

Parallel SAT Framework to Find Clustering of Differential Characteristics and Its Applications

Kosei Sakamoto^{1,3} Ryoma Ito² Takanori Isobe^{2,3}

¹ Mitsubishi Electric Corporation ² National Institute of Information and Communications Technology ³ University of Hyogo

SAC 2023

Contents

1. Motivation & Background

2. Our Framework

3. Applications

4. Summary

■ Differential Cryptanalysis

- Most popular attack to symmetric-key primitives
- Exploiting a pair of input and output differences with a high probability
 - \triangleright Security: Prob($\triangle P \rightarrow \triangle C$)
 - Ex) Prob($\Delta P \rightarrow \Delta C$) > 2⁻⁶⁴ on a 64-bit cipher
 - → differential distinguisher

- Differential Cryptanalysis
 - Most popular attack to symmetric-key primitives
 - Exploiting a pair of input and output differences with a high probability
 - ightharpoonup Security: Prob($\Delta P \rightarrow \Delta C$)
 - Ex) Prob($\Delta P \rightarrow \Delta C$) > 2⁻⁶⁴ on a 64-bit cipher
 - → differential distinguisher

However, such a pair is hard to find...

- Differential characteristic
 - Sequence of differences over a cipher
 - ➤ Prob.(C): Product of probabilities on each round

$$Prob.(C) = \prod_{i=1}^{r} Prob.(\Delta R_{i-1} \rightarrow \Delta R_i)$$

➤ Weight: $-log_2(\text{Prob.}(C))$

$$P \xrightarrow{\qquad} \boxed{R_1} \xrightarrow{\qquad} \boxed{R_2} \xrightarrow{\qquad} C$$

$$P \oplus P' = \Delta P \xrightarrow{\qquad} \Delta R_0 \xrightarrow{\qquad} \Delta R_1 \xrightarrow{\qquad} \Delta R_2 \xrightarrow{\qquad} \Delta R_r = \xrightarrow{\qquad} C \oplus C' = \Delta C$$

$$P' \xrightarrow{\qquad} \boxed{R_1} \xrightarrow{\qquad} \boxed{R_2} \xrightarrow{\qquad} \cdots \xrightarrow{\qquad} \boxed{R_r} \xrightarrow{\qquad} C'$$

Differential characteristic

$$C = (\Delta P \to \Delta R_1 \to \Delta R_2 \to \cdots \to \Delta C)$$

- Differential characteristic
 - Goal for designers
 - \triangleright Bounds Max(Prob.(C)) below 2^{-b} , b: size of block

$$P \xrightarrow{\qquad \qquad } \boxed{R_1} \xrightarrow{\qquad } \boxed{R_2} \xrightarrow{\qquad } C$$

$$P \oplus P' = \Delta P \xrightarrow{\qquad } \Delta R_0; \quad \Delta R_1; \quad \Delta R_2; \qquad \qquad \Delta R_r = \xrightarrow{\qquad } C \oplus C' = \Delta C$$

$$P' \xrightarrow{\qquad } \boxed{R_1} \xrightarrow{\qquad } \boxed{R_2} \xrightarrow{\qquad } \cdots \xrightarrow{\qquad } C'$$

Differential characteristic

$$C = (\Delta P \to \Delta R_1 \to \Delta R_2 \to \cdots \to \Delta C)$$

- Differential characteristic
 - Goal for designers
 - \triangleright Bounds Max(Prob.(C)) below 2^{-b} , b: size of block
 - Goal for attackers
 - > Finds a differential characteristic with as high a probability as possible
 - \triangleright No need to consider internal differences $(\Delta R_1, \Delta R_2, ..., \Delta R_{r-1})$

$$P \xrightarrow{\qquad \qquad } \boxed{R_1} \xrightarrow{\qquad \qquad } \boxed{R_2} \xrightarrow{\qquad \qquad } C$$

$$P \oplus P' = \triangle P \xrightarrow{\qquad \qquad } \boxed{A} \xrightarrow{\qquad \qquad } \triangle R_1 \xrightarrow{\qquad \qquad } \triangle R_2 \xrightarrow{\qquad \qquad } \boxed{A} \xrightarrow{\qquad \qquad } C \oplus C' = \triangle C$$

$$P' \xrightarrow{\qquad \qquad } \boxed{R_1} \xrightarrow{\qquad \qquad } \boxed{R_2} \xrightarrow{\qquad \qquad } C'$$

Differential characteristic
$$C = (\Delta P \to \Delta R_1 \to \Delta R_2 \to \cdots \to \Delta C)$$

Differential

☐ Pair of the input and output differences (No information about the internal differences)

Differential

- ☐ Pair of the input and output differences (No information about the internal differences)
- □ Clustering effect
 - > We can see it as a bunch of differential characteristics
 - \triangleright Prob.(($\triangle P, \triangle C$)): Sum of probabilities of all differential characteristics

Prob.(differential) > **Prob.**(differential characteristic)

Differential $(\Delta P, \Delta C)$

Motivation & Background

- Automatic search tools for differential characteristics
 - MILP/CP/SAT-based tools
 - ☐ SAT is the problem that checks if a given Boolean formula can turn TRUE or False
 - 1. Propagation of the differences in a cipher (given as clauses)
 - 2. Sum of all variables to express weight (given as clauses)
 - \triangleright Check existence of the propagation of differences under $\sum_{i=0}^{r \cdot n-1} w_i \le k$
 - \triangleright If there is no such a propagation \rightarrow increment k and repeat this procedure

$$f_b = \underbrace{(x_0 \vee x_1 \vee \overline{x_2}) \wedge (x_2 \vee x_3 \vee \overline{x_4}) \wedge (x_0 \vee x_2 \vee \overline{x_4}) \wedge, \dots, \wedge (x_7 \vee x_8 \vee \overline{x_9})}_{\textbf{Propagation of differences}} \underbrace{\sum_{i=0}^{r \cdot n-1} w_i \leq k}_{\textbf{CNF}}$$

1.4

Motivation & Background

- Automatic search tools for differential
 - SAT-based tools

1.5

- 1. Find the optimal differential characteristic
- 2. Fix the input and output differences
- 3. Search the differential characteristics under the fixed differences (clustering effect)
- 4. Calculate the probability

Useful for constructing a diferential with a high probability

Motivation & Background

- Automatic search tools for differential
 - SAT-based tools

1.5

- 1. Find the optimal differential characteristic
- 2. Fix the input and output differences
- 3. Search the differential characteristics under the fixed differences (clustering effect)
- 4. Calculate the probability

Useful for constructing a diferential with a high probability

However,

It is just a straightforward extension of tools for differential characteristic

Not optimized for finding a differential with a high probability

We need to optimize these tools for differentials

- I We develop Sun et al's SAT-based tool [SWW21] to find a good differential
 - We optimize the evaluation of clustering effect for the multi-thread environment
 - > This optimization is enable to evaluate the wide range of differential characteristics which are the seed of differentials

■ We evaluate clustering effect for multiple differential characteristics with a high probability

Procedure of our framework

1. Find the differential characteristics with a high probability having the different input and output differences (not only optimal differential characteristics)

■ We evaluate clustering effect for multiple differential characteristics with a high probability

Procedure of our framework

- 1. Find the differential characteristics with a high probability having the different input and output differences (not only optimal differential characteristics)
- 2. Evaluate clustering effect for the found differential characteristics

■ We evaluate clustering effect for multiple differential characteristics with a high probability

Procedure of our framework

- **1.** Find the differential characteristics with a high probability having the different input and output differences (not only optimal differential characteristics)
- 2. Evaluate clustering effect for the found differential characteristics
- 3. Calculate probabilities for all differentials and find the highest one

$$(\Delta P, \Delta C)$$
 with Prob. 2^{-p}
 $(\Delta P', \Delta C')$ with Prob. 2^{-p+2}
 $(\Delta P'', \Delta C'')$ with Prob. 2^{-p+1}

 We evaluate clustering effect for multiple differential characteristics with a high probability

Procedure of our framework

- **1.** Find the differential characteristics with a high probability having the different input and output differences (not only optimal differential characteristics)
- 2. Evaluate clustering effect for the found differential characteristics
- 3. Calculate probabilities for all differentials and find the highest one

$$(\Delta P, \Delta C)$$
 with Prob. 2^{-p}
 $(\Delta P', \Delta C')$ with Prob. 2^{-p+2}
 \vdots
 $(\Delta P'', \Delta C'')$ with Prob. 2^{-p+1}

Conducting these evaluation is difficult due to a high computational cost

■ We fully leverage an Incremental SAT

- ☐ Solving a general SAT multiple times with a small modification
 - > Much more efficient than solving general SAT multiple times
- Used to evaluate clustering effect in many works

General SAT

Incremental SAT

11/28

- We apply an incremental SAT to
 - Enumerate all differential characteristics with a certain weight having the different input and output differences
 - Adding a new clause to eliminate the same input and output differences whenever finding a differential characteristic

11/28

- We apply an incremental SAT to
 - Enumerate all differential characteristics with a certain weight having the different input and output differences
 - Adding a new clause to eliminate the same input and output differences whenever finding a differential characteristic
 - Evaluate clustering effect
 - > Adding a new clause to fix the input and output differences
 - Adding a new clause to eliminate the same internal propagation whenever finding a differential characteristics

Question

Solving a single incremental SAT on multi threads is really efficient?

- In case of a general SAT
 - ☐ Solving it on multi threads has a positive impact on runtime [EME22]
- In case of an incremental SAT
 - We evaluate runtime of several setting satisfying following equation:

$$P_{deg} = \frac{T_m}{T_s}$$

 P_{deg} : Degree of parallelization to solve multiple incremental SAT

 T_m : The total number of threads assigned for our evaluations

 T_s : The number of threads assigned to solve a single incremental SAT

Optimizing for Multi-Thread Environment

■ Results on PRINCE and QARMA64

- □ PRINCE : $T_m = 8$, $(P_{deg}, T_s) = (1, 8), (2, 4), (4, 2), (8, 1)$
- □ QARMA64: $T_m = 16$, $(P_{deq}, T_s) = (1, 16)$, (2, 8), (4, 4), (8, 2), (16, 1)

Solving multiple incremental SAT on each thread

Solving a single incremental SAT on multi threads

Observations

- ☐ Increasing the degree of parallelization is greatly useful to improve runtime
- ☐ Assigning many threads to solve a single incremental SAT does not improve runtime
- In the same degree of parallelization, Assigning many threads to solve a single incremental SAT is worsen than assigning a single threads in terms of runtime
 - $T_m = 8$, $P_{deg} = 8$, $T_s = 1$ on the 6 round QARMA64: 35m15s
 - $T_m = 16, P_{deg} = 8, T_s = 2$ on the 6 round QARMA64: 1h6m4s

Observations

- ☐ Increasing the degree of parallelization is greatly useful to improve runtime
- ☐ Assigning many threads to solve a single incremental SAT does not improve runtime
- In the same degree of parallelization, Assigning many threads to solve a single incremental SAT is worsen than assigning a single threads in terms of runtime

$$T_m = 8$$
, $P_{deq} = 8$, $T_s = 1$ on the 6 round QARMA64: 35m15s

$$T_m = 16, P_{deg} = 8, T_s = 2$$
 on the 6 round QARMA64: 1h6m4s

Conclusion

Assigning a single incremental SAT problem to each thread is more advantageous

We decide to assign an independent incremental SAT to each thread

PRINCE

- 64-bit block cipher based on SPN
- Reflection construction for low-latency applications⁻

- There are two variant called QARMA64/128
- □ 64(128)-bit tweakable block cipher based on SPN
- Reflection construction for low-latency applications

Application to PRINCE and QARMA

PRINCE

- 64-bit block cipher based on SPN
- Reflection construction for low-latency applications

QARMA

- There are two variant called QARMA64/128
- 64(128)-bit tweakable block cipher based on SPN
- Reflection construction for low-latency applications

Why PRINCE and QARMA?

- Low-latency primitives tend to be weak at differential cryptanalysis
 - Mantis and SPEEDY are broken by differential cryptanalysis [BDBN22, DEKM16]
 - ▶ The best attack to PRINCE is differential cryptanalysis [CFG⁺14]
- To investigate the impact of the different design strategy in a linear layer on the behavior of differentials

Results on PRINCE

- Distinguishing attack on 7 rounds
 - ☐ The known best one is on 6 rounds [CFG+14]

PRINCE										
Rounds			4 (1+2+1)			5 (1+2+2/2+2+1)				
W_{min}	32	33	34	35	36	39	40	41	42	43
Prob.	$2^{-30.868}$	$2^{-31.861}$	$2^{-32.587}$	$2^{-33.333}$	$2^{-32.979}$	$2^{-38.810}$	$2^{-39.385}$	$2^{-40.017}$	$2^{-40.607}$	$2^{-40.837}$
# differentials	477452	3792944	4929816	5537848	5547896	576	12512	113840	598592	2231756
Time	6h06m57s	48h48m43s	$47\mathrm{h}34\mathrm{m}17\mathrm{s}$	47h35m06s	48h01m15s	1m21s	26m09s	4h08m26s	23h14m24s	48h03m32s
Rounds			6 (2+2+2)			7 (2+2+3/3+2+2)				
W_{min}	44	45	46	47	48	56	57	58	59	60
Prob.	$2^{-43.907}$	$2^{-44.907}$	$2^{-45.195}$	$2^{-46.111}$	$2^{-46.374}$	$2^{-55.771}$	$2^{-55.887}$	$2^{-56.810}$	$2^{-57.37}$	$2^{-57.990}$
# differentials	64	512	1984	6592	25968	5632	100976	835456	205272	212280
Time	51s	4m21s	$17 \mathrm{m} 57 \mathrm{s}$	$1\mathrm{h}07\mathrm{m}16\mathrm{s}$	$4\mathrm{h}46\mathrm{m}53\mathrm{s}$	5h07m16s	$90\mathrm{h}40\mathrm{m}16\mathrm{s}$	48h00m00s	$73\mathrm{h}03\mathrm{m}01\mathrm{s}$	71h43m12s
Rounds			8 (3+2+3)			9 (3+2+4/4+2+3)				
W_{min}	66	67	68	69	70	74	75	76	77	78
Prob.	$2^{-64.389}$	$2^{-65.384}$	$2^{-66.303}$	$2^{-66.970}$	$2^{-67.075}$	$2^{-73.888}$	$2^{-74.881}$	$2^{-74.970}$	$2^{-75.970}$	$2^{-76.166}$
# differentials	256	3584	46736	18352	24056	64	544	3400	26592	13968
Time	1h55m50s	24h34m09s	290h41m48s	47h32m37s	$48\mathrm{h}4\mathrm{m}28\mathrm{s}$	34m49s	5h11m49s	32h10m51s	235h42m42s	48h04m53s

* Environment: Apple M1 MAX with 64 GB of main memory

3.2

Results on QARMA64

3.3

QARMA64 under the SK setting

- Distinguishing attack on 7 rounds (SK setting)
 - ☐ The known best one is on 6 rounds [YQC18] (SK setting)
- Distinguishing attack on 10 rounds (RT setting)
 - ☐ The known best one is on 9 rounds [ADG+19] (RT setting)

		-							
Rounds	6 (2+2+2)			7	(2+2+3/3+2-	+2)	8 (3+2+3)		
W_{min}	52	53	54	64	65	66	72	73	74
Prob.	$2^{-45.741}$	$2^{-46.019}$	$2^{-46.112}$	$2^{-60.278}$	$2^{-60.111}$	$2^{-58.921}$	$2^{-64.845}$	$2^{-64.503}$	$2^{-64.693}$
# differentials	1024	18048	315360	512	16896	313280	400	21904	333776
Time	35m15s	19h47m31s	109h51m44s	48m19s	39h48m41s	186h21m10s	15h47m58s	53h01m41s	508h11m56s
QARMA64 und	ler the RT set	ting							
Rounds	6 (2+2+2)		7	(2+2+3/3+2-	+2)	8 (3+2+3)			
W_{min}	14	15	16	28	29	30	36	37	38
Prob.	$2^{-14.000}$	$2^{-14.913}$	$2^{-15.193}$	$2^{-27.541}$	$2^{-28.000}$	$2^{-28.286}$	$2^{-36.000}$	$2^{-36.679}$	$2^{-36.679}$
# differentials	17	202	2571	84	3030	48840	20	840	18509
Time	36s	1m44s	13m33s	5m35s	1h15m24s	15h28m20s	11m16s	30m22s	10h18m25s
Rounds	9	(3+2+4/4+2+	⊢3)	10 (4+2+4)			11 (4+2+5/5+2+4)		
W_{min}	52	53	54	62	63	64	77	78	79
Prob.	$2^{-51.415}$	$2^{-51.415}$	$2^{-52.246}$	$2^{-60.831}$	$2^{-60.831}$	$2^{-60.831}$	2-77.000	$2^{-77.415}$	$2^{-77.509}$
# differentials	8	688	11290	273	4822	49585	64	7616	18424
Time	6h32m25s	10h27m32s	49h31m02s	96h12m59s	114h45m17s	303h33m25s	596h07m26s [†]	1317h17m08s [†]	1317h16m57s

* Environment: Intel Xeon Gold 6258R CPU (2.70 GHz) with 256 GB of main memory.

Results on QARMA128

3.4

- Distinguishing attack on 10 rounds (SK setting)
 - ☐ The known best one is on 6 rounds [YQC18] (SK setting)
- Distinguishing attack on 12 rounds (RT setting)
 - ☐ The known best one is on 8 rounds [LHW19] (RT setting)

QARMA128 ur									
Rounds		6 (2+2+2)		7	(2+2+3/3+2-	⊢2)	8 (2+2+4/4+2+2)		
W_{min}	60	61	62	76	77	78	87	88	89
Prob.	$2^{-54.494}$	2-54.521	2-54.581	$2^{-71.930}$	$2^{-72.321}$	$2^{-72.614}$	$2^{-84.850}$	$2^{-85.093}$	$2^{-85.539}$
# differentials	1312	98984	391352	516	32880	31960	16	708	14300
Time	15h27m17s	499h19m12s	1316h25m40s [†]	40h57m50s	530h05m58s	430 h44 m47 s	57h59m37s	92h7m23s	693h25m04s
Rounds 9 (3+2+4/4+2+3)				10	(3+2+5/5+2	+3)			
W_{min}	106	107	108	125	126	127			
Prob.	$2^{-104.285}$	$2^{-103.616}$	2-103.255	$2^{-121.549}$	$2^{-121.667}$	$2^{-122.304}$			
# differentials	240	561	1172	12	54	31			
Time	$249h25m14s^{\dagger}$	1004h00m44s [†]	1004h00m32s [†]	794h25m35s [†]	$794h25m23s^{\dagger}$	$794h25m13s^{\dagger}$			

QARMA128 ur	der the RT s	etting								
Rounds	7	(2+2+3/3+2+	-2)		8 (3+2+3)		9 (3+2+4/4+2+3)			
W_{min}	28	29	30	42	43	44	64	65	66	
Prob.	$2^{-28.000}$	$2^{-27.415}$	$2^{-28.000}$	2-42.000	$2^{-42.415}$	$2^{-42.187}$	2-63.679	2-64.415	2-64.679	
# differentials	32	2144	64368	64	5248	203200	1815	6870	26105	
Time	38m43s	4h51m52s	48h32m23s	21h17m20s	52h32m19s	470h54m17s	$1154\mathrm{h}39\mathrm{m}26\mathrm{s}^\dagger$	$1154\mathrm{h}39\mathrm{m}16\mathrm{s}^\dagger$	$1154\mathrm{h}39\mathrm{m}05\mathrm{s}^\dagger$	
Rounds		10 (4+2+4)		11 (4+2+5/5+2+4)			12 (5+2+5)			
W_{min}	80	81	82	100	101	102	125	126	127	
Prob.	$2^{-78.005}$	$2^{-79.005}$	$2^{-78.408}$	2-96.466	$2^{-97.929}$	$2^{-96.521}$	$2^{-120.024}$	$2^{-123.499}$	$2^{-124.084}$	
# differentials	2	72	51	9	6	2	3	3	2	
Time	978h51m03e [†]	1316h34m33e†	1316h33m53e†	794h24m09e [†]	794h23m59e [†]	1036h30m30e†	794h16m56e†	1036h44m17e†	1036h44m02e [†]	

- Gap of the probability between differential characteristics and differentials
 - PINRCE on 8 rounds
 - ➤ Optimal differential characteristic: 2⁻⁶⁶
 - ➤ Best found Differential : 2^{-64.389}
 - ➤ Gap: 2^{1.611}
 - QARMA64 on 8 rounds (SK setting)
 - ➤ Optimal differential characteristic: 2⁻⁷²
 - ➤ Best found Differential : 2^{-64.845}
 - ➤ Gap: 2^{7.155}

- Gap of the probability between differential characteristics and differentials
 - PINRCE on 8 rounds

➤ Optimal differential characteristic: 2⁻⁶⁶

➤ Best found Differential : 2^{-64.389}

➤ Gap: 2^{1.611}

■ QARMA64 on 8 rounds (SK setting)

➤ Optimal differential characteristic: 2⁻⁷²

➤ Best found Differential : 2^{-64.845}

➤ Gap: 2^{7.155}

Behavior of this gap is different between PRINCE and QARMA

Question

Where does this difference come from?

- Non-linear layer (S-box)
 - PRINCE
 - \triangleright 4-bit S-box, MDP/ALB = 2^{-2} , full diffusion property
 - QARMA64
 - \triangleright 4-bit S-box, MDP/ALB = 2^{-2} , full diffusion property

- Non-linear layer (S-box)
 - PRINCE
 - > 4-bit S-box, MDP/ALB = 2^{-2} , full diffusion property
 - □ QARMA64
 - \triangleright 4-bit S-box, MDP/ALB = 2^{-2} , full diffusion property
- Linear layer (matrix and permutation)
 - PRINCE
 - \blacktriangleright Designed to ensure 16 active S-boxes in consecutive four rounds
 - Matrix: Constructed by 2 different 16 × 16 matrices
 - QARMA64
 - ➤ Designed based on an almost MDS matrix suitable for hardware implementation Matrix: Constructed by a single 16 × 16 matrix

- Macro perspective
 - PRINCE
 - > Round function can be viewed constructed by 2 different super S-boxes
 - QARMA64
 - > Round function can be viewed constructed by a single super S-box
- Micro perspective
 - PRINCE
 - > Each output nibble in a matrix comes from four input nibbles
 - QARMA64
 - > Each output nibble in a matrix comes from three input nibbles

We investigate the impact of these different properties

We change the matrix in PRINCE to:

- \square M_{e1}
 - ➤ Macro: Single super S-box
 - Micro: Output nibble in a matrix comes from four input nibbles
- \square M_{e2}
 - ➤ Macro: Two different super S-boxes
 - Micro: Output nibble in a matrix comes from three input nibbles
- \square M_{e3}
 - Macro: Single super S-box
 - Micro: Output nibble in a matrix comes from three input nibbles

- Results on M_{e1} , M_{e2} , M_{e3}
 - \square Original matrix and M_{e1} has a good resistance against clustering effect
 - Macro perspective is different but Macro perspective is same
 - > Output nibble in a matrix comes from four input nibbles
 - Ankele and Kölbl reported that clustering effect easily happen in MIDORI and SKINNY [AK18]

PRINCE (6 (2+2+2) rounds) $T_w = 1$, $T_c = 10$							
Matrix	Original	M_{e1}	M_{e2}	M_{e3}			
W_{min}	44	40	44	42			
Prob.	$2^{-43.907}$	-	$2^{-38.616}$	$2^{-37.458}$			
$\overline{\text{Gap (Prob.}/2^{-W_{min}})}$	$2^{0.093}$	$2^{1.474}$	$2^{5.384}$	$2^{4.542}$			
# differentials	64	256	8	272			

PRINCE (6 (2+2+2) rounds) $T_{-} = 1$, $T_{-} = 10$

1 Italiaca	Thirde (o $(2+2+2)$ rounds) $T_w = 1$, $T_c = 10$											
Matrix	Weight	W_{min}	$W_{min} + 1$	$W_{min} + 2$	$W_{min} + 3$	$W_{min} + 4$	$W_{min} + 5$	$W_{min} + 6$	$W_{min} + 7$	$W_{min} + 8$	$W_{min} + 9$	
	Original	1	0	0	0	1	0	0	0	1	0	
# DC [†]	M_{e1}	2	0	0	0	11	0	0	0	23	0	
# 00	M_{e2}	1	2	7	16	55	116	452	848	2152	3498	
	M_{e3}	1	0	5	2	56	38	358	210	1719	1102	

Key Recovery

■ Key-recovery attacks to QARMA

☐ First key-recovery attack to QARMA by differential cryptanalysis

Cipher (Setting [†])	Attacked # Rounds	Type [‡]	Outer whitening	Time	Data	Memory	Validity ^{\$}	Reference
QARMA-64	10 (3+2+5)	MITM	No	270.1	2 ⁵³	2116	✓	[ZD16]
(SK)	10 (3+2+5)	ID	Yes	2119.3	2 ⁶¹	272	×	[YQC18]
(SK)	11 (3+2+6)	ID	Yes	2120.4	2 ⁶¹	2 ¹¹⁶	×	[YQC18]
	10 (2+2+6)	ID	Yes	2125.8	262	237	×	[ZD19]
	10 (4+2+4)	TD	Yes	2 ^{83.53}	247.06	280	×	Our
QARMA-64	10 (3+2+5)	TD	Yes	2 ^{75.13}	2 ^{47.12}	2 ⁷²	✓	Our
(RT)	10 (3+2+5)	SS	Yes	259.0	259.0	2 ^{29.6}	✓	[LHW19]
(ni)	11 (4+2+5)	TD	Yes	2111.16	234.26	2108	×	Our
	11 (4+2+5)	ID	No	2 ^{64.92}	2 ^{58.38}	2 ^{63.38}	✓	[LZG ⁺ 20]
	12 (3+2+7)	ZC/I	Yes	266.2	248.4	2 ^{53.7}	✓	[ADG+19]
QARMA-128	10 (3+2+5)	MITM	No	2141.7	2105	2232	✓	[ZD16]
(SK)	10 (3+2+5)	ID	Yes	2 ^{237.3}	2 ¹²²	2144	×	[YQC18]
(SK)	11 (3+2+6)	ID	Yes	2241.8	2122	2232	×	[YQC18]
	11 (4+2+5)	TDIB	Yes	2126.1	2126.1	271	✓	[LHW19]
	11 (4+2+5)	ID	No	2 ^{137.0}	2111.38	2120.38	✓	[LZG ⁺ 20]
QARMA-128	11 (7+2+2)	TD	Yes	2104.60	2124.05	2 ⁴⁸	✓	Our
(RT)	12 (7+2+3)	TD	Yes	2154.53	2108.52	2144	×	Our
	12 (3+2+7)	MITM	Yes	2156.06	2 ⁸⁸	2 ¹⁵⁴	✓	[LZG+20]
	13 (8+2+3)	TD	Yes	2238.02	2106.63	2240	×	Our

^{*} TD: Truncated Differential, MITM: Meet-in-the-Middle,

⁵ The designer claims that the multiplication of time and data complexities for QARMA-64 and QARMA-128 should be less than 2^{128-ε} and 2^{250-ε} for a small ε (e.g., ε = 2), respectively. The symbol '√' indicates that the attack is feasible within the designer's security claim and the symbol '√' indicates otherwise.

4.1 Summary

- Design an efficient SAT-based tool for constructing good differentials
 - Develop Sun et al's SAT-based tool for constructing differentials optimized for the multi-thread environment
- Improve the distinguishing attack to PRINCE and QARMA
 - ☐ Find a new differential distinguishers
- Investigate the differential behavior on PRINCE and QARMA
 - ☐ Show the different design concept having the impact on the differential behavior
- Give the key-recovery attack to QARMA
 - ☐ Give the key-recovery attack to QARMA by differential cryptanalysis for the first time

References I

- Ralph Ankele, Christoph Dobraunig, Jian Guo, Eran Lambooij, Gregor Leander, and Yosuke Todo, *Zero-correlation attacks on tweakable block ciphers with linear tweakey expansion*, IACR Trans. Symmetric Cryptol. **2019** (2019), no. 1, 192–235.
- Ralph Ankele and Stefan Kölbl, *Mind the gap A closer look at the security of block ciphers against differential cryptanalysis*, SAC, Lecture Notes in Computer Science, vol. 11349, Springer, 2018, pp. 163–190.
- Christina Boura, Nicolas David, Rachelle Heim Boissier, and María Naya-Plasencia, *Better steady than speedy: Full break of SPEEDY-7-192*, IACR Cryptol. ePrint Arch. (2022), 1351.
- Anne Canteaut, Thomas Fuhr, Henri Gilbert, María Naya-Plasencia, and Jean-René Reinhard, *Multiple differential cryptanalysis of round-reduced PRINCE*, FSE, Lecture Notes in Computer Science, vol. 8540, Springer, 2014, pp. 591–610.

References II

- Christoph Dobraunig, Maria Eichlseder, Daniel Kales, and Florian Mendel, *Practical key-recovery attack on MANTIS5*, IACR Trans. Symmetric Cryptol. **2016** (2016), no. 2, 248–260.
- Johannes Erlacher, Florian Mendel, and Maria Eichlseder, *Bounds for the security of ascon against differential and linear cryptanalysis*, IACR Trans. Symmetric Cryptol. **2022** (2022), no. 1, 64–87.
- Muzhou Li, Kai Hu, and Meiqin Wang, *Related-tweak statistical* saturation cryptanalysis and its application on QARMA, IACR Trans. Symmetric Cryptol. **2019** (2019), no. 1, 236–263.
- Ya Liu, Tiande Zang, Dawu Gu, Fengyu Zhao, Wei Li, and Zhiqiang Liu, *Improved cryptanalysis of reduced-version QARMA-64/128*, IEEE Access **8** (2020), 8361–8370.
- Ling Sun, Wei Wang, and Meiqin Wang, Accelerating the search of differential and linear characteristics with the SAT method, IACR Trans. Symmetric Cryptol. **2021** (2021), no. 1, 269–315.

References III

- Dong Yang, Wen-Feng Qi, and Hua-Jin Chen, *Impossible differential attack on QARMA family of block ciphers*, IACR Cryptol. ePrint Arch. (2018), 334.
- Rui Zong and Xiaoyang Dong, *Meet-in-the-middle attack on QARMA block cipher*, IACR Cryptol. ePrint Arch. (2016), 1160.
 - _____, Milp-aided related-tweak/key impossible differential attack and its applications to qarma, joltik-bc, IEEE Access **7** (2019), 153683–153693.