

Paper CODE	EXAMINER	DEPARTMENT	TEL
CPT205		Computing	

1st SEMESTER 2022/23 FINAL EXAMINATION

Undergraduate - Year 3

COMPUTER GRAPHICS

TIME ALLOWED: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This is a closed-book examination, which is to be written without books or notes.
- 2. Total marks available are 100.
- 3. Answer ALL questions in this examination. It is not necessary to copy the questions into the answer booklet.
- 4. Answers should be written in the answer booklet(s) provided.
- 5. Only solutions in English are accepted.
- 6. All materials must be returned to the exam invigilator upon completion of the exam. Failure to do so will be deemed academic misconduct and will be dealt with accordingly.

Question 1. Fundamentals

[Total 20 marks]

1.1. Give a brief definition of computer graphics.

[2 marks]

1.2. List at least 4 main topics of computer graphics.

[2 marks]

1.3. What is a framebuffer used for computer graphics?

[2 marks]

- 1.4. Graphics packages use a fourth 'colour co-ordinate', A or alpha (in addition to Red, Green and Blue). What does it do? [2 marks]
- 1.5. Given two vectors, $V_1 = 3i 2j$ and $V_2 = 6i + 5j$, work out their dot product.

[2 marks]

- 1.6. For two matrices, $\mathbf{A} = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, work out \mathbf{AB} . [2 marks]
- 1.7. Decide which of the following statements about polygons is false; write down your answer in the answer book provided. [2 marks]
 - (a) A polygon can have two faces;
 - (b) A polygon can be filled;
 - (c) A polygon must be convex;
 - (d) A polygon must have at least 3 vertices.
- 1.8. Use an example to explain a parametric representation of a curve.

[2 marks]

- 1.9. Are there any restrictions to the placement of the viewing plane in graphic systems and why? [2 marks]
- 1.10. What would the following fragment of code do?

[2 marks]

Question 2. Transformation and viewing

[Total 20 marks]

- 2.1. Briefly explain the transformation pipeline including each of the stages. Diagrams can be used in your answer. [5 marks]
- 2.2. The 2D object in Figure (a) below is to be transformed to the position shown in Figure (b). Describe the steps needed and show the transformation matrices for each step; work out the combined homogeneous transformation matrix. Diagrams can be used in your answer.

[8 marks]

2.3. Briefly explain line by line what the following fragment of code would do.

[7 marks]

```
void init(void) {
  glClearColor(0.0, 1.0, 0.0, 1.0);

glMatrixMode(GL_MODELVIEW);
  glLoadIdentity();
  gluLookAt(100, 50, 50, 50, 50, 0, 0, 1, 0);

glMatrixMode(GL_PROJECTION);
  glLoadIdentity();
  glFrustum(-40, 40, -60, 60, -40, 60);
}
```


Question 3. Creation and representation of geometry [Total 20 marks]

- 3.1. Discuss how symmetry of a circle can be used to reduce the amount of computation for generating the full circle, using diagrams where necessary. [8 marks]
- 3.2. For parametric curves, explain what interpolation and design curves are and how their local controls work. Diagrams can be used in your answer. [8 marks]
- 3.3. Briefly describe the two types of B-Rep model and how the validation can be done. Diagrams can be used in your answer. [4 marks]

Question 4. Lighting and texture mapping

[Total 20 marks]

- 4.1. Attenuation of light received due to the distance from the light source can be applied.
 - (a) Briefly explain the attenuation model implemented in graphics systems such as OpenGL.
 - (b) Name a type of light source to which distance attenuation can be applied and explain why.

[6 marks]

- 4.2. Given two light sources (0.8, 0.6, 0.4) and (0.3, 0.3, 0.3), work out the combined lighting effect. [2 marks]
- 4.3. A photograph of 1600*1200 pixels is to be mapped onto a display screen of 800*600.
 - (a) How the mapping could be implemented?
 - (b) What term of texture mapping would this case be called?
 - (c) How the colour of each pixel in the display can be decided?

[6 marks]

4.4. Briefly describe the co-ordinate systems used for texture mapping. Diagrams can be used in your answer. [6 marks]

Question 5. Clipping and hidden surface removal

[Total 20 marks]

- 5.1. Briefly explain the clipping window, viewport and display window relating to OpenGL where appropriate. Diagrams can be used in your answer. [6 marks]
- 5.2. The following figure shows four lines and a rectangular clipping window. Describe the sequence of clips that the Cohen-Sutherland clipping algorithm would perform for each of these lines.

 [8 marks]

5.3. Briefly describe the need, process and limitations of back-face culling for hidden-surface removal. Diagrams can be used in your answer. [6 marks]

THIS IS THE END OF THE EXAM.