Cheap and Near Exact CASSCF with Large Active Spaces

James E. T. Smith

University of Colorado, Boulder, Department of Chemistry

Table of contents

- 1. Background
- 2. Applications
- 3. Conclusions and Future Work

Background

Hatree Fock (HF):

$$|\kappa\rangle = \exp(-\hat{\kappa})|0\rangle$$
 (1)

Solve for orbital rotation param. $\hat{\kappa}.$

Hatree Fock (HF):

$$|\kappa\rangle = \exp(-\hat{\kappa})|0\rangle$$
 (1)

Solve for orbital rotation param. $\hat{\kappa}$.

Configuration Interaction (CI)

$$|\mathbf{C}\rangle = \sum_{i} C_{i} |i\rangle$$
 (2)

Solve for determinant coefficient C_i .

Hatree Fock (HF):

$$|\kappa\rangle = \exp(-\hat{\kappa})|0\rangle$$
 (1)

Solve for orbital rotation param. $\hat{\kappa}$.

Configuration Interaction (CI)

$$|\mathbf{C}\rangle = \sum_{i} C_i |i\rangle$$
 (2)

Solve for determinant coefficient C_i .

Full CI (FCI):

Hatree Fock (HF):

$$|\kappa\rangle = \exp(-\hat{\kappa})|0\rangle$$
 (1)

Solve for orbital rotation param. $\hat{\kappa}$.

Configuration Interaction (CI)

$$|\mathbf{C}\rangle = \sum_{i} C_i |i\rangle$$
 (2)

Solve for determinant coefficient C_i .

Full CI (FCI):

Same form as CI, but vary occupation of all orbitals.

Exact for a given basis

Hatree Fock (HF):

$$|\kappa\rangle = \exp(-\hat{\kappa})|0\rangle$$
 (1)

Solve for orbital rotation param. $\hat{\kappa}$.

Configuration Interaction (CI)

$$|\mathbf{C}\rangle = \sum_{i} C_i |i\rangle$$
 (2)

Solve for determinant coefficient C_i .

Full CI (FCI):

- Exact for a given basis
- Intractable for medium systems

Hatree Fock (HF):

$$|\kappa\rangle = \exp(-\hat{\kappa})|0\rangle$$
 (1)

Solve for orbital rotation param. $\hat{\kappa}$.

Configuration Interaction (CI)

$$|\mathbf{C}\rangle = \sum_{i} C_{i} |i\rangle$$
 (2)

Solve for determinant coefficient C_i .

Full CI (FCI):

- Exact for a given basis
- Intractable for medium systems
- ullet E.g. (16e,16o) ightarrow 20 GB

Hatree Fock (HF):

$$|\kappa\rangle = \exp(-\hat{\kappa})|0\rangle$$
 (1)

Solve for orbital rotation param. $\hat{\kappa}$.

Configuration Interaction (CI)

$$|\mathbf{C}\rangle = \sum_{i} C_i |i\rangle$$
 (2)

Solve for determinant coefficient C_i .

Full CI (FCI):

- Exact for a given basis
- Intractable for medium systems
- \bullet E.g. (16e,16o) ightarrow 20 GB
- \bullet E.g. (20e,20o) ightarrow 4.4 TB!

Complete Active Space CI (CASCI)

 Partition orbitals into inactive, active, and virtual

Complete Active Space CI (CASCI)

- Partition orbitals into inactive, active, and virtual
- FCI procedure for a subset of orbitals and electrons

Complete Active Space CI (CASCI)

- Partition orbitals into inactive, active, and virtual
- FCI procedure for a subset of orbitals and electrons
- Scales combinatorially with active space size

 Many of the determinants in CAS wavefunctions are not important

- Many of the determinants in CAS wavefunctions are not important
- Treat important determinants variationally

- Many of the determinants in CAS wavefunctions are not important
- Treat important determinants variationally
- Treat remaining determinants perturbatively

- Many of the determinants in CAS wavefunctions are not important
- Treat important determinants variationally
- Treat remaining determinants perturbatively
- How do we *select* the "important" determinants?

$$f_{\text{CIPSI}}^{\mu}(|D_a\rangle) = \left|\frac{\sum_{|D_i\rangle\in\mathcal{V}^{\mu}} H_{ai}c_i^{\mu}}{E_0 - E_a}\right| \quad (3)$$

$$f_{\text{CIPSI}}^{\mu}(|D_a\rangle) = \left|\frac{\sum_{|D_i\rangle\in\mathcal{V}^{\mu}} H_{ai}c_i^{\mu}}{E_0 - E_a}\right| \quad (3)$$

• Evaluates importance measure $(f_{\mathrm{CIPSI}}^{\mu})$ for all determinants connected \mathcal{V}^{μ}

$$f_{\text{CIPSI}}^{\mu}(|D_a\rangle) = \left|\frac{\sum_{|D_i\rangle\in\mathcal{V}^{\mu}} H_{ai}c_i^{\mu}}{E_0 - E_a}\right| \quad (3)$$

- Evaluates importance measure $(f_{\mathrm{CIPSI}}^{\mu})$ for all determinants connected \mathcal{V}^{μ}
- Criteria is expensive to evaluate

$$f_{\text{CIPSI}}^{\mu}(|D_a\rangle) = \left|\frac{\sum_{|D_i\rangle \in \mathcal{V}^{\mu}} H_{ai} c_i^{\mu}}{E_0 - E_a}\right| \quad (3)$$

- Evaluates importance measure $(f_{\mathrm{CIPSI}}^{\mu})$ for all determinants connected \mathcal{V}^{μ}
- Criteria is expensive to evaluate

- The summand in numerator of eq. 3 varies over many orders of magnitude
- Approx. eq. 3 as

$$f_{\text{HCI}}^{\mu}(|D_a\rangle) = \max_{|D_i\rangle \in \mathcal{V}^{\mu}} |H_{ai}c_i^{\mu}| \quad \text{(4)}$$

$$f_{\text{CIPSI}}^{\mu}(|D_a\rangle) = \left|\frac{\sum_{|D_i\rangle\in\mathcal{V}^{\mu}} H_{ai}c_i^{\mu}}{E_0 - E_a}\right| \quad (3)$$

- Evaluates importance measure $(f_{\mathrm{CIPSI}}^{\mu})$ for all determinants connected \mathcal{V}^{μ}
- Criteria is expensive to evaluate

- The summand in numerator of eq. 3 varies over many orders of magnitude
- Approx. eq. 3 as

$$f_{\text{HCI}}^{\mu}(|D_a\rangle) = \max_{|D_i\rangle\in\mathcal{V}^{\mu}} |H_{ai}c_i^{\mu}| \quad \text{(4)}$$

Use criteria function f_{HCI} to iteratively grow variational determinant space

Use criteria function f_{HCI} to iteratively grow variational determinant space

Wavefunction at iteration μ :

$$|\Psi_0^{\mu}\rangle = \sum_{|D_i\rangle\in\mathcal{V}^{\mu}} c_i^{\mu} |D_i\rangle$$
 (5)

Figure 1: From Smith et al. 2017

Use criteria function f_{HCI} to iteratively grow variational determinant space

Wavefunction at iteration μ :

$$|\Psi_0^{\mu}\rangle = \sum_{|D_i\rangle\in\mathcal{V}^{\mu}} c_i^{\mu} |D_i\rangle \tag{5}$$

Connected determinant space:

$$C^{\mu}(\epsilon_1) = \{ |D_a\rangle \mid f^{\mu}(|D_a\rangle) > \epsilon_1 \} \quad (6)$$

Figure 1: From Smith et al. 2017

Use criteria function f_{HCI} to iteratively grow variational determinant space

Wavefunction at iteration μ :

$$|\Psi_0^{\mu}\rangle = \sum_{|D_i\rangle\in\mathcal{V}^{\mu}} c_i^{\mu} |D_i\rangle \tag{5}$$

Connected determinant space:

$$C^{\mu}(\epsilon_1) = \{ |D_a\rangle \mid f^{\mu}(|D_a\rangle) > \epsilon_1 \} \quad (6$$

Importance Criterion (add to V^{μ} ?):

$$f_{\mathrm{HCI}}^{\mu}(|D_a\rangle) = \max_{|D_i\rangle \in \mathcal{V}^{\mu}} |H_{ai}c_i^{\mu}| \qquad (7)$$

Figure 1: From Smith et al. 2017

HCI Algorithm: Perturbative Stage

Epstein-Nesbet Hamiltonian:

$$\hat{H}_{0} = \sum_{|D_{i}\rangle,|D_{j}\rangle\in\mathcal{V}} H_{ij} |D_{i}\rangle\langle D_{j}| + \sum_{|D_{a}\rangle\notin\mathcal{V}} H_{aa} |D_{a}\rangle\langle D_{a}|$$
(8)

HCI Algorithm: Perturbative Stage

Epstein-Nesbet Hamiltonian:

$$\hat{H}_{0} = \sum_{|D_{i}\rangle, |D_{j}\rangle \in \mathcal{V}} H_{ij} |D_{i}\rangle \langle D_{j}| + \sum_{|D_{a}\rangle \notin \mathcal{V}} H_{aa} |D_{a}\rangle \langle D_{a}|$$
(8)

HCI Algorithm: Perturbative Stage

Epstein-Nesbet Hamiltonian:

$$\hat{H}_{0} = \sum_{|D_{i}\rangle, |D_{j}\rangle \in \mathcal{V}} H_{ij} |D_{i}\rangle \langle D_{j}| + \sum_{|D_{a}\rangle \notin \mathcal{V}} H_{aa} |D_{a}\rangle \langle D_{a}|$$
(8)

Deterministic perturbative energy correction using subset of determinants (determined by ϵ_2):

$$E_2(\epsilon_2) = \sum_{|D_a\rangle \in \mathcal{C}(\epsilon_2)} \frac{1}{E_0 - H_{aa}} \left(\sum_{|D_i\rangle \in \mathcal{V}}^{(\epsilon_2)} H_{ai} c_i \right)^2 \tag{9}$$

$$E_2 = \langle \Psi_0 | \hat{V} \frac{1}{E_0 - \hat{H}_0} \hat{V} | \Psi_0 \rangle$$
 (10)

$$E_2 = \langle \Psi_0 | \, \hat{V} \frac{1}{E_0 - \hat{H}_0} \hat{V} | \Psi_0 \rangle \tag{10}$$

Number of determinants connected by \hat{V} is roughly $n_{unocc}^2 n_{elec}^2 N_{var}$, e.g. (20e, 20o) $\to 10^{13}$ determinants

$$E_2 = \langle \Psi_0 | \hat{V} \frac{1}{E_0 - \hat{H}_0} \hat{V} | \Psi_0 \rangle$$
 (10)

Number of determinants connected by \hat{V} is roughly $n_{unocc}^2 n_{elec}^2 N_{var}$, e.g. (20e, 20o) $\to 10^{13}$ determinants

Can calculate $E_2(\epsilon_2)$ stochastically by sampling the variational space at the cost of stochastic noise

$$E_2 = \langle \Psi_0 | \hat{V} \frac{1}{E_0 - \hat{H}_0} \hat{V} | \Psi_0 \rangle$$
 (10)

Number of determinants connected by \hat{V} is roughly $n_{unocc}^2 n_{elec}^2 N_{var}$, e.g. (20e, 20o) $\to 10^{13}$ determinants

Can calculate $E_2(\epsilon_2)$ stochastically by sampling the variational space at the cost of stochastic noise

Reduce stochastic noise by calculating tractable part of PT correction deterministically

$$E_2(\epsilon_2) = E_2^D(\epsilon_2^d) + (E_2^S(\epsilon_2) - E_2^S(\epsilon_2^d))$$
(11)

$$E_2 = \langle \Psi_0 | \hat{V} \frac{1}{E_0 - \hat{H}_0} \hat{V} | \Psi_0 \rangle$$
 (10)

Number of determinants connected by \hat{V} is roughly $n_{unocc}^2 n_{elec}^2 N_{var}$, e.g. (20e, 20o) $\to 10^{13}$ determinants

Can calculate $E_2(\epsilon_2)$ stochastically by sampling the variational space at the cost of stochastic noise

Reduce stochastic noise by calculating tractable part of PT correction deterministically

$$E_2(\epsilon_2) = E_2^D(\epsilon_2^d) + \frac{(E_2^S(\epsilon_2) - E_2^S(\epsilon_2^d))}{(11)}$$

Stochastic error on smaller component

https://sanshar.github.io/Dice/

https://sanshar.github.io/Dice/

Routine active space of (28e, 22o)

Mn(salen)

https://sanshar.github.io/Dice/

Routine active space of (28e, 22o)

Sym.	N _{var}	SHCI	DMRG	Time
- 7		(Ha)	(Ha)	(sec)
^{1}A	232484	0.7980(7)	0.7991	37
^{3}A	208334	0.7994(8)	0.8001	32

Table 1: All energies shifted by 2251 Ha.

Mn(salen)

Butadiene

Large active space (22e, 82o)

Butadiene

Large active space (22e, 82o)

ϵ_1	N_{var}	vHCI	SHCI
3×10^{-5}	1.1×10^{7}	-0.5411	-0.5534(1)
2×10^{-5}	2.1×10^{7}	-0.5441	-0.5540(1)
1×10^{-5}	5.9×10^{7}	-0.5481	-0.5550(1)
	CCSD(T)	-0.5550	
	CCSDT	-0.5560	
DN	1RG(M=6000)	-0.5572	

Table 2: All energies shifted by 155 Ha.

Butadiene

Large active space (22e, 82o)

ϵ_1	N_{var}	vHCI	SHCI
3×10^{-5}	1.1×10^{7}	-0.5411	-0.5534(1)
2×10^{-5}	2.1×10^{7}	-0.5441	-0.5540(1)
1×10^{-5}	5.9×10^7	-0.5481	-0.5550(1)
	CCSD(T)	-0.5550	
	CCSDT	-0.5560	
DM	1RG(M=6000)	-0.5572	
	$SHCI(E_2 \rightarrow 0)$	-0.5574(8)	

Table 2: All energies shifted by 155 Ha.

Figure 2: Smith et al. 2017.

MCSCF

Hartree Fock (HF):

Optimize orbitals for single determinant:

$$|\kappa\rangle = \exp(-\hat{\kappa})|0\rangle$$
 (12)

MCSCF

Hartree Fock (HF):

Optimize orbitals for single determinant:

$$|\kappa\rangle = \exp(-\hat{\kappa})|0\rangle$$
 (12)

Multiconfigurational Self Consistent Field (MCSCF) wavefunction:

Optimize orbitals for a set of determinants

$$|\kappa, \mathbf{C}\rangle = \exp(-\hat{\kappa}) \sum_{i} C_i |i\rangle$$
 (13)

Solve for C_i and $\hat{\kappa}$.

MCSCF

Hartree Fock (HF):

Optimize orbitals for single determinant:

$$|\kappa\rangle = \exp(-\hat{\kappa})|0\rangle$$
 (12)

Multiconfigurational Self Consistent Field (MCSCF) wavefunction: Optimize orbitals for a *set* of determinants

$$|\kappa, \mathbf{C}\rangle = \exp(-\hat{\kappa}) \sum_{i} C_i |i\rangle$$
 (13)

Solve for C_i and $\hat{\kappa}$.

Objective: Use SHCI instead of CASCI to solve for C_i coefficients in CASSCF-like calculations.

$$|\kappa, \mathbf{C}\rangle = \exp(-\hat{\kappa}) \sum_{i} C_{i} |i\rangle$$
 (14)

$$|\kappa, \mathbf{C}\rangle = \exp(-\hat{\kappa}) \sum_{i} C_i |i\rangle$$
 (14)

HCISCF module in PySCF

$$|\kappa, \mathbf{C}\rangle = \exp(-\hat{\kappa}) \sum_{i} C_i |i\rangle$$
 (14)

HCISCF module in PySCF

PySCF optimizes orbitals and writes 1-/2-electron integrals

$$|\kappa, \mathbf{C}\rangle = \exp(-\hat{\kappa}) \sum_{i} C_i |i\rangle$$
 (14)

HCISCF module in PySCF

PySCF optimizes orbitals and writes 1-/2-electron integrals

Dice reads 2-electron integrals, optimizes CI coeffs

$$|\kappa, \mathbf{C}\rangle = \exp(-\hat{\kappa}) \sum_{i} C_i |i\rangle$$
 (14)

HCISCF module in PySCF

PySCF optimizes orbitals and writes 1-/2-electron integrals

Dice reads 2-electron integrals, optimizes CI coeffs

Dice returns 2RDM, which PySCF uses to calculate gradients and new orbitals

$$|\kappa, \mathbf{C}\rangle = \exp(-\hat{\kappa}) \sum_{i} C_{i} |i\rangle$$
 (14)

HCISCF module in PySCF

PySCF optimizes orbitals and writes 1-/2-electron integrals

Dice reads 2-electron integrals, optimizes CI coeffs

Dice returns 2RDM, which PySCF uses to calculate gradients and new orbitals

Figure 3: Overview of workflow for HCISCF module from Smith et al. 2017

PT does not improve convergence of orbitals

	ϵ_1 (Ha)	E_{HCISCF} (Ha)	E_{SHCI} (Ha)
HCISCF	5×10^{-5}	-2245.0178	-2245.0314
vHCISCF	5×10^{-5}	-2245.0121	-2245.0313

- PT does not improve convergence of orbitals
- "Loose" ϵ_1 values converge orbitals

	ϵ_1 (Ha)	E_{HCISCF} (Ha)	E_{SHCI} (Ha)
HCISCF	5×10^{-5}	-2245.0178	-2245.0314
vHCISCF	5×10^{-5}	-2245.0121	-2245.0313
vHCISCF	1×10^{-4}	-2244.9980	-2245.0314

- PT does not improve convergence of orbitals
- "Loose" ϵ_1 values converge orbitals

	ϵ_1 (Ha)	E_{HCISCF} (Ha)	E_{SHCI} (Ha)
HCISCF	5×10^{-5}	-2245.0178	-2245.0314
vHCISCF	5×10^{-5}	-2245.0121	-2245.0313
vHCISCF	1×10^{-4}	-2244.9980	-2245.0314

Workflow

1. Run HCISCF with only variational HCI and "loose" ϵ_1 (fewer determinants) to generate multiconfigurational orbitals

- PT does not improve convergence of orbitals
- "Loose" ϵ_1 values converge orbitals

	ϵ_1 (Ha)	E_{HCISCF} (Ha)	E_{SHCI} (Ha)
HCISCF	5×10^{-5}	-2245.0178	-2245.0314
vHCISCF	5×10^{-5}	-2245.0121	-2245.0313
vHCISCF	1×10^{-4}	-2244.9980	-2245.0314

Workflow

- 1. Run HCISCF with only variational HCI and "loose" ϵ_1 (fewer determinants) to generate multiconfigurational orbitals
- 2. Run final SHCI calculation w/ tight settings to get final energy

Speed of HCISCF

 Optimization of CI coefficients is **not** bottleneck even for large active spaces

Total	CAS	T_{OO}	T_{CI}
Orbitals		(sec)	(sec)
439	(29o, 32e)	126	52
956	(29o, 32e)	2236	70

Speed of HCISCF

 Optimization of CI coefficients is **not** bottleneck even for large active spaces

Total	CAS	T_{OO}	T_{CI}
Orbitals		(sec)	(sec)
439	(29o, 32e)	126	52
439	(44e, 44o)	264	147
956	(29o, 32e)	2236	70

Applications

Figure 4: Fe(II)(porphyrin)

Model system for active site of heme group

Figure 4: Fe(II)(porphyrin)

- Model system for active site of heme group
- Coordination compound with d-orbital degeneracy

Figure 4: Fe(II)(porphyrin)

- Model system for active site of heme group
- Coordination compound with d-orbital degeneracy
- Widespread disagreement between theory and experiment

Figure 4: Fe(II)(porphyrin)

- Model system for active site of heme group
- Coordination compound with d-orbital degeneracy
- Widespread disagreement between theory and experiment
- ullet Experiment suggest triplet groundstate: either $^3A_{2g}$ or 3E_g

Figure 4: Fe(II)(porphyrin)

- Model system for active site of heme group
- Coordination compound with d-orbital degeneracy
- Widespread disagreement between theory and experiment
- ullet Experiment suggest triplet groundstate: either $^3A_{2g}$ or 3E_g
- \bullet Almost all theoretical work suggests $^5A_{1g}$

Fe(porphyrin): CAS(32e,29o)

Figure 5: Fe(II)(porphyrin)

 Fe 3d and all the conjugated π orbitals in active space

Fe(porphyrin): CAS(32e,29o)

Figure 5: Fe(II)(porphyrin)

• Fe 3d and all the conjugated π orbitals in active space

Basis	Sym.	E_{SHCI}	E_{ex}
		(Ha)	(kcal/mol)
	CAS	5(29o, 32e)	
cc-pVDZ	$^5A_{ m g}$	-2245.0314(5)	16.7
cc-pVDZ	$^3B_{1\mathrm{g}}$	-2245.0049(6)	10.7
cc-pVTZ	$^5A_{ m g}$	-2245.2549(5)	16.4
cc-pVTZ	$^3B_{1\mathrm{g}}$	-2245.2288(6)	10.4

Fe(porphyrin): CAS(32e,29o)

Figure 5: Fe(II)(porphyrin)

 Add Fe-N 2px/y and stabilize triplet by adding Fe 4d

Basis	Sym.	E_{SHCI}	E_{ex}	
		(Ha)	(kcal/mol)	
	CAS	5(29o, 32e)		
cc-pVDZ	$^5A_{ m g}$	-2245.0314(5)	16.7	
cc-pVDZ	$^3B_{1\mathrm{g}}$	-2245.0049(6)	10.7	
cc-pVTZ	$^5A_{ m g}$	-2245.2549(5)	16.4	
cc-pVTZ	$^3B_{1\mathrm{g}}$	-2245.2288(6)	10.4	
CAS(44o,44e)				
cc-pVDZ	$^5A_{ m g}$	-2245.1964(9)	-2.0	
cc-pVDZ	$^3B_{1\mathrm{g}}$	-2245.1995(6)	-2.0	

Fe(porphyrin): Wrap up

- Only takes a few hours to run (44e,44o) calculation!
- Suggest that previous work disagreed because of choice of active space, i.e. need to include Fe-N bonding/anti-bonding and second d shell

Capturing Dynamical Correlation

CASSCF isn't always enough, but CASPT2 is expensive, so we are investigating two methods:

Capturing Dynamical Correlation

CASSCF isn't always enough, but CASPT2 is expensive, so we are investigating two methods:

- MC-PDFT
 - G. L. Manni and Gagliardi 2014

Capturing Dynamical Correlation

CASSCF isn't always enough, but CASPT2 is expensive, so we are investigating two methods:

- MC-PDFT
 - G. L. Manni and Gagliardi 2014
- Projection based embedding
 - F. R. Manby and T. F. Miller 2012

- Use MCSCF calculation as a reference calculation
 - Total density and pair density
 - Kinetic and coulomb energy contributions

- Use MCSCF calculation as a reference calculation
 - Total density and pair density
 - Kinetic and coulomb energy contributions
- Use density and pair density to calculate remaining contribution to energy

Cr₂ CAS(12e, 12o)

 CASSCF wavefunctions do not produce bound dissociation curve

Cr₂ CAS(12e, 12o)

- CASSCF wavefunctions do not produce bound dissociation curve
- MC-PDFT with HCISCF reference wavefunctions produce bound curves

Cr₂ CAS(12e, 12o)

- CASSCF wavefunctions do not produce bound dissociation curve
- MC-PDFT with HCISCF reference wavefunctions produce bound curves
- Good agreement with MC-PDFT using CASSCF wavefunctions (G. L. Manni and Gagliardi 2014)

Conclusions and Future Work

Wrap up:

Wrap up:

 SHCI formulation allows calculation of PT correction even for large systems

Wrap up:

- SHCI formulation allows calculation of PT correction even for large systems
- Derived new extension of SHCI algorithm called HCISCF, for quickly optimizing CI coefficients and orbitals

Wrap up:

- SHCI formulation allows calculation of PT correction even for large systems
- Derived new extension of SHCI algorithm called HCISCF, for quickly optimizing CI coefficients and orbitals
- Performed CASSCF-like calculation with (44e, 44o) in only a few hours

Wrap up:

- SHCI formulation allows calculation of PT correction even for large systems
- Derived new extension of SHCI algorithm called HCISCF, for quickly optimizing CI coefficients and orbitals
- Performed CASSCF-like calculation with (44e, 44o) in only a few hours

Up next:

- Using MC-PDFT with large active space reference wavefunctions
- Calculating nuclear gradients of SHCI energy

Acknowledgements

Thanks to the Sharma Group at CU Boulder and particular: Sandeep Sharma, Bastien Mussard, and Adam Holmes for helpful discussion and offering countless advice. This work was supported by

- University of Colorado Boulder startup grant
- The GAANN Fellowship
- MolSSI Phase I Software Fellowship

And thank you Qiming!

Questions

Thanks you for your attention! Do you have any questions?

https://sanshar.github.io/Dice/

References

- F. R. Manby M. Stella, J. D. Goodpaster and III T. F. Miller (2012). "A Simple, Exact Density-Functional-Theory Embedding Scheme". In: J. Chem. Theory Comput. 8, 25642568.
 - G. L. Manni R. K. Carlson, S. Luo D. Ma J. Olsen D. G. Truhlar and L. Gagliardi (2014). "Multiconfiguration Pair-Density Functional Theory". In: J. Chem. Theory Comput. 10, 3669–3680.
 - Smith, J. E. T. et al. (2017). "Cheap and Near Exact CASSCF with Large Active Spaces". In: *J. Chem. Theory Comput.*

Legal

Get the source of this theme and the demo presentation from

github.com/matze/mtheme

The theme *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

