Digital Logic Design

Chapter 5

Synchronous Sequential Logic

Combinational Circuits

★ Output is function of input only

i.e. no feedback

When input changes, output may change (after a delay)

Analysis Procedure

★ Boolean Expression Approach

2/65

Sequential Circuits

***** Asynchronous

***** Synchronous

Latches

★ SR Latch

$S R Q_0$	Q	Q '	
0 0 0	0	1	$\left.\right\} Q = Q_0$
0 0 1	1	0	
0 1 0	0	1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0 1 1	0	1	
1 0 0	1	0	Q = 1
1 0 1	1	0	J Q - 1
1 1 0	0	0	Q = Q
1 1 1	0	0	Q = Q

Latches

★ SR Latch

S R	Q
0 0	Q_0
0 1	0
1 0	1
1 1	<i>Q</i> = <i>Q</i> '=0

No change Reset Set Invalid

SR Latch with Control Input

CSR	Q
0 x x	Q_0
1 0 0	Q_0
1 0 1	0
1 1 0	1
1 1 1	Q=Q

No change
No change
Reset
Set
Invalid

Controlled Latches

$\star D$ Latch (D = Data)

CD	Q
0 x	Q_0
1 0	0
1 1	1

No change Reset Set

Controlled Latches

$\star D$ Latch (D = Data)

C D	Q
0 x	Q_0
1 0	0
1 1	1

No change Reset

Set

Q(t+1) = D

When Clock is enabled

Q(t+1) = Q(t)When Clock is disabled

Controlled Latches (Task 1)

 $\star D$ Latch (D = Data)

CD	Q
0 x	Q_0
1 0	0
1 1	1

No change Reset

Set

Timing Diagram

Q(t+1) = D

When Clock is enabled

Q(t+1) = Q(t)When Clock is disabled

Controlled Latches

$\star D$ Latch (D = Data)

C D	Q
0 x	Q_0
1 0	0
1 1	1

No change Reset Set

Timing Diagram

Q (t+1) = D When Clock is enabled

$$Q(t+1) = Q(t)$$

When Clock is disabled

★ Controlled latches are level-triggered

Q(t+1) = D

When Clock is enabled

Q(t+1) = Q(t)When Clock is disabled

★ Flip-Flops are edge-triggered

Positive Edge

Negative Edge

$$D = JQ' + K'Q$$

$$Q(t+1) = D = JQ' + K'Q$$

★ T Flip-Flop

$$D = JQ' + K'Q$$

$$D = TQ' + T'Q = T \oplus Q$$

★ Analysis / Derivation

J	K	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

No change

J	K	Q(t)	Q(t+1)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$Q(t+1) = JQ' + K'Q$$

Flip-Flop Characteristic Tables

D	Q(t+1)
0	0
1	1

Reset Set

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(t)

No change
Reset
Set
Toggle

T	Q(t+1)
0	Q(t)
1	Q'(t)

No change Toggle

D	Q(t+1)
0	0
1	1

$$Q(t+1) = D$$

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(t)

$$Q(t+1) = JQ' + K'Q$$

T	Q(t+1)
0	Q(t)
1	Q'(t)

$$Q(t{+}1) = T \oplus Q$$

Clocked Sequential Circuits

- 1) Analyzing a clocked sequential circuit
- 2) Designing a sequential circuit to address a problem

Analyzing a clocked sequential circuit

- 1. A circuit will be given and we must understand the boundary between combinational stage and sequential stage
- 2. Then identify the following specifications
 - a) No. flip flops and what types
 - b) How many external input
 - c) How many external output
 - d) No. of state variable (n)
 - e) No of states, 2ⁿ

Analyzing a clocked sequential circuit

- 3. Write down the equation of Flip Flop Input, External Output
- 4. Write down the equation for flipflop output (known as state equation). This can be written by combining (3) with the flip flop's driving equation.
- 5. Draw the state table
- 6. Draw the state diagram

- **★** The State
 - State = Values of all Flip-Flops

Example

AB=00

★ State Equations

$$A(t+1) = D_A$$

$$= A(t) x(t) + B(t) x(t)$$

$$= A x + B x$$

$$B(t+1) = D_B$$

$$= A'(t) x(t)$$

$$= A' x$$

$$y(t) = [A(t) + B(t)] x'(t)$$
$$= (A + B) x'$$

★ State Table (Transition Table)

Present State		Input		ext ate	Output
A	B	X	A	B	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

$$A(t+1) = A x + B x$$

$$B(t+1) = A'x$$

$$y(t) = (A + B) x'$$

★ State Table (Transition Table)

Present	N	ext	Sta	te	Output		
State	x =	= ()	x =	= 1	x = 0	x = 1	
A B	A	B	A	B	y	y	
0 0	0	0	0	1	0	0	
0 1	0	0	1	1	1	0	
1 0	0	0	1	0	1	0	
11	0	0	1	0	1	0	

$$A(t+1) = A x + B x$$

$$B(t+1) = A'x$$

$$y(t) = (A + B) x'$$

★ State Diagram

Present	N	lext	Stat	Output		
State	<i>x</i> =	= 0	<i>x</i> =	= 1	x = 0	x = 1
A B	A	B	A	B	y	y
0 0	0	0	0	1	0	0
0 1	0	0	1	1	1	0
1 0	0	0	1	0	1	0
1 1	0	0	1	0	1	0

★*D* Flip-Flops

Present State	Inj	put	Next State
A	X	y	A
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$A(t+1) = D_A = A \oplus x \oplus y$$

$\star JK$ Flip-Flops

	sent ate	I/P	Next State		Flip-Flop Inputs)
A	B	X	A	B	J_A	K_{A}	J_B	K_B	
0	0	0	0	1	0	0	1	0	
0	0	1	0	0	0	0	0	1	
0	1	0	1	1	1	1	1	0	
0	1	1	1	0	1	0	0	1	
1	0	0	1	1	0	0	1	1	
1	0	1	1	0	0	0	0	0	
1	1	0	0	0	1	1	1	1	
1	1	1	1	1	1	0	0	0	

$$J_A = B$$
 $K_A = B x'$
 $J_B = x'$ $K_B = A \oplus x$

$$A(t+1) = J_A Q'_A + K'_A Q_A$$

= $A'B + AB' + Ax$
 $B(t+1) = J_B Q'_B + K'_B Q_B$
= $B'x' + ABx + A'Bx'$

$\star JK$ Flip-Flops

	Present State			ext ate	Flip-Flop Inputs)
A	B	X	A	B	J_A	K_{A}	J_B	K_B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

★ T Flip-Flops

Present State		I/P Next State		F.F Inputs		O/P	
A	B	x	A	B	T_A	T_B	y
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	1	0	0	0
0	1	1	1	0	1	1	0
1	0	0	1	0	0	0	0
1	0	1	1	1	0	1	0
1	1	0	1	1	0	0	1
1	1	1	0	0	1	1	1

$$T_{A} = B x \qquad T_{B} = x$$

$$y = A B$$

$$A(t+1) = T_{A} Q'_{A} + T'_{A} Q_{A}$$

$$= AB' + Ax' + A'Bx$$

$$B(t+1) = T_{B} Q'_{B} + T'_{B} Q_{B}$$

$$= x \oplus B$$
32

★ T Flip-Flops

	sent ate	I/P	Next State			.F outs	O/P
A	B	x	A	B	T_A	T_B	y
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	1	0	0	0
0	1	1	1	0	1	1	0
1	0	0	1	0	0	0	0
1	0	1	1	1	0	1	0
1	1	0	1	1	0	0	1
1	1	1	0	0	1	1	1

Mealy and Moore Models

- **★ The Mealy model:** the outputs are functions of both the present state and inputs
 - The outputs may change if the inputs change during the clock pulse period.
 - **♦** The outputs may have momentary false values unless the inputs are synchronized with the clocks.
- **★ The Moore model:** the outputs are functions of the present state only.
 - The outputs are synchronous with the clocks.

Mealy and Moore Models

Fig. 5.21 Block diagram of Mealy and Moore state machine

Mealy and Moore Models

Mealy

Present State	I/P	Next State	O/P	
A B	X	A B	y	
0 0	0	0 0	0	
0 0	1	0 1	0	
0 1	0	0 0	1	
0 1	1	1 1	0	
1 0	0	0 0	1	
1 0	1	1 0	0	
1 1	0	0 0	1	
1.1	1	1 0	0	

For the same state, the output changes with the input

Moore

Pres Sta		I/P		ext ate	O/P
A	B	x	\boldsymbol{A}	B	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	1
					1

For the same state, the output does not change with the input

Moore State Diagram

Design Procedure

- **★** Design Procedure for sequential circuit
 - The word description of the circuit behavior to get a state diagram;
 - State reduction if necessary;
 - Assign binary values to the states;
 - Obtain the binary-coded state table;
 - Choose the type of flip-flops;
 - Derive the simplified flip-flop input equations and output equations;
 - Draw the logic diagram;

Design a Clocked Sequential Circuit

- 1. A problem will be given and we have to design a circuit to address it
- 2.Then identify the following specifications from the statements
 - a) No. flip flops and what types --- (often easier to find after step 3)
 - b) How many external input
 - c) How many external output
 - d) No. of state variable (n)
 - e) No of states, 2ⁿ

Design a Clocked Sequential Circuit

- 3. Draw the state diagram
- 4. Draw the state table
- 5. Write down the equation for flipflop output (known as state equation). This can be written by combining (3) with the flip flop's driving equation.
- 6. Write down the equation of Flip Flop Input, External Output
- 7. Draw circuit diagram

Design of Clocked Sequential Circuits

Design of Clocked Sequential Circuits

★ Example:

Detect 3 or more consecutive 1's

Present State		Input		ext ate	Output
A	B	X	A	B	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Design of Clocked Sequential Circuits

★ Example:

Detect 3 or more consecutive 1's

	sent ate	Input	Next State		Output
A	B	X	A	B	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

$$A(t+1) = D_A(A, B, x)$$

= $\sum (3, 5, 7)$
 $B(t+1) = D_B(A, B, x)$
= $\sum (1, 5, 7)$
 $y(A, B, x) = \sum (6, 7)$

Design of Clocked Sequential Circuits with D-F-F.

★ Example:

Detect 3 or more consecutive 1's

$$D_A(A, B, x) = \sum (3, 5, 7)$$
$$= A x + B x$$

$$D_B(A, B, x) = \sum (1, 5, 7)$$

= $A x + B'x$

$$y(A, B, x) = \sum (6, 7)$$
$$= A B$$

ı			3	
	0	0	1	0
\overline{A}	0	1	1	0
•				

	0	1	0	0	
\overline{A}	0	1	1	0	
-					

 \boldsymbol{R}

		<i>B</i>			
	0	0	0	0	
\overline{A}	0	0	1	1	
_		ر ا	c		

Design of Clocked Sequential Circuits with DF.F.

★ Example:

Detect 3 or more consecutive 1's

Synthesis using **D** Flip-Flops

$$D_A = A x + B x$$

$$D_B = A x + B'x$$

$$y = A B$$

Flip-Flop Excitation Tables

Present State	Next State	F.F. Input
Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

Present State	Next State	F.F. Input		
Q(t)	Q(t+1)	J	K	
0	0	0	X	
0	1	1	X	
1	0	X	1	
1	1	X	0	

		(No change) (Reset)
		(<mark>Set)</mark> (Toggle)
		(Reset) (Toggle)
<	00	(No change) (<mark>Set</mark>)

Q(t)	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

Design of Clocked Sequential Circuits with

★ Example:

Detect 3 or more consecutive 1's

	sent ate	Input	Ne Sta				Flop outs	
\boldsymbol{A}	B	X	A	B	J_A	K_{A}	J_B	KB
0		0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	0	0	0	X	X	1
0	1	1	1	0	1	X	X	1
1	0	0	0	0	X	1	0	X
1	0	1	1	1	X	0	1	X
1	1	0	0	0	X	1	X	1
1	1	1	1	1	X	0	X	0

Synthesis using JK F.F.

$$J_{A}(A, B, x) = \sum (3)$$

$$d_{JA}(A, B, x) = \sum (4,5,6,7)$$

$$K_{A}(A, B, x) = \sum (4,6)$$

$$d_{KA}(A, B, x) = \sum (0,1,2,3)$$

$$J_{B}(A, B, x) = \sum (1,5)$$

$$d_{JB}(A, B, x) = \sum (2,3,6,7)$$

$$K_{B}(A, B, x) = \sum (2,3,6)$$

$$d_{KB}(A, B, x) = \sum (0,1,4,5)$$

Design of Clocked Sequential Circuits with JK-F.F.

★ Example:

Detect 3 or more consecutive 1's

Synthesis using JK Flip-Flops

$$J_A = B x K_A = x'$$

$$J_B = x K_B = A' + x'$$

ı		<i>B</i>			
	0	0	1	0	
\overline{A}	X	X	X	X	
		,	c		

Design of Clocked Sequential Circuits with T

★ Example:

Detect 3 or more consecutive 1's

Present State		Input	Next State			F. put
A	B	X	\boldsymbol{A}	B	T_{A}	T_B
0		0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	0	0	1
0	1	1	1	0	1	1
1	0	0	0	0	1	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	1	1	1	0	0

Synthesis using T Flip-Flops

$$T_A(A, B, x) = \sum (3, 4, 6)$$

 $T_B(A, B, x) = \sum (1, 2, 3, 5, 6)$

Design of Clocked Sequential Circuits with T F.F.

★ Example:

Detect 3 or more consecutive 1's

Synthesis using T Flip-Flops

$$T_A = A x' + A'B x$$

$$T_B = A'B + B \oplus x$$

- **★** Design a 3 bit Binary Counter
- **★** Ask yourself:
 - How many numbers to count : $8 (0 \text{ to } 2^3 1)$
 - How many states: 8 (one for each number)
 - How many states variable: 3
 - Is there any manual input??
 - Is there any output??
 - Does it repeat or stop after 8?

Now draw the state diagram and state table

- **★** Can you now design even/odd number counter?
- ***** Ask yourself the same questions:
 - How many numbers to count : ?
 - How many states: ? (Any Missing states?)
 - How many states variable : ?
 - Is there any manual input??
 - Is there any output??
 - Does it repeat or stop after 8?

Now draw the state diagram and state table

- **★** How about a random number generator.
- **★** Check the following state diagram and try to identify what it is trying to do:

- **★** How about a random number generator.
- **★** Check the following state diagram and try to identify what it is trying to do:

★ How about a random number generator.

Pre	Present state			Next state		JK flip-flop inputs					
A	В	С	A	В	С	J_A	K_A	J_{B}	$K_{\mathbf{B}}$	J_{C}	$K_{\mathbf{C}}$
0	0	0	0	1	1	0	d	1	d	1	d
0	0	1	_	_	_	d	d	d	d	d	d
0	1	0	_	_	_	d	d	d	d	d	d
0	1	1	1	0	1	1	d	d	1	d	0
1	0	0	_	_	_	d	d	d	d	d	d
1	0	1	1	1	1	d	0	1	d	d	0
1	1	0	0	0	0	d	1	d	1	0	d
1	1	1	1	1	0	d	0	d	0	d	1

A	C 00	01	11	10
0	o	d	1	d
1	d	d	d	a

$$\boldsymbol{J}_{\boldsymbol{A}} = \boldsymbol{B}$$

A	C 00	01	11	10
o	1	d	d	d
1	d	1	d	d

 $\mathbf{J_B}=1$

$$\boldsymbol{J}_{\mathbf{C}} = \overline{\boldsymbol{A}}$$

$$K_A = \overline{C}$$

$$\mathbf{K_B} = \overline{\mathbf{A}} + \overline{\mathbf{C}}$$

$$K_C = A B$$

- **★** More complex problem:
- **★** How about detecting a specific bit pattern?
 - 1001

- **★** More complex problem:
- **★** How about detecting a specific bit pattern?
 - 1001

State Reduction and Assignment

- **★** State Reduction
 Reductions on the
 number of flip-flops and
 the number of gates.
 - A reduction in the number of states may result in a reduction in the number of flip-flops.
 - An example state diagram showing in Fig. 5.25.

Fig. 5.25 State diagram

State Reduction

```
State: a a b c d e f f g f g a Input: 0 1 0 1 0 1 1 0 1 0 0
Output: 0 0 0 0 1 1 0 1 0 0
```

- Only the input-output sequences are important.
- Two circuits are equivalent
 - Have identical outputs for all input sequences;
 - **♦** The number of states is not important.

Fig. 5.25 State diagram

★ Equivalent states

• Two states are said to be equivalent

♦ For each member of the set of inputs, they give exactly the same output and send the circuit to the same state or to an equivalent state.

Table 5.6 *State Table*

Present State	Next	State	Output		
	x = 0	x = 1	x = 0	<i>x</i> = 1	
а	а	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	e	f	0	1	
e	a	f	0	1	
f	g	f	0	1	
g	a	f	0	1	

★ Reducing the state table

- e = g (remove g);
- d = f (remove f);

Table 5.7

Reducing the State Table

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	e	f	0	1	
e	а	f	0	1	
f	e	f	0	1	

• The reduced finite state machine

Table 5.8 *Reduced State Table*

	Next S	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
\overline{a}	а	b	0	0	
b	c	d	0	0	
c	а	d	0	0	
d	e	d	0	1	
e	a	d	0	1	

State: a a b c d e d d e d e a Input: 0 1 0 1 0 1 1 0 1 0 0 0 Output: 0 0 0 0 0 1 1 0 1 0 0

- The checking of each pair of states for possible equivalence can be done systematically using Implication Table.
- The unused states are treated as don't-care condition ⇒ fewer combinational gates.

Table 5.8 *Reduced State Table*

	Next S	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
c	а	d	0	0	
d	e	d	0	1	
<i>e</i>	a	d	0	1	

Fig. 5.26 Reduced State diagram