analyze_batch

January 13, 2020

```
[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

import pysta
import stc
%load_ext autoreload
%autoreload 2
```

1 run for all cells (OFF LINE)

'spike_train', 'stim', 'width']>

```
run
python3 stc_batch.py [DATASET]
datasets * 20180618 * 20180621 * 20180626 * 20180828
```

1.1 load data

```
Shape of the array stim: (64, 9000)
Shape of the array spike_train: (118, 9000)
length of the list channel_names: 118
sampling_rate: 10.0
```

1.2 result - eigenvalues

```
[3]: # read eigenvalus
all_eig_values = dict()
# eigen_values = list()

largest_eig_values = list()

folder_name = "{}_stc_tap8".format(dataset_name)
#folder_name = "stc_tap10_center_half"
for channel_name in channel_names: #info["channel_names"]:
    filename = "{}/ch_{}_eig_val.txt".format(folder_name,channel_name)
    eig_val = np.loadtxt(filename)

all_eig_values[channel_name] = eig_val
# eigen_values.append(eig_val)
largest_eig_values.append(eig_val[0])

#print(channel_name)
# plt.hist(largest_eig_values)

# all_eig_values
```

```
[4]: # convert to DataFrame
eig = pd.DataFrame({"channel_name": channel_names, "largest_eig_values":

→largest_eig_values})

results = cell_type.merge(eig, on="channel_name")
results.hist(column=["largest_eig_values"], by=["cell_type"], layout=(1,3),

→figsize=(11,3))
```



```
[5]: # plot eigenvalues for cell type
     plt.figure(figsize=(12,3.5))
     ax=plt.subplot(131)
     for channel_name in cell_type.loc[cell_type["cell_type"] ==_

¬"ON"]["channel_name"]:
         #print(channel_name)
        plt.plot(all_eig_values[channel_name], 'or--')
     ax.set_ylim(0, 1)
     plt.title("ON")
     ax=plt.subplot(132)
     for channel_name in cell_type.loc[cell_type["cell_type"] ==_
     #print(channel_name)
        plt.plot(all_eig_values[channel_name], 'ob--')
     ax.set_ylim(0, 1)
     plt.title("OFF")
     ax=plt.subplot(133)
     for channel_name in cell_type.loc[cell_type["cell_type"] == "ON/
     \hookrightarrow OFF"] ["channel_name"]:
         #print(channel_name)
        plt.plot(all_eig_values[channel_name], 'ok--')
     ax.set_ylim(0, 1)
     plt.title("ON/OFF")
```

[5]: Text(0.5, 1.0, 'ON/OFF')

1.3 result - kurtosis

```
[6]: # load kurtosis
#tap = 5
Ks = np.loadtxt("{}\kurtosis.txt".format(folder_name))
plt.hist(Ks,50)

# store into a DataFrame
# remove "ch_" from channel names
kurtosis = pd.DataFrame({"channel_name": channel_names, "kurtosis": Ks})
kurtosis
```

[6]:		channel_na	ame	kurtosis
	0	1	l2a	0.652323
	1	1	l2b	0.340321
	2	1	l2c	18.292667
	3	1	l3a	0.340416
	4	1	L3b	0.215185
		••		•••
	113	8	34c	7.343468
	114	8	36a	-0.272732
	115	8	36b	15.215662
	116	8	36c	20.533046
	117	8	37a	0.108584

[118 rows x 2 columns]


```
[7]: # merge with cell_type
#cell_type
results = results.merge(kurtosis, on="channel_name", how="outer")
#results = cell_type.merge(kurtosis, on="channel_name")
# results.hist(column=["kurtosis"], by=["cell_type"], layout=(1,3),□
→figsize=(12,3.5))
```

[8]: results

[8]:		channel_name	cell_type	largest_eig_values	kurtosis
	0	13b	ON/OFF	0.811032	0.215185
	1	13c	ON/OFF	0.907610	1.931081
	2	14a	ON/OFF	0.422243	-0.078811
	3	14b	ON/OFF	0.480069	0.270487
	4	22a	ON	0.930094	1.798466
		•••	•••	•••	•••
	113	84c	NaN	NaN	7.343468
	114	86a	NaN	NaN	-0.272732
	115	86b	NaN	NaN	15.215662
	116	86c	NaN	NaN	20.533046
	117	87a	NaN	NaN	0.108584

[118 rows x 4 columns]

```
[9]: k_on = results.loc[results["cell_type"] == "ON", "kurtosis"]
     k_off = results.loc[results["cell_type"] == "OFF", "kurtosis"]
     k_on_off = results.loc[results["cell_type"] == "ON/OFF", "kurtosis"]
     bins = np.linspace(-1,1,21)
     # plt.hist(k_on, bins)
     # plt.hist(k_off, bins)
     # plt.hist(k_on_off, bins)
     # plot separately
     plt.figure(figsize=(8,12))
     plt.subplot(3,1,1)
     plt.hist(k_on, bins)
     plt.title("ON")
     # plt.xlabel("kurtosis")
     plt.ylabel("count")
     plt.subplot(3,1,2)
     plt.hist(k_off, bins)
     plt.title("OFF")
     # plt.xlabel("kurtosis")
     plt.ylabel("count")
     plt.subplot(3,1,3)
     plt.hist(k_on_off, bins)
     plt.title("ON/OFF")
     plt.xlabel("kurtosis")
     plt.ylabel("count")
```

[9]: Text(0, 0.5, 'count')

[10]: results.loc[results["kurtosis"]<0] [10]: channel_name cell_type largest_eig_values kurtosis 2 14a ON/OFF 0.422243 -0.078811 6 ON/OFF 23b 0.476577 -0.327854 17 32b ON/OFF 0.628969 -0.167819 21 34b 0.421698 -0.128531 ON 22 35a ON/OFF 0.396184 -0.315670 31 53b ON/OFF 0.344034 -0.065517 47 17a NaN NaN -0.049957 21e NaN NaN -0.316221 55 27b NaN NaN -0.439726 62 42d 75 NaN NaN -0.302726 76 43c NaN NaN -0.319902 NaN 48b NaN -0.018032 94 68a NaN NaN -0.440473 100 76b NaN NaN -0.080027 102 76d NaN NaN -0.572563 103 76e NaN NaN -0.844181 105 77b NaN NaN -0.023127 NaN -0.272732 114 86a NaN

1.4 eigenvalues & kurtosis

```
[11]: plt.scatter(results["largest_eig_values"], results["kurtosis"])
    plt.xlabel("largest eigenvalue")
    plt.ylabel("kurtosis")
```

[11]: Text(0, 0.5, 'kurtosis')


```
[12]: # plot for each cell type
     results_on = results.loc[results["cell_type"] == "ON"]
     results_off = results.loc[results["cell_type"]=="OFF"]
     results_on_off = results.loc[results["cell_type"] == "ON/OFF"]
     # plt.figure(figsize=(12,3))
      # plt.subplot(131)
     ax=plt.scatter(results_on["largest_eig_values"], results_on["kurtosis"],__
      →marker="o", alpha=0.8)
     plt.xlabel("largest eigenvalue")
     plt.ylabel("kurtosis")
     # plt.subplot(132)
     plt.scatter(results_off["largest_eig_values"], results_off["kurtosis"],__
      plt.xlabel("largest eigenvalue")
     plt.ylabel("kurtosis")
     # plt.subplot(133)
     plt.scatter(results_on_off["largest_eig_values"], results_on_off["kurtosis"],__
      →marker="*", alpha=0.8)
     plt.xlabel("largest eigenvalue")
     plt.ylabel("kurtosis")
```

```
plt.legend(["ON", "OFF", "ON/OFF"])
```

[12]: <matplotlib.legend.Legend at 0x1a23914810>

[13]: Text(0, 0.5, 'kurtosis')

[14]:	re	results_on_off								
[14]:		channel_name	cell_type	largest_eig_values	kurtosis					
	0	13b	ON/OFF	0.811032	0.215185					
	1	13c	ON/OFF	0.907610	1.931081					
	2	14a	ON/OFF	0.422243	-0.078811					
	3	14b	ON/OFF	0.480069	0.270487					
	5	23a	ON/OFF	0.475128	0.591554					
	6	23b	ON/OFF	0.476577	-0.327854					
	8	24b	ON/OFF	0.360172	0.152300					
	17	32b	ON/OFF	0.628969	-0.167819					
	19	33b	ON/OFF	0.524151	4.211379					
	20	34a	ON/OFF	0.430352	0.013479					
	22	35a	ON/OFF	0.396184	-0.315670					
	23	42b	ON/OFF	0.555874	0.216230					
	24		ON/OFF	0.324076	0.113861					
	25	43b	ON/OFF	0.842617	1.118713					
	27	45b	ON/OFF	0.529939	3.925222					
	28	52a	ON/OFF	0.415839	0.256927					
	29	52b	ON/OFF	0.679348	35.856005					
	30	53a	ON/OFF	0.363643	0.024709					
	31	53b	ON/OFF	0.344034	-0.065517					
	32		ON/OFF	0.321564	0.184314					
	33	54b	ON/OFF	0.371005	0.216345					
	37	64a	ON/OFF	0.316429	0.089304					

```
39 73a ON/OFF 0.357069 0.165295
40 73b ON/OFF 0.409148 0.351070
```

```
[15]: # plot eigenvalues for ON/OFF cells

def plot_eigenvalues(all_eigen_values, channel_names):

   num_subplots=len(channel_names)
   num_row = int(np.ceil(np.sqrt(num_subplots)))
   num_col = int(np.ceil(num_subplots / num_row))

plt.figure(figsize=(20,20))
   for i, channel_name in enumerate(channel_names):
        plt.subplot(num_row, num_col,i+1)
        plt.plot(all_eig_values[channel_name],"o:")
        plt.title(channel_name)

plot_eigenvalues(all_eig_values, results_on_off["channel_name"])
   plt.savefig("{}/eigenvalues_on_off.png".format(folder_name))
```


[16]: plot_eigenvalues(all_eig_values, results_on["channel_name"])
 plt.savefig("{}/eigenvalues_on.png".format(folder_name))


```
[17]: plot_eigenvalues(all_eig_values, results_off["channel_name"])
plt.savefig("{}/eigenvalues_off.png".format(folder_name))
```


[]: