COS433/Math 473: Cryptography

Mark Zhandry
Princeton University
Fall 2020

Announcements/Reminders

HW4 due Today

HW5 due Nov 10, will be released today PR2 will be released soon

Heads up: Lecture 18 (next Tuesday) will be prerecorded

Previously on COS 433...

Discrete Log

Discrete Log

Let **p** be a large number (usually prime)

Given $g \in \mathbb{Z}_p^*$, $a \in \mathbb{Z}$, "easy" to compute $g^a \mod p$

- Time poly(log a, log p)
- How?

However, no known efficient ways to recover $a \pmod{\Phi(p)=p-1}$ from g and $g^a \mod p$

Generalizing Cryptographic Groups

Replace fixed family of groups with "group generator" algorithm

Stronger Assumptions on Groups

Sometimes, the discrete log assumption is not enough

Instead, define stronger assumptions on groups

Computational Diffie-Hellman:

• Given (g,g^a,g^b) , compute g^{ab}

Decisional Diffie-Hellman:

• Distinguish (g,g^a,g^b,g^c) from (g,g^a,g^b,g^{ab})

DLog:

• Given (g,ga), compute a

CDH:

• Given (g,g^a,g^b) , compute g^{ab}

DDH:

• Distinguish (g,g^a,g^b,g^c) from (g,g^a,g^b,g^{ab})

Computational Diffie Hellman: For any algorithm running in polynomial time, there exists negligible ε such that:

```
Pr[g^{ab} \leftarrow \mathcal{V}(p,g,g^a,g^b):

p \leftarrow \text{random } \lambda\text{-bit prime}

g \leftarrow \text{random generator of } \mathbb{Z}_p^*,

a,b \leftarrow \mathbb{Z}_{p-1}

] \leq \epsilon(\lambda)
```

Decisional Diffie Hellman for GrGen:

For any algorithm $\frac{r}{r}$ running in polynomial time, there exists negligible ϵ such that:

|
$$Pr[1\leftarrow Y(g,g^a,g^b,g^{ab}):$$

 $(G,g,q)\leftarrow GrGen(\lambda), a,b\leftarrow Z_q]$
 $-Pr[1\leftarrow Y(g,g^a,g^b,g^c):$
 $(G,g,q)\leftarrow GrGen(\lambda), a,b,c\leftarrow Z_q] \mid \leq \epsilon(\lambda)$

Today

Integer factorization
Public key cryptography

Integer Factorization

Given an integer N, find it's prime factors

Studied for centuries, presumed difficult

- Grade school algorithm: O(N^{1/2})
- Better algorithms using birthday paradox: O(N^{1/4})
- Even better assuming G. Riemann Hyp.: O(N^{1/4})
- Still better heuristic algorithms:

$$\exp(C(\log N)^{1/3}(\log \log N)^{2/3})$$

 However, all require super-polynomial time in bitlength of N **Factoring Assumption:** For any factoring algorithm running in polynomial time, \exists negligible ε such that:

 $Pr[(p,q) \leftarrow \downarrow (N):$ N=pq $p,q \leftarrow random λ-bit primes] ≤ ε(λ)$

Chinese Remainder Theorem

Let N = pq for distinct prime p,q

Let
$$\mathbf{x} \in \mathbb{Z}_{p'}$$
 $\mathbf{y} \in \mathbb{Z}_{q}$

Then there exists a unique integer $\mathbf{z} \in \mathbb{Z}_{N}$ such that

- $\cdot x = z \mod p$, and
- \cdot y = z mod q

Proof: $z = [py(p^{-1} \mod q) + qx(q^{-1} \mod p)] \mod N$

Quadratic Residues

Definition: y is a quadratic residue mod N if there exists an x such that $y = x^2 \mod N$. x is called a "square root" of y

Ex:

- Let **p** be a prime, and **y**≠**0** a quadratic residue mod
 p. How many square roots of **y**?
- Let N=pq be the product of two primes, y a quadratic residue mod N. Suppose y≠0 mod p and y≠0 mod q. How many square roots?

QR Assumption: For any algorithm $rac{1}{2}$ running in polynomial time, $rac{1}{2}$ negligible $rac{1}{2}$ such that:

```
Pr[y^2=x^2 \mod N:

y \leftarrow (N,x^2)

N=pq, p,q \leftarrow random \lambda-bit primes

x \leftarrow \mathbb{Z}_N ] \leq \epsilon(\lambda)
```

Theorem: If the factoring assumption holds, then the QR assumption holds

Proof

To factor **N**:

- **x**←ℤ_N y← (N,x²)
 Output GCD(x-y,N)

Analysis:

- Let {a,b,c,d} be the 4 square roots of x²
- has no idea which one you chose
- With probability ½, y will not be in {+x,-x}
- In this case, we know x=y mod p but x=-y mod q

Collision Resistance from Factoring

Let **N=pq**, **y** a QR mod **N** Suppose **-1** is not a **QR** mod **N**

Hashing key: (N,y)

```
Domain: \{1,...,(N-1)/2\} \times \{0,1\}
Range: \{1,...,(N-1)/2\}
H( (N,y), (x,b) ): Let z = y^b x^2 \mod N
• If z \in \{1,...,(N-1)/2\}, output z
• Else, output -z \mod N \in \{1,...,(N-1)/2\}
```

Theorem: If the factoring assumption holds, **H** is collision resistant

Proof:

- Collision means $(x_0,b_0)\neq(x_1,b_1)$ s.t. $y^{b0} x_0^2 = \pm y^{b1} x_1^2 \mod N$
- If $b_0=b_1$, then $x_0\neq x_1$, but $x_0^2=\pm x_1^2 \mod N$
 - $x_0^2 = -x_1^2 \mod N$ not possible. Why?
 - $x_0 \neq -x_1$ since $x_0, x_1 \in \{1, ..., (N-1)/2\}$
- If $b_0 \neq b_1$, then $(x_0/x_1)^2 = \pm y^{\pm 1} \mod N$
 - -y case not possible. Why?
 - (x_0/x_1) or (x_1/x_0) is a square root of y

Choosing N

How to choose **N** so that **-1** is not a QR?

By CRT, need to choose **p,q** such that -1 is not a QR mod **p** or mod **q**

Fact: if $\mathbf{p} = \mathbf{3} \mod 4$, then $-\mathbf{1}$ is not a QR mod \mathbf{p}

Fact: if $p = 1 \mod 4$, then -1 is a QR mod p

Is Composite N Necessary for SQ to be hard?

Let p be a prime, and suppose $p = 3 \mod 4$

Given a QR x mod p, how to compute square root?

Hint: recall Fermat: $x^{p-1}=1 \mod p$ for all $x\neq 0$

Hint: what is $\mathbf{x}^{(p+1)/2}$ mod \mathbf{p} ?

Solving Quadratic Equations

In general, solving quadratic equations is:

- Easy over prime moduli
- As hard as factoring over composite moduli

Other Powers?

What about $x \rightarrow x^4 \mod N$? $x \rightarrow x^6 \mod N$?

The function $x \rightarrow x^3 \mod N$ appears quite different

- Suppose 3 is relatively prime to p-1 and q-1
- Then $x \rightarrow x^3 \mod p$ is injective for $x \neq 0$
 - Let a be such that 3a = 1 mod p-1
 - $(x^3)^a = x^{1+k(p-1)} = x(x^{p-1})^k = x \mod p$
- By CRT, $x \rightarrow x^3 \mod N$ is injective for $x \in \mathbb{Z}_N^*$

x3 mod N

What does injectivity mean?

Cannot base of factoring:

Adapt alg for square roots?

- Choose a random z mod N
- Compute $y = z^3 \mod N$
- Run inverter on y to get a cube root x
- Let p = GCD(z-x, N), q = N/p

RSA Problem

Given

- $\cdot N = pq$
- e such that GCD(e,p-1)=GCD(e,q-1)=1,
- y=x^e mod N for a random x

Find x

Injectivity means cannot base hardness on factoring, but still conjectured to be hard

RSA Assumption: For any algorithm \mathbf{k} running in polynomial time, \mathbf{k} negligible $\mathbf{\epsilon}$ such that:

Pr[x \leftarrow (N,x³ mod N) N=pq and p,q random λ -bit primes s.t. GCD(3,p-1)=GCD(3,q-1)=1 x \leftarrow Z_N*] $\leq \epsilon(\lambda)$

Application: PRGs

Let $F(x) = x^3 \mod N$, h(x) = least significant bit

Theorem: If RSA Assumption holds, then

G(x) = (F(x), h(x)) is a secure PRG

Public Key Cryptography

How do Alice & Bob get **k**?

Limitations

Time consuming

Not realistic in many situations

 Do you really want to send a courier to every website you want to communicate with

Doesn't scale well

• Imagine 1M people communicating with 1M people

If not meeting in person, need to trust courier

Interactive Protocols

Pair of interactive (randomized) algorithms A, B

Write (Trans, o_A , o_B) \leftarrow (A,B)(x,y)

Pair of interactive algorithms A,B

Correctness:

$$Pr[o_A=o_B: (Trans,o_A,o_B)\leftarrow (A,B)()] = 1$$

Shared key is $k := o_A = o_B$ • Define (Trans, k) \leftarrow (A,B)()

Security: (**Trans,k**) is computationally indistinguishable from (**Trans,k**') where $\mathbf{k}' \leftarrow \mathbf{K}$ independent of \mathbf{k}

Running Times?

Bob: $O(\lambda^2)$

Eve: $O(\lambda^3)$

Running Times?

Bob: $O(\lambda^2)$

Eve: $O(\lambda^{\omega})$ where $\omega \le 2.373$

Alice: $O(\lambda^{\omega})$

Different Approach:

- Start with A = B = I
- Repeatedly apply random elementary row ops to A, inverse to B
- Output **(A,B)**

Running Times?

Bob: $O(\lambda^2)$

Eve: $O(\lambda^{\omega})$ where $\omega \le 2.373$

Alice: $O(\lambda^{\omega})$

Assuming Matrix Multiplication exponent $\omega > 2$, adversary must work harder than honest users

inverse to **B**

• Output (A,B)