1.3.55 (down
$$|\mathbf{N}| = |\mathbf{Z}|$$
) aleph_0

$$f(x) = \begin{cases} \frac{x}{x-1} & x \in \{2k|k\in n\} \\ \forall k \end{cases}$$

- trebuie demonstrata bijectivitatea functiei f

1.3.42

- me vitare la propositia 1.3.16 (peutru (1))

$$A = \emptyset$$
 , B multime carecare

Il f: A → B functie injectiva

- (ii) Daca B # Ø, atunci & B B Ø (deci f mu are live. la
- (iii) Daca B=Ø, aturci 0=1ø:Ø→Ø bijectiva
- (2) câte inverse la etanga putem gàsi?

 f:A →B

 g:B →A

 $p -> q <=> \sim p v q$

5 7 5

$$A \leftarrow B : P$$

1_A = functia identica pe multimea A: $1_A(x) = x$

Existà ∞ fetti. $g: H \rightarrow \{0,1\}$ actfel imeat g(0) = 0, g(1) = 1si $g(m) \in \{0,1\}$, cônd $m \ge 3$.

2° astfel de function

232

$$f_{i}(1) = L_{3}i=1,2$$

 $f_{1}(2) = 2_{3}f_{2}(2) = 3$
 $f_{1}(3) = 4_{3}i=1,2$

Cautam f: 30,1,2/ -> H a.T.

80 t = 04 (=)

 $Ax \in V$ $f(x) \equiv x \pmod{3}$ $Ax \in V$ f(x) = x = x

 $f(0) = 3k_0, k_0 \in M$ $f(1) = 3k_1 + 1, k_1 \in M$ $f(2) = 3k_2 + 2, k_2 \in M$ gibara bij. is 3! finas an gof = 1x

=> q este @ inv. la dreapta pt. q

Presuperiere f: A-B oltà im. la dr.

$$g \circ f = \Delta_A$$
 so obtained compunem la stanga cu $g^{(-1)}$

, <= 3! f: A → B a ... g o f = A => g suzj.

trebuie arâtat ca q este injectiva

Tema: MRA

1.3.57

1A1= m

ex: +: A x A -> A +(a, b) = a + b;

*: A×A -> A (operatie)

(1)
$$|A^{A\times A}| = m^{(m^2)} (\pm (m^m)^2 = m^{2m})$$

 $|A^{(A \times A)}| = |A|^{(A \times A)} = n^{(n^2)}$

(2)
$$A = \{\alpha_1, \ldots, \alpha_m\}$$

a * b = b * a

$$m^{(N+2+...+m)} = m^{\frac{2}{(m(m+1))}}$$

IB ^ AI = IBI ^ IAI = n ^ [n + (n - 1) ... + 2 + 1] = n ^ [n(n + 1)/2] operatic countative

(3) Tema

e * x = x * e = x