INTERPOLACIÓN POLINÓMICA

María González Taboada

Abril, 2007

Esquema:

- 1 Introducción
- 2 Interpolacion polinómica de Lagrange
- 3 Interpolacion polinómica de Hermite
- 4 Interpolación por splines
- 5 Referencias

Motivación

- En la práctica, muchas veces es necesario evaluar una función en uno o más puntos.
- Esto puede ser complicado si:
 - la función es excesivamente costosa de evaluar
 - no se dispone de una expresión explícita de la función (solo se conocen sus valores en ciertos puntos).
- En estas situaciones, conviene aproximar la función por otra más fácil de evaluar. Como funciones de aproximación, suelen usarse polinomios, funciones trigonométricas, etc.

El problema general de interpolación

■ Dados n+1 puntos distintos, x_0, x_1, \ldots, x_n , y n+1 valores, $\omega_0, \omega_1, \ldots, \omega_n$, encontrar una función de aproximación p tal que

$$p(x_i) = \omega_i$$
 $i = 0, 1, ..., n$

- Los puntos x_0, x_1, \dots, x_n se llaman nodos de interpolación.
- Los valores $\omega_0, \omega_1, \dots, \omega_n$ pueden ser los valores de cierta función en los nodos.
- Solo consideraremos el caso en que p es un polinomio o una función polinómica a trozos (interpolación polinómica o polinomial).

Diferentes problemas de interpolación polinómica

- Interpolación de Taylor.
- Interpolación de Lagrange.
- Interpolación de Hermite.
- Interpolación por splines.

Interpolación de Taylor

■ **Problema**: Dados un punto x_0 y n+1 valores, $\omega_0, \, \omega_1, \, \ldots, \, \omega_n$, hallar un polinomio $p_n \in \mathcal{P}_n$ tal que

$$p_n(x_0) = \omega_0$$
 $p_n^{(i)}(x_0) = \omega_i$ $i = 1, \ldots, n$

■ Si $f: [a, b] \to \mathbb{R}$ es n veces derivable en [a, b], $x_0 \in [a, b]$, $\omega_0 = f(x_0)$ y $\omega_i = f^{(i)}(x_0)$, i = 1, ..., n, entonces

$$p_n(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0) \frac{(x - x_0)^2}{2!} + \ldots + f^{(n)}(x_0) \frac{(x - x_0)^n}{n!}$$

 p_n : polinomio de Taylor de grado $\leq n$ relativo a f en x_0

Acotación del error en la interpolación de Taylor

- Sea $f \in C^{n+1}[a, b]$:
 - El error cometido al aproximar f por p_n en las proximidades del punto x_0 es

$$f(x) - p_n(x) = f^{(n+1)}(\xi_x) \frac{(x-x_0)^{n+1}}{(n+1)!}$$

donde ξ_x es un punto comprendido entre x y x_0 .

- Por tanto,

$$|f(x) - p_n(x)| \le \sup_{y \in [a,b]} |f^{(n+1)}(y)| \frac{|x - x_0|^{n+1}}{(n+1)!}$$

Interpolación de Lagrange

- En lo que sigue:
 - x_0, x_1, \dots, x_n son n+1 puntos distintos,
 - \bullet $\omega_0, \omega_1, \dots, \omega_n$ son n+1 valores cualesquiera.
- **Problema**: Encontrar un polinomio $p_n \in \mathcal{P}_n$ tal que

$$p_n(x_i) = \omega_i$$
 $i = 0, 1, 2, ..., n$

Interpolación de Lagrange

■ Un ejemplo: caso n = 1

Dados 2 puntos distintos, x_0 y x_1 , y los valores ω_0 y ω_1 , se trata de encontrar un polinomio $p_1 \in \mathcal{P}_1$ tal que

$$p_1(x_0) = \omega_0$$
 $p_1(x_1) = \omega_1$

Gráficamente, $y = p_1(x)$ es la recta que pasa por los puntos (x_0, ω_0) y (x_1, ω_1) .

Por tanto, el polinomio buscado es

$$p_1(x) = \omega_0 + \frac{\omega_1 - \omega_0}{x_1 - x_0}(x - x_0)$$

Existencia y unicidad del polinomio de interpolación de Lagrange (I)

Buscamos un polinomio

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

que verifique las condiciones

$$p_n(x_i) = \omega_i$$
 $i = 0, 1, 2, ..., n$ (1)

■ Los coeficientes del polinomio, a_0, a_1, \dots, a_n , son solución del sistema de ecuaciones lineales

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} \omega_0 \\ \omega_1 \\ \vdots \\ \omega_n \end{pmatrix}$$

Existencia y unicidad del polinomio de interpolación de Lagrange (II)

■ Puede probarse que el determinante de la matriz de coeficientes, *A*, es

$$\det(A) = \prod_{\substack{k,l=1\\k\neq l}}^{n} (x_k - x_l) \neq 0$$

- Por tanto, el sistema tiene una única solución, es decir, existe un único polinomio p_n verificando las condiciones (1).
- p_n : polinomio de interpolación de Lagrange en los puntos x_0, x_1, \ldots, x_n relativo a los valores $\omega_0, \omega_1, \ldots, \omega_n$.

- Según lo que acabamos de ver, para calcular el polinomio de interpolación de Lagrange, basta resolver el sistema de ecuaciones lineales anterior.
- Sin embargo, la matriz del sistema es mal condicionada. Por esta razón, para determinar el polinomio p_n en la práctica, no se resuelve el sistema de ecuaciones lineales, sino que se usan otros métodos.
- Veremos cómo calcular el polinomio de interpolación de Lagrange:
 - usando las funciones de base.
 - usando diferencias divididas.

Mediante las funciones de base:

Para cada i = 0, 1, ..., n, existe un único polinomio $l_i \in \mathcal{P}_n$ tal que $l_i(x_k) = \delta_{ik}$, para k = 0, 1, ..., n:

$$I_i(x) = \prod_{\substack{j=0\\j\neq i}}^n \frac{x - x_j}{x_i - x_j}$$

Polinomios fundamentales de Lagrange de grado n

■ Fórmula de Lagrange:

$$p_n(x) = \sum_{i=0}^n \omega_i l_i(x) = \omega_0 l_0(x) + \omega_1 l_1(x) + \ldots + \omega_n l_n(x)$$

Mediante diferencias divididas:

Se llaman diferencias divididas de orden cero:

$$[\omega_i] = \omega_i$$
 $i = 0, 1, \ldots, n$

■ Para $k \ge 1$, se llaman diferencias divididas de orden k:

$$[\omega_i, \omega_{i+1}, \dots, \omega_{i+k}] = \frac{[\omega_i, \omega_{i+1}, \dots, \omega_{i+k-1}] - [\omega_{i+1}, \dots, \omega_{i+k}]}{x_i - x_{i+k}}$$

donde i = 0, 1, ..., n - k y k = 1, ..., n.

■ Si $\omega_i = f(x_i)$, i = 0, 1, ..., n, se denota

$$f[x_i,\ldots,x_{i+k}]=[f(x_i),\ldots,f(x_{i+k})]$$

Fórmula de Newton:

$$p_n(x) = [\omega_0] + [\omega_0, \omega_1](x - x_0) + [\omega_0, \omega_1, \omega_2](x - x_0)(x - x_1)$$
$$+ \ldots + [\omega_0, \omega_1, \ldots, \omega_n](x - x_0)(x - x_1) \ldots (x - x_{n-1})$$

Acotación del error en la interpolación de Lagrange

■ Si $f \in \mathcal{C}^{n+1}[a,b]$, con $x_0, x_1, \ldots, x_n \in [a,b]$, entonces

$$|f(x)-p_n(x)| \leq \sup_{y\in[a,b]} |f^{(n+1)}(y)| \frac{|(x-x_0)\dots(x-x_n)|}{(n+1)!}$$

Interpolación de Hermite (simple)

Datos:

- \blacksquare n+1 puntos distintos: x_0, x_1, \ldots, x_n
- 2n + 2 valores cualesquiera: $\omega_0, \omega_1, \ldots, \omega_n, \omega'_0, \omega'_1, \ldots, \omega'_n$

Problema:

Encontrar un polinomio $p_{2n+1} \in \mathcal{P}_{2n+1}$ tal que

$$p_{2n+1}(x_i) = \omega_i$$
 y $p'_{2n+1}(x_i) = \omega'_i$ $i = 0, 1, 2, ..., n$

- Puede probarse que este problema tiene una única solución, p_{2n+1} .
- p_{2n+1} : polinomio de interpolación de Hermite en los puntos x_0, x_1, \ldots, x_n relativo a los valores $\omega_0, \omega_1, \ldots, \omega_n, \omega'_0, \omega'_1, \ldots, \omega'_n$.

Cálculo del polinomio de interpolación de Hermite

El cálculo del polinomio de interpolación de Hermite puede realizarse de varias maneras. Veremos cómo calcularlo usando diferencias divididas.

Acotación del error en la interpolación de Hermite

■ Si $f \in C^{2n+2}[a, b]$, con $x_0, x_1, ..., x_n \in [a, b]$, entonces

$$|f(x)-p_{2n+1}(x)| \leq \sup_{y\in[a,b]}|f^{(2n+2)}(y)|\frac{(x-x_0)^2\dots(x-x_n)^2}{(2n+2)!}$$

Interpolación por splines

- Al aumentar el número de nodos, aumenta el grado del polinomio de interpolación, y debería mejorar la aproximación.
- Sin embargo, como los polinomios de grado alto presentan muchas oscilaciones, a veces el error de interpolación puede aumentar al aumentar el número de nodos.
- Para solventar este problema, suelen considerarse como funciones de aproximación funciones polinómicas a trozos, como los splines.

Concepto de spline

Datos:

- n+1 puntos distintos: $x_0 < x_1 < \ldots < x_n$
- \blacksquare n+1 valores: $\omega_0, \omega_1, \ldots, \omega_n$
- Se llama spline interpolador de orden p o p-spline a una función s tal que
 - 1 $s \in C^{p-1}[x_0, x_n]$
 - 2 Para $i = 0, ..., n-1, s_i := s|_{[x_i, x_{i+1}]} \in \mathcal{P}_p$.
 - 3 Para $i = 0, \ldots, n$, $s(x_i) = \omega_i$.
- El *spline* más utilizado es el de orden 3, conocido como *spline* cúbico.

■ Un spline cúbico es una función s tal que

- 1 $s \in \mathcal{C}^2[x_0, x_n]$
- 2 Para $i = 0, ..., n-1, s_i := s|_{[x_i, x_{i+1}]} \in \mathcal{P}_3.$
- 3 Para $i = 0, \ldots, n$, $s(x_i) = \omega_i$.
- La expresión del *spline* cúbico s en cada subintervalo, $[x_i, x_{i+1}]$, se determina a partir de los valores de s'' en los extremos del intervalo, x_i, x_{i+1} .
- Los valores $s''(x_i)$ se obtienen resolviendo un sistema de ecuaciones lineales de matriz tridiagonal.

- Para $i = 0, ..., n-1, s_i'' \in \mathcal{P}_1[x_i, x_{i+1}].$
- Además, $s'' \in C[x_0, x_n]$.
- Por tanto, para i = 1, ..., n-1, $s_i''(x_i) = s_{i-1}''(x_i)$.
- En lo que sigue, denotamos

$$\omega_i'' = s_i''(x_i)$$
 $i = 0, \ldots, n-1$

$$y \omega_n'' = s_{n-1}''(x_n).$$

■ Entonces, s_i'' es el polinomio de interpolación de Lagrange en x_i, x_{i+1} relativo a $\omega_i'', \omega_{i+1}''$:

$$s_i''(x) = \omega_i'' \frac{x - x_{i+1}}{x_i - x_{i+1}} + \omega_{i+1}'' \frac{x - x_i}{x_{i+1} - x_i}$$
 $i = 0, 1, ..., n-1$

- Para i = 0, ..., n-1, denotamos por $h_i = x_{i+1} x_i$.
- Entonces,

$$s_i''(x) = \omega_i'' \frac{x_{i+1} - x}{h_i} + \omega_{i+1}'' \frac{x - x_i}{h_i}$$

■ Integrando respecto a x, tenemos que

$$s_i'(x) = -\omega_i'' \frac{(x_{i+1} - x)^2}{2h_i} + \omega_{i+1}'' \frac{(x - x_i)^2}{2h_i} + C_i$$

donde C_i es la constante de integración.

■ Integrando de nuevo respecto a x:

$$s_i(x) = \omega_i'' \frac{(x_{i+1} - x)^3}{6 h_i} + \omega_{i+1}'' \frac{(x - x_i)^3}{6 h_i} + a_i (x_{i+1} - x) + b_i (x - x_i)$$

donde a_i y b_i son constantes de integración.

Imponiendo las condiciones de interpolación:

$$s_i(x_i) = \omega_i$$
 $s_i(x_{i+1}) = \omega_{i+1}$

se tiene que

$$a_i = \frac{\omega_i}{h_i} - \omega_i'' \frac{h_i}{6}$$
 $b_i = \frac{\omega_{i+1}}{h_i} - \omega_{i+1}'' \frac{h_i}{6}$

Por tanto, si determinamos los valores ω_i'' , tendremos determinado el *spline* cúbico.

■ Para determinar los valores ω_i'' , i = 0, ..., n, se usa la continuidad de la derivada s' en los nodos:

$$s'_{i-1}(x_i) = s'_i(x_i)$$
 $i = 1, 2, ..., n-1$

Imponiendo estas condiciones, llegamos a que

$$h_{i-1} \omega_{i-1}'' + 2(h_{i-1} + h_i) \omega_i'' + h_i \omega_{i+1}'' = b_i$$
 $i = 1, ..., n-1$
donde $b_i := 6(c_i - c_{i-1})$, con $c_i := \frac{\omega_{i+1} - \omega_i}{h_i}$.

■ Las ecuaciones anteriores forman un sistema de n-1 ecuaciones lineales con n+1 incógnitas.

- Para que el spline cúbico quede unívocamente determinado:
 - Pueden imponerse los valores de dos incógnitas (habitualmente, los valores de ω_0'' y ω_n'').
 - Se pueden añadir dos ecuaciones de forma que el sistema tenga una única solución.

Cálculo del spline cúbico natural

- Si se imponen los valores ω_0'' y ω_n'' , se obtiene el llamado spline natural.
- En este caso, los valores $\omega_1'', \dots, \omega_{n-1}''$ son solución del sistema de ecuaciones lineales

$$\begin{pmatrix} 2(h_0+h_1) & h_1 & 0 & \dots & 0 & 0 \\ h_1 & 2(h_1+h_2) & h_2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 2(h_{n-3}+h_{n-2}) & h_{n-2} \\ 0 & 0 & 0 & \dots & h_{n-2} & 2(h_{n-2}+h_{n-1}) \end{pmatrix} \begin{pmatrix} \omega_1'' \\ \omega_2'' \\ \vdots \\ \omega_{n-2}'' \\ \omega_{n-1}'' \end{pmatrix} = \begin{pmatrix} b_1-h_0\omega_0'' \\ b_2 \\ \vdots \\ b_{n-2} \\ b_{n-1}-h_{n-1}\omega_1'' \end{pmatrix}$$

Referencias

- A. Aubanell, A. Benseny y A. Delshams, Útiles básicos de cálculo numérico, Labor, 1993.
- R.L. Burden y J.D. Faires, *Análisis numérico*, Thomson, 2002.
- A. Quarteroni y F. Saleri, Cálculo científico con MATLAB y Octave, Springer, 2006.
- G.W. Stewart, Afternotes on Numerical Analysis, SIAM, 1996.
- J.M. Viaño y M. Burguera, Lecciones de Métodos Numéricos. Vol. 3: Interpolación, Tórculo Edicións, 2000