Surprise Housing – Advanced Regression assignment

Member Name - Pamela Roy

Batch - MLC51 EPGP ML&AI

Agenda

- Problem Statement
- Reading and Understanding the data
- Data preparation for Modelling
- Building, Training and Testing Models
- Prediction and evaluation on different modeos

Problem Statement

A US-based housing company named Surprise Housing has decided to enter the Australian market. The company uses data analytics to purchase houses at a price below their actual values and flip them on at a higher price. For the same purpose, the company has collected a data set from the sale of houses in Australia.

The company is looking at prospective properties to buy to enter the market.

The company wants to know:

- •Which variables are significant in predicting the price of a house, and
- •How well those variables describe the price of a house

Reading and Understanding the Data

On analysing train.csv file below are the observations:

- The data file 'train.csv' is uploaded in G-drive & code is written in google.colab to read the file
- On checking the detailed file information we find :
 - Total number of rows 1460
 - Total number of columns 81
 - Data types of the columns : 35 columns int64 , 43 columns object , 3 columns float64
 - Columns having very few records maintained: 'Alley', 'FireplaceQc', 'PoolQc', 'Fence',
 'MiscFeatures'. These columns were dropped as they won't add much value in model building process
 - Columns mentioned do not have all records maintained against them (few missing) and hence has been identified as possible candidates for data imputation .
 - COLs: MasVnrType, MasVnrArea, BsmtQual, BsmtCond, BsmtExposure, BsmtFinType1, BsmtFinType2, Electrical, GarageType, GarageYrBlt, GarageFinish, GarageQual, GarageCond

Data preparation for Modelling

- Check for duplicate data is done. NO duplicates were found
- Below columns were dropped because of reasons provided below, reducing the no.columns to 64

Dropping ID as it do not add any information

Only 91 rows have data for Alley - hence dropping

Only 770 rows have data for FireplaceQu - hence dropping

Only 7 records avialbel for PoolQC - hence dropping

Only 54 records avilable for MiscFeature - hence dropping

Only 281 records available Fence - Hence Dropping

MiscVal col has 1408 records with val 0 out of 1460 recs - hence dropping

PoolArea col has 1453 records as 0 - hence dropping

ScreenPorch has 1344 records as 0 - hence dropping

3SsnPorch has 1463 records as 0 - hence dropping

EnclosedPorch has 1200+ records with val 0 - hence dropping

BsmtFinSF2 has almost 1300 records with val 0 - Hence dropping

LowQualFinSF has almost 1300 recs with val 0 - hence dropping

BsmtHalfBath has 1200+ records woth val 0 - hence dropping

Street have 1400+ records with value 'Pave' - hence dropping

Utilities Column has all rows with value AllPub - Hence Dropping

CentralAir colm has around 80 rows with value 'N' - Hence Dropping

Data imputing was done for the below columns :

Replace NA values with 0 for continuous variables LotFrortage, MasVnrArea, GarageYrBlt

Data preparation for Modelling

Data preparation continued...:

 Non Binary Categorical variables were converted to original values for below columns in order to help in model building:

-MSSubClass, MSZoning, OverallQual, OverallCond, MoSold, LandSlope, Functional

Checking the statistical information for the 25 continuous variables below is what we get:
 This shows the value / ranges for the values are very big or small. Later scalling to be performed in order to represent all data in 0& 1 range.

	LotFrontage	LotArea	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFinSF1	BsmtUnfSF	TotalBsmtSF	1stFlrSF	2ndFlrSF	• • •	Kitchen/
count	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000		1460.00
mean	57.623288	10516.828082	1971.267808	1984.865753	103.117123	443.639726	567.240411	1057.429452	1162.626712	346.992466		1.04
std	34.664304	9981.264932	30.202904	20.645407	180.731373	456.098091	441.866955	438.705324	386.587738	436.528436		0.22
min	0.000000	1300.000000	1872.000000	1950.000000	0.000000	0.000000	0.000000	0.000000	334.000000	0.000000		0.00
25%	42.000000	7553.500000	1954.000000	1967.000000	0.000000	0.000000	223.000000	795.750000	882.000000	0.000000		1.00
50%	63.000000	9478.500000	1973.000000	1994.000000	0.000000	383.500000	477.500000	991.500000	1087.000000	0.000000		1.00
75%	79.000000	11601.500000	2000.000000	2004.000000	164.250000	712.250000	808.000000	1298.250000	1391.250000	728.000000		1.00
max	313.000000	215245.000000	2010.000000	2010.000000	1600.000000	5644.000000	2336.000000	6110.000000	4692.000000	2065.000000		3.00

Data preparation for Modelling

Data preparation continued...:

- For all categorical variables dummies were added in order to turn the values into 0 & 1 (Binary)
 Like: for MSSubClass, MonthSold, MSZoning, LotShape, LandContour, LotConfig etc
- After adding the dummy variables the total number of columns increased to 258
- The data types for all the variables now got changed to continuous vatiables with data type either float64, int64 or uint8.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Columns: 258 entries, LotFrontage to Wall
dtypes: float64(3), int64(22), uint8(233)
memory usage: 617.5 KB
```

- The data set is then split into TRAIN & TEST sets in the ration of 70:30.
 - 70 % of the data provided will be used for training the model

 Records in training set 1021
 - 30% of the data provided will be used for evaluation & test of the model

```
Records in testing set - 439
```

Rescaling of the continuous variables done on order to change all data values in a range of 0 & 1

Building & Training the Model

LM Summary

LINEAR REGRESSION MODEL (With RFE)

- Using Linear Regression model the X_train and y_train dataset is fit
- Using RFE Recursive feature Elimination method we bring down the number of columns from 258 to **35 columns**
- The RFE model ranks the variables from 1 to 35
- The selected predictor variables are :

'LotArea', 'YearBuilt', 'BsmtFinSF1', 'TotalBsmtSF', '1stFlrSF',

'2ndFlrSF', 'GrLivArea', 'BedroomAbvGr', 'KitchenAbvGr', 'GarageArea',

'SevereSlope', 'PosA', 'PosN', 'RRAe', 'Excellent', 'Very Excellent',

'Very Good', 'Excellent', 'Fair', 'Shed', 'CompShg', 'Membran', 'Metal',

'Roll', 'Tar&Grv', 'WdShake', 'WdShnal', 'CBlock', 'Stone', 'Wood',

'Po', 'Severely Damaged', 'Con', 'Partial', 'OthW'', 'Stone', 'Po', 'Mix', 'Fa', 'Gd',

'Po', 'TA', 'Fa', 'Gd', 'Po', 'TA', 'Partial', 'GasA'

- Add a constant to the model using add_constant method from StatsModels library
- Then we run the Linear regression using the OLS method from same library on the TRAIN dataset
- Next we check the summary :
 - The R2 value is .918
 - Coefficients of the 35 variables are given
 - For all the 35 variables the P value are 0 or very near to 0

			ion Results					
Dep. Variable:		======= alePrice	R-squared:	========		918		
Model:		OLS	Adj. R-squa	red:	0.	914		
Method:	Least	Squares	F-statistic	:	23	2.7		
Date:	Aug 2023 Prob (F-statistic):			0.00				
			Log-Likelih	ood:	208	2085.5		
No. Observations:		1021	AIC:		-40	75.		
Df Residuals:		973	BIC:		-38	38.		
Df Model:		47						
Covariance Type:	n	onrobust						
	coef	std err	t	P> t	[0.025	0.975]		
const	-1.1687	0.038	-30.539	0.000	-1.244	-1.094		
LotArea	0.2418	0.029	8.195	0.000	0.184	0.300		
YearBuilt	0.0850	0.006	13.535	0.000	0.073	0.097		
BsmtFinSF1	0.1802	0.016	11.387	0.000	0.149	0.211		
TotalBsmtSF	0.1842	0.028	6.584	0.000	0.129	0.239		
1stFlrSF	0.4822	0.096	5.014	0.000	0.293	0.671		
2ndFlrSF	0.2285	0.045	5.034	0.000	0.139	0.318		
GrLivArea	-0.0297	0.113	-0.263	0.793	-0.251	0.192		
BedroomAbvGr	-0.0525	0.013	-3.955	0.000	-0.078	-0.026		
KitchenAbvGr	-0.1009	0.010	-10.018	0.000	-0.121	-0.081		
GarageArea	0.0358	0.009	3.853	0.000	0.018	0.054		
2 2 2 2	County Service Parks	120 220 220	The second second		27 72 272			

SevereSlope

-0.0700

0.017

-4.053

-0.036

Testing the Model

LINEAR REGRESSION MODEL .. continued

- Using Linear Regression model the X_test and y_test dataset is fit
- Using RFE Recursive feature Elimination method we bring down the number of columns from 258 to 35 columns
- The RFE model ranks the variables from 1 to 35
- The selected predictor variables are :

'LotArea', 'BsmtFinSF1', '1stFlrSF', 'GrLivArea',

'2 FAMILY CONVERSION - ALL STYLES AND AGES', '2-1/2 STORY ALL AGES',

'2-STORY 1946 & NEWER', 'DUPLEX - ALL STYLES AND AGES', 'SPLIT FOYER',

'FR3', 'SevereSlope', 'NridgHt', 'StoneBr', 'PosA', 'Duplex', 'Excellent', 'Poor',

'Mansard', 'Tar&Grv', 'WdShake', 'WdShngl', 'Other', 'Stone', 'Po', 'Mix', 'Fa', 'Gd', 'Po', 'TA', 'Fa', 'Gd', 'Po', 'TA', 'Partial', 'GasA'

- Add a constant to the model using add_constant method from StatsModels library
- Then we run the Linear regression using the OLS method from same library on the TRAIN dataset
- Next we check the summary :
 - The R2 value is .903
 - Coefficients of the 35 variables are given
 - For all the 35 variables the P value are 0 or very near to 0

LM Summary

5	OLS Regression Results							
	······································							
Dep. Variable:	SalePrice	R-squared:	0.903					
Model:	OLS	Adj. R-squared:	0.889					
Method:	Least Squares	F-statistic:	66.10					
Date:	Wed, 02 Aug 2023	Prob (F-statistic):	8.73e-163					
Time:	05:34:14	Log-Likelihood:	752.56					
No. Observations:	439	AIC:	-1395.					
Df Residuals:	384	BIC:	-1170.					
Df Model:	54							
Covariance Type:	nonrobust							

		coef	std err	t	P> t	[0.025	0.975]
	const	0.1058	0.060	1.755	0.080	-0.013	0.224
1	LotArea	0.3105	0.057	5.406	0.000	0.198	0.423
•	BsmtFinSF1	0.0803	0.014	5.685	0.000	0.053	0.108
	1stFlrSF	0.1273	0.026	4.951	0.000	0.077	0.178
	GrLivArea	0.2862	0.027	10.471	0.000	0.232	0.340
	2 FAMILY CONVERSION - ALL STYLES AND AGES	-0.0250	0.023	-1.111	0.267	-0.069	0.019
	2-1/2 STORY ALL AGES	-0.0594	0.023	-2.547	0.011	-0.105	-0.014
	2-STORY 1946 & NEWER	0.0337	0.009	3.745	0.000	0.016	0.051
	DUPLEX - ALL STYLES AND AGES	-0.0155	0.008	-1.970	0.050	-0.031	-2.98e-05
	SPLIT FOYER	0.0066	0.022	0.298	0.766	-0.037	0.050
`	FR3	-0.1015	0.052	-1.957	0.051	-0.204	0.000
,	SevereSlope	-0.2023	0.039	-5.155	0.000	-0.279	-0.125

Building, Training and testing the Model

Linear regression Model (Without RFE)

 Running Simple linear Regression for both train & test sets using all the 257 predictor variables we get the below metric scores – which indicates OverFitting

R2 Score on Train Set 0.9552118053411991

R2 Score on Test Set 0.9590772069514153

RSS on Train Set 0.5512200041630403

RSS on Test Set 0.351268485850443

MSE Score on Train Set 0.0005398824722458768

MSE Score on Test Set 0.0008001560042151322

RMSE on Train Set 0.02323537114499953

RMSE on Test Set 0.028287028903989406

Building, Training and testing the Model

RIDGE regression Model

(Performed on the 35 variables chosen by RFE)

• 20 hyperparameters used for tuning in RIDGE regression

Lambda (alpha in Python code):
0.0001, 0.005, 0.001, 0.05, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,10.0, 50, 100, 500, 1000

- Cross validation done using GridSearchCV from sklearn library with 5 folds
- 20 x 5 = 100 fits were done on the model
- Best Lambda value returned by method best_params_
 = 0.05
- With optimum Lambda value of .05 when the model is run on both Train & Test sets the R2 scores for the are as shown in right

Metrics using RIDGE - Summary

R2 Score on Train Set

0.917572876742081

R2 score on Test Set

0.9028261696702273

Building, Training and testing the Model

LASSO regression Model

(Performed on the 35 variables chosen by RFE)

20 hyperparameters used for tuning in LASSO regression

```
Lambda (alpha in Python code ):
0.0001, 0.005, 0.001, 0.05, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,10.0, 50, 100, 500, 1000
```

- Cross validation done using GridSearchCV from sklearn library with 5 folds
- $20 \times 5 = 100$ fits were done on the model
- Best Lambda value returned by method best_params_
 = 0.0001
- With optimum Lambda value of 0.0001 when the model is run on both Train & Test sets the R2 scores for the are as shown in right

Metrics using Lasso - Summary

R2 Score on Train Set

0.8432992239239697

R2 score on Test Set

0.8937517201666982

Prediction and evaluation on test data

• Comparing the 3 models built we get the below metrices .

	Metric	Linear Regression	Ridge Regression	Lasso Regression
0	R2 Score(Train)	0.955212	0.908791	0.843299
1	R2 Score(Test)	0.959077	0.902188	0.893752
2	RSS(Train)	0.551220	1.122535	1.928557
3	RSS(Test)	0.351268	0.839590	0.912002
4	MSE(Train)	0.000540	0.001099	0.001889
5	MSE(Test)	0.000800	0.001913	0.002077
6	RMSE(Train)	0.023235	0.033158	0.043461
7	RMSE(Test)	0.028287	0.043732	0.045579

- The **Linear regression** model gives R2 values on train & test set as 95.5% & 95.9%
 - This is an indication of overfitting
- On Performing **Ridge Regression** the R2 values are reduced to 90.87 %& 90.21% for train & test set respectively, but are still doing pretty well for both Train & test sets
 - Lambda value used is 0.05
- On performing Lasso Regression the R2 values are further reduced to 84.3 & 89.3% for train & test set respectively
 - Lambda value used is 0.0001
- Comparing the 3 models built we get the below metrices.
 - Ridge model appears to be the best fit .

Thank you

Pamela Roy

Email: bhattacharya.pam@gmail.com

