Chapter

6

(c) > 1

CONIC SECTION

OBJECTIVE

(1)	The eq	uation of circle whose center is	(Lahore Board 2009)		
	(a)	$\sqrt{g^2-f^2-c}$	(b)	$\sqrt{g^2+f^2-c}$	
	(c)	$\sqrt{g^2-f^2+c}$	(d)	$\sqrt{g^2 + f^2 + c}$	
(2)	The di	rectrix of parabola $y^2 = 8x$ is			
	(a)	x = -2	(b)	x = 2	
	· ·	•	(d)	y = 2	
(3)	Equati	on of tangent to the ellipse $\frac{x^2}{a^2}$	$+\frac{y^2}{b^2} =$	1 is	
	(a)	$y-y_1=m\ (x-x_1)$	(b)	$y = \frac{c}{m}$	
		$\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$	(d)	none of these	
(4)	Transv	verse axis of hyperbola $\frac{y^2}{a^2} - \frac{x^2}{b^2}$	= 1 is		
	(a)	x - axis	(b)	y - axis	
	(c)	z - axis	(d)	none of these	
(5)	Parabo	ola $y^2 = x$ passes through			
	(a)	1 st quadrant	(b)	origin	
	(c)	2 nd quadrant	(d)	none	
(6)	Eccent	tricity of hyperbola is always _		(Lahore Boat	rd 2007, 2010, 2013)
	(a)	= 1	(b)	< 1	

(d) ≥ 1

(c)

116 Focus of parabola $y^2 = -12 x$ is (7) (0, -3)(b) (3, 0)(a) (c) (-3,0)(d) (0, 0)The tangents of the ellipse are $y = mx + \frac{1}{2}$ (8) $\pm\sqrt{m^2a^2+b^2}$ $\pm \sqrt{m^2a^2-b^2}$ (a) (b) none of these (d) (c) Vertices of hyperbola $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ are _ (9) $(\pm a, 0)$ (b) $(0, \pm a)$ (a) (d) $(\pm b, 0)$ (c) $(0, \pm b)$ If e = 1, conic is _____ (10)parabola circle (b) (a) (d) hyperbola (c) ellipse Parametric equations of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are (11) $x = at^2$, y = 2at(b) $x = r \cos \theta$, $y = r \sin \theta$ $x = a \sec \theta$, $y = b \tan \theta$ (d) $x = a \cos \theta$, $y = b \sin \theta$ Equation of tangent of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is y = mx +__ (12) $\pm\sqrt{a^2m^2+b^2}$ (b) $\sqrt{a^2m^2 - b^2}$ (a) (d) (Lahore Board 2007) 16 (b) 25 (a) $\sqrt{41}$ (d) (c) Ellipse and hyperbola are called _____ conics. (14)central focal (b) (a) vertical (d) none of these (c) In ellipse, length of major axis is _____ (Lahore Board 2008) (15)2a (b) 4a (a) $2b^2$

none of these

(d)

(16) Equation of directrix of $y^2 = 4ax$ is _____

(a) x = a

(b) x = -a

117

(c) y = a

(d) y = -a

(17) Equation of tangent of $y^2 = 4ax$ is _____

- (a) $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$
- (b) $\frac{xx_1}{a^2} \frac{yy_1}{b^2} = 1$
- (c) $yy_1 = 2a (x + x_1)$
- (d) none of these

(18) Directrix of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are _____

(Gujranwala Board 2007)

(a) $y = \pm \frac{a}{e}$

(b) $x = \pm \frac{a}{e}$

(c) $x = \frac{a}{e}$

(d) $y = \frac{a}{e}$

(19) Length of latusrectum of $\frac{x^2}{9} + \frac{y^2}{4} = 1$ is

(Gujranwala Board 2007)

(a) $\frac{2b^2}{a}$

(b) 4a

(c) $\frac{8}{3}$

(d) none

(20) Eccentricity of parabola is

(Gujranwala Board 2006)

(a) e = 0

(b) e = 1

(c) e < 1

(d) e > 1

(21) Centre of circle $(x-1)^2 + (y+3)^2 = 3$ is _____

(Gujranwala Board 2007)

(a) (0, 0)

(b) (-1,3)

(c) (1, -3)

(d) (-1, -3)

(22) Vertices of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are _____

(Lahore Board 2007)

(a) $(0, \pm a)$

(b) $(\pm a, 0)$

(c) $(0, \pm b)$

(d) $(\pm b, 0)$

(23) Focus of parabola $x^2 = 4ay$ is _____

(Gujranwala Board 2006)

(a) (0, 0)

(b) (0, a)

(c) (a, 0)

(d) (b, 0)

(24)	$y = \pm$	$\frac{b}{a}$ x are	of hyperbola.					
	(a)	asymptotes	(b)	tangents				
	(c)	centre	(d)	none of these	:			
(25)	If circ	$\log x^2 + y^2 - 3x - 2y + c =$	= 0 passes through	origin then c =	(Lahore Board 2009)			
	(a)		(b)	– 1				
	(c)	0	(d)	∞				
(26)	Lengt	h of diameter of circl	$e x^2 + y^2 = a^2 is$		(Lahore Board 2006)			
	(a)	a	(b)	a^2				
	(c)	zero	(d)	2a				
(27)	Cente	or of ellipse $x^2 + 4y^2 =$	= 16 is	_				
	(a)	(0, 4)	(b)	(0,0)				
	(c)	(0, 16)	(d)	(4, 16)				
(28)	If $r =$	0 then $x^2 + y^2 = r^2$ is	called	circle.				
	(a)	point	(b)	zero				
	(c)	small	(d)	large				
(29)		of hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are (± a, 0).				
	(a)	focus	(b)	vertices				
	(c)	covertices	(d)	none of these	:			
(30)	Dista	nce between vertex ar	and focus of $y^2 = 4$	4ax is				
	(a)	zero	(b)	4a				
	(c)	a	(d)	4				
(31)	Mid point of foci F and F' of ellipse is called							
	(a)	vertex	(b)	center				
	(c)	focus	(d)	directrix				
(32)	Foci o	of an ellipse always li	e on	(G	ujranwala Board 2006)			
	(a)	major axis	(b)	minor axis				
	(c)	covertices	(d)	none of these	:			
(33)	Lengt	h of latus rectum of e	ellipse are					
	(a)	2a	(b)	a				
	(c)	4a	(d)	$\frac{2b^2}{a}$				

Equa	Equation of latus rectum of $y^2 = 4ax$ is							
(a)	y = a	(b)	y = -a					
(c)	x = -a	(d)	x = a					
The t	wo separate parts of hyperbola	are cal	lled	(Gujranwala Board 2009)				
(a)	branches	(b)	parts					
(c)	curves	(d)	directrix					
Verte	ex of parabola $(x-2)^2 = 8(y +$	- 1) is _						
(a)	(2, -1)	(b)	(-2, 1)					
(c)	(0, 0)	(d)	(0, 0)					
A lin	e segment whose end points lie	e on a c	ircle called _					
(a)	diameter	(b)	radius					
(c)	chord	(d)	none of the	ese				
Ecce	ntricity of $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is							
(a)	$\frac{\sqrt{7}}{4}$	(b)	$\frac{4}{5}$					
(c)	$-\frac{\sqrt{7}}{4}$	(d)	none of the	ese				
The	value of 'a' for which the paral	bola y²	= 4ax passes	through the point (2, 3) is				
(a)	8	(b)	6					
(c)	5	(d)	$\frac{9}{8}$					
If $\frac{x^2}{36}$	$+\frac{y^2}{49} = 1$ then end of minor axis	is are _						
(a)	$(\pm 6, 0)$	(b)	$(0, \pm 6)$					
(c)	$(0, \pm 7)$	(d)	$(\pm 7, 0)$					
Paral	$y^2 = 4ax \text{ opens}$		(Lahore Board 2009)					
(a)	upward	(b)	downward					
(c)	right side	(d)	left side					
Paral	$y^2 = -4ax$ opens							
(a)	upward	(b)	down ward	1				
	right side		left side					
	(a) (c) The t (a) (c) Verte (a) (c) A lin (a) (c) Ecces (a) (c) The v (a) (c) Parale (a) (c) Parale (a) (c) Parale	(a) $y = a$ (c) $x = -a$ The two separate parts of hyperbola (a) branches (c) curves Vertex of parabola $(x - 2)^2 = 8(y + 4)$ (a) $(2, -1)$ (b) $(0, 0)$ A line segment whose end points lie (a) diameter (b) chord Eccentricity of $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is	(a) $y = a$ (b) (c) $x = -a$ (d) The two separate parts of hyperbola are call (a) branches (b) (c) curves (d) Vertex of parabola $(x - 2)^2 = 8(y + 1)$ is _(a) $(2, -1)$ (b) (c) $(0, 0)$ (d) A line segment whose end points lie on a call (a) diameter (b) (c) chord (d) Eccentricity of $\frac{x^2}{16} + \frac{y^2}{9} = 1$ is	(a) $y = a$ (b) $y = -a$ (c) $x = -a$ (d) $x = a$ The two separate parts of hyperbola are called				

[Ch.06] Conic Section			120	Objective Mathematics-II			
(43)	$\mathbf{x}^2 = \mathbf{x}$	4ay opens					
	(a)	upward	(b)	down ward			
	(c)	right side	(d)	left side			
(44)	$\mathbf{x}^2 = \mathbf{x}$	 4ay opens 					
	(a)	upward	(b)	downward			
	(c)	right side	(d)	left side			
(45)	The	foci of hyperbola $\frac{x^2}{a^2} - \frac{x^2}{a^2}$	$\frac{y^2}{2} = 1$ is				
	(a)	$(\pm a, 0)$	(b)	$(\pm c, 0)$			
	(c)	$(0, \pm c)$	(d)	$(0, \pm a)$			
(46)	The	equation ax ² + by ² +	- 2hxy + 2gx	+ 2fy + c = 0 represents a circle if (Lahore Board 2009)			
	(a)	a = b, $h = 0$	(b)	$a \neq b, h = 0$			
	(c)	$a = b, h \neq 0$	(d)	none of these			
(47)	Leng	th of latusrectum of el	lipse is				
	(a)	a	(b)	4a			
	(c)	$\frac{2b^2}{a}$	(d)	none of these			
(48)	Ecce	ntricity of hyperbola is					
	(a)	e = 0	(b)	e = 1			
	(c)	e > 1	(d)	e < 1			
(49)	The	center of circle $45x^2 +$	$45y^2 - 60x + 36$	6y + 19 = 0 is(Lahore Board 2009)			
	(a)	(0, 0)	(b)	(60, 36)			
	(c)	(-60, 36)	(d)	$\left(\frac{2}{3}, \frac{-2}{5}\right)$			
(50)	Ax^2	$+By^2 + Gx + Fy + C =$	0 form a circle	if			
	(a)	$A \neq B$	(b)	A = B = 0			
	(c)	$A = B \neq 0$	(d)	none of these			

(51) $Ax^2 + By^2 + Gx + Fy + C = 0$ form parabola if _____

(a)
$$A \neq B$$

(b) A = 0 or B = 0

(c)
$$A = B \neq 0$$

(d) none of these

(52) $Ax^2 + By^2 + Gx + Fy + C = 0$ form hyperbola if _____

(a) $A \neq B$, both have same signs (b) $A \neq B$, both have opposite signs

(c)
$$A = B$$

(d) none of these

(53) $Ax^2 + By^2 + Gx + Fy + C = 0$ form ellipse if

(a) $A \neq B$, both have same signs (b) $A \neq B$, both have opposite signs

121

(c) A = B

(d) none of these

(54) Most general form of 2^{nd} degree $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ form a circle if

(a) a = b, h = 0

(b) $a = b, h \neq 0$

(c) $a \neq b$, h = 0

(d) none of these

(55) Most general form of 2^{nd} degree $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ form a parabola if _____

- (a) $h^2 ab < 0$
- $(b) h^2 ab = 0$
- (c) $h^2 ab > 0$

(d) none of these

(56) Most general form of 2^{nd} degree $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ form a hyperbola if _____

 $(a) h^2 - ab < 0$

(b) $h^2 - ab = 0$

(c) $h^2 - ab > 0$

(d) none of these

(57) Center of circle $x^2 + y^2 + 12x - 10y = 0$ is _____

(a) (-6, -5)

(b) (6, -5)

(c) (6, 5)

(d) (-6, 5)

(58) Vertices of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b are

(a) $(\pm a, 0)$

(b) $(0, \pm a)$

(c) $(\pm b, 0)$

(d) $(0, \pm b)$

(59) Homogenous second degree equation $ax^2 + 2hxy + by^2 = 0$ represents two real and distinct lines through origin if

- (a) $h^2 > ab$
- (b) $h^2 = ab$

(c) $h^2 < ab$

(d) $h^2 = a + b$

(60) Eccentricity of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is _____ (Lahore Board 2009)

(a) $\frac{\sqrt{a^2 - b^2}}{a}$

(b) $\frac{\sqrt{a^2 + b^2}}{a}$

(c) $\frac{\sqrt{b^2 - a^2}}{a}$

(d) $\sqrt{a^2+b^2}$

Eccentricity of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is (61)

(a)

(b)

(c)

(d)

The equation of the focal chord of the parabola $y^2 = 3x$ is _____ (62)

(a)

(b) $x = \frac{1}{4}$

(c) $y = \frac{7}{4}$

none of these (d)

(63)If eccentricity is less than 1, then conic is

> an ellipse (a)

a circle (b)

a parabola (c)

(d) a hyperbola

The eccentricity of rectangular hyperbola is (64)

> e > 1(a)

 $e = \sqrt{2}$ (b)

(c) e = 1 (d) e = 0

The line which never meet the conic is (65)

> axis (a)

latus-rectum (b)

(c) directrix (d) tangent

The line y = mx + c is tangent to $x^2 = -4ay$ if (66)

(a)

(b) $c = \frac{-a}{m}$ (d) $c = -am^2$

 $c = am^2$ (c)

The point of a parabola, which is closest to the focus is ___ (Gujranwala Board 2008) (67)

(c) covertex (d) none of these

If the cutting plane is parallel to the axis of the cone and intersection both of its (68)nappes, the curve of intersection is

circle (a)

(b) ellipse

hyperbola (c)

parabola (d)

If e = 0, then conic is called _____ (69)

> circle (a)

(b) parabola

ellipse (c)

hyperbola (d)

(c)

(70)	Condition for the line $y = mx + c$ to be tangent to circle if (Lahore Board 2007)							
	(a)	$c = \frac{a}{m}$	(b)	$c^2 = a^2 (1 + m^2)$				
	(c)	$c^2 = a^2 (1 - m^2)$	(d)	none of these				
(71)	The fo	ci of a circle tends to the						
	(a)	center	(b)	vertex				
	(c)	covertex	(d)	directrix				
(72)	The ec	quation of parabola with focus	(0, -a)	, directrix $y = a$ is				
	(a)	$x^2 = -4ay$		$x^2 = 4ay$				
	(c)	$y^2 = 4ax$	(d)	$y^2 = -4ax$				
(73)	The li	ne segment through focus and	perpend	licular to axis				
	(a)	directrix	(b)	minor axis				
	(c)	latus-rectum	(d)	axis				
(74)	The gr	eatest distance between focus	and any	point on ellipse is				
	(a)	a + b	(b)	b + c				
	(c)	a + b + c	(d)	a + c				
(75)	The nu	umber of tangents drawn from	(2, 6) to	$x^2 + y^2 = 16$ is				
	(a)	16	(b)	4				
	(c)	0	(d)	2				
(76)	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is the equation of rectangular hyperbola if							
	(a)	$\mathbf{a} = \mathbf{c}$	(b)	b = c				
	(c)	a = b	(d)	a = b = c				
(77)	The ed	centricity of ellipse follows th	e relatio	on				
	(a)	e = 0	(b)	e > 1				
	(c)	$0 \le e \le 1$	(d)	0 < e < 1				
(78)		nd F' are two fixed points and conic, then conic is hyperbola	_ , , , ,	be any point and p(x, y) be any point (Gujranwala Board 2008)				
	(a)	PF = PF'	(b)	$ PF - PF' = \pm 2a$				

|PF| + |PF'| = 2a (d) |PF| - |PF'| = 2a

124 [Ch.06] Conic Section The equation of asymptotes of $x^2 - y^2 = 9$ is (79)(a) $y = \pm 3$ (b) $x = \pm 3$ (d) y = 0 = x $y = \pm x$ (c) The term which is not part of circle is (80) x^2 y^2 (a) (b) ax + by(c) (d) xyTwo circles $S_1(c_1, r_1)$, $S_2(c_2, r_2)$ touches internally if (81)(b) $|c_1 c_2| = r_2 - r_1$ (a) $|\mathbf{c}_1 \ \mathbf{c}_2| = \mathbf{r}_1 + \mathbf{r}_2$ (d) $|c_1 c_2| \neq r_2 - r_1$ $|c_1 c_2| = 0$ (c) Two circles $S_1(c_1, r_1)$, $S_2(c_2, r_2)$ touches externally if (82)(b) $|c_1 c_2| = r_2 - r_1$ $|\mathbf{c}_1 \ \mathbf{c}_2| = \mathbf{r}_1 + \mathbf{r}_2$ (a) (d) $|c_1 c_2| \neq r_2 - r_1$ $|c_1 c_2| = 0$ (c) (83)inside outside (b) (a) (d) on the circle none of these (c)

The position of the point (5, 6) w.r.t the circle $2x^2 + 2y^2 + 12x - 8y + 1 = 0$

Length of tangent from p(-5, 10) to circle $5x^2 + 5y^2 + 14x + 12y - 10 = 0$ is ____ (84)

5 (a)

15 (b)

 $\sqrt{133}$ (c)

(d) 133

Which of the following are functions. (85)

> $x^2 = 4ay$ (a)

 $x^2 = -4ay$ (b)

 $y^2 = 4ax$ (c)

both a and b (d)

Length of Minor axis of $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$ a > b is (86)

(Lahore Board 2012)

(a) a

b (b)

2a (c)

2b (d)

Center of circle $x^2 + y^2 + 4x + by + 3 = 0$ (87)

(Lahore Board 2012)

(2, 3)(a)

(-2, 3)(b)

(c) (-2, -3)

(d) (2, -3)

(88) Directrix of Parabola $y^2 = 4ax$ is

(Lahore Board 2012)

(a) x = a

(b) x = -a

(c) y = a

(d) y = -a

(89) Length of latusrectum is $9x^2 + 4y^2 = 36$ is

(Lahore Board 2012)

(a) $\frac{3}{8}$

(b) $\frac{8}{3}$

(c) $\frac{3}{4}$

(d) $\frac{4}{3}$

(90) For hyperbola

(Lahore Board 2012)

(a) $c^2 = a^2 - b^2$

(b) $c^2 = a^2 + b^2$

(c) $b^2 = a^2 + c^2$

(d) $a^2 = b^2 + c^2$

(91) Center of circle $x^2 + y^2 + 8x - 6y + 37 = 0$ is

(Lahore Board 2012)

(a) (4, 3)

(b) (-4,3)

(c) (-4, -3)

(d) (4, -3)

(92) The slope of tangent line to y = f(x) at (x_1, y_1) is

(Lahore Board 2013)

(a) m

(b) $\frac{y_2 - y_1}{x_2 - x_1}$

(c) f'(x)

(d) $\frac{-dx}{dy}$

(93) Center of circle $4x^2 + 4y^2 - 8x + 6y - 25 = 0$ is

(Lahore Board 2013)

(a) $\left(1, \frac{-3}{2}\right)$

(b) $\left(\frac{-3}{2}, 1\right)$

(c) (1, -2)

(d) (1, 2)

(94) Foci of ellipse $\frac{x^2}{16} + \frac{y^2}{12} = 1$ are

(a) $(\pm 1, 0)$

(b) $(0, \pm 1)$

(c) $(\pm 2, 0)$

(d) $(0, \pm 2)$

(95) Foci of ellipse $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$ where $a^2 - b^2 = c^2$ are

(a) $(\pm c, 0)$

(b) $(0, \pm c)$

(c) $(c, \pm c)$

(d) $(\pm c, c)$

(96) The centre of circle $(x + 3)^2 + (y - 2)^2 = 16$ equals

(a) (-3, 2)

(b) (3, -2)

(c) (3, 2)

(d) (-3, -2)

- The eccentricity of $\frac{y^2}{4} x^2 = 1$ equals (97)
 - (a)

- (b) $\frac{-2}{\sqrt{5}}$ (d) $\frac{-\sqrt{5}}{2}$
- The radius of circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is, (98)
 - $\sqrt{g^2+f^2}$ (a)
- (b) $\sqrt{g^2 f^2 + c}$
- (c) $\sqrt{g^2 + f^2 + c}$

- (d) $\sqrt{g^2 + f^2 c}$
- The vertex of parabola $(x 1)^2 = 8(y + 2)$ is: (99)
 - (a) (1, -2)

(b) (0, 1)

(c) (-1, -2)

(1, 2)(d)

1.	b	2.	а	3.	c (4.	b	5.	b	6.	c
7.	c	8.	а	9.	b	10.	b	11.	c	12.	а
13.	d	14.	а	15.	b	16.	а	17.	c	18.	b
19.	c	20.	b	21.	c	22.	b	23.	b	24.	а
25.	c	26.	d	27.	b	28.	а	29.	b	30.	c
31.	b	32.	a	33.	d	34.	d	35.	а	36.	а
<i>37</i> .	c	38.	a	39.	d	40.	а	41.	c	42.	d
43.	а	44.	b	45.	b	46.	а	47.	c	48.	c
49.	d	50.	c	<i>51</i> .	b	<i>52</i> .	b	53.	а	54.	а
55.	b	56.	c	57.	d	58.	а	59.	а	60.	b
61.	а	62.	d	63.	а	64.	b	65.	d	66.	а
67.	b	68.	c	69.	а	70.	b	<i>71</i> .	а	72.	а
<i>73</i> .	c	74.	d	75.	d	<i>76</i> .	c	77.	d	<i>78.</i>	b
<i>79</i> .	c	80.	c	81.	b	<i>82</i> .	а	83.	b	84.	c
85.	d	86.	d	87.	c	88.	а	89.	b	90.	b
91	b	92.	c	93.	c	94.	с	95.	b	96.	а
97.	c	98.	d	99.	а						