SEQUENCE LISTING

							-									
<110		Hastings, Gregg Dillon, Patrick														
<120	0 >	Human Neuronal Attachment Factor-1														
<130) >	PF226D1														
<140 <141		09/170,042 1988-10-13														
<160) >	19														
<170)>	PatentIn version 3.0														
<210 <211 <212 <213	L> 2> :	1 1105 DNA homo sapiens														
<221 <222	<220> <221> CDS <222> (19)(1011)															
<400 cgct		1 cct g	gccg	ggtg		gaa Glu										51
		ctc Leu														99
		30 Gly 393														147
		acc Thr														195
tac Tyr 60	ccc Pro	ctg Leu	ttc Phe	cgc Arg	ccc Pro 65	cct Pro	gcc Ala	cag Gln	tgg Trp	tct Ser 70	tcg Ser	ctg Leu	ctg Leu	G1 ^A	gcc Ala 75	243
		agc Ser														291
aac Asn	Gly 999	ctg Leu	cgc Arg 95	gac Asp	ttt Phe	gcg Ala	gag Glu	cgc Arg 100	ggc Gly	gag Glu	gcc Ala	tgg Trp	gcg Ala 105	ctg Leu	atg Met	339
aag Lys	gag Glu	atc Ile 110	gag Glu	gcg Ala	gcg Ala	G1y 999	gag Glu 115	gcg Ala	ctg Leu	cag Gln	agc Ser	gtg Val 120	cac His	gcg Ala	gtg Val	387
ttt Phe	tcg Ser 125	gcg Ala	ccc Pro	gcc Ala	gtc Val	ccc Pro 130	agc Ser	ggc Gly	acc Thr	ggg ggg	cag Gln 135	acg Thr	tcg Ser	gcg Ala	gag Glu	435

]	ctg Leu 140	gag Glu	gtg Val	cag Gln	cgc Arg	agg Arg 145	cac His	tcg Ser	ctg Leu	gtc Val	tcg Ser 150	ttt Phe	gtg Val	gtg Val	cgc Arg	atc Ile 155	483
,	gtg Val	ccc Pro	agc Ser	ccc Pro	gac Asp 160	tgg Trp	ttc Phe	gtg Val	ggc Gly	gtg Val 165	gac Asp	agc Ser	ctg Leu	gac Asp	ctg Leu 170	tgc Cys	531
	gac Asp	gjà aaa	gac Asp	cgt Arg 175	tgg Trp	cgg Arg	gaa Glu	cag Gln	gcg Ala 180	gcg Ala	ctg Leu	gac Asp	ctg Leu	tac Tyr 185	ccc Pro	tac Tyr	579
•	gac Asp	gcc Ala	999 190	acg Thr	gac Asp	agc Ser	ggc Gly	ttc Phe 195	acc Thr	ttc Phe	tcc Ser	tcc Ser	ccc Pro 200	aac Asn	ttc Phe	gcc Ala	627
	acc Thr	atc Ile 205	ccg Pro	cag Gln	gac Asp	acg Thr	gtg Val 210	acc Thr	gag Glu	ata Ile	acg Thr	tcc Ser 215	tcc Ser	tct Ser	ccc Pro	agc Ser	675
	cac His 220	ccg Pro	gcc Ala	aac Asn	tcc Ser	ttc Phe 225	tac Tyr	tac Tyr	ccg Pro	cgg Arg	ctg Leu 230	aag Lys	gcc Ala	ctg Leu	cct Pro	ccc Pro 235	723
	atc Ile	gcc Ala	agg Arg	gtg Val	aca Thr 240	ctg Leu	gtg Val	cgg Arg	ctg Leu	cga Arg 245	cag Gln	agc Ser	ccc Pro	agg Arg	gcc Ala 250	ttc Phe	771
	atc Ile	cct Pro	ccc Pro	gcc Ala 255	cca Pro	gtc Val	ctg Leu	ccc Pro	agc Ser 260	agg Arg	gac Asp	aat Asn	gag Glu	att Ile 265	gta Val	gac Asp	819
				gtt Val													867
	tcg Ser	tcc Ser 285	tgg Trp	gga Gly	ctg Leu	tgc Cys	gga Gly 290	ggc	cac His	tgt Cys	ggg Gly	agg Arg 295	ctc Leu	GJÀ 333	acc Thr	aag Lys	915
	agc Ser 300	agg Arg	act Thr	cgc Arg	tac Tyr	gtc Val 305	cgg Arg	gtc Val	cag Gln	ccc Pro	gcc Ala 310	aac Asn	aac Asn	Gly 333	agc Ser	ccc Pro 315	963
	tgc Cys	ccc Pro	gag Glu	ctc Leu	gaa Glu 320	gaa Glu	gag Glu	gct Ala	gag Glu	tgc Cys 325	gtc Val	cct Pro	gat Asp	aac Asn	tgc Cys 330	gtc Val	1011
	taa	gacc	aga	gccc	cgca	gc c	cctg	gggc	c cc	ccgg	agcc	atg	gggt	gtc	a aaa	gctcct	1071
	gtg	cagg	ctc	atgc	tgca	gg c	ggcc	gagg	g ca	ca							1105
	<21	0>	2														

<210> 2

<211> 331 <212> PRT

<213> homo sapiens

<400> 2

Met Glu Asn Pro Ser Pro Ala Ala Ala Leu Gly Lys Ala Leu Cys Ala Leu Leu Leu Ala Thr Leu Gly Ala Ala Gly Gln Pro Leu Gly Gly Glu Ser Ile Cys Ser Ala Arg Ala Leu Ala Lys Tyr Ser Ile Thr Phe Thr 40 Gly Lys Trp Ser Gln Thr Ala Phe Pro Lys Gln Tyr Pro Leu Phe Arg 55 Pro Pro Ala Gln Trp Ser Ser Leu Leu Gly Ala Ala His Ser Ser Asp 70 75 Tyr Ser Met Trp Arg Lys Asn Gln Tyr Val Ser Asn Gly Leu Arg Asp 85 90 Phe Ala Glu Arq Gly Glu Ala Trp Ala Leu Met Lys Glu Ile Glu Ala 105 Ala Gly Glu Ala Leu Gln Ser Val His Ala Val Phe Ser Ala Pro Ala 120 Val Pro Ser Gly Thr Gly Gln Thr Ser Ala Glu Leu Glu Val Gln Arg 130 Arg His Ser Leu Val Ser Phe Val Val Arg Ile Val Pro Ser Pro Asp 145 Trp Phe Val Gly Val Asp Ser Leu Asp Leu Cys Asp Gly Asp Arg Trp Arg Glu Gln Ala Ala Leu Asp Leu Tyr Pro Tyr Asp Ala Gly Thr Asp 185 Ser Gly Phe Thr Phe Ser Ser Pro Asn Phe Ala Thr Ile Pro Gln Asp 195 200 Thr Val Thr Glu Ile Thr Ser Ser Pro Ser His Pro Ala Asn Ser 215 220 210 Phe Tyr Tyr Pro Arg Leu Lys Ala Leu Pro Pro Ile Ala Arg Val Thr 225 Leu Val Arg Leu Arg Gln Ser Pro Arg Ala Phe Ile Pro Pro Ala Pro 245 250 255

Val Leu Pro Ser Arg Asp Asn Glu Ile Val Asp Ser Ala Ser Val Pro 260 265 270

Glu Thr Pro Leu Asp Cys Glu Val Ser Leu Trp Ser Ser Trp Gly Leu 275 280 285

Cys Gly Gly His Cys Gly Arg Leu Gly Thr Lys Ser Arg Thr Arg Tyr 290 295 300

Val Arg Val Gln Pro Ala Asn Asn Gly Ser Pro Cys Pro Glu Leu Glu 305 310 315 320

Glu Glu Ala Glu Cys Val Pro Asp Asn Cys Val 325 330

<210> 3

<211> 36

<212> DNA

<213> oligonucleotide

<220>

<221> primer_bind

<222> (1)..(36)

<223> 5' primer containing a BamHI restriction enzyme site followed by 21 nucleotides of NAD-1 coding sequence.

<400> 3 gccatacggg atccccagcc tcttggggga gagtcc

36

<210> 4

<211> 35

<212> DNA

<213> oligonucleotide

<220>

<221> primer_bind

<222> (1)..(35)

<223> 3' primer containing complementary sequence to an XbaI site
followed by 21 nucleotides of NAF-1 sequence.

<400> 4

ggcatacgtc tagattagac gcagttatca gggac

35

<210> 5

<211> 41

<212> DNA

<213> oligonucleotide

<220>

<221> primer_bind <222> (1)..(41) <223> 5' primer containing a BamHI restriction enzyme site followed by 8 nucleotides resembling an efficient signal for initiation of translation in eukaryotic cells followed by 21 nucleotides of NAF-1 sequence. <400> 5 gccatacggg atccgccatc atggaaaacc ccagcccggc c 41 <210> 6 <211> 35 <212> DNA <213> oligonucleotide <220> <221> primer bind <222> (1)..(35) <223> 3' primer containing the cleavage site for XbaI restriction endonuclease and 21 nucleotides complementary to the 3' end of the translated sequence of the NAF-1 gene. <400> 6 35 ggcatacgtc tagattagac gcagttatca gggac <210> 7 <211> 392 <212> PRT <213> rat <400> 7 Pro Thr Gly Thr Gly Cys Val Ile Leu Lys Ala Ser Ile Val Gln Lys Arg Ile Ile Tyr Phe Gln Asp Glu Gly Ser Leu Thr Lys Lys Leu Cys 25 Glu Gln Asp Pro Thr Leu Asp Gly Val Thr Asp Arg Pro Ile Leu Asp Cys Cys Ala Cys Gly Thr Ala Lys Tyr Arg Leu Thr Phe Tyr Gly Asn

Trp Ser Glu Lys Thr His Pro Lys Asp Tyr Pro Arg Arg Ala Asn His

Trp Ser Ala Ile Ile Gly Gly Ser His Ser Lys Asn Tyr Val Leu Trp

Glu Tyr Gly Gly Tyr Ala Ser Glu Gly Val Lys Gln Val Ala Glu Leu

Gly Ser Pro Val Lys Met Glu Glu Glu Ile Arg Gln Gln Ser Asp Glu

Val Leu Thr Val Ile Lys Ala Lys Ala Gln Trp Pro Ser Trp Gln Pro

70

5

90

	130					135					140				
Val 145	Asn	Val	Arg	Ala	Ala 150	Pro	Ser	Ala	Glu	Phe 155	Ser	Val	Asp	Arg	Thr 160
Arg	His	Leu	Met	Ser 165	Phe	Leu	Thr	Met	Met 170	Gly	Pro	Ser	Pro	Asp 175	Trp
Asn	Val	Gly	Leu 180	Ser	Ala	Glu	Asp	Leu 185	Cys	Thr	Lys	Glu	Cys 190	Gly	Trp
Val	Gln	Lys 195	Val	Val	Gln	Asp	Leu 200	Ile	Pro	Trp	Asp	Ala 205	Gly	Thr	Asp
Ser	Gly 210	Val	Thr	Tyr	Glu	Ser 215	Pro	Asn	Lys	Pro	Thr 220	Ile	Pro	Gln	Glu
Lys 225	Ile	Arg	Pro	Leu	Thr 230	Ser	Leu	Asp	His	Pro 235	Gln	Ser	Pro	Phe	Tyr 240
Asp	Pro	Glu	Gly	Gly 245	Ser	Ile	Thr	Gln	Val 250	Ala	Arg	Val	Val	Ile 255	Glu
Arg	Ile	Ala	Arg 260	Lys	Gly	Glu	Gln	Cys 265	Asn	Ile	Val	Pro	Asp 270	Asn	Val
Asp	Asp	Ile 275	Val	Ala	Asp	Leu	Ala 280	Pro	Glu	Glu	Lys	Asp 285	Glu	Asp	Asp
	290				Ile	295					300				
305					Glu 310					315					320
_				325	Leu				330					335	
			340		Pro			345					350		
		355					360					365			Gly
Met	Gly 370		Arg	Ser	Arg	Glu 375		Tyr	Val	Lys	Gln 380		Pro	Glu	Asp
Gly 385		Val	. Сув	Met	Leu 390		Thr								
<21 <21 <21 <21	.1> .2>	8 52 PRT rat													
<40	00>	8													
Cys 1	: Ile	туі	Sei	Asr 5	Trp	Ser	Pro	Trp	Ser 10	Ala	суя	s Ser	Ser	Ser 15	Thr

Cys Glu Lys Gly Lys Arg Met Arg Gln Arg Met Leu Lys Ala Gln Leu

30 25 20

Asp Leu Ser Val Pro Cys Pro Asp Thr Gln Asp Phe Gln Pro Cys Met

Gly Pro Gly Cys 50

<210> 9

<211> 53

<212> PRT <213> rat

<400> 9

Cys Thr Met Ser Glu Trp Ile Thr Trp Ser Pro Cys Ser Val Ser Cys

Gly Met Gly Met Arg Ser Arg Glu Arg Tyr Val Lys Gln Phe Pro Glu

Asp Gly Ser Val Cys Met Leu Pro Thr Glu Glu Thr Glu Lys Cys Thr 40

Val Asn Glu Glu Cys 50

<210> 10

<211> 52

<212> PRT

<213> rat

<400> 10

Cys Leu Val Thr Glu Trp Gly Glu Trp Asp Asp Cys Ser Ala Thr Cys

Gly Met Gly Met Lys Lys Arg His Arg Met Val Lys Met Ser Pro Ala 25

Asp Gly Ser Met Cys Lys Ala Glu Thr Ser Gln Ala Glu Lys Cys Met

Met Pro Glu Cys 50

<210> 11

<211> 51

<212> PRT

<213> rat

<400> 11

Cys Leu Leu Ser Pro Trp Ser Glu Trp Ser Asp Cys Ser Val Thr Cys 10

Gly Lys Gly Met Arg Thr Arg Gln Arg Met Leu Lys Ser Leu Ala Glu

Leu Gly Asp Cys Asn Glu Asp Leu Glu Gln Ala Glu Lys Cys Met Leu 40

Pro Glu Cys 50 <210> 12 <211> 52 <212> PRT <213> rat <400> 12 Cys Glu Leu Ser Glu Trp Ser Gln Trp Ser Glu Cys Asn Lys Ser Cys Gly Lys Gly His Met Ile Arg Thr Arg Thr Ile Gln Met Glu Pro Gln 25 Phe Gly Gly Ala Pro Cys Pro Glu Thr Val Gln Arg Lys Lys Cys Arg 40 Ala Arg Lys Cys 50 <210> 13 <211> 53 <212> PRT <213> rat <400> 13 Cys Arg Met Arg Pro Trp Thr Ala Trp Ser Glu Cys Thr Lys Leu Cys 10 Gly Gly Gly Ile Gln Glu Arg Tyr Met Thr Val Lys Lys Arg Phe Lys 25 Ser Ser Gln Phe Thr Ser Cys Lys Asp Lys Lys Glu Ile Arg Ala Cys 40 Asn Val His Pro Cys 50 <210> 14 <211> 50 <212> PRT <213> Homo sapiens <400> 14 Cys Leu Val Ser Glu Trp Ser Glu Trp Ser Asp Cys Ser Thr Cys Gly Lys Gly Met Arg Ser Arg Thr Arg Met Val Lys Met Ser Pro Ala Asp 20 Gly Ser Pro Cys Pro Asp Thr Glu Glu Ala Glu Lys Cys Met Val Pro 45 40 Glu Cys

50

```
<210> 15
<211> 0
<212> DNA
<213> homo sapiens
<400> 15
000
<210> 16
<211> 506
<212> DNA
<213> homo sapiens
<220>
<221> misc_feature
<222> (11)..(11)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (15)..(15)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature <222> (16)..(16)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (52)..(52)
 <223> n is equal to a, t, c, or g
 <220>
 <221> misc_feature
 <222> (114)..(114)
 <223> n is equal to a, t, c, or g
 <220>
 <221> misc_feature
 <222> (218)..(218)
 <223> n is equal to a, t, c, or g
 <220>
 <221> misc_feature
 <222> (301)..(301)
 <223> n is equal to a, t, c, or g
 <220>
 <221> misc feature
 <222> (318)..(318)
  <223> n is equal to a, t, c, or g
```

```
<220>
<221> misc_feature
<222> (321)..(321)
<223> n is equal to a, t, c, or g
<220>
<221> misc feature
<222> (343)..(343)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (358)..(358)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (362)..(362)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (368)..(368)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222>
       (377)..(377)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222>
       (400)..(400)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
       (403)..(403)
<222>
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (407)..(407)
 <223> n is equal to a, t, c, or g
 <220>
 <221> misc_feature
 <222> (410)..(410)
 <223> n is equal to a, t, c, or g
 <220>
```

```
<221> misc_feature
<222> (423)..(423)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (427)..(427)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (428)..(428)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (434)...(434)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (441)..(441)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (446)..(446)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (472)..(472)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (480)..(480)
<223> n is equal to a, t, c, or g
 <220>
 <221> misc_feature
 <222> (488)..(488)
 <223> n is equal to a, t, c, or g
 <220>
 <221> misc_feature
 <222> (493)..(493)
 <223> n is equal to a, t, c, or g
 <220>
 <221> misc_feature
```

```
<223> n is equal to a, t, c, or g
<400> 16
                                                                      60
gaatteggea naggnnaaac eecageeegg etgeegeeet gggeaaggee tnetgegete
tcctcctggc cactctcggc gccggcacca gcctcttggg ggagagtcca tctnttccgc
                                                                     120
                                                                     180
cagagececg gecaaataca geateaeett caegggeaag tggagecaga eggeetteee
                                                                     240
caaqcaqtac cccctgttcc gccccctgc gcatggtntt cgctgctggg ggccgcgcat
                                                                     300
agctccgact acagcatgtg gaggaagaac cagtacgtca taaacgggct gcgcgacttt
                                                                     360
ncggagcggc gaggcctngg ncgttgatga aggagatccg ggnggcgggg gaggcgtnca
anaggtgnca agagttnttt tcggggcccg gttccccaan ggnaacnggn aaacgttggg
                                                                     420
ggntttnnag tttnaagaag naattnttgg tttttttttg ggtgggattt tnccaacccn
                                                                     480
                                                                     506
attgtttntg ggntggaaaa ttngac
<210>
       17
<211>
       316
<212> DNA
<213> homo sapiens
<220>
<221> misc_feature
      (5)..(5)
<222>
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
      (6)..(6)
<222>
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (43)..(3)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (129)..(129)
<223> n is equal to a, t, c, or g
<220>
<221> misc feature
<222> (130)..(130)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
```

<222> (503)..(503)

```
<222> (138)..(138)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (143)..(143)
<223> n is equal to a, t, c, or g
<220>
<221> misc feature
<222> (164)..(164)
<223> n is equal to a, t, c, or g
<220>
<221> misc feature
<222> (258)..(258)
<223> n is equal to a, t, c, or g
<220>
<221> misc feature
<222> (272)..(272)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (276)..(276)
<223> n is equal to a, t, c, or g
<220>
<221> misc feature
<222> (278)..(278)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (287)..(287)
<223> n is equal to a, t, c, or g
<220>
<221> misc feature
<222> (301)..(301)
<223> n is equal to a, t, c, or g
<220>
<221>
     misc feature
<222>
      (312)..(312)
<223> n is equal to a, t, c, or g
<400> 17
ggcanngcca gtacgtcata acgggctgcg cgactttgcg gangcggcga ggcctgggcg
```

```
ctgatgaagg agatcaaggc ggcgggggag gcgctgcaga ggtgcacgag gtgttttcgg
                                                                     120
cgcccggtnn cccagcgnca ccnggcagac gtcggcgaac tggnaggtgc agcgcaggca
                                                                     180
etegetggte tegtttgtgg tgegeategt geceageeee gaetggtteg tgggegtgga
                                                                     240
cagcetggga cetgtganaa eggggaeett tngegngnaa eaggegnegt tggaeetgta
                                                                     300
                                                                     316
nccctacgac gncggg
<210> 18
<211>
       316
<212> DNA
<213> homo sapiens
<220>
<221> misc_feature
      (5)..(5)
<222>
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (6)..(6)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (43)..(43)
 <223> n is equal to a, t, c, or g
 <220>
 <221> misc_feature
 <222> (129)..(129)
 <223> n is equal to a, t, c, or g
 <220>
 <221> misc_feature
 <222> (130)..(130)
 <223> n is equal to a, t, c, or g
 <220>
 <221> misc_feature
 <222> (138)..(138)
 <223> n is equal to a, t, c, or g
 <220>
 <221> misc feature
 <222> (143)..(143)
 <223> n is equal to a, t, c, or g
 <220>
 <221> misc feature
```

<222> (164)..(164)

```
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (258)..(258)
<223> n is equal to a, t, c, or g
<220>
<221> misc feature
<222> (272)..(272)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (276)..(276)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (278)..(278)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (287)..(287)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (301)..(301)
<223> n is equal to a, t, c, or g
<220>
<221> misc_feature
<222> (312)..(312)
 <223> n is equal to a, t, c, or g
       18
 <400>
                                                                             60
 ggcanngcca gtacgtcata acgggctgcg cgactttgcg gangcggcga ggcctgggcg
 ctgatgaagg agatcaaggc ggcgggggag gcgctgcaga ggtgcacgag gtgttttcgg
                                                                            120
 cgcccggtnn cccagcgnca ccnggcagac gtcggcgaac tggnaggtgc agcgcaggca
                                                                            180
                                                                            240
 ctcgctggtc tcgtttgtgg tgcgcatcgt gcccagcccc gactggttcg tgggcgtgga
                                                                            300
 cagcctggga cctgtganaa cggggacctt tngcgngnaa caggcgncgt tggacctgta
                                                                            316
 nccctacgac gncggg
```

15

<210> 19 <211> 53 <212> PRT

<213> homo sapiens

<400> 19

Cys Glu Val Ser Leu Trp Ser Ser Trp Gly Leu Cys Gly Gly His Cys 1 5 10 15

Gly Arg Leu Gly Thr Lys Ser Arg Thr Arg Tyr Val Arg Val Gln Pro 20 25 30

Ala Asn Asn Gly Ser Pro Cys Pro Glu Leu Glu Glu Glu Ala Glu Cys 35 40 45

Val Pro Asp Asn Cys 50