- 1. The function P is given by $P = \frac{a}{t} + bt^2$ and when t = 1, P = -1. $\frac{dP}{dt}$ when $t = -\frac{1}{2}$ is 5. Find the values of a and b.
- 2. Given that $L = mp^4 + np^2 + 3$. Find $\frac{dL}{dp}$.

When p=1, $\frac{dL}{dp}=12$ and when $p=\frac{1}{4}$, $\frac{dL}{dp}=-\frac{3}{4}$. Find the values of m and n.

Find the points where the curve y = 2x² + 3x - 5 cuts the x -axis. Find the equations of the tangents to the curve at those points.

Prove that the tangents meet together at the point $\left(-\frac{3}{4}, -\frac{49}{4}\right)$.

- 4. The line y = 4x 5 cuts the curve $y = x^2 2x$ at two points.
 - (a) Find the gradients of the curve at the two points.
 - (b) Show that the tangent at one of the point is horizontal and find the equation of that tangent.
- 5. A curve has the equation $y = x^3 px + q$. The tangent to this curve at the point (2, -8) is parallel to the x -axis.
 - (a) Find the values of p and q.
 - (b) Find also the coordinates of the other point where the tangent is parallel to the x -axis.
- 6. The curve $y = \frac{a}{x} + bx$ passes through the points A(1, -1) and B(2, 4).
 - (a) Find the values of a and b.
 - (b) Show that the tangent to the curve at $x = \sqrt{2}$ is parallel to AB.
- (a) Show that the gradients of the tangents to the curve y = x² x 2 where the curve meets the x -axis
 are numerically equal.
 - (b) Find the equation of these tangents and show that they intersect on the axis of the curve.
- 8. The normal at the point A(-1, 2) on the curve $y = 3 x^2$ meets the curve again at B.
 - (a) Find the equation of the normal at A and the coordinates of B.
 - (b) Find the coordinates of the point C on the curve where the normal at A is parallel to the curve.
- 9. The tangent to the curve $y = x^2 + \frac{1}{4}$ at (1, 2) meets the curve again at P.
 - (a) Find the equation of the tangent.
 - (b) Find the coordinates of P.
 - (c) Find the equation of the tangent at P.
- 10. T is the tangent to the curve $y = x^2 + 6x 4$ at the point (1, 3) and N is the normal to the curve $y = x^2 6x + 18$ at (4, 10). Find the coordinates of the point of intersection of T and N.

- 11. The normal to the curve $y = a\sqrt{x} + \frac{b}{\sqrt{x}}$, where a and b are constants has the equation 4x + y = 22 at the point where x = 4. Find the value of a and b.
- 12. L is the line y = 4x 2 and C is the curve $y = mx^3 + nx^2 1$. The line L is tangent to the curve C at x = 1;
 - (a) Using the fact that L and C meet at x = 1; show that m + n = 3.
 - (b) Given that L is a tangent to C at x = 1; show that 3m + 2n = 4.
 - (c) Hence solve m and n.
- 13. The straight line y = -x + 4 cuts the parabola $y = 16 x^2$ at the points A and B.
 - (a) Find the coordinates of A and B.
 - (b) Find the equation of the tangents A and B, and hence determine where the two tangents meet.
- 14. The velocity v cms⁻¹ of a particle moving in a straight line is given by v = 8t kt² where k is a constant and t s is the time from the start. If its acceleration is 0 when t = 1, find:
 - (a) The value of k.
 - (b) The time when the particle comes to instantaneous rest.
 - (c) The maximum velocity of the particle.
- 15. The curve C has equation

$$y = x^3 - 5x + \frac{2}{x}, \quad x \neq 0.$$

The points A and B both lie on C and have coordinates (1, -2) and (-1, 2) respectively.

- (a) Show that the gradient of C at A is equal to the gradient of C at B.
- (b) Show that the equation of the normal to C at A is 4y = x − 9.
- (c) The normal to C at A meets the x -axis at the point P. The normal to C at B meets the y -axis at the point Q. Find the length of PQ.
- 16. The curve C has equation $y = 4x^2 + \frac{5-x}{x}$, $x \neq 0$. The point P on C has x –coordinate 1.
 - (a) Show that the value of $\frac{dy}{dx}$ at P is 3.
 - (b) Find an equation of the tangent to C at P.
 - (c) This tangent meets the x -axis at the point (k, 0). Find the value of k.
- 17. The curve C has equation $y = \frac{1}{3}x^3 4x^2 + 8x + 3$. The point P has coordinates (3, 0).
 - (a) Show that P lies on C.
 - (b) Find the equation of the tangent to C at P, giving your answer in the form y = mx + c, where m and c are constants.
 - (c) Another point Q also lies on C. The tangent to C at Q is parallel to the tangent to C at P. Find the coordinates of Q.
- 18. The curve $y = (x 1)(x^2 4)$ cuts the x axis at three points; $P_x(1, 0)$ and $Q_x(1, 0)$.
 - (a) Write down the x -coordinate of P and the x -coordinate of Q.
 - (b) Show that $\frac{dy}{dx} = 3x^2 2x 4$
 - (c) Show that y = x + 7 is an equation of the tangent to C at the point (-1, 6).

- (d) The tangent to the curve at the point R is parallel to the tangent at the point (-1, 6). Find the exact coordinates of R.
- 19. A curve is defined by the equation;

$$y = \frac{(2x+1)(x+4)}{\sqrt{x}}, x > 0$$

- (a) Show that y can be written in the form $Px^{\frac{3}{2}} + Qx^{\frac{1}{2}} + Rx^{-\frac{1}{2}}$, stating the values of the constants P, Q and R.
- (b) Find $\frac{dy}{dx}$.
- (c) Show that the tangent to the curve at the point where x = 1 is parallel to the line with equation 2y = 11x + 3.
- 20. A curve has the equation $y = x + \frac{3}{x}$, $x \ne 0$. The point P on the curve has x —coordinate 1.
 - (a) Show that the gradient of the curve at P is -2.
 - (b) Find an equation for the normal to the curve at P, giving your answer in the form y = mx + c.
 - (c) Find the coordinates of the point where the normal to the curve at P intersects the curve again.
- 21. The line y = 2x + 1 intersects curve $y = x^2 3x + 5$ at points P and Q.
 - (a) Using algebra, show that P has the coordinates (1, 3) and find the coordinates of Q.
 - (b) Find the equations of the tangents to the curve at points P and Q.
 - (c) Find the coordinates of the point where the tangent to the curve at P intersects the tangent to the curve at Q.
- 22. The curve C is given by the equation $y = (x + 2)^3$.
 - (a) Find $\frac{dy}{dx}$.
 - (b) A straight line l is tangent to C at the point (-1, 1). Find the equation of l.
 - (c) The straight line m is parallel to l and is also a tangent to C. Show that m has the equation y = 3x + 8.
- 23. The curve $y = x^3 + 3x^2 4x$ crosses the x -axis at the origin O, and the points A and B.
 - (a) Find the coordinates of A and B
 - (b) Aline I is tangent to the curve at O. Find the equation of I.
 - (c) Find the coordinates of the point where I intersects the curve again.
- 24. Given that;

$$y=\frac{(x-4)^2}{2x^{\frac{1}{2}}}, \ x>0.$$

(a) Find the values of the constants A, B and C such that

$$y = Ax^{3/2} + Bx^{1/2} + Cx^{-1/2}$$
.

(b) Show that

$$\frac{dy}{dx} = \frac{(3x+4)(x-4)}{4x^{\frac{3}{2}}}.$$

25. A curve has the equation $y = \frac{x}{2} + 3 - \frac{1}{x}$, $x \neq 0$. The point A on the curve has x – coordinate 2.

- (a) Find the gradient of the curve at A.
- (b) Show that the tangent to the curve at A has equation 3x 4y + 8 = 0.
- (c) The tangent to the curve at the point B is parallel to the tangent at A. Find the coordinates of B.
- 26. A curve has the equation $y = x^3 5x^2 + 7x$.
 - (a) Show that the curve only crosses the x -axis at one point.
 - (b) The point P on the curve has coordinates (3, 3). Find an equation for the normal to the curve at P, giving your answer in the form ax + by = c, where a, b and c are integers.
 - (c) The normal to the curve at P meets the coordinate axes at Q and R. Show that the triangle OQR, where O is the origin, has area 28 \(\frac{1}{2} \).

27. A curve has the equation $y = (\sqrt{x} - 3)^2$, $x \ge 0$.

- (a) Show that $\frac{dy}{dx} = 1 \frac{3}{\sqrt{x}}$.
- (b) The point P on the curve has x —cordinate 4. Find the equation of the normal at P in the form y = mx + c.
- (c) Show that the normal to the curve at P does not intersect the curve again.

28. A curve is defined by the equation $y = 2 + 3x - x^2$. The line l is the tangent to the curve at the point A where the curve crosses the y - axis.

- (a) Find an equation for I.
- (b) The line m is the normal to the curve at the point B. Given that l and m are parallel, find the coordinates of B.

Examination questions

1.
$$\left(a = -\frac{4}{3}, b = \frac{1}{3}\right)$$

2.
$$\frac{dL}{dp} = 4 m p^3 + 2 n p$$
, $(m = 4, n = -2)$

3.
$$\left(-\frac{5}{2}, 0\right)$$
 and $(1, 0)$; $y = -7x - 17.5$, $y = 7x - 7$

4. (a) At
$$(1,-1)$$
, $\frac{dy}{dx} = 0$; at $(5, 15)$, $\frac{dy}{dx} = 8$
(b) $y = -1$

5. (a)
$$(p = 12, q = 8)$$

(b) $(-2, 24)$

6. (a)
$$(a = -4, b = 3)$$

(b) Tangents
$$y = -3x - 3$$
,
 $y = 3x - 6$;
intersection at $x = \frac{1}{2}$.

8. (a)
$$y = -\frac{1}{2}x + \frac{3}{2}$$
; $B\left(\frac{3}{2}, \frac{3}{4}\right)$

(b)
$$(\frac{1}{4}, \frac{47}{16})$$

9. (a)
$$y = x + 1$$

(c)
$$y = -3x - 3$$

11.
$$(a = 2, b = 4)$$

12. (c)
$$(m = -2, n = 5)$$

13. (a)
$$A(-3, 7)$$
, $B(4, 0)$
(b) $y = 6x + 25$ and $y = -8x + 32$; $(\frac{1}{2}, 28)$

14. (a)
$$k = 4$$

(b)
$$t = 2 s$$

(c)
$$v = 4 \text{ cms}^{-1}$$

15. (c)
$$\overline{PQ} = \frac{9\sqrt{17}}{4}$$

16. (b)
$$y = 3x + 5$$

(c)
$$k = -\frac{5}{3}$$

17. (b)
$$y = -7x + 21$$

(c)
$$\left(5, -\frac{46}{3}\right)$$

18. (a)
$$P(x = -2)$$
; $Q(x = 2)$

$$(d)R\left(\frac{5}{3},-\frac{22}{27}\right)$$

19. (a)
$$P = 2$$
, $Q = 9$, $R = 4$

(b)
$$\frac{dy}{dx} = 3x^{\frac{1}{2}} + \frac{9}{2}x^{-\frac{1}{2}} - 2x^{-\frac{3}{2}}$$

20. (b)
$$y = \frac{1}{2}x + \frac{7}{2}$$

(c)
$$(6, \frac{13}{2})$$

(b)
$$y = 4 - x$$
; $y = 5x - 11$

(c)
$$\left(\frac{5}{2}, \frac{3}{2}\right)$$

22. (a)
$$\frac{dy}{dx} = 3x^2 + 12x + 12$$

(b)
$$y = 3x + 4$$

(b)
$$y = -4x$$

24. (a)
$$A = \frac{1}{2}$$
, $B = -4$, $C = 8$

25. (a)
$$\frac{dy}{dx} = \frac{3}{4}$$

(c)
$$B\left(-2, \frac{5}{2}\right)$$

(b)
$$x + 4y = 15$$

27. (b)
$$y = 2x - 7$$

28. (a)
$$y = 3x + 2$$

(b)
$$B\left(\frac{5}{3}, \frac{38}{9}\right)$$