Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Инженерно-технические средства защиты информации»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

«Импульсный рефлектометр»

	Выполнил:
Бахов М.	А., студент группы N34501
	(подпись)
	Проверил:
	Попов И. Ю., доцент ФБИТ
	(отметка о выполнении)
	(подпись)

Санкт-Петербург 2023 г.

СОДЕРЖАНИЕ

1.1	Теоретическая часть		4
	1.1.1	Принцип работы	4
1.2	.2 Практическая часть		5
	1.2.1	Лиагностика проводов с помощью импульсного рефлектометра	5

введение

Цель работы – изучить назначение и принцип работы импульсного рефлектометра

1 ХОД РАБОТЫ

1.1 Теоретическая часть

Импульсный рефлектометр — это прибор, предназначенный для диагностики кабельных линий связи, электропитания и других. Он работает по принципу отражения электромагнитных воли от неоднородностей в линии, таких как соединения, изгибы, повреждения и т. д.

1.1.1 Принцип работы

Импульсный рефлектометр работает по принципу отражения электромагнитных волн от неоднородностей в кабеле: рефлектометр генерирует короткий электрический импульс, который распространяется по кабелю со скоростью света. Когда импульс достигает неоднородности в кабеле, он частично или полностью отражается, и отраженный сигнал возвращается к рефлектометру и принимается его приемником.

На основе анализа отраженного сигнала рефлектометр может определить следующие параметры кабельной линии:

- 1. Длина линии.
- 2. Наличие и местоположение дефектов. Их можно определить по отраженным сигналам: если сигнал отражается от неоднородности, то на экране рефлектометра появляется пик, а расстояние до дефекта можно определить по задержке по времени между отправкой импульса и возвращением сигнала.
- 3. Характер дефектов. Его можно определить по форме отраженного сигнала. Например, если отраженный сигнал имеет большую амплитуду, то это указывает на то, что дефект является значительным.

Вот примеры некоторых неоднородностей в кабеле:

- обрывы, вызванные механическими повреждениями, перегибами кабеля, старением изоляции или другими причинами;
- короткие замыкания, вызванные механическими повреждениями, коррозией, неправильной пайкой или другими причинами;
- неисправности соединений, вызванные механическими повреждениями,
 неправильной пайкой, коррозией или другими причинами;
- изгибы кабеля, приводящие к затуханию сигнала, или, наоборот, –
 "переизлучению", или к другим.

1.2 Практическая часть

1.2.1 Диагностика проводов с помощью импульсного рефлектометра

1.2.1.1 Синий провод

На рефлектограмме видно, что сигнал на синем проводе не отражается от конца провода (рисунок 1). Это указывает на то, что на проводе присутствует резистор или другой элемент с высоким сопротивлением. Резистор поглощает часть энергии сигнала, что приводит к его затуханию.

Таким образом, на основании анализа рефлектограммы можно сделать вывод, что на синем проводе расположен резистор, который создает эффект затухания сигнала.

Рисунок 1 – Рефлектограмма синего провода

1.2.1.2 Зеленый провод

На рефлектограмме видно, что сигнал на зеленом проводе отражается более 3 раз (рисунок 2). Первый отраженный сигнал соответствует короткому замыканию. В данном случае отраженный сигнал имеет большую амплитуду и узкую форму.

Второй и третий отраженные сигналы соответствуют тупиковым ответвлениям. Тупиковое ответвление возникает, когда к кабелю подключается устройство, но не соединяется с другим проводом. Тупиковое ответвление также снижает сопротивление, но не так сильно, как короткое замыкание. В данном случае отраженные сигналы имеют меньшую амплитуду и более широкую форму.

Обычно такие дефекты в проводе свидетельствуют о наличии нелегального подключения, представляет оно из себя соединение двух или более проводов или волокон оптического кабеля, выполненное без использования специального оборудования и материалов. Часто выполняется для подключения дополнительных устройств к проводу или для обхода установленных ограничений. В данном случае наличие короткого замыкания и тупиковых ответвлений может указывать на то, что к зеленому проводу незаконно подключено дополнительное устройство. Это устройство может быть использовано для незаконного доступа к сети, для обхода ограничений на пропускную способность или для других целей.

Рисунок 2 – Рефлектограмма зеленого провода

1.2.1.3 Коричневый провод

На рефлектограмме видно, что сигнал в коричневом проводе отражается (рисунок 3). Эта точка соответствует противоположному концу провода.

Таким образом, на основании анализа рефлектограммы можно сделать вывод, что коричневый провод находится в обрыве.

Рисунок 3 — Рефлектограмма коричневого провода

1.2.1.4 Желтый провод

На рефлектограмме видно, что сигнал на желтом проводе отражается (рисунок 4) с негативной амплитудой.

Отрицательная амплитуда отраженного сигнала может указывать прежде всего на наличие дефекта в проводе, предположительно — короткого замыкания. Короткое замыкание приводит к резкому снижению оптической мощности сигнала, что отражается на форме отраженного сигнала. В данном случае отраженный сигнал имеет большую амплитуду и узкий фронт.

Рисунок 4 – Рефлектограмма желтого провода

ЗАКЛЮЧЕНИЕ

В процессе освоения принципов работы импульсного рефлектометра я ознакомился с его функциональностью и методами диагностики проводов. Практическое применение прибора позволило получить реальные результаты, определяющие неоднородности и дефекты в проводах. Полученные данные подчеркивают эффективность и достоверность работы импульсного рефлектометра в реальных условиях, что является важным практическим опытом.