7 Limites et continuité

I - Notions de limite

1 - Illustration

• Soit f la fonction définie par

$$\forall x \in \mathbf{R}, \quad f(x) = x^2.$$

Étudions les valeurs de f(x) lorsque x se rapproche de 0.

x						0,01			
f(x)	1	0,25	0,01	0,0001	0	0,0001	0,01	0,25	1

On constate que plus x se rapproche de 0, plus x^2 se rapproche de 0. On dit que x^2 tend vers 0, lorsque x tend vers 0, et on note

$$\lim_{x\to 0} x^2 = 0.$$

• Soit f la fonction définie par

$$\forall x \in \mathbf{R}^*, \quad f(x) = \frac{1}{x^2}.$$

Étudions les valeurs de f(x) lorsque x se rapproche de 0.

x	-1	-0,5	-0, 1	-0,01	0,01	0,1	0,5	1
f(x)	1	4	100	10000	10000	100	4	1

On constate que plus x se rapproche de 0, plus $\frac{1}{x^2}$ devient "grand".

On dit que $\frac{1}{x^2}$ tend vers $+\infty$, lorsque x tend vers 0, et on note

$$\lim_{x\to 0}\frac{1}{x^2}=+\infty.$$

• Soit f la fonction définie par

$$\forall x \in \mathbf{R}^*, \quad f(x) = \frac{1}{x^2}.$$

Étudions les valeurs de f(x) lorsque x devient "grand".

х	1	5	10	100
f(x)	1	0,04	0,01	0,0001

On constate que plus x devient "grand", plus $\frac{1}{x^2}$ se rapproche de 0.

On dit que $\frac{1}{x^2}$ **tend vers** 0, **lorsque** x **tend vers** $+\infty$, et on note

$$\lim_{x \to +\infty} \frac{1}{x^2} = 0.$$

2 - Limite finie en un point

Soit f une fonction définie au voisinage d'un réel a.

On dit que f admet ℓ pour limite en a lorsque f(x) devient aussi proche que l'on veut de ℓ pourvu que l'on choisisse x suffisamment proche de a. On note alors

$$\lim_{x \to a} f(x) = \ell.$$

Exemple 7.1 – Soit f la fonction définie sur] – 2;4[par $f(x) = x^2 + 3x - 5$. On a

$$\lim_{x \to 0} f(x) = -5, \qquad \lim_{x \to -2} f(x) = -7, \qquad \lim_{x \to 4} f(x) = 23.$$

3 - Limite à gauche et à droite en un point

Pour certaines fonctions, il peut être utile de distinguer le comportement en un point a, selon que l'on s'approche de a exclusivement par la gauche, par valeurs inférieures i.e., pour des abscisses x < a, ou exclusivement par la droite, par valeurs supérieures i.e., pour des abscisses x > a.

Soit f une fonction définie sur un intervalle I.

• Si lorsque x se rapproche de a par valeurs inférieures, f(x) se rapproche de ℓ , on dit que f admet ℓ pour **limite à gauche** en a et on note

$$\lim_{x \to a^{-}} f(x) = \ell \quad \text{ou} \quad \lim_{\substack{x \to a \\ x < a}} f(x) = \ell.$$

 Si lorsque x se rapproche de a par valeurs supérieures, f(x) se rapproche de ℓ, on dit que f admet ℓ pour limite à droite en a et on note

$$\lim_{x \to a^+} f(x) = \ell \quad \text{ ou } \quad \lim_{\substack{x \to a \\ x > a}} f(x) = \ell.$$

4 - Limite infinie en un point

Une fonction f peut également avoir une limite infinie en un point *i.e.*, prendre des valeurs positives ou négatives aussi grande que l'on veut.

Plus précisément, pour une fonction f, on dit que f(x) tend vers $+\infty$, lorsque x tend vers a, si f(x) peut prendre des valeurs **positives** aussi grandes que l'on veut, pourvu que l'on choisisse x suffisamment proche de a. On note alors

$$\lim_{x \to a} f(x) = +\infty.$$

De même, on dit que f(x) tend vers $-\infty$, lorsque x tend vers a, si f(x) peut prendre des valeurs **négatives** aussi grandes que l'on veut, pourvu que l'on choisisse x suffisamment proche de a. On note alors

$$\lim_{x \to a} f(x) = -\infty.$$

Si la fonction n'est définie qu'à gauche de a (resp. qu'à droite de a), on note de manière similaire

$$\lim_{x \to a^{-}} f(x) = \pm \infty \qquad \text{(resp. } \lim_{x \to a^{+}} f(x) = \pm \infty\text{)}.$$

Limite "à droite" de *a* :

 $\lim_{x \to a^{-}} f(x) = -\infty$

5 – <u>Limite finie en l'infini</u>

 $\lim_{x \to a^+} f(x) = -\infty$

Lorsqu'une fonction f est définie au voisinage de $+\infty$ ou de $-\infty$, on peut s'intéresser au comportement de f(x) lorsque x devient très grand, dans les positifs ou les négatifs. Soit $f:[a;+\infty[\longrightarrow \mathbf{R}]$. On dit que f admet ℓ pour limite en $+\infty$ lorsque f(x) devient aussi proche que l'on veut de ℓ pourvu que l'on choisisse x suffisamment grand. On note alors

$$\lim_{x \to +\infty} f(x) = \ell.$$

Il en va de même pour définir $\lim_{x \to -\infty} f(x) = \ell$.

 $\lim_{x\to +\infty} f(x) = \ell$: f(x) est aussi proche que l'on veut de ℓ à condition de choisir x suffisamment grand.

6- Limite infinie en l'infini

Soit f une fonction définie sur un intervalle de la forme $[A; +\infty[$, où A est un réel.

1. Dire que la fonction f a pour limite $+\infty$ en $+\infty$ signifie que f(x) prend des valeurs positives aussi grandes que l'on veut pourvu que l'on choisisse x suffisamment grand. On note

$$\lim_{x \to +\infty} f(x) = +\infty.$$

2. Dire que la fonction f a pour limite $-\infty$ en $+\infty$ signifie que f(x) prend des valeurs négatives aussi grandes que l'on veut pourvu que l'on choisisse x suffisamment grand. On note

Soit f une fonction définie sur un intervalle de la forme $]-\infty;A]$, où A est un réel.

1. Dire que la fonction f a pour limite $+\infty$ en $-\infty$ signifie que f(x) prend des valeurs positives aussi grandes que l'on veut pourvu que l'on choisisse x négatif suffisamment grand. On note

$$\lim_{x \to -\infty} f(x) = +\infty.$$

2. Dire que la fonction f a pour limite $-\infty$ en $-\infty$ signifie que f(x) prend des valeurs négatives aussi grandes que l'on veut pourvu que l'on choisisse x négatif suffisamment grand. On note

$$\lim_{x \to -\infty} f(x) = -\infty.$$

II – Calculs de limites

1 – <u>Limites des fonctions usuelles</u>

Fonction	Définie sur	Courbe	Limite en $-\infty$	Limite en 0	Limite en $+\infty$
$x \mapsto c$ $c \in \mathbf{R}$	R	$\begin{array}{c c} & \uparrow y \\ \hline & \\ \end{array}$	С	С	С
$x \mapsto x^n$ $n \in \mathbf{N}^* \text{ pair}$	R	$ \begin{array}{c c} & y \\ \hline & 0 \\ \end{array} $	+∞	0	+∞
$x \mapsto x^n$ $n \in \mathbf{N}^* \text{ impair}$	R		-∞	0	+∞
$x \mapsto \sqrt{x}$	R ₊	$0 \xrightarrow{y}$	NON DÉFINI	0	+∞
$x \mapsto \frac{1}{x^n}$ $n \in \mathbf{N}^* \text{ pair}$	R*		0+	$\lim_{x \to 0^{-}} = +\infty$ $\lim_{x \to 0^{+}} = +\infty$	0+
$x \mapsto \frac{1}{x^n}$ $n \in \mathbf{N}^* \text{ impair}$	R*		0-	$\lim_{x \to 0^{-}} = -\infty$ $\lim_{x \to 0^{+}} = +\infty$	0+

Exemple 7.2 – On a

•
$$\lim_{x \to -\infty} x^3 = -\infty$$

$$\lim_{x \to 0^{-}} \frac{1}{x^2} = +\infty$$

•
$$\lim_{x \to +\infty} x^2 = +\infty$$

•
$$\lim_{x \to +\infty} x^2 = +\infty$$
•
$$\lim_{x \to -\infty} \frac{1}{x^3} = 0^-$$

2 - Limite d'une somme de deux fonctions

Ce tableau récapitule les cas possibles pour la limite d'une somme de deux fonctions u et v selon les limites de ces deux fonctions.

$$\lim_{x \to \alpha} u(x) + v(x) =$$

$\lim_{x \to \alpha} u(x)$ $\lim_{x \to \alpha} v(x)$	$\ell \in \mathbf{R}$	+∞	-∞
$\ell' \in \mathbf{R}$	$\ell + \ell'$	+∞	$-\infty$
+∞	+∞	+∞	F.I.
-∞	-∞	F.I.	-∞

Exemple 7.3 – Soit f la fonction définie sur $]0; +\infty[$ par $f(x) = x^2 - 1 + \frac{1}{x}$. Étudier les limites de la fonction f aux bornes de son intervalle de définition.

$$\lim_{\substack{x \to 0 \\ x > 0}} x^2 - 1 = -1 \quad \text{et} \quad \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty,$$

donc par somme, $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty$.

$$\lim_{x \to +\infty} x^2 - 1 = +\infty \quad \text{ et } \quad \lim_{x \to +\infty} \frac{1}{x} = 0,$$

donc par somme, $\lim_{x \to +\infty} f(x) = +\infty$.

3 – Limite d'un produit de deux fonctions

Ce tableau récapitule les cas possibles pour la limite d'un produit de deux fonctions u et v selon les limites de ces deux fonctions.

$$\lim_{x \to \alpha} u(x) \times v(x) =$$

$\lim_{x \to \alpha} u(x)$ $\lim_{x \to \alpha} v(x)$	$\ell \in \mathbf{R}^*$	0	±∞
$\ell' \in \mathbf{R}^*$	$\ell imes \ell'$	0	±∞
0	0	0	F.I.
±∞	±∞	F.I.	±∞

Lorsque la limite du produit est infinie, c'est la règle des signes du produit qui permet de déterminer le résultat entre $+\infty$ et $-\infty$.

Exemple 7.4 – Soit f la fonction définie sur $]0; +\infty[$ par $f(x) = x^2 \times \left(\frac{1}{x} - 1\right)$. Étudier les limites de la fonction f aux bornes de son intervalle de définition.

$$\lim_{\substack{x \to 0 \\ x > 0}} x^2 = 0 \quad \text{et} \quad \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} - 1 = +\infty,$$

donc nous sommes en présence de la forme indéterminée " $0 \times \infty$ ".

Or pour tout réel x non-nul, $x^2 \times \left(\frac{1}{x} - 1\right) = x - x^2$ et $\lim_{\substack{x \to 0 \\ x > 0}} x - x^2 = 0$. Donc $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = 0$.

$$\lim_{x \to +\infty} x^2 = +\infty \quad \text{et} \quad \lim_{x \to +\infty} \frac{1}{x} - 1 = -1,$$

donc par produit, $\lim_{\substack{x\to 0\\x>0}} f(x) = -\infty$.

4- Limite d'un quotient de deux fonctions

Ce tableau récapitule les cas possibles pour la limite d'un quotient de deux fonctions u et v selon les limites de ces deux fonctions.

$$\lim_{x \to \alpha} \frac{u(x)}{v(x)} =$$

$\lim_{x \to a} u(x)$ $\lim_{x \to a} v(x)$	$\ell \in \mathbf{R}^*$	0	±∞
$\ell' \in \mathbf{R}^*$	$rac{\ell}{\ell'}$	0	±∞
0	±∞	EI.	±∞
±∞	0	0	F.I.

Lorsque la limite du quotient est infinie, c'est la règle des signes du quotient qui permet de déterminer le résultat entre $+\infty$ et $-\infty$.

Exemple 7.5 – Soit f la fonction définie sur]1; $+\infty$ [par $f(x) = \frac{1}{x^2 - 1}$. Étudier les limites de la fonction f aux bornes de son intervalle de définition.

$$\lim_{x \to 1^+} 1 = 1 \quad \text{et} \quad \lim_{x \to 1^+} x^2 - 1 = 0^+,$$

donc par quotient, $\lim_{x \to 1^+} f(x) = +\infty$.

$$\lim_{x \to +\infty} 1 = 1 \quad \text{et} \quad \lim_{x \to +\infty} x^2 - 1 = +\infty,$$

donc par quotient, $\lim_{x \to +\infty} f(x) = 0$.

5 - Composition de limites

Théorème 7.6 - Composition de limites -

Soient f et g deux fonctions et a, b et c des réels ou $\pm \infty$.

Si
$$\lim_{x \to a} f(x) = b$$
 et $\lim_{X \to b} g(X) = c$, alors $\lim_{x \to a} g \circ f(x) = c$.

Exemple 7.7 – Calculer la limite
$$\lim_{x \to +\infty} \sqrt{\frac{1}{x}} + 2$$
.

$$\lim_{x \to +\infty} \frac{1}{x} = 0^+ \quad \text{ et } \quad \lim_{X \to 0^+} \sqrt{X} = 0,$$

donc par composition, $\lim_{x \to +\infty} \sqrt{\frac{1}{x}} = 0$.

Dès lors, par somme, on a $\lim_{x \to +\infty} \sqrt{\frac{1}{x}} + 2 = 2$.

6 – Limites de fonctions polynômes ou rationnelles en $\pm \infty$

Théorème 7.8

La limite d'une fonction polynôme en $\pm \infty$ est égale à la limite de son monôme de plus haut degré.

Exemple 7.9 -
$$\lim_{x \to +\infty} -3x^3 - 2x^2 + x - 5 = \lim_{x \to +\infty} -3x^3 = -\infty$$
.

Théorème 7.10

La limite d'une fonction rationnelle en $\pm \infty$ est égale à la limite du quotient du monôme de plus haut degré du numérateur par le monôme de plus haut degré du dénominateur.

Exemple 7.11 –
$$\lim_{x \to +\infty} \frac{5x^2 - 2x^3}{3x^4 + 1} = \lim_{x \to +\infty} \frac{-2x^3}{3x^4} = \lim_{x \to +\infty} \frac{-2}{3x} = 0.$$

III – Asymptotes et branches infinies

1 - Asymptotes

Définition 7.12 – Soit a un réel. Si $\lim_{x \to a^-} f(x) = \pm \infty$ et/ou que $\lim_{x \to a^+} f(x) = \pm \infty$ alors la droite d'équation x = a est **asymptote verticale** à \mathcal{C}_f en a.

Définition 7.13 – Soit ℓ un réel. Si $\lim_{x \to +\infty} f(x) = \ell$ (resp. si $\lim_{x \to -\infty} f(x) = \ell$), alors la droite d'équation $y = \ell$ est **asymptote horizontale** en $+\infty$ (resp. $-\infty$).

Définition 7.14 – Soit f une fonction définie sur un intervalle de borne $+\infty$ ou $-\infty$, et \mathcal{D} une droite d'équation y = ax + b.

Si $\lim_{x \to +\infty} (f(x) - (ax + b)) = 0$ (resp. $\lim_{x \to -\infty} (f(x) - (ax + b)) = 0$), on dit alors que la droite d'équation y = ax + b est une **asymptote oblique** à la courbe représentative de la fonction f en $+\infty$ (resp. en $-\infty$).

Exemple 7.15 – Soit f la fonction définie sur $\left] -\infty; -\frac{3}{2} \right[\cup \left] -\frac{3}{2}; +\infty \right[\text{ par } f(x) = \frac{5x-1}{2x+3}.$ Étudier les limites de f aux bornes de son ensemble de définition et en déduire les équations de ses éventuelles asymptotes.

Commençons par étudier les limites en $+\infty$ et en $-\infty$. D'après le théorème 7.10,

$$\lim_{x \to +\infty} \frac{5x - 1}{2x + 3} = \lim_{x \to +\infty} \frac{5x}{2x} = \lim_{x \to +\infty} \frac{5}{2} = \frac{5}{2} \quad \text{ et de même} \quad \lim_{x \to -\infty} \frac{5x - 1}{2x + 3} = \frac{5}{2}$$

Ainsi, la droite d'équation $y = \frac{5}{2}$ est asymptote horizontale à la courbe \mathcal{C}_f en $+\infty$ et en $-\infty$.

Étudions maintenant les limites en $-\frac{3}{2}$.

$$\lim_{\substack{x \to -\frac{3}{2} \\ x < -\frac{3}{2}}} 5x - 1 = -\frac{17}{2} \quad \text{et} \quad \lim_{\substack{x \to -\frac{3}{2} \\ x < -\frac{3}{2}}} 2x + 3 = 0^-,$$

donc par quotient, $\lim_{\substack{x \to -\frac{3}{2} \\ x < -\frac{3}{2}}} \frac{5x-1}{2x+3} = +\infty$. De même,

$$\lim_{\substack{x \to -\frac{3}{2} \\ x > -\frac{3}{2}}} 5x - 1 = -\frac{17}{2} \quad \text{et} \quad \lim_{\substack{x \to -\frac{3}{2} \\ x > -\frac{3}{2}}} 2x + 3 = 0^+,$$

donc par quotient, $\lim_{\substack{x \to -\frac{3}{2} \\ x < -\frac{3}{8}}} \frac{5x-1}{2x+3} = -\infty$.

Ainsi, la droite d'équation $x = -\frac{3}{2}$ est asymptote verticale à la courbe \mathscr{C}_f .

IV- Continuité

1 - Définition

Soit f une fonction définie sur un intervalle I de \mathbf{R} . Intuitivement, dire que f est continue sur I signifie que sa courbe représentative peut être tracée en un seul morceau (la courbe ne présente aucun saut, aucun trou). Mathématiquement, cela se traduit de la manière suivante.

Définition 7.16 – Soit f une fonction définie sur un intervalle I et a un point de I.

• f est dite **continue** en a lorsque

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a).$$

Sinon, f est dite **discontinue** en a.

• f est dite **continue sur l'intervalle** I lorsqu'elle est continue en tout point $a \in I$.

Exemple 7.17 – Soit f une fonction définie sur un intervalle I et a un réel de I. On note \mathscr{C}_f la courbe représentative de la fonction f et A le point de la courbe \mathscr{C}_f d'abscisse a. Pour tout réel x de l'intervalle I, on considère le point M de la courbe \mathscr{C}_f d'abscisse x.

La fonction f est continue.

La fonction *f* n'est pas continue en *a*.

Pour tout réel a de I, on peut rendre f(x) aussi proche que l'on veut de f(a) pourvu que x soit suffisamment proche de *a*.

La courbe \mathscr{C}_f présente un saut au point d'abscisse a. Le point M n'est pas proche du point Aquand x est proche de a.

2 - Opérations sur les fonctions continues

Théorème 7.18

- Si f et g sont deux fonctions continues, alors la somme f + g et le produit fg sont continues. Si de plus, g ne s'annule pas, alors le quotient $\frac{f}{g}$ est aussi continue.
- Si f et g sont continues, alors $g \circ f$ est continue.

Théorème 7.19 - Continuité des fonctions de référence

- Une fonction polynomiale est continue sur **R**.
- La fonction racine carrée est continue sur R₊.
- La fonction inverse est continue sur] $-\infty$; 0[et sur]0; $+\infty$ [.
- Une fraction rationnelle est continue sur tout intervalle inclus dans son ensemble de définition.

Exemple 7.20 – Soit f la fonction définie sur \mathbf{R}_+^* par $f(x) = \frac{1}{x} + x^2 - 2x + 1 + \sqrt{x}$. Les fonctions $x \mapsto \frac{1}{x}$, $x \mapsto \sqrt{x}$ et $x \mapsto x^2 - 2x + 1$ sont continues sur \mathbf{R}_+^* . Donc, f est continue sur \mathbf{R}_+^* comme somme de fonctions continues sur \mathbf{R}_+^* .