Regression metrics: (R)MSPE, MAPE, (R)MSLE

Plan for the video

1) Regression

- MSE, RMSE, R-squared
- MAE
- (R)MSPE, MAPE
- (R)MSLE

2) Classification:

- Accuracy, LogLoss, AUC
- Cohen's (Quadratic weighted) Kappa

- **Shop 1**: predicted 9, sold 10, MSE = 1
- **Shop 2**: predicted 999, sold 1000, MSE = 1

- **Shop 1**: predicted 9, sold 10, MSE = 1
- **Shop 2**: predicted 999, sold 1000, MSE = 1
- **Shop 1**: predicted 9, sold 10, MSE = 1
- **Shop 2**: predicted 900, sold 1000, MSE = 10000
- **Shop 1**: predicted 9, sold 10, relative_metric = 1
- **Shop 2**: predicted 900, sold 1000, relative_metric = 1

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
 MAE = $\frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
 MAE = $\frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

MSPE =
$$\frac{100\%}{N} \sum_{i=1}^{N} \left(\frac{y_i - \hat{y}_i}{y_i} \right)^2$$
 MAPE = $\frac{100\%}{N} \sum_{i=1}^{N} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$

MAPE =
$$\frac{100\%}{N} \sum_{i=1}^{N} \left| \frac{y_i - \hat{y}_i}{y_i} \right|$$

MSPE: constant

$$MSPE = \frac{100\%}{N} \sum_{i=1}^{N} \left(\frac{y_i - \alpha}{y_i} \right)^2$$

Best constant: weighted target mean

X	Υ
-1	4
1	3
-2	6
3	7
3	25

MAPE: constant

MAPE =
$$\frac{100\%}{N} \sum_{i=1}^{N} \left| \frac{y_i - \alpha}{y_i} \right|$$

Best constant:

?

X	Y
-1	4
1	3
-2	6
3	7
3	25

MAPE: constant

MAPE =
$$\frac{100\%}{N} \sum_{i=1}^{N} \left| \frac{y_i - \alpha}{y_i} \right|$$

Best constant: weighted target median

X	Y
-1	4
1	3
-2	6
3	7
3	25

(R)MSLE: Root Mean Square Logarithmic Error

RMSLE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (\log(y_i + 1) - \log(\hat{y}_i + 1))^2} =$$

= $RMSE (\log(y_i + 1), \log(\hat{y}_i + 1)) =$
= $\sqrt{MSE (\log(y_i + 1), \log(\hat{y}_i + 1))}$

(R)MSLE: Root Mean Square Logarithmic Error

X	Υ
-1	4
1	3
-2	6
3	7
3	25

(R)MSLE: constant

RMSLE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (\log(y_i + 1) - \log(\alpha + 1))^2} =$$

$$= RMSE (\log(y_i + 1), \log(\alpha + 1)) =$$

$$= \sqrt{MSE (\log(y_i + 1), \log(\alpha + 1))}$$

(R)MSLE: constant

RMSLE =
$$\sqrt{\frac{1}{N} \sum_{i=1}^{N} (\log(y_i + 1) - \log(\alpha + 1))^2} =$$
$$= RMSE (\log(y_i + 1), \log(\alpha + 1)) =$$
$$= \sqrt{MSE (\log(y_i + 1), \log(\alpha + 1))}$$

- Best constant in log space is a mean target value
- We need to exponentiate it to get an answer

(R)MSLE: constant

X	Y
-1	4
1	3
-2	6
3	7
3	25

Compare the constants

Metric	Constant
MSE	11
RMSLE	9.11
MAE	8
MSPE	6.6
MAPE	6

Conclusion

Discussed the metrics, sensitive to relative errors:

- (R)MSPE
 - Weighted version of MSE
- MAPE
 - Weighted version of MAE
- (R)MSLE
 - MSE in log space