

Model Free Prediction: Monte Carlo Methods

Easwar Subramanian

TCS Innovation Labs, Hyderabad

Email : easwar.subramanian@tcs.com / cs5500.2020@iith.ac.in

September 13, 2021

Overview

Review

② DP Algorithms : A Closer Look

3 Approximate Methods: Monte Carlo Algorithms

Review

Policy Evaluation: Prediction

Given a Markov decision process is a tuple $\langle S, A, P, R, \gamma \rangle$ and a policy π , we have,

▶ State value function of policy π :

$$V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}(G_t|s_t = s) = \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s \right)$$

▶ Bellman evaluation equation:

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_t = s \right] = \sum_{t} \pi(a|s) \sum_{t} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

▶ Iterative policy evaluation:

$$V_{k+1}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma V_{k}(s') \right]$$

$$V_k(s) \to V^{\pi}(s)$$

Finding Optimal Policy: Control

▶ Bellman Optimality Equation

$$V_{*}(s) = \max_{\pi} \left[\mathbb{E}_{\pi} \left[r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_{t} = s \right] \right] = \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \left(\mathcal{R}_{ss'}^{a} + \gamma V_{*}(s') \right) \right]$$

➤ Value Iteration

$$V_{k+1}(s) \leftarrow \max_{a} \left[\sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} \left(\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right) \right]$$
$$V_{k}(s) \to V_{*}(s)$$

- ▶ Policy Iteration
 - \star Policy evaluation for policy π_k (k-th iteration)
 - \star Policy Improvement $\pi_{k+1} \leftarrow \operatorname{greedy}(\pi_k)$

$$\pi_k(s) \to \pi_*(s)$$

Convergence Aspects

- ▶ Iterative policy evaluation converges to V_{π}
- ▶ Value iteration converges to V^*
- ▶ And therefore that policy iteration converges to π_*
- \triangleright Rate of convergence of these algorithms depends on the discount factor γ
- ▶ Contraction mapping theorem or Banach fixed point theorem are used in resolving these issues

DP Algorithms : A Closer Look

DP Algorithms : Terminology

$$V_{k+1}(s) \leftarrow \sum_{a} \pi(s, a) \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right]$$

DP Algorithms : Terminology

One-step lookahead
$$V_{k+1}(s) \leftarrow \sum_{a} \pi(s,a) \sum_{s'} \mathcal{P}^a_{ss'} \left[\mathcal{R}^a_{ss'} + \gamma V_k(s')\right]$$

DP Algorithms : Terminology

DP Algorithms: Terminology

DP Algorithms: Terminology

DP Algorithms: Schematic View

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{c'} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma V^{\pi}(s') \right]$$

$$V_{k+1}(s) \leftarrow \sum \pi(a|s) \sum_{s} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V_{k}(s') \right]$$

Drawbacks of DP Algorithms

- ▶ Requires full prior knowledge of the dynamics of the environment
- ▶ Can be implemented only on small or medium sized discrete state spaces
 - ★ For large problems, DP suffers from Bellman's curse of dimensionality
- ▶ DP uses full width back-ups
 - * Every successor state and action is considered

$$V^{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}(G_t|s_t = s) = \mathbb{E}_{\pi}\left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}|s_t = s\right)$$
$$= \mathbb{E}_{\pi}\left[r_{t+1} + \gamma V^{\pi}(s_{t+1})|s_t = s\right]$$

How can we estimate the expectations?
Use samples!

Approximate Methods: Monte Carlo Algorithms

Monte Carlo Policy Evaluation

▶ Goal: Evaluate $V^{\pi}(s)$ using experiences (or trajectories) under policy π

$$s_0, a_0, r_1, s_1, a_1, r_2, s_3, \cdots, s_T$$

▶ Recall that

$$V^{\pi}(s) = \mathbb{E}_{\pi}(G_t|s_t = s) = \mathbb{E}_{\pi}\left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}|s_t = s\right)$$

▶ The idea is to calculate **sample** mean return (G_t) starting from state s instead of expected mean return

Monte Carlo Evalution : Schematics

▶ Use G_1 to update $V^{\pi}(s_1)$

Monte Carlo Evalution : Schematics

- ▶ Use G_1 to update $V^{\pi}(s_1)$
- ▶ Use G_2 to update $V^{\pi}(s_2)$

Monte Carlo Evalution : Schematics

- ▶ Use G_1 to update $V^{\pi}(s_1)$
- ▶ Use G_2 to update $V^{\pi}(s_2)$
- ▶ Use G_3 to update $V^{\pi}(s_3)$

First-visit Monte Carlo Policy Evaluation

- ▶ To evaluate $V^{\pi}(s)$ for some given state s, repeat over several episodes
 - \star The first time t that $s_t = s$ in the episode
 - 1. Increment counter for number of visits to s: $N(s) \leftarrow N(s) + 1$
 - 2. Increment running sum of total returns with return from current episode: $S(s) \leftarrow S(s) + G_t$
- ▶ Monte Carlo estimate of value function $V(s) \leftarrow S(s)/N(s)$

By the law of large numbers $V(s) \to V^{\pi}(s)$ as number of episodes increases

Every-visit Monte Carlo Policy Evaluation

- ▶ To evaluate $V^{\pi}(s)$ for some given state s, repeat over several episodes
 - \bigstar Every time t that $s_t = s$ in the episode
 - 1. Increment counter for number of visits to s: $N(s) \leftarrow N(s) + 1$
 - 2. Increment running sum of total returns with return from current episode: $S(s) \leftarrow S(s) + G_t$
- ▶ Monte Carlo estimate of value function $V(s) \leftarrow S(s)/N(s)$

By the law of large numbers $V(s) \to V^{\pi}(s)$ as number of episodes increases

Monte Carlo Method: Example

- ▶ Consider an MDP with two states $S = \{A, B\}$ with $\gamma = 1$
- $\triangleright \mathcal{P}$ and \mathcal{R} are unknown
- \blacktriangleright Consider a policy π that gives rise to following state-reward sequence

$$\star A(+3), A(+2), B(-4), A(+4), B(-3)$$

 $\star B(-2), A(+3), B(-3)$

- \blacktriangleright What is $V^{\pi}(A)$ and $V^{\pi}(B)$ if we use first visit MC and every visit MC respectively?
- ► First visit MC: $V(A) = \frac{1}{2}(2+0) = 1$; $V(B) = \frac{1}{2}(-3-2) = -5/2$
- ▶ Every visit MC: $V(A) = \frac{1}{4}(2 1 + 1 + 0) = 1/2$; $V(B) = \frac{1}{4}(-3 3 3 2) = -11/4$

First Visit Monte Carlo Method : Example

 $v(S_{05}) = (33 + 15 + 15) / 3 = 21 \text{ gems}$

First Visit Monte Carlo State Value Evaluation of State S₀₅

Every Visit Monte Carlo Method: Example

- ▶ The purpose of this example (which is borrowed from a blogpost) is to reinforce that the two MC algorithms can give different results on same trajectories. In addition, the number of terms in sample 01 is wrong in the figure.
- Guess, it should be (33 + 26 + 13 + 15 + 15)/5 = 20.4

Monte Carlo Methods: Bias and Variance

- ▶ Both first visit MC and every visit MC converge to V^{π} as number of trajectories go to infinity
- ▶ In first visit MC this is easy to see as each return sample is independent of the another
- \blacktriangleright By the law of large numbers the sequence of averages of these estimates converges to their expected value
- ▶ Each average is itself an unbiased estimate, and the standard deviation of its error falls as $\sqrt{1/N}$ where n is the number of returns averaged
- ▶ The convergence of every visit MC is less straight forward to see but it also converges at a quadratic rate to V^{π}

In both MC methods, it is possible that we may leave out computing $V^{\pi}(s)$ for some $s \in \mathcal{S}$ because the state s was never visited by any of the trajectories

Monte Carlo Algorithms: A Schematic View

- ▶ Uses experience, rather than model
- ▶ Uses only experience; does not bootstrap
- ▶ Needs complete sequences; suitable only for episodic tasks
- ▶ Suited for off-line learning
- ▶ Time required for one estimate does not depend on total number of states
- ► Estimates for each state are independent

