- 1 Problems in spherical coordinates: 3 examples
 - Legendre polynomials for spherical problems (H 7.10)
 - Closing summary of separation of variables for PDEs (H 8.6)
- 2 Stability theory: analyzing PDE time-dynamics & predicting behaviors
- (3) Introduction to Green's functions for PDE's (H 9.5)
- $oxed{1}$ The heat eqn in spherical coords: $\partial_t u =
 abla^2 u$ on ball $0 \le
 ho \le b$

$$\frac{\partial u}{\partial t} = \frac{1}{\rho^2} \frac{\partial}{\partial \rho} \left(\rho^2 \frac{\partial u}{\partial \rho} \right) + \frac{1}{\rho^2 \sin^2 \phi} \frac{\partial^2 u}{\partial \theta^2} + \frac{1}{\rho^2 \sin \phi} \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial u}{\partial \phi} \right)$$

Dirichlet problem BC's: $u(\rho=b)=0$ and (periodic in $0\leq\theta\leq2\pi$) and (bounded at $\rho=0$ and $\phi=0,\pi$) Different types of IC's:

- (a) u(t=0)=F(
 ho) "spherically symmetric" (No $heta,\phi$'s)
- (b) $u(t=0)=F(
 ho,\phi)$ "axially symmetric" (No heta's) $^{
 m a}$
- (c) $u(t=0)=F(
 ho,\phi, heta)$ general case $u=u(
 ho, heta,\phi,t)$

^aA solution $u(\rho, \theta, t)$ or $u(\theta, t)$ (with no ϕ 's) is not possible (see the $u_{\theta\theta}$ term)!

(a) Spherically symmetric: $\partial_t u = \rho^{-2} \partial_\rho (\rho^2 \partial_\rho u)$ $u_k(\rho,t) = f(\rho) h(t)$

$$\frac{h'(t)}{h(t)} = \frac{(\rho^2 f'(\rho))'}{\rho^2 f(\rho)} = -\lambda \qquad \to \qquad h(t) = e^{-\lambda t} \qquad (\lambda?)$$

The basic spherical Bessel equation (order zero)

SL form with $\sigma = \rho^2$

$$rac{d}{d
ho}\left(
ho^2rac{df}{d
ho}
ight)=-\lambda
ho^2f$$

Convert to standard form via $f(
ho)=y(z)/\sqrt{z}$ with $z=\sqrt{\lambda}\,
ho$

$$rac{d}{dz}\left(zrac{dy}{dz}
ight)-rac{1}{4z}y=-zy \qquad
ightarrow \qquad y(z)=c_1J_{1/2}(z)+c_2Y_{1/2}(z)$$

$$f(0)$$
 bdd, $f(b)=0$ o $\left\{f_k(
ho)=rac{J_{1/2}(\sqrt{\lambda_k}\,
ho)}{\sqrt{
ho}}$ $\lambda_k=\left(rac{k\pi}{b}
ight)^2
ight\}$

can also be written as $f_k(
ho) = \sin(\sqrt{\lambda_k}\,
ho)/
ho$ (see H p.335)

$$u(
ho,t) = \sum_{k=1}^{\infty} c_k e^{-\lambda_k t} f_k(
ho) \qquad c_k = rac{\langle F, f_k
angle_\sigma}{||f_k||_\sigma^2} = rac{1}{||f_k||_\sigma^2} \int_0^b F(
ho) f_k(
ho)
ho^2 \, d
ho$$

"Chain of command": ho
ightarrow t: BC's on f(
ho) sets λ 's for h(t)'s

(b) Axisymmetric: $u_k(\rho, \phi, t) = f(\rho)g(\phi)h(t)$ (No θ)

First:
$$\frac{h'}{h} = \frac{(\rho^2 f')'}{\rho^2 f} + \frac{(\sin \phi g')'}{\rho^2 \sin \phi g} = -\lambda \qquad \rightarrow \qquad h(t) = e^{-\lambda t} \qquad (\lambda\,?)$$

$$rac{(
ho^2 f')'}{f} + \lambda
ho^2 = -rac{(\sin\phi g')'}{\sin\phi g} = \mu \qquad o \qquad f(
ho) ext{ or } g(\phi) ext{ next?} \qquad (\mu\,?)$$

Try $f(\rho)$ first:

SL form with
$$p=
ho^2, q=-\mu$$
 and $\sigma=
ho^2$

$$\frac{d}{d\rho} \left(\rho^2 \frac{df}{d\rho} \right) + (\lambda \rho^2 - \mu) f = 0 \qquad \text{General spherical Bessel eqn} \qquad (\lambda?)$$

Convert to standard form via $f(
ho)=y(z)/\sqrt{z}$ with $z=\sqrt{\lambda}\,
ho$

$$rac{d}{dz}\left(zrac{dy}{dz}
ight)-rac{\mu+rac{1}{4}}{z}y=-zy \qquad
ightarrow \qquad y(z)=c_1J_m(z)+c_2Y_m(z)$$

$$f(
ho) = c_1 rac{J_m(\sqrt{\lambda}\,
ho)}{\sqrt{
ho}} + c_2 rac{Y_m(\sqrt{\lambda}\,
ho)}{\sqrt{
ho}} \qquad f(0) \; ext{bdd}
ightarrow \; c_2 = 0$$

But what is μ, m ?stuck in dead-end!?

$$rac{ ext{Try } g(\phi) ext{ first:}}{d\phi} \left(\sin \phi rac{dg}{d\phi}
ight) + \mu \sin \phi g = 0 \qquad \Longrightarrow 0$$

General ODE for
$$g(\phi)$$
: $\dfrac{d}{d\phi}\left(\sin\phi\dfrac{dg}{d\phi}\right)+\left(\mu\sin\phi-\dfrac{\gamma}{\sin\phi}\right)g=0$

Let $z = \cos \phi$ then $g(\phi) = y(z)$ with y(z) solving $\overline{ extbf{Legendre's equation}}$:

$$rac{d}{dz}\left((1-z^2)rac{dy}{dz}
ight)+\left(\mu-rac{\gamma}{1-z^2}
ight)y=0 \qquad -1\leq z\leq 1$$

- ullet Singular Sturm-Liouville, singular at $z=\pm 1$: No BC's needed there $(p=1-z^2,q=-\gamma/(1-z^2),\sigma=1$, eigenvalue $\mu)$
- ullet General soln depends on parameters μ,γ : $y(z)=c_1P_\mu^\gamma(z)+c_2Q_\mu^\gamma(z)$
- ullet All Q(z)'s blow up at $z=\pm 1$
- ullet Most P(z)'s also blow up, EXCEPT for special choices of μ

Legendre eigenvalues :
$$\mu_n = n(n+1)$$
 $n=0,1,2,3,\cdots$

- ullet Param γ is the coupling parameter to $\mathrm{trig}(m heta)$: $\gamma_m=m^2$ (order m)
- ullet m=0 axisymmetric case : Legendre polynomials $P_n(z)$ (even/odd)

$$P_0(z)=1$$
 $P_1(z)=z$ $P_2(z)=rac{1}{2}(3z^2-1)$ \cdots HW#4 Q1

ullet General case $m=1,2,3,\cdots$: Associated Legendre functions " $P_n^m(z)$ "

$$g_{n,m}(\phi) = P_n^m(\cos\phi)$$
 (Haberman Sec 7.10.19)

(b) Axisymmetric solution (concluded): m=0 mode only Got $h(t)=e^{-\lambda t}$ then

$$g_n(\phi) = P_n(\cos \phi)$$
 $\mu_n = n(n+1)$ $n = 0, 1, 2, \cdots$

then SL q-term $\mu_n+rac{1}{4}=n^2+n+rac{1}{4}=m^2 \implies$ Bessel order $m=n+rac{1}{2}$

$$f(
ho) = rac{J_{n+1/2}(\sqrt{\lambda}\,
ho)}{\sqrt{
ho}}$$

then BC f(b)=0 picks λ_k 's: $J_{n+1/2}(\sqrt{\lambda_k}\,b)=0$ for $k=1,2,\cdots$

$$u(\rho, \phi, t) = \sum_{n=0}^{\infty} \sum_{k=1}^{\infty} c_{n,k} P_n(\cos \phi) \frac{J_{n+1/2}(\sqrt{\lambda_{n,k}} \rho)}{\sqrt{\rho}} e^{-\lambda_{n,k} t}$$

Finally, IC at t=0 on $u(
ho,\phi)=F(
ho,\phi)$ sets $c_{n,k}$ coefficients

"Chain of command": $\phi \rightarrow \rho \rightarrow t$

 ϕ -problem selects P_n modes and μ_n , $n=0,1,2,\cdots$ which sets order of $J_{n+1/2}$ in ρ direction, and BC at $\rho=b$ selects $\lambda_{n,k}$ eigenvalues for $e^{-\lambda t}$ decay rates

(c) Spherical coordinate probs for Poisson, heat, and wave eqns

$$\nabla^2 u = S(\rho, \theta, \phi)$$
 $u_t = \nabla^2 u + S$ $u_{tt} = \nabla^2 u + S$

Separating time and spatial-dependence, are all solved in terms of the spatial eigenfunctions of the Helmholtz problem:

$$abla^2 \Phi = -\lambda \Phi$$
 (with homogenized BC's)

$$\Phi_{m,n,k}(
ho, heta,\phi)=(\mathsf{Trig}\;h_m(heta))\cdot(\mathsf{Legendre}\;g_n(\phi))\cdot(\mathsf{spherical}\;\mathsf{Bessel}\;f_k(
ho))$$

General spherical probs for $u(
ho,\phi, heta,t)$: "spherical harmonic fcns" $\Phi(
ho, heta,\phi)$

$$egin{aligned} u(
ho,\phi,t) &= \sum_{m=0}^{\infty}\sum_{n=m}^{\infty}\sum_{k=1}^{\infty}\left[c_{m,n,k}\cos(m heta)+d_{m,n,k}\sin(m heta)
ight]\cdot\ &P_n^m(\cos\phi)\cdotrac{J_{n+1/2}(\sqrt{\lambda_{n,k}}\,
ho)}{\sqrt{
ho}}\cdot e^{-\lambda_{n,k}t} \end{aligned}$$

"Chain of command": $\theta \to \phi \to \rho \to t$

heta problem 2π -periodic modes $m=0,1,2,\cdots$ which selects the order for generalized ϕ -problem selects P_n^m Legendre modes, $n=0,1,2,\cdots$ which sets order of $J_{n+1/2}$ in ρ direction, and the BC at $\rho=b$ selects the $\lambda_{n,k}$ eigenvalues for $e^{-\lambda t}$ decay rates

Summary of solns via 2D (N-D) Helmholtz eigenfcns (Haberman 8.6)

Problems for Poisson, heat, and wave equations,

$$abla^2 u = S(x,y)$$
 $u_t =
abla^2 u + S(x,y)$ $u_{tt} =
abla^2 u + S(x,y)$

can be solved in terms of eigensolns of the corresponding Helmholtz problem:

$$abla^2 \Phi = -\lambda \Phi$$
 (with homogenized BC's)

"multi-index" notation: " \mathbf{k} " = (n,m)

$$u(x,y) = \sum_{n,m} c_{n,m} \Phi_{n,m}(x,y)$$
 and $u = \sum_{\mathrm{``k''}} c_{\mathrm{k}}(t) \Phi_{\mathrm{k}}(x,y)$

Solve Helmholtz $\{\lambda_k, \Phi_k\}$ then project onto PDE, $\langle \Phi, PDE \rangle$, via Green's 2nd:

$$egin{aligned} \langle \Phi, \mathrm{L} u
angle &= \iint_D \Phi
abla^2 u \, dA = \oint_C \left(\Phi rac{\partial u}{\partial n} - u rac{\partial \Phi}{\partial n}
ight) \, ds + \iint_D u
abla^2 \Phi \, dA. \ &\iint_D \Phi_k S \, dA = \oint_C \left(\Phi_k rac{\partial u}{\partial n} - u rac{\partial \Phi_k}{\partial n}
ight) \, ds - \lambda_k c_k ||\Phi_k||^2 \end{aligned}$$

This "2-D" expansion approach (HW#7 Q2) can be overall faster than the "1-D" approach (HW#7 Q1): $\left[u(x,y)=\sum_n b_n(y)f_n(x)\right]$ then split up each $b_n(y)=\sum_m c_{m,n}g_m(y)$ for same final $u=\sum_n \sum_m c_{mn}f_ng_m$

2 Linear Stability theory: describing dynamics (time evolution) of PDE solns

$$rac{\partial u}{\partial t} = \mathrm{L} u \qquad rac{\mathrm{Solution}}{\mathrm{Problem}} \qquad u(x,t) = \sum_{k=0}^{\infty} c_k e^{\Lambda_k t} \Phi_k(x)$$

 $m{k}$ called the "wavenumber" of spatial oscillations in $m{\Phi}_{m{k}}$

 Λ_k exponential growth rate of k-th eigenmode (Set of Λ_k 's called "the spectrum") (eigenvalues of $L\Phi=\Lambda\Phi$ (+sign!) : space-time separation constants)

How Λ depends on k is called the "dispersion relation"

Linear Stability results :

- If all $\Lambda_k < 0$ then all modes decay $u_k = e^{\Lambda_k t} \Phi_k(x) \to 0$ as $t \to \infty$ (asymptotically stable) $\implies u \to 0$ (the solution is <u>stable</u>)
- If any $\Lambda_k > 0$ then that mode grows $u_k \to \infty$ as $t \to \infty$ (asymptotically unstable) $\implies u \to \infty$ (the solution is <u>unstable</u>)
- In general (for non-self adjoint L) Λ_k can be complex, $\Lambda=\sigma+i\omega$, with σ (modal growth rate) and ω (modal oscillation frequency) Then stability results apply to $\sigma_k={\rm Re}(\Lambda_k)\leqslant 0^{\rm a}$
- ullet Includes $oldsymbol{\Lambda_k}$ from 2-D/N-D expansions....

 $^{{}^{\}mathrm{a}}\mathrm{Re}(\Lambda_{k})=0$ borderline "marginal cases" needs further checks... and $\Lambda_{0}=0$ \Longrightarrow FAT

Stability theory: extension to inhom-forced PDE and nonlinear PDE

$$rac{\partial u}{\partial t} = N(u,x)$$
 like $N = \mathrm{L} u + S(x)$ or $N = (u^2)_{xx}$ or \cdots

- ullet Find a steady state solution u=ar u with N(ar u,x)=0 (check FAT!)
- ullet To determine the stability of ar u to small (infinitesimally small) perturbations, let

$$u(x,t) = \bar{u} + \epsilon \widetilde{u}(x,t) + \epsilon^2(\cdots)$$
 with $\epsilon \to 0$

Plug into the full PDE

$$\epsilon rac{\partial \widetilde{u}}{\partial t} = N(ar{u} + \epsilon \widetilde{u})$$

ullet Use Taylor series to expand RHS for $\epsilon
ightarrow 0$

$$N(ar{u}+\epsilon\widetilde{u})=N(ar{u})+\epsilonrac{\delta N}{\delta u}igg|_{ar{u}}\widetilde{u}+\epsilon^2(\cdots)$$

• Linearized stability equation – collect ϵ^1 terms on LHS, RHS:

$$rac{\partial \widetilde{u}}{\partial t} = ar{\mathbf{L}} \widetilde{u} \qquad ext{where} \quad ar{\mathbf{L}} \widetilde{u} = rac{\delta N}{\delta u}igg|_{ar{u}} \widetilde{u}$$

Use separation of variables to determine the spectrum/stability of ${f L}$

(3) Introduction to Green's functions for PDE's

Recall Green's fcns for self-adjoint ODE BVP, $\mathbf{L}u=f(x)$, with hom. BC's (H 9.3) Solve via eig-fcn expansion: $\mathbf{L}\Phi=-\lambda\Phi$

$$u(x) = \sum_k \left(rac{-1}{\lambda_k ||\Phi_k||^2} \int_a^b f \Phi_k \, dx
ight) \Phi_k(x) = \int_a^b \left(\sum_k rac{\Phi_k(x) \Phi_k(\widetilde{x})}{-\lambda_k ||\Phi_k||^2}
ight) f(\widetilde{x}) \, d\widetilde{x}$$

Self-adjoint bilinear form of the Green's function:

$$G(x,x_0) = \sum_k rac{\Phi_k(x)\Phi_k(\widetilde{x})}{-\lambda_k||\Phi_k||^2} \qquad o \qquad u(x) = \int_a^b G(x,\widetilde{x})f(\widetilde{x})\,d\widetilde{x}$$

Constructing the piecewise Green's function:

$$\mathrm{L}G = \delta(x-\widetilde{x})$$
 with hom. BC's on $G(x)$

Problems with inhomogeneous BC's: start by projecting ODE onto G,

$$\langle \mathrm{L}u,G \rangle = \langle f,G \rangle$$

leads to the solution in the form

$$u(x) = \int_a^b G(x,\widetilde{x}) f(\widetilde{x}) \, d\widetilde{x} + (ext{"IBP" boundary terms})$$

The Green's function for Poisson's equation (Haberman 9.5)

$$abla^2 u = f(x,y)$$
 with homogeneous BC's

Eigenfunction expansion approach (9.5.3)

$$u = \sum_{n} \sum_{m} c_{n,m} \Phi_{n,m}(x,y)$$
 $c_{n,m} = \frac{\langle f, \Phi_{n,m} \rangle}{-\lambda_{n,m} ||\Phi_{n,m}||^2}$

Green's function (self-adjoint bilinear form)

$$G(x,y,\widetilde{x},\widetilde{y}) = \sum_n \sum_m rac{\Phi_{n,m}(x,y)\Phi_{n,m}(\widetilde{x},\widetilde{y})}{-\lambda_{n,m}||\Phi_{n,m}||^2}$$

$$u(x,y) = \int_0^L \int_0^H G(x,y,\widetilde{x},\widetilde{y}) f(\widetilde{x},\widetilde{y}) \, d\widetilde{x} \, d\widetilde{y}$$

Delta function approach for determining the Green's function (9.5.5)

$$\nabla^2 G = \delta(\mathbf{x} - \widetilde{\mathbf{x}})$$

Further issues:

- 1. Inhomogeneous boundary conditions
- 2. G formulas for infinite domain problems
- 3. Finite domain problems brief mention (more difficult...) (H 9.5.7-9)

Green's functions for Poisson's equation: Inhomogeneous BC's

$$abla^2 u = f(x,y)$$
 with BC's: $u = h(x,y)$ (Dir) or $rac{\partial u}{\partial n} = h(x,y)$ (Neu)

- 1. First: get Green's function, $\nabla^2 G = \delta(\mathbf{x} \widetilde{\mathbf{x}})$ (IOU, next slide)
- 2. Then project the Poisson problem onto G

$$\int_0^L \int_0^H G(x,y,\widetilde{x},\widetilde{y}) \widetilde{\nabla}^2 \widetilde{u} \, d\widetilde{x} \, d\widetilde{y} = \int_0^L \int_0^H G(x,y,\widetilde{x},\widetilde{y}) f(\widetilde{x},\widetilde{y}) \, d\widetilde{x} \, d\widetilde{y}$$

Use Green's second identity on the LHS

$$\begin{split} \mathsf{LHS} &= \iint \left(\widetilde{\nabla}^2 G\right) \widetilde{u} \, d\widetilde{x} \, d\widetilde{y} + \oint G \frac{\partial \widetilde{u}}{\partial \widetilde{n}} \, d\widetilde{s} - \oint \widetilde{u} \frac{\partial G}{\partial \widetilde{n}} \, d\widetilde{s} \\ &= \iint \delta(\widetilde{\mathbf{x}} - \mathbf{x}) \widetilde{u} \, d\widetilde{x} \, d\widetilde{y} + \\ &= u(x,y) + \oint G \frac{\partial \widetilde{u}}{\partial \widetilde{n}} \, d\widetilde{s} - \oint \widetilde{u} \frac{\partial G}{\partial \widetilde{n}} \, d\widetilde{s} \end{split}$$

Solution:

$$u(x,y) = \iint G\widetilde{f}\,d\widetilde{x}\,d\widetilde{y} + egin{cases} \oint h(x(\widetilde{s}),y(\widetilde{s}))rac{\partial G}{\partial \widetilde{n}}\,d\widetilde{s} & ext{Dir BC} \ -\oint h(x(\widetilde{s}),y(\widetilde{s}))G\,d\widetilde{s} & ext{Neu BC} \end{cases}$$

Solution by "boundary integrals"

Green's functions for Poisson's equation: infinite domain problems

$$\nabla^2 G = \delta(\mathbf{x} - \widetilde{\mathbf{x}})$$

Shift coordinates so the spike is at the origin: let $\hat{\mathbf{x}} = \mathbf{x} - \widetilde{\mathbf{x}}$

Use "piecewise" description of G: $abla^2 G = egin{cases} ``\infty" & \hat{\mathbf{x}} = \mathbf{0} \\ \mathbf{0} & \text{else} \end{cases}$

$$abla^2 G = egin{cases} ``\infty" & \hat{f x} = 0 \ 0 & \mathsf{else} \end{cases}$$

Find 3D spherically symmetric solution for $\rho > 0$: $\rho = |\mathbf{x} - \widetilde{\mathbf{x}}|$

$$\frac{1}{\rho^2} \frac{d}{d\rho} \left(\rho^2 \frac{dG}{d\rho} \right) = 0 \qquad \to \qquad \rho^2 \frac{dG}{d\rho} = C_1 \qquad \to \qquad G(\rho) = -\frac{C_1}{\rho}$$

Jump condition: Integrate over volume w/origin: $\iiint
abla^2 G \, dV = \iiint \delta \, dV = 1$ Use divergence theorem on LHS on a spherical volume at origin:

$$\iint \frac{\partial G}{\partial n} dS = 1 \qquad \frac{\partial G}{\partial n} = \frac{dG}{d\rho} = \frac{C_1}{\rho^2}$$

$$\int_0^{2\pi} \int_0^{\pi} \left(\frac{C_1}{\rho^2}\right) \rho^2 \sin \phi \, d\phi d\theta = 4\pi C_1 = 1 \qquad \rightarrow \qquad G(\rho) = -\frac{1}{4\pi \rho}$$

$$abla^2 u = f \qquad
ightarrow \left| u(x,y,z) = - \iiint rac{f(\widetilde{\mathrm{x}})}{4\pi |\mathrm{x} - \widetilde{\mathrm{x}}|} \, d\widetilde{V}
ight|$$

Electromagnetic fields, gravity, other problems....