Caderno de Labnum

Lourenço Bogo

Sumário

1	Introdução		5
	1.1	Introdução	5
	1.2	Conceitos Básicos da Matéria	5
	1.3	Teoremas Úteis	6
	1.4	Erros de Arredondamento	6
	1.5	Cancelamento Catastrófico	6
2	2 Ponto Flutuante (Float)		7
	2.1	Operações	7
	2.2	Achar Raízes de Funções	8

4 SUMÁRIO

Capítulo 1

Introdução

1.1 Introdução

1.2 Conceitos Básicos da Matéria

Obviamente para representarmos modelos reais em computadores precisamos fazer aproximações, que no caso irá nos causar erros.

<u>Definição:</u> Dado $u \in \mathbb{R}$ e $v \in \mathbb{R}$, uma aproximação de u, definimos <u>Erro Absoluto</u> como |u-v| e, se $u \neq 0$ e <u>Erro Relativo</u> como $\frac{|u-v|}{|u|}$

no |u-v| e, se ω / ω / ω / ω / ω / ω / Modelagem

Representação

De aproximação

De convergência

De arredondamento

<u>Ordem:</u> Dizemos que $e = O(h^q)$ se existem constantes positivas C e q tais que $|e| \le Ch^q$ para todo h > 0 suficientemente pequeno.

<u>Definição</u> (Não formal): Um problema é bem condicionado quando pequenos erros nos dados causam pequenos erros nas soluções e um problema é mal condicionado quando pequenos erros nos dados podem mudar drasticamente as soluções.

Definição: Um método (para corrigir erros) é chamado <u>estável</u> se, dado um problema, o que o método calcula é a solução exata de um problema parecido.

Não dianta aplicar um método estável a um problema mal condicionado, como também

não adianta aplicar um método não estável a um problema bem condicionado.

1.3 Teoremas Úteis

<u>Teorema de Taylor:</u> Suponhamos que $f : \mathbb{R} \to \mathbb{R}$ tem derivadas até a ordem k+1 num intervalo que contém os pontos $x_0 e x_0 + h$ logo,

$$f(x_0+h) = f(x_0) + hf'(x_0) + \frac{h^2}{2!}f''(x_0) + \dots + \frac{h^k}{k!}f^{(k)}(x_0) + \frac{h^{k+1}}{(k+1)!}f^{(k+1)}(\bar{x}), \text{ com } \bar{x} \text{ entre}$$

$$x_0 e x_0 + h.$$

<u>Teorema do Valor Intermediário:</u> Se $f \in [a, b]$ e s é tal que min(f(a), f(b)) < s < max(f(a), f(b)), então existe $c \in [a, b]$, tal que f(c) = s.

<u>Teorema do Valor Médio:</u> Se $f \in C[a, b]$ é diferenciável em (a, b) então existe $c \in [a, b]$ tal que:

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

<u>Terorema de Rolle:</u> Se $f \in C[a, b]$ é diferenciável em (a, b) e, além disso, f(a) = f(b) então existe $c \in [a, b]$ tal que f(c) = 0.

1.4 Erros de Arredondamento

 $c \in \mathbb{R}$ pode ser representado como:

 $x=\pm 1.d_1d_2\ldots d_cd_{c+1}\cdots \times 2^e$, onde e é um número inteiro que representa o expoente e a mantissa pode ser recrita como $1+\frac{d_1}{2}+\frac{d_2}{4}\ldots$

Denotemos como fl(x) a representação em ponto flutuante de $x \in \mathbb{R}$:

$$fl(x) = Sinal(x) \times (1.\tilde{d}_1 \dots \tilde{d}_t) \times 2^e.$$

Para um t dado e e com os dígitos $\tilde{d}_1 \dots \tilde{d}_t$ de alguma forma relacionados com $d_1 \dots$

O que nos interessa é limitar $\frac{|fl(x)-x|}{|x|} \leq \frac{|fl(x)-x|}{2^e} \leq 0.0 \dots 1 \leq 2^{-t}$, supondo $x \neq 0$.

É fácil ver que da para escolher $\tilde{d}_1 \dots \tilde{d}_t$ de forma que:

$$\tfrac{|fl(x)|-x}{|x|} \leq \eta, \; \text{com} \; \eta = 2^{-t}.$$

Por outro lado, se escolhermos $\tilde{d}_1 \dots \tilde{d}_t$ "Arredondando" x, temos que $\eta = \frac{1}{2}.2^{-t}$ (precisão da máquina).

1.5 Cancelamento Catastrófico

Capítulo 2

Ponto Flutuante (Float)

Num computador de verdade, temos 64 bits. 1 para o sinal, 11 para expoente e 52 para a mantissa.

2.1 Operações

Sejam x e y números em **ponto flutuante**.

Denotamos por c(x,y) uma operação elementar $(+,-,\times,\div)$ sobre x e y.

Queremos: fl(c) = c(1+e), com $|e| \le \eta$.

Note que isso é o mesmo que: $\left|\frac{fl(c)-c}{c}\right| \leq \eta$.

Isso nos dá a impressão de que nossas contas são seguras.

O problema é que o que temos não é x e y, mas \hat{x} e \hat{y} tais que $\hat{x}=x(1+e_x)$ e $\hat{y}=y(1+e_Y)$.

Queremos comparar $fl(c(\hat{x}, \hat{y}))$ com c(x, y).

Chamemos $fl(\hat{x}, \hat{y}) := fl(c(\hat{x}, \hat{y})).$

$$fl(\hat{x}*\hat{y}) = \hat{x}\hat{y}(1+e_*) = x(1+e_xy(1+e_y)(1+e_*) = xy(1+e_x+e_y+e_*+e_xe_y+e_xe_*+e_xe_y+e_xe_*)$$

$$e_Ye_* + e_xe_ye_*) = xy(1+e), \text{ com } |e| \le \mu\eta \text{ (pequeno)}.$$

Sabendo que $1 - e + e^2 - e^3 + \dots = \frac{1}{1+e}$

$$fl(\frac{\hat{x}}{\hat{y}}) = \frac{x(1e_X)}{y(1+e+y)}(1+e_I) \sim \frac{x}{y}(1+e_x)(1-e_y)(1+e_I) = \frac{x}{y}(1+e)$$
, com $|e| \le \mu\eta$ (pequeno).

Para simplificarmos $fl(\hat{x} + \hat{y})$, vamos compará-lo com x + y.

$$\hat{x} + \hat{y} = x(1 + e_x) + y(1 + e_y) = x + xe_x + y + ye_y = (x + y)(1 + (\frac{x}{x+y})e_x + (\frac{y}{x+y})e_y),$$

$$com \ e = (\frac{x}{x+y})e_x + (\frac{y}{x+y})e_y.$$

Sabemos que $e_x, e_y \leq \mu$, queremos avaliar e. e é pequeno sse $(\frac{x}{x+y})$ e $\frac{y}{x+y}$ são pequenos. Contudo, se x e y têm módulo parecido, mas sinais contrários, então x+y é pequeno e, logo, temos um erro grande!

Esse tipo de erro chamamos de <u>cancelamento catastrófico</u>.

Como esse tipo de erro é impossível de evitar, nós o ignoramos em nossas análises.

2.2 Achar Raízes de Funções

Nosso problema é, dada $f: \mathbb{R} \to \mathbb{R}$, achar x tal que f(x) = 0.

Para resolver esse tipo de problema, criamos um algoritmo que, dado x_0 , gera uma seq. $x_{n\in\mathbb{N}}=(x_1,x_2,x_3,\dots)$ tal que $x_n\to x$.

Chamamos esse tipo de método de método iterativo.

Temos que determinar quando parar. Três opções são:

- $\bullet |x_i x_{i-1}| < A_{tol}$
- $|x_i x_{i-1}| < R_{tol} |x_i|$
- $|f(x_i)| < F_{tol}$

, onde A_{tol} , R_{tol} e F_{tol} sao tolerâncias.

Por enquanto, vamos supor $f \in C[a,b]$ e f(a)f(b) < 0. Pelo teorema do valor intermediário existe $x^* \in [a,b]$ com $f(x^*) = 0$.

Outro método que podemos usar é o método da bissecção (busca binária).

- 1. Definimos p := (a + b)/2; e avaliamos f(p).
- 2. Se f(a)f(p) < 0, b := p, senão a := p.
- 3. voltar p/ 1.

$$\frac{b-a}{2^n} = A_{tol} \to b - a = A_{tol} 2^n \to \log b - a = \log(A_{tol} 2^n) = \log(b - a) = \log A_{tol} + n \to n = \log(b - a) - \log(Atol).$$

Logo podemos fazer $n = [\log_2(b-a) - \log_2(A_{tol})] = [\log_2(\frac{b-a}{A_{tol}})]$