Calculus - II

About
$$y-axis$$
 About $z-axis$

$$V = \pi \int_{a}^{b} x^{2} dy \cdot V = \pi \int_{c}^{d} y^{2} dx \cdot v$$

About
$$z = cons$$
.
 $V = \pi \int_{a}^{b} z^{2} dy$

About
$$y = cons$$
.
 $V = \pi \int_{c}^{d} y^{2} dx$

* Parametric Eq.s

$$x = \cos(t)$$

 $y = \sin(t)$.

4 increasing t will

$$x^2 + y^2 = \lambda^2$$

faster Late.

$$b = dy \times$$

$$\frac{dy}{dx} = \frac{b}{a}$$

$$V = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$

Velocity vector
$$\vec{v} = \vec{v}_x \hat{i} + \vec{v}_y \hat{j}$$

$$2x^2 + y^2 = x^2$$

4 Double Derivative.

$$\frac{dy^2}{dx^2} = \frac{d\left(\frac{dy}{dx}\right)}{dt} / \frac{dz}{dt}$$

4 Length of a curve. (cartesian).

Asc length =
$$\int_{a}^{b} \int 1 + (dy)^{2} \cdot dx$$

4 Length of a culve. (Parameteic).

Asc length =
$$\int_{\alpha}^{b} \int \left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} dt$$

(2,0) Polae Co-oudinate D measured anti-clockwise = + ve. * Read angle first them the ladius. Speed= $\left(\frac{dz}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2$ Flic length= $\left(\frac{dz}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2$ d θ 4 Func with two variables. * in 1y-plane 17 Long. # in zy-plane 1 2 cons. # in 22-plane, y-Lons. * Palaboloid. Inverted Parabola $f(2y) = \chi^2 + y^2$ f(x14) = x2-42 if we make any variable cons. mean contour lines will be a parabola or circle.

Dist blw 2 points. d= 1(22-21)2+(42-4,)2 Dist blw 3 points D= \((\frac{1}{22-\frac{1}{2}} + \left| \frac{1}{2} + \left| \frac{1}{2} + \left| \frac{1}{2} - \frac{1}{2} \right|^2 Contour lines/level sets/level curves. Strang a graph or shape hourzontally and view it from the top. * On a contour line , value of z remains cons. * If dist blue contour lines is constant it is a plane. 4 Linear Functions Identification. Rows and columns must have same 1 $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{2}$ diff.

* Eq. of a plane.

$$m = dz$$
 $n = dz$ dy

MA

* Partial Derivative.

$$\frac{f_{x} = \delta z}{\delta x} \qquad \frac{f_{y} = \delta z}{\delta y}$$

eq:

$$\frac{z-z_0}{z} = \frac{f(x-x_0)}{f(x-y_0)} + \frac{f(x-y_0)}{f(x-y_0)}$$

- Vectors.
 - * Unit rectal

$$\hat{a} = \frac{7}{a}$$

* Dot Product

Magnitude

Angle blw 2 vectous

Eq. of a plane.

$$\begin{array}{c|c}
\hline
O. & n_2 & -1 \\
\hline
3 \\
2
\end{array}$$
Point=
$$\begin{array}{c|c}
1 \\
0 \\
4
\end{array}$$

$$\begin{cases} x \\ y \\ \frac{2}{2} \end{cases} = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$$

- * Local linearity means to zoom unto the graph.
- * 2 Sourface's doct time outly is a plane.
- * Tongent to the Suface is a plane.

Global Min

+ gradient vector.

gradient of a function = gradif.

* Disectional Derivative

:

$$\nabla f \cdot \hat{U} = 16f11 - 11\sqrt{11} - \cos \Theta$$

blw of and û

Mai sate of change hence: $\nabla f \cdot v = 11 \nabla f 11$.

Dûf = 11 $\nabla f 11$.

- * Glad f is always be towards the steepest direction.
- Shortest dist of gradf blu 2 contours that are closer shows steepness.
- * Il gradf II is the max rate of change.
- * Gradf are perpendicular to the contour lines.
 - 4 Double Partial Derivative.

$$\begin{cases}
f(x,y) \\
f_{x} \\
f_{y}
\end{cases}$$

$$\begin{cases}
f_{xy} \\
f_{xy} \\
f_{xy}
\end{cases}$$

Craint's
$$f_{xy} = f_{yx}$$
.
Theorem

* Double Directional Delivative.

Determinant = | fyy fry fxx

fxx D and D D D

LOCAL MIN

f (0 and D)D
LOCAL MAX

D < D Saddle Point

D= 0

Inconclusive

* For critical point to exist

 $f_2 = 0$ and $f_y = 0$ on undefined.

Lagrange multiplier.

yahan waired constrained

Palaboloid

$$x^2 + y^2 = 2$$

Cylinder

$$\sqrt{x^2 + y^2} = 7$$

Cone

$$\sqrt{2^2 + y^2} = \lambda$$

Sphere

$$x^2 + y^2 + z^2 = \rho^2$$

4 Double Integral. (Volume under surface).

→ Polar Integration

$$dA = \lambda \cdot d\lambda \cdot d\theta$$

$$\chi = \lambda \cos(\theta)$$

$$y = \lambda \sin(\theta)$$

$$\int_{\alpha} \int_{\alpha} (\lambda_1 \theta) \cdot \lambda \cdot d\lambda \cdot d\theta$$

$$\chi^{2} + y^{2} = \lambda^{2}$$

$$\theta = tan^{-1} \left(\frac{y}{x} \right)$$

$$\iint_{e} \int_{c} \int_{a} f(x_{1}y_{1}z) \cdot dx \cdot dy \cdot dz$$

* Cylindrical Co-ordinates

polae and 2 (height)

x= L cos(D)

Area using double · I

func. 1

Volume using triple. I

func 1.

* 1= constant

with z-axis as its axis of symmetry

Spherical Co-ordinates.

$$y = \lambda \sin(\theta)$$

 $y = \rho \sin(\theta) \sin(\theta)$

$$*$$
 \emptyset angle is blue $(0\rightarrow 7)$

pos: Zaxis and D= cons.

line or origin.

vertical plane.

$$\theta$$
 angle is from $(0 \rightarrow 2\pi)$
the x-axis.

$$\emptyset = cons$$

cone.

LINE INTEGRALS * Angle with field vector acute so, helping = tre oms of integral. * Angle with field vector obtuse 50, eq; of a line. hinderance = -ve ams in Vectal. of integral. $\vec{\lambda} = a + t\vec{b}$ F(x(t)) · Z'(t) · dt

* Path dependent ou independent.

Work conservative = path independent. Work non-conservative = path dependent.

ams.

3010

oms

+VP.

path dependent.

Aga direction change kine se pehle wala hi onswer age to path independent.