Dynamics of an SIS-like audience applause model

Antonio Miguel Valenzuela Cruz Adviser: Dr. Johnrob Y. Bantang

The Compartmental Model

States, parameters, and functions

The compartmental model of audience applause based on the SIS epidemic model.

Agents transition between states S and C with probabilities a and b.

$$R_1 : S \longrightarrow C$$
 (1)

$$R_2 : C \longrightarrow S$$
 (2)

f is a function that forces the transition R_1 .

 $f'(\alpha)$ is a feedback function the encourages R_1 depending on the fraction of agents in state C.

$$f'(\alpha) = \alpha \frac{n_c}{N-1},\tag{3}$$

 $g'(\beta)$ is a modulation function that inhibits R_2 taken from the michaelis-menten equation

$$g'(\beta) = \frac{1}{1 + \beta \, n_C/(N-1)} \tag{4}$$

Incorporating spatial effects

The original feedback function $f'(\alpha)$ would consider every other member of the audience. Incorporating spatial effects limits the influence of the audience to the field of view of the reference agent. Shown are configurations of $\theta = 0, \frac{\pi}{2}$, and π . The original feedback function is considered to have a configuration of $\theta = 2\pi$

Comparing Spatial Configurations

Shown are simulations with varying (a, b, α, β) parameters. Configurations $\theta = 0, \frac{\pi}{2}, \pi$ all have trivial steady-states. $\theta = \pi$ will always have a greater application than $\theta = 0$, while $\theta = \frac{\pi}{2}$ varies between the two. $\theta = \pi$ is used hereafter as it is the most realistic and code efficient.

Finding the parameters (a, b, α, β) for real-life applause

Simulations using the $\theta=\pi$ configuration were run for various audience population sizes. The applause duration was then plotted against the audience size to be compared with a data set of real-life applause. One of the best fit parameters are (1,0.7,0.8,1).