Collateral, Asset Prices, and Risk Management

Fangyuan Yu

Fall 2023

Shanghai University of Finance and Economics

ı

Kiyotaki-Moore (1997)

Credit Cycles

- Kiyotaki and Moore (1997) is the seminal paper on incorporating financial frictions via the so-called "limited enforcement" approach
- Basic idea:
 - Debt contracts are not perfectly enforceable if the borrower defaults, the lender cannot force the borrower to continue to work, have negative consumption, etc.
 - The lender may be able to recover some of the borrower's assets, but because of limited enforceability, these assets are worth less to the lender than to the borrower
 - The lender will restrict the amount of credit a borrower can access
 - So we have a collateral constraint amount borrower can borrow is a function of value of its assets

Model

- Two groups of agents, risk-neutral, infinite horizon
- ullet capital stock k_t with endogenous price q_t ; and consumption good
- Farmers are productive agents with unit mass
 - output $y_{t+1} = (a+c)k_t$
 - ullet a is tradable output, c is only for farmer's consumption
 - discount rate $\beta < 1$
- Gatherers with unit mass, they are less productive in using k
 - $y_{t+1} = G(k_t^G)$
 - discount rate $\beta^G > \beta$
- Fixed aggregate supply of capital $ar{K}$, hence in equilibrium $k_t + k_t^G = ar{K}$
- ullet Riskless one-period bond with zero net supply, at price R_t

3

Credit market

- Farmers will want to borrow in a steady state
 - because they are impatient and more productive
 - · if they are patient, they will save to eliminate borrowing constraint in a steady state
- Debt b_t is one period of riskfree debt collateralized by capital
- Key friction: farmer can walk away from any debt but lender can seize the collateral
- Collateral constraint

$$R_t b_t \leq q_{t+1} k_t$$

- Farmers will want to borrow more but they are constrained
- gatherers are lenders on the margin, and their preferences pin down the interest rate

$$R_t = R = 1/\beta^G$$

4

Demand for credit and capital

• Farmers' intertemporal budget equation

$$ak_{t-1} + q_t k_{t-1} + b_t = q_t k_t + Rb_{t-1}$$

• Farmers will max out their borrowing constraint so the collateral constraint binds

$$Rb_t = q_{t+1}k_t$$

• Then farmer's period- t demand for capital

$$k_t = \frac{(a+q_t) k_{t-1} - Rb_{t-1}}{q_t - q_{t+1}/R}$$

- Each unit of capital has an effective price of $q_t q_{t+1}/R$, and the farmer has net worth of $(a+q_t) k_{t-1} Rb_{t-1}$
- Why q_t-q_{t+1}/R ? Capital has a price of q_t , but he can borrow $b_t=q_{t+1}/R$

Gatherer's demand for capital and equilibrium prices

- Gatherers are not credit constrained ⇒ they determine capital prices!
- Their demand for k_t^G is given by FOC

$$\beta^{G} \left[G' \left(k_{t}^{G} \right) + q_{t+1} \right] = \left[G' \left(k_{t}^{G} \right) + q_{t+1} \right] / R = q_{t}$$

- $G'(k_t^G)$ gives marginal output. Assumption: G'' < 0: $G'(k_t^G)$ is higher for lower k_t^G
- $q_t q_{t+1}/R$ so-called user cost of capital
- Market clearing for capital $k_t + k_t^G = \bar{K}$ implying

$$\frac{1}{R}G'(\bar{K}-k_t) = q_t - \frac{q_{t+1}}{R} \Rightarrow q_t = \sum_{s=0}^{\infty} R^{-s} \left(\frac{1}{R}G'(\bar{K}-k_{t+s})\right)$$

• If $k_{t+s} \uparrow$ for all s, i.e. productive farmers have more capital $\Rightarrow G' \uparrow \Rightarrow$ gatherers demand of capital $\uparrow \Rightarrow q_t \uparrow$

6

Steady state equilibrium

· Borrowing is determined by the collateral constraint

$$b^* = \frac{q^* k^*}{R}$$

• Farmer's demand is determined by their budget constraint

$$k^* = \frac{(a+q^*) k^* - Rb^*}{q^*(1-1/R)} \Rightarrow q^* = \frac{aR}{R-1}$$

ullet Use gatherer's demand schedule to solve for steady state capital level k^*

$$\frac{1}{R}G'(\bar{K} - k^*) = q^* - \frac{q^*}{R} = a$$

ullet Frictionless economy benchmark k^{FB} solves

$$\max_{k}(a+c)k + G(\bar{K}-k) \Rightarrow a+c = G'(\bar{K}-k^{FB})$$

Difference: c is not tradable/pledgeable

Impluse responses

- Consider unexpected one-time shock that increases production by δ percent, i.e., a becomes $a(1+\delta)$
- Specifically, $k_{t-1} = k^*$, $b_{t-1} = b^*$. At the beginning of t, realized output $a(1 + \delta)$. Need to solve for $\{q_{t+s}, k_{t+s}\}$ for $s \ge 0$
- · Recall we have derived

$$k_{t} = \frac{(\tilde{a} + q_{t}) k_{t-1} - Rb_{t-1}}{q_{t} - q_{t+1}/R} = \frac{(\tilde{a} + q_{t}) k_{t-1} - Rb_{t-1}}{G'(\bar{K} - k_{t})/R}$$

•
$$\underbrace{\frac{1}{R}G'\left(\bar{K}-k_{t}\right)k_{t}}_{\text{guantity effect}} = a(1+\delta)k^{*} + \underbrace{\left(q_{t}-q^{*}\right)k^{*}}_{\text{collateral price effect}}$$

- Ignore the price feedback effect, i.e., hold $q_{t+s}=q^{st}$ always. There is long-lasting effect through "quantity effect"
 - $k_t \uparrow$ by IRS $\eta \Rightarrow t+1$ output $ak_t \uparrow$ by $\eta \Rightarrow k_{t+1} \uparrow$ by $\eta^2 \dots$
- Collateral price effect can be much larger. $q_t = \sum_{s=0}^{\infty} R^{-s} \left(\frac{1}{R} G' \left(\bar{K} k_{t+s} \right) \right)$ so its IRS is about $1/\eta R$
 - Today's higher q_t allows for more borrowing $k_t \uparrow$, so on so forth

Impulse Response

Rampini and Viswanathan (2010)

Model

- Environment
 - · Discrete time, infinite horizon
 - investor/ owner
- Owner/borrower ("firm", "entrepreneur")
 - Preferences: risk neutral, impatient $\beta < R^{-1}$, subject to limited liability
 - Endowment: the borrower has limited funds w>0
- Investor has deep pockets
- Technology
 - Capital k invested in current period
 - Payoff ("cash flow") next period Af(k)
 - Strict concavity $f_k(k) > 0$ and $f_{kk}(k) < 0$; also: $\lim_{k \to 0} f_k(k) = +\infty$; $\lim_{k \to \infty} f_k(k) = 0$
 - Capital is durable and depreciates at rate $\delta \in (0,1]$
- · Collateral constraints:
 - Need to collateralize loan repayment with a tangible asset.

Noeclassical Investment: Investor's problem

- Investor's objective
 - Maximize value: the present discounted value of dividends
- Investor's problem recursive formulation
 - ullet Choose current dividend d and invest capital k to solve

$$\max_{\{d, w', k\}} d + R^{-1} v(w')$$

subject to budget constraints (but no limited liability constraints)

$$w \ge d + k$$
$$Af(k) + k(1 - \delta) > w'$$

Investment Euler Equation

$$1 = R^{-1}(Af_k(k) + (1 - \delta))$$

User cost of capital

$$u \equiv r + \delta$$

Limited enforcement implies collateral constraints

Enforcement constraint

• Ensure that borrower prefers to repay instead of absconding; heuristically,

$$\underbrace{v\left(w'\right)}_{\text{value when repaying}} \geq \underbrace{v(Af(k) + (1-\theta)k(1-\delta))}_{\text{value when defaulting}}$$

and since $v(\cdot)$ is strictly increasing

$$w' \ge Af(k) + (1 - \theta)k(1 - \delta)$$

and using budget constraint to substitute for w' given borrowing b

$$\underbrace{Af(k) + k(1-\delta) - Rb}_{\text{payoff when repaying}} = w' \geq \underbrace{Af(k) + (1-\theta)k(1-\delta)}_{\text{payoff when defaulting}}$$

Collateral constraint

$$\theta k(1-\delta) \ge Rb$$

Dynamic financing problem with collateral constraints

· Firm's problem

$$v(w) \equiv \max_{\{d,k,b,w'\}} d + \beta v(w')$$

subject to budget constraints and collateral constraint

$$w + b \ge d + k \qquad (\mu)$$

$$Af(k) + k(1 - \delta) \ge w' + Rb \qquad (\beta \mu')$$

$$\theta k(1 - \delta) \ge Rb \qquad (\beta \lambda')$$

and limited liability $d \ge 0$

• Net worth next period $w' = Af(k) + k(1-\delta) - Rb$

Investment Euler Equation

• First-order conditions (multipliers μ , $\beta\mu'$, and $\beta\lambda'$)

$$1 \le \mu, v_w(w') = \mu'$$
$$\mu = \beta \mu' \left[A f_k(k) + (1 - \delta) \right] + \beta \lambda' \theta (1 - \delta), \mu = \beta \mu' R + \beta \lambda' R$$

- Also: envelope condition $v_w(w) = \mu$
- Investment Euler Equation

$$1 = \beta \frac{\mu'}{\mu} \frac{Af_k(k) + (1 - \theta)(1 - \delta)}{1 - R^{-1}\theta(1 - \delta)}$$

Collateral and capital structure

• "Minimal down payment" (per unit of capital)

$$\wp \equiv 1 - \underbrace{R^{-1}\theta(1-\delta)}_{\text{PV of }\theta \times \text{ resale value of capital}}$$

- Capital structure
 - In the deterministic case, collateral constraints always bind
 - Debt per unit of capital

$$R^{-1}\theta(1-\delta)$$

· Internal funds per unit of capital

$$\wp = 1 - R^{-1}\theta(1 - \delta)$$

Investment policy

• Investment Euler Equation for dividend paying firm

$$1 = \beta \frac{Af_k(k) + (1 - \theta)(1 - \delta)}{\wp}$$

- Dividend-paying firm: capital $ar{k}$ solves equation above
 - Comparing FOCs can show $\bar{k} < k^*$ (underinvestment)
- Non-dividend paying firm: $k=\frac{1}{\wp}w$ (invest all net worth and lever as much as possible)

Dividend policy

- Threshold policy
- Pay out dividends today (d'>0) if $w\geq \bar{w}$
- Can we show threshold is optimal?
 - Suppose pay dividends at w but not at $w^+>w$
 - At w, invest \bar{k}
 - If not paying dividends at w^+ , must invest more; can **IEE** hold?

Value of Internal Funds

- Value of internal funds μ
 - Premium on internal funds (unless firm pays dividends) since $\mu \geq 1$
- User cost u(w)
 - User cost such that $u(w)=R \beta \frac{\mu'}{\mu} A f_k(k)$ where

$$u(w) \equiv r + \delta + \underbrace{R\beta \frac{\lambda}{\mu} (1-\theta)(1-\delta)}_{\text{internal funds require premium}} > u$$

Net worth Accumulation and Firm Growth

- · Dividend policy and net worth accumulation
 - · Dividend policy is threshold policy
 - For $w \geq \bar{w}$, pay dividends $d = w \bar{w}$
 - For $w < \bar{w}$, pay no dividends and reinvest everything ("retain all earnings")
- · Investment policy and firm growth
 - For $w \geq \bar{w}$, keep capital constant at \bar{k} (no growth)
 - For $w<\bar{w}$, invest everything $k=\frac{1}{\wp}w$ resulting in net worth w'>w next period
- Firm age
 - Young firms $(w<\bar{w})$ do not pay dividends, reinvest everything, grow
 - Mature firms $(w \geq \bar{w})$ pay dividends and do not grow

Dynamic Debt Capacity Management

Technology

• Capital k invested in current period yields stochastic payoff ("cash flow") in state s' next period

$$A\left(s'\right)f(k)$$

where $A' \equiv A(s')$ is realized "total factor productivity" (TFP)

- Strict concavity $f_k(k) > 0$; $f_{kk}(k) < 0$; also: $\lim_{k\to 0} f_k(k) = +\infty$; $\lim_{k\to \infty} f_k(k) = 0$
- Capital is durable and depreciates at rate δ
 - Depreciated capital $k(1-\delta)$ remains next period

Collateral constraints

- Need to collateralize all promises to pay with tangible assets
- Can pledge up to fraction $\theta < 1$ of value of depreciated capital

Firm's dynamic debt capacity management problem

- State-contingent borrowing $b' \equiv b(s')$
 - ullet Collateral constraint for state-contingent borrowing b'

$$\theta k(1-\delta) \ge Rb'$$

Firm's debt capacity use problem

$$\max_{\left\{d,w',k,b'\right\}}d+\beta\sum_{s'\in\mathcal{S}}\Pi\left(s,s'\right)v\left(w',s'\right)$$

subject to budget constraints and collateral constraints, $\forall s' \in \mathcal{S}$,

$$w + \underbrace{\sum_{s' \in \mathcal{S}} \Pi\left(s, s'\right) b'}_{\text{total borrowing}} \ge d + k$$

$$A' f(k) + k(1 - \delta) \ge Rb' + w'$$

$$\theta k(1 - \delta) \ge Rb'$$

and limited liability $d \ge 0$

Dynamic debt capacity choice-Optimal conditions

• First-order conditions (multipliers $\mu, \Pi\left(s,s'\right)\beta\mu\left(s'\right)$, and $\Pi\left(s,s'\right)\beta\lambda\left(s'\right)$)

$$1 \leq \mu, \quad v_w(w', s') = \mu'$$
$$\sum_{s' \in \mathcal{S}} \Pi(s, s') \beta \mu' \left[A' f_k(k) + (1 - \theta)(1 - \delta) \right], \quad \mu = \beta \mu' R + \beta \lambda' R$$

• Investment Euler equation

$$1 = \sum_{s' \in \mathcal{S}} \Pi(s, s') \beta \frac{\mu'}{\mu} \frac{A' f_k(k) + (1 - \theta)(1 - \delta)}{\wp}$$

- Firms do not exhaust debt capacity against all states
 - Debt capacity use/leverage: $\theta(1-\delta) \geq R \sum_{s' \in \mathcal{S}} \Pi(s,s') b'/k$
 - Recall: equality in deterministic case

Corporate Risk Management

- Financial constraints give a rationale for corporate risk management
 - If firms' net worth matters, then firms are as if risk averse
 - Collateral constraints link financing and risk management
 - More constrained firms hedge less and often not at all
 - Financing vs. risk management trade-off
 - Limited enforcement: need to collateralize promises to financiers and counterparties
 - Collateral constraints link financing and risk management
 - More constrained firms hedge less as financing needs dominate hedging concerns

Corporate Risk Management Problem

- Equivalent risk management formulation
 - ullet Collateral constraint for state-contingent borrowing b'

$$\theta k(1-\delta) \ge Rb'$$

Equivalently, borrow as much as possible and hedge

$$h' \equiv \theta k (1 - \delta) - Rb' \ge 0$$

· Firm's risk management problem

$$\max_{\{d,w',k,h'\}} d + \beta \sum_{s' \in \mathcal{S}} \Pi(s,s') v(w',s')$$

subject to budget constraints and short sale constraints, $\forall s' \in \mathcal{S}$,

$$w \ge d + \wp k + \underbrace{R^{-1} \sum_{s' \in \mathcal{S}} \Pi(s, s') h'}_{\text{cost of hedging portfolio}}$$

$$A'f(k) + (1 - \theta)k(1 - \delta) + h' \ge w'$$

Financing vs. Risk Management Trade-off

· Investment Euler equation

$$1 = \sum_{s' \in \mathcal{S}} \Pi(s, s') \beta \frac{\mu'}{\mu} \frac{A' f_k(k) + (1 - \theta)(1 - \delta)}{\wp}$$
$$\geq \Pi(s, s') \beta \frac{\mu'}{\mu} \frac{A' f_k(k) + (1 - \theta)(1 - \delta)}{\wp}$$

- As $w \to 0$, capital $k \to 0$ and marginal product $f_k(k) \to \infty$
- Therefore, marginal value of net worth in state-s' (relative to current period) $\mu'/\mu \to 0$
- · Using first-order condition for hedging

$$\lambda'/\mu = (\beta R)^{-1} - \mu'/\mu > 0$$

so severely constrained firms do not hedge at all

- Financing vs. risk management trade-off
 - Hedging uses up net worth which is better used to purchase additional capital/downsize less
 - IID case: if firms hedge, they hedge states with low net worth due to low cash flows