18ECC203J - Unit - 1 - Part - 2



Minimum Mode 8086 System

### Cont.

| $M/\overline{IO}$ | $\overline{RD}$ | WR | Transfer Type |
|-------------------|-----------------|----|---------------|
| 0                 | 0               | 1  | I/O read      |
| 0                 | 1               | 0  | I/O write     |
| 1                 | 0               | 1  | Memory read   |
| 1                 | 1               | 0  | Memory write  |

Maximum Mode 8086 System



Maximum Mode 8086 System

# Status Signals ( $S_0$ , $S_1$ , $S_2$ ) during various Machine Cycles

|   | <br>S1 | <u>-</u> | Processor state       | 8288<br>command |
|---|--------|----------|-----------------------|-----------------|
| 0 | 0      | 0        | Interrupt Acknowledge | INTA            |
| 0 | 0      | 1        | Read I/O Port         | IORC            |
| 0 | 1      | 0        | Write I/O Port        | IOWC, AIOWC     |
| 0 | 1      | 1        | Halt                  | None            |
| 1 | 0      | 0        | Code Access           | MRDC            |
| 1 | 0      | 1        | Read Memory           | MRDC            |
| 1 | i      | 0        | Write Memory          | MWTC, AMWC      |
| 1 | 1      | 1        | Passive               | None            |

### Signals of the 8288

- IORC I/O Read Command
- IOWC I/O Write Command
- MRDC Memory Read Command
- MWTC Memory Write Command
- AIOWC Advance I/O Write Command
- AMWTC Advance Memory Write Command
- INTA Interrupt Acknowledge
- DEN, ALE, DT/R

### Timing Diagram

- **Timing Diagram** is a graphical representation.
- It represents the execution time taken by each instruction in a graphical format.
- The execution time is represented in T-states.
- Instruction Cycle: The time required to execute an instruction
- Machine Cycle: The time required to access the memory or input/output devices
- T-State: A portion of an operation carried out in one system clock period

#### T-State





### Timing Diagram

- Timing diagram provides information about the various conditions of the signals while a machine cycle is executed.
- In other words, it is the representation of various control signals generated during execution of an instruction
- Following Buses and Control signals must be shown in a Timing diagram:
- ✓ Higher Order Address Bus, Lower Address/Data bus, ALE, RD, WR, IO/M

### Bus cycle and T states

- A bus cycle defines the basic operation that a microprocessor performs to communicate with external devices
- Examples of bus cycles are memory read, memory write, input/output read and input/output write.
- A bus cycle corresponds to a sequence of events that starts with an address being output on the system bus followed by a read or write data transfer
- During these operations, a series of control signals are also produced by the MPU to control the direction and timing of the bus.
- Bus cycle consists of at least four clock periods, T1, T2, T3, and T4.
  - During T1 the MPU puts the address on the address bus
  - For a write memory cycle, data are put on the bus during state T2 and maintained thru T3 and T4.
  - When a read cycle is performed, the bus is first put in the high-Z state during T2 and data to be read must be available on the bus during T3 and T4.
  - Bus cycle duration of 125 ns x 4 = 500 ns in an 8 mhz 8088 system

### Timing Diagram: Write cycle – Minimum mode



# Timing Diagram : Read cycle – Minimum mode



## Timing Diagram : Write cycle – Maximum mode



## Timing Diagram : Read cycle — Maximum mode



### 8086 and 8088 Microprocessors

- 8086 announced in 1978; 8086 is a 16 bit microprocessor with a 16 bit data bus
- 8088 announced in 1979; 8088 is a 16 bit microprocessor with an 8 bit data bus
- Both manufactured using High-performance Metal Oxide Semiconductor (HMOS) technology
- Both contain about 29000 transistors
- Both are packaged in 40 pin dual-in-line package (DIP)
- Address lines A0-A7 and Data lines D0-D7 are multiplexed in 8088 –By multiplexed we mean that the same physical pin carries an address bit at one time and the data bit another time
- Address lines A0-A15 and Data lines D0-D15 are multiplexed in 8086

### 8088 and 8086 Microprocessors



#### Architecture of 8088



# Differences between 8086 and 8088 Microprocessor

| 8086                                                        | 8088                                                                         |  |
|-------------------------------------------------------------|------------------------------------------------------------------------------|--|
| The instruction Queue is 6 byte long.                       | The instruction Queue is 4 byte long.                                        |  |
| In 8086, memory divides into two banks                      | The memory in 8088 does not divide into two banks.                           |  |
| -even or lower bank                                         |                                                                              |  |
| -odd or higher bank                                         |                                                                              |  |
| The data bus of 8086 is 16-bit wide                         | The data bus of 8088 is 8-bit wide.                                          |  |
| It has BHE (bar) signal on pin no. 34 & there is no         | It does not have BHE (bar) signal on pin no. 34 &                            |  |
| SSO (bar) signal.                                           | has only SSO (bar) signal. It has no S7 pin.                                 |  |
| Control pin in 8086 is M/IO (bar).                          | Control pin in 8088 is IO/M (bar).                                           |  |
| It needs one machine cycle to R/W signal if it is at        | It needs one machine cycle to R/W signal if it is at                         |  |
| even location otherwise it needs two.                       | even location otherwise it needs two.                                        |  |
| In 8086, all address & data Buses are multiplexed.          | In 8088, address bus; AD <sub>7</sub> - AD <sub>0</sub> buses are            |  |
|                                                             | multiplexed.                                                                 |  |
| It needs two IC 74343 for de-multiplexing AD <sub>0</sub> - | It needs one IC 74343 for de-multiplexing AD <sub>0</sub> -AD <sub>7</sub> . |  |
| AD <sub>19</sub> .                                          |                                                                              |  |
| Maximum supply current 360mA.                               | Maximum supply current 340mA.                                                |  |
| Three clock speed: 5, 8, 10 MHz                             | Two clock speed: 5, 8 MHz                                                    |  |

#### 8088

- The complete memory is homogeneously addressed as a bank of 1
  Mbyte memory locations using the segmented memory scheme.
- The 8088 can access only a byte at a time. This fact reduces the speed of operation of 8088 as compared to 8086.