25 years of open source forecasting software

Rob J Hyndman 26 June 2025

Outline

- 1
- 2 Python
- 3 Julia
- 4 Data
- 5 Books

Outline

- 1 R
- 2 Python
- 3 Julia
- 4 Data
- 5 Books

Early R forecasting (c.2000)

ts package (now stats package):

- Holtwinters(): point forecasts only, with optional multiplicative seasonality (written by David Meyer).
- arima(): state space formulation of ARIMA models (written by Brian Ripley).
- structTS(): Basic structural models as per Harvey (written by Brian Ripley).

Early R forecasting (c.2000)

ts package (now stats package):

- Holtwinters(): point forecasts only, with optional multiplicative seasonality (written by David Meyer).
- arima(): state space formulation of ARIMA models (written by Brian Ripley).
- structTS(): Basic structural models as per Harvey (written by Brian Ripley).
- Each had a predict() method, but output was inconsistent.
- Holtwinters did not produce prediction intervals.

forecast package for R: motivation

- Consistent output for existing methods by introducing new S3 generic forecast() and new S3 class forecast.
- New methods including ets(), thetaf(), auto.arima().
- Modelling functions can be swapped while leaving code unchanged.
- Easy plotting tools with new plot.forecast() method.
- New forecasting tools such as accuracy() calculations.

forecast package for R: history

Date	Event
Pre 2003	Collection of functions used for consulting projects
July/August 2003	ets() and thetaf() added
August 2006	v1.0 available on CRAN
May 2007	auto.arima() added
July 2008	JSS paper (Hyndman & Khandakar)
September 2009	v2.0. Unbundled from Mcomp, fma & expsmooth
May 2010	arfima() added
Feb/March 2011	<pre>tslm(), stlf(), naive(), snaive() added</pre>
August 2011	v3.0. Box Cox transformations added
December 2011	tbats() added

forecast package for R: history

Date	Event
April 2012	Package moved to github
November 2012	v4.0 . nnetar() added
June 2013	Major speed-up of ets()
January 2014	v5.0 . tsoutliers() and tsclean() added
May 2015	v6.0 . Added several new plots
February 2016	v7.0. Added ggplot2 graphics & bias adjustment
March 2017	<pre>v8.0. Added tsCV() & baggedETS()</pre>
April 2018	v8.3 . Added mstl(), and revised auto.arima()
April 2025	v8.24. Last update

forecast package for R

- auto.arima + forecast
- ets + forecast
- tbats + forecast
- bats + forecast
- arfima + forecast
- nnetar + forecast
- stlm + forecast
- meanf
- rwf, naive
- thetaf
- dshw, hw, holt, ses
- splinef
- croston

All produce an object of class forecast

forecast package for R

- auto.arima + forecast
- ets + forecast
- tbats + forecast
- bats + forecast
- arfima + forecast
- nnetar + forecast
- stlm + forecast
- meanf
- rwf, naive
- thetaf
- dshw, hw, holt, ses
- splinef
- croston

All produce an object of class forecast

v9.0 will have new model functions:

- mean_model()
- rw_model()
- theta_model()
- spline_model()
- croston_model

CRAN Task View Time Series

CRAN Task View: Time Series Analysis

Maintainer: Rob J Hyndman, Rebecca Killick
Contact: Rob.Hyndman at monash.edu

Version: 2025-05-17

URL: https://CRAN.R-project.org/view=TimeSeries

Source: https://github.com/cran-task-views/TimeSeries/

Contributions: Suggestions and improvements for this task view are very welcome and can

be made through issues or pull requests on GitHub or via e-mail to the maintainer address. For further details see the Contributing guide.

Citation: Rob J Hyndman, Rebecca Killick (2025). CRAN Task View: Time Series Analysis.

Version 2025-05-17. URL https://CRAN.R-project.org/view=TimeSeries.

Installation: The packages from this task view can be installed automatically using the $\underline{\mathsf{ctv}}$

package. For example, ctv::install.views("TimeSeries", coreOnly = TRUE) installs all the core packages or ctv::update.views("TimeSeries") installs all packages that are not yet installed and up-to-date. See the CRAN Task View

Package	Downloads ('000)
forecast	22783
bsts	2322
vars	1851
prophet	1578
smooth	1159
fabletool	s 1134
fable	982
greybox	910
hts	896
thief	673

ETS

Function	PIntervals	Automatic	Covariates
stats::HoltWinters()	No	No	No
<pre>forecast::ets()</pre>	Yes	Yes	No
<pre>fable::ETS()</pre>	Yes	Yes	No
smooth::es()	Yes	Yes	Yes

forecast::ets()

```
ets(AirPassengers)
ETS(M,Ad,M)
Call:
ets(y = AirPassengers)
  Smoothing parameters:
    alpha = 0.7096
    beta = 0.0204
    gamma = 1e-04
    phi = 0.98
  Initial states:
    l = 120.9939
    b = 1.7705
    s = 0.8944 \ 0.7993 \ 0.9217 \ 1.059 \ 1.22 \ 1.232
           1.111 0.9786 0.9804 1.011 0.8869 0.9059
```

forecast::ets()

Aug 1961

Sep 1961

Oct 1961

609.4 539.2 679.5 502.1 716.6

530.5 465.5 595.6 431.0 630.0

463.0 402.8 523.2 371.0 555.1

ets(AirPassengers) |> forecast(h = 10)

fable::ETS()

ATC ATCC BTC

```
as_tsibble(AirPassengers) |> model(ETS(value)) |> report()
Series: value
Model: ETS(M,Ad,M)
  Smoothing parameters:
   alpha = 0.7096
   beta = 0.02041
   gamma = 0.0001005
   phi = 0.98
 Initial states:
 l[0] b[0] s[0] s[-1] s[-2] s[-3] s[-4] s[-5] s[-6] s[-7] s[-8] s[-9]
 121 1.771 0.8944 0.7993 0.9217 1.059 1.22 1.232 1.111 0.9786 0.9804 1.011
s[-10] s[-11]
 0.8869 0.9059
 sigma^2: 0.0015
```

1

fable::ETS()

```
as_tsibble(AirPassengers) |> model(ETS(value)) |> forecast(h = 10)
# A fable: 10 x 4 [1M]
# Kev: .model [1]
   .model index
  <chr> <mth>
1 ETS(value) 1961 Jan
2 ETS(value) 1961 Feb
3 ETS(value) 1961 Mar
4 ETS(value) 1961 Apr
 5 ETS(value) 1961 May
 6 ETS(value) 1961 Jun
 7 ETS(value) 1961 Jul
8 ETS(value) 1961 Aug
9 ETS(value) 1961 Sep
10 ETS(value) 1961 Oct
# i 2 more variables: value <dist>, .mean <dbl>
```

smooth::es()

es(AirPassengers)

```
Time elapsed: 1.57 seconds
Model estimated using es() function: ETS(MMdM)
With optimal initialisation
Distribution assumed in the model: Normal
Loss function type: likelihood; Loss function value: 526.8
Persistence vector g:
 alpha beta gamma
0.3536 0.0000 0.4560
Damping parameter: 0.9991
Sample size: 144
Number of estimated parameters: 18
Number of degrees of freedom: 126
Information criteria:
 AIC AICC BIC BICC
1090 1095 1143 1157
```

smooth::es()

```
es(AirPassengers) |> forecast(h = 10, interval = "parametric")
         Point forecast Lower bound (2.5%) Upper bound (97.5%)
Jan 1961
                  450.8
                                      413.7
                                                           486.8
Feb 1961
                  426.3
                                      389.5
                                                           462.6
Mar 1961
                  483.3
                                      439.1
                                                           527.5
Apr 1961
                  506.4
                                      458.3
                                                           556.0
May 1961
                  521.7
                                      471.3
                                                           575.5
Jun 1961
                  597.1
                                      534.5
                                                           661.0
Jul 1961
                  688.7
                                      616.4
                                                           764.6
Aug 1961
                  682.1
                                      608.5
                                                           760.2
Sep 1961
                  567.5
                                      503.7
                                                           633.3
Oct 1961
                   505.0
                                      446.8
                                                           564.7
```

Benchmarks

```
bench::mark(
  forecast = ets(AirPassengers) |> forecast(h = 10),
  fable = as_tsibble(AirPassengers) |> model(ETS(value)) |> forecast(h = 10),
  smooth = es(AirPassengers) |> forecast(h = 10, interval = "parametric"),
  check = FALSE
)
```

expression	min	median	itr/sec	mem_alloc
forecast	673.96ms	673.96ms	1.48	43.6MB
fable	729.2ms	729.2ms	1.37	37.5MB
smooth	1.61s	1.61s	0.62	221.9MB

ARIMA

Function	PIntervals	Automatic	Covariates
stats::arima()	Yes	No	Yes
<pre>forecast::Arima()</pre>	Yes	No	Yes
<pre>forecast::auto.arima()</pre>	Yes	Yes	Yes
<pre>fable::ARIMA()</pre>	Yes	Yes	Yes
<pre>smooth::ssarima()</pre>	Yes	No	Yes
<pre>smooth::auto.ssarima()</pre>	Yes	Yes	Yes

forecast::auto.arima()

```
auto.arima(AirPassengers, lambda = 0)
Series: AirPassengers
ARIMA(0,1,1)(0,1,1)[12]
Box Cox transformation: lambda= 0
Coefficients:
               sma1
        ma1
     -0.402 -0.557
s.e. 0.090 0.073
sigma^2 = 0.00137: log likelihood = 244.7
ATC=-483.4 ATCc=-483.2 BTC=-474.8
```

forecast::auto.arima()

```
auto.arima(AirPassengers, lambda = 0) > forecast(h = 10)
         Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
Jan 1961
                  450.4 429.5 472.3 418.9 484.3
Feb 1961
                  425.7 402.8 449.9 391.2 463.3
Mar 1961
                  479.0 450.1 509.7 435.6 526.8
Apr 1961
                  492.4 459.9 527.2 443.5 546.7
May 1961
                  509.1 472.7 548.2 454.6 570.0
Jun 1961
                  583.3 538.9 631.5 516.8 658.5
Jul 1961
                  670.0 615.9 728.9 589.1 762.1
Aug 1961
                  667.1 610.4 729.1 582.3 764.2
Sep 1961
                  558.2 508.5 612.8 484.0 643.8
Oct 1961
                  497.2 451.0 548.1 428.3 577.2
```

fable::ARIMA()

```
as_tsibble(AirPassengers) |> model(ARIMA(log(value))) |> report()
Series: value
Model: ARIMA(2,0,0)(0,1,1)[12] w/ drift
Transformation: log(value)
Coefficients:
        arl ar2 smal constant
     0.5754 0.2614 -0.5553 0.0193
s.e. 0.0843 0.0842 0.0771 0.0015
sigma^2 estimated as 0.001323: log likelihood=249.7
ATC=-489.3 ATCc=-488.8 BTC=-474.9
```

fable::ARIMA()

```
as_tsibble(AirPassengers) |> model(ARIMA(log(value))) |> forecast(h = 10)
# A fable: 10 x 4 [1M]
# Kev: .model [1]
   .model
                       index
                                        value .mean
  <chr>
                       <mth>
                                   <dist> <dbl>
1 ARIMA(log(value)) 1961 Jan t(N(6.1, 0.0013))
                                                453.
2 ARIMA(log(value)) 1961 Feb t(N(6.1, 0.0018))
                                                430.
 3 ARIMA(log(value)) 1961 Mar t(N(6.2, 0.0022))
                                                486.
 4 ARIMA(log(value)) 1961 Apr t(N(6.2, 0.0025))
                                                 502.
 5 ARIMA(log(value)) 1961 May t(N(6.3, 0.0028))
                                                 522.
 6 ARIMA(log(value)) 1961 Jun t(N(6.4, 0.003))
                                                 600.
 7 ARIMA(log(value)) 1961 Jul t(N(6.5, 0.0031))
                                                691.
 8 ARIMA(log(value)) 1961 Aug t(N(6.5, 0.0032))
                                                 690.
 9 ARIMA(log(value)) 1961 Sep t(N(6.4, 0.0033))
                                                 579.
10 ARIMA(log(value)) 1961 Oct t(N(6.2, 0.0034))
                                                 516.
```

smooth::auto.ssarima()

auto.ssarima(log(AirPassengers)) Time elapsed: 2.45 seconds Model estimated: SARIMA(0,1,3)[1](0,1,3)[12]Matrix of MA terms: Lag 1 Lag 12 MA(1) -0.4157 -0.7397MA(2) 0.0313 0.1145 MA(3) -0.1255 0.0747Initial values were produced using backcasting. Loss function type: likelihood; Loss function value: -287.9556 Frror standard deviation: 0.0336 Sample size: 144 Number of estimated parameters: 7 Number of degrees of freedom: 137 Information criteria: AIC AICC BIC BICC -561.9 -561.1 -541.1 -539.1

smooth::auto.ssarima()

```
auto.ssarima(log(AirPassengers)) > forecast(h = 10)
         Point forecast Lower bound (2.5%) Upper bound (97.5%)
Jan 1961
                  6.104
                                      6.039
                                                          6.169
Feb 1961
                  6.049
                                      5.973
                                                          6.124
Mar 1961
                  6.181
                                      6.096
                                                          6.266
Apr 1961
                 6.185
                                      6.094
                                                          6,276
May 1961
                 6.224
                                      6.128
                                                          6.321
Jun 1961
                  6.372
                                      6.271
                                                          6.474
Jul 1961
                  6.506
                                      6.399
                                                          6.612
Aug 1961
                  6.512
                                      6.401
                                                          6.623
Sep 1961
                  6.324
                                      6,209
                                                          6,440
Oct 1961
                  6,201
                                      6.082
                                                          6.321
```

Benchmarks

```
bench::mark(
  forecast = auto.arima(AirPassengers, lambda = 0, biasadj = TRUE) |>
    forecast(h = 12),
  fable = as_tsibble(AirPassengers) |> model(ARIMA(log(value))) |>
    forecast(h = 12),
  smooth = auto.ssarima(log(AirPassengers)) |>
    forecast(h = 12, interval="parametric"),
    check = FALSE
)
```

expression	min	median	itr/sec	mem_alloc
forecast	1.92s	1.92s	0.52	402.39MB
fable	5.26s	5.26s	0.19	1.28GB
smooth	3.2s	3.2s	0.31	428.36MB

R reconciliation packages

	hts	thief	fable	ForeReco
First release	2010	2016	2019	2020
Last release	2024	2018	2025	2024
Cross-sectional	\checkmark		\checkmark	\checkmark
Temporal		\checkmark		\checkmark
Cross-temporal				\checkmark
Probabilistic			\checkmark	\checkmark
BU	\checkmark	\checkmark	\checkmark	\checkmark
TD	\checkmark	\checkmark	\checkmark	\checkmark
OLS	\checkmark	\checkmark	\checkmark	\checkmark
WLS	\checkmark	\checkmark	\checkmark	\checkmark
MinT	\checkmark	\checkmark	\checkmark	\checkmark

Outline

- 1 F
- 2 Python
- 3 Julia
- 4 Data
- 5 Books

Python packages with statistical models

statsmodels (2016-2024)

(Release dates)

- pmdarima (2017-2023)
- sktime (2019–2025) includes wrapper to pmdarima and to some StatsForecast functions
- GluonTS (AWS, 2019–2025) via wrapper to R forecast package
- Darts (2020–2025) some wrappers to StatsForecast
- Merlion (Salesforce, 2021–2023)
- StatsForecast (Nixtla 2022–2025)
- aeon (2023–2025) fork of sktime

Most complete packages

statsmodels

- ARIMA (not automated)
- ETS (not automated)
- MSTL
- Theta
- Regime switching
- ARDL
- ECM
- VARMA

sktime

- AutoARIMA
- AutoETS
- BATS/TBATS
- Theta
- STLForecaster
- Croston
- Bagged-ETS
- Prophet

StatsForecast

- AutoARIMA
- AutoETS
- AutoTBATS
- Theta
- MSTL
- Croston
- TSB, ADIDA
- ARCH/GARCH

Python packages with ML methods

- sktime (2019-2025)
- GluonTS (AWS, 2019–2025)
- Darts (2020–2025)
- Merlion (Salesforce, 2021–2023)
- MLforecast (Nixtla 2022–2025)
- NeuralForecast (Nixtla 2022–2025)
- aeon (2023–2025) fork of sktime
- skforecast (2021–2025)
- NeuralProphet (2020-2024)
- Kats (2021–2022)

(Release dates)

ML forecasting methods available in GluonTS

- DeepAR
- DeepState
- DeepFactor
- Deep Renewal Processes
- GPForecaster
- MQ-CNN
- MQ-RNN
- N-BEATS
- Rotbaum
- Temporal Fusion

- Transformer
- WaveNet
- SimpleFeedForward
- DeepNPTS
- MQF2
- DeepVAR
- GPVAR
- LSTNet
- DeepTPP
- DeepVARHierarchical

Forecasting methods available in NeuralForecast

- Autoformer LSTM TCN BiTCN MLPTFT DeepAR MLPMultivariate TiDE
 - DeepNPTS **NBEATS**
 - DilatedRNN **NBEATS**×
 - FEDformer NHITS
 - NLinear
 - GRU HINT

iTransformer

KAN

- Informer
 - RNN
- - PatchTST

SOFTS

StemGNN

- **TSMixerx**

- **TSMixer**
- TimeLLM TimesNet
- TimeMixer

Python reconciliation packages

	sktime	Darts	pyhts	HierarchicalForecast
First release	2019	2020	2021	2022
Last release	2025	2025	2022	2025
Cross-sectional	\checkmark	\checkmark	\checkmark	\checkmark
Temporal			\checkmark	
Cross-temporal				
Probabilistic				\checkmark
BU	\checkmark	\checkmark		\checkmark
TD	\checkmark	\checkmark		\checkmark
OLS	\checkmark	\checkmark	\checkmark	\checkmark
WLS	\checkmark	\checkmark	\checkmark	\checkmark
MinT	\checkmark	\checkmark	\checkmark	\checkmark

Foundation models

Open source

- Time-LLM (Jin et al. 2023)
- TimeGPT-1 (Garza, Challu, and Mergenthaler-Canseco 2023)
- **Lag-Llama** (Rasul et al. 2023)
- TimesFM (Das et al. 2023)
- Tiny Time Mixers (Ekambaram et al. 2024)
- Moirai (Woo et al. 2024)
- MOMENT (Goswami et al. 2024)
- UniTS (Gao et al. 2024)
- Chronos (Ansari et al. 2024)
- Time-MoE (Shi et al, 2024)

Outline

- 1
- 2 Python
- 3 Julia
- 4 Data
- 5 Books

Julia

- colintbowers/RARIMA.jl: 2015-2018. Wrapper for R packages stats and forecast. No longer working
- josemanuel22/DeepAR.jl: 2024-2025. DeepAR models.
- LAMPSPUC/Sarimax.jl: 2024-2025. SARIMA using JuMP.
- LAMPSPUC/ScoreDrivenModels.jl: 2020-2022. Generalized AR score models.
- LAMPSPUC/StateSpaceModels.jl: 2018-2025. Based on Durbin & Koopman (2012).
- viraltux/Forecast.jl: 2020–2021. Descriptive stats and plots, but only AR forecasting.

Outline

- 1 F
- 2 Python
- 3 Julia
- 4 Data
- 5 Books

forecastingdata.org

Aim

Datasets

Results

Links

About Us

Contributions

Acknowledgement

Software

Monash Time Series Forecasting Repository

The first repository containing datasets of related time series for global forecasting

VISIT REPOSITORY

Outline

- 1
- 2 Python
- 3 Julia
- 4 Data
- 5 Books

Forecasting: principles and practice

OTexts.com

Rob J Hyndman George Athanasopoulos Rob J Hyndman George Athanasopoulos Rob J Hyndman, George Athanasopoulos, Azul Garza, Cristian Challu, Max Mergenthaler, Kin G Olivares

FORECASTING PRINCIPLES AND PRACTICE

A comprehensive introduction to the latest forecasting methods

FORECASTING PRINCIPLES AND PRACTICE

FORECASTING PRINCIPLES AND PRACTICE, THE PYTHONIC WAY

1st ed 2013: 2nd ed 2018

3rd ed 2021

2025

44

Forecasting and analytics with ADAM

Forecasting and Analytics with the Augmented Dynamic Adaptive Model (ADAM)

Ivan Svetunkov

openforecast.org/adam/

Links

robjhyndman.com/osfs25