Determination of Dielectric Constant of the Sample,

8. No	Temperature (°C)	Capacitance (Farad)	Dielectuic Comstant [Er = $\frac{c}{c_0}$]
1	35	2.97	1980
2	40	3.02	2013
3	45	3.08	2053
4	50	3.12	2080
5	55	3.16	2106
6	60	3.20	2133
7	65	3. 25	2166
8	70	3.29	a193
9	75	3 . 33	2220
10	80	3.37	2240
11	85	3.14	2273
12	90	3.45	2300

OBSERVATION

The Radius of the Sample $(r) = \frac{10^{-2} \text{m}}{1.83 \times 10^{-3} \text{m}}$ The thickness of the Sample $(d) = 1.83 \times 10^{-3} \text{m}$

CALCULATION:

Area of plates of capacitor (ur2)= 3.14 × 10-4 m2

Capacitance of air Capacitor, Co = EoA = 1.5 × 10-3

Co. EoA . 8.854 × 10-12 × 3.14 × 10-14

Co. 15. 1921 × 10-13 favad = 1.5 × 10-3 nanofavad. Er = Co