Analiza Algoritmilor – Seria CA

Test 1 09.12.2013

- 1. (2p) Fie 3 multimi A, B si C ⊆ N despre care stim ca:
 - $A \le_T B$ (notatie care trebuie interpretata in felul urmator: predicatul care decide multimea $A \le_T$ predicatul care decide multimea B)
 - multimea B este recursiv-numarabila
 - multimea **C** este decidabila

Ce putem spune sigur despre multimea A \ C (este decidabila / semidecidabila / nedecidabila) ? Justificati!

Rezolvare:

$A \leq_T B$ si B semidecidabila => A semidecidabila

Explicatie:

B semidecidabila => exista procedura PB care, pentru un input oarecare x, intoarce 1 cand $x \in B$ si nu ofera niciun raspuns atunci cand $x \notin B$.

 $A \le_T B =>$ orice input x pentru predicatul PA care decide apartenenta la multimea A poate fi transformat intr-un input f(x) pentru PB a.i. $PA(x) = 1 \Leftrightarrow PB(f(x)) = 1$.

Cu alte cuvinte, putem folosi PB pentru a stabili ca un element oarecare x apartine lui A => exista o procedura PA care, pentru un input oarecare x, intoarce 1 cand $x \in A$ si nu ofera niciun raspuns atunci cand $x \notin A => A$ semidecidabila.

In particular, A ar putea fi chiar decidabila, insa acest lucru nu rezulta din simpla relatie A ≤_T B.

A semidecidabila si C decidabila => A \ C semidecidabila

Explicatie:

C decidabila => exista procedura PC a.i. PC(x) = 1, pentru $x \in C$ si PC(x) = 0, pentru $x \notin C$.

Pentru a decide ca $x \in A \setminus C$ vom rula PA(x) si, in cazul in care raspunsul este 1, vom cere si ca PC(x) = 0. Daca PA(x) nu ofera niciun raspuns inseamna ca $x \notin A$, deci $x \notin A \setminus C$. Prin urmare putem construi o procedura care, pentru un input oarecare x, intoarce 1 atunci cand $x \in A \setminus C$ si nu ofera niciun raspuns in caz contrar => A \ C semidecidabila.

- a) Fie doua functii f, g: $N \to R_+$. Daca stim ca $f(n) \in O(g(n))$, atunci gasiti limite asimptotice cat mai stricte pentru: o(f(n)) + o(g(n)).
- b) Daca functia $f(n) \in O(\log n)$, este adevarat ca $2^{f(n)} \in O(n)$? Justificati!

Rezolvare:

a) Pornim de la definitii:

$$f(n) \in O(g(n)) => \exists c1 > 0, n01 \in N \text{ ai } f(n) \le c1 * g(n) \forall n \ge n01$$

Fie f1(n)
$$\in$$
 o(f(n)) => \forall c2 > 0, n02 \in N ai f1(n) $<$ c2 * f(n) \forall n \geq n02 => f1(n) $<$ c1 * c2 * g(n) \forall n \geq max(n01, n02)
Fie f2(n) \in o(g(n)) => \forall c3 > 0, n03 \in N ai f2(n) $<$ c3 * g(n) \forall n \geq n03

$$=> f1(n) + f2(n) < (c1*c2 + c3) * g(n) \forall n \ge max(n01, n02, n03)$$

=>
$$\forall$$
 c4 = c1*c2 + c3 > 0 si \forall n \geq max(n01, n02, n03), f1(n) + f2(n) < c4 * g(n) => o(f(n)) + o(g(n)) = o(g(n))

b) Fie $f(n) \in O(\log n) => \exists c > 0, n0 \in N$ ai:

Cum ambele functii din relatia de mai sus sunt monotone, aplicam 2^x (2 la puterea x)

=>
$$2^{f(n)} \le 2^{c * log n}$$
 $\forall n \ge n0$
=> $2^{f(n)} \le (2^{log n})^{c}$ $\forall n \ge n0$
=> $2^{f(n)} \le n^{c}$ $\forall n \ge n0$

In concluzie, am obtinut ca afirmatia este falsa (in cazul general). Ea este adevarata doar daca c≤1.

- 3. (3p) Aflati solutiile urmatoarelor recurente folosind o metoda la alegere:
 - a) T(n) = T(|B|) + T(|G|) + cn, stiind ca $\mathbf{c} \ge \mathbf{0}$, iar $|\mathbf{B}| + |\mathbf{G}| \le (\mathbf{1} \mathbf{\epsilon})\mathbf{n}$, unde $\mathbf{\epsilon} \ge \mathbf{0}$ b) $T(n) = 2^k T\left(\frac{n}{2}\right) + 1$, stiind ca $\mathbf{k} \ge \mathbf{1}$
- a) Daca $\varepsilon = 0 => |B|+|G| = n$ si se obtine exact recurenta de la quick-sort. Ea este tratata in Cormen si are multe solutii particulare (variind intre $\Omega(n\log n)$ si $O(n^2)$, in functie de cum sunt distribuite efectiv elementele in |B| si |G|.

In schimb, daca $\varepsilon > 0 \Rightarrow |B| + |G| < n$. In situatia aceasta, se poate demonstra prin metoda substitutiei (nu facem asta aici) ca recurenta are o complexitate lineara: $T(n) \in O(n)$

b) Solutia recurentei se poate gasi prin mai multe metode, destul de simplu. Insa cea mai rapida este teorema Master:

$$a = 2^k$$

 $b = 2 \implies e = log_b(a) = log_2(2^k) = k$
 $f(n) = 1$

Deci
$$f(n) \in O(n^{e-\epsilon}) = O(n^{k-\epsilon})$$
 cu $\epsilon \in (0,k] => TM$ cazul $1 => T(n) \in O(n^k)$

(2p) Fie o tabela (vector) dinamica, T, care permite inserari (operatia add) si stergeri (operatia remove) de elemente. Notam cu N(T) = numarul de elemente din tabela, S(T) = dimensiunea tabelei.

Presupunem ca in timpul unei operatii de stergere, daca dupa eliminarea elementului curent tabela ajunge sa fie plina la o capacitate de mai putin de 1/3 din dimensiunea sa (N(T) < S(T)/3), aceasta este redimensionata la parte intreaga inferioara din 2/3 din dimensiunea anterioara S(T) a tabelei. Acest lucru implica alocarea unei noi tabele de dimensiune floor(2/3*S(T)) si copierea elementelor ramase in noua tabela.

- a) Calculati costul real al operatiei remove.
- b) Dandu-se functia de potential $\Phi(T) = |2*N(T) S(T)|$, sa se determine costul amortizat al operatiei **remove**.

Rezolvare:

a)

Stergere fara redimensionare: $C_{remove} = 1$ (strict operatia de stergere)

Stergere cu redimensionare: $C_{remove} = S(T)/3$ (alocarea unei noi tabele (O(1)) + copierea a S(T)/3-1 elemente in noua tabela)

b)

 $\hat{c}_{remove} = c_{remove} + \Phi(T_i) - \Phi(T_{i-1})$ (costul amortizat = costul real + diferenta de potential)

Pentru 2*(N(T)-1) - S(T) ≥ 0:

$$\hat{c}_{remove} = 1 + 2*(N(T)-1) - S(T) - (2*N(T) - S(T)) = 1-2 = -1$$

Pentru $2*N(T) - S(T) \le 0$, cand stergerea nu necesita redimensionare:

$$\hat{c}_{remove} = 1 + S(T) - 2*(N(T)-1) - (S(T) - 2*N(T)) = 1+2 = 3$$

```
Pentru 2*N(T) - S(T) > 0 si 2*(N(T)-1) - S(T) < 0: \hat{c}_{remove} = 1 + 1 - 1 = 1
```

Cand stergerea necesita redimensionare:

```
\hat{c}_{remove} = S(T)/3 \text{ (costul real)}
+ 2*S(T)/3 - 2*(N(T)-1) - (S(T) - 2*N(T)) = 2
```

Prin urmare, costul amortizat al operatiei remove este constant in toate cele 4 situatii posibile.

5. (1.5p) Scrieti pseudocodul unui algoritm care afiseaza toate numerele prime mai mici sau egale cu **N**. Determinati complexitatea acestui algoritm.

Rezolvare:

O solutie de complexitate buna, dar care poate fi imbunatatita in continuare (nu se cerea acest lucru pentru test), poate fi gasita folosind "ciurul" lui Eratostene:

```
Print primes (n) {
    is prime[2..N];
    for (j = 2; j \le n; j++) {
        is prime[j] = 1;
    // o imbunatatire este sa aveti conditia de oprire div*div <= n
    for (div = 2; div \le n;) {
         // o imbunatatire simpla ar fi ca initializarea sa fie j = div. de ce merge?
        for (j = 2; j \le n/div; j++){
            is prime[j*div] = 0;
        // aceasta este a treia imbunatatire, algoritmul poate functiona si fara ea
        // (si sa faceti un simplu div++
        do{
            div++;
        } while (is prime[div] == 0);
    for (j = 2; j \le n; j++) \{
        if (is prime[j] == 1) {
           cout << j << "";
    }
```

Pentru a determina complexitatea, este suficient sa gasiti de cate ori se intra in cele 2 for-uri imbricate (care contin instructiunea $is_prime[j*div] = 0$). In rest, toate celelalte operatii dureaza $\Theta(n)$.

In cele 2 for-uri imbricate se intra pentru fiecare div diferit, iar in cazul cel mai defavorabil ati avea:

 $\sum_{div=2}^{n} \frac{n}{div} = n * \sum_{div=2}^{n} \frac{1}{div} \le n * logn$ (ultima inegalitate ar trebui sa o stiti de la matematica: http://stackoverflow.com/questions/3748196/1-1-2-1-3-1-n)