

Weierstraß Institut für Angewandte Analysis und Stochastik

5. Vorlesung: Diskrete Zufallsvariablen

Nikolas Tapia

29. April 2024, Stochastik für Informatik(er)

Erinnerung

Definition 5.1

Ergebnismenge 1 1 Mab

Ein allgemeiner Wahrscheinlichkeitsraum ist ein Tripel $(\Omega, \mathcal{A}, \mathbb{P})$ bestehend aus einer beliebigen Ergebnismenge Ω , einer Klasse von "geeigneten" Ereignissen \mathcal{A} und einer Wahrscheinlichkeitsmaß \mathbb{P} , die die Axiomen von Kolmogorov erfüllt.

Anmerkung 1

Wir annehmen stets, dass alle Ereignisse von Interesse "geeignet" sind.

Erinnerung

Definition 5.2

Eine **Zufallsvariable** ist eine Funktion $X: \Omega \to \mathbb{R}$.

Das Bild $X(\Omega) \subseteq \mathbb{R}$ nennen wir den **Wertebereich** von X.

Definition 5.3

Eine Zufallsvariable X heißt **diskret**, wenn ihr Wertebereich endlich oder abzählbar unendlich ist.

Erinnerung

Definition 5.4

Sei $X: \Omega \to \mathbb{R}$ eine Zufallsvariable und $E \subset \mathbb{R}$. Dann, das Urbild

$$X^{-1}(E) := \{\omega \in \Omega : X(\omega) \in E\} \subseteq \Omega$$

ist ein Ereignis.

Definition 5.5

Wir verwenden folgende Kurzschreibweise:

$$\{X \in E\} := X^{-1}(E)$$
 $\mathbb{P}(X \in E) := \mathbb{P}(X^{-1}(E))$ $\{X = x\} := X^{-1}(\{x\})$ $\mathbb{P}(X = x) := \mathbb{P}(X^{-1}(\{x\}))$ $\{X < x\} := X^{-1}((-\infty, x])$ $\mathbb{P}(X < x) := \mathbb{P}(X^{-1}((-\infty, x]))$. USW.

Funktionen von Zufallsvariablen

Definition 5.6

Seien X_1, \ldots, X_n Zufallsvariable und $f: \mathbb{R}^n \to \mathbb{R}$ eine Funktion von n Variable. Dann ist $f(X_1, \ldots, X_n): \Omega \to \mathbb{R}$ definiert durch

$$f(X_1,\ldots,X_n)(\omega):=f(X_1(\omega),\ldots,X_n(\omega))$$

wieder eine Zufallsvariable.

$$\frac{\text{Bsp:}}{X_{1}(\omega)} = \begin{cases} (1,1)_{1}, \dots, (6,6) \end{cases} = 2 - \text{fach Wairfelm.}$$

$$\frac{X_{1}(\omega)}{X_{2}(\omega)} = \omega_{1} + \omega_{2} = \frac{1}{2} \begin{cases} (X_{1}, X_{2}), & = X_{1} + X_{2} \\ X_{2}(\omega) & = X_{1} \end{cases}$$

$$\frac{X_{2}(\omega)}{X_{2}(\omega)} = \frac{1}{2} \begin{cases} (X_{1}) = X_{1} \end{cases} = \frac{1}{2} \begin{cases} (X_{1}) = X_{1} \end{cases}$$

Libniz Leibriz Gerreirischaft

Verteilungsfunktion

Definition 5.7

Sei X eine (allg.) Zufallsvariable. Die **kumulative Verteilungsfunktion** F_X von X ist definiert als

$$F_X \colon \mathbb{R} \to [0,1], \quad F_X(x) := \mathbb{P}(X \leq x) = \mathbb{P}(\{\omega : X(\omega) \leq x\})$$

Aussage 5.1

Die kumulative Verteilungsfunktion F_X einer Zufallsvariable X ist monoton steigend.

29.04.2024 6/27

Weitere Eigenschaften

Aussage 5.2

Die Verteilungsfunktion einer Zufallsvariable X hat folgende Eigenschaften:

- 1. $\mathbb{P}(X > x) = 1 F_X(x)$ für alle $x \in \mathbb{R}$.
- 2. Für $a, b \in \mathbb{R}$ mit a < b gilt $\mathbb{P}(X \in (a, b]) = F_X(b) F_X(a)$.

$$P(X>x) = 1 - P(X \le x)$$

$$P(X>x) = 1 - F_{\nu}(x)$$

2. {X \ (a,b] }

Verteilung einer diskreten Zufallsvariable

Definition 5.8

Sei X eine diskrete Zufallsvariable. Die **Verteilung** (oder Wahrscheinlichkeitsfunktion) von X ist die Funktion

$$p_X \colon \mathbb{R} \to [0,1], \quad p_X(x) \coloneqq \mathbb{P}(X=x).$$

Anmerkung 1

Die Verteilung einer diskrete Zufallsvariable sollte nicht mit der kumulative Verteilungsfunktion einer beliebigen Zufallsvariable verwechselt werden.

Verteilung einer diskreten Zufallsvariable

Aussage 5.3

Sei X eine diskrete Zufallsvariable. Dann gilt

$$1. \sum_{x \in X(\Omega)} p_X(x) = 1,$$

$$2. F_X(x) = \sum p_X(y).$$

Ben:
$$X(\Omega) = \bigcup \{X = x\}$$

$$\Rightarrow 1 = \sum P(X=x) = \sum P_X(x)$$

$$x \in X(\Omega)$$

$$x \in X(\Omega)$$

$$|2. \{X \leq \infty\} = \bigcup \{X = y\}$$

$$y \neq \infty$$

$$P(X \leq x) = \sum_{y \in \infty} P(X = y)$$

29 04 2024

 $S(x) = \{2, ..., 12\}$

$$P_{S}(z) = P(S=2)$$

$$= P(\xi(1,1)\xi), \quad P_{S}(3) = P(S=3)$$

$$= P(\xi(1,1)\xi), \quad P(\xi(1,2), (2,1)\xi)$$

k	2	3	4	5	6	7	8	9	10	11	12	
	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(2,6)	(3,6)	(4,6)	(5,6)	(6,6)	
		(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)		
			(3,1)	(3,2)	(3,3)	(3,4)	(4,4)	(5,4)	(6,4)			
				(4,1)	(4,2)	(4,3)	(5,3)	(6,3)				
					(5,1)	(5,2)	(6,2)					
						(6,1)						
$p_X(k)$	1 36	1 18	1 12	19	<u>5</u> 36	1 6	5 36	<u>1</u> 9	1 12	1 18	1 36	
≈	0,027	0,055	0,083	0,111	0,138	0,166	0,138	0,111	0,083	0,055	0,027	

X heißt gleichverteilt, falls $X(\Omega) = \{1,...,n\}$ und

$$P_X(\mathbf{r}) = \frac{1}{n}$$

4

$$X(\Omega) = [0,1]$$
, $P_X(z)$ micht def.

$$F_X(x) = \mathbb{P}(X \le x) = x.$$

$$\Rightarrow \mathbb{P}(X \in (a,b]) = b-a, \forall (a,b] \subseteq [0,1]$$

X ist gleichverteilt auf [0,1].

Link target targ

2

Simulation von Zufallsvariablen mit endlichem Wertebereich

29.04.2024 14/27

2

Simulation von Zufallsvariablen mit endlichem Wertebereich

Bernoulli-Experiment

Definition 5.9

Ein **Bernoulli-Experiment** ist ein Zufallsexperiment mit genau zwei möglichen Ergebnissen: **Erfolg** und **Misserfolg**.

Ein **wiederholtes Bernoulli-Experiment** besteht aus unabhängigen Bernoulli-Experimenten, bei dem die Wahrscheinlichkeiten für Erfolg und Misserfolg in jeder Ausführung gleich sind.

Bernoulli-Verteilung

Definition 5.10

Eine Zufallsvariable X heißt **Bernoulli-verteilt** mit Parameter $p \in [0, 1]$, falls $X(\Omega) = \{0, 1\}$ und $\mathbb{P}(X = 1) = p$.

$$\Omega = \{K, Z\}, X = 1|_{K}(\omega) = \{0 \quad \omega = Z \\ \omega = K\}$$

$$P(x=1) = P(K) = \frac{1}{2} X(\Omega) = \{0, 1\}$$

$$P(X=0) = P(Z) = \frac{1}{2}$$

X Bernaulli-verfeilt, mit par-am. 1/2 Im allg. $P(K) = p \Rightarrow X \sim Bernoulli(p)$

	Stochastik für Informatik(er), 5. Vorle	esung: Diskrete Zufallsvariablen	
VI AS			
1	A	1 52 =	[-1

,1]x[-1,1] P(A) = IAI & Fläche von A |SI| & Fläche von SI.

$$X = 1 = \begin{cases} 0 & \text{we } A \\ 1 & \text{we } A \end{cases}$$

$$X = 1 = 1$$

$$P(X=1) = P(\{\omega: \omega \in A\})$$

$$= \frac{|A|}{|C|} = 1P$$

$$P(X=0)=1-p$$

$$|P(X=0)=1-p$$

$$\leq X \sim \text{Bern}(p).$$

Stochastik für Informatik(er), 5. Vorlesung: Diskrete Zufallsvariablen

Definition 5.11

Binomialverteilung

Seien $n \in \mathbb{N}$ und $p \in [0, 1]$. Eine Zufallsvariable X heißt binomialverteilt mit Parametern n und p, falls $X(\Omega) = \{0, \dots, \underline{n}\}$ und

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k} = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}.$$
X :st die Anzahl Enfolg bei einem Wiederholten

Bernoulli-Experiment.

Beiso: Falls n=1: pk (1-p) 1-k, k=0,1. Falls n=2: (2) pk (1-p) 2-k; k=0,1,2.

 $P_X(2) = \phi^2 = P((\mathcal{E}_{folg}, \mathcal{E}_{folg}))$

Aussage 5.4

Seien X_1, \ldots, X_n unabhängige, identisch verteilte Bernoulli-verteilte Zufallsvariable mit Parameter $p \in [0, 1]$. Dann ist die Zufallsvariable $Y := X_1 + \cdots + X_n$ binomialverteilt mit Parametern n und p.

Anzahl K? $X_i = 1$ { sept in i-te Versuch! bei n Versuche. r Bernoulli (1/2)

$$Y = X_1 + \dots + X_n \sim \text{Binomial}(n, 1/2)$$

$$P_Y(k) = \binom{n}{k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{n-k} = \frac{1}{2^n} \binom{n}{k}.$$

Seispiel (Wiederholtes Münzwurf) 29 04 2024 21/27

•

Anzahl K? $X_i = 1_{\text{sepf in } i\text{-te Versuchl}}$ bei n Versuche, n Bernoulli (1/2)

$$Y = X_1 + \dots + X_n \sim \text{Binomial}(n, 1/2)$$

$$P_Y(k) = \binom{n}{k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{n-k} = \frac{1}{2^n} \binom{n}{k}.$$

Beispiel (Wiederholtes Münzwurf)

Luibniz Lesteriz Gerrestreschaft