

Module Code & Title

CS6P05 Final Year Project

Food Share - Android App

Assessment Weightage & Type

Final Year Project Proposal (5%)

Supervisor By

Mr. Shekhar Timsina

Mr. Bishal Gharti Chhetri (GC)

Student Details

Name: Sita Ram Thing

London Met ID: 22015892

College ID: NP01MA4S220003

Islington College, Kathmandu

06 Oct 2023

Contents

1	. Intr	oduction:	. 1
	1.1.	Problem Statement	. 1
	1.2.	Project as Solutions	. 1
	1.3.	Aims and Objectives:	. 2
	1.4.	Expected Outcomes and Deliverables:	. 3
2	. Pro	ject risk, threats and contingency plans:	. 3
3	. Met	hodology	. 4
	3.1.	Waterfall Methodologies	. 4
	3.2.	Scrum Methodology (Agile)	. 5
	3.3.	Prototyping Methodology	. 6
	3.4.	Select Methodology	. 7
4	. Res	source Requirements:	. 9
	4.1.	Hardware	. 9
	4.2.	Software	. 9
4	. Wo	rk breakdown structure:	11
5	. Mile	estones:	12
6	. Pro	ject Gantt Chart:	13
7	. Cor	nclusion:	15
В	ibliogra	aphy	16

List of Table

Table 1:Advantage and disadvantages of Scrum	4
Table 2: Advantages and Disadvantages of Scrum	8
Table 3: Software Requirements	10
List of Figure	
Figure 1: Waterfall Methodology	5
Figure 2: Scrum Methodology	6
Figure 3: Prototyping Methodology	7
Figure 4: Scrum Methodology Evolutionary	8
Figure 5: Project Plans	11
Figure 6: Work Breakdown Structural Chart	12
Figure 7: Gantt Chart	14

1. Introduction:

In a world where technology continues to transform various facets of our lives, it's not surprising that the realm of charitable food donation is also benefiting from these advancements. The Weaste Food Donation App, known as "Food Share," represents a significant step forward in leveraging technology to address the critical issue of food scarcity and waste. The Food Share app seeks to revolutionize the way we approach food donations and redistribution.

Food scarcity and hunger remain persistent challenges globally, with countless individuals and families struggling to access nutritious meals. Simultaneously, an alarming amount of edible food goes to waste, contributing to environmental degradation. Recognizing these dual issues, the Food Share app aims to bridge the gap between surplus food sources and those in need, while also reducing food wastage. (Colony, 2022)

1.1. Problem Statement

Food waste is a significant global issue that encompasses the loss of edible food at various stages of the food supply chain, from production and distribution to consumption and disposal. The problem of food waste is a complex and interconnected issue with significant social, environmental, economic, and ethical dimensions. Addressing this problem requires a multifaceted approach that involves individuals, businesses, governments, and organizations at all levels to reduce food waste and its associated consequences. Addressing this problem requires local, national, and international coordinated efforts to reduce waste and ensure a more sustainable and equitable food system. Key aspects of the problem include:

1.2. Project as Solutions

This project will help to overcome the above problem statement. This application helps the food industry where donating and sharing to manage waste food. First and foremost, increased public awareness and education campaigns should inform individuals about the importance of donating edible surplus food, the safety

guidelines involved, and the positive social and environmental impact it can have. Additionally, technology can play a pivotal role in connecting donors with surplus food to organizations in need, minimizing logistical challenges. Finally, incentivizing food donations through tax incentives or other financial benefits can further encourage businesses and individuals to participate in this critical effort to reduce food waste and alleviate hunger.

- Utilize the waste food and waste food reduction.
- Utilize surplus food effectively,
- Raise social awareness about food waste,
- Facilitate food donation and distribution,
- Encourage responsible food handling and safety practices,
- Promote a sense of community and social responsibility,

1.3. Aims and Objectives:

Aims and Objectives:

The food donation app aims to efficiently bridge the gap between surplus food sources and individuals facing food insecurity, with a primary focus on redistributing edible food to those in need, thereby minimizing food waste and contributing to improved food access and reduced hunger in the community.

- To learn about the Android platform and its various features.
- > To understand and implement a database management system in the real world with the help of a relational database.
- To understand the working mechanism of mobile application
- > To learn about API programming (Rest API)
- To learn Android UI and material design with interactive design
- > To learn how to use different Adobe products which will be used in different designing stages of this app development.
- Research and implementation of current tools and technology that can be integrated into mobile applications.

1.4. Expected Outcomes and Deliverables:

- User views the history and user profile.
- To find the donate locations and effectively collect, and efficiently distribute food provisions.
- Provide opportunities for those who are interested in food donation and social work.
- The volunteers can find the donated food location and they can contact donors.
- Donners can get food distribution email message notification after completing the donation with feedback(rating)
- After contact with donors and receiver donors cannot be provided or donate food and the receiver cannot receive food for donations, they can complain to the admin.
- The food shop, restaurant, hotel, and food provide centre also food provide for the animal farmer for revenues generated.

2. Project risk, threats, and contingency plans:

Risk is described as the potential for exposure to hazard. Risk analysis is the process of examining a risk's potential effects. The following hazards might emerge in my project:

Risk and Threats	Contingency Plans			
Social networking risks in the system	Use network monitoring tools and			
where users do unnecessary work or	intrusion detection systems to promptly			
crime.	detect and respond to suspicious			
	network activity.			
The system has increased the server	User login or any server hit function			
	control where data is saved in the local			

cost.	server and get from a local database.			
Default to interactive designing UI/UX	Research and learn about the			
for the user.	designing			
The problem of DBMS creation and	Research directions and seek potential			
migration	enhancements			
Difficulties in getting real-time data	Research the following topic and get			
transactions from API through mobile	help from the supervisor.			
and web servers.				
Device or System crash	Back up the project in the Cloud			
Difficult on the remote server to data	Research and learn difficult parts and			
fetch	API authentication			
Not support in old version devices	Testing and rebuilding the project			

Table 1:Advantage and disadvantages of scrum

3. Methodology

3.1. Waterfall Methodologies

The Waterfall methodology is predicated on the idea that all project specifications can be acquired and comprehended in advance. The project manager makes every effort to fully comprehend the project sponsor's needs. Written requirements are used to explain each stage of the project, including the expenses, assumptions, risks, dependencies, success metrics, and dates for completion. These requirements are typically provided in a single document. During the analysis and design process, developers can identify design flaws,

preventing them from producing flawed code during the implementation step. Each stage of the process is delayed when one is, and vice versa. (Team, 2022)

Figure 1: Waterfall methodology

3.2. Scrum Methodology (Agile)

The Scrum methodology would be a good fit for the software creation project for "Allgemein", as it is an Agile framework that emphasizes iterative development and continuous feedback. Given the dynamic nature of the entertainment and transport industries, it is important to have a flexible and adaptive approach to software. Scrum also promotes collaboration between cross-functional teams where this project does not team, but it can be useful for a project that involves different aspects. Additionally, the Scrum framework includes regular meetings and feedback sessions, which can help ensure that the software meets the company's evolving needs and requirements.

The Scrum methodology is well-suited for projects with changing or uncertain requirements, which is often the case in software development. Scrum can help the team adapt to changing needs and requirements over time by breaking the project into smaller, manageable chunks. (S, 2023)

Figure 2: Scrum Methodology

3.3. Prototyping Methodology

A prototype is produced, tested, and revised until it is acceptable according to the prototyping paradigm of software development. It also lays the groundwork for the creation of the finished software or system. It functions well in circumstances where the project requirements are not fully understood. The process is iterative and based on trial and error between the client and developer. Users have an active role in the development process. As a result, problems can be found early on in the software development process. Since a prototype is ultimately discarded, the investment in creating one is completely wasted. The use of prototypes could induce too many modification requests. (Martin, 2023)

Figure 3: Prototyping Methodology

3.4. Select Methodology

Evolutionary Scrum:

The Scrum methodology is well-suited for projects with changing or uncertain requirements, which is often the case in software development. Scrum can help them adapt to changing needs and requirements over time by breaking the project into smaller, manageable chunks. It accommodates iterative development, making it suitable for projects with evolving goals. The scrum methodology can make it easy to adapt some changes and features and it can be helpful to my project. So, I will choose this methodology for the FYP project.

Figure 4: Scrum Methodology evolutionary

The advantages and disadvantages of evolutionary prototyping are:

Advantages	Disadvantages		
It is highly adaptable and allows	A solo practitioner might miss potential		
teams to respond quickly to changing	risks or not have the resources to		
requirements and priorities.	address them effectively.		
Weekly Standup meetings facilitate	A solo practitioner may struggle to		
information sharing, issue resolution,	gather diverse perspectives, potentially		
and team synchronization.	leading to tunnel vision and less		
	informed choices.		
It is highly adaptable and allows	Scrum defines specific roles like		
teams to respond quickly to changing	Product Owner, Scrum Master, and		
requirements and priorities.	Development Team. Working alone		
	makes it unclear who should fulfil these		
	roles, leading to role ambiguity.		

Table 2: Advantages and Disadvantages of Scrum

4. Resource Requirements:

This project needs various hardware and software tools that are given below:

• Emulator: Android Mobile or Default Android Studio Emulator

Internet Connection

• IDE: Android Studio

• Code Editor: Visual Studio Code

• Programming Language: Kotlin, Python, HTML/CSS

• Framework: Django, Rest and JetPack Compose

Database: SQLite, RoomVersion Control: GitHub

• Tools: Draw.io, TeamGantt, Balsmiq, etc.

4.1. Hardware

The hardware requirements are given below:

o PC with window 10

Android Mobile Phone

4.2. Software

The software requirements are given below:

Technology	Version	Purpose	
Kotlin	1.9.10	Kotlin is the programming language and	
Jet Pack Compose	1.5.1	compose is the modern design tool	
-		kids(framework) that will be used in the	
		front-end development of the project.	
Python	3.11.2	Python is used for backend developmen	
2. Django	4.2.5	in Django and Rest Framework will be	

3. Rest Framework	(LTS)	used in the project.	
	3.14.0		
Database	3.8.3	It can be used for data storage on local	
• SQLite	2.5.2	and remote servers.	
• Room			
HTML		HTML will be used to develop the	
		webpage that displays all the necessary	
		information that is admin panel with the	
		help of Bootstrap.	
Firebase		Firebase is used for real-time data	
		analysis and push notifications.	
Documentation Software		Various software is required for the	
		process of documentation. Some of them	
		are MS Word (Microsoft Word), Design	
		tools (Draw.io, TeamGantt, Balsmiq) etc.	

Table 3: Software requirements

4. Work breakdown structure:

4.1 Project plans

Research to topic		Durations	Stat Date	End Date
Phase 1: Planning and Requirement Analysis		17 days	13/092023	29/09/2023
Task 1: Research and project finalize		6 days	13/092023	18/09/2023
Task 2: Scrum planning		7 days	19/09/2023	25/09/2023
Task 3: Client meeting		2 days	26/09/2023	27/09/2023
Task 4: Requirement collection		2 days	28/09/2023	29/09/2023
Phase 2: Defining Requirements		2 weeks	1/10/2023	14/10/2023
Task 1: User stories		7 days	1/10/2023	7/10/2023
Task 2: Product Backlog		7 days	8/10/2023	14/10/2023
Dhace 2: Designing the Brainet Architecture		3 weeks	15/10/2023	11/11/2023
Phase 3: Designing the Project Architecture		7 days	15/10/2023	21/10/2023
Task 1: Usecase, Sequence, and Context diagram develop Task 2: DFD, class diagram, Activity diagram develop			29/10/2023	4/11/2023
Task 2: BFD, Class diagram, Activity diagram develop		7 days 7 days	5/11/2023	11/11/2023
lask 5: END, System Architecture, Wirehame develop		/ uays	3/11/2023	11/11/2023
Phase 4: Building or Developing the Project		14 weeks	20/11/2023	9/3/2024
Sprint 1: DBMS creation		2 weeks	19/11/2023	5/12/2023
	Sprint Planning	1 day	19/11/2023	19/11/2023
	Sprint Backlog	1 day	20/11/2023	20/11/2023
	Development	7 days	21/11/2023	29/11/2023
	Testing	2 days	30/11/2023	1/12/2023
	Sprint Review, Retrospective and Release	1 day	4/11/2023	5/12/2023
	Spirit Hericity, netrospective and release	2 00 7	4/11/2023	3/12/2023
Sprint 2: API development	Same process of Sprint 1	2 weeks	3/12/2023	16/12/2023
Sprint 3: Web development with UI	Same process of Sprint 1	2 weeks	17/12/2023	30/12/2024
Sprint 4: Local database with CRUD and Retrofit to API call	Same process of Sprint 1	2 weeks	31/12/2023	13/1/2024
Sprint 5: Mobile UI development	Same process of Sprint 1	2 weeks	14/1/2024	27/01/2-24
Sprint 6: Authentication development	Same process of Sprint 1	2 weeks	28/01/2024	10/02/2024
Sprint 7: Frontend and backend connection	Same process of Sprint 1	2 weeks	11/02/2024	24/2/2024
Sprint 8: Google services and Firebase implement	Same process of Sprint 1	2 weeks	25/2/2024	09/03/2024
Phase 5: Testing		2 weeks	10/3/2024	16/03/2024
Task 1: Final Testing				
Phase 6: Project Deployment		3 weeks	17/03/2024	06/04/2024
Task 1: Summarize the deployment project		7 days	17/03/2024	23/03/2024
Task 2: Document and mitigate risks		14 days	24/03/2024	6/4/2024
Phase 7: Maintenance and Release		2 weeks	7/4/2024	20/4/2024
Task 1: Budge and problem maintain		7 days	7/4/2024	13/4/2024
Task 2: Project review and submit		7 days	14/4/2024	20/4/2024

Figure 5: Project plans

4.2 WBS

Figure 6: Work Breakdown Structural Chart

5. Milestones:

- ✓ Milestone 1: Planning and Requirement Analysis
- ✓ Milestone 2: Requirements Gathering
- ✓ Milestone 3: Designing the Project Architecture
- ✓ Milestone 4: Building or Developing the Project
- ✓ Milestone 5: Testing
- ✓ Milestone 6: Project Deployment
- ✓ Milestone 7: Maintenance and Release

6. Project Gantt Chart:

Figure 7: Gantt Chart

7. Conclusion:

The proposed "Food Share" app represents a significant step forward in addressing the critical issue of food waste while fostering a sense of community and social responsibility. The displaced Food Donations app has the potential to make a substantial impact on reducing food waste, alleviating hunger, and a more environmentally conscious society. It encourages individuals, businesses, and organizations to participate actively in a shared mission of reducing food waste and ensuring that edible surplus food reaches those who can benefit from it.

This project will adopt an evolutionary scrum methodology and will cater specifically to individuals in need, particularly the impoverished or homeless, who require access to fresh food and are willing to participate in food donation through the utilization of technology in a systematic manner. The project timeline estimates a completion period of 6 to 7 months from the initial start date, with this goal achieved by breaking down the project into smaller, manageable tasks.

Bibliography

Colony, R. V., 2022. Emizentech. [Online]

Available at: https://www.emizentech.com/blog/food-waste-management-app-

development.html

[Accessed 04 09 2023].

Martin, M., 2023. *Guru99*. [Online]

Available at: https://www.guru99.com/software-engineering-prototyping-model.html

[Accessed 11 10 1012].

S, B., 2023. nimble humanize Work. [Online]

Available at: https://www.nimblework.com/agile/scrum-methodology/

[Accessed 28 02 2023].

Team, A. C., 2022. Waterfall Methodology: A Complete Guide. [Online]

Available at:

https://business.adobe.com/blog/basics/waterfall#:~:text=The%20Waterfall%20methodo logy%20%E2%80%94%20also%20known,before%20the%20next%20phase%20begins [Accessed 04 10 2023].