实验名称 刚体转动惯量的测量(扭摆)

- 一. 实验要求与目的
- 1. 用扭摆测定多种形状物理的转动惯量和弹簧的扭转系数;
- 2. 观察刚体的转动惯量与质量分布的关系;
- 3. 验证平行轴定理;
- 二. 实验原理

将物体在水平面内转过 θ 角。在弹簧恢复力矩作用下,物体就开始绕垂直轴作往返扭转运动。根据虎克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度 θ 成正比,即

$$M = -k\theta \quad (1)$$

式中: k 为弹簧的扭转常数。根据转动定律 $M = I \beta$ (式中,I 为物体绕转轴的转动惯量, β 为角加速度)得

$$\beta = M/I \quad (2)$$

令 $\omega^2 = k/I$, 忽略轴承摩擦阻力矩,由式(1)、式(2)得

$$\beta = \frac{d^2\theta}{dt^2} = -\frac{k}{I}\theta = -\omega^2\theta$$

上述方程表示扭摆运动为简谐振动,角加速度与角位移成正比,且方向相反。此方程的解 $\theta = A\cos(\omega t + \varphi)$;式中: A 为简谐振动的角振幅; φ 为初相位角; ω 为圆频率。此简谐振动的周期

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{I}{k}}$$

由式(3)可知,只要实验测得物体扭摆的摆动周期,并在 I 和 k 中任何一个量已知时即可计算出另一个量。

本实验测量形状规则物体的转动惯量,它的质量和几何尺寸通过量具直接测量得到,再算出本仪器弹簧的 k 值。若要测定其他形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动的周期,由式(3)即可算出该物体绕转动轴的转动惯量。

理论分析证明,若质量为m的物体绕通过质心轴的转动惯量为 I_0 时,当转轴平行移动距离 x 时,则此物体对新轴的转动惯量变为 I_0+mx^2 。这就是转动惯量的平行轴定理。

三. 实验内容与步骤

- 1. 实验内容
- (1) 熟悉仪器的构造和使用方法。
- (2) 测定扭摆弹簧的扭转常数。
- (3)测定塑料圆柱体、金属圆筒、木球与金属细杆的转动惯量,并与理论计算值相比较,求百分误差。
 - (4) 改变滑块在细杆的位置,验证转动惯量平行轴定理。
 - 2. 实验步骤
 - (1) 分别测出圆柱体直径,圆筒内外径以及细杆长度,并分别测出它们的质量。
- ①圆柱体直径、圆筒内外径、球体直径及细杆长度测量 3 次,取平均值;其中,圆柱体直径、圆筒外径和细杆长度用大游标卡尺测量,圆筒内径用小游标卡尺测量。
 - ②圆柱体、圆筒、球体及细杆的质量用电子天平测量1次.
 - (2) 物盘、圆柱体、圆筒、球体和细杆的摆动周期。
 - ①调整扭摆基座底脚螺钉, 使水平仪中气泡居中。
 - ②装上金属载物盘,并调整光电探头的位置使载物盘上挡光杆处于其缺口中央且能遮 住

发射红外线的小孔。使用转动惯量测试仪测定摆动周期 T_0 ; 使用累积放大法测量 10 个周期,测量 3 次,取平均值。

- ③将塑料圆柱体、金属圆筒垂直放在载物盘上,测定其摆动周期 T_1 、 T_2 ,使用累积放大法测量 10 个周期,测量 3 次,取平均值。
 - ④取下载物金属盘,装上木球,测定摆动周期 T₃(计算木球的转动惯量时,应扣除支架
- 的转动惯量),使用累积放大法测量10个周期,测量3次,取平均值。
 - ⑤取下木球,装上金属细杆(金属细杆中心必须与转轴重合)。测定摆动周期 T4(计

算

金属细杆转动惯量时,应扣除支架的转动惯量),使用累积放大法测量10个周期,测量3 次,取平均值。

(3) 计算出各物体绕中心对称轴转动的转动惯量的理论值。

圆柱体
$$I_1' = \frac{1}{8} m_1 D_1^2$$
; 圆筒 $I_2' = \frac{1}{8} m_2 \left(D_{2 \text{内外}}^2 D_2^2 \right)$; 球体 $I_3' = \frac{1}{10} m_3 D_3^2$; 细长杆
$$I_4' = \frac{1}{12} m_4 L^2$$

(4) 由载物盘摆动周期 T_0 ,塑料圆柱体的摆动周期 T_1 及圆柱体理论转动惯量值 I_1' ,

算出弹簧的扭转系数 k 及载物盘的转动惯量 I_0 。

$$k = 4\pi^2 \frac{I_1'}{T_1^2 - T_0^2}$$

$$I_0 = I_1' \frac{T_0^2}{T_1^2 - T_0^2}$$
俭值。
$$I_i = \frac{kT_i^2}{4\pi^2} - I_0$$

(5) 计算各物体转动惯量的实验值。

$$I_i = \frac{kT_i^2}{4\pi^2} - I_i$$

(6) 验证转动惯量的平行轴定理。

测出两滑块质量 m_s 及其内外径 $D_{s,p}$ 、 $D_{s,p}$ 和长度 L_s ,将滑块对称放置在细杆两边的凹 槽内,此时滑块质心离转轴距离分别为5.00cm,10.00cm,15.00cm,2 0.00 cm, 25.00 cm, 测定摆动周期T。分别计算出对应转动惯量实验值(计算 转动惯量时,应扣除支架的转动惯量):

$$I_{
etit} = rac{kT_{
etit}^2}{4\pi^2} - I_4'$$

将测量值与平行轴定理理论值 $I'=I'_s+2m_sX^2$ 比较,求出实验值与理论值的百分差,

其中两滑块绕质心转轴的转动惯量为:

$$I_s' = 2 \left[\frac{1}{16} m_S (D_{S \nmid 1}^2 + D_{S \nmid 1}^2) + \frac{1}{12} m_S L_S^2 \right]$$

(7) 测出的各项有关数据输入计算机,检查实验结果。

四. 数据记录

物体	质量 (g)	几何尺寸 (<i>cm</i>)	周期 (s)	转动惯量理论 值	实验值	百分误差
名	(8)	(6111)		IH.	$(10^{-3}kg\cdot m^2)$	火土

称						$(10^{-3}kg\cdot m^2)$		(%)
金属载物盘				T_0	8. 21 8. 22 8. 21 0. 821		$I_0 = I_1' \frac{\overline{T_0}^2}{\overline{T_1}^2 - \overline{T_0}^2}$ = 0. 5455	
塑料圆柱	$m_1 = 714.9$	$ar{D_1}$	9. 994 9. 998 9. 992 9. 994	$10T_1$ T_1	13. 32 13. 34 13. 33 1. 333	$I_1' = \frac{1}{8} m_1 \overline{D}_1^2$ = 0. 8926	$I_{1} = \frac{k\overline{T}_{1}^{2}}{4\pi^{2}} - I_{0}$ $= 0.8926$	0
 金 属	$m_2 = 720.3$	$ar{D}_{2\mathbb{I}}$	9. 998 9. 998 9. 998 9. 998	10T ₂	16. 59 16. 60 16. 59	$I_1' = \frac{1}{8} m_1 (\overline{D}_2^2)$	$I_{1} = \frac{k\overline{T}_{2}^{2}}{4\pi^{2}} - I_{0}$ $= 1.6821$	0.3
通通		$D_{2 ext{h}}$ $\overline{D}_{2 ext{h}}$	9. 354 9. 356 9. 354 9. 354	T_2	1. 659	$+\overline{D}_{2}^{2}$		
木球	$m_3 = 985.5$	$ar{D}_3$ $ar{ar{D}}_3$	10. 792 10. 794 10. 790 10. 792	10T ₃	11. 91 11. 91 11. 90 1. 191	$I_3' = \frac{1}{10} m_3 \bar{D}_3^2$ = 1. 1478	$I_1 = \frac{k\overline{T}_3^2}{4\pi^2}$ $= 1.1480$	0. 02
金属细杆	$m_4 = 132.0$	L	61.00 (已 知)	$10T_4$ T_4	22. 48 22. 48 22. 49 2. 248	$I_4' = \frac{1}{12} m_4 L^2$ = 4. 0931	$I_{1} = \frac{k\overline{T}_{4}^{2}}{4\pi^{2}}$ =4.0901	0.08

1. 各物体转动惯量理论值的计算

圆柱体:
$$I_1' = \frac{1}{8} m_1 D_1^2 = \frac{1}{8} \times 714.9 \times 10^{-3} \times 9.994^2 \times 10^{-4} = 0.8926 \times 10^{-3} kg \cdot m^2$$
圆筒: $I_2' = \frac{1}{8} m_2 \left(D_{2 \text{内}}^2 \neq D_2^2 \right) = \frac{1}{8} \times 720.3 \times 10^{-3} \times (9.998^2 + 9.354^2) \times 10^{-4}$

$$= 1.6878 \times 10^{-3} kg \cdot m^2$$
球体: $I_3' = \frac{1}{10} m_3 D_3^2 = \frac{1}{10} \times 985.5 \times 10^{-3} \times 10.792^2 \times 10^{-4} = 1.1478 \times 10^{-3} kg \cdot m^2$

细长杆:
$$I_4' = \frac{1}{12} m_4 L^2 = \frac{1}{12} \times 132.0 \times 10^{-3} \times 61.000^2 \times 10^{-4} = 4.0931 \times 10^{-3} kg \cdot m^2$$

2. 扭转系数 k 的计算

$$\pm T_0 = 0.821$$
s, $T_1 = 1.333$ s, $I'_1 = 0.8926 \times 10^{-3} kg \cdot m^2$

$$k = 4\pi^2 \frac{I_1'}{T_1^2 - T_0^2} = 4\pi^2 \frac{0.8926 \times 10^{-3}}{1.333^2 - 0.821^2} = 31.9522 \times 10^{-3} kg \cdot m^2 \cdot s^{-2}$$

- 3. 各物体转动惯量的实验值计算
- 1) 载物盘的转动惯量

$$I_0 = I_1' \frac{T_0^2}{T_1^2 - T_0^2} = 0.8926 \times 10^{-3} \times \frac{0.821^2}{1.333^2 - 0.821^2} = 0.5455 \times 10^{-3} kg \cdot m^2$$

2) 金属圆筒的转动惯量

$$I_2 = \frac{kT_2^2}{4\pi^2} - I_0 = \frac{31.9522 \times 10^{-3} \times 1.659^2}{4\pi^2} - 0.5455 \times 10^{-3} = 1.6821 \times 10^{-3} \, kg \cdot m^2$$

相对误差
$$E_2 = \frac{|1.6821 - 1.6878|}{1.6878} \times 100\% = 0.3\%$$

3) 木球的转动惯量

$$I_3 = \frac{kT_3^2}{4\pi^2} - I_0 = \frac{31.9522 \times 10^{-3} \times 1.191^2}{4\pi^2} - 0.5473 \times 10^{-3} = 1.1480 \times 10^{-3} kg \cdot m^2$$

相对误差
$$E_3 = \frac{|1.1480 - 1.1478|}{1.1478} \times 100\% = 0.02\%$$

4) 细长杆的转动惯量

$$I_4 = \frac{kT_4^2}{4\pi^2} = \frac{31.9522 \times 10^{-3} \times 2.248^2}{4\pi^2} = 4.0901 \times 10^{-3} kg \cdot m^2$$

相对误差
$$E_4 = \frac{|4.0901 - 4.0931|}{4.0931} \times 100\% = 0.07\%$$

4. 验证转动惯量的平行轴定理:

滑块质量: 240.1g:

滑块几何尺寸:长度=3.318cm;外径=3.504cm;内径=0.596cm;两滑块绕过质心转轴的转动惯量理论值:

$$I'_{s} = 2\left[\frac{1}{16}m_{S}(D_{Sh}^{2} + D_{S}^{2}) + \frac{1}{12}m_{S}L_{S}^{2}\right] = 0.8197 \times 10^{-4}kg \cdot m^{2}$$

x	周期(s)				实验值: $I = \frac{k\overline{T}^2}{4\pi} - I_4$	理论值:	百分误差
$(10^{-2}m)$	10 <i>T</i>		\overline{T}		$I = \frac{1}{4\pi} - I_4$ $(10^{-3} kg \cdot m^2)$	$I' = I'_s + 2m_s x^2$ $(10^{-3} kg \cdot m^2)$	$E = \frac{ I' - I }{I'} \times 100\%$
5.00	25. 74	25. 74	25. 75	2. 574	1. 2722	1. 2825	0.8
10.00	33. 28	33. 28	33. 26	3. 327	4.8684	4.8840	0.3
15.00	42.97	42.94	42.96	4. 296	10. 8465	10.8865	0.4
20.00	53.64	53.64	53.63	5. 364	19. 1962	19. 2900	0.5
25.00	64.87	64.89	64.85	6. 487	29. 9671	30. 0945	0.4

如图中线性拟合的结果,直线的斜率为 478. 1033×10^{-3} ,也就是说 $m_s=239.0516\mathrm{g}$,实验测量 $m_s=240.1\mathrm{g}$,百分误差为 0. 4%,同时,拟合所得的截距为 $0.08224\times10^{-3}k\mathrm{g}\cdot\mathrm{m}^2$,理论计算值为 $0.8197\times10^{-4}k\mathrm{g}\cdot\mathrm{m}^2$,相对误差为 0. 3%。

六. 提问与讨论

1. 弹簧扭转系数 k 如何求得?

金属载物台绕转动轴的转动惯量为 I_0 ,对应的周期为 T_0 ,载物台上放上规则几何物体后的转动惯量为 I_0+I_1 ,此时周期为 T_0 ,根据周期公式有

$$T_{0} = 2\pi \sqrt{I_{0}/k}$$

$$T_{1} = 2\pi \sqrt{(I_{0} + I_{1})/k}$$

$$k = 4\pi^{2} \frac{I_{1}}{T_{1}^{2} - T_{0}^{2}}$$

2. 什么是测量周期的累积放大法?

实验中每次测量 10 个周期,测量三次,再求平均,这样是为了消除测量单个周期引起的误差。

3. 如何验证平行轴定理?

将滑块对称放置在细杆两边的凹槽内,此时滑块质心离转轴距离为 x,若质量为m的物体绕通过质心轴的转动惯量为 I_0 时,则此物体对新轴的转动惯量变为 I_0+mx^2 。这是转动惯量的平行轴定理。在实验中,分别将 x 取不同的值,同时根据测得的周期算出对应的实验转动惯量,验证这些实验点是否呈线性关系,这就是平行轴定理的验证。