Scientific Computing: An Introductory Survey

Chapter 2 - Systems of Linear Equations

Prof. Michael T. Heath

Department of Computer Science University of Illinois at Urbana-Champaign

Copyright © 2002. Reproduction permitted for noncommercial, educational use only.

 $\overline{\mathbf{I}}$

Systems of Linear Equations

- Given $m \times n$ matrix A and m-vector b, find unknown n-vector x satisfying Ax = b
- System of equations asks "Can b be expressed as linear combination of columns of A?"
- If so, coefficients of linear combination are given by components of solution vector x
- Solution may or may not exist, and may or may not be
- For now, we consider only square case, m=n

Existence and Uniqueness

- ullet Existence and uniqueness of solution to Ax=b depend on whether A is singular or nonsingular
- Can also depend on b, but only in singular case
- If $b \in \text{span}(A)$, system is *consistent*

A	\boldsymbol{b}	# solutions
nonsingular	arbitrary	one (unique)
singular	$oldsymbol{b} \in \operatorname{span}(oldsymbol{A})$	infinitely many
singular	$\boldsymbol{b} \notin \operatorname{span}(\boldsymbol{A})$	none

 $\overline{\mathbf{I}}$

Example: Nonsingularity

2 × 2 system

$$2x_1 + 3x_2 = b_1$$

$$5x_1 + 4x_2 = b_2$$

or in matrix-vector notation

$$Ax = \begin{bmatrix} 2 & 3 \\ 5 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = b$$

is nonsingular regardless of value of b

• For example, if $\mathbf{b} = \begin{bmatrix} 8 & 13 \end{bmatrix}^T$, then $\mathbf{x} = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$ is unique solution

Outline

Existence, Uniqueness, and Conditioning

Solving Linear Systems

Special Types of Linear Systems

Software for Linear Systems

Singularity and Nonsingularity

 $n \times n$ matrix A is *nonsingular* if it has any of following equivalent properties

Inverse of A, denoted by A⁻¹, exists

rank(A) = n

ullet For any vector $z \neq 0$, $Az \neq 0$

Geometric Interpretation

- In two dimensions, each equation determines straight line in plane
- Solution is intersection point of two lines
- If two straight lines are not parallel (nonsingular), then intersection point is unique
- If two straight lines are parallel (singular), then lines either do not intersect (no solution) or else coincide (any point along line is solution)
- In higher dimensions, each equation determines hyperplane; if matrix is nonsingular, intersection of hyperplanes is unique solution

 $\overline{\mathbf{I}}$

Example: Singularity

2 × 2 system

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \mathbf{b}$$

is singular regardless of value of b

- With $b = \begin{bmatrix} 4 & 7 \end{bmatrix}^T$, there is no solution
- With $m{b} = \begin{bmatrix} 4 & 8 \end{bmatrix}^T$, $m{x} = \begin{bmatrix} \gamma & (4-2\gamma)/3 \end{bmatrix}^T$ is solution for any real number γ , so there are infinitely many solutions

Michael T. Heath Scientific Computing

 $\overline{\mathbf{I}}$

Vector Norms

- Magnitude, modulus, or absolute value for scalars generalizes to norm for vectors
- We will use only p-norms, defined by

$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

for integer p > 0 and n-vector \boldsymbol{x}

- Important special cases
 - 1-norm: $||x||_1 = \sum_{i=1}^n |x_i|$
 - 2-norm: $\| {\boldsymbol x} \|_2 = \left(\sum_{i=1}^n |x_i|^2 \right)^{1/2}$
 - ∞ -norm: $\|\boldsymbol{x}\|_{\infty} = \max_{i} |x_{i}|$

 $\overline{\mathbf{I}}$

Michael T. Heath Scientific Computing

Equivalence of Norms

- In general, for any vector x in \mathbb{R}^n , $\|x\|_1 \geq \|x\|_2 \geq \|x\|_{\infty}$
- However, we also have

$$\|\boldsymbol{x}\|_{1} \leq \sqrt{n} \, \|\boldsymbol{x}\|_{2}, \quad \|\boldsymbol{x}\|_{2} \leq \sqrt{n} \, \|\boldsymbol{x}\|_{\infty}, \quad \|\boldsymbol{x}\|_{1} \leq n \, \|\boldsymbol{x}\|_{\infty}$$

• Thus, for given n, norms differ by at most a constant, and hence are equivalent: if one is small, they must all be proportionally small.

Matrix Norms

 Matrix norm corresponding to given vector norm is defined by

$$\|oldsymbol{A}\| = \max_{oldsymbol{x}
eq oldsymbol{0}} rac{\|oldsymbol{A}oldsymbol{x}\|}{\|oldsymbol{x}\|}$$

 Norm of matrix measures maximum stretching matrix does to any vector in given vector norm

 $\overline{\mathbf{I}}$

Properties of Matrix Norms

- Any matrix norm satisfies
 - ullet $\|oldsymbol{A}\| > 0$ if $oldsymbol{A}
 eq oldsymbol{0}$
 - $\|\gamma A\| = |\gamma| \cdot \|A\|$ for any scalar γ
 - $||A + B|| \le ||A|| + ||B||$
- Matrix norms we have defined also satisfy
 - $||AB|| \le ||A|| \cdot ||B||$
 - ullet $\|Ax\| \leq \|A\| \cdot \|x\|$ for any vector x

Example: Vector Norms

 Drawing shows unit sphere in two dimensions for each norm

Norms have following values for vector shown

$$\|\boldsymbol{x}\|_1 = 2.8 \quad \|\boldsymbol{x}\|_2 = 2.0 \quad \|\boldsymbol{x}\|_{\infty} = 1.6$$

< interactive example >

10 / 88

 $\overline{\mathbf{I}}$

Properties of Vector Norms

- For any vector norm
 - ||x|| > 0 if $x \neq 0$
 - $\|\gamma \boldsymbol{x}\| = |\gamma| \cdot \|\boldsymbol{x}\|$ for any scalar γ
 - ullet $\|oldsymbol{x}+oldsymbol{y}\| \leq \|oldsymbol{x}\| + \|oldsymbol{y}\|$ (triangle inequality)
- In more general treatment, these properties taken as definition of vector norm
- Useful variation on triangle inequality
 - $| \| x \| \| y \| | \le \| x y \|$

Matrix Norms

 Matrix norm corresponding to vector 1-norm is maximum absolute column sum

$$\|\boldsymbol{A}\|_1 = \max_j \sum_{i=1}^n |a_{ij}|$$

 Matrix norm corresponding to vector ∞-norm is maximum absolute row sum

$$\|\boldsymbol{A}\|_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$$

 Handy way to remember these is that matrix norms agree with corresponding vector norms for $n \times 1$ matrix

 $\overline{\mathbf{I}}$

Michael T. Heath Scientific Computing

Condition Numbe

Condition Number

• Condition number of square nonsingular matrix A is defined by

$$\operatorname{cond}(\boldsymbol{A}) = \|\boldsymbol{A}\| \cdot \|\boldsymbol{A}^{-1}\|$$

- ullet By convention, $\operatorname{cond}(oldsymbol{A}) = \infty$ if $oldsymbol{A}$ is singular
- Since

$$\|\boldsymbol{A}\|\cdot\|\boldsymbol{A}^{-1}\| = \left(\max_{\boldsymbol{x}\neq\boldsymbol{0}}\frac{\|\boldsymbol{A}\boldsymbol{x}\|}{\|\boldsymbol{x}\|}\right)\cdot\left(\min_{\boldsymbol{x}\neq\boldsymbol{0}}\frac{\|\boldsymbol{A}\boldsymbol{x}\|}{\|\boldsymbol{x}\|}\right)^{-1}$$

condition number measures ratio of maximum stretching to maximum shrinking matrix does to any nonzero vectors

Michael T. Heath Scientific Computing

ullet Large $\operatorname{cond}(A)$ means A is nearly singular

- For any matrix A, $cond(A) \ge 1$
- For identity matrix, cond(I) = 1
- For any matrix A and scalar γ , $\operatorname{cond}(\gamma A) = \operatorname{cond}(A)$
- ullet For any diagonal matrix $oldsymbol{D} = \mathrm{diag}(d_i),\,\mathrm{cond}(oldsymbol{D}) =$

< interactive example >

 $\overline{\mathbf{I}}$

Computing Condition Number, continued

ullet From properties of norms, if Az=y, then

$$\frac{\|\boldsymbol{z}\|}{\|\boldsymbol{y}\|} \leq \|\boldsymbol{A}^{-1}\|$$

and bound is achieved for optimally chosen y

- Efficient condition estimators heuristically pick y with large ratio $\|z\|/\|y\|$, yielding good estimate for $\|A^{-1}\|$
- Good software packages for linear systems provide efficient and reliable condition estimator

Error Bounds, continued

 Similar result holds for relative change in matrix: if $(\boldsymbol{A}+\boldsymbol{E})\hat{\boldsymbol{x}}=\boldsymbol{b},$ then

$$\frac{\|\Delta \boldsymbol{x}\|}{\|\hat{\boldsymbol{x}}\|} \leq \operatorname{cond}(\boldsymbol{A}) \frac{\|\boldsymbol{E}\|}{\|\boldsymbol{A}\|}$$

 If input data are accurate to machine precision, then bound for relative error in solution x becomes

$$rac{\|\hat{oldsymbol{x}}-oldsymbol{x}\|}{\|oldsymbol{x}\|} \leq \operatorname{cond}(oldsymbol{A})\,\epsilon_{\mathsf{mach}}$$

ullet Computed solution loses about $\log_{10}(\operatorname{cond}({m A}))$ decimal digits of accuracy relative to accuracy of input

 $\overline{\mathbf{I}}$

 $\overline{\mathbf{I}}$

Error Bounds - Caveats

- Normwise analysis bounds relative error in largest components of solution; relative error in smaller components can be much larger
 - Componentwise error bounds can be obtained, but somewhat more complicated
- Conditioning of system is affected by relative scaling of rows or columns
 - Ill-conditioning can result from poor scaling as well as near singularity
 - Rescaling can help the former, but not the latter

Computing Condition Number

- Definition of condition number involves matrix inverse, so it is nontrivial to compute
- Computing condition number from definition would require much more work than computing solution whose accuracy is to be assessed
- In practice, condition number is estimated inexpensively as byproduct of solution process
- Matrix norm ||A|| is easily computed as maximum absolute column sum (or row sum, depending on norm used)
- Estimating $\|A^{-1}\|$ at low cost is more challenging

18 / 88

Error Bounds

- Condition number yields error bound for computed solution to linear system
- Let x be solution to Ax = b, and let \hat{x} be solution to $A\hat{x} = b + \Delta b$
- If $\Delta x = \hat{x} x$, then

$$b + \Delta b = A(\hat{x}) = A(x + \Delta x) = Ax + A\Delta x$$

which leads to bound

$$\frac{\|\Delta \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \leq \operatorname{cond}(\boldsymbol{A}) \frac{\|\Delta \boldsymbol{b}\|}{\|\boldsymbol{b}\|}$$

for possible relative change in solution x due to relative change in right-hand side *b* < interactive example >

Error Bounds - Illustration

 In two dimensions, uncertainty in intersection point of two lines depends on whether lines are nearly parallel

< interactive example >

Residual

• Residual vector of approximate solution \hat{x} to linear system Ax = b is defined by

$$r = b - A\hat{x}$$

- In theory, if A is nonsingular, then $\|\hat{x} x\| = 0$ if, and only if, $\|\boldsymbol{r}\| = 0$, but they are not necessarily small simultaneously
- Since

$$\frac{\|\Delta \boldsymbol{x}\|}{\|\hat{\boldsymbol{x}}\|} \leq \operatorname{cond}(\boldsymbol{A}) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{A}\| \cdot \|\hat{\boldsymbol{x}}\|}$$

Michael T. Heath Scientific Computing

small relative residual implies small relative error in approximate solution only if A is well-conditioned

Residual, continued

• If computed solution \hat{x} exactly satisfies

$$(A + E)\hat{x} = b$$

then

$$\frac{\|\boldsymbol{r}\|}{\|\boldsymbol{A}\| \ \|\hat{\boldsymbol{x}}\|} \leq \frac{\|\boldsymbol{E}\|}{\|\boldsymbol{A}\|}$$

so large relative residual implies large backward error in matrix, and algorithm used to compute solution is unstable

- Stable algorithm yields small relative residual regardless of conditioning of nonsingular system
- Small residual is easy to obtain, but does not necessarily imply computed solution is accurate

Michael T. Heath Scientific Computing

Solving Linear Systems

Example: Permutations

- ullet Permutation matrix $oldsymbol{P}$ has one 1 in each row and column and zeros elsewhere, i.e., identity matrix with rows or columns permuted
- Note that $P^{-1} = P^T$
- Premultiplying both sides of system by permutation matrix, PAx = Pb, reorders rows, but solution x is unchanged
- Postmultiplying A by permutation matrix, APx = b, reorders columns, which permutes components of original solution

$$\boldsymbol{x} = (\boldsymbol{A}\boldsymbol{P})^{-1}\boldsymbol{b} = \boldsymbol{P}^{-1}\boldsymbol{A}^{-1}\boldsymbol{b} = \boldsymbol{P}^T(\boldsymbol{A}^{-1}\boldsymbol{b})$$

Solving Linear Systems

Triangular Linear Systems

- What type of linear system is easy to solve?
- . If one equation in system involves only one component of solution (i.e., only one entry in that row of matrix is nonzero), then that component can be computed by division
- If another equation in system involves only one additional solution component, then by substituting one known component into it, we can solve for other component
- If this pattern continues, with only one new solution component per equation, then all components of solution can be computed in succession.
- System with this property is called triangular

 $\overline{\mathbf{I}}$

1

Michael T. Heath Scientific Computing

Solving Linear Systems

Forward-Substitution

ullet Forward-substitution for lower triangular system Lx=b

$$x_1 = b_1/\ell_{11}, \quad x_i = \left(b_i - \sum_{j=1}^{i-1} \ell_{ij} x_j\right) / \ell_{ii}, \quad i = 2, \dots, n$$

$$\begin{array}{l} \text{for } j=1 \text{ to } n \\ \text{if } \ell_{jj}=0 \text{ then stop} \\ x_j=b_j/\ell_{jj} \\ \text{for } i=j+1 \text{ to } n \\ b_i=b_i-\ell_{ij}x_j \\ \text{end} \end{array}$$

end

{ loop over columns } { stop if matrix is singular } { compute solution component } { update right-hand side }

Michael T. Heath Scientific Co

Solving Linear Systems

- To solve linear system, transform it into one whose solution is same but easier to compute
- What type of transformation of linear system leaves solution unchanged?
- We can premultiply (from left) both sides of linear system Ax = b by any *nonsingular* matrix M without affecting solution
- ullet Solution to MAx=Mb is given by

$$x = (MA)^{-1}Mb = A^{-1}M^{-1}Mb = A^{-1}b$$

Michael T. Heath Scientific Computing

Solving Linear Systems

Example: Diagonal Scaling

- Row scaling: premultiplying both sides of system by nonsingular diagonal matrix D, DAx = Db, multiplies each row of matrix and right-hand side by corresponding diagonal entry of D, but solution x is unchanged
- Column scaling: postmultiplying A by D, ADx = b, multiplies each column of matrix by corresponding diagonal entry of D, which rescales original solution

$$x = (AD)^{-1}b = D^{-1}A^{-1}b$$

 $\overline{\mathbf{I}}$

Solving Linear Systems

Triangular Matrices

- Two specific triangular forms are of particular interest
 - lower triangular: all entries above main diagonal are zero, $a_{ij} = 0$ for i < j
 - upper triangular: all entries below main diagonal are zero, $a_{ij} = 0 \text{ for } i > j$
- Successive substitution process described earlier is especially easy to formulate for lower or upper triangular
- Any triangular matrix can be permuted into upper or lower triangular form by suitable row permutation

Michael T. Heath Scientific Computing

Solving Linear Systems

Back-Substitution

ullet Back-substitution for upper triangular system $oldsymbol{U}oldsymbol{x}=oldsymbol{b}$

$$x_n = b_n/u_{nn}, \quad x_i = \left(b_i - \sum_{j=i+1}^n u_{ij}x_j\right) / u_{ii}, \quad i = n-1, \dots, 1$$

for j = n to 1if $u_{jj} = 0$ then stop $x_i = b_i/u_{ij}$ for i = 1 to j - 1 $b_i = b_i - u_{ij}x_j$ end

end

{ loop backwards over columns } { stop if matrix is singular } { compute solution component }

{ update right-hand side }

Michael T. Heath Scientific Co

Example: Triangular Linear System

$$\begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix}$$

- Using back-substitution for this upper triangular system, last equation, $4x_3 = 8$, is solved directly to obtain $x_3 = 2$
- ullet Next, x_3 is substituted into second equation to obtain $x_2 = 2$
- \bullet Finally, both x_3 and x_2 are substituted into first equation to obtain $x_1 = -1$

Elementary Elimination Matrices

 More generally, we can annihilate all entries below kth position in n-vector a by transformation

$$\boldsymbol{M}_{k}\boldsymbol{a} = \begin{bmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & \cdots & -m_{k+1} & 1 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -m_{n} & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} a_{1} \\ \vdots \\ a_{k} \\ a_{k+1} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} a_{1} \\ \vdots \\ a_{k} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

where $m_i = a_i/a_k$, i = k + 1, ..., n

• Divisor a_k , called *pivot*, must be nonzero

Michael T. Heath Scientific Computing

Solving Linear Systems

Gaussian Elimination

Elementary Elimination Matrices, continued

• If M_i , j > k, is another elementary elimination matrix, with vector of multipliers m_i , then

$$\begin{aligned} \boldsymbol{M}_{k} \boldsymbol{M}_{j} &= \boldsymbol{I} - \boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T} - \boldsymbol{m}_{j} \boldsymbol{e}_{j}^{T} + \boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T} \boldsymbol{m}_{j} \boldsymbol{e}_{j}^{T} \\ &= \boldsymbol{I} - \boldsymbol{m}_{k} \boldsymbol{e}_{k}^{T} - \boldsymbol{m}_{j} \boldsymbol{e}_{j}^{T} \end{aligned}$$

which means product is essentially "union," and similarly for product of inverses, $L_k L_i$

Example, continued

Note that

$$m{L}_1 = m{M}_1^{-1} = egin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}, \quad m{L}_2 = m{M}_2^{-1} = egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1/2 & 1 \end{bmatrix}$$

$$m{M}_1m{M}_2 = egin{bmatrix} 1 & 0 & 0 \ -2 & 1 & 0 \ 1 & 1/2 & 1 \end{bmatrix}, \quad m{L}_1m{L}_2 = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ -1 & -1/2 & 1 \end{bmatrix}$$

Elimination

- To transform general linear system into triangular form, we need to replace selected nonzero entries of matrix by
- This can be accomplished by taking linear combinations of
- Consider 2-vector $\boldsymbol{a} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$
- If $a_1 \neq 0$, then

$$\begin{bmatrix} 1 & 0 \\ -a_2/a_1 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_1 \\ 0 \end{bmatrix}$$

Solving Linear Systems

Elementary Elimination Matrices, continued

- Matrix M_k , called elementary elimination matrix, adds multiple of row k to each subsequent row, with multipliers m_i chosen so that result is zero
- ullet M_k is unit lower triangular and nonsingular
- ullet $m{M}_k = m{I} m{m}_k m{e}_k^T$, where $m{m}_k = [0, \dots, 0, m_{k+1}, \dots, m_n]^T$ and e_k is kth column of identity matrix
- $M_k^{-1} = I + m_k e_k^T$, which means $M_k^{-1} = L_k$ is same as M_k except signs of multipliers are reversed

Solving Linear Systems

Gaussian Elimination

Example: Elementary Elimination Matrices

• For $a = \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix}$,

$$M_1 a = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$

and

$$M_2 a = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ -2 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix}$$

Gaussian Elimination

- To reduce general linear system Ax = b to upper triangular form, first choose M_1 , with a_{11} as pivot, to annihilate first column of A below first row
 - System becomes $M_1Ax = M_1b$, but solution is unchanged
- Next choose M_2 , using a_{22} as pivot, to annihilate second column of M_1A below second row
 - ullet System becomes $M_2M_1Ax=M_2M_1b$, but solution is still
- Process continues for each successive column until all subdiagonal entries have been zeroed

 $\overline{\mathbf{I}}$

$$egin{array}{lll} oldsymbol{M}_{n-1}\cdotsoldsymbol{M}_1oldsymbol{A}oldsymbol{x} &=& oldsymbol{M}_{n-1}\cdotsoldsymbol{M}_1oldsymbol{b} \ oldsymbol{M}oldsymbol{A}oldsymbol{x} &=& oldsymbol{M}oldsymbol{b} \end{array}$$

can be solved by back-substitution to obtain solution to original linear system Ax = b

Process just described is called Gaussian elimination

 $\overline{\mathbf{I}}$

Solving Linear Systems

LU Factorization, continued

- ullet Having obtained LU factorization, Ax=b becomes LUx = b, and can be solved by forward-substitution in lower triangular system Ly = b, followed by back-substitution in upper triangular system Ux=y
- Note that y = Mb is same as transformed right-hand side in Gaussian elimination
- Gaussian elimination and LU factorization are two ways of expressing same solution process

Solving Linear Systems

Gaussian Elimination

Example, continued

• To annihilate subdiagonal entry of second column of M_1A ,

$$m{M}_2m{M}_1m{A} = egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} egin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{bmatrix} = egin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} = m{U},$$

$$M_2M_1b = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 12 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix} = Mb$$

 $\overline{\mathbf{I}}$

Example, continued

To write out LU factorization explicitly,

$$m{L}_1m{L}_2 = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ -1 & 0 & 1 \end{bmatrix} egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 1 & 1 \end{bmatrix} = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ -1 & 1 & 1 \end{bmatrix} = m{L}$$

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} = \mathbf{L}\mathbf{U}$$

 $\overline{\mathbf{I}}$

LU Factorization

• Product $L_k L_i$ is unit lower triangular if k < j, so

$$L = M^{-1} = M_1^{-1} \cdots M_{n-1}^{-1} = L_1 \cdots L_{n-1}$$

is unit lower triangular

- By design, U = MA is upper triangular
- So we have

A = LU

with L unit lower triangular and U upper triangular

• Thus, Gaussian elimination produces LU factorization of matrix into triangular factors

Example: Gaussian Elimination

Use Gaussian elimination to solve linear system

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \mathbf{b}$$

• To annihilate subdiagonal entries of first column of A,

$$\boldsymbol{M}_{1}\boldsymbol{A} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -3 & 7 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 1 & 5 \end{bmatrix},$$

$$M_1 b = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 12 \end{bmatrix}$$

Solving Linear Systems

Gaussian Elimination

Example, continued

 We have reduced original system to equivalent upper triangular system

$$\boldsymbol{U}\boldsymbol{x} = \begin{bmatrix} 2 & 4 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix} = \boldsymbol{M}\boldsymbol{b}$$

which can now be solved by back-substitution to obtain

$$m{x} = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$$

 $\overline{\mathbf{I}}$

Row Interchanges

- Gaussian elimination breaks down if leading diagonal entry of remaining unreduced matrix is zero at any stage
- Easy fix: if diagonal entry in column k is zero, then interchange row k with some subsequent row having nonzero entry in column \boldsymbol{k} and then proceed as usual
- If there is no nonzero on or below diagonal in column k, then there is nothing to do at this stage, so skip to next
- Zero on diagonal causes resulting upper triangular matrix U to be singular, but LU factorization can still be completed
- Subsequent back-substitution will fail, however, as it should for singular matrix

- In principle, any nonzero value will do as pivot, but in practice pivot should be chosen to minimize error
- To avoid amplifying previous rounding errors when multiplying remaining portion of matrix by elementary elimination matrix, multipliers should not exceed 1 in magnitude
- This can be accomplished by choosing entry of largest magnitude on or below diagonal as pivot at each stage
- Such partial pivoting is essential in practice for numerically stable implementation of Gaussian elimination for general linear systems < interactive example >

Complete Pivoting

- Complete pivoting is more exhaustive strategy in which largest entry in entire remaining unreduced submatrix is permuted into diagonal pivot position
- Requires interchanging columns as well as rows, leading to factorization

$$PAQ = LU$$

with L unit lower triangular, U upper triangular, and P and Q permutations

- Numerical stability of complete pivoting is theoretically superior, but pivot search is more expensive than for partial pivoting
- Numerical stability of partial pivoting is more than adequate in practice, so it is almost always used in solving linear systems by Gaussian elimination

Solving Linear Systems

Example: Small Pivots

To illustrate effect of small pivots, consider

$$A = \begin{bmatrix} \epsilon & 1 \\ 1 & 1 \end{bmatrix}$$

where ϵ is positive number smaller than $\epsilon_{\rm mach}$

• If rows are not interchanged, then pivot is ϵ and multiplier is $-1/\epsilon$, so

$$m{M} = egin{bmatrix} 1 & 0 \\ -1/\epsilon & 1 \end{bmatrix}, \quad m{L} = egin{bmatrix} 1 & 0 \\ 1/\epsilon & 1 \end{bmatrix},$$

$$\boldsymbol{U} = \begin{bmatrix} \epsilon & 1 \\ 0 & 1 - 1/\epsilon \end{bmatrix} = \begin{bmatrix} \epsilon & 1 \\ 0 & -1/\epsilon \end{bmatrix}$$

in floating-point arithmetic, but then

$$egin{aligned} m{L}\,m{U} = egin{bmatrix} 1 & 0 \ 1/\epsilon & 1 \end{bmatrix} egin{bmatrix} \epsilon & 1 \ 0 & -1/\epsilon \end{bmatrix} = egin{bmatrix} \epsilon & 1 \ 1 & 0 \end{bmatrix}
eq m{A} \end{aligned}$$

 $\overline{\mathbf{I}}$

Michael T. Heath Scientific Computing

53 / 88

Solving Linear Systems

Pivoting, continued

- · Although pivoting is generally required for stability of Gaussian elimination, pivoting is not required for some important classes of matrices
 - Diagonally dominant

$$\sum_{i=1, i \neq j}^{n} |a_{ij}| < |a_{jj}|, \quad j = 1, \dots, n$$

Symmetric positive definite

$${m A} = {m A}^T$$
 and ${m x}^T {m A} {m x} > 0$ for all ${m x}
eq {m 0}$

LU Factorization with Partial Pivoting

- With partial pivoting, each M_k is preceded by permutation P_k to interchange rows to bring entry of largest magnitude into diagonal pivot position
- ullet Still obtain MA=U, with U upper triangular, but now

$$\boldsymbol{M} = \boldsymbol{M}_{n-1} \boldsymbol{P}_{n-1} \cdots \boldsymbol{M}_1 \boldsymbol{P}_1$$

- ullet $L=M^{-1}$ is still triangular in general sense, but not necessarily lower triangular
- Alternatively, we can write

$$PA = LU$$

where $oldsymbol{P} = oldsymbol{P}_{n-1} \cdots oldsymbol{P}_1$ permutes rows of $oldsymbol{A}$ into order determined by partial pivoting, and now L is lower triangular

 $\overline{\mathbf{I}}$ 50 / 88

Example: Pivoting

- Need for pivoting has nothing to do with whether matrix is singular or nearly singular
- For example,

$$\boldsymbol{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

is nonsingular yet has no LU factorization unless rows are interchanged, whereas

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

is singular yet has LU factorization

Example, continued

- Using small pivot, and correspondingly large multiplier, has caused loss of information in transformed matrix
- If rows interchanged, then pivot is 1 and multiplier is $-\epsilon$, so

$$m{M} = egin{bmatrix} 1 & 0 \ -\epsilon & 1 \end{bmatrix}, \quad m{L} = egin{bmatrix} 1 & 0 \ \epsilon & 1 \end{bmatrix},$$

$$oldsymbol{U} = egin{bmatrix} 1 & 1 \ 0 & 1 - \epsilon \end{bmatrix} = egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix}$$

in floating-point arithmetic

Thus,

$$m{L}m{U} = egin{bmatrix} 1 & 0 \ \epsilon & 1 \end{bmatrix} egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix} = egin{bmatrix} 1 & 1 \ \epsilon & 1 \end{bmatrix}$$

which is correct after permutation

Michael T. Heath Scientific Computing Solving Linear Systems

Residual

• Residual $r = b - A\hat{x}$ for solution \hat{x} computed using Gaussian elimination satisfies

$$\frac{\|\boldsymbol{r}\|}{\|\boldsymbol{A}\| \; \|\hat{\boldsymbol{x}}\|} \leq \frac{\|\boldsymbol{E}\|}{\|\boldsymbol{A}\|} \leq \rho \; n^2 \; \epsilon_{\text{mach}}$$

where $m{E}$ is backward error in matrix $m{A}$ and growth factor hois ratio of largest entry of U to largest entry of A

- Without pivoting, ρ can be arbitrarily large, so Gaussian elimination without pivoting is unstable
- With partial pivoting, ρ can still be as large as 2^{n-1} , but such behavior is extremely rare

Michael T. Heath Scientific Computing

 $\overline{\mathbf{I}}$

Residual, continued

• There is little or no growth in practice, so

$$rac{\|m{r}\|}{\|m{A}\| \ \|\hat{m{x}}\|} \leq rac{\|m{E}\|}{\|m{A}\|} \lessapprox n \ \epsilon_{
m mach}$$

which means Gaussian elimination with partial pivoting yields small relative residual regardless of conditioning of

- Thus, small relative residual does not necessarily imply computed solution is close to "true" solution unless system is well-conditioned
- Complete pivoting yields even smaller growth factor, but additional margin of stability usually is not worth extra cost

Solving Linear Systems

Example, continued

• Residual is as small as we can expect using 3-digit arithmetic, but exact solution is

$$\boldsymbol{x} = \begin{bmatrix} 1.00 & 1.00 \end{bmatrix}^T$$

so error is almost as large as solution

- Cause of this phenomenon is that matrix is nearly singular (cond(A) > 4000)
- Division that determines x_2 is between two quantities that are both on order of rounding error, and hence result is essentially arbitrary
- ullet When arbitrary value for x_2 is substituted into first equation, value for x_1 is computed so that first equation is satisfied, yielding small residual, but poor solution

Michael T. Heath Scientific Computing

Solving Linear Systems

Gaussian Elimination

Uniqueness of LU Factorization

- Despite variations in computing it, LU factorization is unique up to diagonal scaling of factors
- Provided row pivot sequence is same, if we have two LU factorizations $m{P}m{A} = m{L}m{U} = \hat{m{L}}\hat{m{U}}$, then $\hat{m{L}}^{-1}m{L} = \hat{m{U}}m{U}^{-1} = m{D}$ is both lower and upper triangular, hence diagonal
- ullet If both L and \hat{L} are unit lower triangular, then D must be identity matrix, so $oldsymbol{L} = \hat{oldsymbol{L}}$ and $oldsymbol{U} = \hat{oldsymbol{U}}$
- Uniqueness is made explicit in LDU factorization PA = LDU, with L unit lower triangular, U unit upper triangular, and D diagonal

Michael T. Heath Scientific Computing

Complexity of Solving Linear Systems

- ullet LU factorization requires about $n^3/3$ floating-point multiplications and similar number of additions
- Forward- and back-substitution for single right-hand-side vector together require about n^2 multiplications and similar number of additions
- Can also solve linear system by matrix inversion: $\boldsymbol{x} = \boldsymbol{A}^{-1} \boldsymbol{b}$
- Computing A^{-1} is tantamount to solving n linear systems, requiring LU factorization of A followed by n forward- and back-substitutions, one for each column of identity matrix
- Operation count for inversion is about n^3 , three times as expensive as LU factorization

Example: Small Residual

Use 3-digit decimal arithmetic to solve

$$\begin{bmatrix} 0.641 & 0.242 \\ 0.321 & 0.121 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.883 \\ 0.442 \end{bmatrix}$$

Gaussian elimination with partial pivoting yields triangular

$$\begin{bmatrix} 0.641 & 0.242 \\ 0 & 0.000242 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.883 \\ -0.000383 \end{bmatrix}$$

Back-substitution then gives solution

$$\hat{\boldsymbol{x}} = \begin{bmatrix} 0.782 & 1.58 \end{bmatrix}^T$$

• Exact residual for this solution is

$$r = b - A\hat{x} = \begin{bmatrix} -0.000622 \\ -0.000202 \end{bmatrix}$$

Solving Linear Systems

Implementation of Gaussian Elimination

Gaussian elimination has general form of triple-nested loop

for
$$\cfrac{}{\cfrac{}{\text{for}}\cfrac{}{a_{ij}=a_{ij}-(a_{ik}/a_{kk})a_{kj}}}\\ = \cfrac{}{\text{end}}\\ = \text{end}$$

- Indices i, j, and k of for loops can be taken in any order, for total of 3! = 6 different arrangements
- These variations have different memory access patterns, which may cause their performance to vary widely on different computers

Solving Linear Systems

Gaussian Flimination

Storage Management

- ullet Elementary elimination matrices $oldsymbol{M}_k$, their inverses $oldsymbol{L}_k$, and permutation matrices P_k used in formal description of LU factorization process are not formed explicitly in actual implementation
- U overwrites upper triangle of A, multipliers in L overwrite strict lower triangle of A, and unit diagonal of L need not be stored
- Row interchanges usually are not done explicitly; auxiliary integer vector keeps track of row order in original locations

Michael T. Heath Scientific Computing

Inversion vs. Factorization

- Even with many right-hand sides b, inversion never overcomes higher initial cost, since each matrix-vector multiplication $A^{-1}b$ requires n^2 operations, similar to cost of forward- and back-substitution
- Inversion gives less accurate answer; for example, solving 3x = 18 by division gives x = 18/3 = 6, but inversion gives $x=3^{-1}\times 18=0.333\times 18=5.99$ using 3-digit arithmetic
- Matrix inverses often occur as convenient notation in formulas, but explicit inverse is rarely required to implement such formulas
- ullet For example, product $A^{-1}B$ should be computed by LU factorization of A, followed by forward- and back-substitutions using each column of B

Michael T. Heath Scientific Computing

- Row combinations are used to annihilate entries above as well as below diagonal
- Elimination matrix used for given column vector a is of form

where $m_i = a_i/a_k$, i = 1, ..., n

 $\overline{\mathbf{I}}$

Michael T. Heath Scientific Computing

Solving Linear Systems

Updating Solutions

Solving Modified Problems

- If right-hand side of linear system changes but matrix does not, then LU factorization need not be repeated to solve new system
- Only forward- and back-substitution need be repeated for new right-hand side
- This is substantial savings in work, since additional triangular solutions cost only $\mathcal{O}(n^2)$ work, in contrast to $\mathcal{O}(n^3)$ cost of factorization

Solving Linear Systems

Updating Solutions

Rank-One Updating of Solution

To solve linear system $(A - uv^T)x = b$ with new matrix, use Sherman-Morrison formula to obtain

$$x = (A - uv^T)^{-1}b$$

= $A^{-1}b + A^{-1}u(1 - v^TA^{-1}u)^{-1}v^TA^{-1}b$

which can be implemented by following steps

- ullet Solve $oldsymbol{A} oldsymbol{z} = oldsymbol{u}$ for $oldsymbol{z}$, so $oldsymbol{z} = oldsymbol{A}^{-1}oldsymbol{u}$
- ullet Solve Ay=b for y, so $y=A^{-1}b$
- $\bullet \ \ \mathsf{Compute} \ \boldsymbol{x} = \boldsymbol{y} + ((\boldsymbol{v}^T\boldsymbol{y})/(1-\boldsymbol{v}^T\boldsymbol{z}))\boldsymbol{z}$
- If A is already factored, procedure requires only triangular solutions and inner products, so only $\mathcal{O}(n^2)$ work and no explicit inverses

Michael T. Heath Scientific Computing

Updating Solutions

Example, continued

• Using LU factorization of A to solve Az = u and Ay = b,

$$z = \begin{bmatrix} -3/2 \\ 1/2 \\ -1/2 \end{bmatrix} \quad \text{and} \quad y = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$$

• Final step computes updated solution

$$oldsymbol{x} = oldsymbol{y} + rac{oldsymbol{v}^Toldsymbol{y}}{1 - oldsymbol{v}^Toldsymbol{z}} oldsymbol{z} = egin{bmatrix} -1 \ 2 \ 2 \end{bmatrix} + rac{2}{1 - 1/2} egin{bmatrix} -3/2 \ 1/2 \ -1/2 \end{bmatrix} = egin{bmatrix} -7 \ 4 \ 0 \end{bmatrix}$$

 We have thus computed solution to modified system without factoring modified matrix

 $\overline{\mathbf{I}}$

Solving Linear Systems

Gauss-Jordan Elimination, continued

- Gauss-Jordan elimination requires about $n^3/2$ multiplications and similar number of additions, 50% more expensive than LU factorization
- During elimination phase, same row operations are also applied to right-hand-side vector (or vectors) of system of linear equations
- Once matrix is in diagonal form, components of solution are computed by dividing each entry of transformed right-hand side by corresponding diagonal entry of matrix
- Latter requires only n divisions, but this is not enough cheaper to offset more costly elimination phase

< interactive example >

Michael T. Heath Scientific Computing

Updating Solutions

Sherman-Morrison Formula

- Sometimes refactorization can be avoided even when matrix *does* change
- Sherman-Morrison formula gives inverse of matrix resulting from rank-one change to matrix whose inverse is already known

$$(A - uv^T)^{-1} = A^{-1} + A^{-1}u(1 - v^TA^{-1}u)^{-1}v^TA^{-1}$$

where \boldsymbol{u} and \boldsymbol{v} are n-vectors

• Evaluation of formula requires $\mathcal{O}(n^2)$ work (for matrix-vector multiplications) rather than $\mathcal{O}(n^3)$ work required for inversion

Michael T. Heath Scientific Computing

Example: Rank-One Updating of Solution

Consider rank-one modification

$$\begin{bmatrix} 2 & 4 & -2 \\ 4 & 9 & -3 \\ -2 & -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 10 \end{bmatrix}$$

(with 3,2 entry changed) of system whose LU factorization was computed in earlier example

One way to choose update vectors is

$$u = \begin{bmatrix} 0 \\ 0 \\ -2 \end{bmatrix}$$
 and $v = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

so matrix of modified system is $A - uv^T$

Michael T. Heath Scientific Computing

Scaling Linear Systems

- In principle, solution to linear system is unaffected by diagonal scaling of matrix and right-hand-side vector
- In practice, scaling affects both conditioning of matrix and selection of pivots in Gaussian elimination, which in turn affect numerical accuracy in finite-precision arithmetic
- It is usually best if all entries (or uncertainties in entries) of matrix have about same size
- Sometimes it may be obvious how to accomplish this by choice of measurement units for variables, but there is no foolproof method for doing so in general
- Scaling can introduce rounding errors if not done carefully

Linear system

$$\begin{bmatrix} 1 & 0 \\ 0 & \epsilon \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ \epsilon \end{bmatrix}$$

has condition number $1/\epsilon,$ so is ill-conditioned if ϵ is small

- If second row is multiplied by $1/\epsilon$, then system becomes perfectly well-conditioned
- Apparent ill-conditioning was due purely to poor scaling
- In general, it is usually much less obvious how to correct poor scaling

 $\overline{\mathbf{I}}$

Solving Linear Systems

Iterative Refinement, continued

- Iterative refinement requires double storage, since both original matrix and its LU factorization are required
- Due to cancellation, residual usually must be computed with higher precision for iterative refinement to produce meaningful improvement
- For these reasons, iterative improvement is often impractical to use routinely, but it can still be useful in some circumstances
- For example, iterative refinement can sometimes stabilize otherwise unstable algorithm

Special Types of Linear Systems

Symmetric Positive Definite Matrices

 If A is symmetric and positive definite, then LU factorization can be arranged so that $U = L^T$, which gives Cholesky factorization

$$A = L L^T$$

where L is lower triangular with positive diagonal entries

- Algorithm for computing it can be derived by equating corresponding entries of A and LL^T
- In 2×2 case, for example,

$$\begin{bmatrix} a_{11} & a_{21} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} \\ 0 & l_{22} \end{bmatrix}$$

implies

$$l_{11} = \sqrt{a_{11}}, \quad l_{21} = a_{21}/l_{11}, \quad l_{22} = \sqrt{a_{22} - l_{21}^2}$$

Michael T. Heath Scientific Computing

Special Types of Linear Systems

Cholesky Factorization, continued

- Features of Cholesky algorithm for symmetric positive definite matrices
 - $\bullet\,$ All n square roots are of positive numbers, so algorithm is well defined
 - No pivoting is required to maintain numerical stability
 - Only lower triangle of A is accessed, and hence upper triangular portion need not be stored
 - \bullet Only $n^3/6$ multiplications and similar number of additions are required
- Thus, Cholesky factorization requires only about half work and half storage compared with LU factorization of general matrix by Gaussian elimination, and also avoids need for pivoting

< interactive example > Michael T. Heath Scientific Computing

Solving Linear Systems

Iterative Refinement

• Given approximate solution x_0 to linear system Ax = b, compute residual

$$\boldsymbol{r}_0 = \boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}_0$$

ullet Now solve linear system $Az_0=r_0$ and take

$$\boldsymbol{x}_1 = \boldsymbol{x}_0 + \boldsymbol{z}_0$$

as new and "better" approximate solution, since

$$egin{array}{lll} m{A}m{x}_1 &=& m{A}(m{x}_0+m{z}_0) = m{A}m{x}_0+m{A}m{z}_0 \ &=& (m{b}-m{r}_0)+m{r}_0=m{b} \end{array}$$

 Process can be repeated to refine solution successively until convergence, potentially producing solution accurate to full machine precision

Special Types of Linear Systems

Special Types of Linear Systems

- Work and storage can often be saved in solving linear system if matrix has special properties
- Examples include
 - Symmetric: $A = A^T$, $a_{ij} = a_{ji}$ for all i, j
 - Positive definite: $x^T A x > 0$ for all $x \neq 0$
 - Band: $a_{ij} = 0$ for all $|i j| > \beta$, where β is bandwidth of A
 - Sparse: most entries of A are zero

Special Types of Linear Systems

Cholesky Factorization

• One way to write resulting general algorithm, in which Cholesky factor L overwrites original matrix A, is

$$\begin{array}{l} \text{for } j=1 \text{ to } n \\ \text{ for } k=1 \text{ to } j-1 \\ \text{ for } i=j \text{ to } n \\ a_{ij}=a_{ij}-a_{ik}\cdot a_{jk} \\ \text{ end } \\ \text{ end } \\ a_{jj}=\sqrt{a_{jj}} \\ \text{ for } k=j+1 \text{ to } n \\ a_{kj}=a_{kj}/a_{jj} \\ \text{ end } \end{array}$$

Michael T. Heath Scientific Computing

Symmetric Indefinite Systems

Special Types of Linear Systems

- For symmetric indefinite A, Cholesky factorization is not applicable, and some form of pivoting is generally required for numerical stability
- Factorization of form

$$PAP^T = LDL^T$$

with L unit lower triangular and D either tridiagonal or block diagonal with 1×1 and 2×2 diagonal blocks, can be computed stably using symmetric pivoting strategy

 In either case, cost is comparable to that of Cholesky factorization

Band Matrices

- Gaussian elimination for band matrices differs little from general case — only ranges of loops change
- Typically matrix is stored in array by diagonals to avoid storing zero entries
- If pivoting is required for numerical stability, bandwidth can grow (but no more than double)
- General purpose solver for arbitrary bandwidth is similar to code for Gaussian elimination for general matrices
- For fixed small bandwidth, band solver can be extremely simple, especially if pivoting is not required for stability

 $\overline{\mathbf{I}}$

Special Types of Linear Systems

Tridiagonal Matrices, continued

LU factorization of A is then given by

$$\boldsymbol{L} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ m_2 & 1 & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & m_{n-1} & 1 & 0 \\ 0 & \cdots & 0 & m_n & 1 \end{bmatrix}, \quad \boldsymbol{U} = \begin{bmatrix} d_1 & c_1 & 0 & \cdots & 0 \\ 0 & d_2 & c_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & d_{n-1} & c_{n-1} \\ 0 & \cdots & \cdots & 0 & d_n \end{bmatrix}$$

Special Types of Linear Systems

Iterative Methods for Linear Systems

- Gaussian elimination is direct method for solving linear system, producing exact solution in finite number of steps (in exact arithmetic)
- Iterative methods begin with initial guess for solution and successively improve it until desired accuracy attained
- In theory, it might take infinite number of iterations to converge to exact solution, but in practice iterations are terminated when residual is as small as desired
- For some types of problems, iterative methods have significant advantages over direct methods
- We will study specific iterative methods later when we consider solution of partial differential equations

 $\overline{\mathbf{I}}$

85 / 88

Michael T. Heath Scientific Computing

Basic Linear Algebra Subprograms

- High-level routines in LINPACK and LAPACK are based on lower-level Basic Linear Algebra Subprograms (BLAS)
- BLAS encapsulate basic operations on vectors and matrices so they can be optimized for given computer architecture while high-level routines that call them remain portable
- Higher-level BLAS encapsulate matrix-vector and matrix-matrix operations for better utilization of memory hierarchies such as cache and virtual memory with paging
- Generic Fortran versions of BLAS are available from Netlib, and many computer vendors provide custom versions optimized for their particular systems

Special Types of Linear Systems

Tridiagonal Matrices

Consider tridiagonal matrix

$$\boldsymbol{A} = \begin{bmatrix} b_1 & c_1 & 0 & \cdots & 0 \\ a_2 & b_2 & c_2 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & a_{n-1} & b_{n-1} & c_{n-1} \\ 0 & \cdots & 0 & a_n & b_n \end{bmatrix}$$

Gaussian elimination without pivoting reduces to

$$\begin{aligned} d_1 &= b_1 \\ \text{for } i &= 2 \text{ to } n \\ m_i &= a_i/d_{i-1} \\ d_i &= b_i - m_i c_{i-1} \end{aligned}$$

Special Types of Linear Systems

General Band Matrices

- In general, band system of bandwidth β requires $\mathcal{O}(\beta n)$ storage, and its factorization requires $\mathcal{O}(\beta^2 n)$ work
- Compared with full system, savings is substantial if $\beta \ll n$

LINPACK and LAPACK

- LINPACK is software package for solving wide variety of systems of linear equations, both general dense systems and special systems, such as symmetric or banded
- Solving linear systems of such fundamental importance in scientific computing that LINPACK has become standard benchmark for comparing performance of computers
- LAPACK is more recent replacement for LINPACK featuring higher performance on modern computer architectures, including some parallel computers
- Both LINPACK and LAPACK are available from Netlib

Examples of BLAS

Level	Work	Examples	Function
1	$\mathcal{O}(n)$	saxpy	$Scalar \times vector + vector$
		sdot	Inner product
		snrm2	Euclidean vector norm
2	$O(n^2)$	sgemv	Matrix-vector product
		strsv	Triangular solution
		sger	Rank-one update
3	$\mathcal{O}(n^3)$	sgemm	Matrix-matrix product
		strsm	Multiple triang. solutions
		ssyrk	Rank- k update

 Level-3 BLAS have more opportunity for data reuse, and hence higher performance, because they perform more operations per data item than lower-level BLAS

Michael T. Heath Scientific Computing

 $\overline{\mathbf{I}}$