

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Институт Информационных Технологий Кафедра Вычислительной Техники (BT)

ОТЧЁТ ПО ПРАКТИЧЕСКИМ РАБОТАМ № 1-4

по дисциплине

«Архитектура вычислительных машин и систем»

Выполнил студент группы

Сидоров С.Д.

ИКБО-20-21

Принял ассистент кафедры ВТ

Кузнецова А.Л.

Оглавление

Практическая работа 1.1	4
Практическая работа 1.2	5
Практическая работа 2.1	
Практическая работа 3	8
Практическая работа 4.1	10
Практическая работа 4.2	14

Практическая работа 1.1

Графический ввод схемы и симуляция в CAПР QUARTUS II

Цель работы

Спроектировать логическую схему формулы Y = (AB + CD)AD + BD при помощи графического редактора CAПР QUARTUS II. Исследовать работу схемы с использованием сигнального редактора CAПР QUARTUS II.

Ход работы

На рисунке 1 представлена логическая схема выражения Y = (AB + CD)AD + BD.

Рисунок 1. Логическая схема выражения

В результате симуляции работы схемы была получена диаграмма, изображённая на рисунке 2.

Рисунок 2. Диаграмма работы схемы

Практическая работа 1.2

Описание логических схем при помощи языка AHDL

Цель работы

Приобретение основных навыков описания цифровых схем с помощью языка описания аппаратуры AHDL. Смоделировать логическую схему формулы Y = (AB + CD)AD + BD при помощи текстового редактора CAПР QUARTUS II и провести моделирование работы программы в сигнальном редакторе.

Ход работы

На рисунке 3 представлено описание логической схемы формулы Y = (AB + CD)AD + BD с помощью языка описания аппаратуры AHDL.

Рисунок 3. Описание логической схемы на языке описания аппаратуры AHDL

В результате моделирования работы программы в сигнальном редакторе была получена диаграмма, изображённая на рисунке 4.

Рисунок 4. Диаграмма моделирования работы программы в сигнальном редакторе

Практическая работа 2.1

Графический ввод схемы мультиплексора и симуляция в CAПР QUARTUS

Цель работы

Спроектировать логическую схему двухбитного мультиплексора при помощи графического редактора САПР QUARTUS II. Исследовать работу схемы с использованием сигнального редактора САПР QUARTUS II.

Ход работы

На рисунке 5 представлена логическая схема двухбитного мультиплексора.

Рисунок 5. Логическая схема мультиплексора

В результате симуляции работы схемы мультиплексора была получена диаграмма, изображённая на рисунке 6.

Рисунок 6. Диаграмма работы схемы мультиплексора

Практическая работа 2.2

Описание логической схемы мультиплексора при помощи языка AHDL

Цель работы

Приобретение основных навыков описания цифровых схем с помощью языка описания аппаратуры AHDL. Смоделировать логическую схему двухбитного мультиплексора при помощи текстового редактора САПР QUARTUS II и провести моделирование работы программы в сигнальном редакторе.

Ход работы

На рисунке 7 представлено описание логической схемы (см. Практическая работа 2.1) двухбитного мультиплексора с помощью языка описания аппаратуры AHDL.

Рисунок 7. Описание логической схемы на языке описания аппаратуры AHDL

В результате моделирования работы программы в сигнальном редакторе была получена диаграмма, изображённая на рисунке 8.

Рисунок 8. Диаграмма работы схемы мультиплексора

Практическая работа 3

Моделирование цифровых схем с использованием параметрических элементов

Цель работы

Приобретение навыков использования параметрических элементов (LPM function) в САПР QUARTUS II, экспериментальное исследование мультиплексора, построенного на их основе.

Ход работы

На рисунке 9 представлена логическая схема двухбитного мультиплексора с использованием параметрических элементов.

Рисунок 9. Логическая схема мультиплексора с использованием параметрических элементов

В результате симуляции работы схемы двухбитного мультиплексора, построенного с использованием параметрических элементов, была получена диаграмма, изображённая на рисунке 10.

Рисунок 10. Диаграмма работы схемы мультиплексора

Практическая работа 4.1

Счётчик с произвольным модулем счета

Цель работы

Ознакомиться с CAПР QUARTUS II фирмы Altera, получить практические навыки создания проектов по схемотехнике ЭВМ в CAПР QUARTUS II (ввод схем, компиляция и моделирование).

Постановка задачи

Согласно своему варианту графа состояний автомата разработать функциональную электрическую схему цифрового программируемого устройства преобразования кодов.

Ход работы

Таблица перекодировки состояний устройства в десятичном и двоичном коде составлена на основе исходного графа состояний и согласно своему варианту и представлена в таблице 1. Исходный граф представлен на рисунке 11.

Таблица 1. Таблица перекодировки состояний устройства

№ состояния	№ состояния из табл.1	Двоичный код q3, q2, q1, q0	
0	9	1001	
1	1	0001	
2	12	1100	
3	11	1011	
4	3	0011	
5	0	0000	
6	5	0101	
7	15	1111	
8	10	1010	
9	13	1101	
10	4	0100	
11	6	0110	
12	7	0111	
13	8	1001	
14	14	1110	
15	2	0010	

Рисунок 11. Исходный граф

На основе таблицы перекодировки состояний устройства в десятичном и двоичном коде составим граф по исходному графу, подставив новые значения состояний в новый граф. Новый граф, полученный с учётом таблицы перекодировки, представлен на рисунке 12.

Рисунок 12. Граф, полученный с учётом таблицы перекодировки

По новому графу составлена таблица истинности автомата, представленная таблицей 2.

Таблица 2. Таблица истинности автомата

Старое с	остояние	условие	Новое состояние	
№	код		№	код
9	1001	-	1	0001
1	0001	A=0	10	1010
1	0001	A=1	12	1100
10	1010	-	13	1101
13	1101	-	4	0100
4	0100	B=0	7	0111
4	0100	B=1	6	0110
7	0111	-	15	1111
15	1111	-	8	1000
8	1000	-	14	1110
14	1110	-	2	0010
2	0010	-	9	1001
12	1100	-	11	1011
11	1011	B=0	3	0011
11	1011	B=1	0	0000
3	0011	-	5	0101
5	0101	-	15	1111
6	0110	-	15	1111
0	0000	-	5	0101

По таблице истинности разработана функциональная схема устройства, представленная на рисунке 13.

Рисунок 13. Функциональная схема счётчика

В результате симуляции работы схемы счётчика, построенного на основе графа своего варианта, была получена диаграмма, изображённая на рисунке 14.

Рисунок 14. Диаграмма работы схемы счётчика

Практическая работа 4.2

Описание счетчика с произвольным модулем счета при помощи языка описания аппаратуры AHDL

Цель работы

Ознакомиться с CAПР QUARTUS II фирмы Altera, получить практические навыки создания проектов по схемотехнике ЭВМ в CAПР QUARTUS II при помощи языка описания аппаратуры AHDL.

Постановка задачи

Согласно своему варианту графа состояний автомата смоделировать функциональную электрическую схему цифрового программируемого устройства преобразования кодов при помощи языка описания аппаратуры AHDL.

Ход работы

На рисунке 12 представлен граф, полученный с учётом таблицы перекодировки (см. Практическая работа 4.1).

В таблице 2 представлена таблица истинности автомата (см. Практическая работа 4.1)

На рисунке 15 и рисунке 16 представлено описание работы цифрового программируемого устройства преобразования кодов с помощью языка описания аппаратуры AHDL. На рисунке 17 представлена диаграмма, полученная в результате моделирования работы программы в сигнальном редакторе.

Рисунок 15. Описание работы цифрового программируемого устройства преобразования кодов с помощью языка описания аппаратуры AHDL ч.1

Рисунок 16. Описание работы цифрового программируемого устройства преобразования кодов с помощью языка описания аппаратуры AHDL ч.2

Рисунок 17. Диаграмма работы схемы счётчика

ВЫВОД

В ходе выполнения данных практических работ были получены навыки проектирования цифровых схем при помощи графического редактора программы QUARTUS II. Также были получены знания и практические умения тестирования работоспособности построенных схем с помощью сигнального редактора и представления симуляции в виде диаграммы и были приобретены основные навыки описания логических схем с помощью языка описания аппаратуры AHDL и моделирования программ на этом языке.