

IUBAT – International University of Business Agriculture and Technology

Assignment No: 1

Title of Assignment:

DFA for string pattern ab*cb* and

Course Name: Theory of Computation Course Code: CSC 397

Implementation of DFA in C program for the string pattern ab*cb*

Submitted To:

Dr. Ehteshamul Haque Faculty, Dept. of CSE

Submitted By:

Naimul Ferdous ID: 13303042 Sec-C, CSC397

Submission Date: 02.10.2017

Formal definition of Deterministic finite automaton (DFA)

A Deterministic finite automaton M is a 5-tuple (Q, Σ , δ , q₀, F) where

- 1. Q is a finite set of states called the states,
- 2. \sum is a finite set of input symbols called the alphabet,
- 3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- 4. $q0 \in Q$ is the start state, and
- 5. $F \subseteq Q$ is the set of accept states.

DFA for the string pattern ab*cb*

Complete State Diagram:

Reject State

Here,

- 1. $Q = \{q_1, q_2, q_3, q_4\}$
- 2. $\Sigma = \{a, b, c\}$

 Σ *= {ac, abc, acb, abcb, abbbcbb, abcbbb, abbbcb....}

- 3. $q_{0=} q_1 \in Q$
- 4. $F=\{q_3\}\subseteq Q$

Transition Table:

CurrentStates \ Input>	A	b	c
q1	q_2	q ₄	q ₄
q 2	q ₄	q ₂	q ₃
q3	q 4	q ₃	q4

Implementation using C program:

```
#include<stdio.h>
#define EOS '\0'
int main()
  char c, inpstr[50];
  int i, q;
  printf("Enter String: ");
  scanf("%s",inpstr);
  q=1;
  i=0;
  c=inpstr[i];
  printf("\n");
  printf("%s ", inpstr);
  while(c!=EOS)
  {
     if(q==1 && c=='a')
       q=2;
    else if(q==2 && c=='b')
       q=2;
    }
    else if(q==2 && c=='c')
    {
       q=3;
    else if(q==3 && c=='b')
       q=3;
    }
    else
    {
       q=4;
       break;
    }
    i++;
    c=inpstr[i];
  }
  if(q==4)
    printf(" Illegal");
  else
    printf(" Legal");
  printf("\n");
  return 0;
}
```

Specimen Input with Results:

Conclusion:

In DFA, for each input symbol, one can determine the state to which the machine will move. Hence, it is called Deterministic Automaton. As it has a finite number of states, the machine is called Deterministic Finite Machine or Deterministic Finite Automaton.