Project Euler #134: Prime pair connection

This problem is a programming version of Problem 134 from projecteuler.net

Consider the consecutive primes $p_1=19$ and $p_2=23$. It can be verified that 1219 is the smallest number such that the last digits are formed by p_1 whilst also being divisible by p_2 .

In fact, with the exception of $p_1=3$ and $p_2=5$, for every pair of consecutive primes, $p_2>p_1$, there exist values of n for which the last digits are formed by p_1 and n is divisible by p_2 . Let S be the smallest of these values of n.

Given L and R, find $\sum S$ for every pair of consecutive primes with $L \leq p_1 \leq R$.

Input Format

The first line of input contains T, the number of test cases.

Each test case consists of one line containing two integers, $oldsymbol{L}$ and $oldsymbol{R}$.

Constraints

$$\begin{aligned} &1 \leq T \leq 10 \\ &5 \leq L \leq R \leq 10^9 \\ &|R-L| < 10^6 \end{aligned}$$

But in test cases worth 50% of the total points, $\,R \leq 10^6$.

Output Format

For each test case, output a single line containing a single integer, the answer for that test case.

Sample Input

1 5 20

Sample Output

4272

Explanation

The following are the relevant values in the range $5 \le p_1 \le 20$:

•
$$p_1 = 5, p_2 = 7, S = 35$$

•
$$p_1 = 7, p_2 = 11, S = 77$$

•
$$p_1 = 11, p_2 = 13, S = 611$$

•
$$p_1 = 13, p_2 = 17, S = 1513$$

•
$$p_1 = 17, p_2 = 19, S = 817$$

•
$$p_1 = 19, p_2 = 23, S = 1219$$

Thus, $\sum S = 35 + 77 + 611 + 1513 + 817 + 1219 = 4272$