Κεφάλαιο 11

Παραγωγίσιμες μιγαδικές συναρτήσεις

Στο κεφάλαιο αυτό ορίζεται η έννοια της μιγαδικής παραγώγου και καταγράφονται οι αλγεβρικές ιδιότητές της. Στη συνέχεια διατυπώνονται οι σημαντικές συνθήκες (εξισώσεις) Cauchy-Riemann και εξετάζεται η συσχέτισή τους με την έννοια της μιγαδικής παραγώγου και ο ρόλος τους στον υπολογισμό παραγώγων στοιχειωδών συναρτήσεων. Ιδιαίτερη έμφαση δίνεται στη σημαντική έννοια της ολόμορφης μιγαδικής συνάρτησης και στη μελέτη των κύριων ιδιοτήτων των ολομόρφων συναρτήσεων.

11.1 Μιγαδική παράγωγος

Ορισμός 11.1.1 Έστω $f:A\subseteq\mathbb{C}\to\mathbb{C}$ μία μιγαδική συνάρτηση με πεδίο ορισμού το ανοικτό υποσύνολο A του \mathbb{C} και $z_0\in A$. Ω ς μιγαδική παράγωγος $f'(z_0)$ της f στο z_0 ορίζεται το όριο

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0},$$
(11.1.1)

υπό την προϋπόθεση ότι το όριο αυτό υπάρχει στο $\mathbb C$. Στην προχειμένη περίπτωση, λέμε επίσης ότι υπάρχει η μιγαδική παράγωγος $f'(z_0)$ ή ότι η συνάρτηση f είναι παραγωγίσιμη στο z_0 .

Σημείωση 11.1.1 Ενίστε, στον ορισμό της παραγώγου είναι χρηστικότερο η μεταβλητή z να εμφανίζεται υπό τη μορφή $z=z_0+h$, οπότε η (11.1.1) γράφεται

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}.$$
 (11.1.2)

 \triangle

Μία μιγαδική συνάρτηση $f:A\subseteq\mathbb{C}\to\mathbb{C}$ ονομάζεται παραγωγίσιμη στο ανοικτό σύνολο A αν είναι παραγωγίσιμη σε κάθε σημείο z του A. Στην προκειμένη περίπτωση, η συνάρτηση

$$f': A \subseteq \mathbb{C} \to \mathbb{C}$$
 $\mu \varepsilon$ $(f')(z) = f'(z)$

ονομάζεται η παράγωγος της f στο A.

 Ω ς παράδειγμα παραγωγίσιμης συνάρτησης στο σύνολο $\mathbb C$ των μιγαδικών αριθμών, αναφέρουμε την

$$f(z) = z^n, z \in \mathbb{C} \ (n \in \mathbb{N}),$$

για την οποία ισχύει

$$f'(z) = n z^{n-1}.$$

Σημειώνουμε ότι στον ορισμό της παραγώγου της f, το $z\in A$ προσεγγίζει το z_0 κατά μήκος μιας οποιασδήποτε καμπύλης του A που διέρχεται από το z_0 (με $z\neq z_0$). Έτσι, η ύπαρξη της παραγώγου συνεπάγεται ότι η τιμή του ορίου, όπως προκύπτει από τις (11.1.1) και (11.1.2), πρέπει να είναι μοναδική ανεξάρτητα από την καμπύλη του A μέσω της οποίας προσεγγίζουμε το z_0 .

Πρόταση 11.1.1 Κάθε παραγωγίσιμη μιγαδιχή συνάρτηση $f:A\subseteq\mathbb{C}\to\mathbb{C}$ σε ένα σημείο z_0 του ανοιχτού συνόλου A είναι συνεχής στο z_0 .

Απόδειξη. Η σχέση

$$f(z) - f(z_0) = \frac{f(z) - f(z_0)}{z - z_0} (z - z_0), \ z \neq z_0$$

συνεπάγεται

$$\lim_{z \to z_0} [f(z) - f(z_0)] = \lim_{z \to z_0} \left[\frac{f(z) - f(z_0)}{z - z_0} (z - z_0) \right] = f'(z_0) \cdot 0 = 0,$$

από την οποία προχύπτει

$$\lim_{z \to z_0} f(z) = f(z_0),$$

που σημαίνει ότι η f είναι συνεχής στο z_0 .

Όπως και στην περίπτωση των πραγματικών συναρτήσεων, ο αντίστροφος ισχυρισμός της πρότασης δεν ισχύει, όπως συνάγεται από το ακόλουθο

Παράδειγμα 11.1.1 Η συνεχής συνάρτηση $f(z)=\overline{z},\ z\in\mathbb{C}$ δεν είναι παραγωγίσιμη σε κανένα σημείο $z\in\mathbb{C}$.

Λύση. Πράγματι, για τυχόν $z\in\mathbb{C}$ και $h=\lambda+i\mu\neq 0$, υπολογίζουμε

$$\frac{f(z+h)-f(z)}{h} = \frac{\overline{z+h}-\overline{z}}{h} = \frac{\overline{h}}{h} = \frac{\lambda - i\mu}{\lambda + i\mu}.$$

Για $\mu=0$, δηλαδή $h=\lambda$, οπότε προσεγγίζουμε το 0 κατά μήκος του πραγματικού άξονα, έχουμε

$$\lim_{h\to 0}\frac{f(z+h)-f(z)}{h}=\lim_{\lambda\to 0}\frac{\lambda}{\lambda}=1,$$

ενώ για $\lambda=0,$ δηλαδή $h=i\mu,$ οπότε προσεγγίζουμε το 0 κατά μήκος του φανταστικού άξονα, λαμβάνουμε

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{\mu \to 0} \frac{-i\mu}{i\mu} = -1.$$

Επειδή το όριο πρέπει να είναι το ίδιο για κάθε επιλογή του $h\to 0$, συνάγεται ότι δεν υπάρχει το όριο $\lim_{h\to 0} \frac{f(z+h)-f(z)}{h}$ και άρα η $f(z)=\overline{z}$ δεν είναι παραγωγίσιμη σε κανένα $z\in\mathbb{C}$.

 \triangle

Παράδειγμα 11.1.2 Η συνάρτηση f(z)=|z| είναι συνεχής αλλά όχι παραγωγίσιμη στο 0.

Λύση. Για $z \neq 0$, έχουμε ότι

$$\frac{f(z) - f(0)}{z - 0} = \frac{|z|}{z}.$$

Για $z=x\in\mathbb{R}$, οπότε προσεγγίζουμε το 0 κατά μήκος του πραγματικού άξονα, λαμβάνουμε

$$\lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} = \lim_{x \to 0} \frac{|x|}{x}.$$

Όμως, το $\lim_{x\to 0} \frac{|x|}{x}$ δεν υπάρχει, διότι

$$\lim_{x \to 0^+} \frac{|x|}{x} = 1 \neq -1 = \lim_{x \to 0^-} \frac{|x|}{x}.$$

Έτσι, συμπεραίνουμε ότι η συνάρτηση f(z) = |z| δεν είναι παραγωγίσιμη στο 0.

Παράδειγμα 11.1.3 Δείξτε ότι η συνάρτηση $f(z) = |z|^2$ είναι παραγωγίσιμη μόνο στο 0

Λύση. Για $z \in \mathbb{C}$ και $h \neq 0$, έχουμε

$$\frac{f(z+h)-f(z)}{h} = \frac{|z+h|^2 - |z|^2}{h} = \frac{(z+h)\overline{(z+h)} - z\overline{z}}{h} = z\frac{\overline{h}}{h} + \overline{z} + \overline{h}.$$

Έτσι, για z=0, ευρίσκουμε ότι

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} = \lim_{h \to 0} \overline{h} = 0.$$

Όμως, για $z\neq 0$, σύμφωνα με το Παράδειγμα 11.1.1, εχουμε ότι δεν υπάρχει το $\lim_{h\to 0}\frac{\overline{h}}{h}$ και άρα η $f(z)=|z|^2$ δεν είναι παραγωγίσιμη σε κανένα $z\neq 0$.

 \triangle

Πρόταση 11.1.2 (Αλγεβρικές ιδιότητες της μιγαδικής παραγώγου)

Αν οι συναρτήσεις $f,g:A\subseteq\mathbb{C}\to\mathbb{C}$ είναι παραγωγίσιμες στο $z\in A$, τότε και οι συναρτήσεις

$$af+bg\ (a,b\in\mathbb{C}),\quad fg\quad$$
 και $\frac{f}{g}\ ($ αν $g(z)\neq 0$ για κάθε $z\in A)$

είναι παραγωγίσιμες στο z και ισχύουν

$$(af + bg)'(z) = af'(z) + bg'(z)$$
$$(fg)'(z) = f'(z)g(z) + f(z)g'(z)$$
$$\left(\frac{f}{g}\right)'(z) = \frac{f'(z)g(z) - f(z)g'(z)}{g^2(z)}.$$

 Ω ς άμεσες συνέπειες της τελευταίας πρότασης, προχύπτουν οι ισχυρισμοί των αχόλουθων δύο παραδειγμάτων.

Παράδειγμα 11.1.4 Κάθε πολυωνυμική συνάρτηση

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0, \ z \in \mathbb{C},$$

όπου $a_i \in \mathbb{C}, \ i=0,1,\ldots n, \ n\in\mathbb{N},$ είναι παραγωγίσιμη στο \mathbb{C} και ισχύει

$$P'(z) = na_n z^{n-1} + (n-1)a_{n-1}z^{n-2} + \dots + a_1.$$

 \triangle

Παράδειγμα 11.1.5 Κάθε ρητή συνάρτηση

$$R(z) = \frac{P(z)}{Q(z)}, \ z \in \mathbb{C} \ \text{me} \ Q(z) \neq 0,$$

όπου $P(z),\,Q(z)$ είναι πολυωνυμικές συναρτήσεις, είναι παραγωγίσιμη και ισχύει

$$R'(z) = \frac{P'(z)Q(z) - P(z)Q'(z)}{Q^{2}(z)}.$$

 \triangle

Θεώρημα 11.1.1 (Κανόνας της αλυσίδας)

Έστω δύο μιγαδικές συναρτήσεις $f:A\subseteq\mathbb{C}\to\mathbb{C}$ και $g:B\subseteq\mathbb{C}\to\mathbb{C}$, όπου A και B ανοικτά υποσύνολα του \mathbb{C} , με τις ιδιότητες: $f(A)\subseteq B$, η f είναι παραγωγίσιμη σε ένα σημείο $z_0\in A$ και η g είναι παραγωγίσιμη στο σημείο $f(z_0)\in B$. Τότε και η σύνθεση

$$g \circ f : A \subseteq \mathbb{C} \to \mathbb{C}, \ (g \circ f)(z) = g(f(z)), \ z \in A$$

των συναρτήσεων f και g είναι παραγωγίσιμη στο z_0 και ισχύει

$$(g \circ f)(z_0) = g'(f(z_0))f'(z_0).$$

Θεώρημα 11.1.2 (Κανόνας L'Hopital)

Έστω $f, g: A\subseteq \mathbb{C}\to \mathbb{C}$ δύο μιγαδικές συναρτήσεις με πεδίο ορισμού το ανοικτό υποσύνολο A του $\mathbb{C},$ οι οποίες είναι παραγωγίσιμες στο z_0 του A, όπου ισχύει $f(z_0)=g(z_0)=0$ και $g'(z_0)\neq 0$. Τότε, υπάρχει το $\lim_{z\to z_0}\frac{f(z)}{g(z)}$ και υπολογίζεται από τον τύπο

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}.$$
(11.1.3)

Παράδειγμα 11.1.6 Βρείτε το όριο

$$\lim_{z \to i} \frac{z^9 - i}{z^{10} + 1}.$$

Λύση. Για τις συναρτήσεις $f(z)=z^9-i$ και $g(z)=z^{10}+1$, ισχύουν f(i)=g(i)=0, και $g'(i)=10i\neq 0$, οπότε εφαρμόζοντας τον κανόνα L'Hopital (11.1.3), ευρίσκουμε

$$\lim_{z \to i} \frac{z^9 - i}{z^{10} + 1} = \lim_{z \to i} \frac{9z^8}{10z^9} = \frac{9}{10} \frac{i^8}{i^9} = -\frac{9}{10}i.$$

 \triangle

11.2 Συνθήκες Cauchy-Riemann

Η ύπαρξη μιγαδικής παραγώγου μιας μιγαδικής συνάρτησης f σε ένα σημείο $z_0=x_0+iy_0$ του πεδίου ορισμού της συνεπάγεται την ύπαρξη μερικών παραγώγων πρώτης τάξης του πραγματικού και του φανταστικού μέρους της f στην περιοχή του σημείου (x_0,y_0) , οι οποίες ικανοποιούν τις σημαντικές εξισώσεις Cauchy-Riemann και διατυπώνονται στο ακόλουθο

Θεώρημα 11.2.1 Έστω μία μιγαδική συνάρτηση $f=u+iv:A\subseteq\mathbb{C}\to\mathbb{C}$, όπου A ανοικτό υποσύνολο του \mathbb{C} , η οποία είναι παραγωγίσιμη στο σημείο $z_0=x_0+iy_0\in A$. Τότε, υπάρχουν οι μερικές παράγωγοι των u και v στο σημείο (x_0,y_0) και ικανοποιούν τις συνθήκες $Cauchy-Riemann\ (C-R)$

$$u_x(x_0, y_0) = v_y(x_0, y_0), \quad u_y(x_0, y_0) = -v_x(x_0, y_0).$$
 (11.2.1)

Απόδειξη. Στον ορισμό

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$

της παραγώγου της συνάρτησης f στο z_0 , επιλέγουμε

1. $h = \lambda \in \mathbb{R}$, οπότε

$$f'(z_0) = \lim_{\lambda \to 0} \frac{u(x_0 + \lambda, y_0) + iv(x_0 + \lambda, y_0) - [u(x_0, y_0) + iv(x_0, y_0)]}{\lambda}$$

$$= \lim_{\lambda \to 0} \frac{u(x_0 + \lambda, y_0) - u(x_0, y_0)}{\lambda} + i \lim_{\lambda \to 0} \frac{v(x_0 + \lambda, y_0) - v(x_0, y_0)}{\lambda}$$

$$= u_x(x_0, y_0) + i v_x(x_0, y_0)$$

2. $h = i\mu$, $\mu \in \mathbb{R}$, οπότε

$$f'(z_0) = \lim_{\mu \to 0} \frac{u(x_0, y_0 + \mu) + iv(x_0, y_0 + \mu) - [u(x_0, y_0) + iv(x_0, y_0)]}{i\mu}$$

$$= \frac{1}{i} \lim_{\mu \to 0} \frac{u(x_0, y_0 + \mu) - u(x_0, y_0)}{\mu} + \lim_{\mu \to 0} \frac{v(x_0, y_0 + \mu) - v(x_0, y_0)}{\mu}$$

$$= v_u(x_0, y_0) - i u_u(x_0, y_0)$$

και εξισώνοντας τα πραγματικά και τα φανταστικά μέρη στις περιπτώσεις 1 και 2, επαληθεύουμε τις συνθήκες C-R.

Η αποδειχτιχή διαδιχασία του Θεωρήματος 11.2.1 οδηγεί στο αχόλουθο

Πόρισμα 11.2.1 Αν η μιγαδική συνάρτηση $f=u+iv:A\subseteq\mathbb{C}\to\mathbb{C}$, όπου A ανοικτό υποσύνολο του \mathbb{C} , είναι παραγωγίσιμη στο $z=x+iy\in A$, τότε ισχύει

$$f'(z) = u_x(x, y) + i v_x(x, y) = v_y(x, y) - i u_y(x, y).$$

Ο αντίστροφος ισχυρισμός του Θεωρήματος 11.2.1 δεν ισχύει, δηλαδή η ύπαρξη των μερικών παραγώγων των u(x,y) και v(x,y) και η ισχύς των συνθηκών C-R στο (x_0,y_0) δεν εξασφαλίζουν την παραγωγισιμότητα της f(z) στο $z_0=x_0+iy_0$, όπως συνάγεται από το ακόλουθο

Παράδειγμα 11.2.1 Η συνάρτηση

$$f(z) = \begin{cases} x - y + i\frac{x^2 + y^2}{x + y}, & z = x + iy \neq 0 \\ 0, & z = x + iy = 0 \end{cases}$$

ικανοποιεί τις συνθήκες C-R στο (0,0), αλλά δεν είναι παραγωγίσιμη στο σημείο αυτό.

Λύση. Το πραγματικό και φανταστικό μέρος

$$u(x,y) = x - y, (x,y) \neq (0,0)$$

και

$$v(x,y) = \frac{x^2 + y^2}{x + y}, (x,y) \neq (0,0)$$

της συνάρτησης f έχουν ως μεριχές παραγώγους στο (0,0)

$$u_x(0,0) = 1 = v_y(0,0)$$
 xax $u_y(0,0) = -1 = -v_x(0,0)$,

οι οποίες ικανοποιούν τις συνθήκες C-R στο σημείο (0,0).

Όμως, η μιγαδική συνάρτηση f δεν είναι παραγωγίσιμη στο z=0, διότι η συνάρτηση

$$\frac{f(z)-0}{z-0}$$

τείνει στο 1+i, καθώς το $z\to 0$ κατά μήκος του πραγματικού άξονα, και στο $\frac{1+i}{2}$, καθώς το $z\to 0$ κατά μήκος της ευθείας y=x (οπότε z=x+ix).

 \triangle

Για την πληρέστερη κατανόηση επεξεργαζόμαστε επίσης και το ακόλουθο

Παράδειγμα 11.2.2 Η συνάρτηση

$$f(z) = \begin{cases} \frac{z^5}{|z|^4}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

ικανοποιεί τις συνθήκες C-R στο (0,0), αλλά δεν είναι παραγωγίσιμη στο σημείο αυτό.

Λύση. Το πραγματικό και φανταστικό μέρος

$$u(x,y) = \frac{x^5 - 10x^3y^2 + 5xy^4}{(x^2 + y^2)^2}, (x,y) \neq (0,0)$$

και

$$v(x,y) = \frac{5x^4y - 10x^2y^3 + y^5}{(x^2 + y^2)^2}, (x,y) \neq (0,0)$$

της συνάρτησης f έχουν μερικές παραγώγους στο (0,0) και ικανοποιούν τις συνθήκες C-R στο σημείο αυτό, αφού ισχύουν

$$u_x(0,0) = \lim_{h \to 0} \frac{u(h,0) - u(0,0)}{h} = \lim_{h \to 0} \frac{h^5}{h^5} = 1,$$

$$u_y(0,0) = \lim_{h \to 0} \frac{u(0,h) - u(0,0)}{h} = \lim_{h \to 0} \frac{0}{h^5} = 0,$$

$$v_x(0,0) = \lim_{h \to 0} \frac{v(h,0) - v(0,0)}{h} = \lim_{h \to 0} \frac{0}{h^5} = 0,$$

$$v_y(0,0) = \lim_{h \to 0} \frac{v(0,h) - v(0,0)}{h} = \lim_{h \to 0} \frac{h^5}{h^5} = 1.$$

Όμως, η μιγαδική συνάρτηση f δεν είναι παραγωγίσιμη στο z=0, διότι η συνάρτηση

$$\frac{f(z) - 0}{z - 0} = \frac{z^4}{|z|^4} = \left(\frac{z}{|z|}\right)^4$$

τείνει στο 1, καθώς το $z\to 0$ κατά μήκος του πραγματικού άξονα, και τείνει στο -1, καθώς το $z\to 0$ κατά μήκος της ευθείας y=x (οπότε z=x+ix).

Παράδειγμα 11.2.3 Η μιγαδική συνάρτηση

$$f(z) = \overline{z} = x - iy$$

δεν έχει μιγαδική παράγωγο σε κανένα $z \in \mathbb{C}$.

Λύση. Οι συναρτήσεις

$$u(x,y) = x$$
 and $v(x,y) = -y$

έχουν μεριχές παραγώγους

$$u_x(x,y) = 1$$
 , $u_y(x,y) = 0$, $v_x(x,y) = 0$, $v_y(x,y) = -1$

στο \mathbb{R}^2 . Όμως, επειδή ισχύει $u_x \neq v_y$ για κάθε $(x,y) \in \mathbb{R}^2$, συνάγουμε ότι η f'(z) δεν υπάρχει σε κανένα $z \in \mathbb{C}$.

 \triangle

Παράδειγμα 11.2.4 Η μιγαδική συνάρτηση

$$f(z) = x^2y + ix, \ z = x + iy \in \mathbb{C}$$

δεν είναι παραγωγίσιμη σε κανένα $z \in \mathbb{C}$.

Λύση. Οι συναρτήσεις $u(x,y) = x^2y$ και v(x,y) = x έχουν μερικές παραγώγους

$$u_x(x,y) = 2xy$$
 , $u_y(x,y) = x^2$, $v_x(x,y) = 1$, $v_y(x,y) = 0$

στο \mathbb{R}^2 . Οι συνθήκες C-R ισχύουν όταν 2xy=0 και $x^2=-1$. Όμως, το σύστημα των δύο τελευταίων εξισώσεων δεν έχει πραγματικές λύσεις, και επομένως, από το Θεώρημα 11.2.1, έπεται ότι η συνάρτηση f δεν είναι παραγωγίσιμη σε κανένα $z\in\mathbb{C}$.

 \triangle

Εξάλλου, ικανές συνθήκες, οι οποίες εξασφαλίζουν ότι ισχύει ο αντίστροφος ισχυρισμός του Θεωρήματος 11.2.1, διατυπώνονται στο ακόλουθο

Θεώρημα 11.2.2 (Cauchy-Riemann)

Εστω $f=u+iv:A\subseteq\mathbb{C}\to\mathbb{C}$ μιγαδική συνάρτηση με πεδίο ορισμού το ανοικτό υποσύνολο A του \mathbb{C} και $z_0=x_0+iy_0$ ένα σημείο του A. Υποθέτουμε ότι υπάρχουν οι μερικές παράγωγοι u_x,u_y,v_x,v_y σε ένα δίσκο $D_\epsilon(x_0,y_0)=\{(x,y)\in\mathbb{R}^2:(x-x_0)^2+(y-y_0)^2<\epsilon^2\},$ ο οποίος περιέχεται στο πεδίο ορισμού των συναρτήσεων u και v, είναι συνεχείς στο σημείο (x_0,y_0) και ικανοποιούν τις συνθήκες Cauchy-Riemann στο (x_0,y_0) . Τότε, η f είναι παραγωγίσιμη στο $z_0=x_0+iy_0$.

Συνδυάζοντας τα Θεωρήματα 11.2.1 και 11.2.2, λαμβάνουμε το ακόλουθο

Πόρισμα 11.2.2 Έστω $f=u+iv:A\subseteq\mathbb{C}\to\mathbb{C}$ μία μιγαδική συνάρτηση με πεδίο ορισμού το ανοικτό υποσύνολο A του \mathbb{C} της οποίας το πραγματικό και φανταστικό μέρος u και v έχουν συνεχείς μερικές παραγώγους u_x,u_y,v_x,v_y στο $\mathcal{A}=\{(x,y)\in\mathbb{R}^2:x+iy\in A\}.$ Τότε, οι ακόλουθοι ισχυρισμοί είναι ισοδύναμοι

- 1. Η f είναι παραγωγίσιμη σε κάθε $z \in A$.
- 2. Ισχύουν οι συνθήκες Cauchy-Riemann (11.2.1) στο \mathcal{A} .

Παράδειγμα 11.2.5 Η μιγαδική συνάρτηση

$$f(z) = e^{2xy} [\cos(y^2 - x^2) + i\sin(y^2 - x^2)], \ z = x + iy \in \mathbb{C}$$

είναι παραγωγίσιμη στο C.

Λύση. Πράγματι, οι συναρτήσεις

$$u(x,y) = e^{2xy}\cos(y^2 - x^2)$$
 and $v(x,y) = e^{2xy}\sin(y^2 - x^2)$

έχουν συνεχείς μερικές παραγώγους

$$u_x(x,y) = 2e^{2xy}[y\cos(y^2 - x^2) + x\sin(y^2 - x^2)] = v_y(x,y)$$

και

$$u_y(x,y) = 2e^{2xy}[x\cos(y^2 - x^2) - y\sin(y^2 - x^2)] = -v_x(x,y)$$

στο \mathbb{R}^2 , οι οποίες πληρούν τις συνθήκες C-R σε κάθε $(x,y)\in\mathbb{R}^2$. Έτσι, από το Θεώρημα 11.2.2, η μιγαδική συνάρτηση f είναι παραγωγίσιμη σε κάθε $z=x+iy\in\mathbb{C}$.

 \triangle

Παράδειγμα 11.2.6 Η μιγαδική συνάρτηση

$$f(z) = (x^2 + y^2) + i \, 2xy, \ z = x + iy \in \mathbb{C}$$

είναι παραγωγίσιμη μόνο στα σημεία z=x+i0 (δηλαδή στον πραγματικό άξονα).

Λύση. Οι συναρτήσεις

$$u(x,y) = x^2 + y^2$$
 xai $v(x,y) = 2xy$

έχουν συνεχείς μερικές παραγώγους

$$u_x(x,y) = 2x$$
 , $u_y(x,y) = 2y$, $v_x(x,y) = 2y$, $v_y(x,y) = 2x$

στο \mathbb{R}^2 , οι οποίες ικανοποιούν την πρώτη συνθήκη C-R $u_x=v_y$ για κάθε $(x,y)\in\mathbb{R}^2$. Όμως, η δεύτερη συνθήκη C-R $u_y=-v_x$ ικανοποιείται αν 2y=-2y, δηλαδή μόνο για y=0. Έτσι, συνδυάζοντας τα Θεωρήματα 11.2.1 και 11.2.2, συμπεραίνουμε ότι η f είναι παραγωγίσιμη μόνο στον πραγματικό άξονα.

 \triangle

Παράδειγμα 11.2.7 Η μιγαδική συνάρτηση

$$f(z) = xy^2 + ix^2y, \ z = x + iy \in \mathbb{C}$$

είναι παραγωγίσιμη μόνο στο z=0.

Λύση. Οι συναρτήσεις

$$u(x,y) = xy^2$$
 xal $v(x,y) = x^2y$

έχουν συνεχείς μερικές παραγώγους

$$u_x(x,y) = y^2$$
 , $u_y(x,y) = 2xy$, $v_x(x,y) = 2xy$, $v_y(x,y) = x^2$

στο \mathbb{R}^2 . Όμως, η πρώτη συνθήκη C-R $u_x=v_y$ ισχύει όταν $y^2=x^2$, δηλαδή $y=\pm x$, ενώ η δεύτερη συνθήκη C-R $u_y=-v_x$ ισχύει όταν 2xy=-2xy, δηλαδή x=0 ή y=0. Επομένως, οι δύο συνθήκες C-R πληρούνται μόνο στο σημείο (x,y)=(0,0) και άρα, σύμφωνα με τα Θεωρήματα 11.2.1 και 11.2.2, η μιγαδική συνάρτηση f είναι παραγωγίσιμη μόνο στο z=0.

 \triangle

Παράδειγμα 11.2.8 Βρείτε τα $z=x+iy\in\mathbb{C}$ για τα οποία η μιγαδική συνάρτηση

$$f(z) = x^2 - iy^2$$

είναι παραγωγίσιμη και υπολογίστε την αντίστοιχη παράγωγο f'(z).

 ${f \Lambda}$ ύση. Οι συναρτήσεις $u(x,y)=x^2$ και $v(x,y)=-y^2$ έχουν συνεχείς μερικές παραγώγους

$$u_x(x,y) = 2x$$
 , $u_y(x,y) = 0$, $v_x(x,y) = 0$, $v_y(x,y) = -2y$

στο \mathbb{R}^2 . Η πρώτη συνθήκη C-R πληρούται όταν 2x=-2y, ενώ η δεύτερη συνθήκη C-R ισχύει πάντοτε. Άρα, σύμφωνα με τα Θεωρήματα 11.2.1 και 11.2.2, η συνάρτηση f είναι παραγωγίσιμη μόνο στα σημεία της ευθείας y=-x, στα οποία, από το Πόρισμα 11.2.1, η παράγωγος είναι

$$f'(z) = u_x + iv_x = 2x = -2y.$$

 \triangle

Σε διάφορες εφαρμογές είναι πιο χρηστική η διατύπωση των συνθηκών Cauchy-Riemann με τη βοήθεια πολικών συντεταγμένων, όπως καταγράφεται στο ακόλουθο

Λήμμα 11.2.1 (Πολική μορφή συνθηκών C-R)

Έστω $u,v:\mathcal{A}\subseteq\mathbb{R}^2\to\mathbb{R}$ πραγματικές συναρτήσεις δύο μεταβλητών με πεδίο ορισμού το ανοικτό υποσύνολο \mathcal{A} του \mathbb{R}^2 , οι οποίες έχουν συνεχείς μερικές παραγώγους u_x,u_y,v_x,v_y στο \mathcal{A} . Τότε, οι συνθήκες Cauchy-Riemann

$$u_x = v_y$$
 xai $u_y = -v_x$

μετατρέπονται με τη βοήθεια του πολιχού μετασχηματισμού

$$x = r \cos \theta$$
 και $y = r \sin \theta$, $r \neq 0$

στις εξισώσεις

$$u_r = \frac{1}{r}v_\theta \quad , \quad u_\theta = -rv_r. \tag{11.2.2}$$

Απόδειξη. Θέτοντας στις συναρτήσεις u(x,y) και v(x,y)

$$x = r \cos \theta$$
 and $y = r \sin \theta$,

και εφαρμόζοντας τον κανόνα αλυσίδας, ευρίσκουμε

(1)
$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta,$$

(2)
$$\frac{\partial u}{\partial \theta} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial \theta} = -\frac{\partial u}{\partial x} r \sin \theta + \frac{\partial u}{\partial y} r \cos \theta,$$

(3)
$$\frac{\partial v}{\partial r} = \frac{\partial v}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial v}{\partial x} \cos \theta + \frac{\partial v}{\partial y} \sin \theta,$$

(4)
$$\frac{\partial v}{\partial \theta} = \frac{\partial v}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial \theta} = -\frac{\partial v}{\partial x} r \sin \theta + \frac{\partial v}{\partial y} r \cos \theta.$$

Με τη βοήθεια των συνθηκών Cauchy-Riemann, οι (3) και (4) γράφονται

$$\frac{\partial v}{\partial r} = -\frac{\partial u}{\partial y}\cos\theta + \frac{\partial u}{\partial x}\sin\theta,$$
$$\frac{\partial v}{\partial \theta} = \frac{\partial u}{\partial y}r\sin\theta + \frac{\partial u}{\partial x}r\cos\theta,$$

οι οποίες συνδυαζόμενες με τις (1) και (2), οδηγούν στην (11.2.2).

Πρόταση 11.2.1 (Πολική μορφή μιγαδικής παραγώγου)

Έστω $f=u+iv:A\subseteq\mathbb{C}\to\mathbb{C}$ μία μιγαδική συνάρτηση με πεδίο ορισμού το ανοικτό υποσύνολο A του \mathbb{C} της οποίας το πραγματικό και φανταστικό μέρος u και v έχουν συνεχείς μερικές παραγώγους u_x,u_y,v_x,v_y στο $A=\{(x,y)\in\mathbb{R}^2:x+iy\in A\}$, οι οποίες ικανοποιούν τις συνθήκες Cauchy-Riemann (11.2.1). Τότε, η συνάρτηση f είναι παραγωγίσιμη στο A και ισχύει

$$f'(z) = e^{-i\theta} (u_r + iv_r) = e^{-i\theta} f_r = \frac{e^{-i\theta}}{ir} (u_\theta + iv_\theta) = \frac{1}{iz} f_\theta, \ z = re^{i\theta} \neq 0.$$
 (11.2.3)

Απόδειξη. Από το Θεώρημα 11.2.2, έχουμε ότι η f(z) είναι παραγωγίσιμη σε κάθε $z \in A$. Για τον υπολογισμό της παραγώγου f'(z) εφαρμόζουμε το Πόρισμα 11.2.1, την (11.2.2) και τις (1)-(4) της απόδειξης του Λήμματος 11.2.1, οπότε ευρίσκουμε

$$f'(z) = u_x + i v_x = \left(\frac{\partial u}{\partial r}\cos\theta + \frac{\partial v}{\partial r}\sin\theta\right) + i\left(\frac{\partial v}{\partial r}\cos\theta - \frac{\partial u}{\partial r}\sin\theta\right)$$
$$= \left(\frac{\partial u}{\partial r} + i\frac{\partial v}{\partial r}\right)(\cos\theta - i\sin\theta)$$
$$= \left(\frac{\partial u}{\partial r} + i\frac{\partial v}{\partial r}\right)e^{-i\theta}$$
$$= f_r e^{-i\theta}$$

και

$$f'(z) = v_y - i u_y = \left(-\frac{1}{r}\frac{\partial u}{\partial \theta}\sin\theta + \frac{1}{r}\frac{\partial v}{\partial \theta}\cos\theta\right) - i\left(\frac{1}{r}\frac{\partial v}{\partial \theta}\sin\theta + \frac{1}{r}\frac{\partial u}{\partial \theta}\cos\theta\right)$$

$$= \left(\frac{\partial u}{\partial \theta} + i\frac{\partial v}{\partial \theta}\right)\left(-\frac{i}{r}\cos\theta - \frac{1}{r}\sin\theta\right)$$

$$= \left(\frac{\partial u}{\partial \theta} + i\frac{\partial v}{\partial \theta}\right)\left(-\frac{i}{r}\right)\left(\cos\theta - i\sin\theta\right)$$

$$= \left(\frac{\partial u}{\partial \theta} + i\frac{\partial v}{\partial \theta}\right)\frac{e^{-i\theta}}{ir}$$

$$= \frac{1}{iz}f_{\theta}.$$

11.3 Παράγωγοι στοιχειωδών συναρτήσεων

Πρόταση 11.3.1 Η μιγαδική συνάρτηση

$$f: \mathbb{C} \to \mathbb{C}, \ f(z) = e^{az}, \ z \in \mathbb{C},$$

όπου $a \in \mathbb{R}$, είναι παραγωγίσιμη στο \mathbb{C} και ισχύει

$$f'(z) = a e^{az}, \ \forall z \in \mathbb{C}.$$

Απόδειξη. Από τον ορισμό (10.2.1) της εχθετιχής συνάρτησης έχουμε

$$f(z) = e^{az} = e^{a(x+iy)} = e^{ax}[\cos(ay) + i\sin(ay)] = u(x,y) + iv(x,y),$$

οπότε

$$u(x,y) = e^{ax}\cos(ay)$$
 xal $v(x,y) = e^{ax}\sin(ay)$,

οι οποίες έχουν συνεχείς μεριχές παραγώγους

$$u_x = ae^{ax}\cos(ay)$$
, $u_y = -ae^{ax}\sin(ay)$, $v_x = ae^{ax}\sin(ay)$, $v_y = ae^{ax}\cos(ay)$

στο \mathbb{R}^2 και για τις οποίες ισχύουν οι εξισώσεις Cauchy-Riemann

$$u_x = ae^{ax}\cos(ay) = v_y$$
 and $u_y = -ae^{ax}\sin(ay) = -v_x$.

Έτσι, από το Θεώρημα 11.2.2, συμπεραίνουμε ότι η συνάρτηση f(z) είναι παραγωγίσιμη για κάθε $z\in\mathbb{C}$ και, από το Πόρισμα 11.2.1, ευρίσκουμε

$$f'(z) = u_x(x,y) + i v_x(x,y) = ae^{ax} \cos(ay) + i ae^{ax} \sin(ay)$$

= $ae^{ax} [\cos(ay) + i \sin(ay)] = ae^{ax} e^{iay} = ae^{az}$.

Πρόταση 11.3.2 Η συνάρτηση

$$f: \mathbb{C} \to \mathbb{C}, \ f(z) = \sin(az), \ z \in \mathbb{C},$$

όπου $a\in\mathbb{R}$, είναι παραγωγίσιμη στο \mathbb{C} και ισχύει

$$f'(z) = a \cos(az), \ \forall z \in \mathbb{C}.$$

Απόδειξη. Από τον ορισμό (10.2.3) έχουμε

$$f(z) = \sin(az) = \frac{e^{iaz} - e^{-iaz}}{2i} = \frac{e^{ia(x+iy)} - e^{-ia(x+iy)}}{2i}$$
$$= \frac{e^{-ay}[\cos(ax) + i\sin(ax)] - e^{ay}[\cos(ax) - i\sin(ax)]}{2i}$$
$$= \frac{\sin(ax)(e^{-ay} + e^{ay})}{2} + i\frac{\cos(ax)(e^{ay} - e^{-ay})}{2},$$

οπότε

$$u(x,y) = \frac{\sin(ax)(e^{-ay} + e^{ay})}{2}$$
 and $v(x,y) = \frac{\cos(ax)(e^{ay} - e^{-ay})}{2}$.

Εξάλλου, οι συναρτήσεις u και v έχουν συνεχείς μερικές παραγώγους

$$u_x = \frac{a\cos(ax)(e^{-ay} + e^{ay})}{2} , \quad u_y = \frac{a\sin(ax)(e^{ay} - e^{-ay})}{2},$$
$$v_x = \frac{-a\sin(ax)(e^{ay} - e^{-ay})}{2} , \quad v_y = \frac{a\cos(ax)(e^{ay} + e^{-ay})}{2}$$

στο \mathbb{R}^2 για τις οποίες ισχύουν οι εξισώσεις Cauchy-Riemann. Έτσι, από το Θεώρημα 11.2.2, συμπεραίνουμε ότι η συνάρτηση f(z) είναι παραγωγίσιμη σε κάθε $z\in\mathbb{C}$ και, εφαρμόζοντας το Πόρισμα 11.2.1, ευρίσκουμε

$$f'(z) = u_x(x,y) + i v_x(x,y) = \frac{a \cos(ax)(e^{-ay} + e^{ay})}{2} + i \frac{-a \sin(ax)(e^{ay} - e^{-ay})}{2}$$
$$= \frac{a}{2} \left[e^{-ay}(\cos(ax) + i \sin(ax)) + e^{ay}(\cos(ax) - i \sin(ax)) \right]$$
$$= \frac{a}{2} \left[e^{iax}e^{-ay} + e^{-iax}e^{ay} \right] = \frac{a}{2} \left[e^{ia(x+iy)} + e^{-ia(x+iy)} \right] = a \cos(az).$$

Σημείωση 11.3.1 Ένας απλούστερος εναλλακτικός τρόπος υπολογισμού της παραγώγου, με εφαρμογή της Πρότασης 11.3.1, είναι ο ακόλουθος

$$f'(z) = \frac{(e^{iaz})' - (e^{-iaz})'}{2i} = \frac{iae^{iaz} - (-ia)e^{-iaz}}{2i} = a\frac{e^{iaz} + e^{-iaz}}{2} = a\cos(az).$$

 \triangle

Με παρόμοια διαδικασία αποδεικνύεται η ακόλουθη

Πρόταση 11.3.3 Η συνάρτηση

$$f: \mathbb{C} \to \mathbb{C}, \ f(z) = \cos(az), \ z \in \mathbb{C},$$

όπου $a\in\mathbb{R}$, είναι παραγωγίσιμη στο \mathbb{C} και ισχύει

$$f'(z) = -a \sin(az), \ \forall z \in \mathbb{C}.$$

Πόρισμα 11.3.1 Οι συναρτήσεις

$$f(z)=\tan z,\ z\neq n\pi+rac{\pi}{2},\ n\in\mathbb{Z}$$
 and $g(z)=\cot z,\ z\neq n\pi,\ n\in\mathbb{Z}$

είναι παραγωγίσιμες στα πεδία ορισμού τους με παραγώγους

$$f'(z) = \frac{1}{\cos^2 z}$$
 xal $g'(z) = -\frac{1}{\sin^2 z}$.

Πρόταση 11.3.4 Η συνάρτηση

$$\text{Log} z = \ln |z| + i \text{Arg}(z), \ z \in \mathbb{C}, \ z \neq 0$$

είναι παραγωγίσιμη στο σύνολο

$$\{z \in \mathbb{C} : 0 < \operatorname{Arg}(z) < 2\pi\}$$

με παράγωγο

$$(\text{Log}z)' = \frac{1}{z}.\tag{11.3.1}$$

Απόδειξη. Το πραγματικό μέρος u της $\mathrm{Log}z$ είναι

$$u(x,y) = \frac{1}{2}\ln(x^2 + y^2), \tag{11.3.2}$$

ενώ το φανταστικό μέρος v προκύπτει ως λύση της εξίσωσης

$$tan v(x,y) = \frac{y}{x}.$$
(11.3.3)

Για την λύση της (11.3.3) παρατηρούμε τα εξής. Από την (8.4.3), βλέπουμε ότι η συνάρτηση $\arctan(\frac{y}{x})$ είναι συνεχής σε όλο το μιγαδικό επίπεδο, εκτός από την ημιευθεία z=x>0, όπου παρουσιάζει μεταβολή στην τιμή της κατά 2π με κάθε πλήρη περιστροφή της τελικής πλευράς της γωνίας ως προς την ημιευθεία αυτή. Έτσι, το φανταστικό μέρος $v(x,y)=\arctan(\frac{y}{x})$, από την (8.4.3), είναι συνεχής συνάρτηση στο μιγαδικό επίπεδο εκτός της ημιευθείας z=x>0 και επομένως η συνάρτηση $\log z$ είναι συνεχής σε όλο το μιγαδικό επίπεδο εκτός από την κλαδική τομή z=x>0 (βλ. Σ χήμα 10.3).

Τώρα, με τη βοήθεια και του γνωστού τύπου

$$(\arctan t)' = \frac{1}{1+t^2}, \ t \in \mathbb{R},$$

υπολογίζουμε

$$u_x = \frac{x}{x^2 + y^2}, \quad u_y = \frac{y}{x^2 + y^2}, \quad v_x = -\frac{y}{x^2 + y^2}, \quad v_y = \frac{x}{x^2 + y^2}$$

και παρατηρούμε ότι οι πραγματικές συναρτήσεις u και v έχουν συνεχείς μερικές παραγώγους, οι οποίες πληρούν τις συνθήκες Cauchy-Riemann. Επομένως, από το Θεώρημα 11.2.2, συνάγουμε ότι η συνάρτηση Logz είναι παραγωγίσιμη στο σύνολο $\{z\in\mathbb{C}:0<\text{Arg}(z)<2\pi\}$ και από το Πόρισμα 11.2.1, λαμβάνουμε

$$(\text{Log}z)' = u_x + iv_x = \frac{x - iy}{x^2 + y^2} = \frac{1}{x + iy} = \frac{1}{z}.$$

Σημείωση 11.3.2 Ο έλεγχος της παραγωγισιμότητας της συνάρτησης και ο υπολογισμός της παραγώγου επιτυγχανόνται επίσης εναλλακτικά με χρήση πολικών συντεταγμένων (r, θ) , οι οποίες οδηγούν στις

$$u = \ln r$$
 xal $v = \theta$,

οι οποίες, όπως εύχολα επιβεβαιώνεται, ικανοποιούν τις συνθήχες Cauchy-Riemann (11.2.2), οπότε από την Πρόταση 11.2.1, έχουμε

$$(\text{Log}z)' = e^{-i\theta} \frac{\partial}{\partial r} (\ln r) = \frac{1}{re^{i\theta}} = \frac{1}{z}.$$

 \triangle

Εφαρμόζοντας παρόμοια διαδικασία, αποδεικνύεται ότι η $\log z$ είναι επίσης παραγωγίσιμη και σε οποιοδήποτε άλλο κλάδο της, εκτός της κλαδικής τομής z=x>0, και η παράγωγός της υπολογίζεται επίσης από τον τύπο (11.3.1).

Παράδειγμα 11.3.1 Βρείτε τις παραγώγους των συναρτήσεων

(i)
$$e^{e^z}$$
, (ii) $\sin(e^z)$, (iii) $\frac{1}{e^z-1}$.

Λύση.

(i) Από τον κανόνα παραγώγισης σύνθετης συνάρτησης (κανόνας αλυσίδας) για τη σύνθεση των συναρτήσεων $f(z)=e^z$ και $g(z)=e^z$, έχουμε

$$(e^{e^z})' = (g(f(z)))' = g'(f(z))f'(z) = e^{e^z}e^z, \ z \in \mathbb{C}.$$

(ii) Ομοίως, για τις συναρτήσεις $f(z)=e^z$ και $g(z)=\sin z$, ευρίσκουμε

$$(\sin(e^z))' = (g(f(z)))' = g'(f(z))f'(z) = \cos(e^z)e^z, \ z \in \mathbb{C}.$$

(iii) Ομοίως, για τις $f(z)=e^z$ και $g(z)=\frac{1}{z-1}$, έχουμε

$$\left(\frac{1}{e^z - 1}\right)' = (g(f(z)))' = g'(f(z))f'(z) = -\frac{1}{(e^z - 1)^2}e^z, \ z \in \mathbb{C} \setminus \{z : e^z = 1\}.$$

 \triangle

11.4 Ολόμορφες συναρτήσεις

Ορισμός 11.4.1 Μία μιγαδική συνάρτηση $f:A\subseteq\mathbb{C}\to\mathbb{C}$ με πεδίο ορισμού ένα ανοικτό σύνολο A ονομάζεται ολόμορφη στο A όταν είναι παραγωγίσιμη σε κάθε σημείο του A. Ιδιαιτέρως, η f ονομάζεται ολόμορφη σε ένα σημείο $z_0\in A$ όταν υπάρχει ένας ανοικτός δίσκος $D_r(z_0)$, ο οποίος περιέχεται στο A, και η f είναι ολόμορφη στον $D_r(z_0)$.

Μία ολόμορφη συνάρτηση $f:\mathbb{C}\to\mathbb{C}$ ονομάζεται $a\kappa\epsilon\rho aia$.

Παραδείγματα αχεραίων συναρτήσεων αποτελούν οι μιγαδικές πολυωνυμικές, η εχθετική και οι τριγωνομετρικές συναρτήσεις ημίτονο και συνημίτονο.

Πρόταση 11.4.1 Έστω $f=u+i\,v:\Omega\subseteq\mathbb{C}\to\mathbb{C}$ μία ολόμορφη μιγαδιχή συνάρτηση με πεδίο ορισμού ένα πεδίο Ω , για την οποία ισχύει f'(z)=0 για χάθε $z\in\Omega$. Τότε, η f είναι σταθερή στο Ω .

Απόδειξη. Από το Πόρισμα 11.2.1, έχουμε

$$f'(z) = u_x(x,y) + i v_x(x,y) = v_y(x,y) - i u_y(x,y), \ z = x + iy \in \Omega.$$

Έτσι, επειδή f'(z)=0, έπεται ότι $u_x=u_y=0$ και $v_x=v_y=0$, δηλαδή $\nabla u=(0,0)$ και $\nabla v=(0,0)$ στο πεδίο $\widetilde{\Omega}=\{(x,y)\in\mathbb{R}^2:x+iy\in\Omega\}$ του \mathbb{R}^2 . Όμως, όπως γνωρίζουμε από τη θεωρία πραγματικών συναρτήσεων πολλών μεταβλητών, οι πραγματικές συναρτήσεις u και v θα πρέπει να είναι σταθερές στο $\widetilde{\Omega}$, άρα και η μιγαδική συνάρτηση $f=u+i\,v$ είναι σταθερή στο Ω .

Σημείωση 11.4.1 Στην προηγούμενη πρόταση το σύνολο Ω ως πεδίο είναι πολυγωνικά συνεκτικό. Η υπόθεση αυτή είναι απαραίτητη, διότι, π.χ. η συνάρτηση

$$f(z) = \begin{cases} 2, & |z| < 1 \\ 1, & |z| > 2 \end{cases}$$

είναι ολόμορφη με f'(z) = 0, αλλά η f δεν είναι σταθερή.

 \triangle

Πόρισμα 11.4.1 Έστω $f=u+iv:\Omega\subseteq\mathbb{C}\to\mathbb{C}$ ολόμορφη μιγαδική συνάρτηση στο πεδίο Ω με την ιδιότητα οποιαδήποτε από τις τρεις συναρτήσεις: (i) $\mathrm{Re}(f)$, (ii) $\mathrm{Im}(f)$ ή (iii) |f| είναι σταθερή στο Ω . Τότε, η f είναι σταθερή στο Ω .

Απόδειξη.

(i) Επειδή ισχύει $u(x,y)=\mathrm{Re}(f(x+iy))=c$, για κάθε $(x,y)\in\widetilde{\Omega}=\{(x,y)\in\mathbb{R}^2:x+iy\in\Omega\}$, όπου c σταθερά, έχουμε $u_x=u_y=0$ στο $\widetilde{\Omega}$. Εξάλλου, επειδή η f είναι ολόμορφη στο Ω , ισχύουν οι συνθήκες C-R, οπότε έχουμε

$$v_y = u_x = 0 \quad \text{in} \quad v_x = -u_y = 0,$$

και έτσι, από το Πόρισμα 11.2.1, λαμβάνουμε

$$f'(z) = u_x + iv_x = 0.$$

Άρα, από την Πρόταση 11.4.1, η f είναι σταθερή στο Ω .

- (ii) Ο ισχυρισμός επιβεβαιώνεται με τη διαδικασία της περίπτωσης (i).
- (iii) Αν |f(z)|=c, για κάθε $z\in\Omega$, όπου $c\neq0$, τότε ισχύει $u^2+v^2=c^2$, για κάθε $(x,y)\in\widetilde\Omega$, οπότε παραγωγίζοντας ως προς x και y, ευρίσκουμε

$$uu_x + vv_x = 0$$

και

$$uu_y + vv_y = 0.$$

Εφαρμόζοντας τις συνθήχες C-R, στη δεύτερη εξίσωση, οδηγούμαστε στο ομογενές σύστημα

$$uu_x + vv_x = 0$$

$$vu_x - uv_x = 0,$$

το οποίο έχει μόνο τη μηδενική λύση $u_x=v_x=0$ διότι η ορίζουσά του είναι $-u^2-v^2=-c^2\neq 0$. Άρα

$$f'(z) = u_x + iv_x = 0$$

και επομένως ο ισχυρισμός προκύπτει από την Πρόταση 11.4.1.

Πόρισμα 11.4.2 Αν οι συναρτήσεις f(z) και g(z) είναι ολόμορφες σε ένα πεδίο Ω και ισχύουν $\mathrm{Re}(f)=\mathrm{Re}(g)$ ή $\mathrm{Im}(f)=\mathrm{Im}(g)$ στο Ω , τότε υπάρχει μιγαδική σταθερά c, έτσι ώστε να ισχύει

$$f(z) = g(z) + c, \ \forall z \in \Omega.$$

Απόδειξη. Υποθέτουμε π.χ. ότι Re(f) = Re(g) στο Ω και θεωρούμε τη συνάρτηση

$$h(z) = f(z) - g(z) = u(x, y) + i v(x, y), z = x + iy,$$

η οποία είναι ολόμορφη στο Ω , αφού οι f(z) και g(z) είναι ολόμορφες και παρατηρούμε ότι ισχύει

$$u = \operatorname{Re}(h) = \operatorname{Re}(f) - \operatorname{Re}(g) = 0,$$

οπότε $u_x=u_y=0$ στο Ω και (λόγω των συνθηκών C-R) $v_x=-u_y=0$ και $v_y=u_x=0$. Εφαρμόζοντας τώρα το Πόρισμα 11.2.1, ευρίσκουμε

$$h'(z) = u_x + i v_x = 0,$$

στο Ω , και επομένως, από την Πρόταση 11.4.1, έχουμε ότι h(z)=c στο Ω .

Κατά τον ίδιο τρόπο αποδειχνύεται ο ισχυρισμός και για την περίπτωση Im(f) = Im(g).

Πόρισμα 11.4.3 Αν μία μιγαδική συνάρτηση f και η συζυγής της \overline{f} είναι ολόμορφες σε ένα πεδίο Ω του $\mathbb C$ τότε η f είναι σταθερή στο Ω .

Απόδειξη. Εφαρμόζοντας τις συνθήκες C-R για τις συναρτήσεις $f=u+i\,v$ και $\overline{f}=u-i\,v$, προκύπτουν

$$u_x = v_y$$
 xai $u_y = -v_x$

και

$$u_x = -v_y$$
 xal $u_y = v_x$,

οι οποίες συνεπάγονται

$$u_x = u_y = v_x = v_y = 0$$

και έτσι ο ισχυρισμός επαληθεύεται ως εφαρμογή του Πορίσματος 11.2.1 και της Πρότασης 11.4.1.