### **Quantitative Methods in Finance**

### Tutorial, Part 7:

# Model diagnostics. Normality of the disturbances, multicollinearity, heteroscedasticity, and autocorrelation.

**Example:** We analyse money demand in the Slovenian economy for the period 1999–2006 (the data are provided in Stata Data file moneydemand.dta, while the programming code is given in Stata Do file moneydemand-commands-t07.do). We have monthly timeseries data available for the following variables:

- year and month of observation (*time*; 1999m1, ..., 2006m12);
- harmonized money aggregate M1 (*HM1*; in mil. EUR);
- income of households (*PPR*; in mil. EUR);
- interest rate on demand deposits (*RVP*; at the annual level);
- interest rate on short-term deposits (RVV; up to 90 days, at the annual level);
- consumer price index (CZP; 2000 = 100).

We estimate the following linear regression model of money demand:

$$HMI_t = \beta_1 + \beta_2 PPR_t + \beta_3 RVP_t + \beta_4 RVV_t + \beta_5 CZP_t + u_t$$
.

- a) Explore the data using different Stata commands. By using the scatter plots, examine the relationships of the above linear money demand function. Are the relationships among the dependent variable *HM1* and the explanatory variables expected?
- b) Estimate the linear regression model of money demand by ordinary least squares, and interpret the Stata output; in particular the regression coefficients. Again, are the signs and magnitudes of the relationships expected?
- c) Save the residuals and fitted values of the linear regression model of money demand, i.e. from point b). Check validity of the assumption on normality of the disturbances by using the Jarque–Bera test (perform the test both manually and with the appropriate command). What could you have done if the assumption had been violated?
- d) Check validity of the assumption on (absence of) multicollinearity (perform the test both manually e.g. for explanatory variable *PPR* and with the appropriate command). What could you have done if the assumption had been violated?
- e) Check validity of the assumption on homoscedasticity by using the White test (perform the test both manually and with the appropriate command). If you find presence of heteroscedasticity in the model, calculate the unbiased standard errors of parameter estimates using a robust estimator of variance, such as the Huber/White estimator of variance. Which assumption of the classical linear regression model was loosened in doing so, and how?
- f) Check validity of the assumption on (absence of) autocorrelation by using the Breusch–Godfrey test (perform the test both manually e.g. for AR(4) and with the appropriate command for required lag length). If you find the presence of autocorrelation in the model, calculate the unbiased standard errors of parameter estimates using a HAC estimator of

variance, such as the Newey-West robust estimator of variance. Which assumptions of the classical linear regression model were loosened in doing so, and how?

### Computer printout of the results in Stata:

a) Data exploration

. tsset time

time variable: time, 1999m1 to 2006m12

delta: 1 month

. sum

| Variable | Obs | Mean     | Std. Dev. | Min      | Max     |
|----------|-----|----------|-----------|----------|---------|
| time     | 96  | 515.5    | 27.85678  | 468      | 563     |
| hm1      | 96  | 1151.35  | 354.281   | 626.222  | 1853    |
| rvp      | 96  | .7678125 | .3251533  | . 2      | 1.1     |
| rvv      | 96  | 6.374062 | 2.826605  | 2.6      | 11.4    |
| ppr      | 96  | 208.2853 | 43.2753   | 129.727  | 314.326 |
| pdr      | 96  | 186.4002 | 51.01813  | 87.064   | 301.542 |
| pgo      | 96  | 5042.121 | 1808.664  | 2730.601 | 9719    |
| czp      | 96  | 116.5073 | 14.38521  | 89.1     | 135.4   |

. scatter hml ppr

. scatter hm1 rvp



. scatter hm1 rvv

. scatter hm1 czp



### b) Estimation of the linear money demand function

### . regress hml ppr rvp rvv czp

| Source                            | ss                                                          | df                                                     | MS                                      |                                           | Number of obs F( 4, 91)                                     |                                                       |
|-----------------------------------|-------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|
| Model  <br>Residual               | 11431132.5<br>  492791.936                                  |                                                        | 7783.12<br>415.296                      |                                           | Prob > F R-squared Adj R-squared                            | = 0.0000<br>= 0.9587                                  |
| Total                             | 11923924.4                                                  | 95 125                                                 | 514.994                                 |                                           | Root MSE                                                    | = 73.589                                              |
| hm1                               | <br>  Coef.                                                 | Std. Err.                                              | t                                       | P> t                                      | [95% Conf.                                                  | Interval]                                             |
| ppr<br>rvp<br>rvv<br>czp<br>_cons | 1.697766<br>-311.6847<br>-11.57513<br>11.50168<br>-229.2038 | .513892<br>45.25178<br>5.33166<br>1.472604<br>125.2134 | 3.30<br>-6.89<br>-2.17<br>7.81<br>-1.83 | 0.001<br>0.000<br>0.033<br>0.000<br>0.070 | .6769831<br>-401.5718<br>-22.16582<br>8.576535<br>-477.9248 | 2.71855<br>-221.7976<br>98444<br>14.42683<br>19.51725 |

- c) Model diagnostics Normality of the disturbances
- predict res, residpredict fit, xb

### . list hm1 fit res

| -                               | +<br>  hm1                                                  | fit                                                      | res                                                                 |
|---------------------------------|-------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|
| 1.<br>2.<br>3.<br>4.<br>5.      | 626.222<br>  645.085<br>  662.675<br>  675.893<br>  703.11  | 629.7126<br>630.6459<br>663.2455<br>685.4155<br>687.326  | -3.490638   14.43913  5705134   -9.522521   15.78391                |
| 6.<br>7.<br>8.<br>9.            | 735.355<br>714.333<br>702.177<br>719.821<br>723.418         | 735.4176<br>706.8221<br>689.3663<br>688.3902<br>698.9282 | 0626146   7.510875   12.81066   31.43076   24.48987                 |
| 11.<br>12.<br>13.<br>14.<br>15. | 726.128<br>748.817<br>740.66<br>740.068<br>735.536          | 710.6638<br>736.8136<br>709.7551<br>712.9952<br>743.3943 | 15.46422<br>12.00344<br>30.90489<br>27.07281<br>-7.858349           |
| 16.<br>17.<br>18.<br>19.        | 792.003<br>761.324<br>785.896<br>787.823<br>878.068         | 751.5343<br>750.6394<br>807.9182<br>768.5693<br>773.7431 | 40.46867  <br>10.68459  <br>-22.02216  <br>19.25373  <br>104.3249   |
| 21.<br>22.<br>23.<br>24.<br>25. | 801.827<br>  810.073<br>  802.401<br>  818.129<br>  799.304 | 789.3091<br>806.821<br>832.7275<br>842.4316<br>820.4866  | 12.51789  <br>3.251977  <br>-30.32648  <br>-24.30257  <br>-21.18257 |
| 26.                             | 797.012                                                     | 841.6254                                                 | -44.61332                                                           |

. . .

| 83.                      | 1523                                         | 1574.57                                                  | -51.57023                                                |
|--------------------------|----------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| 84.                      | 1714                                         | 1636.204                                                 | 77.79575                                                 |
| 85.                      | 1687                                         | 1563.568                                                 | 123.4316                                                 |
| 86.<br>87.<br>88.<br>89. | 1694<br>  1728<br>  1765<br>  1795<br>  1825 | 1602.508<br>1623.145<br>1663.847<br>1746.891<br>1698.695 | 91.49198<br>104.8554<br>101.1526<br>48.10896<br>126.3048 |
| 91.                      | 1814                                         | 1663.368                                                 | 150.6319                                                 |
| 92.                      | 1813                                         | 1661.113                                                 | 151.8867                                                 |
| 93.                      | 1826                                         | 1673.886                                                 | 152.1144                                                 |
| 94.                      | 1813                                         | 1671.924                                                 | 141.0764                                                 |
| 95.                      | 1817                                         | 1701.468                                                 | 115.5324                                                 |
| 96.                      | 1853<br>+                                    | 1768.186<br>                                             | 84.81373                                                 |

### . histogram res, normal

(bin=9, start=-180.69301, width=36.978604)

### . kdensity res, normal





### . sum res, detail

### Residuals

|     | Percentiles | Smallest  |             |           |
|-----|-------------|-----------|-------------|-----------|
| 1%  | -180.693    | -180.693  |             |           |
| 5%  | -147.8331   | -158.7813 |             |           |
| 10% | -93.55871   | -156.471  | Obs         | 96        |
| 25% | -37.31053   | -153.6954 | Sum of Wgt. | 96        |
|     |             |           |             |           |
| 50% | 1.594681    |           | Mean        | -5.57e-08 |
|     |             | Largest   | Std. Dev.   | 72.0228   |
| 75% | 39.02831    | 141.0764  |             |           |
| 90% | 101.1526    | 150.6319  | Variance    | 5187.283  |
| 95% | 126.3048    | 151.8867  | Skewness    | 1189608   |
| 99% | 152.1144    | 152.1144  | Kurtosis    | 3.034316  |

### . return list

### scalars:

r(N) = 96  $r(sum_w) = 96$ 

r(mean) = -5.57241340478e-08 r(Var) = 5187.283463078505 r(sd) = 72.02279821749849

```
r(skewness) = -.1189607731123617
r(kurtosis) = 3.034315649013452
r(sum) = -5.34951686859e-06
r(min) = -180.6930084228516
r(max) = 152.1144256591797
r(p1) = -180.6930084228516
r(p5) = -147.8331298828125
r(p10) = -93.55870819091797
r(p25) = -37.31053161621094
r(p50) = 1.594681181013584
r(p75) = 39.02831268310547
r(p90) = 101.1526336669922
r(p95) = 126.3047637939453
r(p99) = 152.1144256591797
```

- . scalar obs=r(N)
- . scalar sk=r(skewness)
- . scalar ku=r(kurtosis)
- . scalar jb=obs\*( $sk^2/6 + (ku-3)^2/24$ )
- . display jb
- .2311369
- . display chi2tail(2,jb)
- .89085959
- . jb6 res

Jarque-Bera normality test: .2311 Chi(2) .8909 Jarque-Bera test for Ho: normality: (res)

- d) Model diagnostics Multicollinearity
- . regress ppr rvp rvv czp /\* Example of calculation for variable PPR \*/

| Source                           | SS                                            | df                                         | MS                               |                                  | Number of obs F( 3, 92)                        | = 96<br>= 235.40                             |
|----------------------------------|-----------------------------------------------|--------------------------------------------|----------------------------------|----------------------------------|------------------------------------------------|----------------------------------------------|
| Model  <br>Residual              | 157405.554<br>20505.8858                      |                                            | 468.5178<br>2.890063             |                                  | Prob > F<br>R-squared<br>Adj R-squared         | = 0.0000<br>= 0.8847                         |
| Total                            | 177911.439                                    | 95 18'                                     | 72.75199                         |                                  | Root MSE                                       | = 14.93                                      |
| ppr                              | Coef.                                         | Std. Err                                   | <br>. t<br>                      | P> t                             | [95% Conf.                                     | Interval]                                    |
| rvp  <br>rvv  <br>czp  <br>_cons | -24.07317<br>3925855<br>2.343588<br>-43.77383 | 8.830847<br>1.0809<br>.1719202<br>24.98969 | -2.73<br>-0.36<br>13.63<br>-1.75 | 0.008<br>0.717<br>0.000<br>0.083 | -41.61199<br>-2.539347<br>2.00214<br>-93.40551 | -6.53434<br>1.754175<br>2.685037<br>5.857857 |

- . scalar R2ppr=e(r2)
- . scalar VIFppr=1/(1-R2ppr)
- . display VIFppr
- 8.6761158
- . qui regress hml ppr rvp rvv czp
- . estat vif

| Variable | VIF  | 1/VIF    |
|----------|------|----------|
| ppr      | 8.68 | 0.115259 |
| czp      | 7.87 | 0.127027 |

| rvv      | 3.98 | 0.250982 |
|----------|------|----------|
| rvp      | 3.80 | 0.263300 |
| Mean VIF | 6.08 |          |

- e) Model diagnostics Homoscedasticity
- . gen res2=res^2
- . scatter res2 fit



### . scatter res2 ppr

### . scatter res2 rvp



### . scatter res2 rvv

### . scatter res2 czp



- . gen ppr2=ppr^2 /\* Perform White test manually \*/
- . gen rvp2=rvp^2
- . gen rvv2=rvv^2
- . gen czp2=czp^2
- . gen pprrvp=ppr\*rvp
- . gen pprrvv=ppr\*rvv
- . gen pprczp=ppr\*czp
- . gen rvprvv=rvp\*rvv
- . gen rvpczp=rvp\*czp
- . gen rvvczp=rvv\*czp

## . regress res2 ppr rvp rvv czp ppr2 rvp2 rvv2 czp2 pprrvp pprrvv pprczp rvprvv rvpczp rvvczp

| Source  <br><br>Model  <br>Residual | SS<br>2.8855e+09<br>2.2605e+09 |           | MS<br><br>110493<br>7485.4 |       | Number of obs<br>F(14, 81)<br>Prob > F<br>R-squared<br>Adj R-squared | = 7.39<br>= 0.0000<br>= 0.5607 |
|-------------------------------------|--------------------------------|-----------|----------------------------|-------|----------------------------------------------------------------------|--------------------------------|
| Total                               | 5.1461e+09                     | 95 5416   | 8981.3                     |       | Root MSE                                                             | = 5282.8                       |
| res2                                | Coef.                          | Std. Err. | t                          | P> t  | [95% Conf.                                                           | Interval]                      |
| ppr                                 | -584.4684                      | 845.2599  | -0.69                      | 0.491 | -2266.27                                                             | 1097.334                       |
| rvp                                 | -250020.7                      | 248329.1  | -1.01                      | 0.317 | -744117.8                                                            | 244076.4                       |
| rvv                                 | -8164.354                      | 8897.928  | -0.92                      | 0.362 | -25868.44                                                            | 9539.733                       |
| czp                                 | 2868.217                       | 5063.871  | 0.57                       | 0.573 | -7207.297                                                            | 12943.73                       |
| ppr2                                | -5.120904                      | 2.440723  | -2.10                      | 0.039 | -9.977177                                                            | 2646304                        |
| rvp2                                | 32406.94                       | 28668.18  | 1.13                       | 0.262 | -24633.75                                                            | 89447.64                       |
| rvv2                                | 143.0258                       | 266.7427  | 0.54                       | 0.593 | -387.7084                                                            | 673.76                         |
| czp2                                | -45.08782                      | 25.93511  | -1.74                      | 0.086 | -96.69055                                                            | 6.514916                       |
| pprrvp                              | -141.8024                      | 242.1751  | -0.59                      | 0.560 | -623.655                                                             | 340.0501                       |
| pprrvv                              | -9.72262                       | 31.09498  | -0.31                      | 0.755 | -71.59188                                                            | 52.14664                       |
| pprczp                              | 25.84947                       | 13.61795  | 1.90                       | 0.061 | -1.245982                                                            | 52.94493                       |
| rvprvv                              | 3603.482                       | 6050.429  | 0.60                       | 0.553 | -8434.973                                                            | 15641.94                       |
| rvpczp                              | 1636.692                       | 1837.513  | 0.89                       | 0.376 | -2019.382                                                            | 5292.766                       |
| rvvczp                              | 37.0222                        | 88.06732  | 0.42                       | 0.675 | -138.2041                                                            | 212.2485                       |
| _cons                               | 63626.61                       | 355214.1  | 0.18                       | 0.858 | -643138.1                                                            | 770391.3                       |

### . ereturn list

scalars:

e(N) = 96  $e(df_m) = 14$ e(df r) = 81

 $\begin{array}{llll} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$ 

macros:

e(cmdline) : "regress res2 ppr rvp rvv czp ppr2 rvp2 rvv2 czp2 pprrvp

pprrvv pprczp rvprvv rvpczp rvvczp"

e(title) : "Linear regression"

e(marginsok) : "XB default"

e(vce) : "ols" e(depvar) : "res2" e(cmd) : "regress"
e(properties) : "b V"
e(predict) : "regres\_p"

e(model) : "ols"

e(estat\_cmd) : "regress\_estat"

matrices:

e(b): 1 x 15 e(V): 15 x 15

functions:

e(sample)

- . scalar theta=e(N)\*e(r2)
- . display theta, chi2tail(e(rank)-1,theta)

53.830089 5.712e-11

- . qui regress hml ppr rvp rvv czp
- . estat imtest, white

White's test for Ho: homoskedasticity

against Ha: unrestricted heteroskedasticity

chi2(14) = 53.83Prob > chi2 = 0.0000

Cameron & Trivedi's decomposition of IM-test

| Source                                     | chi2                  | df           | p                          |
|--------------------------------------------|-----------------------|--------------|----------------------------|
| Heteroskedasticity<br>Skewness<br>Kurtosis | 53.83<br>4.68<br>0.01 | 14<br>4<br>1 | 0.0000<br>0.3213<br>0.9136 |
| Total                                      | 58.53                 | 19           | 0.0000                     |

### . regress hml ppr rvp rvv czp, robust

Linear regression Number of obs =

F( 4, 91) = 1000.25 Prob > F = 0.0000 R-squared = 0.9587 Root MSE = 73.589

\_\_\_\_\_\_

| hm1   | Coef.     | Robust<br>Std. Err. | t     | P> t  | [95% Conf. | Interval] |
|-------|-----------|---------------------|-------|-------|------------|-----------|
| ppr   | 1.697766  | .5633882            | 3.01  | 0.003 | .5786649   | 2.816868  |
| rvp   | -311.6847 | 44.33028            | -7.03 | 0.000 | -399.7413  | -223.6281 |
| rvv   | -11.57513 | 3.532513            | -3.28 | 0.001 | -18.59203  | -4.558225 |
| czp   | 11.50168  | 1.32376             | 8.69  | 0.000 | 8.872196   | 14.13117  |
| _cons | -229.2038 | 58.25138            | -3.93 | 0.000 | -344.913   | -113.4945 |

### f) Model diagnostics - Autocorrelation

### . twoway connected res time



### . scatter res 1.res

### . scatter res 14.res



. gen res\_l1=res[\_n-1] /\* Perform Breusch-Godfrey test manually, AR(4) \*/ (1 missing value generated)

### . gen res\_12=res[\_n-2]

(2 missing values generated)

. gen res\_13=res[\_n-3]
(3 missing values generated)

### . gen res\_14=res[\_n-4]

(4 missing values generated)

### . regress res ppr rvp rvv czp res\_11 res\_12 res\_13 res\_14

|   | Source   | SS         | di    |      | MS     |       | Number of obs | =  | 92      |
|---|----------|------------|-------|------|--------|-------|---------------|----|---------|
|   | +        |            |       |      |        |       | F( 8, 83)     | =  | 30.24   |
|   | Model    | 366687.863 | 8     | 4583 | 5.9829 |       | Prob > F      | =  | 0.0000  |
| R | Residual | 125792.381 | 83    | 1515 | .57086 |       | R-squared     | =  | 0.7446  |
|   | ·+       |            |       |      |        |       | Adj R-squared | =  | 0.7200  |
|   | Total    | 492480.244 | 91    | 5411 | .87081 |       | Root MSE      | =  | 38.93   |
|   |          |            |       |      |        |       |               |    |         |
|   |          |            |       |      |        |       |               |    |         |
|   | res      | Coef.      | Std.  | Err. | t      | P> t  | [95% Conf.    | In | terval] |
|   | ·+       |            |       |      |        |       |               |    |         |
|   | ppr      | 2646584    | .3019 | 9436 | -0.88  | 0.383 | 8652121       |    | 3358952 |
|   | rvp      | -18.67495  | 24.82 | 2208 | -0.75  | 0.454 | -68.04508     | 3  | 0.69517 |
|   | - 1      |            |       |      |        |       |               |    |         |

| rvv    | .1185893 | 3.161154 | 0.04  | 0.970 | -6.168819 | 6.405997 |
|--------|----------|----------|-------|-------|-----------|----------|
| czp    | .5051443 | .8727978 | 0.58  | 0.564 | -1.230815 | 2.241104 |
| res_l1 | .8674026 | .1120089 | 7.74  | 0.000 | .6446214  | 1.090184 |
| res_12 | 1409334  | .1454018 | -0.97 | 0.335 | 4301317   | .148265  |
| res_13 | .1761789 | .1480089 | 1.19  | 0.237 | 118205    | .4705627 |
| res_14 | 0063491  | .1139522 | -0.06 | 0.956 | 2329954   | .2202971 |
| _cons  | 11.09089 | 79.46617 | 0.14  | 0.889 | -146.9641 | 169.1459 |
|        |          |          |       |       |           |          |

- . scalar lm=e(N)\*e(r2)
- . display lm, chi2tail(4,lm)
  68.500785 4.703e-14
- . qui regress hml ppr rvp rvv czp
- . estat bgodfrey, lags(4) nomiss0

Breusch-Godfrey LM test for autocorrelation

| lags(p) | chi2   | df | Prob > chi2 |
|---------|--------|----|-------------|
| 4       | 68.501 | 4  | 0.0000      |

HO: no serial correlation

### . estat bgodfrey, lags(1/12)

Breusch-Godfrey LM test for autocorrelation

| lags(p) | chi2   | df | Prob > chi2 |
|---------|--------|----|-------------|
| 1       | 70.771 | 1  | 0.0000      |
| 2       | 70.773 | 2  | 0.0000      |
| 3       | 71.397 | 3  | 0.0000      |
| 4       | 71.398 | 4  | 0.0000      |
| 5       | 71.639 | 5  | 0.0000      |
| 6       | 71.641 | 6  | 0.0000      |
| 7       | 73.403 | 7  | 0.0000      |
| 8       | 73.536 | 8  | 0.0000      |
| 9       | 74.066 | 9  | 0.0000      |
| 10      | 74.112 | 10 | 0.0000      |
| 11      | 74.164 | 11 | 0.0000      |
| 12      | 76.742 | 12 | 0.0000      |

HO: no serial correlation

### . estat bgodfrey, lags(1/90)

Breusch-Godfrey LM test for autocorrelation

| lags(p) | chi2   | df | Prob > chi2 |
|---------|--------|----|-------------|
| <br>1   | 70.771 | 1  | 0.0000      |
| 2       | 70.773 | 2  | 0.0000      |
| 3       | 71.397 | 3  | 0.0000      |
| 4       | 71.398 | 4  | 0.0000      |
| 5       | 71.639 | 5  | 0.0000      |
| 6       | 71.641 | 6  | 0.0000      |
| 7       | 73.403 | 7  | 0.0000      |
| 8       | 73.536 | 8  | 0.0000      |
| 9       | 74.066 | 9  | 0.0000      |
| 10      | 74.112 | 10 | 0.0000      |

. . .

| 41   | 88.902 | 41 | 0.0000 |
|------|--------|----|--------|
| 42   | 89.282 | 42 | 0.0000 |
| 43   | 89.287 | 43 | 0.0000 |
| 44   | 89.390 | 44 | 0.0001 |
| 45   | 89.410 | 45 | 0.0001 |
| 46   | 89.685 | 46 | 0.0001 |
| 47   | 90.072 | 47 | 0.0002 |
| 48   | 90.076 | 48 | 0.0002 |
| 49   | 90.143 | 49 | 0.0003 |
| 50   | 90.540 | 50 | 0.0004 |
| ·    |        |    |        |
|      |        |    |        |
|      |        |    |        |
| 71   | 93.846 | 71 | 0.0361 |
| 72   | 93.849 | 72 | 0.0429 |
| 73   | 93.995 | 73 | 0.0496 |
| 74   | 94.011 | 74 | 0.0582 |
| 75   | 94.011 | 75 | 0.0680 |
| 76   | 94.012 | 76 | 0.0789 |
| 77   | 94.379 | 77 | 0.0869 |
| 78   | 94.403 | 78 | 0.0996 |
| 79   | 95.140 | 79 | 0.1042 |
| 80   | 95.440 | 80 | 0.1147 |
| 81   | 95.442 | 81 | 0.1303 |
| 82   | 95.442 | 82 | 0.1472 |
| 83   | 95.491 | 83 | 0.1646 |
| 84   | 95.585 | 84 | 0.1823 |
| 85   | 95.601 | 85 | 0.2026 |
| 86   | 95.607 | 86 | 0.2244 |
| 87   | 95.651 | 87 | 0.2465 |
| 88   | 95.920 | 88 | 0.2644 |
| 89   | 95.920 | 89 | 0.2893 |
| 90   | 95.919 | 90 | 0.3152 |
| <br> |        |    |        |

HO: no serial correlation

### . newey hm1 ppr rvp rvv czp, lag(78)

Regression with Newey-West standard errors Number of obs = 96 maximum lag: 78 F(4, 91) = 859.25 Prob > F = 0.0000

| <br>  |           |            |       |       |            |                      |
|-------|-----------|------------|-------|-------|------------|----------------------|
|       |           | Newey-West |       |       |            |                      |
| hm1   | Coef.     | Std. Err.  | t     | P> t  | [95% Conf. | <pre>Interval]</pre> |
| <br>+ |           |            |       |       |            |                      |
| ppr   | 1.697766  | .3108188   | 5.46  | 0.000 | 1.080363   | 2.31517              |
| rvp   | -311.6847 | 64.70783   | -4.82 | 0.000 | -440.2189  | -183.1505            |
| rvv   | -11.57513 | 6.148327   | -1.88 | 0.063 | -23.78802  | .637769              |
| czp   | 11.50168  | .672376    | 17.11 | 0.000 | 10.16609   | 12.83727             |
| _cons | -229.2038 | 71.30645   | -3.21 | 0.002 | -370.8453  | -87.56224            |
|       |           |            |       |       |            |                      |

11