

CLASSROOM CONTACT PROGRAMME

(Academic Session: 2024 - 2025)

RE-MEDICAL: ENTHUSIAST COURSE PHASE -ENTHUSIAST COURSE

PHASE : ALL PHASE TARGET : PRE MEDICAL 2025

Test Type : MAJOR Test Pattern : NEET (UG)

TEST DATE: 28-01-2025

ANSWER KEY																														
Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A.	3	2	4	4	1	2	3	1	4	1	3	3	2	2	1	1	4	2	1	4	4	3	4	2	2	4	4	4	2	1
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
A.	4	3	2	1	1	4	1	1	1	3	3	2	3	4	2	1	2	1	1	4	2	4	2	1	3	2	3	1	3	2
Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
A.	2	4	1	4	4	2	4	3	4	3	4	2	3	4	4	2	1	2	3	2	1	1	2	4	2	3	2	4	1	3
Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
A.	1	4	2	3	3	3	3	3	4	3	3	3	4	1	4	1	1	1	2	2	2	2	4	3	4	3	2	1	4	4
Q.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
A.	1	2	4	3	1	3	3	3	3	3	3	1	4	4	2	3	4	1	1	1	3	1	3	3	3	1	4	3	3	2
Q.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
A.	1	2	3	4	3	3	2	3	4	1	3	4	4	2	1	3	3	2	2	1	2	3	2	2	2	3	1	3	3	1
Q.	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200										
Α.	4	4	4	4	1	1	4	1	4	3	1	1	1	2	2	1	4	4	3	1										

HINT - SHEET

SUBJECT: PHYSICS

SECTION-A

1. Ans (3)

$$I_0 = \left(\frac{(2M)L^2}{3}\right) \times 3$$

$$I_0 = 2ML^2$$

2. Ans (2)

Angular momentum will remain conserved,

we, know, KE =
$$\frac{L^2}{2I}$$

: L = constant

3. Ans (4)

In I^{st} case : $H = I^2Rt \Rightarrow H \propto I^2t$; $t_1 = 20$ seconds, $t_2 = 18$ seconds

$$\Rightarrow \frac{H_2}{H_1} = \left(\frac{I_2}{I_1}\right)^2 \frac{t_2}{t_1}$$

$$\Rightarrow \frac{H_2}{600} = \left(\frac{4}{3}\right)^2 \times \frac{18}{20} \Rightarrow H_2 = 960J$$

4. Ans (4)

$$\Rightarrow R = 2 + \frac{4R}{4 + R} \Rightarrow 4R + R^2 = 8 + 6R$$

$$\Rightarrow R^2 + 2R + 8 = 0 \Rightarrow R^2 + 4R + 2R + 8 = 0$$

$$\Rightarrow R^2 - 2R - 8 = 0 \Rightarrow R^2 - 4R + 2R - 8 = 0$$

$$\Rightarrow R(R-4) + 2(R-4) = 0$$

$$\Rightarrow$$
 R = 4, R = -2 (not possible)

$$\Rightarrow R = 4\Omega$$
.

5. Ans (1)

$$\begin{split} T.E_{i} &= T.E_{f} \\ K.E_{i} + P.E_{i} &= K.E_{f} + P.E_{f} \\ \frac{1}{2}mv^{2} + \frac{kQ^{2}}{r} &= O + \frac{kQ^{2}}{x} \\ \frac{1}{2}m\frac{2kQ^{2}}{rm} + \frac{kQ^{2}}{r} &= \frac{kQ^{2}}{x} \\ \frac{2kQ^{2}}{r} &= \frac{kQ^{2}}{x} \Rightarrow x = \frac{r}{2} \end{split}$$

6.

$$t = \frac{4.8 \times 10^{-6}}{1.6 \times 10^{-19} \times 10^{10}} = 3 \times 10^{3} \text{ sec}$$

Ans (3) 7.

Ans (3)
$$y_{\text{Bright}} - y_{\text{dark}} = \frac{n\lambda D}{d} - \frac{(2n-1)\lambda D}{2d}$$

$$= \frac{\lambda D}{d} - \frac{(2n-2n+1)}{2}$$

$$= \frac{\lambda D}{2d}$$

8. Ans (1)

$$C = \frac{\epsilon_0 A}{d} = 8pF$$

$$C^1 = \frac{\epsilon_0 \times 6A}{d/2} = 12 \times 8 = 96pF$$

9. Ans (4)

By work-energy theorem

$$W_F = \Delta K.E.$$

Work done by gravity

$$Mgy_0 = \Delta K.E. = K_f - K_i$$

Here, $K_i = 0$

So
$$K_f = K = mgy_0$$

10. Ans (1)

Unit of force = (109) (10 cm) (0.1 sec)⁻² = (10 × 10⁻³ × 10 × 10⁻² × 10²) N = 0.1 N

11. Ans (3)

 \therefore % Error in V = 2(% error in D) + % error in H.

: Least count is 2mm.

∴ % error in D =
$$\frac{2mm}{20cm} \times 100\% = 1\%$$

& % error in H =
$$\frac{20\text{cm}}{20\text{cm}} \times 100\% = 1\%$$

So % error in V = $2 \times 1\% + 1\% = 3\%$

So % error in
$$V = 2 \times 1\% + 1\% = 3\%$$

12. Ans (3)

By LMC
$$\rightarrow$$

 $mv = (7m) V' + mv'$
 $V' = V/8$

13. Ans (2)

Ans (2) 14.

Conceptual / theory

15. Ans (1)

$$T_{\text{max}} - \text{mg} = \text{ma}_{\text{max}}$$

 $800 - 500 = 50a$
 $a = \frac{300}{50} = 6 \text{ m/s}^2$

16. Ans (1)

$$Work = T \times Area$$
$$= 0.02 \times 0.05$$
$$= 0.001 J$$

17. Ans (4)

$$h \propto \frac{1}{r}$$

$$\frac{h_2}{h_1} = \frac{r_1}{r_2}$$

$$h_2 = \frac{r}{(r/3)}h_1 = 3h_1$$
Given $h_1 = 3$ mm
$$h_2 = 9$$
mm

18. Ans (2)

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{a}\right)^2 = \sin^2 \omega t + \cos^2 \omega t$$

$$\Rightarrow \frac{x^2}{a^2} + \frac{y^2}{a^2} = 1$$

$$\Rightarrow x^2 + y^2 = a^2$$

Hence, it is a circular path.

19. Ans (1)

$$\begin{split} \nu &= \frac{C}{\sqrt{\mu_r \epsilon_r}} \\ \mu_r &= \frac{C^2}{V^2 \epsilon_r} = \frac{C^2}{\frac{C^2}{9} \times 2} = 4.5 \end{split}$$

20. Ans (4)

$$I_{avg} = \frac{\frac{1}{2} \times 50 \times 2}{(2-0)} = 25A$$

21. Ans (4)

$$P = \frac{NhC}{t\lambda}$$

⇒ No of incident photons per unit 't'

$$\frac{N}{t} = \frac{P\lambda}{hC} = \frac{5 \times 10^{-3} \times 500 \times 10^{-9}}{20 \times 10^{-26}} = 125 \times 10^{14}$$

No. of photo electrons emitted per second = $\frac{1}{100}$ (No. of photons emitted)

$$\Rightarrow \frac{n}{t} = 125 \times 10^{12}$$
then $i = \frac{ne}{t} = 125 \times 10^{12} \times 1.6 \times 10^{-19}$

$$= 2 \times 10^{-5} \text{ A} = 20 \text{ uA}$$

22. Ans (3)

From momentum conservation,

$$|\mathbf{p}_{\mathrm{atom}}| = |\mathbf{p}_{\mathrm{photon}}|$$

$$p_{photon} = \frac{E}{C} & p_{atom} = mv$$

$$E_{atom} = \frac{1}{2}mv^{2}$$

$$mv = p_{atom} = \frac{2E_{atom}}{V}$$
Also,
$$\frac{E}{C} = \frac{2E_{atom}}{V}$$

$$\therefore E_{atom} = \frac{EV}{2C}$$

23. Ans (4)

$$\begin{array}{c} 256 \\ A \\ 96 \\ \hline m \text{ no. of } \alpha \end{array} \xrightarrow{\begin{array}{c} 256-4(m) \\ \text{M} \end{array}} \xrightarrow{\begin{array}{c} 256-(4m) \\ \text{N} \end{array}} \xrightarrow{\begin{array}{c} 256-(4m) \\ \text{N} \end{array}} \xrightarrow{\begin{array}{c} 224 \\ \text{N} \end{array}} = \begin{array}{c} 224 \\ \text{B} \end{array}$$
 So that $256-4m=224 \Rightarrow 4m=32, m=8 \text{ no. of } \alpha$ $96-(2m)+n=88 \Rightarrow 96-16+n=88$ $\Rightarrow n=7 \text{ no. of Beta}$

24. Ans (2)

For the 4th member lyman: $n_1 = 1$, $n_2 = 5$ for the 3rd member of balmer: $n_1 = 2$, $n_2 = 5$

$$\frac{\lambda_1}{\lambda_2} = \frac{R\left(\frac{1}{4} - \frac{1}{25}\right)}{R\left(\frac{1}{1} - \frac{1}{25}\right)}$$

$$\frac{\lambda_1}{\lambda_2} = \frac{\frac{21}{100}}{\frac{24}{25}}$$

$$\lambda_1 = \frac{21}{21}$$

25. Ans (2)

$$B_1 = B_3 = 0$$

$$B_2 = \frac{\mu_0 I Q}{4\pi R}$$

$$= \frac{\mu_0 I}{4\pi R} \times \frac{\pi}{2} = \frac{\mu_0 I}{8R}$$

26. Ans (4)

$$F = qvB$$

$$k = qV = \frac{1}{2}mv^{2}$$

$$v \propto \sqrt{V'}$$

$$\therefore F \propto v \propto \sqrt{V'}$$

$$\therefore \frac{F}{F'} = \sqrt{\frac{V}{6V}}$$

27. Ans (4)

$$T = \frac{2\pi m}{qB}$$

$$\Rightarrow \frac{T_1}{T_2} = \frac{m_1}{m_2} \times \frac{q_2}{q_1}$$

$$\Rightarrow \frac{T_1}{T_2} = \frac{4m}{m} \times \frac{e}{2e} = \frac{2}{1}$$

$$\Rightarrow T_1 : T_2 = 2 : 1$$

28. Ans (4)

For a molecule in solid no degree of freedom associated with translation and rotational, but degree of freedom associated to vibration along x, y and z axis, $f = 2 \times 3 = 6$

29. Ans (2)

$$C_p - C_V = R$$

 $C_p - C_v = 2 \text{ cal/mole}^{\circ}C$
 $8 - C_v = 2 \text{ cal/mol}^{\circ}C \Rightarrow C_v = 6 \text{ cal/mole}^{\circ}C$
 $\Delta U = nCv\Delta T$
 $= 5 \times 6 \times (20 - 10)$
 $= 300 \text{ cal}$.

30. Ans (1)

$$\frac{V}{4\ell_c} - \frac{V}{2\ell_0} = 4$$

$$\frac{V}{4(2\ell_c)} - \frac{V}{2(2\ell_0)} = x$$

$$\frac{1}{2} \left[\frac{V}{4\ell_c} - \frac{V}{2\ell_0} \right] = x$$

$$\Rightarrow \frac{1}{2} \times 4 = x$$

$$\Rightarrow x = 2$$

31. Ans (4)

$$f_0 = \frac{100}{0.5} = 200 \text{ cm}$$

$$f_e = \frac{100}{20} = 5 \text{ cm}$$

$$M = \frac{f_0}{f_0} = \frac{200}{5} = 40$$

33. Ans (2)

$$\begin{split} g_1 &= g\left(1-\frac{d}{R}\right) & \Rightarrow \frac{g}{5} = g\left(1-\frac{d}{R}\right) \\ \frac{1}{5} &= 1-\frac{d}{R} \Rightarrow \frac{4}{5} = \frac{d}{R} \\ d &= \frac{4R}{5} \end{split}$$

34. Ans (1)

By applying conservation of energy $KE_i + PE_i = KE_f + PE_f$

$$\frac{1}{2}mv^2 - \frac{GM_em}{R} = 0 - \frac{GM_em}{2R}$$

$$\frac{1}{2}mv^2 = \frac{GM_em}{R} \left[-\frac{1}{2} + 1 \right]$$

$$\frac{1}{2}mv^2 = \frac{GM_em}{2R} \Rightarrow v = \sqrt{\frac{GM_e}{R}}$$

35. Ans (1)

$$\begin{array}{l} F = 6 \ \pi \ \eta \ \rho \ \nu \\ = 6 \times \ 3.14 \times \ 0.9 \times \ 5 \times \ 10^{-3} \times \ 10 \times \ 10^{-2} \\ = 847.8 \times 10^{-5} \ N \\ = 8.48 \times 10^{-3} \ N \end{array}$$

SECTION-B

36. Ans (4)

$$I_g = \frac{20}{50} = 0.4A$$
 ; new $I'_g = \frac{10}{50} = 0.2A$

 I_g has to be decreased by = 0.4 - 0.2 = 0.2 A; 0.2 ampere current needs to be passed by shunt (half the current)

so it needs to be shunted by resistance = 50Ω .

37. Ans (1)

$$R = \frac{R_1 R_2}{R_1 + R_2} = \frac{200}{30} = \frac{20}{3}\Omega$$

$$\frac{dR}{R^2} = \frac{dR_1}{R_1^2} + \frac{dR_2}{R_2^2}$$

$$\frac{dR}{\frac{400}{9}} = \frac{1}{100} + \frac{0.5}{400}$$

$$dR = \frac{4}{9} + \frac{1}{18} = \frac{9}{18} = \frac{1}{2}\Omega$$

38. Ans (1)

The forward biased diode will conduct while the reverse biased will not

 \therefore Equivalent resistance = $10 + 15 = 25\Omega$

39. Ans (1)

Fcos37° = μ (mg - F sin 37°) F = $\frac{\mu mg}{\cos 37^{\circ} + \mu \sin 37^{\circ}} = \frac{0.5 \times 20 \times 10}{\frac{4}{5} + 0.5 \times \frac{3}{5}} = 90.90 \text{ N}$

40. Ans (3)

For first stone $(A \rightarrow G)$

$$\begin{split} h-5 &= v_A t + \frac{1}{2} g. \, t^2 \ \left[v_A &= \sqrt{2 \times 10 \times 5} \right] \\ h-5 &= 10 t + \frac{1}{2} g \, t^2 \end{split} \tag{1}$$

For second stone $(B \rightarrow G)$

$$h - 25 = \frac{1}{2}gt^{2}$$
Solve (1) & (2)
$$t = 2s$$

Also time taken for O \rightarrow A; $t' = \sqrt{\frac{2 \times 5}{10}} = 1s$ So total time taken by first stone = t + t' = 3s.

41. Ans (3)

$$\begin{split} & \phi = \frac{1}{2}(4 - t^2) \\ & \text{at } t = 2, \ \phi = 0 \\ & \epsilon = \frac{-d\phi}{dt} = -\frac{1}{2}(0 - 2t) = t \\ & \text{H} = \int \frac{\epsilon^2}{R} \cdot dt = \int_0^2 \frac{t^2}{8} \cdot dt = \frac{1}{8} \cdot \left(\frac{t^3}{3}\right)_0^2 \\ & = \frac{1}{8} \times \frac{1}{3} \times (8 - 0) = \frac{1}{3} J. \end{split}$$

42. Ans (2)

$$Z^{228} \longrightarrow Y + Z^{110} + Q$$

$$Q = ((BE)_y + (BE)_z)_{total} - (BE_x)_{total}$$

$$= (118 + 110)6.7 - (228) (4.2 \text{ MeV})$$

$$= (228) (6.7 - 4.2)$$

$$= 570 \text{ MeV}$$

43. Ans (3)

$$\begin{split} P &= \rho_{Hg} \, gh \\ &= 13.6 \times 10^3 \times 9.8 \times 10^{-10} \times 10^{-3} \\ &= 133.3 \times 10^{-10} \, \text{N/m}^2 \\ PV &= \text{NKT} \\ N &= \frac{PV}{\text{KT}} \\ N &= \frac{133.3 \times 10^{-10} \times 10^{-6}}{1.38 \times 10^{-23} \times 300} \\ &= 3.2 \times 10^6 \end{split}$$

44. Ans (4)

$$PT^{4} = C$$

$$\Rightarrow \frac{nRT}{V} T^{4} = C$$

$$\Rightarrow V = \frac{nR}{C} T^{5}$$

$$\therefore \frac{dV}{dT} = \frac{5nR}{C} T^{4}$$

$$\therefore \frac{1}{V} \frac{dV}{dT} = \frac{5nRT^{4}}{C} \times \frac{C}{nRT^{5}}$$

$$\Rightarrow \frac{5}{T}$$

45. Ans (2)

$$\frac{1}{2} K (A^2 - x^2) = \frac{1}{3} \left(\frac{1}{2} kx^2 \right)$$

$$\Rightarrow A^2 - x^2 = \frac{x^2}{3}$$

$$\Rightarrow A^2 = \frac{4x^2}{3}$$

$$\Rightarrow x = \frac{\sqrt{3}}{2} A = 0.87 A$$

$$\therefore \frac{x}{A} \times 100\% = 87$$

$$\Rightarrow x = 87$$

46. Ans (1)

From x - 3t = 0 x = 3t $\frac{dx}{dt} = 3$ $\Rightarrow \text{ wave speed} = 3 \text{ m/s}$

47. Ans (2)

$$\cos^2 60^\circ + \cos^2 60^\circ + \cos^2 \gamma = 1$$

$$\Rightarrow \gamma = 45^\circ$$

Vertical component of velocity = $v \cos \gamma = 50 \frac{1}{\sqrt{2}}$ = $25\sqrt{2}$

48. Ans (1)

$$F = \frac{Gm_1m_2}{r^2}$$

$$\Rightarrow F \propto \frac{1}{r^2}$$

$$\Rightarrow F \propto m_1m_2$$

 \Rightarrow This force provides centripetal force and acts towards sun

$$\Rightarrow$$
 T² \propto a³ (Kepler's third law)

49. Ans (1)

Angular width of central maxima

$$= \frac{2\lambda}{d} = \frac{2 \times 500 \times 10^{-9}}{10 \times 10^{-6}} = 0.1 \text{ rad}$$

= 5.75 degree

 \therefore 2.86 degree on both side of central maxima which is at $\theta = 30^{\circ}$

50. Ans (4)

SUBJECT: CHEMISTRY

SECTION-A

55. Ans (3)

Above are aromatic in nature.

59. Ans (3)

$$\begin{array}{c|c}
N_2^+CI^- & CI \\
\hline
O & \frac{Cu_2Cl_2}{\text{(sandmeyer reaction)}} & \frac{CH_3CI}{\text{AlCl}_3} & CH \\
\hline
\end{array}$$
(Friedel craft alkylation reaction CH.

64. Ans (4)

$$CO + H_2O \rightleftharpoons CO_2 + H_2) \times 2$$
 $K_{eq} = K_1^2$
 $2H_2 + O_2 \rightleftharpoons 2H_2O$ $K_{eq} = K_2$

$$\overline{2\text{CO} + \text{O}_2} \implies 2\text{CO}_2$$
 \mathbf{OR} $K_{\text{eq}} = {\text{K}_1}^2.\text{K}_2$

Target rxⁿ = 2 × eq(1) + eq (2)
(T.R.) So
$$K_{T.R.} = K_1^2 \cdot K_2$$

$$h = \sqrt{\frac{K_h}{C}} = \sqrt{\frac{K_w}{K_a \times C}}$$
$$h = max., K_a = min., pK_a = max.$$

71. Ans (4)

$$CuSO_{4(s)}$$
 + $5H_2O_{(\ell)}$ \rightarrow $CuSO_4.5H_2O_{(s)}$ is an example of $\Delta_{Hydration}$ H° of $CuSO_4$

$$\Delta S = nC_p \ln \frac{T_2}{T_1}$$

= 2 × $\frac{5}{2}$ R ln $\frac{600}{300}$
= 5R ln 2

77. Ans (1)

(1) Glycinato

Unsymmetrical bidentate
$$CH_2$$
 $C-O^-$

(2) Ethylenediamine

(3) Aqua H₂O monodentate.

(4) Oxalato
$$(C_2O_4^{2-})$$

SECTION-B

96. Ans (3)

sp³ hybridisation can only have $p\pi$ -d π bond as it can not form $p\pi$ -p π bond.

SUBJECT: BOTANY

SECTION-A

ALLEN®

- 118. Ans (1) NCERT Pg. # 98
- 119. Ans (4) NCERT Pg. # 96
- **120.** Ans (4)
 NCERT-XI Pg.#11
- **121. Ans (1)** NCERT (XI) Pg # 21
- 123. Ans (4) NCERT Pg. # 14
- 124. Ans (3) NCERT Pg # 23-25
- 125. Ans (1) NCERT Pg # 32
- **126. Ans (3)** NCERT, Pg. # 147
- **127. Ans (3)** NCERT Pg. # 160
- **128. Ans (3)** NCERT, Pg. # 231
- 129. Ans (3) NCERT Pg # 174
- **130. Ans (3)** NCERT Pg. No. # 177
- **131. Ans (3)** NCERT-XI, Pg. # 67
- 132. Ans (1) NCERT Pg. # 64
- 133. Ans (4) NCERT, Pg. # 61, 64, 65
- **134. Ans (4)** NCERT Pg # 73, 74
- 135. Ans (2) NCERT Pg. # 76

SECTION-B

136. Ans (3) NCERT Pg. No. # 10

- **137. Ans (4)** NCERT Pg. # 95, 98
- 138. Ans (1) NCERT Pg. # 89,90
- **139. Ans (1)** NCERT, Pg # 216
- **140. Ans (1)** NCERT Pg. # 201, 200
- **141. Ans (3)** NCERT Pg. # 207 210
- **142. Ans (1)** NCERT Pg. No. # 15
- 143. Ans (3) NCERT Pg # 33
- **144. Ans (3)** NCERT XI P. No. 38,40
- **145. Ans (3)** NCERT, Pg. # 146
- **146. Ans (1)** NCERT XII Pg. # 213,214,220,223
- **147. Ans (4)** NCERT Pg. # 159
- **148. Ans (3)** NCERT Pg. # 177
- **149. Ans (3)** NCERT Pg. # 64
- **150. Ans (2)** NCERT XII Pg # 76

SUBJECT: ZOOLOGY

SECTION-A

- 151. **Ans** (1) Module
- **152. Ans (2)** NCERT Page No. # 122
- 153. Ans (3) NCERT-XII, Pg. # 206

ALLEN®

- **154. Ans (4)** NCERT Pg. # 208
- 156. Ans (3) NCERT Pg. # 43
- **157. Ans (2)** NCERT, Pg. # 38
- 158. Ans (3) NCERT, Pg. # 30
- **159. Ans (4)** NCERT, Pg. # (E)-27, (H)-30
- **160. Ans (1)** NCERT Pg#138
- **161. Ans (3)** NCERT (XIth) Pg. # 144
- **162. Ans (4)** NCERT Page # 199
- **163. Ans (4)** NCERT (XIIth) Pg. # 165
- **164. Ans (2)** NCERT XII Pg. # 183, 186, 187.
- **165. Ans (1)** NCERT (XIIth) Pg. # 185
- **166. Ans (3)** NCERT, Pg. # 47
- **167. Ans (3)** NCERT Pg. # 112
- 168. Ans (2) NCERT Pg. #82
- **169.** Ans (2) NCERT-XI Page No. 233
- **170. Ans (1)** NCERT Pg. # 242,243,245
- **171. Ans (2)** NCERT Pg # 242, 243
- **172. Ans (3)** NCERT XI, Pg. No. # 3
- **173. Ans (2)** NCERT Pg # 135 (E), 163 (H)
- **174. Ans (2)** NCERT-XII, Pg. # 161

- **176. Ans (3)** NCERT Pg. # 199, 201
- **178. Ans (3)** Module-7 Page No. #82
- **179. Ans (3)** XI NCERT Pg. No :- 309, 310, 311
- **180. Ans (1)** NCERT XII Pg # 31
- **181. Ans (4)** NCERT Pg. No. 46
- **182. Ans (4)** NCERT (XII) Pg. # 136

SECTION-B

- **186. Ans (1)** NCERT Page No. # 116
- **187. Ans (4)** NCERT, Pg. # 222
- **189. Ans (4)** NCERT-XII, Pg. # 179,180,182,183
- **190. Ans (3)** NCERT XII, Pg. No. 210
- **191. Ans (1)** NCERT Pg. # 201
- **192. Ans (1)** NCERT, Pg. # 194
- **193. Ans (1)** NCERT Pg. No. # 46, 47
- **194. Ans (2)** NCERT, Pg. # 43
- **195.** Ans (2) Module-4 Pg#33
- **196. Ans (1)** NCERT-XII, Pg. # 161, 162
- **197. Ans (4)** NCERT Pg. # 173
- **198. Ans (4)** NCERT Pg. # 190
- **199. Ans (3)** NCERT Pg.No.321
- **200. Ans (1)** NCERT XII Pg # 28,30