MIT 18.01 Problem Set 6 Unofficial Solutions

Q1) Do 7.4/12 and 13.

Skipped. We do not have the textbook.

 $\mathbf{Q2}$) The voltage V of the house current is given by

$$V(t) = Csin(120\pi t)$$

where t is time, in seconds and C is a constant amplitude. The square root of the average value of V^2 over one period of V(t) (or cycle) is called the *root-mean-square* voltage, abbreviated RMS. This is what the voltage meter on a house records. For house current, find the RMS in terms of the constant C. (The peak voltage delivered to the house is $\pm C$. The units of V^2 are square volts; when we take the square root again after averaging, the units become volts again.)

Every cycle of the sin function corresponds to 2π . This happens every $t = \frac{2\pi}{120\pi} = \frac{1}{60}$ seconds. Since $V(t) = Csin(120\pi t)$, $V^2(t) = C^2sin^2(120\pi t)$. The average value of V^2 over 1 cycle of V(t) is:

$$\begin{split} \frac{1}{\frac{1}{60}-0} \int_0^{\frac{1}{60}} C^2 sin^2 (120\pi t) dt &= 60C^2 \int_0^{\frac{1}{60}} sin^2 (120\pi t) dt \\ &= 60C^2 (\frac{1}{2}t - \frac{1}{240\pi} sin(120\pi t) cos(120\pi t)) \bigg]_0^{1/60} \\ &= 60C^2 (\frac{1}{2} \cdot \frac{1}{60} - \frac{1}{240\pi} sin(2\pi) cos(2\pi) - (\frac{1}{2} \cdot 0 - \frac{1}{240\pi} sin(0) cos(0))) \\ &= 60C^2 \cdot \frac{1}{120} \\ &= \frac{C^2}{2} \end{split}$$

Then RMS =
$$\sqrt{\frac{C^2}{2}} = \frac{C}{\sqrt{2}} = \frac{\sqrt{2}C}{2}$$

Q3a) What is the probability that $x^2 < y$ if (x, y) is chosen from the unit square $0 \le x \le 1$, $0 \le y \le 1$ with probability equal to the area.

1

$$P(x^{2} < y) = \frac{\int_{0}^{1} 1 dx - \int_{0}^{1} x^{2} dx}{\int_{0}^{1} 1 dx}$$

$$= \frac{x \int_{0}^{1} - \frac{x^{3}}{3} \Big]_{0}^{1}}{x \int_{0}^{1}}$$

$$= \frac{1 - \frac{1}{3}}{1}$$

$$= \frac{2}{3}$$

Q3b) What is the probability that $x^2 < y$ if (x, y) is chosen from the square $0 \le x \le 2$, $0 \le y \le 2$ with probability **proportional** to the area. (Probability = Part/Whole).

For the line $y=x^2$ y=2, $x=\sqrt{2}.$ Once $x\geq \sqrt{2},$ y>2. Hence $x\leq \sqrt{2}.$

$$P(x^{2} < y) = \frac{\int_{0}^{2} 2dx - \int_{0}^{\sqrt{2}} x^{2}dx - \int_{\sqrt{2}}^{2} 2dx}{\int_{0}^{2} 2dx}$$

$$= \frac{2x \Big]_{0}^{2} - \frac{x^{3}}{3} \Big]_{0}^{\sqrt{2}} - 2x \Big]_{\sqrt{2}}^{2}}{2x \Big]_{0}^{2}}$$

$$= \frac{4 - \frac{(\sqrt{2})^{3}}{3} - (4 - 2\sqrt{2})}{4}$$

$$= \frac{4 - \frac{2\sqrt{2}}{3} - 4 + 2\sqrt{2}}{4}$$

$$= \frac{2\sqrt{2} - \frac{2\sqrt{2}}{3}}{4}$$

$$= \frac{6\sqrt{2} - 2\sqrt{2}}{3}}{4}$$

$$= \frac{6\sqrt{2} - 2\sqrt{2}}{3}$$

$$= \frac{4\sqrt{2}}{3}$$

$$= \frac{4\sqrt{2}}{3}$$

$$= \frac{\sqrt{2}}{3}$$

Q3c) Evaluate

$$W = \int_0^\infty e^{-at} dt = \lim_{N \to \infty} \int_0^N e^{-at} dt$$

 $W=\int_0^\infty e^{-at}dt=\lim_{N\to\infty}\int_0^N e^{-at}dt$ This is known as an improper integral because it represents the area of an unbounded region. We are using the letter W to signify "whole".

The probability that a radioactive particle will decay some time in the interval $0 \le t \le T$ is

$$P([0,T]) = \frac{\text{PART}}{\text{WHOLE}} = \frac{1}{W} \int_0^T e^{-at} dt$$

Note that $P([0, \infty)) = 1 = 100\%$

$$\int_{0}^{\infty} e^{-at} dt = -\frac{1}{a} e^{-at} \Big]_{0}^{\infty}$$

$$= -\frac{1}{a} (e^{-a \cdot \infty} - e^{-a \cdot 0})$$

$$= -\frac{1}{a} (\frac{1}{e^{a \cdot \infty}} - \frac{1}{e^{a \cdot 0}})$$

$$= -\frac{1}{a} (0 - \frac{1}{e^{0}})$$

$$= -\frac{1}{a} (-1)$$

$$= \frac{1}{a}$$