Information Theory: Entropy

Herbert Ilhan Tanujaya

A0144892W

Definition

Let X be a discrete random variable with probability distribution p(x).

Entropy H_X

$$H_X = -\sum_{x \in X} p(x) \log_2 p(x) = \mathbb{E} \log_2 \left[\frac{1}{p(X)} \right].$$

Here we define $0 \log_2 0 = 0$.

In a sense, the entropy of a random variable shows how "uncertain" the event is.

Examples

Entropy of a fair coin

A fair coin has entropy $\frac{1}{2}\log(2) + \frac{1}{2}\log(2) = 1$.

Entropy of a fair *m*-sided die

A m-sided die has entropy $\log m$.

Entropy of n fair coin flips

Flipping n coins produce 2^n uniformly distributed possibilities, and hence, the entropy is n.

Examples

Entropy of a Bernoulli trial

If X is a random variable taking values between 0 and 1, where p(0)=p and p(1)=1-p, its entropy is

$$H(p) = -p \log p - (1-p) \log(1-p).$$

Examples

Entropy of an unfair dice

An unfair dice with four faces and

$$p(1) = 1/2, p(2) = 1/4, p(3) = 1/8, p(4) = 1/8$$

has entropy 7/4, smaller than the one of the corresponding fair dice, which is 2. (This dice is less uncertain than the fair dice.)

Motivation [TODO]

Define a function H that takes in a random variable and outputs an integer, such that:

- If a random variable X takes n values, then H(X) is maximized if X is uniform.
- Entropy is additive, in the sense that: if X takes x_i with probability p_i , Y takes x_i with probability q_i , and Z takes x_i with probability $\alpha p_i + \beta q_i$ for all i, then

$$H(Z) = \alpha H(X) + \beta H(Y).$$

Then $H(X) = -\sum p_i \log p_i$ is the only possible function (up to the base of the logarithm).

Properties (TPM 15.7.1)

- $H(X) \le H(X, Y) \le H(X) + H(Y).$
- $H(X|Y,Z) \leq H(X|Y).$

Entropy is subadditive (TPM 15.7.2)

Let $X = (X_1, ..., X_n)$ be a random variable taking values in the set $S = S_1 \times S_2 \times \cdots \times S_n$, where each of the coordinates X_i of X is a random variable taking values in S_i . Then

$$H(X) \leq \sum_{i=1}^n H(X_i).$$

(This is just induction on the property $H(X, Y) \leq H(X) + H(Y)$.)

TPM 15.7.3

Let S be a family of subsets of $\{1, 2, ..., n\}$ and let p_i denote the fraction of sets in S that contain i. Then

$$|S| \leq 2^{\sum H(p_i)}$$
.

Proof

Let $X=(X_1,\ldots,X_n)$ take elements in S with equal probability. Then $H(X)\leq \sum H(X_i)$ implies $\log |S|\leq \sum H(p_i)$.

TPM 15.7.4

Let $X=(X_1,\ldots,X_n)$ taking values in $S=S_1\times\cdots\times S_n$, where each X_i takes values in S_i . For an index set $I\subseteq N=\{1,2,\ldots,n\}$ let X(I) denote $(X_i)_{i\in I}$. If T is a family of subsets of N and each $i\in N$ belongs to at least k members of T, then

$$kH(X) \leq \sum_{G \in T} H(X(G)).$$

Proof

Use induction. If there is $G \in S$ where G = N we are done. Otherwise, we prove

$$H(X(G \cup G')) + H(X(G \cap G')) \leq H(X(G)) + H(X(G')).$$

TPM 15.7.5

Take $F \subseteq S_1 \times S_2 \times \cdots \times S_n$. Let $\mathcal{I} = \{I_1, I_2, \dots, I_m\}$ be a collection of index sets (i.e. subsets of N), and suppose that each element $i \in N$ belongs to at least k members of \mathcal{I} . For each $1 \leq i \leq m$ let F_i be the set of all projections of the members of F on I_i . Then

$$|F|^k \le \prod_{i=1}^m |F_i|.$$

Proof

Let $X = (X_1, ..., X_n)$ take elements of F with equal probability. Then $kH(X) \leq \sum H(X(I_i))$ implies $k \log |F| \leq \sum \log |F_i|$.

Corollaries of TPM 15.7.5

Take $I_i = N - \{i\}$ for all i, and notice that the volume of a set can be approximated by a fine enough aligned boxes.

TPM 15.7.6

Let B be a measurable body in the n-dimensional Euclidean space, let Vol(B) denote its (n-dimensional) volume, and let $Vol(B_i)$ denote the (n-1)-dimensional volume of the projection of B on the hyperplane spanned by all coordinates besides the i-th one. Then

$$(Vol(B))^{n-1} \leq \prod_{i=1}^n Vol(B_i).$$

Corollaries of TPM 15.7.5

Take $S_i = \{0, 1\}$ in TPM 15.7.5.

TPM 15.7.7

Let F and $\mathcal{I} = \{I_1, I_2, \dots, I_m\}$ be a collection of subsets of N. Suppose that each element of N belongs to at least k members of \mathcal{I} . For each $1 \leq i \leq m$, define $F_i = \{f \cap I_i : f \in F\}$. Then

$$|F|^k \leq \prod_{i=1}^m |F_i|.$$

Corollaries of TPM 15.7.5

TPM 15.7.8

Let F be a family of graphs on the labeled set of vertices $\{1,\ldots,t\}$, and suppose that for any two members of F there is a triangle contained in both of them. Then

$$|F|<\frac{1}{4}2^{\binom{t}{2}}.$$

Proof

Take N to be the set of all edges of K_t and \mathcal{I} be edges of all possible $K_{\left\lfloor \frac{t}{2} \right\rfloor} \cup K_{\left\lceil \frac{t}{2} \right\rceil}$.