

> Jarosław Jasiewicz Eksploracja danych i Uczenie maszynowe

> > Geoinformacja program magisterski Specjalność Geoinformatyka

Co to są dane?

- Kolekcja obiektów i ich atrybutów, gdzie każdy atrybut jest właściwością lub charakterystyką obiektu:
 - Oko:kolor
 - Osoba:kolor oczu
 - Osoba:wzrost
- Obiekt jest opisywany kolekcją atrybutów
- Inne nazwy obiektu: rekord (bazy danych), przypadek, encja (entity), instancja, punkt (analiza wielowymiarowa)

 Inne nazwy atrybutu: zmienna, pole (bazy danych), cecha

Atrybuty ciągłe i kategoryzacyjne i dyskretne

Jakościowe

- Muszą przybierać wartości ze skończonego zbioru
- Są kategoriami, ale często są reprezentowane przez liczby całkowite (np. kod pocztowy lub PESEL)
- Mogą ale nie muszą być uporządkowane
- Wartości tekstowe są reprezentowane przez liczby całkowite (factor w R)
- Specjalną odmianą są atrybuty binarne (Prawda/Fałsz)

Dyskretne

- Muszą być policzalne (mogą być nieskończone)
- Reprezentowane są przez liczby całkowite

Ilościowe

 Reprezentowane przez liczby rzeczywiste, o nieskończonej ilości pomiędzy dwoma dowolnymi wartościami; w praktyce o skończonej precyzji ograniczonej precyzją zapisu liczb

Typy atrybutów

	Тур	Opis	Działania	Operacje	Przykład
ve :yjne	Nominalne (nominal)	Wartości jako różne nazwy lub klasy, pozwalają rozróżniać obiekty między sobą	= ≠	Moda, entropia, Chi-square	Kod pocztowy, PESEL, kolor włosów
Jakościowe kategoryzacyjne	Porządkowe (ordinal)	Wartości jako różne nazwy lub klasy, pozwalają rozróżniać obiekty między sobą, dodatkowo pozwalają uporządkować obiekty względem cechy	= ≠ < >	Mediana,korelacja rang, testy znaków	Twardość minerałów, numery domów, oceny
llościowe ciągłe	Interwałowe (interval)	Wartości w skalach umownych. Różnice pomiędzy wartościami są znaczące w obrębie skali	= ≠ < > + -	Mediana, Średnia, SD, korelacja Pearsona, testy F i t	Data (rok), temp. C i F
_	llorazowe (ratio)	Wartości w skalach bezwzględnych wszystkie operacje są dozwolone i są znaczące	= ≠ < > + - * /	jw. + Średnia geometryczna i harmoniczna	Temp. K, masa, długość, natężenie, czas (S) – jednostki SI

Konwersja pomiędzy atrybutami dane → dane jakościowe

- Dyskretyzacja to zamiana zbioru ciągłego na dane jakościowe. Najczęściej wykonuje się tę operację poprzez podział wartości ciągłej na przedziały. Stosuje się metody:
 - Naturalne (Jenks'a) oparta na minimalizacji wariancji w każdej klasie
 - Grupowanie hierarchiczne
 - Okrągłe (pretty)
 - O stałej wielkości (dla skończonego zbioru wartości)
- Binaryzacja zamiana wartości ciągłej lub dyskretnej na TRUE/FALSE w zależności od spełniania kryterium logicznego

Konwersja pomiędzy atrybutami - dane → dane ilościowe

- Kwantyfikacja proces ilościowego ujmowania zjawisk ujętych opisowo. Możliwe do zastosowania dla danych porządkowych, jeżeli znane są relacje pomiędzy cechą jakościową a przedziałem wartości
- Rozrzucanie (jitter) jest operacją stosowaną dla liczb całkowitych, jej celem jest usunięcie efektu skupiania na okrągłych wartościach. Stosuje się głównie w celach wizualnych
- Zaokrąglanie operacje wykonywane na liczbach zmiennoprzecinkowych. Polega na usunięciu informacji zawartej w mniej znaczących części liczby. Jest odwrotnością rozrzucania

Dziedziny atrybutów

- Dziedzina to ograniczenie, które decyduje jakie wartości może przyjmować atrybut
- W przypadku atrybutów jakościowych jest to lista klas jakie może przyjąć atrybut: {mały, średni, duży}
- Dla atrybutów binarnych jest to {Prawda Fałsz}
- W przypadku atrybutów ilościowych jest to zakres (przedział) jaki może przyjąć atrybut. Przedział może być jednostronny (x,∞) lub dwustronny (x,y). Przedziały mogą być domknięte [x,y], tj wartość graniczna jest częścią dziedziny lub niedomknięte, wtedy warość graniczna nie jest częścią dziedziny (0,x]. Na przykład wartość atrybutu musi być większa od 0

Wizualizacja atrybutów

- W zależności od typów danych stosuje się różne metody ich wizualizacji
- Dla danych ciągłych:
 - Histogramy
 - Wykresy gęstościowe
 - Wykresy pudełkowe
- Dla danych dyskretnych
 - Wykresy słupkowe
- Dla wszystkich typów:
 - Koordynaty równoległe

Dane ciągłe – histogram i krzywa gęstościowa

Dane ciągłe Wykres pudełkowy i jego odmiany

Atrybuty dyskretne

- Atrybuty dyskretne przedstawia się za pomocą wykresów słupkowych, gdzie każdy słupek pokazuje udział danej klasy w zmiennej
- Jeżeli zmienna jest porządkowana powinno się stosować stopniowaną skalę barwną

Wizualizacja wartości atrybutów jednego obiektu

zmienne

Porównanie zasięgu zmiennych dla różnych obiektów

- Koordynaty równoległe
- Zmienne na osi X, każda linia reprezentuje osobny obiekt

Co wpływa na jakość danych?

- Znaczenie (relevance)
 - Zrozumiałość
 - Dostępność
 - Kompletność (ilość cech)
 - Spójność
- Problemy z danymi
 - Braki danych
 - Szumy
 - Wartości odstające
 - Dokładność
 - Błędy
 - Duplikaty
 - Integralność

- Jak wykryć problemy w danych?
- Co można z problematycznymi danymi zrobić

Przygotowanie do analizy

- Dane w postaci surowej z reguły nie nadają się do przetwarzania. 90% czasu w Data Science zajmuje "użeranie się" z danymi (wrangling)
- Preprocessing obejmuje:
 - Usuwanie braków
 - Odszumienie
 - Usunięcie obserwacji odstających
 - Usunięcie błędów i duplikatów

GARBAGE IN – GARBAGE OUT

Braki danych

- Źródła braków
 - Brak pomiaru (np. odmowa odpowiedzi, awaria czujnika)
 - Utrata wyniku (dane archiwalne)
 - Nieistotność cechy (np. ciąża u mężczyzny, zarobki u dziecka)
- Zarządzanie brakami danych
 - Usuwanie przypadków lub całych atrybutów
 - Szacowanie (wstawianie) brakującej wartości
 - Ignorowanie w czasie analizy

Metody uzupełniania braków

- Uzupełnienie pomiaru jeżeli atrybut jest niezmienny w czasie (dodaje brakującą informację)
- Imputacja uzupełnianie braków na podstawie kryteriów matematycznych
- Imputacja to podejście pragmatyczne, nigdy nie dodaje informacji
- Można je stosować jeżeli braki są losowe
 - Uśredniona wartość atrybutu
 - Modelowanie wartości na postawie innych wartości (modelowanie predykcyjne)
 - Zero lub ε (jeżeli brak jest spowodowany czułością urządzenia
 - Wartość losowa z dziedziny

Szumy

- Szum losowe, nadmiarowe, nie interpretowane zmiany wartości atrybutu, mogące wpływać na wynik analizy. Mogą być wynikać ze zbyt dużej czułości sensora mieć charakter przypadkowy
- Szumy usuwa się poprzez operacje wygładzania wartości atrybutu (tylko dla danych uporządkowanych)

Wartości (obserwacje) odstające

- Punkty lub wartości odległe od pozostałych obserwacji/modelu
- Mogą być wynikiem błędu pomiaru lub być wynikiem zarejestrowania unikalnego obiektu
- Dla pojedynczych atrybutów są to wartości w dużej odległości od średniej (min: 2x SD)
- Obiekty odstające usuwa się danych, wartości odstające, jeżeli uważamy że są efektem błędu można usunąć i potraktować jak braki w danych

Błędy i duplikaty

- Sytuacje, gdy obiekt został zarejestrowany wielokrotnie
- Pełne duplikaty wszystkie atrybuty (w tym identyfikator) mają taką samą wartość
- Częściowe duplikaty niektóre wartości się różnią pomimo że jest to ten sam obiekt (np. różne adresy e-mail tej samej osoby)
- **Pseudo-duplikaty** różne obiekty (różne identyfikatory) posiadają ten sam zestaw wartości (np. temperatura powietrza, wilgotność i opad mogą się powtarzać)
- Pełne i częściowe duplikaty usuwa się/łączy. Pseudo-duplikaty rozdziela się dodając niewielką wartość losową.

Organizacja danych

- Dane rekordowe
 - Ramki danych/macierze
 - Macierze komplementarne (histogramy)
 - Wektory cech
 - Transakcje i zbiory
- Dane sekwencyjne/uporządkowane (w jednym lub więcej wymiarów)
 - Serie czasowe (1 wymiar)
 - Obrazy i rastry (2 wymiary)
 - Dane czasowo-przestrzenne (3 wymiary)
 - Sekwencje np. genów
- Grafy
 - WWW
 - Molekuły (cząsteczki chemiczne)

Dane rekordowe – ramki danych

- Klasyczny sposób strukturalizacji danych
- Kolejność rekordów i atrybutów jest dowolna
- Każdy rekord (wiersz) to stały zbiór atrybutów
- Atrybuty mogą być różnych typów (nominalne, ilorazowe, wskaźnikowe itp)
 - Jeżeli atrybuty są typu ilorazowego macierze, gdzie każdy wiersz to punkt w wielowymiarowej przestrzeni
- Formalny brak związków między atrybutami
- Klasyczna tabela w I postaci normalnej, każdy zbiór danych można sprowadzić do tej postaci
- Przykład: dane socjo-ekonomiczne krajów europejskich

*	AREA ÷	POPTL ÷	POPGR ÷	POPDN ÷	LIFEXP ÷	FERTR ÷	MRTCH ÷	SCHCNT ÷	URBGR ÷	GDPGR ÷	INFLT ÷	GNIPK ÷	GDPTL
ALBN	28750	2889104	-0.2	105.4	77.8	1.8	14.4	96.4	1.6	1.8	1.4	4450	1.321986e+10
AUST	83879	8541575	0.7	103.5	81.5	1.5	3.7	99.3	0.8	0.6	1.8	50150	4.383762e+11
BLRS	207600	9474511	0.1	46.7	73.0	1.7	4.7	107.0	0.6	1.7	18.1	7600	7.881305e+10
BELG	30530	11209057	0.2	370.2	81.3	1.7	4.2	164.8	0.3	1.6	0.7	46930	5.317509e+11
BOSN	51210	3566002	-1.1	69.6	76.4	1.3	5.7	92.1	-0.8	1.1	1.0	5160	1.852148e+10
BULG	111000	7223938	-0.6	66.5	74.5	1.5	10.9	100.9	-0.1	1.3	0.5	7720	5.673201e+10
CRAT	56590	4238389	-0.4	75.7	77.5	1.5	4.5	99.0	0.1	-0.5	0.0	13150	5.708037e+10
CYPR	9250	1152309	0.7	124.7	80.1	1.4	2.9	99.4	0.6	-1.5	-1.5	26500	2.330821e+10
CZCH	78870	10525347	0.1	136.3	78.8	1.5	3.5	105.1	0.0	2.7	2.5	18790	2.078183e+11
DENM	42922	5643475	0.5	133.5	80.7	1.7	3.6	129.9	0.7	1.7	0.8	63640	3.522970e+11
ESTN	45230	1314545	-0.3	31.0	77.0	1.5	3.2	110.4	-0.4	2.8	1.7	18790	2.621394e+10
FINL	338420	5461512	0.4	18.0	81.2	1.7	2.4	145.5	0.6	-0.6	1.7	48990	2.726093e+11
FRAN	549087	66331957	0.5	121.1	82.7	2.0	4.4	110.6	0.8	0.9	0.6	42750	2.849305e+12
GERM	357380	80982500	0.4	232.1	81.1	1.5	3.8	102.4	0.7	1.6	1.8	47680	3.879277e+12
GERC	131960	10892413	-0.7	84.5	81.4	1.3	4.6	106.5	-0.2	0.4	-1.8	22000	2.360798e+11
HUNG	93030	9866468	-0.3	109.0	75.8	1.4	6.1	107.0	0.4	4.0	3.4	13460	1.392946e+11
ICLD	103000	327386	1.1	3.3	82.9	1.9	2.1	108.2	1.2	1.9	4.1	48160	1.717896e+10
IRLD	70280	4617225	0.4	67.0	81.3	1.9	3.7	127.2	0.9	8.5	-1.2	47040	2.562713e+11
ITAL	301340	60789140	0.9	206.7	83.1	1.4	3.6	102.6	1.1	0.1	1.0	34760	2.151733e+12
LATV	64490	1993782	-0.9	32.1	74.1	1.6	8.2	115.4	-1.0	2.1	1.6	15330	3.135225e+10
LITH	65286	2932367	-0.9	46.8	74.5	1.6	5.2	106.8	-0.9	3.5	1.0	16030	4.854525e+10
LUXM	2590	556319	2.4	214.8	82.2	1.5	2.0	102.3	2.7	5.6	1.6	76900	6.629806e+10
MACD	25710	2077495	0.1	82.4	75.3	1.5	6.0	78.6	0.2	3.6	1.4	5200	1.136227e+10
MOLD	33850	3556397	-0.1	123.9	71.5	1.3	16.1	87.3	0.0	4.8	6.4	2560	7.983271e+09
MONT	13810	621810	0.1	46.2	76.2	1.7	5.0	93.8	0.4	1.8	1.0	7320	4.587929e+09
NETH	41540	16865008	0.4	500.6	81.7	1.7	3.9	132.3	1.1	1.4	0.1	51330	8.796351e+11
NORW	385178	5137232	1.1	14.1	82.1	1.8	2.7	112.6	1.5	1.9	0.3	104860	4.983398e+11
POLD	312680	38011735	-0.1	124.1	77.6	1.3	5.2	108.1	-0.2	3.3	0.5	13630	5.451518e+11

Dane rekordowe – macierze komplementarne

 W macierzy komplementarnej każdy rekord zawiera wartości typu proporcjonalnego (ratio). Suma wartości w każdym rekordzie sumuje się do jedności (100%). Przykład skład mineralny skały, granulometria

Dane rekordowe - wektory cech

- Wektory cech: Każdy rekord to sumy wystąpień poszczególnych encji (np. słów w tekście), może być w postaci bezwzględnej lub względnej, tj. sumuje się do jedności co pozwala porównywać obiekty różnej wielkości
- Są to bardzo długie wektory rzadkie

		(Var 1) apple	(Var 2) cat	(Var 3) cats	(Var 4) dog	(Var 5) dogs	(Var 6) farm		(Var 4999) White House	(Var 5000) Senate
(Obs 1)	Doc 1	1	1	2	2	0	1		0	0
(Obs 2)	Doc 2	0	1	0	1	1	0		3	2
(Obs 3)	Doc 3	0	1	0	0	1	0	***	4	4
(Obs)										
(Obs N)	Doc N	2	2	2	3	0	1		0	0

Dane rekordowe - transakcje

- Każdy rekord zawiera zbiór elementów: przykład kosz zakupów. W zbiorze elementy nie mogą się powtarzać, stosuje się przede wszystkim w analizie asocjacji, oraz do zbiorów cech binarnych
- Istotą zbiorów jest to że każdy element występuje tylko raz
- W praktyce jest to tzw. macierz rzadka

Items				Beer	Bread	Milk	Diaper	Eggs	Coke
			T_1	0	1	1	0	0	0
Bread, Diaper, Beer, Eggs	4	_	T_2	1	1	0	1	1	0
Milk, Diaper, Beer, Coke			T_3	1	0	1	1	0	1
Bread, Milk, Diaper, Beer			T_4	1	1	1	1	0	0
Bread, Milk, Diaper, Coke			T_5	0	1	1	1	0	1
	Milk, Diaper, Beer, Coke Bread, Milk, Diaper, Beer	Bread, Milk Bread, Diaper, Beer, Eggs Milk, Diaper, Beer, Coke Bread, Milk, Diaper, Beer	Bread, Milk Bread, Diaper, Beer, Eggs Milk, Diaper, Beer, Coke Bread, Milk, Diaper, Beer	Bread, Milk Bread, Diaper, Beer, Eggs Milk, Diaper, Beer, Coke Bread, Milk, Diaper, Beer T_1 T_2 T_3	Bread, Milk Bread, Diaper, Beer, Eggs Milk, Diaper, Beer, Coke Bread, Milk, Diaper, Beer $T_1 = 0$ $T_2 = 1$ $T_3 = 1$ $T_4 = 1$	Bread, Milk Bread, Diaper, Beer, Eggs Milk, Diaper, Beer, Coke Bread, Milk, Diaper, Beer $T_1 0 1$ $T_2 1 1$ $T_3 1 0$ $T_4 1 1$	Bread, Milk Bread, Diaper, Beer, Eggs Milk, Diaper, Beer, Coke Bread, Milk, Diaper, Beer $T_1 0 1 1$ $T_2 1 1 0$ $T_3 1 0 1$ $T_4 1 1 1$	Bread, Milk Bread, Diaper, Beer, Eggs Milk, Diaper, Beer, Coke Bread, Milk, Diaper, Beer $T_1 0 1 1 0$ $T_2 1 1 0 1$ $T_3 1 0 1 1$ $T_4 1 1 1 1$	Bread, Milk Bread, Diaper, Beer, Eggs Milk, Diaper, Beer, Coke Bread, Milk, Diaper, Beer $T_{1} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ T_{2} & 1 & 1 & 0 & 1 & 1 \\ T_{3} & 1 & 0 & 1 & 1 & 0 \\ T_{4} & 1 & 1 & 1 & 1 & 0 \\ \end{bmatrix}$

Dane porządkowe

- Dane prządkowe w jednym, dwóch czy trzech wymiarach charakteryzują się tym, że każda wartość znajduje się w określonym położeniu
- Uporządkowanie dostarcza dodatkowych informacji, które mogą zostać zamienione w atrybuty (np. sąsiedztwo, autokorelacja itp.)
- Dane uporządkowane są bardziej odporne na braki danych, ich usuwanie opiera się bardziej na analizie sąsiedztwa czy trendów, co nie jest możliwe w danych nieuporządkowanych

Położenie jako atrybut

- Istotą danych uporządkowanych jest to że każdy obiekt oprócz wartości ma również położenie, które również może być traktowane jako atrybut(y)
- Na przykład obrót sklepu może być opisany wielkością obrotu, rodzajem kupowanych towarów, ale również położeniem na osi czasu: kolejnego dnia, dnia tygodnia czy pory dnia, te wartości mogą być mieć charakter cykliczny

Grafy, sieci i molekuły

- Struktury danych składające się z węzłów (nodes, vertices) i połączeń (edges) par węzłów.
- Połączenia mogą być uporządkowane, nieuporządkowane oraz mogą mieć wartość (liczbową lub nominalną)
- Grafy można prezentować jako macierze albo listę par węzłów i ich połączeń

Map: City blocks

SPATIAL AND NON-SPATIAL DATA

City blocks	Land use				
001	Institutional				
002	Commercial				
003	Commercial				
004	Residential				
005	Residential				
006	Residential				
007	Industrial				
800	Residential				
009	Industrial				
010	Industrial				
011	Residential				
012	Industrial				
013	Residential				
014	Residential				
015	Residential				

Dane geoprzestrzenne

- Nieprzestrzenne atrybuty przechowywane w modelu relacyjnym: tabelach atrybutowych lub relacyjnych bazach danych
- Przestrzenne informacja zawarta w:
 - Lokalizacji (x,y,z)
 - Geometrii (powierzchnia, obwód, kształt, orientacja)
 - Relacjach przestrzennych: przylegania, nakładania itp.
 - Operacji przestrzenno-nieprzestrzennych: np. ilość budynków <10 m w promieniu 1000 metrów
- Informacja na temat lokalizacji i geometrii to jawne lub główne cechy przestrzenne, informacja wynikająca z relacji lub operacji to cechy niejawne albo poboczne (secondary)

Geomorfometria – cechy niejawne

 Przykładem cech niejawnych, które można włączyć do analizy są pochodne terenu. Na podstawie jednej zmiennej (rzędna) i operacji wyliczania pochodnych można zbudować listę dodatkowych atrybutów

Reorganizacja danych

- Reorganizację danych przeprowadza się w celu przygotowania danych do właściwych prac nad wydobywaniem wiedzy. Część zagadnień omówiona szczegółowo w dalszej części kursu
- Szeroki i wąski format danych
- Agregacja
- Próbkowanie
- Wybór atrybutów

Format szeroki i wąski

- (lub długi i szeroki) to dwa sposoby prezentacji danych
- Format szeroki
 - Koncepcyjnie prostszy przy małej liczbie atrybutów
 - Nie jest nadmiarowy
 - Wymaga identycznej liczby atrybutów dla każdego przypadku
- Zaletą danych wąskich jest:
 - Mniejsza liczba kolumn
 - Prosty koncepcyjnie model danych: key-value
 - Złożone analizy danych wymagają długiego formatu
 - Poszczególne przypadki mogą mieć różną liczbę atrybutów
 - Problemy z atrybutami różnego typu

Konwersja pomiędzy formatami

- Konwersja pomiędzy formatami to przestawianie (pivoting)
- Wąski typ szczególnie przydatny gdy dane w kolumnach są jednego typu (np. kolejne lata)

	County	LandArea	NatAmenity	College 1970	College1980	College 1990	College2000	Jobs 1970	Jobs 1980	Jobs 1990	Jobs2000
1	Autauga	599	4	.064	.121	.145	.180	6853	11278	11471	1628
2	Baldwin	1578	4	.065	.121	.168	.231	19749	27861	40809	7024
3	Barbour	891	4	.073	.092	_118	109	9448	9755	12163	1519
4	Bibb	625	3	.042	.049	.047	.071	3965	4276	5564	609
5	Blount	639	4	.027	.053	.070	.096	7587	9490	11811	1650

	County	LandArea	NatAmenity	Year	College	Jobs
1	Autauga	599	4	1970	.064	6853
2	Autauga	599	4	1980	.121	11278
3	Autauga	599	4	1990	.145	11471
4	Autauga	599	4	2000	.180	16289
5	Baldwin	1578	4	1970	.065	19749
6	Baldwin	1578	4	1980	.121	27861
7	Baldwin	1578	4	1990	.168	40809
8	Baldwin	1578	4	2000	.231	70247
9	Barbour	891	4	1970	.073	9448
10	Barbour	891	4	1980	.092	9755
11	Barbour	891	4	1990	.118	12163
12	Barbour	891	4	2000	.109	15197
13	Bibb	625	3	1970	.042	3965
14	Bibb	625	3	1980	.049	4276
15	Bibb	625	3	1990	.047	5564
16	Bibb	625	3	2000	.071	6098
17	Blount	639	4	1970	.027	7587
18	Blount	639	4	1980	.053	9490
19	Blount	639	4	1990	.070	11811
20	Blount	639	4	2000	.096	16503

Agregacja przypadków

- Polega na łączeniu obiektów w mniejsze grupy na podstawie atrybuty grupującego: np. gminy łączone są w powiaty
- Agregację wykonuje się w celu stabilizacji wariancji (jednostki niższego rzędu są bardziej zróżnicowane między sobą niż wyższego rzędu)
- Zmiana skali analizy (czasowej, przestrzennej, tematycznej)

Agregacja i transformacja atrybutów

- Atrybuty grupuje się jeżeli są od siebie zależne, lub mogą być wyrażone relacją. Są to tzw. atrybuty wskaźnikowe np. zamiast czasu i odległości można podać prędkość m/s
- Atrybut grupuje się w celu zamiany wartości bezwględnych na proporcję, np. zamiast masy próby i masy składnika w próbie podaje się udział procentowy składnika w próbie
- Z danych na etapie analizy usuwa się atrybuty, które są dla analizy nieistotne lub nawet wprowadzające w błąd, np. do analizy składu mineralnego nie ma znaczenia całkowita masa próby
- Usuwanie atrybutów powinno być czasowe tj surowe dane nie powinny być modyfikowane a jedynie ich kopia (mutate)

Próbkowanie

- Jest to operacja, która ma na celu ograniczenie liczby przypadków
- Podstawą operacji próbkowania jest założenie że nie ma istotnych różnic pomiędzy wynikiem dla reprezentatywnej próby a wynikiem dla populacji
- Próbkowanie wykonuje się w sytuacji:
 - Badań wstępnych, gdy testujemy różne modele
 - Praca na całym zbiorze jest zbyt kosztowna lub niemożliwa
 - Otrzymanie całego zbioru nie jest możliwe lub jest zbyt kosztowne

Rodzaje próbkowania

- Losowe: każdy obiekt ma takie same szanse na wylosowanie. Domyślnie próbkowanie losowe jest próbowaniem bez zastępowania, każdy obiekt może być wylosowany raz. W tej procedurze prawdopodobieństwo wylosowania każdego kolejnego elementu wzrasta (po maleje populacja), ale przy dużych zbiorach danych i małej próbce w praktyce jest ono równoważne losowaniu z zastępowaniem (prawdopodobieństwo nie wzrasta znacząco)
- Losowe z zastępowaniem jest odmianą wyboru losowego, gdy każdy obiekt może być wylosowany więcej niż raz. Ten rodzaj losowania gwarantuje ze każdy element jest losowany z jednakowym prawdopodobieństwem. W praktyce stosuje się gdy populacja jest mała a próba duża a nawet w sytuacji gdy próba jest większa od populacji tzw. nadpróbkowanie (ang. oversampling)
- Stratyfikowane: Próba odzwierciedla zróżnicowanie populacji względem danej cechy, każda cecha musi być reprezentowana. Proces losowania rozpoczyna się od podziału populacji na grupy a następnie z każdej grupy losowana jest określona liczba obiektów. Małe grupy mogą być nadreprezentowane.

