Latent Data to Document

August 15, 2018

1 Introduction

2 Problem

We would like to learn a generative model over sentences $\mathbf{x} = \{x_0, x_1, \ldots\}$ as well as distribution over latent tables \mathbf{z} . We are primarily interested in the respective conditional distributions: both the posterior distribution over tables given a sentence $p(\mathbf{z} \mid \mathbf{x})$, which is an information extraction model, as well as the conditional distribution over summaries $p(\mathbf{x} \mid \mathbf{x})$.

3 Data to Document

The conditional copy model in Wiseman et al. (2017) is an approach to unsupervised tree induction that uses a soft approximation to a latent variable to a degree of success. The paper is inspired by the following hypothesis: given a binary tree, a token at index t only requires information up to index l_t that satisfies either of the following conditions:

- (a) the token at l_t is the leftmost sibling of the token at t
- (b) or, if the token at t is a leftmost child, l_t points to its parent's left sibling's leftmost child.

Although the hypothesis itself is not tested in the implementation and serves only as inspiration, the model does see empirical success in the task of language modeling. The model is realized through the following insight: given a ranking of tokens $\mathbf{x} = \{x_0, \dots, x_T\}$, recursively splitting \mathbf{x} using the following procedure induces a binary tree where the first token to the left of token x_t that has higher rank, denoted x_{l_t} , also satisfies condition (a) or (b): given token i with the next highest rank, create a subtree $(x_{\leq i}, (x_i, x_{\geq i}))$ and recursively perform this procedure until only terminal nodes remain.

[Example on board]

3.1 The Model

Let x_t be the current token, $\mathbf{x}_{0:t-1}$ all previous tokens, z_t the prediction for the current score, and $\tilde{\mathbf{z}}_{0:t-1} \in \mathbb{R}^{t-1}_+$ be all previous scores. The model takes the form a language model, where the distribution over the next token

$$p(x_t \mid \mathbf{x}_{0:t-1}, \tilde{\mathbf{z}}_{0:t-1}, z_t) = f([h_{l_t:t-1}, h_t])$$

is parameterized by either a linear projection or additional residual blocks applied to a concatenation of the output of modified LSTMN (LSTM Memory-Network) h_t and a convex combination of the previous LSTMN outputs (i.e. attention over $h_{l_t:t-1}$). f is referred to as the Predict Network.

3.1.1 LSTMN

The LSTMN, referred to as the Reading Network, is as follows: at each time step, the hidden and cell input are given by

$$\{\tilde{h}_t, \tilde{c}_t\} = \sum_{i=1}^{t-1} s_i^t \{h_i, c_i\},$$

a convex combination of the previous hidden and cell outputs. Then

$$h_t, c_t = \mathtt{LSTM}(\tilde{h}_t, \tilde{c}_t).$$

The attention is computed in the same way as detailed in section 3.1.2. The input to the LSTMN module is either the previous token or the output of a previous LSTMN layer.

3.1.2 Attention

As all attention modules in the PRPN network use the same formulation of attention we will use y to refer to the input of the attention module, g the gate coefficients, m as the memories to attend over, and s as the attention coefficients. First the key is computed using a linear projection of the input $k = W_k y$. Then the intermediate scores are computed

$$\tilde{s}_i = \operatorname{softmax}\left(\frac{m_i k^T}{\sqrt{\delta_k}}\right),$$

where δ_k is the dimension of the hidden state. Finally, the gate coefficients are normalized and used to prevent the attention from extending too far in the past.

$$s_i = \frac{g_i}{\sum_j g_j} \tilde{s_i},$$

where the gate coefficients g are detailed in section 3.1.3.

3.1.3 Gating Self-attention

Recall that the gates g_i^t used modulate self-attention also indirectly induce tree structure (due to the previously stated insight that modulating self-attention using a ranking induces a binary tree). At every timestep for token x_t , Shen et al. (2018) define a latent variable l_t which corresponds to the index of the token satisfying either condition (a) or (b). We then would have

$$g_i^t = \begin{cases} 1, & l_t \le i < t \\ 0, & \text{otherwise.} \end{cases}$$

where we allow the model at timestep t to only attend up to the token at l_t . We then renormalize the attention accordingly. In order to calculate the gates g_i^t we must model $p(l_t \mid \mathbf{x}_{0:t})$ (Shen et al. (2018) use the posterior distribution in their notation). They propose to model

$$p(l_t = i \mid \mathbf{x}_{0:t-1}) = (1 - \alpha_i^t) \prod_{j=i+1}^{t-1} \alpha_j^t$$

using a stick-breaking process. Rather than resorting to approximate inference, they instead use the expected value of g_i^t

$$\mathbb{E}\left[g_i^t\right] = F_{l_t}(l_t \le i \mid \mathbf{x}_{0:t-1}) = \prod_{j=i+1}^{t-1} \alpha_j^t.$$

The $\alpha_j^t = \sigma(d_t - d_j)$, where σ is the hard sigmoid function. This is not stated in the paper (there are a couple off-by-one) errors, but it must be that $g_{t-1}^t = 1$. The $d_j \in \mathbb{R}_+$ are given by a CNN over the token embeddings.

The network used to compute the gates is called the Parsing Network. When computing $p(x_t \mid \ldots)$, we cannot use the posterior score d_t , so an estimate is used based on the previous k words, where k is the kernel width of the convolution. However, afterwards Shen et al. (2018) use the posterior score $d_i \mid x_{i-K}, \ldots, x_i$ for all d_i when i < t.

4 Related Work

5 Alternative Latent Ranking Model

5.1 Generative Model

PRPN (Shen et al., 2018) choose to view l_t as a latent variable. There are at least a few other choices:

- Model the scores $d_t \sim \mathcal{N}(\mu_t, \sigma_t)$ or $d_t \sim$ Gamma and use the Plackett-Luce ranking distribution.
- Model the comparisons $p(d_t < d_i)$ as order statistics of Gammas.
- Model the permutation matrix $Z \sim \mathcal{B}_n$.
- Model $l_t \sim \text{Cat.}$

Parameterize with $d_t \sim \mathcal{N}(\mu_t, \sigma_t)$. Reparameterize comparisons with gumbel softmax? Leave all self attentions as is?

- \bullet p(z)
- \bullet p(x|z)

6 Training and Inference

for next time, convince Sasha of why this is interesting. Also go over stick breaking process.

References

Yikang Shen, Zhouhan Lin, Chin wei Huang, and Aaron Courville. Neural language modeling by jointly learning syntax and lexicon. In *International Conference on Learning Representations*, 2018. URL https://openreview.net/forum?id=rkgOLb-OW.

Sam Wiseman, Stuart M. Shieber, and Alexander M. Rush. Challenges in data-to-document generation. CoRR, abs/1707.08052, 2017.