F. Адоинии и ортогонамии трансформации в пространството. Номните транеформации в просидранийвото се дефинирот, какию в равникать. Дериничи Една транеформация на разинученото евнидово пространияво нарисание абинна, ако оснавых на името бежранитама равника (телина инвариантно порточново с ко-размерност 1). В порната фонитуих се шиа предвид, се трансфурмациять е неизродена Ако справно фиксирана афгина кодоринашна сисибения K=0=10 6 5 6 45 0 45 12 4_A e sagagena gres (1) 4_A : $S\begin{bmatrix} 2i \\ 2i \end{bmatrix} = A\begin{bmatrix} 2i \\ 2i \end{bmatrix}$, A = (ai) (amo 4/2 a dutha, and 1. det A +0 u 2! 4/(52)=52 Эсно е, се 4 е еднознатно обранично тосково съощветствие, изобразя-ва права в права м равнина в равнина, като запазва мницифентиета. Също така, "Ра запазва усторедността на прави и на равшии. Haucuautea: Aro & E3 allb, mo & E3* allb = U => Glass) = 4(a) 19/6) = 4(u), 4(u) & 12 => 4(a) 11 4(b) & E3 Анамичено предибавення на афинна пранеформациия Нека Чт е афиниа пирансурациация, зададена с (1) Ou May, x, x3,0) 4 M'(x, x2, x3,0) cregla, ce paleered bomo D = 941 94 + 942 22 + 943 25 + 944.0 e usmankeno 3a lessa... (24,24,23) + (0,0,0)

```
κεξεινο αμ + 0 ( deh + 0)

=> Ψ_{i} ρ α_{i} = α_{i} α_{i} + α_{i} α_{i} + α_{i} α_{i} α_{i} α_{i}

ρ α_{i} = α_{i} α_{i} + α_{i} α_{i} α_{i} α_{i} α_{i} α_{i}

ρ α_{i} = α_{i} α_{i} α_{i} + α_{i} α_{i} α_{i} α_{i} α_{i} α_{i}

ρ α_{i} = α_{i} α_{i} α_{i} + α_{i} α_{i} α_{i} α_{i} α_{i}

ρ α_{i} = α_{i} α_{i} α_{i} + α_{i} α_{i} α_{i} α_{i} α_{i}

ρ α_{i} = α_{i} α_{i} α_{i} + α_{i} α_{i} α_{i} α_{i} α_{i} α_{i} α_{i}

ρ α_{i} = α_{i} α_{i} α_{i} + α_{i} α
```

Теорено Ортогоналния Прансформиции запачит разетачить иницу же можи.

Вы межа ч е ортогонама прансформиция $4: \tilde{x}' = C\tilde{x} + \tilde{p}$ и $M_1 + D_2$ (а же можи, $4: M_1 + D_2$) — $4: M_2 + M_3 + M_4 + D_4$ — $4: M_3 + M_4 + D_4$ — $4: M_4 + M_4 + D_5$ — $4: M_4 + M_4 +$

Оконсително дилитацията δ , то 0x се sagala ерез $\begin{cases} x' = 5x \\ y' = y \end{cases}$ или δ , $\begin{cases} x' \\ y' \end{cases} = \begin{cases} 5 & 0 & 0 \\ 0 & 1 & 0 \end{cases} \begin{cases} 2 \\ y' \end{cases}$ Аналогично дилагмации те по $0y - \delta_2$ и $0x - \delta_3$ се тоучавай от вира δ_2 . $\begin{cases} x' = x \\ y' = ly \end{cases}$ и δ_3 : $\begin{cases} x' = x \\ y' = y \end{cases}$, $l, m \neq 0$ Восицион дилитацията δ_i : се определя ернозначно от дайствянию си верху темпури токи в общо темпенение. δ_1 : $0, E_1, E_2, E_3 \xrightarrow{\delta_1} 0, E_1, E_2, E_3$, където $E(l_1, l_2, 0)$, $E_2(l_3, l_2, 0)$, $E_3(l_3, l_3, 0$