

Limits

1.1 Limit of a Function

Let y = f(x) be a function of x. If at x = a, f(x) takes indeterminate form, then we consider the values of the function which are very near to 'a'. If these values tend to a definite unique number as x tends to 'a', then the unique number so obtained is called the limit of f(x) at x = a and we write it as $\lim_{x \to a} f(x)$.

- (1) **Meaning of 'x** \succeq **a':** Let x be a variable and a be the constant. If x assumes values nearer and nearer to 'a' then we say 'x tends to a' and we write 'x \rightarrow a'. It should be noted that as $x \rightarrow a$, we have $x \neq a$. By 'x tends to a' we mean that
 - (i) $x \neq a$

- (ii) x assumes values nearer and nearer to 'a' and
- (iii) We are not specifying any manner in which x should approach to 'a'. x may approach to a from left or right as shown in figure.

(2) **Left hand and right hand limit**: Consider the values of the functions at the points which are very near to a on the left of a. If these values tend to a definite unique number as x tends to a, then the unique number so obtained is called left-hand limit of f(x) at x = a and symbolically we write it as $f(a - 0) = \lim_{x \to a} f(x) = \lim_{x \to a} f(a - h)$

Similarly we can define right-hand limit of f(x) at x = a which is expressed as $f(a + 0) = \lim_{x \to a^+} f(x)$ = $\lim_{h \to 0} f(a + h)$.

- (3) Method for finding L.H.L. and R.H.L.
- (i) For finding right hand limit (R.H.L.) of the function, we write x + h in place of x, while for left hand limit (L.H.L.) we write x h in place of x.
 - (ii) Then we replace x by 'a' in the function so obtained.
 - (iii) Lastly we find limit $h \rightarrow 0$.
 - (4) **Existence of limit**: $\lim_{x\to a} f(x)$ exists when,
 - (i) $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^+} f(x)$ exist i.e. L.H.L. and R.H.L. both exists.
 - (ii) $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$ i.e. L.H.L. = R.H.L.
 - Note: \square If a function f(x) takes the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ at x = a, then we say that f(x) is indeterminate or meaningless at x = a. Other indeterminate forms are $\infty \infty, \infty \times \infty, 0 \times \infty, 1^{\infty}, 0^{0}, \infty^{0}$
 - ☐ In short, we write L.H.L. for left hand limit and R.H.L. for right hand limit.

- It is not necessary that if the value of a function at some point exists then its limit at that point must exist.
- (5) **Sandwich theorem**: If f(x), g(x) and h(x) are any three functions such that, $f(x) \le g(x) \le h(x) \ \forall x \in \mathbb{R}$ neighborhood of x = a and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = l$ (say), then $\lim_{x \to a} g(x) = l$. This theorem is normally applied when the $\lim_{x\to a} g(x)$ can't be obtained by using conventional methods as function f(x) and h(x) can be easily found.

Example: 1 If
$$f(x) = \begin{cases} x, \text{ when } x > 1 \\ x^2, \text{ when } x < 1 \end{cases}$$
, then $\lim_{x \to 1} f(x) = \lim_{x \to 1} f(x)$

(d) 1

Solution: (d) To find L.H.L. at
$$x = 1$$
. i.e.,

$$\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} f(1-h) = \lim_{h \to 0} (1-h)^{2} = \lim_{h \to 0} (1+h^{2}-2h) = 1 \quad \text{i.e., } \lim_{x \to 1^{-}} f(x) = 1 \qquad \dots$$

Now find R.H.L. at
$$x = 1$$
 i.e., $\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1+h) = 1$ i.e., $\lim_{x \to 1^+} f(x) = 1$ (ii)

From (i) and (ii), L.H.L. = R.H.L.
$$\Rightarrow \lim_{x\to 1} f(x) = 1$$
.

Example: 2
$$\lim_{x \to 2} \frac{|x-2|}{x-2} =$$

- (c) Does not exist
- (d) None of these

(a) 1 (b) -1

Solution: (c) L.H.L. =
$$\lim_{x \to 2^{-}} \frac{|x-2|}{x-2} = \lim_{h \to 0} \frac{|2-h-2|}{2-h-2} = \lim_{h \to 0} \frac{h}{-h} = -1$$

....(i)

and, R.H.L. =
$$\lim_{x \to 2^+} \frac{|x-2|}{x-2} = \lim_{h \to 0} \frac{|2+h-2|}{2+h-2} = \lim_{h \to 0} \frac{h}{h} = 1$$

....(ii)

From (i) and (ii) L.H.L.
$$\neq$$
 R.H.L. i.e. $\lim_{x\to 2} \frac{|x-2|}{|x-2|}$ does not exist.

Example: 3 If
$$f(x) = \begin{cases} \frac{2}{5-x}, & \text{when } x < 3\\ 5-x, & \text{when } x > 3 \end{cases}$$
, then

- (c) $\lim_{x \to 3^+} f(x) \neq \lim_{x \to 3^-} f(x)$ (d) None of these

Solution: (c)
$$\lim_{x \to 3+} f(x) = 5 - 3 = 2$$
 and $\lim_{x \to 3-} f(x) = \frac{2}{5 - 3} = 1$

- Let the function f be defined by the equation $f(x) = \begin{cases} 3x, & \text{if } 0 \le x \le 1 \\ 5 3x, & \text{if } 1 < x \le 2 \end{cases}$, then (a) $\lim_{x \to 1} f(x) = f(1)$ (b) $\lim_{x \to 1} f(x) = 3$ (c) $\lim_{x \to 1} f(x) = 2$ (d) $\lim_{x \to 1} f(x)$ does not exist Example: 4

Solution: (d) L.H.L. =
$$\lim_{x \to 1-0} f(x) = \lim_{h \to 0} f(1-h) = \lim_{h \to 0} 3(1-h) = \lim_{h \to 0} (3-3h) = 3-3.0 = 3$$

R.H.L. =
$$\lim_{x \to 1+0} f(x) = \lim_{h \to 0} f(1+h) = \lim_{h \to 0} [5-3(1+h)] = \lim_{h \to 0} (2-3h) = 2-3.0 = 2$$

Hence $\lim_{x\to 1} f(x)$ does not exists.

- $\lim_{x \to 0} \frac{|x|}{x} =$ Example: 5

- (b) -1

(d) Does not exist

 $\lim_{x\to 0^-} \frac{|x|}{x} = -1 \text{ and } \lim_{x\to 0^+} \frac{|x|}{x} = 1, \text{ hence limit does not exists.}$ Solution: (d)

1.2 Fundamental Theorems on Limits

The following theorems are very useful for evaluation of limits if $\lim_{x\to 0} f(x) = l$ and $\lim_{x\to 0} g(x) = m$ (l and m are real numbers) then

(1)
$$\lim_{x \to a} (f(x) + g(x)) = l + m$$
 (Sum rule)

(2)
$$\lim_{x \to a} (f(x) - g(x)) = l - m$$
 (Difference rule)

(3)
$$\lim_{x\to a} (f(x).g(x)) = l.m$$
 (Product rule)

(4)
$$\lim_{x \to a} k f(x) = k.l$$
 (Constant multiple rule)

(5)
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{1}{m}, m \neq 0$$
 (Quotient rule)

(5)
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{1}{m}, m \neq 0$$
 (Quotient rule) (6) If $\lim_{x\to a} f(x) = +\infty$ or $-\infty$, then $\lim_{x\to a} \frac{1}{f(x)} = 0$

(7)
$$\lim_{x \to a} \log\{f(x)\} = \log\{\lim_{x \to a} f(x)\}$$

(8) If
$$f(x) \le g(x)$$
 for all x , then $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$

(9)
$$\lim_{x \to a} [f(x)]^{g(x)} = \{\lim_{x \to a} f(x)\}^{\lim_{x \to a} g(x)}$$

(10) If
$$p$$
 and q are integers, then $\lim_{x\to a} (f(x))^{p/q} = l^{p/q}$, provided $(l)^{p/q}$ is a real number.

(11) If
$$\lim_{x\to a} f(g(x)) = f(\lim_{x\to a} g(x)) = f(m)$$
 provided 'f' is continuous at $g(x) = m$. e.g. $\lim_{x\to a} \ln[f(x)] = \ln(l)$, only if $l > 0$.

1.3 Some Important Expansions

In finding limits, use of expansions of following functions are useful:

$$(1) (1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots$$
 (2) $a^x = 1 + x \log a + \frac{(x \log a)^2}{2!} + \dots$

(2)
$$a^x = 1 + x \log a + \frac{(x \log a)^2}{2!} + \dots$$

(3)
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

(4)
$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, |x| < 1$$

(5)
$$\log(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots$$
, where $|x| < 1$

(6)
$$(1+x)^{\frac{1}{x}} = e^{\frac{1}{x}\log(1+x)} = e^{1-\frac{x}{2} + \frac{x^2}{3}} \dots = e^{\left(1 - \frac{x}{2} + \frac{11}{24}x^2 - \dots\right)}$$

(7)
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

(8)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

(9)
$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \dots$$

(10)
$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

(11)
$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$$

(12)
$$\tanh x = x - \frac{x^3}{3} + 2x^5 - \dots$$

(13)
$$\sin^{-1} x = x + 1^2 \cdot \frac{x^3}{3!} + 3^2 \cdot 1^2 \cdot \frac{x^5}{5!} + \dots$$
 (14) $\cos^{-1} x = \left(\frac{f}{2}\right) - \sin^{-1} x$

(14)
$$\cos^{-1} x = \left(\frac{f}{2}\right) - \sin^{-1} x$$

(15)
$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$

1.4 Methods of Evaluation of Limits

We shall divide the problems of evaluation of limits in five categories.

- (1) **Algebraic limits**: Let f(x) be an algebraic function and 'a' be a real number. Then $\lim f(x)$ is known as an algebraic limit.
- (i) **Direct substitution method**: If by direct substitution of the point in the given expression we get a finite number, then the number obtained is the limit of the given expression.
- (ii) Factorisation method: In this method, numerator and denominator are factorised. The common factors are cancelled and the rest outputs the results.
- (iii) **Rationalisation method**: Rationalisation is followed when we have fractional powers (like $\frac{1}{2}, \frac{1}{3}$ etc.) on expressions in numerator or denominator or in both. After rationalisation the terms are factorised which on cancellation gives the result.
- (iv) **Based on the form when** $x \succeq z$: In this case expression should be expressed as a function 1/x and then after removing indeterminate form, (if it is there) replace $\frac{1}{1}$ by 0.
 - **Step I**: Write down the expression in the form of rational function, i.e., $\frac{f(x)}{g(x)}$, if it is not so.
- **Step II**: If k is the highest power of x in numerator and denominator both, then divide each term of numerator and denominator by x^k .

Step III: Use the result $\lim_{x\to\infty}\frac{1}{x^n}=0$, where n>0.

Note: \square An important result: If m, n are positive integers and $a_0, b_0 \neq 0$ are non-zero real numbers, then

$$\lim_{x \to \infty} \frac{a_0 x^m + a_1 x^{m-1} + \dots + a_{m-1} x + a_m}{b_0 x^n + b_1 x^{n-1} + \dots + b_{n-1} x + b_n} = \begin{cases} \frac{a_0}{b_0}, & \text{if } m = n \\ 0, & \text{if } m < n \\ \infty, & \text{if } m > n \end{cases}$$

Example: 6

(c) Does not exist

(d) None of these

 $\lim_{x \to 1} (3x^2 + 4x + 5) =$ (a) 12 (b) -1 $\lim_{x \to 1} (3x^2 + 4x + 5) = 3(1)^2 + 4(1) + 5 = 12.$ **Solution:** (a)

The value of $\lim_{x\to 2} \frac{3^{x/2}-3}{3^x-9}$ is Example: 7

 $\lim_{x\to 2} \frac{3^{x/2}-3}{(3^{x/2})^2-(3)^2} = \lim_{x\to 2} \frac{(3^{x/2}-3)}{(3^{x/2}-3)(3^{x/2}+3)} = \frac{1}{6} \ .$ Solution: (c)

The value of $\lim_{x\to a} \frac{x^n - a^n}{x - a}$ is Example: 8

(a) 0 (b) na^{n-1} (c) na^n (d) 1 $\lim_{x \to a} \frac{x^n - a^n}{x - a} = \lim_{x \to a} \frac{(x - a)(x^{n-1} + x^{n-2}a + \dots + a^{n-1})}{(x - a)} = \lim_{x \to a} (x^{n-1} + x^{n-2}a + \dots + a^{n-1}) = n \cdot a^{n-1}.$ Solution: (b)

Example: 9
$$\lim_{h \to 0} \frac{1}{h} \left[\frac{1}{x+h} - \frac{1}{x} \right] \text{ equals}$$

- (b) $-\frac{1}{2x}$ (c) $\frac{1}{x^2}$
- (d) $-\frac{1}{x^2}$

Solution: (d)
$$\lim_{h \to 0} \frac{1}{h} \left[\frac{1}{x+h} - \frac{1}{x} \right] = \lim_{h \to 0} \frac{1}{h} \left[\frac{x - (x+h)}{(x+h)x} \right] = \lim_{h \to 0} \frac{1}{h} \left[\frac{-h}{(x+h)x} \right] = -\frac{1}{x^2}$$

Example: 10 The value of
$$\lim_{x\to 0} \frac{\sqrt{1-x^2}-\sqrt{1+x^2}}{x^2}$$
 is

Solution: (b)
$$\lim_{x \to 0} \frac{\left(\sqrt{1 - x^2} - \sqrt{1 + x^2}\right)}{x^2} \frac{\left(\sqrt{1 - x^2} + \sqrt{1 + x^2}\right)}{\left(\sqrt{1 - x^2} + \sqrt{1 + x^2}\right)} = \lim_{x \to 0} \frac{(1 - x^2) - (1 + x^2)}{x^2 \left(\sqrt{1 - x^2} + \sqrt{1 + x^2}\right)} = \frac{-2}{2} = -1.$$

- $\lim_{x \to 3} \frac{x-3}{\sqrt{x-2} \sqrt{4-x}}$ equals Example: 11

(d) None of these

Solution: (d)
$$\lim_{x \to 3} \frac{x-3}{\sqrt{x-2} - \sqrt{4-x}} = \lim_{x \to 3} \frac{(x-3)(\sqrt{x-2} + \sqrt{4-x})}{(\sqrt{x-2})^2 - (\sqrt{4-x})^2}$$

$$= \lim_{x \to 3} \frac{(x-3)(\sqrt{x-2} + \sqrt{4-x})}{(2x-6)} = \lim_{x \to 3} \frac{\sqrt{x-2} + \sqrt{4-x}}{2} = \frac{1+1}{2} = 1.$$

Example: 12
$$\lim_{x \to \infty} \frac{ax^2 + bx + c}{dx^2 + ex + f} =$$

Here the expression assumes the form $\frac{\infty}{\infty}$. We note that the highest power of x in both the numerator and denominator is Solution: (c) 2. So we divide each terms in both the numerator and denominator by x^2 .

$$\lim_{x \to \infty} \frac{ax^2 + bx + c}{dx^2 + ex + f} = \lim_{x \to \infty} \frac{a + \frac{b}{x} + \frac{c}{x^2}}{d + \frac{e}{x} + \frac{f}{x^2}} = \frac{a + 0 + 0}{d + 0 + 0} = \frac{a}{d}.$$

 $\lim_{x \to \infty} \left[\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right]$ is equal to Example: 13

Solution: (b)
$$\lim_{x \to \infty} \left[\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right] = \lim_{x \to \infty} \frac{x + \sqrt{x + \sqrt{x}} - x}{\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}} = \lim_{x \to \infty} \frac{\sqrt{x + \sqrt{x}}}{\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}} = \lim_{x \to \infty} \frac{\sqrt{1 + x^{-1/2}}}{\sqrt{1 + \sqrt{x^{-1} + x^{-3/2}}} + 1} = \frac{1}{2}.$$

The values of constants a and b so that $\lim_{x\to\infty} \left(\frac{x^2+1}{x+1} - ax - b \right) = 0$ is Example: 14

- (d) a = 2, b = -1

We have $\lim_{x \to \infty} \left(\frac{x^2 + 1}{x + 1} - ax - b \right) = 0 \implies \lim_{x \to \infty} \frac{x^2 (1 - a) - x(a + b) + 1 - b}{x + 1} = 0$ Solution: (b)

Since the limit of the given expression is zero, therefore degree of the polynomial in numerator must be less than that of denominator. As the denominator is a first degree polynomial. So, numerator must be a constant i.e., a zero degree polynomial. $\therefore 1-a=0$ and $a+b=0 \Rightarrow a=1$ and b=-1. Hence, a=1 and b=-1.

Example: 15
$$\lim_{x \to 1} x^x =$$

Solution: (a)
$$\lim_{x \to 1} x^x = \left(\lim_{x \to 1} x\right)^{\lim_{x \to 1} x} = 1^1 = 1$$

Example: 16
$$\lim_{x \to 1} (1+x)^{1/x} =$$

Solution: (a)
$$\lim_{x \to 1} (1+x)^{1/x} = \left(\lim_{x \to 1} (1+x)\right)^{\lim_{x \to 1} \left(\frac{1}{x}\right)} = 2$$

Example: 17 The value of the limit of
$$\frac{x^3 - x^2 - 18}{x - 3}$$
 as x tends to 3 is

Solution: (d) Let
$$y = \lim_{x \to 3} \frac{x^3 - x^2 - 18}{x - 3} = \lim_{x \to 3} (x^2 + 2x + 6) = 9 + 6 + 6 = 21$$

Example: 18 The value of the limit of
$$\frac{x^3 - 8}{(x^2 - 4)}$$
 as x tends to 2 is

(b)
$$\frac{3}{2}$$

Solution: (a)
$$\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4} = \lim_{x \to 2} \frac{(x^2 + 2x + 4)(x - 2)}{(x + 2)(x - 2)} = \lim_{x \to 2} \frac{x^2 + 2x + 4}{x + 2} = \frac{4 + 4 + 4}{2 + 2} = 3.$$

Example: 19
$$\lim_{x \to 0} \frac{x}{\sqrt{1+x} - \sqrt{1-x}}$$
 is equal to (a) $\frac{1}{2}$ (b) 2

(a)
$$\frac{1}{2}$$

Solution: (c)
$$\lim_{x \to 0} \left(\frac{x}{\sqrt{1+x} - \sqrt{1-x}} \right) = \lim_{x \to 0} \left(\frac{x}{\sqrt{1+x} - \sqrt{1-x}} \times \frac{\sqrt{1+x} + \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right)$$

$$= \lim_{x \to 0} \left(\frac{x \left(\sqrt{1 + x} + \sqrt{1 - x} \right)}{1 + x - 1 + x} \right) = \lim_{x \to 0} \left(\frac{\left(\sqrt{1 + x} + \sqrt{1 - x} \right)}{2} \right) = \frac{2}{2} = 1$$

Example: 20
$$\lim_{x \to a} \frac{\sqrt{a + 2x} - \sqrt{3x}}{\sqrt{3a + x} - 2\sqrt{x}} \text{ equals}$$
(a)
$$\frac{2a}{3\sqrt{3}}$$
 (b)
$$\frac{2}{3\sqrt{3}}$$

(a)
$$\frac{2a}{3\sqrt{3}}$$

(b)
$$\frac{2}{3\sqrt{3}}$$

Solution: (b)
$$\lim_{x \to a} \frac{\sqrt{a+2x} - \sqrt{3x}}{\sqrt{3a+x} - 2\sqrt{x}} = \lim_{x \to a} \left(\frac{\sqrt{a+2x} - \sqrt{3x}}{\sqrt{3a+x} - 2\sqrt{x}} \right) \times \left(\frac{\sqrt{a+2x} + \sqrt{3x}}{\sqrt{a+2x} + \sqrt{3x}} \right) \times \left(\frac{\sqrt{3a+x} + 2\sqrt{x}}{\sqrt{3a+x} + 2\sqrt{x}} \right)$$

$$= \lim_{x \to a} \left\{ \frac{\sqrt{3a+x} + 2\sqrt{x}}{3(\sqrt{a+2x} + \sqrt{3x})} \right\} = \frac{2}{3\sqrt{3}}.$$

Example: 21
$$\lim_{n\to\infty} \frac{1^{99} + 2^{99} + 3^{99} + \dots + n^{99}}{n^{100}} =$$

(a)
$$\frac{99}{100}$$

(b)
$$\frac{1}{100}$$

(c)
$$\frac{1}{99}$$

(d)
$$\frac{1}{101}$$

Solution: (b)
$$\lim_{n \to \infty} \frac{1^{99} + 2^{99} + 3^{99} + \dots + n^{99}}{n^{100}} = \lim_{n \to \infty} \sum_{r=1}^{n} \left(\frac{r^{99}}{n^{100}} \right) = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \left(\frac{r}{n} \right)^{99} = \int_{0}^{1} x^{99} dx = \left[\frac{x^{100}}{100} \right]_{0}^{1} = \frac{1}{100}.$$

Example: 22 The values of constants 'a' and 'b' so that
$$\lim_{x\to\infty} \left(\frac{x^2-1}{x+1} - ax - b\right) = 2$$
 is

(a)
$$a = 0, b = 0$$

(b)
$$a = 1, b = -1$$

(b)
$$a = 1, b = -1$$
 (c) $a = 1, b = -3$

(d)
$$a = 2, b = -1$$

Solution: (c)
$$\lim_{x \to \infty} \left(\frac{x^2 - 1}{x + 1} - ax - b \right) = 2 \Rightarrow \lim_{x \to \infty} x - 1 - ax - b = 2 \Rightarrow \lim_{x \to \infty} x(1 - a) - (1 + b) = 2.$$

Comparing the coefficient of both sides, 1-a=0 and $1+b=-2 \Rightarrow a=1,b=-3$

Example: 23
$$\lim_{n\to\infty} \left[\frac{\sum n^2}{n^3} \right] =$$

(a)
$$-\frac{1}{6}$$

(b)
$$\frac{1}{6}$$

(c)
$$\frac{1}{3}$$

(d)
$$\frac{-1}{3}$$

Solution: (c)
$$\lim_{n \to \infty} \left[\frac{n(n+1)(2n+1)}{6n^3} \right] = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)\left(2 + \frac{1}{n}\right)}{6} = \frac{1}{3}$$

Note: ☐ Students should remember that,

$$\lim_{n\to\infty} \frac{\sum n}{n^2} = \frac{1}{2} \quad \text{and} \quad \lim_{n\to\infty} \frac{\sum n^2}{n^3} = \frac{1}{3}.$$

Example: 24
$$\lim_{n\to\infty} \left[\frac{1}{1-n^2} + \frac{2}{1-n^2} + \dots + \frac{n}{1-n^2} \right]$$
 is equal to

Solution: (b)
$$\lim_{n \to \infty} \left[\frac{1}{1 - n^2} + \frac{2}{1 - n^2} + \dots + \frac{n}{1 - n^2} \right] = \lim_{n \to \infty} \frac{\sum n}{1 - n^2} = \frac{1}{2} \lim_{n \to \infty} \frac{n^2 + n}{1 - n^2} = -\frac{1}{2}.$$

Example: 25 If
$$f(x) = \frac{2}{x-3}$$
, $g(x) = \frac{x-3}{x+4}$ and $h(x) = -\frac{2(2x+1)}{x^2+x-12}$ then $\lim_{x\to 3} [f(x) + g(x) + h(x)]$ is

$$(a) -2$$

(b)
$$-1$$

(c)
$$-\frac{2}{7}$$

Solution: (c) We have
$$f(x) + g(x) + h(x) = \frac{x^2 - 4x + 17 - 4x - 2}{x^2 + x - 12} = \frac{x^2 - 8x + 15}{x^2 + x - 12} = \frac{(x - 3)(x - 5)}{(x - 3)(x + 4)}$$

$$\lim_{x\to 3} [f(x)+g(x)+h(x)] = \lim_{x\to 3} \frac{(x-3)(x-5)}{(x-3)(x+4)} = -\frac{2}{7}.$$

Example: 26 If
$$\lim_{n\to\infty} \left\lceil \frac{n!}{n^n} \right\rceil^{1/n}$$
 equal

(b)
$$\frac{1}{e}$$

(c)
$$\frac{f}{4}$$

(d)
$$\frac{4}{f}$$

Solution: (b) Let
$$P = \lim_{n \to \infty} \left(\frac{n!}{n^n} \right)^{1/n} \Rightarrow P = \lim_{n \to \infty} \left(\frac{1}{n} \cdot \frac{2}{n} \cdot \frac{3}{n} \cdot \frac{4}{n} \dots \frac{n}{n} \right)^{1/n}$$

$$\therefore \log P = \frac{1}{n} \lim_{n \to \infty} \left(\log \frac{1}{n} + \log \frac{2}{n} + \dots + \log \frac{n}{n} \right) \Rightarrow \log P = \lim_{n \to \infty} \sum_{n=0}^{n} \frac{1}{n} \log \frac{r}{n}$$

$$\log P = \int_0^1 \log x \, dx = [x \log x - x]_0^1 = (-1) \Rightarrow P = \frac{1}{e}.$$

Example: 27 If
$$\lim_{x \to \infty} \left[\frac{x^3 + 1}{x^2 + 1} - (ax + b) \right] = 2$$
, then

- (b) a = 1 and b = -1 (c) a = 1 and b = -2 (d) a = 1 and b = 2

$$\lim_{x \to \infty} \left(\frac{x^3 + 1}{x^2 + 1} - (ax + b) \right) = 2 \Rightarrow \lim_{x \to \infty} \left(\frac{x^3 (1 - a) - bx^2 - ax + (1 - b)}{x^2 + 1} \right) = 2 \Rightarrow \lim_{x \to \infty} [x^3 (1 - a) - bx^2 - ax + (1 - b)] = 2(x^2 + 1).$$

Comparing the coefficients of both sides, 1-a=0 and -b=2 or a=1,b=-2

$$\lim_{x\to\infty}\frac{(x+1)^{10}+(x+2)^{10}+\ldots\ldots+(x+100)^{10}}{x^{10}+10^{10}} \text{ is equal to}$$

$$\lim_{x \to \infty} \frac{(x+1)^{10} + (x+2)^{10} + \dots + (x+100)^{10}}{x^{10} + 10^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + (x+2)^{10} + \dots + (x+100)^{10}}{x^{10} + 10^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + (x+2)^{10} + \dots + (x+100)^{10}}{x^{10} + 10^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + (x+2)^{10} + \dots + (x+100)^{10}}{x^{10} + 10^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}{x^{10} + \dots + (x+1)^{10}} = \lim_{x \to \infty} \frac{(x+1)^{10} + \dots + (x+1)^{10}}$$

$$\lim_{x \to \infty} \frac{(x+1)^{10} + (x+2)^{10} + \dots + (x+100)^{10}}{x^{10} + 10^{10}} = \lim_{x \to \infty} \frac{x^{10} \left[\left(1 + \frac{1}{x}\right)^{10} + \left(1 + \frac{2}{x}\right)^{10} + \dots + \left(1 + \frac{100}{x}\right)^{10} \right]}{x^{10} \left[1 + \frac{10^{10}}{10}\right]} = 100.$$

Let
$$f(x) = 4$$
 and $f'(x) = 4$, then $\lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2}$ equals

(a) 2 (b) -2

$$y = \lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2}$$

$$x \rightarrow 2$$

$$y = \lim_{x \to 2} \frac{1}{x - 2}$$

$$\Rightarrow y = \lim_{x \to 2} \frac{2f(x) + 2f(2) + \lambda f(1)}{(x - 2)}$$

(a) 2 (b) -2 (c) -4 (d)
$$y = \lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2} \Rightarrow y = \lim_{x \to 2} \frac{-2f(x) + 2f(2) + xf(2) - 2f(2)}{(x - 2)} \Rightarrow y = \lim_{x \to 2} \frac{-2f(x) + 2f(2) + xf(2) - 2f(2)}{(x - 2)} \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + \lim_{x \to 2} \frac{f(2) \cdot (x - 2)}{(x - 2)} \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2) \Rightarrow y = -2$$

$$\Rightarrow y = -2 \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} + f(2)$$

$$\Rightarrow y = -2 \lim_{x \to 2} f'(x) + f(2) = -8 + 4 = -4$$

(2) **Trigonometric limits**: To evaluate trigonometric limits the following results are very important.

(i)
$$\lim_{x \to 0} \frac{\sin x}{x} = 1 = \lim_{x \to 0} \frac{x}{\sin x}$$

(ii)
$$\lim_{x \to 0} \frac{\tan x}{x} = 1 = \lim_{x \to 0} \frac{x}{\tan x}$$

(iii)
$$\lim_{x \to 0} \frac{\sin^{-1} x}{x} = 1 = \lim_{x \to 0} \frac{x}{\sin^{-1} x}$$

(iv)
$$\lim_{x\to 0} \frac{\tan^{-1} x}{x} = 1 = \lim_{x\to 0} \frac{x}{\tan^{-1} x}$$

(v)
$$\lim_{x \to 0} \frac{\sin x^0}{x} = \frac{f}{180}$$

(vi)
$$\lim_{x\to 0}\cos x=1$$

(vii)
$$\lim_{x \to a} \frac{\sin(x-a)}{x-a} = 1$$

(viii)
$$\lim_{x \to a} \frac{\tan(x-a)}{x-a} = 1$$

(ix)
$$\lim_{x \to a} \sin^{-1} x = \sin^{-1} a, |a| \le 1$$

(x)
$$\lim_{x \to a} \cos^{-1} x = \cos^{-1} a; |a| \le 1$$

(xi)
$$\lim_{n \to \infty} \tan^{-1} x = \tan^{-1} a; -\infty < a < \infty$$

(xii)
$$\lim_{x \to \infty} \frac{\sin x}{x} = \lim_{x \to \infty} \frac{\cos x}{x} = 0$$

(xiii)
$$\lim_{x \to \infty} \frac{\sin(1/x)}{(1/x)} = 1$$

Example: 30
$$\lim_{x \to 1} (1-x) \tan \left(\frac{fx}{2} \right) =$$

- (a) $\frac{f}{\Omega}$
- (b) *f*

(d) 0

Solution: (c)

$$\lim_{x \to 1} (1 - x) \tan \left(\frac{fx}{2} \right), \text{ Put } 1 - x = y \Rightarrow \text{ as } x \to 1, y \to 0$$

Thus
$$\lim_{y\to 0} y \tan \frac{f(1-y)}{2} = \lim_{y\to 0} \frac{2}{f} \cdot \frac{\left(\frac{fy}{2}\right)}{\tan\left(\frac{fy}{2}\right)} = \frac{2}{f} \times 1 = \frac{2}{f}$$
.

Example: 31
$$\lim_{x \to 1} \frac{\sqrt{1 - \cos 2(x - 1)}}{x - 1}$$

- (a) Exists and it equal $\sqrt{2}$
- (b) Exists and it equals $-\sqrt{2}$
- (c) Does not exist because $x-1 \rightarrow 0$
- (d) Does not exist because left hand limit is not equal to right hand limit

Solution: (d)
$$f(1+) = \lim_{h \to 0} f(1+h) = \lim_{h \to 0} \frac{\sqrt{1-\cos 2h}}{h} = \lim_{h \to 0} \sqrt{2} \frac{\sinh}{h} = \sqrt{2}$$

$$f(1-) = \lim_{h \to 0} f(1-h) = \lim_{h \to 0} \frac{\sqrt{1 - \cos(-2h)}}{-h} = \lim_{h \to 0} \sqrt{2} \frac{\sinh}{-h} = -\sqrt{2}.$$

: limit does not exist because left hand limit is not equal to right hand limit.

Example: 32
$$\lim_{x\to 0} \frac{(1-\cos 2x) \sin 5x}{x^2 \sin 3x} =$$

(a)
$$\frac{10}{3}$$

(b)
$$\frac{3}{10}$$

(c)
$$\frac{6}{5}$$

(d)
$$\frac{5}{6}$$

(a)
$$\frac{10}{3}$$
 (b) $\frac{3}{10}$ (c) $\frac{6}{5}$

Solution: (a) $\lim_{x \to 0} \frac{2 \sin^2 x \sin 5x \ 3x \ 5x}{x^2 \sin 3x \ 3x \ 5x} = \lim_{x \to 0} \frac{2 \sin^2 x}{x^2} \cdot \frac{3x}{\sin 3x} \cdot \frac{\sin 5x}{5x} \cdot \frac{5x}{3x} = 2 \cdot \frac{5}{3} = \frac{10}{3}$

Example: 33
$$\lim_{x \to 0} \frac{x^3}{\sin x^2} =$$

(b)
$$\frac{1}{3}$$

(d)
$$\frac{1}{2}$$

Solution: (a)
$$\lim_{x \to 0} \frac{x^3}{\sin x^2} = \lim_{x \to 0} \frac{x^2}{\sin x^2}$$
. $x = \left(\lim_{x \to 0} \frac{x^2}{\sin x^2}\right) \left(\lim_{x \to 0} x\right) = 1.0 = 0$.

Example: 34
$$\lim_{x \to 0} \frac{\sin 3x + \sin x}{x} =$$

(a)
$$\frac{1}{3}$$

(d)
$$\frac{1}{4}$$

Solution: (c)
$$\lim_{x \to 0} \frac{\sin 3x + \sin x}{x} = \lim_{x \to 0} \frac{\sin 3x}{x} + \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot 3 + \lim_{x \to 0} \frac{\sin x}{x} = 1.3 + 1 = 4.$$

Example: 35 If
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
, then $\lim_{x \to 0} f(x) = 0$

(d) None of these

Solution: (b)
$$\lim_{x\to 0} x \sin\left(\frac{1}{x}\right) = \left(\lim_{x\to 0} x\right) \left(\lim_{x\to 0} \sin\frac{1}{x}\right) = 0 \times \text{(A number oscillating between } -1 \text{ and } 1) = 0.$$

Example: 36 If
$$f(x) = \begin{cases} \frac{\sin[x]}{[x]}, & [x] \neq 0 \\ 0, & [x] = 0 \end{cases}$$
, then $\lim_{x \to 0} f(x)$ equals

(d) Does not exist

In closed interval of x = 0 at right hand side [x] = 0 and at left hand side [x] = -1. Also [0] = 0. Solution: (d)

Therefore function is defined as
$$f(x) = \begin{cases} \frac{\sin[x]}{[x]}, & (-1 \le x < 0) \\ 0, & (0 \le x < 1) \end{cases}$$

:. Left hand limit =
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\sin[x]}{[x]} = \frac{\sin(-1)}{-1} = \sin 1^{c}$$

Right hand limit = 0, Hence, limit doesn't exist

Example: 37
$$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3}$$

(a)
$$\frac{1}{2}$$

(b)
$$-\frac{1}{2}$$

(c)
$$\frac{2}{3}$$

(d) None of these

Solution: (a)
$$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x \to 0} \frac{\sin x - \sin x \cos x}{x^3 \cos x} = \lim_{x \to 0} \frac{\sin x \left(2 \sin^2 \frac{x}{2}\right)}{x^3 \cos x} = \lim_{x \to 0} \left[\frac{\sin x}{x} \cdot \frac{2}{\cos x} \cdot \frac{\sin^2 \frac{x}{2}}{x} \cdot \frac{1}{4}\right] = \frac{1}{2}$$

Example: 38 If
$$f(x) = \frac{\sin(e^{x-2} - 1)}{\log(x - 1)}$$
, then $\lim_{x \to 2} f(x)$ is given by

(a)
$$-2$$

(b)
$$-1$$

Solution: (d)
$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{\sin(e^{x-2} - 1)}{\log(t+1)} = \lim_{t \to 0} \frac{\sin(e^t - 1)}{\log(t+1)}.$$
 (Putting $x = 2$

If
$$f(x) = \frac{\sin(e^{-t})}{\log(x-1)}$$
, then $\lim_{x \to 2} f(x)$ is given by

(a) -2 (b) -1 (c) 0 (d)
$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{\sin(e^{x-2}-1)}{\log(t+1)} = \lim_{t \to 0} \frac{\sin(e^t-1)}{\log(t+1)}.$$
(Putting $x = 2 + t$)
$$= \lim_{x \to \infty} \frac{\sin(e^t-1)}{e^t-1} \cdot \frac{e^t-1}{t} \cdot \frac{t}{\log(1+t)} = \lim_{t \to 0} \frac{\sin(e^t-1)}{e^t-1} \left(\frac{1}{1!} + \frac{t}{2!} + \dots \right) \left[\frac{1}{\left(1 - \frac{1}{2}t + \frac{1}{3}t^2 - \dots \right)}\right]$$

[: As
$$t \to 0, e^t - 1 \to 0$$
, : $\frac{\sin(e^t - 1)}{(e^t - 1)} = 1$]

Example: 39
$$\lim_{x \to f/2} \frac{a^{\cot x} - a^{\cos x}}{\cot x - \cos x} =$$

(d)
$$\log x$$

Solution: (a)
$$\lim_{x \to f/2} \left(\frac{a^{\cot x} - a^{\cos x}}{\cot x - \cos x} \right) = \lim_{x \to f/2} a^{\cos x} \left(\frac{a^{\cot x - \cos x} - 1}{\cot x - \cos x} \right)$$

$$= a^{\cos(f/2)} \lim_{x \to f/2} \left(\frac{a^{\cot x - \cos x} - 1}{\cot x - \cos x} \right) = 1 \log a = \log a.$$

Example: 40 If
$$f(x) = \begin{vmatrix} \sin x & \cos x & \tan x \\ x^3 & x^2 & x \\ 2x & 1 & 1 \end{vmatrix}$$
, then $\lim_{x \to 0} \frac{f(x)}{x^2}$ is

(b)
$$-1$$

Solution: (d)
$$f(x) = x(x-1)\sin x - (x^3 - 2x^2)\cos x - x^3 \tan x$$

$$= x^2 \sin x - x^3 \cos x - x^3 \tan x + 2x^2 \cos x - x \sin x$$

Hence,
$$\lim_{x\to 0} \frac{f(x)}{x^2} = \lim_{x\to 0} \left(\sin x - x \cos x - x \tan x + 2 \cos x - \frac{\sin x}{x} \right) = 0 - 0 - 0 + 2 - 1 = 1$$
.

Example: 41 If
$$f(x) = \cot^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right)$$
 and $g(x) = \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right)$, then $\lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)}$, $0 < a < \frac{1}{2}$ is

(a)
$$\frac{3}{2(1+a^2)}$$

(b)
$$\frac{3}{2(1+x^2)}$$

(c)
$$\frac{3}{2}$$

(d)
$$-\frac{3}{2}$$

Solution: (d)
$$f(x) = \cot^{-1} \left\{ \frac{3x - x^3}{1 - 3x^2} \right\}$$
 and $g(x) = \cos^{-1} \left\{ \frac{1 - x^2}{1 + x^2} \right\}$

$$f(_{"}) = \cot^{-1} \left\{ \frac{3 \tan_{"} - \tan^{3}_{"}}{1 - 3 \tan^{2}_{"}} \right\} = \cot^{-1} \left\{ \tan 3_{"} \right\}$$

$$f(x) = \cot^{-1}\cot\left(\frac{f}{2} - 3x\right) = \frac{f}{2} - 3x \implies f'(x) = -3$$

and
$$g(_{"}) = \cos^{-1}\left\{\frac{1-\tan^{2}_{"}}{1+\tan^{2}_{"}}\right\} = \cos^{-1}(\cos 2_{"}) = 2_{"} \implies g'(_{"}) = 2$$

Now
$$\lim_{x \to a} \left(\frac{f(x) - f(a)}{g(x) - g(a)} \right) = \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} \right) \frac{1}{\lim_{x \to a} \left(\frac{g(x) - g(a)}{x - a} \right)} = f'(x) \cdot \frac{1}{g'(x)} = -3 \times \frac{1}{2} = -\frac{3}{2}$$
.

Example: 42
$$\lim_{x \to \frac{f}{2}} \frac{\left[1 - \tan\left(\frac{x}{2}\right)\right] [1 - \sin x]}{\left[1 + \tan\left(\frac{x}{2}\right)\right] [f - 2x]^3} \text{ is}$$

Solution: (c)
$$\lim_{x \to \frac{f}{2}} \frac{\tan\left(\frac{f}{4} - \frac{x}{2}\right)(1 - \sin x)}{(f - 2x)^3}$$

Let
$$x = \frac{f}{2} + y$$
, then $y \to 0$ $\Rightarrow \lim_{y \to 0} \frac{\tan\left(\frac{-y}{2}\right)(1 - \cos y)}{(-2y)^3} = \lim_{y \to 0} \frac{-\tan\frac{y}{2} \cdot 2\sin^2\frac{y}{2}}{(-8)y^3} = \lim_{y \to 0} \frac{1}{32} \frac{\tan\frac{y}{2}}{\left(\frac{y}{2}\right)} \cdot \left[\frac{\sin\frac{y}{2}}{\frac{y}{2}}\right]^2 = \frac{1}{32}$.

If $\lim_{x\to 0} \frac{[(a-n)nx - \tan x]\sin nx}{x^2} = 0$, where *n* is non-zero real number, then *a* is equal to Example: 43

(b)
$$\frac{n+1}{n}$$

(d)
$$n + \frac{1}{n}$$

(a) 0 (b)
$$\frac{n+1}{n}$$
 (c) n

Solution: (d) $\lim_{x\to 0} n \frac{\sin nx}{nx} \cdot \lim_{x\to 0} \left((a-n)n - \frac{\tan x}{x} \right) = 0 \Rightarrow n \left[(a-n)n - 1 \right] = 0 \Rightarrow (a-n)n = 1 \Rightarrow a = n + \frac{1}{n}$.

- (3) Logarithmic limits: To evaluate the logarithmic limits we use following formulae
- (i) $\log(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} \dots + \infty$ where $-1 < x \le 1$ and expansion is true only if base is e.

(ii)
$$\lim_{x\to 0} \frac{\log(1+x)}{x} = 1$$

(iii)
$$\lim_{x \to e} \log_e x = 1$$

(iv)
$$\lim_{x\to 0} \frac{\log(1-x)}{x} = -1$$

(v)
$$\lim_{x\to 0} \frac{\log_a(1+x)}{x} = \log_a e, a > 0, \neq 1$$

Example: 44
$$\lim_{h \to 0} \frac{\log_e(1+2h) - 2\log_e(1+h)}{h^2}$$

(c)
$$2$$

(d)
$$-2$$

Solution: (a)
$$\lim_{h \to 0} \frac{\log_e(1+2h) - 2\log_e(1+h)}{h^2} = \lim_{x \to a} \frac{\left((2h) - \frac{(2h)^2}{2} + \frac{(2h)^3}{3} - \dots \cdot \infty\right) - 2\left(h - \frac{h^2}{2} + \frac{h^3}{3} - \dots \cdot \right)}{h^2}$$

$$= \lim_{h \to 0} \frac{-h^2 + 2h^3 - \dots}{h^2} = \lim_{h \to 0} \frac{h^2 \{-1 + 2h - \dots\}}{h^2} = \lim_{h \to 0} \{-1 + 2h + \dots\} = -1.$$

Example: 45
$$\lim_{x \to a} \frac{\log\{1 + (x - a)\}}{(x - a)} =$$

(c) 1

(d) -2

Solution: (c) Let
$$x - a = y$$
, when $x \to a$, $y \to 0$,

$$\therefore \quad \text{The given limit} = \lim_{y \to 0} \frac{\log\{1+y\}}{y} = 1 \ .$$

Example: 46
$$\lim_{h \to 0} \frac{\log_{10}(1+h)}{h} =$$

(c) $\log_e 10$

(d) None of these

Solution: (b)
$$\lim_{h \to 0} \frac{\log_e(1+h)}{h}$$
. $\frac{1}{\log_e 10} = \log_{10} e$.

Example: 47 If
$$\lim_{x\to 0} \frac{\log(3+x) - \log(3-x)}{x} = k$$
, then the value of k is

Solution: (c)
$$\lim_{x \to 0} \frac{\log(3+x) - \log(3-x)}{x} = \lim_{x \to 0} \frac{\log\left(\frac{3+x}{3-x}\right)}{x} = \lim_{x \to 0} \frac{\log\left(\frac{1+(x/3)}{1-(x/3)}\right)}{x}$$
$$= \lim_{x \to 0} \frac{\log(1+(x/3))}{x} - \lim_{x \to 0} \frac{\log(1-(x/3))}{x} = \frac{1}{3} - \left(-\frac{1}{3}\right) = \frac{2}{3}.$$

(4) Exponential limits:

(i) **Based on series expansion**: We use
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \infty$$

To evaluate the exponential limits we use the following results -

(a) $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$

(b) $\lim_{x \to 0} \frac{a^x - 1}{x} = \log_e a$ (c) $\lim_{x \to 0} \frac{e^{3x} - 1}{x} = 3$ ($3x \neq 0$)

(ii) **Based on the form 1** 2 : To evaluate the exponential form 1 $^{\infty}$ we use the following results.

(a) If
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$$
, then $\lim_{x \to a} \{1 + f(x)\}^{1/g(x)} = e^{\lim_{x \to a} \frac{f(x)}{g(x)}}$, or

when $\lim_{x \to a} f(x) = 1$ and $\lim_{x \to a} g(x) = \infty$. Then $\lim_{x \to a} \{f(x)\}^{g(x)} = \lim_{x \to a} [1 + f(x) - 1]^{g(x)} = e^{\lim_{x \to a} (f(x) - 1)g(x)}$

(b) $\lim_{x\to 0} (1+x)^{1/x} = e$ (c) $\lim_{x\to \infty} \left(1+\frac{1}{x}\right)^x = e$ (d) $\lim_{x\to 0} (1+x)^{1/x} = e^x$ (e) $\lim_{x\to \infty} \left(1+\frac{1}{x}\right)^x = e^x$

 $\lim_{x\to 0}\frac{e^{\Gamma x}-e^{Sx}}{r}=$ Example: 48

Solution: (d)
$$\lim_{r \to 0} \frac{e^{rx} - e^{sx}}{r} = \lim_{r \to 0} \frac{(e^{rx} - 1) - (e^{sx} - 1)}{r} = \lim_{r \to 0} \frac{e^{rx} - 1}{r} - \lim_{r \to 0} \frac{e^{sx} - 1}{r} = r - s.$$

Example: 49 The value of
$$\lim_{x\to 0} \frac{e^x - (1+x)}{x^2}$$
 is

(b)
$$\frac{1}{2}$$

(d)
$$\frac{1}{4}$$

Solution: (b)
$$\lim_{x \to 0} \frac{e^x - (1+x)}{x^2} = \lim_{x \to 0} \frac{(1+x+\frac{x^2}{2!}+....) - (1+x)}{x^2} = \lim_{x \to 0} \frac{x^2 \left(\frac{1}{2!} + \frac{x}{3!} + \frac{x^2}{4!} +\right)}{x^2} = \frac{1}{2!} = \frac{1}{2}.$$

Example: 50
$$\lim_{x\to 0} \frac{a^x-1}{\sqrt{1+x}-1}$$
 is equal to

(a)
$$2\log_e a$$

(b)
$$\frac{1}{2}\log_e a$$

(d) None of these

Solution: (a)
$$\lim_{x \to 0} \frac{a^{x} - 1}{\sqrt{1 + x} - 1} = \lim_{x \to 0} \frac{a^{x} - 1}{\sqrt{1 + x} - 1} \cdot \frac{\sqrt{1 + x} + 1}{\sqrt{1 + x} + 1} = \lim_{x \to 0} \frac{(a^{x} - 1)(\sqrt{1 + x} + 1)}{1 + x - 1} = \lim_{x \to 0} \left(\frac{a^{x} - 1}{x}\right) \cdot \left(\sqrt{1 + x} + 1\right)$$
$$= \left(\lim_{x \to 0} \frac{a^{x} - 1}{x}\right) \cdot \left(\lim_{x \to 0} (\sqrt{1 + x} + 1)\right) = (\log_{e} a) \cdot (2) = 2\log_{e} a.$$

Example: 51 The value of
$$\lim_{x \to \infty} \left(\frac{x+3}{x+1} \right)^{x+2}$$
 is

(a)
$$e^{4}$$

(d)
$$e^{2}$$

Solution: (d)
$$\lim_{x \to \infty} \left(\frac{x+3}{x+1} \right)^{x+2} = \lim_{x \to \infty} \left(1 + \frac{2}{x+1} \right)^{\frac{x+1}{2} \cdot (x+2) \cdot \frac{2}{(x+1)}} = \lim_{x \to \infty} \left(1 + \frac{2}{x+1} \right)^{\frac{x+1}{2}} e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right) \right]} = e^{2 \cdot \lim_{x \to \infty} \left[\left(1 + \frac{2}{x} \right$$

Alternative method:
$$\lim_{x \to \infty} \left(\frac{x+3}{x+1} \right)^{x+2} = \lim_{x \to \infty} \left(1 + \frac{2}{x+1} \right)^{x+2} = e^{\lim_{x \to \infty} \frac{2}{x+1}(x+2)} = e^{\lim_{x \to \infty} 2\left(\frac{1+\frac{2}{x}}{1+\frac{1}{x}} \right)} = e^2$$

Example: 52 If a, b, c, d are positive, then
$$\lim_{x\to\infty} \left(1 + \frac{1}{a+bx}\right)^{c+dx}$$

(b)
$$e^{c/c}$$

$$c$$
) $a(c+d)/(a+b)$

Example: 52 If
$$a, b, c, d$$
 are positive, then $\lim_{x \to \infty} \left(1 + \frac{1}{a + bx}\right)^{c + dx}$

(a) $e^{d/b}$ (b) $e^{c/a}$ (c) $e^{(c+d)/(a+b)}$ (d) e

Solution: (a) $\lim_{x \to \infty} \left(1 + \frac{1}{a + bx}\right)^{c + dx} = \lim_{x \to \infty} \left\{ \left(1 + \frac{1}{a + bx}\right)^{a + bx} \right\} \stackrel{c+dx}{= bx} = e^{d/b}$ $\left\{ \because \lim_{x \to \infty} \left(1 + \frac{1}{a + bx}\right)^{a + bx} = e \text{ and } \lim_{x \to \infty} \frac{c + dx}{a + bx} = \frac{d}{b} \right\}$

Alternative method:
$$e^{\lim_{x\to\infty} \left(\frac{1}{a+bx}\right)\left(\frac{c+dx}{1}\right)} = e^{d/b}$$

Example: 53
$$\lim_{x\to 0} x^x$$

$$(c)$$
 e

(d) None of these

(a) 0 (b) 1 (c)
$$e$$

Solution: (b) Let $y = x^x \Rightarrow \log y = x \log x$; $\therefore \lim_{y \to 0} \log y = \lim_{x \to 0} x \log x = 0 = \log 1 \Rightarrow \lim_{x \to 0} x^x = 1$

Example: 54 The value of
$$\lim_{x\to 0} \frac{(1+x)^{1/x} - e + \frac{1}{2}ex}{x^2}$$
 is

(a)
$$\frac{11e}{24}$$

(b)
$$\frac{-11e}{24}$$

(c)
$$\frac{e}{2}$$

(d) None of these

Solution: (a)
$$(1+x)^{1/x} = e^{\frac{1}{x}\log(1+x)} = e^{\frac{1}{x}\left(x-\frac{x^2}{2}+\frac{x^3}{3}-...\right)} = e^{1-\frac{x}{2}+\frac{x^2}{3}-....} = e^{-\frac{x}{2}+\frac{x^2}{3}-....}$$

$$= e \left[1 + \left(-\frac{x}{2} + \frac{x^2}{3} - \dots \right) + \frac{1}{2!} \left(-\frac{x}{2} + \frac{x^2}{3} - \dots \right)^2 + \dots \right] = e \left[1 - \frac{x}{2} + \frac{11}{24} x^2 - \dots \right]$$

$$\lim_{x \to 0} \frac{(1+x)^{1/x} - e + \frac{ex}{2}}{x^2} = \frac{11e}{24}$$

Example: 55
$$\lim_{x \to 0} \frac{(1+x)^{1/x} - e}{x} \text{ equals}$$

(a)
$$f/2$$

d)
$$-e/2$$

(a)
$$f/2$$
 (b) 0 (c) $2/e$ (d) $-e/2$

$$(1+x)^{\frac{1}{x}} = e^{\frac{1}{x}[\log(1+x)]} = e^{\frac{1}{x}\left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots\right)} = e^{\left(1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \dots\right)} = e.e^{\left(-\frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \dots\right)}$$

$$= e \left[1 + \frac{\left(-\frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \dots \right)}{1!} + \frac{\left(-\frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \dots \right)^2}{2!} + \dots \right] = \left[e - \frac{ex}{2} + \frac{11e}{24} x^2 - \dots \right]$$

$$\therefore \lim_{x \to 0} \frac{(1+x)^{1/x} - e}{x} = \lim_{x \to 0} \left[\frac{e - \frac{ex}{2} + \frac{11e}{24}x^2 \dots - e}{x} \right] \Rightarrow \lim_{x \to 0} \left(-\frac{e}{2} - \frac{11e}{24}x + \dots \right) = -\frac{e}{2}.$$

$$\lim_{m \to \infty} \left(\cos \frac{x}{m} \right)^m =$$
(a) 0 (b) e

$$\lim_{m \to \infty} \left(\cos \frac{x}{m}\right)^m = \lim_{m \to \infty} \left[1 + \left(\cos \frac{x}{m} - 1\right)\right]^m = \lim_{m \to \infty} \left[1 - \left(-\cos \frac{x}{m} + 1\right)\right]^m$$

$$= \lim_{m \to \infty} \left[1 - 2 \sin^2 \frac{x}{2m} \right]^m = e^{\lim_{m \to \infty} -\left(2 \sin^2 \frac{x}{2m} \right)m} = e^{\lim_{m \to \infty} -2\left(\frac{\sin \frac{x}{2m}}{\frac{x}{2m}} \right)^2 \left(\frac{x^2}{4m^2} \right)m} = e^{-2 \lim_{m \to \infty} \frac{x^2}{4m}} = e^0 = 1.$$

$$\lim_{n\to\infty} \left(\frac{n^2-n+1}{n^2-n-1}\right)^{n(n-1)} =$$

$$\lim_{n\to\infty} \left(\frac{n^2-n+1}{n^2-n-1}\right)^{n(n-1)} = \lim_{n\to\infty} \left(\frac{n(n-1)+1}{n(n-1)-1}\right)^{n(n-1)} = \lim_{n\to\infty} \left(\frac{1+\frac{1}{n(n-1)}}{1+\frac{1}{n(n-1)}}\right)^{n(n-1)} = \frac{e}{e^{-1}} = e^2.$$

$$\textbf{Alternative Method: } \lim_{n \to \infty} \! \left(1 + \frac{2}{n^2 - n - 1} \right)^{\! n(n-1)} = \ e^{\lim_{n \to \infty} \! \frac{2n(n-1)}{n^2 - n - 1}} = e^2 \ .$$

- (5) L' Hospital's rule : If f(x) and g(x) be two functions of x such that
 - (i) $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$
 - (ii) Both are continuous at x = a
 - (iii) Both are differentiable at x = a.
 - (iv) f'(x) and g'(x) are continuous at the point x = a, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ provided that $g'(a) \neq 0$

Note: \square The above rule is also applicable if $\lim_{x\to a} f(x) = \infty$ and $\lim_{x\to a} g(x) = \infty$.

If $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ assumes the indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ and f'(x), g'(x) satisfy all the condition embodied in L' Hospital rule, we can repeat the application of this rule on $\frac{f'(x)}{g'(x)}$ to get, $\lim_{x\to a} \frac{f'(x)}{g'(x)} = \lim_{x\to a} \frac{f''(x)}{g''(x)}$. Sometimes it may be necessary to repeat this process a number of times till our goal of evaluating limit is achieved.

Example: 58 $\lim_{x \to 0} \frac{1 - \cos mx}{1 - \cos nx} =$

- (a) m/n
- (b) n/m
- (c) $\frac{m^2}{n^2}$
- (d) $\frac{n^2}{m^2}$

Solution: (c) $\lim_{x \to 0} \frac{1 - \cos mx}{1 - \cos nx} = \lim_{x \to 0} \left\{ \frac{2 \sin^2 \frac{mx}{2}}{2 \sin^2 \frac{nx}{2}} \right\} = \lim_{x \to 0} \left\{ \frac{\sin \frac{mx}{2}}{\frac{mx}{2}} \right\}^2 \frac{m^2 x^2}{4} \cdot \frac{1}{\left\{ \frac{\sin \frac{nx}{2}}{2} \right\}^2} \cdot \frac{4}{n^2 x^2} = \frac{m^2}{n^2} \times 1 = \frac{m^2}{n^2}$

Trick: Apply L-Hospital rule,

 $\lim_{x \to 0} \frac{1 - \cos mx}{1 - \cos nx} = \lim_{x \to 0} \frac{m \sin mx}{n \sin nx} = \lim_{x \to 0} \frac{m^2 \cos mx}{n^2 \cos nx} = \frac{m^2}{n^2}.$

- **Example: 59** The integer *n* for which $\lim_{x\to 0} \frac{(\cos x 1)(\cos x e^x)}{x^n}$ is a finite non-zero number is
 - (a) 1

(b) 2

(c) 3

(d) 4

Solution: (c) n cannot be negative integer for then the limit = 0

- **Example: 60** Let $f: R \to R$ be such that f(1) = 3 and f'(1) = 6. Then $\lim_{x \to 0} \left\{ \frac{f(1+x)}{f(1)} \right\}^{\frac{1}{x}}$ equals
 - (a) 1

- (b) $e^{1/3}$
- (c) e^{2}

(d) e^{3}

Solution: (c) $\lim_{x\to 0} \left\{ \frac{f(1+x)}{f(1)} \right\}^{\frac{1}{x}} = e^{\lim_{x\to 0} \frac{1}{x} \left[\log f(1+x) - \log f(1) \right]} = e^{\lim_{x\to 0} \frac{f'(1+x) / f(1+x)}{1}} = e^{\frac{f'(1)}{f(1)}} = e^{6/3} = e^2.$

- **Example: 61** $\lim_{r \to f/4} \frac{\sin r \cos r}{r f/4} =$
 - (a) $\sqrt{2}$
- (b) $1/\sqrt{2}$
- (c) 1

(d) None of these

Solution: (a)
$$\lim_{r \to f/4} \frac{\sin r - \cos r}{r - f/4} \left(\frac{0}{0} \text{ form} \right) = \lim_{r \to f/4} \frac{\cos r + \sin r}{1}$$
(By 'L' Hospital rule)
$$= \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2} .$$

Example: 62
$$\lim_{x \to a} \frac{x^3 - a^3}{x^2 - a^2} =$$

(a) C

- (b) Not defined
- (c) 2a

(d) $\frac{3a}{2}$

Solution: (d)
$$\lim_{x \to a} \frac{x^3 - a^3}{x^2 - a^2}$$
 $\left(\frac{0}{0} \text{ form}\right) = \lim_{x \to a} \frac{3x^2}{2x}$ (By 'L' Hospital rule) $=\frac{3a^2}{2a} = \frac{3a}{2}$

Example: 63
$$\lim_{h\to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} =$$

(a) 1/

- (b) $1/2\sqrt{k}$
- (c) Zero
- (d) None of these

Solution: (a)
$$\lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \times \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} = \lim_{h \to 0} \frac{(x+h) - x}{h(\sqrt{x+h} + \sqrt{x})} = \lim_{h \to 0} \frac{h}{h(\sqrt{x+h} + \sqrt{x})} = \frac{1}{2\sqrt{x}}$$

Trick: Applying 'L' Hospital's rule, [Differentiating N^r and D^r with respect to h]

We get,
$$\lim_{h \to 0} \frac{\frac{1}{2\sqrt{x+h}} - 0}{1} = \frac{1}{2\sqrt{x}}$$
.

Example: 64
$$\lim_{r \to s} \frac{\sin^2 r - \sin^2 s}{r^2 - s^2}$$

(a) 0

(b) 1

- (c) $\frac{\sin s}{s}$
- (d) $\frac{\sin 2s}{2s}$

Solution: (d)
$$\lim_{r \to s} \frac{\sin^2 r - \sin^2 s}{r^2 - s^2} = \lim_{r \to s \to 0} \frac{\sin(r+s)\sin(r-s)}{(r+s)(r-s)} = \lim_{r \to s \to 0} \frac{\sin(r-s)}{(r-s)} \lim_{r \to s \to 0} \frac{\sin(r+s)}{(r+s)} = \lim_{r \to s} \frac{\sin(r+s)}{(r+s)} = \frac{\sin 2s}{2s}.$$

Trick: By L' Hospital's rule, $\lim_{\Gamma \to s} \frac{2 \sin \Gamma \cos \Gamma}{2\Gamma} = \frac{\sin 2s}{2s}$.

Example: 65
$$\lim_{x \to 0} \frac{\tan 2x - x}{3x - \sin x} \text{ equals}$$

- (a) 2/3
- (b) 1/3
- (c) 1/2
- (d) 0

Solution: (c)
$$\lim_{x \to 0} \frac{\tan 2x - x}{3x - \sin x} = \lim_{x \to 0} \left\{ \frac{2 \tan 2x}{2x} - 1 \atop 3 - \frac{\sin x}{x} \right\} = \frac{1}{2}.$$

Example: 66 If
$$G(x) = -\sqrt{25 - x^2}$$
, then $\lim_{x \to 1} \frac{G(x) - G(1)}{x - 1}$ equals

- (a) 1/24
- (b) 1/5
- (c) $-\sqrt{24}$
- (d) None of these

Solution: (d)
$$\lim_{x \to 1} \frac{G(x) - G(1)}{x - 1} = \lim_{x \to 1} \frac{-\sqrt{25 - x^2} + \sqrt{24}}{x - 1}$$

[Multiply both numerator and denominator by ($\sqrt{24} + \sqrt{25 - x^2}$)]

$$= \lim_{x \to 1} \frac{x+1}{\sqrt{24} + \sqrt{25 - x^2}} = \frac{1}{\sqrt{24}}$$

Alternative method: By L'-Hospital rule, $\lim_{x\to 1} \frac{G'(x)}{1} = \lim_{x\to 1} \frac{-1(-2x)}{2\sqrt{25-x^2}} = \frac{1}{\sqrt{24}}$

Example: 67 If
$$f(a) = 2$$
, $f'(a) = 1$, $g(a) = 1$, $g'(a) = 2$, then $\lim_{x \to a} \frac{g(x)f(a) - g(a)f(x)}{x - a}$ equals

- (a) -3

(d) $-\frac{1}{2}$

Solution: (c) Applying
$$L$$
 – Hospital's rule, we get, $\lim_{x \to a} \frac{g(x) f(a) - g(a) f(x)}{x - a} = \lim_{x \to a} \frac{g'(x) f(a) - g(a) f'(x)}{1}$

$$= g'(a) f(a) - g(a) f'(a) = 2 \times 2 - 1 \times (1) = 3.$$

Example: 68
$$\lim_{x\to 0} \frac{(1+x)^n - 1}{x} =$$

(d) None of these

Solution: (a) (a)
$$n$$
 (b) 1 (c) -1
$$\lim_{x\to 0} \frac{(1+nx+{}^{n}C_{2}x^{2}+......\text{higher powers of } x\text{ to }x^{n})-1}{x}=n$$
Trick: Apply L- Hospital rule.

Trick: Apply L- Hospital rule.

Example: 69
$$\lim_{x \to 0} \frac{\sin x + \log(1 - x)}{x^2}$$
 is equal to

(a) 0

- (d) None of these

Solution: (c) Apply L- Hospital rule, we get,
$$\lim_{x \to 0} \frac{\cos x - \frac{1}{1 - x}}{2x} = \lim_{x \to 0} \frac{-\sin x - \frac{1}{(1 - x)^2}}{2} = -\frac{1}{2}$$

Alternative method:
$$\lim_{x \to 0} \frac{\sin x + \log(1-x)}{x^2} = \lim_{x \to 0} \frac{\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \right)}{x^2} + \lim_{x \to 0} \frac{\left(-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots \right)}{x^2}$$

$$\left(\because \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots \text{ and } \log(1 - x) = -x - \frac{x^2}{2} - \frac{x^3}{3} \dots \right)$$

Hence,
$$\lim_{x\to 0} \frac{-x^2}{2} - x^3 \left(\frac{1}{3!} + \frac{1}{3}\right) - \frac{x^4}{4} \dots = -\frac{1}{2}$$
.

Example: 70
$$\lim_{x \to 0} \frac{xe^x - \log(1+x)}{x^2}$$
 equals

Solution: (d) Let
$$y = \lim_{x \to 0} \frac{xe^x - \log(1+x)}{x^2}$$

$$\left(\frac{0}{0} \text{ form}\right)$$

Applying L-Hospital's rule,
$$y = \lim_{x \to 0} \frac{e^x + xe^x - \frac{1}{1+x}}{2x}$$
 $\left(\frac{0}{0} \text{ form}\right)$

$$y = \lim_{x \to 0} \frac{1}{2} \left[e^x + e^x + xe^x + \frac{1}{(1+x)^2} \right] = \lim_{x \to 0} \frac{1}{2} [1+1+0+1] = \frac{3}{2}$$

Example: 71
$$\lim_{x\to 0} \frac{\sin^{-1} x - \tan^{-1} x}{x^3}$$
 is equal to

(a) 0

- (c) -1
- (d) $\frac{1}{2}$

Solution: (d)
$$\lim_{x\to 0} \frac{\sin^{-1}x}{x}$$

$$\lim_{x \to 0} \frac{\sin^{-1} x - \tan^{-1} x}{x^3} \qquad \left(\frac{0}{0} \text{ form}\right)$$

$$\left(\frac{0}{0}\text{form}\right)$$

Applying L-Hospital's rule,

$$= \lim_{x \to 0} \frac{\frac{1}{\sqrt{1 - x^2}} - \frac{1}{1 + x^2}}{3x^2} \qquad \left(\frac{0}{0} \text{ form}\right)$$

$$= \lim_{x \to 0} \frac{\frac{-1}{2} \times \frac{-2x}{(1 - x^2)^{3/2}} + \frac{2x}{(1 + x^2)^2}}{6x} = \lim_{x \to 0} \frac{1}{6} \left[\frac{1}{(1 - x^2)^{3/2}} + \frac{2}{(1 + x^2)^2}\right] = \frac{1}{2}.$$

Example: 72
$$\lim_{x \to 1} \frac{1 + \log x - x}{1 - 2x + x^2} =$$

(d) $-\frac{1}{2}$

Solution: (d) Applying L-Hospital's rule,
$$\lim_{x \to 1} \frac{1 + \log x - x}{1 - 2x + x^2} = \lim_{x \to 1} \frac{\frac{1}{x} - 1}{-2 + 2x} = \lim_{x \to 1} \frac{1 - x}{2x(x - 1)}$$

Again applying L-Hospital's rule, we get $\lim_{x\to 1} \frac{-1}{4x-2} = -\frac{1}{2}$

Example: 73
$$\lim_{x \to 0} \frac{4^x - 9^x}{x(4^x + 9^x)} =$$

- (d) $\log \left(\frac{3}{2}\right)$

$$x \to 0 \ x(4^{x} + 9^{x})$$
(a) $\log\left(\frac{2}{3}\right)$
(b) $\frac{1}{2}\log\left(\frac{3}{2}\right)$
(c) $\frac{1}{2}\log\left(\frac{3}{2}\right)$

Solution: (a) $y = \lim_{x \to 0} \frac{4^{x} - 9^{x}}{x(4^{x} + 9^{x})}$
 $\left(\frac{0}{0} \text{ form}\right)$

Using L-Hospital's rule,
$$y = \lim_{x \to 0} \frac{4^x \log 4 - 9^x \log 9}{(4^x + 9^x) + x(4^x \log 4 + 9^x \log 9)} \Rightarrow y = \frac{\log 4 - \log 9}{2} \Rightarrow y = \frac{\log \left(\frac{2}{3}\right)^2}{2} = \log \frac{2}{3}$$
.

Example: 74 If
$$f(a) = 2$$
, $f'(a) = 1$, $g(a) = -3$, $g'(a) = -1$, then $\lim_{x \to a} \frac{f(a)g(x) - f(x)g(a)}{x - a} = 0$

Solution: (a)
$$\lim_{x \to a} \frac{f(a) g(x) - f(x) g(a)}{x - a} \quad \left(\frac{0}{0} \text{ form}\right)$$

Using L-Hospital's rule,
$$\lim_{x\to a} \frac{f(a) g'(x) - f'(x) g(a)}{1-0} = f(a) \times g'(a) - f'(a) \times g(a) = 2 \times (-1) - 1 \times (-3) = 1$$
.

Example: 75 The value of
$$\lim_{x\to 7} \frac{2-\sqrt{x-3}}{x^2-49}$$
 is

(a) $\frac{2}{9}$ (b) $-\frac{2}{49}$

- (c) $\frac{1}{56}$
- (d) $-\frac{1}{56}$

Solution: (d) Applying L-Hospital's rule,
$$\lim_{x \to 7} \frac{0 - \frac{1}{2\sqrt{x-3}}}{2x} = \lim_{x \to 7} \frac{-1}{4x\sqrt{x-3}} = \frac{-1}{4.7\sqrt{7-3}} = \frac{-1}{56}$$
.

Example: 76 Let
$$f(a) = g(a) = k$$
 and their n^{th} derivatives $f^n(a), g^n(a)$ exist and are not equal for some n . If
$$\lim_{x \to a} \frac{f(a)g(x) - f(a) - g(a)f(x) + g(a)}{g(x) - f(x)} = 4$$
, then the value of k is

- (b) 2
- (c) 1

(d) 0

Solution: (a)
$$\lim_{x \to a} \frac{k g(x) - k f(x)}{g(x) - f(x)} = 4$$

By L-Hospital' rule,
$$\lim_{x\to a} k \left[\frac{g'(x)-f'(x)}{g'(x)-f'(x)} \right] = 4$$
, $\therefore k=4$.

Example: 77 The value of
$$\lim_{x\to 0} \left(\frac{\int_0^{x^2} \sec^2 t \, dt}{x \sin x} \right)$$
 is

- (c) 1

(By L' -Hospital's rule)

(d) 0

Solution: (c)
$$\lim_{x \to 0} \frac{\frac{d}{dx} \int_0^{x^2} \sec^2 t \, dt}{\frac{d}{dx} (x \sin x)} = \lim_{x \to 0} \frac{\sec^2 x^2 . 2x}{\sin x + x \cos x}$$

$$= \lim_{x \to 0} \frac{2 \sec^2 x^2}{\left(\frac{\sin x}{x} + \cos x\right)} = \frac{2 \times 1}{1 + 1} = 1.$$

Example: 78
$$\lim_{x \to f/6} \left[\frac{3 \sin x - \sqrt{3} \cos x}{6x - f} \right]$$

(a)
$$\sqrt{3}$$
 (b) $\frac{1}{\sqrt{3}}$ (c) $-\sqrt{3}$

Solution: (b) Using L-Hospital's rule, $\lim_{x \to f/6} \frac{3\cos x + \sqrt{3}\sin x}{6} = \frac{3 \cdot \frac{\sqrt{3}}{2} + \sqrt{3} \cdot \frac{1}{2}}{6} = \frac{1}{\sqrt{3}}$

Example: 79 Given that
$$f'(2) = 6$$
 and $f'(1) = 4$, then $\lim_{h \to 0} \frac{f(2h+2+h^2)-f(2)}{f(h-h^2+1)-f(1)} = \frac{f(2h+2+h^2)-f(2)}{f(h-h^2+1)-f(1)} = \frac{f(2h+2+h^2)-f(2)}{f(h-h^2+1)-f(2)} = \frac{f(2h+2+h^2)-f(2)}{f(h-h^2+h^2)-f(2)} = \frac{f(2h+2+h^2)-f(2)}{f(h-h^2+h^2)-f(2)} = \frac{f(2h+2+h^2)-f(2)}{f(h-h^2+h^2)-f(2)} = \frac{f(2h+2+h^2)-f(2)}{f(h-h^2+h^2)-f(2)} = \frac{f(2h+2+h^2)-f(2)}{f(h-h^2+h^2)-f(2)} = \frac{f(2h+2+h^2)-f(2)}{f(h-h^2+h^2)-f(2)} = \frac{f(2h+2+h^2)-f(2)}{f(h-h^2)-f(2)} = \frac{f(2h+h^2)-f(2h+h^2)$

(d) 3

(a) Does not exist (b)
$$-\frac{3}{2}$$
 (c) $\frac{3}{2}$ Solution: (d)
$$\lim_{h\to 0} \frac{f(2h+2+h^2)-f(2)}{f(h-h^2+1)-f(1)} = \lim_{h\to 0} \frac{f'(2h+2+h^2)(2+2h)}{f'(h-h^2+1)(1-2h)} = \frac{6\times 2}{4\times 1} = 3.$$

Continuity

Introduction

The word 'Continuous' means without any break or gap. If the graph of a function has no break, or gap or jump, then it is said to be continuous.

A function which is not continuous is called a discontinuous function.

While studying graphs of functions, we see that graphs of functions $\sin x$, x, $\cos x$, e^x etc. are continuous but greatest integer function [x] has break at every integral point, so it is not continuous. Similarly $\tan x$, $\cot x$, $\sec x$,

 $\frac{1}{x}$ etc. are also discontinuous function.

1.1 Continuity of a Function at a Point

A function f(x) is said to be continuous at a point x = a of its domain iff $\lim_{x \to a} f(x) = f(a)$. i.e. a function f(x) is continuous at x = a if and only if it satisfies the following three conditions:

- (1) f(a) exists. ('a' lies in the domain of f)
- (2) $\lim_{x \to a} f(x)$ exist i.e. $\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x)$ or R.H.L. = L.H.L.
- (3) $\lim_{x \to a} f(x) = f(a)$ (limit equals the value of function).

Cauchy's definition of continuity: A function f is said to be continuous at a point a of its domain D if for every v > 0 there exists u > 0 (dependent on v) such that $|x - a| < u \Rightarrow |f(x) - f(a)| < v$.

Comparing this definition with the definition of limit we find that f(x) is continuous at x = a if $\lim_{x \to a} f(x)$ exists and is equal to f(a) i.e., if $\lim_{x \to a^-} f(x) = f(a) = \lim_{x \to a^+} f(x)$.

Heine's definition of continuity: A function f is said to be continuous at a point a of its domain D, converging to a, the sequence $\langle a_n \rangle$ of the points in D converging to a, the sequence $\langle f(a_n) \rangle$ converges to f(a) i.e. $\lim a_n = a \Rightarrow \lim f(a_n) = f(a)$. This definition is mainly used to prove the discontinuity to a function.

Note:
Continuity of a function at a point, we find its limit and value at that point, if these two exist and are equal, then function is continuous at that point.

Formal definition of continuity: The function f(x) is said to be continuous at x = a, in its domain if for any arbitrary chosen positive number $\epsilon > 0$, we can find a corresponding number δ depending on ϵ such that $|f(x) - f(a)| < \epsilon \ \forall x$ for which 0 < |x - a| < u.

1.2 Continuity from Left and Right

Function f(x) is said to be

- (1) Left continuous at x = a if $\lim_{x \to a-0} f(x) = f(a)$
- (2) Right continuous at x = a if $\lim_{x \to a+0} f(x) = f(a)$.

Thus a function f(x) is continuous at a point x = a if it is left continuous as well as right continuous at x = a.

Example: 1 If
$$f(x) = \begin{cases} x+\}, & x < 3\\ 4, & x = 3 \text{ is continuous at } x = 3, \text{ then } \lambda = 3, x = 3, x$$

L.H.L. at
$$x = 3$$
, $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (x +)$ = $\lim_{h \to 0} (3 - h +) = 3 +$

R.H.L. at
$$x = 3$$
, $\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (3x - 5) = \lim_{h \to 0} \{3(3 + h) - 5\} = 4$

Value of function
$$f(3) = 4$$

For continuity at x = 3

Limit of function = value of function $3 + \} = 4 \Rightarrow \} = 1$.

Example: 2

If
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$$
 is continuous at $x = 0$, then the value of k is

(b)
$$-1$$

Solution: (c)

If function is continuous at x = 0, then by the definition of continuity $f(0) = \lim_{x \to 0} f(x)$

since
$$f(0) = k$$
. Hence, $f(0) = k = \lim_{x \to 0} (x) \left(\sin \frac{1}{x} \right)$

 \Rightarrow k = 0 (a finite quantity lies between -1 to 1) \Rightarrow k = 0.

Example: 3

If
$$f(x) = \begin{cases} 2x+1 \text{ when } x < 1 \\ k \text{ when } x = 1 \text{ is continuous at } x = 1, \text{ then the value of } k \text{ is } 5x-2 \text{ when } x > 1 \end{cases}$$

Solution: (c)

Since
$$f(x)$$
 is continuous at $x = 1$,

$$\Rightarrow \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = f(1)$$

....(i)

Now
$$\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} f(1-h) = \lim_{h \to 0} 2(1-h) + 1 = 3$$
 i.e., $\lim_{x \to 1^{-}} f(x) = 3$

Similarly,
$$\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1+h) = \lim_{h \to 0} 5(1+h) - 2$$
 i.e., $\lim_{x \to 1^+} f(x) = 3$

So according to equation (i), we have k = 3.

Example: 4

The value of k which makes $f(x) = \begin{cases} \sin\left(\frac{1}{x}\right), & x \neq 0 \\ k, & x = 0 \end{cases}$ continuous at x = 0 is

(a) 8

(b)

(c) -1

(d) None of these

We have $\lim_{x\to 0} f(x) = \lim_{x\to 0} \sin\frac{1}{x} = \text{An oscillating number which oscillates between } -1 \text{ and } 1.$

Hence, $\lim_{x\to 0} f(x)$ does not exist. Consequently f(x) cannot be continuous at x=0 for any value of k.

Example: 5

The value of *m* for which the function $f(x) = \begin{cases} mx^2, x \le 1 \\ 2x, x > 1 \end{cases}$ is continuous at x = 1, is

(a) 0

- (b) I
- (c) 2
- (d) Does not exist

LHL =
$$\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} m(1 - h)^{2} = m$$

RHL =
$$\lim_{x \to 1^+} f(x) = \lim_{h \to 0} 2(1+h) = 2$$
 and $f(1) = m$

Function is continuous at x = 1, \therefore LHL = RHL = f(1)

Therefore m=2.

Example: 6 If the function
$$f(x) = \begin{cases} (\cos x)^{1/x}, & x \neq 0 \\ k, & x = 0 \end{cases}$$
 is continuous at $x = 0$, then the value of k is

Solution: (a)
$$\lim_{x\to 0} (\cos x)^{1/x} = k \Rightarrow \lim_{x\to 0} \frac{1}{x} \log(\cos x) = \log k \Rightarrow \lim_{x\to 0} \frac{1}{x} \lim_{x\to 0} \log\cos x = \log k \Rightarrow \lim_{x\to 0} \frac{1}{x} \times 0 = \log_e k \Rightarrow k = 1.$$

1.3 Continuity of a Function in Open and Closed Interval

Open interval: A function f(x) is said to be continuous in an open interval (a, b) iff it is continuous at every point in that interval.

Note: \square This definition implies the non-breakable behavior of the function f(x) in the interval (a, b).

Closed interval: A function f(x) is said to be continuous in a closed interval [a, b] iff,

- (1) f is continuous in (a, b)
- (2) f is continuous from the right at 'a' i.e. $\lim_{x \to a^+} f(x) = f(a)$
- (3) f is continuous from the left at 'b' i.e. $\lim_{x\to b^-} f(x) = f(b)$.

Example: 7 If the function
$$f(x) = \begin{cases} x + a^2 \sqrt{2} \sin x &, & 0 \le x < \frac{f}{4} \\ x \cot x + b &, & \frac{f}{4} \le x < \frac{f}{2}, \text{ is continuous in the interval } [0, f] \text{ then the values of } (a, b) \text{ are } \\ b \sin 2x - a \cos 2x &, & \frac{f}{2} \le x \le f \end{cases}$$
(a) $(-1, -1)$ (b) $(0, 0)$ (c) $(-1, 1)$ (d) $(1, -1)$

Solution: (b) Since f is continuous at $x = \frac{f}{4}$; $\therefore f\left(\frac{f}{4}\right) = f\left(\frac{f}{4} + h\right) = f\left(\frac{f}{4} - h\right) \Rightarrow \frac{f}{4}(1) + b = \left(\frac{f}{4} - 0\right) + a^2 \sqrt{2} \sin\left(\frac{f}{4} - 0\right)$

(a)
$$(-1, -1)$$

(b)
$$(0, 0)$$

(c)
$$(-1, 1)$$

Solution: (b) Since
$$f$$
 is continuous at $x = \frac{f}{4}$; $\therefore f\left(\frac{f}{4}\right) = \int_{h \to 0}^{f} \left(\frac{f}{4} + h\right) = \int_{h \to 0}^{f} \left(\frac{f}{4} - h\right) \Rightarrow \frac{f}{4}(1) + b = \left(\frac{f}{4} - 0\right) + a^2 \sqrt{2} \sin\left(\frac{f}{4} - 0\right)$
$$\Rightarrow \frac{f}{4} + b = \frac{f}{4} + a^2 \sqrt{2} \sin\frac{f}{4} \Rightarrow b = a^2 \sqrt{2} \cdot \frac{1}{\sqrt{2}} \Rightarrow b = a^2$$

Also as
$$f$$
 is continuous at $x = \frac{f}{2}$; $\therefore f\left(\frac{f}{2}\right) = \lim_{x \to \frac{f}{2} = 0} f(x) = \lim_{h \to 0} f\left(\frac{f}{2} - h\right)$

$$\Rightarrow b \sin 2\frac{f}{2} - a \cos 2\frac{f}{2} = \lim_{h \to 0} \left[\left(\frac{f}{2} - h \right) \cot \left(\frac{f}{2} - h \right) + b \right] \Rightarrow b \cdot 0 - a(-1) = 0 + b \Rightarrow a = b.$$

Hence (0, 0) satisfy the above relations.

Example: 8 If the function
$$f(x) = \begin{cases} 1 + \sin \frac{fx}{2} & \text{for } -\infty < x \le 1 \\ ax + b & \text{for } 1 < x < 3 \text{ is continuous in the interval } (-\infty, 6) \text{ then the values of } a \text{ and } b \text{ are } 6 \tan \frac{xf}{12} & \text{for } 3 \le x < 6 \end{cases}$$

respectively

(a)
$$0, 2$$

: The turning points for f(x) are x = 1, 3. Solution: (c)

So,
$$\lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} f(1-h) = \lim_{h \to 0} \left[1 + \sin \frac{f}{2} (1-h) \right] = \left[1 + \sin \left(\frac{f}{2} - 0 \right) \right] = 2$$

Similarly,
$$\lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1+h) = \lim_{h \to 0} a(1+h) + b = a+b$$

$$f(x)$$
 is continuous at $x = 1$, so $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1)$

$$\Rightarrow 2 = a + b$$

Again,
$$\lim_{x \to 3^{-}} f(x) = \lim_{h \to 0} f(3-h) = \lim_{h \to 0} a(3-h) + b = 3a+b$$
 and $\lim_{x \to 3^{+}} f(x) = \lim_{h \to 0} f(3+h) = \lim_{h \to 0} 6 \tan \frac{f}{12} (3+h) = 6$

f(x) is continuous in $(-\infty, 6)$, so it is continuous at x = 3 also, so $\lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} f(x) = f(3)$

$$\Rightarrow$$
 3a+b=6

Solving (i) and (ii)
$$a = 2$$
, $b = 0$.

Trick: In above type of questions first find out the turning points. For example in above question they are x = 1,3. Now find out the values of the function at these points and if they are same then the function is continuous i.e., in above

$$f(x) = \begin{cases} 1 + \sin\frac{f}{2}x & ; & -\infty < x \le 1, & f(1) = 2\\ ax + b & ; & 1 < x < 3 & f(1) = a + b, f(3) = 3a + b\\ 6 \tan\frac{f}{12} & ; & 3 \le x < 6 & f(3) = 6 \end{cases}$$

Which gives 2 = a + b and 6 = 3a + b after solving above linear equations we get a = 2, b = 0.

Example: 9

If
$$f(x) = \begin{cases} x \sin x, & \text{when } 0 < x \le \frac{f}{2} \\ \frac{f}{2} \sin(f + x), & \text{when } \frac{f}{2} < x < f \end{cases}$$
 then

- (a) f(x) is discontinuous at $x = \frac{f}{2}$
- (b) f(x) is continuous at $x = \frac{f}{2}$

(c) f(x) is continuous at x = 0

(d) None of these

Solution: (a)

$$\lim_{x \to \frac{f}{2}^{-}} f(x) = \frac{f}{2}, \lim_{x \to \frac{f}{2}^{+}} f(x) = -\frac{f}{2} \text{ and } f\left(\frac{f}{2}\right) = \frac{f}{2}.$$

Since $\lim_{x+\frac{f}{2}^-} \neq \lim_{x+\frac{f}{2}^+} f(x)$, \therefore Function is discontinuous at $x = \frac{f}{2}$

Example: 10

If
$$f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2} & \text{, when } x < 0 \\ \frac{a}{\sqrt{x}} & \text{, when } x = 0 \text{ is continuous at } x = 0 \text{, then the value of 'a' will be} \\ \frac{\sqrt{x}}{\sqrt{(16 + \sqrt{x})} - 4} & \text{, when } x > 0 \end{cases}$$

(a)

None of these

Solution: (a)

$$\lim_{x \to 0^{-}} f(x) \lim_{x \to 0^{-}} \left(\frac{2\sin^{2} 2x}{(2x)^{2}} \right) 4 = 8 \text{ and } \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[\left(\sqrt{16 + \sqrt{x}} \right) + 4 \right] = 8$$

Hence a = 8.

1.4 Continuous Function

(1) A list of continuous functions:

	Function f(x)	Interval in which $f(x)$ is continuous
(i)	Constant K	$(-\infty, \infty)$
(ii)	x^n , (n is a positive integer)	$(-\infty, \infty)$
(iii)	x^{-n} (n is a positive integer)	$(-\infty, \infty) - \{0\}$
(iv)	x-a	$(-\infty, \infty)$
(v)	$p(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$	$(-\infty, \infty)$
(vi)	$\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomial in x	$(-\infty, \infty) - \{x : q(x) = 0\}$
(vii)	$\sin x$	$(-\infty, \infty)$
(viii)	$\cos x$	$(-\infty, \infty)$
(ix)	$\tan x$	$(-\infty, \infty) - \{(2n+1)f/2 : n \in I\}$
(x)	$\cot x$	$(-\infty, \infty) - \{nf : n \in I\}$
(xi)	sec x	$(-\infty, \infty) - \{(2n+1)f/2 : n \in I\}$
(xii)	cosec x	$(-\infty, \infty) - \{nf : n \in I\}$
(xiii)	e ^x	$(-\infty,\infty)$
(xiv)	$\log_e x$	(0, ∞)

- (2) **Properties of continuous functions :** Let f(x) and g(x) be two continuous functions at x = a. Then
- (i) cf(x) is continuous at x = a, where c is any constant
- (ii) $f(x) \pm g(x)$ is continuous at x = a.
- (iii) f(x). g(x) is continuous at x = a.
- (iv) f(x)/g(x) is continuous at x = a, provided $g(a) \neq 0$.

Important Tips

- $\ \ \$ A function f(x) is said to be continuous if it is continuous at each point of its domain.
- A function f(x) is said to be everywhere continuous if it is continuous on the entire real line R i.e. $(-\infty,\infty)$. eg. polynomial function e^x , $\sin x, \cos x$, constant, x^n , |x-a| etc.
- Integral function of a continuous function is a continuous function.
- \mathscr{F} If g(x) is continuous at x=a and f(x) is continuous at x=g(a) then (fog) (x) is continuous at x=a.
- \mathscr{F} If f(x) is continuous in a closed interval [a, b] then it is bounded on this interval.

- If f(x) is a continuous function defined on [a, b] such that f(a) and f(b) are of opposite signs, then there is at least one value of x for which f(x) vanishes. i.e. if f(a) > 0, $f(b) < 0 \varnothing \exists c \in (a,b)$ such that f(c) = 0.
- Fig. If f(x) is continuous on [a, b] and maps [a, b] into [a, b] then for some $x \in [a, b]$ we have f(x) = x.
- (3) Continuity of composite function: If the function u = f(x) is continuous at the point x = a, and the function y = g(u) is continuous at the point u = f(a), then the composite function $y = (g \circ f)(x) = g(f(x))$ is continuous at the point x = a.

1.5 Discontinuous Function

(1) **Discontinuous function**: A function 'f' which is not continuous at a point x = a in its domain is said to be discontinuous there at. The point 'a' is called a point of discontinuity of the function.

The discontinuity may arise due to any of the following situations.

- (i) $\lim f(x)$ or $\lim f(x)$ or both may not exist
- (ii) $\lim_{x \to \infty} f(x)$ as well as $\lim_{x \to \infty} f(x)$ may exist, but are unequal.
- (iii) $\lim_{x \to a} f(x)$ as well as $\lim_{x \to a} f(x)$ both may exist, but either of the two or both may not be equal to f(a).

Important Tips

A function f is said to have removable discontinuity at x = a if $\lim_{x \to a} f(x) = \lim_{x \to a} f(x)$ but their common value is not equal to f(a).

Such a discontinuity can be removed by assigning a suitable value to the function f at x = a.

- If $\lim_{x \to \infty} f(x)$ does not exist, then we can not remove this discontinuity. So this become a non-removable discontinuity or essential discontinuity.
- If f is continuous at x = c and g is discontinuous at x = c, then
 - f + g and f g are discontinuous (b) $f \cdot g$ may be continuous
- If f and g are discontinuous at x = c, then f + g, f g and fg may still be continuous.
- Point functions (domain and range consists one value only) is not a continuous function.
- The points of discontinuity of $y = \frac{1}{u^2 + u 2}$ where $u = \frac{1}{x 1}$ is Example: 11

- (d) None of these
- (a) $\frac{1}{2}$, 1, 2 (b) $\frac{-1}{2}$, 1, -2 The function $u = f(x) = \frac{1}{x-1}$ is discontinuous at the point x = 1. The function $y = g(x) = \frac{1}{u^2 + u - 2} = \frac{1}{(u+2)(u-1)}$ is **Solution**: (a)

when
$$u = -2 \Rightarrow \frac{1}{x-1} = -2 \Rightarrow x = \frac{1}{2}$$
, when $u = 1 \Rightarrow \frac{1}{x-1} = 1 \Rightarrow x = 2$.

Hence, the composite y = g(f(x)) is discontinuous at three points $= \frac{1}{2}, 1, 2$.

The function $f(x) = \frac{\log(1+ax) - \log(1-bx)}{x}$ is not defined at x = 0. The value which should be assigned to f at x = 0 so Example: 12

that it is continuous at x = 0, is

- (a) a-b
- (b) a+b
- (c) $\log a + \log b$
- (d) $\log a \log b$
- Solution: (b) Since limit of a function is a+b as $x \to 0$, therefore to be continuous at x=0, its value must be a+b at $x = 0 \Rightarrow f(0) = a + b$.

Example: 13 If
$$f(x) = \begin{cases} \frac{x^2 - 4x + 3}{x^2 - 1}, & \text{for } x \neq 1 \\ 2, & \text{for } x = 1 \end{cases}$$
, then

(a)
$$\lim_{x \to 1^+} f(x) = 2$$

(b)
$$\lim_{x \to 1^{-}} f(x) = 3$$

(c)
$$f(x)$$
 is discontinuous at $x = 1$

(d) None of these

Solution: (c)
$$f(1) = 2$$
, $f(1+) = \lim_{x \to 1+} \frac{x^2 - 4x + 3}{x^2 - 1} = \lim_{x \to 1+} \frac{(x - 3)}{(x + 1)} = -1$

 $f(1-) = \lim_{x \to 1-} \frac{x^2 - 4x + 3}{x^2 - 1} = -1 \Rightarrow f(1) \neq f(1-)$. Hence the function is discontinuous at x = 1.

Example: 14 If
$$f(x) = \begin{cases} x - 1, x < 0 \\ \frac{1}{4}, x = 0 \\ x^2, x > 0 \end{cases}$$
, then

(a)
$$\lim_{x \to 0^+} f(x) = 1$$

(b) $\lim_{x \to 0^{-}} f(x) = 1$

(c) f(x) is discontinuous at x = 0

(d) None of these

Clearly from curve drawn of the given function f(x), it is discontinuous at x = 0. **Solution:** (c)

$$(1+|\sin x|)^{\overline{|\sin x|}} \quad , \qquad -\frac{f}{6} < x < 0$$

 $\begin{cases} (1+|\sin x|)^{\frac{\alpha}{|\sin x|}}, & -\frac{f}{6} < x < 0 \\ b, & x=0 \end{cases}, \text{ then the values of } a \text{ and } b \text{ if } f \text{ is continuous at } x=0, \text{ are respectively } e^{\frac{\tan 2x}{\tan 3x}}, & 0 < x < \frac{f}{6} \end{cases}$ Example: 15

$$e^{\frac{\tan 2x}{\tan 3x}}$$
, $0 < x < \frac{f}{6}$

(a)
$$\frac{2}{3}, \frac{3}{2}$$

(b)
$$\frac{2}{3}$$
, $e^{2/3}$ (c) $\frac{3}{2}$, $e^{3/2}$

(c)
$$\frac{3}{2}$$
, $e^{3/2}$

(d) None of these

Solution: (b)
$$f(x) = \begin{cases} (1 + |\sin x|)^{\frac{a}{|\sin x|}} & ; & -\left(\frac{f}{6}\right) < x < 0 \\ b & ; & x = 0 \\ \frac{\tan 2x}{e^{\tan 3x}} & ; & 0 < x < \left(\frac{f}{6}\right) \end{cases}$$

For f(x) to be continuous at x = 0

$$\Rightarrow \lim_{x \to 0^{-}} f(x) = f(0) = \lim_{x \to 0^{+}} f(x) \Rightarrow \lim_{x \to 0} (1 + |\sin x|)^{\frac{a}{|\sin x|}} = e^{\lim_{x \to 0^{-}} \left(|\sin x| \frac{a}{|\sin x|} \right)} = e^{a}$$

Now,
$$\lim_{x\to 0^+} e^{\tan 2x/\tan 3x} = \lim_{x\to 0^+} e^{\left(\frac{\tan 2x}{2x}.2x\right)/\left(\frac{\tan 3x}{3x}.3x\right)} = \lim_{x\to 0^+} e^{2/3} = e^{2/3}.$$

$$\therefore e^a = b = e^{2/3} \implies a = \frac{2}{3} \text{ and } b = e^{2/3}.$$

- Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfy $f\left(\frac{x}{v}\right) = f(x) f(y)$ for all x, y and f(e) = 1, then Example: 16
 - (a) f(x) = In x
- (b) f(x) is bounded
- (c) $f\left(\frac{1}{x}\right) \to 0$ as $x \to 0$ (d) $xf(x) \to 1$ as $x \to 0$
- Let f(x) = In (x), x > 0 f(x) = In (x) is a continuous function of x for every positive value of x. Solution: (a)

$$f\left(\frac{x}{y}\right) = \text{In } \left(\frac{x}{y}\right) = \text{In } (x) - \text{In } (y) = f(x) - f(y).$$

Let $f(x) = [x] \sin\left(\frac{f}{[x+1]}\right)$, where [.] denotes the greatest integer function. The domain of f is and the points of Example: 17

(a) $\{x \in R \mid x \in [-1,0)\}, I - \{0\}$

discontinuity of f in the domain are

(b) $\{x \in R \mid x \notin [1,0)\}, I - \{0\}$

(c) $\{x \in R \mid x \notin [-1,0)\}, I - \{0\}$

(d) None of these

Note that [x+1] = 0 if $0 \le x+1 < 1$ Solution: (c)

i.e.
$$[x+1]-0$$
 if $-1 \le x < 0$.

Thus domain of *f* is $R - [-1, 0) = \{x \notin [-1, 0)\}$

We have $\sin\left(\frac{f}{[x+1]}\right)$ is continuous at all points of R-[-1,0) and [x] is continuous on R-I, where I denotes the set of

Thus the points where f can possibly be discontinuous are....., $-3, -2, -1, 01, 2, \dots$ But for $0 \le x < 1, [x] = 0$ and $\sin\left(\frac{f}{[x+1]}\right)$ is defined.

Therefore f(x) = 0 for $0 \le x < 1$.

Also f(x) is not defined on $-1 \le x < 0$.

Therefore, continuity of f at 0 means continuity of f from right at 0. Since f is continuous from right at f is continuous at 0. Hence set of points of discontinuities of f is $I - \{0\}$.

- If the function $f(x) = \frac{2x \sin^{-1} x}{2x + \tan^{-1} x}$, $(x \ne 0)$ is continuous at each point of its domain, then the value of f(0) is Example: 18

- (c) 2/3
- (d) -1/3

(a) 2 (b) 1/3 $f(x) = \lim_{x \to 0} \left(\frac{2x - \sin^{-1} x}{2x + \tan^{-1} x} \right) = f(0) , \left(\frac{0}{0} \text{ form} \right)$ Solution: (b)

Applying L-Hospital's rule,
$$f(0) = \lim_{x \to 0} \frac{\left(2 - \frac{1}{\sqrt{1 - x^2}}\right)}{\left(2 + \frac{1}{1 + x^2}\right)} = \frac{2 - 1}{2 + 1} = \frac{1}{3}$$

Trick:
$$f(0) = \lim_{x \to 0} \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x} \Rightarrow \lim_{x \to 0} \frac{2 - \frac{\sin^{-1} x}{x}}{2 + \frac{\tan^{-1} x}{x}} = \frac{2 - 1}{2 + 1} = \frac{1}{3}.$$

Example: 19 The values of
$$A$$
 and B such that the function $f(x) = \begin{cases} -2\sin x, & x \le -\frac{f}{2} \\ A\sin x + B, & -\frac{f}{2} < x < \frac{f}{2} \end{cases}$, is continuous everywhere are $\cos x, \quad x \ge \frac{f}{2}$

- (a) A = 0, B = 1

- (b) A = 1, B = 1 (c) A = -1, B = 1 (d) A = -1, B = 0

Solution: (c) For continuity at all
$$x \in R$$
, we must have $f\left(-\frac{f}{2}\right) = \lim_{x \to (-f/2)^-} (-2\sin x) = \lim_{x \to (-f/2)^+} (A\sin x + B)$

$$\Rightarrow 2 = -A + B$$

and
$$f\left(\frac{f}{2}\right) = \lim_{x \to (f/2)^{-}} (A \sin x + B) = \lim_{x \to (f/2)^{+}} (\cos x)$$

$$\Rightarrow$$
 0 = A + B

....(ii)

From (i) and (ii), A = -1 and B = 1.

Example: 20 If
$$f(x) = \frac{x^2 - 10x + 25}{x^2 - 7x + 10}$$
 for $x \ne 5$ and f is continuous at $x = 5$, then $f(5) = 6$ (a) 0 (b) 5 (c) 10

- (d) 25

Solution: (a)
$$f(5) = \lim_{x \to 5} f(x) = \lim_{x \to 5} \frac{x^2 - 10x + 25}{x^2 - 7x + 10} = \lim_{x \to 5} \frac{(x - 5)^2}{(x - 2)(x - 5)} = \frac{5 - 5}{5 - 2} = 0$$

Example: 21 In order that the function
$$f(x) = (x+1)^{\cot x}$$
 is continuous at $x=0$, $f(0)$ must be defined as

(a)
$$f(0) = \frac{1}{e}$$

(b)
$$f(0) = 0$$

(c)
$$f(0) = e^{-\frac{1}{2}}$$

(d) None of these

Solution: (c) For continuity at 0, we must have
$$f(0) = \lim_{x \to 0} f(x)$$

$$= \lim_{x \to 0} (x+1)^{\cot x} = \lim_{x \to 0} \left\{ (1+x)^{\frac{1}{x}} \right\}^{x \cot x} = \lim_{x \to 0} \left\{ (1+x)^{\frac{1}{x}} \right\}^{\lim_{x \to 0} \left(\frac{x}{\tan x}\right)} = e^1 = e.$$

- Example: 22 The function $f(x) = \sin |x|$ is
 - (a) Continuous for all x

(b) Continuous only at certain points

(c) Differentiable at all points

(d) None of these

Solution: (a)

Example: 23 If
$$f(x) = \begin{cases} \frac{1-\sin x}{f-2x}, & x \neq \frac{f}{2} \\ \frac{f}{2}, & x \neq \frac{f}{2} \end{cases}$$
 be continuous at $x = \frac{f}{2}$, then value of $f(x) = \frac{f}{2}$.

(a)
$$-1$$
 (b) 1 (c) 0 **Solution:** (c) $f(x)$ is continuous at $x = \frac{f}{2}$, then $\lim_{x \to f/2} f(x) = f(0)$ or $\frac{1-\sin x}{f-2x}$, $\frac{0}{f}$ form

Applying L-Hospital's rule,
$$=\lim_{x\to f/2}\frac{-\cos x}{-2} \Rightarrow =\lim_{x\to f/2}\frac{\cos x}{2} = 0.$$

Example: 24 If
$$f(x) = \frac{2 - \sqrt{x + 4}}{\sin 2x}$$
; $(x \ne 0)$, is continuous function at $x = 0$, then $f(0)$ equals

- (d) $-\frac{1}{8}$

Solution: (d) If
$$f(x)$$
 is continuous at $x = 0$, then, $f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{2 - \sqrt{x + 4}}{\sin 2x}$, $\left(\frac{0}{0} \text{ form}\right)$

Using L-Hospital's rule,
$$f(0) = \lim_{x \to 0} \frac{\left(-\frac{1}{2\sqrt{x+4}}\right)}{2\cos 2x} = -\frac{1}{8}$$
.

Example: 25 If function
$$f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 1 - x & \text{if } x \text{ is irrational} \end{cases}$$
, then $f(x)$ is continuous at number of points

- (b) 1
- (d) None of these

Example: 26 The function defined by
$$f(x) = \left\{ \begin{pmatrix} x^2 + e^{\frac{1}{2-x}} \end{pmatrix}^{-1}, & x \neq 2, \text{ is continuous from right at the point } x = 2, \text{ then } k \text{ is equal to } k & x = 2 \end{pmatrix} \right.$$

(a) 0

- (d) None of these

Solution: (b)
$$f(x) = \left[x^2 + e^{\frac{1}{2-x}} \right]^{-1}$$
 and $f(2) = k$

If f(x) is continuous from right at x = 2 then $\lim_{x \to 2^+} f(x) = f(2) = k$

$$\Rightarrow \lim_{x \to 2^{+}} \left[x^{2} + e^{\frac{1}{2-x}} \right]^{-1} = k \Rightarrow k = \lim_{h \to 0} f(2+h) \Rightarrow k = \lim_{h \to 0} \left[(2+h)^{2} + e^{\frac{1}{2-(2+h)}} \right]^{-1}$$

$$\Rightarrow k = \lim_{h \to 0} \left[4 + h^2 + 4h + e^{-1/h} \right]^{-1} \Rightarrow k = \left[4 + 0 + 0 + e^{-\infty} \right]^{-1} \Rightarrow k = \frac{1}{4}.$$

Example: 27 The function
$$f(x) = \frac{1 - \sin x + \cos x}{1 + \sin x + \cos x}$$
 is not defined at $x = f$. The value of $f(f)$, so that $f(x)$ is continuous at $x = f$, is

- (d) 1

Solution: (c)
$$\lim_{x \to f} f(x) = \lim_{x \to f} \frac{2\cos^2 \frac{x}{2} - 2\sin \frac{x}{2}\cos \frac{x}{2}}{2\cos^2 \frac{x}{2} + 2\sin \frac{x}{2}\cos \frac{x}{2}} = \lim_{x \to f} \frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2}} = \lim_{x \to f} \tan \left(\frac{f}{4} - \frac{x}{2}\right)$$

$$\therefore$$
 At $x = f$, $f(f) = -\tan \frac{f}{4} = -1$.

Example: 28 If
$$f(x) = \begin{cases} \frac{\sqrt{1 + kx} - \sqrt{1 - kx}}{x}, & \text{for } -1 \le x < 0 \\ 2x^2 + 3x - 2, & \text{for } 0 \le x \le 1 \end{cases}$$
 is continuous at $x = 0$, then $k = 0$

- (d) -1

Solution: (c) L.H.L. =
$$\lim_{x \to 0^{-}} \frac{\sqrt{1 + kx} - \sqrt{1 - kx}}{x} = k$$

R.H.L. =
$$\lim_{x \to 0^+} (2x^2 + 3x - 2) = -2$$

Since it is continuous, hence L.H.L = R.H.L $\Rightarrow k = -2$.

Example: 29 The function $f(x) = |x| + \frac{|x|}{x}$ is

- (a) Continuous at the origin
- (b) Discontinuous at the origin because |x| is discontinuous there
- (c) Discontinuous at the origin because $\frac{|x|}{x}$ is discontinuous there
- (d) Discontinuous at the origin because both |x| and $\frac{|x|}{x}$ are discontinuous there
- **Solution:** (c) |x| is continuous at x = 0 and $\frac{|x|}{x}$ is discontinuous at x = 0

$$\therefore$$
 $f(x) = |x| + \frac{|x|}{x}$ is discontinuous at $x = 0$.

