

Insight into Chemical Bonding from Analysis of the Wavefunction

Eric CLOT

UMR 5253 - CNRS, UM2, ENSCM, UM1

Interaction Experiment/Theory

Experimental Chemists have Questions

- Where are the Nucleophilic and Electrophilic Sites in a Molecule?
- How Strong are the Bonds within a Molecule ?
- What is the Nature of the Bonds between the Atoms?
- Why is this Molecule more Stable than this Other ?
- How can we Describe the Interaction between two Reacting Molecules ?

They use Concepts to Rationalize the Results

- Lewis structure, Resonance, Hyperconjugation
- Electonegativity, Hybridation

Wavefunction: Source of Information

Computational Chemists determine Wavefunctions

Wavefunction: Access to Density

$$ho = \Psi^*(\vec{r})\Psi(\vec{r}) \longrightarrow \int
ho d\vec{r} = N$$

How Calculations can Answer the Experimentalists' Questions?

- Is it possible to Evaluate the Charge of an Atom in a Molecule ?
- Is it possible to Cast the Information contained in the Wavefunction as a Localized Lewis Structure?
- Is it possible to Describe the Deviation from the Strictly Localized Lewis Structure?

Molecular Orbital Theory

MO as Linear Combination of AO : $\psi_i = \sum_k c_{ik} \chi_k$

	номо	LUMO
C(1s)	0.00000	0.00000
C(2s)	0.00000	0.00000
$C(2p_x)$	0.00000	0.82121
$C(2p_y)$	-0.18207	0.00000
$C(2p_z)$	0.00000	0.00000
O(1s)	0.00000	0.00000
O(2s)	0.00000	0.00000
$O(2p_x)$	0.00000	-0.76719
$O(2p_y)$	0.86995	0.00000
$O(2p_z)$	0.00000	0.00000
H1(1s)	-0.35917	0.00000
H2(1s)	0.35917	0.00000

H₂CO: HF/STO-3G

Molecular Symmetry: Delocalized Description

Mulliken Population Analysis

Density expressed with the MO

$$ho = \sum_{i}^{occ} 2\psi_{i}^{*}\psi_{i}$$
 with 2 electrons in occupied MO ψ_{i}

Density expressed with the AO

$$\rho = \sum_{i}^{occ} 2 \left(\sum_{k} \sum_{\ell} c_{ik}^* c_{i\ell} \chi_k^* \chi_{\ell} \right) = \sum_{k} \sum_{\ell} \left(\sum_{i}^{occ} 2 c_{ik}^* c_{i\ell} \right) \chi_k^* \chi_{\ell}$$

Number of Electrons

$$N = \sum_{k} \sum_{\ell} \left(\sum_{i}^{occ} 2c_{ik}^* c_{i\ell} \right) S_{k\ell} = \sum_{k} \sum_{\ell} D_{k\ell} S_{k\ell}$$

D : Density Matrix S : Overlap Matrix

Mulliken Population Analysis

Partitioning of the Electrons between atoms A and B.

$$N = \sum_{k}^{A} \sum_{\ell}^{A} D_{k\ell} S_{k\ell} + \sum_{k}^{B} \sum_{\ell}^{B} D_{k\ell} S_{k\ell} + \sum_{k}^{A} \sum_{\ell}^{B} D_{k\ell} S_{k\ell} + \sum_{k}^{B} \sum_{\ell}^{A} D_{k\ell} S_{k\ell}$$

Gross Populations on Atoms A and B

$$P_{A} = \sum_{k}^{A} \sum_{\ell}^{A} D_{k\ell} S_{k\ell} + \sum_{k}^{A} \sum_{\ell}^{B} D_{k\ell} S_{k\ell}$$

$$P_{B} = \sum_{k}^{B} \sum_{\ell}^{B} D_{k\ell} S_{k\ell} + \sum_{k}^{B} \sum_{\ell}^{A} D_{k\ell} S_{k\ell}$$

Charges on Atoms A and B

$$Q_A = Z_A - P_A$$
$$Q_B = Z_B - P_B$$

Errors in Calculations

Two Potential Sources of Errors

Thom. H. Dunning Jr., J. Phys. Chem. A. 2000, 104, 9062

Mulliken Population: Accuracy

Mulliken Population: Accuracy

Influence on Dipole Moment?

Does the Lack of Accuracy in the Charges Affect the Value of the Dipole Moment ?

$$\mu_{e} = \langle \Psi | - e \vec{r} | \Psi \rangle$$

Natural Population Analysis

Natural Population Analysis

Natural Bonding Orbitals: Concept

Use Information in Wavefunction to Build a Lewis Structure

• Electronic Configuration for the Atoms in the Molecule :

Natural Atomic Orbitals (NAO)

Mixing of Natural Atomic Orbitals to Build Hybrids :

Natural Hybrid Orbitals (NHO)

Covalent Bond as Overlap between Hybrids :

Natural Bond Orbitals (NBO)

Departure From Stricktly Localized Lewis Structure :

Natural Localized Molecular Orbitals (NLMO)

Bibliography

NBO Web Site : http://www.chem.wisc.edu/~nbo5/

Valency and Bonding

A Natural Bond Orbital Donor-Acceptor Perspective

> Frank Weinhold University of Wisconsin, Madison Clark R. Landis University of Wisconsin, Madison

(ISBN-13: 9780521831284 — ISBN-10: 0521831288)

DOI: 10.2277/0521831288

Density Matrix and MO

Molecular Orbitals Afford Compact Expression for Density Matrix

$$\rho = \sum_{i}^{bcc} 2\psi_{i}^{*}\psi_{i}$$

Density Matrix H₂CO HF/STO-3G

MO	1	2	3	4	5	6	7	8	9	10	11	12
1	2	0	0	0	0	0	0	0	0	0	0	0
2	0	2	0	0	0	0	0	0	0	0	0	0
3	0	0	2	0	0	0	0	0	0	0	0	0
4	0	0	0	2	0	0	0	0	0	0	0	0
5	0	0	0	0	2	0	0	0	0	0	0	0
6	0	0	0	0	0	2	0	0	0	0	0	0
7	0	0	0	0	0	0	2	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0

MO are Natural Orbitals for the HF Density Matrix

Density Matrix and AO

Density Matrix Easily Expressed with AO:

$$D_{k\ell} = \sum_{i=0}^{occ} 2c_{ik}^* c_{i\ell}$$

C(pz)

0.0011

-0.0593

0.0000

0.0000

1.5834

0.1166

0.9404

0.0000

0.0000

-0.8885

-0.6462

-0.6462

O(s)

0.0001

0.0696

0.0000

0.0000

0.1166

1.9999

0.4746

0.0000

0.0000

-0.0056

0.0095

0.0095

O(s)

0.0704

0.7516

0.0000

0.0000

0.9404

0.4746

1.9890

0.0000

0.0000

0.0522

0.1413

0.1413

O(px)

0.0000

0.0000

1.2052

0.0000

0.0000

0.0000

0.0000

1.2900

0.0000

0.0000

0.0000

0.0000

)))
)
9
)
)
)
)
3
)
)
)
s)
37
10
00
60
52
95
3
00
3
21
7
20

Why Switching to an Apparently More Complicated Description?

Obtaining Natural Atomic Orbital

Natural Orbitals are Eigenvectors of the First Order Density Matrix with Associated Occupation Numbers (Lowdin).

HF/STO-3G Density Matrix for s Subshell

AO	C(s)	C(s)	O(s)	O(s)	H1(s)	H2(s)
C(s)	1.9996	0.5050	0.0001	0.0704	0.1137	0.1137
C(s)	0.5050	1.8233	0.0696	0.7516	1.1140	1.1140
O(s)	0.0001	0.0696	1.9999	0.4746	0.0095	0.0095
O(s)	0.0704	0.7516	0.4746	1.9890	0.1413	0.1413
H1(s)	0.1137	1.1140	0.0095	0.1413	1.6320	0.2407
H2(s)	0.1137	1.1140	0.0095	0.1413	0.2407	1.6320

Natural Orbitals for Atomic Sub-Blocks: PNAO

PNAO	C(s)	C(s)	O(s)	O(s)	H1(s)	H2(s)
C(s)	2.0000	0.0000	0.0140	0.1054	0.1635	0.1635
C(s)	0.0000	1.8069	0.1472	0.7476	1.1147	1.1147
O(s)	0.0140	0.1472	2.0000	0.0000	0.0238	0.0238
O(s)	0.1054	0.7476	0.0000	1.9876	0.1415	0.1415
H1(s)	0.1635	1.1147	0.0238	0.1415	1.6320	0.2407
H2(s)	0.1635	1.1147	0.0238	0.1415	0.2407	1.6320

PNAO Use Information to Build Free Atom-Like Orbitals

Shape of the PNAO

PNAO Introduce Orthogonality between AO on Each Atom

Shape of the PNAO

PNAO Introduce Orthogonality between AO on Each Atom

Overlap between PNAO on O and C

Shape of the PNAO

PNAO Introduce Orthogonality between AO on Each Atom

STO-3G Basis

PNAO

AO s on CarbonAO s on Oxygen Overlap between PNAO on O and C

From PNAO to NAO

Natural **A**tomic **O**rbitals are Obtained by Occupancy Weighted Symmetric Orthogonalization.

NAO	C(s)	C(s)	O(s)	O(s)	H1(s)	H2(s)
C(s)	2.0000	0.0000	0.0000	0.0005	-0.0006	-0.0006
C(s)	0.0000	1.0846	-0.0025	0.2565	0.5715	0.5715
O(s)	0.0000	-0.0025	2.0000	0.0000	0.0024	0.0024
O(s)	0.0005	0.2565	0.0000	1.7998	-0.0009	-0.0009
H1(s)	-0.0006	0.5715	0.0024	-0.0009	0.9898	-0.0986
H2(s)	-0.0006	0.5715	0.0024	-0.0009	-0.986	0.9898

Occupation Numbers

Shape of NAO

The NAO have Orthogonalization Tails Because the Atom is not Free but in a Molecule.

Natural Populations

Procedure for Each & Subshell Yields NAO

			LATIONS lang	: Natural Type(AO)	atomic orbital Occupancy	occupancies Energy
1	С	1	s	Cor(1s)	2.00000	-11.05961
2	C	1	s	Val(2s)	1.08465	-0.26151
3	C	1	px	Val(2p)	0.90133	-0.04488
4	C	1	ру	Val(2p)	0.99303	0.07028
5	C	1	pz	Val(2p)	0.85395	0.14722
6	0	2	s	Cor(1s)	1.99999	-20.15600
7	0	2	s	Val(2s)	1.79984	-1.09032
8	0	2	px	Val(2p)	1.09867	-0.11643
9	0	2	ру	Val(2p)	1.91859	-0.38125
10	0	2	pz	Val(2p)	1.37031	-0.15386
11	H	3	s	Val(1s)	0.98982	0.02246
12	H	4	s	Val(1s)	0.98982	0.02246

Effective Electron Configuration

Partioning the NAO Space

The NPA Procedure Allows to Find the Linear Combinations of the Basis Set Functions that are Adapted to Describe the Core and Valence Electrons within a **Molecular Environment**.

- Atom: Core Valence Rydberg
- C: $(1s)^2 (2s)^2 (2p)^2 (3s)^0 (3p)^0 (3d)^0$
- O: $(1s)^2 (2s)^2 (2p)^4 (3s)^0 (3p)^0 (3d)^0$
- H: $(1s)^1 (2s)^0 (2p)^0$

Core + Valence = Minimal Basis Set

Natural Electron Configuration

Summary of Natural Population Analysis:

Natural Population

		Natural				
Atom	No	Charge	Core	Valence	Rydberg	Total
C	1	0.16705	2.00000	3.83295	0.00000	5.83295
0	2	-0.18741	1.99999	6.18742	0.00000	8.18741
H	3	0.01018	0.00000	0.98982	0.00000	0.98982
Н	4	0.01018	0.00000	0.98982	0.00000	0.98982
* Tota	al *	0.00000	3.99999	12.00001	0.00000	16.00000

Natural Population

Core	3.99999	(99.9997% of	4)
Valence	12.00001	(100.0001% of	12)
Natural Minimal Basis	16.00000	(100.0000% of	16)
Natural Rydberg Basis	0.00000	(0.0000% of	16)

Atom No Natural Electron Configuration

```
C 1 [core]2s(1.08)2p(2.75)

O 2 [core]2s(1.80)2p(4.39)

H 3 1s(0.99)

H 4 1s(0.99)
```

Natural Charge: No Arbitrary Partioning

H₂CO B3PW91/6-31G**

Maximum of Density in Linear Combination of Basis Functions Most Adapted to Represent the Core and Valence Electrons : **Highly Transferable**

Summary of Natural Population Analysis:

				Natural Population					
Atom	No	Natural Charge	Core	Valence	Rydberg	Total			
C O H	1 2 3	0.21141 -0.49216 0.14038	1.99960 1.99974 0.00000	3.76022 6.47229 0.85538	0.02876 0.02013 0.00424	5.78859 8.49216 0.85962			
* Tot:	4 ==== al *	0.14038 0.00000	0.00000 ===============================	0.85538 11.94328	0.00424 ======= 0.05738	0.85962 ======= 16.00000			

Natural Population

					•		
Core			3.999	934 (99.9835%	of	4)
Valence			11.943	328 (99.5273%	of	12)
Natural	Minimal	Basis	15.942	262 (99.6414%	of	16)
Natural	Rydberg	${\tt Basis}$	0.057	738 (0.3586%	of	16)

Lewis Structure are Build with Valence Electrons

Constructing Natural Bond Orbitals

Off-Diagonal Elements of the Density Matrix in the NAO Basis Set Describe the Magnitude of the **Interaction** between NAOs Centered on **Different Atoms**.

	NAO	1	2	3	4	5	Coupling
1. 2. 3.	C 1(1s) C 1(2s) C 1(2px)	0.0000	1.0846	0.0000		-0.1091	${C(2s),C(2pz)}$ ${O(2s),O(2pz)}$ ${H(1s)}$
4. 5.	C 1(2py) C 1(2pz)	0.0000	0.0000	0.0000	0.9930	0.0000	C(2px) O(2px)
6. 7.	0 2(1s) 0 2(2s)	0.0005	0.2565	0.0000	0.0000	0.4119	C(2py) O(2py) H(1s)
8. 9. 10.	0 2(2px) 0 2(2py) 0 2(2pz)	0.0000	0.0000	0.0000	0.2863	0.0000	Mixing NAOs: Hybrid Orbitals!
11.	H 3(1s) H 4(1s)	-0.0006	0.5715	0.0000	0.6775	-0.4049	

 $h_C = 0.5862s + 0.8101pz$ and $h_O = 0.4902s - 0.8716pz$

How Are the Coefficients Determined?

Lewis Structure

Driving Force : Cancellation of Off-Diagonal Terms

Consequences: Localization of Electron Pairs in Bonding

Orbitals (BD) or Lone Pairs (LP)

```
\sigma_{CO} = 0.6436h_C + 0.7653h_O
\pi_{CO} = 0.6714px_C + 0.7412px_O
\sigma_{CH} = 0.7180h'_C + 0.6959s_H
LP_O = 0.8716s_O + 0.4902pz_O
LP_O = py_O
```


How Accurate is This Representation?

Determining the NBO

The **NBO Procedure** Determines the **Connections** between Atoms that Maximize the Number of **Localized Orbitals** (BD or LP) with **Occupancy** as Close to **2** as Possible.

		Occupancies			Lewis Structure				High	
	Occ.						occ	occ		
Cycle	Thresh.	Lewis	Non-Lewis	CR	BD	3C	LP	(L)	(NL)	Dev
1(1)	1.90	15.36324	0.63676	2	5	0	1	2	1	0.06
2(2)	1.90	15.36324	0.63676	2	5	0	1	2	1	0.06
3(1)	1.80	15.86241	0.13759	2	4	0	2	0	0	0.06

Structure accepted: No low occupancy Lewis orbitals

Core	3.99934	(99.984%	of	4)			
Valence Lewis	11.86307	(98.859%	of	12)			
=======================================		==			=====			
Total Lewis	15.86241	(99.140%	of	16)			
Valence non-Lewis	0.11332	(0.708%	of	16)			
Rydberg non-Lewis	0.02426	(0.152%	of	16)			
Total non-Lewis	0.13759	(0.860%	of	16)			

Expression of the NBO

```
(Occupancy) Bond orbital/ Coefficients/ Hybrids
1. (1.99989) BD (1) C 1-0 2
           (35.49%) 0.5958* C 1 s( 0.00%)p 1.00( 99.77%)d 0.00( 0.23%)
                                  0.0000 0.0000 0.0000 0.9981 -0.0387
                                  0.0000 0.0000 0.0000 0.0000 0.0000
                                  0.0480 0.0000 0.0000 0.0000
           (64.51%) 0.8032* 0 2 s( 0.00%)p 1.00( 99.69%)d 0.00( 0.31%)
                                   0.0000 0.0000 0.0000 0.9984 -0.0104
                                  0.0000 0.0000 0.0000 0.0000 0.0000
                                  -0.0555 0.0000 0.0000 0.0000
2. (1.99980) BD (2) C 1- 0 2
           ( 33.74%) 0.5808* C 1 s( 32.17%)p 2.10( 67.60%)d 0.01( 0.23%)
                                  0.0001 0.5622 0.0755 0.0000 0.0000
                                  0.0000 0.0000 0.8169 0.0931 0.0000
                                   0.0000 0.0000 0.0045 0.0477
           (66.26%) 0.8140* 0 2 s(41.03%)p 1.43(58.58%)d 0.01(0.39%)
                                  0.0000 0.6400 0.0272 0.0000 0.0000
                                  0.0000 0.0000 -0.7653 0.0131 0.0000
                                  0.0000 0.0000 0.0033 0.0620
3. (1.99515) BD (1) C 1- H 3
           (58.78%) 0.7667* C 1 s(34.03%)p 1.94(65.88%)d 0.00(0.10%)
                                  0.0001 0.5830 -0.0203 0.0000 0.0000
                                  0.7065 -0.0120 -0.3993 0.0031 0.0000
                                  0.0000 -0.0256 -0.0172 -0.0051
           (41.22%) 0.6420* H 3 s(99.94%)p 0.00(0.06%)
                                  0.9996 0.0132 0.0000 -0.0207 0.0112
```

Hybridation Follows Bent's Rule

atomic s character tends to concentrate in orbitals that are directed toward electropositive groups

Description of Lone Pairs

When No Covalent Interaction between Atoms can be Found, Lone Pairs are Created to Accomodate Electron Density on a Single Atoms.

```
8. (1.88435) LP ( 2) 0 2
```

7. (1.98872) LP (1) 0 2

```
s(59.01%)p 0.69(40.93%)d 0.00( 0.06%)

-0.0004 0.7680 -0.0151 0.0000 0.0000

0.0000 0.0000 0.6398 -0.0003 0.0000

0.0000 0.0000 0.0030 -0.0248

s( 0.00%)p 1.00( 99.81%)d 0.00( 0.19%)

0.0000 0.0000 0.0000 0.0000 0.0000

0.9990 0.0144 0.0000 0.0000 0.0000

0.0000 -0.0431 0.0000 0.0000
```


Lone Pairs Do Not Follow VSEPR

Description of AntiBond

The Overlap between two Hybrids to Create a Bonding Orbital Automatically Generates an Antibonding Orbital.

Hyperconjugation Interactions

The Empty AntiBonds can Accept Electron Density from the Occupied Bonds : **Departure from Lewis Structure**

How Stabilizing is this Resonance ?

Donor-Acceptor Interactions

The Departure from the Lewis Structure is Due to Donor-Acceptor Electron Transfers between Occupied and Vacant NBOs.

2nd Order Perturbation Theory

$$\Delta E = -2 \frac{\langle \sigma | \mathcal{F} | \sigma^* \rangle^2}{\varepsilon_{\sigma^*} - \varepsilon_{\sigma}}$$

$$LP_0 \longrightarrow \sigma^*_{CH} = 20.1 \text{ kcal mol}^{-1}$$

The Perturbed NBO Gives Access to Natural Localized Molecular Orbitals which Are Occupied stricktly by 2 Electrons

$$\tilde{\mathsf{LP}}_0 = 0.9706 \mathsf{LP}_0 + 0.1631 \sigma_{\mathsf{CH}}^* - 0.1631 \sigma_{\mathsf{CH}}'^*$$

NBO Procedure: Summary

Substituents and Natural Charges

Natural Charges

C	0.211	0.403	0.727	0.497
Ο	-0.492	-0.520	-0.526	-0.604
Н	0.140	0.145	0.150	0.144
Χ	0.140	-0.028	-0.351	-0.037

Natural Electron Configuration

C	$s^{1.05}p^{2.71}$	$s^{0.94}p^{2.62}$	$s^{0.90}p^{2.33}$	$s^{0.87}p^{2.60}$
0	$s^{1.72}p^{4.76}$	$s^{1.72}p^{4.80}$	$s^{1.72}p^{4.79}$	s ^{1.71} p ^{4.88}

Is it Possible to Rationalize the Trends?

Donor-Acceptor Interactions

The Magnitude of the Donor-Acceptor Interactions Depends on the Nature of the Substituent.

	$LP_O \longrightarrow \sigma^*_CH$	$LP_{O} \longrightarrow \sigma^*_{CX}$	$LP_X \longrightarrow \pi_C0^*$
X = H	20.1	20.1	
$X = CH_3$	21.6	19.6	5.0
X=F	17.9	45.1	33.8
$X = NH_2$	21.1	24.4	62.6

Inductive Effect -I

$$\mathsf{F} > \mathsf{NH} > > \mathsf{H} > \mathsf{CH}_3$$

Mesomeric Effect +M

$$\mathsf{NH}_2 > \mathsf{F} > \mathsf{CH}_3 > \mathsf{H}$$

Resonance Forms

Within NBO it is Possible to Determine the Relative Weights of the Different Resonance Forms.

Consequences on Structure and Properties

The Relative Weights of the Resonance Forms Allow to Explain the Values of the Structural Parameters and some Properties

NBO can also be Used to Analyze Chemical Shielding Tensor and NMR Coupling Constants

Bent Bonds in Cyclopropane

Expression of Natural Hybrid allows to Determine Orientation with Respect to Line Centers

 $\textbf{Angle: 23.4}^{\circ}$

Deviation from Lineariy Relates to Strain

3 Centers 2 Electrons Bond

For B₂H₆ NBO Analysis Leaves 14.5% of the Density as Non-Lewis Need to Consider Simultaneously Hybrids on 3 Atoms

Analysis of Molecules in Interaction

For Adducts between Molecules, NBO Offers an Interpretation of the Interaction Energy

$$\mathsf{LP}_{\mathsf{O}} \longrightarrow \sigma_{\mathsf{OH}}^*$$

$$\Delta E_{pert} = 13.2 \text{ kcal mol}^{-1}$$

$$\Delta E = -7 \text{ kcal mol}^{-1}$$

Description of Hydrogen Bond as a Charge Transfer Interaction

What About Transition Metal Complexes?

The Lewis **Octet** Rule Becomes a **Dodectet** Rule for Transition Metal Complexes.

$$|\mathsf{G}_M - \mathsf{6}| + n\mathsf{V}_L + e_u = \mathsf{6}$$

 G_M : Group Number of the Metal

n: Stoichiometric ML_n Formula Ratio

 V_L : Valency of the Ligand

 e_u : Number of Unpaired Electron

	3	4	5	6	8	9	10
chlorides	$ScCl_3$	TiCl ₅	$NbCl_5$	WCI_5	$RuCl_3$	$RhCl_3$	$PdCl_2$
oxides	Sc_2O_3	TiO_2	Nb_2O_5	WO_3	RuO_2	Rh_2O_3	PdO
alkyls		$ZrMe_4$	$NbMe_5$	WMe_6	$Ru(Mes)_4$	$Rh(Mes)_3$	

sd Hybridation

Geometry Dictated by Hybridation between s and d Orbitals

	$\alpha_{\rm accute}$	α_{obtuse}
sd ²	90.0	90.0
sd^3	70.53	109.47
sd^4	65.91	114.09
sd^5	63.43	116.57
sd^{10}	58.91	121.09
d	54.74	125.26

Two Geometries for OsH₄

 $\Delta E = 1.7 \text{ kcal mol}^{-1}$

Angle Lower than 90°!

For Trans Ligand: 3 centers 4 electrons Bond!

Coordination of σ -Bond

Boranes are Important Reagents in H₂ Storage and Catalysis

What are the Factors Leading to Stable Adducts?

Competition Between Coordination of 2 $\sigma(H-H)$ and 2 $\sigma(B-H)$ Bonds.

	Me	Ph	NMe_2
Ru	-5.8	-4.0	7.9
Rh^+	-8.4	-10.3	-6.2
Ir^+	-10.2	-11.2	-5.3

Vacant Orbital on Boron Crucial for Back-Bonding

Coordination of H-H

The Coordination of H_2 is Described as Resulting from a Balance between σ -Donation and π Back-Bonding.

	$\sigma(H_2) \rightarrow \sigma^*(MH)$	OCC.	$LP(M) o \sigma^*(H_2)$	occ
M = Ru	150	1.717	24	0.117
$M=Rh^+$	92	1.794	11	0.054
$M = Ir^+$	205	1.733	19	0.082

Back-Donation to H₂ From Same d Orbital on M

Coordination of H₂BNMe₂

The π -Acidity at Boron offers an Alternative for π Back-Bonding.

	$\sigma(BH) \rightarrow \sigma^*(MH)$	occ	$LP(M) \rightarrow \sigma^*(BH)$	occ	$LP \rightarrow LP^*(B)$	occ
M = Ru	140	1.757	21	0.046	10/81/17	0.518
$M = Rh^+$	82	1.827	2	0.017	12/108/11	0.494
$M = Ir^+$	247	1.766	4	0.034	/107/	0.528

Cationic Fragments are More Electrophilic

Consequences on Geometry

The Competition Between the Charge Transfer Dictates the Final Structure.

