Investigating a Relationship Between Quasi-Periodic Meridional Clearing of Deep Clouds in Jupiter's North Equatorial Belt and the Propagation of Zonal Waves in its Upper Tropospheric Haze: A Study of Near-Infrared Images

"Ride the Wave!"

Tyler Hackett, YIP, Norco College

Mentor: Dr. Glenn Orton

Routine Tasks

Data Reduction & Archival of near-IR observations

- Reduce the latest near-infrared (1.58-µm to 5.10-µm) observations from IRTF SpeX
- Create flatfields and pixel masks when necessary
- Periodically collect, re-format, and upload batches of observations to the JSOC website
- Approximately 400 reduced observations in total (NSFCAM, NSFCAM2, and SpeX)

Introduction

Non-expanded NEB

Expanded NEB

Jupiter, visible wavelength

Jupiter, near-IR wavelength

Slide: Sandra wells

Analysis

Characterizing Upper Tropospheric Waves

Qualitative Approaches

Wave Types

Previous analysis by 2018 summer intern Sandra Wells

- Visual approach
- Two distinct types of waves ("intensity" and "width")
- Both can be present simultaneously ("combination waves")
- Low, Medium, and High strength
- Anomalous activity (isolated bright spots, waves, etc.)
- Overall, 14 different wave characterizations

Experimenting with Neural Networks

Neural Networks

A basic overview

- Robust pattern recognition model
- Training: attempts to find an optimal mapping between given inputs and outputs
- Handles noise and outliers effectively

Neural Networks

Problems encountered

- Feed-forward architecture: many parameters to train
- Limited time to improve the model
- Dataset: too difficult to differentiate between wave types

Remedies

- Simplify the goal
- Three distinct labels: waves, no waves, and anomalies

~82% prediction accuracy

Waves are present

Anomalies are present

Waves are not present

Neural Networks

Example results from k-fold cross-validation set

60x5 angle-corrected, isolated NEB region

training examples: 785

k: 7

Waves: W

No Waves: -

Anomalies:

В

learnRate: 0.40 lambda: 0.15 epochs: 4500

Prediction accuracy: 82.5%

Neural Networks

Future considerations

- Different architectures; convolutional neural networks
- Favor embeddings over one-hot encoded labels
- Data augmentation

Quantitative Approaches

1. Variance Approach

Variance approach: analysis of a single image Sandra Wells, summer 2018

Automated Wave Characterization

Previous results (variance approach)

NEB Expansions

Fletcher, L. N., G. S. Orton, J. A. Sinclair, P. Donnelly, H. Melin, J. H. Rogers, T. K. Greathouse, Y. Kasaba, T. Fujiyoshi, T. M. Sato, J. Fernandes, P. G. J. Irwin, R. S. Giles. 2017. Thermal wave activity associated with the expansion of Jupiter's North Equatorial Belt ahead of Juno's arrival. *Geophys. Res. Lett.* **44**, 7140-7148.

Graph: Sandra Wells, summer 2018

2. "Relative Wave Power" Approach

Automated Wave Characterization

New Results (RMS approach)

NEB Expansions

Fletcher, L. N., G. S. Orton, J. A. Sinclair, P. Donnelly, H. Melin, J. H. Rogers, T. K. Greathouse, Y. Kasaba, T. Fujiyoshi, T. M. Sato, J. Fernandes, P. G. J. Irwin, R. S. Giles. 2017. Thermal wave activity associated with the expansion of Jupiter's North Equatorial Belt ahead of Juno's arrival. *Geophys. Res. Lett.* 44, 7140-7148.

Automated Wave Characterization

Side-by-side comparison

Relative Wave Power		Relative Variance
	Low	
		STATE OF THE PARTY OF THE PARTY.
	Medium	
	High	ACCRECATION AND ADDRESS.

Hypothesis:

Perceived differences between the intensity and width of waves may be caused by intensity scaling

Experiment:

Determine if the intensity and width of observed waves are strongly correlated

Correlation between wave intensity and width

Fourier Analysis

Fourier Analysis

Strongest sinusoidal components by wavenumber

Fourier Analysis

Conclusions

- Upper-tropospheric waves in the mid-NEB exhibit both intensity and latitudinal variation in most cases
- Anomalous ("breakout") waves are common when intensity and latitudinal variations do not correlate well
- Quantitative analysis of wave activity supports the conclusion that waves are strongest during NEB expansions but are not unique to them

Conclusions

Future areas of research

- Stitch cylindrical maps together to reduce variations in the wave power scatterplots
- Stitched maps would also improve spectral resolution
- Investigate relationship between relative wave power and the intensity/width correlation coefficients

Acknowledgments

Glenn Orton
Tom Momary
Kevin Baines
Sandra Wells
JPL Education Office

jpl.nasa.gov