Section 2. Basic formulas and identities in Riemannian geometry

Weimin Sheng

1. Bianchi identities

The first and second Bianchi identities are

$$R_{ijkl} + R_{iklj} + R_{iljk} = 0$$

and

$$R_{ijkl,m} + R_{ijlm,k} + R_{ijmk,l} = 0.$$

We may prove the above formulas directly. But it would be easy to prove them by using the **Cartan structure equations**. The **twice contracted second Bianchi identity** is

$$g^{ij}\nabla_i R_{jk} = \frac{1}{2}\nabla_k R.$$

This is equivalent to the Einstein tensor $R_{ij} - \frac{1}{2}Rg_{ij}$ being divergence-free:

$$div\left(Rc - \frac{1}{2}Rg\right) = 0.$$

Theorem 1 (Schur) Let M be connected and $\dim M \geq 3$. If the sectional curvature of M is constant at each point, i.e.

$$K(P) = f(x)$$
 for all 2-plane $P \subset T_x M$,

then f(x) = const., and M is a space form. Likewise, if the Ricci curvature is constant at each point, i.e.

$$R_{ik} = c\left(x\right)g_{ij},$$

then c(x) = const., and M is Einstein.

Proof. By the definition of the sectional curvature, we have

$$R_{ijkl} = f(x) \left(g_{ik} g_{jl} - g_{il} g_{jk} \right)$$

then by the second Bianchi identity, we have (take normal coordinates at $x \in M$)

$$0 = R_{ijkl,m} + R_{ijlm,k} + R_{ijmk,l}$$

= $f_{,m} (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk}) + f_{,k} (\delta_{il}\delta_{jm} - \delta_{im}\delta_{jl})$
+ $f_{,l} (\delta_{im}\delta_{jk} - \delta_{ik}\delta_{jm})$

Since we assume dim $M \geq 3$, for each m, we can find m, i, j, k, l with i = k, j = l and $i \neq m, j \neq m$ and $i \neq j$. Then we have $f_{,m} = 0$. Since M is connected, then f(x) = const.. The second claim follows in the same manner. QED

2. Lie derivative.

For fixed point $q \in M$, one seeks a curve through q whose tangent vector at each point coincides with the value of a given vector X at this point, i.e. a curve $c_q(t)$ is always tangent to the vector field X. Now we want to fix t and vary q; we put

$$\varphi_t(q) := c_q(t)$$
.

Theorem 2. We have

$$\varphi_t \circ \varphi_s(q) = \varphi_{t+s}(q) \quad \text{if } s, t, s+t \in I_q$$
 (2.1)

and if φ_t is defined on $U \subset M$, it maps U diffeomorphically onto its image. Proof. We have

$$\dot{c}_{q}(t+s) = X(c_{q}(t+s)),$$

hence

$$c_q(t+s) = c_{c_q(s)}(t).$$

Starting from q, at time s one reaches the point $c_q(s)$, and if one proceeds a time t further, one reaches $c_q(t+s)$. One therefore reaches the same point if one walks from q on the integral curve for a time t+s, or if one walks a time t from $c_q(s)$. This shows (2.1). Inserting t=-s into (2.1) for $s \in I_q$, we obtain

$$\varphi_{-s} \circ \varphi_s(q) = \varphi_0(q) = q.$$

Thus the map φ_{-s} is the inverse of φ_s , and the diffeomorphism property follows. QED

Definition 1 A family $(\varphi_t)_{t\in I}$ (I open interval with $0\in I$) of diffeomorphisms from M to M satisfying (2.1) is called a local **1-parameter group** of diffeomorphisms.

In general, a local 1-parameter group need not be extendable to a group, since the maximal interval of definition I_q of c_q need not be all of R. This is already seen by easy example, e.g. $M = R, X(\tau) = \tau^2 \frac{d}{d\tau}$, i.e. $\dot{c}(t) = c^2(t)$ as differential equation.

However, on a compact differentiable manifold, any vector field generates a 1-parameter group of diffeomorphisms.

We call a vector field X is **complete** if there is a **1-parameter group** of diffeomorphisms $\{\varphi_t\}_{t\in R}$ generated by X. If M^n is closed, then any smooth vector field is complete. Let α be a tensor of type (r,s) and let X be a complete vector field generating a global 1-parameter group of diffeomorphisms φ_t . The Lie derivative of α with respect to X is defined by

$$L_X \alpha =: \lim_{t \to 0} \frac{1}{t} \left(\alpha - (\varphi_t)_* \alpha \right). \tag{2.2}$$

Here $(\varphi_t)_*: T_pM \to T_{\varphi_t(p)}M$ is the differential of φ_t . It acts on the cotangent bundle by $(\varphi_t)_* = (\varphi_t^{-1})^*: T_p^*M \to T_{\varphi_t(p)}^*M^n$. We can naturally extend the action of $(\varphi_t)_*$ to the tensor bundles of M^n , which is used in (2.2).

The Lie derivative, which measures the infinitesimal lack of diffeomorphism invariance of a tensor with respect to a 1-parameter group of diffeomorphism generated by a vector field, has the following properties:

- (1) If f is a function, then $L_X f = X(f)$.
- (2) If Y is a vector field, then $L_XY = [X, Y]$.
- (3) If α and β are tensors, then $L_X(\alpha \otimes \beta) = (L_X \alpha) \otimes \beta + \alpha \otimes (L_X \beta)$.
- (4) If α is an (0, r) -tensor, then for any vector fields $X, Y_1, ..., Y_r$

$$(L_{X}\alpha)(Y_{1},...,Y_{r}) = X(\alpha(Y_{1},...,Y_{r}))$$

$$- \sum_{i=1}^{r} \alpha(Y_{1},...,Y_{i-1},[X,Y_{i}],Y_{i+1},...,Y_{r})$$

$$= (\nabla_{X}\alpha)(Y_{1},...,Y_{r})$$

$$+ \sum_{i=1}^{r} \alpha(Y_{1},...,Y_{i-1},\nabla_{Y_{i}}X,Y_{i+1},...,Y_{r})$$
(2.3)

For example, if α is a 2-tensor, then

$$(L_X\alpha)_{ij} = (\nabla_X\alpha)_{ij} + g^{kl} (\nabla_i X_k \alpha_{lj} + \nabla_j X_k \alpha_{il}).$$

Recall that the gradient of a function f with respect to the metric g is defined by

$$q(qrad_a f, X) := X f = df(X)$$
.

In other words, $grad_g f$ is the dual of the 1-form df. using (2.3), we may show that the Lie derivative of the metric is given by

$$(L_X g)(Y_1, Y_2) = g(\nabla_{Y_1} X, Y_2) + g(Y_1, \nabla_{Y_2} X).$$

In local coordinates, this implies

$$(L_X g)_{ij} = \nabla_i X_j + \nabla_j X_i.$$

In particular, if f is a function, then

$$(L_{grad_g f} g)_{ij} = 2\nabla_i \nabla_j f.$$

We say that a vector field X on (M^n, g) is **Killing** if $L_X g = 0$. If X is a complete Killing vector field, then a 1-parameter group of diffeomorphisms φ_t that it generates is a 1-parameter group of isometries of (M^n, g) .

Definition 2. We say that a diffeomorphism $\psi : (M^n, g) \to (N^n, h)$ is an isometry if $\psi^*h = g$. Two Riemannian manifolds are said to be isometric if there is an isometry from one to the other.

3. Differential forms.

The **volume form** $d\mu$ of an oriented riemannian manifold (M^n, g) is defined in terms of a positively oriented orthonormal coframe $\{\omega^i\}_{i=1}^n$ by

$$d\mu = \omega^1 \wedge \dots \wedge \omega^n.$$

The volume satisfies $(d\mu)(e_1,...,e_n)=1$, where $\{e_i\}_{i=1}^n$ is the orthonormal frame dual to $\{\omega^i\}_{i=1}^n$ (i.e. $\omega^i(e_j)=\delta^i_j$). In a positively oriented local coordinate system $\{x^i\}$, we have

$$d\mu = \sqrt{\det(g_{ij})} dx^1 \wedge \dots \wedge dx^n.$$

In general, the wedge product of a p-form α and a q-form β is defined by

$$\alpha \wedge \beta (X_{1},...,X_{p+q})$$

$$=: \frac{(p+q)!}{p!q!} \mathcal{A} (\alpha \otimes \beta) (X_{1},...,X_{p+q})$$

$$= \Sigma_{(J,K)} sign (J,K) \alpha (X_{j_{1}},...,X_{j_{p}}) \beta (X_{k_{1}},...,X_{k_{q}}),$$

where $J=(j_1,...,j_p)$ and $K=(k_1,...,k_q)$ are multi-indices and sign (J,K) is the sign of the permutation $(1,...,p+q)\mapsto (j_1,...,j_p,k_1,...,k_q)$. \mathcal{A}_p is the operator: $\otimes^p T^*M \to \wedge^p T^*M \subset \otimes^p T^*M$,

$$\mathcal{A}_{p}\left(\alpha\right) = \frac{1}{p!} \Sigma_{J}\left(signJ\right) J\alpha.$$

Recall that the **exterior derivative** of a p-form β satisfies

$$\begin{split} &(d\beta)\left(Y_{1},...,Y_{p+1}\right)\\ &=\Sigma_{i=1}^{p+1}\left(-1\right)^{i-1}Y_{i}\left(\beta\left(Y_{1},...,\hat{Y}_{i},...,Y_{p+1}\right)\right)\\ &+\Sigma_{i< j}\left(-1\right)^{i+j}\beta\left(\left[Y_{i},Y_{j}\right],Y_{1},...,\hat{Y}_{i},...,\hat{Y}_{j},...,Y_{p+1}\right). \end{split}$$

Using the product rule and the fact that ∇ is torsion-free, we may express $d\beta$ in terms of covariant derivatives as

$$(d\beta)(Y_1, ..., Y_{p+1}) = \sum_{j=1}^{p+1} (-1)^{j-1} (\nabla_{Y_j}\beta) (Y_1, ..., \mathring{Y}_j, ..., Y_{p+1}).$$
 (2.4)

In local coordinates, this is

$$(d\beta)_{i_1...i_{p+1}} = \Sigma_{j=1}^{p+1} (-1)^{j-1} \, \beta_{i_1...\hat{i_j}...i_{p+1},i_j}$$

where $\beta_{i_1...i_p} = \beta\left(\frac{\partial}{\partial x^{i_1}}, ..., \frac{\partial}{\partial x^{i_p}}\right)$. For example, if β is a 1-form, then

$$(d\beta)_{ij} = \beta_{j,i} - \beta_{i,j}.$$

If β is a 2-form, then

$$(d\beta)_{ijk} = \beta_{jk,i} - \beta_{ik,j} + \beta_{ij,k}$$
$$= \beta_{jk,i} + \beta_{ki,j} + \beta_{ij,k}.$$

Now we define the **divergence** of a (0, p)-tensor as

$$(div\alpha)_{i_1\dots i_{p-1}} = g^{jk}\alpha_{ki_1\dots i_{p-1},j}.$$

In particular, if X is a 1-form, then

$$div\left(X\right) = g^{ij}X_{j,i}.$$

Given a p-form β and a vector field X, we define the **interior product** by

$$(\iota_X \beta) (Y_1, ..., Y_{p-1}) =: \beta (X, Y_1, ..., Y_{p-1})$$

for all vector fields $Y_1, ..., Y_{p-1}$. Recall that for any vector field X and any differential form γ

$$L_X \gamma = (d \circ \iota_X + \iota_X \circ d) \gamma. \tag{2.5}$$

The **inner product** on $\wedge^p T^*M$ is defined by

$$\langle \gamma, \eta \rangle =: g^{i_1 j_1} ... g^{i_p j_p} \gamma_{i_1 ... i_p} \eta_{j_1 ... j_p}.$$

For example,

$$\langle \omega^{i_1} \wedge ... \wedge \omega^{i_p}, \omega^{j_1} \wedge ... \wedge \omega^{j_p} \rangle = \frac{1}{p!} \det \left(\delta^{i_k j_l} \right).$$

Recall that given p-forms γ and η , their L^2 -inner product is defined by

$$(\gamma,\eta)_{L^2} =: \int_{M^n} \langle \gamma, \eta \rangle \, d\mu.$$

The **Hodge star operator** $*: \wedge^p T^*M \to \wedge^{n-p} T^*M, p = 0, 1, ..., n$ is defined by

$$\langle \gamma, \eta \rangle d\mu = \gamma \wedge *\eta$$

for any $\gamma, \eta \in \wedge^p T^*M$. For example

$$*(\omega^1 \wedge \dots \wedge \omega^p) = \omega^{p+1} \wedge \dots \wedge \omega^n$$

for a positively oriented orthonormal coframe $\{\omega^i\}_{i=1}^n$.

The **adjoint operator** δ of d acting on a p-form α is defined in terms of d and the Hodge star operator by the formula

$$\delta\alpha = (-1)^{np+n+1} * d * \alpha.$$

In terms of covariant derivatives, the adjoint δ is given by

$$(\delta \alpha) (X_1, ..., X_{p-1}) = -\sum_{i=1}^{p} (\nabla_{e_i} \alpha) (e_i, X_1, ..., X_{p-1}), \qquad (2.6)$$

where $\{e_i\}_{i=1}^n$ is an orthonormal frame. That is, $\delta \alpha = -div\alpha$, or in local coordinates,

$$(\delta \alpha)_{i_1 \dots i_{p-1}} = -g^{jk} \alpha_{k i_1 \dots i_{p-1}, j}.$$

One easily verifies that

$$(d\beta, \alpha)_{L^2} = (\beta, \delta\alpha)_{L^2}$$

where $\alpha \in \wedge^p T^*M$ and $\beta \in \wedge^{p-1} T^*M$.

The **Hodge Laplacian** acting on differential p-forms is defined by

$$\Delta_d =: -(d\delta + \delta d)$$
.

Note that Δ_d is a self-adjoint operator. Acting on **functions**, it is the same as the **Laplace-Beltrami operator** defined by

$$\Delta =: div \nabla = g^{ij} \nabla_i \nabla_j = g^{ij} \left(\frac{\partial^2}{\partial x^i \partial x^j} - \Gamma^k_{ij} \frac{\partial}{\partial x^k} \right).$$

There are other equivalent ways to define Δ , such as

$$\Delta f = \sum_{a=1}^{n} e_a (e_a f) - (\nabla_{e_a} e_a) f,$$

where $\{e_a\}_{a=1}^n$ is an orthonormal frame. Or

$$\Delta f = Trace (Hessf) = Trace \nabla \nabla f$$
$$= \Sigma_{a=1}^{n} \nabla^{2} f (e_{a}, e_{a}),$$

or

$$\Delta f = \frac{1}{\sqrt{|g|}} \sum_{i,j=1}^{n} \frac{\partial}{\partial x^{i}} \left(\sqrt{|g|} g^{ij} \frac{\partial f}{\partial x^{j}} \right),$$

where $|g| = \det(g_{ij})$.

More generally, the **(rough) Laplacian operator** acting on tensors is given by

$$\Delta = div \nabla = trace_g \nabla^2 = g^{ij} \nabla_i \nabla_j =: \nabla_i \nabla_i.$$

More explicitly, given an (r, s)-tensor β , $\nabla\nabla\beta$ is an (r, s + 2)-tensor, which we contract to get

$$\Delta\beta\left(\omega^{1},...,\omega^{r},X_{1},...,X_{s}\right) = \sum_{a=1}^{n} \nabla\nabla\beta\left(\omega^{1},...,\omega^{r},X_{1},...,X_{s};e_{a},e_{a}\right)$$

for all covectors $\omega^1,...,\omega^r$ and vectors $X_1,...,X_s$.

Lemma 1. For any function f, we have

$$\Delta \nabla_i f = \nabla_i \Delta f + R_{ij} f.$$

Proof. This follows from

$$f_{i,jj} = f_{j,ij} = f_{j,ji} + R_{jij}^k f_k.$$

QED

Similarly, the **Bochner formula** for $|\nabla f|^2$ is

$$\Delta \left| \nabla f \right|^2 = 2 \left| \nabla \nabla f \right|^2 + 2R_{ij}\nabla_i f \nabla_j f + 2\nabla_i f \nabla_i (\Delta f).$$

If X is a 1-form, then

$$\Delta X_i - R_{ij}X_j = \Delta_d X_i.$$

If β is a 2-form, then

$$(\Delta_d \beta)_{ij} = \Delta \beta_{ij} + 2R_{ikjl}\beta_{kl} - R_{ik}\beta_{kj} - R_{jk}\beta_{ik}.$$

Now let α be a differential *p*-form. Using (2.4) and (2.6), in local coordinates we may write the Hodge Laplacian as

$$\begin{split} (\Delta_d \alpha)_{i_1 \dots i_r} &= (-1)^{j+1} \, g^{kl} \nabla_{i_j} \nabla_k \alpha_{li_1 \dots \hat{i}_j \dots i_r} + g^{kl} \nabla_k \nabla_l \alpha_{i_1 \dots i_r} \\ &+ (-1)^j \, g^{kl} \nabla_k \nabla_{i_j} \alpha_{li_1 \dots \hat{i}_j \dots i_r} \\ &= (\Delta \alpha)_{i_1 \dots i_r} + (-1)^j \, g^{kl} \left(\nabla_k \nabla_{i_j} - \nabla_{i_j} \nabla_k \right) \alpha_{li_1 \dots \hat{i}_j \dots i_r}. \end{split}$$

4. Integration by parts.

Recall that **Stokes' Theorem** says that

Theorem 3. If α is an (n-1)-form on a compact oriented manifold M^n with (possibly empty) boundary ∂M , then

$$\int_{M} d\alpha = \int_{\partial M} \alpha.$$

Let (M^n,g) be an oriented Riemannian manifold with boundary ∂M . The orientation on M defines an orientation on ∂M . Locally, on the boundary, choose a positively oriented frame field $\{e_i\}_{i=1}^n$ such that $e_1 = \nu$ is the unit outward normal. Then the frame field $\{e_i\}_{i=2}^n$ is positively oriented on ∂M . Let $\{\omega^i\}_{i=1}^n$ denote the orthonormal coframe field dual to $\{e_i\}_{i=1}^n$. The volume form of M is

$$d\mu = \omega^1 \wedge \ldots \wedge \omega^n$$

and the volume form of ∂M is

$$d\sigma = \omega^2 \wedge \dots \wedge \omega^n.$$

It is not difficult to see that

$$d\sigma = \iota_{\nu} (d\mu)$$
.

Indeed,

$$\iota_{\nu}(d\mu)(e_2,...,e_n) = (d\mu)(e_1,e_2,...,e_n) = 1.$$

The divergence theorem says

Theorem 4. Let (M^n, g) be a compact oriented Riemannian manifold. If X is a vector field, then

$$\int_{M} div(X) d\mu = \int_{\partial M} \langle X, \nu \rangle d\sigma,$$

where $div(X) = X^{i}_{,i}$.

Proof. Define the (n-1)-form α by

$$\alpha = \iota_X (d\mu)$$
.

Using $d^2 = 0$ and (2.5) we compute

$$d\alpha = d \circ \iota_X (d\mu) = (d \circ \iota_X + \iota_X \circ d) (d\mu)$$

= $L_X (d\mu) = div (X) d\mu$,

where to obtain the last equality, we may compute in an orthonormal frame $e_1, ..., e_n$:

$$L_X (d\mu) (e_1, ..., e_n) = \sum_{i=1}^n d\mu (e_1, ..., \nabla_{e_i} X, ..., e_n)$$

= $div (X) d\mu (e_1, ..., e_n)$.

Now Stokes' Theorem implies that

$$\int_{M} div(X) d\mu = \int_{M} d\alpha = \int_{\partial M} \alpha$$
$$= \int_{\partial M} \iota_{X}(d\mu) = \int_{\partial M} \langle X, \nu \rangle d\sigma.$$

To verify the last equality, we used

$$(\iota_X (d\mu)) (e_2, ..., e_n) = (d\mu) (X, e_2, ..., e_n)$$
$$= \langle X, \nu \rangle (d\mu) (e_1, ..., e_n)$$
$$= \langle X, \nu \rangle.$$

Hence the theorem is proved.

QED

Corollary 1. Let (M^n, g) be a compact oriented Riemannian manifold. If α is an (r, s)-tensor and β is an (r, s - 1)-tensor, then

$$\int_{M} \left\langle \alpha, \nabla \beta \right\rangle dV = - \int_{M} \left\langle \operatorname{div} \left(\alpha \right), \beta \right\rangle dV.$$

Proof. Let $X_j = \alpha_{ji_2...i_s}^{k_1...k_r} \beta_{i_2...i_s}^{k_1...k_r}$. We compute that

$$divX = \langle div(\alpha), \beta \rangle + \langle \alpha, \nabla \beta \rangle,$$

and the result follows from the divergence theorem.

QED