Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4 k^2)^2 t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+4k^2)^2t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_1^{\#1}\!$	$\frac{i\sqrt{2} k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3 (1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2) t_1 t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0
·	$J_1^{\#1} + \alpha \beta$	$J_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#_1} +^{\alpha}$	$t_1^{\#2} + \alpha$

$f_{1}^{\#2}$	0	0	0	<i>ikt</i> 1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>†1</u> 3	0	$-\frac{1}{3}\overline{l}kt_1\left -\frac{1}{3}\overline{l}\sqrt{2}kt_1\right $
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	1 1 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}ikt_1$
$f_1^{\#1}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}$ i k (t ₁ + t ₂)	$\frac{1}{3} k^2 (t_1 + t_2)$	0	0	0	0
$\omega_{1}^{\#2}_{+\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1 + t_2}{3}$	$-\frac{1}{3}ik(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $	0	0	0	0
$\omega_{1}^{\#1}_{\alpha\beta}$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0
	$\omega_1^{#1} + \alpha \beta \frac{1}{6}$	$\omega_{1}^{\#2} + \alpha^{eta}$	$f_1^{\#1} + \alpha \beta$	$\omega_1^{\#1} +^\alpha$	$\omega_1^{\#2} +^\alpha$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_1^{#2} +^{\alpha}$

$\omega_2^{#1}$ $\alpha_2^{#1}$ $\alpha_2^{#1}$ $\alpha_2^{#1}$	d	0	0	ر 1 <u>7</u>	7	$\omega_{0^{\text{-}}}^{\#1}$	0
$f_{2}^{\#1}$	iktl		$k^2 t_1$	0		$f_{0}^{#2}$	0
$\omega_2^{\#1}$	t_1	2	$\frac{ikt_1}{\sqrt{2}}$	0		$\omega_{0}^{\#1} f_{0}^{\#1} f_{0}^{\#2}$	0
	1	ω ₂ + 1 .	$f_2^{#1} + \alpha \beta$	$\omega_{2^-}^{\#1} +^{\alpha\beta\chi}$		ω_0^	$\omega_{o+}^{#1} + 0$
	74,	3,	f_2^{\sharp}	ω_{2}^{*}			8,
aints/gauge generators	Multiplicities	1	1	1	3	8	~
aints/g					$i_1\alpha = 0$ 3		

 $\tau_{1}^{\#2}\alpha + 2ik\sigma_{1}^{\#}$

 $\sigma_{0}^{\#1} == 0$

 $\tau_{0}^{\#1} == 0$

SO(3) irreps

 $\tau_0^{#2} == 0$

_	$\sigma_{0}^{#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0}^{\#1}$ †	0	0	0	0
$\sigma_{0^{+}}^{\#1} \dagger \\ \tau_{0^{+}}^{\#1} \dagger \\ \tau_{0^{+}}^{\#2} \dagger$	0	0	0	0
$ au_{0}^{\#2} \dagger$	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
$\alpha eta \chi$	_			

0

Total constraints:

$\sigma_{2}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{t_1}$	
$\tau_2^{\#1}_{+\alpha\beta}$	$-\frac{2\bar{i}\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_{2}^{\#1}_{+}$	1 —	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
·	$\sigma_{2}^{\#1} + \alpha^{\beta}$	$\tau_2^{\#1} + \alpha^{\beta}$	$\sigma_{2^{-}}^{\#1} +^{lphaeta\chi}$	

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $-\frac{t_2}{r_2} > 0$
Spin: 0
Parity: Odd

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$