COMPLEXIDADE DE ALGORITMOS E CLASSES DE COMPLEXIDADE

DCE529 - Algoritmos e Estruturas de Dados III

Atualizado em: 19 de fevereiro de 2024

Departamento de Ciência da Computação

ALGORITMOS

Um algoritmo é uma sequência finita e bem definida de instruções ou passos lógicos que, quando seguidos corretamente, realizam uma tarefa específica ou resolvem um problema

 É uma abordagem sistemática e precisa para resolver um problema, que pode ser implementada por um computador, mas também pode ser executada manualmente

Os algoritmos são usados em muitos campos, incluindo

- Ciência da Computação
- Física
- Matemática
- \circ ...

- Estatística
- Engenharias
- Biologia

ALGORITMOS

Existem diversos algoritmos diferentes para resolver um mesmo problema

- Existem diversas maneiras para se percorrer o caminho entre a cantina e a sala de aula
- Existem múltiplos meios para se desmontar uma caixa de papelão
- O ...

Como podemos comparar (e avaliar) qual é a qualidade destes algoritmos?

- Tempo de processamento
- O Espaço de memória

TEMPO DE PROCESSAMENTO

É a medida que costuma ser mais importante

Existem três tipos de tempo de processamento que valema pena serem estudados

- Melhor caso
- Caso médio
- Pior caso

Estes três tipos valem a pena serem estudados para alguns algoritmos

O Por exemplo, algoritmos de ordenação

Em projeto e análise de algoritmos, no geral, vamos analisar somente o **pior caso**

TEMPO DE PROCESSAMENTO

Função	Tamanho $\it n$					
de custo	10	20	30	40	50	60
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006
	s	s	s	s	s	s
n^2	0,0001	0,0004	0,0009	0,0016	0,0.35	0,0036
	s	s	s	s	s	s
n^3	0,001	0,008	0,027	0,64	0,125	0.316
	s	s	s	s	s	s
n^5	0,1	3,2	24,3	1,7	5,2	13
	s	s	s	min	min	min
2^n	0,001	1	17,9	12,7	35,7	366
	s	s	min	dias	anos	séc.
3^n	0,059	58	6,5	3855	10 ⁸	10 ¹³
	s	min	anos	séc.	séc.	séc.

NOTAÇÃO O

A notação $\mathcal O$ é utilizada para estudarmos o comportamento assintótico de funções

- Utilizada para estudar a taxa de crescimento de funções
- Também conhecido como a ordem de uma função

Esta notação estabelece um limite superior para o crescimento de uma função

- Utilizada para demonstrar o maior valor que uma função pode atingir para determinado valor de entrada
- Assim, utilizada para estudar o comportamento no pior caso de um algoritmo

FORMALIZANDO A NOTAÇÃO O

Sejam f e g duas funções definidas no mesmo subconjunto dos números reais pode-se dizer que

$$f(x) = \mathcal{O}(g(x)), x \to \infty$$

se e somente se existe uma constante positiva M tal que para todo valor suficientemente grande de x, o valor absoluto de f(x) é no máximo c multiplicado pelo valor absoluto de g(x)

Ou seja, $f(x)=\mathcal{O}\big(g(x)\big)$ se e somente se existe um número real positivo c e um número real x_0 tal que

$$|f(x)| \le c|g(x)| \quad \forall x \ge x_0$$

7

NOTAÇÃO $\mathcal O$

NOTAÇÃO O

A notação ${\mathcal O}$ não é afetada por fatores constantes ou termos de ordem menor

- Na prática, isso significa que devemos nos preocupar somente com o termo de maior expoente
- Também diz que qualquer constante que multiplica os termos pode ser ignorada
- Além disso, também só se considera o termo que possui relação com o tamanho n da entrada

Exemplos

- $On^3 + 5n = \mathcal{O}(n^3)$
- $\bigcirc 5n^2 + 3 = \mathcal{O}(n^2)$
- $n + 10^{10} = \mathcal{O}(n)$
- $0.3n^4 n^3 = O(n^4)$
- \cap $n + b^2 = \mathcal{O}(n)$

9

NOTAÇÃO O - EXEMPLO

- 1. Se f(x) é a soma de vários termos, o que possuir maior taxa de crescimento é mantido, e todos os outros são omitidos
- 2. Se f(x) é um produto de diversos fatores, quaisquer constantes (termos do produto que não depente de x) são omitidos

$$f(x) = 3x^4 - 40x^3 + 52$$

Queremos utilizar a notação ${\cal O}$ para representar a taxa de crescimento desta função.

Como podemos proceder?

NOTAÇÃO \mathcal{O} - EXEMPLO

Esta função tem três termos

- \bigcirc 3 x^4
- $-40x^3$
- O 52

O termo que tem a maior taxa de crescimento é o que tem o maior expoente. Neste caso, é $3x^4$.

Neste termo, o 3 é uma constante. Assim, podemos ignora-lo. Então temos que

$$3x^4 - 40x^3 + 52 = \mathcal{O}(x^4)$$

NOTAÇÃO O - EXEMPLO

$$3x^4 - 40x^3 + 52 = \mathcal{O}(x^4)$$

Seja
$$f(x) = 3x^4 - 40x^3 + 52$$
 e $g(x) = x^4$.

Temos que mostrar que $|f(x)| \le c|g(x)|$ para um valor c real e para todo valor de $x \ge x_0$.

$$|3x^4 - 40x^3 + 52| \le 3x^4 + |40x^3| + 52$$

$$|3x^4 - 40x^3 + 52| \le 3x^4 + 40x^4 + 52x^4$$

$$|3x^4 - 40x^3 + 52| \le 95x^4$$

PROPRIEDADES - TERMO DE MAIOR CRESCIMENTO

O termo de maior crescimento é quem determina a ordem de f(x)

$$f(x) = 3x - 5\log(x) + 20x + x^2 = \mathcal{O}(x^2)$$

PROPRIEDADES - PRODUTO

Seja
$$f_1(x) = \mathcal{O}ig(g_1(x)ig)$$
 e $f_2(x) = \mathcal{O}ig(g_2(x)ig)$

Podemos estabelecer duas regras de produtos

- 1. $f_1f_2 = \mathcal{O}(g_1g_2)$
- 2. $f\mathcal{O}(g) = \mathcal{O}(fg)$

PROPRIEDADES - SOMA

Seja
$$f_1(x)=\mathcal{O}\big(g_1(x)\big)$$
 e $f_2(x)=\mathcal{O}\big(g_2(x)\big)$. Além disso, seja $f_3(x)=\mathcal{O}\big(g_1(x)\big)$

Podemos estabelecer três regras de soma

- 1. $f_1 + f_2 = \mathcal{O}(|g_1| + |g_2|)$
- 2. $f_1 + f_3 = \mathcal{O}(g_1)$
- 3. Se f e g forem positivas, então $f+\mathcal{O}(g)=\mathcal{O}(f+g)$

PROPRIEDADES - MULTIPLICAÇÃO POR UMA CONSTANTE

Seja $f(x) = \mathcal{O}(g(x))$. Além disso, seja k uma constante diferente de zero.

Aqui, podemos estabelecer duas regras

1.
$$\mathcal{O}(kg) = \mathcal{O}(g)$$

2.
$$f = \mathcal{O}(g) \rightarrow k = \mathcal{O}(g)$$

OUTRAS PROPRIEDADES

Igualdades de caminho único

$$f(x) = \mathcal{O} ig(g(x) ig)$$
 não implica que $g(x) = \mathcal{O} ig(f(x) ig)$

Outras operações aritméticas

$$f(x) = h(x) + \mathcal{O}(g(x)) \to f(x) - h(x) = \mathcal{O}(g(x))$$
$$(n+3)^2 = n^2 + \mathcal{O}(n)$$

COMPORTAMENTO ASSINTÓTICO DE DIFERENTES FUNÇÕES

NOTAÇÃO o

A notação o é uma notação $\mathcal O$ afrouxada

$$f(x) = o(g(x) \leftarrow |f(x)| \le \epsilon |g(x)| \ \forall x \ge x_0, \ \forall \epsilon \in \mathbb{R}_+$$

Assim, temos que

$$2x = o(x^{2})$$
$$\frac{1}{x} = o(x)$$
$$x \neq o(x)$$

NOTAÇÕES Ω E ω

Estabelece um limite inferior para o tempo de crescimento de uma função, sendo o inverso da notação \mathcal{O} . Isto é

se
$$f(x) = \mathcal{O}(g(x))$$
,
então $g(x) = \Omega(f(x))$

De forma similar, temos a notação ω :

se
$$f(x) = o(g(x)),$$

então $g(x) = \omega(f(x))$

NOTAÇÃO Θ

A notação Θ estabelece um limite assintótico firme para uma função f(x). Isto é, se

$$f(x) = \Theta(g(x))$$

então dizemos que existem constantes c_1 e c_2 reais e positivas tais que

$$c_1g(x) \leq f(x) \leq c_2g(x)$$

para todo valor $x \ge x_0$

NOTAÇÃO Θ - EXEMPLO

Seja
$$f(n) = 3n^3 + 6n + 7 = \Theta(n^3)$$
. Temos que

$$3n^3 \le 3n^3 + 6n + 7 \le 3n^3 + 6n^2 + 7n^3$$

 $3n^3 \le f(n) \le 16n^3$

Assim, temos que $c_1=3, c_2=16$ e n=1

RESUMO

- Dizemos que f(n) é $\mathcal{O}(g(n))$ se
 - \cap f(n) cresce a uma taxa **menor ou igual** à g(n)
- Dizemos que f(n) é $\Omega(g(n))$ se
 - \bigcirc f(n) cresce a uma taxa maior ou igual à g(n)
- Dizemos que f(n) é o(g(n)) se
 - \cap f(n) cresce a uma taxa **menor** que g(n)
- Dizemos que f(n) é $\omega(g(n))$ se
 - f(n) cresce a uma taxa **maior** que g(n)
- Dizemos que f(n) é $\Theta(g(n))$ se
 - \cap f(n) cresce a uma taxa similar à de g(n)

COMPLEXIDADE E LIMITES

Também é possível estudar o comportamento assintótico de um algoritmo utilizando limites

O Aplicação direta da teoria aprendida em Cálculo I

Forma Assintótica	Definição
$f(n) \in \Theta(g(n))$	$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$
$f(n) \in O(g(n))$	$0 \le \lim_{n \to \infty} \frac{\tilde{f}(n)}{g(n)} < \infty$
$f(n)\in\Omega(g(n))$	$0 < \lim_{n \to \infty} \frac{f(n)}{g(n)}$
$f(n) \in o(g(n))$	$\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$
$f(n)\in\omega(g(n))$	$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty$

EXERCÍCIOS

- 1. Verdadeiro ou falso: Se $f(n) = \mathcal{O}(g(n))$, então $g(n) = \mathcal{O}(f(n))$
- 2. Verdadeiro ou falso: $n 1000 \log n = \mathcal{O}(n)$
- 3. Sejam $f(n) = n^2 + n$ e $g(n) = n^2$. Mostre, usando limites, que $f(n) = \mathcal{O}(g(n))$
- 4. Sejam f(n) e g(n) como acima definidos. Encontre os valores c_1, c_2 e n tal que $f(n) = \Theta(g(n))$