Medidas básicas

Tasa Bruta de Natalidad

$$TBN = \frac{Nacimientos(0,T)}{Poblaci\'on_a_mitad_del_periodo}$$

Es una relación entre los nacimientos y la población. Indica cuantos nacimientos contribuyen al crecimiento natural de la población.

El denominador no contiene a la población expuesta al riesgo de tener un nacimiento.

Dado que solo las mujeres en edad reproductiva pueden tener hijos, una medida más próxima es la tasa de fecundidad general.

Tasa de fecundidad general

$$TFG = \frac{Nacimientos(0,T)}{{}_{35}N_{15}^{fem}}$$

Relación entre la TBN y la TFG

La tasa bruta de natalidad se puede expresar como:

$$TBN(0,T) = TFG(0,T) *_{35}C_{15}^{fem}(0,T)$$

		Número de				
	Tasa	mujeres de	Proporción de las	Tasa de		
	bruta de	15 a 49 años	mujeres en la	Fecundidad		
País	natalidad	(en miles)	población total	General	TBN	TFG
Kenya	0,0461	4522	0,208	0,2216	4,3	5,2
Argentina	0,0218	7469	0,238	0,0918	2,0	2,2
Japón	0,0108	31111	0,255	0,0425	1,0	1,0

¿Cómo calculamos cuantos hijos tienen las mujeres?

Mismo problema del análisis de mortalidad:

Solo lo podemos calcular para mujeres que han concluido su periodo reproductivo. Tendríamos medidas para mujeres de alrededor de 50 años que han tenido sus hijos hace 20 a 30 años.

Para generar una medida del periodo necesitamos empezar por medir las tasas de fecundidad por edad.

La fecundidad de las mujeres varia con la edad porque tanto la fertilidad como el comportamiento asociado a la reproducción varia con la edad.

Tasas específicas de fecundidad por edad

$$_{n}f_{x} = \frac{Nacimientos(0,T)Mujeres x, x+n}{_{n}N_{x}^{fem}} = \frac{_{n}B_{x}}{_{n}N_{x}^{fem}}$$

$_{n}B_{x}$ Número de nacimientos ocurridos a las mujeres de edades x a x+n.

Tasas específicas de fecundidad por edad 2018

_			
			Tasa específca de fecundidad
Grupos de	Nacimientos por edad de la		de recurididad
edad	madre	Mujeres	
	_		
	$_{n}B_{x}$	N_{x}	nf _x
15 - 19	9535	191952	0,0497
20 - 24	18124	207621	0,0873
25 - 29	18031	216364	0,0833
30 - 34	13993	216650	0,0646
35 - 39	7188	191252	0,0376
40 - 44	1522	163872	0,0093
45 - 49	86	148616	0,0006

Tasa global de fecundidad

Ejemplo de estimación de la tasa global de fecundidad: estimación del número de hijos que en promedio tienen las mujeres entre los 20 y los 24 años.

		Hijos		
		tenidos		
		por las	Hijos	
	Mujeres	mujeres	tenidos	Hijos por
	de cada	de esa	por cada	cada mil
Edad	edad	edad	mujer	mujeres
20	1000	210	0.210	210
21	950	195	0.205	205
22	900	175	0.194	194
23	850	162	0.191	191
24	800 160		0.200	200
	4500			
Número de hijos que en				
promed	dio tienen la			
entr	e los 20 a 2	1.000		

Tasa global de fecundidad

Tasas específicas de fecundidad por edad 2018

Grupos de edad	Nacimientos por edad de la madre	Mujeres	Tasa específca de fecundidad
	$_{n}B_{x}$	$_{n}N_{x}$	$_{n}\mathbf{f}_{x}$
15 - 19	9535	191952	0,0497
20 - 24	18124	207621	0,0873
25 - 29	18031	216364	0,0833
30 - 34	13993	216650	0,0646
35 - 39	7188	191252	0,0376
40 - 44	1522	163872	0,0093
45 - 49	86	148616	0,0006
		∑ nfx	0,3323

$$TGF = 5 * \sum_{x=15}^{45} {}_{5}f_{x}$$

TGF 1,6617

> Número de hijos que en promedio puede esperar tener una mujer al final de su vida reproductiva si las tasas específicas de fecundidad permanecen constantes

Tasa global de fecundidad

Ejemplo estimación Medidas de Fecundidad					
Edad	Nacimientos	Mujeres	f(x)		
15	12788	204402	0,062563		
20	21323	215052	0,099153		
25	18000	199693	0,090138		
30	11613	177074	0,065583		
35	5075	154760	0,032793		
40	1268	150958	0,008400		
45	96	144388	0,000665		
Total	70163	1246327	0,359294		

Tasa de fecundidad General	0,0563
Tasa Global de Fecundidad	1,7965

$$TGF = 5 * \sum_{x=15}^{45} {}_{5} f_{x}$$

Número de hijos que en promedio puede esperar tener una mujer al final de su vida reproductiva si las tasas específicas de fecundidad permanecen constantes

Tasas de fecundidad por edad

La experiencia de maternidad de las mujeres tiende a concentrarse en las edades entre 20 y 29 años

Cúspide: el grupo de edad con mayor promedio de hijos por mujer

Relacionada con el inicio de la maternidad

Cúspide temprana grupo de edad 20 a 24 años de edad

Cúspide **plana** el grupo de edad 20 a 24 años es similar al grupo de edad 25 a 29 años.

Cúspide **tardía** grupo de edad 25 a 29 años o 30 a 34

Generalmente a medida que desciende la fecundidad hay un desplazamiento de la cúspide.

Ejemplos de cúspide temprana y cúspide tardía

Tasas de fecundidad Costa Rica 1974 y 2002

Probabilidades de agrandamiento de la familia

Se les pregunta a las mujeres (generalmente a las mayores de 12 años) cuántos hijos nacidos vivos han tenido. En el caso de las mujeres de 45 a 49 años se trata de la totalidad de hijos que tendrán durante su periodo reproductivo. A partir de una tabla que detalle la declaración de hijos tenidos de las mujeres se puede calcular la siguiente medida:

Proporción de mujeres en la cohorte que tenían i hijos que pasaron a tener i+1 hijos

$$PPR(i,i+1) = \frac{\textit{N\'umero}_\textit{de}_\textit{mujeres}_\textit{de}_\textit{paridez}_\textit{i} + 1}{\textit{N\'umero}_\textit{de}_\textit{mujeres}_\textit{de}_\textit{paridez}_\textit{i}} = \frac{P_{i+1}}{P_{i}}$$

$$PPR(0,1) = \frac{P_1}{P_0}$$
 Proporción de mujeres que pasan de tener 0 a tener 1 hijo

Para calcular la tasa global de <u>fecundidad de la cohorte</u> calculamos la proporción que paso de 0 a1, de 0 a 2. La suma de estas proporciones es el número de hijos que tuvo esta cohorte de mujeres al final de su vida reproductiva.

$$PPR(0,i) = \prod_{a=0}^{i-1} PPR(a, a+1)$$

Probabilidades de agrandamiento de la familia

Censo de Poblaci	ón 2011. Hijos teni	dos por las mujere	s de 50 a 54 años		
					$P_1 = 112664$
					$.9304 = \frac{P_1}{P_0} = \frac{112664}{121087}$

Mujeres con declaración	Número de mujeres con paridez i+	PPR(i+1)	PPR(0,i)	$.9304 = \frac{P_1}{P_0} = \frac{112004}{121087}$
				$.9002 = \frac{P_2}{P_1} = \frac{101420}{112664}$
19631				
11365	26667			
6507	15302	0,5748	0,1264	
3614	8795	0,5891	0,0726	
2181	5181	0,5790	0,0428	
1451	3000	0,5163	0,0248	
728	1549	0,5300	0,0128	
375	821	0,5432	0,0068	
251		·		
41	41	0,0000		
	declaración 8423 11244 24539 30583 19631 11365 6507 3614 2181 1451 728 375 251 94 60	Mujeres con declaración mujeres con paridez i+ 8423 121087 11244 112664 24539 101420 30583 76881 19631 46298 11365 26667 6507 15302 3614 8795 2181 5181 1451 3000 728 1549 375 821 251 446 94 195 60 101	Mujeres con declaración mujeres con paridez i+ PPR(i+1) 8423 121087 0,9304 11244 112664 0,9002 24539 101420 0,7580 30583 76881 0,6022 19631 46298 0,5760 11365 26667 0,5738 6507 15302 0,5748 3614 8795 0,5891 2181 5181 0,5790 1451 3000 0,5163 728 1549 0,5300 375 821 0,5432 251 446 0,4372 94 195 0,5179 60 101 0,4059	Mujeres con declaración mujeres con paridez i+ PPR(i+1) PPR(0,i) 8423 121087 0,9304 11244 112664 0,9002 0,9304 24539 101420 0,7580 0,8376 30583 76881 0,6022 0,6349 19631 46298 0,5760 0,3824 11365 26667 0,5738 0,2202 6507 15302 0,5748 0,1264 3614 8795 0,5891 0,0726 2181 5181 0,5790 0,0428 1451 3000 0,5163 0,0248 728 1549 0,5300 0,0128 375 821 0,5432 0,0068 251 446 0,4372 0,0037 94 195 0,5179 0,0016 60 101 0,4059 0,0008

Medidas de reproducción

Tasa bruta de reproducción

$$TBR = n * \sum_{x=\alpha}^{\beta-n} {}_{n} f_{x}^{fem}$$

$${}_{n} f_{x}^{fem} = \frac{{}_{n} B_{x}^{fem}}{{}_{n} N_{x}^{fem}}$$

número de hijas que puede esperar tener una mujer si sobrevive el período reproductivo y las tasas de fecundidad por edad permanecen constantes.

Tasa neta de reproducción

$$TNR = \sum_{x=\alpha}^{\beta-n} {}_{n} f_{x}^{fem} \frac{{}_{n} L_{x}}{l_{0}}$$

número promedio de hij<u>a</u>s que puede esperar tener una mujer si durante el periodo reproductivo estuviera expuesta a las tasas de fecundidad por edad y a las tasas de mortalidad por edad.

Medidas de reproducción

Edad media de la maternidad:

$$\overline{M} = \frac{\sum_{x=\alpha}^{\beta-n} f_x^{fem} (x + \frac{n}{2})}{\sum_{x=\alpha}^{\beta-n} f_x^{fem}}$$

Medidas de reproducción

Edad media de la maternidad de la cohorte:

$$\overline{M} = \frac{\sum_{x=\alpha}^{\beta-n} f_x^{fem} \frac{L_x}{l_0} (x + \frac{n}{2})}{\sum_{x=\alpha}^{\beta-n} f_x^{fem} \frac{L_x}{l_0}}$$

Medidas de fecundidad

Medidas de frecuencia de nacimientos:

Frecuencia con que ocurren los nacimientos en cada edad

Tasas específicas de fecundidad por edad

Tasa Global de fecundidad

Fecundidad completa:

Número de hijos tenidos por las mujeres de 45-49 o de 50 años.

Probabilidad de agrandamiento de la familia.

Medidas de reproducción:

Capacidad de una generación de renovarse a si misma

Tasas específicas de nacimientos femeninos (m(a))

Tasa bruta de reproducción

Tasa neta de reproducción

Edad media de la maternidad

La tasa neta de reproducción mide en qué medida una generación de mujeres se está sustituyendo a sí misma si las tasas específicas de fecundidad por edad y las tasas de mortalidad por edad permanecen constantes.

Cuando TNR>1 el número de hijas es **mayor** al número de madres Cuando TNR<1 el número de hijas es **menor** al número de madres

La *TNR* no nos da información sobre la velocidad del cambio pero se puede estimar si conocemos **la edad media de la maternidad** que representa el número de años en que una generación de madres se sustituye a sí misma.

También se denomina los años promedio en una generación sustituye a otra.

$$r = \frac{\ln\left(\frac{N(T)}{N(0)}\right)}{t}$$

tasa de crecimiento de la población

$$TNR \approx \frac{N(M)}{N(0)}$$

relación entre generación de madres N(M) y generación de hijas N(0)

$$\frac{N(M)}{N(0)} = e^{rt} \qquad TNR = e^{r \cdot M}$$

$$r = \frac{\ln(TNR)}{M}$$
 tasa intrínseca de crecimiento de la población r₀

El crecimiento implícito en las tasas de fecundidad y mortalidad de la población si se mantuvieran constantes.

Años persona vividos entre edades a, a+5 estimados de una tabla de vida femenina con $l_0 = 1$: $_5L_a$

Tasa de fecundidad de mujeres entre edades a, a+5 : 5 m_a

$$r_0 = \frac{\ln(TNR)}{27} = \frac{\ln\left(\sum_{a=15,5}^{45} {}_5L_a \cdot {}_5m_a\right)}{27}$$

$$y(r_n) = \sum_{a=15,5}^{45} e^{-r_n(a+2.5)} \cdot {}_{5}L_a \cdot {}_{5}m_a$$

$$e^{-ra} = 1, r = 0$$

$$e^{-ra} > 1, r < 0$$

$$e^{-ra} < 1, r > 0$$