Programación Entera (INDG-1019): Guía de Estudio 01

Semestre: 2018-2019 Término I Instructor: Luis I. Reyes Castro

Problema 1.1. Considere un programa entero que contiene $m \geq 10$ variables binarias

$$x_1, x_2, x_3, \ldots, x_m \in \{0, 1\}$$

junto con otras variables adicionales. En cada uno de los siguientes literales, se le presentará un conjunto de suposiciones seguido de una regla o preferencia. Exprese cada una de las reglas o preferencias en el lenguaje de la programación lineal entera mediante la introducción de variables enteras y/o de restricciones lineales. Por favor considere que cada literal es independiente de todos los otros.

a) Suposiciones: $2 \le n < m$; $y \in \{0, 1\}$. Regla o preferencia: Si el número de índices $i \in [m]$ tales que $x_i = 1$ es igual o mayor a n entonces y = 1.

Solución: Introducimos la siguiente restricción lineal:

$$\sum_{i=1}^{m} x_i \le (n-1) + (m-n+1)y$$

- b) Suposiciones: $2 \le n < m$; $y \in \{0, 1\}$. Regla o preferencia: Si el número de índices $i \in [m]$ tales que $x_i = 1$ es menor o igual a n entonces y = 1.
- c) Suposiciones: $2 \le n < m$; $y \in \{0, 1\}$. Regla o preferencia: La variable y = 1 si y solo si el número de índices $i \in [m]$ tales que $x_i = 1$ es igual o mayor a n.
- d) Suposiciones: $2 \le n < m$; $y \in \{0, 1\}$. Regla o preferencia: La variable y = 1 si y solo si el número de índices $i \in [m]$ tales que $x_i = 1$ es exactamente igual a n.
- e) Suposiciones: $z \in \{0,1\}$; $2 \le n < m$. Regla o preferencia: Si z=1 entonces el número de índices $i \in [\![m]\!]$ tales que $x_i=1$ debe ser igual o mayor a n.
- f) Suposiciones: $z \in \{0,1\}$; $2 \le n < m$. Regla o preferencia: Si z = 1 entonces el número de índices $i \in [m]$ tales que $x_i = 1$ debe ser exactamente igual a n.
- g) Suposiciones: $S \subseteq [m]$ es un subconjunto de índices; $w \in \{0, 1\}$. Regla o preferencia: Si para cualquier índice $i \in S$ tenemos $x_i = 1$ entonces w = 1. Solución: Introducimos el siguiente juego de restricciones lineales:

$$\forall i \in S : x_i \leq w$$

- h) Suposiciones: $S \subseteq \llbracket m \rrbracket$ es un subconjunto de índices; $w \in \{0,1\}$. Regla o preferencia: Si para todo índice $i \in S$ tenemos $x_i = 1$ entonces w = 1.
- i) Suposiciones: $S \subseteq \llbracket m \rrbracket$ es un subconjunto de índices; $w \in \{0,1\}$. Regla o preferencia: La variable w = 1 si y solo si para todo índice $i \in S$ tenemos $x_i = 1$.

j) Suposiciones: $S, T \subseteq \llbracket m \rrbracket$ son subconjuntos de índices. Regla o preferencia: El número de índices $i \in S$ tales que $x_i = 1$ es mayor o igual al número de índices $j \in T$ tales que $x_j = 1$.

Solución: Introducimos la siguiente restricción lineal:

$$\sum_{i \in S} x_i \ge \sum_{j \in S} x_j$$

- k) Suposiciones: $S, T \subseteq \llbracket m \rrbracket$ son subconjuntos de índices; $w \in \{0, 1\}$. Regla o preferencia: Si el número de índices $i \in S$ para los cuales $x_i = 1$ es igual o mayor al número de índices $j \in S$ para los cuales $x_j = 1$ entonces w = 1.
- l) Suposiciones: $S, T \subseteq \llbracket m \rrbracket$ son subconjuntos de índices. Regla o preferencia: Si $x_i = 1$ para al menos un índice $i \in S$ entonces $x_j = 1$ para al menos un índice $j \in T$.
- m) Suposiciones: $S, T \subseteq \llbracket m \rrbracket$ son subconjuntos de índices. Regla o preferencia: Si $x_i = 1$ para al menos un índice $i \in S$ entonces $x_j = 0$ para todo índice $j \in T$.
- n) Suposiciones: $S, T \subseteq \llbracket m \rrbracket$ son subconjuntos de índices. Regla o preferencia: Si $x_i = 1$ para al menos un índice $i \in S$ entonces $x_j = 0$ para todo índice $j \in T$, y vice-versa $(i.e., \text{ si } x_j = 1 \text{ para al menos un índice } j \in T \text{ entonces } x_i = 0$ para todo índice $i \in S$).

Problema 1.2. Considere un programa entero que contiene las series temporales de variables binarias $\{x_t\}_{t=1}^T \in \{0,1\}, \{y_t\}_{t=1}^T \in \{0,1\} \text{ y } \{z_t\}_{t=1}^T \in \{0,1\}, \text{ donde } T \geq 10, \text{ junto con otras variables adicionales. En este modelo, las series temporales <math>\{x_t\}, \{y_t\} \text{ y } \{z_t\}$ representan la ocurrencia o no-ocurrencia de tres tipos diferentes de eventos de interés en un problema de planificación con un horizonte de T períodos.

En cada uno de los siguientes literales, se le presentará una regla o preferencia, posiblemente precedida por un conjunto de suposiciones. Exprese cada una de las reglas o preferencias en el lenguaje de la programación lineal entera mediante la introducción de variables enteras y/o de restricciones lineales. Recuerde que cada literal es independiente de los otros.

a) Regla o preferencia: Si para algún periodo $k \in [T-q]$ tenemos $x_k = 1$ entonces $x_{k+\ell} = 1$ para todo $\ell \geq 1$.

Solución: Introducimos el siguiente juego de restricciones lineales:

$$\forall t \in [T-1]: x_t \leq x_{t+1}$$

- b) Regla o preferencia: Existe al menos un periodo $k \in [T-1]$ tal que $x_k = 1$ y $x_{k+1} = 1$.
- c) Suposiciones: $2 \le M < T$. Regla o preferencia: Existe al menos un periodo $k \in [T-M]$ tal que $x_{k+\ell} = 1$ para todo periodo $\ell \in \{0, 1, ..., M-1\}$.
- d) Regla o preferencia: Si para algún periodo $k \in [T-1]$ tenemos $x_k = 1$ entonces $y_{k+\ell} = 1$ para al menos un $\ell \geq 1$.
- e) Regla o preferencia: Si para algún periodo $k \in [T-1]$ tenemos $x_k = 1$ entonces $y_{k+1} = 1$.

Página 2 de 3

- f) Suposiciones: $2 \leq M < T$. Regla o preferencia: Si para algún periodo $k \in [T-M]$ tenemos $x_k = 1$ entonces $y_{k+\ell} = 1$ para todo $\ell \in \{1, 2, \dots, M\}$.
- g) Regla o preferencia: Si para algún periodo $k \in [T-2]$ tenemos $x_k=1$ y $y_{k+1}=1$ entonces $z_{k+2}=1$.
- h) Regla o preferencia: Si para algún periodo $k \in [T-1]$ tenemos $x_k=1$ y $y_k=1$ entonces $z_{k+\ell}=1$ para todo $\ell \geq 1$.
- i) Regla o preferencia: Si para algún periodo $k \in [T-1]$ tenemos $x_k=1$ o $y_k=1$ entonces $z_{k+\ell}=1$ para al menos un $\ell \geq 1$.