

TriBeam Experiment

Ti-6Al-4V

During Training

Symmetry Space

Hexagonal Closed Pack (HCP) Structure

Ref:https://2012books.lardbucket.org/books/principles-of-general-

chemistry-v1.0/s16-02-the-arrangement-of-atoms-in-cr.html

Rotational Distance

Physics-Based Super-Resolution for Electron Backscatter Diffraction (EBSD)

Devendra K. Jangid¹, Neal R. Brodnik², Michael G. Goebel¹, Amil Khan¹, SaiSidharth Majeti⁴, McLean P. Echlin³, Samantha H. Daly², Tresa M. Pollock³, B.S. Manjunath¹ ¹Electrical and Computer Engineering, ²Mechanical Engineering, ³Materials Department, ⁴Computer Science University of California, Santa Barbara

Rot dist approx with

15.23 /

15.30 /

Detector number of samples increases cost and **3D Materia**

3D Data Collection

Process-Structure-Properties (PSP) EBSD Microstructures

--- Rotational Dist

— Approx Dist

Introduction

Objective:

Generate high-resolution EBSD microstructure given sparsely sampled EBSD microstructure (collected by TriBeam experiment)

TriBeam Experiment:

- Collect EBSD Microstructures: Ordered arrangement of crystals
- EBSD: Orientation information of crystal at each voxel
- PSP is a guiding principle in materials design and development

Challenges with Experimental Microstructure:

- *Time Consuming:* 6 months to collect and reconstruct Ti64 microstructure of sample size 740 X 519 X 213 (micrometer)
- **Cost:** Tens of thousands of dollars per week to run experiments
 - Expensive Equipment: Experiment setup (Tribeam) available only at three places in whole North America

Symmetry

Method

EBSD Super-resolution (EBSD-SR):

- Network trained is in quaternion orientation domain
- Symmetries and distances can be defined and calculated easily in quaternion domain
- Approximate rotational distance with symmetry is our physics-based loss
- Physics-based loss is inspired from crystallography
- Incorporate HCP symmetry information in loss function
- All generated output are reduced to fundamental zone during inference

Rotational Distance Loss:

Rotational Distance Loss:
$$\theta = 2\cos^{-1}\left(Re(q_1q_2^*)\right)$$

$$= 2\cos^{-1}\left(\left(\frac{1}{2}, \frac{1}{2}\right)\right)$$

$$= 4\sin^{-1}\left(\frac{1}{2}\|\vec{q_1} - \vec{q_2}\|_2^2\right)$$

$$\theta = 4\sin^{-1}\left(\frac{d_{\text{euclid}}}{2}\right) \text{ where, } d_{\text{euclid}}$$

Results for Ti-7Al 1% Results for Ti-6Al-4V Nearest Neighbor

x4	Bilinear	Bicubic	Nearest Neighbor
PSNR/SSIM	11.30 /	11.22 /	13.25 /
	0.237	0.211	0.373

Rot Dist

BisQue: A free and open-source web-based platform:

- Easy share of data as well as analysis
- Simple and scalable module integration system for analysis tasks over images and meta data

https://bisque2.ece.ucsb.edu/client_service/

- Users can use EBSD SR module on BisQue
- Input is a LR EBSD in quaternion and Output is a SR EBSD in quaternion
- EBSD Data can be visualized on BisQue

Reference: Jangid, D.K., Brodnik, N.R., Goebel, M.G. et al. Adaptable physics-based super-resolution for electron backscatter diffraction maps. npj Comput Mater 8, 255 (2022). https://doi.org/10.1038/s41524-022-00924-2

Reference

BisQue

Acknowledgement: NSF awards #1934641 and # 1664172, MSREC NSF DMR 1720256, CNS-1725797, OAC-1925717, ONR N00014-19-2129. Patrick Callahan, Toby Francis, Andrew Polonsky, and Joseph Wendorf for collection of the 3D Ti-6Al-4V and Ti-7Al datasets.