Homework 8 • Graded

Student

Jaiden Rain Atterbury

Total Points

35.5 / 40 pts

Question 1

Question 1 9.25 / 10 pts

 ~ − 0.75 pts (c) only Q or Q^T (but not both) should be modified along with Λ (or else we no longer have equality $C = Q\Lambda Q^T$)

Question 2

Question 2 9.5 / 10 pts

✓ - 0.5 pts (a) minor error

Question 3

Question 3 7.75 / 10 pts

```
✓ - 2 pts (a)
```

 \checkmark - 0.25 pts (b) the zero matrix has rank 0

Question 4

Question 4 9 / 10 pts

✓ - 1 pt Insufficient explanation/incorrect solution on (a)(i)

Question assigned to the following page: $\underline{\mathbf{1}}$

_	Jaiden Atterbury 05-21-2022 Homework 8
(1)	SVD of Symmetric and PSD matrices
(a)	[2 3] B= 2 4 5 B=U € V
	356
	-0.327985 -0.736976 -0.591009 11.344814 0 0 -0.327985 -0.591009 -0.736976
	B= -0.591009 -0.327485 0.736976 0.0007015 0.327485 -0.591009
	-0.736976 0.591004 -0.327485
	U E V ^T
(1)	
(6)	A is nxh symmetric:
	By lemma 8.1.4/8.1.5 to get the singular values of A we must take
	the positive square roots of the r positive eigenvalues of ATA
	or AAT, Since a symmetric matrix satisfies the property A=AT
	(definition 5.1.1) it follows that:
	AA^T and $A^TA = A^2$
	given that $A\vec{x} = \lambda \vec{x}$ then $A^2\vec{x} = \lambda^2 \vec{x}$ (Homework 1 and Lecture notes 3)
	thus the eigenvalues of A^2 are χ^2 , furthermore the singular
	values of A are the positive square roots of χ^2
	· · · · · · · · · · · · · · · · · · ·
(c) C is general nun symmetric matrix;
	Since E is symmetric, by the spectral theorem it can be diagonalized
	by RAQT such that Q is orthogonal and made of the eigenvectors
	Of C, Since the SVD Of C has the eigenvectors of A2 in the
	matrices U and UT, the only difference between the SUD and
	the diagonalization of C is that the singular values are the

Question assigned to the following page: $\underline{\mathbf{1}}$

diagonal matrix A can be negative. With this said, in order to get from the Jingonalization of C to the SVD of C, Thy column of a corresponding to a negative eigenvalue in A needs to be multiplied by -1. Once you take QT this negative sigh will "carry over," and when multiplied together will return the same & and hence Q=U so the SUD will then equal the orthogonal diagonalization. It is important to note that if ONQT is already expanded, then you win need to multiply the column in @ AND the row in QT corresponding to the negative eigenvalue, in order to get the SVD to equal the orthogonal diagonalization. (d) A is PSD nxn matrix: If A is a PSD matrix, then by definition 6-1.4, all eigenvalues of A are non-negative. Since A is also symmetric, by Part (b) O; = 12;1, since the eigenvalues are non-negative it turns out o; =); if A is pso. Since, by the spectral theovern, we can choose orthonormal eigenvectors for the diagonalization of A 1+ turns out that Q=U=V (Q is from the orthogonal aragonalization, while u and v are from the sun, Lastly, since of = 1. if A is PSD/PD the sub of A will Coincide/equal the orthogonal diagonalization of A. SUD OF PSD matrix A: A=UEUT (Where U=V)

(2)	Bank one matrices
(9)	Prove that for any A and B, rank(A+B) < rank(A)+rank(B)
	If A = [a, an] -> rank (A) (co) (A) = dim (span {a, an})
	B=[b, bn] = rank(B) = Co1(B) = dim(spon{b, bn})
	A+B=[9,+b,9n+bh] > rank(A+B) = con(A+B) = dim(span{1,+b, an+bh}
	but since {a, +b,, an+bn} (a,an, b,bn}
	Proof: : X CO1+B
	then x = (, (1, + b,) + + ch (1, + bh)
	= c191 + + cn9n + c1 b1 + + cnbn
	, × E A U B
	So dim {a, +b,, antbn} 5 dim {a,an, b,bn} = dim {AUB}
	Proof: By example 14.2.9 of the 208 notes, a subspace can
	only have a dimension less than on equal to its
	original space.
	Using the fact that dim (span {SUT}) = Jim (span {S}) + Jim (span {T})
	taking S: col(A) and T = col(B), and using the fact
	that rank of a matrix is the dimension of the column
	Space of that matrix, we have shown that:
	rank (4+B) < rank (A) + rank (B)
	(MIN [448] = (MIN [4])
~	A ERMXN IS rank WITH SUDOF A= UEVT SUD OF A;
	7, 7, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
<u></u>	A = [ur urti um] or o Vri which multiples out to:
	A= or up Vr Where uperm and vre Rh
	John and whell and the in

	Every rank one matrix is of the form 4 ut (since of Un ut
	is just a scaling of the rank matrix $u_r v_r^T$).
(c)	(i) rank + rank = rank
	$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 7 & 0 \\ 0 & 0 \end{bmatrix}$
	A+B = [00] + [00] = [00] = rank 1
	(ii) rank 1 + rank 1 = rank 2
	$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
	$A+B=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = rank 2$
	H+R= (00) T (01) - (01) - 10MIL C
	A - OMXK
(a)	AERMX With Columns a,,, ak
	BERKXH WITH YOWS b, T,, b KT
	Show that AB = a1 b1 T + 92 b2 T + + ak bk T
	· K n
	$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1K} \\ a_{21} & a_{22} & \dots & a_{2K} \end{bmatrix} \qquad B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1N} \\ b_{21} & b_{22} & \dots & b_{2N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} \qquad b_{1}^{T}$
	$m = a_{21} a_{22} a_{2K}$ $b_{21} b_{22} b_{21} b_{27}$
	[ami am2 - · · amk] [bki bk2 - · · bkh] bkT
	9, 92 2K
	an bn +a12 b21+ + a1k bk1 an b12 + 912 b22+ + 91kbk2 an bin + 212 b2n+ + 91kbkn)
	AB= 921b1+922 b21++92kbK1 921b12+922b2++92KbK2 - 921b1n+922b2n++92KbKn
(ab) 6(1)	amibin + am2 b21++ amxbri am1 b12+ am2 b2++ amxbr2 am1 bin + am2 b2n++ amxbri
est side	
4	$AB = \begin{bmatrix} a_{11} \\ a_{22} \end{bmatrix} \begin{bmatrix} b_1 & b_2 & \cdots & b_{1n} \\ a_{2n} & \cdots & b_{2n} \end{bmatrix} \begin{bmatrix} a_{12} \\ a_{2n} \\ \cdots & \vdots \\ a_{2n} & \cdots & \vdots \\ a_{2$
	$AB = \begin{bmatrix} a_{21} \\ a_{m1} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \end{bmatrix} + \begin{bmatrix} a_{22} \\ a_{m2} \end{bmatrix} \begin{bmatrix} b_{21} & b_{22} & \cdots & b_{2N} \end{bmatrix} + \cdots + \begin{bmatrix} a_{nk} \\ a_{nk} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{K1} & b_{K2} & \cdots & b_{KN} \end{bmatrix}$ $\begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1N} \\ \vdots \\ a_{mk} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12}$
	$\frac{1}{a_1}$ $\frac{1}{a_2}$ $\frac{1}{a_2}$ $\frac{1}{a_k}$ $\frac{1}{a_k}$

(3)	Rank one decomposition of symmetric and PSD matrices
(a)	By definition 6.1.4 if A & Rnxh is PSD, then A can be factored
	by a matrix B & BKXN for some K such that A= BTB, If we
	let be 18th be BT and bi ent be B then A will be
	factorized by A=bbT Where b is hxk and bT is kxh.
	Since bb" is nyn, and rank one since all columns are
	Scalar multiples of b, A=bbT is rank one and PSD.
	ALSO, $\vec{x}^T bb^T \hat{x} = (b^T \hat{x})^T \cdot (b^T x) = 11b^T \hat{x} \cdot 11^2 = 0$
	i. bbt is PSD and rank one
(P)	Describe 3x3 matrices of ronk I that have as and is on the diagonali
_	rank 1 PSD matrices -> bbT:
· ·	$\begin{bmatrix} a \\ b \\ c \end{bmatrix} \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} a^2 & ba & ca \\ ba & b^2 & cb \\ ca & cb & c^2 \end{bmatrix}$
	in order to get only is and o's on the diagonal, all entries
	a,b,c have to be either -1, 0, or 1, since the diagonal entries
	are q^2, b^2, c^2 .
	By the fundamental counting principal/multiplication rule since
	there are 3 choices (f, 0,-1) for 3 components (n, b, c) there
	are 3.3.3 = 33 = 27 different matrices that satisfy this property.
(c)	A is PSD and rank r:
	The sub of A will be the same as its orthogonal diagonalization.
<u>(A</u>	Writing out the sub of A:
	A=VEV ^T , which can be decomposed of rank 1 matrices:
	= 5, V, V, T + + or vr vr T

since the matrices Unur are of the form bbt, by part (a) we can conclude they are OSD, and since the humber of singular values equals the rank of A, we can Write A as the sum of r rank one PSD matrices. (d) It a symmetric matrix A & Buch of rank r is Not PSD (just a general symmetric matrix), then it Can't be written as a sum of rank 1 psp matrices as the sum of PSD matrices is also PSD: x (M1 + M2 + ... + Mr)x OF KYMTX + ... + XME+ X,MTX 17PSD and rank r BUT, Ais not pso, Therefore, A cannot be decomposed into the sum or r rank I pso matrices:

(4)	Projection with an orthonormal basis
(a)(9,,,9K is on orthonormal basis of V, REBnxt
(:)	$P = Q (q^T Q)^{-1} Q^T \rightarrow Q^T Q = I_n$
	P=Q QT
(Q=[9, 929K]
	$Q = [9, 9_2 9_K]$ $P = [9, 9_2 9_K] [9, 9_2 9_K]^{T} = [9, 9_2 9_K] \begin{bmatrix} 9_1^T \\ 12^T \\ 9_K^T \end{bmatrix} = 9, 9, T + 1292^{T_1} + 9_K 9_K$
(;;)	Projub=Pb=QPTb
	= (9,9, T+9292 +- +9K9KT)b
_	= 9(9, Tb)+ 92 (92Tb) ++ 9K (9KTb)
(;;;)	[Projub] = \begin{align*} 9176 \\ 9276 \\ \\ 9676 \end{align*}
(;v)	I-P projects onto orthogonal subspace OF P (Strang Page 209 P2)
	Since P projects onto V
	I-P projects onto VI
-	:. matrix that projects onto VI is: I-QPT
(v)	Projub = (I-QqT)b
	= b-99 ^t b
	$= b - 9,(9,7b) - 92(927b) 9K(9K^7b)$
(b)	9,, 9K, 9K+1,, 9p is an orthonormal basis of 12h
	P=0 PT
1	P= 9 K+1 9 K+2 9 K+2 + + 9 n 9 n T

(ii) b-9,(9, 76)-92(9276)-...- 1 K (9KTb)=9K+1 (9K+1 6)+9K+2 (9K+276)+...+9h (9h b) · · b=9,(9, 16) + 92(92 b)+ · · · + 9K (9K b) + 9K+1 (9K+1 b) + 9K+2 (9K+2 b) + · · · + 9h (9h b) (iii) [b]Q = [a, Tb] (c) L=Span([1,1,1]) (i) projex -> X -> uu X by proposition 4.3.6 if $V = \text{span}\{4\}$ then projux is $\rho = \frac{uu^T}{u^T 4}$ that sends $x \mapsto \frac{uu^T}{u^T 4}x$ " we need 4 to be a unit vector (11411=1). $II[i]_{II} = \sqrt{3}$ $\frac{[i]}{[i]_{II}} = \frac{\sqrt{3}13}{\sqrt{5}13} = \frac{3}{4}$ * · Proj Lx = [\fai3] [\sqrt{313}] \sqrt{313} \sqrt{313}] \frac{1}{X} (ii) Proj b = $\begin{bmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = 2 \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$ Proj_1 = I-P= I -44 = ([0 0] - [1/3 1/3 1/3]) [3]] $\begin{bmatrix} 2/3 & -1/3 & -1/3 \\ -1/3 & 2/3 & -1/3 \\ -1/3 & -1/3 & 2/3 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$