

Unità 2 Modello relazionale e algebra relazionale

Modello relazionale e algebra relazionale

Modello relazionale

- □ Introduzione
- □ Definizioni
- □ Riferimenti tra relazioni

- □ Chiave primaria
- ∑ Vincoli di tupla e di dominio

Modello relazionale

- □ Proposto da E.F. Codd nel 1970 per elevare il livello di astrazione rispetto ai modelli precedenti
 - indipendenza dei dati
- □ Basato sul concetto matematico di *relazione*
 - ogni relazione è rappresentata in modo informale per mezzo di una tabella

- \supset Le n-uple (righe) *non* sono ordinate
- □ Le n-uple sono distinte tra loro (non esistono righe duplicate)
- ☐ Gli attributi non sono ordinati (non è possibile individuare un attributo mediante la sua posizione)

Riferimenti tra relazioni

- ∑ Il modello relazionale è basato sui valori
 - i riferimenti tra dati in relazioni diverse sono rappresentati per mezzo di valori dei domini

Riferimento basato su valori: esempio

Corsi

Codice	Nome	MatrDocente
M2170	Fondamenti di informatica	D101
M4880	Sistemi di elaborazione	D102
F0410	Basi di dati	D321

Docenti

Matricola	Nome	Dipartimento	Telefono
D101	Verdi	Informatica	123456
D102	Bianchi	Elettronica	636363
D321	Neri	Informatica	414243

- ∑ Il modello relazionale è basato sui valori
 - i riferimenti tra dati in relazioni diverse sono rappresentati per mezzo di valori dei domini
- - indipendenza dalle strutture fisiche
 - rappresentazione solo dell'informazione rilevante
 - maggiore portabilità dei dati tra sistemi diversi
 - legame non orientato, a differenza dei puntatori

Assenza di valore

Informazione incompleta

- È possibile che alcune informazioni non siano disponibili per tutte le n-uple della relazione
- ☐ EsempioStudente (Matricola, Cognome,DataNascita, Telefono, AnnoLaurea)
 - telefono può essere (temporaneamente?) ignoto
 - per studente ancora non laureato, anno laurea non definito
 - per studente appena laureato, anno laurea non ancora definito o ignoto

- È possibile rappresentare l'assenza di valore mediante un valore "speciale" appartenente al dominio (0, stringa nulla, 999, ...)
 - occorre che esista un valore non utilizzato (esempio: AnnoLaurea=0, Telefono=?)
 - valori inizialmente non utilizzati potrebbero diventare necessari (Telefono= 999999)
 - nelle applicazioni è necessario trattare separatamente i valori "speciali"
- □ Rappresentazione non adeguata

- □ Definizione di un valore speciale denominato valore nullo (NULL)
 - non fa parte di alcun dominio
 - rappresenta sia valore ignoto, sia valore non definito
 - deve essere utilizzato con cautela (esempio: Matricola=NULL?)

Vincoli di integrità

Vincoli d'integrità							
Corsi	Codice	Ν	ome		MatrDocente		
	M2170	Fo	ondamenti	i di informatica	D101		
	FQ410	Sistemi di elaborazione			D102		
	F0410	Basi di dati			D321		
Docenti	Matricol	a	Nome	Dipartimento	Telefono		
	D101		Verdi	Informatica	123456		
	D102		Bianchi	Elettronica	636363		
	D321 Neri I		Informatica	414243			
$D_{M}^{B}G$							

TO SECOND				Vinco	li d'integri	ità
Corsi	Codice	N	ome		MatrDocent	e
	M2170	Fo	ondament	i di informatica	D101	
	M4880	Si	stemi di e	laborazione	D102	
	F0410	Basi di dati			D321	
Docenti	Matrico	la	Nome	Dipartimento	Telefono	
	D101		Verdi	Informatica	123456	
	D102		Bianchi	Elettronica	636363	
	D321		Neri	Informatica	414243	
$D_{M}^{B}G$						

- - proprietà che deve essere soddisfatta da tutte le istanze corrette della base di dati
- ∑ Tipi di vincolo
 - vincoli intra-relazionali, definiti sugli attributi di una sola relazione (esempi: vincoli di unicità, vincoli di dominio e di n-upla)
 - vincoli inter-relazionali, definiti su più relazioni contemporaneamente (esempio: vincoli d'integrità referenziale)

Chiave primaria

Studenti

Matricola	Nome	Cognome	DataNascita	AnnoImmatricolazione
64655	Marco	Rossi	4/8/1978	1998
81999	Luca	Bianco	4/8/1978	1999
75222	Marco	Rossi	8/3/1979	1998

- Non esistono due studenti con lo stesso valore per il numero di matricola
 - il numero di matricola identifica gli studenti

Identificazione univoca delle n-uple

Studenti

Matricola	Nome	Cognome	DataNascita	AnnoImmatricolazione
64655	Marco	Rossi	4/8/1978	1998
81999	Luca	Bianco	4/8/1978	1999
75222	Marco	Rossi	8/3/1979	1998

- ∑ Non esistono due studenti con lo stesso valore per i dati anagrafici
 - nome, cognome e data di nascita identificano gli studenti

- □ Una chiave è un insieme di attributi che identifica in modo univoco le n-uple di una relazione
 - è una proprietà dello schema di una relazione
- □ Definizione formale: un insieme K di attributi è chiave di una relazione r se
 - la relazione r non contiene due n-uple distinte con gli stessi valori per K (univocità)
 - K è minimale (cioè non esistono sottoinsiemi propri di K ancora univoci)

- □ Un insieme K di attributi è chiave di una relazione r se
 - la relazione r non contiene due n-uple distinte con gli stessi valori per K (univocità)
 - K è minimale (cioè non esistono sottoinsiemi propri di K ancora univoci)
- ∑ Se è verificata solo la prima proprietà, K è una superchiave di r

- ∠'insieme di attributi
 - {Matricola,Nome}
 - è univoco, ma non minimale (l'attributo Matricola è univoco anche da solo), quindi è una superchiave, ma *non* è una chiave
- ∠ L'insieme di attributi
 - {DataNascita, AnnoImmatricolazione} è univoco e minimale: è una proprietà generale?

- ∑ Se una chiave può assumere il valore NULL si perde la proprietà di univocità della chiave
 - è necessario limitare la presenza di valori nulli nelle chiavi
- ∑ Soluzione
 - si definisce una chiave di riferimento, che non ammette valori nulli, detta chiave primaria
 - le altre chiavi (chiavi candidate) possono ammettere valori nulli
 - i riferimenti tra dati in relazioni diverse sono eseguiti mediante la chiave primaria

Vincoli di tupla e di dominio

- esprime condizioni sul valore assunto da un singolo attributo di una tupla
 - può essere un'espressione booleana (and, or, not) di predicati semplici
- esempio: Voto > 0 and Voto ≤ 30

- esprime condizioni sul valore assunto da singole tuple, in modo indipendente dalle altre tuple della relazione
 - può correlare attributi diversi
 - può essere un'espressione booleana (and, or, not) di predicati semplici (confronto tra attributi, tra attributi e costanti, ...)
- esempio: Prezzo = Costo + PercIVA*Costo

Vincoli di integrità referenziale

Vincoli d'integrità referenziale

☐ Informazioni in relazioni diverse sono correlate attraverso valori comuni di uno o più attributi

Corsi

Codice	Nome	MatrDocente
M2170	Fondamenti di informatica	D101
M4880	Sistemi di elaborazione	D102
F0410	Basi di dati	D321

Docenti

Matricola	Nome	Dipartimento	Telefono
D101	Verdi	Informatica	123456
D102	Bianchi	Elettronica	636363
D321	Neri	Informatica	414243

Vincoli d'integrità referenziale

- ☐ Informazioni in relazioni diverse sono correlate attraverso valori comuni di uno o più attributi
 - l'attributo MatrDocente nella relazione Corsi fa riferimento a Matricola nella relazione Docenti
- ☐ I valori assunti da un attributo nella relazione referenziante devono esistere effettivamente come valori di un attributo nell'istanza della relazione referenziata
 - i valori assunti dall'attributo MatrDocente nella relazione Corsi devono esistere come valori dell'attributo Matricola nelle relazione Docente

Vincoli d'integrità referenziale

- - date due relazioni
 - R (relazione referenziata)
 - S, che fa riferimento ad R mediante l'insieme di attributi X (relazione referenziante)
 - i valori assunti dall'insieme X di S possono essere esclusivamente valori assunti effettivamente dalla chiave primaria di R
- ∠ L'insieme di attributi X di S costituisce una chiave esterna (o foreign key) di S

Vincoli d'integrità referenziale

☐ I vincoli d'integrità referenziale sono fondamentali per garantire la correttezza dei riferimenti (riferimento basato sui valori)

