

Identify functions from the pandas library

(10 points)

description	function
Shows the first n rows	head(n)
Writes a CSV file	df.to_csv("final_lyrics_dataf.csv"
Replaces index by a new one	set_index["new index"]
Converts long to wide format	pd.dataframe.transpose()
Removes rows with missing values	pd.dropna(axis=0)
Swaps rows and columns in a DataFrame	df.pivot_table
Calculates minimum, median, mean, maximum etc.	pd.dataframe.describe()
Defines moving window over a time series	od.dataframe.rolling("time_window")
Converts wide to long format	pandas.wide_to_long
Reads data from an Excel spreadsheet	pd.read_excel("xyz.xlml")

Question 2

Calculate the MSE from the values below

(5 points)

y_true	1.2	3.4	5.6	7.8	9.0	10.11
y_pred	1.1	2.2	3.3	4.4	5.5	6.66

mean_squared_error(y_true,y_pred)

result:7.075

Identify these persons? (6 points)

a)

b)

C)

Hans Rosling

Grace Hopper

Gauss

Question 4

Find 5 bugs: (5 points)

What do the following git commands do?

(5 points)

git pull	update the local version of a repository from a remote
git log	The git log command shows a list of all the commits made to a repository.
git checkout orange	navigate between the branches created by git branch
git remote add origin <url></url>	Add origin to a new remote repository
git add .gitignore	We are using to add something in our local respository

Question 6

Describe three assumptions of a linear regression model.

(9 points)

1)Linear dependence at X and mean y2)X features are independent,3)y_true— y_linear follow normal

Name 3 different classification and 3 regression models.

(6 points)

Classification—>Random Forest, Decision Tree, Regression Regression—>Logistic, Linear, Nearest Neighbors Regression

Question 8

Match each model with exactly one hyperparameter.

(8 points)

Ridge	L2	С
SVM	Kernel type	L2 strength
Logistic Regression	С	number of trees
ElasticNet	L1/L2 ratio	degree
Decision Tree	max_depth	L1 strength
Lasso	L1	Kernel type
PolynomialFeatures*	Degree	L1 / L2 ratio
RandomForest	number of trees	maximum depth

^{*}PolynomialFeatures is not a statistical model but a Feature Engineering Technique that transforms your input data.

Check the correct answers. (4 pc	oints)
----------------------------------	-------	---

- 9.1 Which does **not** help against overfitting?
- a) More training data
- b) More test data
- c) Regularization
- d) Simpler model
- 9.2 To reduce the regularization strength, should you increase or decrease the regularization hyperparameter 'alpha'?
- a) increase
- b) decrease decrease
- c) neither
- 9.3 What is a linear Ridge regression model with an 'alpha' of zero equivalent to?
- a) Lasso
- b) ElasticNet
- c) simple linear regression
- d) Logistic Regression
- 9.4 Why would you want to use Lasso instead of Ridge Regression?
- a) To discard unnecessary features
- b) To apply stronger regularization
- c) L1 is better as a first attempt than L2