anbncn ist kontextsensitiv

Beispiel 3.1.11 modifizieren:

anbncn kontextsensitiv

$$\Sigma = \{a, b, c\}$$

$$G = (\Sigma, V, P, X)$$
$$V = \{X, Y, Z\}$$

$$P: X \to \varepsilon \\ X \to aXYZ \\ ZY \to YZ$$

$$aY \rightarrow YZ$$

 $aY \rightarrow ab$
 $bY \rightarrow bb$

$$bZ \rightarrow bc$$

 $cZ \rightarrow cc$

$$G' = (\Sigma, V, P, S)$$
$$V = \{S, X, Y, Z\}$$

3.2

$$P: S \rightarrow X \mid \varepsilon$$

$$X \rightarrow aXYZ \mid aYZ$$

$$ZY \rightarrow YZ$$

$$aY \rightarrow ab$$

$$bY \rightarrow bb$$

$$bZ \rightarrow bc$$

$$cZ \rightarrow cc$$

erzeugen beide die Sprache $L = \{a^n b^n c^n : n \in \mathbb{N}\}.$

G' ist kontextsensitiv (nur harmlose ε -Produktion!).

Johnner 2011

M.Otto und M.Ziegle

97/130

kontextfreie Sprachen (Typ 2)

→ Abschnitt 3.3

- wichtige nächste Stufe nach regulär
- zulässige Produktionen bei Typ 2, $\varepsilon \notin L$: $X \to v$, $v \neq \varepsilon$

Verschärfung: Chomsky-Normalform: $X \rightarrow YZ$ und $X \rightarrow a$

Satz: jede Typ 2 Grammatik ohne ε -Produktionen ist äquivalent zu Chomsky NF Grammatik

Beweisidee zur Transformation in Chomsky NF (Satz 3.3.2):

- ersetze a auf rechten Seiten durch neues Z_a neue Produktionen $Z_a \rightarrow a$
- eliminiere $X \rightarrow Y$ Produktionen (durch shortcuts)
- eliminiere $X \to Y_1 \dots Y_k$ Produktionen für k > 2

FGdI

Sommer 201

1.Otto und M.Zie

00/120

Kap. 3: Grammatiken

Kontextfreie

3.3

Chomsky NF und binäre Bäume

Ableitungsschritt $X \rightarrow YZ$ binäre Verzweigung $X \rightarrow a$ keine Verzweigung

Ableitungsbaum mit inneren Knoten für X in $X \rightarrow YZ$ Anwendungen

Lemma 3.3.3

in Chomsky NF Grammatik G:

 $w \in L(G)$ hat Ableitung der Länge 2|w| - 1.

Beweise induktiv über Länge ℓ der Ableitung von $w \in (V \cup \Sigma)^+$

 $|w|_V + 2|w|_{\Sigma} = \ell + 1$

Kap. 3: Grammatiken

Kontextfreie

3.3

kontextfreie Sprachen: Abschlusseigenschaften

Abschluss unter Vereinigung, Konkatenation, Stern

(Satz 3.3.7)

Zu gegebenen Typ 2 Grammatiken für L_1, L_2, L finde explizit Typ 2 Grammatiken für $L_1 \cup L_2$, für $L_1 \cdot L_2$, bzw. für L^*

z.B.: seien $G^{(i)} = (\Sigma, V^{(i)}, P^{(i)}, S^{(i)})$ kontextfrei, $V^{(1)} \cap V^{(2)} = \emptyset$ $G = (\Sigma, V, P, S)$ mit $L(G) = L(G^{(1)}) \cdot L(G^{(2)})$:

$$V := V^{(1)} \cup V^{(2)} \cup \{S\}$$
 S neu $P := \{S \to S^{(1)}S^{(2)}\} \cup P^{(1)} \cup P^{(2)}$

Bsp: $L_1 = \{a^n b^n : n \in \mathbb{N}\} \cdot \{c\}^*, \quad L_2 = \{a\}^* \cdot \{b^m c^m : m \in \mathbb{N}\}$ kontextfrei, nicht jedoch $L_1 \cap L_2 = \{a^n b^n c^n : n \in \mathbb{N}\}$ (später)

Kein Abschluss unter Durchschnitt/Komplement: $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$

FGdl I Sommer 2011 M.Otto und M.Ziegler 99/139

Kap. 3: Grammatiken

Kontextfreie

3.3

noch ein Pumping Lemma

→ Abschnitt 3.3.3

 $L \subseteq \Sigma^*$ kontextfrei \Rightarrow

existiert $n \in \mathbb{N}$ sodass sich jedes $x \in L$ mit $|x| \geqslant n$ zerlegen lässt in x = yuvwz, $uw \neq \varepsilon$, $|uvw| \leqslant n$, und für alle $m \in \mathbb{N}$

$$y \cdot u^m \cdot v \cdot w^m \cdot z = y \cdot \underbrace{u \cdot u}_{m \text{ mod}} \cdot v \cdot \underbrace{w \cdot w}_{m \text{ mod}} \cdot z \in L.$$

Beweis (Satz 3.3.8):

L = L(G), G in Chomsky NF, $n := 2^{|V|}$. Für $x \in L(G)$, $|x| \ge n$, hat jeder Ableitungsbaum zwei geschachtelte Vorkommen desselben X

Beispiel: $\{a^nb^nc^n: n \in \mathbb{N}\}$ nicht kontextfrei

....

M.Otto und M.Ziegler

101/13

Kap. 3: Grammatiken

CYK

3.3.4

Erinnerung: Wortprobleme als Entscheidungsprobleme

Wortproblem zu $L \subseteq \Sigma^*$:

Eingabe: $w \in \Sigma^*$ Entscheide, ob $w \in L$

Lösung durch Algorithmus A mit

$$w \xrightarrow{A} \begin{cases} \text{"ja"} & \text{falls } w \in L \\ \text{"nein"} & \text{falls } w \notin L \end{cases}$$
 verwerfen

definite Entscheidung

im Gegensatz zu: Akzeptieren wie bei NFA

Erzeugen/Ableiten wie in Grammatik

FGdI I

Sommer 201

1.Otto und M.Ziegle

100/120

Kap. 3: Grammatiken

CYK

3.3.4

CYK Algorithmus

→ Abschnitt 3.3.4

effizienter Algorithmus für das kontextfreie Wortproblem

für G in Chomsky NF (Produktionen $X \to a$ und $X \to YZ$) berechne zu $w = a_1 \dots a_n$ systematisch für alle Teilwörter $w_{i,j} = a_i \dots a_j$ $(1 \le i \le j \le n)$

$$V(i,j) := \{X \in V \colon X \to_G^* w_{i,j}\}$$

dynamisches Programmieren

rekursive Auswertung für i < j: (mit wachsender Länge j - i + 1)

$$\begin{array}{c} X \to_G^* w_{i,j} \\ \text{gdw} \\ \text{für ein } k \text{ mit } i \leqslant k < j \text{ und ein } X \to YZ \text{ ist} \\ Y \to_G^* w_{i,k} \text{ und } Z \to_G^* w_{k+1,j} \end{array}$$

Cocke, Younger, Kasami

CYK Algorithmus: Wortproblem in $\sim |w|^3$ Schritten entscheidbar.

Kap. 3: Grammatiken

CYK

3.3.4

das Wichtigste aus Kapitel 3

Grammatiken und Erzeugungsprozesse

Niveaus der Chomsky-Hierarchie

Normalform und Pumping Lemma für kontextfreie Sprachen

Sdl I Sommer 2011 M Otto und M Ziegler 103/130 FGd I Sommer 2011 M Otto und M Ziegler 104/130

Kapitel 4: Berechnungsmodelle:
Turingmaschinen (DTM/NTM)
Kellerautomaten (PDA)
Endliche Automaten (DFA/NFA) ✓

Kap. 4: Berechnungsmodelle

PDA

4.1

Kellerautomaten (PDA)

→ Abschnitt 4.1

PDA = NFA + Kellerspeicher (stack, push-down storage)

Konfiguration jeweils bestimmt durch

- Zustand
- Position in der Eingabe
- Kellerinhalt

erlaubte (nichtdeterministische) Übergänge abhängig von

- Zustand
- oberstem Kellersymbol
- nächstem Eingabesymbol

Übergang resultiert in

- Zustandswechsel
- (optional) Vorrücken in Eingabe
- pop und push im Keller:
 - Entfernen des obersten Kellersymbols (pop)
 - Einschreiben eines Wortes in Keller (push)

Kap. 4: Berechnungsmodelle

Berechnungsmodelle

- prinzipielle Fragen:
 Was lässt sich berechnen? (z.B. Wortprobleme)
- qualitativ-quantitative Fragen:
 Wie schwer ist ein algorithmisches Problem?
 Komplexitätshierarchien? (z.B. in Chomsky-Hierarchie)

Algorithmus = (Berechnungs-)Verfahren nach Al Chwarismi (Bagdad, um 800), latinisiert zu Algoritmi

 $A \subseteq Q$ akzeptierende Zustände

Sommer 2011

M.Otto und M.Ziegle

106/120

Kap. 4: Berechnungsmodelle

PDA

4.1

PDA $\mathcal{P} = (\Sigma, Q, q_0, \Delta, A, \Gamma, \#)$:

 Σ Eingabealphabet Q Zustandsmenge

 Γ Kelleralphabet $q_0 \in Q$ Anfangszustand

endliche Übergangsrelation: $\Delta \subseteq Q \times \Gamma \times (\Sigma \cup \{\varepsilon\}) \times \Gamma^* \times Q$

Konfigurationen: $C = (q, v, \alpha) \in Q \times \Sigma^* \times \Gamma^*$:

 $q \in Q$ aktueller Zustand,

 $\# \in \Gamma$ Anfangs-Kellersymbol

 $v \in \Sigma^*$ Restabschnitt des Eingabewortes,

 $\alpha \in \Gamma^*$ aktueller Kellerinhalt.

Startkonfiguration auf Eingabe w: $C_0[w] = (q_0, w, \#)$

Nachfolgekonfigurationen zu $C=(q,v,\alpha)$, $\alpha=\gamma\,\alpha_{\rm rest}$,

 $\gamma \in \Gamma$ oberstes Kellersymbol, Keller nicht leer:

$$C' = (q', v', lpha') ext{ mit } \left\{ egin{array}{l} v = xv' \ lpha' = eta \ lpha_{ ext{rest}} \end{array}
ight\} ext{ für ein } (q, \gamma, x, eta, q') \in \Delta.$$

Gdl I Sommer 2011 M.Otto und M.Ziegler 107/139

M.Otto und M.Ziegler

108/139

Kap. 4: Berechnungsmodelle

PDA

4.1

PDA Berechnungen

Startkonfiguration auf $w = a_1 \dots a_n$

typische Konfiguration C auf $w = a_1 \dots a_n$

Kap. 4: Berechnungsmodelle

PDA

4.1

PDA Berechnungen

(terminierende) Berechnung von \mathcal{P} auf Eingabe $w \in \Sigma^*$:

Konfigurationsfolge $C_0 \dots C_f$, wobei

$$C_0 = C_0[w] = (q_0, w, \#),$$

 C_{i+1} eine Nachfolgekonfiguration von C_i , $0 \le i < f$,

C_f Endkonfiguration ohne anwendbare Transition

Notation: $C_0[w] \xrightarrow{\mathcal{P}} C_f$

akzeptierende Berechnung: $C_f = (q, \varepsilon, \varepsilon)$ mit $q \in A$

von \mathcal{P} akzeptierte Sprache:

$$L(\mathcal{P}) = \left\{ w \in \Sigma^* \colon C_0[w] \xrightarrow{\mathcal{P}} (q, \varepsilon, \varepsilon) \text{ für ein } q \in A \right\}$$

PDA Berechnungen

C

Nachfolgekonfiguration von C

C'

Nachfolgekonfiguration von C

Kap. 4: Berechnungsmodelle

PDA

4.1

Beispiel: PDA für Klammersprache

$$\mathcal{P} = \big(\{(,)\}, Q, q_0, \Delta, \{q_0\}, \Gamma, \#\big),$$

$$Q = A = \{q\}, \text{ ein Zustand } q = q_0$$

$$\Gamma = \{|, \#\}$$

Transitionen:

(q, #, (, | #, q))(q, |, (, |, q) verarbeitet "(" und addiert "|" im Keller verarbeitet "(" und addiert "|" im Keller

 $(q, |,), \varepsilon, q)$

verarbeitet ")" und löscht ein "|" im Keller

 $(q, \#, \varepsilon, \varepsilon, q)$

 ε -Transition, die # löscht

Idee: Kellerspeicher als Zähler für $|u|_{\ell} - |u|_{1}$

Satz: kontextfrei = PDA-erkennbar

Satz 4.1.5

Für $L \subseteq \Sigma^*$ sind äquivalent: (i) L kontextfrei.

(ii) $L = L(\mathcal{P})$ für einen PDA \mathcal{P} .

Beweis

(i)
$$\Rightarrow$$
 (ii): aus $L = L(G)$, $G = (\Sigma, V, P, S)$ kontextfrei, gewinne PDA $\mathcal{P} = (\Sigma, Q, q_0, \Delta, A, \Gamma, \#)$

$$Q = A = \{q\}, \ q_0 = q$$

 $\Gamma = V \cup \Sigma, \ \# = S$
Transitionen: $(q, X, \varepsilon, \alpha, q)$ für Produktionen $X \to \alpha$ von G
 $(q, a, a, \varepsilon, q)$ für jedes $a \in \Sigma$.

(ii)
$$\Rightarrow$$
 (i): aus $L = L(\mathcal{P})$, $\mathcal{P} = (\Sigma, Q, q_0, \Delta, \Gamma, \#)$, gewinne kontextfreies $G = (\Sigma, V, P, S)$

Idee: Ableitungsschritte von $G \approx$ Berechnungsschritte von \mathcal{P}

Sommer 201

M.Otto und M.Ziegler

113/139

Turing: prinzipielle Berechenbarkeit

 \rightarrow Abschnitt 4.2

Alan M. Turing (1912 – 1954)

Pionier der modernen Theorie der Berechenbarkeit prinzipielle Grenzen und Möglichkeiten

1936 publiziert: "On Computable Numbers" mit mathematischer Abstraktion seiner Zuarbeiter (sog. 'computer')

Heutzutage "Turingmaschine" allgemein akzeptiert als Modell für Digitalrechner (PCs)

Kap. 4: Berechnungsmodelle

Turingmaschinen

12

Turingmaschinen: DTM

→ Abschnitt 4.2

DTM = DFA + unbeschränkter Lese/Schreibzugriff

Eingabe-/Arbeitsspeicher: unbeschränkte Folge von Zellen als "Band" mit Lese/Schreibkopf

Konfiguration bestimmt durch

- Zustand $(q \in Q)$
- Position auf dem Band
- Bandbeschriftung

Übergang in Nachfolgekonfiguration abhängig von

- Zustand
- aktuell gelesenem Bandsymbol

Übergang resultiert in

- Zustandswechsel
- Schreiben
- Kopfbewegung (<, ∘, >)

Kap. 4: Berechnungsmodelle

Turingmaschinen

4.2

DTM $\mathcal{M} = (\mathbf{\Sigma}, \mathbf{Q}, \mathbf{q}_0, \delta, \mathbf{q}^+, \mathbf{q}^-)$

Q Zustandsmenge

 $q_0 \in Q$ Anfangszustand

 $q^+/q^-\in Q$ akzeptierender/verwerfender Endzustand, $q^eq q^+$

 δ Ubergangsfunktion

 $\delta \colon Q \times (\Sigma \cup \{\Box\}) \to (\Sigma \cup \{\Box\}) \times \{<, \circ, >\} \times Q$

Konfigurationen:

$$C = (\alpha, q, x, \beta) \in (\Sigma \cup \{\Box\})^* \times Q \times (\Sigma \cup \{\Box\}) \times (\Sigma \cup \{\Box\})^*$$

 α : Bandinhalt links vom Kopf

x: Bandinhalt in Kopfposition

 β : Bandinhalt rechts vom Kopf

q: aktueller Zustand

Startkonfiguration auf Eingabe w: $C_0[w] := (\varepsilon, q_0, \square, w)$

Nachfolgekonfiguration: $C \longmapsto C'$ gemäß $\delta \ldots$

Endkonfigurationen: $q \in \{q^+, q^-\}$, akzeptierend/verwerfend

Sommer 2011 M.Otto und M.Ziegler 115/13

M.Otto und M.Ziegler

Kap. 4: Berechnungsmodelle

Aufzählkbarkeit/Entscheidbarkeit 4.3

→ Abschnitt 4.3

von DTM \mathcal{M} akzeptierte Sprache

$$L(\mathcal{M}) = \{ w \in \Sigma^* : M \text{ akzeptiert } w \} = \{ w \in \Sigma^* : w \xrightarrow{\mathcal{M}} q^+ \}$$

Entscheidung (des Wortproblems) von L

DTM: Akzeptieren und Entscheiden

 \mathcal{M} entscheidet L falls für alle $w \in \Sigma^*$:

$$w \xrightarrow{\mathcal{M}} \left\{ egin{array}{ll} q^+ & ext{für } w \in L \ q^- & ext{für } w
ot\in L \end{array}
ight.$$
 definit!

L entscheidbar (rekursiv):

L von einer DTM entschieden

L semi-entscheidbar (rekursiv aufzählbar):

L von einer DTM akzeptiert

M.Otto und M.Ziegler

Kap. 4: Berechnungsmodelle

Aufzählkbarkeit/Entscheidbarkeit 4.3

Beispiel: DTM für Palindrom

δ		0	1
q_0	$(\square,>,q^?)$		
$q^{?}$	(\Box, \circ, q^+)	$(\square,>,q^{ o 0})$	$(\square,>,q^{ o 1})$
$q^{ ightarrow 0}$	$(\square,<,q^{\leftarrow 0})$	$(0, >, q^{\to 0})$	$(1,>,q^{ ightarrow 0})$
$q^{ o 1}$	$(\square,<,q^{\leftarrow 1})$	$(0,>,q^{ o 1})$	$(1,>,q^{ ightarrow 1})$
$q^{\leftarrow 0}$	(\Box,\circ,q^+)	$(\square,<,q^\leftarrow)$	(\square, \circ, q^-)
$q^{\leftarrow 1}$	(\Box,\circ,q^+)	(\square, \circ, q^-)	$\boxed{(\Box,<,q^\leftarrow)}$
q^{\leftarrow}	$(\square,>,q^?)$	$(0,<,q^\leftarrow)$	$\boxed{ (1,<,q^\leftarrow)}$

intendierte Rolle der Zustände:

: Anfang abfragen q_0 : Startzustand

 $q^{\rightarrow 0}$: zum Ende, merke 0 : vergleiche Ende mit 0 $a^{\rightarrow 1}$: zum Ende, merke 1 : vergleiche Ende mit 1 q^+/q^- : akzeptiere/verwerfe q^{\leftarrow} : zum Anfang

Kap. 4: Berechnungsmodelle

Aufzählkbarkeit/Entscheidbarkeit 4.3

Church-Turing These

algorithmische Entscheidbarkeit = Turing-Entscheidbarkeit algorithmische Erzeugbarkeit = Turing-Aufzählbarkeit Berechenbarkeit = Turing-Berechenbarkeit

- Belege: Erfahrung: alle akzeptierten Algorithmen lassen sich im Prinzip mit DTM simulieren
 - Robustheit des TM Modells
 - bewiesene Äquivalenz mit ganz unterschiedlichen alternativen Charakterisierungen

wichtig: idealisiertes Konzept von prinzipieller Machbarkeit im Ggs. zu praktischer Machbarkeit

Kap. 4: Berechnungsmodelle

Aufzählkbarkeit/Entscheidbarkeit 4.3

einige Väter der Berechenbarkeitstheorie

Church (1903-1995)

Gödel (1906-1978)

Turing (1912–1954)

Kleene (1909-1994)

120/139