1) El ABC del PLL

PLL genérico, sistema no lineal

Detector de fase sinusoidal

$$egin{aligned} e_0(t) &= A_v sen(2pif_0t + heta(t)) \ e_d(t) &= rac{1}{2}A_cA_v sen(\phi(t) - heta(t)) \ K_d &= rac{1}{2}A_cA_v \ heta(t) &= K_0 \int^t e_v(\lambda)d\lambda \end{aligned}$$

Aproximación lineal donde suponemos que el error de fase, $\psi(t) = \varphi(t) - \theta(t)$, es pequeño

Del esquema vemos la transferencia de lazo cerrado $H(s)=rac{\Theta(s)}{\Phi(s)}=rac{K_dK_0F(s)}{s+K_dK_0F(s)}$

Reemplazando para F(s)=1
$$H(s)=rac{K_dK_0}{s+K_dK_0}$$

Si calculamos la transferencia para el error de fase

$$G(s)=rac{\Phi(s)-\Theta(s)}{\Phi(s)}=1-H(s)=rac{s}{s+K_dK_0}$$

G(s) nos permite conocer el estado estacionario del error de fase $\Psi(s) = \Phi(s) - \Theta(s)$.

$$\Psi_{EE} = \lim_{t o \infty} \psi(t) = \lim_{s o 0} s \Psi(s) = \lim_{s o 0} s \Phi(s) G(s)$$

Si la frecuencia de entrada es exactamente f0, es decir no hay mensaje, no hay desviación de frecuencia

$$\phi(t)= heta_0,\;\Phi(s)=rac{ heta_0}{s}$$

Para t suficientemente grande, la diferencia entre la fase esti

$$\Psi_{EE} = \lim_{s o 0} s \, rac{ heta_0}{s} \, rac{s}{s + K_d K_0} = 0$$

Cuando la frecuencia de entrada es distinta a f0, existe una desviación y la fase de entrada se puede m

$$\phi(t)=2\pi f_{\Delta}t+ heta_0,\;\Phi(s)=rac{2\pi f_{\Delta}}{s^2}+rac{ heta_0}{s}$$

$$\Psi_{EE} = \lim_{s o 0} s \left(rac{2\pi f_\Delta}{s^2} + rac{ heta_0}{s}
ight) rac{s}{s + K_d K_0} = rac{2\pi f_\Delta}{K_d K_0}$$

Vemos en este caso que el error de est

Característica no lineal del PLL

En este caso consideramos el modelo no lineal del PLL. La salida del detector de fase no es proporcional

Característica no lineal del PLL

$$rac{d\psi}{dt} + K_d K_0 sen[\psi(t)] = \Delta \omega$$

Para valores positivos de $d\psi/dt$,

ψ aumenta, y si dψ/dt<0

ψ disminuye, teniendo

al enganche en el punto A.

 ψ_{EE} es constante en A y d ψ /dt, la desviación de frecuencia, es nula.

 $d\psi/dt$ $\Delta\omega + K_dK_0$ $\Delta\omega - K_dK_0$ ψ_{ss}

La característica no lineal del PLL nos indica que el enganche de frecuencia solo ocurre si $d\psi/dt$ es nula para algún ψ . Entonces para que el enganche suceda, se debe cumplir:

$$\Delta \omega = K_d K_0 sen(\psi_A), \; |\Delta \omega| < K_d K_0$$

Ancho de banda equivalente de ruido

Si n(t) es el ruido blanco con amplitud $N_0/2$ a la entrada del PLL, entonces:

$$egin{aligned} S_{nn}(f) &= rac{N_0}{2} \ P_{nout} &= rac{N_0}{2} \int_{-\infty}^{\infty} |H(f)|^2 df = rac{N_0}{2} |H(0)|^2 2BW_{ne} \ \int_{-\infty}^{\infty} rac{(K_d K_0)^2}{\left(4(\pi f)^2 + (K_d K_0)^2
ight)} df = rac{1}{2\pi} K_d K_0 an^{-1} \left(rac{2\pi f}{K_d K_0}
ight) \int_{-\infty}^{\infty} \ rac{K_d K_0}{2} &= |H(0)|^2 2BW_{ne} = 2BW_{ne} \ BW_{ne} &= rac{K_d K_0}{4} \end{aligned}$$

PLL de 2^{do} orden

$$F(s) = K_P + rac{K_I}{s} = rac{K_P \left(s + rac{K_I}{K_P}
ight)}{s}$$

$$H(s) = rac{\Theta(s)}{\Phi(s)} = rac{K_d K_0 (K_P s + K_I)}{s \left(s + rac{K_d K_0 (K_P s + K_I)}{s}
ight)} = rac{K_d K_0 K_P \left(s + rac{K_I}{K_P}
ight)}{s^2 + K_d K_0 K_P s + K_d K_0 K_I}$$

$$G(s) = rac{\Psi(s)}{\Phi(s)} = 1 - H(s) = rac{s2}{s^2 + K_d K_0 K_P s + K_d K_0 K_I}$$

Error de fase en estado estacionario

$$egin{aligned} \phi(t) &= 2\pi f_{\Delta} t \; + \; heta_0, \; \Phi(s) = rac{2\pi f_{\Delta}}{s^2} + rac{ heta_0}{s} \ \Psi_{EE} &= \lim_{s o 0} s \Phi(s) G(s) = \lim_{s o 0} s \left(rac{2\pi f_{\Delta}}{s^2} + rac{ heta_0}{s}
ight) rac{s^2}{s^2 + K_d K_0 K_P s + K_d K_0 K_I} \ \Psi_{EE} &= \lim_{s o 0} rac{\left(2\pi f_{\Delta} s + heta_0 s^2
ight)}{s^2 + K_d K_0 K_P s + K_d K_0 K_I} = 0 \end{aligned}$$

¿Qué sucede cuando a la entrada de este PLL de 2° orden tenemos una variación uniforme de frecuenc

$$egin{aligned} rac{df}{dt} &= f^{\cdot} = cte, \ f(t) = f^{\cdot}t \ & \phi(t) = 2\pi f^{\cdot}t^{2}, \ \Phi(s) = rac{2\pi f^{\cdot}}{s^{3}} \ & \Psi_{EE} = \lim_{s o 0} s\Psi(s) = \lim_{s o 0} s\Phi(s)G(s) = \lim_{s o 0} s \ rac{2\pi f^{\cdot}}{s^{3}} \ rac{s^{2}}{s^{2} + K_{d}K_{0}K_{p}s + K_{d}K_{0}K_{I}} \ & \Psi_{EE} = rac{2\pi f^{\cdot}}{K_{d}K_{0}K_{I}} \end{aligned}$$

Consideremos la no linealidad del PLL

$$egin{aligned} \psi(t) &= \phi(t) - heta(t) = \phi(t) - K_0 \int_{-\infty}^t e_v(\lambda) d\lambda \ rac{d^2\psi}{dt^2} &= rac{d^2\phi}{dt^2} - K_0 rac{de_v}{dt} \ e_v(t) &= \int_{-\infty}^\infty e_d(au) f(t- au) d au = K_d \int_{-\infty}^\infty sen(\psi(au)) (K_p \delta(t- au) + K_I) d au \ &= K_d ig\{ K_p sen(\psi(t)) + K_I \int_{-\infty}^\infty sen(\psi(au)) d au ig\} \ rac{de_v}{dt} &= K_d ig\{ K_p \cos(\psi(t)) rac{d\psi}{dt} + K_I sen(\psi(t)) ig\} \ rac{d^2\psi}{dt^2} &= 2\pi f \cdot - K_0 K_p K_d rac{d\psi}{dt} \cos(\psi) - K_0 K_I K_d sen(\psi), \ K_p rac{d\psi}{dt} << K_I \ rac{d^2\psi}{dt} &pprox 2\pi f \cdot - K_0 K_I K_d sen(\psi) \end{aligned}$$

$$rac{d^2 \psi}{dt^2}pprox 2\pi f^{\cdot}-K_0K_IK_dsen(\psi)$$
 $f^{\cdot}<rac{K_0K_IK_d}{2\pi}$
 $\frac{d^2 \psi}{dt^2}$
 $2\pi f^{\cdot}+K_0K_IK_d$
 ψ_{ss}