大物实验整理

绪论

测量

- 测量四要素
 - 。 被测对象
 - 。 测量程序
 - 。 测量准确度
 - 。 计量单位
- 测量分类
 - o 直接测量
 - 。 间接测量
- 有效位数
 - 。 可靠数字: 直接读出来的数字
 - 。 存疑数字: 估读的数字
 - 有效数字: 可靠数字+一位存疑数字成为有效数字, 位数称为有效位数

可靠数字: 7.3

存疑数字: 0.05

有效数字: 7.35 cm

有效位数: 3 位

- 一些测量仪器的使用
 - 。 游标卡尺
 - 注意分度值
 - 不估读
 - o 螺旋测微器
 - 注意有无过零
 - 注意刻度方向
 - 注意零点修正
 - 。 角度盘

39个20′角标---- 40个游标刻度

105° 20′ + 10′30′′ =105° 30′30′′

误差

定义: 测量值 - 真值 特点: 普遍存在, 小量

• 表示方法

○ 绝对误差: 测量值 - 真值

 \circ 相对误差: $\frac{|\mathbb{M}^{\pm}[\mathbf{d}-\mathbf{q}]|}{\mathbf{q}} imes 100\%$, 保留1到2位

。 标准误差 (标准差S) : $\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}|$ 绝对误差 $|^2$

• 误差分类

名称	主要来源	特点	处理	举例
系统误差 (装置误差)	装置本身	可预知,不可避免	见下表	见下表
随机误差 (偶然误差)	环境偶然性	是无规则涨落,不可避 免。存在一定的统计规 津(一般服从正态分布)	可通过多 次测量来 减小	测一本书的厚度 (涨落)。
粗大误差 (过失误差)	粗心大意	可避免		电表没调零就用。 读错写错数据。

系统误差	定义	处理	举例
已定系统误差	在同等条件下,对同一个待测量进行多次测量,测量值和真值的偏离总是相同的那部分误差分量	必须修正。	电表、读数显微 镜的零位误差 (仪器本身因素)
未定系统 误差	已知存在于某个范围,而不知具 体数值的系统误差	后面B类不确 定度计算会提 到。	仪器的允差(示 值误差)

。 系统误差

■ 装置本身

- 可预知,不可避免
- 已定系统误差: 总是偏离相同的误差, 必须修正
- 未定系统误差:某个范围却不知道具体值,允差

采烧接至 图图:

D似器 1名29多不好 (名)多、老似

的实际的独特的程格公司不定是 (为1131.

图形描述及 造度 等 件 奏他

D M3 若小证的引擎当人的用等。

也以37本人、6有19年1月度至

- 一、似色的也一起位
- 2. 演选设计 (分充计,分录处路道、双视塔, 治为各个篇小量)
- 3. 没在一切的 13-4人,成之子的是 自伦丘公司 经经验 《大龙十年 新野子。山溪 无处数

- 。 随机误差
 - 无规则涨落,不可避免,存在统计规律
 - 多次测量减小
- 。 粗大误差
 - 可避免,尽量避免
- - 1. 求电压表仪器误差。电压表量程100 mV, 等级0.5。

$$\Delta V = 100 \text{ mV} \times 0.5\% = 0.5 \text{ mV}$$

- 2. 测1.5V电压,要求测量结果相对误差不大于1.5%, 应该选下面哪种仪器?
- 0.5级量程5伏; 1.0级量程2伏; 2.5级量程1.5伏。

2 V \times 1. 0% \div 1. 5 V=1. 4%

人眼的视觉误差在最小刻度的0.2倍左右

- 误差分布
 - 。 正态分布

- 单峰性
- 对称性
- 有界性
- 抵偿性
- ① **单峰性**:绝对值小的误差出现的可能性(概率)大,绝对值大的误差出现的可能性小。
- ② **对称性**: 大小相等的正误差和负误差出现的机会均等,对称分布 于真值的两侧。
- ③ **有界性:** 非常大的正误差或负误 差出现的可能性几乎为零。
- ④ 抵偿性: 当测量次数非常多时, 正误差和负误差相互抵消,误差 的代数和趋向于零。
- μ 与 σ 对误差的影响
- 3σ原则:
 - 1.68.3%
 - 2.95.4%
 - 3.99.7%
- 。 均匀分布
- 标准偏差
 - o 标准差估计S是单次测量值的标准偏差
 - \circ 平均值的标准偏差 (u_A) :

$$\sqrt{\frac{1}{n(n-1)} \left[\sum_{k=1}^{n} (x_k - \overline{x})^2 \right]}$$

 \circ 注意要求6 < n < 10才能用这个公式计算A类不确定度分量

例:用50分度的游标卡尺测某一圆棒长度L,6次测量结果如下(单位 mm):

250.08, 250.14, 250.24, 250.06, 250.10, 250.02

则: 测得值的最佳估计值为

$$L = \overline{L} = 250.11 \text{ mm}$$
 测量列单次测量的标准偏差: $S_L = \sqrt{\frac{\sum_{i=1}^n (L_i - \overline{L})^2}{n-1}} = 0.08 \text{ mm}$

平均值的标准偏差:

$$S_{\bar{L}} = \sqrt{\frac{\sum_{i=1}^{n} (L_i - \bar{L})^2}{n(n-1)}} = 0.0327 \text{ mm} \approx 0.04 \text{ mm}$$

$L = 250.11 \pm 0.04$ mm

• 精密度与准确度

精密度:测量值之间相互接近的程度准确度:测量平均值接近真值的程度

精密度高 精密度低 精密度高 精密度低准确度高 准确度高 准确度低 准确度高

○ 精确度: 对测量结果的综合评价

不确定度

- 不确定度:
 - 一定概率下的误差限值
 - 。 反映了可能存在的误差分布范围
 - 。 误差不能计算,不确定度可以计算
 - 。 不确定度是不为0的正值
- 不确定度的组成

直接测量量不确定度估算过程

•求测量数据列的平均值 $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

•平均值的标准偏差: $s(\bar{x}) = \frac{s(x)}{\sqrt{n}} = \sqrt{\frac{1}{n(n-1)} [\sum_{k=1}^{n} (x_k - \bar{x})^2]}$

当 6 ≤ n ≤10, 置信概率为68.3%时, 可简化认为:

$$u_{\rm A} \approx S(\overline{x})$$

o B类分量

根据使用仪器得出
$$u_{\rm B}$$
 $u_{\rm B} = \frac{\Delta_{\chi}}{3}$ 或 $u_{\rm B} = \frac{\Delta_{\chi}}{\sqrt{3}}$ (均匀分布)

。 合成与结果

总合成不确定度:
$$u = \sqrt{u_A^2 + u_B^2}$$

给出直接测量的最后结果:

例:用螺旋测微计测某一钢丝的直径,6次测量值 y_i 分别为: 0.249,0.250, 0.244, 0.256, 0.253, 0.242; 同时读得螺旋测微计的零位 x_0 为: 0.005, 单位mm,已知螺旋测微计的仪器误差为 Δ_{α} =0.004 mm,请给出完整的测量结果。

解: 测得值的最佳估计值为

$$x = \frac{\sum_{i=1}^{n} x_i}{n} = \overline{x} - x_0$$

= 0.250 mm - 0.005 mm = 0.245 mm

测量列单次测量的标准偏差:

$$s(x) = \sqrt{\frac{1}{6-1} \left[\sum_{i=1}^{6} (x_i - \overline{x})^2 \right]} = 0.006 \text{ mm}$$

平均值的标准偏差

$$s(\overline{x}) = \frac{s(x)}{\sqrt{n}} = 0.003 \text{ mm}$$

$$u = \sqrt{u_{\rm A}^2 + u_{\rm B}^2} \approx \sqrt{s(\overline{x})^2 + \Delta_{yi}^2 / 3} = \sqrt{0.003^2 + 0.004^2 / 3} \approx 0.004 \text{ mm}$$

$$x = 0.245 \pm 0.004$$
 mm

- 不确定度的分类
 - 标准不确定度如上
 - 。 合成标准不确定度

$$u_{\rm c} = \sqrt{\sum \left(\frac{\partial f}{\partial x_i} u(x_i)\right)^2}$$
 (公式1) 常用于和差形式的函数

$$\frac{u_{c}}{y} = \sqrt{\sum_{i=1}^{n} \left[\frac{\partial \ln f}{\partial x_{i}}\right]^{2} [u(x_{i})]^{2}}$$
 (公式2) 常用于积商形式的函数

注意和差形式直接得出不确定度,积商形式得出的是相对不确定度

例: 设有一圆环,其外径为 ϕ_{A} =9.800±0.005 mm,内径为 ϕ_{A} =4.500±0.005 mm,高度h=5.000±0.005 mm,求环的体积V和不确定度。

解: 环的体积为

$$V = \frac{\pi}{4} (\phi_{\text{ph}}^2 - \phi_{\text{ph}}^2) h$$
$$= \frac{\pi}{4} (9.800^2 - 4.500^2) \times 5.000$$
$$= 2.976 \times 10^2 \,\text{mm}^3$$

根据积商形式函数的不确定度公式,有:

$$\frac{\partial \ln f}{\partial \phi_{fh}} = \frac{2\phi_{fh}}{\phi_{fh}^2 - \phi_{fh}^2} = \frac{2 \times 9.800}{9.800^2 - 4.500^2}$$

$$\frac{\partial \ln f}{\partial \phi_{fh}} = -\frac{2\phi_{fh}}{\phi_{fh}^2 - \phi_{fh}^2} = -\frac{2 \times 4.500}{9.800^2 - 4.500^2}$$

$$\frac{\partial \ln f}{\partial h} = \frac{1}{h} = \frac{1}{5.000}$$

$$\frac{\Delta V}{V} = \sqrt{\frac{2\phi_{fh}\Delta\phi_{fh}}{\phi_{fh}^2 - \phi_{fh}^2}^2 + \frac{2\phi_{fh}\Delta\phi_{fh}}{\phi_{fh}^2 - \phi_{fh}^2}^2 + \frac{\Delta h}{h}^2}$$

$$= \sqrt{\frac{2 \times 9.800 \times 0.005}{9.800^2 - 4.500^2}^2 + \frac{2 \times 4.500 \times 0.005}{9.800^2 - 4.500^2}^2 + \frac{0.005}{5.000}^2}$$

$$= 0.0017 = 0.17\%$$

$$\Delta V = V \times \Delta V/V = 2.976 \times 10^2 \times 0.17\% \approx 0.5 \text{ mm}^3$$
因此,环的体积为

有效数字

- 当被测物的量和测量仪器确定后,有效数字位数就确定
- 修约
 - 。 四舍六入五凑双
 - 。 注意此时的5是刚刚好为5的时候

- 运算中的有效数字
 - 加减: 小数位对齐高位
 - o 乘除:有效数字最少
 - · 三角函数和对数:有效位数与传入参数有效数字相同,或采用变动位数法保留
 - 非十进制单位变换: 将修约区间进行变换, 变换后的位数就是要保留到的小数位数

例:

$$\phi = 93.5^{\circ}$$

$$0.1^{\circ} = 0.002 \ rad$$

$$\therefore \phi = 1.632 \ rad$$

- 不确定度修约
 - 不确定度保留1-2位
 - > 3保留一位
 - 12保留2位
 - 。 不为零进位, 为零舍

不确定度的取舍例题

▶ 不确定度保留位数

当不确定度第1位有效数字是1或2时,可取两位,3以上只可有1位有效数字。

不确定度修约法则

欲保留的最低位后的这1位数不为零则进位, 为零则舍去。(因为要知最大误差限)

。 最后结果和不确定度对齐

数据处理

- 列表法
 - 。 写出所列表名称
 - 。 写明各物理量意义和单位
 - 。 有效数字正确
- 逐差法
 - 。 线性、等间距
- 作图法
 - 。 选择合适坐标分度值

- 。 表明坐标轴
- 。 标实验点
- 。 连成线
- 。 标出图象特征
- 。 标出图名
- 最小二乘法

示波器

实验原理

1. 示波管工作原理

三部分:密封在高真空玻璃壳中的电子枪、偏转系统、荧光屏 电子枪发出电子,电场作用下高速射向荧光屏,荧光物质在电子轰击下发出荧光 在偏转板加电压,使电子发生偏转,亮点发生偏移。偏移量和电压成正比

2. 波形扫描原理

在X轴偏转板加周期性锯齿波形电压,称扫描电压,使亮点沿X方向从左到右往复运动 当锯齿波电压信号与被测电压信号成整数倍关系时,波形稳定

$$T_x = nT_y$$

当 $T_y > T_x$ 时,波形向右移动 当 $T_y < T_x$ 时,波形向左移动

3. 李萨如图形

垂直谐振动的合成,当成简单整数比的时候形成李萨如图形。满足以下关系

$$f_y:f_x=N_x:N_y$$

 N_x,N_y 表示在x/y方向上最多的交点个数(或最少的切点个数) 当不为整数比关系时,李萨如图形会翻转。越接近翻转越慢,越稳定

实验仪器

图 4-1-6

- 1. 电源
- 2. 显示模块: 亮度、读出亮度、聚焦、标尺亮度
- 3. 校正电压输出
- 4. 垂直调节部分

DC/AC:交流/直流耦合

ADD: 信号叠加

- 5. 水平调节部分
- 6. 触发部分 (触发源、触发耦合)
- 7. 显示模式:

A: 单踪/双踪

X-Y: 李萨如图形

- 8. 扫描模式
- 9. 光标测量

基本流程:

- 1. 调节显示模块 (亮度)
- 2. 选择触发源、触发耦合
- 3. 调节水平、垂直
- 4. 发生波形左移/右移,调整LEVEL旋钮使其稳定下来

实验步骤

测量电压

1. 直接测量

$$U_{p-p} = D \cdot h$$

旋转VOLTS/DIV,上下旋转移动

2. 光标测量

按下vtoff选择电压光标,按下TCK/C2选择光标,旋转function旋钮移动光标

测量频率/周期

1. 直接测量

$$T_x = Q \cdot x$$

2. 光标测量

时基信号校准,误差5%

标准检验信号

3. 比较法验证 $f_y = nf_x$

fx是扫描频率, fy是信号频率

调节fy使波形显示12 ... n 个完整波形,检验fx和fy的关系

4. 李萨如图形测量位置信号频率

一个接CH1,一个接CH2,改为X-Y状态

改变信号发生器频率,直到图形稳定

李萨如关系

5. 二极管正向导通电压测量

CH1接输入端,CH2接输出端,示波器置于A状态测量1的峰峰值和2的半波信号峰值

$$U_0 = U_{1p-p}/2 - U_{2p}$$

6. 相位差测量

CH1接输入端,CH2接输出端,示波器置于A状态测量一个周期所占格数和两个波形间距离,作比值得到相位差

$$\Delta\Phi=2\pirac{x_1}{x}$$

注意事项和思考题

• 亮度不能太亮, 怕烧了

• 为什么能测信号波形: 扫描电压控制x偏转, 被测信号电压控制y翻转

• 李萨如图形为什么翻转:不是简单整数比

分光计

实验原理

1. 反射法测三棱镜棱角

- 1. 测量α, 顶角就是α/2
- 2. 两个视窗分别求差得到 α_1, α_2
- 3. 求平均值消偏心差

2. 自准直法

载物平台放一个平面镜,调节亮十字和物镜间距离。如果亮十字恰好位于焦平面,则光线经物镜变成平行光,由反射镜反射回来,准确成像于亮十字所在平面。

因此看到清晰的亮十字像, 说明已经调焦无穷远

实验仪器

没啥好讲的

实验步骤

- 1. 分光计的调整:
 - 。 两个焦距、三个垂直、等高共轴:

平行光管发射平行光、望远镜调焦无穷远,平行光管、望远镜光轴、载物平台与分光计中心轴 垂直

o 粗调

目测,调节望远镜倾斜度螺丝,使其与分光计中心轴垂直;调节载物平台三个调节螺丝,使平面垂直分光计中心轴

- 。 望远镜调焦无穷远
 - 1. 反射镜放在平台对着望远镜
 - 2. 调节目镜直到清晰看见叉丝
 - 3. 调节倾斜螺钉同时左右移动, 找到亮十字
 - 4. 调节调焦螺钉,直到看到清晰的亮十字像
 - 5. 再次调节倾斜螺钉,直到十字与叉丝上刻线重合
- 。 调整望远镜光轴、载物平台面分别与分光计中心轴垂直
 - 1. 载物平台任选两只螺钉, 反射镜面垂直平分螺钉连线
 - 2. 调节望远镜倾斜螺钉,找到亮十字像
 - 3. 微调倾斜螺钉, 使亮十字像在叉丝偏上, 载物台转动180
 - 若看不到十字像,确认偏上还是偏下。偏上调节望远镜,偏下调节载物平台
 - 若偏上,反复转动180,调节望远镜,直到与上刻线重合
 - 若偏下,反复转动180,调节载物平台,相对于上刻线距离减小一半,逼近至重合
 - 4. 反射镜放在螺钉连线平行的直径上,调节第三颗螺钉,使亮十字与上刻线重合
- 。 调整平行光管光轴和分光计中心转轴垂直
 - 1. 移走反射镜,调整平行光管和望远镜的距离,使望远镜能看到清晰的像
 - 2. 转动狭缝器,使平行光水平射出,调节平行光管倾斜度使平行光与下刻线重合
 - 3. 转动狭缝器,将平行光竖直放置,调整狭缝至目视2mm

2. 测量棱角

- 。 三棱镜放在载物平台,顶角对准平行光管中心,顶角位于圆心偏上
- 。 测量左右两反射光线的角位置,注意两个视窗都要测量,注意求均值消除偏心差
- 。 每次测量稍稍改变顶角距离中心的位置

注意事项和思考题

• 找不到绿十字像:太过倾斜,反射像超出了望远镜视场范围

• 为什么要偏上: 保证平行光都照射在左右两个反射面上