(19)日本国特新庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平8-184254

(43)公開日 平成8年(1996)7月16日

(51) Int.CL⁶

識別記号

ΡI

技術表示箇所

E05F 3/20 3/14

В

庁内整理番号

審査請求 未請求 請求項の数2 FD (全 6 頁)

(21)出顯滑号

特膜平6-338021

(22)出顧日

平成6年(1994)12月27日

(71)出題人 000110206

トックペアリング株式会社

東京都板橋区小豆沢2丁目21番4号

(72)発明者 岡部 晴範

東京都世田谷区松原1-1-13

(72)発明者 高橋 職次

埼玉県蕨市北町1-8-3-304

(74)代理人 弁理士 大橋 邦彦

(54) 【発明の名称】 自動復帰型ヒンジ

(57)【要約】

【目的】 1つのヒンジにダンバ機能および復帰機能を 持たせるようにする。

【構成】 回転ダンパと復帰用のスプリングとを共に、 ユニット化してヒンジの軸部となる円筒部の挿入孔にそ れぞれ内蔵することにより、1つのヒンジでダンパ機能 および復帰機能を発揮させ、複数種類のヒンジの製造を 必要とせず、組立てが容易、かつ製造コストが安価とな る.

【特許請求の範囲】

【請求項1】 挿入孔(28)が形成された軸部となる 円筒部(16)を有する内ウイング(12)と、

前記挿入孔(28)に回転不能に挿入されるケーシング (34)と、該ケーシング(34)に対して所定方向回 転のとき高トルクを発生し、該ケーシングの外方に突出 し外周面が多角形状をした突出軸部(36a)を有する 回転軸(36)と、

前記挿入孔 (28) に回転不能に挿入される外枠 (60) と、該外枠 (60) に回転可能に装着されて該外枠 10 (60) の外方に突出し外周面が多角形状をした突出軸部 (76) を有する回転軸 (62) と、前記外枠 (60) 内に装着されて前記回転軸 (62) の所定方向回転の際に復帰力を発生するばね手段 (64) とを有するスプリングユニット (24) と、

前記回転ダンパユニット (22) およびスプリングユニット (24) を前記挿入孔 (28) に挿入する際、中央に介在させて前記回転ダンパユニット (22) および前記スプリングユニット (24) をそれぞれ外方向に弾発させる弾発スプリング (26) と、

前記回転ダンパユニット (22) の突出軸部 (36a) および前記スプリングユニット (24) の突出軸部 (76) の形状に対応する形状を有する嵌入孔 (54,54) が形成されている軸受け部 (52,52) を有する外ウイング (14)と、からなることを特徴とする自動復帰型ヒンジ。

【請求項2】 前記回転ダンパユニット(22)のケーシング(34)と、前記スプリングユニット(24)の外枠(60)との外周面が多角形状であり、前配内ウイング(12)の挿入孔(28)が前記ケーシング(34)および前記外枠(60)の形状に対応する多角形状であることを特徴とする請求項1に記載の自動復帰型とンジ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、ドア等がダンバ機能 により自動的に閉じる自動復帰型ヒンジ、いわゆるオー トヒンジの改良に関するものである。

[0002]

【従来の技術】現在では、開けたドア(扉)が自動的に 40 閉じるようにするため、ドアクローザが多く用いられているが、このドアクローザは、ドアヒンジの他にドアの上部片隅に取付けられている。従って、ドア全体の美的感覚からは、非常に好ましくなく、インテリアの装飾に力が注がれている今日においては、ドアクローザは大型でありごつい感じを有しインテリアとして不向きであり、かつ価格も高価なものであるという欠点を有している。

【0003】このような状況のもとで、ドアクローザに代わるものとして、オートヒンジが考えられている。

【0004】このオートヒンジとは、ヒンジの軸部内に回転ダンパを内蔵させたダンパヒンジと、同様にしてヒンジの軸部内にコイルスプリングを内蔵させたスプリングヒンジと、からなる一対のヒンジであって、例えば、スプリングヒンジをドアの上部側に取付け、ダンパヒンジはドアの下部側に取付け、ドア開放の際にスプリングヒンジのコイルスプリングが振られることにより、その復帰力を利用して、ドアを自動的に閉じようとするもので、ドアが閉じるとき、前記ダンパヒンジのダンパ作用によりゆっくりとドアが閉じるようにしたものである。【0005】このオートヒンジをドアに使用すれば、前述したドアクローザは全く必要がなく、ドアのインテリアとして非常によいものとなる。

[0006]

【発明が解決しようとする課題】しかし、前記オートヒンジは、ダンパ機能を持たせたダンパヒンジと、復帰機能を持たせたスプリングヒンジとの2つのヒンジを別々に製造し、かつ一対のヒンジとして使用しなければならないという不都合な点を有するとともに、2つのヒンジを製造しなければならないため、それだけ製造コストが高くなり、また、組立て作業も面倒であるという課題を有している。

【0007】本発明は上記課題に鑑みてなされたものであって、1つのヒンジにダンパ機能および復帰機能を持たせることにより、製造コストを安価にし、かつ制限された使用方法から開放され、組立て作業も簡単である自動復帰型ヒンジを提供することを目的とするものである。

[0008]

【課題を解決するための手段】上記課題を解決するた 30 め、本発明は、挿入孔(28)が形成された軸部となる 円筒部(16)を有する内ウイング(12)と、前記挿 入孔(28)に回転不能に挿入されるケーシング(3 4)と、該ケーシング(34)に対して所定方向回転の とき高トルクを発生し、該ケーシングの外方に突出し外 周面が多角形状をした突出軸部(36a)を有する回転 軸(36)と、前記挿入孔(28)に回転不能に挿入さ れる外枠(60)と、該外枠(60)に回転可能に装着 されて該外枠(60)の外方に突出し外周面が多角形状 をした突出軸部(76)を有する回転軸(62)と、前 記外枠(60)内に装着されて前記回転軸(62)の所 定方向回転の際に復帰力を発生するばね手段(64)と を有するスプリングユニット(24)と、前記回転ダン パユニット (22) およびスプリングユニット (24) を前記挿入孔(28)に挿入する際、中央に介在させて 前記回転ダンパユニット (22) および前記スプリング ユニット (24) をそれぞれ外方向に弾発させる弾発ス プリング (26) と、前記回転ダンパユニット (22) の突出軸部 (36a) および前記スプリングユニット

50 (24)の突出軸部(76)の形状に対応する形状を有

する嵌入孔(54,54)が形成されている軸受け部 (52, 52)を有する外ウイング(14)と、から構 成されている自動復帰型ヒンジとした。

【0009】前記回転ダンパユニット (22) のケーシ ング(34)と、前記スプリングユニット(24)の外 枠(60)との外周面の形状としては、多角形状であ り、前記内ウイング (12) の挿入孔 (28) が前記ケ ーシング(34)および前記外枠(60)の形状に対応 する多角形状であって、好ましくは、それぞれ六角形状 をなしている。

[0010]

【作用】本発明に係る自動復帰型ヒンジ(10)を組立 てるには、内ウイング(12)の円筒部(16)の挿入 孔(28)に、前記弾発スプリング(26)を中央にし て一方側から回転ダンパユニット (22)を、他方側か らスプリングユニット (24) をそれぞれ挿入する。そ して、前記弾発スプリング(26)を圧縮するようにし て前記回転ダンパユニット(22)の突出軸部(36 a) および前記スプリングユニット (24) の突出軸部 (76)が前記挿入孔(28)内に収納されるよう挿入 20 し、前記外ウイング(14)の各軸受け部(52、5 2)を前記各突出軸部(36a,76)の端面と一致す るようにすると、前記圧縮された弾発スプリング(2 6) の弾発力により回転ダンパユニット (22) および スプリングユニット(24)は外方向に付勢され、前記 各嵌入孔(54,54)内に前記各突出軸部(36a, 76)が自然に嵌入する。従って、回転ダンパユニット (22) およびスプリングユニット (24) が共にユニ ット化されているので、そのヒンジ (10)の組立ては 非常に簡単であり、ワンタッチで行なうことができる。 【0011】次に、その動作については、例えば、本発 明に係る自動復帰型ヒンジ(10)がドアに取付けられ ている場合、該ドアを開ける際には、回転ダンパユニッ ト(22)のダンパ機能が一方向の回転には作用しない が、スプリングユニット (24) のねじりコイルばね (64)を捩る方向に回転させながら、ドアを開ける。 このとき刃、該ドアの開ける力は、該ねじりコイルばね (64)の復帰力に抗して開けるだけである。

【0012】そして、開けたドアから手を離すと、ねじ りコイルばね (64) は、最大限近く捩られているの で、その復帰力によりドアは閉じる方向に動作するが、 この場合、前記回転ダンパユニット(22)のダンパ機 能が働き、該ドアは、ゆっくりと静かに閉じることとな る。

[0013]

【実施例】以下、本発明を図面に示す一実施例に基づき 詳細に説明する。図1は本発明に係る自動復帰型のヒン ジ(10)の分解斜視図であり、固定板である内ウイン グ(12)と、該内ウイング(12)に対して回転可能 な外ウイング (14) とを有している。

【0014】前記内ウイング(12)は、軸部となる筒 状の円筒部(16)と、例えば、ドア開口部の柱部側に 取付けられる平板状の取付け部(18)とを有してい る.該取付け部(18)には、固定取付け用のビス孔 (20, 20) い形成されている。また、前記円筒部 (16)には、回転ダンパユニット(22)、スプリン グユニット (24) および前記回転ダンパユニット (2 2) とスプリングユニット (24) との間に介在させて 回転ダンパユニット (22) とスプリングユニット (2 10 4)とを外方向に弾発させる弾発スプリング(26)が 挿入される挿入孔(28)が形成されている。

【0015】前記回転ダンパユニット(22)として は、既知のものが用いられる。例えば、特開平4-28 2039号公報に開示の高トルク回転ダンパが使用され る。

【0016】この既知の高トルク回転ダンパは、図5に 示すように、内部に粘性流体(30)が充填される室 (32)を有するケーシング (34) と、該ケーシング (34)に対して相対的に回転可能に組合わされて前記 室(32)にて回転可能な回転軸(36)と、該回転軸 (36)の軸方向に設けられた軸羽根(38)に回転方 向に遊びを持って係止可能であって、かつ他の面が室 (32)の壁面または回転軸(36)の周面に摺接しな がら回転可能な合成樹脂からなる可動弁(40)とを備 えており、相対回転の方向に応じて抵抗を変えるために 断面積の異なる複数の流体通路(42,44,46)を 前記軸羽根(38)と前記可動弁(40)の接触部分に 設けるようにした構造をしている。 (48) は前記ケー シング(34)に一体的に形成されたストッパである。 【0017】この高トルク回転ダンパは、一方向の回転 に対してはほとんど抵抗がなく回転するが、逆方向の回 転のときのみ高抵抗を発生する。 すなわち、小通路(4 4) 方向の回転にのみ大きな抵抗を生じるよう作用す る。つまり、この小通路(44)関への回転の場合の抵 抗は、可動弁(40)と軸羽根(38)が接触し隙間が なくなるため、非常に高い回転トルクを発生することと なる。

【0018】図1に戻り、前記回転ダンパユニット(2 2) のケーシング (34) は、前記内ウイング (12) 40 の軸部(16)の挿入孔(28)に対して回転不能とす るため、該ケーシング(34)の外面および挿入孔(2 8)を六角形状をなし、該挿入孔(28)に回転ダンパ ユニット (22) を挿入することにより、該回転ダンパ ユニット(22)は回転不能な状態で挿入孔(28)に 装着される。図示の例では、六角形状のものを例示して いるが、本発明においては、六角形に限らず、前記挿入 孔(28)に対して、回転不能に装着されればよく、他 の多角形であってもよい。また、前記ケーシング(3 4) が円形であってもよいが、図2に示すように、挿入

50 孔(28)の内面壁に軸方向に延びる溝(28a)を1

5

つまたは複数個形成し、該溝(28a)に嵌合する突条 (34a)を1つまたは複数個ケーシング(34)に形成して、該ケーシング(34)を挿入孔(28)に対して回転しないで固定的に装着するようにしてもよい。

て回転しないで固定的に装着するようにしてもよい。 【0019】前記回転ダンパユニット(22)は、回転軸(36)の一端部がケーシング(34)の外方に突出した突出軸部(36a)を有しており、該突出軸(36a)の外周面は六角形に形成されている。該突出軸部(36a)は、図示の例では六角形であるが、何も六角形に限られる必要はなく、それ以外の正多角形であって10もよい。

【0020】図3および図4は、前記スプリングユニット(24)の拡大断面図および側面図を示している。

【0021】このスプリングユニット(24)は、前記回転ダンパユニット(22)と外観上はほぼ同様の形状をしており、外枠(60)と、回転軸(62)と、ねじりコイルばね(64)を有している。

【0022】前記外枠(60)は、一端が開放し、他端が閉塞するシリング形状をし、回転ダンパユニット(22)と同様に外周面は、六角形状をし、前記内ウイング20(12)の軸部(16)の六角形をした挿入孔(28)に嵌合挿入され、該挿入孔(28)に対して相対的に回転しないようになっている。この外枠(60)の外周面は図示の例では一例として六角形であるが、これにこだわる必要はない。

【0023】前記回転軸(62)は、小径軸部(66)と大径軸部(68)とを有しており、該小径軸部(66)に合成樹脂製のブッシュ(70)が回転可能に嵌め込まれ、小径軸部(66)の先端側が前記外枠(60)の閉塞部側において枢支されている。大径軸部(68)側においては、合成樹脂製のワッシャ(72)を介して、前記外枠(60)の開放部においてねじリング(74)が螺入され、該ねじリング(74)は、前記回転軸(62)が外枠(60)から抜け落ちるのを防止するストッパとしての機能を有する。

【0024】また、前記回転軸(62)は、外枠(60)より外方に突出する突出軸部(76)を有している。該突出軸部(76)の外周面は、図示の例では六角形に形成されている。

【0025】前記ねじりコイルばね(64)は、その― 40 端は前記回転軸(62)の大径軸部(68)に着脱可能に固定支持され、また、その他端は前記外枠(60)の 閉塞部がわにおいて同様に着脱可能に固定支持されている。従って、回転軸(62)を所定方向に回転させると、ねじりコイルばね(64)はより捩られるため、該ねじりコイルばね(64)は復帰しようとする復帰力を備えることになる。

【0026】図示されているねじりコイルばね(64)は、断面が四角形状の角ねじを例示しているが、断面が 円形のコイルばねを使用してもよく、また、コイル状の ばねに限らず、断面リング状をした板ばねを用いてもよく、要は、回転軸(62)を所定方向に回転させることにより、復帰力を蓄えるような手段であればよい。

6

【0027】当然のことながら、前記ねじりコイルばね (64)の復帰力は、断面の大きさとか、コイルの巻数 によって自在に変更可能である。

【0028】前記外ウイング(14)は、取付け孔(50a,50a)を有する平板部(50)と、該平板部(50)の両側に設けられ先端に軸受け部(52,52)を有するアーム(56,56)とから構成されていた。

【0029】前記両軸受け部 (52,52) 間は、前記 内ウイング (12) の円筒部 (16) の軸方向長さより もわずかに長い間隔を有しており、各軸受け部 (52, 52) には、前記回転ダンパユニット (22) の回転軸 (36) の六角形状をした突出軸部 (36a) が嵌入す る嵌入孔 (54,54) が形成されている。

【0030】本発明に係る自動復帰型ヒンジ(10)は 以上説明したような構成をしており、次に、その組立て 方法および動作について説明する。

【0031】先ず、組立て方としては、内ウイング(1 2)の円筒部(16)の挿入孔(28)に、前記弾発ス プリング (26) を中央にして一方側から回転ダンパユ ニット(22)を、他方側からスプリングユニット(2 4)をそれぞれ挿入する。そして、前記弾発スプリング (26)を圧縮するようにして前記回転ダンパユニット (22)の突出軸部(36a)および前記スプリングユ ニット(24)の突出軸部(76)が前記挿入孔(2 8) 内に収納されるよう挿入し、前記外ウイング(1 30 4) の各軸受け部 (52, 52) を前記各突出軸部 (3 6a, 76)の端面と一致するようにすると、前記圧縮 された弾発スプリング(26)の弾発力により回転ダン パユニット (22) およびスプリングユニット (24) は外方向に付勢され、前記各嵌入孔 (54,54) 内に 前記各突出軸部(36a,76)が自然に嵌入する。従 って、回転ダンパユニット (22) およびスプリングユ ニット (24) が共にユニット化されているので、その ヒンジ(10)の組立ては非常に簡単であり、ワンタッ チで行なうことができる。

0 【0032】次に、その動作について説明すると、例えば、本発明に係る自動復帰型ヒンジ(10)がドアに取付けられている場合、該ドアを開ける際には、回転ダンパユニット(22)のダンパ機能が一方向の回転には作用しないが、スプリングユニット(24)のねじりコイルばね(64)を捩る方向に回転させながら、ドアを開ける。このとき刃、該ドアの開ける力は、該ねじりコイルばね(64)の復帰力に抗して開けるだけである。【0033】そして、開けたドアから手を離すと、ねじりコイルばね(64)は、最大限近く捩られているの

円形のコイルばねを使用してもよく、また、コイル状の 50 で、その復帰力によりドアは閉じる方向に動作するが、

7

この場合、前記回転ダンパユニット (22) のダンパ機能が働き、該ドアは、ゆっくりと静かに閉じることとなる。

【0034】この実施例において、本発明に係る自動復帰型ヒンジ(10)の適用例としてドアヒンジに使用する場合を述べたが、本発明においては、これに限定されるものではなく、例えば、自動車のボンネットカバー、トランクカバー等のヒンジに利用してもよく、その他、各種開閉動作を行なう手段に対して利用することが可能である。

[0035]

【発明の効果】以上説明したように本発明によれば、回転ダンパユニットおよびスプリングユニットを共に、ユニット化してヒンジの軸部となる円筒部の挿入孔に収納するようにしたので、自動復帰型のヒンジ組立て方として非常に簡単でありワンタッチで行なえる。また、一つのヒンジでダンパ機能および復帰機能が得られ、製造上複数の種類のヒンジを製造する必要がなく、ローコスト化が得られる。

【図面の簡単な説明】

【図1】本発明に係る自動復帰型ヒンジの分解斜視図である。

【図2】回転ダンパユニットのケーシングと内ウイング の挿入孔の他の実施例を示す部分分解斜視図である。 【図3】スプリングユニットの拡大断面図である。 【図4】図3におけるスプリングユニットの右側面図である。

8

【図5】本発明の回転ダンパユニットとして使用する既知の回転ダンパの作用を示す機略断面図である。

【符号の説明】

- 10 自動復帰型ヒンジ
- 12 内ウイング
- 14 外ウイング
- 16 円筒部
- 10 22 回転ダンパユニット
 - 24 スプリングユニット
 - 26 弾発スプリング
 - 28 挿入孔
 - 34 ケーシング
 - 36 回転軸
 - 36a 突出軸部
 - 52 軸受け部
 - 54 嵌入孔
 - 60 外枠
- 20 62 回転軸
 - 64 ねじりコイルばね
 - 66 小径軸部
 - 68 大径軸部
 - 76 突出軸部

【図1】

【図4】

【図3】

【図5】

PAT-NO:

JP408184254A

DOCUMENT-IDENTIFIER: JP 08184254 A

TITLE:

SELF-CLOSING HINGE

PUBN-DATE:

July 16, 1996

INVENTOR-INFORMATION:

NAME

OKABE, HARUNORI

TAKAHASHI, KENJI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

TOTSUKU BEARING KK

N/A

APPL-NO:

JP06338021

APPL-DATE:

December 27, 1994

INT-CL (IPC): E05F003/20, E05F003/14

ABSTRACT:

PURPOSE: To prevent a door from rapidly closing by a method wherein a

damper unit and a spring unit are put into a cylindrical part provided with an

inner wing from one side and from the other side of the cylindrical part, respectively, and an outer wing is fitted onto the protruding ends on the opposite sides of the cylindrical part.

CONSTITUTION: A rotary damper unit 22 is put into an insertion hole 28

from

one of the sides of a cylindrical part 16, leaving a protruding axis part 36a outside, and a self-closing <u>spring</u> unit 24 is fitted into the part 16 from the other side thereof through a resilient <u>spring</u> 26, leaving a protruding axis part 76 outside, thereby to form a self-closing hinge 10. The insertion holes

28 of the part 16 and the outer shape of each of the units 22, 24 are formed into polygonal shapes such as a hexagonal shape to prevent rotation thereof.

Next, inner wings 12 are fixed to a frame on the side of a building frame and

fitting holes 54 of an outer wing 14 fixed to a door body are fitted onto the axis parts 36a, 76 of the hinge 10, so that when a door is rotated and opened,

the door automatically and slowly closes. As a result, an auto-hinge which can

be easily assembled can be provided.

COPYRIGHT: (C)1996,JPO