Задачи №2 Логические аксиомы, свойства логических операций

№1 Упростить следующие формулы:

1.
$$\overline{x \vee y} = \overline{x} \wedge \overline{y}$$

2.
$$\overline{(x \wedge y) \vee x} = \overline{x \wedge y} \wedge \overline{x} = (\overline{x} \vee \overline{y}) \wedge \overline{x} = \overline{x} \vee \overline{x} \wedge \overline{y} = \overline{x}$$

3.
$$x \vee \overline{x} \wedge y = (x \vee \overline{x}) \wedge (x \vee y) = x \vee y$$

4.
$$x \wedge y \vee \overline{x} \wedge y \vee \overline{x} \wedge \overline{y} = x \wedge y \vee \overline{x} = \overline{x} \vee y$$

5.
$$\overline{x \wedge y} = \overline{x} \vee \overline{y}$$

6.
$$x \vee \overline{(\overline{x} \wedge y)} = x \vee x \vee \overline{y} = x \vee \overline{y}$$

7.
$$\overline{x \vee \overline{x}} \vee y \wedge \overline{y} = 0 \vee 0 = 0$$

8.
$$(x \lor y) \land (x \lor \overline{y}) = x \lor x \land \overline{y} \lor x \land y \lor y \land \overline{y} = x \lor x \land y = x$$

№2 Доказать равносильность следующих формул:

1.
$$\overline{(x \to y)}$$
 и $x \land \overline{y}$

Преобразуем левую часть:

$$\overline{(x \to y)} = \overline{\overline{x} \lor y} = x \land \overline{y}$$

$$x \wedge \overline{y} = x \wedge \overline{y}$$
 - ч. т. д.

2.
$$x \to \overline{y}$$
 и $y \to \overline{x}$

Преобразуем левую часть:

$$x \to \overline{y} = \overline{x} \vee \overline{y}$$

Преобразуем правую часть:

$$y \to \overline{x} = \overline{y} \vee \overline{x} = \overline{x} \vee \overline{y}$$

$$\overline{x} \vee \overline{y} = \overline{x} \vee \overline{y}$$
 - ч. т. д.

3.
$$x \vee \overline{x} \wedge y$$
 и $x \vee y$

Преобразуем левую часть:

$$x \vee \overline{x} \wedge y = (x \vee \overline{x}) \wedge (x \vee y) = x \vee y$$

$$x \lor y = x \lor y$$
 - ч. т. д.

4.
$$(x \lor y) \land (x \lor \overline{y})$$
 и x

Преобразуем левую часть:

$$(x \lor y) \land (x \lor \overline{y}) = x \lor \overline{y} \land x \lor x \land y \lor y \land \overline{y} = x$$

$$x = x$$
 - ч. т. д.

5. $x \to (y \to z)$ и $x \land y \to z$

Преобразуем левую часть:

$$x \to (y \to z) = \overline{x} \vee \overline{y} \vee z$$

Преобразуем правую часть:

$$x \wedge y \to z = \overline{x} \vee \overline{y} \vee z$$

$$\overline{x} \lor \overline{y} \lor z = \overline{x} \lor \overline{y} \lor z$$
 - ч. т. д.

6. $x \wedge y \vee (x \vee y) \wedge (\overline{x} \vee \overline{y})$ и $x \vee y$

Преобразуем левую часть:

$$x \wedge y \vee (x \vee y) \wedge (\overline{x} \vee \overline{y}) =$$

$$x \wedge y \vee (x \wedge \overline{x} \vee x \wedge \overline{y} \vee \overline{x} \wedge y \vee y \wedge \overline{y}) =$$

$$x \wedge y \vee x \wedge \overline{y} \vee \overline{x} \wedge y = x \vee \overline{x} \wedge y =$$

$$(x \vee \overline{x}) \wedge (x \vee y) = x \vee y$$

$$x \lor y = x \lor y$$
 - ч. т. д.

№3 Доказать тождественную истинность следующих формул:

1.
$$x \wedge y \rightarrow x = \overline{x} \vee \overline{y} \vee x = 1$$
 - ч. т. д.

2.
$$x \to (y \to x) = \overline{x} \lor \overline{y} \lor x = 1$$
 - ч. т. д.

3.
$$\overline{y} \to \overline{x} \to (x \to y) = y \lor \overline{x} \to \overline{x} \lor y = 1$$
 - ч. т. д.

4.
$$(x \to y) \land (x \to \overline{y}) \to \overline{x} = (\overline{x} \lor y) \land (\overline{x} \lor \overline{y}) \to \overline{x} = \overline{x} \lor \overline{x} \land \overline{y} \lor y \land \overline{x} \lor y \land \overline{y} \to \overline{x} = \overline{x} \to \overline{x} = 1$$
 - ч. т. д.

5.
$$x \to (y \to z) \to (x \land y \to z) = \overline{x} \lor \overline{y} \lor z \to \overline{x} \lor \overline{y} \lor z = 1$$
 - ч. т. д.

6.
$$x \to (y \to z) \to (x \to y \to (x \to z)) = \overline{x} \lor \overline{y} \lor z \to (\overline{x} \lor y \to \overline{x} \lor z) = \overline{x} \lor \overline{y} \lor z \to (x \land \overline{y} \lor \overline{x} \lor z) = \overline{x} \lor \overline{y} \lor z \to (\overline{x} \lor x) \land (\overline{x} \lor \overline{y}) \lor z = \overline{x} \lor \overline{y} \lor z \to \overline{x} \lor \overline{y} \lor z = 1$$
 - ч. т. д.

№4 Доказать тождественную ложность следующих формул:

1.
$$x \vee \overline{x} \rightarrow y \wedge \overline{y} = 1 \rightarrow 0 = 0$$
 - ч. т. д.

2.
$$x \wedge (x \to y) \wedge (x \to \overline{y}) = x \wedge (\overline{x} \vee y) \wedge (\overline{x} \vee \overline{y}) = x \wedge y \wedge (\overline{x} \vee \overline{y}) = 0$$
 - ч. т. д.

3.
$$\overline{x \wedge \overline{x} \rightarrow y} \rightarrow z \rightarrow w \wedge \overline{w} = 0 \rightarrow z \rightarrow 0 = 1 \vee z \rightarrow 0 = 1 \rightarrow 0 = 0$$
 - ч. т. д.

4.
$$\overline{x \to y \to (x \land z \to y \land z)} = \overline{\overline{x} \lor y \to (\overline{x} \lor \overline{z} \lor y \land z)} = \overline{\overline{x} \lor y \to (\overline{z} \lor z) \land (\overline{z} \lor y) \lor \overline{x}} = \overline{\overline{x} \lor y \to \overline{z} \lor y \lor \overline{x}} = \overline{\overline{x} \lor \overline{y} \lor \overline{z} \lor y \lor \overline{x}} = \overline{\overline{x} \lor \overline{y} \lor \overline{z} \lor y} = \overline{1} = 0$$
- ч. т. д.

5.
$$x \wedge y \wedge z \wedge (x \vee y \vee z \to \overline{w}) \wedge w = x \wedge y \wedge z \wedge (\overline{x} \wedge \overline{y} \wedge \overline{z} \vee \overline{w}) \wedge w = x \wedge y \wedge z \wedge w \wedge (\overline{x} \wedge \overline{y} \wedge \overline{z} \vee \overline{w}) = 0$$
 - ч. т. д.

6.
$$\overline{(x\vee y)\wedge(z\vee x)}\wedge x=(\overline{x\vee y}\vee \overline{z\vee x})\wedge x=(\overline{x}\wedge \overline{y}\vee \overline{z}\wedge \overline{x})\wedge x=0$$
 - ч. т. д.

№5 Найти z, если:

1.
$$\overline{\overline{x} \lor z} \lor \overline{x \lor z} = y$$

$$x \wedge \overline{z} \vee x \wedge \overline{z} = y$$

$$\overline{z} = y$$

$$z = \overline{y}$$

Ответ:
$$z = \overline{y}$$

2.
$$x \wedge y \wedge (\overline{x} \vee \overline{y}) \vee z = y$$

$$z = y$$

Ответ:
$$z = y$$

3.
$$z \wedge (x \wedge y \vee \overline{x \wedge y}) \vee \overline{(a \vee a)} \wedge (d \wedge q \wedge \overline{d \wedge q}) = zxc$$

$$z \vee \overline{a} \wedge 0 = zxc$$

$$z = zxc$$

$$z = 0$$

Otbet:
$$z=0$$

4.
$$(x \lor y \lor z) \land \overline{(\overline{x} \land \overline{y} \land \overline{z})} \lor z \land (x \land w \lor \overline{x} \lor \overline{w}) = \overline{x \land y} \lor \overline{x} \land x$$

$$(x \vee y \vee z) \wedge \overline{(x \vee y \vee z)} \vee z \wedge (\overline{x} \vee w \vee \overline{w}) = \overline{x \wedge y}$$

$$z = \overline{x \wedge y}$$

$$z=\overline{x}\vee\overline{y}$$

Otbet:
$$z = \overline{x} \vee \overline{y}$$

№6 Выразить через импликацию следующие формулы:

1.
$$\overline{x} \lor y = x \to y$$

2.
$$\overline{\overline{x} \vee y} \vee x = x \rightarrow y \rightarrow x$$

- 3. $\overline{(\overline{x} \vee y)} \vee (\overline{y} \vee x) = x \to y \to (y \to x)$
- 4. $\overline{(\overline{x} \lor y)} \lor (\overline{x} \lor y) = x \to y \to (x \to y)$
- 5. $\overline{\overline{x} \lor y} \lor (\overline{y} \lor x) \lor x = x \to y \to (y \to x) \to x$