

UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CURSO DE CIÊNCIA DA COMPUTAÇÃO GEX613 - PROGRAMAÇÃO II

Exercícios APIs em Express

Estes exercícios tem como objetivo a prática de criação de endpoints utilizando Node.JS Express.

Para cada atividade, crie um endpoint que receba os dados necessários e devolva o que foi pedido para a view.

- I. Utilize a função (get ou post) apropriada para cada exercício.
- II. Utilize o Insomnia para simular a view.

I Atividades

1. Escreva um algoritmo em JS que peça o número de horas trabalhadas e o valor da hora de um determinado funcionário. Em seguida, calcule o salário do funcionário. O cálculo do salário deve ser feito dentro de uma função, enquanto a leitura e a impressão dos resultados deve ser feita no programa principal. Caso o funcionário tenha trabalhado mais de 200 horas, o salário final é acrescido de 5%. Exemplos de execução:

Horas trabalhadas: 120 Horas trabalhadas: 210 Valor da hora: 100,00 Valor da hora: 50.00 Salário: 12000.00 Salário: 11025.00

2. Uma loja vende produtos à vista e a prazo (pagamento 30 dias depois da compra). À vista tem um desconto de 5% e a prazo um acréscimo de 10%. Escreva uma *arrow function* em JS que peça o preço do produto e a forma de pagamento: 1 para à vista; e 2 para a prazo. Depois apresente o preço final do produto. Exemplos de execução:

Preço do produto: 120.00 Preço do produto: 200.00 Forma de pagamento: 1 Forma de pagamento: 2 Preço a vista: 114.00 Preço a prazo: 220.00

3. Faça uma função JS que calcule a duração de um evento qualquer. Para tal, o programa pede a hora de início e hora de fim (sem os minutos), as horas serão informadas de 0 a 23. Perceba que um evento pode começar em um dia e acabar em outro. Os eventos nunca duram mais de 24 horas. Exemplos de execução:

 Início: 12
 Início: 10
 Início: 21

 Fim: 4
 Fim: 15
 Fim: 6

Duração: 16 horas Duração: 5 horas Duração: 9 horas

- 4. Faça uma função JS que simule a multiplicação através de adições. Para tal serão pedidos os dois operandos. Por exemplo se for informado 3 e 4, deverá ser calculado, através de soma, 3 * 4, ou seja, 12. Este cálculo é feito somando o primeiro valor informado por ele mesmo o número de vezes representada pelo segundo número. Nesse exemplo, o três seria somado quatro vezes: 3+3+3+3, resultado 12.
- 5. Faça uma função usando a sintaxe *arrow function*, que peça um valor e imprima a soma de todos os números de 1 até o valor informado. Por exemplo, se o valor informado for 6, o resultado será 21, ou seja, 1 + 2 + 3 + 4 + 5 + 6.
- 6. Dada uma sequência de números (um número menor ou igual à 0 finaliza a sequência), apresentar o percentual de números informados que são maior ou igual à 10 e menor ou igual à 20. Exemplo:

5

6

11

21

Λ

% entre 10 e 20: 25.00%

- 7. Faça uma função recursiva em JS para calcular o fatorial de um número dado. O fatorial de um número é n × (n 1) × (n 2) × . . . × 1. Por definição, o fatorial de 0 e 1 são 1. Por exemplo, o fatorial de 5 é 120, ou seja, 5 × 4 × 3 × 2 × 1 (perceba que não é necessário fazer a última multiplicação já que 1 é o elemento neutro da multiplicação).
- 8. Faça uma função JS que peça 4 números inteiros. Em seguida, apresente quantos números informados são negativos e quantos são positivos (considere o 0 como positivo). Exemplos de execução:

N1: 12 N1: -1

N2: 4 N2: -20 N3: -3 N3: -7 N4: 5 N4: -11 3 (+) e 1 (-) 0 (+) e 4 (-)

II Desafios

1) Picos e Vales

Ao observar a paisagem da Nlogônia, o professor MC percebeu que a cada intervalo de 100 metros existe um pico. E que exatamente na metade de dois picos há um vale. Logo, a cada 50 metros há um vale ou um pico e, ao longo da paisagem, não há um pico seguido por outro pico, nem um vale seguido por outro vale.

O professor MC ficou curioso com esse padrão e quer saber se, ao medir outras paisagens, isso se repete. Sua tarefa é, dada uma paisagem, indicar se ela possui esse padrão ou não.

Entrada

A entrada é dada em duas linhas. A primeira tem o número \mathbf{N} de medidas da paisagem (1 < $\mathbf{N} \le 100$). A segunda linha tem \mathbf{N} inteiros: a altura $\mathbf{H}\mathbf{i}$ de cada medida (-10000 $\le \mathbf{H}\mathbf{i} \le 10000$, para todo $\mathbf{H}\mathbf{i}$, tal que 1 $\le \mathbf{i} \le \mathbf{N}$). Uma medida é considerada um pico se é maior que a medida anterior. Uma medida é considerada um vale se é menor que a medida anterior.

Saída

A saída é dada em uma única linha. Caso a paisagem tenha o mesmo padrão da Nlogônia, deve ser mostrado o número 1. Caso contrário, mostra-se o número 0.

Exemplos de Entrada	Exemplos de Saída	
3 1 4 -2	1	
5 100 99 112 -8 -7	1	
4 1 2 2 1	0	

2) Entrada e Saída de Data

O seu professor gostaria de fazer um programa com as seguintes características:

- 1. Leia uma data no formato DD/MM/AA;
- 2. Imprima a data no formato MM/DD/AA;
- 3. Imprima a data no formato AA/MM/DD;
- 4. Imprima a data no formato DD-MM-AA.

Entrada

A entrada consiste vários arquivos de teste. Em cada arquivo de teste tem uma linha. A linha tem o seguinte formato *DD/MM/AA* onde DD, MM, AA são números inteiros. Conforme mostrado no exemplo de entrada a seguir.

Saída

Para cada arquivo da entrada, terá um arquivo de saída. O arquivo de saída tem três linhas conforme os procedimentos 2, 3 e 4. Conforme mostra o exemplo de saída a seguir.

Exemplos de Entrada	Exemplos de Saída
02/08/10	08/02/10 10/08/02 02-08-10
29/07/03	07/29/03 03/07/29 29-07-03

3) Tipos de Triângulo

Leia 3 valores de ponto flutuante A, B e C e ordene-os em ordem decrescente, de modo que o lado A representa o maior dos 3 lados. A seguir, determine o tipo de triângulo que estes três lados formam, com base nos seguintes casos, sempre escrevendo uma mensagem adequada:

- se A ≥ B+C, apresente a mensagem: NAO FORMA TRIANGULO
- se $A^2 = B^2 + C^2$, apresente a mensagem: **TRIANGULO RETANGULO**
- se $A^2 > B^2 + C^2$, apresente a mensagem: **TRIANGULO OBTUSANGULO**
- se $A^2 < B^2 + C^2$, apresente a mensagem: **TRIANGULO ACUTANGULO**
- se os três lados forem iguais, apresente a mensagem: TRIANGULO EQUILATERO
- se apenas dois dos lados forem iguais, apresente a mensagem: TRIANGULO ISOSCELES

Entrada

A entrada contem três valores de ponto flutuante de dupla precisão A (0 < A), B (0 < B) e C (0 < C).

Saída

Imprima todas as classificações do triângulo especificado na entrada.

Exemplos de Entrada	Exemplos de Saída		
7.0 5.0 7.0	TRIANGULO ACUTANGULO TRIANGULO ISOSCELES		
6.0 6.0 10.0	TRIANGULO OBTUSANGULO TRIANGULO ISOSCELES		
6.0 6.0 6.0	TRIANGULO ACUTANGULO TRIANGULO EQUILATERO		
5.0 7.0 2.0	NAO FORMA TRIANGULO		
6.0 8.0 10.0	TRIANGULO RETANGULO		