Homework 7

Mengxiang Jiang CSEN 5303 Foundations of Computer Science

October 3, 2022

Problem 1. The *intersection graph* of a collection of sets A_1, A_2, \ldots, A_n , is the graph that has a vertex for each of these sets and has an edge connecting the vertices representing two sets if these sets have a nonempty intersection.

Construct the intersection graph of these collections of sets.

1. Collection of sets A_i , i = 1..5

 $A_1 = \{0, 2, 4, 6, 8\}$

 $A_2 = \{0, 1, 2, 3, 4\}$

 $A_3 = \{1, 3, 5, 7, 9\}$

 $A_4 = \{5, 6, 7, 8, 9\}$

 $A_5 = \{0, 1, 8, 9\}$

Intersection Table and Graph

	1						
	A_1	A_2	A_3	A_4	A_5		
A_1	_	$\{0,2,4\}$	Ø	{6,8}	{0,8}		
A_2	$\{0,2,4\}$	-	$\{1,3\}$	Ø	$\{0,1\}$		
A_3	Ø	$\{1,3\}$	_	{5,7}	{1,9}		
A_4	$\{6,8\}$	Ø	$\{5,7\}$	_	$\{8,9\}$		
A_5	$\{0,8\}$	$\{0,1\}$	{1,9}	{8,9}	-		

2. Collection of sets A_i , i = 1..5

$$A_1 = \{\dots, -4, -3, -2, -1, 0\}$$

$$A_2 = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

$$A_3 = \{\dots, -6, -4, -2, 0, 2, 4, 6, \dots\}$$

$$A_4 = \{\dots, -5, -3, -1, 1, 3, 5, \dots\}$$

$$A_5 = \{\ldots, -6, -3, 0, 3, 6, \ldots\}$$

Intersection Table and Graph

intersection rable and Graph							
	A_1	A_2	A_3	A_4	A_5		
A_1	-	A_1	$\{\ldots, -2, 0\}$	$\{\ldots, -3, -1\}$	$\{\ldots, -3, 0\}$		
A_2	A_1	-	A_3	A_4	A_5		
A_3	$\left\{\ldots,-2,0\right\}$	A_3	-	\emptyset	$\{\ldots, -6, 0, 6, \ldots\}$		
A_4	$\mid \{\ldots, -3, -1\}$	A_4	Ø	-	$\{\ldots, -9, -3, 3, 9, \ldots\}$		
A_5	$\left\{\ldots,-3,0\right\}$	A_5	$\{\ldots, -6, 0, 6, \ldots\}$	$\{\ldots, -9, -3, 3, 9, \ldots\}$	-		

3. Collection of sets A_i , i = 1..5

$$A_1 = \{x | x < 0\}$$

$$A_2 = \{x \mid -1 < x < 0\}$$

$$A_3 = \{x | 0 < x < 1\}$$

$$A_4 = \{x \mid -1 < x < 1\}$$

$$A_5 = \{x \mid -1 < x\}$$

$$A_6 = \mathbb{R}$$

Intersection Table $A_1 \quad A_2 \quad A_3 \quad A_4 \quad A_5$

 A_6

A_1	-	A_2	Ø	A_2	A_2	A_1
A_2	A_2	-	Ø	A_2	A_2	A_2
A_3	Ø	Ø		A_3	A_3	
A_4		A_2	A_3	_	A_4	A_4
A_5	A_2	A_2	A_3	A_4	-	A_5
A_6			A_3	A_4	A_5	-

Intersection Graph

Problem 2. Consider the following program:

 $S_1: x := 0;$ $S_2: x := x + 1;$ $S_3: y := 2;$ $S_4: z := y;$ $S_5: x := x + 2;$ $S_6: y := x + z;$ $S_7: z := 4;$

1. Show the different data dependencies between all statements, including those that are not direct. Recall that there is a data dependency between two statements S_i and S_j if and only if S_i computes the value of a variable that is used by S_j .

 $S_1 : \emptyset$ $S_2 : \{S_1\}$ $S_3 : \emptyset$ $S_4 : \{S_3\}$ $S_5 : \{S_1, S_2\}$ $S_6 : \{S_1, S_2, S_3, S_4, S_5\}$ $S_7 : \emptyset$

2. Construct the precedence graph for the above program.

Problem 3. Suppose that a new company has five employees: Zamora, Agraharam, Smith, Chou, and Macintyre. Each employee will assume one of six responsibilities, namely planning, publicity, sales, marketing, development, and industry relations. Each employee is capable of doing one or more of these jobs. Zamora could do planning, sales, marketing, or industry relations. Agraharam could do planning or development. Smith could do publicity, sales, or industry relations. Chou could do planning, sales, or industry relations. Macintyre could do planning, publicity, sales, or industry relations.

1. Model the capabilities of these employees using a bipartite graph.

2. Find an assignment of responsibilities such that each employee is assigned a responsibility. Since only Zamora can do marketing, he is assigned marketing.

Likewise, Agraharam is assigned development.

Let Smith handle publicity.

Let Chou handle planning.

Macintyre can then handle sales.