What is claimed is:

1 2	1.	Apparatus for detecting wafer flat shift, comprising: a plurality of sensors in a power supply circuit for shutting off wafer fabrication						
3		equipment, the sensors detecting a shift in wafer flat position; and the power supply						
4		circuit shutting off the wafer fabrication equipment.						
1	2.	The apparatus of claim 1, further comprising:						
2		the sensors being adjusted to detect a wafer flat shift in a plurality of directions of angular						
3	displac	acement.						
1	3.	The apparatus of claim 1, further comprising:						
2		the sensors being adjusted to detect a wafer flat shift in a range of $(2)(0.9^0)$ to $(5)(0.9^0)$						
3	angula	ılar displacement.						
1	4.	The apparatus of claim 1, further comprising:						
2		a frame; and						
3		an adjustable mounting mechanism mounting each of the sensors on the frame for						
4		adjustment along orthogonal axes.						
l	5.	The apparatus of claim 1, further comprising:						
2		a frame; and						
3		the sensors being adjustably mounted on the frame.						
1	6.	The apparatus of claim 1, further comprising:						
2		a relay receiving signals from the sensors; and						
3		a solenoid operated by the relay to open a door of the wafer fabrication equipment to						
4	release	a corresponding wafer for further fabrication; and						
5		a wafer flat shift shutting off at least one of the signals from the sensors.						

PH1\1123000.3

A method of detecting wafer flat shift comprising the steps of;

1

7.

2	4-4-4:		Cl . 4	-1. : A.	1
Z	detecting a	water	пас	SHIII.	anu

- 3 shutting off a wafer fabrication equipment when the wafer flat shift exceeds a set amount.
- 1 8. The method as recited in claim 7, further comprising the step of:
- detecting a wafer flat shift in a plurality of directions of angular displacement.
- 1 9. The method as recited in claim 7, further comprising the step of:
- 2 detecting the wafer flat shift by optical beam sensors.
- 1 10. The method as recited in claim 7, further comprising the step of:
- detecting a wafer flat shift in a range of $(2)(0.9^0)$ to $(5)(0.9^0)$ angular displacement.
- 1 11. The method as recited in claim 7, further comprising the steps of:
- detecting the wafer flat shift by optical beam sensors; and
- adjusting the positions of the sensors.
- 1 12. The method as recited in claim 7, further comprising the steps of:
- detecting the wafer flat shift by optical beam sensors;
- 3 sending signals from the sensors to a relay;
- 4 operating a solenoid by the relay to open a door of the wafer fabrication equipment to
- 5 release a corresponding wafer for further fabrication; and
- shutting off at least one of the signals from the sensors by the wafer flat shift.
- 1 13. The method as recited in claim 12, further comprising the step of:
- detecting a wafer flat shift of $(2)(0.9^0)$ angular displacement.
- 1 14. The method as recited in claim 12, further comprising the step of:
- detecting a wafer flat shift of $(5)(0.9^0)$ angular displacement.
- 1 15. A control circuit, comprising:
- sensors to detect an edge of a wafer flat on a wafer;

PH1\1123000.3

- a power supply supplying power to the sensors;
- 4 a relay activated by outputs of the sensors;
- a solenoid activated by the relay to unlock a door for exit of the wafer to equipment for
- 6 further wafer fabrication; and
- at least one of the sensors sensing a wafer flat shift, which shuts off the equipment.
- 1 16. The control circuit of claim 15, further comprising:
- 2 the sensors being set to detect a wafer flat shift of $(2)(0.9^0)$ angular displacement.
- 1 17. The control circuit of claim 15, further comprising:
- 2 the sensors being set to detect a wafer flat shift of $(5)(0.9^0)$ angular displacement.
- 1 18. The control circuit of claim 15, further comprising:
- 2 the sensors being mounted for adjustment along orthogonal axes corresponding to the a

9

- 3 wafer flat shift in angular displacement.
- 1 19. The control circuit of claim 15, further comprising:
- 2 the sensors being adjustable on the frame.
- 1 20. The control circuit of claim 15, further comprising:
- 2 the sensors being adjustable along orthogonal axes.

PH1\1123000.3