Projet de Recherche . 2020-2021

FACULTÉ DES SCIENCES ET TECHNIQUES MASTER 1 - MATHS. CRYPTIS

Polynômes de Permutations

A l'attention de : M. NECER

Rédigé par : PIARD A. JACQUET R. CARVAILLO T.

Table des matières

1	Construction des Corps Finis	2
	1.1 Existence et unicité	2
2	Construction	3

1 Construction des Corps Finis

1.1 Existence et unicité

Soit K un corps quelconque et soit φ le morphisme suivant :

$$\varphi: \left| \begin{array}{ccc} \mathbb{Z} & \longrightarrow & \mathbb{K} \\ n & \longmapsto & n \cdot 1_{\mathbb{K}} \end{array} \right|$$

Définition 1. Soit \mathbb{K} un corps quelconque. Toute partie \mathcal{P} de \mathbb{K} vérifiant :

- \mathcal{P} est non vide et est une partie stable pour + et \times de \mathbb{K} et \mathcal{P} muni des lois induites par celles de \mathbb{K} est lui-même un corps.
- \mathcal{P} est un sous anneau de \mathbb{K} , $1 \in \mathcal{P}$ et $(p \in \mathcal{P}^* = \mathcal{P} \{0\} \Rightarrow p^{-1} \in \mathcal{P}^*)$.
- \mathcal{P} est un sous groupe de $(\mathbb{K},+)$ et \mathcal{P}^* muni de la loi \times est un sous groupe multiplicatif (\mathbb{K}^*,\times) .

Une telle partie \mathcal{P} est appelée sous-corps de \mathbb{K} .

Définition 2. Soit \mathbb{K} un corps quelconque.

- K est dit premier s'il ne contient aucun sous-corps strict.
- Si \mathbb{K} est un corps, le sous-corps de \mathbb{K} engendré par 1_K est un corps premier, c'est le sous-corps premier de \mathbb{K} .

Le noyau de ce morphisme est un idéal de \mathbb{Z} et donc de la forme $k\mathbb{Z}$ pour $k \in \mathbb{Z}$. Par le premier théorème d'isomorphisme on $\mathrm{Im}(\varphi) \cong \mathbb{Z}/n\mathbb{Z}$. Par intégrité de $\mathbb{Z}/n\mathbb{Z}$ alors n=0 ou alors n est un nombre premier. Si n=0 alors φ est injective et donc le sous-corps premier de \mathbb{K} est isomorphe à \mathbb{Q} . Si $n \neq 0$ alors le sous-corps premier est isomorphe à $\mathbb{Z}/n\mathbb{Z}$ et n s'appelle la caractéristique de \mathbb{K} .

Définition 3. Soient L et \mathbb{K} deux corps. Si L/K est une extension de corps alors L est un espace vectoriel sur K, où l'addition vectorielle est l'addiction dans L et la multiplication par un scalaire $K \times L$ est la restriction à $K \times L$ de la multiplication dans L. La dimension du K-espace vectoriel L est appelée le degré de l'extension et est notée [L:K].

Définition 4. Soit P un polynôme sur un corps K. On appelle corps de décomposition de P sur K une extension L de K telle que :

- dans L[X], P est produit de facteurs de degré 1
- les racines de P engendrent L

Proposition 1. Soit P un polynôme sur un corps K. Alors P admet un corps de décomposition, unique à K-isomorphisme près.

Proposition 2. — Le cardinal de \mathbb{K} est une puissance de p.

— Réciproquement, pour tout $n \in \mathbb{N}^*$, il existe un corps \mathbb{K} de cardinal p^n . En outre \mathbb{K} est unique à isomorphisme près.

Démonstration. — Puisque le sous-corps premier de \mathbb{K} est isomorphe à $\mathbb{Z}/p\mathbb{Z}$ alors \mathbb{K} est naturellement muni d'une structure de $\mathbb{Z}/p\mathbb{Z}$ -espace vectoriel. On note $n = [\mathbb{K} : \mathbb{Z}/p\mathbb{Z}]$ alors $\#\mathbb{K} = \#(\mathbb{Z}/p\mathbb{Z})^n = p^n$.

— Soit $n \in \mathbb{N}^*$. Si \mathbb{K} est un corps fini de cardinal p^n alors \mathbb{K} est le corps de décomposition de $X^{p^n} - X$ sur $\mathbb{Z}/p\mathbb{Z}$: en effet, puisque pour tout $x \in \mathbb{K}$, x

est racine de $X^{p^n}-X$ donc $X^{p^n}-X$ possède ses p^n racines dans \mathbb{K} . Réciproquement, soit K le corps de décomposition de X^{p^n} sur $\mathbb{Z}/p\mathbb{Z}$. Soit K l'ensemble des éléments de K qui sont racines de $X^{p^n}-X$. On vérifie que K est un sous-corps de K. Puisque $1_K \in K$, et si $x,y \in K$ alors $x^{p^n}=x$ et $y^{p^n}=y$, donc $(x+y)^{p^n}x+y$ et $(xy^{-1})^{p^n}=xy^{-1}$, si bien que $x+y,xy^{-1}\in K$. Par ailleurs la dérivée formelle, $(X^{p^n}-X)'=-1$ est premier avec $X^{p^n}-X$ donc les racines de $X^{p^n}-X$ sont simples. On en déduit alors que $\#K=p^n$. Finalement K=K est un corps à p^n éléments et il est unique à isomorphisme près en vertu de l'unicité du corps de décomposition de $X^{p^n}-X$ sur $\mathbb{Z}/p\mathbb{Z}$.

On notera dorénavant \mathbb{F}_q le corps fini à $q=p^n$ éléments.

2 Construction

Soit $P \in \mathbb{F}_p[X]$ un polynôme irréductible sur \mathbb{F}_p . On note $n = \deg(P)$. Puisque P est irréductible, l'idéal (P) est donc maximal. Le quotient $\mathbb{F}_p[X]/(P)$ est le corps de rupture de P sur \mathbb{F}_p de cardinal p^n . Afin de montrer que l'on peut toujours construire les corps finis nous allons montrer le résultat suivant :