Ejercicios Leyes de Kircchoff - Resistencias equivalentes - Divisor de tensión

Ejercicio 1

Resistencia equivalente serie. Hasta ahora vimos como calcular la resistencia equivalente de 2 resistencias en serie.

Generalice este resultado para N resistencias y obtenga una expresión para la resistencia equivalente.

Resistencia equivalente paralelo Hasta ahora vimos como calcular la resistencia equivalente de 2 resistencias en paralelo.

Generalice este resultado para N resistencias y obtenga una expresión para la resistencia equivalente.

Ejercicio 3

Se desea calcular la tensión sobre el resistor R_2 en el seguiente circuito:

- (a) Calcule la corriente sobre R_2 en función de V_s , R_1 y R_2 y obtenga una expresión genérica para la tensión sobre R_2 .
- (b) Realice el mismo procedimiento para el resistor R_1 y obtenga una expresión genérica para el valor de la tensión sobre R_1 . Compare ambas expresiones.
- (c) Analice las expresiones en el caso $R_1 = R_2$.
- (d) Si se modifica el nodo que se eligió como referencia ¿se modifican los resultados obtenidos en los puntos anteriores?

Suponga que se tiene el siguiente circuito con *N* resistores:

- (a) ¿Es posible generalizar este resultado del ejercicio anterior?.
- (b) Basándose en los cálculos para el circuito con 2 resistores, ¿cuál es la expresión para la tensión sobre la resistencia R_N ? ¿Cuál es la expresión para la tensión sobre el resistor R_i ?

Ejercicio 5

Se desea calcular la corriente sobre la resistencia R_2 del circuito que se muestra a continuación.

- (a) Calcule la corriente sobre R_2 en función de I_s , R_1 y R_2 y obtenga una expresión genérica para la corriente sobre R_2 . ¿Qué diferencias observa con los resultados del ejercicio 3?
- (b) Realice el mismo procedimiento para el resistor R_1 y obtenga una expresión genérica para el valor de la corriente que circula sobre R_1 . Compare ambas expresiones.
- (c) Analice las expresiones en el caso $R_1 = R_2$.

Suponga que se tiene el siguiente circuito con *N* resistores:

- (a) ¿Es posible generalizar el resultado obtenido en el ejercicio anterior?
- (b) Basándose en los cálculos para el circuito con 2 resistores, ¿cuál es la expresión para la corriente sobre el resistor R_N ? ¿Cuál es la expresión para la corriente sobre el resistor R_i ?

Ejercicio 7

- (a) Cuál es el valor de la resistencia que "ve" la batería *V*? (ayuda: es lo que se ve entre A-B desconectando la batería).
- (b) ¿Cuál es el valor de la diferencia de potencial sobre R_4 ?. Indique el sentido de referencia.

Ejercicio 8

- (a) ¿Cuál es el valor de Resistencia que "ve" la batería V?
- (b) ¿Cuál es el valor y el sentido de la corriente en R_4 ?
- (c) ¿Cómo conectaría un multímetro para medir la diferencia de potencial sobre R_2 ?

- (a) ¿Cuánto vale V_7 ?
- (b) ¿Cuánto vale *I*₇?
- (c) ¿Cómo conectaría un multímetro para medir la corriente sobre R_5 ?¿Cuál es su valor?

Ejercicio 10

Un grupo de alumnos del turno de la tarde propuso analizar el siguiente circuito utilizando las leyes de Kirchoff y propuso los siguientes sentidos de corriente y circulación de la malla:

Otro grupo de alumnos del turno noche observó que el sentido de circulación de la malla de la derecha C2 no coincide con el sentido de la corriente I_3 y propusieron cambiarlo ya que de otra forma se obtendría un resultado incorrecto:

Sin embargo el grupo de alumnos de la tarde insiste en que debe analizarse de la manera que plantearon, ya que de otra forma las circulaciones C1 y C2 no serían consistentes con el sentido adoptado para la corriente I_2 ¿Quién tiene razón?

Ejercicio 11

Para el siguiente ejercicio calcule la tensión sobre el resistor R1, la tensión en el nodo A y la corriente I_3 .

Sin resolver nuevamente el ejercicio, indique que magnitudes de las calculadas anteriormente se modifican si se coloca la referencia como se ve en el siguiente circuito. Resuelva el ejercicio y verifique sus respuestas.

Utilizando los resultados de los puntos anteriores y sin resolver el circuito, indique la tensión en el nodo B del siguiente circuito.

