BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI THAM KHẢO

Kỳ THI THPT QUỐC GIA NĂM 2018 Bài thi: Toán

Thời gian làm bài: 90 phút

Điểm M trong hình vẽ bên là điểm biểu diễn số phức Câu 1.

- **A.** z = -2 + i. **B.** z = 1 2i.
- **C.** z = 2 + i. **D.** z = 1 + 2i.

Lời giải

Điểm $M\left(-2;1\right)$ là điểm biểu diễn số phức z=-2+i .

 $\lim_{x \to +\infty} \frac{x-2}{x+3} \text{ bằng}$ Câu 2.

- **C.** 2.
- **D.** −3.

Lời giải

Chọn. B.
$$\lim_{x \to +\infty} \frac{x-2}{x+3} = \lim_{x \to +\infty} \frac{1-\frac{2}{x}}{1+\frac{3}{x}} = 1.$$

Cho tập hợp M có 10 phần tử. Số tập con gồm 2 phần tử của M là Câu 3.

- **A.** A_{10}^8 .
- **B.** A_{10}^2 .
- **D.** 10^2 .

Lời giải

Số tập con gồm 2 phần tử của M là một tổ hợp chập 2 của 10 phần tử: C_{10}^2 .

Thể tích của khối chóp có chiều cao bằng h và diện tích đáy bằng B là Câu 4.

- **B.** $V = \frac{1}{6}Bh$. **C.** V = Bh. **D.** $V = \frac{1}{2}Bh$.

Lời giải

Chon.

Cho hàm số y = f(x) có bảng biến thiên như sau Câu 5.

Hàm số y = f(x) nghịch biến trên khoảng nào dưới đây?

C. (0;2).

D. $(0; +\infty)$.

Lời giải

Chon.

Dựa vào bảng biến thiên ta có: Hàm số nghịch biến trên khoảng: (-2,0) và $(2,+\infty)$.

Cho hàm số y = f(x) liên tục trên đoạn [a;b]. Gọi D là hình phẳng giới hạn bởi đồ thị hàm Câu 6. số y = f(x), trục hoành và hai đường thẳng x = a, x = b(a < b). Thể tích của khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức

$$\underline{\mathbf{A}} \cdot \underline{V} = \pi \int_{a}^{b} f^{2}(x) dx. \quad \mathbf{B} \cdot V = 2\pi \int_{a}^{b} f^{2}(x) dx. \quad \mathbf{C} \cdot V = \pi^{2} \int_{a}^{b} f^{2}(x) dx. \quad \mathbf{D} \cdot V = \pi^{2} \int_{a}^{b} f(x) dx.$$

Lời giải

Chọn.

Thể tích của khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức $V = \pi \int_{0}^{\pi} f^{2}(x) dx.$

Cho hàm số y = f(x) có bảng biến thiên như sau Câu 7.

Hàm số đạt cực đại tại điểm

A. x = 1.

B. x = 0.

C. x = 5.

D. x = 2.

Lời giải

Chọn. <u>D</u>.

Dựa vào bảng biến thiên ta thấy: Hàm số đạt cực đại tại x = 2.

Câu 8. Với a là số thực dương bất kì, mệnh đề nào sau đây đúng?

<u>C</u>.

A. $\log(3a) = 3\log a$. **B.** $\log a^3 = \frac{1}{3}\log a$. **C.** $\log a^3 = 3\log a$. **D.** $\log(3a) = \frac{1}{3}\log a$.

Lời giải

Chọn. Ta có: $+ \log a^3 = 3\log a$.

 $+ \log(3a) = \log 3 + \log a$.

Họ nguyên hàm của hàm số $f(x) = 3x^2 + 1$ là Câu 9.

A. $x^3 + C$. **B.** $\frac{x^3}{3} + x + C$. **C.** 6x + C.

Lời giải

Chon.

Ta có: $\int f(x) dx = \int (3x^2 + 1) dx = x^3 + x + C$.

Trong không gian Oxyz, cho điểm A(3;-1;1). Hình chiếu vuông góc của A trên mặt phẳng (Oyz) là điểm

A. M(3;0;0).

C. P(0;-1;0). **D.** Q(0;0;1).

Lời giải

Chon. <u>B</u>.

Hình chiếu của A(3;-1;1) lên mặt phẳng (Oyz) là điểm N(0;-1;1).

Câu 11. Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?

A. $y = -x^4 + 2x^2 + 2$. **B.** $y = x^4 - 2x^2 + 2$. **C.** $y = x^3 - 3x^2 + 2$. **D.** $y = -x^3 + 3x^2 + 2$.

Lời giải

Chon.

Dựa vào dạng đồ thị ta loại **B, C** vì đây là dạng đồ thị hàm trùng phương.

Nhánh sau cùng đi xuống nên ta có hê số a < 0.

Trong không gian Oxyz, cho đường thẳng $d: \frac{x-2}{-1} = \frac{y-1}{2} = \frac{z}{1}$. Đường thẳng d có một vector chỉ phương là **A.** $\overrightarrow{u_1} = (-1; 2; 1)$. **B.** $\overrightarrow{u_2} = (2; 1; 0)$. **C.** $\overrightarrow{u_3} = (2; 1; 1)$. **D.** $\overrightarrow{u_4} = (-1; 2; 0)$.

Lời giải.

Đường thẳng $d: \frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$ có vecto chỉ phương là $\vec{u} = (a;b;c)$.

Suy ra đường thẳng $d: \frac{x-2}{-1} = \frac{y-1}{2} = \frac{z}{1}$ có vecto chỉ phương là $\overrightarrow{u_1} = (-1;2;1)$.

Tập nghiệm của bất phương trình $2^{2x} < 2^{x+6}$ là

A. (0;6).

B. $(-\infty; 6)$. **C.** (0; 64). **D.** $(6; +\infty)$.

Lời giải.

Ta có: $2^{2x} < 2^{x+6} \Leftrightarrow 2^{2x} < 64.2^x \Leftrightarrow 2^x \left(2^x - 64\right) < 0 \Leftrightarrow 2^x < 64 = 2^6 \Leftrightarrow x < 6 \Rightarrow S = \left(-\infty; 6\right).$

Câu 14. Cho hình nón có diện tích xung quanh bằng $3\pi a^2$ và bán kính đáy bằng a. Độ dài đường sinh của hình nón đã cho bằng

A. $2\sqrt{2}a$.

C. 2*a*.

D. $\frac{3a}{2}$.

Lời giải.

Chon.

Ta có: $S_{xa} = \pi r l = 3\pi a^2 \Leftrightarrow \pi . a . l = 3\pi a^2 \Leftrightarrow l = 3a$

Trong không gian Oxyz, cho ba điểm M(2;0;0), N(0;-1;0) và P(0;0;2). Mặt phẳng (MNP)Câu 15. có phương trình là

A. $\frac{x}{2} + \frac{y}{-1} + \frac{z}{2} = 0$. **B.** $\frac{x}{2} + \frac{y}{-1} + \frac{z}{2} = -1$. **C.** $\frac{x}{2} + \frac{y}{1} + \frac{z}{2} = 1$. **D.** $\frac{x}{2} + \frac{y}{-1} + \frac{z}{2} = 1$.

Lời giải.

Chon. D.

Áp dụng công thức phương trình đoạn chắn ta suy mặt phẳng (MNP) có phương trình $la^{\frac{x}{2}} + \frac{y}{1} + \frac{z}{2} = 1$.

Câu 16. Đồ thị hàm số nào dưới đây có tiệm cận đứng?

A. $y = \frac{x^2 - 3x + 2}{x - 1}$. **B.** $y = \frac{x^2}{x^2 + 1}$. **C.** $y = \sqrt{x^2 - 1}$.

Lời giải

Chon.

* $\lim_{x \to 1} \frac{x^2 - 3x + 2}{x - 1} = -1$ nên đồ thị hàm số không có tiệm cận đứng.

* $y = \frac{x^2}{x^2 + 1}$ và $y = \sqrt{x^2 - 1}$ mẫu vô nghiệm và không có mẫu nên đồ thị hàm số không có tiệm cận đứng.

* Ta có: $\lim_{x \to (-1)^+} \frac{x}{x+1} = -\infty$ và $\lim_{x \to (-1)^-} \frac{x}{x+1} = +\infty$ nên đồ thị hàm số có 1 tiệm cận đứng là x = -1.

Câu 17. Cho hàm số y = f(x) có bảng biến thiên như sau

x	$-\infty$	1		3		+∞
y'	+	0	-	0	+	
y	-∞	4				+∞

Số nghiệm của phương trình f(x)-2=0 là

A. 0.

B. 3.

C. 1.

D. 2.

Lời giải

Chọn. D

Ta có: $f(x)-2=0 \iff f(x)=2(1)$

Khi đó số nghiệm của phương trình (1) là số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = 2. Dựa vào bảng biến thiên ta có : số giao điểm của hai đồ thị là 2.

Vậy phương trình f(x)-2=0 có 2 nghiệm.

Câu 18. Giá trị lớn nhất của hàm số $f(x) = x^4 - 4x^2 + 5$ trên đoạn [-2;3] bằng

<u>A.</u> 50.

B. 5.

C. 1.

D. 122.

Lời giải

<u>C</u>họn. <u>A</u>.

Xét hàm số $f(x) = x^4 - 4x^2 + 5$ trên đoạn [-2;3].

Ta có:
$$f'(x) = 4x^3 - 8x \Rightarrow f'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \in [-2;3] \\ x = \sqrt{2} \in [-2;3] \\ x = -\sqrt{2} \in [-2;3] \end{bmatrix}$$
.

$$f(0) = 5$$
, $f(\sqrt{2}) = f(-\sqrt{2}) = 1$, $f(-2) = 5$, $f(3) = 50$.

Vậy giá trị lớn nhất của hàm số bằng 50 khi x = 3.

Câu 19. Tích phân $\int_{0}^{2} \frac{dx}{x+3}$ bằng

A. $\frac{16}{225}$.

B. $\log \frac{5}{3}$.

 $\underline{\mathbf{C}} \cdot \ln \frac{5}{3}$.

D. $\frac{2}{15}$.

Lời giả

Chọn. C

Ta có: $\int_{0}^{2} \frac{dx}{x+3} = \ln|x+3| \Big|_{0}^{2} = \ln 5 - \ln 3 = \ln \frac{5}{3}.$

Câu 20. Gọi z_1 và z_2 là hai nghiệm phức của phương trình $4z^2 - 4z + 3 = 0$. Giá trị của biểu thức $|z_1| + |z_2|$ bằng

A. $3\sqrt{2}$.

B. $2\sqrt{3}$.

C. 3.

 $\underline{\mathbf{D}}$. $\sqrt{3}$.

Lời giải

<u>C</u>họn. <u>D</u>.

Ta có $\Delta' = 4 - 12 = -8 = 8i^2$. Các nghiệm của phương trình là $z_1 = \frac{1}{2} + \frac{\sqrt{2}}{2}i$, $z_2 = \frac{1}{2} - \frac{\sqrt{2}}{2}i$.

$$\text{Do } \text{$d\acute{o}$ $|z_1|+|z_2| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2}$} + \sqrt{\left(\frac{1}{2}\right)^2 + \left(-\frac{\sqrt{2}}{2}\right)^2} = \sqrt{3} \; .$$

Câu 21. Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng BD và A'C' bằng

A. $a\sqrt{3}$.

<u>**B**.</u> a.

C. $\frac{a\sqrt{3}}{2}$.

D. $a\sqrt{2}$.

Lời giải

Ta có

 $BD \perp AC$ (do ABCD là hình vuông)

 $BD \perp AA'$ (do ABCD là hình lập phương)

 $\Rightarrow BD \perp (ACC'A')$

Gọi O,O' lần lượt là tâm của hai hình vuông ABCD, A'B'C'D'.

Khi đó $OO' \perp A'C'$ và $OO \perp BD$ nên OO' là đoạn vuông góc chung của BD và A'C'

 $\Rightarrow d(BD, A'C') = OO' = a.$

Câu 22. Một người gửi 100 triệu đồng vào một ngân hàng với lãi suất 0,4%/ tháng. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Hỏi sau đúng 6 tháng, người đó được lĩnh số tiền (cả vốn ban đầu và lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

A. 102.120.000 đồng.

B. 102.423.000 đồng.

C. 102.016.000 đồng.

D. 102.017.000 đồng.

Lời giải

C<mark>họn</mark>. <u>I</u>

 $V\acute{o}i$ cách tính như trên thì đây là bài toán lãi kép với công thức tính:

$$C = A(1+r)^{N}$$

Với $A = 100.10^6$ đồng, r = 0,4% = 0,004, N = 6

$$\Rightarrow C = 100.10^6 \cdot (1,004)^6 \approx 102.424.128$$
 đồng.

Một hộp chứa 11 quả cầu gồm 5 quả cầu màu xanh và 6 quả cầu màu đỏ. Chọn ngẫu nhiên đồng thời 2 quả cầu từ hộp đó. Xác suất để 2 quả cầu chọn ra cùng màu bằng

B. $\frac{6}{11}$.

D. $\frac{8}{11}$.

Lời giải

Chon C

Số phần tử của không gian mẫu là: $n(\Omega) = C_{11}^2 = 55$.

Số cách chọn 2 quả cầu cùng màu: $C_5^2 + C_6^2 = 25$.

Xác suất để 2 quả cầu chọn ra cùng màu là: $P = \frac{25}{55} = \frac{5}{11}$.

Trong không gian Oxyz, cho hai điểm A(-1;2;1) và B(2;1;0). Mặt phẳng qua A và vuông **Câu 24.** góc với AB có phương trình là

A. 3x - y - z - 6 = 0.

B. 3x - y - z + 6 = 0. **C.** x + 3y + z - 5 = 0. **D.** x + 3y + z - 6 = 0.

Lời giải

Chọn B

Mặt phẳng (P) qua A(-1;2;1) và vuông góc với AB nên có một vecto pháp tuyến là $\overrightarrow{AB} = (3;-1;-1)$. Do đó mặt phẳng (P) có phương trình là: 3(x+1)-1(y-2)-1(z-1)=03x - y - z + 6 = 0.

Câu 25. Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Gọi M là trung điểm của SD (tham khảo hình vẽ dưới đây).

Tang của góc giữa BM và (ABCD) bằng.

A. $\frac{\sqrt{2}}{2}$.

B. $\frac{\sqrt{3}}{2}$.

Lời giải

Chọn D

Gọi O là tâm đáy, I là giao của BM và SO, vì hình chóp S.ABCD đều nên $SO \perp (ABCD)$, gọi N là hình chiếu của M lên BD, dễ thấy MN //SO nên N là hình chiếu của M lên (ABCD). Vậy $\left(\widehat{BM,(ABCD)}\right) = \widehat{MBN} = \widehat{IBO}$.

Ta có tam giác SBD vuông cân tại S (vì SB = SD = a, $BD = a\sqrt{2}$) nên $SO = \frac{a\sqrt{2}}{2}$

Vì I là trọng tâm tam giác SBD nên $IO = \frac{1}{3}SO = \frac{a\sqrt{2}}{6}$.

Vậy tan
$$\widehat{IBO} = \frac{IO}{BO} = \frac{\frac{a\sqrt{2}}{6}}{\frac{a\sqrt{2}}{2}} = \frac{1}{3}.$$

Câu 26. Với n là số nguyên dương thỏa mãn $C_n^1 + C_n^2 = 55$. Số hạng không chứa x trong khai triển của biểu thức $\left(x^3 + \frac{2}{x^2}\right)^n$ bằng

A. 322560.

B. 3360.

C. 80640.

D. 13440.

Lời giải

C<mark>họn D</mark>

Điều kiện $n \in \mathbb{N}^*$.

Phương trình
$$C_n^1 + C_n^2 = 55 \Leftrightarrow \frac{n!}{1!(n-1)!} + \frac{n!}{2!(n-2)!} = 55 \Leftrightarrow n + \frac{n(n-1)}{2} = 55$$

$$\Leftrightarrow n^2 + n - 110 = 0 \Rightarrow n = 10.$$

Khai triển trở thành $\left(x^3 + \frac{2}{x^2}\right)^{10}$.

Ta có số hạng tổng quát của khai triển: $T_{k+1} = C_{10}^k x^{3(10-k)} \cdot \frac{2^k}{x^{2k}} = C_{10}^k \cdot 2^k \cdot x^{30-5k}$. Để số hạng không chứa x thì k = 6. Vậy số hạng cần tìm là $C_{10}^6 \cdot 2^6 = 13440$.

Câu 27. Tổng giá trị tất cả các nghiệm của phương trình $\log_3 x \cdot \log_9 x \cdot \log_{27} x \cdot \log_{81} x = \frac{2}{3}$ bằng

Lời giải

Chọn A

Điều kiện x > 0.

Ta có phương trình đã cho trương đương với

 $\log_3 x \cdot \log_{3^2} x \cdot \log_{3^3} x \cdot \log_{3^4} x = \frac{2}{3} \Leftrightarrow \frac{1}{24} (\log_3 x)^4 = \frac{2}{3} \Leftrightarrow (\log_3 x)^4 = 16$

$$\Leftrightarrow \log_3 x = \pm 2 \iff \begin{bmatrix} x = 9 \\ x = \frac{1}{9} \end{bmatrix}$$

Cả hai nghiệm đều thỏa điều kiện x > 0 nên tổng các nghiệm của phương trình đã cho là $\frac{82}{9}$.

Câu 28. Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = OB = OC. Gọi M là trung điểm của BC (tham khảo hình vẽ bên). Góc giữa hai đường thẳng OM và AB bằng
A. 90°.
B. 30°.
C. 60°.
D. 45°.

Lời giải

<u>C</u>họn <u>C</u>

Giả sử OA = OB = OC = a. Gọi N là trung điểm AC.

Ta có MN là đường trung bình của tam giác ABC nên $MN \parallel AB$ và $MN = \frac{1}{2}AB = \frac{a\sqrt{2}}{2}$.

Do đó $(\widehat{OM,AB}) = (\widehat{OM,MN})$.

Xét các tam giác OAC và OBC vuông cân tại O có ON,OM lần lượt là các trung tuyến nên $ON = OM = \frac{1}{2}AC = \frac{a\sqrt{2}}{2}.$

Như vậy tam giác OMN có ba cạnh bằng nhau nên là tam giác đều, từ đó $(\widehat{OM}, \widehat{MN}) = 60^{\circ}$.

Câu 29. Trong không gian Oxyz, cho hai đường thẳng $d_1: \frac{x-3}{-1} = \frac{y-3}{-2} = \frac{z+2}{1}$, $d_2: \frac{x-5}{-3} = \frac{y+1}{2} = \frac{z-2}{1}$ và mặt phẳng (P): x+2y+3z-5=0. Đường thẳng vuông góc với (P), cắt d_1 và d_2 có phương trình là

A.
$$\frac{x-1}{1} = \frac{y+1}{2} = \frac{z}{3}$$
. **B.** $\frac{x-2}{1} = \frac{y-3}{2} = \frac{z-1}{3}$.

C.
$$\frac{x-3}{1} = \frac{y-3}{2} = \frac{z+2}{3}$$
. D. $\frac{x-1}{3} = \frac{y+1}{2} = \frac{z}{1}$.

Lời giải

Chọn A

Viết lại phương trình

$$d_1: \begin{cases} x = 3 - t \\ y = 3 - 2t \\ z = -2 + t \end{cases}, d_2: \begin{cases} x = 5 - 3t' \\ y = -1 + 2t', t, t' \in \mathbb{R} \\ z = 2 + t' \end{cases}$$

Giả sử đường thẳng cần tìm là Δ cắt hai đường thẳng d_1 và d_2 lần lượt tại A(3-t;3-2t;-2+t) và B(5-3t';-1+2t';2+t').

Một vecto pháp tuyến của (P) là $\overrightarrow{n_P} = (1,2,3)$

Vì $\Delta \perp (P)$ nên $\overrightarrow{u}_{\Delta}$ cùng phương với $\overrightarrow{n_P}$ hay

$$\begin{cases} 2 - 3t' + t = k \\ -4 + 2t' + 2t = 2k \Leftrightarrow \begin{cases} -3t' + t - k = -2 \\ 2t' + 2t - 2k = 4 \end{cases} \Leftrightarrow \begin{cases} t' = 1 \\ t = 2 \\ k = 1 \end{cases}$$

Suy ra
$$A(1;-1;0)$$
, $B(2;1;3)$, $\overrightarrow{u_{\Delta}} = (1;2;3)$, do đó $\Delta : \frac{x-1}{1} = \frac{y+1}{2} = \frac{z}{3}$, đáp án. **A.**

Câu 30. Có bao nhiêu giá trị nguyên âm của tham số m để hàm số $y = x^3 + mx - \frac{1}{5x^5}$ đồng biến trên khoảng $(0; +\infty)$?

A. 5.

B. 3.

C. 0.

D. 4.

 \mathcal{d}_1

 d_2

Lời giải

<u>C<mark>họn</mark> D</u>

Ta có
$$y' = 3x^2 + m + \frac{1}{x^6}, \forall x \in (0; +\infty)$$
.

Hàm số đồng biến trên khoảng $(0; +\infty)$

$$\Leftrightarrow y' \ge 0, \forall x \in (0; +\infty) \Leftrightarrow -m \le 3x^2 + \frac{1}{x^6}, \forall x \in (0; +\infty) \Leftrightarrow -m \le \min_{(0; +\infty)} \left(3x^2 + \frac{1}{x^6}\right)(*).$$

Mà
$$3x^2 + \frac{1}{x^6} = x^2 + x^2 + x^2 + \frac{1}{x^6} \ge 4\sqrt[4]{x^2 \cdot x^2 \cdot x^2 \cdot \frac{1}{x^6}} = 4$$
.

Do đó từ (*) suy ra $-m \le 4 \Leftrightarrow m \ge -4$. Vậy có 4 giá trị nguyên âm của m là -1; -2; -3; -4thỏa mãn yêu cầu bài toán.

Cho (H) là hình phẳng giới hạn bởi parabol $y = \sqrt{3}x^2$, **Câu 31.** cung tròn có phương trình $y = \sqrt{4 - x^2}$ (với $0 \le x \le 2$) và trục hoành (phần tô đậm trong hình vẽ). Diện tích hình (H) bằng

A.
$$\frac{4\pi + \sqrt{3}}{12}$$
.

$$\underline{\mathbf{B}}.\frac{4\pi-\sqrt{3}}{6}.$$

C.
$$\frac{4\pi + 2\sqrt{3} - 3}{6}$$
. D. $\frac{5\sqrt{3} - 2\pi}{3}$.

D.
$$\frac{5\sqrt{3}-2\pi}{3}$$

Chon.

Phương trình hoành độ giao điểm: $\sqrt{3}x^2 = \sqrt{4 - x^2} \iff 3x^4 + x^2 - 4 = 0 \iff x = 1 \text{ (do } 0 \le x \le 2\text{)}.$

Khi đó $S = \int_{0}^{1} \sqrt{3}x^{2} dx + \int_{1}^{2} \sqrt{4 - x^{2}} dx = I + J$.

Tính $I = \int_{0}^{1} \sqrt{3}x^{2} dx = \frac{\sqrt{3}x^{3}}{3} \Big|_{1}^{1} = \frac{\sqrt{3}}{3}$.

Tính $J = \int_{1}^{2} \sqrt{4 - x^2} \, dx$: Đặt $x = 2 \sin t \Rightarrow dx = 2 \cos t \, dt$ và $\begin{cases} x = 1 \Rightarrow t = \frac{\pi}{6} \\ x = 2 \Rightarrow t = \frac{\pi}{6} \end{cases}$. Khi đó

 $J = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{4 - 4\sin^2 t} \cdot 2\cos t \, dt = 4 \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 t \, dt = 2 \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (1 + \cos 2t) \, dt = 2 \left(t + \frac{1}{2}\sin 2t \right) \Big|_{\frac{\pi}{6}}^{\frac{\pi}{2}} = \frac{2\pi}{3} - \frac{\sqrt{3}}{2} \, .$

Vậy $S = \frac{\sqrt{3}}{2} + \frac{2\pi}{2} - \frac{\sqrt{3}}{2} = \frac{4\pi - \sqrt{3}}{6}$ (đvdt).

Câu 32. Biết $\int_{1}^{2} \frac{dx}{(x+1)\sqrt{x} + x\sqrt{x+1}} = \sqrt{a} - \sqrt{b} - c \quad \text{với} \quad a, b, c \quad \text{là các số nguyên dương.}$ Tính

A.
$$P = 24$$
.

P = a + b + c.

B.
$$P = 12$$
.

C.
$$P = 18$$
.

D.
$$P = 46$$
.

Lời giải

Ta có
$$\frac{1}{(x+1)\sqrt{x} + x\sqrt{x+1}} = \frac{1}{\sqrt{x(x+1)} \cdot (\sqrt{x+1} + \sqrt{x})} = \frac{\sqrt{x+1} - \sqrt{x}}{\sqrt{x(x+1)}} = \frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x+1}}$$
.

Do đó $\int_{1}^{2} \frac{dx}{(x+1)\sqrt{x} + x\sqrt{x+1}} = \int_{1}^{2} \left(\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x+1}}\right) dx = \int_{1}^{2} \left(x^{-\frac{1}{2}} - (x+1)^{-\frac{1}{2}}\right) dx = 2\left(\sqrt{x} - \sqrt{x+1}\right)\Big|_{1}^{2}$

$$= 4\sqrt{2} - 2\sqrt{3} - 2 = \sqrt{32} - \sqrt{12} - 2$$
. Suy ra
$$\begin{cases} a = 32 \\ b = 12 \text{ nên } P = a + b + c = 32 + 12 + 2 = 46 \end{cases}$$
.

Câu 33. Cho tứ diện đều ABCD có cạnh bằng 4. Tính diện tích xung quanh S_{xq} của hình trụ có một đường tròn đáy là đường tròn nội tiếp tam giác BCD và chiều cao bằng chiều cao của tứ diện ABCD.

$$\mathbf{\underline{A}} \cdot \mathbf{\underline{S}}_{xq} = \frac{16\sqrt{2}\pi}{3}$$

B.
$$S_{xq} = \frac{16\sqrt{2}\pi}{3}$$
. **C.** $S_{xq} = \frac{16\sqrt{2}\pi}{3}$. **D.** $S_{xq} = \frac{16\sqrt{2}\pi}{3}$.

C.
$$S_{xq} = \frac{16\sqrt{2}\pi}{3}$$
.

D.
$$S_{xq} = \frac{16\sqrt{2}\pi}{3}$$
.

Lời giải

Chon.

Gọi E, F là trung điểm cạnh DC, BC.

Do $\triangle BCD$ là tam giác đều, nên BE, DF cũng là đường cao, đường phân giác của $\triangle BCD$. Các mặt bên cũng là tam giác đều.

Goi

 $BE \cap CF = \{H\}$

cao

của

tứ

diên.

$$AH = \sqrt{AB^2 - BH^2} = \sqrt{4^2 - \left(\frac{2}{3} \cdot \frac{4\sqrt{3}}{2}\right)^2} = \frac{4\sqrt{6}}{3}.$$

Đường tròn nội tiếp $\triangle BCD$ có bán kính $r = HE = \frac{1}{3}AE = \frac{4\sqrt{3}}{2^2} = \frac{2\sqrt{3}}{2}$.

Diện tích xung quanh của hình trụ là: $S_{xq}=2\pi rh=2.\frac{2\sqrt{3}}{2}.\frac{4\sqrt{6}}{2}.\pi=\frac{16\sqrt{2}\pi}{2}$.

Có bao nhiều giá trị nguyên dương của tham số m để phương trình $16^x - 2.12^x + (m-2).9^x = 0$ có nghiêm dương?

A. 1.

B. 2.

C. 4.

D. 3.

Lời giải

Chọn. B

Ta có: $16^x - 2.12^x + (m-2).9^x = 0$ (1)

$$\Leftrightarrow \left(\frac{4}{3}\right)^{2x} - 2 \cdot \left(\frac{4}{3}\right)^{x} + \left(m - 2\right) = 0.$$

Đặt
$$\left(\frac{4}{3}\right)^x = t$$
, phương trình trở thành: $t^2 - 2t + (m-2) = 0$ (2)

Để phương trình (1) có nghiệm dương thì phương trình (2) có nghiệm t > 1.

$$t^{2}-2t+(m-2)=0 \Leftrightarrow (t-1)^{2}=3-m$$

Do t > 1 nên $3 - m > 0 \Leftrightarrow m < 3 \Rightarrow 0 < m < 3 \Rightarrow m \in \{1, 2\}$

Vậy có 2 giá trị của m thỏa mãn.

Câu 35. Có bao nhiều giá trị nguyên của tham số m để phương trình $\sqrt[3]{m+3\sqrt[3]{m+3\sin x}} = \sin x$ có nghiệm thực?

<u>A</u>. 5.

- **B.** 7.
- **C.** 3.
- **D.** 2.

Lời giải

<u>C</u>họn. <u>A</u>

 $\sqrt[3]{m+3\sqrt[3]{m+3\sin x}} = \sin x \iff m+3\sqrt[3]{m+3\sin x} = \sin^3 x$

$$\Leftrightarrow m + 3\sin x + 3\sqrt[3]{m + 3\sin x} = \sin^3 x + 3\sin x \quad (1).$$

Xét hàm số $f(t) = t^3 + 3t$. Ta có $f'(t) = 3t^2 + 3 > 0 \forall t \in \mathbb{R}$.

Do đó hàm số f(t) đồng biến trên $\mathbb R$.

$$(1) \Leftrightarrow f\left(\sqrt[3]{m+3\sin x}\right) = f\left(\sin x\right) \Leftrightarrow \sqrt[3]{m+3\sin x} = \sin x \Leftrightarrow \sin^3 x - 3\sin x = m.$$

Đặt $\sin x = t (t \in [-1;1])$. Ta được phương trình $t^3 - 3t = m$.

Đặt
$$g(t) = t^3 - 3t(t \in [-1;1])$$
. Ta có $g'(t) = 3t^2 - 3$; $g'(t) = 0 \Leftrightarrow t = \pm 1$.

BBT

Vậy để phương trình có nghiệm thì $m \in [-2,2]$. Vậy chọn **A**.

Câu 36. Gọi S là tập hợp tất cả các giá trị của tham số thực m sao cho giá trị lớn nhất của hàm số $y = |x^3 - 3x + m|$ trên đoạn [0;2] bằng 3. Số phần tử của S là

A. 1.

B. 2

- **C.** 0.
- D. 6.

Lời giải

<u>C</u>họn. <u>B</u>.

Xét hàm số $f(x) = x^3 - 3x + m(x \in [0,2])$. Ta có $f'(x) = 3x^2 - 3$; $f'(x) = 0 \Leftrightarrow x = \pm 1$.

BBT

x	0	1	:	2
f'(x)	_	0	+	
f(x)	<i>m</i>	m-2	→ m+	2

Suy ra GTLN của hàm số $y = |x^3 - 3x + m|$ trên đoạn [0;2] bằng $M = Max\{|m-2|, |m+2|\}$.

Do đó
$$\begin{bmatrix} |m-2| = 3 \\ |m+2| = 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} m=5 \\ m=-1 \\ m=1 \\ m=-5 \end{bmatrix}$$

Với m = 1 thì $M = Max\{|1-2|, |1+2|\} = 3$. (TM)

Với
$$m = -1$$
 thì $M = Max\{ \left| -1 - 2 \right|, \left| -1 + 2 \right| \} = 3$. (TM)

Với
$$m = 5$$
 thì $M = Max\{|5-2|, |5+2|\} = 7$. (KTM)

Với
$$m = -5$$
 thì $M = Max\{ \left| -5 - 2 \right|, \left| -5 + 2 \right| \} = 7$. (KTM)

Vậy $S = \{-1, 1\}$. Chọn **B**

Câu 37. Cho hàm số f(x) xác định trên $\mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$ thỏa mãn $f'(x) = \frac{2}{2x-1}$, f(0) = 1 và f(1) = 2.

Giá trị của biểu thức f(-1) + f(3) bằng

A.
$$4 + \ln 5$$
...

B.
$$2 + \ln 15...$$

$$C. 3 + \ln 15.$$

D. ln 15.

Lời giải

<u>C</u>họn. <u>C</u>

• Trên khoảng $\left(\frac{1}{2}; +\infty\right)$: $f(x) = \int \frac{2}{2x-1} dx = \ln(2x-1) + C_1$.

Lại có $f(1) = 2 \Rightarrow C_1 = 2$.

• Trên khoảng $\left(-\infty; \frac{1}{2}\right)$: $f(x) = \int \frac{2}{2x-1} dx = \ln(1-2x) + C_2$.

Lại có $f(0) = 1 \Rightarrow C_2 = 1$.

Vây
$$f(x) = \begin{cases} \ln(2x-1) + 2 & khi \ x > \frac{1}{2} \\ \ln(1-2x) + 1 & khi \ x < \frac{1}{2} \end{cases}$$

Suy ra $f(-1) + f(3) = 3 + \ln 15$..

Câu 38. Cho số phức z=a+bi $(a,b\in\mathbb{R})$ thỏa mãn $z+2+i-\left|z\right|(1+i)=0$ và $\left|z\right|>1$. Tính P=a+b.

A.
$$P = -1..$$

B.
$$P = -5$$
...

C.
$$P = 3...$$

D.
$$P = 7$$
.

Lời giải

<u>C</u>họn. <u>D</u>.

Đặt $m=|z|=\sqrt{a^2+b^2}$, ta có $m\in\mathbb{R}$ và m>1.

$$z+2+i-\left|z\right|(1+i)=0 \Leftrightarrow a+2-m+(b+1-m)i=0 \Leftrightarrow \begin{cases} a+2-m=0 \\ b+1-m=0 \end{cases} \Rightarrow \begin{cases} b=a+1 \\ m=a+2 \end{cases}.$$

Kết hợp các điều trên ta có phương trình:

$$\sqrt{a^2 + (a+1)^2} = a+2 \Leftrightarrow \begin{bmatrix} a=-1 \\ a=3 \end{bmatrix}$$
.

Với a = -1: b = 0, m = 1 (loại vì m > 1)

Với a = 3 : b = 4, m = 5. (nhận)

Vây P = a + b = 3 + 4 = 7.

Câu 39. Cho hàm số y = f(x). Hàm số y = f'(x) có đồ thị như hình vẽ

Hàm số y = f(2-x) đồng biến trên khoảng

- **A.** (1;3).
- **B.** $(2; +\infty)$.
- $\underline{\mathbf{C}}_{\cdot}(-2;1)$.
- **D.** $(-\infty; -2)$.

Lời giải

Chon C

Dựa vào đồ thị của hàm số y = f'(x) ta có $f'(x) < 0 \Leftrightarrow \begin{bmatrix} x < -1 \\ 1 < x < 4 \end{bmatrix}$.

Ta có (f(2-x))' = (2-x)'.f'(2-x) = -f'(2-x).

Để hàm số y = f(2-x) đồng biến thì $(f(2-x))' > 0 \Leftrightarrow f'(2-x) < 0$

$$\Leftrightarrow \begin{bmatrix} 2-x < -1 \\ 1 < 2-x < 4 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x > 3 \\ -2 < x < 1 \end{bmatrix}.$$

- **Câu 40.** Cho hàm số $y = \frac{-x+2}{x-1}$ có đồ thị (C) và điểm A(a;1). Gọi S là tập hợp tất cả các giá trị thực của a để có đúng một tiếp tuyến của (C) đi qua A. Tổng các giá trị của tất cả các phần tử của S bằng
 - **A.** 1.

B. $\frac{3}{2}$

- $\frac{\mathbf{C}}{2}$
- **D.** $\frac{1}{2}$.

Lời giải

Chọn C

Gọi đường thẳng đi qua A(a;1) có hệ số góc k là y = k(x-a)+1. Đường thẳng này là tiếp

tuyến của hệ khi và chỉ khi hệ phương trình sau có nghiệm $\begin{cases} \frac{-x+2}{x-1} = k(x-a) + 1 \\ -\frac{1}{(x-1)^2} = k \end{cases}$. Thay k ở

phương trình hai vào phương trình một của hệ ta có:

$$\frac{-x+2}{x-1} = \frac{a-x}{(x-1)^2} + 1 \Leftrightarrow (-x+2)(x-1) = a-x+(x-1)^2 \Leftrightarrow 2x^2 - 6x + 3 + a = 0 (*).$$

Để chỉ có một tiếp tuyến qua A thì phương trình (*) phải có nghiệm kép hay

$$\Delta' = 9 - 6 - 2a = 0 \Leftrightarrow a = \frac{3}{2}.$$

hoặc có hai nghiệm phân biệt trong có có một nghiệm bằng 1 khi đó

$$\begin{cases} \Delta' > 0 \\ 2 - 6 + 3 + a = 0 \end{cases} \Leftrightarrow \begin{cases} 9 - 6 - 2a > 0 \\ a = 1 \end{cases} \Leftrightarrow \begin{cases} a < \frac{3}{2} \Leftrightarrow a = 1 \\ a = 1 \end{cases}$$

Vậy tổng các phần tử của S là $1 + \frac{3}{2} = \frac{5}{2}$.

Câu 41. Trong không gian Oxyz, cho điểm M(1;1;2). Hỏi có bao nhiều mặt phẳng (P) đi qua M và cắt các trục x'Ox, y'Oy, z'Oz lần lượt tại các điểm A,B,C sao cho $OA = OB = OC \neq 0$?

<u>A.</u> 3.

B. 1.

- **C.** 4.
- **D.** 8.

Lời giải

 $\underline{\mathbf{C}}$ họn. $\underline{\mathbf{A}}$.

Gọi phương trình mặt phẳng cần tìm là $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. Do M(1;1;2) thuộc mặt phẳng nên $\frac{1}{a} + \frac{1}{b} + \frac{2}{c} = 1$ (*). Mặt khác, ta có A(a;0;0), B(0;b;0), C(0;0;c) nên từ $OA = OB = OC \neq 0$ Suy ra $|a| = |b| = |c| = \alpha > 0$ từ đây (a;b;c) có thể nhận các bộ số sau $(\alpha;\alpha;\alpha)$; $(-\alpha;\alpha;\alpha)$; $(\alpha;\alpha;\alpha)$; $(\alpha;\alpha;\alpha$

Câu 42. Cho dãy số (u_n) thỏa mãn $\log u_1 + \sqrt{2 + \log u_1 - 2 \log u_{10}} = 2 \log u_{10}$ và $u_{n+1} = 2u_n$ với mọi $n \ge 1$. Giá trị nhỏ nhất của n để $u_n > 5^{100}$ bằng

A. 247.

- **B.** 248.
- C. 229.
- **D.** 290.

Lời giải

Chọn. B.

Từ điều kiện $u_{n+1} = 2u_n$, $\forall n \ge 1$ ta có (u_n) là cấp số nhân với công bội q = 2.

Do đó $u_{10} = 2^9 u_1$.

Ta có
$$\log u_1 + \sqrt{2 + \log u_1 - 2 \log u_{10}} = 2 \log u_{10}$$

$$\Leftrightarrow \log u_1 + \sqrt{2 + \log u_1 - 2\log(2^9 u_1)} = 2\log(2^9 u_1)$$

$$\Leftrightarrow \log u_1 + \sqrt{2 + \log u_1 - 18 \log 2 - 2 \log u_1} = 18 \log 2 + 2 \log u_1$$

$$\Leftrightarrow \sqrt{2 - m - \log u_1} = m + \log u_1 \ (m = 18 \log 2)$$

$$\Leftrightarrow \begin{cases} \log u_1 \ge -m \\ 2 - m - \log u_1 = \log^2 u_1 + 2m \cdot \log u_1 + m^2 \end{cases}$$

$$\Leftrightarrow \begin{cases} \log u_1 \ge -m \\ \log^2 u_1 + (2m+1) \cdot \log u_1 + m^2 + m - 2 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \log u_1 \geq -m \\ \lceil \log u_1 = -m - 2 \Leftrightarrow \log u_1 = -m + 1 = 1 - 18 \log 2 = \log \frac{10}{2^{18}} \Leftrightarrow u_1 = \frac{5}{2^{17}}. \end{cases}$$

Ta có
$$u_n = 2^{n-1}u_1 = 2^{n-1} \cdot \frac{5}{2^{17}} = 2^{n-18} \cdot 5$$
.

Nên
$$u_n > 5^{100} \iff 2^{n-18}.5 > 5^{100} \iff 2^{n-18} > 5^{99} \iff n > 18 + 99 \log_2 5 \approx 247.871$$

Vậy giá trị nhỏ nhất của n thỏa mãn là: n = 248...

Câu 43. Có bao nhiều giá trị nguyên của tham số m để hàm số $y = \left|3x^4 - 4x^3 - 12x^2 + m\right|$ có 7 điểm cực trị?

A. 3.

B. 5.

C. 6.

D. 4.

Lời giải

Chọn. D.

Xét hàm số $y = 3x^4 - 4x^3 - 12x^2 + m$ có $y' = 12x^3 - 12x^2 - 24x$

Ta có
$$y' = 0 \Leftrightarrow$$

$$\begin{bmatrix} x_1 = 2 \Rightarrow y_1 = -32 + m \\ x_2 = -1 \Rightarrow y_2 = -5 + m \\ x_3 = 0 \Rightarrow y_3 = m \end{bmatrix}$$

Bảng biến thiên:

Dựa vào BBT để đồ thị hàm số $y = |3x^4 - 4x^3 - 12x^2 + m|$ có 7 điểm cực trị khi và chỉ khi

$$\begin{cases}
 m > 0 \\
 -5 + m < 0
\end{cases} \Leftrightarrow 0 < m < 5. \text{ V\'oi } m \text{ nguyên nên ta c\'o } m \in \{1; 2; 3; 4\}$$

Vậy có 4 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

Câu 44. Trong không gian Oxyz, cho hai điểm $A(2;2;1), B\left(-\frac{8}{3};\frac{4}{3};\frac{8}{3}\right)$ đường thẳng đi qua tâm của đường tròn nội tiếp của tam giác OAB và vuông góc với mặt phẳng (OAB) có phương trình là:

A.
$$\frac{x+1}{1} = \frac{y-3}{-2} = \frac{z+1}{2}$$
. **B.** $\frac{x+1}{1} = \frac{y-8}{-2} = \frac{z-4}{2}$.

C.
$$\frac{x+\frac{1}{3}}{1} = \frac{y-\frac{5}{3}}{-2} = \frac{z-\frac{11}{6}}{2}$$
.

D.
$$\frac{x+\frac{9}{2}}{1} = \frac{y-\frac{2}{9}}{-2} = \frac{z+\frac{5}{9}}{2}$$
.

Lời giải

<u>C</u>họn. <u>A</u>

Ta có $\overrightarrow{OA} = (2;2;1), \overrightarrow{OB} = \left(-\frac{8}{3}; \frac{4}{3}; \frac{8}{3}\right) \Rightarrow OA = 3, OB = 4$.

$$\Rightarrow \vec{n} = \left[\overrightarrow{OA}, \overrightarrow{OB}\right] = 4(1; -2; 2)$$

Gọi D(x; y; z) là chân đường phân giác hạ từ O đến AB.

Ta có
$$\frac{DA}{DB} = \frac{AO}{BO} = \frac{3}{4} \implies \overrightarrow{AD} = -\frac{3}{4}\overrightarrow{BD}$$

$$\Rightarrow \begin{cases} x - 2 = -\frac{3}{4} \left(x + \frac{8}{3} \right) \\ y - 2 = -\frac{3}{4} \left(y - \frac{4}{3} \right) \Rightarrow \begin{cases} x = 0 \\ y = \frac{12}{7} \Rightarrow D\left(0; \frac{12}{7}; \frac{12}{7}\right) \\ z - 1 = -\frac{3}{4} \left(z - \frac{8}{3} \right) \end{cases}$$

$$\Rightarrow \overrightarrow{BD} = \left(\frac{8}{3}; \frac{8}{21}; -\frac{20}{27}\right) \Rightarrow BD = \frac{20}{7}.$$

Gọi I(x; y; z) là tâm đường tròn nội tiếp của tam giác ABC

Ta có
$$\frac{IO}{ID} = \frac{OB}{BD} = \frac{7}{5} \Rightarrow \overrightarrow{OI} = -\frac{7}{5}\overrightarrow{DI} \Rightarrow \begin{cases} x = -\frac{7}{5}x \\ y = -\frac{7}{5}\left(y - \frac{12}{7}\right) \Rightarrow \begin{cases} x = 0 \\ y = 1 \Rightarrow I(0;1;1) \end{cases} \\ z = -\frac{7}{5}\left(z - \frac{12}{7}\right) \end{cases}$$

 \Rightarrow đường thẳng cần tìm đi qua I(0;1;1) và có véc tơ chỉ phương $\vec{u} = (1;-2;2)$.

Thay tọa độ I(0;1;1) vào thỏa mãn phương trình $\frac{x+1}{1} = \frac{y-3}{-2} = \frac{z+1}{2}$.

Câu 45. Cho hai hình vuông *ABCD* và *ABEF* có cạnh bằng 1, lần lượt nằm trên hai mặt phẳng vuông góc với nhau. Gọi S là điểm đối xứng với B qua đường thẳng *DE*. Thể tích của khối đa diện *ABCDSEF* bằng

A. $\frac{7}{6}$

- **B.** $\frac{11}{12}$.
- C. $\frac{2}{3}$.
- $\underline{\mathbf{D}}$. $\frac{5}{6}$.

Lời giải

Chọn. D.

Gọi $\left(H\right)$ là khối đa diện ABCDSEF ta có $V_{(H)}=V_{ADF.BCE}+V_{S.CDFE}$.

* Vì ADF.BCE là hình lăng trụ đứng có đáy là tam giác vuông cân nên ta có:

$$V_{ADF.BCE} = AB.S_{BCE} = \frac{1}{2}$$
.

* Vì tứ giác CDFE là hình chữ nhật và S là điểm đối xứng với B qua đường thẳng DE nên ta có:

$$V_{S.CDFE} = 2V_{S.CDE} = 2.V_{B.CDE} = 2.V_{D.BCE} = 2.\frac{1}{3}CD.S_{BCE} = 2.\frac{1}{3}.1.\frac{1}{2} = \frac{1}{3}.$$

*
$$V_{(H)} = V_{ADF.BCE} + V_{S.CDFE} = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$$
.

Câu 46. Xét các số phức $z=a+bi\left(a,b\in\mathbb{R}\right)$ thỏa mãn $\left|z-4-3i\right|=\sqrt{5}$. Tính P=a+b khi $\left|z+1-3i\right|+\left|z-1+i\right|$ đạt giá trị lớn nhất.

A.
$$P = 10$$
.

B.
$$P = 4$$
.

C.
$$P = 6$$
.

D.
$$P = 8$$
.

Lời giải

$\frac{\mathbf{C}\mathsf{hon}}{\mathbf{A}}.\qquad \underline{\mathbf{A}}.$

Cách 1

Ta có
$$|z-4-3i| = \sqrt{5} \Leftrightarrow (a-4)^2 + (b-3)^2 = 5 \Leftrightarrow a^2 + b^2 - 8a - 6b + 20 = 0$$

$$\Leftrightarrow a^2 + b^2 = 8a + 6b - 20.$$

Mặt khác
$$M = |z+1-3i| + |z-1+i| = \sqrt{(a+1)^2 + (b-3)^2} + \sqrt{(a-1)^2 + (b+1)^2}$$
.

Suy ra
$$M^2 \le 2 \left[(a+1)^2 + (b-3)^2 + (a-1)^2 + (b+1)^2 \right]$$

$$\leq 2\left\lceil 2\left(a^2+b^2\right)-4b+12\right\rceil$$

$$\leq 2(16a+12b-40-4b+12)$$

$$\leq 2(16a+8b-28)=8(4a+b-7).$$

Khi đó:
$$\frac{M^2}{8} \le 4a + b - 7 \Leftrightarrow \frac{M^2}{8} + 7 \le 4a + b$$
.

Ta có
$$4a+2b=4(a-4)+2(b-3)+22$$

Nên
$$4a+2b-22=4(a-4)+2(b-3) \le \sqrt{(4^2+2^2)[(a-4)^2+(b-3)^2]}$$

$$\Rightarrow$$
 4*a* + 2*b* - 22 \leq 10

$$\Rightarrow 4a + 2b \le 32 \Rightarrow \frac{M^2}{8} \le 25 \Rightarrow M^2 \le 200 \Rightarrow M \le 10\sqrt{2}.$$

Vậy
$$M_{\text{max}} = 10\sqrt{2}$$
 khi
$$\begin{cases} 4a + 2b = 32 \\ 2a - 4b = -4 \end{cases} \Leftrightarrow \begin{cases} a = 6 \\ b = 4 \end{cases}.$$

Cách 2

Ta có
$$|z-4-3i| = \sqrt{5} \iff (a-4)^2 + (b-3)^2 = 5$$

Khi đó
$$M = |z+1-3i| + |z-1+i| = \sqrt{(a+1)^2 + (b-3)^2} + \sqrt{(a-1)^2 + (b+1)^2}$$

$$= \sqrt{10\sqrt{5}\sin\alpha + 30} + \sqrt{6\sqrt{5}\sin\alpha + 8\sqrt{5}\cos\alpha + 30}.$$

Áp dung BĐT Bunhiacopski

$$M \le \sqrt{2\left(16\sqrt{5}\sin\alpha + 8\sqrt{5}\cos\alpha + 60\right)} = \sqrt{2\left[8\sqrt{5}\left(2\sin\alpha + \cos\alpha\right) + 60\right]} \le 10\sqrt{2}.$$

Nên
$$M_{\text{max}} = 10\sqrt{2}$$
 khi
$$\begin{cases} \sin \alpha = \frac{2}{\sqrt{5}} \\ \cos \alpha = \frac{1}{\sqrt{5}} \end{cases} \Rightarrow \begin{cases} a = \sqrt{5} \sin \alpha + 4 = 6 \\ b = \sqrt{5} \cos \alpha + 3 = 4 \end{cases}.$$

Vậy
$$P = a + b = 10$$
.

Câu 47. Cho hình lăng trụ tam giác đều ABC.A'B'C' có $AB = 2\sqrt{3}$ và AA' = 2. Gọi M, N, P lần lượt là trung điểm của các cạnh A'B', A'C' và BC (tham khảo hình vẽ bên). Côsin của góc tạo bởi hai mặt phẳng (AB'C') và (MNP) bằng

$$\underline{\mathbf{B}}.\frac{\sqrt{13}}{65}.$$

C.
$$\frac{17\sqrt{13}}{65}$$
. D. $\frac{18\sqrt{13}}{65}$.

D.
$$\frac{18\sqrt{13}}{65}$$
.

Lời giải

Chọn.

<u>B</u>.

Ta có: Lăng trụ tam giác đều ABC.A'B'C' nên tam giác ABC đều khi đó $AP = 2\sqrt{3}.\frac{\sqrt{3}}{2} = 3$.

Mặt khác: $AA' \perp (ABC)$.

Gắn hệ trục tọa độ Oxyz với $O \equiv P$; tia PA trùng với tia Ox, tia PC trùng với tia Oy, tia Pz vuông góc với (ABC) Khi đó:

$$P(0;0;0), M\left(\frac{3}{2};-\frac{\sqrt{3}}{2};2\right), N\left(\frac{3}{2};\frac{\sqrt{3}}{2};2\right), A(3;0;0), B'(0;-\sqrt{3};2), C'(0;-\sqrt{3};2).$$

Ta có: $\overrightarrow{PM}\left(\frac{3}{2}; -\frac{\sqrt{3}}{2}; 2\right); \ \overrightarrow{PN}\left(\frac{3}{2}; \frac{\sqrt{3}}{2}; 2\right)$. Do đó vecto pháp tuyến của (MNP) là

$$\vec{n}_1 = \left(-2\sqrt{3}; 0; \frac{3\sqrt{3}}{2}\right)$$

Ta lại có: $\overrightarrow{AB'} = \left(-3; -\sqrt{3}; 2\right); \overrightarrow{AC'} = \left(-3; \sqrt{3}; 2\right)$. Do đó vecto pháp tuyến của $\left(AB'C'\right)$ là $\vec{n}_2 = \left(-4\sqrt{3}; 0; -6\sqrt{3}\right)$.

Gọi α góc tạo bởi hai mặt phẳng (AB'C') và (MNP). Khi đó: $\cos \alpha = \frac{|\vec{n}_1 \cdot \vec{n}_2|}{|\vec{n}_1| \cdot |\vec{n}_2|} = \frac{\sqrt{13}}{65}$.

Cách khác:

Mặt phẳng (MNP) chính là mặt phẳng (MNBC). Dễ dàng xác định được giao tuyến của (MNBC) và (AB'C') là IK (như hình vẽ).

Ta có
$$\begin{cases} AJ \perp IK \\ PH \perp IK \end{cases} \Rightarrow ((MNBC), (AB'C')) = (AJ, PH).$$

Xét hình chữ nhật AA'JP, dùng tính chất trong hình phẳng ta tính $\cos\widehat{PEA} = \frac{\sqrt{13}}{65}$.

Câu 48. Trong không gian Oxyz, cho ba điểm A(1;2;1), B(3;-1;1) và C(-1;-1;1). Gọi (S_1) là mặt cầu có tâm A, bán kính bằng 2; (S_2) và (S_3) là hai mặt cầu có tâm lần lượt là B,C và bán kính đều bằng 1. Hỏi có bao nhiều mặt phẳng tiếp xúc với cả ba mặt cầu $(S_1), (S_2), (S_3)$?

Lời giải

Chọn. Cách 1:

<u>B</u>.

Gọi $\vec{n} = (a;b;c)$ với $a^2 + b^2 + c^2 \neq 0$ là VTPT của mặt phẳng (P) tiếp xúc với cả ba mặt cầu $(S_1),(S_2),(S_3); M$ là trung điểm $BC \Rightarrow M(1;-1;1); \overrightarrow{BC} = (-4;0;0).$

TH1: (*P*) đi qua trung điểm *M* của *BC* \Rightarrow (*P*): a(x-1)+b(y+1)+c(z-1)=0 hay (*P*): ax+by+cz-a+b-c=0.

Ta có:
$$\begin{cases} d(A;(P)) = 2 \Leftrightarrow \begin{cases} |3b| = 2\sqrt{a^2 + b^2 + c^2} \\ d(B;(P)) = 1 \end{cases} \Leftrightarrow \begin{cases} |3b| = 2\sqrt{a^2 + b^2 + c^2} \end{cases} \Leftrightarrow \begin{cases} |3b| = 2|2a| \\ 4a^2 = a^2 + b^2 + c^2 \end{cases} \Leftrightarrow \begin{cases} b = \frac{4a}{3} \\ c^2 = \frac{11a^2}{9} \end{cases} \\ b = -\frac{4a}{3} \\ c^2 = \frac{11a^2}{9} \end{cases}$$

$$= 1.13 (1) \text{ só 2 rabiêm hâ (2) só 2 rabiêm và sóa rabiêm đó libêns tròng rhay. Vây truich$$

Hệ (1) có 2 nghiệm, hệ (2) có 2 nghiệm và các nghiệm đó không trùng nhau. Vậy trường hợp này có 4 mặt phẳng (P).

TH2: (P) song song với $BC \Rightarrow \vec{n}.\vec{BC} = 0 \Leftrightarrow a = 0 \Rightarrow (P)$: by+cz+d = 0

Ta có:
$$\begin{cases} d(A;(P)) = 2 \\ d(B;(P)) = 1 \end{cases} \Leftrightarrow \begin{cases} |2b + c + d| = 2\sqrt{b^2 + c^2} \\ |-b + c + d| = \sqrt{b^2 + c^2} \end{cases} \Leftrightarrow \begin{cases} |2b + c + d| = 2|-b + c + d| \\ (-b + c + d)^2 = b^2 + c^2 \end{cases}$$

$$\Leftrightarrow \begin{bmatrix} d = 4b - c \\ (-b + c + d)^2 = b^2 + c^2 \\ d = -c \\ (-b + c + d)^2 = b^2 + c^2 \end{cases} \Leftrightarrow \begin{bmatrix} d = 4b - c \\ c^2 = 8b^2 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} d = -c \\ c = 0 \\ b \neq 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} d = 4b - c \\ c^2 = 8b^2 \end{bmatrix}$$

Hệ (3) có 2 nghiệm, hệ (4) có 1 nghiệm và các nghiệm này không trùng nhau. Vậy trường hợp này có 3 mặt phẳng (P).

Vậy có tất cả 7 mặt phẳng (P).

<u>C</u>ách 2:

Ta có $AB = AC = \sqrt{13}$, BC = 4, $d\left(A;BC\right) = 3$. Do $R_1 = 2R_2 = 2R_3$ nên các khoảng cách từ các điểm A đến (P) sẽ gấp đôi các khoảng cách từ các điểm B,C đến (P). Gọi M,N lần lượt là điểm đối xứng của A qua B,C và P,Q là điểm trên cạnh AB,AC sao cho AP = 2BP, AQ = 2QC. Bài toán quy về tìm các mặt phẳng (P) chính là các mặt phẳng đi qua MN,MQ,NP,PQ sao cho $d\left(A;(P)\right) = 2$ là xong.

TH1: Ta có d(A;PQ) = 2 nên chỉ có duy nhất một mặt phẳng (P) qua PQ sao cho d(A;(P)) = 2.

TH2: d(A;MN), d(A;MQ); d(A;NP) đều lớn hơn 2 nên mỗi trường hợp sẽ có đúng hai mặt phẳng qua các cạnh MN, MQ, NP sao cho khoảng cách từ A đến nó bằng 2. Vậy có tất cả 7 mặt phẳng thỏa mãn yêu cầu.

Câu 49. Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh lớp 12A, 3 học sinh lớp 12B, 5 học sinh lớp 12C thành một hàng ngang. Xác suất để trong 10 học sinh trên không có 2 học sinh cùng lớp đứng cạnh nhau bằng

$$\frac{\mathbf{A}}{630}$$

B.
$$\frac{1}{126}$$
.

C.
$$\frac{1}{105}$$
.

D.
$$\frac{1}{42}$$
.

Chon A

Không gian mẫu: Xếp 10 học sinh thành hàng ngang

 $\Rightarrow |\Omega| = 10!$ cách xếp.

Gọi A là biến cố: "để trong 10 học sinh trên không có 2 học sinh cùng lớp đứng cạnh nhau". Ta có cách xếp như sau:

Lời giải

- Đầu tiên xếp 5 học sinh của lớp 12C, có 5! cách xếp.
- Khi đó, giữa 5 học sinh của lớp 12C có tất cả 6 chỗ trống (gồm 4 chỗ trống ở giữa và 2 chỗ trống trước, sau). Do 2 học sinh của lớp 12C không thể đứng gần nhau nên buộc phải có 4 người (của lớp 12A và 12B)
- Ta xét hai trường hợp sau:

+ TH1 : Có 1 học sinh A hoặc B ở phía ngoài (trước hàng hoặc sau hàng), 4 học sinh còn lại xếp vào 4 chỗ trống ở giữa các bạn C, có 2.5! cách xếp.

l .		5 0	•	- /		1				
A	С	В	C	A	C	В	C	В	C	

+ TH2 : có một cặp học sinh A và B vào một chỗ trống, 3 học sinh còn lại xếp vào 3 vị trí còn lại, có 2.3.2.4.3! cách xếp.

• /			1							
	C	AB	С	A	С	В	С	В	С	

- Vậy |A| = 5!(2.5! + 2.3.2.4.3!)

$$P(A) = \frac{|A|}{|\Omega|} = \frac{5!(2.5! + 2.3.2.4.3!)}{10!} = \frac{11}{630}.$$

Câu 50. Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1) = 0, $\int_{0}^{1} [f'(x)]^{2} dx = 7$ và

$$\int_{0}^{1} x^{2} f(x) dx = \frac{1}{3} \cdot \text{Tinh } \int_{0}^{1} f(x) dx.$$

$$\frac{\mathbf{A}}{5}$$

B. 1.

C.
$$\frac{7}{4}$$
.

D. 4.

Lời giải

Chon A

$$X\acute{e}t \int_{0}^{1} x^{2} f(x) dx = \frac{1}{3}$$

$$\Rightarrow \int_{0}^{1} x^{2} f(x) dx = \frac{1}{3} x^{3} f(x) \Big|_{0}^{1} - \frac{1}{3} \int_{0}^{1} x^{3} f'(x) dx = -\frac{1}{3} \int_{0}^{1} x^{3} f'(x) dx \text{ (vi } f(1) = 0 \text{)}$$

$$\Rightarrow \int_{0}^{1} x^{3} f'(x) dx = -3 \int_{0}^{1} x^{2} f(x) dx = -1$$

Ta lại có
$$\begin{cases} \int_{0}^{1} [f'(x)]^{2} dx = 7 \\ \int_{0}^{1} 14x^{3} f'(x) dx = -14 \\ \int_{0}^{1} 49x^{6} dx = 7x^{7} \Big|_{0}^{1} = 7 \end{cases}$$
$$\Rightarrow \int_{0}^{1} [f'(x)]^{2} dx + \int_{0}^{1} 14x^{3} f'(x) dx + \int_{0}^{1} 49x^{6} dx = 0$$
$$\Leftrightarrow \int_{0}^{1} [f'(x) + 7x^{3}]^{2} dx = 0$$

Mà
$$\int_{0}^{1} \left[f'(x) + 7x^{3} \right]^{2} dx \ge 0$$

Nên đẳng thức xãy ra khi chỉ khi $f'(x) + 7x^3 = 0 \Leftrightarrow f'(x) = -7x^3$

$$\Rightarrow f(x) = -\frac{7x^4}{4} + C$$

Ta có
$$f(1) = 0 \Leftrightarrow C = \frac{7}{4} \Rightarrow f(x) = \frac{7}{4}(1 - x^4)$$

$$\Rightarrow \int_{0}^{1} f(x) dx = \frac{7}{4} \int_{0}^{1} (1 - x^{4}) dx = \frac{7}{4} \left(x - \frac{x^{5}}{5} \right) \Big|_{0}^{1} = \frac{7}{4} \left(1 - \frac{1}{5} \right) = \frac{7}{5}$$
---HÉT---