Questions for Lecture 1

Lei Yin

September 13, 2018

1 Generate 8 bits sinusoidal signal

1.1 Wrong python code

```
from struct import pack
from math import sin, pi
import wave
Fs = 8000
# Write a mono wave file
wf = wave.open('sin_8bits_mono.wav', 'w')
wf.setnchannels(1)
wf.setsampwidth(1)
wf.setframerate(Fs)
A = 2**7 - 1.0
f = 261.6
N = int(0.5*Fs)
for n in range (0, N):
        x = A * sin(2*pi*f/Fs*n)
        byte_string = pack('b', int(x))
        # 'h' stands for 'short integer' (8 bits)
        wf.writeframes(byte_string)
wf.close()
```

1.2 Matlab demo the signal

```
[x, fs] = audioread('sin_8bits_mono.wav');
figure; plot(x(1:100))
```


1.3 Reasons

help audioread

File Format	BitsPerSample	Data Type of Y	Data Range of Y
WAVE (.wav)	8	uint8	0 <= Y <= 255
	16	int16	-32768 <= Y <= 32767
	24	int32	-2^32 <= Y <= 2^32-1
	32	int32	-2^32 <= Y <= 2^32-1
	32	single	$-1.0 \le Y \le +1.0$
FLAC (.flac)	8	uint8	0 <= Y <= 255
	16	int16	-32768 <= Y <= 32767
	24	int32	-2^32 <= Y <= 2^32-1
MP3 (.mp3) MPEG-4(.m4a,.mp4 OGG (.ogg)	N/A	single	-1.0 <= Y <= +1.0

The data type for WAVE file contain uint8 (Unsigned integer 8 bits), not the signed integer 8 bits. The way to solve this problem is to generate a sinusoidal signal with unsigned 8 bits integer.

1.4 Right python code

```
from struct import pack
from math import sin, pi
import wave
Fs = 8000
# Write a mono wave file
wf = wave.open('sin_8bits_mono.wav', 'w')
wf.setnchannels(1)
wf.setsampwidth(1)
wf.setframerate(Fs)
A = 2**7 - 1.0
f = 261.6
N = int(0.5*Fs)
for n in range (0, N):
        x = A * sin(2*pi*f/Fs*n)
        byte_string = pack('B', int(x+128))
        wf.writeframes(byte_string)
wf.close()
```

