lim $\int_{x}^{1} x$ $\int_{x}^{2} x dx$ ино малой при $x \to x_0$ функтия точки и $x \to x_0$ функция.

lim sinx - lim sinx (1) = C

Теорема 3.10. Произведение бесконечно малой при $x \to x_0$ функции на ограниченную в некоторой проколотой окрестности точки x_0 функцию есть бесконечно малая при $x \to x_0$ функция.

Доказательство. Пусть функция $g: X \to \mathbb{R}$ является ограниченной в некоторой проколотой окрестности точки x_0 , т.е.

 $\exists C \quad 0: \ |g(x)| \le C \ \forall x \in X, \ 0 < |x - x_0| < \delta_1$

Пусть $f:X\to\mathbb{R}$ является бесконечно малой при $x\to x_0$ функцией, т.е. $\forall \varepsilon>0$ $\delta_2=\delta_2(\varepsilon)>0: \ \forall x\in X,\ 0<|x-x_0|<\delta_2\to|f(x)|<\frac{\varepsilon}{C}.$ Обозначим $\delta=\min\{\delta_1,\delta_2\}.$ Тогда

 $\forall x \in X, \ 0 < |x - x_0| < \delta \to |f(x)g(x)| = |f(x)||g(x)| < \frac{\varepsilon}{C} \cdot \mathscr{E} = \varepsilon.$

Следовательно, $f \cdot g$ является бесконечно малой при $x \to x_0$ функцией.

Определение 3.15. Если для функций $f: X \to \mathbb{R}$ и $g: X \to \mathbb{R}$ $\exists \ c > 0, \ U(x_0): |f(x)| \le c|g(x)| \ \forall x \in X \cap U(x_0),$ то функцию f называют ограниченной по сравнению с функцией g в окрестности точки f

Записывают $f(x) = O(g(x)), x \to x_0.$

Лемма 3.3. Если $f(x)=\varphi(x)g(x), x\in X, u$ существует конечный предел $\lim_{x\to x_0}\varphi(x)=k,$ то f(x)=O(g(x)), $x\to x_0.$

Доказательство. Из существования конечного предела $\lim_{x\to x_0} \varphi(x) = k$ следует существование такой проколотой окрестности $\mathring{U}(x_0)$ точки x_0 , что функция φ ограничена на $X\cap \mathring{U}(x_0)$, то есть имеется такая постоянная C>0, что для всех $x\in X\cap \mathring{U}(x_0)$ выполняется неравенство $|\varphi(x)|\leq C$, следовательно, и неравенство

$$|f(x)| = |\varphi(x)||g(x)| \le C|g(x)|.$$

Это, согласно определению 3.15, и означает, что $f(x) = O(g(x)), x \to x_0.$

Определение 3.16. Функции $f: X \to \mathbb{R}$ и $g: X \to \mathbb{R}$ называются эквивалентными (асимптотически равными) при $x \to x_0$, если $\exists \ \varphi: X \to \mathbb{R}, \ U(x_0): \ f(x) = \varphi(x)g(x) \ \forall x \in X \cap \mathring{U}(x_0)$ и $\lim_{x \to x_0} \varphi(x) = 1$.

Записывают $f(x) \sim g(x)$ при $x \to x_0$.

lin f(x) -1

Am Jin = 1

 $\chi_{n} = V$

1,2,3,4,...,

= 1 + 211/N O MM N-300 in fin (THE FR **Теорема 3.11.** Пусть функции f, f_1, g, g_1 заданы на множестве Xи $f(x) \sim f_1(x), \ g(x) \sim g_1(x)$ при $x \to x_0$. Тогда если существует

 $\lim_{x \to x_0} \frac{f_1(x)}{g_1(x)}$, то существует и предел $\lim_{x \to x_0} \frac{f(x)}{g(x)}$, причем

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)}.$$
(3.20)

Доказательство. По условию $f(x) \sim f_1(x)$ и $g(x) \sim g_1(x)$ при $x \to x_0$. Это означает, что $f(x)=arphi(x)f_1(x)$ и $g(x)=\psi(x)g_1(x)$, $\lim_{x\to x} arphi(x)=1$ $\operatorname{u} \lim_{x \to x_0} \psi(x) = 1.$

Так как существует $\lim_{x\to x_0} \frac{f_1(x)}{g_1(x)}$ и $\psi(x)\to 1$ при $x\to x_0$, то найдется такая окрестность $U(x_0)$ точки x_0 , что $g_1(x) \neq 0$ и $\psi(x) \neq 0$ такая окрестность $U(x_0)$ точки x_0 , что $g_1(x) \neq 0$ и $\psi(x) \neq 0$ $\forall x \in X \cap \mathring{U}(x_0)$. В этом случае $g(x) = \psi(x)g_1(x) \neq 0$ $\forall x \in X \cap \mathring{U}(x_0)$, поэтому частное $\frac{f(x)}{g(x)}$ определено для всех $x \in X \cap \mathring{U}(x_0)$.

Следовательно. $\lim_{x \to x_0} \frac{\varphi(x)}{\varphi(x)} \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)} = \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)},$ $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x} \frac{\varphi(x) \mathbf{1}(x)}{\psi(x) \mathbf{1}(x)}$ то есть имеет место равенство (3.20)

Обе части равенства (3.20) равноправны, поэтому из доказанной теоремы следует, что предел, стоящий в левой части, существует тогда и только тогда, когда существует предел в правой части, причем в случае их существования они совпадают. Это делает очень удобным применение теоремы 3.11 на практике: ее можно использовать для вычисления пределов, не зная заранее, существует или нет рассматриваемый предел.

Определение 3.17. Функция $f:X \to \mathbb{R}$ называется бесконечно малой при $x \to x_0$ по сравнению с функцией $g: X \to \mathbb{R}$, если $\exists \ \varepsilon: X \to \mathbb{R}, \ U(x_0): \ f(x) = \varepsilon(x)g(x) \ \forall x \in X \cap U(x_0) \ \text{if } \lim_{x \to \infty} \varepsilon(x) = 0.$

Записывают $f(x) = o(g(x)), x \to x_0.$

§ 3.8 Непрерывные функции

Определение 3.18. Функция $f:X o\mathbb{R}$ называется непрерывной

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x \in X, |x - x_0| < \delta \rightarrow |f(x) - f(x_0)| < \varepsilon.$$

\$1x)=tgx-81NX, g(x)=x, x=D. 45 = o(g/x), x-0 $\frac{\sinh x}{x} = \lim_{x \to 0} \frac{tgx}{x} - \lim_{x \to 0} \frac{\sinh x}{x} = 1 - 1 = 0$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \sin x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x, \quad g(x) = \chi^{3} \quad \chi = 0.$$

$$f(x) = f(x) + \cos x,$$

 $x_0 \in X$. Функция $f: X \to \mathbb{R}$ является непрерывной в точке $x_0 \Longleftrightarrow$ $\lim_{x \to x_0} f(x) = f(x_0) - A$

Доказательство. Пусть $\lim_{x\to x_0} f(x) = \widehat{f(x_0)}$, то есть

 $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0: \ \forall x \in X, \ 0 < |x - x_0| < \delta \to |f(x) - f(x_0)| < \varepsilon.$

Тогда для $x = x_0$ имеем $|f(x_0) - f(x_0)| = 0 < \varepsilon$. Следовательно, $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x \in X, \ |x - x_0| < \delta \to |f(x) - f(x_0)| < \varepsilon.$ Таким образом, функция f непрерывна в точке x_0 .

Обратно, пусть функция f непрерывна в точке x_0 , то есть

$$\forall \, \varepsilon > 0 \ \exists \, \delta = \delta(\varepsilon) > 0: \ \forall x \in X, \ |\underline{x - x_0}| < \underline{\delta} \to |f(x) - f(x_0)| < \varepsilon.$$

Тогда

 $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0: \ \forall x \in X, \ 0 < |x - x_0| < \delta \to |f(x) - f(x_0)| < \varepsilon.$

Следовательно,
$$\lim_{x \to x_0} f(x) = f(x_0)$$
.

Определение 3.19. Функция $f: X \to \mathbb{R}$ называется непрерывной на множестве X, если она непрерывна в каждой точке этого множе-

Теорема 3.13. Пусть функция $f:X \to \mathbb{R}$ непрерывна в точке $x_0 \in X$ и $f(x_0) \neq 0$. Тогда функция f сохраняет знак на пересечении некоторой окрестности точки x_0 с множеством X.

в точке x_0 , по заданному числу $\varepsilon = \frac{|f(x_0)|}{2} > 0$ можно найти такое число $\delta>0$, что для всех $x\in X\cap U(x_0,\delta)$ выполняется неравенство

$$|f(x) - f(x_0)| < \frac{|f(x_0)|}{2},$$
 или $f(x_0) - f(x_0) = \frac{|f(x_0)|}{2} < f(x) < f(x_0) + \frac{|f(x_0)|}{2}.$

Если $f(x_0) > 0$, то из левого неравенства (3.21) следует, что

$$f(x) > rac{f(x_0)}{2} > 0$$
 для всех $x \in X \cap U(x_0, \delta)$.

Если $f(x_0) < 0$, то из правого неравенства (3.21) следует, что

$$f(x)<rac{f(x_0)}{2}<0\;$$
 для всех $x\in X\cap U(x_0,\delta).$

Определение 3.20. Функция $f: X \to \mathbb{R}$ называется непрерывной слева (справа) в точке $x_0 \in X$, если $f(x_0 - 0) = f(x_0)$ (соответственно $f(x_0 + 0) = f(x_0)$).

Теорема 3.14 (первая теорема Вейерштрасса). Если функция f непрерывна на отрезке [a,b], то она ограничена, то есть

$$\exists \, C>0: \, \forall x \in [a,b] \rightarrow |f(x)| \leq C. \tag{3.22}$$

Доказательство. Предположим противное, тогда

$$\forall C > 0 \ \exists x_c \in [a, b] : |f(x_c)| > C. \tag{3.23}$$

Полагая в (3.23) C = 1, 2, ..., n, ..., получим, что

$$\forall n \in \mathbb{N} \ \exists x_n \in [a, b] : |f(x_n)| > n. \tag{3.24}$$

Последовательность $\{x_n\}$ ограничена, так как $a \le x_n \le b$ для всех $n \in \mathbb{N}$. По теореме Больцано–Вейерштрасса из нее можно выделить сходящуюся подпоследовательность, то есть существуют подпоследовательность $\{x_{n_k}\}$ и точка x_0 такие, что

$$\lim_{k \to \infty} x_{n_k} = x_0,\tag{3.25}$$

где в силу условия (3.24) для любого $k \in \mathbb{N}$ имеем

$$a \le x_{n_k} \le b. \tag{3.26}$$

Из условий (3.25) и (3.26) следует, что $x_0 \in [a,b]$, а из условия (3.25) в силу непрерывности функции f в точке x_0 получаем

$$\iiint_{k \to \infty} f(x_{n_k}) = f(x_0) \cdot \text{if} \qquad (3.27)$$

С другой стороны, утверждение (3.24) выполняется при всех $n \in \mathbb{N}$, и в частности при $n = n_k$ (k = 1, 2, ...), то есть

$$|f(x_{n_k})| > n_k,$$

откуда следует, что $\lim_{k\to\infty} f(x_{n_k}) = \infty$, так как $n_k \to +\infty$ при $k\to\infty$. Это противоречит равенству (3.27), согласно которому последовательность имеет конечный предел. Поэтому условие (3.23) не может выполняться, то есть справедливо утверждение (3.22).

Hx)=1/471XE(0,1)