DM4310 CAN 测试

测试固件:

• 固件版本: APP_DM4310_V3173_03

测试1: Master ID > CAN ID && Master ID 各不相同

测试条件: 1ms中断连续发三帧数据,中间不插入延时发送,总线电阻60R,首尾各一个120R电阻

CAN ID	帧数量	Mater ID	帧数量	总线错误	FPS/S
0x05	10763791	0x15	10763791	0	6000
0x06	10763791	0x16	10763791	丢帧数	丢帧率
0x07	10763791	0x17	10763791	0	0%

未出现丢帧,总线未出现异常现象。

测试2: Master ID > CAN ID && Master ID 相同

测试时间: 2024/04/08 14: 18 - 16: 18

测试条件: 1ms中断连续发三帧数据,中间不插入延时发送,总线电阻60R,首尾各一个120R电阻

CAN ID	帧数量	Mater ID	帧数量	总线错误	FPS/S
0x05	7242107	0x20	17451332	4903743	5230
0x06	7242341	0x20		丢帧数	丢帧率
0x07	7242341	0x20		4275457	19.68%

出现丢帧现象且帧率降低,正常应为6000P/S,总线出现总线关闭错误和总线被动错误。

测试3: Master ID < CAN ID && Master ID 各不相同

测试时间: 2024/04/08 16: 46 - 17: 47

测试条件: 1ms中断连续发三帧数据,中间不插入延时发送,总线电阻60R,首尾各一个120R电阻

CAN ID	帧数量	Mater ID	帧数量	总线错误	FPS/S
0x05	3749224	0x00	3749224	0	4000
0x06	2824858	0x01	2824858	丢帧数	丢帧率
0x07	924366	0x02	924366	0	0%

测试4: Master ID < CAN ID && Master ID 相同

测试时间: 2024/04/08 17: 58 - 18: 28

测试条件: 1ms中断连续发三帧数据,中间不插入延时发送,总线电阻60R,首尾各一个120R电阻

CAN ID	帧数量	Mater ID	帧数量	总线错误	FPS/S
0x05	1829821	0x00	3619291	899384	3860
0x06	449040	0x00		丢帧数	丢帧率
0x07	1384172	0x00		43742	2%

出现丢帧现象且帧率降低,正常应为6000P/S,总线出现总线关闭错误和总线被动错误。

测试5: Master ID == CAN ID

测试时间: 2024/04/08 18: 30 - 18: 58

测试条件: 1ms中断连续发三帧数据,中间不插入延时发送,总线电阻60R,首尾各一个120R电阻

CAN ID	帧数量	Mater ID	帧数量	总线错误	FPS/S
0x05	3335106	0x05	\	0	3987
0x06	823070	0x06	\	丢帧数	丢帧率
0x07	2512037	0x07	\	\	\

帧率降低但没有出现丢帧现象,正常应为6000P/S,总线未出现异常现象。

以下插入延时测试 (重复上述1-5)

测试1: Master ID > CAN ID && Master ID 各不相同

测试时间: 2024/04/08 9: 27 - 9: 33

测试条件: 1ms中断连续发三帧数据,中间插入200us延时发送,总线电阻60R,首尾各一个120R电阻

CAN ID	帧数量	Mater ID	帧数量	总线错误	FPS/S
0x05	403643	0x15	403643	0	6000
0x06	403643	0x16	403643	丢帧数	丢帧率
0x07	403643	0x17	403643	0	0%

测试2: Master ID > CAN ID && Master ID 相同

测试时间: 2024/04/09 9: 15 - 9: 23

测试条件: 1ms中断连续发三帧数据,中间插入200us延时发送,总线电阻60R,首尾各一个120R电阻

CAN ID	帧数量	Mater ID	帧数量	总线错误	FPS/S
0x05	500092	0x20	1500276	0	6000
0x06	500092	0x20		丢帧数	丢帧率
0x07	500092	0x20		0	0%

未出现丢帧,总线未出现异常现象。

测试3: Master ID < CAN ID && Master ID 各不相同

测试时间: 2024/04/09 9: 35 - 9: 40

测试条件: 1ms中断连续发三帧数据,中间插入200us延时发送,总线电阻60R,首尾各一个120R电阻

CAN ID	帧数量	Mater ID	帧数量	总线错误	FPS/S
0x05	313752	0x00	313752	0	6000
0x06	313752	0x01	313752	丢帧数	丢帧率
0x07	313752	0x02	313752	0	0%

未出现丢帧,总线未出现异常现象。

测试4: Master ID < CAN ID && Master ID 相同

测试时间: 2024/04/08 19: 00 - 2024/04/08 9: 03

测试条件: 1ms中断连续发三帧数据,中间插入200us延时发送,总线电阻60R,首尾各一个120R电阻

CAN ID	帧数量	Mater ID	帧数量	总线错误	FPS/S
0x05	50542539	0x00	151627617	0	6000
0x06	50542539	0x00		丢帧数	丢帧率
0x07	50542539	0x00		0	0%

未出现丢帧,总线未出现异常现象。

测试5: Master ID == CAN ID

测试时间: 2024/04/09 9: 41 - 9: 46

测试条件: 1ms中断连续发三帧数据,中间插入200us延时发送,总线电阻60R,首尾各一个120R电阻

CAN ID	帧数量	Mater ID	帧数量	总线错误	FPS/S
0x05	573466	0x05	\	0	6000
0x06	573466	0x06	\	丢帧数	丢帧率
0x07	573466	0x07	\	0	0%

未出现丢帧,总线未出现异常现象。

热插拔测试

测试时间: 2024/04/09 10: 00 - 10: 50

测试条件: 1500次热插拔测试, 1ms中断连续发三帧数据, 中间不插入延时发送, 总线电阻60R, 首尾

各一个120R电阻

CAN ID	帧数量	Mater ID	帧数量	总线错误	FPS/S
0x05	\	0x05	\	2466	6000
0x06	\	0x06	\	丟帧数	丢帧率
0x07	\	0x07	\	\	\

热插拔瞬间会导致总线报总线关闭错误和总线被动错误,稳定下来后不会再报错,未出现死机。

CAN 总线一控六测试

测试时间: 2024/04/09 14: 00 - 15: 00

测试条件: 2ms中断连续发六帧数据,需要每两帧数据中间插入200us延时发送,总线电阻60R,首尾各

一个120R电阻

示例:

```
dm4310_ctrl_send(&hcan1, &motor[Motor1]);
dm4310_ctrl_send(&hcan1, &motor[Motor2]);
delay_us(200);
dm4310_ctrl_send(&hcan1, &motor[Motor3]);
dm4310_ctrl_send(&hcan1, &motor[Motor4]);
delay_us(200);
dm4310_ctrl_send(&hcan1, &motor[Motor5]);
dm4310_ctrl_send(&hcan1, &motor[Motor6]);
```

注意:中间200us延时必须加入,否则会出现帧数据无法发送的情况。

CAN ID	帧数量	Mater ID	帧数量	总线错误	FPS/S
0x01	1800574	0x11	1800574	0	6000
0x02	1800574	0x12	1800574	丢帧数	丢帧率
0x03	1800574	0x13	1800574	0	0%
0x05	1800574	0x15	1800574		
0x06	1800574	0x16	1800574		
0x07	1800574	0x17	1800574		

未出现丢帧,总线未出现异常现象。

总结

1. Master ID 大于 CAN ID:

- 当 Master ID 大于 CAN ID 时,且它们各不相同时,通信表现最佳,未出现丢帧现象,总线错误率为 0%
- 当 Master ID 大于 CAN ID 时,但它们相同时,虽然未出现丢帧现象,但总线错误率显著增加,帧率略有下降,表现不如各不相同的情况。

2. Master ID 等于 CAN ID:

o 当 Master ID 等于 CAN ID 时,帧率明显下降但未出现丢帧现象和总线错误,通信性能较差。

3. Master ID 小于 CAN ID:

- 当 Master ID 小于 CAN ID 时,且它们各不相同时,通信性能受到影响,未出现丢帧现象和总 线错误,但帧率明显下降。
- 当 Master ID 小于 CAN ID 时,且它们相同时,通信性能受到影响,出现丢帧现象和总线错误,且帧率明显下降,通信性能较差。

4. 延时插入测试:

• 在延时插入测试中,不管 Master ID 和 CAN ID 如何,都不会造成**丢帧,帧率下降,总线错误** 等情况,通信表现稳定。

5. 热插拔测试:

上干次热插拔测试,只会在热插拔瞬间报总线错误,快速稳定下来,不会再报错,通信表现稳定。

6. CAN 总线一控六测试:

- 需要在每两帧数据之间插入 200us 延时才可以得到良好的通信效果,并且发送频率需要低于 1kHz,500Hz为最佳。
- o 1kHz发送频率下,可以有效的控制三个电机。

使用建议

为了可以达到更好的控制效果,可以遵循以下几点建议:

- 1. 最好 Master ID 大于 CAN ID & Master ID 各不相同 ,此设置无需插入延时,可有效提高控制频率。
- 2. 在无法保证 **条件1** 的情况下,在发送命令时插入200us以上的延时,也可有效预防总线错误、掉帧以及死机问题。
- 3. 选好合适的发送控制指令频率:
 - 1个CAN口控制3个电机,发送频率最好选择为1kHz。
 - 1个CAN口控制6个电机,发送频率最好选择为0.5kHz,并且每两数据帧之间插入 200us 延时。
- 4. 严格遵循CAN总线标准,发送端和接收端各有一个120欧总线电阻。

示例1: 1控3,不需要加延时,但 Master ID 需大于 CAN ID 且各不相同

```
dm4310_ctrl_send(&hcan1, &motor[Motor1]);
dm4310_ctrl_send(&hcan1, &motor[Motor2]);
dm4310_ctrl_send(&hcan1, &motor[Motor3]);
```

示例2: 1控3, 需要加延时, 对 ID 不作特殊要求

```
dm4310_ctrl_send(&hcan1, &motor[Motor1]);
delay_us(200);
dm4310_ctrl_send(&hcan1, &motor[Motor2]);
delay_us(200);
dm4310_ctrl_send(&hcan1, &motor[Motor3]);
```

示例3: 1控6, 需要加延时, Master ID 需大于 CAN ID 且各不相同

```
dm4310_ctrl_send(&hcan1, &motor[Motor1]);
dm4310_ctrl_send(&hcan1, &motor[Motor2]);
delay_us(200);
dm4310_ctrl_send(&hcan1, &motor[Motor3]);
dm4310_ctrl_send(&hcan1, &motor[Motor4]);
delay_us(200);
dm4310_ctrl_send(&hcan1, &motor[Motor5]);
dm4310_ctrl_send(&hcan1, &motor[Motor6]);
```