[CSED233-01] Data Structure Priority Queue and Heap

Jaesik Park

Enqueue

P1
Back

Front

Dequeue

Announcement

- Programming assignment #2
 - Announced: March 24
 - Due date: April 7 midnight
- Office Hour
 - We have two sessions
 - At 1PM~2PM
 - Every Tuesday: Professor
 - Every Thursday: Teaching Assistants

Unique Binary Tree (by Two Traversals)

- We can identify the binary tree uniquely by two traversal sequences like:
 - (postorder & inorder), (preorder & inorder), (level-order & inorder)
 - *inorder*. to find Left & Right child/subtrees
 - postorder. to find the Root (the last in postorder)
 - preorder. to find the Root (the first/ in preorder)
 - *level-order*. to find the Root
- However, the other combinations leaves some ambiguity in the tree structure

What about preorder and postorder?

Check Why ©

- Given a preorder traversal and a postorder traversal,
 - can we reconstruct a general tree? No!
 - can we reconstruct a binary tree? No!
 - can we reconstruct a complete binary tree? Yes!

Priority Queue

- We learned queue
 - FIFO (First-In First-Out) list
 - Similar to top in the stack, here we have front and rear
 - $Q = \langle a_1, a_2, ..., a_n \rangle$
 - Enqueue, Dequeue, ...
- How to incorporate priority for queue?
- Priority queue consists of a set of elements (organized by priority)
 - Each element x has a *priority p(x)* (also called *importance* or *key*)
 - Not necessarily unique
 - Supports the following operations:
 - *Insert(x, H)* arbitrary element insertion
 - DeleteMin(H) = Min(H) + Delete
 - Delete elements in the order of priority

Priority Queue's Implementation

Obvious ways to implement

	Insert	DeleteMin
Normal queue	O(1)	O(n)
Unsorted linked list	O(1)	O(n)
Sorted linked list	O(n)	O(1)

• O(n) seems too much... Can't we implement this better?

Heap!

Heap

- Tree-based data structure that satisfies the heap property
 - if B is a child node of A, then $p(A) \le p(B)$
 - Implies that an element with the lowest priority is always in the root node (*min-heap*) ↔ *max-heap*
- To efficiently implement a priority queue
 - Insert & DeleteMin: O(log n)
- There are different types of heaps
 - Binary heap
 - Binominal heap
 - Supports quickly merging two heaps
 - Fibonacci heap, 2-3 heap, etc.
- We will learn binary heap as an example ☺

Binary Heap

Satisfying two properties:

- (1) Complete binary tree (Structural property)
 - Can be implemented in an array
- (2) Min tree (Heap order property)
 - p(node) ≤ p(children)

Min-Heap

(2') $p(node) \ge p(children) \Leftrightarrow Max-heap$

Recap: Complete Binary Tree

- Relaxed definition of a full binary tree
- A binary tree of height h is complete, if
 - All levels (possibly except h) are completely full
 - Level h (leaf level) is filled from left to right

full binary tree with 7 nodes

Complete binary tree with 6 nodes

Min-Heap: Structural Property

• Complete binary tree (CBT) with 10 nodes

Min-Heap: Heap Order Property

- Complete binary tree (CBT), satisfying *min-heap order property*
- → Min-Heap

Insert into Min-Heap

- Now, we want to insert a new element x into the heap H
 - Insert(x, H), p(x) = 4

Insert into Min-Heap: Hole Creation

- Step-1: Create a hole & then store x in it
 - To satisfy the structural property (CBT), a new node must be added to the *rightmost* position of the *lowest* level

- Step-2: Restore the heap order property
 - Compare p(x) with p(parent) & swap them if necessary
 - Upward movement by swapping 4 & 8

- Step-2: Restore the heap order property
 - Compare p(x) with p(parent) & swap them if necessary
 - Upward movement by swapping 4 & 8
 - Called "Up-heap Bubbling"

- Step-2: Restore the heap order property
 - Compare p(x) with p(parent) & swap them if necessary
 - Upward movement by swapping 4 & 5

- Step-2: Restore the heap order property
 - Compare p(x) with p(parent) & swap them if necessary
 - Upward movement by swapping 4 & 5

- Step-2: Restore the heap order property
 - Compare p(x) with p(parent) & swap them if necessary
 - No more up-heap bubbling
- Insertion completed

Insert into Min-Heap: Time Complexity

• Time complexity of insertion? = $O(\log(n))$

DeleteMin from Min-Heap

- We want to delete an element with the lowest priority
 - DeleteMin(H)

DeleteMin from Min-Heap

• Step-1: Remove the root & then move the last element to the hole (root)

DeleteMin: Remove Root

• Step-1: Remove the root & then move the last element to the hole (root)

DeleteMin: Move Last One

• Step-1: Remove the root & then move the last element to the hole (root)

- Step-2: Restore the heap-order property
 - Compare p(x) with p(children) & swap them if necessary
 - Downward movement by swapping 8 & 4

- Step-2: Restore the heap-order property
 - Compare p(x) with p(children) & swap them if necessary
 - Downward movement by swapping 8 & 4
 - Called "Down-heap Bubbling"

- Step-2: Restore the heap-order property
 - Compare p(x) with p(children) & swap them if necessary
 - Downward movement by swapping 8 & 5

- Step-2: Restore the heap-order property
 - Compare p(x) with p(children) & swap them if necessary
 - Downward movement by swapping 8 & 5

- Step-2: Restore the heap-order property
 - Compare p(x) with p(children) & swap them if necessary
 - No more down-heap bubbling
- DeleteMin completed

DeleteMin: Time Complexity

• Time complexity of DeleteMin ? $= O(\log(n))$

Heap-Building Process

- Obvious way
 - Insert *n* elements one at a time
 - (i.e.) *n* successive insertions
 - Time complexity ?
 - $= O(n \log n)$ in the worst case
- More efficient way
 - When all *n* elements are available in advance
 - Algorithm of O(n) time:
 - How?

- Place *n* elements into an *array-based CBT* in any order
- Heapify the complete binary tree

Many Ways of Rearranging CBT

How to Heapify CBT

- How do we pick the *best* rearrangement
- Algorithm (from induction)
 - Input: Array-based CBT
 - 1) Start with the rightmost array position k that has a child (NB: the last non-terminal node at index $k = \lfloor n/2 \rfloor$), n is # of nodes
 - 2) If the subtree rooted at k is not a min-heap
 - Rearrange the subtree (by pushing down k until it reaches a level where it is less than its children, or is a leaf node)
 - 3) Repeat the step-2 at k-1, k-2, ..., 1 (from the high index of the array to the low index)

Heapify the above min-heap into a max-heap

Down-heap bubbling

Move to the next lower array position

• Done for 5

Move to next lower array position

• Done for 4

• Done!

Time Complexity of heapifying CBT

- Number (subtrees at level k) $\leq 2^k$
- Time (each subtree) = O(h k)
- Time (all subtrees at level k) $\leq 2^k (h k)$
- Total time = $O(\sum_{k=0}^{h-1} 2^k (h-k)) = ... = O(2^h) = O(n)$

height = h

- 1) Start with the rightmost array position k that has a child (NB: the last non-terminal node at index $k = \lfloor n/2 \rfloor$), n is # of nodes
- 2) If the subtree rooted at *k* is not a min-heap

 Rearrange the subtree (by pushing down *k* until it reaches a level where it is less than its children, or is a leaf node)
- 3) Repeat the step-2 at *k-1, k-2, ..., 1* (from the high index of the array to the low index)

References

- Further reading list and references
 - https://en.wikipedia.org/wiki/Priority_queue
 - https://en.wikipedia.org/wiki/Min-max_heap
 - https://en.wikipedia.org/wiki/Binomial_heap
- Slide credit
 - Jaesik Park
 - Seung-Hwan Baek
 - Jong-Hyeok Lee