

PLAN DU TIPE

I/ Théorie

- Cryptographie symétrique et asymétrique
- Courbe elliptique
- Courbe elliptique sur $\mathbb{Z}/p\mathbb{Z}$
- Crypto système El-Gamal

II/ Mise en pratique

- Implémentation des courbes
- Implémentation de El-Gamal

III/ Conclusion

- Analyse sécurité
- Dans la pratique
- Comparaison au système RSA

I/ CRYPTOGRAPHIE SYMÉTRIQUE ET ASYMÉTRIQUE

image: librecours.net

I/ CRYPTOGRAPHIE ASYMÉTRIQUE

RSA: Rivest, Shamir Adleman.

Rivest

Shamir

Adleman

El Gamal: sur courbe elliptique

Taher El Gamal

I/ COURBES ELLIPTIQUES

Equation de Weierstrass:

Soit K un corps

$$E: y^2 = x^3 + Ax + B$$
 $A \in K, B \in K$

Lisse si
$$\Delta = -16 (4A^3 + 27B^2) \neq 0$$

I/ COURBES ELLIPTIQUES

Courbe Elliptique :
$$y^2 = x^3 + ax + b$$

 $\Delta = -16 (4a^3 + 27b^2)$

$$\Delta > 0 \ (a = -1, b = 2)$$

$$\Delta < 0 \ (a = -1, b = 1)$$

$$\Delta = 0 \ (a = 0, b = 0)$$

courbes : générées sur GeoGebra

2 Points distincts

2 Points distincts

I/ COURBES ELLIPTIQUES

STRUCTURE DE GROUPE

2 Points distincts

$$P + Q = R'$$

Point à l'infini

Point à l'infini

$$P + O = P$$

$$-P = R$$

Double d'un point

Double d'un point

I/ COURBES ELLIPTIQUES

STRUCTURE DE GROUPE

Double d'un point

$$P + P = R'$$

$$y^2 = x^3 - x + 3$$

$$y^2 = x^3 - x + 3 \operatorname{sur} \mathbb{Z}/127 \mathbb{Z}$$

Soit $a, b \in \mathbb{N}$, $p \in \mathbb{P}$ et $p \equiv 3[4]$

$$C = \{ (x,y)\epsilon(\mathbb{Z}/p\mathbb{Z})^2 | y^2 = x^3 + ax + b \}$$

$$y^2 = x^3 - x + 3 \operatorname{sur} \mathbb{Z}/127 \mathbb{Z}$$

Génération des points : trouver les racines carrées dans $\mathbb{Z}/p\mathbb{Z}$

Symbole de Legendre

$$\begin{cases} \left(\frac{x}{p}\right) = 0 \text{ si } x | p \\ \left(\frac{x}{p}\right) = 1 \text{ si } \exists k \in \mathbb{N}^*, k^2 \equiv x \text{ [p]} \\ \left(\frac{x}{p}\right) = -1 \text{ sinon} \end{cases}$$

$$\left(\frac{x}{p}\right) \equiv x^{\frac{p-1}{2}} \left[p\right]$$

Inverse modulaire:

(si x premier avec p)

- $\exists u, v \in \mathbb{Z}, \ ux + vp = 1$
- $x^{-1} = u$, $ux \equiv 1[p]$

Génération des points : trouver les racines carrées dans $\mathbb{Z}/p\mathbb{Z}$

$$\left(\frac{x}{p}\right) \equiv x^{\frac{p-1}{2}} \left[p\right]$$

Si
$$p \equiv 3[4]$$
 alors $\frac{p-1}{2}$ est impair

Bézout:

$$\exists u, v \in \mathbb{Z}, 2u + \frac{p-1}{2}v = 1$$

Soit x tel que
$$\left(\frac{x}{p}\right) = 1$$

Posons
$$y = x^u$$

$$y^{2} \equiv x^{2u} [p]$$

$$y^{2} \equiv x^{1-\frac{p-1}{2}v} [p]$$

$$y^{2} \equiv x^{1}x^{\left(\frac{p-1}{2}\right)^{-v}} [p]$$

$$y^2 \equiv x [p]$$

Génération des points : trouver les points de la courbe

$$y^2 = x^3 + ax + b [p]$$

Obtention des points de la courbe :

I/ UTILISATION: CRYPTO SYSTÈME EL-GAMAL

Clé publique : Courbe elliptique \mathcal{E} sur $\mathbb{Z}/p\mathbb{Z}$, un point G d'ordre n un point P=qG

Clé privée : un entier q, $1 \le q < n$

Message: un point $M \in G >$

Chiffrement

- Choix d'un entier $0 \le k < n$
- Calcul de
 - $C_1 = kG$
 - $C_2 = M + kP$
- Message : (C_1, C_2)

Déchiffrement

Calcul de

$$qC_1 = qkG = kP$$

Alors

$$C_2 - kP = M$$

Objets

- Point
- Courbe

Fonctions

- Trouver des points
- Addition
- Multiplication par un entier

En pratique : en Python

Class Point

- Est infini
- Coordonnées

Class Curve

"""<u>Courbe d'équation</u> y^2 = x^3 - x + 3 mod 127""" my_curve = Curve(-1, 3, 127)

my_point = Point(False, 5, 2) # Point de coordonnées (5, 2)

infinity_point = Point(True) # Point à l'infini

- Trouver des points
- Addition
- Multiplication par un entier

Génération des points

Addition

Multiplication par un entier

Clé publique : Courbe elliptique \mathcal{E} sur $\mathbb{Z}/p\mathbb{Z}$, un point G d'ordre n

un point P = qG

Clé privée : un entier q, $1 \le q < n$

Message: un point $M \in < G >$

Fonctions:

- Génération des clés
- Chiffrement
- Déchiffrement

Choix des paramètres

• Courbe ε : $y^2 = x^3 - x + 3 \mod 7919$

```
>>> my_curve = Curve(-1, 3, 7919)
```

• Un point de la courbe : G: (1,3023)

```
>>> g = Point(False, 1, 3023)
```

• G est d'ordre n=1299

```
>>> my_curve.get_order(g)
1299
```

• On choisit q = 500

```
>>> q = 500
```

Clé publique : Courbe elliptique \mathcal{E} sur $\mathbb{Z}/p\mathbb{Z}$, un point G d'ordre n un point P=qG

Clé privée : un entier q, $1 \le q < n$

Message: un point $M \in < G >$

Création des clés

```
idef create_keys(a: int, b: int, p: int, g: Point, order: int, q: int):

>>> private_key, public_key = create_keys(-1, 3, 7919, Point(False, 1, 3023), 1299, 500)

>>> public_key
((Curve : y^2 = x^3 + -1 * x + 3 mod 7919), (1, 3023), 1299, (5279, 7180))

Courbe ε

G

n

P = qG

>>> private_key
500
```

Clé publique : Courbe elliptique \mathcal{E} sur $\mathbb{Z}/p\mathbb{Z}$, un point G d'ordre n

un point P = qG

Clé privée : un entier q, $1 \le q < n$

Message: un point $M \in < G >$

Chiffrement d'un point

```
>>> public_key ((Curve : y^2 = x^3 + -1 * x + 3 \mod 7919), (1, 3023), 1299, (5279, 7180))

Courbe \varepsilon

Courbe \varepsilon

G

P = qG

>>> msg = my_curve.multi_fast(52, g)

>>> msg
(5800, 460)

>>> coded_msg = encryption(public_key, msg)

>>> coded_msg
((4117, 5975), (305, 6787))

C_1
```

Chiffrement

- Choix d'un entier $0 \le k < n$
- Calcul de
 - $C_1 = kG$
 - $C_2 = M + kP$
- Message : (C_1, C_2)

Clé publique : Courbe elliptique \mathcal{E} sur $\mathbb{Z}/p\mathbb{Z}$, un point G d'ordre n

un point P = qG

Clé privée : un entier q, $1 \le q < n$

Message: un point $M \in < G >$

Déchiffrement d'un point

```
>>> public_key
((Curve : y^2 = x^3 + -1 * x + 3 mod 7919), (1, 3023), 1299, (5279, 7180))

Courbe & G n P = qG

>>> msg = my_curve.multi_fast(52, g)

>>> msg
(5800, 460)

>>> decoded_msg = decryption(private_key, public_key, coded_msg)

>>> decoded_msg
(5800, 460)
```

Déchiffrement

- Calcul de $qC_1 = qkG$
- Alors $C_2 kP = M$

Clé publique : Courbe elliptique $\mathcal E$ sur $\mathbb Z/p\mathbb Z$, un point G d'ordre n

un point P = qG

Clé privée : un entier q, $1 \leq q < n$

Message: un point $M \in < G >$

Echange d'un message

```
>>> msg = "Le theme de l'année est la ville !"

>>> coded_msg = send_msg(public_key, msg)

>>> coded_msg

[((5450, 3717), (3740, 5255)), ((6495, 2637), (3118, 3063)), ((2722, 2548), (185, 6938)), ((6936, 2962), (75
5995)), ((1309, 4788), (5745, 3341)), ((5745, 3341), (3118, 3063)), ((3630, 2374), (4901, 4873)), ((1135, 6
(7818, 2860)), ((4850, 3068), (6931, 6782)), ((1800, 164), (1498, 1754)), ((6370, 4303), (1260, 2566)), ((5
7815), (3329, 7650)), ((364, 2859), (7287, 7197)), ((1152, 467), (5450, 3717)), ((825, 5361), (7818, 5059))
6430), (5485, 3265)), ((3740, 5255), (1952, 6284)), ((6984, 1454), (5769, 2287)), ((5392, 1441), (7456, 686
((6476, 6478), (2094, 5123)), ((6909, 4267), (3312, 5941)), ((6371, 6637), (6936, 4957)), ((709, 7273), (56
>>> decoded_msg = receive_msg(public_key, private_key, coded_msg)

"Le theme de l'année est la ville !"
```

III/ ANALYSE SÉCURITÉ : PROBLÈME DU LOGARITHME DISCRET

Baby step giant step: une attaque possible

Entrée : $< g > d'ordre n, x \in < g >$

Sortie: k tel que x = kg

Division euclidienne : k = im + j, avec $m = \lceil \sqrt{n} \rceil$

jg = x + i(-gm)

Algorithme:

- Calcule liste L : (j, jg), $0 \le j < m$
- Calcule des (i, x + i(-gm))
 - Cherche si x + i(-gm)) est dans L
- Retourner im + j

Complexité : $O(\sqrt{n})$

$$0 \le i, j < m$$

III/ BABY STEP GIANT STEP

Entrée : $< g > d'ordre n, x \in < g >$

```
Sortie: k \text{ tel que } x = g^k
>>> my_curve = Curve(-1, 3, 7919)
>>> g = Point(False, 1, 3023)
   P = my_curve.multi_fast(500, g)
       P = 500G
     baby_step_giant_step(my_curve, g, 1299, P)
500
>>> decoded_msg_attack = attack(public_key, coded_msg)
>>> decoded_msg_attack
"Le theme de l'année est la ville !"
```

III/ DANS LA PRATIQUE

Génération de courbes :

- Choix d'un point
- Construction de la courbe

Conversion en point de la courbe

Maël Feurgard

- ENS Lyon
- Stage Kalay:

Développement de librairies cryptographiques optimisées pour processeur VLIW Coolidge

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decima	al Hex C	har	_I Decima	Hex C	Char
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	
1	1	[START OF HEADING]	33	21	1	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22	11	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	c
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27		71	47	G	103	67	q
8	8	[BACKSPACE]	40	28	(72	48	н	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	V
23	17		55	37	7	87	57	W	119	77	w
24	18		56	38	8	88	58	X	120	78	x
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	У
26	1A	[SUBSTITUTE]	58	3A	:	90	5A	Z	122	7A	Z
27	18		59	3B	;	91	5B	1	123	7B	{
28	10		60	3C	<	92	5C	1	124	7C	
29	10		61	3D	=	93	5D	1	125	7D	}
30	1E		62	3E	>	94	5E	^	126	7E	~
31	1F	[UNIT SEPARATOR]	63	3F	?	95	5F	-	127	7F	[DEL]

III/ DANS LA PRATIQUE

Taille des clés

Table 1. Comparable Key Size (in bits) [3]

		/ []	
<u>Symmetric</u>	<u>ECC</u>	<u>RSA</u>	
<u>Algorithms</u>			
80	163	1024	
112	233	2240	
128	283	3072	
192	409	7680	
256	571	15360	

Génération des clés

Table 2. Key Generation Performance [3]

	-				
Key Length (bits)			Time (s)		
RSA	ECC		RSA	ECC	
1024	163		0.16	0.08	
2240	233		7.47	0.18	
3072	283		9.80	0.27	
7680	409		133.90	0.64	
15360	571		679.06	1.44	

ECC: Elliptic curve cryptography

Source: N. Jansma and B. Arrendondo,"Performance Comparison of Elliptic Curve and RSA Digital Signatures", 2004

III/ DANS LA PRATIQUE

Chiffrement

Longu	eur de clé	Temps de calcul (s)			
ECC	RSA	ECC	RSA		
163	1024	0.15	0.01		
233	2240	0.34	0.15		
283	3072	0.59	0.21		
409	7680	1.18	1.53		
571	15360	3.07	9.20		

Déchiffrement

Longu	eur de clé	Temps de calcul (s)			
ECC	ECC RSA		RSA		
163	1024	0.23	0.01		
233	2240	0.51	0.01		
283	3072	0.86	0.01		
409	7680	1.80	0.01		
571	15360	4.53	0.03		

Chiffres issus du NIST (National Institute of Standards and Technology)

III/ CONCLUSION

- Crypto système robuste
- Tailles des clés réduites
- Temps génération des clés réduit
- Augmentation du temps de déchiffrement
- Utile pour les communications sensibles au sein d'une ville

BIBLIOGRAPHIE

- [1] HÄGLER MICHAEL : <u>Courbes elliptiques et cryptographie :</u> <u>https://math.univ-bpclermont.fr/~rebolledo/page-fichiers/projetMichael.pdf</u>
- [2] UNIVERSITÉ DE BORDEAUX : <u>Racine de Z/nZ :</u> https://www.math.u-bordeaux.fr/~jcouveig/cours/CSI4.pdf
- [3] CÉCILE GONÇALVES : <u>Cryptographie Avancée, Courbes elliptique :</u>
 https://www.lix.polytechnique.fr/Labo/Cecile.Goncalves/Downloads/Cours2
 Courbes_elliptiques.pdf
- [4] Wikipedia: <u>Baby-step giant-step</u>:
 https://fr.wikipedia.org/wiki/Baby-step giant-step

ANNEXE

COURBES ELLIPTIQUES

Equation de Weierstrass

Soit K un corps,
$$E:y^2+a_1xy+a_3y=x^3+a_2x^2+a_4x+a_6$$
 , $a_i\epsilon K$

Equation lisse :
$$\begin{cases} a_1y = 3x^2 + 2a_2x + a_4 \\ 2y + a_1x + a_3 = 0 \end{cases}$$
 pas de solution

Si K caractéristique différente 2 et 3

$$E: y^2 = x^3 + Ax + B$$

Lisse si
$$\Delta = -16 (4A^3 + 27B^2) \neq 0$$

COURBES SUR \mathbb{Z}/p \mathbb{Z}

Génération des points : trouver les racines carrées dans $\mathbb{Z}/p\mathbb{Z}$

Exemple:

Posons $x = 15, p = 127 (127 \equiv 3[4])$

- $\frac{127-1}{2} = 63$
- $-31 \times 2 + 1 \times 63 = 1 \ donc \ u = -31, v = 1$
- $15^{63} \equiv 1[127] \ donc \ \left(\frac{15}{127}\right) = 1$
- $y = 15^{-31}$
- $y^2 = 15^{2 \times -31} = 15^{-62} = 15^{1-63 \times 1} = 15 \times (15^{63})^{-1} \equiv 15[127]$

RSA: CRÉATION DES CLÉS

RSA: CHIFFREMENT / DÉCHIFFREMENT

Message: entier m < n

Clé publique : (n, e)

Chiffrement : $C \equiv m^e [n]$

Clé privée : d

Déchiffrement : $m \equiv C^d [n]$

CODE

PUISSANCE MODULAIRE

```
def modular_power_(x, n, q):
    """
    :param x: nombre à mettre à la puissance n modulo q
    :param n: puissance
    :param q: modulo
    :return: x^n mod q
    """
    e = 0
    res = 1
    while e != n:
        res = (res * x)% q
        e += 1
    return res
```

DIVISION MODULAIRE

```
def modular_division(a: int, b: int, q: int):
    :param a:
    :param b:
    :param q:
    :return: a / b mod p
    a = a \% q
    b = b \% q
    acc = b
    res = 1
    while a != acc:
        acc = (acc + b) % q
       res += 1
    return res
```

```
Soient a, b, p trois entiers a/b [p] y tel que y*b \equiv a [p]
```

TROUVER LES ENTIER QUI SONT DES CARRÉS

```
def find_square(p: int):
    """
    :param p: a primary integer, with q = 3 mod 4
    :return: tab array of integers that are square
    """
    power = int((p - 1) / 2)
    tab = []
    for i in range(p):
        if modular_power(i, power, p) == 1:
            tab.append(i)
    return tab
```

Symbole de Legendre

$$\begin{cases} \left(\frac{x}{p}\right) = 0 \text{ si } x | p \\ \left(\frac{x}{p}\right) = 1 \text{ si } \exists k \in \mathbb{N}^*, k^2 \equiv x [p] \end{cases} \qquad \left(\frac{x}{p}\right) \equiv x^{\frac{p-1}{2}} [p]$$
$$\left(\frac{x}{p}\right) = -1 \text{ sinon}$$

ALGORITHME D'EUCLIDE ÉTENDUE

```
def extended_euclid_rec(a: int, b: int):
    """
    this function don't return pgcd(a,b) because we will us it only for a, b such as pgcd(a, b) = 1
    :param a: an integer
    :param b: an integer
    :return: (u, v) such as u*a + v*b = pgcd(a, b)
    """
    if b == 0:
        return (1, 0)
    else:
        u, v = extended_euclid_rec(b, a % b)
        return (v, u - (a // b) * v)
```

Exemple: a = 37, b = 15

$$37 * 1 + 15 * 0 = 37$$
 (1)
 $37 * 0 + 15 * 1 = 15$ (2)
 $37 - 2 * 15 = 4$ (3) = (1)-2(2)
 $-2 * 32 + 5 * 15 = 1$ (4) = (2) -2(3)

TROUVER UNE RACINE

```
def find_root(x: int, p: int):
    """
    :param x: an integer : we suppose that x is a square
    :return: y such as y^2 = x
    """
    u, v = extended_euclid_rec(2, int((p - 1) / 2))
    if u < 0:
        u = p - 1 + u
    y = modular_power(x, u, p)
    return y</pre>
```

CLASS POINT

```
class Point:
   def __init__(self, is_inf, x=0, y=0):
       self.is_inf = is_inf
       return hash((self.x, self.y, self.is_inf))
   def __eq__(self, other):
       if (self.is_inf or other.is_inf):
           return self.is_inf and other.is_inf
           return self.x == other.x and self.y == self.y
       if self.is_inf:
           return "inf"
       if self.is_inf:
           return "inf"
           return "(" + str(self.x) + ", " + str(self.y) + ")"
   def print_point(self):
   def inv(self):
       return Point(self.is_inf, self.x, - self.y)
```

CLASS CURVE 1/6

```
class Curve:
        def __init__(self, a: int, b: int, q: int):
            :param a:
             :param b:
            self.a = a
            self.b = b
            self.q = q
8 0
            return "(Curve : y^2 = x^3 + " + str(self.a) + " * x + " + str(self.b) + " mod " + str(self.q) + ")"
            return "(Curve : y^2 = x^3 + " + str(self.a) + " * x + " + str(self.b) + " mod " + str(self.q) + ")"
        def belongs_to_curve(self, p: Point):
            :param p: a point
            if p.is_inf:
                 return True
            return (p.y ** 2) % self.q == (p.x ** 3 + self.a * p.x + self.b) % self.q
```

CLASS CURVE 2/6

```
def generate_points(self):
   points = []
   power = int((self.q - 1) / 2)
    for i in range(self.q):
        z = ((i ** 3) + self.a * i + self.b) % self.q
        if modular_power(z, power, self.q) == 1:
            root = find_root(z, self.q)
            points.append((i, root))
            points.append((i, self.q - root))
    return points
def generate_points_object(self):
   points = []
   power = int((self.q - 1) / 2)
    for i in range(self.q):
        z = ((i ** 3) + self.a * i + self.b) % self.q
        if modular_power(z, power, self.q) == 1:
            root = find_root(z, self.q)
            points.append(Point(False, i, root))
            points.append(Point(False, i, self.q - root))
    return points
```

CLASS CURVE 3/6

```
1 usage

def get_a_point(self, n: int):

"""

ireturn

ireturn:

return:

power = int((self.q - 1) / 2)

for i in range(n_self.q):

z = ((i ** 3) + self.a * i + self.b) % self.q

if modular_power(z, power, self.q) == 1:

root = find_root(z, self.q)

return Point(False, i, root)

return Point(True)
```

CLASS CURVE 4/6

```
def add(self, p1: Point, p2: Point):
   :param p1: A point on the curve
   :param p2: An other point on the curve
   if p1.is_inf:
       return p2
   elif p2.is_inf:
       return p1
   elif p1.x != p2.x:
       m = modular_dividion((p2.y - p1.y), (p2.x - p1.x), self.q)
       x3 = (m ** 2 - p1.x - p2.x) % self.q
       y3 = (m * (p1.x - x3) - p1.y) % self.q
       return Point(False, x3, y3)
   elif p1.x == p2.x and p1.y != p2.y:
       return Point(True)
   elif (p1.x, p1.y) == (p2.x, p2.y) and p1.y != 0:
       m = modular\_dividion((3 * (p1.x ** 2) + self.a), (2 * p1.y), self.q)
       x3 = (m ** 2 - 2 * p1.x) % self.q
       y3 = (m * (p1.x - x3) - p1.y) % self.q
       return Point(False, x3, y3)
   else:
       return Point(True)
```

Courbe : $y^2 = x^3 + ax + b [p]$

$$P_1 = (x_1, y_1), P_2 = (x_2, y_2),$$

 $P_1 + P_2 = P_3 = (x_3, y_3)$

Si
$$P_1 = 0$$

 $P_3 = P_2$
Si $x_1 \neq x_2$
 $x_3 = m^2 - x_1 - x_2$
 $y_3 = m(x_1 - x_3)$
 $m = \frac{y_2 - y_1}{x_2 - x_1}$

Si
$$x_1 = x_2$$
 et $y_1 \neq y_2$
 $P_3 = 0$
Si $P_1 = P_2$ et $y_1 \neq 0$
 $x_3 = m^2 - 2x_1$
 $y_3 = m(x_1 - x_3) - y_1$
 $m = \frac{3x_1^2 + a}{2y_1}$
Si $P_1 = P_2$
 $P_2 = 0$

CLASS CURVE 5/6

```
def multi(self, n: int, p: Point):
   :param n: integer assumed to be positive
   :param p: a point
   res = Point(True)
   for i in range(n):
       res = self.add(res, p)
    return res
def multi_fast(self, n: int, p: Point):
   :param n: integer assumed to be positive
   :param p: a point
   if n == 0:
        return Point(True)
   res = p
   acc = Point(True)
   while n > 1:
        if n % 2 == 1:
            acc = self.add(acc, res)
           res = self.add(res, res)
           n = int(n / 2)
   return self.add(res, acc)
```

$$Puissance(x,n)$$

$$= \begin{cases} x, & si \ n=1 \\ puissance(x^2, \frac{n}{2}), & si \ n \ Pair \\ x * puissance(x^2, \frac{n-1}{2}), & si \ n \ Pair \end{cases}$$

CLASS CURVE 6/6

```
2 usages

def get_order(self, p: Point):

n = 0

save = p

while not p.is_inf:

p = self.add(p, save)

n += 1

return n

2 usages

def show(self):

tab = self.generate_points()

tabx = [i[0] for i in tab]

taby = [i[1] for i in tab]

plt.scatter(tabx, taby)

plt.show()
```


 $y^2 = x^3 - x + 3 \operatorname{sur} \mathbb{Z}/127 \mathbb{Z}$

CRÉATION DES CLÉS

```
def create_keys(a: int, b: int, p: int, g: Point, order: int, q: int):
    """
    :param a:
    :param b:
    :param p:
    :param g: generating point
    :param order: the order of the point g
    :param q: an integer such as 0 < n < order
    :return:
    """
    curve = Curve(a, b, p)
    h = curve.multi_fast(q, g)
    public_key = (curve, g, order, h)
    private_key = q
    return private_key, public_key</pre>
```

Clé publique : Courbe elliptique $\mathcal E$ sur $\mathbb Z/p\mathbb Z$, un point G d'ordre n

un point P = qG

Clé privée : un entier q, $1 \le q < n$

 $\mathbf{Message}: \mathbf{un} \ \mathbf{point} \ \mathbf{M} \in < G >$

CHIFFREMENT ET DÉCHIFFREMENT D'UN POINT

```
def encryption(public_key, msg: Point):
   :param public_key: the public key contains: the curve on which we are working, a point p, the order of p,
   :param msg: the message we want to send that has been converted in a point of the elliptic curve
   :return:
   curve, p, order, h = public_key
   k = randint(0, order)
   c1 = curve.multi_fast(k, p)
   c2 = curve.add(msg, curve.multi_fast(k, h))
   return c1, c2
def decryption(private_key, public_key, msg_encrypted):
   curve, p, order, h = public_key
   c1, c2 = msg_encrypted
   return curve.add(c2, curve.multi_fast(private_key, c1).inv())
```

Chiffrement

- Choix d'un entier 0 < k < n
- Calcul de
 - $C_1 = kG$
 - $C_2 = M + kP$
- Message : (C_1, C_2)

Déchiffrement

- Calcul de $qC_1 = qkG = kP$
- Alors

$$C_2 - kP = M$$

CONSTRUCTION DES DICTIONNAIRES

```
def construct_dic_p_to_c(p: Point, c: Curve):
    :param p: p is assumed to have an order greater than 256
    :return: dictionary point to character
    dic = {}
   it = p
    for i in range(256):
        dic[it] = chr(i)
       it = c.add(it, p)
    return dic
def construct_dic_c_to_p(p: Point, c: Curve):
    :param p: p is assumed to have an order greater than 256
    :param c: p is a point of c
    dic = {}
   it = p
    for i in range(256):
        dic[chr(i)] = it
       it = c.add(it, p)
    return dic
```

TRANSFERT DE MESSAGES

```
def send_msg(public_key, msg):
   1 = []
    length = len(msg)
    point_dic = construct_dic_c_to_p(public_key[1], public_key[0])
    for i in range(length):
        l.append(encryption(public_key, point_dic[msg[i]]))
    return l
def receive_msg(public_key, private_key, encrypted_msg):
    res = ""
    length = len(encrypted_msg)
    dic = construct_dic_p_to_c(public_key[1], public_key[0])
    for i in range(length):
        p = decryption(private_key, public_key, encrypted_msg[i])
        res = res + dic[p]
    return res
```

BABY STEP GIANT STEP: UNE ATTAQUE POSSIBLE

```
def baby_step_giant_step(p: Point, c: Curve, g: Point, n: int):
                                                                        Complexité en temps : O(\sqrt{n})
    :param p:
                                                                        Complexité en espace : O(\sqrt{n})
    :param c:
    :param q:
    :param n: g is of order n
                                           Algorithm 1 Baby step, giant step
    :return: k such as kg = p
                                           Require: un groupe cyclique G d'ordre n, un générateur g et un element b
                                           Ensure: une valeur x vérifiant q^x = b
    m = round(sqrt(n)) + 1
                                            1: m \leftarrow \sqrt{n+1}
    d = \{\}
                                            2:  for j=1,  m do
                                                                                                             ▶ baby steps
                                                  sauvgarder dans un tableau (j, g^j)
    new_p = Point(True)
    for j in range(m):
                                            4: Calculer q^{-m}
                                            5: y \leftarrow 1
        d[new_p] = j
                                            6: for i=0, m-1 do
                                                                                                            ▶ Giant steps
        new_p = c.add(new_p, g)
                                                  if y est le second composant d'une paire dans le tableau then
    inv = (c.multi(m, g)).inv()
                                                      return im + j
                                            8:
    y = p
                                                  else y \leftarrow yq^{-m}
                                            9:
    for i in range(m+1):
        j = search(y, d)
                                                                    def search(p: Point, d):
        if j == -1:
                                                                         try:
                                                                             return d[p]
            y = c.add(y, inv)
        else:
                                                                         except:
                                                                             return -1
            return i*m + j
```

UTILISATION DE BABY STEP GIANT STEP

```
def attack(public_key, coded_msg):
    c, g, n, p = public_key
    q = baby_step_giant_step(c, g, n, p)
    return receive_msg(public_key, q, coded_msg)
```

BABY STEP GIANT STEP DANS $\mathbb{Z}/p\mathbb{Z}$

```
def baby_step_giant_step(q, g, b):
   :param q: on travaille dans Z/qZ
   :param g: g est un générateur de Z/qZ
   :param b: g^x : inconnu
   :return: x tel que g^x = b mod q
   m = int(ceil(sqrt(q)))
   tab = []
   """Baby step"""
   for j in range(1, m+1):
       tab.append((j, modular_power(g, j, q)))
   y = b
   inv = modular_power(g, (q - m - 1), q)
   """Giant step"""
   for i in range(m+1):
       j = recherche(tab, y)
       if j == -1:
           y = y * inv % q
       else:
           return i*m + j
```

BABY STEP GIANT STEP: GROUPE MULTIPLICATIFE

Entrée : $< g > d'ordre n, x \in < g >$

Sortie: $k \text{ tel que } x = g^k$

Division euclidienne : k = im + j, avec $m = \lceil \sqrt{n} \rceil$

$g^j = x(g^{-m})^i$

Algorithme:

- Calcule liste L: $(j, g^j), 0 \le j < m$
- Calcule des $(i, x(g^{-m})^i)$
 - Cherche si $x(q^{-m})^i$ est dans L
- Retourner im + j

Complexité : $O(\sqrt{n})$

 $0 \le i, j < m$

EL GAMAL DANS $\mathbb{Z}/p\mathbb{Z}$: CRÉATION DES CLÉS

```
def creation_cles(q,q,a):

"""

:param q: un entier premier (dans la pratique tres grand)

:param g: un entier générateur de Z/qZ donc tel que p^q = 1

:param a: un entier compris entre 0 et ordre(g) = q

:return: couple de clé publique et clé privée pour le crypto systeme El Gamal
"""

h = g ** a

public_key = (q, h, g)

private_key = a

return private_key, public_key
```

EL GAMAL DANS $\mathbb{Z}/p\mathbb{Z}$: CHIFFREMENT / DÉCHIFFREMENT

```
def chiffrement(public_key, msg):
    """
    :param public_key: clé publique de la personne à qui on veut envoyer un msg
    :param msg: message à chiffrer convertie en entier
    :return: le message crypté
    """
    q, h, g = public_key
    k = randint(0, q)
    p = (g ** k) % q
    s = (h ** k) % q
    return p, msg * s
```

```
def dechiffrement(private_key, public_key, msg_encrypte):
    """
    :param private_key: clé privé de la personne qui recois le message
    :param public_key: clé publique de la personne qui recois le message
    :param msg_encrupte: message recu crypté
    :return: retourne le message decrypté
    """
    q, h, g = public_key
    p, msg = msg_encrypte
    s = p ** private_key % q
    return int(msg/s)
```

EL GAMAL DANS $\mathbb{Z}/p\mathbb{Z}$: CHIFFREMENT / DÉCHIFFREMENT MESSAGE

```
def chiffrement_message(public_key, msg):
    res = []
    for lettre in msg :
        res.append(chiffrement(public_key, ord(lettre)))
    return res
```

```
def dechiffrement_message(private_key, public_key, msg_encrypte):
    res = ""
    for i in msg_encrypte_:
        res = res + chr(dechiffrement(private_key, public_key, i))
    return res
```