BayesExam

Christophoros Spyretos

2022-10-17

Problem 1

Task a

posterior distribution of 1-thetaA

proble v poole(v.1, bhapor arpharb, bhapoz botari, rower.vari rhibbly

The posterior probability that $\theta_A > 0.4$ is approximately 0.36.

Task b

```
ratio <- (1-thetaA)/thetaA
interval <- quantile(ratio, probs = c(0.025,0.975))
interval <- data.frame(interval = interval[1], upper_bound = interval[2])
colnames(interval) <- c("lower bound", "upper bound")
rownames(interval) <- c("95% Equal Tail Credible Interval")
knitr::kable(interval)</pre>
```

	lower bound	upper bound
95% Equal Tail Credible Interval	1.14581	2.272752

The ratio shows the odds of not selecting the brand A. The 95% posterior probability that the ratio takes values from the interval.

Task d

```
beta(alpha+s,beta+f)/beta(alpha,beta)
```

[1] 7.556771e-30

Task d

```
y <- c(38,27,35)
alpha <- c(1,1,1)
constant <- 10
alpha <- alpha*constant
x <- matrix(0,nSim,3)
thetas <- matrix(0,nSim,3)

for (i in 1:3) {
    x[,i] <- rgamma(nSim,shape = alpha[i] + y[i], rate = 1 )
}

for (i in 1:nSim) {
    thetas[i,] <- x[i,]/sum(x[i,])
}

probld <- mean(thetas[,1] > thetas[,3])
```

The posterior probability that $\theta_A > theta_C$ is approximately 0.642.

Problem 2

Task d

Posterior Distribution of theta

Task e

Posterior Distribution of theta

The posterior approximation is accurated, but the exact posterior is slightly skewed to the right.

Problem 3

```
source("ExamData.R")
```

Task a

knitr::kable(MeanBetas)

	Mean Value
Beta0	1.3082564
Beta1	0.7010702
Beta2	0.1574445
Beta3	0.4236033
Beta4	-0.1626155
Beta5	0.0742226
Beta6	-0.2399414

	Lower Bound	Upper Bound
Beta0	-0.3338755	1.301628
Beta1	-0.4234871	1.316765
Beta2	-0.4111521	1.203100
Beta3	-0.2674153	1.306349
Beta4	-0.1292668	1.206165
Beta5	-0.1660699	1.162340
Beta6	-0.2076466	1.325194

The 95% posterior probability that β_1 takes values from the interval (-0.423,1.31).

Task b

```
SD <- sqrt(PostDraws$sigma2Sample)
MedianSD <- median(SD)</pre>
```

The posterior median of the standard deviation is approximately 0.639.

Task c

```
school B compared to students in high school C",
xlab = "Beta5 - Beta6", ylab = "")
```

Effect on y from x1 for students in high school B compared to students in high school C


```
EffectInterval <- quantile(Diff, probs = c(0.025,0.975))

EffectInterval <- as.data.frame(t(EffectInterval))
colnames(EffectInterval) <- c("Lower Bound", "Upper Bound")
rownames(EffectInterval) <- c("95% Equal Tail Credible Interval")
knitr::kable(EffectInterval)</pre>
```

	Lower Bound	Upper Bound
95% Equal Tail Credible Interval	-0.0339968	0.665147

There is substantial mass probability that the effect on y from x1 for students in high school B is higher compared to students in high school C. However, the 95% equal tail credible interval shows that the difference takes negative or positive values. Hence, the probability is not that high that this effect in high school B is larger than in high school C

Task d

```
x1Grid <- seq(min(X[,2]),max(X[,2]),0.01)
intervals <- matrix(0, nrow = length(x1Grid), ncol = 2)

for (i in 1:length(x1Grid)) {
   mu <- Betas[,1] + Betas[,2]*x1Grid[i] + Betas[,3]*0.5
   intervals[i,] <- quantile(mu, probs = c(0.05,0.95))
}</pre>
```

90% Equal Tail Posterior Probability Intervals as a Function of x1

Task e

Posterior Predictive Distribution of y for a New Studentin high school B

