

Distributed Algorithms 2020

Port-numbering model

This week: formal definition of port-numbering model

- "PN model"
- simple and weak

Coming weeks: extensions and variants of PN model

- + unique identifiers = LOCAL model
- + message size limit = CONGEST model

Distributed algorithms in PN model

init send \ algorithm receive

Port-numbered network N = (V, P, p)

Distributed algorithm
A = (init, send, receive)

Output of algorithm A in network N

"Algorithm A solves problem X in graph family F"

Time = number of communication rounds

Everything is deterministic