



# EIGRP Magnus Colding

CCNA Routing and Switching

Scaling Networks v6.0



## **EIGRP Basic Features**

- Enhanced IGRP is a Cisco-proprietary distance-vector routing protocol released in 1992.
  - EIGRP was created as a classless version of IGRP.
  - Ideal choice for large, multiprotocol networks built primarily on Cisco routers.

| EIGRP Feature                            | Description                                                                                                                                                                                                          |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Diffusing Update Algorithm (DUAL)        | <ul> <li>EIGRP uses DUAL as its routing algorithm.</li> <li>DUAL guarantees loop-free and backup paths throughout the routing domain.</li> </ul>                                                                     |
| Establishing Neighbor<br>Adjacencies     | <ul> <li>EIGRP establishes relationships with directly connected EIGRP routers.</li> <li>Adjacencies are used to track the status of these neighbors.</li> </ul>                                                     |
| Reliable Transport Protocol              | <ul> <li>EIGRP RTP provides delivery of EIGRP packets to neighbors.</li> <li>RTP and neighbor adjacencies are used by DUAL.</li> </ul>                                                                               |
| Partial and Bounded updates              | <ul> <li>Instead of periodic updates, EIGRP sends partial triggered updates when a path or metric changes.</li> <li>Only those routers that require the information are updated minimizing bandwidth use.</li> </ul> |
| Equal and Unequal Cost<br>Load Balancing | EIGRP supports equal cost load balancing and unequal cost load balancing, which allows administrators to better distribute traffic flow in their networks.                                                           |



## **EIGRP Basic Features**

- RTP is the EIGRP Transport layer protocol used for the delivery and reception of EIGRP packets.
- Not all RTP packets are sent reliably.
  - Reliable packets require explicit acknowledgement from destination
  - Update, Query, Reply
  - Unreliable packets do not require acknowledgement from destination
  - Hello, ACK





## **EIGRP Basic Features**

- EIGRP supports authentication and is recommended.
  - EIGRP authentication ensures that routers only accept routing information from other routers that have been configured with the same password or authentication information.

#### Note:

 Authentication does not encrypt the EIGRP routing updates.



## **EIGRP Packet Types**

■ IP EIGRP relies on 5 types of packets to maintain its various tables and establish complex relationships with neighbor routers.

| Packet Type     | Description                                                                                                                                      |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Hello           | <ul> <li>Used to discover other EIGRP routers in the network.</li> <li>Sent unreliably to multicast address 224.0.0.5 (or 224.0.0.6).</li> </ul> |
| Acknowledgement | <ul> <li>Used to acknowledge the receipt of any EIGRP packet.</li> <li>Sent unreliably as unicasts.</li> </ul>                                   |
| Update          | <ul> <li>Convey routing information to known destinations.</li> <li>Sent reliably as unicasts or multicasts.</li> </ul>                          |
| Query           | <ul> <li>Used to get specific information from a neighbor router.</li> <li>Sent reliably as unicasts or multicasts.</li> </ul>                   |
| Reply           | <ul><li>Used to respond to a query.</li><li>Sent reliably as unicasts.</li></ul>                                                                 |



## **EIGRP Packet Types**

- Hello packets are used to discover & form adjacencies with neighbors.
  - On hearing Hellos, a router creates a neighbor table and the continued receipt of Hellos maintains the table.
- Hello packets are always sent unreliably.
  - Therefore Hello packets do not require acknowledgment.



#### EIGRP uses multicast and unicast rather than broadcast.

- As a result, end stations are unaffected by routing updates or queries.
- The EIGRP multicast IPv4 address is 224.0.0.10
- The EIGRP multicast IPv6 address is FF02::A.



#### Implement EIGRP for IPv4

## Configure EIGRP with IPv4

- The EIGRP router ID is used to uniquely identify each router in the EIGRP routing domain.
- Routers use the following three criteria to determine its router ID:
  - 1. Use the address configured with the **eigrp router-id** *ipv4-address* router config command.
  - 2. If the router ID is not configured, choose the highest IPv4 address of any of its loopback interfaces.
  - 3. If no loopback interfaces are configured, choose the highest active IPv4 address of any of its physical interfaces.



#### Implement EIGRP for IPv4

## Configure EIGRP with IPv4

Passive interfaces prevent EIGRP updates out a specified router interface.

```
Router(config-router)#

passive-interface type number [default]
```

```
R3(config) # router eigrp 1
R3(config-router) # passive-interface gigabitethernet 0/0
```

- Set a particular interface or all router interfaces to passive.
  - The default option sets all router interfaces to passive.
  - Prevents neighbor relationships from being established.
  - Routing updates from a neighbor are ignored.

```
R3# show ip protocols
*** IP Routing is NSF aware ***
Routing Protocol is "eigrp 1"
<output omitted>
Routing for Networks:
   192.168.1.0
    192.168.10.4/30
   192.168.10.8/30
 Passive Interface(s):
   GigabitEthernet0/0
 Routing Information Sources:
    Gateway
                   Distance
                                  Last Update
   192.168.10.5
                                  01:37:57
   192.168.10.9
                          90
                                  01:37:57
  Distance: internal 90 external 170
```

#### Implement EIGRP for IPv4

## Verify EIGRP with IPv4

- Use the show ip eigrp neighbors command to view the neighbor table and verify that EIGRP has established an adjacency with its neighbors.
  - The output displays a list of each adjacent neighbor.





## Implement EIGRP for IPv4 Verify EIGRP with IPv4

```
R1# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
<output omitted>
Gateway of last resort is not set
    172.16.0.0/16 is variably subnetted, 5 subnets, 3 masks
     172.16.1.0/24 is directly connected, GigabitEthernet0/0
     172.16.1.1/32 is directly connected, GigabitEthernet0/0
     172.16.2.0/24 [90/2170112] via 172.16.3.2,00:14:35, Serial0/0/0
     172.16.3.0/30 is directly connected, Serial0/0/0
     172.16.3.1/32 is directly connected, Serial0/0/0
D 192.168.1.0/24 [90/2170112] via 192.168.10.6,00:13:57, Serial0/0/1
 192.168.10.0/24 is variably subnetted, 3 subnets, 2 masks
     192.168.10.4/30 is directly connected, Serial0/0/1
     192.168.10.5/32 is directly connected, Serial0/0/1
     192.168.10.8/30 [90/2681856] via 192.168.10.6,00:50:42, Serial0/0/1
                      [90/2681856] via 172.16.3.2,00:50:42, Serial0/0/0
R1#
```



```
R2# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
<output omitted>
Gateway of last resort is not set
 172.16.0.0/16 is variably subnetted, 5 subnets, 3 masks
   172.16.1.0/24 [90/2170112] via 172.16.3.1, 00:11:05, Serial0/0/0
   172.16.2.0/24 is directly connected, GigabitEthernet0/0
   172.16.2.1/32 is directly connected, GigabitEthernet0/0
   172.16.3.0/30 is directly connected, Serial0/0/0
   172.16.3.2/32 is directly connected, Serial0/0/0
  192.168.1.0/24 [90/2170112] via 192.168.10.10, 00:15:16, Serial0/0/1
  192.168.10.0/24 is variably subnetted, 3 subnets, 2 masks
   192.168.10.4/30 [90/2681856] via 192.168.10.10, 00:52:00, Serial0/0/1
                    [90/2681856] via 172.16.3.1, 00:52:00, Serial0/0/0
   192.168.10.8/30 is directly connected, Serial0/0/1
   192.168.10.9/32 is directly connected, Serial0/0/1
  209.165.200.0/24 is variably subnetted, 2 subnets, 2 masks
   209.165.200.224/27 is directly connected, Loopback209
   209.165.200.225/32 is directly connected, Loopback209
R2#
```

```
R3# show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
<output omitted>
Gateway of last resort is not set
 172.16.0.0/16 is variably subnetted, 3 subnets, 2 masks
     172.16.1.0/24 [90/2170112] via 192.168.10.5, 00:12:00, Serial0/0/0
     172.16.2.0/24 [90/2170112] via 192.168.10.9, 00:16:49, Serial0/0/1
     172.16.3.0/30 [90/2681856] via 192.168.10.9, 00:52:55, Serial0/0/1
                   [90/2681856] via 192.168.10.5, 00:52:55, Serial0/0/0
  192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
   192.168.1.0/24 is directly connected, GigabitEthernet0/0
L 192.168.1.1/32 is directly connected, GigabitEthernet0/0
  192.168.10.0/24 is variably subnetted, 4 subnets, 2 masks
C 192.168.10.4/30 is directly connected, Serial0/0/0
L 192.168.10.6/32 is directly connected, Serial0/0/0
   192.168.10.8/30 is directly connected, Serial0/0/1
     192.168.10.10/32 is directly connected, Serial0/0/1
R3#
```

## **EIGRP Metrics**

- EIGRP uses a composite metric which can be based on the following metrics:
  - Bandwidth: The lowest bandwidth between source and destination.
  - Delay: The cumulative interface delay along the path
  - Reliability: (Optional) Worst reliability between source and destination.
  - Load: (Optional) Worst load on a link between source and destination.
- The EIGRP composite metric formula consists metric weights with values K1 to K5.
  - K1 represents bandwidth, K3 delay, K4 load, and K5 reliability.

```
Default Values:
K1 (bandwidth) = 1
K2 (load) = 0
K3 (delay) = 1
K4 (reliability) = 0
K5 (reliability) = 0
```

#### Note.

 It is often incorrectly stated that EIGRP can also use the smallest MTU in the path.

```
Default Composite Formula:

metric = [K1*bandwidth + K3*delay] * 256

Complete Composite Formula:

metric = [K1*bandwidth + (K2*bandwidth) / (256 - load) + K3*delay] * [K5 / (reliability + K4)]

(Not used if "K" values are 0)

Note: This is a conditional formula. If K5 = 0, the last term is replaced by 1 and the formula becomes: Metric = [K1*bandwidth + (K2*bandwidth) / (256-load) + K3*delay] * 256
```

Router(config-router) # metric weights tos k1 k2 k3 k4 k5

## **EIGRP Metrics**

 Use the show interfaces command to examine the values used for bandwidth, delay, reliability, and load.

- BW Bandwidth of the interface (in kb/s).
- DLY Delay of the interface (in microseconds).
- Reliability Reliability of the interface as a fraction of 255 (255/255 is 100% reliability).
- Txload, Rxload Transmit and receive load on the interface as a fraction of 255 (255/255 is completely saturated), calculated as an exponential average over five minutes.

```
R1# show interfaces serial 0/0/0
Serial0/0/0 is up, line protocol is up
  Hardware is WIC MBRD Serial
  Internet address is 172.16.3.1/30
  MTU 1500 bytes, BW 1544 Kbit/sec, DLY 20000 usec,
     reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation HDLC, loopback not set
<output omitted>
R1#
R1# show interfaces gigabitethernet 0/0
GigabitEthernet0/0 is up, line protocol is up
  Hardware is CN Gigabit Ethernet, address is fc99.4775.c3e0
(bia fc99.4775.c3e0)
  Internet address is 172.16.1.1/24
  MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
     reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, loopback not set
<output omitted>
R1#
```

## **EIGRP Metrics**

 Delay is a measure of the time it takes for a packet to traverse a route.

- The delay (DLY) metric is not measured dynamically.
  - It is a static value measured in microseconds (µs or usec) based on the type of link to which the interface is connected.
- The delay value is calculated using the cumulative (sum) of all interface delays along the path, divided by 10.

| Media               | Delay<br>In usec |
|---------------------|------------------|
| Gigabit Ethernet    | 10               |
| Fast Ethernet       | 100              |
| FDDI                | 100              |
| 16M Token Ring      | 630              |
| Ethernet            | 1,000            |
| T1 (Serial Default) | 20,000           |
| DS0 (64 Kbps)       | 20,000           |
| 1024 Kbps           | 20,000           |
| 56 Kbps             | 20,000           |

## DUAL and the Topology Table

- EIGRP uses the Diffusing Update Algorithm (DUAL) to provide the best and backup loop-free paths.
- DUAL uses several terms, which are discussed in more detail throughout this section:

| Term                        | Description                                                                                                                                                                                                                                                        |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Successor                   | <ul> <li>Is a neighboring router that is used for packet forwarding and is the least-cost route to the destination network.</li> <li>The IP address of a successor is shown in a routing table entry right after the word "via".</li> </ul>                        |
| Feasible<br>Successors (FS) | These are the "Backup paths" that are a loop-free.     Must comply to a feasibility condition.                                                                                                                                                                     |
| Reported<br>Distance (RD)   | <ul> <li>Also called "advertised distance", this is the reported metric from the neighbor advertising the route.</li> <li>If the RD metric is less than the FD, then the next-hop router is downstream and there is no loop.</li> </ul>                            |
| Feasible<br>Distance (FD)   | <ul> <li>This is the actual metric of a route from the current router.</li> <li>Is the lowest calculated metric to reach the destination network.</li> <li>FD is the metric listed in the routing table entry as the second number inside the brackets.</li> </ul> |



## DUAL and the Topology Table

- A successor is a neighboring router with the leastcost route to the destination network.
  - The successor IP address is shown right after "via".

- FD is the lowest calculated metric to reach the destination network.
  - FD is the second number inside the brackets.
  - Also known as the "metric" for the route.

 Notice that EIGRP's best path for the 192.168.1.0/24 network is through router R3, and that the feasible distance is 3,012,096.





