Homework #4. Solutions to selected problems.

Problems:

0. Let V be a finite-dimensional inner product space over \mathbb{C} and let $A \in \mathcal{L}(V)$ be a normal operator. Prove that A is unitary if and only if all eigenvalues of A have absolute value 1.

Solution: " \Rightarrow " Suppose A is unitary, λ an eigenvalue of A and v an eigenvector corresponding to λ . Then

$$||v||^2 = \langle v, v \rangle = \langle A^*Av, v \rangle = \langle Av, Av \rangle = \langle \lambda v, \lambda v \rangle = \lambda \overline{\lambda} ||v||^2 = |\lambda|^2 ||v||^2$$
 and hence $|\lambda| = 1$.

" \Leftarrow " Conversely, suppose that all eigenvalues of A have absolute value 1. Since unitary operators are normal, by Theorem 7.2 from class there exists an orthonormal basis β for which $[A]_{\beta}$ is diagonal. The diagonal entries of $[A]_{\beta}$ are the eigenvalues of A, and since they all have absolute value 1, we must have $[A]_{\beta}^*[A]_{\beta} = [A]_{\beta}[A]_{\beta}^* = I_n$ (where $n = \dim V$).

On the other hand, since β is orthonormal, $[A]^*_{\beta} = [A^*]_{\beta}$. Thus, $[A^*A]_{\beta} = [A^*]_{\beta}[A]_{\beta} = [A]^*_{\beta}[A]_{\beta} = I_n$ and similarly $[AA^*]_{\beta} = I_n$. Hence $A^*A = AA^* = I$ and thus A is unitary.

- 1. Let V be an inner product space over \mathbb{C} and $A \in GL(V)$, that is, $A \in \mathcal{L}(V)$ is invertible.
 - (a) Prove that A is unitary if and only if $\langle Ax, Ay \rangle = \langle x, y \rangle$ for all $x, y \in V$.
 - (b) Now use (a) to prove that A is unitary if and only if ||Ax|| = ||x|| for all $x \in V$.

Solution: (a) " \Rightarrow " If A is unitary, then $A^*A = I$, whence $\langle Ax, Ay \rangle = \langle x, A^*Ay \rangle = \langle x, y \rangle$.

" \Leftarrow " Suppose now that for all $x, y \in V$ we have $\langle Ax, Ay \rangle = \langle x, y \rangle$. Since A is invertible, we can write every $y \in V$ as $y = A(A^{-1}y)$. Then for all $x, y \in V$ we have

$$\langle Ax, y \rangle = \langle Ax, A(A^{-1}y) \rangle = \langle x, A^{-1}y \rangle.$$

This means that the operator A^{-1} satisfies the definition of the adjoint and thus $A^* = A^{-1}$.

Note: The following argument for " \Leftarrow " was presented at the problem session and appeared in the majority of the homework papers. This argument is incomplete in general as it assumes that A^* exists (but is valid for finite-dimensional vector spaces since in that case adjoints always exist):

So assume that $\langle Ax, Ay \rangle = \langle x, y \rangle$, A is invertible and A^* exists. Then as in the proof of \Rightarrow we have $\langle A^*Ax, y \rangle = \langle x, y \rangle$, whence $\langle (A^*Ax - x), y \rangle = 0$. Now fix x and let $z = A^*Ax - x$. We get that $\langle z, y \rangle = 0$ for all $y \in V$. Since the inner product is nondegenerate, we must have z = 0. Thus, $A^*Ax = x$ for all $x \in V$, and therefore $A^*A = I$. Since A is invertible, multiplying both sides of this equation by A^{-1} on the right, we get $A^* = A^{-1}$.

Remark: If V is infinite-dimensional, the assumption that A is invertible cannot be eliminated (even if we know that A^* exists). For instance, let $V = \mathbb{C}_0^{\infty}$ be the vector space of (infinite) finitary complex sequences (where finitary means that only finitely many elements of the sequence are nonzero) with the standard Hermitian dot product and $A: V \to V$ the shift operator given by $A(e_i) = e_{i+1}$ for all $i \geq 1$. It is straightforward to check that A satisfies the equality $\langle Ax, Ay \rangle = \langle x, y \rangle$ for all $x, y \in V$, the adjoint A^* exists and is given by $A^*(e_1) = 0$ and $A^*(e_i) = e_{i-1}$ for i > 1. Then $A^*A = I$ (which can be checked directly or deduced from our general argument above), but $AA^* \neq I$ (the operator AA^* fixes e_i for each i > 1 but sends e_1 to 0).

- **2.** Let V be an inner product space over \mathbb{C} , let $A \in \mathcal{L}(V)$ be unitary, and let $W \subseteq V$ be a *finite-dimensional* subspace of V which is A-invariant (that is, $A(W) \subseteq W$).
 - (a) Prove that if A(W) = W.
 - (b) Use (a) to prove that W^{\perp} is also A-invariant.

Solution:(a) Since W is finite-dimensional and $A(W) \subseteq W$, to prove the equality it suffices to show that $\dim A(W) = \dim W$. We apply the rank-nullity theorem the restriction map $A_{|W}: W \to W$. Since $A_{|W}(W) = A(W)$, we get $\dim A(W) = \dim A_{|W}(W) = \dim W - \dim \operatorname{Ker}(A_{|W})$.

Since A is unitary, it is invertible, so we must have Ker(A) = 0 and hence $Ker(A_{|W}) = 0$. Thus, $\dim A(W) = \dim W$ as desired.

(b) By definition, we need to show that $\langle Az, w \rangle = 0$ for all $w \in W$ and $z \in W^{\perp}$. Since A(W) = W, we can write w = Av for some $v \in W$. But then $\langle Az, w \rangle = \langle Az, Av \rangle = \langle z, v \rangle = 0$ since $z \in W^{\perp}$ and $v \in W$.

Remark: The assumption that W is finite-dimensional in (a) cannot be eliminated. Indeed, let V be the vector space of finitary complex double-sided

sequences (where double-sided means that the sequences are infinite in both directions). This spaces has a natural basis $\{e_i\}_{i\in\mathbb{Z}}$, and again we can turn V into an inner product space using the standard Hermitian dot product. Define the shift operator $A:V\to V$ by $A(e_i)=e_{i+1}$. This time A is unitary. But if we let $W=Span\{e_i:i\geq 1\}$, then $A(W)=Span\{e_i:i\geq 2\}$, so $A(W)\subseteq W$ while $A(W)\neq W$.

Note that in the proof of (b) we did not directly use the fact that W is finite-dimensional, only that it satisfies A(W) = W.

- **4.** Let V be a finite-dimensional inner product space over \mathbb{C} and let H and G be Hermitian forms on V.
 - (a) Assume that G is positive-definite. Prove that there exists a basis β of V such that $[H]_{\beta}$ and $[G]_{\beta}$ are both diagonal (equivalently, if $A, B \in Mat_n(\mathbb{C})$ are Hermitian matrices and A is positive definite, there exists $P \in GL_n(\mathbb{C})$ such that P^*AP and P^*BP are both diagonal).

Solution: Since G is Hermitian positive-definite, we can define an inner product structure on V by setting $\langle x, y \rangle = G(x, y)$. By Corollary 8.6, there exists an orthonormal basis β (with respect to this inner product) such that $[H]_{\beta}$ is diagonal. On the other hand, by definition of the orthonormal basis we must have $[G]_{\beta} = I_n$, where $n = \dim V$. Thus, $[G]_{\beta}$ and $[H]_{\beta}$ are both diagonal.

5.

- (a) Let $A \in Mat_n(\mathbb{C})$ be arbitrary. Prove that there exists a unitary matrix U such that $U^{-1}AU = U^*AU$ is upper-triangular.
- (b) Use (a) to give a short proof of Theorem 8.5 from class in the case when A is Hermitian or unitary (without referring to Theorem 7.2)

Solution: (a) Contrary to the hint, we will phrase the solution in terms of matrices. We argue by induction on $n = \dim(V)$. The base case n = 1 is trivial. Fix n > 1, and assume that the assertion holds for matrices of smaller size.

Let λ be any eigenvalue of A and v a corresponding eigenvector. After rescaling, we can assume that ||v|| = 1. Let β be any orthonormal basis of V whose first element is v (to get such a basis simply take any orthonormal basis for $(\mathbb{C}v)^{\perp}$ and add v at the beginning). Let U_1 be the matrix whose columns are elements of β . Then U_1 is unitary since β is orthonormal. Also,

the matrix $U_1^{-1}AU_1$ has the block form $\begin{pmatrix} \lambda & y \\ 0 & B \end{pmatrix}$ where 0 is a column of 0's of height n-1, y is some row of length n-1 and $B \in Mat_{n-1}(\mathbb{C})$. Indeed, $U_1^{-1}AU_1 = [\widetilde{A}]_{\beta}$ where \widetilde{A} is the operator represented by A in the standard basis, and the assertion follows from the fact that the first element v of β satisfies $\widetilde{A}v = \lambda v$.

Now by induction hypothesis there exists a unitary $(n-1) \times (n-1)$ matrix V such that $V^{-1}BV$ is upper-triangular. Now consider the block-diagonal $n \times n$ -matrix $U_2 = \begin{pmatrix} 1 & 0 \\ 0 & V \end{pmatrix}$. Since V is unitary, it is straightforward to check that U_2 is unitary as well.

Finally, let $U = U_1U_2$. Since unitary matrices form a group (which follows easily from the definition), U is also unitary. Also

$$U^{-1}AU = U_2^{-1}(U_1^{-1}AU_1)U_2 = \begin{pmatrix} 1 & 0 \\ 0 & V \end{pmatrix}^{-1} \begin{pmatrix} \lambda & y \\ 0 & B \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & V \end{pmatrix}$$

Using the formula for multiplying block matrices, we get that the above product is equal to $\begin{pmatrix} \lambda & z \\ 0 & V^{-1}BV \end{pmatrix}$ for some row vector z of length n-1. Since $V^{-1}BV$ is upper-triangular, the matrix $\begin{pmatrix} \lambda & z \\ 0 & V^{-1}BV \end{pmatrix}$ is upper-triangular as well, which finishes the proof.

(b) First we claim that if A is Hermitian (respectively unitary) and U is unitary, then U^*AU is Hermitian (respectively unitary). Indeed, if $A^* = A$, then $(U^*AU)^* = U^*A^*U = U^*AU$ (here we did not use that U is unitary) and if A is unitary, then $U^*AU = U^{-1}AU$ is unitary since unitary matrices form a group.

Thus, by (a) we just need to show that an upper-triangular matrix which is either Hermitian or unitary must be diagonal. If A is upper-triangular, then A^* is lower-triangular, so $A^* = A$ forces A to be diagonal.

Also invertible upper-triangular $n \times n$ matrices form a subgroup of $GL_n(\mathbb{C})$, so if A is upper-triangular and unitary (hence invertible), A^{-1} must be upper-triangular. Hence again $A^* = A^{-1}$ forces A to be diagonal.