TRACKN PROGRAM

Part of the GASP Data Analysis Program Package

D. Bazzacco

INFN, Sezione di Padova, Italy

September 25, 1997

1. INTRODUCTION

The **TRACKN** program is part of the Data Analysis Program Package developed at Padova/Legnaro designed for graphical analysis of 2D coincidence matrices produced with GSORT program and/or CMAT program. It can execute the following operations:

- 1. displaying 1D spectra
- 2. extracting gated 1D spectra from 2D matrices with normal/common background subtraction;
- 3. simple operation with spectra (area, centroid and FWHM of peaks);
- 4. automatic peaksearch;
- 5. automatic calibration with standard gamma-ray sources;
- 6. defining smooth background spectrum and cut;
- 7. screen dump to a PS file.

The program is running in graphic mode on Tek4010 terminals. A brief list of the commands can be get using the ? or H command.

2. DETAILED DESCRIPTION OF THE COMMANDS

• SPACE_BAR

Set expand markers and display marker position in channels and energy if the calibration was defined before.

• <u>E</u>

Expand spectrum between the last two 'space_bar' markers.

• <u>V</u>

It shows the position (in channels and energy) and spectrum content at the cursor position.

• SETTING MARKERS

- B background marker (maximum four=two background region);
- I integration marker (maximum two=one integration region);
- **R** mark the ROI for fit (maximum two=one ROI);
- **G** initial estimate of the peak position;
- W gate marker;
- S smooth background marker.

• DELETING MARKERS

- **ZB** cancel background markers;
- **ZI** cancel integration marker;
- **ZR** cancel ROI;
- **ZG** cancel peak markers;
- **ZW** cancel gate markers;
- **ZS** cancel smooth background marker.

• CB, CI, CJ, MI, MJ, AJ

- **CB** calculate/show background;
- CI integration between the I markers; area, centroid, FWHM listed
- **CJ** background+integration;
- MI show I markers:
- MJ show I and B markers;
- AJ automatic background+integration at cursor position.

• CG, CV, MG, MV, AG

CG gaussian fit of the peaks marked with G inside the ROI; area, centroid,

FWHM are listed;

CV background+gaussian fit;

MG show G markers;

MV show G, R and B markers;

AG automatic background+gaussian fit at cursor position.

• CP, DP, MP, ZP, +, -

CP automatic peaksearch and show;

DP define peaks from file;

MP show peaks in the buffer;

ZP cancel peak positions from buffer;

+ insert peak position at cursor location;

cancel peak position at cursor location.

• Dn, Cn, Mn, Zn, n

Dn define command string (e.g., NFF=new spectrum+full display);

Cn cicle on the n-th command string;

Mn show the n-th command string;

Zn cancel the n-th command string;

 \mathbf{n} execute the n-th command string ($\mathbf{n}=1,...,9$).

DS, MS, ZS

DS read smooth background points from file;

MS show smooth background points;

ZS cancel smooth background points.

\bullet DW, MW, ZW, CW, Q

DW define cut limits from terminal or file;

MW show cut limits:

ZW delete cut limits;

CW execute cut;

Q return to the total matrix projection.

CW works in two ways:

- 1) common backgound subtraction: all markers define peaks
- 2) normal backgound subtraction: first two markers define the peak all the others define the background

• DT, CT, AT

 \mathbf{DT}

CT;

 \mathbf{AT}

• <u>DD</u>

```
Define display characteristics. Some of the possibilities are: Y-display function: normal(default), logarithmic or square-root; X-limits (in channels); Y-limits (in channels); terminal window dimensions: x0, x1, y0, y1; text characteristics; ticks height; X-axis labels: calibrated(default) or in channels; X-axis title.
```

• DK, AK

Define the energy and FWHM calibrations.

DK allows to introduce the coefficients of the calibration polynomials of up to the fifth degree.

AK automatic energy calibration using a list of gamma-rays from a disk file, introduced from terminal or with standard gamma-ray sources.

• <u>DL</u>

Define the LUN for the output of the calculations (fit, integration, ...). If LUN=6 then the results are written on the top of the figure.

DQ

Define compressed matrix

• FF, FX, FY, FO, FU

```
 \begin{array}{ll} \mathbf{FF} & \text{zoom off on both x and y axes;} \\ \mathbf{FX} & \text{zoom off on the x axis;} \\ \mathbf{FY} & \text{zoom off on the y axis;} \\ \mathbf{FO} & \text{expand below the marker position on y axis;} \\ \mathbf{FU} & \text{expand above the marker position on y axis.} \\ \end{array}
```

• <u>L</u>

Turn off/on logaritmic scale

• <u>N</u>

Define new spectrum

• <u>O</u>=

Screen dump of the Tektronix graphical window in a PS file or to the print spooler

• <u>P</u>

Go to a specified energy

- <u>MZ</u>
- <, >

Shift spectrum to left/right by 3/4 of the x displayed range

• =

Redisplay

 $\bullet \ \ CTRL_C, \ CTRL_Y, \ CTRL_Z$

Exit (on UNIX use only CTRL_Y)