

/TYO YHUBEPCUTET UTMO

Факультет программной инженерии и компьютерной техники

«Компьютерные сети»

Краткий теоретический материал и контрольные вопросы для подготовки к лабораторным работам

Модель взаимодействия открытых систем

Для чего нужна и что представляет собой модель взаимодействия открытых систем (OSI-модель)?

Сколько уровней в OSI-модели и как они называются?

Основные функции всех уровней в OSI-модели?

Что такое интерфейс, протокол, стек протоколов, PDU?

Зачем сообщение разбивается на пакеты?

Может ли происходить обмен (данными) сообщениями между прикладным уровнем одного узла с сетевым уровнем другого узла?

Может ли сетевой уровень одного узла передать данные (сообщение) сетевому уровню другого узла?

Модель взаимодействия открытых систем

<u>Семиуровневая OSI-модель :</u>

- *OSI-модель* (*Open Systems Interconnection*) модель Взаимодействия Открытых Систем (ВОС)
- ISO (International Standards Organization) Международная Организация по Стандартам (МОС)

PDU (Protocol Data Unit) - протокольный блок данных: сообщение (message), дейтаграмма (datagram), сегмент (segment), пакет (packet), кадр (frame)

Стек протоколов ТСР/ІР

Что такое «стек протоколов TCP/IP»?

Сколько уровней и какие содержит стек протоколов ТСР/ІР?

Какие протоколы (по уровням) входят в стек протоколов ТСР/ІР?

Зачем сообщения при передаче по сети делятся на пакеты?

В чем различие между сообщением, пакетом и кадром?

Что больше по размеру – дейтаграмма, пакет или кадр (при условии отсутствия фрагментации)?

Стек протоколов ТСР/ІР

TCP (Transmission Control Protocol) — протокол управления передачей данных

UDP (User Datagram Protocol) — протокол пользовательских дейтаграмм

IP (**Internet Protocol**) не различает логические объекты (процессы), порождающие поток данных, не гарантирует доставку пакетов, целостность пакетов и сохранение порядка потока пакетов, но реализует максимально возможную доставку пакетов.

Протоколы ТСР и UDP обеспечивают доставку из конца в конец (end to end):

- ▶ с установлением соединения (ТСР, UDР);
- ➤ без установления соединения (UDP).

Уровни OSI	Уровни ТСР/ІР	т TCP/IP Протоколы						
5 – 7	Application (прикладной)	FTP, SNMP, DNS, SMTP, POP3, IMAP, RTP	Сообщение					
4	Transport (транспортный)	TCP, UDP	Сегмент, дейтаграмма					
3	Internet (межсетевой)	IP, RIP, OSPF, DHCP, ARP	Пакет					
1 – 2	Network interface (сетевой интерфейс)	SLIP, PPP	Кадр					

Адресация в сети Интернет

Что такое МАС-адрес и IP-адрес в сети Интернет?

На каком уровне OSI-модели используются MAC-адреса (IP-адреса)?

Может ли быть в сети Интернет несколько одинаковых МАС-адресов (IP-адресов)?

Как формируется и за счет чего обеспечивается уникальность МАС-адреса?

Почему недостаточно иметь только МАС-адрес или IP-адрес?

Можно ли по IP-адресу (MAC-адресу) оценить размер компьютерной сети (подсети)? И если «да», то как?

Может ли МАС-адрес (IP-адрес) быть присвоен на определенное время?

Адресация в сети Интернет

Классы адресов в ІР - сетях

Локальные (физические, аппаратные) адреса (МАС-адреса)

Сетевые адреса (ІР-адреса)

Классовая адресация

	OUI					
1	2	3	4	5	6	байт

Биты	Биты 0 1 2 3 4		8	•••	16	•••	24	•••	31						
Класс А	0	ŀ	Ion	иер	ce	ти		Номер узла							
Класс В	1	0		Н	ОМ	ер с	ети	1	Номер узла						
Класс С	1	1	0			Ном	лер	сет	И		Но	мер у	зла		
Класс D	1	1	1	0			Γ	руп	повс	ой а	ідре	c			
Класс Е	1	1	1	1	0 Зарезервирован										

a0-5a-02-ab-f4-08

21-00-f3-16-cd-01

(32 бит = 4 байт): 190.171.153.15

ІР-адреса сетей / подсетей:

A. 45**.0.0.0**

B. 170.25**.0.0**

C. 219.121.43**.0**

ІР-адреса хостов / интерфейсов:

A. 45**.0.1.234**

B. 170.25**.252.1**

C. 219.121.43**.158**

IP-адреса для автономного использования:

А. 10.0.0.0 (1 сеть);

В. 172.16.0.0 – 172.31.0.0 (16 сетей);

C. 192.168.0.0 – **192.168.255.0** (256)

127 – адрес обратной петли (тестовый адрес) – loopback address

Маски адресов в ІР-сетях

В связи с чем появилась необходимость маскирования ІР-адресов?

Почему при классовой адресации множество ІР-адресов используется неэффективно?

Что представляет собой маска ІР-адреса?

Как по маске оценить размер компьютерной сети?

Все компьютеры сети (подсети) имеют одну маску или компьютеры сети могут иметь разные маски?

Есть ли маски у сетей класса А (В, С)?

Маски адресов в ІР-сетях

Использование масок для ІР-адресов

IP-адрес: 126.65.32.5 адрес сети **126.0.0**.0 адрес (номер) узла **0.65.32.5**

Маска: 255.192.0.0 или 126.65.32.5/10

В двоичном виде:

<u>IP-адрес:</u> 01111110.01000001.00100000.00000101 <u>126.65.32.5/10</u>

<u>Маска:</u> 11111111.11000000.00000000.00000000

Тогда **адрес сети:** 01111110.01 или <u>126.64.0.0</u>

адрес узла: 000001.00100000.00000101 или <u>0.1.32.5</u>

Маски для стандартных классов:

класс А: 11111111. 00000000.00000000.00000000 (255.0.0.0)

класс В: 11111111. 11111111.000000000.0000000 (255. 255.0.0)

класс C: 11111111. 11111111.11111111.00000000 (255. 255. 255.0)

Протокол ARP

Что такое ARP-протокол и для чего он нужен?

Когда возникает необходимость обращения к ARP-протоколу?

В каких случаях не происходит обращение к ARP-протоколу?

Протокол ARP

ARP (Address Resolution Protocol) — протокол разрешения адресов **RARP** (Reverse ARP) — протокол обратного определения адреса

IP-адрес	МАС-адрес	Тип записи
195.67.8.12	18-43-f4-ba-5e-01	Динамический/статический

Назначение IP-адресов

Что такое DHCP-протокол (DHCP-сервер) и для чего он нужен?

В чем отличие DHCP-сервера от DHCP-клиента?

В каких случаях нет необходимости в использовании DHCP-сервера?

Какие способы назначения IP-адресов реализует DHCP-сервер?

Зачем нужен DHCP-сервер при ручном способе назначения адресов?

Назначение ІР-адресов

DHCP (Dynamic Host Configuration Protocol) - протокол динамического конфигурирования хостов (автоматическое назначение IP-адресов)

Способы назначения IP-адресов на основе протокола DHCP

Ручное статическое

Автоматическое статическое

Автоматическое динамическое

Дополнительные конфигурационные параметры DHCP-сервера:

- •маска;
- •ІР-адрес маршрутизатора по умолчанию;
- •IP-адрес сервера DNS;
- •доменное имя компьютера и т.д.

DHCP-сообщ.	Назначение							
DISCOVER	Найти DHCP-сервер							
OFFER	Предложение IP-адреса							
REQUEST	Запрос IP-адреса							
ACK	Подтверждение IP-адреса или доп. параметров							
NACK	Запрет использования IP-адреса							
RELEASE	Освобождение IP-адреса							
DECLINE	Отказ от ІР-адреса							
INFORM	Запрос доп. параметров							

Протокол IPv4

Что такое IP-пакет и какова его максимальная длина?

Формат заголовка ІР-пакета?

Зачем в IP-пакете указывается длина заголовка и в каких единицах?

Какие адреса содержатся в заголовке ІР-пакета?

Протокол IPv4

<u>Пакет IP</u>

Транспортные протоколы ТСР/ІР

Назначение транспортных протоколов UDP и TCP?

Что такое «номер порта» и для чего он нужен?

В чем отличие централизованного способа назначения порта от локального?

Что такое сокет?

Транспортные протоколы ТСР/ІР

TCP (Transmission Control Protocol)
UDP (User Datagram Protocol)

Способы присвоения порта приложению:

- > централизованный (от 0 до 1023): FTP - 21, DNS - 53, HTTP - 80.
- *▶ локальный* (от 1024 до 65535) по запросу от приложения.

<Сокет>: <<u>IP-адрес>, <номер порта</u>>

Протоколы UDP и TCP

Что такое «UDP-дейтаграмма» и «TCP-сегмент»?

Что такое «логическое соединение» и как оно образуется?

Какая информация содержится в заголовках UDP-дейтаграммы и TCP-сегмента?

Как реализуется передача данных по протоколам UDP и TCP?

Протокол UDP

Формат заголовка UDP-дейтаграммы

1 2	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Порт источника (Source Port)												Порт назначения (Destination Port)																			
Длина UDP-сегмента (Total length)														К	ЮН	гро	лы	ная	cyı	мма	a (C	Che	cks	sun	n)						

Протокол ТСР

Логическое соединение: <сокет1> < сокет2>

<Сокет>: <<u>IP-адрес>, <номер порта</u>>

Формат заголовка ТСР-сегмента

1 2 3 4	5 6 7 8 9 10	11	12	13	14 1	5 16	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32						
	Порт источника (Sour	ce I	Port)		Порт назначения (Destination Port)								
Порядковый номер (Sequence Number)													
	Подтвержденный номер - ожидаемый байт (Acknowledgement Number)												
Дл.заголовка	Peзepв (Reserved)						Размер окна (Window size)						
(Header length)		URG	ACK P	SH	RST SY	'N FIN							
F	Контрольная сумма (СИ	ıeck.	sum)				Указатель на срочные данные (<i>Urgent</i>)						
	Пара	амет	ры (с	0pti	ions)	– 0 ил	и более 32-разрядных слов						
	Данные (<i>Data</i>) – необязательное поле												

Флаги или кодовые биты (code bits) для управления TCP-соединением:

SYN = 1 — установка соединения FIN = 1 — завершение (разрыв) соединения

Передача данных по протоколу ТСР

Основные особенности протокола:

- 1. Установление логического соединения.
- 2. Из потока байтов вырезается сегмент.
- 3. Дуплексная передача сегментов.
- 4. Используется механизм тайм-аута.
- 5. *Отрицательные квитанции* не посылаются.

При установлении соединения:

- отправитель и получатель должны быть готовы для передачи данных;
- договориться о нумерации потока байт;
- договориться о параметрах соединения.

Этапы передачи данных:

- установление соединения:
 - <u>К</u>: SYN=1; <u>С</u>: SYN=1 и ACK=1; <u>К</u>: ACK=1;
- передача данных;
- разрыв соединения: FIN=1.

Установление соединения

Передача данных

Разрыв соединения

Флаги (code bits) в заголовке TCP-сегмента:

ACK = 1 - «Подтверждение»

SYN = 1 — установка соединения

FIN = 1 - завершение (разрыв) соединения

Маршрутизация

Какие протоколы маршрутизации используются в Интернете?

Что такое «автономная система»?

В чем отличие внутренней маршрутизации от внешней?

Что такое «шлюз» и «интерфейс» в таблице маршрутизации?

Маршрутизация

Протоколы маршрутизации

В чем отличие протоколов внутренней маршрутизации от протоколов внешней маршрутизации?

Какие протоколы относятся к протоколам внутренней маршрутизации?

Что представляет собой протокол маршрутизации RIP?

Протоколы маршрутизации

Протоколы внутренней маршрутизации RIP (Routing Information Protocol) — протокол маршрутной информации (1969 г.) ОSPF (Open Shortest Path First) - алгоритм предпочтения кратчайшего пути (1988 г.)

Протокол (Routing Information Protocol)

- 1. Каждые 30 с широковещательное сообщение : (V, D), где V адрес доступной сети (вектор); D расстояние до этой сети (длина вектора).
- 2. Метрика RIP длина вектора в *хопах* (ограничение 15 транзитных участков; 16 «бесконечно большая метрика»).

Недостатки протокола RIP:

- ❖ медленная стабилизация оптимальных маршрутов;
- ❖ большая загрузка сети таблицами "вектор-длина"

Факультет программной инженерии и компьютерной техники