Sticky Expectations and Consumption Dynamics

Christopher D. Carroll¹ Edmund Crawley² Jiri Slacalek³ Kiichi Tokuoka⁴ Matthew N. White⁵

¹Johns Hopkins and NBER, ccarroll@jhu.edu

²Johns Hopkins, ecrawle2@jhu.edu

³European Central Bank, jiri.slacalek@ecb.int

⁴MoF Japan, kiichi.tokuoka@mof.go.jp

⁵University of Delaware, mnwecon@udel.edu

February 2018

Consumption Dynamics: Macro vs Micro

Macro: Representative Agent Models

- Theory (With Separable Utility):
 - C responds instantly, completely to shock
 - Consequences of uncertainty are trivial
- Evidence: Consumption is too smooth (Campbell & Deaton, 1989)
- Solution: "Habits" parameter $\chi^{\text{Macro}} \approx 0.6 \sim~0.8$

$$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \epsilon$$

Micro: Heterogeneous Agent Models

- Uninsurable risk is essential, changes everything
- Var of micro income shocks much larger than of macro shocks: $var(\Delta \log \mathbf{p}) \approx 100 \times var(\Delta \log \mathbf{P})$
- ullet Evidence: "Habits" parameter $\chi^{ extsf{Micro}} pprox 0.0 \sim 0.1$

Persistence of Consumption Growth: Macro vs Micro

- New paper in EER, Havranek, Rusnak, and Sokolova (2017) Meta analysis of 597 estimates of χ
- $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \epsilon$
- $\{\chi^{\text{Macro}}, \chi^{\text{Micro}}\} = \{0.6, 0.1\}$

Claim: It's Not Habits, It's Inattention! (Macro not Micro)

Our Setup

- Income Has Idiosyncratic and Aggregate Components
- Idiosyncratic Component Is Perfectly Observed
- Aggregate Component Is Stochastically Observed
 - Updating à la Calvo (1983)

Not ad hoc

- Identical: Mankiw and Reis (2002), Carroll (2003)
- Similar: Reis (2006), Sims (2003), ...

Why Macro Inattention Is Plausible

Idiosyncratic Variability Is $\sim 100 \times$ Bigger

- If Same Specification Estimated on Micro vs Macro Data
- Pervasive Lesson of All Micro Data

Utility Cost of Inattention Small

- Micro: Critical (and Easy) To Notice You're Unemployed
- Macro: Not Critical To Instantly Notice If U ↑

Literature on C Dynamics and Info Frictions

- C Smoothness: Campbell and Deaton (1989); Pischke (1995);
 Rotemberg and Woodford (1997)
- Inattention: Mankiw and Reis (2002); Reis (2006); Sims (2003);
 Maćkowiak and Wiederholt (2015); Gabaix (2014); . . .
- Adjustment Costs: Alvarez, Guiso, and Lippi (2012); Chetty and Szeidl (2016)
- Empirical Evidence on Info Frictions: Coibion and Gorodnichenko (2015); Fuhrer (2017); . . .
- Macro Habits: Abel (1990); Constantinides (1990); all papers since Christiano, Eichenbaum, and Evans (2005)
- Micro Habits: Dynan (2000); many recent papers

Quadratic Utility Frictionless Benchmark

Hall (1978) Random Walk

• Total Wealth (Human + Nonhuman):

$$\mathbf{o}_{t+1} = (\mathbf{o}_t - \mathbf{c}_t) \mathsf{R} + \zeta_{t+1}$$

• C Euler Equation:

$$\mathbf{u}'(\mathbf{c}_t) = \mathsf{R}\beta \mathbb{E}_t[\mathbf{u}'(\mathbf{c}_{t+1})]$$

• \Rightarrow Random Walk (for R $\beta = 1$):

$$\Delta \mathbf{c}_{t+1} = \epsilon_{t+1}$$

• Expected Wealth:

$$\mathbf{o}_t = \mathbb{E}_t[\mathbf{o}_{t+1}] = \mathbb{E}_t[\mathbf{o}_{t+2}] = \dots$$

Sticky Expectations—Individual c

• Consumer who happens to update at t and t + n

$$\mathbf{c}_t = (\mathsf{r}/\mathsf{R})\mathbf{o}_t$$
 $\mathbf{c}_{t+1} = (\mathsf{r}/\mathsf{R})\widetilde{\mathbf{o}}_{t+1} = (\mathsf{r}/\mathsf{R})\mathbf{o}_t = \mathbf{c}_t$
 $\vdots \qquad \vdots$
 $\mathbf{c}_{t+n-1} = \mathbf{c}_t$

- Implies that $\Delta^n \mathbf{o}_{t+n} \equiv \mathbf{o}_{t+n} \mathbf{o}_t$ is white noise
- So individual c is RW across updating periods:

$$\mathbf{c}_{t+n} - \mathbf{c}_t = (r/R) \underbrace{(\mathbf{o}_{t+n} - \mathbf{o}_t)}_{\Delta^n \mathbf{o}_{t+n}}$$

Sticky Expectations—Aggregate C

- ullet Pop normed to one, uniformly dist on [0,1]: ${f C}_t = \int_0^1 {f c}_{t,i} \, {
 m d}i$
- Calvo (1983)-Type Updating of Expectations:
 - Probability $\Pi = 0.25$ (per quarter)
- Economy composed of many sticky-E consumers:

$$\mathbf{C}_{t+1} = (1 - \Pi) \underbrace{\mathbf{C}_{t+1}^{\not \uparrow}}_{=\mathbf{C}_t} + \Pi \mathbf{C}_{t+1}^{\pi}$$

$$\Delta \mathbf{C}_{t+1} \approx \underbrace{(1 - \Pi)}_{\equiv \gamma = 0.75} \Delta \mathbf{C}_t + \epsilon_{t+1}$$

• Substantial persistence ($\chi = 0.75$) in aggregate C growth

One More Ingredient ...

Differences: Idiosyncratic vs Aggregate shocks

- Idiosyncratic shocks: Frictionless observation
 - I notice if I am fired, promoted, somebody steals my wallet
 - True RW with respect to these
- Aggregate shocks: Sticky observation
 - May not instantly notice changes in aggregate productivity

Result:

- Idiosyncratic Δc : dominated by frictionless RW part
- Aggregate ΔC: highly serially correlated
 Law of large numbers ⇒ idiosyncratic part vanishes

Serious Models

Partial Equilibrium/Small Open Economy

- CRRA Utility
- Idiosyncratic Shocks Calibrated From Micro Data
- Aggregate Shocks Calibrated From Macro Data
- Markov Process (Discrete RW) for Aggr Income Growth
 - Handles changing growth 'eras'
- Liquidity Constraint
- Mildly Impatient Consumers

DSGE Heterogeneous Agents (HA) Model

Same!

Income Process

Individual's labor productivity is

$$\boldsymbol{\ell}_{t,i} = \overbrace{\boldsymbol{\theta}_{t,i} \boldsymbol{\Theta}_{t}}^{\equiv \boldsymbol{\theta}_{t,i}} \overbrace{\boldsymbol{\rho}_{t,i} \boldsymbol{P}_{t}}^{\equiv \boldsymbol{p}_{t,i}}$$

Idiosyncratic and aggregate p evolve according to

$$p_{t+1,i} = p_{t,i}\psi_{t+1,i}$$

 $P_{t+1} = \Phi_{t+1}P_t \Psi_{t+1}$

- Φ is Markov 'underlying' aggregate pty growth
 - Discrete (bounded) random walk
 - Calibrated to match postwar US pty growth variation
 - Generates predictability in income growth (for IV regressions)

Blanchard (1985) Mortality and Insurance

• Household survives from t to t+1 with probability (1-D):

$$p_{t+1,i} = egin{cases} 1 & ext{for newborns} \ p_{t,i}\psi_{t+1,i} & ext{for survivors} \end{cases}$$

Blanchardian scheme:

$$\mathbf{k}_{t+1,i} = \begin{cases} 0 & \text{if HH } i \text{ dies, is replaced by newborn} \\ \mathbf{a}_{t,i}/(1-D) & \text{if household } i \text{ survives} \end{cases}$$

• Implies for aggregate:

$$\begin{aligned} \mathbf{K}_{t+1} &= \int_0^1 \left(\frac{1 - \mathsf{d}_{t+1,i}}{1 - \mathsf{D}} \right) \mathbf{a}_{t,i} \, \mathsf{d}i = \mathbf{A}_t \\ \mathcal{K}_{t+1} &= A_t / (\Psi_{t+1} \Phi_{t+1}) \end{aligned}$$

Resources

Market resources:

$$\mathbf{m}_{t,i} = \underbrace{\mathbf{W}_{t}\boldsymbol{\ell}_{t,i}}_{\equiv \mathbf{y}_{t}} + \underbrace{\mathscr{R}_{t}}_{\mathsf{T}+\mathsf{r}_{t}} \mathbf{k}_{t,i}$$

• End-of-Period 'Assets'—Unspent resources:

$$\mathbf{a}_{t,i} = \mathbf{m}_{t,i} - \mathbf{c}_{t,i}$$

• Capital transition depends on prob of survival 1 - D:

$$\mathbf{k}_{t+1,i} = \mathbf{a}_{t,i}/(1-\mathsf{D})$$

Frictionless Solution

- ullet For exposition: Assume constant W and $\mathscr R$
- Normalize everything by $\mathbf{p}_{t,i} \equiv p_{t,i}P_t$, e.g. $m_{t,i} = \mathbf{m}_{t,i}/(p_{t,i}P_t)$
- $c(m, \Phi)$ is the function that solves:

$$v(m_{t,i},\Phi_t) = \max_c u(c) + \mathcal{D}\beta \mathbb{E}_t \left[(\Phi_{t+1} \psi_{t+1,i})^{1-\rho} v(m_{t+1,i},\Phi_{t+1}) \right]$$

Level of consumption:

$$\mathbf{c}_{t,i} = \mathrm{c}(m_{t,i}, \Phi_t) \times p_{t,i} P_t$$

Sticky Expectations about Aggregate Income

Calvo Updating of Perceptions of Aggregate Shocks

- True Permanent income: $P_{t+1} = \Phi_{t+1} P_t \Psi_{t+1}$
- Tilde (\widetilde{P}) denotes perceived variables
- Perception for consumer who has not updated for *n* periods:

$$\widetilde{P}_{t,i} = \mathbb{E}_{t-n} [P_t | \Omega_{t-n}] = \Phi_{t-n}^n P_{t-n}$$

because Φ is random walk

Sticky Expectations about Aggregate Income

Sequence Within Period

- **1** Income shocks are realized and every individual sees her true **y** and **m**, i.e. $\mathbf{y}_{t,i} = \widetilde{\mathbf{y}}_{t,i}$ and $\mathbf{m}_{t,i} = \widetilde{\mathbf{m}}_{t,i}$ for all t and i
- **②** Updating shocks realized: i observes true P_t, Φ_t w/ prob Π ; forms perceptions of her normalized market resources $\widetilde{m}_{t,i}$
- **3** Consumes based on her perception, using $c(\widetilde{m}_{t,i}, \widetilde{\Phi}_{t,i})$ Key Assumption:
 - People act as if their perceptions about aggregate state $\{\widetilde{P}_{t,i}, \widetilde{\Phi}_{t,i}\}$ are the true aggregate state $\{P_t, \Phi_t\}$

Behavior under Sticky Expectations

- Normalized resources:
 - $m_{t,i} \equiv \mathbf{m}_{t,i}/(p_{t,i}P_t)$ is actual
 - ullet $\widetilde{m}_{t,i} \equiv \mathbf{m}_{t,i} / (p_{t,i} \widetilde{P}_{t,i})$ is perceived
- Usually $\widetilde{m}_{t,i} \neq m_{t,i}$ because P_t not perfectly observed
 - in levels: $\widetilde{\mathbf{m}}_{t,i} = \mathbf{m}_{t,i}$; but normalized: $\widetilde{m}_{t,i} \neq m_{t,i}$
- Consumers behave according to frictionless consumption function
- But **based on** $\widetilde{m}_{t,i}$ (not $m_{t,i}$):

$$\widetilde{c}_{t,i} = c(\widetilde{m}_{t,i}, \widetilde{\Phi}_{t,i})$$
 $\mathbf{c}_{t,i} = \widetilde{c}_{t,i} \times p_{t,i} \widetilde{P}_{t,i}$

ullet Correctly perceive level of their own spending $oldsymbol{c}_{t,i}$

DSGE Heterogeneous Agents Model

- Idiosyncratic and aggregate shocks same as PE/SOE
- Endogenous W_t and \mathcal{R}_t
- Aggregate market resources M_t is a state variable

$$v(m_{t,i}, M_t, \Phi_t) = \max_{c} u(c) + \mathcal{D}\beta \mathbb{E}_t [(\Phi_{t+1} \psi_{t+1,i})^{1-\rho} v(m_{t+1,i}, M_{t+1}, \Phi_{t+1})]$$

- Solved using Krusell and Smith (1998)
- Perception dynamics identical to sticky PE/SOE:

$$\mathbf{c}_{t,i} = \mathrm{c}(\widetilde{m}_{t,i}, \widetilde{M}_{t,i}, \widetilde{\Phi}_{t,i}) \times p_{t,i}\widetilde{P}_{t,i}$$

Regressions on Simulated and Actual Data

Dynan (2000)/Sommer (2007) Specification:

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \chi \mathbb{E}[\Delta \log \mathbf{C}_t] + \eta \mathbb{E}[\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$$

• χ : Extent of habits

Data: Micro:
$$\chi^{\text{Micro}} = 0.1$$
 (EER 2017 paper)
Macro: $\chi^{\text{Macro}} = 0.6$

• η : Fraction of Y going to 'rule-of-thumb' C = Y types

```
Data: Micro: 0 < \eta^{\text{Micro}} < 1 (Depends ...)
Macro: \eta^{\text{Macro}} \approx 0.5 (Campbell and Mankiw (1989))
```

• α: Precautionary saving (micro) or IES (Macro)

```
Data: Micro: \alpha^{\text{Micro}} < 0 (Zeldes (1989))

Macro: \alpha^{\text{Macro}} < 0 (but small)

[In GE r depends roughly linearly on A]
```


Micro vs Macro: Theory and Empirics

$$\Delta \log \mathbf{C}_{t+1} \ \approx \ \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$$

	χ	η	α
Micro (Separable)			
Theory	≈ 0	$0<\eta<1$	< 0
Data	≈ 0	$0 < \eta < 1$	< 0
Macro			
Theory: Separable	≈ 0	pprox 0	< 0
Theory: CampMan	≈ 0	pprox 0.5	< 0
Theory: Habits	≈ 0.75	≈ 0	< 0

Calibration I

		Macroeconomic Parameters		
γ	0.36	Capital's Share of Income		
٦	$0.94^{1/4}$	Depreciation Factor		
$\sigma^2_\Theta \ \sigma^2_\Psi$	0.00001	Variance Aggregate Transitory Shocks		
$\sigma_{f \Psi}^2$	0.00004	Variance Aggregate Permanent Shocks		
Steady State of Perfect Foresight DSGE Model				
$\left(\sigma_{\Psi}=\sigma_{\Theta}=\sigma_{\psi}=\sigma_{ heta}=\wp=D=0, \Phi_t=1 ight)$				
$reve{K}/reve{K}^\gamma \ reve{K}$	12.0	SS Capital to Output Ratio		
	48.55	SS Capital to Labor Productivity Ratio (= $12^{1/(1-\gamma)}$)		
Ŭ	2.59	SS Wage Rate $(=(1-\gamma) reve{K}^\gamma)$		
ř	0.03	SS Interest Rate $(=\gamma \breve{\mathcal{K}}^{\gamma-1})$		
$reve{\mathscr{R}}$	1.015	SS Between-Period Return Factor $(= 7 + \check{r})$		

Calibration II

	Preference Parameters					
ρ	2.	Coefficient of Relative Risk Aversion				
β_{SOE}	0.970	SOE Discount Factor				
$\beta_{ extsf{DSGE}}$	0.986	$HA ext{-}DSGE$ Discount Factor $(=reve{\mathscr{R}}^{-1})$				
П	0.25	Probability of Updating Expectations (if Sticky)				
	Idiosyncratic Shock Parameters					
σ_{θ}^2	0.120	Variance Idiosyncratic Tran Shocks (=4× Annual)				
$\sigma_{ heta}^2 \ \sigma_{\psi}^2$	0.003	Variance Idiosyncratic Perm Shocks $(=\frac{1}{4} \times Annual)$				
Ø	0.050	Probability of Unemployment Spell				
D	0.005	Probability of Mortality				

Micro Regressions: Frictionless

$$\Delta \log \mathbf{c}_{t+1,i} = \varsigma + \chi \Delta \log \mathbf{c}_{t,i} + \eta \mathbb{E}_{t,i} [\Delta \log \mathbf{y}_{t+1,i}] + \alpha \bar{\mathbf{a}}_{t,i} + \epsilon_{t+1,i}.$$

Model of Expectations	χ	η	α	\bar{R}^2
Frictionless				
	0.019			0.000
	(-)			
		0.011		0.004
		(-)		
			-0.190	0.010
			(-)	
	0.061	0.016	-0.183	0.017
	(-)	(-)	(-)	

Micro Regressions: Sticky

$$\Delta \log \mathbf{c}_{t+1,i} \quad = \quad \varsigma + \chi \Delta \log \mathbf{c}_{t,i} + \eta \mathbb{E}_{t,i} [\Delta \log \mathbf{y}_{t+1,i}] + \alpha \bar{\mathbf{a}}_{t,i} + \epsilon_{t+1,i}.$$

Model of Expectations	χ	η	α	$ar{R}^2$
Sticky				
-	0.012			0.000
	(-)			
		0.011		0.004
		(-)		
			-0.191	0.010
			(-)	
	0.051	0.015	-0.185	0.016
	(-)	(-)	(-)	

Empirical Results for U.S.

$\Delta \log C_{t+1} = \varsigma + \chi \Delta \log C_t + \eta \mathbb{E}_t [\Delta \log Y_{t+1}] + \alpha A_t + \epsilon_{t+1}$					
•	ations : De endent Varia	•	OLS or IV	$2^{\sf nd}$ Stage $ar{R}^2$	KP <i>p</i> -val Hansen J <i>p</i> -val
Nondurables	and Service	es			
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
0.468***			OLS	0.216	
(0.076)					
0.830***			IV	0.278	0.222
(0.098)					0.439
	0.587***		IV	0.203	0.263
	(0.110)				0.319
		-0.17e-4	IV	-0.005	0.081
		(5.71e-4)			0.181
0.618***	0.305*	-4.96e-4*	IV	0.304	0.415
(0.159)	,	(2.94e-4)			0.825
Memo: For i	instruments	$\mathbf{Z}_t, \Delta \log \mathbf{C}_t$	$= \mathbf{Z}_t \zeta,$	$R^2 = 0.358$	

Notes: Data source is NIPA, 1960Q1–2016Q. Robust standard errors are in parentheses. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta_{t-3}, \Delta_{t-2}, \Delta$

Small Open Economy: Sticky

$\Delta \log C_{t+1} = \varsigma + \chi \Delta \log C_t + \eta \mathbb{E}_t [\Delta \log Y_{t+1}] + \alpha A_t + \epsilon_{t+1}$					
•	ations : Dep endent Varia		OLS or IV	$2^{ m nd}$ Stage $ar{R}^2$	KP <i>p</i> -val Hansen J <i>p</i> -val
Sticky : Δ lo Δ log \mathbf{C}_{t}^{*}		n measuremen A_t	t error	$\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$);
0.508*** (0.058)	0 111		OLS	0.263	
0.802*** (0.104)			IV	0.260	0.000 0.554
	0.859••• (0.182)		IV	0.198	0.060 0.233
		-8.26e-4 ^{••} (3.99e-4)	IV	0.066	0.000 0.002
0.660 ••• (0.187)	0.192 (0.277)	0.60e-4 (5.03e-4)	IV	0.261	0.359 0.546
Memo: For i			$= \mathbf{Z}_t \zeta,$	$\bar{R}^2 = 0.260;$	$var(log(\xi_t)) = 5.99\mathrm{e}6$

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

Small Open Economy: Frictionless

$\Delta \log \mathbf{C}$	$_{t+1} =$	$\varsigma + \chi \iota$	$\Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [$	$\Delta \log \mathbf{Y}_{t+1}$	$[1] + \alpha A_t + \epsilon_{t+1}$

Expectations : Dep Var	OLS	2 nd Stage	KP <i>p</i> -val
Independent Variables	or IV	\bar{R}^2	Hansen J <i>p</i> -val

Frictionless : $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$); $\Delta \log \mathbf{C}_{t}^{*}$ $\Delta \log \mathbf{Y}_{t+1}$ A_t 0.295 OLS 0.087 (0.066)0.660 IV 0.040 0.237(0.309)0.600 0.457 IV 0.035 0.059 (0.209)0.421-6.92e-4IV 0.026 0.000 (5.87e-4)0.365 0.420 0.258 0.45e-4IV 0.041 0.516 (9.51e-4)(0.428)(0.365)0.529 Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_t^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.039$; $\text{var}(\log(\xi_t)) = 5.99e-6$

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

Heterogeneous Agents DSGE: Sticky

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$					
Expectations : Dep Var Independent Variables		OLS or IV	2 nd Stage $ar{R}^2$	KP <i>p</i> -val Hansen J <i>p</i> -val	
Sticky : $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$););
$\Delta \log \mathbf{C}_t^*$ $0.467^{\bullet \bullet \bullet}$ (0.061)	$\Delta \log \mathbf{Y}_{t+1}$	A_t	OLS	0.223	
0.773			IV	0.230	0.000 0.542
,	0.912••• (0.245)		IV	0.145	0.105 0.187
	(0.243)	-0.97e-4• (0.56e-4)	IV	0.059	0.107 0.000 0.002
0.670	0.171	0.12e-4	IV	0.231	0.460
(0.181)		(0.86e-4)		_	0.551
Memo: For	instruments 2	\mathbf{Z}_t , $\Delta \log \mathbf{C}_t^*$	$= \mathbf{Z}_t \zeta,$	$R^2 = 0.232;$	$var(log(\xi_t)) = 4.16e\text{-}6$

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

Heterogeneous Agents DSGE: Frictionless

$\Delta \log C_{t+1}$	$= \varsigma + \chi \Delta \log \mathbf{C}_t$	$+\eta \mathbb{E}_t[\Delta \log \mathbf{N}]$	$[I_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expectations : Dep Var	OLS	2 nd Stage	KP <i>p</i> -val
Independent Variables	or IV	$ar{R}^2$	Hansen J <i>p</i> -val

Frictionless : $\Delta \log \mathbf{C}_{t+1}^*$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$); $\Delta \log C_{t}^{*}$ $\Delta \log \mathbf{Y}_{t+1}$ A_t 0.189 OLS 0.036 (0.072)0.476 IV 0.020 0.318(0.354)0.556 0.368 IV 0.017 0.107(0.321)0.457-0.34e-4IV 0.015 0.000 (0.98e-4)0.433 0.289 0.214 0.01e-4IV 0.020 0.572 (1.87e-4)0.531 (0.463)(0.583)Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_t^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.023$; $\text{var}(\log(\xi_t)) = 4.16\text{e}-6$

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, A_{b} \log \mathbf{C}_{t-2}, \Delta_{b} \log \mathbf{Y}_{t-2} \}$.

Utility Costs of Stickiness

 Simulate expected lifetime utility when market resources nonstochastically equal to W_t at birth under frictionless

$$\overline{\mathbf{v}}_0 \equiv \mathbb{E}[\mathbf{v}(\mathbf{W}_t, \cdot)]$$

and sticky expectations: $\overline{\widetilde{v}}_0 \equiv \mathbb{E}[\widetilde{v}(W_t,\cdot)]$

- Expectations taken over state variables other than $m_{t,i}$
- Newborn's willingness to pay (as fraction of permanent income) to avoid having sticky expectations:

$$\omega = 1 - \left(\frac{\overline{\widetilde{v}}_0}{\overline{v}_0}\right)^{\frac{1}{1-\rho}}$$

• $\omega \approx 0.05\%$ of permanent income $\omega_{SOE} = 4.82 \text{e-4}; \ \omega_{HA-DSGE} = 4.51 \text{e-4}$

Conclusion

Model with 'Sticky Expectations' of aggregate variables can match both micro and macro consumption dynamics

$$\Delta \log \mathbf{C}_{t+1} \approx \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$$

	χ	η	α
Micro			
Data	≈ 0	$0<\eta<1$	< 0
Theory: Habits	≈ 0.75	$0<\eta<1$	< 0
Theory: Sticky Expectations	≈ 0	$0<\eta<1$	< 0
Macro			
Data	≈ 0.75	pprox 0	< 0
Theory: Habits	≈ 0.75	pprox 0	< 0
Theory: Habits	≈ 0.75	pprox 0	< 0

References I

- ABEL, ANDREW B. (1990): "Asset Prices under Habit Formation and Catching Up with the Joneses," *American Economic Review*, 80(2), 38–42.
- ALVAREZ, FERNANDO, LUIGI GUISO, AND FRANCESCO LIPPI (2012): "Durable Consumption and Asset Management with Transaction and Observation Costs," *American Economic Review*, 102(5), 2272–2300.
- BLANCHARD, OLIVIER J. (1985): "Debt, Deficits, and Finite Horizons," Journal of Political Economy, 93(2), 223–247.
- CALVO, GUILLERMO A. (1983): "Staggered Contracts in a Utility-Maximizing Framework," Journal of Monetary Economics, 12(3), 383–98.
- CAMPBELL, JOHN, AND ANGUS DEATON (1989): "Why is Consumption So Smooth?," The Review of Economic Studies, 56(3), 357-373, http://www.jstor.org/stable/2297552.
- CAMPBELL, JOHN Y., AND N. GREGORY MANKIW (1989): "Consumption, Income, and Interest Rates: Reinterpreting the Time-Series Evidence," in NBER Macroeconomics Annual, 1989, ed. by Olivier J. Blanchard, and Stanley Fischer, pp. 185–216. MIT Press, Cambridge, MA, http://www.nber.org/papers/w2924.pdf.
- CARROLL, CHRISTOPHER D. (2003): "Macroeconomic Expectations of Households and Professional Forecasters," Quarterly Journal of Economics, 118(1), 269–298, http://econ.jhu.edu/people/ccarroll/epidemiologyQJE.pdf.
- CHETTY, RAJ, AND ADAM SZEIDL (2016): "Consumption Commitments and Habit Formation," Econometrica, 84, 855–890.
- CHRISTIANO, LAURENCE J., MARTIN EICHENBAUM, AND CHARLES L. EVANS (2005): "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," *Journal of Political Economy*, 113(1), 1–45.
- COIBION, OLIVIER, AND YURIY GORODNICHENKO (2015): "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," *American Economic Review*, 105(8), 2644–2678.
- CONSTANTINIDES, GEORGE M. (1990): "Habit Formation: A Resolution of the Equity Premium Puzzle," Journal of Political Economy, 98(3), 519-543.

References II

- DYNAN, KAREN E. (2000): "Habit Formation in Consumer Preferences: Evidence from Panel Data," *American Economic Review*, 90(3), http://www.jstor.org/stable/117335.
- FUHRER, JEFFREY C. (2017): "Intrinsic Persistence in Expectations: Evidence from Micro Data," Presentation at NBER Summer Institute, Federal Reserve Bank of Boston.
- GABAIX, XAVIER (2014): "A Sparsity-Based Model of Bounded Rationality," The Quarterly Journal of Economics, 129(4), 1661–1710.
- HALL, ROBERT E. (1978): "Stochastic Implications of the Life-Cycle/Permanent Income Hypothesis: Theory and Evidence," Journal of Political Economy, 96, 971–87, Available at http://www.stanford.edu/~rehall/Stochastic-JPE-Dec-1978.pdf.
- HAVRANEK, TOMAS, MAREK RUSNAK, AND ANNA SOKOLOVA (2017): "Habit Formation in Consumption: A Meta-Analysis," European Economic Review, 95(C), 142–167.
- KRUSELL, PER, AND ANTHONY A. SMITH (1998): "Income and Wealth Heterogeneity in the Macroeconomy," Journal of Political Economy, 106(5), 867–896.
- LUCAS, ROBERT E. (1973): "Some International Evidence on Output-Inflation Tradeoffs," American Economic Review, 63, 326–334.
- MAĆKOWIAK, BARTOSZ, AND MIRKO WIEDERHOLT (2015): "Business Cycle Dynamics under Rational Inattention," The Review of Economic Studies, 82(4), 1502–1532.
- Mankiw, N. Gregory, and Ricardo Reis (2002): "Sticky Information Versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," *Quarterly Journal of Economics*, 117(4), 1295–1328.
- MUTH, JOHN F. (1960): "Optimal Properties of Exponentially Weighted Forecasts," Journal of the American Statistical Association, 55(290), 299–306.
- PISCHKE, JÖRN-STEFFEN (1995): "Individual Income, Incomplete Information, and Aggregate Consumption," Econometrica, 63(4), 805–40.
- REIS, RICARDO (2006): "Inattentive Consumers," Journal of Monetary Economics, 53(8), 1761-1800.

References III

- ROTEMBERG, JULIO J., AND MICHAEL WOODFORD (1997): "An Optimization-Based Econometric Model for the Evaluation of Monetary Policy," in *NBER Macroeconomics Annual*, 1997, ed. by Benjamin S. Bernanke, and Julio J. Rotemberg, vol. 12, pp. 297–346. MIT Press, Cambridge, MA.
- SIMS, CHRISTOPHER (2003): "Implications of Rational Inattention," Journal of Monetary Economics, 50(3), 665-690, available at http://ideas.repec.org/a/eee/moneco/v50y2003i3p665-690.html.
- SOMMER, MARTIN (2007): "Habit Formation and Aggregate Consumption Dynamics," Advances in Macroeconomics, 7(1), Article 21.
- ZELDES, STEPHEN P. (1989): "Consumption and Liquidity Constraints: An Empirical Investigation," Journal of Political Economy, 97, 305-46, Available at http://www.jstor.org/stable/1831315.

Markov Process for Aggregate Productivity Growth Φ

$$\ell_{t,i} = \theta_{t,i} \Theta p_{t,i} P_t, \quad p_{t+1,i} = p_{t,i} \psi_{t+1,i}, \quad P_{t+1} = \Phi_{t+1} P_t \Psi_{t+1}$$

- Φ_t follows bounded (discrete) RW
- 11 states; average persistence 2 quarters
- Flexible way to match actual pty growth data

Equilibrium

	SOE Model		HA-DSGE Model				
	Frictionless	Sticky	Frictionless	Sticky			
Means							
Α	7.49	7.43	56.85	56.72			
С	2.71	2.71	3.44	3.44			
Standard Deviations							
Aggregate Time Series ('Macro')							
log A	0.332	0.321	0.276	0.272			
$\Delta \log \mathbf{C}$	0.010	0.007	0.010	0.005			
$\Delta \log \mathbf{Y}$	0.010	0.010	0.007	0.007			
Individual Cross Sectional ('Micro')							
log a	0.926	0.927	1.015	1.014			
log c	0.790	0.791	0.598	0.599			
log p	0.796	0.796	0.796	0.796			
$\log \mathbf{y} \mathbf{y} > 0$	0.863	0.863	0.863	0.863			
$\Delta \log c$	0.098	0.098	0.054	0.055			
Cost of Stickiness	4.82e-4		4.51e-4				

Cost of Stickiness

Define (for given parameter values):

- $v(W_t, \cdot)$ Newborns' expected value for frictionless model
- $\grave{v}(\mathsf{W},\cdot)$ Newborns' expected value if $\sigma_{\psi}^2=0$
- $\widetilde{v}(W,\cdot)$ Newborns' expected value from sticky behavior

Fact suggested by theory (and confirmed numerically):

$$v(\mathcal{W}) \approx \dot{v}(\mathcal{W}) - \kappa \sigma_{\Psi}^2$$
 (1)

Guess (and verify) that:

$$\bar{\mathbf{v}}(\mathcal{W}) \approx \dot{\mathbf{v}}(\mathcal{W}) - (\kappa/\Pi)\sigma_{\Psi}^2$$
 (2)

Cost of Stickiness: ω and Π

Costs of stickiness ω and prob of aggr info updating Π

Notes: The figure shows how the utility costs of updating ω depend on the probability of updating of aggregate information Π in the SOE model.

Cost of Stickiness: Solution

Suppose utility cost of attention is $\iota\Pi$.

If Newborns Pick Optimal Π, they solve

$$\max_{\Pi} \ \dot{\mathbf{v}}(\mathcal{W}) - (\kappa/\Pi)\sigma_{\Psi}^2 - \iota\Pi. \tag{3}$$

Solution:

$$\Pi = (\kappa/\iota)^{0.5} \sigma_{\Psi} \tag{4}$$

Optimal Π characteristics:

- Increasing in κ ('importance' to value of perm shocks)
- Increasing in σ_{ψ} ('magnitude' of perm shocks)
- Decreasing as attention becomes more costly: $\iota \uparrow$

Is Muth-Lucas-Pischke Kalman Filter Equivalent?

No.

Muth (1960)-Lucas (1973)-Pischke (1995) Kalman filter

- All you can see is Y
 - Lucas: Can't distinguish agg. from idio.
 - Muth–Pischke: Can't distinguish tran from perm
- Here: Can see own circumstances perfectly
- Only the (tiny) aggregate part is hard to see
- Signal extraction for aggregate \mathbf{Y}_t gives too little persistence in $\Delta \mathbf{C}_t$: $\chi \approx 0.17$

Muth-Pischke Perception Dynamics

- Optimal signal extraction problem (Kalman filter):
 Observe Y (aggregate income), estimate P, Θ
- Optimal estimate of P:

$$\hat{P}_{t+1} = \Pi \mathbf{Y}_{t+1} + (1 - \Pi)\hat{P}_t,$$

where for signal-to-noise ratio $\varphi = \sigma_{\Psi}/\sigma_{\Theta}$:

$$\Pi = \varphi \sqrt{1 + \varphi^2/4} - \varphi^2/2, \tag{5}$$

- ullet But if we calibrate arphi using observed macro data
 - ullet $\Rightarrow \Delta \log \mathbf{C}_{t+1} \approx \mathbf{0.17} \ \Delta \log \mathbf{C}_{t}$
 - Too little persistence!

