10.2 שינוי סדר

הגדרות

1. תמורה על הטבעיים

 $\sigma:\mathbb{N} o\mathbb{N}$ היא פונקציה חח"ע ועל

2. שינוי סדר

 $orall n\in\mathbb N$ $b_n=a_{\sigma(n)}$ באמר כי $\sigma:\mathbb N o\mathbb N$ כך שמתקיים קיימת תמורה על הטבעיים $\sum_n a_n$ אם שינוי סדר של החוא שינוי אם ביימת המורה על הטבעיים

משפטים

1. תמורה על איברי טור א"ש מתכנס לא פוגעת בהתכנסותו

יהי שלילי מתכנס מתכנס אזי שלילי מתכנס אזי שלילי מתכנס אזי אינוי סדר של הסכום אם הטור $\sum_n b_n$ אזי אזי הטור שינוי סדר של הוא שינוי סדר $\sum_n b_n$ אזי הטור

 $A_n \mid n \in \mathbb{N}$ ומכאן נובע $\{a_n \mid n \in \mathbb{N}\} = \{b_n \mid n \in \mathbb{N}\} = \{b_n \mid n \in \mathbb{N}\}$ ומכאן נובע $\{a_n \mid n \in \mathbb{N}\} = \{b_n \mid n \in \mathbb{N}\}$ ומכאן נובע $\{a_n \mid n \in \mathbb{N}\} = \{b_n \mid n \in \mathbb{N}\}$ ומכאן נובע $\{a_n \mid n \in \mathbb{N}\} = \{b_n \mid n \in \mathbb{N}\}$ בנוסף, $\{a_n \mid n \in \mathbb{N}\} = \{b_n \mid n \in \mathbb{N}\}$ מונוטונית עולה.

 $\lim_{k o\infty}S_k=\sum_{n=1}^\infty\,a_n=\sup\left\{S_k\mid k\in\mathbb{N}
ight\}$ כלומר S_k מונטונית עולה וחסומה מלעיל, אזי מתכנסת ל-

 $.q_{k}=\max\left\{ \sigma\left(i\right)\mid i\in\left[k\right]\right\}$ נסמן ,
 $k\in\mathbb{N}$ בהינתן בהינתן

 $\sum\limits_{n=1}^\infty a_n$ אזי ממונוטוניות $\forall k \in \mathbb{N}$ אזי ממונוטוניות מתקיים מתקיים מתקיים b_n מתקיים מ b_n מתקיים אואי שליליות אואי שליליות מחונוטוניות אואי שליליות מחונות מחונוטוניות אואי שליליות אואי שליליות מחונוטוניות אואי שליליות מחונוטוניות אואי שליליות א

 $\lim_{k\to\infty}T_k\leq \sum\limits_{n=1}^\infty\,a_n$ וגבולה ולכן מתכנסת, עולה היא מונוטונית עולה היא בנוסף כמו

 $\sum\limits_{n=1}^{\infty}a_n=\lim\limits_{k\to\infty}S_k\leq\sum\limits_{n=1}^{\infty}$ ממשום ש σ חח"ע ועל, קיימת הפונקציה ההפוכה הפוכה שינוי סדר של הוא שינוי סדר ב $\sum\limits_na_n$ אז אי ההפוכה הפונקציה ההפוכה שינוי הח

מטריכוטמיה נקבל שוויוו ביו הסכומים. כנדרש.

2. תמורה על איברי טור מתכנס בהחלט לא פוגעת בהתכנסותו

. אם הטור ולמעשה ולמעשה החלט, אז כל שינוי סדר שלו מתכנס לאותו בפרט ולמעשה מתכנס בהחלט, אז כל שינוי סדר אם הטור

3. משפט רימו

ים: טור המתכנס בתנאי. אזי מתקיים: $\sum a_n$

- λ ג המתכנס המח $\sum_n a_n$ הטור של סדר שינוי א היים $\lambda \in \mathbb{R}$.1
 - $(-\infty$ ווכן ל ∞ (וכן ל ∞).
- $(-\infty$ או ל- ∞ או ל- ∞ .