CHAPITRE

42

REPRÉSENTATION MATRICIELLE EN ALGÈBRE LINÉAIRE

42.1 FAMILLE DE VECTEURS

§1 Coordonnées d'une famille de vecteurs relativement à une base

Définition 1

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $\mathcal{B}=(v_1,v_2,\ldots,v_n)$ une base de E. Soit $S=(w_1,w_2,\ldots,w_p)$ une famille de p vecteurs de E. On appelle **matrice des coordonnées de la famille S relativement à la base B** la matrice de type (n,p) dont la j-ème colonne est formée par les coordonnées du vecteur w_j relativement à la base B. On note cette matrice

$$\operatorname{Coord}_{\mathcal{B}}(w_1, w_2, \dots, w_m) = \left(\operatorname{Coord}_{\mathcal{B}}(w_1) \operatorname{Coord}_{\mathcal{B}}(w_2) \dots \operatorname{Coord}_{\mathcal{B}}(w_m)\right)$$

Chaque vecteur de la famille S se décompose dans la base $\mathcal B$ sous la forme

$$w_{1} = a_{11}v_{1} + a_{21}v_{2} + \dots + a_{n1}v_{n}$$

$$w_{2} = a_{12}v_{1} + a_{22}v_{2} + \dots + a_{n2}v_{n}$$

$$\vdots \qquad \vdots$$

$$w_{j} = a_{1j}v_{1} + a_{2j}v_{2} + \dots + a_{nj}v_{n}$$

$$\vdots \qquad \vdots$$

$$w_{p} = a_{1p}v_{1} + a_{2p}v_{2} + \dots + a_{np}v_{n}$$

1

Alors, la matrice $M_{\mathcal{B}}(w_1, w_2, \dots, w_p)$ s'écrit

$$M_{\mathcal{B}}(w_1, w_2, \dots, w_p) = \left(\begin{array}{ccccc} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1p} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{ip} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nj} & \dots & a_{np} \end{array} \right) \in \mathcal{M}_{n,p}(\mathbb{K})$$

Test 2

On reprend les bases de \mathbb{R}^2 , $\mathcal{B} = (e_1, e_2)$ et $\mathcal{S} = (v_1, v_2)$, avec

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Déterminer $P = \operatorname{Coord}_{\mathcal{B}}(S)$, la matrice des coordonnées de la famille S relativement à la base B. Déterminer $Q = \operatorname{Coord}_{S}(B)$, la matrice des coordonnées de la famille B relativement à la base S.

Calculer les produits PQ et QP.

Théorème 3

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $\mathcal{B} = (v_1, v_2, \dots, v_n)$ une base de E et $S = (w_1, w_2, \dots, w_p)$ une famille de p vecteurs de E. Alors

$$rg(S) = rg\left(Coord_{\mathcal{B}}(w_1), Coord_{\mathcal{B}}(w_2), \dots, Coord_{\mathcal{B}}(w_m)\right)$$
$$= rg\left(Coord_{\mathcal{B}}(w_1, w_2, \dots, w_m)\right).$$

§2 Matrice de passage

Définition 4

Soit E un espace vectoriel de dimension finie $n \ge 1$ et deux bases de E

$$\mathcal{B} = (e_1, e_2, \dots, e_n)$$
 et $\mathcal{B}' = (v_1, v_2, \dots, v_n)$.

On appelle **matrice de passage** de la base \mathcal{B} à la base \mathcal{B}' la matrice dont la j-ème colonne est formée par les coordonnées du vecteur v_j relativement à la base \mathcal{B} . C'est une matrice carrée d'ordre n, qui sera notée Pass $(\mathcal{B}, \mathcal{B}')$.

$$\operatorname{Pass}(\mathcal{B}, \mathcal{B}') = \left(\operatorname{Coord}_{\mathcal{B}}(v_1) \quad \operatorname{Coord}_{\mathcal{B}}(v_2) \quad \dots \quad \operatorname{Coord}_{\mathcal{B}}(v_n)\right).$$

La matrice de passage de la base \mathcal{B} à la base \mathcal{B}' est donc la matrice de la famille $\mathcal{B}' = (v_1, v_2, \dots, v_n)$ dans la base \mathcal{B} . Aucune nouveauté ici! Mais le terme «matrice de passage» rappelle que les deux familles \mathcal{B} et \mathcal{B}' sont des bases d'un même espace vectoriel.

Théorème 5

Soit v un vecteur de E. Alors

$$Coord_{\mathcal{B}}(v) = Pass\left(\mathcal{B}, \mathcal{B}'\right) \times Coord_{\mathcal{B}'}(v).$$

En général, on note X et X' les coordonnées du vecteurs x relativement aux bases \mathcal{B} et \mathcal{B}' , et P la matrice de passage de \mathcal{B} «l'ancienne base» à \mathcal{B}' la nouvelle base. On a alors

$$X = PX'$$
.

La matrice P donne \mathcal{B}' en fonction de \mathcal{B} , mais la formule X = PX' donne les coordonnées dans \mathcal{B} en fonction des coordonnées dans \mathcal{B}' .

Exemple 6

Soit $\mathcal{B} = (v_1, v_2, v_3)$ la famille de vecteurs de \mathbb{R}^3 tels que

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \qquad \qquad v_2 = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} \qquad \qquad v_3 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}.$$

Pour montrer que \mathcal{B} est une base de \mathbb{R}^3 , nous écrivons d'abord la matrice des coordonnées de \mathcal{B} relativement à la base canonique $\mathcal{C} = (e_1, e_2, e_3)$ de \mathbb{R}^3 ,

$$P = \text{Coord}_{\mathcal{C}}(\mathcal{B}) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 2 \\ -1 & 4 & 1 \end{pmatrix}.$$

Cette matrice est de rang 3, en effet

$$P \underset{L}{\sim} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -5 & -4 \\ 0 & 6 & 4 \end{pmatrix} \underset{L}{\sim} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 6 & -4 \end{pmatrix} \underset{L}{\sim} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & -4 \end{pmatrix}.$$

Ainsi \mathcal{B} est une base de \mathbb{R}^3 . La matrice P est donc la matrice de passage de la base \mathcal{C} à la base \mathcal{B} .

Connaissant les coordonnées d'un vecteur v relativement à la base \mathcal{B} , par exemple

$$Coord_{\mathcal{B}}(v) = \begin{pmatrix} 4\\1\\-5 \end{pmatrix},$$

on peut déterminer les coefficients de v qui sont ses coordonnées dans la base canonique de deux manières, directement en utilisant la définition des coordonnées,

$$v = 4 \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + 1 \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} - 5 \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -9 \\ -3 \\ -5 \end{pmatrix},$$

ou avec la matrice de passage

$$\operatorname{Coord}_{\mathcal{C}}(v) = P \times \operatorname{Coord}_{\mathcal{B}}(v) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 2 \\ -1 & 4 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \\ -5 \end{pmatrix} = \begin{pmatrix} -9 \\ -3 \\ -5 \end{pmatrix},$$

qui donne évidement le même résultat.

Pour déterminer les coordonnées relativement à la base \mathcal{B} d'un vecteur x, par exemple $x = (5, 7, -3)^T$, nous devons trouver les scalaires $\alpha_1, \alpha_2, \alpha_3$ tels que

$$\begin{pmatrix} 5 \\ 7 \\ -3 \end{pmatrix} = \alpha_1 \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} + \alpha_3 \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}.$$

On peut pour cela résoudre le système Pa = x avec $a = (\alpha_1, \alpha_2, \alpha_3)^T$, ou en utilisant la matrice inverse de P, pour trouver finalement

$$\operatorname{Coord}_{\mathcal{B}}(x) = P^{-1} \times \operatorname{Coord}_{\mathcal{C}}(x) = P^{-1} \begin{pmatrix} 5 \\ 7 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}.$$

On peut vérifier ce résultat avec le calcul suivant

$$1 \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + (-1) \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} + 2 \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ 7 \\ -3 \end{pmatrix} = x.$$

Test 7 Vérifier les calculs précédents. Déterminer P^{-1} et en déduire Coord_B(x).

Test 8 En reprenant les même notations. Quelles sont les coordonnées relativement à la base \mathcal{B} des vecteurs

$$v_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \qquad \qquad v_2 = \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} \qquad \qquad v_3 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}?$$

Exemple 9 On considère l'ensemble des points de \mathbb{R}^2 d'équation cartésienne

$$\mathcal{E} : 5x^2 + 5y^2 - 6xy = 2.$$

Soit $\mathcal{B}=(v_1,v_2)$ la base obtenue à partir de la base canonique de \mathbb{R}^2 après une rotation d'angle $\frac{\pi}{4}$. Déterminer une équation cartésienne de \mathcal{E} dans la base \mathcal{B} .

Théorème 10 Soient \mathcal{B} et \mathcal{B}' deux bases de \mathcal{E} . La matrice de passage de \mathcal{B} à \mathcal{B}' est inversible, et son inverse est la matrice de passage de \mathcal{B}' à \mathcal{B} .

42.2 REPRÉSENTATION D'UNE APPLICATION LINÉAIRE PAR UNE MATRICE

§1 Matrice d'une application linéaire relative à un couple de bases

Définition 11 Soient E, F deux espaces vectoriels de dimension finie, $n = \dim(E)$ et $m = \dim(F)$. Soit $f : E \to F$ une application linéaire. Soient $\mathcal{B} = (v_1, v_2, \dots, v_n)$ une base de E, $\mathcal{C} = (w_1, w_2, \dots, w_m)$ une base de F.

On appelle matrice de f relative aux bases \mathcal{B} et \mathcal{C} la matrice dont la j-ème colonne est formée des coordonnées du vecteur $f(v_j)$ relativement à la base \mathcal{C} . C'est une matrice de

type (m, n) que l'on note $Mat_{B,C}(f)$.

$$\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f) = \left(\operatorname{Coord}_{\mathcal{C}} \left(f(v_1) \right) - \operatorname{Coord}_{\mathcal{C}} \left(f(v_2) \right) - \ldots - \operatorname{Coord}_{\mathcal{C}} \left(f(v_n) \right) \right)$$

La matrice $\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f)$ est donc la matrice des coordonnées de la famille $(f(v_1),\ldots,f(v_n))$ dans la base \mathcal{C} .

Les coefficients de la matrice $A = (a_{i,j}) = \operatorname{Mat}_{B,C}(f)$ sont donc caractérisés par

$$\forall j \in [[1, n]], f(v_j) = a_{1,j}w_1 + a_{2,j}w_2 + \dots + a_{m,j}w_m = \sum_{i=1}^m a_{i,j}w_i.$$

Notation Il n'y a pas de notation fixée par le programme. Je note parfois $M_{\mathcal{B},\mathcal{C}}(f)$ au lieu de $\mathrm{Mat}_{\mathcal{B},\mathcal{C}}(f)$ dans le poly d'exercices.

Théorème 12

Soient E, F deux espaces vectoriels de dimension finie, $f \in \mathcal{L}(E, F)$, B une base de E et C une base de F. Alors pour tout vecteur $x \in E$, on a

$$Coord_{\mathcal{C}}(f(x)) = Mat_{\mathcal{BC}}(f) \times Coord_{\mathcal{B}}(x)$$
.

Autrement dit, en notant X les coordonnées de x dans la base \mathcal{B} , Y les coordonnées de y = f(x) dans la base \mathcal{C} et $A = \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f)$, on a

$$Y = AX$$
.

Exemple 13

Soit
$$u : \mathbb{R}^2 \to \mathbb{R}^3$$
 et soit $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 4x + y \\ 3x + y \\ x \end{pmatrix}$

$$e_1 = \begin{pmatrix} 2 \\ -7 \end{pmatrix}$$
 $e_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $f_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ $f_2 = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$ $f_3 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$.

La famille $\mathcal{B} = (e_1, e_2)$ est une base de \mathbb{R}^2 et $\mathcal{C} = (f_1, f_2, f_3)$ est une base de \mathbb{R}^3 .

$$u(e_1) = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = -2f_1 + f_2$$
 $u(e_2) = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = f_3$

On a vu que ces deux relations déterminent complètement l'application f. On regroupe ces informations sous forme d'une matrice

$$\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f) = \begin{pmatrix} -2 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \in \mathcal{M}_{3,2}(\mathbb{R})$$

Test 14

Matrice de φ : $\mathbb{R}_3[X] \to \mathbb{R}^3$ dans les bases canoniques de $P \mapsto (P(2), P'(1) - P(0), P''(1))$ $\mathbb{R}_3[X]$ et \mathbb{R}^3 .

Test 15

Matrice de $D: \mathbb{R}_4[X] \to \mathbb{R}_3[X]$ dans les bases canoniques de $\mathbb{R}_4[X]$ et $\mathbb{R}_3[X]$.

Test 16

Soit
$$u: \mathbb{R}^2 \to \mathbb{R}^3$$
, $\mathcal{B} = (e_1, e_2)$ la base canonique de \mathbb{R}^2 et $\mathcal{C} = (f_1, f_2, f_3)$

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} -x + y \\ 3y \\ x - 2y \end{pmatrix}$$
la base canonique de \mathbb{R}^3 . Déterminer la matrice de u relativement aux bases \mathcal{B} et \mathcal{C} .

la base canonique de \mathbb{R}^3 . Déterminer la matrice de u relativement aux bases \mathcal{B} et \mathcal{C} .

Démonstration. On a

$$u(e_1) = u((1,0)) = (-1,0,1) = -f_1 + f_3$$

 $u(e_2) = u((0,1)) = (1,3,-2) = f_1 + 3f_2 - 2f_3$

On a vu que ces deux relations déterminent complètement l'application f. On regroupe ces informations sous forme d'une matrice

$$\operatorname{Mat}_{\mathcal{B},C}(f) = \begin{pmatrix} -1 & 1\\ 0 & 3\\ 1 & -2 \end{pmatrix} \in \mathcal{M}_{3,2}(\mathbb{R})$$

On retrouve donc la matrice canoniquement associée à $u \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$.

Applications linéaires canoniquement associée à une matrice **§2**

Dans la suite, On identifie $\mathcal{M}_{n,1}(\mathbb{K})$ et \mathbb{K}^n .

Proposition 17

Soit A une matrice de type (m, n). Alors l'application

$$T: \mathbb{K}^n \to \mathbb{K}^n$$
$$x \mapsto Ax$$

est une application linéaire.

Définition 18

L'application linéaire T est appelée l'application linéaire canoniquement associée à la matrice A.

Théorème 19

Soit $T: \mathbb{K}^n \to \mathbb{K}^m$ une application linéaire. Soit (e_1, e_2, \dots, e_n) la base canonique de \mathbb{K}^n et soit A la matrice dont les colonnes sont $T(e_1), \ldots, T(e_n)$, c'est-à-dire

$$A = \begin{pmatrix} T(e_1) & T(e_2) & \dots & T(e_n) \end{pmatrix}.$$

Alors, pour tout $x \in \mathbb{R}^n$, T(x) = Ax.

Définition 20

La matrice A est appelée la **matrice canoniquement associée** à l'application linéaire $T: \mathbb{K}^n \to \mathbb{K}^m$.

Autrement dit, A est la matrice associée à T relativement aux bases canoniques de \mathbb{K}^n et \mathbb{K}^m

Exemple 21

Soit $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'application définie par

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + y + z \\ x - y \\ x + 2y - 3z \end{pmatrix}.$$

Pour déterminer l'image du vecteur $u = (1, 2, 3)^T$ par l'application T, il suffit de substituer (1, 2, 3) dans l'expression de T. On obtient $T(u) = (6, -1, -4)^T$.

Pour trouver la matrice A, telle que T(x) = Ax, on détermine les images des vecteurs de la base canonique de \mathbb{R}^3 . On a

$$T(e_1) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad T(e_2) = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \qquad T(e_3) = \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}.$$

Et l'on pose donc

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 2 & -3 \end{pmatrix}.$$

Remarquez bien que les coefficients de A sont exactement les coefficients de x, y, z dans la définition de T.

Test 22

Calculer Au avec $u = (1, 2, 3)^T$ et vérifier que l'on obtient bien T(u).

§3 Isomorphisme de $\mathcal{L}(E, F)$ sur $\mathcal{M}_{m,n}(\mathbb{K})$

Théorème 23

Soit E et F deux \mathbb{K} -espaces vectoriels de dimensions finies n et m munis de bases \mathcal{B} et \mathcal{C} . L'application

$$\begin{array}{cccc} \operatorname{Mat}_{B,\mathcal{C}}: & \mathcal{L}(E,F) & \to & \mathcal{M}_{m,n}(\mathbb{K}) \\ & f & \mapsto & \operatorname{Mat}_{B,\mathcal{C}}(f) \end{array}$$

est un isomorphisme d'espaces vectoriels. De plus, pour tout $f \in \mathcal{L}(E, F)$,

$$\operatorname{rg}(f) = \operatorname{rg}\left(\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f)\right).$$

Corollaire 24

En particulier, pour tous $f, g \in \mathcal{L}(E, F)$ et $\lambda \in \mathbb{K}$,

$$\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f+g) = \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f) + \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(g)$$
 et $\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(\lambda f) = \lambda \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f)$,

et on a l'équivalence

$$f = g \iff \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f) = \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(g).$$

De plus, $\mathcal{L}(E, F)$ *est de dimension finie et*

$$\dim (\mathcal{L}(E, F)) = \dim E \times \dim F.$$

Théorème 25

Soient E, F, G trois espaces vectoriels de dimension finie, B une base de E, C une

$$\operatorname{Mat}_{\mathcal{B},\mathcal{D}}(g \circ f) = \operatorname{Mat}_{\mathcal{C},\mathcal{D}}(g) \times \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f)$$
.

Ainsi la *composition des applications linéaires se traduit par la multiplication matricielle*. Bien noter l'ordre dans lequel est fait le produit matriciel.

Une démonstration. Soient $p = \dim(E)$, $n = \dim(F)$, $m = \dim(G)$. Posons $U = \operatorname{Mat}_{B,C}(f)$, $V = \operatorname{Mat}_{C,D}(g)$ et $R = \operatorname{Mat}_{B,D}(g \circ f)$ de sorte que U, V, R sont des matrices de type (n, p), (m, n) et (m, p). Il s'agit de montrer que R = VU.

On note $\mathcal{B} = (e_1, e_2, \dots, e_n)$. La matrice U est la matrice dont les colonnes sont

$$\left(\operatorname{Coord}_{\mathcal{C}}\left(f(e_{1})\right) \operatorname{Coord}_{\mathcal{C}}\left(f(e_{2})\right) \ldots \operatorname{Coord}_{\mathcal{C}}\left(f(e_{p})\right)\right)$$

La matrice VU est donc la matrice dont les colonnes sont

$$(V \times \text{Coord}_{\mathcal{C}}(f(e_1)) \quad V \times \text{Coord}_{\mathcal{C}}(f(e_2)) \quad \dots \quad V \times \text{Coord}_{\mathcal{C}}(f(e_p)))$$

c'est-à-dire la matrice

$$\left(\operatorname{Coord}_{\mathcal{D}}\left(g \circ f(e_1)\right) \quad \operatorname{Coord}_{\mathcal{D}}\left(g \circ f(e_2)\right) \quad \dots \quad \operatorname{Coord}_{\mathcal{D}}\left(g \circ f(e_p)\right)\right)$$

qui n'est autre que la matrice R.

Les applications linéaires bijectives se reconnaissent à leurs matrices.

Théorème 26

Soient E, F deux \mathbb{K} -espaces vectoriels de même dimension finie $n \geq 1$, \mathcal{B} un base de E, C une base de F, $f: E \to F$ une application linéaire et $A \in \mathcal{M}_n(\mathbb{K})$ la matrice de f dans les bases \mathcal{B} et C. Alors f est un isomorphisme si, et seulement si la matrice A est inversible, auquel cas son inverse A^{-1} est la matrice de f^{-1} dans les bases C et B:

$$\operatorname{Mat}_{\mathcal{C},\mathcal{B}}\left(f^{-1}\right) = \left(\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f)\right)^{-1}.$$

§4 Changement de bases

Lemme 27

Soit E un \mathbb{K} -espace vectoriel de dimension finie, \mathcal{B} et \mathcal{B}' deux bases de E, alors

$$\operatorname{Pass}\left(\mathcal{B},\mathcal{B}'\right)=\operatorname{Mat}_{\mathcal{B}',\mathcal{B}}\left(\operatorname{Id}_{E}\right).$$

Théorème 28

Formule de changement de bases

Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie et $f \in \mathcal{L}(E, F)$. Considérons $\mathcal{B}, \mathcal{B}'$ deux base de E et C, C' deux bases de F. Alors

$$\operatorname{Mat}_{\mathcal{B}',\mathcal{C}'}(f) = \operatorname{Pass}(\mathcal{C}',\mathcal{C}) \times \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f) \times \operatorname{Pass}(\mathcal{B},\mathcal{B}').$$

$$A = \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f) \qquad A' = \operatorname{Mat}_{\mathcal{B}',\mathcal{C}'}(f) \qquad P = \operatorname{Pass}(\mathcal{B},\mathcal{B}') \qquad Q = \operatorname{Pass}(\mathcal{C},\mathcal{C}')$$
 on a la relation
$$A' = Q^{-1}AP.$$

$$A' = O^{-1}AP$$

§5 Matrices équivalentes et rang

Théorème 29 Une application linéaire $f \in \mathcal{L}(E, F)$ est de rang r si, et seulement si, il existe un couple de bases dans lequel f a pour matrice

$$J_r = \left(\alpha_{i,j}\right)_{(i,j) \in [\![1,n]\!] \times [\![1,m]\!]} \quad \text{où} \quad \alpha_{i,j} = \begin{cases} 1 & \text{si } i = j \leq r \\ 0 & \text{sinon.} \end{cases}$$

Définition 30 On dit que deux matrices A et A' de $\mathcal{M}_{m,n}(\mathbb{K})$ sont **équivalentes** lorsque

$$\exists Q \in \mathbf{GL}_m(\mathbb{K}), \exists P \in \mathbf{GL}_n(\mathbb{K}), A' = QAP.$$

Une matrice A' est équivalente à la matrice A représentant une application linéaire $u \in \mathcal{L}(E, F)$ dans les bases \mathcal{B} et \mathcal{C} de E et F si, et seulement si, elle représente u dans des bases \mathcal{B}' et \mathcal{C}' de E et F. Par conséquent, deux matrices équivalentes ont même rang.

Une matrice $A \in \mathcal{M}_{m,n}(\mathbb{K})$ est de rang r si, et seulement si, elle est équivalente à la matrice Théorème 31

$$J_r = \left(\alpha_{i,j}\right)_{(i,j) \in [\![1,n]\!] \times [\![1,m]\!]} \quad \text{où} \quad \alpha_{i,j} = \begin{cases} 1 & \text{si } i = j \leq r \\ 0 & \text{sinon}. \end{cases}$$

Corollaire 32 Deux matrices de $\mathcal{M}_{m,n}(\mathbb{K})$ sont équivalentes si, et seulement si elles ont même rang.

Soit $A \in \mathcal{M}_{m,n}(\mathbb{K})$, alors $\operatorname{rg}(A^T) = \operatorname{rg}(A)$. Corollaire 33

Rappel • Les opérations élémentaires sur les colonnes conservent l'image.

- Les opérations élémentaires sur les lignes conservent le noyau.
- Les opérations élémentaires conservent le rang.

§6 Caractérisation du rang par les matrices extraites

Définition 34

Soit $A \in \mathcal{M}_{m,n}(\mathbb{K})$. On appelle matrice extraite de A, toute matrice B obtenue en ne conservant que certaines lignes et colonnes de A.

Plus précisément, en notant $A = (a_{i,j})_{\substack{1 \le i \le m \\ 1 \le j \le n}}$ et

$$1 \le i_1 < \dots i_p \le m$$
 et $1 \le j_1 < \dots j_q \le n$,

la matrice

$$B = \begin{pmatrix} a_{i_1,j_1} & \cdots & a_{i_1,j_q} \\ \vdots & & \vdots \\ a_{i_p,j_1} & \cdots & a_{i_p,j_q} \end{pmatrix}$$

est une matrice extraite de A de type (p, q).

Théorème 35

Soit $A \in \mathcal{M}_{m,n}(\mathbb{K})$.

- 1. Pour toute matrice extraite B de A, on a $rg(B) \le rg(A)$.
- 2. Le rang de A est l'ordre maximal des matrices inversibles que l'on peut extraire de A.

42.3 CAS DES ENDOMORPHISMES

§1 Matrice d'un endomorphisme relative à une base

Définition 36

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \geq 1$, $f \in \mathcal{L}(E)$ et $\mathcal{B} = (v_1, v_2, \dots, v_n)$ une base de E. On appelle **matrice de f dans la base \mathcal{B}** la matrice de l'application linéaire f dans les bases \mathcal{B} au départ et \mathcal{B} à l'arrivée. Cette matrice, notée $\mathrm{Mat}_{\mathcal{B}}(f)$, appartient à $\mathcal{M}_n(\mathbb{K})$ et l'on a

$$\operatorname{Mat}_{\mathcal{B}}(f) = \operatorname{Mat}_{\mathcal{B},\mathcal{B}}(f).$$

Nous dirons aussi que $\operatorname{Mat}_{\mathcal{B}}(f)$ est la matrice représentant f dans la base \mathcal{B} . Notant $a_{i,j}$ les coefficients de $\operatorname{Mat}_{\mathcal{B}}(f)$, on a donc

$$\forall j \in [[1, n]], f(v_j) = a_{1,j}v_1 + a_{2,j}v_2 + \dots + a_{n,j}v_n = \sum_{i=1}^n a_{i,j}v_i.$$

Théorème 37

Soient E un espace vectoriel de dimension finie, $f \in \mathcal{L}(E)$, B une base de E. Alors pour tout vecteur $x \in E$, on a

$$Coord_{\mathcal{B}}(f(x)) = Mat_{\mathcal{B}}(f) \times Coord_{\mathcal{B}}(x)$$
.

§2 Isomorphisme de $\mathcal{L}(E)$ sur $\mathcal{M}_n(\mathbb{K})$

Théorème 38

Soit E un \mathbb{K} -espace vectoriel de dimension finie et \mathcal{B} une base de E. L'application

$$\begin{array}{cccc} \operatorname{Mat}_{B}: & \mathcal{L}(E) & \to & \mathcal{M}_{n}(\mathbb{K}) \\ & f & \mapsto & \operatorname{Mat}_{B}(f) \end{array}$$

est un isomorphisme d'espaces vectoriels et un isomorphisme d'anneaux.

Proposition 39

Soit E un \mathbb{K} -espace vectoriel de dimension finie et \mathcal{B} une base de E. Pour tous $f,g\in\mathcal{L}(E)$, on a

$$\operatorname{Mat}_{\mathcal{B}}(g \circ f) = \operatorname{Mat}_{\mathcal{B}}(g) \times \operatorname{Mat}_{\mathcal{B}}(f)$$
.

Proposition 40

Soit E un \mathbb{K} -espace vectoriel de dimension finie et \mathcal{B} une base de E, f un endomorphisme de E et $A \in \mathcal{M}_n(\mathbb{K})$ la matrice de f dans la base \mathcal{B} . Alors f est un automorphisme de E (i.e. f est bijectif) si, et seulement si la matrice A est inversible, auquel cas son inverse A^{-1} est la matrice de f^{-1} dans la base \mathcal{B} :

$$\left(\operatorname{Mat}_{\mathcal{B}}(f)\right)^{-1} = \operatorname{Mat}_{\mathcal{B}}\left(f^{-1}\right).$$

§3 Changement de base

Théorème 41

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. Considérons \mathcal{B} , \mathcal{B}' deux bases de E. Alors,

$$\operatorname{Mat}_{\mathcal{B}'}(f) = \operatorname{Pass}(\mathcal{B}', \mathcal{B}) \times \operatorname{Mat}_{\mathcal{B}}(f) \times \operatorname{Pass}(\mathcal{B}, \mathcal{B}').$$

En notant

$$A = \operatorname{Mat}_{\mathcal{B}}(f)$$
 $A' = \operatorname{Mat}_{\mathcal{B}'}(f)$ $P = \operatorname{Pass}(\mathcal{B}, \mathcal{B}')$

on a la relation

$$A' = P^{-1}AP.$$

Exemple 42

On considère l'endomorphisme $T: \mathbb{R}^2 \to \mathbb{R}^2$ défini par

$$T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 3y \\ -x + 5y \end{pmatrix}.$$

On cherche à décrire géométriquement cet endomorphisme. À priori, on ne peut pas en dire grand chose...

Supposons donc que l'on nous propose d'effectuer un changement de base. On considère la base $\mathcal{B} = (v_1, v_2)$ où

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 et $v_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$

On note M la matrice de T relativement à la base \mathcal{B} . Nous avons $M = P^{-1}AP$, où A est la matrice de T relativement à C, la base canonique de \mathbb{R}^2 et P est la matrice de passage de C à \mathcal{B} :

$$A = \begin{pmatrix} 1 & 3 \\ -1 & 5 \end{pmatrix} \qquad P = \begin{pmatrix} 1 & 3 \\ 1 & 1 \end{pmatrix} \qquad P^{-1} = \frac{1}{2} \begin{pmatrix} -1 & 3 \\ 1 & -1 \end{pmatrix}.$$

On a donc,

$$M = P^{-1}AP = \frac{1}{2} \begin{pmatrix} -1 & 3 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ -1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}$$

Test 43 Vérifier ces calculs.

Par définition de M, on a

$$\operatorname{Coord}_{\mathcal{B}}\left(T(v_1)\right) = \begin{pmatrix} 4\\0 \end{pmatrix}$$
 et $\operatorname{Coord}_{\mathcal{B}}\left(T(v_2)\right) = \begin{pmatrix} 0\\2 \end{pmatrix}$.

Autrement dit

$$T(v_1) = 4v_1$$
 et $T(v_2) = 2v_2$.

Ainsi, l'application T s'apparente à une «dilatation» d'un facteur 4 dans la direction v_1 et d'un facteur 2 dans la direction v_2 .

Remarquons que l'effet de T est le même quelque soit la base où on exprime sa matrice. Ainsi, on doit également avoir

$$Av_1 = 4v_1 \quad \text{ et } \quad Av_2 = 2v_2.$$

Test 44 Vérifier que $Av_1 = 4v_1$ et $Av_2 = 2v_2$.

§4 Matrice semblables et trace

Définition 45 On dit que deux matrices A et A' de $\mathcal{M}_n(\mathbb{K})$ sont semblables si

$$\exists P \in \mathbf{GL}_n(\mathbb{R}), A' = PAP^{-1}.$$

Remarques

- Deux matrices semblables sont équivalentes.
- Une matrice A' est semblable à la matrice A représentant un endomorphisme $f \in \mathcal{L}(E)$ dans la base \mathcal{B} de E si, et seulement si, elle représente f dans une base \mathcal{B}' de E.
- La relation de similitude est une relation d'équivalence sur $\mathcal{M}_n(\mathbb{K})$.

Définition 46 On appelle trace d'une matrice $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ le scalaire

$$\operatorname{Tr}(A) = \sum_{i=1}^{n} a_{i,i}.$$

Proposition 47

L'application Tr : $\mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ est une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$.

Proposition 48

Pour toutes matrices $A \in \mathcal{M}_{m,n}(\mathbb{K})$ et $B \in \mathcal{M}_{n,m}(\mathbb{K})$, on a

$$Tr(AB) = Tr(BA)$$
.

En particulier, si $A \in \mathcal{M}_n(\mathbb{K})$ et $P \in \mathbf{GL}_n(\mathbb{K})$,

$$\operatorname{Tr}\left(PAP^{-1}\right) = \operatorname{Tr}\left(A\right).$$

Théorème 49

et définition

Il existe une unique forme linéaire $\operatorname{Tr}:\mathcal{L}(E)\to\mathbb{K}$ telle que pour toute base \mathcal{B} de E, on ait

$$\forall f \in \mathcal{L}(E), \operatorname{Tr}(f) = \operatorname{Tr}\left(\operatorname{Mat}_{B} f\right).$$

On appelle alors **trace** d'un endomorphisme f de E le scalaire Tr(f).

Proposition 50

Pour tous $u, v \in \mathcal{L}(E)$, on a Tr $(u \circ v) = \text{Tr } (v \circ u)$.

Proposition 51

Soit p un projecteur de E, alors Tr(p) = rg(p).