IIIA	
los	Short-circuit output current	V _{CC} =Max (Note 2)		-40		-100	mA	
I _{CC}	Supply current	V _{CC} =Max (I	Note 3)			100	160	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Note more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured after applying a momentary 4.5V, then ground, is applied to the CLOCK with all other inputs grounded and the outputs open.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION	MIN	TYP	MAX	UNIT
f _{max}				40	55		MHZ
t _{PLH}	Clock	Ripple			14	21	ns
t _{PHL}	Olock	Carry			20	28	ns
t _{PHL}	Clock	Any O			8	15	
t _{PHL}	Clock Any Q	C _L -15pr, n _L =260Ω		11	15	ns	
t _{PLH}	Enable T	Ripple			6	12	ns
t _{PHL}		Carry			15	25	
t _{PLH} * *	Up/Down	Ripple			8	15	
t _{PHL} **	Op/Down	Carry			16	22	ns

f_{max}=maximum clock frequency.

t_{PLH}=propagation delay time, low-to-high-level output.

te_{LH}= propagation delay time, high-to-low-level output.

* The propagation delay from UP/DOWN to RIPPLE CARRY must be measured with the counter at either a minimum or a maximum count. As the logic level of the up/down Input is changed, the ripple carry output will follow. If the count is minimum, the ripple carry output transition will be in phase. If the count is maximum, the ripple carry output will be out of phase.

HEX D-TYPE FLIP FLOPS SINGLE RAIL OUTPUTS, COMMON DIRECT CLEAR

Feature

- · Contains Six Flip-Flops with Single-Rail Outputs
- Buffered Clock and Direct Clear Inputs
- Application Include: Buffer/Storage Registers

Shift Registers
Pattern Generators

Description

These monolitic, positive-edge triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input.

Information at the D inputs meeting the setup time requirements is transferred to the outputs on the positivegoing edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positivegoing pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

These circuits are fully compatible for use with most TTL or DTL circuits.

Function Table (each flip-flop)

	NPUTS		OUTPUTS	
CLEAR	CLOCK	D	Q	۵
L	×	X	L	Н
н	†	Н	н	L
н	†	L	L	Н
н	L	X	Qo	\overline{Q}_{O}

^{*†=}transition from low to high level.

X=irrelevant

L=low level (steady state)

H=high level (steady state)

Absolute Maximum Ratings

•	Supply voltage. Vcc	54\$	7V
•	Input voltage		5.5V
•	Operating free-air temperature range	54S	-55°C to 125°C
		74S	0°C to 70°C
•	Storage temperature range		-65°C to 150°C

Schematics of Inputs and Outputs

^{*}Q₀=the level of before the indicated steady state input conditions were established.

Recommended Operating Conditions

SYMBOL	PA	PARAMETER			NOM	MAX	UNIT	
V _{cc}	Supply voltage		54	4.5	5	5.5	V	
• 66	oupply voltage		74	4.75	5	5.25]	
Іон	High-level output current				-1	mA		
l _{OL}	Low-level output current					20	mA	
f _{clock}	Clock frequency			0		75	MHz	
	Pulse width	Clock		7				
t _w	Pulse width	Clear		10			ns	
	Sot up time	Data input		5				
t _{su}	Set up time Clear inactive-state			5			ns	
t _h	Data hold time			3			ns	
т			54	-55		125	00	
T _A	Operating free-air	temperature	74	0		70	°C	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage			2			٧
V	Low-level input voltage		54			0.8	.,
V _{IL}	Low-level input voltage		74			0.8	V
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =-18mA				-1.2	V
V _{OH}	High-level output voltage	V _{CC} =Min V _{IL} =Max	54	2.5	3.4		v
У ОН	High-level output voltage	1 A 4 A 41	74	2.7	3.4		
V _{OL}	Low-level output voltage	V _{CC} =Min V _{IL} =Max I _{OL} =Max V _{IH} =Min				0.5	٧
l ₁	Input current at maximum input voltage	V _{CC} =Max, V _I =5.5V				1	mA
I _{IH}	High-level input current	V _{CC} =Max, V _I =2.7V				50	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.5V				-2	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)		-40		-100	mA
Icc	Supply	V _{CC} =Max			90	144	mA

Note 1: All typical values are at V_{CC} =5V, T_{A} =25°C. Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency		75	110		MHz
t _{PHL}	Propagation delay time, high-to- low-level output from clear	C _L =15pF		13	22	ns
t _{PLH}	Propagation delay time, low-to- high-level output from clock	R _L =2kΩ		8	12	ns
t _{PHL}	Propagation delay time, high-to- low-level output from clock			11.5	17	ns

[#]For load circuit and voltage waveforms, see page 3-12.

Function Block Diagram

QUAD D-TYPE FLIP-FLOPS WITH CLEAR

Features

- Contains Four Flip-Flops with Double-Rail Outputs
- Buffered Clock and Direct Clear Inputs
- Individual Data Input to Each Flip-Flop
- Applications:

Buffer/Storage Registers

Shift Registers

Pattern Generators

Description

This monolithic, positive edge-triggered flip-flops utilize, TTL circuitry to implement D-type flip-flop logic.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

Function Table

1	INPUTS CLEAR CLOCK D L X X			OUTPUTS		
CLEAR	CLOCK	D	Q	Q		
L	Χ	X	L	Н		
Н	† *	Н	H	L		
Н	↑ *	L	L	Н		
Н	L	Х	Q _o *	\overline{Q}_{o}		

^{*†=}transition from low to high level

^{*}Q0=the level of Q before the indicated steady-state input conditions were established.

•	Supply voltage, V _{CC}	7V
•	Input voltage	5.5V
	Operating free-air temperature range 54S	
		0°C to 70°C
•	Storage temperature range	

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V _{CC}		54	4.5	5	5.5	V
•66		74	4.75	5	5.25	
I _{OH}	High-level output current	utput current			-1	mA
l _{OL}	Low-level output current				20	mA
f _{clock}	Clock frequency	Clock frequency			75	MHz
t _W	Pulse Width Clock Clear		7			ns
- vv			10			
t _{SU}	Set up time		5			ns
t _h	Data hold time		3			ns
TA	Operating free-air temperature 54 74		-55		125	°C
. W			0	-	70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage			2			V
VIL	Low-level input voltage		54			0.8	v
			74			0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =-18mA				-1.2	٧
V_{OH}	High level output voltage	V _{CC} =Min V _{IL} =Max	54	2.5	3.4		v
		I _{OH} =Max V _{IH} =Min	7.4	2.7	3.4		1 1
V _{OL}	Low-level output voltage	V _{CC} =Min V _{IL} =Max				0.5	v
		I _{OL} =Max V _{IH} =Min					
I _I	Input current at maximum input voltage	V _{CC} =Max, V _I =5.5V				1	mA
I _{IH}	High-level input current	$V_{CC}=Max, V_1=2.7V$				50	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.5V				-2	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)		-40		-100	mA
Icc	Supply current	V _{CC} =Max (Note 3)			60	96	mA

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25\,^{\circ}C$.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: With all outputs open and 4.5V applied to all DATA and CLEAR inputs, I_{CC} is measured after a momentary ground, then 4.5V applied to the CLOCK input.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	TEST CONDITION#	MIN	TYP	MAX	UNIT
f _{max}	Maximum clock frequency	C _L =15pF, R _L =2kΩ	75	110		MHz
t _{PLH}	Propagation delay time, low-to-high-level output $\overline{\mathbf{Q}}$ from clear			10	15	ns
t _{PHL}	Propagation delay time, high-to- low-level output Q from clear			13	22	ns
t _{PLH}	Propagation delay time, low-to- high-level output from clock			8	12	ns
t _{PHL}	Propagation delay time, high-to- low-level output from clock			12	17	ns

[#]For load circuit and voltage waveforms, see page 3-12.

GD54/74S240,S241,S244

OCTAL TRI-STATE BUFFERS/LINE DRIVERS/LINE RECEIVERS

Features

- · TRI-STATE outputs drive bus lines directly
- · PNP inputs reduce DC loading on bus lines
- Hysteresis at inputs improves noise margins
- Typical I_{OI} (sink current)

54S: 48mA 74S: 64mA

Typical I_{OH} (Source current)

54S: -12mA 74S: -15mA

 Typical propagation delay times Inverting 4.5 ns

Noniverting 6 ns

- Typical enable/disable times 9 ns
- Typical power dissipation (enabled)

Inverting 450 mW Noninverting 538 mW

Description

These buffers/line drivers are designed to improve both the performance and PC board density of TRI-STATE buffers/drivers employed as memory-address drivers, clock drivers, and bus-oriented transmitters/receivers. Featuring 400 mV of hysteresis at each low current PNP data line input, they provide improved noise rejection and high fanount outputs, and can be used to drive terminated lines down to 133 $\ensuremath{\Omega}$

Function Tables

54\$/74\$240

INPUTS		OUTPUT
G	Α	Υ
Н	Х	z
L	Н	L
L	L	Н

54S/74S244

INPUTS		OUTPUT
G	Α	Υ
н	Х	z
L	н	Н
L	L	L

54S/74S241

INPUTS			OUTPUTS
1G	2G	Α	Υ
н	L	Х	Z
L	н	Н	Ħ
L	Н	L	L

Pin Configuration

S240

S241

S244

Function Block Diagram

S240

S241 OUTPUTS

S244

•	Supply voltage, V _{CC}		• • • • • • • • • • • • • • • • • • • •	7V
•	Input voltage		•••••	5.5V
•	Operating free-air temperature range	54S		55°C to 125°C
		74 S		0°C to 70°C
•	Storage temperature range			. −65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V _{CC}	Supply veltage	54	4.5	5	5.5	v
	Supply voltage	74	4.75	5	5.25	\ \
	High-level output current	54			-12	
Іон		74			-15	mA
1	Low level output ourrest	54			48	
OL	Low-level output current	74			64	mA
TA	Operating free-air temperature	54	-55		125	°C
'A		74	0		70	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITION	S	MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High level input voltage			2			V
V _{IL}	Low level input voltage		54 74			0.8	V
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =-18 mA				-1.2	V
V _{T+} V _T _	Hysteresis	V _{CC} =Min		0.2	0.4		V
		V _{CC} =4.75V, V _{IH} =2V V _{IL} =0.8V, I _{OH} =-1 mA		2.7			
V _{OH}	High-level output voltage	$V_{CC} = Min, V_{IH} = 2V$ $V_{IL} = 0.8V, I_{OH} = -3 \text{ mA}$		2.4	3.4		v
		V _{CC} =Min, V _{IH} =2V V _{IL} =0.5V, I _{OH} =Max		2			
V _{OL}	Low Level Output Voltage	V _{CC} =Min V _{IL} =0.8V, V _{IH} =2V	54			0.55	v
			74			0.55	•
l _{ozh}	Off-State Output Current, High-level Voltage Applied	V _{CC} =Max, V _O =2.4V V _{IL} =0.8V V _{IH} =2V				50	μΑ
l _{OZL}	Off-State Output Current, Low Level Voltage Applied	V_{CC} =Max, V_{O} =0.5V V_{IL} =0.8V V_{IH} =2V				-50	μΑ
i,	Input Current at Maximum Input Voltage	V _{CC} =Max, V _I =5.5V				1	mA
I _{IH}	High level input current	$V_{CC}=Max, V_{I}=2.7V$				50	μΑ
I _{IL}	Low level input current	V _{CC} =Max, V _I =0.5V	Any A			-400	μΑ
'IL	Low level input darrent	VCC-Max, VI-0.0V	Any G			-2	mA
los	Short Circuit Output Current	V _{CC} =Max(Note 2)		-50		-225	mA
			54S240		80	123	
		Outputs	74S240		80	135	A
		High	54S241/4		95	147	mA
		riigii	74S241/4		95	160	
		777	54S240		100	145	
Icc	Supply Current	Outputs	74S240		100	150	m ^
55		Low	54S241/4		120	170	mA
			74S241/4		120	180	
			54S240		100	145	
		Outputs	74S240		100	150	mA
		Disabled	54S241/4		120	170	
			74S241/4		120	180	

Note 1: All typical values are V_{CC} =5.0V, T_A =25°C. Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	co	MIN	TYP	MAX	UNIT	
t _{PLH}	Propagation Delay Time Low to High Level Output	C _L =45 pF R _L =90Ω	54/74S240 54/74S241,244		4.5	7	ns
t _{PHL}	Propagation Delay Time High to Low Level Output	C _L =45 pF R _I =90Ω	54/74S240 54/74S241,244		4.5	7	ns
t _{PZL}	Output Enable Time to	$C_L=45 \text{ pF}$ $R_L=90\Omega$	54/74S240 54/74S241,244		10	15	ns
t _{PZH}	Output Enable Time to High Level	C _L =45 pF R _L =90Ω	54/74S240 54/74S241,244		6.5	10	ns
t _{PLZ}	Output Disable Time from Low Level	C _L = 5 pF R _L =90Ω	54/74S240 54/74S241,244		10	15 15	ns
t _{PHZ}	Output Disable Time from High Level	$C_L=5 pF$ $R_L=90\Omega$	54/74S240 54/74S241,244		6	9	ns

APPLICATIONS

54S/74S241'S USED AS REPEATER/LEVEL RESTORER

GD54/74S242, S243

QUADRUPLE BUS TRANSCEIVERS

Features

- Two-Way Asynchronous Communication Between Data Buses
- P-N-P Inputs Reduce D-C Loading
- Hysteresis (Typically 400 mV) at Inputs Improves Noise Margin

Description

These four data line transceivers are designed for asynchronous two-way communications between data buses. They can be used to drive terminated lines down to 133 ohms.

Function Table

Control Inputs	S242 Data Port Status	S243 Data Port Status		
GAB GBA	A B	А В		
н н	<u>o</u> 1	0 1		
L H		* *		
H L	ISOLATED	ISOLATED		
L L	ı ō	1 0		

^{*} Possibly destructive oscillation may occur in the transceivers are enabled in both directions at once.

I = Input,O = Output,O = Inverting Output

S242 12 10 13 3 S243 GBA NC 1B 2B 4B 13 12 8 3

Absolute Maximum Ratings

•	Supply voltage, V _{CC}	7V
	Input voltage	
	Operating free-air temperature range 54S	
	748	0°C to 70°C
•	Storage temperature range	-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V _{cc}	0 1	54	4.5	5	5.5	v
	Supply voltage	74	4.75	5	5.25	v
	High-level output current	54			-12	A
І он		74			-15	mA
	I _{OL} Low-level output current	54			12	^
OL		74			24	mA
_	Operating free-air temperature	54	-55		125	°C
T _A		74	0	70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITION	IS	MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High level input voltage			2			V
V _{IL}	Low level input voltage		54 74			0.8	V
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =-18 mA				-1.2	٧
V _{T+} V _T _	Hysteresis	V _{CC} =Min		0.2	0.4		٧
		$V_{CC}=4.75V, V_{IH}=2V$ $V_{IL}=0.8V, I_{OH}=-1 \text{ mA}$		2.7			
V _{OH}	High-level output voltage	V_{CC} =Min, V_{IH} =2V V_{IL} =0.8V, I_{OH} =-3 mA		2.4	3.4		v
		V _{CC} =Min, V _{IH} =2V V _{IL} =0.5V, I _{OH} =Max		2			
		V _{CC} =Min V _{IH} =2V	54		0.25	0.4	.,
V_{OL}	Low level output voltage	V _{IL} =0.8V I _{OL} =Max	74		0.25	0.5	V
l _{OZH}	Off-State Output Current, High level Voltage Applied	V _{CC} =Max V _O =2.4V V _{IL} =0.8V V _{IH} =2V				50	μΑ
l _{OZL}	Off-State Output Current, Low Level Voltage Applied	V_{CC} =Max V_{O} =0.5V V_{IL} =0.8V V_{IH} =2V				-50	μΑ
l _l	Input Current at Maximum Input Voltage	V _{CC} =Max V _I =5.5V				1	mA
I _{IH}	High level input current	$V_{CC}=Max V_{I}=2.7V$				50	μΑ
I _{IL}	Low level input current	$V_{CC}=Max V_I=0.5V$	Any A			-400	μΑ
			Any G			-2	mA
los	Short Circuit Output Current	V _{CC} =Max(Note 2)		-50		-225	mA
	ł		54S242		80	123	
		Outputs	74S242		80	135	mA
		High	54S243		95	147	
			74S243		95	160	
			54S242		100	145	
		Outputs	74S242		100	150	
Icc	Supply Current	Low	54S243		120	170	mA
			74S243		120	180	
			54S242		100	145	
		Outputs	74S242		100	150	
		Disabled	54S243		120	170	
			74S243		120	180	

Note 1: All typical values are V_{CC} =5.0V, T_A =25°C. Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL	PARAMETER	CONDI	TIONS	MIN	TYP	MAX	UNIT	
t _{PLH}	Propagation Delay Time	C _L =45 pF	548242		4.5	7	ns	
	Low to High Level Output	R _L =90Ω	748243		6	9		
t _{PHL}	Propagation Delay Time	C _L =45 pF	548242		4.5	7	ns	
	High to Low Level Output	R _L =90Ω	748243		6	9		
t _{PZL}	Output Enable Time to	C _L =45 pF	54\$242		10	15	ns	
	Low Level	R _L =90Ω	758243		10	15		
t _{PZH}	Output Enable Time to	C _L =45 pF	54\$242		6.5	10	ns	
	High Level	R _L =90Ω	74S243		8	12		
t _{PLZ}	Output Disable Time	C _L = 5 pF	54\$242		10	15	ns	
	from Low Level	R _L =90Ω	74s243		10	15		
t _{PHZ}	Output Disable Time	C _L =5 pF	54\$242		6	9	ns	
	from High Level	$R_L=90\Omega$	748243		6	9		

DATA SELECTORS/MULTIPLEXEPS WITH 3-STATE OUTPUTS

Feature

- Three-State Outputs Interface Directly with System Bus
- · Performs Parallel-to-Serial Conversion
- Complemently Outputs Provide True and Inverted Data
- Fully Compatible with Most TTL Circuits

Description

These monorithic data selectors/multiplexers contain full on chip binary decoding to select one-of-eight data sources and feature a strobe controlled three state output. The strobe must be at a low logic level to enable these devices. The three-state outputs permit a number of outputs to be connected to a common bus. When the strobe input is high, both outputs are in a high impedances state in which both the upper and lower transistors of each totempole output are off and the output neither drives nor loads the bus significantly. When the strobe is low, the outputs are activated and operate as standard TTL totem pole outputs.

Function Table

	INPUTS				OUTPUTS		
SI	ELEC	T	STROBE				
С	В	Α	S	Υ	W		
Х	Χ	Х	Н	Z	Z		
L	L	L	L	DO	<u>D0</u>		
L	L	Н	L	D1	D1		
L	Н	L	L	D2	D2		
L	Н	Н	L	D3	D3		
Н	L	L	L	D4	D4		
Н	L	Н	L	D5	D5		
Н	Н	L	L	D6	<u>D6</u>		
Н	Н	Н	L	D7	D7		

H=high logic level, L=low logic level X=irrelevant, Z=high impedance (off)

DO, D1 ...D7=the level of the respective D input

Schematics of Inputs and Outputs

•	Supply voltage, Vcc	•••••	7V
•	Off-state output voltage		5.5V
•	Operating free-air temperature range	54S	-55°C to 125°C
		74S	
•	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER	MIN NO	M MAX	UNIT
V _{CC}	Supply voltage	4.75	5.25	V
I _{OH}	High-level output current		-6.5	mA
l _{OL}	Low-level output current		20	mA
T _A	Operating free-air temperature	0	70	°C

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage			2			٧
V _{IL}	Low-level input voltage		54			0.8	.,
* IL	Low-level input voltage		74			0.8	٧
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =-18mA				-1.2	٧
\/	High level autout valtage	V _{CC} =Min V _{II} =Max	54	2.4	3.4		V
V _{OH}	High-level output voltage	I _{OH} =Max V _{IH} =Min	74	2.4	3.1		\ \
V _{OL}	Low-level output voltage	V _{CC} =Min V _{IL} =Max I _{OL} =Max V _{IH} =Min				0.5	٧
I _{OZH}	Off-state output current high-level voltage applied	V _{CC} =Max, V _O =2.4V V _{IH} =Min, V _{IL} =Max				50	μΑ
l _{OZL}	Off-state output current low-level voltage applied	V _{CC} =Max, V _O =0.5V V _{IH} =Min, V _{IL} =Max				-50	μΑ
i,	Input current at maximum input voltage	V _{CC} =Max, V _I =5.5V				1	mA
l _{IH}	High-level input current	$V_{CC}=Max, V_{I}=2.7V$				50	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.5V				-2	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)		-40		-100	mA
Icc	Supply current	V _{CC} =5.25V, All inputs a All outputs open	t 4.5V		55	85	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.
Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN TYP	MAX	UNIT
t _{PLH}	A, B or C (4 levels)	V		12	18	ns
t _{PHL}	A, D 01 0 (4 levels)	'		13	19.5	113
t _{PLH}	A, B, or C (3 levels)	w		10	15	ns
t _{PHL}	71, 2, 51 6 (6 16 1616)	**	C. =15pE	9	13.5	
t _{PLH}	Any D	Y	$C_L=15pF$ $R_L=280\Omega$	8	12	
t _{PHL}	Any D			8	12	ns
t _{PLH}		w		4.5	7	ns
t _{PHL}	Ally D			4.5	7	1115

[#]For load circuit and voltage waveforms, see page 3-12.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT	
t _{PZH}	01-1-	Υ			13	19.5	ns	
t _{PZL}	Storbe	1	C _L =50pF		14	21	110	
t _{PZH}			$C_L = 50pF$ $R_L = 280\Omega$		13	19.5	ns	
t _{PZL}	Strobe	W	-		14	21	115	
t _{PHZ}	0	V			5.5	8.5	ns	
t _{PLZ}	Strobe	Y	Y	C _L =5pF		9	14	115
t _{PHZ}	6	14/	$C_L = 5pF$ $R_L = 280\Omega$	5.5 8.5		8.5	ns	
t _{PLZ}	Strobe	W			9	14	115	

^{*} t_{PLH}=propagation delay time, low-to-high-level output

Function Diagram (Positive Logic)

t_{PHL}=propagation delay time, high-to-low-leve output

[•] t_{PZH}=output enable time to high level

^{*} t_{PZL}=output enable time to low level

t_{PHZ}=output disable time from high level
 t_{PLZ}=output disable time from low level

[#]For load circuit and voltage waveforms, see page 3-12.

QUAD DATA SELECTORS/MULTIPLEXERS: NON-INVERTED 3-STATE OUTPUTS

Features

- TRI-STATE versions S157, S158, with same pin-outs
- Schottky-clamped for significant improvement in A-C performance
- Provides bus interface from multiple sources in high-performance system

Description

These Schottky-clamped high-performance multiplexers feature TRI-STATE outputs that can interface directly with data lines of bus-organized systems. With all but one of the common outputs disabled (at a high impedance state), the low impedance of the single enabled output will drive the bus line to a high or low logic level. To minimize the possibility that two outputs will attempt to take a common is designed such that the output disable times are shorter than the output enable times.

This TRI-STATE output feature means that n-bit (paralleled) data selectors with up to 258 sources can be implemented for data buses. It also permits the use of standard TTL registers for data retention throughout the system.

Function Table

	INPUTS						
OUTPUT CONTROL	SELECT	А В	Y				
Н	X	ХХ	Z				
L	L	LX	L				
L	L	нх	н				
L	Н	X L	L				
L	Н	ХН	Н				

- X · Don't care
- Z : High Impedance (off)

•	Supply voltage, V _{CC}	 	7V
•	Input voltage	 	5.5V
•	Storage temperature range	 —(85°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
.,		54	4.5	5	5.5	v	
V_{CC}	Supply voltage	74	4.75	5	5.25	V	
	1 N-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	54			-2	mA	
Гон	High-level output current	74			-6.5		
I _{OL}	Low-level output current	54 74			20	mA	
_	Constitution from the terminal transfer	54	-55		125	°C	
T _A	Operating free-air temperature	74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER		TEST C	CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input	voltage				2			٧
V _{IL}	Low-level input v	oltage	54				0.8	V	
· -					74			0.8	
V_{IK}	Input clamp volta	age	V _{CC} =Min, I	_I =-18mA				-1.2	٧
V _{OH}	High-level output	t voltage	V _{CC} =Min V	_{IL} =Max	54	2.4	3.4		V
ОП			I _{OH} =Max V	_{IH} =Min	74	2.4	3.2		
V _{OL}	Low-level output	voltage	V _{CC} =Min, I _{OL} =Max V					0.5	٧
l _{ozh}	Off-state output high-level voltage		V _{CC} =Max, V _{IH} =Min,	V _{CC} =Max, V _O =2.4V				50	μΑ
l _{ozh}	Off-state output low-level voltage		V _{CC} =Max, V _{IH} =Min,	V _O =0.5V				-50	μΑ
l ₁	Input current at i	maximum	V _{CC} =Max,	V _I =5.5V				1	mA
l _{IH}	High-level input of	current	V _{CC} =Max	S input				100	μΑ
			V _i =2.7V	Any other				50	,
I _{IL}	Low-level input of	current	V _{CC} =Max	S input				-4	mA
			V _I =0.5V	Any other				-2	
los	Short-circuit outp	out current	V _{CC} =Max (Note 2)		-40		-100	mA
	Supply	Outputs high					44	68	
Icc	Current	Outputs low	V _{CC} =5.25V (Note 3)			60	93	mA	
		All outputs disabled					64	99	

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C. Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{CC} is measured with all outputs open and all possible inputs grounded while achieving the stated output conditions.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN TYP	MAX	UNIT
t _{PLH}	Data	Any		5	7.5	
t _{PHL}		Ally		4.5	6.5	ns
t _{PLH}	Select	Any	C _L =15 pF	8.5	15	
t _{PHL}	001001	Any	R _L =280Ω	8.5	15	ns
t _{PZH}	Output	Any		13	19.5	
t _{PZL}	Control	Ally		14	21	ns
t _{PHZ}	Output	Any	C _L =5pF R _L =280Ω	5.5	8.5	
t _{PLZ}	Control	Ally	0[-0pr n[=2009	9	14	ns

Application Example

8-WORD, 4-BIT MULTIPLEXER

^{*} $t_{P,LH}$ = propagation delay time, low-to-high-level output, $t_{P,LL}$ = output enable time to low level $t_{P,LH}$ = output enable time to high level, $t_{P,LH}$ = output disable time from low level,

^{*}For load circuit and voltage waveforms, see page 3-12.

9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS

Feature

- Generates Either Odd or Even Parity for Nine Data Lines
- · Cascadable for n-Bits
- Can Be Used to Upgrade Existing Systems Using MSI Parity Circuits

Description

These universal, monolithic, nine-bit parity generators/checkers utilize schottky-clamped TTL high performance circuitry and feature odd/even outputs to facilitate operation of either odd or even parity application. The wordlength capability is easily expanded by cascading.

This device can be used to upgrade the performance of most systems utilizing the 180 parity generator/checker. Although the S280 is implemented without expander inputs, the corresponding function is provided by the availability of an input at pin 4 and the absence of any internal connection at pin 3.

Function Table

NUMBER OF INPUTS A	OUTPUTS						
THRU I THAT ARE HIGH	ΣODD	ΣΕVΕΝ					
0, 2, 4, 6, 8	Н	L					
1, 3, 5, 7, 9	L	Н					

Supply voltage, V _{CC}	7V
Input voltage	5.5V
Operating free-air temperature range 54S	55°C to 125°C
74S	0°C to 70°C
Storage temperature range	-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT	
V _{CC}	Supply voltage	54	4.5	5	5.5		
*CC		74	4.75	5	5.25	V	
Іон	High-level output current			-1	mA		
I _{OL}	L'ow-level output current				20	mA	
TA	Operation from all towns and the	54	-55		125	°C	
'A 	Operating free-air temperature	74	0		70		

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITION	S	MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage			2			٧
V _{IL}	Low-level input voltage		54			0.8	V
			74			0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =-18mA				-1.2	٧
V _{OH}	High-level output voltage	V _{CC} =Min V _{IL} =Max	54	2.5	3.4		V
		I _{OH} =Max V _{IH} =Min	74	2.7	3.4		,
V _{OL}	Low-level output voltage	V _{CC} =Max, V _{IL} =Max I _{OL} =Max V _{IH} =Min				0.5	٧
l ₁	Input current at maximum input voltage	V _{CC} =Max, V _I =5.5V				1	mA
I _{IH}	High-level input current	V _{CC} =Max, V _I =2.7V				50	μΑ
Ι _{ΙL}	Low-level input current	V _{CC} =Max, V _I =0.5V				-2	mA
los	Short-circuit output current	V _{CC} =Max (Note 2)		-40		-100	mA
lcc	Supply current	V _{CC} =Max (Note 3)	54		67	99	mA
		, ,		67	105		

Note 1: All typical values are at $V_{CC}=5V$, $T_A=25$ °C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Note 3: I_{cc} is measured with the inputs grounded and outputs open.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

SYMBOL*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
t _{PLH}	– Data Σ Even				14	21	ns
t _{PHL}	Dala	2 LVeii	C =15°E B =3900		11.5	18	
t _{PLH}	Data	Data Σ Odd	$C_L=15pF, R_L=280\Omega$		14	21	ns
t _{PHL}	Dala	2 000			11.5	18	113

^{*} t_{PLH}=Propagation delay time, low-to-high-level output. t_{PHL}=Propagation delay time, high-to-low-level output.

[#]For load circuit and voltage waveforms, see page 3-12.

8-BIT UNIVERSAL SHIFT/STORAGE REGISTERS

Features

- Synchronous serial/parallel input-serial/parallel input
- · Right shift and left shift functions
- Possible expansion of bit number
- 3-state outputs
- Common parallel input and output pins
- Direct reset input

Description

The GD54/74 S299 is a semiconductor integrated circuit containing an 8-bit serial/parallel input-parallel output shift register function equipped with 3-state outputs and direct reset input.

Synchronous parallel loading is accomplished by taking both function-select lines, S0 and S1, high. This places the three-state outputs in a high-impedance state, which permits data that is applied on the input/output lines to be clocked into the register. Reading out of the register can be accomplished while the outputs are enabled in any mode. A direct overriding input is provided to clear the register whether the outputs are enabled or off.

Function Table

				INP	JTS				INPUTS/OUTPUTS						OUTPUTS			
MODE	CLEAR	FUNC ¹ SELE	СТ	_	PUT FROL*	CLOCK G1	SEF	RIAL	A/Q,	A B/Q	B C/Q	_C D/Q _I	_D E/Q _E	F/Q _F	G/Q ₀	H/Q _H	Q' _A	Q' _H
Clear	L L	X	L X	L	L L	L X	X	X	L L	L L	L	L L	L L	L L	L L	L	L L	L L
Hold	H	L X	L X	L	L L	X L	X	X				Q _{DO} Q _{DO}					Q _{A0} Q _{A0}	Q _{но} Q _{но}
Shift Right	H	L L	Н	L	L L	↑ ↑	X	H L	H			Q_{Cn} Q_{Cn}	-				H	Q_{Gn} Q_{Gn}
Shift Left	H	H	L L	L L	L L	↑ ↑	H	X				Q_{En} Q_{En}				H	Q_{Bn} Q_{Bn}	H L
Load	Н	Н	Н	Х	Х	1	Х	Х	а	b	С	d	е	f	g	h	а	h

^{*} When one or both output controls are high the eight input/output terminals are disabled to the high-impedance state; however, sequential operation or clearing of the register is not affected.

a...h=the level of the steady-state input at inputs A through H, respectively. These data are loaded into the flip-flops while the flip-flop outputs are isolated from the input/output terminals.

Function Block Diagram

Supply voltage, V _{cc}		7V
Off-state output voltage		5.5V
Operating free-air temperature range	54S	-55°C to 125°C
	748	0°C t 70°C
Stoorage temperature range		-65°C to 150°C

Recommended Operating Conditions

0)/14001	DADAM	PARAMETER					74S299		UNITS
SYMBOL	PARAM				MAX	MIN	NOM	MAX	UNITS
V _{CC}	Supply Volt	age	4.5	5	5.5	4.75	5	5.25	V
I _{OH}	High Level Output Current (Q _A thru Q _H)				-2			-6.5	mA
	High Level Current (Q'				-0.5			-0.5	1110
l _{OL}	Low Level Output Current (Q _A thru Q _H)				20			20	mΔ
	High Level Current (Q'			6			6	mA	
f _{clock}	Clock Frequ	0		50	0		50	MHz	
t _w (clock)	Width of clock pulse	Clock High	10			10			
		Clock Low	10			10			ns
t _W (clear)	Width of clear pulse	Clear Low	10			10			
		Select	151			15↑			
	Setup Time	data High*	7↑			7↑			ns
t _{su}		data Low*	5↑			5 †			1115
		clear inactive state	10↑			101			1
t _H	Hold Time (Sele	ect, Data*)	5↑			5↑			ns
t _{REL}	Clear Release	Clear Release Time				101			ns
T _A	Free Air Operat Temperature	ting	-55		125	0		70	°C

^{*} Data includes the two serial inputs and the eight input/output data lines.

Electrical Characteristics over recommended operating free air temperature (unless otherwise noted)

SYMBOL	PARAI	METER	TEST CC	ONDITIONS	MIN	TYP (Note 1	MAX	UNIT
V _{IH}	High-level input vo	tage			2			٧
V _{IL}	Low-level input vol	tage					0.8	٧
V _{IK}	Input clamp voltage	9	V _{cc} =MIN,	I _I =-18mA			-1.2	V
V _{OH}	High-level	Q _A thru Q _H	V _{cc} =MIN,	V _{IH} =2V,	2.4	3.2		V
TOH	output voltage	Q _A or Q _H	V _{IL} =0.8V,	$I_{OH} = MAX$	2.7	3.4		ľ
V _{OL}	Low-level output v	oltage	V _{cc} =MIN, V _{IL} =0.8V,	V _{IH} =2V, I _{OL} =MAX			0.5	٧
l _{ozh}	Off-state output current, high-level voltage applied	Q _A thru Q _H	$V_{cc}=MAX$, $V_{O}=2.4V$	V _{IH} =2V,			100	μΑ
l _{OZL}	Off-state output current, low-level voltage applied	Q _A thru Q _H	$V_{cc}=MAX$, $V_{O}=0.5V$	V _{IH} =2V,			-250	μΑ
I _I	Input current at ma input voltage	ximum	V _{cc} =MAX,	V _I =5.5V			1	mA
I _{IH}	High-level input	A thru H, S0, S1					100	
	current	Any other	V _{cc} =MAX,	V ₁ =2.7V			50	μΑ
	Low-level input	Clock or clear					-2	mA
I _{IL}	current	S0, S1	V _{cc} =MAX,	$V_1 = 0.5V$			-400	
		Any other					-250	μΑ
los	Short-circuit	Q _A thru O _H	V _{cc} =MAX		-40	****	-100	mA
	output current	Q _A ' or Q _H '	(Note 2)		-20		-100	IIIA
I _{cc}	Supply current		V _{cc} =MAX (N	Note 3)		140	225	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics, $V_{cc} = 5V$, $T_A = 25$ °C

PARAMETER	FORM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		MIN	TYP	MAX	UNIT
f _{max}					50	70		MHz
t _{PLH}	Clock	Q _A or Q _H	$C_L = 15_P F$	$R_1 = 1K\Omega$		12	20	ns
t _{PHL}						13	20	1.0
t _{PHL}	Clear	Q' _A or Q' _H				14	21	ns
t _{PLH}	Clock	Q _A thru Q _H	$C_1 = 45_p F_1$	$R_i = 280\Omega$		15	21	ns
t _{PHL}			- <u>[</u> p.,			15	21	"
t _{PHL}	Clear	Q _A thru Q _H				16	24	ns
t _{PZH}	G1, G2	Q _A thru Q _H				10	18	ns
t _{PZL}						12	18	113
t _{PHZ}	G1, G2	Q _A thru Q _H	$C_L = 5_P F$,	$R_1 = 280\Omega$		7	12	ns
t _{PLZ}	,		- Σ _L Ορ. ,	[20032		7	12	115

Note 3: I_{CC} is measured with all outputs open, A, B, and C1 input at 4.5V, and C2, G1, and G2 inputs grounded.

OCTAL D-TYPE FLIP-FLOPS; 3-STATEOUTPUTS COMMON OUTPUT CONTROL COMMON CLOCK

Pin Configuration

Feature

- D-Type-Flops in a Single Package
- 3-State Bus-Driving Outputs
- · Full Parallel Access for Loading
- Buffered Control Inputs
- Clock/Enable Input Has Hysteresis to Improve Noise Rejection
- P-N-P Inputs Reduce D-C Loading on Data Lines

Description

These 8-bit flip-flops feature three-state outputs designed specifically for driving high capacitive or relatively low-impedance loads. This is particulally suitable for implementing buffer registers, I/O port, bidirectional bus drivers, and working registers.

The eight flip-flops are edge-triggered D-type flipflops. On the positive transition of the clock the Q outputs will be set to the logic levels that were set up at the D inputs.

A buffered output-control input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly. The high-impedance third state and increased drive provide the capability to drive the bus lines in a bus-organized system without need for interface or pull up components.

The output control does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

Function Table

. 1	NPUTS	OUTPUT	
ŌĒ	CLK	D	Q
L	1	Н	Н
L	↑	L	L
L	·L	Χ	Q _O Z
Н	Χ	Χ	Z

Schematics of Inputs and Outputs

•	Supply voltage, Vcc		7V
		54S	
		74S	
•	Storage temperature range		-65°C to 150°C
	Off-state output voltage		5.5V

Recommended Operating Conditions

SYMBOL	PARAMETER		MIN	NOM	MAX	UNIT
V _{cc}	Supply voltage .		4.75		5.25	٧
V _{OH}	High-level output voltage				5.5	٧
I _{OH}	High-level output current	54			-2 ·	mA
On	a mg	74			-6.5	
l _{OL}	Low-level output current		ŀ		20	mA
t _w	Width of clock or enable pulse	High	6			ns
***		Low	7.3			
t _{SU}	Data setup time		5 †			ns
t _h	Data hold time		21			ns
t _A	operating free-air temperature	54	-55	<u>,</u>	125	°C
^	operating tree and temperature	74	0		75	

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
V _{IH}	High-level input voltage			2			٧
V _{IL}	Low-level input voltage		54			0.8	V
			74		•	0.8	
V _{IK}	Input clamp voltage	V _{CC} =Min, I _I =-18mA				-1.5	٧
V _{OH}	High-level output voltage	V _{CC} =Min V _{IL} =Max I _{OH} =Max V _{IH} =Min	54	2.4	3.4		V
			74	2.4	3.1		
V _{OL}	Low-level output voltage	V _{CC} =Min V _{IL} =Max I _{OL} =Max V _{IH} =Min				0.5	V
l _{ozh}	Off-state output current high-level voltage applied	V _{CC} =Max, V _O =2.4V V _{IH} =Min, V _{IL} =Max				50	μΑ
l _{OZL}	Off-state output current low-level voltage applied	V_{CC} =Max, V_{O} =0.5V V_{IH} =Min, V_{IL} =Max				-50	μΑ
l _i	Input current at maximum input voltage	V _{CC} =Max, V _I =5.5V				1	mA
I _{IH}	High-level input current	V _{CC} =Max, V _I =2.7V				50	μΑ
I _{IL}	Low-level input current	V _{CC} =Max, V _I =0.5V				-250	μΑ
los	Short-circuit output current	V _{CC} =Max (Note 2)		-40		-100	mA
Icc	Supply current	V _{CC} =5.25V			90	140	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25$ °C

PARAMETER*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
f _{max}				75	100		MHz
t _{PLH}	Clock or enable	Any Q	C _L =15pF, R _L =280Ω		8	15	
t _{PHL}	Clock of enable				11	17	ns
t _{PZH}	Output control	Any Q	C _L =15pF, R _L =280Ω,		8	15	
t _{PZL} ·	Output control				11	18	ns
t _{PHZ}	Output control Any Q		$C_L=5pF, R_L=280\Omega$ (Note 1)		5	9	
t _{PLZ}	Cutput control	Ally Q	0[-5pi , N[-280sz (Note 1)		7	12	ns

f_{max}=maximum clock frequency

Note 1: maximum clock frequency is tested with all outputs loaded

Function Block Diagram

t_{PLH}=propagation delay time, low-to-high-level output

t_{PHL}=propagation delay time, high-to-low-level output

t_{PZH}=output enable time to high level $t_{\rm PZL}$ =output enable time to low level $t_{\rm PHZ}$ =output disable time from high level

t_{PLZ}=output disable time from low level

[#]For load circuit and voltage waveforms, see page 3-12.

NUMERICAL/FUNCTIONAL INDEX	1
FUNCTIONAL INDEX/SELECTION GUIDE	2 .
TTL CHARACTERISTICS	3 =
GD74LS FAMILY CIRCUITS	4
GD74S FAMILY CIRCUITS	5
QUALITY ASSURANCE MANUAL	6
ORDERING INFORMATION & PACKAGE DIMENSION	7
GOLDSTAR SEMICONDUCTOR SALES NETWORK	8

QUALITY ASSURANCE MANUAL

- 1. INTRODUCTION
- 2 QUALITY ASSURANCE SYSTEM
 - 2.1 Quality Assurance at the Development State
 - 2.2 Quality Assurance at the Mass Production State
 - 2.2.1 Control of Material Purchasing
 - 2.2.2 Control of The Manufacturing Process
 - 2.2.3 Environment Control
 - 2.2.4 Control of Production and Instrument
- 3. RELIABILITY TEST
 - 3.1 Principle of Reliability
 - 3.2 Reliability Test Items and Conditions
- 4. SUMMARY
- 5. HANDLING AND STORAGE INSTRUCTION

1. INTRODUCTION

In recent years, advances in intergrated circuit have been rapid with increasing density and speed accompanied by decreasing cost. To meet these advances, there are three basic ingredients in the manufacture of reliable integrated circuits.

First, The device must be designed with the user's applications and reliability reguirements in mind. Secondly, The device must be manufactured with the optimum technology for the application.

Thirdly, Controls must be established to assure maintenance of the quality/reliability levels.

Goldstar Semiconductor has a Quality Assurance System and conducts extensive reliability testing to supply it's customer's needs.

This report presents Quality Assurance System and Reliability test results of Goldstar Semiconductor Company Products.

2. QUALITY ASSURANCE SYSTEM

To ensure that customers are satisfied with the products that are supplied, quality assurance programs are used at both the design and manufacturing phases, focusing on the following points:

- (1) In the development stase, reliability is designed into products. A through evaluation of reliability is performed to ascertain whether the design will lead to the desired quality and reliability.
- (2) Efforts are made at the manufacturing stage of quality control to assure that quality and reliability are built into products. Intermediate, final, and quality assurance inspection are used to verify that the desired quality and reliability have been achieved.
- (3) Information with regard to quality is fed back in a timely manner so that the required corrective action can be taken by quality assurance personal.

2.1 Quality Assurance at the Development Stage

It is not an exaggeration to say that the fundermental quality and reliability of a discrete semiconductor device or an intergrated circuit is determined at the design stage. Thus, to eliminate design problems and provide design improvements while attaining the desired quality and reliability, design reviews are performed on prototypes assure product quality. Particularly in the case of intergrated circuits, bread-board models of the circuit using standard components can be an effective means of evaluating the required characteristic and quality. In addition CAD technology may be used to aid in the design of circuits and devices based on design standards.

Between the development stage, and mass production, there are two steps of prototype and preproduction (trial mass production).

At the prototype development stage, new theories, technologies and concepts are used by the development department to design and produce a new product. To determine whether the desired goals for characterstics, ratings, and reliability have been met, primary type test is performed at this stage. Based on these results, thorough investigations are made by both the engineering and quality assurance departments. Should product deficiencies arise, inspections and failure analysis are performed to enable improvements of the development prototype.

At the pre-production stage, the production department produces sufficient products having quality equal to or superior to the prototype. At this stage, secondary type test is used to verify quality. The required product specifications, operation instructions, drawings, etc., are produce at this stage in addition to the required manufacturing facilities.

2.2 Quality Assurance at the Mass Production Stage

At the mass production stage, the production department takes over production of product based on production planning. To maintain equal or better quality than that obtained in previous stages, carefull control of materials purchasing, production processing, environment and facilities is performed. In addition, in process inspections and final inspections provide the required information with regard to partiality completed and completed devices to assure overall quality.

2.2.1 Control of Materials Purchasing

While the responsibility for quality of individual materials purchased from vendors based on drawings and purchase specifications is the responsibility of the vendor, the corporation provides data from incoming inspection of sampled products as a means of monitoring quality and assuring materials quality.

Selection of vendors is made adopter an investigation of quality control, management, facilities and production capacity of the vendor, placing heavy emphasis on quality. Next, a meeting is held with the vendor concerning the purchase specifications, and prototypes or sample evaluations are used to verify quality at the beginning or a purchase cycle or after a change in manufacturing method or specifications.

2.2.2 Control of the Manufacturing Process

To prototype products of high quality in an economic manner, quality must be built-in at the manufacturing stage. To do this, work is carried out in accordance with operation instructions and check sheets are used to control those aspects of manufacturing that could affect quality. For example, such information as the purity of water, atmosrhere, furnace temperature and gas flow are recorded. In addition, because of their great influence on diffusion, diffusion depth and surface density are recorded and used as control data for process conditions. Also, operations such as wire bonding which are affected by differences of individuals have been fully automated to contribute to product uniformity.

In-process inspections and final inspections are performed to evaluate product quality including outward appearance, dimensions, structure, as well as mechanical and electrical characteristics. The data obtained by such inspections is fed back to earlier processes to maintain and improve product quality as well as reduce variations in these areas.

Wafer processing and assembly inspections are part of the in-process inspection program, each contributing to the concept of building in quality at the manufacturing stage by providing self checks and the inspections performed by the quality control dopartment. A final inspection of all products is performed to verify electrical characteristics as well as outward appearance of products. In addition, to improve product quality uniformity, debugging is used as a means of eliminating products which do not meet quality specifications. Again, data from these inspections are useful in quality control.

Products which have passed final inspection are then subjected to quality assurance inspections. This is a form of overall inspection from the standpoint of the end user and is used to accept or reject products on a lot basis, including tests of outward appearance, electrical characteristics, thermal and mechanical environment, and endurance. As an additional control test, samples are made periodically for evaluation of reliability. These tests include those of electrical characterics, thermal and mechanical environment, and endurance for long periods of operation. The information on quality obtained by such quality assurance inspections is fed back in a timely fashion to the related departments, enabiling the maintenance and improvement of quality as well as providing a means of predicting product quality in the market palce.

STANDARD ASS'Y FLOW CHART OF GSS

FLOW CHART	PROCESS TITLE	QC POINT
∇	Wafer	
Ţ	Foil Mount	
Υ	FOII MOUNT	
\Diamond	Wafer Sawing	
	Q.C Monitor	
	* DI Water * Visual	RESISTIVITY
	* VISUAI	VISIUAL
\rightarrow	Die Bond	
一	Q.C Monitor	APPEARANCE
	* Visual	STRENGTH
	* Die Shear	
Q	Wire Bond	
	Q.C Monitor	
	* Visual	APPEARANCE APPEARANCE, STRENGTH
	* Bond pull * Crater	CRATER
L	3rd Optical Insp.	
	Q.C 3/0 gate	APPEARANCE
Y	* Visual	
\Diamond	Molding	SPRIAL FLOW
<u> </u>	Q.C Monitor	
	* Visual	APPEARANCE
الخال	* X-Ray Monitor	X-RAY INSP.
\circ	Deflash/Trim/Form	
	Q.C Monitor * Visual/Dimension	APPEARANCE/DIMENSION
	visual/Dimension	
\$		

Quality Assurance Manual

ELOW CLAST	DDOCESS TITLE	QC POINT
FLOW CHART	PROCESS TITLE	40.10
	Solder-Dipping Q.C Monitor * Temp of S/Bath * Sn in Solder * Solderability	TEMPERATURE. % OF Sn APPEARANCE
	4th Optical Insp	
\Diamond	4th O/Gate * Visual	APPEARANCE
	Temp. cycle (Option)	
	Mark & Cure Final Visual/Mech.	
	Initial Class	
9	Burn-In (Option)	
	Final Test	
\Diamond	Q.C Final Gate * Visual	APPEARANCE
	* Electrical	* D.C & SPEED * FUNCTION
	RELIABILITY TEST * LIFE TEST LTPD: 5% * 85/85 TEST LTPD: 10% * PRESSURE POT LTPD: 10% * THERMAL SERIES LTPD: 10% * LEAD INTEGRITY LTPD: 20% * PHYSICAL DIMENSION LTPD: 15%	ENVIRONMENTAL TEST MECHANICAL TEST AND ENDURANCE TEST

FLOW CHART	PROCESS TITLE	QC POINT
*	* RESISTANCE TO SOLVENTS LTPD: 15% * SOLDERABILITY LTPD: 10%	
ϕ	Packing	
\Diamond	Q.C Pack Gate	
\checkmark	Ship	
•	* ESD MONITOR (ALL PROCESS)	

2.2.3 Environmental Control

In the semiconductor industry, the environment plays a large role in influencing product quality and reliability. Control levels for dust, humidity, and temperature are set and rigidly maintained. The gases or water used in the production plant are carefully controlled to ensure high level of purity.

The control of dust is particularly important in reducing manufacturing defects and improving quality and reliability. For this reason the Corporation places heavy emphasis in this area, providing strict controls of working conditions and periodic checks to varify that these are being maintained.

2.2.4 Control of Production Equipment and Instrumentation.

The semiconductor industry is an equipment intensive industry having adopted a large variety of automatic equipment and high performance facilities to provide uniform high quality. The control of such equipment and instrumentation is extremely important in the manufacture of devices. For this reason, to eliminate loss of accuracy and equipment failures, periodic preventive maintenance and inspections are performed.

3. RELIABILITY TEST

3.1 Principle of Reliability

The fundermental principles of reliability engineering predict that the failure rate of any group of devices as a function of time will follow a curve similar to Figure 1. The curve is divided into three regions: Infant Mortality, Random Failures and Wearout Failures. These regions describe the principal classes of failure mechanisms encountered in that portion of the life of a device.

Infant Mortality represents the early life failures of a device. Failures in this region are usually associated with one or more manufacturing defects. After some period of time the failure rate reaches a low value or the Random failure portion of the curve that represents the useful portion of device life. Infant Mortal

failures are eliminated prior to customer shipment by high voltage cell stress, HTRB and reliability screen testing. (Baking, Temp Cycle, Burn-IN)

Wearout failures occur at the end of the device's useful life and are characterized byrapidly rising failure rate with time. This does not occur before hundreds of years for integrated circuits.

Associated with each portion of the curve are specific failure mechanisms. These failure mechanisms have been extensively discussed in the literature.

Figure 1. Reliability Life (Bath-tub) Curve

3.2 Reliability Test Items and Conditions

I. Group A: ELECTRICAL TEST

	TEST ITEMS.	METHOD.	MIL-STD-883C	GOLDSTAR SEMI.
1.	STATIC TEST (AT 25°C)		LTPD 2 : S/S = 266 C = 26	
2.	STATIC TEST (AT MAX. OP. TEMP.)		LTPD 3 : S/S = 176 C = 2	AQL = 0.04% S/S = 31.5 C = 0
3.	STATIC TEST (AT MIN. OP. TEMP.)		LTPD 5 : S/S = 105 C = 2	
4.	DYNAMIC TEST (AT 25°C)		LTPD 2 : S/S = 266 C = 2	
5.	DYNAMIC TEST (AT MAX. OP. TEMP.)		LTPD 3 : S/S = 176 C = 2	
6.	DYNAMIC TEST (AT MIN. OP. TEMP.)		LTPD 5 : S/S = 105 C = 2	
7.	FUNC. TEST (AT 25°C)		LTPD 2 : S/S = 266 C = 2	
8.	FUNC. TEST (AT MAX. MIN OP. TEMP.)		LTPD 5 : S/S = 105 C = 2	
9.	SWITCHING (AT 25°C)		LTPD 2 : S/S = 266 C = 2	
10.	SWITCHING (AT MAX. OP. TEMP.)		LTPD 3 : S/S = 176 C = 2	
11.	SWITCHING (AT MIN. OP. TEMP.)		LTPD 5 : S/S = 105 C = 2	

II. Group B : Per Lot

TEST ITEMS.	METHOD.	MIL-STD-883C	GOLDSTAR SEMI.
Sub 1			
PHYSICAL DIMENSION	2016	n = 2 : c = 0	n = 2 : c = 0
Sub 2			
RESISTANCE TO SOLVENTS	2015	n = 4 : c = 0	LTPD 15% S/S = 15
Sub 3			C = 0
SOLDERABILITY TEST	2022	LTPD 15% S/S = 15	LTPD 10% S/S = 22
	2003	C = 0	C = 0
Sub 4			
INTERNAL VISUAL &	2014	n = 1 : c = 0	n = 1 : c = 0
MECHANICAL			
Sub 5			
BOND STRENGTH	2011		LTPD 15% S/S = 15
Sub 6		C = 0	C = 0
INTERNAL WATER	1018	n = 3 : c = 0 or	NOT BEING
VAPOR CONTENT		n = 5 : c = 1	No i Belita
Sub 7			·
SEAL ·	•		
FINE LEAK	1014		LTPD 5% S/S = 45
GROSS LEAK		C = 0	C = 0
Sub 8 A) ELECTRICAL PARAMETERS	Gr A	n = 15 : c = 0	LTPD 10% S/S = 22
B) E. S. D CLASSIFICATION	3015	15.0=0	C = 0
C) ELECTRICAL PARAMETERS	Gr A		0 = 0

III. Group C: PERIODIC: DIE-RELATED TESTS

TEST ITEMS.	METHOD.	MIL-STD-883C	GOLDSTAR SEMI.
Sub 1			
A) STEADY STATE LIFE TEST	1005	AT 125°C: 1000 HRS	AT 125°C: 1000 HRS
B) END POINT ELECTRICAL.		LTPD 5% S/S = 77	LTPD 5% $S/S = 77$
		C = 1	C = 1
Sub 2			
A) TEMPERATURE CYCLE	1010	TEST COND. C	TEST COND. C: 100 CYCLE
			LTPD 15% S/S = 25, $C = 1$
B) CONSTANT ACCELERATION	2001	TEST COND. E	TEST COND. E
		Y1 ORIENTATION ONLY	Y1 ORIENTATION ONLY
C) SEAL	1014		
FINE LEAK	·	TEST COND. B	TEST COND. B
GROSS LEAK		TEST COND. C	TEST COND. C
D) VISUAL EXAMINATION	1010		
	1011		
E) END POINT ELECTRICAL.			

IV. Group D: PACKAGE RELATED TESTS

	TEST ITEMS.	METHOD.	MIL-STD-883C	GOLDSTAR SEMI.
Sub	1 PHYSICAL DIMENSION	2016	LTPD 15% S/S = 15 C = 0	LTPD 15% S/S = 15 C = 0
'	LEAD INTERGRITY		LTPD 15% S/S = 15 C = 0	LTPD 15% S/S = 15 C = 0
B)	SEAL FINE LEAK GROSS LEAK	1014	TEST COND. B TEST COND. C	TEST COND. B TEST COND. C
Sub A)	3 THERMAL SHOCK	1011	COND. B : 15 CYCLES LTPD 15% S/S = 15 C = 0	
C)	TEMPERATURE CYCLE MOISTURE RESISTANCE SEAL	1010 1004 1004	TEST COND. C : 100 CYCLE	
E)	FINE LEAK GROSS LEAK VISUAL EXAMINATION	1010 & 1004	TEST COND. B TEST COND. C	TEST COND. B TEST COND. C
F)	END POINT ELECTRICAL.			
Sub A)	4 MECHANICAL SHOCK	2002		LTPD 15% S/S = 15 COND B C = 0
B)	VIBRATION, VARIABLE FREQUENCY	2007	COND.B C = 0 TEST COND. A	TEST COND. A
C)	CONSTANT ACCELERATION	2001	TEST COND. E	TEST COND. E
D)	SEAL FINE LEAK	1014	TEST COND. B	TEST COND. B
E)	GROSS LEAK VISUAL EXAMINATION	1010 &	TEST COND. C	TEST COND. C
F)	END POINT ELECTRICAL.			
Sub A)	5 SALT ATMOSPHERE	1009	LTPD 15% S/S= 15 COND A C = 0	NOT BEING
	VISUAL EXAMINATION END POINT ELECTRICAL:	1009		
Sub	6 INTERNAL WATER VAPOR CONTENT (5000 PPM)	1018	n = 3 : c = 0 or n = 5 : c = 1	NOT BEING
Sub	7 ADHESION OF LEAD FINISH	2025	LTPD 15% S/S = 15 C = 0	LTPD 15% S/S = 15 C = 0
Sub	8 LID TORQUE	2024	n = 5 : c = 0	n = 5 : c = 0

V. Group E: RADIATION HARDNESS ASSURANCE TESTS

TEST ITEMS.	METHOD.	MIL-STD-883C	GOLDSTAR SEMI.
Sub 1 NEUTRON IRRADIATION A) QUALIFICATION B) QCI		at 25°C n = 15 : c = 0 n = 11 : c = 0	NOT BEING
Sub 2 STEADY-STATE TOTAL DOSE IRRADIATION A) QUALIFICATION B) QCI		at 25°C n = 15 : c = 0 n = 11 : c = 0	NOT BEING

FMA FLOW CHART

PROCEDURE OF FAILURE ANALYSIS

- CLAIM, COMPLAINT
 - IF REQUIRED, SEND DEVICE FAILED TO QC DEPT.
- * FAILURE ANALYSIS
- DETAILED INVESTIGATION.
- CORRECTIVE ACTION
- PREVENTION OF REOCCURENCE
- REPORT THE RESULT
- ANSWER TO THE CLAIM.

* FAILURE ANALYSIS

RELIABILITY TEST ITEMS of GOLDSTAR SEMICONDUCTOR

PLASTIC-DIP ONLY

TEST		QUA	LITY	QUALITY APPROVAL	٦٢	QUAL	ZIZ C	QUALITY CONFORMANCE	DRMANCE
	CONDITION	TEST FREQ	S/S	LTPD	# of ACC.	TEST FREQ	S/S	LTPD	# of ACC.
S &	Outgoing Visual Specification		1	ı	ı	Every Lot		AQL 0.065%	0
ဝ ဇ	Outgoing Test Specification		1	1	ı	Every		AQL 0.04%	0
Fe	Lead Thickness	Every Lot	5	ı	0	Every	-	ı	0
₹	All Dimension	Every Week	5	ı	0	Every	-	1	0
ŌØ	Outging Packaging Specification		ı	1	1	Every	₹		0
ı≃ > I	Ta=125 C, t=1000 HRS Vcc=5V	Every 3 Month	77	5	-	Every	38	10	-
<u>-</u>	Ta=150 C, t=1000 HRS	Every 3 Month	38	10	-		1	1	ı
F >	Ta=85 C 35% RH Vcc=5V, t=1000	Every 3 Month	38	10	-	Every Week	38	10	-
15 10	Ta=121 C, 30 PSIG 100% RH, 100 HRS	Every 3 Month	38	10	-	Every Week	25	15	0
1 5 5 1	-65 C 25 C 150 C 10 Min, 5 Min, 10 Min 200 Cycle	Every 3 Month	38	10	-	Every Week	22	10	0
വ	3 X, 90 Arcs 5 Units	Every 3 Month	15	15	0		1	ı	1
S S E	Solder Temp 240 5°C, Steam Aging 1 HRS Flux 6Sec, Solder 5Sec	2 Times / Weeks	22	10	0	2 Times / Weeks	22	10	0
1		Every Lot	15	15	0	Every	15	15	0
$\Sigma \Sigma$	MIC-STD-883C METHOD 3015	Every Lot	22	10	0	Every	15	15	0

4. SUMMARY

This report has presented quality assurance system and reliability test on GoldStar Semiconductor devices. According to the reliability test results and actual experimental data of operating life test, it is concluded that GoldStar devices are high quality devices and the incoming failure rate is expected to be less than 0.04%.

5. HANDLING AND STORAGE INSTRUCTION

5.1 HANDLING PRECAUTIONS

For all devices, the following practices should be observed for protection against high electrical static discharges.

- 5.1.1 Device leads should be in contact with a conductive material except when being tested or in actual operation.
- 5.1.2 Conductive parts tools, fixtures, soldering irons and handling equipment should be grounded to handle the devices.
- 5.1.3 Devices should not be inserted into or removed from test stations unless the power is off.
- 5.1.4 Neither should signals be applied to the input while the device power supply is in an off condition.
- 5.1.5 Operators should use grounded wrist straps and work conductive surfaces should be also grounded.

5.2 STORAGING PRECAUTIONS.

There are several basic requirements in case of long term storage for semiconductor devices.

- 5.2.1 Store the devices in a covered or sealed antistatic container.
- 5.2.2 Store the devices in an environment of no more than 60% relative humidity.
- 5.2.3 Store the devices in a inert atmosphere not exceeding +125°C or no more than -55°C.
- 5.2.4 Physical force is not permitted on any leads or plastic body when the devices are stored for prevention damage of device.

	FUNCTIONAL INDEX/SELECTION GUIDE
	TTL CHARACTERISTICS
	GD74LS FAMILY CIRCUITS
	GD74S FAMILY CIRCUITS
	QUALITY ASSURANCE MANUAL
\rangle	ORDERING INFORMATION & PACKAGE DIMENSION
	GOLDSTAR SEMICONDUCTOR SALES NETWORK

NUMERICAL/FUNCTIONAL INDEX

ORDERING INFORMATION

Ordering Information

Marking Code Formats of GS Biplar TTL are Shown as Following Example:

- (1) GD: Prefix of GS Digital IC
- (2) Operating Teperature Range 74; 0°C to + 70°C 54;-55°C to +125°C
- (3) Classification of TTL
 LS: Low Power Schottky TTL
 S: Schottky TTL
- (4) Consecutive Number to Indicate the Each Type
- (5) Alphabet: Series Impoved.
- (6) Package Type

Blank: Plastic Dual In Line Package
J: Cermic Dual In Line Package

D : Small Outline Package

PLASTIC DIP

(INCHES)

	(1101125)								
SYMBOL	14 PIN		. 16	PIN	20	PIN	24 PIN		
STMBOL	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Α	0.743	0.778	0.743	0.780	1.013	1.040	1.243	1.270	
В	0.245	0.255	0.245	0.255	0.263	0.273	0.535	0.545	
С	0.145	0.200	0.145	0.200	0.145	0.200	0.170	0.210	
D	0.015	0.021	0.015	0.021 .	0.015	0.021	0.015	0.021	
F	TYP (0.065	TYP 0.065		TYP 0.065		TYP 0	TYP 0.065	
G	0.09	0.11	0.09	0.11	0.09	0.11	0.09	0.11	
Н	_	0.075	0.015	0.045	0.055	0.065	0.06	0.09	
J	0.009	0.015	0.009	0.015	0.009	0.015	0.009	0.015	
K.	0.125	0.140	0.125	0.140	0.125	0.140	0.125	0.140	
L	0.300	0.320	0.300	0.320	0.300	0.320	0.6	0.62	
М	0°	10°	0°	10°	0°	10°	. 0°	10°	
N	0.02	_	0.02	_	0.02	_	0.015	_	

(MILLIMETERS)

SYMBOL	14	PIN .	16	PIN	20	PIN	24 F	24 PIN	
STMBOL	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Α	18.87	19.56	18.87	19.81	25.73	26.42	31.57	32.26	
В	6.223	6.477	6.223	6.477	6.477	6.731	13.589	13.843	
C	3.683	5.080	3.683	5.080	3.683	5.080	4.318	5.234	
D	0.387	0.527	0.387	0.527	0.387	0.527	0.387	0.527	
F	TYP ·	1.524	TYP ·	1.524 TYP 1		.524 TYP		1.524	
G	2.286	2.794	2.286	2.794	2.286	2.794	2.286	2.794	
Н	_	1.905	0.381	1.143	1.397	1.651	1.524	2.286	
J	0.229	0.381	0.229	0.381	0.229	0.381	0.229	0.381	
K	3.175	3.554	3.175	3.554	3.175	3.554	3.175	3.554	
L	7.620	8.128	7.620	8.128	7.620	8.128	15.24	15.75	
M	0°	10°	0°	10°	0°	10°	0°	10°	
N	5.08		5.08	_	5.08	_	3.81	_	

CERAMIC DIP

(INCHES)

SYMBOL	14 PIN		16 PIN		20 PIN		24 PIN	
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
Α	_	0.785	_	0.785	_	0.985		1.290
В	0.22	0.31	0.22	0.31	0.22	0.31	0.514	0.526
С	_	0.18	_	0.18	_	0.18		0.18
D	0.015	0.021	0.015	0.021	0.015	0.021	0.015	0.021
F	0.055	0.065	0.055	0.065	0.050	0.060	0.055	0.065
G	0.09	0.11	0.09	0.11	0.09	0.11	0.09	0.11
Н	_	0.098	_	0.08	_	0.08	_	0.098
J	0.008	0.012	0.008	0.012	0.008	0.012	0.008	0.012
K	0.125	0.20	0.125	0.20	0.125	0.20	0.125	0.20
L	0.29	0.32	0.29	0.32	0.29	0.32	0.59	0.62
М	0°	10°	0°	10°	0°	10°	0°	10°
N	0.02	0.06	0.02	0.06	0.02	0.07	0.02	0.06

(MILLIMETERS)

	14 PIN		16 PIN		20 PIN		24 PIN	
SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
Α	_	19.939	-	19.939	_	25.019	_	32.766
В	5.588	7.784	5.588	7.784	5.588	7.784	13.06	13.36
С	_	4.572		4.572	_	4.572	_	4.572
D	0.387	0.527	0.387	0.527	0.387	0.527	0.387	0.527
F	1.397	1.651	1.397	1.651	1.27	1.524	1.397	1.651
G	2.286	2.794	2.286	2.794	2.286	2.794	2.286	2.794
Н	_	2.489	_	2.032	_	2.489	_	2.489
J	0.203	0.305	0.203	0.305	0.203	0.305	0.203	0.305
K	3.175	5.080	3.175	5.080	3.175	5.080	3.175	5.080
L	7.366	8.128	7.366	8.128	7.366	8.128	14.986	15.748
М	0°	10°	0°	10°	0°	10°	0°	10°
N	0.051	0.152	0.051	0.152	0.051	0.178	0.051	0.152

SOIC

(INCHES)

			1					
SYMBOL	14 PIN		16 PIN		20 PIN		24 PIN	
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
Α	0.337	0.344	0.386	0.394	0.496	0.510	0.598	0.614
В	0.15	0.157	0.15	0.157	0.291	0.299	0.291	0.299
С	0.053	0.069	0.053	0.069	0.093	0.104	0.093	0.104
D	0.014	0.019	0.014	0.019	0.014	0.019	0.014	0.019
F	0.027	0.035	0.027	0.035	0.027	0.035	0.034	0.042
G	0.050	BSC	SC 0.050 BSC		0.050 BSC		0.050 BSC	
J	0.007	0.010	0.007	0.010	0.009	0.013	0.009	0.013
K	0.004	0.008	0.004	0.008	0.004	0.008	0.004	0.008
L	0.189	0.205	0.189	0.205	0.368	0.375	0.368	0.375
Р	0.228	0.244	0.228	0.244	0.404	0.419	0.404	0.373
М	0°	8°	0°	8°	0°	8°	0°	8°

(MILLIMETERS)

							(1411)	LLIIVIE I ENO)
SYMBOL	14 PIN		16 PIN		20 PIN		24 PIN	
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
Α	8.55	8.75	9.80	10.10	12.60	13.00	15.20	15.60
В	3.80	4.00	3.80	4.00	7.40	7.60	7.40	7.60
С	1.35	1.75	1.35	1.75	2.35	2.65	2.35	2.65
D	0.35	0.49	0.35	0.49	0.35	0.49	0.35	0.49
F	0.69	0.89	0.69	0.89	0.86	1.07	0.86	1.09
G	1.27 BSC		1.27 BSC		1.27 BSC		1.27 BSC	
J	0.19	0.25	0.19	0.25	0.23	0.32	0.23	0.32
K	0.10	0.20	0.10	0.20	0.10	0.20	0.10	0.20
L	4.82	5.21	4.82	5.21	9.34	9.53	9.34	9.53
Р	5.80	6.20	5.80	6.20	10.26	10.65	10.26	10.65
M	0°	8°	0°	8°	0°	8°	0°	8°

FUNCTIONAL INDEX/SELECTION GUIDE
TTL CHARACTERISTICS
GD74LS FAMILY CIRCUITS
GD74S FAMILY CIRCUITS
QUALITY ASSURANCE MANUAL
ORDERING INFORMATION & PACKAGE DIMENSION
GOLDSTAR SEMICONDUCTOR SALES NETWORK

ASIA

KOREA

° KUM SUNG JUN SIN ELECTRONICS CO,. LTD.

182-13, Jangsa-Dong, Chongro-Gu Seoul, Korea Tel:02-273-6811-3/274-1911-2 Fax:02-272-4367

NAM SUNG ELECTRONICS
 70-12 Goe-Dong Choong-Gu

Daegu, Korea Tel:053-423-0654 Fax:053-423-6689

SAM JIN ELECTRONICS

671-1, Junpo 1 Dong Busanjingu Busan, Korea Tel:051-807-1717 / 1747 Fax:051-807-6657

SEOG YUNG ELECTRONICS

182-2, Jangsa-Dong, Chongro-Gu Seoul, Korea Tel:02-273-6781 Fax:02-273-6597

° SOKCHUN TRADING CO.,LTD.

3112 Sun-In B/D Young San K.P.O.Box 1148, Seoul, Korea Tel:02-273-7877,266-1940 701-7811/7814 Fax:02-274-3291

° WOO SUNG SEMICONDUCTOR

5005Ho 22Dong Seonin Sangga 16-1, Hangangro-2Ga, YongSan-Gu Seoul, Korea Tel:02-273-4730, 272-3874 701-0291-4 Tix:WOOSEM K28711 Fax:02-701-0295

HONG KONG

* GOLDSTAR (H.K.) LTD.

Rm. 1501B, World Wide House, 19, Des Voeux Road, Central, Hong Kong. Tel:5-8456787 Tix:89860 GSH HX Fax:5-8459416

* LUCKY-GOLDSTAR INT'L LTD.

Rm. 3001, Gloucester Tower 30th Fl. The Landmark Central, Hong Kong Tel:5-266402/7 Tlx:62711 LGI HX Fax:5-8681460

• FUTURISTIC ELECTRONICS CO., LTD.

Flat.A-11,7/F Tonic Industrial Center No.26, Kai Cheung Rd. Kowloon Bay Kowloon,H.K. Tel:3-796-7968 Tix:52882 FETSC HX Fax:3-796-7420

•SUN COMPONENTS LTD.

1/F Hang Lung Bank Bldg. 46-48 Granville Road Tsim Sha Tsui, Kowloon, H.K. Tel:852-3-3118321 Tix:55858 ONFLO HX Fax:852-3-311-6715

•TECHGROW LTD.

4B Cheeful Comm. Bldg. 116-118, Ma Tau Wai Rd. Hunghom, Kowloon Hong Kong Tel:3-764-3618 Tlx:32465 TGL HX Fax:3-764-1781

INDIA

* GOLDSTAR CO., LTD.

Room 306-309 Parkash Deep Bldg. 7, Tolstoy Marg. New Delhi 110 001, India Tel:91-11-3311899 Tix:3161599 LGND IN Fax:91-11-3323754

* LUCKY-GOLDSTAR INT'L CORP.

Room 306-309 Parkash Deep Bldg. 7, Tolstoy Marg. New Delhi 110 001, India Tel:91-11-3311899 Tlx:3161599 LGND IN Fax:91-11-3323754

SEMICON TECH

15, Amrut Hansoti Rd. Cama lane, Ghatkopar (W) Bombay 400 086, India Tel:91-22-5114789 Tlx:1172313 SMC IN Fax:91-22-5136940

•SPARTEX SYSTEMS & SERVICES

PVT. LTD.

No. 68, Michael Palyam, Near Deccan Studio, C.V. Raman Nagar Post Bangalore 560 093, India Tel:91-812-564211 Tlx:8452190 MLHR IN

JAPAN

* GOLDSTAR JAPAN CO., LTD.

Hon-Kan 9F. Akasaka Twin Tower 17-22, 2-Chome, Akasaka, Minato-ku Tokyo, Japan Tel:03-224-0123 Tlx:J22873 GSTOKYO Fax:03-582-7948

JAPAN MACNICS CORP.

516, Imaiminami-Cho, Nakahara-Ku Kawasaki-City, Kanagawa-Ken, 211 Japan Tel:044-711-0022 Tix:28988 JAPMAC J Fax:044-711-2214

OHTORI CORP.

9-8, 5 Chome, Nipponbashi, Naniwa-Ku, Osaka Japan Tel:06-643-1655 Tix:526-7218 Fax:06-633-5212

OKAMOTO MUSEN CO., LTD. TOKYO BRANCH

3-2-17 Nozawa, Setagay-Ku Tokyo 154, Japan Tel:03-412-8211 Fax:03-418-2555

SINGAPORE

* GOLDSTAR CO., LTD.

8 Shenton Way #30-04 Treasury Bldg. S'pore 0106 Tel:65-2243166 Tix:RS 29118 GSSPO Fax:65-2240721

* LUCKY-GOLDSTAR INT'L CORP.

8 Shenton Way #39-03 Treasury Bldg. S'pore 0106 Tel:65-2204566 Tlx:RS 3922 LGTSPO Fax:65-2249049

•DYNAMAR HOLDINGS PTE LTD.

109 Defu Lane 10 Singapore 1953 S'pore 1334 Tel:281-338 TIX:RS 26283 DYNAMA Fax:281-3308

^{* :} Sales Offices

THAILAND

DYNAMAR COMPUTER PRODUCTS CO., LTD.

444 Ratchadapisek Road Samsennok Hauy Kwang Bangkok 10310 Thailand Tel:662-511-5104, 511-4809, 511-4331 Fax:662-512-1067

TAIWAN

 GOLDSTAR CO., LTD. TAIPEI OFFICE

3F-4, No. 695, Tun Hwa South Road, Taipei Taiwan, R.O.C. Tel:02-755-6658 Fax:02-702-0687

 LUCKY-GOLDSTAR INT'L CORP.

3F-4, NO. 695 Tun Hwa South Road, Talpei, Taiwan, R.O.C. Tel:02-755-6648/6650 Fax:02-702-0687

•BRIGHT UP INDUSTRIES CO., LTD.

12F, No. 142, Chung-Hsiao E. Rd. SEC. 4 Taipel, Taiwan, R.O.C. Tel:02-773-2194/8, 776-5455/9 Fax:02-751-9545

•GOLDEN SEVEN ENTERPRISE CO., LTD.

10th Fl. #95-1 Sung Chiang Rd. Taipei, Taiwan, R.O.C. Tel:02-507-1186 Tlx:26140 GOSEVEN Fax:02-508-2250

· LUMAX INT'L CORP., LTD.

14th FI., 687 Ming Sheng East Rd. Taipei, Taiwan, R.O.C. Tel:02-715-5976 Fax:02-716-4649 Tlx:22607 LUMAX

• UNITECH DEVICE CORP.

6F-2,No.142,Chung-Hsiao E. Rd. SEC. 4 Taipei, Taiwan, R.O.C. Tel:02-7760560/5 Fax:02-7313100

EUROPE

AUSTRIA

* LUCKY-GOLDSTAR INT'L CORP.

Mariahilfer Strasses 77-79, 1060, Wien, Austria Tel:222-933747 Tix:134419 LG INTA Fax:222-933739

° E.S.L. HANDELSGES M.B.H.

Wasagasse 26/3B A-1090,Wien, Austria Tel:222-310-1025 Th:135548 ESL A Fav:222-310-1027

BELGIUM

MALCHUS ELECTRONICS

Plantin-moretuslei 172 B-2018 Antwerpen, Belgium Tel:3-2353272 Tlx:33637 MALCH B Fax:3-2711049

DENMARK

° OLE WOLFF ELEKTRONIK APS.

Rodengvej 25, Dk 4180 Soro. Denmark Tel:3-633830 Tix:40294 WOLFF DK Fax:3-630183

FINLAND

° ELDIS OY

Niittyrinne 6, 02270, Espoo, Finland Tel:0-8039044 Tlx:121278 ELDIS SF Fax:0-8039089

FRANCE

* LUCKY-GOLDSTAR INT'L CORP.

PARIS OFFICE

24, Avenue De La Grande-Armee 75017 Paris, France Tel:1-4766-8888 Tlx:640221F LGIPAR Fax:1-4766-1380

¤AGEREP

7, rue Marcelin Berthelot 92160 ANTONY, France Tel:1-4666-6033 Tix:204871 GEPSI Fax:1-4096-9226

COMPTOIR COMMERCIAL D'IMPORTATION

5, rue Marcelin Berthelot 92160 Antony, France Tel:1-4668-2182 Tix:LORESOL 203881 Fax:1-4096-9226

ITALY

DAEWON EUROPA S.R.L.

Via lenardo da vinci, 43 20090 Trezzano Sul Naviglio (Milano), Italy Tel:2-4450042 Thx:32361 DWESKP Fax:2-4450184

MELCHIONI S.P.A.

Via P. Colletta,37 20135 Milano, Italy Tel:2-57941 Tix:320321 MELKIO I Fax:2-5461081

NETHERLANDS

MALCHUS B.V.

P.O. Box 4S 3100AA Schiedem, Netherlands Tel:10-4277777 Th::21598 MALCH NL Fax:10-4154867

NORWAY

° FEIRING ELEKTRONIKK A/S

P.O. Box 101, Bryn, 0611 Oslo 6, Norway Tel:2-649070 Tlx:74592 FEIIK N Fax:2-644051

SPAIN

INDUTRONIK,S.A.

Angelita Cavero,9 28027 Madrid, Spain Tel:1-741-8011 Tix:47821 INTK E Fax:1-742-8831

° LOBER, S.A.

Monte Esquinza, 28 E-28010 Madrid, Spain Tel:1-410-6821 Tix:49533 TLOB E Fax:1-410-6968

^{* :} Sales Offices

SWEDEN

° MIKO KOMPONENT AB

Seger Sbyvagen 3 S-14502 Norsborg, Sweden Tel:753-89080 Tix:15023 MIKO S Fax:753-75340

SWITZERLAND

° FTRONICS AG

Sonnenberg, P.O.B.23 8103 Unterengstringen, Switzerland Tel:1-750-3511 TIX:829055 AETR CH Fax:1-750-3567

TURKEY

° COMTEC San, ve Tic, Koll, Sti.

Hasanpasa, Ahmet Rasim Sok, No. 16 Kadikoy Istanbul, Turkey Tel:1-337-2245 Tix:29596 ELTS TR Fax:1-336-8414

U.K.

* GOLDSTAR CO., LTD.

Goldstar House 264 Bath Road Slough Berkshire Sli 4EW Tel:44-753-691888 Tix:846284 GSUK G Fax:44-753-693061

* LUCKY-GOLDSTAR INT'L (U.K.)LTD.

1-Fl, Califton House 83-89 Uxbridge Rd. Ealing London W5 5TA, U.K. Tel:840-7111 Tix:21765 LGIUK G Fax:840-1658

° KORD DISTRIBUTION LTD.

Watchmoor Road Camberley Surrey GU15 3AQ., U.K. Tel:276-685741 Tix:859919 KORDIS G Fax:276-891334

W. GERMANY

* GOLDSTAR Deutschland GmbH

Zentrale Ratingen HarkortstraBe 41 D-4030 Ratingen Tel:02102-4987-0 Tix:8585262 GSDG D Fax:02102-49-9662 * LUCKY-GOLDSTAR INT'L (Deutschland) GmbH

Lyoner Stern Bldg. Hahnstrasse 70 D-6000 Frankfurt Am Main 71 W.Germany Tel:89-663-0070 Th::4185337 LGIF D

° BECK GmbH & CO. ELEKTRONIK

Fax:69-666-6865

Bnauelemente KG, Postfach 91,02 80 8500 Nuernberg 91, W.Germany Tel:0911-34050 Tlx:622334 BECK D

Fax:0911-340528

OCEANIA

AUSTRALIA

° NOVOCASTRIAN ELECTRONIC SUPPLIES PTY LTD.

24 Broadmeadow Rd. Broadmeadow NSW, 2292, Australia Tel:49-62-1358 Fax:49-62-2005

•

* GOLDSTAR TECHNOLOGY, INC. EASTERN AREA OFFICE

1821 Walden Office Square, Suite 426 Schaumberg, IL 60173 Tel:312-397-0004 Fax:312-303-1121

* GOLDSTAR TECHNOLOGY, INC. WESTERN AREA OFFICE

6576 Corte Cisco Carisbad. CA 92008 Tel:619-931-7641 Fax:619-931-9628

ALABAMA

¤ EMA WESTERN REGIONAL OFFICE

309 Jordan Lane N.W. Huntsville, AL 35805 Tel:205-830-4030 Fax:205-830-1947

° RESISTACAP, INC.

P.O. Box 14069 11547 S.Memorial Parkway Huntsville, AL 35815 Tel:205-883-4270 Fax:205-881-7624

AFRICA

EGYPT

 HELIOPOLIS EST FOR IMPORT AND ELECTRICAL CONTRACTS
 13 FI SOMAL St. FI KODA, Heliopo

13 El Somal St. El Korpa, Heliopolis P.O. Box 610 H.W. Tel:660793/674986 Tix:20348 MOMA

NORTH AMERICA

ARIZONA

 ADDED VALUE ELECTRONIC DISTRIBUTION, INC.

7741 East Gray Road. Suite #9 Scottsdale. AZ 85260 Tel:602-951-9788 Fax:602-951-4182

CALIFORNIA

"HADDEN ASSOCIATES, INC.

4710 Rusner St. Suite H San Diego, CA 90111 Tel:619-565-1944 Fax:619-565-1802

MAGNA SALES

3333 Bowers. Suite 251 Santa Clara, CA 95054 Tel:408-727-8753 Fax:408-727-8573

 ADDED VALUE ELECTRONIC DISTRBUIION, INC.

6397 Nancy Ridge Road San Diego, CA 92121 Tel:619-558-8890 Fax:619-558-3018

U.S.A.

* GOLDSTAR TECHNOLOGY, INC.

1130 East Arques Avenue, Sunnyvale CA 94086 Tel:408-737-8575 Fax:408-737-0186

* : Sales Offices

: Sales Representatives

°: Sales Distributors

• : Sales Representatives/Distributors

° ALL AMERICAN SEMICONDUCTOR, INC.

2360 Qume Drive, Suite B San Jose, CA 95131 Tel:408-943-1200 800-222-6001 Fax:408-943-1393

JACO ELECTRONICS, INC.

2880 Zanker, Suite 202 San Jose, CA 95134 Tel:408-432-9290 Fax:408-432-9298

° CYPRESS ELECTRONICS

2175 Martin Ave. Santa Clara, CA 95050 Tel:408-980-2500 Fax:408-986-9584

* ALL AMERICAN SEMICONDUCTOR, INC.

369 Van Ness Way, #701 Torrance, CA 90501 Tel:213-320-0240 800-669-8300 Fax:213-320-7207

O ADDED VALUE ELECTRONIC DISTRIBUTION, INC.

1582 Parkway Loop, Unit G Tustin, CA 92680 Tel:714-259-8258 Fax:714-259-0828

* ADDED VALUE ELECTRONIC DISTRIBUTION, INC.

3320 East Mineral King, Unit D Visalia, CA 93291 Tel:209-734-8861 Fax:209-734-8865

* ADDED VALUE ELECTRONIC DISTRIBUTION, INC.

31194 LaBaya #100 Westlake Village, CA 91362 Tel:818-889-2861 Fax:818-889-2472

COLORADO

A.V.E.D.-ROCKY MOUNTAIN.

INC.

4090 Youngfield Street Wheat Ridge, CO 80033 Tel:303-422-1701 Fax:303-422-2529

CONNECTICUT

PARK DISTRIBUTORS

347 Railroad Avenue Bridgeport, CT 06604 Tel:203-366-7200 Fax:205-881-7624

FLORIDA

"LAWRENCE ASSOCIATES, INC.

711 Turnbull Avenue Altamonte Springs, FL 32701 Tel:407-339-3855 Fax:407-767-0973

" LAWRENCE ASSOCIATES, INC.

5021 N.Dixie Hwy. Boca Raton, FL 33431 Tel:407-368-7373 Fax:407-394-5441

"LAWRENCE ASSOCIATES, INC.

1417 Malabar Lakes Drive N.E. Palm Bay, FL 32905 Tel:407-984-0669 Fax:407-951-0906

"LAWRENCE ASSOCIATES, INC.

1131 US 19 South Palm Harbor, FL 34864 Tel:813-787-2773 Fax:813-787-2654

° ALL AMERICAN SEMICONDUCTOR, INC.

16251 N.W. 54th Avenue Miami, FL 33014 Tel:305-621-8282 Fax:305-620-7831

° ALL AMERICAN SEMICONDUCTOR, INC.

5009 Hiatus Road Sunrise, FL 33351 Tel:305-572-7999 Inside FL: 800-432-6838 Outside FL: 800-327-6237 Fax:305-749-9229

° JACO ELECTRONICS, INC.

1202 Tech. Blvd., Suite 201 Tampa. FL 33619 Tel:813-628-4665 Toll Free from N.FL & GA:800-265-JACO Fax:813-626-8185

GEORGIA

¤ EMA

EASTERN REGIONAL OFFICE

620 Colonial Park Drive Roswell, GA 30075 Tel:404-992-7240 Fax:404-993-3426

ILLINOIS

¤TRISTAR

930 Lee St. Elk Grove Village, IL 60007 Tel:312-593-0200 Fax:312-364-6507

ADVENT ELECTRONICS, INC.

7110-16N. Lyndon Street Rosemont, IL 60018 Tel:312-298-4210 Fax:312-297-6650

° Q.P.S. ELECTRONICS, INC.

101 East Commerce Dr. Schaumberg, IL 60173 Tel:312-884-6620

INDIANA

ADVENT ELECTRONICS, INC.

8446 Molier Road Indianapolis, IN 46268 Tel:317-872-4910 Fax:317-872-9987

IOWA

ADVENT ELECTRONICS, INC.

682 58th Ave. Ct. S.W. Cedar Rapids, IA 52404 Tel:319-363-0221 Fax:319-363-4514

MARYLAND

° JACO ELECTRONICS, INC.

10270 Old Columbia Road Columbia, MD 21046 Tel:301-995-6620 Fax:301-995-6032

O ALL AMERICAN SEMICONDUCTOR, INC.

14636 Rothger Drive Rockville, MD 20850 Tel:301-251-1205 800-426-0420 Fax:301-251-8574

MASSACHUSETTS

ALPHA OMEGA SALES CORP.

325 Main Street, Suite 301 North Reading, MA 01864 Tel:508-664-1118 Fax:508-664-3212

m: Sales Representatives

ALPHA OMEGA SALES CORP. NORTH CAROLINA

10-G Roessler Road Woburn, MA 01801 Tel:617-933-0237 Fax:617-938-8416

° ALL AMERICAN SEMICONDUCTOR, INC.

107 Audubon Rd., Suite 104 Wakefield, MA 01880 Tel:617-246-2300 800-874-2834 Fax:617-246-2305

MICHIGAN

ADVENT ELECTRONICS, INC.

24713 Crestview Ct. Farmington Hills, MI 48331 Tel:313-477-1650 Fax:313-477-2830

MINNESOTA

EXAMPLE OF EXAMPLE OF

45 Groveland Terrace P.O/Box 3978 Minneapolis, MN 55403 Tel:612-374-1250 Fax:612-374-5434

ALL AMERICAN SEMICONDUCTOR, INC.

8053 E. Bloomington Fwy., #102 Minneapolis, MN 55420 Tel:612-884-2220 Inside MN:800-223-7364 Outside MN:800-342-7364

NEW YORK

¤ ERA

364 Veterans Memorial Hwy. Commack, NY 11725 Tel:516-543-0510 Fax:516-543-0758

JACO ELECTRONICS, INC.

145 Oser Avenue Hauppauge, NY 11788 Tel:516-273-5500 Fax:516-273-5528

^o ALL AMERICAN SEMICONDUCTOR, INC.

711-2 Koehler Avenue Ronkonkoma, NY 11779 Tel:516-981-3935 Inside NY:800-637-7769 Outside NY:800-874-2830 Fax:516-981-3947

¤ EMA RALEIGH OFFICE 6604 Six Forks Road Suite 204 Raleigh, NC 27609 Tel:919-846-6888 Fax:919-847-7360

OHIO

° CAM RPC

749 Miner Road Highland Hts., OH 44143 Tel:216-461-4700 Fax:216-461-4329

OKLAHOMA

I LOGIC ONE

6550 East 71St. Suite B Tulsa, OK 74133 Tel:918-494-0765

PENNSYLVANIA

¤ CMS MARKETING

715 Twining Road Dresher, PA 19025 Tel:215-885-4424 Fax:215-885-3736

° CAM RPC ELECTRONICS

620 Alpha Drive Pittsburgh, PA 15238 Tel:412-782-3770 Fax:412-963-6210

TEXAS

¤ LOGIC ONE

11149 Research Blvd. Suite 110 Austin, TX 78759 Tel:512-345-2952 Fax:512-346-5309

I LOGIC ONE

4606 FM 1960 West Suite 418 Houston, TX 77069 Tel:713-444-7594 Fax:713-444-8236

¤LOGIC ONE

200 East Spring Valley Suite AA Richardson, TX 75081 Tel:214-234-0765 Fax:214-669-3042

° A.V.E.D.-SOUTHWEST, INC.

6448 Hwy 290 East. #A103 Austin, TX 78723 Tel:512-454-8845 Fax:512-459-8043

° A.V.E.D.-SOUTHWEST, INC.

4470 Spring Valley Road Dallas, TX 75244 Tel:214-404-1144 Fax:214-404-1104

° ALL AMERICAN SEMICONDUCTOR, INC.

1819 Firman Drive, #127 Richardson, TX 75081 Tel:214-231-5300 800-541-1435 Fax:214-437-0353

WISCONSIN

TRISTAR

16655 W. Bluemond Road Suite 390 Brookfield, WI 53005 Tel:414-782-2670 Fax:414-782-2187

UTAH

° A.V.E.D.-ROCKY MOUNTAIN. INC.

1836 Parkway Blvd. West Valley City, UT 84119 Tel:801-975-9500 Fax:801-977-0245

WASHINGTON

° JACO ELECTRONICS, INC.

15014 N.E. 40th St. Bldg. "0" Unit 202 Redmond, WA 98052 Tel:206-881-9200 Fax:206-881 9777

CANADA

BRITISH COLUMBIA

¤ VITEL ELECTRONICS CALGARY OFFICE

4211 Kingsway, Suite #314 Burnaby, British Columbia V5H 126 Tel:604-439-1136 Fax:604-439-0195

^{* :} Sales Offices

ONTARIO

™ VITEL ELECTRONICS
OTTAWA OFFICE
300 March Rd., Suite #301
Kanata, Ontario K2K 2E3
Tel:813-592-0090
Fax:613-592-0182

MEXICO

° DICOPEL

Tochtli 368 Fracc. Ind. Sn. Antonio, Azcapotzalco C.P. 02760 Mexico, D.F. Tel:561-3211 Fax:561-1279

SOUTH AMERICA

× VITEL ELECTRONICS TORONTO OFFICE

5925 Airport Rd., Suite #610 Mississauga, Ontario LAV 1W1 Tel:416-676-9720 Fax:416-676-0055

QUEBEC

□ VITEL ELECTRONICS

HEAD OFFICE - MONTREAL

2235 Omesime Gagnon

Lachine, Quebec H8T 927

Tel:514-636-5951

Fax:514-636-5951

Fax:514-636-5526

HEAD OFFICE: #20, YOIDO-DONG, YEONG DEUNG PO-GU, SEOUL KOREA, 150

YOIDO P.O. BOX 335 SEOUL KOREA

YOIDO P.O. BOX 335 SEOUL KOREA
TEL: INTERNATIONAL 787-3811~3819
DOMESTIC 787-3801~3807
INFORMATION 787-3114
TLX: GSRADIO K23751 SEOUL. FAX: 787-3400
FACTORY : #171 IMSODOONG. GUMI KYUNGSANGBUKDO. KOREA
TEL: (0546)462-7651, 7661, TLX: GOLDSEM K54413
FAX: (0546)462-7668
GOLD STAR: #1130 EAST ARQUES AVENUE SUNNYVALE, CA94086.
TECHNOLOGY TEL: (408) 737-8575. TLX: 176835 LKYGS SUVL.
LTD. FAX: (408) 737-0186

PRINTED IN KOREA MAY 1989 DT 89505-004B6