Midterm Solutions

The Limits of Logic

Fall 2022

Problem 1

Let A and B be any sets, and let $f: A \to B$ be any function. Let $E: B \to PA$ be the function defined as follows:

$$E(b) = \{ a \in A \mid f(a) = b \}$$

Prove that for every $a \in A$, there is exactly one $b \in B$ such that $a \in E(b)$.

Solution First we will show that there is *at least one* such $b \in B$, and then we will show that there is *at most one* such $b \in B$.

Existence: We have in particular

$$E(f(a)) = \{a' \in A \mid f(a') = f(a)\}\$$

Clearly $a \in E(f(a))$ (since f(a) = f(a)). So there is some $b \in B$ such that $a \in E(b)$.

Uniqueness: Suppose that there are $b, b' \in B$ such that $a \in E(b)$ and E(b'). This means that f(a) = b and f(a) = b'. This implies that b = b'.

Problem 2

Let the set of *even palindromes* be recursively defined as follows:

- The empty string () is an even palindrome.
- For any even palindrome s, and any symbol $a \in \mathbb{A}$ in the standard alphabet, the string $(a) \oplus s \oplus (a)$ is an even palindrome.

(To be clear, (a) is the length-one string that consists of just the symbol a.)

Part (a) Prove by induction on the definition of *even palindrome* that, for every even palindrome *s*, the length of *s* is an even number.

Solution Base case: the length of () is zero, which is an even number.

Inductive step: Let s be any even palindrome, and suppose the length of s is even. We will show that the length of $(a) \oplus s \oplus (a)$ is also even. In fact,

$$length((a) \oplus s \oplus (a)) = 1 + length s + 1 = length s + 2$$

Since by the inductive hypothesis the length of s is even, this is also even.

Part (b) Write down a recursive definition of the function *reverse*, which takes any string *s* to the string that has the same symbols as *s* in reverse order. For example:

Solution

reverse() = ()
reverse(
$$a : s$$
) = (reverse s) \oplus (a)

Part (c) Use your definition to prove by induction that for any string s, $s \oplus reverse s$ is an even palindrome.

Solution For the base case, we show that () \oplus reverse() is an even palindrome. This is true, since () \oplus reverse() = () \oplus () = ().

For the inductive step, suppose that $s \oplus$ reverse s is an even palindrome. We will show that $(a : s) \oplus$ reverse(a : s) is also an even palindrome. In fact, using our definition

$$(a : s) \oplus \text{reverse}(a : s) = (a : s) \oplus \text{reverse } s \oplus (a)$$

= $(a) \oplus (s \oplus \text{reverse } s) \oplus (a)$

Since $s \oplus$ reverse s is an even palindrome by the inductive hypothesis, the definition of even palindromes tells us that this is also an even palindrome.

Problem 3

For each of the following sets, say whether it is **countable**, or **uncountable**. Explain each answer in sentence or two.

- (a) The set of all finite sequences of finite sequences of numbers.
- (b) The set of all finite sets of strings.
- (c) The set of all infinite sets of strings.
- (d) The set of all sets of even palindromes (as defined in problem 2).

Solution

- (a) **Countable.** We know that for any countable set A, the set A^* of all finite sequences of elements of A is also countable. So, since \mathbb{N} is countable, and then applying the same fact again, \mathbb{N}^{**} is also countable.
- (b) **Countable.** We know that the set of all finite *sequences* of strings is countable (by the same fact we used in part (a)). Furthermore, there are no more finite *sets* of strings than there are finite *sequences* of strings. We can see this because there is an onto function that takes each finite sequence of strings to a finite set—namely, the set of all of the elements of that sequence. (For example, this takes (A, B, A) to {A, B}.)
- (c) **Uncountable.** The set P S of *all* sets of strings is uncountable, and by part (b) the set of *finite* sets of strings is countable—call this $P_0 S$. Since P S is the union of $P_0 S$ and the set of infinite sets of strings, the latter set must *not* be countable.
- (d) **Uncountable.** There are infinitely many even palindromes: for example each of the strings AA, AAAA, AAAAAA, ... is an even palindrome. We know that the set of all subsets of an infinite set is uncountable.

Problem 4 Let L be a signature containing one constant symbol c, one one-place function symbol f, and no other basic symbols. Let S and S' be L-structures. Let $h: D_S \to D_{S'}$ be any function from the domain of S to the domain of S'.

Suppose that

$$c_{S'} = h(c_S)$$

That is, the denotation of c in S' is the result of applying the function h to the denotation of c in S.

Suppose also that for every $d \in D_S$,

$$f_{S'}(h(d)) = h(f_S(d))$$

In other words, for any pair $(d, d') \in D_S \times D_S$,

If
$$f_{S}(d) = d'$$
 then $f_{S'}(h(d)) = h(d')$

In this sense, the function h takes the extension of f in S to the extension of f in S'.

Part (a) Prove by induction that, for any (closed) L-term t, if t denotes d in S, then t denotes h(d) in S'. In other words, for any L-term t,

$$[\![t]\!]_{S'} = h([\![t]\!]_S)$$

Solution Base case.

$$h(\llbracket \mathsf{c} \rrbracket_S) = h(\mathsf{c}_S) = \mathsf{c}_{S'} = \llbracket \mathsf{c} \rrbracket_{S'}$$

Inductive step. Let t be any term. Suppose that $[t]_{S'} = h([t]_S)$. We will show that $h([f(t)]_S) = [f(t)]_{S'}$. In fact:

$$h(\llbracket f(t) \rrbracket_S) = h(f_S \llbracket t \rrbracket_S)$$

$$= f_{S'}(h(\llbracket t \rrbracket_S))$$

$$= f_{S'}(\llbracket t \rrbracket_{S'})$$

$$= \llbracket f(t) \rrbracket_{S'}$$

Part (b) Use part (a) to prove that, for any L-terms a and b, if $[a]_S = [b]_S$, then $[a]_{S'} = [b]_{S'}$.

Solution If $[a]_S = [b]_S$, then

$$h([a]_S) = h([b]_S)$$

By part (a), the left-hand side is $[a]_{S'}$ and the right-hand side is $[b]_{S'}$. So these are equal.

Problem 5

Consider a signature L that contains one two-place predicate symbol F, and no other basic symbols. For each of the following sets of L-sentences, either prove that it is consistent, or prove that it is inconsistent.

Part (a) The set containing the following two sentences:

```
\exists x \ \forall y \ F(x,y)
\forall x \ \neg \exists y \ F(x,y)
```

Solution **Inconsistent.** Let S be any structure, and suppose first that $\forall x \neg \exists y \ F(x,y)$ is true in S. That means that for every $d_1 \in D_S$, it is not the case that there is some $d_2 \in D_S$ such that (d_1,d_2) is in F_S (the extension of F in S). In other words, there are no d_1 and d_2 in D_S such that $(d_1,d_2) \in F_S$; the extension of F is empty.

Suppose next that $\exists x \ \forall y \ F(x,y)$ is true in S. That means that there is some $d_1 \in D_S$ such that for every $d_2 \in D_S$, (d_1,d_2) is in F_S (the extension of F in S). In particular, $(d_1,d_1) \in F_S$. So the extension of F_S is not empty.

This is a contradiction, so both suppositions cannot be true: that is, there is no structure in which $\forall x \neg \exists y \ F(x,y)$ and $\exists x \ \forall y \ F(x,y)$ are both true. So the set containing both sentences is inconsistent.

Part (b) The set containing the following two sentences:

```
\neg\exists x \ \forall y \ F(x,y)
\forall x \ \exists y \ F(x,y)
```

Solution Consistent. We can show this by providing a model. We can let S be a structure such that

$$D_S = \{1, 2\}$$

 $F_S = \{(1, 1), (2, 2)\}$

In a picture:

1 2 • • • ບ ບ

- $\neg\exists x \ \forall y \ F(x,y)$ is true in S: there is no $d_1 \in D_S$ such that, for every $d_2 \in D_S$, $(d_1,d_2) \in F_S$. In the case of 1, we have $(1,2) \notin F_S$, and in the case of 2, we have $(2,1) \notin F_S$.
- $\forall x \exists y \ F(x,y)$ is true in S: for each $d_1 \in D_S$, there is some $d_2 \in D_S$ such that $(d_1, d_2) \in F_S$. In the case of 1 we have $(1, 1) \in F_S$ and in the case of 2 we have $(2, 2) \in F_S$.

Part (c) The set containing the following two sentences:

```
\exists x \ \forall y \ F(x,y)
\neg \forall x \ \exists y \ F(x,y)
```

Solution Consistent. Again we provide a model. Let S be a structure such that

$$D_S = \{1, 2\}$$

 $F_S = \{(1, 1), (1, 2)\}$

In a picture:

```
1 2
• → •
•
```

- $\exists x \ \forall y \ F(x,y)$ is true in S: there is some $d \in D_S$, namely 1, such that for every $d_2 \in D_S$ we have $(d_1, d_2) \in F_S$. That is, (1, 1) and (1, 2) are both in F_S .
- $\neg \forall x \exists y \ F(x,y)$ is true in S: not every $d_1 \in D_S$ is such that for some $d_2 \in D_S$ we have $(d_1, d_2) \in F_S$. In particular, 2 is a counterexample, since neither (2,1) nor (2,2) is in F_S .

Problem 6

Prove the following:

Part (a) For any set of sentences X and any sentences A, and B, if $X \cup \{A, B\}$ is inconsistent, then $X \models \neg(A \land B)$.

Solution Suppose that $X \cup \{A, B\}$ is inconsistent, and let S be any model of X. Then, since $X \cup \{A, B\}$ has no models, either A is false in S, or B is false in S. In either case, $A \land B$ is false in S, and thus $\neg (A \land B)$ is true in S. This shows that $\neg (A \land B)$ is true in every model of X, which means $X \models \neg (A \land B)$.

Part (b) For any set of sentences X, any terms a and b, and any formula A(x), if $X \cup \{a = b, A(a)\}$ is consistent, then $X \cup \{A(b)\}$ is consistent.

Solution Suppose $X \cup \{a = b, A(a)\}$ is consistent: that is, it has a model. So let S be such a model. Then, since a = b is true in S, we have $[a]_S = [b]_S$, and since A(a) is true in S, A(x) is true of $[a]_S$ in S (by the Substitution Lemma). Then A(x) is also true of $[b]_S$ in S. So A(b) is true in S (by the Substitution Lemma again). Thus S is a model of $X \cup \{A(b)\}$. Since this set has a model, it is consistent.