GEN 253 – Circuitos Digitais

Prof. Luciano L. Caimi Icaimi@uffs.edu.br

Introdução

Circuitos Combinacionais: em que as saídas do circuito dependem exclusivamente do valor presente na entrada. Exemplos: multiplexadores, somadores, codificadores, etc

Circuitos Sequenciais: onde as saídas do circuito dependem dos valores presentes nas entradas e do estado anterior em que o circuito se encontra. Exemplo: registradores, contadores, máquinas de estado finito (FSM), memórias, etc

Introdução

Circuitos Combinacionais:as saídas do circuito dependem exclusivamente do valor presente na entrada

Circuitos Sequenciais: as saídas do circuito dependem dos valores presentes nas entradas e do estado anterior em que o circuito se encontra

UFFS – Universidade Federal da Fronteira Sul – Circuitos Digitais

Introdução

Tipos de Circuitos Combinacionais

Circuitos de Interconexão: seletores (conhecidos como multiplexadores), codificadores e decodificadores

Circuitos Aritméticos: somadores, subtratores, somadores/subtratores, multiplicadores, deslocadores, comparadores e ULAS (circuitos que combinam mais de duas operações aritméticas e/ou lógicas)

Multiplexadores (ou seletores)

Multiplexador 2x1:

Sua função é selecionar uma dentre as duas entradas de dados, fazendo a entrada selecionada aparecer na saída

Sel	Α	В	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Multiplexador 2x1 (MUX 2x1)

Sel	Α	В	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$$Y = \overline{Sel} \cdot A + Sel \cdot B$$

Multiplexador 2x1 (MUX 2x1)

Outra forma de ver a tabela

Sel	Α	В	Υ
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Universidade Federal da Fronteira Sul – Circuitos Digitais

Multiplexador 4x1 (MUX 4x1)

Sua função é selecionar uma dentre as quatro entradas de dados, fazendo a entrada selecionada

aparecer na saída

	SIMDOIO	
$Y = \overline{\text{Sel}1} \cdot \overline{\text{Sel}0} \cdot A$	$A + \overline{\text{Sel1}}.\text{Sel0}.B + \text{Sel1}.\overline{\text{Sel0}}.C + \text{Sel1}.$. Sel0 . <i>D</i>

Sel1	Sel0	Y
0	0	A
0	1	В
1	0	С
1	1	D

Implementação de Funções

Um multiplexador pode ser utilizado na implementação de uma função combinacional diretamente a partir da tabela-verdade

Os mintermos de uma função são gerados por um multiplexador através das entradas de seleção, restando apenas ligar as entradas de dados a 0 ou a 1 em conformidade com a respectiva tabela-verdade.

Uma função de N variáveis pode ser implementada com um MUX 2^N:1 (N entradas de seleção e 2^N entradas de dados).

Implementação de Funções

Universidade Federal da Fronteira Sul – Circuitos Digitais

Exercícios:

- a) Implemente um MUX 8x1 (tabela-verdade, equação, circuito)
- b) Implemente um MUX 4x1 utilizando somente MUX 2x1
- c) Implemente um MUX 8x1 utilizando somente MUX 4x1

S2	S1	S0	Saída
0	0	0	Α
0	0	1	A AND B
0	1	0	A OR B
0	1	1	A XOR B
1	0	0	NOT A
1	0	1	A NAND B
1	1	0	A NOR B
1	1	1	A XNOR B

Aplicações

MUX são utilizados para seleção de caminhos de dados em Unidades Lógicas e Aritméticas (ULAs).
Observe sua utilização em uma ULA que possui a seguinte tabela verdade

Aplicações

Ainda no que diz respeito a seleção de caminhos de dados

UFFS – Universidade Federal da Fronteira Sul – Circuitos Digitais

Aplicações

O MUX pode ser usado para construção de deslocadores (shifters), que recebem uma palavra binária e fornecem o valor deslocado a direita ou a esquerda, com a inclusão de "0" ou "1", ou até a rotação da palavra

Demultiplexadores

Demultiplexador 1x2:

Realiza a função inversa dos multiplexadores, ou seja direciona a

entrada para uma de 2 possíveis saídas

Sel	A	X	Y
0	0	0	0
0	1	1	0
1	0	0	0
1	1	0	1

Demultiplexadores

Demultiplexador 1x4:

Direciona a entrada para uma de 4 possíveis saídas

Sel0	Sel1	Α	S0	S1	S2	S 3
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	1	0
1	1	0	0	0	0	0
1	1	1	0	0	0	1

Sel0	Sel1	S0	S 1	S2	S 3
0	0	A	0	0	0
0	1	0	Α	0	0
1	0	0	0	A	0
1	1	0	0	0	Α
	Circ	cuit	0??	??	

Demultiplexadores

Demultiplexador 1x4:

Sel0	Sel1	S0	S 1	S2	S 3
0	0	Α	0	0	0
0	1	0	Α	0	0
1	0	0	0	Α	0
1	1	0	0	0	Α

Exercícios:

- a) Implemente um DEMUX 1x8 (tabela-verdade, equação, circuito)
- b) Implemente um DEMUX 1x4 utilizando somente DEMUX 1x2
- c) Implemente um DEMUX 1x8 utilizando somente DEMUX 1x4

Decodificadores

Decodificador 2:4

Sua função é **ativar** uma e somente uma dentre as 4 saídas, de acordo com a combinação de valores das entradas

Ativar, neste caso, quer dizer diferenciar, destacar

Existe uma relação entre o número de saídas (ns) e o número de entradas (ne):

$$ns=2^{ne}$$

Decodificadores

Decodificador 2:4

entr	adas	saídas				
A0	A 1	S0	S1	S2	S 3	
0	0	1	0	0	0	
0	1	0	1	0	0	
1	0	0	0	1	0	
1	1	0	0	0	1	

Decodificadores

Decodificador 2:4

Cada combinação de entrada pode ser vista como o endereço de uma saída específica entradas saídas

Decodificadores

Decodificador 2:4

Cada uma das 4 saídas corresponde a um mintermo diferente

Decodificadores

Decodificador 2:4 - com saídas em lógica invertida (ou complementar)

saídas		das	saí		adas _.	entra	
						^	
0 S1 S2 S3	S3	S2	S1	S0	A 1	A0	
<u> </u>		_	_				
	1	1	1	0	0	0	
0 1 1	1	1	0	1	1	0	
	•	•			•		
1 0 1	1	0	1	1	0	1	
				<u> </u>			
1 1 0 or real da Fronteira Sul – Circuitos D	_	-	1	1	1	1	

símbolo

Decodificadores

Decodificador 2:4 – acrescentando uma entrada de habilitação

Decodificadores

Decodificador 3:8, 4:16, 5:32, etc

✓ Seguem o mesmo princípio dos decodificadores vistos, sempre observando a relação n:2ⁿ (número de entradas: número de saídas)

✓ Também pode-se construir um decodificador a partir de decodificadores menores, que possuam entrada de habilitação

Decodificadores

Decodificador 3:8 - formado de 2:4, complementar, sem

entrada de habilitação

Exemplo Decodificador BCD

Circuito???

UFFS – Universidade Federal da Fronteira Sul – Circuitos Digitais

Alguns Códigos

Numéricos

- Código BCD (0000; 0001; 0010 ...)
- Código Excesso de 3 (0011; 0100; 0101 ...)
- Código Gray (000; 001; 011; 010; 110 ...)
- 7 segmentos

Alfanuméricos

- Código ASCII (7 bits; estendida: 8bits)
- Código Unicode (16 bits e 32 bits)
- Código UTF
- Código ISO 8859

Codificadores

Conceito: grosso modo, codificadores realizam a função oposta dos decodificadores

Codificadores servem para reduzir o número de bits necessários para a representação de alguma informação (facilitando sua manipulação e seu armazenamento)

Os principais tipos de codificadores são: binários, de prioridade

Codificadores

Codificador binário 4:2

Apenas as situações de entrada contendo somen-te uma posição valendo 1 são consideradas

As demais situações são tratadas como don't cares (usar Karnaugh)

				Saldas	
A3	A2	A1	A0	S1	S0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

Exercícios

- Implementar um codificador BCD
- Implementar um codificador Gray
- Implementar um decodificador Gray
- Implementar um decodificador Gray/7 segmentos

