

个性化对话生成

刘振华 2021-10-24

Content

—. TransferTransfo

二. 常用解码策略

TransferTransfo: A Transfer Learning Approach for Neural Network Based Conversational Agents

Thomas Wolf, Victor Sanh, Julien Chaumond & Clement Delangue

HuggingFace Inc.
81 Prospect St.
Brooklyn, New York 11201, USA
{thomas, victor, julien, clement}@huggingface.co

The Conversational Intelligence Challenge 2 (**ConvAI2**, a dialog competition at NeurIPS 2018)

自动评测冠军/人工评测亚军方案

Automatic Evaluation Leaderboard (hidden test set)

Rank	Creator	PPL	Hits@1	F1
1 🍆	(Hugging Face)	16.28🍎	80.7	19.5🍎
2 🦫	ADAPT Centre	31.4	_	18.39
3 🍆	Happy Minions	29.01	-	16.01
4 🍆	High Five	-	65.9	-
5 🍆	Mohd Shadab Alam	29.94	13.8	16.91
6 🍃	Lost in Conversation	-	17.1	17.77
7 🍆	Little Baby(Al小奶娃)	_	64.8	_
8	Sweet Fish	-	45.7	_

Human Evaluation Leaderboard

Rank	Creator	Rating	Persona detect
1 🍆 🎉	Lost in Conversation [code]	3.11 👠	0.9
2 🍑 🍎 🍎	(Hugging Face)	2.68	0.98
3 🍆	Little Baby(AI小奶娃)	2.44	0.79
4 🍑	Mohd Shadab Alam	2.33	0.93
5 🍆	Happy Minions	1.92	0.46
6 🍆	ADAPT Centre	1.6	0.93
KV Profile Memory	ParlAl team	2.44	0.76
Human	MTurk	3.48	0.96

数据使用来自<Personalizing Dialogue Agents: I have a dog, do you have pets too?>的PersonaChat

Persona for Speaker 1 (P1)

I like to ski

My wife does not like me anymore

I have went to Mexico 4 times this year

I hate Mexican food

I like to eat cheetos

P1: Hi

P2: Hello! How are you today?

P1: I am good thank you, how are you.

P2: Great, thanks! My children and I were just about to watch Game of Thrones.

P1: Nice! How old are your children?

P2: I have four that range in age from 10 to 21. You?

P1: I do not have children at the moment.

P2: That just means you get to keep all the popcorn for yourself.

P1: And Cheetos at the moment!

P2: Good choice. Do you watch Game of Thrones?

P1: No, I do not have much time for TV.

P2: I usually spend my time painting: but, I love the show.

Table 1: Sample dialogue from *PersonaChat* with persona facts for Speaker 1 (P1). Speaker 2 (P2) also has a random persona (not shown).

TransferTransfo: An AI with a personality

Generate a reply

Chatbot Great. Thanks! My Children and I were just about to watch Game of Thrones

主要问题:

Dialog datasets are small and it's hard to learn enough about language and common-sense from them to be able to generate fluent and relevant responses.

解决方案:

Pretraining (GPT/GPT2) + Finetuning (on PersonaChat)

语言模型的输入为一个单词序列,如何让模型去区分不同的输入类别 (persona/history/reply) 并生成合适的回复呢?

- Concat persona, history, reply as the model's input?
- Transformer无法区分persona, history, reply

语言模型的输入为一个单词序列,如何让模型去区分不同的输入类别 (persona/history/reply) 并生成合适的回复呢?

- 拼接的同时加入如<persona>, <history>, <reply>的分隔符?
- 分隔符提供的信息较弱+Transformer对位置不敏感

语言模型的输入为一个单词序列,如何让模型去区分不同的输入类别 (persona/history/reply) 并生成合适的回复呢?

- Concat persona, history, reply as the model's input
- Add segment embeddings and position embeddings

Multi-task: Next-Sentence Prediction

The Total Loss

Loss = LM_loss * LM_coefficient + NSP_loss * NSP_coefficient

	Eval		Test			
Model	PPL	Hits@1	F1	PPL	Hits@1	F1
Generative Profile Memory (Zhang et al., 2018)	34.54	12.5	_	_	-	_
Retrieval KV Profile Memory (Zhang et al., 2018)	_	51.1				
Seq2Seq + Attention (ConvAI2 baseline ³)	35.07	12.5	16.82	29.8	12.6	16.18
Language Model (ConvAI2 baseline ⁴)	51.1	_	15.31	46.0	_	15.02
KV Profile Memory (ConvAI2 baseline ⁵)	- 1	55.1	11.72	_	55.2	11.9
TransferTransfo (this work)	17.51	82.1	19.09	16.28	80.7	19.5

Table 2: Results on the (public) validation and (private) test set of the PERSONA-CHAT dataset. The results on the test set were evaluated by the ConvAI evaluation server. PPL stands for perplexity, Hits@1 for correct identification of a gold answer from a set of 19 distractors and F1 for precision and recall of content words in a dialog utterance (see Zhang et al. and http://convai.io/ for details)

GPT2, 3*V100, 训练3小时			
Perplexity	14.155		

Greedy Decoding			
	pred	gold	
Dist.1	0.0531	0.1049	
Dist.2	0.2055	0.4824	

常用解码策略

基于搜索的解码策略

- Greedy search
- Beam search

基于采样的解码策略

- Sampling
- Top-k
- Top-p (nucleus sampling)

常用解码策略

基于搜索的解码策略: Greedy search

每一个时间步t都选取当前概率分布中概率最大的词,直到生成<EOS>时停止:

$$\hat{y_t} = argmax_y P(y|Y_{<\hat{t}}, X)$$

局部最优,不代表全局最优

基于搜索的解码策略: Beam search

- 在第一个时间步,选取当前概率最大的bs (beam size) 个词,分别当成bs 个候选输出序列的第一个词;
- 在之后的每个时间步,将上一时刻的输出序列与词表中每个词组合后得到 概率最大的bs个扩增序列作为该时间步的候选输出序列。

$$\mathcal{Y}_{[t]} = \operatorname{argmax}_{Y_{[t]}^{1}, \dots, Y_{[t]}^{B} \in \mathcal{S}_{t}} \sum_{b=1}^{B} \log P\left(Y_{[t]}^{b} \mid X\right)$$
s.t. $Y_{[t]}^{i} \neq Y_{[t]}^{j}, \forall i \neq j, i, j = 1, 2, \dots, B$

- 最终从候选输出序列中选择概率最高的序列。
- beam size设为1时即为greedy search。

基于搜索的解码策略: Beam search

- 在第一个时间步,选取当前概率最大的bs (beam size) 个词,分别当成bs 个候选输出序列的第一个词;
- 在之后的每个时间步,将上一时刻的输出序列与词表中每个词组合后得到 概率最大的bs个扩增序列作为该时间步的候选输出序列。

$$\mathcal{Y}_{[t]} = \operatorname{argmax}_{Y_{[t]}^{1}, \dots, Y_{[t]}^{B} \in \mathcal{S}_{t}} \sum_{b=1}^{B} \log P\left(Y_{[t]}^{b} \mid X\right)$$
s.t. $Y_{[t]}^{i} \neq Y_{[t]}^{j}, \forall i \neq j, i, j = 1, 2, \dots, B$

- 最终从候选输出序列中选择概率最高的序列。
- beam size设为1时即为greedy search。

由于每一步生成的概率介于0和1之间,所以候选序列的生成概率随着不断累乘会越来越小。故beam search倾向于生成较短的序列,较早地生成EOS

基于搜索的解码策略: Beam search

- 最简单的方法是使用长度归一化的条件概率,即把每一个候选序列的概率 除以它的序列长度n后排序。
- 通常实践中会对归一化因子n加上一个可调节参数a作为指数,当a为0时不进行长度惩罚,a为1时直接用长度n来进行惩罚:

$$\mathcal{Y}_{[t]} = \operatorname{argmax}_{Y_{[t]}^{1}, \dots, Y_{[t]}^{B} \in \mathcal{S}_{t}} \sum_{b=1}^{B} \frac{1}{(n_{b,[t]})^{a}} \log P\left(Y_{[t]}^{b} \mid X\right)$$
s.t. $Y_{[t]}^{i} \neq Y_{[t]}^{j}, \forall i \neq j, i, j = 1, 2, \dots, B$

其中 $n_{b,[t]}$ 表示候选序列 $Y_{[t]}^{b}$ 的长度。

基于采样的解码策略: Sampling

通过采样方法生成的文本通常具有更高的多样性,同时也在一定程度上缓解了生成通用和重复文本的问题。

在生成时的每一步都从当前概率分布中按照概率随机采样一个词。其中在解码使用softmax将输出概率归一化时,可以通过改变temperature/T来控制概率的形貌:

$$p_i = \frac{\exp(x_i/T)}{\sum_j \exp(x_j/T)}$$

当T大的时候, 概率分布趋向平均, 随机性增大; 当T小的时候, 概率密度趋向于集中, 即强者愈强, 但随机性降低。

基于采样的解码策略: Top-k

在采样前将输出的概率分布截断,取出概率最大的k个词构成一个集合,然后将这个子集词的概率再归一化,最后从新的概率分布中采样词汇:

$$p_i = \begin{cases} \frac{exp(x_i/T)}{\sum_{x_j \in \mathcal{V}^{(k)}} exp(x_j/T)}, & x_i \in \mathcal{V}^{(k)} \\ 0, & other \end{cases}$$

缺点是k不好选。概率分布变化比较大,有时候可能很均匀(flat),有的时候比较集中(peaked)

基于采样的解码策略: Top-p / Nucleus sampling

- 相对于Top-k采样,该方法不再取一个固定的k,而是固定候选集合的概率 密度和在整个概率分布中的比例。
- 根据生成概率从高到低在词表上选择累积概率恰好超过p的候选词作为采样集合V^(p),选出来这个集合之后也和top-k采样一样,重新归一化集合内词的概率,并把集合外词的概率设为0。

$$p_i = \begin{cases} \frac{\exp(x_i/T)}{\sum_{x_j \in \mathcal{V}^{(p)}} \exp(x_j/T)}, & x_i \in \mathcal{V}^{(p)} \\ 0, & \text{other} \end{cases}$$

Reference

- Wolf等, 《TransferTransfo: A Transfer Learning Approach for Neural Network Based Conversational Agents》.
- $\hbox{$\, \, $\color{blue} {\rm Wow to \ build \ a \ State-of-the-Art \ Conversational \ AI \ with \ Transfer \ Learning \ | \ by \ Thomas \ Wolf \ | \ Hugging Face \ | \ Medium \)} \ . }$
- Zhang等, 《Personalizing Dialogue Agents: I have a dog, do you have pets too?》.

Thank You