Ballistics

 ${\sf Jenny\ Hong\ and\ Stephen\ Boyd}$

EE103 Stanford University

February 11, 2015

Dynamics

Simulations

Targeting

Robust targeting

Position, velocity, and force

- a projectile moves in 2-dimensional space (for simplicity; real ones move in 3-dimensional space)
- ightharpoonup sample position and velocity at times $au=0,h,2h,\ldots$
- ▶ 2-vector p_t is position at time $\tau = th$ for t = 0, 1, ...
- lacksquare 2-vector v_t is velocity at time au=th for $t=0,1,\ldots$
- ▶ 2-vector f_t is total force acting on projectile at time $\tau = th$
- lacksquare 4-vector $x_t = \begin{bmatrix} p_t \\ v_t \end{bmatrix}$ is projectile *state* at time $\tau = th$

Force model

$$f_t = mg - \eta(v_t - w)$$

- ▶ 2-vector g = (0, -9.8) is gravity
- \triangleright 2-vector w is wind velocity (assumed constant)
- $ightharpoonup v_t w$ is relative velocity of projectile through air
- ▶ $\eta \in \mathbf{R}$ is drag coefficient
- $ightharpoonup \eta(v_t-w)$ is drag force
- m is projectile mass
- 'ballistic' means the projectile has no other force acting on it (e.g., thrust or propulsion)

Dynamics

▶ approximating velocity as constant over time interval $th \le \tau \le (t+1)h$,

$$p_{t+1} = p_t + hv_t$$

approximating force as constant over the time interal,

$$v_{t+1} = v_t + (h/m)f_t$$

= $(1 - h\eta/m)v_t + (hg + h\eta w/m)$

• more compactly: $x_{t+1} = Ax_t + b$, with

$$A = \begin{bmatrix} 1 & 0 & h & 0 \\ 0 & 1 & 0 & h \\ 0 & 0 & 1 - h\eta/m & 0 \\ 0 & 0 & 0 & 1 - h\eta/m \end{bmatrix}, \qquad b = \begin{bmatrix} 0 \\ 0 \\ hg_1 + h\eta w_1/m \\ hg_2 + h\eta w_2/m \end{bmatrix}$$

Propagating state through time

ightharpoonup to propagate forward T time steps

$$x_1 = Ax_0 + b$$

 $x_2 = A(Ax_0 + b) + b = A^2x_0 + Ab + b$
 \vdots
 $x_T = A^Tx_0 + (A^{T-1} + \dots + A + I)b$

6

Dynamics

Dynamics

Simulations

Targeting

Robust targeting

Simulations

Simulation parameters

▶ let's look at some trajectories, with parameters

$$m = 5$$
, $T = 100$, $h = 0.1$, $\eta = 0.05$, $p_0 = 0$

- \triangleright we'll use various values of initial velocity v_0 , expressed in terms of
 - initial speed $||v_0||$
 - elevation $\theta = \tan^{-1}((v_0)_2/(v_0)_1)$
- lacktriangle we'll vary the wind velocity w too

Simulation: with and without wind

• initial speed $||v_0|| = 50$, elevation $\theta = 45^{\circ}$

▶ no wind: w = (0, 0)

• with wind: w = (-10, 0)

(all future simulations include wind)

Simulation: varying elevation

$$||v_0|| = 50$$

•
$$\theta = 30^{\circ}, 45^{\circ}, 80^{\circ}$$

Simulation: varying speed

- $\theta = 50$
- $||v_0|| = 50, 75, 100$

Dynamics

Simulations

Targeting

Robust targeting

Targeting 12

Targeting problem

- given
 - initial position p_0
 - parameters h, m, w, η
 - flight time Th
 - desired final position ('target') p_T
- ightharpoonup find initial velocity v_0

- please note
 - this is not used for socially positive purposes
 - but it is one of the first historical applications

Targeting 13

Final state

final state is

$$x_T = A^T x_0 + (A^{T-1} + \dots + A + I)b$$

= $F x_0 + j$

where

$$F = A^{T}, j = (A^{T-1} + \dots + A + I)b$$

- -4×4 matrix F maps initial state to final state
- 4-vector j is effect of gravity, wind on final state

Final position

final position is

$$p_T = F_{11} p_0 + F_{12} v_0 + j_1 \label{eq:pt}$$
 (F_{11} and F_{12} are 2×2 subblocks of F)

- write as $p_T = Cv_0 + d$, where $C = F_{12}$, $d = F_{11}p_0 + j_1$
- ▶ solving for v_0 we have (assuming $C = F_{12}$ is invertible)

$$v_0 = C^{-1}(p_T - d)$$

(note that C and d are known)

lacktriangle gives formula for choosing v_0 (hence, $\|v_0\|$ and heta)

Dynamics

Simulations

Targeting

Robust targeting

Robust ballistics

- suppose we have uncertainty in the wind, drag coefficient, . . .
- uncertainty is modeled as K scenarios (particular values of parameters)
 - each scenario has its own $A^{(j)}$, $b^{(j)}$
 - hence its own $C^{(j)}$, $d^{(j)}$
- ightharpoonup robust targetting: choose a single v_0 to minimize mean-square targetting error

$$\frac{1}{K} \sum_{j=1}^{K} \|C^{(j)}v_0 + d^{(j)} - p_T\|^2$$

Sample simulations

various masses, drag coefficients, and wind, with $T=100\,$

Robust targeting 18