INTELIGENŢĂ ARTIFICIALĂ

Sisteme inteligente

Sisteme care învață singure

- K-means -

Laura Dioşan

Sumar

A. Scurtă introducere în Inteligența Artificială (IA)

B. Rezolvarea problemelor prin căutare

- Definirea problemelor de căutare
- Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială

c. Sisteme inteligente

- Sisteme care învaţă singure
 - Arbori de decizie
 - Rețele neuronale artificiale
 - Algoritmi evolutivi
 - Algoritmi de clusterizare
- Sisteme bazate pe reguli
- Sisteme hibride

Materiale de citit și legături utile

- capitolul 15 din C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- Capitolul 9 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997

Sisteme inteligente

Sisteme inteligente – SIS – Învățare automată

Tipologie

- În funcție de experiența acumulată în timpul învățării:
 - SI cu învăţare supervizată
 - SI cu învăţare nesupervizată
 - SI cu învăţare activă
 - SI cu învăţare cu întărire
- În funcție de modelul învățat (algoritmul de învățare):
 - Arbori de decizie
 - Reţele neuronale artificiale
 - Maşini cu suport vectorial (MSV)
 - Algoritmi evolutivi
 - Modele Markov ascunse
 - K-means

Învățare nesupervizată

- Scop
 - Găsirea unui model sau a unei structuri utile a datelor
- □ Tip de probleme
 - Identificara unor grupuri (clusteri)
 - Analiza genelor
 - Procesarea imaginilor
 - Analiza reţelelor sociale
 - Segmentarea pieţei
 - Analiza datelor astronomice
 - Clusteri de calculatoare
 - Reducerea dimensiunii
 - Identificarea unor cauze (explicaţii) ale datelor
 - Modelarea densităţii datelor
- Caracteristic
 - Datele nu sunt adnotate (etichetate)

Învățare ne-supervizată – definire

Împărțirea unor exemple neetichetate în submulțimi disjuncte (clusteri) astfel încât:

- exemplele din acelaşi cluster sunt foarte similare
- exemplele din clusteri diferiţi sunt foarte diferite

Definire

- Se dă
 - un set de date (exemple, instanțe, cazuri)
 - Date de antrenament
 - Sub forma atribute_data;, unde
 - i =1,N (N = nr datelor de antrenament)
 - atribute_data_i= (atr_{i1}, atr_{i2}, ..., atr_{im}), m nr atributelor (caracteristicilor, proprietăților) unei date
 - Date de test
 - Sub forma (atribute_data_i), i =1,n (n = nr datelor de test)
- Se determină
 - o funcție (necunoscută) care realizează gruparea datelor de antrenament în mai multe clase
 - Nr de clase poate fi pre-definit (k) sau necunoscut
 - Datele dintr-o clasă sunt asemănătoare
 - clasa asociată unei date (noi) de test folosind gruparea învăţată pe datele de antrenament

Alte denumiri

Clustering

Învățare ne-supervizată – definire

□ Supervizată *vs.* Ne-supervizată

Învățare ne-supervizată – definire

- Distanțe între 2 elemente p și $q \in R^m$
 - Euclideana

$$d(\mathbf{p},\mathbf{q}) = sqrt(\sum_{j=1,2,...,m} (p_j - q_j)^2)$$

- Manhattan
 - $d(\mathbf{p},\mathbf{q}) = \sum_{i=1,2,...,m} |p_i q_i|$
- Mahalanobis
 - $d(\mathbf{p},\mathbf{q}) = sqrt(\mathbf{p}-\mathbf{q})S^{-1}(\mathbf{p}-\mathbf{q}),$ unde S este matricea de variaţie şi covariaţie $(S = E[(\mathbf{p}-E[\mathbf{p}])(\mathbf{q}-E[\mathbf{q}])])$
- Produsul intern

Cosine

$$d(\mathbf{p}, \mathbf{q}) = \sum_{i=1,2,...,m} p_i q_i / (sqrt(\sum_{i=1,2,...,m} p_i^2) * sqrt(\sum_{i=1,2,...,m} q_i^2))$$

- Hamming
 - numărul de diferențe între **p** și **q**
- Levenshtein
 - numărul minim de operații necesare pentru a-l transforma pe p în q
- Distanţă vs. Similaritate
 - Distanţa → min
 - Similaritatea → max

Învățare ne-supervizată – exemple

□ Gruparea genelor

 Studii de piaţă pentru gruparea clienţilor (segmentarea pieţei)

news.google.com

Învățare ne-supervizată – proces

Procesul

- 2 paşi:
 - Antrenarea
 - Învăţarea (determinarea), cu ajutorul unui algoritm, a clusterilor existenţi
 - Testarea
 - Plasarea unei noi date într-unul din clusterii identificaţi în etapa de antrenament

Calitatea învățării (validarea clusterizării):

- Criterii interne
 - Similaritate ridicată în interiorul unui cluster şi similaritate redusă între clusteri
- Criteri externe
 - Folosirea unor benchmark-uri formate din date pre-grupate

Măsuri de performanță

- Criterii interne
 - Distanţa în interiorul clusterului
 - Distanţa între clusteri
 - Indexul Davies-Bouldin
 - Indexul Dunn
- Criteri externe
 - Compararea cu date cunoscute în practică este imposibil
 - Precizia
 - Rapelul
 - F-measure

Măsuri de performanță

- Criterii interne
 - Distanța în interiorul clusterului c_j care conține n_j instanțe
 - Distanţa medie între instanţe (average distance)

•
$$D_a(c_j) = \sum_{x_{i1}, x_{i2} \in c_j} ||x_{i1} - x_{i2}|| / (n_j(n_j-1))$$

 Distanţa între cei mai apropiaţi vecini (nearest neighbour distance)

$$D_{nn}(c_j) = \sum_{xi1ecj} \min_{xi2ecj} ||x_{i1} - x_{i2}|| / n_j$$

Distanţa între centroizi

•
$$D_c(c_j) = \sum_{x_i, ec_j} \frac{||x_i - \mu_j||}{|n_j|}$$
, unde $\mu_j = \frac{1}{n_j} \sum_{x_i \in c_j} x_i$

Măsuri de performanță

- Criterii interne
 - lacktriangle Distanța între 2 clusteri c_{j1} și c_{j2}
 - Legătură simplă

•
$$d_s(c_{j1}, c_{j2}) = min_{xi1ecj1, xi2ecj2} \{ /|x_{i1} - x_{i2}| / \}$$

Legătură completă

•
$$d_{co}(c_{j1}, c_{j2}) = \max_{xi1ecj1, xi2ecj2} \{ /|x_{i1} - x_{i2}| / \}$$

Legătură medie

•
$$d_a(c_{j1}, c_{j2}) = \sum_{xi1ecj1, xi2ecj2} \{ /|x_{i1} - x_{i2}|/ \} / (n_{j1} * n_{j2})$$

Legătură între centroizi

•
$$d_{ce}(c_{j1}, c_{j2}) = //\mu_{j1} - \mu_{j2} //$$

Măsuri de performanță

- Criterii interne
 - Indexul Davies-Bouldin → min → clusteri compacţi
 - $DB = 1/nc* \sum_{i=1,2,...,nc} max_{j=1,2,...,nc,j\neq i} ((\sigma_i + \sigma_j)/d(\mu_i, \mu_i))$
 - unde:
 - nc numărul de clusteri
 - μ_i centroidul clusterului i
 - σ_i media distanțelor între elementele din clusterul i și centroidul μ_i
 - $d(\mu_i, \mu_i)$ distanța între centroidul μ_i și centroidul μ_i

Indexul Dunn

- Identifică clusterii denşi şi bine separaţi
- $\Box D = d_{min}/d_{max}$
- Unde:
 - d_{min} distanţa minimă între 2 obiecte din clusteri diferiţi distanţa intracluster
 - d_{max} distanța maximă între 2 obiecte din același cluster distanța intercluster

- După modul de formare al clusterilor
 - C. ierarhic
 - C. ne-ierarhic (partiţional)
 - C. bazat pe densitatea datelor
 - C. bazat pe un grid

După modul de formare al clusterilor

- Ierarhic
 - se crează un arbore taxonomic (dendogramă)
 - crearea clusterilor (recursiv)
 - nu se cunoaşte k (nr de clusteri)
 - □ aglomerativ (de jos în sus) → clusteri mici spre clusteri mari
 - □ diviziv (de sus în jos) → clusteri mari spre clusteri mici
 - Ex. Clustering ierarhic aglomerativ

- După modul de formare al clusterilor
 - Ne-ierarhic
 - □ Partiţional → se determină o împărţire a datelor → toţi clusterii deodată
 - Optimizează o funcţie obiectiv definită
 - Local doar pe anumite atribute
 - Global pe toate atributele

care poate fi

- Pătratul erorii suma patratelor distanţelor între date şi centroizii clusterilor → min
 - Ex. K-means
- Bazată pe grafuri
 - Ex. Clusterizare bazată pe arborele minim de acoperire
- Bazată pe modele probabilistice
 - Ex. Identificarea distribuţiei datelor → Maximizarea aşteptărilor
- Bazată pe cel mai apropiat vecin
- Necesită fixarea apriori a lui k → fixarea clusterilor iniţiali
 - Algoritmii se rulează de mai multe ori cu diferiţi parametri şi se alege versiunea cea mai eficientă
- Ex. K-means, ACO

După modul de formare al clusterilor

- bazat pe densitatea datelor
 - Densitatea şi conectivitatea datelor
 - Formarea clusterilor de bazează pe densitatea datelor într-o anumită regiune
 - Formarea clusterilor de bazează pe conectivitatea datelor dintr-o anumită regiune
 - Funcţia de densitate a datelor
 - Se încearcă modelarea legii de distribuţie a datelor
 - Avantaj:
 - Modelarea unor clusteri de orice formă

După modul de formare al clusterilor

- Bazat pe un grid
 - Nu e chiar o metodă nouă de lucru
 - Poate fi ierarhic, partiţional sau bazat pe densitate
 - Pp. segmentarea spaţiului de date în zone regulate
 - Obiectele se plasează pe un grid multi-dimensional
 - □ Ex. ACO

După modul de lucru al algoritmului

- Aglomerativ
 - 1. Fiecare instanță formează inițial un cluster
 - 2. Se calculează distanțele între oricare 2 clusteri
 - 3. Se reunesc cei mai apropiați 2 clusteri
 - 4. Se repetă paşii 2 și 3 până se ajunge la un singur cluster sau la un alt criteriu de stop
- Diviziv
 - Se stabileşte numărul de clusteri (k)
 - 2. Se iniţializează centrii fiecărui cluster
 - 3. Se determină o împărţire a datelor
 - 4. Se recalculează centrii clusterilor
 - 5. Se reptă pasul 3 și 4 până partiționarea nu se mai schimbă (algoritmul a convers)
- După atributele considerate
 - Monotetic atributele se consideră pe rând
 - Politetic atributele se consideră simultan

- După tipul de apartenență al datelor la clusteri
 - Clustering exact (hard clustering)
 - \square Asociază fiecarei intrări x_i o etichetă (clasă) c_i
 - Clustering fuzzy
 - apartenență f_{ij} la o anumită clasă $c_j \rightarrow$ o instanță x_i poate aparține mai multor clusteri

Învățare ne-supervizată – algoritmi

- Clustering ierarhic aglomerativ
- K-means
- AMA
- Modele probabilistice
- Cel mai apropiat vecin
- Fuzzy
- Reţele neuronale artificiale
- Algoritmi evolutivi
- ACO

Învățare ne-supervizată – algoritmi Clustering ierarhic aglomerativ

- 1. Se consideră o distanță între 2 instanțe $d(x_{i1}, x_{i2})$
- 2. Se formează N clusteri, fiecare conţinând câte o instanţă
- 3. Se repetă
 - Determinarea celor mai apropiaţi 2 clusteri
 - Se reunesc cei 2 clusteri → un singur cluster
- 4. Până când se ajunge la un singur cluster (care conţine toate instanţele)

Învățare ne-supervizată – algoritmi Clustering ierarhic aglomerativ

□ Distanţa între 2 clusteri c_i şi c_j :

Legătură simplă → minimul distanţei între obiectele din cei
 2 clusteri

$$d(c_i, c_j) = \max_{xi1 \in c_i, xi2 \in c_j} sim(\mathbf{x_{i1}}, \mathbf{x_{i2}})$$

- Legătură completă → maximul distanţei între obiectele din cei 2 clusteri
 - $d(c_i, c_j) = \min_{xi1 \in ci, xi2 \in cj} sim(x_{i1}, x_{i2})$
- Legătură medie → media distanţei între obiectele din cei 2 clusteri

$$d(c_i, c_j) = 1 / (n_i * n_j) \sum_{xi1 \in ci} \sum_{xi2 \in cj} d(\mathbf{x}_{i1}, \mathbf{x}_{i2})$$

- Legătură medie peste grup → distanţa între mediile (centroizii) celor 2 clusteri
 - \mathbf{D} $d(c_i, c_j) = \rho(\boldsymbol{\mu}_i, \boldsymbol{\mu}_j), \rho distanță, \boldsymbol{\mu}_j = 1/n_j \sum_{x_i \in c_j} \boldsymbol{x}_i$

Învățare ne-supervizată – algoritmi K-means (algoritmul Lloyd/iterația Voronoi)

- □ Pp că se vor forma k clusteri
- \blacksquare Iniţializează k centroizi $\mu_1, \mu_2, ..., \mu_k$
 - Un centroid μ_j (i=1,2,...,k) este un vector cu m valori (m nr de atribute)
- Repetă până la convergență
 - Asociază fiecare instanță celui mai apropiat centroid \rightarrow pentru fiecare instanță $\mathbf{x_i}$, i = 1, 2, ..., N

$$c_i = arg min_{i=1,2,...,k} || \mathbf{x}_i - \boldsymbol{\mu}_i ||^2$$

- Recalculează centroizii prin mutarea lor în media instanţelor asociate fiecăruia → pentru fiecare cluster c_j, j = 1, 2, ..., k
 - $\mathbf{p}_{i} = \sum_{i=1,2,...N} 1_{ci=j} \mathbf{x}_{i} / \sum_{i=1,2,...N} 1_{ci=j}$

Învățare ne-supervizată – algoritmi K-means

Învățare ne-supervizată – algoritmi K-means

- \blacksquare Iniţializarea a k centroizi $\mu_1, \mu_2, ..., \mu_k$
 - Cu valori generate aleator (în domeniul de definiţie al problemei)
 - Cu k dintre cele N instanţe (alese în mod aleator)
- Algoritmul converge întotdeauna?
 - Da, pt că avem funcţia de distorsiune J

care este descrescătoare

- Converge într-un optim local
- Găsirea optimului global → NP-dificilă

Învățare ne-supervizată — algoritmi Clusterizare bazată pe arborele minim de acoperire (AMA)

- Se construieşte AMA al datelor
- Se elimină din arbore cele mai lungi muchii, formându-se clusteri

Învățare ne-supervizată – algoritmi Modele probabilistice

- http://www.gatsby.ucl.ac.uk/~zoubin/cours e04/ul.pdf
- http://learning.eng.cam.ac.uk/zoubin/nipstu t.pdf

Învățare ne-supervizată – algoritmi Cel mai apropiat vecin

- Se etichetează câteva dintre instanţe
- Se repetă până la etichetarea tuturor instanţelor
 - O instanţă ne-etichetată va fi inclusă în clusterul instanţei cele mai apropiate
 - dacă distanţa între instanţa neetichetată şi cea etichetată este mai mică decât un prag

Învățare ne-supervizată – algoritmi Clusterizare fuzzy

- Se stabileşte o partiţionare fuzzy iniţială
 - Se construiește matricea gradelor de apartenență U, unde u_{ij} gradul de apartenență al instanței $\boldsymbol{x_i}$ (i=1,2,...,N) la clusterul c_j (j=1,2,...,k) $(u_{ij} \in [0,1])$
 - \Box Cu cât u_{ii} e mai mare, cu atât e mai mare încrederea că instanța x_i face parte din clusterul c_i
- Se stabileşte o funcţie obiectiv
 - □ $E^2(U) = \sum_{i=1,2,...,N} \sum_{j=1,2,...,k} u_{ij} || \mathbf{x}_i \boldsymbol{\mu}_j ||^2$, unde $\boldsymbol{\mu}_j = \sum_{i=1,2,...,N} u_{ij} \mathbf{x}_i$ centrul celui de-al j-lea fuzzy cluster □ care se optimizează (min) prin re-atribuirea instanţelor (în
 - clusteri noi)
- □ Clusering fuzzy → clusterizare hard (fixă)
 - impunerea unui prag funcţiei de apartenenţă u_{ii}

Invățare ne-supervizată – algoritmi Algoritmi evolutivi

- Algoritmi
 - Inspiraţi din natură (biologie)
 - Iterativi
 - Bazaţi pe
 - populaţii de potenţiale soluţii
 - căutare aleatoare ghidată de
 - Operaţii de selecţie naturală
 - Operaţii de încrucişare şi mutaţie
 - Care procesează în paralel mai multe soluţii
- Metafora evolutivă

Evoluţie naturală	Rezolvarea problemelor
Individ	Soluţie potenţială (candidat)
Populație	Mulţime de soluţii
Cromozom	Codarea (reprezentarea) unei soluţii
Genă	Parte a reprezentării
Fitness (măsură de adaptare)	Calitate
Încrucişare și mutație	Operatori de căutare
Mediu	Spaţiul de căutare al problemei

Învățare ne-supervizată – algoritmi Algoritmi evolutivi

```
Initializare populație P(0)
Evaluare P(0)
g := 0; //generaţia
CâtTimp (not condiţie_stop) execută
   Repetă
                                                         Încrucișare
     Selectează 2 părinţi p1 şi p2 din P(g)
     Incrucişare(p1,p2) => 01 şi o2
                                               perturbare
     Mutație(o1) => o1*
     Mutație(o2) => o2*
                                             Selectie
     Evaluare(o1*)
     Evaluare(o2*)
     adăugare o1* și o* în P(g+1)
                                                          Selecție de
   Până când P(g+1) este completă
                                                          supravieţuire
   g := g + 1
Sf CâtTimp
                                                                    Populație
                                              Populație
                                                                    (urmaşi)
                                              (părinţi)
```

Învățare ne-supervizată – algoritmi Algoritmi evolutivi

- Reprezentare
 - Cromozomul = o partiţionare a datelor
 - □ Ex. 2 clusteri → cromozom = vector binar
 - Ex. K clusteri \rightarrow cromozom = vector cu valori din $\{1,2,...,k\}$
- Fitness
 - Calitatea partiţionării
- Iniţializare
 - Aleatoare
- Încrucişare
 - Punct de tăietură
- Mutaţie
 - Schimbarea unui element din cromozom

Învățare ne-supervizată – algoritmi ACO

- Preferinţa pentru drumuri cu nivel ridicat de feromon
- □ Pe drumurile scurte feromonul se înmulţeşte
- Furnicile comunică pe baza urmelor de feromon

Învățare ne-supervizată – algoritmi ACO

- Algoritm de clusterizare bazat pe un grid
- Obiectele se plasează aleator pe acest grid, urmând ca furnicuţele să le grupeze în funcţie de asemănarea lor
- 2 reguli pentru furnicuţe
 - Furnica "ridică" un obiect-obstacol
 - Probabilitatea de a-l ridica e cu atât mai mare cu cât obiectul este mai izolat (în apropierea lui nu se află obiecte similare)
 - $p(ridica) = (k^{+}/(k^{+}+f))^{2}$
 - Furnica "depune" un obiect (anterior ridicat) într-o locație nouă
 - Probabilitatea de a-l depune e cu atât mai mare cu cât în vecinătatea locului de plasare se afla mai multe obiecte asemănătoare
 - $p(depune)=(f/(k^-+f))^2$
 - k^+ , k^- constante
 - f procentul de obiecte similare cu obiectul curent din memoria furnicuţei
- Furnicuţele
 - au memorie
 - reţin obiectele din vecinătatea poziţiei curente
 - se mişcă ortogonal (N, S, E, V) pe grid pe căsuţele neocupate de alte furnici

Recapitulare

- Sisteme care învaţă singure (SIS)
 - Invatare nesupervizata
 - K-means
 - Modele computaţionale care
 - rezolvă probleme de clusterizare
 - → nu se cunosc etichetele claselor
 - prin
 - minimizarea diferenţelor între elementele aceleaşi calse
 - maximizarea diferenţelor între elementele claselor diferite

Cursul următor

- A. Scurtă introducere în Inteligența Artificială (IA)
- B. Rezolvarea problemelor prin căutare
 - Definirea problemelor de căutare
 - Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială

c. Sisteme inteligente

- Sisteme bazate pe reguli în medii certe
- Sisteme bazate pe reguli în medii incerte (Bayes, factori de certitudine, Fuzzy)
- Sisteme care învaţă singure
 - Arbori de decizie
 - Reţele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
- Sisteme hibride

- Informaţiile prezentate au fost colectate din diferite surse de pe internet, precum şi din cursurile de inteligenţă artificială ţinute în anii anteriori de către:
 - Conf. Dr. Mihai Oltean www.cs.ubbcluj.ro/~moltean
 - Lect. Dr. Crina Groşan www.cs.ubbcluj.ro/~cgrosan
 - Prof. Dr. Horia F. Pop www.cs.ubbcluj.ro/~hfpop