21 dicembre 2020

177

Progettazione logica

Traduzione dal modello ER al modello logico

Basi di Dati corso A

Obiettivo della progettazione logica

▶ "tradurre" lo schema concettuale in uno schema logico che rappresenti gli stessi dati in maniera corretta ed efficiente

Basi di Dati corso A

Dati di ingresso e uscita

- ► Ingresso:
 - ▶ schema concettuale
 - ▶ informazioni sul carico applicativo
 - ▶ modello logico
- ▶ Uscita:
 - ▶ schema logico
 - ▶ documentazione associata

Basi di Dati corso A

181

Non si tratta di una pura e semplice traduzione

- alcuni aspetti non sono direttamente rappresentabili
- ▶è necessario considerare le prestazioni

Basi di Dati corso A

Ristrutturazione schema E-R

- ► Motivazioni:
 - semplificare la traduzione
 - ▶"ottimizzare" le prestazioni
- ▶ Osservazione:
 - ▶uno schema E-R ristrutturato non è (più) uno schema concettuale nel senso stretto del termine

Basi di Dati corso A

Per ottimizzare il risultato abbiamo bisogno di analizzare le prestazioni a questo livello

► Le prestazioni non sono valutabili con precisione su uno schema concettuale

Basi di Dati corso A

185

Indicatori di prestazioni

- ▶ spazio: numero di occorrenze previste
- ▶ tempo: numero di occorrenze (di entità e relationship) visitate durante un'operazione

Basi di Dati corso A

Tavola dei volumi

Concetto	Tipo	Volume
Sede	Ш	10
Dipartimento	Ш	80
Impiegato	Ш	2000
Progetto	Ш	500
Composizione	R	80
Afferenza	R	1900
Direzione	R	80
Partecipazione	R	6000

Basi di Dati corso A

Esempio di valutazione di costo

- ▶ Operazione:
 - ▶trova tutti i dati di un impiegato, del dipartimento nel quale lavora e dei progetti ai quali partecipa
- ▶Si costruisce una tavola degli accessi basata su uno schema di navigazione

Basi di Dati corso A

189

Tavola degli accessi

Concetto	Costrutto	Accessi	Tipo
Impiegato	Entità	1	L
Afferenza	Relazione	1	L
Dipartimento	Entità	1	L
Partecipazione	Relazione	3	L
Progetto	Entità	3	L

Basi di Dati corso A

191

Attività della ristrutturazione

- ►Analisi delle ridondanze
- ▶Eliminazione delle generalizzazioni
- ▶Partizionamento/accorpamento di entità e relationship
- ▶Scelta degli identificatori primari

Basi di Dati corso A

Analisi delle ridondanze

- Una ridondanza in uno schema E-R è una informazione significativa ma derivabile da altre
- ▶ in questa fase si decide se eliminare le ridondanze eventualmente presenti o mantenerle

Basi di Dati corso A

193

Ridondanze

- ▶ Vantaggi
 - ▶semplificazione delle interrogazioni
- ► Svantaggi
 - ▶appesantimento degli aggiornamenti
 - ▶maggiore occupazione di spazio

Basi di Dati corso A

Forme di ridondanza in uno schema E-R

- ►attributi derivabili:
 - ▶da altri attributi della stessa entità (o relazione)
 - ▶da attributi di altre entità (o relazioni)
- relazioni derivabili dalla composizione di altre relazioni in presenza di cicli

Basi di Dati corso A

195

Concetto	Tipo	Volume
Città	Е	200
Persona	Е	1.000.000
Residenza	R	1.000.000

- ▶ Operazione 1: memorizza una nuova persona con la relativa città di residenza (500 volte al giorno)
- ▶ Operazione 2: stampa tutti i dati di una città (incluso il numero di abitanti) (2 volte al giorno)

Basi di Dati corso A

Presenza di ridondanza

Operazione 1

Concetto	Costrutto	Accessi	Tipo
Persona	Entità	1	S
Residenza	Relazione	1	S
Città	Entità	1	L
Città	Entità	1	S

Operazione 2

Concetto	Costrutto	Accessi	Tipo
Città	Entità	1	L

Basi di Dati corso /

201

Assenza di ridondanza

Operazione 1

Concetto	Costrutto	Accessi	Tipo
Persona	Entità	1	S
Residenza	Relazione	1	S

Operazione 2

Concetto	Costrutto	Accessi	Tipo
Città	Entità	1	Г
Residenza	Relazione	5.000	Г

Basi di Dati corso A

Presenza di ridondanza

▶ Costi

- ► Operazione 1: 1.500 accessi in scrittura e 500 accessi in lettura al giorno
- ▶Operazione 2: trascurabile, perché = 2
- ► Contiamo doppi gli accessi in scrittura

Totale di 3.502 accessi al giorno

Basi di Dati corso A

203

Assenza di ridondanza

- **▶** Costi
 - ▶Operazione 1: 1.000 accessi in scrittura
 - ▶Operazione 2: 10.002 accessi in lettura al giorno
- ► Contiamo doppi gli accessi in scrittura

Totale di 12.002 accessi al giorno

Basi di Dati corso A

Attività della ristrutturazione

- ► Analisi delle ridondanze
- ▶Eliminazione delle generalizzazioni
- ▶Partizionamento/accorpamento di entità e relazioni
- ▶Scelta degli identificatori primari

Basi di Dati corso A

205

Eliminazione delle gerarchie

- ▶ il modello relazionale non può rappresentare direttamente le generalizzazioni
- entità e relazioni sono invece direttamente rappresentabili
 - si eliminano perciò le gerarchie, sostituendole con entità e relazioni

Basi di Dati corso A

Tre possibilità

- accorpamento delle figlie della generalizzazione nel genitore
- accorpamento del genitore della generalizzazione nelle figlie
- sostituzione della generalizzazione con relazioni

Regi di Deti cerce A

207

Tre possibilità

- accorpamento delle figlie della generalizzazione nel genitore
- accorpamento del genitore della generalizzazione nelle figlie
- sostituzione della generalizzazione con relazioni

Basi di Dati corso A

Tre possibilità

- accorpamento delle figlie della generalizzazione nel genitore
- accorpamento del genitore della generalizzazione nelle figlie
- sostituzione della generalizzazione con relazioni

Basi di Dati corso A

213

- ▶ la scelta fra le alternative si può fare con metodo simile a quello visto per l'analisi delle ridondanze (però non basato solo sul numero degli accessi)
- ▶è possibile seguire alcune semplici regole generali

Basi di Dati corso A

- gli accessi al genitore e alle figlie sono contestuali?
- gli accessi alle figlie sono distinti?
- gli accessi alle entità figlie sono separati dagli accessi al genitore?
- sono anche possibili soluzioni "ibride", soprattutto in gerarchie a più livelli

Basi di Dati corso A

217

Attività della ristrutturazione

- ►Analisi delle ridondanze
- ▶Eliminazione delle generalizzazioni
- ▶Partizionamento/accorpamento di entità e relazioni
- ▶Scelta degli identificatori primari

Basi di Dati corso A

- Ristrutturazioni effettuate per rendere più efficienti le operazioni in base a un semplice principio
- ► Gli accessi si riducono
 - separando attributi di un concetto che vengono acceduti separatamente
 - ▶raggruppando attributi di concetti diversi acceduti insieme

Basi di Dati corso A

221

Ristrutturazioni, casi principali

- partizionamento verticale di entità
- partizionamento orizzontale di relationship
- ▶eliminazione di attributi multivalore
- ▶accorpamento di entità/ relationship

Basi di Dati corso A

