Date: 07/08/2024

Experiment 3.1

AIM

To simulate FIRST and FOLLOW of a grammar

ALGORITHM

- 1. Start
- 2. Read grammar G with n non terminals and m terminals.
- 3. Each non terminal is represented as a number between 0 to n-1 and each terminal as a number between 0 to m-1.
- 4. Initialize a n*(m+1) 2D array of boolean values to store FIRST and FOLLOW of each non-terminal where the element at index (i,j) represents whether the terminal j is part of FIRST or FOLLOW of i. The index m+1 for terminals represents special characters 'ε' and '\$' in FIRST and FOLLOW respectively.
- 5. Find FIRST of all non terminals by repeating the following till no changes occur to the FIRST set in a given iteration:
 - 1. For each production rule of form $X \rightarrow Y1Y2...Yk$:
 - 1. If the production of the form $X \rightarrow \varepsilon$:
 - 1. Add ε to FIRST(X).
 - 2. Continue to next iteration.
 - 2. Set nullable = true.
 - 3. For i from 1 to k:
 - 1. If Y_i is a terminal:
 - 1. Add Y_i to FIRST(X).
 - 2. Set nullable = false.
 - 3. Break.
 - 2. Add all terminals in $FIRST(Y_i)$ to FIRST(X) except ' ϵ '.
 - 3. If $\epsilon \notin FIRST(Y_i)$:
 - 1. Set nullable = false.
 - 2. Break.

- 4. If nullable, add ' ϵ ' to FIRST(X).
- 6. Find FOLLOW of all non terminals by repeating the following till no changes occur to the FOLLOW set in a given iteration:
 - 1. Add '\$' to FOLLOW(S) where S is the starting symbol.
 - 2. For each production rule of form $X \rightarrow Y1Y2...Yk$:
 - 1. For i from 1 to k:
 - 1. Set nullable = true.
 - 2. For j from i+1 to k:
 - 1. If Y_i is a terminal:
 - 1. Add Y_j to FOLLOW(Y_i).
 - 2. Set nullable = false.
 - 3. Break.
 - 2. Add all terminals in $FIRST(Y_j)$ to $FOLLOW(Y_i)$ except ' ϵ '.
 - 3. If $\varepsilon \notin FIRST(Y_j)$:
 - 1. Set nullable = false.
 - 2. Break.
 - 3. If nullable, add all terminals in FOLLOW(X) to $FOLLOW(Y_i)$ including '\$'.
- 7. Display FIRST and FOLLOW of each non-terminal.
- 8. Stop

RESULT Successfully found FIRST and FOLLOW of all non terminals in a given grammar	