Please make sure to follow the hand-in instructions. Also, please present your answers in order, showing the working for each answer. Answering yes/no is not enough. You should rather present an argument or derivation of your answer.

Consider the vectors $v_1 = \begin{bmatrix} -1 & 0 & -1 \end{bmatrix}^T$, $v_2 = \begin{bmatrix} 0 & -1 & 1 \end{bmatrix}^T$, and $v_3 = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$. Let the 3×3 matrix A have columns v_1 , v_2 , and v_3 . That is $A = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$.

- 1. Do the vectors v_1 , v_2 , and v_3 constitute a set of orthogonal vectors?
- 2. Are the vectors v_2 and v_3 orthogonal?
- 3. Execute the Gram-Schmidt procedure on the vectors v_1 , v_2 , and v_3 in this order. Present the output as columns of an orthogonal matrix Q.
- 4. Determine Q^{-1} .
- 5. What is the nullspace of the matrix A?
- 6. What is the rank of the matrix A?
- 7. Are the vectors v_1 , v_2 , and v_3 a basis for \mathbb{R}^3 ?
- 8. Now execute the Gram-Schmidt procedure on the vectors v_3 , v_2 , and v_1 in the order $(3 \to 2 \to 1)$. Present the output as the columns of an orthogonal matrix M.
- 9. Define the matrix B = QM. Is B an orthogonal matrix?
- 10. Consider now the 9×9 block matrix,

$$G = \begin{bmatrix} Q & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & Q \end{bmatrix},$$

where each 0 is a 3×3 matrix of zero values. What is the inverse matrix of G?