

Basic Differential Topology

Karta opisu przedmiotu

Informacje podstawowe

Kierunek studiów

matematyka

Ścieżka

_

Jednostka organizacyjna

Wydział Matematyki i Informatyki

Poziom kształcenia

drugiego stopnia

Forma studiów studia stacjonarne

Profil studiów

ogólnoakademicki

Obligatoryjność

fakultatywny

Cykl kształcenia

2021/22

Kod przedmiotu

UJ.WMIMATS.2F0.5cb87aa38bb1c.21

Języki wykładowe

Polski

Przedmiot powiązany z badaniami naukowymi

Tak

Dyscypliny

Matematyka

Klasyfikacja ISCED

0541 Matematyka

Kod USOS

Koordynator	Marcin Bi
przedmiotu	

Marcin Bilski, Wojciech Kucharz

Prowadzący zajęcia

Marcin Bilski, Wojciech Kucharz

Okresy

Semestr 1, Semestr 2, Semestr 3, Semestr 4 Forma weryfikacji uzyskanych efektów uczenia się

egzamin

Sposób realizacji i godziny zajęć

wykład: 30, ćwiczenia: 30

Liczba punktów ECTS

6.0

Cele kształcenia dla przedmiotu

C1 Celem kursu jest przedstawienie podstawowych pojęć i metod topologii różniczkowej.

Efekty uczenia się dla przedmiotu

Kod	Efekty w zakresie	Kierunkowe efekty uczenia się	Metody weryfikacji
Wiedzy - Student zna i rozumie:			
W1	pojęcia rozmaitości gładkiej, transwersalności, stopnia oraz kobordyzmu obramowanego	MAT_K2_W02, MAT_K2_W03, MAT_K2_W04	egzamin ustny
Umieję	tności - Student potrafi:		
U1	podawać przykłady zastosowań twierdzeń dotyczących podstawowych własności rozmaitości gładkich, transwersalności, stopnia oraz kobordyzmu obramowanego	MAT_K2_U01, MAT_K2_U02, MAT_K2_U03	egzamin ustny, zaliczenie na ocenę

Bilans punktów ECTS

Forma aktywności studenta	Średnia liczba godzin* przezna na zrealizowane rodzaje zajęć	czonych	
wykład	30	30	
ćwiczenia	30	30	
przygotowanie do ćwiczeń	90	90	
przygotowanie do egzaminu	28	28	
uczestnictwo w egzaminie	2	2	
Łączny nakład pracy studenta	Liczba godzin 180	ECTS 6.0	
Liczba godzin kontaktowych	Liczba godzin 60	ECTS 2.0	

^{*} godzina (lekcyjna) oznacza 45 minut

Treści programowe

Lp.	Treści programowe	Efekty uczenia się dla przedmiotu
1.	Celem kursu jest przedstawienie podstawowych pojęć i metod topologii różniczkowej. Na wykładzie omówione zostaną następujące zagadnienia: rozmaitości gładkie, transwersalność, teoria stopnia, kobordyzm obramowany i zastosowania.	W1, U1

Informacje rozszerzone

Metody nauczania:

wykład konwencjonalny, ćwiczenia przedmiotowe

Rodzaj zajęć	Formy zaliczenia	Warunki zaliczenia przedmiotu
wykład	egzamin ustny	zdanie egzaminu ustnego
ćwiczenia	zaliczenie na ocenę	aktywność na zajęciach

Wymagania wstępne i dodatkowe

elementarne pojęcia z analizy i topologii

Literatura

Obowiązkowa

1. Obowiązywać będzie wyłożony materiał

Dodatkowa

- 1. J. Milnor, Topology from the differentiable viewpoint, The University Press of Virginia, 1965
- 2. M. Hirsch, Differential topology, Springer, 1994
- 3. T. Brocker, K. Janich, Introduction to differential topology, Cambridge University Press, 1982

Kierunkowe efekty uczenia się

Kod	Treść
MAT_K2_W02	Absolwent zna i rozumie znaczenie konstrukcji rozumowań matematycznych
MAT_K2_W03	Absolwent zna i rozumie najważniejsze twierdzenia i hipotezy zawarte w głównych działach matematyki
MAT_K2_W04	Absolwent zna i rozumie specjalistyczne zagadnienia z wybranej dziedziny matematyki
MAT_K2_U01	Absolwent potrafi konstruować rozumowania matematyczne takie, jak dowodzenie twierdzeń lub obalanie hipotez (poprzez konstrukcje i dobór kontrprzykładów)
MAT_K2_U02	Absolwent potrafi wyrażać treści matematyczne w mowie i na piśmie, w tekstach matematycznych o różnym charakterze
MAT_K2_U03	Absolwent potrafi sprawdzać poprawność wnioskowań w budowaniu dowodów formalnych