Дифференциальные уравнения

Основано на лекциях Макарова С.В. Конспект написан Заблоцким Данилом

Весенний семестр 2024

Эти записи не одобряются лекторами, и я вношу в них изменения (часто существенно) после лекций. Они далеко не точно отражают то, что на самом деле читалось, и, в частности, все ошибки почти наверняка мои.

Оглавление

1	Системы ДУ 1-го порядка		3
	1.1	Линейные однородные системы с постоянными коэффициен-	
		тами	7
	1.2	Устойчивость решения систем ДУ	8
	1.3	Устойчивость решений линейных автономных систем	10
	1.4	Устойчивость по первому приближению	11
	1.5	Исследование отрицательности действительных частей кор-	
		ней хар-го уравнения	11
	1.6	Фазовый портрет линейной автономной системы на плоскости	12
	1.7	Фазовый портрет нелинейной системы	14
		1.7.1 Исследование устойчивости с помощью функций Ля-	
		пунова	14

Глава 1

Системы ДУ 1-го порядка

Лекция 1: Начало

от 20 фев 10:30

Рассмотрим систему 1-го порядка из m уравнений с n неизвестными:

(1)
$$\begin{cases} F_1(t, x_1, \dots, x_n, \dots, \dot{x_n}) = 0 \\ \vdots \\ F_m(t, x_1, \dots, x_n, \dot{x_1}, \dots, \dot{x_n}) = 0 \end{cases}$$

Далее m=n.

Определение 1 (Нормальная система ДУ 1-го порядка). Систему ДУ 1-го порядка назовем *нормальной*, если она имеет вид:

(2)
$$\begin{cases} \dot{x_1} = f_1(t, x_1, \dots, x_n) \\ \vdots \\ \dot{x_n} = f_n(t, x_1, \dots, x_n) \end{cases} \quad \dot{\overline{x}} = \overline{f}(t, \overline{x}), \quad (2')$$

Определение 2 (Решение системы ДУ 1-го порядка). Решением системы ДУ 1-го порядка $\overline{x}(t) = \phi(t) = \left(\phi_1(t) \dots \phi_n(t)\right)^T$ называется набор дифференциальных функций, обращающих уравнение системы в верное тождество.

Определение 3 (Задача Коши для системы ДУ 1-го порядка). Задачей Komu для системы ДУ 1-го порядка называется задача отыскания решения системы (2) или (2'), удовлетворяющего условиям:

(3)
$$\begin{cases} x_1(t_0) = x_1^{\circ} \\ \vdots \\ x_n(t_0) = x_n^{\circ} \end{cases}$$
 или $\overline{x}(t_0) = \overline{x^{\circ}}$ (3')

Теорема 1 (\exists и ! решения задачи Коши для системы). Пусть $\overline{f}(t,\overline{x})$ определена и непрерывна в области $D \subset R^{n+1}$ и удовлетворяет условию Липпиица по переменным x_1,\dots,x_n (более сильное условие – частные производные $\frac{\partial f_i}{\partial x_i}$ непрерыные в области $D,\ i,j=\overline{1,n}$).

Тогда решение задачи (2), (3) или (2'), (3') \exists и ! в интервале $[t_0 - h; t_0 + h)$, где $h = r \setminus \sqrt{M^2 + 1}$, r — радиус шара B_r с центром $(t_0, \overline{x^\circ})$, целиком лежащего в D, $M = \sup_{B_r} \lVert \overline{f}(t, \overline{x}) \rVert$.

Определение 4 (Линейная система). Система ДУ 1-го порядка называется *линейной*, если она имеет вид:

(4)
$$\begin{cases} \dot{x_1} = a_{11}(t)x_1 + \dots + a_{1n}(t)x_n + g_1(t) \\ \vdots \\ \dot{x_n} = a_{n1}(t)x_1 + \dots + a_{nn}(t)x_n + g_n(t) \end{cases}$$

или

$$(4') \quad \frac{\overline{x}}{\overline{x}} = A(t) \cdot \overline{x} + \overline{g}(t) A(t) = (a_{ij}(t)), \ \overline{g}(t) = (g(t)), \ i, j = \overline{1, n}$$

Определение 5 (Однородные системы). Система (4) или (4') называется $o\partial hopo\partial ho\check{u}$, если $\overline{g}(t)=0$, то есть

(5)
$$\overline{x'} = A(t) \cdot \overline{x}$$
.

Если матрица A(t) имеет пост. элементы, то A(t) = A.

Теорема 2 (О продолжаемости решения системы на интервале). Пусть $a_{ij}(t)$ и $g_j(t)$ непрерывны на $(\alpha;\beta),\ i,j=\overline{1,n}.$ Тогда решение задачи Коши (4'),(3') существует и единственно и продолжено на $(\alpha;\beta),\ [-\infty \leqslant \alpha < \beta \leqslant +\infty \ (\alpha;\beta)].$

Определение 6 (ЛЗ система). Система функций $\overline{x}^1, \dots, \overline{x}^n$ называется ЛЗ на $(\alpha; \beta)$, если \exists набор действительных чисел C_1, \dots, C_n , не всех равных нулю, такой, что

(6)
$$C_1\overline{x}^1 + \ldots + C_n\overline{x}^n = 0$$
 на $(\alpha; \beta)$.

Определение 7 (ЛНЗ система). Если в равенстве (6) $C_1 = C_2 = \ldots = C_n = 0$, то система функций $\overline{x}^1, \ldots, \overline{x}^n$ ЛНЗ.

Определение 8 (Фундаментальная система). Любая ЛНЗ система решений $\overline{x}^1, \dots, \overline{x}^n$ называется $\phi y n \partial a m e n m a n b n o i (<math>\Phi CP$).

Определение 9 (Фундаментальная матрица). Матрица, столбцы которой являются Φ CP, называется ϕ ундаментальной матрицей,

$$\Phi(t) = \begin{pmatrix} x_1^1 & \cdots & x_1^n \\ \vdots & \ddots & \vdots \\ x_n^1 & \cdots & x_n^n \end{pmatrix}, \quad \dot{\overline{x}} = A(t)\overline{x}.$$

Определение 10 (Определитель Вронского). *Определителем Вронского* называется определитель фундаментальной матрицы,

$$W(t) = \det \Phi(t)$$
.

Теорема 3. Если система функций $\overline{x}^1,\dots,\overline{x}^n$ ЛЗ, то W(t)=0.

Следствие 1. Если $W_{\overline{x}^1,...,\overline{x}^n}(t) \neq 0$, то $\overline{x}^1,...,\overline{x}^n$ ЛНЗ система функций.

Теорема 4. Пусть $\exists t_0 \in (\alpha; \beta) : W(t_0) = 0$ и $a_{ij}(t)$ из (5) непрерывна на $(\alpha; \beta)$. Тогда W(t) = 0 на $(\alpha; \beta)$ и $\overline{x}^1, \dots, \overline{x}^n$ ЛЗ.

Теорема 5 (Формула Лиувиш-Остроградского). Определитель Вронского для матрицы, составленной из решений (5), находятся по формуле Л-О:

$$e^{\int_{t_0}^t Tr A(s)ds} W(t_0) = W(t),$$

 $Tr A(t) = a_{11}(t) + \ldots + a_{nn}(t).$

Доказательство. Для произвольного x^{j} :

$$\begin{pmatrix} \dot{x}_1^j \\ \vdots \\ x_i^j \\ \vdots \\ x_n^j \end{pmatrix} = \begin{pmatrix} a_{11}(t) & \cdots & a_{1n}(t) \\ \vdots & \ddots & \vdots \\ a_{i1}(t) & \cdots & a_{in}(t) \\ \vdots & \ddots & \vdots \\ a_{n1}(t) & \cdots & a_{nn}(t) \end{pmatrix} \begin{pmatrix} x_1^j \\ \vdots \\ x_i^j \\ \vdots \\ x_n^j \end{pmatrix},$$

$$\dot{W}(t) = \sum_{i=1}^{n} \begin{vmatrix} x_{1}^{1} & \cdots & x_{1}^{n} \\ \vdots & \ddots & \vdots \\ x_{i-1}^{1} & \cdots & x_{i-1}^{n} \\ x_{i}^{1} & \cdots & x_{i+1}^{n} \\ \vdots & \ddots & \vdots \\ x_{n}^{1} & \cdots & x_{n}^{n} \end{vmatrix} =$$

$$\sum_{k=1}^{n} a_{ik} x_{k}^{1} - a_{i1} x_{1}^{1} - a_{i2} x_{2}^{1} - \dots$$

$$\dots - a_{i1-1} x_{i-1}^{1} - a_{ii+1} x_{i+1}^{1} - \dots - a_{in} x_{n}^{1} = a_{ii} x_{i}^{1},$$

$$\bigoplus \sum_{k=1}^{n} a_{ii} W(t) = W(t) \cdot TrA(t).$$

Ha $[t_0; t]$:

$$\int_{t_0}^{t} \frac{\dot{W}(s)}{W(s)} ds = \int_{t_0}^{t} TrA(t)dt = \ln |W(t)| - \ln |W(t_0)| = \int_{t_0}^{t} Tr(A)(s)ds \implies$$

$$\implies W(t) = W(t_0) \cdot \exp \left(\int_{t_0}^{t} TrA(s)ds \right).$$

Следствие 2. Если $\exists t_0 \in (\alpha;\beta): W(t_0) = 0 \implies W(t) = 0$ для $\forall t \in (\alpha;\beta).$

Теорема 6 (О структуре общего решения однородной системы ДУ). Пусть $\overline{x}^1(t), \overline{x}^2(t), \dots, \overline{x}^n(t)$ – до. е. р., тогда:

$$\overline{x}_{00} = \sum_{k=1}^{n} C_k \overline{x}^k(t),$$

 C_k – произвольная постоянная.

Лекция 2: Продолжение

от 5 мар 10:30

1.1 Линейные однородные системы с постоянными коэффициентами

$$\begin{pmatrix} P_{m_1}^1(t) \\ \vdots \\ P_{m_n}^1(t) \end{pmatrix} \cdot e^{\lambda t}.$$

Примечание (Случай 1). Пусть $\lambda_i \in R, \ i=\overline{1,r}$ и $\lambda_i \neq \lambda_j \ (i=j)$. Тогда $\overline{x}_j=\overline{v}_ie^{\lambda_it}$ является решением однородной системы $\overline{\dot{x}}=A\overline{x},$

$$\nabla \underbrace{\lambda_i \overline{v}_i e^{\lambda_i t}}_{\overline{x}_i} = A \overline{v}_i e^{\lambda_i t} = A \overline{x}_j \implies x_{00} = \sum_{k=1}^n C_k \overline{v}_k e^{\lambda_k t}.$$

ГЛАВА 1. СИСТЕМЫ ДУ 1-ГО ПОРЯДКА

Замечание. $\lambda_i \in R$ $(i=\overline{1,n})$ и $\lambda_i = \lambda_j$ $(i \neq j); \ \lambda_i$ дают n ЛНЗ собств. векторов.

Примечание (Случай 2). Пусть $\lambda_1=a+bi,\ \overline{v}_1(t)=\overline{v}_1^1(t)+i\overline{v}_1^2(t)$ – собств. вектор, отвечающий λ_1 . Тогда $\lambda_2=a-b_i$ и $\overline{v}_2(t)=\overline{v}_1^1(t)-i\overline{v}_1^2(t)$ – собств. вектор отв. λ_2 .

Сравнить $A\overline{v}_1 = \lambda_1 \overline{v}_1$ и $A\overline{v}_2 = \lambda_2 \overline{v}_2$.

Выберем 2 действ. $(\overline{x}_1(t) = \overline{v}_1(t)e^{\lambda_1 t}; \ \overline{x}_2(t) = \overline{v}_2(t)e^{\lambda_2 t}).$

$$\overline{x}_1^R = \frac{1}{2} (\overline{x}_1(t) + \overline{x}_2(t)) = \operatorname{Re} \overline{x}_1(t),$$

$$\overline{x}_2^R = \frac{1}{2i} (\overline{x}_1(t) - \overline{x}_2(t)) = \operatorname{Im} \overline{x}_1(t).$$

Теорема 7. Решение системы $\dot{\bar{x}} = Ax$ имеет вид:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} P_{m_1}^1(t) \\ \vdots \\ P_{m_n}^n(t) \end{pmatrix} e^{\lambda_1 t} + \dots + \begin{pmatrix} P_{1_1}^1(t) \\ \vdots \\ P_{1_n}^n(t) \end{pmatrix} e^{\lambda_s t} \quad (*)$$

 $\lambda_1, \dots, \lambda_s$ — собственные числа A. Степени множеств в i-ом столбце на 1 меньше, чем макс. размернок ШК, соотв. λ_i .

Формула (*) включает n производных постоянных и выражает общее решение системы,

$$e^{\lambda t} \left(\begin{array}{c} P_{k-m}^1(t) \\ \vdots \\ P_{k-m}^n(t) \end{array} \right).$$

1.2 Устойчивость решения систем ДУ

$$(1) \ \left\{ \begin{array}{l} \dot{x}=f(t,x) \\ x(t_0)=x_0 \end{array} \right. \quad f \in C, \ f \in \operatorname{Lip} x \text{ или } f \in C^1.$$

Определение 11 (Устойчивое по Ляпунову решение). Решение $\phi(t)$ задачи (1) называется yстойчивым по Ляпунову, если $\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall x(t)$ – решение (1) : $|x(t_0) - \phi(t_0)| < \delta$ выполняется неравенство $|x(t) - \phi(t)| < \varepsilon$ для $\forall t \geqslant t_0$.

Определение 12 (Устойчивое решение). Решение $\phi(t)$ задачи (1) называется yстойчивым, если $\exists \varepsilon > 0 : \forall \delta > 0 \ \exists \widetilde{x}(t)$ – решение (1): $|\widetilde{x}(t_0) - \phi(t_0)| < \delta$ и $\exists t_1 > t_0$ выполняется неравенство $|\widetilde{x}(t_1) - \phi(t_1)| \geqslant \varepsilon$.

Определение 13 (Асимптотическое решение). Решение $\phi(t)$ задачи (1) называется acumnmomuчeckum, если:

- 1. Оно устойчиво по Ляпунову.
- 2. $\exists \delta > 0$: $\forall x(t)$ решений (1): $|x(t_0) \phi(t_0)| < \delta$ выполняется

$$\lim_{t \to \infty} |x(t) - \phi(t)| = 0.$$

Замечание. Из неограниченности решений не следует неустойчивость,

$$\begin{cases} \dot{x} + x = t + 1 \\ x(0) = 0 \end{cases}$$

$$\dot{x} + x = 0$$
, $-\frac{dx}{x} = dt$, $x_{00} = Ce^{-t}$, $\frac{dx}{x} = -x$, $\ln(x) = -t + \ln C$.

$$x_{OH} = C(t)e^{-t}$$

 $\dot{x}_{OH} = C'(t)e^{-t} - C(t)e^{-t}$
 $C'(t)e^{-t} = t + 1$

$$C'(t) = (t+1)e^{-t}$$

 $C(t) = \int e^t dt + \int te^t dt = e^t + te^t - \int e^t dt = te^t + C$

$$x_{OH} = (te^t + C)e^{-t} = t + Ce^{-t}.$$

Найдем $\phi(t): \phi(0)=o+C\cdot 1=0 \implies C=0 \implies \phi(t)=t.$ Исследуем на устойчивость:

$$x(0) = x_0$$

$$x(t) = t + x_0 e^{-t}$$

$$x(0) = \alpha$$

$$x(0) = 0 + C \cdot 1 = \alpha \implies C = \alpha$$

 $x(t) = t + \alpha e^{-t},$

$$\lim_{t \to \infty} |x(t) - \phi(t)| = \lim_{t \to \infty} |\alpha e^{-t}| = 0 \implies$$

 $\implies \phi(t)$ асимптотически устойчива, хотя и неограничена.

Замечание. Из ограниченности решений не следует устойчивость (f – лин., то ограниченность \equiv устойчивость).

$$(2) \ \left\{ \begin{array}{ll} \dot{x}=\sin^2 x \\ x(0)=0 \end{array} \right. \quad (\phi(t)\equiv 0 \ \text{является решением (2), } \phi(t) - \text{устойчива)}.$$

1.3 Устойчивость решений линейных автономных систем

- (1) $\dot{\overline{x}} = Ax$, A постоянная матрица $n \times n$.
- (2) $det(A \lambda E) = 0$ хар-ое уравнение.

$$\overline{x}_0 = \left(egin{array}{c} 0 \ 0 \ dots \ 0 \end{array}
ight)$$
 — нулевое решение.

Определение 14 (Устойчивое по Ляпунову нулевое решение). Нулевое

решение $\overline{x}_0 = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$ называется yстойчивым по Ляпунову, если $\forall \varepsilon > 0$ $\exists \delta > 0: \ \forall \overline{x}(t): \ \left\| \overline{x}(t_0) - \overline{x}_0 \right\| < \delta$ имеем $\left\| \overline{x}(t) - \overline{x}_0 \right\| < \varepsilon \ \forall t \geqslant t_0$.

Теорема 8.

- 1. Если все корни $\lambda_1,\dots,\lambda_n$ хар-го уравнения (2) имеют отриц. действительные части ($\operatorname{Re} \lambda_k < 0,\ k=\overline{1,n}$), то нулевое решение системы (1) acumnmomuчecku.
- 2. Если \exists хотя бы один кореньт хар-го уравнения (2) с положительной действительной частью ($\exists m : \operatorname{Re}(\lambda_m) > 0$), то нулевое решение системы (1) *neycmoйчиво*.
- 3. Если \exists корни хар-го уравнения (2) с нулевой, причем размерность соответствующих им клеток в ШФ матрицы A равна 1, то нулевое решение системы (1) устойчиво, но не асимптотически устойчиво (предполагается, что все остальные корни имеют отрицательные действительные части).
- 4. Если \exists корни хар-го уравнения (2) с нулевой действительной частью, хотя бы одному из j-ых отвечает клетка размерности $\geqslant 2$ в $\boxplus \Phi$ матрицы A, то решение системы (1) устойчиво.

Доказательство.

1.
$$\overline{x}(t) = e^{\lambda_k t} \cdot (P_{k-1}^1(t) P_{k-1}^2 \dots P_{k-1}^n(t))^T, \ \lambda_k \in R.$$

2.
$$\overline{x}(t) = e^{\lambda_k t} \begin{pmatrix} P_{k-1}^1(t) \\ \vdots \\ P_{k-1}^n(t) \end{pmatrix} \cos \beta t + e^{\lambda_k t} \begin{pmatrix} Q_{k-1}^1 \\ \vdots \\ Q_{k-1}^n(t) \end{pmatrix} \sin \beta t, \ \lambda_k \in \mathbb{C},$$

- $t \to \infty$. $e^{\lambda_k t} \to \overline{0}$:
- $\bullet \begin{array}{l}
 e^{\lambda_k t} \to \infty & \lambda_k < 0 \\
 e^{\lambda_k t} \to +\infty & \lambda_k > 0
 \end{array};$
- Re $\lambda_k = 0 \implies e^{\lambda_k t} = 1 \implies \begin{pmatrix} P_{k-1}^1(t) \\ \vdots \\ P_{k-1}^n(t) \end{pmatrix}$ const.

Лекция 3: Продолжение

от 19 мар 10:30

1.4 Устойчивость по первому приближению

Теорема 9 (Ляпунова). (3) $\dot{\overline{x}} = \overline{f}(\overline{x},t)$. Пусть $\overline{f}(\overline{x},t) = A\overline{x} + \overline{\phi}(\overline{x},t)$. (4) $|\overline{\phi}(\overline{x},t)| < j(\overline{x}) \cdot |\overline{x}|, \ j(\overline{x}) \to 0$ при $|\overline{x}| \to 0$.

$$\|\cdot\| \sim |\cdot|, \ |\overline{x}| = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}.$$

Тогда:

- 1. Если все корни $\lambda_1,\dots,\lambda_n$ уравнения (3) имеют отриц. действ. части ($\operatorname{Re}\lambda_k<0,\ k=\overline{1,n}$), то нулевое решение системы (3) асимптотически устойчиво.
- 2. Если \exists хотя бы один корень хар-го уравнения (2) с полож. действ. частью ($\exists m: \operatorname{Re} \lambda_m > 0$), то нулевое решение системы (3) неустойчиво.

1.5 Исследование отрицательности действительных частей корней хар-го уравнения

(5) $a_0\lambda^n+a_1\lambda^{n-1}+\ldots+a_{n-1}+a_n=0$ – хар. уравнение, $a_k\in R,\ h=\overline{0,n},\ a_0\neq 0$

Составим матрицу Гурвица:

$$\Gamma = \begin{pmatrix} a_1 & a_0 & 0 & 0 & \cdots & 0 \\ a_3 & a_2 & a_1 & a_0 & \cdots & 0 \\ a_5 & a_4 & a_3 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & a_n \end{pmatrix}$$

Теорема 10 (Необходимое условие отрицательности действительных частей всех корней). $\lambda_i,\ i=\overline{1,n}$ является $a_k>0,\ k=\overline{0,n}$.

Для $n \leqslant 2$ это условие является и достаточным.

Теорема 11 (Достаточное условие отрицательности всех действительных частей корней характеристического уравнения (5)). Если все главные миноры матрицы Гурвица больше 0, то все действительные части корней хар. ур. (5) отрицательны.

Критерий 1 (Рауса-Гурвица). Пусть:

- 1. $a_k > 0$, $k = \overline{0, n}$ в уравнении (5).
- 2. Все главные миноры матрицы Гурвица положительные, то есть

$$\triangle_{1} = a_{1} > 0, \ \triangle_{2} = \begin{vmatrix} a_{1} & a_{0} \\ a_{3} & a_{2} \end{vmatrix} > 0, \ \triangle_{3} = \begin{vmatrix} a_{1} & a_{0} & 0 \\ a_{3} & a_{2} & a_{1} \\ a_{5} & a_{4} & a_{3} \end{vmatrix} > 0, \dots, \triangle_{n} = a_{n} \cdot \triangle_{n-1} > 0,$$

$$\operatorname{Re} \lambda_{k} < 0, \ k = \overline{1, n}.$$

1.6 Фазовый портрет линейной автономной системы на плоскости

Рассмотрим систему на плоскости:

$$\dot{\overline{x}} = \overline{f}(\overline{x}), \ \overline{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix},$$

(6)
$$\begin{cases} \dot{x} = f_1(x, y) \\ \dot{y} = f_2(x, y) \end{cases}$$
 – нелинейная,

(7)
$$\begin{cases} \dot{x} = ax + by \\ \dot{y} = cx + dy \end{cases}$$
 – линейная, $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$

Определение 15 (Траектория на дуговой плоскости). Траекторией (или дуговой кривой) на дуговой плоскости (плоскость переменных x,y) называется график решения, состоящий из точек (x,y), где $x=x(t),\;y=y(t)$ в момент времени t.

Определение 16 (Фазовый портрет). Φ азовый портрет – совокупность всех фазовых кривых.

Свойства траекторий:

- 1. Не пересекаются.
- 2. Различным решениям системы может соответствовать одна и та же траектория.
- 3. Особой точкой системы $\left\{ \begin{array}{ll} \dot{x}=f_1(x,y) \\ \dot{y}=f_2(x,y) \end{array} \right.$ называется точка, координаты которой удовлетворяют уравнению $\left\{ \begin{array}{ll} f_1(x,y)=0 \\ f_2(x,y)=0 \end{array} \right.$

 $Ocoбая\ moчка$ – траектория системы (так как является решением).

Замечание. Траектории могут неограниченно приближаться к особой точке, никогда не входя в нее.

4. Пусть $(x_1(t), y_1(t))$ и $(x_2(t), y_2(t))$ – две траектории, и $\exists t_1, t_2$:

$$\begin{cases} x_1(t_1) = x_2(t_2) \\ y_1(t_1) = y_2(t_2) \end{cases},$$

тогда эти траектории совпадают.

5. Если $\exists t_1, t_2$:

$$\begin{cases} x(t_1) = x(t_2) \\ y(t_1) = y(t_2) \end{cases},$$

то траектория (x(t), y(t)) – замкнутая кривая или периодическая.

Теорема 12. Траектории автономной системы либо точка, либо период. кривая, либо кривая без самопересечений.

Лекция 4: Продолжение

от 28 мар 10:30

1.7 Фазовый портрет нелинейной системы

Определение 17 (Предельный цикл системы). Предельным циклом системы называется замкнутая фазовая кривая, у которой существует окружность, целиком заполненная траекториями, точки на траектории движутся к этой замкнутой привой при $t \to +\infty$ или $t \to -\infty$.

Примечание. Устойчивый предельный цикл содержит неустойчивый фокус. Неустойчивый предельный цикл содержит устойчивый фокус.

1.7.1 Исследование устойчивости с помощью функций Ляпунова

Рассмотрим нелинейную систему:

$$(1) \ \dot{\overline{x}} = \overline{F}(t, \overline{x}), \ F = \begin{pmatrix} f' \\ \vdots \\ f_n \end{pmatrix}, \ \overline{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} f_i,$$
$$\frac{\partial f_i}{\partial x_k} \in C(D), \ t \geqslant t_0, \ v(t, \overline{x}) \in C(\mathbb{R}^n).$$

Определение 18. Производная $v(t, \overline{x})$ в силу системы (1) определяется по формуле:

$$\frac{dv}{dt}\Big|_{(1)} = \frac{\partial v}{\partial k} + \frac{\partial v}{\partial x_1} f_1 + \frac{\partial v}{\partial x_2} f_2 + \ldots + \frac{\partial v}{\partial x_k} f_n = \frac{\partial v}{\partial k} + \sum_{i=1}^n \frac{\partial v}{\partial x_i} f_i.$$

Рассмотрим автономную систему:

(2)
$$\dot{\overline{x}} = F(\overline{x}).$$

Будем предполагать, что $F(\overline{0}) = \overline{0}$, $\overline{0}$ – особая точка (2).

Определение 19 (Функция Ляпунова). Функция $V(x) = V(x_1, x_2, \dots, x_n)$, определенная на шаре $\|\overline{x}\| < R$, называется функцией Ляпунова, если:

- 1. $V(\overline{x}) \in C^1$ ($||\overline{x}|| < R$).
- 2. $V(\overline{x}) \ge 0$ B $\|\overline{x}\| < R$: $V(\overline{x}) = 0 \iff \overline{x} = \overline{0}$.
- 3. $\frac{dV}{dt}\Big|_{(1)} = \frac{\partial V}{\partial x_1} f_1 + \frac{\partial V}{\partial x_2} f_2 + \ldots + \frac{\partial V}{\partial x_n} f_n = (\operatorname{grad} V, F) \leqslant 0 \text{ b } 0 < \|\overline{x}\| < R.$

Теорема 13 (Ляпунова об устойчивости). Если ∃ функция Ляпунова для системы (2), то нулевое решение устойчиво по Ляпунову.

Теорема 14 (Ляпунова об асимптотической устойчивости). Если \exists функция $V(\overline{x}) = V(x_1, \dots, x_n)$, опр. на шаре $\|\overline{x}\| < R$, со свойствами:

- 1. $V(\overline{x}) \in C^1 (||\overline{x}|| < R)$.
- 2. $V(\overline{x}) \geqslant 0$ b $\|\overline{x}\| < R$, $V(\overline{x}) = 0 \iff \overline{x} = \overline{0}$.
- 3. $\frac{dV}{dt}\Big|_{(1)} = (\operatorname{grad} V, F) \leqslant -w(x) < 0$ в $0 < \|\overline{x}\| < R$, $w(x) \in C(\|\overline{x}\| < R)$.

Тогда нулевое решение (2) асимптотически устойчиво.

Теорема 15 (Ляпунова о неустойчивости). Если \exists функция $V(\overline{x}) = V(x_1, x_2, \dots, x_n)$ опр. на шаре $\|\overline{x}\| < R$, со свойствами:

- 1. $V(\overline{x}) \in C^1 (||\overline{x}|| < R)$.
- 2. $V(\overline{x}) \ge 0$ b $\|\overline{x}\| < R$; $V(\overline{x}) = 0 \iff \overline{x} = \overline{0}$.
- 3. $\left.\frac{dV}{dt}\right|_{(2)}=(\operatorname{grad} V,F)\geqslant w(x)>0$ в 0 < $\|\overline{x}\|< R,\ t\geqslant t_0,\ w(x)\in C\ (\|\overline{x}\|< R).$

Тогда нулевое решение (2) неустойчиво.

Теорема 16 (Четаева о неустойчивости). Если \exists область D, причем $\overline{0} \in \partial D$ и \exists функция $V(\overline{x}) = V(x_1, \dots, x_n)$ опр. в $\|\overline{x}\| < R$, удовлетворяет условиям:

- 1. $V(\bar{x}) \in C^1 (||\bar{x}|| < R)$.
- 2. $V(\overline{x}) \geqslant 0$ в D, $V(\overline{x}) = 0 \iff \overline{x} \in \partial D$.