Introdução a Métodos Computacionais em EDOs Notas de aula - Solução de Equações Algébricas

Prof. Yuri Dumaresq Sobral

Departamento de Matemática Universidade de Brasília

2025

 Um dos problemas mais corriqueiros em Cálculo Numérico é determinar a solução de uma equação algébrica. Ou seja, queremos determinar o valor de x que satisfaz uma equação algébrica. Por exemplo:

$$x^{2} + x^{3} + x^{8} - 18 = log(x)$$

 $sin(x) - 3tan(x^{2}) + 5x = e^{x} - 5$
 \vdots

 Note que podemos reescrever o problema de encontrar a solução de uma equação algébrica como o de encontrar a raiz de uma função! De fato:

$$x^2 + x^3 + x^8 - 18 = log(x) \Leftrightarrow f(x) = x^2 + x^3 + x^8 - 18 - log(x) = 0.$$

 Portanto, utilizaremos indistintamente as terminologias encontrar a solução de uma equação algébrica como o de encontrar a raiz de uma função daqui para frente!

- A idéia central que se utiliza para resolver este tipo de problema computacionalmente é transformá-lo num processo iterativo tal que, a partir de um chute inicial, a solução do problema (ou raiz da função) seja o ponto fixo do processo iterativo.
- Exemplo: encontrar x tal que $x^3 x 1 = 0$. (ou, equivalentemente, encontrar a raiz de $f(x) = x^3 x 1$) Podemos pensar, por exemplo, em reescrever o problema como:

$$x^3 - x - 1 = 0 \Leftrightarrow x = \sqrt[3]{x+1},$$

a partir de onde podemos construir o processo iterativo

$$x_{n+1} = \sqrt[3]{x_n + 1} = g(x_n).$$

Partindo de $x_0 = 1.5$, encontramos $x_6 = 1.32472594...$, que já aproxima com 5 algarismos significativos a raiz (ponto fixo)

$$x^* = 1.32471795...$$

 Note que, no exemplo anterior, a escolha do processo iterativo a partir da equação a ser resolvida não era única. De fato,

$$x_{n+1} = x_n^3 - 1$$
, $x_{n+1} = \frac{x_n + 1}{x_n^2}$, $x_{n+1} = 2x_n^3 - x_n - 2$, ...

eram escolhas igualmente possíveis para se construir o processo iterativo. Porém...nossa escolha foi acertada pois:

$$g(x) = \sqrt[3]{x+1} \Leftrightarrow g'(x) = \frac{1}{3\sqrt[3]{(x+1)^2}}.$$

Já sabemos da teoria de processos iterativos, que se $|g'(x^*)| < 1$, seu ponto fixo x^* é assintoticamente estável e o processo converge para ele! De fato, para nossa escolha

$$|g'(x)| = \left| \frac{1}{3\sqrt[3]{(x+1)^2}} \right| \le \frac{1}{3} < 1 \quad \forall x > 0.$$

Portanto, este processo iterativo converge para seu ponto fixo, isto é, para a raiz de $f(x) = x^3 - x - 1$.

- Além da escolha do processo iterativo, temos um problema MUITO MAIOR: a escolha do chute inicial.
- Em problemas reais, devemos ter muitas informações sobre onde estão as raízes que buscamos antes de pensar em encontrá-las. Esta pode ser (e em geral é) a parte mais difícil.
- Uma boa ajuda é o seguinte teorema:

TEOREMA: Considere uma função f(x) contínua no intervalo real [a, b] e derivável no intervalo (a, b), tal que $f(a) \cdot f(b) < 0$. Então, existe pelo menos um número $x^* \in (a, b)$ tal que $f(x^*) = 0$, isto é, existe pelo menos uma raiz da função f(x) no intervalo (a, b).

- Portanto, se encontrarmos a e b que satisfaçam as condições do teorema, um chute no intervalo (a, b) pode* nos levar à raiz desejada!
- * Observação: pode, a depender do processo iterativo escolhido, da qualidade do chute inicial, etc.
- Atenção: Muito cuidado na hora de usar este TEOREMA!
 - È possível que, se $f(a) \cdot f(b) < 0$, então exista mais de uma raiz no intervalo (a, b). Então, para encontrar a raiz desejada, será necessário ter mais informações sobre f(x).
 - Se $f(a) \cdot f(b) > 0$, não podemos afirmar nada sobre a existência de raízes no intervalo (a, b). Cuidado!
 - A continuidade de f(x) é essencial para que o resultado do **TEOREMA** funcione. Considere, por exemplo $f(x) = \frac{1}{x}$ e o intervalo [-1,1]. Note que $f(-1) \cdot f(1) < 0$, porém não há raízes de f(x) no intervalo [-1,1].

- Será que não há uma maneira mais sistemática de construirmos os processos iterativos para encontrarmos as raízes desejadas?
- Até agora, temos as seguintes idéias:
 - Queremos construir um processo iterativo $x_{n+1} = g(x_n)$ tal que $x^* = g(x^*)$ quando $f(x^*) = 0$;
 - Precisamos construí-lo tal que $|g'(x^*)| < 1$;
 - E... se $g'(x^*) = 0$, temos convergência quadrática!
- Então, se vamos pensar em uma maneira sistemática de construir processos iterativos, vamos tentar construí-lo com convergência quadrática!
- Vamos começar. Voltando à definição de ponto fixo:

$$x^* = g(x^*) \Leftrightarrow x^* - g(x^*) = 0 = f(x^*) \Leftrightarrow g(x^*) = x^* - f(x^*)$$

• Portanto, a partir desta relações triviais, já temos alguma indicação de como pode ser g(x): g(x) = x - f(x)

• Porém, como no ponto fixo x^* do processo iterativo temos que $f(x^*) = 0$, podemos generalizar mais a construção de g(x) escolhendo uma função h(x) tal que

$$g(x) = x - h(x) \cdot f(x).$$

• Claramente, temos várias escolhas possíveis para h(x). Vamos escolher aquela que implique em $g'(x^*) = 0$. Então:

$$g'(x) = 1 - h'(x) \cdot f(x) - h(x) \cdot f'(x).$$

No ponto fixo, teremos:

$$g'(x^*) = 1 - h'(x^*) \cdot f(x^*) - h(x^*) \cdot f'(x^*)$$

$$= 1 - h'(x^*) \cdot 0 - h(x^*) \cdot f'(x^*)$$

$$= 1 - h(x^*) \cdot f'(x^*) = 0.$$

De onde, se $h(x^*) \neq 0$ e $f'(x^*) \neq 0$, concluímos que

$$h(x^*) = \frac{1}{f'(x^*)}.$$

• Devemos, portanto, escolher h(x) tal que, no ponto fixo,

$$h(x^*) = \frac{1}{f'(x^*)} \dots$$

- Porém, não conhecemos o ponto fixo! De fato, é o que queremos encontrar! Isto complica nossa escolha...
- …a não ser que escolhamos simplesmente

$$h(x) = \frac{1}{f'(x)} \ \forall x,$$

de forma que tenhamos

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

• Desta forma, o processo iterativo $x_{n+1} = g(x_n)$ para encontrar, com convergência quadrática, a raiz de f(x) será dado por:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Método de Newton-Raphson

• EXEMPLO: Encontrar a solução de $x^3 - x - 1 = 0$. Buscamos, então, a raiz de $f(x) = x^3 - x - 1$. Calculando a derivada de f(x), temos que $f'(x) = 3x^2 - 1$. Portanto, o método de Newton-Raphson para este problema será dado por:

$$x_{n+1} = x_n - \frac{x_n^3 - x_n - 1}{3x_n^2 - 1}.$$

Começando o processo iterativo de $x_0 = 1.5$, obtemos $x_4 = 1.32471795...$, com 9 algarismos significativos.

Interpretação geométrica do Método de Newton-Raphson

 Partindo da expressão que define o processo iterativo do Método de Newton-Raphson, temos:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \Leftrightarrow x_{n+1} - x_n = -\frac{f(x_n)}{f'(x_n)} \Leftrightarrow (x_{n+1} - x_n)f'(x_n) = -f(x_n).$$

• Reescrevendo esta expressão, temos:

$$0 - f(x_n) = f'(x_n)(x_{n+1} - x_n).$$
 (4)

Vamos deixar o 0 apenas por conveniência.

• Agora, vamos escrever a equação da reta tangente a f(x) que passa pelo ponto $(x_n, f(x_n))$. Do Cálculo 1, temos que:

$$y - f(x_n) = f'(x_n)(x - x_n).$$

• Note que a raiz x_{raiz} desta reta será dada quando y = 0. Então:

$$\mathbf{0} - f(\mathbf{x}_n) = f'(\mathbf{x}_n)(\mathbf{x}_{raiz} - \mathbf{x}_n). \qquad (\clubsuit)$$

Comparando as equações (♣) e (♠), observamos que

$$x_{raiz} = x_{n+1}.$$
 (!!!!!!!)

- Isto é, o Método de Newton-Raphson aproxima sucessivamente a raiz da função f(x) pela raiz da reta tangente no ponto $(x_n, f(x_n))$.
- Graficamente, o método de Newton-Raphson funciona da seguinte maneira:

Representação Gráfica do Método de Newton-Raphson

- ATENCÃO: o Método de Newton-Raphson não é infalível!
 - A raiz x^* buscada deve ser tal que $f'(x^*) \neq 0$ (ver dedução do Método de Newton-Raphson e sua equação do ponto fixo). Portanto, a raiz deve ser simples!

Dizemos que x^* é uma raiz dupla se $f'(x^*) = 0$. De fato, se $f(x^*) = f'(x^*) = f''(x^*) = \dots = f^{N-1}(x^*) = 0$, dizemos que x* é uma raiz de multiplicidade N. Graficamente, funções com raízes múltiplas têm gráficos parecidos ao gráfico abaixo:

- A qualidade do chute inicial é crucial para que o Método de Newton-Raphson convirja para a raiz x^* . O chute inicial deve estar suficientemente próximo da raiz buscada (o que pode ser difícil).
- Vamos ver dois exemplos de problemas de convergência bastante comuns que podem estar ligados tanto ao chute inicial como à própria função f(x):

• Em algum ponto x_n do processo iterativo, $f'(x^n) = 0$, e o método para.

Como a derivada em x_n é nula, a reta tangente à função f(x) neste ponto não terá raiz e, portanto, o Método de Newton-Raphson não pode prosseguir...

 O método pode ficar preso em um loop infinito como ilustrado abaixo.

A sequência de pontos x_n gerada pelo método será tal que $x_n = x_{n+2} = x_{n+4} = \dots$ e $x_{n+1} = x_{n+3} = x_{n+5} = \dots$ e o método não convergirá...

- É possível deduzir outros métodos a partir da técnica que utilizamos para deduzir o Método de Newton-Raphson, que podem ser úteis em aplicações mais específicas (tailor made).
- Até agora, aprendemos métodos que foram construídos a partir de processos iterativos e, portanto, são métodos que têm os mesmos problemas comuns a processos iterativos (dependência do chute inicial, não-convergência, ...).
- Será que podemos construir um método que seja mais a prova de falhas? Sim! É um método infalível mas é um método relativamente lento...Só deve ser usado em casos de dificuldades extremas!
- Considere que f(x) seja contínua e que conheçamos um intervalo [a, b], com a < b, sem perda de generalidade, no qual $f(a) \cdot f(b) < 0$. Pelo teorema da raiz, sabemos que existe pelo menos uma raiz (não necessariamente simples) de f(x)neste intervalo. Vamos considerar que exista apenas uma raiz. 17/20

 Podemos, então, pensar em um método que encolha gradativamente o intervalo [a, b], deixando a raiz dentro dele! Isto é, para cada iteração i faremos:

$$a \leq a_1 \leq a_2 \leq \cdots \leq a_k \leq x^* \leq b_k \leq \cdots \leq b_2 \leq b_1 \leq b$$

- Uma maneira de conseguirmos isto é dividirmos pela metade o intervalo a cada iteração, e determinarmos em qual dos novos intervalos a raiz se encontra!
- O algoritmo para este método poderia ser assim:

$$x_k = \frac{1}{2}(a_k + b_k)$$
 (ponto médio do intervalo)
Se $|f(x_k)| \leq TOL$
Então $x^* = x_k$ e programa termina
Senão, se $f(x_k) \cdot f(a_k) < 0$
então $a_{k+1} = a_k$ e $b_{k+1} = x_k$
senão, $a_{k+1} = x_k$ e $b_{k+1} = b_k$

Este é o Método da Bisseção.

 Note que podemos garantir que o Método da Bisseção sempre converge para a raiz. De fato:

$$|x_{k} - x^{*}| \leq \frac{1}{2} |a_{k} - b_{k}| = \frac{1}{2} \left(\frac{1}{2} |a_{k-1} - b_{k-1}| \right) =$$

$$= \left(\frac{1}{2} \right)^{2} \left(\frac{1}{2} |a_{k-2} - b_{k-2}| \right) = \dots = \left(\frac{1}{2} \right)^{k-1} \left(\frac{1}{2} |a_{1} - b_{1}| \right) =$$

$$= \left(\frac{1}{2} \right)^{k+1} |a - b| \to 0, \quad k \to \infty$$

- Portanto, se houver uma raiz no intervalo [a, b], o Método da Bisseção irá encontrá-la!
- Note, porém, que a convergência é muito lenta (linear), a uma taxa de $\frac{1}{2}$.

- Note, também, que conhecido o intervalo [a, b] e determinada uma precisão para o valor da raiz x*, podemos determinar quantas iterações k precisamos fazer!
- Exemplo: Para encontrarmos a raiz de $f(x) = x^3 x 1$, com precisão de 8 casas decimais, partindo do intervalo [1, 2], precisaremos de:

$$|x_k - x^*| = \left(\frac{1}{2}\right)^{k+1} |1 - 2| < 10^{-8} \Leftrightarrow \left(\frac{1}{2}\right)^{k+1} < 10^{-8} \Leftrightarrow$$

$$\Leftrightarrow$$
 $2^{k+1} > 10^8$ \Leftrightarrow $(k+1)\log(2) > 8$ \Leftrightarrow $k > 26$

- Portanto, precisaremos de 27 iterações para alcançar a mesma precisão para a raiz que foi obtida com 4 iterações com o Método de Newton-Raphson...
- Conclusão: apenas devemos usar o Método da Bisseção em caso de extrema necessidade!