SCENCE CONFERENCE

London | Nov. 19 - Nov. 22 2019

Characterization of GitHub Repositories: A Natural Language Processing Approach

Problem

Why is repository characterization important?

- Contain the vast majority of the code hosted at GitHub
- Primary GitHub resource for developers, contributors and students
- Facilitates content discoverability
- Promotes collaboration

Challenges

- Almost 150M count
- Highly variable content
- Highly variable quality
- Meta-information not always informative or predictive
- Majority of content (code) is not written in a Natural Language

Objective

Characterizing repositories to provide personalized recommendations

Strategy

Leveraging NLP without looking at repository content

The meaning of words

How do people learn to speak, read, or write?

- No previous knowledge of the meaning of words
- No idea of how to build sentences with them

The meaning of words

How do people learn to speak, read, or write?

- No previous knowledge of the meaning of words
- No idea of how to build sentences with them

The meaning of words

How?

Patterns & repetition

How do people learn to speak, read, or write?

- No previous knowledge of the meaning of words
- No idea of how to build sentences with them

Leveraging user activity to (indirectly) extract information on repositories

Leveraging user activity to (indirectly) extract information on repositories

Leveraging user activity to (indirectly) extract information on repositories

Patterns & repetition

Doc2vec: Learning meaning from context

Source text

Source text (natural language)

Tensorflow keras go numpy xgboost pytorch pandas

I am painting with my new easel

Doc2vec: Learning meaning from context

Source text

Source text (natural language)

Tensorflow keras go numpy xgboost pytorch pandas

I am painting with my new easel

Doc2vec: Learning meaning from context

Source text

Source text (natural language)

Tensorflow k	eras go
--------------	---------

numpy xgboost pytorch pandas

I am painting with my new easel

Doc2vec: Learning meaning from context

Source text

Source text (natural language)

I am painting with my new easel

Tensorflow

Seed word

keras go

Context words

Doc2vec: Learning meaning from context

Source text

Tensorflow keras go

numpy xgboost pytorch pandas

Source text (natural language)

I am painting with my new easel

Tensorflow

Seed word

keras go

Context words

Source text

Tensorflow numpy xgboost pytorch pandas keras go Tensorflow xgboost pytorch pandas keras go numpy Tensorflow xgboost pytorch keras go numpy Tensorflow xgboost pytorch pandas keras numpy go

Training samples

(tensorflow, keras) (tensorflow, go)

(keras, tensorflow) (keras, go) (keras, numpy)

(go, tensorflow) (go, keras) (go, numpy) (go, xgboost)

(numpy, keras) (numpy, go) (numpy, xgboost) (numpy, pytorch)

Doc2vec: Model architecture

Vocabulary OneHot representation

tensorflow	(1, 0, 0, 0, 0, 0, 0)
keras	(0, 1, 0, 0, 0, 0, 0)
go	(0, 0, 1, 0, 0, 0, 0)
numpy	(0, 0, 0, 1, 0, 0, 0)
xgboost	(0, 0, 0, 0, 1, 0, 0)
pytorch	(0, 0, 0, 0, 0, 1, 0)
pandas	(0, 0, 0, 0, 0, 0, 1)

Doc2vec: Model architecture

Vocabulary OneHot representation

tensorflow	(1, 0, 0, 0, 0, 0, 0)
keras	(0, 1, 0, 0, 0, 0, 0)
go	(0, 0, 1, 0, 0, 0, 0)
numpy	(0, 0, 0, 1, 0, 0, 0)
xgboost	(0, 0, 0, 0, 1, 0, 0)
pytorch	(0, 0, 0, 0, 0, 1, 0)
pandas	(0, 0, 0, 0, 0, 0, 1)

Training pair: (tensorflow, keras)

Input Output

(1, 0, 0, 0, 0, 0, 0) (0, 1, 0, 0, 0, 0, 0)

Doc2vec: Model architecture

Vocabulary **OneHot representation**

tensorflow	(1, 0, 0, 0, 0, 0, 0)
keras	(0, 1, 0, 0, 0, 0, 0)
go	(0, 0, 1, 0, 0, 0, 0)
numpy	(0, 0, 0, 1, 0, 0, 0)
xgboost	(0, 0, 0, 0, 1, 0, 0)
pytorch	(0, 0, 0, 0, 0, 1, 0)
pandas	(0, 0, 0, 0, 0, 0, 1)

Vocabulary size **Embedding size**

10 (arbitrary)

Training pair: (tensorflow, keras)

Input Output

(1, 0, 0, 0, 0, 0, 0) (0, 1, 0, 0, 0, 0, 0)

Doc2vec: Model architecture

Vocabulary	bulary OneHot representa	
tensorflow	(1, 0, 0, 0, 0, 0, 0)	
keras	(0, 1, 0, 0, 0, 0, 0)	
go	(0, 0, 1, 0, 0, 0, 0)	
numpy	(0, 0, 0, 1, 0, 0, 0)	
xgboost	(0, 0, 0, 0, 1, 0, 0)	
pytorch	(0, 0, 0, 0, 0, 1, 0)	
pandas	(0, 0, 0, 0, 0, 0, 1)	

OneHot representation

Training pair: (tensorflow, keras)

Input Output

(1, 0, 0, 0, 0, 0, 0) (0, 1, 0, 0, 0, 0, 0)

10 x 7

Doc2vec: Model architecture

Vocabulary **OneHot representation**

tensorflow	(1, 0, 0, 0, 0, 0, 0)
keras	(0, 1, 0, 0, 0, 0, 0)
go	(0, 0, 1, 0, 0, 0, 0)
numpy	(0, 0, 0, 1, 0, 0, 0)
xgboost	(0, 0, 0, 0, 1, 0, 0)
pytorch	(0, 0, 0, 0, 0, 1, 0)
pandas	(0, 0, 0, 0, 0, 0, 1)

Training pair: (tensorflow, keras)

Input

Output

(1, 0, 0, 0, 0, 0, 0) (0, 1, 0, 0, 0, 0, 0)

Vocabulary size Embedding size 10 (arbitrary)

1 x 7 softmax

10 x 7

Doc2vec: Model architecture

Vocabulary OneHot representation

tensorflow	(1, 0, 0, 0, 0, 0, 0)
keras	(0, 1, 0, 0, 0, 0, 0)
go	(0, 0, 1, 0, 0, 0, 0)
numpy	(0, 0, 0, 1, 0, 0, 0)
xgboost	(0, 0, 0, 0, 1, 0, 0)
pytorch	(0, 0, 0, 0, 0, 1, 0)
pandas	(0, 0, 0, 0, 0, 0, 1)

Training pair: (tensorflow, keras)

Input

Output

Representation of tensorflow

(1, 0, 0, 0, 0, 0, 0) (0, 1, 0, 0, 0, 0, 0)

Vocabulary size 7

Embedding size 10 (arbitrary)

Generate user view activity stream

Workflow

```
user_1: "repo_1", "repo_72", "repo_28", "repo_1", "repo_3", "repo_36",...
user_2: "repo_21", "repo_41", "repo_1", "repo_33", "repo_1", "repo_10",...
...
user_n: "repo_40", "repo_72", "repo_8", "repo_96", "repo_31", "repo_33",...
...
```


21/11/2019

Generate user view activity stream

Apply Doc2vec and build embeddings for each repository

Workflow

```
user_1: "repo_1", "repo_72", "repo_28", "repo_1", "repo_3", "repo_36",...
user_2: "repo_21", "repo_41", "repo_1", "repo_33", "repo_1", "repo_10",...
...
user_n: "repo_40", "repo_72", "repo_8", "repo_96", "repo_31", "repo_33",...
...
```

- embedding_repo_1: [0.021, 0.003, -0.001, -0.041, -0.103, ..., 0.009]
 embedding_repo_2: [-0.011, 0.023, -0.102, -0.019, -0.028, ..., 0.003]
 ...
- •embedding_repo_n: [0.039, -0.033, -0.007, -0.022, 0.301, ..., -0.015]

• . . .

Generate user view activity stream

Apply Doc2vec and build embeddings for each repository

Querying

Workflow

- •user_1: "repo_1", "repo_72", "repo_28", "repo_1", "repo_3", "repo_36",...
- •user_2: "repo_21", "repo_41", "repo_1", "repo_33", "repo_1", "repo_10",...
- ...
- •user_n: "repo_40", "repo_72", "repo_8", "repo_96", "repo_31", "repo_33",...
- . . .
- •embedding_repo_1: [0.021, 0.003, -0.001, -0.041, -0.103, ..., 0.009]
- •embedding_repo_2: [-0.011, 0.023, -0.102, -0.019, -0.028, ..., 0.003]
- ...
- •embedding_repo_n: [0.039, -0.033, -0.007, -0.022, 0.301, ..., -0.015]
- . . .

$$cos(e_i, e_j) \sim 1$$
 Repos i and j are similar

 $cos(e_i, e_j) \sim = 0$ — Repos i and j are not similar

Results

Seed repository	Similar repositories	cosine distance
	JetBrains/kotlin-web-site	0.80
JetBrains/kotlin	Kotlin/KEEP	0.79
	JetBrains/kotlin-native	0.79
	theSteveMitchell/after_party	0.82
rails/rails	fxn/zeitwerk	0.81
	voltrb/volt	0.77
	evdcush/TensorFlow-wheels	0.83
tensorflow/tensorflow	tensorflow/autograph	0.78
	snipsco/tensorflow-build	0.76
	ynulonger/ijcnn	0.92
outman123/tensorflow	xingjianzhang1997/CatVsDog	0.92
	liush5/tensorflow-example	0.91

Results

Seed repository	Similar repositories	cosine distance
	JetBrains/kotlin-web-site	0.80
JetBrains/kotlin	Kotlin/KEEP	0.79
	JetBrains/kotlin-native	0.79
	theSteveMitchell/after_party	0.82
rails/rails	fxn/zeitwerk	0.81
	voltrb/volt	0.77
	evdcush/TensorFlow-wheels	0.83
tensorflow/tensorflow	tensorflow/autograph	0.78
	snipsco/tensorflow-build	0.76
	ynulonger/ijcnn	0.92
outman123/tensorflow	xingjianzhang1997/CatVsDog	0.92
	liush5/tensorflow-example	0.91

- Assess the model's ability to find similar repositories
- Detect cheating (overestimating similarity)

- Assess the model's ability to find similar repositories
- Detect cheating (overestimating similarity)

Building a set of similar repositories: alias strategy

```
user_1: "repo_1", "repo_72", "repo_7", "repo_1", "repo_36",...
user_2: "repo_21", "repo_1", "repo_67", "repo_33", "repo_1",...
...
user_n: "repo_40", "repo_72", "repo_1", "repo_96", "repo_31",...
```



```
user_1: "repo_1x", "repo_72", "repo_7", "repo_1", "repo_36",...
user_2: "repo_21", "repo_1", "repo_67", "repo_33", "repo_1",...
...
user_n: "repo_40", "repo_72", "repo_1x", "repo_96", "repo_31",...
```


- Assess the model's ability to find similar repositories
- Detect cheating (overestimating similarity)

Building a set of similar repositories: alias strategy

```
•user_1: "repo_1", "repo_72", "repo_7", "repo_1", "repo_36",...

•user_2: "repo_21", "repo_1", "repo_67", "repo_33", "repo_1",...

•...

•user_n: "repo_40", "repo_72", "repo_1", "repo_96", "repo_31",...

•user_n: "repo_40", "repo_72", "repo_1", "repo_96", "repo_31",...
```

Addressing non-similar repositories: picking a set of random pairs

- Assess the model's ability to find similar repositories
- Detect cheating (overestimating similarity)

Building a set of similar repositories: alias strategy

```
•user_1: "repo_1", "repo_72", "repo_7", "repo_36",...

•user_2: "repo_21", "repo_1", "repo_67", "repo_33", "repo_1",...

•...

•user_n: "repo_40", "repo_72", "repo_1", "repo_96", "repo_31",...

•user_n: "repo_40", "repo_72", "repo_1", "repo_96", "repo_31",...
```

Addressing non-similar repositories: picking a set of random pairs

Total Loss = AliasRepoLoss + RandomRepoLoss

$$AliasRepoLoss = \sum_{i=1}^{N_{alias}} (1 - cos(\overrightarrow{e}_{i_{original}}, \overrightarrow{e}_{i_{alias}}))^{2}$$

$$RandomRepoLoss = \sum_{i=1}^{N_{random}} cos(\overrightarrow{e}_{i_{1}}, \overrightarrow{e}_{i_{2}})^{2}$$

Conclusion

- NLP techniques can successfully be used outside their natural field of application
- NLP can be applied across domains, wherever sequences of actions are performed and their underlying entities need to be characterized
- Simple implementations (e.g. Doc2Vec) can be very powerful while easy to implement
- Validation of such applications is not trivial so one needs often to get creative

Questions?

Additional resources:

- Contact: romanofoti@github.com
- Appendix: see below
- Resource repository: https://github.com/romanofoti/odsc_2019

How about pre-training, saving, then resuming training?

- Constant need to update
- Time or resources constrains
- Better results

How about pre-training, saving, then resuming training?

- Constant need to update
- Time or resources constrains
- Better results

10 epochs

How about pre-training, saving, then resuming training?

- Constant need to update
- Time or resources constrains
- Better results

How about pre-training, saving, then resuming training?

- Constant need to update
- Time or resources constrains
- Better results

The above branching for training updates is repeated for days 1 through 7

Results

Doc2vec demo

Imports

In [7]: # Inizializing the vocabulary

d2v_model.build_vocab(tagged_streams)

```
In [1]: import pandas as pd
         from gensim.models.doc2vec import Doc2Vec, TaggedDocument
     Loading data
In [2]: file_path = '../data/sample_data.csv'
         df = pd.read_csv(file_path, names=['tag', 'stream'])
        Manipulating input dataset
In [3]: # Casting integer to string
         df['tag'] = df['tag'].apply(lambda tag: str(tag))
         # Loading input string and casting each element as string
        df['stream'] = df['stream'].apply(lambda stream: [str(el) for el in eval(stream)])
In [4]: # Visualizing input dataframe
        df.head(3)
Out[4]:
                                                 stream
         o 677994 [219345042, 172703514, 184153266, 56192185, 52...
         1 767275 [96570421, 26516210, 50903853, 26516210, 27729...
         2 786423 [187228547, 2791348, 35155700, 2791348, 351557...
        Preparing training data
In [5]: # Tagging each stream
         tagged_streams = [TaggedDocument(stream, [tag])
                           for tag, stream in zip(list(df['tag']), list(df['stream']))]
     Defining the model
In [6]: # Initializing the model
         d2v_model = Doc2Vec(min_count=2, window=5, vector_size=20, negative=10)
```

Doc2vec demo

Training

```
In [8]: d2v_model.train(tagged_streams, total_examples=d2v_model.corpus_count, epochs=10)
          Extracting output
 In [9]: # Extracting list of items
          item_ls = list(d2v_model.wv.vocab.keys())
          # Extracting list of tags
          tag_ls = d2v_model.docvecs.offset2doctag
In [10]: # Retrieving embedding for each item
          item_vector_ls = [d2v_model[item] for item in item_ls]
          # Retrieving embedding for each tag
          tag_vector_ls = [d2v_model.docvecs[tag_vect] for tag_vect in tag_ls]
In [11]: # Printing a sample item and its embedding
          print(item_ls[0])
          print(item_vector_ls[0])
          219345042
          [-0.16691333 \quad 0.01391616 \quad 0.08182272 \quad 0.22406493 \quad -0.13018888 \quad -0.08907364
          -0.06540466 0.13903038 0.00235399 -0.0282561 -0.07210001 0.18075605
           -0.06638259 \quad 0.04872734 \quad -0.30388135 \quad 0.17403638 \quad -0.03945316 \quad 0.07126762
           0.03873265 -0.07725172]
In [12]: # Printing a sample tag and its embedding
          print(tag_ls[0])
          print(tag_vector_ls[0])
          677994
          [-0.03200712 \ -0.06808201 \ 0.09429213 \ 0.20017318 \ -0.1556576 \ 0.08129843
           0.01421014 0.02463668 -0.09386549 0.03395402 0.13053413 0.16646215
           -0.01707764 0.06892715 -0.35897225 0.20359874 -0.12954955 0.11253071
           0.01763733 0.101136161
```