Two applications for the last manuscript (device lifetime maximization)

- Precision salmon System
- Emergency communication

Precision salmon System

sensors were installed to collect information determining the vertical distribution of the fish in the cage, while a network of environmental sensors characterized local site conditions.

Fish response based on thermoregulation (temperature variations), oxygen levels, or weather data can be used to inform feeding schedule, oxygen supplementation, or stocking densities to ensure fish health.

re

aquaMeasure sensors

https://www.innovasea.com/open-ocean-aquaculture/

Secure Cloud Communications for Aquaculture

- All the information from <u>aquaMeasure sensors</u> is sent to the **aquaHub**, which can be mounted on existing infrastructure or on a feed barge.
- Roughly the size of a shoebox, the aquaHub uploads the data to the cloud via cellular, Wi-Fi or Iridium satellite

Replaced by UAV in remote area

Emergency communication

An example

In World War II, expendable sonobuoy was dropped into the ocean in response to the devastating destruction of shipping in the Atlantic caused by Uboats.

- The Directional Command Activated Sonobuoy System (DICASS) sonobuoy is an active acoustic sonobuoy used by the Navy to detect submarines.
- Operate for up to **one hour** at depths of up to 457 m (1,500 ft).
- The echo returns of the active sonar signals provide range, <u>bearing</u>, and <u>Doppler</u> information on acoustic contacts