Opérateurs de l'algèbre relationnelle

Sélection : $\sigma_{condition}(R)$

But : ne retenir que les tuples de R satisfaisant la condition précisée.

- schéma(résultat) = schéma(R)
- nb_tuples(résultat) ≤ nb_tuples(R)

Exemple:

R	A	В
I	1	2
	1	2
	3	4

$\sigma_{B<4}(R)$	A	В
OB<4(R)	1	2
	1	2

Projection: $\pi_{attributs}(R)$

But : ne retenir que les attributs précisés de R.

- schéma(résultat) ⊆ schéma(R)
- nb_tuples(résultat) ≤ nb_tuples(R)

Exemple:

R	A	В	C
V	1	2	4
	1	2	6
	3	4	7

$\pi_{A,B}(\mathbf{R})$	A	В
να,B(IC)	1	2
	3	4

Remarque : En SQL, la projection n'élimine pas les doublons !

Produit cartésien : R × S

But : construire toutes les combinaisons de tuples de deux relations.

- schéma(R×S) = schéma(R) ∪ schéma(S)
- $nb_tuples(R \times S) = nb_tuples(R) \times nb_tuples(S)$

Exemple:

ŀ	3	
A	В	
1	2	•
3	4	
5	6	

B		
В	C	
1	2	
3	4	
	B 1 3	

R×S			
A	R.B	S.B	C
1	2	1	2
1	2	3	4
3	4	1	2
3	4	3	4
5	6	1	2
5	6	3	4

Jointure naturelle : $R \bowtie S$

But : créer toutes les combinaisons entre tuples de deux relations ayant la même valeur pour tous les attributs en commun.

Précondition : les deux relations ont au moins un attribut en commun.

- $\operatorname{sch\'ema}(R \bowtie S) = \operatorname{sch\'ema}(R) \cup \operatorname{sch\'ema}(S)$
- ⇒ Les attributs en commun n'apparaissent qu'une seule fois !

Exemple:

$\mathbf{R} \bowtie \mathbf{S}$			
A	В	C	
1	2	2	
1	2	3	
3	4	6	

Jointure: $R \bowtie_{condition} S$

But : créer toutes les combinaisons entre tuples de deux relations satisfaisant la condition précisée.

Précondition: les deux relations n'ont pas d'attributs en commun.

- schéma(résultat) = schéma(R) ∪ schéma(S)
- $R \bowtie_{\text{condition}} S = \sigma_{\text{condition}}(R \times S)$

Exemple:

R		\$	S
A	В	C	D
1	2	2	2
3	4	2	3
5	6	4	6

$R \bowtie_{B \neq C} S$			
A	В	C	D
1	2	4	6
3	4	2	2
3	4	2	3
5	6	2	2
5	6	2	3
5	6	4	6

Différence: R - S

But : sélectionner les tuples de R qui ne sont pas dans S.

Précondition : schéma(R) = schéma(S)

schéma(R–S) = schéma(R) = schéma(S)

Exemple:

R	A	В
	1	2
	3	4
	5	6

S	A	В
	1	2
	7	8

R-S	A	В
	3	4
	5	6

Union: $R \cup S$

But : réunir dans une même relation les tuples de deux relations.

Précondition : schéma(R) = schéma(S)

- $\operatorname{sch\'ema}(R \cup S) = \operatorname{sch\'ema}(R) = \operatorname{sch\'ema}(S)$
- $nb_tuples(R \cup S) \le nb_tuples(R) + nb_tuples(S)$

Exemple:

R	A	В
	1	2
	3	4
	5	6

S	A	В
	1	2
	7	8

R∪S	A	В		
	1	2		
	3	4		
	5	6		
	7	8		

Intersection : $R \cap S$

But : sélectionner les tuples qui se trouvent à la fois dans R et dans S.

Précondition : schéma(R) = schéma(S)

- $\operatorname{sch\'ema}(R \cap S) = \operatorname{sch\'ema}(R) = \operatorname{sch\'ema}(S)$
- $R \cap S = R (R S)$

Exemple:

R	A	В
	1	2
	3	4
	5	6

Division: R ÷ S

Soient les relations R et S tels que $schéma(S) \subset schéma(R)$

- $R(A_1,...,A_k,A_{k+1},...,A_{k+n})$
- $S(A_1,...,A_k)$
- $T(A_{k+1},...,A_{k+n})=R\div S$ est la "plus grande" relation telle que $T\times S\subseteq R$.

Exemple:

\mathbf{R}	\mathbf{A}	В
	a1	b1
	a2	b1
	a3	b1
	a4	b1
	a1	b2
	a3	b2
	a2	b3
	a3	b3
	a4	b3
	a1	b4
	a2	b4
	a3	b4
	a3	b4

S	A	
	a1	
	a2	
	a3	

$\mathbf{T_1} = \boldsymbol{\pi}_{\mathbf{B}}(\mathbf{R})$		$\mathbf{T}_2 = \boldsymbol{\pi}_{\mathbf{B}}((\mathbf{T}_1 \times \mathbf{S}) - \mathbf{R})$			
	В			В	
	b1			b1	

В	
b1	
b2	
b3	
b4	

$$\Rightarrow$$
 R ÷ **S** = **T**₁ - **T**₂