Inorg. Phys. Theor.

One- and Two-equivalent Paths in the Reaction of Vanadium(II) with Mercury(II). A Recalculation of Kinetic Parameters

By Mark Green and A. G. Sykes,* Department of Inorganic and Structural Chemistry, The University, Leeds LS2 9JT

Kinetic parameters for the one- and two-electron paths in the reaction of vanadium(II) with mercury(II) have been recalculated. The one-electron path $(a = k_{\rm a})$ is independent of [H+]; at 25° $k_{\rm a} = 1.04 \pm 0.11$ I mol⁻¹ s⁻¹, $\Delta H_{\rm a}^{\ddagger} = 15.8 \pm 0.8$ kcal mol⁻¹, and $\Delta S_{\rm a}^{\ddagger} = -5.6 \pm 2.7$ e.u. There is now no detectable contribution from an [H+]-independent path for the two-electron reaction $(b = k_{\rm b}[{\rm H}^+]^{-1})$, and at 25° $k_{\rm b} = 8.69 \pm 0.02$ s⁻¹, $\Delta H_{\rm b}^{\ddagger} = 14.8 \pm 0.2$ kcal mol⁻¹, and $\Delta S_{\rm b}^{\ddagger} = -4.6 \pm 0.8$ e.u.

WE wish to rectify an error which has been made in evaluating kinetic data for the reaction of vanadium(II) and mercury(II).¹ Rate constants associated with the one- and two-equivalent paths for this reaction (a and b respectively) are as defined in equation (1), where

$$[V^{III}]_{\infty}/[V^{IV}]_{\infty} = 2a/b \tag{1}$$

 $[V^{III}]_{\infty}$ and $[V^{IV}]_{\infty}$ are the final concentrations of the two products. Kinetic measurements on the rate of formation of vanadium(IV) at 760 nm do not, in fact, give b directly as was previously supposed. For runs under pseudo-first-order conditions with a large excess of the mercury(II) reactant the rate law (2) is obtained, which

$$-d[V^{II}]/dt = (2a + b)[V^{II}][Hg^{II}]$$
 (2)

on integration gives (3), where [VII]₀ is the initial

$$[V^{II}] = [V^{II}]_0 \exp\{-(2a + b)[Hg^{II}]t\}$$
 (3)

TABLE 1

Product analyses and second-order rate constants for the reaction of vanadium(II) with mercury(II), $\mu=2.0$ m (LiClO₄)

,	12.7				
Temp.	$[\mathbf{H}^+]$	$[V^{IV}]_{\infty}/$	(2a + b) *	a	<i>b</i> †
(°C)	(M)	$[V^{III}]_{\infty}$	(l mol ⁻¹ s ⁻¹)	(l mol ⁻¹ s ⁻¹)	(l mol ⁻¹ s ⁻¹
10.0	0.25	15.6	9.34	0.280	8.78
	0.50	8.1	5.00	0.275	4.45
	1.12	$5 \cdot 25$	2.60	0.208	$2 \cdot 18$
	1.37	4.0	$2 \cdot 24$	0.224	1.79
	1.91	$2 \cdot 45$	1.80	0.261	1.28
15.0	0.50	8.1	7.86	0.432	7.00
	1.12	4.56	4.04	0.363	3.31
	1.37	3.35	3.48	0.400	2.68
	1.91	2.70	$2 \cdot 77$	0.374	$2 \cdot 02$
20.0	0.50	8.1	13.0	0.715	11.7
	1.12	3.76	6.58	0.691	5.20
	1.37	3.00	5.64	0.705°	4.23
	1.91	$2 \cdot 33$	4.44	0.667	3.11
25.0	0.27	13.3	34.6	1.21	$32 \cdot 2$
	0.29	13.3	32.3	1.13	30.1
	0.50	7.33	19.5	1.17	17.2
	0.50	7.33	19.5	1.17	17.2
	0.92	4.26	11.5	1.09	9.27
	1.00	3.76	10.7	$1 \cdot 12$	8.44
	1.00	4.00	10.7	1.07	8.54
	$1 \cdot 17$	3.55	9.40	1.03	7.33
	1.37	2.85	8.29	1.08	6.14
	1.57	3.00	7.47	0.93	5.60
	1.57	3.17	7.47	0.90	5.68
	1.82	$2 \cdot 57$	6.70	0.94	4.82
	1.82	2.70	6.70	0.91	4.89
	1.91	2.57	6.47	0.91	4.66
	1.91	2.33	6.47	0.97	4.53
	1.91	2.33	$6 \cdot 47$	0.97	4.53

* From computed data in Table 3 of ref. 1. \dagger Calculated using a values for individual runs. Alternatively b can be determined using an averaged value of a at each temperature. The latter method has been used in computing activation parameters for b.

concentration of vanadium(II). The rate law for the formation of vanadium(IV) is given by equation (4).

$$d[V^{IV}]/dt = b[V^{II}][Hg^{II}]$$
 (4)

This can only be integrated after substituting for $[V^{II}]$ as in (3). Hence equation (5) is obtained,

$$[{\bf V}^{\rm IV}] = \frac{b}{(2a+b)} [{\bf V}^{\rm II}]_0 (1-\exp\{-(2a+b)[{\bf H}{\bf g}^{\rm II}]t\}) \ \, (5)$$

Graphs of log $(OD_{\infty} - OD_t)$ against time, t, at 760 nm ($\epsilon = 17 \cdot 2 \text{ l mol}^{-1} \text{ cm}^{-1}$ for VIV) therefore give (2a + b) and not solely b. Rate constants b in Table 1 (and Table 5) of reference 1 should read (2a + b), and values of a in Table 2 are incorrect. Correct values are given in Table 1 of this paper. Although b exhibits an $[H^+]^{-1}$ dependence there is now no measurable $[H^+]^{-1}$ independent term. Thus we can write $a = k_a \dagger$ and $b = k_b [H^+]^{-1}$. Revised rate constants and activation parameters for k_a and k_b are given in Tables 2 and 3. Comments regarding the effect of Cl^- and SO_4^{2-} remain unchanged.

TABLE 2

Values of $k_{\rm a}$ and $k_{\rm b}$ for the one- and two-electron paths in the reaction of vanadium(II) with mercury(II), $\mu=2.0$ m (LiClO₄)

Temp. (°C)	$R_{\mathbf{a}}$ (i mol ⁻¹ s ⁻¹)	$R_{\rm b}~({\rm s}^{-1})$
10	0.250 ± 0.032	2.23 ± 0.02
15	0.392 ± 0.031	3.58 ± 0.04
20	0.695 ± 0.021	5.80 ± 0.01
25	1.04 ± 0.11	8.69 ± 0.02

TABLE 3

A summary of kinetic data (revised) for the reaction of vanadium(II) with mercury(II), $\mu = 2.0 \text{m}$ (LiClO₄)

$$\begin{array}{cccc} & \Delta H^{\ddagger} & \Delta S^{\ddagger} \\ \text{Rate constants } (25^{\circ}) & (\text{kcal mol}^{-1}) & (\text{e.u.}) \\ k_{a} \; (1 \; \text{electron})^{*} = 1.04 \pm 0.11 \; (1 & 15.8 \pm 0.8 & -5.6 \pm 2.7 \\ \text{mol}^{-1} \; \text{s}^{-1}) \\ k_{b} \; (2 \; \text{electrons}) = 8.69 \pm 0.02 \; (\text{s}^{-1}) & 14.8 \pm 0.2 & -4.6 \pm 0.8 \end{array}$$

* Alternatively, and possibly less precisely, k_a can be evaluated by plotting (2a+b) against $[H^+]^{-1}$ (see Figure 1 of ref. 1) and measuring the intercepts (2a). This gives $k_a=0.92\pm0.03$ at 25° , $\Delta H^\ddagger=10.9\pm0.7$ kcal mol⁻¹, and $\Delta S^\ddagger=-20.8\pm2.2$ e.u. If all k_a values are taken into account, and the activation parameters re-computed, these are $\Delta H^\ddagger=13.9\pm1.3$ kcal mol⁻¹ and $\Delta S^\ddagger=-11.8\pm4.4$.

[†] At 25° a small (decreasing) trend in a values with increasing $[H^+]$ is noted. Since a is determined indirectly we are uncertain as to whether this $(\pm 10\%)$ effect is meaningful and have, therefore, averaged a values.

¹ M. Green and A. G. Sykes, J. Chem. Soc. (A), 1970, 3221.

J. Chem. Soc. (A), 1971

 $3.2 imes 10^4 \,
m l \, mol^{-1} \, s^{-1}$ at 25° , 6 and it is necessary to invoke proton transfer between the two co-ordination spheres and loss of an H₂O ligand from the Hg²⁺ reactant prior to formation of an inner-sphere activated complex. Alternatively loss of a proton from the H₂O-bridged precursor complex VH₂OHg⁴⁺ is a possible mechanism. We note that the activation parameters for k_a and k_b

The mechanistic implications are (i) that the oneelectron path $V^{II} + Hg^{II} \longrightarrow V^{III} + Hg^{I}$ is possibly V2+-substitution controlled 2-4 and (ii) that the twoelectron path, VII + HgII - VIV + Hg0, proceeds via a hydroxy-bridged activated complex. The presence of a hydroxide group in the activated complex is important since the vanadium(IV) product is the vanadyl ion VO2+. The reaction of vanadium(II) with vanadium-(IV) is too slow to be effective.⁵ An inner-sphere mechanism seems likely for a path involving transfer of two electrons. If the reactants are V²⁺ and HgOH⁺ then the bimolecular rate constant for this path will be

We are most grateful for correspondence from Professor J. Espenson.

(the latter a composite term) are remarkably similar.

[1/609 Received, April 26th, 1971]

 5 T. W. Newton and F. B. Baker, Inorg. Chem., 1964, 3, 569. 6 R. Arnek and W. Kakolowicz, Acta Chem. Scand., 1967, 21, 1449, give a value 2.75 \times 10-4 mol 1-1 for the acid dissociation constant of Hg²⁺ at 25°, $\mu = 3.0$ m (NaClO₄).

H. J. Price and H. Taube, *Inorg. Chem.*, 1968, 7, 1.
 N. Sutin, *Acc. Chem. Res.*, 1968, 1, 228.
 M. Green, R. S. Taylor, and A. G. Sykes, *J. Chem. Soc.* (A),

^{1971, 509.}