Stochastic process

I Brownian Motion

Seongho, Joo

MILAB

Brownain motion

Brownian motion

The most common way to define a Brownian Motion is by the following properties:

Definition 1

A Brownian motion or Wiener process $(B_t)_{t\geq 0}$ is a real-valued stochastic process such that

- $B_0 = 0$
- Independent increments: the random variables B_v-B_u , B_t-B_s are independent whenever $u \le v \le s \le t$ (so the intervals (u,v),(s,t) are disjoint.)
- Normal increments: $B_{s+t} B_s \sim \mathcal{N}(0,t)$ for all $s,t \geq 0$.
- \blacksquare Continuous sample paths: with probability 1 (or almost surely), the function $t\mapsto W_t$ is continuous.

Remark. If the only properties $(1)\sim(3)$ holds, the process is called pre-Brownian motion.

Brownian motion

 $\bullet \;$ For $0=t_0 < t_1 < \cdots < t_n$, the finite-dimensional law of Brownian motion is given by

$$\mathbb{P}((B_{t_0},\ldots,B_{t_n})\in A_0\times\cdots\times A_n)$$

$$= \mathbf{1}_{A_0}(0) \int_{A_1 \times \dots \times A_n} \frac{\mathrm{d}x_1 \dots \mathrm{d}x_n}{(2\pi)^{n/2} \sqrt{t_1(t_2 - t_1) \dots (t_n - t_{n_1})}} \exp\left(-\sum_{i=1}^n \frac{(x_i - x_{i-1})^2}{2(t_i - t_{i-1})}\right)$$

with convention $x_0 = 0$.

The vector $(B_{t_1}, B_{t_2} - B_{t_1}, \dots, B_{t_n} - B_{t_{n-1}})$ has density

$$q(y_1,\ldots,y_n) = \frac{1}{(2\pi)^{n/2}\sqrt{t_1(t_2-t_1)\ldots(t_n-t_{n-1})}} \exp\left(-\sum_{i=1}^n \frac{y_i^2}{2(t_i-t_{i-1})}\right),$$

and the change of variables $x_i=y_1+\cdots+y_i$ for $i\in\{1,\ldots,n\}$ completes the argument.

Proposition 1

Let B be a Brownian motion. Then,

- \blacksquare -B is also a Brownian motion (symmetric property)
- \blacksquare for every $\lambda>0,$ the process $B^\lambda_t=\frac{1}{\lambda}B_{\lambda^2t}$ is also a Brownian motion.
- for every $s\geq 0$ the process $B_t^{(s)}=B_{s+t}-B_s$ is also Brownian motion and is independent of $\sigma(B_r,r\leq s)$ (simple Markov property).

Change of variable formula

• 1d case:

$$p_Y(y) = p_X(x) \cdot \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right| = p_X(g(y))|g'(y)|$$

• Multi-dimensional case: Let $Y=\Phi(X)$, where $\Phi:\mathbb{R}^n\to\mathbb{R}^n$. Define the Jacobian matrix as

$$\mathbf{J}_{X\to Y}:=\frac{\partial(y_1,\ldots,y_n)}{\partial(x_1,\ldots,x_n)}.$$

If Φ is an invertible mapping, we can define the pdf of the transformed variables in terms of the original variables as follows:

$$p_Y(y) = p_X(x) \left| \det \mathbf{J}_{Y \to X} \right| = p_X(\Phi^{-1}(y)) \left| \det \mathbf{J}_{Y \to X} \right|$$

• In this section, we investigate the properties of sample paths of Brownian motion. We fix a Brownian motion $(B_t)_{t\geq 0}$. For every $t\geq 0$, we set $\mathcal{F}_t=\sigma(B_s,s\leq t)$.

Note that $\mathcal{F}_s \subset \mathcal{F}_t$ if $s \leq t$. We also set

$$\mathcal{F}_{0+} = \bigcap_{s>0} \mathcal{F}_s$$

We start by stating a useful 0-1 law.

• In this section, we investigate the properties of sample paths of Brownian motion. We fix a Brownian motion $(B_t)_{t\geq 0}$. For every $t\geq 0$, we set $\mathcal{F}_t=\sigma(B_s,s\leq t)$. Note that $\mathcal{F}_s\subset\mathcal{F}_t$ if $s\leq t$. We also set

$$\mathcal{F}_{0+} = \bigcap_{s>0} \mathcal{F}_s$$

We start by stating a useful 0-1 law.

Theorem 1 (Blumenthal's zero-one law)

The σ -field \mathcal{F}_{0+} is trivial, in the sense that $\mathbb{P}(A)=0$ or 1 for every event $A\in\mathcal{F}_{0+}$.

Proof. Let $0 < t_1 < t_2 < \dots < t_k$ and $g: \mathbb{R}^k \to \mathbb{R}$ be a bounded continuous function. Also fix $A \in \mathcal{F}_{0+}$. Then, by a continuity argument,

$$\mathbb{E}\,\mathbf{1}_A g(B_{t_1},\ldots,B_{t_k}=\lim_{\varepsilon\downarrow 0}\mathbb{E}\,\mathbf{1}_A g(B_{t_1}-B_{\varepsilon},\ldots,B_{t_k}-B_{\varepsilon}.$$

If $0 < \varepsilon < t_1$, the variables $B_{t_1} - B_{\varepsilon}, \dots, B_{t_k} - B_{\varepsilon}$ are independent of $\mathcal{F}_{\varepsilon}$ by the simple Markov property and also of $\mathcal{F}_{0+} \subset \mathcal{F}_{\varepsilon}$. If follows that

$$\mathbb{E} \mathbf{1}_{A} g(B_{t_{1}}, \dots, B_{t_{k}}) = \lim_{\varepsilon \downarrow 0} \mathbb{P}(A) \mathbb{E} g(B_{t_{1}} - B_{\varepsilon}, \dots, B_{t_{k}} - B_{\varepsilon})$$
$$= \mathbb{P}(A) \mathbb{E} g(B_{t_{1}}, \dots, B_{t_{k}})$$

The above implies \mathcal{F}_{0+} is independent of $\sigma(B_{t_1},\ldots,B_{t_k})$. Since this holds for any finite collection $\{t_1,\ldots t_k\}$ of positive reals, \mathcal{F}_{0+} is independent of $\sigma(B_t,t>0)$.

However, $\sigma(B_t,t>0)=\sigma(B_t,t\geq)$ since B_0 is the pointwise limit of B_t when $t\to 0$. Since $\mathcal{F}_{0+}\subset \sigma(B_t,t\geq0)$, we conclude that \mathcal{F}_{0+} is independent of itself, which yields the desired result.

Lemma 1

If the sigma field $\mathcal F$ is independent from itself, (i.e. for every $A,B\in\mathcal F$, $\mathbb P(A\cap B)=\mathbb P(A)\mathbb P(B)$). Then, every event from the sigma field $\mathcal F$ has probability 0 or 1.

Proposition 2

• We have, a.s. for every $\varepsilon > 0$,

$$\sup_{0 < s < \varepsilon} B_s > 0, \quad \inf_{0 \le s \le \varepsilon} B_s < 0$$

• For every $a \in \mathbb{R}$, let $T_a = \{t \geq 0 \mid B_t = a\}$ (with the convention $\inf \emptyset = \infty$). Then, $a.s. \ \forall a \in \mathbb{R}, \ T_a < \infty.$

Consequently, we have a.s.

$$\limsup_{t \in \infty} B_t = +\infty, \quad \liminf_{t \in \infty} B_t = -\infty$$

Corollary 1

Almost surely, the function $t\mapsto B_t$ is not monotone on any non-trivial interval.

Proposition 3

Let $0=t_0^n < t_1^n < \dots < t_{p_n}^n = t$ be a sequence of subdivisions of [0,t] whose mesh tends to 0 (i.e. $\sup_{1 \le i < p_n} (t_i^n - t_{i-1}^n) \to 0$ as $n \to \infty$). Then,

$$\lim_{n \to \infty} \sum_{i=1}^{p_n} (B_{t_i^n} - B_{t_{i-1}^n})^2 = t. \text{ in } L^2$$

Proof. Recall that $X_n \to X$ in L^2 means that $\mathbb{E}(X_n - X)^2 \to 0$.

$$\mathbb{E}\left(\sum_{i=1}^{p_n} (B_{t_i^n} - B_{t_{i-1}^n})^2 - t\right)^2$$

$$= \mathbb{E}\left(\sum_{i=1}^{p_n} (B_{t_i^n} - B_{t_{i-1}^n})^2\right)^2 - 2t\sum_{i=1}^{p_n} (B_{t_i^n} - B_{t_{i-1}^n})^2 + t^2$$

$$\begin{split} &= \mathbb{E} \sum_{i=1}^{p_n} (B_{t_i^n} - B_{t_{i-1}^n})^4 + \mathbb{E} \sum_{i \neq j} (B_{t_i^n} - B_{t_{i-1}^n})^2 (B_{t_j^n} - B_{t_{j-1}^n})^2 \\ &- 2t \cdot \mathbb{E} \sum_{i=1}^{p_n} (B_{t_i^n} - B_{t_{i-1}^n})^2 + t^2 \\ &= 2 \sum_{i} (t_i - t_{i-1})^2 + t^2 - 2t \cdot t + t^2 \le \sup_{i} |t_i - t_{i-1}| \cdot t \to 0 \end{split}$$

Corollary 2

Almost surely, the function $t\mapsto B_t$ has infinite variation on any non-trivial interval (i.e. $\sum_{i=1}^{p_n}\left|B_{t_i^n}-B_{t_{i-1}^n}\right|$ tends to infinity).

Proof.

$$\sum_{i=1}^{p_n} (B_{t_i^n} - B_{t_{i-1}^n})^2 \le \left(\sup_{1 \le i \le p_n} \left| B_{t_i^n} - B_{t_{i-1}^n} \right| \right) \times \sum_{i=1}^{p_n} \left| B_{t_i^n} - B_{t_{i-1}^n} \right|.$$

(In general, L^2 convergence implies convergence in probability but not almost sure convergence. However, we can extract a subsequence that converges almost surely from an almost surely converging sequence.)

Definition 2

A random variable T with values in $[0,\infty]$ is a stopping time if, for every $t\geq 0$, $\{T\leq t\}\in \mathcal{F}_t.$

Q: If the time step t of \mathcal{F}_t is replaced by the random time T, what would be the sigma field \mathcal{F}_T ?

Definition 2

A random variable T with values in $[0,\infty]$ is a stopping time if, for every $t\geq 0$, $\{T\leq t\}\in \mathcal{F}_t.$

Q: If the time step t of \mathcal{F}_t is replaced by the random time T, what would be the sigma field \mathcal{F}_T ?

Definition 3

Let T be a stopping time. The σ -field of the past before T is

$$\mathcal{F}_T = \{ A \in \mathcal{F}_{\infty} \mid \forall t \ge 0, \ A \cap \{ T \le t \} \in \mathcal{F}_t \}.$$

Theorem 2 (Strong Markov Property)

Let T be a stopping time. We assume that $\mathbb{P}(T<\infty)>0$ and we set,for every $t\geq 0$, $B_t^{(T)}=\mathbf{1}_{T<\infty}(B_{T+t}-B_T).$

Then under the probability measure $\mathbb{P}(\cdot|T<\infty)$, the process $(B_t^{(T)})_{t\geq 0}$ is a Brownian motion independent of \mathcal{F}_T .

Theorem 2 (Strong Markov Property)

Let T be a stopping time. We assume that $\mathbb{P}(T<\infty)>0$ and we set,for every $t\geq 0$, $B_t^{(T)}=\mathbf{1}_{T<\infty}(B_{T+t}-B_T).$

Then under the probability measure $\mathbb{P}(\cdot|T<\infty)$, the process $(B_t^{(T)})_{t\geq 0}$ is a Brownian motion independent of \mathcal{F}_T .

Using Strong Markov Property, we can prove the reflection principle.

Theorem 3 (Reflection principle)

For every t>0, set $S_t=\sup_{s\leq t}B_s$. Then, if $a\geq 0$ and $b\in (-\infty,a]$, we have $\mathbb{P}(S_t\geq a,B_t\leq b)=\mathbb{P}(B_t\geq 2a-b).$

Moreover, S_t has the same distribution as $|B_t|$.

Remark. The event $\{S_t \geq a\}$ is same as the $\{T_a \leq t\}$.

Fig. 2.2 Illustration of the reflection principle: the conditional probability, knowing that $\{T_a \leq t\}$, that the graph is below b at time t is the same as the conditional probability that the graph reflected at level a after time T_a (in *dashed lines*) is above 2a - b at time t

Figure 1:

Remark. Since $\mathbb{P}(S_t \geq a, B_t \leq b) = \mathbb{P}(B_t \geq 2a - b)$, the law of the pair (S_t, B_t) has density

$$g(a,b) = \frac{2(2a-b)}{\sqrt{2\pi t^3}} \exp\left(-\frac{(2a-b)^2}{2t}\right) \mathbf{1}_{a>0,b < a}.$$

Note that the relation between the CDF and density function:

$$g(a,b) = \left. \frac{\partial}{\partial x} \frac{\partial}{\partial y} \mathbb{P}(S_t \le x, B_t \le y) \right|_{x=a,y=b}$$

Therefore, differentiating $-\mathbb{P}(B_t \geq 2a-b) = -\int_{2a-b}^{\infty} \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{x^2}{2t}\right) \, \mathrm{d}x$ with respect to a,b gives the desired result.

• In all exercise, $(B_t)_{t\geq 0}$ is a real Brownian motion started from 0, and $S_t=\sup_{0\leq s\leq t}B_s.$

Exercise 2.25 (Time inversion)

- **1.** Show that the process $(W_t)_{t\geq 0}$ defined by $W_0=0$ and $W_t=tB_{1/t}$ for t>0 is (indistinguishable of) a real Brownian motion started from 0. (*Hint*: First verify that W is a pre-Brownian motion.)
- **2.** Infer that $\lim_{t\to\infty} \frac{B_t}{t} = 0$ a.s.

Tools for the Exercise 2.25:

Lemma 2 (Kolmogorov's Maximal inequality)

Let $X_1,\ldots X_n$ be independent random variables defined on a common probability space with expected value $\mathbb{E}\,X_k=0$ and finite variance for $k=1,\ldots,n$. Then, for each $\lambda>0$,

$$\mathbb{P}(\max_{1 \le k \le n} |S_k| \ge \lambda) \le \frac{1}{\lambda^2} \text{Var} S_n = \frac{1}{\lambda^2} \sum_{k=1}^n \mathbb{E} X_k^2,$$

where $S_k = X_1 + \cdots + X_k$.

Exercise 2.27 (Brownian bridge)

We set $W_t = B_t - tB_1$ for every $t \in [0, 1]$.

- Show that (W_t)_{t∈[0,1]} is a centered Gaussian process and give its covariance function.
- **2.** Let $0 < t_1 < t_2 < \dots < t_p < 1$. Show that the law of $(W_{t_1}, W_{t_2}, \dots, W_{t_p})$ has density

$$g(x_1,\ldots,x_p) = \sqrt{2\pi} \, p_{t_1}(x_1) p_{t_2-t_1}(x_2-x_1) \cdots p_{t_p-t_{p-1}}(x_p-x_{p-1}) p_{1-t_p}(-x_p),$$

where $p_t(x) = \frac{1}{\sqrt{2\pi t}} \exp(-x^2/2t)$. Explain why the law of $(W_{t_1}, W_{t_2}, \dots, W_{t_p})$ can be interpreted as the conditional law of $(B_{t_1}, B_{t_2}, \dots, B_{t_p})$ knowing that $B_1 = 0$.

3. Verify that the two processes $(W_t)_{t \in [0,1]}$ and $(W_{1-t})_{t \in [0,1]}$ have the same distribution (similarly as in the definition of Wiener measure, this law is a probability measure on the space of all continuous functions from [0,1] into \mathbb{R}).

Exercise 2.29 (Non-differentiability) Using the zero-one law, show that, a.s.,

$$\limsup_{t\downarrow 0} \frac{B_t}{\sqrt{t}} = +\infty \quad , \quad \liminf_{t\downarrow 0} \frac{B_t}{\sqrt{t}} = -\infty \; .$$

Infer that, for every $s \ge 0$, the function $t \mapsto B_t$ has a.s. no right derivative at s.

Exercise 2.32 (Arcsine law)

Set
$$T := \inf\{t \ge 0 : B_t = S_1\}.$$

- Show that T < 1 a.s. (one may use the result of the previous exercise) and then that T is not a stopping time.
- **2.** Verify that the three variables S_t , $S_t B_t$ and $|B_t|$ have the same law.
- Show that T is distributed according to the so-called arcsine law, whose density is

$$g(t) = \frac{1}{\pi \sqrt{t(1-t)}} \mathbf{1}_{(0,1)}(t).$$

4. Show that the results of questions **1.** and **3.** remain valid if T is replaced by $L := \sup\{t \le 1 : B_t = 0\}$.

Tools for the Exercise 2.32:

Lemma 3 (Local maxima of Brownian paths)

Local maxima of Brownian motion are distinct: a.s., for any choice of the rational numbers $p,q,r,s\geq 0$ such that p< q< r< s we have

$$\sup_{p \le t \le q} B_t \ne \sup_{r \le t \le s} B_t.$$

Remark. The Brownian motion attains its maximum at unique point $x^* \in [0,1]$.

Lemma 4 (Zero set of Brownian motion)

Let $H:=\{t\in[0,1]\,|\,B_t=0\}$. Then, H is a.s. a compact subset of [0,1] with no isolated point and zero Lebesgue measure.

Lemma 5 (Time reversal)

Let $B_t^R=B_1-B_{1-t}$ for every $t\in[0,1].$ Then, the two processes $(B_t)_{t\in[0,1]}$ and $(B_t^R)_{t\in[0,1]}$ have the same law.