

Design-for-Test

Jiun-Lang Huang

GIEE/ICDA, National Taiwan University

Evolution of Design-for-Test

- As the design complexity keeps growing, design without testing in mind eventually leads to prohibitively high test costs or poor test quality.
 - It is difficult to set the circuit under test to desired internal states.
 - Low sequential test pattern generation (TPG) efficiency.
- Ad hoc approaches were developed to improve controllability and observability.
 - For example, test point insertion.
 - Still suffer poor sequential TPG efficiency difficult to reach 90% fault coverage for large designs.

- With full-scan, flip-flops are completely controllable and observable.
- Variants of scan design:
 - full-scan, almost full-scan,
 - partial scan (w/ sequential TPG), and
 - pipelined/feedforward/balanced partial-scan design (w/ combinational TPG).
- Based on scan infrastructure, *built-in self-test (BIST)* and *test compression* techniques are developed to lower the test cost.

Testability

- A relative measure of the effort or cost of testing a logic circuit.
 - Assuming that only PIs can be controlled and only POs can be observed.
 - Reflect on the efforts required to set and observe internal signals.

Testability Analysis

- The process of assessing the testability of a logic circuit by calculating a set of numerical measures for each signal.
 - Controllability and observability.

	patterns	computation efforts	accuracy	TPG guidance
topology based	no (static)	low	low	yes
simulation based	yes (dynamic)	high	high	no

A tradeoff between accuracy and complexity.

SCOAP

- Sandia Controllability/Observability Analysis Program [Goldstein 79].
- SCOAP computes six integer values for each signal s in a circuit.

	0-controllability	1-controllability	observability
combinational	CC0(s)	CC1(s)	CO(s)
sequential	SC0(<i>s</i>)	SC1(<i>s</i>)	SO(s)

- $1 \le CC0$, CC1, SC0, $SC1 < \infty$
- $0 \le CO$, $SO < \infty$

SCOAP Combinational Controllability Measures

- Performed from PIs to POs according to the topological order.
 - Process a signal only after all the inputs of its driving gates have been processed.
- Rules for controllability calculation:
 - 1 account for the logic depth.
 - Assume independent, uncorrelated gate inputs.
 - Fanout branches inherit controllability measures from the fanout stem.

[M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing, Kluwer Academic Publishers, 2000.]

	CC0	CC1
primary input	1	1
AND	min(input CC0's) + 1	sum(input CC1's) + 1
OR	sum(input CC0's) + 1	min(input CC1's) + 1
NOT	(input CC1) + 1	(input CC0) + 1
XOR*	min(CC0(a)+CC0(b),CC1(a)+CC1(b)) + 1	min(CC0(a)+CC1(b),CC0(a)+CC1(b)) + 1
BRANCH	CC0(stem)	CC1(stem)
NAND	sum(input CC1's) + 1	min(input CC0's) + 1
NOR	min(input CC1's) + 1	sum(input CC0's) + 1
BUFFER	(input CC0) + 1	(input CC1) + 1
XNOR	min(CC0(a)+CC1(b),CC0(a)+CC1(b)) + 1	min(CC0(a)+CC0(b),CC1(a)+CC1(b)) + 1

^{*} a and b are the gate inputs.

Combinational Observability Measures

- Performed from POs to PIs after calculating controllability measures in a reverse pass.
 - No distinction between logic 0 and 1 observability.
- Rules for observability calculation:
 - 1 account for the logic depth.
 - The assumption of independent observation via fanout branches incurs errors.

中校	G231 G231	校線局 Taipei Main Cam	
		CO	
	primary output	0	
	AND/NAND input	sum(output CO, other inputs' CC1) + 1	
	OR/NOR input	sum(output CO, other inputs' CC0) + 1	
	NOT/BUFFER input	(output CO) + 1	
水源校區	XOR/XNOR input*	(output CO) + min(CC0(x), CC1(x)) + 1	
Shuiyuan Campus	stem	min(branch CO's)	
	* x is the other input.		
VLSI System Testing		11 liun Lan	g Huang, GIEE/ICDA, NTL

Remarks on SCOAP

• The controllability and observability numbers approximate the number of circuit lines that must be set to control or observe a given circuit line.

• Larger CC/CO values indicate higher difficulty controlling/observing a signal's value.

Probability-Based Testability Analysis

- SCOAP is extremely helpful in TPG.
- For BIST applications that utilize pseudo-random patterns, probability-based testability measures can be used to derive *random testability*.

	0-controllability	1-controllability	observability
probability-based testability measures	C0(s)	C1(s)	O(<i>s</i>)

- $0 \le C0$, C0, $0 \le 1$
- C0(s) + C1(s) = 1

- Probability-based controllability calculation rules:
 - The derivation process is similar to SCOAP, with different rules.
 - Assume that gate inputs are independent.
 - A smaller C1(s)/C0(s) indicates that it is harder to set s to 1/0.

	C0	C1		
primary input*	p_0	$p_1 = 1 - p_0$		
AND	1 - ∏(input C1's)	∏(input C1's)		
OR ∏(input C0's)		1 - ∏(input C0's)		
NOT	NOT (input C1)			
XOR $C0(a)C0(b) + C1(a)C1(a)$		C0(a)C1(b) + C1(a)C0(b)		
BRANCH (stem C0) (stem		(stem C1)		

^{*} p_0 is the PI's 0-probability, $0 \le p_0 \le 1$.

• A smaller O(s) indicates that it is harder to observe the value of s.

primary output	1	
AND/NAND input	∏(output O, other inputs' C1)	
OR/NOR input	∏(output O, other inputs' C0)	
NOT/BUFFER input	(output O)	
XOR/XNOR*	$\Pi(\text{output O, max}(\text{CO}(x), \text{C1}(x)))$	
stem	max(branches' O)	

^{*} x is the other input.

• Example:

(a) SCOAP combinational measures

(b) Probability-based measures

[L.-T.Wang, C.-W.Wu, and X.Wen, VLSI Test Principles and Architectures, Morgan Kaufmann Publishers, 2006]

- Faults on signal lines with poor probability-based testability measures are often called *random-pattern-resistant* (PR-resistant).
 - For BIST applications that utilize pseudo-random pattern generation, insert test points or adjust PI weights to address this issue.

Remarks on Topology-Based Testability Measures

- In general, linear complexity.
- Reconvergent circuit structures degrade accuracy.

Simulation-Based Testability Analysis

- More accurate than topology-based approaches, at the cost of higher computation efforts.
 - They are derived through logic or fault simulation with given patterns.
 - Statistical sampling to reduce the number of simulated patterns.
 - Collect, for all or interested signals, the numbers of occurrences of 0's, 1's, 0-to-1 transitions, and 1-to-0 transitions.
- Generally used to guide testability enhancement, e.g., test point insertion, to achieve very high fault coverage.

Conclusions

- Testability analysis can be performed at different circuit abstraction levels (gate-level or RTL) and different strategies (static or dynamic).
 - TPG guidance: gate-level + static SCOAP
 - Test point insertion for BIST: gate-level + static probability-based testability measures
 - When very high fault coverage is demanded, use simulation-based testability measures.
 - High-level testability improvement: RTL testability analysis

Ad Hoc DfT Approaches

- Rely on design practice and modification guidelines for testability improvement.
- Initially proposed to deal with the difficulty of testing sequential circuits.
- Soon run out of steam:
 - Not scalable human efforts are required.
 - Not too many testability experts to consult.
 - We still need sequential ATPG to validate the effectiveness.

insert test points
avoid asynchronous set/reset for storage elements
avoid combinational feedback loops
avoid redundant logic
avoid asynchronous logic
partition a large circuit into small blocks

Test Point Insertion

- Add test points to enhance controllability or observability.
- Use testability analysis to determine where test points should be inserted.
- Control points:
 Add additional primary inputs to enhance 1 or 0 controllability.

Control points: (cont'd)

In practice, a control point may be implemented as a part of one of the gates in the

original circuit.

Observation points: additional primary outputs to enhance observability.

For pin count reduction, utilize control/observation shift registers.

Scan Design — Overview

- The most widely used structured DfT methodology.
- Aim to improve the controllability and observability of storage elements in sequential circuits.
- Three operations: normal, shift, and capture.
 - Set *TM* = 1 to turn on test-related fixes and guarantee safe operation.
 - Configure flip-flop operation by setting SE.

U	TM (test mode)	SE (scan enable)	comments
normal	0	0	test related circuits turned off
shift	1	1	shift-in and shift-out
capture	1	0	

Muxed-D Scan Cell

It is constructed by adding a multiplexer to the D input of a D flip-flop.

• The *SE* (scan enable) input selects the DFF input.

- In the normal and capture modes, *SE* is set to 0 to capture the *D* input value when triggered.
- In the shift mode, SE is set to 1 to capture the SI input value from when triggered.

Full-Scan Design

 All storage elements are replaced with scan cells.

 Scan FFs are configured to form one or multiple scan chains.

• Using the shift operation (SE = 1), all flip-flop outputs are controllable.

Pseudo-Primary Inputs (PPIs)

 Using the capture operation followed by shift operations, all flip-flop inputs are observable.

Pseudo-Primary Outputs (PPOs)

The full-scan design converts the difficult sequential TPG problem to the simpler combinational TPG problem.

Full-Scan Design Test Application

- A test vector specifies PI and PPI values: $V_i = \langle PI_i, PPI_i \rangle$.
- The expected test response is $R_i = \langle PO_i, PPO_i \rangle$.

Test Application Example

	vector (<i>V</i>)		respon	se (<i>R</i>)
	PI	PPI	РО	PPO
1	-	-	01	100
2	01	001	11	010
3	00	110	00	101

Partial Scan Design

- Replace a subset of flip-flops with scan cells.
- Require sequential TPG to generate patterns to control and observe non-scanned FFs.
- To lower the TPG efforts, disable non-scanned flip-flips during the shift operation.
- Criteria for scan flip-flop selection:
 - Timing and area overhead.
 - TPG complexity: cycle breaking, maximum sequential depth.

Functional Partitioning Based Partial-Scan Design

- Divide the circuit under test into the data path and controller portions.
- Only scan the controller flip-flops.
 - Avoid adding extra delay to the timing-critical data path portion.

Pipelined Partial-Scan Design

- Select flip-flops to scan in a way such that the partially-scanned circuit is feedback-free.
- Cycle breaking
 - 1. Construct a structure graph (s-graph).
 - Each node corresponds to a flip-flop; each directed edge indicates a combinational signal path.
 - 2. Remove vertices until the graph becomes a directed acyclic graph (DAG).
 - The scanned flip-flops.
 - The distance along the longest path is the sequential depth.

- TPG complexity is similar to a combinational circuit for a cycle-free partial scan circuit.
 - If the sequential depth is *D*, any single fault can be tested with at most *D* vectors.
- One may break only large loops and keep self and small loops to reduce the scan-induced overhead.
 - For cyclic s-graph, the test sequence length is about $D \times 2^L$ where L is the maximum length of any cycle.
- Balanced partial-scan design:
 Set a limit on the sequential depth, e.g., 3 to 5, to further simplify TPG efforts.

• Example:

The resulting s-graph contains a loop.

Partial-Scan Design Limitations

- Degraded fault coverage.
- Longer TPG time.
- In general, require functional patterns to meet the target fault coverage.
- Less support for debugging, diagnosis, and failure analysis.