Causal Inference Crash Course Part 5: Heterogeneous Treatment Effect Models and Inference

Julian Hsu

Causal Inference Series

- 1) Foundations
- 2) Defining Some ATE/ATET Causal Models
- 3) ATE/ATET Inference, Asymptotic Theory, and Bootstrapping
- 4) Best Practices: Outliers, Class Imbalance, Feature Selection, and Bad Control [skipped for now]
- 5) Heterogeneous Treatment Effect Models and Inference
- 6) Difference-in-Difference Models for Panel Data
- 7) Regression Discontinuity Models
- 8) Arguable Validation

Overview

- This presentation covers the general problem of estimating heterogeneous treatment effects (HTE) and how it differs from ATE/ATET estimation.
- Covers a few models:
 - Double Machine Learning following Semenova et al. (2021)
 - Heterogeneous Residuals
 - Causal Forests / Local Linear Forests
 - Doubly Robust models following Kennedy (2020)
- Wrap up with a simulation demonstration

HTE Overview

- Average treatment effect (ATE) and average treatment effect on the treated (ATET) models want to know aggregate treatment effects.
- Instead, HTE model want to estimate the distribution of treatment effects.

$$Y_i = \hat{\beta} X_i + \hat{\tau}(Z_i) T_i + \epsilon_i$$

- So that $\hat{\tau}(Z_i)$ is the HTE and varies over Z_i . We keep X_i different from Z_i for more flexible notation.
- You also $\hat{\tau}(Z_i)$ denoted as the conditional average treatment effect: $\mathrm{E}[\tau(Z_i)|Z_i]$

HTE as an estimated function

- We want to estimate the functional form of HTE.
- When estimating ATE/ATET, we are only concerned with the average. We can assume linearity as well.
 - We average over more granular treatment effects.
- Estimating more granular treatment effects means there are additional challenges.

How much variation do we want in HTE?

- Two extremes:
- 1. Individualized treatment estimates allow more flexibility, but can demand large sample sizes and variation in data.
 - Increases the risk of noise driving estimates
- 2. Segmented estimates are the least inflexible, with the least risk of noise driving estimates.

• In-between case is to allow treatment effects to vary across some dimensions, but not others.

HTE ideal experiment

- We can understand these two extreme based on what the ideal experiment is to estimate unbiased HTE.
- For individualized HTE, the ideal is to randomize treatment for **each individual**. (impossible)
- For segmented HTE, the ideal is to randomize treatment for **each** segment. (stratified randomization)
- The more individualized HTE is, the more data and assumptions are needed to distinguish between real patterns and statistical noise in the data.

HTE inference challenge

- Statistical inference for ATE/ATET estimates is based on the distribution of error around the average estimate.
- The challenge is getting a distribution around an individual estimate.
- The solution is to rely on either model specifications or bootstrapping-esque methods.

Some HTE Models

Support across use cases

	Cross Sectional Data	Panel Data	Continuous Treatment
DML – Semenova et al.	Υ	Υ	Υ
DML – Heterogeneous Residuals	Υ	Υ	Υ
Generalized Random Forests	Υ	N	N
Doubly Robust – Kennedy (2020)	Υ	N	N

DML-Style Models

- Semenova, Goldman, Chernozhukov, Taddy (2021) SGCT
- Let's start with linearity assumptions, which gives us better interpretability:

$$Y_i = \hat{\beta}X_i + \hat{\tau}(Z_i)T_i + \epsilon_i$$

• SGCT decomposes $\hat{\tau}(Z_i)$ into a functional form:

$$\hat{\tau}(Z_i) \to \hat{\tau}g(Z_i)$$

• where $g(Z_i)$ is different functions of Z_i . For example:

$$\hat{\tau}g(Z_i) = \hat{\tau}_0 + \hat{\tau}_1 z_{1i} + \hat{\tau}_2 z_{1i}^2$$

• Continuing this example, the model is:

$$Y_{i} = \hat{\beta} X_{i} + \hat{\tau}_{0} T_{i} + \hat{\tau}_{1} Z_{1i} T_{i} + \hat{\tau}_{2} Z_{1i}^{2} T_{i} + \epsilon_{i}$$

SGCT uses residualization

Now how do we estimate this equation?

$$Y_{i} = \hat{\beta}X_{i} + \hat{\tau}_{0}T_{i} + \hat{\tau}_{1}Z_{1i}T_{i} + \hat{\tau}_{2}Z_{1i}^{2}T_{i} + \epsilon_{i}$$

- At first glance we can just do OLS, but we can improve that approach with double machine learning (DML; aka residualization).
 - Recall DML works through the Frisch-Waugh-Lovell theorem
- SGCT estimates this equation

$$\widetilde{Y}_{i} = \hat{\tau}_{0} \widetilde{T}_{i} + \hat{\tau}_{1} z_{1i} \, \widetilde{T}_{i} + \hat{\tau}_{2} z_{1i}^{2} \widetilde{T}_{i} + \eta_{i}$$

- Where \widetilde{Y}_i and \widetilde{T}_i are the residualized outcome and treatment.
- This works via Frisch-Waugh-Lovell, which will come up again when we look at the Heterogeneous Residuals model.

SGCT – HTE and inference

- We now need to do inference for individual treatment effects from $\widetilde{Y}_i = \hat{\tau}_0 \widetilde{T}_i + \hat{\tau}_1 z_{1i} \widetilde{T}_i + \hat{\tau}_2 z_{1i}^2 \widetilde{T}_i + \eta_i$
- HTE is $\hat{\tau}_1 z_{1i} + \hat{\tau}_2 z_{1i}^2$, where the standard error is calculated via the Delta method.
- We can use OLS to estimate the above equation if:
 - There are few dimensions of heterogeneity (ie $g(Z_i)$ is low dimensional); or
 - We are interested in specific dimensions of heterogeneity (ie we only want to know HTE across account tenure)

SGCT – inference with post-LASSO regression

$$\widetilde{Y}_{i} = \hat{\tau}_{0} \widetilde{T}_{i} + \hat{\tau}_{1} z_{1i} \, \widetilde{T}_{i} + \hat{\tau}_{2} z_{1i}^{2} \widetilde{T}_{i} + \eta_{i}$$

- A problem is if we estimate with all possible transformations of z_{1i} . In other words, overfitting.
- We can select the relevant transformations of z_{1i} with LASSO, but then we cannot do inference.
- Get around this with a sample-splitted LASSO for inference. Select features with LASSO on one half of the dataset, and then estimate HTE using those selected features on the other half.

Heterogeneous residuals (HR)

Based on SGCT and does more flexible residualization.

$$\widetilde{Y}_{i} = \hat{\tau}_{0} \widetilde{T}_{i} + \hat{\tau}_{1} z_{1i} \, \widetilde{T}_{i} + \hat{\tau}_{2} z_{1i}^{2} \widetilde{T}_{i} + \eta_{i}$$

- From SGCT, the estimating equation uses the residualized outcome (\widetilde{Y}_i) and treatment (\widetilde{T}_i) .
- By Frisch-Waugh-Lovell:

$$\hat{\tau}_{1} = \frac{cov(\tilde{Y}_{i}, z_{1i} \tilde{T}_{i} - E[z_{1i} \tilde{T}_{i} | z_{1i}^{2} \tilde{T}_{i}])}{var(z_{1i} \tilde{T}_{i} - E[z_{1i} \tilde{T}_{i} | z_{1i}^{2} \tilde{T}_{i}])}$$

• The problem is that $E[z_{1i} \ \tilde{T}_i \ | z_{1i}^2 \tilde{T}_i]$ is a linear expectation and could be more flexible

HR – flexible residualization

$$\hat{\tau}_{1} = \frac{cov(\tilde{Y}_{i}, z_{1i} \tilde{T}_{i} - E[z_{1i} \tilde{T}_{i} | z_{1i}^{2} \tilde{T}_{i}])}{var(z_{1i} \tilde{T}_{i} - E[z_{1i} \tilde{T}_{i} | z_{1i}^{2} \tilde{T}_{i}])}$$

- Let's use ML models to calculate the expectations.
- Therefore, we need to residualize T_i , $z_{1i}T_i$, and $z_{1i}^2T_i$.
- This treats HTE as a multiple treatments problem. Instead of estimating how the treatment effect varies over features, we estimate separate treatments.
- This gives us additional flexibility to better apply Frisch-Waugh-Lovell.

Generalized Random Forests

- Causal forests are a special class of generalized random forests, which we will discuss here.
- As motivation, note that under the unconfoundedness assumption:

$$E[(Y - \hat{g}(X_i) - \hat{\tau}(Z_i)W_i)W_i] = 0$$

- In other words, $\hat{\tau}(Z_i)$ satisfy the orthogonality assumption similar to Frisch-Waugh-Lovell.
- The problem is that we do not know what $\hat{\tau}(Z_i)$ looks like, so we want a flexible specification. Ideally, something non-parametric.

GRF – Causal Forest Objective Function

- The estimating equation (with simplified notation is): $(\hat{\tau}(Z_i), \hat{g}(X_i)) = argmin\{E[\alpha_i(z)(Y \hat{g}(X_i) \hat{\tau}(Z_i)W_i | Z_i = z]^2\}$
- We have already motivated this part. So what is the purpose of this?
- $\alpha_i(z)$ is a weight used to allow flexibility in $\hat{\tau}(Z_i)$.
 - Can be estimated to kernel methods (ie. Localized DSI model), but performance suffers under high dimensions
 - Estimate $\alpha_i(z)$ with a random forest to deal with high dimensionality of Z_i
- This weight gives us the flexibility to variation in $\hat{\tau}(Z_i)$ across different points z.

GRF –Weights $\alpha_i(z)$

- $\alpha_i(z)$ represents the probability that a training sample i falls into the same leaf as sample z, across different trees in a random forest.
 - See GRF / Appendix for the technical definition of $lpha_i(z)$.
- Splits in the random forest used to estimate $\alpha_i(z)$ are determined to maximize variation $\hat{\tau}(Z_i)$ across splits

GRF - Inference

- Athey, Tibshirani, and Wager (2019) show that $\hat{\tau}(Z_i)$ is asymptotically normal.
- This is because $\alpha_i(z)$ is estimated in an "honest" (Athey and Wager, 2018) fashion, where different samples are used to determine splits in $\alpha_i(z)$ and $\hat{\tau}(Z_i)$
- Standard errors and confidence intervals are available based on a bootstrap/jackknife approach.
 - Intuitively, estimate the distribution in $\hat{\tau}(z)$ when z is removed from the sample

Doubly Robust – <u>Kennedy (2020)</u>

Recall the interactive regression model from DML:

$$\hat{\tau}_{ATE} = E\left[\left(\hat{Y}_{1,i} - \hat{Y}_{0,i} \right) + \frac{T_i \left(Y_i - \hat{Y}_{1,i} \right)}{\hat{p}_i} - \frac{(1 - T_i) \left(Y_i - \hat{Y}_{0,i} \right)}{1 - \hat{p}_i} \right]$$

- Recall that we can intuitively understand this as a individual-level comparison from a regression adjustment model, correcting for prediction errors.
- Removing the expectation, we can see that these are individual-level treatment effect estimates

$$(\hat{Y}_{1,i} - \hat{Y}_{0,i}) + \frac{T_i(Y_i - \hat{Y}_{1,i})}{\hat{p}_i} - \frac{(1 - T_i)(Y_i - \hat{Y}_{0,i})}{1 - \hat{p}_i}$$

Applying inference to the individual estimates

- The problems are that these estimates:
 - 1. Are meant to be averaged to get the ATE/ATET; and
 - 2. Do not have inference properties.
- Kennedy (2020) frames these as "noisy" estimates of the true HTE, and proposes "refining" them with a second stage.

$$hte_{i} = (\hat{Y}_{1,i} - \hat{Y}_{0,i}) + \frac{T_{i}(Y_{i} - \hat{Y}_{1,i})}{\hat{p}_{i}} - \frac{(1 - T_{i})(Y_{i} - \hat{Y}_{0,i})}{1 - \hat{p}_{i}}$$

Refining estimates with a second stage

- Kennedy (2020) proposes applying a regression model to the "noisy" estimates of the true HTE, hte_i .
 - OLS
 - Kernel regression
 - Cross-splitted LASSO regressions

Simulation Study

Context

- Recall, HTE models are not about estimating the <u>average</u> effect, but rather the functional form of treatment effects.
- The additional complexity of functional form can make this very difficult.
- We will demonstrating using simulation evidence, where we can change the true HTE function

General Simulation Context

• For simplicity, there is only one feature

```
x \sim U[0,1]
y = 10 + 2 * \ln(1 + x) + \epsilon, \epsilon \sim N(0,1)
W = 1\{\frac{\exp(x)}{1 + \exp(x)} + \eta > 0\}, \eta \sim N(0,1)
```

- We want to know the HTE of W.
- We show three examples, with different HTE functions

First Example – Linearity

HTE(x) = 2xModel controls: x, x^2

First Example – Linearity with more controls

HTE(x) = 2xModel controls: $x, x^2, 1\{0 \ge x > 0.2\}, 1\{0.2 \ge x > 0.4\}, ... 1\{0.8 \ge x > 1\},$

Second Example – Quadratics

 $HTE(x) = \frac{1}{2}x^2$ Model controls: x, x^2

Second Example – Quadratics with more controls

HTE(x) = 2xModel controls: x, x^2 , $1\{0 \ge x > 0.2\}$, $1\{0.2 \ge x > 0.4\}$,... $1\{0.8 \ge x > 1\}$,

Third Example – Piece-wise

 $HTE(x) \begin{cases} 0.10x, x < 0.20\\ 0.75x, 0.20 \le x < 0.80\\ -0.50x, 0.80 \le x \end{cases}$

Model controls: x, x^2

Third Example – Piece-wise with more controls

```
HTE(x) \begin{cases} 0.10x, x < 0.20 \\ 0.75x, 0.20 \le x < 0.80 \\ -0.50x, 0.80 \le x \end{cases}
```

Model controls: x, x^2 , $1\{0 \ge x > 0.2\}$, $1\{0.2 \ge x > 0.4\}$,... $1\{0.8 \ge x > 1\}$

Takeaways

- Including more features to estimate a more flexible HTE may not necessarily increase performance.
- The more complicated, or more fine-grained, you want HTE estimates to be, the more data you need.

Review and Conclusion

- Covered the additional complexities and challenges of estimating HTE
- Covered a parametric (DML, HR) and non-parametric (forests) models
 - Deep neural network models (Farrell et. al 2020) not covered because of code availability
- Demonstration with simulated data

Causal Inference Series

- 1) Foundations
- 2) Defining Some ATE/ATET Causal Models
- 3) ATE/ATET Inference, Asymptotic Theory, and Bootstrapping
- 4) Best Practices: Outliers, Class Imbalance, Feature Selection, and Bad Control [skipped for now]
- 5) Heterogeneous Treatment Effect Models and Inference
- 6) Difference-in-Difference Models for Panel Data
- 7) Regression Discontinuity Models
- 8) Arguable Validation

Appendix Slides