MODELO PROBABILISTICO PARA O SORTEIO DA MEGA SENA

QUINTILIANO SIQUEIRA SCHRODEN NOMELINI¹

kim_mati@yahoo.com.br

WANDERLEY CARDOSO DE JESUS²
MARCO ANTÔNIO DOS SANTOS³
ELIEZER GONÇALVES SILVA⁴
HEYDER DINIZ SILVA⁵
ARLINDO JOSÉ DE SOUZA JR⁶

RESUMO – O início da análise matemática da probabilidade é marcado pela proposição do jogo de *balla* e foi atribuido como a *Summa*. À partir daí veio várias descobertas sobre a teoria das probabilidades, e o tratado sobre o Jogo Líber de Ludo Aleae (Livro dos Jogos de Azar) pode ter sido um dos primeiros a introduzir esta teoria. No Brasil, as loterias seduzem milhões de pessoas a cada semana com a esperança de tornarem-se milionárias. Alguns se tornam tão obcecados com a possibilidade de ganhar, que tentam descobrir algum segredo estatístico a respeito da "lógica" dos números sorteados. Neste artigo, o intuito foi mostrar o comportamento probabilístico para o sorteio da Mega Sena e verificar a consistência da Teoria das Probabilidades, dando assim um embasamento matemático para se jogar e também quais jogos são mais prováveis de acontecer por meio de combinações e probabilidade.

Palavras-chave: ANÁLISE COMBINATÓRIA – TEORIA DAS PROBABILIDADES – MEGA SENA.

¹Graduado em Licenciatura Matemática pela Universidade Federal de Uberlândia. Mestrando em Estatística e Experimentação Agropecuária pela Universidade Federal de Lavras. Instituição Financiadora: CAPES.

² Aluno de graduação em Matemática.

³ Aluno de graduação em Matemática.

⁴ Aluno de graduação em Matemática.

⁵ Graduado em Agronomia pela Universidade Federal de Lavras – Professor Efetivo pela Universidade Federal de Uberlândia.

⁶ Graduado em Licenciatura em Matemática pela Universidade Estadual Paulista Júlio de Mesquita Filho - Professor Efetivo pela Universidade Federal de Uberlândia.

Introdução

Historicamente o início do estudo da probabilidade é atribuído a *Summa*, pela proposição do jogo de *balla*, pois marca o início da análise matemática da probabilidade.

Girolamo Cardano (1501-1576) no seu tratado sobre o jogo Líber de Ludo Aleae (Livro dos Jogos de Azar), pode ter sido o primeiro a introduzir o lado estatístico da Teoria das Probabilidades. Descobriu que o arremesso de dois dados produz, não onze (de 2 a12), mas 36 combinações possíveis.

No Brasil, as loterias seduzem milhões de pessoas a cada semana com a esperança de tornarem-se milionárias. Alguns se tornam tão obcecados com a possibilidade de ganhar, que tentam descobrir algum segredo estatístico a respeito da "lógica" dos números sorteados. Além disso, de vez em quando, aparecem alguns "especialistas", revelando a existência de uma lei que governaria os sorteios. Outras vezes, são os numerologistas que revelam às pessoas quais seriam os seus números da sorte, fazendo até propagandas a respeito de clientes que se teriam tornado milionários, apostando na loteria. Normalmente quando os prêmios da Mega-sena (que paga os maiores prêmios) acumulam, os jornais divulgam os números que foram mais ou menos vezes sorteados, para que os apostadores tomem uma decisão a respeito de seus prognósticos.

Neste artigo, o intuito foi mostrar o comportamento probabilístico para o sorteio da Mega Sena e verificar a consistência da Teoria das Probabilidades, dando assim um embasamento matemático para se jogar e também quais jogos são mais prováveis de acontecer por meio de combinações e probabilidade.

Materiais e Métodos

Nosso propósito é oferecer um modelo matemático probabilístico simples aos apostadores dos jogos de prognósticos com o intuito de mostrar sua organização e o comportamento probabilístico de seus resultados.

Pensar em termos de combinações individuais não é prático nem leva a conclusão alguma. Afinal, as loterias têm tipicamente milhões de resultados possíveis. O caminho lógico seria tentar organizar esses resultados individuais em grupos que tivessem um mesmo padrão de comportamento. A forma mais natural de conseguir essa ordenação foi através da classificação das combinações em função das dezenas e não dos números em si. Nosso estudo foi em cima da Mega Sena, operada pela Caixa Econômica Federal.

A Mega Sena é o que se chama loteria 6/60, ou seja, são sorteados 6 números de um conjunto formado pelos números de 1 a 60. O total de resultados possíveis é calculado pela conhecida fórmula de combinações simples de n elementos tomados p a

p:
$$C(n, p) = \frac{n!}{(n-p)! \, p!}$$
.

Para n = 60 e p = 6: C(60,6) = 50.063.860 combinações possíveis.

Como a mega sena é composta de 60 números, definimos 6 dezenas de 10 números cada, disposta da seguinte maneira:

Além disso, convencionamos nomes para os conjuntos de números da mesma dezena conforme descrito abaixo:

Par: 2 números na mesma dezena; Trinca: 3 números na mesma dezena; Quadra: 4 números na mesma dezena; Quina: 5 números na mesma dezena; Sena: 6 números na mesma dezena.

Feito isto, obtivemos 11 combinações possíveis de grupos, ou gabaritos: Simples, 1 par, 2 pares, 3 pares, 1 trinca, 2 trincas, 1 trinca e 1 par, 1 quadra, 1 quadra e 1 par, 1 quina e 1 sena.

Primeiro se calcula o número de possibilidades de um gabarito com relação às dezenas. Depois se determina o número total de combinações de cada possibilidade do gabarito. E por último multiplica-se o primeiro resultado pelo segundo, que seria o número total de combinações possíveis do gabarito.

Gabarito Simples

É o gabarito onde os 6 números são de dezenas diferentes entre si. Calcula-se então: C(6,6) = 1; $10^6 = 1.000.000$; 1*(1.000.000) = 1.000.000;

Ex: 09, 15, 27, 32, 48, 51.

Gabarito 1 Par

É o gabarito onde 2 números são de uma mesma dezena e os outros 4 são de dezenas diferentes entre si. Calcula-se então: C(6,1)*C(5,4) = 30; $C(10,2)*(10^4) = 450.000$; (450.000)*30 = 13.500.000;

Ex: 03, 07, 13, 25, 47, 60.

Gabaritos 2 Pares

É o gabarito onde 2 números são de uma mesma dezena, outros 2 são de outra dezena e os outros 2 são de dezenas diferentes entre si. Calcula-se então:

$$C(6,2)*C(4,2) = 90$$
; $C(10,2)*C(10,2)*(10^2) = 202.500$; $(202.500)*90 = 18.225.000$; **Ex**: 04, 10, 12, 27, 29, 54.

Gabaritos 3 Pares

É o gabarito onde 2 números são de uma mesma dezena, outros 2 são de outra dezena e os últimos 2 são de uma 3ª dezena. Calcula-se então:

$$C(6,3) = 20$$
; $C(10,2)*C(10,2)*C(10,2) = 91.125$; $(91.125)*20 = 1.822.500$; **Ex:** 21, 25, 34, 39, 58, 60.

Gabarito 1 Trinca

É o gabarito onde 3 números são de uma mesma dezena e os outros 3 são de dezenas diferentes entre si. Calcula-se então:

$$C(6,1)*C(5,3) = 60; C(10,3)*(10^3) = 120.000; (120.000)*60 = 7.200.000;$$

Ex: 08, 23, 44, 47, 50, 59.

Gabarito 2 Trincas

É o gabarito onde 3 números são de uma mesma dezena, e os outros 3 são de outra dezena. Calcula-se então:

$$C(6,2) = 15$$
; $C(10,3)*C(10,3) = 14.400$; $(14.400)*15 = 216.000$;

Ex: 01, 03, 09, 36, 38, 39.

Gabarito 1Trinca 1 Par

É o gabarito onde 3 números são de uma mesma dezena, outros 2 são de outra dezena e o ultimo é de uma 3ª dezena. Calcula-se então:

$$C(6,1)*C(5,1)*C(4,1) = 120; C(10,2)*C(10,3)*10 = 54.000; (54.000)*120 = 6.480.000;$$

 $Ex: 02, 05, 11, 13, 16, 57.$

Gabarito 1 Quadra

É o gabarito onde 4 números são de uma mesma dezena, e os outros 2 são de dezenas diferentes entre si. Calcula-se então:

$$C(6,1)*C(5,2) = 60; C(10,4)*(10^2) = 21.000; (21.000)*60 = 1.260.000;$$

Ex: 31, 32, 35, 38, 41, 51.

Gabarito 1 Quadra 1 Par

É o gabarito onde 4 números são de uma mesma dezena, e os outros 2 são de outra dezena. Calcula-se então:

$$C(6,1)*C(5,1) = 30$$
; $C(10,4)*C(10,2) = 9.450$; $(9.450)*30 = 283.500$;

Ex: 11, 16, 18, 19, 51, 53.

Gabarito 1 Quina

É o gabarito onde 5 números são de uma mesma dezena, e o último é de uma dezena diferente. Calcula-se então:

$$C(6,1)*C(5,1) = 30$$
; $C(10,5)*10 = 2.520$; $(2.520)*30 = 75.600$;

Ex: 21, 24, 27, 28, 30, 60.

Gabarito 1 Sena

É o gabarito onde os 6 números são de uma mesma dezena. Calcula-se então:

$$C(6,1) = 6$$
; $C(10,6) = 210$; $(210)*6 = 1.260$;

Ex: 31, 32, 34, 38, 39, 40.

Para verificar a consistência dos cálculos, temos que a soma dos valores obtidos pelo primeiro cálculo de cada gabarito deve ser igual à: Cr(6,6) = C(11,6) = 462. E que a soma dos valores obtidos pelo terceiro cálculo deve ser igual à: C(60,6)=50.063.860.

Para calcular as porcentagens de cada gabarito, dividimos o valor do terceiro cálculo por 50.063.860 e multiplicamos por 100. Multiplicamos a porcentagem por 5,65 para encontrarmos o valor esperado.

Resultados e Discussão

Um modelo matemático não tem validade se os dados reais não seguirem o comportamento esperado. Assim, precisamos tabular os resultados reais para comparálos com os teóricos.

Após efetuarmos os cálculos, tabelamos as freqüências dos dados esperados como mostrado na tabela abaixo:

	P	2P	3P	TP	T	TT	Q	QP	Qn	S	N	Total
Gabaritos	152	206	21	73	81	3	14	3	1	0	11	565
%	26,97	36,40	3,64	12,94	14,38	0,43	2,51	0,57	0,15	0,00	2,00	100

Para serem usados como dados observados foram coletados os sorteios do número 1 ao número 565 coletados no site da Caixa Econômica Federal, que foram tabelados da mesma forma dos dados esperados, como se pode ver na tabela abaixo:

	P	2P	3P	TP	T	TT	Q	QP	Qn	S	N	Total
Gabaritos	164	198	19	72	91	2	7	2	0	0	10	565
%	29,40	35,02	3,40	12,70	15,73	0,37	1,31	0,33	0,00	0,00	1,74	100

Gráfico comparativo entre os dados esperados e os observados:

Para verificarmos se a teoria é valida utilizamos o teste Qui-quadrado de aderência(ANEXO), onde:

H₀: negação da significância da diferença entre os dados;

H_a: negação de Ho;

a = 0.01;

Graus de liberdade = k - 1 - m = 10; $k = n^{\circ}$ de classes e $m = n^{\circ}$ de parâmetros;

 $X^2(0,01)(10) = 23,209$ (valor tabelado);

 $X^2_{calc} = 6,954366512.$

Como $X^2_{calc} < X^2(0,01)(10)$ conclui-se então que não se rejeita a hipótese H_o . Logo, o modelo é valido.

Para acertar os seis números é preciso acertar o gabarito sorteado. Assim, o primeiro passo para formular uma aposta é escolher o gabarito. Com as informações que agora temos disponíveis nos permitem uma análise racional do jogo podendo então melhorálo, uma vez que, sob condições de incerteza, a racionalidade e a medição são essenciais para a tomada de decisões, pois não devemos rejeitar os números quando eles prometem mais precisão que a intuição.

Conclusão

A organização dos espaços amostrais das loterias sob forma dos gabaritos traz uma luz sobre o maravilhoso movimento aleatório dos sorteios. Podemos agora ver uma ordem onde aparentemente só havia o caos. Temos assim um benefício para todos aqueles que hoje jogam totalmente no escuro nas loterias de mundo.

Com a confirmação da validade do modelo, esperamos que possa vir a ser um meio racional para diminuição da margem de erro de seus jogos.

Por tudo isso, se espera que o modelo apresentado, por sua simplicidade e exatidão, possa vir a ser uma ferramenta utilizável, lógica e satisfatória para o estudo do movimento das coisas do mundo.

Referências Bibliografias

GIANELLA, R. O lúdico na teoria dos jogos. Scientific American V.10 p. 36-43;

ANEXO: Tabela do Teste Qui-quadrado de aderência.

Teste Qui-quadrado (x²)										
Dados Reais										
Gabaritos	Fo	Fe	$\mathbf{Fe} - \mathbf{Fo} \qquad \qquad (\mathbf{Fe} - \mathbf{Fo})^2$		(Fe - Fo) ² /Fe					
Р	164	152	-12	144	0,947368421					
PP	198	206	8	64	0,310679612					
PPP	19	21	2	4	0,19047619					
Тр	72	73	1	1	0,01369863					
Т	91	81	-10	100	1,234567901					
TT	2	3	1	1	0,333333333					
Qd	7	14	7	49	3,5					
Qp	2	3	1	1	0,333333333					
Qn	0	1	1	1	0					
Sn	0	0	0	0	0					
Nd	10	11	1	1	0,090909091					
Total	565	565			6,954366512					