Souhrn lingebry

s Hladíkem

A jako bonus jsem důkazy přepsal jak vandrák... a bez předpokladů Takže je potřeba si projít ještě ten druhej formálnější soubor

Programování I (NPRG030)

1. ročník Bc. studia MFF UK - Informatika

Autor: Milan Veselý

Dobře no, možná je tohle formátovaní úplně zbytečný xd

Obsah

(Tučně jsou témata u zkoušky)

Soustavy lineárních rovnic (řešení a řešitelnost)	5
Maticová reprezentace	5
Efektivnější zápis -> Matice soustavy	5
Geometrický význam soustavy rovnic	5
Elementární řádkové úpravy	5
Elementární řádkové úpravy zachovávají množinu řešení	5
Gaussova eliminace	5
Odstupňovaný tvar (REF)	5
Hodnost matice	5
Řešení Gaussovy eliminace	5
Výpočetní složitost	6
Gaussova-Jordanova eliminace	6
Redukovaný odstupňovaný tvar	6
Aplikace	7
Základní operace s maticemi a jejich vlastnosti	7
Součin matic:	7
Transpozice	7
Součin vektorů x, y ∈ R ⁿ	7
Vlastnosti součinu	8
Důkazy:	8
Blokové násobení matic	8
Regulární matice	8
Matice elementárních úprav	8
Inverzní matice	9
Výpočet inverzní matice:	9
Ax = b je ekvivalentní s QAx = Qb	10
Inverzní matice geometrie	10

Grupy	
Základní vlastnosti	
Abelova grupa	
Příklady grup:	11
Neabelovské grupy:	11
Negrupy:	11
Vlastnosti prvků v grupě G:	11
Podgrupa	11
Permutace	12
Transpozice	12
Rozložení permutace na složení transpozic	13
Těleso	14
Základní vlastnosti:	14
Konečná tělesa	14
Charakteristika tělesa	14
Malá Fermatova věta	15
Vektorové prostory a podprostory	16
Motivace:	16
Základní pojmy	16
Základní vlastnosti:	16
Podprostory	16
Generátory prostoru	16
Lineární kombinace	17
Lineární nezávislost	17
Báze	18
Souřadnice	18
Dimenze	10

Maticové prostory	20
Řádkový a sloupcový prostor matice	20
Jádro matice	20
Lineární zobrazení	22
Základní vlastnosti	22
Jádro	22
Druhy zobrazení	23
Prosté	23
Reprezentace zobrazení	23
Matice lineárního zobrazení	24
Složené a inverzní lineární zobrazení a jejich matice	24
Složené zobrazení	
Isomorfismus	25
Vlastnosti	25
Prostor lineárních zobrazení	26
Afinní prostory	27
Afinní nezávislost	28
Souřadnice v afinním podprostoru, vztah podprostorů,	28
Afinní zobrazení	28
Úplný vzor	28
Přehled témat a co k nim?	29

Pomocné odkazy

Milan Hladík: https://kam.mff.cuni.cz/~hladik/LA/

Videa: https://kam.mff.cuni.cz/~hladik/LA/Video-la1-ZS2021/

Skripta: https://www.ms.mff.cuni.cz/~sejkoraji/sbirka/zalohy/skripta-la.pdf
Vzorové cvičení: https://kam.mff.cuni.cz/~hladik/LA/cviceni-la-vzor-pub.pdf
Naše cvičení: https://kam.mff.cuni.cz/~hladik/LA/cv-la-slides-zoom-zs2021.pdf

Naše úkoly: https://kam.mff.cuni.cz/~hladik/LA/dcv LA ZS2021.pdf

Moje řešení: https://bit.ly/3hGbdU4

Videa z přednášek: https://kam.mff.cuni.cz/~hladik/LA/Video-la1-ZS2021/

Pozn. na úvod: všechny důkazy jsem psal co nejkratší a chybí jim spoustu detailů

Soustavy lineárních rovnic (řešení a řešitelnost)

Maticová reprezentace

Matice – obdélníková tabulka reálných čísel

(m × n, m je # řádek, n je # sloupec, čtvercová matice, ...)

Vektor (matice n × 1) - může být ale také řádkový vektor

Notace:

A_{i*} je i-tý řádek, ...

Soustava lineárních rovnic

Jak vypadá... že má koeficienty a neznámé...

Řešení: vektor, který vyhovuje všem rovnicím

Efektivnější zápis -> Matice soustavy

Rozšířená matice soustavy (není nutné zobrazovat svislou čáru)

Geometrický význam soustavy rovnic

Za předpokladů... (0,0) popisují přímku

Řešení je průnik přímek, rovin

Elementární řádkové úpravy

Vvnásobení α

Přičtení α násobku

Výměna

Dalo by se to zjednodušit

Elementární řádkové úpravy zachovávají množinu řešení

Symetrie, protože každá úprava má svoji inverzi...

Gaussova eliminace

Dopředná fáze a zpětná substituce

Odstupňovaný tvar (REF)

Pozice prvního nenulového prvku v řádku je ostře menší v následujících řádcích Pozice nenulových prvků jsou pivoty Pokud mají pivot, tak jsou sloupce bázické

Hodnost matice je počet nenulových řádků v REF

Řešení Gaussovy eliminace

Rozšířenou matici převedeme na REF a mohou nastat následující situace:

Soustava nemá řešení

Je-li poslední sloupec bázický

```
rank(a) < rank (A | B)

Důkaz : r-tý řádek má tvar 0 = b

Soustava má řešení (rank(a) = rank (A | B))

Jedno

Počet proměnných = počtu pivotů
-> Zpětná substituce

Důkaz : ukázka REF tvaru a zpětné substituce

Nekonečně mnoho

Alespoň jeden další nebázický

Parametrický popis

Množiny řešení...

Nadbytečné rovnice jsou lineárně závislé

Ale ztratíme informaci které to byly

rank (A | B) udává počet významných rovnic v soustavě
```

Výpočetní složitost

V prvním cyklu n^2 součinů a odečítání -> Vzoreček sumy n^2 Celkem $\frac{2}{3}n^3$

Gaussova-Jordanova eliminace

Druhý algoritmus řešení soustavy

Místo REF používá redukovaný odstupňovaný tvar (RREF)

Redukovaný odstupňovaný tvar

Pokud je v REF a navíc na pozici pivotů jsou jedničky a nad každým pivotem jsou nuly Řešení G-J

Soustava nemá řešení

Pokud je poslední sloupec bázický

Soustava má řešení

Iedno

r = n a tedy tvar $(x_1, x_2, ..., x_n) = (b_1, b_2, ..., b_n)$ Důkaz : přepisem

Nekonečně mnoho

r < n

Složitost n³

Jednoznačnost RREF

Sporem, máme dvě různé RREF A_1 a A_2 . Označme i první sloupec ve kterém se matice liší. Odstraňme z matic A, A_1 a A_2 všechny sloupce za i a všechny nebázické před ním. Výsledné matice jsou stále RREF tvary základní matice. Rozdíl je pouze v posledních sloupcích a pokud interpretujeme matici jako soustavu lin. rovnic tak vzniká spor různých řešení.

Základní operace s maticemi a jejich vlastnosti.

Rovnost: stejné rozměry a pro všechny $A_{ij} = B_{ij}$

Součet: $(A+B)_{ij} = A_{ij} + B_{ij}$ Násobek: $(\alpha A)_{ij} = \alpha A_{ij}$

Nulová matice 0, jednotková matice In, jednotkový vektor ei ...

Vlastnosti:

Komutativita Asociativita A + 0 = A A - A = 0 $\alpha(\beta A) = (\alpha \beta)A$ 1A = A $\alpha(A + B) = \alpha A + \alpha B$ $(\alpha + \beta)A = \alpha A + \beta A$

Trivlní důkazy z definice a vlastnotí reálných čísel

Součin matic:

A má m×p a B má p×n První řádek, druhá sloupec Formálně: $(AB)_{ij} = \sum_{i=1}^{p} A_{ij} B_{ij}$

Vlastnosti součinu

Asociativita Distributivita zleva a zprava $\alpha(AB) = (\alpha A)B = A(\alpha B)$

0A = A0 = 0 $I_mA = AI_n = A (A \text{ je m} \times n)$

Důkazy:

triviálně, např. Asociativita – matice A, B, C (m×p, p×r, r×n)

1. (AB)C i A(BC) mají stejný tvar

2. prvku jsou shodné, protože rozepsání sum

Transpozice

 $(A^T)_{ij} = A_{ji}$ a typ m×n -> n×m

"překlopení dle hlavní diagonály"

(Použití na zapisování vektorů do řádků(

Vlastnosti:

$$(A^{T})^{T} = A$$
 $(A + B)^{T} = A^{T} + B^{T}$ $(\alpha A)^{T} = \alpha A^{T}$ $(AB)^{T} = B^{T}A^{T}$

Důkazy:

opět triviálně z definice, prvně tvar a pak prvky

Umožňuje důkaz symetrické matice

(Uzavřenost na součet, ale ne na součin)

matice ATA je mimochodem vždy symetrická

Další speciální matice jsou diagonální a horní nebo dolní trojúhelníková

Součin vektorů x, y ∈ Rⁿ

 x^Ty je takzvaný skalární součin – matice 1x1 neboli také $\sqrt{x^Tx}$ nebo $\sqrt{\sum_{i=1}^n x_i^2}$ xy^T je vnější součin – matice řádu n např. $e_ie_i^T$ je matice s jedničkou na (i,j)

hodnost nula nebo jedna – všechny řádky násobkem vektoru y^T tvrzení platí i opačně

Vlastnosti součinu

$$A_{ej} = A_{*j}$$
 $e_{i}^{T}A = A_{i*}$ $(AB)_{*j} = AB_{*j}$ $(AB)_{i*} = A_{i*}B$
 $Ax = \sum_{j=1}^{n} x_{j} A_{*j}$ $y^{T}A = \sum_{i=1}^{m} y_{i} A_{i*}$

Důkazy:

- 1. $Ae_j = \sum_{k=1}^n A_{ik}(e_j)_k = \sum_{k!=j}^n A_{ik} 0_j + a_{ij}$ (na přednášce pouze schéma)
- 3. se akorát vynásobí jednotkovým vektorem
- 5. opět pouze schéma, říká to ale, že sloupce matice se vynásobí $x_1, x_2, ...$
- Z 5. nám ale vyplývá, že soustavu rovnic můžeme zapsat jako Ax = b na to se lze dívat řádkově i sloupcově

řádkově to jsou rovnice soustavy a tedy nadroviny sloupcově to je vyjádření b pomocí sloupečků matice

Matice zobrazení – později

(Násobení znamená skládat zobrazení)

Blokové násobení matic

Rozdělení matice na podmatice -> některé operace jsou snazší

Regulární matice

Taková čtvercová matice, která v reprezentaci Ax = b má jediné řešení x = 0 V opačném případě je singulární

Ekvivalence:

A je regulární $RREF(A) = I_n$ rank(A) = n

Důkaz plyne z rozboru G-J eliminace:

Soustava (A | 0) má jediné řešení, když RREF tvar matice (A | 0) je (In | 0)

Navíc je ekvivalentní, že pro každé (nějaké) b \in R n má soustava Ax = b jediné řešení Opět plyne z rozboru

Vlastnosti:

součin regularitu zachová, součet nemusí (I – I = 0) $D\mathring{u}kaz$: ABx = 0 -> Ay a z regularity y = 0 -> Bx = 0 A pokud je A nebo B singulární Ay = 0 a buď Bx = 0 a x !=0 a nebo y !=0

Matice elementárních úprav

A se dá vyjádřit jako EA a E je regulární

 $EI_n = E$

To, že to ale opravdu funguje se musí dokázat pro každou operaci zvlášť

Reprezentace (násobení zleva):

vynásobení i-tého řádku je jednotková matice, ale místo i-té jedničky má α

přičtení je jednotková matice ale na i-tém sloupci j-tém řádku má 1 analogicky výměna např. ($^{0\ 1}_{1\ 0}$)

Je regulární, protože má inverzní operaci zpět na jednotkovou

Tvrzení RREF(A) = QA (pro A je m×n a Q je regulární a m×m)

Důkaz přes skládání matice úprav E_k...E₁A

Tvrzení každá regulární matice se dá vyjádřit součinem konečně mnoho elementárních matic *Důkaz* Pokud k úpravami převedu A na jednotkovou, tak obrácené úpravy

Inverzní matice

Motivace: A + B + (-B) = A, ale co při součinu?

 $ABB^{-1} = A \text{ a tedy } BB^{-1} = I$

Inverzní k 0_n evidentně neexistuje -> k čemu ano? - K regulárním

Věta o tom, že regulární má jednoznačný inverz a naopak má-li inverz, tak je regulární

A-1 je inverzní maticí k A, pokud splňuje $AA^{-1} = A^{-1}A = I_n$

Konstrukční Důkaz:

Z regularity Ax = e_j má jediné řešení pro každé j po n Matice A⁻¹ pak bude mít jako sloupce vektory řešení

Rovnost AA-1 = I se ukáže po sloupcích

$$(AA^{-1})_{*i} = A(A^{-1})_{*i} = Ax_i = e_i = I_{*i}$$

Druhá rovnost potřebuje "trik"

$$A(A^{-1}A - I) = AA^{-1}A - A = IA - A = 0$$

Z regularity A pak $(A^{-1}A - I) = 0...$

Důkaz jednoznačnosti:

$$AB = BA = I$$

$$B = BI = B(AA^{-1}) = (BA) A^{-1} = IA^{-1} = A^{-1}$$

Důkaz regularity inverze:

$$Ax = 0$$
 a následně $x = Ix = (A^{-1}A)x = A^{-1}(Ax) = A^{-1}0 = 0$

Na základě toho můžeme snadno dokázat, že je-li A regulární, pak A^T je regulární

 $D\mathring{u}kaz$: je regulární, tak má inverz a tedy $AA^{-1} = A^{-1}A = I_n$ můžeme celou transponovat. To znamená, že A^T má taky inverz

 $D\mathring{u}kaz$ o tom, že stačí jedna rovnost (Je-li BA = I_n pak A, B jsou regulární a k sobě inverzní):

Regularita vyplývá z regularity I_n a tedy víme, že A, B mají inverzi

Následně B =
$$BI_n$$
 = $B(AA^{-1})$ = $(BA)A^{-1}$ = I_nA^{-1} = A^{-1} a analogicky $A...$

Výpočet inverzní matice:

Je-li RREF (A | I_n) = (I_n | B) pak B je inverze, jinak je A singulární Proč?

$$(I_n | B) = Q(A | I_n) -> I_n = QA -> Q = A^{-1} \text{ jinak RREF A } != I_n ...$$

Tvrzení:

$$(A^{-1})^{-1} = A$$
 $(A^{-1})^{T} = (A^{T})^{-1}$ $(\alpha A)^{-1} = \frac{1}{\alpha} A^{-1}$, $kdy\check{z} \alpha! = 0$ $(AB)^{-1} = B^{-1}A^{-1}$

Důkazy:

1. $A^{-1}A = I_n$ 2. transpozice definice inverzní matice 3. $\alpha A \frac{1}{\alpha} A^{-1} = \frac{\alpha}{\alpha} I_n$ 4. $AB(AB)^{-1}$ Také platí, že pro Ax = b je $x = A^{-1}b$, protože $x = Ix = A^{-1}Ax = A^{-1}b$ (to se používá spíš opačně)

Ax = b je ekvivalentní s QAx = Qb

L a P se rovnají a tedy po násobení Q zůstane množina stejná nebo se zvětší (Q = 0) Pokud je Q regulární, tak zůstane množina stejná, zpět můžeme přejít přes Q^{-1} Lze dokázat i přes matice el. úprav

Inverzní matice geometrie

Zobrazení vynásobením regulární maticí je bijekce a má svoji inverzi pozn. skládání bijekcí je opět bijekce (násobení regulárních matic) Geometricky lze dokázat i inverzi součinu/skládání matic

Grupy

(bez permutací je to jedno téma)

Grupa je abstraktní struktura s binární operací s určitými vlastnostmi

Základní vlastnosti

Buď $\circ: G^2 \to G$ binární operace na množině G. Pak grupa je dvojice (G, \circ) splňující:

Asociativitu

Existenci neutrálního prvku

Existenci inverzního prvku

Abelova grupa

Navíc také splňuje komutativitu

Příklady grup: (Z, +), (Q, +), ...

 $(R^{m \times n}, +)$

Konečná grupa $(Z_n, +)$ pozn. používá se modulo sčítání

 $(Q \setminus \{0\}, \cdot), \dots$ polynomy

Neabelovské grupy: Násobení regulárních matic

Zobrazení na množině se skládáním, např. rotace v Rn

Negrupy: (N, +) – inverze , (Z, -) – asociativita, $(R \setminus \{0\}, :)$ – asociativita

Vlastnosti prvků v grupě G:

- 1. Krácení $a \circ c = b \circ c$ implikuje a = b
- 2. Jednoznačnost e (neutrální prvek)
- 3. Jednoznačnost inverzního prvku pro každý prvek
- 4. Rovnice $a \circ x = b$ má právě jedno řešení pro každé a, b z G
- 5. Inverze inverzního prvku je původní prvek
- 6. $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$

Důkaz:

- 1. Přidat inverzi c zprava
- 2. Spor $e_1 = e_1 \circ e_2 = e_2$
- 3. Existují-li dvě různé inverze $a\circ a_1=e=a\circ a_2$ -> krácení
- 4. Vynásobit zleva a^{-1}

Podgrupa

Stejně definovaná operace, existence inverzního a neutrálního prvku a uzavřenost Každá grupa má dvě triviální

Permutace

Příklad grup

Permutace je vzájemně jednoznačné zobrazení

Značení

Tabulkou

$$p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 6 & 4 \end{pmatrix}$$

Grafem

Rozložením na cykly

$$p = (1, 2)(3)(4, 5, 6)$$

Inverzní permutace

Taková permutace pro kterou platí $p^{-1}(i) = j$ pokud p(j) = i

Skládání permutací

 $(p\circ q)(i)=p(q(i))$ pozn. prvně se provádí permutace na konci Skládání operací je asociativní, ale není komutativní

Transpozice

Příklad jednoduché permutace, kde se prohazují dva prvky Jednoduší je už jenom identita

Znaménko permutace

$$sgn(p) = (-1)^{n-k}$$

$$sgn(id) = 1, sgn((i,j)) = -1$$

Sudé (1) a liché permutace (-1)

Věta:
$$sng(p) = -sgn(t \circ p) = -sgn(p \circ t)$$
 pro $t = (i, j)$

Důkaz:

Permutace p se skládá z několika cyklů a my rozlišíme dva případy Stejný cyklus a odlišný cyklus

Stejný cyklus se roztrhne a odlišené se spojí (změna znaménka)

Rozložení permutace na složení transpozic

Můžeme rozložit libovolný cyklus stylem

$$(u_1, u_2, ..., u_r) = (u_1, u_2) \circ (u_2, u_3) \circ ... \circ (u_{r-1}, u_r)$$

Není ale jednoznačný (pouze parita zůstává)

Z toho platí, že $sgn(p) = (-1)^r$, kde r je počet transpozic

Zároveň z toho platí, že $sgn(p \circ q) = sgn(p) \cdot sng(q)$

Dohromady jdou rozložit na $r_1 + r_2$ *transpozic*

Věta $sgn(p) = sgn(p^{-1})$

Dokážeme z id, kterou rozložíme na $p \circ p^{-1}$

Znaménko se dá vyjádřit i přes počet inverzí

Inverze je uspořádaná dvojice i<j a p(i)>p(j)

Platí, že
$$sgn(p) = -1^{I(p)}$$

Symetrická grupa

Množina permutací s operací skládání tvoří nekomutativní grupu

Tzv. symetrickou grupu

Dá se ukázat, že každá grupa je isomorfní nějaké symetrické podgrupě

Těleso

Množina T se dvěma komutativními operacemi + a · splňující

 $(\mathbb{T}, +)$ je Abelova grupa, neutrální prvek 0 a inverze a je – a

 $(\mathbb{T} \{0\}, \cdot)$ je Abelova grupa, neutrální prvek 1 a inverze k a je a^{-1}

$$\forall a, b, c \in \mathbb{T}: a \cdot (b+c) = a \cdot b + b \cdot c$$
 (distributivita)

Komutativitu operací jsme explicitně vyžadovali proto, že druhá grupa nic neříká o 0

Mohou ale existovat i nekomutativní tělesa

Příklady těles \mathbb{Q} , \mathbb{R} nebo \mathbb{C} (nebo také *kvaterniony*)

Základní vlastnosti:

$$0a = 0$$
 $ab = 0 \Rightarrow a = 0 \text{ nebo } b = 0$ $-a = (-1)a$

Důkazy:

Přes 0a = (0 + 0)a a přičtu -0a

Buď je a nula a nebo existuje a^{-1} a tím to vynásobíme zleva

$$(1-1)a=0$$

Konečná tělesa

Modulo operace

 \mathbb{Z}_n (to jest $\{0,1,\ldots,n-1\}$) je těleso právě tehdy, když n je prvočíslo

Pokud každý prvek (modulo) vynásobíme nenulovým prvkem $a\in\mathbb{Z}_n$ dostaneme opět všechny prvky \mathbb{Z}_n a to právě jednou

Důkaz:

Předpoklad $ak = al \ pro \ k, l \in \mathbb{Z}_n, k \neq l \ a \ tedy \ a \ nebo \ (k-l)$ jsou 0

To ale nastat nemůže

 \mathbb{Z}_n je těleso právě tehdy, když n je prvočíslo

Důkaz:

Je-li n složené, pak n = pq, kde 1 < p, q < n

Kdyby \mathbb{Z}_n těleso pak pq = 0 implikuje, že buď p = 0 nebo q = 0

Pro prvočíslo ověříme všechny axiomy

Hledání inverze prvku – Eukleidův algoritmus ax + bp = 1

Konečná tělesa mohou mít i velikost p^n – Galoisova tělesa

Prvky jsou polynomy stupně nejvýše n – 1 s koeficienty \mathbb{Z}_p

Sčítání je normální

Násobení je definováno jako normální modulo ireducibilní polynom n

Charakteristika tělesa

Nejmenší $n \in \mathbb{N}$, že součet n jedniček je 0

Charakteristika je buď nula nebo prvočíslo

$$D$$
ůkaz přes $n = pq$

Pokud charakteristika není 2 můžeme zavést průměr

Malá Fermatova věta

Buď p prvočíslo a buď $0 \neq a \in \mathbb{Z}_p$. Pak $a^{p-1} = 1$ v \mathbb{Z}_p Důkaz

$$\begin{array}{l} \{0,1,\ldots,p-1\}=\{0a,1a,\ldots,(p-1)a\} \\ \text{Bez nul tedy } 1\cdot 2\cdot\ldots\cdot(p-1)=\ 1a\cdot\ 2a\cdot\ldots\cdot(p-1)a \\ \text{A krácením dostaneme } 1=a\cdot\ldots\cdot a=a^{p-1} \end{array}$$

Aplikace např samoopravné kódy – generující matice v $\mathbb{Z}_2^{3\times 4}$

Vektorové prostory a podprostory

Motivace: zobecnění aritmetického vektoru \mathbb{R}^n

Základní pojmy

Reprezentace jako vektor nebo bod

Sčítání, násobení číslem, ...

Vektorový prostor nad tělesem \mathbb{T} rozumíme množinu s vektorovým součtem $+: V^2 \to V$ a násobením vektoru skalárem $\mathbb{T} \times V \to V$, který pro každé $\alpha, \beta \in \mathbb{T}$ a $u, v \in V$:

$$\alpha(\beta v) = (\alpha \beta) v$$

$$1v = v$$

$$(\alpha + \beta)v = \alpha v + \beta v$$

$$(u+v)\alpha = u\alpha + v\alpha$$

Příklady: aritmetický prostor \mathbb{R}^n nad \mathbb{R} , prostor matic, prostor polynomů, funkcí, ...

Základní vlastnosti:

$$0v = o$$

$$\alpha o = o$$

$$\alpha v = o \Rightarrow a = 0 \text{ nebo } v = 0$$
 $-1v = -v$

$$-1v = -v$$

Důkazy analogicky jako u tělesa

Podprostory

Musí platit existence nulového prvku, uzavřenost na sčítání a součin se skalárem Ostatní platí automaticky, protože je to podmnožina

Příklady: dva triviální podprostory, v \mathbb{R}^2 to jsou přímky přes počátek, ...

Musí být nad stejným tělesem BTW

Platí: jsou-li $U, V \subseteq W$ a $U \subseteq V$ pak $U \subseteq V$

tranzitivita $U \subseteq V \subseteq W \Rightarrow U \subseteq W$

Průnik podprostorů je podprostor, sjednocení ale obecně ne

Díky poslednímu tvrzení můžeme definovat **lineární obal**

Buď V vektorový obal na \mathbb{T} a $W \subseteq V$ pak lineární obal span(W) je průnik všech podprostorů V obsahující W neboli $span(W) = \bigcap_{U:W\subseteq U} \bigcup_{v\in V} U$

Je to tedy nejmenší prostor obsahující W

(Lineární obal bodu je přímka, dvou nezávislých bodů rovina, ...)

Generátory prostoru jsou prvky množiny jejíž *span* tvoří daný prostor

Zavádí se i pojem konečně generovaný prostor

Lineární kombinace

Sčítáním vektorů a nebo násobením můžeme vytvořit lineární kombinace

Lineární kombinace je výraz typu $\sum_{i=1}^{n} a_i v_i$, kde $a_i \in \mathbb{T}$ a $v \in V$ (výsledek je vektor)

Nyní uvažujeme pouze lineární kombinace konečně mnoho vektorů

Pomocí lineárních kombinací můžeme vygenerovat celý lineární obal množiny vektorů

Neboli Buď V vektorový prostor nad \mathbb{T} a mějmě $v_1, v_2, ..., v_n \in V$. Pak

$$span\{v_1, v_2, ..., v_n\} = \{\sum_{i=1}^n a_i v_i ; a_1, a_2, ..., a_n \in \mathbb{T}\}$$

Důkaz:

Inkluze ⊇ musí být uzavřený na násobky a součty a tedy...

Inkluze ⊆ ukáže se tak, že obsahuje každý vektor, nulový vektor a je uzavřený na součin a součet

$$u + u' = \sum_{i=1}^{n} \beta_i v_i + \sum_{i=1}^{n} \beta'_i v_i = \sum_{i=1}^{n} (\beta + \beta'_i) v_i$$
 a násobky analogicky

Umožňuje nám to i jiný pohled na Ax = b

Výraz $Ax = \sum_{i} x_{i} A_{*i}$ je vlastně lineární kombinace sloupců

Řešení b tedy existuje, když b náleží do sloupcového prostoru A

Dokonce i pohled na AB

$$\sum_{k=1}^{p} A_{*k} B_{k*}$$

Lineární nezávislost

Znamená, že $\sum_{i=1}^n a_i v_i = o$ nastane pouze pro $\alpha_1 = \alpha_2 = \cdots = 0$

Lin. nezávislost nekonečné množiny je když každá její podmnožina je lin. nezávislá Zjišťování nezávislosti přes matici...

Nezávislost a regulární matice spolu souvisí

Její sloupce jsou lineárně nezávislé

Množina vektorů jsou lineárně závislé, pokud jeden z nich můžeme vyjádřit kombinací *Důkaz*

 \Rightarrow Jsou-li vektory závislé, tak $\sum_{i=1}^n \beta_i v_i = o$ a vezmeme-li $\beta_k \neq 0$, tak

$$\beta_k v_k = \sum_{i \neq k}^n \beta_i v_i$$

 \dots a z toho už snadno vyjádříme, že v_k je kombinací

$$\leftarrow v_k - \textstyle\sum_{i \neq k}^n \alpha_i v_i = o$$

Důsledek: vektory jsou závislé, právě tehdy když se odebráním některého span nezmenší

$$span(v_1, ..., v_n) = span(v_1, ..., v_{k-1}, v_{k+1}, ..., v_n)$$

Důkaz: Jsou-li vektory závislé, existuje v_k , které můžeme vyjádřit $v_k = \sum_{i \neq k}^n \alpha_i v_i$

Inkluze \supseteq platí triviálně. Libovolný vektor $u \in span\{v_1, ..., v_n\}$ se dá vyjádřit:

$$u = \sum_{i=1}^{n} \beta_i v_i = \beta_k v_k + \sum_{i \neq k} \beta_i v_i = \beta_k \sum_{i \neq k} \alpha_i v_i + \sum_{i \neq k} \beta_i v_i = \sum_{i \neq k}^{n} (\beta_k \alpha_i + \beta_i) v_i$$

Je to tedy opět lineární kombinace.

Obrácená implikace je již důsledek předchozí věty.

Báze

Jakýkoliv lineárně nezávislý systém generátorů (uspořádaná množina)

Kanonická báze v \mathbb{R}^n například e_1, \dots, e_n

Nechť $v_1, \dots v_n$ je báze prostoru V. Pak pro každé $u \in V$ existují jednoznačné

koeficitny lineární kombinace

Důkaz: Každé u se dá vyjádřit jako lineární kombinace, protože báze

Jednoznačnost se ukáže sporem – vyjádříme dvě lineární kombinace a jejích rozdíl o

Z lineární nezávislosti se ale všechny prvky rovnají

Souřadnice

Nechť B je báze a u vektor v prostoru V s vyjádřením $u = \sum_{i=1}^{n} \alpha_i v_i$ pak souřadnice vektoru jsou koeficienty α_i a vektor souřadnic značíme $[u]_B$: $p = (\alpha_1, ..., \alpha_n)^T$

Pro každé $v \in \mathbb{R}^n$ je $[v]_{kan} = v$, u polynomů to jsou koeficienty, ...

Pozorování

Ze systému generátorů V dostaneme vektor $u \in V$ alespoň jedním způsobem

Z lineárně nezávislých vektorů ve V dostaneme $u \in V$ nejvýše jedním způsobem

Z báze V dostaneme $u \in V$ právě jedním způsobem

Pro bázi *B* prostoru *V* nad T platí

$$[u+v]_B = [u] + [v]_B \qquad [\alpha v]_B = \alpha [v]_B$$

Důkaz: u a v vyjádříme jako lineární kombinaci a sumy sečteme

Násobek analogicky pozn. ještě to musíme rozepsat

Zobecnění: souřadnice lineární kombinace jsou rovny lineární kombinaci souřadnic Každý vektorový prostor má bázi

Důkaz: Máme systém generátorů a buď nějaký vektor odstraníme nebo už to je báze Navíc báze jednoho prostoru jsou stejně velké → pojem dimenze

Lemma o výměně: V systému generátorů, kterým můžu vyjádřit vektor x můžu libovolné ys nenulovým koeficientem v kombinaci nahradit vektorem x

$$D\mathring{u}kaz: x = \sum_{k=1}^{n} \alpha_k y_k \to y_k = \frac{1}{\alpha_k} (x - \sum_{i \neq k} \alpha_i y_i)$$
 a potom libovolný vektor vyjádříme jako:

$$\textstyle \sum_{k=1}^n \beta_i y_i = \beta_k y_k + \sum_{i \neq k} \beta_i y_i = \frac{\beta_k}{\alpha_k} (x - \sum_{i \neq k} \alpha_i y_i) + \sum_{i \neq k} \beta_i y_i = \frac{\beta_k}{\alpha_k} x + \sum_{i \neq k} (\beta_i - \frac{\beta_k}{\alpha_k} \alpha_i) \, y_k$$

Steinitzova věta o výměně:

Buď x_1,\dots,x_m lineárně nezávislý systém v prostoru V a y_1,\dots,y_n systém generátorů V Pak platí, že $m \leq n$

Existují různé indexy k_1, \dots, k_{n-m} takové, že $x_1, \dots, x_m, y_{k_1}, \dots, y_{k_{n-m}}$ generují V

 $D\mathring{u}kaz$ matematickou indukcí podle m. Triviálně m=0, předpoklad: platí pro m-1 Vektory x_1,\ldots,x_{m-1} jsou lineárně nezávislé a podle indukčního předpokladu existují indexy $\ell_1,\ldots,\ell_{n-m+1}$, že vektory $x_1,\ldots,y_{\ell_1},\ldots,y_{\ell_{n-m+1}}$ generují V

Kdyby m-1=n, pak ale x_1,\dots,x_{m-1} generují V a tedy $x_m\in span\{x_1,\dots,x_{m-1}\}\to \bot$ Tím je dokázána první část $m\le n$

Protože $x_1,\ldots,x_{m-1},y_{k_1},\ldots,y_{k_{n-m+1}}$ generují V, tak lze vyjádřit x_m jako kombinaci $x_m = \sum_{i=1}^{m-1} \alpha_i x_i + \sum_{j=1}^{n-m+1} \beta_j y_{\ell_j} \text{ a nějaká nenulová } \beta_k \text{ a } y_k \text{ vyměním za } x_m$

Všechny báze konečného prostoru jsou stejně velké

 $D\mathring{u}kaz$ máme dvě báze a na ně dvakrát použijeme Steinitzovu větu $\rightarrow m \leq n$ a $m \geq n$

Dimenze

dim konečně generovaného prostoru je velikost nějaké báze, nekonečného ∞

- 1. m vektorů z V jsou lineárně nezávislé, pak $m \le \dim V$ (pokud se rovnají tak báze)
- 2. pro *n* generátorů *V* platí $n \ge dimV$ (opět je to báze pokud se rovnají)
 - Důkaz 1. Podle St. věty můžeme doplnit o d-m generátorů
 - 2. Analogicky podle Steintzovy věty $n \ge d$.

když n=d, tak musí být báze, protože jinak $d \le n-1 \to \bot$

Každý lineárně nezávislý systém z V lze rozšířit na bázi V – St. věta a $d = \dim V$ Je-li W podprostorem V, tak dim $W \le \dim V$ (rovnost $\to W = V$)

Důkaz: vytvoříme prázdnou množinu M a pokud span(M)=W, tak hotovo Jinak existuje vektor $v\in W\backslash span(M)$, přidáme ho do množiny M Protože M je lineárně nezávislá, tak je velikost shora omezena dim V

Spojení podprostorů $U + V = \{u + v, u \in U, v \in V\}$

$$U + V = span(U \cup V)$$

 $D\mathring{u}kaz$: inkluze \subseteq je triviální, protože $span(U \cup V)$ je uzavřený na součet Pro druhou stačí ukázat, že U + V obsahuje U, V a je podprostorem Vyjádříme vektory a ukážeme uzavřenost

Pro spojení platí $\dim(U+V) + \dim(U \cap V) = \dim U + \dim V$

Důkaz: $U \cup V$ je podprostor W a má tedy konečnou bázi z_1, \dots, z_p

Tu můžeme rozšířit na bázi U $z_1, \dots, z_p, x_1, \dots, x_m$ a analogicky V

Ukážeme, že $z_1,\dots,z_p,x_1,\dots,x_m,y_1,\dots,y_n$ tvoří bázi $U+V^1$

Direktní součet je pokud jsou podprostory disjunktní

¹ Já to neukážu, protože mi stačí jeden důkaz u tématu xd, ale je to na straně 90

Maticové prostory

Řádkový prostor matice

$$S(A) := span\{A_{*1}, \dots, A_{*n}\}$$

Sloupcový prostor matice

$$\mathcal{R}(A) := span\{A_{1*}, ..., A_{m*}\}$$
 neboli $\mathcal{S}(A)^T$

Jádro matice

$$Ker(A) := \{x \in \mathbb{T}^n; Ax = o\}$$

Je to podprostor \mathbb{T}^n – splňuje to, že obsahuje nulový vektor (Ao = o) a je uzavřený

Tvrzení $S(A) = \{Ax; x \in \mathbb{T}^n\}$ a obdobně pro $\mathcal{R}(A)$ dokážeme tím, že Ax představuje lin. kombinaci Každý vektorový podprostor lze reprezentovat maticově

Stačí když generátory prostoru dáme do sloupců a řádků matice (jádro později)

Geometrický pohled na maticové prostory

Můžeme uvažovat zobrazení $x \mapsto Ax...$

Změna při násobení maticí zleva

$$\mathcal{R}(QA)$$
 je podprostor $\mathcal{R}(A)$

Pokud
$$A_{*k} = \sum_{j \neq k} a_j A_{*j}$$
 pro nějaké... pak $(QA)_{*k} = \sum_{j \neq k} a_j (QA)_{*j}$

$$D\mathring{u}kaz$$
: 1. pro každé $x \in \mathcal{R}(QA)$ existuje $y \in \mathbb{T}^p$, že $x = (QA)^T y = A^T(Q^T y) \in \mathcal{R}(A)$

2.
$$(QA)_{*k} = QA_{*k} = Q(\sum ...) = \sum_{j \neq k} \alpha_j QA_{*j}$$

Sloupcové prostory porovnatelné nejsou , ale zachovává se lineární závislost a koeficienty

Porovnatelné nejsou kvůli různým prostorům

Dá se to nahlídnout tak, že se všechny sloupce vynásobí maticí Q

Silnější tvrzení pokud násobíme regulární maticí zleva

$$\mathcal{R}(QA) = \mathcal{R}(A)$$

$$A_{*k} = \sum_{j \neq k} a_j A_{*j}$$
 platí právě tehdy, když $(QA)_{*k} = \sum_{j \neq k} a_j (QA)_{*j}$

Důkaz: můžeme to ještě vynásobit Q^{-1}

Implikace zleva doprava už máme a zprava doleva je $Q^{-1}(QA)$

Sloupce zůstanou lineárně nezávislé

Pro RREF(A)

Nenulové řádky
$$A^R$$
 tvoří bázi $\mathcal{R}(A)$ a sloupce A_{*p_1} , ... , A_{*p_r} tvoří bázi $\mathcal{S}(A)$

$$\dim \mathcal{R}(A) = \dim \mathcal{S}(A) = r$$

$$D\mathring{u}kaz$$
: 1. $\mathcal{R}(A) = \mathcal{R}(QA) = \mathcal{R}(A^R)$

2. Sloupce jsou určitě lineárně nezávislé (přímo kanonické) a generují $\mathcal{S}(A^R)$

$$A_{*j}^R = \sum_{i=1}^m a_{ij}^R e_i = \sum_{i=1}^r a_{ij}^R e_i = \sum_{i=1}^r a_{ij}^R A_{*p_i}^R$$
 TODO

3. Hodnota dim $\mathcal{R}(A)$ je velikost báze $\mathcal{R}(A)$ a tedy r, obdobně $\mathcal{S}(A)$

Důsledek: $rank(A) = \dim \mathcal{R}(A) = \dim \mathcal{S}(A) = \dim \mathcal{R}(A^T) = rank(A^T)$

Frobeinova věta: Uvažujme Ax = b. Řešitelnost znamená, že vektor b se dá vyjádřit jako kombinace sloupců matice A. Soustava je tedy řešitelná právě tehdy, když $b \in \mathcal{S}(A)$ a to odpovídá $\mathcal{S}(A) = \mathcal{S}(A|b)$

Pro každou matici platí: $\dim Ker(A) + rank(A) = n$

Důkaz: buď dim Ker(A) = k, báze ker s vektory $v_1, ..., v_k$ a tedy $Av_k = o$

Rozšiřme vektory na bázi celého \mathbb{T}^n . Stačí ukázat, že Av_{k+1},\dots,Av_n je báze $\mathcal{S}(A)$, protože potom $rank(A)=\dim\mathcal{S}(A)=n-k$ Generujícnost

 $y \in S(A)$ existuje $x \in \mathbb{T}^n$, že y = Ax, to se dá zapsat jako x...

Lineární nezávislost **TODO**

Geometrický pohled: čím větší jádro tím menší obraz

Lineární zobrazení

Základní vlastnosti

Zobrazení je lineární (neboli homomorfismus) pokud U, V prostory nad tělesem $\mathbb T$ a platí

$$f(x + y) = f(x) + f(y)$$
 $f(\alpha x) = \alpha f(x)$

Příklady v lineárních zobrazení v rovině pro $x \mapsto Ax$

$$A = \begin{pmatrix} v_1 & 0 \\ 0 & v_2 \end{pmatrix}$$
 je škálování

$$A = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$
 je rotace

Další maticové zobrazení překlopení, projekce

Další nematicové zobrazení např identita, počátek, transpozice

Vlastnosti zobrazení

$$f(\sum_{i=1}^{n} \alpha_i x_i) = \sum_{i=1}^{n} \alpha_i f(x_i) \qquad f(o) = o$$

Důkaz:

Rozšíření základní vlastnosti indukcí

$$f(o) = f(0 \cdot o) = 0 \cdot f(o)$$

Lineární zobrazení zobrazí lineární kombinaci vzorů na lineární kombinaci obrazů

Zachovává lineární závislost včetně koeficientů

Zobrazuje přímku na přímku, bod na bod

Přímka určená dvěma vektory je množina vektorů $\lambda v_1 + (1-\lambda)v_2...f(v_1)...$

Můžeme definovat obraz a jádro $U \mapsto V$

Obraz je
$$f(U) := \{f(x); x \in U\}$$

Jádro je
$$f(U) := \{x \in U; f(x) = o\}$$

Co znamená, když je jádro $\{o\}$, stejná dimenze, degenrace...

Jádro zobrazení souvisí s jádrem matice, ...

- 2. Ker(f) je podprostorem U
- 3. Pro každé $x_1, \dots, x_n \in U$ platí $f(span\{x_1, \dots, x_n\}) = span\{f(x)_1, \dots, f(x_n)\}$

Důkaz: 1. musí obsahovat nulový vektor a je uzavřený na součty a násobky

$$f(o) = o$$
 $f(u_1) = v_1, f(u_2) = v_2, f(u_1 + u_2) = \cdots = v_1 + v_2 \dots$

- 2. Analogicky
- 3. ⊆ každý vektor se dá vyjádřit jako $w = \sum ... z$ linearity pak f(w)...

$$\supseteq -x_1, ... \in W \to f(x_1, ...) \in f(W)$$
 a $f(W)$ je podprostor a tedy má span

Z trojky plyne, že, že pro obraz podprostoru můžeme určit obrazy báze

Druhy zobrazení

"Na" – když pokryje celou množinu neboli
$$f(U) = V$$

Zobrazení je tedy na, když se generátory zobrazí na generátory

Prosté znamená, že f(x) = f(y) nastane jen pro x = y

Ekvivalentní, že $Ker(f) = \{o\}$ a že obraz lin. nezávislé množiny je lin. nezávislý

 $D\mathring{u}kaz: (\check{r}et\check{e}z implikací prost\acute{e} \Rightarrow Ker(f) \Rightarrow line\acute{a}rn\acute{u}nez\acute{a}vislost)$

$$1 \Rightarrow 2$$
: $f(o) = o$ a protože je prosté, tak jiný prvek neobsahuje

$$2 \Rightarrow 3$$
: nechť $\sum_{i=1}^{n} \alpha_i f(x_i) = o$ a potom $f(\sum ...) = o$ a tedy ...

$$3 \Rightarrow 1$$
: sporem, předpokládejme, že $f(x) = f(y)$ a

potom
$$f(x) - f(y) = o = f(x - y)$$
 tedy ... $x - y = o \rightarrow \bot$

Bod 3 navíc říká, že prosté zobrazení zobrazuje bázi na bázi a tedy

$$\dim U = \dim f(U)$$

Prosté mimochodem nemusí být na

Reprezentace zobrazení

A) Obraz báze

Důkaz existence a jednoznačnosti:

$$f(x) = f(\sum_{i=1}^{n} \alpha_i x_i) = \sum_{i=1}^{n} \alpha_i f(x_i) = \sum_{i=1}^{n} \alpha_i y_i$$
, linearita snadno

Pro spor
$$f(x_i) = g(x_i) = y_i$$

$$f(x) = \sum_{i=1}^{n} \alpha_i y_i = \sum_{i=1}^{n} \alpha_i g(x_i) = g(x)$$

B) Matice

Vytvoření: zjisti kam se zobrazí kanonická báze a dát do sloupců

Opačný směr dokazuje, že každé lineární zobrazení jde reprezentovat maticí

$$f(x) = f(\sum_{i=1}^{n} x_i e_i) = \sum_{i=1}^{n} x_i f(e_i)$$
 a pak tedy $f(x) = Ax$

To můžeme udělat i s
$$U \to \mathbb{T}^n$$
 a potom $f(x) = A \cdot [x]_B$

Zároveň můžeme změnit i druhý prostor

Musíme pracovat v souřadnicích

Matice lineárního zobrazení

Buď lineární zobrazení $U \rightarrow V$, báze prostoru, ...

Nechť $f(x_j) = f(\sum_{i=1}^m a_{ij}y_i)$, potom matice s prvky a_{ij} je matice lineárního zobrazení vzhledem k bázím a značí se $B_V[f]_{B_U}$

$$_{B_{V}}[f]_{B_{U}} = \begin{pmatrix} | & | & | \\ [f(x_{1})]_{B_{V}} & \cdots & [f(x_{n})]_{B_{V}} \\ | & | & | \end{pmatrix}$$

Mnemotechnicky je na vstupu vektor souřadnic vzhledem k B_U a na výstupu k B_V Platí také $[f(x)]_{B_V} = {}_{BV}[f]_{B_U} \cdot [x]_{B_U}$ (získání souřadnic obrazu ze souřadnic x)

Důkaz: **TODO:** proč $f(x_i)$ můžeme vyjádřit takhle

$$f(x) = f\left(\sum_{j=1}^{n} \alpha_j x_j\right) = \sum_{j=1}^{n} \alpha_j f(x_j) = \sum_{j=1}^{n} \alpha_j \left(\sum_{i=1}^{m} a_{ij} y_i\right) = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_j a_{ij}\right) y_i$$

A tedy i-tá souřadnice f(x) je $\sum_{j=1}^{n} \alpha_j a_{ij} = (A \cdot [x]_{B_U})_i$

Důsledek: každé zobrazení se dá vyjádřit jako f(x) = Ax

Důkaz:

$$f(x) = [f(x)]_{kan} = {}_{kan}[f]_{kan} \cdot [x]_{kan} = {}_{kan}[f]_{kan} \cdot x$$
$$Tedy f(x) = Ax, kde A = {}_{kan}[f]_{kan}$$

Jednoznačnost matice

 $A = {}_{B_V}[f]_{B_U}$ je jediná matice, která splňuje $[f(x)]_{B_V} = A \cdot [x]_{B_U}$

Sporem: různé matice $A \neq A'$ a tedy existuje vektor s takový, že $As \neq A's$

Definujme
$$x := \sum_{i=1}^{n} s_i z_i$$
 a potom $[f(x)]_{B_V} = As \neq A's = [f(x)]_{B_V}$

Tedy každé lin. zobrazení lze reprezentovat maticí a každá matice reprezentuje zobrazení Matice přechodu $_{B_2}[id]_{B_1}$ a pak $[x]_{B_2}=_{B_2}[id]_{B_1}\cdot [x]_{B_1}$

Složené a inverzní lineární zobrazení a jejich matice

Složené zobrazení

Definice, ...

Složení lin. zobrazení je opět lineární

Důkaz je ez

Maticová reprezentace je akorát vynásobení

$$Věta _{B_W}[g \circ f]_{B_U} = {}_{B_W}[g]_{B_V} \cdot {}_{B_V}[f]_{B_U}$$

Důkaz:

$$[(g \circ f)(x)]_{B_W} = {}_{B_W}[g]_{B_V} \cdot [f(x)]_{B_V} = {}_{B_W}[g]_{B_V} \cdot {}_{B_V}[f]_{B_U} \cdot [x]_{B_U}$$

Matice zobrazení při změně báze: ${}_{B_4}[id]_{B_2} \cdot {}_{B_2}[f]_{B_1} \cdot {}_{B_1}[id]_{B_3}$

$$(z_{B_2}[f]_{B_1} do_{B_4}[f]_{B_3}$$

Isomorfismus

Prostý a na

Příkladem je škálování, překlápění nebo otáčení

Vlastnosti

Pro každý isomorfismus existuje isomorfní inverze

Složení isomorfismů je také isomorfismus

Lin. zobrazení je isomorfismus právě, když se báze zobrazí na bázi

Prostory v isomorfním zobrazení mají stejnou dimenzi

Důkazy

1. f je vzájemně jednoznačné a tedy existuje i jednoznačné f^{-1}

Musíme ale dokázat linearitu
$$f^{-1}(v_1) = u_1$$
 a $f^{-1}(v_2) = u_2$

$$f^{-1}(v_1+v_2)=u_1+u_2=f^{-1}(v_1)+f^{-1}(v_2)\dots$$

- 2. je vzájemně jednoznačné a linearita plyne ze skládání
- 3. " \Rightarrow " f je prosté a tedy f (báze) jsou nezávislé a je "na"...

"←" je "na" protože generuje a prosté sporem:

Obsahuje nenulové vektory v jádru $f(\sum_{i=1}^{n} \alpha_i x_i) = o$

A tedy
$$\sum_{i=1}^{n} \alpha_i f(x_i) = o \rightarrow \bot$$

4. Plyne ze 3.

Tvrzení
$$_{B_{U}}[f^{-1}]_{B_{V}} = _{B_{V}}[f]_{B_{U}}^{-1}$$

Důkaz: protože
$$f^{-1}\circ f=id$$
, tak $_{B_U}[f^{-1}]_{B_V}\cdot _{B_V}[f]_{B_U}= _{B_U}[f^{-1}\circ f]_{B_U}=I$

Navíc musí platit, že matice je čtvercová, protože isomorfismus

Matice isomorfismu musí být regulární, protože má inverzi a naopak

Z toho také plyne, že
$$_{B_{U}}[id]_{B_{V}}={}_{B_{V}}[id]_{B_{U}}^{-1}$$

Pozn. Matice přechodu se dají snadno počítat:

$$(\mathcal{B}_v \mid \mathcal{B}_u) \sim (I_n \mid_{B_V} [id]_{B_U})$$

Důkaz:

Víme:
$$\mathcal{B}_{u} = {}_{kan}[id]_{B_{U}} \cdot \mathcal{B}_{v} = {}_{kan}[id]_{B_{V}}$$

a taky: ${}_{B_{W}}[g \circ f]_{B_{U}} = {}_{B_{W}}[g]_{B_{V}} \cdot {}_{B_{V}}[f]_{B_{U}}$
Tedy ${}_{B_{V}}[id]_{B_{U}} = {}_{B_{V}}[id]_{kan} \cdot {}_{kan}[id]_{B_{U}} = {}_{kan}[id]_{B_{V}}^{-1} \cdot {}_{kan}[id]_{B_{U}}$
 $\mathcal{B}_{v}^{-1} \cdot (\mathcal{B}_{v} \mid \mathcal{B}_{u}) = (I_{n} \mid {}_{B_{V}}[id]_{B_{U}})$

Tvrzení: mezi prostory, které mají stejnou dimenzi existuje isomorfismus, formálněji:

Máme prostor s dimenzí n a bází B, potom zobrazení $x \to [x]_B$ je isomorfismus mezi V a \mathbb{T}^n $D \hat{u} k a z :$

 $x \to [x]_B$ je lineární – rozepsat na sumy a ukázat, že $[x+y]_B = [x]_B + [y]_B \dots$ Zobrazení je prosté z jednoznačnosti souřadnic Zobrazení je na, protože ...

Má důsledek, že všechny n-dimenzionální vektorové prostory nad T jsou isomorfní Věta o dimenzi a jádru:

Pro
$$\mathbb R$$
 se dá říct, že $Ker(f)=Ker(A)$, $f(\mathbb R^n)=\mathcal S(A)$
Obecněji:

$$\dim Ker(f) = \dim Ker(A)$$

 $\dim f(U) = \dim S(A) = rank(A)$
 $D\mathring{u}kaz$:

- 1. Ukážeme, že $x \in Ker(f) \mapsto [x]_{B_U}$ je isomorfismus mezi $Ker\ f$ a A Víme, že je lineární a prosté
 - "na": $o = [o]_{B_V} = [f(x)]_{B_V} = {}_{B_V}[f]_{B_U} \cdot [x]_{B_U}$ a obráceně
- 2. Opět sestrojíme isomorfismus, tentokrát mezi f(U) a S(A)

TODO

Díky tomu víme jak najít bázi jádra a obrazu

Důsledek:
$$\dim U = \dim Ker(f) + \dim f(U)$$

Důkaz:

Víme, že
$$n = \dim Ker(A) + rank(A)$$
 a pro $A = {}_{B_V}[f]_{B_U}$:
 $n = \dim U$, $\dim Ker(f) = \dim Ker(A)$ a $\dim f(U) = rank(A)$

f je prosté právě, když $_{B_{V}}[f]_{B_{II}}$ má lineárně nezávislé sloupce

$$Ker(f) = \{o\} \Leftrightarrow \dim U = \dim f(U) \Leftrightarrow n = rank(A)$$

fje "na" právě, když $_{\mathit{B}_{V}}[f]_{\mathit{B}_{U}}$ má lineárně nezávislé řádky

$$\dim V = \dim f(U) \Leftrightarrow m = rank(A)$$

Prostor lineárních zobrazení

Množina lineárních zobrazení tvoří vektorový prostor

Můžu je sčítat, násobit skalárem, má nulový vektor, ...

Isomorfní s prostorem matic $\mathbb{T}^{m \times n}$

$$f\mapsto_{B_V}[f]_{B_U}$$
 to snadno ověřím, že je lineární

Kdybych si vytáhl tohle tak musím mluvit hlavně o zobrazení

Afinní prostory

Afinní podprostor nemusí obsahovat počátek

Formálně to je množina vektorů $M = U + a = \{u + a; u \in U\}$

U je určené jednoznačně, vektor může být různý

Vektorový podprostor nebo vektor jsou také afinní podprostory

Dláždění afinními prostory

Vektorové podprostory jsou uzavřené na afinní kombinace

$$y + \alpha(x - y), \alpha \in \mathbb{R}$$
 je přímka

Formálně afinní kombinace dvou vektorů $x, y \in V$ je $\alpha x + (1 - \alpha)y$

Vektorový prostor různé charakteristiky od 2 a $\emptyset = M \subseteq V$. Pokud pro všechny $x, y \in M$ platí, že $\alpha x + (1 - \alpha)y \in M$, tak je to afinní podprostor

Důkaz:

"
$$\Rightarrow$$
": Necht' $M = U + a$, tedy $x = u + a$ a $y = v + a$ potom: $\alpha x + (1 - \alpha)y = \alpha(u + a) + (1 - \alpha)(v + a) = \alpha u + (1 - \alpha)v + a \in U + a = M$
" \Leftarrow ": zvolme $a \in M$ a $U := M - a = \{x - a; x \in M\}$

Musíme zjistit, že U je podprostor, nulový je zřejmý a zjistíme uzavřenost:

$$\alpha u = \alpha(x-a) = (\alpha x + (1-a)a) - a \in M-a$$

$$u + u' = (x - a) + (x' - a) = (x + x' - a) - a$$

Stačí ukázat, že $x + x' - a \in M$

 $\frac{1}{2}x+\frac{1}{2}x'\in M$, z toho vyjádřím afinní kombinaci

Afinní kombinace n vektorů

$$\sum_{i=1}^{n} \alpha_i x_i \text{ a } \sum_{i=1}^{n} \alpha_i = 1$$

Pro n = 3 vytvoříme roviny

Pomyslně můžeme zavést afinní obal

Tvrzení: M je afinní podprostor \Leftrightarrow M je uzavřené na afinní kombinace

Věta: množina řešení Ax = b je prázdná nebo afinní

Je-li neprázdná tak $Ker(A) + x_0$ s libovolným řešením *Důkaz:*

$$x_1 = x_1 - x_0 + x_0$$
 a dosazením $A(x_1 - x_0) = b - b = o$

Naopak
$$x_2 + x_0$$
 je řešením soustavy, protože $A(x_2 + x_0) = o$

Každý afinní podprostor lze popsat i pomocí soustavy rovnic

Poznámka, když změníme pravou stranu, tak buď řešení přestane existovat nebo x'_0

Dimenze afinního podprostoru M = U + a je definována jako dim $(M) := \dim(U)$

Můžeme definovat přímku jako afinní podprostor dimenze jedna

Nadrovinu jako afinní podprostor dimenze – 1

Množina řešení tvoří afinní podprostor dimenze n-rank(A) (tedy dimenze jádra)

Afinní nezávislost

Minimální množina generátorů afinního podprostoru

Vektory jsou afinně nezávislé pokud jsou $x_1 - x_0, x_2 - x_0, \dots$ nezávisůé

Tři body na přímce jsou afinně závislé

Body v obecné poloze

 $x_1, ... \in \mathbb{R}^n$ jsou v o. p. pokud každá podmnožina velikosti n+1 je nezávislá

Souřadnice v afinním podprostoru, vztah podprostorů, ...

Afinní zobrazení

$$f(u) = g(u) + b$$

Obraz afinního podprostoru je afinní podprostor

Složením dvou afinních zobrazení dostaneme opět afinní zobrazení

Úplný vzor

Množina bodů, které se zobrazí na vektor, formálně $f^{-1}(v)\coloneqq\{u\in U; f(u)=v\}$ je buď prázdná množina nebo podprostor

Důkaz:

$$f(\sum_{i=1}^n \alpha_i u_i) = \dots = \sum_{i=1}^n \alpha_i v = v$$

Je uzavřená na afinní kombinace

Řešit soustavu znamená najít úplný vzor vektoru b

Přehled témat ke zkoušce?

A co k nim zhruba chci říct

• Soustavy lineárních rovnic: řešení a řešitelnost

Jak vypadá soustava rovnic, (koeficienty a neznámé), geometrický náhled Množina řešení soustavy je afinní podprostor a naopak s důkazem, najít úplný vzor

• Elementární řádkové úpravy

Zachovají množinu řešení – reprezentace regulární maticí a tedy mají inverzi, elementarita Důkazy RREF(A) = QA a Q regulární, regulární lze vyjádřit E

• Redukovaný odstupňovaný tvar matice RREF

Úvod k soustavě rovnic, popis tvaru – pivoty, ...

Kratší důkazy u počtu řešení soustavy, jednoznačnost RREF

Hodnost matice

Jak zjistit – počet nenulových řádků, počet pivotů, že to odpovídá dimenzi, $rank(A^T)$ Frobeinova věta, u regulární = n, rank = dim S(A) = dim f(U) = dim $\mathcal{R}(A)$

 $D\mathring{u}kaz: rank(A) = rank(A^T)$

• Základní operace s maticemi a jejich vlastnosti

=, +, násobení skalárem, součin matic – skládání, vlastnosti, transpozice, vlastnosti transpozice, součin vektorů

Důkazy vlastností

• Regulární matice

Ax = b, $RREF = I_n$, rank(A) = n, vlastnosti, má inverzi, odpovídá nějakému isomorfismu, uzavřené na součin, ale ne na součet

Důkaz: součin je regulární, singulární, ...

• Inverzní matice

Jen u regulární, odpovídá inverznímu zobrazení, jak vypočítat, jedinečnost, její regularita Důkazy: existence, jednoznačnost, transponovaná, jedna rovnost stačí

Navíc k těmto tématům:

Matice - definice, vlastnosti, druhy, operace, vektory, *, rozšířená matice, elementární řádkové úpravy, REF, RREF, reprezentace zobrazení, maticové prostory Řešení soustavy – je to vektor, Gaussova eliminace, G-J eliminace, algoritmus, počet řešení Průřez – lineární kombinace sloupců matice je řešení (Frobeinova věta)

• Grupy (bez permutací)

Definice, vlastnosti, Abelova grupa, vlastnosti s důkazy, podgrupa Důkazy vlastností

• Permutace

Symetrická grupa, bijekce, skládání, inverze, sgn, transpozice, počet inverzí, Důkazy: sgn složení transpozice, rozložení na transpozice, znaménka inverzí

• Tělesa

Definice, vlastnosti, konečná tělesa, charakteristika, malá Fermatova věta Důkaz: vlastnosti, \mathbb{Z}_n , Fermat

• Vektorový prostor a podprostor

Definice, vlastnosti, podprostory, průniky, lineární obal, generátor

Důkaz: vlastnosti, generace obalu

• Lineární kombinace

Definice, generace obalu, řešení rovnice

Důkaz: generace obalu

• Lineární závislost a nezávislost

Znamená, změna span, Věta o výměně, Steinzova věta, suma = u, (2x) nezmenšení span

• Lineární obal

Definice, ...

Důkaz span = span

• Báze

Definice, kanonická, jednoznačná, souřadnice, pozorování, každý má bázi Důkaz: Steintzova věta o výměně, stejná velikost bází,

• Dimenze

Velikost báze, struktura podprostorů, spojení, průnik, podprostor, dimenze spojení Důkaz: Steintzova věta o výměně, stejná velikost bází, • Řádkový a sloupcový prostor matice

Definice – span, reprezentace prostorů, zobrazení – geometrický pohled, násobení Důkaz: změna při násobení zleva, R(A) = R(QA), dim R(A) = dim S(A)

• Jádro matice

Definice, $ker(A) = \{Ax...\}$, je to podprostor, dimenze?, degenerovanost Důkaz: dim Ker(f) = dim Ker(A) isomorfismus

• Lineární zobrazení a základní vlastnosti

Přímka na přímku nebo na bod, f(o), suma, jedno zobrazení x na y

• Obraz lineárního zobrazení.

Množina všech f(x)

Patří do U, f(span) = span(f),

• Jádro lineárního zobrazení

Množina všech x

f(U), Ker(fNa – generátory na generátory

• Prosté lineární zobrazení

prosté x=y, ker o, nezávislé je nezávislý, řetěz implikací, nezávislé sloupce,

• Maticová reprezentace lineárního zobrazení

Reprezentace obraz nebo jako matice, kam se zobrazí kanonická a dáme do sloupců, jedinečnost matice, zobrazování souřadnic, ...

• Složené a inverzní lineární zobrazení a jejich matice

Skládání odpovídá násobení, opět lineární s důkazem, ...

• Isomorfismus

Definice, má inverzi, složení, báze se zobrazuje na bázi, dim U = dim V s dúkazy

• Prostor lineárních zobrazení

Sčítání matice, násobení matic skalárem, lineární forma, duální prostor

Afinní prostory

Definice, jednoznačnost, afinní kombinace, uzavřenost na ně, afinní nezávislost, zobrazení, úplný vzor