What to know for quizzes and exams

DEFINITIONS

- (1) RATIONAL NUMBER: We define a rational number to be a number expressible as a quotient of two integers: $\frac{m}{n}$ for $m, n \in \mathbb{Z}$ with $n \neq 0$.
- (2) Contrapositive: The **contrapositive** of the statement "If P then Q" is the statement "If not Q then not P".
- (3) CONVERSE: The **converse** of the statement "If P then Q" is the statement "If Q then P".
- (4) IRRATIONAL NUMBER: A real number is **irrational** if it is not rational.
- (5) MINIMUM / MAXIMUM: Let S be a set of real numbers. A **minimum** element of S is a real number x such that
 - (a) $x \in S$, and
 - (b) for all $y \in S$, $x \leq y$.
- (6) UPPER BOUND / LOWER BOUND: Let S be any subset of \mathbb{R} . A real number b is called an **upper bound** of S provided that for every $s \in S$, we have $s \leq b$.
- (7) BOUNDED ABOVE / BOUNDED BELOW: A subset S of \mathbb{R} is called **bounded above** if there exists at least one upper bound for S. That is, S is bounded above provided there is a real number b such that for all $s \in S$ we have $s \leq b$.
- (8) Supremum: Suppose S is subset of \mathbb{R} that is bounded above. A **supremum** (also known as a **least upper bound**) of S is a number ℓ such that
 - (a) ℓ is an upper bound of S (i.e., $s \leq \ell$ for all $s \in S$) and
 - (b) if b is any upper bound of S, then $\ell \leq b$.
- (9) Absolute value: For a real number x, the **absolute value** of x is $|x| := \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$
- (10) (SEQUENCE) CONVERGES TO L: Let $\{a_n\}_{n=1}^{\infty}$ be an arbitrary sequence and L a real number. We say $\{a_n\}_{n=1}^{\infty}$ converges to L if for every real number $\varepsilon > 0$, there is a real number N such that $|a_n L| < \varepsilon$ for all natural numbers n such that n > N.
- (11) (SEQUENCE IS) CONVERGENT: We say that a sequence $\{a_n\}_{n=1}^{\infty}$ is **convergent** if there is a number L such that $\{a_n\}_{n=1}^{\infty}$ converges to L.
- (12) (SEQUENCE IS) DIVERGENT: We say that a sequence $\{a_n\}_{n=1}^{\infty}$ is **divergent** if there is no number L such that $\{a_n\}_{n=1}^{\infty}$ converges to L.
- (13) INCREASING / DECREASING SEQUENCE: We say that a sequence $\{a_n\}_{n=1}^{\infty}$ is **increasing** if for all $n \in \mathbb{N}$ we have $a_n \leq a_{n+1}$.
- (14) STRICTLY INCREASING / DECREASING SEQUENCE: We say that a sequence $\{a_n\}_{n=1}^{\infty}$ is **strictly increasing** if for all $n \in \mathbb{N}$, $a_n < a_{n+1}$.
- (15) MONOTONE SEQUENCE: We say that a sequence $\{a_n\}_{n=1}^{\infty}$ is **monotone** if it is either decreasing or increasing.
- (16) DIVERGES TO $+\infty$: A sequence **diverges to** $+\infty$ if for every real number M, there is some $N \in \mathbb{R}$ such that for every natural number n > N we have $a_n > M$.
- (17) DIVERGES TO $-\infty$: A sequence **diverges to** $-\infty$ if for every real number m, there is some $N \in \mathbb{R}$ such that for every natural number n > N we have $a_n < m$.
- (18) SUBSEQUENCE: A **subsequence** of a given sequence $\{a_n\}_{n=1}^{\infty}$ is any sequence of the form $\{a_{n_k}\}_{k=1}^{\infty}$ where $\{n_k\}_{k=1}^{\infty}$ is any strictly increasing sequence of natural numbers.

- (19) LIMIT OF A FUNCTION: Let f be a function and a, L be real numbers. We say that **the limit of** f **as** x **approaches** a **is** L if for any $\varepsilon > 0$ there exists $\delta > 0$ such that if $0 < |x a| < \delta$, then x is in the domain of f and $|f(x) L| < \varepsilon$.
- (20) CONTINUOUS AT A POINT: Let f be a function and a be a real number. We say f is continuous at a if for every $\varepsilon > 0$ there is a $\delta > 0$ such that if x is a real number such that $|x a| < \delta$ then f is defined at x and $|f(x) f(a)| < \varepsilon$.
- (21) CONTINUOUS ON AN OPEN INTERVAL: Let I be an open interval, and f be a function defined on I. We say that f is **continuous on the open interval** I if f is continuous at x for all $x \in I$.
- (22) CONTINUOUS ON A CLOSED INTERVAL: Given a function f(x) and real numbers a < b, we say f is continuous on the closed interval [a, b] provided
 - (a) for every $r \in (a, b)$, f is continuous at r in the sense defined already,
 - (b) for every $\varepsilon > 0$ there is a $\delta > 0$ such that if $a \le x < a + \delta$, then f(x) is defined and $|f(x) f(a)| < \varepsilon$.
 - (c) for every $\varepsilon > 0$ there is a $\delta > 0$ such that if $b \delta < x < b$, then $|f(x) f(b)| < \varepsilon$.
- (23) DIFFERENTIABLE: Let f be a function and r be a real number. We say f is differetiable at r is f is defined at r and the limit lim_{x→r} f(x)-f(r)/(x-r) exists.
 (24) DERIVATIVE (AT A POINT): Let f be a function and r be a real number. We say
- (24) DERIVATIVE (AT A POINT): Let f be a function and r be a real number. We say that the derivative of f at r is the number $\lim_{x\to r} \frac{f(x)-f(r)}{x-r}$ provided this limit exists.
- (25) INCREASING/DECREASING FUNCTION: Let f be a function, and $S \subseteq \mathbb{R}$ be a set of real numbers contained in domain of f. We say that f is **increasing** on S if for any $a, b \in S$ with a < b we have $f(a) \leq f(b)$.