Домашняя работа 1

Данила Печенев

23 марта 2022 г.

Задача 1.

- {1, 10, 0, 01} не префиксный, так как код 1 является началом кода 10;
- {00, 010, 011, 01} не префиксный, так как код 01 является началом кода 011;
- {10, 010, 011, 11} префиксный;
- {1, 00, 010, 011} префиксный.

Задача 2.

- {00, 010, 011, 01} разделимый, так как в нем выполнено условие постфиксности (можем декодировать сообщение с конца);
- $\{1, 10, 0, 01\}$ не разделимый. Сообщение 10 можно декодировать как ас и как b;
- {10, 010, 011, 11} разделимый, так как в нем выполнено условие префиксности;
- {01, 010, 110, 11} разделимый, так как в нем выполнено условие постфиксности (можем декодировать сообщение с конца).

Задача 3.

Пусть даны символы a, b, c, d: P(a) = 0.5, P(b) = 0.3, P(c) = 0.1, P(d) = 0.1.

Шаг 1: a - 1, {b, c, d} - 0;

Шаг 2: a - 1, b - 01, {c, d} - 00;

Шаг 2: a - 1, b - 01, c - 001, d - 000.

Средняя длина кода (матожидание) = 0.5 * 1 + 0.3 * 2 + 0.1 * 3 + 0.1 * 3 = 1.7

Задача 4.

1) Количество каждого символа из алфавита (∧) в рассматриваемой строке:

$$a - 25$$
, $b - 34$, $c - 25$, $d - 21$, $<$ space $> - 3$, $<$ EOF $> - 1$.

Всего символов в строке - $108 \Rightarrow P(a) = \frac{25}{108}$, $P(b) = \frac{34}{108}$, $P(c) = \frac{25}{108}$, $P(d) = \frac{21}{108}$, $P(<\text{space}>) = \frac{2}{108}$, $P(<\text{EOF}>) = \frac{1}{108}$.

$$H = -\sum_{s \in \Lambda} P(s) \cdot \log_2 P(s) = 2.13$$
 бит.

2) Код Шеннона.

Исходный набор:

Символ	a	b	С	d	<space></space>	<eof></eof>
P	$\frac{25}{108}$	$\frac{34}{108}$	$\frac{25}{108}$	$\frac{21}{108}$	$\frac{2}{108}$	$\frac{1}{108}$

Сортируем элементы алфавита по невозрастанию Р:

Символ	b	a	c	d	<space></space>	<eof></eof>
Р	$\frac{34}{108}$	$\frac{25}{108}$	$\frac{25}{108}$	$\frac{21}{108}$	$\frac{2}{108}$	$\frac{1}{108}$

В получившейся таблице каждому символу сопоставляем сумму вероятностей символов до него L:

Символ	b	a	c	d	<space></space>	<eof></eof>
L	0	$\frac{34}{108}$	$\frac{59}{108}$	$\frac{84}{108}$	$\frac{105}{108}$	$\frac{107}{108}$

Переведем L в двоичную систему счисления:

1 / 1	1 1	•	•			
Символ	b	a	С	d	<space></space>	<eof></eof>
L	0.0000	0.01010	0.10001	0.11000	0.11111001	0.111111011

Посчитаем $C = \lceil -\log_2 P \rceil$ и запишем коды

Символ	b	a	c	d	<space></space>	<eof></eof>
С	2	3	3	3	6	7
Код	00	010	100	110	111101	1111110

Код Шеннона-Фано.

Шаг 1: {b, a} - 1, {c, d, <space>, <EOF>} - 0;

Шаг 2: b - 11, a - 10, c - 01, {d, <space>, <EOF>} - 00;

Шаг 3: b - 11, a - 10, c - 01, d - 001, {<space>, <EOF>} - 000;

Шаг 4: b - 11, a - 10, c - 01, d - 001, <space> - 0001, <EOF> - 0000.

Код Хаффмана.

Was 1:
$$P(a) = \frac{25}{108}$$
, $P(b) = \frac{34}{108}$, $P(c) = \frac{25}{108}$, $P(d) = \frac{21}{108}$, $P(<\text{space}>) = \frac{2}{108}$, $P(<\text{EOF}>) = \frac{1}{108}$.

IIIa 3:
$$P(a) = \frac{25}{108}$$
, $P(b) = \frac{34}{108}$, $P(c) = \frac{25}{108}$, $P(d < pac) < EOF >) = $\frac{24}{108}$.$

Was 4:
$$P(a) = \frac{25}{108}$$
, $P(b) = \frac{34}{108}$, $P(cd < space > < EOF >) = $\frac{49}{108}$.$

IIIae 5:
$$P(ab) = \frac{59}{108}$$
, $P(cd < space > < EOF >) = $\frac{49}{108}$.$

Шаг 6: ab - 1, cd<space><EOF> - 0.

Шаг 7: a - 11, b - 10, c - 01, d<space><EOF> - 00.

3) Для двухбуквенных блоков символов коды считаются точно так же. При этом $P((xy)) = P(x) \cdot P(y).$

Код Шеннона.

Символ	Код
aa	10000
ab	0001
ac	10010
ad	10111
a <space></space>	11110100
a <eof></eof>	111111001
ba	0010
bb	0000
bc	0011
bd	01100
b <space></space>	11110001
b <eof></eof>	111110110
ca	10011
cb	0101
cc	10101
cd	11000
c <space></space>	11110110
c <eof></eof>	111111010
da	11010
db	01110
dc	11011
dd	11101
d <space></space>	111110010
d <eof></eof>	1111111011
<space>a</space>	11110111
<space>b</space>	11110011
<space>c</space>	11111000
<space>d</space>	111110100
<space><space></space></space>	111111111100
<space><eof></eof></space>	1111111111100
<eof>a</eof>	111111011
<eof>b</eof>	111110111
<eof>c</eof>	111111100
<eof>d</eof>	1111111101
<eof><space></space></eof>	1111111111101
<eof><eof></eof></eof>	11111111111110

Код Шеннона-Фано.

Символ	Код
aa	1000
ab	0010
ac	1001
ad	10111
a <space></space>	1111001
a <eof></eof>	11111100
ba	0011
bb	000
bc	0100
bd	0110
b <space></space>	11101
b <eof></eof>	11111010
ca	1010
cb	0101
cc	10110
cd	1100
c <space></space>	1111010
c <eof></eof>	111111010
da	11010
db	0111
dc	11011
dd	11100
d <space></space>	11111000
d <eof></eof>	111111101
<space>a</space>	11110110
<space>b</space>	1111000
<space>c</space>	11110111
<space>d</space>	11111001
<space><space></space></space>	1111111110
<space><eof></eof></space>	11111111110
<eof>a</eof>	111111011
<eof>b</eof>	11111011
<eof>c</eof>	111111100
<eof>d</eof>	111111110
<eof><space></space></eof>	111111111110
<eof><eof></eof></eof>	11111111111

Код Хаффмана.

Символ	Код
aa	0001
ab	1100
ac	0100
ad	11101
a <space></space>	01111110
a <eof></eof>	011110101
ba	1101
bb	001
bc	1010
bd	1000
b <space></space>	0111010
b <eof></eof>	01110010
ca	0101
cb	1011
cc	0110
cd	11110
c <space></space>	01111111
c <eof></eof>	011110110
da	11111
db	1001
dc	0000
dd	11100
d <space></space>	01111001
d <eof></eof>	011100011
<space>a</space>	01111100
<space>b</space>	0111011
<space>c</space>	01111101
<space>d</space>	01111001
<space><space></space></space>	0111000100
<space><eof></eof></space>	011100010111
<eof>a</eof>	011110111
<eof>b</eof>	01110011
<eof>c</eof>	01110000
<eof>d</eof>	011110100
<eof><space></space></eof>	01110001010
<eof><eof></eof></eof>	011100010110

4) Код Шеннона:

Код Шеннона-Фано:

Код Хаффмана:

Код Шеннона (двухбуквенное кодирование):

Код Шеннона-Фано (двухбуквенное кодирование):

Код Хаффмана (двухбуквенное кодирование):

5) Средняя длина кода для алфавита \wedge вычисляется по формуле $L = \sum_{s \in \wedge} P(s) \cdot L(s)$, где L(s) - длина кода символа s.

Избыточность кода вычисляется по формуле $E=1-\frac{H}{L}$, где H - энтропия, L - средняя длина кода. В задаче 4 показано, считать энтропию. Подставляем числа и получаем:

Код	Средняя длина	Избыточность
Шеннона	2.777778	0.2332
Шеннона-Фано	2.25	0.053333
Хаффмана	2.25	0.053333
Шеннона (2х-букв)	4.806156	0.113318
Шеннона-Фано (2х-букв)	4.326818	0.015089
Хаффмана (2х-букв)	4.293467	0.007438

- 8) Напишем программу на Python, которая будет кодировать сообщение с использованием арифметического кодирования. Так как точность числа с плавающей точкой сильно ограничена, будем считать все в дробях, а конечный результат переводить в десятичную дробь с высокой точностью с помощью сайта https://matematika-club.ru/kalkulyator-bolshih-chisel. Получим закодированное сообщение:

Задача 5.

На языке программирования C# были реализованы два архиватора. Первый - на основе метода Хаффмана, второй - на основе алгоритма LZW. Код (с необходимыми комментариями) можно посмотреть в ветке FirstHW (Term 2/Homework 1/Archivers) или в pull request'e, соответствующем первой домашней работе.