Sabbir Ahmed

DATE: April 18, 2018 **MATH 407:** HW 10

3.6 5 Show that no proper subgroup of S_4 contains both (1, 2, 3, 4) and (1, 2).

$$\Box$$

9 A rigid motion of a cube can be thought of either as a permutation of its eight vertices or as a permutation of its six sides. Find a rigid motion of the cube that has order 3, and express the permutation that represents it in both ways, as a permutation on eight elements and as a permutation on six elements.

10 Show that the following matrices form a subgroup of $GL_2(C)$ isomorphic to D_4 :

$$\pm \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \pm \left[\begin{array}{cc} i & 0 \\ 0 & -i \end{array} \right], \pm \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \pm \left[\begin{array}{cc} 0 & i \\ -i & 0 \end{array} \right]$$

15 (a) Show that $A_4 = \{ \sigma \in S_4 \mid \sigma = \tau^2 \text{ for some } \tau \in S_4 \}$

$$\Box$$

(b) Show that $A_5 = \{ \sigma \in S_5 \mid \sigma = \tau^2 \text{ for some } \tau \in S_5 \}$

$$\Box$$

(c) Show that $A_6 = \{ \sigma \in S_6 \mid \sigma = \tau^2 \text{ for some } \tau \in S_6 \}$

$$\Box$$

(d) What can you say about A_n if n > 6?

$$\Box$$

17 For any elements $\sigma, \tau \in S_n$, show that $\sigma \tau \sigma^{-1} \tau^{-1} \in A_n$.

	Pf.	
21	Find the center of the dihedral group D_n . Hint: Consider two cases, depending on whether n is odd or even.	
	Pf.	
24	Show that the product of two transpositions is one of (i) the identity; (ii) a 3-cycle; (iii) product of two (nondisjoint) 3-cycles. Deduce that every element of A_n can be written as product of 3-cycles.	
	Pf.	