Cut-Sets & Cut-Vertices

A.B.M. Ashikur Rahman

Cut-Sets

- In a connected graph G, a *cut-set* is a set of edges whose removal from G leaves G disconnected, provided removal of no proper subset of these edges disconnects G.
- Minimal cut-set/Proper cut-set/simple cut-set/cocycle
- Cut-set always cuts the graph in two.
- Removal of cut-set reduces the rank of graph by one.

Cut-Sets

• For tree every edge is a cut-set

Properties of a Cut-Set

- Theorem 4.1 Every cut-set in a connected graph G must contain at least one branch of every spanning tree of G.
- Theorem 4.2 In a connected graph G, any minimal set of edges containing at least one branch of every spanning tree of G is a cut-set.

Properties of a Cut-Set

• Theorem 4.3 – Every circuit has an even number of edges in common with any cut-set.

Circuit Γ shown in heavy lines, and is traversed along the direction of the arrows

- Just as a spanning tree is essential for defining a set of fundamental circuits, so is a spanning tree essential for a set of *fundamental cut-sets*.
- A cut-set S containing exactly one branch of a tree T is called a *fundamental cut-set* with respect to T.

• Just as every chord of a spanning tree defines a *unique* fundamental circuit, every branch of a spanning tree defines a *unique* fundamental cut-set.

• Both fundamental cut-set and fundamental circuit has meaning only with respect to a *given* spanning tree.

• Theorem 4.4 – The ring sum of any two cut-sets in a graph is either a third cut-set or an edge-disjoint union of cut-sets.

- $\{d,e,f\} \oplus \{f,g,h\} = \{d,e,g,h\}$; another cut-set
- $\{a,b\} \oplus \{b,c,e,f\} = \{a,c,e,f\}$; another cut-set
- $\{d,e,g,h\} \oplus \{f,g,k\} = \{d,e,f,h,k\}$
- $= \{d,e,f\} \cup \{h,k\};$ an edge-disjoint union of cut-sets.

So, we found a way to generate more cut-sets

Fundamental Circuits & Cut-Sets

- Theorem 4.5 With respect to a given spanning tree T, a chord c_i that determines a fundamental circuit Γ occurs in every fundamental cutset associated with the branches in Γ and in no other.
- $T = \{b, c, e, h, k\}$
- $\Gamma = \{f, e, h, k\}$; taking f
- Cut-Sets produced
 - {*d*,*e*,*f*}
 - {*f*,*g*,*h*}
 - $\{f,g,k\}$

Fundamental Circuits & Cut-Sets

• Theorem 4.6 – With respect to a given spanning tree T, a branch b_i , that determines a fundamental cut-set S is contained in every fundamental circuit assosciated with the chords in S, an in no others.

- $T = \{b, c, e, h, k\}$
- Fundamental Cut-set by $e = \{d, e, f\}$
- F.C. for chord $d = \{d, c, e\}$
- F.C. for chord $f = \{e,h,k,f\}$

