Homework1 for EECS 340

Yu Mi

January 26, 2018

1 Warm-up: Big-Oh and Counting Primitive Operations

Show your work on the following questions. Use the limit-based definitions of asymptotic notation on the "Big-Oh Cheat Sheet" on Canvas wherever applicable.

1.1 Solve R-1.20, R-1.22, and R-1.23 in the text

1.1.1 R-1.20

Show that $(n+1)^5$ is $O(n^5)$.

Proof: Let $f(n) = (n+1)^5$ and $g(n) = n^5$ so that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{(n+1)^5}{n^5} = \lim_{n \to \infty} \frac{n^5 + 5n^4 + 10n^3 + 10n^2 + 5n + 1}{n^5}$$
$$= 1 + \lim_{n \to \infty} \frac{5}{n} + \frac{10}{n^2} + \frac{10}{n^3} + \frac{5}{n^4} + \frac{1}{n^5} = 1$$

Since $0 \le 1 < \infty$, $(n+1)^5$ is $O(n^5)$.

1.1.2 R-1.22

Show that n is $o(n \log n)$.

Proof: Let f(n) = n and $g(n) = n \log n$ so that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n}{n \log n} = \lim_{n \to \infty} \frac{1}{\log n} = 0$$

Since 0 = 0, n is $o(n \log n)$.

1.1.3 R-1.23

Show that n^2 is $\omega(n)$.

Proof: Let $f(n) = n^2$ and g(n) = n so that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{n^2}{n} = \lim_{n \to \infty} n = \infty$$

Since $\infty = \infty$, n^2 is $\omega(n)$.

1.2 Intuitively, $2^x \in O(3^x)$, since 3^x grows faster. Is $3^x \in O(2^x)$?

Answer: No, proof as follows:

Let $f(x) = 3^x$ and $g(x) = 2^x$ so that

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{3^x}{2^x} = \lim_{x \to \infty} (\frac{3}{2})^x = \infty$$

1

Since $\infty = \infty$, so that 3^x is $\omega(2^x)$, $3^x \notin O(2^x)$

1.3 Intuitively, $\log_3(x) \in O(\log_2(x))$. Is $\log_2(x) \in O(\log_3(x))$?

Answer: Yes, proof as follows:

Let $f(x) = \log_2(x)$ and $g(x) = \log_3(x)$ so that

$$\lim_{x \to \infty} \frac{\log_2(x)}{\log_3(x)} = \lim_{x \to \infty} \frac{\frac{\ln x}{\ln 2}}{\frac{\ln x}{\ln 3}} = \lim_{x \to \infty} \frac{\ln 3}{\ln 2} = \log_2(3)$$

Since $0 \le \log_2(3) < \infty$, $\log_2(x)$ is $O(\log_3(x))$.

1.4 Use summations to derive tight asymptotic bounds $(\Theta(-))$ on the runtime of each algorithm

1.4.1 R-1.12

Answer: First, we need to rewrite this algorithm into while loop:

Algorithm Loop2(n):

```
\begin{array}{lll} p \leftarrow 1 & & & > 1 \text{ unit of time} \\ i \leftarrow 1 & & > 1 \text{ unit of time} \\ \textbf{while } i \leq 2n \textbf{ do} & & > 2n+1 \text{ units of time} \\ p \leftarrow p \times i & & > 2 \times 2n \text{ units of time} \\ i \leftarrow i+1 & & > 2 \times 2n \text{ units of time} \\ \textbf{end while} & & \\ \end{array}
```

As is described in the comments of the algorithm, the run time of this algorithm should be $\Theta(10n+3)$ units of time. So that this algorithm is $\Theta(n)$

1.4.2 R-1.14

Answer: First, we need to rewrite this algorithm into while loop:

Algorithm Loop4(n):

```
s \leftarrow 0
                                                                                                                                                    \triangleright 1 unit of time
i \leftarrow 1
                                                                                                                                                    \triangleright 1 unit of time
while i \leq 2n do
                                                                                                                                         \triangleright 2n + 1 units of time
                                                                                                                                                \triangleright 2n units of time
     j \leftarrow 1
     while j \leq i do
                                                                                                                                \triangleright (i+1) \times 2n units of time
                                                                                                                                   \triangleright 2 \times i \times 2n units of time
           s \leftarrow s + i
           j \leftarrow j + 1
                                                                                                                                   \triangleright 2 \times i \times 2n units of time
     end while
     i \leftarrow i + 1
                                                                                                                                                \triangleright 2n units of time
end while
```

To calculate the time cost of the inner loop, we need to focus on the value of i which changes with the outer loop. To make calculate easy to understand, we define C_1 as the actual units of time the outer loop will cost and C_2 as the actual units of time the inner loop will cost. So that:

$$C_1 = 1 + 1 + 2n + 1 + 2n + 2n = 6n + 3$$

$$C_2 = 2n \sum_{i=1}^{2n} (i + 1 + 2i + 2i) = 10n^2 + 7n$$

To sum up, the total units of time this algorithm will cost should be $time_{total} = C_1 + C_2 = 10n^2 + 13n + 3$. So that this algorithm is $\Theta(n^2)$

1.4.3 R-1.15

Answer: First, we need to rewrite this algorithm into while loop:

Algorithm Loop5(n): $s \leftarrow 0$ $\triangleright 1$ unit of time $i \leftarrow 1$ \triangleright 1 unit of time while $i \le n^2$ do $\triangleright n^2 + 1$ units of time $\triangleright n^2$ units of time $j \leftarrow 1$ $\triangleright (i+1) \times n^2$ units of time while $j \leq i$ do \triangleright 2 × i × n^2 units of time $s \leftarrow s + i$ $\triangleright 2 \times i \times n^2$ units of time $j \leftarrow j + 1$ end while $\triangleright n^2$ units of time $i \leftarrow i + 1$ end while

To calculate the time cost of the inner loop, we need to focus on the value of i which changes with the outer loop. To make calculate easy to understand, we define C_1 as the actual units of time the outer loop will cost and C_2 as the actual units of time the inner loop will cost. So that:

$$C_1 = 1 + 1 + n^2 + 1 + n^2 + n^2 = 3n^2 + 3$$

 $C_2 = 2n\sum_{i=1}^{n^2} (i + 1 + 2i + 2i) = \frac{5}{2}n^4 + \frac{7}{2}n^2$

To sum up, the total units of time this algorithm will cost should be $time_{total} = C_1 + C_2 = \frac{5}{2}n^4 + \frac{13}{2}n^2 + 3$. So that this algorithm is $\Theta(n^4)$

Explain why it is reasonable to ignore the overhead of a ranged for loop when 1.5 you derived the tight asymptotic runtime bounds in the previous question.

Answer: When calculating the runtime bounds of a loop, the overhead of such loop will cost a constant time of computation, while the loop body will cost n times more than the overhead. As n grows big enough, the overhead is always significantly smaller than the loop body. Thus, when we are deriving the asymptotic runtime bounds, we can ignore the overhead of a ranged loop.

2 A Challenging Sum

Show that summation $\sum_{i=1}^{n} \lceil \log_2(n/i) \rceil$ is O(n). You may assume that n is a power of 2.

Proof:

Base Case: Show that the statements holds for n = 1.

When n = 1, $\sum_{i=1}^{n} \lceil \log_2(n/i) \rceil = \lceil \log_2(1) \rceil = 0$, and n = 1, so we have $0 \le 1$. **Inductive Step:** Show that if $\sum_{i=1}^{n} \lceil \log_2(n/i) \rceil \le cn$ holds, then also $\sum_{i=1}^{2n} \lceil \log_2(2n/i) \rceil \le c2n$ holds. Since we have $\sum_{i=1}^{n} \lceil \log_2(n/i) \rceil \le cn$ holds, we can replace n by 2n, thus we have:

$$\sum_{i=1}^{2n} \lceil \log_2(2n/i) \rceil = \sum_{i=1}^{2n} \lceil \log_2(n/i) + 1 \rceil = 2n + \sum_{i=1}^{2n} \lceil \log_2(n/i) \rceil$$

When $n < i \le 2n$, $0.5 \le (n/i) < 1$. Thus $-1 \le \log_2(n/i) < 0$, thus we have

$$2n + \sum_{i=1}^{2n} \lceil \log_2(n/i) \rceil = 2n - 1 + \sum_{i=1}^{n} \lceil \log_2(n/i) \rceil \le cn + 2n - 1$$

For any constant c > 2, we have $cn + 2n - 1 \le c2n$. Thereby that indeed $\sum_{i=1}^{2n} \lceil \log_2(2n/i) \rceil \le c2n$ holds.

Since both the base case and the inductive step have been performed, by mathematical induction, $\sum_{i=1}^{n} \lceil \log_2(n/i) \rceil$ is O(n) holds for all n that is a power of 2. Q.E.D.

3 Theory: Big-Oh and Derivatives

In the following questions, suppose that $f, g : \mathbb{R} \to \mathbb{R}$ are differentiable and strictly increasing (f'(x) > 0) and g'(x) > 0 for all x). Prove the statement in each question, or construct a counterexample.

3.1 Is $f(x) \in O(g(x))$ if and only if $f'(x) \in O(g'(x))$?

Answer: No, the counterexample is shown as follow:

Suppose we have:

$$f(x) = 3 - \frac{1}{e^x}$$
$$g(x) = 4 - \frac{1}{e^{2x}}$$

Where $f(x) \in O(g(x))$ because:

$$\lim_{x \to \infty} \frac{f(x)}{(g(x))} = \lim_{x \to \infty} \frac{3 - \frac{1}{e^x}}{4 - \frac{1}{e^{2x}}} = \lim_{x \to \infty} \frac{\frac{3e^x - 1}{e^x}}{\frac{4e^{2x} - 1}{e^{2x}}} = \lim_{x \to \infty} \frac{e^x (3e^x - 1)}{4e^{2x} - 1} = \lim_{x \to \infty} \frac{3e^{2x} - e^x}{4e^{2x} - 1}$$

According to L'Hospital's rule,

$$\lim_{x \to \infty} \frac{3e^{2x} - e^x}{4e^{2x} - 1} = \lim_{e^x \to \infty} \frac{6e^x - 1}{8e^x} = \lim_{e^x \to \infty} \frac{6}{8} = \frac{3}{4} = 0.75$$

Since $0 \le 0.75 < \infty$, it is indeed that $f(x) \in O(g(x))$.

However, when we have

$$f'(x) = \frac{1}{e^x}$$
$$g'(x) = \frac{2}{e^{2x}}$$

To examine $f'(x) \in O(g'(x))$, we can calculate $\lim_{x\to\infty} \frac{f'(x)}{g'(x)}$ by:

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{\frac{1}{e^x}}{\frac{2}{e^{2x}}} = \lim_{x \to \infty} \frac{e^x}{2} = \infty$$

Such results indicate that $f'(x) \in \omega(g'(x))$, which stands against $f'(x) \in O(g'(x))$. So that the statement in this question is not true.

3.2 Is it true that if $\lim_{x\to+\infty} f'(x) = 0$, then $f(x) \in O(1)$?

Answer: No, the counterexample is shown as follow:

Suppose we have:

$$f(x) = \ln(x)$$

Where $f'(x) = \frac{1}{x}$, and $\lim_{x \to +\infty} f'(x) = 0$, however,

$$\lim_{x \to +\infty} \frac{\ln(x)}{1} = \lim_{x \to +\infty} \ln(x) = +\infty$$

So that $f'(x) \in \omega(1)$, which stands against $f'(x) \in O(1)$. So that the statement in this question is not true.

4 Theory: Properties of Big-Oh Notation

4.1 Let $f, g : \mathbb{R} \to \mathbb{R}$ be continuous and strictly increasing. Is it necessarily the case that $f \in O(g(x))$ or $g \in O(f(x))$? Prove, or provide a counterexample.

Answer: Yes, the statement is true, prove as follows:

According to the limit definition, the statement in the question is equivalent to: $\exists c_1 = \lim_{x \to +\infty} \frac{f(x)}{g(x)}$ or $c_2 = \lim_{x \to +\infty} \frac{g(x)}{f(x)}$, where $0 \le c_1 < +\infty$ or $0 \le c_2 < +\infty$

Thus we have:

$$1 = \lim_{x \to +\infty} \frac{f(x)}{g(x)} \times \frac{g(x)}{f(x)} = c_1 \times c_2$$

Since the definition field of f(x) and g(x) is \mathbb{R} , we can divide this field into these parts:

First, when $c_1 \in (-\infty, 0)$, it is not possible because in this case either f(x) or g(x) is not strictly increasing, which go against the condition given in the statement.

Second, when $c_1 = 0$, we can simple conclude that $f(x) \in O(g(x))$ because of the definition and $g(x) \in \omega(f(x))$ because in this case $c_2 = +\infty$.

Third, when $c_1 \in (0, +\infty)$, as is discussed above, we can also assert that $f(x) \in O(g(x))$ because of the definition.

Forth, when $c_2 = 0$, it is like the opposite of the second case that $f(x) \in \omega(g(x))$ and $g(x) \in O(f(x))$ To sum up, the statement is true.

4.2 R-1.18

Show that f(n) is O(g(n)) if and only if g(n) is $\Omega(f(n))$.

Proof:

 \to : if we have $g(b) \in \Omega(f(n))$, which means $\exists 0 < c \leq \infty, \lim_{n \to \infty} \frac{g(n)}{f(n)} = c$. We can assert that $\lim_{n \to \infty} g(n) \neq 0$. So when considering $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c'$, it is simply that $c' = \frac{1}{c}$. Since $0 < c \leq \infty$, we can conclude that $0 \leq c' < 0$, which means $f(n) \in O(g(n))$.

 \leftarrow : if we have $f(n) \in O(g(n))$, which means $\exists 0 \leq c < \infty, \lim_{n \to \infty} \frac{f(n)}{g(n)} = c$. We can assert that $\lim_{n \to \infty} f(n) \neq 0$. So when considering $\lim_{n \to \infty} \frac{g(n)}{f(n)} = c'$, it is simply that $c' = \frac{1}{c}$. Since $0 \leq c < \infty$, we can conclude that $0 < c' \leq 0$, which means $g(n) \in \Omega(f(n))$.

4.3 R-1.19

Show that if p(n) is a polynomial in n, then $\log p(n)$ is $O(\log n)$.

Proof:

Since p(n) is a polynomial in n, which means

$$\exists a_0, a_1, a_2, a_3, ..., a_m \in \mathbb{R}, p(n) = a_m n^m + a_{m-1} n^{m-1} + ... + a_3 n^3 + a_2 n^2 + a_1 n^1 + a_0$$

Thus we have:

$$\lim_{n \to \infty} \frac{\log(p(n))}{\log(n)} = \lim_{n \to \infty} \frac{\log(\sum_{i=0}^m a_i n^i)}{\log(n)} = \lim_{n \to \infty} \frac{\ln(\sum_{i=0}^m a_i n^i)}{\ln(n)}$$

According to L'Hospital's rule, we have:

$$\lim_{n \to \infty} \frac{\ln(\sum_{i=0}^{m} a_i n^i)}{\ln(n)} = \lim_{n \to \infty} \frac{\sum_{i=1}^{m} i a_i n^{i-1} \times \frac{1}{\sum_{i=0}^{m} a_i n^i}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\sum_{i=1}^{m} i a_i n^i}{\sum_{i=0}^{m} a_i n^i}$$

When we apply L'Hospital's rule for m times, we have:

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{m} i a_i n^i}{\sum_{i=0}^{m} a_i n^i} = \lim_{n \to \infty} \frac{m \prod_{i=1}^{m} i}{\prod_{i=1}^{m} i} = m$$

Since m is the level of p(n), $m \in \mathbb{N}_+$. Thus $0 \le m < +\infty$, so that $\log p(n) \in O(\log n)$.

5 Application: Matrix Multiplication

- 5.1 Provide a tight asymptotic upper bound on the runtime of easy-mutiply in terms of n.
- 5.2 What is the asymptotic runtime of combined-multiply in terms of n?
- 6 "Application": Spaghetti Sort
- 6.1 Describe the asymptotic runtime of unmodified spaghetti-sort.
- 6.2 Suppose that we require that the input list is *not* a list of arbitrary natural numbers, but is instead a list of 64-bit unsigned integers. What is a tight bound on the asymptotic runtime of spaghetti sort now?
- 6.3 In the light of the answer to the previous question, why/ why not would we want to use spaghetti-sort for sorting 64-bit unsigned integers in practice?
- 7 Algorithm Design: Finding Cycles