1. (a) At time t = 0, a spin-1/2 particle is at the state $|+n\rangle$, where $\hat{n} = \sin \theta \ \hat{i} + \cos \theta \ \hat{k}$. Derive an expression for the $|+\mathbf{n}\rangle$ state in the S_z -basis using any method you like. (2 points) Note: You can use the following trigonometric identities to simplify your answers:

$$\sin\theta = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right), \cos\theta = \cos^2\left(\frac{\theta}{2}\right) - \sin^2\left(\frac{\theta}{2}\right) = 2\cos^2\left(\frac{\theta}{2}\right) - 1$$

- (b) The particle is charged and it's placed in a constant external magnetic field pointing in the positive z-axis, $\mathbf{B} = B_0 \hat{k}$. Briefly explain why the Hamiltonian is proportional to \hat{S}_z . (2 points)
- (c) Write the Hamiltonian as $\hat{H} = \omega_0 \hat{S}_z$, determine the expectation values $\langle S_{\mathbf{x}} \rangle$, $\langle S_{\mathbf{y}} \rangle$, and $\langle S_{\mathbf{z}} \rangle$ at time t. (4 points)
- 2. A density matrix for an ensemble of spin-1/2 particles in the S_z -basis

$$\hat{\rho} \rightarrow \begin{pmatrix} \frac{1}{4} & a \\ b & c \end{pmatrix}$$

- (a) Do a, b, c have to be real numbers? Explain why. (2 points)
- (b) What is the value of c? Explain why. (2 points)
- (c) What are possible values of a and b if $\hat{\rho}$ represents a pure state?
- 3. Let $\psi_E(x)$ be the space-component of the wave function for an energy eigenstate of a 1-D system, corresponding to an energy eigenvalue E. Prove the following statements.
 - (a) We can always *choose* $\psi_E(x)$ to be a real function. (2 points) *Hint*: If $\psi_E(x)$ corresponds to an energy eigenstate with eigenvalue E, what about $\psi_E^*(x)$?
 - (b) If the potential V(x) is symmetric (V(x) = V(-x)), then $\psi_E(x)$ can always be chosen to be symmetric $(\psi_E(x) = \psi_E(-x))$ or antisymmetric $(\psi_E(x) = -\psi_E(-x))$. (2 points) [Hint: If $\psi_E(x)$ corresponds to an energy eigenstate with eigenvalue E, what about $\psi_E(-x)$?
 - (c) |Bonus| Bound states are states which are localized in a region in space under a potential. In 1-D this means that $\psi(x) \to 0$ when $|x| \to \infty$. Prove that there is no degeneracy (two different eigenstates with the same eigenvalue) for 1-D bound states. (2

(2) 20+(0y+xw)2-yw & + 16 4 (2)+(0)+2w) 16=(x/6=2x8

Hint: Consider $\psi_1(x)$ and $\psi_2(x)$ with the same eigenvalue E and use of the following trick

$$\psi_1 \frac{d^2}{dx^2} \psi_2 - \psi_2 \frac{d^2}{dx^2} \psi_1 = \frac{d}{dx} (\psi_1 \frac{d}{dx} \psi_2 - \psi_2 \frac{d}{dx} \psi_1).$$

- 4. Consider a 1-D simple harmonic oscillator of mass m and frequency $\omega.$
 - (a) Show that the energy eigenvalue E_n for the eigenstate $|n\rangle$ can be written as

 $E_n = \frac{(\Delta p_x)^2}{2m} + \frac{1}{2}m\omega^2(\Delta x)^2,$

where Δx and Δp_x are the uncertainties for x and p_x of the state $|n\rangle$. (3 points)

- (b) From the equation in (a), explain why the lowest possible energy for a quantum SHO cannot be 0 (unlike a classical SHO). (1 point)
- (c) If you measure the energy of the SHO, you get $\hbar\omega/2$ or $3\hbar\omega/2$ with equal probabilities. At time t=0, the expectation value of its momentum is $\langle p_x \rangle = \sqrt{\frac{m\omega\hbar}{2}}$. Write down the state of the SHO at t=0. (2 points)
- (d) What is $\langle x \rangle$ as a function of time for the state from part (c)? Your answer should be a function that oscillates in time. Is the period the same as the classical period of this SHO? (2 points)
- (e) Consider a system made of two such SHO, each is a spin-1/2 particle. The system as a whole is a spin-1 system. If the two SHO are identical particles, write down an expression of the ground state of the system. (2 points)