# The Larger the Model Size, the Better the Performance?

Author: @Sakura Last Updated: 2024.5.27

### **Scaling Law**

In 2020, Kaplan et al. [1] (the OpenAl team) firstly proposed to model the power-law relationship of model performance with respective to three major factors, namely model size (N), dataset size (D), and the amount of training compute (C), for neural language models, and  $L(\cdot)$  denotes the cross entropy loss in nats.<sup>1</sup>

$$L(N) = \left(\frac{N_c}{N}\right)^{\alpha_N}, \quad \alpha_N \sim 0.076, N_c \sim 8.8 \times 10^{13}$$

$$L(D) = \left(\frac{D_c}{D}\right)^{\alpha_D}, \quad \alpha_D \sim 0.095, D_c \sim 5.4 \times 10^{13}$$

$$L(C) = \left(\frac{C_c}{C}\right)^{\alpha_C}, \quad \alpha_C \sim 0.050, C_c \sim 3.1 \times 10^8$$

Figure. Three basic formulas for the scaling law<sup>1</sup>.

1. The statement and figure are adapted from Zhao et al. (2023) 's work entitled *A Survey of Large Language Models*.

## An Analogy: Restaurant vs. LLM

Average Cost → Model Size Dished Taste → Performance



Figure. A cozy restaurant vs. A luxurious restaurant.



Figure. Performance vs. Parameters (from Deepseek-v2 [2]).

Mixtral(46.7B) Outperforms LLaMA-2(70B)

| Model        | Active<br>Params | MMLU  | HellaS | WinoG | PIQA  | Arc-e | Arc-c | NQ    | TriQA | HumanE | MBPP  | Math  | GSM8K |
|--------------|------------------|-------|--------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|
| LLaMA 27B    | 7B               | 44.4% | 77.1%  | 69.5% | 77.9% | 68.7% | 43.2% | 17.5% | 56.6% | 11.6%  | 26.1% | 3.9%  | 16.0% |
| LLaMA 2 13B  | 13B              | 55.6% | 80.7%  | 72.9% | 80.8% | 75.2% | 48.8% | 16.7% | 64.0% | 18.9%  | 35.4% | 6.0%  | 34.3% |
| LLaMA 1 33B  | 33B              | 56.8% | 83.7%  | 76.2% | 82.2% | 79.6% | 54.4% | 24.1% | 68.5% | 25.0%  | 40.9% | 8.4%  | 44.1% |
| LLaMA 2 70B  | 70B              | 69.9% | 85.4%  | 80.4% | 82.6% | 79.9% | 56.5% | 25.4% | 73.0% | 29.3%  | 49.8% | 13.8% | 69.6% |
| Mistral 7B   | 7B               | 62.5% | 81.0%  | 74.2% | 82.2% | 80.5% | 54.9% | 23.2% | 62.5% | 26.2%  | 50.2% | 12.7% | 50.0% |
| Mixtral 8x7B | 13B              | 70.6% | 84.4%  | 77.2% | 83.6% | 83.1% | 59.7% | 30.6% | 71.5% | 40.2%  | 60.7% | 28.4% | 74.4% |

Table. Comparison of Mixtral with Llama (from Mixtral of Experts [3]).



Figure. Results on 6 benchmarks that Mistral (7B/8x7B) outperforms Llama 2 (7B/13B/70B) (from Mixtral of Experts [3]).

## **Contamination on Benchmark**



#### References

[1] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei, "Scaling laws for neural language models," CoRR, vol. abs/2001.08361, 2020.

- [2] DeepSeek-Al et al., 'DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model'. arXiv, May 24, 2024. doi: 10.48550/arXiv.2405.04434.
- [3] A. Q. Jiang et al., 'Mixtral of Experts'. arXiv, Jan. 08, 2024. Accessed: Apr. 15, 2024. [Online]. Available: <a href="http://arxiv.org/abs/2401.04088">http://arxiv.org/abs/2401.04088</a>
- [4] R. Xu, Z. Wang, R.-Z. Fan, and P. Liu, 'Benchmarking Benchmark Leakage in Large Language Models'. arXiv, Apr. 29, 2024. doi: 10.48550/arXiv.2404.18824.