CS227: Digital Systems

Introduction

Computer Systems

- Internal (processor + memory (RAM))
- Peripheral (Disk, Display, Audio, Eth,..)

Digital Design?

- Look "under the hood" of computers
 - Solid understanding --> confidence, insight even better programmer when aware of hardware resource issues
- Electronic devices becoming digital
 - Enabled by shrinking and more capable chips
 - Fnables:
 - Better devices: Better sound recorders, cameras, cars, cell phones, medical devices,...
 - New devices: Video games, PDAs, ...
 - Known as "embedded systems"
 - Thousands of new devices every year
 - Designers needed: Potential career direction

What Does "Digital" Mean?

- Analog signal
 - Inifinite possible values
 - created by microphone
 - Ex: voltage on a wire

- Digital signal
 - Finite possible values
 - Ex: button pressed on a keypad

Digital Signals with Only Two Values: Binary

- Binary digital signal -- only two possible values
 - Typically represented as 0 and 1
 - One binary digit is a bit
 - We'll only consider binary digital signals
 - Binary is popular because
 - Transistors, the basic digital electric component, operate using two voltages Storing/transmitting one of two values is easier than three or more (e.g., loud beep or quiet beep, reflection or no reflection)

Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...
- Why bits? Electronic Implementation
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires

Real World Example - Digitization Benefit

- Analog signal (e.g., audio) may lose quality
 - Voltage levels not saved/copied/transmitte d perfectly
- Digitized version enables near-perfect save/cpy/trn.
 - "Sample" voltage at particular rate, save sample using bit encoding
 - Voltage levels still not kept perfectly
 - But we can distinguish 0s from 1s

1 V: "01" 2 V: "10" 3 V: "11"

Digitized signal not perfect re-creation, but higher sampling rate and more bits per encoding brings closer.

Digitized Audio: Compression Benefit

- Digitized audio can be compressed
 - e.g., MP3s
 - A CD can hold about 20 songs uncompressed, but about 200 compressed
- Compression also done on digitized pictures (jpeg), movies (mpeg), and more
- Digitization has many other benefits too

Example compression scheme:

00 --> 0000000000

01 --> 1111111111

 $1X \longrightarrow X$

00 00 10000001111 01

Using Digital Data in a Digital System

- A temperature sensor outputs temperature in binary
- The system reads the temperature, outputs ASCII code:
 - "F" for freezing (0-32)
 - "B" for boiling (212 or more)
 - "N" for normal
- A display converts its ASCII input to the corresponding letter

How Do We Encode Data as Binary for Our

Digital System?

- Some inputs inherently binary
 - Button: not pressed (0), pressed(1)
- Some inputs inherently digital
 - Just need encoding in binary
 - e.g., multi-button input: encode red=001, blue=010, ...
- Some inputs analog
 - Need analog-to-digital conversion
 - As done in earlier slide -sample and encode with bits

A2D -Analog to digital converter D2A-Digital to Analog converter

button

Example: DIP-Switch Controlled Channel

- Ceiling fan receiver should be set in factory to respond to channel "73"
- Convert 73
 to binary,
 set DIP
 switch
 accordingly

Home work? (Hw1)

Prepare a list of all real world Sensorswith one example

Record in your note book

How Do We Encode Data as Binary for Our

Digital System?

			(encoded)
_	Button: not pressed	(0000)	000
_	Button: Red pressed	(1000)	100
_	Button: Blue pressed	(0100)	010
_	Button: Green pressed	(0010)	110
_	Button: black pressed	(0001)	001

button

Data Representation

Numbering System Characteristics:

- The number of characters in the number system is equal to the radix of the number system.
- · Example:
 - There are 10 characters in the decimal number system.

```
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) : (13)_{10}
```

- There are 2 characters in the binary number system. (0, 1). : (1101)₂
- Compact representation
 - Octal : (15)₈
 - Hexadecimal(D)₁₆

Binary Data Representation

Computers use binary numbers:

- Binary numbers correspond directly with values in Boolean logic.
- · Computers combine multiple digits to form a single data value to represent large numbers.

Binary Data Representation

Binary system (Base 2)					Decimal system (Base 10)				
Place Values	2 ³ 8	2 ² 4	2 ¹ 2	2º 1		10 ³ 1000	10 ² 100	10 ¹ 10	10° 1
	0	0	0	0	=	0	0	0	0
	0	0	0	1	=	0	0	0	1
	0	0	1	0	=	0	0	0	2
	0	0	1	1	=	0	0	0	3
	0	1	0	0	=	0	0	0	4
	0	1	0	1	=	0	0	0	5
	0	1	1	0	=	0	0	0	6
	0	1	1	1	=	0	0	0	7
	1	0	0	0	=	0	0	0	8
	1	0	0	1	=	0	0	0	9
	1	0	1	0	=	0	0	1	0

Data Representation

The fractional part of a numeric value is separated from the whole number by a period (radix point)

For Example: 5,689.368

$$(3 \times .1) + (6 \times .01) + (8 \times .001) =$$

 $0.3 + 0.06 + 0.008 = 0.368$

Binary Data Representation

Bit positions

Position weights

Binary Data Representation

Number of bits (n)	Number of values (2")	Numeric range (decimal)
1	2	01
2	4	03
3	8	07
4	16	015
5	32	031
6	64	063
7	128	0127
8	256	0255
9	512	0511
10	1024	01023
11	2048	02047
12	4096	04095
13	8192	08191
14	16384	016383
15	32768	032767
16	65536	065535

Converting Decimal to Binary

- To convert from decimal to any radix/base we divide the number by the radix/base and record the remainder. This process is repeated until the number is 0 and then the final remainder is recorded. We shall see this in the following examples.
- To convert decimal to binary radix=2
- To convert decimal to hexadecimal radix=16
- To convert decimal to octal radix =8

Converting Decimal to Binary

Converting 207 to Binary...

```
    207/2 = 103 remainder is 1 (LSB)
    103/2 = 51 remainder is 1
    51/2 = 25 remainder is 1
    25/2 = 12 remainder is 1
    12/2 = 6 remainder is 0
    6/2 = 3 remainder is 0
    3/2 = 1 remainder is 1
    1/2 = 0 remainder is 1 (MSB)
```

The binary representation is the remainders read from the bottom to top. So, 207 = 11001111

Converting Binary to Decimal

 We can just sum the values according to their positions e.g.

$$(101001101)_2 = 2^8 + 2^6 + 2^3 + 2^2 + 2^0$$

= $256 + 64 + 8 + 4 + 1$
= 333_{10}

 Although this can become difficult as the length of the binary number increases.

Decimal-to-binary Conversions: Fractional Part

Successively multiply number by 2, taking integer part as result and chopping off integer part before next iteration.

Converting 0.625 to binary

```
.625 * 2 = 1.25 integer part = 1
.25 * 2 = 0.5 integer part = 0
.5 * 2 = 1 integer part = 1
Ans = 0.101
```

Decimal-to-binary Conversions: Fractional Part

- Successively multiply number by 2, taking integer part as result and chopping off integer part before next iteration.
- May be unending!
- Example: convert 0.3 to binary.

```
.3 * 2 = .6 \text{ integer part} = 0
.6 * 2 = 1.2 \text{ integer part} = 1
.2 * 2 = .4 \text{ integer part} = 0
.4 * 2 = .8 \text{ integer part} = 0
.8 * 2 = 1.6 \text{ integer part} = 1
.6 * 2 = 1.2 \text{ integer part} = 1, \text{ etc.}
```

Octal Data Representation

- Some operating systems and machine language programs use octal notation.
- The base (radix) of an Octal number system is 8.
- There are 8 characters in the octal number system. (0, 1, 2, 3, 4, 5, 6, 7)Eg. $(25)_{10}$ = $(31)_8$

Hexadecimal Data Representation

- The base (radix) of a hexadecimal number system is 16.
- There are 16 characters in the hexadecimal number system.
- There are only 10 characters in the Arabic number system that can be used to represent some of the 16 characters in the hexadecimal number system.
- The letters A, B, C, D, E, F are used to represent the last 6 characters in the hexadecimal number system.

Octal/Decimal/Hexa Decimal Values

Octal	Decimal	Hexadecim	al Decimal
0	0	8	8
1	1	9	9
2	2	A	10
3	3	В	11
4	4	C	12
5	5	D	13
6	6	E	14
7	7	F	15
	8		
	9		

Encoding Byte Values

- Byte = 8 bits
 - Binary 00000002 to 111111112
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 0016 to FF16
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

0 1 2 3 4 5 6 7 8 9 A B C D E F	t Dec	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1101 1100 1101
0	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
C	12	1100
D	13	1101
Е	14	1110
F	15	1111

mal w

Binary to Hexadecimal

Notice the Pattern:

- · Largest 4 digit binary is 1111
- 1 hex digit will represent a 4 digit binary number
- Highest hex digit is F

Binary to Hexadecimal

Hexadecimal	Binary	Hexadecimal	Binary
0	0000	8	1000
1	0001	9	1001
2	0010	A	1010
3	0011	В	1011
4	0100	C	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Converting Hex to Binary

Steps:

- · Convert Hex number to groups of powers of 2.
- Convert to Binary number (Remember to drop leading zeros for first set of binary numbers i.e. first left set)

Converting Hex to Binary

```
11F6_{16}
= 1 1 F 6
= 000(1) 000(1) (8)(4)(2)(1) 0(4)(2)0
= 0001 0001 1111 0110
= (1000111110110)<sub>2</sub>
```

Convert Binary to Hex

Steps:

- Separate into 4 bit groups starting from the right.
- Calculate decimal equivalent (in placeholders in powers of 2)
- · Convert to Hexadecimal number

Convert Binary to Hex

```
1000111110110<sub>2</sub>
= 1 0001 1111 0110
= 0001 0001 1111 0110
= 1 1 (8)(4)(2)(1) 0(4)(2)0
= 1 1 1 15 6
= 11F6<sub>16</sub>
```

Converting Octal to Hex

- The easiest method to convert between Octal and Hexadecimal is to convert to binary as an intermediate step
- Regroup binary in groups of 4 for hexadecimal and 3 for octal

Converting Decimal to Hex

Converting 207 to Hexadecimal..

```
207/16 = 12 remainder is 15 = F 12/16 = 0 remainder is 12 = C
```

- Again we read the remainders from the bottom to the top. So, $(207)_{10} = (CF)_{16}$
- We usually convert the decimal number to binary and then covert the binary number to hexadecimal.

Converting Hex to Decimal

• Given 5D2A1₁₆ convert it to decimal. We could just sum the values according to their positions.

$$5 = 5 \times 16^4 = 5 \times 65536 = 327680$$

 $D = 13 \times 16^3 = 13 \times 4096 = 53248$
 $2 = 2 \times 16^2 = 2 \times 256 = 512$
 $A = 10 \times 16^1 = 10 \times 16 = 160$
 $1 = 1 \times 16^0 = 1 \times 1 = 1$

Summing the values we get
 327680 + 53248 + 512 + 160 + 1 = 381601₁₀

Binary Addition

- Binary addition is very simple.
- This is best shown in an example of adding two binary numbers...

Binary Multiplication

 Binary multiplication is much the same as decimal multiplication, except that the multiplication operations are much simpler...

X			1	0 1	1	1 1	1
1	0	1 0 1	0 0 0 0	0 1 0 1	0 1 0	0 1	0
1	1	1	0	0	1	1	0

How To Represent Signed Numbers

- Plus and minus sign used for decimal numbers:
 25 (or +25), -16, etc.
- For computers, desirable to represent everything as bits.
- Three types of signed binary number representations:
 <u>sign magnitude</u>, <u>1's complement</u>, <u>2's complement</u>.
- In each case: left-most bit indicates sign:

positive (0) or negative (1). Consider <u>sign magnitude</u>:

$$00001100_2 = 12_{10}$$
 $10001100_2 = -12_{10}$ Sign bit Magnitude Sign bit Magnitude

One's Complement Representation

 The one's complement of a binary number involves inverting all bits.

1's comp of 00110011 is 11001100 1's comp of 10101010 is 01010101

• For an n bit number $\mathbb N$ the 1's complement is (2^n-1) - $\mathbb N$.

Example. 12₁₀ One's complement is 243

•

$$00001100_2 = 12_{10}$$
Sign bit Magnitude

$$11110011_{2} = -12_{10}$$
Sign bit Magnitude

Subtraction implemented by addition & 1's complement

Still two representations of 0! This causes some problems

Some complexities in addition

Two's Complement Representation

- The two's complement of a binary number involves inverting all bits and adding 1.
 2's comp of 00110011 is 11001101
 2's comp of 10101010 is 01010110
- For an n bit number N the 2's complement is $(2^n N)$.
- Eg. 12, Two's complement is 244
- To find negative of 2's complement number take the 2's complement.

$$00001100_2 = 12_{10}$$
 $11110100_2 = -$ Sign bit Magnitude Sign bit Magnitude

Two's Complement

Only one representation for 0
One more negative number than positive number

Two's Complement Shortcuts

- Algorithm 1 Simply complement each bit and then add 1 to the result.
 - Finding the 2's complement of (01100101)₂ and of its 2's complement...

Algorithm 2 – Starting with the least significant bit, copy all of the bits up to and including the first 1 bit and then complementing the remaining bits.

Eg1. N = 0 1 1 0 0 1 0 1 Eg2. N = 0 1 1 0 0 1 0 0
$$[N]$$
 = 1 0 0 1 1 0 1 1 $[N]$ = 1 0 0 1 1 1 0 0

Finite Number Representation

 Machines that use 2's complement arithmetic can represent integers in the range

$$-2^{n-1} <= N <= 2^{n-1}-1$$

where n is the number of bits available for representing N. Note that

$$2^{n-1}-1 = (011..11)$$
 and $-2^{n-1} = (100..00)$

- For 2's complement more negative numbers than positive.
- · For 1's complement two representations for zero.
- For an n bit number in base (radix) z there are z^n different unsigned values. (0, 1, ... z^{n-1})
 - Eg. For 2 digit: binary (4) decimal (100), hex (256)

1's Complement Arithmetic

Let A and B are the two operands, then Addition

A+B = Add(A+B)

Subtraction

A-B =

- Step 1: Take 1's complement of 2nd operand B
- Step 2: Add binary numbers (A+B')
- Step 3: Add carry to low order bit

1's Complement Addition

Step 1: Add binary numbers

Step 2: Add carry to lower-order bit

- Using 1's complement numbers, adding numbers is easy.
- For example, suppose we wish to add $+(1100)_2$ and $+(0001)_2$.
- Let's compute $(12)_{10} + (1)_{10}$. $(12)_{10} = +(1100)_2 = (01100)_2$ in 1's comp. $(1)_{10} = +(0001)_2 = (00001)_2$ in 1's comp. 0 0 1 1 0 1 Add carry _____ Final Result 0 1 1 0 1

2's Complement Addition

Step 1: Add binary numbers
Step 2: Ignore carry bit

- Using 2's complement numbers, adding numbers is easy.
- For example, suppose we wish to add +(1100)₂ and +(0001)₂.
- Let's compute $(12)_{10} + (1)_{10}$. $(12)_{10} = +(1100)_2 = (01100)_2$ in 2's comp. $(1)_{10} = +(0001)_2 = (00001)_2$ in 2's comp.

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64	
char	1	1	1	
short	2	2	2	
int	4	4	4	
long	4	8	8	
float	4	4	4	
double	8	8	8	
pointer	4	8	8	

Mapping Signed ↔ Unsigned

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Conversion Visualized

Sign Extension

- Task:
 - Given w-bit signed integer x
 - Convert it to w+k-bit integer with same value
- Rule:
 - Make k copies of sign bit:

$$- X' = X_{w-1}, ..., X_{w-1}, X_{w-1}, X_{w-2}, ..., X_0$$

Sign Extension: Simple Example

Positive number

Negative number

Larger Sign Extension Example

```
short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;
```

	Decimal	Нех	Binary
х	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension

Summary

- Digital systems surround us
 - Inside computers
 - Inside huge variety of other electronic devices (embedded systems)
- Digital systems use 0s and 1s
 - Encoding analog signals to digital can provide many benefits
 - e.g., audio -- higher-quality storage/transmission, compression, etc
 - Encoding integers as Os and 1s: Binary numbers
- Signed numbers represented in signed magnitude, 1's complement, and 2's complement
- 2's complement most important (only 1 representation for zero).
- Important to understand treatment of sign bit for 1's and 2's complement.