EAIiIB	Autor 1:	Rok II	Grupa 5	Zespół 3		
EAIID	Autor 2	: Jakub Ficoń	TOK II	Grupa 5	Zespoi 5	
	Temat:	Numer ćwiczenia:				
N	Iostek Wheatsto	32				
Data wykonania	Data oddania Zwrot do poprawki		Data oddania	Data zaliczenia	Ocena	

1 Cel ćwiczenia

Praktyczne zastosowanie praw Kirchhoffa i sprawdzenie zależności określających opór zastępczy dla połączeń szeregowych, równoległych oraz mieszanych.

2 Wstęp teoretyczny

W załącznikach na końcu sprawozdania

3 Aparatura pomiarowa

- 1. Galwanometr
- 2. Zasilacz stabilizoway 3A/30V
- 3. Opornica dekadowa
- 4. Zestaw oporników wmontowanych na płytce
- 5. Listwa z drutem oporowym, zaopatrzona w przedziałkę milimetrową i kontakt ślizgowy
- 6. Zestaw kabli

4 Wykonanie ćwiczenia

- 1. Zbudowanie układu
- 2. Odpowiednie połączenie oporników wmontowanych na płytce
- 3. Wykonanie pomiarów dla różnych konfiguracji oporników (pojedynczo, szeregowo, równolegle)
- 4. Obliczenie oporu ze wzoru:

$$R_x = R_w \frac{a}{l_0 - a}$$

5 Opracowanie punktów 1,2,3

Opornik R_1										
Opór wzorcowy $[\Omega]$	5	10	20	30	40	50	60	70	80	90
a [mm] 691 548 360 281 221 167 158 137 121 111										
$R_{x_1}[\Omega]$ 11.18 12.12 11.25 11.72 11.35 11.50 11.26 11.11 11.01 11.24										
$\overline{R} = 11.37 \left[\Omega\right] \ u(R) = 0.11 \left[\Omega\right]$										

Opornik R_2										
Opór wzorcowy $[\Omega]$	10	20	30	40	50	60	70	80	90	100
a [mm] 831 698 600 527 468 422 383 351 326 302										
$R_{x_2}\left[\Omega\right]$ 49.17 46.23 45.00 44.57 43.98 43.81 43.45 43.27 43.53 43.27										
	$\overline{R} = 44.63 [\Omega] \ u(R) = 0.17 [\Omega]$									

Opornik R_3											
Opór wzorcowy $[\Omega]$ 20 30 40 50 60 70 80 90 100 110											
<i>a</i> [<i>mm</i>] 832 761 696 644 602 561 529 499 472 446											
$R_{x_3}\left[\Omega\right]$ 99.05 95.52 91.58 90.45 90.75 89.45 89.85 89.64 89.39 88.56											
		_	$\overline{R} = 91.42 \left[\Omega\right] \ u(R) = 1.04 \left[\Omega\right]$								

Oporniki R_1 i R_2 szeregowo									
Opór wzorcowy $[\Omega]$ 20 30 40 50 60 70 80 90 100 110									
a [mm] 752 663 592 537 488 443 414 386 359 338									
$R_{x_{1,2}}[\Omega]$ 60.65 59.02 58.04 57.99 57.19 55.67 56.52 56.58 56.01 56.16									
	$\overline{R} = 57.38 \left[\Omega\right] \ u(R) = 0.49 \left[\Omega\right]$								

Oporniki R_1 i R_2 równolegle									
Opór wzorcowy $[\Omega]$ 5 10 15 20 25 30 35 40 45 50									
a [mm] 634 487 380 317 269 232 204 184 160 149									
$R_{x_{1,2}}[\Omega]$ 8.66 9.49 9.19 9.28 9.20 9.06 8.97 9.02 8.57 8.75									
	$\overline{R} = 9.02 \left[\Omega\right] \ u(R) = 0.11 \left[\Omega\right]$								

	Oporniki R_1 i R_2 równolegle a R_3 szeregowo do nich									
Opór	50	100	150	200	250	300	350	400	450	500
$\operatorname{wzorcowy}[\Omega]$										
a [mm]	<i>a</i> [<i>mm</i>] 678 499 404 338 286 253 229 206 186 171									
$R_{x_{1,2,3}}[\Omega]$ 105.28 99.60 101.68 102.11 100.14 101.61 103.96 103.78 102.83 103.14										
	$\overline{R} = 102.41 \left[\Omega\right] \ \ u(R) = 0.12 \left[\Omega\right]$									

6 Opracowanie punktów 4,5,6

6.1 Połączenie szeregowe:

$$R_s = R_1 + R_2$$

$$u(R_z) = \sqrt{\left(\frac{\partial R_z}{\partial R_1}u(R_1)\right)^2 + \left(\frac{\partial R_z}{\partial R_2}u(R_2)\right)^2} = \sqrt{u(R_1)^2 + u(R_2)^2}$$

	Opór zmierzony $[\Omega]$	Opór wyliczony $[\Omega]$
Średnia wartość	57.38	55.43
Niepewność	0.49	0.20

6.2 Połączenie równolegie:

$$\frac{1}{R_z} = \frac{1}{R_1} + \frac{1}{R_2} \Rightarrow R_z = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

$$u(R_z) = \sqrt{\left(\frac{\partial R_z}{\partial R_1} u(R_1)\right)^2 + \left(\frac{\partial R_z}{\partial R_2} u(R_2)\right)^2} = \sqrt{\left(\frac{R_2^2}{R_1^2 + R_2^2} u(R_1)\right)^2 + \left(\frac{R_1^2}{R_1^2 + R_2^2} u(R_2)\right)^2}$$

	Opór zmierzony $[\Omega]$	Opór wyliczony $[\Omega]$
Średnia wartość	9.02	9.06
Niepewność	0.11	0.16

6.3 Połączenie mieszane:

$$R_{z} = \frac{R_{1} \cdot R_{2}}{R_{1} + R_{2}} + R_{3}$$

$$u(R_{z}) = \sqrt{\left(\frac{\partial R_{z}}{\partial R_{1}}u(R_{1})\right)^{2} + \left(\frac{\partial R_{z}}{\partial R_{2}}u(R_{2})\right)^{2} + \left(\frac{\partial R_{z}}{\partial R_{3}}u(R_{3})\right)^{2}} =$$

$$= \sqrt{\left(\frac{R_{2}^{2}}{R_{1}^{2} + R_{2}^{2}}u(R_{1})\right)^{2} + \left(\frac{R_{1}^{2}}{R_{1}^{2} + R_{2}^{2}}u(R_{2})\right)^{2} + (u(R_{3}))^{2}}$$

	Opór zmierzony $[\Omega]$	Opór wyliczony $[\Omega]$
Średnia wartość $[\Omega]$	102.41	100.49
Niepewność	0.12	1.06

7 Porównanie oporów zmierzonych z oporami obliczonymi

Sprawdzenie czy średnie wartości oporu zmierzonego i wyliczonego są sobie równe w granicach błędu (Teoria pkt.9):

7.1 Połączenie szeregowe

$$|R_{wyznaczone} - R_{obliczone}| = |57.38 \, [\Omega] - 56.00 \, [\Omega]| = 1.38 \, [\Omega]$$

$$u(R_{wyznaczone} - R_{obliczone}) = 2 \cdot \sqrt{u(R_{wyznaczone})^2 + u(R_{obliczone})^2} = 1.07 \, [\Omega]$$

$$|R_{wyznaczone} - R_{obliczone}| > u(R_{wyznaczone} - R_{obliczone})$$

Wyznaczona wartość oporu zastępczego nie jest zgodna z wartością obliczoną.

7.2 Połączenie równoległe

$$|R_{wyznaczone} - R_{obliczone}| = |9.02 \, [\Omega] - 9.06 \, [\Omega]| = 0.04 \, [\Omega]$$

$$u(R_{wyznaczone} - R_{obliczone}) = 2 \cdot \sqrt{u(R_{wyznaczone})^2 + u(R_{obliczone})^2} = 0.39 \, [\Omega]$$

$$|R_{wyznaczone} - R_{obliczone}| < u(R_{wyznaczone} - R_{obliczone})$$

Wyznaczona wartość oporu zastępczego jest w granicach błędu równa wartości obliczonej.

7.3 Połączenie mieszane

$$|R_{wyznaczone} - R_{obliczone}| = |102.41 \, [\Omega] - 100.49 \, [\Omega]| = 1.92 \, [\Omega]$$

$$u(R_{wyznaczone} - R_{obliczone}) = 2 \cdot \sqrt{u(R_{wyznaczone})^2 + u(R_{obliczone})^2} = 2.13 \, [\Omega]$$

$$|R_{wyznaczone} - R_{obliczone}| < u(R_{wyznaczone} - R_{obliczone})$$

Wyznaczona wartość oporu zastępczego jest w granicach błędu równa wartości obliczonej.

8 Wnioski

Korzystając z mostka Wheatstone'a wyznaczykiśmy nieznane opory oporników oraz ich opory przy połączeniu szeregowym, równoległym i mieszanym. Niepewności otrzymane przy większości pomiarów są wystarczająco małe w stosunku do oporu aby uznać je za precyzyjne. Wyznaczone i obliczone wartości oporu zastępczego w połączeniu równoległym i mieszanym są sobie równe w granicach błędu, jednak dla połączenia szeregowego wartości nie są sobie równe w granicach błędu lecz są zadowalająco do siebie zbliżone. Wystąpienie błędu dla połączenia szeregowego może być spowodowane tym, że drut oporowy nie był idealnie prosty co przy niewielkim oporze opornika R_1 mogło spowodować błąd większy niż obliczona niepewność, jednak wartości oporu nie różniły się od siebie o zbyt wiele. Wynika z tego, że mostek Wheatstone'a jest dobrym narzędziem do mierzenia oporu, gdyż jedyny błąd jaki się pojawił był spowodowany nieidealnym drutem.

8.1 Wzory zastosowane w punkcie 6

Pierwsze dwa oporniki były podłączone równolegle więc stosuję wzór:

$$\frac{1}{R_{z1}} = \frac{1}{R_1} + \frac{1}{R_2}$$

z którego otrzymuję, że:

$$R_{z1} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

Zastępuję więc oporniki R_1 i R_2 opornikiem o oporze R_{z1} który jest szeregowo połączony z R_3 z czego wynika że opór zastępczy układu wyniesie:

$$R_z = \frac{R_1 \cdot R_2}{R_1 + R_2} + R_3$$