This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出職公開發导 特開平10-313566

(43)公嶺日 平成10年(1998)11月24日

(51) Int Cl.*

推到記号·

FΙ H02K 41/03

HO2K 41/03

審査開水 未開水 電水項の数5 OL (全 5 頁)

(21) 出版書号

★展平9-120830

(71) 出題人 597065352

株式会社ジイエムシー

神奈川県川崎市多岸区至两269

(22) 出願日

平成9年(1937) 5月12日

(72) 発明者 石山 里丘 東京都部城市東長招860番地の3

(74)代理人 弁理士 後路 符介 (外2名)

(54) [発明の各称)

(57) 【要約】

【課題】 永久磁石を接着無しで組み付けたステータ部 を備えたリニアモータを提供すること。

【解決手段】 永久磁石13を簡択とし、これらに非磁 性材料によるセンター輪14を挿入して両側から締め付 けることにより誇り合う永久建石の間を密着させるよう にしてステータ部10を構成した。

【特許請求の範囲】

【前求項1】 複数の永久酸石を互いに反対の破極が対 向するように直別に組み合わせて成るステータ部を有す るリニアモータにおいて、前起永久磁石を同状の基本形 状とし、これらに非線性材料によるセンター軸を挿入し て両側から締め付けることにより鮮り合う永久磁石の間 を密着させるようにして前記ステータ部を構成したこと を特徴とするリニアモータ。

【請求項2】 ・請求項1記載のリニアモータにおいて、 前記複数の永久は石の外周側を非磁性材料による筒状体 で覆うようにしたことを特徴とするリニアモータ。

【積水項3】 請水項2記載のリニアモータにおいて、前記センター軸の一端側におねじを形成してブラケットに無入し、他端側にも所定の長さにわたっておねじを形成し、該色端側のおねじにはナットを選着して前記ブラケットとの間で前記複数の永久磁石の間を密着させるようにしたことを特徴とするリニアモータ。

【請求項4】 請求項3記載のリニアモータにおいて、 前記永久磁石はリング状であり、前記筒状体は前記永久 磁石の外別に密覆嵌合可能な断面円形のパイプであることを特徴とするリニアモータ。

【請求項6】 請求項4記載のリニアモータにおいて、 前配永久磁石は、希土類またはフェライト系磁石材料か ら成ることを特徴とするリニアモータ。

【発明の詳細な説明】

[0001]

【発明の異する技術分析】本発明はリニアモータに関し、特に複数の永久磁石を組み合わせて構成されるステータの改良に関する。

[0002]

【0003】このようなリニアモータにおいては、ステータ部における複数の永久確石の組立物度が可動所の位置決め精度を左右する。これまで、複数の永久銀石は指状の支持部分に提着により組み付けられており、これを図5を参照して説明する。

【0004】図6において、ステータ第40は、非磁性 材料より成る棒状の支撑筋材41の両側に、複数のプロ ック状の水久能石42を互いに反対の磁機が対向するよ うに直列に接着して精力されている。このようなステー 夕部40は、OA機器用の場合、永久融石42の長さは 数cm程度で、全長は1m以内である。このため、数十 個以上の永久磁石42を支持部対41に接着する必要が ある。

[0005]

【発明が解決しようとする課題】上記のような検者を行う際には、降り合う永久磁石48の間に大きな反発力が作用するので、接着別が固化するまでの時間は永久磁石42を治具で保持した状態に置かなければならない。このため、ステーダ部40の製造工程は接着剤を固化させるための時間を必要とするだけでなく、永久磁石の位置でれが生じ易いという問題があった。

【0006】そこで、本発明の課題は、永久磁石を接着無しで組み付けたステータ部を備えたリニアモータを優 供することにある。

【0007】本発明の他の課題は、永久磁石を高い位置 映め精度で組み付けたステータ朝を仮えたリニアモータ を提供することにある。

【0008】本発明の更に他の課題は、超立が容易で安 価なステーク部を備えたリニアモータを提供することに ある。

[0009]

【課題を解決するための手段】本発明によれば、複数の 水久磁石を互いに反対の磁極が対向するように値列に起 み合わせて成るステータ部を有するリニアモータにおい て、前記水久磁石を筒状の基本形状とし、これらに非磁 性材料によるセンター軸を挿入して両側から締め付ける ことにより削り合う水久磁石の間を密着させるようにし て前記ステータ部を模成したことを特徴とするリニアモータが提供される。

【0010】なお、前記複数の永久確石の外周偏を非確性材料による筒状体で摂うことが好ましい。

[0011] また、前記センター端の一端側におねじを 形成してプラケットに螺入し、他端側にも所定の長さに わたっておねじを形成し、該他端側のおねじにはナット を抜着して前記プラケットとの間で前記複数の永久磁石 の間を串着させることが好ましい。

【0012】更に、前記永久配石はリング状であり、前記所状体は前記永久就石の外周に密対嵌合可能な新闻円形のパイプであることが好ましい。

[0013] 前記水久曜石は、赤土冠主たはフェライト 系誌石材料から成ることが好きしい。

(0014)

【発明の実施の形態】以下に、本充明の好ましい実施の形態について説明する。図2を参照して、本形態におけるリニアモータは、スゲーク第10と可動館20とを有する。ステータ部10は、後で詳しく説明するように、非磁性材料によるプラケット11と多数の永久供布を内蔵した単磁性材料によるパイプ12とを有する。可勤師20は、図3(a)に示すように、複数のコイル21

(ここでは12個)を有し、これら複数のコイル21をパイプ12が貫通する。可動部20はパイプ12に受視あるいは非接触状態でパイプ12の軸方向にスライド可能になっている。なお、12個のコイル21には、3相の交流電源が接続され、各相W、U、Vには各コイル21が図3(b)に示すように接続される。

【0015】図1を学問して、本形態の特徴であるステ ータ部10について説明する。 ステータ部10は、ブラ ケット11、パイプ12に加えて、複数のリング状の永 久職石13と、複数の永久歇石13に挿入された非磁性 材料によるセンター輪14と、締め付け用のナット16 とを有する。センター軸14の一端側にはおねじ14-1が形成され、プラケット11に形成されためねじ部に 個入されている。センター軸14の他端側にも所定の長 **まにわたろねじしろを持つおねじ14-2が形成され、** このおねじ14-2にナット16が螺合されてプラケッ ト11とナット16との間で複数の永久空石13の間を 密着させるようにしている。複数の永久磁石13は、瓦 いに反対の破極が対向するように直列に超み合わされ、 これら複数の永久敬石13の外間側を断面円形のパイプ 12で振うようにしている。なお、ブラケット11に は、ステータ部10を、リニアモータが実装される機器 に取り付けるためのねじ挿通用の孔11-1が設けられ ている。

【0016】永久陸石13の材料としては、臨東密度の大きい希土環またはフェライト系材料が好ましい。アルカーの材料としては、アルフェライト系材料が好ましては、アルフェラム、異線、ステンレスがの非磁性材料としては、ステンレスがの非磁性材料が使用される。特に、センター輸1412に必要な確認的強度が得られるの形式である。では、センター輸20点である。特に、センター輸1412に必要な確認的強度が得られるの形式である。では、そのでは、一方が12は厚される。では、一個として、大久設計される。では、一個として、大久設計される。では、一個として、大久設計であるだけ、一個として、大久設計である。「大久設計を下するでは、大久設計を下するでは、この可能であると、大久設計を下するでは、この可能では、この可能であると、アイドナる機能をでする。

【0017】このステータ部10の組立方法の一例を説明する。センター軸14のおねじ14-1をプラケット11に銀入する。次に、パイプ12をセンター軸14の周囲に配録し、永久磁石13を1億ずつセンクー軸14を通してパイプ12内に揮入する。所定個数の永久銀石13を入れたら、ナット15をおねじ14-2に繋合し、永久磁石13間が密着するように締め付ける。なお、関1のように、パイプ12の長さが、所定個数の永久磁石13を組み付けた時の長さよりも長い場合には、ナット16をパイプ12内で回す必要があるが、これは特別な和具を用いて行われる。永久磁石13を組み付け

た後、パイプ12の関ロはキャップ16で鑑がれる。 【0018】図4には、参考のために、外径36、3mm、内径16、3mm、長さ6.0mmの永久破石13を用い、中心動からの臣難Y=20mm、25mm、30mmでの破束密度の実別値を示す。言うまでも無く、2つの永久破石13の接合部での破束密度がビーク値を示す。

【0019】本形態によるステータ部は、長さ約2m程度まで実現できる。なお、永久確有13の形状は、リング状に限らず多角形状でも良く、この場合パイプ12も同じ断面形状にされる。また、本形像によるリニアモータは、OA機器のような比較的小型のものに限らず、例えばフライス酸のような大型工作機械における移動テーブルのような大型圧棄機械において直線移動が要求される部位にも適用可能である。

[0020]

【発明の効果】以上説明してきたように、本発明によれば、リニアモータのステータ部を構成するための複数の永久磁石を接着工程無しで組み付けできるようにしたこれ数の永久磁石を締め付けだけで組み付

けできるので、構造及び組付け作業が簡単で安価なリニ 接着工程が不要であるので、接着に関し

て永久登石を保持するための特殊な治具及び接着剤が固 化するまでの時間が不要であり、組み付けを短時間で行 複数の永久数石間の位置ずれが生じない

ので、永久盛石を設計値通りに配置でき、その結果、可 動節の位置決め特度を向上させることができる。

【図面の簡単な説明】

【図1】本発明の好主しい実施の形態によるリニアモー タのステーク部の構造を示す財団圏である。

【図2】本発明の好ましい実施の形態によるリニアモー タの外質を示した図であり、図(a)は平面図、図

(b)は広亜図、図(e)は側面図である。

[図3] 図2における可動部を説明するための図で、図

(a) は偏面図、図(b) は図(a) の複数のコイルの 松焼形態の一例を示した図である。

[図4] 図1に示されたステータ部による確実密度の実 制結果を示した図である。

【図5】 従来のリニアモータにおけるスタータ部を散略 的に示した図である。

【符号の説明】

10 ステータ部

11 ブラケット

12 バイブ

13 永久院石

14 センター株

14-1, 14-2 NAU

(a) (D3)

Ph -5-

* NOTICES *

This patent has been translated by the Japan Patent Office Web Page locat d at: http://www.ipo.go.ip/. The Japan Patent Office is not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

Publication No. JP 10-313,566 Filed May 12, 1997 Publication Date November 24, 1998 Application No. 09-120830

Begin Translation:

CLAIMS

[Claim(s)]

[Claim 1] The linear motor which makes the aforementioned permanent magnet the shape of a tubed basic form in the linear motor which has the stator section which combines in series and changes so that an opposite magnetic pole may counter two or more permanent magnets mutually, and is characterized by constituting the aforementioned stator section as between the permanent magnets which adjoin each other by inserting the pin center, large shaft by the non-magnetic material in these, and binding tight from both sides was stuck. [Claim 2] The linear motor characterized by covering the periphery side of two or more aforementioned permanent magnets with the tube-like object by the non-magnetic material in a linear motor according to claim 1.

[Claim 3] The linear motor characterized by forming a male screw in the end side of the aforementioned pin center, large shaft, thrusting into a bracket, forming a male screw also in an other end side in a linear motor according to claim 2 covering predetermined length, equipping the male screw by the side of this other end with a nut, and making it stick between two or more aforementioned permanent magnets between the aforementioned brackets.

[Claim 4] It is the linear motor which the aforementioned permanent magnet is a ring-like in a linear motor according to claim 3, and is characterized by the aforementioned tube-like object being the pipe of the cross-section round shape in which adhesion fitting on the periphery of the aforementioned permanent magnet is possible.

[Claim 5] It is the linear motor characterized by the aforementioned permanent magnet consisting of rare earth or ferrite system magnet material in a linear motor according to claim 4.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[The technical field to which invention belongs] this invention relates to improvement of the stator especially constituted combining two or more permanent magnets about a linear motor.

[0002]

[Description of the Prior Art] Using a linear motor for the part as which straight-line movement is required like a print head in the field of OA equipment recently is proposed. Usually, the linear motor has the stator section which combines in series and changes so that an opposite magnetic pole may counter two or more permanent magnets mutually, and the moving part which is arranged so that this may be surrounded on the outside of this stator section, and contains the coil which can be slid to the shaft orientations of the stator section. By passing current in a coil so that the magnetic flux generated with a permanent magnet may be intersected, based on the interaction of this current and magnetic field, driving force occurs in shaft orientations at the coil section, consequently moving part

[0003] In such a linear motor, the assembly precision of two or more permanent magnets which can be set in the stator section influences the positioning accuracy of moving part. Until now, two or more permanent magnets are attached to cylindrical supporter material by adhesion, and explain this with reference to <u>drawing 5</u>.

[0004] In <u>drawing 5</u>, it pastes up in series and the stator section 40 is constituted so that an opposite magnetic pole may counter mutually the both sides of the cylindrical supporter material 41 which consists of a non-magnetic material in the permanent magnet 42 of two or more letters of a block. In for OA equipment, such the stator section 40 is [the overall length of the length of a permanent magnet 42] less than 1m in about several cm. For this reason, it is necessary to paste up dozens of or more permanent magnets 42 on the supporter material 41.

[0005]

[Problem(s) to be Solved by the Invention] Since big repulsive force acts between the adjacent permanent magnets 42 in case the above adhesion is performed, you have to keep time until adhesives solidify in the state where the permanent magnet 42 was held with the fixture. For this reason, the manufacturing process of the stator section 40 not only needs the time for solidifying adhesives, but had the problem of being easy to produce a position gap of a permanent magnet.

[0006] Then, the technical problem of this invention is to offer the linear motor equipped with the stator section which attached the permanent magnet without adhesion.
[0007] Other technical problems of this invention are to offer the linear motor equipped with the stator section which attached the permanent magnet with high positioning

accuracy. [0008] The technical problem of further others of this invention has assembly in offering the linear motor equipped with the easy and cheap stator section.

[Means for Solving the Problem] The linear motor characterized by constituting the aforementioned stator section as between the permanent magnets which adjoin each other by according to this invention making the aforementioned permanent magnet into the shape of a tubed basic form in the linear motor which has the stator section which combines in series and changes so that an opposite magnetic pole may counter two or more permanent magnets mutually, inserting the pin center, large shaft by the non-magnetic material in these, and binding tight from both sides was stuck is offered.

[0010] In addition, it is desirable to cover the periphery side of two or more aforementioned permanent magnets with the tube-like object by the non-magnetic material.

[0011] Moreover, it is desirable to form a male screw in the end side of the aforementioned pin center, large shaft, to thrust into a bracket, to form a male screw also in an other end side covering predetermined length, to equip the male screw by the side of this other end with a nut, and to stick between two or more aforementioned permanent magnets between the

aforementioned brackets.

[0012] Furthermore, the aforementioned permanent magnet is a ring-like and, as for the aforementioned tube-like object, it is desirable that it is the pipe of the cross-section round shape in which adhesion fitting on the periphery of the aforementioned permanent magnet is possible.

[0013] As for the aforementioned permanent magnet, it is desirable to consist of rare earth or ferrite system magnet material.

[0014]

[Embodiments of the Invention] Below, the gestalt of desirable operation of this invention is explained. With reference to drawing 2, the linear motor in this gestalt has the stator section 10 and moving part 20. The stator section 10 has the bracket 11 by the non-magnetic material, and the pipe 12 by the non-magnetic material having many permanent magnets so that it may explain in detail later. Moving part 20 has two or more coils 21 (here 12 pieces), as shown in drawing 3 (a), and a pipe 12 penetrates the coil 21 of these plurality. The slide to the shaft orientations of a pipe 12 of moving part 20 is attained in the state of contact or non-contact at the pipe 12. In addition, the AC power supply of a three phase circuit is connected to 12 coils 21, and as each coil 21 shows each phases W, U, and V at drawing 3 (b), it connects with them.

[0015] With reference to drawing 1, the stator section 10 which is the feature of this gestalt is explained. In addition to a bracket 11 and a pipe 12, the stator section 10 has the pin center, large shaft 14 by the non-magnetic material inserted in the permanent magnet 13 of the shape of two or more ring, and two or more permanent magnets 13, and the nut 15 for bolting. It is thrust into the female screw section which the male screw 14-1 was formed in the end side of the pin center, large shaft 14, and was formed in the bracket 11. The male screw 14-2 covering predetermined length which ****s, carries out and has ** is formed also in the other end side of the pin center, large shaft 14, a nut 15 is screwed in this male screw 14-2, and it is made to stick between two or more permanent magnets 13 between a bracket 11 and a nut 15. Two or more permanent magnets 13 are together put in series so that an opposite magnetic pole may counter mutually, and it is made to cover the periphery side of the permanent magnet 13 of these plurality in the pipe 12 of a cross-section round shape. In addition, the hole 11-1 for the screw-thread insertion for attaching the stator section 10 in the device by which a linear motor is mounted is formed in the bracket 11. [0016] Although the large rare earth or ferrite system material of flux density is desirable as a material of a permanent magnet 13, other magnet material is sufficient. As a material of a pipe 12, a non-magnetic material like stainless steel is used as a material of the pin center, large shaft 14 that what is necessary is just non-magnetic materials, such as aluminum, brass, and stainless steel. Especially the pin center, large shaft 14 is designed so that a mechanical strength required for the assembly of a permanent magnet 13 may be obtained. On the other hand, the thinner one is desirable as it can avoid decreasing the magnetic field which acts on the moving part 20 arranged on the outside about a pipe 12. A pipe 12 is realized by stainless steel with a thickness of 1mm as an example. Moreover, a pipe 12 also has the function which guides this moving part 20, when moving part 20 is a contact process, while having the bore which will be in the periphery section and the adhesion state of a permanent magnet 13 and having a rustproof function of a permanent magnet 13.

[0017] An example of the assembly method of this stator section 10 is explained. The male screw 14-1 of the pin center, large shaft 14 is thrust into a bracket 11. Next, a pipe 12 is arranged around the pin center, large shaft 14, and it inserts one permanent magnet 13 at a time into a pipe 12 through the pin center, large shaft 14. If the permanent magnet 13 of the predetermined number is put in, a nut 15 will be screwed in a male screw 14-2, and it will

bind tight so that between permanent magnets 13 may stick. In addition, although it is necessary to turn a nut 15 within a pipe 12 when the length of a pipe 12 is longer than the length when attaching the permanent magnet 13 of the predetermined number like <u>drawing 1</u>, this is performed using a special fixture. After attaching a permanent magnet 13, opening of a pipe 12 is closed by the cap 16.

[0018] For reference, the permanent magnet 13 with the outer diameter of 36.3mm, a bore [of 16.3mm], and a length of 60mm is used for <u>drawing 4</u>, and flux density (Y = 20mm of distance from a medial axis, 25mm, and 30mm) of an actual measurement is shown in it. There is nothing until it says, and the flux density in the joint of two permanent magnets 13 shows peak value.

[0019] The stator section by this gestalt is realizable to a length of about about 2m. In addition, the shape not only of the shape of a ring but a polygon has as the configuration of a permanent magnet 13, and it is made into the cross-section configuration same as a pipe 12 in this case. Moreover, the linear motor by this gestalt is applicable not only to a comparatively small thing like OA equipment but the part as which straight-line movement is required in a large-scale industrial machine as shown in the move table in a large-sized machine tool like a milling machine.

[0020]

[Effect of the Invention] As explained above, according to this invention, the following effects are acquired, when two or more permanent magnets for constituting the stator section of a linear motor are attached without an adhesion process and were made to be made.

[0021] ** Since two or more permanent magnets are attached and are made only in bolting, structure and a linear motor easy [attachment work] and cheap can be offered.

[0022] ** Since the adhesion process is unnecessary, time until the special fixture and special adhesives for holding a permanent magnet on the occasion of adhesion solidify can attach by being unnecessary in a short time.

[0023] ** Since the position gap between two or more permanent magnets does not arise, a permanent magnet can be arranged as a design value, consequently the positioning accuracy of moving part can be raised.

TECHNICAL FIELD

[The technical field to which invention belongs] this invention relates to improvement of the stator especially constituted combining two or more permanent magnets about a linear motor.

PRIOR ART

[Description of the Prior Art] Using a linear motor for the part as which straight-line movement is required like a print head in the field of OA equipment recently is proposed. Usually, the linear motor has the stator section which combines in series and changes so that an opposite magnetic pole may counter two or more permanent magnets mutually, and the moving part which is arranged so that this may be surrounded on the outside of this stator section, and contains the coil which can be slid to the shaft orientations of the stator section. By passing current in a coil so that the magnetic flux generated with a permanent magnet may be intersected, based on the interaction of this current and magnetic field,

driving force occurs in shaft orientations at the coil section, consequently moving part moves.

[0003] In such a linear motor, the assembly precision of two or more permanent magnets which can be set in the stator section influences the positioning accuracy of moving part. Until now, two or more permanent magnets are attached to cylindrical supporter material by adhesion, and explain this with reference to drawing 5.

[0004] In drawing 5, it pastes up in series and the stator section 40 is constituted so that an opposite magnetic pole may counter mutually the both sides of the cylindrical supporter material 41 which consists of a non-magnetic material in the permanent magnet 42 of two or more letters of a block. In for OA equipment, such the stator section 40 is [the overall length of the length of a permanent magnet 42] less than 1m in about several cm. For this reason, it is necessary to paste up dozens of or more permanent magnets 42 on the supporter material 41.

EFFECT OF THE INVENTION

[Effect of the Invention] As explained above, according to this invention, the following effects are acquired, when two or more permanent magnets for constituting the stator section of a linear motor are attached without an adhesion process and were made to be made.

[0021] ** Since two or more permanent magnets are attached and are made only in bolting, structure and a linear motor easy [attachment work] and cheap can be offered.

[0022] ** Since the adhesion process is unnecessary, time until the special fixture and special adhesives for holding a permanent magnet on the occasion of adhesion solidify can attach by being unnecessary in a short time.

[0023] ** Since the position gap between two or more permanent magnets does not arise, a permanent magnet can be arranged as a design value, consequently the positioning accuracy of moving part can be raised.

TECHNICAL PROBLEM

[Problem(s) to be Solved by the Invention] Since big repulsive force acts between the adjacent permanent magnets 42 in case the above adhesion is performed, you have to keep time until adhesives solidify in the state where the permanent magnet 42 was held with the fixture. For this reason, the manufacturing process of the stator section 40 not only needs the time for solidifying adhesives, but had the problem of being easy to produce a position gap of a permanent magnet.

[0006] Then, the technical problem of this invention is to offer the linear motor equipped with the stator section which attached the permanent magnet without adhesion.

[0007] Other technical problems of this invention are to offer the linear motor equipped with the stator section which attached the permanent magnet with high positioning accuracy.

[0008] The technical problem of further others of this invention has assembly in offering the linear motor equipped with the easy and cheap stator section.

[Means for Solving the Problem] The linear motor characterized by constituting the aforementioned stator section as between the permanent magnets which adjoin each other by according to this invention making the aforementioned permanent magnet into the shape of a tubed basic form in the linear motor which has the stator section which combines in series and changes so that an opposite magnetic pole may counter two or more permanent magnets mutually, inserting the pin center, large shaft by the non-magnetic material in these, and binding tight from both sides was stuck is offered.

[0010] In addition, it is desirable to cover the periphery side of two or more aforementioned permanent magnets with the tube-like object by the non-magnetic material.

[0011] Moreover, it is desirable to form a male screw in the end side of the aforementioned pin center, large shaft, to thrust into a bracket, to form a male screw also in an other end side covering predetermined length, to equip the male screw by the side of this other end with a nut, and to stick between two or more aforementioned permanent magnets between the aforementioned brackets.

[0012] Furthermore, the aforementioned permanent magnet is a ring-like and, as for the aforementioned tube-like object, it is desirable that it is the pipe of the cross-section round shape in which adhesion fitting on the periphery of the aforementioned permanent magnet is possible.

[0013] As for the aforementioned permanent magnet, it is desirable to consist of rare earth or ferrite system magnet material.

[0014]

[Embodiments of the Invention] Below, the gestalt of desirable operation of this invention is explained. With reference to drawing 2, the linear motor in this gestalt has the stator section 10 and moving part 20. The stator section 10 has the bracket 11 by the non-magnetic material, and the pipe 12 by the non-magnetic material having many permanent magnets so that it may explain in detail later. Moving part 20 has two or more coils 21 (here 12 pieces), as shown in drawing 3 (a), and a pipe 12 penetrates the coil 21 of these plurality. The slide to the shaft orientations of a pipe 12 of moving part 20 is attained in the state of contact or non-contact at the pipe 12. In addition, the AC power supply of a three phase circuit is connected to 12 coils 21, and as each coil 21 shows each phases W, U, and V at drawing 3 (b), it connects with them.

[0015] With reference to drawing 1, the stator section 10 which is the feature of this gestalt is explained. In addition to a bracket 11 and a pipe 12, the stator section 10 has the pin center, large shaft 14 by the non-magnetic material inserted in the permanent magnet 13 of the shape of two or more ring, and two or more permanent magnets 13, and the nut 15 for bolting. It is thrust into the female screw section which the male screw 14-1 was formed in the end side of the pin center, large shaft 14, and was formed in the bracket 11. The male screw 14-2 covering predetermined length which ****s, carries out and has ** is formed also in the other end side of the pin center, large shaft 14, a nut 15 is screwed in this male screw 14-2, and it is made to stick between two or more permanent magnets 13 between a bracket 11 and a nut 15. Two or more permanent magnets 13 are together put in series so that an opposite magnetic pole may counter mutually, and it is made to cover the periphery side of the permanent magnet 13 of these plurality in the pipe 12 of a cross-section round shape. In addition, the hole 11-1 for the screw-thread insertion for attaching the stator section 10 in the device by which a linear motor is mounted is formed in the bracket 11. [0016] Although the large rare earth or ferrite system material of flux density is desirable as a material of a permanent magnet 13, other magnet material is sufficient. As a material of a pipe 12, a non-magnetic material like stainless steel is used as a material of the pin

center, large shaft 14 that what is necessary is just non-magnetic materials, such as aluminum, brass, and stainless steel. Especially the pin center, large shaft 14 is designed so that a mechanical strength required for the assembly of a permanent magnet 13 may be obtained. On the other hand, the thinner one is desirable as it can avoid decreasing the magnetic field which acts on the moving part 20 arranged on the outside about a pipe 12. A pipe 12 is realized by stainless steel with a thickness of 1mm as an example. Moreover, a pipe 12 also has the function which guides this moving part 20, when moving part 20 is a contact process, while having the bore which will be in the periphery section and the adhesion state of a permanent magnet 13 and having a rustproof function of a permanent magnet 13.

[0017] An example of the assembly method of this stator section 10 is explained. The male screw 14-1 of the pin center, large shaft 14 is thrust into a bracket 11. Next, a pipe 12 is arranged around the pin center, large shaft 14, and it inserts one permanent magnet 13 at a time into a pipe 12 through the pin center, large shaft 14. If the permanent magnet 13 of the predetermined number is put in, a nut 15 will be screwed in a male screw 14-2, and it will bind tight so that between permanent magnets 13 may stick. In addition, although it is necessary to turn a nut 15 within a pipe 12 when the length of a pipe 12 is longer than the length when attaching the permanent magnet 13 of the predetermined number like <u>drawing</u> 1, this is performed using a special fixture. After attaching a permanent magnet 13, opening of a pipe 12 is closed by the cap 16.

[0018] For reference, the permanent magnet 13 with the outer diameter of 36.3mm, a bore [of 16.3mm], and a length of 60mm is used for drawing 4, and flux density (Y= 20mm of distance from a medial axis, 25mm, and 30mm) of an actual measurement is shown in it. There is nothing until it says, and the flux density in the joint of two permanent magnets 13 shows peak value.

[0019] The stator section by this gestalt is realizable to a length of about about 2m. In addition, the shape not only of the shape of a ring but a polygon has as the configuration of a permanent magnet 13, and it is made into the cross-section configuration same as a pipe 12 in this case. Moreover, the linear motor by this gestalt is applicable not only to a comparatively small thing like OA equipment but the part as which straight-line movement is required in a large-scale industrial machine as shown in the move table in a large-sized machine tool like a milling machine.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the cross section showing the structure of the stator section of the linear motor by the gestalt of desirable operation of this invention.

[Drawing 2] It is drawing having shown the appearance of the linear motor by the gestalt of desirable operation of this invention, and drawing (a) is [front view and drawing (c) of a plan and drawing (b)] side elevations.

[Drawing 3] It is drawing for explaining the moving part in drawing 2, and is drawing in which drawing's (a's)'s having shown the side elevation and having shown an example of the topology of two or more coils of drawing (a) (b).

[Drawing 4] It is drawing shown the survey result of the flux density by the stator section shown in $\frac{drawing 1}{dt}$.

[Drawing 5] It is drawing having shown the starter section in the conventional linear motor roughly.

[Description of Notations]

- 10 Stator Section
- 11 Bracket
- 12 Pipe
- 13 Permanent Magnet
- 14 Pin Center, large Shaft
- 14-1, 14-2 Male screw
- 15 Nut
- 16 Cap
- 20 Moving Part
- 21 Coil

DRAWINGS

[Drawing 4]

