ARTIFICIAL INTELLIGENCE

•••

N-QUEENS PROBLEM

GIVEN BY: DR. JAYLAKSHMI BANDA

PRESENTED BY:

DHEERAJ CHAUDHARY

(17BCS009)

PRIYA A TIRU (17BCS021)

PROBLEM STATEMENT/ HARDNESS

Using a regular chess board, the challenge is to place 8 queens on the board such that no queen is attacking any of the other.

SOLVING N-QUEENS PROBLEM

N < 4

Cannot use N Queens

Search Space: The set of objects among which we search for the solution

Example: N-queen configurations

Goal condition: This is the characteristics of the object we want to find in the search space?

Example: Non-attacking n-queen configuration

SOLUTION USING BACKTRACKING

One of the approach that guarantees a solution, though it can be slow

Can be seen as a form of intelligent depth-first search

MATHEMATICAL FORMULATION Iterative (non-

- search) For N > 4 only
 - N is even except $N \neq 6K+2$:
 - \bigcirc Row 1 to N/2: Queen on 2*Row
 - \bigcirc Row N/2+1 to N: Oueen on 2*Row-N-1
 - N is even, N = 6K+2
 - Queen on $(2*Row + N/2 3) \mod N + 1$ Row 1 to N/2:
 - Queen on N $(2*(N-Row+1) + N/2 3) \mod N$ Row N/2+1 to N:
 - N is odd:
 - When N is even, no queen is placed on position (1,1).
 - So this just places the first N-1 queens as on an N-1 (even) sized board, then places the last queen on the bottom right position (N,N).

CONSTRAINTS

- 1. There can be only one queen in a column, and another constraint prohibits two queens on the same diagonal.
- 2. No queens on the same row.

Thank you