Stat 333 Basic Probability Distributions

Discrete Distributions

distribution	probability mass function	range	$\mathrm{E}(X)$	$\operatorname{Var}(X)$
indicator (p)	f(0) = 1 - p, f(1) = p	k = 0, 1	p	p(1 - p)
$\operatorname{binomial}(n,p)$	$f(k) = \binom{n}{k} p^k (1-p)^{n-k}$	$k = 0, 1, \dots, n$	np	np(1-p)
geometric $(p)^{\dagger}$	$f(k) = p(1-p)^{k-1}$	$k=1,2,3,\ldots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
neg. $binomial(r, p)$	$f(k) = \binom{k-1}{r-1} p^r (1-p)^{k-r}$	$k=r,r+1,\ldots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
$Poisson(\lambda)$	$f(k) = \frac{\lambda^k}{k!} e^{-\lambda}$	$k=0,1,2,\dots$	λ	λ

[†] we will always define the geometric as X = number of trials up to (and including) the first Success. Similarly we will always define the negative binomial as $X_r =$ number of trials up to (and including) the first r Successes.

The indicator, binomial, and Poisson random variables are examples of *counting variables*. They count the number of times a certain event E occurs in a fixed number of trials (indicator and binomial) or in a fixed time period (Poisson). The geometric and negative binomial are examples of *waiting time variables*. They count the number of trials (the waiting time) required to obtain a pre-determined fixed number of occurrences of an event E (Success).

Continuous Distributions

distribution	probability density function	range	$\mathrm{E}(X)$	$\operatorname{Var}(X)$
uniform (a, b)	$f(x) = \frac{1}{b-a}$	$a \le x \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
exponential (λ)	$f(x) = \lambda e^{-\lambda x}$	x > 0	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
gamma (α, λ)	$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$	x > 0	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$
$\mathrm{normal}(\mu,\sigma^2)$	$f(x) = \frac{\exp[-(x-\mu)^2/2\sigma^2]}{\sqrt{2\pi\sigma^2}}$	$-\infty < x < \infty$	μ	σ^2

The exponential distribution is the continuous counterpart to the geometric distribution and can be viewed as a continuous waiting-time variable. It is the unique continuous distribution possessing the *no-memory property*. The exponential will be the most important continuous distribution in this course.