

HPCA 2025 Tutorial

Topic 5. Choco-Q: Commute Hamiltonian-based QAOA for Constrained Binary Optimization

Speaker: Liqiang Lu

College of Computer Science and Technology Zhejiang University (ZJU)

https://janusq.github.io/HPCA_2025_Tutorial/

Outline of Presentation

Background and challenges

- Overview of Choco-Q
- Choco-Q characterization and calibration
- Experiment
- API of Choco-Q

Application of Constrained Binary Optimization

Constrained Binary Optimization

objective

$$\max_{x_1,x_2,x_3} 3x_1x_2 - 2x_2 + x_3$$

constriants

$$egin{array}{lll} s.\,t. & x_1+x_2&=1\ & x_1&-x_3=0\ & x_j\in\{0,1\}, j=1,2,3 \end{array}$$

Facility location

Routing planning

project scheduling

portfolio optimization

Example: Facility location Problem

Variable Definition

There are facilities to supply the demands.

The costs including opening the facilities and supply demands.

opening cost co_f

Whether to open facility

$$o_f = \begin{cases} 1, \text{ open facility } f \\ 0, \text{ otherwise} \end{cases}$$

How to assign demands

$$s_{d,f} = \begin{cases} 1, \text{ facility } f \text{ supplies demand } d \\ 0, \text{ otherwise} \end{cases}$$

Constraints

Each demand can only be assigned to one facility

$$\sum_{f \in \mathcal{F}} s_{d,f} = 1, orall d \in \mathcal{D}$$

An unopened facility cannot supply any demand

$$s_{d,f} \leq o_f, orall d \in \mathcal{D}, orall f \in \mathcal{F}$$

objective

Minimize the cost of opening facilities and supplying demands

$$\min_{s_{d,f},o_f} \underbrace{\sum_{d \in \mathcal{D}} \sum_{f \in \mathcal{F}} cs_{d,f} \cdot s_{d,f}}_{ ext{supplying cost}} + \underbrace{\sum_{f \in \mathcal{F}} co_f \cdot o_f}_{ ext{opening cost}}$$

Classical Solving Methods

Exact algorithms

branch and bound method.

Construct a binary tree based on the variable values.

Approximation algorithms

Color the vertices sequentially, ensuring that adjacent vertices are assigned different colors.

Solving constraint optimization problems of any form, with a worst-case complexity of 2^n .

Need artificially designed for particular problems.

No guarantee for global optimality.

NP-Hard problem, and the classical algorithms for exact solutions have exponential complexity.

Quantum approximation optimization algorithm

Adiabatic evolution

Adiabatic Evolution

Driver Hamiltonian

Simple and easy to prepare

Objective Hamiltonian

The objective to be optimized

Quantum approximation optimization algorithm (QAOA)

QAOA for constrained optimization

add penalty to the objective

1. Penalty-based

$$x_1 - x_3 = 0$$
 encode constraints $x_1 + x_2 + x_4 = 1$ by penalty

$$\lambda[(x_1-x_3)^2+(|x_1+x_2+x_4-1|)^2]$$

replace driver by cyclic Hamiltonian

2. Cyclic Hamiltonian-based

encode summation into driver one valid solution $H^d = X_1X_2 + Y_1Y_2 + X_2X_4 + Y_2Y_4$

Limitations of Current Methods

Constraint encoding	Penalty-t	erm-based	Driver-Hamiltonian-based				
Methods	A. Verma et al. [44]	Red-QAOA [45]	Yoshioka et al. [47] cyclic Hamilt.	Choco-Q commute Hamilt.			
Universality	soft const.	soft const.	hard const. only part of linear	hard const. arbitrary linear			
In-constraints rate	0.03% 0.07%		0.67%	100%			
Success rate	0.02% 0.03%		0.14%	67.1%			
End-to-end latency	16.6s	16.7s	19.6s	7.07s			

Penalty-based QAOA

weak penalty

strong penalty

Cyclic Ham.

-based QAOA

locate the solutions outside the constraints

go away from the constraints

cannot determine the optimal solution in constraints

Limitations of Current Methods

Challenges in real word computer

Large circuit depth

50 bits yielding more than1040 layers of quantum gates

Real-world noise

The noise further exacerbates the difficulty of optimizing the parameters

experimental result

The optimization process is extremely unstable and difficult to converge to the optimal solution

Outline of Presentation

- Background and challenges
- Overview of Choco-Q
- Choco-Q characterization and calibration
- Experiment
- API of Choco-Q

Heisenberg picture

Heisenberg Picture

Heisenberg picture

Apply to constrained binary optimization

Commute Hamiltonian formulation

The Hamiltonian commutes with constraints operator

Commute Ham. -based Choco-Q

find the optimal solution in constraints

Encoding constraints via commute Hamitonain

to keep the expectation constant

expectation is the projection onto the constraints operator

the state is perfectly constrained on the plane

(a) Step 1. Initialization

$$egin{bmatrix} egin{bmatrix} 1 & 0 & -1 & 0 \ 1 & 1 & 0 & 1 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{bmatrix} = egin{bmatrix} 0 \ 1 \end{bmatrix} \ constraint \ matrix \ C \ \end{array}$$

(b) Step 2. Hamiltonian construction

$$egin{aligned} Cec{u} &= 0 \ egin{bmatrix} 1 & 0 & -1 & 0 \ 1 & 1 & 0 & 1 \end{bmatrix} egin{bmatrix} u_1 \ u_2 \ u_3 \ u_4 \end{bmatrix} = egin{bmatrix} 0 \ 0 \end{bmatrix} \end{aligned}$$

all valid solutions
$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$H^d = \sigma_1^{-1} \sigma_2^{+1} \sigma_3^{-1} \ + \sigma_1^{+1} \sigma_2^{-1} \sigma_3^{+1} \ + \sigma_2^{-1} \sigma_4^{+1} + \sigma_2^{+1} \sigma_4^{-1}$$

(a) Step 1. Initialization

$$egin{bmatrix} egin{bmatrix} 1 & 0 & -1 & 0 \ 1 & 1 & 0 & 1 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{bmatrix} = egin{bmatrix} 0 \ 1 \end{bmatrix} \ constraint \ matrix \ C$$

(b) Step 2. Hamiltonian construction

$$\begin{vmatrix} C\vec{u} = 0 \\ 1 \end{vmatrix} \mapsto \begin{vmatrix} C\vec{u} = 0 \\ 1 & 1 & 0 & -1 & 0 \\ 1 & 1 & 0 & 1 \end{vmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \mapsto \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix} \mapsto \begin{vmatrix} H^d = \sigma_1^{-1}\sigma_2^{+1}\sigma_3^{-1} \\ + \sigma_1^{+1}\sigma_2^{-1}\sigma_3^{+1} \\ + \sigma_2^{-1}\sigma_4^{+1} + \sigma_2^{+1}\sigma_4^{-1} \end{vmatrix}$$

$$egin{bmatrix} u_1 \ u_2 \ u_3 \ \end{bmatrix} = egin{bmatrix} -1 \ 1 \ -1 \ \end{bmatrix}, egin{bmatrix} 0 \ -1 \ 0 \ \end{bmatrix}$$

$$H^d = \sigma_1^{-1} \sigma_2^{+1} \sigma_3^{-1} \ + \sigma_1^{+1} \sigma_2^{-1} \sigma_3^{+1} \ + \sigma_2^{-1} \sigma_4^{+1} + \sigma_2^{+1} \sigma_4^{-1}$$

(c) Step 3. Hamiltonian simulation

(a) Step 1. **Initialization**

$$egin{bmatrix} egin{bmatrix} 1 & 0 & -1 & 0 \ 1 & 1 & 0 & 1 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{bmatrix} = egin{bmatrix} 0 \ 1 \end{bmatrix} \ constraint \ matrix \ C$$

(b) Step 2. Hamiltonian construction

all valid solutions

$$egin{bmatrix} u_1 \ u_2 \ u_3 \ u_4 \end{bmatrix} = egin{bmatrix} -1 \ 1 \ -1 \ 0 \end{bmatrix}, egin{bmatrix} 0 \ -1 \ 0 \ 1 \end{bmatrix}
ightarrow H^d = \ + \sigma_2^{-1} \sigma$$

$$H^d = \sigma_1^{-1}\sigma_2^{+1}\sigma_3^{-1} \ + \sigma_1^{+1}\sigma_2^{-1}\sigma_3^{+1} \ + \sigma_2^{-1}\sigma_4^{+1} + \sigma_2^{+1}\sigma_4^{-1}$$

(c) Step 3. Hamiltonian simulation

(a) Step 1. **Initialization**

(d) Step 4. Measurements&updating

Outline of Presentation

- Background and challenges
- Overview of Choco-Q
- Choco-Q Optimization
- Experiment
- API of Choco-Q

Hamiltonian Serialization

Hamiltonian Serialization

Our method: Serialization

Hamiltonian Decomposition

Hamiltonian Decomposition

Hamiltonian Decomposition

Linear decomposition by Phase gate

 V_1

Linear decomposition of Phase gate

$$\frac{/n}{/n} \stackrel{P(\beta)}{=} = \frac{/n}{/n} = \frac{/n}{|0\rangle - R_Z(-2\beta)} = \frac{/n}{-R_Z(-\frac{\beta}{2})} \oplus \frac{R_Z(\frac{\beta}{2})}{R_Z(\frac{\beta}{2})} \oplus \frac{R_Z(\frac{\beta$$

Variable Elimination

Outline of Presentation

- Background and challenges
- Overview of Choco-Q
- Choco-Q Optimization
- Experiment
- API of Choco-Q

Experiment: benchmarks

constraint 2

An unopened facility cannot supply any demand $s_{d,f} \leq o_f, orall d \in \mathcal{D}, orall f \in \mathcal{F}$ Convert into equality by binary variable $a_{d,f}$

$$s_{d,f} + a_{d,f} = o_f, orall d \in \mathcal{D}, orall f \in \mathcal{F}$$

objective		$\min_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1$	$\sum cs_{d,f}$	$\cdot s_{d,f} + \sum$	$\sum co_f \cdot o_f$
Minimize tl	ne cost of	$s_{d,f},o_f otag de \mathcal{D}$			$\in \mathcal{F}$
supplying d	lemands	sup	plying co	ost ope	ening cost
and opening	g facilities	=	1.5	+	0.5

benchmark	#case	#variable	#constraint
F1: 2F-1D	100	6	3
F2: 3F-2D	100	15	8
F3: 3F-3D	100	21	12
F4: 4F-3D	100	28	15

2F-1D: two facilities and one demand.

Facility location

constraint 2

Adjacent vertexes cannot be colored with same color $x_{i,k} + x_{j,k} \leq 1, \forall (i,j) \in \mathcal{E}, \ \forall k \in \mathcal{C}$ Convert into equality by binary variable $a_{(i,j),k}$ $x_{i,k} + x_{j,k} + a_{(i,j),k} = 1, \forall (i,j) \in \mathcal{E}, \forall k \in \mathcal{C}$

	objective	$\min_{x_{i,k}}$	$\frac{1}{1}\sum w_k (1-\prod_{i\in\mathcal{V}} \underbrace{(1-x_{i,k})})$
I	Minimize the		$\sum_{k \in \mathcal{C}} k^{-1} \prod_{i \in \mathcal{V}} \underbrace{0}_{i}$, if vertex i is colored by k
l	weights of		=5+2+1 0, if color k is used
l	color used		=8 0, 11 color k is used

benchmark	#case	#variable	#constraint
G1: 3V-1E	100	12	6
G2: 3V-2E	100	15	9
G3: 4V-2E	100	24	12
G4: 4V-3E	100	28	16

3V-1E: a graph with three vertexes and one edge

variables

constraint 2

The size of vertexes in a block equals its capacity

$$\sum_{i \in \mathcal{V}} x_{i,k} = m_k, orall k \in \mathcal{B}$$

It is an equality and needs no further conversion

objective	$\max_{x_{i,k}} \sum_{(i,j) \in \mathcal{E}} w_{i,j} (1 - \sum_{k \in \mathcal{B}} \underbrace{x_{i,k} x_{j,k}})$
Maximize the	0, if vertex i,j in block k
weight of cut	edges 0 , if vertex i,j in diffrent blocks
between block	$KS \qquad = 0.4 + 0.7$

benchmark	#case	#variable	#constraint
K1: 4V-3E-2B	100	8	6
K2: 6V-5E-3B	100	18	9
K3: 8V-7E-3B	100	24	11
K4: 9V-8E-3B	100	27	12

4V-3E-2B: four vertexes, three edges, and two blocks.

Graph coloring K-partitioning

26

Noise-free Evaluation

			Cir	cuit dep	th			Succ	ess rate	(%)		In-	constraint	s rate (%)
Benchi	mark	Penalty [48]	Cyclic [53]	HEA [32]	Choco -Q	Choco -Q*	Penalty [48]	Cyclic [53]	HEA [32]	Choco -Q	Choco -Q*	Penalty [48]	Cyclic [53]	HEA [32]	Choco -Q
	F1	56	91	42	44	43	3.79	21.4	8.91	60.1	99.8	22.0	38.7	26.4	100.0
FLP	F2	88	99	98	341	221	0.14	0.09	X	46.0	54.0	0.47	1.37	0.10	100.0
[41]	F3	92	134	147	665	275	×	0.03	X	10.4	30.0	0.04	0.79	X	100.0
	F4	108	162	196	989	421	X	X	X	12.2	13.3	Х	0.74	X	100.0
	G1	188	230	84	168	124	0.15	4.74	0.26	32.7	69.7	0.50	10.6	0.36	100.0
GCP	G2	221	263	105	519	358	0.03	0.14	0.03	19.4	67.1	0.07	0.67	0.03	100.0
[30]	G3	654	708	168	769	586	×	×	X	2.75	17.1	0.02	0.27	X	100.0
	G4	683	737	196	1115	906	X	×	X	0.26	9.50	Х	X	X	100.0
	K1	115	150	56	115	79	1.66	38.2	1.04	56.3	86.1	5.18	84.8	4.46	100.0
KPP	K2	202	244	126	385	324	0.01	14.2	X	31.2	52.6	0.05	39.7	0.04	100.0
[11]	K3	264	306	168	538	464	0.01	2.59	X	3.64	21.1	0.01	31.6	X	100.0
	K4	296	338	189	614	534	X	0.45	X	1.82	13.3	Х	8.23	X	100.0
	J1	72	168	49	92	67	5.15	13.1	3.54	69.4	84.1	15.7	38.2	9.17	100.0
JSP	J2	118	224	98	280	184	0.12	2.17	0.02	16.6	24.7	1.68	20.4	0.28	100.0
[50]	J3	134	243	126	395	298	0.02	1.03	X	6.92	9.78	0.53	10.0	0.04	100.0
	J4	166	291	189	676	556	X	×	X	1.00	1.47	0.04	9.12	X	100.0
TSP	T1	192	376	77	242	121	0.44	0.37	0.06	78.4	99.0	0.96	1.42	0.11	100.0
[51]	T2	538	828	189	1122	493	X	X	X	11.1	30.7	Х	X	X	100.0
	S1	179	198	65	99	80	4.22	5.53	1.61	36.8	77.6	11.9	14.2	6.61	100.0
SCP	S2	223	250	76	162	154	0.59	1.24	0.02	18.7	26.1	1.17	2.43	0.30	100.0
[12]	S3	449	485	129	359	231	0.22	0.41	X	10.3	17.9	0.63	0.92	0.03	100.0
Impro	v.(×)	-	-	-	0.96	1.34	-	-	-	>81.3	>157	-	-	-	>60.0

Evaluation on quantum computer

End-to-end Latency breakdown for F1 benchmarks on the Fez device.

Detailed evaluation of techniques

Hamiltonian serialization & decomposition

—Trotter [36] → Choco-Q

Variable elimination

Outline of Presentation

- Background and challenges
- Overview of Choco-Q
- Choco-Q Optimization
- Experiment
- API of Choco-Q

API of Choco-Q

File:

- JanusQ/examples/ipynb/6_1_constrained_binary_optimization.ipynb
- https://janusq.github.io/tutorials/demo/6_1_constrained_binary_optimization

```
from janusq.application.chocoq.chocoq.model import LinearConstrainedBinaryOptimization
                               from janusq.application.chocoq.chocoq.solvers.optimizers import CobylaOptimizer
                               from janusq.application.chocoq.chocoq.solvers.qiskit import ChocoSolver, DdsimProvider
                              m = LinearConstrainedBinaryOptimization()
                              x = m.addVars(5, name="x")
      configure the
                              m.setObjective((x[0] + x[1])* x[3] + x[2], "max")
       optimization
                              m.addConstr(x[0] + x[1] - x[2] == 0)
            problem
                               m.addConstr(x[2] + x[3] - x[4] == 1)
  opt = CobylaOptimizer(max_iter=200)
aer = DdsimProvider()
solver = ChocoSolver(prb_model=m, optimizer=opt, provider=aer, num_layers=1)
solve by Choco-Q 

state_list, prob_list, iter_count = solver.solve()

result_dict = {prob: state for state, prob in zip(state_list, prob_list)}

best_solution_prob, in_constraints_prob, ARG, iter_count = solver.evaluation()
```


Thanks for listening

Choco-Q: Commute Hamiltonian-based QAOA for Constrained Binary Optimization

Debin Xiang[†], Qifan Jiang[†], Liqiang Lu*, Siwei Tan, and Jianwei Yin*