QUANTIFIER ELIMINATION IN SHELAH-SPENCER GRAPHS

ANTON BOBKOV

Abstract. We simplify \cite{blanch} proof of quantifier elimination in Shelah-Spencer graphs.

1. Introduction

Laskowski's paper [?] provides a combinatorial proof of quantifier elimination in Shelah-Spencer graphs. Here we provide a simplification of the proof using only maximal chains and avoiding technical lemmas of sections 3 and 4.

2. Proof

Definition 2.1. Fix $\mathcal{B} \in K_{\alpha}$, Φ, Γ finite subsets of K_{α} , and $m \in \omega$ such that for each $\mathcal{C} \in \Phi$ or $\mathcal{C} \in \Gamma$ we have $\mathcal{B} \subseteq \mathcal{C}$ and $|C \setminus B| < m$. Define $Z(\mathcal{B}, \Phi, \Gamma, m)$ to be all $\mathcal{B}^* \in X_m(\mathcal{B})$ such that

(1) For every $C \in \Phi$ there are no \mathcal{H} with $|H \setminus B^*| < m$ satisfying

(2) For every $\mathcal{D} \in \Gamma$ there is some \mathcal{G} with $|G \backslash B^*| < m$ satisfying

References

- Klaus-Peter Podewski and Martin Ziegler. Stable graphs. Fund. Math., 100:101-107, 1978.
 Aharoni, Ron and Berger, Eli (2009). "Menger's Theorem for infinite graphs". Inventiones $Mathematicae\ 176:\ 162$
- $[3]\,$ P. Simon, On dp-minimal ordered structures, J. Symbolic Logic 76 (2011), no. 2, 448460. $E\text{-}mail\ address: \verb+bobkov@math.ucla.edu+$