PH 712 Probability and Statistical Inference

Part VII: Evaluating Estimators II

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

2024/10/26 21:00:22

Well-known (but NOT required) identities

- Laws of large numbers (LLN, CB Thm 5.5.2 & 5.5.9): if X_1, \ldots, X_n are iid with finite mean μ , then $X \approx \mu \text{ as } n \to \infty.$
 - The " \approx " notation is abused here and, is supposed to be " $\stackrel{p}{\rightarrow}$ " (convergence in probability): $\bar{X} \xrightarrow{p} \mu \Leftrightarrow \text{ for each } \varepsilon > 0, \lim_{n \to \infty} \Pr(|\bar{X} - \mu| > \varepsilon) = 0;$
 - A sufficient condition for $\bar{X} \xrightarrow{p} \mu$: as $n \to \infty$, $E(\bar{X}) \to \mu$ and $var(\bar{X}) \to 0$.
- Central limit theorem (CLT, CB Thm 5.5.15): if X_1, \ldots, X_n are iid with finite mean μ and finite variance σ^2 , then as $n \to \infty$,

$$\frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \approx \mathcal{N}(0, 1).$$

- A normal approximation to the distribution of \bar{X} (regardless the distribution of each X_i): $\bar{X} \approx$ $\mathcal{N}(\mu, \sigma^2/n)$
- The " \approx " notation is abused too and is supposed to be " $\stackrel{d}{\rightarrow}$ " (convergence in distribution): $\sqrt{n}(\bar{X} \mu$ / $\sigma \xrightarrow{d} \mathcal{N}(0,1)$ means that the limiting distribution of $\sqrt{n}(\bar{X}-\mu)/\sigma$ is $\mathcal{N}(0,1)$.

Consistency (or consistence, CB Sec 10.1.1)

• A statistic T_n is consistent for $g(\theta)$ if and only if $T_n \approx g(\theta)$ as $n \to \infty$.

Example Lec7.1

- Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with given μ and unknown σ^2 . Please check the consistency of the following estimators of σ^2 .

 - 1. $T_n = n^{-1} \sum_i (X_i \mu)^2$ 2. $W_n = (n-1)^{-1} \sum_i (X_i \mu)^2$

Asymptotic efficiency

- (CB Def 10.1.11) T_n is asymptotically efficient for $g(\theta)$ if and only if $\sqrt{n}\{T_n g(\theta)\} \approx$ $\mathcal{N}(0, I_1^{-1}(\theta) \{ g'(\theta) \}^2)$
 - Where $I_1(\theta)$ is the Fisher information with n=1
 - * For an iid sample, $I_1(\theta) = n^{-1}I_n(\theta)$, no longer a function of n
- (CB Def 10.1.16 & HMC Def 6.2.3(c)) Denote by T_n and W_n two estimators for $g(\theta)$. Suppose that $\sqrt{n}\{T_n - g(\theta)\} \approx \mathcal{N}(0, \sigma_T^2)$ and $\sqrt{n}\{W_n - g(\theta)\} \approx \mathcal{N}(0, \sigma_W^2)$. The asymptotic relative efficiency (ARE) of T_n with respect to W_n is defined as

$$ARE(T_n, W_n) = \sigma_W^2 / \sigma_T^2.$$

- T_n is asymptotically more efficient than W_n if and only if $\mbox{ARE}(T_n,W_n)>1$

Example Lec7.2

- Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with given μ and unknown σ^2 . Please check the asymptotically efficiency of the following estimators of σ^2 .

 1. $T_n = n^{-1} \sum_i (X_i \mu)^2$ 2. $W_n = (n-1)^{-1} \sum_i (X_i \mu)^2$