```
In [4]:
```

```
import pandas as pd
import numpy as np
whr=pd.read_csv('World Happiness Report.csv')
```

In [5]:

whr

Out[5]:

	Country	Happiness Rank	Happiness Score	Economy	Family	Health	Freedom	Generosity	Corruption	Dystopia	Job Satisfaction	Regi
0	Norway	1	7.537	1.616463	1.533524	0.796667	0.635423	0.362012	0.315964	2.277027	94.6	Weste Euro
1	Denmark	2	7.522	1.482383	1.551122	0.792566	0.626007	0.355280	0.400770	2.313707	93.5	Weste Euro
2	Iceland	3	7.504	1.480633	1.610574	0.833552	0.627163	0.475540	0.153527	2.322715	94.5	Weste Euro
3	Switzerland	4	7.494	1.564980	1.516912	0.858131	0.620071	0.290549	0.367007	2.276716	93.7	Weste Euro
4	Finland	5	7.469	1.443572	1.540247	0.809158	0.617951	0.245483	0.382612	2.430182	91.2	Weste Euro
148	Rwanda	151	3.471	0.368746	0.945707	0.326425	0.581844	0.252756	0.455220	0.540061	51.7	Afr
149	Syria	152	3.462	0.777153	0.396103	0.500533	0.081539	0.493664	0.151347	1.061574	62.7	As Pac
150	Tanzania	153	3.349	0.511136	1.041990	0.364509	0.390018	0.354256	0.066035	0.621130	57.8	Afr
151	Burundi	154	2.905	0.091623	0.629794	0.151611	0.059901	0.204435	0.084148	1.683024	54.3	Afr
152	Central African Republic	155	2.693	0.000000	0.000000	0.018773	0.270842	0.280876	0.056565	2.066005	70.4	Afr

153 rows × 12 columns

In [6]:

whr.dtypes

Out[6]:

Country object
Happiness Rank int64
Happiness Score float64
Economy float64
Family float64 float64 float64 Family Health float64 Freedom float64 Generosity float64 Corruption float64 Dystopia Job Satisfaction float64 Region object dtype: object

In [7]:

whr.columns

Out[7]:

```
dtype='object')
```

In [8]:

whr.describe()

Out[8]:

	Happiness Rank	Happiness Score	Economy	Family	Health	Freedom	Generosity	Corruption	Dystopia	Job Satisfaction
count	153.000000	153.000000	153.000000	153.000000	153.000000	153.000000	153.000000	153.000000	153.000000	151.000000
mean	78.169935	5.349281	0.982433	1.186630	0.550117	0.408489	0.245324	0.123179	1.853072	75.209934
std	45.008741	1.134997	0.421901	0.288441	0.237769	0.150744	0.134395	0.102133	0.499490	12.962365
min	1.000000	2.693000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.377914	44.400000
25%	40.000000	4.497000	0.659517	1.041990	0.364509	0.300741	0.153075	0.057070	1.597970	68.950000
50%	78.000000	5.279000	1.064578	1.251826	0.606042	0.437454	0.231503	0.089848	1.832910	78.100000
75%	117.000000	6.098000	1.315175	1.416404	0.719217	0.518631	0.322228	0.153066	2.150801	85.100000
max	155.000000	7.537000	1.870766	1.610574	0.949492	0.658249	0.838075	0.464308	3.117485	95.100000

In [9]:

whr.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 153 entries, 0 to 152
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype					
0	Country	153 non-null	object					
1	Happiness Rank	153 non-null	int64					
2	Happiness Score	153 non-null	float64					
3	Economy	153 non-null	float64					
4	Family	153 non-null	float64					
5	Health	153 non-null	float64					
6	Freedom	153 non-null	float64					
7	Generosity	153 non-null	float64					
8	Corruption	153 non-null	float64					
9	Dystopia	153 non-null	float64					
10	Job Satisfaction	151 non-null	float64					
11	Region	153 non-null	object					
dtyp	dtypes: float64(9), int64(1), object(2)							

In [10]:

import seaborn as sns
import matplotlib.pyplot as plt
sns.heatmap(whr.isnull())
plt.show()

memory usage: 14.5+ KB

таррі Нарріі

In [11]:

```
whr.isnull().sum()
```

Out[11]:

0 Country Happiness Rank 0 Happiness Score 0 Economy 0 Family 0 Health Freedom 0 Generosity Corruption 0 Dystopia 0 Job Satisfaction 0 Region dtype: int64

In [12]:

```
whr.dropna(inplace=True)
```

In [13]:

```
whr.isnull().sum()
```

Out[13]:

Country Happiness Rank 0 0 Happiness Score Economy 0 Family Health 0 Freedom 0 Generosity Corruption Dystopia 0 Job Satisfaction 0 Region 0 dtype: int64

In [14]:

```
sns.heatmap(whr.isnull())
plt.show()
```


In [15]:

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
list1=['Country','Region']
for val in list1:
    whr[val]=le.fit_transform(whr[val].astype(str))
```

In [16]:

whr.head()

Out[16]:

	Country	Happiness Rank	Happiness Score	Economy	Family	Health	Freedom	Generosity	Corruption	Dystopia	Job Satisfaction	Region
0	102	1	7.537	1.616463	1.533524	0.796667	0.635423	0.362012	0.315964	2.277027	94.6	6
1	36	2	7.522	1.482383	1.551122	0.792566	0.626007	0.355280	0.400770	2.313707	93.5	6
2	56	3	7.504	1.480633	1.610574	0.833552	0.627163	0.475540	0.153527	2.322715	94.5	6
3	129	4	7.494	1.564980	1.516912	0.858131	0.620071	0.290549	0.367007	2.276716	93.7	6
4	43	5	7.469	1.443572	1.540247	0.809158	0.617951	0.245483	0.382612	2.430182	91.2	6

In [17]:

#conutry and region are drop and happpiness rank is droped because rank can be formed after knowin
g happiness score
whrl=whr.drop(['Country','Region','Happiness Rank'],axis=1)
whrl

Out[17]:

	Happiness Score	Economy	Family	Health	Freedom	Generosity	Corruption	Dystopia	Job Satisfaction
0	7.537	1.616463	1.533524	0.796667	0.635423	0.362012	0.315964	2.277027	94.6
1	7.522	1.482383	1.551122	0.792566	0.626007	0.355280	0.400770	2.313707	93.5
2	7.504	1.480633	1.610574	0.833552	0.627163	0.475540	0.153527	2.322715	94.5
3	7.494	1.564980	1.516912	0.858131	0.620071	0.290549	0.367007	2.276716	93.7
4	7.469	1.443572	1.540247	0.809158	0.617951	0.245483	0.382612	2.430182	91.2
148	3.471	0.368746	0.945707	0.326425	0.581844	0.252756	0.455220	0.540061	51.7
149	3.462	0.777153	0.396103	0.500533	0.081539	0.493664	0.151347	1.061574	62.7
150	3.349	0.511136	1.041990	0.364509	0.390018	0.354256	0.066035	0.621130	57.8
151	2.905	0.091623	0.629794	0.151611	0.059901	0.204435	0.084148	1.683024	54.3
152	2.693	0.000000	0.000000	0.018773	0.270842	0.280876	0.056565	2.066005	70.4

151 rows × 9 columns

In [18]:

```
whr1.skew()
```

Out[18]:

Happiness Score	0.018978			
Economy	-0.388885			
Family	-1.186278			
Health	-0.582749			
Freedom	-0.617270			
Generosity	0.925782			
Corruption	1.471012			
Dystopia	-0.251490			
Job Satisfaction	-0.613859			

dtype: float64

In [19]:

whr1.corr()

Out[19]:

	Happiness Score	Economy	Family	Health	Freedom	Generosity	Corruption	Dystopia	Job Satisfaction
Happiness Score	1.000000	0.808678	0.749612	0.777731	0.567948	0.164123	0.438262	0.481117	0.812873
Economy	0.808678	1.000000	0.685524	0.838884	0.363843	-0.015614	0.358750	0.022620	0.700662
Family	0.749612	0.685524	1.000000	0.606674	0.412633	0.050771	0.236262	0.075480	0.623266
Health	0.777731	0.838884	0.606674	1.000000	0.340986	0.068895	0.286777	0.055886	0.704795
Freedom	0.567948	0.363843	0.412633	0.340986	1.000000	0.319387	0.501632	0.092923	0.500655
Generosity	0.164123	-0.015614	0.050771	0.068895	0.319387	1.000000	0.292363	-0.102683	0.220032
Corruption	0.438262	0.358750	0.236262	0.286777	0.501632	0.292363	1.000000	-0.014995	0.337131
Dystopia	0.481117	0.022620	0.075480	0.055886	0.092923	-0.102683	-0.014995	1.000000	0.281655
Job Satisfaction	0.812873	0.700662	0.623266	0.704795	0.500655	0.220032	0.337131	0.281655	1.000000

In [20]:

```
plt.figure(figsize=(10,6))
sns.heatmap(whr1.corr(),annot=True)
```

Out[20]:

<matplotlib.axes. subplots.AxesSubplot at 0x211d83d6308>

In [21]:

```
whr1.plot(kind='box',subplots=True,layout=(2,7))
```

Out[21]:

Happiness Score Economy Family Health AxesSubplot(0.125,0.536818;0.0945122x0.343182)
AxesSubplot(0.238415,0.536818;0.0945122x0.343182)
AxesSubplot(0.351829,0.536818;0.0945122x0.343182)
AxesSubplot(0.465244,0.536818;0.0945122x0.343182)

Freedom
Generosity
Corruption
Dystopia
Job Satisfaction
dtype: object

AxesSubplot(0.5/8659,0.536818;0.0945122x0.343182)
AxesSubplot(0.692073,0.536818;0.0945122x0.343182)
AxesSubplot(0.805488,0.536818;0.0945122x0.343182)
AxesSubplot(0.125,0.125;0.0945122x0.343182)
AxesSubplot(0.238415,0.125;0.0945122x0.343182)

In [22]:

#Removing outliers
from scipy.stats import zscore
z_score=abs(zscore(whr1))
print(whr1.shape)
whr_df=whr1.loc[(z_score<3).all(axis=1)]
print(whr_df.shape)</pre>

(151, 9) (146, 9)

In [23]:

whr_df

Out[23]:

	Happiness Score	Economy	Family	Health	Freedom	Generosity	Corruption	Dystopia	Job Satisfaction
0	7.537	1.616463	1.533524	0.796667	0.635423	0.362012	0.315964	2.277027	94.6
1	7.522	1.482383	1.551122	0.792566	0.626007	0.355280	0.400770	2.313707	93.5
2	7.504	1.480633	1.610574	0.833552	0.627163	0.475540	0.153527	2.322715	94.5
3	7.494	1.564980	1.516912	0.858131	0.620071	0.290549	0.367007	2.276716	93.7
4	7.469	1.443572	1.540247	0.809158	0.617951	0.245483	0.382612	2.430182	91.2
146	3.507	0.244550	0.791245	0.194129	0.348588	0.264815	0.110938	1.552312	55.1
147	3.495	0.305445	0.431883	0.247106	0.380426	0.196896	0.095665	1.837229	44.8
149	3.462	0.777153	0.396103	0.500533	0.081539	0.493664	0.151347	1.061574	62.7
150	3.349	0.511136	1.041990	0.364509	0.390018	0.354256	0.066035	0.621130	57.8
151	2.905	0.091623	0.629794	0.151611	0.059901	0.204435	0.084148	1.683024	54.3

...

146 rows × 9 columns

In [24]:

```
sns.pairplot(whr_df)
```

Out[24]:

<seaborn.axisgrid.PairGrid at 0x211d8124a48>

In [25]:

x1=whr_df.iloc[:,1:-1]
x1.head()

Out[25]:

	Economy	Family	Health	Freedom	Generosity	Corruption	Dystopia
0	1.616463	1.533524	0.796667	0.635423	0.362012	0.315964	2.277027
1	1.482383	1.551122	0.792566	0.626007	0.355280	0.400770	2.313707
2	1.480633	1.610574	0.833552	0.627163	0.475540	0.153527	2.322715
3	1.564980	1.516912	0.858131	0.620071	0.290549	0.367007	2.276716
4	1.443572	1.540247	0.809158	0.617951	0.245483	0.382612	2.430182

In [26]:

y=whr_df.iloc[:,0]
y.head()

Out[26]:

```
7.522
1
    7.504
2
    7.494
3
     7.469
Name: Happiness Score, dtype: float64
In [27]:
x1.shape
Out [27]:
(146, 7)
In [28]:
y.shape
Out[28]:
(146,)
In [29]:
x1.skew()
Out[29]:
Economy
             -0.451234
Family
             -0.933474
            -0.610641
Health
            -0.603302
Freedom
Generosity
            0.564921
            1.354733
Corruption
Dystopia
            -0.222308
dtype: float64
In [30]:
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x=sc.fit transform(x1)
x=pd.DataFrame(x,columns=x1.columns)
In [31]:
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LinearRegression
scr=cross val score(LinearRegression(),x,y,cv=5,scoring="r2")
scr
Out[31]:
array([0.99999932, 0.99999745, 0.999999476, 0.999999846, 0.99999908])
In [32]:
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean absolute error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2 score
from sklearn import linear model
from sklearn.linear model import LinearRegression
max r score=0
for r_state in range (40,140):
   x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=r_state,test_size=.20)
    regr=linear_model.LinearRegression()
    regr.fit(x_train,y_train)
    y_pred=regr.predict(x test)
    r scr=r2 score(v test, v pred)
```

```
if r scr>max_r_score:
        max_r_score=r_scr
        final_r_state=r_state
print("max r2 score corresponding to ", final r state, "is", max r score)
max r2 score corresponding to 72 is 0.9999999597150357
In [33]:
from sklearn.linear_model import LinearRegression, Lasso, Ridge, ElasticNet
from sklearn.svm import SVR
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_score
import warnings
warnings.filterwarnings('ignore')
In [34]:
model=[LinearRegression(),DecisionTreeRegressor(),KNeighborsRegressor(),SVR(),Lasso(),Ridge(),Elast
icNet()]
for m in model:
    x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=72,test_size=.20)
   m.fit(x_train,y_train)
   print('Score of', m, 'is:', m.score(x train, y train))
   predm=m.predict(x test)
    print('Error:')
    print('Mean Absolute Error :', mean absolute error(y test, predm))
    print('Mean Squared Error :', mean squared error(y test,predm))
    print('r2_score',r2_score(y_test,predm))
print('***********************
*******)
    print('\n')
Score of LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False) is: 0.999
Mean Absolute Error : 0.00021959141033075133
Mean Squared Error: 7.086539738680373e-08
r2_score 0.9999999597150357
                              *****************
Score of DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=None,
                     max_features=None, max_leaf_nodes=None,
                     min impurity decrease=0.0, min impurity split=None,
                     min samples leaf=1, min samples split=2,
                     min_weight_fraction_leaf=0.0, presort='deprecated',
                     random state=None, splitter='best') is: 1.0
Error.
Mean Absolute Error: 0.47063338760000023
Mean Squared Error: 0.3562189754441714
r2 score 0.7974996371403085
Score of KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski',
                   metric_params=None, n_jobs=None, n_neighbors=5, p=2,
                   weights='uniform') is: 0.9405887466231456
Error:
Mean Absolute Error: 0.27515335242666694
Mean Squared Error: 0.11123523076531455
r2 score 0.9367659329077824
Score of SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='scale',
```

```
Kernel='rpi', max iter=-1, snrinking=True, to1=0.001, Verpose=False) is: 0.9923499880002044
Error:
Mean Absolute Error: 0.1936537190140878
Mean Squared Error: 0.09968882511481529
r2_score 0.9433297363408698
                          *****************
Score of Lasso(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=1000,
     normalize=False, positive=False, precompute=False, random state=None,
     selection='cyclic', tol=0.0001, warm_start=False) is: 0.0
Error:
Mean Absolute Error : 1.157019536845977
Mean Squared Error: 1.776346063540471
r2 score -0.009802248694935178
____
Score of Ridge(alpha=1.0, copy X=True, fit intercept=True, max iter=None,
    normalize=False, random state=None, solver='auto', tol=0.001) is: 0.9999640837339236
Error:
Mean Absolute Error : 0.006592445196220931
Mean Squared Error: 5.3723550891431e-05
r2 score 0.9999694596882829
Score of ElasticNet(alpha=1.0, copy X=True, fit intercept=True, 11 ratio=0.5,
         max iter=1000, normalize=False, positive=False, precompute=False,
         random state=None, selection='cyclic', tol=0.0001, warm start=False) is: 0.3339069944387
446
Error:
Mean Absolute Error : 0.9544786811555931
Mean Squared Error: 1.1831572139138233
r2 score 0.3274087523303183
In [35]:
from sklearn.model selection import cross val score
for m in model:
   score=cross val score(m, x, y, cv=5, scoring='r2')
   print('Score of',m,'is:',score)
   print('Mean score:',score.mean())
   print('Standard deviation:',score.std())
******
   print('\n')
Score of LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False) is: [0.99]
999932 0.99999745 0.999999476 0.999999846 0.999999908]
Mean score: 0.999997813968106
Standard deviation: 1.658043667759746e-06
                   *****************
Score of DecisionTreeRegressor(ccp alpha=0.0, criterion='mse', max depth=None,
                   max features=None, max leaf nodes=None,
                   min impurity decrease=0.0, min impurity split=None,
                   min samples leaf=1, min samples split=2,
                   min weight fraction leaf=0.0, presort='deprecated',
                   random_state=None, splitter='best') is: [ -4.39130893 -10.89415722 -
32.68135669 -5.12440354 -3.94220177]
Mean score: -11.406685628269326
Standard deviation: 10.929550877393511
```

```
Score of KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski',
                  metric_params=None, n_jobs=None, n_neighbors=5, p=2,
                  weights='uniform') is: [-5.89088001 -2.25108545 -6.49121131 -3.12479166 -5.6726
90421
Mean score: -4.68613176987301
Standard deviation: 1.6763210882366675
******************
Score of SVR(C=1.0, cache size=200, coef0=0.0, degree=3, epsilon=0.1, gamma='scale',
   kernel='rbf', max iter=-1, shrinking=True, tol=0.001, verbose=False) is: [-10.07675395 0.3933
0088 0.66781179 0.6879335 -7.79390585]
Mean score: -3.2243227272973116
Standard deviation: 4.719715331414879
                                  *************
Score of Lasso(alpha=1.0, copy X=True, fit intercept=True, max iter=1000,
     normalize=False, positive=False, precompute=False, random_state=None,
     selection='cyclic', tol=0.0001, warm start=False) is: [-28.28635306 -16.71472884 -
0.12327462 -13.10567121 -34.03136464]
Mean score: -18.45227847237902
Standard deviation: 11.890959750263681
Score of Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
     normalize=False, random state=None, solver='auto', tol=0.001) is: [0.99726087 0.99876076
0.99910396 0.99908454 0.99808084]
Mean score: 0.9984581963237954
Standard deviation: 0.0007038254527990534
Score of ElasticNet(alpha=1.0, copy X=True, fit intercept=True, 11 ratio=0.5,
         max iter=1000, normalize=False, positive=False, precompute=False,
          random state=None, selection='cyclic', tol=0.0001, warm start=False) is: [-26.20007724
-6.7556489 -1.39469345 -6.07295837 -33.69876688]
Mean score: -14.824428971012065
Standard deviation: 12.709817075431094
In [37]:
import joblib
joblib.dump(LinearRegression,'World Happiness Report.pkl')
Out[37]:
['World Happiness Report.pkl']
In [ ]:
```