Quetelet Chest: Fitting Normal Distribution

coop711 2019-03-03

Data

From Stigler's 'History of Statistics'

1. html markup 활용방법

MESURES de la POITRISE.	NONBRE d'hommes.	NOMBRE	PROBABILITÉ d'après L'obstavation.	RANG Jans LA TABLE.	RANG d'après le catert.	PROBABILITÉ d'après LA TABLE	NOMBRE D'omervations calculé.
Poures.							
22	3	5	0,5000			0,5000	7
54	18	31	0,4995	52	50	0,4993	29
35	81	141	0,4964	42,5	42,5	0,4964	110
26	185	322	0,4823	33,5	34,5	0,4854	323
57	420	732	0,4501	26,0	26,5	0,4531	732
28	749	1305	0,3769	18,0	18,5	0,5799	1333
39	1073	1867	0,2464	10,5	10,5	0,2466	1838
			0.0597	2,5	2,5	0,0628	
40	1079	1882	0,1285	5,5	5,5	0,1359	1987
41	934	1628	0,2913	13	13,5	0,3034	1675
42	658	1148	0,4061	21	21,5	0,4130	1096
45	370	645	0,4706	20	29,5	0,4690	560
44	92	160	0,4866	55	57,5	0,4911	221
45	50	87	0,4953	41	45,5	0,4980	69
46	21	38	0,4991	49,5	55,5	0,4996	16
47	4	7	0,4998	56	61,8	0,4999	2
48	1	2	0,5000			0,5000	1
	5758	1,0000					1,0000

2. knitr 패키지의 include_graphics() 이용

MESURES de la POITRISE.	NOMBRE d'hommes.	NOMBRE	PROBABILITÉ d'après l'obstavation.	RANG Jans La Table.	RANG d'après le catert.	PROBABILITÉ d'après LA TABLE	NOMBRE B'085ERVATIONS calculé.
Pourcs. 33 34 35 36 37 58 39 40 41 42 45 44 45 46 47 48	3 18 81 185 420 740 1073 1079 934 658 370 92 50 21 4	5 51 141 322 732 1305 1867 1882 1628 1148 645 160 87 38 7	0,5000 0,4995 0,4964 0,4825 0,4501 0,3760 0,2464 0,0597 0,1285 0,2913 0,4061 0,4706 0,4866 0,4953 0,4991 0,4998 0,5000	52 42,5 33,5 26,0 18,0 10,5 2,5 5,5 13 21 50 35 41 49,5	50 42,5 34,5 20,5 18,5 10,5 2,5 5,5 13,5 21,5 20,5 57,5 45,5 55,5 61,8	0,5000 0,4993 0,4904 0,4854 0,4531 0,5799 0,2466 0,0628 0,1359 0,3034 0,4130 0,4690 0,4911 0,4980 0,4996 0,4990	7 29 110 323 732 1333 1838 1987 1675 1096 560 221 69 16 3
	5738	1,0000					1,0000

3. markdown 이용

de la POITRISE.	NONBRE d'hommes.	NOMBRE PROPORTIONAL.	PROBABILITÉ d'après L'ossenvation.	RANG Jans LA TABLE.	RANG d'après le catett.	PROBABILITÉ d'après La table	NOMBRE D'OMERVATIONS calculé.
Poures.							
22	3	5	0,5000			0,5000	7
54	18	31	0,4995	52	50	0,4993	29
35	81	141	0,4964	42,5	42,5	0,4964	110
56	185	322	0,4823	33,5	34,5	0,4854	323
57	420	732	0,4501	26,0	26,5	0,4531	732
58	749	1305	0,3769	18,0	18,5	0,5799	1333
39	1073	1867	0,2464	10,5	10,5	0,2466	1838
			0.0597	2,5	2,5	0,0628	
40	1079	1882	0,1285	5,5	5,5	0,1359	1987
41	934	1628	0,2913	13	13,5	0,3034	1675
42	658	1148	0,4061	21	21,5	0,4130	1096
45	370	645	0,4706	20	29,5	0,4690	560
44	92	160	0,4866	55	57,5	0,4911	221
45	50	87	0,4953	41	45,5	0,4980	69
46	21	38	0,4991	49,5	55,5	0,4996	16
47	4	7	0,4998	56	61,8	0,4999	2
48	1	2	0,5000		,	0,5000	1
	5758	1,0000					1,0000

Quetelet's frequency table

Frequency Table

케틀레가 작성한 스코틀랜드 군인 5738명의 가슴둘레(인치) 분포표를 옮기면

```
chest <- 33:48
freq <- c(3, 18, 81, 185, 420, 749, 1073, 1079, 934, 658, 370, 92, 50, 21, 4, 1)
data.frame(chest, freq)</pre>
```

```
##
     chest freq
## 1
        33
              3
## 2
        34
           18
## 3
        35
            81
## 4
       36 185
## 5
        37 420
## 6
       38 749
## 7
        39 1073
## 8
        40 1079
## 9
        41 934
## 10
        42 658
## 11
        43 370
## 12
        44
           92
        45 50
## 13
## 14
        46 21
## 15
        47 4
## 16
        48
```

```
# sapply(data.frame(chest, freq), typeof)
data.frame(Chest = chest, Freq = freq)
```

```
##
     Chest Freq
## 1
        33
              3
## 2
        34
           18
## 3
        35
           81
## 4
       36 185
## 5
        37 420
## 6
        38 749
## 7
        39 1073
## 8
        40 1079
## 9
        41 934
## 10
        42 658
## 11
        43 370
## 12
        44
           92
## 13
        45 50
## 14
        46 21
## 15
        47
           4
## 16
        48
```

```
chest_table <- data.frame(Chest = chest, Freq = freq)
chest_table</pre>
```

```
##
    Chest Freq
## 1
    33 3
## 2
      34 18
## 3
      35
          81
## 4
      36 185
    37 420
38 749
## 5
## 6
## 7
      39 1073
## 8
      40 1079
## 9
      41 934
## 10
      42 658
## 11
     43 370
## 12
      44 92
## 13
      45 50
## 14
      46 21
      47 4
## 15
## 16
     48 1
```

str(chest_table)

```
## 'data.frame': 16 obs. of 2 variables:
## $ Chest: int 33 34 35 36 37 38 39 40 41 42 ...
## $ Freq : num 3 18 81 185 420 ...
```

Extract Parts of an Object

```
chest_table$Freq
                   81 185 420 749 1073 1079 934 658 370
                                                              92
                                                                   50
                                                                        21
## [1]
              18
## [15]
               1
str(chest_table$Freq)
## num [1:16] 3 18 81 185 420 ...
chest_table[, 2]
                   81 185 420 749 1073 1079 934 658 370
                                                                   50
## [1]
          3
             18
                                                              92
                                                                        21
## [15]
str(chest_table[, 2])
## num [1:16] 3 18 81 185 420 ...
chest_table[, "Freq"]
            18
                   81 185 420 749 1073 1079 934 658 370
## [1]
                                                                   50
                                                                        21
## [15]
str(chest_table[, "Freq"])
## num [1:16] 3 18 81 185 420 ...
chest table["Freq"]
```

```
##
     Freq
## 1
       3
## 2
      18
## 3
      81
## 4
     185
## 5
      420
## 6
     749
## 7 1073
## 8 1079
## 9
      934
## 10 658
## 11 370
## 12
       92
## 13
       50
## 14
      21
       4
## 15
## 16
       1
str(chest_table["Freq"])
## 'data.frame': 16 obs. of 1 variable:
## $ Freq: num 3 18 81 185 420 ...
chest_table["Freq"]$Freq
## [1]
              18
                   81 185 420 749 1073 1079 934 658 370
                                                              92
                                                                  50
                                                                       21
## [15]
          4
            1
str(chest_table["Freq"]$Freq)
  num [1:16] 3 18 81 185 420 ...
chest_table["Freq"][[1]]
## [1]
          3
            18
                   81 185 420 749 1073 1079 934 658 370
                                                              92
                                                                  50
                                                                       21
## [15]
               1
str(chest_table["Freq"][[1]])
## num [1:16] 3 18 81 185 420 ...
chest_table[2]
```

```
##
     Freq
## 1
## 2
      18
## 3
       81
## 4
      185
## 5
      420
      749
## 6
## 7 1073
## 8 1079
## 9
      934
## 10 658
## 11 370
## 12
       92
## 13
       50
## 14
      21
## 15
        4
## 16
       1
str(chest_table[2])
## 'data.frame': 16 obs. of 1 variable:
## $ Freq: num 3 18 81 185 420 ...
chest_table[2]$Freq
                   81 185 420 749 1073 1079 934 658 370
## [1]
              18
                                                              92
                                                                   50
                                                                        21
## [15]
          4 1
str(chest_table[2]$Freq)
  num [1:16] 3 18 81 185 420 ...
chest_table[2][[1]]
## [1]
          3 18
                   81 185 420 749 1073 1079 934 658 370
                                                                   50
                                                                        21
## [15]
str(chest_table[2][[1]])
## num [1:16] 3 18 81 185 420 ...
chest_table[[2]]
            18
                   81 185 420 749 1073 1079 934 658 370
                                                              92
                                                                   50
                                                                        21
## [1]
          3
## [15]
str(chest_table[[2]])
```

```
## num [1:16] 3 18 81 185 420 ...
```

33인치인 사람이 3명, 34인치인 사람이 18명 등으로 기록되어 있으나 이는 구간의 가운데로 이해하여야 함.

Probability Histogram

barplot(height, ...) 은 기본적으로 height 만 주어지면 그릴 수 있음. 확률 히스토그램의 기둥 면적의 합은 1이므로, 각 기둥의 높이는 각 계급의 돗수를 전체 돗수, 5738명으로 나눠준 값임.

```
total <- sum(chest_table$Freq)
barplot(chest_table$Freq / total)</pre>
```


각 막대의 이름은 계급을 나타내는 가슴둘레 값으로 표현할 수 있고, 막대 간의 사이를 띄우지 않으며, 디폴트 값으로 주어진 회색 보다는 차라리 백색이 나으므로 이를 설정해 주면,

```
barplot(chest_table$Freq / total,
    names.arg = 33:48,
    space = 0,
    col = "white")
```


확률 히스토그램의 정의에 따라 이 막대들의 면적을 합하면 1이 됨에 유의.

Summary statistics and SD

33인치가 3명, 34인치가 18명 등을 한 줄의 긴 벡터로 나타내어야 평균과 표준편차를 쉽게 계산할 수 있으므로 long format으로 바꾸면.

```
chest_long <- rep(chest_table$Chest, chest_table$Freq)
table(chest_long)</pre>
```

```
## chest_long
##
    33
        34
             35
                      37
                         38
                                  40
                                       41 42
                                                 43
                                                     44
                                                          45
                                                              46
                                                                   47
                36
                               39
##
             81 185 420 749 1073 1079 934 658 370
                                                     92
                                                          50
                                                              21
##
    48
##
     1
```

```
str(chest_long)
```

```
## int [1:5738] 33 33 34 34 34 34 34 34 ...
```

rep()

```
rep(1:3, 3)
```

```
## [1] 1 2 3 1 2 3 1 2 3
```

```
rep(1:3, each = 3)
```

```
## [1] 1 1 1 2 2 2 3 3 3
```

```
rep(1:3, 1:3)
```

```
## [1] 1 2 2 3 3 3
```

chest long 을 이용하여 기초통계와 표준편차를 계산하면,

```
summary(chest_long)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 33.00 38.00 40.00 39.83 41.00 48.00
```

```
sd(chest_long)
```

```
## [1] 2.049616
```

Histogram

히스토그램을 직관적으로 그려보면 y축은 돗수가 기본값임을 알 수 있음.

hist(chest_long)

정규분포와 비교하기 위해서 y축을 확률로 나타내려면

```
hist(chest_long,
    probability = TRUE)
```

Histogram of chest_long

Inside the histogram

실제로 이 히스토그램을 그리는 데 계산된 값들은?

```
## $breaks
## [1] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
## $counts
## [1]
        21
             81 185 420 749 1073 1079 934 658 370 92 50
                                                                    21
## [15]
         1
##
## $density
## [1] 0.0036598118 0.0141164169 0.0322411990 0.0731962356 0.1305332869
## [6] 0.1869989543 0.1880446148 0.1627744859 0.1146741025 0.0644823980
## [11] 0.0160334611 0.0087138376 0.0036598118 0.0006971070 0.0001742768
##
## $mids
## [1] 33.5 34.5 35.5 36.5 37.5 38.5 39.5 40.5 41.5 42.5 43.5 44.5 45.5 46.5
## [15] 47.5
##
## $xname
## [1] "chest long"
##
## $equidist
## [1] TRUE
##
## attr(,"class")
## [1] "histogram"
```

```
list(breaks = h_chest$breaks,
    counts = h_chest$counts,
    density = h_chest$density,
    mids = h_chest$mids)
```

```
## $breaks
## [1] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
##
## $counts
             81 185 420 749 1073 1079 934 658 370 92 50
                                                                    21
## [1]
         21
## [15]
         1
##
## $density
## [1] 0.0036598118 0.0141164169 0.0322411990 0.0731962356 0.1305332869
## [6] 0.1869989543 0.1880446148 0.1627744859 0.1146741025 0.0644823980
## [11] 0.0160334611 0.0087138376 0.0036598118 0.0006971070 0.0001742768
##
## $mids
## [1] 33.5 34.5 35.5 36.5 37.5 38.5 39.5 40.5 41.5 42.5 43.5 44.5 45.5 46.5
## [15] 47.5
```

평균값과 표준편차로부터 히스토그램의 위치가 0.5만큼 왼쪽으로 치우쳐 있다는 것을 알 수 있음. 제자리에 옮겨 놓기 위해서 breaks 매개변수를 32.5부터 48.5까지 1간격으로 설정

```
hist(chest_long,
    probability = TRUE,
    breaks = 32.5:48.5)
```

Histogram of chest_long

위의 히스토그램을 그리느라고 계산된 값들은?

```
## $breaks
## [1] 32.5 33.5 34.5 35.5 36.5 37.5 38.5 39.5 40.5 41.5 42.5 43.5 44.5 45.5
## [15] 46.5 47.5 48.5
##
## $counts
                   81 185 420 749 1073 1079 934 658 370
              18
                                                                92
                                                                     50
                                                                          21
##
   [1]
          3
## [15]
                1
##
## $density
  [1] 0.0005228303 0.0031369815 0.0141164169 0.0322411990 0.0731962356
## [6] 0.1305332869 0.1869989543 0.1880446148 0.1627744859 0.1146741025
## [11] 0.0644823980 0.0160334611 0.0087138376 0.0036598118 0.0006971070
## [16] 0.0001742768
##
## $mids
   [1] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
```

Fitting Normal Distribution

Mean \pm SD contains 2/3 of total number of counts

평균을 중심으로 土표준편차 만큼 떨어진 자료를 붉은 색 수직점선으로 표시.

```
mean_chest <- mean(chest_long)
sd_chest <- sd(chest_long)
x_lower <- mean_chest - sd_chest
x_upper <- mean_chest + sd_chest
hist(chest_long,
    breaks = 32.5:48.5,
    probability = TRUE,
    main = main_title,
    sub = sub_title,
    xlab = x_lab,
    ylab = y_lab)
abline(v = c(x_lower, x_upper),
    lty = 2,
    col = "red")</pre>
```

Fitting Normal Distribution

그 사이의 영역을 빗금으로 표시하기 위하여 다각형의 좌표를 계산

```
h_chest_2$density[6:10]

## [1] 0.1305333 0.1869990 0.1880446 0.1627745 0.1146741

y <- h_chest_2$density[6:10]
```

```
x_{coord} \leftarrow rep(c(x_{lower}, 38.5:41.5, x_{upper}), each = 2)
y_{coord} \leftarrow c(0, rep(y, each = 2), 0)
poly df <- data.frame(x = x coord,
                        y = y_{coord}
hist(chest long,
     breaks = 32.5:48.5,
     probability = TRUE,
     main = main title,
     sub = sub_title,
     xlab = x_lab,
     ylab = y_lab)
abline(v = c(x lower, x upper),
       lty = 2,
       col = "red")
# polygon(x_coord, y_coord, density = 20)
polygon(poly df,
        density = 10,
        angle = 30,
        col = "blue")
```

Fitting Normal Distribution

이론적으로 빗금친 부분의 면적은 pnorm(1) - pnorm(-1) = 0.6826895에 가까울 것으로 예상. 5개 직사각형의 면적을 구하여 합하는 과정은 다음과 같음.

```
options(digits = 2)
x_area <- c(x_lower, 38.5:41.5, x_upper)
y</pre>
```

```
## [1] 0.13 0.19 0.16 0.11
```

```
diff(x_area)
```

```
## [1] 0.72 1.00 1.00 1.00 0.38
```

```
diff(x_area) * y
```

```
## [1] 0.094 0.187 0.188 0.163 0.044
```

```
sum(diff(x_area) * y)
```

```
## [1] 0.68
```

Comparison with normal curve

이론적인 정규분포 밀도함수 곡선을 히스토그램에 덧붙여 그림.

```
x_{chest} \leftarrow seq(from = 32.5,
               to = 48.5,
                 by = 0.01,
                 length.out = 1000,
                along.with = chest_long)
# x_chest <- seq.along(chest_long)</pre>
y norm <- dnorm(x chest,
                 mean = mean chest,
                 sd = sd chest)
curve_df <- data.frame(x = x_chest, y = y_norm)</pre>
hist(chest_long,
     breaks = 32.5:48.5,
     probability = TRUE,
     main = main title,
     sub = sub_title,
     xlab = x lab,
     ylab = y_lab
abline(v = c(x_lower, x_upper), lty = 2, col = "red")
polygon(poly_df, density = 20)
lines(curve df, col = "blue")
```

Fitting Normal Distribution

Chest Circumferences (inches)

Changing tick marks of x axis

default로 주어지는 x축의 눈금을 제대로 볼 수 있게 고치려면,

```
hist(chest_long,
     breaks = 32.5:48.5,
     probability = TRUE,
     main = main title,
     sub = sub_title,
     xlab = x_lab,
     ylab = y_lab,
     axes = FALSE)
abline(v = c(x_lower, x_upper),
       lty = 2,
       col = "red")
polygon(poly_df,
        density = 20)
# polygon(x_coord, y_coord, density = 20)
lines(curve_df,
      col = "red")
axis(side = 1,
     at = seq(32, 48, by = 2),
     labels = seq(32, 48, by = 2))
axis(side = 2)
```

Fitting Normal Distribution

ggplot

data frame으로 작업.

Basic histogram

```
library(ggplot2)
# theme_update(plot.title = element_text(hjust = 0.5))
g0 <- ggplot(data = data.frame(chest_long),</pre>
             mapping = aes(x = chest_long))
# g0
# (g1 <- g0 +
    stat_bin(aes(y = ..density..),
             binwidth = 1,
#
            fill = "white",
            colour = "black"))
# (g1 <- g0 +
      stat_count(fill = "white",
                 colour = "black"))
# (g1 <- g0 +
    geom_histogram(aes(y = ..density..),
                   binwidth = 1,
#
                   fill = "white",
                   colour = "black"))
#
(g1 <- g0 +
    geom_histogram(aes(y = ..density..),
                   binwidth = 1,
                   breaks = 32.5:48.5,
                   fill = "white",
                   colour = "black"))
```


Mean ± SD

x-axis label and main title

```
(g3 <- g2 +
  theme_bw() +
  labs(x = x_lab, y = y_lab, title = main_title) +
  theme(plot.title = element_text(hjust = 0.5)))</pre>
```


Shading the area

Normal curve added

Chest Circumferences (inches)

x-axis tick marks

Save

```
# save(list = ls(), file = "./Quetelet_chest.RData")
save.image(file = "./Quetelet_chest.RData")
```