

Healthcare: Persistency of a

Drug Final Project

Virtual Internship

Devin Chau, Ethan Dy, Rohan Khatri

GitHub Repo

https://github.com/ethan05d/DataGlacier-Internship/tree/main/ Week%2013

Healthcare: Persistency of a Drug			
Group Members	Devin Chau	Ethan Dy	Rohan Khatri
Email	chau.devin031602@g mail.com	ethan05dy@gmail.co m	rohankhatri0507@gm ail.com
Country	United States	United States	United States
Specialization	Data Science	Data Science	Data Science
Internship Batch	LISUM39	LISUM39	LISUM39
Date	30 January 2025	30 January 2025	30 January 2025

Agenda

- Problem Statement
 - Data Information
- Data Understanding
- Exploratory Data Analysis(EDA)
 - Recommendations

Problem Statement

Context:

One of the challenge for all Pharmaceutical companies is to understand the persistency of drug as per the physician prescription. To solve this problem ABC pharma company approached an analytics company to automate this process of identification. With an objective to gather insights on the factors that are impacting the persistency, build a classification for the given dataset.

Problem Description:

We are building a predictive model that classifies patients into "persistent" or "non-persistent" categories based on factors like their demographics, medical history, physician characteristics, and treatment details. Factors like the patient level such as their age, risk factors, previous test results, or provider type allows for insights into why some patients continue therapy while others drop off. Thus understanding "persistence" levels. By analyzing these data points and finding patterns, the predictive model helps explain patient behavior and supports the creation of targeted interventions to improve adherence.

Total number of observations	3424
Total number of files	1
Total number of features	69
Base format of the file	.csv
Size of the data	891 KB

Unique Row Id

Target Variable

Bucket

Patient ID

Variable

Patient ID

Persistency_Flag

Demographics A

Age

Race

Region

Ethnicity

Gender

IDN Indicator

Variable Description

Unique ID of each patient

Flag indicating if a patient was persistent or not

Age of the patient during their therapy

Race of the patient from the patient table

Region of the patient from the patient table

Ethnicity of the patient from the patient table

Gender of the patient from the patient table

Flag indicating patients mapped to IDN

Provider Attributes	NTM - Physician Specialty	Specialty of the HCP that prescribed the NTM Rx	
	NTM - T-Score	T Score of the patient at the time of the NTM Rx (within 2 years prior from rxdate)	
	Change in T Score	Change in Tscore before starting with any therapy and after receiving therapy (Worsened, Remained Same, Improved, Unknown)	
	NTM - Risk Segment	Risk Segment of the patient at the time of the NTM Rx (within 2 years days prior from rxdate)	
	Change in Risk Segment	Change in Risk Segment before starting with any therapy and after receiving therapy (Worsened, Remained Same, Improved, Unknown)	
	NTM - Multiple Risk Factors	Flag indicating if patient falls under multiple risk category (having more than 1 risk) at the time of the NTM Rx (within 365 days prior from rxdate)	

Clinical Factors	NTM - Dexa Scan Frequency	Number of DEXA scans taken prior to the first NTM Rx date (within 365 days prior from rxdate)
	NTM - Dexa Scan Recency	Flag indicating the presence of Dexa Scan before the NTM Rx (within 2 years prior from rxdate or between their first Rx and Switched Rx; whichever is smaller and applicable)
	Dexa During Therapy	Flag indicating if the patient had a Dexa Scan during their first continuous therapy
	NTM - Fragility Fracture Recency	Flag indicating if the patient had a recent fragility fracture (within 365 days prior from rxdate)
	Fragility Fracture During Therapy	Flag indicating if the patient had fragility fracture during their first continuous therapy
	NTM - Glucocorticoid Recency	Flag indicating usage of Glucocorticoids (>=7.5mg strength) in the one year look-back from the first NTM Rx
	Glucocorticoid Usage During Therapy	Flag indicating if the patient had a Glucocorticoid usage during the first continuous therapy
	NTM - Injectable Experience	Flag indicating any injectable drug usage in the recent 12 months before the NTM OP Rx
	NTM - Risk Factors	Risk Factors that the patient is falling into. For chronic Risk Factors complete lookback to be applied and for non-chronic Risk Factors, one year lookback from the date of first OP Rx

Disease/Treatment

Factor

NTM - Comorbidity

Comorbidities are divided into two main categories - Acute and chronic, based on the ICD codes. For chronic disease we are

taking complete look back from the first Rx date of NTM therapy and for acute diseases, time period before the NTM OP Rx with

one year lookback has been applied

NTM - Concomitancy Concomitant drugs recorded prior to starting with a

therapy(within 365 days prior from first rxdate)

Adherence for the therapies

#	Column	Non-Null Count	Dtype
0	Ptid	3424 non-null	object
1	Persistency_Flag	3424 non-null	object
2	Gender	3424 non-null	object
3	Race	3424 non-null	object
4	Ethnicity	3424 non-null	object
5	Region	3424 non-null	object
6	Age_Bucket	3424 non-null	object
7	Ntm_Speciality	3424 non-null	object
8	Ntm_Specialist_Flag	3424 non-null	object
9	Ntm Speciality Bucket	3424 non-null	object
10	Gluco_Record_Prior_Ntm	3424 non-null	object
11	Gluco Record During Rx	3424 non-null	object
12	Dexa_Freq_During_Rx	3424 non-null	int64
13	Dexa_During_Rx	3424 non-null	object
14	Frag Frac Prior Ntm	3424 non-null	object
15	Frag_Frac_During_Rx	3424 non-null	object
16	Risk Segment Prior Ntm	3424 non-null	object
17	Tscore_Bucket_Prior_Ntm	3424 non-null	object
18	Risk_Segment_During_Rx	3424 non-null	object
19	Tscore_Bucket_During_Rx	3424 non-null	object
20	Change_T_Score	3424 non-null	object
21	Change_Risk_Segment	3424 non-null	object
22	Adherent_Flag	3424 non-null	object
23	Idn_Indicator	3424 non-null	object
24	<pre>Injectable_Experience_During_Rx</pre>	3424 non-null	object
25	Comorb_Encounter_For_Screening_For_Malignant_Neoplasms	3424 non-null	object
26	Comorb_Encounter_For_Immunization	3424 non-null	object
27	Comorb_Encntr_For_General_Exam_W_O_Complaint,_Susp_Or_Reprtd_Dx	3424 non-null	object
28	Comorb_Vitamin_D_Deficiency	3424 non-null	object
29	Comorb_Other_Joint_Disorder_Not_Elsewhere_Classified	3424 non-null	object
30	Comorb_Encntr_For_Oth_Sp_Exam_W_O_Complaint_Suspected_Or_Reprtd_Dx	3424 non-null	object
31	Comorb_Long_Term_Current_Drug_Therapy	3424 non-null	object
32	Comorb_Dorsalgia	3424 non-null	object
33	Comorb_Personal_History_Of_Other_Diseases_And_Conditions	3424 non-null	object
34	Comorb_Other_Disorders_Of_Bone_Density_And_Structure	3424 non-null	object
35	Comorb_Disorders_of_lipoprotein_metabolism_and_other_lipidemias	3424 non-null	object
36	Comorb_Osteoporosis_without_current_pathological_fracture	3424 non-null	object
37	Comorb_Personal_history_of_malignant_neoplasm	3424 non-null	object
38	Comorb Gastro esophageal reflux disease	3424 non-null	object

- The dataset consists of 3424 rows and 69 columns
- Types of Variables
 - Numeric (2 columns):
 - Dexa Freq During Rx
 - Count Of Risks
 - Categorical (67 columns):
 - Examples: Persistency_Flag, Gender,Ntm_Speciality, etc
 - Many are binary flags (Y/N, etc.), while some have multiple categories (e.g., Ntm_Speciality has 36)
- Multiple columns (such as Risk_Segment_During_Rx, Change_T_Score, etc.) contain a large number of "Unknown" entries. This shows hidden missing data that could influence model training and interpretation

```
Missing Values Summary:
Ptid
Concom Cephalosporins
                                                                                 Concom Cephalospori
Risk Osteogenesis Imperfecta
                                                                          Risk Osteogenesis Imperfec
                                                               Risk_Type_1_Insulin_Dependent_Diabet
Risk_Type_1_Insulin_Dependent_Diabetes
Concom Viral Vaccines
                                                                                 Concom Viral Vaccin
Comorb_Other_Joint_Disorder_Not_Elsewhere_Class... Comorb_Other_Joint_Disorder_Not_Elsewhere_Clas.
Comorb_Encntr_For_Oth_Sp_Exam_W_O_Complaint_Sus... Comorb_Encntr_For_Oth_Sp_Exam_W_O_Complaint_Su.
Comorb_Long_Term_Current_Drug_Therapy
                                                                Comorb_Long_Term_Current_Drug_Thera
Comorb_Dorsalgia
                                                                                      Comorb Dorsalo
Count_Of_Risks
                                                                                        Count_Of_Ris
                                                    Missing Values \
Ptid
Concom Cephalosporins
Risk_Osteogenesis_Imperfecta
Risk_Type_1_Insulin_Dependent_Diabetes
Concom Viral Vaccines
Comorb_Other_Joint_Disorder_Not_Elsewhere_Class...
Comorb_Encntr_For_Oth_Sp_Exam_W_O_Complaint_Sus...
Comorb Long Term Current Drug Therapy
Comorb_Dorsalgia
Count Of Risks
                                                    Percentage Missing
Ptid
Concom Cephalosporins
                                                                   0.0
Risk_Osteogenesis_Imperfecta
                                                                   0.0
Risk_Type_1_Insulin_Dependent_Diabetes
                                                                    0.0
Concom Viral Vaccines
                                                                    0.0
Comorb_Other_Joint_Disorder_Not_Elsewhere_Class...
                                                                   0.0
Comorb Encntr For Oth Sp Exam W O Complaint Sus...
                                                                   0.0
Comorb_Long_Term_Current_Drug_Therapy
                                                                   0.0
Comorb_Dorsalgia
                                                                   0.0
Count Of Risks
                                                                   0.0
```

[69 rows x 3 columns]

- Hidden "Unknown" Data
 - Some columns use the string "Unknown" instead of NaN. Like, Risk_Segment_During_Rx, Change_T_Score, and others have a lot of "Unknown" entries
- Outliers:
 - Two numeric variables, Dexa_Freq_During_Rx and Count_Of_Risks, have outliers:
 - Dexa_Freq_During_Rx shows 460 outliers (based on the Interquartile Range method)
 - Count_Of_Risks shows 8 outliers (also IQR-based)

```
[ ] 1 scaler = MinMaxScaler()
2 encoded_data[numerical_cols] = scaler.fit_transform(encoded_data[numerical_cols])
3
```

- MinMaxScaler was used to normalize numerical columns, bringing all variables to a common scale and ensuring equal contribution to the model.
- Feature Scaling:
 - Scaled numerical features using MinMaxScaler to normalize their range, ensuring model fairness.

1 duplicates = df.duplicated(subset='PatientID').sum()

- Duplicate rows were detected based on the 'PatientID' column to prevent skewed analyses, and they were logged for further review.
- Columns were standardized to appropriate data types, reducing potential errors during analysis.

```
1 df = df[df['Dexa_Freq_During_Rx'] != 0]
```

- Outlier Handling:
 - Removed outliers from the Dexa_Freq_During_Rx column by excluding entries where its value was zero.

```
1 binary_columns = [col for col in df.columns if set(df[col].dropna().unique()) == {'N', 'Y'}]
2
3 for col in binary_columns:
4   df[col] = df[col].replace({'N': 0, 'Y': 1}).astype(int)
```

- Binary Encoding:
 - Converted categorical binary values ('N' and 'Y') into numerical representations (0 and 1), ensuring compatibility with classifier models.

```
1 # Using IQR
 2 Q1 = df['Dexa Freq During Rx'].quantile(0.25)
 3 Q3 = df['Dexa_Freq_During_Rx'].quantile(0.75)
 4 IOR = 03 - 01
 5 lower_bound = Q1 - 1.5 * IQR
 6 upper bound = Q3 + 1.5 * IQR
 8 df['Dexa_Freq_During Rx_No_Outliers'] = np.where(
       df['Dexa_Freq_During_Rx'] > upper_bound, upper_bound,
       np.where(df['Dexa Freq During Rx'] < lower bound, lower bound, df['Dexa Freq During Rx'])
10
11 )
12 df['Dexa Freq During Rx No Outliers'].describe()
```

• Outlier Handling:

• Applied the IQR method to cap extreme values within acceptable ranges, addressing potential data skew.

• Risk Level Encoding:

• Categorized patient risk levels into bins such as 'None', 'Low', 'Moderate', and 'High' based on Count_Of_Risks values, enabling targeted risk analysis.

During the exploratory data analysis (EDA), we performed the following steps:

- **Data Visualization**: Visualized distributions of numerical features such as Dexa_Freq_During_Rx and Count Of Risks.
 - Histograms showed high skewness in Dexa_Freq_During_Rx, leading to the decision to apply log transformation for normalization
- Correlation Analysis: Calculated correlations between numerical variables. Count_Of_Risks showed a moderate correlation with the target variable Persistency Flag
- Categorical Feature Inspection: Explored distributions for categorical variables like Ntm_Speciality and Gender. Identified the imbalanced classes in Ntm Speciality which could maybe lead to overfitting (?)
- **Outlier Detection**: Used the Interquartile Range (IQR) method to detect outliers. Dexa_Freq_During_Rx had 460 extreme values,
 - while Count_Of_Risks had 8 outliers (addressed using capping methods)
- **Handling Missing Values**: Discovered multiple columns with the value "Unknown" instead of NaNs, indicating hidden missing data. Handled as separate categories

• As we can see, most people tend to have 0-2 counts of risk in total, which is good to see. It is better to see less counts of risks in comparison to the higher numbers.

• This is what the distribution looks like without the outlier of 0

• The largest proportion of patients reported in this dataset belongs to the older age group, specifically those aged >75.

Northeast and West
 seem to be severely
 underreported as
 compared to Midwest
 and South Region

• We can see that typically there is no change. Worsened more than improved in terms of change risk segment.

Log transformation to
 Dexa_Freq_During_R
 x for normalization

Histogram for Count Of Risks

Histogram for normalizedDexa_Freq_During_R

- The variables are mostly uncorrelated except for a moderate relationship between Dexa_Freq_During_Rx and Persistency_Flag_Numeric.
- Higher Dexa scan frequency might be slightly associated with better persistence in treatment adherence.
- Count of risks does not show a meaningful correlation with either of the other variables.

- The data suggests that most observations come from general practitioners and predominantly female participants.
- The gender imbalance might influence study outcomes if gender plays a role in the analysis being conducted.

Final Recommendations

Based on the analysis and identified data issues, we recommend:

- **Handling Missing Values**: Maintain "Unknown" entries as a separate category to preserve data integrity and avoid loss of potentially valuable patterns
- **Normalization**: Continue using MinMaxScaler for numerical features like Dexa_Freq_During_Rx and Count_Of_Risks to ensure consistent scaling across variables
- Outlier Handling: Use the IQR method to cap extreme values for Dexa_Freq_During_Rx and Count_Of_Risks
- Categorical Encoding: Apply one-hot encoding for categorical variables with multiple categories. Using binary encoding for columns with simple Y/N values
- **Feature Engineering**: Consider grouping rare categories in columns like Ntm_Speciality to avoid overfitting due to high cardinality
- Data Consistency: Ensure proper standardization of data types and consistency across the entire dataset before model training

Recommended models for this datasets:

- Logistic Regression:
 - a. For binary classification.
- Decision Trees:
 - a. Easy to interpret and handle categorical variables directly.
- Random Forest:
 - Robust and simple, handling mixed data types well.
 - i. We will probably look into random forest more so than decision trees

Recommendations

Our recommendations for this is to have a model be built using XGBoost to classify patients into "persistent" or "non-persistent" categories

XGBoost (Extreme Gradient Boosting) is a great choice for this problem as it includes L1 and L2 regularization to avoid overfitting which could occur from this type of problem. XGBoost also uses max depth approach which helps with overfitting

Recommendations (cont).

XGBoost worked well during training and testing

• However, it could be improved upon as our accuracy was below 80%. We wish to optimize the model to give accurate predictions

Future Endeavors

- In the future, we look to add possibly more models, specifically models using ensemble learning techniques, and combine it with XGBoost to improve efficiency and accuracy.
 - Some possible techniques for the future would be:
 - Blending models, bagging, or have an autoencoder create new features

Demonstration of the Code

support

654

374

1028

1028

1028

0.84

0.72

0.80

0.78

0.80

```
XGBoost Model
                                                                                                   precision
                                                                                                                      recall f1-score
 target column = 'Persistency Flag'
                                                                                                          0.83
                                                                                                                        0.85
 df[target column] = LabelEncoder().fit transform(df[target column])
                                                                                                          0.73
                                                                                                                        0.70
categorical columns = df.select_dtypes(include=['object']).columns
 df_encoded = df.copy()
                                                                                     accuracy
 for col in categorical_columns:
    df_encoded[col] = LabelEncoder().fit_transform(df_encoded[col])
                                                                                                                        0.78
                                                                                                          0.78
                                                                                   macro ave
                                                                               weighted avg
                                                                                                          0.80
                                                                                                                        0.80
 # Split features and target
 X = df encoded.drop(columns=[target column, 'Ptid'])
 y = df_encoded[target_column]
                                                                               XGBoost accuracy: 0.7976653696498055
 # Train-test split
 X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
 # Re-run XGBoost
 xgb model = XGBClassifier(use label_encoder=False, eval_metric='logloss', random_state=42)
 xgb_model.fit(X_train, y_train)
 # Make predictions and evaluate
y pred xgb = xgb model.predict(X test)
 xgb accuracy = accuracy score(y test, y pred xgb)
 xgb_accuracy, classification_report(y_test, y_pred_xgb)
 classification_results = classification_report(y_test, y_pred_xgb)
 print(classification results)
 print("XGBoost accuracy:", xgb accuracy)
```

Thank You

