Computer Vision for HCI

Interactive Applications

1

Computer Interaction

- Human-computer interaction has not changed for decades
 - Typing, pointing, clicking
- Most work on GUIs
 - WIMP (windows, icons, menus, pointer)
- Computers are becoming
 - Smaller
 - Ubiquitous
 - Pervasive in our lives

Computer Interaction

- Need is arising for more intuitive ways of interacting with the technology
 - Pointing, clicking, and typing will not be the main interface for long
- What is needed?
 - Match to how people interact with each other and the real world

3

3

Perceptual User Interfaces (PUIs)

- Integrates UI types for more natural and intuitive interfaces
 - Perceptive
 - Multi-modal
 - Multi-media
- Enhances GUI-based apps
 - "No, that one", with speech, gaze, and gesture
- Enables computers as assistants
- Enables multiple styles of interaction (context)

Gesture-Based 3D Man-Machine Interaction using a Single Camera

Senthil Kumar and Jakub Segen

Note: A really <u>old</u> paper, but a really <u>good</u> one!

5

5

Main Idea

- Hand gesture input to control computer applications
- Tracks user's hand in 3D
- Three gestures interpreted as discrete computer commands
- Single camera, real-time processing
- Example interfaces
 - 3D virtual flythrough
 - Graphical scene composer
 - Video games

6

Camera Setup

• Camera mounted on monitor looking down at table-top

7

7

Gesture Classes

Static gestures

"Point"

"Reach"

"Click"

"Ground"

(All other gestures, empty image)

8

Computer Vision Approach

- Based on boundary analysis of hand region
- First classify into {Point, Reach, Click, Ground}
- If recognize "Point", then compute fingertip
 - Position (x, y)
 - Orientation θ
 - Relative height *z* (from table top)

9

9

Local Feature Classifier

- Extract connected-component region
 - After background-subtraction
- Make list of boundary pixels (x_i, y_i)
 - Clockwise order
 - Perimeter length used to screen out non-hands
- Compute curvature measure at each boundary point
 - Angle between $[P(i\hbox{-}k),\,P(i)]$ and $[P(i),\,P(i\hbox{+}k)]$
- Curvature extrema used to find "peaks" and "valleys"
 - Use threshold to find only large magnitudes

Local Feature Classifier

• Preliminary static gesture classification

$$\begin{split} &(class = \text{``Point''}) \;\; if \;\; (N_{peaks} > T_{p1}) \; and \; (N_{peaks} < T_{p2}) \\ &(class = \text{``Reach''}) \;\; if \;\; (N_{peaks} > T_{r1}) \; or \; (N_{valleys} > T_{r2}) \end{split}$$

• Result sets variable class to "Point", "Reach", or "Ground"

11

11

Peaks and Valleys

Point

Reach

12

Click Detection

- A "Click" is defined by
 - Whole hand not significantly moved from last frame, and fingertip position shifted inward toward the hand region

13

13

Position and Orientation

- Only computed if class found is "Point"
- From fingertip location
 - Iteratively step away ($k=1..k_{max}$) from peak simultaneously to left and right

$$PL_k = (xl_k, yl_k)$$
 $PR_k = (xr_k, yr_k)$

- Compute midpoints down along finger

$$Q(k) = (PL_k + PR_k)/2$$

- Compute "spine" of finger using least-squares of the midpoints Q(k)
 - Intersection of line with boundary gives "new" fingertip
 - Orientation of line gives orientation of finger pose

Line Obtained by LSQ Fit

15

15

Relative Height

- Measure proximity of hand to camera
 - Does not compute elevation angle of finger
- Measure finger width in image

$$d(k) = ||PL_k - PR_k||$$

$$M = \operatorname{average}_k(d(k))$$

- Average measurement *M* varies smoothly with distance of finger from camera
 - Get initial *M* measurement (when hand first enters image and sets to z=0)
 - Deviations from M in new images gives z

Controlling Virtual Flight over Yosemite Valley

- Velocity controlled by fingertip position
 - Velocity increases as hand moves forward
- Orientation angle controls direction of flight
- Height controls elevation of flight

17

17

3D Graphical Editor

- Hand controls cursor
 - Menu mode: "Point" moves 2D cursor, "Reach" activates menu
 - Cursor mode: "Point" moves 3D cursor, "Reach-Point" selects/releases object

3D graphical editor

"Man" constructed

18

Controlling Video Games: Doom

"Point" navigation

"Reach" opens the door

19

19

Controlling Video Games: Doom

"Click" fires the gun

20

[Video]

The Kidsroom: A Perceptually-Based Interactive and Immersive Story Environment

Quick Idea

- Child's bedroom
- Children enact a simple fantasy story
- Interact with virtual characters

23

23

Goals

- Action in a physical space
- Vision-based remote sensing
- Multiple people
- Use of context
- Presence, engagement, and imagination
- Children

24

Implementation

- Re-creates a child's bedroom
 - 24 (W) x 18 (L) x 27 (H)
 - Real furniture: moveable bed, fixed furniture
- Two walls are video projection screens
 - Back-projected
- Four video cameras
- Theatrical lighting
- Speakers, microphone

25

25

26

Video Cameras

27

27

Computation

- Three workstations
 - Vision tracking, sound effects, light control
 - Action recognition (cam-1,2), MIDI commands
 - Action recognition (cam-3)
- Two workstations
 - Animation display
 - Control processes
- One Mac for music

The Story

- Interactive, imaginative adventure
- Inspired by children's stories
 - "Where the wild things are"
 - "Bedknobs and broomsticks"
- Linear narrative with interactive responses
- Story begins in child's bedroom, progresses through three other worlds
 - Forest, river, monster worlds

29

29

Bedroom World

- Children enter bedroom through door
 - One at a time, for tracker initialization
 - Whimsical music plays softly
 - Video wall screens show bedroom walls

Bedroom World

- Scavenger hunt for "magic password"
 - Furniture *speak* if child is close
 - Sends to other furniture if not have password
 - Random ordering by control system
 - Furniture calls to kids if not go to right place

31

31

Bedroom World

- Once reach furniture piece with magic password, all furniture chant the word
- A mother's voice breaks in telling the kids to "go to bed!"

32

Bedroom World

- Stuffed monster doll (on video wall) comes alive and asks for the magic password to go on a big adventure
- Children shout the word
 - Loudness detector for microphone in room

33

33

Forest World

- Bedroom changes into forest land
 - Lights drop
 - Video walls change from bedroom to forest
 - Music changes
 - Narrator welcomes children

34

Forest World

- Children are in a deep forest
- Must follow path (around room) to river
 - Stay in a group (vision system)
 - Given hints

35

35

Forest World

- Hear monsters growing
 - Must hide behind bed (vision system)
- Continue path until get to river

36

River World

- Forest video projections are now of river
- Bed become a "magic boat"
- Children move bed into center of room and jump on top

37

37

River World

 Make "rowing" motions to make bed appear to go down virtual river (computer vision)

River World

• Row (sometimes) around obstacles

Liked to smash into obstacles! (sound effects only) 39

39

River World

- Reach shoreline and put bed back
- Arrive at monster world

40

Monster World

• Monsters appear on video screens

41

41

Monster Dance

- Children and monsters dance together
 - Monsters teach children dance moves
 - "Y", crouch, spin, flap
 - Then children do dance moves and monsters follow them (computer vision)

42

Ending

- Mother's voice tells them all to go to bed
- When children all on bed, lights change and room converts back into the bedroom
- Narrator thanks children, they exit

43

43

Computer Vision

- Object/kid tracking
- Movement detection
- Dance recognition
- Event detection

44

Object Tracking System

- Detect people as non-room regions
- Correspond and track through sequence

Top-down camera view of empty room (with bed)

Subtract static room from image with people

45

45

Rowing Vision System

Top view

Room subtraction

Row left

Row both

Row right

46

Dance Recognition

• Motion templates and pose recognition

flappin

spinning

Y'

crouching 47

47

Event Detection

- "Is everyone in a group?"
- "Is everyone on the bed"
- "Is everyone on the path?"
- "Is everyone standing still?"
- "Is someone near a particular object?"

48

Story Control

- Narrative control
 - Scripted event loop, timers
- Music and sound control
 - MIDI and sound files
- Lighting control
 - Event controlled, coupled with vision systems
- Animation control
 - Event scripts, recognition responses
- Process control
 - Sensor servers and control program client

49

45

Achieving Project Goals

- Real action, real objects
- Remote visual sensing
- Multiple, collaborating people
- Exploiting context
- Presence, engagement, and imagination
- Children as subjects

Observations and Failures

- Perceptual limitations
 - Environment: bright lights, video screens, high camera, flooring
 - Tracking of "who" is hard, "where" is easier
 - Shadows, screens, occlusion during dance
- Perceptual expectation
 - If asked to speak/shout, then expect speech recognition systems

51

51

$Kids Room^2 \\$

By Nearlife (was installed in London's Millennium Dome)

53