Sistemi Elettronici, Tecnologie e Misure Appello del 25/6/2018

Nome:	
Cognome:	
Matricola:	

ATTENZIONE

- 1. Compilare subito questa pagina con nome, cognome e numero di matricola
- 2. Per i quesiti a risposta multipla, la risposta errata determina la sottrazione di un punteggio pari a metà del valore della risposta esatta
- 3. Riportare le **risposte esatte** dei quesiti a risposta multipla nella tabella posta all'inizio della relativa sezione
- 4. Le risposte ai vari quesiti vanno riportate **esclusivamente** nello spazio reso disponibile immediatamente dopo il quesito stesso
- 5. Si può fare uso di fogli di brutta bianchi resi disponibili a cura dello studente. La brutta non deve essere consegnata
- 6. Non si possono utilizzare libri, appunti o formulari

Domande a risposta multipla

	1	2	3	4	5
a					
b					
c					
d					

- 1. In un amplificatore con resistenza d'ingresso finita $R_{\rm in}$ e resistenza d'uscita $R_{\rm out}$, una sorgente di segnale con resistenza interna R_s è collegata alla porta d'ingresso tramite un condensatore di accoppiamento C di valore finito. Ne segue che:
 - (a) il punto di funzionamento a riposo dell'amplificatore non dipende dal valore di $R_{
 m s}$
 - (b) l'amplificatore non presenta effetto di carico in ingresso per qualsiasi valore di $R_{\rm s}$ e di $R_{\rm in}$ grazie alla presenza del condensatore C
 - (c) il condensatore ${\cal C}$ non ha in nessun caso effetto sulla banda dell'amplificatore
 - (d) il valore di $R_{\rm s}$ e di $R_{\rm in}$ non influisce in nessun caso sulla banda
- 2. In un circuito contenente un diodo ideale si è fatta l'ipotesi che il diodo sia OFF. L'ipotesi è verificata se:
 - (a) sostituendo il diodo con un circuito aperto, la corrente che lo attraversa è nulla
 - (b) sostituendo il diodo con un circuito aperto, la tensione tra anodo e catodo è negativa
 - (c) sostituendo il diodo con un corto circuito, la corrente che lo attraversa è nulla
 - (d) sostituendo il diodo con un corto circuito, la tensione ai suoi capi è negativa
- 3. In uno stadio amplificatore gate comune, descritto dai parametri $A_{\rm v}$, $R_{\rm in}$ e $R_{\rm out}$:
 - (a) è sempre $A_{\rm v} < 0$ (stadio invertente)
 - (b) è sempre $|A_{\rm v}| < 1$
 - (c) l'ingresso è applicato al terminale di source e l'uscita è prevelata al terminale di drain del transistore
 - (d) la resistenza d'ingresso in continua $R_{\rm in}$ è infinita
- 4. In un amplificatore di tensione con amplificazione di tensione $A_{\rm v}$ ed $R_{\rm in}$, $R_{\rm out}$ prossime all'idealità, detta $P_{\rm in}$ la potenza di segnale assorbita dalla sorgente e $P_{\rm out} \neq 0$ la potenza di segnale erogata al carico e detta $A_p = \frac{P_{\rm out}}{P_{\rm in}}$ l'amplificazione di potenza di segnale:
 - (a) è sempre $A_p < 1$, per il principio di conservazione dell'energia
 - (b) A_p tende ad infinito in quanto $P_{\rm in}$ tende a zero
 - (c) A_p tende a zero in quanto $P_{\rm in}$ tende all'infinito
 - (d) $A_p > 1$ solo se $|A_v| > 1$
- 5. È dato un amplificatore operazionale reale collegato in configurazione *voltage follower*. Quale delle seguenti affermazioni è falsa?
 - (a) la dinamica del segnale in ingresso deve essere inclusa nella dinamica d'ingresso per il modo comune dell'operazionale
 - (b) collegando l'ingresso non invertente dell'operazionale a 0V, la tensione d'uscita è pari all'*input offset voltage* dell'operazionale
 - (c) il comportamento del circuito è analogo al collegamento diretto della sorgente di segnale al carico
 - (d) la banda del circuito voltage follower è pari al prodotto banda-guadagno dell'operazionale

Esercizio 1.

Con riferimento al circuito in figura a), in cui sono date le correnti continue I_D , I_{R1} , I_{R5} ed I_{R6} nel punto di lavoro:

- 1. verificare la regione di funzionamento di MP e determinarne i parametri del modello per il piccolo segnale;
- 2. valutare l'amplificazione di tensione $A_v = \frac{v_{\rm out}}{v_{\rm in}}$, la resistenza d'ingresso $R_{\rm in}$ e la resistenza d'uscita $R_{\rm out}$ in condizioni di piccolo segnale [sono richiesti: il circuito equivalente per il piccolo segnale, le espressioni simboliche (passaggi essenziali) ed i valori numerici];
- 3. valutare, in condizioni di piccolo segnale e per segnali in banda, l'amplificazione di tensione $A_{v,c} = \frac{v_{\text{out,c}}}{v_{\text{in,c}}}$, la resistenza d'ingresso $R_{\text{in,c}}$ e la resistenza d'uscita $R_{\text{out,c}}$ di due stadi amplificatori identici a quello considerato al punto precedente, collegati in cascata ed accoppiati in AC come in figura b) (nella banda del segnale il condensatore C può considerarsi come un corto circuito) [sono richiesti: il circuito utilizzato per il calcolo, le espressioni simboliche ed i valori numerici].

Esercizio 2.

Con riferimento al circuito in figura si assumano: $R_1=R_7=\cdots=R_8=R=2\mathrm{k}\Omega,\ V_0=3\mathrm{V},\ V_1=2,5\mathrm{V}$ e $I_0=2,5\mathrm{m}$ A. Si supponga inoltre che gli amplificatori operazionali siano ideali e che lavorino sempre nella zona ad alto guadagno.

- 1. Determinare le tensioni di uscita degli operazionali $V_1^{
 m out},\,V_2^{
 m out},\,V_2^{
 m out},\,V_3^{
 m out}$ e $V_4^{
 m out}$.
- 2. Determinare le correnti di uscita degli operazionali $I_1^{\text{out}},\,I_2^{\text{out}},\,I_2^{\text{out}},\,I_3^{\text{out}}$ e I_4^{out} .