

XYZ-effects in phonology and beyond

Translation of a workshop talk
Ignas Rudaitis
2021-10-29

Features with and without XYZ-effects

Feature	Input segments	Effect valid?	Effect productive?
Presence in lexicon	Phonemes	No	_
Phonological well-formedness	Phonemes	Yes	Yes
Morphological well-formedness	Morphemes	Yes	No
Syntactic well-formedness	Words	Yes	No

No XYZ-effects for presence in lexicon

Premises:

- spill is a word
- sow is a word
- pillow is a word

Conclusion:

spillow is a word

Here, the argument is absurd and the conclusion false.

	X	Y	Z
XY	S	pill	
XZ	S		OW
YZ		pill	OW
XYZ	S	pill	OW

Features with and without XYZ-effects

Feature	Input segments	Effect valid?	Effect productive?
Presence in lexicon	Phonemes	No	_
Phonological well-formedness	Phonemes	Yes	Yes
Morphological well-formedness	Morphemes	Yes	No
Syntactic well-formedness	Words	Yes	No

XYZ-effects for phonological wellformedness

Premises:

- spill is well-formed
- sow is well-formed
- pillow is well-formed

Conclusion:

spillow is well-formed

Now, the conclusion **is true**: it is a phonologically well-formed pseudoword. The argument **might be valid**!

	X	Y	Z
XY	S	pill	
XZ	S		OW
YZ		pill	OW
XYZ	S	pill	OW

Artificial example

Premises:

- isom is well-formed
- isi is well-formed
- somsi is well-formed

Conclusion:

• isomsi is well-formed

	X	Y	Z
XY	i	som	
XZ	i		si
YZ		som	si
XYZ	i	som	si

Simulation with artificial lexicon

XY
mi
imu
imemei
ımai
ımai
ımai
ımama
ma
mıma
imemu

XZ mumi imi imu ımamu **Imamemu** *imame Imama* mamu mu mi ma mima mimu imemi

YZ iumi mumi memeimu imu imemu ime mama aamu **Imau** ımai ımaa mama mamv mumi

XYZ miumi imumi imemeimu ımaimu ımaimemu ımaime **Imamama** maamu mımau mımai mımaa mimama mımamu imemumi

Simulation with artificial lexicon

XZ	YZ	XYZ
mumi	iumi	miumi
imi	mumi	imumi
imu	memeimu	imemeimu
ımamu	imu	ımaimu
ımamemu	imemu	ımaimemu
ımame	ime	ımaime
ımama	mama	ımamama
mamʊ	aamʊ	maamʊ
mu	ımau	mɪmau
mi	ımai	mɪmai
ma	ımaa	mɪmaa
mɪma	mama	mɪmama
mɪmʊ	mamʊ	mɪmamʊ
imemi	mumi	imemumi
	mumi imi imu Imamu Imamemu Imame Imama mamo mu mi ma mima mIma mImo	mumi iumi imi mumi imu memeimu imu imu imu imu imemu imemu imemu ime ime ime ime imama mamo aamo mu imau imau mi imai ma imaa mima mamo mamo mamo mam

Generic shape of XYZ-effects

Inputs:

- XY
- XZ
- YZ

Output:

XYZ

When do phonological XYZ-effects hold?

At least when any of the following is present:

- local constraints,
- initial and/or final constraints,
- vowel/consonant harmonies:
 - single or multiple
 - with transparent segments
 - with blockers: regular or circumambient
 - with conditional blockers (?)
 - with icy targets (?)
 - parasitic (?)
- long-distance assimilation,
- quantification, e. g. "exactly 1 unreduced vowel".

...universally?

Arguments in favor of universality

Local, initial, and final constraints

To be argued schematically

Typology of harmony systems

References: Rose & Walker (2011), Jurgec (2011), Aksënova et al. (2020), Aksënova & De Santo (2021), Burness et al. (2021), and others

Examples: Finnish (< Finnic), Imdlawn Tashlhiyt (< Berber), Tutrugbu (< Atlantic-Congo)

Computational simulations

Counterexamples welcome!

Outline

- 1. Local, initial, and final constraints
- 2. Finnish vowel harmony ("classical" harmony)
- 3. Imdlawn Tashlhiyt consonant harmony (with blockers)
- 4. Tutrugbu vowel harmony (with circumambient blockers)
- 5. Morphology
- 6. Syntax
- 7. Induction procedure based on the XYZ-effects

Local phonological constraints

Constraint:

Lithuanian (< Balto-Slavic)

Clusters of adjacent consonants must be **all** palatalized, or **all** plain.

= **Pairs** of adjacent consonants must be **both** palatalized, or **both** plain.

Licit:

$$3^{j}$$
 V^{j} I l^{j} k^{j} s^{j} n^{j} I s^{j} V^{j} ϵ l k s

Illicit:

* 3^j v^j ε l^j k s

locus of violation

Loci of violation

- Must unambiguously signal a violation even when deprived of its phonological context
- The defining feature of local phonological constraints (local phonotactics)
- Typology suggest that loci are always **1, 2,** or **3** phonemes wide, not more
- We will also use the word "locus" where **no violation** is implied

Loci in spillow

```
spilov
spil pilov
spi pil ilov
sp pi il lov
s p i l ov
```

Loci in spillow

			spi	loʊ		
LONG			spīl	pɪloʊ		
SHORT		spi	pɪl	ıloı	J	
		sp	рі	ıl	loʊ	
	S	p	I	l	OÜ	

Loci in spillow, inherited from spill (XY)

				spil	OÜ				
LONG			spil		pilo	งช			
SHORT		spi		pɪl		ɪloʊ			 ·
		sp	рі		Ιl		loʊ		
	S	p		I		l		OÜ	

Loci in spillow, inherited from pillow (YZ)

				spil	.OU				
LONG			S	pɪl	pilo	υ			
SHORT		S	рі	pɪl		Ilou			
		sp	p	I	Ιl		loʊ		
	S	p)	I		l		OU	

Loci in spillow, inherited from XY or YZ

					spil	OU				
LONG				spil		pilo	ΟU			
SHORT			spi		pɪl		Ilou	5		
		sp		pı		Ιl		loʊ		
	S		p		I		l		Οΰ	

New, non-inherited loci in spillow

			9	spilou				
LONG			spil	рі	loʊ			
SHORT		spi	;	oil	Ilou	j		
		sp	рі	Ιl		loʊ		
	S	p	I		l	0	U	

Conclusion on loci of violation

- All short loci are inherited, and thus contain no violations
- Only long loci form newly; concretely, only ones longer than XY, XZ, or YZ
- Only these loci could theoretically contain violations
- Short (bi-phonemic) inputs pose a potential threat for universality
- Unclear if any counterexamples can actually be derived from this

? Czech:

	X	Y	Z	-
XY	m	hm		uh-huh' (periphery!
XZ	m		ota	,?'
YZ		hm	ota	,matter'
XYZ	m	hm	ota	-

Initial and final constraints

- The output XYZ begins with the same phonemes, as the input XY already did
- The output XYZ ends with the same phonemes, as the input YZ already did

Outline

- 1. Local, initial, and final constraints
- 2. Finnish vowel harmony ("classical" harmony)
- 3. Imdlawn Tashlhiyt consonant harmony (with blockers)
- 4. Tutrugbu vowel harmony (with circumambient blockers)
- 5. Morphology
- 6. Syntax
- 7. Induction procedure based on the XYZ-effects

Finnish vowel harmony

Some numerals:

```
kaksi ,2' kahdeksan ,8' yksi ,1' yhdeksæn ,9'
```


Rule: do not mix green and orange vowels in one word

Finnish vowel harmony

Some numerals:

```
kaksi ,2' kahdeksan ,8'
yksi ,1' yhdeksæn ,9'

kæksi ,?'
uksi ,?'
```


Rule: do not mix green and orange vowels in one word

Finnish vowel harmony

Some numerals:

```
kaksi ,2' kahdeksan ,8'
yksi ,1' yhdeksæn ,9'

kæksi ,?' *kahdeksæn -
uksi ,?' *yhdeksan -
ill-formed

pseudo-words
```


Rule: do not mix green and orange vowels in one word

Finnish-style harmonies and XYZ-effects

Disharmony in the **output** can only follow from disharmony in an **input**:

26 more combinations for an exhaustive demonstration ©

Outline

- 1. Local, initial, and final constraints
- 2. Finnish vowel harmony ("classical" harmony)
- 3. Imdlawn Tashlhiyt consonant harmony (with blockers)
- 4. Tutrugbu vowel harmony (with circumambient blockers)
- 5. Morphology
- 6. Syntax
- 7. Induction procedure based on the XYZ-effects

Three harmonies in Imdlawn Tashlhiyt

```
'CAUS-evacuate'
s:-uga
              'CAUS-settle'
s-as:twa
∫-fia∫r
              'CAUS-be.full.of.straw'
z-bruz:a
              'CAUS-crumble'
3-m:3dawl
              'CAUS-stumble'
s-ħuz
              'CAUS-annex'
              'CAUS-recognize'
s:-ukz
s^{r}-r^{r}u^{r}f^{r}z^{r}
              'CAUS-appear.resistant'
              'CAUS-loathe.each.other'
s-mxazaj
                                                    (Elmedlaoui 1992; Hansson 2010),
                                          reproduced here from (Aksënova et al. 2020)
∫-qu3:i
              'CAUS-be.dislocated'
```

Three harmonies in Imdlawn Tashlhiyt

```
'CAUS-evacuate'
s:-uga
              'CAUS-settle'
s-as:twa
∫-fia∫r
              'CAUS-be.full.of.straw'
z-bruz:a
              'CAUS-crumble'
              'CAUS-stumble'
3-m:3dawl
s-ħuz
              'CAUS-annex'
s:-ukz
              'CAUS-recognize'
s^{r}-r^{r}u^{r}f^{r}z^{r}
              'CAUS-appear.resistant'
              'CAUS-loathe.each.other'
s-mxazaj
                                                     (Elmedlaoui 1992; Hansson 2010),
                                           reproduced here from (Aksënova et al. 2020)
∫-qu3:i
              'CAUS-be.dislocated'
```

Three harmonies in Imdlawn Tashlhiyt

```
'CAUS-evacuate'
s:-uga
               'CAUS-settle'
s-as:twa
∫-fia∫r
               'CAUS-be.full.of.straw'
                                                       emphasis
z-bruz:a
               'CAUS-crumble'
                                                   (pharyngealization)
3-m:3dawl
               'CAUS-stumble'
                                                       harmony
s-ħuz
                'CAUS-annex'
s:-ukz
                'CAUS-recognize'
s<sup>s</sup>-r<sup>s</sup>u<sup>s</sup>f<sup>s</sup>z<sup>s</sup>
                'CAUS-appear.resistant'
                'CAUS-loathe.each.other'
s-mxazaj
                                                           (Elmedlaoui 1992; Hansson 2010),
                                                reproduced here from (Aksënova et al. 2020)
∫-qu3:i
                'CAUS-be.dislocated'
```

Two harmonies in Imdlawn Tashlhiyt

```
'CAUS-evacuate'
s:-uga
             'CAUS-settle'
s-as:twa
∫-fia∫r
             'CAUS-be.full.of.straw'
z-bruz:a
             'CAUS-crumble'
3-m:3dawl
             'CAUS-stumble'
s-ħuz
             'CAUS-annex'
             'CAUS-recognize'
s:-ukz
             'CAUS-appear.resistant'
s -r u f z
             'CAUS-loathe.each.other'
s-mxazaj
                                                  (Elmedlaoui 1992; Hansson 2010),
                                         reproduced here from (Aksënova et al. 2020)
∫-qu3:i
             'CAUS-be.dislocated'
```

Two harmonies in Imdlawn Tashlhiyt

'CAUS-evacuate' s:-uga 'CAUS-settle' s-as:twa ∫-fia∫r 'CAUS-be.full.of.straw' z-bruz:a 'CAUS-crumble' 3-m:3dawl 'CAUS-stumble' 'CAUS-annex' s-ħuz s:-ukz 'CAUS-recognize' 'CAUS-appear.resistant' s -r u f z 'CAUS-loathe.each.other' s-mxazaj ∫-quʒ:i 'CAUS-be.dislocated'

(Elmedlaoui 1992; Hansson 2010), reproduced here from (Aksënova et al. 2020)

Two harmonies in Imdlawn Tashlhiyt

s:-uga	'CAUS-evacuate'
s-as:twa	'CAUS-settle'
∫-fia∫r	'CAUS-be.full.of.straw'
z-bruz:a	'CAUS-crumble'
3-m:3dawl	'CAUS-stumble'
s-ħuz	'CAUS-annex'
s:-ukz	'CAUS-recognize'
s -r u f z	'CAUS-appear.resistant'
s-mχazaj	'CAUS-loathe.each.other'
∫-quʒ:i	'CAUS-be.dislocated'

(Elmedlaoui 1992; Hansson 2010), reproduced here from (Aksënova et al. 2020)

One harmony in Imdlawn Tashlhiyt

'CAUS-evacuate' s:-uga 'CAUS-settle' s-as:twa ∫-fia∫r 'CAUS-be.full.of.straw' z-bruz:a 'CAUS-crumble' 'CAUS-stumble' 3-m:3dawl s-ħuz 'CAUS-annex' 'CAUS-recognize' s:-ukz 'CAUS-appear.resistant' s -r u f z 'CAUS-loathe.each.other' s-mxazaj ∫-qu3:i 'CAUS-be.dislocated'

(Elmedlaoui 1992; Hansson 2010), reproduced here from (Aksënova et al. 2020)

One harmony in Imdlawn Tashlhiyt

'CAUS-evacuate' s:-uga 'CAUS-settle' s-as:twa ∫-fia∫r 'CAUS-be.full.of.straw' z-bruz:a 'CAUS-crumble' 'CAUS-stumble' 3-m:3dawl s-ħuz 'CAUS-annex' 'CAUS-recognize' s:-ukz 'CAUS-appear.resistant' s -r u f z 'CAUS-loathe.each.other' s-mxazaj ∫-qu3:i 'CAUS-be.dislocated'

(Elmedlaoui 1992; Hansson 2010), reproduced here from (Aksënova et al. 2020)

One harmony in Imdlawn Tashlhiyt

'CAUS-evacuate' s:-uga 'CAUS-settle' s-as:twa ∫-fia∫r 'CAUS-be.full.of.straw' z-bruz:a 'CAUS-crumble' 3-m:3dawl 'CAUS-stumble' s-huz 'CAUS-annex' 'CAUS-recognize' s:-ukz s -r u Tz 'CAUS-appear.resistant' 'CAUS-loathe.each.other' s-mxazaj ∫-quz:i 'CAUS-be.dislocated'

(Elmedlaoui 1992; Hansson 2010), reproduced here from (Aksënova et al. 2020)

One harmony in Imdlawn Tashlhiyt

```
s a s: t w a

z m: z d a w l

s m x a z a j

* s m a z a j
```


One harmony in Imdlawn Tashlhiyt

```
s a s: t w a

3 m: 3 d a w l

s m x a z a j

* s m a z a j
```


Recall the "Finnish argument"

Disharmony in the **output** can only follow from disharmony in an **input**:

26 more combinations for an exhaustive demonstration ©

Recall the "Finnish argument"

Disharmony in the **output** can only follow from disharmony in an **input**:

26 more combinations for an exhaustive demonstration ©

Recall the "Finnish argument"

Input pieces now come in 6 new types!

The number of combinations has soared to $(3 + 6)^3 = 729$, but the argument has remained the same in its essence \odot

Outline

- 1. Local, initial, and final constraints
- 2. Finnish vowel harmony ("classical" harmony)
- 3. Imdlawn Tashlhiyt consonant harmony (with blockers)
- 4. Tutrugbu vowel harmony (with circumambient blockers)
- 5. Morphology
- 6. Syntax
- 7. Induction procedure based on the XYZ-effects

Some points on Tutrugbu harmony

- Vowels: /e i u/ **vs.** /a ι ʊ/
 - Others exist but are not relevant here
- Blockers
 - Not always operational
- 2 types of words
 - A: initial syllable has a [-high] vowel
 - **B:** initial syllable has a [+high] vowel
- Type A
 - Blockers do not operate the harmony encompasses the entire word
- Type B
 - Blockers **do** operate

Some points on Tutrugbu harmony

- Vowels: /e i u/ vs. /a ι υ/
 - Others exist but are not relevant here
- Blockers
 - Not always operational
- 2 types of words
 - A: initial syllable has a [-high] vowel
 - **B:** initial syllable has a [+high] vowel
- Type A
 - Blockers do not operate the harmony encompasses the entire word
- Type B
 - Blockers **do** operate

A blocker that comes in two halves?

- Vowels: /e i u/ **vs.** /a ɪ ʊ/
 - Others exist but are not relevant here
- Blockers
 - Not always operational
- 2 types of words
 - A: initial syllable has a [-high] vowel
 - B: initial syllable has a [+high] vowel (½ of a blocker)
- Type A
 - Blockers do not operate the harmony encompasses the entire word
- Type B
 - Blockers do operate (½ of a blocker)

Tutrugbu harmony

Unbounded conditional blocking of ATR harmony

	Context
a.	no #[+high] prefix

- c. adjacent
- d. 1σ gap
- e. 2σ gap
- f. 3σ gap
- g. 4σ gap
- h. no #[+high] prefix

Example

[<mark>ı-ba</mark>-wu]

[<mark>1</mark>-tí-<mark>ka</mark>-wu]

[<mark>1</mark>-tí-ka-<mark>a</mark>-wu]

[<mark>1</mark>-tí-ka-a-<mark>ba</mark>-wu]

[<mark>1</mark>-tí-ka-a-ba-<mark>ba</mark>-wu]

[e-ti-ke-e-be-be-wu]

Gloss

- '3S-NEG-climb'
- '1S-NEG-climb'
- '1S-FUT-climb'
- '1s-NEG-PFV-climb'
- '1S-NEG-PFV-PROG-climb'
- '1s-NEG-PFV-PROG-VENT-climb'
- '1s-NEG-PFV-PROG-VENT-VENT-climb'

a

 Ω

u

'3S-NEG-PFV-PROG-VENT-VENT-climb'

(McCollum et al. 2020)

Tutrugbu-like harmony and XYZ-effects

XY7

XY
mi
imu
imemei
ımai
ımai
ımai
ımama
ma
mɪma
imemu

XZ	YZ
mumi	iumi
imi	mumi
imu	memei
ımamu	imu
ımamemu	imemu
ımame	ime
ımama	mama
mamʊ	aamʊ
mu	ımau
mi	ımai
ma	ımaa
mıma	mama
mımʊ	mamʊ
imemi	mumi

1	A I Z
mi	miumi
umi	imumi
emeimu	imemeimu
u	ımaimu
emu	ımaimemu
е	ımaime
ama	ımamama
mʊ	maamʊ
iau	mɪmau
ıai	mɪmai
ıaa	mɪmaa
ama	mɪmama
amʊ	mɪmamʊ
umi	imemumi


```
from collections import defaultdict
def all_splits(s):
    return {(s[:i], s[i:]) for i in range(1, len(s))}
def generalize(origin, limit=8):
    tails = defaultdict(set)
    news = set(origin)
    pool = set()
    while news:
        for item in news:
            for head, tail in all_splits(item):
                tails[head].add(tail)
        pool.update(news)
        news.clear()
        for ab in set(pool):
            for a, b in all_splits(ab):
                for c in tails[a] & tails[b]:
                    if a + b + c not in pool and len(a + b + c) <= limit:</pre>
                        news.add(a + b + c)
                        yield a + b + c
```

XZ	YZ	XYZ
aa	aa	aaa
aaa	aaa	aaaa
aaa	aa	aaaa
aa	aaa	aaaa
aa	aaaa	aaaaa
aaaa	aa	aaaaa
aaa	aaa	aaaaa
aaaa	aaaa	aaaaaa
aaaa	aaaa	aaaaa
aaaa	aaa	aaaaa
aaa	aaaa	aaaaa
aaaaaa	aa	aaaaaaa
aaaa	aaaa	aaaaaaa
aaaaa	aaaaa	aaaaaaaa
	aa aaa aaa aaaa aaaa aaaa aaaa aaaa aaaa	aaa aaa aaa aaa aa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaaa aaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa aaaaa

XY	XZ	YZ	XYZ
aa	aa	aa	aaa
aa	aaa	aaa	aaaa
aaa	aaa	aa	aaaa
aaa	aa	aaa	aaaa
aaaa	aa	aaaa	aaaaa
aaaa	aaaa	aa	aaaaa
aaaa	aaa	aaa	aaaaa
aaaa	aaaa	aaaa	aaaaaa
aa	aaaa	aaaa	aaaaa
aaa	aaaa	aaa	aaaaa
aaa	aaa	aaaa	aaaaa
aaaaaa	aaaaaa	aa	aaaaaaa
aaaaaa	aaaa	aaaa	aaaaaaa
aaaaaa	aaaaa	aaaaa	aaaaaaaa

XY	XZ	YZ	XYZ
aa	aa	aa	aaa
aa	aaa	aaa	aaaa
aaa	aaa	aa	aaaa
aaa	aa	aaa	aaaa
aaaa	aa	aaaa	aaaaa
aaaa	aaaa	aa	aaaaa
aaaa	aaa	aaa	aaaaa
aaaa	aaaa	aaaa	aaaaaa
aa	aaaa	aaaa	aaaaa
aaa	aaaa	aaa	aaaaa
aaa	aaa	aaaa	aaaaa
aaaaaa	aaaaaa	aa	aaaaaaa
aaaaaa	aaaa	aaaa	aaaaaaa
aaaaaa	aaaaa	aaaaa	aaaaaaa

XY	XZ	YZ	XYZ
aa	aa	aa	aaa
aa	aaa	aaa	aaaa
aaa	aaa	aa	aaaa
aaa	aa	aaa	aaaa
aaaa	aa	aaaa	aaaaa
aaaa	aaaa	aa	aaaaa
aaaa	aaa	aaa	aaaaa
aaaa	aaaa	aaaa	aaaaaa
aa	aaaa	aaaa	aaaaa
aaa	aaaa	aaa	aaaaa
aaa	aaa	aaaa	aaaaa
aaaaaa	aaaaaa	aa	aaaaaaa
aaaaaa	aaaa	aaaa	aaaaaaa
aaaaaa	aaaaa	aaaaa	aaaaaaa

XY	XZ	YZ	XYZ
aa	aa	aa	aaa
aa	aaa	aaa	aaaa
aaa	aaa	aa	aaaa
aaa	aa	aaa	aaaa
aaaa	aa	aaaa	aaaaa
aaaa	aaaa	aa	aaaaa
aaaa	aaa	aaa	aaaaa
aaaa	aaaa	aaaa	aaaaaa
aa	aaaa	aaaa	aaaaa
aaa	aaaa	aaa	aaaaa
aaa	aaa	aaaa	aaaaa
aaaaaa	aaaaaa	aa	aaaaaaa
aaaaaa	aaaa	aaaa	aaaaaaa
aaaaaa	aaaaa	aaaaa	aaaaaaaa

Outline

- 1. Local, initial, and final constraints
- 2. Finnish vowel harmony ("classical" harmony)
- 3. Imdlawn Tashlhiyt consonant harmony (with blockers)
- 4. Tutrugbu vowel harmony (with circumambient blockers)
- 5. Morphology
- 6. Syntax
- 7. Induction procedure based on the XYZ-effects

Morphology

Inputs:

- farm-s_{PL}
- house-s_{PL}
- farm-house

Output:

• farm-house-s_{PL}

Can one dispense with compounds in illustrating this?

Can one dispense with compounds?

- Only one root:
 - contained in X, or
 - contained in Y, or
 - contained in Z
- Assume it is contained in X
 - YZ would have no root!
- One might say that an XYZ-effect holds in a silent, unproductive manner
 - Input tuples of the shape (XY, XZ, YZ) barely exist

A more lenient alternative, perhaps?

Inputs:

- XY...
- X...Z
- ...YZ

Output:

• XYZ

Outline

- 1. Local, initial, and final constraints
- 2. Finnish vowel harmony ("classical" harmony)
- 3. Imdlawn Tashlhiyt consonant harmony (with blockers)
- 4. Tutrugbu vowel harmony (with circumambient blockers)
- 5. Morphology
- 6. Syntax
- 7. Induction procedure based on the XYZ-effects

The syntax situation

- An XYZ effect could only be productive in marginal cases:
 - I think I think → I think I think
- The "no root" argument becomes a "no head" argument
- The more lenient version is by far too lenient now

Balanced parentheses

```
generalize({'()', '(())', '()()', '()(())()', '(()())'}, limit=32)
()()()
()()(())()
()(())()
()()()()
()()()(())()
()(())()()
()()(())()
()()()()()
()()()()(())()
()()()()(())()
()()()()()
()()()()()()()
()()()(())()
()(())()()()
```

Outline

- 1. Local, initial, and final constraints
- 2. Finnish vowel harmony ("classical" harmony)
- 3. Imdlawn Tashlhiyt consonant harmony (with blockers)
- 4. Tutrugbu vowel harmony (with circumambient blockers)
- 5. Morphology
- 6. Syntax
- 7. Induction procedure based on the XYZ-effects

Induction procedure

- Essentially the generalize() from the code listing some slides ago
- Could compete with substance-free models of phonotactic inference
 - e. g. formal-language-theoretic models
- Major advantage: simplicity
- Major disadvantage: generalizes in an excessively cautious and conservative manner
- Typical optimality-theoretic approaches are not substance-free, and therefore not comparable
- The recombinant, parameter-free approach of XYZ-based induction is conceptually attractive

References

Aksënova, A., & De Santo, A. (2021). Learning Interactions of Local and Non-Local Phonotactic Constraints from Positive Input.

Aksënova, A., Rawski, J., Graf, T., & Heinz, J. (2020). The Computational Power of Harmony.

Burness, P. A., McMullin, K. J., Chandlee, J., Burness, P., & McMullin, K. (2021). Long-distance phonological processes as tier-based strictly local functions. *Glossa: a journal of general linguistics*, 6(1).

Elmedlaoui, M. (1992). Aspects des représentations phonologiques dans certaines langues chamitosémitiques. Doctorat d'état, Université Mohamed V, Rabat.

Hansson, G. Ó. (2010). Consonant harmony: Long-distance interactions in phonology (Vol. 145). Univ of California Press.

Jurgec, P. (2011). Feature spreading 2.0: A unified theory of assimilation.

McCollum, A. G., Baković, E., Mai, A., & Meinhardt, E. (2020). Unbounded circumambient patterns in segmental phonology. *Phonology*, *37*(2), 215-255.

Rose, S., & Walker, R. (2011). Harmony systems. The handbook of phonological theory, 2, 240-290.

Thank you!