

데이콘 Basic 따름이 대여량 예측 경진대회

알고리즘 | 정형 | 회귀 | 행태심리 | NMAE

상금: 참가시 최소 50 XP, 특별상 데이콘 후드

() 2021.11.01 ~ 2021.11.12 17:59 + Google Calendar

3 632명 **日** 마감

연습

대회안내

데이터

코드 공유

토크

리더보드

제출

[Baseline] 1. 데이터 분석 입문자를 위한 데이터 분석 & 예측

DACONIO

2021.10.26 16:35 2,612 조회 🥐

데이터 분석 입문자를 위해 간단하게 데이터 분석 & 예측을 진행해보겠습니다.

- * 코드를 어떻게 실행시켜야 할지 잘 모르시는 분은 아래 "코랩으로 데이콘 참여하기"를 먼저 봐주세요! https://dacon.io/competitions/official/235836/talkboard/404882
- * 데이터를 살펴보는 탐색적 데이터 분석 (Exploratory Data Analysis, EDA) 코드를 먼저 보고 오시 면 좋습니다.

https://dacon.io/competitions/official/235837/codeshare/3685?page=1&dtype=recent

코드

다운로드

이번 대회에서 주어진 데이터는 기상자료 개방포털의 단기예측 데이터와 예측일의 따름이 대여 수 입니다.

쉽게말해 오늘 발표된 "내일의 날씨" 예보를 보고, 내일 사람들이 따릉이를 얼마나 대여할 지 예측하는 문제 입니다.

자, 시작해 볼까요?

데이터 불러오기

우선 학습에 필요한 train데이터를 불러오겠습니다.

In [1]:

```
import pandas as pd import numpy as np import warnings warnings.filterwarnings('ignore')
bicycle = pd.read_csv('dataset/따름이_train.csv') bicycle.head()
```

Out[1]:

	date_time	wind_direction	sky_condition	precipitation_form	wind_speed	humidity	low_temp	h
0	2018-04-01	207.500	4.000	0.000	3.050	75.000	12.600	
1	2018-04- 02	208.317	2.950	0.000	3.278	69.833	12.812	
2	2018-04- 03	213.516	2.911	0.000	2.690	74.879	10.312	
3	2018-04- 04	143.836	3.692	0.425	3.138	71.849	8.312	
4	2018-04- 05	95.905	4.000	0.723	3.186	73.784	5.875	

지난번 데이콘 베이직 iris데이터는 학습에 알맞도록 잘 정제되어있는 데이터였는데요

이번 데이터는 기상자료 개방 포털의 자료와 서울 열린 데이터 광장에서 수집한 정제되지 않은 데이터입니다.

즉, 모든 데이터 셀이 채워져 있다고 가정할 수 없으며 때때로 '빈칸'이 존재할 수 있습니다.

빈칸이 있나 확인해보겠습니다!


```
def check_missing_col(dataframe):
    counted_missing_col = 0
    for i, col in enumerate(bicycle.columns):
        missing_values = sum(bicycle[col].isna())
        is_missing = True if missing_values >= 1 else False
        if is_missing:
            counted_missing_col += 1
            print(f'결축치가 있는 컬럼은: {col}입니다')
            print(f'총 {missing_values}개의 결축치가 존재합니다.')

if i == len(bicycle.columns) - 1 and counted_missing_col == 0:
            print('결축치가 존재하지 않습니다')

check_missing_col(bicycle)
```

Out[2]:

결측치가 존재하지 않습니다

운이 좋군요!

주어진 데이터에는 결측치가 존재하지 않습니다.

다음 단계로 진행해볼까요?

일자 분리

모델에 수치를 넣고 학습시키기 위해선 글자나 문자를 숫자로 바꿔주는 작업이 필요합니다.

주어진 데이터를 살펴보면 date_time부분이 문자열(string)로 되어있는 것을 확인하실 수 있습니다.

이를 각각 년도, 월, 일로 나누어 숫자형으로 변환해 보겠습니다.

In [3]:

```
def seperate_datetime(dataframe):
    year = []
    month = []
    day = []

for date in dataframe.date_time:
```


day.append(int(day_point))
return year, month, day

year, month, day = seperate_datetime(bicycle)

bicycle['year'] = year
bicycle['month'] = month
bicycle['day'] = day

bicycle.head()

Out[3]:

	date_time	wind_direction	sky_condition	precipitation_form	wind_speed	humidity	low_temp	h
0	2018-04-01	207.500	4.000	0.000	3.050	75.000	12.600	
1	2018-04- 02	208.317	2.950	0.000	3.278	69.833	12.812	
2	2018-04- 03	213.516	2.911	0.000	2.690	74.879	10.312	
3	2018-04- 04	143.836	3.692	0.425	3.138	71.849	8.312	
4	2018-04- 05	95.905	4.000	0.723	3.186	73.784	5.875	

년도, 월, 일이 전부 잘 분리되어 들어간게 보이시나요?

이제 학습에 필요한 X와 y를 분리해 보겠습니다

변수 및 모델 정의

우리의 목적은 주어진 날씨 데이터(low_temp, high_temp, precipitaion, wind_speed, humidity, insolation, cloud, year, month, day)를 이용하여 사람들이 따릉이를 얼마나 빌리는지 (number_of_rentals) 예측하는 것입니다.

그럼 날씨 데이터가 X, 따릉이 대여 수가 y가 되겠죠?

In [4]:

X = bicycle.drop(['date_time', 'number_of_rentals'], axis=1)

y = bicycle.number_of_rentals

NMAE로 계산하여 0.32가 나왔습니다.

좋은 수치일까요 나쁜 수치일까요?

NMAE 0.32는 대략 예측치와 실제값이 32% 정도의 오차율을 보인다는 것을 의미합니다.

어떠신가요 여러분은 만족하시나요?

예측값 눈으로 확인하기

0.32라는 숫자만 봐서는 모델이 어떤방식으로 맞췄는지 어디에서 오차가 더 많이 나는지 알 수 없습니다.

Q

그러기 위안 망법궁 하나가 마도 오납노트인네요

여러분은 데이콘 제출페이지에 제출하는 방식으로 스코어를 확인할수도, train set의 정확도가 어느정도 나오는지 눈으로 확인할 수도 있습니다.

train set에서 오답노트를 확인하는것은 자칫 overfitting시킬 수 있어 조심해야하는 부분이지만 여러분에 게 어느정도 인사이트를 줄 수도 있을겁니다.

그럼 plot을 그려서 확인해 보겠습니다.

In [8]:

Out[8]:

파란선이 실제 따름이 대여량, 붉은 선이 우리의 모델이 예측한 값입니다.

여러분이 보기에는 어떠신가요?

우리의 모델이 어느정도 예측을 하고 있는것같나요?

세술

이제 제출을 해보겠습니다.

주어진 test데이터로 예측을 진행한 다음 sample_submission.csv에 날짜별로 예측한 값을 넣어보겠습니다.

In [9]:

test = pd.read_csv('따름이_예보/따름이_test.csv') # 데이터를 불러온 뒤 submission = pd.read_csv('따름이_예보/sample_submission.csv')

check_missing_col(test) # 결측치 확인

year, month, day = seperate_datetime(test) #날짜 숫자로 분리 후

#새로운 컬럼을 생성

test['year'] = year

test['month'] = month

test['day'] = day

test.head()

Out[9]:

결측치가 존재하지 않습니다

Out[9]:

	date_time	wind_direction	sky_condition	precipitation_form	wind_speed	humidity	low_temp	h
0	2021-04-01	108.833	3.000	0.000	2.900	28.333	11.800	
1	2021-04- 02	116.717	3.850	0.000	2.662	46.417	12.000	
2	2021-04-	82.669	4.000	0.565	2.165	77.258	8.875	
3	2021-04- 04	44.123	3.466	0.466	3.747	63.288	6.250	
4	2021-04- 05	147.791	1.500	0.000	1.560	48.176	7.188	

정형

문자열

댓글 0개

로그인이 필요합니다

comment

0 / 1000

작성

∷ 목록으로

이전 글 Basic Time-Series EDA

대회 - 데이콘 Basic 따름이 대여량 예측 경진대회

⊳ 댓글 작성 창의 위치가 댓글 리스트 상단으로 이동하였습니다!

현재 글 [Baseline] 1. 데이터 분석 입문자를 위한 데이터 분석 & 예측

대회 - 데이콘 Basic 따름이 대여량 예측 경진대회

다음 글 [EDA] 데이터 분석 입문자를 위한 데이터 살펴보기

대회 - 데이콘 Basic 따름이 대여량 예측 경진대회

Q

1076

네이는 이미드 포제

개인정보 처리방침

대회 주최 문의

데이콘 채용

교육 문의

데이콘(주) | 대표 김국진 | 699-81-01021

통신판매업 신고번호: 제 2021-서울영등포-1704호 서울특별시 영등포구 은행로 3 익스콘벤처타워 901호

대표 전화번호: 070-4151-0545

Copyright © DACON Inc. All rights reserved