

Dynamique et modélisation de la turbulence

2. Dynamique de la vorticité et turbulence

Paola CINNELLA

paola.cinnella@sorbonne-universite.fr

QCM Wooclap – Notions introductives

https://www.wooclap.com/NJBGCO

1. Equation de Helmholtz pour la vorticité

Tourbillon de Taylor-Green

■ Tourbillon 3D à *Re*=1600 caractérisé par les conditions initiales:

$$\begin{cases} u(x, y, z, 0) = \sin(x)\cos(y)\cos(z), \\ v(x, y, z, 0) = -\cos(x)\sin(y)\cos(z), \\ w(x, y, z, 0) = 0 \end{cases}$$

$$\begin{cases} \rho(x, y, z, 0) = 1, \\ p(x, y, z, 0) = p_0 + \frac{\rho}{16} [(\cos(2z) + 2)(\cos(2x) + \cos(2y)) - 2] \end{cases}$$

Visualisation d'une iso-surface du « critère Q » :

$$Q = \frac{1}{2} \left(\left| |\mathbf{\Omega}| \right|^2 - \left| |\mathbf{S}| \right|^2 \right)$$

avec

$$\mathbf{\Omega} = \frac{1}{2} (\nabla \mathbf{u} - \nabla \mathbf{u}^T) \rightarrow$$

Taux de rotation

$$\mathbf{S} = \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T)$$

→ Taux de déformation

 $Q > 0 \rightarrow$ la rotation domine par rapport à la déformation

Vorticité et taux de rotation

- Vecteur vorticité : $\mathbf{\omega} = \nabla \times \mathbf{u}$, $\omega_i = \epsilon_{ijk} \frac{\partial u_k}{\partial x_i}$, $\epsilon_{ijk} = \frac{1}{2}(i-j)(j-k)(k-i)$
- Taux de rotation : $\mathbf{\Omega} = \frac{1}{2} (\nabla \mathbf{u} \nabla \mathbf{u}^T)$, $\Omega_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_k} \right) = -\frac{1}{2} \epsilon_{ijk} \omega_k$
- Pour un écoulement incompressible ($\nabla \cdot \mathbf{u} = 0$), il est possible d'introduire un potentiel vecteur \mathbf{A} du champ de vitesse, tel que : $\mathbf{u} = \nabla \times \mathbf{A}$
- Ce vecteur satisfait une équation de Poisson, dont le terme source est le vecteur vorticité :
 - $\omega = \nabla \times \mathbf{u} = \nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) \nabla^2 \mathbf{A} = -\nabla^2 \mathbf{A}$ (le gradient d'une divergence est toujours nul), donc

$$\nabla^2 \mathbf{A} = -\mathbf{\omega} \rightarrow \text{Loi de Biot et Savart}$$

- Conséquence : le vecteur vorticité engendre un champ de vitesse -> vitesse induite
- Le champ de vorticité est solénoidal par construction car $\nabla \cdot \mathbf{\omega} = \nabla \cdot (\nabla \times \mathbf{u}) \equiv 0$
 - Il en suit que = $\int_{V} \nabla \cdot \boldsymbol{\omega} \ dV = \oiint_{\partial V} \boldsymbol{\omega} \cdot \mathbf{n} dS = 0$

Loi de Biot & Savart (1820)

- Initialement introduite en électromagnétisme pour exprimer le champ magnétique induit par une distribution de courant
- Il est possible de déterminer une solution analytique de l'équation de Poisson sous forme d'une fonction de Green

$$\mathbf{A}(\mathbf{r}) = \frac{1}{4\pi} \int_{V} \frac{\boldsymbol{\omega}}{|\mathbf{r} - \mathbf{r}'|} d^{3}r'$$

La vitesse est alors donnée par :

$$\mathbf{u} = \nabla \times \mathbf{A} = \frac{1}{4\pi} \nabla \times \int_{V} \frac{\boldsymbol{\omega}}{|\mathbf{r} - \mathbf{r}'|} d^{3}r' = \frac{1}{4\pi} \int_{V} \frac{\boldsymbol{\omega} \times (\mathbf{r} - \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|^{3}} d^{3}r'$$

→ Il existe une relation non locale entre la vitesse et la vorticité

La vitesse en un point d'un écoulement dépend d'une distribution de tourbillons sur un volume fluide

Exemple: tourbillon de Rankine

• Rotation de corps rigide à l'intérieur du tourbillon, écoulement potentiel à l'extérieur

$$\begin{cases} u(r) = v_0 \frac{r}{r_0} = \Omega_0 r & r \le r_0 \\ u(r) = v_0 \frac{r_0}{r} = \Omega_0 r_0 \frac{r_0}{r} & r > r_0 \end{cases}$$

$$(v_0 = \Omega_0 r_0 = \omega_0 r_0 / 2)$$

Champ de vitesse induite par la vorticité localisée dans le coeur

Lignes de vorticité

- On appelle ligne de vorticité ou filament tourbillonnaire la famille de courbes qui, à un instant donné, est en tout point tangente au vecteur vorticité : $d\mathbf{l} \times \mathbf{\omega} = 0$ avec $d\mathbf{l}$ l'élément de courbe
- On appelle tube de vorticité l'enveloppe de toutes les lignes de vorticité s'appuyant sur une même courbe de l'espace fermée
 - Les lignes de vorticité sont fermées sur elles-mêmes ou s'étendent jusqu'à l'infini

Théorème de Kelvin

On introduit la circulation du champs de vitesse :

$$\Gamma = \oint_{\partial S} \mathbf{v} \cdot d\mathbf{l} = \int_{S} \boldsymbol{\omega} \cdot \mathbf{n} \, dS$$

 Pour un écoulement incompressible (ou barotrope), soumis à des forces de masse conservatives et pour lequel les forces visqueuses sont négligeables, on peut écrire :

$$\frac{D\Gamma}{Dt} = \frac{d}{dt} \oint_{\partial S} \mathbf{v} \cdot d\mathbf{l} = \oint_{\partial S} \frac{D\mathbf{v}}{Dt} \cdot d\mathbf{l} + \oint_{\partial S} \mathbf{v} \cdot \frac{D(d\mathbf{l})}{Dt} =$$

$$\oint_{\partial S} -\nabla \left(\frac{p}{\rho} + P\right) \cdot d\mathbf{l} + \oint_{\partial S} \mathbf{v} \cdot d\mathbf{v} = \oint_{\partial S} d\left(-\frac{p}{\rho} - P + \frac{|\mathbf{v}|^2}{2}\right) \equiv 0$$

I Théorème d'Helmholtz

L'intensité (circulation) d'un tube de vorticité est constante le long du tube

$$\nabla \cdot \boldsymbol{\omega} \equiv 0 \Rightarrow$$

$$\int_{V} \nabla \cdot \boldsymbol{\omega} \, dV = \int_{S_{1}} \boldsymbol{\omega} \cdot \mathbf{n} \, dS + \int_{S_{2}} \boldsymbol{\omega} \cdot \mathbf{n} \, dS - \int_{S_{1}} \boldsymbol{\omega} \cdot \mathbf{n} \, dS = 0$$

$$\Rightarrow \int_{S_{2}} \boldsymbol{\omega} \cdot \mathbf{n} \, dS = \int_{S_{1}} \boldsymbol{\omega} \cdot \mathbf{n} \, dS = cte \Rightarrow \Gamma_{2} = \Gamma_{1} = cte$$

II Théorème de Helmholtz

Un tube de vorticité est un tube matériel (donc imperméable)

Preuve : par définition de tube de vorticité

$$\int_{S_{lat}} \boldsymbol{\omega} \cdot \mathbf{n} \, dS = 0$$

car si une particule pouvait traverser la surface latérale du tube, elle produirait un flux de vorticité non nul, ce qui est en contradiction avec la définition.

III Théorème de Helmholtz

 L'intensité d'un tube de vorticité d'un écoulement incompressible ou barotrope, non visqueux et soumis à des forces conservative se conserve dans le temps

Preuve: en conséquence du théorème de Kelvin, pour toute section du tube nous avons

$$\frac{D\Gamma}{Dt} = 0$$

Conséquence : pour un tube de vorticité

$$S = \pi R^2$$

$$L$$

- conservation of circulation Γ , $R^2\omega = \mathrm{cst}$

- conservation of mass, $\rho \pi R^2 L \sim R^2 L = \text{cst}$

$$\Gamma = \oint_{\mathcal{C}} \mathbf{u} \cdot d\mathbf{l} = \int_{\mathcal{S}} \boldsymbol{\omega} \cdot d\mathbf{x} = \pi R^2 \boldsymbol{\omega}$$

Si un tube s'étire, sa section diminue et la vorticité augmente \rightarrow mécanisme de vortex stretching

Energie cinétique du tourbillon :
$$\mathcal{E}_c = \rho \pi R^2 L \frac{R^2 \omega^2}{2} \sim \underbrace{R^2 L R^2 \omega}_{cst} \omega \implies \mathcal{E}_c \sim \omega \sim \frac{1}{R^2} \sim L$$

→ Le tourbillon s'étire, l'énergie cinétique augmente → transfert d'énergie vers les petits tourbillons

Equation de transport de la vorticité (équation de Helmholtz)

 On dérive une équation de transport pour la vorticité en prenant le rotationnel de l'équation de quantité de mouvement

$$\nabla \times \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{\omega} \times \mathbf{v} \right) = -\nabla \times \left(\frac{1}{\rho} \nabla p + \nabla \left(\frac{|\mathbf{v}|^2}{2} \right) + \nabla U + \nu \nabla^2 \mathbf{v} \right)$$

- Le rotationnel d'un gradient est toujours nul → termes rouges à droite
- Par ailleurs :

$$\nabla \times (\omega \times \mathbf{v})^{\text{vectorial identity}} = \omega \nabla \cdot \mathbf{v} - \mathbf{v} \nabla \cdot \omega + \mathbf{v} \cdot \nabla \omega - \omega \cdot \nabla \mathbf{v} \text{ where}$$

 $\nabla \cdot \mathbf{v} = 0$ for incompressibility condition

$$\nabla \cdot (\nabla \times \mathbf{v}) = 0$$
 (vectorial identity)

Au final

$$\frac{D\mathbf{\omega}}{Dt} = \frac{\partial \mathbf{\omega}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{\omega} = \mathbf{\omega} \cdot \nabla \mathbf{v} + \frac{\nabla \rho \times \nabla p}{\rho^2} + \nu \nabla^2 \mathbf{\omega}$$

- $\omega \cdot \nabla v$: vortex stretching (=0 en 2D \rightarrow pas de redistribution vers les petites échelles)
- $\frac{\nabla \rho \times \nabla p}{\rho^2}$: terme barocline (=0 si masse volumique constante ou écoulement barotrope)

Vortex stretching et vortex tilting

■ Stretching → transfert d'énergie vers les petites échelles

$$\boldsymbol{\omega} = (\omega_1, 0, 0) \qquad \frac{\partial u_1}{\partial x_1} > 0$$

• Eq. de continuité en coordonnées cylindriques :

$$\frac{\partial u_1}{\partial x_1} + \frac{1}{x_2} \frac{\partial (x_2 u_2)}{\partial x_2} = 0$$

- $u_2 < 0$, le tourbillon réduit sa section
- Conservation du moment de la q. mvt

$$x_2^2 \omega_1 = cte \rightarrow \omega_1$$
 augmente

• Situation initiale : $\omega = (0, \omega_2, 0)$,

• Situation finale : $\omega_1 \neq 0$

Equation de transport de la vorticité (équation de Helmholtz)

On étudie à nouveau l'évolution d'un filament tourbillonnaire soumis à un gradient de vitesse

tube (filament) of vorticity

$$\frac{\delta_s(t+dt)-\delta_s(t)}{\delta t}=u(x+\delta_s)-u(x)$$
 Variation en temps de la longueur du filament

$$\frac{d\boldsymbol{\delta}_s(t)}{dt} = \boldsymbol{\delta}_s \cdot \nabla \boldsymbol{u}$$

$$\tilde{\delta}_s = \|\boldsymbol{\delta}_s\| = \boldsymbol{\delta}_s \cdot \boldsymbol{\alpha} \qquad \boldsymbol{\alpha}^2 = 1$$

$$\frac{d\tilde{\delta}_s}{dt} = \boldsymbol{\alpha} \cdot (\boldsymbol{\delta}_s \cdot \nabla \boldsymbol{u})$$

$$= \frac{\omega_i}{\omega} \left(\tilde{\delta}_s \frac{\omega_j}{\omega} \frac{\partial u_i}{\partial x_j} \right)$$

$$= \frac{\omega_i \omega_j}{\omega^2} \frac{\partial u_i}{\partial x_i} \tilde{\delta}_s$$

$$\frac{d\tilde{\boldsymbol{\delta}}_{S}}{dt} = \frac{\boldsymbol{\omega}}{|\boldsymbol{\omega}|} \cdot \left(\frac{\boldsymbol{\omega}}{|\boldsymbol{\omega}|} \cdot \nabla \boldsymbol{u}\right) \, \tilde{\delta}_{S}$$

Développement limité à l'ordre 1

Projection selon l'axe du tourbillon

 α est un vecteur unitaire constant

Expression en composantes Cartésiennes

Equation de transport de la vorticité (équation de Helmholtz)

- On a trouvé $\frac{d\delta_s}{dt} = \frac{\omega}{|\omega|} \cdot \left(\frac{\omega}{|\omega|} \cdot \nabla u\right) \tilde{\delta}_s$
- Le terme $(\omega \cdot \nabla u)$ n'est rien d'autre que le terme d'étirement des tourbillons!
- Si on néglige les forces de masse et visqueuses dans l'équation de Helmholtz, on a :

$$\frac{D\mathbf{\omega}}{Dt} = \mathbf{\omega} \cdot \nabla \mathbf{u}$$

En projetant selon ω :

$$\boldsymbol{\omega} \cdot (\boldsymbol{\omega} \cdot \nabla \mathbf{u}) = \boldsymbol{\omega} \cdot \frac{D\boldsymbol{\omega}}{Dt} = \frac{D(\frac{|\boldsymbol{\omega}|^2}{2})}{Dt} = \frac{d(\frac{|\boldsymbol{\omega}|^2}{2})}{dt}$$

avec $\frac{|\omega|^2}{2}$ l'enstrophie \rightarrow énergie cinétique rotationnelle du tourbillon

■ La variation de longueur d'un tourbillon s'écrit donc $\frac{d\tilde{\delta}_S}{dt} = \frac{1}{|\boldsymbol{\omega}|^2} \frac{d\left(\frac{|\boldsymbol{\omega}|^2}{2}\right)}{dt} \tilde{\delta}_S$, soit $\frac{1}{\tilde{\delta}_S} \frac{d\tilde{\delta}_S}{dt} = \frac{1}{|\boldsymbol{\omega}|^2} \frac{d\left(\frac{|\boldsymbol{\omega}|^2}{2}\right)}{dt} \rightarrow \frac{|\boldsymbol{\omega}|}{\tilde{\kappa}} = cte$

$$\frac{1}{\tilde{\delta}_{s}} \frac{d\tilde{\delta}_{s}}{dt} = \frac{1}{|\boldsymbol{\omega}|^{2}} \frac{d\left(\frac{|\boldsymbol{\omega}|^{2}}{2}\right)}{dt} \to \frac{|\boldsymbol{\omega}|}{\tilde{\delta}_{s}} = cte$$

→ La longueur d'un filament tourbillonnaire est proportionnelle à sa vorticité → Le mécanisme d'étirement ne peut exister que dans un écoulement 3D

Exemple

Observation expérimentale de la turbulence générée en aval d'une grille

Growth of material lines in isotropic turbulence $Re_D = 1360$ (based on the grid rod diameter)

Corrsin & Karweit (1969)

The increase in vortex intensity, and thus in turbulent fluctuations, is accompanied by stretching of vorticity filaments, and the increase of distance between fluid particles: that is the origin of sensitivity to initial conditions.

Vorticité et mécanisme de cascade : arbre de Bradshaw (1971)

- Illustration du mécanisme de cascade déjà observé par Richardson (1926)
 - Par effet des mécanismes de stretching et tilting la vorticité est transférée au petites échelles et redistribuée en espace
 - Un écoulement initialement anisotrope tend vers l'isotropie

direction of vortex streching

anisotropy
$$x_3$$

$$x_1 \quad x_2$$

$$x_2 \quad x_3 \quad x_1 \quad x_1 \quad x_3$$

$$x_3 \quad x_1 \quad x_1 \quad x_2 \quad x_2 \quad x_3 \quad x_1 \quad x_2$$

$$x_1 \quad x_2 \quad x_2 \quad x_3 \quad x_1 \quad x_2 \quad x_2 \quad x_3 \quad x_1 \quad x_2$$

$$x_1 \quad x_2 \quad x_2 \quad x_3 \quad x_2 \quad x_3 \quad x_3 \quad x_1 \quad x_3 \quad x_1 \quad x_1 \quad x_2 \quad x_2 \quad x_3 \quad x_3 \quad x_1$$
return to isotropy
$$x_1 \quad x_2 \quad x_2 \quad x_3 \quad x_2 \quad x_3 \quad x_3 \quad x_1 \quad x_3 \quad x_1 \quad x_1 \quad x_2 \quad x_2 \quad x_3 \quad x_3 \quad x_1$$

Turbulence 2D

- Ecoulements géophysiques en couches minces, films, ...
- Dans un écoulement 2D la redistribution n'a pas lieu

J. C. Mcwilliams (1984). The emergence of isolated coherent vortices in turbulent flow. Journal of Fluid Mechanics, 146, pp 21-43 doi:10.1017/S0022112084001750

Flow separation behind a rounded leading edge (3-D versus 2-D!)

Spanwise vorticity ω_z , from red to blue with $\omega_z = \pm 5U_{\infty}/H$, DNS with inflow perturbations $u'_{\text{inflow}} = 0.1\%U_{\infty}$ ($\eta = 0.125$)

Courtesy of Lamballais, Sylvestrini & Laizet Int. Journal Heat Fluid Flow, 31, 2010

Vorticité et dissipation

- Nous avons vu le lien entre le <u>mécanisme de cascade</u> et la <u>dynamique des tourbillons</u>; lien <u>vorticité</u> et <u>dissipation</u> de l'énergie cinétique au petites échelles (mécanisme d'arrêt de la cascade)?
- Equation de conservation de l'énergie mécanique

$$\frac{\partial \left(\frac{1}{2}\mathbf{u} \cdot \mathbf{u}\right)}{\partial t} + \mathbf{u} \cdot \nabla \left(\frac{1}{2}\mathbf{u} \cdot \mathbf{u}\right) = -\frac{1}{\rho} \nabla \cdot (p\mathbf{u}) + \frac{1}{\rho} \nabla \cdot (\mathbf{u} \cdot \boldsymbol{\tau}_{v}) - 2\nu \,\mathbf{S} : \mathbf{S}$$

- On voit y apparaître le terme $\varepsilon = 2 v \mathbf{S} : \mathbf{S} \rightarrow \text{taux de dissipation}$
- Le travail des contraintes visqueuses τ_{12} et le taux dissipation peuvent être réécrits sous la forme

$$\frac{1}{\rho} \nabla \cdot (\mathbf{u} \cdot \mathbf{\tau}_{v}) = 2\nu \nabla \cdot (\mathbf{u} \cdot \nabla^{T} \mathbf{u}) + \nu \nabla \cdot (\mathbf{u} \times \mathbf{\omega}),$$

$$2\nu \mathbf{S} : \mathbf{S} = \nu \mathbf{\omega}^{2} + 2\nu \nabla \cdot (\mathbf{u} \cdot \nabla^{T} \mathbf{u}),$$

avec
$$v \nabla \cdot (\mathbf{u} \cdot \nabla^T \mathbf{u}) = v \nabla^2 \left(\frac{\mathbf{u}^2}{2} \right) \rightarrow \text{ diffusion moléculaire d'énergie cinétique}$$

Vorticité et dissipation (cont.)

On a alors

$$\frac{\partial \left(\frac{1}{2}\mathbf{u}\cdot\mathbf{u}\right)}{\partial t} + \mathbf{u}\cdot\nabla\left(\frac{1}{2}\mathbf{u}\cdot\mathbf{u}\right) = -\frac{1}{\rho}\nabla\cdot(\rho\mathbf{u}) + \nu\nabla\cdot(\mathbf{u}\cdot\Omega) - \nu\omega^{2}$$

avec $\nabla \cdot (\mathbf{u} \cdot \mathbf{\Omega}) = \nabla \cdot (\mathbf{u} \times \mathbf{\omega})$ travail des forces visqueuses contre la rotation rigide des particules $\mathbf{\Omega} = \frac{1}{2} (\nabla \mathbf{u} - (\nabla \mathbf{u})^T) \Rightarrow$ taux de rotation et $\nabla \cdot \mathbf{\omega}^2$ dissipation visqueuse au sein des tourbillons

Nous rappelons que
$$\frac{1}{2}\omega^2 = \frac{1}{2}\omega \cdot \omega = \frac{1}{2}|\omega|^2 = \left||\Omega|\right|^2$$
 représente l'enstrophie

- Les deux formes de l'équation d'énergie mécanique peuvent être intégrées sur un domaine matériel de fluide D.
 - · Après quelques manipulations, on arrive à

$$\frac{d}{dt} \int_{D} \frac{1}{2} \mathbf{u} \cdot \mathbf{u} \, dV = -\int_{D} \varepsilon \, dV = -2\nu \int_{D} \Omega \, dV$$

→ Dualité taux de dissipation/enstrophie sur un volume

Enstrophie et dissipation

Prenons de nouveau l'exemple du TGV

• Vidéo :

Enstrophie et dissipation

Prenons de nouveau l'exemple du TGV

Equation de transport pour l'enstrophie

L'équation de transport de l'enstrophie pour un écoulement dans forces de masse s'écrit

$$\frac{D}{Dt}\left(\frac{\boldsymbol{\omega}^2}{2}\right) = \boldsymbol{\omega} \cdot (\boldsymbol{\omega} \cdot \nabla \boldsymbol{u}) + \nu \nabla^2 \left(\frac{\boldsymbol{\omega}^2}{2}\right) - \nu \nabla \boldsymbol{\omega} : \nabla \boldsymbol{\omega}$$

- Pour un écoulement non visqueux, la seule source de variation d'enstrophie pour est l'étirement des tourbillons
- Pour un écoulement 2D non visqueux, l'enstrophie reste constante en temps.

- Tourbillon : région de vorticité concentrée → visualisation à l'aide d'isosurfaces de vorticité
 - La vorticité d'un écoulement non visqueux se conserve le long d'une surface matérielle (Th Kelvin)
 - Pas de seuil clairement défini → critère arbitraire
 - On peut avoir une nappe tourbillonnaire dans un écoulement parallèle (couche limite, couche de mélange)
 - Invariance Galiléenne non vérifiée

- Un tourbillon tend à engendrer un minimum de pression en son centre
 - Pas simple à vérifier, arbitraire

Pression instantanée dans un canal avec restrictions périodiques Gloerfelt&Cinnella, AIAA Paper 2015-2480, 2015

- Critères basés sur les invariants du gradient de vitesse $\nabla \mathbf{u} = \mathbf{S} + \mathbf{\Omega}$
 - Critère Q (Hunt, Wray & Moin, 1988) : $Q=\Omega^2-Q^2 \Rightarrow$ dans un tourbillon la vorticité domine par rapprot à la déformation, Q>0
 - Deuxième invariant de $\nabla \mathbf{u}$ (deuxième coefficient du polynôme caractéristique) : $\lambda^3 tr(\nabla \mathbf{u})\lambda^2 + \frac{1}{2}Q\lambda + \det(\nabla \mathbf{u}) = 0$
 - Il n'est pas garanti que la région identifié corresponde à un minimum de pression

Tourbillons dans une couche limite transitionnelle à Mach 10 : Critère Q coloré par la vitesse

(Passiatore, Sciacovelli, Cinnella, Pascazio, Phys Rev Fluids, 2021)

- Critères basés sur les invariants du gradient de vitesse $\nabla \mathbf{u} = \mathbf{S} + \mathbf{\Omega}$
 - Critère λ_2 (Jeong & Hussain, 1995) : la seconde valeur propre de $\mathbf{S}^2 + \mathbf{\Omega}^2 = -\nabla(\nabla p)$ pour un tourbillon stationnaire non visqueux \rightarrow correspond à un minimum de pression car alors deux valeurs propres sont négatives

Visualisation de tourbillons dans un canal avec restrictions périodiques

(Gloerfelt&Cinnella, AIAA Paper 2015-2480, 2015)

2. Exercices

Pope Chapitre 2

2.9 Show that the Navier-Stokes equations (Eq. (2.35)) can be written in the Stokes form

$$\frac{\partial \mathbf{U}}{\partial t} - \mathbf{U} \times \boldsymbol{\omega} + \nabla \left(\frac{1}{2} \mathbf{U} \cdot \mathbf{U} + \frac{p}{\rho} \right) = \nu \, \nabla^2 \mathbf{U}. \tag{2.66}$$

Hence obtain *Bernoulli's theorem*: for a steady, inviscid, constantdensity flow, the Bernoulli integral,

$$H \equiv \frac{1}{2}\boldsymbol{U} \cdot \boldsymbol{U} + \frac{p}{\rho},\tag{2.67}$$

is constant

- (a) along streamlines,
- (b) along vortex lines (i.e., lines parallel to ω), and
- (c) everywhere in irrotational flow ($\omega = 0$).
- 2.10 Show that the vorticity squared or enstrophy $\omega^2 = \omega \cdot \omega$ evolves by

$$\frac{D\omega^2}{Dt} = v \nabla^2 \omega^2 + 2\omega_i \omega_j \frac{\partial U_i}{\partial x_j} - 2v \frac{\partial \omega_i}{\partial x_j} \frac{\partial \omega_i}{\partial x_j}.$$
 (2.68)

Etirement de la vorticité et échelle de Burgers

L'équation de la vorticité sans viscosité s'écrit (en 3D) :

$$\frac{D\boldsymbol{\omega}}{Dt} = \boldsymbol{\omega} \cdot \nabla \boldsymbol{u} = \boldsymbol{\omega} \cdot \boldsymbol{S}$$

- On se place dans le repère principal de S. Dans ce repère $\mathbf{S} = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$ avec $\lambda_1 + \lambda_2 + \lambda_3 = 0$
- Intégrer l'équation précédente et en déduire le comportement des composantes de vorticité en temps
- Quand est-ce que la vorticité cessera de croitre?

Etirement de la vorticité et échelle de Burgers

- Considérons désormais un tourbillon de Lamb-Oseen. Il s'agit d'une solution exacte des équations de Navier Stokes correspondant à l'évolution d'un vortex 2D ponctuel sous l'effet de la viscosité.
 - Champ de vorticité :

•
$$\omega_{z(r,t)} = \frac{\Gamma_0}{\pi r_{0(t)}^2} \exp\left(-\frac{r^2}{r_0^2(t)}\right)$$
, $\omega_r = \omega_\theta = 0$

- Calculer le champ de vitesse, de la forme $(0, v_{\theta}(r, t), 0)$
- On superpose à ce vortex un champ de déformation le soumettant à un étirement :

•
$$v_r = -\frac{1}{2}\gamma r$$
, $v_\theta = 0$; $v_z = \gamma z$

- Les valeurs propres dans la base du taux de déformation sont $\left(-\frac{\gamma}{2}, -\frac{\gamma}{2}, \gamma\right)$
- Intégrer l'équation de la vorticité et montrer que
 - La vorticité reste alignée avec l'axe du tourbillon
 - · la vorticité au centre diverge de façon exponentielle

Etirement de la vorticité et échelle de Burgers

- Le rôle de la viscosité consiste à arrêter la divergence de la vorticité et donc le processus d'étirement, lorsque le tourbillon atteint une échelle caractéristique appelée échelle de Burgers.
- On appelle δ la taille caractéristique du tourbillon (taille du cœur)
- En utilisant l'analyse dimensionnelle, estimer un temps caractéristique de la diffusion visqueuse et de l'étirement du tourbillon
- En équilibrant ces deux temps caractéristiques, déduire une échelle de longueur, dite échelle de Burgers, telle que l'évolution du tourbillon s'arrête (les mécanismes d'étirement et de dissipation se compensent)

Next time...

- QCM de 10 minutes sur Wooclap
- Etude statistique de la turbulence : les échelles de la turbulence ; les équations de Reynolds et le problème de fermeture ; anatomie d'un modèle de turbulence
- TD sur les équations moyennées

