SVEUČILIŠTE U RIJECI **TEHNIČKI FAKULTET**

Diplomski studij računarstva

Diplomski rad

Upravljanje robotom i mapiranje okoline u Unity 3D (Robot control and mapping with Unity 3D)

Rijeka, rujan 2020.

Aleks Marković 0069069268

SVEUČILIŠTE U RIJECI **TEHNIČKI FAKULTET**

Diplomski studij računarstva

Diplomski rad

Upravljanje robotom i mapiranje okoline u Unity 3D (Robot control and mapping with Unity 3D)

Mentor: prof.dr.sc. Kristijan Lenac

Rijeka, rujan 2020.

Aleks Marković 0069069268

Umjesto ove stranice umetnuti zadatak za završni ili diplomski rad

Izjava o samostalnoj izradi rada

Izjavljujem da sam samostalno izradio	ovaj rad.
Rijeka, rujan 2020.	Ime Prezime

Zahvala

Zahvaljujem xxxxxx na podršci tijekom pisanja ovoga rada i korisnim raspravama i savjetima. Zahvaljujem xxxxx na podršku tijekom studiranja.

Sadržaj

P	opis s	ika	viii
P	opis (blica	ix
1	Uvo	I	1
2	Soft	erski alati	2
	2.1	ROS	2
	2.2	Unity	4
		2.2.1 Editor	4
		2.2.2 Skripte	6
	2.3	ROS#	7
3	Kor	iguracija radne okoline	9
	3.1	Dodatni koraci	10
		3.1.1 Uvoz URDF modela u Unity	11
B	ibliog	afija	13
P	ojmo	nik	14
S	ažeta		15

Sadržaj

\mathbf{A}	Nas	lov priloga	16
	A.1	Naslov sekcije	16
	A.2	Naslov sekcije	16

Popis slika

2.1	Unity Editor				•	•		•	•	•			•			•	5)
3.1	URDF uvoz																12	2

Popis tablica

0.1	DOC 1 : DOC 0 1 : 1 1:1	•
2.1	ROS 1 i ROS 2 bitne razlike	 ٠

Poglavlje 1

Uvod

Tema ovog diplomskog rada je napraviti funkcionalnu aplikaciju za upravljanje robotom i mapiranje okoline koristeći Unity 3D razvojni program. Zahvaljujući Unity-ju biti će lakše ostvariti cilj da se napravi univerzalni i multiplatformski softver s kojim će se moći upravljati s više vrsta robota.

Kao glavni alat za spajanje i upravljanje na robota koristi se ROS (Robotski Operacijski Sustav) 1. Za omogućavanje komunikacije između ROS-a, tj. robota i Unity aplikacije, koristiti ćemo ROS# knjižnicu. Za svrhu implementacije i testiranja kao testnog robota odabran je popularni Turtlebot 3. Konkretnije koristit ćemo simulirano okruženje (simulaciju) Turtlebot-a i njegovog modela..

Poglavlje 2

Softverski alati

Prije samog riješavanja problematike kako napraviti navedenu aplikaciju, potrebno je objasniti što su i kako funkcioniraju korišteni softverski alati. Definirati ?e se i koji su preduvjeti, tj. knjižnice ili alati koji svaki od njih zahtjeva da se mo?e odraditi funkcija koja im se zada za prethodno navedenu svrhu.

Korištene su najnovije dostupne a stabilne inačice korištenih alata:

- 1. ROS Noetic Ninjemys datum izlaska 23. svibnja 2020.
- 2. Unity 2019. LTS izašlo polovicom 2020. godine
- 3. ROS# 1.6 datum izlaska 20. prosinca 2019.

Sve to na najnovijoj tada dostupnoj LTS verziji Linux Ubuntu operacijskog sustava, 20.04 LTS.

2.1 ROS

Robotski Operacijski Sustav (ROS) je radni okvir (eng. framework) koji se instalira u Linux operacijski sustav i unatoč tome što sadrži riječi operacijski sustav, on to nije. Postoji i eksperimentalna verzija za Windows 10 i OS X, no ovaj će se rad usredotočiti na razvoj na Linux-u. Jedna od najbitnijih karakteristika ROS sustava jest da je omogućena komunikacija i upravljanje hardverom robota preko softverskih

alata ROS-a bez da se treba imati posebno znanje o korištenom hardveru.

ROS se ponajviše koristio u znanstvene i obrazovne svrhe, ali se zbog svoje praktičnosti i potencijala ubrzo proširio i u ostale grane robotike. Prije prelaska na ROS, svaki proizvođač robota je je trebao razvijati svoj API (Application Programming Interface) za komunikaciju i upravljanje svojim robotima. Sada roboti diljem svijeta većinom koriste ROS kao svoj primarni sustav za komunikaciju i upravljanje, te je zbog toga vrlo korisno naučiti ROS. Sa istim znanjem i vještinama moguće je razvijati softver koji će poslužiti na različitim robotima, različitih proizvođača, upravo radi ROS unificiranja.

ROS sadrži razne alate i knjižnice, koji su razvijeni i posloženi po određenoj ROS konvenciji. Sve zajedno jako pojednostavljuje razvoj novih robotskih softvera i omogućava kompleksno ponašanje robota. Također ROS sadrži razne upravljačke programe i algoritme, i sve je otvorenog koda - besplatno.[1]

Nedavno je razvijen i novi ROS, ROS 2. Prva službena verzija izdana je krajem 2017. Iako je preporučljivo koristiti više future-proof tehnologije, za ovaj rad odabran je ROS 1 iz razloga što neki od kritičnih alata za uspjeh rada nisu podržani na najnovijim verzijama ROS-a 2. Unatoč tome što je ROS 2 više future-proof i noviji, ROS 1 se i dalje razvija te nova verzija izlazi svake godine. Neke od razlika između ROS-a 1 i 2 navedene su u tablici 2.1.

Tablica 2.1 ROS 1 i ROS 2 bitne razlike

Značajka	ROS 1	ROS 2
Testirane platforme	Ubuntu	Ubuntu, OS X, Windows 10
C++	C++11	C++14, C++17
Python	Python 2 (Noetic Python 3)	Python 3.5
Roslaunch	XML	Python - kompleksnija logika
Čvor u procesu	1	Više od 1
Ostalo	Velika zajednica s puno stabilnih i odličnih paketa. Puno literature i tutorijala.	Minimalne ovisnosti, bolja prenosivost, pouzdanost, perzistentnost i rad u stvarnom vremenu (real-time).

2.2 Unity

Unity je cross-platform (multi-platformsko) razvojno okruženje, primarno za razvijanje računalnih igra. Sveukupni razvoj Unity razvojnog okruženja radi američka korporacija Unity Technologies. Također, sam softver je besplatan za edukacijske i osobne svrhe te komercijalne svrhe do 100.000 američkih dolara prihoda. Postoji veliki izbor besplatnih i ne besplatnih paketa koji se može koristiti za ubrzati i olakšati određene zadatke, a to se sve nalazi na tzv. "Unity Asset Store". [2]

Unity LTS (Long Term Support) verzija se u tekućoj godini dovrši za prošlu - Unity 2019. LTS je došao sredinom 2020. godine, a nova, 2020. verzija je već dostupna i ona se postepeno nadograđuje. LTS verzija se svakog tjedna ažurira novim zakrpama.

2.2.1 Editor

Unity Editor je glavni alat za razvoj (slika 2.1). U njemu se radi većina razvoja oko vizualnih elemenata i interakcije između njih. Glavne komponente uređivača su sljedeće:

- Hierarchy (hijerarhija) Hijerarhijski prikaz svih elemenata u trenutnoj sceni. Unity svoje elemente u sceni naziva GameObject (igrači objekt).
- Scene (scena) Glavni prozor gdje se radi sve u vezi s elementima koji se mogu grafički prikazati.
- Game (igra) Prozor koji služi kao emulacija igre. Pritiskom na "Play" gumb pokreće se igra i ovaj pokreće se ovaj prozor gdje se može igrati i vidjeti što i kako radi nakon izrade u prozoru scene.
- Inspector (inspektor) Nakon odabira određenog elementa iz hijerarhije (element se također može odabrati i u sceni), ovdje se prikazuju sve komponente nadodane na taj odabrani element tj. GameObject. Mogu se dodavati razne komponente koje Unity pruža, tipa prikaz slika i teksta, animacije, efekti i još mnogo toga, ali i skripte koje sama osoba koja razvija softver može napisati.
- Console (konzola) Mjesto gdje se ispisuju sve poruke, upozorenja i greške.

Poglavlje 2. Softverski alati

- Project (projekt) Ovime se može upravljati arhitekturom projekta. Od klasičnog stvaranja mapa i datoteka, imenovanja i ostalog, do dodavanja specifičnih Unity dodataka.
- Ostalo Meni traka u kojoj se mogu pristupiti svim ostalim postavkama (uključujući i već navedenim stavkama). Dodatni alati se mogu postaviti kao aktivni i vidljivi, npr. pristup Asset Store-u, panel za animacije i animator te ostale stvari koje nisu vezane za zadatak ovog rada.

Slika 2.1 Unity Editor

2.2.2 Skripte

Unity također svojim korisnicima omogućava programiranje vlastitih (ili korištenje tuđih) skripta. Programiranje se vrši u C# programskom jeziku, koji se izvršava na *Mono* razvojnom okruženju. Također, moguće je skripte programirati u *JavaScriptu*, ali je podrška lošija.

Cilj *Mono* razvojnog okruženja je da omogući korištenje .NET Framework-a na razne operacijske sustave, jer je inače .NET framework razvijen od strane Microsofta samo za Windows OS. Komponente *Mono* framework-a uključuju:

- C# kompajler Potpun kompajler, sa svim značajkama od C# 1.0 do 6.0.
- Mono Runtime [3] Glavne komponente:
 - Just-in-Time (JIT) kompajler kompilacija koda tokom izvršavanja programa.
 - Ahead-of-Time (AOT) kompajler kompilacija koda u nativni kod stroja gdje će se izvršavati, prije njegovog izvršavanja.
 - Čitač knjižnica omogućuje nam učitavanje vanjskih programskih knjižnica.
 - Sakupljač smeća (Garbage collector) automatsko brisanje objekata u memoriji koji se više ne koriste.
 - Dretveni sustav omogućava izvršavanje više dretva (threads) istovremeno, pospješuje brzinu i produktivnost određenog programa ako je isprogramirano na pametan način.
 - Interoperabilnost karakteristika da više programskih sustava mogu bez poteškoća međusobno funkcionirati.
- .NET Framework knjižnica klasa Mono platforma pruža set klasa kao temelj za razvijanje aplikacija. Navedene su klase kompatibilne s Microsoftovim .NET Framework klasama.
- *Mono* pruža i dodatne klase koje nisu uključene u Microsoftovim baznim klasama koje su posebice korisne za razvijanje Linux aplikacija, npr. Gtk+, Zip, OpenGL, Cairo, POSIX i druge.

Glavne značajke *Mono* radnog okruženja:

- Multi-platformsko radno okruženje Linux, macOS, BSD, Microsoft Windows.
- Multi-jezičan C#, VB 8, Java, Python, Ruby i još mnogi.
- Kompatibilan s binarnim kodom.
- Kompatibilan s Microsoft APIjem pokreće ASP.NET, ADO.NET, Silverlight i Windows.Forms.
- Otvorenog koda i besplatan sav Mono sadržaj, uključujući i knjižnice, distribuiran je koristeći MIT licencu.
- Opsežna pokrivenost implementacije mnogih popularnih knjižnica i protokola.

Programiranje prilagođenih skripti omogućava kompleksna ponašanja i radnje u igri/softveru kojega se razvija. Gotovo sve akcije koje se može napraviti u Editoru, može se i u skripti, te se time može drastično povećati opseg mogućnosti.

```
#include <stdio.h>
int main(int argc, char ** argv)
{
printf("Hello world!\n");
return 0;
}
```

2.3 ROS#

ROS# je set programskih knjižnica i alata otvorenog koda u C#-u koja omogućuje komunikaciju između ROS-a i .NET aplikacija - Unity-ja, razvijen od strane Siemens kompanije. ROS# je bio primarno razvijen za Windows OS, ali se uspješno može koristiti i na druge operacijske sustave. Paket se može preuzeti s Unity Asset Store-a ili direktno sa službenog Github repozitorija. [4] Ovo je ujedno i glavni alat koji će se koristiti u ovom radu za stvaranje mosta između ROS-a i Unity-a.

Glavni sadržaj ovog paketa je sljedeći:

Poglavlje 2. Softverski alati

- .NET riješenje za RosBridgeClient (knjižnica koja omogućuje spajanje vanjskih aplikacija na ROS sustav), Urdf (robotski modeli) i MessageGeneration (generiranje poruka).
- ROS paketi korišteni od strane ROS#-a.
- Unity projekt koji sadrži primjer scenu te RosBridgeClient, Urdf i MessageGeneration ekstenzije za Unity.

Poglavlje 3

Konfiguracija radne okoline

U ovom će se poglavlju opisati postupak konfiguriranja radne okoline. Ovo je potrebno iz razloga što većina alata nije testirana na najnovijim Ubuntu i ROS verzijama pa su određene adaptacije bile potrebne.

Instalaciju i konfiguraciju se može podijeliti u nekoliko koraka, od kojih će se pojasniti samo one koji su zahtjevali dodatne korake:

- 1. Instalacija Ubuntu 20.04 OS-a.
- 2. Instalacija ROS-a Noetic Ninjemys-a gdje je potrebno pratiti upute na službenim stranicama. Vrši se instalacija potpunog paketa.
- 3. Instalacija Unity-ja. Dobro je povremeno instalirati noviju verziju jer sadrži korisna ažuriranja.
- 4. Instalacija Visual Studio Code-a text editor koji će se koristiti uz Unity za programiranje skripta. Razlog odabira Visual Studio Code-a je taj što je potrebno imati podršku za Unity i mogućnost spajanja i pokretanja alata za otklanjanja pogreška (debugger).
- 5. Instalacija .NET Core radne okoline za omogućiti rad Unity-ja s Visual Studio Code podrška za C#. [5]
- 6. Visual Studio Code konfiguracija za Unity. [6]
- 7. Instalacija Mono radne okoline. [7] Preporučljivo je nakon ovog koraka pokre-

Poglavlje 3. Konfiguracija radne okoline

nuti i naredbu *sudo apt install mono-complete* da bi se instalirali eventualni segmenti koji fale.

8. Instalacija Turtlebot 3 paketa za ROS 1. [8]

3.1 Dodatni koraci

Ovdje će biti navedeni i eventualno pojašnjeni dodatni koraci. Neki od tih su jednostavna instalacija dodatnog paketa, a neki promjene da bi određena stvar mogla proraditi.

Kada je neki alat ili knjižnicu u ROS-u potrebno instalirati iz izvornog koda, to se u osnovi radi na sljedeći način (eventualni alati imaju specificirana potrebna dodatna podešavanja):

- 1. Preuzimanje i spremanje mape s datotekama izvornog koda u ROS radni folder (workspace /catkin_ws/src/) ova mapa je proizvoljna ali ROS standard je catkin_ws u home direktoriju Linux Ubuntu OS-a.
- 2. U korijenskom *catkin_ws* direktoriju pokreće se naredba *catkin_make* koja izgradi sav kod u njemu. Tada se pojave dvije nove mape *build* i *devel*. Nakon toga treba pozvati izgenerirani *setup.bash* sljedećom naredbom koja omogućava korištenje novo izgrađenih paketa:

 $source \ /home/user/catkin_ws/deve/setup.bash \ ili \ source \ /opt/ros/noetic/setup.bash$

- Za omogućiti mapiranje robotske okoline potrebno je dodatni instalirati slam pakete za mapiranje. Instalacija se vrši iz izvornog koda kojeg je moguće dohvatiti s git repozitorija paketa [?] gdje se nalazi i drugih paketa za robotsku percepciju.
- Osnovna spona koja omogućuje slanje podataka između ROS-a i Unity-ja je RosBridge paket kojeg inače dohvaćamo naredbom sudo apt-get install rosnoetic-rosbridge-server. Istoga koristi ROS#. ROS Noetic-u instalacija ovog paketa na klasičan način ne radi, ali više o tome u sljedećem odlomku.
- Za korištenje željenog robota u Unity, prvi korak je unijeti njegov model. Ko-

risti se URDF (Universal Robotic Description Format - univerzalni robotski opisni format). URDF je pisan u XML formatu i koristi se za opisati sve elemente opisanog robota.

3.1.1 Uvoz URDF modela u Unity

Za uvoz URDF modela potrebno je pokrenuti određenu launch datoteku koja se nalazi u ros-sharp (datotečno prihvatljiv naziv za ROS#) paketu. Datoteka se nalazi u ros-sharp/ROS/file-server/launch direktoriju koja se pokreće roslaunch publish_description_turtlebot.launch no prije samog pokretanja potrebno ju je urediti iz razloga što je to samo primjer za Turtlebot 2 robot, koji ima drugačije specifikacije od Turtlebot 3 robota.

Launch datoteke su također pisane u XML formatu i one služe za pokretanje više čvorova odjednom. U datoteci se može podesiti i dodatne parametre za pokretanje određenih čvorova. Roslaunch je korišten za pokretanje tih datoteka i to se može učiniti pozivanjem paketa i specifične launch datoteke ili direktno pozivanjem launch datoteke definiranjem njezine datotečne putanje:

- roslaunch ime_paketa launch_datoteka
- roslaunch ../catkin_ws/src/paket/launch/launch_datoteka

Osim uređivanja robotskih vrijednosti, potrebno je i urediti i argument *urdf_file* na način da se iz *xacro.py* izbaci *.py* te doda flag *-inorder*. To se mora iz razloga što su sve prijašnje verzije ROS-a bile na Python 2, ali je ROS Noetic na Python-u 3.

Još jedna promjena koja je potrebna a povezana je s verzijama Python-a je za uspješno pokretanje *RosBridge* poslužitelja. Naime, ako se izvrši instalacija standardnom *apt install* naredbom, RosBridge neće raditi jer se kose vrste varijabla (*str* i *byte*) koje su drugačije definirane u svakoj verziji Python-a, pa je iz tog razloga potrebno instalirati cijeli RosBridge iz izvornog koda [9] uz namještenu točnu verziju Python-a (2).

Nakon ovih koraka može se pokrenuti Unity i u izborniku odabrati RosBridgeClient -¿ Transfer URDF from ROS gdje se otvara prozorčić (slika 3.1) u kojemu je potrebno izmijeniti IP adresu gdje će se pronaći RosBridge poslužitelj. Ostale

Poglavlje 3. Konfiguracija radne okoline

vrijednosti bi trebale biti dobre po zadanim vrijednostima. Prije spajanja, potrebno je pokrenuti TurtleBot simulaciju i gore navedenu *launch* skriptu. Dovršetkom ovog koraka, u Unity projekt se sprema URDF model kojega se može prikazati i koristiti u scenama.

Slika 3.1 URDF uvoz

Za korištenje simuliranog okruženja koristi ste *Gazebo* softver, no iz razloga limitirane kompatibilnosti umjesto zadnjeg Gazebo 11, koristi se Gazebo 9. nakon brisanja Gazebo 11, Gazebo 9 se instalalira sljedećim naredbama, zajedno s potrebnim paketima:

sudo apt install gazebo9-common sudo apt-get install libgazebo9-* sudo apt install ros-noetic-gazebo-ros-pkgs

Bibliografija

- [1] Ros službene stranice., s Interneta, www.ros.org, 17. rujna 2020.
- [2] U. Technologies. Unity asset store., s Interneta, https://assetstore.unity.com, 22. rujna 2020.
- [3] M. Project. Mono., s Interneta, https://www.mono-project.com/docs/about-mono/, 21. rujna 2020.
- [4] Siemens. Ros#., s Interneta, https://github.com/siemens/ros-sharp, 23. rujna 2020.
- [5] Microsoft. .net core instalacija. , s Interneta, https://docs.microsoft.com/en-us/dotnet/core/install/linux-ubuntu#2004- , 24. rujna 2020.
- [6] —. Visual studio code konfiguracija., s Interneta, https://code.visualstudio.com/docs/other/unity, 24. rujna 2020.
- [7] M. Project. Instalacija mono radne okoline., s Interneta, https://www.mono-project.com/download/stable/#download-lin, 24. rujna 2020.
- [8] Robotis. Instalacija turtlebot 3 paketa., s Interneta, https://emanual.robotis.com/docs/en/platform/turtlebot3/pc_setup/#pc-setup, 24. rujna 2020.
- [9] R. W. Tools. Rosbridge., s Interneta, https://github.com/RobotWebTools/rosbridge_suite, 28. rujna 2020.

Sažetak

Ovo je tekst u kojem se opiše sažetak vašega rada. Tekst treba imati duh rekapitulacije što je prikazano u radu, nakon čega slijedi 3-5 ključnih riječi (zamijenite dolje postavljene općenite predloške riječi nekim suvislim vlastitim ključnim riječima).

Ključne riječi — ključna riječ 1, ključna riječ 2, ključna riječ 3

Abstract

This is a text where a brief summary of your work is outlined. The text should have a sense of recap of what was presented in the thesis, followed by 3-5 keywords (replace the general keyword templates below with some meaningful keywords of your own).

Keywords — keyword 1, keyword 2, keyword 3

Dodatak A

Naslov priloga

- A.1 Naslov sekcije
- A.2 Naslov sekcije