Chapter 11 Independence and Bivariate Normal Distribution

- 11.1 Independent variables
- 11.2 Conditional distributions
- 11.3 Jointly Normal Random Variables

11.4 Summary

05 April, 2018

11.1 Independent variables (1)

Recall that for two events, A and B, are independent if $P(A \cap B) = P(A)P(B)$.

Similarly, Two discrete variables are independent when

$$P(X = x_i, Y = y_j) = P(X = x_i)P(Y \le y_j), for all x_i, y_j$$

11.1 Independent variables (2)

Two variables X and Y are independent when

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$$

$$\Leftrightarrow F_{XY}(x, y) = F_X(x)F_Y(y)$$

for all x and y. In terms of the pdf, this is

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$
, for all x, y

11.1 Independent variables, example 1

Example 1

Let Y_1, Y_2 be discrete random variables with joint probability mass function $f(y_1, y_2)$ given by:

		$\boldsymbol{Y_1}$		
		0	1	2
	0	0	0.1	0.2
Y_2	1	0.1	0.2	0
	2	0.4	0	0

Are Y_1 and Y_2 independent? Explain.

11.1 Independent variables, example 1

For independence, we check if $f(x_i, y_j) = f(x_i)f(y_j)$ for all x_i 's and y_j 's. We compute $f(x_i)f(y_j)$ for all cells and write their values in brackets below:

		Y_1			
		0	1	2	$f(Y_2)$
	0	$0 \ (0.5 * 0.3 = 0.15)$	0.1 (0.3 * 0.3 = 0.09)	0.2 (0.06)	0.3
Y_2	1	0.1 (0.15)	0.2 (0.09)	0 (0.06)	0.3
	2	0.4 (0.2)	0 (0.12)	0 (0.08)	0.4
	$f(Y_1)$	0.5	0.3	0.2	1

Since $f(x_i, y_j) \neq f(x_i)f(y_j)$ for all x_i 's and y_j 's, Y_1 and Y_2 are not independent.

11.1 Independent variables, example 2

Example 2

Are the variables X and Y with joint pdf $f(x,y) = e^{-y-x}$; x,y > 0 independent?

Solution

$$f(x,y) = e^{-y-x} = e^{-x}e^{-y} = f(x)f(y)$$

Hence X and Y are independent. Also,

$$F_{XY}(x,y) = \int_0^x \int_0^y e^{(-u-v)} du dv = \int_0^x e^{-v} (1 - e^{-y}) dv = (1 - e^{-x})(1 - e^{-y}) = F_X(x)F_Y(y)$$

Note, $X \sim \text{Exp}(1)$, $Y \sim \text{Exp}(1)$.

11.1 Conditional distributions (1)

Recall that for two events, A and B, the conditional probability P(A|B) is equal to $\frac{P(A\cap B)}{P(B)}$.

Similarly, we define the conditional probabilities as

$$P(X \le x | Y \le y) = \frac{P(X \le x \cap Y \le y)}{P(Y \le y)} = \frac{F_{XY}(x, y)}{F_{Y}(y)} \text{ for all } y: F(y) > 0.$$

11.1 Conditional distributions (2)

We can also define the pmf and pdf conditional on a single value as

$$p(X = x_i | Y = y_j) = \frac{P(X = x_i \cap Y = y_j)}{P(Y = y_j)}$$
, for discrete variables

$$f_{X|Y}(x,y) = \frac{f_{XY}(x,y)}{f_{Y}(y)} \implies F_{X|Y}(x|Y=y) = \int_{-\infty}^{x} f_{X|Y}(u,y) du$$

for continuous variables

11.1 Conditional distribution, discrete example

Assume X and Y have the distribution

$$P(Y = k | X = 2) = \frac{P(Y = k \cap X = 2)}{P(X = 2)} = \frac{P(Y = k \cap X = 2)}{0.6}$$
, so

Υ	1	2	3	Tot
P(Y X=2)	0.15/0.6=1/4	0.2/0.6=1/3	0.25/0.6 = 5/12	1

11.1 Conditional distribution, continuous example

Consider two variables, X, Y, with joint pdf

$$f_{XY}(x,y) = \begin{cases} \frac{4}{3}x(1+y), & if \ 0 < x \le 1, 0 < y \le 1\\ 0, & otherwise \end{cases}$$
The marginal pdf $f_Y(y) = \int_0^1 f_{XY}(x,y) dx = \frac{2}{3}(1+y)$

The conditional pdf

$$f_{X|Y}(x|y=0.5) = \frac{f_{XY}(x,0.5)}{f_{Y}(0.5)} = \frac{\frac{4}{3}x(\frac{3}{2})}{\frac{2}{3}\frac{3}{2}} = 2x$$

11.1 Conditional distribution, continuous example 2

The conditional pdf

$$f_{X|Y}(x|y=0.5) = 2x, 0 < x \le 1$$

is a proper pdf:

$$F_{X|Y}(x|y=0.5) = \int_0^x 2u \ du = \left[\frac{2}{2}u^2\right]_0^x = x^2$$
, with $F_{X|Y}(1|0.5) = 1$.

We can take expectations:

$$E(X|Y=0.5) = \int_0^1 2x^2 dx = \left[\frac{2}{3}x^3\right]_0^1 = \frac{2}{3}$$

$$Var(X|Y=0.5) = \int_0^1 2x^3 dx - \left[\frac{2}{3}\right]^2 = \frac{1}{2} - \frac{4}{9} = \frac{1}{18}$$

11.1 Conditions for independence

Two random variables X and Y

- 1) Are **independent** if f(x, y) = f(x)f(y), or equivalently, if both f(x|y) = f(x) and f(y|x) = f(y) or $P(X \le x|Y = y) = P(X \le x)$ and $P(Y \le y|X = x) = P(Y \le y)$
- Independence ⇒ Uncorrelated but Uncorrelated ≠> Independence two dependent variables can be uncorrelated (in some cases).

11.1 Independence and uncorrelatedness

The covariance between two variables is defined as

$$Cov(X,Y) = E((X - \mu_X)(Y - \mu_Y)) = E(XY) - E(X)E(Y).$$

The *correlation* is
$$\rho = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$
.

Theorem 1

- 1) X and Y are uncorrelated if $\rho = 0$, which means if Cov(X,Y) = 0, if and only if E(XY) = E(X)E(Y).
- 2) If X and Y are independent, Cov(X,Y) = Cor(X,Y) = 0. If $Cov(X,Y) = Cor(X,Y) \neq 0$, X and Y are not independent

11.1 independent discrete variables

If *X* and *Y* are independent, then

$$p(x_i|y_j) = p(x_i)$$
 and $p(y_i|x_j) = p(y_i)$ or $p(x_i, y_j) = p(x_i)p(y_j)$ for **all** x_i 's and y_j 's.

Then we have to check this property for all pairs (x_i, y_j) . If we find one pair for which this is not true, we can stop: the variables are not independent.

Otherwise we keep checking until all pairs have been considered.

We could use also f(x|y) = f(x) but then we have to check also f(y|x) = f(y) as in some cases this is not true for only one variable.

Example 3

Let Y_1, Y_2 be discrete random variables with joint probability mass function

C	1	•	1
$t(\gamma)$	11.	GIVAN	hw.
$I \setminus Y1$, <i>y 7. J</i>	given	ωy.

		0	1	2	Tot
<i>Y</i> ₂	0	0	0.1	0.2	0.3
	1	0.1	0.2	0	0.3
	2	0.4	0	0	0.4
	Tot	0.5	0.3	0.2	1

- i. Check if $P_{Y_1Y_2}(y_1, y_2) = P_{Y_1}(y_1)P_{Y_2}(y_2)$;
- ii. Find $P(Y_2 = 2|Y_1 = 0)$;
- iii. Find cov(X, Y);
- iv. Are the variables independent? Explain for each case above;
- v. Find the conditional probability $P(Y_1 \ge 1 | Y_2 = 1)$.

i. For independence, we check if

 $f(x_i, y_j) = f(x_i)f(y_j)$ for **all** x_i 's and y_j 's. We compute $f(x_i)f(y_j)$ for all cells and write their values in brackets below:

		Y_1			
		0	1	2	
**	0	0 (0.5 * 0.3 = 0.15)	1/10 (0.3 * 0.3 = 0.09)	2/10 (0.06)	0.3
Y_2	1	1/10 (0.15)	2/10 (0.09)	0 (0.05)	0.3
	2	4/10 (0.2)	0 (0.12)	0 (0.08)	0.4
		0.5	0.3	0.2	1

Since $f(x_i, y_j) \neq f(x_i)f(y_j)$ for all x_i 's and y_j 's, Y_1 and Y_2 are not independent.

Solution

ii.
$$P(Y_2 = 1 | Y_1 = 0) = \frac{P(Y_1 = 0, Y_2 = 1)}{P(Y_1 = 0)}$$

= $\frac{0.1}{0.5} = 0.2$

		Y_1			
		0	1	2	Tot
	0	0	0.1	0.2	0.3
Y_2	1	0.1	0.2	0	0.3
	2	0.4	0	0	0.4
	Tot	0.5	0.3	0.2	1

 $P(Y_2 = 1 | Y_1 = 0) \neq P(Y_2 = 1)$. This is enough to say that the variables are not independent.

iii.
$$E(Y_1Y_2) = \sum_{i=0}^{2} \sum_{j=0}^{2} ijP(Y_1 = i, Y_2 = j) =$$

$$0 + 0 + \sum_{i=1}^{2} \sum_{j=1}^{2} ijP(Y_1 = i, Y_2 = j) =$$

$$1 * P(Y_1 = 1, Y_2 = 1) + 2 * P(Y_1 = 2, Y_2 = 1) + 2 * P(Y_1 = 1, Y_2 = 2) +$$

		<i>Y</i> ₁			
p(x)	(x_i, y_j)	0	1	2	Tot
	0	0	0.1	0.2	0.3
Y_2	1	0.1	0.2	0	0.3
	2	0.4	0	0	0.4
	Tot	0.5	0.3	0.2	1

 $4 * P(Y_1 = 2, Y_2 = 2) = 0.2 + 0 + 0 + 0 + 0 = 0.2$

			Y_1		
	$x_i y_j$	0	1	2	
	0	0	0	0	
Y_2	1	0	1	2	
	2	0	2	4	

iii.
$$E(Y_1) = \sum_{i=0}^{2} iP(Y_1 = i) = 0 * 0.5 + 1 * 0.3 + 2 * 0.2 = 0.7$$

 $E(Y_2) = \sum_{j=0}^{2} jP(Y_2 = j) = 0 * 0.3 + 1 * 0.3 + 2 * 0.4 = 1.1$
 $Cov(X, Y) = E(XY) - E(X)E(Y) = 0.2 - 0.77 = -0.57$

Since $Cov(X,Y) \neq 0$ [or $E(XY) = 0.2 \neq E(X)E(Y) = 0.77$], the variables are correlated. Then X and Y are not independent.

Note if X and Y are independent, *Cov* must be zero.

Hence, if $Cov \neq 0$ the variables are not independent

		Y_1			
$p(x_i, y_j)$		0	1	2	Tot
	0	0	0.1	0.2	0.3
Y_2	1	0.1	0.2	0	0.3
	2	0.4	0	0	0.4
	Tot	0.5	0.3	0.2	1

Solution

v.
$$P(Y_1 \ge 1 | Y_2 = 1) = \frac{P(Y_1 \ge 1, Y_2 = 1)}{P(Y_2 = 1)}$$

= $\frac{P(Y_1 = 1, Y_2 = 1) + P(Y_1 = 2, Y_2 = 1)}{P(Y_2 = 1)}$

		Y_1			
		0	1	2	Tot
	0	0	0.1	0.2	0.3
Y_2	1	0.1	0.2	0	0.3
	2	0.4	0	0	0.4
	Tot	0.5	0.3	0.2	1

So,
$$P(Y_1 \ge 1 | Y_2 = 1) = \frac{0.2 + 0}{0.3} = \frac{0.2 + 0}{0.1 + 0.2 + 0} = \frac{2}{3}$$
.

11.1 Independence and uncorrelatedness, example

Example 3

Suppose random variable *X* has the pmf:

x	-1	0	1
P(X=x)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Let $Y = X^2$.

- i. Are *X* and *Y* independent?
- ii. Are *X* and *Y* are uncorrelated?

11.1 Independence and uncorrelatedness, example

Solution The joint pmf is given as

		$m{Y}$		
		0	1	
X	-1	0	1/4	$P(X=-1)=\frac{1}{4}$
	0	1/2	0	$P(X=0)=\frac{1}{2}$
	1	0	1/4	$P(X=1)=\frac{1}{4}$
		$P(Y=0) = \frac{1}{2}$	$P(Y=1)=\frac{1}{2}$	

i. Since $P(X = -1, Y = 0) = 0 \neq P(X = -1)P(Y = 0) = \frac{1}{8}$, X and Y are not independent.

11.1 Independence and Uncorrelatedness, example

ii. We find the expectations:

$$E(X) = (-1)\left(\frac{1}{4}\right) + (0)\left(\frac{1}{2}\right) + (1)\left(\frac{1}{4}\right) = 0; \qquad E(Y) = (0)\left(\frac{1}{2}\right) + (1)\left(\frac{1}{2}\right) = \frac{1}{2}$$

$$E(XY) = (-1)(0)(0) + (-1)(1)\left(\frac{1}{4}\right) + (0)(0)\left(\frac{1}{2}\right) + (0)(1)(0) + (1)(0)(0) + (1)(1)\left(\frac{1}{4}\right) = 0$$

			Y		
			0	1	
	X	-1	0	$\frac{1}{4}$	$P(X=-1)=\frac{1}{4}$
		0	$\frac{1}{2}$	0	$P(X=0)=\frac{1}{2}$
		1	0	$\frac{1}{4}$	$P(X=1)=\frac{1}{4}$
			$P(Y=0) = \frac{1}{2}$	$P(Y = 1)$ $= \frac{1}{2}$	

Since
$$E(XY) = E(X)E(Y)$$
,
 $Cov(X,Y) = E(XY) - E(X)E(Y) = 0$, X and Y are uncorrelated.

The example illustrates that you can have a pair of dependent random variables that is uncorrelated.

11.1 Independence continuous variables, example

Example 4

Consider X and Y with joint pdf

$$f_{XY}(x,y) = \frac{4}{3}(1-xy), 0 < x, y \le 1$$

- i. Find $f_X(x)$ and $f_Y(y)$;
- ii. Find $f_{X|Y}(x|y)$ and $F_{X|Y}(x|y)$
- iii. Are the variables independent? comment the above cases

11.1 Independence continuous variables, example

i.
$$f_X(x) = \frac{4}{3} \int_0^1 (1 - xy) dy = \frac{4}{3} \left[y - \frac{xy^2}{2} \right]_0^1 = \frac{4}{3} - \frac{2}{3} x = \frac{2}{3} (2 - x);$$

 $f_Y(y) = \frac{4}{3} \int_0^1 (1 - xy) dx = \frac{4}{3} \left[x - \frac{yx^2}{2} \right]_0^1 = \frac{4}{3} - \frac{2}{3} y = \frac{2}{3} (2 - y);$

ii.
$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)} = \frac{2(1-xy)}{2-y};$$

$$F_{X|y}(X|Y) = \frac{2}{2-y} \int_0^x (1-uy) du = \frac{2}{2-y} \left(x - \frac{x^2y}{2}\right) = \frac{2x - x^2y}{2-y}$$

iii. Since $f_X(x)$ $f_Y(y) = \frac{4}{9}(2-x)(2-y) \neq f_{XY}(x,y)$, X and Y are not indep.t. since $f_{X|Y}(x|y) \neq f_X(x)$ [or $F_X(x) = \frac{1}{3}(4x - x^2) \neq F_{X|Y}(x)$], X and Y are not indep.t.

11.2 Mean of product of independent variables

Theorem 2

The mean of the product of **independent** random variables equals the product of means, i.e.

$$E(X_1X_2\cdots X_n)=E(X_1)E(X_2)\cdots E(X_n).$$

The result is true for continuous/discrete random variables. ■

Theorem 1

Two random variables X and Y are said to have a **bivariate normal distribution** with parameters μ_X , σ_X^2 , μ_Y , σ_Y^2 and ρ , if their joint pdf is given by

$$f(x,y) = \frac{1}{2\pi\sigma_{X}\sigma_{Y}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\left(\frac{x-\mu_{X}}{\sigma_{X}}\right)^{2} - 2\rho\frac{(x-\mu_{X})(y-\mu_{Y})}{\sigma_{X}\sigma_{Y}} + \left(\frac{y-\mu_{Y}}{\sigma_{Y}}\right)^{2}\right]}$$

where ρ is the correlation between X and Y.

The correlation ρ is a measure of *closeness* or *agreement* between two variables.

$$-1 \le \rho \le 1$$

The closer it is to 1 and the more the variables are positively correlated, the closer to -1 the more the variables are negatively correlated.

 $\rho = 0$ means that the variables are uncorrelated.

When the variables are perfectly correlated ($\rho=\pm 1$) the distribution is improper ($1-\rho^2=0$). This is because the variables are linearly dependent.

We can think of perfectly correlated variables linked by V = a + bV

$$X = a + bY$$

Hence it is enough to define the probability distribution of one of the two variables to have that of the other because

$$P(X \le x) = P\left(Y \le \frac{x - a}{h}\right)$$

We get an insight by looking at the contour plots

where
$$\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2\rho \frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X \sigma_Y} + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2 = \text{constant}.$$

$$u = \frac{x - \mu_X}{\sigma_X}$$
 and $v = \frac{y - \mu_Y}{\sigma_Y}$

Are the standardized values of X and Y.

These are very useful in proofs. You are familiar with them as they are the same as the z we use for univariate normal

The contours are the values of X and Y for which the pdf is constant

The contour plots of the bivariate normal (X, Y) pdf. The diagram on the left corresponds to a case of positive value of ρ , on the right of negative.

The contour plots of the bivariate normal (X,Y) pdf. The diagram on shows the contours of equal density for increasing positive correlation (ρ) . The means are both zero, $\mu_X = \mu_y = 0$, the contours are elliptical because $\sigma_X^2 = 1$, $\sigma_Y^2 = 2$. When $\sigma_X^2 = \sigma_Y^2$ the contours are circular.

Theorem 2

Let X and Y be bivariate normal random variables and uncorrelated, ($\rho = 0$). Then they are independent.

Proof

$$f(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}}e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2\rho\frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right]} =$$

$$\left[substitute\ \rho = 0\right] \frac{1}{2\pi\sigma_X\sigma_Y}e^{-\frac{1}{2}\left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right]} =$$

$$\left[\frac{1}{\sqrt{2\pi}\sigma_X}e^{-\frac{1}{2}\left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2\right]}\right]\left[\frac{1}{\sqrt{2\pi}\sigma_Y}e^{-\frac{1}{2}\left[\left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right]}\right] = f(x)f(y)$$

NB. This is true for Normal variables, and not for all variables!!! In general uncorrelated variables may be dependent.

Theorem 3

Let X and Y be bivariate normal random variables then X and Y are normal. Enough to prove for U, V standard Normal

Proof

$$f_{U,V}(u,v) = \frac{1}{2\pi\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}[u^2+v^2-2\rho uv]}$$

$$= \frac{1}{2\pi\sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)}[(u^2-\rho^2u^2)+\rho^2u^2+v^2-2\rho uv]}$$

$$= \frac{1}{2\pi\sqrt{1-\rho^2}} e^{-\frac{1}{2}[u^2]} \frac{1}{\sqrt{2\pi}\sqrt{1-\rho^2}} e^{-\frac{(v-\rho u)^2}{2(1-\rho^2)}} = f_U(u)f_{V|U}(v|u)$$

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}[u^2]} \frac{1}{\sqrt{2\pi}\sqrt{1-\rho^2}} e^{-\frac{(v-\rho u)^2}{2(1-\rho^2)}} = f_U(u)f_{V|U}(v|u)$$

So $u \sim N(0,1)$ and $v|u \sim N(\rho u, (1 - \rho^2))$

NB. Analogously, $v \sim N(0,1)$ and $u|v \sim N(\rho v, (1-\rho^2))$

Corollary to Theorem 3

Let X and Y be bivariate normal random variables then Y|X has a normal distribution with mean and variance equal to

$$E(Y|X) = E(Y) + \rho \frac{\sigma_Y}{\sigma_X} (X - E(X)) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X} (X - \mu_X)$$
$$Var(Y|X) = \sigma_Y^2 (1 - \rho^2)$$

To see this consider that

$$E_{\text{U|V}}(v|u) = E\left(\frac{y - \mu_Y}{\sigma_Y}\right) = \frac{1}{\sigma_Y}(E(Y|u) - \mu_Y) = \rho u. \text{ Hence}$$

$$E(Y|u) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X}(x - \mu_X)$$

$$V(v|u) = V\left(\frac{y - \mu_Y}{\sigma_Y}|u\right) = \frac{1}{\sigma_Y^2}V(Y|u) = (1 - \rho^2) \Rightarrow \sigma_{Y|X}^2 = \sigma_Y^2(1 - \rho^2)$$

Theorem 4 important

Two random variables X and Y are said to be *bivariate* (*jointly*) normal, if Z = aX + bY has a normal distribution for all $a, b \in \mathbb{R}$, with $E(Z) = a\mu_X + b\mu_Y$ and

$$var(Z) = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab \ cov(XY) = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab \ \rho \sigma_X \sigma_Y$$

Note

- 1) If X and Y are independent normal random variables, then they are bivariate normal.
- 2) If X and Y are dependent normal random variables, then they <u>may not</u> be bivariate normal.

Example 1

Suppose that X and Y are zero-mean bivariate normal random variables, such that $\sigma_X^2 = 4$, $\sigma_Y^2 = 9$ and E[XY] = 3. We define a new random variable Z = 2X - Y. Determine the

- i. Pdf $f_Z(z)$
- ii. Pdf $f_{X,Z}(x,z)$
- iii. Factorize the joint pdf $f(x, y) = f_X(x)f_{y|X}(y|x)$.

- i. Since X and Y are bivariate Normal, also Z is with E(Z) = 2E(X) E(Y) = 0, $\sigma_Z^2 = 4\sigma_X^2 + \sigma_Y^2 4cov(XY)$
- cov(XY) = E(XY) = 3, so $\sigma_Z^2 = 16 + 9 12 = 13$, and
- $f_Z(z) = \frac{1}{\sqrt{26\pi}} e^{-\frac{1}{2}\frac{z^2}{213}}$
- ii. $Cov(X,Z) = E(XZ) E(X)E(Z) = E(X(2X Y)) = 2E(X^2) E(XY) = 2\sigma_X^2 3 = 8 3 = 5$

So,
$$\rho_{XY}^2 = \frac{25}{13*4} = \frac{25}{52}$$

And
$$f_{X,Z}(x,z) = \frac{1}{2\pi\sqrt{4*13\left(1-\frac{25}{52}\right)}} e^{-\frac{1}{2\left(1-\frac{25}{52}\right)}\left[\frac{x^2}{4} - \frac{25}{26}\frac{xz}{\sqrt{4*13}} + \frac{y^2}{13}\right]}$$

$$iii. \ f(x,z) = \frac{1}{\sigma_X \sigma_Z 2\pi \sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} \left(\left(\frac{x-\mu_X}{\sigma_X} \right)^2 - 2\rho \frac{(x-\mu_X)(z-\mu_Z)}{\sigma_X \sigma_Z} + \left(\frac{z-\mu_Z}{\sigma_Z} \right)^2 \right)}.$$

Call $u=(x-\mu_X)/\sigma_X$. Remember the trick $u^2=(u^2-\rho^2u^2)+\rho^2u^2$? That is still valid. So,

$$f(x,z) = \frac{1}{\sigma_X \sqrt{2\pi}} e^{-\frac{1}{2} \left[\left(\frac{x - \mu_X}{\sigma_X} \right)^2 \right]} \frac{1}{\sigma_Z \sqrt{2\pi} \sqrt{1 - \rho^2}} e^{-\frac{1}{2(1 - \rho^2)} \left[\left(\left(\frac{z - \mu_Z}{\sigma_Z} \right) - \rho \left(\frac{x - \mu_X}{\sigma_X} \right) \right)^2 \right]}$$

Example

Consider two jointly standard normal variables U and V with $cor(u, v) = \rho = \frac{1}{2}$. Find the pdf of V/U and P(V > 0 | U = u).

Solution

We have
$$\mu_U=\mu_V=0$$
, $\sigma_U=\sigma_V=1$
$$f_{UV}(u,v)=\frac{1}{2\pi\sqrt{3/4}}e^{-\frac{1}{2\left(1-\frac{1}{4}\right)}\left[u^2-2\frac{1}{2}uv+v^2\right]}=$$

$$f_{UV}(u,v) = \frac{1}{2\pi\sqrt{3/4}} e^{-\frac{1}{2\frac{3}{4}} \left[u^2 - \frac{1}{4}u^2 + \frac{1}{4}u^2 - 2\frac{1}{2}uv + v^2\right]} = \frac{1}{2\pi\sqrt{3/4}} e^{-\frac{1}{2}u^2} \frac{1}{\sqrt{2\pi}\sqrt{3/4}} e^{-\frac{1}{2\frac{3}{4}} \left(v - \frac{1}{2}u\right)^2} = N(0,1)N\left(\frac{1}{2}u, \frac{3}{4}\right)$$
$$= f_U(u)f_{V|U}(v|u)$$

So
$$V|U \sim N\left(\frac{u}{2}, \frac{3}{4}\right)$$
.
 $E(V|U=u) = E(V) + \rho \frac{\sigma_V}{\sigma_U} \left(u - E(U)\right) = \frac{1}{2}u, \ Var(V|U) = \sigma_V (1 - \rho^2) = \frac{3}{4}.$

Therefore,

$$P(V > 0|U = u) = P\left(Z > \frac{-u/2}{\sqrt{3}/2}\right) = P\left(Z > -\frac{u}{\sqrt{3}}\right),$$

where $Z \sim N(0,1)$

So
$$P(V > 0|U = 0) = 0.5$$
 (as usual),

but
$$P(V > 0 | U = 1) = 0.7182$$

Probability P(V > 0 | U = u) as u increases. Since U and V are positively correlated, the probability of V being positive increases the larger is u.

11.2 Summary

- Variables are independent if $f_{XY}(x,y) = f_X(x)f_Y(y)$ or $f_{X|Y}(x|y) = f_X(x)$ and $f_{Y|X}(y|x) = f_Y(y)$
- If two variables are independent cov(X,Y) = cor(X,Y) = 0but cov(X,Y) = cor(X,Y) = 0 is not enough for independence
- Know what is meant by bivariate (jointly) normal
- Know that bivariate normal + uncorrelated $(\rho = 0) \Rightarrow$ are independent
- Know that normal independent variables are always bivariate (jointly) normal

- If
$$(X,Y) \sim MN_2((\mu_X,\mu_Y),(\sigma_X^2,\sigma_Y^2))$$
, then $X \sim N(\mu_X,\sigma_X^2)$ and $Y \sim N(\mu_Y,\sigma_Y^2)$

- Two Normal variables are bivariate if a linear combination of them (Z = aX + bY) also is Normal
- If $(X,Y) \sim MN_2$ then

$$Y|X \sim MN\left(\mu_Y - \rho \frac{\sigma_Y}{\sigma_X}(X - \mu_X), \ \sigma_Y^2(1 - \rho^2)\right)$$