Test Diagnostique de Physique-Chimie

Physique:

- Q1. La vitesse moyenne s'exprime par la rela
 - a) $v = d \times \Delta t$

 - b) $v = \frac{d}{\Delta t}$ c) $v = \frac{\Delta t}{d}$
- Q2. La relation entre la vitesse linéaire et la vitesse angulaire est:
 - a) $v = r \times \omega$
- Q3. La fréquence du mouvement d'un solide en rotation uniforme représente :
 - a) La durée mise pour effectuer un tour complet.
 - b) Le nombre de tours pae seconde.
 - c) Le nombre de tours par minute.
- Q4. L'expression de l'énergie cinétique d'un solide en mouvement de translation est:

 - a) $E_c = \frac{1}{2} \times m \times v^2$ b) $E_c = \frac{1}{2} \times \omega \times v^2$
 - c) $E_c = \frac{1}{2} \times J_{\Lambda} \times \omega^2$
- Q5. Le travail d'une force constante lorsque son point d'application se déplace de A à Best : (Avec $\alpha = (\vec{F}, \vec{AB})$)
 - a) $W_{A\to B}(\vec{F}) = F + AB$
 - b) $W_{A\to B}(\vec{F}) = F \times AB \times \sin(\alpha)$
 - c) $W_{A \to B}(\vec{F}) = F \times AB \times \cos(\alpha)$
- Q6. Le théorème de l'énergie cinétique s'exprime par la relation:
 - a) $\Delta E_c = E_c(B) E_c(A) = \sum W_{AB}(\vec{F}_i)$
 - b) $\Delta E_c = E_c(A) E_c(B) = \sum W_{AB}(\vec{F_i})$
 - c) $\Delta E_c = E_c(B) E_c(A) = \sum W_{BA}(\vec{F_i})$
- Q7. Le travail est une grandeur :
 - a) Positif
 - b) Négatif
 - c) Algébrique

- **Q8.** La tension aux bornes d'un conducteur ohmique lorsqu'il est traversé par un courant d'intensité I, est :
 - a) $U = R \times I$
 - b) U = R/I
 - c) U = I/R
- Q9. la puissance aux bornes d'un conducteur ohmique, lorsqu'il est traversé par un courant d'intensité I, est :
 - a) $P = R^2 \times I$
 - b) $P = R \times I^2$
 - c) $P = (R \times I)^2$
- Q10. L'électrolyseur convertir une partie de l'énergie électrique qu'il reçoit en une autre forme d'énergie. cette énergie est une éner
 - a) Chimique
 - b) Mécanique
 - c) Électrique
- Q11. L'intensité du courant dans un circuit en série contenant un générateur, un récepteur et un conducteur ohmique est :

 - a) $I = \frac{E + E'}{r + r' + R}$ b) $I = (E + E') \times (r + r' + R)$
 - c) $I = \frac{E E'}{r + r' + R}$
- Q12. L'intensité du champ magnétique créé par une bobine plate, à son centre est donnée par la relation:

 - a) $B = \frac{\mu_0}{2\pi} \cdot \frac{I}{r}$ b) $B = \frac{\mu_0}{2} \cdot \frac{N.I}{R}$
 - c) $B = \mu_0 \cdot \frac{N}{I} \cdot I$
- Q13. L'intensité du champ magnétique s'exprime en:
 - a) T
 - b) N
 - c) Pa

Chimie:

- **Q14.** Pour un gaz parfait, la quantité de matière n, la température T, la pression P et le volume V sont reliés par l'équation du gaz parfait :
 - a) $P \times T = n \times R \times V$
 - b) $R \times V = n \times P \times T$
 - c) $P \times V = n \times R \times T$
- Q15. La température absolue est donnée par la relation suivante :
 - a) $T(K) = T(^{\circ}C) + 273.15$
 - b) $T(K) = T(^{\circ}C) 273.15$
 - c) $T(K) = T(^{\circ}C) + 373.15$
- Q16. La concentration molaire C d'un soluté X et la concentration massique C_m peut sous mettre sous la forme :
 - a) $C = n.C_m$
 - b) $C = M.C_m$
 - c) $C = \frac{C_m}{V}$
- Q17. Déterminer La concentration molaire d'un soluté de quentité de matière n=2 mol dissoute dans un volume v=4 L
 - a) $C = 2 \ mol/l$
 - b) $C = 5 \ mol/l$
 - c) $C = 8 \ mol/l$
- Q18. Une liaison entre deux atomes est polarisée si ces deux atomes sont :
 - a) Différentes
 - b) Identiques
- Q19. Une réaction acido-basique est un transfert de :
 - a) Électron
 - b) Proton H^+
 - c) Ion HO^-

- **Q20.** Un oxydant est une espèce chimqiue capable de :
 - a) Capter un e^-
 - b) Céder un e^-
- Q21. Un comprimé de Vitamine C contient 5.68 mol d'acide ascorbique $(C_6H_8O_6)$, il se prend dans un verre d'eau de 20 cL: Une orange contient 100mg d'acide ascorbique. Combien faut-il d'oranges pour obtenir la même masse d'acide ascorbique que la comprimé
 - a) 6
 - b) 8
 - c) 10
 - d) 12
- Q22. Il faut environ trois oranges pour obtenir $200 \ mL$ de jus. Quelle est la concentration an acide ascorbique dans ce jus d'orange?
 - a) $2.5.10^{-3} \ mol/l$
 - b) $4.5.10^{-3} \ mol/l$
 - c) $6.5.10^{-3} \ mol/l$
 - d) $8.5.10^{-3} \ mol/l$
- Q23. Quel volume d'eau faut-il ajouter au verre contenant le comprimé pour obtenir la même concentration en acide ascorbique que le jus d'orange
 - a) 30 cl
 - b) 47 cl
 - c) 50 cl
 - d) 57 cl
- **Q24.** Équilibrer les équations suivantes :
 - a) $...Al + ...Cr_2O_3 \longrightarrow ...Al_2O_3 +Cr$
 - b) $...C_6H_5Cl + ...O_2 \longrightarrow ...CO_2 + ...H_2O + ...HCl$
 - c) $...NH_4Cl + ...Ca(OH)_2 \longrightarrow ...CaCl_2 + ...H_2O + ...NH_3$

Feuille de Réponses

NOM ET PRÉNOM:....

Réponses - Physique

Numéro de la Question	a	b	c
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			

Réponses - Chimie

Numéro de la Question	a	b	c	d
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				