CFGSs

Desarrollo de Aplicaciones Multiplataforma Administración de Sistemas Informáticos en Red

MÓDULOs

Bases de Datos Gestión de Bases de Datos

UT3: DISEÑO LÓGICO. MODELO RELACIONAL

UT3 Diseño Lógico. Modelo Relacional

Índice

- Historia del modelo relacional
- 2. Modelo lógico I
 - 2.1 Tablas, registros y atributos
 - 2.2 Claves y dominios del modelo lógico
 - 2.3 Representación de una tabla en el modelo relacional
- 3. Modelo lógico II
 - 3.1 Clave ajena e integridad referencial
 - 3.2 Orden de campos
 - 3.3 Transformaciones de relaciones uno a varios
 - 3.4 Clave primaria compuesta
 - 3.5 Transformación de atributos compuestos y derivados
 - 3.6 Transformaciones de relaciones varios a varios
 - 3.7 Cardinalidades en el modelo relacional

UT3 Diseño Lógico. Modelo Relacional

Índice

- 4. Modelo lógico III
 - 4.1 Transformación de entidades débiles
 - 4.2 Transformación de atributos multivaluados
 - 4.3 Transformación de relaciones uno a uno
 - 4.4 Transformación de relaciones reflexivas
 - 4.5 Transformación de relaciones ternarias
 - 4.6 Transformación de jerarquías
 - 4.7 Normalización
- 4. Ampliación
 - 5.1 Transformaciones de relaciones uno a varios CON NUEVA TABLA
 - 5.2 Otros métodos de transformación de jerarquías

1. Historia del modelo relacional

- Edgar Frank Codd definió las bases del modelo relacional a finales de los 60.
- Lo que intentaba era evitar que los usuarios de las bases de datos, tuvieran que verse obligadas a aprender los entresijos internos del sistema.
- Pretendía que los usuarios trabajaran de forma sencilla e independiente del funcionamiento físico de la base de datos en sí.
- Fue un enfoque revolucionario.

El elemento fundamental es lo que se conoce como tabla o relación.

Para evitar confusiones con las relaciones del modelo ER en adelante las llamaremos tablas.

Las **tablas** constan de:

- Atributos. Cada una de las propiedades de los datos que se almacenan en la tabla (nombre, dni,...). También se llaman columnas o campos.
 - ✓ Se corresponden con los **atributos de las entidades** del modelo ER.
- Tuplas. Cada ocurrencia de la tabla. También se llaman filas o registros.
 - ✓ Por ejemplo si se tiene una tabla que almacena personas, una tupla o registro representaría cada una de las personas almacenadas (Ana, Pedro, Carmen,...).

Ejemplo: Tabla "Diplomáticos"

Las tablas deben cumplir una serie de propiedades:

- Cada tabla tiene un nombre distinto.
- Los nombres de **los atributos dentro una tabla son distintos**, aunque pueden repetirse en tablas diferentes.
- Cada atributo de la tabla toma un solo valor en cada registro.
- Cada registro es único. No hay registros duplicados. (Siempre se distinguirán al menos por la clave primaria).
- El orden de los atributos no importa.
- El orden de los registros no importa.

Registro o tupla

- Es cada una de las filas de la tabla.
- Representa por tanto cada elemento individual de esa tabla.
- Tiene que cumplir que:
 - Cada registro se debe corresponder con un elemento del mundo real.
 - No puede haber dos registros iguales (con todos los valores de sus atributos iguales). Es decir, contará con algún campo de **clave primaria**.

Clave candidata

- Conjunto de atributos que identifican unívocamente cada registro de una tabla.
- Son las columnas cuyos valores no se repiten en ningún otro registro de esa tabla.
- Toda tabla en el modelo relacional debe tener al menos una clave candidata.

Clave primaria

- Clave candidata que se escoge como identificador de los registros.
 Se elige la que identifique mejor a cada registro en el contexto de la base de datos.
- Por ejemplo un campo DNI sería clave candidata en una tabla de clientes, pero si tiene un campo código cliente, éste sería mejor como clave primaria.

Clave alternativa

Cualquier clave candidata que no sea primaria.

- Será necesario establecer el tipo de datos (dominio) que vamos usar para cada atributo.
- Nosotros trabajaremos con tipos de datos básicos o dominios:
 - 1. Texto.
 - 2. Número.
 - 3. Fecha
 - 4. Hora.
 - 5. Fecha/Hora
 - 6. Booleano: dos valores posibles (Si/No, ON/OFF, 0/1, etc.).

En el modelo relacional existen ciertas reglas semánticas o restricciones:

- ✓ Clave principal (**primary key**). Marca uno o más atributos como identificadores de la tabla.
- ✓ Unicidad (unique). Impide que los valores de los atributos marcados de esa forma puedan repetirse. Esta restricción debe indicarse en todas las claves alternativas.
- ✓ Obligatoriedad (**not null**). Prohíbe que el atributo marcado de esta forma quede vacío, es decir, que pueda contener un valor nulo.

2.3 Representación de una tabla en el modelo relacional

- Hay una confusión general de términos respecto a la manera de representar el modelo relacional.
- Hay bibliografía que habla de estos diagramas del modelo relacional como modelo Entidad-Relación lógico (en oposición al conceptual).
- Nosotros le llamaremos diagrama relacional para evitar confusiones.

2.3 Representación de una tabla en el modelo relacional

En principio las entidades fuertes del modelo E/R son transformadas al modelo relacional siguiendo estas instrucciones:

- Entidades. Pasan a ser tablas.
- Atributos. Se convierten en columnas o campos de tabla.
- Identificadores principales. Pasan a ser claves primarias.
- Identificadores candidatos. Pasan a ser claves candidatas.

2.3 Representación de una tabla en el modelo relacional

• La tabla tendrá un **título** con su nombre.

• Dentro de la tabla se irán especificando los atributos, tipos de datos y las

reglas semánticas de la siguiente manera:

- nombreAtributo: tipoDeDatos (reglas semánticas)
- Donde la regla semántica puede ser:
 - PK: Primary Key (Clave primaria)
 - UNQ: Unique (Único o clave alternativa)
 - NN: Not Null (No puede ser nulo)
 - FK: Foreign Key (Clave Ajena)

Campo de clave ajena

- Las claves ajenas son campos de una tabla cuyos valores están relacionados con atributos de otra tabla.
- Estos campos sirven para relacionar unas tablas con otras.
- Las claves ajenas estarán relacionadas siempre con el atributo de la clave primaria de la tabla a la que apuntan.
- Esta relación entre dos registros se determina estableciendo un valor en la clave ajena de una tabla que coincide con un valor de la clave primaria en la tabla a la que apunta.

Integridad referencial

- ✓ Es una regla de restricción de la clave ajena.
- ✓ Establece que debe contener valores que coincidan con la clave principal de la tabla que relacionan.
- ✓ Por tanto, las claves ajenas siempre tienen que pertenecer al mismo dominio (tipo de datos) que las claves primarias a las que apuntan.
- ✓ La clave ajena, por lo general, será nula (no apuntar a ninguna tabla) cuando un registro no apunte a ningún registro de otras tablas (cardinalidad mínima 0).

<u>Expediente</u>	Alumno	Código Ciclo (Clave ajena)		<u>Código</u> (Clave primaria)	Nombre ciclo
175	Andrés	2		1	ASIR
102	Sofía	3		•	710111
305	Pablo		X	2	DAM
419	Julia	1			D 414/
533	Inés	1 4		3	DAW

- El atributo **Código Ciclo** en la primera tabla, es una **clave ajena** cuyos valores coinciden con los valores de la clave primaria de la tabla de profesores.
- Sirve para **relacionar** el alumno con el profesor.

3.2 Orden de campos

Orden de los campos

- ✓ Aunque el orden de los campos es irrelevante, seguiremos un orden establecido que nos facilitará la lectura e interpretación de las tablas adecuadamente.
- ✓ Este orden será el siguiente:
 - 1. El campo de clave primaria o, en caso de clave primaria compuesta, los campos de clave primaria.
 - 2. Campos UNQ.
 - 3. Campos NN.
 - 4. Campos sin restricciones.
 - 5. Campos de clave ajena.

Ojo: En caso de campos de **clave primaria y ajena simultáneamente** irán en primera posición como las claves primarias ordinarias.

3.2 Orden de campos

Orden de los campos

Ojo

- ✓ En caso de campos de clave primaria y ajena simultáneamente irán en primera posición como las claves primarias ordinarias.
- ✓ En caso de **campos UNQ y NN** (claves alternativas) irán justo después de las PK.

PERSONA

DNI: num (PK)

NSS: num (UNQ, NN)

nombre: texto (NN)

apellido1: texto (NN)

apellido2: texto

fecha_nac: fecha

género: texto

cod_empleo: num (FK, NN)

Relaciones con sólo una entidad con cardinalidad N: UNO A VARIOS

- Son las relaciones de (1,N) y en este caso no se crea ninguna tabla nueva.
- Simplemente, a la tabla que tiene cardinalidad N, se le añadirá el atributo de clave principal (que actuará como clave ajena) de la entidad con cardinalidad 1.
- Las llamaremos relaciones uno a varios.
 - ✓ Es decir, una ocurrencia de la entidad A una entidad está relacionada con varias ocurrencias de la entidad B.
 - ✓ Sin embargo una ocurrencia de la entidad B solo está relacionada con una entidad de la unidad A.

Relaciones con sólo una entidad con cardinalidad N: UNO A VARIOS

Relaciones con sólo una entidad con cardinalidad N: UNO A VARIOS

Luis Dorado Garcés

<u>Código</u>	Nombre	Ape1	Cód_Empleo FK			
T001	Andrés	Dorado	E001	<u>Código</u>	Nombre	S
T002	Sofía	Benito	E001	E001	Barrendera	
				E002	Médico	
T003	Pablo	Garcés	E002	E003	Ingeniera	
T004	Julia	Delgado	E003			
T005	Inés	Moreno	E003			

3.3 Clave primaria compuesta

Clave primaria compuesta

Combinación de dos o más campos cuyos valores no puede repetirse y no pueden ser nulos.

3.5 Transformación de atributos compuestos y derivados

Atributos compuestos y derivados

- Atributos compuestos. Cada sub-atributo se transforma en un campo.
- Atributos derivados. No se incluyen en la tabla ya que no se almacenan.

3.5 Transformación de atributos compuestos y derivados

Atributos compuestos y derivados

Relaciones con dos entidades tienen cardinalidad N: VARIOS A VARIOS

- Es decir, una ocurrencia de la entidad A una entidad está relacionada con varias ocurrencias de la entidad B.
- También una ocurrencia de la entidad B solo está relacionada con varias entidad de la unidad A.

Relaciones con dos entidades tienen cardinalidad N: VARIOS A VARIOS

- El proceso de transformación obliga a crear una nueva tabla que contendrá las claves primarias de las entidades que participan en la relación.
- Éstas, actuarán de clave primaria de la nueva tabla.
- Además todos estos atributos importados, serán claves ajenas respecto a las entidades de las que provienen.
- Si la relación tenía atributos, éstos formarán parte de la tabla.

Relaciones con dos entidades tienen cardinalidad N: VARIOS A VARIOS

Relaciones con dos entidades tienen cardinalidad N: varios a varios

En este caso surgen 3 nuevas tablas:

```
Clientes (código, nombre, apellidos,...)
```

```
CP {código} → Clave Principal
```

Productos (código, nombre, precio,...)

```
CP {código} → Clave Principal
```

Compra(código_cliente, código_producto, cantidad)

```
CP {código_cliente, código_producto} → Clave Principal
```

CAj {código_producto} referencia a Producto \rightarrow Clave Ajena

¹º DAM. Bases de Datos 1º ASIR. Gestión de Bases de Datos

32

Ejemplo

Ejemplo

3.7 Cardinalidades en el modelo relacional

- Las relaciones ilustran una asociación entre dos tablas.
- Las relaciones siempre vincularán una clave ajena de una tabla (la que apunta) con una clave primaria (la que es apuntada).
- En el modelo de datos físicos, las relaciones están representadas por **líneas estilizadas**.

One (and only one)

Zero or one

One or many

Zero or many

3.7 Cardinalidades en el modelo relacional

Recuerda: la **cardinalidad** se refiere al **máximo y mínimo** número de veces que una instancia en una entidad puede ser asociada con ocurrencias en la entidad relacionada.

El primer símbolo será la cardinalidad mínima (I ó O) y el segundo para la máxima (1 ó ≤)

UT3 Diseño Lógico. Modelo Relacional

3.7 Cardinalidades en el modelo relacional

Ejemplo

1º DAM. Bases de Datos 1º ASIR. Gestión de Bases de Datos

4.1 Transformación de entidades débiles

- ✓ Toda entidad débil implica una relación implícita con una entidad fuerte.
- ✓ Esta relación no necesita incorporarse como una nueva tabla en el modelo relacional. Basta con añadir como atributo y clave ajena en la entidad débil, el identificador de la fuerte.

4.1 Transformación de entidades débiles

Toda entidad débil implica una relación implícita con una entidad fuerte.

4.1 Transformación de entidades débiles

Toda entidad débil implica una relación con una entidad fuerte.

<u>ISBN</u>	Título	
C001	El Capital	
C002	Así habló Zaratrusta	
C003	1984	
C004	Vigilar y Castigar	
C005	La Naranja Mecánica	

	Núm. ejemplar PK	ISBN libro PK y FK	Estado conserv.
	01	C001	Bueno
	01	C003	Malo
	01	C005	Lamentable
-	02	C001	
	02	C002	Regulín

4.2 Transformación de atributos multivaluados

- Se realizará de una manera similar a las entidades débiles.
- Crearemos una nueva tabla que tendrá una clave primaria compuesta por:
 - 1. Un campo de clave ajena que apunte a la tabla a la que pertenece el atributo multivaluado.
 - 2. Un campo que almacene los valores del atributo.

4.2 Transformación de atributos multivaluados

• Se realizará de una manera similar a las entidades débiles.

4.2 Transformación de atributos multivaluados

• Se realizará de una manera similar a las entidades débiles.

<u>Código</u>	Nombre	Ape1	Cod persona PK y FK	Telét P
C001	Andrés	Dorado	C001	9412
C002	Sofía	Benito	C001	94865
C003	Pablo	Garcés	C003	91456
C004	Julia	Delgado	C004	91456
C005	Inés	Moreno	C004	93125

✓ Dos personas pueden compartir un número pero una persona no puede tener el mismo número dos veces.

Relaciones en las que todas las entidades participan con cardinalidad 1 como máximo (1:1)

- ✓ Las llamaremos relaciones **uno a uno**.
- ✓ Es decir, una ocurrencia de la entidad A una entidad está relacionada con una ocurrencia de la entidad B.
- ✓ También una ocurrencia de la entidad B solo está relacionada con una entidad de la unidad A.

Tendremos 3 casos posibles:

- 1. Caso 1: Si las dos entidades participan con participación (0,1), entonces se crea una nueva tabla para la relación.
- 2. Caso 2: Si solo una entidad participa con cardinalidad (0,1), entonces se pone la clave ajena en dicha entidad como UNQ y No Nulo.
- 3. Caso 3: Si ambas entidades tienen cardinalidad (1,1) elegimos la clave principal de una de ellas (cualquiera) y la introducimos como clave ajena en la otra tabla como NN (cardinalidad mínima) y UNQ (cardinalidad máxima).

Tendremos 3 casos posibles:

Caso 1

Si las dos entidades participan con participación (0,1), entonces se crea una nueva tabla para la relación.

- ✓ En esta tabla de relación tendrá dos claves ajenas serán únicas para respetar la cardinalidad máxima y no nulas para la mínima.
- ✓ Apuntarán a cada una de las entidades unidas por la relación 1:1.
- ✓ Tendrán una clave primaria independiente de las claves ajenas.

Caso 1: Un grupo puede estar en ninguna (ON-LINE) o en 1 sola aula. Un aula alberga un grupo o ninguno (esta vacía).

Caso 1: Un grupo puede estar en ninguna (ON-LINE) o en 1 sola aula.

				Cód Aula	Cód Grupo			
Código	Nombre	Cap.	<u>Código</u>		FK UNQ NN	<u>Código</u>	Nombre	Ciclo
A001	Taller	10	AG1	A002	G01	G01	AS2A	ASIR
A002	Laboratorio	15	AG2	A003	G02	G02	DAM1	DAM
A003	Biblioteca	30	AG3	A003	G03	G03	DAW2	DAW
			AG4	A001	G02			

- ✓ Como la cardinalidad mínima es 0 en ambas entidades, puede haber grupos y aulas que no están relacionadas con ningún registro.
- ✓ Como la relación es uno a uno, un aula no puede estar relacionada con más de un grupo y viceversa, es decir, en la nueva tabla no puede repetirse ninguna aula ni grupo.

Tendremos 3 casos posibles:

Caso 2

Si **solo una entidad participa con cardinalidad (0,1)**, entonces se pone **la clave ajena en dicha entidad**, como única (para cardinalidad máxima) y No Nula (cardinalidad mínima).

Caso 2: Una localidad puede ser capital de un solo país y un país debe tener una sola capital.

codigo: num (PK) nombre: texto (NN) población: num (NN) extensión: num

4.3 Transformación de relaciones uno a uno

Caso 2: Una localidad puede ser capital de un solo país y un país debe tener

una sola capital.

0 (11				
<u>Código</u>	Nombre	Pob.		PO
L001	Logroño	10		DC
L002	Buenos Aires	15	-	PU
				PC
L003	Bratislava	30		PC

<u>Código</u>	Nombre	FK UNQ NN
P01	Eslovaquia	L003
P02	Argentina	L002
P03	Chile	L002
P04	España	

- ✓ Como las localidades pueden no ser capital, nuestro modelo permite que una localidad no sea apuntada por ningún país.
- ✓ Todo país debe tener una capital (NN) y esta capital no puede compartirse con ningún otro país UNQ.

Tendremos 3 casos posibles:

Caso 3

Si **ambas entidades tienen cardinalidad (1,1)** elegimos las tablas una de ellas (**cualquiera**) y le introducimos una **clave ajena única** que apunte a la otra tabla.

- ✓ Se elegirá una u otra forma en función de cómo se quiera organizar la información para facilitar las consultas.
- ✓ En esta etapa de vuestro aprendizaje elegid la que más rabia os de.

Caso 3: Cada presentador presenta 1 y solo un 1 evento. Cada evento es

presentado por 1 y solo 1 presentador.

PRESENTADOR

1º DAM. Bases de Datos 1º ASIR. Gestión de Bases de Datos **EVENTO**

Las relaciones **reflexivas o unarias** podrán **generar o no una nueva tabla** en función de la cardinalidad de la relación, al igual que las relaciones binarias sencillas.

Reflexiva 1:1

Se aplicarán las reglas según las relaciones 1:1. Tres métodos:

 \checkmark (0,1) y (0,1) // (0,1) y (1,1) // (1,1) y (1,1).

Reflexiva 1:N

Como en las binarias no genera tabla. En la entidad se introduce dos veces la clave, una como clave principal y otra como clave ajena.

- ✓ La clave ajena debe ser la del lado 1 y debe utilizarse el rol para denominarla.
- Reflexiva N:M Como en la binarias la relación genera tabla. La nueva tabla contendrá dos veces la clave, cada una con el nombre de su rol.

Ejemplo relación reflexiva 1:N

Un alumno tiene 1 y solo 1 delegado. Un alumno puede ser o no ser delegado.

UT3 Diseño Lógico. Modelo Relacional

4.4 Transformación de relaciones reflexivas

Ejemplo relación reflexiva 1:N

Un alumno tiene 1 y solo 1 delegado. Un alumno puede ser o no ser delegado.

	DNI_Alumno	Nombre	Ape1	DNI_ delegado FK y NN	۱
벽	115C	Andrés	Dorado	115C	ᅦ
	563F	Sofía	Benito	115C	L
	X457	Pablo	Garcés	115C	-
	159R	Julia	Delgado	754Z	_
뎐	754Z	Inés	Moreno	754Z	П

Ampliación: Ejemplo relación reflexiva 2:N

Una persona tiene uno (familia monoparental) o dos progenitores. Y, por supuesto una persona puede no tener hijos.

Ejemplo relación reflexiva M:N

Un trabajador puede coordinar a ninguno o a más compañeros y ser coordinado por 0

UT3 Diseño Lógico. Modelo Relacional

4.4 Transformación de relaciones reflexivas

Ejemplo relación reflexiva M:N

	<u>DNI</u>	Nombre	Ape1	Código coordinadoR PK v FK	Código coodinadO PK y FK
	115C	Luis	Durruti	563F	115C
-	563F	Simón	Mera	563F	159R
	X457	Ruth	Campoamor	X457	563F
-	159R	Diego	G. Oliver	X457	478J
-	478J	Xabi	Pestaña	478J	115C

Ejemplo relación reflexiva 1:1. Cardinalidades (0,1) y (0,1)

Una persona tiene como pareja a ninguna o a otra pareja (monogamia).

Ejemplo relación reflexiva 1:1 Cardinalidades (1,1) y (1,1)

Un persona casada tiene que tener una y solo una esposa/o.

Ejemplo relación reflexiva 1:1. Cardinalidades (1,1) y (1,1)

Un persona casada tiene que tener una y solo una esposa/o.

	<u>DNI</u>	Nombre	Ape1	DNI_ pareja FK UNQ NN	
_	475G	Vanesa	Martínez	115C	1
_	115C	Andrés	Dorado	475G	-
	159R	Sofía	Benito	X457	-
+	X457	Pablo	Garcés	159R	٦

4.6 Transformación de jerarquías: Introducción

- El Modelo Relacional no dispone de instrumentos específicos que permitan representar tipos y subtipos.
- Existen distintos métodos de transformación, dependiendo de los objetivos perseguidos:
 - ✓ Información semántica representada en el modelo (restricciones).
 - ✓ Eficiencia de acceso y almacenamiento de los datos.
- Sólo cuando la jerarquía es parcial y solapada (sin restricciones) existe un método transformación en relaciones totalmente adecuada y eficiente.
- Nosotros usaremos este método y dejaremos al modelo físico el control de restricciones como la totalidad o la exclusividad.

4.6 Transformación de jerarquías: Método de transformación

Crear una tabla para la superentidad con los atributos comunes y una tabla por cada subentidad con los atributos específicos de cada una (si los tuviera).

- ✓ Es un modelo que **por defecto es parcial y solapado** (sin restricciones).
- ✓ Por tanto, este modelo no podrá implementar exclusividad ni totalidad explícitamente.
- ✓ En los demás casos (totalidad y exclusividad) es necesario incluir ciertas restricciones como **CHECKS y TRIGGERS** (comprobaciones y disparadores) que corresponden al modelo físico.
- ✓ A pesar de lo anterior es el modelo más eficiente en almacenamiento y acceso a
 datos.

4.6 Transformación de jerarquías: Ejemplo

4.6 Transformación de jerarquías: Ejemplo

UT3 Diseño Lógico. Modelo Relacional

4.6 Transformación de jerarquías: Ejemplo

Recuerda Parcial y solapada por defecto.

- > Luis es profesor y alumno.
- > Simón es profesor.
- > Ruth es alumna.
- Diego es administrativo.
- ➤ Vanesa no es ni alumna, ni administrativa, ni profesora.

<u>DNI</u>	Nombre	Ape1
115C	Luis	Durruti
563F	Simón	Mera
X457	Ruth	Campoamor •
159R	Diego	G. Oliver
478F	Vanesa	Luxemburgo

DNI_Alumno PK y FK	Ciclo	Curso	Cod Matrícula
115C	DAM	1°	001
X457	ASIR	2°	002

DNI_Profesor	Cuerpo	Especialidad
115C	Secundaria	Informática
563F	FP	SAI

DNI Administrativo
PK y FK

159R

UT3 Diseño Lógico. Modelo Relacional

4.7 Normalización

- La normalización de bases de datos es un proceso que consiste una serie de reglas a las tablas obtenidas tras el paso del modelo entidad-relación al modelo relacional.
- Las bases de datos relacionales se normalizan para:
 - ✓ Minimizar la redundancia de los datos.
 - ✓ Disminuir problemas de actualización de los datos en las tablas.
 - ✓ Proteger la integridad de datos.

4.7 Normalización

Primera Forma Normal (1FN)

La primera regla de normalización se expresa generalmente en forma de dos indicaciones separadas.

- 1. Todos los atributos, valores almacenados en las columnas, deben ser indivisibles.
- 2. No deben existir grupos de valores repetidos.

4.7 Normalización

Primera Forma Normal (1FN)

 Todos los atributos, valores almacenados en las columnas, deben ser indivisibles.

id	Nombre	Dirección	Teléfono	URL
1	Anaya	J:l: Luca	92199932	Anaya.com
2	Pericles	C/Luna # 20-28018 Tlaxcala	99299492	Pericles.com

Calle	Número	Puerta	СР	Población	Provincia	
Luna	20		28018	Tlaxcala	Tlaxcala	

Figura 1. Tabla con un atributo divisible en varias partes

4.7 Normalización

id	Nombre	calle	Número	Puerta	СР	Estado	Capital	Teléfono	URL
1	Anaya	J:l: Luca	15	2	28917	Tepic	Nayarit	93488345	Anaya.com
2	Pericles	Luna	20		28120	San Blas	Nayarit	88238188	Pericles.com
3	Mieres	Tajin	12	1	28120	San Blas	Nayarit	94989982	Mieres.es

Primera Forma Normal (1FN)

2. No deben existir grupos de valores repetidos.

4.7 Normalización

Segunda Forma Normal (2FN)

- Una tabla está en 2FN si:
 - 1. La tabla está en la **primera forma normal** (1NF).
 - 2. No existen dependencias funcionales parciales.
- ✓ Es decir, todos los valores de las columnas de una fila deben depender de la clave primaria completa de dicha fila.
- ✓ Las tablas en 1FN y con clave primaria simple ya cumplen la 2FN.
- ✓ En caso de una claves primaria compuesta por dos columnas, se requeriría que todas las filas se identificaran por la clave primaria completa y no por una sola columna de la misma.

4.7 Normalización

Segunda Forma Normal (2FN)

□ HABILIDAD_EMP

Nombre: texto (PK)

Habilidad: texto (PK)

lugar trabajo: texto (NN)

Habilidades de los empleados

Empleado	Habilidad	Lugar actual de trabajo
Jones	Mecanografía	114 Main Street
Jones	Taquigrafía	114 Main Street
Jones	Tallado	114 Main Street
Bravo	Limpieza ligera	73 Industrial Way
Ellis	Alquimia	73 Industrial Way
Ellis	Malabarismo	73 Industrial Way
Harrison	Limpieza ligera	73 Industrial Way

EMPLEADO

Nombre: texto (PK)

lugar_trabajo: texto (NN)

Empleados

Empleado	Lugar actual de trabajo				
Jones	114 Main Street				
Bravo	73 Industrial Way				
Ellis	73 Industrial Way				
Harrison	73 Industrial Way				

Habilidades de los empleados

Empleado	Habilidad
Jones	Mecanografía
Jones	Taquigrafía
Jones	Tallado
Bravo	Limpieza ligera
Ellis	Alquimia
Ellis	Malabarismo
Harrison	Limpieza ligesa

Nombre: texto (PK)

lugar_trabajo: texto (NN)

4.7 Normalización

Tercera Forma Normal (3FN)

- Una tabla está en 3FN si:
 - La tabla está en la segunda forma normal (2NF)
 - 2. Ningún atributo no-primario de la tabla es **dependiente transitivamente** de una clave primaria.
 - ✓ Es decir, no existen atributos que dependen de otro(s) atributos que no son la clave primaria.

4.7 Normalización

Tercera Forma Normal (3FN)

Ganadores del torneo

Torneo	Año	Ganador	Fecha de nacimiento del ganador	•
Indiana Invitational	1998	Al Fredrickson	21 de julio de 1975	
Cleveland Open	1999	Bob Albertson	28 de septiembre de 1968	
Des Moines Masters	1999	Al Fredrickson	21 de julio de 1975	
Indiana Invitational	1999	Chip Masterson	14 de marzo de 1977	

Ganadores del torneo

Torneo	Año	Ganador
Indiana Invitational	1998	Al Fredrickson
Cleveland Open	1999	Bob Albertson
Des Moines Masters	1999	Al Fredrickson
Indiana Invitational	1999	Chip Masterson

Fecha de nacimiento del jugador

Ganador	Fecha de nacimiento				
Chip Masterson	14 de marzo de 1977				
Al Fredrickson	21 de julio de 1975				
Bob Albertson	28 de septiembre de 1968				

Ampliación 5.1: Transformaciones de relaciones uno a varios CON NUEVA TABLA

Relaciones UNO A VARIOS con nueva tabla: Método de transformación

- En este caso **SÍ se crea ninguna tabla nueva**.
- Es decir, creamos una nueva tabla cuya clave primaria será la clave ajena que apunta a la tabla-entidad que interviene en la con cardinalidad N.
- A diferencia de la nueva tabla en las relaciones M:N (donde como clave primaria se usa la combinación de ambas claves ajenas), en las relaciones 1:N se usa un solo campo (el que apunta a la tabla del lado N) como clave primaria.

Ampliación 5.1: Transformaciones de relaciones uno a varios CON NUEVA TABLA

Relaciones con sólo una entidad con cardinalidad N: UNO A VARIOS

TRABAJADOR

codigo: num (PK)

nombre: texto (NN)

apellido: texto (NN)

fecha_inicio: fecha (NN)

EMPLEO

codigo: num (PK)

nombre: texto (NN)

salario: num (NN)

Ampliación 5.1: Transformaciones de relaciones uno a varios CON NUEVA TABLA

<u>Código</u>	Nombre	Ape1								
T001	Andrés	Dorado		Cód trabajador	Cód_empleo	Fecha		<u>Código</u>	Nombre	S
T002	Sofía	Benito		PK y FK	FK	Inicio	1	E001	Barrendera	
T003	Pablo	Garcés	1	T001	E001	5/5/21	1	E002	Médico	
T004	Julia	Delgado		T002	E001	3/3/20		E003	Ingeniera	
T005	Inés	Moreno		T002	E002	4/4/19				

✓ La clave primaria simple (Cod_trabajador) no incluye Cód_empleo y garantiza que no puede haber un mismo trabajador con dos empleos pero sí varios trabajadores con el mismo empleo.

Ampliación 5.1: Transformaciones de relaciones uno a varios CON NUEVA TABLA

Relaciones UNO A VARIOS con nueva tabla: Casos de aplicación

- 1. Tenemos atributos de relación a pesar de ser 1:N.
- La clave ajena de la tabla del lado muchos tiene muchos registros con el valor NULL.
- 3. Se prevé que la interrelación podría ser N:M en el futuro.

Ampliación 5.1: Transformaciones de relaciones uno a varios CON NUEVA TABLA

Problemas de aplicar el sistema ordinario con muchos nulos y atributos de relación

TRABAJADOR	■ EMPLEO
cod_trabajador: num (PK)	cod: num (PK)
nombre: texto (NN)	
apellido: texto (NN)	nombre: texto (NN) salario: num (NN)
fecha_inicio: fecha	Salano. Hum (NN)
cod_empleo: num (FK)	

<u>Código</u>	Nombre	Ape1	Fecha Inicio	Cód_Empleo			
T001	Andrés	Dorado	5/5/21	E001	<u>Código</u>	Nombre	Salario
T002	Sofía	Benito	3/3/20	E001	E001	Barrendera	10
T003	Pablo	Garcés			E002	Médico	5
T004	Julia	Delgado			E003	Ingeniera	30
T005	Inés	Moreno					

- ✓ Nos obliga a trasladar el atributo de relación a la tabla de la clave ajena (fallo de semántica).
- ✓ Si tenemos muchos trabajadores sin empleo perdemos mucho espacio (fecha y Cod_Empleo).

Crear una sola tabla que contendrá los atributos comunes de la superentidad y los atributos específicos de las subentidades. Usaremos un atributo discriminador que indique la pertenencia de cada ocurrencia a una subentidad (o a ninguna).

Este modelo es útil cuando:

- 1. Alguna de las subentidades no tenga atributos.
- 2. Queremos controlar la totalidad y la exclusividad.
- ✓ Es un **modelo poco eficiente** ya que la tabla principal casi siempre tiene atributos sin valor.

Este método tendrá dos aproximaciones:

a. Totalidad/Parcialidad

- La **totalidad** se implementaría **impidiendo el valor "ninguno"** en el atributo "tipo".
- La **parcialidad** se implementaría **admitiendo el valor "ninguno"** en el atributo "tipo".

b. Exclusividad/Solapamiento

- La exclusividad se implementaría con un atributo discriminador univaluado.
- > El solapamiento se implementaría con un atributo discriminador multivaluado.
 - ✓ Y exigiendo que todas las ocurrencias de la tabla principal tengan su
 correspondencia en el atributo multivaluado.

Exclusividad

Ampliación 5.2: Otros métodos de transformación de jerarquías

Exclusividad

- ✓ Si **no se permite** "ninguno" la jerarquía **será total**.
 - > Luis es administrativo. Simón es operario.
 - > Ruth es ingeniera. Diego no está especializado en ninguna entidad.

<u>DNI</u>	Nombre	Tipo_emp	Categoría	Cod_dep FK	Línea Prod
115C	Luis	Administrativo	Contable	Dep20	
563F	Simón	Operario			10
X457	Ruth	Ingeniera			
159R	Diego	Ninguno			

- ✓ Observad como, si no se permite el valor "Ninguno", todos los empleados deben estar especializados.
- ✓ Observad todo el espacio que se pierde con los empleados no especializados o especializados sin atributos.

Solapamiento

Solapamiento

- ✓ Si **no se permite** "ninguno" la jerarquía **será total**.
 - > Luis es administrativo e ingeniero. Simón es operario.
 - > Ruth es ingeniera. Diego no está especializado en ninguna entidad.

<u>DNI</u>	Nombre	Categoría	Cod_dep FK	Línea	<u>DNI</u> PK y FK
			ΓN	Prod	115C
115C	Luis	Contable	Dep20		
			•		115C
563F	Simón			10	FGOE
X457	Ruth				563F
A431	Kulli				X457
159R	Diego				71-101
10011	2.390				159R

	EMPLEADO			
	DNI: num (PK)			_
	nombre: texto (NN)		TIPO-EMPLEADO	
	categoría: texto	7	DNI: num (PK,FK)	
¥	cod_departamento: num (FK)		tipo_empleado: texto (PK)	
	linea_pro: num			

89

Tipo emp PK

Administrativo

Ingeniero

Operario

Ingeniera

Ninguno

1º DAM. Bases de Datos 1º ASIR. Gestión de Bases de Datos