§5. Достаточный признак существования предела числовой последовательности. Число е. Натуральные логарифмы.

Теорема 5.1 (теорема Вейерштрасса — достаточный признак существования предела числовой последовательности).

Любая монотонная ограниченная последовательность имеет предел.

Теорема Вейерштрасса (Вейерштрасс К., 1815-1897, немецкий математик) является типичной теоремой существования, т.е. она гарантирует существование предела последовательности, но не даёт способа его отыскания. Доказательство этой теоремы приведено, например, в [1].

Теорема 5.2. Последовательность
$$\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$$
 сходится при $n \to \infty$.

Предел этой последовательности по предложению Л. Эйлера (1707 – 1783, математик и механик, родился в Швейцарии, работал в России) принято обозначать буквой e. Можно доказать [10], что e – число иррациональное. Итак,

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e \,. \tag{5.1}$$

Введём обозначения $x_n = \left(1 + \frac{1}{n}\right)^n$ и $\widetilde{x}_n = \left(1 + \frac{1}{n}\right)^{n+1}$. Докажем, что последовательность $\{\widetilde{x}_n\}$ является монотонно убывающей и ограниченной. Имеем

$$\begin{split} \frac{\widetilde{x}_{n+1}}{\widetilde{x}_n} &= \frac{\left(1 + \frac{1}{n+1}\right)^{n+2}}{\left(1 + \frac{1}{n}\right)^{n+1}} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^{n+1}} \left(1 + \frac{1}{n+1}\right) = \left(\frac{(n+2)n}{(n+1)^2}\right)^{n+1} \left(1 + \frac{1}{n+1}\right) = \\ &= \left(\frac{n^2 + 2n + 1 - 1}{(n+1)^2}\right)^{n+1} \left(1 + \frac{1}{n+1}\right) = \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} \left(1 + \frac{1}{n+1}\right). \end{split}$$

Таким образом,

$$\frac{\widetilde{x}_{n+1}}{\widetilde{x}_n} = \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} \left(1 + \frac{1}{n+1}\right). \tag{5.2}$$

Рассмотрим неравенство Бернулли (§9, глава 1):

$$(1+a)^{n+1} \ge 1 + (n+1)a, \quad a \ge -1, \ \forall n \in \mathbb{N}.$$
 (5.3)

При
$$a = \frac{1}{(n+1)^2}$$
 из (5.3) имеем: $\left(1 + \frac{1}{(n+1)^2}\right)^{n+1} \ge 1 + \frac{1}{n+1}$. Заменим в (5.2)

сомножитель
$$1 + \frac{1}{n+1}$$
 на большее выражение $\left(1 + \frac{1}{(n+1)^2}\right)^{n+1}$, получим:

$$rac{\widetilde{x}_{n+1}}{\widetilde{x}_n} \leq \left(1 - rac{1}{(n+1)^2}
ight)^{n+1} \left(1 + rac{1}{(n+1)^2}
ight)^{n+1} = \left(1 - rac{1}{(n+1)^4}
ight)^{n+1} < 1$$
для $orall n \in \mathbb{N}$.

Итак, последовательность \widetilde{x}_n монотонно убывает. Её ограниченность следует из неравенства $0 < \widetilde{x}_n \le \widetilde{x}_1 = 4$, верного для $\forall n \in \mathbb{N}$ (замечание 1.1). Но тогда по теореме Вейерштрасса (теорема 5.1) она имеет предел. Введём обозначение:

$$\lim_{n \to \infty} \widetilde{x}_n = e$$
. Поскольку $x_n = \frac{\widetilde{x}_n}{1 + 1/n}$, то $\lim_{n \to \infty} x_n = \lim_{n \to \infty} \widetilde{x}_n = e$, ибо $\lim_{n \to \infty} (1 + 1/n) = 1$ (теорема 3.5). \blacktriangleleft

Замечание 5.1. Число e служит основанием натуральных логарифмов: $\ln a = \log_e a$. Для показательной функции $y = e^x$ и логарифмической функции $y = \ln x$ многие формулы из последующих разделов имеют более простой вид, чем для функций $y = a^x$ и $y = \log_a x$ с основанием $a \neq e$.