Analisi Statica

Prima distinzione:

☆ Forward

$$FAin(n) = \begin{cases} \emptyset & n = entry \\ \bigoplus_{m \in Pred(n)} FAout(m) & \text{otherwise} \end{cases}$$

$$FAout(m) = \tau(FAin(m))$$

$$\tau(FAin(m)) = gen(m) \cup (FAout(m) \setminus kill(m))$$

★ Backward

$$BAout(n) = \begin{cases} \emptyset & n = exit \\ \bigoplus_{m \in Succ(n)} BAin(m) & \text{otherwise} \end{cases}$$

$$\begin{aligned} \operatorname{BAin}(m) &= \tau(\operatorname{BAout}(m)) \\ \tau(\operatorname{BAout}(m)) &= \operatorname{gen}(m) \cup (\operatorname{BAin}(m) \setminus \operatorname{kill}(m)) \end{aligned}$$

Seconda distinzione:

 \Re Possible analysis: $\bigoplus = \bigcup$

* Definite analysis: $\bigoplus = \bigcap$

Available Expressions

Forward & Definite

$$AvailIn(n) = \begin{cases} \emptyset & n = entry \\ \bigcap_{m \in Pred(n)} AvailOut(m) \end{cases}$$

$$AvailOut(m) = Gen(m) \cup (AvailIn(m) \setminus Kill(m))$$

$$Gen_A(n) = \begin{cases} x \leftarrow e \mid x \leftarrow e \in n \\ \land x \notin Var(e) \end{cases}$$

$$Kill_A(n) = \{ x \leftarrow e \mid \exists y \leftarrow e' \in n. \ (y \in Var(e) \lor y = x) \}$$

Semantica

Dominio:
$$\mathbb{P}(Ass)$$

$$[[;]^{\#}A = A$$

$$[zero(e)]^{\#}A = A$$

$$[non-zero(e)]^{\#}A = A$$

$$[M[e_1] \leftarrow e_2]^{\#}A = A$$

$$[x \leftarrow e]^{\#}A = \begin{cases} A \setminus Occ(x) \cup \{x \leftarrow e\} & x \notin Var(e) \\ A \setminus Occ(x) & \text{otherwise} \end{cases}$$

$$[x \leftarrow M[e]]^{\#}A = A \setminus Occ(x)$$
where $Occ(x) = \begin{cases} y \leftarrow e & x \in Var(e) \\ y = x \end{cases}$

Liveness

Backward & Possible

$$\operatorname{LiveOut}(n) = \begin{cases} \emptyset & n = exit \\ \bigcup_{m \in \operatorname{Succ}(n)} \operatorname{LiveIn}(m) \\ \operatorname{LiveIn}(m) = \operatorname{Gen}(m) \cup (\operatorname{LiveOut}(m) \setminus \operatorname{Kill}(m)) \\ \operatorname{Gen}_{L}(n) = \left\{ x \mid \exists e \in n. \ x \in \operatorname{Var}(e) \right\} \\ \operatorname{Kill}_{L}(n) = \left\{ x \mid \exists x \leftarrow e \in n \right\} \end{cases}$$

Semantica

Dominio:
$$\mathbb{P}(\operatorname{Var})$$

$$[[;]^{\#}L = L$$

$$[[\operatorname{zero}(e)]^{\#}L = L \cup \operatorname{Var}(e)$$

$$[[\operatorname{non-zero}(e)]^{\#}L = L \cup \operatorname{Var}(e)$$

$$[[M[e_1] \leftarrow e_2]^{\#}L = L \cup \operatorname{Var}(e_1) \cup \operatorname{Var}(e_2)$$

$$[[x \leftarrow e]^{\#}L = (L \setminus \{x\}) \cup \operatorname{Var}(e)$$

$$[[x \leftarrow M[e]]^{\#}L = (L \setminus \{x\}) \cup \operatorname{Var}(e)$$

True Liveness

Backward & Possible

$$TLiveOut(n) = \begin{cases} \emptyset & n = exit \\ \bigcup_{m \in Succ(n)} TLiveIn(m) \end{cases}$$
$$TLiveIn(m) = Gen(m) \cup (TLiveOut(m) \setminus Kill(m))$$
$$Gen_{TL}(n) = \{x \mid x \in TL \land \exists e \in n. \ x \in Var(e)\}$$
$$Kill_{TL}(n) = \{x \mid \exists x \leftarrow e \in n\}$$

Semantica

Dominio:
$$\mathbb{P}(\operatorname{Var})$$

$$[[:]^{\#}TL = TL$$

$$[[\operatorname{zero}(e)]^{\#}TL = TL \cup \operatorname{Var}(e)$$

$$[[\operatorname{non-zero}(e)]^{\#}TL = TL \cup \operatorname{Var}(e)$$

$$[[M[e_1] \leftarrow e_2]^{\#}TL = TL \cup \operatorname{Var}(e_1) \cup \operatorname{Var}(e_2)$$

$$[[x \leftarrow e]^{\#}TL = \begin{cases} (TL \setminus \{x\}) \cup \operatorname{Var}(e) & x \in TL \\ (TL \setminus \{x\}) & \text{otherwise} \end{cases}$$

$$[[x \leftarrow M[e]]^{\#}TL = \begin{cases} (TL \setminus \{x\}) \cup \operatorname{Var}(e) & x \in TL \\ (TL \setminus \{x\}) & \text{otherwise} \end{cases}$$

Very Busy Expressions

Backward & Definite

$$VBOut(n) = \begin{cases} \emptyset & n = exit \\ \bigcap_{m \in Succ(n)} VBIn(m) \\ VBIn(m) = Gen(m) \cup (VBOut(m) \setminus Kill(m)) \end{cases}$$

$$Gen_{VB}(n) = \begin{cases} x \leftarrow e \in n \mid x \notin Var(e) \end{cases}$$

$$Kill_{VB}(n) = \begin{cases} x \leftarrow e \mid \exists y \leftarrow e' \in n. \ y \in Var(e) \\ x = y \end{cases}$$

Semantica

Dominio:
$$\mathbb{P}(\mathsf{Ass})$$

$$[\![;]\!]^\# VB = VB$$

$$[\![\mathsf{zero}(e)]\!]^\# VB = VB \setminus \mathsf{Ass}(e)$$

$$[\![\mathsf{non-zero}(e)]\!]^\# VB = VB \setminus \mathsf{Ass}(e)$$

$$[\![M[e_1] \leftarrow e_2]\!]^\# VB = VB \setminus (\mathsf{Ass}(e_1) \cup \mathsf{Ass}(e_2))$$

$$[\![x \leftarrow e]\!]^\# VB = \begin{cases} VB \setminus (\mathsf{Occ}(x) \cup \mathsf{Ass}(e)) \cup \{x \leftarrow e\} & \text{if } x \notin \mathsf{Var}(e) \\ VB \setminus (\mathsf{Occ}(x) \cup \mathsf{Ass}(e)) & \text{otherwise} \end{cases}$$

$$[\![x \leftarrow M[e]]\!]^\# VB = VB \setminus (\mathsf{Occ}(x) \cup \mathsf{Ass}(e))$$

$$\text{where } \mathsf{Occ}(x) = \begin{cases} y \leftarrow e & \text{if } x \in \mathsf{Var}(e) \\ VB \setminus (\mathsf{Occ}(x) \cup \mathsf{Ass}(e)) & \text{otherwise} \end{cases}$$

$$\text{and } \mathsf{Ass}(e) = \{ y \leftarrow e' \in \mathsf{Ass} \mid y \in \mathsf{Var}(e) \land e \neq M[e] \}$$

Reaching Definitions

Forward & Possible

$$RDIn(n) = \begin{cases}
\emptyset & n = entry \\
\bigcup_{m \in Pred(n)} RDOut(m)
\end{cases}$$

$$RDOut(m) = Gen(m) \cup (RDIn(m) \setminus Kill(m))$$

$$Gen_{RD}(n) = \{(x, n) \mid \exists x \leftarrow e \in n\}$$

$$Kill_{RD}(n) = \{(x, n') \mid \exists x \leftarrow e \in n \land \exists (x, n') \in RD(n)\}$$

Semantica

Dominio:
$$\mathbb{P}(\text{Var} \times \text{ProgPoints})$$

$$[\![;]\!]^\# RD = RD$$

$$[\![\text{zero}(e)]\!]^\# RD = RD$$

$$[\![\text{non-zero}(e)]\!]^\# RD = RD$$

$$[\![M[e_1] \leftarrow e_2]\!]^\# RD = RD$$

$$[\![x \leftarrow e]\!]^\# RD = (RD \setminus \text{Def}(x)) \cup \{(x,v) \mid K = (u,x \leftarrow e,v)\}$$

$$[\![x \leftarrow M[e]]\!]^\# RD = (RD \setminus \text{Def}(x)) \cup \{(x,v) \mid K = (u,x \leftarrow e,v)\}$$
where $\text{Def}(x) = \{(x,n) \mid n \text{ punto di programma}\}$
and $K = Arco$ che stiamo analizzando, rappresentato da una tupla di: [nodo di partenza, istruzione, nodo di arrivo]

Copy Propagation

Forward & Definite

$$CopyIn(n) = \begin{cases} \emptyset & n = entry \\ \bigcap & CopyOut(m) \end{cases}$$

$$CopyOut(m) = Gen(m) \cup (CopyIn(m) \setminus Kill(m))$$

$$Gen_C(n) = \{(x y) \mid \exists x \leftarrow y \in n \}$$

$$Kill_C(n) = \{(x y) \mid \exists x \leftarrow e \in n \lor \exists y \leftarrow e \in n \}$$

Semantica

Dominio:
$$\mathbb{P}(\operatorname{Var} \times \operatorname{Var})$$

$$[\![;]\!]^{\#}C = C$$

$$[\![\operatorname{zero}(e)]\!]^{\#}C = C$$

$$[\![\operatorname{non-zero}(e)]\!]^{\#}C = C$$

$$[\![M[e_1] \leftarrow e_2]\!]^{\#}C = C$$

$$[\![x \leftarrow e]\!]^{\#}C = C \setminus \operatorname{Copie}(x) \quad e \notin \operatorname{Var}$$

$$[\![x \leftarrow M[e]\!]^{\#}C = C \setminus \operatorname{Copie}(x)$$

$$[\![x \leftarrow y]\!]^{\#}C = (C \setminus \operatorname{Copie}(x)) \cup \{(x \ z) \mid (z \ y) \in C\}$$
where $\operatorname{Copie}(x) = \{(x \ y) \mid (x \ y) \in C\}$

Intervals

Non-Distributive, Forward & Possible Semantica

Dominio:
$$\mathbb{I} = \{[l, u] \mid l \in \mathbb{Z} \cup \{-\infty\}, u \in \mathbb{Z} \cup \{+\infty\}, l \leq u\}$$

$$[[t]]^{\#}I = I$$

$$[[t] zero(e)]^{\#}I = \begin{cases} \bot & [0, 0] \not\sqsubseteq [[e]]^{\#}I \\ I & otherwise \end{cases}$$

$$[[t] non-zero(e)]^{\#}I = \begin{cases} \bot & [0, 0] = [[e]]^{\#}I \\ I & otherwise \end{cases}$$

$$[[t] M[e_1] \leftarrow e_2]^{\#}I = I$$

$$[t] x \leftarrow e]^{\#}I = I \oplus \{x \mapsto [[e]]^{\#}I\}$$

$$[t] x \leftarrow M[e]^{\#}I = I \oplus \{x \mapsto \top\}$$

Esercizi

Available Expressions

Codice

$$\begin{array}{l} y \leftarrow 1; \\ v \leftarrow x; \\ \text{while } y \neq z \\ t \leftarrow 2y; \\ \textbf{if } t \leq z \textbf{ then} \\ v \leftarrow v^2; \\ y \leftarrow 2y; \\ \textbf{else} \\ v \leftarrow vx; \\ y \leftarrow y+1; \end{array}$$

$Ass = \{ y \leftarrow 1, \ v \leftarrow x, \ t \leftarrow 2y \}$

	Gen	Kill
1	<i>y</i> ← 1	$t \leftarrow 2y$
2	$v \leftarrow x$	Ø
3	Ø	Ø
4	$t \leftarrow 2y$	Ø
5 6	Ø	Ø
6	Ø	$v \leftarrow x$
7	Ø	$t \leftarrow 2y, \ y \leftarrow 1$
8	Ø	$v \leftarrow x$
9	Ø	$t \leftarrow 2y, \ y \leftarrow 1$
10	Ø	0

CFG - MOP

AvailIn	Ø	1	2
1	Ø	0	Ø
2	T	$y \leftarrow 1$	$y \leftarrow 1$
3	T	$v \leftarrow x, \ y \leftarrow 1$	Ø
4	T	$v \leftarrow x, \ y \leftarrow 1$	Ø
5	T	$t \leftarrow 2y, \ v \leftarrow x, y \leftarrow 1$	$t \leftarrow 2y$
6	T	$t \leftarrow 2y, \ v \leftarrow x, y \leftarrow 1$	$t \leftarrow 2y$
7	T	$t \leftarrow 2y, \ y \leftarrow 1$	$t \leftarrow 2y$
8	T	$t \leftarrow 2y, \ v \leftarrow x, y \leftarrow 1$	$t \leftarrow 2y$
9	T	$t \leftarrow 2y, \ y \leftarrow 1$	$t \leftarrow 2y$
10	T	$v \leftarrow x, \ y \leftarrow 1$	Ø

CFG - Semantics

