Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2019 EC3CO08 Engineering Electromagnetics

Branch/Specialisation: EC Programme: B.Tech.

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- i. In a (r,θ,z) co-ordinate system, the differential area directed in the 1 Q.1 +ve θ -direction is
 - (a) $rdrd\theta \ a_z$ (b) $rdrd\theta \ a_\theta$ (c) $drdz \ a_\theta$ (d) $rdzd\theta \ a_r$
 - ii. The matric parameter h₃ for spherical co-ordinate system is 1
 - (a) 1 (d) None of these (b) $rsin\theta$ (c) r
 - iii. The Laplace Equation is
 - (a) $\nabla^2 V = \varepsilon \rho$ (b) $\nabla^2 V = -\rho$ (c) $\nabla^2 V = 0$ (d) $\nabla . D = \rho$.
 - iv. The potential distribution in a given region of free space is of the 1 form $V = 10x^3$ V the electric field at a point (1, 1, 1) is
 - (a) $-30a_{r}$ V/m
- (b) $-30a_{v}$ V/m
- (c) $-30a_{z}$ V/m
- (d) None of these.
- v. The permeability for free space is
 - (a) $4\pi H/m$ (b) $4x10^{-7} H/m$
 - (c) $10^{-7} H/m$ (d) None of these.
- vi. What is the magnetic field intensity \overline{H} for infinitely long straight 1 conductor placed on Z-axis carrying current I Amp at a distance r? (d) Zero
 - (b) $\frac{I}{2r}$ ay (a) I a_y
- $(c)\frac{I}{2\pi r}a_{\Phi}$
- vii. Which one of the following is a correct Maxwell's equation?
 - (a) $\nabla \times \overline{H} = \frac{\partial \overline{D}}{\partial t} + -\overline{J}$
- (b) $\nabla \times \bar{E} = \frac{-\mu \partial \bar{H}}{\partial t}$

(c) $\nabla . \overline{D} = \rho s$

(a) E

- (d) $\nabla . \bar{B} = I$
- viii. The divergence of which quantity will be zero:
 - (b) D (c) H (d) B

1

1

1

1

ix.	The Brewster angle for oblique incidence is			
	(a) $tan^{-1}\frac{\varepsilon_1}{\varepsilon_2}$ (b) $tan^{-1}\frac{\varepsilon_2}{\varepsilon_1}$ (c) $1/\sqrt{\mu\varepsilon}$ (d) None of these			
х.	The electric field reflection co-efficient R for normal incidence at the interface of two media is	1		
	(a) $\frac{\eta_1}{\eta_2}$ (b) $\frac{\eta_{1-}\eta_2}{\eta_{1+}\eta_2}$ (c) $\frac{\eta_{2-}\eta_1}{\eta_{1+}\eta_2}$ (d) None of these			
i.	Find the dot product of A = $(3a_{\rho} + 3a_{\emptyset} + 5a_{z})$ and B = $(3a_{\rho} + 3a_{\emptyset} + 3a_{z})$	2		
ii.	Prove that divergence of gradient of $A = (4xy + 3zx + 5xyz)$ is zero.	3		
iii.	Convert A = $(4a_{\rho} + 3a_{\emptyset} + 5a_{z})$ at the point (3, 90°, 5) in spherical	5		
iv.		5		
	$F = \frac{150}{r^2} a_r + 10a_{\emptyset} + 5a_{\theta}$			
i.	State the Gauss' Divergence theorem in point and integral form.	2		
	·			
	(c) Capacitance			
	(d) Plot the electric and potential field Vs distance	•		
111.	at z=0 using Coulomb's Law.	8		
i.	(a) State Modified Ampere Circuital Law?	4		
	(b) Define Magnetic Vector Potential.	_		
11.		6		
iii.	A copper disc of 0.5m in diameter is rotated at a constant speed 2000 rpm in a horizontal axis perpendicular to and through the centre of the disc. The axis lies in magnetic meridian. Two brushes contact the disc, one at the edge and other at the centre of the disc. If the horizontal component of earth field is .2 Gauss,	6		
	i. ii. iv. iii. iii.	 (a) tan⁻¹ ε/ε₂ (b) tan⁻¹ ε/ε₂ (c) 1/√με (d) None of these x. The electric field reflection co-efficient R for normal incidence at the interface of two media is (a) η/1 (b) η/1-η/2 (c) η/2-η1 (d) None of these i. Find the dot product of A = (3aρ + 3a₀ + 5az) and B = (3aρ + 3a₀ + 3a₂) ii. Prove that divergence of gradient of A = (4xy + 3zx + 5xyz) is zero. iii. Convert A = (4aρ + 3a₀ + 5az) at the point (3, 90⁰, 5) in spherical coordinates. iv. Find the nature of field (irrotational or solenoidal) F = 150/r² ar + 10a₀ + 5a₀ i. State the Gauss' Divergence theorem in point and integral form. ii. A charged spherical shell having radius a charged with Q coulomb. Find the following quantities: (a) Electric field every where (b) Potential difference every where (c) Capacitance (d) Plot the electric and potential field Vs distance iii. Derive the Electric Field due to an infinite sheet of charge situated at z=0 using Coulomb's Law. i. (a) State Modified Ampere Circuital Law? (b) Define Magnetic Vector Potential. ii. Determine the magnetic field intensity due to infinite sheet current of current density Kaz A/m in yz-plane by using Biot-Savart's law. iii. A copper disc of 0.5m in diameter is rotated at a constant speed 2000 rpm in a horizontal axis perpendicular to and through the centre of the disc. The axis lies in magnetic meridian. Two brushes contact the disc, one at the edge and other at the centre of 		

Write the Maxwell Equation in Integral Form for time harmonically	2

Q.5 i. Write the Maxwell Equation in Integral Form for time harmonically varying fields.
ii. (a) Define skin depth. Explain Faraday's law for time varying 8

[3]

- (b) Derive the attenuation constant, phase constant, intrinsic impedance, and phase velocity for a good dielectric.
- OR iii. If an electric field is given by $\bar{E} = \frac{E_0 \sin\theta \cos(\omega t \beta r)}{r} a_{\theta}$, find
 - (a) Magnetic field associated with it.
 - (b) Poynting Vector

fields.

- (c) Total power radiated
- (d) Average power radiated.
- Q.6 i. What is total internal reflection?
 - ii. Derive the reflection co-efficient and transmission coefficient for horizontal polarization.
- OR iii. A parallel polarized wave is obliquely incident with an angle of 30^{0} in between the two dielectrics with dielectric constants $4\varepsilon_{0}$ and $9\varepsilon_{0}$. Find the reflection coefficient and transmission coefficient.

Marking Scheme

EC3CO08 Engineering Electromagnetics

	Q.1	i.	In a (r,θ,z) co-ordinate system, the differential area directed in the +ve θ -direction is	1
			(c) $drdz a_{\theta}$	
		ii.	The matric parameter h ₃ for spherical co-ordinate system is	1
			(b) $rsin\theta$	
iii. iv.			The Laplace Equation is	1
			$(c) \nabla^2 V = 0$	
			The potential distribution in a given region of free space is of the form $V =$	1
			$10x^3$ V the electric field at a point $(1, 1, 1)$ is	
			(a) $-30a_x \text{ V/m}$	
		v.	The permeability for free space is	1
			(d) None of these.	
		vi.	<u> </u>	1
			conductor placed on Z-axis carrying current I Amp at a distance r?	
			$(c)\frac{l}{2\pi r}a_{\Phi}$	
		::	2101	1
		vii		1
			(b) $\nabla \times \overline{E} = \frac{-\mu \partial \overline{H}}{\partial t}$	
		vii	i. The divergence of which quantity will be zero:	1
			(d) B	
		ix.	The Brewster angle for oblique incidence is	1
			(b) $tan^{-1}\frac{\varepsilon_2}{\varepsilon_1}$	
		х.	The electric field reflection co-efficient R for normal incidence at the	1
		Λ.	interface of two media is	1
			(c) $\frac{\eta_2 - \eta_1}{\eta_{1+}\eta_2}$	
	Q.2	i.	Find the dot product of A = $(3a_{\rho} + 3a_{\emptyset} + 5a_{z})$ and B = $(3a_{\rho} + 3a_{\emptyset} + 3a_{z})$	2
			Stepwise marking	
		ii.	Prove that divergence of gradient of $A = (4xy + 3zx + 5xyz)$ is zero.	3
			Stepwise marking	
		iii.	Convert A = $(4a_{\rho} + 3a_{\emptyset} + 5a_{z})$ at the point (3, 90°, 5) in spherical	5
			coordinates.	
			Stepwise marking	
	OR	iv.	Find the nature of field (irrotational or solenoidal)	5
			Stepwise marking	

Q.3	i.	State the Gauss' Divergence theorem		2
		In point	1 mark	
		Integral form.	1 mark	
	ii.	with Q coulomb. Find	8	
		(a) Electric field every where	2 marks	
		(b) Potential difference every where	2 marks	
		(c) Capacitance	2 marks	
		(d) Plot the electric and potential field Vs distance	2 marks	
OR	iii. Derive the Electric Field due to an infinite sheet of charge situated at z=0 using Coulomb's Law.			
		Stepwise marking		
0.4	į	(a) State Modified American Cinevital Law	2 montes	4
Q.4	i.	(a) State Modified Ampere Circuital Law	2 marks	4
	••	(b) Define Magnetic Vector Potential.	2 marks	
	ii.	Determine the magnetic field intensity due to inf		6
		current density $\overline{K}a_zA/m$ in yz-plane by using Biot-	Savart's law.	
ΩD	:::	Stepwise marking		(
OR	iii.	Find the EMF between the brushes.		6
		Stepwise marking		
Q.5	i.	Write the Maxwell Equation in Integral Form f	for time harmonically	2
		varying fields.		
	ii.	(a) Define skin depth.	2 marks	8
		Explain Faraday's law for time varying fields.	2 marks	
		(b) Attenuation constant	1 mark	
		Phase constant	1 mark	
		Intrinsic impedance	1 mark	
		Phase velocity for a good dielectric.	1 mark	
OR	iii.	If an electric field is given by $\bar{E} = \frac{E_0 \sin\theta \cos(\omega t - \beta r)}{r} \alpha$	θ_{θ} , find	8
		(a) Magnetic field associated with it.	2 marks	
		(b) Poynting Vector	2 marks	
		(c) Total power radiated	2 marks	
		(d) Average power radiated.	2 marks	
		(*)		
Q.6	i.	Total internal reflection		2
	ii.	Reflection co-efficient	4 marks	8
		Transmission coefficient	4 marks	
OR	iii.	Reflection coefficient	4 marks	8
		Transmission coefficient.	4 marks	
