

StyleGAN encoder for image-to-image translation

Vision and Perception project

September, 2021

(Amila Sikalo - 1938032) & (Olga Sorokoletova - 1937430)

Project Goal and Overview

• Given: Variety of image-to-image translation tasks

- Goal: Generic framework pixel2style2pixel (pSp)
 - Novelty: ENCODER that directly generates style vectors in \mathscr{M}^+
 - New methodology for utilizing pre-trained StyleGAN generator.

Advantages over previous algorithms

- No additional optimization over latent space;
- Domain-independent;
- Supports multi-modal synthesis;
- Support for tasks without p2p correspondence;
- No adversary required.

StyleGAN

- STYLE-based generator architecture (operates globally instead of locally);
- State-of-the-art visual quality on the high resolution images;
- Disentangled LATENT SPACE \(\mathscr{M} \).

New encoder

- Idea: Feature Pyramid Network
 - Style vectors are extracted from different pyramid scales and inserted in correspondence to their spatial scales.
- Motivation: Different style inputs correspond to different levels of detail, which are roughly divided into three groups — coarse, medium and fine.
- Result: Latent space manipulations without requiring time-consuming optimization.
- Math part: pSp(x) = G(E(x) + avg(w))

Encoder aims to learn the latent code with respect to the average style vector of the pre-trained generator.

Architecture

GAN Inversion

We use pSp to find the latent code of real images in the latent space of a pre-trained StyleGAN generator.

CelebA Dataset

- 202 599 celebrity images, each with **40** attribute annotations.
- The images cover large pose variations and background clutter.
- 10 177 number of identities
- 5 landmark locations
- Resizing
- Rescaling

Results

StyleGAN results

Model resolution: 4 x 4

建步数据设施费用自由发展通过技术

Model resolution: 8 x 8

Model resolution: 16 x 16

Model resolution: 128 x 128

pSp with Encoder

Epochs: 10 Epochs: 20 Epochs: 40

Encoder

Wrap-Up and Conclusions

- APPLICABILITY
 - PsP can be used to directly encode translation tasks into StyleGAN, thereby supporting input images that do not reside in the StyleGAN domain (out-of-domain support);
 - Capable of solving a wide variety of image-to-image translation tasks (e.g face frontalization, conditional image synthesis, ect), requiring only minimal changes (training losses and methodology);
 - Generates the high-quality images;
- EXTENSIONS
 - Going beyond the facial domain;
- LIMITATIONS
 - Method is limited to images that can be generated by StyleGAN;
 - Globality of approach introduces a challenge in preserving finer details of the input image e.g. earrings, background details);

