Information Extraction

LING 570 Fei Xia

Outline

What is IE?

General process

- Relation detection
 - Supervised method
 - Lightly supervised method
- J&M Chapter 22

What is IE?

Motivation:

- Unstructured data hard to manage, assess, analyze
- Many tools for manipulating structured data:
 - Databases: efficient search, agglomeration
 - Statistical analysis packages
 - Decision support systems

Goal:

- Given unstructured information in texts
- Convert to structured data
 - E.g., populate DBs

An example

Citing high fuel prices, United Airlines said Friday it has increased fares by \$6 per round trip to some cities also served by lower-cost carriers. American Airlines, a unit of AMR Corp. immediately matched the move, spokesman Time Wagner said. United, a unit of UAL Corp., said the increase took effect Thursday an applies to most routes where it competes against discount carriers, such as Chicago to Dallas and Denver to San Francisco.

Announcement date: 10/14/2016 (Friday)

Lead Airlines: United Airlines

Amount: \$6 round trip

Effective date: 10/13/2016 (Thursday)

Follower: American Airlines

Applications

- Shared tasks:
 - Message Understanding Conferences (MUC)
 - Joint ventures/mergers:
 - CompanyA, CompanyB, CompanyC, amount, type
 - Terrorist incidents:
 - Incident type, Actor, Victim, Date, Location
 - BioNLP contests
- General domains:
 - Pricegrabber
 - Stock market analysis
 - Apartment finder

Approaches

- Incorporates range of techniques and tools:
 - FSAs (pattern extraction)
 - Supervised learning:
 - Classification
 - Sequence labeling
 - Semi- and un-supervised learning: clustering, bootstrapping

Common pre-processing steps

- Part-of-Speech tagging
- Named Entity Recognition
- Chunking
- Parsing

•

Outline

What is IE?

General process

- Relation detection
 - Supervised method
 - Lightly supervised method

The general process (1)

- Tokenization, POS tagging, chunking, parsing, ...
- NER: detect entities mentioned in a text
 - Often application-specific
- Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.] immediately matched the move, spokesman [PFR Time Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] an applies to most routes where it competes against discount carriers, such as [100] Chicago] to [IOC Dallas] and [IOC Denver] to [IOC San Francisco] 9

The general process (2)

- Reference resolution: "United" refers "United Airlines"
 - Create entity equivalent classes
- Citing high fuel prices, [ORG United Airlines] said [Time Friday] it has increased fares by [MONFY \$6] per round trip to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.] immediately matched the move, spokesman [PER Time Wagner] said. [org United], a unit of [ORG UAL Corp.], said the increase took effect [TIMF Thursday] an applies to most routes where it competes against discount carriers, such as [IOC Chicago] to [IOC Dallas] and [IOC Denver] to [IOC San Francisco].

The general process (3)

- Relation detection and classification:
 - Find and classify relations among entities in text
 - Mix of application-specific and generic relations
 - Generic relations:
 - Family, employment, part-whole, membership, geospatial
 - Generic relations:
 - United is part-of UAL Corp.
 - American Airlines is part-of AMR
 - Tim Wagner is an employee of American Airlines
 - Domain-specific relations:
 - United serves Chicago; United serves Denver, etc

The general process (4)

- Event detection and classification:
 - Find key events
 - Fare increase by United
 - Matching fare increase by American
 - Reporting of fare increases
 - How cued?
 - Instances of "said" and "cite"

The general process (5)

- Temporal expression recognition
 - Finds temporal events in text
 - E.g. Friday, Thursday in example text
 - Others:
 - Date expressions:
 - Absolute: days of week, holidays
 - Relative: two days from now, next year
 - Clock times:
 - noon, 3:30pm
- Temporal analysis:
 - Map expressions to points/spans on timeline
 - Anchor: e.g. Friday, Thursday: tied to example dateline

The general process (6)

- Template filling: Texts describe stereotypical situations in domain
 - Identify texts evoking template situations
 - Fill slots in templates based on text
 - In example: fare-raise is stereo-typical event

FARE-RAISE ATTEMPT: LEAD AIRLINE: UNITED AIRLINES

AMOUNT: \$6

EFFECTIVE DATE: 2006-10-26

FOLLOWER: AMERICAN AIRLINES

The general process (recap)

- NER
- Reference resolution
- Relation detection and classification
- Event detection and classification
- Temporal expression detection and temporal analysis
- Template-filling

Outline

What is IE?

General process

- Relation detection
 - Supervised method
 - Lightly supervised method

Common relations

Relations		Examples	Types
Affiliations			
	Personal	married to, mother of	$PER \to PER$
	Organizational	spokesman for, president of	$PER \rightarrow ORG$
	Artifactual	owns, invented, produces	$(PER \mid ORG) \rightarrow ART$
Geospatial		•	•
	Proximity	near, on outskirts	$LOC \rightarrow LOC$
	Directional	southeast of	$LOC \rightarrow LOC$
Part-Of			
	Organizational	a unit of, parent of	$ORG \rightarrow ORG$
	Political	annexed, acquired	$GPE \to GPE$

Relations and entities from the example

Domain	$\mathscr{D} = \{a, b, c, d, e, f, g, h, i\}$	
United, UAL, American Airlines, AMR	a,b,c,d	
Tim Wagner	e	
Chicago, Dallas, Denver, and San Francisco	f,g,h,i	
Classes		
United, UAL, American, and AMR are organizations	$Org = \{a, b, c, d\}$	
Tim Wagner is a person	$Pers = \{e\}$	
Chicago, Dallas, Denver, and San Francisco are places	$Loc = \{f, g, h, i\}$	
Relations		
United is a unit of UAL	$PartOf = \{\langle a, b \rangle, \langle c, d \rangle\}$	
American is a unit of AMR		
Tim Wagner works for American Airlines	$\mathit{OrgAff} = \{\langle c, e \rangle\}$	
United serves Chicago, Dallas, Denver, and San Francisco	$Serves = \{ \langle a, f \rangle, \langle a, g \rangle, \langle a, h \rangle, \langle a, i \rangle \}$	

Supervised Approaches to Relation Analysis

- Two-stage process:
 - Relation detection:
 - Detect whether a relation holds between two entities
 - Positive examples:
 - » Drawn from labeled training data
 - Negative examples:
 - » Generated from within-sentence entity pairs with no relation
 - Relation classification:
 - Label each related pair of entities by type
 - Multi-class classification task

Some Example Features

[ORG American Airlines], a unit of [ORG AMR Corp.] immediately matched the move, spokesman [PER Time Wagner] said.

Entity-based features		
Entity ₁ type	ORG	
Entity ₁ head	airlines	
Entity ₂ type	PERS	
Entity ₂ head	Wagner	
Concatenated types	ORGPERS	
Word-based features		
Between-entity bag of words	{ a, unit, of, AMR, Inc., immediately, matched, the, move, spokesman }	
Word(s) before Entity ₁	NONE	
Word(s) after Entity ₂	said	
Syntactic features		
Constituent path	$NP \uparrow NP \uparrow S \uparrow S \downarrow NP$	
Base syntactic chunk path	NP o NP o PP o NP o NP o NP o NP	
Typed-dependency path	$Airlines \leftarrow_{subj} matched \leftarrow_{comp} said \rightarrow_{subj} Wagner$	

Lightly Supervised Approaches

- Supervised approaches is highly effective, but
 - require large manually annotated corpus for training
- Unsupervised approaches interesting, but
 - may not yield results consistent with desired categories
- Lightly supervised approaches:
 - Build on small seed sets of patterns that capture relations of interest
 - E.g. manually constructed regular expressions
 - Iteratively generalize and refine patterns to optimize

Bootstrapping Relations

- Create seed patterns and instances
 - Example: finding airline hub cities
 - Initial pattern: / * has a hub at * /
 - In a large corpus finds examples like:
 - Delta has a hub at LaGuardia.
 - Milwaukee-based Midwest has a hub at KCI.
 - American airlines has a hub at the San Juan airport
 - Instances:
 - (Delta, LaGuardia), (Midwest, KCI), (American, San Juan)

Patterns -> more tuples

ORG has a hub at LOC

Milwaukee-based Midwest has a hub at KCI.

Delta has a hub at LaGuardia.

Bulgaria Air has a hub at Sofia Airport, as does Hemus Air.

American Airlines has a hub at the San Juan airport.

No frills rival easyJet, which has established a hub at Liverpool... Ryanair also has a continental hub at Charleroi airport (Belgium).

Tuples -> more patterns

(hub, Ryanair, Charleroi)

Budget airline Ryanair, which uses Charleroi as a hub, scrapped all weekend flights out of the airport.

All flights in and out of Ryanair's Belgian hub at Charleroi airport were grounded on Friday...

A spokesman at Charleroi, a main hub for Ryanair, estimated that 8000 passengers had already been affected.

```
/ [ORG], which uses [LOC] as a hub /
/ [ORG]'s hub at [LOC] /
/ [LOC] a main hub for [ORG] /
```


Bootstrapping Relations

- Issues:
 - False alarms:
 - Some matches aren't valid relations
 - The catheter has a hub at the very end of the hall.
 - Fix? Change the pattern to /[ORG] has hub at [LOC]/
 - Misses:
 - Some instances are narrowly missed by pattern
 - No frills rival easyJet, which has established a hub at Liverpool.
 - Ryanair also has a continental hub at Charleroi airport.
 - Fix?
 - Relax patterns see the 1st issue
 - Add new high-precision patterns

Bootstrapping

- How can we obtain more high quality patterns?
 - Human labeling? Expensive
 - Use tuples identified by seed patterns
 - Find other occurrences of tuples
 - Extract patterns from those occurrences
- E.g. tuple: (hub, Ryanair, Detroit)
 - Occurrences:
 - Budget airline Ryanair, which uses Detroit as a hub
 - All flights in and out of Ryanair's Belgian hub at Detroit
 - Patterns:
 - /[ORG], which uses [LOC] as a hub /
 - /[ORG]'s hub at [LOC] /

Relation Analysis Evaluation

- Approaches:
 - Standardized, labeled data sets
 - Precision, recall, f-measure
 - 'Labeled' precision: test both detection and classification
 - 'Unlabeled' precision: test only detection
 - No fully labeled corpus
 - Evaluate retrieved tuples (e.g. DB contents)
 - Don't care how many times we find the same tuple