Bottom-up Ab-initio Multiscale Modeling of Materials with Machine Learning

Roberto Car Princeton University

6th AI for Materials Science Workshop, July 9-10, 2025, NIST, MD (USA)

DPMD: potential energy, polarization, and polarizability surfaces are represented by DNNs trained on DFT data \rightarrow AIMD on steroids

$$\begin{split} &\Phi(\boldsymbol{R}_{1},\boldsymbol{R}_{2},\boldsymbol{R}_{3},...,\boldsymbol{R}_{N}) = \sum_{i} \Phi_{i} \,, \qquad \Phi_{i} = \mathcal{F}(\{\boldsymbol{R}_{k} \in \mathcal{N}_{i}\}) \\ &V\boldsymbol{\mathcal{P}}(\boldsymbol{R}_{1},\boldsymbol{R}_{2},\boldsymbol{R}_{3},...,\boldsymbol{R}_{N}) = \sum_{i} z_{i}\boldsymbol{R}_{i} - 2\sum_{w}\boldsymbol{R}_{w} + C = \sum_{c}\boldsymbol{d}_{c} + C, \qquad \boldsymbol{R}_{w} = \boldsymbol{\mathcal{F}}(\{\boldsymbol{R}_{k} \in \mathcal{N}_{w}\}) \\ &\boldsymbol{\alpha}(\boldsymbol{R}_{1},\boldsymbol{R}_{2},\boldsymbol{R}_{3},...,\boldsymbol{R}_{N}) = V\left(\frac{\partial \mathcal{P}}{\partial \boldsymbol{\varepsilon}}\right)_{\boldsymbol{P}^{N}} = -2\sum_{w}\frac{\partial \boldsymbol{R}_{w}}{\partial \boldsymbol{\varepsilon}} = \sum_{w}\boldsymbol{\alpha}_{w}\left(\{\boldsymbol{R}_{k} \in \mathcal{N}_{w}\}\right) \end{split}$$

DPLR includes long-range electrostatics with Ewald sum on top of DP

Coupling with an external electric field (static or dynamic)

$$\Phi_{\mathcal{E}(t)} = \Phi_{\mathcal{E}=\mathbf{0}} - V\mathcal{P} \cdot \mathcal{E}(t)$$

L. Zhang et al, Phys Rev Lett **120**, 143001 (2018); L. Zhang et al, in Advances in Neural Information Processing Systems **31**, 4441 (2018); L. Zhang et al, Phys Rev Materials **3**, 023804 (2019); L. Zhang et al, Phys Rev B **102**, 041121(R) (2020); G. Sommers et al, PCCP **22**, 10592 (2020); L. Zhang et al, J Chem Phys **156**, 124107 (2022); J. Zheng et al, "DeePMD kit v2...", J Chem Phys **159**, 054801 (2023)

DPMD made possible AIMD studies with unprecedented size and time scales

Water phase diagram

L. Zhang, H. Wang, R.C., and W.E, *Phys Rev Lett* **126**, 236001 (2021)

Homogeneous nucleation of ice

P. Piaggi, J. Weis, A. Panagiotopoulos, P. Debenedetti, RC, PNAS (2022)

Electrolyte solutions in contact with TiO₂

The ferroelectric phase transition in PbTiO₃ (PTO)

The dominant orderdisorder character of the transition

P. Xie, Y. Chen, W. E, R. C., PRB 111, 094113 (2025)

Cu nanoparticles on Al₂O₃ surfaces

The DP model accuracy: E_{rmse} of 0.004 eV/atom, F_{rmse} of 0.057 eV/Å upon training on ~150k structures representing Cu_n on γ -Al₂O₃(100), γ -Al₂O₃(110), and α -Al₂O₃(0001).

Vibrational spectroscopies (Infrared, Raman, SFG)

Infrared absorption of liquid water

L. Zhang et al., PRB (2020)

Raman spectra of H-bonding modes in liquid water

G. Sommers et al., PCCP (2020)

Y. Wang et al., arXiv (2025)

From all-atom to collective variable dynamics: Ab-initio Generalized Langevin Equation (AIGLE)

Crude 1D model of hysteresis loop

Curvature of domain wall as well as edge, thickness (h), and quenched disorder (O vacancies) effects are neglected.

Loops are calculated with AIGLE for different radii $\it l$, with switching field period $\it t_P=100~\mu s$, and remnant polarization $\it P_0=72~\mu C/cm^2$

EXP1: $t_P = 100 \ \mu s$, unknown *I*, $P_0 = 94 \ \mu C/cm^2$

EXP2: unknown t_P , $l \approx 144 \,\mu m$, $P_0 = 96 \,\mu C/cm^2$

From atoms to fields (Ginzburg-Landau models)

$$\mathcal{F}(T, \boldsymbol{\mathcal{P}}, \boldsymbol{\eta}) = \mathcal{G}(T, \boldsymbol{\mathcal{P}}) + \frac{N}{2} (\boldsymbol{\eta}^T - \boldsymbol{Q}^T \hat{Z}^T) \hat{B} (\boldsymbol{\eta} - \hat{Z} \boldsymbol{Q}) \qquad \boldsymbol{Q}^T \equiv (\mathcal{P}_x^2, \mathcal{P}_y^2, \mathcal{P}_z^2)$$

 $\mathcal{G}(T, \mathcal{P})$ is obtained with WT-MetaD and the coupling matrices \hat{B} and \hat{Z} are obtained with linear regression

 $\mathcal{G}(T, \boldsymbol{\mathcal{P}})$ is fitted (denoised) extremely well by a 6th order Landau-Devonshire phenomenological model

(P. Xie, Y. Chen, X. Xu, W. E, RC, submitted (2025))

The solvated electron: a challenge for ML coarse-graining

R. Gao, Y. Li, R.C., PCCP 26, 23080 (2024)

Learning the reaction $e^- + H_3 O^+ \rightarrow H_2 O + H^-$ is even more challenging!

R. Gao et al., in preparation (2025)

Concluding Remarks

- ML and DNN representations boost the power of AIMD, opening the way for ab-initio multiscale models in which the parameters are derived non-empirically from quantum mechanics
- It is essential to construct ML models that are solidly based on physics
- Multiscale ab-initio models will help to understand complex processes and to design materials and devices
- New physics may emerge from the simulations but that requires human intelligence as opposed to Al
- Accuracy of the models will improve with more accurate quantum mechanical reference models and transfer learning techniques