Statistical Graphics

Good and Bad

M. Huebner, November 2013

Ways to visualize two numbers: 4 and 8

Figure 1. Elementary perceptual tasks.

Cleveland W and McGill R. Graphical Perception: Theory, experimentation and applications to the development of graphical methods. JASA 79 (387): 531-554; 1984.

Position and length

Figure 4. Graphs from position-length experiment.

Cleveland W and McGill R. Graphical Perception: Theory, experimentation and applications to the development of graphical methods. JASA 79 (387): 531-554; 1984.

Position versus angle

Cleveland W and McGill R. Graphical Perception: Theory, experimentation and applications to the development of graphical methods. JASA 79 (387): 531-554; 1984.

Accuracy of judgments: log absolute error and 95% confidence intervals

For each graph subjects were asked to indicate which (percentage, segment, ..) was smaller as a "quick visual judgment".

Accuracy= log₂ (|judged % - true %| *0.125)

Pie charts

- Humans have a hard time judging relative angles.
- Pie charts can only use few data points.
- They can "dumb down" the message.

Pie charts

Takes lots of space for little information

Don't:

- It's difficult to judge one angle, but even harder to compare angels: no comparison of a series of data.
- 3D effects distort the true proportions

Do:

- Group slices into meaningful chunks
- Label the slices
- Gray out ("mute") small slices

"Save pies for desserts." Stephen Few

"Exploded" pie charts

- The slice "Pork" seems to be the largest.
- Since the chart is "exploded", it's even harder to compare angles because they no longer share the same center.
- 3D and horizon!

"Exploded" pie charts

- The slice "Pork" seems to be the largest.
- Since the chart is "exploded", it's even harder to compare angles because they no longer share the same center.
- 3D and horizon!
- Pork is not the largest slice.

Avoid unnecessary complexity

- Irrelevant decoration
- 3D effects
- "chartjunk"
- color

Chart junk

Color

- Humans do not naturally order color hues
- Only a limited number of hues can be discriminated in one graphic
- Optical illusions can be caused by:
 - hues, e.g., red is emotional. A red area may be perceived as larger.
 - shading; larger regions appear to be darker
 - orientation of pie chart with respect to the horizon

Color blindness

Shinobu Ishihara, a Japanese opthalmologist, devised a testing system for color vision abnormalities. The original plates were handpainted and had hiragana symbols as the patterns, a later 'international' edition used arabic numerals.

Color blindness

- In R: >usepackage(dichromat)
- http://www.colorbrewer.org has ratings of the palettes for visibility under a variety of conditions, including red-green color blindness (e.g. use orange, blue, gray)

Common sources of distortion

- Use of 3D effects
- Linear scaling when displaying volume

Inappropriate use of scaling when using areas or volume

The smallest bill, one 1978 dollar, is worth 44 cents of a 1958 dollar.

Its length is, correctly, 44% of the biggest one that represents a 1958 dollar.

Its area is, incorrectly, 25% of the biggest dollar.

Books:

How to lie with charts by Gerald Jones How to lie with Statistics by Darrell Huff How to lie with maps by Mark Monmonier

Florence Nightingale

Causes of Mortality of the British Army in the East

In R: library('HistData'); data(Nightingale)

Uberti, Oliver. (2011) "The Cost of Care" in National Geographic

Version of A.Gelman's suggestion

Histograms

- Common choice for univariate, continuous data
- Categorizes continuous data
- 2D figure for 1D data
- Very dependent on how bins are formed, and number of bins
- Do density plots instead?

continuous distribution

Alternatives to boxplots

Sociolinguistic variation in noun ratio over time: gender

Large amounts of data

100000 x and 100000 y

Large amounts of data - sampled

Large amounts of data – smooth scatter

Large amounts of data - hexbin

Hierarchy of human graphical perception abilities

- 1. Position along a common scale (most accurate task)
- 2. Position along identical nonaligned scales
- 3. Length
- 4. Angle and slope
- 5. Area
- 6. Volume
- 7. Color: hue (red, green, blue, etc.), saturation (pale/deep), and lightness— Hue can give good discrimination but poor ordering

General suggestions

- Exclude unneeded dimensions
- Instead of showing too many actual data points, choose a random sample
- Omit chartjunk
- Keep continuous variables continuous (grouping ok for tables, but unnecessary for graphs)
- Don't subset data finer than sample size supports

Statistical Graphics References

- Cleveland, W. S. (1985). The Elements of Graphing Data. Pacific Grove, Calif.: Wadsworth.
- Cleveland W and McGill R. (1984). Graphical Perception: Theory, experimentation and applications to the development of graphical methods. JASA 79 (387): 531-554.
- Friendly, M. (2006). A brief history of data visualization. In *Handbook of Computational Statistics: Data Visualization, volume 3, ed. C. Chen, W. Hardle, and A. Unwin.*
- Gelman A, Unwin A. (2012). Infovis and Statistical Graphics: Different Goals,
 Different Looks. http://www.stat.columbia.edu/~gelman/research/published/
 vis14.pdf
- Tufte, E. R. (1983). The Visual Display of Quantitative Information. Cheshire: Graphics Press.
- Wainer, H. (1997). Visual Revelations. New York: Springer.
- Wickham, H., Cook, D., Hofmann, H., and Buja, A. (2010). Graphical inference for infovis. *IEEE Transactions on Visualization and Computer Graphics 16*, 973-979.
- Wilkinson, L. (2005). *The Grammar of Graphics. New York: Springer.*