线性代数 中国科学技术大学 2023 春 欧氏空间

主讲: 杨金榜 地空楼 525

助教: 苏煜庭、陈鉴、夏小凡

Schmidt 正交化

定理(标准正交基使度量矩阵最简)

设V为n维欧氏空间.设G为内积在基 $lpha_1,\cdots,lpha_n$ 下的度量矩阵.则

$$\alpha_1, \dots, \alpha_n$$
 为标准正交基 \Leftrightarrow $G = I_n$.

下面将讨论标准正交基的存在性.

定理 (Schmidt 正交化)

给定欧氏空间的任意一组基 $\alpha_1, \dots, \alpha_n$. 递归地定义

$$eta_k = lpha_k - \sum_{i=1}^{k-1} (lpha_k, e_i) e_i
eq 0$$
 以及 $e_k = rac{eta_k}{|eta_k|}.$

则 e_1, \dots, e_n 为一组标准正交基使得 (对所有的 $i = 1, 2, \dots, n$) $\langle \alpha_1, \dots, \alpha_i \rangle = \langle e_1, \dots, e_i \rangle$.

推论

对任意正定矩阵 A, 存在可逆实矩阵 P 使得 $A = P^T P$.

正交变换

定义(正交变换)

设 $\mathscr A$ 为欧氏空间 V 上的线性变换. 若 $\mathscr A$ 保持内积, 即对任意 $a,b\in V$,

$$(\mathscr{A}a,\mathscr{A}b)=(a,b),$$

则称 🖉 为正交变换.

定理(正交变换的等价刻画)

设 ☑ 为欧氏空间 V上的线性变换. 则以下几条等价

- 4 正交;
- ② 《保持向量长度;
- ③ ℳ 将标准正交基变为标准正交基.

定理(全体正交变换在复合运算下构成群)

设 V 为欧氏空间. 则

- ❶ 单位变换为正交变换;
- ② 正交变换的复合仍然为正交变换;
- ③ 正交变换可逆且其逆也为正交变换.

正交变换在标准正交基下的矩阵

设正交变换 \mathscr{A} 在标准正交基 e_1, \cdots, e_n 下的矩阵为 A. 这个矩阵 A 满足什么特别的性质?

ダ エ交 ⇔
$$\mathcal{A}e_1, \cdots, \mathcal{A}e_n$$
 为标准正交基
 ⇔ $(\mathcal{A}e_i, \mathcal{A}e_j) = \delta_{ij}$ (对任意的 $1 \leq i, j \leq n$)
 ⇔ $\left(\sum_{\ell=1}^n a_{\ell i} e_\ell, \sum_{k=1}^n a_{k j} e_k\right) = \delta_{ij}$ (对任意的 $1 \leq i, j \leq n$)
 ⇔ $\sum_{k=1}^n a_{k i} a_{k j} = \delta_{ij}$ (对任意的 $1 \leq i, j \leq n$)
 ⇔ $A^T A = I_n$

定义(正交矩阵)

若 n 阶实方阵 A 满足 $A^TA = I_n($ 或 $A^{-1} = A^T)$, 则称 A 为正交矩阵.

注: 正交矩阵的行向量 (或列向量) 构成 \mathbb{R}^n 的标准正交基 (在标准内积下).

正交变换在标准正交基下的矩阵

定理

设 \mathcal{A} 为欧氏空间V上的线性变换,则 \mathcal{A} 为正交变换当且仅当 \mathcal{A} 在标准正交基下的矩阵A为正交矩阵.

正交变换
$$\mathscr{A} \xleftarrow{\operatorname{标准正交基}}$$
 正交矩阵 A

定义(第一类变换,第二类变换)

设 A 为正交矩阵. 则 $A^TA = I$. 因此 $det(A) = \pm 1$.

- ② 若 det(A) = -1, 则称 \mathscr{A} 为第二类变换.

例

三维空间或在二维空间的旋转为第一类变换, 而镜面反射为第二类变换.

性质

设 A 为欧氏空间 V 上的正交变换.

- 则 Ø 的特征值模长都为 1. 特别地, 实特征值只可能为 ±1.
- ② 若 V 的维数为奇数且 A 为第一类正交变换,则 1 为 A 的特征值.

证明思路: (1). 设 A 为 \mathscr{A} 在某组标准正交基下的矩阵. 设 $A(\xi) = \lambda \xi$, 则 $\overline{\xi}^T \xi = \overline{\xi}^T \overline{A}^T A \xi = \overline{\lambda} \lambda \overline{\xi}^T \xi.$

因此 $|\lambda|=1$.

(2). 多项式 $\varphi_{\mathscr{A}}(\lambda)$ 为实系数, 其复根共轭成对出现. 而实根仅取 ± 1 . 若 1 不为特征值, 则 -1 出现奇数次, 因此行列式为 -1. 矛盾!

推论

三维空间中的第一类正交变换保持一个向量不变, 从而一定为旋转变换.

转置与伴随变换

n维欧氏空间	\leftarrow 标准正交基基 $\alpha_1, \cdots, \alpha_n$ \rightarrow $1:1$	ℝ"(带标准内积)
线性变换《	$(\alpha_1, \cdots, \alpha_n) = (\alpha_1, \cdots, \alpha_n)A$ $1:1$	矩阵 A
正交变换《	$(\overset{\mathscr{A}(\alpha_1,\cdots,\alpha_n)=(\alpha_1,\cdots,\alpha_n)A}{1:1})$	正交矩阵A
??	\longleftrightarrow	转置矩阵 A ^T

定理

设 $\mathscr A$ 为欧氏空间 V 上的线性变换. 设 $\mathscr A$ 在标准正交基 e_1,\cdots,e_n 下的矩阵为 A. 则

- ① 存在唯一的 V 上的线性变换, 记为 \mathscr{A}^* , 满足 $(\mathscr{A}\alpha,\beta)=(\alpha,\mathscr{A}^*\beta),\quad (\forall \alpha,\beta\in V).$
- ② 线性变换 \mathscr{A}^* 在基 e_1, \cdots, e_n 下的矩阵为 A^T . 称 \mathscr{A}^* 为 \mathscr{A} 的伴随变换.

证明思路: 存在性: 证明矩阵 A^T 对应的线性变换满足性质. 唯一性: 若 \mathscr{B} 也满足条件, 则仅需证明 $|(\mathscr{A}^* - \mathscr{B})(\beta)| = 0$ 对所有的 β 成立.

伴随变换的基本性质

性质

性质

设 🛭 为欧氏空间上的线性变换. 则

$$\mathscr{A}$$
 正交 \Leftrightarrow $\mathscr{A}^*\mathscr{A} = \varepsilon \Leftrightarrow \mathscr{A}^*$ 正交.

对称变换与对称矩阵

定义(对称变换,自伴随变换)

设 \mathscr{A} 为欧氏空间 V 上的线性变换. 若 $\mathscr{A} = \mathscr{A}^*$, 则称 \mathscr{A} 为 V 上的对称 变换(或自伴随变换).

 $注: \mathscr{A}$ 对称 $\Leftrightarrow (\mathscr{A}a,b) = (a,\mathscr{A}b) \ \forall a,b \in V.$

定理

设 A 为某欧氏空间上的线性变换 Ø 在某组标准正交基下的矩阵. 则

证明: \mathscr{A} 对称 $\Leftrightarrow \mathscr{A}^* = \mathscr{A} \Leftrightarrow A^T = A \Leftrightarrow A$ 对称.

定理

对称变换的不同特征值对应的特征向量正交.

证明思路: $(\mathscr{A}(\xi_1), \xi_2) = (\xi_1, \mathscr{A}(\xi_2)) \Rightarrow (\lambda_1 - \lambda_2) \cdot (\xi_1, \xi_2) = 0.$

推论

实对称矩阵 A 的属于不同特征值的特征向量正交.

实对称矩阵的对角化

下面将证明实对称矩阵总是可对角化的.

性质

实对称矩阵的特征值都为实数.

证明思路: 设 $A\xi = \lambda \xi (\xi \neq 0)$. 由于 A 为实矩阵, $A\overline{\xi} = \overline{A\xi} = \overline{\lambda} \cdot \overline{\xi}$. 由于 A 对称, 我们有 $(A\overline{\xi})^T \xi = \overline{\xi}^T (A\xi)$. 因此 $\overline{\lambda} = \lambda$.

定理

任意 n 阶实对称矩阵 A, 存在 n 阶正交矩阵 T 使得 $T^{-1}AT$ 为对角矩阵.