WHAT IS CLAIMED IS:

1. Refrigerant blends not containing HCFC for use in a very low temperature refrigeration system, said refrigerant blends in mol percent comprising:

	Molar Fraction (percent)				
Component	Blend A	Blend B	Blend C	Blend D	Overall range (mole %)
Argon	13	24	18	8	4 - 36
R-14	34	26	35	24	10 - 55
R-23	28	22	21	32	10 - 50
R-125	11	11	12	11	5 - 20
R-236fa	14	17	14	25	7 - 40

2. Refrigerant blends not containing HCFC's, for use in a very low temperature refrigeration system with low temperature (evaporator) temperature as low as 105K, said refrigerant blends comprising:

	Ingredient Name	Range (% by mol)
1	At least one of neon (Ne) or	0.0 - 10.0
	helium (He)	
2	At least one of argon (Ar) or	10.0 - 45.0
	nitrogen (N2)	
3	R-14 (CF4)	20.0 - 50.0
4	R-23 (CHF3)	10.0 - 30.0
5	R-125 (C2HF5)	8.0 - 15.0
6	R-134a	0.0 - 5.0
7	Other high boiling components:	0.0 - 3.0
	at least one of R-236fa, E-347,	
	R-245fa, R-4112	

3. Refrigerant blends not containing HCFC's, for use in a very low temperature refrigeration system with low temperature (evaporator) as low as 118, said refrigerant blends comprising:

	Ingredient Name	Range (% by mole)
1	At least one of argon (Ar) or	10.0 - 40.0
	nitrogen (N2)	
2	R-14	20.0 - 50.0
3	R-23	10.0 - 40.0
4	R-125	0.0 - 35.0
5	R-134a	0.0 - 10.0
6	At least one of E-347,R-4112,	0.0 - 6.0
	R-236fa, R-245fa.	

4. Refrigerant blends not containing HCFC's, for use in a very low temperature refrigeration system with low temperature (evaporator) as low as 130K, said refrigerant blends comprising:

	Ingredient Name	Range (% by mole)
1	At least one of argon (Ar) or	2.0 - 40.0%
	nitrogen (N2)	
2	R-14	10.0 - 50.0%
3	R-23	10.0 - 40.0%
4	R-125	0.0 - 40.0%
5	R-134a	0.0 - 15.0%
6	At least one of R-245fa, R-	0.0 - 30.0%
	236fa, or E-347, or R-4112.	

5. Refrigerant blends not containing HCFC's, for use in a very low temperature refrigeration system with low temperature (evaporator) as low as 140K, said refrigerant blends comprising:

	Ingredient Name	Range (% by mol)
1	At least one of argon (Ar) or	2.0 - 40.0%
	nitrogen (N2)	
2	R-14	10.0 - 50.0%
3	R-23	10.0 - 40.0%
4	R-125	0.0 - 30.0%
5	At least one of R-236fa, R-	0.0 - 15.0%
	245fa,E-347, or R-4112.	

6. Refrigerant blends not containing HCFC's, for use in a very low temperature refrigeration system with low

temperature (evaporator) as low as 155K, said refrigerant blends comprising:

	Ingredient Name	Range (% by	
		mole)	
1	At least one of argon (Ar) or	0.0 - 40.0%	
	nitrogen (N2)		
2	R-14	5.0 - 50.0%	
3	R-23	5.0 - 40.0%	
4	R-125	0.0 - 40.0%	
5	R-134a	0.0 - 30.0%	
6	At least one of R-236fa or	0.0 - 30.0%	
	R-245fa		
7	At least one of E-347 or R-4112	0.0 - 20.0%	

- 7. Refrigerant blends as in claim 1 and further comprising at least one additional component in each said blend, the components maintaining the same proportions relative to each other after addition of said additional component.
- 8. Refrigerant blends as in claim 2 and further comprising at least one additional component in each said blend, the components maintaining the same proportions relative to each other after addition of said additional component.
- 9. Refrigerant blends as in claim 3 and further comprising at least one additional component in each said blend, the

components maintaining the same proportions relative to each other after addition of said additional component.

- 10. Refrigerant blends as in claim 4 and further comprising at least one additional component in each said blend, the components maintaining the same proportions relative to each other after addition of said additional component.
- 11. Refrigerant blends as in claim 5 and further comprising at least one additional component in each said blend, the components maintaining the same proportions relative to each other after addition of said additional component.
- 12. Refrigerant blends as in claim 6 and further comprising at least one additional component in each said blend, the components maintaining the same proportions relative to each other after addition of said additional component.
- 13. Refrigerant blends as in claim 1, wherein said refrigeration system is a compressor cycle in one of an autorefrigerating cascade having a liquid/vapor phase separator, throttle device refrigeration system, and a Klimenko type system.

- 14. Refrigerant blends as in claim 2, wherein said refrigeration system is a compressor cycle in one of an autorefrigerating cascade having a liquid/vapor phase separator, throttle device refrigeration system, and a Klimenko type system.
- Refrigerant blends as in claim 3, wherein said 15. refrigeration system is a compressor cycle in one of an autorefrigerating cascade having a liquid/vapor phase separator, throttle device refrigeration system, and a Klimenko type system.
- 16. Refrigerant blends as in claim 4, wherein said refrigeration system is a compressor cycle in one of an autorefrigerating cascade having a liquid/vapor phase separator, throttle device refrigeration system, and a Klimenko type system.
 - 17. Refrigerant blends as in claim 5, wherein said refrigeration system is a compressor cycle in one of an autorefrigerating cascade having a liquid/vapor phase separator, throttle device refrigeration system, and a Klimenko type system.
 - Refrigerant blends as in claim 6, wherein said refrigeration system is a compressor cycle in one of an

autorefrigerating cascade having a liquid/vapor phase separator, throttle device refrigeration system, and a Klimenko type system.

- 19. Refrigerant blends as in claim 1 wherein said refrigerating system alternatively permits flow of cold refrigerant or flow of hot refrigerant to an evaporator.
- 20. Refrigerant blends as in claim 2 wherein said refrigerating system alternatively permits flow of cold refrigerant or flow of hot refrigerant to an evaporator.
- 21. Refrigerant blends as in claim 3 wherein said refrigerating system alternatively permits flow of cold refrigerant or flow of hot refrigerant to an evaporator.
- 22. Refrigerant blends as in claim 4 wherein said refrigerating system alternatively permits flow of cold refrigerant or flow of hot refrigerant to an evaporator.
- 23. Refrigerant blends as in claim 5 wherein said refrigerating system alternatively permits flow of cold refrigerant or flow of hot refrigerant to an evaporator.

- 24. Refrigerant blends as in claim 6 wherein said refrigerating system alternatively permits flow of cold refrigerant or flow of hot refrigerant to an evaporator.
- 25. Refrigerant blends not containing HCF's as in claim 1, said blends operating as a replacement in a refrigeration system to provide substantially the same thermodynamic performance in said system as provided by earlier blends of components, in said earlier blends HCF's being greater than 0 mol percent.
- 26. Refrigerant blends not containing HCF's as in claim 2, said blends operating as a replacement in a refrigeration system to provide substantially the same thermodynamic performance in said system as provided by earlier blends of components, in said earlier blends HCF's being greater than 0 mol percent.
- 27. Refrigerant blends not containing HCF's as in claim 1, said blends operating as a replacement in a refrigeration system to provide substantially the same thermodynamic performance in said system as provided by earlier blends of components, in said earlier blends HCF's being greater than 0 mol percent.

- 28. Refrigerant blends not containing HCF's as in claim 4, said blends operating as a replacement in a refrigeration system to provide substantially the same thermodynamic performance in said system as provided by earlier blends of components, in said earlier blends HCF's being greater than 0 mol percent.
- 29. Refrigerant blends not containing HCF's as in claim 5, said blends operating as a replacement in a refrigeration system to provide substantially the same thermodynamic performance in said system as provided by earlier blends of components, in said earlier blends HCF's being greater than 0 mol percent.
- 30. Refrigerant blends not containing HCF's as in claim 6, said blends operating as a replacement in a refrigeration system to provide substantially the same thermodynamic performance in said system as provided by earlier blends of components, in said earlier blends HCF's being greater than 0 mol percent.
- 31. Refrigerant blends as in claim 1, wherein said refrigeration system includes an object being cooled by the refrigerant, said object being at least one of
 - (a) a metal element in a vacuum chamber freezing out and trapping undesired gasses such as water vapor,

- (b) a heat exchanger removing heat from a secondary fluid stream including at least one of a liquid, gas, condensing gas, and condensing gas mixture,
- (c) a metal element having internal refrigerant flow passages and cooling at least one of a silicon wafer, piece of glass, plastic piece and an aluminum disc with or without a magnetic coating on it, and
- (d) a biological freezer to at least one of freeze and store biological tissues.
- 32. Refrigerant blends as in claim 2, wherein said refrigeration system includes an object being cooled by the refrigerant, said object being at least one of
 - (a) a metal element in a vacuum chamber freezing out and trapping undesired gasses such as water vapor,
 - (b) a heat exchanger removing heat from a secondary fluid stream including at least one of a liquid, gas, condensing gas, and condensing gas mixture,
 - (c) a metal element having internal refrigerant flow passages and cooling at least one of a silicon wafer, piece of glass, plastic piece and an aluminum disc with or without a magnetic coating on it, and
 - (d) a biological freezer to at least one of freeze and store biological tissues.

- 33. Refrigerant blends as in claim 3, wherein said refrigeration system includes an object being cooled by the refrigerant, said object being at least one of
 - (a) a metal element in a vacuum chamber freezing out and trapping undesired gasses such as water vapor,
 - (b) a heat exchanger removing heat from a secondary fluid stream including at least one of a liquid, gas, condensing gas, and condensing gas mixture,
 - (c) a metal element having internal refrigerant flow passages and cooling at least one of a silicon wafer, piece of glass, plastic piece and an aluminum disc with or without a magnetic coating on it, and
 - (d) a biological freezer to at least one of freeze and store biological tissues.
- 34. Refrigerant blends as in claim 4, wherein said refrigeration system includes an object being cooled by the refrigerant, said object being at least one of
 - (a) a metal element in a vacuum chamber freezing out and trapping undesired gasses such as water vapor,
 - (b) a heat exchanger removing heat from a secondary fluid stream including at least one of a liquid, gas, condensing gas, and condensing gas mixture,
 - (c) a metal element having internal refrigerant flow passages and cooling at least one of a silicon wager,

- piece of glass, plastic piece and an aluminum disc with or without a magnetic coating on it, and
- (d) a biological freezer to at least one of freeze and store biological tissues.
- 35. Refrigerant blends as in claim 5, wherein said refrigeration system includes an object being cooled by the refrigerant, said object being at least one of
 - (a) a metal element in a vacuum chamber freezing out and trapping undesired gasses such as water vapor,
 - (b) a heat exchanger removing heat from a secondary fluid stream including at least one of a liquid, gas, condensing gas, and condensing gas mixture,
 - (c) a metal element having internal refrigerant flow passages and cooling at least one of a silicon wafer, piece of glass, plastic piece and an aluminum disc with or without a magnetic coating on it, and a biological freezer to at least one of freeze and store biological tissues.
- 36. Refrigerant blends as in claim 6, wherein said refrigeration system includes an object being cooled by the refrigerant, said object being at least one of
 - (d) a metal element in a vacuum chamber freezing out and trapping undesired gasses such as water vapor,

- (e) a heat exchanger removing heat from a secondary fluid stream including at least one of a liquid, gas, condensing gas, and condensing gas mixture,
- (f) a metal element having internal refrigerant flow passages and cooling at least one of a silicon wafer, piece of glass, plastic piece and an aluminum disc with or without a magnetic coating on it, and a biological freezer to at least one of freeze and store biological tissues.
- 37. Refrigerant blends as in claim 1, and further comprising lubricating oil in a range of approximately 1% to 10% by weight, said oil being one of POE type and PAG type.
- 38. Refrigerant blends as in claim 2, and further comprising lubricating oil in a range of approximately 1% to 10% by weight, said oil being one of POE type and PAG type.
- 39. Refrigerant blends as in claim 3, and further comprising lubricating oil in a range of approximately 1% to 10% by weight, said oil being one of POE type and PAG type.
- 40. Refrigerant blends as in claim 1, and further comprising lubricating oil in a range of approximately 1% to 10% by weight, said oil being one of POE type and PAG type.

- 41. Refrigerant blends as in claim 5, and further comprising lubricating oil in a range of approximately 1% to 10% by weight, said oil being one of POE type and PAG type.
- 42. Refrigerant blends as in claim 6, and further comprising lubricating oil in a range of approximately 1% to 10% by weight, said oil being one of POE type and PAG type.