

State Space Models

Hidden Markov Models

Dynamic Graphical Models I

Introduction

 Dynamic graphical models extend traditional graphical models to handle data sequences where statistical properties evolve over time.

May 14, 2024 DTU Compute Hidden Markov Models

Dynamic Graphical Models II

State-Observation Models

- Observations $\mathbf{y}_n \in \mathbb{R}^l$ at time n are linked with latent random vectors \mathbf{x}_n .
- System dynamics modeled by latent variables with transition and observation models.

$$\mathbf{x}_{n+1} \perp (\mathbf{x}_1, \dots, \mathbf{x}_{n-1}) | \mathbf{x}_n$$

$$\mathbf{y}_n \perp (\mathbf{x}_1, \dots, \mathbf{x}_{n-1}, \mathbf{x}_{n+1}, \dots, \mathbf{x}_N) | x_n$$

May 14, 2024 DTU Compute

Dynamic Graphical Models III

Model Equations

- Transition Model: $p(\mathbf{x}_{n+1}|\mathbf{x}_n)$
- Observation Model: $p(\mathbf{y}_n|\mathbf{x}_n)$
- Linear dynamical systems: \mathbf{x}_n is continuous
- Hidden Markiv Model: x_n is discrete

$$\mathbf{x}_n = F_n \mathbf{x}_{n-1} + \eta_n$$

 $\mathbf{y}_n = H_n \mathbf{x}_n + \mathbf{v}_n$

$$p(\mathbf{x}_n|\mathbf{x}_{n-1}) = \mathcal{N}(\mathbf{x}_n|F_n\mathbf{x}_{n-1},Q_n)$$
$$p(\mathbf{y}_n|\mathbf{x}_n) = \mathcal{N}(\mathbf{y}_n|H_n\mathbf{x}_n,R_n)$$

Hidden Markov Models (HMMs) I

- HMMs are used to model sequences where states are not directly observable but influence observations.
- State Transition Probability:

$$P(k_n|k_{n-1}) = P_{ij}$$
, for $i, j = 1, 2, ..., K$

Represents the probability of transitioning from one state to another.

Observation Model:

$$p(\mathbf{y}_n|k_n)$$

Describes the probability of observing y_n given the current state k_n .

May 14, 2024 DTU Compute Hidden Markov Models

Hidden Markov Models (HMMs) II

Full Model Dynamics:

$$p(Y,X) = P(\mathbf{x}_1)p(\mathbf{y}_1|\mathbf{x}_1)\prod_{n=2}^N P(\mathbf{x}_n|\mathbf{x}_{n-1})p(\mathbf{y}_n|\mathbf{x}_n)$$

Joint distribution of all observations and states.

- Inference Techniques:
 - Sum-Product Algorithm: Used for computing marginal probabilities by passing messages in the graph.

Learning Parameters in Hidden Markov Models (HMMs) I

• Expectation (E-step): Compute expected log-likelihood:

$$Q(\Theta, \Theta^{(t)}) = \mathbb{E}[\log p(Y, X; \Theta)]$$

• **Maximization (M-step):** Update parameters by maximizing $\mathcal{Q}(\Theta, \Theta^{(t)})$, subject to constraints $\sum_{k=1}^{K} P_k = 1$ and $\sum_{i=1}^{K} P_{ij} = 1$ for all j.

$$P_{k}^{(t+1)} = \frac{\gamma(x_{1,k} = 1; \Theta^{(t)})}{\sum_{i=1}^{K} \gamma(x_{1,i} = 1; \Theta^{(t)})}$$

$$P_{ij}^{(t+1)} = \frac{\sum_{n=2}^{N} \xi(x_{n-1,j} = 1, x_{n,i} = 1; \Theta^{(t)})}{\sum_{n=2}^{N} \sum_{k=1}^{K} \xi(x_{n-1,j} = 1, x_{n,k} = 1; \Theta^{(t)})}$$

Analysis of COVID-19 Admission Data using HMMs I

- Preprocessing:
 - Apply a moving average filter to smooth the case data.
 - Calculate day-to-day differences to derive the difference sequence and use the signum function to categorize changes.
- Model Setup: Configure and initialize a Multinomial HMM with 3 states and transition and emission probability matrices:

$$P = \begin{bmatrix} 0.90 & 0.10 & 0.00 \\ 0.10 & 0.80 & 0.10 \\ 0.00 & 0.10 & 0.90 \end{bmatrix} \quad E = \begin{bmatrix} 0.80 & 0.15 & 0.05 \\ 0.05 & 0.90 & 0.05 \\ 0.05 & 0.15 & 0.80 \end{bmatrix}$$

- Model Fitting: Fit the HMM to the preprocessed data using one-hot encoding.
- State Decoding: Employ the Viterbi algorithm to decode the state sequence.

Analysis of COVID-19 Admission Data using HMMs II

