Exam 1

Version 1

STAT 211 - 509

10-4-2018

Name:
Please sign the following pledge and read all instructions carefully before starting the exam.
Pledge: I have neither given nor received any unauthorized aid in completing this exam, and I have conducted
myself within the guidelines of the University Honor Code. Signature:

Instructions

- This test has 15 multiple choice problems. Record all answers on your large Scantron with the appropriate pencil.
- Total time is 75 minutes (12:45 P.M to 2:00 P.M.).
- You are permitted one 8.5in by 11in cheatsheet and a calculator. No other resources (phones, laptop, tablet, etc.) are allowed.
- If you are wearing a hat and/or smartwatch, please remove them while taking the test.
- There is no penalty for incorrect answers; have an answer for every question.
- When you are done, turn in your cheatsheet and exam booklet along with the Scantron.

Let $X \sim Poisson(1)$ and $Y \sim Binomial(8,1/2)$. Assume that X and Y are independent. Answer the following **three** questions:

Question 1

What is E[aX + bY]?

- a) a + b
- b) 2a + b
- c) 2a + 4b
- d) a + 8b
- e) a + 4b

Question 2

What is Var(aX + bY)?

- a) a^2
- b) $2b^2$
- c) $a^2 + b^2$
- d) $a^2 + 4b^2$
- e) $a^2 + 2b^2$

Question 3

What is $E[(aX + bY)^2]$?

- a) $(a+4b)^2$
- b) $a^2 + 2b^2 + (a+4b)^2$
- c) $a^2 + 2b^2 (a+4b)^2$
- d) $a^2 + 2b^2 + a + 4b$
- e) $a^2 + 2b^2 a 4b$

Question 4

Let L be the event that your bus is late and T be the event that it is on time. Suppose P(L) = 0.1 and P(T) = 0.3. What is $P(L \cup T)$?

- a) 0.45
- b) 0.03
- c) 0.27
- d) Can't answer without knowing $P(A \cap B)$
- e) 0.4

Question 5

Suppose for two events A and B we have that $B \subset A$, meaning B is completely contained in A. This means every outcome in B is also in A. Then $P(A \cap B)$ is:

Hint: draw a Venn diagram. For an example of an event completely contained in another, let P be the event you pass this exam and A be the event you get an A. $A \subset P$, since all the scores you get that lead to an A also lead to you passing.

- a) 0
- b) P(B)
- c) P(A) + P(B)
- d) 1
- e) P(A)

4% of a population is infected with HIV. For a certain HIV test there is a 98% chance the test will be positive given that the tested individual is actually infected with HIV. If the person is not infected, there is a 6% chance the test will be positive. Answer the following **two** questions.

Question 6

What is the probability that the test is positive for a randomly selected person from the population?

- a) 0.0392
- b) 1
- c) 0.04
- d) 0.0968
- e) 0.0576

Question 7

If a randomly selected person from the population is tested positive, what is the probability that the person is actually infected?

- a) 0.06
- b) 0.0392
- c) 0.405
- d) 0.98
- e) 0.04

Let $X \sim Binomial(n = 4, p = 0.7)$. Answer the following **three** questions.

Question 8

Which of the following plots is of the pmf for X? The y axis is f(x) for each plot.

2

3

2

3

- a) Plot 1
- b) Plot 2
- c) Plot 3
- d) Plot 4
- e) Plot 5

Question 9

Which of the following correctly computes $P(X \leq 2)$ in R?

- a) rbinom(n = 2, size = 4, prob = 0.7)
- b) pgeom(q = 2, prob = 0.7)
- c) dbinom(x = 2, size = 4, prob = 0.7)
- d) pbinom(q = 2, size = 3, prob = 0.9)
- e) pbinom(q = 2, size = 4, prob = 0.7)

Question 10

Question 10
What is $P(X \ge 1)$?
a) 0.9919
b) 0.0081
c) 0.0756
d) 0.2646
e) 0.7518
Let $X \sim Binomial(N, p)$, where $N \sim Poisson(\lambda)$. Note that N is a random variable, not a number. Answer the following two questions.
Question 11
What is $E[X N=n]$?
Hint: read this as, if N were not a random variable but an integer n , then what is the mean of X ?
a) N
b) Np
c) np
$\mathbf{d}) \ p$
$\mathrm{e})\ n$
Question 12
What is $E[X]$?
Hint: use the law of total expectation. For random variables A and B, $E[A] = \sum_b E[A B=b]P(B=b)$.
$\mathrm{a)} \;\; np$
b) Np
c) $n\lambda$
d) λp
e) λ

Consider the following joint probability distribution:

	X = 0	X = 1
Y = -3	0.1	0.4
Y = -2	0.2	0.1
Y = -1	0.1	0.1

Answer the following **two** questions.

Question 13

What is the conditional distribution of Y given X = 0, $f_{Y|X}(y)$?

a)

$$f_{Y|X}(y) = \begin{cases} 0.6667, & y = -3\\ 0.1667, & y = -2\\ 0.1667, & y = -1\\ 0, & \text{otherwise} \end{cases}$$

b)

$$f_{Y|X}(y) = \begin{cases} 0.25, & y = -3\\ 0.5, & y = -2\\ 0.25, & y = -1\\ 0, & \text{otherwise} \end{cases}$$

c)

$$f_{Y|X}(y) = \begin{cases} 0.4, & y = -3\\ 0.1, & y = -2\\ 0.1, & y = -1\\ 0. & \text{otherwise} \end{cases}$$

d)

$$f_{Y|X}(y) = \begin{cases} 0.5, & y = -3\\ 0.3, & y = -2\\ 0.2, & y = -1\\ 0, & \text{otherwise} \end{cases}$$

e)

$$f_{Y|X}(y) = \begin{cases} 0.1, & y = -3\\ 0.2, & y = -2\\ 0.1, & y = -1\\ 0, & \text{otherwise} \end{cases}$$

Question 14

What is E[Y|X=0]?

- a) -0.8
- b) -2.3
- c) -3.75
- d) -1.5
- e) -2

Question 15

Suppose we have $X_1, \ldots, X_n \sim f_\rho$, an iid sample of random variables from a discrete distribution with pmf $f_\rho(x)$ and parameter ρ . We construct the likelihood function and plot it:

What is the maximum likelihood estimate for ρ ?

- a) -5
- b) 0
- c) -3
- d) 5
- e) -1