## Pandas e Esteganografia



Imagem: https://clearbit.com/our-data

## Regex em Python

## Regex em Python

- Regex = Regular Expression
  - Uma expressão regular representa um conjunto de expressões/sentenças
    - ✓ Que seguem uma regra de construção
- Sintaxe das regex (Resumo)
  - [a-g] qualquer caractere entre a & g
  - \w \d \s palavra, dígito, espaço em branco
  - ^abc\$ início / fim de uma string
  - a\* a+ a? 0 ou mais, 1 ou mais 0 ou 1
  - a{5} a{2,} exatamente cinco, dois ou mais
  - a{1,3} entre um & três
  - o ab | cd encontrar ab ou cd
  - \\* \\ caracteres especiais escapados

### Exemplos de Regex

- CPF: 245.986.748-56
  - \d{3}\.\d{3}\.\d{3}-\d{2}
    - ✓ Mais conciso ?
    - ✓ E dessas maneiras 245986748-56 24598674856 ?
- CNPJ: 01.984.199/0001-07
  - \d{2}(\.\d{3}){2}\/\d{4}-\d{2}
- CPF ou CNPJ
  - o \b(\d{3}\.?){2}\d{3}-?\d{2}\b|\b\d{2}\.?(\d{3}\.?){2}\/?\d{4}-?\d{2}\b
- Regex de número de telefone
  - https://medium.com/@igorrozani/criando-uma-express%C3%A3oregular-para-telefone-fef7a8f98828

## Encontrar os caracteres que simbolizam NA

- Objetivo: identificar caracteres que não sejam
  - Números (0 a 9), vírgula e ponto
     ✓ -?[0-9]+(.|,)?[0-9]\*
  - df\_gini = pd.read\_csv(path\_gini, sep=';', skiprows=2, skipfooter=2, encoding='utf8', engine='python', decimal=',', dtype={"1991": "str"})

|   | Município                      | 1991   | 2000   | 2010   |
|---|--------------------------------|--------|--------|--------|
| 0 | 110001 Alta Floresta D'Oeste   | 0,5983 | 0,5868 | 0,5893 |
| 1 | 110037 Alto Alegre dos Parecis |        | 0,508  | 0,5491 |
| 2 | 110040 Alto Paraíso            |        | 0,6256 | 0,5417 |
| 3 | 110034 Alvorada D'Oeste        | 0,569  | 0,6534 | 0,5355 |
| 4 | 110002 Ariquemes               | 0,5827 | 0,5927 | 0,5496 |

```
df gini.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5565 entries, 0 to 5564
Data columns (total 4 columns):
              Non-Null Count Dtype
# Column
                             object
   Município 5565 non-null
   1991
              5565 non-null
                             object
2 2000
              5565 non-null
                             object
    2010
              5565 non-null
                             float.64
dtypes: float64(1), object(3)
memory usage: 174.0+ KB
```

### Encontrar os caracteres que simbolizam NA

 Solução o result = df gini['1991'].apply( lambda x: x if not re.search('(-?(([0-9]+(\.|,)?)+[0-9]\*))', x) else np.nan result.unique() array([nan, '...'], dtype=object)

# Transformação de Dados: Estudo de Caso do Autodiagnóstico da SGD

| Α              | В              | С                | D                         | Е                                        | F             | G             |
|----------------|----------------|------------------|---------------------------|------------------------------------------|---------------|---------------|
|                |                |                  |                           | 3.1.1.2. Prontidão Organ                 |               |               |
| 2.Área de TI o | Universidade   | Federal do Pa    | 2. INICIADO:              | 3. EMERGENTE: A Inst                     | 3. EMERGEN    | 3. EMERGEN    |
| 2.Área de TI o | Universidade   | Federal de Sá    | 3. EMERGEN                | 3. EMERGENTE: A Inst                     | 3. EMERGEN    | 3. EMERGEN    |
|                | 2              |                  |                           | 4. DESENVOLVIDO: A I                     |               |               |
|                |                | 1                |                           | 1. NÃO INICIADO: Parte                   |               |               |
| 3.Área de TI o | Instituto Fede | eral de Educaç   | 1. NÃO INICIA             | 1. NÃO INICIADO: Parte                   | 2. INICIADO:  | 3. EMERGEN:   |
|                | <u>.</u>       |                  |                           | <ol><li>INICIADO: A Instituiçã</li></ol> |               |               |
|                |                |                  |                           | 1. NÃO INICIADO: Parte                   |               |               |
|                |                |                  |                           | 3. EMERGENTE: A Inst                     |               |               |
| _              |                |                  |                           | 2. INICIADO: A Instituiçã                |               |               |
|                |                |                  |                           | 1. NÃO INICIADO: Parte                   |               |               |
|                |                |                  |                           | 3. EMERGENTE: A Inst                     |               |               |
|                |                |                  |                           | 3. EMERGENTE: A Inst                     |               |               |
| 1.Área de TI f | Fundação Ca    | sa de Rui Bar    | <ol><li>EMERGEN</li></ol> | 3. EMERGENTE: A Inst                     | 1. NÃO INICIA | 1. NÃO INICIA |
| 1.Área de TI f | Empresa Bra    | sileira de Infra | 4. DESENVO                | 3. EMERGENTE: A Inst                     | 4. DESENVO    | 4. DESENVO    |

## Principais Alterações

- Extrair o valor numérico das categorias
  - "1. NÃO INICIADO", "2. INICIADO", "3. EMERGENTE", "4.
     DESENVOLVIDO", "5. OTIMIZADO"
- Despivotar a tabela

| area      | orgao      | Pergunta    | Valor | oria_matu | iado_matu   | d_pergun | ciado_per | ano  |
|-----------|------------|-------------|-------|-----------|-------------|----------|-----------|------|
| 2.Área de | Universio  | 3.1.1.1. Re | 2     | INICIADO  | Na Institu  | 3.1.1.1. | Relevânci | 2023 |
| 2.Área de | Universion | 3.1.1.1. Re | 3     | EMERGEN   | Na Institu  | 3.1.1.1. | Relevânci | 2023 |
| 2.Área de | Fundação   | 3.1.1.1. Re | 3     | EMERGEN   | Na Institu  | 3.1.1.1. | Relevânci | 2023 |
| 3.Área de | Centro Fe  | 3.1.1.1. Re | 1     | NAO INICI | Na Institu  | 3.1.1.1. | Relevânci | 2023 |
| 3.Área de | Instituto  | 3.1.1.1. Re | 1     | NAO INICI | Na Institu  | 3.1.1.1. | Relevânci | 2023 |
| 2.Área de | Fundação   | 3.1.1.1. Re | 3     | EMERGEN   | Na Institu  | 3.1.1.1. | Relevânci | 2023 |
| 1.Área de | Instituto  | 3.1.1.1. Re | 3     | EMERGEN   | Na Institu  | 3.1.1.1. | Relevânci | 2023 |
| 2.Área de | Universion | 3.1.1.1. Re | 4     | DESENVO   | A Instituiç | 3.1.1.1. | Relevânci | 2023 |

# Prompt como Compartilhamento de Conhecimento e Refactoring do Prompt

#### Processar arquivo 2024 ("/content/Autodiagnóstico 2024 Dados\_Tratado\_GD.xlsx"):

- 1. Renomear colunas especificadas por "3:" (ou seja df.columns[3:]) removendo o padrão r'(\d\.?)+\s?' do início.
- 2. Manter apenas o número (1 a 5) no início do texto das colunas especificadas por "3:" (ou seja df.columns[3:]), removendo o restante do texto.
- 3. Pivote as colunas especificadas por "3:" (ou seja df.columns[3:]) para uma coluna chamada Valor, criando o dataframe df\_melted\_2024.
- 4. Remover o padrão r'(\d\.?)+\s?' das colunas area e Pergunta.
- 5. Remover registros com valores nulos na coluna Valor.
- 6. Adicionar a coluna ano com o valor 2024.
- 7. Realizar merge com o arquivo /content/drive/MyDrive/empreender/ME/GovBr/Autodiagnostico/MapeamentoEix os.xlsx (contendo perguntas e eixos) e verificar se o resultado do inner join é igual ao outer join.

# Prompt como Compartilhamento de Conhecimento e Refactoring do Prompt

#### Processar arquivo 2023 (/content/Resposta\_40133199\_results\_survey998556.xlsx):

- 1. Renomear colunas especificadas por "3:" (ou seja df.columns[3:]) removendo o padrão r'(\d\.?)+\s?' do início.
- 2. Manter apenas o número (1 a 5) no início do texto das colunas especificadas por "3:" (ou seja df.columns[3:]), removendo o restante do texto.
- 3. Pivote as colunas especificadas por "3:" (ou seja df.columns[3:]) para uma coluna chamada Valor, criando o dataframe df\_melted\_2023.
- 4. Remover o padrão r'(\d\.?)+\s?' das colunas area e Pergunta.
- 5. Remover registros com valores nulos na coluna Valor.
- 6. Adicionar a coluna ano com o valor 2023.
- 7. Realizar merge com o arquivo /content/drive/MyDrive/empreender/ME/GovBr/Autodiagnostico/MapeamentoEixos.xlsx e verificar se alguma pergunta ficou sem eixo.

#### Finalizar:

1. Concatenar verticalmente df\_melted\_2023 e df\_melted\_2024.

## Operação Join (Algebra Relacional)

#### Médico

| ρ. | f    |      |
|----|------|------|
| M  | Oles | ssor |

| CPF         | Nome           | Salario |
|-------------|----------------|---------|
| 11222731642 | Jose Pereira   | 10      |
| 91498733332 | Maria da Silva | 20      |
| 81464221612 | Pedro Martins  | 15      |

| CPF         | Nome           | Salario |
|-------------|----------------|---------|
| 11222731642 | Jose Pereira   | 6       |
| 91498733332 | Maria da Silva | 8       |
| 21564281600 | Roberto Afonso | 5       |

Join (ou inner join)

| CPF         | Nome           | Salario_M | Salario_P |   |
|-------------|----------------|-----------|-----------|---|
| 11222731642 | Jose Pereira   | 10        | 6         | > |
| 91498733332 | Maria da Silva | 20        | 8         |   |

## Operação Left Join (Algebra Relacional)

#### Médico

| CPF         | Nome           | Salario |
|-------------|----------------|---------|
| 11222731642 | Jose Pereira   | 10      |
| 91498733332 | Maria da Silva | 20      |
| 81464221612 | Pedro Martins  | 15      |

#### **Professor**

| CPF         | Nome           | Salario |
|-------------|----------------|---------|
| 11222731642 | Jose Pereira   | 6       |
| 91498733332 | Maria da Silva | 8       |
| 21564281600 | Roberto Afonso | 5       |

#### Left Join

| CPF         | Nome           | Salario_M | Salario_P |           |
|-------------|----------------|-----------|-----------|-----------|
| 11222731642 | Jose Pereira   | 10        | 6         | $\supset$ |
| 91498733332 | Maria da Silva | 20        | 8         |           |
| 81464221612 | Pedro Martins  | 15        |           | >         |

## Operação Right Join (Algebra Relacional)

#### Médico

| CPF         | Nome           | Salario |
|-------------|----------------|---------|
| 11222731642 | Jose Pereira   | 10      |
| 91498733332 | Maria da Silva | 20      |
| 81464221612 | Pedro Martins  | 15      |

#### Professor

| CPF         | Nome           | Salario |
|-------------|----------------|---------|
| 11222731642 | Jose Pereira   | 6       |
| 91498733332 | Maria da Silva | 8       |
| 21564281600 | Roberto Afonso | 5       |

#### Right Join

| CPF         | Nome           | Salario_M | Salario_P |        |
|-------------|----------------|-----------|-----------|--------|
| 11222731642 | Jose Pereira   | 10        | 6         | $\geq$ |
| 91498733332 | Maria da Silva | 20        | 8         |        |
| 21564281600 | Roberto Afonso |           | 5         | >      |

## Operação Outer Join (Algebra Relacional)

#### Médico

| Professor |
|-----------|
|-----------|

| CPF         | Nome           | Salario |
|-------------|----------------|---------|
| 11222731642 | Jose Pereira   | 10      |
| 91498733332 | Maria da Silva | 20      |
| 81464221612 | Pedro Martins  | 15      |

| CPF         | Nome           | Salario |
|-------------|----------------|---------|
| 11222731642 | Jose Pereira   | 6       |
| 91498733332 | Maria da Silva | 8       |
| 21564281600 | Roberto Afonso | 5       |

#### **Outer Join**

| CPF         | Nome           | Salario_M | Salario_P |           |
|-------------|----------------|-----------|-----------|-----------|
| 11222731642 | Jose Pereira   | 10        | 6         | $\supset$ |
| 91498733332 | Maria da Silva | 20        | 8         |           |
| 21564281600 | Roberto Afonso |           | 5         | >         |
| 81464221612 | Pedro Martins  | 15        |           |           |

## join (fundir/juntar)

- Faz o join de dois dataframes usando o índice
  - o como chave de junção

```
In [70]: left2
Out[70]:
   Ohio Nevada
                              In [73]: left2.join(right2, how='outer')
   1.0
                              Out[73]:
           2.0
a
c 3.0 4.0
                                  Ohio
                                        Nevada Missouri Alabama
   5.0
           6.0
                                  1.0
                                                      NaN
                                           2.0
                                                               NaN
                              a
In [71]: right2
                              b
                                  NaN
                                           NaN
                                                      7.0
                                                               8.0
Out[71]:
                                           4.0
                                                              10.0
                                  3.0
                                                      9.0
  Missouri Alabama
                              d
                                                     11.0
                                  NaN
                                           NaN
                                                              12.0
b
       7.0
               8.0
                                   5.0
                                           6.0
                                                              14.0
                                                     13.0
                              e
       9.0
              10.0
              12.0
      11.0
      13.0
              14.0
```

## join (fundir/juntar)

- Com how='left' somente os registros do dataframe da esquerda
  - o aparecem no resultado

```
In [70]: left2
Out[70]:
   Ohio Nevada
a 1.0 2.0
c 3.0 4.0
e 5.0 6.0
In [71]: right2
Out[71]:
  Missouri Alabama
     7.0
           8.0
   9.0 10.0
   11.0 12.0
     13.0
            14.0
```

left2.join(right2, how='left')

|   | Ohio | Nevada | Missouri | Alabama |
|---|------|--------|----------|---------|
| а | 1.0  | 2.0    | NaN      | NaN     |
| С | 3.0  | 4.0    | 9.0      | 10.0    |
| е | 5.0  | 6.0    | 13.0     | 14.0    |

## merge (fundir/juntar)

- Semelhante ao join, mas você precisa informar a coluna de junção
  - o pode ser inferida a partir do contexto da interseção entre as tabelas
    - √ Também pode ser especificada com o argumento on (Ex.: on='key')

```
In [37]: df1 In [38]: df2
                                    In [39]: pd.merge(df1, df2)
Out[37]:
       Out[38]:
                                    Out[39]:
  data1 key
                data2 key
                                      data1 key data2
                      a
```

## Join vs Merge

- Ambos servem para combinar dataframes
- Join
  - Combina dataframes a partir dos seus indexes
    - ✓ Ou pode-se especificar uma coluna no dataframe onde se executa o método.

#### Merge

- Combina dataframes a partir de suas colunas
  - ✓ Pode validar o merge pelo tipo, com o argumento: validate
    - "1:1"
    - "1:m"
    - "m:1"
    - "m:m"

### Maneiras de Armazenar vs Analisar os dados

#### Melhor para Armazenar

#### Melhor para Analisar

|   | Aluno  | Disciplina | Objetiva | Discursiva | Disciplina | Geografia | HIstória | Matematica | Portugues |
|---|--------|------------|----------|------------|------------|-----------|----------|------------|-----------|
| 0 | AlunoA | Portugues  | 8.5      | 6          | Aluno      |           |          |            |           |
| 1 | AlunoA | Matematica | 7.5      | 6.5        | AlunoA     | NaN       | NaN      | 7.5        | 8.5       |
| 2 | AlunoB | Geografia  | 9        | 7.5        | AlunoB     | 9         | 10       | NaN        | NaN       |
| 3 | AlunoB | HIstória   | 10       | 7          |            |           |          |            |           |

## Reshaping / Pivoting (Pivotar)

- Método pivot
  - 3 argumentos: index, columns, values
    - ✓ df.pivot(index='Aluno', columns='Disciplina', values='Objetiva')
      - a função melt() faz a operação de despivotar



## E quando houver valores repetidos?

- Pivotar com o mesmo método pivot() gera exceção
  - Neste caso, use o método pivot\_table

alalina Objetiva Diagonaliva

✓ mean é a métrica padrão de cálculo sobre a de agregação

|   | Aluno  | Disciplina | Objetiva | Discursiva |
|---|--------|------------|----------|------------|
| 0 | AlunoA | Portugues  | 8.5      | 6.0        |
| 1 | AlunoA | Matematica | 7.5      | 6.5        |
| 2 | AlunoA | Geografia  | 9.0      | 7.5        |
| 3 | AlunoA | Geografia  | 10.0     | 7.0        |
| 4 | AlunoA | História   | 9.0      | 8.0        |
| 5 | AlunoB | Portugues  | 8.5      | 8.5        |
| 6 | AlunoB | Matematica | 7.5      | 7.5        |
| 7 | AlunoB | Geografia  | 9.0      | 9.0        |
| 8 | AlunoB | História   | 10.0     | 10.0       |
|   |        |            |          |            |



| Disciplina | Geografia | História | Matematica | Portugues |
|------------|-----------|----------|------------|-----------|
| Aluno      |           |          |            |           |
| AlunoA     | 9.5       | 9.0      | 7.5        | 8.5       |
| AlunoB     | 9.0       | 10.0     | 7.5        | 8.5       |

## Reshaping / Pivoting com Índice Hierárquico

- Método stack/unstack (Pivotar com índice hierárquico)
  - o stack = empilhar



## Prática no Colab Notebook

- Faça os exercícios da aula
  - A IA ainda não está boa para inferir os argumentos das funções do pandas que lêem arquivos e transformam num dataframe.
  - Você precisará, a priori, descobrir quais são esses argumentos e solicitar que a IA os utilize para ler os arquivos.