## ARQUITECTURA DE COMPUTADORAS

Manejo de pila

### Operaciones con la pila

- La pila en tiempo de ejecución es un arreglo de memoria que la CPU administra directamente, mediante el uso de dos registros: SS y ESP.
- El registro ESP guarda un desplazamiento de 32 bits hacia el tope de la pila
- Cada posición de la pila contiene 32 bits

# Instrucciones que manipulan la pila

- CALL, RET, PUSH y POP
- Todas estas instrucciones modifican el valor de ESP



### Funcionamiento de la pila

- PUSH: Siempre que se meten datos, el primer byte de datos (el más significativo) se mueve a la posición de memoria apuntada por ESP-1 y el segundo se mueve a la dirección de memoria ESP-2 y así sucesivamente.
- Veamos un ejemplo

## PUSH

| Simbólica  | Ejemplo             | Observación                            |
|------------|---------------------|----------------------------------------|
| PUSH reg16 | PUSH BX             | Registro de 16 bits.                   |
| PUSH reg32 | PUSH EDX            | Registro de 32 bits.                   |
| PUSH mem16 | PUSH WORD PTR[BX]   | Apuntador de 16 bits.                  |
| PUSH mem32 | PUSH DWORD PTR[EBX] | Apuntador de 32 bits.                  |
| PUSH seg   | PUSH DS             | Registro de segmento.                  |
| PUSH inm8  | PUSH 'R'            | 8 bits, inmediato.                     |
| PUSH inm16 | PUSH 1000H          | 16 bits, inmediato.                    |
| PUSH inm32 | PUSHD 20            | 32 bits, inmediato.                    |
| PUSHA      | PUSHA               | Guarda todos los registros de 16 bits. |
| PUSHAD     | PUSHAD              | Guarda todos los registros de 32 bits. |
| PUSHF      | PUSHF               | Guarda las banderas.                   |
| PUSHFD     | PUSHFD              | Guarda EFLAGS.                         |

#### Funcionamiento de la pila

- POP: Siempre que se sacan datos, de la pila, estos se pueden colar en un registro de 16 bits o de 32, un registro de segmento o una posición de memoria de 16 o 32 bits.
- El primer byte de datos que se saca de la pila (posición direccionada por ESP)se mueve a la posición a la parte baja del registro o memoria. El segundo byte apuntada por ESP-1 se coloca en el siguiente byte del destino y así sucesivamente.
- Veamos un ejemplo

## POP

| Simbólica | Ejemplo            | Observación                          |
|-----------|--------------------|--------------------------------------|
| POP reg16 | POP CX             | Registro de 16 bits.                 |
| POP reg32 | POP EBP            | Registro de 32 bits.                 |
| POP mem16 | POP WORD PTR[BX+1] | Apuntador de 16 bits.                |
| POP mem32 | POP DATOS3         | Dirección de memoria de 32 bits.     |
| POP seg   | POP FS             | Registro de segmento.                |
| POPA      | POPA               | Saca todos los registros de 16 bits. |
| POPAD     | POPAD              | Saca todos los registros de 32 bits. |
| POPF      | POPF               | Saca las banderas.                   |
| POPFD     | POPFD              | Mete EFLAGS.                         |

#### Otras de instrucciones con la pila

- PUSHFD/POPFD
  - mete/saca el registro EFLAGS de 32 bits en la pila
- PUSHAD, PUSHA, POPAD y POPA
  - La instrucción PUSHAD mete todos los registros de propósito general de 32 bits en la pila, en el siguiente orden: EAX, ECX, EDX, EBX, ESP (su valor antes de ejecutar PUSHAD), EBP, ESI y EDI.
  - La instrucción POPAD saca los mismos registros de la pila, en orden inverso

FIGURA 4-12 La operación de la instrucción PUSHA, en donde se muestra la posición y el orden de los datos de la pila.

