LENDING CLUB DATA ANALYSIS (Assignment-2 Report)

Advance in Data Sciences and Architecture INFO 7390 - SPRING 2017

PROFESSOR: **SRIKANTH KRISHNAMURTHY**

TEAM MEMBERS (Team 9):

AASHRI TANDON

PRAGATI SHAW

SARTHAK AGARWAL

Table of Contents

Flow of the project:	3
Classification	
Clustering	
Manual Clustering	
Based on Clustering Algorithm(k-means)	
Prediction	11
Prediction for manual clusters	12
Prediction for algo-based clusters	15
Prediction for all data cluster	17
Deployment	18
Contribution	

Flow of the project:

Classification

The task was to classify a new record whether loan will be approved or not. We have created a combined csv file for both accepted loan data and declined loan data with the following columns:

DTI ratio

Fico score Low (or Risk Score): Note-vantage score is assumed to be fico score

State

Zip Code

Loan Amount

Policy Code

Employment Length

Accepted Status (New Column generated for both files)

We have trained all our models on Microsoft Azure Machine Learning Studio.

Columns excluded: State and Zip Code

Metadata Editor: Converted Employment Length, Policy Code, Accepted Status to categorical fields

Edit Metadata

Training was done on 'Accepted Status' column.

Below is the screenshot of all the algorithms that were used to train the model. ROC curve value was used to determine the best model out of four (Two class support vector machine, Logistic Regression, Two class decision forest, Two class Neural Network)

Evaluation Results of various classification algorithms:

Two class Logistic Regression

ROC Curve

• Confusion Matrix

True Positive 531284	False Negative 128559	Accuracy 0.928	Precision 0.627	Threshold 0.5	=	0.920
False Positive 316194	True Negative 5223566	Recall 0.805	F1 Score 0.705			
Positive Label	Negative Label					

Two class decision forest

• ROC Curve

• Confusion Matrix

True Positive	False Negative	Accuracy	Precision	Threshold	=	AUC
443422	216421	0.935	0.706	0.5		0.937
False Positive 184429	True Negative 5355331	Recall 0.672	F1 Score 0.689			
Positive Label	Negative Label					
Υ	N					

Two class Neural Network

• ROC Curve

• Confusion Matrix

True Positive 517395	False Negative 142448	Accuracy 0.931	Precision 0.642	Threshold = 0.5	Ξ	AUC 0.935
False Positive 288281	True Negative 5251479	Recall 0.784	F1 Score 0.706			
Positive Label	Negative Label					

Two class support vector machine

ROC Curve

• Confusion Matrix

Chosen Model: Two class SVM as AUC is 0.999

Clustering

Manual Clustering

Based on each loan application and credit report, every loan is assigned a grade ranging from A to G with a corresponding interest rate. We have considered 'grades' of every loan record to cluster the entire dataset.

```
import pandas as pd
import numpy as np
pd.set_option('display.max_rows', 200)
pd.set option('display.max columns', 200)
# In[2]:
loanData = pd.read csv('D:\\ADS\\Assignments\\Assignment2\\cleanDataForCluster.csv',encoding = 'iso-8859-1',index col=0)
loanData
groupdedDAta=list(loanData.groupby(loanData['grade']))
groupdedDAta
# In[4]:
gradeA = groupdedDAta[0][1]
gradeA.to_csv("gradeA.csv")
# In[5]:
gradeB = groupdedDAta[1][1]
gradeB.to csv("gradeB.csv")
# In[6]:
gradeC = groupdedDAta[2][1]
gradeC.to csv("gradeC.csv")
# In[7]:
gradeD = groupdedDAta[3][1]
gradeD.to_csv("gradeD.csv")
# In[8]:
gradeE = groupdedDAta[4][1]
gradeE.to csv("gradeE.csv")
# In[9]:
gradeF = groupdedDAta[5][1]
gradeF.to_csv("gradeF.csv")
# In[10]:
gradeG = groupdedDAta[6][1]
gradeF.to_csv("gradeG.csv")
```

Based on Clustering Algorithm(k-means)

k-means clustering aims to partition dataset into **k clusters** in which record belongs to the **cluster** with the nearest **mean**, serving as a prototype of the **cluster**.

This algorithm is an iterative process.

We have made 3 clusters (No of centroids = 3)

Prediction

Variable Selection

Selected 17 variables out of 90:

int_rate,
sub_grade,
grade,
dti,
fico_range_low,
fico_range_high,
term,
bc_util,
total_pymnt,
loan_amnt,
funded_amnt,
total_pymnt_inv,
home_ownership,
loan_status,purpose,
application_type,
emp_length,
policy_code

Prediction for manual clusters

- term, grade, sub_grade, home_ownership, loan_status, purpose, application_type, emp_length is converted to categorical
- Training was done on 'int_rate' column.
- Below is the screenshot of all the algorithms that were used to train the model.

The following metrics are reported for evaluating regression models. All metrics are reported but the models are ranked by the metric you select for evaluation.

- **Mean absolute error (MAE)** measures how close the predictions are to the actual outcomes; thus, a lower score is better.
- **Root mean squared error (RMSE)** creates a single value that summarizes the error in the model. By squaring the difference, the metric disregards the difference between over-prediction and underprediction.
- **Relative absolute error (RAE)** is the relative absolute difference between expected and actual values; relative because the mean difference is divided by the arithmetic mean.
- **Relative squared error (RSE)** similarly normalizes the total squared error of the predicted values by dividing by the total squared error of the actual values.
- **Mean Zero One Error (MZOE)** indicates whether the prediction was correct or not. In other words: ZeroOneLoss(x,y) = 1 when x!=y; otherwise 0
- Coefficient of determination, often referred to as R^2 , represents the predictive power of the model as a value between 0 and 1. Zero means the model is random (explains nothing); 1 means there is a perfect fit. However, caution should be used in interpreting R^2 values, as low values can be entirely normal and high values can be suspect.

- Coefficient of Determination was used to determine the best model

Grade A	Mean	Root	Relative	Relative	Coefficient of
	Absolute	Mean	Absolute	Squared	Determination
	Error	Squared	Error	Error	
		Error			
Linear	0.255555	0.324468	0.303447	0.102186	0.897814
Regression					
Decision	0.135789	0.242014	0.161236	0.05685	0.94315
Forest					
Neural	0.176836	0.256185	0.209977	0.063702	0.936298
Network					
Regression					
Boosted	0.169064	0.246523	0.200747	0.058988	0.941012
Decision Tree					
Regression					

Grade B	Mean Absolute Error	Root Mean Squared Error	Relative Absolute Error	Relative Squared Error	Coefficient of Determination
Linear Regression	0.502831	0.644016	0.44532	0.222228	0.777772
Decision Forest	0.272973	0.48012	0.241752	0.12351	0.87649
Neural Network Regression	0.322249	0.472912	0.285393	0.11983	0.88017
Grade C	Mean Absolute Error	Root Mean Squared Error	Relative Absolute Error	Relative Squared Error	Coefficient of Determination
Linear Regression	0.559709	0.695042	0.577957	0.33929	0.66071
Decision Forest	0.289796	0.527047	0.299244	0.195096	0.804904
Neural Network Regression	0.380037	0.545436	0.392427	0.208947	0.791053
Grade D	Mean Absolute Error	Root Mean Squared Error	Relative Absolute Error	Relative Squared Error	Coefficient of Determination
Linear Regression	0.816289	0.977778	0.731532	0.473531	0.526469
Decision Forest	0.408611	0.675745	0.366184	0.226169	0.773831
Neural Network Regression	0.497176	0.718605	0.445553	0.25577	0.74423
Grade E	Mean Absolute Error	Root Mean Squared Error	Relative Absolute Error	Relative Squared Error	Coefficient of Determination

Linear Regression	1.284342	1.601835	0.81075	0.639658	0.360342
Decision Forest	0.597067	0.972431	0.376903	0.235739	0.764261
Neural Network Regression	0.731612	1.050325	0.461835	0.275017	0.724983

Grade F	Mean	Root Mean	Relative	Relative	Coefficient of
	Absolute	Squared	Absolute	Squared	Determination
	Error	Error	Error	Error	
Linear	0.967413	1.437962	0.697032	0.528946	0.471054
Regression					
Decision	0.546625	0.946123	0.39385	0.228988	0.771012
Forest					
Neural	0.704689	1.078992	0.507737	0.29782	0.70218
Network					
Regression					

Grade G	Mean	Root Mean	Relative	Relative	Coefficient of
	Absolute	Squared	Absolute	Squared	Determination
	Error	Error	Error	Error	
Linear	0.967413	1.437962	0.697032	0.528946	0.471054
Regression					
Decision	0.546625	0.946123	0.39385	0.228988	0.771012
Forest					
Neural	0.687735	1.067815	0.495521	0.291681	0.708319
Network					
Regression					

Prediction for algo-based clusters

- $-term, grade, sub_grade, home_ownership, loan_status, purpose, application_type, emp_length is converted to categorical\\$
- Training was done on 'int_rate' column.
- Below is the screenshot of all the algorithms that were used to train the model.
- Coefficient of Determination was used to determine the best model
- The steps were repeated for all the 3 clusters

Cluster 0	Mean	Root	Relative	Relative	Coefficient of
	Absolute	Mean	Absolute	Squared	Determination
	Error	Squared	Error	Error	
		Error			
Linear Regression	0.630395	0.928021	0.170642	0.039107	0.960893
Decision Forest	0.290409	0.560009	0.078611	0.014241	0.985759
Neural Network Regression	0.371853	0.594041	0.100657	0.016024	0.983976

Cluster 1	Mean	Root Mean	Relative	Relative	Coefficient of
	Absolute	Squared	Absolute	Squared	Determination
	Error	Error	Error	Error	
Decision Forest	10.319968	12.61246	0.953268	0.883275	0.116725
Neural Network Regression	0.456668	0.791767	0.042183	0.003481	0.996519

Cluster 2	Mean	Root Mean	Relative	Relative	Coefficient of
	Absolute	Squared	Absolute	Squared	Determination
	Error	Error	Error	Error	
Linear	0.535601	0.683568	0.152743	0.02443	0.97557
Regression					
Decision Forest	0.364592	0.57985	0.103975	0.017579	0.982421
Neural Network Regression	0.363844	0.533762	0.103761	0.014895	0.985105

Prediction for all data cluster

term, grade, sub_grade, home_ownership, loan_status, purpose, application_type, emp_length is converted to categorical

- Training was done on 'int_rate' column.
- Below is the screenshot of all the algorithms that were used to train the model.
- Coefficient of Determination was used to determine the best model

Cluster 0	Mean	Root Mean	Relative	Relative	Coefficient of
	Absolute	Squared	Absolute	Squared	Determination
	Error	Error	Error	Error	
Decision	0.312521	0.570922	0.086188	0.015582	0.984418
Forest					
Neural	0.366483	0.586578	0.10107	0.016448	0.983552
Network					
Regression					
Boosted	0.446942	0.633206	0.12326	0.019167	0.980833
Decision Tree					
Regression					

Deployment

We have created a Spring MVC application that ask the user to input details and calls the Classification/Clustering/Prediction Rest APIs to provide the predicted interest rate. Following steps define the workflow of the application.

1. Input the dti, fico_score, employment_length, policy_code, loan_amount

- 2. Call the classification API and score the result in acceptedStatus variable
- 3. If acceptedStatus variable is 'N', there is no flow further, else we ask the user to enter more details for clustering

Classification Modeling Results

Algorithm: SVM Algorithm

Scored Label: N

Scored Probability: 0.000287444039713591

Sorry you are not eligible 4

- 4. We check the grade, and call the grade based Prediction API
- 5. We call the clustering API, that returns us the cluster value. Then based on cluster value, we call the Prediction API
- 6. We call the prediction API where no clustering was done.
- 7. Lastly, we display all the results from all the algorithms and the maximum of all.

Contribution

