DIAGRAMAS DE DECISÃO BINÁRIOS (DDB'S)

Luiz Carlos Vieira

22 de Setembro de 2015

Instituto de Matemática e Estatística da Universidade de São Paulo

REPRESENTAÇÃO DE FUNÇÕES

BOOLEANAS

funções booleanas

- Formalismo descritivo importante para sistemas de hardware e de software
 - tais como circuitos síncronos e assíncronos
 - sistemas reativos
 - e programas de estados finitos
- Representação computacional eficiente
 - e que auxilia na verificação de sistemas

definição: variáveis booleanas

Definição 6.1(a)

Uma variável booleana x é uma variável que só pode assumir os valores 0 e 1. Denotamos variáveis booleanas por x_1, x_2, \cdots , e x, y e z, \cdots

4

definição: funções booleanas

Definição 6.1(b)

As seguintes funções são definidas no conjunto $\{0,1\}$:

- $\overline{0} \stackrel{\text{\tiny def}}{=} 1$ e $\overline{1} \stackrel{\text{\tiny def}}{=} 0$;
- $x \cdot y \stackrel{\text{\tiny def}}{=} 1$ se x e y têm valor 1; caso contrário, $x \cdot y \stackrel{\text{\tiny def}}{=} 0$;
- $x+y\stackrel{\scriptscriptstyle\rm def}{=}0$ se x e y têm valor 0; caso contrário, $x+y\stackrel{\scriptscriptstyle\rm def}{=}1$;
- $ullet x \oplus y \stackrel{ ext{\tiny def}}{=} 1$ se exatamente um entre x e y é igual a 1; caso contrário, $x \oplus y \stackrel{ ext{\tiny def}}{=} 0$.

5

variáveis e funções booleanas

Ou seja:

Uma função booleana f com n variáveis é uma função de $\{0,1\}^n$ para $\{0,1\}$. Escrevemos $f(x_1,x_2,\ldots,x_n)$ ou $f(\mathcal{V})$ para indicar que uma representação sintática de f só depende das variáveis booleanas em \mathcal{V} .

Note que \cdot , + e \oplus são funções booleanas com duas variáveis, enquanto que $^-$ é uma função booleana com uma única variável. As funções binárias \cdot , + e \oplus são escritas em notação infixa, isto é, escrevemos x+y em vez de +(x,y), etc.

alguns exemplos de funções booleanas

1.
$$f(x,y) \stackrel{\text{\tiny def}}{=} x \cdot (y + \overline{x})$$

2.
$$g(x,y) \stackrel{\text{\tiny def}}{=} x \cdot y + (1 \oplus \overline{x})$$

3.
$$h(x,y,z) \stackrel{\scriptscriptstyle \mathsf{def}}{=} x + y \cdot (x \oplus \overline{y})$$

4.
$$k() \stackrel{\text{\tiny def}}{=} 1 \oplus (0 \cdot \overline{1})$$

7

representação de funções booleanas

O que já se estudou até então são duas formas de se representar funções booleanas.

- fórmulas proposicionais:
 - ∧ denota •
 - ∨ denota +
 - ¬ denota ¯
 - e \top e \bot denotam, respectivamente, 1 e 0
- tabelas-verdade: representam funções booleanas de maneira óbvia

tabelas-verdade de funções booleanas

Tabela 1: Tabela-verdade da função booleana $f(x,y) \stackrel{ ext{def}}{=} \overline{x+y}$

\boldsymbol{x}	\boldsymbol{y}	f(x,y)
1	1	0
0	1	0
1	0	0
0	0	1

Tabela 2: Tabela-verdade da fórmula proposicional $\phi : \neg (p \lor q)$

$oldsymbol{p}$	$oldsymbol{q}$	ϕ
$oldsymbol{V}$	V	$oldsymbol{F}$
$oldsymbol{F}$	V	$oldsymbol{F}$
$oldsymbol{V}$	$oldsymbol{F}$	$oldsymbol{F}$
${m F}$	$oldsymbol{F}$	$oldsymbol{V}$

vantagens e desvantagens

Tabela 3: Vantagens e desvantagens das tabelas-verdade e das fórmulas proposicionais ao representar funções booleanas

	Tabelas-Verdade	Fórmulas Proposicionais		
Vantagens	 operações¹ simples 	• representação compacta		
Desvantagens	ineficientes em espaçocomputacionalmente intratável	 operações¹ difíceis computacionalmente custoso 		

¹verificação de satisfação e validade, e comparação de duas funções booleanas

comparação geral

Tabela 4: Comparação geral das formas de representação de funções booleanas

		teste de		operações booleanas		
Representação de funções booleanas	compacta?	satisfação	validade	٠	+	-
fórmulas proposicionais	muitas vezes	difícil	difícil	fácil	fácil	fácil
fórmulas FND	algumas vezes	fácil	difícil	difícil	fácil	difícil
fórmulas FNC	algumas vezes	difícil	fácil	fácil	difícil	difícil
tabelas-verdade ordenadas	nunca	difícil	difícil	difícil	difícil	difícil
DDBO's reduzidos	muitas vezes	fácil	fácil	+/-	+/-	fácil

definição: árvore de decisão binária finita

Definição 6.3

Seja T uma árvore de decisão binária finita. Então T determina uma única função booleana das variáveis nos nós não-terminais da seguinte maneira:

Dada uma atribuição de 0's e 1's às variáveis booleanas que ocorrem em T, começamos pela raiz de T e pegamos a linha tracejada sempre que o valor da variável no nó atual é 0; caso contrário, percorremos a linha sólida. O valor da função é o valor do nó terminal atingido.

ullet Árvore da função: $f(x,y) \stackrel{ ext{ iny def}}{=} \overline{x+y}$

- ullet Árvore da função: $f(x,y) \stackrel{ ext{ iny def}}{=} \overline{x+y}$
- Para encontrar f(0,1):

- ullet Árvore da função: $f(x,y) \stackrel{ ext{ iny def}}{=} \overline{x+y}$
- Para encontrar f(0,1):
 - 1. inicia-se pela raiz

• Árvore da função:

$$f(x,y)\stackrel{ ext{ iny def}}{=} \overline{x+y}$$

- Para encontrar f(0,1):
 - 1. inicia-se pela raiz
 - 2. como x é 0, segue-se pela linha pontilhada

• Árvore da função:

$$f(x,y) \stackrel{ ext{ iny def}}{=} \overline{x+y}$$

- Para encontrar f(0,1):
 - 1. inicia-se pela raiz
 - 2. como $x \in \mathbf{0}$, segue-se pela linha pontilhada
 - 3. como y é 1, segue-se pela linha sólida

• Árvore da função:

$$f(x,y)\stackrel{ ext{ iny def}}{=} \overline{x+y}$$

- Para encontrar f(0,1):
 - 1. inicia-se pela raiz
 - 2. como $x \in \mathbf{0}$, segue-se pela linha pontilhada
 - 3. como y é 1, segue-se pela linha sólida
 - 4. chega-se à folha 0; logo f(0,1)=0

semelhanças com tabelas-verdade

- Árvores de Decisão Binárias são semelhantes às tabelas-verdade em relação ao tamanho
 - se f depender de n variáveis booleanas, a árvore correspondente terá pelo menos $2^{n+1}-1$ nós (contra as 2^n linhas da tabela verdade)
- Mas muitas vezes elas contêm redundâncias que podem ser exploradas

A exploração de redundâncias em Árvores de Decisão Binárias faz com que deixem de ser árvores e se tornem grafos. Assim, passam a ser chamados de Diagramas de Decisão Binários (BDDs).

remoção de nós terminais duplicados

Se um DDB contém mais de um nó terminal $\mathbf{0}$, redirecionam-se todas as arestas que apontam para tais nós para apenas um deles. Repete-se o mesmo processo para os nós terminais com $\mathbf{1}$

remoção de nós terminais duplicados

Se um DDB contém mais de um nó terminal $\mathbf{0}$, redirecionam-se todas as arestas que apontam para tais nós para apenas um deles. Repete-se o mesmo processo para os nós terminais com $\mathbf{1}$

remoção de nós terminais duplicados

Se um DDB contém mais de um nó terminal $\mathbf{0}$, redirecionam-se todas as arestas que apontam para tais nós para apenas um deles. Repete-se o mesmo processo para os nós terminais com $\mathbf{1}$

remoção de testes redundantes

Se ambas as arestas de um nó n apontam para o mesmo nó m, elimina-se o nó n, enviando todas as arestas que nele chegavam para m.

remoção de testes redundantes

Se ambas as arestas de um nó n apontam para o mesmo nó m, elimina-se o nó n, enviando todas as arestas que nele chegavam para m.

remoção de testes redundantes

Se ambas as arestas de um nó n apontam para o mesmo nó m, elimina-se o nó n, enviando todas as arestas que nele chegavam para m.

remoção de nós não-terminais duplicados

Se dois nós distintos n e m são raizes de sub-DDBs idênticos, pode-se eliminar um deles redirecionando todas as arestas que chegam nele para o outro

remoção de nós não-terminais duplicados

Se dois nós distintos n e m são raizes de sub-DDBs idênticos, pode-se eliminar um deles redirecionando todas as arestas que chegam nele para o outro

remoção de nós não-terminais duplicados

Se dois nós distintos n e m são raizes de sub-DDBs idênticos, pode-se eliminar um deles redirecionando todas as arestas que chegam nele para o outro

