상관분석과 회귀분석

1. 산포도

A. 예) 중간고사와 기말고사의 성적

중간고사					기말고사				
순위	학번	학과	성명	성적	순위	학번	학과	성명	성적
1			***	198 "	1			anniniinanii	192
2			***	188 <i></i>		Quant V		uuniiriniiniili	188
2			***	188	3		annagamana,	*** Spullmanning ***	180
4			***	105	Ι.				
4			***	185 <i></i>					i ji 175
6			***	182 <i>чинишинини</i>	,,,,,,,5			***	175
7			***	181	7			annangganil,	173

두 변수들 사이의 관계를 파악하려면 결합분포를 보아야 함.

B. 예) 중간고사와 기말고사의 산포도

C. 산포도에 점을 표시하는 방법

D. 중간고사 성적과 기말고사 성적이 비슷하다면?

E. 기말고사 성적을 예측하려 한다면?

중간고사점수로본 특정집단의 기말고사성적이 엇비슷하면, 중간고사성적이 기말고사성적 예측에 도움을 준다

중간고사점수로본 특정집단의 기말고사성적이 흩어져 있으면, 중간고사성적이 기말고사성적 예측에 별 도움을 주지 못 한다

2. 상관계수

A. 목적

- 1) 두 변수 사이에 관계가 어느정도 강한가 ?
- 2) 평균과 표준편차만으로는 알 수 없는 한계

B. 산포도와 상관계수

1에 가까운 상관계수는 점들이 선 주위에 <mark>몰려</mark> 있음을의미

0에 가까운 상관계수는 점들이 선 주위에 <mark>퍼져</mark> 있음을의미

B. 양의 상관관계와 음의 상관관계

C. 상관계수 (Correlation Coefficient)

$$\begin{split} R &= \frac{\sum\limits_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sqrt{\sum\limits_{i=1}^{n} (x_{i} - \overline{x})^{2}} \sqrt{\sum\limits_{i=1}^{n} (y_{i} - \overline{y})^{2}}} \\ &= \frac{n \sum\limits_{i=1}^{n} x_{i} y_{i} - \sum\limits_{i=1}^{n} x_{i} \sum\limits_{i=1}^{n} y_{i}}{\sqrt{n \sum\limits_{i=1}^{n} x_{i}^{2} - \left(\sum\limits_{i=1}^{n} x_{i}\right)^{2}} \sqrt{n \sum\limits_{i=1}^{n} y_{i}^{2} - \left(\sum\limits_{i=1}^{n} y_{i}\right)^{2}}} \end{split}$$

C. 상관계수의 특징

1) 얼마만큼 빽빽하게 밀집되어 있는가를 의미하지 않는다.

2) 유용하지 않은 경우가 존재한다.

상관계수는 이탈값이 존재하거나 분포가 비선형일 때 유용성이 떨어진다.

3) 실제의 관계를 과장할 수 있다.

집단별 비율이나 평균에 기초하여 구한 상관계수는 실제의 관계를 과장한다.