Course code Course Title			L	Т	Р	С
BCSE209L Machine Learning				0	0	3
Pre-requisite	NIL	Syl	lab	us v	ers	ion
				1.0		

Course Objectives

- 1. To teach the theoretical foundations of various learning algorithms.
- 2. To train the students better understand the context of supervised and unsupervised learning through real-life examples.
- 3. To understand the need for Reinforcement learning in real time problems.
- 4. Apply all learning algorithms over appropriate real-time dataset.
- 5. Evaluate the algorithms based on corresponding metrics identified.

Course Outcome

Third Edition 2014.

At the end of this course, student will be able to:

- 1. Understand, visualize, analyze and preprocess the data from a real-time source.
- 2. Apply appropriate algorithm to the data.
- 3. Analyze the results of algorithm and convert to appropriate information required for the real time application.
- 4. Evaluate the performance of various algorithms that could be applied to the data and to suggest most relevant algorithm according to the environment.

80 1 1 4	Little Latter to March to Land to the College	4.1					
Module:1		4 hours					
	requisites						
Introduction to Machine Learning – Learning Paradigms – PAC learning – Version Spaces –							
Role of Machine Learning in Artificial Intelligence applications.							
	Supervised Learning – I	7 hours					
Linear and Non-Linear examples - Multi-Class & Multi-Label classification - Linear							
	ı – Multiple Linear Regression – Naïve Bayes Cl	assifier – Decision Trees – ID3 –					
	ror bounds.						
Module:3	Supervised Learning – II	8 hours					
K-NN class	K-NN classifier - Logistic regression - Perceptron - Single layer & Multi-layer - Support						
Vector Mad	Vector Machines – Linear & Non-linear – Metrics & Error Correction.						
Module:4	Unsupervised Learning	9 hours					
Clustering	basics (Partitioned, Hierarchical and Density basics)	ased) - K-Means clustering – K-					
	Mode clustering – Self organizing maps – Expectation maximization – Principal Component						
Analysis –	Kernel PCA - tSNE (t-distributed stochastic n	eighbor embedding) - Metrics &					
Error Corre		3					
Module:5	Ensemble Learning	5 hours					
Bias – Vai	Bias – Variance Tradeoff – Bagging and Boosting (Random forests, Adaboost, XG boost						
	- Metrics & Error Correction.						
Module:6	Machine Learning in Practice	3 hours					
Class Imba	Class Imbalance – SMOTE – One Class SVM – Optimization of hyper parameters.						
Module:7	Reinforcement Learning (RL)	8 hours					
Basics of F	Basics of RL - RL Framework - Markov Decision Process - Exploration Vs Exploitation -						
Polices, Value Functions and Bellman Equations – Solution Methods – Q-learning.							
Module:8		1 hour					
	Total Lecture hours:	45 hours					
Text Book	(c)						
1,7							
Ethem Alpaydin, Introduction to Machine Learning, MIT Press, Prentice Hall of India,							

2.	Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction (Adaptive Computation and Machine Learning series) 2 nd edition, A Bradford Book;						
2018.							
Reference Books							
1.	Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, Foundations of Machine Learning, MIT Press, 2012.						
2.	Tom Mitchell, Machine Learning, McGraw Hill, 3rd Edition, 1997.						
3.	Charu C. Aggarwal, Data Classification Algorithms and Applications, CRC Press, 2014						
Mode of Evaluation : Continuous Assessment Tests, Quizzes, Assignment, Final							
Assessment Test							
Re	Recommended by Board of Studies 09-05-2022						
App	proved by Academic Council	No. 66	Date	16-06-2022			