MA'RUZA

FUNKSIYA DIFFERENSIALI. DIFFERENSIAL HISOBNING ASOSIY TEOREMALARI

Ma'ruza rejasi

- 1. Funksiyaning differensiali.
- 2. Funksiyaning differensialining taqribiy hisoblashga tatbiqi.
- 3. Differensial hisobning asosiy teoremalari

Tayanch so'z va iboralar: differensial, yig'indi, ko'paytma va bo'linmaning differensiali, differensial hisobning asosiy teoremalari.

1. Funksiyaning differensiali

Differensial ham hosila kabi, qaysi o'zgaruvchi bo'yicha hisoblanishidan bog'lik bo'ladi. Qaysi o'zgaruvchi bo'yicha differensial hisoblanayotgan bo'lsa, bu o'zgaruvchi erkli o'zgaruvchi deyiladi. Differensialning qaysi o'zgaruvchi bo'yicha hisoblanayotganini ko'rsatish o'rniga, qaysi o'zgaruvchi erkli deb, tanlanganini aytish qabul qilingan.

Masalan, y = f(u), $u = \varphi(x)$ murakkab funksiya berilgan bo'lsin, x ni erkli o'zgaruvchi deb tanlash mumkin, biroq agar bizni fakat y ning u dan bog'lanishi qiziqtirsa, erkli o'zgaruvchi deb u ni olish mumkin.

Biz differensiallaymiz, differensiallash qoidalari, formulalari va hokazo iboralarni tez-tez ishlatgan edik, lekin qanday funksiya differensiallanuvchi deyiladi?, degan savolga hanuzgacha javob berganimiz yo'q.

<u>Ta'rif:</u> Erkli o'zgaruvchi bo'yicha funksiya hosilasining erkli o'zgaruvchining ixtiyoriy orttirmasiga ko'paytmasi funksiyaning differensiali deyiladi.

Funksiya differensiali dy yoki df(x) bilan belgilanadi. Shunday qilib, agar x erkli o'zgaruvchi bo'lsa $dy = y' \Delta x$ (yoki $df(x) = f'(x) \Delta x$).

x ning tayinlangan qiymatini qaraymiz, Δx asosiy cheksiz kichik bulsin. Δy bilan dy orasida munosabat o'rnatamiz:

$$\lim_{\Delta x \to 0} \frac{\Delta y - dy}{\Delta x} = \lim_{\Delta x \to 0} \left[\frac{\Delta y}{\Delta x} - \frac{f'(x)\Delta x}{\Delta x} \right] = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} - f'(x) = f'(x) - f'(x) = 0 \implies \Delta y - dy = o(\Delta x) \implies \Delta y = dy + o(\Delta x)$$
(1)

yoki

$$\Delta y = f'(x)\Delta x + o(\Delta x);$$

bu yerda

$$\lim_{\Delta x \to 0} \frac{o(\Delta x)}{\Delta x} \quad \Rightarrow \quad \frac{o(\Delta x)}{\Delta x} = \alpha$$

cheksiz kichik

$$o(\Delta x) = \alpha \Delta x$$
.

Shunday qilib $\Delta y = f'(x)\Delta x + \alpha \Delta x$. Bunda $f'(x)\Delta x$ qo'shiluvchi funksiya orttirmasining bosh chiziqli qismi deyiladi. *Demak*, funksiyaning differensiali funksiya orttirmasining bosh chiziqli qismi ekan.

 Δx ning yetarlicha kichik qiymatlarida (1) dan

$$\Delta y \cong dy \tag{2}$$

taqribiy tenglik hosil bo'ladi.

Xato αΔx ga teng, nisbiy xato esa
$$\frac{\alpha \cdot \Delta x}{dy} = \frac{\alpha \cdot \Delta x}{f'(x) \cdot \Delta x} = \frac{1}{f'(x)}$$

Bundan ko'rinadiki Δx ning kichik qiymatlarida (2) – taqribiy tenglikning nisbiy xatosi $\Delta x \rightarrow 0$ da kichikdir.

Ta'rif: Erkli o'zgaruvchining differensiali deb, y=x funksiyaning differensialiga aytiladi.

$$dy=dx=x'\Delta x=1\cdot \Delta x=\Delta x$$
; $dx=\Delta x$ Shunga asosan funksiya diffferensiali

$$dy = f'(x) dx$$

ko'rinishni oladi.

Bundan

$$\frac{dy}{dx} = f'(x)$$

ya'ni, funksiya hosilasi funksiya differensialining argument differensialiga nisbatiga teng. dy - ni « y mikdorning elementi » deb aytiladi.

Elementar funksiyalarning differensiali jadvali

1.
$$d(x^n) = nx^{n-1}dx \ (x > 0)$$
;

2.
$$d(a^x) = a^x \ln a \, dx \quad (a > 0, a \ne 1);$$

3.
$$d(\log_a x) = \frac{1}{x} \log_a e \ dx \ (x > 0, a > 0, a \neq 1);$$

$$4. \ d(\ln x) = \frac{1}{x} dx;$$

5.
$$d(\sin x) = \cos x dx$$
;

6.
$$d(\cos x) = -\sin x dx$$
;

7.
$$d(tgx) = \frac{1}{\cos^2 x} dx;$$

8.
$$d(ctgx) = -\frac{1}{\sin^2 x} dx;$$

9.
$$d(\arcsin x) = \frac{1}{\sqrt{1 - x^2}} dx$$
;

$$10. d(\arccos x) = -\frac{1}{\sqrt{1-x^2}} dx;$$

11.
$$d(arctgx) = \frac{1}{1+x^2} dx$$
;

$$12. \ d(arcctgx) = -\frac{1}{1+x^2}dx$$

Differensialning geometrik ma'nosi

y = f(x) funksiya va uning grafigini

karaymiz. (4-shakl)

$$\Delta y = f(x + \Delta x) - f(x) = NM', MN = \Delta x,$$

$$NT = MN \cdot tg\varphi = f'(x) \cdot \Delta x = dy$$

Shunday qilib, $\Delta y = NM'$ - funksiya grafigi bo'ylab harakatdagi M' nuqta ordinatasining orttirmasi;

dy esa funksiya grafigiga o'tkazilgan urinma bo'ylab harakatdagi T nuqta ordinatasining orttirmasi.

Differensialning mexanik ma'nosi

Moddiy nuqta o'q bo'ylab s=s(t) qonun bo'yicha harakat qilsin. t vaqtni erkli o'zgaruvchi deb qabul qilamiz. Bu holda $ds(t) = s'(t) \Delta t = v(t) \Delta t$.

Shunday qilib, yo'lning differensiali, tezlik o'zgarmay qolganda, moddiy nuqtaning Δt vaqtda o'tadigan yo'lidir. Haqiqatda esa tezlik o'zgarmay qolmaydi va nuqtaning Δt vaqtda o'tgan haqiqiy yo'li ds(t) ga emas, balki, $\Delta s(t)$ ga teng bo'ladi. (ds(t) esa yo'lning taqribiy qiymati bo'lib, haqiqiy yo'ldan Δt ga nisbatan ham kam farq qiladi).

Misollar

1. *Ish.* A ishni, F(x) ta'sir etuvchi kuch berilganda, siljishning funksiyasi deb qaraymiz. Kichik kesmada F kuchni doimiy deb faraz qilib, ish elementini hisoblaymiz:

$$dA = Fdx$$
, yoki $\frac{dA}{dx} = F$.

Ishdan olingan hosila ta'sir etuvchi kuchga teng

- 2. Ingichka sterjen massasi. Kichik kesmada chiziqli zichlikni o'zgarmas deb hisoblaymiz. Bu holda massa elementi uchun $dm = \gamma dl$ ga ega bo'lamiz. $\frac{dm}{dl} = \gamma$ massaning hosilasi chizikli zichlik.
- 3. Zaryad. Vaqtning kichik oralig'ida tok kuchini doimiy deb hisoblash mumkin. Shu sababli dq = idt.
- 4. Qizdirilganda issiqlikni ajralishi. Daraja (temperatura)ning yetarlicha kichik o'zgarishida issiqlik sig'imini doimiy deb qisoblash mumkin. bu holda dq = c dt.

Yig'indi, ko'paytma va bo'linmaning differensiali

u = u(x), v = v(x), w = w(x) funksiyalar X sohada differensiallanuvchi bo'lsin, bu holda quyidagi qoidalar o'rinli:

1. Yig'indi differensiali d(u+v-w)=(u+v-w)'dx=(u'+v'-w')dx=u'dx+v'dx-w'dx=du+dv-dw

$$d(u+v-w)=du+dv-dw$$

2. Kupaytmaning differensiali

$$d(uv)=(uv)'dx=(u'v+v'u)dx=vu'dx+uv'dx=vdu+udv$$

ya'ni:

$$d(uv)=vdu+udv$$

xususiy holda, u=C=sonst bo'lsa du=0 va

$$d(Cv)=Cdv$$
, $dC=0$

3. Nisbatning differensiali

$$d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}$$

xususiy holda: $d\left(\frac{c}{v}\right) = -\frac{cdv}{v^2}$; (*C*-const).

Differensial formasining invariantligi

y=f(x) funksiya X sohada aniqlangan va $x \in X$ nuqtada chekli hosilaga ega bo'lsin, bu holda ma'lumki

$$dy = y_x dx \tag{1}$$

Endi murakkab funksiyaning hosilasini topamiz:

$$y = f(x)$$
, $x = \varphi(t)$ yoki $y = f(\varphi(t))$ bo'lsin.

Ma'lumki

$$y_t = y_x \cdot x_t \tag{2}$$

(2) tenglikning har ikki tomonini dt ga ko'paytiramiz:

$$y_t \cdot dt = y_x \cdot x_t \cdot dt \tag{3}$$

Bundan, $x'_t dt = dx$; $y'_t dt = dy$ ekanligini hisobga olsak (3) dan:

$$dy = y'_{x}dx \tag{4}$$

hosil bo'ladi. (1) va (4) ifodalar ko'rinishi jihatidan bir-biridan hyech narsa bilan farq qilmaydi, ya'ni x erkli o'zgaruvchi yoki boshqa o'zgaruvchidan bog'lik bo'lishiga qaramasdan differensialning ko'rinishi o'zgarmaydi. Boshqacha aytganda, murakkab funksiya differensiali bilan funksiya differensiali ko'rinishi bir xil bo'lar ekan. Differen-sialning bu xususiyatiga uning *invariantligi* deyiladi.

2. Differensialning taqribiy hisoblashlarga tadbiqi

y=
$$f(x)$$
 funksiya x nuqtada chekli $f'(x) \neq 0$ hosilaga ega bo'lsa $\Delta y \cong dy$ (1)

Ravshanki, $|\Delta x|$ qanchalik kichik bo'lsa (1) tenglik shunchalik aniq bo'ladi. Ma'lumki,

$$\Delta y = f(x + \Delta x) - f(x) \approx f'(x) \Delta x; \qquad dy = f'(x) \Delta x \tag{2}$$

$$(1) \stackrel{(2)}{\Rightarrow} f(x+\Delta x) - f(x) \approx f'(x) \Delta x; \Rightarrow$$

$$f(x+\Delta x) \approx f(x) + f'(x)\Delta x \tag{3}$$

 Δy ni dy bilan almashtirganda $\Delta = |\Delta y - dy|$ absolyut xatoga va $\delta = \frac{\Delta}{|\Delta y|}$ nisbiy xatoga yo'l qo'yiladi.

Absolyut xatoni baholash uchun, ushbu

$$|\Delta y - dy| < max | f''(x) | \Delta x^2$$
 (4)

tengsizlikdan foydalaniladi. Bu yerda $max \mid f''(x) \mid$ ikkinchi tartibli hosila modulining $[x, x + \Delta x]$ kesmadagi eng katta qiymati.

1-misol

 $\sqrt{3,998}$ hisoblansin.

Yechilishi: To'g'ridan to'g'ri ildizni hisoblash murakkab. $x \in (0; +\infty)$ da $f(x) = \sqrt{x}$ funksiyani qaraymiz. Bu funksiya uchun (3) formula quyidagi ko'rinishni oladi:

$$\sqrt{x + \Delta x} \approx \sqrt{x} + \frac{1}{2 \cdot \sqrt{x}} \cdot \Delta x.$$

Bu yerga $x + \Delta x = 3,998$, x = 4 ni qo'yamiz:

$$\sqrt{3,998} \approx \sqrt{4} - \frac{1}{2\sqrt{4}} \cdot 0,002 = 1,995.$$

2-misol

 $\sqrt[5]{243,45}$ hisoblansin.

Yechilishi: $f(x) = \sqrt[5]{x}$, $x \in R$ funksiya uchun (3) formula $\sqrt[5]{x + \Delta x} \approx \sqrt[5]{x} + \frac{1}{5\sqrt[5]{x^4}} \cdot \Delta x$ ko'rinishni oladi.

Bunga $x + \Delta x = 243,45$ va $x = 243 = 3^5$ larni qo'yib $\sqrt[5]{243,45} \approx 3 + \frac{1}{5 \cdot 81} \cdot 0,45 \approx 3,001$ hosil qilamiz.

3-misol

ln1,1 hisoblansin.

Yechilishi: $f(x) = \ln x$; $0 < x < +\infty$ funksiya uchun (3) formula $\ln(x + \Delta x) \cong \ln x + \frac{\Delta x}{x}$ ko'rinishni oladi. Bunga $x + \Delta x = 1,1$ yoki x = 1, $\Delta x = 0,1$ ni qo'ysak $\ln 1,1 \cong \ln 1 + \frac{1}{1} \cdot 0,1 = 0,1$. *Jadvaldan:* $\ln 1,1 \cong 0,0953$.

4-misol

sin 45°06′ hisoblansin.

Yechilishi: $f(x) = \sin x$, $x \in R$ funksiyani qaraymiz.

(3) formula $\sin(x + \Delta x) \approx \sin x + \cos x \cdot \Delta x$ ko'rinishni oladi. Bu yerda $x + \Delta x = 45^{\circ}$ deb olamiz.

Eslatma:
$$1^0 = \frac{\pi}{180}$$
; $1' = \frac{\pi}{180 \cdot 60}$.

Natijada: $\sin 45^{\circ}06' \approx \sin \frac{\pi}{4} + \cos \frac{\pi}{4} \cdot \frac{\pi}{1800} \approx \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{3,14}{1800} \approx 0,7083.$

3. Yuqori tartibli hosilalar va differensiallar

y=f(x) funksiya biror intervalning har bir nuqtasida differensiallanuvchi bo'lsin. Bu holda, funksiyaning y'=f'(x) hosilasi x ning funksiyasi bo'ladi va u o'z navbatida hosilaga ega bo'lishi mumkin. Shu sababli, hosilaning hosilasi ikkinchi hosila yoki ikkinchi tartibli hosila deyiladi va

y"= f''(x) yoki $\frac{d^2y}{dx^2} = \frac{d^2f(x)}{dx^2}$ deb belgilanadi. Ikkinchi hosilaning hosilasi uchinchi hosila deyiladi va h.k.

Induksiya yordamida n - tartibli hosila (n-1) - tartibli hosilaning hosilasi deb aniqlanadi.

$$y^{(n)} = f^{(n)}(x)$$
 yoki $\frac{d^n y}{dx^n} = \frac{d^n f(x)}{dx^n}$ ya'ni $(y^{(n-1)})' = y^{(n)}$.

Shunga o'xshash ravishda yuqori tartibli differensiallar tushunchasi kiritiladi.

Masalan, x erkli o'zgaruvchi dy = y'dx bo'lganda:

Shuni ta'kidlash zarurki, yuqori tartibli differnsial invariantlik xususiyatiga ega emas.

1-misol

$$y = a^x$$
; $y^{(n)}$ – topilsin.

Yechilishi:

$$y' = a^{x} \cdot \ln a;$$
 $y'' = a^{x} \cdot \ln^{2} a;$...; $y^{(n)} = a^{x} \cdot \ln^{n} a.$

2-misol

$$y = x^{\alpha}$$
; $y^{(n)}$ – topilsin.

Yechilishi:

$$y' = \alpha x^{\alpha - 1};$$
 $y'' = \alpha(\alpha - 1)x^{\alpha - 2};$ $y''' = \alpha(\alpha - 1)(\alpha - 2)x^{\alpha - 3};$...
 $y^{(n)} = \alpha(\alpha - 1)(\alpha - 2)...(\alpha - n + 1)x^{\alpha - n}.$

3-misol

$$y = \sin x$$
; $y^{(n)} - \text{topilsin}$.

Yechilishi:

$$y' = \cos x = \sin\left(x + \frac{\pi}{2}\right);$$
 $y'' = -\sin x = \sin(\pi + 2 \cdot \frac{\pi}{2});$ $y''' = \sin(x + 3 \cdot \frac{\pi}{2});$...
$$y^{(n)} = \sin(x + n \cdot \frac{\pi}{2}).$$

4. Differensial hisobning asosiy teoremalari

Funksiya xossalarini tekshirishda, eng muhim tadbiqlar asosida Ferma, Roll, Lagranj va Koshi teoremalari yotadi. Bu teoremalar odatda differensial hisobning asosiy teoremalari deyiladi.

1. Ferma teoremasi

<u>Teorema:</u> f(x) funksiya]a,b[oraliqda aniqlangan, uning ichki x = c nuqtasida eng katta (eng kichik) qiymatini qabul qilsin. Agar bu c nuqtada chekli f'(x) hosila mavjud bo'lsa, u holda f'(c) = 0 bo'ladi.

Isboti: $M=\sup\{f(x)\}, \ m=\inf\{(x)\}, \ x \in]a, \ b[$ bulsin. f(c)=M deb faraz qilaylik, ya'ni $\forall x \in]a, \ b[$ uchun $f(x) \le f(c)$ bo'lsin.

Hosila ta'rifiga ko'ra

$$f'(c) = \lim_{\Delta x \to c} \frac{f(x) - f(c)}{x - c}$$
, (bunda $x = x_0 + \Delta x$, $x_0 = c$ deb olingan)

bunda:
$$\forall x \in]c, b[, \frac{f(x) - f(c)}{x - c} \le 0 \implies \lim_{\Delta x \to c} \frac{f(x) - f(c)}{x - c} \le 0;$$

$$\forall x \in]a, c[, \frac{f(x) - f(c)}{x - c} \ge 0 \implies \lim_{\Delta x \to c} \frac{f(x) - f(c)}{x - c} \ge 0;$$

 $x \rightarrow c + 0$ va $x \rightarrow c - 0$ limitlarni takkoslab f'(c) = 0 degan xulosaga kelamiz.

Teorema f(c)=m bo'lgan holda ham shunga o'xshash isbotlanadi.

Teorema geometrik ma'nosi

f'(c)=0 tenglik, funksiya grafigiga M(c, f(c)) nuqtadan o'tkazilgan urinma Ox o'qiga parallel ekanini bildiradi. (5-shakl)

5-shakl

Izoh: Teorema faqat funksiya oraliqning ichki nuqtasida eng katta (kichik) qiymatga erishgan hol uchun qo'llaniladi.

1-misol

 $y = x^2$ funksiya Ferma teoremasi shartini $\left[0; \frac{1}{2}\right]$ kesmada qanoatlantiradimi?

Yechilishi: m = f(0) = 0, M = f(1/2) = 1/4 ekanligiga ishonch hosil qilish murakkab emas.

$$f'(x) = 2x \Big|_{x=1/2} = 1 \neq 0;$$
 $f'(x) = 2x \Big|_{x=0} = 0.$

Shunday qilib, funksiya x=1/2 nuqtada eng katta qiymatga ega bo'lishiga qaramasdan, bu nuqtadagi chekli hosila nolga teng emas, ya'ni teorema bajarilmaydi.

2. Roll teoremasi

<u>Teorema:</u> Agar f(x) funksiya: 1) [a, b] kesmada uzluksiz; 2)]a, b[oraliqda chekli hosilaga ega; 3) f(a) = f(b) shartlarni qanoatlantirsa, u holda]a, b[da hyech bo'lmaganda bitta s nuqta topiladiki, f'(c) = 0 bo'ladi.

Isboti: Funksiya uzluksiz bo'lgani uchun u [a, b] kesmada o'zining eng katta va eng kichik qiymatlariga erishadi. Ikkita holni qaraymiz: M = m va $M \neq m$;

- 1. Agar M = m bo'lsa, f(x) = const va $\forall x \in]a, b[$ da f'(x) = 0.
- 2. Agar $M \neq m$ bo'lsa, f(a) = f(b) bo'lgani uchun funksiya hyech bo'lmaganda M va m qiymatlarning biriga erishadi va Ferma teoremasiga asosan $\exists c \in]a, b[; f'(c) = 0.$

Teoremaning geometrik ma'nosi

Egri chiziqqa (funksiya grafigiga) teoremaning hamma shartlari bajarilganda, o'tkazilgan urinma *Ox* o'qiga parallel bo'lgan kamida bitta nuqta topiladi.(6-shakl).

3. Lagranj teoremasi

Teorema: Agar f(x) funksiya: 1) [a, b] kesmada uzluksiz; 2)]a, b[oraliqda chekli f'(x) hosilaga ega bo'lsa, bu holda kamida bitta $c \in$]a, b[nuqta topiladiki f(b)–f(a)=f'(c)(b-a) tenglik o'rinli bo'ladi.

<u>Isboti:</u> Geometrik tasvirdan foydalanamiz.(7- shakl)

Uzluksiz egri chiziqning A(a, f(a)), B(b, f(b)) nuqtalarini (AV) kesuvchi bilan tutashtiramiz. Ravshanki, bu kesuvchining burchak koeffisenti (f(b) - f(a))/(b - a) ga teng. Egrilikning ixtiyoriy M(x, y) nuqtasidan urinma o'tkazamiz va uning Ox uqqa og'gan burchagini φ bilan belgilaymiz va φ ni α ga intiltiramiz. Natijada, egrilikda shunday N(c, f(c)) nuqta topiladiki, bu nuqtadan o'tkazilgan NT urinma (AV) ga parallel bo'ladi $(\varphi = \alpha$ bo'lgan hol). Urinma burchak koeffisiyenti $k = tg \varphi = f'(c)$ bo'ladi. To'g'ri chiziq-larning parallellik shartidan:

$$\frac{f(b) - f(a)}{b - a} = f'(c) \implies f(b) - f(a) = f'(c)(b - c)$$

<u>Izoh:</u> Roll teoremasi Lagranj teoremasining xususiy holidir.

4. Koshi teoremasi

<u>Teorema:</u> Agar ikkita $\varphi(x)$ va g(x) funksiyalarning har biri [a, b] kesmada uzluksiz, [a, b] oraliqda differensiallanuvchi, hamda barcha $x \in [a, b]$ da $g'(x) \neq 0$ bo'lsa, u holda shunday $c \in [a, b]$ nuqta topiladiki, bu nuqtada

$$\frac{\varphi(b) - \varphi(a)}{g(b) - g(a)} = \frac{\varphi'(c)}{g'(c)} \tag{1}$$

tenglik o'rinli bo'ladi (Koshi formulasi).

<u>Isboti:</u> Dastlab $g(b) \neq g(a)$ ni isbotlaymiz. Haqiqatan ham, agar bu urinsiz bo'lsa, u holda g(x) funksiya uchun [a, b] kesmada Roll teoremasining hamma shartlari bajariladi, va shu teoremaga asosan [a, b] kesma ichida shunday s nuqta topiladiki, g'(c)=0 bo'ladi. Bu esa teoremaning shartiga ziddir. Demak, $g(b) \neq g(a)$ va ushbu yordamchi funksiyani qaraymiz:

$$F(x) = \varphi(x) - \varphi(a) - \frac{\varphi(b) - \varphi(a)}{g(b) - g(a)} \left[g(x) - g(a) \right]$$

$$\tag{2}$$

 $\varphi(x)$ va g(x) funksiyalarga qo'yilgan shartlarga asosan, F(x) funksiya [a, b] kesmada uzluksiz va shu kesmaning hamma ichki nuqtalarida differensiallanuvchi. Bundan tashqari, o'z-o'zidan ko'rinadiki, F(a)=F(b)=0. Shunday qilib, F(x) funksiya uchun Roll teoremasining barcha shartlari bajariladi. Shu teoremaga asosan kesma ichida shunday s nuqta topiladiki,

$$F'(c) = 0 \tag{3}$$

bo'ladi.

$$F'(x) = \varphi'(x) - \frac{\varphi(b) - \varphi(a)}{g(b) - g(a)} g'(x)$$

ekanini nazarda tutib va (3) tenglikdan foydalanib

$$\varphi'(c) - \frac{\varphi(b) - \varphi(a)}{g(b) - g(a)} g'(c) = 0$$

$$\tag{4}$$

ga ega bo'lamiz. $g'(x)\neq 0$ ekanini hisobga olib, (4) tenglikdan (1) - Koshi formulasini hosil qilamiz.

<u>1- eslatma:</u> (1) formulada b>a deb hisoblash mutlaqo shart emas.

2- eslatma: Lagranj formulasi Koshi formulasining g(x) = x bulgandagi xususiy xolidir.