Lecture 08 – Classification Models

Prof. André Gustavo Hochuli

gustavo.hochuli@pucpr.br aghochuli@ppgia.pucpr.br

Topics

- Discussion of Lecture #07
 - Image Descriptors
- Classification Models
 - K-NN, Logistic Regression, Decision Trees Naïve Bayes, SVM and MLP
- Evaluation Metrics
 - Accuracy, Precision, Recall and F1-Score
- Practice

• So far, we extracted features from data to compute the feature space

How discriminative features are?

Computer Vision - Prof. André Hochuli

Lecture 08

How to compute the decision boundary?

- Hyperplane
 - 2-D, 3-D ... N-D (or N-Features)

• Binary Classification vs Multi-Class Classification

Binary vs Multi-Class

Classification Models KNN

- Computes the similarity in a feature space (Euclidian Distance, Manhattan....)
- The K-Nearest Neighbors determines the class (Majority Vote)
- There is no training step. Compute the distance of the test sample to each training sample

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}$$

Computer Vision - Prof. André Hochuli

Lecture 08

Classification Models K-Means

- Computes the distance between k-cluster
- The clusters are defined in training step

Classification Models Naïve Bayes

- Bayes Theorem
- A priori vs Posteriori Probabilities

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Classification Models Logistic Regression

Linear vs Logistic

Classification Models Logistic Regression (LR)

Logistic Boundary

Classification Models Logistic Regression (LR)

Logistic Boundary

Classification Models Decision Tree

Creates decision rules direct from the data features

Decision surface of a decision tree using paired features

Classification Models Decision Tree

Classification Models Support Vector Machine (SVM)

- Compute Kernel: Linear, RBF, Poly or Sigmoid
- The clusters are defined in training step

Classification Models Support Vector Machine (SVM)

Classification Models Multi-Layer Perceptron

Perceptron

Classification Models Multi-Layer Perceptron

Multi-Layer Perceptron (MLP)

Evaluation Metrics

- Accuracy:
 - Correctly classified instances over **total** instances

$$Accuracy = \frac{TN + TP}{TN + FP + TP + FN}$$

• (55 + 30)/(55 + 5 + 30 + 10) = 0.85

- What is the problem with accuracy?
 - Imbalanced Data

• Acc: 90% (90/100)

• Error TP: 100% (10/10)

Computer Vision - Prof. André Hochuli

Lecture 08

Evaluation Metrics

- Precision:
 - Correctly positive classified instances over positive predictions

$$Precision = \frac{TP}{TP + FP}$$

• 30/(30+5) = 0.857

- Recall
 - Correctly positive classified instances over positive instances (A.K.A Sensitivity or TP Rate)

$$Recall = \frac{TP}{TP + FN}$$

• 30/(30+10) = 0.75

NEGATIVE

55
5
TRUE NEGATIVE

10
FALSE NEGATIVE

10
TRUE POSITIVE

PREDICTED LABEL

Computer Vision - Prof. André Hochuli

Lecture 08

Let's Code!

<u>Lecture 08 - Image Classification.ipynb [LINK]</u>