Моделирование аукционов. Азбука.

Борис Демешев

4 марта 2011 г.

Содержание

1	Cpa	авнение аукционов в общем случае	аукционов в общем случае	
	1.1	Про симметричность	1	
	1.2	Еще об аффилированности	2	
	1.3	Решение трех аукционов	7	
	1.4	Теорема о сравнении доходностей	11	
	1.5	Задачи	13	
	1.6	Решения залач	13	

1 Сравнение аукционов в общем случае

Сравним доходность трех аукционов (первой, второй цены и кнопочного) для продавца в общем случае. Предположений у нас будет всего два: аффилированность сигналов и симметричность игроков.

1.1 Про симметричность

Для наглядности три примера впереди определения:

Пример 1.1. Совместная функция плотности сигналов имеет вид:

$$f(x_1, x_2, x_3) = \frac{7}{8} + x_1 x_2 x_3 \tag{1.2}$$

Ценности определяются по формулам:

$$V_1 = X_1 + \sqrt{X_2 X_3 + 1}$$

$$V_2 = X_2 + \sqrt{X_1 X_3 + 1}$$

$$V_3 = X_3 + \sqrt{X_1 X_2 + 1}$$
(1.3)

Все симметрично. Ценность товара для меня может по-особому зависеть от моего сигнала, но должна одинаково зависеть от сигнала других игроков. С моей точки зрения другие игроки одинаковые, и то, что знают они, чего не знаю я, должно одинаково воздействовать на ценность товара для меня.

Пример 1.4. Совместная функция плотности сигналов имеет вид

$$f(x_1, x_2, x_3) = x_1(\frac{7}{8} + \frac{1}{2}x_2x_3)$$
(1.5)

Ценности определяются по формулам:

$$V_1 = X_1 + \sqrt{X_2 X_3 + 1}$$

$$V_2 = X_2 + \sqrt{X_1 X_3 + 1}$$

$$V_3 = X_3 + \sqrt{X_1 X_2 + 1}$$
(1.6)

Несимметрична функция плотности.

Пример 2.1. Совместная функция плотности сигналов имеет вид

$$f(x_1, x_2, x_3) = \frac{7}{8} + x_1 x_2 x_3 \tag{2.2}$$

Ценности определяются по формулам:

$$V_1 = X_1 + \sqrt{X_2 X_3 + 1}$$

$$V_2 = X_2 + X_3$$

$$V_3 = X_3 \cdot X_1$$
(2.3)

Несимметричны ценности.

Для формальности:

Определение 2.4. Функция f(a, b, c, d, e) симметрична относительно аргументов a, b, c, если ее значение не изменится при перестановке a, b, c в другом порядке.

Пример 2.5. Функция симметричная относительно x и y: f(x, y, z) = xy + z

Пример 2.6. Функция симметричная относительно всех аргументов: f(w, x, y, z) = xyz + wxy + wxz + wyz

Определение 2.7. Игроков будем называть симметричными, если:

- 1. Совместная функция плотности $f(x_1, x_2, ..., x_n)$ симметрична по всем аргументам
- 2. Ценность V_i определяется по формуле:

$$V_i = u(X_i, X_{-i}) (2.8)$$

где: X_{-i} — это вектор $(X_1,X_2,...,X_n)$ в котором отсутствует X_i , а функция $u(t,t_1,t_2,...,t_{n-1})$ симметрична по переменным $t_1,...,t_{n-1}$

1.2 Еще об аффилированности

Сперва кое-что о вероятностях...

Если у нас есть случайная величина Z, то мы можем построить функцию z(y) = E(Z|Y=y). Рассмотрим эту функцию в случайной точке Y:

$$E(z(Y)) = \int_0^1 z(y) f_Y(y) dy = \int_0^1 \int_0^1 z \cdot \frac{f(y,z)}{f_Y(y)} dz f_Y(y) dy = \int_0^1 \int_0^1 z \cdot f(y,z) dy dz = E(Y)$$
(2.9)

Значит это нам это дает способ расчета E(Z):

$$E(Z) = \int_0^1 E(Z|Y=y) f_Y(y) dx$$
 (2.10)

Честно говоря, этот способ мы уже использовали. Он очень мощный.

Лирическое отступление для интересующихся. Если глубоко копать, то можно понять, что это не что иное, как теорема о трех перпендикулярах из 11-го класса средней школы. Намекну: мат. ожидание случайной величины — это ее проекция на множество действительных чисел. Квадратом расстояния между двумя случайными величинами при этом служит $E((X-Y)^2)$. Например, теорема Пифагора формулируется так: $E(X^2) = E(m^2) + E((X-m)^2)$. Три перпендикуляра: наклонная — это Y; плоскость — это множество случайных величин, записывающихся как функция от X; проекция на плоскость — это E(Y|X=x) взятая в случайной точке X; константы — это прямая в нашей плоскости; E(Y) — это проекция на прямую...

Аналогично, довесив условие X = x слева и справа, можно получить, что:

$$E(Z|X=x) = \int_0^1 E(Z|Y=y \cap X=x) f_{Y|X}(y|x) dy$$
 (3.1)

Это не очевидно. Те, кому интересна теория вероятностей могут это вывести, остальные могут поверить.

Теперь вернемся к аффилированности:

Теорема 3.2. Если $X_1, ..., X_n$ аффилированы, то и $X_1, Y_1, Y_2, ..., Y_{n-1}$ аффилированы.

Доказательство. Великие о-малые говорят нам, что совместная функция плотности вектора $X_1, Y_1, Y_2, ..., Y_{n-1}$ на участке $y_1 > y_2 > ... > y_{n-1}$ равна:

$$f_{X_1,Y_1,...,Y_{n-1}}(x_1,y_1,y_2,...,y_{n-1}) = (n-1)!f(x_1,y_1,...,y_{n-1})$$
(3.3)

Нам нужно проверить супермодулярность логарифма:

$$\ln(f_{X_1,Y_1,...,Y_{n-1}}(x_1,y_1,y_2,...,y_{n-1})) = \ln((n-1)!) + \ln(f(x_1,y_1,...,y_{n-1}))$$
(3.4)

Вторые смешанные производные от левой части неотрицательны в силу того, что неотрицательны вторые смешанные производные от правой части.

Теоремы которые мы далее докажем будут верны для любых аффилированных случайных величин. Но мы будем иметь ввиду X_1 и Y_1 , поэтому и будем использовать соответствующие обозначения.

Теорема 3.5. Если из набора аффилированных величин некоторые удалить, то оставшиеся будут аффилированы

Доказательство. Пропущено. Если будут желающие, то допишу.

Из теорем 3.5 и 3.2 следует, что X_1 и Y_1 аффилированы. Знание этих двух величин всегда позволяет определить, победил ли первый игрок, и сколько он платит (по крайней мере для трех аукционов, которые мы сравниваем).

Нам надо изучать X_1 и Y_1 , чтобы все время не писать индекс $_1$ в доказательствах пока забудем про него.

Введем несколько обозначений для этой пары:

1. q(x,y) — их совместная функция плотности,

- 2. $g(y|x) = \frac{g(x,y)}{f_X(x)}$ условная функции плотности Y при заданном X
- 3. $G(y|x) = P(Y \le y|X = x)$ условная функции распределения Y при заданном X. Конечно, верно соотношение:

$$G(y|x) = P(Y \le y|X = x) = \int_0^y g(t|x)dt$$
 (3.6)

4. $R(y|x) = \frac{g(y|x)}{G(y|x)}$ — условная обратная функция риска Y при заданном X. Поясню смысл последней. Это шансы того, что Y будет около y, если известно, что

 $Y \leq y$ и X=x. Например, значение R(10,20)=30 можно проинтерпретировать так. Возьмем маленький $\Delta y=0.01$. Тогда $P(Y\in[9.99;10]|Y\leq 10,X=20)\approx 30\cdot 0.01=0.3$.

Теорема 4.1. Если случайные величины X и Y аффилированы, и g(x,y) — их совместная функция плотности, то¹

- 1. Условная функция распределения G(y|x) не возрастает по x
- 2. Условная обратная функция риска $R(y|x) = \frac{g(y|x)}{G(y|x)}$ не убывает по x

Доказательство. Величины X и Y аффилированы, поэтому $\ln(g(x,y))$ — супермодулярная функция.

Рассмотрим пару точек (x', y) и (x, y'). Воспользуемся супермодулярностью:

$$\ln(g((x',y) \land (x,y'))) + \ln(g((x',y) \lor (x,y'))) \ge \ln(g(x',y)) + \ln(g(x,y')) \tag{4.2}$$

Или, без логарифмов:

$$g((x',y) \land (x,y')) \cdot g((x',y) \lor (x,y')) \ge g(x',y) \cdot g(x,y') \tag{4.3}$$

Пусть $x' \ge x$ и $y' \ge y$. Тогда:

$$g(x,y) \cdot g(x',y') \ge g(x',y) \cdot g(x,y') \tag{4.4}$$

Поскольку $g(x,y) = g(y|x) \cdot f_X(x)$ мы получаем:

$$g(y|x) \cdot f_X(x) \cdot g(y'|x') \cdot f_X(x') \ge g(y|x') \cdot f_X(x') \cdot g(y'|x) \cdot f_X(x) \tag{4.5}$$

Убираем повторы

$$g(y|x) \cdot g(y'|x') \ge g(y|x') \cdot g(y'|x) \tag{4.6}$$

Или:

$$\frac{g(y|x)}{g(y'|x)} \ge \frac{g(y|x')}{g(y'|x')} \tag{4.7}$$

Интегрируем по y от 0 до y':

$$\frac{G(y'|x)}{g(y'|x)} \ge \frac{G(y'|x')}{g(y'|x')} \tag{4.8}$$

¹Тут обычно вводят кучу определений (стохастическое доминирование, доминирование в терминах обратной доли риска и пр.), но мы не будем этого делать.

Переворачиваем дробь:

$$\frac{g(y'|x)}{G(y'|x)} \le \frac{g(y'|x')}{G(y'|x')} \tag{4.9}$$

Используя условную обратную функцию риска:

$$R(y'|x) \le R(y'|x') \tag{4.10}$$

А у нас $x \leq x'$. Это и означает, что $R(\cdot|x)$ не убывает по x.

Осталось доказать, что G(y'|x) не возрастает по x. Мы докажем, что $\ln(G(y'|x))$ не возрастает по x.

Заметим, что:

$$\frac{\partial \ln(G(y'|x))}{\partial y'} = \frac{g(y'|x)}{G(y'|x)} = R(y'|x) \tag{5.1}$$

Или:

$$\ln(G(y'|x)) = \int_{1}^{y'} R(t|x)dt$$
 (5.2)

Обратите внимание, что здесь несколько непривычные пределы интегрирования: не от 0, а от 1. Связано это с тем, что интеграл должен обращаться в 0 не при y'=0, а при y'=1. Действительно, у нас регулярное распределение на [0;1], значит G(1|x)=1 и $\ln(G(1|x))=0$. Заметьте, что знаки при этом совпадают: и слева отрицательное выражение, т.к. $G\in(0;1)$ и справа, т.к. верхний предел меньше нижнего.

Давайте перепишем в привычном варианте, когда верхний предел интегрирования больше нижнего:

$$\ln(G(y'|x)) = -\int_{y'}^{1} R(t|x)dt$$
 (5.3)

С ростом x подынтегрируемое выражение растет для любого t, значит растет результат интегрирования. Т.е. функция $\ln(G(y'|x))$ не возрастает по x.

Из этих свойств следует теорема имеющая более наглядный смысл:

Теорема 5.4. $Ecnu \ X \ u \ Y \ a\phi\phi unupo в a н ы, mo:$

- 1. Функция E(Y|X=x) не убывает по x
- 2. Если $\gamma()$ возрастающая функция, то $E(\gamma(y)|X=x)$ не убывает по x
- 3. Cov(X,Y) > 0

Доказательство. По определению:

$$E(Y|X=x) = \int_0^1 yg(y|x)dy$$
 (5.5)

Мы можем проинтегрировать по частям $(u=y,\,v'=g(y|x))$ и получить:

$$E(Y|X=x) = yG(y|x)|_{y=0}^{y=1} - \int_0^1 G(y|x)dy$$
 (5.6)

Поскольку мы работаем с регулярным на [0;1] распределением, то G(0|x)=0 и G(1|x)=1. Еще раз напомню, что выбор 0 и 1 в качестве границ распределения — это

просто масштабирование для удобства и все наши доказательства проходят без изменений для случая регулярного распределения на отрезке [a;b].

$$E(Y|X=x) = 1 - \int_0^1 G(y|x)dy$$
 (5.7)

Остается заметить, что с ростом x падает подынтегральное выражение и, следовательно, интеграл. Значит E(Y|x=x) возрастает.

Доказательство для произвольной $\gamma(y)$ ничем не отличается:

$$E(\gamma(Y)|X=x) = \int_0^1 \gamma(y)g(y|x)dy \tag{6.1}$$

Интегрируя по частям получаем:

$$E(\gamma(Y)|X=x) = \gamma(y)G(y|x)|_{y=0}^{y=1} - \int_0^1 \gamma'(y)G(y|x)dy$$
 (6.2)

Или:

$$E(\gamma(Y)|X = x) = 1 - \int_0^1 \gamma'(y)G(y|x)dy$$
 (6.3)

Снова замечаем, что с ростом x падает подынтегральное выражение. Вывод: $E(\gamma(Y)|X=x)$ возрастает по x.

Теперь про ковариацию. Пусть E(X) = m. Тогда:

$$Cov(Y, X) = Cov(Y, X - m) = E(Y(X - m)) - E(Y)E(X - m) = E(Y(X - m)) - E(Y) \cdot 0 = E(Y(X - m)) - E$$

Пользуемся условным способом расчета мат. ожидания 2.10:

$$E(Y \cdot (X - m)) = \int_0^1 E(Y(X - m)|X = x) f_X(x) dx = \int_0^1 E(Y|X = x)(x - m) f_X(x) dx$$
 (6.5)

Теперь мы замечаем, что если бы не было сомножителя E(Y|X=x) то интеграл бы равнялся нулю, т.к.

$$\int_0^1 (x-m)f_X(x)dx = E(X-m) = E(X) - m = 0$$
(6.6)

А теперь глядим на функцию $(x-m)f_X(x)$. Сначала она отрицательна, затем положительна, суммарная площадь равна 0:

.... тут картинка

Поскольку E(Y|X=x) возрастает по x, то холм растягивается сильнее, чем яма:

.... тут еще картинка.

Значит интересующий нас интеграл $\int_0^1 E(Y|X=x)(x-m)f_X(x)dx$ равный ковариации неотрицательный.

Нам потребуется изучать функцию $E(V_1|Y_1=y,X_1=x)$. Для краткости мы введем обозначение:

Определение 6.7.

$$v(x,y) = E(V_1|Y_1 = y, X_1 = x)$$
(6.8)

6

Самое время сделать упражнение 4

Теорема 6.9. Если $X_1, ..., X_n$ аффилированы, и д возрастает по всем аргументам, то $E(g(X_1,...,X_n|X_1=x_1,X_2=x_2)$ возрастает по x_1 и x_2 .

Доказательство. Пропущено. Если будут желающие, то допишу. Интуитивно: с ростом x_1 растут условные средние остальных переменных в силу аффилированности, а с их ростом растет функция g.

В частности из этой теоремы следует, что $v(x,y) = E(V_1|X_1 = x, Y_1 = y)$ возрастает по обоим аргументам.

Теперь у нас хватает сил, чтобы решить наши три аукциона в общем виде.

1.3 Решение трех аукционов

• Кнопочный аукциона.

Если вы разобрались с примером кнопочного аукциона для трех игроков, то замена трех на n несложная. Запишем традиционные обозначения:

 $-p_1,...,p_n$ — цены, на которых игроки покидают аукцион, упорядоченные по убыванию. Т.е., p_n — цена, на которой покинул аукцион самый слабый игрок, p_{n-1} — цена, на которой произошел второй выход. Заметим, что аукцион оканчивается на цене p_2 , т.е. когда аукцион покидает предпоследний игрок. А p_1 — цена, до которой был готов идти победитель, она остается неизвестной.

Стратегия описывается набором фукнций. Каждая функция говорит, до какого момента давить на кнопку, если моя ценность x и...

- $-b^n(x)$... все n игроков в игре
- $-\ b^{n-1}(x,p_n)-\dots$ в игре (n-1) игрок, а самый слабый вышел на p_n
- $-\ b^{n-2}(x,p_{n-1},p_n)$ в игре (n-1) игрок, а самый слабый вышел на $p_n,$ а следующий при цене p_{n-1}
- ..
- $-\ b^2(x,p_3,...,p_n)$ в игре 2 игрока, а выходы были на ценах $p_n,\ ...,\ p_3.$

На кнопочном аукционе равновесие Нэша можно найти по алгоритму:

- Шаг 1. В свою функцию ценности вместо всех сигналов подставляю x. Получаю: $b^n(x) = u(x, x, x, ..., x)$.
- Шаг 2. Предполагаю, что остальные игроки поступили также. Если я вижу, что первый выход был на цене p_n , значит сигнал x_n вышедшего игрока можно найти из уравнения:

$$b^n(x_n) = p_n (7.1)$$

Учитываю эту информацию в новой функции:

$$b^{n-1}(x, p_n) = u(x, x, ..., x, x_n)$$
(7.2)

Шаг 3. Предполагаю, что остальные игроки поступили также. Если я вижу, что второй выход был на цене p_{n-1} , значит сигнал x_{n-1} второго вышедшего можно найти из уравнения:

$$b^{n-1}(x_{n-1}, p_n) = p_{n-1} (7.3)$$

Учитываю эту информацию в новой функции:

$$b^{n-2}(x, p_{n-1}, p_n) = u(x, x, ..., x, x_{n-1}, x_n)$$
(7.4)

Шаг i.

Шаг (n-1). Предполагаю, что остальные игроки поступили также. Если я вижу, что (n-2)ой по счету выход был на цене p_3 , значит сигнал x_3 недавно вышедшего игрока
можно найти из уравнения:

$$b^{3}(x_{3}, p_{4}, p_{5}, ..., p_{n}) = p_{3}$$
(8.1)

Учитываю эту информацию в новой функции:

$$b^{2}(x, p_{3}, ..., p_{n-1}, p_{n}) = u(x, x, x_{3}, ..., x, x_{n-1}, x_{n})$$
(8.2)

Замечаем, что при использовании этих стратегий игроки выходят в порядке возрастания сигналов X_i . По предположению, функция u возрастает по всем аргументам, значит $b^n(x)$ возрастает по x. Значит первым выходит игрок с наименьшим X_i . Поскольку p_n одинаково для всех остающихся игроков, функция $b^{n-1}(x,p_n)$ возрастает по x. Значит вторым выходит игрок с наименьшим X_i среди оставшихся в игре. И т.д. В частности, первый побеждает, только если его сигнал выше всех, т.е. $X_1 > Y_1$.

Остается доказать, что это — равновесие Нэша. Пусть все игроки кроме первого используют такие функции. Что произойдет, если первый не будет использовать предлагаемую стратегию, а захочет выиграть аукцион любой ценой?

В силу того, что игроки выходят в порядке возрастания X_i предпоследний игрок выйдет на цене $b^2(Y_1, p_3, ..., p_n)$. Т.к. он использует указанную стратегию:

$$b^{2}(Y_{1}, p_{3}, ..., p_{n}) = u(Y_{1}, Y_{1}, Y_{2}, Y_{3}, ..., Y_{n-1})$$
(8.3)

Выигрыш первого игрока мы упрощаем воспользовавшись тем, что Y_i — это $X_2,...,$ X_n в другом порядке:

$$u(X_1, X_2, ..., X_n) - u(Y_1, Y_1, Y_2, Y_3, ..., Y_{n-1}) = u(X_1, Y_1, Y_2, ..., Y_{n-1}) - u(Y_1, Y_1, Y_2, Y_3, ..., Y_{n-1})$$
(8.4)

Функция u возрастает по первому аргументу, значит выигрыш положителен, если и только если $X_1 > Y_1$. Т.е. жать кнопку до выигрыша первому игроку следует если $X_1 > Y_1$. Но именно такой результат гарантирует предлагаемая стратегия. Значит она и дает нам равновесие Нэша.

• Аукцион первой цены.

Мы стандартным путем получаем дифференциальное уравнение, которое является необходимым условием. Итак, пусть b() — является равновесной стратегией. И пусть остальные игроки кроме первого ее используют.

При стандартных предположениях о функции b() чудо-замена $b_1 = b(a)$ упрощает нам событие W_1 до $W_1 = \{Y_1 < a\}$:

$$\pi(x, b(a)) = E((V_1 - b(a))1_{Y_1 < a} | X_1 = x)$$
(8.5)

Далее мы пользуемся способом расчета мат. ожидания через постановку условия 2.10. Дополнительное условие, которое мы используем — это условие по $Y_1 = y$:

$$\pi(x,b(a)) = \int_0^1 E((V_1 - b(a))1_{Y_1 < a} | X_1 = x, Y_1 = y)g(y|x)dy =$$

$$= \int_0^a E((V_1 - b(a)) | X_1 = x, Y_1 = y)g(y|x)dy = \int_0^a (v(x,y) - b(a))g(y|x)dy =$$

$$= \int_0^a v(x,y)g(y|x)dy - \int_0^a b(a)g(y|x)dy = \int_0^a v(x,y)g(y|x)dy - b(a)G(a|x) \quad (8.6)$$

Берем производную по a:

$$\frac{\partial \pi(x, b(a))}{\partial a} = v(x, a)g(a|x) - b(a)g(a|x) - b'(a)G(a|x) = 0$$

$$(9.1)$$

Первому игроку тоже должно быть оптимально использовать b(x), значит a = x:

$$v(x,x)g(x|x) - b(x)g(x|x) - b'(x)G(x|x) = 0$$
(9.2)

Наш диф. ур приобрел вид:

$$b'(x) = (v(x,x) - b(x))\frac{g(x|x)}{G(x|x)} = (v(x,x) - b(x))R(x|x)$$
(9.3)

Мы уже говорили, что из множества решений нам нужно выбрать то, которое удовлетворяет условию b(0) = 0. Давайте мы строго и в общем виде докажем, что это условие является достаточным.

Никаких секретов в решении линейных диф. уров первого порядка в 21 веке нет, поэтому мы не будем этого делать. Мы просто предъявим это решение. Желающием могут убедиться, что оно подходит и в диф. ур и к условию b(0) = 0.

$$b(x) = \int_0^x v(y,y) \frac{R(y|y)}{exp(\int_x^y R(t|t)dt)} dy$$

$$(9.4)$$

Мы замечаем, что эта функция является возрастающей по x. Подынтегральное выражение положительное и растет с ростом x, да еще и предел интегрирования растет с ростом x. Поэтому упрощение W_1 до $Y_1 < a$ корректно.

Осталось доказать, что эта стратегия — действительно дает равновесие Нэша. Допустим все остальные используют ее.

Нам надо доказать не то, что производная прибыли равна 0, когда a=x (это верно, т.к. наша b(x) подходит в дифференциальное уравнение), а то, что знак производной меняется с плюса на минус, как и положено в максимуме.

Присмотримся повнимательнее к первой производной прибыли:

$$\frac{\partial \pi(x, b(a))}{\partial a} = v(x, a)g(a|x) - b(a)g(a|x) - b'(a)G(a|x) =
= (v(x, a) - b(a))g(a|x) - b'(a)G(a|x) = (v(x, a) - v(a, a) + v(a, a) - b(a))g(a|x) - b'(a)G(a|x) =
(v(x, a) - v(a, a))g(a|x) + (v(a, a) - b(a))g(a|x) - b'(a)G(a|x) \quad (9.5)$$

Функция b() является решением дифференциального уравнения 9.3, поэтому v(a,a)-b(a)=b'(a)/R(a|a):

$$\frac{\partial \pi(x, b(a))}{\partial a} = (v(x, a) - v(a, a))g(a|x) + \frac{b'(a)}{R(a|a)}g(a|x) - b'(a)G(a|x) = (v(x, a) - v(a, a))g(a|x) + b'(a)g(a|x)\left(\frac{1}{R(a|a)} - \frac{1}{R(a|x)}\right)$$
(10.1)

- 1. Рассмотрим a > x. Во-первых, v(x,a) < v(a,a) так как v() возрастает по обоим аргументам. Во-вторых, 1/R(a|a) < 1/R(a|x) поскольку R(a|x) возрастает по второму аргументу. Значит справа производная отрицательна.
- 2. Рассмотрим a < x. Во-первых, v(x,a) > v(a,a) так как v() возрастает по обоим аргументам. Во-вторых, 1/R(a|a) > 1/R(a|x) поскольку R(a|x) возрастает по второму аргументу. Значит слева производная положительна.

Для последующего сравнения прибыли продавца нам потребуется функция выплат первого игрока. Вероятность того, что первый выиграет аукцион если его сигнал равен x равна $P(Y_1 < x | X_1 = x) = G(x | x)$. Поэтому:

$$pay^{FP}(x) = b^{FP}(x)G(x|x)$$
(10.2)

Здесь мы обозначили равновесную стратегию не как b(), а как $b^{FP}()$ т.к. она отличается от равновесной стратегии на других аукционах.

• Аукцион второй цены.

При решении задач мы столкнулись с тем, что аукцион второй цены в каком-то смысле правдивый, т.е. ставить надо свою ценность. Когда ценность не совпадает с сигналом верен очень похожий результат:

Теорема 10.3. На аукционе второй цены равновесием Нэша будет набор стратегий: $b(x) := v(x, x) = E(V_1|X_1 = x \cap Y_1 = x)$

Доказательство. Пусть остальные игроки используют предлагаемую стратегию, а первый ставит b_1 .

$$\pi(x, b_1) = E((V_1 - b(Y_1))1_{W_1} | X_1 = x; Bid_1 = b_1)$$
(10.4)

Как всегда, сделаем замену $b_1 = b(a)$, что упрощает нам W_1 до $W_1 = \{Y_1 < a\}$

$$\pi(x, b(a)) = E((V_1 - b(Y_1))1_{Y_1 < a} | X_1 = x) = E((V_1 1_{Y_1 < a} | X_1 = x) - E(b(Y_1))1_{Y_1 < a} | X_1 = x)$$
(10.5)

Отдельно считаем вычитаемое:

$$E(b(Y_1))1_{Y_1 < a}|X_1 = x) = \int_0^a b(y)g(y|x)dy = \int_0^a v(y,y)g(y|x)dy \quad (10.6)$$

И применив к уменьшаемому формулу 3.1:

$$E((V_1 1_{Y_1 < a} | X_1 = x)) = \int_0^1 E(V_1 1_{Y_1 < a} | X_1 = x \cap Y_1 = y) g(y|x) dy = \int_0^a E(V_1 | X_1 = x \cap Y_1 = y) g(y|x) dy = \int_0^a v(x, y) g(y|x) dy \quad (10.7)$$

Значит:

$$\pi(x, b(a)) = \int_0^a v(x, y) - v(y, y)g(y|x)dy$$
 (11.1)

Если y < x, то величина v(x,y) - v(y,y) > 0 в силу того, что v(x,y) возрастает по x. Мы хотим, максимизировать прибыль, т.е. мы хотим интегрировать до тех пор, пока подынтегральное выражение положительно. Т.е. оптимальное a = x. Остается заметить, что по предположению игрок делает ставку $b_1 = b(a)$. Но оптимальное a = x, значит оптимальная ставка равна b(x).

Для последующего сравнения прибыли продавца нам потребуется функция выплат первого игрока:

$$pay^{SP}(x) = E(b(Y_1)1_{Y_1 < x} | X_1 = x) = \int_0^x v(t, t)g(t|x)dt$$
(11.2)

1.4 Теорема о сравнении доходностей

Теорема 11.3. *Если:*

RC1. Сигналы X_i имеют регулярное на [0;1] распределение

RC2. Сигналы X_i аффилированы

RC3. Игроки симметричны, в частности:

RC3a. Совместная функция плотности сигналов симметрична

RC3b. Ценность игрока симметрична относительно сигналов других игроков.

RC4. Ценность является возрастающей функцией от сигналов

To:

$$E(R^B) \ge E(R^{SP}) \ge E(R^{FP}) \tag{11.4}$$

Доказательство. Сначала докажем, что для продавца аукцион второй цены лучше, чем аукцион первой цены, $E(R^{SP}) \ge E(R^{FP})$.

Мы снова воспользуемся дифференциальным уравнением 9.3:

$$pay^{SP}(x) = \int_{0}^{x} v(y,y)g(y|x)dy = \int_{0}^{x} (v(y,y) - b^{FP}(y))g(y|x)dy + \int_{0}^{x} b^{FP}(y)g(y|x)dy =$$

$$= \int_{0}^{x} b'^{FP}(y) \frac{1}{R(y|y)} g(y|x)dy + \int_{0}^{x} b^{FP}(y)g(y|x)dy =$$

$$= \int_{0}^{x} b'^{FP}(y) \frac{R(y|x)}{R(y|y)} G(y|x)dy + \int_{0}^{x} b^{FP}(y)g(y|x)dy \geq$$

$$\geq \int_{0}^{x} b'^{FP}(y)G(y|x)dy + \int_{0}^{x} b^{FP}(y)g(y|x)dy \quad (11.5)$$

Последний переход верен в силу того, что y < x. Продолжаем:

А теперь долго и пристально смотрим на эти два интеграла и берем их в уме оба сразу:

$$\int_{0}^{x} b'^{FP}(y)G(y|x)dy + \int_{0}^{x} b^{FP}(y)g(y|x)dy = \int_{0}^{x} b^{FP}(y)g(y|x) + b'^{FP}(y)G(y|x)dy = b^{FP}(x)G(y|x) = pay^{FP}(x) \quad (12.1)$$

Мы сравнили детерминистические функции выплат. А ожидаемый доход продавца связан с ними:

$$E(R) = n \cdot E(Pay_1) = n \cdot \int_0^1 pay(x)f(x)dx \tag{12.2}$$

Опять же мы применяем трюк с условным подсчетом мат. ожидания 2.10.

Теперь докажем, что для продавца кнопочный аукцион лучше, чем аукцион второй цены $E(R^{SP}) \geq E(R^{FP})$.

Только для целей этого доказательства введем функцию $z(x,y) = E(u(Y_1,Y_1,...,Y_{n-1})|X_1=x,Y_1=y)$. Напомню смысл: на кнопочном аукционе самый сильный игрок (за исключением первого) жмет кнопку до $u(Y_1,Y_1,...,Y_{n-1})$. Именно столько заплатит первый, если выиграет аукцион. По теореме 6.9 функция z(x,y) возрастает по обоим аргументам.

Сначала мы замечаем, что v(y, y) = z(y, y):

$$v(y,y) = E(V_1|X_1 = y, Y_1 = y) = E(u(X_1, Y_1, ..., Y_{n-1})|X_1 = y, Y_1 = y) = E(u(Y_1, Y_1, ..., Y_{n-1})|X_1 = y, Y_1 = y) = z(y, y)$$
(12.3)

Если x>y, то v(y,y)< z(x,y). А теперь считаем ожидаемую доходность продавца:

$$E(R^{SP}) = E(b^{SP}(Y_1)|X_1 > Y_1) = E(v(Y_1, Y_1)|X_1 > Y_1) \le E(z(X_1, Y_1)|X_1 > Y_1)$$
 (12.4)

Заметим, что в правой части написано мат. ожидание от условного мат. ожидания в случайной точке. Пользуясь идеей 2.10 мы видим, что:

$$E(z(X_1, Y_1)|X_1 > Y_1) = E(u(Y_1, Y_1, ..., Y_{n-1})|X_1 > Y_1) = E(R^B)$$
(12.5)

1.5 Задачи

- 1. Предположим, что выполнены предпосылки теоремы об одинаковой доходности. Найдите функции G(y|x), g(y|x), R(y|x).
- 2. По аналогии с определением условной обратной функции риска дайте определение безусловной обратной функции риска, R(x). Пусть X случайная величина, показывающая время в часах, которое я трачу на написание одной лекции. Как можно проинтерпретировать R(5) = 10?
- 3. Автобусы приходят на остановку согласно пуассоновскому потоку с интенсивностью $\lambda=6$ автобусов в час. Вася стоит некоторое время у остановки. Сколько в среднем автобусов приедет за это время? Какова вероятность, что не приедет ни одного автобуса? Рассмотрите два случая:
 - (а) Вася стоит у остановки ровно 5 минут.
 - (b) Вася стоит у остановки случайное время X (в минутах), независимое от времени прихода автобусов. Функция плотности X имеет вид $f(x) = \frac{x}{25}$ при $x \in [0; 10]$.

Hint: В первом пункте вы не замечая того нашли E(N|X=5).

- 4. Найдите функции g(x,y), g(y|x), G(y|x), R(y|x) и v(x,y) для случаев:
 - (a) Сигналы независимы, равномерны на $[0;1], V_i = X_i$.
 - (b) Три игрока. Сигналы независимы, равномерны на $[0;1],\,V_1=X_1+X_2X_3.$
 - (c) Три игрока. Совместная функция плотности сигналов имеет вид $f(x_1, x_2, x_3) = 7/8 + x_1x_2x_3$ при $x_1, x_2, x_3 \in [0; 1], V_1 = X_1 + X_2X_3$.

1.6 Решения задач