

Big Data - Introductie

Jens Baetens

Structuur

- Recap Data Science
- Kenmerken van Big Data
- Distributed Storage
- Distributed Computing
- Tools

Recap - Data Science

Data Lifecycle

Data Cleaning & Exploration

- Bestuderen beschikbare datasets
 - Vinden van correlaties en verbanden
 - Informatie over de beschikbare data en hoe bruikbaar ze is

- Opschonen en bewerken van beschikbare data
 - Omzetten dataformaten (datums, bag of words, scaling ...)
 - Privacy van personen
 - Oplossen problemen in de data (typo's, vertalingen, ontbrekende data, ...)

Data Modelling

Gebruikte datasets

- Aantal honderden MB
- Csv of jpegs
- Gedownload naar harde schijf
- Volledig ingeladen in memory voor verwerking

ls dit altijd mogelijk?

Zien jullie problemen?

Zien jullie problemen?

Grootte harde schijven?

1956: 5 MB

1975: 250 MB 1988: 1 GB

2019: 1 TB

Prijs?

Backblaze Average Cost per Drive Size

By Quarter: Q1 2009 - Q2 2017

A DAY IN DATA

The exponential growth of data is undisputed, but the numbers behind this explosion - fuelled by internet of things and the use of connected devoies - are hard to comprehend, particularly when looked at in the context of one day

every day

billion emails are sent

of data created by Facebook, including

350m photos

hours of video 100m hours of vid

DEMYSTIFIYING DATA UNITS

From the more familiar 'bit' or 'megabyte', larger units of measurement are more frequently being used to explain the masses of data

Unit		Value	Size
	bit	0 or 1	1/8 of a byte
	byte	8 bits	1 byte
KB	kilobyte	1,000 bytes	1,000 bytes
	megabyte	1,000² bytes	1,000,000 bytes
	gigabyte	1,000 ³ bytes	1,000,000,000 bytes
	terabyte	1,000 ⁴ bytes	1,000,000,000,000 bytes
PB	petabyte	1,000 ⁵ bytes	1,000,000,000,000,000 bytes
	exabyte	1,000° bytes	1,000,000,000,000,000,000 bytes
	zettabyte	1,000 ⁷ bytes	1,000,000,000,000,000,000 bytes
YB	yottabyte	1,000° bytes	1,000,000,000,000,000,000,000,000 bytes

"A lowercase "b" is used as an abbreviation for bits, while an uppercase "B" represents bytes

Searches made a day

a day from Google

463EB

of data will be created every day by 2025

to be generated from wearable

5bn

3.5bn

320bn

306bn emails to be sent each day by 2020

emails to be sent

each day by 2021

people use emails

of data produced by a connected car

ACCUMULATED DIGITAL UNIVERSE OF DATA

■ 1 PB = 125 8TB HDD's

■ 1 EB = 125000 8TB HDD's

■ 1 ZB = 125 000 000 8TB HDD's

Wat zijn je opties voor dit soort data bij te houden?

Is het mogelijk om alles lokaal bij te houden om te verwerken?

- □ Onmogelijk om computers te kopen die deze hoeveelheid data bijhoudt.
- RAM-geheugen nodig om data in te laden (Ook niet mogelijk)

-> Distributed Computing
-> Cloud Computing
-> Horizontal School Page

Waarom zoveel data nodig?

Meer data -> betere modellen -> betere voorspellingen / verder vooruit voorspellen

■ Menselijk DNA = 100 GB

Waarom zoveel data nodig?

■ Smart Cities

https://www.youtube.com/watch?v=i3zx3gF9AUU

■ Large Hadron Collider: 90 PBs per jaar

■ Boeing 737: 20 TB per uur per motor

3.

Big Data

Definitie - Wikipedia

■ Big data of massadata^[1] zijn gegevensverzamelingen (datasets) die te groot en te weinig gestructureerd zijn om met reguliere databasemanagementsystemen te worden onderhouden. De gegevens hebben een direct of indirect verband met privégegevens van personen [2] Big data spelen een steeds grotere rol. De hoeveelheid data die opgeslagen wordt, groeit <u>exponentieel</u>. Dit komt doordat consumenten bij <u>sociale media</u> in toenemende mate data opslaan in de vorm van bestanden, foto's en films (bijvoorbeeld op Facebook of YouTube, waar Facebook ook de door de gebruikers gewiste data bewaart) en organisaties, overheden en bedrijven steeds meer data over burgers produceren en opslaan, en doordat apparaten zelf data verzamelen, opslaan en uitwisselen (het zogenaamde internet der dingen). Hierdoor is er steeds meer sensordata beschikbaar. Niet alleen de opslag van deze hoeveelheden is een uitdaging, maar ook het analyseren ervan. Deze data bevatten namelijk informatie voor doeleinden zoals marketing, wetenschappelijk onderzoek, of preventief onderhoud.

Definitie - Gartner

Big data is high-volume, high-velocity and/or high-variety information assets that demand cost-effective, innovative forms of information processing that enable enhanced insight, decision making, and process automation.

Kenmerken

Polling – Wat bepaalt wanneer een data science project een big-data project is?

De drie hoofd V's

VOLUME

- Amount of data generated
- Online & offline transactions
- In kilobytes or terabytes
- Saved in records, tables, files

VELOCITY

- Speed of generating data
- Generated in real-time
- Online and offline data
- In Streams, batch or bits

VARIETY

- Structured & unstructured
- Online images & videos
- Human generated texts
- Machine generated readings

Extra V: Veracity

THE 4 V'S OF BIG DATA

As of 2011, the global size of

data in healthcare was

PIECES OF CONTENT

are shared on facebook

经

estimated to be

30 BILLION

150 EXABYTES

40 ZETTABYTES

of data will be created by 2020, an increase of 300 times from 2005

6 BILLION PEOPLE

have cell phones world population; 7 BILLION

2.5 QUINTILLION BYTES

of data are created each day

Most companies in the U.S. have at least

100 TERABYTES of data stored

Variety

DIFFERENT FORMS OF DATA

4 BILLION + HOURS OF VIDEO

are watched on You Tube each month

4 MILLION TWEETS

are sent per day by about 200 million monthly active

The New York Stock Exchange captures

1TB OF TRADE INFORMATION

during each trading session

Velocity

Volume

SCALE OF DATA

ANALYSIS OF STREAMING DATA Modern cars have close to

100 SENSORS

that monitor items such as fuel level and tire pressure

1 IN 3 BUSINESS LEADERS

don't trust the information they use to make decisions

Veracity

UNCERTAINITY OF DATA

27% OF RESPONDENTS

in one survey were unsure of how much of data was inaccurate

Of 5 V's: Value

Of 6? Variability

VOLUME	VARIETY	VELOCITY	VERACITY	VALUE	VARIABILITY
The amount of data from myriad sources.	The types of data: structured, semi-structured, unstructured.	The speed at which big data is generated.	The degree to which big data can be trusted.	The business value of the data collected.	The ways in which the big data can be used and formatted.
0000	₹ <mark>?</mark> }*				A

Of 7? Visibility

Of 8? Viscosity

10 V's of meer?

3.

Soorten data

Structured data

- Vast data formaat in tabel vorm met rijen en kolommen
- Alle formaten vooraf vastgelegd
- Excel files, Sql-database, csv, ...

Structured data

Characteristics

Predefined data models Easy to search Text-based Shows what is happening

Resides in

Relational databases Data warehouses

Stored in rows and columns

Examples

Dates Phone numbers Social security numbers Customer names Transactional information

Unstructured data

- Geen vaste structuur in de data
- Moeilijk om in te zoeken
- Foto's, video's, audio, tekst ...

Unstructured data

Characteristics

No predefined data models Difficult to search Text, PDF, Images, Video Shows the why

Resides in

Applications Data warehouses and lakes

Stored in various forms

Examples

Documents Emails and messages Conversation transcripts Image files Open-ended survey answers

Semi-Structured data

- Licht-georganiseerde data
- Tags/metadata verzorgt de structuur
- Html, xml, json, ...

Semi-structured data

Characteristics

Loosely organized Meta-level structure that can contain unstructured data HTML, XML, JSON

Resides in

Relational databases Tagged-text format

Stored in abstracts & figures

Examples

Server logs Tweets organized by hashtags Email sorting by folders (inbox; sent; draft)

Door wie is de data geproduceerd?

Kritiek op Big Data

- Op de onderliggende theorie:
 - Toekomst gelijkaardig aan het verleden
 - Context afhankelijk
- V-model focust op schaalbaarheid en rekenkracht, niet op verklaarbaarheid
- Grote datasets en analyses bestaan reeds decennia, niet zo nieuw als veel denken
- Buzzword om aandacht te trekken naar je product
- Privacyschendingen, datalekken, controles, ...

Hoe kan je omgaan met deze problemen?

Distributed storage

Van Pc -> Rack -> Datacenter -> Cloud

Replication

■ Fault tolerance

DAWS / Arwy

63 replica's

Log wordt

bewoordin

order DC

Voordelen

- Schaalbaar
- Fout tolerant
- Nodige rekenkracht ook verdeeld
 - Concurrency
- Goedkoper
 - Minder gespecialiseerde computers
 - Commodity clusters

Nadelen

- Meer management van welke data op welke server zit nodig
- Replication of data maakt het nodig om synchronisatie te doen
 - Wat bij geografisch verspreidde data?
 - Wat bij uitvallen van server/ datacenter / ...?

Doet dit jullie aan een andere techniek denken?

Belangrijke termen voor distributed storage

■ Horizontale schaalbaarheid

■ Duplicatie/replica's

■ Fault-Tolerance

Bring computing to data

Computing to data

Code / Programma niet gemakkelijk te migreren Rekeneenheid moet krachtig zijn

Computing to data

■ Sneller

Geen transmissietijd voor real-time beslissingen

Goedkoper

Verplaatsen data is kostelijk, schaalbaarheid ook belangrijk voor kosten te beperken

Veiliger

Data is gemakkelijker te onderscheppen bij verplaatsen

Veel gebruikte concepten

Veel gebruikte concepten bij distributed computing

■ Divide-And-Conquer

- Elke node in de cluster voert maar berekeningen uit op een klein stukje van de data

Veel gebruikte concepten bij distributed computing

- Divide-And-Conquer
- Lazy-Evaluation

- Je code bouwt een stappenplan op. Enkel als er een eind-resultaat verwacht wordt, worden er berekeningen uitgevoerd
 - Onnodige operaties worden vermeden, optimalisatie van de beschikbare rekencapaciteit

Veel gebruikte concepten bij distributed computing

- Divide-and-conquer
- Lazy evaluation
- Eventually consistent
 - Updates van data zijn nonblocking, replica's kunnen tijdelijk nog de oude data bevatten

