-49-

Claims

1. A compound having the formula

$$X^{2}$$
 X^{1}
 A^{2}
 A^{1}
 A^{2}
 A^{3}
 A^{4}
 A^{1}
 A^{3}
 A^{3

5 the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

a¹-a²=a³-a⁴ represents a divalent radical selected from N-CH=CH-CH, N-CH=N-CH or CH-CH=N-CH;

10 Z represents O, NH or S;

15

20

Y represents -C₃₋₉alkyl-, -C₃₋₉alkenyl-, -C₁₋₅alkyl-oxy-C₁₋₅alkyl-,

- -C₁₋₅alkyl-NR¹³-C₁₋₅alkyl-, -C₁₋₅alkyl-NR¹⁴-CO-C₁₋₅alkyl-.
- -C₁₋₅alkyl-CO-NR¹⁵-C₁₋₅alkyl-, -C₁₋₆alkyl-CO-NH-,
- -C₁₋₆alkyl-NH-CO-, -CO-NH-C₁₋₆alkyl-, -NH-CO-C₁₋₆alkyl-, -CO-C₁₋₇alkyl-,
- -C₁₋₇alkyl-CO-, C₁₋₆alkyl-CO-C₁₋₆alkyl;

X1 represents a direct bond, O, -O-C1-2alkyl-, CO, -CO-C1-2alkyl-, NR11,

-NR¹¹-C₁₋₂alkyl-, NR¹⁶-CO-, NR¹⁶-CO-C₁₋₂alkyl-, -O-N=CH- or C₁₋₂alkyl;

X² represents a direct bond, O, -O-C₁₋₂alkyl-, CO, -CO- C₁₋₂alkyl-, NR¹²,

NR¹²-C₁₋₂alkyl-, NR¹⁷-CO-, NR¹⁷-CO-C₁₋₂alkyl-, Het²⁰-C₁₋₂alkyl-, -O-N=CH- or C₁₋₂alkyl;

R¹ represents hydrogen, cyano, halo, hydroxy, formyl, C₁₋₆alkoxy-, C₁₋₆alkyl-, C₁₋₆alkoxy- substituted with halo,

C₁₋₄alkyl substituted with one or where possible two or more substituents selected from hydroxy or halo;

R² represents hydrogen, cyano, halo, hydroxy, hydroxycarbonyl-, Het¹⁶-carbonyl-, C₁₋₄alkyloxycarbonyl-, C₁₋₄alkylcarbonyl-, aminocarbonyl-, mono-or di(C₁₋₄alkyl)aminocarbonyl-, Het¹, formyl, C₁₋₄alkyl-, C₂₋₆alkynyl-, C₃₋₆cycloalkyl-, C₃₋₆cycloalkyloxy-, C₁₋₆alkoxy-, Ar⁵, Ar¹-oxy-, dihydroxyborane, C₁₋₆alkoxy- substituted with halo,

10

15

- C₁₋₄alkyl substituted with one or where possible two or more substituents selected from halo, hydroxy or NR⁵R⁶,
- C₁₋₄alkylcarbonyl- wherein said C₁₋₄alkyl is optionally substituted with one or where possible two or more substituents selected from hydroxy or C₁₋₄alkyl-oxy-;
- R³ represents hydrogen, C₁₋₄alkyl, cyano or C₁₋₄alkyl substituted with one or more substituents selected from halo, C₁₋₄alkyloxy-, amino-, mono-or di(C₁₋₄alkyl)amino-, C₁₋₄alkyl-sulfonyl- or phenyl;
- R⁴ represents hydrogen, hydroxy, Ar³-oxy, Ar⁴-C₁₋₄alkyloxy-, C₁₋₄alkyloxy-, C₂₋₄alkenyloxy- optionally substituted with Het¹² or R⁴ represents C₁₋₄alkyloxy substituted with one or where possible two or more substituents selected from C₁₋₄alkyloxy-, hydroxy, halo, Het²-, -NR⁷R⁸, -carbonyl-NR⁹R¹⁰ or Het³-carbonyl-;
- R⁵ and R⁶ are each independently selected from hydrogen or C₁₋₄alkyl;
- R⁷ and R⁸ are each independently selected from hydrogen, C₁₋₄alkyl, Het⁸, aminosulfonyl-, mono- or di (C₁₋₄alkyl)-aminosulfonyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyl-, hydroxycarbonyl-C₁₋₄alkyl-, C₃₋₆cycloalkyl, Het⁹-carbonyl-C₁₋₄alkyl-, Het¹⁰-carbonyl-, polyhydroxy-C₁₋₄alkyl-, Het¹¹-C₁₋₄alkyl- or Ar²-C₁₋₄alkyl-;
- R⁹ and R¹⁰ are each independently selected from hydrogen, C₁₋₄alkyl, C₃₋₆cycloalkyl, Het⁴, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl- or polyhydroxy-C₁₋₄alkyl-;
- R¹¹ represents hydrogen, C₁₋₄alkyl, Het⁵, Het⁶-C₁₋₄alkyl-, C₂₋₄alkenylcarbonyloptionally substituted with Het⁷-C₁₋₄alkylaminocarbonyl-, C₂₋₄alkenylsulfonyl-, C₁₋₄alkyloxyC₁₋₄alkyl- or phenyl optionally substituted with one or where possible two or more substituents selected from hydrogen, hydroxy, amino or C₁₋₄alkylox_y-;
- R¹² represents hydrogen, C₁₋₄alkyl, C₁₋₄alkyl-oxy-carbonyl-, Het¹⁷, Het¹⁸-C₁₋₄alkyl-, C₂₋₄alkenylcarbonyl- optionally substituted with Het¹⁹-C₁₋₄alkylaminocarbonyl-, C₂₋₄alkenylsulfonyl-, C₁₋₄alkyloxyC₁₋₄alkyl- or phenyl optionally substituted with one or where possible two or more substituents selected from hydrogen, hydroxy, amino or C₁₋₄alkyloxy-;
- 30 R¹³ represents hydrogen, C₁₋₄alkyl, Het¹³, Het¹⁴-C₁₋₄alkyl- or phenyl optionally substituted with one or where possible two or more substituents selected from hydrogen, hydroxy, amino or C₁₋₄alkyloxy-;
 - R^{14} and R^{15} are each independently selected from hydrogen, C_{1-4} alkyl, Het¹⁵- C_{1-4} alkyl-;
- R¹⁶ and R¹⁷ are each independently selected from hydrogen, C₁₋₄alkyl, Het²¹-C₁₋₄alkyl-or C₁₋₄alkyloxyC₁₋₄alkyl-;

10

Het¹ represents a heterocycle selected from piperidinyl, morpholinyl, piperazinyl, furanyl, pyrazolyl, dioxolanyl, thiazolyl, oxazolyl, imidazolyl, isoxazolyl, oxadiazolyl, pyridinyl or pyrrolidinyl wherein said Het¹ is optionally substituted with one or where possible two or more substituents selected from amino, C₁₋₄alkyl, hydroxy-C₁₋₄alkyl-, phenyl, phenyl-C₁₋₄alkyl-,

C₁₋₄alkyl-oxy-C₁₋₄alkyl- mono- or di(C₁₋₄alkyl)amino- or amino-carbonyl-; Het² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl, pyrrolidinyl, thiomorpholinyl or dithianyl wherein said Het² is optionally substituted with one or where possible two or more substituents selected from hydroxy, halo, amino, C₁₋₄alkyl-, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyl-oxy-C₁₋₄alkyl-, hydroxy-C₁₋₄alkyl-oxy-C₁₋₄alkyl-, mono- or di(C₁₋₄alkyl)amino-, mono- or di(C₁₋₄alkyl)amino-C₁₋₄alkyl-, aminoC₁₋₄alkyl-, mono- or di(C₁₋₄alkyl)amino-sulfonyl-; aminosulfonyl-;

Het³, Het⁴ and Het⁸ each independently represent a heterocycle selected from

morpholinyl, piperazinyl, piperidinyl, furanyl, pyrazolyl, dioxolanyl, thiazolyl,
oxazolyl, imidazolyl, isoxazolyl, oxadiazolyl, pyridinyl or pyrrolidinyl wherein
said Het³, Het⁴ or Het⁸ is optionally substituted with one or where possible two or
more substituents selected from hydroxy-, amino-, C₁₋₄alkyl-,
C₃₋₆cycloalkyl-C₁₋₄alkyl-, aminosulfonyl-, mono- or di(C₁₋₄alkyl)aminosulfonyl or
amino-C₁₋₄alkyl-;

Het⁵ represent a heterocycle selected from pyrrolidinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;

Het⁶ and Het⁷ each independently represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said Het⁶ and Het⁷ are optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;

Het⁹ and Het¹⁰ each independently represent a heterocycle selected from furanyl, piperidinyl, morpholinyl, piperazinyl, pyrazolyl, dioxolanyl, thiazolyl, oxazolyl, imidazolyl, isoxazolyl, oxadiazolyl, pyridinyl or pyrrolidinyl wherein said Het⁹ or Het¹⁰ is optionally substituted C₁₋₄alkyl, C₃₋₆cycloalkyl-C₁₋₄alkyl- or amino-C₁₋₄alkyl-;

35 Het 11 represents a heterocycle selected from indolyl or

10

25

- Het 12 represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl, pyrrolidinyl, thiomorpholinyl or dithianyl wherein said Het 12 is optionally substituted with one or where possible two or more substituents selected from hydroxy, halo, amino, C₁₋₄alkyl-, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyl-oxy-C₁₋₄alkyl-, hydroxy-C₁₋₄alkyl-, mono- or di(C₁₋₄alkyl)amino- or mono- or di(C₁₋₄alkyl)amino-C₁₋₄alkyl-;
- Het¹³ represent a heterocycle selected from pyrrolidinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄allkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
- Het¹⁴ represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
- Het¹⁵ and Het²¹ each independently represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said Het¹⁵ or Het²¹ are optionally substituted with one or where possible two or more substituents selected from C₁-4alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
- Het¹⁶ represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl, 1,3,2-dioxaborolane or piperidinyl wherein said heterocycle is optionally substituted with one or more substituents selected from C_{1.4}alkyl;
 - Het¹⁷ represent a heterocycle selected from pyrrolidinyl or piperidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
 - Het¹⁸ and Het¹⁹ each independently represent a heterocycle selected from morpholinyl, pyrrolidinyl, piperazinyl or piperidinyl wherein said Het¹⁸ and Het¹⁹ are optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₃₋₆cycloalkyl, hydroxy-C₁₋₄alkyl-, C₁₋₄alkyloxyC₁₋₄alkyl or polyhydroxy-C₁₋₄alkyl-;
 - Het²⁰ represents a heterocycle selected from pyrrolidinyl, 2-pyrrolidinyl, piperidinyl, piperazinyl or pyrazolidinyl wherein said heterocycle is optionally substituted with one or where possible two or more substituents selected from C₁₋₄alkyl, C₄₋₆cycloalkyl hydroxy-C₁₋₄alkyl- C₃₋₆cycloalkyl hydroxy-C₁₋₄alkyl- C₃₋₆cycloalkyl- C₃
- 35 C₃₋₆cycloalkyl, hydroxy-C₁4alkyl-, C₁4alkyloxyC₁4alkyl or polyhydroxy-C₁4alkyl-; and

- Ar¹, Ar², Ar³, Ar⁴ and Ar⁵ each independently represent phenyl optionally substituted with cyano, C₁₋₄alkylsulfonyl-, C₁₋₄alkylsulfonylamino-, aminosulfonylamino-, hydroxy-C₁₋₄alkyl, aminosulfonyl-, hydroxy-, C₁₋₄alkyloxy- or C₁₋₄alkyl.
- 5 2. A compound according to claim 1 wherein;

Z represents NH;

15

20

25

35

- Y represents -C₃₋₉alkyl-, -C₂₋₉alkenyl-, -C₁₋₅alkyl-oxy-C₁₋₅alkyl-, -C₁₋₅alkyl-NR¹³-C₁₋₅alkyl-, -C₁₋₅alkyl-NR¹⁴-CO-C₁₋₅alkyl-, -C₁₋₆alkyl-NH-CO-, -CO-C₁₋₇alkyl-, -C₁₋₇alkyl-CO- or C₁₋₆alkyl-CO-C₁₋₆alkyl;
- 10 X¹ represents O, -O-C₁₋₂alkyl-, -O-N=CH-, NR¹¹ or -NR¹¹-C₁₋₂alkyl-; in a particular embodiment X¹ represents a direct bond, C₁₋₂alkyl-, -O-C₁₋₂alkyl,-NR¹¹-, -O- or -O-CH₂-;
 - X² represents a direct bond, O, -O-C₁₋₂alkyl-, -O-N=CH-, NR¹⁷-CO-, NR¹⁷-CO-C₁₋₂alkyl-, C₁₋₂alkyl, Het²⁰-C₁₋₂alkyl-, NR¹² or NR¹²-C₁₋₂alkyl-; in a particular embodiment X² represents a direct bond, C₁₋₂alkyl-, -O-C₁₋₂alkyl, NR¹⁷-CO-, NR¹⁷-CO-C₁₋₂alkyl-, Het²⁰-C₁₋₂alkyl-, -O- or -O-CH₂-;
 - R1 represents hydrogen, cyano, halo or hydroxy, preferably halo;
 - R² represents hydrogen, cyano, halo, hydroxy, hydroxycarbonyl-,
 C₁₋₄alkyloxycarbonyl-, Het¹⁶-carbonyl-, C₁₋₄alkyl-, C₂₋₆alkynyl-, Ar⁵ or Het¹;
 in a further embodiment R² represents hydrogen, cyano, halo, hydroxy,
 or Ar⁵; in a more particular embodiment R² represents hydrogen or halo;

R³ represents hydrogen:

R⁴ represents hydrogen, hydroxy, C_{1.4}alkyloxy-, Ar⁴-C_{1.4}alkyloxy or R⁴ represents C_{1.4}alkyloxy substituted with one or where possible two or more substituents selected from

C₁₋₄alkyloxy- or Het²-;

- R^{11} represents hydrogen, $C_{1\text{--}4}alkyl\text{--}$ or $C_{1\text{--}4}alkyl\text{--}oxy\text{--}carbonyl\text{--};}$
- R¹² represents hydrogen, C₁₋₄alkyl- or C₁₋₄alkyl-oxy-carbonyl-;
- R¹³ represents hydrogen or Het¹⁴-C₁₋₄alkyl, in particular morpholinyl-C₁₋₄alkyl;
- 30 R¹⁴ represents hydrogen or C₁₋₄alkyl;
 - R^{17} represents hydrogen, C_{1-4} alkyl-, Het 21 - C_{1-4} alkyl or C_{1-4} alkyl-oxy- C_{1-4} alkyl; in particular R^{17} represents hydrogen or C_{1-4} alkyl;
 - Het represents thiazolyl optionally substituted with amino, C₁₋₄alkyl, hydroxy-C₁₋₄alkyl-, phenyl, phenyl-C₁₋₄alkyl-, C₁₋₄alkyl-oxy-C₁₋₄alkyl-, mono- or di(C₁₋₄alkyl)amino- or amino-carbonyl-;

10

- Het² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het² is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C₁₋₄alkyl-;

 In a further embodiment Het² represents a heterocycle selected from morpholinyl or piperidinyl optionally substituted with C₁₋₄alkyl-, preferably methyl;
- Het¹⁴ represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het¹⁴ is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C_{1.4}alkyl-;
- Het¹⁶ represents a heterocycle selected from piperidinyl, morpholinyl or pyrrolidinyl;
- Het²⁰ represents a heterocycle selected from pyrrolidinyl, 2-pyrrolidinyl or piperidinyl;
 - Het²¹ represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het²¹ is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C_{1.4}alkyl-;
 - Ar⁴ represents phenyl optionally substituted with cyano, hydroxy-, C₁₋₄alkyloxy or C₁₋₄alkyl;
 - Ar⁵ represents phenyl optionally substituted with cyano, hydroxy, C_{1-4} alkyloxy or C_{1-4} alkyl.
 - 3. A compound according to claim 1 wherein;
- 20 Z represents NH;
 - Y represents - C_{3-9} alkyl-, - C_{1-5} alkyl-NR¹³- C_{1-5} alkyl-, - C_{1-5} alkyl-NR¹⁴-CO- C_{1-5} alkyl-, - C_{1-6} alkyl-NH-CO- or -CO-NH - C_{1-6} alkyl-;
 - X1 represents -O-, -NR11-, -NR16-CO-, or -NR16-CO-C1-2alkyl-;
- 25 X² represents a direct bond, -C₁₋₂alkyl-, -O-C₁₋₂alkyl, -O-, -O-CH₂- or Het²⁰-C₁₋₂alkyl-; R¹ represents hydrogen or halo;
 - R² represents hydrogen, cyano, halo, hydroxycarbonyl-, C₁₋₄alkyloxycarbonyl-, Het¹⁶-carbonyl- or Ar⁵; in particular R² represents hydrogen or halo;
 - R³ represents hydrogen;
- R⁴ represents hydrogen, hydroxy, C₁₋₄alkyloxy-, Ar⁴-C₁₋₄alkyloxy or R⁴ represents C₁₋₄alkyloxy substituted with one or where possible two or more substituents selected from
 - C₁₋₄alkyloxy- or Het²-;
 - R¹¹ represents hydrogen;
- R¹² represents hydrogen, C₁₋₄alkyl- or C₁₋₄alkyl-oxy-carbonyl-;
 - R¹³ represents hydrogen or Het¹⁴-C₁₋₄alkyl, in particular hydrogen or morpholinyl-C₁₋₄alkyl;

15

Het² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het² is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C₁₋₄alkyl-;

In a further embodiment Het² represents a heterocycle selected from morpholinyl or piperidinyl optionally substituted with C₁₋₄alkyl-, preferably methyl;

Het¹⁴ represents morpholinyl;

Het¹⁶ represents a heterocycle selected from morpholinyl or pyrrolidinyl;

Het²⁰ represents pyrrolidinyl or piperidinyl;

Ar⁴ represents phenyl;

10 Ar⁵ represents phenyl optionally substituted with cyano.

- 4. A compound according to claim 1 or 2 wherein the R¹ substituent is at position 4', the R² substituent is at position 5', the R³ substituent is at position 3 and the R⁴ substituent at position 7 of the structure of formula (I).
- 5. A compound according to any one of claims 1 to 4 wherein $a^1-a^2=a^3-a^4$ represents N-CH=CH-CH.
- A compound according to any one of claims 1 to 4 wherein a¹-a²=a³-a⁴ represents
 N-CH=N-CH.
 - 7. A compound according to any one of claims 1 to 4 wherein a^1 - a^2 = a^3 - a^4 represents a^4 -CH-CH=N-CH.
- 25 8. An intermediate of formula

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

a¹-a²=a³-a⁴ represents a divalent radical selected from N-CH=CH-CH or N-CH=N-CH;

Y represents -C₃₋₉alkyl-, -C₁₋₅alkyl-NR¹³-C₁₋₅alkyl-, -C₁₋₆alkyl-NH-CO- or -CO-NH -C₁₋₆alkyl-;

R¹ represents hydrogen or halo;

WO 2005/058913

- R² represents hydrogen, cyano, halo, hydroxycarbonyl-, C₁₋₄alkyloxycarbonyl-, Het¹⁶-carbonyl- or Ar⁵;
- R⁴ represents hydroxy, C₁₋₄alkyloxy-, Ar⁴-C₁₋₄alkyloxy or R⁴ represents C₁₋₄alkyloxy substituted with one or where possible two or more substituents selected from C₁₋₄alkyloxy- or Het²-;
- R¹¹ represents hydrogen;

5

10

- R¹³ represents Het¹⁴-C₁₋₄alkyl;
- Het² represents a heterocycle selected from morpholinyl, piperazinyl, piperidinyl or pyrrolidinyl wherein said Het² is optionally substituted with one or where possible two or more substituents selected from hydroxy, amino or C₁₋₄alkyl-;
- Het¹⁴ represents morpholinyl;
- Het¹⁶ represents a heterocycle selected from morpholinyl or pyrrolidinyl;
- Ar4 represents phenyl;
- Ar⁵ represents phenyl optionally substituted with cyano.
- 9. A kinase inhibitor of formula (I) or formula (XXXI).
- 10. A compound as claimed in any one of claims 1 to 7 for use as a medicine.
- 20 11. Use of a compound as claimed in any one of claims 1 to 7 in the manufacture of a medicament for treating cell proliferative disorders such as atherosclerosis, restenosis and cancer.
- 12. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and, as active ingredient, an effective kinase inhibitory amount of a compound as described in any one of the claims 1 to 7.
 - 13. An intermediate as claimed in claim 8 for use as a medicine.
- 30 14. Use of an intermediate as claimed in claim 8 in the manufacture of a medicament for treating cell proliferative disorders such as atherosclerosis, restinosis and cancer.
- 15. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and, as active ingredient, an effective kinase inhibitory amount of an intermediate as claimed in claim 6.
 - 16. A process for preparing a compound as claimed in claims 1 to 7, comprising;

10

a) coupling 2-acetoxy-8-chloropyrimido[5,4-d]pyrimidine derivatives (II) with suitable substituted anilines (III), to furnish the intermediates of formula (IV), and deprotecting the intermediates of formula (IV) followed by ring closure under suitable conditions.

b) coupling the known 8-chloro-2(methylthio)-pyrimido[5,4-d]pyrimidine with 2-aminophenol derivatives of formula (XXI), yielding the intermediate compounds of formula (XXII). Next, the pyrido[3,2-d]pyrimidine of formula (XXII) is aminated using an aminated alcohol (XXIII) under art known conditions, followed by ring closure under Mitsunobu conditions to give the target compounds of formula (I'')

HO
$$\mathbb{R}^1$$
 \mathbb{R}^2 \mathbb{R}^2 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^4 \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^4 \mathbb{R}^3 \mathbb{R}^4 \mathbb{R}^3 \mathbb{R}^4 \mathbb{R}^4

WO 2005/058913 PCT/EP2004/053501

-58-

- 17. A method of treating a cell proliferative disorder, the method comprising administering to an animal in need of such treatment a therapeutically effective amount of a compound as claimed in any one of claims 1 to 7.
- 5 18. A method of treating a cell proliferative disorder, the method comprising administering to an animal in need of such treatment a therapeutically effective amount of an intermediate as claimed in claim 8.