MAT434: Theory of Mathematical Statistics

Miraj Samarakkody

Tougaloo College

02/12/2025

Suppose the n independent experiments are performed, each resulting in a success with probability p. Let X be the number of successes in the n experiments.

Suppose the n independent experiments are performed, each resulting in a success with probability p. Let X be the number of successes in the n experiments.

The probability that p(k) can be found in the following way:

Suppose the n independent experiments are performed, each resulting in a success with probability p. Let X be the number of successes in the n experiments.

The probaility that p(k) can be found in the following way:

Any particular sequence of k successes and n-k failures has probability $p^k(1-p)^{n-k}$ from the multiplication principle.

Suppose the n independent experiments are performed, each resulting in a success with probability p. Let X be the number of successes in the n experiments.

The probability that p(k) can be found in the following way:

Any particular sequence of k successes and n-k failures has probability $p^k(1-p)^{n-k}$ from the multiplication principle.

The number of such sequences is $\binom{n}{k}$.

Suppose the n independent experiments are performed, each resulting in a success with probability p. Let X be the number of successes in the n experiments.

The probaility that p(k) can be found in the following way:

Any particular sequence of k successes and n-k failures has probability $p^k(1-p)^{n-k}$ from the multiplication principle.

The number of such sequences is $\binom{n}{k}$.

Thus

$$P(X = k) = p(k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Let n = 10 and p = 0.1.

Let n = 10 and p = 0.1.

Figure: The Binomial Distribution for n = 10 and p = 0.1

Let n = 10 and p = 0.5.

Let n = 10 and p = 0.5.

Figure: The Binomial Distribution for n = 10 and p = 0.5

Let n = 10 and p = 0.8.

Let n = 10 and p = 0.8.

Figure: The Binomial Distribution for n = 10 and p = 0.8

The Geometric Distribution

The geometric distribution if also constructed from independent Bernoulli trials, but from an infinite sequence.

The Geometric Distribution

The geometric distribution if also constructed from independent Bernoulli trials, but from an infinite sequence. On each trail, a

success occurs with probability p, and X is the total number of trials up to and including the first success.

The Geometric Distribution

The geometric distribution if also constructed from independent Bernoulli trials, but from an infinite sequence. On each trail, a success occurs with probability p, and X is the total number of trials up to and including the first success. From the indepedance of the trails, this occurs with probability

$$p(k) = P(X = k) = (1 - p)^{k-1}p, k = 1, 2, 3, ...$$

The Geometric Distribution

The geometric distribution if also constructed from independent Bernoulli trials, but from an infinite sequence. On each trail, a success occurs with probability p, and X is the total number of trials up to and including the first success. From the indepedance of the trails, this occurs with probability

$$p(k) = P(X = k) = (1 - p)^{k-1}p, k = 1, 2, 3, ...$$

Note that these probabilities sum to 1.

$$\sum_{k=1}^{\infty} (1-p)^{k-1} p = p \sum_{j=0}^{\infty} (p-1)^j = 1$$

The probability of wining a certain state lottery is said to be about 1/9.

The probability of wining a certain state lottery is said to be about 1/9.

If it is exactly 1/9, the distribution of the number of tickets a person must purchase up to and including the first wining ticket is geometric random variable with p=1/9.

The probability of wining a certain state lottery is said to be about 1/9.

If it is exactly 1/9, the distribution of the number of tickets a person must purchase up to and including the first wining ticket is geometric random variable with p=1/9.

Figure: The probability mass function of a geometric random variable with p=1/9