

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2022/0385264 A1 KADOTA et al.

(43) **Pub. Date:**

Dec. 1, 2022

(54) SURFACE ACOUSTIC WAVE DEVICES AND RELATED METHODS

- (71) Applicants: TOHOKU UNIVERSITY, Sendai-shi (JP); SKYWORKS SOLUTIONS, INC., Irvine, CA (US)
- (72) Inventors: Michio KADOTA, Sendai-Shi (JP); Shuji TANAKA, Sendai-Shi (JP); Hiroyuki NAKAMURA, Kadoma-Shi
- (21) Appl. No.: 17/834,391
- (22) Filed: Jun. 7, 2022

Related U.S. Application Data

- (63) Continuation of application No. 17/021,125, filed on Sep. 15, 2020, now Pat. No. 11,356,075.
- (60) Provisional application No. 62/901,202, filed on Sep. 16, 2019.

Publication Classification

(51)	Int. Cl.	
	H03H 9/02	(2006.01)
	H03H 3/08	(2006.01)
	H03H 9/145	(2006.01)
	H03H 9/6/	(2006.01)

(52) U.S. Cl. CPC H03H 9/02551 (2013.01); H03H 3/08 (2013.01); *H03H 9/14541* (2013.01); *H03H* **9/6406** (2013.01)

(57) ABSTRACT

Surface acoustic wave devices and related methods. In some embodiments, a surface acoustic wave device for providing resonance of a surface acoustic wave having a wavelength λ can include a quartz substrate and a piezoelectric plate formed from LiTaO3 or LiNbO3 disposed over the quartz substrate. The piezoelectric plate can have a thickness greater than 2λ . The surface acoustic wave device can further include an interdigital transducer electrode formed over the piezoelectric plate. The interdigital transducer electrode can have a mass density ρ in a range 1.50 g/cm³< $\rho \le 6$. 00 g/cm^3 , $6.00 \text{ g/cm}^3 < \rho \le 12.0 \text{ g/cm}^3$, or $12.0 \text{ g/cm}^3 < \rho \le 23.0$ g/cm³, and a thickness greater than 0.148λ, greater than 0.079λ , or greater than 0.036λ , respectively.

