Information Technology Agency City of Los Angeles

Data + Donuts 12/10/19

Tiffany Chu and Ian Rose

Citywide Data Science and Predictive Analytics

Partner with various City departments to do multi-departmental data analytics projects

- Transportation
- Office of Finance
- Street Services
- Sanitation
- Housing + Community Investment Development
- City Planning
- Mayor's initiatives

Best Practices

Our hard-earned lessons and standard we're striving for:

- Goal: Reproducibility
- GitHub
- Data Pipelines
- Data Management
- Shared platform for analysis (JupyterHub)
- Tutorials

https://cityoflosangeles.github.io/best-practices/

Motivation

- What's the research question?
 - o Policy interventions, factors / mechanisms, outcomes
- So many datasets, mix & match
- Merge data to compare and see what's going on

Observe trends

Current resource allocation vs "need"-driven allocation

Normalize by population or area

Ingest and Clean

- Multiple data sources
- Identify the unit of analysis

Geography tract, council district

Time year, quarter

Other Category treatment, intervention

Mixed tract-year, tract-treatment-year

- Clean each data source to the common unit (least common factor)
 - Aggregate
 - Spatial join + dissolve

Merge

one-to-one (1:1)
 merge on GEOID and Year
 GEOID and Year appear once in both dfs

many-to-one (m:1)
 merge on GEOID
 GEOID appears multiple times in left df; once in right df

one-to-many (1:m)
 merge on Year
 Year appears once in left df; multiple times in right df

Crosswalks

Correspondence tables that link elements together

tracts to council districts crosswalk lists the CD associated with each tract

streets to tracts crosswalk lists the tract associated with each street segment

GEOID	CD
Α	1
В	5
С	14
D	5

Segment	Tract
Wilshire1	1000
Main4	2000
Hoover2	3000
Pico5	4000

- Spatial join + clipping to create crosswalk
- Facilitates the merging and aggregating across multiple dfs

Putting it Together

df1 = pd.merge(collisions, traffic_volume, on = ['GEOID', 'Year'], how = 'inner', validate = '1:1')

collisions

GEOID	GEOID Year # 0	
Α	2018	10
Α	2019	8
В	2018	15
С	2017	20

traffic volume

GEOID	Year	traffic vol
A	2018	2,000
A	2019	1,500
В	2018	2,500
С	2017	2,500

df1

GEOID	Year	# collisions	traffic vol
Α	2018	10	2,000
Α	2019	8	1,500
В	2018	15	2,500
С	2017	20	2,500

1:1 merge on GEOID, Year

| Putting it Together

df1

GEOID	Year	# collisions	traffic vol
Α	2018	10	2,000
Α	2019	8	1,500
В	2018	15	2,500
С	2017	20	2,500

tract characteristics

GEOID	area
A	5
В	4
С	6

df2

GEOID	Year	# collisions	traffic vol	area
Α	2018	10	2,000	5
Α	2019	8	1,500	5
В	2018	15	2,500	4
С	2017	20	2,500	6

m:1 on GEOID

Putting it Together

df2

GEOID	Year	# collisions	traffic vol	area
Α	2018	10	2,000	5
Α	2019	8	1,500	5
В	2018	15	2,500	4
С	2017	20	2,500	6

crosswalk

CD
1
5
14

df3

GEOID	Year	# collisions	traffic vol	area	CD
Α	2018	10	2,000	5	1
Α	2019	8	1,500	5	1
В	2018	15	2,500	4	5
С	2017	20	2,500	6	14

m:1 on GEOID

df3 is the merged combination of collisions, traffic_volume, tract_characteristics, and crosswalk

Additional Resources

Merging dfs

- https://guides.nyu.edu/quant/merge
 (Tableau, SPSS, JMP, Stata, SAS, R, Matlab, Python)
- https://www.shanelynn.ie/merge-join-dataframes-python-pandas-index-1/
- https://towardsdatascience.com/why-and-how-to-use-merge-with-pandas-in-python-548600f7e738
- Clip congressional_districts to City of LA boundary and create new geometry column
 - o df = gpd.sjoin(congressional_districts, city_boundary, how = 'inner', op = 'intersects')
 - o boundary = city_boundary.geometry.iloc[0]
 - o df['new_geom'] = df[df.intersects(boundary)].intersection(boundary)

Infrastructure for Civic Data Teams

Data analysis is hard: how do we set up the infrastructure for our analysts to spend more time doing that, and less time fighting their hardware/software?

Best Practices: Reproducible Environments

Reproducibility is an unsolved problem in science!

Tools that can help:

- Documentation, documentation, documentation
- Dockerfiles / requirements.txt / environment.yml
- Shared cloud compute
- CI/CD

MY PYTHON ENVIRONMENT HAS BECOME SO DEGRADED THAT MY LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

Best Practices: Version Control

| Best Practices: Continuous Integration

AKA: "catch errors before they are a problem"

| Cloud-Native Infrastructure

AKA "someone else's computer"

Pros:

- Scalable
- Reproducible
- Reliable

Cons:

- Can have a steep learning curve
- Networking can be difficult
- "Oops, my cluster is down, now I can't work."

| Cloud-Friendly Formats

Use file formats that are open, standardized, and easy to share on cloud resources:

Parquet

Zarr

GeoJSON

• CSV*

GeoTIFF

Shapefile*

* Caveats apply

Try to avoid:

- Excel (cf. <u>The Excel Error that Changed History</u>)
- PDF (please please please)
- ../../ian-rose/files/some-forgotten-file.csv

Literate computing: Jupyter and RMarkdown

A Civic Data Science Tech Stack

Analysis Environment

Data Analysis

Data Access

Infrastructure

| Thanks for listening!

Questions?

