Title

Stefan Åhman sahman@kth.se

 $\begin{array}{c} {\rm Marcus~Wallstersson} \\ {\rm mwallst@kth.se} \end{array}$

December 3, 2011

KTH Kista, Stockholm

Innehållsförteckning

1	Inledning	3
2	Problem och Syfte	3
3	Genomförande	3
4	Resultat	3
R	eferenser	Δ

1 Inledning

För att kunna kontrollera om en temporallogisk formel phi gäller i ett visst tillstånd s i en given modell M kan man använda sig av en modellprovare. Detta programverktyg måste i denna laboration implementeras att hantera följande delmängd CTL-reglerna (Computation tree logic):

$$\mathcal{M},s\mid=\varphi$$

$$\phi::=p\mid\neg p\mid\phi\land\phi\mid\phi\lor\phi\mid\mathsf{AX}\;\phi\mid\mathsf{AG}\;\phi\mid\mathsf{EX}\;\phi\mid\mathsf{EG}\;\phi\mid\mathsf{EF}\;\phi$$

För att kunna kontrollera om en temporallogisk formel phi gäller i ett visst tillstånd s i en given modell M kan man använda sig av en modellprovare. Detta programverktyg måste i denna laboration implementeras att hantera följande delmängd CTL-reglerna (Computation tree logic):

2 Problem och Syfte

Syftet med laborationsuppgiften är att:

- Fördjupa försåelsen för CTL och hur temporallogik kan användas för att specifiera viktiga systemegenskaper [HR04].
- Lära sig använda Prologs sökteknik för bevissökning.
- Lära sig bygga enkla men nyttiga programverktyg som kan användas till systemverifikation.

3 Genomförande

4 Resultat

Referenser

[HR04] Michael Huth och Mark Ryan (2004). Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge University Press, second utgåvan.