01RAD - přednáška 3, 30.9.2025

ANOVA přístup pro testování

- odvodili jsme *t*-test významnosti koeficientů, odvodíme ekvivalentní *F*-test, který může být zobecněn na test celkové významnosti vícerozměrného regresního modelu
- myšlenka metody (ANOVA): určit, kolik variability v pozorováních $(y_1, y_2, ..., y_n)$ je "vysvětleno" regresním modelem
- míra variability v datech: total sum of squares (SST) celkový součet čtverců

$$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

• pokud regresní přímka $y = \hat{\beta}_0 + \hat{\beta}_1 x$ dobře prokládá data, tedy $\hat{y}_i \approx y_i$, bude platit

$$\sum_{i=1}^{n} (\widehat{y}_i - \overline{\widehat{y}}_n)^2 \approx \sum_{i=1}^{n} (y_i - \overline{y})^2$$

ukážeme, že $\overline{\widehat{y}}=\overline{y}$ a tak

$$\sum_{i=1}^{n} (\widehat{y}_i - \overline{\widehat{y}})^2 = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2 = SSR \quad \text{regression sum of squares - regresní součet čtverců}$$

Podíl

$$R^{2} = \frac{SSR}{SST} = \frac{\sum\limits_{i=1}^{n} (\widehat{y}_{i} - \overline{y})^{2}}{\sum\limits_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

vyjadřuje podíl variability v $(y_1,...,y_n)$ vysvětlené regresním modelem

- R^2 koeficient determinace (coefficient of determination) (pro dobrý model $R^2 \approx 1$)
- ukážeme, že $R^2 = \varrho^2(\mathbf{x}, \mathbf{y})$, tzn. R^2 je míra "dobré shody"
- R^2 by šla použít pro test H_0 : $\beta_1 = 0$ (zamítnutí pokud $R^2 \approx 1$)
- každá monotonní funkce R² vede na ekvivalentní test, budeme uvažovat statistiku

$$F = \frac{(n-2)R^2}{1-R^2}$$

VĚTA 2.4

Předpokládejme, že v modelu (*) je splněno $SST \neq 0$. Potom platí

- 1) $0 \le R^2 \le 1$,
- 2) $R^2 = 1 \frac{SSE}{SST}$, kde $SSE = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$ je reziduální součet čtverců,
- 3) $R^2=1\iff \widehat{y}_i=y_i,\ \forall i\in \widehat{\pmb{n}}$ (všechna data leží na přímce),
- 4) pokud označíme $\mathbf{x} = (x_1, ..., x_n)$ a $\mathbf{y} = (y_1, ..., y_n)$, potom

$$R^2 = \varrho^2(\boldsymbol{x}, \boldsymbol{y}), \qquad \text{kde } \varrho(\boldsymbol{x}, \boldsymbol{y}) = rac{\sum\limits_{i=1}^n (x_i - \overline{x}_n)(y_i - \overline{y}_n)}{\sqrt{S_{xx}S_{yy}}},$$

- 5) $F = \frac{(n-2)R^2}{1-R^2} = \frac{SSR}{s^2} = T_1^2$,
- 6) pokud jsou chyby $e_1,...,e_n$ i.i.d. $N(0,\sigma^2)$ a platí H_0 : $\beta_1=0$, potom $F\sim F(1,n-2)$.

Poznámka 2.10

- Z bodů 5) a 6) vyplývá, že použití lib. stat. T₁, R² nebo F vede na ekvivalentní test významnosti regrese.
- R² poskytuje hrubou představu o kvalitě modelu, čím je blíže 1, tím lépe přímka prokládá data (nicméně je třeba jisté obezřetnosti, jak uvidíme později)
- F lze chápat jako statistiku pro test významnosti velkých hodnot R².

Důkaz věty bude založen na rozkladu

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2, \text{ neboli } SST = SSR + SSE$$

Lemma 2.1

Nechť $\widehat{e}_i = y_i - \widehat{y}_i$ značí rezidua, kde $\widehat{y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$ a $\widehat{\beta}_0, \widehat{\beta}_1$ jsou LSE v modelu (*). Potom platí

1)
$$\sum_{i=1}^{n} \widehat{e}_i = 0$$
, 2) $\overline{\widehat{y}} = \overline{y}$, 3) $\sum_{i=1}^{n} \widehat{e}_i \, \widehat{y}_i = 0$.

Důkaz věty 2.4.

Tabulka ANOVA

Výsledky se většinou uvádí ve formě tabulky ANOVA:

Source	df	SS		MS	F
Regression	1	SSR		$MSR = \frac{SSR}{1}$	$\frac{\text{MSR}}{\text{MSE}}$
Residual	n-2	SSE		$MSE = \frac{SSE}{n-2} = s_n^2$	
Total	n-1	SST			
		D2	SSR		

$$R^2 = \frac{SSR}{SST}$$

Source – zdroj součtu čtverců, df – počet stupňů volnosti, SS – součet čtverců MS – "mean squares", průměr čtverců, $({
m MS}={
m \frac{SS}{df}})$

Poznámka 2.11

$$H_0:~eta_1=0~$$
 je zamítnuta, pokud $F>F_{1-lpha}(1,n-2)$

(v jednorozměrném případě je to ekvivalentní t-testu, neboť $F=T_1^2$).

VĚTA 2.5

Nechť $e_1, ..., e_n$ i.i.d. $N(0, \sigma^2)$. Za platnosti H_0 : $\beta_1 = 0$ je splněno, že

$$\frac{SSR}{\sigma^2} \sim \chi^2(1), \qquad \frac{SSE}{\sigma^2} \sim \chi^2(n-2), \qquad \frac{SST}{\sigma^2} \sim \chi^2(n-1).$$

Poznámka 2.12

Proto se v tabulce ANOVA uvádí df po řadě 1, n-2, n-1.

Používají se však i v případě jiného rozdělení chyb. Představit si je lze takto:

- - $532 = \sum_{i=1}^{n} e_i, \quad \text{fia } n\text{-region } e_1, ..., e_n \text{ matter 2 pourit.} \quad \sum_{i=1}^{n} e_i = 0 \text{ as } \sum_{i=1}^{n} x_i e_i = 0 \Rightarrow n-2 \text{ stupilly volume}$
 - ② $SST = \sum_{i=1}^{n} (y_i \overline{y})^2$, $y_i \overline{y}$ musí splňovat $\sum_{i=1}^{n} (y_i \overline{y}_n) = 0 \Rightarrow n-1$ stupňů volnosti

PŘÍKLAD 2.2 (Měření rychlosti zvuku v závislosti na teplotě)

teplota	-20	0	20	50	100
rychlost (m/s)	323	327	340	364	386

```
mod <- lm(rychlost~teplota)</pre>
```

```
anova(mod)
```

Připomenutí:
$$s_n^2 = 18.95$$
, $T_1^2 = (12.096)^2 = 146.3$.

Poznámka 2.13 (R² statistika - pozor na zjednodušené hodnocení kvality modelu!)

- nízké hodnoty R² nemusí znamenat, že regresní model není významný
 v datech jen může být velké množství nevysvětlitelné náhodné variability
 (např. opakované hodnoty regresoru x snižují hodnotu R² oproti modelům s různými x)
- ullet velké hodnoty R^2 mohou být způsobeny velkým měřítkem dat (S_{xx} je velké)
 - platí totiž

$$\mathsf{E}(R^2) pprox rac{eta_1^2 S_{xx}}{eta_1^2 S_{xx} + \sigma^2}$$
 (rostoucí funkce S_{xx})

- ullet velký rozptyl $(x_1,...,x_n)$ může mít za následek velké R^2 , přitom nic neříká o kvalitě modelu
- $E(R^2)$ je také rostoucí funkcí β_1^2 , modely s "velkou" směrnicí tedy budou mít obecně větší R^2 , než modely s "malou" směrnicí

Při hodnocení kvality modelu potřebujeme více kritérií. Mezi ně patří například

- 1) "velká" hodnota R^2 , 2) "velké" hodnoty statistik F nebo $|T_1|$,
- 3) "malé" hodnoty s_n^2 vzhledem k \overline{y} (další kritéria později)

Příklad 2.3

- ullet velká hodnota R^2 indikuje přibližně lineární vztah mezi x a y
- vysoký stupeň korelace ale nemusí znamenat příčinný vztah!

Data: 1924-1937

y_i - počet mentálních onemocnění na 100000 obyvatel Anglie.

 x_i - počet rádií v populaci.

Model:
$$y_i = \beta_0 + \beta_1 x_i + e_i$$

$$\widehat{\beta}_0 = 4.5822, \qquad \widehat{\beta}_1 = 2.2042, \qquad R^2 = 0.984$$

tzn. velmi významný lineární vztah mezi x a y

Závěr: rádia způsobují mentální onemocnění (???)

věrohodnější vysvětlení: x i y rostou lineárně s časem, tzn. y roste lineárně s x

(Rádia byla s časem dostupnější, lepší diagnostické procedury umožňovaly identifikovat více lidí s mentálními problémy.)

Poznámka 2.14 (korelace × příčinnost)

a)

$$\begin{array}{cccc} x & \longrightarrow & y \\ x & \longleftarrow & y \end{array}$$

Causal link (příčinná spojitost)

i když je příčinná spojitost mezi x a y, korelace samotná nám neřekne, zda x ovlivňuje y nebo naopak

c)

Confounding factor (zavádějící faktor)

skrytá proměnná z i x ovlivňují y, výsledky tedy závisí i na z

b)

Hidden cause (skrytá příčinnost)

skrytá veličina z ovlivňuje x i y, což způsobuje jejich korelovanost

d)

Coincidence (shoda okolností)

korelace je náhodná