Correction du DST 2

Exercice 1 : Étude de fonction

Soit f la fonction définie pour $x \in \mathbb{R}$ par : $f(x) = 2 - 2x e^{-x}$.

1. (Calculer l'intégrale $I = \int_0^1 f(x) dx$.)

On a $I = 2 \int_0^1 dx - 2 \underbrace{\int_0^1 x e^{-x} dx}_{=I}$. Calculons par parties $J = \int_0^1 x e^{-x} dx$.

Les fonctions u, v définies ci-dessous sont bien de classe C^1 sur [0;1]:

$$\begin{cases} u = x \\ v' = e^{-x} \end{cases} \iff \begin{cases} u' = 1 \\ v = -e^{-x} \end{cases}$$
 Il vient donc :
$$J = \left[-x \ e^{-x} \right]_0^1 - \int_0^1 -e^{-x} = -e^{-1} - \left[e^{-x} \right]_0^1 = -e^{-1} - (e^{-1} - 1) = 1 - 2 e^{-1}$$
 Ainsi : $I = 2 - 2(\underbrace{1 - 2 e^{-1}}_{-I}) = 4 e^{-1}$.

2. Étude de la fonction f

- a) (Montrer que la fonction f est de classe C^2 sur \mathbb{R} .)
 Les fonctions suivantes sont de classe C^∞ sur \mathbb{R} : $x \mapsto -2x$ (fonction polynomiale) $x \mapsto e^{-x}$ (fonction exponentielle)
 Ainsi leur produit $x \mapsto -2x e^{-x}$ l'est aussi sur \mathbb{R} .
 Par ajout de constante additive, la fonction f est de classe C^∞ sur \mathbb{R} , donc aussi C^2 .
- b) (Faire le tableau de variations de f sur \mathbb{R} + limites $en \pm \infty$.) On $a : \forall x \in \mathbb{R}, f(x) = 2 - 2x e^{-x}$

d'où:
$$f'(x) = -2(e^{-x} - x e^{-x})$$

= $2(x - 1) e^{-x}$.

On obtient donc pour f' et f le tableau de signes-variations à droite.

\overline{x}	$-\infty$	1	$+\infty$
x-1	_	Ó	+
e^{-x}		+	
f'(x)		+	
f(x)	$+\infty$	$2-\frac{2}{e}$,2

• Calcul de $\lim_{-\infty} f$

Pour
$$x \to -\infty$$
, on a $f(x) = 2 \underbrace{-2x}_{\to +\infty} \cdot \underbrace{e^{-x}}_{\to +\infty} \to +\infty$.

ightharpoonup Calcul de $\lim f$

Pour
$$x \to +\infty$$
, on a $f(x) = 2 \underbrace{-2x}_{\to -\infty} \cdot \underbrace{e^{-x}}_{\to 0}$.

On obtient une forme indéterminée. Par croissances comparées $\lim_{x\to +\infty} x \cdot e^{-x} = 0$.

Ainsi
$$\lim_{+\infty} f = 2$$
.

- **▶** Calcul de *f*(1) On a $f(1) = 2 - e^{-1}$.
- c) (Étudier le signe de la fonction f'' + unique point d'inflexion.)

On a : $\forall x \in \mathbb{R}, f'(x) = 2(x-1) e^{-x}$

d'où :
$$f''(x) = 2(e^{-x} - (x-1)e^{-x})$$
$$= 2(2-x)e^{-x}$$

On trouve le tableau de signes ci-contre.

La dérivée seconde f'' s'annule en changeant de signe une seule fois : en 2.

C'est donc l'unique point d'inflexion de f sur \mathbb{R} .

x	$-\infty$		2	2	$+\infty$
$2e^{-x}$		+		+	
2-x		+	() –	
f''(x)		+	() —	
f(x)		convexe		concave	
		-			

→ inflexion

- 3. Tracé de la fonction f sur [0;3] (On donne $e^{-1} \simeq 0.37$ et $e^{-2} \simeq 0.14$.)
 - a) (Tracer l'asymptote représentant la limite de f en $+\infty$.) L'asymptote est horizontale, à l'ordonnée y=2.
 - **b)** (Calculer f(0), f(1) et f(2) (+ approx).)
 - f(0) = 2.
 - $f(1) = 2 2e^{-1}$ $\simeq 2 - 2 \times 0.37 = 1.26.$
 - $f(2) = 2 4e^{-2}$ $\simeq 2 - 4 \times 0.14 = 1.44$
 - c) (f'(0), f'(1) et f'(2) ?)f'(0) = -2.
 - f'(1) = 0.
 - $f'(2) = 2e^{-2} \simeq 0.28.$

- **4.** L'équation f(x) = x. On définit la fonction $g: \mathbb{R} \to \mathbb{R}$ $x \mapsto f(x) - x$
 - a) (Montrer que pour $x \ge 1$, on a $0 \le f'(x) \le 2e^{-2}$.) On a trouvé le tableau de signes ci-contre pour la dérivée seconde f''.

On en déduit le tableau de variations pour f'. On obtient bien l'inégalité :

b) (En déduire que la fonction g est strictement décroissante sur $[1; +\infty[$.)

La fonction g est dérivable et on a $\forall x \ge 1, \ g'(x) = f'(x) - 1$. Par la question précédente :

$$\forall x \ge 1, \quad g'(x) \le 2 e^{-2} - 1 < 0.$$

Ainsi la fonction q est bien strictement décroissante sur $[1; +\infty]$. $(sur \]0; +\infty[\ aussi.)$ **c)** (Montrer que l'équation g(x) = 0 admet une unique solution ℓ sur $[0; +\infty[$.) Sur l'intervalle $[0; +\infty[$, la fonction g est \bullet continue

▶ strictement décroissante.

Par le théorème de la bijection monotone, la fonction g réalise donc une bijection $]0; +\infty[\to]\lim_{t\to +\infty} g; g(0)[$. Or $\left\{ \lim_{x\to +\infty} g(x) = -\infty \right\}$ donc $0\in]\lim_{t\to \infty} g; g(0)[$, et il existe un

unique $\ell \in]0; +\infty[$ tel que $g(\ell) = 0.$

d) (Montrer que $\ell \in [1;2]$.)

Calculons
$$\begin{cases} g(1) = 1 - 2e^{-1} > 0 \\ g(2) = -4e^{-2} < 0 \end{cases}$$

Ainsi, la fonction g change de signes entre 1 et 2, donc s'y annule, et $1 < \ell < 2$.

e) (Étudier le signe de g(x) pour $x \ge 0$.)

La fonction g est st^t décroissante, et s'annule en ℓ . On trouve donc le tableau de signes ci-contre.

Remarquons que $g(x) \geqslant 0 \iff f(x) \geqslant x$.

x	1		ℓ		$+\infty$
g(x)		+	0	_	

- 5. Étude de la suite (u_n) définie par $u_0 = 2$, et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.
 - **a)** (Montrer que $\forall n \geq 0$, on a $u_n \geq \ell$.)
 - ▶ Hypothèse de récurrence

Pour $n \in \mathbb{N}$, on considère l'hypothèse de récurrence : $u_n \geqslant \ell$ (H_n)

- ▶ Initialisation On a bien d'après la question 4.d): $u_0 = 2 \geqslant \ell$ (H_0)
- ▶ Hérédité Soit $n \in \mathbb{N}$ un entier.

On suppose (H_n) soit : $u_n \ge \ell$.

D'après la question 4.d), et (H_n) , on a : $u_n \ge \ell \ge 1$.

La fonction f est croissante sur $[1; +\infty[, (Q 2.b)), d'où : u_{n+1} = f(u_n) \geqslant f(\ell) = \ell.$

Ainsi, il vient bien :
$$u_{n+1} \geqslant \ell$$
 (H_{n+1})

Conclusion

On a montré que l'hypothèse de récurrence (H_n) est \rightarrow initialisée

▶ héréditaire

On a donc bien pour tout
$$n \in \mathbb{N}$$
, $u_n \geqslant \ell$ (H_n)

b) (Étudier le sens de variation de la suite (u_n) .)

On a $\forall n \in \mathbb{N}, u_n \geqslant \ell$. Donc, $\forall n \in \mathbb{N}, u_{n+1} - u_n = g(u_n) \leqslant 0$.

(d'après **4.e)**)

Ainsi la suite (u_n) est décroissante.

- c) (Montrer que la suite (u_n) converge, et préciser sa limite.)
 - ▶ Convergence de (u_n) La suite (u_n) est ▶ décroissante, par 5.b), et

► minorée par ℓ, par 5.a).

Par le théorème de la limite monotone, la suite (u_n) converge et $\lim(u_n) \ge \ell$.

▶ Limite de (u_n) ▶ La suite (u_n) satisfait $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$, et

▶ la fonction f est continue sur \mathbb{R} .

D'après le théorème du point fixe, la limite $\lim(u_n)$ est un point fixe ≥ 1 de f.

D'après la question 4.c), le seul point fixe de f qui soit ≥ 1 est le réel ℓ .

Ainsi $\lim (u_n) = \ell$.

d) (Montrer grâce à la question 4.a) que $\forall n \in \mathbb{N}$, on a $0 \le u_{n+1} - \ell \le 2 e^{-2}(u_n - \ell)$.) La fonction f est dérivable sur $[1; +\infty[$, et $\forall x \ge 1, 0 \le f'(x) \le 2 e^{-2}$.

Ainsi, d'après l'inégalité des accroissements finis, pour $1 \le a \le b$, on a :

$$0 \le f(b) - f(a) \le 2 e^{-2}$$
.

On applique, pour $n \in \mathbb{N}$, entre $a = \ell$, et $b = u_n$:

(on a bien
$$1 \leq \ell \leq u_n$$
)

$$0 \leqslant \underbrace{u_{n+1} - \ell}_{f(u_n) - f(\ell)} \leqslant 2 e^{-2} (u_n - \ell).$$

- **e)** (En déduire que $\forall n \in \mathbb{N}$, on $a: 0 \leq u_n \ell \leq 2^n e^{-2n}$.)
 - ▶ Hypothèse de récurrence

Pour $n \in \mathbb{N}$, on considère l'hypothèse de récurrence : $0 \leq u_n - \ell \leq 2^n e^{-2n} (H_n)$

- ▶ Initialisation On a $\ell \geqslant 1$, donc : $0 \leqslant u_0 \ell \leqslant 2 1 = 1$ (H_0)
- ▶ **Hérédité** Soit $n \in \mathbb{N}$ un entier.

On suppose (H_n) soit : $0 \le u_n - \ell \le 2^n e^{-2n}$

D'après la question 5.d) $0 \le u_{n+1} - \ell \le 2 e^{-2} (u_n - \ell) \le 2 e^{-2} 2^n e^{-2n} = 2^{n+1} e^{-2(n+1)}$. Ainsi, il vient bien : $0 \le u_{n+1} - \ell \le 2^{n+1} e^{-2(n+1)}$ (H_{n+1})

Conclusion

On a montré que l'hypothèse de récurrence (H_n) est \rightarrow initialisée

▶ héréditaire

On a donc bien pour tout
$$n \in \mathbb{N}$$
, $0 \leqslant u_n - \ell \leqslant 2^n e^{-2n}$ (H_n)

f) (Combien de termes de (u_n) calculer pour approcher ℓ avec une précision $\leq 10^{-3}$?)

(on rappelle $\ln(2) \simeq 0.69$ et $\ln(10) \simeq 2.3$) Pour $n \in \mathbb{N}$, l'erreur commise en approchant ℓ par u_n est $\leq 2^n e^{-2n}$.

Pour que celle-ci soit $\leq 10^{-3}$, on souhaite donc avoir :

$$2^n e^{-2n} \le 10^{-3} \iff n \ln(2 e^{-2}) \le -3 \ln(10) \iff n[2 - \ln(2)] \ge 3 \ln(10)$$

$$\iff n \geqslant \frac{3\ln(10)}{2-\ln(2)} \simeq \frac{3\times 2,3}{2-0,7} = \frac{6,9}{0,6} = 11,5$$

Pour obtenir ℓ avec une précision $\leq 10^{-3}$, il suffit donc de calculer u_{12} .

Exercice 2 : une étude de suite

On considère la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_0\in]0;1[$, et pour tout $n\in\mathbb{N}, x_{n+1}=x_n-x_n^2$. On l'a programmée grâce à Scilab:

1. Le graphique de gauche

- a) (À quoi correspond le paramètre N?)
 C'est l'indice du dernier terme de la suite que le programme calcule.
- b) (Quelle valeur de x_0 a été choisie ?) La valeur initiale choisie est x = 0.5. Ainsi, on a choisi $x_0 = \frac{1}{2}$.
- c) (Donner un ordre de grandeur de x_{100} .) Par lecture graphique, x_{100} est de l'ordre d'un centième : $x_{100} \simeq \frac{1}{100} = 0.01$.
- d) (Conjecturer le comportement (x_n) .) La suite (x_n) semble décroissante et positive. Si c'est le cas elle tend une limite ≥ 0 (vraisemblablement vers 0).

2. Le graphique de droite

- a) (Quelle est la suite représentée?)
 On trace (0:n).*suite, soit la suite $(n \cdot x_n)$.
- b) (Conjecturer son comportement.)
 Elle semble croissante et majorée par 1.
 Si c'est le cas elle tend une limite ≤ 1 (vraisemblablement vers 1).
- c) (Qu'en déduire alors sur (x_n) ?) Si $n \cdot x_n \to 1$, alors $x_n \sim \frac{1}{n}$.
- **3.** (Dresser le tableau de variations de la fonction $f:[0;1] \to \mathbb{R}$ définie par : $f(x) = x x^2$.) La fonction polynomiale f est de classe C^{∞} .

Pour $x \in [0; 1]$, on a : $f(x) = x - x^2$, d'où : f'(x) = 1 - 2x= $2(\frac{1}{2} - x)$.

x	0		$\frac{1}{2}$		1
$\frac{1}{2\left(\frac{1}{2} - x\right) = f'(x)}$		+	0	_	
f(x)	0		$\frac{1}{4}$		0

On trouve donc le tableau de signés et variations ci-contre :

4. Convergence de (x_n)

- a) (Montrer que la suite (x_n) est monotone.) Pour $n \in \mathbb{N}$, on a $x_{n+1} - x_n = f(x_n) - x_n = -(x_n)^2 \leq 0$. Ainsi, la suite (x_n) est décroissante.
- **b)** (En déduire que la suite (x_n) converge.)
 - ▶ Minoration de (x_n) Vérifions que la suite (x_n) est minorée en montrant qu'elle ne change pas de signe.

Pour $n \in \mathbb{N}$, on a $x_{n+1} = (1 - x_n)x_n$. Or par décroissance de x_n , on a $\forall n \in \mathbb{N}$, $x_n \leq x_0 \leq 1$, donc $(1 - x_n) \geq 0$. Ainsi x_{n+1} et x_n sont de même signe, et (x_n) est donc à valeurs positives.

▶ Convergence de (x_n) La suite (x_n) est ▶ décroissante

▶ minorée par 0.

Par le théorème de la limite monotone, la suite (x_n) converge vers une limite $\ell \geqslant 0$.

- c) (Déterminer la limite de la suite (x_n) .)
 La fonction f est continue, et la suite (x_n) vérifie $\forall n \in \mathbb{N}, \ x_{n+1} = f(x_n)$.
 Par le théorème du point fixe, la limite ℓ est donc un point fixe de f, soit $f(\ell) = \ell$.
 On résout $\left[\ell \ell^2 = \ell\right] \iff \left[\ell = 0\right]$, et il vient donc : $\lim(x_n) = 0$.
- **5.** a) (Établir pour tout $n \in \mathbb{N}$, l'encadrement $0 < x_n \leq \frac{1}{n+1}$.) On va montrer cet encadrement par récurrence.
 - ► Calcul préliminaire Pour $n \in \mathbb{N}$, montrons que $f\left(\frac{1}{n+1}\right) \leqslant \frac{1}{n+2}$. On a bien : $f\left(\frac{1}{n+1}\right) = \frac{1}{n+1} - \left(\frac{1}{n+1}\right)^2 = \frac{n}{(n+1)^2} = \frac{n}{n^2+2n+1} \leqslant \frac{n}{n^2+2n} = \frac{1}{n+2}$.
 - ▶ Hypothèse de récurrence

Pour $n \in \mathbb{N}$, on considère l'hypothèse de récurrence : $0 < x_n \leqslant \frac{1}{n+1}$ (H_n)

Initialisation On a bien: $0 < x_0 \leqslant 1 = \frac{1}{1+0}$ (H₀)

et
$$0 < x_1 = f(x_0) \leqslant \frac{1}{4} \leqslant \frac{1}{1+1}$$
 (H_1)

▶ **Hérédité** Soit $n \ge 1$ un entier.

On suppose (H_n) soit : $0 < x_n \leqslant \frac{1}{n+1}$.

La fonction f est strictement croissante sur $[0; \frac{1}{2}]$, ainsi : $\underbrace{f(0)}_{=0} < \underbrace{f(x_n)}_{=x_{n+1}} \leqslant \underbrace{f\left(\frac{1}{n+1}\right)}_{\leqslant \frac{1}{n+2}}$.

Il vient donc : $0 < x_{n+1} \leqslant \frac{1}{n+2}$ soit (H_{n+1}) .

Conclusion

On a montré que l'hypothèse de récurrence (H_n) est $\, \bullet \,$ initialisée n=0 et 1

• héréditaire pour $n \ge 1$.

On a donc bien pour tout $n \in \mathbb{N}$, $0 < x_n \leqslant \frac{1}{n+1}$. (H_n)

b) (Retrouver ainsi la limite de la suite (x_n) .)

Dans l'encadrement $\forall n \in \mathbb{N}, \ 0 \leqslant x_n \leqslant \frac{1}{n+1}$, on a : $0 = \lim \frac{1}{n+1}$.

Par le théorème de convergence par encadrement (des gendarmes), il vient : $\lim(x_n) = 0$.

c) (En déduire que la série de terme général (x_n^2) est convergente.) On a l'encadrement $\forall n \in \mathbb{N}, \ 0 \leqslant x_n^2 \leqslant \frac{1}{(n+1)^2}$.

Or $\frac{1}{(n+1)^2}$ est le terme général d'une série convergente *(critère de Riemann)*, donc la série de terme général (x_n^2) est convergente aussi.

- **6.** Soit (v_n) la suite définie par : $\forall n \in \mathbb{N}, \ v_n = nx_n$.
 - a) (Montrer que la suite (v_n) est croissante.) Pour $n \in \mathbb{N}$: $v_{n+1} - v_n = (n+1)x_{n+1} - nx_n = (n+1)(x_n - x_n^2) - nx_n = x_n - (n+1)x_n^2$. Ainsi $v_{n+1} - v_n = x_n(1 - (n+1)x_n) \geqslant 0$, car $0 \leqslant x_n \leqslant \frac{1}{n+1}$ d'après la question **5.a**). Ainsi la suite (v_n) est croissante.
 - b) (En déduire que la suite (v_n) converge vers un réel ℓ (on ne demande pas ici de calculer ℓ).) On a $\forall n \in \mathbb{N}, \ x_n \leqslant \frac{1}{n+1} \text{ donc } v_n = nx_n \leqslant \frac{n}{n+1} \leqslant 1$. La suite (v_n) est donc croissante et majorée par 1. Par le théorème de la limite monotone, elle converge donc vers une limite $\ell \leqslant 1$.
 - c) (Montrer que $0 < \ell \le 1$.) On a $v_0 = 0$ et $v_1 = x_1 > 0$. Par croissance de (v_n) , on a donc bien $\ell > 0$. Ainsi $0 < \ell \le 1$.

- 7. a) (Soit (a_n) une suite telle que a_n ~ α/n, avec α ≠ 0. La série ∑_{n≥1} a_n est-elle convergente?)
 La série de terme général 1/n est divergente (critère de Riemann pour la série harmonique).
 Ainsi la série de terme général α/n est divergente et la série de terme général équivalent a_n diverge.
 - b) (Soit (b_n) une suite telle que nb_n → β. On suppose que la série ∑_{n≥1} b_n est convergente. Combien vaut alors β?)
 Si β ≠ 0, d'après la question précédente, la série de terme général b_n est divergente.
 Si la série de terme général (b_n) est convergente, on a donc β = 0.
- **8.** Soit (z_n) la suite définie par $\forall n \in \mathbb{N}, \ z_n = v_{n+1} v_n + x_n^2$.
 - a) (Montrer que la série de terme général (z_n) est convergente.) Pour $n \in \mathbb{N}$, on a : $z_n = \underbrace{v_{n+1} - v_n}_{\text{série télesc.}} + \underbrace{x_n^2}_{\text{série cv}}$

Or la suite (v_n) converge, donc la série télescopique $\sum_{n\geqslant 0}(v_{n+1}-v_n)$ est convergente. Comme la série de terme général x_n^2 est convergente, la série de terme général z_n est convergente.

b) (Montrer que $\forall n \in \mathbb{N}$, on $a : nz_n = (1 - v_n)v_n$.) On réutilise le résultat du calcul de la question **6.a)** :

$$nz_n = n(v_{n+1} - v_n) + nx_n^2 n(x_n(1 - (n+1)x_n)) + nx_n^2 = nx_n(1 - (n+1)x_n + x_n)$$
$$= nx_n(1 - nx_n)$$

 $nz_n = v_n(1 - v_n).$

- c) (En déduire que $\lim(nz_n) = (1 \ell)\ell$.)
 On passe à la limite dans l'équation $nz_n = v_n(1 v_n)$, avec $\ell = \lim(v_n)$.
 Il vient : $\lim(nz_n) = (1 \ell)\ell$.
- 9. a) (En appliquant le résultat de la question 7.b), déduire que $\ell = 1$.)

 D'après la question 8.a), la série $\sum_{n \geq 0} z_n$ est convergente. On applique le résultat de la question 7.b), et il vient $\beta = (1 \ell)\ell = 0$.

 Or $\ell > 0$, donc $\ell = 1$.
 - b) (En déduire un équivalent de la suite (x_n) .) On a obtenu $1 = \ell = \lim(v_n) = \lim(nx_n)$. Ainsi $x_n \sim \frac{1}{n}$.
 - c) (Conclure sur la conjecture de la question 2...)
 La conjecture émise à la question 2. est donc vérifiée.

Exercice 3 : Une chaîne de Markov

Une urne contient initialement trois boules indiscernables au toucher : ▶ une boule blanche et ▶ deux boules rouges.

On effectue dans cette urne une succession de tirages d'une boule selon le protocole suivant :

- ▶ si la boule tirée est blanche, elle est remise dans l'urne.
- ▶ si la boule tirée est rouge : ▶ elle n'est pas remise dans l'urne,
 - ▶ mais, à la place, on y remet une boule blanche.

Pour tout entier $n \ge 1$, on considère les événements suivants :

- ▶ B_n = « on obtient une boule **blanche** lors du $n^{\hat{e}me}$ tirage »,
- $R_n =$ « on obtient une boule **rouge** lors du $n^{\grave{e}me}$ tirage »,

et X_n le nombre de boules rouges contenues dans l'urne à l'issue du $n^{\grave{e}me}$ tirage. Par convention, on pose $X_0=2$.

Remarque préliminaire

Le protocole aléatoire décrit par l'énoncé se prète à une modélisation par chaîne de Markov, dont le graphe de transitions est :

1. (Donner la loi de probabilité de la variable X_1 .)

Le premier tirage a lieu dans une urne contenant : • une boule blanche et

deux boules rouges.

Deux issues sont alors possibles. Si la première boule tirée est :

- ▶ blanche : (événement B_1), elle est remise dans l'urne, et alors $X_1 = 2$.
- $\,\blacktriangleright\,$ rouge : (événement $R_1),$ elle n'est pas remise, et alors $X_1=1.$
- 2. Étude de $\mathbb{P}(X_n=2)$
 - a) (Quelle est la probabilité conditionnelle $\mathbb{P}_{[X_{n-1}=2]}(B_n)$?)
 On conditionne par l'événement $[X_{n-1}=2]$.
 Sous cette hypothèse, il reste donc 2 boules avant le $n^{\text{ième}}$ tirage.
 La probabilité conditionnelle de tirer la boule blanche est donc $\mathbb{P}_{[X_{n-1}=2]}(B_n) = \frac{1}{3}$
 - b) (Justifier l'égalité d'événements : $\forall n \geq 1$, $[X_n = 2] = [X_{n-1} = 2] \cap B_n$.) Le protocole ne prévoit pas de manière de remettre une boule rouge dans l'urne. Ainsi, pour avoir 2 boules à l'issue du $n^{\text{ème}}$ tirage, la seule façon est donc :
 - $\,\blacktriangleright\,$ d'avoir 2 boules à l'issue du $(n-1)^{\rm ème}$ tirage
 - \blacktriangleright et de tirer la boule blanche $(pour\; la\; remettre)$ au $n^{\rm \grave{e}me}$ tirage

En d'autres termes, pour $n \in \mathbb{N}$, on a bien : $[X_n = 2] = [X_{n-1} = 2] \cap B_n$.

c) (En déduire que la suite $(\mathbb{P}(X_n=2))_{n\in\mathbb{N}}$ est géométrique. Donner l'expression de la probabilité $\mathbb{P}(X_n=2)$, pour $n\geqslant 1$.) Pour $n\geqslant 1$, on conditionne :

$$\mathbb{P}(X_n = 2) = \mathbb{P}([X_{n-1} = 2] \cap B_n) = \mathbb{P}(X_{n-1} = 2) \times \mathbb{P}_{[X_{n-1} = 2]}(B_n).$$

On obtient donc la relation de récurrence : $\forall n \geqslant 1$, $\mathbb{P}(X_n = 2) = \frac{1}{3} \cdot \mathbb{P}(X_{n-1} = 2)$.

La suite $(\mathbb{P}(X_n=2))$ est donc bien géométrique de raison $\frac{1}{3}$.

Son terme général est donc $\mathbb{P}(X_n=2) = \mathbb{P}(X_0=2) \cdot \left(\frac{1}{3}\right)^n = \frac{1}{3^n}$.

- 3. Étude de $\mathbb{P}(X_n=1)$
 - a) (Pour $n \in \mathbb{N}^*$, écrire l'événement $[X_n = 1]$ en terme de $[X_{n-1} = 1]$, $[X_{n-1} = 2]$, B_n , R_n .)
 - ightharpoonup Discussion selon le $n^{\text{\`e}me}$ tirage On a

•
$$[X_n = 1] \cap B_n = [X_{n-1} = 1] \cap B_n$$
 et

•
$$[X_n = 1] \cap R_n = [X_{n-1} = 2] \cap R_n$$

$$\underbrace{X = 2}_{\text{retour}}$$

$$[X_n = 1] = ([X_{n-1} = 1] \cap B_n) \cup ([X_{n-1} = 2] \cap R_n).$$

De plus la réunion qui apparaît est celle de deux événements incompatibles.

- **b)** (Déduire par la formule des probabilités totales : $\mathbb{P}(X_n = 1) = \frac{2}{3} \cdot \mathbb{P}(X_{n-1} = 1) + \frac{2}{3} \cdot \mathbb{P}(X_{n-1} = 2)$.)
 - ▶ Application de la formule des probabilités totales La formule des probabilités totales pour le système complet (B_n, R_n) s'écrit donc :

$$\mathbb{P}(X_n = 1) = \mathbb{P}([X_{n-1} = 1] \cap B_n) + \mathbb{P}([X_{n-1} = 2] \cap R_n)$$
$$= \mathbb{P}(X_{n-1} = 1) \cdot \mathbb{P}_{[X_{n-1} = 1]}(B_n) + \mathbb{P}(X_{n-1} = 2) \cdot \mathbb{P}_{[X_{n-1} = 2]}(R_n)$$

▶ Calcul des probabilités conditionnelles

D'après le contenu de l'urne dans chaque cas :

•
$$\mathbb{P}_{[X_{n-1}=1]}(B_n) = \frac{2}{3}$$

•
$$\mathbb{P}_{[X_{n-1}=2]}(R_n) = \frac{2}{3}$$

► Conclusion Ainsi, il vient

$$\mathbb{P}(X_n = 1) = \frac{2}{3} \cdot \mathbb{P}(X_{n-1} = 1) + \frac{2}{3} \cdot \mathbb{P}(X_{n-1} = 2)$$

Pour $n \in \mathbb{N}$, on note $u_n = \mathbb{P}(X_n = 1)$.

c) (Montrer la relation de récurrence $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{2}{3}u_n + \frac{2}{3^{n+1}}, \ et \ préciser u_0.$)

On remplace $\triangleright n$ par n+1,

$$ightharpoonup \mathbb{P}(X_n=1) \text{ par } u_n$$

$$ightharpoonup \mathbb{P}(X_n=2) \text{ par } \frac{1}{3^n}.$$

Il vient alors bien $u_{n+1} = \frac{2}{3} u_n + \frac{2}{3^{n+1}}$, avec $u_0 = 0$.

d) (Montrer que la suite (v_n) définie par : $\forall n \in \mathbb{N}, \ v_n = u_n + \frac{2}{3^n}$, est géométrique.) On calcule, pour $n \in \mathbb{N}$:

$$v_{n+1} = u_{n+1} + \frac{2}{3^{n+1}} = \frac{2}{3} \cdot u_n + \frac{2}{3^{n+1}} + \frac{2}{3^{n+1}} = \frac{2}{3} \cdot u_n + \frac{2}{3} \cdot \frac{2}{3^n} = \frac{2}{3} \cdot \left(u_n + \frac{2}{3^n}\right)$$

soit la relation $v_{n+1} = \frac{2}{3} \cdot v_n$, qui montre que la suite (v_n) est géométrique de raison $\frac{2}{3}$.

- e) (En déduire $\forall n \in \mathbb{N}$, l'expression $\mathbb{P}(X_n = 1) = 2\left(\frac{2}{3}\right)^n \frac{2}{3^n}$.)
 - Terme général de (v_n)

Il s'agit d'une suite géométrique de raison $\frac{2}{3}$, donc pour $n \in \mathbb{N}$, $v_n = v_0 \cdot \left(\frac{2}{3}\right)^n$.

Or
$$v_0 = u_0 + \frac{2}{3^0} = 2$$
, d'où $v_n = 2 \cdot \left(\frac{2}{3}\right)^n$.

- ▶ Terme général de (v_n) On trouve $\forall n \in \mathbb{N}, u_n = v_n \frac{2}{3^n} = 2 \cdot \left(\frac{2}{3}\right)^n \frac{2}{3^n}$.
- 4. Conclusion de l'étude de X_n
 - a) (Déduire des résultats précédents $\mathbb{P}(X_n=0)$ pour tout $n \in \mathbb{N}$.) Les valeurs de X_n sont $\{0,1,2\}$, donc : $\mathbb{P}(X_n=0) + \mathbb{P}(X_n=1) + \mathbb{P}(X_n=2) = 1$. Ainsi : $\mathbb{P}(X_n=0) = 1 - \mathbb{P}(X_n=1) - \mathbb{P}(X_n=2) = 1 - \frac{1}{3^n} - \left[2 \cdot \left(\frac{2}{3}\right)^n - \frac{2}{3^n}\right]$, soit $\mathbb{P}(X_n=0) = 1 - 2 \cdot \left(\frac{2}{3}\right)^n + \frac{1}{3^n}$.
 - b) (Calculer l'espérance de X_n .)

La variable aléatoire X_n est finie. Elle a donc une espérance : $\mathbb{E}[X_n] = \sum_{k=0}^{2} k \mathbb{P}(X_n = k)$.

Ainsi :
$$\mathbb{E}[X_n] = \mathbb{P}(X_n = 1) + 2 \cdot \mathbb{P}(X_n = 2) = \frac{1}{3^n} + 2 \cdot \left[2 \cdot \left(\frac{2}{3}\right)^n - \frac{2}{3^n}\right] = 4 \cdot \left(\frac{2}{3}\right)^n - \frac{3}{3^n}$$
.

- 5. On note T le rang du tirage où l'on tire la dernière boule rouge de l'urne.
 - a) (Donner $T(\Omega)$.)
 Il faut au moins deux tirages pour avoir tiré les deux boules rouges.
 Il n'y a pas d'autre restriction, donc $T(\Omega) = \mathbb{N} \setminus \{0, 1\}$.
 - b) (Montrer que pour $n \in \mathbb{N}$, on $a : [T = n] = [X_{n-1} = 1] \cap [X_n = 0]$.) L'état $[X_n = 0]$ est irréversible. Ainsi l'identité $[T = n] = [T > n - 1] \cap [T \le n]$ se traduit par : $[T = n] = [X_n = 0] \cap [X_{n-1} \neq 0]$. Or $[X_{n-1} \neq 0] = [X_{n-1} = 1] \cup [X_{n-1} = 2]$, et $[X_n = 0] \cap [X_{n-1} = 2] = \emptyset$. Ainsi, il vient bien :

$$[T=n] = [X_{n-1}=1] \cap [X_n=0].$$

- c) (En déduire que $\forall n \in \mathbb{N}^*$, $\mathbb{P}(T=n) = \left(\frac{2}{3}\right)^n \frac{2}{3^n}$.) On a $[T=n] = [X_{n-1}=1] \cap [X_n=0] = [X_{n-1}=1] \cap B_n$. On conditionne : $\mathbb{P}(T=n) = \mathbb{P}(X_{n-1}=1) \cdot \mathbb{P}_{[X_{n-1}=1]}B_n$. Il vient donc bien : $\mathbb{P}(T=n) = \left(\frac{2}{3}\right)^n - \frac{2}{3^n}$.
- d) (Vérifier que $\sum_{n=1}^{\infty} \mathbb{P}(T=n) = 1$. En déduire que T est une variable aléatoire bien définie.)

 La série $\sum_{n=1}^{+\infty} \mathbb{P}(T=n) = 1$ converge car c'est une somme de probabilités d'événements incompatibles.

On décompose : $\sum_{n=1}^{+\infty} \mathbb{P}(T=n) = \sum_{n=1}^{+\infty} \left[\left(\frac{2}{3} \right)^n - \frac{2}{3^n} \right] = \sum_{n=1}^{+\infty} \left(\frac{2}{3} \right)^n - \sum_{n=1}^{+\infty} \frac{2}{3^n}.$

Ces deux séries géométriques convergent bien et

- $(raison = \frac{2}{3}) \sum_{n=1}^{+\infty} \left(\frac{2}{3}\right)^n = \frac{\frac{2}{3}}{1-\frac{2}{3}} = 2$
- $(raison = \frac{1}{3}) \sum_{n=1}^{+\infty} \frac{2}{3^n} = \frac{\frac{2}{3}}{1 \frac{1}{3}} = 1$
- e) $(\acute{E}tablir : \mathbb{E}[T] = \frac{9}{2}.)$

Sous réserve de convergence $\mathbb{E}[T] = \sum_{n=1}^{+\infty} n \cdot \mathbb{P}(T=n)$. On décompose la somme en deux

par linéarité, et on reconnaît des séries géométriques dérivées convergentes :

$$\sum_{n=1}^{+\infty} n \left(\frac{2}{3}\right)^n = \frac{2}{3} \sum_{n=1}^{+\infty} n \left(\frac{2}{3}\right)^{n-1}$$

$$= \frac{2}{3} \frac{1}{\left(1 - \frac{2}{3}\right)^2}$$

$$= \frac{2}{3} 3^2 = 6$$

$$\sum_{n=1}^{+\infty} n \frac{2}{3^n} = \frac{2}{3} \sum_{n=1}^{+\infty} n \frac{1}{3^{n-1}}$$

$$= \frac{2}{3} \frac{1}{\left(1 - \frac{1}{3}\right)^2}$$

$$= \frac{2}{3} \frac{3^2}{2^2} = \frac{3}{2}$$

- f) (Montrer que $\mathbb{E}[T(T-1)] = \frac{45}{2}$. En déduire la variance $\mathrm{Var}(T)$.)
 - ▶ Calcul de $\mathbb{E}[T(T-1)]$

Sous réserve de convergence $\mathbb{E}[T(T-1)] = \sum_{n=1}^{+\infty} n(n-1) \cdot \mathbb{P}(T=n)$. On décompose la somme en deux par linéarité, et on reconnaît des séries géométriques dérivées secondes convergentes :

$$\sum_{n=1}^{+\infty} n(n-1) \left(\frac{2}{3}\right)^n = \left(\frac{2}{3}\right)^2 \sum_{n=1}^{+\infty} n(n-1) \left(\frac{2}{3}\right)^{n-2}$$

$$= \left(\frac{2}{3}\right)^2 \frac{2}{\left(1 - \frac{2}{3}\right)^3}$$

$$= \left(\frac{2}{3}\right)^2 \times 2 \times 3^3 = 24$$
et
$$\sum_{n=1}^{+\infty} n(n-1) \frac{2}{3^n} = \frac{2}{3^2} \sum_{n=1}^{+\infty} n(n-1) \left(\frac{1}{3}\right)^{n-2}$$

$$= \frac{2}{3^2} \frac{2}{\left(1 - \frac{1}{3}\right)^3}$$

$$= \frac{2}{3^2} \times \frac{2 \times 3^3}{2^3} = \frac{3}{2}$$

d'où
$$\mathbb{E}[T(T-1)] = 24 - \frac{3}{2} = \frac{45}{2}$$
.

▶ Calcul de la variance Par Kœnig-Huygens :

$$Var(T) = \mathbb{E}[T^2] - (\mathbb{E}[T])^2$$

$$= \mathbb{E}[T(T-1)] + \mathbb{E}[T] - (\mathbb{E}[T])^2$$

$$= \frac{45}{2} + \frac{9}{2} - (\frac{9}{2})$$

$$= \frac{90}{4} + \frac{18}{4} - \frac{81}{4} = \frac{27}{4}$$