Linear Regression

Machine learning algorithms

	Supervised Learning	Unsupervised Learning
Discrete	Classification	Clustering
Continuous	Regression	Dimensionality reduction

Nearest neighbor classifier

Training data

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(N)}, y^{(N)})$$

Learning

Do nothing.

Testing

$$h(x) = y^{(k)}$$
, where $k = \operatorname{argmin}_i D(x, x^{(i)})$

Instance/Memory-based Learning

- 1. A distance metric
 - Continuous? Discrete? PDF? Gene data? Learn the metric?
- 2. How many nearby neighbors to look at?
 - 1? 3? 5? 15?
- 3. A weighting function (optional)
 - Closer neighbors matter more
- 4. How to fit with the local points?
 - Kernel regression

Validation set

• Spliting training set: A fake test set to tune hyper-parameters

```
# assume we have Xtr_rows, Ytr, Xte_rows, Yte as before
# recall Xtr_rows is 50,000 x 3072 matrix
Xval rows = Xtr rows[:1000, :] # take first 1000 for validation
Yval = Ytr[:1000]
Xtr_rows = Xtr_rows[1000:, :] # keep last 49,000 for train
Ytr = Ytr[1000:]
# find hyperparameters that work best on the validation set
validation accuracies = []
for k in [1, 3, 5, 10, 20, 50, 100]:
  # use a particular value of k and evaluation on validation data
  nn = NearestNeighbor()
  nn.train(Xtr_rows, Ytr)
  # here we assume a modified NearestNeighbor class that can take a k as input
  Yval predict = nn.predict(Xval rows, k = k)
  acc = np.mean(Yval_predict == Yval)
  print 'accuracy: %f' % (acc,)
  # keep track of what works on the validation set
  validation_accuracies.append((k, acc))
```

Slide credit: CS231 @ Stanford

Cross-validation

- 5-fold cross-validation -> split the training data into 5 equal folds
- 4 of them for training and 1 for validation

Things to remember

- Supervised Learning
 - Training/testing data; classification/regression; Hypothesis
- k-NN
 - Simplest learning algorithm
 - With sufficient data, very hard to beat "strawman" approach
- Kernel regression/classification
 - Set k to n (number of data points) and chose kernel width
 - Smoother than k-NN
- Problems with k-NN
 - Curse of dimensionality
 - Not robust to irrelevant features
 - Slow NN search: must remember (very large) dataset for prediction

Today's plan: Linear Regression

- Model representation
- Cost function
- Gradient descent
- Features and polynomial regression
- Normal equation

Linear Regression

- Model representation
- Cost function
- Gradient descent
- Features and polynomial regression
- Normal equation

House pricing prediction

Training set

Size in feet^2 (x)	Price (\$) in 1000's (y)	
2104	460	
1416	232	
1534	315	-m = 47
852	178	111 - 47
•••		

Notation:

- m = Number of training examples
- x =Input variable / features
- y = Output variable / target variable
- (x, y) = One training example
- $(x^{(i)}, y^{(i)}) = i^{th}$ training example

Examples:

$$x^{(1)} = 2104$$
 $x^{(2)} = 1416$
 $y^{(1)} = 460$

Model representation

Univariate linear regression

Linear Regression

Model representation

- Cost function
- Gradient descent
- Features and polynomial regression
- Normal equation

Training set

Size in feet^2 (x)	Price (\$) in 1000's (y)	
2104	460	_
1416	232	
1534	315	222 - 47
852	178	m = 47
•••	•••	

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_0 , θ_1 : parameters/weights

How to choose θ_i 's?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Slide credit: Andrew Ng

Cost function

• Idea:

Choose θ_0 , θ_1 so that $h_{\theta}(x)$ is close to y for our training example (x, y)

minimize
$$\frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Price (\$) in 1000's
$$400$$
 300 200 200 2500 2500 Size in feet^2

minimize
$$J(\theta_0, \theta_1)$$
 Cost function θ_0, θ_1

Simplified

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x - \frac{1}{2}$$

Hypothesis:

$$h_{\theta}(x) = \theta_1 x$$

$$\theta_0 = 0$$

• Parameters:

$$\theta_0$$
 , θ_1

• Parameters:

$$heta_1$$

Cost function:

Cost function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \longrightarrow J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

minimize
$$J(\theta_0, \theta_1)$$

 θ_0, θ_1

Goal:

minimize
$$J(\theta_1)$$
 θ_0, θ_1

• Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

• Parameters: θ_0 , θ_1

• Cost function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

• Goal: minimize $J(\theta_0, \theta_1)$ θ_0, θ_1

Cost function

How do we find good θ_0 , θ_1 that minimize $J(\theta_0, \theta_1)$?

Linear Regression

- Model representation
- Cost function
- Gradient descent
- Features and polynomial regression
- Normal equation

Gradient descent

```
Have some function J(\theta_0, \theta_1)
Want \underset{\theta_0, \theta_1}{\operatorname{argmin}} J(\theta_0, \theta_1)
```

Outline:

- Start with some θ_0 , θ_1
- Keep changing θ_0 , θ_1 to reduce $J(\theta_0, \theta_1)$ until we hopefully end up at minimum

Gradient descent

Repeat until convergence{

$$\theta_j \coloneqq \theta_j - \alpha \; \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$

 α : Learning rate (step size)

$$\frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1)$$
: derivative (rate of change)

Gradient descent

Correct: simultaneous update

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

$$temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_0 \coloneqq \text{temp0}$$

$$\theta_1 \coloneqq \text{temp1}$$

Incorrect:

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 \coloneqq \text{temp0}$$

temp1 :=
$$\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 \coloneqq \text{temp1}$$

$$\theta_{1} := \theta_{1} - \alpha \frac{\partial}{\partial \theta_{1}} J(\theta_{1})$$

$$J(\theta_{1})$$

$$\frac{\partial}{\partial \theta_{1}} J(\theta_{1}) < 0$$

$$\frac{\partial}{\partial \theta_{1}} J(\theta_{1}) > 0$$

$$1$$

Learning rate

Gradient descent for linear regression

Repeat until convergence{

$$\theta_j \coloneqq \theta_j - \alpha \; \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1)$$

Linear regression model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Computing partial derivative

•
$$j = 0$$
: $\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)$
• $j = 1$: $\frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}$

Gradient descent for linear regression

Repeat until convergence{

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

Update θ_0 and θ_1 simultaneously

Batch gradient descent

"Batch": Each step of gradient descent uses all the training examples
 Repeat until convergence{

m: Number of training examples

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

Linear Regression

- Model representation
- Cost function
- Gradient descent
- Features and polynomial regression
- Normal equation

Training dataset

Size in feet^2 (x)	Price (\$) in 1000's (y)		
2104	460		
1416	232		
1534	315		
852	178		
•••	•••		

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Multiple features (input variables)

Size in feet^2 (x_1)	Number of bedrooms (x_2)	Number of floors (x_3)	Age of home (years) (x_4)	Price (\$) in 1000's (y)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••				•••

Notation:

n = Number of features $x^{(i)}$ = Input features of i^{th} training example $x_j^{(i)}$ = Value of feature j in i^{th} training example

$$x_3^{(2)} = ?$$
 $x_3^{(4)} = ?$

Hypothesis

Previously:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Now: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

• For convenience of notation, define $x_0 = 1$ $(x_0^{(i)} = 1 \text{ for all examples})$

$$\bullet \ \mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in R^{n+1} \qquad \boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in R^{n+1}$$

Gradient descent

• Previously (n=1)

Repeat until convergence{

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

• New algorithm $(n \ge 1)$

Repeat until convergence{

$$\theta_{0} := \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \qquad \theta_{j} := \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

Simultaneously update θ_j , for $j = 0, 1, \dots, n$

Gradient descent in practice: Feature scaling

- Idea: Make sure features are on a similar scale (e.g., $-1 \le x_i \le 1$)
- E.g. $x_1 = \text{size (0-2000 feat^2)}$ $x_2 = \text{number of bedrooms (1-5)}$

Slide credit: Andrew Ng

Gradient descent in practice: Learning rate

- Automatic convergence test
- α too small: slow convergence
- α too large: may not converge

• To choose α , try

0.001, ... 0.01, ..., 0.1, ..., 1

House prices prediction

• $h_{\theta}(x) = \theta_0 + \theta_1 \times \text{frontage} + \theta_2 \times \text{depth}$

Area

 $x = \text{frontage} \times \text{depth}$

• $h_{\theta}(x) = \theta_0 + \theta_1 x$

Polynomial regression

$$x_1$$
 = (size)
 x_2 = (size)^2
 x_3 = (size)^3

•
$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

= $\theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$

Linear Regression

- Model representation
- Cost function
- Gradient descent
- Features and polynomial regression
- Normal equation

(x_0)	Size in feet^2 (x_1)	Number of bedrooms (x_2)	Number of floors (x_3)	Age of home (years) (x_4)	Price (\$) in 1000's (y)		
1	2104	5	1	45	460		
1	1416	3	2	40	232		
1	1534	3	2	30	315		
1	852	2	1	36	178		
	•••						
$X = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$	2104 5 1416 3 1534 3 852 2	$\begin{bmatrix} 1 & 45 \\ 2 & 40 \\ 2 & 30 \\ 1 & 36 \end{bmatrix}$		<i>y</i> :	= \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}		
$\theta = (X^T X)^{-1} X^T y$							

Slide credit: Andrew Ng

Least square solution

•
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$= \frac{1}{2m} \sum_{i=1}^{m} (\theta^{T} x^{(i)} - y^{(i)})^{2}$$

$$= \frac{1}{2m} ||X\theta - y||_{2}^{2}$$
• $\frac{\partial}{\partial \theta} J(\theta) = 0$

$$\bullet \theta = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

Justification/interpretation 1

Loss minimization

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} = \frac{1}{m} \sum_{i=1}^{m} L_{ls}(h_{\theta}(x^{(i)}), y^{(i)})$$

- $L_{ls}(y, \hat{y}) = \frac{1}{2} ||y \hat{y}||_2^2$: Least squares loss
- Empirical Risk Minimization (ERM)

$$\frac{1}{m} \sum_{i=1}^{m} L_{ls}(y^{(i)}, \hat{y})$$

Justification/interpretation 2

Probabilistic model

Assume linear model with Gaussian errors

$$p_{\theta}(y^{(i)}|x^{(i)}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2\sigma^2}(y^{(i)} - \theta^{\mathsf{T}}x^{(i)})$$

Solving maximum likelihood

$$\underset{\theta}{\operatorname{argmin}} \prod_{i=1}^{m} p_{\theta}(y^{(i)}|x^{(i)})$$

$$\underset{\theta}{\operatorname{argmin}} \log(\prod_{i=1}^{m} p(y^{(i)}|x^{(i)})) = \underset{\theta}{\operatorname{argmin}} \frac{1}{2\sigma^{2}} \sum_{i=1}^{m} \frac{1}{2} (\theta^{\top} x^{(i)} - y^{(i)})^{2}$$

Justification/interpretation 3

Geometric interpretation

• $X\theta$: column space of X or span($\{z_0, z_1, \dots, z_n\}$)

• Residual $X\theta - y$ is orthogonal to the column space of X

•
$$X^{\mathsf{T}}(X\boldsymbol{\theta} - \mathbf{y}) = 0 \to (X^{\mathsf{T}}X)\boldsymbol{\theta} = X^{\mathsf{T}}\mathbf{y}$$

m training examples, n features

Gradient Descent

- Need to choose α
- Need many iterations
- Works well even when n is large

Normal Equation

- No need to choose α
- Don't need to iterate
- Need to compute $(X^TX)^{-1}$
- Slow if n is very large

Things to remember

Model representation

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n = \theta^{\mathsf{T}} x$$

Cost function

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Gradient descent for linear regression

Repeat until convergence
$$\{\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \}$$

Features and polynomial regression

Can combine features; can use different functions to generate features (e.g., polynomial)

• Normal equation $\theta = (X^T X)^{-1} X^T y$