Data Analysis process

Ouestions

Wrangle Data

Exploratory Data Analysis

Draw Conclusion

Communicate your results

```
# importing the requried packages
import pandas as pd
import numpy as np
#import matplotlib.pyplot as plt
import seaborn as sns

import matplotlib
matplotlib.use
import matplotlib.pyplot as plt
plt.style.use('ggplot')
```

Data Wrangling

```
# overview of the data
movie_data = pd.read_csv('tmdb-movies.csv')
movie data.head(5)
```

	id	imdb_id	popularity	budget	revenue	original_title	cast	homepage	director	tagline
O	135397	tt0369610	32.985763	150000000	1513528810	Jurassic World	Chris Pratt Bryce Dallas Howard Irrfan Khan Vi	http://www.jurassicworld.com/	Colin Trevorrow	The park is open.
1	76341	tt1392190	28.419936	150000000	378436354	Mad Max: Fury Road	Tom Hardy Charlize Theron Hugh Keays- Byrne Nic	http://www.madmaxmovie.com/	George Miller	What a Lovely Day.
2	262500	tt2908446	13.112507	110000000	295238201	Insurgent	Shailene Woodley Theo James Kate Winslet Ansel	http://www.thedivergentseries.movie/#insurgent	Robert Schwentke	One Choice Can Destroy You
_	lata.shape		ing the shape	of the dat	aa	Star Wars [,] The	Harrison FordlMark	httn://www.starwars.com/films/star-wars-	.1.1	Every generation
(-	,,									
check	ing colun	nn labels a	and data typ	oes						
							Statnam iviicnelle	•	vvan	низ ноте

movie_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10866 entries, 0 to 10865
Data columns (total 21 columns):

Data	COTUMNIS (COLAT 21 COT	ullitis).	
#	Column	Non-Null Count	Dtype
0	id	10866 non-null	int64
1	imdb_id	10856 non-null	object
2	popularity	10866 non-null	float64
3	budget	10866 non-null	int64
4	revenue	10866 non-null	int64
5	original_title	10866 non-null	object
6	cast	10790 non-null	object
7	homepage	2936 non-null	object
8	director	10822 non-null	object
9	tagline	8042 non-null	object
10	keywords	9373 non-null	object
11	overview	10862 non-null	object
12	runtime	10866 non-null	int64
13	genres	10843 non-null	object

```
14 production_companies 9836 non-null object
15 release_date 10866 non-null object
16 vote_count 10866 non-null int64
17 vote_average 10866 non-null float64
18 release_year 10866 non-null int64
19 budget_adj 10866 non-null float64
20 revenue_adj 10866 non-null float64
dtypes: float64(4), int64(6), object(11)
memory usage: 1.7+ MB
```

Filter DropNull, Dedupe

Dealing with duplicates

cheaking the duplicates in the data

```
sum(movie_data.duplicated())
1
```

so we have one duplicate value

droping the duplicate

```
movie_data.drop_duplicates(inplace = True)
sum(movie_data.duplicated())
0
```

checking null values in each column

```
movie data.isnull().sum()
```

id	0
imdb_id	10
popularity	0
budget	0
revenue	0
original_title	0
cast	76
homepage	7929
director	44
tagline	2824
keywords	1493
overview	4
runtime	0
genres	23
production_companies	1030
release_date	0
vote_count	0
vote_average	0
release_year	0
budget_adj	0
revenue_adj	0
dtype: int64	

Mean of null values

movie_data.isnull().mean()

```
id
                        0.000000
imdb_id
                        0.000920
popularity
                        0.000000
budget
                        0.000000
revenue
                        0.000000
original title
                        0.000000
cast
                        0.006995
homepage
                        0.729775
director
                        0.004050
tagline
                        0.259917
keywords
                        0.137414
overview
                        0.000368
runtime
                        0.000000
genres
                        0.002117
production companies
                        0.094800
release date
                        0.000000
vote_count
                        0.000000
vote_average
                        0.000000
```

```
release_year 0.000000
budget_adj 0.000000
revenue_adj 0.000000
dtype: float64
```

Droping null values

```
movie_data.dropna(inplace = True)
```

Data set rows are redused to 1992 rows after droping the null values

```
movie_data.shape
(1992, 21)
```

Extraneous columns

Getting rid of Extraneous columns

```
# data set contains extranrous columns like homepage, cast, tagline, overview.
movie_data.drop(['homepage', 'cast', 'tagline', 'overview'], axis = 1, inplace = True)
```

checking the columns to confirm

Fixing column data types

```
#changing release data column to datetime format
movie data['release date'] = pd.to datetime(movie data['release date'])
movie data['release date']
     0
            2015-06-09
     1
            2015-05-13
     2
            2015-03-18
     3
            2015-12-15
            2015-04-01
     10724
            2069-12-12
     10759
            1978-10-25
     10760
            1978-07-27
     10817 1978-05-01
     10819 1978-07-28
     Name: release_date, Length: 1992, dtype: datetime64[ns]
```

Corelations in movie_data set

This discribes the +ve and -ve corelations between each column

movie data.corr()

	id	popularity	budget	revenue	runtime	vote_count	vote_average	release_year	budget_adj	revenue_adj
id	1.000000	0.022330	-0.166067	-0.125101	-0.025016	-0.069752	-0.066973	0.507116	-0.208151	-0.165386
popularity	0.022330	1.000000	0.513553	0.641346	0.220787	0.774226	0.298066	0.002262	0.504971	0.600277
budget	-0.166067	0.513553	1.000000	0.747273	0.269480	0.649130	0.118651	0.068611	0.988433	0.630719
revenue	-0.125101	0.641346	0.747273	1.000000	0.257756	0.804788	0.258208	-0.031835	0.752853	0.925494
runtime	-0.025016	0.220787	0.269480	0.257756	1.000000	0.280602	0.243699	-0.078525	0.282257	0.257378
vote_count	-0.069752	0.774226	0.649130	0.804788	0.280602	1.000000	0.379345	0.006364	0.642077	0.741541
vote_average	-0.066973	0.298066	0.118651	0.258208	0.243699	0.379345	1.000000	-0.152250	0.128789	0.274923
release_year	0.507116	0.002262	0.068611	-0.031835	-0.078525	0.006364	-0.152250	1.000000	-0.027940	-0.237684
budget_adj	-0.208151	0.504971	0.988433	0.752853	0.282257	0.642077	0.128789	-0.027940	1.000000	0.669152
revenue_adj	-0.165386	0.600277	0.630719	0.925494	0.257378	0.741541	0.274923	-0.237684	0.669152	1.000000

Stastical Overview

movie_data.describe()

	id	popularity	budget	revenue	runtime	vote_count	vote_average	release_year	budget_adj	revenue_adj
count	1992.000000	1992.000000	1.992000e+03	1.992000e+03	1992.000000	1992.000000	1992.000000	1992.000000	1.992000e+03	1.992000e+03
mean	71652.152108	1.316763	3.454924e+07	1.152153e+08	106.040161	643.616968	6.178614	2007.796687	3.627376e+07	1.302391e+08
std	92355.883915	1.873563	5.061878e+07	2.202887e+08	29.234592	1092.355998	0.881955	7.549224	5.129783e+07	2.564338e+08
min	11.000000	0.000620	0.000000e+00	0.000000e+00	0.000000	10.000000	2.100000	1961.000000	0.000000e+00	0.000000e+00
25%	9699.000000	0.384079	0.000000e+00	0.000000e+00	92.000000	51.000000	5.600000	2006.000000	0.000000e+00	0.000000e+00
50%	35112.500000	0.774223	1.500000e+07	2.578782e+07	102.000000	210.000000	6.200000	2010.000000	1.524601e+07	2.806370e+07
75%	83573.000000	1.538639	4.800000e+07	1.278787e+08	116.000000	688.250000	6.800000	2012.000000	5.064450e+07	1.393645e+08
max	414419.000000	32.985763	4.250000e+08	2.781506e+09	705.000000	9767.000000	8.300000	2015.000000	4.250000e+08	2.827124e+09

Exploratory Data Analysis

movie_data.head(5)

	genres	runtime	keywords	director	original_title	revenue	budget	popularity	imdb_id	id	
l E	Action Adventure Science Fiction Thriller	124	monster dna tyrannosaurus rex velociraptor island	Colin Trevorrow	Jurassic World	1513528810	150000000	32.985763	tt0369610	135397	0
	Action Adventure Science Fiction Thriller	120	future chase post- apocalyptic dystopia australia	George Miller	Mad Max: Fury Road	378436354	150000000	28.419936	tt1392190	76341	1
Е	Adventure Science Fiction Thriller	119	based on novel revolution dystopia sequel dyst	Robert Schwentke	Insurgent	295238201	110000000	13.112507	tt2908446	262500	2
	Action Adventure Science Fiction Fantasy	136	android spaceship jedi space opera 3d	J.J. Abrams	Star Wars: The Force Awakens	2068178225	200000000	11.173104	tt2488496	140607	3
	Action Crime Thriller	137	car race speed revenge suspense car	James Wan	Furious 7	1506249360	190000000	9.335014	tt2820852	168259	4

Data Visulization

Questions based on data

Q1 - Which year has highest number of movies released?

```
#movie data['release year'].value counts()
data = movie data.groupby('release year').count()['id']
data
     release year
     1961
     1962
    1963
    1964
              2
    1965
              1
    1967
              1
    1969
              1
    1970
              1
    1971
              4
    1972
              1
    1973
    1974
              2
    1975
              3
    1976
    1977
    1978
     1979
    1980
    1981
              6
    1982
              3
    1983
              6
    1984
              5
    1985
              4
    1986
              2
    1987
              8
    1988
              4
    1989
              5
    1990
              6
    1991
              3
    1992
              5
    1993
             10
             8
    1994
    1995
             10
    1996
             15
    1997
             11
             13
    1998
    1999
             24
```

```
2001
              19
     2002
              31
              40
     2003
     2004
              48
     2005
              72
     2006
              92
     2007
             135
     2008
             142
     2009
             192
     2010
             206
     2011
             219
     2012
             145
     2013
             128
     2014
             153
     2015
             165
     Name: id, dtype: int64
plt.xticks(np.arange(1960,2020,5))
plt.xlabel("Year.")
plt.ylabel("Number of Movies.")
plt.title("Number of Movies vs Released Year")
plt.plot(data)
plt.show()
```

Number of Movies vs Released Year

the above graph describe the no of movies released in each year

it seems the highest no of movies released in 2011

Did movies with higher vote count received a better rating?

```
#Slice DataFrame to get 2 columns 'vote_count' and 'vote_average'
df_vote = movie_data.loc[:, 'vote_count' : 'vote_average']
#To compare results only entries are considered with more than 2000 votes
df_vote_2000 = df_vote[df_vote['vote_count'] > 2000]
df vote.tail()
```

vote count vote average 10724 258 6.4 10759 522 7.3 230 6.7 10760 10817 33 8.0 6.0 13 10819

```
sns.set_style('whitegrid')
sns.pairplot(df vote[['vote count','vote average']])
```


the graphs describe that vote count and vote average has positive correlaion

```
[ ] L, 2 cells hidden
```

Which director has heighest profit margin?

```
movie_data['profit'] = movie_data['revenue'] - movie_data['budget']
movie_data[['profit']].head()
```

profit

- 0 1363528810
- 1 228436354
- **2** 185238201
- **3** 1868178225
- 4 1316249360

```
def director_with_profit():
    data = pd.DataFrame(movie_data[['director', 'profit']].sort_values(by = 'profit', ascending = False))
    print(f'Director with highest profit {data.head().max()}')
    sns.barplot(x= 'director', y= 'profit', palette="rocket", data = data[:20])
    plt.xticks(rotation = 90)
    plt.title('Highest profit director')
director_with_profit()
```

Director with highest profit director James Wan profit 2544505847 dtype: object

the above bar graph says that James Cameron has highest profit

The director who made movies with highest budget

```
data_2 = movie_data[['director','budget']]
directors = data_2.sort_values(by = 'budget', ascending = False)
directors.head(1)
```

sns.barplot(x = 'director', y = 'budget', palette="tab10", data = directors[:10].sort_values(by = 'budget', ascending = False));
plt.xticks(rotation = 90);


```
sns.set_style('darkgrid')
sns.lmplot(x="budget", y="revenue", data=movie_data);
plt.title('Budget vs Revenue')
```

Text(0.5, 1, 'Budget vs Revenue')

data = movie_data[['popularity','revenue','budget','vote_count','vote_average','release_year']]
data.head()

	popularity	revenue	budget	vote_count	vote_average	release_year
0	32.985763	1513528810	150000000	5562	6.5	2015
1	28.419936	378436354	150000000	6185	7.1	2015
2	13.112507	295238201	110000000	2480	6.3	2015
3	11.173104	2068178225	200000000	5292	7.5	2015
4	9.335014	1506249360	190000000	2947	7.3	2015
	0	1	2	3	4	

sns.lineplot(x = data['release_year'], y = data['budget'], palette="tab10", linewidth=2.5)
sns.lineplot(x = data['release_year'], y = data['revenue'], palette="tab10",linewidth=2.5)

Text(0.5, 1.05, 'Analysis on revenue, vote count, vote average')

"Looks like there is a positive correlation between budget and revenue, and a very slight positive correlation with release year and budget. --> With average rating slightly positive influenced by budget. These are only slight though, so the analysis here is limited. This does not indicate a causation in improvement in revenue/rating and a much deeper analysis would be required to find any correlation"

Limitations and assumptions:

- 1. The coorelation between revenue and budget is 0.747273
- 2. Director james Cameron has heighest profit margin 2544505847.
- 3. In year 2014 max number of movie is released i.e. 700 and In year 1961 and 1969 lowest number of movie is released i.e. 31.
- 4. Top five genres according to their budgets are listed above in which comedy genre has heighest budget. The mean of the Comedy Budget are 2.632826e+07.
- 5. Assumimng 0 revenue and 0 budget are actually missing values and not actually 0 revenue and 0 budget.

