Marcin Stępniak

Architektura systemów komputerowych Laboratorium 11 Symulator SMS32 Przerwania programowe

1. Informacje

Przerwanie jest to sygnał do procesora wskazujący zdarzenie, które wymaga natychmiastowej uwagi. Pojawienie się przerwania powoduje wstrzymanie aktualnie wykonywanego programu i wykonanie przez procesor kodu procedury obsługi przerwania.

Typowe procedury obsługi przerwań obsługują naciśnięcia klawiszy, ruchy myszy, wypisywanie na ekran, czytanie i pisania na dysku i tak dalej.

Przerwanie jest jak procedura, ale wywoływana w inny sposób. Procedury są wywoływane przez skok do adresu początku procedury. Ten adres jest znany tylko dla programu, który posiada tę procedurę. Przerwania są wywoływane przez wyszukanie adresu kodu przerwania w tablicy wektorów przerwań. Zawartość tej tablicy jest publikowana i powszechnie znana. Na przykład system MS DOS w znaczący sposób korzysta z przerwań dla wszystkich operacji związanych z dyskiem, ekranem, myszą, klawiaturą, siecią i innymi usługami.

Pisząc swój własny kod i ustawiając, aby wektor przerwania wskazywał do punktu we własnym kodzie, zachowanie przerwania może być całkowicie zmienione. Własny kod obsługujący przerwanie może dodać kilka przydatnych zachowań, a następnie skoczyć z powrotem do oryginalnego kodu, aby zakończyć pracę.

Przerwania dzielimy na:

- programowe uruchamiane na żądanie, przez programy.
- sprzętowe wywoływane za pomocą sygnałów elektronicznych do procesora z urządzeniami sprzętowymi.

W przypadku przerwań programowych, po napotkaniu odwołania do przerwania - procesor przerywa wykonywanie aktualnego programu i "przeskakuje" do procedury wywołanego przerwania.

1.1. Tablica wektorów przerwań

Wektory przerwań symulatora znajdują się w pamięci pod adresami 00..0F. Ponieważ na początku pamięci musi znaleźć się instrukcja, która przeskoczy tablicę wektorów, to pierwszą użyteczną komórką dla wektora jest [02]. Podany zakres jest jednak tylko umowny. Podanie adresu dowolnej komórki przy wywołaniu przerwania zadziała prawidłowo.

1.2. Wywołanie przerwania

Do wywołania przerwania służy instrukcja *INT numer_przerwania*. Numer przerwania to w rzeczywistości adres wektora przerwania. Na przykład instrukcja *INT 02* spowoduje odczytanie przez procesor wartości komórki o adresie 02. Następnie wskaźnik instrukcji jest odkładany na stosie, a program kontynuuje pracę od instrukcji znajdującej się pod adresem wskazanym przez odczytaną wartość. Dalej wykonywany jest kod przerwania. Jego wykonanie kończy instrukcja IRET, która powoduje powrót z przerwania (wskaźnik instrukcji jest przywracany ze stosu). W zrozumieniu działania przerwań powinien pomóc program przedstawiony na listingu 1.

Listing 1. Program demonstrujący działanie przerwań programowych

```
JMP
         Start ; skocze za wektor przerwan
  DB 52; wektor na pozycji 02 wskazujacy adres 52
  DB 72; wektor na pozycji 03 wskazujacy adres 72
Start:
         02; wykonuje przerwanie 02
   TNT
        03 ; wykonuje przerwanie 03
   INT
   JMP
         Start
   ORG
         50
  DB 84; tablica bajtow stanow swiatel
; Tutaj rozpoczyna sie kod przerwania
  MOV
         AL, [50] ; kopiuje z pamieci pod adresem 50 do rejestru AL
  MOV
                 ; kopiuje z pamieci pod adresem 51 do rejestru BL
        BL, [51]
         [50], BL ; zapisuje wartosc rejestru BL pod adresem 50
  VOM
         [51], AL ; zapisuje wartosc rejestru AL pod adresem 51
  MOV
   OUT
         01; wysyla dane do portu swiatel
   IRET
            ; powrot z procedury obslugi przerwania
```

```
ORG
        70
  DB FC; tablica bajtow ze stanami wyswietlacza
  DB DE
; Tutaj rozpoczyna sie kod przerwania
        AL, [70]; kopiuje z pamieci pod adresem 70 do rejestru AL
   ;XOR AL,22; mozna wykorzystac zamiast definiowania drugiego bajtu
        BL,[71] ; kopiuje z pamieci pod adresem 71 do rejestru BL
  MOV
        [70], BL ; zapisuje wartosc rejestru BL pod adresem 70
  MOV
  VOM
        [71], AL ; zapisuje wartosc rejestru AL pod adresem 71
  OUT
        02; wysyla dane do wyswietlacza siedmiosegmentowego
           ; powrot z procedury obslugi przerwania
  IRET
  END
```

1.3. Dodatkowe informacje

```
    http://www.softwareforeducation.com/sms32v50/sms32v50_manual/200-10swint.htm
    https://pl.wikipedia.org/wiki/Bufor_cykliczny
    https://en.wikipedia.org/wiki/Circular_buffer
    http://www.vias.org/javacourse/chap16_04.html
```

2. Zadania

2.1. Zadanie 1

Napisać program, który posiada procedurę do dzielenia. Dzielna przekazywana jest w rejestrze AL, a dzielnik w rejestrze BL. Wynik dzielenia zapisywany będzie do rejestru AL. Jeżeli jako dzielnik zostanie przekazane 0, to program uruchamia przerwanie 0D. Procedura obsługi tego przerwania wyświetli czerwone światło na sygnalizacji drogowej i ustawi flagę "O"(overflow). Rejestr flag nie może być modyfikowany bezpośrednio, dlatego trzeba tego dokonać za pośrednictwem stosu (instrukcja POPF).

2.2. Zadanie 2

Napisać program zawierający procedurę obsługi przerwania o numerze 03, realizującą odczyt cyfry z klawiatury. W rejestrze CL zostanie zapisana wartość cyfry (należy przekształcić znak ASCII). Jeżeli wprowadzony znak z klawiatury nie będzie cyfrą, to w rejestrze CL powinna znaleźć się liczba -1. Wyjątkiem jest litera "Q" (mała lub wielka), dla której rejestr CL przyjmuje

wartość -2. Program działa w pętli, wywołując przerwanie i sygnalizując jego wynik za pomocą świateł drogowych, według poniższego schematu:

- wykonuje x mignięć zielonym światłem (x wprowadzona cyfra),
- dla zwróconej wartości -1 zapala się czerwone światło.

Pętla (a także program) kończy się po napotkaniu liczby -2 w rejestrze CL po wykonaniu przerwania.

2.3. Zadanie 3

Napisać program z procedurą obsługi przerwania 04. Przerwanie to odczytuje znak z klawiatury i umieszcza go w buforze cyklicznym w pamięci. Wielkość takiego bufora należy ustalić na 5 bajtów. Po naciśnięciu przycisku "Enter" zawartość bufora wyświetla się na wyświetlaczu VDU. Program wykonuje przerwanie w pętli nieskończonej. Bufor nigdy nie przepełnia się, bo poprzednio dodane dane zostają nadpisane. Jeżeli wskaźnik zapisu zrówna się ze wskaźnikiem odczytu, to wskaźnik odczytu zostaje przesunięty. W takiej sytuacji nieodczytane znaki zostają utracone. W buforze można zapisać do 5 znaków, ale standardowo zaimplementowany bufor cykliczny pozwoli na odczyt tylko 4 z nich.

2.4. Zadanie dodatkowe

Napisać program zawierający przerwanie 05, którego zadaniem jest wstawienie odczytanego z klawiatury znaku na kolejną wolną pozycję wyświetlacza VDU. Po naciśnięciu przycisku "Enter" dodawanie rozpoczyna się od nowej linii, a naciśnięcie przycisku "Backspace" powoduje usunięcie ostatnio wprowadzonego znaku. Opcjonalnie można dodać wyświetlanie kursora.