SUPORTING INFORMATION

Machine Learning Implemented Exploration of the Adsorption Mechanism of Carbon Dioxide onto Porous Carbons

Sarvesh Namdeo¹, Vimal Chandra Srivastava*,¹, Paritosh Mohanty²

¹Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.

²Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.

*Corresponding author: Tel.: +91-1332-285889; Fax: +91-1332-27635

Emails: vimalcsr@yahoo.co.in, vimal.srivastava@ch.iitr.ac.in (VCS), snamdeo@ch.iitr.ac.in (SN), pm@cy.iitr.ac.in (PM)

LIST OF FIGURES

- **Fig. S1.** Structural schematic diagram of gradient boosting decision tree (GBDT) model. Information using Shahani et al. [1].
- **Fig. S2.** Structural schematic diagram of extreme gradient boosting (XGB) model. Information using Shahani et al. [1].
- **Fig. S3.** Structural schematic diagram of light boost gradient machine (LBGM). Information using Shahani et al. [1].
- **Fig. S4.** Structural schematic diagram of random forest (RF) model. Information using Shahani et al. [1].
- **Fig. S5.** Structural schematic diagram of categorical boosting (Catboost). Information using Shahani et al. [1].
- **Fig. S6.** Structural schematic diagram of adaptive boosting (Adaboost). Information using Czarnecki et al. [2].

- **Fig. S7.** Structural schematic diagram of Box-plot.
- Fig. S8. Structural schematic diagram of 5-fold cross validation.

LIST OF TABLES

- **Table S1.** Parameters of the machine learning (ML) model: gradient boosting decision tree (GBDT) [3].
- **Table S2.** Parameters of the machine learning (ML) model: light boost gradient machine (LBGM) [3].
- **Table S3.** Parameters of the machine learning (ML) model: extreme gradient boosting (XGB) [3].
- **Table S4.** Parameters of the machine learning (ML) model: random forest (RF) [3].
- **Table S5.** Parameters of the machine learning (ML) model: categorical boosting (Catboost) and adaptive boosting (Adaboost) [3].
- **Table S6.** Data used for during machine learning (ML) implemented exploration of adsorption mechanism of carbon dioxide (CO_2) onto porous carbons. This data is represented on the basis of porous carbon's properties (surface area (SA) (m^2/g), TPV (total pore volume) (cm^3/g), MPV (micro-pore volume) (cm^3/g), C%, H%, N%, O%), CO_2 adsorption conditions (T (°C), P (bar)), and CO_2 uptake (mmol/g). Porous carbon's properties and adsorption conditions are the input features, and CO_2 uptake is the predicted variable.

Table S1. Parameters of the machine learning (ML) model: gradient boosting decision tree (GBDT) [3].

Parameters	Value
alpha	0.9
ccp_alpha	0.0
criterion	friedman_mse
init	None
learning_rate	0.05
loss	squared_error
max_depth	5
max_features	None
max_leaf_nodes	None
min_impurity_decrease	0.0
min_samples_leaf	1
min_samples_split	2
min_weight_fraction_leaf	0.0
n_estimators	600
n_iter_no_change	None
random_state	42
subsample	0.5
tol	0.0001
validation_fraction	0.1
verbose	0
warm_start	False

Table S2. Parameters of the machine learning (ML) model: light boost gradient machine (LBGM) [3].

Parameters	Value
boosting_type	gbdt
class_weight	none
colsample_bytree	1.0
importance_type	split
learning rate	0.05
max_depth	10
min_child_samples	20
min_child_weight	0.001
min split gain	0.0
n estimators	600
n_jobs	-1
num_leaves	5
objective	none
random_state	none
reg alpha	0.0
reg_lambda	0.8
silent	warn
subsample	0.1
subsample_for_bin	200000
subsample freq	0

Table S3. Parameters of the machine learning (ML) model: extreme gradient boosting (XGB) [3].

Parameters	Value
objective	reg:squarederror
base_score	0.5
booster	gbtree
callbacks	none
colsample_bylevel	1
colsample_bynode	1
colsample_bytree	1
early_stopping_rounds	none
enable categorical	false
eval_metric	rmse
gamma	0
gpu_id	-1
grow_policy	depthwise
importance_type	none
learning rate	0.3
max bin	256
max_cat_to_onehot	4
max delta step	0
max depth	4
max leaves	0
min_child_weight	1
missing	nan
monotone_constraints	()
n estimators	300
n jobs	0
num_parallel_tree	1
predictor	auto
random state	60
reg alpha	0
reg lambda	1
sampling_method	uniform
scale_pos_weight	1
subsample	0.5
tree method	exact
validate_parameters	1
verbosity	none
seed	60

Table S4. Parameters of the machine learning (ML) model: random forest (RF) [3].

Parameters	Value
bootstrap	true
ccp_alpha	0.0
criterion	squared_error
max_depth	none
max_features	sqrt
max_leaf_nodes	none
max_samples	none
min_impurity_decrease	0.0
min_samples_leaf	1
min_samples_split	2
min_weight_fraction_leaf	0.0
n_estimators	300
n_jobs	none
oob_score	false
random_state	none
verbose	0
warm_start	false

Table S5. Parameters of the machine learning (ML) model: categorical boosting (Catboost) and adaptive boosting (Adaboost) [3].

Catboost											
loss_function	RMSE										
Adaboost											
base_estimator	none										
learning_rate	0.01										
loss	exponential										
n_estimators	200										
random_state	none										

Table S6. Data used for during machine learning (ML) implemented exploration of adsorption mechanism of carbon dioxide (CO₂) onto porous carbons. This data is represented on the basis of porous carbon's properties (surface area (SA) (m^2/g), TPV (total pore volume) (cm^3/g), MPV (micro-pore volume) (cm^3/g), C%, H%, N%, O%), CO₂ adsorption conditions (T (°C), P (bar)), and CO₂ uptake (mmol/g). Porous carbon's

properties and adsorption conditions are the input features, and CO₂ uptake is the predicted variable.

				Porous carbon's properties									rption itions		
S. No.	Feedstock	Heat treatment (°C)	Activation	Material type	SA (m ² /g)	TPV (cm ³ /g	MPV (cm ³ /g)	C%	Н%	N%	Ο%	T (°C)	P (bar)	CO ₂ uptake (mmol/g)	Ref.
1	Wood chip	800- 1000	КОН	Hierarchical	1281.6	0.71	0.32	69.22	3.99	0.08	26.3	25	1	2.63	[4]
			KOH and CO ₂		1012.6	0.56	0.22	64.83	3.64	0.38	30.77	25	1	2.59	
	Wood chip and		КОН		1408.8	0.83	0.36	72.41	3.63	0.01	23.59	25	1	2.92	
	chicken manure		KOH and CO ₂		1403.9	0.85	0.33	69.51	4.35	0.76	24.94	25	1	2.44	
2	Food waste and		КОН	Hierarchical	841.3	0.36		68.43	0	31.09	0.48	25	1	3.23	[5]
	wood		KOH and CO ₂		667.4	0.29		61.32	0	38.15	0.53	25	1	2.73	
3	Spent coffee		K ₂ CO ₃	Microporous	645	0.26	0.25	70.86	1.71	3.19	14.72	25	1	3.45	[6]
					750	0.3	0.29	83.88	1.63	3.27	5.3	25	1	3.65	
					1259	0.52	0.49	87.56	1.06	1.87	0.23	25	1	4.33	
					1476	0.61	0.6	91.62	0.8	1.67	0	25	1	4.54	
					1692	0.71	0.68	94.51	0.58	1.51	0	25	1	4.46	
					2337	1.15	0.85	82.66	0.59	1.55	0	25	1	3.78	_
					645	0.26	0.25	70.86	1.71	3.19	14.72	25	0.15	1.43	1
					750	0.3	0.29	83.88	1.63	3.27	5.3	25	0.15	1.46	1
					1259	0.52	0.49	87.56	1.06	1.87	0.23	25	0.15	1.36	1
					1476	0.61	0.6	91.62	0.8	1.67	0	25	0.15	1.3	_
					1692	0.71	0.68	94.51	0.58	1.51	0	25	0.15	1.2	1
					2337	1.15	0.85	82.66	0.59	1.55	0	25	0.15	0.92	
4	Pine sawdust	700	КОН	Hierarchical	1728.66	0.7	0.67	93.4	0.73	0.89	6.79	25	1	4.21	[7]

					2279.52	0.99	0.91	96.96	0.18	0.99	4.51	25	1	3.46	
		1			2330.89	1.91	0.98	87.57	0.17	1.3	7.35	25	1	2.45	1
5	Date	500	КОН	Hierarchical	2112	0.94	0.86	82.84	2.06	0.75	14.35	25	1	4.18	[8]
					3255	1.65	1.29	79.46	1.7	0.04	18.8	25	1	3.35	1
					3337	2.05	0.54	89.4	1.41	0.16	9.03	25	1	2.9	
		800	7		1634	0.76	0.56	82.49	2.02	0.82	14.67	25	1	4.14	
					2367	1.15	0.83	74.01	1.93	0.67	13	25	1	4.36	
					2844	1.63	0.89	73.43	2.03	0.67	23.88	25	1	3.65	
6	Bee collected	800	КОН	Microporous	232	0.11	0.09	80.82	1.48	2.34	15.36	25	1	1.77	[9]
	pollen				332	0.16	0.12	76.25	0	1.89	21.86	25	1	2.1	
					937	0.4	0.38	77.57	0	1.54	20.89	25	1	3.38	
					1214	0.53	0.48	79.37	0	1.18	19.45	25	1	3.4	
					1460	0.63	0.53	93.1	0	0.31	6.59	25	1	3.42	
					232	0.11	0.09	80.82	1.48	2.34	15.36	25	0.15	0.98	
					332	0.16	0.12	76.25	0	1.89	21.86	25	0.15	1.04	
					937	0.4	0.38	77.57	0	1.54	20.89	25	0.15	1.18	
					1214	0.53	0.48	79.37	0	1.18	19.45	25	0.15	0.85	
					1460	0.63	0.53	93.1	0	0.31	6.59	25	0.15	0.69	
7	Biomass tar		Cao/KOH	Hierarchical	1898	1.52	0.43	82.85	0	0	17.15	25	1	2.44	[10]
					1790	1.21	0.48	93.76	0	0	6.24	25	1	2.71	
					2424	1.38	0.51	95.01	0	0	4.99	25	1	2.67	
					2358	1.85	0.49	95.14	0	0	4.86	25	1	2.92	
					1829	1.25	0.49	96.75	0	0	3.25	25	1	3.13	
					1684	1.43	0.48	95.25	0	0	4.75	25	1	2.75	
					1898	1.52	0.43	82.85	0	0	17.15	25	0.15	0.8	
					1790	1.21	0.48	93.76	0	0	6.24	25	0.15	0.74	
					2424	1.38	0.51	95.01	0	0	4.99	25	0.15	0.7	
					2358	1.85	0.49	95.14	0	0	4.86	25	0.15	1.01	
					1829	1.25	0.49	96.75	0	0	3.25	25	0.15	1.2	

					1684	1.43	0.48	95.25	0	0	4.75	25	0.15	0.68	
	1		1		1898	1.52	0.43	82.85	0	0	17.15	0	1	3.81	
	1		1		1790	1.21	0.48	93.76	0	0	6.24	0	1	4.4	
			1		2424	1.38	0.51	95.01	0	0	4.99	0	1	4.1	
			1		2358	1.85	0.49	95.14	0	0	4.86	0	1	4.77	
	1		1		1829	1.25	0.49	96.75	0	0	3.25	0	1	5.03	
	1		1		1684	1.43	0.48	95.25	0	0	4.75	0	1	4.62	
8	Flesh by	500	КОН	Hierarchical	3072	1.77	0.78	91.02	2.71	0.4	5.87	25	1	2.78	[11]
	sunflower				2730	1.84	1.12	94.5	0.95	0.8	3.75	25	1	2.34	
	receptacle and sunflower stalk	1000	1		654	0.46	0.36	77.12	1.08	0.75	21.05	25	1	3.08	
	- Summower stark	500	1		3072	1.77	0.78	91.02	2.71	0.4	5.87	0	1	4.09	
	1				2730	1.84	1.12	94.5	0.95	0.8	3.75	0	1	4.08	
		1000	1		654	0.46	0.36	77.12	1.08	0.75	21.05	0	1	4.52	
9	Biomass tar		КОН	Microporous	660	0.28	0.24	83.48	0.01	3.53	12.98	25	1	2.94	[12]
	1		1		1076	0.44	0.38	84.57	2.94	3.03	9.46	25	1	4.11	
	1		1		1268	0.55	0.5	90.49	0	2.12	7.39	25	1	3.64	
			1		1480	0.71	0.48	89.42	1.46	2.08	7.04	25	1	3.31	
	1		1		1161	0.38	0.35	88.44	0.01	3.02	8.53	25	1	3.69	
			1		1804	0.85	0.66	89.93	0	2	8.07	25	1	3.16	
]		1		1857	0.87	0.48	92.01	0	1.32	6.67	25	1	3.06	
	1		1		660	0.28	0.24	83.48	0.01	3.53	12.98	25	0.15	0.74	
]		1		1076	0.44	0.38	84.57	2.94	3.03	9.46	25	0.15	1.64	
]		1		1268	0.55	0.5	90.49	0	2.12	7.39	25	0.15	1.22	
					1480	0.71	0.48	89.42	1.46	2.08	7.04	25	0.15	1.52	
]]		1161	0.38	0.35	88.44	0.01	3.02	8.53	25	0.15	1.38	
]		1804	0.85	0.66	89.93	0	2	8.07	25	0.15	0.96	
					1857	0.87	0.48	92.01	0	1.32	6.67	25	0.15	0.92	
]		660	0.28	0.24	83.48	0.01	3.53	12.98	0	1	4.22	
					1076	0.44	0.38	84.57	2.94	3.03	9.46	0	1	6.02	

					1268	0.55	0.5	90.49	0	2.12	7.39	0	1	5.43	
			7		1480	0.71	0.48	89.42	1.46	2.08	7.04	0	1	5.41]
			7		1161	0.38	0.35	88.44	0.01	3.02	8.53	0	1	5.82	1
			7		1804	0.85	0.66	89.93	0	2	8.07	0	1	5.2	1
			7		1857	0.87	0.48	92.01	0	1.32	6.67	0	1	5.04	1
10	Banana stems	700		Microporous	909	0.44	0.32	79.5	1.5	0	19	25	1	3.2	[13]
	and fiber				1260	0.81	0.56	84	2	0	14	25	1	5	1
					909	0.44	0.32	79.5	1.5	0	19	0	1	5.3	1
					1260	0.81	0.56	84	2	0	14	0	1	7.1	1
11	Cellulose fiber		Steam	Microporous	473	0.2	0.17	88.4	2.2	0	9.4	25	1.01	1.72	[14]
	and wood		7		593	0.25	0.21	83.7	0.6	0	15.7	25	1.01	2.33	1
			7		217	0.12	0.13	89.6	2.6	1	6.8	25	1.01	1.12	1
			7		473	0.2	0.17	88.4	2.2	0	9.4	25	0.15	0.7	1
			7		593	0.25	0.21	83.7	0.6	0	15.7	25	0.15	0.9	1
			7		217	0.12	0.13	89.6	2.6	1	6.8	25	0.15	0.5	1
12	Corn stover	250	КОН	Microporous	955	0.43	0.31	57.46	3.37	0.66	38.51	0	1	4.93	[15]
					1539	0.72	0.48	59.2	3.7	0.34	36.76	0	1	6.8	1
					2442	1.56	0.86	60.41	3.91	0.24	35.44	0	1	7.14	1
					2225	1.11	0.49	64.9	3.12	0.24	31.74	0	1	5.79	1
					1543	0.71	0.61	66.56	2.99	0.86	29.59	0	1	5.06	1
					2201	1.31	0.69	56.55	3.03	0.31	40.11	0	1	6.22	1
					2170	1.27	0.66	54.94	2.19	0.32	42.55	0	1	4.86	1
					1630	0.69	0.6	76.91	2.73	0.2	20.16	0	1	6.47	1
					2132	1.13	0.7	59.22	3.88	0.23	36.67	0	1	6.85	1
					1862	0.81	0.69	58.22	3.79	0.22	37.77	0	1	6.32	
13	Lotus stem	180	КОН	Hierarchical	2091	0.87	0.65	90.49	0	0	9.51	25	1	3.85	[16]
					2893	1.59	0.7	88.8	0	0	11.2	25	1	2.84	
					2091	0.87	0.65	90.49	0	0	9.51	0	1	6.17]
					2893	1.59	0.7	88.8	0	0	11.2	0	1	4.61]

14	Sawdust	400	КОН	Microporous	1511	0.65	0.54	78.2	1.9	0	19.9	25	1	4.3	[17]
					1830	0.78	0.67	83.4	0.9	0	15.7	25	1	4.9]
					2163	0.93	0.74	88.1	0.4	0	11.5	25	1	4.7]
					2610	1.15	0.74	88.7	0.4	0	10.9	25	1	4	1
					1511	0.65	0.54	78.2	1.9	0	19.9	25	0.15	1.2]
					1830	0.78	0.67	83.4	0.9	0	15.7	25	0.15	1.1]
					2163	0.93	0.74	88.1	0.4	0	11.5	25	0.15	1.1]
					2610	1.15	0.74	88.7	0.4	0	10.9	25	0.15	0.9	
15	Vine shoot	600	CO ₂ and	Microporous	2.48			47.1	5.29	0.66	46.39	0	1.01	2.18	[18]
			КОН		46.3			47.1	5.29	0.66	46.39	0	1.01	2.21	
					374	0.19	0.11	47.1	5.29	0.66	46.39	0	1.01	3.45]
					538	0.24	0.18	47.1	5.29	0.66	46.39	0	1.01	3.19]
					1032	0.49	0.35	47.1	5.29	0.66	46.39	0	1.01	4.38]
					864	0.41	0.28	47.1	5.29	0.66	46.39	0	1.01	3.74]
					1439	0.67	0.49	47.1	5.29	0.66	46.39	0	1.01	6.08	
					704	0.29	0.24	47.1	5.29	0.66	46.39	0	1.01	4.16	1
					1101	0.54	0.38	47.1	5.29	0.66	46.39	0	1.01	5.36]
					1305	0.53	0.45	47.1	5.29	0.66	46.39	0	1.01	6.04]
	1				1671	0.67	0.59	47.1	5.29	0.66	46.39	0	1.01	5.4	1
					2.48			47.1	5.29	0.66	46.39	0	0.15	1.18]
					46.3			47.1	5.29	0.66	46.39	0	0.15	1.2]
	1				374	0.19	0.11	47.1	5.29	0.66	46.39	0	0.15	1.68	1
	1				538	0.24	0.18	47.1	5.29	0.66	46.39	0	0.15	1.76	1
]				1032	0.49	0.35	47.1	5.29	0.66	46.39	0	0.15	1.92	
	1				864	0.41	0.28	47.1	5.29	0.66	46.39	0	0.15	1.78	1
]				1439	0.67	0.49	47.1	5.29	0.66	46.39	0	0.15	2.27]
	1				704	0.29	0.24	47.1	5.29	0.66	46.39	0	0.15	2.16	1
	1				1101	0.54	0.38	47.1	5.29	0.66	46.39	0	0.15	2.42	1
	1				1305	0.53	0.45	47.1	5.29	0.66	46.39	0	0.15	2.25	1

					1671	0.67	0.59	47.1	5.29	0.66	46.39	0	0.15	2.25	
16	Arundo donax		КОН	Microporous	637	0.35	0.25	84.2	0	0.76	15.04	0	1	4	[19]
	stem		1		1122	0.59	0.5	84.7	0	0.87	14.43	0	1	6.3	1
			1		849	0.5	0.31	54.9	0	0.53	44.57	0	1	3.7	1
17	Black locust	650	Steam and	Hierarchical	1175	0.55	0.49	83.43	1.52	0	15.05	25	1	1.85	[20]
			КОН		2064	0.98	0.87	74.36	1.15	0	24.49	25	1	3.75	1
					1175	0.55	0.49	83.43	1.52	0	15.05	0	1	2.79	1
					2064	0.98	0.87	74.36	1.15	0	24.49	0	1	5.86	1
					1175	0.55	0.49	83.43	1.52	0	15.05	25	0.15	0.75	1
					2064	0.98	0.87	74.36	1.15	0	24.49	25	0.15	1.21	1
					1175	0.55	0.49	83.43	1.52	0	15.05	0	0.15	1.42	1
					2064	0.98	0.87	74.36	1.15	0	24.49	0	0.15	2.43	1
18	Empty fruit	150-350	КОН	Microporous	1163	0.23	0.1	77.3	3.5	2	13.3	25	1.01	0.66	[21]
	bunch				2239	0.88	0.19	83.5	2.6	2.7	11.3	25	1.01	0.85	1
					1720	0.56	0.15	85.9	2.2	3.1	8.8	25	1.01	2.81	1
					1322	0.78	0.23	80.9	2.9	2.4	13.3	25	1.01	3.4	1
					2510	1.05	0.55	84.6	1.9	2.4	11.1	25	1.01	3.71	1
					2100	0.78	0.29	87.8	1.7	3.5	7	25	1.01	2.18]
19	Gelatin and	450	КОН	Hierarchical	1714	0.83		75.9	2.17	0.65	12.76	25	1	3.28	[22]
	starch				1636	0.51		71.4	3.75	3	21.12	25	1	3.84]
					1957	0.79		71.2	1.97	1.97	19.57	25	1	3.45]
					1294	0.63		74.48	2.24	2.42	16.6	25	1	3.3]
					714	0.4		70.85	2.43	2.43	18.9	25	1	2.81	1
20	Rice husk	520	КОН	Microporous	774	0.41	0.3	74.2	2.2	0.75	22.85	25	1	3.53	[23]
					1041	0.53	0.42	76.1	1.9	0.48	21.52	25	1	4.16	
					1199	0.6	0.48	72	1.5	0.36	26.14	25	1	3.87]
					2695	1.14	1.11	82.7	1.8	0.45	15.05	25	1	3.71	┦
					774	0.41	0.3	74.2	2.2	0.75	22.85	25	0.15	1.51	
					1041	0.53	0.42	76.1	1.9	0.48	21.52	25	0.15	1.55]

								_							
					1199	0.6	0.48	72	1.5	0.36	26.14	25	0.15	1.28	
]				2695	1.14	1.11	82.7	1.8	0.45	15.05	25	0.15	0.92]
]				774	0.41	0.3	74.2	2.2	0.75	22.85	25	0.1	1.24]
]				1041	0.53	0.42	76.1	1.9	0.48	21.52	25	0.1	1.21	1
]				1199	0.6	0.48	72	1.5	0.36	26.14	25	0.1	1.01]
	1				2695	1.14	1.11	82.7	1.8	0.45	15.05	25	0.1	0.69	1
	1				774	0.41	0.3	74.2	2.2	0.75	22.85	0	1	4.88	1
	1				1041	0.53	0.42	76.1	1.9	0.48	21.52	0	1	5.63	1
	1				1199	0.6	0.48	72	1.5	0.36	26.14	0	1	6.02	1
	1				2695	1.14	1.11	82.7	1.8	0.45	15.05	0	1	6.24	1
21	Peanut shell	550	КОН	Hierarchical	1713	0.73	0.73	88	1.1	0.98	9.92	25	1	4.41	[24]
	1				1893	0.79	0.78	89.7	0.8	0.79	8.71	25	1	4.22	1
	1				1871	0.8	0.79	90.5	0.6	0.6	8.3	25	1	3.92	1
	1				1713	0.73	0.73	88	1.1	0.98	9.92	0	1	7.25	1
	1				1893	0.79	0.78	89.7	0.8	0.79	8.71	0	1	7.12	1
	1				1871	0.8	0.79	90.5	0.6	0.6	8.3	0	1	6.79	1
22	Pine nut shell	500	КОН	Microporous	1486	0.64		66.2	2.6	0.1	22.6	25	1	5	[25]
23	Macadamia nut	400-700	CO ₂	Microporous	469			57.5	5.95	0.33	36.2	25	1.01	3.07	[26]
	shell				489			57.5	5.95	0.33	36.2	25	1.01	3.3	1
	1				606			57.5	5.95	0.33	36.2	25	1.01	3.4	1
	1				425			57.5	5.95	0.33	36.2	25	1.01	2.8	1
	1				514			57.5	5.95	0.33	36.2	25	1.01	3.25	1
	1				605			57.5	5.95	0.33	36.2	25	1.01	3.45	1
	1				441			57.5	5.95	0.33	36.2	25	1.01	2.99	1
	1				512			57.5	5.95	0.33	36.2	25	1.01	3.37	1
	1				573			57.5	5.95	0.33	36.2	25	1.01	3.48	1
	1				434			57.5	5.95	0.33	36.2	25	1.01	3.01	1
	1				524			57.5	5.95	0.33	36.2	25	1.01	3.42	1
	1				633			57.5	5.95	0.33	36.2	25	1.01	3.73]

24	Agar	500	Zn(NO ₃) ₂	Hierarchical	671	0.43		86.73	0	2.72	10.55	25	1	2.3	[27]
					886	0.57		87.7	0	2.28	10.02	25	1	2.6	1
					1033	0.69		87.71	0	2.58	9.71	25	1	2.4	
					858	0.57		90.01	0	2.7	7.29	25	1	2.5	1
					1142	0.85		92.5	0	0.85	6.65	25	1	2.5	
					1316	1.14		93.18	0	1.14	5.68	25	1	2.5	
25	Hazelnut shell	500	NaNH ₂	Microporous	502	0.22		85.21	5.87	2.74	6.18	25	1	2.24	[28]
					1991	0.88		87.21	5.03	2.94	4.82	25	1	3.72	
					1833	0.8		86.24	5.31	3.21	5.24	25	1	3.39	
					1099	0.45		86.32	5.99	2.53	5.16	25	1	4.32	
					1821	0.79		86.74	5.87	2.75	4.64	25	1	3.5	
					2185	0.99		87.02	6.01	2.97	4	25	1	3.48	
					1343	0.55		87.65	5.24	1.98	5.13	25	1	3.94	
					2318	1.03		88.34	5.87	2.14	3.65	25	1	3.52	
					2321	1.11		88.21	5.21	2.3	4.28	25	1	3.38	
26	Walnut shell		КОН	Hierarchical	1636	0.74	0.68	54	3.75	2.69	39.56	25	1	2.86	[29]
	powder				2354	1.26	0.97	75.38	1.3	0.86	22.46	25	1	3.08	
					759	0.44	0.33	51.21	1.96	4.45	42.38	25	1	2.32	
					1606	0.97	0.78	71.19	2.88	4.02	21.91	25	1	1.92	
					1741	0.86	0.8	64.43	3.21	2.2	30.16	25	1	2.74	
					1636	0.74	0.68	54	3.75	2.69	39.56	25	1	2.86	1
			7		2251	1.21	1.03	70.44	1.62	0.94	27	25	1	2.54	1
			7		3079	1.84	1.18	80.49	1.2	2.08	16.23	25	1	2.53	1
					2354	1.26	0.97	75.38	1.3	0.86	22.46	25	1	3.04	1
			1		2556	1.9	0.96	81.84	1.75	0.76	15.65	25	1	2.27	1
			1		1000	0.68	0.53	51.67	1.75	1.57	45.01	25	1	2.37	1
			1		759	0.44	0.33	51.21	1.96	4.45	42.38	0	1	3.3	1
			7		1606	0.97	0.78	71.19	2.88	4.02	21.91	0	1	2.9]

							_						_	_	
					1741	0.86	0.8	64.43	3.21	2.2	30.16	0	1	4.73	
			7		1636	0.74	0.68	54	3.75	2.69	39.56	0	1	5	1
			7		2251	1.21	1.03	70.44	1.62	0.94	27	0	1	4.2	1
	1		7		3079	1.84	1.18	80.49	1.2	2.08	16.23	0	1	3.35	1
	1		7		2354	1.26	0.97	75.38	1.3	0.86	22.46	0	1	5.13	1
	1				2556	1.9	0.96	81.84	1.75	0.76	15.65	0	1	3.35	1
	1		1		1000	0.68	0.53	51.67	1.75	1.57	45.01	0	1	2.57	1
27	Walnut shell		КОН	Hierarchical	1636	0.74	0.68	54	3.75	2.69	39.56	25	0.15	0.67	[30]
			7		2354	1.26	0.97	75.38	1.3	0.86	22.46	25	0.15	0.64	1
	1		7		1144	0.64	0.48	68.18	1.57	4.8	25.45	25	1	2.1	1
			7		1813	1.05	0.7	80.95	0.79	1	17.26	25	1	2.14	1
			7		273	0.19	0.13	46.52	1.55	9.32	42.61	25	1	1.78	1
			7		481	0.27	0.24	52.01	1.92	8.75	37.32	25	1	1.83	1
			7		1144	0.64	0.48	68.18	1.57	4.8	25.45	25	0.15	0.36	1
			7		1813	1.05	0.7	80.95	0.79	1	17.26	25	0.15	0.38	1
			7		273	0.19	0.13	46.52	1.55	9.32	42.61	25	0.15	0.69	1
			7		481	0.27	0.24	52.01	1.92	8.75	37.32	25	0.15	0.67	1
28	Oil residue	500	NaNH ₂	Hierarchical	660	0.42	0.33	57.89	2.71	4.31	35.09	25	1	2.04	[31]
					846	0.94	0.4	56.5	2.52	4.59	36.39	25	1	2.11	
					1176	0.72	0.57	60.87	3.01	5.83	30.29	25	1	2.19	1
					2113	1.24	0.94	61.07	1.98	6.9	30.05	25	1	3.51]
					1508	0.94	0.68	62.98	2.1	6.02	28.9	25	1	3.42	
					2148	1.32	0.94	64.49	1.7	5.57	28.24	25	1	2.98]
29	Glucose biomass	80	CO ₂	Microporous	748	0.47	0.27	83.84	0.04	1.1	15.02	25	1	2.55	[32]
					697	0.46	0.25	75.15	0.05	6.5	18.3	25	1	2.92	
					581	0.35	0.21	67.78	1.14	11.48	19.5	25	1	3.03	
30	Shell of tea seed	700	КОН	Microporous	1065	0.47	0.39	59.43	1.24	2.43	36.9	25	1	2.69	[33]
					1188	0.52	0.44	66.21	0.94	3.41	29.44	25	1	2.75	

					1055	0.46	0.39	61.47	1.16	3.45	33.92	25	1	2.44	
					706	0.33	0.25	48.26	1.77	3.39	46.58	25	1	1.95	
31	Water chestnut shell	500		Hierarchical	669	0.31		71.42	3.06	3.05	22.47	25	1	3.29	[34]
					1450	0.61		73.24	2.99	3.26	20.51	25	1	3.63	
					1310	0.65		74.25	3.01	3.58	19.16	25	1	3.18	
					1036	0.44		76.21	3.01	2.73	18.05	25	1	4.06	
					2412	1.14		75.2	2.75	3.14	18.91	25	1	4.04	
					2596	1.42		73.58	2.8	3.35	20.27	25	1	3.59	
					1416	0.58		77.43	2.42	2.42	17.73	25	1	4.5	
					2615	1.38		76.52	2.53	2.68	18.27	25	1	3.6	
					2446	1.59		76.03	2.86	3.12	17.99	25	1	3.39	
32	Poplar catkins	400	ZnCl ₂	Hierarchical	1361.9	0.58	0.46	87.23	1.62	1.89	9.26	25	1	3.55	[35]
					1005.4	0.41	0.34	87.42	1.32	2.37	8.89	25	1	3.75	
					1455.1	0.68	0.47	88.57	0.89	2.89	7.65	25	1	4.05	
					1248.7	0.5	0.41	89.74	0.78	2.16	7.32	25	1	2.62	
					1272.4	0.55	0.43	89.23	0.82	2.09	7.86	25	1	3.35	
33	Walnut shell	500	NaNH ₂	Hierarchical	419	0.25	0.19	54.24	3.37	3.79	38.6	25	1	1.93	[36]
					589	0.34	0.27	63.53	4.38	7.24	24.85	25	1	2.53	
					802	0.47	0.37	57.6	3.45	1.52	37.43	25	1	1.96	
					516	0.28	0.2	52.55	3.35	3.52	40.58	25	1	1.7	
					1687	0.94	0.77	72.63	3.18	1.89	22.3	25	1	3.06	
					1721	0.92	0.75	61.53	1.45	2.54	34.48	25	1	2.15	
					419	0.25	0.19	54.24	3.37	3.79	38.6	0	1	2.6	
					589	0.34	0.27	63.53	4.38	7.24	24.85	0	1	4.17	
					802	0.47	0.37	57.6	3.45	1.52	37.43	0	1	3.88	
					516	0.28	0.2	52.55	3.35	3.52	40.58	0	1	2.67	
					1687	0.94	0.77	72.63	3.18	1.89	22.3	0	1	5.22	
					1721	0.92	0.75	61.53	1.45	2.54	34.48	0	1	3.17	

34	Glucose-d	180	КОН	Hierarchical	821	0.42		65.54	2.14	12.17	20.15	25	1	3.99	[37]
					1267	0.54		64.89	2.15	11.93	21.03	25	1	4.24	
					1398	0.6		63.54	2.16	11.67	22.63	25	1	4.02	
					1412	0.63		62.21	2.12	11.23	24.44	25	1	3.93	
					1734	0.78		75.01	1.41	9.24	14.34	25	1	4.26	
					1960	0.9		74.32	1.35	8.56	15.77	25	1	4.23	
					2167	0.96		72.68	1.37	7.23	18.72	25	1	4.21	
					2016	0.94		75.35	1.17	6.85	16.63	25	1	4.07	
					2394	1.13		81.51	0.89	6.94	10.66	25	1	3.92	
					2659	1.32		79.12	0.75	6.72	13.41	25	1	3.71	
					2655	1.4		77.05	0.85	6.43	15.67	25	1	3.51	
					2470	1.3		76.92	0.96	6.2	15.92	25	1	3.42	
					821	0.42		65.54	2.14	12.17	20.15	0	1	5.33	
					1267	0.54		64.89	2.15	11.93	21.03	0	1	6.23	
					1398	0.6		63.54	2.16	11.67	22.63	0	1	6.11	
					1412	0.63		62.21	2.12	11.23	24.44	0	1	5.9	
					1734	0.78		75.01	1.41	9.24	14.34	0	1	6.7	
					1960	0.9		74.32	1.35	8.56	15.77	0	1	6.14	
					2167	0.96		72.68	1.37	7.23	18.72	0	1	6.28	
					2016	0.94		75.35	1.17	6.85	16.63	0	1	6.11	
					2394	1.13		81.51	0.89	6.94	10.66	0	1	6.46	
					2659	1.32		79.12	0.75	6.72	13.41	0	1	5.73	
					2655	1.4		77.05	0.85	6.43	15.67	0	1	5.36	
					2470	1.3		76.92	0.96	6.2	15.92	0	1	5.24	
35	Palm kernel shell	500		Microporous	195	0.11	0.08	90.23	0	1.77	7.76	25	1	1.43	[38]
					852	0.38	0.31	85.9	0	3.03	10.87	25	1	4.39	
					1185	0.52	0.43	90.97	0	3.35	5.54	25	1	4.8	
					694	0.37	0.25	88.31	0	1.95	9.53	25	1	3.39	

					699	0.49	0.16	92.63	0	1.73	5.45	25	1	2.56	
					586	0.31	0.19	88.52	0	2.94	8.24	25	1	2.84	
					1700	0.89	0.56	86.45	0	3.3	9.97	25	1	5.29	
36	Lignin	200	КОН	Hierarchical	3172	1.6		87.72	0	0	12.08	25	1	2.3	[39]
					3020	1.89		80.03	0	0.62	19.34	25	1	2.2	
					3064	1.56		87.1	0	0.64	12.26	25	1	2.5	
					3021	1.58		89.55	0	1.1	9.35	25	1	2.6	
					2473	1.26		87.81	0	1.17	11.02	25	1	2.7	
37	Pineapple waste	210		Hierarchical	124			84.82	1.56	1.3	12.32	25	1	1.16	[40]
					224.1			86.06	1.55	1.69	10.7	25	1	1.18	
					422.8			80.01	1.16	1.52	17.31	25	1	2.22	
					302.7			81.12	0.75	1.3	16.83	25	1	1.59	
					328.2			84.98	0.2	1.59	13.23	25	1	1.33	
					644.9			73.52	1.09	1.49	23.9	25	1	3.16	
					186			85.04	0.48	1.12	13.36	25	1	1.35	
					397.3			83.29	0.17	1.58	14.96	25	1	1.59	
					1076.3			86.31	0.14	0.33	13.22	25	1	4.25	
38	Glucose	180	КОН	Hierarchical	1082	0.58	0.44	77.91	0	9.44	12.65	25	1	3.78	[41]
					1793	0.87	0.73	81.12	0	8.02	10.86	25	1	5.01	
					2328	1.11	0.94	84.91	0	5.05	10.04	25	1	4.32	
					2958	1.61	1.16	92.8	0	2.73	4.47	25	1	3.36	
					1082	0.58	0.44	77.91	0	9.44	12.65	25	0.15	1.29	
					1793	0.87	0.73	81.12	0	8.02	10.86	25	0.15	1.38	
					2328	1.11	0.94	84.91	0	5.05	10.04	25	0.15	0.93	
					2958	1.61	1.16	92.8	0	2.73	4.47	25	0.15	0.65	
					1082	0.58	0.44	77.91	0	9.44	12.65	0	1	5.36	
					1793	0.87	0.73	81.12	0	8.02	10.86	0	1	7.6	
					2328	1.11	0.94	84.91	0	5.05	10.04	0	1	7.18	
					2958	1.61	1.16	92.8	0	2.73	4.47	0	1	6.24	

39	Glucose-d		КОН	Microporous	1210	0.69	74.3	0	9.8	15.9	25	1	4.18	[42]
					1780	1.35	82.5	0	6.94	10.56	25	1	4.66	
					2136	1.43	80.8	0	6.84	12.36	25	1	3.89	
					3247	3.09	86.9	0	2.07	11.03	25	1	4.95	
					1210	0.69	74.3	0	9.8	15.9	0	1	6.11	
					1780	1.35	82.5	0	6.94	10.56	0	1	7.77	
					2136	1.43	80.8	0	6.84	12.36	0	1	7.43	
					3247	3.09	86.9	0	2.07	11.03	0	1	8.07	
40	Sugarcane bagasse			Microporous	32	0.02	83.16	1.74	3.81	11.29	25	1	1.94	[43]
					851	0.44	87	0.97	0.83	11.2	25	1	4.52	
					927	0.48	83.26	1.17	1.76	13.81	25	1	4.6	
					1113	0.57	83.59	1.18	1.98	13.25	25	1	4.8	
					1024	0.53	83.02	1.16	1.98	13.84	25	1	4.76	
					945	0.49	84.19	1.12	1.99	12.7	25	1	4.71	
41	Lotus stalks	500	NaNH ₂	Hierarchical	848	0.38	67.03	2.34	3.77	26.86	25	1	3.39	[44]
					1164	0.54	68.32	2.55	4.01	25.12	25	1	3.67	
					1087	0.52	67.65	2.25	4.5	25.6	25	1	3.22	
					1105	0.49	70.25	2.12	3.21	24.42	25	1	3.69	
					2053	0.97	71.37	2.04	3.64	22.95	25	1	3.47	
					1921	1.04	70.98	2.06	4.03	22.93	25	1	3.12	
					1113	0.48	73.56	2.09	2.61	21.74	25	1	3.88	
					2264	1.34	74.32	1.97	3.08	20.63	25	1	3.51	
					1824	1.03	74.98	1.88	3.45	19.69	25	1	3.45	
42	Phenolic resins	500	NaNH ₂	Microporous	735	0.31	77.7	2.58	2.72	17	25	1	3.32	[45]
					936	0.39	78.36	2.29	4.56	14.79	25	1	4.12	
					1115	0.46	79.36	2.43	5.36	12.85	25	1	4.14	
					1003	0.41	79.11	2.16	6.05	12.68	25	1	3.83	
					787	0.33	80.6	2.42	1.56	15.42	25	1	3.86	

			1		1000	0.45		70.22	2.26	1 20	1 4 42	25	1	1.06	1
					1088	0.45		79.32	2.36	3.9	14.42	25	1	4.06	
					1432	0.59		78.62	1.76	4.25	15.37	25	1	4.64	
					1569	0.64		77.65	2.24	5.94	14.17	25	1	4.4	
					932	0.39		85.36	1.95	1.39	11.3	25	1	4.03	
					1288	0.54		83.69	1.7	3.85	10.76	25	1	4.61	
					1924	0.79		81.34	1.64	4.09	12.93	25	1	4.57	
					2155	0.94		76.96	1.29	5.74	16.01	25	1	4.38	
43	Coconut shell	500	K ₂ CO ₃	Hierarchical	947	0.35		86.59	0.94	2.76	9.71	25	1	3.45	[46]
					1082	0.39		87.48	0.88	2.74	8.9	25	1	3.71	
					1324	0.51		91.35	0.82	1.52	6.31	25	1	3.49	
					1199	0.47		91.08	0.52	1.42	6.98	25	1	3.07	
					1354	0.58		88.71	0.55	1.34	9.4	25	1	3.03	
					1329	0.56		91.35	0.56	1.13	6.96	25	1	2.86	
					1430	0.65		93.24	0.65	0.86	5.25	25	1	2.78	
44	Argan hard shell	700	KOH and NaOH	Hierarchical	2251	1.04	0.93	85.08	0	9.49	5.43	25	1	5.51	[47]
					1890	0.87	0.8	82.68	0	13.9	3.42	25	1	5.63	
					1463	0.74	0.58	67.74	0	9.07	23.19	25	1	3.64	
					1827	0.96	0.73	82.14	0	12.61	5.25	25	1	3.73	1
45	Olive stone, coffee, almond shell, grape seed		CO ₂	Microporous	514	0.21		92.2	0	0.4	7.4	25	0.15	0.88	[48]
					1248	0.44		88	0	0.7	11.3	25	0.15	0.99	
					534	0.25		83.7	0	4.1	12.2	25	0.15	1.11	
					847	0.34		81.9	0	1.3	16.8	25	0.15	0.98	
					535	0.23		85.3	0	1.8	12.9	25	0.15	0.91	
			1		362	0.27		90	0	2.2	7.8	25	0.15	0.91	
					840	0.34		82.6	0	2.1	15.3	25	0.15	0.75	
46	Black gram	300	КОН	Microporous	956	0.48	0.31	76.95	2.39	4.82	15.84	25	1	3.34	[49]
	-		1	_	1258	0.61	0.4	83.63	2.9	4.21	9.26	25	1	3.46	

					1697	0.82	0.37	84.08	2.06	3.86	10	25	1	3.46	
					1987	1.02	0.26	89.43	1.41	1.78	7.38	25	1	2.76	
					990	0.42	0.31	79.99	2.9	4.76	12.35	25	1	3.25	
					1428	0.65	0.29	78.36	2.58	4.38	14.68	25	1	3.06	
					1675	0.96	0.06	75.76	2.51	3.67	18.06	25	1	2.28	
					2086	1.08	0.16	91.38	1.06	2.52	5.04	25	1	2.59	
					1216	0.53	0.35	78.46	2.21	5.34	13.99	25	1	3.16	
					1446	0.63	0.37	81.6	2.41	4.15	11.84	25	1	3.21	
					1952	1.11	0.04	71.34	3.4	3.15	22.11	25	1	2.14	
					2305	1.23	0.13	79.17	2.13	1.81	16.89	25	1	2.34	
					956	0.48	0.31	76.95	2.39	4.82	15.84	0	1	4.61	
					1258	0.61	0.4	83.63	2.9	4.21	9.26	0	1	5.3	
					1697	0.82	0.37	84.08	2.06	3.86	10	0	1	5.25	
					1987	1.02	0.26	89.43	1.41	1.78	7.38	0	1	5.1	
					990	0.42	0.31	79.99	2.9	4.76	12.35	0	1	4.65	
					1428	0.65	0.29	78.36	2.58	4.38	14.68	0	1	4.97	
					1675	0.96	0.06	75.76	2.51	3.67	18.06	0	1	3.9	
					2086	1.08	0.16	91.38	1.06	2.52	5.04	0	1	4.69	
					1216	0.53	0.35	78.46	2.21	5.34	13.99	0	1	4.82	
					1446	0.63	0.37	81.6	2.41	4.15	11.84	0	1	5.15	
					1952	1.11	0.04	71.34	3.4	3.15	22.11	0	1	3.73	
					2305	1.23	0.13	79.17	2.13	1.81	16.89	0	1	4.79	
47	Glucose-d	180	K ₂ CO ₃	Hierarchical	933	0.45		66.51	2.33	12.27	18.89	25	1	3.43	[50]
					1005	0.46		65.31	2.38	12.21	20.1	25	1	3.46	
					1170	0.53		63.67	2.42	11.81	22.1	25	1	3.74	
					1754	0.83		69.83	2.14	10.51	17.52	25	1	3.69	
					1699	0.89		70.32	1.98	9.54	18.16	25	1	3.65	
					1824	0.92		71.66	1.97	7.74	18.63	25	1	3.92	
					2572	1.43		77.7	1.56	6.57	14.17	25	1	3.75	

					_			_	_	_					_
					2510	1.54		80.32	1.73	5.03	12.92	25	1	3.56	
					2827	1.55		84.24	1.65	4.69	9.42	25	1	3.61	
					1020	0.52		73.65	2.15	0.32	23.88	25	1	3.66	
					933	0.45		66.51	2.33	12.27	18.89	0	1	4.8	
					1005	0.46		65.31	2.38	12.21	20.1	0	1	4.84	
					1170	0.53		63.67	2.42	11.81	22.1	0	1	5.32	
					1754	0.83		69.83	2.14	10.51	17.52	0	1	5.45	
					1699	0.89		70.32	1.98	9.54	18.16	0	1	5.87	
					1824	0.92		71.66	1.97	7.74	18.63	0	1	6.23	
					2572	1.43		77.7	1.56	6.57	14.17	0	1	6.23	
					2510	1.54		80.32	1.73	5.03	12.92	0	1	6.16	
					2827	1.55		84.24	1.65	4.69	9.42	0	1	6.05	
					1020	0.52		73.65	2.15	0.32	23.88	0	1	5.74	
48	Lignin	300	КОН	Hierarchical	1788	0.91	0.49	40.4	0	5.6	54	25	1	4.8	[51]
					2957	1.79	0.56	59.5	0	2.5	38	25	1	4.4	
					1075	0.75	0.21	64	0	2.2	33.8	25	1	4	
					1788	0.91	0.49	40.4	0	5.6	54	0	1	8.2	
					2957	1.79	0.56	59.5	0	2.5	38	0	1	7.6	
					1075	0.75	0.21	64	0	2.2	33.8	0	1	6.5	
49	Canes biomass			Hierarchical	18	0.02		80.03	0	13.53	5.76	25	1	1.5	[52]
					982	0.62		79.26	0	8.12	11.89	25	1	2.2	
					582	0.29		74.73	0	15.88	7.28	25	1	2.1	
					18	0.02		80.03	0	13.53	5.76	0	1	1.7	
					982	0.62		79.26	0	8.12	11.89	0	1	4.8	
					582	0.29		74.73	0	15.88	7.28	0	1	3	
50	Pigskin			Hierarchical	1165	1.03		64.7	1.5	10.4	23.25	25	1	4.4	[53]
					2693	1.68	_	84.8	0.5	6.2	8.21	25	1	3.1	
					2731	1.89		86.8	1.8	2.6	7.9	25	1	2.5	
					2799	1.91		91.9	1.2	1.6	4.45	25	1	2.2	

					1165	1.03		64.7	1.5	10.4	23.25	0	1	5.3	
					2693	1.68		84.8	0.5	6.2	8.21	0	1	4.7	
					2731	1.89		86.8	1.8	2.6	7.9	0	1	4.1	
					2799	1.91		91.9	1.2	1.6	4.45	0	1	4	
51	Chitosan	550	КОН	Microporous	667	0.29	0.28	63.3	2.4	6.5	27.8	25	1	3.74	[54]
					716	0.32	0.31	61.5	2.5	6.6	29.4	25	1	4.04	
					718	0.33	0.31	59.1	2.3	6.8	31.8	25	1	4.17	
					907	0.4	0.39	57.9	2.6	6.7	32.8	25	1	4.26	
					667	0.29	0.28	63.3	2.4	6.5	27.8	25	0.15	1.46	
					716	0.32	0.31	61.5	2.5	6.6	29.4	25	0.15	1.57	
					718	0.33	0.31	59.1	2.3	6.8	31.8	25	0.15	1.86	
					907	0.4	0.39	57.9	2.6	6.7	32.8	25	0.15	1.77	
52	Rotten strawberries	180	КОН	Hierarchical	935	0.42		72.21	2.55	3.68	21.56	25	1	3.63	[55]
					1441	0.6		68.99	2.21	5.16	23.64	25	1	4.04	
					1117	0.52		78.02	2.44	5.38	14.16	25	1	4.49	
					1482	0.64		70.16	3.06	5.06	21.72	25	1	3.87	
					1408	0.67		76.23	2.39	3.81	17.57	25	1	3.73	
					1577	0.68		79.18	2.11	2.6	16.11	25	1	3.99	
53	Lignin		КОН	Hierarchical	2922	1.36	1.22	84.6	0	5.6	7.2	25	1	5.12	[56]
					2779	1.39	1.1	79.1	0	7.1	11.8	25	1	5.48	
					1631	0.83	0.6	76.3	0	5.9	17.1	25	1	4.23	
54	Soya chunks	180	NaOH	Microporous	607			80.2	0	4.3	15.5	25	1	2.7	[57]
					1072			84	0	5.3	10.7	25	1	3.2	
55	Arundo donax		ZnCl ₂	Hierarchical	1863	1		75	0	5.4	19.6	25	1	2.1	[58]
					1340	0.68		81	0	4.1	14.9	25	1	1.7	
					1420	0.76		82	0	3.5	14.5	25	1	2	
56	Coca cola			Hierarchical	1082	0.43		69.6	0	3.3	13.8	25	1.01	3.2	[59]
					1994	0.87		73.1	0	4.2	10.3	25	1.01	3.08	

					1405	0.8		74	0	3.5	12.5	25	1.01	5.22	
57	Waste wool	300	КОН	Hierarchical	447	0.22	0.18	71.9	1.37	11.25	15.48	25	1	1.48	[60]
					1010	0.57	0.37	70.73	1.64	4.57	23.06	25	1	2.33	
					1352	0.78	0.54	69.65	1.42	4.14	24.79	25	1	2.78	
					1420	0.86	0.52	67.47	1.68	3.7	27.15	25	1	2.35	
58	Coconut shell	500	КОН	Microporous	1023	0.38		84.2	1.52	1.35	12.93	25	1	4.1	[61]
					1383	0.56		83.3	1.32	1.08	14.3	25	1	4	
					1604	0.65		84.2	1.53	0.81	13.46	25	1	4.3	
					1178	0.49		82	1.34	1.23	15.43	25	1	4.1	
					1535	0.6		81.3	1.22	0.91	16.57	25	1	4.8	
					1687	0.67		83	1.29	0.7	15.01	25	1	4.3	
					1550	0.62		84.2	1.03	0.86	13.91	25	1	4.1	
					1596	0.64		86.3	0.92	0.73	12.05	25	1	4.7	
					1937	0.78		86.5	0.84	0.61	12.05	25	1	4.44	
					1513	0.58		80.8	2.4	0.23	16.57	25	1	3.7	
					1012	0.44		75.5	0.95	8.01	15.54	25	1	3	
59	Banana peel	800	CO ₂	Hierarchical	1426.1	0.83	0.56	43.5	2.2	4.2	50.1	25	1	2.7	[62]
					764			62.51	0	5	32.49	30	1	1.90	
60	Black locust	650	КОН	Hierarchical	2511	1.35	1.16	76.38	1.48	7.21	0	25	1	5.05	[63]
					2511	1.35	1.16	76.38	1.48	7.21	0	0	1	7.19	
					2511	1.35	1.16	76.38	1.48	7.21	0	25	0.15	1.59	
					2511	1.35	1.16	76.38	1.48	7.21	0	0	0.15	3.26	
61	Bark stem	170	КОН	Hierarchical	1393	0.63	0.49	87.48	0	1.61	10.91	25	1	3.92	[64]
					1759	0.92	0.6	89.48	0	1.43	9.09	25	1	4.45	
					1229	0.89	0.15	92.59	0	0.99	6.42	25	1	3.76	
62	Coconut shell	500	КОН	Hierarchical	879	0.38		64.2	4.02	6.16	25.62	25	1	3.68	[65]
					1135	0.62		70.5	3.38	4.83	21.29	25	1	4.04	
					1850	0.87		69.8	3	4.31	22.89	25	1	4.16	
					1562	0.75		69	2.69	3.84	24.47	25	1	3.79	

					1483	0.66		70	2.67	4.56	22.77	25	1	4.26	
					1487	0.79		71.2	2.45	3.59	22.76	25	1	4.22	
					2322	1.06		74.1	2.8	3.19	19.91	25	1	4.1	
					2521	1.34		75.8	2.48	2.4	19.32	25	1	3.72	
					2349	0.99		77.3	2.03	2.22	18.45	25	1	4.22	
					1967	0.94		79.2	2.22	1.81	16.77	25	1	4.09	
					2690	1.19		78.3	2.46	1.7	17.54	25	1	3.96	
					2599	1.33		80.7	2.11	1.21	15.98	25	1	3.44	
63	Fallen leaves	600	КОН	Hierarchical	1210	0.48	0.39	78.6	0	1.7	17.6	25	1	3.39	[66]
					1360	0.51	0.4	81.3	0	1	15.3	25	1	4.09	
					1600	0.65	0.54	84.4	0	1.3	12.6	25	1	4.41	
					1630	0.66	0.56	85.5	0	2.5	12	25	1	4.2	
					2230	1.03	0.89	86.5	0	0.4	11.9	25	1	3.93	
					1950	0.88	0.72	84.8	0	0.4	11.9	25	1	4.23	
					1210	0.48	0.39	78.6	0	1.7	17.6	25	0.15	1.2	
					1360	0.51	0.4	81.3	0	1	15.3	25	0.15	1.55	
					1600	0.65	0.54	84.4	0	1.3	12.6	25	0.15	1.41	
					1630	0.66	0.56	85.5	0	2.5	12	25	0.15	1.14	
					2230	1.03	0.89	86.5	0	0.4	11.9	25	0.15	0.98	
					1950	0.88	0.72	84.8	0	0.4	11.9	25	0.15	1.14	
64	Human hair		КОН	Hierarchical	1230	0.9		66.41	0	8.33	25.26	0	1	5.14	[67]
					2380	1.64		77.93	0	4.94	17.13	0	1	5.45	
					2700	1.33		80.95	0	3.45	15.6	0	1	4.27	
65	Polyacrylonitrile fiber	300	КОН	Hierarchical	855	0.45	0.31	64.76	3.87	13.05	18.32	25	1	3.33	[68]
					1338	0.68	0.49	66.54	4.01	11.32	18.13	25	1	3.57	
					1655	0.78	0.63	68.54	4.92	9.84	16.7	25	1	3.77	
					1980	0.92	0.76	73.15	4.82	7.38	14.65	25	1	3.95	
					2362	1.22	1.02	75.36	4.35	6.21	14.08	25	1	3.74	

2430 1.37 1.16 74.98 3.98 5.36 15.68 25 1 3.51 2406 1.38 1.08 87.07 3.16 3.89 5.88 25 1 3.54 2672 1.58 1.31 88.06 3.87 3.04 5.03 25 1 3.16 2644 1.62 1.32 87.68 3.24 2.65 6.43 25 1 3.15 2112 1.26 0.92 92.23 3.56 2.83 1.38 25 1 3.02 2436 1.57 1.15 94.33 1.78 1.84 2.05 25 1 3.23 2436 1.57 1.15 94.33 1.78 1.84 2.05 25 1 3.23 2436 1.57 1.15 94.31 64.76 3.87 13.05 18.32 0 1 4.19 2436 1.57 1.15 94.31 64.76 3.87 13.05 18.32 0 1 4.19 2436 1.57 1.15 94.31 64.76 3.87 13.05 18.32 0 1 5.03 2436 1.57 1.15 94.31 64.76 3.87 13.05 18.32 0 1 5.03 2436 1.57 1.15 94.31 64.76 3.87 13.05 18.32 0 1 5.03 2436 1.57 1.15 94.31 1.32 18.13 0 1 5.03 2436 1.22 1.02 75.36 4.35 6.21 14.08 0 1 5.03 2430 1.37 1.16 74.98 3.98 5.36 15.68 0 1 5.32 2406 1.38 1.08 87.07 3.16 3.89 5.88 0 1 5.37 2406 1.38 1.08 87.07 3.16 3.89 5.88 0 1 5.76 2407 2406 1.38 1.08 87.07 3.16 3.89 5.88 0 1 5.76 2408 2406 1.38 1.08 87.07 3.16 3.89 5.88 0 1 5.76 2409 2406 1.38 1.08 87.07 3.16 3.89 5.88 0 1 5.77 2409 2406 1.38 1.08 87.07 3.16 3.89 5.88 0 1 5.72 2400 2406 1.38 1.08 87.07 3.16 3.89 5.88 0 1 5.72 2400 2406 1.38 1.08 87.07 3.16 3.89 5.88 0 1 5.74 2400 2406 1.38 1.08 87.07 3.16 3.89 5.88 0 1 5.74 2400 2406 1.38 1.08 87.07 3.16 3.89 5.88 0 1 5.74 2406		 						_							
					2430	1.37	1.16	74.98	3.98	5.36	15.68	25	1	3.51	
2644 1.62 1.32 87.68 3.24 2.65 6.43 25 1 3.15					2406	1.38	1.08	87.07	3.16	3.89	5.88	25	1	3.54	
2112 1.26 0.92 92.23 3.56 2.83 1.38 25 1 3.02					2672	1.58	1.31	88.06	3.87	3.04	5.03	25	1	3.16	
2747 1.62 1.19 91.56 2.45 2.36 3.63 25 1 3.46 2436 1.57 1.15 94.33 1.78 1.84 2.05 25 1 3.23 855 0.45 0.31 64.67 6.87 1.305 18.32 0 1 4.19 1338 0.68 0.49 66.54 4.01 11.32 18.13 0 1 5.03 1338 0.68 0.49 66.54 4.01 11.32 18.13 0 1 5.03 1655 0.78 0.63 68.54 4.92 9.84 16.7 0 1 5.61 1980 0.92 0.76 73.15 4.82 7.38 14.65 0 1 6.01 2362 1.22 1.02 75.36 4.35 6.21 14.08 0 1 6.37 2430 1.37 1.16 74.98 3.98 5.36 15.68 0 1 5.23 2440 1.38 1.08 87.07 3.16 3.89 5.88 0 1 5.76 2672 1.58 1.31 88.06 3.87 3.04 5.03 0 1 5.17 2674 1.62 1.32 87.68 3.24 2.65 6.43 0 1 5.47 2112 1.26 0.92 92.23 3.56 2.83 1.38 0 1 5.47 2436 1.57 1.15 94.33 1.78 1.84 2.05 0 1 4.52 66 Potassium bitartrate 600-800 self Hierarchical 557 0.24 0.21 73.05 2.2 0.6 24.15 25 1 3.68 1217 0.81 0.31 83.09 2.01 0.82 13.48 25 1 3.38 1217 0.81 0.31 83.09 2.01 0.82 13.48 25 1 3.38 1217 0.81 0.31 83.09 2.01 0.82 13.48 25 1 3.38 1217 0.81 0.31 83.09 2.01 0.82 13.48 25 1 3.58 1217 0.81 0.31 83.09 2.01 0.82 13.48 25 1 3.58 1217 0.81 0.31 83.09 2.01 0.82 13.48 25 1 3.58 1217 0.81 0.31 83.09 2.01 0.82 13.48 25 1 3.58 1217 0.81 0.31 83.09 2.01 0.82 13.48 25 1 3.58 1217 0.81 0.31 0.27 74.89 2.35 0.66 20.1 0 1 4.52 3557 0.24 0.21 73.05 2.2 0.66 24.15 0 1 3.58					2644	1.62	1.32	87.68	3.24	2.65	6.43	25	1	3.15	
2436 1.57 1.15 94.33 1.78 1.84 2.05 25 1 3.23					2112	1.26	0.92	92.23	3.56	2.83	1.38	25	1	3.02	
SS5					2747	1.62	1.19	91.56	2.45	2.36	3.63	25	1	3.46	
1338 0.68 0.49 66.54 4.01 11.32 18.13 0 1 5.03 1655 0.78 0.63 68.54 4.92 9.84 16.7 0 1 5.61 1980 0.92 0.76 73.15 4.82 7.38 14.65 0 1 6.01 2362 1.22 1.02 75.36 4.35 6.21 14.08 0 1 6.37 2430 1.37 1.16 74.98 3.98 5.36 15.68 0 1 5.23 2406 1.38 1.08 87.07 3.16 3.89 5.88 0 1 5.76 2672 1.58 1.31 88.06 3.87 3.04 5.03 0 1 5.1 2644 1.62 1.32 87.68 3.24 2.65 6.43 0 1 5.47 2112 1.26 0.92 92.23 3.56 2.83 1.38 0 1 5.72 2747 1.62 1.19 91.56 2.45 2.36 3.63 0 1 4.94 2748 1.62 1.15 94.33 1.78 1.84 2.05 0 1 4.52 66 Potassium 600-800 self Hierarchical 557 0.24 0.21 73.05 2.2 0.6 24.15 25 1 3.29 67 947 0.4 0.36 76.74 2.5 0.66 20.1 25 1 3.35 1217 0.81 0.31 0.27 74.89 2.35 0.64 22.12 0 1 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.6 4.92 4.5 4.92 4.5 4.92 4.5 4.92 4.5 4.5 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.5 4.5 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92 4.92 5 557 0.24 0.21 73.05 2.2 0.66 20.1 0 1 4.5 5 577 0.24 0.21 73.05 2.2 0.66 24.15 0 1 3.58 5 577 0.24 0.21 73.05 2.2 0.66 24.15 0 1 3.58 5 577 0.24 0.21 73.05 2.2 0.66 24.15 0 1 3.58 5 577 0.24 0.21 73.05 2.2 0.66 24.15 0 1 3.58 5 577 0.24 0.21 73.05 2.2 0.66 20.1 0 1 4.5					2436	1.57	1.15	94.33	1.78	1.84	2.05	25	1	3.23	
1655 0.78 0.63 68.54 4.92 9.84 16.7 0 1 5.61 1980 0.92 0.76 73.15 4.82 7.38 14.65 0 1 6.01 2362 1.22 1.02 75.36 4.35 6.21 14.08 0 1 6.37 2430 1.37 1.16 74.98 3.98 5.36 15.68 0 1 5.23 2406 1.38 1.08 87.07 3.16 3.89 5.88 0 1 5.76 2672 1.58 1.31 88.06 3.87 3.04 5.03 0 1 5.17 2644 1.62 1.32 87.68 3.24 2.65 6.43 0 1 5.47 2112 1.26 0.92 92.23 3.56 2.83 1.38 0 1 4.94 2436 1.57 1.15 94.33 1.78 1.84 2.05 0 1 4.52 66 Potassium 600-800 self Hierarchical 557 0.24 0.21 73.05 2.2 0.6 24.15 25 1 3.29 947 0.4 0.36 76.74 2.5 0.66 20.1 25 1 3.35 1156 0.56 0.46 78.87 1.92 0.78 18.43 25 1 3.35 1217 0.81 0.31 0.27 74.89 2.35 0.64 22.12 0 1 4.5 1217 0.81 0.31 0.27 74.89 2.35 0.64 22.12 0 1 4.5 947 0.4 0.36 76.74 2.5 0.66 20.1 0 1 4.5					855	0.45	0.31	64.76	3.87	13.05	18.32	0	1	4.19	
1980 0.92 0.76 73.15 4.82 7.38 14.65 0 1 6.01 2362 1.22 1.02 75.36 4.35 6.21 14.08 0 1 6.37 2430 1.37 1.16 74.98 3.98 5.36 15.68 0 1 5.23 2406 1.38 1.08 87.07 3.16 3.89 5.88 0 1 5.76 2672 1.58 1.31 88.06 3.87 3.04 5.03 0 1 5.1 2644 1.62 1.32 87.68 3.24 2.65 6.43 0 1 5.47 2112 1.26 0.92 92.23 3.56 2.83 1.38 0 1 5.72 2747 1.62 1.19 91.56 2.45 2.36 3.63 0 1 4.94 2436 1.57 1.15 94.33 1.78 1.84 2.05 0 1 4.52 66 Potassium 600-800 self Hierarchical 557 0.24 0.21 73.05 2.2 0.6 24.15 25 1 3.29 67 947 0.4 0.36 76.74 2.5 0.66 20.1 25 1 3.38 1217 0.81 0.31 0.27 74.89 2.35 0.64 22.12 0 1 4.5 1216 0.947 0.4 0.36 76.74 2.5 0.66 20.1 0 1 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 557 0.24 0.21 73.05 2.2 0.6 24.15 0 1 3.58 577 0.24 0.21 73.05 2.2 0.6 24.15 0 1 3.58 578 0.24 0.21 73.05 2.2 0.66 20.1 0 1 4.5 557 0.24 0.21 73.05 2.2 0.6 24.15 0 1 3.58 579 0.24 0.21 73.05 2.2 0.66 20.1 0 1 4.5 557 0.24 0.21 73.05 2.2 0.66 20.1 0 1 4.5 570 0.24 0.21 73.05 2.2 0.66 20.1 0 1 4.5					1338	0.68	0.49	66.54	4.01	11.32	18.13	0	1	5.03	
2362 1.22 1.02 75.36 4.35 6.21 14.08 0 1 6.37					1655	0.78	0.63	68.54	4.92	9.84	16.7	0	1	5.61	
2430 1.37 1.16 74.98 3.98 5.36 15.68 0 1 5.23 2406 1.38 1.08 87.07 3.16 3.89 5.88 0 1 5.76 2672 1.58 1.31 88.06 3.87 3.04 5.03 0 1 5.1 2644 1.62 1.32 87.68 3.24 2.65 6.43 0 1 5.47 2112 1.26 0.92 92.23 3.56 2.83 1.38 0 1 5.72 2747 1.62 1.19 91.56 2.45 2.36 3.63 0 1 4.94 2436 1.57 1.15 94.33 1.78 1.84 2.05 0 1 4.52 66 Potassium bitartrate					1980	0.92	0.76	73.15	4.82	7.38	14.65	0	1	6.01	
2406 1.38 1.08 87.07 3.16 3.89 5.88 0 1 5.76 2672 1.58 1.31 88.06 3.87 3.04 5.03 0 1 5.1 2644 1.62 1.32 87.68 3.24 2.65 6.43 0 1 5.47 2112 1.26 0.92 92.23 3.56 2.83 1.38 0 1 5.72 2747 1.62 1.19 91.56 2.45 2.36 3.63 0 1 4.94 2436 1.57 1.15 94.33 1.78 1.84 2.05 0 1 4.52 66 Potassium bitartrate					2362	1.22	1.02	75.36	4.35	6.21	14.08	0	1	6.37	
2672 1.58 1.31 88.06 3.87 3.04 5.03 0 1 5.1					2430	1.37	1.16	74.98	3.98	5.36	15.68	0	1	5.23	
2644 1.62 1.32 87.68 3.24 2.65 6.43 0 1 5.47					2406	1.38	1.08	87.07	3.16	3.89	5.88	0	1	5.76	
2112 1.26 0.92 92.23 3.56 2.83 1.38 0 1 5.72					2672	1.58	1.31	88.06	3.87	3.04	5.03	0	1	5.1	
2747 1.62 1.19 91.56 2.45 2.36 3.63 0 1 4.94					2644	1.62	1.32	87.68	3.24	2.65	6.43	0	1	5.47	
Column C					2112	1.26	0.92	92.23	3.56	2.83	1.38	0	1	5.72	
66 Potassium bitartrate 600-800 self Hierarchical 557 0.24 0.21 73.05 2.2 0.6 24.15 25 1 2.68 [69] 66 Potassium bitartrate 0.00 744 0.31 0.27 74.89 2.35 0.64 22.12 25 1 3.29 1 0.00 947 0.4 0.36 76.74 2.5 0.66 20.1 25 1 3.55 1 1156 0.56 0.46 78.87 1.92 0.78 18.43 25 1 3.38 1 1217 0.81 0.31 83.69 2.01 0.82 13.48 25 1 2.75 557 0.24 0.21 73.05 2.2 0.6 24.15 0 1 3.58 557 0.24 0.21 73.05 2.2 0.6 24.15 0 1 3.58 557 0.24 0.31 0.27 </td <td></td> <td></td> <td></td> <td></td> <td>2747</td> <td>1.62</td> <td>1.19</td> <td>91.56</td> <td>2.45</td> <td>2.36</td> <td>3.63</td> <td>0</td> <td>1</td> <td>4.94</td> <td></td>					2747	1.62	1.19	91.56	2.45	2.36	3.63	0	1	4.94	
bitartrate 744 0.31 0.27 74.89 2.35 0.64 22.12 25 1 3.29 947 0.4 0.36 76.74 2.5 0.66 20.1 25 1 3.55 1156 0.56 0.46 78.87 1.92 0.78 18.43 25 1 3.38 1217 0.81 0.31 83.69 2.01 0.82 13.48 25 1 2.75 557 0.24 0.21 73.05 2.2 0.6 24.15 0 1 3.58 744 0.31 0.27 74.89 2.35 0.64 22.12 0 1 4.5 947 0.4 0.36 76.74 2.5 0.66 20.1 0 1 5					2436	1.57	1.15	94.33	1.78	1.84	2.05	0	1	4.52	
947 0.4 0.36 76.74 2.5 0.66 20.1 25 1 3.55 1156 0.56 0.46 78.87 1.92 0.78 18.43 25 1 3.38 1217 0.81 0.31 83.69 2.01 0.82 13.48 25 1 2.75 557 0.24 0.21 73.05 2.2 0.6 24.15 0 1 3.58 744 0.31 0.27 74.89 2.35 0.64 22.12 0 1 4.5 947 0.4 0.36 76.74 2.5 0.66 20.1 0 1 5	66	600-800	self	Hierarchical	557	0.24	0.21	73.05	2.2	0.6	24.15	25	1	2.68	[69]
1156 0.56 0.46 78.87 1.92 0.78 18.43 25 1 3.38 1217 0.81 0.31 83.69 2.01 0.82 13.48 25 1 2.75 557 0.24 0.21 73.05 2.2 0.6 24.15 0 1 3.58 744 0.31 0.27 74.89 2.35 0.64 22.12 0 1 4.5 947 0.4 0.36 76.74 2.5 0.66 20.1 0 1 5					744	0.31	0.27	74.89	2.35	0.64	22.12	25	1	3.29	
1217 0.81 0.31 83.69 2.01 0.82 13.48 25 1 2.75 557 0.24 0.21 73.05 2.2 0.6 24.15 0 1 3.58 744 0.31 0.27 74.89 2.35 0.64 22.12 0 1 4.5 947 0.4 0.36 76.74 2.5 0.66 20.1 0 1 5					947	0.4	0.36	76.74	2.5	0.66	20.1	25	1	3.55	
557 0.24 0.21 73.05 2.2 0.6 24.15 0 1 3.58 744 0.31 0.27 74.89 2.35 0.64 22.12 0 1 4.5 947 0.4 0.36 76.74 2.5 0.66 20.1 0 1 5					1156	0.56	0.46	78.87	1.92	0.78	18.43	25	1	3.38	
744 0.31 0.27 74.89 2.35 0.64 22.12 0 1 4.5 947 0.4 0.36 76.74 2.5 0.66 20.1 0 1 5					1217	0.81	0.31	83.69	2.01	0.82	13.48	25	1	2.75	
947 0.4 0.36 76.74 2.5 0.66 20.1 0 1 5					557	0.24	0.21	73.05	2.2	0.6	24.15	0	1	3.58	
					744	0.31	0.27	74.89	2.35	0.64	22.12	0	1	4.5	
1156 0.56 0.46 78.87 1.92 0.78 18.43 0 1 5.16					947	0.4	0.36	76.74	2.5	0.66	20.1	0	1	5	
					1156	0.56	0.46	78.87	1.92	0.78	18.43	0	1	5.16	

				1217	0.81	0.31	83.69	2.01	0.82	13.48	0	1	4.35	
67	Cotton stalk crop-residue	КОН	Microporous	1897	0.744	0.706	65.56	3.37	1.87	26.32	25	1	3.49	[70]
				1787	0.806	0.622	73	2.27	2.04	20.47	25	1	2.88	
				1706	0.777	0.598	66.16	1.98	1.33	29.05	25	1	3.47	
				1853	0.785	0.646	61.64	2.61	2.74	30.29	25	1	3.74	
				2087	0.872	0.768	59.55	1.53	2.27	34	25	1	3.85	
				2438	1.212	0.727	64.74	2.47	0.31	31.97	25	1	3.22	
				1897	0.744	0.706	65.56	3.37	1.87	26.32	0	1	4.88	
				1787	0.806	0.622	73	2.27	2.04	20.47	0	1	5.96	
				1706	0.777	0.598	66.16	1.98	1.33	29.05	0	1	5.85	
				1853	0.785	0.646	61.64	2.61	2.74	30.29	0	1	5.8	
				2087	0.872	0.768	59.55	1.53	2.27	34	0	1	6.23	
				2438	1.212	0.727	64.74	2.47	0.31	31.97	0	1	5.22	

References

- 1. N.M. Shahani, X. Zheng, X. Guo, X. Wei, Machine learning-based intelligent prediction of elastic modulus of rocks at thar coalfield, Sustainability, 14(6) (2022) 3689
- 2. S. Czarnecki, M. Hadzima-Nyarko, A. Chajec, Ł. Sadowski, Design of a machine learning model for the precise manufacturing of green cementitious composites modified with waste granite powder, Sci. Rep., 12(1) (2022) 13242.
- 3. Scikit-learn, Machine Learning in Python, (https://scikit-learn.org/stable/).
- 4. P.D. Dissanayake, S.W. Choi, A.D. Igalavithana, X. Yang, D.C. Tsang, C.H. Wang, H.W. Kua, K.B. Lee, Y.S. Ok, Sustainable gasification biochar as a high efficiency adsorbent for CO₂ capture: a facile method to designer biochar fabrication, Renew. Sustain. Energ. Rev., 124 (2020) 109785.
- 5. A.D. Igalavithana, S.W. Choi, P.D. Dissanayake, J. Shang, C.H. Wang, X. Yang, S. Kim, D.C. Tsang, K.B. Lee, Y.S. Ok, Gasification biochar from biowaste (food waste and wood waste) for effective CO₂ adsorption, J. Hazard. Mater., 391 (2020) 121147.
- 6. M.J. Kim, S.W. Choi, H. Kim, S. Mun, K.B. Lee, Simple synthesis of spent coffee ground-based microporous carbons using K₂CO₃ as an activation agent and their application to CO₂ capture, Chem. Eng. J., 397 (2020) 125404.
- 7. C. Quan, R. Su, N. Gao, Preparation of activated biomass carbon from pine sawdust for supercapacitor and CO₂ capture, Int. J. Energ. Res., 44(6) (2020) 4335-4351.
- 8. J. Li, B. Michalkiewicz, J. Min, C. Ma, X. Chen, J. Gong, E. Mijowska, T. Tang, Selective preparation of biomass-derived porous carbon with controllable pore sizes toward highly efficient CO₂ capture, Chem. Eng. J., 360 (2019) 250-259.
- 9. S.W. Choi, J. Tang, V.G. Pol, K.B. Lee, Pollen-derived porous carbon by KOH activation: Effect of physicochemical structure on CO₂ adsorption, J. CO₂ Util., 29 (2019) 146-155.
- 10. H. Yuan, J. Chen, D. Li, H. Chen, Y. Chen, 5 Ultramicropore-rich renewable porous carbon from biomass tar with excellent adsorption capacity and selectivity for CO₂ capture, Chem. Eng. J., 373 (2019) 171-178.
- 11. H. Sun, B. Yang, A. Li, Biomass derived porous carbon for efficient capture of carbon dioxide, organic contaminants and volatile iodine with exceptionally high uptake, Chem. Eng. J., 372 (2019) 65-73.
- 12. D. Li, J. Chen, Y. Fan, L. Deng, R. Shan, H. Chen, H. Yuan, Y. Chen, Biomass-tar-Enabled nitrogen-doped highly ultramicroporous carbon as an efficient absorbent for CO₂ capture, Energ. Fuel., 33(9) (2019) 8927-8936.
- 13. D.L. Sivadas, A. Damodaran, R. Raghavan, Microporous carbon monolith and fiber from freeze-dried banana stems for high efficiency carbon dioxide adsorption, ACS Sustain. Chem. Eng., 7(15) (2019) 12807-12816.
- 14. V. Gargiulo, A. Gomis-Berenguer, P. Giudicianni, C.O. Ania, R. Ragucci, M. Alfè, Assessing the potential of biochars prepared by steam-assisted slow pyrolysis for CO₂ adsorption and separation, Energ. Fuel., 32(10) (2018) 10218-10227.
- 15. F. Shen, Y. Wang, L. Li, K. Zhang, R.L. Smith, X. Qi, Porous carbonaceous materials from hydrothermal carbonization and KOH activation of corn stover for highly efficient CO₂ capture, Chem. Eng. Commun., 205(4) (2018) 423-431.
- 16. X.X. Wu, C.Y. Zhang, Z.W. Tian, J.J. Cai, Large-surface-area carbons derived from lotus stem waste for efficient CO₂ capture, New Carbon Mater., 33(3) (2018) 252-261.

- 17. E.A. Hirst, A. Taylor, R. Mokaya, A simple flash carbonization route for conversion of biomass to porous carbons with high CO₂ storage capacity, J. Mater. Chem. A, 6 (26) (2018) 12393-12403.
- 18. J.J. Manyà, B. González, M. Azuara, G. Arner, Ultra-microporous adsorbents prepared from vine shoots-derived biochar with high CO₂ uptake and CO₂/N₂ selectivity, Chem. Eng. J., 345 (2018) 631-639.
- 19. G. Singh, I.Y. Kim, K.S. Lakhi, P. Srivastava, R. Naidu, A. Vinu, Single step synthesis of activated bio-carbons with a high surface area and their excellent CO₂ adsorption capacity, Carbon, 116 (2017) 448-455.
- 20. C. Zhang, W. Song, Q. Ma, L. Xie, X. Zhang, H. Guo, Enhancement of CO₂ capture on biomass-based carbon from black locust by KOH activation and ammonia modification, Energ. Fuel., 30(5) (2016) 4181-4190.
- 21. G.K. Parshetti, S. Chowdhury, R. Balasubramanian, Biomass derived low-cost microporous adsorbents for efficient CO₂ capture, Fuel, 148 (2015) 246-254.
- 22. A. Alabadi, S. Razzaque, Y. Yang, S. Chen, B. Tan, Highly porous activated carbon materials from carbonized biomass with high CO₂ capturing capacity, Chem. Eng. J., 281 (2015) 606-612.
- 23. D. Li, T. Ma, R. Zhang, Y. Tian, Y. Qiao, Preparation of porous carbons with high low-pressure CO₂ uptake by KOH activation of rice husk char, Fuel, 139 (2015) 68-70.
- 24. D. Li, Y. Tian, L. Li, J. Li, H. Zhang, Production of highly microporous carbons with large CO₂ uptakes at atmospheric pressure by KOH activation of peanut shell char, J. Porous Mat., 22(6) (2015) 1581-1588.
- 25. S. Deng, H. Wei, T. Chen, B. Wang, J. Huang, G. Yu, Superior CO₂ adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures, Chem. Eng. J., 253 (2014) 46-54.
- 26. J.S. Bae, S. Su, Macadamia nut shell-derived carbon composites for post combustion CO₂ capture, Int. J. Greenh. Gas Con., 19 (2013) 174-182.
- 27. H. Cui, J. Xu, J. Shi, N. Yan, Y. Liu, S. Zhang, Zinc nitrate as an activation agent for the synthesis of nitrogen-doped porous carbon and its application in CO₂ adsorption, Energ. Fuel., 34(5) (2020) 6069-6076.
- 28. S. Liu, R. Ma, X. Hu, L. Wang, X. Wang, M. Radosz, M. Fan, CO₂ adsorption on hazelnut-shell-derived nitrogen-doped porous carbons synthesized by single-step sodium amide activation, Ind. Eng. Chem. Res., 59(15) (2019) 7046-7053.
- 29. Z. Yang, G. Zhang, X. Guo, Y. Xu, Designing a novel N-doped adsorbent with ultrahigh selectivity for CO₂: waste biomass pyrolysis and two-step activation, Biomass Convers. Biorefinery, 11(6) (2021) 2843-2854.
- 30. Y. Xu, Z. Yang, G. Zhang, and P. Zhao, Excellent CO₂ adsorption performance of nitrogen-doped waste biocarbon prepared with different activators, J. Clean Prod., 264 (2020) 121645.
- 31. Z. Yang, X. Guo, G. Zhang, Y. Xu, One-pot synthesis of high N-doped porous carbons derived from a N-rich oil palm biomass residue in low temperature for CO₂ capture, Int. J. Energ. Res., 44(6) (2020) 4875-4887.
- 32. Y. Li, S. Wang, B. Wang, Y. Wang, J. Wei, Sustainable biomass glucose-derived porous carbon spheres with high nitrogen doping: as a promising adsorbent for CO₂/CH₄/N₂ adsorptive separation, Nanomaterials, 10(1) (2020) 174.

- 33. C. Quan, X. Jia, N. Gao, Nitrogen_doping activated biomass carbon from tea seed shell for CO₂ capture and supercapacitor, Int. J. Energ. Res., 44(2) (2020) 1218-1232.
- 34. L. Rao, S. Liu, L. Wang, C. Ma, J. Wu, L. An, X. Hu, N-doped porous carbons from low-temperature and single-step sodium amide activation of carbonized water chestnut shell with excellent CO₂ capture performance, Chem. Eng. J., 359 (2019) 428-435.
- 35. B. Chang, W. Shi, H. Yin, S. Zhang, B. Yang, Poplar catkin-derived self-templated synthesis of N-doped hierarchical porous carbon microtubes for effective CO₂ capture, Chem. Eng. J., 358 (2019) 1507-1518.
- 36. Z. Yang, G. Zhang, Y. Xu, P. Zhao, One step N-doping and activation of biomass carbon at low temperature through NaNH₂: An effective approach to CO₂ adsorbents, J. CO₂ Util., 33 (2019) 320-329.
- 37. L. Rao, R. Ma, S. Liu, L. Wang, Z. Wu, J. Yang, X. Hu, Nitrogen enriched porous carbons from d-glucose with excellent CO₂ capture performance, Chem. Eng. J., 362 (2019) 794-801.
- 38. R. Ma, J. Hao, G. Chang, Y. Wang, Q. Guo, Nitrogen_doping microporous adsorbents prepared from palm kernel with excellent CO₂ capture property, The Can. J. Chem. Eng., 98(2) (2020) 503-512.
- 39. S. Park, M.S. Choi, H.S. Park, Nitrogen-doped nanoporous carbons derived from lignin for high CO₂ capacity, Carbon Lett., 29(3) (2019) 289-296.
- 40. M. Zhu, W. Cai, F. Verpoort, J. Zhou, Preparation of pineapple waste-derived porous carbons with enhanced CO₂ capture performance by hydrothermal carbonation-alkali metal oxalates assisted thermal activation process, Chem. Eng. Res. Des., 146 (2019) 130-140.
- 41. X. Ma, L. Li, Z. Zeng, R. Chen, C. Wang, K. Zhou, H. Li, Experimental and theoretical demonstration of the relative effects of O-doping and N-doping in porous carbons for CO₂ capture, Appl. Surf. Sci., 481 (2019) 1139-1147.
- 42. A. Rehman, S.J. Park, Tunable nitrogen-doped microporous carbons: Delineating the role of optimum pore size for enhanced CO₂ adsorption, Chem. Eng. J., 362 (2019) 731-742.
- 43. J. Han, L. Zhang, B. Zhao, L. Qin, Y. Wang, F. Xing, The N-doped activated carbon derived from sugarcane bagasse for CO₂ adsorption, Ind. Crop. Prod., 128 (2019) 290-297.
- 44. L. Rao, L. Yue, L. Wang, Z. Wu, C. Ma, L. An, X. Hu, Low-temperature and single-step synthesis of N-doped porous carbons with a high CO₂ adsorption performance by sodium amide activation, Energ. Fuel., 32(10) (2018) 10830-10837.
- 45. L. Wang, L. Rao, B. Xia, L. Wang, L. Yue, Y. Liang, H. DaCosta, X. Hu, Highly efficient CO₂ adsorption by nitrogen-doped porous carbons synthesized with low-temperature sodium amide activation, Carbon, 130 (2018) 31-40.
- 46. L. Yue, Q. Xia, L. Wang, L. Wang, H. DaCosta, J. Yang, and X. Hu, CO₂ adsorption at nitrogen-doped carbons prepared by K₂CO₃ activation of urea-modified coconut shell, J. Colloid Interf. Sci., 511 (2018) 259-267
- 47. O. Boujibar, A. Souikny, F. Ghamouss, O. Achak, M. Dahbi, T. Chafik, CO₂ capture using N-containing nanoporous activated carbon obtained from argan fruit shells, J. Environ. Chem. Eng., 6(2) (2018) 1995-2002.

- 48. N. Querejeta, M.V. Gil, C. Pevida, T.A. Centeno, Standing out the key role of ultramicroporosity to tailor biomass-derived carbons for CO₂ capture, J. CO₂ Util., 26 (2018) 1-7.
- 49. A. Chithra, P. Wilson, R. Rajeev, K. Prabhakaran, Nitrogen-doped microporous carbon with high CO₂ sorption by KOH activation of black gram, Mater. Res. Express, 5(11) (2018) 115606.
- 50. L. Yue, L. Rao, L. Wang, L. An, C. Hou, C. Ma, H. DaCosta, X. Hu, Efficient CO₂ adsorption on nitrogen-doped porous carbons derived from d-glucose, Energ. Fuel., 32(6) (2018) 6955-6963.
- 51. M. Demir, T.D. Tessema, A.A. Farghaly, E. Nyankson, S.K. Saraswat, B. Aksoy, T. Islamoglu, M.M. Collinson, H.M. El_Kaderi, and R.B. Gupta, Lignin_derived heteroatom_doped porous carbons for supercapacitor and CO₂ capture applications, Int. J. Energ. Res., 42(8) (2018) 2686-2700.
- 52. M.G. Singh, K.S. Lakhi, D.H. Park, P. Srivastava, R. Naidu, A. Vinu, Facile One-Pot Synthesis of Activated Porous Biocarbons with a High Nitrogen Content for CO₂ Capture, ChemNanoMat, 4(3) (2018) 281-290.
- 53. A. Gao, N. Guo, M. Yan, M. Li, F. Wang, R. Yang, Hierarchical porous carbon activated by CaCO₃ from pigskin collagen for CO₂ and H₂ adsorption, Micropor. Mesopor. Mat., 260 (2018) 172-179.
- 54. D. Li, J. Zhou, Z. Zhang, L. Li, Y. Tian, Y. Lu, Y. Qiao, J. Li, L. Wen, Improving low-pressure CO₂ capture performance of N-doped active carbons by adjusting flow rate of protective gas during alkali activation, Carbon, 114 (2017) 496-503.
- 55. L. Yue, L. Rao, L. Wang, L. Wang, J. Wu, X. Hu, H. DaCosta, J. Yang, M. Fan, Efficient CO₂ capture by nitrogen-doped biocarbons derived from rotten strawberries, Ind. Eng. Chem. Res., 56(47) (2017) 14115-14122.
- 56. D. Saha, S.E. Van Bramer, G. Orkoulas, H.C. Ho, J. Chen, D.K. Henley, CO₂ capture in lignin-derived and nitrogen-doped hierarchical porous carbons, Carbon, 121 (2017) 257-266.
- 57. M. Rana, K. Subramani, M. Sathish, U.K. Gautam, Soya derived heteroatom doped carbon as a promising platform for oxygen reduction, supercapacitor and CO₂ capture, Carbon, 114 (2017) 679-689.
- 58. G. Singh, I.Y. Kim, K.S. Lakhi, S. Joseph, P. Srivastava, R. Naidu, A. Vinu, Heteroatom functionalized activated porous biocarbons and their excellent performance for CO₂ capture at high pressure, J. Mater. Chem. A, 5(40) (2017) 21196-21204.
- 59. Y. Boyjoo, Y. Cheng, H. Zhong, H. Tian, J. Pan, V.K. Pareek, J.F. Lamonier, M. Jaroniec, J. Liu, From waste Coca Cola® to activated carbons with impressive capabilities for CO₂ adsorption and supercapacitors, Carbon, 116 (2017) 490-499.
- 60. Y. Li, R. Xu, X. Wang, B. Wang, J. Cao, J. Yang, J. Wei, Waste wool derived nitrogen-doped hierarchical porous carbon for selective CO₂ capture, RSC Adv., 8(35) (2018) 19818-19826.
- 61. J. Chen, J. Yang, G. Hu, X. Hu, Z. Li, S. Shen, M. Radosz, M. Fan, Enhanced CO₂ capture capacity of nitrogen-doped biomass-derived porous carbons, ACS Sustain. Chem. Eng., 4(3) (2016) 1439-1445.
- 62. A. Arami-Niya, T.E. Rufford, Z. Zhu, Nitrogen-doped carbon foams synthesized from banana peel and zinc complex template for adsorption of CO_2 , CH_4 , and N_2 , Energ. Fuel., 30(9) (2016) 7298-7309.

- 63. C. Zhang, W. Song, Q. Ma, L. Xie, X. Zhang, and H. Guo, Enhancement of CO₂ capture on biomass-based carbon from black locust by KOH activation and ammonia modification, Energ. Fuel., 30(5) (2016) 4181-4190.
- 64. T. Wei, Q. Zhang, X. Wei, Y. Gao, H. Li, A facile and low-cost route to heteroatom doped porous carbon derived from broussonetia papyrifera bark with excellent supercapacitance and CO₂ capture performance, Sci. Rep., 6(1) (2016) 1-9.
- 65. M. Yang, L. Guo, G. Hu, X. Hu, L. Xu, J. Chen, W. Dai, and M. Fan, Highly cost-effective nitrogen-doped porous coconut shell-based CO₂ sorbent synthesized by combining ammoxidation with KOH activation, Environ. Sci. Technol., 49(11) (2015) 7063-7070.
- 66. B. Zhu, K. Qiu, C. Shang, Z. Guo, Naturally derived porous carbon with selective metal-and/or nitrogen-doping for efficient CO₂ capture and oxygen reduction, J. Mater. Chem. A, 3(9) (2015) 5212-5222.
- 67. Z.Q. Zhao, P.W. Xiao, L. Zhao, Y. Liu, B.H. Han, Human hair-derived nitrogen and sulfur co-doped porous carbon materials for gas adsorption, RSC Adv., 5(90) (2015) 73980-73988.
- 68. C. Ma, J. Bai, X. Hu, Z. Jiang, L. Wang, Nitrogen-doped porous carbons from polyacrylonitrile fiber as effective CO₂ adsorbents, J. Environ. Sci., 125 (2023) 533-543.
- 69. T. Lu, J. Bai, M. Demir, X. Hu, J. Huang, L. Wang, Synthesis of Potassium Bitartrate-derived porous carbon via a Facile and Self-Activating Strategy for CO₂ Adsorption Application, Sep. Purif. Technol., (2022) 121368.
- 70. M. Singh, N. Borkhatariya, P. Pramanik, S. Dutta, S.K. Ghosh, P. Maiti, S. Neogi, S. Maiti, Microporous carbon derived from cotton stalk crop-residue across diverse geographical locations as efficient and regenerable CO₂ adsorbent with selectivity, J. CO₂ Util., 60 (2022) 101975.