PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS

Primer semestre de 2024

MAT1207 – Introducción al Álgebra y Geometría

Solución Interrogación N° 1

- 1. a) Demuestre que la proposición $p \Rightarrow q$ es lógicamente equivalente a la proposición $\overline{q} \Rightarrow \overline{p}$
 - b) Dada la proposición $p \Rightarrow q$ escrita en palabras:

"Si el último dígito de un número (de más de dos dígitos) termina en cero, entonces el número es divisible por 5."

Escriba en palabras la proposición lógicamente equivalente $\overline{q} \Rightarrow \overline{p}$.

Solución.

a) Haciendo la tabla de verdad nos damos cuenta que son lógicamente equivalentes

	p	q	\overline{q}	\overline{p}	$p \Rightarrow q$	$\overline{q} \Rightarrow \overline{p}$
	V	V	F	F	V	V
Ī	V	F	V	F	F	F
Ī	F	V	F	V	V	V
ĺ	F	F	V	V	V	V

b) Si un número no es divisible por 5 entonces el número no tiene a cero como último dígito.

Criterio de Corrección (CC) Pregunta 1.

- **CC 1.** 2 puntos por realizar la tabla de verdad de las proposiciones involucradas: $p \Longrightarrow q$ y $\overline{q} \Longrightarrow \overline{p}$.
- CC 2. 1 punto por concluir que las proposiciones son lógicamente equivalentes
- CC 3. 1,5 puntos por escribir en palabras la proposición \overline{q} .
- CC 4. 1,5 puntos por escribir en palabras la proposición \overline{p} .

2. a) Sin usar tablas de verdad, demuestre que las siguientes proposiciones son lógicamente equivalentes:

$$(f \wedge \overline{g}) \Rightarrow (h \wedge \overline{h})$$
 y $f \Rightarrow g$.

- b) Demuestre, explicitando el tipo de demostración que está utilizando, la proposición del inciso 2a) (puede usar la versión reducida) en donde:
 - f: Los números naturales m y n cumplen que $n + 2n^2 = m + m^2$.
 - \bullet g: n es un número par.

Solución.

a) Solo usando tautologías se tiene:

$$(f \wedge \overline{g}) \Rightarrow (h \wedge \overline{h}) \equiv \overline{(f \wedge \overline{g})} \vee (h \wedge \overline{h})$$

$$\equiv \overline{(f \wedge \overline{g})} \vee F$$

$$\equiv \overline{(f \wedge \overline{g})}$$

$$\equiv \overline{(f \vee \overline{g})}$$

$$\equiv \overline{(f \vee \overline{g})}$$

$$\equiv \overline{(f \vee g)}$$

$$\equiv f \Rightarrow g$$

b) Utilizando contradicción (también funciona contrarrecíproca).

Por contradicción suponemos n es impar. Luego, como todo múltiplo de 2 es par, $2n^2$ es par y la suma $n+2n^2$ es impar. Por otro lado, $m+m^2=m(m+1)$ que es la multiplicación de dos números consecutivos, donde siempre uno debe ser par. Así, $m+m^2$ siempre es par.

Llegamos a la contradicción porque si $n + 2n^2 = m + m^2$, entonces un número impar debe ser igual a uno par, lo cual es imposible (la igualdad no se cumple, argumentando la contrarrecíproca).

Criterio de Corrección (CC) Pregunta 2.

- CC 1. 3 puntos por demostrar que las proposiciones son logicamente equivalentes usando propiedades.
- ${\bf CC}$ 2. 1 punto por usar la demostración por contradicción suponiendo que n es impar y por llegar a una contradicción.
- **CC 3.** 1 punto por mostrar que $n + 2n^2$ es impar.
- **CC 4.** 1 punto por mostrar que $m + m^2$ es par.