aula 11

Gabriel de Freitas Pereira

Índice

1	Defi	inição PO (Pesquisa Operacional)			
2	Metodologias				
	2.1	Programação linear			
		2.1.1 Ideia geral			
		2.1.2 Exercício 1			
		2.1.3 Exercício 2			
		2.1.4 Alguns casos especiais da Programação linear (PL)			
		2.1.5 Exercício 3			
	2.2	Programação linear inteira			
	2.3 Programação dinâmica				
	2.4 Heurística				
	2.5 Redes neurais				
	2.6	Algoritmos genéticos			

1 Definição PO (Pesquisa Operacional)

PO é o campo de estudos em que são aplicados métodos analíticos para ajudar os executivos a tomar as melhores decisões.

Importante: a solução ótima matemática não retira a necessidade da avaliação da viabilidade técnica de eventos modeláveis ou não modeláveis.

2 Metodologias

2.1 Programação linear

Metodologia mais popular, sendo as principais características:

- a) combinações de variáveis que podem ser maximizadas ou minimizadas. Para estas combinações dá-se o nome função objetivo. Ex.: (a + b + c).
- b) Um certo n^o de restrições, expressas na forma de equações ou inequações matemáticas. Ex.: (a + b + c) e suas restrições para alcançar menor custo (ou qualquer que seja o objetivo).

2.1.1 Ideia geral

Maximizar ou minimizar a função objetivo ao mesmo tempo obedecendo a todas as restrições. O nome linear vem do fato de que tanto a expressão que forma a função objetivo e quanto as restrições são expressas linearmente, ou seja, todas as **variáves** aparecem com expoente igual a unidade (elevado a 1).

2.1.2 Exercício 1

Produto	Máquina 1 (horas gastas)	Máquina 2 (horas gastas)	Demanda	Lucro Unitário (reais)
x	4	4	Ilimitada	80
У	6	2	3	60
Disponíveis	24	16		

Função Objetivo (FO): maximizar 80x + 60y

Sujeito A:

 $4x + 6y \le 24$

 $4x + 2y \le 16$

 $0x + 1y \le 3$

Resolvendo primeira equação graficamente: Se y=0, x=6; se x=0, y=4. Só traçar a reta. Resolvendo segunda equação graficamente: Se y=0, x=4; se x=0, y=8. Só traçar a reta. Resolvendo terceira equação graficamente: Se y=0, x=0; se x=0, y=3. Só traçar a reta.

Agora basta ver onde as retas se cruzaram, como na figura abaixo, e eliminar regiões posteriores à reta:

	X	у	FO
P	0	0	0
Q	4	0	320
\mathbf{R}	3	2	360 300
S	1.5	3	300
Τ	0	3	180

Sendo assim a solução seria comprar 3 de 80 e 2 de 60.

2.1.3 Exercício 2

Nutriente	Adubo 1 (reais)	Adubo 2 (reais)	Composição mínima
N	10	20	180
P	40	40	600
K	45	25	450
Custo por kg	6	8	

Função Objetivo (FO): minimizar 6x + 8y

Sujeito A:

 $10x + 20y \ge 180$

 $40x + 40y \ge 600$

 $45x + 25y \ge 450$

Resolvendo primeira equação graficamente: Se y = 0, x = 18; se x = 0, y = 9. Só traçar a reta. Resolvendo segunda equação graficamente: Se y = 0, x = 15; se x = 0, y = 15. Só traçar a reta. Resolvendo terceira equação graficamente: Se y = 0, x = 10; se x = 0, y = 18. Só traçar a reta.

Agora basta ver onde as retas se cruzaram, como na figura abaixo, e eliminar regiões anteriores à reta. Para isso é necessário escolher um valor qualquer para igualar a função objetiva, como 6x + 8y = 48 e encontrar os valores de x e y, como fizemos anteriormente, com isso temos:

A solução portanto é gastar 12 kg do adubo 1 e 3 kg do adubo 2, que chegamos com as retas paralelas.

2.1.4 Alguns casos especiais da Programação linear (PL)

1) Restrições incompatíveis

maximizar: 1x + 1y

Sujeito A:

$$4x + 3y \le 12$$

 $y \ge 5$

 $x \ge 4$

2) Solução sem fronteira

maximizar: 4x + 1y

Sujeito A:

$$x \ge 2$$

$$y \leq 3$$

Pois, ${\bf x}$ tende ao infinito, necessitaria alguma restrição para ${\bf x}.$

3) Redundância

Maximizar: 3x + 2y

Sujeito A:

$$10x + 5y \le 50$$

$$1x + 1y \le 7$$

$$0x + 1y \le 15$$

4) Soluções alternativas

Quando tem mais de uma resposta, e possivelmente as restrições devem ser incrementadas.

Maximizar: 4x + 12y

Sujeito A:

$$1x + 3y \le 6$$

$$5x + 3y \le 15$$

Repetir o passo a passo que fizemos nos outros exercícios. Com isso, chegamos em qualquer valor, das duas retas, pois a reta paralela passa em cima dos 2. Resolução a seguir:

2.1.5 Exercício 3

Problemas de transporte e designação

10000 F1 D1 8000

15000 F2 D2 4000

5000 F3 D3 7000 D4 11000

Col1	D1	D2	D3	D4	Produção
F1	13	8	9	12	10000
F2	12	9	10	14	15000
F3	8	8	9	6	5000
Demanda	8000	4000	7000	11000	

Minimizar: 13x11 + 8x12 + 9x13 + 12x14 + 12x21 + 9x22 + 10x23 + 14x24 + 8x31 + 8x32 + 9x33 + 6x34

Sujeito A:

$$X11 + X12 + X13 + X14 \leq 10000$$

$$X21 + X22 + X23 + X24 \leq 15000$$

$$X31 + X32 + X33 + X34 \leq 5000$$

$$X11 + X21 + X31 = 8000$$

$$X12 + X22 + X32 = 4000$$

$$X13 + X23 + X33 = 7000$$

$$X14 + X24 + X34 = 11000$$

Resolver esse problema no R ou Lingo ou Lindo.

2.2 Programação linear inteira

2.3 Programação dinâmica

2.4 Heurística

2.5 Redes neurais

2.6 Algoritmos genéticos