INFO2050: Projet 1: Algorithme de tri

Julien Gustin, Mathias Carlisi

1 Analyse théorique

1.1 Invariant

```
 \begin{array}{l} \square \ \{P\} = \text{"$A$ est un tableau d'entiers de taille $A$.$ length"} \\ \{Q\} = \text{"$Le$ tableau $A$ est trié"} \\ \{I\} = \text{"$Le$ sous tableau $A[1..i]$ contient les $i$ premiers éléments de $A$ triés, le sous tableau $A[j..A.length]$ est la partie du tableau de $A$ qui n'est pas encore triée" \\ \square \ \{P\}i = 1 \ \&\& \ j = 2\{I\} \\ \{I\} \ \exists i,j,\ 1 \leq i < j \leq A.\ length,\ A[1..i],\ \forall k,\ 1 \leq k < i,\ A[k] \leq A[k+1] \\ \text{Fonction de terminaison}: \ f = A.\ length - j + 1 \\ \{Q\} = \forall k,\ 1 \leq k < A.\ length,\ A[k] \leq A[k+1] \ \&\& \ j = A.\ length + 1 \\ \end{array}
```

1.2 PseudoCode

```
NEW-SORT(A)

1 i = 1

2 for j = 2 to A.length

3 while A[j] \le A[j+1] and j < A.length

4 j = j+1

5 Merge(A, 1, i, j)

6 i = j
```

1.3 Complexité

La complexité en temps, dans le meilleur des cas, est $\Theta(n)$ (si le tableau est pré-trié par ordre croissant) et dans le pire des cas $\Theta(n^2)$ (si le tableau est pré-trié dans un ordre décroissant), où 'n' est la taille du tableau (array).

(Graphique testé avec des valeurs réelles)

1.4 Stabilité?

Le tri est stable parce que, grâce aux $A[j] \le A[j+1]$, les valeurs égales n'interchangent pas de place, vu que Merge est lui aussi stable NewSort ne peut etre que stable, ainsi le tri gagne en rapidité.

1 while
$$A[j] \le A[j+1]$$
 and $j < A. length \longrightarrow voir PseudoCode 1.2$

1.5 Complexité au pire des cas

2 Analyse expérimentale

2.1 Temps d'exécution sur des tableaux aléatoires

n	InsertionSort	QuickSort	HeapSort	MergeSort	NewSort
10^{1}	0,000015	0,000005	0,000006	0,000009	0,000005
10^{2}	0,000052	0,000035	0,000061	0,000054	0,000090
10^{3}	0,001055	0,000225	0,000959	0,000297	0,001841
10^{4}	0,060314	0,003429	0,003847	0,002229	$0,\!112815$
10^{5}	7,216459	0.036962	$0,\!032527$	0,017463	10,771157
10^{6}	768,522644	2.639571	0,353273	0,179450	1429,154037

L'InsertionSort et le NewSort sont les tris les plus lents des cinq, en effet avec leurs complexités moyennes de $\Theta(n^2)$, ces tris prennent un temps quadratique pour un tableau de taille 'n', cette complexité "élevée" découle du fait que, contrairement aux QuickSort, MergeSort ou HeapSort, ces tris requièrent (pour l'InsertionSort) de parcourir le tableau plusieurs fois pour insérer une valeur à sa bonne place et pour le MergeSort, de trié deux sous tableaux dont le premier commence de la première case jusqu'à la dernière précédemment triée, et le deuxième, de la case qui suit le premier sous tableau jusqu'à la dernière case où la suivante n'est pas triée par ordre croissant, et ainsi la fusion de ces deux sous-tableaux pré-triés crée un tableau trié. Parcourir plusieurs fois le tableau mène à une complexité de $\Theta(n^2)$.

L'algorithme qui suit est de type "diviser pour régner" (découper le problème initial en sous problèmes, résoudre ceux ci permettent de résoudre le problème initial), sa complexité moyenne est $\Theta(n \log n)$, cependant, la lenteur de **QuickSort** comparé à MergeSort et HeapSort est dû, au pire des cas, à sa complexité quadratique, il procède ainsi par une méthode qui s'appelle "partition" et qui consiste à choisir un pivot que nous plaçons à la fin du sous tableau. Les éléments inférieurs à celui ci sont insérés au début de ce sous tableau, ensuite ce pivot est placé à la fin des éléments déplacés, cette méthode permet de trier le tableau rapidement, cependant, si le tableau est déjà trié en entrée, ce tri n'est pas vraiment efficace.

Les deux prochains algorithmes, **HeapSort** et **MergeSort**, sont tout deux extrêmement rapides avec une complexité, que ce soit dans le pire ou le meilleur des cas de $\Theta(n \log n)$, asymptotiquement optimale. Le **MergeSort** est de type " diviser pour régner", cet algorithme fonctionne par le principe que, à partir de deux tableaux triés nous pouvons former un tableau triés, ainsi par récursivité nous créons des sous-tableaux de plus en plus petit jusqu'à ce que le tableau ne contienne qu'un seul élément et par la remonté récursive nous fusionnons ces tableaux qui deviennent de plus en plus grands à chaque remonté jusqu'à ce que le tableau soit complètement trié.

Le **HeapSort** fonctionne par arbre binaire. Ce qui crée la légère différence en temps entre ces deux tris est la stabilité en effet le HeapSort ne préserve pas nécessairement l'ordre des éléments à valeurs identique contrairement au MergeSort qui gagne ainsi en rapidité.

Cas	InsertionSort	QuickSort	HeapSort	MergeSort	NewSort
Meilleur	$\Theta(n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n)$
Pire	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n^2)$
Moyen	$\Theta(n^2)$	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n \log n)$	$\Theta(n^2)$
Stable	Oui	Non	Non	Oui	Oui