

Part 1: What is e'?

Example 1: Suppose you invest \$1 at 100% interest for 1 year at various compounding levels. What is the highest amount of money you can have after 1 year?

Note: the formula used for compound interest of \$1 at 100% interest annually compounded n times during the year is:

$$A = 1\left(1 + \frac{1}{n}\right)^n$$

Compounding Level, $oldsymbol{n}$	Amount, A in dollars
Annualy (once a year)	
Semi-annually (2-times)	
Quarterly (4-times)	
Monthly (12-times)	
Daily (365-times)	
Secondly (31 536 000-times)	
Continuously (1 000 000 000-times)	

Properties of e:

•	$e = \lim_{n \to \infty}$	$\left(1+\frac{1}{n}\right)^n$	
	$n \to \infty$	(11)	

- ullet e is an _____ number, similar to $\pi.$ They are non-terminating and non-repeating.
- ullet log $_e$ x is known as the _____ and can be written as _____
- Many naturally occurring phenomena can be modelled using base-e exponential and logarithmic functions.
- $\log_e e = \ln e =$

Part 2: Reminder of Log Rules

Power Law of Logarithms	$\log_b x^n = n \log_b x \text{for } b > 0, b \neq 1, x > 0$		
Product Law of Logarithms	$\log_b(mn) = \log_b m + \log_b n \text{for } b > 0, b \neq 1, m > 0, n > 0$		
Quotient Law of Logarithms	$\log_b\left(\frac{m}{n}\right) = \log_b m - \log_b n \text{for } b > 0, b \neq 1, m > 0, n > 0$		
Change of Base Formula	$\log_b m = \frac{\log m}{\log b}, m > 0, b > 0, b \neq 1$		
Exponential to Logarithmic	$y = b^x \to x = \log_b y$		
Logarithmic to Exponential	$y = \log_b x \Rightarrow x = b^y$		
Other useful tips	$\log_a(a^b) = b \qquad \qquad \log_a = \log_{10} a \qquad \qquad \log_b b = 1$		

Part 2: Solving Problems Involving *e*

Example 2: Evaluate each of the following

- a) e^3
- **b)** ln 10
- c) $\ln e$

Example 3: Solve each of the following equations

a)
$$20 = 3e^x$$

b)
$$e^{1-2x} = 55$$

c)
$$2 \ln(x-3) - 7 = 3$$

d) $\ln(4e^x) = 2$

Part 3: Graphing Functions Involving e

Example 4: Graph the functions $y = e^x$ and $y = \ln x$

$y = e^x$	
x	y

$y = \ln x$			
$\frac{y}{x}$			

Note: $y = \ln x$ is the inverse of $y = e^x$

