ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 09 giugno 2015

Esercizio A

$R_1 = 50 \Omega$ $R_2 = 200 \text{ k}\Omega$ $R_3 = 100 \text{ k}\Omega$ $R_4 = 100 \Omega$ $R_5 = 1400 \Omega$ $R_6 = 3600 \Omega$ $R_7 = 100 \Omega$	$R_{11} = 4 \text{ k}\Omega$ $R_{12} = 2500 \Omega$ $R_{13} = 10 \text{ k}\Omega$ $C_1 = 220 \text{ nF}$ $C_2 = 33 \text{ nF}$ $C_3 = 100 \text{ nF}$ $C_4 = 680 \text{ pF}$	R ₁	V_{cc} R_2 C_1 R_3	Q_1 R_7 F	R _s R _s	Q ₂ C ₄	R ₁₃ - V _u
$R_7 = 100 \Omega$ $R_9 = 20 \text{ k}\Omega$	$C_4 = 680 \text{ pF}$ $V_{CC} = 18 \text{ V}$	nm	,,,,,	$R_5 = C_2$	N ₁₀ >	TT12	\geq R ₁₃ $\frac{-}{\uparrow}$
$R_{10} = 8 \text{ k}\Omega$				nhn ntn			

 Q_1 e Q_2 sono transistori MOS a canale n resistivi, con la corrente di drain in saturazione data da $I_D = k(V_{GS}-V_T)^2$ con k = 0.5 mA/V² e $V_T = 1$ V;

Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_8 in modo che, in condizioni di riposo, la tensione sul drain di Q_2 sia 10 V. Determinare, inoltre, il punto di riposo dei due transistori e verificarne la saturazione. (R: R_8 = 1900 Ω)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 e C_4 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -2.9$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 0$ Hz; $f_{p1} = 10.84$ Hz; $f_{z2} = 3444.91$ Hz; $f_{p2} = 11483$ Hz; $f_{z3} = 837.66$ Hz; $f_{p3} = 1006.72$ Hz; $f_{z4} = 0$ Hz; $f_{p4} = 22468.9$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{AB} + C\right)\left(\overline{C}D + \overline{E}\right) + \overline{C}\overline{E}\left(\overline{A} + \overline{B}\right) + \overline{D}\overline{E}$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 3 k\Omega$	$R_5 = 20 \; k\Omega$
$R_2 = 4 \text{ k}\Omega$	$R_6 = 1 \text{ k}\Omega$
$R_3 = 5 \text{ k}\Omega$	C = 100 nF
$R_4 = 1 \text{ k}\Omega$	$V_{CC} = 6 V$

Il circuito IC_1 è un NE555 alimentato a V_{CC} = 6V, Q_1 ha una R_{on} = 0 e V_T = 1V e Q_2 una R_{on} = 0 e V_T = -1V, l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 2008 Hz).