CS 480/680 Introduction to Machine Learning

Lecture 7
Support Vector Machines Part II
Soft Margin Classifier

Kathryn Simone 1 October 2024

Interlude: Revising optimization with Lagrangian multipliers

Consider the constrained objective

$$\min y(x) = 0.2x^2 - x + 1$$

subject to: $x \ge 5$

This can be transformed into the dual problem

$$\max \mathcal{L}(x,\lambda) = 0.2x^2 - x + 1 - \lambda(x - 5)$$

subject to: $\lambda \ge 0$

This can be transformed into the dual problem

$$\min_{x} \max_{\lambda \ge 0} \mathcal{L}(x,\lambda) = 0.2x^2 - x + 1 - \lambda(x-5)$$

Interlude: Revising optimization with Lagrangian multipliers

Consider the constrained objective

$$\min y(x) = 0.2x^2 - x + 1$$

subject to: $x > 5$

This can be transformed into the dual problem

$$\min_{x} \max_{\lambda > 0} \mathcal{L}(x, \lambda) = 0.2x^2 - x + 1 - \lambda(x - 5)$$

Where λ is a Lagrange multiplier. The dual problem is constructed by first minimizing the Lagrangian with respect to x, and then maximizing the result with respect to $\lambda > 0$:

$$\frac{\partial \mathcal{L}}{\partial x} = 2(0.2)x - 1 - \lambda$$

$$= 0.4x - 1 - \lambda = 0$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = -(x - 5) = 0$$

$$\implies x = 5$$

$$\implies \lambda = 0.4(5) - 1 = 2 - 1 = 1$$

As $\lambda \geq 0$, x = 5 is a feasible solution to the dual problem.

Optimal separating hyperplane with support vectors for linearly separable data

$$\hat{w}, \hat{b} = \underset{w,b}{\operatorname{argmin}} \frac{1}{2} ||w||^2$$

subject to: $y_i(w^T x_i + b) \ge 1 \ \forall i$

Real-world datasets are not usually linearly separable

How can the SVM be generalized to handle harder problems?

Key Questions

I. How can we relax the hard-margin constraints?

II. Can we gain any insights deriving the dual?

III. How do we optimize?

Key Questions

I. How can we relax the hard-margin constraints?

II. Can we gain any insights deriving the dual?

III. How do we optimize?

Soft-Margin SVM turns constraint into a cost

Hard Margin:

$$\hat{w}, \hat{b} = \underset{w,b}{\operatorname{argmin}} \frac{1}{2} \|w\|^2 \text{ subject to: } y_i(w^T x_i + b) \ge 1 \ \forall i$$

Soft Margin:

$$\hat{w}, \hat{b} = \underset{w,b}{\operatorname{argmin}} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \max(0, 1 - y_i(w^T x_i + b))$$

Geometry of points near the Soft-SVM decision boundary

$$y_i(w^Tx_i+b)<0$$
: Incorrectly Classified

$$0 \le y_i(w^T x_i + b) < 1$$
: Weakly Correctly Classified

$$1 \le y_i(w^T x_i + b)$$
 : Strongly Correctly Classified

PAGE 11

Building intuition for the margin/boundary violation penalty "Hinge Loss"

$$\hat{w}, \hat{b} = \underset{w,b}{\operatorname{argmin}} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \max(0, 1 - y_i(w^T x_i + b))$$

Hyperparameter C sets the penalty on margin violations

$$\hat{w}, \hat{b} = \underset{w,b}{\operatorname{argmin}} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \max(0, 1 - y_i(w^T x_i + b))$$

$$C = o$$
: Drives to uninteresting solution, $\overrightarrow{w} = o$

$$C \rightarrow \infty$$
:
Reduces to Hard-margin SVM

Playing with hyperparameter C

Soft SVM as regularized regression

Ridge Regression:

$$\hat{w}, \hat{b} = \underset{w,b}{\operatorname{argmin}} \left(\frac{1}{n} \sum_{i=1}^{n} (y_i - (w^\top x_i + b))^2 + \lambda ||w||^2 \right), \text{ where}$$

$$l_w(x, y) = (y_i - (w^\top x_i + b))^2$$

$$\implies \hat{w}, \hat{b} = \underset{w,b}{\operatorname{argmin}} \left(E[l(x, y)] + \lambda ||w||^2 \right)$$

Soft SVM:

$$\hat{w}, \hat{b} = \underset{w,b}{\operatorname{argmin}} \left(C \sum_{i=1}^{n} \max(0, 1 - y_i(w^{\top} x_i + b)) + \frac{1}{2} \|w\|^2 \right), \text{letting}$$

$$l_w(x, y) = \max(0, 1 - y_i(w^{\top} x_i + b))$$

$$\implies \hat{w}, \hat{b} = \underset{w,b}{\operatorname{argmin}} \left(E[l(x, y)] + \frac{1}{2nC} \|w\|^2 \right)$$

The maximum margin classifier has high-variance

Comparing Hinge loss to other loss functions

Loss Function	L[y, f(x)]
Binomial Deviance	$\log[1 + e^{-yf(x)}]$
SVM Hinge Loss	$[1 - yf(x)]_+$
Squared Error	$[y - f(x)]^2 = [1 - yf(x)]^2$

Key Questions

I. How can we relax the hard-margin constraints?

II. Can we gain any insights deriving the dual?

III. How do we optimize?

Dual form of Hard SVM problem yielded substantial insights

Soft Margin:
$$\hat{w}, \hat{b} = \underset{w,b}{\operatorname{argmin}} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \max(0, 1 - y_i(w^T x_i + b))$$

Hard Margin:
$$\hat{w}, \hat{b} = \underset{w,b}{\operatorname{argmin}} \frac{1}{2} ||w||^2 \text{ subject to: } y_i(w^T x_i + b) \ge 1 \ \forall i$$

$$\mathcal{L}(w, b, \lambda) = \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j y_i y_j x_i x_j$$

 $\lambda_i > 0 \implies y_i(w^T x_i + b) = 1$ constraint is active, x_i defines the margin

 $y_i(w^Tx_i + b) > 1 \implies \lambda_i = 0$ constraint is inactive, x_i is far from the margin

$$w = \sum_{i=1}^{n} \lambda_i y_i x_i$$

PAGE 19

Deriving the dual of the Soft SVM problem

Deriving the dual of the Soft SVM problem: Slack variables

For a dataset of n samples $x_i \in \mathbb{R}^d$, with labels $y_i \in \{\pm 1\}$, linearly separated by a hyperplane parametrized by w and b; $w, x \in \mathbb{R}^d$, and $b \in \mathbb{R}$, the objective of the Soft SVM problem is given by

$$\hat{w}, \hat{b} = \underset{w,b}{\operatorname{argmin}} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \max(0, 1 - y_i \hat{y}_i)$$
where $\hat{y}_i = w^T x_i + b$

Towards deriving the dual form, we first introduce a constraint for each point in the dataset, using non-negative slack variables, ξ_i :

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$

s.t. $y_i \hat{y}_i \ge 1 - \xi_i \; ; \xi_i \ge 0 \; \forall i$

Deriving the dual of the Soft SVM problem: The Lagrangian

We next incorporate the constraints of

$$\min_{w,b,\xi} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i \text{ s.t. } \begin{cases} y_i \hat{y}_i \ge 1 - \xi_i & \forall i \\ \xi_i \ge 0 & \forall i \end{cases} \text{ predictions relative to corresponding slack variable } \hat{\boldsymbol{y}} = \mathbf{O}$$

directly into the objective by introducing a set of Lagrange multipliers for each set of constraints to obtain the Lagrangian

$$L(w, b, \xi, \lambda, \mu) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^{n} \xi_i - \sum_{i=1}^{n} \lambda_i [y_i \hat{y}_i - (1 - \xi_i)] - \sum_{i=1}^{n} \mu_i \xi_i$$

Where $\lambda = \{\lambda_i \geq 0\}$ and $\mu = \{\mu_i \geq 0\}$ are sets of Lagrange multipliers. The corresponding objective is then

$$\max_{\lambda,\mu \geq 0} \min_{w,b,\pmb{\xi}} L(w,b,\pmb{\xi},\pmb{\lambda},\pmb{\mu})$$

Constraint on each predictions relative

$$\hat{y} = +1$$

Non-negativity constraint on each slack variable

Expanding the Lagrangian

$$\max_{\lambda,\mu \geq 0} \min_{w,b,\xi} \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \lambda_i [y_i \hat{y}_i - (1 - \xi_i)] - \sum_{i=1}^n \mu_i \xi_i \right)$$

$$\max_{\lambda,\mu \geq 0} \min_{w,b,\xi} \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \lambda_i y_i \hat{y}_i + \sum_{i=1}^n \lambda_i - \sum_{i=1}^n \lambda_i \xi_i - \sum_{i=1}^n \mu_i \xi_i \right)$$
Substituting $\hat{y}_i = w^T x_i + b$

$$\max_{\lambda,\mu \geq 0} \min_{w,b,\xi} \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \lambda_i y_i (w^T x_i + b) + \sum_{i=1}^n \lambda_i - \sum_{i=1}^n \lambda_i \xi_i - \sum_{i=1}^n \mu_i \xi_i \right)$$

$$\max_{\lambda,\mu \geq 0} \min_{w,b,\xi} \left(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \lambda_i y_i w^T x_i - \sum_{i=1}^n \lambda_i y_i b + \sum_{i=1}^n \lambda_i - \sum_{i=1}^n \lambda_i \xi_i - \sum_{i=1}^n \mu_i \xi_i \right)$$

$$\max_{\lambda,\mu \geq 0} \min_{w,b,\xi} \left(\frac{1}{2} \|w\|^2 - \sum_{i=1}^n \lambda_i y_i w^T x_i - \sum_{i=1}^n \lambda_i y_i b + \sum_{i=1}^n \lambda_i + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \lambda_i \xi_i - \sum_{i=1}^n \mu_i \xi_i \right)$$

Deriving the dual of the Soft SVM problem: Stationarity

$$\max_{\lambda,\mu \geq 0} \min_{w,b,\xi} \left(\frac{1}{2} \|w\|^2 - \sum_{i=1}^n \lambda_i y_i w^T x_i - \sum_{i=1}^n \lambda_i y_i b + \sum_{i=1}^n \lambda_i + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \lambda_i \xi_i - \sum_{i=1}^n \mu_i \xi_i \right)$$

$$\frac{\partial L}{\partial w} = w - \sum_{i=1}^{n} \lambda_i y_i x_i = 0$$

$$\implies w = \sum_{i=1}^{n} \lambda_i y_i x_i$$

$$\frac{\partial L}{\partial b} = -\sum_{i=1}^{n} \lambda_i y_i = 0$$

$$\implies \sum_{i=1}^{n} \lambda_i y_i = 0$$

$$\frac{\partial L}{\partial \xi_i} = C - \lambda_i - \mu_i = 0$$

$$\implies \mu_i = C - \lambda_i$$

Deriving the dual of the Soft SVM problem: Stationarity

$$\mathcal{L}_{D} = \max_{\lambda, \mu \geq 0} \min_{w, b, \xi} \left(\frac{1}{2} \|w\|^{2} - \sum_{i=1}^{n} \lambda_{i} y_{i} w^{T} x_{i} - \sum_{i=1}^{n} \lambda_{i} y_{i} b + \sum_{i=1}^{n} \lambda_{i} + C \sum_{i=1}^{n} \xi_{i} - \sum_{i=1}^{n} \lambda_{i} \xi_{i} - \sum_{i=1}^{n} \mu_{i} \xi_{i} \right)$$

subject to:
$$w = \sum_{i=1}^{n} \lambda_i u_i x_i$$
. $\sum_{i=1}^{n} \lambda_i u_i = 0$, and $u_i = C - \lambda_i$

subject to:
$$w = \sum_{i=1}^{n} \lambda_i y_i x_i$$
, $\sum_{i=1}^{n} \lambda_i y_i = 0$, and $\mu_i = C - \lambda_i$
$$= \frac{1}{2} \left(\sum_{i=1}^{n} \lambda_i y_i x_i \right)^T \left(\sum_{i=1}^{n} \lambda_j y_j x_j \right) - \sum_{i=1}^{n} \lambda_i y_i \left(\sum_{i=1}^{n} \lambda_j y_j x_j \right) x_i - \frac{1}{2} \left(\sum_{i=1}^{n} \lambda_i y_i x_i \right)^T \left(\sum_{i=1}^{n} \lambda_i y_i x$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} \lambda_{i} y_{i} x_{i} \right)^{T} \left(\sum_{j=1}^{n} \lambda_{j} y_{j} x_{j} \right) - \sum_{i=1}^{n} \lambda_{i} y_{i} \left(\sum_{j=1}^{n} \lambda_{j} y_{j} x_{j} \right) x_{i} - \sum_{i=1}^{n} \lambda_{i} y_{i} b + \sum_{i=1}^{n} \lambda_{i} + \sum_{i=1}^{n} \xi_{i} \left(C - \lambda_{i} - \mu_{i} \right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} x_{i} x_{j} - \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} x_{i} x_{j} + \sum_{i=1}^{n} \lambda_{i} + \sum_{i=1}^{n} \xi_{i} \left(C - \lambda_{i} - \mu_{i} \right)$$

$$= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} x_{i} x_{j} - \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} x_{i} x_{j} + \sum_{i=1}^{n} \lambda_{i} + \sum_{i=1}^{n} \xi_{i} \left(C - \lambda_{i} - \mu_{i} \right)$$

$$= -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j y_i y_j x_i x_j + \sum_{i=1}^{n} \lambda_i$$

$$= \sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j y_i y_j x_i x_j$$

Wait... why?

Hard-margin SVM:

$$\mathcal{L}_D = \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j y_i y_j x_i x_j$$

Soft-margin SVM:

$$\mathcal{L}_D = \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j y_i y_j x_i x_j$$

Soft and Hard Margin SVM have different feasible regions

Hard-margin SVM:

$$\mathcal{L}_{D} = \sum_{i=1}^{n} \lambda_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} x_{i} x_{j}$$

$$\sum_{i=1}^{n} \lambda_{i} y_{i} = 0$$

$$\lambda_{i} \geq 0$$

$$\mathcal{L}_{D} = \sum_{i=1}^{n} \lambda_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} x_{i} x_{j}$$

$$\sum_{i=1}^{n} \lambda_{i} y_{i} = 0$$

$$\lambda_{i} \geq 0$$

$$\vdots$$

Soft-margin SVM:

$$\mathcal{L}_{D} = \sum_{i=1}^{n} \lambda_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} x_{i} x_{j}$$

$$\sum_{i=1}^{n} \lambda_{i} y_{i} = 0$$

$$\lambda_{i} \ge 0$$

$$\mu_{i} \ge 0$$

$$\mu_{i} = C - \lambda_{i}$$

$$\implies C - \lambda_{i} \ge 0$$

$$\implies \lambda_{i} \le C$$

 $\implies 0 < \lambda_i < C$

Soft and Hard Margin SVM have different feasible regions

Hard-margin SVM:

$$\mathcal{L}_D = \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j y_i y_j x_i x_j$$

$$\sum_{i=1}^n \lambda_i y_i = 0$$

$$\lambda_i \ge 0$$

Soft-margin SVM:

$$\mathcal{L}_{D} = \sum_{i=1}^{n} \lambda_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} x_{i} x_{j}$$

$$\sum_{i=1}^{n} \lambda_{i} y_{i} = 0$$

$$\lambda_{i} \geq 0$$

$$\mathcal{L}_{D} = \sum_{i=1}^{n} \lambda_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} x_{i} x_{j}$$

$$\sum_{i=1}^{n} \lambda_{i} y_{i} = 0$$

$$0 \leq \lambda_{i} \leq C$$

Geometry of support vectors in Soft-SVM

Complementary Slackness:

$$\lambda_i(y_i(w^T x_i + b) - 1 + \xi_i) = 0$$

Either:

$$\lambda_i = 0$$
:
 $\implies y_i(w^T x_i + b) - 1 + \xi_i > 0$
 $\implies y_i(w^T x_i + b) > 1$

Or:

Or:

$$\lambda_i > 0:$$

$$\implies y_i(w^T x_i + b) - 1 + \xi_i = 0$$

$$\xi = 0 \implies y_i(w^T x_i + b) = 1 \text{ point is on the margin}$$

$$\xi > 0 \implies y_i(w^T x_i + b) < 1 \text{ margin or boundary violation}$$

The dual exposes a relationship between regularization and the size of the weights

$$w = \sum_{i=1}^{n} \lambda_i y_i x_i$$

$$0 \le \lambda_i \le C$$

Soft Margin:

$$\hat{w}, \hat{b} = \underset{w,b}{\operatorname{argmin}} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \max(0, 1 - y_i(w^T x_i + b))$$

Key Questions

I. How can we relax the hard-margin constraints?

II. Can we gain any insights deriving the dual?

III. How do we optimize?

Solve for λ_i

$$\sum_{i=1}^{n} \lambda_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j y_i y_j x_i x_j$$

$$0 \le \lambda_i \le C$$

$$\sum_{i=1}^{n} \lambda_i y_i = 0$$

```
import numpy as np
# Problem data.
m = 30
n = 20
np.random.seed(1)
A = np.random.randn(m, n)
b = np.random.randn(m)
# Construct the problem.
x = cp.Variable(n)
objective = cp.Minimize(cp.sum squares(A @ x - b))
constraints = [0 <= x, x <= 1]
prob = cp.Problem(objective, constraints)
# The optimal objective value is returned by `prob.solve()`.
result = prob.solve()
# The optimal value for x is stored in `x.value`.
print(x.value)
# The optimal Lagrange multiplier for a constraint is stored in
# `constraint.dual value`.
print(constraints[0].dual value)
```

import cvxpy as cp

https://www.cvxpy.org/

PAGE 33

PAGE 34

PAGE 35

Can you derive the SGD update on the Primal objective?

Now that we're at the end of the lecture, you should be able to...

- ★ Recognize the **hinge loss** for the soft-SVM problem
- Interpret the geometric properties of the soft-SVM decision boundary, including margin, support vectors, and slack variables.
- ★ Describe the effect of hyperparameter C on model performance, generalization, and the norm of the weights.
- ★ Perform hyperparameter tuning using techniques like cross-validation to optimize soft-margin SVM parameter.
- ★ List the strengths and limitations of algorithms for solving soft-margin SVMs.

	Hard-Margin	Soft-Margin
Dual Objective	$\mathcal{L}_D = \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j y_i y_j x_i x_j$	$\mathcal{L}_D = \sum_{i=1}^n \lambda_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j y_i y_j x_i x_j$
Assumptions	Classes are linearly separable	Classes have some overlap
Misclassification	Not allowed	Allowed
Slack variables	N/A	ξ_i : One for each data point, measures marginary violation
Dual variables	λ_i : enforces correct classification with some margin	λ_i : margin violation is no more than allowed slack μ_i : slack variables must be nonnegative to enforce a penalty
KKT Conditions		
Stationarity	$egin{aligned} w &= \sum_{i=1}^n \lambda_i y_i x_i \ \sum_{i=1}^n \lambda_i y_i &= 0 \end{aligned}$	$w = \sum_{i=1}^{n} \lambda_i y_i x_i$ $\sum_{i=1}^{n} \lambda_i y_i = 0$ $\mu_i = C - \lambda_i$
Primal feasibility	$y_i(w^Tx_i+b)-1\geq 0$	$y_i(w^Tx_i+b)-1+\xi_i\geq 0 \ \xi_i\geq 0$
Dual feasibility	$\lambda_i \geq 0$	$\mu_i \geq 0 \ \lambda_i \geq 0$
Compl. slackness	$\lambda_i \left(y_i(w^T x_i + b) - 1 \right) = 0$	$\lambda_i \left(y_i(w^T x_i + b) - 1 + \xi_i) \right) = 0$
Insights	Either: $\lambda_i > 0$ and point is on the margin, or	$0 \leq \lambda_i \leq C$
	$\lambda_i = 0$ and point is not on margin, far from the decision boundary and is correctly classified in such a way that	
	the constraint does not directly influ- ence the solution. Only points on the	
	margin "support vectors" contribute to defining the separating hyperplane.	

