1. (17%) Evaluate the linear convolution (h*f) (8%) and 3×3 circular convolution $(h\otimes f)$ (9%) of h and f below. The shaded grids indicate the origin (0,0) of the image spatial coordinate.

h(x,y)			
1	-1	0	
-1	0	0	
0	0	0	

	f(x,y)	
1	2	3
4	5	4
3	2	1

- 2. (10%) Consider the design of Wiener filter $H_W(u,v) = \hat{F}(u,v)/G(u,v)$. Assume the degradation function is a 2nd-order Butterworth lowpass filter (β =1) with cutoff frequency D_0 . (a) Determine the SNR if the overall gain of Wiener filter is 1.2 at D_0 (5%). (b) What is the DC gain of the Wiener filter in (a) (5%)?
- 3. (14%) (a) Determine the values of H, S and I in HSI color model for a color with normalized (R,G,B) = (0.6,0.7,0.5) (6%). (b) Determine the values of C, M, Y and K in CMYK model for this color (8%).
- 4. (9%) Prove the circular convolution property of 2D inverse DFT, that is, inverse DFT $\{F(u,v)H(u,v)\} = f(x,y) \otimes h(x,y)$, given F(u,v) is $M \times N$ DFT of f(x,y), H(u,v) is $M \times N$ DFT of h(x,y), and operator \otimes indicates $M \times N$ circular convolution.
- 5. (30%) Briefly describe
 - (a) the differences of isopreference curves between crowd and Lena's face (5%),
 - (b) the assumption for the degradation function and the added noise in the degradation model (5%)
 - (c) the differences between the band filter and the notch filter (5%),
 - (d) the mechanism of ringing effect caused by ideal filter (5%).
 - (e) the scheme for determining the direction of motion from an image degraded by uniform-linear motion blurring (5%).
 - (f) Consider a real 4×4 function f(x,y) and its 4×4 DFT F(u,v). Determine $g(x,y) = DFT^{-1}\{F(u,v)(j)^u\}$, expressed in f(x,y) (5%).
- 6. (16%) Consider a 3 bits/pixel image f_r (size 10×10) with the gray levels $0 \le r_i \le 7$, i = 0, ..., 7. The number of pixels (n_i) with gray level r_i is: $n_0=10$, $n_1=30$, $n_2=25$, $n_3=20$, $n_4=15$, $n_5=n_6=n_7=0$. (a) Determine the intensity transformation function z = T(r) to produce the output image f_z with the new histogram (probability density function) $\{0.2\ 0.2\ 0.1\ 0.1\ 0.1\ 0.1\ 0.1\ 0.1\ 0.1\}$ (8%). (b) Determine the actual histogram of the output image (8%).
- 7. (9%) Consider the image in Fig 7A. Sketch the intensity transformation curves for generating the output images in Figs 7B 7D.

Fig 7A Fig 7B Fig 7C Fig 7D