Extensions of Abelian Automaton Groups

Chris Grossack (Advisor: Klaus Sutner)

May 8, 2019

Automata

2 Abelian

Groups

4 Extensions

Finite State Automata

- Combinatorial Objects
- Encode length preserving functions on binary strings
 - states
 - transitions

- One function per state
- Evaluate by following edges

- \mathcal{A}_2^3 . This automaton will be our friend for the rest of this talk
- Defines three functions:
 - **>** 1
 - ► f₀
 - ► f₁

- \mathcal{A}_2^3 . This automaton will be our friend for the rest of this talk
- Defines three functions:
 - •
 - ► f₀
 - ► f₁

• How do we compute, say, f of a string?

• f(011010)

• f(011010)

• $1f_0(11010)$

• $1f_0(11010)$

• 11f(1010)

• $110f_1(010)$

• $1100f_0(10)$

• 11001f(0)

• $110011f_0(\varepsilon)$

• 110011

 $\partial_0 f$ (resp. $\partial_1 f$) is the unique function such that for every $w \in 2^*$, $f(0w) = (f(0))(\partial_0 f)(w)$

 $\partial_0 f$ (resp. $\partial_1 f$) is the unique function such that for every $w \in 2^*$, $f(0w) = (f(0))(\partial_0 f)(w)$

Definition

A state f is called Odd if it flips its input bit, and Even otherwise.

 $\partial_0 f$ (resp. $\partial_1 f$) is the unique function such that for every $w \in 2^*$, $f(0w) = (f(0))(\partial_0 f)(w)$

Definition

A state f is called Odd if it flips its input bit, and Even otherwise.

- $\partial_0 f = f_0$ and $\partial_1 f = f_1$
- f is odd, f_0 and f_1 are even

For f and g in an automaton A, write f + g for the function (f + g)(x) = f(g(x))

For f and g in an automaton A, write f + g for the function (f + g)(x) = f(g(x))

• We are interested in the Abelian case.

For f and g in an automaton A, write f + g for the function (f + g)(x) = f(g(x))

- We are interested in the Abelian case.
- For all of our machines, f + g = g + f

For f and g in an automaton A, write f + g for the function (f + g)(x) = f(g(x))

- We are interested in the Abelian case.
- For all of our machines, f + g = g + f
- ullet Given a machine ${\cal A}$, this condition is checkable in polynomial time

- \bullet $0 \in \mathcal{G}$
- ullet + : $\mathcal{G} o \mathcal{G} o \mathcal{G}$ (associative)
- \bullet $-: \mathcal{G} \to \mathcal{G}$
- satisfying 0 + x = x + 0 = x and x + (-x) = (-x) + x = 0

- \bullet $0 \in \mathcal{G}$
- ullet + : $\mathcal{G} o \mathcal{G} o \mathcal{G}$ (associative)
- \bullet $-: \mathcal{G} \to \mathcal{G}$
- satisfying 0 + x = x + 0 = x and x + (-x) = (-x) + x = 0
- If S is the state set of an automaton \mathcal{A} , consider \mathcal{G} to be the closure of S under +
- take $0 = id : 2^* \rightarrow 2^*$ to be the empty sum

- \bullet $0 \in \mathcal{G}$
- ullet $+:\mathcal{G} o\mathcal{G} o\mathcal{G}$ (associative)
- \bullet $-: \mathcal{G} \to \mathcal{G}$
- satisfying 0 + x = x + 0 = x and x + (-x) = (-x) + x = 0
- If S is the state set of an automaton \mathcal{A} , consider \mathcal{G} to be the closure of S under +
- ullet take $0=id:2^*
 ightarrow 2^*$ to be the empty sum
- This does not have in general
- Our functions don't even need to be invertible

- \bullet $0 \in \mathcal{G}$
- ullet $+:\mathcal{G} o\mathcal{G} o\mathcal{G}$ (associative)
- \bullet $-: \mathcal{G} \to \mathcal{G}$
- satisfying 0 + x = x + 0 = x and x + (-x) = (-x) + x = 0
- If S is the state set of an automaton A, consider G to be the closure of S under +
- take $0 = id : 2^* \rightarrow 2^*$ to be the empty sum
- This does not have in general
- Our functions don't even need to be invertible
- Each function is invertible iff each state is invertible in one step

• Since each state sees an invertible function...invert it.

• Since each state sees an invertible function...invert it.

• Since each state sees an invertible function...invert it.

 \mathcal{A}_2^3

• Take Care: $\partial_0(-f) = -\partial_1 f$

 $-\mathcal{A}_2^3$

• Since each state sees an invertible function...invert it.

 \mathcal{A}_2^3

 $-\mathcal{A}_2^3$

- Take Care: $\partial_0(-f) = -\partial_1 f$
- But: (f + (-f))(01) = f((-f)(01)) = f(11) = 01

• Since each state sees an invertible function...invert it.

 \mathcal{A}_2^3

 $-\mathcal{A}_2^3$

- Take Care: $\partial_0(-f) = -\partial_1 f$
- But: (f + (-f))(01) = f((-f)(01)) = f(11) = 01
- An easy induction shows these are actually inverses.

ullet So $\mathcal{G}(\mathcal{A})$ is a group whenever each state sees an invertible function

- So $\mathcal{G}(\mathcal{A})$ is a group whenever each state sees an invertible function
- If \mathcal{A} is abelian, so is $\mathcal{G}(\mathcal{A})$.

- ullet So $\mathcal{G}(\mathcal{A})$ is a group whenever each state sees an invertible function
- If A is abelian, so is G(A).
- What groups can we get?

- So $\mathcal{G}(\mathcal{A})$ is a group whenever each state sees an invertible function
- If \mathcal{A} is abelian, so is $\mathcal{G}(\mathcal{A})$.
- What groups can we get?

Theorem (Nekrashevych and Sidki)

The only abelian automaton groups are $(\mathbb{Z}/2\mathbb{Z})^m$ and \mathbb{Z}^m .

- ullet So $\mathcal{G}(\mathcal{A})$ is a group whenever each state sees an invertible function
- If A is abelian, so is G(A).
- What groups can we get?

Theorem (Nekrashevych and Sidki)

The only abelian automaton groups are $(\mathbb{Z}/2\mathbb{Z})^m$ and \mathbb{Z}^m .

ullet Given an abelian automaton \mathcal{A} , one can check in polynomial time which group it generates.

- ullet So $\mathcal{G}(\mathcal{A})$ is a group whenever each state sees an invertible function
- If A is abelian, so is G(A).
- What groups can we get?

Theorem (Nekrashevych and Sidki)

The only abelian automaton groups are $(\mathbb{Z}/2\mathbb{Z})^m$ and \mathbb{Z}^m .

- ullet Given an abelian automaton \mathcal{A} , one can check in polynomial time which group it generates.
- We will focus on the \mathbb{Z}^m case here

Theorem

 \mathbb{Z}^m equipped with a matrix \mathbf{A} and $\bar{\mathbf{e}}$ forms a (infinite state) abelian automaton (called $\mathfrak{C}(\mathbf{A}, \bar{\mathbf{e}})$) with residuation as shown below. Further, for every abelian automaton \mathcal{A} whose group is \mathbb{Z}^m , there exists an \mathbf{A} and $\bar{\mathbf{e}}$ such that \mathcal{A} is a finite subautomaton. The odd states are exactly the states with odd first component.

$$\mathbf{A} = \begin{pmatrix} \frac{a_1}{2} & 1 & 0 & \cdots & 0 \\ \frac{a_2}{2} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{a_{m-1}}{2} & 0 & 0 & \cdots & 1 \\ \frac{a_m}{2} & 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$\partial_0 \bar{v} = egin{cases} A(\bar{v}) & \bar{v} \text{ is even} \\ A(\bar{v} - \bar{e}) & \bar{v} \text{ is odd} \end{cases}$$

$$\partial_1 \bar{v} = egin{cases} A(\bar{v}) & \bar{v} ext{ is even} \ A(\bar{v} + \bar{e}) & \bar{v} ext{ is odd} \end{cases}$$

- $a_i \in \mathbb{Z}$
- A has irreducible characteristic polynomial
- \bar{e} (the Residuation Vector) is odd

Example:

Take
$$\mathbf{A}=\begin{pmatrix} -1 & 1 \\ -\frac{1}{2} & 0 \end{pmatrix}$$
, and $\bar{e}=(3,2)$. Then:

• It is natural to ask for what matrices **A** and vectors \bar{e} can we find a given \mathcal{A} in $\mathfrak{C}(\mathbf{A}, \bar{e})$, and at what vectors \bar{v} are its states?

- It is natural to ask for what matrices **A** and vectors \bar{e} can we find a given \mathcal{A} in $\mathfrak{C}(\mathbf{A}, \bar{e})$, and at what vectors \bar{v} are its states?
- It can be shown that only one A works

- It is natural to ask for what matrices **A** and vectors \bar{e} can we find a given A in $\mathfrak{C}(\mathbf{A}, \bar{e})$, and at what vectors \bar{v} are its states?
- It can be shown that only one A works
- Becker even found a way of computing A given the automaton

- It is natural to ask for what matrices **A** and vectors \bar{e} can we find a given A in $\mathfrak{C}(\mathbf{A}, \bar{e})$, and at what vectors \bar{v} are its states?
- It can be shown that only one A works
- Becker even found a way of computing A given the automaton
- It can also be shown that for any \bar{e} , if A is a subautomaton, its location in the structure is unique

- It is natural to ask for what matrices **A** and vectors \bar{e} can we find a given \mathcal{A} in $\mathfrak{C}(\mathbf{A}, \bar{e})$, and at what vectors \bar{v} are its states?
- It can be shown that only one A works
- Becker even found a way of computing A given the automaton
- It can also be shown that for any \bar{e} , if A is a subautomaton, its location in the structure is unique
- There are infinitely many choices of \bar{e} though, and the goal is to understand them.

ullet We can multiply vectors $ar v \in \mathbb{Z}^m$ by scalars in \mathbb{Z}

- ullet We can multiply vectors $ar v \in \mathbb{Z}^m$ by scalars in \mathbb{Z}
- Seemingly weird idea:

- ullet We can multiply vectors $ar v \in \mathbb{Z}^m$ by scalars in \mathbb{Z}
- Seemingly weird idea:
 - ► Can we take *polynomials* as our scalars instead?

- ullet We can multiply vectors $ar v \in \mathbb{Z}^m$ by scalars in \mathbb{Z}
- Seemingly weird idea:
 - Can we take polynomials as our scalars instead?
- Typically this is done by setting $x\bar{v} = \mathbf{A}\bar{v}$ for some linear transformation.

- ullet We can multiply vectors $ar{v} \in \mathbb{Z}^m$ by scalars in \mathbb{Z}
- Seemingly weird idea:
 - Can we take polynomials as our scalars instead?
- Typically this is done by setting $x\bar{v} = \mathbf{A}\bar{v}$ for some linear transformation.
- If only we had a obvious linear transformation floating around our structure that one might try. . .

- ullet We can multiply vectors $ar v \in \mathbb{Z}^m$ by scalars in \mathbb{Z}
- Seemingly weird idea:
 - Can we take polynomials as our scalars instead?
- Typically this is done by setting $x\bar{v} = \mathbf{A}\bar{v}$ for some linear transformation.
- If only we had a obvious linear transformation floating around our structure that one might try...
- For technical reasons, we'll use A^{-1} instead of A.

- ullet We can multiply vectors $ar{v} \in \mathbb{Z}^m$ by scalars in \mathbb{Z}
- Seemingly weird idea:
 - Can we take polynomials as our scalars instead?
- Typically this is done by setting $x\bar{v} = \mathbf{A}\bar{v}$ for some linear transformation.
- If only we had a obvious linear transformation floating around our structure that one might try...
- For technical reasons, we'll use A^{-1} instead of A.

Definition

For $p \in \mathbb{Z}[x]$ and $\bar{v} \in \mathfrak{C}(\mathbf{A}, \bar{e})$, put $p \cdot \bar{v} = (p(\mathbf{A}^{-1}))\bar{v}$

Theorem

for each $\bar{v} \in \mathbb{Z}^m$, there is $p_{\bar{v}} \in \mathbb{Z}[x]$ such that $p_{\bar{v}} \cdot e_1 = \bar{v}$

Theorem

for each $\bar{v} \in \mathbb{Z}^m$, there is $p_{\bar{v}} \in \mathbb{Z}[x]$ such that $p_{\bar{v}} \cdot e_1 = \bar{v}$

Theorem

If \bar{e} is an odd vector, then $\varphi_{\bar{e}}: \mathfrak{C}(\mathbf{A}, \bar{e}_1) \hookrightarrow \mathfrak{C}(\mathbf{A}, \bar{e})$ by $\varphi_{\bar{e}}(\bar{v}) = p_{\bar{e}} \cdot \bar{v}$ is an embedding, and preserves the group structure and the residuation structure.

Theorem

for each $\bar{v} \in \mathbb{Z}^m$, there is $p_{\bar{v}} \in \mathbb{Z}[x]$ such that $p_{\bar{v}} \cdot e_1 = \bar{v}$

Theorem

If \bar{e} is an odd vector, then $\varphi_{\bar{e}}: \mathfrak{C}(\mathbf{A}, \bar{e}_1) \hookrightarrow \mathfrak{C}(\mathbf{A}, \bar{e})$ by $\varphi_{\bar{e}}(\bar{v}) = p_{\bar{e}} \cdot \bar{v}$ is an embedding, and preserves the group structure and the residuation structure.

• This embedding is surjective if and only if $p_{\bar{e}}$ is a unit in $\mathbb{Z}[x]/\chi$, where χ is the characteristic polynomial of \mathbf{A}^{-1}

Theorem

for each $\bar{v} \in \mathbb{Z}^m$, there is $p_{\bar{v}} \in \mathbb{Z}[x]$ such that $p_{\bar{v}} \cdot e_1 = \bar{v}$

Theorem

If \bar{e} is an odd vector, then $\varphi_{\bar{e}}: \mathfrak{C}(\mathbf{A}, \bar{e}_1) \hookrightarrow \mathfrak{C}(\mathbf{A}, \bar{e})$ by $\varphi_{\bar{e}}(\bar{v}) = p_{\bar{e}} \cdot \bar{v}$ is an embedding, and preserves the group structure and the residuation structure.

- This embedding is surjective if and only if $p_{\bar{e}}$ is a unit in $\mathbb{Z}[x]/\chi$, where χ is the characteristic polynomial of \mathbf{A}^{-1}
- So different residuation vectors give groups which extend the group $\mathfrak{C}(\mathbf{A}, \bar{e}_1)$

Theorem

for each $\bar{v} \in \mathbb{Z}^m$, there is $p_{\bar{v}} \in \mathbb{Z}[x]$ such that $p_{\bar{v}} \cdot e_1 = \bar{v}$

Theorem

If \bar{e} is an odd vector, then $\varphi_{\bar{e}}: \mathfrak{C}(\mathbf{A}, \bar{e}_1) \hookrightarrow \mathfrak{C}(\mathbf{A}, \bar{e})$ by $\varphi_{\bar{e}}(\bar{v}) = p_{\bar{e}} \cdot \bar{v}$ is an embedding, and preserves the group structure and the residuation structure.

- This embedding is surjective if and only if $p_{\bar{e}}$ is a unit in $\mathbb{Z}[x]/\chi$, where χ is the characteristic polynomial of \mathbf{A}^{-1}
- So different residuation vectors give groups which *extend* the group $\mathfrak{C}(\mathbf{A}, \bar{e}_1)$
- Also, if $p_{\bar{e}}$ divides $p_{\bar{r}}$, then $\mathfrak{C}(\mathbf{A}, \bar{r})$ extends $\mathfrak{C}(\mathbf{A}, \bar{e})$.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Theorem

If \mathcal{A} is an automaton whose group is \mathbb{Z}^m , then for each odd state in \mathcal{A} , there is exactly one \bar{e} which locates that state at \bar{e}_1 in $\mathfrak{C}(\mathbf{A},\bar{e})$. Further, if \bar{e} and \bar{r} are two such residuation vectors, they differ by a unit. This procedure is effective.

Theorem

If A has a state located at $\bar{v} \in \mathfrak{C}(\mathbf{A}, \bar{e})$, then \bar{v} is located at $p \cdot \bar{v} \in \mathfrak{C}(\mathbf{A}, p \cdot \bar{e})$

Incredibly, we now understand residuation vectors!

Theorem

If \mathcal{A} is an automaton whose group is \mathbb{Z}^m , then for each odd state in \mathcal{A} , there is exactly one \bar{e} which locates that state at \bar{e}_1 in $\mathfrak{C}(\mathbf{A},\bar{e})$. Further, if \bar{e} and \bar{r} are two such residuation vectors, they differ by a unit. This procedure is effective.

Theorem

If A has a state located at $\bar{v} \in \mathfrak{C}(\mathbf{A}, \bar{e})$, then \bar{v} is located at $p \cdot \bar{v} \in \mathfrak{C}(\mathbf{A}, p \cdot \bar{e})$

- Incredibly, we now understand residuation vectors!
- First find \bar{r} such that A has a state at \bar{e}_1 .
- $\mathcal A$ is a subautomaton of $\mathfrak C(\mathbf A, \bar e)$ if and only if $p_{\bar r}$ divides $p_{\bar e}$
- ullet Also, if ${\cal A}$ is a subautomaton, then $qp_{ar r}=p_{ar e}$, and ${\cal A}$ is located at $q\cdot ar e_1$

- It turns out we can "scale by an infinite polynomial" to get a
 universal structure which contains every automaton (with the correct
 matrix A) at exactly one location.
- The construction is a bit involved, so we don't have time to discuss it, but it is computable, and removes the need for the extra parameter \bar{e} .

Questions?