

Ashima Garg Course: GATE

Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

TOPICWISE: COMPUTER NETWORKS-1 (GATE - 2019) - REPORTS

OVERALL ANALYSIS COMPARISON REPORT SOLUTION REPORT ALL(17) CORRECT(4) INCORRECT(5) SKIPPED(8)

Q. 1

In a block of addresses, we know the IP address of one of the host is 128.44.82.16 / 25. Which of the following represent first address and last addresses that can be assign to host in the block?

128.44.82.0 and 128.44.82.126

128.44.82.1 and 128.44.82.127

128.44.82.1 and 128.44.82.126

Correct Option

Solution:

IP IP of block: 128.44.82.16 /25 Subnet mask: 255.255.255.128

Perform 'AND' operation between IP of block and subnet mask to get subnet id.

128.44.82.16

255.255.255.128

128.44.82.0

First assigned address to host: 128.44.82.1 Last assigned address to host: 128.44.82.126

128.44.82.0 is subnet id and 128.44.82.127 is direct broadcast address, so cannot assigned to any host.

128.44.82.0 and 128.44.82.127

Your answer is Wrong

QUESTION ANALYTICS

Q. 2

Let $g(x) = x^3 + x^2 + 1$. Consider the information bits (1, 1, 0, 1, 1, 0). Find the codeword corresponding to these information bits if g(x) is used as the generating polynomial.

Solution Video | Have any Doubt ?

Α

110110111

Your answer is Correct

Solution:

(a)

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES

110110110 110110100 110110101 **QUESTION ANALYTICS** Q. 3 Consider the following statements: S_1 : IEEE 802.11 does not uses sequence number. S_2 : The amount of data send in one time in limited by RTS frame (data = sender's data + ACK). S_3 : IEEE 802.11 uses CSMA/CA medium access protocol. S_4 : The exponential backoff mechanism reduces the probability of collision on retransmissions in ethernet. Which of the following is true? FAQ Solution Video Have any Doubt? Only S_1 and S_2 Only S_2 and S_3 **Correct Option** Solution: (b)

- Since lost frames are transmitted again and again so to remember which packet reached successfully, sequence number is used.
- RTS frame tells the amount of time data + ACK is transmitted in one go.
- IEEE 802.11 uses CSMS/CA instead of CSMA/CD.
- The exponential backoff mechanism reduces the probability of collision on retransmissions in both ethernet and in IEEE 802.11.

C

Only S_2 and S_4

D

All of the statements

Your answer is Wrong

QUESTION ANALYTICS

Q. 4

Match List-I (Networking devices) with List-II (property) and select the correct answer using toodes given below the lists:

List-I

List-II

A. Hub

Broadcast domain separator

B. Bridge

2. Collision domain separator

C. Switch

Broadcasting device

Codes:

B C 1 2

(a) 3 1

A

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

а В b C С Your answer is Correct Solution: • Hub is the broadcasting device i.e. transmitted data in all direction which can leads to collision. • Bridge is the collision domain separator i.e. reduced collision domain. • Switch is the collision domain separator as well as broadcast domain separate. D d **QUESTION ANALYTICS**

Q. 5

Which of the following risk may arise, when same key is used to encrypt directions of a communication channel, that are not present if using different keys in both direction?

Solution Video Have any Doubt?

Reflection attack

Correct Option

Solution:

Reflection attacks are attack that use the same protocol in both direction. If is method f attacking a challenge response authentication that uses same protocol in both direction.

Denial of service

Your answer is Wrong

Eavesdropping attack

None of these

QUESTION ANALYTICS

Q. 6

In the network 143.128.67.235 / 20, if x represent the decimal value of 3rd octet and y represent the decimal value of 4th octet of last IP address assigned to any host, then value of $x \times y$ is _

FAQ Solution Video Have any Doubt?

20066

Correct Option

Solution:

20066

IP of network: 143.128.67.235 / 20

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

9... octet: 01001111 = 79 4th octet: 111111110 = 254 $x \times y = 79 \times 254 = 20066$ So,

QUESTION ANALYTICS

Q. 7

Consider a network connecting two nodes A and B having propagation delay of 6 × 10⁴ µsec. Bandwidth of network is 150 Mbps. If each frame size is 5000 bytes and both uses Go-Back-N sliding window protocol, where maximum 100 frames can be sent at a time then the maximum possible data rate is ____ [Write closest integer value]. (Upto 2 decimal places)

FAQ Solution Video Have any Doubt?

33.33 [33 - 34]

Correct Option

Solution:

33.33 [33 - 34]

Bandwidth = 150 Mbps

Frame size = 5000 bytes

Propagation delay = $6 \times 10^4 \, \mu sec$

 $= 60 \times 10^{-3} \text{ sec} = 60 \text{ msec}$

So in 1RTT = $60 \times 2 \times 10^{-3} \times 150 \times 10^{6}$ bits

 $= 18000 \times 10^3 \text{ bits}$

But maximum bits that can be transferred in one time = 100 frame

= 5000 × 8 × 100 bits = 4000000 bits

So, effective bandwidth = $\frac{4000000}{18 \times 10^6} \times 150 \text{ Mbps}$

 $=\frac{4}{18}\times150\times10^6 \text{ bps} = \frac{600}{18}\times10^6 \text{ bps}$

= 33.33 Mbps

QUESTION ANALYTICS

Q. 8

If the sender window size is 128 using selective repeat ARQ. Then the sequence number of the frame to be send after sending 400th frames is _____.

FAQ Solution Video Have any Doubt?

144

Correct Option

Solution:

144

We know that for Selective Repeat ARQ = 2^{n-1} = 128, n = 8 Sequence numbers: 0 to 255, 0 to 255, . . .

> 256 += 400144 sequence, number

> > Your Answer is 16

QUESTION ANALYTICS

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES 3.72 [3.71 - 3.73]

Correct Option

Solution:

3.72 [3.71 - 3.73]

To identity multicast group 1st 4 bits are 1110, so total number of multicast address possible = $2^{32-4} = 2^{28}$

Probability of choosing same address

$$= \frac{1}{2^{28}} = 2^{-28}$$

 $= 3.72 \times 10^{-9}$

QUESTION ANALYTICS

Q. 10

Computer A has 30 MB to send on a network and transmits the data in burst at 6 Mbps. The maximum transmission rate across routers in the network is 4 Mbps. If computer A's transmission is shaped using a leaky bucket. What is the capacity that the queue in the bucket must hold so that no data is discarded?

Solution Video | Have any Doubt? | | | | | |

Α

2 MB

В

С

8 MB

5 MB

D

10 MB

Correct Option

Solution:

(d)

Total data = 30 × 8 Mb

Time for computer to transmit data = $\frac{30 \times 8 \text{ Mb}}{6 \text{ Mb}} \text{sec} = 40 \text{sec}$

Maximum transmission rate = 4 Mbps.

Actual data sent on network in 40 sec

$$= 4 \text{ Mbps} \times 40 = 160 \text{ Mb} = 20 \text{ MB}$$

QUESTION ANALYTICS

Q. 11

Which of the following is true?

Solution Video | Have any Doubt ?

А

Listen () is used on the server side and causes a bound TCP socket to enter listening state.

Your answer is Correct

Solution:

(a)

Ashima Garg

Course: GATE Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

attempt to establish a new TCF connection. Accept (): Accepts a received incoming attempt to create a new TCP connection from remote client. Connect () is used on the server side, and associates a socket with a socket address structure. C Bind () is used on the client side, and assigns a free local port number to the socket. D Accept () causes the system to release resources allocated to a socket. **QUESTION ANALYTICS** Q. 12 Which of the following is true? FAQ Solution Video Have any Doubt? Α A secure hash function will not produce any collisions. A cyptographic hash function is deterministic i.e. given the same input, it always produce same output. **Correct Option** Solution: (a) A secure hash function may produce collision. (b) A cryptographic hash function is deterministic. (c) DHCP requests are broadcast, regardless of networking technology. Hence cannot be protected against DHCP spoofing attacks. Host that use DHCP on a wired networking technology such as Ethernet are protected against possible DHCP spoofing attacks. Both (b) and (c) **QUESTION ANALYTICS** Q. 13 Consider the following statements about digital signatures: S_1 : It is impossible to produce a document that differs from the original document with single bit change and valid signature.

- S_2 : Digital signature is based on asymmetric key cryptography or public cryptography.
- S_3 : Any person who knows the secret information can create the signature.

Only S_1 and S_3

Correct Option

Ashima Garg Course: GATE

Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES Solution:

(d)

- In digital signature, even if single bit change is there in original document then it is impossible to produce document with valid signature.
- Public key cryptography used in digital signature.
- The signature can be crated by anyone who knows recreate information.

QUESTION ANALYTICS

Q. 14

Consider GBN protocol in which sender window size (SWS) is 5 and receiver window size (RWS) is 5. Suppose client sends date 0, 1, 2, 3, 4 and only data packet 2 is lost and all ACKs are lost.

What will be the contents in the receiver window and sender window before sender's timeout value expires?

Solution Video | Have any Doubt ?

Sender window: 01234 and Receiver window: 01234

В

Sender window: 23456 and Receiver window: 01234

Your answer is Wrong

C

Sender window: 23456 and Receiver window: 23456

D

Sender window: 01234 and Receiver window: 23456

Correct Option

Solution:

(d)

Before sending

After sending and before time out.

Sender window will be 0, 1, 2, 3, 4 and Receiver window will be 2, 3, 4, 5, 6.

QUESTION ANALYTICS

Q. 15

Let N stations share 60 kbps of slotted aloha channel. Frame size is 1024 bits which are send at every 40 seconds. The value of N is ______. (Upto 1 decimal places)

FAQ Solution Video Have any Doubt?

Ashima Garg

Course: GATE
Computer Science Engineering(CS)

HOME

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK PACKAGES Solution:

862.5 [862.0 - 863.0]

Throughput of slotted aloha = $G \times e^{-G}$

Maximum throughput is achieved when G = 1

 $N \times L = 0.368 \times Channel capacity$

$$N \times \frac{1024}{40} = 0.368 \times 60 \times 10^3$$

$$N = \frac{0.368 \times 60 \times 10^3 \times 40}{1024}$$
$$= 862.5$$

QUESTION ANALYTICS

Q. 16

Consider two nodes A and B on the same ethernet segment, and suppose the propagation delay between the two nodes is 225 bit times. Suppose at time both nodes A and B begin to transmit a frame. Assume both nodes transmit a 50-bit jam signal after detecting a collision. For 10^7 bits per set ethernet, the time at which both nodes A and B sense an idle channel is _____ μ sec.

Solution Video Have any Doubt?

50

Your answer is Correct50

Solution:

50

Step 1: Both nodes detect a collision at time t = 225

Step 2: Jam signal has 50-bit

Both nodes stop transmits their jam signal at the time t = 225 + 50 = 275

Step 3: The last bit of the jam signal from B arrives at A after 225 bit times, so 275 + 225 = 500. (Similarly, the last bit of the jam signal from A arrives at B after 225 bit times, so 275 + 225 = 500 bit times)

At 500 bit times, both sense an idle channel.

For 107 bps ethernet,

The time taken for 500 bits:

$$= \frac{500 \text{ bits}}{10^7 \text{ bits/sec}} = 50 \text{ } \mu\text{sec}$$

QUESTION ANALYTICS

Q. 17

In an RSA system, the public key of given user is e = 31 and n = 3599. The private key of user will be ____

FAQ Solution Video Have any Doubt?

3031

Correct Option

Solution:

3031

We know that, $n = p \times q$

Where p and q are prime number.

So, by hit and trial method (by checking only prime number)

$$3599 = 59 \times 61$$

So, p and q can be any one from 59 or 61.

$$\phi(n) = (59 - 1) \times (61 - 1) = 58 \times 60 = 3480$$

We know that,

 $ed = 1 \mod \phi(n)$

 $31 \times d = 1 \bmod 3480$

https://onlinetestseriesmadeeasy.in/madeeasy/index.php?pageName=timeManagementReport&testid=1202&t=a&testType=2

Ashima Garg

Course: GATE Computer Science Engineering(CS)

MY TEST

BOOKMARKS

MY PROFILE

REPORTS

BUY PACKAGE

ASK AN EXPERT

OFFER

EXCLUSIVE OFFER FOR OTS STUDENTS ONLY ON BOOK **PACKAGES**

Write last one as:

$$8 - 1 \times 7 = 1$$

$$8 - 1 \times (31 - 3 \times 8) = 1$$

$$(3480 - 112 \times 31) - 1 \times (31 - 3 \times (3480 - 112 \times 31)) = 1$$

Make above equation in terms of 31 and 3480

$$3480 - 112 \times 31 - 1 \times 31 + 3 \times 3480 - 336 \times 31 = 1$$

$$4 \times 3480 - 449 \times 31 = 1$$

$$(-449) \times 31 + 4 \times 3480 = 1$$

We conclude d = -449; is infect 3031 mod 3480.

$$d = 3031$$

QUESTION ANALYTICS