Lead Scoring Case Study

Business Approach for X Education

- By:
- Abhishek Mehandiratta
- Sudhanshu Raj
- Harshal Kl

Objective

• Helping X Education identify promising leads from all the leads generated for their product. This will help them focus more on potential customers, hence increasing revenue and employee productivity.

Desired outcome and methodology

- Building a Logistic regression model on the leads data provided by X Education.
- This model assigns a score to the leads such that a higher score means higher conversion chance.
- Target leads conversion score is around 80%.

Desired outcome and methodology

- Steps involved:
- Data cleaning, manipulation and transformation:
 - Handling missing values (dropping columns with too many missing values and imputing some columns to not lose out on too much information).
 - Handling outliers in the numerical columns (dropping values less than 1st percentile and greater than 99th percentile if the column has outliers).
- EDA
 - Univariate analysis:
 - On numerical features (identified outliers and dropped them).
 - On categorical variables (identified columns with little to no variance and dropping them because they don't add any value to our analysis).
 - Bivariate analysis:
 - Identifying correlations between different variables.
- Feature Scaling using Min/max scaling.
- Applying OHE (one hot encoding) to categorical variables and converting them to dummy variables.

Desired outcome and methodology

- Steps involved:
- Model Building:
 - Selecting initial feature set using RFE
 - Using Statsmodel to identify statistically insignificant variables and dropping them, thereby creating a better model.
 - Validation of model using metrics such as accuracy, specificity and sensitivity.
 - Fine-tuning the model by selecting an optimal cutoff using the ROC curve and maintaining a balance between accuracy, specificity and sensitivity across different cutoffs and selecting the best one.
- Model conclusions, interpretation and recommendation

EDA and some insights

Numerical Variables

- Converted leads spend significantly more time on the
- website than the non-converted ones.

Categorical Variables

- Majority of the Leads were Identified at the "Landing Page Submission".
- "Olark Chat", "Direct Trafic" and "Google" were major Lead sources and
- amongst them Google saw highest lead conversion.

- This plot shows a particular reason why people are choosing a course.
- We see that most of the leads are from India.

Model Evaluation

We see that all the features selected have 0 p-values,

which means all these features are statistically

significant.

Generalized Linear M	Model Regression Res	sults							
Dep. Variable:	Converted	No. Observation	ons:		6246				
Model:	GLM	Df Residu	als:		6234				
Model Family:	Binomial	Df Mo	del:		11				
Link Function:	Logit	Scale:		1.0000					
Method:	IRLS	Log-Likeliho	ihood:		902.6				
Date:	Mon, 14 Nov 2022	Devian	ice:	3805.2					
Time:	23:56:43	Pearson cl	hi2:	6.67	e+03				
No. Iterations:	7	Pseudo R-squ. (CS):		0.5128					
Covariance Type:	nonrobust								
			С	oef	std err	z	P> z	[0.025	0.975]
		const	-2.3	556	0.094	-24.936	0.000	-2.541	-2.170
		TotalVisits	1.8	763	0.317	5.917	0.000	1.255	2.498
	Total Time S	Spent on Website	3.78	365	0.181	20.882	0.000	3.431	4.142
	Pag	e Views Per Visit	-3.38	347	0.310	-10.907	0.000	-3.993	-2.777
	Lead So	ource_Reference	2.63	386	0.256	10.323	0.000	2.138	3.140
	Lead Source_V	Velingak Website	5.5°	125	0.733	7.518	0.000	4.075	6.950
		Oo Not Email_Yes	-1.5	408	0.214	-7.216	0.000	-1.959	-1.122
La	ast Activity_Olark Cl	nat Conversation	-1.09	953	0.192	-5.700	0.000	-1.472	-0.719
What is your curre	nt occupation_Work	king Professional	1.2	509	0.237	5.282	0.000	0.787	1.715
		Tags_Other_Tags	0.70	066	0.093	7.594	0.000	0.524	0.889
Та	gs_Will revert after r	reading the email	4.60		0.177	26.288	0.000	4.315	5.011

Multicollinearity

- We can see that the VIF values are all less than 5.
- Hence there is no multicollinearity among the final
- features.

	Features	VIF
2	Page Views Per Visit	4.81
0	TotalVisits	4.58
1	Total Time Spent on Website	2.23
9	Tags_Will revert after reading the email	1.93
10	Last Notable Activity_SMS Sent	1.45
8	Tags_Other_Tags	1.32
7	What is your current occupation_Working Profes	1.29
3	Lead Source_Reference	1.22
5	Do Not Email_Yes	1.07
6	Last Activity_Olark Chat Conversation	1.03
4	Lead Source_Welingak Website	1.02

ROC Curve

- We can see that the area under ROC
- is 0.93, which means we have a good
- predictive model.

Optimal threshold

• We can see that the optimal threshold is 0.3.

Final Confusion Matrix

Metrics on train and test set

Train set:

Accuracy: 86%

• Sensitivity: 86%

• Specificity: 85%

```
# Check the overall accuracy
metrics.accuracy score(y train pred final.Converted, y train pred final.F.
0.8624719820685238
# Creating confusion matrix
confusion2 = metrics.confusion matrix(y train pred final.Converted, y tra
confusion2
array([[3328, 543],
       [ 316, 2059]])
# Substituting the value of true positive
TP = confusion2[1,1]
# Substituting the value of true negatives
TN = confusion2[0,0]
# Substituting the value of false positives
FP = confusion2[0,1]
# Substituting the value of false negatives
FN = confusion2[1,0]
# Calculating the sensitivity
TP/(TP+FN)
0.8669473684210526
# Calculating the specificity
TN/(TN+FP)
0.8597261689485921
```

Test set:

• Accuracy: 86%

• Sensitivity: 87%

• Specificity: 86%

Precision: 78%

• Recall: 87%

```
# Let's check the overall accuracy.
round(100 * (metrics.accuracy_score(y_pred_final.Converted, y_pred_final.Final_Prediction)))
86
confusion3
          = metrics.confusion_matrix(y_pred_final.Converted, y_pred_final.Final_Prediction )
confusion3
array([[1435, 249],
       [ 133, 861]])
TP = confusion2[1,1] # true positive
    confusion2[0,0] # true negatives
   = confusion2[0,1] # false positives
  = confusion2[1,0] # false negatives
# Let's see the sensitivity of our logistic regression model
round(100 * (TP / float(TP+FN)))
87
# Let us calculate specificity
round(100 * (TN / float(TN+FP)))
86
from sklearn.metrics import precision_score, recall_score
round(100 * (precision_score(y_pred_final.Converted , y_pred_final.Final_Prediction)))
78
round(100 * (recall score(y pred final.Converted, y pred final.Final Prediction)))
87
```

......

Feature importance

Conclusions & Recommendations

Based on the feature importance graph in the previous slide

- Leads coming from Welingak website are also potentially most likely to be converted.
- Leads Tagged with "Will revert after reading email" have the most impact on the conversion rate.
- Total time spent on website is directly proportional to the probability of conversion.
- Based on business needs, the probability threshold value can be changed for identifying potential leads.

Thank you