Wydział:	Dzień:Poniedziałek 14-17		Zespół:
Fizyki	Data: 20.03.2017		8
Imiona i nazwiska:	Ocena z przygotowania:	Ocena ze sprawozdania:	Ocena końcowa:
Marta Pogorzelska			
Paulina Marikin			
Prowadzący:		Podpis:	

Ćwiczenie 30: Odbicie światła od powierzchni dielektryka

1 Cel badań

Celem doświadczenia było zweryfikowanie poprawności prawa Snella i prawa Malusa oraz wyznaczenie kąta granicznego, kąta Brusnela i wspówłczynnika załamania badanego dielektryka.

2 Wstęp teoretyczny

2.1 Prawo Snella

Fala elektromagnetyczna na granicy ośrodków ulega dwóm zjawiską: załamaniu i odbiciu, gdzie fala załamana jest częścią fali, która zmieniła ośrodek, zaś fala odbita częścią pozostałą w pierwotnym ośrodku. Kąty pod jakimi rozchodza się te fale (mierzone do normalnej - osi prostopadłej do płaszczyzny odbicia) są ze sobą powiązane przez prawo Snella:

$$n_1 \sin \alpha = n_2 \sin \beta \tag{1}$$

Kąt jest kątem odbicia równym kątowi padania, β to kąt załamania, zaś n_1 i n_2 to współczynniki załamania definiowane $n=\frac{c}{v}$, gdzie v - prędkość fali elektromagnetycznej w danym ośrodku. Po przekształceniu

$$n_2 = n_1 \frac{\sin \alpha}{\sin \beta} \tag{2}$$

można na podstawie prawa Snella wyznaczyć eksperymentalnie współczynnik załamania danego ośrodka.

- 2.2 Kat Brewstera
- 2.3 Kat graniczny
- 2.4 Prawo Malusa

3 Opis układu i metody pomiarowej

...

4 Wyniki pomiarów

...

- 5 Analiza niepewności
- 6 Wnioski

..