

Lecture 15: Scaling & Economics

Outline

- □ Scaling
 - Transistors
 - Interconnect
 - Future Challenges
- Economics
- □ This material is from
 - Out textbook: section 7.4

Moore's Law

□ Recall that Moore's Law has been driving CMOS

Corollary: clock speeds have improved

Why?

- Why more transistors per IC?
 - Smaller transistors
 - Larger dice
- Why faster computers?
 - Smaller, faster transistors
 - Better microarchitecture (more IPC)
 - Fewer gate delays per cycle

Scaling

- ☐ The only constant in VLSI is constant change
- ☐ Feature size shrinks by 30% every 2-3 years
 - Transistors become cheaper
 - Transistors become faster and lower power
 - Wires do not improve (and may get worse)
- Scale factor S
 - Typically $S = \sqrt{2}$
 - Technology nodes

Technology Scaling Methods

- ☐ Full scaling (constant-filed scaling or Dennard's scaling):
 - Scales dimensions and voltages, doping densities
 - (+) constant electrical field
 - (+) Great reduction in delay, area and power
 - (-) Changing voltages is not desirable from standard point of view
- Constant (fixed) voltage scaling:
 - scale dimensions, but not voltages
 - (+) Allows Vdd to be compatible for several process generations
 - (-) Suffers from power issues (e.g. high power density)
- Lateral scaling (gate shrink): scales only L

Device Scaling

Parameter	Sensitivity	Dennard	Constant	Lateral					
		Scaling	Voltage	Scaling					
Scaling Parameters									
$\operatorname{Length}: L$		1/ <i>S</i>	1/S	1/S					
Width: W		1/S	1/S	1					
Gate oxide thickness: t_{ox}		1/S	1/S	1					
Supply voltage: V_{DD}		1/S	1	1					
Threshold voltage: V_{tn} , V_{tp}		1/S	1	1					
Substrate doping: N_A		S	S	1					
Device Characteristics									
β	W 1	S	S	S					
	$\frac{W}{L} \frac{1}{t_{\text{ox}}}$								
Current: I_{ds}	$\beta (V_{DD} - V_t)^2$	1/S	S	S					
	. (22 . 7								
Resistance: R	$\frac{V_{DD}}{I_{dt}}$	1	1/S	1/S					
	I_{ds}								
Gate capacitance: C	WL	1/S	1/S	1/S					
	$\frac{WL}{t_{\text{ox}}}$								
Gate delay: τ	RC	1/S	$1/S^{2}$	1/S ²					
Clock frequency: f	1/τ	S	S^2	S^2					
Switching energy (per gate): E	CV_{DD}^2	$1/S^{3}$	1/S	1/S					
Switching power dissipation (per gate): P	Ef	$1/S^{2}$	S	S					
Area (per gate): A	,	$1/S^{2}$	1/S ²	1					
Switching power density	P/A	1	S^3	S					
Switching current density	I_{ds}/A	S	S^3	S					

What you should take from this table: τ,f,p, I, densities (I,P)

 Gates get faster with scaling (good)

Dynamic power goes down with scaling (good)

Current density goes up with scaling (bad)

Example

A micro controller chip manufactured using 65-nm technology. The power supply for the chip is 1.25V. The chip runs at 1GHz and consumes 1W.

What is the expected speed and power if the chip is manufactured using 45-nm with constant voltage scaling.

$$S = 65/45 = 1.4 = 2^{1/2}$$

$$Speed_{45} = S^{2*} Speed_{65} = 2 GHz$$

$$Power_{45} = S * Power_{65} = 1.4 W$$

Real Scaling (read)

- ☐ t_{ox} scaling has slowed since 65 nm
 - Limited by gate tunneling current
 - Gates are only about 4 atomic layers thick!
 - High-k dielectrics have helped continued scaling of effective oxide thickness
- □ V_{DD} scaling has slowed since 65 nm
 - SRAM cell stability at low voltage is challenging
- Dennard scaling predicts cost, speed, power all improve
 - Below 65 nm, some designers find they must choose just two of the three

Wire Scaling

- Wire cross-section
 - w, s, t all scale
- Wire length
 - Local / scaled interconnect
 - Global interconnect
 - Die size scaled by D_c ≈ 1.1

Interconnect	
Scaling	

	Parameter	Sensitivity	Scale Factor				
	Scaling Parameters						
	Width: w		1/S				
	Spacing: s		1/8				
	Thickness: t		1/8				
	Interlayer oxide height: h		1/S				
8	Die size		D_{c}				
	Characteristics per Unit Length						
	Wire resistance per unit length: R_w	$\frac{1}{\text{wt}}$	S^2				
	Fringing capacitance per unit length: $C_{\it wf}$	$\frac{t}{s}$	1				
	Parallel plate capacitance per unit length: C_{wp}	$\frac{w}{b}$	1				
	Total wire capacitance per unit length: C_w	$C_{wf} + C_{wp}$ R_wC_w	1				
	Unrepeated RC constant per unit length: t_{wu}	R_wC_w	S^2				
	Repeated wire RC delay per unit length: t_{wr} (assuming constant field scaling of gates)	$\sqrt{\mathit{RCR}_{_{\varpi}}C_{_{\varpi}}}$	\sqrt{s}				
	Crosstalk noise	$\frac{w}{b}$	1				
	Energy per bit per unit length: E_w	$C_w V_{DD}^2$	$1/S^{2}$				
	Local/Semiglobal Interconnect Characteristics						
	Length: /		1/8				
	Unrepeated wire RC delay	l^2t_{wu}	1				
	Repeated wire delay	lt _{wr}	$\sqrt{1/S}$				
	Energy per bit	lE_w	$1/S^{3}$				
	Global Interconnect Characteristics						
	Length: /		D_{ϵ}				
8	Unrepeated wire RC delay	l^2t_{wu}	$S^2D_c^2$				
	Repeated wire delay	lt_{wr}	$D_{\epsilon}\sqrt{S}$				
	Energy per bit	lE_w	D_c/S^2				

15: Scaling and Economics

ITRS (read)

- □ Semiconductor Industry Association forecast
 - Intl. Technology Roadmap for Semiconductors

Year	2009	2012	2015	2018	2021
Feature size (nm)	34	24	17	12	8.4
L_{gate} (nm)	20	14	10	7	5
$V_{DD}\left(\mathbf{V}\right)$	1.0	0.9	0.8	0.7	0.65
Billions of transistors/die	1.5	3.1	6.2	12.4	24.7
Wiring levels	12	12	13	14	15
Maximum power (W)	198	198	198	198	198
DRAM capacity (Gb)	2	4	8	16	32
Flash capacity (Gb)	16	32	64	128	256

Scaling Implications

- Improved Performance
- ☐ Improved Cost
- Interconnect Woes
- Power Woes
- Productivity Challenges
- Physical Limits

Dynamic Power (read)

- □ Intel VP Patrick Gelsinger (ISSCC 2001)
 - If scaling continues at present pace, by 2005, high speed processors would have power density of nuclear reactor, by 2010, a rocket nozzle, and by 2015, surface of sun.
 - "Business as usual will not work in the future."
- Attention to power is increasing

Static Power (read)

- \Box V_{DD} decreases
 - Save dynamic power
 - Protect thin gate oxides and short channels
 - No point in high value because of velocity sat.
- □ V_t must decrease to maintain device performance
- But this causes exponential increase in OFF leakage
- Major future challenge

Physical Limits

- Will Moore's Law run out of steam?
 - Can't build transistors smaller than an atom...
- Many reasons have been predicted for end of scaling
 - Dynamic power
 - Subthreshold leakage, tunneling
 - Short channel effects
 - Fabrication costs
 - Electromigration
 - Interconnect delay
- Rumors of demise have been exaggerated

VLSI Economics (Read the rest)

- ☐ Selling price S_{total}
 - $-S_{total} = C_{total} / (1-m)$
- \Box m = profit margin
- \Box $C_{total} = total cost$
 - Nonrecurring engineering cost (NRE)
 - Recurring cost
 - Fixed cost

NRE

- Engineering cost
 - Depends on size of design team
 - Include benefits, training, computers
 - CAD tools:
 - Digital front end: \$10K
 - Analog front end: \$100K
 - Digital back end: \$1M
- Prototype manufacturing
 - Mask costs: \$5M in 45 nm process
 - Test fixture and package tooling

Recurring Costs

- Fabrication
 - Wafer cost / (Dice per wafer * Yield)
 - Wafer cost: \$500 \$3000
 - Dice per wafer: $N = \pi \left[\frac{r^2}{A} \frac{2r}{\sqrt{2A}} \right]$
 - Yield: $Y = e^{-AD}$
 - For small A, Y ≈ 1, cost proportional to area
 - For large A, Y → 0, cost increases exponentially
- Packaging
- □ Test

Fixed Costs

- Data sheets and application notes
- Marketing and advertising
- Yield analysis

Example

- □ You want to start a company to build a wireless communications chip. How much venture capital must you raise?
- □ Because you are smarter than everyone else, you can get away with a small team in just two years:
 - Seven digital designers
 - Three analog designers
 - Five support personnel

Solution

- □ Digital designers:
 - \$70k salary
 - \$30k overhead
 - \$10k computer
 - \$10k CAD tools
 - Total: \$120k * 7 = \$840k
- Analog designers
 - \$100k salary
 - \$30k overhead
 - \$10k computer
 - \$100k CAD tools
 - Total: \$240k * 3 = \$720k

- ☐ Support staff
 - \$45k salary
 - \$20k overhead
 - \$5k computer
 - Total: \$70k * 5 = \$350k
- Fabrication
 - Back-end tools: \$1M
 - Masks: \$5M
 - Total: \$6M / year
- □ Summary
 - 2 years @ \$7.91M / year
 - \$16M design & prototype