An Introduction to Molecular Dynamics

Prof. Michael Shirts

University of Colorado Boulder

7th i-CoMSE Workshop: Molecular Dynamics

Boise State University, July 2024

Licence: CC-BY 4.0

Why do molecular modeling?

- Why do we bother doing molecular modeling?
- Much of engineering is about modeling a system well enough to make predictions about how to design and control the system.
- So why not model at a molecular level?

Why do molecular modeling?

- What can we get out of molecular simulations?
- Thermodynamics
 - Ensemble averages of configurations
 - Free energy related quantities
 - Distributions of molecular configurations
- Kinetics/transport
 - Dependent on the paths that molecules take
 - Rates of transfer between configurations
 - Diffusion, viscosity, protein conformations, polymer aging

Molecular dynamics simulations are classical approximations to the QM equations

- Closest to truth: relativistic time-dependent Schrödinger equation
 - Almost always with molecules, you can ignore relativity
 - Must be solved numerically for any real system
 - Even then, anything more complex than a few atoms cannot be handled at this ab initio level.
- We usually assume that the nuclei move like classical points (Born-Oppenheimer approximation)
- This allows us to do Ab Initio Molecular Dynamics (AIMD)
 - Use some approximation for Schrodinger's equations to solve for the electronic wavefunction, and then use Coulomb's law to describe how it moves the nuclei around.
- But what if we average out the electronic degrees of freedom, and just approximate the effects of the electrons on the nuclei?

Classical MD simulation

Cons:

- As we average out electron behavior, we lose accuracy
- Have to add in bonds making/breaking by hand.
- No understanding of interaction of light with models.
- Interactions like pi-cations really hard to model.

Pros:

- Orders of magnitude faster 10³-10⁹
- Actually more accurate for many problems it's REALLY hard to get the density of liquid water right with AIMD; you can't even attempt to calculate free energies of ligand binding or mutation
- It's a model you use the model that works

A classical system follows Newton's equations of motion

$$m\vec{a}_i(t) = \overrightarrow{F}_i(\vec{x}(t)) = -\nabla U(\vec{x}_i) = -\left[\frac{\partial U}{\partial x_i}, \frac{\partial U}{\partial y_i}, \frac{\partial U}{\partial z_i}\right]$$

$$\frac{\partial^2 x_i}{\partial t^2} = -\frac{1}{m} \nabla U(\vec{x})$$

- General strategy:
 - Specify the positions and velocities at time t.
 - Approximate the positions and velocities at time t+Δt using the differential equation
- How we get "good" positions and velocities is an excellent question for any simulations

Go to the notebook!

- Simple_MD.ipynb
- Taylor series solution
- Energy Drift
- Verlet and higher order solutions
- Shadow Hamiltonians
- Stiffness

What sort of ensemble does MD generate?

- MD simulates the NVE ensemble (it conserves energy!)
- With a bit of tweaking, MD can also allow us to capture canonical (NVT) and isobaric-isothermal (NPT) ensembles

What comes out of an MD simulation?

- Time series of the coordinates/velocities
- Time series of the energies and forces (+ other derived quantities like pressure, etc).
- This is sufficient to calculate pretty much anything we want to get
- The problem is HOW to extract data of interest when you have 3N x number of frames data points!

Why do we need to thermostat molecular dynamics?

- Molecular dynamics is a solution to the initial value partial differential equations defined by Newton's equation of motion
- Newton's laws of motion conserve energy
- Therefore this gives constant number of particles, constant volume, and constant energy
- But we want answers at, say 300 K?

We want to simulate properties at constant T

What does it mean to be a constant T ensemble?

Exchange thermal energy until at equilibrium

What does it mean if you see a graph like this from a simulation?

- This is actually $\frac{2KE}{Nk_R}$
- $T = \frac{2\langle KE \rangle}{NK_B}$, but the temperature is T in an NVT simulation.

How does REAL LIFE thermal equilibration happen?

- Our system is surrounded by other molecules
- They bang into our system, and exchange kinetic energy
 - If they are hotter than the system average, then energy goes into the system
 - If they are cooler than the system average, then energy goes out of the system

A very simple thermostat (Andersen)

- With some probability p (or frequency N), our particles collide
 - (with what? some imaginary particle)
 - and we randomize their velocity to the Maxwell-Boltzmann distribution
- This is the Andersen thermostat
- •In GROMACS, tcoup1 = andersonmassive
- Need to set ref_t as well!

Langevin dynamics

$$mdv/dt = F + R - \gamma v$$

- Add thermal energy by adding random noise
 - Like a particle colliding!
 - But, all of the particles are colliding, even ones inside your system
- Suck excess thermal energy awa with a friction term
 - Like moving through a fluid, which do necessarily make sense if you are simulating your fluid already . . .
- Balance the friction loss and random noise to be equal when you are at the right T $\langle R \rangle = 0 \ \langle R^2 \rangle = 2k_BT\gamma$
 - Implemented as integrator = sd in gromacs.
 - Very good stability!
 - If you add too much random noise, and suck out too much velocity, it slows the dynamics.

How do we get thermal energy into and out of the system?

- We modify the kinetic energies of the particles
- First guess:
 - If the average thermal energy is too high, decrease the velocity of all particles
 - If the average thermal energy is too low, increase the velocity of all particles
- This is the weak coupling thermostat
- In GROMACS, tcoup1 = berendsen
- Need to set ref t as well!

How quickly do we pump energy in or out?

- Let's say the system has 110 kJ mol. At the temperature you specified, it should have 100 kJ/mol on average
 - Do you take out 10 kJ/mol each step?
 - Or do you take out 1 kJ/mol each step?
- This will define a rate at which excess kinetic energy is removed

$$dK/dt = k(K-K_0)$$

- k has units of $1/\text{time} = 1/\tau$
- In GROMACS, this is tau_t.

Problem with Berendsen!

It suppresses fluctuations!

Berendsen thermostat

Example: Kinetic energy distributions

Velocity rescale thermostat

Analytical T=300.0K 0.3Trajectory 0.25 Probability [%] 0.2 0.15^{-1} 0.1 0.050 6200 6400 6600 6800 7000 7200 Kinetic energy [kJ/mol] $T_{\mu} = 299.94 \pm 0.04 \text{ K}$ $T_{\sigma} = 301.01 \pm 1.47 \text{ K}$

p = 0.214045

Berendsen thermostat

Bussi-Parrinello

- A simulation should not have a single kinetic energy.
 It should have a Maxwell-Boltzmann kinetic energy distribution.
- Don't target a fixed kinetic energy K. Target at random K, chosen from the Maxwell-Boltzmann distribution
- This gives a correct distribution of kinetic energies
- Rigorously consistent with NVT and exp(-βU)

 $dK/dt = k(K-K_{Maxwell-Boltzmann})$

In GROMACS, tcoup1 = v-rescale

Nosé-Hoover thermostat

- Also a scaling thermostat:
 - If kinetic energy K is too big, make all particles slower
- Math is too complicated for today
- But it is essentially a second-order thermostat

$$dK/dt = k(K-K_0)^2$$

- Relaxes to right K faster than Berendsen
- BUT can oscillate back and forth
 - This can be bad for solids
- Almost always gives the right NVT

Do I need a thermostat?

- Unless you are measuring transport properties, almost certainly yes.
- It is VERY EASY to start a simulation at too high a total E. Need to maintain T!
- If your simulation is SLIGHTLY not obeying F=ma, it will keep the simulation from accumulating or losing much energy

Thermostat recommendations

- Langevin is most stable, but slows system down a bit, especially at large friction values
 - Anderson is slows things down a bit more.
 - The ONLY ones you should use for gases
- Bussi-Parrinello is simple and usually very good
- Parrinello-Rahman is OK for liquids, not so good for gases/solids
- Berendsen (weak coupling) is only good to equilibrate a system.

Periodic Boundary Conditions

Periodic Boundary Conditions

- Minimum image convention
 - Means box can't be smaller than 2x the longest energy cutoff
- Boxes can be cubic or tilted
 - Specify in the gro file, not mdp
- When not to use:
 - Single molecule
 - Droplet
- Molecules can't be longer than than the box, or you get weirdness.

Barostats

- So: We know how to handle NVT
- What about NPT
 - Where the volume is not constant?
 - System exchanges volume with the surroundings until in mechanical equilibrium with its environment.

Possible ways to tile 3d space

box type	image distance	box volume	box vectors			box vector angles		
			а	b	С	∠ bc	∠ ac	∠ ab
cubic	d	d^3	d	0	0	90°	90°	90°
			0	d	0			
			0	0	d			
rhombic dodcahdron (xy-square)	d	$\frac{1}{2}\sqrt{2} \ d^3$ 0.707 d^3	d	0	$\frac{1}{2}$ d	60°	60°	60°
			0	d	$\frac{1}{2}$ d			
			0	0	$\frac{1}{2}\sqrt{2}\ d$			
rhombic dodcahdron (xy- hexagon)	d	$\frac{1}{2}\sqrt{2} d^3$ 0.707 d^3	d	$\frac{1}{2}$ d	$\frac{1}{2}$ d	60°	60°	60°
			0	$\frac{1}{2}\sqrt{3} d$	$\frac{1}{6}\sqrt{3}\ d$			
			0	0	$\frac{1}{3}\sqrt{6} d$			
truncated octahedron	d	$\frac{4}{9}\sqrt{3} \ d^3$ 0.770 d^3	d	$\frac{1}{3}$ d	$-rac{1}{3} d$	71.53°	109.47°	71.53°
			0	$\frac{2}{3}\sqrt{2} d$	J			
			0	0	$\frac{1}{3}\sqrt{6} d$			

rhombic dodecahedron

truncated octahedron

How does a real life barostat work?

- Particles collide with your system.
 - If there are lots of hard collisions with your system, it pushes your system together
 - If there are few hard collisions with your system, your system pushes out.
- How can we model that in a periodic boundary system?

How does an MD barostat work?

$$P = \left\langle \frac{1}{V} \left(2K + \frac{1}{3} \sum_{i>j} r_{ij} \cdot F(r_{ij}) \right) \right\rangle$$

- The virial compares the "pushing out" of the kinetic energy with the "pulling in" of the forces
- We compare the averaged quantity to P
- This is an "instantaneous pressure" not the external pressure. The pressure is constant.

Properties of "instantaneous pressure"

$$P = \left\langle \frac{1}{V} \left(2K + \frac{1}{3} \sum_{i>j} r_{ij} \cdot F(r_{ij}) \right) \right\rangle$$

Can oscillate wildly (like, several 1000 atm!)

How does an MD barostat work?

Do we shrink molecules??

How a barostat works

- "P"estimate > Pdesired
 - Shrink box by some factor s
- "P"estimate < Pdesired
 - Expand box by some factor s
- HOW BIG should s be?
- Let's make s is proportional to P_{estimate} -P_{desired}
- What is the constant of proportionality, i.e. how QUICKLY does one respond to differences in pressure?
- Governed by tau_p
- If we say: $V_{\text{new}}/V_{\text{old}} = k(P_{\text{estimate}}-P_{\text{desired}})$
- Berendsen's weak coupling barostat
- pcouple=Berendsen, and set ref_p as well!

Parrinello-Rahman barostat

- Parrinello-Rahman barostat
 - Similar theory to Nosé-Hoover thermostat
 - 2nd order, so approaches true answer with some oscillations
 - Common in most MD packages
 - Rigorously* gives NPT
 - Has some minor errors if you have constraints, like rigid water, hydrogen bond constraints
 - Tends to be somewhat numerically unstable, especially for small systems
 - pcoupl = Parrinello-Rahman

Cell-resizing thermostat

- Very new!
- Similar theory to Bussi-Parrinello thermostat
- Like Berendsen, but with added fluctuations to get NPT right.
- Rigorously gives NPT
- Not that well understood where it might fail, but in theory it should be the best barostat
- •pcoupl = c-rescale

Monte Carlo Barostat

- Change the system volume by a random small amount
- If U+PV is lower, then accept the change
- If U+PV is higher, then roll a random number to accept
 - If change is accepted, then shrink/expand the box
- Gives correct NPT volume distributions!
- Breaks the dynamics
- Barostats already break the dynamics, since particles don't magically move together and apart in nature

Other possibilities for a barostat

- Isotropic
 - Box side ratios do not change
- Anisotropic:
 - All box sides can move independently.
 - The ratio of the sides can change
- Semiisotropic
 - x and y isotropically, but not z
 - Common for bilayer/ lamellar simulations

What can go wrong with a barostat?

- The systems of equations for MD are significantly less stable than MD alone or MD + barostat
 - Because particles can get "scaled" into each other!
- More likely to crash.
 - If you start from a bad configuration.
 - If the system is poorly equilibrated
 - If the system is very small.
 - If there is some sort of phase separation or self-assembly

Do I need a barostat?

- You almost certainly need a barostat to relax your simulation to the equilibrium volume.
 - You don't want to run at a density that is too high or too low
 - Like running at 1000 atm, or bubbles could form.
- BUT if your system is highly incompressible, you may not need to run your simulation at NPT once it reaches the right P
 - You could average the volume over the last 100 ps, find the average volume, and pick a frame with that average volume, and run with that barostat
- OFTEN results are OK with the Berendsen barostat

Some guidelines

Thermostats:

- For equilibration, have a SHORT tau_t
 - 0.1 to 1 ps
- For production, have a LONGER tau_t
 - 5 or 10 ps

Barostats:

- Instantaneous pressure will frequently oscillate between +/- 1000 atm for a low compressibility fluid. THIS IS NORMAL!
- Generally, keep tau_p about 5x tau_t
- If the simulation crashes because of volume fluctuations, try a somewhat longer tau_p (2x-5x). Results will be valid as long as tau_p is < 0.1-1% of the simulation run.

