Semestre 2022-I

Práctica dirigida: Fundamentos de los AE

Curso: Programación Evolutiva (CC521)

0.1. Representación de un decimal en binario

haciendo uso del Google Colab programe las siguientes funciones:

- Que convierta un número decimal a binario.
- Que pase un número binario a código de gray.
- Que pase un número en código de gray a binario

0.2. Generar individuos

Usando las funciones anteriores, elaborar el seudocódigo e implementar el código para generar "individuos/cadenas binarias", de los siguientes dominios.

- ullet Para todo valor entero de x en el rango de [-5,5], generar las cadenas binarias y en código de gray.
- Para valores discretos de x con una precisión de 10^{-3} en el rango de [-5, 5], generar 10 cadenas binarias y en código de gray de forma aleatoria.
- Para valores discretos de x e y con una precisión de 10^{-3} donde $x \in [-5, 5]$ e $y \in [0, 10]$, generar 10 cadenas binarias y en código de gray de forma aleatoria.

0.3. Construyendo los operadores básicos

Usando las funciones anteriores, implementar el código para los siguientes casos:

- Función población inicial, los individuos se deben elegir de forma aleatoria.
- Función de selección, la selección lo debe realizar de forma aleatoria.
- Función de Recombinación, debe elegir un punto aleatorio dentro de la cadena y hacer el cruce para generar los descendientes.
- Función de mutación, debe elegir un bit o una posición de la cadena y invertirlo el valor, es decir, si tiene cero cambiarlo a 1 o viceversa.
- Por último, implementarlo el algoritmo de canónico.

0.4. El problema *OneMax* (o *One-Max*) es una tarea de optimización simple que se utiliza a menudo como el ejemplo Hola mundo en los los frameworks de algoritmos genéticos.

La tarea de **OneMax** es encontrar la cadena binaria de una longitud determinada que maximice la suma de sus dígitos. Por ejemplo, el problema **OneMax** de longitud 5 considerará candidatos como los siguientes:

- 10010 (suma de dígitos = 2)
- 01110 (suma de dígitos = 3)

■ 11111 (suma de dígitos = 5)

Obviamente (para nosotros), la solución a este problema es siempre la cadena que comprende todos los 1. Pero el algoritmo genético no tiene este conocimiento y necesita buscar ciegamente esta solución utilizando sus operadores genéticos. Si el algoritmo hace su trabajo, encontrará esta solución, o al menos una cercana, dentro de un período de tiempo razonable.

0.5. Optimización (maximización) de una función f(x)

Consideremos la función $f(x) = x\sin(x) + x\cos(x)$ donde x pertenece al dominio de [0, 5].

- Diseñar un algoritmo evolutivo iterativo (generaciones) para el encontrar el valor óptimo (valor máximo) con una precisión de 10^{-3} .
- Elabore un programa en python siguiendo la secuencia del algoritmo diseñado en el ítem anterior.

0.6. Optimización (maximización) de una función f(x)

Para el problema anterior implementar la codificación del cromosoma como código de Gray, elaborar el seudocódigo e implementar el código en un cuaderno de notas