2. Normalizace databáze

OLTP (Online Transaction Processing)

- Technologie uložení dat v databázi
- Transakčně orientovaný (vložit, smazat, editovat), používá se například u **ATM**
- Klade důraz na častou modifikaci dat, proto se silně normalizuje za účelem vysoké integrity dat

OLAP (Online Analytical Processing)

- Je analyticky orientovaný, používá se pro získávání souhrnných dat
- Klade důraz na rychlost získávání dat, proto se často nenormalizuje a díky tomu je získávání dat rychlé, ale transakce pomalá

Rozdíly mezi OLAP a OLTP

OLAP

- Online dotazovací systém
 Online modifikující systém
- Dotazy pro získání dat jsou
 Dotazy pro získání dat jsou
 jednodušší komplexnější
- Méně častá aktualizace databáze
 Častá aktualizace databáze
- Nenormalizuje se kvůli rychlosti
 Normalizuje se kvůli snížení získávání dat
- Používá se pro účely analýzy
 Používá se k časté modifikaci
 Adzabázo a získávání souhrnných dat
- Dlouhá doba transakcí

OLTP

- jednodušší
- šance na porušení integrity dat
- databáze
- Krátká doba transakcí

Normalizace

- Přeorganizování dat v relační databázi tak, aby využívala výhody relačního modelu dat
- Normalizovaná databáze má efektivnější ukládnání, prohledávání, třídění, zpracování. Zabraňuje redundanci dat.
- Při normalizaci se mění sloupce jednotlivých tabulek a zavádí se mezi nimi výhodné vztahy
- V čím vyšší je databáze normální formě (stupeň doporučení pro ideální návrh databáze), tím je kvalitněji navržena – vzrůstá efektivita ale i zátěž na databázový stroj

- Kompromisem je dosáhnout co nejvyšší normy a pak úroveň snižovat na zvládnutelnou úroveň (=optimalizace)
- Obvykle je zbytečné uvažovat nad vyšší než třetí normou

Normalizace

 Pravidla, která by měla data v určitém stupni splňovat, aby byl návrh databáze ideální

Nultá normální forma (ONF)

• Tabulka obsahuje dělitelná (neatomická) data

První normální forma (1NF)

• Tabulka obsahuje pouze atomická data

Druhá normální forma (2NF)

- Splňuje 1NF
- Všechny neklíčové atributy jsou funkčně závislé na celém PK
- Může být (ne)splněna u tabulek se složeným PK
- Klade důraz především na odstranění duplicit
- Částečně závislé atributy se dají do nové tabulky a vytvoří se jim PK (může být umělý), který se v původní tabulce použije jako PFK

Splňuje 2NF Tabulka Záznam ID Kurzu ID Semestru Počet míst IT101 Is 2017 100 IT101 zs 2017 100 IT102 Is 2017 IT102 zs 2017 150 IT103 zs 2017 Tabulka Kurz ID Kurzu Jméno kurzu Programování IT102 Databáze IT103 Web design

Nesplňuje 2NF

Tabulka Záznam [7]				
ID Kurzu	ID Semestru	Počet míst	Jméno kurzu	
IT101	Is 2017	100	Programování	
IT101	zs 2017	100	Programování	
IT102	Is 2017	200	Databáze	
IT102	zs 2017	150	Databáze	
IT103	zs 2017	120	Web design	

• Jméno kurzu je závislé pouze na ID kurzu a ne na ID semestru

Třetí normální forma (3NF)

• Neobsahuje tranzitivní závislosti

Splňuje 3NF (plat je závislý na funkci, což není primární klíč), nebereme v potaz město a PSČ:

Zaměstnanec				
ID_Fun	Funkce	Plat		
1	CEO	150000		
2	Senior Software Architect	80000		
3	Junior Developer	30000		
4	Database Designer	75000		