A Logic-Based Algorithmic Meta-Theorem for Mim-Width

Benjamin Bergougnoux.

Joint work with Jan Dreier, Lars Jaffke

Friday Seminar, July 25, 2022

Width parameters and meta-theorems

mim-width	???	twin-width	FO
clique-width	rank-width		MSO ₁
treewidth	brancl	nwidth	MSO ₂

Algorithmic Meta-Theorems

Each problem expressible in logic L is **efficiently** solvable on graphs of bounded *-width (given a decomposition).

Width parameters

Width parameters

Tree-width, clique-width, rank-width, mim-width...

- ► Measure the **structural complexity** of graphs
- ► Give **efficient** algorithms for many NP-hard problems

Recursively decompose a graph into simple cuts

Branch-decomposition: recursively cut the vertex set in two

Recursively decompose a graph into simple cuts

Branch-decomposition: recursively cut the vertex set in two

Recursively decompose a graph into simple cuts

Branch-decomposition: recursively cut the vertex set in two

Recursively decompose a graph into simple cuts

Complexity of cuts is measured with a function $f: \mathbf{cut} \to \mathbb{N}$.

Different notions of **complexity** = different **width parameters**.

Width of a decomposition $D = \max f(\text{cut})$ over the cuts of D.

Width of a graph $G = \min \{ \text{ widths of its decompositions } \}$.

Module-width [Rao, 2006]

Defined from the function $mw(A) := |\{N(v) \cap \overline{A} \mid v \in A\}|$.

Linearly equivalent to clique-width:

Theorem [Rao, 2006]

For all graphs G, we have $mw(G) \leq cw(G) \leq 2mw(G)$.

Rank-width [Oum, 2005]

Defined from the function $\operatorname{rw}(A) := \operatorname{the\ rank\ of\ adjacency\ matrix}$ between A and \overline{A} over GF(2).

$$\left(\begin{array}{cccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)$$

Mim-width [Vatshelle, 2012]

Defined from the function $\min(A) :=$ the size of a maximum induced matching in the bipartite graph between A and \overline{A} .

$$\min(A) \leqslant \operatorname{rw}(A) \leqslant \operatorname{cw}(A)$$

Comparing these widths

► Modeling power

▶ ⇒Algorithmic applications←

- ► Complexity of computing a good decomposition
 - ► NP-hard!
 - ▶ We know **efficient FPT** approximation algorithms for **tree-width** and **rank-width** with runtime $2^{O(k)} \cdot n^{O(1)}$.
 - ► Tough open questions for mim-width!

Modeling Power

Modeling Power

Plus several H-free and (H_1, H_2) -free graph classes

[Brettel et al., 2022] [Munaro and Yang, 2022]

Modeling Power

Plus several H-free and (H_1, H_2) -free graph classes

[Brettel et al., 2022] [Munaro and Yang, 2022]

Algorithmic applications of mim-width

Locally Checkable Vertex Subset (LCVS)

INDEPENDENT SET INDUCED d-REGULAR SUBGRAPH DOMINATING SET PERFECT CODE INDUCED MATCHING TOTAL DOMINATING SET

[Bui-Xuan, Telle and Vatshelle, 2013]

Induced Path Problems

INDUCED DISJOINT PATHS LONGEST INDUCED PATH

H-Induced Topological Minor

[Jaffke, Kwon, and Telle, 2017]

NODE MULTIWAY CUT SUBSET FEEDBACK VERTEX SET
[Bergougnoux, Papadopoulos and Telle, 2020]

 $[\mbox{Bui-Xuan},\,\mbox{Telle}$ and Vatshelle, 2013]

[Jaffke, Kwon, and Telle, 2018]

FEEDBACK VERTEX SET

Connected, Acyclic LCVS

CONNECTED, ACYCLIC LCVP

[Bergougnoux and Kante, 2019]

DISTANCE-r LCVS
DISTANCE-r LCVP

[Jaffke et al. 2018]

SEMITOTAL DOMINATING SET [Galby, Munaro and Ries, 2020]

ON CONFLICT-FREE q-COLORING

q-b-Coloring [k]-Roman Domination Conflict-Free q-Coloring \underline{d} -stable Locally Checkable problems

[Gonzales and Mann, 2022]

Width parameters and meta-theorems

mim-width	???	twin-width FO	
clique-width	rank-v	width MSO	1
treewidth	branch	nwidth MSO	2

Algorithmic Meta-Theorems

Each problem expressible in logic L is **efficiently** solvable on graphs of bounded *-width (given a decomposition).

Requirements for the target logic

- ► Should capture **Independent Set**
- ► But not **Clique**: **para-NP-hard** given a decomposition

Requirements for the target logic

- ► Should capture **Independent Set**
- ► But not Clique: para-NP-hard given a decomposition

Our logic and results

Existential MSO₁

- \blacktriangleright Vertex variables (x, y, z)
- \blacktriangleright Vertex-set variables (X,Y,Z)
- ► Vertex-set constants (P, S)
- $ightharpoonup \exists XYwz \qquad
 ightharpoonup x = y \qquad
 ightharpoonup z \in X \qquad
 ightharpoonup E(x,y)$

$$\exists Xyz \quad (y \in X \lor y = z \lor z \in \mathbf{P}) \lor \neg E(x, y)$$

Neighborhood operator

 $N^r_d(X)$ is the set of vertices v at distance at most r to at least d vertices in $X\setminus\{v\}$

- $ightharpoonup N_1^1(X) = \bigcup_{x \in X} N(x)$
- $ightharpoonup N_d^1(X)$ is the set of vertices with at least d neighbors in X
- $ightharpoonup N_1^r(\{x\}) = N_{G^r}(x).$

Neighborhood terms

They are built from:

▶ Set variables (X, Y, Z) and constants $(\mathbf{P}, \mathbf{S}, \emptyset)$

and other neighborhoods terms by applying:

- lacktriangle Neighborhood operator: $N_d^r(t)$
- ▶ Basic set operations: $t_1 \cap t_2$, $t_1 \cup t_2$, $t_1 \setminus t_2$ and \bar{t}

Definition

Distance neighborhood logic (DN)

Extension of existential MSO₁ with

- ▶ Size measurement of terms: $|t| \le m$ or $|t| \ge m$
- ▶ Comparison between terms: $t_1 \subseteq t_2$ or $t_1 = t_2$

A&C DN

Extension of DN with

- **Connectivity constraints**: con(t)
- ightharpoonup Acyclicity constraints: acy(t)

k-Independent Set

$$\exists X \quad |X| \ge k \land N_1^1(X) \cap X = \emptyset$$

k-Dominating Set

$$\exists X \quad |X| \leqslant k \land \overline{N_1^1(X) \cup X} = \emptyset$$

k-Distance-r d-Dominating Set

$$\exists X \quad |X| \leqslant k \land \overline{N_d^r(X) \cup X} = \emptyset$$

Induced k-Path

$$\exists X \quad |X| \geq k \wedge \mathsf{con}(X) \wedge \mathsf{acy}(X) \wedge X \setminus N^1_3(X) = X$$

mim-width	A&C DN	twin-width	FO
clique-width	rank-width		MSO ₁
treewidth	brancl	nwidth	MSO ₂

Theorem

There is a **model checking** algorithm for A&C DN that runs in time $n^{O(dw|\varphi|^2)}$ where:

- $lackbox{d}=d(\varphi)$ is the largest value such that $N_d^{\cdot}(\cdot)$ occurs in φ .
- ightharpoonup w the mim-width of the given decomposition.

If $r(\varphi) = O(1)$, then the algorithm runs in $n^{O(dw|\varphi|)}$ time.

Other width measures

Theorem

When:

- $ightharpoonup r=r(\varphi)$ is the largest value such that $N_{\cdot}^{r}(\cdot)$ occurs in $\varphi.$
- $\blacktriangleright M = (\prod_{|t_i| \leqslant m_i} m_i)^{O(1)}.$

The **run time** of our algorithm is upper bounded by:

- $ightharpoonup 2^{O(d(wr|\varphi|)^2)} n^{O(1)} M$ for tree-width or clique-width.
- $ightharpoonup 2^{O(dw^4(r|\varphi|)^2)} n^{O(1)} M$ for rank-width.

▶ Better upper bounds when r = 1.

Generalization of previous results

Locally Checkable Vertex Subset (LCVS)

Independent Set Induced d-Regular Subgraph DOMINATING SET Perfect Code INDUCED MATCHING TOTAL DOMINATING SET

[Bui-Xuan, Telle and Vatshelle, 2013]

Induced Path Problems

INDUCED DISJOINT PATHS Longest Induced Path

H-INDUCED TOPOLOGICAL MINOR

[Jaffke, Kwon, and Telle, 2017]

NODE MILTIWAY CUT SUBSET FEEDBACK VERTEX SET [Bergougnoux, Papadopoulos and Telle, 2020]

Locally Checkable Vertex Partitioning (LCVP)

ODD CYCLE TRANSVERSAL k-Coloring H-HOMOMORPHISM Perfect Matching Cut H-Covering . . .

[Bui-Xuan, Telle and Vatshelle, 2013]

[Jaffke, Kwon, and Telle, 2018]

FEEDBACK VERTEX SET

Connected, Acyclic LCVS

Connected, Acyclic LCVP

[Bergougnoux and Kante, 2019]

DISTANCE-T LCVS DISTANCE-r LCVP

[Jaffke et al. 2018]

A&C DN

Semitotal Dominating Set

[Galby, Munaro and Ries, 2020]

q-b-Coloring [k]-ROMAN DOMINATION Conflict-Free q-Coloring d-stable Locally Checkable problems

[Gonzales and Mann, 2022]

Applications

► Also works for **optimization**!

- Our algorithm is efficient, for many problems:
 - ► It is asymptotically as fast as the best known algorithms
 - ▶ It matches ETH lower bounds tree-width and clique-width
 - ▶ Close to the **best-known ETH lower bound** for mim-width: $n^{o(w/\log w)}$ [Bakkane and Jafkke, 2022+]

Applications

▶ Solution diversity: output is q diverse solutions to a given problem Π

Theorem

If Π is expressible in A&C DN, then Min-Diverse Π and Sum-Diverse Π are also expressible in A&C DN with "nice" formulas.

- ► Variants of *q*-Coloring with fixed number of colors:
 - ▶ *b*-Coloring, Acyclic Coloring, Star Coloring
- ▶ L(2,1)-Labeling and $L(d_1,\ldots,d_s)$ -Labeling, for fixed number of labels.

Equivalence

Existential Counting Modal Logic (ECML) [Pilipczuk, 2011]

- ► Vertex-set and **edge-set** variables
- ► Modal = interpretation with an active vertex that during evaluation
- ► Allows ultimately periodic counting

Model-Checking algorithm with running time $2^{O(\mathsf{tw}(G))} \cdot n^{O(1)}$.

Theorem

DN is **equivalent** to the variant of ECML logic with:

- ► without edge-set variables and ultimately periodic counting
- ightharpoonup with access to the r-th power of the input graph

Tightness

Natural extensions of DN

- \blacktriangleright DN + $\forall:$ DN plus single universal quantifier
- ▶ DN + EdgeSet: DN plus one edge-set variable Y and $N_Y(t)$
- lackbox DN + Parity: DN plus parity counting with $N_{\mathrm{even}}(t)$

Theorem

The model checking problems for these extensions are **para-NP-hard** parameterized by formula length plus the (linear) **mim-width** of a given decomposition.

- ▶ $DN + \forall$ can express Clique
- ► DN + EdgeSet and DN + Parity can express problems that are NP-hard on interval graphs (mim-width 1)

Model checking algorithm

Bottom-up traversal

Dynamic programming algorithm

For every cut (A, \overline{A}) of the decomposition, we compute a set \mathcal{B}_A of partial solutions

- ▶ Partial solutions of A are interpretations of the variables of φ in G[A].
- ▶ Invariant: \mathcal{B}_A represents all partial solutions of A
- ▶ Challenge: keep the size of \mathcal{B}_A small

Logic simplifications

Definition

- ▶ Core DN Logic: DN formula with no vertex variables and no neighborhood term $N_d^r(t)$ where t is not a set variable.
- ► A&C clauses: A&C DN formula that are conjunctions of a core DN formula and predicates acy(X) or con(X).

$$\exists X,Y \quad X \cap N^1_1(X) = \emptyset \wedge Y \subseteq N^1_1(X) \wedge \operatorname{acy}(Y) \wedge \operatorname{con}(Y).$$

Theorem (Very informal)

It is **sufficient** to prove the meta-theorem for A&C **clauses**.

31

Crucial tool

Definition

Two partial solutions \tilde{B}, \tilde{C} of A are φ -equivalent over A $(\tilde{B} \equiv_{\varphi}^{A} \tilde{C})$ if $N_{d}^{r}(\tilde{B}(X)) \cap \overline{A} = N_{d}^{r}(\tilde{C}(X)) \cap \overline{A}$ for every $N_{d}^{r}(X)$ occurring in φ .

Lemma

The number $\mathrm{nec}_{\varphi}(A)$ of equivalence classes of \equiv_{φ}^A is upper bounded by

- $ightharpoonup n^{O(dw|\varphi|)}$ for mim-width
- $ightharpoonup 2^{O(d(wr)^2|arphi|)}$ for tree-width or clique-width
- $ightharpoonup 2^{O(dw^4r^2|\varphi|)}$ for rank-width

Expectation

Intuition: We classify/compare partial solutions from G[A] without knowing how they will be completed by \overline{A} .

Definition

An expectation $\mathbb E$ over A is an equivalence class of $\equiv \frac{\varphi}{A}$.

33

Dealing with core DN

Lemma (informal)

For every core DN formula φ and **expectation** \mathbb{E} over A, there exists a "nice" equivalence relation $\bowtie_{\mathbb{E}}$ such that:

- \blacktriangleright for all partial solutions \tilde{B},\tilde{C} of A such that $\tilde{B}\bowtie_{\mathbb{E}}\tilde{C}$
- lackbox for all partial solutions \tilde{D} of \overline{A} in $\mathbb E$

 $\tilde{B} \cup \tilde{D}$ is a solution iff $\tilde{C} \cup \tilde{D}$ is a solution.

- ► Enough to prove the meta-theorem for DN
- ightharpoonup refines \equiv_A^{arphi}

Dealing with connectivity and acyclicity

► We generalize the tools designed in [B. and Kanté, 2019] based on the rank-based approach from [Bodlaender et al., 2013]

Conclusion

Conclusion

In the previous slides:

mim-width	A&C DN	twin-width	FO
clique-width	rank-width		MSO ₁
treewidth	brancl	nwidth	MSO ₂

- ► Efficient model checking algorithms and **tight** in several ways
- ► Work in progress: capturing Subset FVS and Subset OCT

Open questions

- ► Modeling power: new width parameters to discover?
 - Only six interesting widths on branch-decompositions
 [Eiben et al., 2022]

Algorithmic applications: Tight lower bounds for rank-width and mim-width!

► Complexity of computing a good decomposition: tough open questions for mim-width and twin-width!

Thank you

