# Снижение размерности фазового пространства в задачах канонического корреляционного анализа

#### Курдюкова Антонина

Научный руководитель: д.ф.-м.н. В. В. Стрижов

Московский физико-технический институт Факультет управления и прикладной математики Кафедра «Интеллектуальные системы»

8 июня 2022 г.

# Снижение размерности фазового пространства

Решается задача декодирования сигналов. Требуется восстановить зависимость между двумя наборами гетерогенных данных.

#### Цель

Показать, что методы канонического корреляционного анализа являются частным случаем метода сходящихся перекрестных отображений Сугихары.

# Проблема

Сложная структура временного ряда — наличие нелинейных зависимостей и варьирующийся период.

Требуется построить адекватрную модель прогноза сигнала гироскопа по сигналу акселерометра для ходьбы.

#### Решение

Предлагается использовать скрытое пространство, снизив размерность исходного фазового пространства, и применить метод сходящихся перекрестных отображений для учёта причинно-следственных связей между временными рядами.

# Литература

Предлагается латентный ССМ для выявления причинно-следственных связей в хаотических динамических системах

• De Brouwer E. et al. Latent convergent cross mapping //International Conference on Learning Representations, 2020

Предложены методы декодирования сигналов. Учитываются зависимости в исходном и целевом пространствах, а также случай избыточности описания исходных данных

 Исаченко Р. В., Стрижов В. В. Снижение размерности пространства в задачах декодирования сигналов, 2018

Предлагаемый метод осуществляет нелинейную реконструкцию пространства состояний по временному ряду и позволяет отличить причинность от корреляции во временных рядах

 Sugihara G. et al. Detecting causality in complex ecosystems //Science, 2012

# Прогностическая модель в задаче декодирования

#### Дано

Выборка 
$$- (\mathbf{x}, \mathbf{y})$$
, где  $\mathbf{x} = \{x_1, \dots, x_{N_1}\}$ ,  $\mathbf{y} = \{y_1, \dots, y_{N_2}\}$ .

Требуется построить прогноз ряда  $\mathbf{y}$  на m значений вперед:

$$y_{N_2+1},\ldots,y_{N_2+m}$$

При построении прогноза yчесть влияние ряда x на y.



# Прогноз на один шаг вперед

$$\hat{y}_{t+1} = \mathcal{F}(\hat{\mathbf{w}}, y_t, \dots, y_{t-h+1}, x_t, \dots, x_1),$$
  
 $\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \mathcal{L}(\mathbf{w}, \mathbf{x}, \hat{\mathbf{x}}),$ 

здесь  $\mathcal{L}$  – функция потерь, h —горизонт прогнозирования.

#### Построение фазового пространства

Траекторная матрица временного ряда  ${f x}$ Точки  ${f x}_i \in \mathbb{R}^k$  образуют фазовую траекторию

$$\mathbf{X} = \begin{bmatrix} x_1 & \dots & x_k \\ x_2 & \dots & x_{k+1} \\ \dots & \dots & \dots \\ x_n & \dots & x_{N_1} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_n \end{bmatrix},$$

где k - ожидаемая длина периода,  $n = N_1 - k + 1$ .





# Аттрактор Лоренца

Динамическую систему можно описывать системой дифференциальных уравнений:

$$\begin{cases} \dot{X} = \sigma(Y - X) \\ \dot{Y} = X(r - Z) - Y \\ \dot{Z} = XY - bZ, \end{cases}$$

где  $\sigma$ , r, b — параметры.





# Теорема Такенса о вложениях

Теорема формулирует условия, при которых аттрактор динамической системы можно восстановить по временному ряду лишь одной из наблюдаемых.

Диффеоморфизм  $\phi(x)$  отображает аттрактор **M** в его скрытое представление  $\mathbf{M}_X$ :

$$\phi(x) = (\alpha(x), \, \alpha(f_M(x)), \, \ldots, \, \alpha(f_M^{d-1}(x))),$$

где  $\alpha: \mathbf{M} \to \mathbb{R}$  — функция наблюдений,  $f_M$  задает динамику системы, d — размерность скрытого представления.





# Метод перекрестных сходящихся отображений

Выберем точку фазовой траектории  $\mathbf{x}_0 \in \mathbf{X}$ . Найдем k ближайших соседей  $\mathbf{x}_{t_1}, \dots, \mathbf{x}_{t_k} \in \mathbf{X}$ . Временным индексам  $t_1, \dots, t_k$  соответствуют точки  $\mathbf{y}_{t_1}, \dots, \mathbf{y}_{t_k} \in \mathbf{Y}$ .

# Введем отображение:

$$\varphi: \mathbf{x}_0 \mapsto \widehat{\mathbf{y}}_0 = \sum_{i=1}^k w_i \mathbf{y}_{t_i}, \qquad w_i = \frac{u_i}{\sum\limits_{j=1}^k u_j}, \qquad u_i = \exp(-||\mathbf{x}_0 - \mathbf{x}_{t_i}||).$$



# Зависимость между временными рядами

#### Липшицевость отображения

Временные ряды  ${\bf x}$  и  ${\bf y}$  называются  ${\bf c}$ вязанными, если отображение  $\varphi$  является липшицевым:

$$\rho_{\mathbf{Y}}(\varphi(\mathbf{x}_i), \varphi(\mathbf{x}_j)) \leq C \rho_{\mathbf{X}}(\mathbf{x}_i, \mathbf{x}_j), \quad \mathbf{x}_i, \mathbf{x}_j \in \mathbf{X}.$$

#### Функция близости

Для проверки наличия связанности введём метрическую функцию близости векторов в окрестностях  $U_k(\mathbf{x}_0)$  и  $U_k(\mathbf{y}_0)$ :



$$L(\mathbf{x},\mathbf{y}) = \frac{R(U_k(\mathbf{x}_0))}{R(U_k(\mathbf{y}_0))}, \qquad R(U_k(\mathbf{x}_0)) = \frac{1}{k} \sum_{i=1}^k \rho_{\mathbf{x}}(\mathbf{x}_0, \mathbf{x}_{t_i}).$$

Если  $L(\mathbf{x}, \mathbf{y})$  больше заданного порога, то временной ряд  $\mathbf{y}$  зависит от временного ряда  $\mathbf{x}$ .

# Модель определения фазы

Модель  $m: \varphi \to \mathbf{x}$  ставит в соответствие фазе  $\varphi \in [0, 2\pi)$  точку ожидаемой траектории  $\mathsf{E}(\hat{\mathbf{x}}|\varphi).$ 

#### Регрессия Надарая-Ватсона

$$m(\varphi) = \mathsf{E}(\hat{\vec{x}}|\varphi) = \frac{\sum\limits_{\vec{x} \in \vec{X}} \vec{x'} K\left(\frac{\rho(\hat{\varphi} - \varphi)(\vec{x})}{h}\right)}{\sum\limits_{\vec{x} \in \vec{X}} K\left(\frac{\rho(\hat{\varphi} - \varphi)(\vec{x})}{h}\right)}.$$



#### Функции потерь

$$L_1(arphi) = rac{1-\cos(arphi-arphi')}{2}, \quad L_2(arphi) = \sum_{\parallel \mathbf{x}-\mathbf{x}'\parallel$$

#### Искомое значение фазы

$$\widehat{\varphi}_i = \arg\min_{\varphi} \lambda_1 \cdot L_1(\varphi) + \lambda_2 \cdot L_2(\varphi) + \lambda_3 \cdot L_3(\varphi), \quad \sum_{i=1}^3 \lambda_i = 1.$$

# Снижение размерности фазового пространства

#### Линейная зависимость

 $\mathbf{X} \in \mathbb{R}^{k \times n}, \ \mathbf{Y} \in \mathbb{R}^{k \times r}$  – матрицы фазовых пространств  $\mathbf{x}, \ \mathbf{y}.$  Предполагается линейная зависимость между строками  $\mathbf{X}$  и  $\mathbf{Y}$ :

$$\mathbf{Y}_i = \mathbf{X}_i \cdot \mathbf{\Theta} + \boldsymbol{\varepsilon} \quad \mathbf{Y}_i \in \mathbb{R}^r, \ \mathbf{X}_i \in \mathbb{R}^n, \ i = 1, \dots, k.$$

# Метод частичных наименьших квадратов (PLS)

$$\mathbf{X}_{k \times n} = \mathbf{T}_{k \times l} \cdot \mathbf{P}_{l \times n}^{\mathsf{T}} + \mathbf{F}_{k \times n} = \sum_{j=1}^{r} \mathbf{t}_{j} \cdot \mathbf{p}_{j}^{\mathsf{T}} + \mathbf{F}_{k \times n}$$

$$\mathbf{Y}_{k \times r} = \mathbf{U}_{k \times l} \cdot \mathbf{Q}_{l \times r}^{\mathsf{T}} + \mathbf{E}_{k \times r} = \sum_{j=1}^{l} \mathbf{u}_{j} \cdot \mathbf{q}_{j}^{\mathsf{T}} + \mathbf{E}_{k \times r}$$

# $\mathbf{X} \in \mathbb{R}^{k \times n} \xrightarrow{\mathcal{F}} \mathbf{Y} \in \mathbb{R}^{k \times r}$ $\mathbf{T}, \mathbf{U} \in \mathbb{R}^{k \times \ell}$

#### Ошибка

$$L(\Theta, \mathbf{X}, \mathbf{Y}) = \|\mathbf{Y} - \mathbf{X} \cdot \mathbf{\Theta}\|_{2}^{2}$$
$$\mathbf{\Theta} = \mathbf{W}(\mathbf{P}^{\mathsf{T}}\mathbf{W})^{-1}\mathbf{Q}^{\mathsf{T}}$$

# Вычислительный эксперимент

## Данные





# Ошибка предсказания алгоритма PLS

|    | Датчики                     | Прибор | Тип движения     | MSE   |
|----|-----------------------------|--------|------------------|-------|
| 1  | Акселерометр + гироскоп     | один   | ходьба           | 0.006 |
| 2  | Акселерометр + гироскоп     | один   | медленная ходьба | 0.069 |
| 3  | Акселерометр + акселерометр | разные | ходьба           | 0.997 |
| 4  | Акселерометр + гироскоп     | один   | бег              | 0.027 |
| _5 | Акселерометр + гироспкоп    | один   | быстрая ходьба   | 0.024 |

# Корреляция Пирсона и Спирмена

|   | Прибор | Тип движения     | $E_{p}\pmD_{p}$                    | $E_s \pm D_s$    |
|---|--------|------------------|------------------------------------|------------------|
| 1 | Один   | ходьба           | $0.664 \pm 0.01$                   | $0.663 \pm 0.01$ |
| 2 | Один   | медленная ходьба | $\textbf{0.411} \pm \textbf{0.33}$ | $0.409 \pm 0.28$ |
| 3 | Разные | ходьба           | $0.108 \pm 0.13$                   | $0.077 \pm 0.08$ |
| 4 | Один   | бег              | $0.596 \pm 0.02$                   | $0.581 \pm 0.03$ |
| 5 | Один   | быстрая ходьба   | $\textbf{0.029} \pm \textbf{0.14}$ | $0.017 \pm 0.15$ |

#### Зависимость ошибки MSE от величины сдвига сигналов



#### Выносится на защиту

- Исследовано утверждение о том, что методы канонического корреляционного анализа являются частным случаем метода перекрестных сходящихся отображений.
- Предложен метод обобщения PLS и ССМ.
- Проведен вычислительный эксперимент на данных мобильного устройства.
- Показано, что учет зависимостей между временными рядами улучшает качество прогноза.
- Планируется рассмотреть другие методы канонического корреляционногот анализа.