

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. **(Currently amended)** An organic electroluminescent element comprising a cathode and an anode having therebetween at least one organic compound layer,

wherein one of the organic compound layer comprises a polymer having a repeat unit represented by Formula (1):

Formula (1)

wherein Ar₁ represents an arylene group which may have a substituent or a heteroarylene group having not more than two heteroatoms, which may have a substituent a group represented by Ar-60; and L₁ represents a linkage group selected from Group 1; and n₁ represents an integer of not less than two:

Ar-60

Group 1

wherein R₁ - R₆ each independently represent an alkyl group or an aryl group, provided that R₃ and R₄, or R₅ and R₆ may be joined to form a ring.

2. **(Original)** The organic electroluminescent element of claim 1, wherein a number of rings of Ar₁ in Formula (1) is not more than 5.

3. **(Original)** An organic electroluminescent element comprising a cathode and an anode having therebetween at least one organic compound layer,

wherein one of the organic compound layer comprises a polymer having one of repeat units represented by Formula (2):

Formula (2)

wherein Ar_2 represents an arylene group which may have a substituent or a heteroarylene group having not more than two heteroatoms, which may have a substituent; L_2 represents a linkage group selected from Group 2; and L_3 represents a single bond or a linkage group selected from Group 3; X represents one of a hole transport group, an electron transport group, a fluorescent group and a phosphorescent group; and n_2 represents an integer of not less than two:

Group 2

Group 3

wherein $R_1 - R_6$ each independently represent an alkyl group or an aryl group, provided that R_3 and R_4 , or R_5 and R_6 may be joined to form a ring, and $R_7 - R_{13}$ each independently represent an alkyl group or an aryl group, provided that R_{10} and R_{11} , or R_{12} and R_{13} may be joined to form a ring.

4. (Original) The organic electroluminescent element of claim 3, wherein a number of rings of Ar_2 in Formula (2) is not more than 5.

5. (Original) The organic electroluminescent element of claim 3, wherein the hole transport group includes a substructure represented by Formula (3) or Formula (4):

Formula (3)

Formula (4)

wherein

in Formula (3), R₁₄ - R₂₁ each independently represent a hydrogen atom, an alkyl group or a cycloalkyl group, provided that adjacent groups of R₁₄ - R₂₁ may be joined to form a ring; and

in Formula (4), R₂₂ - R₃₀ each independently represent a hydrogen atom, an alkyl group or a cycloalkyl group, and R₃₁ - R₃₄ each independently represent a hydrogen atom, a single bond, an

alkyl group or a cycloalkyl group, provided that one of R₃₁ - R₃₄ represents a single bond, and that adjacent groups of R₂₂ - R₃₄ may be joined to form a ring.

6. (Original) The organic electroluminescent element of claim 3, wherein the phosphorescent group comprises an organometal complex.

7. (Original) The organic electroluminescent element of claim 6, wherein the organometal complex comprises a substructure represented by one of Formulas (5) to (8):

Formula (5)

Formula (6)

Formula (7)

Formula (8)

wherein

in Formula (5), R₃₅ - R₄₂ each independently represent a hydrogen atom, a single bond or a substituent, provided that adjacent groups of R₃₅ - R₄₂ may be joined to form a ring, and M represents a metal atom;

in Formula (6), Z₁ and Z₂ each independently represent a group of atoms necessary to form an aromatic ring together with a carbon atom and a nitrogen atom, and M represents a metal atom; in Formula (7), R₄₃ - R₄₈ each independently represent a hydrogen atom, a single bond or a substituent, provided that adjacent groups of R₄₃ - R₄₈ may be joined to form a ring, and M represents a metal atom; and

in Formula (8), Y represents a divalent linkage group, R₄₉

- R₅₆ each independently represent a hydrogen atom, a single bond or a substituent, provided that adjacent groups of R₄₉ - R₅₆ may be joined to form a ring, and M represents a metal atom.

8. (Original) The organic electroluminescent element of claim 3, wherein one of the repeat units represented by Formula (2) is further represented by Formula (21):

Formula (21)

wherein Ar represents an arylene group which may have a substituent or a heteroarylene group which may have a substituent; Z₁ and Z₂ each represent a 6-membered aromatic ring comprising a group of atoms of carbon, hydrogen or nitrogen, provided that Z₁ and Z₂ may be different.

9. (Original) An organic electroluminescent element comprising a cathode and an anode having therebetween at least one organic compound layer,

wherein one of the organic compound layer comprises a copolymer represented by Formula (22):

Formula (22)

wherein Ar_1 to Ar_m each represent an arylene group which may have a substituent or a heteroarylene group which may have a substituent; m represents an integer of not less than two; Ar_1 to Ar_m may be the same or may be different; the heteroarylene group comprises not more than two heteroatoms; K_1 to K_m each represent a single bond or a linkage group selected from Group 3; and X_1 to X_m each represent a hole transport group, an electron transport group or a phosphorescent group:

Group 3

wherein $\text{R}_7 - \text{R}_{13}$ each independently represent an alkyl group or an aryl group, provided that R_{10} and R_{11} , or R_{12} and R_{13} may be joined to form a ring.

10. **(Currently amended)** An organic electroluminescent element comprising a cathode and an anode having therebetween at least one organic compound layer,
wherein one of the organic compound layer comprises a mixture of two or more polymers each represented by Formulas (1), (2), (21) or (22),

wherein the mixture comprises at least one polymer represented by Formula (2):

Formula (1)

wherein Ar_1 represents an arylene group which may have a substituent or a heteroarylene group having not more than two heteroatoms, which may have a substituent; and L_1 represents a linkage group selected from Group 1; and n_1 represents an integer of not less than two:

Group 1

wherein $\text{R}_1 - \text{R}_6$ each independently represent an alkyl group or an aryl group, provided that R_3 and R_4 , or R_5 and R_6 may be joined to form a ring,

Formula (2)

wherein Ar_2 represents an arylene group which may have a substituent or a heteroarylene group having not more than two heteroatoms, which may have a substituent; L_2 represents a

linkage group selected from Group 2; and L₃ represents a single bond or a linkage group selected from Group 3; X represents one of a hole transport group, an electron transport group, a fluorescent group and a phosphorescent group; and n₂ represents an integer of not less than two:

Group 2

Group 3

wherein R₁ - R₆ each independently represent an alkyl group or an aryl group, provided that R₃ and R₄, or R₅ and R₆ may be joined to form a ring, and R₇ - R₁₃ each independently represent an alkyl group or an aryl group, provided that R₁₀ and R₁₁, or R₁₂ and R₁₃

may be joined to form a ring,

Formula (21)

wherein Ar represents an arylene group which may have a substituent or a heteroarylene group which may have a substituent; Z₁ and Z₂ each represent a 6-membered aromatic ring comprising a group of atoms of carbon, hydrogen or nitrogen, provided that Z₁ and Z₂ may be different[.], and

Formula (22)

wherein Ar₁ to Ar_m each represent an arylene group which may have a substituent or a heteroarylene group which may have a substituent; m represents an integer of not less than two; Ar₁ to

Ar_m may be the same or may be different; the heteroarylene group comprises not more than two heteroatoms; K_1 to K_m each represent a single bond or a linkage group selected from above Group 3; and X_1 to X_m each represent a hole transport group, an electron transport group or a phosphorescent group.

11. **(Original)** The organic electroluminescent element of claim 1, wherein the organic electroluminescent element emits white light.

12. **(Original)** A display equipped with the organic electroluminescent element of claim 1.

13. **(Original)** An illuminator equipped with the organic electroluminescent element of claim 1.

14. **(Original)** A display equipped with the illuminator of claim 13 and a liquid crystal cell as a display means.

15. **(Original)** The organic electroluminescent element of claim 3, wherein the organic electroluminescent element emits white light.

16. **(Original)** A display equipped with the organic electroluminescent element of claim 3.

17. **(Original)** An illuminator equipped with the organic electroluminescent element of claim 3.

18. **(Original)** A display equipped with the illuminator of claim 17 and a liquid crystal cell as a display means.

19. **(Original)** The organic electroluminescent element of claim 9, wherein the organic electroluminescent element emits white light.

20. **(Original)** A display equipped with the organic electroluminescent element of claim 9.

21. **(Original)** An illuminator equipped with the organic electroluminescent element of claim 9.

22. **(Original)** A display equipped with the illuminator of claim 21 and a liquid crystal cell as a display means.

23. **(Original)** The organic electroluminescent element of claim 10, wherein the organic electroluminescent element emits white light.

24. **(Original)** A display equipped with the organic electroluminescent element of claim 10.

25. **(Original)** An illuminator equipped with the organic electroluminescent element of claim 10.

26. **(Original)** A display equipped with the illuminator of claim 25 and a liquid crystal cell as a display means.

27. **(New)** An organic electroluminescent element comprising a cathode and an anode having therebetween at least one organic compound layer,

wherein one of the organic compound layer comprises a polymer having a repeat unit represented by Formula (1):

Formula (1)

wherein Ar_1 represents a group represented by Ar-63; and L_1 represents a linkage group selected from Group 1; and n_1 represents an integer of not less than two:

Ar-63

Group 1

wherein $\text{R}_1 - \text{R}_6$ each independently represent an alkyl group or an aryl group, provided that R_3 and R_4 , or R_5 and R_6 may be joined to form a ring.