基于神经网络的CIFAR-10图像分类模型

19335015 陈恩婷

模型结果与训练方法

线性分类器 (Softmax分类器)

根据ufldl.stanford.edu上的介绍:

Softmax regression (or multinomial logistic regression) is a generalization of logistic regression to the case where we want to handle multiple classes.

所以,我们可以通过推广之前学习过的二元逻辑回归的方式,来实现一个Softmax分类器。Softmax分类器的大致结构和流程如下(图片来源):

Multi-Class Classification with NN and SoftMax Function

数据预处理

实验所需的CIFAR-10数据集存放在C:/Users/豹豹/OneDrive - 中山大学/大三下/机器学习与数据挖掘/Assignment2/data路径下。参考实验要求内的代码,可以通过以下函数读入数据集:

```
import pickle
import numpy as np S

dir = r'C:/Users/豹豹/OneDrive - 中山大学/大三下/机器学习与数据挖掘/Assignment2/data'

def load_data():
    X_train = []
    Y_train = []
    for i in range(1, 6):
        with open(dir + r'/data_batch_' + str(i), 'rb') as fo:
        dict = pickle.load(fo, encoding='bytes')
        X_train.append(dict[b'data'])
        Y_train += dict[b'labels']
        X_train = np.concatenate(X_train, axis=0)
        with open(dir + r'/test_batch', 'rb') as fo:
```

```
dict = pickle.load(fo, encoding='bytes')
    X_test = dict[b'data']
    Y_test = dict[b'labels']

X_train = np.array(X_train, dtype=np.float32).T
    X_test = np.array(X_test, dtype=np.float32).T
    Y_train = np.array(Y_train, dtype=np.int32)
    Y_test = np.array(Y_test, dtype=np.int32)
    return X_train, Y_train, X_test, Y_test
```

执行完以上函数后, X_train, Y_train, X_test, Y_test的大小形状如下:

```
(3072, 50000) (50000,) (3072, 10000) (10000,)
```

模型参数初始化

除超参数外,Softmax分类器的模型只需要用到W参数。其初始化方法如下:

```
# Random initialization of W
self.W = np.random.randn(10, 3072) * 0.0001
```

超参数的设置如下:

```
lr=1e-5, reg=1e-3, num_iters=2000, batch_size=200
```

优化方法

L2正则化

引自互联网的解释:

L2正则化就是loss function后边所加正则项为L2范数的平方,加上L2正则相比于L1正则来说,得到的解比较平滑(不是稀疏),但是同样能够保证解中接近于0(但不是等于0,所以相对平滑)的维度比较多,降低模型的复杂度。

代码如下:

```
# Calculate the loss
# print(scores.shape, y.shape)
loss = -np.sum(np.log(scores[y, np.arange(len(y))]))
loss /= x.shape[1]
loss += reg * np.sum(self.W * self.W)

# Calculate the gradient
scores[y, range(scores.shape[1])] -= 1
grad = scores.dot(x.T)
grad /= x.shape[1]
grad += 2 * reg * self.W
```

多层感知机 (MLP)

根据Lecture6-Neural Networks中的介绍,多层感知机(MLP,multiplayer perception)就是全连接神经网络(fully connected Neural Network)。按照一般的PyTorch神经网络设计方法可以很方便实现一个简单的MLP。本实验的MLP结构如下:

```
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.fc1 = nn.Linear(3072, 1000)
        self.fc2 = nn.Linear(1000, 500)
        self.fc3 = nn.Linear(500, 10)

def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
```

数据预处理

由于实现MLP需要用到PyTorch,所以需要在读入数据集并转为numpy array的基础上,把数据转化为torch tensor类型。代码如下:

```
# convert np array to torch tensor, Y to long tensor, then to one-hot
def np_to_tensor(X_train, Y_train, X_test, Y_test):
    X_train = torch.from_numpy(X_train)
    Y_train = torch.from_numpy(Y_train).long()
    X_test = torch.from_numpy(X_test)
    Y_test = torch.from_numpy(Y_test).long()
    # Y_train = torch.zeros(Y_train.shape[0], 10).scatter_(1, Y_train.view(-1, 1), 1)
    # Y_test = torch.zeros(Y_test.shape[0], 10).scatter_(1, Y_test.view(-1, 1), 1)
    print(X_train.shape, Y_train.shape, X_test.shape, Y_test.shape)
    return X_train, Y_train, X_test, Y_test
```

模型参数初始化

MLP模型参数采用PyTorch默认的初始化方法,不需要显示进行实现。具体的初始化方法在这里有解释: https://discuss.pytorch.org/t/how-are-layer-weights-and-biases-initialized-by-default/13073/2
超参数的设置如下:

```
losses = model.train(X_train, Y_train, lr=1e-5, reg=1e-3, num_iters=1000,
batch_size=200)
```

卷积神经网络 (CNN)

在Lecture-6 Neural Networks中有讲到,MLP具有如下缺点:

- 1. 模型中参数的数目太大,容易出现过拟合
- 2. 全连接网络没有考虑到数据的结构特性

而卷积神经网络可以针对图像数据的特点,很好地改善上述问题。本实验的CNN结构如下:

```
class LeNet(nn.Module):
   def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
   def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
```

模型参数初始化

CNN的模型参数初始化同样使用PyTorch的默认初始化方法。

实验结果与讨论

线性分类器 (Softmax分类器)

Softmax分类器训练过程中的正确率如下:

损失变化如下:

如图所示,程序每50次迭代取样一次正确率和损失,在2000次迭代后,测试集上的最终正确率为28.81%。

多层感知机 (MLP)

在MLP 实验中,我探究了不同网络层数和不同神经元数量对模型性能的影响。实验结果如下表:

全连 接层 数	2	3	4
神经 元数 量	self.fc1 = nn.Linear(3072, 500) self.fc3 = nn.Linear(500, 10)	self.fc1 = nn.Linear(3072, 1000) self.fc2 = nn.Linear(1000, 500) self.fc3 = nn.Linear(500, 10)	self.fc1 = nn.Linear(3072, 2000) self.fc4 = nn.Linear(2000, 1000) self.fc2 = nn.Linear(1000, 500) self.fc3 = nn.Linear(500, 10)
学习率	lr=1e-4	lr=1e-4	lr=1e-4
L2正 则化 系数	reg=1e-3	reg=1e-3	reg=1e-3
epoch 数	epochs = 20	epochs = 20	epochs = 20
batch 大小	batch_size=64	batch_size=64	batch_size=64
正确 率变 化	0.45 train accuracy test accuracy 0.40 0.30 0.30 0.25 0.0 0.25 5.0 7.5 10.0 12.5 15.0 17.5	0.60 train accuracy test accuracy test accuracy 0.55	程序运行太慢, 无法得到结果
损失变化	train loss text loss 4.5 4.0 3.5 2.0 0.0 2.5 5.0 7.5 10.0 12.5 13.0 17.5	2.6 - train loss test loss test loss 1.8 - 1.4 - 1.2 - 0.0 2.5 5.0 7.5 10.0 12.5 13.0 17.5	程序运行太慢, 无法得到结果
测试 集最 终正 确率	43.77%	48.81%	程序运行太慢, 无法得到结果

可以看到,当MLP的网络层数较小时,增加网络层数有助于提高分类正确率,而当网络层数增加到一定程度,则会出现神经元数量太多,程序运行太慢而无法得到结果的情况。

卷积神经网络 (CNN)

卷积层数的影响

卷积 层数	1	2	3
第一 层滤 波器 参数	self.conv1 = nn.Conv2d(3, 6, 4)	self.conv1 = nn.Conv2d(3, 6, 4)	self.conv1 = nn.Conv2d(3, 6, 4)
学习率	lr=1e-4	lr=1e-4	lr=1e-4
epoch 数	epochs = 4	epochs = 4	epochs = 4
batch 大小	batch_size=64	batch_size=64	batch_size=64
正确 率变 化	10 train according) 150 test according) 150 150 test according) 150 test accor	575. — train accuracy 555.0. 525. — 500. — 475. — 45.0. — 42.5. — 45.0	46 — train accuracy test accuracy 44 — 60 — 60 0.5 10 15 20 25 3.0
损失 变化	1.3 train loss train los train loss train los train l	16	1.85 — train loss — train loss — test loss
测试 集最 终正 确率	56.02%	56.59%	44.5%

可见卷积层数不是越大越好,从一层增加到两层时有轻微改善,但是三层卷积层时性能下降了。

卷积核大小的影响

卷积 层数	2	2	2
第一 层滤 波器 参数	self.conv1 = nn.Conv2d(3, 6, 3)	self.conv1 = nn.Conv2d(3, 6, 4)	self.conv1 = nn.Conv2d(3, 6, 5)
学习率	lr=1e-4	lr=1e-4	lr=1e-4
epoch 数	epochs = 4	epochs = 4	epochs = 4
batch 大小	batch_size=64	batch_size=64	batch_size=64
正确 率变 化	60.0 —— train accuracy —— tent accuracy	55.0 - Usus accuracy 55.0 - Us	55.0 — train accuracy 52.3 — tent accuracy 50.0 — tent accuracy
损失 变化	14 - train loss - test toss -	1.6 — train loss — treit loss 1.5 — treit loss 1.6 — treit loss 1.7 — train loss 1.8 — treit loss	1.7 — train issa — test loca —
测试 集最 终正 确率	58.5%	56.59%	51.64%

可见, 当卷积核大小为(3, 3)时, 正确率最高, 所以适当减小卷积核大小对提高本实验正确率有帮助。

不同训练模型的影响

卷积 层数	2	2	2
训练 模型	Adam	SGD	SGD Momentum
第一 层滤 波器 参数	self.conv1 = nn.Conv2d(3, 6, 3)	self.conv1 = nn.Conv2d(3, 6, 3)	self.conv1 = nn.Conv2d(3, 6, 3)
学习率	lr=1e-4	lr=1e-4	lr=1e-4
epoch 数	epochs = 4	epochs = 4	epochs = 4
batch 大小	batch_size=64	batch_size=64	batch_size=64
正确 率变 化	60.0 — train accuracy test accuracy test accuracy 10.5 5.0 4.5	42.5 — Vain scorrecy test accuracy test accuracy 137.5 — 135.0 — 15.2 — 15.2 — 15.3 — 15.2 — 15.3 —	25 — Tain accuracy test accuracy 25 — Tain accuracy
损失 变化	14	2.0	1.8 - train loss - test too: 1.7 - 1.6 - 1.5 - 1.0 - 1.5 - 2.0 - 2.5 - 3.0
测试 集最 终正 确率	58.5%	35.2%	50.38%

可见在本实验中, Adam训练模型效果最好。

主要结论和讨论

本实验得出的主要结论如下:

- 1. Softmax分类器, MLP和CNN模型性能比较: CNN>MLP>Softmax分类器;
- 2. 将MLP的全连接层数增大有助于提高正确率,但太大会导致程序运行过慢;
- 3. 卷积层数不是越大越好, 要选择适宜的数量;
- 4. 适当减小卷积核大小有助于提高本实验正确率;
- 5. Adam训练模型比较适合本实验的分类任务。

总之,对于具体的分类任务,在训练模型时,需要考虑到数据本身的特性,另外对于模型的具体参数,也需要在参考现有经验的基础上,多做实验。