$E_n = \hbar \omega (n + \frac{1}{2})$

 $E = \frac{\hbar^2}{2\pi} I(QH) = 0.00$ $= 189 \qquad (m = |Q|)$

* of Radiative Properties of Gases Molecules Vibrate rotation thup= En+1-En (selectivale) $\omega_p = \omega$. $\eta = \frac{2\pi J}{\lambda} = \frac{\omega}{c}$

I two = ELH-EL

 $\omega_p = \frac{\pi}{27} \left[(l+1)(l+2) - l(l+1) \right] = -\frac{\pi}{2} (l+1), \text{ AMB}$

 $E_{n} = n + (n + \frac{1}{2}) + \frac{h^{2}}{2I_{n}} \ell(\ell + 1)$

 ω_p or $q_p = \frac{\alpha_p}{\epsilon}$

7p= 70- (BA+1+Ba) (+ (BAH-Ba) 2 =j=1,2, $2 = 20 + (B_{n+1} - B_n) l + (B_{n+1} - B_n) l^2$ (R=70+2BA+1+(3BA+1-BA))+(BA+1-BA) 12 21=1

T R-band

	15/2
because m </th <th></th>	
because	Boltsmann statustion
7/1/2	
7-band 10 Q-band	
Complentions: O for a single molecules	CO2
there can be different 7.	
@ Each line can be booodene	d.
a) natura energy uncer	dainty DEO SEO ST > 1/2
Heisenberg uncertainty	AD DE. St > \$
	·
b) molecules moving: Dog	pler effect
Pob = Pem (1+	<u> </u>
	42V2 exp (- mv2)
$\Rightarrow k_{\eta} = \sqrt{\frac{\ln^2}{\chi} \left(\frac{S}{b_0}\right)}$	$\exp\left[-\left(\ln \frac{1-\eta_0}{b_0}\right)^2\right]$
1 _ 2.	J-2/27 m lo2
50 - Go	$\sqrt{-m} l_{n} 2$
c) Colhoian	
Ky= \frac{5}{\pi} \frac{bc}{(\pi/\beta)^2+}	-be ²
S= San Ky	
3— Jan 129	

bc = bco (Po) ITO

Recall Harmone Oscillato	r under an electricifield
DX=Xoe-int	
$\chi = \frac{E_0/m}{-\omega^2 + iI}$	ω, ε=/+ -0300°+irw
For solid, we sum A oscille	aters to talk about PXSE
For gases, n 2 1 imaginary part of interes	N small compared to solved.
$\frac{\mathcal{E}'' - \frac{Ne}{(\omega_{i}^{2} - \omega_{i}^{2})}$	2/me; (+ rw) 2)2+(rw)2
	$\frac{2}{(\omega^2 \omega_0^2)^2 + (\gamma \omega)^2}$
≈ 1 Ne² ≥ mEs	γω (ω-ω) ² 4ω ² +(δω) ⁴
absurpt coefficient	071/03
	mE.c. 4(wwg2+ 132. book we kin L Lorentzian profi
$EM + heavy = \frac{dI_{\Lambda}}{dS} = -\alpha_{\Lambda} I_{\Lambda}$	Kq= 5 bc (7-70) 2+ bc Line helf
FORM 7527 Made in U.S.A.	S = Jan ty dr worth line strength (line integrated observet)

We can also define mass absurt coeffice +
·
$K_{ag} = \frac{k\eta a}{Sa}$
LSa-partial density of specy a.
S = optical path length
Sas mass based
$\frac{dI_1}{dI_2} = \frac{dI_2}{dI_2}$
7 X=S Sa S, -mus
$I_{\eta} = I_{\eta}(0) e^{-k_{\eta} S} $ $ Parth$ $ legth$
$\frac{dJ_{\eta}}{ds} = -k_{\eta} dJ_{\eta} \qquad \chi = s$ $I_{\eta} = I_{\eta}(0) e^{-k_{\eta} s} \qquad I_{s} = I_{s}(s) e^{-k_{\eta} s}$ $A = I_{\eta}(0) - I_{\eta}(s) = -k_{\eta} s$
absorptoince over S $A = \frac{J_{\eta}(0) - J_{\eta}(s)}{J_{\eta}(0)} = J - e^{-k\eta x}$
Kirchaff law = En
Integrated line Emissionity
14 Tima =
W the South
- Hack body varies lottle over one lie width
$ \int_{-\infty}^{\infty} (1-c)^{-k_1 \chi} \int_{0}^{\infty}$
- Jo (1-E 1) a7
$= \int 5X \qquad (KX <$
2 JSXb (KX>>) story (ne)
1073 FORM 7527

Made in U.S.A.

