杭州电子科技大学学生考试卷(A)卷

考试课程	数据结构(考试日期	2017年	月 I	Ħ	成 绩		
课程号	A2707020 教师号		任课教师姓名					
考生姓名		学号 (8 位)		年级			专业	

特别提醒:答案一律写在答题纸上,否则不给分。

- 一. 判断题(每题 2 分,共 10 分)(正确的打"√",错误的打"×"。)
- 1. 广义表通常采用顺序存储结构。

2. 邻接表适用于稀疏图,而邻接矩阵适用于稠密图。

- 3. 线性表的链式存储结构的特点是,用一组任意的存储单元存储线性表的数据元素,这组存储单元可以是连续的,也可以是不连续的。
- 4. 数据结构中, 栈具有先进先出特性, 队列具有后进先出特性。
- 5. 完全二叉树的一个结点若无右孩子,则此结点必为叶子结点。

二. 单选题(每题2分,共30分)

- 1. 从逻辑结构上可将数据结构分为()。
- A. 静态结构和动态结构 B. 紧凑结构和非紧凑结构 C. 内部结构和外部结构
- D. 线性结构和非线性结构
- 2. 算法分析的目的是()。
- A. 找出数据结构的合理性
- B.研究算法中的输入和输出的关系
- C. 分析算法的效率以求改进
- D.分析算法的可读性和简明性
- 3. 在单链表上实现删除和插入操作()。
- A. 不需要移动结点,不需要改变结点指针
- B. 不需要移动结点, 只需要改变结点指针
- C. 只需移动结点,不需要改变结点指针
- D. 既需移动结点, 又需要改变结点指针
- 4. 假设一个栈的输入序列是 1, 2, 3, 4, 则不可能得到的输出序列是 ()。
- A. 1, 2, 3, 4 B. 4, 1, 2, 3 C. 4, 3, 2, 1 D. 1, 3, 4, 2
- 5. 为解决计算机主机与打印机之间速度不匹配的问题,通常设置一个打印数据缓冲区。主要将要输出的数据依次写入该缓冲区,而打印机则依次从该缓冲区中取出数据。该缓冲区的逻辑结果应该是()。
- A. 栈 B. 队列 C.树 D. 图
- 6. 两个字符串相等的条件是()。
- A. 两个串的长度相等 B. 两个串包含的字符相等
- C. 两个串的长度相等,并且两个串包含的字符相同
- D. 两个串的长度相等,并且各个对应位置的字符都相等
- 7. 在二维数组中,每个数组元素同时处于()个向量中。
- A. 0 B. 1 C. 2 D. n
- 8. 将递归算法转换成对应的非递归算法,除了单向递归和尾递归的情况外,通常需要使用()保存中间结果。
- A. 链表 B.栈 C. 队列 D. 顺序表
- 9. 设一棵二叉树的中序序列为 badce,后序序列为 bdeca,则该二叉树前序遍历的结果是()。

- A. adbec B. decab C. debac D. abcde
- 10. 在 n 个结点的线索二叉树中,线索的数目是()。
- A. n-1 B. n+1 C. 2n D. 2n-1

()

()

()

- 11. 一个有 n 个顶点的无向图中边数最多有 ()条。
- A. n B. n(n-1) C. n(n-1)/2 D. 2n
- 12. 无向图的邻接矩阵是一个()。
- A. 对称矩阵 B. 零矩阵 C. 上三角矩阵 D. 对角矩阵
- 13. 对线性表进行折半查找时,要求线性表必须()。
- A. 以顺序方式存储 B. 以链接方式存储
- C. 以链接方式存储, 且结点按关键码有序排序
- D. 以顺序方式存储, 且结点按关键码有序排序
- 14. 直接插入排序在最好情况下的时间代价是 ()。
- A. $O(\log_2 n)$ B. O(n) C. $O(n\log_2 n)$ D. $O(n^2)$
- 15. 每次直接比较两个元素,若出现逆序排列时就交换它们的位置,此种排序方法是()。
- A. 堆排序 B. 选择排序 C. 起泡排序 D. 基数排序

三. 填空题(每空2分,共10分)

- 1. 顺序查找 n 个元素的顺序表,若查找成功,则比较关键字的次数最多为 次。
- 2. 一个深度为 4 的满二叉树具有 个结点。
- 3. 遍历二叉排序树可得到一个按关键字的有序序列。
- 4. 在顺序表 (8, 11, 15, 19, 25, 26, 30, 33, 42, 48, 50) 中,用二分(折半)法查找关键码值19,需做的关键码比较次数为。
- 5. 空串的长度为()。

四. 结构问答题(每题10分,共40分)

图 1

- 1. 某通信电文由 A、B、C、D、E、F 六个字符组成,它们在电文中出现的次数分别是 16,5,9,3,20,1。
- ①、试画出其赫夫曼树。(6分)
- ②、确定其对应的赫夫曼编码。(4分)
- 2. 图 1 表示一个地区的交通网,顶点表示城市,边表示连接城市间的公路,边上的权表示修建公路花费的代价。怎样选择能够沟通每个城市且总造价最省的 n-1 条公路,画出所有可能的方案。
- 3. 设哈希 (Hash) 表的地址范围为 $0\sim15$,哈希函数为: H(K)=K MOD 16, K 为关键字,用线性探测再散列 法处理冲突,输入关键字序列: (10,24,32,17,31,30,46,47,40,63,49) 构造哈希表,试回答下列问题。
- ①、画出哈希表示意图;(4分)

```
②、若查找关键字63,需要依次与哪些关键字比较;(2分)
③、若查找关键字 40, 需要依次与哪些关键字比较; (2分)
④、假定每个关键字的查找概率相等,求查找成功时的平均查找长度。(2分)
4. 设要将序列(12, 5, 9, 20, 6, 31, 24)中的关键字按升序排列,试写出下列结果。
①、起泡排序第一趟排序的结果;(4分)
②、增量为4的希尔排序第一趟排序的结果;(3分)
③、二路归并排序第一趟排序的结果;(3分)
五. 用类 C 语言描述下列算法,并给出必要说明(10分)。
1. 已知两个无序单链表,均为有链表头结点的链表,现需将这两个无序单链表进行排序变为有序链表,然
后再将这两个链表合并为一个链表。请按照以下提示和要求给出算法。
 已知链表存储结构为:
 typedef struct Node{
     int data;
     struct Node *next;
    }Linknode,*Link;
(1) 对单链表中元素按插入方法排序的 C 语言描述算法如下, 其中 L 为链表头结点指针。请填充算法中
标出的空白处,完成其功能。(3分)
 void Insertsort(Link &L)
   { Link p,q,r,u;
    p=L->next;
    L->next=NULL;
     while(p!=NULL)
     \{ r=L; q=L->next; 
       u=p->next;
       p=u;
   1
   2
   3
 (2) 请给出有序单链表的合并算法及其算法的时间复杂度 (7分)
 void MergeList_L (Link &La, Link &Lb, Link &Lc)
```

杭州电子科技大学学生考试卷(A)卷答卷

考试课程	数据结束	考试日期	2017年	月日	成 绩			
课程号	A2707020	教师号		任课	处师姓名	付兴兵、王小军、王慧		
考生姓名		学号 (8 位)		年级		专业		

一、判断题(每题2分,共10分)

1.	2.	3.	4.	5.

二、选择题(每选2分,共30分)

1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
11.	12.	13.	14.	15.					

三、填空题(每空2分,共10分)

1.	2.	3.	4.	5.

四、问答题(每题10分,共40分)

1.

3.

2.

4.	
五、用类 C 语言描述下列算法,并给出必要说明(10 分)。 (1) ① ② ③	
(2)	

杭州电子科技大学学生考试卷(A)卷评分标准

考试课程	数据结	考试日期	2017年	月	日	成 绩		
课程号	A2707020 教师号		任课教师姓名					
考生姓名		学号 (8 位)		年级			专业	

一. 判断题(每题 2 分, 共 10 分)(正确的打"√", 错误的打"×"。)

1. × 2. √	3. √	4. ×	5. ×
-----------	------	------	------

二、单选题(每题 2 分,共 30 分)

1.D	2.C	3.B	4.B	5.B	6. D	7. C	8.B	9.D	10.B
11.C	12.A	13.D	14. B	15.C					

三、填空题(每空2分,共10分)

_					
	1. n	2.15	3. 中序	4. 3	5. 0

四、问答题(每题10分,共40分)

1.构造的赫夫曼树如下图: (6分)(成功构造每个叶子结点给1分)

对上面的赫夫曼树左分支标记 0,右分支标记 1,得到各个字符对应的赫夫曼编码为: (4分)

A: 10 (0.5分)

B: 1101 (0.5分) C: 111 (0.5分) D: 11001 (1.0分) E: 0 (0.5分) F: 11000 (1.0分)

2. 本题是求最小生成树问题。由于网中有两条权值为6的边,故可以得到两种方案(每个方案各5分):

每正确生成一条带权边给1分。

3.1. 哈希表示意图为: (4分)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
32	17	46	47	63	49			24	40	10				30	31

2. 31、32、17、46、47、63(2分)

3. 24、40(2分)

4. 平均查找长度为: 29/11(2分)

4.

1. 冒泡排序第一趟排序的结果: (5, 9, 12, 6, 20, 24, 31) (4分)

2. 增量为 4 的希尔排序第一趟排序的结果: (6, 5, 9, 20, 12, 31, 24) (3分)

3. 二路归并排序第一趟排序的结果: (5, 12, 9, 20, 6, 31, 24) (3分)

```
五、用类 C 语言描述下列算法,并给出必要说明。(10分)
1.(1)
                     // 查 p 结点在链表中的插入位置,这时 q 是工作指针。(1分)
       \bigcirc q!=null
       ② p->next=r->next // 将 p 结点链入链表中 (1 分)
       \bigcirc r->next=p
                       //r是q的前驱,u是下个待插入结点的指针。(1分)
(2)
void MergeList_L (Link &La, Link &Lb, Link &Lc) {
   pa=La->next; pb=Lb->next;
   Lc=pc=La; (1.5分)
   while (pa &&pb) { (0.5分)
        if (pa->data<pb->data) (0.5分)
              { pc->next=pa;pc=pa;pa=pa->next;} (1.5分)
       else
              { pc->next=pb;pc=pb;pb=pb->next;} (1.5分)
     }//while
    pc->next=pa?pa:pb; (0.5分)
    free (Lb); (0.5分)
算法时间复杂度: O(ListLength(La)+ListLength(Lb)) (0.5分)
```