PYNQ Libraries

Typical embedded systems support a fixed combination of peripherals (e.g. SPI, IIC, UART, Video, USB). There may also be some GPIO (General Purpose Input/Output pins) available. The number of GPIO available in a CPU based embedded system is typically limited, and the GPIO are also controlled by the main CPU. As the main CPU which is managing the rest of the system, GPIO performance is usually limited.

Zynq platforms usually have many more IO pins available than a typical embedded system. Dedicated hardware controllers and additional soft processors can be implemented in the PL and connected to external interfaces. This means performance on these interfaces can be much higher than other embedded system.

PYNQ runs on Linux which uses the following Zynq PS peripherals by default: SD Card to boot the system and host the Linux file system, Ethernet to connect to Jupyter notebook, UART for Linux terminal access, and USB.

The USB port and other standard interfaces can be used to connect off-the-shelf USB and other peripherals to the Zynq PS where they can be controlled from Python/Linux. The PYNQ image currently includes drivers for the most commonly used USB webcams, WiFi peripherals, and other standard USB devices.

Other peripherals can be connected to and accessed from the Zynq PL. E.g. HDMI, Audio, Buttons, Switches, LEDs, and general purpose interfaces including Pmods, and Arduino. As the PL is programmable, an overlay which provides controllers for these peripherals or interfaces must be loaded before they can be used.

A library of hardware IP is included in Vivado which can be used to connect to a wide range of interface standards and protocols. PYNQ provides a Python API for a number

of common peripherals including Video (HDMI in and Out), GPIO devices (Buttons, Switches, LEDs), and sensors and actuators. The PYNQ API can also be extended to support additional IP.

Zynq platforms usually have one or more *headers* or *interfaces* that allow connection of external peripherals, or to connect directly to the Zynq PL pins. A range of off-the-shelf peripherals can be connected to Pmod and Arduino interfaces. Other peripherals can be connected to these ports via adapters, or with a breadboard. Note that while a peripheral can be physically connected to the Zynq PL pins, a controller must be built into the overlay, and a software driver provided, before the peripheral can be used.

The PYNQ libraries provide support for the PynqMicroBlaze subsystem, allowing pre-compiled applications to be loaded, and new applications to be creating and compiled from Jupyter.

PYNQ also provides support for low level control of an overlay including memory-mapped IO read/write, memory allocation (for example, for use by a PL master), control and management of an overlay (downloading an overlay, reading IP in an overlay), and low level control of the PL (downloading a bitstream).

IP

- Audio
- AxiGPIO
- AxiIIC
- DMA
- Logictools
- Video

IOPs

- Arduino
- Grove
- Pmod
- RPi

PynqMicroBlaze

- MicroBlaze Subsystem
- Microblaze RPC
- Microblaze Library

PS/PL interface

- Interrupt
- MMIO
- PS GPIO
- Xlnk

PS control

PMBus

PL control

- Overlay
- PL and Bitstream classes
- Microblaze Library