

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS PO Box 1450 Alexascins, Virginia 22313-1450 www.emplo.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/055,388	01/23/2002	Eise Carel Dijkmans	NL 010029	7672
65913 NXP, B,V,	7590 01/22/200	19	EXAMINER	
NXP INTELLECTUAL PROPERTY DEPARTMENT			LE, LANA N	
M/S41-SJ 1109 MCKAY	Y DRIVE		ART UNIT	PAPER NUMBER
SAN JOSE, CA 95131			2614	
			NOTIFICATION DATE	DELIVERY MODE
			01/22/2009	ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail address(es):

ip.department.us@nxp.com

Application No. Applicant(s) 10/055,388 DIJKMANS ET AL. Office Action Summary Examiner Art Unit Lana N. Le 2614 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 03 October 2008. 2a) This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 3-9 and 11-23 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 3-9 and 11-21 is/are rejected. 7) Claim(s) 22 and 23 is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) The drawing(s) filed on is/are; a) accepted or b) objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abevance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s)

1) Notice of References Cited (PTO-892)

Information Disclosure Statement(s) (PTO/S5/08)
 Paper No(s)/Mail Date ______.

Notice of Draftsperson's Patent Drawing Review (PTO-948)

Interview Summary (PTO-413)
 Paper No(s)/Mail Date.

6) Other:

Notice of Informal Patent Application

Art Unit: 2614

DETAILED ACTION

Claim Rejections - 35 USC § 103

- The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 2. Claims 3, 11, 12, and 16-19 are rejected under 35 U.S.C. 103(a) as being unpatentable over Vishakhadatta et al (US60/261,506 is provisional application of US 2002/0,141,511 which was already used and mentioned in paper filed 9/20/2006 wherein applicant argued in response to that paper the provisional application does not contain the claimed subject matter, the filing date of the provisional application is used to overcome the foreign priority date of this application).

Regarding claims 3 and 12, Vishakhadatta et al disclose a high frequency receiver and method for receiving high frequency signals (fig. 1), which is provided with a front end (see fig. 1; LNA, I & Q mixers, PGAs, ADCs of Si4200) comprising a low noise amplifier (complex LNA circuitry receiving two different differential inputs for each band; fig. 1; page 2, lines 7-15), and which is provided with quadrature mixers (I and Q mixers coupled after the LNA producing I and Q outputs) coupled to the LNA (see fig.

Vishakhadatta et al do not specifically disclose the low noise amplifier is a
quadrature low noise amplifier. However, it is well known and notoriously old in the art
to have the complex LNA of Vishakhadatta et al be split into two LNAs since a complex

Art Unit: 2614

LNA defines an in phase LNA and a quadrature LNA integrated into one LNA. Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to make separate a complex LNA in Vishakhadatta et al since it has been held that constructing a formerly integral structure in various elements involves only routine skill in the art. Nerwin v. Erlichmena, 168 USPQ 177, 179. Vishakhadatta et al do not disclose the quadrature paths of the quadrature amplifier are implemented differentially. Maligeorgos discloses the receiver is characterized in that quadrature paths (I, Q outputs) of the quadrature amplifier (24, 26) are implemented differentially (para. 30; fig. 2). It would have been obvious to one of ordinary skill in the art at the time the invention was made to implement differentially the amplifiers of Vishakhadatta et al in order to distinguish the two separate in phase and quadrature characteristics of the amplifier by suppressing outputs from common mode interference on its input so that strengthening of the quadrature output power level can be done independent of the input signal level as suggested by Maligeorgos.

Regarding claim 11, Vishakhadatta et al and Maligeorgos disclose a quadrature low noise amplifier for application in the high frequency receiver according to claim 3 (see claim 3 above).

Regarding claim 16, Vishakhadatta et al and Maligeorgos disclose the method of claim 12, wherein Vishakhadatta et al disclose the coupled quadrature mixers are in a receive circuit of said receiver (received path LNA, I&Q mixers, PGAs, ADCs, I/Q mixers of Si4201, channel filter, PGA, DAC, Rx baseband of fig. 1).

Art Unit: 2614

Regarding claim 17, Vishakhadatta et al and Maligeorgos disclose the method of claim 16, wherein Vishakhadatta et al disclose the output of said mixer (I, Q mixer following LNA of Si4200) comprises a signal (see output of mixer) that has been downconverted by said receive circuit.

Regarding claim 18, Vishakhadatta et al and Maligeorgos disclose the receiver of claim 3, wherein Vishakhadatta et al disclose the coupled quadrature mixers (I, Q mixers following LNA) are in a receive circuit of said receiver (receiver having receive circuit Si 4200 having LNA, I&Q mixers, PGAs, ADCs, circuit Si4201 having I/Q mixers, channel filter, PGA, DAC, Rx baseband of fig. 1).

Regarding claim 19, Vishakhadatta et al and Maligeorgos disclose the receiver of claim 18, wherein Vishakhadatta et al disclose output of said mixers (output of I, Q mixers coupled to PGA) comprises a signal that has been down-converted by said receive circuit of fig. 1.

 Claims 20-21 are rejected under 35 U.S.C. 103(a) as being unpatentable over Vishakhadatta et al (US 2002/0,141,511) in view of Maligeorgos (US 2002/0,039,039) and further in view of Franca-Neto (US 6,509,799).

Regarding claim 20, Vishakhadatta et al and Maligeorgos disclose the receiver of claim 7, wherein Vishakhadatta et al, Maligeorgos do not disclose the cascode arrangement comprises two parallel legs of said semiconductors, both legs being in parallel with said capacitor. Franca-Neto disclose the cascode arrangement comprises two parallel legs of said semiconductors, both legs being in parallel with said capacitor (fig. 3, lines 7-41). It would have been obvious to one of ordinary skill in the art at the

Art Unit: 2614

time the invention was made to have the cascode arrangement comprise two parallel semiconductors in parallel with the capacitor in order to implement the cascade arrangement differentially.

Regarding claim 21, Vishakhadatta et al and Maligeorgos disclose the receiver of claim 7, wherein Vishakhadatta et al and Maligeorgos fail to disclose said cascode arrangement comprises differential cascade arrangement. Franca-Neto disclose a cascode arrangement comprises differential cascade arrangement (fig. 2; col 4, lines 14-37). It would have been obvious to one of ordinary skill in the art at the time the invention was made to distinguish the two separate in phase and quadrature characteristics of the amplifier by suppressing outputs from common mode interference on its input.

 Claims 4 and 13 are rejected under 35 U.S.C. 103(a) as being unpatentable over Vishakhadatta et al (US 2002/0,141,511) in view of Maligeorgos (US 2002/0,039,039).
 and further in view of Sano et al (US 5,546,048).

Regarding claim 4, Vishakhadatta et al and Maligeorgos disclose the method of claim 3, wherein Vishakhadatta et al and Maligeorgos do not disclose the receiver is characterized in that the differential quadrature low noise amplifier is constructed as a class AB operating circuit. Sano et al disclose a differential amplifier constructed as a class AB operating circuit (col 11, line 49 – col 12, line 8). It would have been obvious to one of ordinary skill in the art at the time the invention was made to have the amplifier as a class AB operating circuit in order to set a bis current to flow at no input signal as suggested by Sano et al (col 12, lines 7-9).

Art Unit: 2614

Regarding claim 13, Vishakhadatta et al and Maligeorgos disclose the method of claim 12, wherein Vishakhadatta et al and Maligeorgos do not disclose the receiver is characterised in that the differential quadrature low noise amplifier is constructed as a class AB operating circuit. Sano et al disclose a differential amplifier is constructed as a class AB operating circuit (col 11, line 49 – col 12, line 8). It would have been obvious to one of ordinary skill in the art at the time the invention was made to have the amplifier of Vishakhadatta et al and Maligeorgos a class AB operating circuit in order to set a bis current to flow at no input signal as suggested by Sano et al (col 12, lines 7-9).

 Claims 5, 7, and 14 are rejected under 35 U.S.C. 103(a) as being unpatentable over Vishakhadatta et al (US 2002/0,141,511) in view of Franca-Neto (US 6,509,799).

Regarding claim 5, Vishakhadatta et al disclose the high frequency receiver according to claim 3, wherein Vishakhadatta et al do not disclose the quadrature low noise amplifier comprises a cascode arrangement of semiconductors (20, 22). Franca-Neto discloses a low noise amplifier comprising a cascode arrangement of semiconductors (fig. 2; col 4, lines 14-37). It would have been obvious to one of ordinary skill in the art at the time the invention was made to have the quadrature low noise amplifier comprise a cascode arrangement of semiconductors in order to construct the amplifier into a tunable integrated circuit.

Regarding claim 7, Vishakhadatta et al disclose a front end (see fig. 1; LNA, I & Q mixers, PGAs, ADCs of Si4200) for a high frequency receiver which front end comprises a low noise amplifier (complex LNA circuitry receiving differential inputs for each band; fig. 1; page 2, lines 7-15), and which is provided with quadrature mixers (I

Art Unit: 2614

and Q mixers coupled after the LNA producing I and Q outputs) coupled to the LNA (see fig. 1). Vishakhadatta et al do not specifically disclose the low noise amplifier is a quadrature low noise amplifier. However, it is well known and notoriously old in the art to have the complex LNA of Vishakhadatta et al be split into two LNAs since a complex LNA defines an in phase LNA and a quadrature LNA integrated into one LNA. Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to make separate a complex LNA in Vishakhadatta et al since it has been held that constructing a formerly integral structure in various elements involves only routine skill in the art. Nerwin v. Erlichmena, 168 USPQ 177, 179. Vishakhadatta et al do not disclose a low noise amplifier comprising a cascode arrangement of semiconductors and in that across the cascode arrangement of semiconductors there is connected a capacitor. Franca-Neto discloses a low noise amplifier comprising a cascode arrangement of semiconductors (fig. 2; col 4, lines 14-37) and in that across the cascode arrangement of semiconductors there is connected a capacitor (52; fig. 2). It would have been obvious to one of ordinary skill in the art at the time the invention was made to connect a capacitor with a cascade arrangement of semiconductors in order to tune a resonant tank circuit as suggested by Franca-Neto.

Regarding claim 14, Vishakhadatta et al disclose the method according to claim 12, wherein Vishakhadatta et al do not disclose the quadrature low noise amplifier comprises a cascode arrangement of semiconductors (20, 22). Franca-Neto discloses a low noise amplifier comprising a cascode arrangement of semiconductors (fig. 2; col 4, lines 14-37). It would have been obvious to one of ordinary skill in the art at the time

Art Unit: 2614

the invention was made to have the quadrature low noise amplifier comprise a cascode arrangement of semiconductors in order to construct the amplifier into a tunable integrated circuit.

 Claims 6 and 15 are rejected under 35 U.S.C. 103(a) as being unpatentable over Vishakhadatta et al (US 2002/0,141,511) in view of Franca-Neto (US 6,509,799) and further in view of Saigo et al (JP 57,073,974).

Regarding claim 6, Vishakhadatta et al and Franca-Neto disclose the high frequency receiver according to claim 5, wherein Franca-Neto discloses the semiconductors (transistors 20, 22) are of BJT or of a different type (col 7, lines 10-16). Vishakhadatta et al and Franca-Neto do not disclose specifically the semiconductors are MOST type. Saigo et al disclose MOST type transistors (abstract, no translation is available at this time). It would have been obvious to one of ordinary skill in the art at the time the invention was made to have MOST type semiconductors in order to suppress variation in the threshold voltage as suggested by Saigo et al.

Regarding claim 15, Vishakhadatta et al and Franca-Neto disclose the method according to claim 14, wherein Franca-Neto discloses the semiconductors (transistors 20, 22) are of BJT or of a different type (col 7, lines 10-16). Vishakhadatta et al and Franca-Neto do not disclose specifically the semiconductors are MOST type. Saigo et al disclose MOST type transistors (abstract, no translation is available at this time). It would have been obvious to one of ordinary skill in the art at the time the invention was made to have MOST type semiconductors in order to suppress variation in the threshold voltage as suggested by Saigo et al.

Art Unit: 2614

Claim 8 is rejected under 35 U.S.C. 103(a) as being unpatentable over
 Vishakhadatta et al (US 2002/0,141,511) in view of Glas et al (US 6,546,237) and further in view of Nash (US 6,317,589).

Regarding claim 8. Vishakhadatta et al disclose a high frequency receiver which front end (see fig. 1; LNA, I & Q mixers, PGAs, ADCs of Si4200) comprises a low noise amplifier (complex LNA circuitry receiving differential inputs for each band; fig. 1; page 2. lines 7-15), and which is provided with quadrature mixers (I and Q mixers coupled after the LNA producing I and Q outputs) coupled to the LNA (see fig. 1). Vishakhadatta et al do not specifically disclose the low noise amplifier is a quadrature low noise amplifier. However, it is well known and notoriously old in the art to have the complex LNA of Vishakhadatta et al be split into two LNAs since a complex LNA defines an in phase LNA and a quadrature LNA integrated into one LNA. Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to make separate a complex LNA in Vishakhadatta et al since it has been held that constructing a formerly integral structure in various elements involves only routine skill in the art. Nerwin v. Erlichmena, 168 USPQ 177, 179. Vishakhadatta et al do not disclose the high frequency receiver comprises two quadrature choppers coupled between respective outputs of the quadrature low noise amplifiers and respective inputs of the quadrature mixers. Glas et al disclose the high frequency receiver comprises two quadrature choppers (201, 202) and respective inputs of the quadrature mixers (208, 209) (col 2, line 63 - col 3, line 24). It would have been obvious to one of ordinary skill in the art at the time the invention was made to have choppers coupled to respective

Art Unit: 2614

inputs of mixers in order to avoid the need for the use of analog to digital converters as suggested by Glas et al. Vishakhadatta et al and Glas et al do not disclose the choppers are coupled between respective outputs of the quadrature amplifiers and the output of mixers (110, 108) is demodulated by a quadrature demodulator. However, it is notoriously old and well known in the art to have amplifiers connected to the choppers of Glas et al in order to strengthen the received RF signal before limiting the signal. Nash discloses the output of mixers (110, 108) is demodulated by a quadrature demodulator (not shown) (col 4, lines 2-7). It would have been obvious to one of ordinary skill in the art at the time the invention was made to add the quadrature demodulator of Nash to Vishakhadatta et al in order to detect the digital outputs from the mixers in a complex domain as suggested by Nash.

 Claim 9 is rejected under 35 U.S.C. 103(a) as being unpatentable over Vishakhadatta et al (US 2002/0,141,511) in view of Glas et al (US 6,546,237) and further in view of Gratian (US 2,730,699).

Regarding claim 9, Vishakhadatta et al disclose the high frequency receiver according to claim 8, wherein Vishakhadatta et al and Glas et al do not disclose the quadrature choppers and quadrature mixers are combined to passive quadrature choppers/mixers. Gratian discloses a receiver wherein the quadrature choppers and quadrature mixers are combined to passive quadrature choppers/mixers (col 7, lines 29-31). It would have been obvious to one of ordinary skill in the art at the time the invention was made to combine the limiters and mixers in order to clip the highest and

Art Unit: 2614

the lowest amplitude while at the same time mixing the signals to a lower frequency to save circuit components.

Response to Arguments

10. Applicant's arguments filed 10/03/2008 have been fully considered but they are not persuasive. In response to applicant's remarks that the provisional application is not within the public domain, the examiner respectfully disagree. The provisional application 60/261,506 filed 1/12/2001 is found in public PAIR and is therefore considered public domain and is a provisional application of US Publication 2002/0.141.511 which was already used and mentioned in paper filed 9/20/2006 wherein applicant argued in response to that paper the provisional application does not contain the claimed subject matter, the filing date of the provisional application was used to overcome the foreign priority date of this application. In response to applicant's argument that it is not well known and notoriously old in the art to have the complex LNA of Vishakhadatta, et al. be split into two LNAs since a complex LNA defines an in phase LNA and a quadrature LNA integrated into one LNA. The claim language claims a quadrature LNA which is considered a complex LNA. Looking at figure 1 and page 2 of the provisional application, there are plural complex LNAs, only one LNA is in use at a time for receiving two different differential or complex inputs for the one particular band being received at that time, the output of that complex LNA is outputted to two mixers, having I and Q outputs which are quadrature outputs of the claimed quadrature mixers. Therefore, the rejection filed 6/03/2008 is maintained.

Art Unit: 2614

Allowable Subject Matter

11. Claims 22-23 are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims.

Regarding claim 22, Vishakhadatta et al and Glas disclose the receiver of claim 8, wherein Vishakhadatta et al, Glas and the cited prior art fail to disclose each of said choppers switches its respective outputs for coupling with the other of said choppers.

Regarding claim 23, Vishakhadatta et al and Glas disclose the receiver of claim 8, wherein Vishakhadatta et al, Glas and the cited prior art fail to disclose said choppers switch in-phase and quadrature signals.

Conclusion

 Any inquiry concerning this communication or earlier communications from the examiner should be directed to Lana N. Le whose telephone number is (571) 272-7891.
 The examiner can normally be reached on M-F 10:00-18:30.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Curtis A. Kuntz can be reached on (571) 272-7499. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Application/Control Number: 10/055,388 Page 13

Art Unit: 2614

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Lana N. Le/ Primary Examiner, Art Unit 2614