SPRAWOZDANIE Z PIERWSZEGO ZADANIA NUMERYCZNEGO

MACIEJ WÓJCIK

Spis treści:

- 1. Polecenie zadania
- 2. Instrukcja uruchomienia
- 3. Wartości błędów, wyniki w formie liczb i wykresów
 - a) dla double
 - b) dla float
- 4. Opis wyników
- 5. Wnioski

1. Polecenie zadania

(Zadanie numeryczne NUM1) Napisz program wyliczający przybliżenie pochodnej ze wzorów:

(a)
$$D_h f(x) \equiv \frac{f(x+h)-f(x)}{h}$$
,

(b)
$$D_h f(x) \equiv \frac{f(x+h)-f(x-h)}{2h}$$

Przeanalizuj, jak zachowuje się błąd $|D_h f(x) - f'(x)|$ dla funkcji $f(x) = \sin(x)$ oraz punktu x = 0.2 przy zmianie parametru h dla różnych typów zmiennoprzecinkowych (float, double). Wykreśl $|D_h f(x) - f'(x)|$ w funkcji h w skali logarytmicznej. Poeksperymentuj również używając innych funkcji (np. exp. cos).

W zadaniu musimy policzyć przybliżenie pochodnej na dwa sposoby i sprawdzić, który z tych sposobów jest dokładniejszy względem realnej wartości pochodnej w punkcie.

Pomoże nam w tym przeanalizowanie jak zachowuje się błąd:

$$|D_h f(x)| = \frac{f(x+h) - f(x)}{h} - f'(x)|,$$

I błąd:

$$|D_h f(x)| = \frac{f(x+h) - f(x-h)}{2h} - f'(x)|$$

Aby lepiej zrozumieć te dane przedstawimy je w formie wykresu.

Wszystkie wykresy będą przedstawione na podstawie funkcji f(x) = sin(x) w punkcie x = 0.2.

2. Instrukcja uruchomienia

W celu uruchomienia programu posłużymy się Makefile. Program ten można uruchomić na kilka sposobów. Podczas uruchamiania programu w argumentach wywołania musimy podać czy chcemy, żeby program wygenerował nam wykres, czy chcemy aby wypisał nam błędy dla poszczególnych h dla obydwóch funkcji.

Dodatkowo musimy też podać, czy chcemy aby operacje wykonywały się dla typu zmiennoprzecinkowego float czy dla double.

Uruchamiamy w ten sposób:

Dla float i wypisania błędu:

make float_miscalculation

Dla float i wygenerowania wykresu:

make float chart

Dla double i wypisania błędu:

make double_miscalculation

Dla double i wygenerowania wykresu:

make double_chart

Wypisanie błędu wykonuje się w linii komend, a wykresy są generowane do pliku z rozszerzeniem .png

3. Wartości błędów, wyniki

a) Wyniki błędów pochodnej w punkcie x dla różnych wartości h dla DOUBLE

python NUM1.py double	miscalculation	
h value:	Miscalc. of func. a:	Miscalc. of func. b:
0.00000000000001	0.00029475860954	0.00168253739032
0.00000000000005	0.00015915057459	0.00043456019440
0.00000000000025	0.00002509376184	0.00002956225375
0.0000000000128	0.00001774196160	0.00000689528151
0.00000000000645	0.00000073751654	0.00000289007866
0.0000000003249	0.00000021889735	0.00000020828623
0.0000000016370	0.00000004252230	0.00000004252230
0.00000000082487	0.00000002244214	0.00000000561802
0.00000000415651	0.00000000247340	0.00000000086541
0.00000002094451	0.00000000134566	0.00000000002046
0.00000010553861	0.00000001037585	0.0000000001224
0.00000053180511	0.00000005284519	0.00000000002764
0.00000267974609	0.00000026618915	0.0000000000039
0.00001350314038	0.00000134135914	0.00000000002934
0.00006804181969	0.00000675966746	0.00000000075611
0.00034286018636	0.00003407710322	0.00000001920168
0.00172765966467	0.00017210400369	0.00000048755167
0.00870561247910	0.00087714309100	0.00001237944986
0.04386725591048	0.00467113979875	0.00031429934700
0.22104546299710	0.02982992922063	0.00796171216243

Page 3 of 5

b) Wyniki błędów pochodnej w punkcie x dla różnych wartości h dla FLOAT

python NUM1.py float	miscalculation	
h value:	Miscalc. of func. a:	Miscalc. of func. b:
0.00000010000000	0.06301468610764	0.06301468610764
0.00000024749949	0.04344958066940	0.01334619522095
0.00000061255992	0.00702470541000	0.00702470541000
0.00000151608265	0.00280600786209	0.00280600786209
0.00000375229683	0.00082242488861	0.00082242488861
0.00000928691497	0.00030303001404	0.00049924850464
0.00002298506661	0.00080752372742	0.00048339366913
0.00005688792226	0.00010883808136	0.00010883808136
0.00014079731773	0.00006324052811	0.00001031160355
0.00034847261850	0.00001913309097	0.00000226497650
0.00086246797582	0.00007802248001	0.00000029802322
0.00213460368104	0.00021189451218	0.00000244379044
0.00528313312680	0.00052958726883	0.00000500679016
0.01307572796941	0.00132620334625	0.00002819299698
0.03236235678196	0.00338548421860	0.00017112493515
0.08009666949511	0.00899976491928	0.00104767084122
0.19823884963989	0.02603429555893	0.00640666484833
0.49064010381699	0.08661860227585	0.03885096311569

Page 4 of 5

4. Opis wyników

Na wykresach umieszczonych powyżej widać bardzo dobrze jakiej wielkości błąd uzyskujemy podczas liczenia pochodnej numerycznie.

Z wykresu możemy odczytać następujące wnioski:

- Najmniejszy błąd dla double jest rzędu $10^{-12}\,\mathrm{i}$ dla funkcji

$$D_h f(x) = \frac{f(x+h) - f(x-h)}{2h}$$
 (wzór b)

- Najmniejszy błąd dla float jest rzędu 10^{-7} i dla funkcji

$$D_h f(x) = \frac{f(x+h) - f(x-h)}{2h}$$
 (wzór b)

5. Wnioski

Podczas liczenia tej pochodnej musimy zwrócić szczególną uwagę na wybór parametru h. Jeśli będzie on zbyt mały lub za duży, to pojawi nam się duży błąd w obliczeniach.

Z wykresów możemy wywnioskować, że najmniejszy błąd możemy uzyskać używając typu zmiennoprzecinkowego DOUBLE i wzoru na pochodną:

$$D_h f(x) = \frac{f(x+h) - f(x-h)}{2h}. \tag{wzór b}$$