Kapitel 8

Differential rechnung in \mathbb{R}^n

8.1 Partielle Ableitungen und Differential

Wie kann man die Begriffe der Differentialrechnung auf Funktionen $f:\Omega\subset\mathbb{R}^n\to\mathbb{R}$ erweitern?

Missing content?? page 113 top

Funktion in mehreren variablen sind ein bisschen komplizierter als Funktionen in einer variable.

Beispiel

1. $f(x) = x^2 + 5$ ist in ursprung stetig da $\lim_{x \to 0} f(x) = f(0)$. Aber $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

ist im Ursprung nicht stetig.

Where is number 2 of the beispiel??

is this continuation of the Beispiel, or is it

outside??

$$\lim_{\begin{subarray}{c} x \to 0 \\ y = 0 \end{subarray}} \frac{x \cdot y}{x^2 + y^2} = 0 = f(0, 0) \\ \lim_{\begin{subarray}{c} y \to 0 \\ x = 0 \end{subarray}} \frac{x \cdot y}{x^2 + y^2} = 0 = f(0, 0)$$

x = 0

Aber der Limes entlang der Gerade y = mx

$$\lim_{\begin{subarray}{c} x\to 0\\ y\to 0\\ y=mx \end{subarray}} f(x,mx) = \lim_{x\to 0} \frac{mx^2}{(1+m^2)x^2} = \frac{m}{1+m^2}$$

$$\downarrow$$
 Hängt von m ab

und $\frac{m}{1+m^2} \neq 0$, falls $m \neq 0$. Eine funktion f(x,y) an der stelle (x_0,y_0) ist stetig wenn der limes $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ in jeder Richtung der gleichen wert haben.

Definition 8.1

Sei $\Omega \subset \mathbb{R}^n$, $f: \Omega \to \mathbb{R}$, $a \in \Omega$

1. f hat den Grenzwert $c \in \mathbb{R}$, d.h

$$\lim_{x \to a} f(x) = c$$

ween es zu jeder (Beliebig kleinen) Schranke $\varepsilon > 0$, eine δ -umgebung

$$B_{\delta}(a) := \{ x \in \mathbb{R}^n \mid |x - a| < \delta \}$$

gibt, so dass $|f(x) - a| < \varepsilon$ für alle $x \in \Omega \cap B_{\delta}(a), x \neq a$ gilt

- 2. f heisst in $a \in \Omega$ stetig, wenn $\lim_{x \to a} f'(x) = f(a)$ gilt.
- 3. f heisst in Ω stetig, wenn f in allen $a \in \Omega$ stetig ist.

Die Summe, das Produkt, der Quotient (Nenner ungleich Null) stetiger Funktion sind stetig.

f besitzt keinen Grenzwert in x_0 wenn sich bei Annäherungen an x_0 auf verschiedenen Kurven (z.b. Geraden) verschiedene oder keine Grenzwert ergeben.

Sandwichlemma

Sei f, g, h funktionen wobei g < f < h. Wenn $\lim_{x \to a} g = L = \lim_{x \to a} h$ gilt, dann ergibt $\lim_{x \to a} f = L$.

Da
$$\lim_{(x,y)\to(0,0)} |y| = 0$$
 gilt, $\lim_{(x,y)\to(0,0)} f(x,y) = 0 \Rightarrow f$ ist in (0,0) stetig.

Oder

Für Grenzwertbestimmungen (also auch für Stetigkeitsuntersuchungen) ist es oft nützlich, die Funktionen mittels Polarkoordinaten umzuschreiben. Vor allem bei Rationalen Funktionen.

Hierbei gilt $x=r\cos\theta,\,y=r\sin\theta,$ wobei r= länge des Vektors (x,y) und φ der Winkel. Nun lass wir die Länge r gegen 0 gehen.

Beispiel

- 1. Die Funktionen
 - $f(x,y) = x^2 + y^2$
 - $f(x,y,z) = x^3 + \frac{x^2}{y^2+1} + z$
 - $f(x,y) = 4x^2y^3 + 3xy$
 - $f(x,y) = \cos xy$

KAPITEL 8. DIFFERENTIALRECHNUNG IN \mathbb{R}^N

sind stetig, da sie aus Steigen Funktionen zusammengesetzt.

2.

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

Für $(x,y) \neq (0,0)$ ist f als Quotient von steiger Funktionen stetig. Es verbleibt f im Punkt (0,0) zu untersuchen. Da

$$\left| \frac{x^2}{x^2 + y^2} \right| \le 1$$

$$0 < |f(x, y)| < |y|$$

$$f(x, y) = \frac{x^2 y}{x^2 + y^2} = \frac{\left(r^2 \cos^2 \theta\right) \left(r \sin \theta\right)}{r^2 \left(\cos^2 \theta + \sin^2 \theta\right)} = r \cos^2 \theta \sin \theta$$

$$\lim_{r \to 0} f(r, \theta) = \lim_{r \to 0} r \cos^2 \theta \sin \theta = 0$$

3. Wir können nochmals die Stetigkeit der Funktion

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

mittels Polarkoordinaten untersuchen

$$f(x,y) = \frac{r^2 \cos \theta \sin \theta}{r^2} = \cos \theta \sin \theta$$

$$\lim_{r \to 0} f(x, y) = \cos \theta \sin \theta$$

hängt von θ ab.

$$\Rightarrow f$$
 in (0,0) nicht stetig

Bemerkung

Eine trickreiche Variante Grenzwerte zu berechnen, ergibt sich durch substitution, d.h. man berechnet den Grenzwert

is this supposed to be inside the list or out??

$$\lim_{(x,y)\to(x_0,y_0)} f\left(g(x,y)\right)$$

indem man zunächst t=g(x,y) setzt und den Grenzwert

$$t_0 = \lim_{(x,y)\to(x_0,y_0)} g(x,y)$$

bestimmt. Dann ist

$$\lim_{(x,y)\to(x_0,y_0)} f(g(x,y)) = \lim_{t\to t_0} f(t)$$

Beispiel

$$\lim_{(x,y)\to(4,0)} \frac{\sin xy}{xy}$$

Hier ist g(x,y) = xy, $\lim_{(x,y)\to(4,0)} g(x,y) = 0$. Somit

$$\lim_{(x,y)\to(4,0)}\frac{\sin xy}{xy}=\lim_{t\to 0}\frac{\sin t}{t}=1$$

Wir werden auch sehen das die Existenz der Ableitungen in einigen Richtungen ungenügend für die Differenzierbarkeit der Funktion ist.

Was bedeutet die Ableitung in einiger Richtung?

Beispiel

Sei

$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \to (x^2 + xy) \cos(xy)$

Man kann für jedes y, die Funktion

$$\mathbb{R} \to \mathbb{R}$$

$$x \to (x^2 + xy)(\cos xy)$$

als Funktion einer Variablen x auflassen und die Ableitung davon berechnen. Das Resultat mit $\frac{\partial f}{\partial x}$ bezeichnet, ist die erste partielle Ableitung von f nach x. In diesem fall ist es durch

$$\frac{\partial f}{\partial x}(x,y) = (2x+y)(\cos xy) - (x^2 + xy)y\sin(xy)$$

gegeben.

Analog definiert man $\frac{\partial f}{\partial y}$

$$\frac{\partial f}{\partial y}(x,y) = x(\cos xy) - (x^2 + xy)x\sin(xy)$$

Die allgemeine Definition nimmt folgende Gestallt ein. Sei $\Omega \subset \mathbb{R}^n$. In zukunft bezeichnen wir die i—te Koordinate eines Vektors $x \in \mathbb{R}^n$ mit x^i ; also ist $x = (x^1, x^2, \dots, x^n)$.

Sei $e_i := (0, \dots, 0, 1, 0, \dots, 0)$ der i-te Basisvektor von \mathbb{R}^n

Definition 8.2

Die Funktion $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}$ heisst an der stelle $x_0 \in \Omega$ in Richtung e_i (oder nach x^i) partielle differenzierbar falls der limes

$$\frac{\partial f}{\partial x^i}(x_0) = f_{x^i}(x_0) := - \lim_{\begin{subarray}{c} h \to 0 \\ h \neq 0\end{subarray}} \frac{f(x_0 + he_i) - f(x_0)}{h}$$

$$= \lim_{\begin{subarray}{c} h \to 0 \\ h \neq 0 \end{subarray}} \frac{f\left(x_0^1, x_0^2, \dots, x_0^i + h, x_0^{i+1}, \dots, x_0^n\right) - f\left(x_0^1, \dots, x_0^n\right)}{h}$$

existiert

Bemerkung 8.3

Sei $f: \mathbb{R}^2 \to \mathbb{R}, (x_0^1, x_0^2) \in \mathbb{R}^2$. Wir betrachten die scharen von f

$$f(\cdot, x_0^2): \mathbb{R} \to \mathbb{R}$$

und

$$f(x_0^1,\cdot):\mathbb{R}\to\mathbb{R}$$

 $\frac{\partial f}{\partial x^1},\;\frac{\partial f}{\partial x^2}$ sind die Ansteig der Tangente zur entsprechende schrittkurven

Besipiel

1.
$$f(x, y, z) = \cos yz + \sin xy$$

$$\bullet \ \frac{\partial f}{\partial x} = y \cos xy$$

•
$$\frac{\partial f}{\partial y} = -\sin(yz) \cdot z + \cos(xy)x$$

$$\bullet \ \frac{\partial f}{\partial z} = -\sin(yz) \cdot y$$

2.

$$f(x,y) = \begin{cases} \frac{x^3 y}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) \neq (0,0) \end{cases}$$
$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h^3 \cdot 0}{h^2} - 0}{h} = 0$$
$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{\frac{h \cdot 0^3}{h^2} - 0}{h} = 0$$

Bemerkung

Für Funktionen $f: \mathbb{R} \to \mathbb{R}$ einer variable impliziert die differenzierbarkeit in x_0 , die Stetigkeit in x_0 und zudem eine gute Approximation von f durch eine affine Funktion in einer Umgebung von x_0 . Folgendes Beispiel zeigt, dass in \mathbb{R}^n $(n \ge 2)$ Partielle Differenzierbarkeit keine analoges Approximationseigenschaften oder stetigkeit impliziert:

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) \neq (0,0) \end{cases}$$

Für alle $(x_0, y_0) \in \mathbb{R}^2$ ist f in beiden Richtungen partiel differenzierbar:

• Für $(x_0, y_0) \neq (0, 0)$

$$\frac{\partial f}{\partial x}(x_0, y_0) = \frac{y(x^2 + y^2) - 2x^2y}{(x^2 + y^2)^2} \bigg|_{(x, y) = (x_0, y_0)} = \frac{y_0^3 - x_0^2 y_0}{(x_0^2 + y_0^2)^2}$$

$$\frac{\partial f}{\partial y}(x_0, y_0) = \left. \frac{x(x^2 + y^2) - 2xy^2}{(x^2 + y^2)^2} \right|_{(x,y) \neq (x_0, y_0)} = \frac{x^2 - xy^2}{(x^2 + y^2)^2}$$

• Für $(x_0, y_0) = (0, 0)$

$$\frac{\partial f}{\partial x}(0,0) = \lim_{h \to 0} \frac{\overbrace{f(x_0 + he_1) - f(x_0)}^{f(x_0 + he_1) - f(x_0)}}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{h \to 0} \frac{\overbrace{f(0,0+h) - f(0,0)}^{f(x_0+he_2) - f(x_0)}}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

Im Ursprung besitzt f beide partielle Ableitungen, sie ist aber nicht stetig. Der Grund ist, dass die partielle Ableitungen nur partielle Informationen geben. Wir müssen die Differenzierbarkeit irgend eine andere weise verallgemeinen.

Die Lösung dieses Problem ist, dass man eine Approximations-Eigenschaft durch eine Lineare Abbildung postuliert.

Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar in x_0 ; $f'(x_0)$ existiert. In diesem Fall kann f für alle x nähe x_0 durch die Funktion $f(x_0) + f'(x_0)(x - x_0)$ gut approximiert werden. Dass heisst dass

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + R(x, x_0)$$
 mit $\lim_{x \to x_0} \frac{R(x, x_0)}{x - x_0} = 0$

Bemerkung

 $f'(x): \mathbb{R} \to \mathbb{R}'$ sollt als lineare Abbildung interpretiert werden

Lineare Abbildungen

Eine Abbildung $A: \mathbb{R}^n \to \mathbb{R}$ ist linear falls für alle $x, y \in \mathbb{R}^n$ und $\alpha, \beta \in \mathbb{R}$

$$A(\alpha x + \beta y) = \alpha A(x) + \beta A(y)$$

Eine solche Abbildung ist durch ihre Werte

$$A(e_i) := A_1, A(e_2) := A_2, \dots, A(e_n) := A_n$$

auf der Standardbasis e_1, \ldots, e_n eindeutig bestimmt. Aus $x = \sum_{i=1}^n x^i e_i$ und linearität folgt nämlich

(*)
$$A(x) = \sum_{i=1}^{n} x^{i} A(e_{i}) = \sum_{i=1}^{n} A_{i} x^{i}$$

Umgekehrt bestimmt ein Vektor (A_1, \ldots, A_n) vermöge der Formel (*) eine Lineare Abbildung.

Schreiben wir
$$x=\begin{pmatrix} x^1\\ \vdots\\ x^n \end{pmatrix}$$
 für einen Vektor $x=(x^1)_{1\leq i\leq n}$ und

 $A = (A_1, \ldots, A_n)$ für die Darstellung einer Lineare Abbildung $A : \mathbb{R}^n \to \mathbb{R}$ bezüglich die Standard Basis $\{e_1, \ldots, e_n\}$ so ist

$$A(x) = (A_1, \dots, A_n) \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix} = \sum A_i x^i$$

Definition 8.4

Die Funktion $f: \Omega \to \mathbb{R}$ heisst an der Stelle $x_0 \in \Omega \subset \mathbb{R}^n$ differenzierbar falls eine lineare Abbildung $A: \mathbb{R}^n \to \mathbb{R}$ gibt so dass

$$f(x) = f(x_0) + A(x - x_0) + R(x_0, x)$$

wobei
$$\lim_{x \to x_0} \frac{R(x, x_0)}{|x - x_0|} = 0$$

In diesem fall heisst A der Differential an der Stelle x_0 und wird mit df bezeichnet, d.h. f ist total differenzierbar in $x_0 = (x_0^1, \dots, x_0^n)$ falls reelle Zahlen A_1, \dots, A_n existieren so dass gilt

$$f(x) = f(x_0) + A_1(x^1 - x_0^1) + A_2(x^2 - x_0^2) + \dots + A_n(x^n - x_0^n) + R(x, x_0)$$

$$\min \lim_{x \to x_0} \frac{R(x, x_0)}{|x - x_0|} = 0$$

Bemerkung: Geometrische Interpretation

Sei $f: \Omega \to \mathbb{R}$, $\Omega \in \mathbb{R}^2$. Wir können die differenzierbare Funktion nähe dem Punkt $x_0 = (x_0^1, x_0^2)$ mit hilfe der Lineare Funktion

$$P(x) = P(x^{1}, x^{2}) = f(x_{0}^{1}, x_{0}^{2}) + \underbrace{A_{1}(x^{1} - x_{0}^{1}) + A_{2}(x^{2} - x_{0}^{2})}_{d_{x_{0}}f(x - x_{0})}$$

approximieren.

can't understand what comes after the formula, page 126.1 middle Die Differenz $\underbrace{f(x)-P(x)}_{dx_0f(x-x_0)} \xrightarrow{x\to x_0} 0P(x)$ ist eine Ebene. Die ist die Tangentee-

bene zur f an der Stelle x_0 und spielt die Rolle des Tangente für Funktionen in einer Variable.

Beispiel 8.5

a) Jede affin Lineare Funktion f(x) = Ax + b, $x \in \mathbb{R}^n$, wobei $a : \mathbb{R}^n \to \mathbb{R}$ linear, $b \in \mathbb{R}$ ist an jeder stelle $x_0 \in \mathbb{R}^n$ differenzierbar, mit df = A unabhängig von x_0 da

$$f(x) - f(x_0) - A(x - x_0) = 0$$
 $\forall x, x_0 \in \mathbb{R}^n$

b) Koordinaten funktionen $x^i : \mathbb{R}^n \to \mathbb{R}, (x^1, x^2, \dots, x^n) \to x^i, x^i(x) = x^i$. Dann ist x^i differenzierbar an jeder Stelle $x_0 \in \mathbb{R}^n$ mit

$$dx^i\big|_{x=x_0} = (0, \dots, 0, 1, 0, \dots, 0)$$

die Differenziale dx^1, dx^2, \ldots, dx^n bilden also an jeder Stelle $x_0 \in \mathbb{R}^n$ eine Basis des Raumes $L(\mathbb{R}^n : \mathbb{R}) := \{A : \mathbb{R}^n \to \mathbb{R}; A \text{ linear}\}$, wobei wir $A \in L(\mathbb{R}^n : \mathbb{R})$ mit der darstellung $A = (A_1, \ldots, A_n)$ bzg. der Standardbasis $\{e_1, \ldots, e_n\}$ der \mathbb{R}^n identifizieren, und mit $A_i = A(e_i)$

$$dx^i = (0, \dots, 0, 1, 0, \dots, 0)$$

$$\left(dx^{i}\left(e_{1}\right),dx^{i}\left(e_{2}\right),\ldots,dx^{i}\left(e_{n}\right)\right)$$

Da gilt $dx^{i}(e_{j}) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$ ist $(dx^{i})_{1 \leq i \leq n}$ die duale Basis von $L(\mathbb{R}^{n} : \mathbb{R})$ zur Standardbasis $(e_{i})_{1 \leq i \leq n}$ des \mathbb{R}^{n} .

KAPITEL 8. DIFFERENTIALRECHNUNG IN \mathbb{R}^N

c) Jedes $f:\mathbb{R}\rightarrow\mathbb{R}\in\subset'(\mathbb{R})$ besitzt das Differential

$$df(x_0) = \frac{df}{dx}(x_0) dx = f'(x_0) dx$$