

CubeSat Design and Optimization

For Live Presentation

- Software Developers Cartel (SDC) Downtown Bryan, TX
- ► Presentation & Demonstration Recorded by SDC

July 2015 David Malawey Texas A&M Mechanical Engineering

About Me:

- David Malawey
- St. Louis hometown
- A&M Mechanical Engineering
- Research topic:

Standardized Cubesat Design

Today's Talk:

- 1. What is Multidisciplinary Design Optimization?
- 2. The CubeSat Design Goals
- 3. Optimization demonstration

What is Multidisciplinary Optimization (MDO)?

- Multiple disciplines, complex system.
- Experts know just 1 discipline!

Aesthetics → Aerodynamics → Powerplant → Cooling

Artists

Aerospace/structural

Mechanical/electrical

Heat transfer

Industry: design in sequence

What is MDO? (2)

Each designer is subject to previous decisions

Goals	Constraints
0-60 performance	Fits 2 humans
Visually pleasing	Physical envelope
Highly Comfortable	Runs on Gasoline
	Cost < \$0.5m

Aesthetics → Structure/aero →

Powerplant

→ Cooling

Most powerful

What is MDO? (3)

- MDO is a simultaneous design
 - Optimizer manipulates a "design vector."
 - Optimizes objective function
 - Checks for feasibility

Optimizer:

- Goals (objective function)
 - Constraints
 - Parameters

What is a Cubesat?

- Complex Multidisciplinary Satellite!
 - Carried by a rocket and launched to orbit
- Purpose:
 - Equip with sensors and send data to earth
- Base Functions:
 - Electrical Power -Structural system
 - Attitude sensing Attitude Control
 - Communication
- Design Goals
 - framework can be reoptimized (different missions)
 - Adjust configuration as project moves forward
 - Take heuristic data from previous cubesats

X(2)

Thruster type

Marotta

Moog

Objectives	Parameters	Constraints
Min Mass	Mission duration (60 days)	(1) Power required
Min Cost	Solar Panel Power (2 watts)	(2) Structure bending stiffness
	Battery Capacity (3200mAh)	(3) propellant sufficient
	Flight Disturbance (rotation /day)	
	Volume of a propellant tank	
	(more)	

Desig	ın V	/ec	tor
Dealg	шν	CU	LUI

Propellant	
------------	--

- Hydrogen
- Helium

X(1)

- Neon
- Nitrogen
- Argon
- Krypton
- Xenon
- Freon 14
- Methane
- Ammonia

Structure material

- 6061 T6 Aluminum
- Titanium

X(3)

A36 Steel

Solar Panels

X(4)

• Integers 0~4

X(5)

Batteries

 Integers 1~unlimited

X(6)

Structure rail width

3mm~inf

Model and Simulation

Model Overview

Each module outputs a matrix of all variables

```
$----TEVEL 1 VARTABLES---
global P
b101 = P(7); %battery capacity (mAh)
b102 = P(11); %factor of safety
b103 = P(1); %mission duration (days)
b104 = 300; % com power consumption (mA)
b105 = .10; % com duty ratio (ratio)
b106 = y(3); % prop power consumption (W)
b107 = .10;% prop duty ratio (ratio)
b108 = 44.5; %weight per battery (g)
b109 = P(8); % power of 1 solar panel (W)
    -----LEVEL 2 VARIABLES----
b201 =0; %total mAh drawn (mAh)
b202 =0; %batteries energy (Wh)
b203=0; % energy used in misison, raw (Wh)
     -----LEVEL 3 VARIABLES-----
b301=0; % energy used in misison with FOS (Wh)
b302=0; % mass of batteries (g)
b303=0; % mass of solar panels (g)
b304=0; % mass, total power unit (g)
b305=0; % panels energy (Wh)
```

```
b=[b101 b102 b103 b104 b105 b106 b107 b108 b109...
b110 b111 b112 b113 b114 b115 0.00 0.00 0.00;...
b201 b202 b203 0.00 0.00 0.00 0.00 0.00 0.00...
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00;...
b301 b302 b303 b304 b305 0.00 0.00 0.00 0.00];
```



```
%---recalculate all vars with final X----
[j,s,p,b,y,c] = objective(X);
```


1-Objective Optimization

Coupled analysis

- Genetic Algorithm (GA)
 - finds global area of interest

X(1)	X(2)	X(3)
Propellant	Thruster type	Structure material

- Sequential Quadratic Programming (SQP)
 - Local analysis (refines the design)

X(4)	X(5)	X(6)
Solar Panels	Batteries	Structure rail width

Validating the Design

Table A: Design ∀ector	
	Value
total mass (g)	921
propellant	Xenon
thruster	lee LHDB054
material	AI 6061 T6
solar panels	0.6905
batteries	1
structure width(mm)	6.3537

Table B: Relevant Data

	Value
algorithm run time (s)	6.6184
prop tanks (qty)	2
propellant mass (g)	85.2459
pwr consumption (Wh)	327.6000
solar pwr produced(Wh)	313.2000

	prop	structure	battery	accy	
mass (g)	366	149	76	330	

Demonstration

• (Matlab) Optimization based on MASS

Multi-objective Optimization

 Adjusted Weighted Sum (AWS) Pareto Front

						Rail (mm)		
	Prop	Thruster	Material	S.Panel	Battery	(mm)	Cost	Mass (g)
Α	Freon	Lee				3.04		802
В	Xenon	Lee	Aluminum	0.690	1	6.354	\$6,312	921
С	Methane	Marotta	Steel	0.760	1	3.00	\$5,798	1,293

Special Thanks:

MECHANICAL ENGINEERING TEXAS A&M UNIVERSITY

• Dr. Douglas Allaire

Dr. Joseph Morgan

Matt Leonard

NASA personnel

Questions?

July 2015
David Malawey

Texas A&M Mechanical Engineering