Amino Acid metabolism

RidA catalyzes the hydrolytic deamination of enamine/imine intermediates

Present in all Domains of life

Salmonella enterica

- Gram(-) bacillus bacteria with several copies of RidA genes
- Has multiple RidA gene copies

- Does knocking out of RidA gene copies alter the metabolome?
- Is it dose dependent?

Ways to analyze the data

T-test & volcano plots

Principal component analysis

T Test

T Test 100% Metabolite X [conc.] 0%

Y=MX+B

- Y is our phenotype
- X is our treatment coded as 0/1
- B is intercept
- M is slope

T Test

- Is the slope Nonzero?
- If yes, there is an effect
- If no, there is no effect

T Test

- Is the slope Nonzero?
- If yes, there is an effect
- If no, there is no effect

Principal Component Analyses

We start with correlated high dimensional data

Center the points and identify line with highest variance

Compute the Covariance matrix

h u
h 2.0 0.8
$$cov(h,u) = \frac{1}{n} \sum_{i=1}^{n} h_i u_i$$

u 0.8 0.6

Calculate eigenvectors and eigenvalues

$$\begin{pmatrix}
2.0 & 0.8 \\
0.8 & 0.6
\end{pmatrix}
\begin{pmatrix}
e_h \\
e_u
\end{pmatrix} = \lambda_e \begin{pmatrix}
e_h \\
e_u
\end{pmatrix}$$

$$\begin{pmatrix}
2.0 & 0.8 \\
0.8 & 0.6
\end{pmatrix}
\begin{pmatrix}
f_h \\
f_u
\end{pmatrix} = \lambda_f \begin{pmatrix}
f_h \\
f_u
\end{pmatrix}$$

Pick a set of eigenvectors with highest eigenvalues

Project data points to eigenvectors

Finished!

Ą

