

COMPARISON BETWEEN CONTINUOUS AND INTERMITTENT ACTIGRAPHY OUTCOMES DURING LONG DURATION MISSIONS

E.E. Flynn-Evans¹, Zachary L. Glaros¹, Rachel A. Jansen¹

¹Fatigue Countermeasures Laboratory, Human Systems Integration Division, NASA Ames Research Center, Moffett Field, CA, USA

Introduction

- Astronauts typically wear actigraphy watches continuously during their missions inflight
- In late 2020, astronauts were scheduled to wear an actiwatch for one 2-week period every two months
- Our aim was to compare sleep outcomes between data collected continuously vs intermittently to identify whether intermittently collected sleep data would yield similar results

Methods

- N = 19 (7F) Crewmembers (mean age 45 +/- 57 years), volunteered from NASA Standard Measures protocol between Jan 2019 and Mar 2022
- Actiwatches were worn either continuously (C; n = 9) or for two weeks every two months while in space (2W; n = 10)
- Sleep outcomes measures comparing the
 C vs 2W actigraphy collection:
 - sleep duration (h), sleep efficiency (%), number of awakenings (n), wake after sleep onset (min; WASO), and sleep latency (min)

Results

- C: 84.47% days in space
- **2W**: 32.95% days in space
- Over half of EVAs missed
- 2/3 of visiting vehicles missed

Sleep Duration by Day Inflight

Table 1A – Preflight

	L-270 (C) N = 6	L-270 (2W) N = 9	L-180 (C) N = 7	L-180 (2W) N = 9
Sleep Duration	8.13 (0.38)	7.71 (0.70)	8.21 (0.35)	7.59 (0.47)
Sleep efficiency	84.53 (4.10)	84.06 (5.65)	86.66 (3.44)	83.93 (7.74)
Awakenings	30.01 (6.91)	25.96 (7.75)	30.66 (9.94)	25.18 (8.49)
WASO	48.23 (<i>15.42</i>)	46.98 (<i>17.90</i>)	42.89 (12.93)	46.86 (18.41)
Sleep Latency	11.07 (7.41)	9.65 (7.35)	9.95 (6.98)	11.57 (13.20)

Table 1B – Inflight & Postflight

	Inflight (C) $N = 9$	Inflight $(2W)$ N = 10	Postflight (C) N = 9	Postflight (2W)
		11 10		N = 10
Sleep Duration	7.51 (0.33)	7.00 (0.39)	8.29 (0.71)	7.40 (0.64)
Sleep efficiency	90.73 (1.49)	86.85 (2.54)	84.76 (3.02)	83.63 (7.72)
Awakenings	15.30 (2.59)	17.31 (4.25)	28.88 (7.00)	26.67 (7.76)
WASO	27.12 (5.52)	34.02 (10.45)	50.00 (13.74)	51.72 (19.94)
Sleep Latency	6.02 (4.53)	10.87 (5.87)	12.80 (7.42)	6.53 (5.88)

Conclusion

- Continuous actigraphy data collection yields higher sleep duration and sleep efficiency inflight compared to intermittent data collection
- Sleep duration is lower across pre, in, and postflight for the intermittent group, possibly suggesting a difference in sleep habits compared to the continuous group
- Our findings support the use of continuous actigraphy data collection to ensure reliable sleep estimation throughout the spaceflight mission

Acknowledgements

 NASA Research and Operations Integrations (ROI);
 HRP's projects: Standard Measures and Human Factors and Behavioral Performance Element