Supplementary file: Co-Training based prediction of multi-label Protein-Protein Interactions

April 26, 2024

1 Details of features used in CoMPPI

CoMPPI extracts 9 features from protein sequence, categorized into ordered and nominal features based on the necessity for additional extraction of contextualized information.

1.1 Ordered feature

Pre-trained word2vec: word2vec has been a classical embedding model for representation learning of sequence data. Here we use the pre-trained word2vec model that computed by the residue representation process of DeepFE-PPI, which applies skip-gram model and sets the corresponding n-gram as 1 to extract distinct residue interactions. The word2vec model was pre-trained with 558,590 sequences from Swiss-Prot database with various combinations of hyper-parameter values. In this work, we select the model with residue dimension 20 and window value 16.

Amino acid type: The electrostatic interaction and hydrophobic effect are dominant factors for amino acid preferences. Shen et al. calculated the electrostatic and hydrophobic interactions side chain of each amino acid with density-functional theory method B3LYP/6–31G* and molecular modeling approach, based on the similarity between this two factors, 26 amino acids can be clustering into eight class. Here, the one-hot-encoding of amino acid type is used as a part of the input features.

Position specific matrix: An abstraction of the alignment result of one sequence against a set of sequences, which reflects the probability of each amino acid at a specific position, each amino acid in the original sequence is represented as vector:

$$V_{i} = \sum_{j=1}^{20} W_{j} \times Y(i, j) \tag{1}$$

where i is the position of amino acid, j represents the 20 naturally amino acids, W_j is the weight for the appearance of amino acid j, Y is Dayhoff's matrix. Here we use PSI-blast to compute PSSM, as this alignment process requires an extra database, usage of PSSM feature is optional for PPI prediction.

1.2 Nominal feature

Conjoint triad: the combination of k-mer and amino acid type. k-mer denotes the length k substrings within a biological sequence and widely used in the analysis of proteomic and genomic data. During the computation of conjoint triad, the amino acids are divided into 7 classes. As its name indicates, conjoint triad select 3 as k value, each 3-mer is considered as a unit and all 3-mers are classified based on the class of their amino acids, hence there are $7^3 = 343$ entries in the representation of each protein sequence.

Amino acid composition (AAC): the fraction of each amino acid within a protein sequence, that is, each protein is represented as a vector with 20 entries, each entry is the occurrence of one amino acid within a sequence divided by the length of this sequence.

Pseudo-amino acid composition (PAAC): A combination of conventional AAC and discrete sequence correlation factors, for sequence $S = [a_1, a_2, ..., a_L]$, the λ -order correlation factor is defined as:

$$\theta_{\lambda} = \frac{1}{L - \lambda} \sum_{i=1}^{L - \lambda} O(a_i, a_{i+\lambda})$$

$$O(a_i, a_j) = \frac{1}{3} [(H_1(R_j) - H_1(R_i))^2 + (H_2(R_j) - H_2(R_i))^2 + (M(R_j) - M(R_i))^2]$$
(2)

 $H_1(a), H_2(a)$ and M(a) denotes the hydrophobicity, hydrophilicity and side-chain mass of a. The sequence is represented as a vector with length $20 + \lambda$:

$$v_{i} = \begin{cases} \frac{f_{i}}{\sum_{j=1}^{20} f_{j} + \omega} \sum_{k=1}^{\lambda} \theta_{k}, & i <= 20\\ \frac{\omega \theta_{i-20}}{\sum_{j=1}^{20} f_{j} + \omega} \sum_{k=1}^{\lambda} \theta_{k}, & i > 20\\ & i \in 1, 2..., (20 + \lambda) \end{cases}$$
(3)

 f_i denotes the frequency of ith amino acid in sequence. It is clear that λ should be smaller than L, in practice, Chou et al. set λ as 30, we follow the same strategy in this work.

CTDT: The transition descriptor in CTD (Composition, Transition and Distribution). For 13 physicochemical properties of amino acids, the amino acids are divided into three functional groups by each property, and transition (T) is the frequency of dipeptides. Finally, a vector with length 39 is computed by the original sequence.

ProVec1D: A feature derived from ProtVec, in which each 3-mer in protein sequence is mapped to a vector with length 100, ProVec1D sums the 100 components as single numeric value.

Global position information: the sum of position information of each amino acid in protein divided by sequence length, where the position information denotes the relative position of amino acid in corresponding sequence.

2 Statistical Tests

In order to test the whether the performance of each method are statistically significant. We conduct a two-sample t-test on all pairs of methods among CoMPPI, AFTGAN, GNN-PPI(KeAP), PIPR(optimized). The results shows that the improvement between CoMPPI and AFTGAN (pvalue 0.2697) are much larger than AFTGAN and GNN-PPI (pvalue 0.6343).

t-test value	CoMPPI	AFTGAN	GNN-PPI(KeAP)	PIPR(optimized)
CoMPPI	1.000000	0.269745	0.143898	0.004886
AFTGAN	0.269745	1.000000	0.634318	0.019317
GNN-PPI(KeAP)	0.143898	0.634318	1.000000	0.040580
PIPR(optimized)	0.004886	0.019317	0.040580	1.000000

Table S1: Accuracy comparison of models on SHS27K, SYS30K and SYS60K

Dataset	Partition scheme -	Method				
Davaset	Tartition scheme	CoMPPI	AFTGAN	GNN-PPI (KEAP)	$\begin{array}{c} \text{PIPR} \\ \text{(optimized)} \end{array}$	PIPR
	Random	0.9359	0.9112	0.9121	0.8064	0.7090
$\mathrm{SHS27K}$	BFS	0.9021	0.8678	0.8700	0.8308	0.6966
	DFS	0.9243	0.8965	0.8961	0.8723	0.7087
	Random	0.7988	0.7679	0.7508	0.6583	0.6722
SYS30K	BFS	0.7904	0.7546	0.7546	0.7008	0.6354
	DFS	0.8585	0.8067	0.7943	0.7626	0.6728
	Random	0.8268	0.8135	0.7484	0.7074	0.6923
SYS60K	BFS	0.8217	0.7566	0.7524	0.7482	0.6347
	DFS	0.8813	0.8476	0.8358	0.7994	0.6671

Table S2: AU-PRC comparison of models on SHS27K, SYS30K and SYS60K

Dataset	Partition scheme -	Method				
Dataset	r artifion scheme	CoMPPI	AFTGAN	GNN-PPI (KEAP)	PIPR (optimized)	PIPR
	Random	0.9611	0.9382	0.9396	0.7715	0.6647
$\mathrm{SHS27K}$	BFS	0.9429	0.9196	0.9210	0.8781	0.8321
	DFS	0.958	0.9393	0.9400	0.9107	0.8545
	Random	0.7381	0.7058	0.6321	0.4587	0.4792
SYS30K	BFS	0.8391	0.814	0.814	0.768	0.75
	DFS	0.911	0.8562	0.8441	0.7963	0.7644
	Random	0.7653	0.6735	0.623	0.5126	0.484
SYS60K	BFS	0.8867	0.8396	0.8318	0.8195	0.7802
	DFS	0.9399	0.9158	0.9091	0.8744	0.8425

Table S3: AU-ROC comparison of models on SHS27K, SYS30K and SYS60K

Dataset	Partition scheme -	Method				
Dataset	attaset Fartition Scheme -		AFTGAN	GNN-PPI (KEAP)	PIPR (optimized)	PIPR
	Random	0.9802	0.9643	0.9655	0.8795	0.8382
$\mathrm{SHS27K}$	BFS	0.9648	0.9417	0.9440	0.9112	0.8919
	DFS	0.9762	0.9600	0.9595	0.9414	0.9169
	Random	0.8762	0.8462	0.8210	0.6349	0.6704
SYS30K	BFS	0.8778	0.8392	0.8392	0.7997	0.7835
	DFS	0.9390	0.8913	0.8767	0.8406	0.8266
	Random	0.8982	0.8652	0.8231	0.7283	0.7128
SYS60K	BFS	0.9099	0.8578	0.8488	0.8359	0.8125
	DFS	0.9572	0.9322	0.9246	0.8947	0.8891

Table S4: Micro-F1 comparison of CoMPPI with different trim length on SHS27K, SYS30K and SYS60K

Dataset	Partition scheme -	Length				
Dataset	1 artition scheme -	128	256	512	1024	2048
	Random	0.9007	0.9019	0.9019	0.9029	0.9018
${ m SHS27K}$	BFS	0.7198	0.7145	0.7157	0.7306	0.7285
	DFS	0.7325	0.7389	0.7417	0.7297	0.7389
	Random	0.8803	0.8779	0.8786	0.8769	0.8746
SYS30K	BFS	0.7719	0.7652	0.7692	0.7712	0.7614
	DFS	0.7936	0.8013	0.8011	0.794	0.7947
	Random	0.9024	0.9017	0.9106	0.9025	0.9077
SYS60K	BFS	0.8268	0.8311	0.8298	0.8281	0.8296
	DFS	0.8561	0.8576	0.8611	0.8537	0.8596

Bold text indicates the best result in corresponding case.

Table S5: Ablation study of ordered features

Dataset	Partition scheme	w/o word2vec	w/o amino acid type	w/o PSSM
	Random	0.8816	0.8856	0.8843
$\mathrm{SHS27K}$	BFS	0.7035	0.6960	0.6977
	DFS	0.6888	0.6927	0.6851
	Random	0.8601	0.8601	0.8548
SYS30k	BFS	0.7478	0.7457	0.7501
	DFS	0.7811	0.7797	0.7783
	Random	0.8963	0.8935	0.8970
${ m SYS60k}$	BFS	0.8080	0.8076	0.8060
	DFS	0.8452	0.8466	0.8411

Table S6: Ablation study of Nominal features

Dataset	w/o Conjoing triad	w/o AAC	w/o PAAC	w/o CTDT
	0.7318	0.7343	0.7304	0.7306
$\mathrm{SHS27K}$	0.5661	0.5624	0.5696	0.5729
	0.6116	0.6099	0.6108	0.6076
	0.7816	0.7808	0.7812	0.7813
SYS30k	0.6497	0.6610	0.6535	0.6641
	0.6817	0.6806	0.6833	0.6791
	0.8079	0.8079	0.8092	0.8078
${ m SYS}60{ m k}$	0.7291	0.7334	0.7264	0.7329
	0.7731	0.7673	0.7687	0.7663

Table S7: The interactions in SYS30k that identified by CoMPPI and challenging for the previous methods

Protein A	Protein B	interaction type
$4932.\mathrm{YER}025\mathrm{W}$	4932.YER036C	reaction
$4932. {\rm YCR} 011{\rm C}$	$4932.\mathrm{YPL}150\mathrm{W}$	expression
$4932.\mathrm{YCR}011\mathrm{C}$	4932.YMR139W	expression
$4932.\mathrm{YBR}103\mathrm{W}$	4932.YPR119W	inhibition
$4932.\mathrm{YNR}012\mathrm{W}$	$4932.\mathrm{YPL}204\mathrm{W}$	ptmod
$4932.\mathrm{YNL}317\mathrm{W}$	4932.YNR012W	ptmod
$4932.\mathrm{YNL}098\mathrm{C}$	4932.YNR012W	inhibition
$4932.\mathrm{YNR}012\mathrm{W}$	4932.YPR104C	expression
$4932.\mathrm{YGR}056\mathrm{W}$	4932.YPR119W	expression
$4932.\mathrm{YGR}056\mathrm{W}$	4932.YKR029C	ptmod
$4932.\mathrm{YGR}056\mathrm{W}$	4932.YMR199W	expression
$4932.\mathrm{YDL}029\mathrm{W}$	4932.YDL048C	expression
$4932.\mathrm{YDL}048\mathrm{C}$	4932.YDR510W	ptmod
$4932.\mathrm{YBR}229\mathrm{C}$	4932.YDL048C	inhibition
$4932.\mathrm{YDL}048\mathrm{C}$	4932.YPR120C	inhibition
$4932.\mathrm{YDL}048\mathrm{C}$	4932.YPR120C	expression
$4932.\mathrm{YDL}048\mathrm{C}$	4932.YDR059C	expression
$4932.\mathrm{YDL}048\mathrm{C}$	4932.YGR133W	expression
$4932.\mathrm{YBR}088\mathrm{C}$	4932.YDL048C	expression
$4932.\mathrm{YDL}048\mathrm{C}$	4932.YJL047C	ptmod
$4932.\mathrm{YCR}051\mathrm{W}$	4932.YDL048C	inhibition
$4932.\mathrm{YCR}051\mathrm{W}$	4932.YDL048C	expression
$4932.\mathrm{YDL}048\mathrm{C}$	4932.YHR042W	inhibition
$4932.\mathrm{YBR}049\mathrm{C}$	4932.YDL048C	inhibition
$4932.\mathrm{YBR}049\mathrm{C}$	4932.YDL048C	expression
$4932.\mathrm{YJR}127\mathrm{C}$	4932.YPR119W	expression
$4932.\mathrm{YDL}056\mathrm{W}$	4932.YJR127C	expression
$4932.\mathrm{YDR}177\mathrm{W}$	4932.YJR127C	expression
$4932.\mathrm{YGR}252\mathrm{W}$	4932.YJR127C	ptmod
$4932.\mathrm{YGR}252\mathrm{W}$	4932.YJR127C	inhibition
$4932.\mathrm{YJR}127\mathrm{C}$	4932.YKL203C	expression
$4932.\mathrm{YDR}510\mathrm{W}$	4932.YJR127C	ptmod
$4932.\mathrm{YJR}127\mathrm{C}$	4932.YKL161C	inhibition
$4932.\mathrm{YJR}127\mathrm{C}$	4932.YKL161C	expression
$4932.\mathrm{YDL}064\mathrm{W}$	4932.YJR127C	ptmod
$4932.\mathrm{YDL}064\mathrm{W}$	4932.YJR127C	expression
$4932.\mathrm{YER}024\mathrm{W}$	4932.YJR127C	inhibition
$4932.\mathrm{YBR}082\mathrm{C}$	4932.YJR127C	expression
$4932.\mathrm{YJL}112\mathrm{W}$	4932.YJR127C	ptmod

4932.YJR127C	4932.YOR039W	ptmod
4932.YJR127C	4932.YOL111C	activation
4932.YML081W	4932.YMR068W	expression
4932.YML081W	4932.YOR061W	ptmod
4932.YKL166C	4932.YML081W	inhibition
4932.YBR195C	4932.YML081W	inhibition
4932.YJL164C	4932.YML081W	inhibition
4932.YKL029C	4932.YML081W	inhibition
4932.YCR027C	4932.YML081W	expression
4932.YGR109C	4932.YML081W	expression
4932.YML081W	4932.YPL110C	expression
4932.YBR009C	4932.YMR068W	ptmod
4932.YGR052W	4932.YMR068W	inhibition
4932.YDL070W	4932.YMR068W	ptmod
4932.YCR083W	4932.YMR068W	expression
4932.YBR160W	4932.YMR068W	ptmod
4932.YBR009C	4932.YMR139W	ptmod
4932.YBR009C	4932.YMR139W	expression
4932.YBR009C	4932.YIL001W	ptmod
4932.YBR009C	$4932.\mathrm{YPL}216\mathrm{W}$	ptmod
4932.YBR009C	4932.YPL256C	ptmod
4932.YBR009C	4932.YKL198C	ptmod
4932.YBR009C	4932.YKL198C	inhibition
4932.YBR009C	4932.YKL198C	expression
4932.YBR009C	4932.YBR195C	inhibition
4932.YBR009C	4932.YBR160W	ptmod
4932.YBR009C	4932.YIL126W	ptmod
4932.YBR009C	4932.YOR233W	inhibition
4932.YBR009C	4932.YOR233W	expression
4932.YBR009C	4932.YGR252W	ptmod
4932.YBR009C	4932.YOL128C	inhibition
4932.YBR009C	4932.YOL128C	expression
4932.YGL242C	4932.YMR139W	expression
4932.YMR139W	4932.YOR267C	ptmod
4932.YMR139W	4932.YPR048W	expression
4932.YLR371W	4932.YMR139W	ptmod
4932.YMR139W	4932.YOL041C	ptmod
4932.YGL097W	4932.YMR139W	inhibition
4932.YLR077W	4932.YMR139W	inhibition
4932.YHL027W	4932.YMR139W	expression
4932.YDL213C	4932.YMR139W	ptmod
4932.YDL213C	4932.YMR139W	expression

1		
4932.YMR139W	$4932.\mathrm{YNL}055\mathrm{C}$	ptmod
4932.YMR136W	$4932.\mathrm{YMR}139\mathrm{W}$	expression
4932.YLR430W	$4932.\mathrm{YMR}139\mathrm{W}$	expression
4932.YGL106W	$4932.\mathrm{YGL}242\mathrm{C}$	ptmod
4932.YGL242C	$4932.\mathrm{YPL}038\mathrm{W}$	expression
4932.YGL242C	$4932.\mathrm{YLR}210\mathrm{W}$	expression
4932.YGL242C	$4932.\mathrm{YPL}026\mathrm{C}$	expression
4932.YGL242C	$4932. {\rm YOR061W}$	ptmod
4932.YER028C	$4932.\mathrm{YPL}021\mathrm{W}$	expression
4932.YGL194C	$4932.\mathrm{YPL}021\mathrm{W}$	expression
4932.YDR043C	$4932.\mathrm{YPL}021\mathrm{W}$	expression
4932.YPL021W	$4932.\mathrm{YPR}186\mathrm{C}$	expression
4932.YER130C	$4932.\mathrm{YLR}399\mathrm{C}$	inhibition
4932.YLR399C	$4932.\mathrm{YOR}194\mathrm{C}$	reaction
4932.YGL254W	$4932.\mathrm{YLR}399\mathrm{C}$	inhibition
4932.YBR219C	$4932.\mathrm{YCR}065\mathrm{W}$	ptmod
4932.YCR065W	$4932.\mathrm{YDL}155\mathrm{W}$	expression
4932.YCR065W	$4932.\mathrm{YIL}001\mathrm{W}$	expression
4932.YGR233C	$4932.\mathrm{YHR}082\mathrm{C}$	inhibition
4932.YDR216W	$4932.\mathrm{YGR}233\mathrm{C}$	inhibition
4932.YGR233C	$4932.\mathrm{YPR}200\mathrm{C}$	expression
4932.YGL008C	$4932.\mathrm{YGR}233\mathrm{C}$	expression
4932.YGR233C	$4932.\mathrm{YNL}167\mathrm{C}$	inhibition
4932.YER045C	$4932.\mathrm{YGR}233\mathrm{C}$	inhibition
4932.YER111C	$4932.\mathrm{YML}027\mathrm{W}$	expression
4932.YER111C	$4932.\mathrm{YLR}375\mathrm{W}$	expression
4932.YER111C	$4932.\mathrm{YKL}062\mathrm{W}$	expression
4932.YER111C	$4932.\mathrm{YMR}136\mathrm{W}$	expression
4932.YDR129C	$4932.\mathrm{YER}111\mathrm{C}$	expression
4932.YBR089C-A	$4932.\mathrm{YPR}013\mathrm{C}$	expression
4932.YBR066C	$4932.\mathrm{YBR}089\mathrm{C-A}$	expression
4932.YIL001W	$4932.\mathrm{YKL}198\mathrm{C}$	expression
4932.YHR205W	$4932.\mathrm{YKL}198\mathrm{C}$	inhibition
4932.YBR049C	$4932.\mathrm{YKL}198\mathrm{C}$	inhibition
4932.YIL001W	$4932.\mathrm{YNL}030\mathrm{W}$	ptmod
4932.YIL001W	$4932.\mathrm{YKR}090\mathrm{W}$	ptmod
4932.YDR096W	$4932.\mathrm{YIL}001\mathrm{W}$	inhibition
4932.YDR096W	$4932.\mathrm{YIL}001\mathrm{W}$	expression
4932.YGR109C	$4932.\mathrm{YIL}001\mathrm{W}$	ptmod
4932.YGR109C	$4932.\mathrm{YIL}001\mathrm{W}$	expression
4932.YIL001W	$4932.\mathrm{YMR}104\mathrm{C}$	expression
4932.YIL001W	$4932.\mathrm{YPL}213\mathrm{W}$	expression

4932.YHR102W	$4932.\mathrm{YIL}001\mathrm{W}$	ptmod
4932.YER045C	$4932.\mathrm{YIL}001\mathrm{W}$	expression
4932.YIL001W	$4932.\mathrm{YNL}068\mathrm{C}$	expression
4932.YNL030W	$4932.\mathrm{YPL}141\mathrm{C}$	expression
4932.YCR051W	$4932.\mathrm{YMR}136\mathrm{W}$	expression
4932.YCR051W	$4932.\mathrm{YGL}209\mathrm{W}$	expression
4932.YBR276C	$4932.\mathrm{YCR}051\mathrm{W}$	expression
4932.YCR051W	$4932.\mathrm{YEL009C}$	expression
4932.YCR051W	$4932.\mathrm{YGL}106\mathrm{W}$	ptmod
4932.YAL040C	$4932.\mathrm{YCR}051\mathrm{W}$	expression
4932.YCR051W	$4932.\mathrm{YPL}038\mathrm{W}$	inhibition
4932.YCR051W	$4932.\mathrm{YPL}038\mathrm{W}$	expression
4932.YCR051W	$4932.\mathrm{YMR}213\mathrm{W}$	expression
4932.YBR066C	$4932.\mathrm{YCR}051\mathrm{W}$	expression
4932.YCR051W	$4932.\mathrm{YDR}039\mathrm{C}$	expression
4932.YCR051W	$4932.\mathrm{YKL}126\mathrm{W}$	inhibition
4932.YCR051W	$4932.\mathrm{YKL}190\mathrm{W}$	inhibition
4932.YJL105W	$4932.\mathrm{YMR}136\mathrm{W}$	ptmod
4932.YJL105W	$4932.\mathrm{YMR}136\mathrm{W}$	expression
4932.YMR136W	$4932.\mathrm{YMR}182\mathrm{C}$	expression
4932.YLR131C	$4932.\mathrm{YMR}136\mathrm{W}$	expression
4932.YKR008W	$4932.\mathrm{YMR}136\mathrm{W}$	ptmod
4932.YMR042W	$4932.\mathrm{YMR}136\mathrm{W}$	expression
4932.YGR232W	$4932.\mathrm{YMR}136\mathrm{W}$	ptmod
4932.YGR232W	$4932.\mathrm{YMR}136\mathrm{W}$	expression
4932.YHR079C	$4932.\mathrm{YMR}136\mathrm{W}$	expression
4932.YDL070W	$4932.\mathrm{YJL}105\mathrm{W}$	ptmod
4932.YHR128W	$4932.\mathrm{YJL}105\mathrm{W}$	expression
4932.YIL036W	$4932.\mathrm{YJL}105\mathrm{W}$	expression
4932.YEL009C	$4932. \mathrm{YOR} 113\mathrm{W}$	inhibition
4932.YLR113W	$4932. \mathrm{YOR} 113\mathrm{W}$	inhibition
4932.YBR229C	4932. YOR113W	inhibition
4932.YHR030C	$4932. \mathrm{YOR} 113\mathrm{W}$	inhibition
4932.YDR139C	$4932.\mathrm{YNL}031\mathrm{C}$	activation
4932.YJR059W	$4932. \mathrm{YOR} 133\mathrm{W}$	ptmod
4932.YDR247W	$4932.\mathrm{YOR}133\mathrm{W}$	ptmod
4932.YGR203W	$4932.\mathrm{YIL}061\mathrm{C}$	expression
4932.YIL061C	$4932.\mathrm{YJL}225\mathrm{C}$	activation
4932.YIL061C	$4932.\mathrm{YJL}225\mathrm{C}$	inhibition
4932.YDR545W	$4932.\mathrm{YIL}061\mathrm{C}$	activation
4932.YIL061C	$4932.\mathrm{YPL}283\mathrm{C}$	activation
4932.YIL061C	$4932.\mathrm{YPL}283\mathrm{C}$	inhibition

$4932.\mathrm{YIL}061\mathrm{C}$	4932.YJL138C	activation
$4932. \rm YIL061C$	4932.YJL138C	inhibition
$4932.\mathrm{YHR}079\mathrm{C}$	4932.YIL061C	expression
$4932.\mathrm{YGR}296\mathrm{W}$	4932.YIL061C	activation
$4932. \rm YIL061C$	$4932. {\rm YOR} 233 {\rm W}$	ptmod
$4932.\mathrm{YEL009C}$	$4932.\mathrm{YPL}213\mathrm{W}$	expression
$4932.\mathrm{YJL}014\mathrm{W}$	$4932.\mathrm{YPL}213\mathrm{W}$	activation
$4932.\mathrm{YNL}307\mathrm{C}$	$4932.\mathrm{YPL}213\mathrm{W}$	inhibition
$4932.\mathrm{YKL}161\mathrm{C}$	$4932.\mathrm{YPL}213\mathrm{W}$	expression
$4932.\mathrm{YNL}128\mathrm{W}$	$4932.\mathrm{YPL}213\mathrm{W}$	expression
$4932.\mathrm{YKL}074\mathrm{C}$	$4932.\mathrm{YPL}213\mathrm{W}$	activation
$4932.\mathrm{YNL}093\mathrm{W}$	$4932.\mathrm{YPL}213\mathrm{W}$	ptmod
$4932.\mathrm{YPL}213\mathrm{W}$	$4932.\mathrm{YPL}239\mathrm{W}$	ptmod
$4932.\mathrm{YDR}098\mathrm{C}$	$4932.\mathrm{YEL}030\mathrm{W}$	expression
$4932.\mathrm{YDL}213\mathrm{C}$	4932.YLL067C	activation
$4932.\mathrm{YDL}213\mathrm{C}$	$4932.\mathrm{YLL}067\mathrm{C}$	inhibition
$4932.\mathrm{YBR}028\mathrm{C}$	4932.YBR119W	ptmod
$4932.\mathrm{YBL}056\mathrm{W}$	4932.YBR028C	inhibition
$4932.\mathrm{YBR}028\mathrm{C}$	$4932.\mathrm{YJL}095\mathrm{W}$	catalysis
$4932.\mathrm{YBR}028\mathrm{C}$	$4932.\mathrm{YGR}052\mathrm{W}$	inhibition
$4932.\mathrm{YBR}028\mathrm{C}$	4932.YDR490C	reaction
$4932.\mathrm{YBR}028\mathrm{C}$	4932.YHL027W	inhibition
$4932.\mathrm{YBR}028\mathrm{C}$	4932.YHL027W	expression
4932.YBR028C	$4932.\mathrm{YHR}086\mathrm{W}$	ptmod
4932.YMR182C	$4932.\mathrm{YMR}250\mathrm{W}$	expression
$4932.\mathrm{YDL}064\mathrm{W}$	4932.YMR182C	ptmod
4932.YMR182C	4932.YPL216W	inhibition
4932.YDR174W	4932.YMR182C	expression
4932.YKL092C	4932.YMR182C	inhibition
4932.YKL161C	4932.YMR182C	inhibition
4932.YBR082C	4932.YMR182C	expression
4932.YMR182C	4932.YPR120C	inhibition
4932.YEL037C	4932.YMR182C	activation
$4932.\mathrm{YJL}164\mathrm{C}$	4932.YMR182C	inhibition
4932.YCL024W	4932.YNL154C	catalysis
4932.YNL154C	4932.YOL128C	catalysis
4932.YCL024W	4932.YLR077W	inhibition
4932.YCL024W	4932.YPR022C	expression
4932.YCL024W	4932.YHR084W	expression
4932.YCL024W	4932.YER075C	inhibition
4932.YCL024W	4932.YMR116C	ptmod
4932.YCL024W	4932.YMR116C	activation

4932.YBR010W	$4932.\mathrm{YCL}024\mathrm{W}$	ptmod
4932.YCL024W	$4932.\mathrm{YLR}466\mathrm{W}$	activation
4932.YAL007C	$4932.\mathrm{YCL}024\mathrm{W}$	reaction
4932.YCL024W	$4932.\mathrm{YOR}107\mathrm{W}$	inhibition
4932.YCL024W	$4932.\mathrm{YML}027\mathrm{W}$	expression
4932.YCL024W	$4932.\mathrm{YHR}206\mathrm{W}$	ptmod
4932.YCL024W	$4932.\mathrm{YLL}001\mathrm{W}$	ptmod
4932.YCL024W	$4932.\mathrm{YLL}001\mathrm{W}$	inhibition
4932.YCL024W	$4932.\mathrm{YHR}086\mathrm{W}$	ptmod
4932.YCL024W	$4932.\mathrm{YHR}086\mathrm{W}$	expression
4932.YCL024W	$4932.\mathrm{YPR048W}$	expression
4932.YCL024W	$4932.\mathrm{YPR}186\mathrm{C}$	expression
4932.YIL126W	$4932.\mathrm{YNL}167\mathrm{C}$	inhibition
4932.YIL126W	$4932.\mathrm{YNL}167\mathrm{C}$	expression
4932.YER028C	$4932.\mathrm{YIL}126\mathrm{W}$	inhibition
4932.YHL035C	$4932.\mathrm{YIL}126\mathrm{W}$	expression
4932.YOR107W	$4932. \mathrm{YOR} 233\mathrm{W}$	inhibition
4932.YKL124W	$4932. \mathrm{YOR} 233\mathrm{W}$	expression
4932.YJL164C	$4932. \mathrm{YOR} 233\mathrm{W}$	inhibition
4932.YMR036C	$4932. \mathrm{YOR} 233\mathrm{W}$	expression
4932.YAL007C	$4932. \mathrm{YOR} 233 \mathrm{W}$	reaction
4932.YAL007C	$4932. \mathrm{YOR} 233 \mathrm{W}$	inhibition
4932.YAL007C	$4932. \mathrm{YOR} 233 \mathrm{W}$	catalysis
4932.YBR276C	$4932.\mathrm{YOR}233\mathrm{W}$	expression
4932.YLR113W	$4932.\mathrm{YOR}233\mathrm{W}$	inhibition
4932.YDL006W	$4932. \mathrm{YOR} 233\mathrm{W}$	inhibition
4932.YCR018C	$4932.\mathrm{YHL}027\mathrm{W}$	expression
4932.YHR030C	4932.YPL141C	inhibition
4932.YBR023C	4932.YPL141C	expression
4932.YKL193C	4932.YPL141C	expression
4932.YDR456W	4932.YPL141C	expression
4932.YGL097W	4932.YPL141C	inhibition
4932.YKR099W	4932.YPL141C	inhibition
4932.YGR232W	4932.YPL141C	inhibition
4932.YKL124W	4932.YPL141C	expression
4932.YDR096W	4932.YPL141C	expression
4932.YOR208W	4932.YPL141C	inhibition
4932.YOR016C	4932.YPL141C	inhibition
4932.YLR371W	4932.YPL141C	ptmod
4932.YNL180C	4932.YPL141C	inhibition
4932.YDR177W	$4932.\mathrm{YNL}250\mathrm{W}$	activation
4932.YDR177W	4932.YPR022C	expression

4932.YDR177W	4932.YMR224C	activation
$4932.\mathrm{YDR}177\mathrm{W}$	$4932.\mathrm{YLR}182\mathrm{W}$	ptmod
$4932.\mathrm{YDR}177\mathrm{W}$	$4932.\mathrm{YHR}205\mathrm{W}$	expression
$4932.\mathrm{YNL}021\mathrm{W}$	$4932.\mathrm{YPR}022\mathrm{C}$	inhibition
$4932.\mathrm{YDR}216\mathrm{W}$	$4932.\mathrm{YNL}021\mathrm{W}$	inhibition
$4932.\mathrm{YNL}021\mathrm{W}$	$4932. {\rm YOR} 351{\rm C}$	inhibition
$4932.\mathrm{YGL}104\mathrm{C}$	$4932.\mathrm{YNL}021\mathrm{W}$	inhibition
$4932.\mathrm{YGL}104\mathrm{C}$	$4932.\mathrm{YNL}021\mathrm{W}$	expression
$4932.\mathrm{YNL}021\mathrm{W}$	$4932.\mathrm{YNL}027\mathrm{W}$	inhibition
$4932.\mathrm{YHR}128\mathrm{W}$	$4932.\mathrm{YNL}021\mathrm{W}$	inhibition
$4932.\mathrm{YBR097W}$	$4932.\mathrm{YJR}066\mathrm{W}$	reaction
$4932.\mathrm{YBR}241\mathrm{C}$	$4932.\mathrm{YJR}066\mathrm{W}$	expression
$4932.\mathrm{YGR}052\mathrm{W}$	$4932.\mathrm{YJR}066\mathrm{W}$	inhibition
$4932.\mathrm{YIL}121\mathrm{W}$	$4932.\mathrm{YJR}066\mathrm{W}$	expression
$4932.\mathrm{YGL}049\mathrm{C}$	$4932.\mathrm{YJR}066\mathrm{W}$	ptmod
$4932.\mathrm{YJL}098\mathrm{W}$	$4932.\mathrm{YJR}066\mathrm{W}$	ptmod
$4932.\mathrm{YDR}247\mathrm{W}$	$4932.\mathrm{YJR}066\mathrm{W}$	inhibition
$4932.\mathrm{YJR}066\mathrm{W}$	$4932.\mathrm{YMR}284\mathrm{W}$	ptmod
$4932.\mathrm{YJR}066\mathrm{W}$	$4932.\mathrm{YMR}080\mathrm{C}$	ptmod
$4932.\mathrm{YJR}066\mathrm{W}$	$4932.\mathrm{YMR080C}$	activation
$4932.\mathrm{YBR}241\mathrm{C}$	$4932.\mathrm{YMR}042\mathrm{W}$	expression
$4932.\mathrm{YBR}241\mathrm{C}$	$4932.\mathrm{YLR}305\mathrm{C}$	expression
$4932.\mathrm{YBR}241\mathrm{C}$	$4932.\mathrm{YPL}249\mathrm{C}$	inhibition
4932.YBR241C	4932.YPL249C	expression
4932.YBR241C	$4932.\mathrm{YLR}240\mathrm{W}$	expression
4932.YBR164C	4932.YHR064C	expression
4932.YBR164C	4932.YKL126W	inhibition
4932.YBR164C	4932.YFR019W	ptmod
4932.YBR164C	4932.YLR113W	inhibition
4932.YDL079C	4932.YKL193C	expression
4932.YBR212W	4932.YDL079C	ptmod
4932.YDL079C	4932.YDR466W	catalysis
4932.YBR110W	4932.YDL079C	ptmod
4932.YBR110W	4932.YDL079C	inhibition
4932.YDL079C	4932.YOR090C	ptmod
4932.YDL006W	4932.YDL079C	inhibition
4932.YDL079C	4932.YDR477W	ptmod
4932.YDL079C	4932.YDR096W	expression
4932.YDL079C	4932.YMR213W	ptmod
4932.YDL079C	4932.YMR213W	expression
4932.YDL079C	4932.YJR060W	expression
4932.YDL079C	4932.YKR001C	ptmod

$4932.\mathrm{YDL}079\mathrm{C}$	4932.YKR001C	inhibition
$4932.\mathrm{YDL}079\mathrm{C}$	$4932.\mathrm{YDR099W}$	ptmod
$4932.\mathrm{YDL}079\mathrm{C}$	$4932.\mathrm{YKR}029\mathrm{C}$	ptmod
$4932.\mathrm{YBR}038\mathrm{W}$	$4932.\mathrm{YDL079C}$	expression
$4932.\mathrm{YBR}066\mathrm{C}$	$4932.\mathrm{YDL079C}$	expression
$4932.\mathrm{YER}103\mathrm{W}$	4932.YMR186W	expression
$4932.\mathrm{YER}103\mathrm{W}$	$4932.\mathrm{YMR}120\mathrm{C}$	expression
$4932.\mathrm{YLR}090\mathrm{W}$	4932.YPL106C	inhibition
$4932.\mathrm{YCR}083\mathrm{W}$	4932.YPL106C	expression
$4932.\mathrm{YPL}106\mathrm{C}$	$4932.\mathrm{YPR}165\mathrm{W}$	expression
$4932.\mathrm{YDR}389\mathrm{W}$	$4932.\mathrm{YNL}098\mathrm{C}$	inhibition
$4932.\mathrm{YDL}145\mathrm{C}$	4932.YNL098C	inhibition
$4932.\mathrm{YGR100W}$	4932.YNL098C	inhibition
$4932.\mathrm{YNL}098\mathrm{C}$	4932.YOR089C	ptmod
$4932.\mathrm{YKR}014\mathrm{C}$	4932.YNL098C	ptmod
$4932.\mathrm{YDR}524\mathrm{C}$	4932.YNL098C	inhibition
$4932.\mathrm{YKL}092\mathrm{C}$	4932.YNL098C	inhibition
$4932.\mathrm{YML}059\mathrm{C}$	4932.YNL098C	expression
$4932.\mathrm{YIL}118\mathrm{W}$	4932.YLR093C	activation
$4932.\mathrm{YIL}118\mathrm{W}$	$4932.\mathrm{YPL}204\mathrm{W}$	ptmod
$4932.\mathrm{YBR}264\mathrm{C}$	4932.YIL118W	ptmod
$4932.\mathrm{YIL}118\mathrm{W}$	4932.YKL161C	inhibition
$4932.\mathrm{YIL}118\mathrm{W}$	4932.YOL101C	inhibition
$4932.\mathrm{YHR}023\mathrm{W}$	4932.YIL118W	ptmod
$4932.\mathrm{YBL}105\mathrm{C}$	$4932.\mathrm{YGR}252\mathrm{W}$	inhibition
$4932.\mathrm{YBR}160\mathrm{W}$	4932.YGR252W	ptmod
$4932.\mathrm{YBR}160\mathrm{W}$	4932.YGR252W	expression
$4932.\mathrm{YGR}252\mathrm{W}$	4932.YPR186C	ptmod
$4932.\mathrm{YGR}252\mathrm{W}$	4932.YPR186C	inhibition
$4932.\mathrm{YGR}232\mathrm{W}$	4932.YGR252W	ptmod
$4932.\mathrm{YGR}252\mathrm{W}$	4932.YNL031C	ptmod
$4932.\mathrm{YGR}252\mathrm{W}$	4932.YLR240W	ptmod
$4932.\mathrm{YGR}252\mathrm{W}$	4932.YOL012C	ptmod
4932.YDR253C	4932.YGR252W	inhibition
$4932.\mathrm{YBR}160\mathrm{W}$	4932.YDL132W	ptmod
$4932.\mathrm{YBR}160\mathrm{W}$	4932.YKL092C	ptmod
$4932.\mathrm{YBR}160\mathrm{W}$	4932.YNL298W	ptmod
$4932.\mathrm{YBR}160\mathrm{W}$	4932.YNL167C	inhibition
$4932.\mathrm{YBR}160\mathrm{W}$	4932.YJL006C	ptmod
$4932.\mathrm{YBR}160\mathrm{W}$	4932.YIL036W	inhibition
$4932.\mathrm{YBR}160\mathrm{W}$	4932.YOL012C	ptmod
$4932.\mathrm{YBR}160\mathrm{W}$	4932.YOL068C	ptmod

$4932.\mathrm{YBR}160\mathrm{W}$	$4932.\mathrm{YBR}234\mathrm{C}$	ptmod
$4932.\mathrm{YBR}160\mathrm{W}$	$4932.\mathrm{YGL}003\mathrm{C}$	ptmod
$4932.\mathrm{YBR}160\mathrm{W}$	$4932.\mathrm{YGL}019\mathrm{W}$	ptmod
$4932.\mathrm{YBR}160\mathrm{W}$	$4932.\mathrm{YLR}357\mathrm{W}$	ptmod
$4932.\mathrm{YBR}160\mathrm{W}$	$4932.\mathrm{YLR}357\mathrm{W}$	expression
$4932.\mathrm{YBL}084\mathrm{C}$	$4932.\mathrm{YBR}160\mathrm{W}$	ptmod
$4932.\mathrm{YBL}021\mathrm{C}$	$4932.\mathrm{YNL}261\mathrm{W}$	activation
$4932.\mathrm{YBL}021\mathrm{C}$	$4932.\mathrm{YMR}176\mathrm{W}$	activation
$4932.\mathrm{YBL}021\mathrm{C}$	$4932.\mathrm{YHR}119\mathrm{W}$	ptmod
$4932.\mathrm{YBL}021\mathrm{C}$	$4932.\mathrm{YHR}119\mathrm{W}$	activation
$4932.\mathrm{YBL}021\mathrm{C}$	$4932.\mathrm{YDL}056\mathrm{W}$	ptmod
$4932.\mathrm{YBL}021\mathrm{C}$	$4932.\mathrm{YBR}133\mathrm{C}$	ptmod
$4932.\mathrm{YBL}021\mathrm{C}$	$4932.\mathrm{YHR079C}$	expression
$4932.\mathrm{YAL}017\mathrm{W}$	$4932.\mathrm{YPR}013\mathrm{C}$	expression
$4932.\mathrm{YAL}017\mathrm{W}$	$4932.\mathrm{YDL}155\mathrm{W}$	expression
$4932.\mathrm{YER}031\mathrm{C}$	$4932.\mathrm{YML}059\mathrm{C}$	expression
$4932.\mathrm{YDR}036\mathrm{C}$	$4932.\mathrm{YDR}216\mathrm{W}$	inhibition
$4932.\mathrm{YDR}216\mathrm{W}$	$4932.\mathrm{YGR}232\mathrm{W}$	inhibition
$4932.\mathrm{YDR}216\mathrm{W}$	$4932.\mathrm{YOR}122\mathrm{C}$	expression
$4932.\mathrm{YDR}216\mathrm{W}$	$4932.\mathrm{YPR}034\mathrm{W}$	expression
$4932.\mathrm{YBR}245\mathrm{C}$	$4932.\mathrm{YER}148\mathrm{W}$	activation
$4932.\mathrm{YBR}044\mathrm{C}$	$4932.\mathrm{YDR}247\mathrm{W}$	ptmod
$4932.\mathrm{YLL}024\mathrm{C}$	$4932.\mathrm{YML}064\mathrm{C}$	expression
$4932.\mathrm{YDR}026\mathrm{C}$	$4932.\mathrm{YLL}024\mathrm{C}$	activation
$4932.\mathrm{YLL}024\mathrm{C}$	$4932.\mathrm{YLR}028\mathrm{C}$	activation
$4932.\mathrm{YLL}024\mathrm{C}$	$4932.\mathrm{YLR}028\mathrm{C}$	expression
$4932.\mathrm{YHR}084\mathrm{W}$	$4932.\mathrm{YKR}055\mathrm{W}$	expression
$4932.\mathrm{YKL}126\mathrm{W}$	$4932.\mathrm{YNL}307\mathrm{C}$	inhibition
$4932.\mathrm{YDR}270\mathrm{W}$	4932.YNL307C	expression
4932.YNL307C	4932.YPL203W	inhibition
4932.YGL227W	4932.YNL307C	expression
4932.YKL124W	4932.YNL307C	expression
4932.YJL187C	4932.YNL307C	inhibition
4932.YDL213C	4932.YNL307C	ptmod
4932.YDR432W	4932.YNL307C	ptmod
4932.YNL307C	4932.YOR211C	inhibition
4932.YAL 007 C	4932.YNL307C	reaction
4932.YAL 007 C	4932.YNL307C	inhibition
4932.YAL $007C$	4932.YNL307C	catalysis
4932.YNL307C	4932.YOR107W	inhibition
4932.YLR138W	4932.YNL307C	expression
4932.YBR038W	4932.YNL307C	expression

1
L
-
1
1
L
ı