Prezime i ime:

Broj indeksa:

Profesorov prvi postulat: "Što se ne može pročitati, ne može se ni ocijeniti."

1. Tri tačkasta naelektrisanja Q, Q i Q_x su smješteni u tri vrha kvadrata stranice a. Koliko je potrebno da iznosi naboj Q_x pa da potencijal tačke T, smještene u četvrtom vrhu kvadrata, bude jednak nuli.

A	$Q_x = 2\sqrt{2}Q$	В	$Q_x = -2\sqrt{2}Q$
С	$Q_x = -\sqrt{2}Q$	D	$Q_x = \sqrt{2}Q$
E	Niti jedan od prethodno p Tačan odgovor je:	onuđ	enih odgovora nije tačan.

(1 bod)

2. Pozitivan tačkasti naboj +q je postavljen u ishodište x0y koordinatnog sistema, i nalazi se u u elektrostatskom polju koje stvaraju naboji +Q i -Q razmješteni po obodu kružnice poluprečnika r, kao na slici. U koju tačku je potrebno postaviti pozitivan naboj $+Q\sqrt{2}$ tako da ukupna sila na naboj u ishodištu +q, bude jednaka nuli. Ugao na slici je $\varphi=45^\circ$.

A	А	В	В	С
С	С	D	Nije moguće dobiti silu na +q jednaku nuli dodavanjem jednog naboja.	$ \begin{array}{c c} \hline \phi & +q \\ \hline \phi & \phi \\ \hline \end{array} $
E	Niti jedan od p Tačan odgovor j	orethodno e:	ponuđenih odgovora nije tačan.	+Q -Q
				(2 box

3.1. Dva tačkasta naboja Q_1 i Q_2 , nalaze se u vazduhu na udaljenosti 2b. U njihovoj blizini definirane su tačke A, B i C prema slici. Poznato je: $Q_1 = 70 \ [\mu C]$, $Q_2 = -10 \ [\mu C]$, $a = 1,73 \ [m]$, $b = 1 \ [m]$. Odrediti vektor elektrostatskog polja u tački C.

A	$\vec{E} = 6,813 \cdot 10^4 \cdot (\vec{i}) - 2,891 \cdot 10^4 \cdot (\vec{j}) \left[\frac{V}{m} \right]$	В	$\vec{E} = 6.813 \cdot 10^5 \cdot (\vec{j}) \left[\frac{V}{m} \right]$		Q_1
С	$\vec{E} = 6,813 \cdot 10^4 \cdot (\vec{i}) + 2,891 \cdot 10^4 \cdot (\vec{j}) \left[\frac{V}{m} \right]$	D	$\vec{E} = 6.813 \cdot 10^5 \cdot (\vec{i}) \left[\frac{V}{m} \right]$	a	
Е	Niti jedan od prethodno ponuđenih odgovora	nije t	ačan. Tačan odgovor je:	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	·

(2 boda)

3.2. Odrediti rad utrošen na pomjeranje naboja $q = 10 [\mu C]$ iz tačke A u tačku B

/-			por injeranje	masoja q - 10 [pc]	IZ LUCKE A	tacku b.		
(Α	A = 2,7 [J]	В	A = -2,7[J]	С	A = 0 [J]	D	$A = 2.7 [m \rfloor$
V	F	Niti jedan od prethodno	nonuđenih	odgovora pije tača	n Tačan od	daquar in		

onuđenih odgovora nije tačan. Tačan odgovor je:

(1 bod)

4. U slučaju anizotropnih dielektrika, vektor dielektričnog pomjeranja se određuje pomoću relacije:

(1 bod)

5. Tri nenabijena kondenzatora C_{1} , C_{2} i C_{3} , čije su Q = f(U) karakteristike prikazane na slici, spajaju se paralelno i priključuju na izvor istosmjernog napona U. U stacionarnom stanju:

Α	Napon na C₃ bit će najveći.	В	Naboj na C₃ bit će najveći.	Q C_2 C_1
C	N aboj na <i>C</i> ₂ bit će najveći.	D	Naboj na C₁ bit će najmanji.	C ₃
E	Niti jedan od prethodno ponuđen	ih odgovor	ra nije tačan. Tačan odgovor je:	

(2 bod)

6. U spoju prema slici, treba odrediti iznos kapaciteta kondenzatora C_x , ukoliko je poznato $U = 100 \ [V]$, $C_1 = 10 \ [\mu F]$ i

(2 boda)

7.1. Odrediti ulazni kapacitet za električno kolo na slici. Poznato je $C_1 = C_2 = C_3 = C_4 = 20$ [nF], U = 100 [V].

7.2. Koliki je prirast energije na kondenzatoru C_4 ukoliko se vrijednost kapaciteta kondenzatora C_3 poveća 2 puta u odnosu na prvobitnu vrijednost. Parametri ostalih elemenata kola se ne mijenjaju

A	$\Delta W_4 = 11,7 [\mu J]$	В	$\Delta W_4 = 24 [\mu J]$	(/ c	$\Delta W_4 = 15 [\mu J]$	D	$\Delta W_4 = 36 \left[\mu \text{ J} \right]$
E	Niti jedan od pretho	dno por	uđenih odgovora nije	tačan. Ta	ačan odgovor je:		

(2 boda)

8.1. Na razdvojnoj površi dva homogena, linearna i izotropna dielektrika, dielektričnih konstanti ε_1 i ε_2 , linije električnog polja u prvom dielektriku zaklapaju ugao α_1 u odnosu na normalu povučenu na ravan dielektrika. Poznate su vrijednosti: $\varepsilon_{t1} = 4$, $\varepsilon_{t2} = 8$, $\varepsilon_0 = 8,85 \cdot 10^{-12}$ [F/m], $\alpha_1 = 90^\circ$ i $E_1 = 100$ [V/m].

Ødnediti intenzitet vektora elektrostatskog polja u drugom dielektriku.

A	$E_2 = 100 \text{ [V/I]}$	m] B	$E_2 = 66,14 \text{ [V/m]}$	С	$E_2 = 200 [V/m]$	D	$E_2 = O\left[V/m\right]$	
E	Niti jedan od pre	ethodno ponu	đenih odgovora nije ta	čan. Tača	an odgovor je:		. 12	

(1 bod)

8.2. Odrediti intenzitet vektora dielektričnog pomjeraja u drugom dielektriku.

0.4	Our editi intenzitet vekt	ora ar	cicktiferiog porificiala a	B-			0 2
Α	$D_2 = 1,77 \cdot 10^{-9} [C/m^2]$	В	$D_2 = 3,54 \cdot 10^{-9} [C/m^2]$	С	$D_2 = 0.10^{-9} [C/m^2]$	D	$D_2 = 7,08 \cdot 10^{-9} [C/m^2]$
E	Niti jedan od prethodno	o poni	uđenih odgovora nije tač	an. Taò	an odgovor je:		

(1 bod)

9. U pločastom kondenzatoru površine ploča $S=32~[cm^2]$ i naelektrisanja Q=16~[nC], nalaze se dva homogena dielektrika debljina $d_1=1~[mm]$ i d_2 koje je nepoznato, kao na slici. Relativne dielektrične konstante ovih dielektrika su $\varepsilon_{r2}=3$ i $\varepsilon_{r2}=9$. Maksimalna dozvoljena vrijednost jačine elektrostatskog polja za prvi dielektrik je $E_{1max}=150~[kV/cm]$, a maksimalna dozvoljena vrijednost jačine elektrostatskog polja za drugi dielektrik je $E_{2max}=50~[kV/cm]$. Odrediti debljinu dielektrika d_2 tako da je maksimalni napon na koji se kondenzator smije priključiti iznosa $U_{12max}=35~[kV]$.

Tako da je maksimalni napon na koji se koliderizator sinije prikijučiti iznosa $\sigma_{12max} = 35$ [kV]. $d_2 = 2 \text{ [mm]}$ $d_2 = 3 \text{ [mm]}$ D $d_2 = 5 \text{ [mm]}$ Niti jedan od prethodno ponuđenih odgovora nije tačan.

Tačan odgovor je: d_1 d_2

(2 boda)

10. Na šemi prikazanoj na slici poznato je: $C_1 = 1$ [nF], $C_2 = 2$ [nF], $C_3 = 3$ [nF], $C_4 = 4$ [nF], $C_5 = 5$ [nF], $C_6 = 6$ [nF], $C_7 = 7$ [nF]. Odrediti ekvivalentni kapacitet između tačaka A i B.

Α	$C_{AB} = 4,45 [nF]$	В	$C_{AB} = 5,84 \; [nF]$	
с	C _{AB} = 8,8 [nF]	D	$C_{AB} = 10,2 [nF]$	
E	Niti jedan od pretho tačan. Tačan odgovor		nuđenih odgovora nije	A

(2 bod)

A) 1)
$$V_{T} = V_{1} + V_{2} + V_{3} = 0$$
 $V_{1} = V_{2} = \frac{Q}{4\pi \epsilon_{0} Q}$
 $V_{3} = -2V_{1} = -2 - \frac{Q}{4\pi \epsilon_{0} Q} = -2$

4) B= E= E+P

$$F_{1} = F_{2} = \frac{Q_{2}}{4 \pi \epsilon_{0} \Gamma}$$

$$F_{1} + F_{2} = \frac{Q_{2}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2^{\circ}$$

$$\Rightarrow Q_{1} = \frac{Q_{2}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2^{\circ}$$

$$\Rightarrow Q_{1} = \frac{Q_{2}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2^{\circ}$$

$$\Rightarrow Q_{2} = \frac{Q_{2}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2^{\circ}$$

$$\Rightarrow Q_{3} = \frac{Q_{2}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2^{\circ}$$

$$\Rightarrow Q_{4} = \frac{Q_{2}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2^{\circ}$$

$$\Rightarrow Q_{4} = \frac{Q_{2}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2^{\circ}$$

$$\Rightarrow Q_{4} = \frac{Q_{4}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2^{\circ}$$

$$\Rightarrow Q_{4} = \frac{Q_{4}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2^{\circ}$$

$$\Rightarrow Q_{4} = \frac{Q_{4}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2^{\circ}$$

$$\Rightarrow Q_{4} = \frac{Q_{4}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2^{\circ}$$

$$\Rightarrow Q_{4} = \frac{Q_{4}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2^{\circ}$$

$$\Rightarrow Q_{4} = \frac{Q_{4}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2^{\circ}$$

$$\Rightarrow Q_{4} = \frac{Q_{4}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2^{\circ}$$

$$\Rightarrow Q_{4} = \frac{Q_{4}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2^{\circ}$$

$$\Rightarrow Q_{4} = \frac{Q_{4}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2^{\circ}$$

$$\Rightarrow Q_{4} = \frac{Q_{4}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2^{\circ} 2^{\circ}$$

$$\Rightarrow Q_{4} = \frac{Q_{4}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2^{\circ} 2^{\circ}$$

$$\Rightarrow Q_{4} = \frac{Q_{4}}{4 \pi \epsilon_{0} \Gamma} \cos 45^{\circ} 2^{\circ} 2$$

(3.2)
$$A_{A8} = 9$$
 U_{A8}
 $V_A = \frac{Q_A}{40 \, \text{Ge}} + \frac{Q_2}{40 \, \text{Ge}} = \frac{70 \cdot 10^6 - 10 \cdot 10^6}{40 \, \text{Ge}} = 0,539 \cdot 10^6 \, \text{V}$
 $V_8 = \frac{Q_A + Q_2}{40 \, \text{Ge}} = \frac{(70 - 10) \cdot 10^6}{40 \, \text{Ge}} = 0,2697 \cdot 10^6 \, \text{V}$
 $A_{AB} = 10 \cdot 10^6 \cdot (0,539 - 0,2697) \cdot 10^6 = 2.69 \, \text{J}$

(a)
$$\frac{1}{\sqrt{1-\frac{1}{2}}} = \frac{C_{4} + O_{p}}{Q_{4}^{2} + SO_{p}C}$$

(b) $\frac{1}{\sqrt{1-\frac{1}{2}}} = \frac{C_{4} + O_{p}}{Q_{4}^{2} + SO_{p}C}$

(c) $\frac{1}{\sqrt{1-\frac{1}{2}}} = \frac{C_{4} + O_{p}}{Q_{4}^{2} + SO_{p}C}$

(d) $\frac{1}{\sqrt{1-\frac{1}{2}}} = \frac{C_{4} + O_{p}}{\sqrt{1-\frac{1}{2}}} = \frac{C_{4} + O_{4}}{\sqrt{1-\frac{1}{2}}} = \frac{C_{4$