附录 A 计算可能涉及的物理常数

表 A-1 普通物理常数表

名称	数值	名称	数值
电子电量 q	1. 602×10 ^{−19} C	阿伏加德罗常数 N _A	6. 025×10 ²³ mol ⁻¹
普朗克常数 h	6. 625×10 ⁻³⁴ J⋅S	玻耳兹曼常数 ko	1. 38×10^{-23} J/K=8. 62×10^{-5} eV
$\hbar = h/(2\pi)$	1. 054×10 ⁻³⁴ J⋅S	电子的惯性质量 m ₀	9.1×10 ⁻³¹ kg
室温(300K)的 k ₀ T	0.026eV	真空介电常数 εο	8. 854×10^{-12} F/m=8. 854×10^{-14} F/cm
电子伏特 eV	1. 602×10 ^{−19} J	真空光速 c	2.998×108 m/s

表 A-2 半导体物理常数表

名称	数值	名称	数值
0K 锗禁带宽度 Eg	0.7437eV	300K 锗空穴迁移率 μ _p	1800cm ² /(V • s)
0K 硅禁带宽度 Eg	1.170eV	300K 硅电子迁移率 μ _n	1450cm ² /(V • s)
300K 锗禁带宽度 Eg	0.67eV	300K 硅空穴迁移率 μ _P	500cm ² /(V • s)
300K 硅禁带宽度 E _g	1, 12eV	二氧化硅相对介电常数 ε _{το}	3. 9
300K 砷化镓禁带宽度 Eg	1. 43eV	锗相对介电常数 επ	16. 2
300K 锗本征载流子浓度 ni	$2.33\times10^{13}\mathrm{cm}^{-3}$	硅相对介电常数 επ	11.9
300K 硅本征载流子浓度 ni	$1.02 \times 10^{10} \mathrm{cm}^{-3}$	氮化硅相对介电常数 επ	7.5
500K 锗本征载流子浓度 ni	$2.5 \times 10^{16} \mathrm{cm}^{-3}$	300K 锗导带底状态密度 N。	$1.05 \times 10^{19} \mathrm{cm}^{-3}$
500K 硅本征载流子浓度 ni	$3.5 \times 10^{14} \text{cm}^{-3}$	300K 锗价带顶状态密度 N、	$3.9 \times 10^{18} \mathrm{cm}^{-3}$
磷在锗中电离能 ΔED	0.0126eV	300K 硅导带底状态密度 N。	$2.8 \times 10^{19} \mathrm{cm}^{-3}$
磷在硅中电离能 ΔED	$0.044 \mathrm{eV}$	300K 硅价带顶状态密度 N。	$1.1 \times 10^{19} \mathrm{cm}^{-3}$
硼在锗中电离能 ΔEA	0.01eV	锗的电子亲和能 χ	4. 13eV
硼在硅中电离能 ΔEA	$0.045\mathrm{eV}$	硅的电子亲和能 χ	4.05eV
300K 锗电子迁移率 μn	3800cm ² /(V • s)		

上海大学

2021 年硕士研究生初试专业课笔试回忆版真题

考试科目名称及代码: 半导体物理 (962)

考试时间: 2020 年 12 月 26 日下午 14: 00-17: 00. 适用专业: 电子信息 (专硕)、 微电子学与固体电子学 (学硕)

答题要求, 所有答案按照题号写在答题纸上试卷上一律作废, 姓名与准考证号写在指定位置。试题中可能用到的数据见附录。附录在最后

一页

- 一、选择题(10'x3=30')
- 1、金刚石晶体的第一布里渊区是由()面构成
- A、正四面体
- B、八面体
- C、十二面体
- D、十四面体
- 2、硅的禁带宽度随温度的上升而(),随压力的上升而()。
- A、增加 增加
- B、增加 减小
- C、减小 增加
- D、减小 减小
- 3、位错处,某原子只与周围三个原子形成共价键,还有一个不成对的电子价键,这时原子是()的,在这一饱和键俘获一个电子后,原子多一个电子成为(),起了()作用。
- A、中性 负电 施主!
- B、中性 负电 受主
- C、负电 正电 施主
- D、负电 正电 受主
- 4、费米能级进入导带, 服从()分布
- A、玻尔兹曼分布
- B、费米分布
- C、简并型分布
- D、非简并性分布

5、n 型硅中有效质量的测量,B 沿[111] 向只能测到()个吸收峰
A、1
B、2
C、3
D、4
6. n型半导体含施主杂质浓度为 No, 受主杂质浓度为 Na, 已知空穴迁移率 μρ, 电子迁移率
为 μ N, 电子电量为 q, 则室温下该半导体的电导率约为
A, $q \cdot N_D \cdot \mu_0$ B, $q \cdot N_A \cdot \mu_0$
C. $q \cdot N_D \cdot \mu_0 + q \cdot N_A \cdot \mu_0$
D, $(N_D-N_A)\cdot q\cdot \mu_{ ext{\tiny h}}$
7. 金属和p型半导体接触时,当Wm>Ws,能带()弯曲,形成p型()阻挡层。若Wm <ws,< td=""></ws,<>
7. 金屬和 p 至十千体接触的,当 will ws, 配布 () 号函, n) 成 p 至 () 但扫 宏。名 will ws, 能带 () 弯曲,形成 p 型 () 阻挡层
A、向上 / 向下 反
B、向下 反 向下 /
C、向上 / 向下 反
D、向上 反 向下 /
8. 在硅二氧化硅的界面, 当二氧化硅端加正电时。P型半导体的表面势0, 能带
弯曲。电压不是很高时形成。电压过大,则形成。
A、大于 向下 多子堆积 反阻挡层 B、小于 向下 分子堆积 反阻挡层
B、小于 向下 《少子堆积 友阻挡层
C、小于 尚少 多子耗尽 反型层
D、大子、向下 多子耗尽 反型层
9. 室温下,对于杂质半导体有
A. 杂质 本征 电离杂质 晶格振动
B. 杂质 本征 中性杂质 位错
C. 杂质 本征 位错 多能谷
D. 杂质 本征 电离杂质 中性杂质

10. 对于某个 Ge-GaAs 异质结,已知其晶格常数 AGaAs=0.56531nm, AGe=0.56575. 则对于(100)界
面,其悬挂键的密度约为
A、 0.0195cm ⁻²
B、0.0822 <i>cm</i> ⁻²
C. 0.2758cm ⁻²
D. $1.0006cm^{-2}$
二、填空题(21'x1=21')
1. 电子的有效质量表达式为
2. k 空间的电子允许的量子态密度为。
3. 处于强电离区的载流子浓度与温度无关时的这一温度范围又称为。
4. n型半导体室温下费米能级表达式为
5. 从微观机构的角度来说, 复合分为
6. 随着温度的上升,载流子浓度会陆续经过五个温度区间的变化。按照温度从低到高,依次
是、、、、。
7. pn 结的击穿总共有三种,它们分别是、、
8. P 型半导体所构成的 MIS 结构中,从金属表面向空间电荷区加入电压 V_G 由负到正依次变
化,依次经历了。
9. 异质结是指导电类型 (相同/相反/相同或相反)的、由(相同/不同)材料所构成的结。
成的结。
成的结。 10. 对异质结,在交界面处的突变△Ec 是,突变△Ev 为。
三 (10' x4=40')

1. 什么是电子,什么是空穴?简述其形成机制。

- 2. 请画出半导体随温度从低到高变化时的p-T 图像,并分段解释其原因。
- 3. 什么是费米能级?
- 4.分别画出 pn 结上不加电压、加正偏电压、加反偏电压时的能带图。
- 四、计算题 (9+15+20+15)
- 1. 已知室温下,n型半导体 Si 的掺杂度 $N_D=1.0\times 10^{16}cm^{-3}$,少子寿命 S=10us,由于光照 而产生非平衡载流子,其产业率 $g=1.0\times 10^{18}cm^{-3}$ 。 $(k_0T=0,026eV.\ n_i=1.0\times 10^{10}cm^{-3})$ 计算.
- 1) 光照恒定下, 非平衡载流子浓度△p
- 2) 无光照和有光照条件下,费来能级 EF 相对于起的位置。
- 2. 室温(300K)下,半导体锗(Ge)的本征电阻率为 $47\Omega \cdot cm$,已知其电子迁移率 μ_n 和空穴迁移率 μ_s 分别为 3600~ m^2/V ·s 和 1700 cm²/V·s。(假定迁移率不随掺杂而变化,杂质全部电离并忽略少子的贡献,锗的原子密度为 $4.4\times10^{22}/cm³$)
- 1) 试求半导体镜的本征载流子浓度 ni
- 2) 若掺入百万分之一的磷 (P) 后,计算室温下电子浓度 n_o 和空穴浓度 p_o 和电阻率 p_o

- 3. 室温下,对于某 PN 结,N型区域掺杂浓度为 2×10¹⁹/cm³。P 区的受主浓度为 5×10¹⁴/cm³. N 区空穴的迁移率为 2×10²cm²/V·s, P 区电子的迁移率为 1×10³cm²/V·s。电子和空穴迁移率均为 1us,现已知其相对介电常数为 12. 真空介电常数为 8. 84×10⁻¹⁴ F/cm,n_i=1.0×10¹⁰cm⁻³
- 1) 求 pn 结的势垒高度 qVo
- 2) 求 pn 结的势垒宽度 XD
- 3) 若在此 pn 结上添加了 0.5V 的正偏电压 Vb 时, 求此时的势垒高度和势垒宽度。

4. 现有一受主浓度为 $N_4 = ^{1.0 \times 10^{17} cm^{-3}}$ 的 N 型锗,了已知锗的亲合能 $\chi_{0c} = 4.05 eV_o$)

 $N_{\rm c} = 2.8 \times 10^{19} cm^{-3}$

- 1) 求室温下该半导体的功函数
- 2) 不考虑表面态的影响其分别与 Al、Au、Mo 接触时,分别形成了阻挡层还是反阻挡层? (AL Au Mo 的功函数分别为 4. 13eV、 5. 06eV、4. 29eV)

上海大学

2022 年硕士研究生初试专业课笔试回忆版真题

考试科目名称及代码: 半导体物理 (899)

考试时间: 2020 年 12 月 26 日下午 14: 00-17: 00。 适用专业: 电子信息(专硕)、 徽电子学与固体电子学(学硕)

答题要求: 所有答案按照题号写在答题纸上试卷上一律作废, 姓名与准考证号写在指定位置。试题中可能用到的数据见附录。附录在最后

一页

- 一、选择题(10'x3=30')
- 1. 下面哪个不是宽禁带半导体材料()
- A. GaAs B. SiC C. GaN D. AIN

- 2. 对于III-V族化合物半导体, 随着平均原子序数的增加 ()
- A. 禁带宽度增大
- B. 禁带宽度变小
- C. 最低导带极值从布里渊区中心移向边界
- D. 最低的导带极值在布里渊区中心不变: 🔍
- 3. 对于n型掺杂半导体,低温弱电离时,费米能级的位置()
- A. 高于施主能级 B. 低于施主能级 C. 等于施主能级 D. 低于受主能级
- 4. 在半导体中掺杂, 若控制不当, 会出现 No≈No 的现象, 这种材料容易被误认 为高纯半导体公实际上含杂质很多,性能很差,一般不能用来制造半导体器件, 这种现象称为()
- A. 杂质的高度补偿 B. 自补偿效应 C. 失效补偿 D. 无效补偿
- 5. 为了减小表面态效应, 在 Si 中应选用哪个面 ()
- A. [1 0 0] B. [1 1 0] C. [1 1 1] D. [1 1 2]
- 6. 半导体中的载流子在输运过程中, 当温度升高时, 电离杂质散射的概率和晶 格振动声子的散射概率的变化分别是()
- A. 变大,变小 B. 变小,变大 C. 变小,变小 D. 变大,变大

- 7. 直接复合时, 小注入的 n 型半导体的非平衡载流子寿命 T d 主要决定于 ()
- A. $\frac{1}{\gamma n0}$ B. $\frac{1}{\gamma p0}$ C. $\frac{1}{\gamma \Delta p}$ D. $\frac{1}{\gamma \Delta n}$
- 8. pn 结击穿不包括()
- A. 雪崩击穿 B. 齐纳击穿 C. 反向击穿 D. 热电击穿
- 9. 金属半导体接触形成欧姆接触主要机理是()
- A. 整流效应 B. 雪崩效应 C. 隧道效应 D. 以上都不对
- 10. K_0 =8. 6×10^{-5} ,利用费米分布函数计算在多少温度下,在高于 E_F 0. 5 eV 下电子占据率为 1%所需温度()
- ----- 大概数值确实记不起来了 各位拿计算器敲一遍完事填选项吧~
- 三、简答题(10'x6=60')
- 1. 从能带论分析金属、半导体、绝缘体的导电性能方面的差异。
- 3. 从晶体结构散射分析为什么电离杂质的散射 $\mu \propto T^{3/2}$, 声学波散射时 $\mu \propto T^{3/2}$ 。
- 4. 什么是陷阱效应,陷阱形成的机理,什么是陷阱,什么是陷阱中心。
- 5. 金属半导体接触要形成欧姆接触,什么是欧姆接触,解释隧道效应原理(金属和重掺杂半导体形成欧姆接触的原理)。

6. 什么是同型异质结、反型异质结、突变型异质结、缓变性异质结。

四、计算题

- 1. 室温下, 在硅的材料中, 掺入下列物质 (两种情况)
- (1) 掺入浓度为 10¹⁶cm⁻³ 的 P 元素, 求此时的电子浓度, 空穴浓度, Ec 与费米能级的差。
- (2) 掺入浓度为 10¹⁶cm⁻³ 的 B 元素, 求此时的电子浓度, 空穴浓度, Ev 与费米能级的差。
- 2. 室温(300K)下,半导体锗(Ge)的本征电阻率为 $47\Omega \cdot cm$,已知其电子迁移率 μ_n 和空穴迁移率 μ_n 分别为 3600 cm²/V·s 和 1700 cm²/V·s。(假定迁移率不随掺杂而变化,杂质全部电离并忽略少子的贡献,锗的原子密度为 $4.4\times10^{22}/cm^3$)

(除了数值有小规模改动,与前一年的专硕题目一模一样)

- 1) 试求半导体锗的本征载流子浓度 n.
- 2) 若掺入百万分之一的磷 (P) 后,计算室温尔电子浓度 n_0 和空穴浓度 p_0 和电阻率 p_0

- 3. 室温下,对于某 PN结,N型区域掺杂浓度为 $2\times10^{19}/\text{cm}^3$ 。P 区的受主浓度为 $5\times10^{14}/\text{cm}^3$. N 区空穴的迁移率为 $2\times10^2\text{cm}^2/\text{V·s}$,P 区电子的迁移率为 $1\times10^3\text{cm}^2/\text{V·s}$ 。电子和空穴迁移率均为 1us,现已知其相对介电常数为 12. 真空介电常数为 8.84×10^{-14} F/cm, n_i = 1.0×10^{10} cm $^{-3}$
- 1) 求 pn 结的势垒高度 qVo
- 2) 求 pn 结的势垒宽度 XD
- 3) 若在此 pn 结上添加了 0.5V 的正偏电压 Vb 时,求此时的势垒高度和势垒宽度。

(除了数值有小规模改动,与前一年的专硕题目一模一样)

- 4. 现有一晶向为[100]的 n 型硅和金属形成的肖特基二极管, $N_D=10^{15}$ cm³ $N_C=10^{19}$ /cm³ $N_C=10^{19}$ cm³ $N_C=10^{19}$
- (1) 零偏压下,势垒高度接触电势差和势垒宽度。
- (2) 求在正偏电压=0.2V 时, 热发射电流是多少, $\frac{A^*}{A}$ =2.1, A=120A/(cm^2 2* K^2 2)

上海大学

2022 年硕士研究生初试专业课笔试回忆版真题

考试科目名称及代码: 半导体物理 (962)

考试时间: 2022 年 12 月 26 日 (14: 00-17: 00) 适用专业: 电子信息(专硕)、 徽电子学与固体电子学(学硕)

答题要求: 所有答案按照题号写在答题纸上试卷上一律作废, 姓名与准考证号写在指定位置。试题中可能用到的数据见附录。附录在最后 一页

- 一、选择题(10'x3=30')
- 1、硅的结构特点是:
- A、正四面体 B、六角密排 C、氯化钠型
- 2、半导体导带底的 E(k) 关系式为: $E(k) = A \cdot K_x^2 + B \cdot K_y^2 + C \cdot K_z^2$,那么该半导体的导带 底电子在 x/y/z 三个方向上的有效质量分别为:
- 3、MOS 单词在半导体中代表:
- A、金属-氧化物-半导体 B、金属-半导体-氧化物 C、半导体-金属-氧化物
- 4、根据费米能级,能量为 E 的量予态被电子的占据概率为:_____

(符号不好打,这个TM也太基础了直接手写吧。)

5、载流子在电场作用下的运动被称:

A、扩散运动 B、自由运动

61、非平衡载流子通过复合中心的复合过程不包括下列哪一种?

- A. 直接复合 B. 间接复合 C. 俄歇复合
- 7、正常情况下, PN 结加电压时, 正极电压应该加在:

A. P区 B. N区 C. 都可以

- A、1.12eV B、1.34eV C、1.56eV
- 9、在半导体两端加的电压过大时,由于电流的频率过高而引起的频率振荡,这种效应被称为什么效应?
- A、耿氏效应 B、肖特基效应 C、德拜效应
- 10、非简并性系统符合下列哪种分布?
- A. 费米分布 B. 玻尔兹曼分布 C. 泡利不相容原理
- 二、简答题(10'x3=30')
- 1. 什么是共有化运动?
- 2. 宽禁带半导体的分界线是多少?(以 eV 为单位)
- 3. 什么是欧姆接触?
- 4. 写出肖克莱方程式.
- 5. 画出在不加外界电场时, PN 结的能带图
- 6. 写出热平衡下本征载流子和电子及空穴浓度之间的关系式.
- 7. 画出导体、半导体、绝缘体之间的禁带宽度对比关系图
- 8. 空穴是怎么形成的?
- 9. 非平衡下, 什么是大注入? 什么是小注入?
- 10. 什么是二维电子气?

- 四、计算题(20'+20'+30'+20'=90')
- 1、室温下, 在硅的材料中, 掺入下列物质(两种情况)
- (1) 掺入浓度为 10¹⁶cm³ 的 P 元素, 求此时的电子浓度, 空穴浓度, Ec 与费米能级的差。
- (2) 掺入浓度为 10 cm 的 B 元素, 求此时的电子浓度, 空穴浓度, Ev 与费米能级的差。

- 2. 设 p 型硅的掺杂的受主杂质浓度为 1×10^{15} cm $^{-3}$, $n_i=1\times10^{10}$ cm $^{-3}$. 将其视为一维水平长度的半导体硅。其非平衡载流子浓度 $\Delta n(x)=1\times10^{17}\cdot \mathrm{e}^{-2000x}\mathrm{cm}^{-3}$ 。
 - (1) 求其空穴浓度 p(x)
 - (2) 当 x=0 时, 电子浓度是多少? 此时属于大注入还是小注入?

3. 海恩斯————肖克莱实验测定 n 型半导体半导体少子迁移率的和扩散系数如图所示。由电源产生产生的电场强度为 E, 且恒定不变。脉冲激发源从电极(1)处进入。其周期为 t0, 电极(2)用于观察示波器中显示的少子和时间的关系。已知二者呈高斯分布,两个电极之间的距离为 L, 现给出连续性方程的特解:

$$\Delta p = \frac{\Delta p_0}{\sqrt{4\pi D_p t}} \cdot e^{-\left[\frac{(x-\mu_p \cdot E \cdot t)^2}{4D_p \cdot t} - \frac{t}{\tau_p}\right]} cm^{-3} .$$

(1) 证明
$$\mu_{\rm p} = \frac{L}{E \cdot t_{0, \text{ }}}$$

(2) 当我们认为在这个实验中, $^{\Delta P}$ 中的 $^{\rm t}$ 几乎不变时,

请证明:
$$D_{\rm p} = \frac{(\mu_{\rm p} \cdot E \cdot \Delta t)^2}{16t_0}$$

(3)请证明爱因斯坦方程式。(wqnmlgb....)

4

- 1. 已知훏温时,在硅突变 p-n 结中,N 型区域的掺杂浓度为 $2x10^{19} cm^{-3}$,P 型区域的受主浓度为 $5x10^{14} cm^{-3}$ 。N 区域的空穴迁移率为 $200 cm2/V \cdot s$,P 区域的电子迁移率为 $1000 cm2/V \cdot s$;载流子寿命都为 1us。硅的相对介电常数 12,真空介电常数为 $8.84x10^{-14} F/cm$,本征载流子浓度为 $10^{10} cm^{-3}$,计算该 PN 结在零偏及反向偏压 5 伏时的;
 - 1. 势垒高度 7分
 - 2. 势垒宽度 4分
 - 3. 单位面积的势垒电容 4分
 - 4. 不考虑势垒区的产生复合电流,求 0.2V 时器件的电流密度。 10 分

上海大学真题卷回忆版最后一套

2023 年硕士研究生初试专业课笔试回忆版真题

考试科目名称及代码: 半导体物理: 962 + 899 (整合版)

考试时间: 2023 年 12 月 26 日 (14: 00-17: 00) 适用专业; 电子信息(专研)、 微电子学与固体电子学(学研)

答题要求: 所有答案按照题号写在答题纸上试卷上一律作废,姓名与准考证号写在指定位置。试题中可能用到的敷据见附录。附录在最后 一页(这一年不知道出卷老师抽了什么疯没给附录,什么 KOT=0.026 电子质量这些都没给)

- 一、选择题(10'x3=30')
- 1、下列选项中都属于Ⅳ族元素的是:
- A、氮、磷、砷、锑、铋
- B、硼、铝、镓、铟、铊
- C、氧、硫、硒、碲
- D、碳、硅、锗、铅
- 2. 下列属于弹性散射的是?
- A. 声学波散射 B. 光学波散射 C. 泡利不相客原理
- 3、n型半导体的金半接触,若Ws大于Wm,将形成?
- A、阻挡层 B、反阻挡层 C、半等体-金属-氧化物
- 4、在半导体两端加的电压过大时,由于电流的频率过高而引起的频率振荡,这种效应被称 为什么效应?
- A、耿氏対応。 R. N肖特基效应 C、德拜效应
- 5、非简并性系统符合下列哪种分布? (考了800遍了吧....)
- A. 费米分布 B. 玻尔兹曼分布 C. 泡利不相容原理
- 二、简答题
- 1. 什么是有效质量?
- 2. 散射都有哪几种类型? 分别表述一下

- 3. 什么是平均自由时间?
- 4. 理想 PN 结的平衡条件是什么?
- 5. 什么是异质结?和同质结的区别是什么?
- 6. 请画出理想 PN 结的 J-V 曲线
- 7. 请在第6题理想 J-V 曲线的基础上,画出实际的 J-V 曲线。并解释一下为什么会有这种偏移? (去年的本题来源于北京工业大学半导体物理考研真题,学有余力的同学可以私聊或买一下北工真题,自行打印)
- 8. 请画出 PN 结加正向电压和反向电压时的能带图。并说明一下结电容都有哪些

(实际只考了正向的, 反向的也顺手画了吧)

9. 由P型半导体所构成的 MIS 中, 栅压由负压到正压依次经过了哪几个阶段?并分别画出对应阶段的图。并解释对应阶段 (这TM 不就是 2021 专项真题的翻版嘛?)

10. 什么是简并半导体?什么是非简并半亭体? 分界点又在哪里?

11. 什么是本征半导体?

12. 什么是弹性散射?

13. 储么情况可以用玻尔兹曼分布函数?

14. 突变结势垒宽度 XD 和 VD 二者间的表达式关系是什么?

四、计算题

- 1. 室温下, 在硅的材料中, 掺入下列物质 (两种情况)
- (1) 掺入浓度为 10¹⁶ cm⁻³ 的 P 元素, 求此时的电子浓度, 空穴浓度, Ec 与费米能级的差。
- (2) 掺入浓度为 10¹⁶cm⁻³ 的 B 元素, 求此时的电子浓度, 空穴浓度, Ev 与费米能级的差。

- 2. (常用数据参考 2021 年专项最后给的那张表。 常用数据 h h 拔这些 还有电子质量 这些常用的请一定要背好,这一年出的题种似这道。具体的数据大小有所改动,题目本身并不难。困难的地方在于单位换算。 大家务必引起重视)
- ①在室温下,锗的有效态密度 $N_c=1.05\times10^{18} \text{cm}^{-3}$, $N_v=3.9\times10^{18} \text{cm}^{-3}$,试求锗的 载流子有效质量 m^* , m^* ,。计算 77K 时的 N_c 和 N_v 。 已知 300K 时, $E_s=0.67 \text{eV}$ 。77k 时 $E_s=0.76 \text{eV}$ 。求这两个温度时锗的本征载流子浓度。②77K 时,锗的电子浓度 为 10^{17}cm^{-3} ,假定受主浓度为零,而 $E_c-E_b=0.01 \text{eV}$,求锗中施主浓度 E_v 为多少?

1 1

3. —— (这道题在商世广和田敬民的练习册上都出现了,不仅如此,在上大的期末考试卷上也多次出现。)

【例 8-13】 金属-SiO₂-Si(p 型)构成的 MOS 结构电容器,设空穴浓度 $N_A=1.5 \times 10^{15}$ /cm³,SiO₂ 层厚度 $d_n=0.2$ μ m,其相对介电系数 $\epsilon_{r_0}=3.9$,硅的相对介电系数 $\epsilon_{r_0}=12.\epsilon_0=8.85\times 10^{15}$ F/cm. 室温下 $n_i=1.5\times 10^{10}$ /cm³。

- (1) 设为理想的 MOS 结构,求开启电压 V_{τ} 。
- (2) 设 SiO₂ 与硅界面处存在固定正电荷, 测得 $V_r = 2.6 \text{V}$ 求单位面积固定正电荷数 (略去功函数差的影响);
- (3) 如果上述这些正电荷均匀分布于 SiO_2 中,则溯得的 V_1 为多少?(略去功函数差的影响);
- (4) 若这些正电荷在 SiO_2 中呈拋物线分布,则测得的开启电压 V_T 为多少?(如图 8-14所示)。

图 8-14 例 8-13(4)图

- 1. 已知室温时,在硅突变 p-n 结中,N 型区域的掺杂浓度为 $2x10^{19} cm^{-3}$,P 型区域的受主浓度为 $5x10^{14} cm^{-3}$ 。N 区域的空穴迁移率为 $200 cm2/V \cdot s$,P 区域的电子迁移率为 $1000 cm2/V \cdot s$; 载流子寿命都为 1us。 硅的相对介电常数 12,真空介电常数为 $8.84x10^{-14} F/cm$,本征载流子浓度为 $10^{10} cm^{-3}$,计算该 PN 结在零偏及反向偏压 5 代时的:
 - 1. 势垒高度 7分
 - 2. 势垒宽度 4分
 - 3. 单位面积的势垒电容 4分
 - 4. 不考虑势垒区的产生复合电流,求 0.2V 时器件的电流密度。 10 分

1. (本愿 10 分) 一硅的 p⁺-n 单边突变结中, $N_A = 10^{19}$ cm⁻³, $N_D = 2 \times 10^{16}$ cm⁻³,计算在零偏压下的耗尽区宽度和最大电场 (T = 300 K, 硅中本征浓度 $n_i = 1.5 \times 10^{10}$ cm⁻³)。