Information Retrieval

Giuseppe Magazzù

2021 - 2022

Contents

1	meroduction										
	1.1	Definizioni									
		1.1.1 Document									
		1.1.2 Terms	1								
		1.1.3 Stop Words	1								
2	Text Processing										
	2.1	Tokenization	2								
	2.2	Normalization	3								
	2.3	Stemming and Lemmatization	3								
	2.4	Stop Words Removal	3								
3	Text Representation										
		Rag Of Words	_								

Chapter 1

Introduction

1.1 Definizioni

1.1.1 Document

Metadata

1.1.2 Terms

I termini sono dei descrittori che vengono associati al testo

1.1.3 Stop Words

I termini che non sono significativi per la rappresentazione del testo (articoli, particelle, \dots)

Chapter 2

Text Processing

In un sistema di information retrieval i documenti devono essere rappresentati in un formato interno e ordinati per essere indicizzati.

Bag of Words

La Bag of Words è una rappresentazione matriciale in cui viene associato un identificativo a ogni documento e per ogni parola nella collezione viene associata la presenza o meno in ogni documento. Queste informazioni vengono rappresentate in una matrice di incidenza.

Doc1: Doc2: Doc3:

2.1 Tokenization

La **Tokenization** consiste nell'identificare e separare all'interno di un testo delle unità chiamate token. I token possono essere parole, frasi o simboli. Ogni token è un candidato a essere un termine significativo (index).

Issues:

- ullet parole composte ("Hewlett-Packard" o "Hewlett", "Packard")
- numeri, date ("Mar. 12, 1991", "12/3/1991", "(800) 234-2333")
- problemi linguistici (parole composte, assenza di spazi)

La **Tokenization** si può effettuare tramite espressioni regolari o metodi statistici.

2.2 Normalization

Associare diversi possibili token alla stessa una parola. E' possibile ottenere le classi di equivalenza dei token rimuovendo punti, trattini, accenti.

- U.S.A. \Leftrightarrow USA
- anti-discriminatory ⇔ antidiscriminatory
- résumé ⇔ resume

Case folding: ridurre tutte le parole in lowercase a parte alcune eccezioni. Thesauri and soundex: —— sinonimi e omonimi. in base a delle euristiche fonetiche è possibile ottenere delle classi di equivalenza per le mispelled

2.3 Stemming and Lemmatization

Lemmatizazion: Ridurre alla forma base ladies \Rightarrow lady, forgotten \Rightarrow forgot

Stemming: Ridurre una parola alla sua radice. automate, automation, automatic \Rightarrow automat.

2.4 Stop Words Removal

Omettere parole molto frequenti inutili per la rappresentazione del testo. (Queste parole essendo presenti in più testi non portano informazione utili per distinguere i testi.) Esistono delle liste di Stop Words che possono essere usate per la rimozione. I Web Search Engine non effettuano la rimozione delle Stop Words perché sono necessarie per alcune ricerche.

N-Gram Le unità di testo che sono state estratte con la Tokenization possono essere unite in n-grammi.

N-grams: a contiguous sequence of N tokens from a given piece of text

Chapter 3

Text Representation

Un modo semplice per rappresentare un testo è una matrice in cui sulle righe ci sono termini estratti dal corpus (vocabolario) e sulle colonne i documenti.

Incidence Matrix: specifica la presenza di un termine in un ogni documento.

Ogni documento può essere rappresentato da un insieme di termini o da un vettore binario.

	Doc1	Doc2	Doc3	Doc4	Rappresentazione di Doc1
Term1	1	1	1	0	
Term2	0	1	1	1	$R1 = \{\text{Term1}, \text{Term2}, \text{Term3}\}$
Term3	0	0	1	0	$R1 = \langle 1, 0, 0 \rangle$

Count Matrix: specifica la numero di occorrenze di un termine in ogni documento.

Un documento viene rappresentato da un vettore di occorrenze.

	Doc1	Doc2	Doc3	Doc4	Dannyacantaziana di Daci
Term1	57	57	71	133	Rappresentazione di Doc1
Term2	4	34	17	92	$R1 = \langle 157, 4, 232 \rangle$
Term3	232	2	10	293	

Le rappresentazioni vettoriali non considerano l'ordine delle parole nel testo.

3.1 Bag Of Words

La Bag Of Words (BOW) è una rappresentazione del testo che descrive le occorenze di parole in un documento.

Bag of words con N-grammi

Pro: cattura le dipendenze locali e l'ordine Contro: incrementa la frequenza delle parole

Zipf's Law

Descrive la frequenza di un evento (parola) in un insieme in base al suo rank.

rank: posizione di un termine nell'ordine decrescente di frequenza dei termini in tutta la collezione.

La frequenza di una parola w, f(w) è proporzionale a 1/r(w).

$$f \propto \frac{1}{r}$$
 \Rightarrow $f \cdot r = k$ (costante)
 $P_r = \frac{f}{N} = \frac{A}{r}$ probabilità del termine di rank r, $A = \frac{k}{N} \approx 0.1$

Luhn's Analysis

Generalmente termini con frequenza molto alta e molto bassa sono inutili per discriminare i documenti.

L'abilità delle parole di discriminare il contenuto di un documento è massimo nella posizione tra i due livelli di cut-off.

Vogliamo assegnare dei pesi ai termini.

- corpus-wide: alcuni termini portano più informazione riguardo al documento
- document-wide: non tutti i termini sono ugualmente importanti

TF (Term Frequency): within document

IDF (Inverse Document Frequency): whole collection

Il peso di un termine deve essere proporzionale a TF e inversamente proporzionale a IDF

 $tf_{t,d}$: numero di occorenze del termine t nel documento d

$$w_{t,d} = t f_{t,d} / max_{ti} t f_{ti,d}$$

 df_t document frequency: numero di documenti che contiene t

$$df_t \leq N$$

definiamo la inverse document frequency (idf)

$$idf_t = log(N/df_t)$$

tf-idf weight

$$w_{t,d} = tf_{t,d}/max_{ti}tf_{ti,d} * log(N/df_t)$$