MATH 5110

1). Write down bases for the column spaces of the matrices A, B, C:

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \\ 2 & 0 \\ 0 & 0 \end{pmatrix}$$

2). Consider the following matrix together with its row reduced echelon form:

$$A = \begin{pmatrix} 1 & 4 & 2 & 5 \\ 2 & 8 & 0 & -1 \\ -1 & 2 & 0 & 3 \end{pmatrix}, \quad \text{rref}(A) = \begin{pmatrix} 1 & 0 & 0 & -2.17 \\ 0 & 1 & 0 & 0.42 \\ 0 & 0 & 1 & 2.75 \end{pmatrix}$$

- a) Find the dimensions of the columnspace, the nullspace and the rowspace of A.
- b) Find bases for the columnspace, the nullspace and the rowspace of A.
- 3). Find all solutions of the equation $A\vec{x} = \vec{b}$ where

$$A = \begin{pmatrix} 3 & 5 & 25 \\ 7 & 9 & 53 \\ -4 & 5 & -10 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 53 \\ 105 \\ 11 \end{pmatrix}, \quad \text{rref}(A \ \vec{b}) = \begin{pmatrix} 1 & 0 & 5 & 6 \\ 0 & 1 & 2 & 7 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- 4). Suppose that A is a 3×5 matrix whose rank is 3. Write down $\operatorname{rref}(A^T)$.
- **5).** In each case, either prove the statement or give a counterexample to show that it is false:
 - $n \geq 3$, \vec{u} , \vec{v} , \vec{w} are linearly independent vectors in \mathbb{R}^n , and

$$S = \{ \vec{x} \in \mathbb{R}^n : \vec{u} - \vec{x} \in \text{Span}(\vec{v}, \vec{w}) \}$$

Then S is a subspace.

• A is a matrix whose first two column vectors are linearly independent; then the first two columns of rref(A) are pivot columns.

- $\vec{u}, \vec{v}, \vec{w}$ are independent vectors in \mathbb{R}^n , $S_1 = \operatorname{Span}(\vec{u}, \vec{v}, \vec{w})$, $S_2 = \operatorname{Span}(\vec{u} \vec{v}, \vec{v} \vec{w}, \vec{w} \vec{u})$; then $S_1 = S_2$.
- A is a 3×5 matrix whose row vectors are $\vec{v_1}, \vec{v_2}, \vec{v_3} \in \mathbb{R}^5$. Also

$$\operatorname{rref}(A) = \begin{pmatrix} 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

The vectors $\vec{v_1}, \vec{v_2}, \vec{v_3}$ are linearly independent.

6). Consider $A = (\vec{u_1} \ \vec{u_2} \ \vec{u_3})$ and let $\vec{b_1} = (2, 1, 4)^T$ and $\vec{b_2} = (0, -1, 2)^T$. Also

$$\operatorname{rref}(A\ \vec{b_1}\ \vec{b_2}) = \begin{pmatrix} 1 & 0 & 0 & 22/3 & 22/3 \\ 0 & 1 & 0 & 7/3 & 7/3 \\ 0 & 0 & 1 & -7/3 & -1/3 \end{pmatrix}$$

Find scalars c_1 , c_2 such that $\vec{x} = (0, 0, 1)^T$ is the solution of $A\vec{x} = c_1\vec{b_1} + c_2\vec{b_2}$.

7). Suppose that A is a 3×5 matrix whose columns are $\vec{v_1}, \dots, \vec{v_5}$. The rref form is

$$\operatorname{rref}(A) = \begin{pmatrix} 1 & 2 & 0 & -1 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Write $\vec{v_2}$ and $\vec{v_4}$ as linear combinations of $\vec{v_1}, \vec{v_3}, \vec{v_5}$.

- 8). Write down the standard matrix representation for the linear map $L: \mathbb{R}^2 \to \mathbb{R}^2$ which shrinks every vector's length by 1/2.
- **9).** The kernel of a linear map $L: \mathbb{R}^4 \to \mathbb{R}^3$ is spanned by the vectors (1, 2, 3, -1), (0, 1, 0, 2). Suppose that $\vec{x} = (1, 1, 2, -1)$ is a solution of the equation $L(\vec{x}) = \vec{b}$ for some vector \vec{b} . Find a vector $\vec{y} = (*, 0, *, 0)$ which also solves $L(\vec{y}) = \vec{b}$.
- 10). Let \vec{u}, \vec{v} be nonzero vectors in \mathbb{R}^n . Find the rank and nullity of the matrix $A = \vec{u} \vec{v}^T$.
- 11). [Challenge problem!] Let \vec{u}, \vec{v} be linearly independent vectors in \mathbb{R}^n . Find the rank and nullity of the matrix $A = \vec{u} \vec{v}^T + \vec{v} \vec{u}^T$.