Intro to Functions

Summary

- 1. A function has only one output value for each input value.
- 2. Function notation can be used to describe and quickly evaluate a function.

Relations and Functions

Relations

A relation is a set of ordered pairs.

Domain

The **domain** is the set of all input values (usually x) of a relation.

Range

The **range** is the set of all output values (usually y) of a relation.

Function

A function is a relation is which each element of the domain has only 1 element in the range.

Example 1. Determine whether each relation represents a function. For those that do, state the domain and range.

The Vertical Line Test

It is also possible to determine if a relation is a function visually by using the vertical line test:

Vertical Line Test

If every vertical line drawn hits the graph at most once, then the relation is a function.

Example 2. Determine whether the graph of each represents a function.

(a)

(b)

(c)

Function Notation.

Think of a function as a machine.

You give the function (machine) a value (input), it will process that value, and then return a value back to you (output).

For instance, if you input 10 into the x^2 function, it will return 10^2 , or 100:

A function can be described using function notation.

f(x) represents the value of the function when the value of x is substituted into it.

We can use other notations for functions including, but not limited to,

$$g(x)$$
 $h(x)$ $f(n)$ $f(\odot)$

When we substitute a value for the variable and evaluate it, that is called evaluating the function.

For the $f(x) = x^2$ function, the point (10, 100) is on the graph of that function.

Example 3. Evaluate f(2), f(-2), and f(0) for each.

(a)
$$f(x) = 2x + 3$$

(b)
$$f(x) = 3x^2 - 1$$

(d)

<i>x f</i> (<i>x</i>)	-3	-2	-1	0	1	2	3
f(x)	-6	3	4	-3	-8	6	-5

Building Functions

We can build functions according to specifications listed.

Exa	amı	ple 4. Build a function, $f(x)$, that will perform each of the following sequences of instructions
(a)	1.	Add 5 to the input
	2.	Take half of that result
<i>(</i> ,)		
(b)	1.	Take half of the input
	2.	Add 5 to that result
(c)	1.	Take the opposite of the input
	2.	Subtract 9 from that result
	3.	Multiply that result by -2