Active Reward Learning with Comparative Language Feedback

Eisuke Hirota, Erdem Bıyık

Our framework enables integrating Language Feedback for Active Reward Learning

Naïve Reward Learning

Language Reward Learning

Language Active Reward Learning


```
Algorithm 1 Active Learning Pseudocode

Require: \mathcal{L}, \mathcal{T}, fUpdater(), gUpdater(), infoGain(), \epsilon
f = \mathcal{N}(\mathbf{0}_{512}, \mathbf{I}_{512}) and g = \mathcal{N}(\mathbf{0}_{512}, \mathbf{I}_{512})
\{\omega\}_{i=1}^m \sim f \text{ and } \mathbf{Q} = \{\}
Score = \infty
while Score > \epsilon do
f \leftarrow \text{fUpdater}(f, Q) \text{ and } \{\omega\}_{i=1}^m \sim f
g \leftarrow \text{gUpdater}(g, Q, \{\omega\}_{i=1}^m) \text{ and } \{l\}_{i=1}^n \sim g
\tau, \text{Score} \leftarrow \text{infoGain}(\{\omega\}_{i=1}^m, \{l\}_{i=1}^n, \mathcal{L}, \mathcal{T})
Query the human with \tau and receive l
Append \{\tau, l\} to \mathbf{Q}
end while
```

We experiment with four different Approx. Bayesian Inference methods:

- Metropolis-Hastings
- Stochastic Gibbs
- Laplace Approximation
- Expectation Propagation

Results and Key Insights

- We can learn a shared latent space between trajectories and language
- Using language feedback enables faster learning of the optimal reward function vs. comparison feedback
- Active Learning with language feedback enables extra speed up in terms of convergence

References

Tien, J., Yang, Z., Jun, M., Russell, S. J., Dragan, A., & Bıyık, E. (2024). Optimizing Robot Behavior via Comparative Language Feedback.

Acknowledgement