

به نام خدا

تمرین سری ۱ فیزیک۲ ميدان الكتريكي

موعد تحویل: ۱٤٠٠/١٢/١٣

نیمسال دوم ۱۴۰۰

سوال تحقیقی (امتیازی): نحوه کار دستگاه کپی را توضیح دهید. (با توجه به مفهوم الکتریسیته ساكن)

مسائل:

$$q_a \quad \frac{d}{2} \quad q_c \quad \frac{d}{2} \quad q_b$$

ار یکدیگر قرار d در فاصله d از یکدیگر قرار -۱ q_a $\frac{d}{2}$ q_c $\frac{d}{2}$ q_b q_c عرفته اند. تصور کنید که دقیقا در وسط این دو بار، بار جدید را قرار دهیم. در این حالت نیروی وارد شده بر بار q_c چقدر است؟ $q_a=80\mu {\it C}$, $\,q_b=-30\mu {\it C}$, $\,q_c=20\mu {\it C}$, d=1m

 $ans: \vec{F} = 79.112\hat{x} N$

۲- دو بار (C) ,-q ((C) در نظر +q ((C) ,-q ((C) در نظر بگیرید. یک حلقه با شعاع $R\left(m
ight)$ عمود بر خط واصل و در وسط آنها مطابق شکل روبرو قرار دارد. خط واصل $\overset{+q}{\longrightarrow}$ دو بار از مرکز حلقه میگذرد. حلقه دارای چگالی بار خطی $\lambda = 3\lambda_0 q\left(\frac{c}{m}\right)$ می باشد. نیروی وارد شده از طرف حلقه و بار q- به بار q+ را محاسبه کنید.

ans:
$$\vec{F}_{total} = (k \frac{6\pi a \lambda_0 R q^2}{(a^2 + R^2)^{1.5}} - \frac{kq^2}{4a^2})\hat{x}$$

 \mathbf{x} با توجه به شکل مقابل، دو بار نقطهای \mathbf{q} نسبت به محور \mathbf{q} متقارن هستند و در مبدأ مختصات زاویه \mathbf{q} را به وجود آوردهاند. به ازای چه مقدار \mathbf{q} فاصله نقطه \mathbf{q} از مبدأ میباشد) میدان الکتریکی در نقطه \mathbf{q} ماکزیمم خواهد بود؟

بار سطحی -۴ میدان الکتریکی ناشی از یک دیسک باردار، با چگالی بار سطحی -۴ میدان الکتریکی ناشی از یک دیسک باردار، با چگالی بار سطحی $\sigma = \sigma_0 r^3 (\frac{c}{m^2})$ که مطابق شکل قطاعی کمانی به شعاع داخلی $a\ (m)$ و شعاع خارجی $a\ (m)$ از آن بریده شده است را در مرکز دیسک بدست آورید.

ans:
$$\hat{E} = \frac{-\sigma_0}{12\pi\varepsilon_0} (b^3 - a^3)(\hat{x} + \hat{y})$$

ه و ارتفاع h مفروض است.میدان a و مخروطی ناقص و توخالی به شعاع قاعده کوچک a و قاعده بزرگ b و ارتفاع a مفروض است.میدان الکتریکی را در راس مخروط (نقطه a) بدست آورید. چگالی بار بر روی سطح جانبی مخروط ثابت و برابر a است.

ans:
$$\hat{E} = \frac{\sigma(b-a)h}{2\varepsilon_0 ((b-a)^2 + h^2)} \ln \frac{b}{a} (\hat{y})$$

بار به طور غیر یکنواخت بر روی سطح نیمکره ای به شعاع R پخش شده است. به طوری که در نقطه ای مانند P که با زاویه θ مشخص می شود، چگالی سطحی توسط رابطه $\sigma = \sigma_0 \sin \theta$ داده می شود، که مقداری است مثبت و ثابت. میدان الکتریکی در نقطه σ_0 مقداری بدست آورید.

ans:
$$\overrightarrow{E_z} = -\frac{\sigma_0}{6\epsilon_0} \hat{k}$$

 x_1 (m) از x_1 دو میله باردار عایق مطابق شکل روی محور x_2 از x_2 (m) ات x_2 (m) ات x_2 (m) و دیگری روی محور x_3 (از مبدأ تا بینهایت) گسترده شده اند. میله افقی دارای چگالی بار خطی $\lambda(x) = \lambda_0 x$ ($\frac{c}{m}$) میله عمودی دارای چگالی بار یکنواخت λ_1 ($\frac{c}{m}$) است. نیروی الکترواستاتیکی وارد از λ_2 طرف میله عمودی به میله افقی را بدست آورید .

ans:
$$\vec{F} = \frac{\lambda_0 \lambda_1}{4\pi\epsilon_0} (x_2 - x_1)(\hat{x} - \hat{y})$$

موفق باشيد.