

US012385018B2

(12) United States Patent

Arikawa et al.

(10) Patent No.: US 12,385,018 B2

(45) **Date of Patent:** Aug. 12, 2025

(54) TRANSFORMED MICROORGANISM AND METHOD OF PRODUCING POLYHYDROXYALKANOATE

(71) Applicant: **KANEKA CORPORATION**, Osaka

(JP)

(72) Inventors: Hisashi Arikawa, Takasago (JP);

Shunsuke Sato, Takasago (JP)

(73) Assignee: KANEKA CORPORATION, Osaka

(JP)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 881 days.

(21) Appl. No.: 17/412,340

(22) Filed: Aug. 26, 2021

(65) Prior Publication Data

US 2021/0388324 A1 Dec. 16, 2021

Related U.S. Application Data

(63) Continuation of application No. PCT/JP2020/003156, filed on Jan. 29, 2020.

(30) Foreign Application Priority Data

Feb. 28, 2019	(JP)	2019-036006
Feb. 28, 2019	(JP)	2019-036008

(51) Int. Cl. *C12N 9/10*

C12P 7/625

(2006.01) (2022.01)

(52) U.S. Cl.

(58) Field of Classification Search

Vone

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

9,175,317 10,072,255		5 Sato C12N 15/74 8 Arikawa C12Y 402/01074
11,453,896	B2 * 9/202	2 Arikawa C12 Y 203/01009
2019/0153486 . 2020/0087687		9 Arikawa et al. 9 Aoki et al

FOREIGN PATENT DOCUMENTS

CN	104762311 A	7/2015
CN	105779488 A	7/2016
EP	4 029 946 A1	7/2022
WO	WO 2018/021046 A1	2/2018
WO	WO 2018/216726 A1	11/2018

OTHER PUBLICATIONS

Chica et al. Curr Opin Biotechnol. Aug. 2005;16(4):378-84. (Year: 2005).*

Singh et al. Curr Protein Pept Sci. 2017, 18, 1-11 (Year: 2017).* Accession 60E324 Oct. 19, 2011 (Year: 2011).*

Accession A0A022FNJ8. Jun. 11, 2014. (Year: 2014).* Accession A0A212MH45. Sep. 27, 2017 (Year: 2017).*

Accession A0A022FQN4. Jun. 11, 2014 (Year: 2014).*

Tan et al., "Engineering *Halomonas* TD01 for the low-cost production of polyhydroxyalkanoates", Metabolic Engineering, 2014, vol. 26, pp. 34-47.

Uniprot, [online], Accession No. QOKFI4, URLhttps://www.uniprot.org/uniprotkb/Q0KFI4/entry, as cited in the Office Action issued on Jan. 30, 2024 in Japanese counterpart Application No. 2021-501778. 4 pages.

NCBI Database, [online], Accession No. WP_010811452.1, URLhttps://www.ncbi.nlm.nih.gov/protein/498510994?sat=47 &satkey=62716682 >, as cited in the Office Action issued on Jan. 30, 2024 in Japanese counterpart Application No. 2021-501778, 1 page.

UniProt, [online], Accession No. Q0KFI3, URLhttps://www.uniprot.org/uniprotkb/Q0KFI3/entry, as cited in the Office Action issued on Jan. 30, 2024 in Japanese counterpart Application No. 2021-501778, 4 pages.

NCBI Database, [online], Accession No. WP_010811453.1, URLhttps://www.ncbi.nlm.nih.gov/protein/498510995?sat=47 &satkey=68081467 >, as cited in the Office Action issued on Jan. 30, 2024 in Japanese counterpart Application No. 2021-501778, 1 page.

UniProt, [online], Accession No. Q0KFI5, URL https://www.uniprot.org/uniprotkb/Q0KFI5/entry, as cited in the Office Action issued on Jan. 30, 2024 in Japanese counterpart Application No. 2021-501778, 4 pages.

NCBI Database, [online], Accession No. WP_010811451.1, URLhttps://www.ncbi.nlm.nih.gov/protein/498510993?sat=47 & satkey=42867008 >, as cited in the Office Action issued on Jan. 30, 2024 in Japanese counterpart Application No. 2021-501778, 1 page.

International Search Report dated Apr. 14, 2020, in PCT/JP2020/003156, filed Jan. 29, 2020.

Anderson A.J. et al., *Int. J. Biol. Macromol.*, 12, 102-105 (1990). Sato S. et al., *J. Biosci. Bioeng.*, 120(3), 246-251 (2015).

Insomphun C. et al., Metab. Eng., 27, 38-45 (2015).

Pichoff, s. et al., "Deletion analysis of gene minE which encodes the topological specificity factor of cell division in *Escherichia coil*", Molecular Microbiology, 1995, vol. 18, No. 2, pp. 321-329.

Molecular Microbiology, 1995, vol. 18, No. 2, pp. 321-329. Sato, Shunsuke et al., "Process development of biodegradable polymer PHBH", Seibutsu-kogaku kaishi, Feb. 25, 2019, vol. 97, No. 2, pp. 66-74.

* cited by examiner

Primary Examiner — Christian L Fronda (74) Attorney, Agent, or Firm — Oblon, McClelland, Maier & Neustadt, L.L.P.

(57) ABSTRACT

Provided is a transformed microorganism that has a polyhydroxyalkanoate synthase gene and in which expression of a minD gene is enhanced. Also provided is a transformed microorganism that has a polyhydroxyalkanoate synthase gene and in which expression of a minC gene and a minD gene is enhanced. In this transformed microorganism, expression of a minE gene may be enhanced or reduced. Also provided is a method of producing a PHA, the method including the step of culturing any of the transformed microorganisms in the presence of a carbon source.

20 Claims, 4 Drawing Sheets

Specification includes a Sequence Listing.

Fig.1 Comp. Example 1

Aug. 12, 2025

Fig.2 Comp. Example 2

Fig.3 Comp. Example 3

Fig.4 Comp. Example 4

Fig.5 Example 1

Aug. 12, 2025

Fig.6

Example 2

Fig.7 Example 3

Fig.8 Example 4

TRANSFORMED MICROORGANISM AND METHOD OF PRODUCING POLYHYDROXYALKANOATE

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of International Application No. PCT/JP2020/003156, filed Jan. 29, 2020, and claims priority to Japanese Application No. 2019-036006, filed Feb. 28, 2019, and Japanese Application No. 2019-036008, filed Feb. 28, 2019, the disclosures of all of which are incorporated herein by reference in their entireties.

TECHNICAL FIELD

The present invention relates to a transformed microorganism capable of elaborating a polyhydroxyalkanoate and a method of producing the polyhydroxyalkanoate using the transformed microorganism.

BACKGROUND ART

There is a growing awareness of environmental issues, 25 food issues, health, and safety, and more and more people are becoming nature-oriented. Against such a background, material production using microorganisms (such as fermentative production and bioconversion) is becoming increasingly significant and important. Microbial material production is applied also to production of protein pharmaceuticals and production of nucleic acids for gene therapy. For example, ethanol production, acetic acid production, and medical protein production using microorganisms such as yeasts and bacteria are actively employed industrially.

An example of the microbial material production is microbial production of polyhydroxyalkanoates (occasionally referred to as "PHAs" hereinafter) which are considered promising biodegradable plastics for industrial use (see Non Patent Literature 1). PHAs are thermoplastic polyesters 40 produced and accumulated as energy storage materials in cells of many kinds of microorganisms and are biodegradable. Nowadays, the heightened environmental awareness has led to increasing attention to non-petroleum-based plastics. In particular, there is a strong demand for practical use 45 of PHAs produced and accumulated in microorganisms because such PHAs are absorbed into the carbon circulation process in the nature and are therefore expected to have little adverse impact on the ecosystems. A known example of PHA production using microorganisms is to produce a PHA 50 by feeding bacteria of the genus Cupriavidus with a carbon source such as a sugar, vegetable oil, or fatty acid and thus allowing the bacteria to accumulate the PHA in their cells (see Non Patent Literatures 2 and 3).

However, microbial material production requires the 55 complicated steps of separating and collecting the microbial cells and the target product and could suffer the problem of high production cost. Improving the efficiency of separation and collection is a major challenge to be addressed for production cost reduction.

CITATION LIST

Non-Patent Literature

NPL 1: Anderson A. J. et al., *Int. J. Biol. Macromol.*, 12, 102-105 (1990)

2

NPL 2: Sato S. et al., *J. Biosci. Bioeng.*, 120 (3), 246-251 (2015)

NPL 3: Insomphun C. et al., Metab. Eng., 27, 38-45 (2015)

SUMMARY OF INVENTION

Technical Problem

A PHA is accumulated in microbial cells. To use the PHA accumulated in the microbial cells as a biodegradable plastic, it is necessary first to separate and collect the microbial cells from the culture fluid. The separation and collection of the microbial cells can be conducted by means such as a centrifuge or separation membrane, and the ease and efficiency of the separation and collection depend on the size of the microbial cells. Specifically, a larger size of the microbial cells allows the separation and collection to be more easily and efficiently accomplished by means such as a centrifuge or separation membrane, leading to a lower production cost.

The microbial cells accumulating the PHA are broken to take PHA particles out of the cells, and the PHA particles are separated from other cellular components and collected. Techniques for the separation and collection of the PHA particles are broadly classified into a technique using an organic solvent system and a technique using an aqueous system. Since the use of an organic solvent causes high environmental load and involves high cost, the technique using an aqueous system is preferred from the industrial point of view. With the technique using an aqueous system, for example, the PHA particles contained in the broken cell fluid can be separated from the fluid by means such as a centrifuge or separation membrane. In this case, the efficiency of the separation and collection depends on the size of the PHA particles. Specifically, a larger size of the PHA particles accumulated in the microbial cells allows the separation and collection to be more easily accomplished by means such as a centrifuge or separation membrane, leading to a lower production cost.

In view of the above circumstances, the present invention aims to provide a transformed microorganism that accumulates a PHA and whose size can be large and a method of producing the PHA using the transformed microorganism.

Solution to Problem

As a result of intensive studies, the present inventors have found that when the expression of a particular one of genes expected to be involved in cell division, namely, a minC gene (e.g., a gene that encodes the amino acid sequence of SEQ ID NO: 1), a minD gene (e.g., a gene that encodes the amino acid sequence of SEQ ID NO: 2), and a minE gene (e.g., a gene that encodes the amino acid sequence of SEQ ID NO: 3), is enhanced or reduced, the size of microbial cells can be increased while ensuring an industrially desired level of PHA accumulation. Based on this finding, the inventors have arrived at the present invention.

That is, the present invention relates to a transformed microorganism having a polyhydroxyalkanoate synthase gene, wherein expression of a minD gene is enhanced. The present invention further relates to a transformed microorganism having a polyhydroxyalkanoate synthase gene, wherein expression of a minC gene and a minD gene is enhanced. In this transformed microorganism, expression of a minE gene may be enhanced or reduced. The above transformed microorganisms preferably belong to the genus *Cupriavidus* and are more preferably transformed *Cupria-*

vidus necator. The present invention further relates to a method of producing a polyhydroxyalkanoate, the method including the step of culturing any of the transformed microorganisms in the presence of a carbon source. The carbon source preferably contains an oil, a fatty acid, a sugar, or carbon dioxide. The polyhydroxyalkanoate is preferably a copolymer of two or more hydroxyalkanoates, more preferably a copolymer containing 3-hydroxyhexanoate as a monomer unit, and even more preferably a copolymer of 3-hydroxybutyrate and 3-hydroxyhexanoate.

Advantageous Effects of Invention

The present invention can provide a transformed microorganism that accumulates a PHA and whose size can be large and a method of producing the PHA using the transformed microorganism. In the present invention, since the size of microbial cells accumulating the PHA is large, the microbial cells can easily be separated and collected from a culture fluid, and the production cost can be reduced.

A preferred aspect of the present invention can provide a transformed microorganism whose size can be large and that is capable of accumulating large-size PHA particles and a method of producing a PHA using the transformed microorganism. In this aspect, not only are the separation and collection of microbial cells from a culture fluid easy, but also large-size PHA particles are accumulated in the microbial cells. Thus, the PHA can easily be collected separately from other cellular components after cell breakage, and the production cost can be reduced.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a microscope image of a cultured KNK-005 strain (Comparative Example 1), where the scale bar represents $10 \mu m$ (the same applies to FIGS. 2 to 8).

FIG. 2 is a microscope image of a cultured minE genedeleted strain (Comparative Example 2).

FIG. 3 is a microscope image of a cultured minC gene expression-enhanced strain (Comparative Example 3).

FIG. 4 is a microscope image of a cultured minD gene expression-enhanced and minE gene-deleted strain (Comparative Example 4).

FIG. 5 is a microscope image of a cultured minD gene expression-enhanced strain (Example 1).

FIG. 6 is a microscope image of a cultured minCD gene expression-enhanced strain (Example 2).

FIG. 7 is a microscope image of a cultured minCDE gene expression-enhanced strain (Example 3).

FIG. **8** is a microscope image of a cultured minCD gene 50 expression-enhanced and minE gene-deleted strain (Example 4).

DESCRIPTION OF EMBODIMENTS

Hereinafter, embodiments of the present invention will be described in detail. A transformed microorganism according to the present invention is a transformed microorganism that has a PHA synthase gene and in which expression of a particular one of minC, minD, and minE genes is enhanced 60 or reduced.

Microorganism

The transformed microorganism according to the present 65 invention may be a microorganism having a PHA synthase gene and transformed to enhance the expression of the minD

4

gene. Alternatively, the transformed microorganism may be a microorganism having a PHA synthase gene and transformed to enhance the expression of the minC and minD genes. Alternatively, the transformed microorganism may be a microorganism having a PHA synthase gene and transformed to enhance the expression of the minC, minD, and minE genes or may be a microorganism having a PHA synthase gene and transformed to enhance the expression of the minC and minD genes and reduce the expression of the minE gene. It should be noted that a microorganism transformed to enhance the expression of the minD gene and reduce the expression of the minD gene and reduce the expression of the minD gene is not categorized as the transformed microorganism of the present invention.

The host of the transformed microorganism according to the present invention is not limited to a particular type, and may be any microorganism that has a PHA synthase gene. The host is preferably a bacterium having a minCD or minCDE gene. Examples of the bacterium include bacteria belonging to the genus *Ralstonia*, the genus *Cupriavidus*, the genus *Wautersia*, the genus *Aeromonas*, the genus *Escherichia*, the genus *Alcaligenes*, and the genus *Pseudomonas*. In view of safety and PHA productivity, bacteria belonging to the genus *Ralstonia*, the genus *Cupriavidus*, the genus *Aeromonas*, and the genus *Wautersia* are more preferred. Even more preferred are bacteria belonging to the genus *Cupriavidus* or the genus *Aeromonas*, and still even more preferred are microorganisms belonging to the genus *Cupriavidus*. Particularly preferred is *Cupriavidus necator*.

The host of the transformed microorganism according to the present invention may be a wild strain inherently having a PHA synthase gene, a mutant strain obtained by artificially mutating the wild strain, or a strain having a foreign PHA synthase gene introduced by a genetic engineering technique. The introduction of the foreign PHA synthase gene is not limited to being carried out by a particular method, and the introduction method can be selected from: a method in which the foreign gene is directly inserted onto the chromosome of the host or a gene on the chromosome is replaced by the foreign gene; a method in which the foreign gene is directly inserted onto the megaplasmid of the host or a gene on the megaplasmid is replaced by the foreign gene; and a method in which the foreign gene is placed on a vector such as a plasmid, phage, or phagemid and the vector with the gene is introduced into the host. Two or more of these methods may be used in combination. In view of the stability of the introduced gene, it is preferable to use the method in which the foreign gene is directly inserted onto the chromosome of the host or a gene on the chromosome is replaced by the foreign gene or the method in which the foreign gene is directly inserted onto the megaplasmid of the host or a gene on the megaplasmid is replaced by the foreign gene, and it is more preferable to use the method in which the foreign gene is directly inserted onto the chromosome of the host or a gene on the chromosome is replaced by the foreign gene.

PHA Synthase Gene

The PHA synthase gene is not limited to a particular type, and examples of the PHA synthase gene include PHA synthase genes derived from living organisms belonging to the genus *Ralstonia*, the genus *Cupriavidus*, the genus *Wautersia*, the genus *Alcaligenes*, the genus *Aeromonas*, the genus *Pseudomonas*, the genus *Norcardia*, and the genus *Chromobacterium*, and further include altered genes resulting from alteration of the mentioned PHA synthase genes.

Such an altered gene may be a gene having a base sequence that encodes a PHA synthase in which one or more amino acid residues are deleted, added, inserted, or replaced. Examples of the altered gene include a gene having a base sequence that encodes a polypeptide represented by an amino acid sequence of any one of SEQ ID NOS: 4 to 8 and a gene having a base sequence that encodes a polypeptide having PHA synthase activity and represented by an amino acid sequence that is at least 85% homologous to the amino acid sequence of any one of SEQ ID NOS: 4 to 8. The sequence homology is preferably 90% or more, more preferably 95% or more, even more preferably 97% or more, and particularly preferably 99% or more.

PHA

The PHA produced by the transformed microorganism of the present invention is not limited to a particular type, and may be any PHA that can be produced by microorganisms. 20 The PHA is preferably any one of the following polymers: a homopolymer of one monomer selected from 3-hydroxyalkanoates having 4 to 16 carbon atoms; a copolymer of one monomer selected from 3-hydroxyalkanoates having 4 to 16 carbon atoms and another hydroxyalkanoic acid (such as a 25 2-hydroxyalkanoic acid, 4-hydroxyalkanoic acid, 5-hydroxyalkanoic acid, or 6-hydroxyalkanoic acid having 4 to 16 carbon atoms); and a copolymer of two or more monomers selected from 3-hydroxyalkanoates having 4 to 16 carbon atoms. Examples of the PHA include, but are not 30 limited to: P(3HB) which is a homopolymer of 3-hydroxybutyrate (abbreviated as 3HB); P(3HB-co-3HV) which is a copolymer of 3HB and 3-hydroxyvaleric acid (abbreviated as 3HV); P(3HB-co-3HH) (abbreviated as PHBH) which is a copolymer of 3HB and 3-hydroxyhexanoate (abbreviated 35 as 3HH); P(3HB-co-4HB) which is a copolymer of 3HB and 4-hydroxybutyrate (abbreviated as 4HB); and PHA containing lactic acid (abbreviated as LA) as a constituent component (an example of this PHA is P(LA-co-3HB) which is a copolymer of 3HB and LA). Among these examples, PHBH 40 is preferred in that this polymer has a wide range of applications. The type of the PHA to be produced can be appropriately selected according to the intended purpose and depending on the type of the PHA synthase gene possessed by or introduced into the microorganism used, the type of the 45 metabolizing gene involved in synthesis of the PHA, and the culture conditions.

minC, minD, and minE Genes

Proteins MinC, MinD, and MinE encoded by the minC, minD, and minE genes are proteins that cooperate in bacteria to control cell division (MinCDE system). For example, it is known that in cells of *Escherichia coli*, the MinD forms a polymer in an ATP-dependent manner, further forms a 55 complex with the MinC, and rapidly oscillates between the cell poles. The MinC serves to inhibit septum formation during cell division. The MinE is known to bind to the MinD competitively against the MinC, and serves to regulate septum formation so that the septum is formed only at the 60 center of the cell.

The minC gene is a gene having a base sequence that encodes a polypeptide (UniProtKB ID Q0KFI3) represented by the amino acid sequence of SEQ ID NO: 1 and a polypeptide represented by an amino acid sequence that is at 65 least 85% homologous to the amino acid sequence of SEQ ID NO: 1. The sequence homology is preferably 90% or

6

more, more preferably 95% or more, even more preferably 97% or more, and particularly preferably 99% or more.

The minD gene is a gene having a base sequence that encodes a polypeptide (UniProtKB ID Q0KFI4) represented by the amino acid sequence of SEQ ID NO: 2 and a polypeptide represented by an amino acid sequence that is at least 85% homologous to the amino acid sequence of SEQ ID NO: 2. The sequence homology is preferably 90% or more, more preferably 95% or more, even more preferably 97% or more, and particularly preferably 99% or more.

The minE gene is a gene having a base sequence that encodes a polypeptide (UniProtKB ID Q0KFI5) represented by the amino acid sequence of SEQ ID NO: 3 and a polypeptide represented by an amino acid sequence that is at least 85% homologous to the amino acid sequence of SEQ ID NO: 3. The sequence homology is preferably 90% or more, more preferably 95% or more, even more preferably 97% or more, and particularly preferably 99% or more.

Gene Expression Enhancement

In the present invention, enhanced gene expression means a state in which the amount of transcription of a target gene or the amount of expression of the polypeptide encoded by the target gene is increased as compared to that in a strain in which the expression of the target gene is not enhanced. The increase is not limited to a particular level, and it is sufficient that the amount of transcription of the target gene or the amount of expression of the polypeptide be more than that in the strain in which the expression of the target gene is not enhanced. The amount of transcription of the target gene or the amount of expression of the polypeptide is preferably 1.1 or more times, more preferably 1.2 or more times, even more preferably 1.5 or more times, and still even more preferably 2 or more times that in the strain in which the expression of the target gene is not enhanced.

In the present invention, the enhancement of the expression of the min genes is not limited to being carried out by a particular method, and the enhancement method can be selected from a method in which the target gene is introduced into the host and a method in which the amount of expression of the target gene inherently possessed by the host on the genome DNA is increased. Both of the two methods may be used in combination.

The introduction of the target gene into the host is not limited to being carried out by a particular method, and the introduction method can be selected from: a method in which the target gene is directly inserted onto the chromosome of the host or a gene on the chromosome is replaced by the target gene; a method in which the target gene is directly inserted onto the megaplasmid of the host or a gene on the megaplasmid is replaced by the target gene; and a method in which the target gene is placed on a vector such as a plasmid, phage, or phagemid and the vector with the gene is introduced into the host. Two or more of these methods may be used in combination.

In view of the stability of the introduced gene, it is preferable to use the method in which the target gene is directly inserted onto the chromosome of the host or a gene on the chromosome is replaced by the target gene or the method in which the target gene is directly inserted onto the megaplasmid of the host or a gene on the megaplasmid is replaced by the target gene, and it is more preferable to use the method in which the target gene is directly inserted onto the chromosome of the host or a gene on the chromosome is replaced by the target gene. For reliable expression of the introduced gene, it is preferable to introduce the target gene

in such a manner that the target gene is downstream of a "gene expression regulatory sequence" inherently possessed by the host or downstream of a foreign "gene expression regulatory sequence". In the present invention, a "gene expression regulatory sequence" is a DNA sequence including a base sequence that controls the amount of transcription of the gene (an example of this base sequence is a promotor sequence) and/or a base sequence that regulates the amount of translation of a messenger RNA transcribed from the gene (an example of this base sequence is a Shine-Dalgarno sequence). The "gene expression regulatory sequence" used may be any suitable naturally-occurring base sequence or an artificially constructed or altered base sequence.

The increase of the amount of expression of the target gene inherently possessed by the host on the genome DNA 15 is not limited to being achieved by a particular method, and exemplary methods include a method in which a "gene expression regulatory sequence" upstream of the target gene is altered, a method in which a foreign "gene expression regulatory sequence" is introduced upstream of the target 20 gene, and a method in which the target gene and/or a base sequence neighboring the target gene is altered to increase the stability of the transcribed messenger RNA.

Examples of the promotor sequence or Shine-Dalgarno sequence included in the "gene expression regulatory ²⁵ sequence" include, but are not limited to, the base sequences of SEQ ID NOS: 9 to 15 and base sequences including any part of the base sequences of SEQ ID NOS: 9 to 15.

Replacement, deletion, insertion, and/or addition made to at least a part of the genome DNA can be accomplished 30 using a method known to those skilled in the art. Typical methods include a method using a transposon and the mechanism of homologous recombination (Ohman et al., J. Bacteriol., 162:1068-1074 (1985)) and a method based on site-specific integration caused by the mechanism of 35 homologous recombination and on loss due to secondary homologous recombination (Noti et al., Methods Enzymol., 154:197-217 (1987)). A method may also be used in which a sacB gene derived from Bacillus subtilis is allowed to coexist and in which a microorganism strain having lost a 40 gene due to secondary homologous recombination is easily isolated as a sucrose-resistant strain (Schweizer, Mol. Microbiol., 6:1195-1204 (1992) or Lenzet al., J. Bacteriol., 176: 4385-4393 (1994)). Another alternative method is to use a CRISPR/Cas9 system-based genome-editing technology for 45 altering the target DNA (Y. Wang et al., ACS Synth Biol., 2016, 5 (7):721-732). In the CRISPR/Cas9 system, the guide RNA (gRNA) has a sequence capable of binding to a part of the base sequence of the genome DNA to be altered, and serves to transport the Cas9 to the target.

The introduction of a vector into a cell is not limited to being carried out by a particular method, and exemplary methods include calcium chloride transformation, electroporation, polyethylene glycol transformation, and spheroplast transformation.

Gene Expression Reduction

In the present invention, "reduced gene expression" means a state in which the amount of transcription of a target 60 gene or the amount of expression of the polypeptide encoded by the target gene is decreased as compared to that in a strain in which the expression of the target gene is not reduced. The decrease is not limited to a particular level, and it is sufficient that the amount of transcription of the target gene 65 or the amount of expression of the polypeptide be less than that in the strain in which the expression of the target gene

8

is not reduced. The amount of transcription of the target gene or the amount of expression of the polypeptide is preferably 0.8 or less times, more preferably 0.5 or less times, even more preferably 0.3 or less times, and still even more preferably 0.2 or less times that in the strain in which the expression of the target gene is not reduced. The amount of transcription of the target gene or the amount of expression of the polypeptide encoded by the target gene may be zero. The gene expression can be considered to have been reduced also when the polypeptide encoded by the target gene cannot exhibit the original function for a reason such as alteration of the base sequence of the gene. In the case where the transformed microorganism of the present invention is a transformed microorganism with enhanced expression of the minC and minD genes, the expression of the target gene can be reduced by using a drug or protein that inhibits the function of the corresponding polypeptide.

In the present invention, the reduction of the gene expression is not limited to being achieved by a particular method, and exemplary methods include: a method in which a part or the entire length of the target gene is deleted; a method in which the "gene expression regulatory sequence" involved in the expression of the target gene is altered; and a method in which the target gene and/or a base sequence neighboring the target gene is altered to decrease the stability of the transcribed messenger RNA. The base sequence alteration is not limited to being carried out by a particular method, and can be accomplished through replacement, deletion, insertion, and/or addition made to at least a part of the target gene and/or the neighboring base sequence. The replacement, deletion, insertion, and/or addition can be made by a method known to those skilled in the art. In the case where the transformed microorganism of the present invention is a transformed microorganism with enhanced expression of the minC and minD genes, an antisense RNA, RNA interference (RNAi), or CRISPR interference (CRISPRi) may be used to reduce the expression of the target gene without altering the target gene and/or the neighboring base sequence.

Culturing the transformed microorganism of the present invention allows the microorganism to accumulate a PHA therein. The culture of the transformed microorganism of the present invention can be conducted according to a common microbial culture method, and it is sufficient that the transformed microorganism be cultured in a culture medium containing a suitable carbon source. There are no particular limitations on the composition of the culture medium, the method of adding the carbon source, the scale of the culture, the conditions of aeration and stirring, the culture temperature, and the culture time. It is preferable to add the carbon source continuously or intermittently to the culture medium.

The carbon source used for the culture may be any carbon source that can be assimilated by the transformed microorganism of the present invention. Examples of the carbon source include, but are not limited to: sugars such as glucose, 55 fructose, and sucrose; palm and palm kernel oils (including palm olein, palm double olein, and palm kernel olein which are low-melting fractions obtained through fractionation of palm oil and palm kernel oil); oils such as corn oil, coconut oil, olive oil, soybean oil, rapeseed oil, and Jatropha oil; fractions of these oils; by-products formed during refining of these oils; fatty acids such as lauric acid, oleic acid, stearic acid, palmitic acid, and myristic acid; derivatives of these fatty acids; and glycerol. In the case where the transformed microorganism of the present invention can assimilate gases such as carbon dioxide, carbon monoxide, and methane or alcohols such as methanol and ethanol, any of these gases or alcohols can be used as the carbon source.

In the PHA production of the present invention, it is preferable to culture the microorganism using a culture medium containing the carbon source and other nutrient sources including a nitrogen source, an inorganic salt, and another organic nutrient source. Examples of the nitrogen source include, but are not limited to: ammonia; ammonium salts such as ammonium chloride, ammonium sulfate, and ammonium phosphate; peptone; meat extracts; and yeast extracts. Examples of the inorganic salt include potassium dihydrogen phosphate, magnesium sulfate, and sodium chloride. Examples of the other organic nutrient source include: amino acids such as glycine, alanine, serine, threonine, and proline; and vitamins such as vitamin B1, vitamin B12, and vitamin C.

After the microorganism is cultured for an adequate time to allow the microorganism to accumulate a PHA therein, the PHA is collected from the microorganism using a known method. The PHA collection is not limited to being carried out by a particular method. For example, the PHA can be 20 collected by a method consisting of: after the culture, separating the microorganism from the culture fluid by means such as a centrifuge or separation membrane; drying the separated microorganism; extracting the PHA from the dried microorganism using an organic solvent such as chlo-25 roform; removing cellular components from the PHA-containing organic solvent solution by a process such as filtration; adding a poor solvent such as methanol or hexane to the filtrate to precipitate the PHA; removing the supernatant by a process such as filtration or centrifugation; and drying the $\ ^{30}$ precipitated PHA. Alternatively, the PHA may be collected by dissolving cellular components other than the PHA in water with the aid of a surfactant, an alkali, or an enzyme, then separating the PHA particles from the aqueous phase by a process such as filtration or centrifugation, and drying the 35 separated PHA particles.

In the present invention, large-size microbial cells accumulating PHA can be obtained, and the microbial cells can be separated from the culture fluid easily and efficiently thanks to their large size. Large-size PHA particles producible according to a preferred aspect of the present invention are preferred because such PHA particles are easy to separate and collect using an aqueous system as described above.

EXAMPLES

Hereinafter, the present invention will be described more specifically using examples. The present invention is not limited to the examples. The overall genetic manipulation can be carried out, for example, in a manner as taught in Molecular Cloning (Cold Spring Harbor Laboratory Press (1989)). The enzymes and cloning hosts used in the gene manipulation can be purchased from market suppliers and used according to the instructions given by the suppliers. The enzymes are not limited to particular types and may be say enzymes that can be used for gene manipulation.

(Production Example 1) Preparation of minE Gene-Deleted Strain

First, a gene deletion plasmid was prepared. The preparation was done as follows. PCR using a synthetic oligo DNA was carried out to obtain a DNA fragment (SEQ ID NO: 16) having base sequences upstream and downstream of the minE structural gene. The DNA fragment was 65 digested by a restriction enzyme SwaI, and the resulting DNA fragment was joined by a DNA ligase (Ligation High,

10

manufactured by Toyobo Co., Ltd.) to a vector pNS2X-sacB which is described in Japanese Laid-Open Patent Application Publication No. 2007-259708 and which was also digested by SwaI. Thus, a gene deletion plasmid vector pNS2X-sacB+minEUD having base sequences upstream and downstream of the minE structural gene was prepared.

Subsequently, a minE gene-deleted strain was prepared using the gene deletion plasmid vector pNS2X-sacB+minEUD as follows. An *Escherichia coli* S17-1 strain (ATCC 47055) was transformed with the gene deletion plasmid vector pNS2X-sacB+minEUD, and the resulting transformed microorganism was cocultured with a KNK-005 strain on Nutrient Agar (manufactured by Difco Laboratories) to effect conjugal transfer. The KNK-005 strain is a transformed strain produced by introducing an *Aeromonas caviae*-derived PHA synthase gene (a gene that encodes a PHA synthase that has the amino acid sequence of SEQ ID NO: 6) onto the chromosome of a *Cupriavidus necator* H16 strain, and can be prepared according to the method described in U.S. Pat. No. 7,384,766.

The culture fluid obtained as above was inoculated into a Simmons agar medium (2 g/L sodium citrate, 5 g/L sodium chloride, 0.2 g/L magnesium sulfate heptahydrate, 1 g/L ammonium dihydrogen phosphate, 1 g/L potassium dihydrogen phosphate, 15 g/L agar, pH=6.8) containing 250 mg/L of kanamycin, and a strain grown on the agar medium was selectively collected. Thus, a strain having the plasmid integrated into the chromosome of the KNK-005 strain was obtained. The obtained strain was cultured on Nutrient Broth (manufactured by Difco Laboratories) for two generations, after which the culture broth was diluted and applied onto Nutrient Agar containing 15% sucrose. A strain grown on Nutrient Agar was obtained as a strain having lost the plasmid. PCR and analysis using a DNA sequencer were further carried out to isolate one strain from which the start to stop codons of the minE structural gene on the chromosome were deleted. In this manner, a minE gene-deleted strain was obtained.

(Production Example 2) Preparation of minC Gene Expression-Enhanced Strain

First, a minC gene expression plasmid pCUP2-PA-minC was prepared. The preparation was done as follows.

PCR using a synthetic oligo DNA was carried out to obtain a DNA fragment (SEQ ID NO: 17) having a promotor sequence and a minC gene sequence. The DNA fragment was digested by restriction enzymes MunI and SpeI, and the resulting DNA fragment was joined to a plasmid vector pCUP2 which is described in WO 2007/049716 and which was cleaved by MunI and SpeI. Thus, the minC gene expression plasmid pCUP2-PA-minC was obtained.

Subsequently, the minC gene expression plasmid pCUP2-PA-minC was introduced into the KNK-005 stain to obtain a minC gene expression-enhanced strain. The introduction of the plasmid vector into the cells was accomplished by electroporation. The gene introduction device used was Gene Pulser manufactured by Bio-Rad Laboratories, Inc., and the cuvette used was a 0.2-cm-gap cuvette also manufactured by Bio-Rad Laboratories, Inc. The cuvette was charged with 400 μl of competent cells and 20 μl of an expression vector and set on the pulse device, by which electric pulse was applied to the contents of the cuvette at a capacitance of 25 μF, a voltage of 1.5 kV, and a resistance value of 800Ω. After the pulse application, the fluid in the cuvette was subjected to shake culture on Nutrient Broth (manufactured by Difco Laboratories) at 30° C. for 3 hours

11

and then to culture on a selection plate (Nutrient Agar manufactured by Difco Laboratories, containing 100 mg/L kanamycin) at 30° C. for 2 days. The minC gene expressionenhanced strain thus grown was collected.

(Production Example 3) Preparation of minD Gene Expression-Enhanced Strain

First, a minD gene expression plasmid pCUP2-PA-minD was prepared. The preparation was done as follows.

PCR using a synthetic oligo DNA was carried out to obtain a DNA fragment (SEQ ID NO: 18) having a promotor sequence and a minD gene sequence. The DNA fragment was digested by restriction enzymes MunI and SpeI, and the resulting DNA fragment was joined to a plasmid vector pCUP2 which is described in WO 2007/049716 and which was cleaved by MunI and SpeI. Thus, the minD gene expression plasmid pCUP2-PA-minD was obtained.

Subsequently, the minD gene expression plasmid pCUP2-PA-minD was introduced into the KNK-005 strain in the same manner as the plasmid pCUP2-PA-minC was introduced in Production Example 2. Thus, a minD gene expression-enhanced strain was obtained.

(Production Example 4) Preparation of minCD Gene Expression-Enhanced Strain

First, a minCD gene expression plasmid pCUP2-PA-minCD was prepared. The preparation was done as follows.

PCR using a synthetic oligo DNA was carried out to ³⁰ obtain a DNA fragment (SEQ ID NO: 19) having a promotor sequence and a minCD gene sequence. The DNA fragment was digested by restriction enzymes MunI and SpeI, and the resulting DNA fragment was joined to a plasmid vector pCUP2 which is described in WO 2007/049716 and which ³⁵ was cleaved by MunI and SpeI. Thus, the minCD gene expression plasmid pCUP2-PA-minCD was obtained.

Subsequently, the minCD gene expression plasmid pCUP2-PA-minCD was introduced into the KNK-005 strain in the same manner as the plasmid pCUP2-PA-minC was introduced in Production Example 2. Thus, a minCD gene expression-enhanced strain was obtained.

(Production Example 5) Preparation of minD Gene Expression-Enhanced and minE Gene-Deleted Strain

The minD gene expression plasmid pCUP2-PA-minD prepared in Production Example 3 was introduced into the minE gene-deleted strain prepared in Production Example 1 50 in the same manner as the plasmid pCUP2-PA-minC was introduced into the KNK-005 strain in Production Example 2. Thus, a minD gene expression-enhanced and minE gene-deleted strain was obtained.

(Production Example 6) Preparation of minCDE Gene Expression-Enhanced Expression

First, a minCDE gene expression plasmid pCUP2-PA-minCDE was prepared. The preparation was done as fol- 60 lows

PCR using a synthetic oligo DNA was carried out to obtain a DNA fragment (SEQ ID NO: 20) having a promotor sequence and a minCDE gene sequence. The DNA fragment was digested by restriction enzymes MunI and SpeI, and the 65 resulting DNA fragment was joined to a plasmid vector pCUP2 which is described in WO 2007/049716 and which

12

was cleaved by MunI and SpeI. Thus, the minCDE gene expression plasmid pCUP2-PA-minCDE was obtained.

Subsequently, the minCDE gene expression plasmid pCUP2-PA-minCDE was introduced into the KNK-005 strain in the same manner as the plasmid pCUP2-PA-minC was introduced in Production Example 2. Thus, a minCDE gene expression-enhanced strain was obtained.

(Production Example 7) Preparation of minCD Gene Expression-Enhanced and minE Gene-Deleted Strain

The minCD gene expression plasmid pCUP2-PA-minCD prepared in Production Example 4 was introduced into the minE gene-deleted strain prepared in Production Example 1 in the same manner as the plasmid pCUP2-PA-minC was introduced into the KNK-005 strain in Production Example 2. Thus, a minCD gene expression-enhanced and minE gene-deleted strain was obtained.

(Comparative Example 1) PHA Production by KNK-005 Strain

Culture examination using the KNK-005 strain was conducted under the conditions described below.

Culture Media

The seed culture medium was composed of 1 w/v % Meat-extract, 1 w/v % Bacto-Tryptone, 0.2 w/v % Yeastextract, 0.9 w/v % Na₂HPO₄·12H₂O, and 0.15 w/v % KH₂PO₄ (pH=6.8). The preculture medium was composed of 1.1 w/v % Na₂HPO₄·12H₂O, 0.19 w/v % KH₂PO₄, 1.29 w/v % (NH₄)₂SO₄, 0.1 w/v % MgSO₄·7H₂O, 2.5 w/v % palm olein oil, and 0.5 v/v % trace metal salt solution (solution of 1.6 w/v % FeCl₃·6H₂O, 1 w/v % CaCl₂·2H₂O, 0.02 w/v % CoCl₂·6H₂O, 0.016 w/v % CuSO₄·5H₂O, and 0.012 w/v % NiCl₂·6H₂O in 0.1N hydrochloric acid). Palm olein oil was added as a carbon source in a concentration of 10 g/L at one time. The PHA production culture medium was composed of 0.385 w/v % Na₂HPO₄·12H₂O, 0.067 w/v % KH₂PO₄, 0.291 w/v % (NH₄)₂SO₄, 0.1 w/v % MgSO4·7H₂O, and 0.5 v/v % trace metal salt solution 45 (solution of 1.6 w/v % FeCl₃·6H₂O, 1 w/v % CaCl₂·2H₂O, $0.02~\text{w/v}~\%~\text{CoCl}_2\text{·}6\text{H}_2\text{O},~0.016~\text{w/v}~\%~\text{CuSO}_4\text{·}5\text{H}_2\text{O},~\text{and}$ 0.012 w/v % NiCl₂·6H₂O in 0.1N hydrochloric acid).

Method of Measuring Accumulated PHA Percentage

The accumulated PHA percentage was measured as follows. The microorganism was collected from the culture fluid by centrifugation. The collected microorganism was 55 washed with ethanol and freeze-dried to give a dried microorganism, the weight of which was measured. To 1 g of the dried microorganism was added 100 ml of chloroform, and the microorganism in chloroform was stirred at room temperature for a day to extract a PHA from the microorganism. The residual microorganism was removed by filtration, and the filtrate was concentrated using an evaporator to a total volume of 30 ml. To the concentrate was slowly added 90 ml of hexane, and the mixture was left for 1 hour under gentle stirring. The PHA precipitated was collected by filtration and vacuum-dried at 50° C. for 3 hours. The weight of the dried PHA was measured, and the percentage of the accumulated PHA to the dried microorganism was calculated.

Method of Measuring Cell Size

The cell size was measured as follows. After the culture, the culture fluid was treated at 65° C. for 60 minutes to inactivate the microbial cells. The treated fluid was analyzed with a laser diffraction-scattering particle size distribution analyzer (Microtrac MT3300EXII) to measure the mean volume diameter (MV) of the cells. The measurement was conducted using standard settings (Permeability: Transparent, Particle refractive index: 1.81, Particle shape: Nonspherical, Solvent refractive index: 1.333).

Method of Measuring PHA Particle Size

The PHA particle size was measured as follows. After the 15 culture, the culture fluid was treated at 65° C. for 60 minutes to inactivate the microbial cells. The culture fluid was diluted to 150 times the original volume with a 3.3 w/v % aqueous solution of sodium dodecyl sulfate, and subjected to ultrasonic disintegration to obtain a liquid containing the 20 extracted PHA. The ultrasonic disintegration was conducted using Ultrasonic Homogenizer UH-600 manufactured by SMT Co., Ltd. and consisted of four repetitions of ultrasonic stirring performed at a maximum output for 40 seconds. The resulting liquid containing the extracted PHA was analyzed 25 with a laser diffraction-scattering particle size distribution analyzer (Microtrac MT3300EXII) to measure the mean volume diameter (MV) of the PHA particles. The measurement was conducted using standard settings (Permeability: Transparent, Particle refractive index: 1.81, Particle shape: 30 Non-spherical, Solvent refractive index: 1.333).

Microscopic Observation of Cells

Microscopic observation of the cells was conducted as ³⁵ follows. After the culture, the culture fluid was diluted as appropriate. The dilution was placed and dried on a glass slide, and then the cells were stained with fuchsin. The stained cells were observed with an optical microscope.

PHA Production Culture

PHA production culture was performed as follows. First, a glycerol stock (50 μ l) of the KNK-005 strain was inoculated into the seed culture medium (10 ml) and cultured for 45 24 hours to accomplish seed culture. Subsequently, the seed culture fluid was inoculated at a concentration of 1.0 v/v % into a 3 L jar fermenter (MDL-300, manufactured by B. E. Marubishi Co., Ltd.) containing 1.8 L of the preculture medium. The fermenter was operated at a culture temperature of 33° C., a stirring speed of 500 rpm, and an aeration of 1.8 L/min, and the preculture was conducted for 28 hours during which the pH was controlled between 6.7 and 6.8. For the pH control, a 14% aqueous solution of ammonium hydroxide was used.

Next, the preculture fluid was inoculated at a concentration of 5.0 v/v % into a 5 L jar fermenter (MDS-U50, manufactured by B. E. Marubishi Co., Ltd.) containing 2.5 L of the PHA production culture medium. The fermenter was operated at a culture temperature of 33° C., a stirring speed 60 of 420 rpm, and an aeration of 2.1 L/min, and the pH was controlled between 6.7 and 6.8. For the pH control, a 25% aqueous solution of ammonium hydroxide was used. The carbon source was added intermittently. Palm olein oil was used as the carbon source. The culture was continued until 65 the accumulated PHA percentage reached around 90%. The accumulated PHA percentage, the cell size, and the PHA

14

particle size were measured as previously described. The results are listed in Table 1. An image taken by the microscopic cell observation conducted as previously described is shown in FIG. 1.

(Comparative Example 2) PHA Production by minE Gene-Deleted Strain

Culture examination using the minE gene-deleted strain was conducted under the same conditions as the culture examination in Comparative Example 1. The measurement results of the accumulated PHA percentage, the cell size, and the PHA particle size are listed in Table 1. An image taken by the microscopic cell observation conducted as previously described is shown in FIG. 2.

The results of the culture examination revealed that the cell size of the minE gene-deleted strain was little different from that of the KNK-005 strain which was a parent strain.

(Comparative Example 3) PHA Production by minC Gene Expression-Enhanced Strain

Culture examination using the minC gene expressionenhanced strain was conducted under the same conditions as the culture examination in Comparative Example 1. The measurement results of the accumulated PHA percentage, the cell size, and the PHA particle size are listed in Table 1. An image taken by the microscopic cell observation conducted as previously described is shown in FIG. 3.

The results of the culture examination revealed that the cell size of the minC gene expression-enhanced strain was smaller than that of the KNK-005 strain which was a parent strain. Additionally, the PHA productivity of the minC gene expression-enhanced strain was considerably low, and the accumulated PHA percentage was only 83% despite the culture time being longer than in Comparative Example 1.

(Comparative Example 4) PHA Production by minD Gene Expression-Enhanced and minE Gene-Deleted Strain

Culture examination using the minD gene expressionenhanced and minE gene-deleted strain was conducted under the same conditions as the culture examination in Comparative Example 1. The measurement results of the accumulated PHA percentage, the cell size, and the PHA particle size are listed in Table 1. An image taken by the microscopic cell observation conducted as previously described is shown in FIG. 4.

The results of the culture examination revealed that the cell size of the minD gene expression-enhanced and minE gene-deleted strain was little different from that of the KNK-005 strain which was a parent strain.

(Example 1) PHA Production by minD Gene Expression-Enhanced Strain

Culture examination using the minD gene expressionenhanced strain was conducted under the same conditions as the culture examination in Comparative Example 1. The measurement results of the accumulated PHA percentage, the cell size, and the PHA particle size are listed in Table 1. An image taken by the microscopic cell observation conducted as previously described is shown in FIG. 5.

The results of the culture examination revealed that the cell size of the minD gene expression-enhanced strain was more than 10% above that of the KNK-005 strain which was

40

15

a parent strain. Additionally, the PHA productivity was comparable to that of the KNK-005 strain.

(Example 2) PHA Production by minCD Gene Expression-Enhanced Strain

Culture examination using the minCD gene expressionenhanced strain was conducted under the same conditions as the culture examination in Comparative Example 1. The measurement results of the accumulated PHA percentage, the cell size, and the PHA particle size are listed in Table 1. An image taken by the microscopic cell observation conducted as previously described is shown in FIG. 6.

The results of the culture examination revealed that the cell size of the minCD gene expression-enhanced strain was more than 15% above that of the KNK-005 strain which was a parent strain. Additionally, the PHA productivity was comparable to that of the KNK-005 strain. The particle size of the PHA produced by the minCD gene expression-enhanced strain was greater than the particle size of the PHA produced by the KNK-005 strain.

(Example 3) PHA Production by minCDE Gene Expression-Enhanced Strain

Culture examination using the minCDE gene expression-enhanced strain was conducted under the same conditions as the culture examination in Comparative Example 1. The measurement results of the accumulated PHA percentage, the cell size, and the PHA particle size are listed in Table 1. An image taken by the microscopic cell observation conducted as previously described is shown in FIG. 7.

The results of the culture examination revealed that the cell size of the minCDE gene expression-enhanced strain was more than 20% above that of the KNK-005 strain which was a parent strain. Additionally, the particle size of the PHA produced by the minCDE gene expression-enhanced strain was greater than the particle size of the PHA produced by the KNK-005 strain.

(Example 4) PHA Production by minCD Gene Expression-Enhanced and minE Gene-Deleted Strain

Culture examination using the minCD gene expression-enhanced and minE gene-deleted strain was conducted

16

under the same conditions as the culture examination in Comparative Example 1. The measurement results of the accumulated PHA percentage, the cell size, and the PHA particle size are listed in Table 1. An image taken by the microscopic cell observation conducted as previously described is shown in FIG. 8.

The results of the culture examination revealed that the cell size of the minCD gene expression-enhanced and minE gene-deleted strain was more than 55% or more above that of the KNK-005 strain which was a parent strain. Additionally, the PHA productivity was almost comparable to that of the KNK-005 strain.

The PHA produced in the culture examinations in Comparative Examples and Examples was found to be PHBH by ¹⁵ HPLC analysis.

TABLE 1

	Strain	Percentage of accumulated PHA to dried microorganism (%)	Cell size (µm)	PHA particle size (µm)
Comp. Example 1	KNK-005 strain	90	1.89	1.74
Comp. Example 2	minE gene- deleted strain	90	1.93	1.72
Comp. Example 3	minC gene expression- enhanced strain	83	1.58	1.34
Comp. Example 4	minD gene expression- enhanced and minE gene- deleted strain	88	1.94	1.71
Example 1	minD gene expression- enhanced strain	90	2.09	1.78
Example 2	minCD gene expression- enhanced strain	90	2.24	1.94
Example 3	minCDE gene expression- enhanced strain	90	2.34	1.87
Example 4	minCD gene expression- enhanced and minE gene- deleted strain	87	3.00	1.73

SEQUENCE LISTING

-continued

Ala Leu Gly Thr Val Ile Glu Thr Leu Ala Thr Leu Arg Ala Arg Ala 70 Ile Gly Val Val Ala Arg Pro Gly Gln Arg Glu Trp Ala Glu Arg Phe Gly Leu Pro Leu Leu Asp Ser Gln Ala Arg Arg Gly Ser Gly Ala Asp 105 Arg Ala Thr Asp Arg Ala Ala Glu Ala Arg Ala Ala Ala Ala Glu Gln Ala Ala Asp Gln Ala Ala Arg Glu Glu Ser Ile Arg Ala Ala Ala Gln Ala Thr Thr Asp Ala Ala Val Ala Ala Ala Ile Arg Gln Thr Gln Thr Met Leu Ile Asp Lys Pro Leu Arg Ser Gly Gln Gln Val Tyr Ala Gln Gly Asp Val Val Ile Leu Asp Val Val Ser Tyr Gly Ala Glu 180 185 190 Val Ile Ala Glu Gly Asn Ile His Ile Tyr Ala Pro Leu Arg Gly Arg 195 200 205 Ala Leu Ala Gly Val Lys Gly Asn Thr Gly Ala Arg Ile Phe Ser Thr 215 Cys Met Glu Pro Glu Leu Ile Ser Ile Ala Gly Ile Tyr Arg Thr Ala 230 235 Glu Gln Thr Leu Pro Ala Asp Val Leu Gly Lys Thr Ala Gln Val Arg 245 250 Leu Ala Asp Glu Lys Leu Ile Leu Glu Ala Leu Arg Leu Lys <210> SEQ ID NO 2 <211> LENGTH: 271 <212> TYPE: PRT <213> ORGANISM: Cupriavidus necator <400> SEOUENCE: 2 Met Ala Lys Ile Ile Val Val Thr Ser Gly Lys Gly Gly Val Gly Lys 10 Thr Thr Thr Ser Ala Ser Phe Ala Ala Gly Leu Ala Leu Arg Gly His Lys Thr Ala Val Ile Asp Phe Asp Val Gly Leu Arg Asn Leu Asp Leu Ile Met Gly Cys Glu Arg Arg Val Val Tyr Asp Leu Ile Asn Val Val Gln Gly Glu Ala Asn Leu Arg Gln Ala Leu Ile Lys Asp Lys Lys Cys Glu Asn Leu Phe Ile Leu Pro Ala Ser Gln Thr Arg Asp Lys Asp Ala 90 Leu Thr Arg Glu Gly Val Glu Lys Val Ile Asn Gly Leu Ile Glu Met Asp Phe Glu Phe Ile Ile Cys Asp Ser Pro Ala Gly Ile Glu Ser Gly 120 Ala Leu Met Ala Met Tyr Phe Ala Asp Glu Ala Leu Ile Val Thr Asn 135 Pro Glu Val Ser Ser Val Arg Asp Ser Asp Arg Ile Leu Gly Ile Leu 150 155 Ala Ser Lys Thr Lys Arg Ala Ser Glu Gly Gly Asp Pro Ile Lys Glu 170

-continued

His Leu Leu Ile Thr Arg Tyr Asn Pro Lys Arg Val His Gly Glu 185 Met Leu Ser Leu Thr Asp Ile Gln Glu Ile Leu Arg Ile Lys Leu Ile 200 Gly Val Val Pro Glu Ser Glu Ala Val Leu His Ala Ser Asn Gln Gly Thr Pro Ala Ile His Leu Glu Gly Ser Asp Val Ala Asp Ala Tyr Gly Asp Val Val Asp Arg Phe Leu Gly Lys Asp Lys Pro Met Arg Phe Thr Asp Tyr Gln Lys Pro Gly Leu Leu Ser Arg Ile Phe Gly Asn Lys <210> SEQ ID NO 3 <211> LENGTH: 84 <212> TYPE: PRT <213 > ORGANISM: Cupriavidus necator <400> SEQUENCE: 3 Met Ser Ile Leu Ser Phe Leu Leu Gly Glu Lys Lys Lys Ser Ala Ser Val Ala Lys Glu Arg Leu Gln Ile Ile Leu Ala His Glu Arg Thr Gly 25 His Ser Ala Pro Ala Asp Tyr Leu Pro Ala Leu Gln Arg Glu Leu Val 40 Ala Val Ile Ser Lys Tyr Val Lys Ile Gly Asp Gln Asp Leu Arg Val Ser Leu Glu Arg Gln Asp Asn Leu Glu Val Leu Glu Val Lys Ile Glu Ile Pro Gln Asn <210> SEQ ID NO 4 <211> LENGTH: 589 <212> TYPE: PRT <213> ORGANISM: Cupriavidus necator <400> SEQUENCE: 4 Met Ala Thr Gly Lys Gly Ala Ala Ala Ser Thr Gln Glu Gly Lys Ser Gln Pro Phe Lys Val Thr Pro Gly Pro Phe Asp Pro Ala Thr Trp Leu Glu Trp Ser Arg Gln Trp Gln Gly Thr Glu Gly Asn Gly His Ala Ala Ala Ser Gly Ile Pro Gly Leu Asp Ala Leu Ala Gly Val Lys Ile Ala 50 60 Pro Ala Gln Leu Gly Asp Ile Gln Gln Arg Tyr Met Lys Asp Phe Ser Ala Leu Trp Gln Ala Met Ala Glu Gly Lys Ala Glu Ala Thr Gly Pro Leu His Asp Arg Arg Phe Ala Gly Asp Ala Trp Arg Thr Asn Leu Pro Tyr Arg Phe Ala Ala Ala Phe Tyr Leu Leu Asn Ala Arg Ala Leu Thr 120 Glu Leu Ala Asp Ala Val Glu Ala Asp Ala Lys Thr Arg Gln Arg Ile 135

_															
Arg 145	Phe	Ala	Ile	Ser	Gln 150	Trp	Val	Asp	Ala	Met 155	Ser	Pro	Ala	Asn	Phe 160
Leu	Ala	Thr	Asn	Pro 165	Glu	Ala	Gln	Arg	Leu 170	Leu	Ile	Glu	Ser	Gly 175	Gly
Glu	Ser	Leu	Arg 180	Ala	Gly	Val	Arg	Asn 185	Met	Met	Glu	Asp	Leu 190	Thr	Arg
Gly	Lys	Ile 195	Ser	Gln	Thr	Asp	Glu 200	Ser	Ala	Phe	Glu	Val 205	Gly	Arg	Asn
Val	Ala 210	Val	Thr	Glu	Gly	Ala 215	Val	Val	Phe	Glu	Asn 220	Glu	Tyr	Phe	Gln
Leu 225	Leu	Gln	Tyr	Lys	Pro 230	Leu	Thr	Asp	Lys	Val 235	His	Ala	Arg	Pro	Leu 240
Leu	Met	Val	Pro	Pro 245	CAa	Ile	Asn	Lys	Tyr 250	Tyr	Ile	Leu	Asp	Leu 255	Gln
Pro	Glu	Ser	Ser 260	Leu	Val	Arg	His	Val 265	Val	Glu	Gln	Gly	His 270	Thr	Val
Phe	Leu	Val 275	Ser	Trp	Arg	Asn	Pro 280	Asp	Ala	Ser	Met	Ala 285	Gly	Ser	Thr
Trp	Asp 290	Asp	Tyr	Ile	Glu	His 295	Ala	Ala	Ile	Arg	Ala 300	Ile	Glu	Val	Ala
Arg 305	Asp	Ile	Ser	Gly	Gln 310	Asp	Lys	Ile	Asn	Val 315	Leu	Gly	Phe	Cys	Val 320
Gly	Gly	Thr	Ile	Val 325	Ser	Thr	Ala	Leu	Ala 330	Val	Leu	Ala	Ala	Arg 335	Gly
Glu	His	Pro	Ala 340	Ala	Ser	Val	Thr	Leu 345	Leu	Thr	Thr	Leu	Leu 350	Asp	Phe
Ala	Asp	Thr 355	Gly	Ile	Leu	Asp	Val 360	Phe	Val	Asp	Glu	Gly 365	His	Val	Gln
Leu	Arg 370	Glu	Ala	Thr	Leu	Gly 375	Gly	Gly	Ala	Gly	Ala 380	Pro	Сув	Ala	Leu
Leu 385	Arg	Gly	Leu	Glu	Leu 390	Ala	Asn	Thr	Phe	Ser 395	Phe	Leu	Arg	Pro	Asn 400
Asp	Leu	Val	Trp	Asn 405	Tyr	Val	Val	Asp	Asn 410	Tyr	Leu	Lys	Gly	Asn 415	Thr
Pro	Val	Pro	Phe 420	Asp	Leu	Leu	Phe	Trp 425	Asn	Gly	Asp	Ala	Thr 430	Asn	Leu
Pro	_	Pro 435	_	Tyr	CÀa		Tyr 440		Arg	His		Tyr 445	Leu	Gln	Asn
Glu	Leu 450	Lys	Val	Pro	Gly	Lys 455	Leu	Thr	Val	СЛа	Gly 460	Val	Pro	Val	Asp
Leu 465	Ala	Ser	Ile	Asp	Val 470	Pro	Thr	Tyr	Ile	Tyr 475	Gly	Ser	Arg	Glu	Asp 480
His	Ile	Val	Pro	Trp 485	Thr	Ala	Ala	Tyr	Ala 490	Ser	Thr	Ala	Leu	Leu 495	Ala
Asn	Lys	Leu	Arg 500	Phe	Val	Leu	Gly	Ala 505	Ser	Gly	His	Ile	Ala 510	Gly	Val
Ile	Asn	Pro 515	Pro	Ala	Lys	Asn	Lys 520	Arg	Ser	His	Trp	Thr 525	Asn	Asp	Ala
Leu	Pro 530	Glu	Ser	Pro	Gln	Gln 535	Trp	Leu	Ala	Gly	Ala 540	Ile	Glu	His	His
Gly 545	Ser	Trp	Trp	Pro	Asp 550	Trp	Thr	Ala	Trp	Leu 555	Ala	Gly	Gln	Ala	Gly 560
Ala	ГЛа	Arg	Ala	Ala	Pro	Ala	Asn	Tyr	Gly	Asn	Ala	Arg	Tyr	Arg	Ala

-continued

												COII	CIII	uea	
				565					570					575	
Ile	Glu	Pro	Ala 580	Pro	Gly	Arg	Tyr	Val 585	Lys	Ala	ГÀз	Ala			
<212 <212	L> LI 2> T	EQ II ENGTH IPE:	1: 59 PRT		omon:	as ca	avi ae	<u>.</u>							
		EQUEI													
Met 1	Ser	Gln	Pro	Ser 5	Tyr	Gly	Pro	Leu	Phe 10	Glu	Ala	Leu	Ala	His 15	Tyr
Asn	Asp	Lys	Leu 20	Leu	Ala	Met	Ala	Lys 25	Ala	Gln	Thr	Glu	Arg 30	Thr	Ala
Gln	Ala	Leu 35	Leu	Gln	Thr	Asn	Leu 40	Asp	Asp	Leu	Gly	Gln 45	Val	Leu	Glu
Gln	Gly 50	Ser	Gln	Gln	Pro	Trp 55	Gln	Leu	Ile	Gln	Ala 60	Gln	Met	Asn	Trp
Trp 65	Gln	Asp	Gln	Leu	Lys 70	Leu	Met	Gln	His	Thr 75	Leu	Leu	Lys	Ser	Ala 80
Gly	Gln	Pro	Ser	Glu 85	Pro	Val	Ile	Thr	Pro 90	Glu	Arg	Ser	Asp	Arg 95	Arg
Phe	Lys	Ala	Glu 100	Ala	Trp	Ser	Glu	Gln 105	Pro	Ile	Tyr	Asp	Tyr 110	Leu	Lys
Gln	Ser	Tyr 115	Leu	Leu	Thr	Ala	Arg 120	His	Leu	Leu	Ala	Ser 125	Val	Asp	Ala
Leu	Glu 130	Gly	Val	Pro	Gln	Lys 135	Ser	Arg	Glu	Arg	Leu 140	Arg	Phe	Phe	Thr
Arg 145	Gln	Tyr	Val	Asn	Ala 150	Met	Ala	Pro	Ser	Asn 155	Phe	Leu	Ala	Thr	Asn 160
Pro	Glu	Leu	Leu	Lys 165	Leu	Thr	Leu	Glu	Ser 170	Asp	Gly	Gln	Asn	Leu 175	Val
Arg	Gly	Leu	Ala 180	Leu	Leu	Ala	Glu	Asp 185	Leu	Glu	Arg	Ser	Ala 190	Asp	Gln
		195		Leu		_	200					205	-		_
Leu	Ala 210	Leu	Thr	Pro	Gly	Arg 215	Val	Val	Gln	Arg	Thr 220	Glu	Leu	Tyr	Glu
225			-	Ser	230					235	-	-			240
Leu	Ile	Val	Pro	Pro 245	Phe	Ile	Asn	ГЛа	Tyr 250	Tyr	Ile	Met	Asp	Met 255	Arg
Pro	Gln	Asn	Ser 260	Leu	Val	Ala	Trp	Leu 265	Val	Ala	Gln	Gly	Gln 270	Thr	Val
Phe	Met	Ile 275	Ser	Trp	Arg	Asn	Pro 280	Gly	Val	Ala	Gln	Ala 285	Gln	Ile	Asp
Leu	Asp 290	Asp	Tyr	Val	Val	Asp 295	Gly	Val	Ile	Ala	Ala 300	Leu	Asp	Gly	Val
Glu 305	Ala	Ala	Thr	Gly	Glu 310	Arg	Glu	Val	His	Gly 315	Ile	Gly	Tyr	Cys	Ile 320
Gly	Gly	Thr	Ala	Leu 325	Ser	Leu	Ala	Met	Gly 330	Trp	Leu	Ala	Ala	Arg 335	Arg
Gln	Lys	Gln	Arg 340	Val	Arg	Thr	Ala	Thr 345	Leu	Phe	Thr	Thr	Leu 350	Leu	Asp

Phe Ser Gln Pro Gly Glu Leu Gly Ile Phe Ile His Glu Pro Ile Ile

-continued

Ala Ala Leu Glu Ala Gln Asn Glu Ala Lys Gly Ile Met Asp Gly Arg Gln Leu Ala Val Ser Phe Ser Leu Leu Arg Glu Asn Ser Leu Tyr Trp Asn Tyr Tyr Ile Asp Ser Tyr Leu Lys Gly Gln Ser Pro Val Ala Phe Asp Leu Leu His Trp Asn Ser Asp Ser Thr Asn Val Ala Gly Lys Thr His Asn Ser Leu Leu Arg Arg Leu Tyr Leu Glu Asn Gln Leu Val Lys Gly Glu Leu Lys Ile Arg Asn Thr Arg Ile Asp Leu Gly Lys Val Lys Thr Pro Val Leu Leu Val Ser Ala Val Asp Asp His Ile Ala Leu Trp Gln Gly Thr Trp Gln Gly Met Lys Leu Phe Gly Gly Glu Gln Arg Phe Leu Leu Ala Glu Ser Gly His Ile Ala Gly Ile Ile Asn Pro Pro Ala Ala Asn Lys Tyr Gly Phe Trp His Asn Gly Ala Glu Ala Glu Ser Pro 520 Glu Ser Trp Leu Ala Gly Ala Thr His Gln Gly Gly Ser Trp Trp Pro 535 Glu Met Met Gly Phe Ile Gln Asn Arg Asp Glu Gly Ser Glu Pro Val Pro Ala Arg Val Pro Glu Glu Gly Leu Ala Pro Ala Pro Gly His Tyr 570 Val Lys Val Arg Leu Asn Pro Val Phe Ala Cys Pro Thr Glu Glu Asp 585 Ala Ala <210> SEQ ID NO 6 <211> LENGTH: 594 <212> TYPE: PRT <213> ORGANISM: Aeromonas caviae <400> SEQUENCE: 6 Met Ser Gln Pro Ser Tyr Gly Pro Leu Phe Glu Ala Leu Ala His Tyr Asn Asp Lys Leu Leu Ala Met Ala Lys Ala Gln Thr Glu Arg Thr Ala Gln Ala Leu Leu Gln Thr Asn Leu Asp Asp Leu Gly Gln Val Leu Glu Gln Gly Ser Gln Gln Pro Trp Gln Leu Ile Gln Ala Gln Met Asn Trp Trp Gln Asp Gln Leu Lys Leu Met Gln His Thr Leu Leu Lys Ser Ala Gly Gln Pro Ser Glu Pro Val Ile Thr Pro Glu Arg Ser Asp Arg Arg Phe Lys Ala Glu Ala Trp Ser Glu Gln Pro Ile Tyr Asp Tyr Leu Lys 105 Gln Ser Tyr Leu Leu Thr Ala Arg His Leu Leu Ala Ser Val Asp Ala 120

-continued

Leu	Glu 130	Gly	Val	Pro	Gln	Lys 135	Ser	Arg	Glu	Arg	Leu 140	Arg	Phe	Phe	Thr
Arg 145	Gln	Tyr	Val	Ser	Ala 150	Met	Ala	Pro	Ser	Asn 155	Phe	Leu	Ala	Thr	Asn 160
Pro	Glu	Leu	Leu	Lys 165	Leu	Thr	Leu	Glu	Ser 170	Gly	Gly	Gln	Asn	Leu 175	Val
Arg	Gly	Leu	Ala 180	Leu	Leu	Ala	Glu	Asp 185	Leu	Glu	Arg	Ser	Ala 190	Asp	Gln
Leu	Asn	Ile 195	Arg	Leu	Thr	Asp	Glu 200	Ser	Ala	Phe	Glu	Leu 205	Gly	Arg	Asp
Leu	Ala 210	Leu	Thr	Pro	Gly	Arg 215	Val	Val	Gln	Arg	Thr 220	Glu	Leu	Tyr	Glu
Leu 225	Ile	Gln	Tyr	Ser	Pro 230	Thr	Thr	Glu	Thr	Val 235	Gly	Lys	Thr	Pro	Val 240
Leu	Ile	Val	Pro	Pro 245	Phe	Ile	Asn	Lys	Tyr 250	Tyr	Ile	Met	Asp	Met 255	Arg
Pro	Gln	Asn	Ser 260	Leu	Val	Ala	Trp	Leu 265	Val	Ala	Gln	Gly	Gln 270	Thr	Val
Phe	Met	Ile 275	Ser	Trp	Arg	Asn	Pro 280	Gly	Val	Ala	Gln	Ala 285	Gln	Ile	Asp
Leu	Asp 290	Asp	Tyr	Val	Val	Asp 295	Gly	Val	Ile	Ala	Ala 300	Leu	Asp	Gly	Val
Glu 305	Ala	Ala	Thr	Gly	Glu 310	Arg	Glu	Val	His	Gly 315	Ile	Gly	Tyr	Cys	Ile 320
Gly	Gly	Thr	Ala	Leu 325	Ser	Leu	Ala	Met	Gly 330	Trp	Leu	Ala	Ala	Arg 335	Arg
Gln	Lys	Gln	Arg 340	Val	Arg	Thr	Ala	Thr 345	Leu	Phe	Thr	Thr	Leu 350	Leu	Asp
Phe	Ser	Gln 355	Pro	Gly	Glu	Leu	Gly 360	Ile	Phe	Ile	His	Glu 365	Pro	Ile	Ile
Ala	Ala 370	Leu	Glu	Ala	Gln	Asn 375	Glu	Ala	Lys	Gly	Ile 380	Met	Asp	Gly	Arg
Gln 385	Leu	Ala	Val	Ser	Phe 390	Ser	Leu	Leu	Arg	Glu 395	Asn	Ser	Leu	Tyr	Trp 400
Asn	Tyr	Tyr	Ile	Asp 405	Ser	Tyr	Leu	Lys	Gly 410	Gln	Ser	Pro	Val	Ala 415	Phe
Asp	Leu	Leu	His 420	Trp	Asn	Ser	Asp	Ser 425	Thr	Asn	Val	Ala	Gly 430	ГÀз	Thr
His	Asn	Ser 435	Leu	Leu	Arg	Arg	Leu 440	Tyr	Leu	Glu	Asn	Gln 445	Leu	Val	ГЛа
Gly	Glu 450	Leu	ГЛа	Ile	Arg	Asn 455	Thr	Arg	Ile	Asp	Leu 460	Gly	ГÀа	Val	Lys
Thr 465	Pro	Val	Leu	Leu	Val 470	Ser	Ala	Val	Asp	Asp 475	His	Ile	Ala	Leu	Trp 480
Gln	Gly	Thr	Trp	Gln 485	Gly	Met	Lys	Leu	Phe 490	Gly	Gly	Glu	Gln	Arg 495	Phe
Leu	Leu	Ala	Glu 500	Ser	Gly	His	Ile	Ala 505	Gly	Ile	Ile	Asn	Pro 510	Pro	Ala
Ala	Asn	Lys 515	Tyr	Gly	Phe	Trp	His 520	Asn	Gly	Ala	Glu	Ala 525	Glu	Ser	Pro
Glu	Ser 530	Trp	Leu	Ala	Gly	Ala 535	Thr	His	Gln	Gly	Gly 540	Ser	Trp	Trp	Pro
Glu	Met	Met	Gly	Phe	Ile	Gln	Asn	Arg	Asp	Glu	Gly	Ser	Glu	Pro	Val

-continued

555 Pro Ala Arg Val Pro Glu Glu Gly Leu Ala Pro Ala Pro Gly His Tyr 570 Val Lys Val Arg Leu Asn Pro Val Phe Ala Cys Pro Thr Glu Glu Asp Ala Ala <210> SEQ ID NO 7 <211> LENGTH: 567 <212> TYPE: PRT <213 > ORGANISM: Chromobacterium sp. <400> SEQUENCE: 7 Met Gln Gln Phe Val Asn Ser Leu Ser Leu Gly Gln Asp Gln Ser Asp Ala Pro His Pro Leu Thr Gly Ala Trp Ser Gln Leu Met Ser Gln Thr Asn Gln Leu Gln Leu Gln Ser Ser Leu Tyr Gln Gln Gln Leu Gly Leu Trp Thr Gln Phe Leu Gly Gln Thr Ala Gly Asn Asp Ala Ser Ala Pro Ser Ala Lys Pro Ser Asp Arg Arg Phe Ala Ser Pro Glu Trp Asp Glu His Pro Phe Tyr Ser Phe Leu Lys Gln Ser Tyr Leu Gln Thr Ser 90 Lys Trp Met Met Glu Leu Val Asp Lys Thr Gln Ile Asp Glu Ser Ala Lys Asp Lys Leu Ser Phe Ala Thr Arg Gln Tyr Leu Asp Ala Met Ala 120 Pro Ser Asn Phe Met Leu Thr Asn Pro Asp Val Val Lys Arg Ala Ile 135 Glu Thr Gln Gly Glu Ser Leu Val Glu Gly Met Lys Asn Met Met Glu Asp Ile Gln Lys Gly His Ile Ser Met Ser Asp Glu Ser Lys Phe Gln Ile Gly Lys Asn Leu Val Val Thr Pro Gly Glu Val Val Phe Arg Asn 185 Glu Leu Ile Glu Leu Ile Gln Tyr Thr Pro Thr Thr Glu Lys Val His Glu Lys Pro Leu Leu Phe Val Pro Pro Cys Ile Asn Lys Tyr Tyr Leu Met Asp Leu Gln Pro Asp Asn Ser Met Val Arg His Phe Val Gly Gln Gly Tyr Arg Val Phe Leu Val Ser Trp Arg Ser Ala Val Pro Glu Met Lys Asn Phe Thr Trp Glu Thr Tyr Ile Glu Lys Gly Val Phe Ala Ala 265 Ala Glu Ala Val Gln Lys Ile Thr Lys Gln Pro Thr Met Asn Ala Leu 280 Gly Phe Cys Val Gly Gly Val Ile Leu Thr Thr Ala Leu Cys Val Ala Gln Ala Lys Gly Leu Lys Tyr Phe Asp Ser Ala Thr Phe Met Thr Ser 315 Leu Ile Asp His Ala Glu Pro Gly Glu Ile Ser Phe Phe Ile Asp Glu

-continued

_															
				325					330					335	
Ala	Leu	Val	Ala 340	Ser	Arg	Glu	Ala	Lys 345	Met	Ala	Ala	Gly	Gly 350	Ile	Ile
Ser	Gly	Lys 355	Glu	Ile	Gly	Arg	Thr 360	Phe	Ala	Ser	Leu	Arg 365	Ala	Asn	Asp
Leu	Val 370	Trp	Asn	Tyr	Val	Val 375	Asn	Asn	Tyr	Leu	Leu 380	Gly	Lys	Thr	Pro
Ala 385	Pro	Phe	Asp	Leu	Leu 390	Tyr	Trp	Asn	Asn	Asp 395	Ala	Val	Asp	Leu	Pro 400
Leu	Pro	Met	His	Thr 405	Phe	Met	Leu	Arg	Gln 410	Phe	Tyr	Ile	Asn	Asn 415	Ala
Leu	Ile	Thr	Pro 420	Gly	Ala	Ile	Thr	Leu 425	Сла	Gly	Val	Pro	Ile 430	Asp	Ile
Ser	Lys	Ile 435	Asp	Ile	Pro	Val	Tyr 440	Met	Phe	Ala	Ala	Arg 445	Glu	Asp	His
Ile	Val 450	Leu	Trp	Ser	Ser	Ala 455	Tyr	Ser	Gly	Leu	Lys 460	Tyr	Leu	Ser	Gly
Thr 465	Pro	Ser	Arg	Arg	Phe 470	Val	Leu	Gly	Ala	Ser 475	Gly	His	Ile	Ala	Gly 480
Ser	Ile	Asn	Pro	Val 485	Thr	Lys	Asp	Lys	Arg 490	Asn	Tyr	Trp	Thr	Asn 495	Glu
Gln	Leu	Pro	Val 500	Asn	Pro	Glu	Glu	Trp 505	Leu	Glu	Gly	Ala	Gln 510	Ser	His
Pro	Gly	Ser 515	Trp	Trp	Lys	Asp	Trp 520	Asp	Ala	Trp	Leu	Ala 525	Pro	Gln	Ser
Gly	530	Gln	Val	Pro	Ala	Pro 535	Lys	Met	Leu	Gly	Ser 540	Lys	Glu	Phe	Pro
Pro 545	Leu	Gln	Pro	Ala	Pro 550	Gly	Ser	Tyr	Val	Leu 555	Ala	Lys	Ala	Met	Pro 560
Pro	Val	Ala	Ala	Ala 565	Leu	Asn									
<211 <212	.> LE :> T	ENGTI		59	ıdomo	onas	sp.								
< 400)> SI	EQUEI	ICE :	8											
Met 1	Ser	Asn	ГЛа	Asn 5	Ser	Asp	Asp	Leu	Asn 10	Arg	Gln	Ala	Ser	Glu 15	Asn
Thr	Leu	Gly	Leu 20	Asn	Pro	Val	Ile	Gly 25	Leu	Arg	Gly	Lys	Asp 30	Leu	Leu
Thr	Ser	Ala 35	Arg	Met	Val	Leu	Thr 40	Gln	Ala	Ile	Lys	Gln 45	Pro	Ile	His
Ser	Val 50	Lys	His	Val	Ala	His 55	Phe	Gly	Ile	Glu	Leu 60	Lys	Asn	Val	Met
Phe 65	Gly	Lys	Ser	Lys	Leu 70	Gln	Pro	Glu	Ser	Asp 75	Asp	Arg	Arg	Phe	Asn 80
Asp	Pro	Ala	Trp	Ser 85	Gln	Asn	Pro	Leu	Tyr 90	Lys	Arg	Tyr	Leu	Gln 95	Thr
Tyr	Leu	Ala	Trp 100	Arg	Lys	Glu	Leu	His 105	Asp	Trp	Ile	Gly	Asn 110	Ser	ГХа
Leu	Ser	Glu 115	Gln	Asp	Ile	Asn	Arg 120	Ala	His	Phe	Val	Ile 125	Thr	Leu	Met

-continued
-continuea

Thr	Glu 130	Ala	Met	Ala	Pro	Thr 135	Asn	Ser	Ala	Ala	Asn 140	Pro	Ala	Ala	Val
Lys 145	Arg	Phe	Phe	Glu	Thr 150	Gly	Gly	Lys	Ser	Leu 155	Leu	Asp	Gly	Leu	Thr 160
His	Leu	Ala	Lys	Asp 165	Leu	Val	Asn	Asn	Gly 170	Gly	Met	Pro	Ser	Gln 175	Val
Asp	Met	Gly	Ala 180	Phe	Glu	Val	Gly	Lys 185	Ser	Leu	Gly	Thr	Thr 190	Glu	Gly
Ala	Val	Val 195	Phe	Arg	Asn	Asp	Val 200	Leu	Glu	Leu	Ile	Gln 205	Tyr	Arg	Pro
Thr	Thr 210	Glu	Gln	Val	His	Glu 215	Arg	Pro	Leu	Leu	Val 220	Val	Pro	Pro	Gln
Ile 225	Asn	Lys	Phe	Tyr	Val 230	Phe	Asp	Leu	Ser	Pro 235	Asp	Lys	Ser	Leu	Ala 240
Arg	Phe	Cys	Leu	Ser 245	Asn	Asn	Gln	Gln	Thr 250	Phe	Ile	Val	Ser	Trp 255	Arg
Asn	Pro	Thr	Lys 260	Ala	Gln	Arg	Glu	Trp 265	Gly	Leu	Ser	Thr	Tyr 270	Ile	Asp
Ala	Leu	Lys 275	Glu	Ala	Val	Asp	Val 280	Val	Ser	Ala	Ile	Thr 285	Gly	Ser	Lys
Asp	Ile 290	Asn	Met	Leu	Gly	Ala 295	Cys	Ser	Gly	Gly	Ile 300	Thr	Cys	Thr	Ala
Leu 305	Leu	Gly	His	Tyr	Ala 310	Ala	Leu	Gly	Glu	Lys 315	Lys	Val	Asn	Ala	Leu 320
Thr	Leu	Leu	Val	Ser 325	Val	Leu	Asp	Thr	Thr 330	Leu	Asp	Ser	Gln	Val 335	Ala
Leu	Phe	Val	Asp 340	Glu	Lys	Thr	Leu	Glu 345	Ala	Ala	Lys	Arg	His 350	Ser	Tyr
Gln	Ala	Gly 355	Val	Leu	Glu	Gly	Arg 360	Asp	Met	Ala	Lys	Val 365	Phe	Ala	Trp
Met	Arg 370	Pro	Asn	Asp	Leu	Ile 375	Trp	Asn	Tyr	Trp	Val 380	Asn	Asn	Tyr	Leu
Leu 385	Gly	Asn	Glu	Pro	Pro 390	Val	Phe	Asp	Ile	Leu 395	Phe	Trp	Asn	Asn	Asp 400
Thr	Thr	Arg	Leu	Pro 405	Ala	Ala	Phe	His	Gly 410	Asp	Leu	Ile	Glu	Met 415	Phe
ГÀа	Asn	Asn	Pro 420	Leu	Val	Arg	Ala	Asn 425	Ala	Leu	Glu	Val	Ser 430	Gly	Thr
Pro	Ile	Asp 435	Leu	ГÀЗ	Gln	Val	Thr 440	Ala	Asp	Ile	Tyr	Ser 445	Leu	Ala	Gly
Thr	Asn 450	Asp	His	Ile	Thr	Pro 455	Trp	Lys	Ser	Cys	Tyr 460	Lys	Ser	Ala	Gln
Leu 465	Phe	Gly	Gly	Lys	Val 470	Glu	Phe	Val	Leu	Ser 475	Ser	Ser	Gly	His	Ile 480
Gln	Ser	Ile	Leu	Asn 485	Pro	Pro	Gly	Asn	Pro 490	Lys	Ser	Arg	Tyr	Met 495	Thr
Ser	Thr	Asp	Met 500	Pro	Ala	Thr	Ala	Asn 505	Glu	Trp	Gln	Glu	Asn 510	Ser	Thr
Lys	His	Thr 515	Asp	Ser	Trp	Trp	Leu 520	His	Trp	Gln	Ala	Trp 525	Gln	Ala	Glu
Arg	Ser 530	Gly	Lys	Leu	Lys	Lys	Ser	Pro	Thr	Ser	Leu 540	Gly	Asn	Lys	Ala
Tyr	Pro	Ser	Gly	Glu	Ala	Ala	Pro	Gly	Thr	Tyr	Val	His	Glu	Arg	

-continued

	-continued
545 550	555
<210> SEQ ID NO 9 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Artificial DNA	
<400> SEQUENCE: 9	
ttgacaatta atcatccggc tcgtataat	29
<210> SEQ ID NO 10 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 10	
tttacacttt atgcttccgg ctcgtataat	30
<210> SEQ ID NO 11 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 11	
ttgacaatta atcatcgaac tagttaacta	30
<210> SEQ ID NO 12 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Escherichia coli	
<400> SEQUENCE: 12	
tttacacttt atgcttccgg ctcgtatgtt	30
<210> SEQ ID NO 13 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Cupriavidus necator	
<400> SEQUENCE: 13	
ttgacagogo gtgogttgoa aggoaacaat	30
<210> SEQ ID NO 14 <211> LENGTH: 231 <212> TYPE: DNA <213> ORGANISM: Cupriavidus necator	
<400> SEQUENCE: 14	
tacgccgccc cctgaccagg aacgccgggc cagtco	cggc gtttttttat tctatagcgc 60
aattaaccgc cgtcatattg cgtcaccatg attgcc	ggat ggccgcggcg atcccttgct 120
ggaggccggt tccaagaaga tttaaagatg tcacgg	aatt gtcatacagg gagcatagag 180
ttcgtcttgt caaaaatttg tcattcccaa ccaatg	ttct ctggaggaca t 231
<210> SEQ ID NO 15 <211> LENGTH: 17 <212> TYPE: DNA <213> ORGANISM: Cupriavidus necator	
<400> SEQUENCE: 15	
agagagacaa tcaaatc	17

-continued

<210> SEQ ID NO 16 <211> LENGTH: 828 <212> TYPE: DNA <213 > ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Artificial DNA <400> SEQUENCE: 16 ctatccattt aaatagtgtc gtcggtgcgc gattcggacc gcatcctggg catcctggcc 60 tecaagacca agegegecag egaaggegge gaccegatea aggaacacet getgateace 120 cgctacaacc ccaagcgtgt gcatggcggc gaaatgctgt cgctgaccga catccaggaa atcctgcgca tcaagctgat cggcgtggtg ccggagtctg aagccgtgct gcacgcctcg 240 300 aaccaqqqca cqccqccat ccacctqqaa qqcaqcqacq tqqccqacqc ctatqqcqac gtggtggacc gcttcctcgg caaggacaag ccgatgcgtt tcaccgacta ccagaagccg 360 420 ggtctgctct cccgcatctt cggcaacaag taacggtcaa ggagggctca ccccggacgg atcccggcgc tgccggattc gttcctcctc cttcggtttt cccgcacttc ccgtctttcc 480 geogacogog gegeogettg egegeoggg teggeoggee eeegteetee eegeegegat 540 tecceaceaq eccaqtqtqc aqqeeaqetq ecaqeqetqc caqaacqeec caatteqqaa 600 ttctgtagcg gcgagacaac ggatttgcac caaaatcctg cttgaaaggg cagcttggcg 660 qaqttttqtq tccttqtaqc ttacqttttq ttaaattttc qcqqcqtcta caacqaaacq 720 tagacategt eccegeegtg ateeggegga gagaacagta caagacagaa aaggageace 780 atgaagaaat cggccatcgt cctcgcagcc ggcaatttaa atccgaat 828 <210> SEO ID NO 17 <211> LENGTH: 1100 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Artificial DNA <400> SEOUENCE: 17 aagggccaat tgtacgccgc cccctgacca ggaacgccgg gccagtcccg gcgttttttt 60 attctatagc gcaattaacc gccgtcatat tgcgtcacca tgattgccgg atggccgcgg 120 cgatcccttg ctggaggccg gttccaagaa gatttaaaga tgtcacggaa ttgtcataca gggagcatag agttcgtctt gtcaaaaatt tgtcattccc aaccaatgtt ctctggagga 240 catatgtccc agaagaaatc gccacgcttc gagctgcgca gtggcaacgt agacgccctc cttctcgccc tccagaccgc cgacatggct gcgctgcggg atgacctcct cgcccgcttt 360 420 qaaqccaccc ccqacttctt ttccaatqac qtqattqcqc tqqacctqcq cqcqctqqaa gatgacageg aagtegeget tggcacegtg ategagaege tggccaeget cagggeeege 480 gccatcggcg tggtggcccg ccccggccag cgcgagtggg ccgagcgctt cggcctgccg 540 ctgctggaca gccaggcccg ccgcggcagt ggcgccgatc gcgccaccga ccgtgccgcc 600 660 gaggccaggg ccgcagccgc ggcggaacag gccgcagccg accaggccgc gcgcgaggaa tocatoogog cogoogogoa ggocaccaco gacgoogoog tggoogotgo catoogocag 720 acccagacca tgctgatcga caagccgctt cgctcgggcc agcaggtcta cgcgcagggc 780 gacgtggtca tcctggacgt ggtcagctac ggcgccgagg tgatcgccga aggcaacatc 840 catatetatg eccegetgeg eggeegtgeg etggegggeg teaagggeaa caceggegeg 900

-continued

egeattttea geaegtgeat ggageetgaa etgattteea tegeeggeat etaeeggaee	960
geggageaga egetteegge egaegtgete ggeaagaeeg eeeaggtgeg eetggeegat	1020
gaaaaactga teetggaage getgeggete aagtaaeetg eeggeetggt teaaceagte	1080
ggcagccgac tagtggatcc	1100
<210> SEQ ID NO 18 <211> LENGTH: 1103 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Artificial DNA	
<400> SEQUENCE: 18	
aagggccaat tgtacgccgc cccctgacca ggaacgccgg gccagtcccg gcgttttttt	60
attotatago goaattaaco googtoatat tgogtoacoa tgattgoogg atggoogogg	120
cgatcccttg ctggaggccg gttccaagaa gatttaaaga tgtcacggaa ttgtcataca	180
gggagcatag agttcgtctt gtcaaaaatt tgtcattccc aaccaatgtt ctctggagga	240
catatggcaa aaatcatcgt tgtgacctcc ggcaagggag gcgtcggcaa gaccaccacc	300
agegecaget ttgeegeegg eetggeeetg egeggeeaea agaetgeegt gategaette	360
gacgtcggcc tgcgcaacct tgacctgate atgggttgcg agcgccgcgt ggtgtacgac	420
ctgatcaacg tggtgcaggg cgaagccaac ctgcgccagg cgctgatcaa ggacaagaag	480
tgcgagaacc tgttcatcct gccggcctcg cagacgcgcg acaaggacgc gctcacgcgc	540
gaaggegteg agaaggteat caacggeetg ategagatgg atttegaatt cateatetge	600
gactogoogg coggoatoga gtogggogog otgatggoga tgtacttogo ogacgaggog	660
ctgatcgtga ccaacccgga agtgtcgtcg gtgcgcgatt cggaccgcat cctgggcatc	720
ctggcctcca agaccaagcg cgccagcgaa ggcggcgacc cgatcaagga acacctgctg	780
atcacccgct acaaccccaa gcgtgtgcat ggcggcgaaa tgctgtcgct gaccgacatc	840
caggaaatcc tgcgcatcaa gctgatcggc gtggtgccgg agtctgaagc cgtgctgcac	900
gcctcgaacc agggcacgcc cgccatccac ctggaaggca gcgacgtggc cgacgcctat	960
ggcgacgtgg tggaccgctt cctcggcaag gacaagccga tgcgtttcac cgactaccag	1020
aagccgggtc tgctctcccg catcttcggc aacaagtaac ctgccggcct ggttcaacca	1080
gtcggcagcc gactagtgga tcc	1103
<210> SEQ ID NO 19 <211> LENGTH: 1983 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Artificial DNA	
<400> SEQUENCE: 19	
aagggccaat tgtacgccgc cccctgacca ggaacgccgg gccagtcccg gcgttttttt	60
attotatago goaattaaco googtoatat tgogtoacoa tgattgoogg atggoogogg	120
cgatcccttg ctggaggccg gttccaagaa gatttaaaga tgtcacggaa ttgtcataca	180
gggagcatag agttcgtctt gtcaaaaatt tgtcattccc aaccaatgtt ctctggagga	240
catatgtccc agaagaaatc gccacgcttc gagctgcgca gtggcaacgt agacgccctc	300
cttctcgccc tccagaccgc cgacatggct gcgctgcggg atgacctcct cgcccgcttt	360
gaagccaccc ccgacttott ttocaatgac gtgattgcgc tggacctgcg cgcgctggaa	420

-continued

gatgacagcg	aagtcgcgct	tggcaccgtg	atcgagacgc	tggccacgct	cagggcccgc	480		
gccatcggcg	tggtggcccg	ccccggccag	cgcgagtggg	ccgagcgctt	cggcctgccg	540		
ctgctggaca	gccaggcccg	ccgcggcagt	ggcgccgatc	gcgccaccga	ccgtgccgcc	600		
gaggccaggg	ccgcagccgc	ggcggaacag	gccgcagccg	accaggccgc	gcgcgaggaa	660		
tccatccgcg	ccgccgcgca	ggccaccacc	gacgccgccg	tggccgctgc	catccgccag	720		
acccagacca	tgctgatcga	caagccgctt	cgctcgggcc	agcaggtcta	cgcgcagggc	780		
gacgtggtca	teetggaegt	ggtcagctac	ggcgccgagg	tgatcgccga	aggcaacatc	840		
catatctatg	ccccgctgcg	eggeegtgeg	ctggcgggcg	tcaagggcaa	caccggcgcg	900		
cgcattttca	gcacgtgcat	ggagcctgaa	ctgatttcca	tegeeggeat	ctaccggacc	960		
gcggagcaga	cgcttccggc	cgacgtgctc	ggcaagaccg	cccaggtgcg	cctggccgat	1020		
gaaaaactga	tcctggaagc	gctgcggctc	aagtaaccgc	ggcagccccc	gggaccgaat	1080		
tgcagagagc	gcaagcttca	acttattact	ggaccaaaga	gccatggcaa	aaatcatcgt	1140		
tgtgacctcc	ggcaagggag	gcgtcggcaa	gaccaccacc	agcgccagct	ttgccgccgg	1200		
cctggccctg	cgcggccaca	agactgccgt	gatcgacttc	gacgtcggcc	tgcgcaacct	1260		
tgacctgatc	atgggttgcg	agcgccgcgt	ggtgtacgac	ctgatcaacg	tggtgcaggg	1320		
cgaagccaac	ctgcgccagg	cgctgatcaa	ggacaagaag	tgcgagaacc	tgttcatcct	1380		
geeggeeteg	cagacgcgcg	acaaggacgc	gctcacgcgc	gaaggcgtcg	agaaggtcat	1440		
caacggcctg	atcgagatgg	atttcgaatt	catcatctgc	gactcgccgg	ccggcatcga	1500		
gtcgggcgcg	ctgatggcga	tgtacttcgc	cgacgaggcg	ctgatcgtga	ccaacccgga	1560		
agtgtcgtcg	gtgcgcgatt	cggaccgcat	cctgggcatc	ctggcctcca	agaccaagcg	1620		
cgccagcgaa	ggcggcgacc	cgatcaagga	acacctgctg	atcacccgct	acaaccccaa	1680		
gcgtgtgcat	ggcggcgaaa	tgctgtcgct	gaccgacatc	caggaaatcc	tgcgcatcaa	1740		
gctgatcggc	gtggtgccgg	agtetgaage	cgtgctgcac	gcctcgaacc	agggcacgcc	1800		
cgccatccac	ctggaaggca	gcgacgtggc	cgacgcctat	ggcgacgtgg	tggaccgctt	1860		
cctcggcaag	gacaagccga	tgcgtttcac	cgactaccag	aagccgggtc	tgctctcccg	1920		
catcttcggc	aacaagtaac	ctgccggcct	ggttcaacca	gtcggcagcc	gactagtgga	1980		
tcc						1983		
<210> SEQ ID NO 20 <211> LENGTH: 2259 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Artificial DNA <400> SEQUENCE: 20								
aagggccaat	tgtacgccgc	cccctgacca	ggaacgccgg	gccagtcccg	gcgtttttt	60		
		_	tgcgtcacca			120		
_			gatttaaaga			180		
			tgtcattccc			240		
		_	_			300		
			gagetgegea					
cttctcgccc	tccagaccgc	cgacatggct	gcgctgcggg	atgacctcct	cgcccgcttt	360		

gaagccaccc ccgacttctt ttccaatgac gtgattgcgc tggacctgcg cgcgctggaa

-continued

gatgacagcg aagt	egeget tggcacegtg	atcgagacgc	tggccacgct	cagggcccgc	480	
gccatcggcg tggt	ggcccg ccccggccag	cgcgagtggg	ccgagcgctt	cggcctgccg	540	
ctgctggaca gcca	iggcccg ccgcggcagt	ggcgccgatc	gcgccaccga	ccgtgccgcc	600	
gaggccaggg ccgc	agcege ggeggaacag	gccgcagccg	accaggccgc	gcgcgaggaa	660	
tecateegeg eege	egegea ggeeaceace	gacgccgccg	tggccgctgc	catccgccag	720	
acccagacca tgct	gatega caageegett	cgctcgggcc	agcaggtcta	cgcgcagggc	780	
gacgtggtca tcct	ggacgt ggtcagctac	ggcgccgagg	tgatcgccga	aggcaacatc	840	
catatetatg ceed	getgeg eggeegtgeg	ctggcgggcg	tcaagggcaa	caccggcgcg	900	
cgcattttca gcac	gtgcat ggagcctgaa	ctgatttcca	tegeeggeat	ctaccggacc	960	
geggageaga eget	teegge egaegtgete	ggcaagaccg	cccaggtgcg	cctggccgat	1020	
gaaaaactga teet	ggaage getgeggete	aagtaaccgc	ggcagccccc	gggaccgaat	1080	
tgcagagagc gcaa	gcttca acttattact	ggaccaaaga	gccatggcaa	aaatcatcgt	1140	
tgtgacctcc ggca	agggag gcgtcggcaa	gaccaccacc	agegeeaget	ttgccgccgg	1200	
cetggeeetg egeg	gecaca agactgeegt	gatcgacttc	gacgtcggcc	tgcgcaacct	1260	
tgacctgatc atgo	gttgcg agcgccgcgt	ggtgtacgac	ctgatcaacg	tggtgcaggg	1320	
cgaagccaac ctgo	gccagg cgctgatcaa	ggacaagaag	tgcgagaacc	tgttcatcct	1380	
geeggeeteg eaga	cgcgcg acaaggacgc	gctcacgcgc	gaaggcgtcg	agaaggtcat	1440	
caacggcctg atco	gagatgg atttcgaatt	catcatctgc	gactcgccgg	ccggcatcga	1500	
gtcgggcgcg ctga	ıtggega tgtaettege	cgacgaggcg	ctgatcgtga	ccaacccgga	1560	
agtgtcgtcg gtgc	gegatt eggaeegeat	cctgggcatc	ctggcctcca	agaccaagcg	1620	
cgccagcgaa ggcg	ggcgacc cgatcaagga	acacctgctg	atcacccgct	acaaccccaa	1680	
gegtgtgeat ggeg	gogaaa tgotgtogot	gaccgacatc	caggaaatcc	tgcgcatcaa	1740	
gctgatcggc gtgg	stgccgg agtctgaagc	cgtgctgcac	gcctcgaacc	agggcacgcc	1800	
cgccatccac ctgc	gaaggca gcgacgtggc	cgacgcctat	ggcgacgtgg	tggaccgctt	1860	
cctcggcaag gaca	agcega tgegttteac	cgactaccag	aagccgggtc	tgctctcccg	1920	
catcttcggc aaca	agtaac ggtcaaggag	ggctcacccc	atgtcgatcc	tttccttcct	1980	
gctgggagag aaga	agaagt ccgcgtcggt	cgccaaggag	cggctgcaga	tcatcctggc	2040	
gcacgagcgc accg	gecatt eegegeeege	cgactacctg	cccgcgctgc	agcgcgagct	2100	
ggtggcggtg attt	ccaagt acgtcaagat	cggcgaccag	gacctgcgcg	tcagcctgga	2160	
gegecaggae aace	tegagg tgetegaggt	caagatcgag	atcccgcaga	actgacctgc	2220	
cggcctggtt caac	cagteg geageegaet	agtggatcc			2259	

The invention claimed is:

1. A transformed microorganism, belonging to the genus 55 Cupriavidus, and comprising a polyhydroxyalkanoate synthase gene, wherein expression of a minC gene and a minD gene is enhanced as compared to a wild strain of the microorganism,

wherein

60 the minC gene is a gene having a nucleotide sequence that encodes a polypeptide comprising the amino acid sequence of SEQ ID NO: 1, or a polypeptide comprising an amino acid sequence that is at least 90% homologous to the amino acid sequence of SEQ ID NO: 1, the minD gene is a gene having a nucleotide sequence that encodes a polypeptide comprising the amino acid

sequence of SEQ ID NO: 2, or a polypeptide comprising an amino acid sequence that is at least 90% homologous to the amino acid sequence of SEQ ID NO: 2, and the polyhydroxyalkanoate synthase gene is a gene having a nucleotide sequence that encodes a polypeptide comprising the amino acid sequence of SEQ ID NOS: 4, 5, 6, 7, or 8, or a polypeptide having polyhydroxyalkanoate synthase activity and comprising an amino acid sequence that is at least 90% homologous to the amino acid sequence of SEQ ID NOS: 4, 5, 6, 7, or 8, and a size of microbial cells of the transformed microorganism that accumulates polyhydroxyalkanoate is larger compared to a size of microbial cells of the wild strain that accumulates the polyhydroxyalkanoate, and the

- transformed microorganism accumulates larger-size particles of the polyhydroxyalkanoate compared to the wild strain.
- 2. The transformed microorganism according to claim 1, wherein expression of a minE gene is enhanced as compared 5 to a wild strain of the microorganism,
 - wherein the minE gene is a gene having a nucleotide sequence that encodes a polypeptide comprising the amino acid sequence of SEQ ID NO: 3, or a polypeptide comprising an amino acid sequence that is at least 90% homologous to the amino acid sequence of SEQ ID NO: 3.
- 3. The transformed microorganism according to claim 2, which is transformed *Cupriavidus necator*.
- **4.** A method of producing a polyhydroxyalkanoate, comprising culturing the transformed microorganism of claim **2** in the presence of a carbon source.
- 5. The method according to claim 4, wherein the carbon source comprises an oil or a fatty acid.
- **6**. The method according to claim **4**, wherein the carbon source comprises a sugar.
- 7. The method according to claim 4, wherein the carbon source contains comprises carbon dioxide.
- **8**. The method according to claim **4**, wherein the polyhydroxyalkanoate is a copolymer of at least two hydroxy alkanoates.
- **9**. The method according to claim **8**, wherein the polyhydroxyalkanoate is a copolymer comprising 3-hydroxyhexanoate as a monomer unit.
- 10. The method according to claim 9, wherein the polyhydroxyalkanoate is a copolymer of 3-hydroxybutyrate and 3-hydroxyhexanoate.

46

- 11. The transformed microorganism according to claim 1, which is transformed *Cupriavidus necator*.
- 12. A method of producing a polyhydroxyalkanoate, comprising culturing the transformed microorganism of claim 1 in the presence of a carbon source.
- 13. The method according to claim 12, wherein the carbon source comprises an oil or a fatty acid.
- 14. The method according to claim 12, wherein the carbon source comprises a sugar.
- 15. The method according to claim 12, wherein the carbon source comprises carbon dioxide.
- **16**. The method according to claim **12**, wherein the polyhydroxyalkanoate is a copolymer of at last two hydroxyalkanoates.
- 17. The method according to claim 16, wherein the polyhydroxyalkanoate is a copolymer comprising 3-hydroxyhexanoate as a monomer unit.
- **18**. The method according to claim **17**, wherein the polyhydroxyalkanoate is a copolymer of 3-hydroxybutyrate and 3-hydroxyhexanoate.
- 19. The transformed microorganism according to claim 1, wherein the size of microbial cells of the transformed microorganism that accumulates the polyhydroxyalkanoate is at least 2.24 μ m, and the size of polyhydroxyalkanoate particles that are accumulated by the transformed microorganism is at least 1.94 μ m.
- 20. The transformed microorganism according to claim 2, wherein the size of microbial cells of the transformed microorganism that accumulates the polyhydroxyalkanoate is at least 2.34 μ m, and the size of polyhydroxyalkanoate particles that are accumulated by the transformed microorganism is at least 1.87 μ m.

* * * * *