(Munkres §53) main idea of covering spaces: generalize the structure of

$$p : R \rightarrow S^1$$
 $p(t) = (cos(2πt), sin(2πt))$

specifically, the <u>homotopy lifting property</u> for paths that we used to prove $\pi_1(S^1) = Z$

first attempt:

<u>Df</u> a continuous map $p : E \rightarrow X$ is <u>locally a homeomorphism</u> iff,

for all e in E, there is an open neighborhood V of e s.t. $p|_V$ is a homeomorphism from V onto p(V)

Ex p:
$$\{0 < t < 1\} \rightarrow S^1$$

again given by p(t) = (cos(2πt), sin(2πt))
is locally a homeomorphism

objection: p is not surjective e.g., cannot lift loops in S^1 based at (x, y) = (1, 0)

Ex p:
$$\{-1 < t < 1\} \rightarrow S^1$$

again given by p(t) = (cos(2πt), sin(2πt))
is both surjective and locally a homeo

objection?

still cannot lift all loops...

<u>Df</u> suppose U is an open subset of X, $V = p^{-1}(U)$ for some p : E \rightarrow X

we say that U is evenly covered by p iff both:

- V is homeomorphic to a nonempty(!) disjoint union of copies of U
- p restricts to a homeomorphism from each copy onto U
- Df we say that p : E → X is a covering map iff, for all x in X, there's an open neighborhood of x evenly covered by p

Ex claim that p :
$$\{-1 < t < 1\} \rightarrow S^1$$
 is not a covering

if (x, y) ≠ (1, 0)
then (x, y) does have an open neighborhood
 evenly covered by p

what goes wrong when (x, y) = (1, 0)?

Lem if p is a covering then p is surjective and locally a homeo

(example shows that the converse can fail)

 \underline{Ex} p: $R \rightarrow S^1$ is indeed a covering

<u>Ex</u> paths in S¹ <u>cannot</u> be covering maps: why?

<u>Ex</u> more generally:

https://ahilado.wordpress.com/2017/04/14/covering-spaces/

for any n > 0, there is a covering p : $S^1 \rightarrow S^1$ s.t. the <u>fiber</u> $p^{-1}(x)$ has cardinality n for all x in S^1

we say that the covering is of degree n, or n-fold

we say that R and S¹ form <u>covering spaces</u>, or <u>covers</u>, of S¹

will show later:

- R and S¹ are the <u>only</u> covers of S¹
- S² is the <u>only</u> cover of S²

yet S² is a cover for another topological space X: what is X?

 $\underline{\mathsf{Ex}}$ consider the relation \sim on S^2 identifying all pairs of antipodal points:

$$(x, y, z) \sim (-x, -y, -z)$$

the quotient map S² to S²/~ is a 2-fold covering map

have we seen S²/~ before?

General Properties of Covering Maps

if p : $E \rightarrow X$ is a covering, then:

- the fibers p⁻¹(x) are discrete sets for all x in X
 - (because for some open nbd U of x, p⁻¹(U) is a bunch of copies of U mapped onto U homeomorphically by p)
- p is a quotient map
 - (true for any surjective map that's locally a homeo)
- if p': E' → X' is another covering
 then (p, p'): E × E' → X × X' is a covering

Ex any pair of integers m, n > 0 defines a deg-(mn) covering $T \rightarrow T$, where $T = S^1 \times S^1$

<u>Ex</u> coverings of the figure-eight can be weird:

or weirder:

⁽¹⁾ https://www.homepages.ucl.ac.uk/~ucahjde/tg/html/cov-01.html

even weirder:

https://www.math.cmu.edu/~nkomarov/NK-NormalSubFreeGrp.pdf

https://math.stackexchange.com/a/3762676

(Munkres §54) the most important property:

<u>Thm</u> if $p : E \rightarrow X$ is a covering, then:

- 1) for any path $\gamma:[0,1]\to X$ and e in E s.t. $p(e)=\gamma(0),$ there's a <u>unique</u> $\Gamma:[0,1]\to E$ s.t. $\Gamma(0)=e$ and $\gamma=p\circ\Gamma,$ which we call the <u>lift</u> of γ to E
- 2) for any path homotopy $h : [0, 1]^2 \rightarrow X$ and e in E s.t. p(e) = h(0, 0), there's a <u>unique(!)</u> path homotopy $H : [0, 1]^2 \rightarrow E$ s.t. H(0, 0) = e and $h = p \circ H$

(slightly stronger than our version from 3/26)

we'll do 2) on Mon, 4/21

Pf of 1) can pick an open cover $\{U_{\alpha}\}_{\alpha}$ of X s.t. each U_{α} is evenly covered by p

recall from our proof that S² is simply-connected: an argument showing that we can find

$$0 = s_0 < s_1 < ... < s_n = 1$$

s.t. $\gamma:[0, 1] \to X$ maps each segment $[s_i, s_{i+1}]$ into a single U_α at a time

(Munkres calls this the Lebesgue number lemma)

we build the lift $\Gamma: [0, 1] \to E$ inductively: set $\Gamma(0) = e$ assume that for some i, we've defined Γ for $s \le s_i$

to define Γ on $[s_i, s_{i+1}]$:

we know that γ maps $[s_i, s_{i+1}]$ into a single U_α , that U_α is evenly covered by pand $\Gamma(s_i)$ is in $p^{-1}(U_\alpha)$, which is a bunch of copies of U_α

let V_{α} be the copy containing $\Gamma(s_i)$ via the homeomorphism $V_{\alpha} \approx U_{\alpha}$, $\gamma|_{[s_{-i}, s_{-\{i+1\}]}} \text{ has a unique lift into } V_{\alpha}$ define $\Gamma|_{[s_{-i}, s_{-\{i+1\}]}}$ to be this lift

by the pasting lemma, we've now defined Γ for $s \le s_{i+1}$