Análise de Sistemas

Aula 5

Prof. Emerson Klisiewicz

Contextualização

Aula 5

- Análise Orientada a Objetos
- Introdução à UML –
 Histórico e Visão Geral
- Ferramentas CASE

O Sucesso

Clientes satisfeitos

- Eles estão satisfeitos quando você:
 - atende às expectativas
 - entrega no prazo
 - entrega tudo dentro do orçamento

 E para isso acontecer precisamos estar auxiliados por uma boa metodologia e ferramentas CASE

Instrumentalização

Histórico de Orientação a Objetos

- A OO surgiu no final da década de 60, quando dois cientistas dinamarqueses criaram a linguagem Simula (Simulation Language)
- 1967 Linguagem de Programação Simula-67 – conceitos de classe e herança
- - Abordagem poderosa e prática para o desenvolvimento de software

Análise Orientada a Objetos

- O modelo de casos de uso fornece uma perspectiva do sistema a partir de um ponto de vista externo
- De posse da visão de casos de uso, os desenvolvedores prosseguem com o sistema

 A funcionalidade externa de um sistema orientado a objetos é fornecida através de colaborações entre objetos

- Externamente, os atores visualizam resultados de cálculos, relatórios produzidos, confirmações de requisições realizadas etc.
- Internamente, os objetos colaboram uns com os outros para produzir os resultados
- O diagrama da UML utilizado para representar o aspecto maior da orientação a objetos é o diagrama de classes

Análise Orientada a Objetos – Conceitos

- Criou o conceito de objeto, que é um tipo de dado com uma estrutura e operações para manipular esta estrutura
- Classe: é um tipo definido pelo usuário que contém o molde, a especificação para os objetos
 - Todo objeto é uma instância de uma classe
 - Possui propriedades
 (atributos) e comportamento
 (métodos)

UML

- UML (Unified Modeling Language) – Linguagem de Modelagem Unificada
- É uma linguagem de modelagem (visual), não uma linguagem de programação
- Permite a utilização de diagramas padronizados para especificação e visualização de um sistema
- É uma linguagem de modelagem não proprietária

UML - Histórico

- Surgiu da união de três metodologias de modelagem:
 - Método de Booch, de Grady Booch

- Método OMT (Object Modeling Technique) de Ivar Jacobson
- Método OOSE (Object Oriented Software Engineering) de James Rumbaugh

 A primeira versão foi lançada em 1996 e em 1997 a UML foi adotada pela OMG (*Object Management Group* – Grupo de Gerenciamento de Objetos) como padrão em modelagem

UML - Por quê?

- Bons modelos são essenciais para a comunicação entre os times de projetos e para assegurar a beleza arquitetural
- Facilita a programação

- Todo o time entende a modelagem, facilitando assim a manutenção
- Ter um rigoroso padrão de modelagem é fator essencial para o sucesso do projeto

UML – Modelagem

- Modelos proporcionam:
 - visualização do sistema
 - especificação da estrutura ou comportamento do sistema

- guia para a construção do sistema
- documentação das decisões tomadas

UML - Modelagem - Tipos

- Tipos de modelagens
 - Estrutural
 - Comportamental

UML - Diagramas

- Representação gráfica de um conjunto de elementos
- A UML, conforme a modelagem, possui alguns diagramas

- Estrutural (estática)
 - Diagrama de Classes
 - Diagramas de Objetos
 - Diagrama de Caso de Uso
 - Diagrama de Componentes

- Dinâmico (comportamental)
 - Diagrama de Estados
 - Diagrama de Atividades
 - Diagrama de Colaboração
 - Diagrama de Sequência

- Diagramas
 - Os documentos gerados em um processo de desenvolvimento são chamados de artefatos na UML
 - Os artefatos compõem as visões do sistema

- A UML define 15 diagramas
- Esta quantidade de diagramas é justificada pela necessidade de analisar o sistema por meio de diferentes perspectivas

- Cada diagrama fornece uma perspectiva parcial do sistema
- Ferramentas CASE
 auxiliam na construção
 e gerenciamento dos
 diagramas UML

Ferramentas CASE

 Ferramenta que oferece conjunto de serviços relacionados para apoiar uma ou mais atividades do processo de desenvolvimento de software

- Estudar ferramentas CASE é estudar:
 - como construir
 - ✓ definição de requisitos e arquitetura
 - · como usar
 - ✓ processo de adoção, avaliação e seleção

Ferramentas CASE – Conceitos

- As ferramentas CASE podem ser:
 - horizontais: oferecem serviços utilizados durante todo o processo de software
 - verticais: utilizadas em fases específicas do processo de software

- Também podem ser classificadas de acordo com os serviços que oferecem, dentre as quais, cita-se:
 - Gerenciamento de configuração
 - Controle de qualidade
 - Programação
 - Documentação
 - Análise e projeto

Ferramentas CASE – Arquitetura

 A definição da arquitetura está intimamente relacionada ao contexto no qual a ferramenta atuará Uma ferramenta CASE deve ser flexível, com arquitetura modular para facilitar sua configuração para diferentes propósitos

Ferramentas CASE – Exemplos

- Gerência de projetos
 - Microsoft Project
- Teste
 - Junit
 - Quality Center

- Ferramentas de métricas
 - USC-COCOMO
- Controle de versão
 - Git
 - Endevor

Aplicação

Análise Orientada a Objetos • Exemplo de classe e objetos Palio JWO-4567 Parati KLJ-0978 Celta JDK-6543 OBJETOS Automóvel Marca Placa CLASSE

UML - Diagramas

- Diagrama *Use Cases*
 - São especialmente importantes na organização e modelagem das principais funcionalidades de um sistema

- Diagrama de Classes
 - Os diagramas de classes são os principais diagramas estruturais da UML
 - Mostram classes, interfaces e seus relacionamentos

- Diagrama de Objetos
 - Representam instâncias estáticas de elementos dos diagramas de classes
 - São úteis para a modelagem de estruturas de dados complexas

- Diagrama de Sequência
 - Mostra um conjunto de objetos, seus relacionamentos e as mensagens que podem ser enviadas entre eles
- Diagrama de Colaboração
 - Mostra conjuntos de objetos, seus relacionamentos e as mensagens que enfatizam a organização dos objetos que trocam mensagens

- Diagrama de Estados
 - Mostra uma máquina contendo estados, transições, eventos e atividades
 - Estes diagramas s\u00e3o usados para modelar o comportamento de objetos (com comportamento complexo)
- Diagrama de Atividades
 - Destaca a lógica de realização de uma tarefa
 - Mostra o fluxo entre atividades

- Diagrama de Componentes
 - Mostra os componentes de hardware e software de uma aplicação e os relacionamentos entre eles
 - É usado para modelar o aspecto físico de um sistema

Ferramentas CASE

- O processo de adoção
 - Prover um nível apropriado de suporte tecnológico para os processos de desenvolvimento e manutenção de software

- Impactar positivamente sobre: produtividade, qualidade, padronização, documentação
- Induzir o uso geral e contínuo de ferramentas na organização e seus grupos

- Passos
 - Definição da necessidade
 - Avaliação e seleção de ferramentas
 - Condução de um esforço piloto
 - Tornar rotineiro o uso das ferramentas

Síntese

Pontos-chave

 Orientação a objetos apesar de antiga não era utilizada por falta de pessoas treinadas e ferramentas adequadas

- Mas hoje tal modelagem tornou-se uma abordagem poderosa e prática para o desenvolvimento de software
- A UML é uma linguagem de modelagem (visual) que permite a padronização de especificação e visualização de um sistema
- E temos as Ferramentas CASE, que apoiam a modelagem em todas as suas fases trazendo mais qualidade ao desenvolvimento de software