Návrh číslicových systémů (INC)

Jiří Matoušek, Otto Fučík

Vysoké učení technické v Brně Fakulta informačních technologií Božetěchova 2, 612 66 Brno

Použitá literatura

N. Frištacký, M. Kolesár, J. Kolenička a J. Hlavatý: "Logické systémy", SNTL Praha, 1986 M. Eysselt: "Logické systémy", SNTL Praha, skriptum VUT v Brně, 1985 J. F. Wakerly: "Digital Design. Principles and Practices", Prentice Hall, ISBN 0-13-769191-2, 2000 V. P. Nelson, H.T.Nagle, B.D.Carroll, J.D.Irwin: "Digital Logic Circuit Analysis & Design", ISBN 0-13-463894-8, 1995 T.L.Floyd: "Digital Fundamentals", Prentice Hall, ISBN 0-13-080850-4, 2000

Obsah

- Booleova algebra
 - axiomy
 - teorémy
- Normální formy logické funkce
- Optimalizace logických obvodů minimalizace
 - Karnaughova mapa
 - metoda Quine-McCluskey

Booleova algebra [G. Boole, 1854]

- 1. Distributivní komplementární svaz
 - Obsahuje alespoň dva prvky
- 2. Šestice (B, +, ', ', 0, 1)
 - B neprázdná množina s alespoň dvěma různými prvky
 - + logický součet (binární operace)
 - logický součin (binární operace)
 - ' komplement (unární operace)
 - 0 nejmenší (nulový) prvek (infimum)
 - 1 největší (jedničkový) prvek (supremum)
 - Definuje množinu prvků, množinu operátorů, axiomy (postuláty) a teorémy (věty)
- Dvouhodnotová Booleova algebra
 - Axiomy a teorémy Booleovy algebry (1854) jsou definovány obecně
 - My se omezíme na algebru, ve které logické proměnné a výsledky logických funkcí mohou nabývat pouze hodnot 0 a 1 (0≠1)

Princip duality

 Pokud platí nějaké tvrzení, tak platí i duální tvrzení, které vznikne vzájemnou záměnou operací "+" a "·" a prvků 0 a 1

$$0 \rightarrow 1 \quad 1 \rightarrow 0 \quad "+" \rightarrow "\cdot" \quad "\cdot" \rightarrow "+"$$

• Příklad:

$$a + (b \cdot c) = (a+b) \cdot (a+c) \rightarrow a \cdot (b+c) = a \cdot b + a \cdot c$$

- Poznámka
 - Pokud platí jisté tvrzení, není třeba dokazovat tvrzení duálního tvrzení

Obsah

- Booleova algebra
 - axiomy
 - teorémy
- Normální formy logické funkce
- Optimalizace logických obvodů minimalizace
 - Karnaughova mapa
 - metoda Quine-McCluskey

I Přehled axiomů [E. V. Huntington, 1904] $a,b,c \in B$

Uzavřenost (výsledky log. operací patří do množiny B)

$$(a+b) \in B$$
 (I a) $(a \cdot b) \in B$ (I b)

Neutralita prvků 0 a 1 (identita)

$$a+0=a$$
 (II a) $a\cdot 1=a$ (II b)

Zákony komutativní (komutativita)

$$a+b=b+a$$
 (III a) $a \cdot b = b \cdot a$ (III b)

Zákony distributivní (distributivita)

(IV a)
$$a+b\cdot c=(a+b)\cdot (a+c) \qquad a\cdot (b+c)=a\cdot b+a\cdot c$$

Existence komplementu (komplementárnost)

$$a \cdot a' = 0$$
 (V a) $a + a' = 1$ (V b)

V množině B existují alespoň dva různé prvky (VI)

Využití axiomů při návrhu log. obvodů

Neutralita prvků 0 a 1

$$a+0=a$$
 (II a) $a\cdot 1=a$ (II b)

- Z hlediska případné realizace logických obvodů z log. členů tento axiom říká, že přičtení log. nuly, resp. vynásobení log. jedničkou, nezmění hodnotu proměnné
- Uvedenou operaci tedy není třeba realizovat, a můžeme tak ušetřit příslušné log. členy

Využití axiomů při návrhu log. obvodů

Zákony komutativní

$$a+b=b+a$$
 (III a) $a \cdot b = b \cdot a$ (III b)

- V případě realizace log. obvodů z log. členů AND a OR je jedno, na který ze vstupů přivedeme příslušnou log. proměnnou – jsou symetrické
- Máme tedy volnost při volbě vstupů příslušných log. členů, čehož se s výhodou využívá při implementaci log. obvodů, např. v integrovaných obvodech, na deskách s plošnými

Využití axiomů při návrhu log. obvodů

Zákony distributivní

$$a+b\cdot c=(a+b)\cdot (a+c)$$
 (IV a)

$$a \cdot (b+c) = a \cdot b + a \cdot c \qquad \text{(IV b)}$$

- Výrazy lze zjednodušovat eliminací společné proměnné
- Vidíme, že aplikací distributivního zákona můžeme ušetřit jeden log. člen AND se dvěma vstupy (1/3 log. členů) a dva vodiče (2/7 všech vodičů)

Obsah

- Booleova algebra
 - axiomy
 - teorémy
- Normální formy logické funkce
- Optimalizace logických obvodů minimalizace
 - Karnaughova mapa
 - metoda Quine-McCluskey

Teorémy (věty) Booleovy algebry

- Teorémy
 - Jsou odvozeny na základě axiomů Booleovy algebry a definují další užitečné vlastnosti
- Důkazy lze provést
 - Systematickou aplikací axiomů a již dříve dokázaných teorémů
 - Pomocí Vennových diagramů, atd.
- Příklad
 - Důkazu distributivního zákona pomocí úplné indukce

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

- Použitím úplné indukce
 - Postupně vyčíslujeme hodnoty výrazů pro všechny možné kombinace hodnot vstupních proměnných; pokud se vždy dosáhne správného výsledku, je dokázáno, že daný výraz platí

а	b	С	(b+c)	a·b	a·c	a·(b+c)	a·b+a·c
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	0	1	1	1
1	1	0	1	1	0	1	1
1	1	1	1	1	1	1	1

Přehled teorémů [E. V. Huntington, 1904]

- Jedinečnost 0 a 1
 - Prvek 0 je v axiomu a+0=a (II a) jedinečný (VII a)
 - Prvek 1 je v axiomu $a \cdot 1 = a$ (II b) jedinečný (VII b)
- Idempotence

$$a + a = a$$
 (VIII a) $a \cdot a = a$ (VIII b)

Agresivita 1 a 0

$$a+1=1$$
 (IX a) $a\cdot 0=0$ (IX b)

Absorpce

$$a+a\cdot b=a$$
 (X a) $a\cdot (a+b)=a$ (X b)

- Existence jediného komplementu: a' je plně určen a (XI)
- De Morganovy zákony

$$(a+b)' = a' \cdot b'$$
 (XII a) $(a \cdot b)' = a' + b'$ (XII b)

Zákony asociativní (asociativita)

$$(a+b)+c=a+(b+c)$$
 (XIII a) $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ (XIII b)

Idempotence

$$a + a = a$$
 (VIII a)

$$a \cdot a = a$$
 (VIII b)

- Důkaz
 - Postupnou aplikací dříve uvedených zákonů
- Význam
 - Zjednodušením výrazu lze ušetřit příslušný logický člen

$$a + a = (a + a) \cdot 1$$

$$= (a + a) \cdot (a + \overline{a})$$

$$= a + a \cdot \overline{a}$$

$$= a + 0$$

$$= a$$

Agresivita 0 a 1

$$a+1=1$$
 (IX a)

$$a \cdot 0 = 0$$
 (IX b)

Důkaz

- Význam
 - Eliminace zbytečných členů

$$a+1 = (a+1) \cdot 1$$

$$= (a+1) \cdot (a+\overline{a})$$

$$= a+1 \cdot \overline{a}$$

$$= a+\overline{a}$$

$$= 1$$

Absorpce

$$a + a \cdot b = a$$
 (X a)

$$a \cdot (a+b) = a$$
 (X b)

Důkaz

 Eliminace přebytečné proměnné ve výrazu

$$a + a \cdot b = a \cdot 1 + a \cdot b$$
$$= a \cdot (1+b)$$
$$= a \cdot 1$$

= a

Existence jediného komplementu

Důkaz

- Předpokládejme, že dva prvky $x, y \in B$ mají vlastnost komplementu prvku *a,* tedy: $a \cdot a = a$ $x = 1 \cdot x$
- Platí (existence komplementu):

$$a \cdot x = 0$$
 $a + x = 1$ $x = (a + y) \cdot x$
 $a \cdot y = 0$ $a + y = 1$ $x = (a \cdot x) + (y \cdot x)$

Platí (idempotence):

$$a \cdot a = a$$
 $x = y \cdot x$

• Platí tedy, že x = y, což je v rozporu s předpokladem

 $x = 0 + (y \cdot x)$

De Morganovy zákony

$$a+b=(a'\cdot b')'$$
 (XII a) $a\cdot b=(a'+b')'$ (XII b) $(a+b)'=a'\cdot b'$ $(a\cdot b)'=a'+b'$

• Zobecnění pro více proměnných $(a+b+c+...)'=a'\cdot b'\cdot c'...$ $(a\cdot b\cdot c...)'=a'+b'+c'+...$

Důkaz (úplnou indukcí)

а	b	a+b	not(a+b)	not(a)	not(b)	not(a).not(b)
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

- Využití
 - Negace součtu lze nahradit součinem negací, resp. negace součinu součtem negací

Zákony asociativní

(XIII a) (XIII b)
$$(a+b)+c=a+(b+c) \qquad (a\cdot b)\cdot c=a\cdot (b\cdot c)$$

- Využití
 - Nezáleží na pořadí vyčíslování operací log. součtu a součinu
 - Realizace log. operací i více proměnných než dvou může být provedena pouze s log. členy se dvěma vstupy

• Involuce (dvojitá negace)

$$\overline{\overline{a}} = a$$

- Důkaz
 - Pomocí úplné indukce

$$\overline{\overline{1}} = \overline{0} = 1$$
 $\overline{\overline{0}} = \overline{1} = 0$
 $a = 1$ $a = 0$

- Využití
 - Není třeba dávat dva invertory za sebe

Absorpce negace

$$a+a'\cdot b=a+b$$
 $a\cdot (a'+b)=a\cdot b$

• Důkaz
$$a + a' \cdot b = (a + a') \cdot (a + b)$$
$$= 1 \cdot (a + b)$$
$$= a + b$$

- Využití
 - Možnost eliminace přebytečného komplementu proměnné ve výrazu

Sousednost (spojování, adjecency)

$$a \cdot b + a \cdot \overline{b} = a$$
 $(a+b) \cdot (a+\overline{b}) = a$

Důkaz

$$a \cdot b + a \cdot \overline{b} = a \cdot (b + \overline{b})$$
$$= a \cdot 1$$

$$= a$$

- Význam
 - Lze eliminovat přebytečné proměnné vyskytující se jak v přímé, tak komplementární formě ve výrazu
 - Uplatňuje se v řadě tzv. minimalizačních technik (např. Karnaughova mapa, metoda Quine-McCluskey atd.)
 vypracovaných pro systematické zjednodušování logických výrazů

Obsah

- Booleova algebra
 - axiomy
 - teorémy
- Normální formy logické funkce
- Optimalizace logických obvodů minimalizace
 - Karnaughova mapa
 - metoda Quine-McCluskey

Normální formy – ÚNDF (SOP)

- Úplná normální disjunktní forma (ÚNDF)
 - Suma součinů
 (anglicky Sum Of Products SOP)
 - Sepisujeme kombinace vstupních proměnných, ve kterých fce nabývá hodnoty log. 1 (proměnné zapisujeme přímo)
 - Termům říkáme implikanty (mintermy)
- Částečně minimalizovaná ÚNDF
 - Zkrácená normální disjunktní forma (ZNDF)
- Minimální možné řešení
 - Minimální normální disjunktní forma (MNDF)

$$F(x, y, z) = \overline{x} \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot y \cdot \overline{z} + x \cdot \overline{y} \cdot \overline{z} + x \cdot y \cdot \overline{z}$$

$$= \overline{x} \cdot \overline{z} + x \cdot \overline{z}$$

$$= \overline{z}$$

S	X	y	Z	F(x,y,z)
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

Term = uspořádaná skupina proměnných a operátorů

Normální formy – ÚNKF (POS)

F(x,y,z)

1

0

0

0

1

0

Z

0

0

1

0

1

- Úplná normální konjunktní forma (ÚNKF)
 - Součin sum
 (anglicky Product Of Sums POS)
 - Sepisujeme kombinace vstupních proměnných, ve kterých fce nabývá hodnoty log. 0 (proměnné zapisujeme komplementárně)
 - Termům zde říkáme implicenty (maxtermy)
- Částečně minimalizovaná
 - Zkrácená normální konjunktní forma (ZNKF)
- Minimální řešení
 - Minimální normální konjunktní forma (MNKF)

$$F(x, y, z) = (x + y + \overline{z}) \cdot (x + y + \overline{z}) \cdot (\overline{x} + y + \overline{z}) \cdot (\overline{x} + y + \overline{z})$$

$$= (x + \overline{z}) \cdot (\overline{x} + \overline{z})$$

$$= \overline{z}$$

X

0

0

0

1

1

1

0

3

4

5

6

7

0

0

1

0

1

Zkrácený způsob zápisu normálních forem

Nezkrácená ÚNDF

$$F(x, y, z) = \overline{x} \cdot \overline{y} \cdot \overline{z} + \overline{x} \cdot y \cdot \overline{z} + x \cdot \overline{y} \cdot \overline{z} + x \cdot y \cdot \overline{z}$$

Varianty zkráceného zápisu ÚNDF

$$F(x, y, z) = \lor (0,2,4,6) = 1(0,2,4,6) = \Sigma m(0,2,4,6)$$

- V závorce jsou uvedeny stavové indexy, pro které nabývá funkce hodnoty log. 1
- Před závorkou máme označení disjunktní formy pomocí operátoru log. součtu či sumy implikantů (m jako minterm)
- Nezkrácená ÚNKF

$$F(x,y,z) = (x+y+\overline{z})\cdot(x+\overline{y}+\overline{z})\cdot(\overline{x}+y+\overline{z})\cdot(\overline{x}+\overline{y}+\overline{z})$$

Varianty zkráceného zápisu ÚNKF

$$F(x, y, z) = \land (1,3,5,7) = \&(1,3,5,7) = \Pi M(1,3,5,7)$$

- V závorce jsou uvedeny stavové indexy, pro které nabývá funkce hodnoty log. 0
- Před závorkou máme označení konjunktní formy pomocí operátoru log. součinu či součinu implicentů (M jako Maxterm).

Neúplně definované funkce

- Pokud log. funkce nabývá pro nějakou kombinaci vstupních proměnných neurčené hodnoty X, pak ji můžeme interpretovat jako hodnotu log. 1 či log. 0
 - Toho lze z výhodou využít při minimalizaci funkce
- Příklad možného zkrácení ÚNDF zápisu neúplně definované funkce

$$F(w, x, y, z) = \vee (2,3,4,6,8,9,13) + x(7,12)$$
$$= 1(2,3,4,6,8,9,13) + x(7,12)$$
$$= \sum m((2,3,4,6,8,9,13) + x(7,12))$$

W	X	y	Z	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	X
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	X
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0
	0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 <

Obsah

- Booleova algebra
 - axiomy
 - teorémy
- Normální formy logické funkce
- Optimalizace logických obvodů minimalizace
 - Karnaughova mapa
 - metoda Quine-McCluskey

Optimalizace logických obvodů: Kritéria

- Plocha (area)
 - Část čipu, kterou obvod zabírá
 - Je ovlivněna řadou parametrů počet log. členů (viz minimalizace), rozměry log. členů (technologie výroby, logický zisk), spoje
- Časování (timing)
 - Doba, za kterou se po změně vstupních proměnných ustálí výstupní proměnné obvodu
 - Je ovlivněno řadou parametrů délka logické větve, logický zisk a zátěž log. členů, parazitní kapacity, délka spojů atd.
- Příkon (power)
 - Příkon obvodu ovlivňuje počet log. členů, pracovní frekvence, velikost napájecího napětí, parazitní kapacity, výrobní proces atd.
- Testovatelnost (test, scan)
 - Logické obvody je třeba navrhovat tak, aby bylo možno otestovat jejich správnou činnost

Optimalizace logických obvodů: Příklad

- Minimální plocha
 - Počet log. členů:6
 - Plocha: 12
 (skutečné
 rozměry na čipu)
 - Zpoždění: 4 t_d

- Minimální zpoždění
- Počet log. členů:10
- Plocha: 28
 (skutečné
 rozměry na čipu)
- Zpoždění: 3 t_d

Optimalizace logických obvodů: Minimalizace

- V rámci této předášky se budeme zabývat především minimalizací počtu logických členů potřebných pro realizaci dané funkce
- Minimalizační metody
 - Algebraické
 - Postupnou aplikací axiomů a teorémů Booleovy algebry
 - Grafické
 - Jednotková krychle
 - Vennův diagram
 - Mapy (Svobodova, Karnaughova)
 - Algoritmické
 - Quine-McCluskey
 - Espresso atd.

Reprezentace log. funkce a minimalizace

- Příklad
 - Funkce F(x,y,z) je definována pravdivostní tabulkou

S	X	y	Z	F(x, y, z)
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

 Minimalizace funkce algebraicky

$$F(x, y, z) = \overline{x \cdot y} \cdot z + \overline{x} \cdot y \cdot z + x \cdot y \cdot \overline{z}$$

$$= \overline{x \cdot z} \cdot (y + \overline{y}) + x \cdot y \cdot \overline{z}$$

$$= \overline{x \cdot z} + x \cdot y \cdot \overline{z}$$

Reprezentace log. funkce a minimalizace

Vennův diagram

Jednotková krychle

- Zvýrazněny jsou stavy, ve kterých jsou pravdivostní hodnoty funkce F(x,y,z) rovny log. 1 (tedy stavy 1, 3 a 6)
- Stavy 1-3 se liší v jedné proměnné
 - Lze tedy eliminovat proměnnou, jejíž váha je rovna rozdílu hodnot příslušných stavů
 - 3 1 = 2, což odpovídá váze proměnné, kterou můžeme eliminovat (proměnná y)

Logická mapa

- Reprezentace log. funkce maticově
- Marquandova (Svobodova) mapa
 - Při otočení přiřazení proměnných o 180° kolem středu mapy získáme přiřazení inverzní
- Karnaughova mapa
 - Sousedním políčkům jsou přiřazeny sousedné kombinace vstupních stavů (liší se v jedné proměnné)
- Pozn.: mapy mohou být různě pootočeny
- Příklady

Obsah

- Booleova algebra
 - axiomy
 - teorémy
- Normální formy logické funkce
- Optimalizace logických obvodů minimalizace
 - Karnaughova mapa
 - metoda Quine-McCluskey

Karnaughovy mapy

- Platí
 - V buňkách pod pruhem má daná proměnná hodnotu log. 1
 - V buňkách mimo pruh má daná proměnná hodnotu log. 0
 - Existuje řada možných nákresů K mapy (umístění proměnných...)
 - Buňky si též můžeme označit binárním kódem odpovídajícím jednotlivým kombinacím vstupních proměnných
 - Důležité je dodržet pravidlo, že se sousední buňky liší v jedné proměnné

Příklad

 Mapa pro 4 proměnné

Příklad minimalizace

Funkce F(x,y,z)

S	X	у	Z	F(x,y,z)
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

$$F(x, y, z) = \overline{x} \cdot z + x \cdot y \cdot \overline{z}$$

- Postup minimalizace
 - Hledáme sousední buňky, ve kterých nabývá funkce hodnotu log. 1
 - Sdružením těchto buněk eliminujeme proměnnou, jejíž hodnota se v těchto buňkách mění – y
 - Dvojice 1-3 leží pod pruhem proměnné z a mimo pruh x (= komplement x) kombinace odpovídající stavovému indexu 6 zůstává nezměněna

Příklad minimalizace více proměnných – 1/3

- Sdružíme-li buňky 0-4 a 2-6
 - Eliminujeme proměnnou x

S	x	у	Z	F(x,y,z)
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

$$F(x, y, z) = \overline{y} \cdot \overline{z} + y \cdot \overline{z}$$

Příklad minimalizace více proměnných – 2/3

- Sdružíme-li buňky 0-2 a 4-6
 - Eliminujeme proměnnou y

S	X	y	Z	F(x,y,z)
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

$$F(x, y, z) = \overline{x} \cdot \overline{z} + x \cdot \overline{z}$$

Příklad minimalizace více proměnných – 3/3

- Sdružíme-li buňky 0-2-4-6
 - Eliminujeme proměnné x a y

S	X	у	Z	F(x,y,z)
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

. 1/.7		_	
x y·z 00	01	11	10
0 1	1 0	3 0	2
$x \mid 1 \mid 4 \mid 1$	⁵ 0	⁷ 0	6 1
-			y

$$F(x,y,z) = \overline{z}$$

Minimalizace konjunktní formy

- Karnaughova mapa
 - Tvoří se obdobně jako v případě disjunktní formy s tím rozdílem, že se v mapě se sdružují log. 0 a ne log. 1
 - Proměnné se negují a výsledek se zapisuje v konjunktní formě

$$F(x, y, z) = &(1,3,5,7)$$

- Příklad
 - F(x,y,z) = not(z)

Neúplně definované funkce

Karnaughova mapa

$$F(w, x, y, z) = \overline{w} \cdot y + w \cdot \overline{y} + \overline{w} \cdot x \cdot \overline{z}$$

s w x y z F 0 0 0 0 0 0 1 0 0 0 1 0 1 2 0 0 1 0 1 1 3 0 0 1 1 1 1 4 0 1 0 0 1 1 1 5 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 1 0 1 <						
1 0 0 0 1 0 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 0 6 0 1 1 0 1 7 0 1 1 1 x 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 0 1 1 10 1 0 0 0 0 11 1 0 1 1 0 12 1 1 0 0 x 13 1 1 0 0 0 14 1 1 0 0 0	S	W	X	У	Z	F
2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 0 6 0 1 1 0 1 7 0 1 1 1 x 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 0 0 1 11 1 0 1 1 0 11 1 0 0 x 13 1 1 0 0 14 1 1 0 0	0	0	0	0	0	0
3 0 0 1 1 1 4 0 1 0 0 1 5 0 1 0 1 0 6 0 1 1 0 1 7 0 1 1 1 x 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 0 11 1 0 1 1 0 12 1 1 0 0 x 13 1 1 0 0 0	1	0	0	0	1	0
4 0 1 0 0 1 5 0 1 0 1 0 6 0 1 1 0 1 7 0 1 1 1 x 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 0 11 1 0 1 1 0 12 1 1 0 1 1 13 1 1 0 1 1 14 1 1 0 0	2	0	0	1	0	1
5 0 1 0 1 0 6 0 1 1 0 1 7 0 1 1 1 x 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 0 11 1 0 1 1 0 12 1 1 0 0 x 13 1 1 0 1 1 14 1 1 0 0 0	3	0	0	1	1	1
6 0 1 1 0 1 7 0 1 1 1 x 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 0 11 1 0 1 1 0 12 1 1 0 0 x 13 1 1 0 1 1 14 1 1 0 0	4	0	1	0	0	1
7 0 1 1 1 x 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 0 11 1 0 1 1 0 12 1 1 0 0 x 13 1 1 0 1 1 14 1 1 0 0	5	0	1	0	1	0
8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 0 11 1 0 1 1 0 12 1 1 0 0 x 13 1 1 0 1 1 14 1 1 0 0	6	0	1	1	0	1
9 1 0 0 1 1 10 1 0 1 0 0 11 1 0 1 1 0 12 1 1 0 0 x 13 1 1 0 1 1 14 1 1 0 0	7	0	1	1	1	X
10 1 0 1 0 0 11 1 0 1 1 0 12 1 1 0 0 x 13 1 1 0 1 1 14 1 1 0 0	8	1	0	0	0	1
11 1 0 1 1 0 12 1 1 0 0 x 13 1 1 0 1 1 14 1 1 0 0	9	1	0	0	1	1
12 1 1 0 0 x 13 1 1 0 1 1 14 1 1 1 0 0	10	1	0	1	0	0
13 1 1 0 1 1 14 1 1 1 0 0	11	1	0	1	1	0
14 1 1 1 0 0	12	1	1	0	0	X
	13	1	1	0	1	1
15 1 1 1 1 0	14	1	1	1	0	0
	15	1	1	1	1	0

Neúplně definované funkce

ÚNKF

$$F(w, x, y, z) = \land (0,1,5,10,11,15) \cdot X(7,12,14)$$

- $= &(0,1,5,10,11,15) \cdot X(7,12,14)$
- $= \Pi M(0,1,5,10,11,15) \cdot X(7,12,14)$

S	W	X	У	Z	F
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	1
7	0	1	1	1	X
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	0
12	1	1	0	0	X
13	1	1	0	1	1
14	1	1	1	0	X
15	1	1	1	1	0

Terminologie

 Úplný implikant – term ÚNDF, který obsahuje všechny _____ proměnné

 Pokrácený (částečně zkrácený) implikant, který má některé sousedné proměnné eliminované

Zkrácený implikant – má
 všechny sousedné proměnné
 eliminované; po odstranění
 jakékoliv další proměnné
 přestává být implikantem;
 obvod sestavený ze zkrácených
 implikantů nemá hazardy

- Tvrzení platí duálně
 - Když zaměníme implikant pro ÚNDF za implicent pro ÚNKF

Terminologie

- Množina minimálních implikantů obsahuje zkrácené implikanty
- Minimální řešení funkce jedna nebo více podmnožin množiny minimálních implikantů; může existovat více ekvivalentních řešení z nichž volíme dle dalších kritérií (viz např. obvody s více výstupy probírané dále)
- Nesporný implikant implikant, který bude vždy součástí minimálního řešení
- Volitelný implikant zkrácený implikant, který může, ale nemusí být součástí min. řešení, pokud lze použít jiný zkrácený implikant

Minimalizace obvodů s více výstupy

Popis

- Minimální pokrytí vrcholů více funkcí současně
- Vede na log. členy sdílené více funkcemi
- Sdílené log. členy nemusí představovat minimální možné řešení
- V rozsáhlých obvodech může výrazně redukovat počet log. členů
- Vzhledem k potenciálně značnému množství řešení (NP-úplný problém) je třeba často použít heuristických metod
- Příklad nalezení min. řešení nezávislých funkcí:
 - $F(x,y,z)=\Sigma m(3,6,7)$ a $G(x,y,z)=\Sigma m(0,1,3)$
 - Celkem 8 log. členů

Minimalizace obvodů s více výstupy

- Příklad nalezení min. řešení dvou funkcí se sdílenými log. členy:
 - $F(x,y,z)=\Sigma m(3,6,7)$
 - $G(x,y,z)=\Sigma m(0,1,3)$
 - Ušetřili jsme jeden log. člen

Obsah

- Booleova algebra
 - axiomy
 - teorémy
- Normální formy logické funkce
- Optimalizace logických obvodů minimalizace
 - Karnaughova mapa
 - metoda Quine-McCluskey

- Tabulární metoda
 - Vhodná i pro funkce více než 5-6 proměnných, kde Karnaughovy mapy selhávají, a pro minimalizace obvodů s více výstupy
- Postup pro ÚNDF (SOP)
- Krok 1
 - Seřad' do řádků tabulky jednotlivé implikanty v pořadí dle počtu jedniček jejich binárních vah - skupiny sousedných implikantů
- Krok 2
 - Sepiš do skupin všechny sousedné implikanty mezi jednotlivými skupinami v tabulce – eliminovanou proměnnou označ pomlčkou
 - Opakuj krok 2 pro skupiny vytvořené v kroku 2 tam, kde existuje další sousednost
 - Pokud některý implikant nemá další sousedné termy, říkáme mu zkrácený implikant
 - Hledej minimální řešení pokrytí dané funkce (např. pomocí mřížky implikantů)

- Příklad funkce F(w,x,y,z)=1(2,4,6,8,9,10,12,13,15)
 - Krok 1

Implikant	w.x.y.z	Skupina jedniček
2	0010	
4	0100	Skupina 1
8	1000	
6	0110	
9	1001	
10	1010	Skupina 2
12	1100	
13	1101	Skupina 3
15	1111	Skupina 4

Krok 1

Zkrácené implikanty	w.x.y.z	Pokrytí
2	0010	✓
4	0100	✓
8	100	✓
6	0110	✓
9	1001	✓
10	1010	✓
12	1100	✓
13	1101	✓
15	1111	✓

- Do řádků tabulky zapisujme jednotlivé implikanty v pořadí dle jejich vah a počtu jedniček jejich binárních vah
- Tímto dostáváme skupiny sousedných implikantů
- Označujeme implikanty pokryté zkrácenými implikanty, viz krok 2

Krok 2

Zkrácené implikanty	w.x.y.z	Pokrytí
2,6	0-10	PI2
2,10	-010	PI3
4,6	01-0	PI4
4,12	-100	PI5
8,9	100-	✓
8,10	10-0	PI6
8,12	1-00	✓
9,13	1-01	✓
12,13	110-	✓
13,15	11-1	PI7

- Hledáme a sepisujeme do skupin všechny sousedné implikanty
- V tabulce označíme eliminovanou proměnnou pomlčkou

Krok 2 – druhá iterace

Zkrácené implikanty	w.x.y.z	Pokrytí
8,9,12,13	1-0-	PI1

- Opakujeme krok 2 pro skupiny vytvořené v předchozí iteraci kroku 2 tam, kde existuje další sousednost
- Pokud některý implikant nemá další sousedné termy, říkáme mu zkrácený implikant a označujeme ho PI
- 🔹 Implikanty, které jsou pokryty jinými, označujeme 🗸
- Končíme v okamžiku, kdy jsou všechny implikanty pokryty alespoň jednou
- Výsledek
 - Máme celkem 7 zkrácených implikantů PI1=(8,9,12,13), PI2=(2,6),
 PI3=(2,10), PI4=(4,6), PI5=(4,12), PI6=(8,10), a PI7=(13,15)
 - Číslem je označen vrchol funkce, který je daným zkráceným implikantem pokryt

- Grafické znázornění pokrytí vrcholů funkce
 - Zkrácené implikanty PI1=(8,9,12,13), PI2=(2,6), PI3=(2,10), PI4=(4,6), PI5=(4,12), PI6=(8,10), a PI7=(13,15)
 - Hledáme nejmenší počet zkrácených implikantů pokrývajících všechny vrcholy
 - Může existovat více řešení

	2	4	6	8	9	10	12	13	15
PI1				X	X		X	X	
PI2	X		X						
PI3	X					X			
PI4		X	X						
PI5		X					X		
PI6				X		Х			
PI7								X	X

- Nejprve musíme zahrnout nesporné implikanty
 - Vrchol 15 je pokryt pouze zkráceným implikantem PI7 (plný kroužek), podobně vrchol 9 je pokryt PI1
 - Zkráceným implikantem PI1 jsou též pokryty vrcholy 8, 12 a 13, zkráceným implikantem PI7 je též pokryt vrchol 13
 - Zbývají vrcholy 2,4,6 a 10, které lze pokrýt různým způsobem

	2	4	6	8	9	10	12	13	15
PI1				X	X		X	X	
PI2	X		X						
PI3	X					X			
PI4		X	X						
PI5		х					X		
PI6				х		X			
PI7								X	X

- Dále hledáme nejmenší pokrytí zbývajících vrcholů 2, 4, 6, a 10
 - Zkrácený implikant PI5 nepředstavuje dobrou volbu, neboť mu zbývá pokrýt pouze vrchol 4
 - Podobně, zkrácenému implikantu PI6 zbývá pokrýt pouze vrchol 10

	2	4	6	8	9	10	12	13	15
PI1				X	X		X	X	
PI2	X		X						
PI3	X					X			
PI4		X	X						
PI5		X					X		
PI6				x		X			
PI7								X	X

- Nejlepší řešení
 - Představují PI3 a PI4 F(w,x,y,z) = PI1 + PI3 + PI4 + PI7
 - Vyžaduje nejmenší počet = (1-0-)+(-010)+(01-0)+(11-1) implikantů
 - PI3 a PI4 pokrývají zbylé $= w\cdot y + x\cdot y\cdot z + w\cdot x\cdot \overline{z} + w\cdot x\cdot z$ vrcholy úplně

	2	4	6	8	9	10	12	13	15
PI1				X	X		(X)	X	
PI2	*		*						
PI3	*					X			
PI4		*	(X)						
PI5		x					X		
PI6				X		x			
PI7								X	x

Petrickova funkce: Nalezení minimálního pokrytí

- Vhodným postupem najdi všechny zkrácené implikanty např. pomocí Karnaughovy mapy či Quine – McCluskey
- Např. pomocí mřížky implikantů nalezni všechny nesporné implikanty
- Pro zbývající zkrácené implikanty napiš normální konjunktní formou logický výraz, reprezentující všechna možná pokrytí následovně:
 - Pro každý nepokrytý vrchol zapiš výraz sumu zkrácených implikantů, které jej pokrývají
 - Výsledné sumy zapiš jako součin vznikne konjunktní forma
- Vzniklý zápis v konjunktní formě
 - Přepiš na disjunktní zápis prostým roznásobením
 - Zjednoduš pomocí teorémů Booleovy algebry
 - Každý vzniklý term představuje jedno možné pokrytí
- Nalezni pokrytí s nejnižší cenou
 - Cenou rozumíme počet zkrácených implikantů a počet proměnných v každém zkráceném implikantu

Petrickova funkce

- Funkce umožňuje nalezení optimálního řešení, ale její složitost narůstá s počtem zkrácených implikantů
- Příklad
 - Zkrácené implikanty PI1=(8,9,12,13), PI2=(2,6), PI3=(2,10), PI4=(4,6), PI5=(4,12), PI6=(8,10), a PI7=(13,15)
 - Nalezneme nesporné implikanty PI1=(8,9,12,13) a PI7=(13,15)

	2	4	6	8	9	10	12	13	15
PI1				X	X		X	X	
PI2	X		X						
PI3	X					X			
PI4		X	X						
PI5		X					X		
PI6				X		X			
PI7								X	X

Petrickova funkce

- Příklad
 - Mřížku přepíšeme bez nesporných implikantů
 - Pro každý nepokrytý implikant zapíšeme sumu zkrácených implikantů, které jej pokrývají a výsledné sumy zapíšeme jako součin – vznikne konjunktní forma

	2	4	6	10
PI2	X		X	
PI3	X			X
PI4		X	Х	
PI5		Х		
PI6				X

$$C = (PI2 + PI3) \cdot (PI4 + PI5) \cdot (PI2 + PI4) \cdot (PI3 + PI6)$$

 Přepíšeme na disjunktní formu a zjednodušíme

$$C = PI2 \cdot PI3 \cdot PI5 + PI3 \cdot PI4 + PI2 \cdot PI4 \cdot PI6 + PI2 \cdot PI5 \cdot PI6$$

 Vybereme pokrytí s nejnižší cenou (nejméně implikantů)

$$C_{\min} = PI3 \cdot PI4$$