03/30/2016

Neural Networks

• Can do both classification and regression.

• A linear combination of a linear combination is a linear combination... only works for linearly separable samples.

Network with 1 Hidden Layer

• Input layer: $x_1, ..., x_d$; $x_{d+1} = 1$

• Hidden units: h_1, \ldots, h_m ; $h_{m+1} = 1$

• Output layer: z_1, \ldots, z_k

• Layer 1 weights: $m \times (d+1)$ matrix $V V_i$ is row i

• Layer 2 weights: $k \ge (m+1)$ matrix W W_i is row i

• Recall logistic function $s(\gamma) = \frac{1}{1+e^{-\gamma}}$. Other nonlinear functions can be used.

• For vector v, $s(v) = \begin{bmatrix} s(v_1) \\ s(v_2) \\ \vdots \\ s(v_n) \end{bmatrix}$

- $h_i = s(\sum_{j=1}^n V_{ij}x_j)$, in short, h = s(Vx).
- $z = s(Wh) = s(Ws_1(Vx))$ the one on the s means you have to add a 1 to end of vector before multiplication.

Training

- Usually stochastic or batch gradient descent.
- Pick loss function L(z,y), z = predictions, y = true (values often a vector) e.g. $L(z,y) = |z y|^2$.
- Cost function is $J(h) = \sum_{i=1}^{n} L(h(X_i, Y_i))$. Start with random weights.
- Usually there are many local minima!
- Rewrite all the weights in V and W as a vector w.

Batch gradient descent:
$$w \leftarrow \text{vector of (small) random weights repeat:} \\ w \leftarrow w - \epsilon \nabla J(w)$$

- Hard part is computing $\nabla J(w)$.
- Naive gradient computation: $\mathcal{O}(\text{units x edges})$ time.
- Back-propagation: $\mathcal{O}(\text{edges})$ time.

Computing Gradients for Arithmetic Expressions

• Each value z gives partial derivative of the form,

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial n} \frac{\partial n}{\partial z}$$

- Can always compute $\frac{\partial n}{\partial z}$ in forward pass.
- Compute $\frac{\partial f}{\partial n}$ during backward pass

 after forward pass.
- This is "back-propagation."

• Algorithm doesn't work if there's cycles.

The Back-propagation Algorithm

- Recall $s'(\gamma) = s(\gamma)(1 s(\gamma))$
- $h_i = s(V_i \cdot x)$, so $\nabla_{v_i} h_i = s'(V_i \cdot x)x$

