Exercise 1 (5.17)

(a) We want to determine the probability that a physician chosen at random makes less than \$200,000, i.e. $\mathbb{P}(X \leq 200,000)$. To do this, we first need to find μ and σ . Clearly $\mu = \frac{320,000+180,000}{2} = 250,000$. Now we need to find σ . We can do this by observing that $\mathbb{P}(X \leq 320,000) = \frac{3}{4}$, and inverting this quantity with the table on page 190. Doing so gives us the approximation $\sigma = \frac{250,000-180,000}{0.675} = \frac{70,000}{0.675}$. Finally

$$1 - \phi\left(\frac{x - u}{\sigma}\right) = 1 - \phi\left(\frac{200,000 - 250,000}{\frac{70,000}{0.675}}\right) \approx 1 - \phi(-0.48).$$

Looking up 0.48 in the table, we find that $1 - \phi(-0.48) \approx 1 - 0.6844 = 0.3156$.

(b)
$$0.75 - \phi\left(\frac{x-u}{\sigma}\right) = 0.75 - \phi\left(\frac{280,000 - 250,000}{\frac{70,000}{0.675}}\right) \approx 0.75 - \phi(0.29) \approx 0.75 - .6141 = 0.1359.$$

Exercise 2 (5.20)

In each part, let X be the number of people in favor of a rise in school taxes out of a pool of 100 people. Note that $X \sim \text{Binomial} \left(100,0.65\right) \approx \mathcal{N}\left(65,\sqrt{100*0.65*0.35}\right) = \mathcal{N}\left(65,22.75\right)$, and that $SD(X) = \sqrt{22.75} \approx 4.77$.

(a) At least 50 who are in favor.

$$\mathbb{P}(X \ge 50) = 1 - \mathbb{P}(X < 50)$$

$$= 1 - \mathbb{P}\left\{\frac{X - \mu}{\sigma} < \frac{50 - 65}{4.77}\right\}$$

$$\approx 1 - \mathbb{P}(Y < -3.145)$$

$$= \mathbb{P}(Y \ge 3.145)$$

$$= 1 - \left(1 - \mathbb{P}(Y \ge 3.145)\right)$$

$$= \mathbb{P}(Y \ge 3.145)$$

$$= \Phi(3.145)$$

$$= 0.9992.$$

(b) Between 60 and 70 inclusive who are in favor.

$$\mathbb{P}(60 \le X \le 70) = \mathbb{P}\left\{\frac{59.5 - 65}{4.77} \le \frac{X - \mu}{\sigma} \le \frac{70.5 - 65}{4.77}\right\}$$

$$\approx \left(-1.15 \le Y \le 1.15\right)$$

$$= \Phi(1.15) - \Phi(-1.15)$$

$$= \Phi(1.15) - \left(1 - \Phi(-1.15)\right)$$

$$= .8749 - \left(1 - .8749\right) = 0.75$$

(c) fewer than 75 in favor.

$$\mathbb{P}(X \le 75) = \mathbb{P}\left\{\frac{X - \mu}{\sigma} < \frac{75 - 65}{4.77}\right\}$$
$$\approx \mathbb{P}(Y < 2.1)$$
$$= \Phi(2.1)$$
$$= 0.9821$$

Exercise 3 (5.22)

Let *X* be the number of serves until Jo reaches 50 successful serves. Note that $SD(X) = \sqrt{100*0.4*0.6} \approx 4.898$.

$$\mathbb{P}(X \ge 100) = 1 - \mathbb{P}(X < 100)$$

$$\approx 1 - \mathbb{P}\left\{\frac{X - \mu}{\sigma} < \frac{49.5 - 40}{4.898}\right\}$$

$$\approx \mathbb{P}(Y \le 1.94)$$

$$= \Phi(1.94)$$

$$= 0.9738.$$

Exercise 4 (5.31)

(a)
$$\mathbb{E}(|X-a|) = \int_0^A \frac{1}{A} |t-a| dt$$

$$= \frac{1}{A} \left(\int_0^a (a-t) dt + \int_a^A (t-a) dt \right)$$

$$= \frac{1}{A} \left(\left(at - \frac{t^2}{2} \right) \Big|_0^a + \left(\frac{t^2}{2} - at \right) \Big|_a^A \right)$$

$$= \frac{1}{A} \left(\left(a^2 - \frac{a^2}{2} \right) + \left(\frac{A^2}{2} - aA \right) - \left(\frac{a^2}{2} - a^2 \right) \right)$$

$$= \frac{1}{A} \left(\frac{A^2}{2} - aA + a^2 \right)$$

$$= \frac{A}{2} - a + \frac{a^2}{A}$$

Now take the derivative with respect to a, and set it equal to zero.

$$\partial_a \left(\frac{A}{2} - a + \frac{a^2}{A} \right) = \frac{2a}{A} - 1 = 0 \longrightarrow a = \frac{A}{2}.$$

(b)
$$\mathbb{E}(|X-a|) = \int_0^a \lambda e^{-\lambda t} (a-t) dt + \int_a^A \lambda e^{-\lambda t} (t-a) dt$$

= $a + \frac{1}{\lambda} + \frac{2}{\lambda} e^{-a\lambda}$

Now take the derivative with respect to a, and set it equal to zero.

$$\partial_a \left(a + \frac{1}{\lambda} + \frac{2}{\lambda} e^{-a\lambda} \right) = 1 - 2e^{-a\lambda} = 0 \longrightarrow a = \frac{\ln 2}{\lambda}.$$

Exercise 5 (5.32)

(a) $\mathbb{P}(X \ge 2)$ is equivalent to $1 - \mathbb{P}(X \le 2)$, so we need to calculate $1 - \int_{-\infty}^{2} \frac{1}{2} e^{-\frac{x}{2}} dx$.

$$\int_{-\infty}^{2} \frac{1}{2} e^{-\frac{x}{2}} dx = \frac{1}{2} \int_{-\infty}^{2} e^{-\frac{x}{2}} dx$$

$$= -e^{-\frac{x}{2}} \Big|_{-\infty}^{2}$$

$$= -e^{-\frac{x}{2}} + \lim_{x \to \infty} e^{-\frac{x}{2}}$$

$$= e^{0} - e^{-1}$$

$$= 1 - e^{-1}$$

So
$$\mathbb{P}(X \ge 2) = 1 - (1 - e^{-1}) = e^{-1}$$
.

(b) In this case, we need to calculate $\mathbb{P}(X \geq 10 \,|\, X \geq 9) = \frac{\mathbb{P}(X \geq 10)\mathbb{P}(X \geq 9 \,|\, X \geq 10)}{\mathbb{P}(X \geq 9)}$ We can reduce this to $\frac{\mathbb{P}(X \geq 10)}{\mathbb{P}(X \geq 9)}$, since $\mathbb{P}(X \geq 9 \,|\, X \geq 10)$ is clearly 1.

Using the antiderivative obtained in part a, we have

$$\mathbb{P}(X \ge 10) = 1 - \mathbb{P}(X \le 10) = 1 - \left(e^0 - e^{-\frac{10}{2}}\right) = e^{-5}$$

and
$$\mathbb{P}(X \ge 9) = 1 - \mathbb{P}(X \le 9) = 1 - \left(e^0 - e^{-\frac{9}{2}}\right) = e^{-4.5}$$
.

Therefore
$$\mathbb{P}(X \ge 10 \mid X \ge 9) = \frac{e^{-5}}{e^{-4.5}} = e^{-5+4.5} = e^{-0.5}$$
.

Exercise 6 (5.37)

a) Assuming that the distribution of X is defined strictly over (-1,1), we know that the height of X's graph must be $\frac{1}{2}$ everywhere, since the total area under the graph must be 1. Then $\mathbb{P}(|X|>\frac{1}{2})$ is the area under the distribution graph for the subdomain $\left(-1,\frac{-1}{2}\right)\cup\left(\frac{1}{2},1\right)$. Since the distribution is uniform, $\mathbb{P}(|X|>\frac{1}{2})$ is equal to the sum of the rectangles $\left(-1,\frac{-1}{2}\right)\times\left(0,\frac{1}{2}\right)$ and $\left(\frac{1}{2},1\right)\times\left(0,\frac{1}{2}\right)$. Each of these rectangles has area $\frac{1}{2}$ and $\frac{1}{2}$ are the solution is $\frac{1}{2}$. This derivation is illustrated by the following figure:

b)
$$f_{|X|}(x) = f_X(x) + f_X(-x) = \begin{cases} 1 & \text{if } x \in (0,1) \\ 0 & \text{otherwise} \end{cases}$$

Exercise 7 (5.39)

$$Y = \mathbb{P}(Y \le y)$$

$$= \mathbb{P}(\ln X \le y)$$

$$= \mathbb{P}(X \le e^{y})$$

And
$$X \sim F_X(t) = \int_0^t e^{-x} dx$$

= $-e^{-x} \Big|_0^t$
= $-e^{-t} + e^0$
= $1 - e^{-t}$.

So
$$\mathbb{P}(X \le e^t) = F_X(e^t)$$

= $1 - e^{-e^y}$.

Finally,
$$f_Y(t) = \partial_t \left(1 - e^{-e^t}\right)$$

$$= -\partial_t e^{-e^t}$$

$$= \left(-e^{-e^t}\right) \left(-e^t\right)$$

$$= e^{-e^t} e^t$$

$$= e^{t-e^t}.$$