Содержание

1	Тривиум	2
2	Теорема Турана и её обобщения	2
3	Тоерема Эрдёша-Стоуна	3
4	Двудольные графы	5
5	Числа Турана для гиперграфов	6
6	Верхняя оценка на турановскую плотность	7
7	Центральная турановская плотность	8
8	Нижние оценки турановской плотности	9
9	Аналоги теоремы Турана для разреженных графов и гиперграфов	10
10	Точность оценки теоремы Ширера	11
11	Оценки внедиагональных чисел Рамсея	11

Тривиум

Если $\forall e \in E \rightarrow |e| = k$, то гиперграф k-однородный (k = 2 — обычный граф).

Определение 2. Число рёбер гиперграфа |E| или |E(H)| = e(H).

Степень вершины $v \in V - \deg v = \#\{e \in E \mid v \in e\}.$

$$\sum\limits_{v\in V} \deg v = \sum\limits_{e\in E} |e| = k|E|$$
 (в случае k -однородности).

 $\Delta(H) = \max_{v \in V} \deg v.$

$$\delta(H) = \min_{v \in V} \deg v.$$

$$t(H) = \frac{1}{|V|} \sum_{v \in V} \deg v.$$

Определение 3. Степенью ребра в H = (V, E) называется $\deg e = \#\{f \in V, E\}$ $E \mid f \neq e, |f \cap e| \neq \emptyset$.

 $D(H)=\max_{e\in E}\deg e.$ Если H k-однороден, то $\Delta(H)-1\leqslant D(H)\leqslant k(\Delta(H)-1).$

Определение 4. $W \subset V$ в H = (V, E) называется *независимым*, если $\forall e \in E \rightarrow |e \cap W| < |e|$.

4ucno независимости $\alpha(H)$ — максимальный размер независимого множества в H.

Определение 5. Раскраска множества вершин H = (V, E) называется *пра*вильной, если любое ребро не является одноцветным. Равносильно: все цветовые множества независимы.

Хроматическое число $\chi(H)$ — минимальное число цветов в правильной раскраске гиперграфа.

Очевидно $\frac{|V|}{\alpha(H)} \leqslant \chi(H) \leqslant \Delta(H) + 1.$

2 Теорема Турана и её обобщения

 K_n — полный граф на n вершинах.

 $K_{n_1,...,n_r}$ — полный r-дольный граф с долями размера $n_1,...,n_r$.

 K_{m*r} — полный r-дольный граф с размерами долей = m.

Теорема 1 (Туран, 1941). Пусть n_1, \ldots, n_r числа, такие что $n_1 + \ldots + n_r =$ $n,n_i=\left\lceil \frac{n}{r} \right\rceil$ или $n_i=\left\lceil \frac{n}{r} \right\rceil$. Пусть граф G на n вершинах не содержит подграфа, изоморфного K_{r+1} . Тогда

$$|E(G)| \leq |E(K_{n_1,\dots,n_r})| \leq \left\lfloor \frac{n^2}{2} \left(1 - \frac{1}{r}\right) \right\rfloor$$

Доказательство. Пусть G = (V, E) — граф с максимальным числом вершин, не содержащий K_{r+1} . Покажем, что в G не существует тройки вершин u, v, w такой, что $(u, v) \in E, (u, w), (v, w) \notin E$. Пусть такая тройка есть, тогда

- \bullet Пусть $\deg w < \deg u$ (или $\deg w < \deg v$). Удалим w из G и заменим её на копию u — вершину u'. Получится граф с большим числом рёбер, при этом K_{r+1} он не содержит (иначе его содержал бы и G).
- Пусть $\deg w \geqslant \deg u, \deg w \geqslant \deg v$. Тогда удалим u, v из графа, добавим вместо них две копии вершины w. По аналогичному соображению число рёбер увеличилось, а K_{r+1} не появилось.

Вывод: отношение $u \sim v \Leftrightarrow (u,v) \notin E$ является отношением эквивалентности. Значит наш граф G является полным многодольным графом, притом ясно, что долей не больше r (будем считать, что ровно r, просто некоторые доли пусты). Покажем, что доли почти равны.

В самом деле, если |A| > |B| + 1, то при перекладывании одной вершины из A в B теряется |B| рёбер и проводится |A|-1 рёбер, стало быть число рёбер увеличивается. Значит размеры всех долей отличаются не более, чем на 1, что доказывает теорему.

Граф $K_{n_1,...,n_r}$ из теоремы Турана принято называть графом Турана.

Утверждение 1. Следствие: $\alpha(G) \geqslant \frac{n}{t(G)+1}$.

 ${\mathcal L}$ оказательство. Пусть $\alpha=\alpha(G)$, тогда \overline{G} не содержит $K_{\alpha+1}$. По теореме

Турана $|E(\overline{G})| \leqslant \left(1 - \frac{1}{\alpha}\right) \frac{n^2}{2} \Rightarrow |E(G)| \geqslant C_n^2 - \left(1 - \frac{1}{\alpha}\right) \frac{n^2}{2}$. Итак, $\frac{n^2}{2\alpha} \leqslant |E(G)| + \frac{n^2}{2} - C_n^2 = \frac{t(G)n}{2} + \frac{n}{2}$, что доказывает следствие. Получается, что оценка точна и достигается (с точностью до округления) на T(n,r).

3 Тоерема Эрдёша-Стоуна

Пусть H — произвольный граф. Числом Турана ex(n, H) называется

 $ex(n, H) = \max\{|E(G)| : |V(G)| = n, G \text{ не содержит подграфа, изоморфного } H\}.$

Теорема Турана говорит, что $ex(n, K_{r+1}) = |E(K_{n_1,...,n_r})|$.

Теорема 2 (Эрдёш-Стоун, 1946). Пусть $r \geqslant 2$, H — фиксированный граф $c \chi(H) = r + 1$, morda $ex(n, H) = (1 - \frac{1}{r}) \frac{n^2}{2} + o(n^2)$.

Лемма 1. Пусть $r\geqslant 1, \varepsilon>0$. Тогда для всех достаточно больших n любой граф на n вершинах $c\left(1-\frac{1}{r}+\varepsilon\right)C_n^2$ рёбрами содержит подграф $K_{t*(r+1)}$, $r\partial e \ t = \Omega_{r,\varepsilon}(\log n).$

Доказательство. Рассмотрим сначала случай, когда все вершины имеют степень не менее $(1-\frac{1}{r}+\varepsilon)$ n. Будем доказывать по индукции по r.

База, r=1, надо найти $K_{t,t}$. Пусть v_1,\ldots,v_t — случайно выбранные t вершин из V, а X число их общих соседей.

$$EX = \sum_{u \in V} \frac{C_{\deg u}^t}{C_n^t} \geqslant n \frac{C_{n\varepsilon}^t}{C_n^t} \geqslant n \frac{(n\varepsilon - t)^t}{n^t} = n \left(\frac{n\varepsilon - t}{n}\right)^t.$$

Хотим, чтобы EX > t, для этого можно взять $t = \Omega_{\varepsilon}(\log n)$ подходит для небольшой константы. При таком t существуют v_1, \ldots, v_t с не менее, чем t общими соседями, это и есть $K_{t,t}$.

Докажем шаг индукции. Пусть мы нашли K_{T*r} , где $T=\Omega_{r,\varepsilon}(\log n)$ в графе G. Обозначим U_1,\dots,U_r — доли этого графа, $U=\bigcup_{i=1}^r U_i$.

Пусть v — случайная вершина G, X_v — число её соседей внутри U.

$$EX_v = \frac{1}{n} \sum_{v \in V} \sum_{(u,v) \in E} 1 = \frac{1}{n} \sum_{u \in U} \deg u \geqslant rT \left(1 - \frac{1}{r} + \varepsilon \right).$$

Однако $X_v \leqslant rT$, значит

$$\begin{split} EX_v \leqslant rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)P\left(X_v < rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)\right) + \\ rTP\left(X_v > rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)\right) = \\ rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right) + rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)P\left(X_v > rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)\right). \end{split}$$

Отсюда
$$P\left(X_v > rT\left(1 - \frac{1}{r} + \frac{\varepsilon}{2}\right)\right) \geqslant \frac{rT\frac{\varepsilon}{2}}{rT\left(\frac{1}{r} - \frac{\varepsilon}{2}\right)} \geqslant \frac{r\varepsilon}{r} \geqslant \varepsilon$$
.

Вывод: не менее εn вершин имеют хотя бы $rT\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)$ соседей в U. Обозначим его через $S,\,|S|\geqslant \varepsilon n.$

Далее, любая вершина из S имеет хотя бы εT соседей внутри U_i . Иначе, множество соседей в U имеет мощности сторого меньше, чем

$$\varepsilon T + (r-1)T = rT\left(1 - \frac{1}{r} + \frac{\varepsilon}{r}\right) \leqslant rT\left(1 - \frac{1}{r} + \frac{\varepsilon}{2}\right).$$

Пусть W_1,\dots,W_r случайные t-подмножества U_1,\dots,U_r , а X — число их общих соседей внутри S.

 $EX\geqslant |S|\left(rac{C_{arepsilon T}t}{C_T^t}
ight)^r$, тогда положим $t=rac{arepsilon}{2}T$, тогда $EX\geqslant arepsilon n\left(rac{arepsilon}{2}
ight)^{rt}\geqslant t$. Это выполнено при $t=c(r,arepsilon)\log n$ для подходящей константы c(r,arepsilon)>0.

Обратимся теперь к случаю, если не все степени достаточно большие. Покажем, что в G существует индуцированный подграф G' на s вершинах, все степени которого не меньше $\left(1-\frac{1}{r}+\varepsilon\right)s$, а $s\geqslant\frac{1}{2}\sqrt{\varepsilon}n$. Тогда по предыдущему рассуждению G' содержит K_{t*r} , где $t=\Omega_{r,\varepsilon}(\log s)=\Omega_{r,\varepsilon}(\log s)$.

Построим G' следующим образом: $G_n = G$. Далее:

- $\bullet\,$ если G_m содержит вершину степени < $\left(1-\frac{1}{r}+\frac{\varepsilon}{2}\right)m,$ то удалим её из
- продолжаем, пока процесс не остановится.

Пусть G_s — итоговый граф, тогда в нём не менее чем $|E(G_n)| - \left(1 - \frac{1}{r} + \frac{\varepsilon}{2}\right) (n+n-1+\ldots+s+1) \geqslant \left(1 - \frac{1}{r} + \varepsilon\right) C_n^2 - \left(1 - \frac{1}{r} + \frac{\varepsilon}{2}\right) C_{n+1}^2 = \frac{\varepsilon}{2} C_n^2 - n$ рёбер. С другой стороны, $|E(G_s)| \leqslant C_s^2 \Rightarrow C_s^2 \geqslant \frac{\varepsilon}{2} C_n^2 - n \Rightarrow s \geqslant \frac{1}{2} \sqrt{\varepsilon} n$. П

Доказательство теоремы Эрдёша-Стоуна. Так как $\chi(H)=r+1$, то Hвкладывается в $K_{(r+1)*m}$ для какого-то m. Значит $ex(n,H) \leqslant ex(n,K_{(r+1)*m})$, что по лемме не больше, чем $(1-\frac{1}{r})\frac{n^2}{2}+o(n^2)$. С другой стороны граф Турана $T_{n,r}$ не содержит H, значит $ex(n,H)\geqslant$

 $|E(T_{n,r})| = (1 - \frac{1}{r}) \frac{n^2}{2}$.

Двудольные графы

Теорема Эрдёша-Стоуна говорит про двудольные графы только, что $ex(n, H) = o(n^2)$. Займёмся выяснением более точной оценки.

Теорема 3 (Шош, Ковари, Туран, 1954). $ex(n,K_{s,t})\leqslant \frac{1}{2}(s-1)^{\frac{1}{t}}n^{2-\frac{1}{t}}+$

Доказательство. Пусть $d_1\geqslant\ldots\geqslant d_n$ — степени вершин G. Пусть, кроме того, $d_1 \geqslant \ldots \geqslant d_m \geqslant t > d_{m+1} \geqslant \ldots d_n$. Тогда

$$\sum_{i=1}^{n} C_{d_i}^t = \sum_{i=1}^{m} C_{d_i}^t > \frac{1}{t!} m \sum_{i=1}^{m} (d_i - t + 1)^t \frac{1}{m}.$$

По неравенству Йенсена $(E\xi^t\geqslant (E\xi)^t)$ получаем

$$\sum_{i=1}^{n} C_{d_{i}}^{t} = \frac{m}{t!} \left(\sum_{i=1}^{m} \frac{d_{i} - t + 1}{m} \right)^{t} \geqslant \frac{1}{t!} m^{1-t} \left(\sum_{i=1}^{m} (d_{i} - t + 1) \right)^{t} \geqslant \frac{1}{t!} n^{1-t} \left(\sum_{i=1}^{n} d_{i} - m(t-1) - \sum_{i=m+1}^{n} d_{i} \right)^{t} > \frac{1}{t!} n^{1-t} \left((s-1)^{\frac{1}{t}} n^{2-\frac{1}{t}} \right)^{t} = \frac{s-1}{t!} n^{t} > (s-1) C_{n}^{t}.$$

Рассмотрим v_1,\dots,v_t — случайные t вершин и введём X — число их общих соседей, тогда $EX=\frac{\sum\limits_{i=1}^n C^t_{d_i}}{C^t_n}>s-1$. Значит существуют $v_1,\dots,v_t,$ имеющие хотя бы s общих соседей, значит $K_{s,t}$ найдено Это только оценка, в отличие от теоремы Эрдёша-Стоуна, получить точную асимптотику оказывается совсем непросто. Известно, что если s > (t-1)!, то оценка из теоремы точна асимптотически. Однако, уже для s=t=4 поведение $ex(n,K_{4,4})$ неизвестно.

Утверждение 2. • Если G — дистанционный граф в \mathbb{R}^2 на n вершинах, то $|E(G)| = O(n^{\frac{3}{2}})$

• Для дистанционного графа в \mathbb{R}^3 на n вершинах $|E(G)| = O(n^{\frac{5}{3}})$

Доказательство. Нужно заметить, что в первом случае G не содержит $K_{3,2}$, а во втором $K_{3,3}$, и применить теорему.

5 Числа Турана для гиперграфов

Определение 6. Пусть n > b > k. Числом Турана T(n,b,k) называется минимальное рёбер в k-однородном гиперграфе на n вершинах и числом независимости < b.

$$T(n, b, k) = \min\{|E(H)| : H \in \mathcal{H}_k, |V(H)| = n, \alpha(G) < b\}.$$

Гиперграфы данного множества называются (n, b, k)-системами.

Пример 1.
$$T(n,b,2) = |E(\overline{T_{n,b-1}})| = C_n^2 - |E(T_{n,b-1})| \sim \frac{n^2}{2(b-1)}$$
.

Если C_v^k — все k-подмножества, C_v^b — все b-подмножества, (k-подмножество A представляет b-подмножество B, если $A \subset B$), то T(n,b,k) — наименьшая система общих представителей.

Утверждение 3.
$$T(n,b,k)\geqslant \lceil \frac{n}{n-k}T(n-1,b,k)\rceil$$
.

Доказательство. Пусть H=(V,E) — произвольная (n,b,k)-система. Возьмём одну вершину v и удалим её вместе с рёбрами, останется $H_v-(n-1,b,k)$ -система, в которой хотя бы T(n-1,b,k) рёбер. Тогда

$$|E(H)|(n-k) = \sum_{v \in V} |E(H_v)| \ge T(n-1, b, k) \cdot n,$$

откуда следует утверждение.

Утверждение 4. $\forall b>k\geqslant 2 \to \exists \lim_{n\to\infty} rac{T(n,b,k)}{C_n^k}=t(b,k).$

Доказательство. $\frac{T(n,b,k)}{C_n^k} \geqslant \frac{T(n-1,b,k)}{C_{n-1}^k}$ по утверждению, значит последовательность монотонна (и ограничена единицей).

Определение 7. Величина t(b,k) называется Турановской плотностью.

Из доказательства следует, что $T(n,b,k) \leq t(b,k)C_n^k$.

Утверждение 5. $T(n,b,k) \leqslant T(n-1,b,k) + T(n-1,b-1,k-1)$.

Доказательство. Пусть $H_1=(V,E_1)$ — это минимальная (n-1,b,k)-система, $H_2=(V,E_2)$ — это минимальная (n-1,b-1,k-1)-система. Возьмём $v\notin V$ и рассмотри $H=(V\cup\{v\},E_1\cup E_2'),E_2'=\{e\cap\{v\}:e\in E_2\}$. Тогда H — это (n,b,k)-система, значит $|E(H)|\geqslant T(n,b,k)$, а с другой стороны |E(H)|=T(n-1,b,k)+T(n-1,b-1,k-1).

Утверждение 6. $t(b,k) \le t(b-1,k-1)$.

Доказательство.
$$\frac{k}{n}T(n,b,k)=T(n,b,k)-\frac{n-k}{n}T(n,b,k)\leqslant T(n,b,k)-T(n-k)$$
 $1,b,k)\leqslant T(n-1,b-1,k-1)\Rightarrow \frac{T(n,b,k)}{C_n^k}=\frac{k}{n}\frac{T(n,b,k)}{C_{n-1}^{k-1}}\leqslant \frac{T(n-1,b-1,k-1)}{C_{n-1}^{k-1}}$. Переходя к пределу, получаем требуемое.

Утверждение 7 (из анализа). Пусть b_0, \ldots, b_{l-1} — циклически упорядоченные действительные числа, $b = \frac{b_0 + \ldots + b_{l-1}}{l}$. Тогда $\exists n : \forall s = 1, \ldots, l \to b_m + b_{m+1} + \ldots + b_{m+s-1} \geqslant sb$.

Доказательство. Возьмём циклический сдвиг, соответствующий минимуму префиксных сумм. \Box

6 Верхняя оценка на турановскую плотность

Теорема 4.
$$t(n,k) \leqslant \left(\frac{k-1}{b-1}\right)^{k-1}$$
.

Доказательство. Пусть V — некоторое множество из n вершин и возьмём l,d так, что $k = \lceil \frac{db}{l} \rceil$. Разделим V на примерно равные части A_0,\ldots,A_{l-1} и построим следующий гиперграф. Каждое $B \subset V, \ |B| = k,$ включается в H в качестве ребра, если числа $b_i = |B \cap A_i|$ удовлетворяют свойству: $\exists m : \forall s = 1,\ldots,d \to \sum_{i=1}^s b_{m+i-1} \geqslant s \frac{b}{l}.$

Покажем, что это (n,b,k)-система. Пусть $C\subset V$, |C|=b. Введём $c_i=|C\cap A_i|$. Для чисел c_0,\ldots,c_{l-1} существует сдвиг, для которого все частичные суммы не меньше $\sum_{i=1}^s c_{m+i-1}\geqslant s\frac{b}{l}$. Тогда выберем $B\subset C$ следующим образом $B=(C\cap A_m)\sqcup (C\cap A_{m+1})\sqcup\ldots\sqcup W$, где $W=C\cap A_{j+m}$. Заметим, что $\frac{db}{l}\leqslant k$, а это значит для всех $s=1,\ldots,l$ неравенство на префиксные суммы b_i будет следовать либо из того, что $b_i=c_i$ до какого-то момента, либо из того, что $s\leqslant d$.

Оценим теперь число рёбер:

$$|E(H)| = \sum_{m=0}^{l-1} \sum_{a_1,\dots,a_d} \prod_{i=1}^d C_{A_{m+i-1}}^{a_i}$$

Притом средняя сумма берётся по наборам a_1, \ldots, a_d , таким что $a_1, \ldots, a_d \in \{0, \ldots, k\}a_1 + \ldots + a_d = k, a_1 + \ldots + a_s \geqslant \frac{sb}{l} \forall s = 1, \ldots d$. Тогда

$$E(H) \leqslant l \sum_{a_1, \dots, a_d} \left(\prod_{i=1}^d C_{\frac{n}{l}}^{d_i} \right) \leqslant l \left(\frac{n}{e} \right)^k \sum_{a_1, \dots, a_d} \frac{1}{a_1! \dots a_d!}.$$

Положим l=b-1, d=k-1. Если условия на частичные суммы нет, то сумма по всем a_1, \ldots, a_d равна $\frac{d^k}{k!}$.

Если l=b-1, то $s\frac{b}{b-1}\in (s,s+1)$, то есть $a_1+\ldots+a_s\geqslant s\frac{b}{b-1}$ эквивалентно $a_1+\ldots+a_s>s$. Введем $y_i=a_i-1,\,y_1+\ldots+y_{k-1}=1,\,y_i\geqslant -1,\,y_1+\ldots+y_s>0 \forall s=1,\ldots,k$.

Тогда \exists ровно один циклический сдвиг последовательности $y_1,\dots,y_{k-1},$ такой, что все частичные суммы положительны.

Вывод:
$$\sum_{a_1,\dots,a_d} \frac{1}{a_1!\dots a_d!} = \frac{1}{k-1} \frac{(k-1)^k}{k!}$$
, стало быть $|E(H)| \leqslant (1+o(1))(b-1)\left(\frac{n}{b-1}\right)^k \frac{(k-1)^k}{k!} \Rightarrow t(b,k) \leqslant \left(\frac{k-1}{b-1}\right)^{k-1}$.

7 Центральная турановская плотность

Из оценки $t(b,k)\leqslant \left(\frac{k-1}{b-1}\right)^{k-1}$ следует при b=k+1, что $t(k+1,k)\leqslant \frac{1}{c}(1+o(1)).$

Теорема 5.
$$t(2k+1,2k) \leqslant \frac{C_{2k}^k}{2^{2k}} = O\left(\frac{1}{\sqrt{k}}\right)$$
.

Доказательство. Пусть $V=\{1,\ldots,n\}$, а $i_1<\ldots< i_{2k}$ — упорядоченный набор чисел. Тогда объявляем (i_1,\ldots,i_{2k}) ребром, если во множестве $\{i_1+1,i_2+2,\ldots,i_{2k}+2k\}$ ровно k чисел чётные.

Обозначим за \mathcal{A} множество таких наборов и проверим, что \mathcal{A} — это (n,2k+1,2k)-система. Будем делать это индукцией по k. База k=1 следует из того, что среди любых трёх чисел $a_1 < a_2 < a_3$ найдутся два числа одной чётности, которые будут образовывать ребро.

Пусть для $l \leq k-1$ всё доказано. Пусть $l=k,a_1 < \ldots < a_{2k+1}$. Если существует пара соседних чисел a_j,a_{j+1} одной чётности, то удалим их из набора и к оставшимся применим индукцию. По её предположению найдётся поднабор $a_1' < \ldots < a_{2k-2}'$ такой, что при добавлении индексов среди них будет ровно k-1 чётных чисел.

Теперь добавим к этому поднабору удалённые числа a_j, a_{j+1} . Получаем $a_1' < \ldots < a_t' < a_j < a_{j+1} < a_{t+1}' < \ldots < a_{2k-2}'$. При добавлении $(1,2,\ldots,2k)$ получаем $a_1' + 1 < \ldots < a_t' + t < a_j + t + 1 < a_{j+1} + t + 2 < a_{t+1}' + t + 3 < \ldots < a_{2k-2}' + 2k$, где, очевидно, будет половина чётных и половина нечётных чисел, так как $a_j + t + 1$ и $a_{j+1} + t + 2$ имеют разную чётность.

Если же чётность постоянно меняется, то достаточно удалить a_{k+1} .

Оценим теперь $|\mathcal{A}|$. Пусть $a_1 < \ldots < a_{2k}$ — ребро из $\mathcal{A}, x_i \equiv a_i \pmod 2, x_i \in \{0,1\}$. Положим $b_i = \frac{a_i - x_i}{2} \in [0; \frac{n}{2}]$. Тогда набор b_1, \ldots, b_{2k} может быть

выбран $\leqslant C_{\frac{n}{2}}^{2k}(1+o(1))$ способами. Вектор (x_1,\ldots,x_{2k}) выбирается C_{2k}^k способами. Значит $|\mathcal{A}| \leqslant C_{\frac{n}{2}}^{2k}(1+o(1))C_{2k}^k = C_n^{2k}2^{-2k}(1+o(1))$, откуда $t(2k+1,2k) \leqslant \lim_n \frac{|\mathcal{A}|}{C_2^{2k}} \leqslant C_{2k}^k 2^{-2k} = O\left(\frac{1}{\sqrt{k}}\right)$.

Насколько хороша эта оценка? Известны такие результаты:

- $0.409 \approx \frac{7 \sqrt{21}}{6} \leqslant t(3,4) \leqslant \frac{4}{9} \approx 0.44$. Предположение состоит в том
- Сидоренко (1982, 1987) $\frac{1}{k} \leqslant t(k+1,k) \leqslant \frac{\ln k}{2k} (1+o(1)).$
- для b=k+a, a=const оценка Франкла-Рёдля (1985) $t(k+a,k)\leqslant \frac{a(a+4+o(1))\ln k}{C_a^a}.$
- Жиро (1997) $t(k+1,k) \geqslant \frac{2}{k\left(1+\sqrt{\frac{k}{k+4}}\right)}$.
- для $b\geqslant k+\frac{k}{\log_2 k}$ оценка Сидоренко $t(b,k)\leqslant \frac{(b-k+1)(1+o(1))\ln C_b^k}{C_b^k}.$

8 Нижние оценки турановской плотности

Утверждение 8. $T(n,b,k)\geqslant \frac{C_n^k}{C_n^k}$.

Доказательство. Любое k-подмножество представляет не более C_{n-k}^{b-k} подмножеств. Если есть (n,b,k) система, то все подмножества представлены, значит $|E(H)|C_{n-k}b-k\geqslant C_n^b\Rightarrow |E(H)|\geqslant \frac{C_n^k}{C_k^k}$.

В терминах турановской плотности $t(b,k)\geqslant \frac{1}{C_h^k}\approx b^{-k}.$

Теорема 6 (Спенсер). Пусть $n \geqslant (b-1)\frac{k}{k-1}$. Тогда $T(n,b,k) \geqslant \left(\frac{n}{k}\right)^k \left(\frac{k-1}{b-1}\right)^{k-1}$.

Доказательство. Пусть H = (V, E) — это (n, b, k) система, то есть $\alpha(H) < b$.

Пусть X — случайное подмножество, выбранное схемой Бернулли с параметром $p.\ E|X|=np.$ Пусть Y — это число рёбер, полностью вошедших в $X,\ EY=|E|p^k.$ Удалим по одной вершине из каждого ребра, полностью попавшего в X, тогда останется X^* — независимое, значит $|X^*|\leqslant b-1\Rightarrow b-1\geqslant E|X^*|\geqslant E(|X|-Y)=np-|E|p^k\Rightarrow |E|\geqslant (np-b+1)p^{-k}.$ Максимизируя это по p, получаем, что $p=\frac{(b-1)k}{n(k-1)},$ а $|E|\geqslant \left(\frac{(b-1)k}{k-1}-(b-1)\right)\left(\frac{(b-1)k}{n(k-1)}\right)^{-k}=\left(\frac{n}{k}\right)^k\left(\frac{k-1}{b-1}\right)^{k-1}.$

Утверждение 9. Если H-k-однородный гиперграф, на n вершинах, тогда $\alpha(H)\geqslant \frac{k-1}{k}\frac{n}{t(H)^{\frac{1}{k-1}}}.$

Доказательство. Пусть $\alpha(H) = b - 1$, тогда H -это (n, b, k) система, тогда по теореме Спенсера

$$\frac{nt(H)}{k} = |E(H)| \geqslant T(n,b,k) \geqslant \left(\frac{n}{k}\right)^k \left(\frac{k-1}{b-1}\right)^{k-1} \Rightarrow b-1 \geqslant \frac{n}{k}(k-1)\frac{1}{t(H)^{\frac{1}{k-1}}}$$

Утверждение 10. $t(b,k) \approx \frac{1}{b^{k-1}}$ при $k = const, b \to \infty$.

9 Аналоги теоремы Турана для разреженных графов и гиперграфов

Теорема 7 (Айтаи, Комлош, Семереди, Ширер). Пусть $f(t) = \frac{t \ln t - t + 1}{(t - 1)^2}, f(0) =$ $1, f(1) = \frac{1}{2}$. Тогда, если $G - \operatorname{гра} \phi$ на n вершинах без треугольников, то $\alpha(G) \geqslant nf(t(G)).$

Доказательство. Заметим, что для $x \ge 0$ f(x) непрерывна, кроме того $f(x) \in (0;1)$ при $x > 0, f'(x) < 0, f''(x) \ge 0$. Также f(x) является решением уравнения $(x+1)f(x) = 1 + (x-x^2)f'(x)$.

Индукция по числу вершин в G. Обозначим t = t(G). Если $n \leqslant \frac{t}{f(t)}$, то всё доказано, так как соседи одной вершины являются независимыми

Пусть теперь v — произвольная вершина, d_1 — её степень, d_2 — средняя степень её соседей. Покажем, что можно выбрать v так, что

$$(d_1+1)f(t) \leqslant 1 + (td_1 + t - 2d_1d_2)f'(t) \tag{*}$$

Для этого возьмём вершину случайно и проверим это неравенство в среднем. Пусть Y — сумма степеней соседей $v, Y = d_1 d_2$.

$$EY = \frac{1}{n} \sum_{v} \sum_{u:(u,v)\in E} \deg u = \frac{1}{n} \sum_{u} \deg^{2} u \geqslant t^{2}.$$

В левой части неравенства в среднем стоит (t+1)f(t), правая часть в среднем не меньше $1 + (t^2 + t - 2t^2)f'(t) = 1 + (t - t^2)f'(t) \ge (t+1)f(t)$ в силу свойств f. Значит неравенство в самом деле выполнено в среднем, значит существует вершина, для которой выполнено указанное требование.

Удалим v из графа вместе с её соседями. Останется граф G', с |V(G')| =

 $|n-1-d_1| |E(G')| = \frac{nt}{2} - d_1 d_2$, так как G не содержит треугольников. $|t'| = t(G') = \frac{2|E(G')|}{|V(G')|} = \frac{nt-2d_1d_2}{n-1-d_1}$, значит по индукции $\alpha(G') \geqslant n'f(t')$. Значит $\alpha(G) \geqslant 1 + \alpha(G') \geqslant 1 + n'f(t')$. Оценим по формуле Тейлора $f(t') \geqslant$ f(t) + f'(t)(t'-t), так как f''(t) > 0, значит

$$\alpha(G) \geqslant 1 + n'(f(t) + f'(t)(t' - t)) = 1 + n'f(t) + n'f(t)t' - n'tf'(t) = 1 + (n - 1 - d_1)f(t) + f'(t)(nt - 2d_1d_2) - (n - 1 - d_1)tf'(t) = 1 + (n - 1 - d_1)f(t) + (t + td_1 - 2d_1d_2)f'(t) \geqslant (*) \geqslant (n - 1 - d_1)f(t) + (d_1 + 1)f(t) = nf(t).$$

Пусть R(s,t) — число Рамсея, то есть $\min\{n: \forall G=(V,E), |V|=n \to \alpha(G)\geqslant t\vee \omega(G)\geqslant s\}.$

Утверждение 11. $R(3,t) \leqslant \frac{t^2}{\ln t} (1 + o(1)).$

Доказательство. Если G=(V,E), |V|=n. Если $\omega(G)\geqslant 3$, то есть треугольник, иначе $\omega(G)<3$ и $t(G)\geqslant t$, тогда $\alpha(G)\geqslant t(G)\geqslant t$. Если $\omega(G)<3, t(G)< t$, то по теореме Ширера $\alpha(G)\geqslant nf(t)=\frac{n\ln t}{t}(1+o(1))\geqslant t$, если $n\geqslant \frac{t^2}{\ln t}(1+o(1))$.

Результат Кима (1995), улучшенный Бошаном, Кивашем, Гриффитсом (2013): $R(3,t)\geqslant \frac{1}{4}\frac{t^2}{\ln t}(1+o(1)).$

10 Точность оценки теоремы Ширера

Лемма 2. Пусть d=d(n)- последовательность такая, что $4\leqslant d\leqslant o(n^{\frac{1}{4}}),$ тогда существует последовательность графов G_n , что $V(|G_n|)=n, g(G_n)>3, t(G_n)\sim d, \alpha(G_n)\leqslant \frac{2n\log d}{d}(1+o(1)).$

Доказательство. Рассмотрим случайный граф $G(n,p), p=\frac{d}{n}$.

Если $X_n=|E(G(n,p))|$, то $EX_n=C_n^2p\sum \frac{nd}{2}, DX_n=C_n^2p(1-p)=o(dn).$ Тогда $P(|X_n-EX_n|\geqslant n^{\frac{2}{3}})\leqslant \frac{DX_n}{n^{\frac{4}{3}}}\to 0.$ Значит асимптотически почти наверное $C_n^2p-n^{\frac{2}{3}}\leqslant X_n\leqslant C_n^2p+n^{\frac{2}{3}},$ значит $X_n\sim \frac{nd}{2}.$

Оценим вероятность того, что в G(n,p) есть независимое множество размера $\left\lceil \frac{2n \ln d}{d} \right\rceil = b$. $P(\alpha(G(n,p)) \geqslant b) \leqslant C_n^b (1-p)^{C_b^2} \sim \frac{n^b}{b!} (1-p)^{C_b^2} \leqslant \left(\frac{ne}{b}\right)^b \exp\left(-pC_b^2\right) = \left(\frac{ne}{b} \exp\left(-p\frac{b-1}{2}\right)\right)^b \leqslant \left(\frac{\exp(1+o(1))}{2 \ln d}\right)^b \to b$, если $d \geqslant 4$.

Пусть Y — число треугольников в $\overset{\circ}{G}(n,p),\; EY^{'}=C_n^3p^3<\frac{d^3}{6}.\; P(Y\geqslant d^3)\leqslant \frac{1}{6}.$

Значит, для достаточно больших n существует G'_n на n вершинах, такой что число его рёбер есть $\frac{nd}{2}$, $\alpha(G'_n) < \frac{2n \ln d}{d}$, а число треугольников не больше d^3 . Удалим по ребру из каждого треугольника, получим граф G_n . $|E(G_n)| \geqslant |E(G'_n)| - d^3 \sim \frac{nd}{2}$. $\alpha(G_n) \leqslant \alpha(G'_n) + d^3 \sim \frac{2n \ln d}{d}$, так как $d = o(n^{\frac{1}{4}})$.

11 Оценки внедиагональных чисел Рамсея

Рассмотрим R(s,t) в случае фиксированного $s \ge 4$ и растущего t.

Лемма 3. Пусть G — на n вершинах со средней степенью вершины t, числом рёбер e и числом треугольников t. Пусть $p \in (0,1), np \geqslant 12$. Тогда G содержит индуцированный подграф G' такой, что $n' > \frac{np}{2}, e' < 3ep^2, h' < 3hp^3, t' < 6tp$.

Доказательство. Нам подойдёт случайный подграф, индуцированный по схеме Бернулли.

$$P\left(n'\leqslant \frac{np}{2}\right) < P\left(|n'-np|>\frac{np}{2}\right) \leqslant \frac{np(1-p)}{\frac{n^2p^2}{4}} < \frac{4}{np} \leqslant \frac{1}{3}.$$
 $Ee'=ep^2\Rightarrow P(e'\geqslant 3ep^2)\leqslant \frac{1}{3}$ по неравенству Маркова. $Eh'=hp^3\Rightarrow P(h'\geqslant 3hp^3)\leqslant \frac{1}{3}$ по неравенству Маркова. $t'=\frac{2e'}{n'}<\frac{12ep^2}{np}=6tp.$ Значит с положительной вероятностью искомый граф найдётся.

Лемма 4. Пусть $\varepsilon \in (0,2)$, $G - \varepsilon pa \phi$ на n вершинах со средней степенью t и числом треугольников $h < nt^{2-\varepsilon}$. Тогда $\alpha(G) \geqslant c' \frac{n \ln t}{t}$, где $c'(\varepsilon) > 0$ зависит только от ε .

Доказательство. Пусть $\gamma > 0$ — абсолютная константа такая, что для любого графа без треугольников выполнено $\alpha(H)\geqslant \gamma \frac{|V(H)|\ln t(H)}{t(H)}$. Положим $c' = \frac{\varepsilon \gamma}{168}$.

Если $t < 12^{\frac{2}{\varepsilon}}$, то все очевидно по теореме Турана. Пусть $t > 12^{\frac{2}{\varepsilon}}$. Применим к G лемму 3 с $p=t^{\frac{\varepsilon}{4}}-1$ и рассмотрим найденный индуцированный подграф G'. В нём будет не более $3hp^3$ треугольников, то есть меньше, чем $3nt^{2-\varepsilon}t^{\frac{1}{2}\varepsilon-2}p = 3npt^{-\frac{\varepsilon}{2}} \leqslant \frac{np}{4}.$

Удалим из каждого тругольника G' по вершине, получив G'' без тре-

$$n'' \geqslant n' - \frac{np}{4} \geqslant \frac{np}{4}.$$

$$e'' \leqslant e' < 3ep^{2}.$$

$$t'' = \frac{2e''}{n''} \leqslant \frac{24ep^{2}}{np} = 12p\frac{2e}{n} = 12t^{\frac{\varepsilon}{4}}.$$

Тогда по теореме Ширера $\alpha(G)\geqslant \alpha(G'')\geqslant \gamma\frac{n''\ln t''}{t''}\geqslant \gamma\frac{np}{4}\frac{\ln 12t^{\frac{\xi}{4}}}{12^{\frac{\xi}{4}}}=$ $\frac{\gamma}{48} \frac{n}{t} \ln 12t^{\frac{\varepsilon}{4}} \geqslant \frac{\gamma \varepsilon}{168} \frac{n \ln t}{t}.$

Теорема 8. Пусть $t \ge t_0(s)$, тогда $R(s,t) \le c^s \frac{t^{s-1}}{(\ln t)^{s-2}}$, где $0 < c \le 20000$ абсолютная константа.

Доказательство. Из теоремы АКС известно, что γ можно взять равной $\frac{1}{100}$. Выберем в лемме 4 $\varepsilon=\frac{1}{s-2}0.97<\varepsilon<\frac{1}{s-2}0.99$. Индукция по s с уже доказанной базой s=3. Пусть для s'< s всё доказано, докажем теперь

Рассмотрим произвольный граф G на n вершинах, $n \geqslant c^s \frac{t^{s-1}}{(\ln t)^{s-2}}$. Если $\omega(G)\geqslant s$, то очевидно. Если $\omega(G)< s$ и $m=c^{s-1}\frac{t^{s-2}}{(\ln t)^{s-3}}\leqslant \Delta(G)$, то среди соседей вершины максимальной степени также найдется либо s-1-клика, либо t-независимое множество, то есть все выпонено. То есть считаем, что $\omega(G) < s, m > \Delta(G) \geqslant t(G)$. Обозначим через h число треугольников в G.

Если $h < nm^{2-\varepsilon}$, то по лемме $4 \alpha(G) \geqslant c' \frac{n \ln m}{m} \geqslant 20000 c' \frac{t}{\ln t} \ln m \geqslant \frac{50}{48} \varepsilon \frac{t}{\ln t} (s-2) \ln \frac{t}{\ln t} \geqslant \frac{0.97}{0.96} t \left(\frac{\ln t - \ln \ln t}{\ln t} \right) \geqslant t$ при всех достаточно больших t. Если $h \geqslant nm^{2-\varepsilon}$, то есть вершина, которая содержится в $3m^{2-\varepsilon}$ тре-

угольниках. Пусть G' — это граф соседей v, тогда $|E(G')|\geqslant 3m^{2-\varepsilon}$, при том, что |V(G')| < m. Значит в G' есть вершина w степени хотя бы $6m^{1-\varepsilon}$.

Индуцируем на соседях w подграф G''. Осталось показать, что $|V(G'')|\geqslant R(s-2,t)$. При достаточно больших t:

$$\begin{split} 6m^{1-\varepsilon} &= 6 \cdot \left(20000^{s-1} \frac{t^{s-2}}{(\ln t)^{s-3}}\right)^{1-\varepsilon} \geqslant 6 \cdot 20000^{(s-1)\frac{s-3}{s-2}} \frac{t^{(s-2)-0.99}}{(\ln t)^{(s-3)-0.98\frac{s-3}{s-2}}} > \\ 6 \cdot 20000^{s-2} \frac{t^{s-3}}{(\ln t)^{s-4}} \frac{t^{0.01}}{(\ln t)^{1-0.99\frac{s-3}{s-2}} 20000^{\frac{1}{s-2}}} > 20000^{s-2} \frac{t^{s-3}}{(\ln t)^{s-4}} \geqslant R(s-2,t). \end{split}$$

С помощью локальной леммы можно вывести нижнюю оценку $R(s,t) \ge c(s) \left(\frac{t}{\ln t}\right)^{\frac{s+1}{2}}$, что сходится при s=3, но существенно расходится при больших s. В других результатах улучшена степень логарифма, но по степени t результатов нет.

Далее мы займёмя графами, не содержащими, например, K_4 и покажем, что $\alpha(G)\geqslant c\frac{n\ln t}{t\ln\ln t}$, что является нетривиальной оценкой по сравнению с теоремой Турана. Предположение состоит в том, что повторный логарифм можно убрать, притом это верно для любых подграфов (не только K_4).