Feedback Transimpedance & Current Amplifiers

Willy Sansen

KULeuven, ESAT-MICAS Leuven, Belgium

willy.sansen@esat.kuleuven.be

Table of contents

- Introduction
- Shunt-shunt FB for Transimpedance amps.
- Shunt-series FB for Current amplifiers
- Transimpedance amplifiers for low noise and high frequencies

Input- & output impedances

Input Shunt Series
$$R_{OUT} = \frac{R_{OUTOL}}{1 + LG} \quad R_{OUT} = R_{OUTOL}(1 + LG)$$
Shunt $R_{IN} = \frac{R_{INOL}}{1 + LG}$ $\frac{v_{OUT}}{i_{IN}} = A_R$ $\frac{i_{OUT}}{i_{IN}} = A_I$

Series $R_{IN} = R_{INOL}(1 + LG)$ $\frac{v_{OUT}}{v_{IN}} = A_V$ $\frac{i_{OUT}}{v_{IN}} = A_G$

Table of contents

- Introduction
- Shunt-shunt FB for Transimpedance amps.
- Shunt-series FB for Current amplifiers
- Transimpedance amplifiers for low noise and high frequencies

Shunt-shunt FB configuration

$$A_{R} = \frac{V_{OUT}}{i_{IN}} = R_{F}$$

$$R_{IN} \approx 0$$

Shunt-shunt FB: loop gain

$$LG = \frac{V_{OUTLG}}{V_{INLG}} \approx A_{VOL} \approx A_0 \approx 10^4 \dots 10^6$$

Shunt-shunt FB: input resistance

Shunt-shunt FB: output resistance

Shunt-shunt FB pair

$$A_R = \frac{v_{OUT}}{i_{IN}} = R_F$$

$$LG = g_{m1}r_{o1}$$

$$R_{IN} = \frac{R_F}{LG} \approx 0$$
? $R_{OUT} = \frac{1/g_{m2}}{LG} \approx 0$

Shunt-shunt FB pair with resistors

Ref.Cherry, Proc. IEE, Feb.63, 375-389; Holdenried, JSSC Nov.04, 1959-1967

Current detector with voltage amp.

 $f_T = 40 \text{ GHz}$ $r_B = 20 \Omega$ BW = 10 GHz I_{TOT} = 10 mA

Ref.Baureis, JSSC June 1993, 701-706

Shunt-shunt FB triple

Shunt-shunt FB triple: easier biasing

CMOS preamplifier for optical communications

Two stages possible if fully differential!

20 k Ω ... 500 Ω tracking of R1 & Rf

Ref.Phang, Johns, CAS-II July 1999

Differential shunt-shunt FB pair

$$A_R = R_F$$

$$LG = A_{v1}A_{v2}$$

$$A_{v1} = g_{m1}r_{o1}$$

$$A_{v2} = g_{m2}r_{o2}$$

$$R_{IN} = \frac{2R_F}{LG} \approx 0 \quad R_{OUT} = \frac{2/g_{m3}}{LG} \approx 0$$

Current detector with voltage amplifier

$$R_{IN} = \frac{V_{IN}}{i_{IN}} = \frac{R_F}{A_1 A_2}$$

$$A_{R} = \frac{V_{OUT}}{i_{IN}} = R_{F}$$

$$LG = A_1A_2$$

$$f_{-3dB} = \frac{1}{2\pi R_{IN} C_p}$$

Single MOST with shunt-shunt FB

$$A_R = R_F$$
 (if $\gg 1/g_m$)

$$LG = g_m r_o$$

$$R_{IN} = \frac{R_F + r_o}{LG} \approx 0 ?$$

$$R_{OUT} = \frac{r_o}{LG} \approx 0$$
 ?

Ref.Cherry, Proc. IEE, Feb.63, 375-389

Single bipolar transistor with shunt-shunt FB

$$A_R = R_F$$
 (if >> 1/ g_m)

$$LG = \frac{g_m r_o r_\pi}{r_o + R_F + r_\pi}$$

$$R_{IN} = \frac{(R_F + r_o) // r_{\pi}}{LG} \approx 0 ?$$

Far from ideal !!

Output loading : R_F + r_π≈ r_o

reduces the LG !!

$$R_{OUT} = \frac{r_o // (R_F + r_\pi)}{LG} \approx 0 ?$$

Cascode with shunt-shunt FB

$$A_R = R_F$$

$$LG = g_{m1}r_{o1} g_{m2}r_{o2}$$

$$R_{IN} = \frac{R_F + r_{OUT}}{LG} \approx \frac{1}{g_{m1}} \approx 0$$

$$r_{OUT} = r_{o1}g_{m2}r_{o2}$$

$$R_{OUT} = \frac{r_{OUT}}{LG} \approx \frac{1}{g_{m1}} \approx 0$$

MOST Shunt-shunt FB triple

Bipolar Transistor Shunt-shunt FB triple

Output loading : $R_F + r_{\pi 3} \approx r_{o3}$ reduces the LG !!

$$R_{IN} = \frac{(R_F + r_{o3}) //r_{\pi 1}}{LG} \approx 0$$

Shunt-shunt FB with non-ideal current source

Shunt-shunt FB with voltage source

Shunt-shunt feedback: Gain and ROUT

$$R_{OUT} = \frac{R_{OUTOL}}{LG}$$

Shunt-shunt FB pair with with voltage source

$$A_R = R_F$$
 $A_v = -\frac{R_F}{R_S}$

$$LG = g_{m1}r_{o1}$$

$$R_{IN} = R_S + R_G$$

$$R_G = \frac{R_F}{LG} = \frac{R_F}{g_{m1}r_{o1}} \approx 0$$

$$R_{S} > \frac{R_{F}}{A_{0}} \approx 0$$

$$R_{OUT} = \frac{1/g_{m2}}{LG} \approx 0$$

Shunt-shunt FB pair with input loading

Input loading : R_F ≈ r_{π1}

$$A_R = R_F$$

$$LG = g_{m1}r_{o1} \frac{r_{\pi 1}}{R_F + r_{\pi 1}}$$

$$R_{IN} = \frac{R_F // r_{\pi 1}}{LG} = \frac{R_F}{g_{m1} r_{o1}} \approx 0$$

$$R_{OUT} = \frac{R_{OUTOL}}{LG} \approx 0$$

$$R_{OUTOL} = \frac{1}{g_{m2}} + \frac{r_{o1}}{\beta}$$

Shunt-shunt FB pair with voltage source

$$A_R = -R_F$$
 $A_v = -\frac{R_F}{R_S}$

$$LG = g_{m1}R_{L} \frac{r_{\pi 1}}{R_{F} + r_{\pi 1}}$$

$$R_{B} = \frac{R_{F} // r_{\pi 1}}{LG} \approx 0$$

$$R_{IN} = R_S + R_B$$

Input loading:

$$R_F \approx r_{\pi 1}$$

$$R_{OUT} = \frac{R_{OUTOL}}{LG} \approx 0$$
 $R_{OUTOL} = \frac{1}{g_{m2}} + \frac{R_L}{\beta}$

Non-ideal single-transistor shunt-shunt FB

$$A_{R} \approx R_{F} \quad A_{v} \approx -\frac{R_{F}}{R_{S}}$$

$$LG \approx g_{m}r_{oLF}$$

$$R_{IN} = R_{S} + R_{B}$$

$$R_{B} \approx \frac{r_{\pi}//(R_{F} + r_{oL})}{LG} \approx 0$$

$$R_{OUT} \approx \frac{r_{oLF}}{LG} \approx 0$$
?

Output loading: $R_F \approx r_{oL}$ $r_{oL} = r_o //R_L$ $r_{oLF} = r_o //R_L //R_F$

Input loading : $R_F \approx r_{\pi}$

Non-ideal single-transistor Feedback

$$A_R = R_F$$
 $A_v = -\frac{R_F}{R_S}$

$$LG = ?$$

$$R_{IN} = ?$$

$$R_{OUT} = ?$$

Output loading: $R_F \approx r_{oL}$ $r_{oL} = r_o //R_L$

Input loading : $R_F \approx r_{\pi}$

Shunt-shunt feedback in Right-leg drive

Table of contents

- Introduction
- Shunt-shunt FB for Transimpedance amps.
- Shunt-series FB for current amplifiers
- Transimpedance amplifiers for low noise and high frequencies

Shunt-series feedback: Gain, RIN & ROUT

Shunt-series feedback with load RL

Ideal current buffer

Ideal current mirror

Gain boosting

$$A_v = A_{gb}(g_m r_{DS})_1(g_m r_{DS})_2$$

$$LG = A_{gb}$$

$$R_{E2} = \frac{1/g_{m2}}{LG} \approx 0$$

$$R_{OUTOL} = r_{o2} (1 + g_{m2} r_{o1})$$

$$R_{OUT} = R_{OUTOL} LG \approx \infty$$

Hosticka, JSSC Dec.79, pp. 1111-1114; Sackinger, JSSC Febr.90, pp. 289-298; Bult JSSC Dec.90, pp. 1379-1384

Differential current amplifier

Linear laser diode driver

Table of contents

- Introduction
- Shunt-shunt FB for Transimpedance amps.
- Shunt-series FB for Current amplifiers
- Transimpedance amplifiers for low noise and high frequencies

Optical receiver: Current or voltage amplifier

Current detector with voltage amplifier

$$\frac{\mathbf{v}_{IN}}{\mathbf{i}_{IN}} = \frac{\mathbf{R}_{F}}{\mathbf{A}_{1}\mathbf{A}_{2}} \frac{1}{1 + \mathbf{R}_{F}} \frac{\mathbf{C}_{P}}{\mathbf{A}_{1}\mathbf{A}_{2}} \mathbf{s}$$

$$\mathbf{v}_{OUT} \mathbf{P} = \mathbf{1}$$

$$T = \frac{A_1 A_2}{1 + R_F C_P s}$$

Noise matching : $C_D = C_{GS}$

$$A_R BW (THz\Omega) = \frac{A_1 A_2}{2\pi C_P}$$

Current detector with voltage amplifier

BW in voltage/current amplifier

Current detector with input cascode

Vanisri, etal, JSSC June 95, pp. 677-685

Current detector with regulated cascode

5 V 17 mA

 $C_{D} = 0.5 \text{ pF}$

 $R_F = 800 \Omega$

BW = 1 GHz

 $g_{mB} = 3 g_{m1}$

BW independent of C_D! Current noise: R_S & R_F // R₁

Park, JSSC Jan. 04, 112-120

Noise sources of detector voltage amplifier

Noise density of detector voltage amplifier

Noise sources of detector current amplifier

Noise density of detector current amplifier

$$di_{ieq}^2 = \overline{di_D^2} + 4kT \frac{2}{3} g_m df$$
 is transistor noise!

Comparison of noise densities

Voltage amp.:
$$i_{IN}^{-2} = \overline{di_{R}^{2}} = \frac{4kT}{R_{F}} df$$

Current amp.:
$$i_{IN}^2 = di_A^2 = 4kT \frac{2}{3} g_m df$$

Voltage amplifier better when $R_F > \frac{3}{2} \frac{1}{g_m}$

Comparison of integrated noise

Large
$$I_D$$
: $I_{IN}^2 = dI_D^2 (BW \frac{\pi}{2})$

Small I_D:

Voltage amp.:
$$\overline{i_{IN}^2} = \overline{di_R^2} (BW \frac{\pi}{2}) = \frac{kT}{R_L} (\frac{R_L}{R_F})^2 \frac{g_m}{C_P}$$

Current amp.:
$$i_{IN}^{-2} = \overline{di_A^2} (BW \frac{\pi}{2}) = \frac{2}{3} \frac{kT}{R_F} \frac{g_m}{C_I}$$

Voltage amplifier better when $R_F > \frac{3}{4} R_L$

CMOS photodiode amplifier

150 k Ω x 120 MHz = 18 THz Ω 450 MHz per cell **0.5** pA/√Hz

Ref.Ingels, JSSC Dec 1994, 1552-1559

CMOS wideband amplifier cell

$$I_{DS1} = \lambda I_{DS2}$$

$$I_{DS3} = (1 - \lambda) I_{DS2}$$

$$M_1$$
 & M_3 : same V_{GS} & V_{DS} $K'_n \approx 2K'_p$ All L are L_{min}

$$A_v = \frac{g_{m1} + g_{m2}}{g_{m3}}$$

$$g_m = 2 \sqrt{K'_n I_{DS} W/L}$$

$$V_{GS1} = V_{GS3}: W_3 = W_1 \frac{1 - \lambda}{\lambda}$$

CMOS wideband amplifier: gain and bandwidth

$$\frac{\lambda}{1-\lambda} \left(1+\sqrt{\frac{W_2}{2\lambda W_1}}\right)$$

$$BW = \frac{g_{m3}}{2\pi C_n}$$

$$\sim \frac{(1 - \lambda) \sqrt{\lambda W_1}}{W_1(2 - \lambda) + \lambda W_2}$$

$$W_1 = 2$$

$$W_2 = 4$$

$$C_n = C_{DB1} + C_{GS3} + C_{DB3} + C_{DB2}$$

 $C_{DB} \approx C_{GS} \approx kW$ $k \approx 2 \text{ fF/}\mu\text{m}$

Integrated resistor

R_F ? Poly R : large size : large L distributed C : 45° phase shift at 100 MHz

$$f_{-3dB} = \frac{1}{2\pi} \frac{2.43}{R_S C_0 L^2}$$

 R_S = sheet res. $(\Omega / \square \square)$ C_0 = unit cap. (F/cm^2)

MOST : W = 1.3 μ m & L = 1 μ m allows dynamic compression

Glaser; IC Engineering Add.Wesley, p.132

Gain compression

1 Gb/s 1 k Ω transimpedance stage

pMost vs nMOST:

nMOST R increases for larger diode currents! pMOST gives compression!

$$C_d = 0.8 pF \approx C_{GS}$$

Capacitive noise matching!

Ref.Ingels, JSSC July 1999, 971-977

High-frequency Resistance RF

BICMOS transimpedance amplifier

BICMOS transimpedance amplifier

Low-voltage transimpedance amplifier

If $R_F > 1/g_{m1} : v_{OUT} = -R_F i_{IN}$

Ref.Phang, Johns, ISSCC 2001, 218-219

75 Mb/s optical receiver in CMOS

Ref. Phang, ISSCC 2001 218-219

GaAs 10 Gb/s receiver

HP - GaAs MODIC : depletion nMOST's

560 V/W

flip-chip PD : -3 dB at 7.2 GHz 10 pA/√Hz

wire bond : -3 dB at 4.2 GHz 20 pA/√Hz

Table of contents

- Introduction
- Shunt-shunt FB for Transimpedance amps.
- Shunt-series FB for Current amplifiers
- Transimpedance amplifiers for low noise and high frequencies