Modeling the carbon cycle and ecology of the Arctic Ocean with ECCO2-Darwin

Manfredi Manizza^{1,*}
Dimitris Menemenlis²
Charles E. Miller²
Hong Zhang²

¹Scripps Institution of Oceanography – UC San Diego ²Jet Propulsion Laboratory - CalTech

*mmanizza@ucsd.edu

OUTLINE

- 1) Recent Changes in Arctic Climate and Sea-Ice
- 2) Modeling Tools: ECCO2-Darwin
- 3) Response of CO₂ sink to recent Arctic sea-ice loss
- 4) Response of Arctic phytoplankton seasonality
- 5) Conclusions & Future Directions

Arctic Climate, Sea Ice, C-Cycle & Ecology

Stein et al., 2016

Future

Present

Q1: What is the response of CO₂ uptake of the Arctic Ocean?

Q2: What is the response of phytoplankton dynamics?

ECCO2-Darwin

ECCO-2
PHYSICAL MODEL

Global Domain
MITgcm
Cube Sphere (CS510)
18 km resolution
Sea-ice model

Forcing period 2004-2013:

2004-2008 ERA-40 (optimized) 2009-2013 JAR-25 (optimized) Darwin MODEL
Ocean bgc & ecology
(Follows et al, 2007)

5 phytoplankton groups (only 3 survive in the AO)

2 zooplankton groups (micro & meso)

Carbon and Oxygen cycles (Brix et al al, 2015)

Increasing atmospheric pCO₂ 2004-2013 "Keeling Curve"

Response of Sea-Ice to recent Climate Forcing

Arctic Ocean Carbon Cycle Response

Open Water Area & CO₂ sink

2006-2008: Direct relationship OWA and CO₂ sink (Bio C-pump rules!).

2009-2011: Decoupling OWA and CO₂ sink (Barents and Nordic Seas dominate).

2012 : Decoupling OWA and CO₂ sink (Wind speed).

 CO_2 sink Trend = -3.6 TgC yr-¹

CARBON PUMPS VARIABILITY

Solubility Pump

Biological Pump + Winter Mixing

AO CO₂ sink response: 2007 vs 2012

Anomalies May- November Average

Arctic Sea-Ice Area & CO₂ sink trajectory

OLD ESTIMATES

NEW ESTIMATES

 CO_2 sink Trend = 1.4 TgC yr-¹ CO_2 sink Trend = -3.6 TgC yr-¹

1996-2007 period 2006-2012 period

Manizza et al, GBC, 2013 Manizza et al, In Prep

Decrease in the CO₂ Uptake Capacity in an Ice-Free Arctic Ocean Basin

Wei-Jun Cai, ¹* Liqi Chen, ² Baoshan Chen, ¹ Zhongyong Gao, ² Sang H. Lee, ³ Jianfang Chen, ⁴ Denis Pierrot, ^{5,6} Kevin Sullivan, ^{5,6} Yongchen Wang, ¹ Xinping Hu, ¹ Wei-Jen Huang, ¹ Yuanhui Zhang, ² Suqing Xu, ² Akihiko Murata, ⁷ Jacqueline M. Grebmeier, ⁸ E. Peter Jones, ⁹ Haisheng Zhang ⁴

(Science, 2010)

Future Directions

New ECCO-Darwin

LLC270 1992-2015

>2 decades of CO₂ sink

Long term trend

Changes in AO phytoplankton blooms

Earlier sea-ice melting Delayed sea-ice formation

Changes in sea-ice drive changes in phytoplankton blooms

Ardyna et al., 2014

Simulated changes in AO phytoplankton blooms

Earlier Phytoplankton Bloom

ECCO2-Darwin

New fall phytoplankton blooms in AO

Future Work (Interaction with ice-sheets)

Geophysical Research Letters

Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters

Kevin R. Arrigo¹, Gert L. van Dijken¹, Renato M. Castelao², Hao Luo², Åsa K. Rennermalm³, Marco Tedesco^{4,5}, Thomas L. Mote⁶, Hilde Oliver², and Patricia L. Yager²

Conclusions

Recent simulations show unexpected response of the AO CO₂ sink to severe sea-ice loss (2007 vs 2012).

ECCO2-Darwin captures main biogeochemical & ecological processes occurring in the AO.

Longer simulated periods are needed in order to compare to the observed changes in CO₂ sink and phytop. blooms

New runs with Darwin coupled to LLC270 for the 1992-2015 period (link to I. Fenty's work).

Future coupling polar oceans and icesheets to explore the response of bgc and ecology to increasing freshwater and chemical forcing driven by climate change.