Instruction Gycle

Page No.____

(3)	Introduction:
4	Instruction cycle: The time required to execute
100	and fetch an entire instruction is called
	instruction cycle. An instruction cycle consists
	of fetch cycle and execute cycle.
	In fetch cycle CPU fetches
	opcode from the memory. The necessary steps
	which are carried out to fetch an opcode from
	memory constitute a fetch cycle. In fetch cycle
	enstruction 18 fetched by the address stored
	en program counter (PC) and then stored in the
11	instruction register.
	The necessary steps which are carried
	out to felch an opcode from get data of
	any from memory to perform specific operation
	specified in an instruction constitute an
	and willing curdo the total time required to execute
	an instruction given by IC = Fc+Ec. The 8085 consists of 1-6 machine cycles or operations.
	8085 consists of 1-6 machine cycles or operations.
1	
^	Machine cycle: The time required by the microprocessor
iiro	In colored an operation of accessing memory
	in in flautout devices 98 called machine cycle.
	This cycle may consists of 3 to 6 T-states.
И	
	I-states: One time period of frequency of microprocessor 98 called of state OR It is
-	microconcessor 98 called et-state OR It is
	defined as one sub division of the operation
	performed in one dock period. A t-state 18
-	measured from the falling edge of one clock
	rules in the talling edge of the next clock pulse.
	Felch cycle takes four thestates and execution cycle three testates

	Let address = 2050
-	Let address = 2050 Higher Thower order Date. Order address address Page No.
-	Teming diagram: The necessary steps which are
4	carried and a machine cycle can be represented
	graphically. Such anaphical representation is called
1.,	carrist in a machine cycle can be represented graphically. Such graphical representation is called externing diagram.
_	Timing diagram consists of
	following things:
_	hower order address -> It is the lower bit of address where opcode is stored. Multiplexed address and data bus ADo-AD, are used.
	of address where opcode is stored. Multiplexed
ď	address and data bus ADo-AD, are used.
	Higher ander address > It is higher bit of address where opcode is stored. Multiplexed address and data bus ADB - ADIS are used.
	where opcode 18 stored. Multiplexed address.
-	and data bus ADe - ADe are used.
_	iii) ALE > It provides signal for multiplexed address
_	and data bus. If signal is high or 1,
	multiplexed address and data bus will be
, C	used as address bus. To fetch lower bit of
	address, signal, is 1 so that multiplexed bus
Sidn	can act as address bus. If signal is low or O,
. ")	multiplexed bus will be used as data bus. When
\oldo	Mower bit of address is fetched then it will act as
	data bus as the signal is low,
9	RD (low active) -> If signal is high or 1, no data is read by micro processor. If signal is low or 0, data is
	by micro processor. If signal is low or o, data is
	read by microprocessor,
	v) WR (Jow active) -> If signal is high or 1, no data 18
	wiften by microprocessor. If signal is low or of
	data is written by microprocessor.

Date.	
Page	No

JO/M (Invactive) and S1, So > If signal is high or 1, operation is performing on input output. If signal is low or 0, operation is performing on memory for IO/M. IO/M, S1, So are three status signals used in micro processor. Below is the fruth table for various combinations of status signals.

_					
	IO/M	51	Sa	Data bus status (Output)	
	.0	0	1	Memory write	
	0	1	0	Memory read	
	0	1	1	Operado fetch	
	1	0	1	IO wolfe	
	2	1	0	IO read	
				* 65,00	

The timing diagrams of:

is MOV

IVM Ki

in IN

V) LDA

(i) STA

are as follows

