实验报告

切变模量

李佩哲 PB21051049 2022 年 4 月 11 日

1 实验目的

测量金属丝的扭转模量与切变模量.

2 原理

根据剪切胡克定律

$$\tau = G\gamma$$

有

$$\tau_{\rho} = G\gamma_{\rho} = G\rho \frac{\mathrm{d}\phi}{\mathrm{d}l}$$

于是横截面上距轴线距离 ρ 处切应力恢复力矩为

$$\tau \rho 2\pi \rho d\rho = 2\pi G \rho^3 \frac{d\phi}{dl} d\rho$$

从而总恢复力矩为

$$M = \frac{\pi}{2} G R^4 \frac{\phi}{L}$$

故

$$G = \frac{2ML}{\pi R^4 \phi}$$

让金属丝与摆进行转动,根据简谐运动的规律,有

$$T_0 = 2\pi \sqrt{\frac{I_0}{D}}$$

其中 I_0 为摆的转动惯量. 为了便于测量与计算,在圆盘上放置一质量为 m 的金属环,则扭摆的周期变为

$$T_1 = 2\pi \sqrt{\frac{I_0 + I_1}{D}}$$

结合之前的式子,最终可得

$$D = \frac{2\pi^2 m \left(r_{|\!\!|\!\!|}^2 + r_{|\!\!|\!\!|\!\!|}^2\right)}{T_1^2 - T_0^2}$$

$$G = \frac{4\pi Lm \left(r_{|\mathcal{V}|}^2 + r_{\mathcal{S}|}^2\right)}{R^4 \left(T_1^2 - T_0^2\right)}$$

根据这个式子, 扭转模量 D 与切变模量 G 可求.

3 实验仪器

扭摆、金属环、秒表等.

测量记录 4

原始数据见附件.

整理如下

			序号	零误差/mm	d/m
			1	0.000	0.000781
数据	 值		2	0.000	0.000779
	0.4420		3	0.000	0.000779
L/m m/kg d_{eta}/m $d_{eta h}/\mathrm{m}$	0.4420 0.5645 0.08402 0.10378		4	0.000	0.000776
			5	0.000	0.000776
			6	0.000	0.000776
			7	0.000	0.000775
表 1: 次要误差数据		8	0.000	0.000778	
		9	0.000	0.000779	

序号	$t_0(\pi, 50T)/\mathrm{s}$	$t_1(\pi, 80T)/\mathrm{s}$
1	301.29	112.66
2	301.25	112.73
3	301.32	112.81
4	301.36	112.79
5	301.32	112.80
6	301.31	112.89

表 3: 总时间

表 2: 金属丝直径

分析与讨论 5

5.0.1 数据处理

由表1可知,L=0.4420 m,m=0.5645 kg, $r_{\rm h}=0.04201$ m, $r_{\rm sh}=0.05189$ m.

由表2可知, 金属丝半径 R≈ 0.00038883 m.

曲表3可知,
$$T_1 \approx 3.7664 \text{ s}$$
, $T_0 \approx 2.2556 \text{ s}$.
所以 $D = \frac{2\pi^2 m \left(r_{|\gamma|}^2 + r_{|\gamma|}^2\right)}{T_1^2 - T_0^2} = 5.4594 \times 10^{-3} \text{ N·m}$, $G = \frac{4\pi L m \left(r_{|\gamma|}^2 + r_{|\gamma|}^2\right)}{R^4 \left(T_1^2 - T_0^2\right)} \approx 67.204 \text{ GPa}$.

5.0.2 误差分析

由
$$D = \frac{2\pi^2 m (r_{h}^2 + r_{h}^2)}{T_1^2 - T_0^2}$$
 知,相对不确定度

$$\begin{split} \frac{\Delta D}{D} &= \sqrt{\left(\frac{\Delta m}{m}\right)^2 + \left(\frac{2r_{||\Delta}\Delta r_{||\Delta}}{r_{||\Delta}^2 + r_{||\Delta}^2}\right)^2 + \left(\frac{2r_{||\Delta}\Delta r_{||\Delta}}{r_{||\Delta}^2 + r_{||\Delta}^2}\right)^2 + \left(\frac{2T_1\Delta t}{n_1\left(T_1^2 - T_0^2\right)}\right)^2 + \left(\frac{2T_0\Delta t}{n_0\left(T_1^2 - T_0^2\right)}\right)^2} \\ &= \sqrt{\left(\frac{0.1461}{564.5}\right)^2 + \left(\frac{2\times0.04201\times2.124\times10^{-5}}{0.04201^2 + 0.05189^2}\right)^2 + \left(\frac{2\times0.05189\times2.124\times10^{-5}}{0.04201^2 + 0.05189^2}\right)^2} \\ &+ \left[\frac{2\times3.7664\times0.074968}{80\left(3.7664^2 - 2.2556^2\right)}\right]^2 + \left[\frac{2\times2.2556\times0.035621}{50\left(3.7664^2 - 2.2556^2\right)}\right]^2 = 0.109472\% \end{split}$$

由
$$G = \frac{4\pi Lm(r_{P_1}^2 + r_{P_1}^2)}{R^4(T_1^2 - T_0^2)}$$
 知,相对不确定度

$$\begin{split} \frac{\Delta G}{G} &= \sqrt{\left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta m}{m}\right)^2 + \left(\frac{2r_{\beta}\Delta r_{\beta}}{r_{\beta}^2 + r_{\beta}^2}\right)^2 + \left(\frac{2r_{\beta}\Delta r_{\beta}}{r_{\beta}^2 + r_{\beta}^2}\right)^2 + \left(\frac{4\Delta R}{R}\right)^2 + \left(\frac{2T_1\Delta t}{n_1\left(T_1^2 - T_0^2\right)}\right)^2 + \left(\frac{2T_0\Delta t}{n_0\left(T_1^2 - T_0^2\right)}\right)^2} \\ &= \sqrt{\left(\frac{0.001021}{0.4420}\right)^2 + \left(\frac{0.1461}{564.5}\right)^2 + \left(\frac{2\times0.04201\times2.124\times10^{-5}}{0.04201^2 + 0.05189^2}\right)^2 + \left(\frac{2\times0.05189\times2.124\times10^{-5}}{0.04201^2 + 0.05189^2}\right)^2} \\ &+ \left(\frac{4\times4.246\times10^{-6}}{0.0003883}\right)^2 + \left[\frac{2\times3.7664\times0.074968}{80\left(3.7664^2 - 2.2556^2\right)}\right]^2 + \left[\frac{2\times2.2556\times0.035621}{50\left(3.7664^2 - 2.2556^2\right)}\right]^2 = 4.38129\% \end{split}$$

故 $\Delta D=0.109472\%D=5.977\times 10^{-6}$ N·m, $\Delta G=4.38129\%G=2.944$ GPa 综上, $D=5.4594\pm 0.005977$ N·mm, $G=67.204\pm 2.944$ GPa

6 思考

位了提高实验精度,本实验对主要误差的来源的物理量进行了多次测量,并在设计实验时结合已知 数据进行适当的估算。

在具体测量时应注意控制变量,保持金属丝伸直、圆盘转动水平等等。.