雷诺数对圆形渐缩喷嘴湍流射流的影响*

杜 诚 徐敏义 米建春*

(北京大学工学院湍流与复杂系统研究国家重点实验室,北京 100871) (2009年11月2日收到;2009年11月27日收到修改稿)

本文研究雷诺数(Re)对圆形渐缩喷嘴湍流射流的影响.实验在射流出口雷诺数为 Re = 4050—20100 的范围内进行,分别测量了射流出口、中心线的平均及湍流流场以及部分径向剖面速度分布.所有测量均采用单热线恒温热线风速仪进行高频采样,所测流场范围在轴向上为 0—30d(这里 d 为射流出口直径).虽然出口速度分布均为"平顶帽"形,但测量结果依然反映出 Re 对射流出口以及下游流场有强烈的影响.当 Re 小于临界值(~10000)时,平均速度场与脉动速度场均对 Re 有强烈依赖,大于临界值后则影响甚微. 势核区长度、远场区速度衰减率及扩散率均与 Re 相关.

关键词:雷诺数,圆形射流,热线风速仪

PACC: 4725, 4755C

1. 引言

湍流射流作为自然界最常见的一种流动,在很多的工业领域中被广泛的应用,这些应用包括工业燃烧、污染控制,以及混合过程等.

回顾之前关于射流标量场的研究,Mi 等人 引出了如下的结论:对于光滑渐缩圆形射流,当其射流出口雷诺数 $Re(\equiv U_c d/\nu$,其中 U_e 为射流出口速度,d 为射流喷嘴出口直径, ν 为动力黏性系数)小于某个临界雷诺数时,该射流流场对 Re 具有依赖性;但是,对于长直圆管射流,这种依赖性已不复存在. 本文的目的是在这个基础上研究光滑渐缩喷嘴圆形射流的速度场对 Re 的依赖关系(图 1).

图 1 渐缩圆形射流示意图及坐标系统

以往对圆形射流的研究绝大多数都是基于对

渐缩喷嘴射流的实验结果. 研究表明, 当 Re 足够大 时,射流的发展几乎与 Re 无关[2-4]. 但是,在不同的 情况下,射流发展由与 Re 相关转化为与 Re 无关的 临界值是不同的,这种不同可能取决于射流的初始 条件. Ricou 和 Spalding^[5]提出, 当 Re ≥ 20000 时, 射流的卷吸特性将是恒定不变的. Dimotakis [6] 提出, 当 Re > 10000 时,射流可以形成充分发展的湍流流 场. 但应当指出,上述建议并不是研究者建立在自 己的实验基础上提出的. 根据文献报道的圆形射流 的实验结果, $Pope^{[4]}$ 得出如下的结论: 当 Re > 10000时,平均速度自相似分布形状、速度衰减率和扩散 率都独立于 Re. 然而,对于不同的统计量,其达到渐 近状态时的 Re 是不同的,即使对于同一个参数 (如,速度衰减率),其临界 Re 也可能随初始条件的 变化而变化[7]. 因此,对于射流统计量达到渐近相 似状态的临界 Re,进行系统深入地研究是很有必 要的.

关于雷诺数对圆形射流的影响,前人已经做了一些研究,但这些研究中对雷诺数的选取都存在不足,或者雷诺数范围较小^[8,9],或实验的雷诺数数目少^[10].在文献[11]的研究中,圆形射流的马赫数达到了 0.9,其流动已经不能当做不可压缩流体运动了.因此,非常有必要选取范围较宽、个数较多的雷

^{*}国家高技术研究发展计划(863)项目(批准号:2007AA05Z300)资助的课题.

[†] 通讯联系人. E-mail: jcmi@ coe. pku. edu. cn.

诺数进行圆形射流实验. 基于这个考虑, 本实验对光滑渐缩圆形射流进行了系统的测量, 雷诺数选取为 Re = 4050—20100, 射流出口下游 0 < x/d < 30的流场范围. 目的是研究雷诺数对平均速度、湍流度、以及速度脉动的高阶统计量等参数的影响.

2. 实验条件

本实验主要研究雷诺数的改变对圆形光滑渐缩喷嘴射流的影响. 射流装置如图 2 所示,其光滑渐缩喷嘴出口直径 20 mm,为了在喷嘴处制造匀速、低湍流度流动,喷嘴上游接有长 600 mm、直径 95 mm的整流段,中间分布有蜂窝状格栅和金属网格,平行于主流的长段蜂窝格栅可以减少流体卷曲,金属网格能够降低湍流度,并减少湍流边界层对速度的影响. 同时,射流喷嘴 4.5:1的径缩比以及光滑的三次函数曲面进一步确保了流动的均匀. 实验中使用供给稳定、与室温相同的恒温压缩空气作为气源. 热线探头固定在二维自动进给坐标架上,所测流场范围为 x/d = 0—30.

所有实验在同一台射流装置上进行,该装置放置在一个独立实验室中,其室内空调将室温控制在 $23 \pm 0.3\%$,同时,实验室可以确保测量不受外界声音和振动的干扰.实验室空间体积为 $l \times w \times h = 6$

 $m \times 3 m \times 3 m$,射流装置与地面平行放置于实验室中部.房高与射流出口直径比为 l/d = 150,房间横截面积与射流出口面积比约为 57300,射流出口距地面为 1.5 m(75d),距墙壁为 4 m(200d).

由于射流出口速度分布为"平顶帽"形(见图3),因此实验中雷诺数 Re 由射流出口中心速度 U_e 确定.实验在 Re=4050-20100的范围内选取了7个雷诺数.对应出口流速范围为 $U_e=3-15$ m/s.

实验中采用单热线测量圆形光滑渐缩喷嘴射 流的速度及脉动. 热线探头为直径 5 µm 的沃拉斯 顿线(Pt-10% Rh),长度约1 mm. 探头接于恒温热 线风速仪,过热系数为1.5.电压信号经过滤波、放 大后,由一块12-bit A/D 转换板采集入电脑,采样频 率为 18400 Hz,采样时间为 30 s. 热线标定在射流出 口处的势核区中进行,标准风速由连接于数字微压 计的标准皮托管得到,数字微压计量程为0-30 m/ s. 皮托管与热线探头对称的放置于射流出口处,皮 托管直径为2 mm, 热线探头支架直径为1 mm, 两者 横截面积与射流出口横截面积比约为 1.25%,为避 免标定时皮托管或热线探头相互影响,两者距离不 小于 8 mm. 热线标定速度范围为所测流场最大风速 的 2 倍. 标定曲线采用三阶多项式. 实验过程中, 当 热线测量值漂移大于 0.2 m/s,即停止实验,重新 标定.

图 2 射流实验系统简图

3. 测量结果与讨论

3.1. 出口条件

本实验首先对射流出口进行了测量. 在 x/d =

0.05 处的径向方向上,测量了范围 r/d = -0.6—0.6 内的流场(见图 3).射流出口处的流动对雷诺数的依赖是明显的.所有的实验条件下,平均速度分布均显示为"平顶帽"形状.但是,这些速度的等速区面积是不同的. 当雷诺数 Re 由 4050 向 20100增加时,等速区宽度增加,速度边界层厚度明显减

小,并且这种变化的速度随雷诺数的增大而减小(见图 3(a)). 在射流出口边界层处,当 $Re_{=}$ 4050时,射流的初始湍流度分布型是平坦的,这是由于在很低的雷诺数下,射流边界层较厚,边界层动量也较低,导致射流与周围环境流体的相互作用减弱,剪切层并未处于非稳定状态. 随着雷诺数的增加,边界层处(约 r/d=0.47)的湍流度强度的分布开始出现峰值,并且该峰值随着雷诺数的增加而增强,这表明射流边界层与环境流体剪切逐渐增强,

剪切层非稳定性表现越来越明显. 中心线位置处(r/d=0)的湍流强度表现出同样的变化趋势,但最大值出现在 Re=16400 时(见图4). 图中也给出了文献[8,10]的结果. 整体上,本研究测量的湍流度随 Re 的增加而增加. 但有意思的是,我们的结果与文献[8,10]的结果不一致,因为他们报道的湍流度是随 Re 而减小的. 本文无法回答引起这一差别的原因,但认为湍流度随 Re 的增加而增大更合理些.

图 3 不同雷诺数下无量纲平均速度(a)和湍流度(b)在出口附近横截面处(x/d=0.05)的分布

图 4 在 x/d = 0.05 和 r/d = 0 处湍流度随雷诺数的变化

通过在 x/d=0.05 处的测量可以得到初始边界层厚度. 由出口速度分布和动量积分方程可以计算位移厚度 δ 以及动量厚度 θ ,

$$\delta = \int_0^\infty (1 - U/U_b)_{x=0.05d} dy, \qquad (1)$$

$$\theta = \int_{0}^{\infty} U/U_{o,c} (1 - U/U_{b})_{x=0.05d} dy.$$
 (2)

图 5 显示了位移厚度 δ 和动量厚度 θ 随雷诺数的变化,其中, δ 与 θ 是通过使用样条积分曲线来数值积分方程 (1) 和 (2) 而得到的,并且,为了减少误差,图中的 δ 以及 θ ,是对出口速度分布型两侧边界层区域分别进行计算后所得结果的平均值.同时,图 5 也显示了位移厚度 δ 和动量厚度 θ 分布在对数坐标系下的拟合直线,该结果说明 δ 与 θ 均与 $Re^{-1/2}$ 成比例.

3.2. 平均速度场

图 6 显示了在不同的雷诺数 (4050 \leq $Re \leq$ 20100) 下, 平均速度衰减 U_e/U_e 在轴线上的变化.

图 5 位移厚度 δ 与动量边界层厚度 θ 随雷诺数的变化

图 6 在不同雷诺数 Re 下平均速度衰减 U_e/U_e沿轴线的变化

在近场区(x/d < 6),轴线平均速度衰减基本没有变化,并且不同的雷诺数对该区域的轴线速度衰减也基本没有影响.而在远场区,通过使用圆形湍流射流的相似关系,

$$\frac{U_{\rm e}}{U_{\rm c}} = B \frac{x - x_{\rm u}}{d},\tag{3}$$

可以研究速度衰减随雷诺数的变化,这是势核区之后流动区域的标准形式. 其中 B 是速度衰减系数, x_u 是 U_e/U_e 的虚拟源的轴线位置. 本实验中的速度衰减率表现出逐渐趋于一点的特性,如图 7 所示. 对于本实验中的射流装置,轴线平均速度衰减率在 $Re \approx 10750$ 时趋于稳定,而 Malmstrom 等人 [7] 的结果中出现同样现象时的雷诺数为 $Re \approx 13000$. 这是由于不同的喷嘴其内部流动的边界条件不一样导致的. 图 7 揭示了射流轴线速度衰减率随雷诺数变化的趋势,即随着雷诺数的增加而减少,最终趋向于某一恒定值不变, $B \approx 0$. 175,这与表 1 中文献的结果符合得很好. 在过去的研究以及本实验的结果中(如表 1 中心线平均速度衰减特性), x_u 具有较强

的发散性,均未表现出任何规律. 关于 x_u 与雷诺数 Re 之间的关系,有待进一步研究.

图 7 中心线平均速度衰减率 B 随雷诺数的变化

表 1 中心线平均速度衰减特性

文献	Re/10 -4	x/d	В	$x_{\rm u}/d$
文献[2]	1. 1	30—160	0. 165	_
文献[3]	9. 55	16—90	0. 169	2.7
文献[7]	8.4	12—46	0. 166	2.8
文献[10]	3	15—29	0. 179	2.5
文献[12]	8. 64	10—50	0. 169	3
文献[13]	18. 4	18—55	0. 164	2. 15
本文	2. 01	15—30	0. 175	2. 2

图 8 表示了势核区长度 x_p 随雷诺数 Re 增长的变化趋势. 为了降低测量误差,本文对势核区的定义为,势核区尾部的速度等于势核区中平均速度的 0. 97,即 $U_c(x=x_p)=0.97\langle U_c(x\leq x_p)\rangle$. 由于所有的 x_p 变化不大, $4< x_p/d<5.5$,所以仍有一定的测量误差,如 Re=8050,13500 的 x_p . 但势核区长度 x_p 的变化趋势在图 8 中是很明显的,即随着雷诺数的增大,势核区长度逐渐变短,并趋于稳定. 这个结论与 Kwon 等人 [9] 对圆形射流以及 Deo 等人 [14] 对平面射流的研究结果相一致,并且印证了 Bogey 和 Bailly [11] 使用大涡模拟计算得出的势核区变化趋势. 势核区长度 x_p 的减小说明,雷诺数的增加使得近场区中的射流卷吸作用得到了增强,射流提前开始了速度的快速衰减.

射流速度半宽度,又称速度半径,由以下公式 定义.

$$U(x, R_{0.5}) = U_c(x)/2,$$
 (4)

其中 $R_{0.5}$ 即为射流速度半宽度. 由定义可知,在垂直于射流轴线的每一个径向截面上,均能得到一个 $R_{0.5}$,因此,通过速度半宽可以研究射流全场的传

图 8 势核区长度 xn 随雷诺数 Re 的变化

播、扩散特性. 图 9(a) 表明,对本实验中的射流,在 x/d > 10 的流场范围内,速度半宽度随轴向距离 x 的增加而线性增大. 该线性关系可以按照下式进行拟合:

$$\frac{R_{0.5}}{d} = K \frac{(x - x_r)}{d},$$
 (5)

其中,斜率 K 是射流扩散率的定义, x, 是射流扩散的虚拟源.图 9(b)表明射流扩散率 K 随着雷诺数的变化趋势与轴线平均速度衰减率 B 的变化趋势完全一致,均以 $Re \approx 10750$ 为临界雷诺数.雷诺数 Re 从 4050增加到 10750时, K 从 0.17 迅速衰减至 0.09,当 Re 继续增大,扩散率 K 基本不再衰减,直至

Re = 20100 时 K 值趋于 0.08. 综合考虑 K 和 B 的发展趋势,可以得出以下结论: 与近场区相反,雷诺数的增加将导致射流远场区中的流体卷吸作用减弱,而且雷诺数越小,远场区流动的耗散越大,衰减越快. 这个关于势核区下游流场变化的结论,与 Bogey和 Bailly [11] 的大涡数值模拟结果相符合. 图 9(b) 同时还表示出射流扩散虚拟源 x_r 随雷诺数的变化. x_r 随着雷诺数的变化趋势与射流扩散率 K 的变化趋势相似,只是其临界雷诺数为 8050,并且当 Re 小于临界雷诺数时,随雷诺数的增加而增大.

3.3. 脉动速度场

图 10 给出了不同的雷诺数 Re 下,湍流强度 $(u_c^* = u'_c/U_c)$ 在轴线上的发展. 很明显,射流出口处湍流度 u_c^* 约为 1%,随着 x 的增加, u_c^* 迅速增长,并在势核区尾部附近达到该区域内的局部最大值 $(u_{c,max}^*)$,在随后的远场区, u_c^* 呈缓慢微弱增长趋势并逐渐趋于某一数值 $(u_{c,x}^*)$. 根据周培源 [15] 和庄逢甘 [16] 的理论,这是一种湍流自保持现象,该现象的出现表明射流已经发展进入湍流自相似流动阶段. 同时,图 10 也指出了雷诺数对射流发展为自相似流动的转化速度的影响. 雷诺数越低,湍流度 u_c^* 进入平稳段的空间位置便越靠近出口,即射

图 9 (a) 不同雷诺数下(Re=4050-20100) 无量纲速度半径 $R_{0.5}/d$ 随 x 的变化; (b) 扩散率 K 和无量纲虚拟源 x_*/d 随 Re 数的变化

流达到自相似流动的速度就越快. Bogey 和Bailly^[11]的大涡数值模拟结果中,当雷诺数较低时,圆形射流达到自相似的位置更靠近射流出口. 这与我们的结论相符合.同时,米建春等人^[17]在对平面射流的研究中也发现,雷诺数越小,各统计量进入自保持状态越早.

图 10 在不同的雷诺数 (Re=4050-20100) 下湍流度 u'_c/U_c 沿轴线的变化

图 11 和图 12 展示了不同的雷诺数下,偏斜因子 $S_u \equiv \langle u^3 \rangle / \langle u^2 \rangle^{3/2}$ 和平坦因子 $F_u \equiv \langle u^4 \rangle / \langle u^2 \rangle^2$ 沿轴线的变化. 两图分别说明了速度测量结果的概率密度函数 (PDF) 的对称性和平坦程度. 计算得到 S_u 和 F_u 均建立在高采样量 (552 000 采样点)上,高采样量才能确保得到收敛的 PDF. 图 9 中 Re=4050 的 S_u 和 F_u 曲线在 x/d>20 的流场中表现出了较高的发散性,这是由于风速过低, $U_e<0$. 76 m/s,测量的不确定性较高,并且根据偏斜因子和平坦因子的定义有, F_u 远大于 S_u ,因此, F_u 曲线相对要更准确.

一般来说,剪切层中拟序结构的随机脉动成分越少,其拟序程度就越高. 比如,偏斜因子 S_u 和平坦因子 F_u 偏离高斯分布下的值(0,3) 越多,所测信号的规律性就越强. 本实验中 S_u 和 F_u 在 x/d < 6 的近场中变化非常剧烈,这很可能是由于在此区域中占主导作用的大尺度拟序结构的运动所导致的. 从出口向下游发展, S_u 和 F_u 逐渐由近似于高斯分布的值(0,3) 变化为非高斯分布值,并在势核区尾部附近,增至为该局部的最大值 S_{max}^* 和 F_{max}^* 这两个局部最大值分别出现在 2.5 < x/d < 4.5,4 < x/d < 6 的区域内,如图中箭头所标示的点. 偏斜因子和平坦因子在达到局部最大值后,迅速衰减为局部最小值.最后在大约 10 < x/d < 30 的轴线上, S_u 和 F_u 缓慢增加并趋于某一常数. 一般来说,雷诺数的增加将

使近场区局部最大值出现的更早,即雷诺数越大, S_{max}^* 和 F_{max}^* 的轴向位置(箭头标示)越靠近出口.这个结论与图 8 所示的势核区的长度变化相一致,随着雷诺数的增加,等速核心区长度逐渐变短,进一步揭示了雷诺数对近场区流体卷吸作用的影响,即卷吸作用随雷诺数的增大而增强.由图 11 和图 12 还可以明显看出,箭头标示的轴向位置在雷诺数 $Re \ge 10750$ 时基本一致,变化主要发生在 Re < 10750 的雷诺数范围内.这个趋势完全符合于前文中射流中线平均速度衰减率 K 以及射流扩散率 B 的变化趋势,它们的临界雷诺数均约为 10750. Deo 等人 [14] 对平面射流的研究也得到了相似的结果,并且其出现相同变化的临界雷诺数也为 10000.

图 11 在不同的雷诺数下 (Re = 4050-20100) 偏斜因子 S_u 沿轴线的变化

图 12 在不同的雷诺数下 (Re = 4050-20100) 平坦因子 F_u 沿轴线的变化

4. 结 论

本文对七个不同出口雷诺数下圆形渐缩喷嘴 射流的热线测量数据进行了分析对比,研究了这些 射流出口、沿轴线的平均速度与脉动速度场,并且 通过分析高阶脉动量间接地比较了圆形射流近场 区发展的差异,得到的主要结论如下:

- 1. 圆形渐缩射流出口"平顶帽"速度型的等速区面积、剪切层处的湍流强度均随雷诺数的增加而增加. 边界层的位移厚度 δ 和动量厚度 θ 随雷诺数的增加而减小,并且 δ , θ 均与 $Re^{-1/2}$ 成比例.
- 2. 圆形渐缩射流在轴线上的平均速度衰减率 B 随雷诺数的增加而降低,直至 Re 达到 10750 后不再变化. 由速度半宽度定义的射流扩散率 K 表现出了与 B 相同的趋势,说明射流在远场区的卷吸、混合与扩散随雷诺数的增加而减弱,并在 Re 达到 10750 后趋于稳定. 同时,势核区长度 x_p 随雷诺数的增加而减小.

- 3. 不同雷诺数下的中心线湍流强度($u_e^* = u'_e/U_e$)均在势核区尾部附近达到局部最大值,在随后的远场区,缓慢增长并逐渐趋于常数. 这说明射流在远场区已进入自相似流动阶段. 并且雷诺数越低,射流达到湍流度自相似越快.
- 4. 偏斜因子 S_u 和平坦因子 F_u 在 x/d < 6 的近场中变化非常剧烈,这是由于此区域内的主要流体结构为大尺度拟序结构.并且雷诺数越大, S_u 和 F_u 达到局部最大值 (S_{max}^* 与 F_{max}^*) 越快,这与势核区长度的变化相符合. 该趋势说明近场区流动的卷吸、混合随雷诺数的增加而增强. 同时,当雷诺数 $Re \ge 10750$ 时, S_{max}^* 与 F_{max}^* 的轴向位置基本不再发生变化.
- 5. 综上得出一条重要结论:本实验测量的射流存在一个临界雷诺数,其值约为 10000. 当 Re < 10000 时,射流的某些重要特性(如 B,K等)对雷诺数存在很大的依赖;当 $Re \ge 10000$ 时,雷诺数的影响就变得很小了.

- [1] Mi J, Nobes D S, Nathan G J 2001 J. Fluid Mech. 432 91
- [2] Panchapakesan NR, Lumley JL 1993 J. Fluid Mech. 246 197
- [3] Hussein H, Capp S, George W 1994 J. Fluid Mech. 258 31
- [4] Pope S 2000 Turbulent flows (Cambridge: Cambridge Univ. Press) p101
- [5] Ricou F, Spalding D B 1961 J. Fluid Mech. 11 21
- [6] Dimotakis P E 2000 J. Fluid Mech. 409 69
- [7] Malmstrom T, Kirkpatrick A, Christensen B, Knappmiller K 1997 J. Fluid Mech. 346 363
- [8] Todde V, Spazzini P, Sandberg M 2009 Expt. Fluids 1
- [9] Kwon S J, Seo I W 2005 Expt. Fluids 38 801
- [10] Fellouah H, Ball C G, Pollard A 2009 Int. J. Heat Mass

Transfer **52** 3943

- [11] Bogey C, Bailly C 2006 Phys. Fluids 18 065101
- [12] Wygnanski I, Fiedler H 1969 J. Fluid Mech. 38 577
- [13] Quinn W R 2005 Eur. J. Mech. B Fluids 25 279
- [14] Deo R C, Mi J, Nathan G J 2008 Phys. Fluids 20 075108
- [15] Zhou P Y 1959 Acta Phy. Sin. 13 220 (in Chinese) [周培源 1959 物理学报 13 220]
- [16] Zhuang F G 1953 Acta Phy. Sin. **9** 201 (in Chinese) [庄逢甘 1953 物理学报 **9** 201]
- [17] Mi J, Feng B, Deo R C, Nathan G J 2009 Acta Phy. Sin. **58**354 (in Chinese) [米建春、冯宝平、Deo R C、Nathan G J 2009
 物理学报 **58** 354]

Effect of exit Reynolds number on a turbulent round jet*

Du Cheng Xu Min-Yi Mi Jian-Chun[†]

(State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China)
(Received 2 November 2009; revised manuscript received 27 November 2009)

Abstract

The present study systematically investigates by experiment the influence of Reynolds number (Re) on a turbulent jet issuing from a smoothly-contracting round nozzle. Measurements were performed for seven Reynolds numbers varying from Re = 4,050 to Re = 20,100 using single hot-wire anemometry and over an axial distance of 30 nozzle exit diameters. Although all the exit velocity profiles are of "top-hat" shape, these measurements reveal significant dependence on Re of the exit and downstream flows. The effect of Re on both the mean and turbulent fields is substantial for Re < 10,000 and becomes weak beyond Re = 10,000. The length of the jet's potential core and the far-field rates of decay and spread all depend significantly on Re.

Keywords: Reynolds number, round jet, hot wire anemometer

PACC: 4725, 4755C

^{*} Project supported by Ministry of Science and Technology of China Through an 863 Project (Grant No. 2007 AA05 Z300).

[†] Corresponding author. E-mail:jcmi@coe.pku.edu.cn