Hysteresis(磁滞·右圖):嚴重者(曲線包圍的面積很大)適合作永久磁鐵;中等者適合作記憶体;輕微者適合作變壓器、電磁鐵。

H.W.: Prob. 2, 9, 10, 11, 13.

Ch. 33 Alternating Current Circuits

 $V\sin(\omega t) - Ldi/dt - iR - q/C = 0 \quad \circ$

世 代 i = dq/dt $\Rightarrow Ld^2q/dt^2 + Rdq/dt + (1/C)q = V\sin(\omega t)$ 。 穩定時必有 $q(t) = Q\sin(\omega t + \phi)$,

用 $\sin(\omega t) = \sin(\omega t + \phi - \phi) = \sin(\omega t + \phi)\cos\phi - \cos(\omega t + \phi)\sin\phi$ · 代入 eq. 整理後 $\sin(\omega t + \phi) \& \cos(\omega t + \phi)$ 的係數須分別為零,而解出 $Q \& \phi$ 。

但本章要用 "phasor" 的方法解:假設 $i(t) = I \sin(\omega t + \phi_I) \cdot v_R(t) = V_R \sin(\omega t + \phi_R) \cdot v_L(t) = V_L \sin(\omega t + \phi_L) \cdot v_C(t) = V_C \sin(\omega t + \phi_C) \cdot 先逐一檢定 <math>(V_R, \phi_R) \cdot (V_L, \phi_L) \cdot (V_C, \phi_C)$ 與 (I, ϕ_I) 的關係,再求解。

 $\therefore V_L = I\omega L = IX_L \cdot X_L \equiv \omega L$ inductive reactance (電抗) $\phi_L = \phi_I + 90^\circ$ °

 $\therefore V_C = I/\omega C = IX_C \cdot X_C \equiv 1/\omega C$ capacitive reactance (電抗) $\cdot \phi_C = \phi_I - 90^\circ$

RLC Series Circuit (有共同的電流)

$$i = I \sin(\omega t) \cdot v = V \sin(\omega t + \phi)$$

$$\stackrel{+}{=} c \quad \stackrel{\cdot}{\sim} v(t) = v_R(t) + v_L(t) + v_C(t)$$

$$\therefore \vec{V} = \vec{V_R} + \vec{V_L} + \vec{V_C} \quad \circ \quad$$

$$Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{R^2 + (\omega L - 1/\omega C)^2}$$
 impedence (阻抗).

$$=\sqrt{R^2 + X^2}$$
 · $X \equiv X_L - X_C$ reactance (電抗)。

$$V = IZ \cdot \tan \phi = I(X_L - X_C)/IR = X/R = (\omega L - 1/\omega C)/R$$

$$X_L - X_C > 0$$
 (< 0) inductive (capacitive) $\phi > 0$ ($\phi < 0$) $\phi > 0$

Series Resonance

$$I = V/Z = V/\sqrt{R^2 + (\omega L - 1/\omega C)^2}$$

當
$$\omega L = 1/\omega C$$
 時, I 最大,

即當
$$\omega = \sqrt{1/LC} \equiv \omega_0$$
 (共振頻率)。

共振時 ·
$$V_L = V_C$$
 · $\phi = 0$ · $V = IR = V_R$ ·

 $\mathbb{D} v_L(t) + v_C(t) = 0 \cdot v(t) = v_R(t)$ 。 要調收音機、電視機的 ω_0 , 可調L或調C。

例:低音 (inductive)、高音 (capacitive)喇叭
$$\begin{split} I_L = V/Z_L = V/\sqrt{R^2 + (\omega L)^2} & \stackrel{\cdot}{\sim} \omega \uparrow \Rightarrow I_L \downarrow & \circ \\ I_C = V/Z_C = V/\sqrt{R^2 + (1/\omega C)^2} & \stackrel{\cdot}{\sim} \omega \uparrow \Rightarrow I_C \uparrow & \circ \end{split}$$

RLC Parallel Circuit (有共同的電壓, V 當主角)

$$i_{\iota} \downarrow v = V \sin(\omega t) \cdot i = I \sin(\omega t + \phi) \circ$$

$$: i(t) = i_R(t) + i_L(t) + i_C(t)$$

$$\therefore \vec{I} = \vec{I}_R + \vec{I}_L + \vec{I}_C \quad \circ \quad$$

$$I = \sqrt{I_R^2 + (I_C - I_L)^2} = \sqrt{(V/R)^2 + (V/X_C - V/X_L)^2}$$

$$= V\sqrt{(1/R)^2 + (1/X_C - 1/X_L)^2} = V/Z$$

$$1/Z = \sqrt{(1/R)^2 + (1/X_C - 1/X_L)^2} = \sqrt{1/R^2 + (\omega C - 1/\omega L)^2}$$

$$\tan \phi = (V/X_C - V/X_L)/(V/R) = (1/X_C - 1/X_L)/(1/R)$$

$$= (\omega C - 1/\omega L)/(1/R)$$
 $= (1/X)/(1/R)$ °

當 $\omega C = 1/\omega L$ 時 · 即當 $\omega = \sqrt{1/LC} \equiv \omega_0$ 時 ·

$$I_C = I_L + \phi = 0 + I = V/R = I_R + \Box i_L(t) + i_C(t) = 0 + i(t) = i_R(t)$$

【參考:若使用複數的Z · $j \equiv \sqrt{-1}$ · $Z_R \equiv R$ · $Z_L \equiv j\omega L$ · $Z_C \equiv 1/j\omega C$ · 則串聯用 $Z = Z_1 + Z_2$ · 並聯用 $1/Z = 1/Z_1 + 1/Z_2$ · 都可得到前面的結果。】

Power in AC Circuit

$$P(t) = iv = I \sin(\omega t)V \sin(\omega t + \phi) = IV [\cos \phi - \cos(2\omega t + \phi)]/2 \circ$$

$$P_{av} = (1/T) \int_{0}^{T} P(t)dt = (IV/2T) \int_{0}^{T} [\cos \phi - \cos(2\omega t + \phi)]dt = (1/2)IV \cos \phi \circ$$

$$< i^{2} > = (1/T) \int_{0}^{T} I^{2} \sin^{2}(\omega t)dt = (I^{2}/2T) \int_{0}^{T} [1 - \cos(2\omega t)]dt = I^{2}/2 \circ$$
同理 < v² >= (1/T) \int_{0}^{T} v^{2}(t)dt = V^{2}/2 \cdots

電器的A-V 值都是 I_{rms} & V_{rms} ,而不是I &V · V_{rms} =110 V 代表 V =156 V 。

Power Transmission

 $I_{rms} = P_{av}/(V_{rms}\cos\phi)$ 。若輸電線有電阻 r 則 $\log = I_{rms}^2 r = P_{av}^2 r/(V_{rms}^2\cos^2\phi)$ 。 (a) 電壓愈高,電流愈小 $\log \infty$ 愈小,故送電用高壓,台灣用 34.5 萬伏 ; (b) $\cos\phi$ 愈大 $\log \infty$ 小,因變壓器是電感性的,故電力公司並聯電容(右圖),就近提供電流給變壓器, $i_C(t) \& i_L(t)$ 反向把 ϕ 拉到0。另也串聯電容,用 $v_C(t) \& v_L(t)$ 反向的原理來增高變壓器,以抵消電阻 r 造成的電壓損失。

Transformer (變壓器)

Soft iron 中 $i_1(i_2)$ 建立 flux $\phi_1(\phi_2)$ · total $\phi = \phi_1 - \phi_2$ 。 $v_1 = N_1 d\phi/dt$ · $v_2 = N_2 d\phi/dt$ · $v_1 & v_2 = N_2 d\phi/dt$ · $v_2 = N_1 & v_2 = N_1 & v_2 = N_2 & v_2 & v$

(1) 當 $Z \to 0$ 時 $\cdot I_2 \to \infty$ $\cdot \phi_2 \to \infty$ 。但因 $v_1 = N_1 d\phi/dt$ 有限大 $\cdot \phi = \phi_1 - \phi_2$ 不能 太大 \cdot 故須 $\phi_1 \to \infty$ 且與 ϕ_2 同相才能抵消 \cdot 即 $i_1 \to \infty$ 且與 i_2 同相。又已知 $v_1 \& v_2$ 同相 \cdot 故 $\phi_{p_1} = \phi_{p_2}$ 。

(2) 當 $Z \to \infty$ 時 $I_2 = V_2/Z \to 0$ $\phi_2 \to 0$ 變壓器只是大電感 故 $\phi_{p_1} = 90^\circ$

結論:當 $0 \le Z \le \infty$ 時, $\phi_{p_2} \le \phi_{p_1} \le 90^\circ$ (變壓器是電感性的,使 $\phi_{p_1} \ge \phi_{p_2}$)。

【參考不考: $\phi_{11} = \phi_{21} = N_1 k I_1$ · $\phi_{22} = \phi_{12} = N_2 k I_2$ · \therefore $L_1 = N_1 \phi_{11} / I_1 = N_1^2 k$ · $L_2 = N_2 \phi_{22} / I_2 = N_2^2 k$ · $M = M_{12} = N_1 \phi_{12} / I_2 = N_1 (N_2 k I_2) / I_2 = N_2 N_2 k$ 。 若使用複數的 Z · $j \equiv \sqrt{-1}$ · 則等效阻抗 $Z_{eq} = -\omega k N_1^2 Z / (N_2^2 \omega k + j Z)$ 。】

防止 Eddy current:切成一片一片,如右圖。

Impedence matching

假設變壓器不消耗能量,電源送出的功率全被 Z 消耗,則

 $P_{av} = (V_1^2 / 2Z_{eq}) \cos \phi_{p1} = (V_2^2 / 2Z) \cos \phi_{p2} = (N_2 / N_1)^2 (V_1^2 / 2Z) \cos \phi_{p2}$

 $\therefore Z_{eq} = Z(N_1/N_2)^2(\cos\phi_{p1}/\cos\phi_{p2})$ · 變壓器也能變阻抗。

- (a) 當Z很小時 · $\phi_{p2} \approx \phi_{p1}$ · 故 $Z_{eq} \approx Z(N_1/N_2)^2$ 。
- (b) 當右圖音箱的阻抗 z_2 透過變壓器變成 z_{2eq} ,而與擴大機的內阻抗 z_1 相等時,音箱消耗的功率最高。

H.W.: Ex. 35; Prob. 6, 7, 8, 12, 13.

Ch. 34 Maxwell's Equations; Electromagnetic Waves

(1) Faraday showed in 1845 that \vec{B} field affected a beam of light passing through glass.

(2) $1/\mu_0 \in (1/4\pi) = (1/4\pi)$

Displacement Current (位移電流)

考慮以C為邊界的曲面A & B。根據 Ampere's law·

$$\oint_C \vec{B} \cdot d\vec{\ell} = \mu I \quad \text{for } \vec{\mathbf{m}} A \cdot \vec{\mathbf{m}}$$

= 0 for 面 B ? 錯 · Ampere's law 須修正 ·

電容內有電場 $E = \sigma/\epsilon = q/\epsilon$ $A \cdot \therefore q = \epsilon EA = \epsilon \phi_E \cdot \phi_E$ 是通過面 B 的向右電通量。 (另法:假設完美導線,則 A 上無電場, $q = \epsilon \oint_{A \cup B} \vec{E} \cdot d\vec{A} = \epsilon \oint_B \vec{E} \cdot d\vec{A} = \epsilon \phi_E$ 。)

 $I = dq/dt = \in d\phi_E/dt$ · 若把 Ampere's law 修改成 $\oint_C \vec{B} \cdot d\vec{\ell} = \mu(I_{encl} + \in d\phi_E/dt)$ ·

則適用於 $A \& B : \oint_C \vec{B} \cdot d\vec{\ell} = \mu I$ for $A : (:: \in d\phi_E/dt = 0)$

$$=\mu \in d\phi_E/dt$$
 for B (:: $I_{encl}=0$).

(若導線非完美‧則A&B上都增加等量的向右電通量。) ($\vec{B}\cdot d\vec{\ell} = \dots + \mu \in d\phi_E/dt$ Maxwell's induction law。

Maxwell Faraday