Министерство науки и высшего образования Российской Федерации

Санкт-Петербургский государственный электротехнический университет

«ЛЭТИ» им. В.И. Ульянова (Ленина)

Кафедра систем автоматического управления

Реферат

по дисциплине

«Нелинейное адаптивное управление в технических системах»

Студент группы 9492

Викторов А.Д.

Преподаватель

Путов В.В.

Санкт-Петербург

2024

Содержание

1	Параметризация модели объекта управления (6.4.2)	3
	1.1 Лемма 6.5: Первая схема вспомогательных фильтров .	3
	1.2 Лемма 6.6: Вторая схема вспомогательных фильтров .	4
2	Метод непосредственной компенсации (6.4.3)	4
	2.1 Теорема 6.14 $(p = 1)$	4
3	Метод расширенной ошибки (6.4.3)	5
	3.1 Теорема 6.15 $(p > 1)$	5
	3.2 Пример 6.3	5
4	Использование алгоритмов адаптации высокого поря	дка
	(6.4.4)	6
	4.1 Теорема 6.16	6
	4.2 Пример 6.4	6
5	Итеративная процедура синтеза адаптивного управле	кин
	(6.4.5)	6
	5.1 Теорема 6.17	6
	5.2 Пример 6.5 и таблица 6.1	7
6	Сравнение методов адаптивного управления (6.4.6)	7

Введение

В настоящем реферате рассматриваются ключевые аспекты адаптивного управления, представленные в разделе 6.4. Основное внимание уделено параметризации модели объекта управления, методам непосредственной компенсации, расширенной ошибки, алгоритмам адаптации высокого порядка и итеративным процедурам синтеза управления. Эти методы используются для построения устойчивых систем адаптивного управления в условиях неопределённости параметров объекта.

Параметризация модели объекта управления (6.4.2)

Основная цель параметризации модели объекта заключается в представлении параметрической неопределённости в виде линейных комбинаций неизвестных параметров. Для этого используются вспомогательные фильтры, формирующие параметры объекта управления.

1.1 Лемма 6.5: Первая схема вспомогательных фильтров

Первая схема вспомогательных фильтров основывается на уравнениях:

$$v_1 = Av_1 + e_{n-1}u, \quad v_2 = Av_2 + e_{n-1}y,$$

где v_1 и v_2 — векторы фильтрованных сигналов, A — матрица фильтра, e_{n-1} — вектор коэффициентов. Модель объекта может быть параметризована в виде:

$$y = \phi^{\top} \theta + e(t),$$

где ϕ — регрессор, θ — вектор неизвестных параметров. Функция e(t) экспоненциально затухает.

Данная схема обеспечивает компактность модели и удобство её применения в задачах адаптивного управления.

1.2 Лемма 6.6: Вторая схема вспомогательных фильтров

Вторая схема вспомогательных фильтров использует уравнения:

$$v = Av + e_n u, \quad y = \phi^{\mathsf{T}} \theta + e_2,$$

где e_2 также экспоненциально затухает. Эта схема приводит к более сложной, но точной модели объекта управления, что делает её полезной для задач управления системами с высокой степенью неопределённости.

Различие между схемами заключается в уровне неопределённости модели и сложности её применения для синтеза регулятора.

2 Метод непосредственной компенсации (6.4.3)

2.1 Теорема 6.14 (p = 1)

Для систем с p=1 управление строится на основе метода непосредственной компенсации:

$$u = \phi^{\mathsf{T}} \hat{\theta},$$

где $\hat{\theta}$ — вектор настраиваемых параметров, обновляемых по алгоритму адаптации:

$$\dot{\hat{\theta}} = -\gamma \phi e,$$

где $\gamma>0$ — коэффициент адаптации. Ошибка управления $e=y-y^*$ подчиняется уравнению:

$$\dot{e} + \lambda e = 0$$
.

что обеспечивает экспоненциальное уменьшение ошибки слежения и устойчивость замкнутой системы. Этот метод эффективен для линейных объектов с низкой относительной степенью.

3 Метод расширенной ошибки (6.4.3)

3.1 Теорема 6.15 (p > 1)

Для систем с p > 1 вводится вектор расширенной ошибки:

$$E = \begin{bmatrix} e \\ \dot{e} \\ \vdots \\ e^{(p-1)} \end{bmatrix},$$

и формируется управление:

$$u = -KE + \phi^{\mathsf{T}}\hat{\theta},$$

где K — матрица обратной связи. Алгоритм адаптации параметров регулятора выглядит следующим образом:

$$\dot{\hat{\theta}} = -\gamma \phi E.$$

Замкнутая система устойчива, и все сигналы в системе ограничены.

3.2 Пример 6.3

Пример демонстрирует применение метода расширенной ошибки к объекту управления второго порядка. Несмотря на повышенную сложность реализации, метод позволяет достичь высокой точности слежения и устойчивости замкнутой системы.

4 Использование алгоритмов адаптации высокого порядка (6.4.4)

4.1 Теорема 6.16

Алгоритмы адаптации высокого порядка позволяют улучшить переходные процессы за счёт использования производных ошибок. Управление задаётся уравнением:

$$u = -K\phi + \phi^{\mathsf{T}}\hat{\theta},$$

а настройка параметров осуществляется по алгоритму:

$$\dot{\hat{\theta}} = -\gamma \phi e$$

где $\gamma > 0$ — коэффициент адаптации. Такой подход позволяет компенсировать нелинейности объекта управления и ускорить настройку системы.

4.2 Пример 6.4

Пример иллюстрирует использование алгоритма адаптации высокого порядка для системы с неизвестными параметрами. Результаты показывают, что метод обеспечивает быстрый выход системы на требуемую траекторию при высоком качестве переходных процессов.

5 Итеративная процедура синтеза адаптивного управления (6.4.5)

5.1 Теорема 6.17

Итеративные процедуры синтеза управления включают поэтапное добавление функций стабилизации, что описывается уравнением:

$$\dot{e}_i = -\lambda_i e_i + f_i(e_{i-1}),$$

где f_i — нелинейная функция стабилизации. Этот метод позволяет добиться устойчивости системы даже при высокой относительной степени.

5.2 Пример 6.5 и таблица 6.1

Пример 6.5 демонстрирует применение метода к системе с параметрической неопределённостью. Таблица 6.1 содержит сравнительный анализ различных подходов, включая их эффективность и устойчивость.

6 Сравнение методов адаптивного управления (6.4.6)

В этом разделе приводится анализ методов адаптивного управления. Метод непосредственной компенсации подходит для систем с низкой относительной степенью, в то время как методы с расширенной ошибкой и итеративные процедуры применимы для более сложных объектов.

Заключение

Представленные методы обеспечивают эффективное управление линейными объектами с параметрической неопределённостью. Выбор подходящего метода зависит от характеристик системы и требований к её поведению.