Problem 1. [50 points] Lyapunov techniques for estimating ROA

Consider the following nonlinear system with state vector $(x_1,x_2)\in\mathbb{R}^2$, given by

$$\dot{x}_1 - x_2, \ \dot{x}_2 = -x_1 - x_2 + x_1^3.$$

Find all isolated fixed points. Show all your calculations.

(a) [10 points] Fixed points

1. From $\dot{x_1}=x_2$, we know fixed points have $\dot{x_1}=0
ightarrow x_2=0$

- 2. Given $x_2 = 0$:

(1)

(2)

(3)

(5)(6)

(8)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(25)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)(46)

(47)

(48)

(49)

(55)(56)

3. Therefore, isolated fixed points are: (0,0),(0,1),(0,-1)(b) [10 + 10 = 20 points] Origin is AS

 $\dot{x_2} = -x_1 - x_2 + x_1^3 = x_1(x_1^2 - 1)$

 $\rightarrow x_1 = 0, \pm 1$

(i) Using the Lyapunov function $V(x_1,x_2)=rac{1}{2}x_2^2+\int_0^{x_1}(y-y^3)\mathrm{d}y$, **prove that** the origin is AS. You may need to use the LaSalle

invariance.

1. We can perform the integration in V: $V = \frac{x_2^2}{2} + \frac{x_1^2}{2} - \frac{x_1^4}{4}$

2. We can derive \dot{V} :

$$\dot{V}(x_1,x_2) = rac{\partial V}{\partial x_1} rac{\partial x_1}{\partial t} + rac{\partial V}{\partial x_2} rac{\partial x_2}{\partial t}$$
 (4)

4. We see that:

3. From 1. we see that:
$$\dot{V}$$
 exists $o V$ is C_1

 $rac{x_1^2}{2} - rac{x_1^4}{4} \geq 0$ (7) $\frac{x_1^2}{2} \geq \frac{x_1^4}{4}$

 $=(x_1-x_1^3)x_2+x_2(x_1^3-x_1-x_2)$

(9) $\|x_1\| \leq \sqrt{2} o rac{x_1^2}{2} - rac{x_1^4}{4} \geq 0$ (10)

But since
$$x_1=1,-1$$
 are other isolated fixed points, we cannot be A.S. if D includes them So Let $D=\left\{x\in R^2:\|x_1\|<1\right\}$ 5. Then from 4. we see that over the set $D,V\geq 0,V(0)=0,V(\neq 0)>0$. V over D is positive definite function.

7. Let $S=\left\{x\in D|\dot{V}(x)=0
ight\}$

8. Then for $x \in S$, we see that: $x\in S
ightarrow -x_2^2=0
ightarrow x_2=0$

6. We can also see that in $D,\,\dot{V}$, which is not a function of x_1 so it makes no difference, $\dot{V}=-x_2^2<=0$

- $\dot{x_1}=0\rightarrow\dot{x_1}=x_2=0$ $\dot{x_2} = 0
 ightarrow \dot{x}_2 = x_1^3 - x_1 = 0$
- So, we see that in $S \in D$, only (0,0) stays identically in S

9. Then by 5., 6., 7. + 8., and Lec3 pg14-15,
$$(0,0)$$
 is **A.S.**

(ii) Make a 3d surface plot of the above Lyapunov function V over the domain $[-2,2]^2$ along with the contour/level set plots of V in the plane over the same domain. It will be helpful to make the surface plot somewhat transparent.

 $\rightarrow x_1 = \{-1, 0, 1\} \rightarrow x_1 = 0$

(c) [15 + 5 = 20 points] ROA estimation

(i) Use the Lyapunov function in part (b) to estimate the ROA for the origin. 1. Given the set D defined in (b line 5.), we know over D, V is positive definite. 2. From (b line 6.) we know that over $D,\,\dot{V}<0$ for $x_2
eq 0$

 $\rightarrow \dot{x_1} = x_2 < 0$

 $ightarrow \dot{x_2} = -x_1 - x_2 + x_1^3 \leq 0$

 $\to (1-\epsilon)((1-\epsilon)^2-1) \le x_2 \le 0$

 $\frac{\partial}{\partial t}(\frac{x_1^2}{2} - \frac{x_1^4}{4}) = x_1 - x_1^3 = 0$

 $\frac{\partial}{\partial t}(3\epsilon^2 - 2\epsilon - \epsilon^3) = 3\epsilon^2 - 6\epsilon + 2 = 0$

 $\rightarrow @x_1 = 0.577, x_2 = -0.385, V = 0.213$

 $\Omega_c = \{x \in R^2 | V(x) \le c = 0.213\}$

 $\rightarrow x_1(1-x_1^2)=0$

8. From 4., we see that $3\epsilon^2-2\epsilon-\epsilon^3\leq x_2\leq 0$, so we want to minimize the leftmost term to maximize $\frac{x_2^2}{2}$ term of V

10. So V=0.213=c we can conclude is the maximal c s.t. $x\in D$, and $\dot{x}<=0$ (positive invariant). We can than construct

9. Taking the derivative and solving for 0 will yield the ϵ that will minimize the leftmost term:

4. By definition of positive invariance, we seek to find the bounds for (x_1, x_2) s.t.

switch to x_2

11. Then by Lec 7 pg 6-7, $\Omega_c \subseteq ROA$

State space

system

(i)

(ii) Make a 2d plot of your estimated ROA in the state space.

The latter inequality is called the "Lyapunov matrix inequality".

2. From 1. we see that if $x^T \mathcal{L}(P) x < 0$, then $\dot{V} < 0$, negative definite

5. So by 2., 3., and 4., and Lec 3 pg 9 (Barbashin-Krasovski Thm.), the LTI system is G.A.S

3. Let $P=\int_0^\infty e^{tA^T}Qe^{tA}$ for some $Q\succ s.\,t.\,Q\succ 0$ We can show that $P\succ 0$:

This contradiction shows $x^TPx \succ 0 \Leftrightarrow x \neq 0, x^TPx = 0 \Leftrightarrow x = 0, P$ is **positive definite**.

3. If $P \succ 0$, then V is **positive definite function**. 4. We can show that V is **radially unbounded**.

4. We can now evaluate $PA + A^TP$:

equation

Contour plot

Contour plot

$\rightarrow x_1^3 - x_1 \le x_2 \le 0$ $\rightarrow x_1(x_1^2-1) \le x_2 \le 0$

 $ightarrow 3\epsilon^2 - 2\epsilon - \epsilon^3 \le x_2 \le 0$

3. Given the set D defined in (b), we know $\|x_1\| < 1 o x_1 = 1 - \epsilon, \quad 0 < \epsilon < 2$

5. We want to maximize
$$V=\frac{x_2^2}{2}+\frac{x_1^2}{2}-\frac{x_1^4}{4}$$
 that meets all the constraints so far.

6. If we take the derivative of the $\frac{x_1^2}{2}-\frac{x_1^4}{4}$ to find the x_1 to maximize V contribution

- $\rightarrow x_1 \in -1, 0, 1$ (24)7. So we see that the x_1 term is maximum (=1/4) when $x_1 \in -1, 1$, but since those fall outside the set D, it is inconclusive, so we
 - $\rightarrow \epsilon = 1 \pm \frac{\sqrt{3}}{2}$ (26) $ightarrow @\epsilon = 0.423
 ightarrow 3\epsilon^2 - 2\epsilon - \epsilon^3 = -0.385 \le x_2$ (27) $ightarrow x_2 = -0.385$ (28) $\rightarrow @\epsilon = 0.423, x_1 = 1 - \epsilon = 0.577$ (29)
 - Then we see that Ω_c is closed and bounded, and $\Omega_c \subset D$
- (a) [10 + 10 = 20 points] Lyapunov matrix inequality and equation (i) Use the Lyapunov function $V(x) = x^{\top} P x$ to **prove that** the LTI system is GAS provided the following two matrix inequalities are simultaneously satisfied:

Consider the LTI system $\dot{x}=Ax$ where $x\in\mathbb{R}^n$. Recall that the origin is GAS if and only if the matrix A is Hurwitz (i.e., all its eigenvalues lie in the open left-half of the complex plane). In this exercise, we revisit the LTI stability from the Lyapunov viewpoint.

Problem 2. [50 points] Lyapunov stability for continuous time LTI

1. We can derive \dot{V} as follows given $V = x^T P x$, $\dot{x} = A x$: $\dot{V} = \dot{x}^T P x + x^T P \dot{x}$

 $= (Ax)^T P x + x^T P A x$

 $= x^T A^T P x + x^T P A x$

 $Px = \lambda x, \quad \lambda \succ 0$

 $o x^T P x = \lambda \|x\|^2$

 $= x^T (A^T P + PA)x$

 $\lim_{\|x\|^2 o\infty}x^TPx=\lim_{\|x\|^2 o\infty}\lambda\|x\|^2=+\infty$

 $x
eq 0, \quad x^T P x = 0 \Rightarrow \int_0^\infty x^T e^{tA^T} Q e^{tA} x = 0$

 $PA+A^TP=\int_0^\infty Ae^{tA^T}Qe^{tA}+\int_0^\infty A^Te^{tA^T}Qe^{tA}$

 $=\int_{0}^{\infty}\left(rac{\partial}{\partial t}e^{tA^{T}}Qe^{tA}
ight)$

 $=e^{tA^T}Qe^{tA}ig|_0^\infty$

(b) [10 + 10 = 20 points] A Hurwitz \Rightarrow Unique solution for Lyapunov matrix

You have shown in part (a) that existence of solution for the Lyapunov matrix equation (equivalently, Lyapunov matrix inequality) \Rightarrow GAS

 $(P-\bar{P})A + A^T(P-\bar{P}) = 0$

 $\Rightarrow rac{\partial}{\partial t}e^{A^Tt}(P-ar{P})e^{At}=0$

 $\Rightarrow e^{A^Tt}(P-ar{P})A+A^T(P-ar{P})e^{At}=0$

 $\Leftrightarrow A$ Hurwitz. **Now prove the converse:** if A is Hurwitz then for any $Q \succ 0$, there exists **unique** $P \succ 0$ that solves $\mathcal{L}(P) = -Q$.

 $=\int_0^\infty Ae^{tA^T}Qe^{tA}+A^Te^{tA^T}Qe^{tA}$

 $\Rightarrow e^{At}x = 0 \Rightarrow x = 0 \quad (e^{At} \neq 0)$

 $=x^T\mathcal{L}(P)x$

 $P\succ 0, \quad \mathcal{L}(P):=A^{ op}P+PA\prec 0.$

- (ii) **Argue that** the condition $\mathcal{L}(P) \prec 0$ is equivalent to the statement: for any $Q \succ 0$, there exists $P \succ 0$ that solves the linear matrix equation $\mathcal{L}(P) = -Q$. This equation is called the "Lyapunov matrix equation". 1. For the equivalence first direction: $\forall Q \succ 0$, there exists $P \succ 0$ that solves $\mathcal{L}(P) = -Q \Rightarrow \mathcal{L}(P) \prec 0$ 2. For the other direction: we want to construct a $P\succ 0$ s.t. $A^TP+PA=-Q$ for Q<0
 - 5. So we've shown by construction that for all $Q\succ 0$, we can construct a P based on that Q s.t. $\mathcal{L}(P)=-Q$ 6. So from 3., 4., 5., we know that if $\mathcal{L}(P) < 0$, by definition $\mathcal{L}(P) = PA + A^TP = -Q$ for some Q > 0, and in 3. and 4. we show how this is done.
 - 3. So we know from 2. that $f(t) = e^{A^T t} (P \bar{P}) e^{At}$ is **constant**, thus:
 - (50) $f(0) = P - \bar{P}$ (51)(52)
 - $P \bar{P} = 0$ (53) $P = \bar{P}$ (54)
- (Hint: prove existence by construction. Prove uniqueness by contradiction.)

1. Let's say that P is **not unique**, then there is another $ar{P}
eq P$ s.t. $\mathcal{L}(ar{P}) = -Q$ 2. $\mathcal{L}(P)-\mathcal{L}(\bar{P})=-Q+Q=0=(P-\bar{P})A+A^T(P-\bar{P})$ And furthermore:

- $f(0) = f(\infty)$ $f(\infty) = 0$
- 4. We see from 1. and 3. that there is a contradiction, therefore P must be unique
- - (c) [10 points] Monotonicity of the solution of Lyapunov matrix equation For an LTI system with A Hurwitz, **prove that** if $Q_1 \succ Q_2$ then $P_1 \succ P_2$. (The converse is false but you don't need to prove that).

1. From 2.a.ii above, $P=\int_0^\infty e^{tA^T}Qe^{tA}$, then:

- (57)(58)
- $Q_1 \succ Q_2 \ \Rightarrow e^{A^Tt}Q_1e^{At} \succ e^{A^Tt}Q_2e^{At}$
 - $\Rightarrow \int_0^\infty e^{A^T t} Q_1 e^{At} \succ \int_0^\infty e^{A^T t} Q_2 e^{At} \ \Rightarrow P_1 \succ P_2$
- This direct proof shows the claim.