Introducción a los Sistemas Operativos

Entrada / Salida (cont)

I.S.O.

- ✓ Versión: Noviembre 2013
- ☑Palabras Claves: Entrada, Salida, Dispositivos, Interrupciones, DMA, driver

Algunas diapositivas han sido extraídas de las ofrecidas para docentes desde el libro de Stallings (Sistemas Operativos) y el de Silberschatz (Operating Systems Concepts). También se incluyen diapositivas cedidas por Microsoft S.A.

Interfaz de I/O - Metas

☑Respecto a la EFICIENCIA

- ✓ Los dispositivos de I/O pueden resultar extremadamente lentos respecto a la memoria
- ✓ El uso de la multiprogramación permite que los procesos esperen por la finalización de la I/O mientras que otro se ejecuta
- ✓I/O no puede alcanzar la velocidad de la CPU

Aspectos de los dispositivos de I/O

aspect	variation	example
data-transfer mode	character block	terminal disk
access method	sequential random	modem CD-ROM
transfer schedule	synchronous asynchronous	tape keyboard
sharing	dedicated sharable	tape keyboard
device speed	latency seek time transfer rate delay between operations	
I/O direction	read only write only readĐwrite	CD-ROM graphics controller disk

Aspectos de los dispositivos de I/O (cont)

☑Unidad de Transferencia

- ✓ Dispositivos por bloques (discos):
 - ◆ Operaciones: Read, Write, Seek
- ✓ Dispositivos por Caracter (keyboards, mouse, serial ports)
 - Operaciones: get, put
- - ✓ Secuencial o Aleatorio

Aspectos de los dispositivos de I/O (cont)

✓ Velocidad

Figure 11.1 Typical I/O Device Data Rates

Aspectos de los dispositivos de I/O (cont)

- ✓ Tipo de acceso
 - Acceso Compartido: Disco Rígido
 - Acceso Exclusivo: Impresora
- ✓Tipo de acceso:
 - Read only: CDROM
 - Write only: Pantalla
 - Read/Write: Disco

Subsistema de I/O - Servicios

☑ Planificación

- ✓ Organización de los requerimientos a los dispositivos
- ✓ Ej: Planificación de requerimientos a disco para minimizar movimientos
- ☑ Buffering Almacenamiento de los datos en memoria mientras se transfieren
 - ✓ Solucionar problemas de velocidad entre los dispositivos
 - ✓ Solucionar problemas de tamaño y/o forma de los datos entre los dispositivos

Subsistema de I/O - Servicios (cont.)

- ☑ Caching Mantener en memoria copia de los datos de reciente acceso para mejorar performance
- ✓Spooling Administrar la cola de requerimientos de un dispositivo
 - ✓ Algunos dispositivos de acceso exclusivo, no pueden atender distintos requerimientos al mismo tiempo: Por ej. Impresora
 - ✓ Spooling es un mecanismo para coordinar el acceso concurrente al dispositivo

Subsistema de I/O - Servicios (cont.)

- ☑Reserva de Dispositivos: Acceso exclusivo
- ☑Manejo de Errores:
 - ✓El S.O. debe administrar errores ocurridos (lectura de un disco, dispositivo no disponible, errores de escritura)
 - ✓ La mayoría retorna un número de error o código cuando la I/O falla.
 - ✓ Logs de errores

Subsistema de I/O - Servicios (cont.)

- ✓ Bloqueante: El proceso se suspende hasta que el requerimiento de I/O se completa
 - Fácil de usar y entender
 - No es suficiente bajo algunas necesidades
- ✓ No Bloqueante: El requerimiento de I/O retorna en cuanto es posible
 - Se implementa usando multi-threading
 - Ejemplo: interfaz de usuario que recibe input desde el teclado/mouse y se muestra en el screen.

Aplicación de video que lee frames desde un archivo mientras va mostrandolo en pantalla.

Subsistema de I/O - Estructuras de Datos

- ☑El Kernel mantiene la información de estado de cada dispositivo o componente
 - ✓ Archivos abiertos
 - ✓ Conexiones de red
 - ✓ Etc.
- ☑ Hay varias estructuras complejas que representan buffers, utilización de la memoria, disco, etc.

Subsistema de I/O - Estructura de Datos

UNIX I/O Kernel Structure

Desde el Requerimiento de I/O hasta el Hardware

- ☑ Consideremos la lectura sobre un archivo en un disco:
 - ✓ Determinar el dispositivo que almacena los datos
 - ✓ Traducir el nombre del archivo en la representación del dispositivo.
 - ✓ Lectura física de los datos en un buffer de memoria
 - ✓ Marcar los datos como disponibles al proceso que realizo el requerimiento
 - ✓ Retornar el control al proceso

Ciclo de vida de un requerimiento de I/O

Subsistema de I/O - Drivers

- ☑ Contienen el código dependiente del dispositivo
- ☑ Manejan un tipo dispositivo
- ☑ Traducen los requerimientos abstractos en los comandos para el dispositivo
 - ✓ Escribe sobre los registros del controlador
 - ✓ Acceso a la memoria mapeada
 - ✓ Encola requerimientos
- ☑ Comúnmente las interrupciones de los dispositivos están asociadas a una función del driver

Subsistema de I/O - Drivers

- ☑ Interfaz entre el SO y el HARD
- ☑ Forman parte del espacio de memoria del Kernel
 - ✓ En general se cargan como módulos
- ✓ Los fabricantes de HW implementan el driver en función de una API especificada por el SO
 - ✓ open(), close(), read(), write(), etc
- ☑ Para agregar nuevo HW sólo basta indicar el driver correspondiente sin necesidad de cambios en el Kernel

Driver - Ejemplo en Linux

- ☑ Linux distingue 3 tipos de dispositivos
 - ✓ Carácter: I/O programa o por interrupciones
 - ✓ Bloque: DMA
 - ✓ Red: Ports de comunicaciones
- ☑ Los Drivers se implementan como módulos
 - ✓ Se cargan dinámicamente
- ☑ Debe tener al menos estas operaciones:
 - ✓ init module: Para instalarlo
 - ✓ cleanup_module: Para desinstalarlo.

✓Operaciones que debe contener para I/O

- ✓open: abre el dispositivo
- ✓ release: cerrar el dispositivo
- ✓ read: leer bytes del dispositivo
- ✓ write: escribir bytes en el dispositivo
- ✓ioctl: orden de control sobre el dispositivo

☑ Otras operaciones menos comunes

- ✓ llseek: posicionar el puntero de lectura/escritura
- ✓ flush: volcar los búferes al dispositivo
- ✓ poll: preguntar si se puede leer o escribir
- √ mmap: mapear el dispositivo en memoria
- √ fsync: sincronizar el dispositivo
- √ fasync: notificación de operación asíncrona
- ✓ lock: reservar el dispositivo
- **√**

- ☑ Por convención, los nombres de las operaciones comienzan con el nombre del dispositivo
- ✓ Por ejemplo, para /dev/ptr

- ✓ Acceso al hardware
 - ✓ Funciones para acceso a los puertos de I/O <asm/io.h>

```
unsigned char inb (unsigned short int port)
void outb (unsigned char value, unsigned short int port)
```

✓ Leen o Escriben un byte en el puerto indicado

Performance

- ☑I/O es uno de los factores que mas afectan a la performance del sistema:
 - ✓ Utiliza CPU para executar los drivers y el codigo del subsistema de I/O
 - ✓ Context switches ante las interrupciones y bloqueos de los procesos
 - ✓ Copia de datos:
 - Aplicaciones (espacio usuario) Kernel
 - Kernel (memoria fisica) Controladora

Mejorar la Performance

- ☑ Reducir el número de context switches
- ☑ Reducir la cantidad de copias de los datos mientras se pasan del dispositivo a la aplicación
- ☑ Reducir la frecuencia de las interrupciones, utilizando:
 - Transferencias de gran cantidad de datos
 - Controladoras mas inteligentes
 - Polling, si se minimiza la espera activa.
- **☑** Utilizar DMA

