Formalizing CW complexes in Lean

Hannah Scholz

Mathematical Institute of the University of Bonn

14.04.2024

Definition of CW-complexes

Let X be a Hausdorff space. A *CW* complex on X consists of a family of indexing sets $(I_n)_{n\in\mathbb{N}}$ and a family of maps $(Q_i^n:D_i^n\to X)_{n>0,i\in I_n}$ s.t.

- (i) $Q_i^n|_{\operatorname{int}(D_i^n)}:\operatorname{int}(D_i^n)\to Q_i^n(\operatorname{int}(D_i^n))$ is a homeomorphism. We call $e_i^n:=Q_i^n(\operatorname{int}(D_i^n))$ an (open) n-cell (or a cell of dimension n) and $\overline{e}_i^n:=Q_i^n(D_i^n)$ a closed n-cell.
- (ii) For all $n, m \in \mathbb{N}$, $i \in I_n$ and $j \in I_m$ where $(n, i) \neq (m, j)$ the cells e_i^n and e_i^m are disjoint.
- (iii) For each $n \in \mathbb{N}$, $i \in I_n$, $Q_i^n(\partial D_i^n)$ is contained in the union of a finite number of closed cells of dimension less than n.
- (iv) $A \subseteq X$ is closed iff $Q_i^n(D_i^n) \cap A$ is closed for all $n \in \mathbb{N}$ and $i \in I_n$.
- (v) $\bigcup_{n\geq 0}\bigcup_{i\in I_n}Q_i^n(D_i^n)=X.$

We call Q_i^n a characteristic map and $\partial e_i^n := Q_i^n(\partial D_i^n)$ the frontier of the *n*-cell for any i and n.

Project Overview

The current progress in terms of files/topics looks like this:

- Definition and basic properties: In mathlib
- Finiteness notions on CW Complexes: PR
- Subcomplexes: Done
- Basic constructions: Done
- KSpaces: PR
- Additional Lemmas: Done
- Product: Done
- Examples: Needs clean-up
- Maps: Work in progress
- Quotients: To be done (by me)
- Equivalence to other definition: To be done (probably not by me)

Hannah Scholz

March 2024

```
structure CWComplex.{u} {X : Type u} [TopologicalSpace X] (C : Set X)
     where
  cell (n : N) : Type u
  map (n:\mathbb{N}) (i:\text{cell }n):\text{PartialEquiv (Fin }n\to\mathbb{R}) X
  source_{eq} (n : \mathbb{N}) (i : cell n) : (map n i).source = closedBall 0 1
  cont (n : \mathbb{N}) (i : cell n) : ContinuousOn (map n i) (closedBall 0 1)
  cont_symm (n : \mathbb{N}) (i : cell n) :
    ContinuousOn (map n i).symm (map n i).target
  pairwiseDisjoint :
     (univ : Set (\Sigma n, cell n)). Pairwise Disjoint
     (fun ni \mapsto map ni.1 ni.2 " ball 0 1)
  mapsto (n : \mathbb{N}) (i : cell n) : \exists I : \Pi m, Finset (cell m),
    MapsTo (map n i) (sphere 0 1)
     (\bigcup (m < n) (j \in I m), map m j '' closedBall 0 1)
  closed (A : Set X) : IsClosed A \leftrightarrow \forall n j, IsClosed (A \cap map n j ''
     closedBall 0 1)
  union : \bigcup (n : \mathbb{N}) (j : cell n), map n j " closedBall 0 1 = C
```

April 2024

```
structure CWComplex.{u} {X : Type u} [TopologicalSpace X] (C : Set X)
     where
  cell (n : \mathbb{N}) : Type u
  map (n : \mathbb{N}) (i : cell n) : PartialEquiv (Fin n 
ightarrow \mathbb{R}) X
  source_{eq} (n : \mathbb{N}) (i : cell n) : (map n i).source = closedBall 0 1
  cont (n : \mathbb{N}) (i : cell n) : ContinuousOn (map n i) (closedBall 0 1)
  cont_symm (n : \mathbb{N}) (i : cell n) :
    ContinuousOn (map n i).symm (map n i).target
  pairwiseDisjoint : (univ : Set (\Sigma n, cell n)).PairwiseDisjoint
     (fun ni \mapsto map ni.1 ni.2 " ball 0 1)
  mapsto (n : \mathbb{N}) (i : cell n) : \exists I : \Pi m, Finset (cell m),
    MapsTo (map n i) (sphere 0 1)
     (| | (m < n) (j \in I m), map m j " closedBall 0 1)
  closed (A : Set X) (asubc : A \subseteq C) : IsClosed A \leftrightarrow
    \forall n j, IsClosed (A \cap map n j " closedBall 0 1)
  union : [] (n : \mathbb{N}) (j : cell n), map n j " closedBall 0 1 = C
```

July 2024

```
class CWComplex. {u} {X : Type u} [TopologicalSpace X] (C : Set X) where
  cell (n : \mathbb{N}) : Type u
  map (n : \mathbb{N}) (i : cell n) : PartialEquiv (Fin <math>n \to \mathbb{R}) X
  source_{eq} (n : \mathbb{N}) (i : cell n) : (map n i).source = closedBall 0 1
  cont (n : N) (i : cell n) : ContinuousOn (map n i) (closedBall 0 1)
  cont_symm (n : \mathbb{N}) (i : cell n) :
    ContinuousOn (map n i).symm (map n i).target
  pairwiseDisjoint :
    (univ : Set (\Sigma n, cell n)). Pairwise Disjoint
    (fun ni \mapsto map ni.1 ni.2 " ball 0 1)
  mapsto (n : \mathbb{N}) (i : cell n) : \exists I : \Pi m, Finset (cell m),
    MapsTo (map n i) (sphere 0 1)
    (| | (m < n) (j \in I m), map m j ^{\prime\prime} closedBall 0 1)
  closed (A : Set X) (asubc : A \subseteq C) : IsClosed A \leftrightarrow
    \forall n j, IsClosed (A \cap map n j " closedBall 0 1)
  union : [] (n : \mathbb{N}) (j : cell n), map n j " closedBall 0 1 = C
```

July 2024: Reason for change

October 2024

```
class RelCWComplex.{u} {X : Type u} [TopologicalSpace X]
    (C D : Set X) where
  cell (n : N) : Type u
  map (n:\mathbb{N}) (i:\text{cell }n):\text{PartialEquiv (Fin }n\to\mathbb{R}) X
  source_{eq} (n : \mathbb{N}) (i : cell n) : (map n i).source = closedBall 0 1
  cont (n : \mathbb{N}) (i : cell n) : ContinuousOn (map n i) (closedBall 0 1)
  cont_symm (n : \mathbb{N}) (i : cell n) :
    ContinuousOn (map n i).symm (map n i).target
  pairwiseDisjoint':
    (univ : Set (\Sigma n, cell n)). Pairwise Disjoint
    (fun ni \mapsto map ni.1 ni.2 " ball 0 1)
  mapsto (n : \mathbb{N}) (i : cell n) : \exists I : \Pi m, Finset (cell m),
    MapsTo (map n i) (sphere 0 1)
    (D \cup \{ \})  (m < n) (j \in I m), map m j " closedBall 0 1)
  closed' (A : Set X) (asubc : A \subseteq C) :
    ((\forall n j, IsClosed (A \cap map n j '' closedBall 0 1)) \land
    IsClosed (A \cap D)) \rightarrow IsClosed A
  union': D \cup \{j (n : \mathbb{N}) (j : cell n), map n j '' closedBall 0 1 = C
```

November 2024

```
class RelCWComplex.{u} {X : Type u} [TopologicalSpace X]
     (C D : Set X) where
  cell (n : \mathbb{N}) : Type u
  map (n : \mathbb N) (i : cell n) : PartialEquiv (Fin n 	o \mathbb R) X
  source_{eq} (n : \mathbb{N}) (i : cell n) : (map n i).source = closedBall 0 1
  cont (n : \mathbb{N}) (i : cell n) : ContinuousOn (map n i) (closedBall 0 1)
  cont_symm (n : \mathbb{N}) (i : cell n) :
    ContinuousOn (map n i).symm (map n i).target
  pairwiseDisjoint':
     (univ : Set (\Sigma n, cell n)). Pairwise Disjoint
     (fun ni \mapsto map ni.1 ni.2 " ball 0 1)
  disjointBase' (n : \mathbb{N}) (i : cell n) : Disjoint (map n i " ball 0 1) D
  mapsto (n : \mathbb{N}) (i : cell n) : \exists I : \Pi m, Finset (cell m),
    MapsTo (map n i) (sphere 0 1)
     (D \cup [] (m < n) (j \in I m), map m j " closedBall 0 1)
  closed' (A : Set X) (asubc : A \subseteq C) : ((\forall n j, IsClosed (A \cap map n j '
     ^{\prime} closedBall 0 1)) \wedge IsClosed (A \cap D)) \rightarrow IsClosed A
  isClosedBase : IsClosed D
  union' : D \cup \bigcup (n : \mathbb{N}) (j : cell n), map n j '' closedBall 0 1 = C
                                                         4 D > 4 D > 4 D > 4 D > E
```

Subcomplexes: The mathematics

Definition: Subcomplex

A subcomplex of X is a set $E \subseteq X$ together with a set $J_n \subseteq I_n$ for every $n \in \mathbb{N}$ such that:

- (i) E is closed.
- (ii) $\bigcup_{n\in\mathbb{N}}\bigcup_{i\in J_n}e_i^n=E.$

Theorem: Subcomplexes are CW complexes

Let $E \subseteq X$ together with $J_n \subseteq I_n$ for every $n \in \mathbb{N}$ be a subcomplex of the CW complex X. Then E is again a CW complex with respect to the cells determined by J_n and X.

