

Université Paul Sabatier

Analyse et commande des systèmes temps réel

- Synthèse d'une commande à retard -APPLICATION À UN PROCÉDÉ ÉLECTRO-MÉCANIQUE

Auteurs: Lucien RAKOTOMALALA David TOCAVEN

Encadrant : Carolina Albea-Sànchez

Table des matières

In	ntroduction	1
1	Identification-Modélisation du système1.1Détermination de paramètres et du retard1.2Autres méthode1.3Modèle fréquentiel1.4Modèle espace d'état1.5Commandabilité et observabilité1.6Analyse de la boucle ouverte1.7Stabilité de la boucle fermée1.7.1Delay-Sweeping1.7.2Stabilité 2D	2 2 2 3 3 3 4 4 4 4 4
2		5 5 5 5
3	Placement du spectre Fini 3.1 Valeurs des pôles	6 6 6 6 6
4	Étude d'un prédicteur de Smith	7
5	Implantation sur le procédé réel	8
\mathbf{A}	innexes 1	10
TITRE TITRE		
Α.	nnovo 2. TITPF	11

Introduction

À partir de l'énoncé, nous avons définie le cahier des charges suivant :

- Il faut réaliser un asservissement en position angulaire.
- Il faut atteindre la consigne en moins de 8 secondes. $\Rightarrow T_r < 8s + h$
- Il ne doit pas y avoir d'oscillations.
- Il ne doit pas y avoir de dépassement de la consigne. $\Rightarrow \forall t \geq 0, V_g(t) \leq V_{ref}(t)$
- Il doit y avoir une erreur de position nulle. $t \to \infty, V_g(t) \to V_{ref}(t)$
- La commande doit rejeter Les perturbations de sortie de type échelon $(p(t) = p_0)$ en maximum 3 secondes.

1 Identification-Modélisation du système

Dans un premier temps, nous allons déterminer les paramètres du moteur, ensuite, nous déterminerons le modèle fréquentiel ainsi que le modèle espace d'état du système. Puis, nous étudierons les propriétés, les performances et la stabilité du système.

1.1 Détermination de paramètres et du retard

On identifiera les paramètres du moteur grâce à une approche dite *boite noire*, c'est-à-dire que suivant la forme d'une réponse du système à un échelon, nous allons choisir une modélisation par fonction de transfert type (1^{er} ordre, 2^e ordre, ...). Comme il s'agit d'un moteur à courant continu, nous choisissons un modèle du premier ordre car il permet de former un modèle de précision suffisante au vu de notre application. Un modèle du 1^{er} ordre est de la forme suivante :

$$G(p) = \frac{K}{\tau p + 1} \tag{1.1}$$

Où:

K: Le gain statique du système.

 τ : La constante de temps du système (en seconde).

Nous identifierons K en mesurant le gain statique de la réponse à un signal échelon (pour t tel que la réponse se soit stabilisée) : $K = V_g(t)/U_m(t)$.

Pour l'estimation de τ , nous utiliserons la relation suivante : $\tau = t$ lorsque $\frac{V_g(t)}{U_m(t)} = 0,63 * K$.

Cette méthode nous a permis d'obtenir l'estimation suivante des paramètres :

$$\begin{cases} k_m = 9,6048 \\ \tau_m = 0,2533 \text{ secondes} \end{cases}$$
 (1.2)

Pour identifier le retard, que nous savons être présent sur la commande du moteur, nous avons mesurer le décalage temporel entre le début d'un échelon unité que l'on injecte en entrée $U_m(t)$ du moteur et la sortie $V_g(t)$. Ce décalage représente le retard du système, le temps qu'il met avant de réagir à une modification de l'entrée (voir figure 1.1).

FIGURE 1.1 – Mesure du retard.

1.2 Autres méthode

Une autre façon de modéliser le modèle du moteur est un approche de type boite blanche, c'est-à-dire de créer un modèle du moteur à partir d'une étude physique du système.

1.3 Modèle fréquentiel

Avec l'estimation des paramètres du moteur, nous avons former deux fonctions de transferts. La première définie le la fonction entre $V_q(t)$ et l'entrée $U_m(t)$ et la seconde entre $V_s(t)$ et $U_m(t)$.

$$\begin{cases}
\frac{V_g(t)}{U_m(t)} = \frac{k_g \cdot k_m}{\tau_m p + 1} e^{-hp} \\
\frac{V_s(t)}{U_m(t)} = \frac{k_s \cdot k_m \cdot k_r}{p(\tau_m p + 1)} e^{-hp}
\end{cases}$$
(1.3)

Avec l'estimation des paramètres donnés en cours, figure 1.2 tracé (1), nous avons tracer la réponse à un échelon unité de ces deux fonctions de transferts.

1.4 Modèle espace d'état

À l'aide des fonctions de transferts précédentes, nous avons fait un modèle espace d'état en choisissant :

Pour entrée u(t): $u(t) = U_m(t)$

Pour sorties
$$y(t)$$
: $y(t) = \begin{pmatrix} V_g(t) \\ V_s(t) \end{pmatrix}$

Pour état
$$x(t)$$
 : $x(t) = \begin{pmatrix} \Theta_s(t) \\ \Omega_m(t) \end{pmatrix}$

Nous avons extrait les équations suivantes du modèle schéma-bloc du moteur :

$$\begin{cases}
V_g(t) = k_g \Omega_m(t) \\
V_s(t) = k_s \Theta_s(t)
\end{cases}$$
(1.4)

Après manipulation des fonctions de transferts précédentes et des expressions de l'équation 1.4, nous avons obtenu le modèle espace d'état suivant :

$$\begin{cases}
\dot{x}(t) = A & x(t) + B & u(t-h) \\
y(t) = C & x(t) + D & u(t-h)
\end{cases}
\Rightarrow
\begin{cases}
\dot{x}(t) = \begin{bmatrix} 0 & k_r \\ 0 & -\frac{1}{\tau_m} \end{bmatrix} & x(t) + \begin{bmatrix} 0 \\ \frac{k_m}{\tau_m} \end{bmatrix} & u(t-h) \\
y(t) = \begin{bmatrix} 0 & k_g \\ k_s & 0 \end{bmatrix} & x(t) + \begin{bmatrix} 0 \\ 0 \end{bmatrix} & u(t-h)
\end{cases}$$
(1.5)

À l'aide des paramètres de référence, nous avons tracé la réponse à un échelon unité du modèle espace d'état, figuere 1.2, tracé (2).

Nous avons comparé les réponses entres les deux modélisations afin de vérifier qu'il n'y ai pas d'erreur. Nous avons pour cela tracé la réponse à un échelon unité de la différence des deux modèles, figure 1.3 Nous pouvons constater que l'erreur est négligeable et doit être dût à du bruit numérique et/ou à la méthode de calcul de la réponse. Nos modèles sont donc équivalents par rapport à une réponse à un échelon unité.

1.5 Commandabilité et observabilité

Nous allons maintenant étudier l'observabilité et la commandabilité de notre modèle. Nous utiliserons, pour cela, le modèle espace d'état et matlab pour résoudre ce point. Nous avons vérifié que le rang de la matrice de commandabilité et de celle d'observabilité sont bien égaux à la dimension de A. Ces calculs nous permettent de conclure que le système est observable et commandable.

FIGURE 1.2 – Réponse à un échelon indiciel des modèles fonctions de transfert (1) et espace d'état (2).

FIGURE 1.3 – Réponse à un échelon unité de la différence des deux modèles.

1.6 Analyse de la boucle ouverte

Nous allons maintenant étudier les performances de notre système. Nous avons choisi d'étudier les performances sur la sortie $V_g(t)$. Toujours à l'aide de matlab, nous avons obtenu les performances suivantes :

Temps de monté : $t_m = 0,659$ secondes.

Temps de réponse à 5%: $t_r = 0,959$ secondes.

Oscillation: Il n'y a pas d'oscillations.

Gain statique : $G_{stat} = 1.05$. Il y a donc un dépassement de 0,05 soit de 5%.

1.7 Stabilité de la boucle fermée

Est-ce bien ces deux méthodes? (la troisième méthode supposée étant le pseudo-retard non traité en cours)

1.7.1 Delay-Sweeping

1.7.2 Stabilité 2D

2 | Étude d'une commande Proportionnelledérivateur

2.1 Intérêt de ce correcteur

Pour établir notre asservissement en position, nous devons faire en sorte de commander le transfert entre u_m et V_s . Ce transfert dispose d'un intégrateur pur et d'un pôle en $-\frac{1}{\tau_m}$, qui donnent l'instabilité de la position du moteur à une entrée échelon. Un premier correcteur nous est proposé sous la forme :

$$C(p) = k_0(1 + d_i p) (2.1)$$

avec k_0 le gain proportionnel et d_i le gain dérivateur. Avec une telle correction, nous allons diminué l'ordre du transfert de position/consigne et perdre le pôle en 0 menant à l'instabilité.

2.2 Choix du gain dérivateur du correcteur C(p)

Passons maintenant au choix des valeurs du correcteur. On nous propose un choix particulier pour d_i dans l'énoncé du TP, nous allons voir ensemble en quoi ce choix est judicieux. Nous notons, pour le procédé étudié le transfert $G(p) = \frac{N(p)}{D(p)} = \frac{N(p)}{p(1+\tau_m p)}$, la boucle fermé avec le correcteur en cours d'étude qui intervient de cette manière :

$$G_{bf}(p) = \frac{Y(p)}{Y_{ref}} = \frac{C(p)G(p)}{1 + C(p)G(p)} = \frac{k_0(1 + d_i p)\frac{N(p)}{D(p)}}{1 + k_0(1 + d_i p)\frac{N(p)}{D(p)}}$$
$$= \frac{k_0(1 + d_i p)\frac{N(p)}{p(1 + \tau_m p)}}{1 + k_0(1 + d_i p)\frac{N(p)}{p(1 + \tau_m p)}}$$

si l'on prend : $d_i = \tau_m$, nous pouvons retomber sur une fonction de transfert plus simple qui est :

$$G_{bf} = \frac{k_0 N(p)}{p + k_0 N(p)} \tag{2.2}$$

En sachant que N(p) contient e^{-hp} , nous voyons qu'avec ce correcteur, nous allons pouvoir manipuler l'influence du retard dans le système à l'aide k_0 .

2.3 Choix du gain proportionnel du correcteur C(p)

2.4 Équivalence avec retour d'état instantané

Pour une loi de commande PI avec comme polynôme $Q(p) = k_1 + k_2 p + ... + k_n p^n$ dans la boucle d'asservissement, nous pouvons écrire le développement suivant :

$$\begin{split} \frac{Y(p)}{E(p)} &= \frac{G(p)}{1 + Q(p)G(p)} \Leftrightarrow \frac{Y(p)}{E(p)} = \frac{Y(p)}{U(p) + Q(p)Y(p)} \\ &\Leftrightarrow \frac{1}{E(p)} = \frac{1}{U(p) + Q(p)Y(p)} \\ &\Leftrightarrow E(p) = U(p) + Q(p)Y(p) \\ &\Leftrightarrow U(p) = E(p) - Q(p)Y(p) \end{split}$$

Cette dernière ligne est la caractéristique d'un retour d'état, si et seulement si les états sont disponibles sur la sortie du système.

3 | Placement du spectre Fini

Nous allons essayer de développer une loi de commande de dimension infinie permettant d'avoir un système en boucle fermé aillant un spectre fini. Pour cela, nous allons dans un premier temps définir des valeurs de pôles de façon à satisfaire le cahier des charges (voir Introduction). Ensuite, nous allons concevoir la commande de façon à avoir une boucle fermé de spectre fini et remplir le cahier des charges. Puis, nous calculerons un pré-compensateur afin de compenser l'erreur statique. Dans un quatrième temps, nous simulerons le procédé et enfin nous étudierons la robustesse de la commande.

- 3.1 Valeurs des pôles
- 3.2 Commande de dimension infinie
- 3.3 Pré-compensation
- 3.4 Simulation matlab
- 3.5 Robustesse de la commande

4 | Étude d'un prédicteur de Smith

5 | Implantation sur le procédé réel

Annexes

Annexe 1 - TITRE

Annexe 2 - TITRE