

Abstract

When a drive power demand Pv^* is greater than 0, the control procedure of the invention sets the greater between an engine speed demand N_{req} and a lower engine speed limit N_{min} to a target rotation speed Ne^* of an engine (step S160). The engine speed demand N_{req} represents a rotation speed of the engine at a specific drive point that ensures efficient output of an engine power demand Pe^* . The lower engine speed limit N_{min} represents a rotation speed of the engine at another specific drive point for a constant-speed drive of a hybrid vehicle at a current vehicle speed v . When the drive power demand Pv^* is equal to 0, the control procedure of the invention cuts fuel supply to the engine and sets the lower engine speed limit N_{min} to the target rotation speed Ne^* of the engine (step S190). The engine is accordingly driven at the rotation speed of not lower than the lower engine speed limit N_{min} and has a quick response to a demand for output power increase from the engine. This arrangement desirably reduces the loading of a battery and prevents premature deterioration of the battery.