EC508: Econometrics Standard Errors for $\hat{\beta}_1$

Jean-Jacques Forneron

Spring, 2023

Boston University

Central Limit Theorem

- Let Z_1, \ldots, Z_n be iid with $\mathbb{E}(Z_i^2) = \sigma_Z^2 < \infty$
- Then:

$$t_n = \sqrt{n} \frac{\bar{Z}_n - \mathbb{E}(Z_i)}{\sigma_Z} \stackrel{d}{ o} \mathcal{N}(0,1)$$

• $\stackrel{d}{\rightarrow}$ is the convergence in distribution:

$$\mathbb{P}(t_n \in [a,b]) o \mathbb{P}(t \in [a,b]), \text{ as } n o \infty \text{ with } t \sim \mathcal{N}(0,1)$$

• In R, you can compute $\mathbb{P}(t \leq b)$ using pnorm(b)

Slutsky's Theorem

• Let Z_n , W_n be random variables such that:

$$Z_n \stackrel{d}{\to} Z$$
 (r.v.)
 $W_n \stackrel{p}{\to} c$ (constant)

• Then:

i.
$$Z_n + W_n \stackrel{d}{\rightarrow} Z + c$$

ii. $Z_n W_n \stackrel{d}{\rightarrow} Z \times c$
iii. $Z_n / W_n \stackrel{d}{\rightarrow} Z / c$ if $c \neq 0$

Central Limit Theorem for $\hat{\beta}_1$

$$\hat{\beta}_1 = \beta_1 + \frac{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n) u_i}{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2}$$

- LLN: $\frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X}_n)^2 \stackrel{p}{\to} \sigma_X^2$
- Let $v_i = (X_i \mathbb{E}(X_i))u_i$, then

$$\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{X}_{n})u_{i}=\frac{1}{n}\sum_{i=1}^{n}v_{i}+\frac{1}{n}\sum_{i=1}^{n}(\bar{X}_{n}-\mathbb{E}(X_{i}))u_{i}$$

CLT+WLLN+Slutsky:

$$\sqrt{n}\frac{1}{n}\sum_{i=1}^{n}(\bar{X}_{n}-\mathbb{E}(X_{i}))u_{i}=\sqrt{n}(\bar{X}_{n}-\mathbb{E}(X_{i}))\bar{u}_{n}\stackrel{d}{\to}0$$

• CLT: $\sqrt{n}\bar{v}_n \stackrel{d}{\to} \mathcal{N}(0, \sigma_v^2)$

Central Limit Theorem for $\hat{\beta}_1$, cont'd

Putting everything together:

$$\sqrt{n}(\hat{\beta}_1 - \beta_1) = \frac{\sqrt{n}\bar{v}_n}{\frac{1}{n}\sum_{i=1}^n (X_i - \bar{X}_n)^2} + \frac{\sqrt{n}(\bar{X}_n - \mathbb{E}(X_i))\bar{u}_n}{\frac{1}{n}\sum_{i=1}^n (X_i - \bar{X}_n)^2}$$

$$\stackrel{d}{\to} \frac{1}{\sigma_X^2} \mathcal{N}(0, \sigma_V^2)$$

 $\hat{\beta}_1$ is asymptotically normal with asymptotic variance given by $\sigma_v^2/[\sigma_X^2]^2$, this allows us to compute the standard errors:

$$se(\hat{\beta}_1) = \frac{1}{\sqrt{n}} \frac{\sigma_V}{\sigma_X^2}$$

Such that

$$\frac{\hat{eta}_1 - eta_1}{se(\hat{eta}_1)} \stackrel{d}{
ightarrow} \mathcal{N}(0,1)$$

Hypothesis Testing and the Standard Error of $\hat{\beta}_1$ (SW 5.1)

• The objective is to test a hypothesis, like $\beta_1 = 0$, using data – to reach a tentative conclusion whether the (null) hypothesis is correct or incorrect.

• General setup:

Null hypothesis and two-sided alternative:

$$H_0: \beta_1 = \beta_{1,0} \text{ vs. } H_1: \beta_1 \neq \beta_{1,0}$$

where $\beta_{1,0}$ is the hypothesized value under the null.

• Null hypothesis and one-sided alternative:

$$H_0: \beta_1 = \beta_{1,0} \text{ vs. } H_1: \beta_1 < \beta_{1,0}$$

General approach: construct t-statistic, and compute p-value (or compare to the $\mathcal{N}(0,1)$ critical value)

• In general:

$$t = \frac{\text{estimator - hypothesized value}}{\text{standard error of the estimator}}$$
 where the SE of the estimator is the square root of an estimator of the variance of the estimator.

For testing the mean of Y:

$$t = \sqrt{n} \frac{\bar{Y} - \mu_Y}{\sigma_Y}$$

• For testing β_1

$$t = rac{\hat{eta}_1 - eta_1}{se(\hat{eta}_1)} \stackrel{d}{
ightarrow} \mathcal{N}(0, 1)$$

under H_0 , where $se(\hat{\beta}_1)$ = the square root of an estimator of the asymptotic variance of the sampling distribution of $\hat{\beta}_1$

Computing $se(\hat{\beta}_1)$

• Recall the expression for the asymptotic variance of $\hat{\beta}_1$ (large n):

$$\sigma_{\beta}^2 = \frac{\sigma_v^2}{[\sigma_X^2]^2}$$
, where $v_i = (X_i - \mu_X)u_i$

• The estimator of the variance of $\hat{\beta}_1$ replaces the unknown population values of σ_v and σ_X by estimators constructed from the data:

$$\hat{\sigma}_{\beta}^{2} = \frac{\frac{1}{n-2} \sum_{i=1}^{n} \hat{v}_{i}^{2}}{\left[\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}\right]^{2}}$$

where
$$\hat{v}_i = (X_i - \bar{X}_n)\hat{u}_i$$
; $\hat{u}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i$

Computing $se(\hat{\beta}_1)$

$$\hat{\sigma}_{\beta}^{2} = \frac{\frac{1}{n-2} \sum_{i=1}^{n} \hat{v}_{i}^{2}}{\left[\frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X}_{n})^{2}\right]^{2}}$$

- $se(\hat{\beta}_1) = \sqrt{\hat{\sigma}_{\beta}^2/n}$
- This is a bit nasty, but:
 - It is less complicated than it seems. The numerator estimates $var(v_i)$, the denominator estimates $[var(X)]^2$.
 - Why the degrees-of-freedom adjustment n-2? Because two coefficients have been estimated $(\hat{\beta}_0, \hat{\beta}_1)$.
 - $SE(\hat{\beta}_1)$ is computed by regression software
 - R has memorized this formula so you don't need to.

Application to the California Test Score in R

```
# packages to compute standard errors
     library (sandwich)
     library(lmtest)
     library(foreign)
      data = read.dta('caschool.dta')
      data$score = 0.5*(data$math_scr + data$
         read_scr)
      linear_model = lm(score~str,data=data)
9
      # compute standard errors, t-statistics
      coeftest(linear_model, vcov. = vcovHC)
11
```

Table 1: Coefficients, Standard Errors, t-statistics and p-values

	Estimate	Std. Error	t-value	Pr(> t)
(Intercept)	698.93295	10.46054	66.8162	< 2.2e-16 ***
str	-2.27981	0.52436	-4.3478	1.729e-05 ***