Ликбез по ML метрикам и их связи с бизнес-метриками

Pavel.Filonov@kaspersky.com
Data Science Manager

kaspersky

Обо мне

Образование $(x+a)^n = \sum_{k=0}^n \binom{n}{k} x^k a^{n-k}$

В начале карьеры 📀 🧎

Недавно

Сейчас

План

Пример из практики

Бизнес метрики

DS метрики

Как связать

Ошибочно закрытые

Гипотеза Alpha

Мы предполагаем, что приоритизация оповещений позволит находить true alerts раньше и это уменьшит среднее время реакции на ? %.

Гипотеза Beta

Подсказка в интерфейсе аналитика позволит снизить время на разбор ложных инцидентов, что повысит пропускную способность на 10%.

Гипотеза Charlie

Мы предполагаем, что автоматическая фильтрация false alerts снизит нагрузку на SOC аналитиков и повысит их пропускную способность на 20%. При этом доля ошибок не превысит 2%

На чем считать метрики

cross validation

Train and parameters search

Validate

Матрица ошибок

Предсказанное

Истинное

	Positive	Negative
Positive	True Positive TP	False Positive FP
Negative	False Negative FN	True Negative TN

Accuracy =
$$\frac{TP+TN}{TP+FP+FN+TN}$$

Подводные камни Accuracy

Positive

Negative

Тредсказанное

Предположим, что в данных 90% - Positive и 10% Negative

В качестве наивного классификатора выберем такой, который всегда предсказывает Positive

Истинное

Positive	Negative
90	10
0	0

Accuracy =
$$\frac{90}{100} = 0.9$$

Вывод: ассигасу не стоит использовать в случае дисбаланса классов

Матрица ошибок

Истинное

Предсказанное **Positive** Negative

Positive Negative

True Positive False Positive FP

False Negative True Negative TN

Precision = $\frac{FP}{TP+FP}$

Recall =
$$\frac{TP}{TP+FN}$$

Точность и полнота

Пусть в данных на 100 оповещений приходится 99 ложных и все 100 разбирались в ручную.

Точность модели – 70%.

Это означает, что из 100 оповещений, отправленных на разбор SOC аналитикам после фильтрации, 70 будут ими помечены как истинные, а 30 как ложные.

Полнота модели – 90%.

Это означает, что из 100 настоящих инцидентов 10 будут ошибочно отфильтрованы моделью.

Score – обычно число от 0 до 1. Можно трактовать как уверенность модели в позитивном предсказании

Если threshold -> 1, то Recall -> 0, a Precision -> 1

Если threshold -> 0, то Recall -> 1, a Precision -> min

PR-кривая

Receiver Operating Characteristic

Истинное Negative Positive Тредсказанное **True Positive False Positive Positive** TP FP **False Negative True Negative** Negative ΤN FN True Positive Rate False Positive Rate $\mathsf{FPR} = \frac{FP}{FP + TN}$ TPR = Recall = $\frac{TP}{TP+FN}$ True Negative Rate

TNR = $\frac{TN}{FP+TN}$ = 1-FPR

FPR модели 0.6:

60% всех негативных примеров будут распознаны некорректно

Вывод – можно автоматически отфильтровать 40% всех ложных оповещений, что повысит пропускную способность

ROC-кривая

Модель может автоматически отфильтровать **40%** ложных оповещений.

При этом доля ошибочно закрытых составит 2%

Эксперимент показал, что пропускная способность аналитика растет с ростом TNR.

Выводы

- Бизнес метрики зависят от гипотезы
- DS метрики также зависят от гипотезы
- Оптимизировать стоит DS метрики связанные с гипотезой
- Для гипотезы Charlie
 - TPR полностью ложиться на метрику по доле ошибок
 - TNR можно использовать как прокси-метрику для поиска корреляции с пропускной способностью аналитиков
- После подтверждения корреляции метрик, можно использовать в гипотезах целевые DS-метрики

Ссылки

- 1. What is a Confusion Matrix? link
- 2. Метрики качества классификации <u>coursera</u>
- 3. Classification metrics scikit-learn docs
- 4. Multilabel ranking metrics scikit-leran docs
- 5. Regression metrics scikit-learn.org docs
- 6. gcunhase/NLPMetrics: The Natural Language Processing Metrics Python Repository github.com
- 7. Biometrics performance wikipedia.org
- 8. Evaluation Metrics for Recommender Systems <u>link</u>

Спасибо за внимание!

Pavel.Filonov@Kaspersky.com

@pavel_filonov

If you are looking at this last slide, you are already a hero!

kaspersky