Zad. 1. Oblicz iloraz Q(x) i resztę R(x) z dzielenia wielomianu V(x) przez wielomian W(x), gdy

(a)
$$V(x) = 2x^5 + x^4 + 3x^3 + 4x^2 + 3x + 1$$
, $W(x) = 2x + 1$ w $\mathbb{Z}_5[x]$

(b)
$$V(x) = x^2 + 2x + 2$$
, $W(x) = 2x + 1$ w $\mathbb{Z}_3[x]$

(c)
$$V(x) = x^4 - 6x^3 + 18x^2 - 30x + 25$$
, $W(x) = x - 2 + i \le C[x]$

(d)
$$V(x) = 3x^5 + 5x^4 + 5x^3 + x + 5$$
, $W(x) = 5x^2 + 4$ w $\mathbb{Z}_7[x]$

(e)
$$V(x) = x^7 - 2x^5 + i$$
, $W(x) = x^2 + 1$ w $C[x]$

(f)
$$V(x) = 4x^6 + 2x^4 + 3x^2 + 4$$
, $W(x) = 3x^2 + 2x \le \mathbb{Z}_5[x]$

Zad. 2. Znajdź wartości parametrów a, b tak aby wielomian $W(x) = 2x^5 + ax^2 + bx + 4$ był podzielny przez $Q(x) = 3x^2 + 4$.

- (a) w pierścieniu \mathbb{Z}_5
- (b) w pierścieniu \mathbb{Z}_7
- (c) w pierścieniu \mathbb{Z}_{11}

Zad. 3. Wyznacz wszystkie pierwiastki wielomianu V(x), jeśli jednym z nich jest liczba x_1 , gdzie

(a)
$$V(x) = x^3 - x^2 - 7x + 15$$
, $x_1 = 2 + i$

(b)
$$V(x) = x^4 - 2x^3 + 9x^2 - 8x + 20$$
, $x_1 = 2i$

(c)
$$V(x) = x^4 - 6x^3 + 23x^2 - 34x + 26$$
, $x_1 = 2 + 3i$

Zad. 4. Rozwiąż równania

(a)
$$x^4 - 2x^2 - 8 = 0$$

(b)
$$x^2 - (3+2i)x + 1 + 3i = 0$$

(c)
$$x^4 + 2ix^2 - 1 = 0$$

(d)
$$2x^3 - 3x^2 + 2x - 1 = 0$$

(e)
$$x^7 - 2x^6 + x - 2 = 0$$

(f)
$$x^5 + x^4 + x^3 + x^2 + x + 1 = 0$$

Zad. 5. W pierścieniu $\mathbb{Z}_5[x]$ znajdź wartości parametrów A, B tak aby wielomian $V(x) = Ax^{300} + Bx^{14} + 2$ był podzielny przez wielomian $W(x) = x^2 + 2x + 2$.

Zad. 6. W $\mathbb{C}[x]$ znajdź resztę z dzielenia wielomianu $V(x) = x^{300} + 2x^{14} + 2$ przez wielomian $W(x) = x^3 + 1$.