Intermediate Microeconomics Chapter 9 Cost

Cost

- In order to attain production efficiency, firms need to be able to minimize cost
- In this chapter, we will look at how the firm chooses its optimal input combination for a given level of output
- We will distinguish between short and long run

Cost in the short run

- Short run economic cost = the minimal level of expenditures (measured in opportunity-cost terms) needed to produce a given amount of output in the short run
- In the short run, some factors are fixed (sunk costs) ⇒ no alternative uses ⇒ no economic costs ⇒ short-run economic cost entirely driven by the variable factor ⇒ short-run variable cost

2	
,	

Other costs in the short-run

- Short-run fixed cost (FC_{SR}) = expenditures on factor that are fixed in the short run
- Short-run total cost (TC_{SR}) = sum of short-run variable and fixed costs

$$TC_{SR} = VC_{SR} + FC_{SR}$$

 Only short-run variable cost is an economic cost (remember that the economic cost of fixed inputs is zero) ⇒ only VC_{SR} matters in short-run decisions

Short-run variable cost

- Properties:
 - must slope upward
 - level depends on the level of fixed factor (capital)
 - higher capital means lower short-run cost of labor (although it might sound counter-intuitive, remember it is because capital is fixed in the short run)

Short-run marginal cost

- Short-run marginal cost (MC_{SR}) = change in the short-run variable cost due to the production of one more unit of output (depends on technology)
- Marginal factor cost (MFC) = additional amount the firm has to pay for a factor when it hires one more unit of the factor
- One more unit of labor produces MPP_L more units of output ⇒ one unit of output is produced by 1/MPP_L units of labor ⇒

$$MC_{SR} = \frac{MFC_L}{MPP_L}$$

Marginal cost for a price taker

- Price taking firm ⇒ price of factors (wage) is not influenced by its demand (for labor) ⇒ MFC_i = w
- In this case, then:

$$MC_{SR} = \frac{W}{MPP_I}$$

- The higher the MPP, the lower the MC
 - diminishing MPP (of labor) $\Rightarrow MC_{SR}$ is upward sloping
 - increasing MPP (of labor) ⇒ MC_{SR} is downward sloping

-		

Average cost in the short run

 Short-run average variable cost (AVC_{SR}) = short-run variable cost per unit of output produced:

$$AVC_{SR} = \frac{VC_{SR}}{O}$$

- Again, depends on marginal product:
 - increasing marginal returns \Rightarrow AV C_{SR} is downward
 - diminishing marginal returns $\Rightarrow AVC_{SR}$ is upward

Other average costs

 Short-run average fixed cost (AFC_{SR}) = shortrun fixed cost per unit of output produced:

$$AFC_{SR} = \frac{FC_{SR}}{Q}$$

 Short-run average total cost (ATC_{SR}) = shortrun total cost per unit of output produced:

$$ATC_{SR} = \frac{TC_{SR}}{Q} = AVC_{SR} + AFC_{SR}$$

Relationship between MC and AVC

- Since average variable cost and marginal cost are both derived from variable costs, they are related (hint: think of GPA):
 - when $MC_{SR} < AVC_{SR}$, AVC_{SR} falls
 - when $MC_{SR} > AVC_{SR}$, AVC_{SR} rises
 - \Rightarrow MC_{SR} crosses AV C_{SR} at the point where AV C_{SR} is at a minimum

13

Cost in the long run

- In the long run, all factors are variable ⇒ expenditures on all factors are economic costs
- Also, firms can substitute among factors (since they are all variable)
- An input combination is economically efficient when it has the lowest opportunity cost among the input combinations that can be used to produced the desired output

Isocost lines and map

- Isocost line = line representing all input combinations that cost the firm the same amount
- Isocost map = set of all isocost lines that exist for a given set of factor prices
- Analogous to the budget line in utility theory (but a bit more complicated):
 - change in factor price tilts the line around the intercept for the *other* factor
 - no equivalent of "income limit"

The economically efficient input mix

- In utility theory, we combined the budget line with the indifference curves to obtain optimal consumption (consumer knew income)
- Here, we combine isocost lines with isoquants (firm knows production level)
- The difference is that what shifts around is the isocost line (the "budget constraint")!
- Optimal mix of inputs: the tangency point

19

The economically efficient input mix

Algebraic interpretation

 At the optimum, isocost line and isoquant are tangent ⇒ slopes are equal:

$$MRTS = \frac{w}{r} \Rightarrow \frac{MPP_L}{MPP_K} = \frac{w}{r} \Leftrightarrow \frac{MPP_L}{w} = \frac{MPP_K}{r}$$

- A price-taking firm should operate at a point where, at the margin, the marginal products of the inputs are proportional to their prices
- Thus, a manager can determine the optimal input combination without needing to know the production function (just the MPP's)

_	
	ı

Comparative statics

- Increase in factor price:
 - isocost line tilts ⇒ firm substitutes away from the factor whose price has risen
 - · total cost must rise
 - · reverse happens when factor price falls
- Better technology:
 - · shift isoquant inward
 - lower total cost
- Better quality or higher output: can be interpreted as a more costly technology (outward shift of isoquant)

Long-run costs

- Long-run total cost (TC_{LR}) = minimal level of total expenditures (measured in opportunitycost terms) needed to produce a given level of output in the long run
- Long-run marginal cost (MC_{LR}) = the change in long-run total cost due to the production of one more unit of output
- Long-run average cost (AC_{LR}) = long run total cost per unit of output produced

2

Long-run vs short-run costs

- Fixed factors:
 - short run: some factors are fixed ⇒ any expenditure on them is not an economic cost
 - long run: all factors are variable ⇒ no fixed costs ⇒ higher economic costs than in the short run
- Substitution of factors:
 - short run: not (fully) possible because of fixed factors ⇒ higher costs
 - long run: fully possible ⇒ lower costs
- In the end: long-run costs can be higher or lower than short-run costs

Economies of scale and of scope

- Economies of scale = long-run average cost falls as output rises
 - production function has increasing returns to scale
 - when there are setup costs (have to be incurred regardless of how much output is produced)
- Diseconomies of scale = long-run average cost rises as output rises (e.g., decreasing returns to scale)
- Economies of scope = cheaper to produce two products in the same firm rather than in two specialized firms