PARTE 2 SUITE STANDARD

Parte 2

Modulo 1 Stack di protocolli standard

Comunicazione e standard

- La comunicazione tra nodi differenti e, possibilmente, basati su piattaforme hardware e/o software eterogenee necessita di STANDARD
- L'informatica, da sempre, conosce due modi per arrivare ad uno standard
 - STANDARD de iure
 - STANDARD de facto
- Gli standard di comunicazioni tra calcolatori offrono un esempio "storico"

Due standard in concorrenza

ISO/OSI

(de iure)

TCP/IP

(de facto)

Parte 2

Modulo 1a: Stack ISO/OSI

Il caso dello "standard de iure" ISO/OSI

- L'organizzazione ISO (International Standard Organization) ha definito le specifiche di quello che sarebbe dovuto diventare lo standard di protocolli per l'interconnessione di nodi eterogenei:
- OSI (Open System Interconnection)

Funzionalità del modello ISO/OSI

- 1) Protocolli di comunicazione (network level): riguardano la comunicazione di messaggi tra nodi della rete, in modo da nascondere le caratteristiche dei mezzi fisici di trasmissione alle funzionalità di elaborazione
- 2) <u>Protocolli di elaborazione</u> (application level): insieme di meccanismi per il controllo delle applicazioni

I 7 livelli dello stack ISO/OSI

Application

Presentation

Session

Transport

Network

Data link

Physical

7 livelli

I 7 livelli dello stack ISO/OSI

Livelli ISO/OSI

 <u>Livello fisico (1)</u>: Gestisce i particolari meccanici ed elettrici della trasmissione fisica di un flusso di bit

Livelli ISO/OSI

- <u>Livello di collegamento dati (2)</u>: Gestisce i frame o i pacchetti trasformando la semplice trasmissione in una linea di comunicazione <u>priva</u> di errori non rilevati.
 - Gestisce l'accesso e l'uso dei canali fisici, gestisce il formato dei messaggi suddividendo (ove necessario) i dati in frame.
 - Gestisce la corretta sequenza dei dati trasmessi, comprendente l'uso di codifiche ridondanti (ad es., bit di parità) per l'individuazione e la correzione di errori che si sono verificati nello strato fisico, e la conferma dell'avvenuta ricezione

Livelli ISO/OSI

• Livello di rete (3): Fornisce i collegamenti e l'instradamento dei pacchetti nella rete, comprese la gestione dell'indirizzo dei pacchetti in uscita, la decodifica dell'indirizzo dei pacchetti in ingresso e la gestione delle informazioni di instradamento (ad es., router)

Livelli ISO/OSI (cont.)

- Livello di trasporto (4): Effettua il controllo end-to-end della sessione di comunicazione (accesso alla rete da parte del client e trasferimento dei messaggi tra i client) e garantisce l'affidabilità del trasporto
- <u>Livello di sessione (5)</u>: Consente a utenti su macchine eterogenee di stabilire sessioni, implementando funzioni di coordinamento, sincronizzazione e mantenimento dello stato (di sessione)

Livelli ISO/OSI (cont.)

- Livello di presentazione (6): Risolve le differenze di formato che possono presentarsi tra diversi nodi della rete (ad es., conversione tra caratteri ASCII, Unicode, EBCDC, conversione di codifica tra little- e big-endian), ma gestisce anche la compressione dei dati, la sicurezza e l'autenticità dei messaggi attraverso tecniche di crittografia
- Livello di applicazione (7): Fornisce un'interfaccia standard per i programmi applicativi che utilizzano la rete, mascherando le peculiarità e la complessità del sistema sottostante

Formato del messaggio inviato

- Messaggio (PDU) composto da intestazione (header) e dati
- Ogni livello aggiunge una propria intestazione

Comunicazione nel Modello ISO/OSI

Rete di comunicazione

Ma l'ISO/OSI non è riuscito ad affermarsi perché nel frattempo stava esplodendo

Modulo 1b: Stack TCP/IP ("Protocolli di Internet")

I livelli dei due Protocol Stack

ISO/OSI

Application

Presentation

Session

Transport

Network

Data link

Physical

7 5 TCP/IP

Application

Transport

Internet

Host-tonetwork

Critiche

Al modello ISO/OSI

- Cattiva tempistica
- Cattiva tecnologia
 - Influenzato dal modello IBM-SNA
 - Ridondanze
- Cattiva implementazione
 - Complessità
 - Eccessivi 7 livelli per la tecnologia (reticomputer) del tempo
- Pessima politica
 - Modello imposto contro il libero TCP/IP legato a Unix

Al modello TCP/IP

- Poco generale
- Meno concettuale e più orientato al funzionamento
- Livelli host-tonetwork confusi e interdipendenti
- Protocolli sviluppati ad hoc invece che protocolli generali

Altro motivo del successo di TCP/IP

- Disponibilità di una buona implementazione dello stack in versione open source a metà degli anni '80 su <u>BSD Unix</u>
- Disponibilità di un buon insieme di API (BSD socket API) per sviluppare applicazioni di rete: non perfette, ma funzionanti
- Al contrario,
 - il comitato ISO/OSI definì le specifiche dello stack
 - le implementazioni funzionanti delle specifiche ISO/OSI erano molto in ritardo rispetto a quelle già disponibili TCP/IP

Due standard non più in concorrenza

TCP/IP

(de facto)

Altra spiegazione: apocalisse dei due elefanti

Fase 1: Ricerca

 Non si possono rilasciare gli standard perché la teoria non è matura

Fase 2: Investimenti

 Non si possono rilasciare gli standard perché ci sono già implementazioni e investimenti

L'unico momento per gli standard è tra i due elefanti.

Si rischia di essere schiacciati → Vedi ISO/OSI

Internet: Cosa non è ...

- Non è una singola rete, ma un insieme di reti esteso in tutto il mondo
- Non è governata da un gruppo né da un ente né da un'unica azienda
- Non è gestita in modo centralizzato perché tutte le singole sottoreti che compongono Internet hanno una gestione autonoma

Internet: storia e leggenda

La leggenda:

Un progetto finanziato dal Ministero della Difesa USA con lo scopo di realizzare una rete in grado di comunicare anche in seguito ad attacchi nucleari

La realtà:

- Finanziata dal Ministero della Difesa USA
- Motivazione: successi spaziali dell'URSS
- Obiettivo: consentire l'accesso alle poche risorse di calcolo potenti (e costose) da vari centri di ricerca e Università USA

Parte 2

Modulo 2: Internet: funzionamento

Obiettivi progettuali di Internet

Architettura

Connettere diversi host e diverse reti

Tecniche di trasmissione

- Store-and-forward
- Packet switching

Comunicazione in Internet [vista 1]

Logicamente comunicano i due host terminali

Architettura Internet

In realtà, Internet consiste in milioni di *host* (computer, PDA, TV,...), di dispositivi che instradano i messaggi (*router*) e di *link* di comunicazione (cavi, fibra ottica, satellitari,...)

Comunicazione in Internet [vista 2]

Quindi, in realtà il messaggio deve attraversare vari *nodi intermedi* (*router*) con un meccanismo di *store and forward*

Comunicazioni in Internet [vista 3]

In ciascun nodo, l'informazione attraversa tutti i livelli necessari (5 per host, 3 per router)

Modulo 3: Packet switching *vs.* Circuit switching

La prima idea rivoluzionaria: Packet switching

- 1961: Kleinrock mediante la teoria delle reti di code dimostra l'efficacia delle comunicazioni packet- switching
- Per tutti gli anni '60 (e molti anche in seguito...), gli "esperti" di telecomunicazioni, sostenitori delle comunicazioni circuit-switching, sentenziavano "It will never work"

[da "La storia di Internet scritta da coloro che l'hanno creata", 1997]

Due modalità per trasferire dati

Circuit switching

- Un circuito virtuale dedicato per ogni comunicazione
- → L'idea alla base del sistema telefonico

Packet switching

- I dati sono suddivisi in "parti" ed inviati attraverso la rete
- → L'idea alla base di Internet

Circuit switching

 Necessità di riservare tutte le risorse (link e switch) end-to-end prima di trasmettere

Risorse dedicate

- Non c'è possibilità di condivisione
- Necessaria una fase di setup per ogni chiamata
- Prestazioni garantite rispetto alla tipologia di risorse riservate

Circuit switching (cont.)

- In realtà, anche nel circuit switching le risorse di rete (per es., la banda) non sono completamente dedicate, ma <u>suddivise in</u> <u>"parti"</u>
- Le parti sono assegnate alle chiamate
- Le parti di risorse, riservate per una chiamata, non sono utilizzabili da altre anche se non sono utilizzabili dalla chiamata che le possiede (non c'è possibilità di condivisione)

Circuit switching (cont.)

Vi sono due metodi per suddividere la risorsa (link):

- Metodi basati sulla frequenza (FDM)
- Metodi basati sul tempo (TDM)

Multiplexing

Multiplexing (condivisione) di risorse

- Deterministico (del circuit switching):
- Time-Division Multiplexing (TDM)
- Frequency-Division Multiplexing (FDM)

Packet switching

Ogni comunicazione è suddivisa in pacchetti

- I pacchetti condividono le risorse della rete
- Ogni pacchetto utilizza tutta la capacità trasmissiva di un link
- Le risorse sono utilizzate sulla base della necessità e non della prenotazione

Multiplexing statistico del packet switching

- Si può dire che il packet switching segua un principio di <u>multiplexing statistico</u> a suddivisione di tempo, ma su richiesta invece che ad intervalli prefissati (come nel caso del TDM del circuit switching)
- Pacchetti provenienti da diverse sorgenti sono "mescolati" sullo stesso link
- Poiché non c'è garanzia di avere una risorsa disponibile, ci può essere conflitto
- I pacchetti in conflitto per lo stesso link sono inseriti in un buffer del router

Gestione del conflitto

- Si bufferizzano i pacchetti in conflitto per lo stesso link
- Il buffer determina in pratica una coda di pacchetti che può essere processata in ordine FIFO (First-In-First-Out), ma non necessariamente (es., in base alla priorità)
 - **→** Congestione = riempimento del buffer

Trasmissioni e conflitti nel packet switching

Comunicazione store and forward: (i pacchetti si muovono di un hop alla volta)

- trasmessi su un link, arrivano ad un router
- aspettano (presso il router), il loro turno per poter essere trasmessi sul successivo

Trasmissioni e conflitti nel packet switching

Conflitto di risorse

- La domanda aggregata di risorse può eccedere la quantità disponibile
- Non essendoci prenotazione, si possono creare congestioni (impreviste):
 - i pacchetti rimangono accodati (se c'è spazio) in attesa di poter utilizzare il link
 - Se la coda è piena, il pacchetto viene perduto
- Possibilità di utilizzare un link differente a seconda dello stato della rete

Packet switching: pro e contro

PRO:

- C'è condivisione di risorse
- Non c'è la necessità di prenotare risorse end-to-end
- Il packet switching è ottimo per dati che arrivano in gruppi

CONTRO: Rischi di congestione:

- Ritardo e perdita di pacchetti
- E' necessario un protocollo che garantisca almeno le seguenti due proprietà:
 - Trasferimento dei dati affidabile (in grado di capire se c'è perdita di pacchetti e in grado di provvedere)
 - Controllo della congestione

Packet switching

"Analogia del ristorante"

- Circuit switching = con prenotazione del tavolo
- Packet switching = senza prenotazione

Metrica di prestazione

- Bandwidth (banda di trasmissione): quantità di dati trasmessi per unità di tempo
- Tipicamente:
 - Unità di tempo = secondo
 - Quantità di dati trasmessi = multipli di bit
- Quindi, metriche tipiche sono:
 - Kbps o Kbit/s → Kilo bit per secondo
 - Mbps o Mbit/s → Mega bit per secondo
 - Gbps o Gbit/s → Giga bit per secondo

Vantaggi del packet switching

Esempio:

- Link a 1 Mbps
- Ciascun utente richiede 0.1 Mbps quando trasmette, ed è attivo il 10% del tempo
- Circuit switching: può supportare al più 10 utenti
- Packet switching: con 35 utenti, la probabilità che più di 10 utenti trasmettano contemporaneamente è bassissima (0.0004), quindi è possibile far comunicare 35 utenti sulla stessa linea con minimi rischi di conflitti

Parte 2

Modulo 4: Analisi dello stack TCP/IP

Molti protocolli, ma non a tutti i livelli

Progetto Internet "a clessidra"

Livello 1-2 (host-to-network)

- I primi due livelli (fisico e data link) non sono separati, nel senso che connessione fisica e protocollo data link sono interdipendenti
- Pertanto, nel caso dello stack TCP/IP è più corretto parlare di un livello host-tonetwork (h2n) che comprende i primi due livelli
- Esempi di protocolli h2n:
 - Protocollo per LAN: Ethernet, token-ring
 - Protocollo per connessioni via modem: PPP
 - Protocollo per connessioni LAN wireless:
 802.11

Livello 3 (network): Protocollo IP

- Protocollo per la consegna dei pacchetti da un host mittente ad un host destinatario
- Servizi aggiuntivi rispetto a h2n
 - identificativo univoco di ciascun host (indirizzo IP)
 - comunicazione logica tra host

Livello 3 (network): Protocollo IP

Ma

- privo di connessione: ogni pacchetto è trattato in modo indipendente da tutti gli altri
- non affidabile: la consegna non è garantita (i pacchetti possono essere persi, duplicati, ritardati, o consegnati senza l'ordine di invio)
- consegna con impegno: tentativo di consegnare ogni pacchetto (l'inaffidabilità deriva dalle possibili congestioni della rete o guasti dei nodi/router)

Livello 4 (transport)

- Il livello transport estende il servizio di consegna con impegno proprio del protocollo IP tra due host terminali ad un servizio di consegna a due processi applicativi in esecuzione sugli host
- Servizi aggiuntivi rispetto a IP
 - multiplazione e demultiplazione messaggi tra processi
 - <u>rilevamento dell'errore</u> (mediante checksum)
- Esempi di protocolli transport
 - <u>UDP</u> (User Datagram Protocol)
 - TCP (Transmission Control Protocol): offre servizi aggiuntivi rispetto a UDP

Livello 4 (transport) [UDP]

 Protocollo che fornisce un livello di trasporto dell'informazione connectionless

Specifica in [RFC 768]

Livello 4 (transport) [TCP]

- Protocollo che fornisce un livello di trasporto affidabile e orientato alla connessione
- Servizi aggiuntivi rispetto a UDP
 - orientato alla connessione: comprende l'instaurazione, l'utilizzo e la chiusura della connessione
 - orientato al flusso di dati: considera il flusso di dati dall'host mittente fino al destinatario (→ considera sia rete sia host terminali)

- ...

Livello 4 (transport) [TCP]

Servizi aggiuntivi rispetto a UDP

- ...

- trasferimento con buffer: i dati sono memorizzati in un buffer e poi inseriti in un pacchetto quando il buffer è pieno
- connessione full duplex (bi-direzionale): una volta instaurata una connessione, è possibile il trasferimento contemporaneo in entrambe le direzioni della connessione

Livello 5 (application)

- Il livello application utilizza il livello di trasporto dell'informazione tra processi in esecuzione su host terminali per realizzare applicazioni di rete
- Esempi protocolli applicativi
 - ftp
 - telnet
 - http
 - smtp
 - irc

NB: Applicazioni di rete ≠ protocolli applicativi