### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2816

WATER-PRESSURE DISTRIBUTIONS DURING LANDINGS OF

A PRISMATIC MODEL HAVING AN ANGLE OF

DEAD RISE OF  $22\frac{1}{2}^{\circ}$  AND BEAM-LOADING

COEFFICIENTS OF 0.48 AND 0.97

By Robert F. Smiley

Langley Aeronautical Laboratory Langley Field, Va.

DISTRIBUTION STATEMENT A

Approved for Public Release Distribution Unlimited

**Reproduced From Best Available Copy** 

Washington November 1952

20000508 233

MOO-08-2264

### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

### TECHNICAL NOTE 2816

### WATER-PRESSURE DISTRIBUTIONS DURING LANDINGS OF

A PRISMATIC MODEL HAVING AN ANGLE OF

DEAD RISE OF  $22\frac{1}{2}^{\circ}$  AND BEAM-LOADING

COEFFICIENTS OF 0.48 AND 0.97

By Robert F. Smiley

### SUMMARY

Smooth-water landing tests of a prismatic model having an angle of dead rise of  $22\frac{10}{2}$  were made as part of a landing investigation being conducted at the Langley impact basin to determine the distribution of water pressure on seaplanes. Landings were made for beam-loading coefficients of 0.48 and 0.97 at fixed trims between 0.20 and 30.30 for a range of initial flight-path angles from 4.60 to 25.90 and also for 900.

Initial impact conditions, over-all loads and motions, and maximum pressures are presented in tables and figures for all the landings, together with instantaneous-pressure-distribution and wave-rise data.

The experimental wave rise, peak pressures, and pressure distributions are found to be in fair agreement with the predictions of the available theory; however, better agreement is obtained by modification of the theory.

### INTRODUCTION

In order to obtain information regarding the magnitude and distribution of the water-pressure distribution during seaplane landings, an experimental program is being conducted at the Langley impact basin on various prismatic models. The results of investigations on heavily loaded prismatic models having angles of dead rise of  $0^{\circ}$  and  $30^{\circ}$  have been reported in references 1 and 2, respectively. The present investigation was made on a lightly loaded prismatic model having beam-loading coefficients of 0.48 and 0.97, an angle of dead rise of  $22\frac{10^{\circ}}{2}$ , and a beam

NACA TN 2816

 $n_{i_w}$ 

of 3.39 feet. Fixed-trim landings were made in smooth water for a large range of trims, velocities, and flight-path angles. During each landing, time histories of the pressures, velocities, draft, and over-all loads were recorded.

The purpose of this paper is to present the experimental pressure-distribution, velocity, draft, wave-rise, and over-all-loads data obtained from this investigation and to use these data to evaluate and extend the existing knowledge of the wave rise and pressure distribution on V-bottom seaplanes. Pressure distributions are compared to show the effects of flight-path angle and beam loading, and experimental wave-rise and pressure data are compared with the available theoretical and empirical predictions that are summarized in references 3 and 4. In addition these theories are modified in order to obtain better agreement with the experimental data.

### SYMBOLS

| <b>A</b>                  | hydrodynamic aspect ratio  (Wetted length at keel) <sup>2</sup> (Wetted area projected normal to keel)               |
|---------------------------|----------------------------------------------------------------------------------------------------------------------|
| Ъ                         | beam of model, feet                                                                                                  |
| С                         | wetted semiwidth at any station along keel, feet                                                                     |
| ř                         | equivalent planing velocity, feet per second $ (\dot{f} = \dot{x} + \dot{y} \cot \tau = \frac{\dot{z}}{\sin \tau}) $ |
| $\mathbf{F}_{\mathbf{N}}$ | hydrodynamic force normal to keel (normal to surface for a flat plate), pounds                                       |
| g                         | acceleration due to gravity, 32.2 feet per second per second                                                         |
| J                         | empirical function of angle of dead rise                                                                             |
| ĸ                         | transverse-wave-rise ratio $\left(\frac{\tan \delta_2}{\tan \delta_1}\right)$                                        |

impact acceleration normal to undisturbed water surface,

g units  $\left(\frac{\ddot{z}\cos\tau}{g}\right)$ 

beams

| p                               | instantaneous pressure, pounds per square inch                                                                                 |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| t                               | time after water contact, seconds                                                                                              |
| v                               | instantaneous resultant velocity of model, feet per second                                                                     |
| W                               | weight of model and dropping weight, pounds                                                                                    |
| *                               | instantaneous velocity of model parallel to undisturbed water surface, feet per second                                         |
| <b>y</b>                        | instantaneous draft of model normal to undisturbed water surface, feet                                                         |
| ý                               | instantaneous velocity of model normal to undisturbed water surface, feet per second                                           |
| Ž                               | instantaneous velocity of model normal to keel, feet per second ( $\dot{x} \sin \tau + \dot{y} \cos \tau )$                    |
| Z                               | instantaneous acceleration of model normal to keel, feet per second per second $\left(\frac{n_{iw}g}{\cos\tau}\right)$         |
| β                               | angle of dead rise, degrees                                                                                                    |
| γ                               | instantaneous flight-path angle relative to undisturbed water surface, degrees $\left(\tan^{-1}\frac{\dot{y}}{\dot{x}}\right)$ |
| δ <sub>1</sub> , δ <sub>2</sub> | angles used to designate wave rise, degrees                                                                                    |
| ζ                               | distance forward of step, measured parallel to keel, feet                                                                      |
| η                               | transverse distance from keel, feet                                                                                            |
| θ                               | effective angle of dead rise, degrees                                                                                          |
| $\lambda_d$                     | length of keel below undisturbed water surface, beams $\left(\frac{y}{b \sin \tau}\right)$                                     |
| $\lambda_{ m p}$                | wetted length based on peak-pressure location (longitudinal distance from step to position of peak pressure at keel), beams    |

4

ρ mass density of water, 1.938 slugs per cubic foot

trim, degrees

Subscripts:

o at water contact

max at maximum value

p at peak pressure

Dimensionless variables:

 $c_N$  normal-load coefficient for a rectangular flat plate based /  $F_N$  \

on A;  $\left(\frac{F_N}{\frac{1}{2}\rho f^2 b^2 A}\right)$ 

 $\mathbf{c}_{\mathbf{N}_{\mathbf{D}}}$  normal-load coefficient for a rectangular flat plate based

on  $\lambda_p$ ;  $\left(\frac{F_N}{\frac{1}{2}of^2b^2\lambda_p}\right)$ 

 $C_{\Delta}$  beam-loading coefficient  $\left(\frac{W}{\rho gb^3}\right)$ 

 $\frac{p}{\frac{1}{2} \rho z}$  pressure coefficient based on z

### **APPARATUS**

The investigation was conducted in the Langley impact basin with the test equipment described in reference 5. The test model was a forebody of a seaplane float, substantially prismatic in shape as shown in figure 1. The prismatic section had an angle of dead rise of  $22\frac{1}{2}^{\circ}$ .

The instrumentation used to measure horizontal velocity and vertical velocity at water contact is described in reference 5. Accelerations in the vertical direction were measured with two oil-damped strain-gage-type accelerometers having approximately 0.65 of the critical damping. One

accelerometer had a range from -12g to 12g and a natural frequency of 120 cycles per second while the other had a range from -10g to 10g and a natural frequency of 100 cycles per second. Both instruments were recorded by 0.65 critically damped galvanometers having natural frequencies of 100 cycles per second. Vertical velocity after water contact was obtained by integration of the vertical acceleration. Draft was obtained by double integration of the vertical acceleration. instants of water contact and exit of the model were determined by means of an electrical circuit completed by the water. Pressures were measured with 43 gages distributed over the hull bottom as shown in figure 2 and table I. Forty-two of these gages had flat diaphragms of  $\frac{1}{2}$  -inch diameter which were mounted flush with the hull bottom; the other was a bellowstype gage with a  $\frac{1}{h}$  - inch-diameter pickup surface. Natural frequencies of the pressure gages were several thousand cycles per second and the response of the oscillograph recording system was accurate to frequencies up to slightly more than 1000 cycles per second.

In order to evaluate properly the experimental accelerometer data (and the derived velocity and draft data), the dynamic response characteristics of the accelerometers and the corresponding recording galvanometers had to be taken into account. Analysis of this dynamic response for the experimental conditions of these tests showed that the response characteristics of the accelerometer-galvanometer circuit were of such a nature that the magnitude of the recorded accelerations should be reasonably accurate but that the recorded traces were displaced in time by approximately 0.005 second. All the data presented in this paper have been corrected for this time lag.

### PRECISION

The instrumentation used in these tests gives measurements that are estimated to be usually accurate within the following limits:

| Horizontal velocity, feet per second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vertical velocity at vetor contact for the vertical velocity at vetor contact for the ve |
| Vertical velocity at water contact, feet per second ±0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| vertical verticity after water contact, feet ner second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| vertical acceleration, percent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Pressure, pounds per square inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Time seconds ±2 ± 0.1p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Time, seconds ±0.1p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Draft, feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

### TEST PROCEDURE

A series of 30 landings were made in smooth water with the model at 0° yaw and at various fixed trims. Sixteen landings were made with the model loaded to a weight of 1177 pounds, which corresponded to a beam-loading coefficient of 0.48. For these landing runs the model was tested at trims of 0.2°, 3.2°, 6.3°, 9.3°, 12.4°, 20.5°, and 30.3° for a range of initial flight-path angles from 4.6° to 25.9° and also for 90°. Fourteen landings were made with the model loaded to a weight of 2369 pounds, which corresponded to a beam-loading coefficient of 0.97. For these landing runs the model was tested at trims of 0.2°, 6.3°, 12.4°, 15.4°, 20.5°, and 30.3° for a range of initial flight-path angles from approximately 5° to 15° and also for 90°.

During each landing a compressed-air engine (described in reference 5) exerted a vertical lift force on the model equal to the test weight so that the model simulated a seaplane with wing lift equal to the weight of the seaplane. Otherwise the model was free to move in the vertical direction. The model was attached to a towing carriage weighing approximately 5400 pounds in such a manner that it could not move horizontally with respect to the carriage. Because of this large additional carriage inertia, the model did not slow down very much (horizontally) during any landing.

### EXPERIMENTAL RESULTS

The initial vertical, horizontal, and resultant velocities, flight-path angles, trims, and model weights for all landings are presented in table II together with the experimental over-all loads and motions. Time histories of the vertical velocity are presented in table III. The corresponding instantaneous horizontal velocities are substantially the same as the initial values given in table II since the change in horizontal velocity during any impact was small. The values of the maximum pressures recorded on each pressure gage are presented for all runs in table IV and the corresponding times of maximum pressure are presented in table V. The peak-pressure data for two runs are plotted against  $\frac{1}{2}$ pz² in figure 3. The average value of the peak-pressure coeffi-

cient  $\frac{p_p}{\frac{1}{2}\rho z^2}$  (see faired lines in fig. 3) as obtained from similar plots

for other runs are plotted against trim in figure 4 for all runs. In table VI are given instantaneous-pressure-distribution data from most

of these landings together with the corresponding measurements of time, draft, vertical velocity, and vertical acceleration. Illustrative pressure distributions are plotted in figure 5 for various trims.

Transverse-wave-rise measurements, as defined by the following equation, are shown in figure 6 for trims between 3.2° and 15.4°:

$$K = \frac{\tan \delta_2}{\tan \delta_1} \tag{1}$$

The angles  $\delta_1$  and  $\delta_2$  are shown in figure 7(a),  $\delta_1$  being given by the relation

$$\tan \delta_1 = \tan \tau \cot \beta$$

The angle  $\delta_2$  was obtained from observations of the experimental pressure distributions (from table VI) or of the position of the peak pressure on the float (from table V). For trims greater than approximately 15°, an examination of unpublished underwater photographs obtained at Langley tank no. 1 for a planing prism having an angle of dead rise of 20° indicates that the peak-pressure line is curved; therefore, equation (1) is not valid. Consequently, no wave-rise ratios are shown for the trims larger than 15.4°.

### ANALYSIS OF RESULTS

### Wave Rise

During the impact or planing of a V-bottom prismatic model, the water rises above the level water surface. The forward component of this rise  $(\lambda_p - \lambda_d)$  in fig. 7(a) is usually small. The transverse wave rise, however, is usually large. This transverse wave rise is defined by the location of the peak-pressure line on the hull bottom, which is close to the boundary of the wetted area (see fig. 7). For small trims (up to approx.  $15^o$  according to the previously mentioned unpublished planing data for a model having an angle of dead rise of  $20^o$ ), this peak-pressure line is substantially straight and can be conveniently described by the ratio K. Pierson and Leshnover have proposed the following equation for K in reference 4:

$$K \approx \frac{\pi}{2} \left( 1 - \frac{3 \tan^2 \beta \cos \beta}{1.7\pi^2} - \frac{\tan \beta \sin^2 \beta}{3.3\pi} \right)$$
 (2)

This theoretical variation is compared with the experimental data of this paper in figure 6. Fair agreement is seen to exist.

### Peak Pressures

Several equations have been proposed for the peak pressure on V-bottom wedges having a finite angle of trim. Two of the most promising of these equations are considered and a third more accurate equation is proposed. The following equation was derived by Pierson and Leshnover in reference 4:

$$\frac{p_{\rm p}}{\frac{1}{2}\rho\dot{z}^2} = \frac{\left(K - \sin^2\beta\right)^2}{\sin^2\beta + K^2\tan^2\tau} + \cos^2\beta \tag{3}$$

where K is given by equation (2). Equation (3) is based upon a theoretical analysis concerned with the peak-pressure line. If such a line exists reasonable results might be expected from this equation. However, for very large trims no such line exists (see fig. 7) and this analysis does not hold. For example at 90° trim equation (3) predicts

$$\frac{p_p}{\frac{1}{2}p_z^2} = \cos^2\beta$$

whereas a more accurate relation is

$$\frac{p_{\mathbf{p}}}{\frac{1}{2}\rho\dot{\mathbf{z}}^2} = 1\tag{4}$$

(see reference 2). In order to determine the value of equation (3) for an angle of dead rise of  $22\frac{1}{2}^{\circ}$ , computed and experimental peak pressures are compared in figure 4. It is seen that this equation is conservative for trims below approximately  $10^{\circ}$  and is fairly reasonable for trims between  $10^{\circ}$  and  $30^{\circ}$ .

2J

A second equation which has been proposed for the peak pressure is the following semiempirical equation proposed in reference 2:

$$\frac{p_{\rm p}}{\frac{1}{2}\rho \dot{z}^2} = \frac{1}{\sin^2 \tau + \frac{1}{\pi^2} \tan^2 \beta \cos^2 \tau}$$
 (5)

This equation is an empirical relation which was chosen to satisfy the theoretical relation given by equation (4) for 90° trim, to satisfy the following theoretical relation given by Wagner

$$\frac{p_{\rm p}}{\frac{1}{2}\rho\dot{z}^2} = \frac{\pi^2}{4}\cot^2\beta \qquad (\tau = 0^{\circ}; \beta \rightarrow 0^{\circ})$$
 (6)

and to satisfy the experimental variation of the peak pressure with trim for a model having a  $30^{\circ}$  angle of dead rise (reference 2). Comparisons of the predictions of equation (5) with the experimental peak-pressure data from this paper for an angle of dead rise of  $22\frac{10^{\circ}}{2}$  (shown in fig. 4) indicate that, for this angle of dead rise, equation (5) is conservative throughout the trim range.

Since neither equation (3) nor equation (5) is always in close agreement with the experimental data, a third equation is proposed here as

$$\frac{p_{p}}{\frac{1}{2}\rho_{z}^{2}} = \frac{1}{\sin^{2}\tau + J^{2}\cos^{2}\tau}$$
 (7)

where J is considered to be a function of angle of dead rise alone. Equation (7) was obtained by replacing the quantity  $\frac{2}{\pi} \tan \beta$  in equation (5) by a more general quantity J. In order to satisfy equation (6) and to agree with the experimental data of reference 2, J must have the values  $\frac{2}{\pi} \tan \beta$  for  $\beta \rightarrow 0^{\circ}$  and  $\tau = 0^{\circ}$  and for  $\beta = 30^{\circ}$  for all trims so that for these cases equations (5) and (7) are identical. For other angles of dead rise, J can be determined either empirically or from

NACA TN 2816

theoretical solutions for the two-dimensional case for which equation (7) reduces to the relation

$$\frac{p}{\frac{1}{2}\rho\dot{z}^2} = \frac{1}{J^2} \qquad (\tau = 0^\circ)$$

For an angle of dead rise of  $22\frac{10}{2}$ , an examination of the experimental data in this paper indicated that the value of J that best fits the data is 0.293. Computed peak pressures based on this value of J are compared with the experimental pressures in figure 4. Reasonable agreement is seen to exist for all trims.

### Pressure Distribution

Effects of beam loading and flight-path angle. Experimental pressure-distribution data for various trims are shown in figure 5 in the form of the dimensionless pressure coefficient  $\frac{p}{2}$ . The effect of beam loading

on these pressure coefficients is shown in figures 5(a) and 5(b) where experimental data for the same trim, wetted area, and flight-path angle and different beam-loading coefficients are superimposed. It appears that there is little difference in the experimental pressure coefficients for the two beam loadings tested. The effect of flight-path angle on the pressure coefficients is shown in figures 5(c) and 5(d) where experimental data for the same trim, wetted area, and beam-loading coefficient and different flight-path angles are superimposed. No apparent effect of flight-path angle on the pressure coefficients is noted. This conclusion is in agreement with the results of reference 2 for a model with a 30° angle of dead rise.

Non-chine-immersed region. For the transverse pressure distribution on non-chine-immersed sections of a two-dimensional V-bottom wedge (see fig. 7) during a zero-trim constant-velocity impact, Wagner (see reference 6 or 7) has obtained an equation which can be expressed as

$$\frac{\frac{p}{1-\frac{1}{2}}}{\frac{1}{2}} = \frac{\pi \cot \beta}{\sqrt{1-\left(\frac{\eta}{c}\right)^2}} - \frac{1}{\left(\frac{c}{\eta}\right)^2 - 1}$$

In order to extend this equation to apply to the case of a finite trim, Pierson and Leshnover (reference 4) have proposed that this equation be replaced by the equation

$$\frac{p}{\frac{1}{2}\rho\dot{z}^2} = \frac{\pi \cot \theta}{\sqrt{1 - \left(\frac{\eta}{c}\right)^2}} - \frac{1}{\left(\frac{c}{\eta}\right)^2 - 1}$$
 (8)

The maximum value of equation (8) is given by the relation

$$\frac{p_{\mathbf{p}}}{\frac{1}{2}\rho z^{2}} = \left(\frac{\pi}{2} \cot \theta\right)^{2} + 1 \qquad (\pi \cot \theta \ge 2)$$

$$\frac{p_{\mathbf{p}}}{\frac{1}{2}\rho z^{2}} = \pi \cot \theta \qquad (\pi \cot \theta \le 2)$$

$$(9)$$

This relation defines  $\theta$  in terms of the peak pressure. Different values of  $\theta$  can be obtained by substituting equations (3), (5), and (7) into equation (9):

The value obtained from equation (3), which will be designated as  $\theta_1$ , is

$$\pi \cot \theta_1 = 2\sqrt{\frac{K^2 - 2K \sin^2 \beta - K^2 \sin^2 \beta \tan^2 \tau}{\sin^2 \beta + K^2 \tan^2 \tau}} \qquad (\pi \cot \theta_1 \ge 2)$$

$$\pi \cot \theta_1 = \frac{\left(K - \sin^2 \beta\right)^2}{\sin^2 \beta + K^2 \tan^2 \tau} + \cos^2 \beta \qquad \left(\pi \cot \theta_1 \le 2\right)$$

The value obtained from equation (5), which will be designated as  $\theta_2$ , is

$$\pi \cot \theta_2 = 2 \sqrt{\frac{1 - \frac{4}{\pi^2} \tan^2 \beta}{\tan^2 \pi + \frac{4}{\pi^2} \tan^2 \beta}} \qquad (\pi \cot \theta_2 \ge 2)$$

$$\pi \cot \theta_2 = \frac{1}{\sin^2 \tau + \frac{1}{\tau^2} \tan^2 \beta \cos^2 \tau} \qquad (\pi \cot \theta_2 \le 2)$$

The value obtained from equation (7), which will be designated as  $\theta_3$ , is

$$\pi \cot \theta_3 = 2\sqrt{\frac{1 - J^2}{\tan^2_{\tau} + J^2}} \qquad \left(\pi \cot \theta_3 \ge 2\right)$$

$$\pi \cot \theta_3 = \frac{1}{\sin^2 \tau + J^2 \cos^2 \tau} \qquad \left(\pi \cot \theta_3 \le 2\right)$$

For the usual case of impacts not made at constant velocity, as a first approximation the following term, which takes into account the acceleration normal to the keel and which is usually negative (see reference 3), should be added to equation (8)

$$\frac{2\ddot{\mathbf{z}}\mathbf{c} \ \varphi(\mathbf{A})}{\dot{\mathbf{z}}^2} \sqrt{1 - \left(\frac{\eta}{\mathbf{c}}\right)^2} \tag{10}$$

where

$$\varphi(A) = \sqrt{\frac{1}{1 + \frac{1}{A^2}}} \left( 1 - \frac{0.425}{A + \frac{1}{A}} \right) \qquad (0 < A < \infty)$$

$$\varphi(A) = 1 - \frac{1}{2A}$$
 (1.5 < A < \infty)

and

$$A = \frac{(\text{Wetted length at keel})^2}{\text{Wetted area projected normal to keel}}$$

so that equation (8) becomes

$$\frac{p}{\frac{1}{2}\rho\dot{z}^2} = \frac{\pi \cot \theta}{\sqrt{1 - \left(\frac{\eta}{c}\right)^2}} - \frac{1}{\left(\frac{c}{\eta}\right)^2 - 1} + \frac{2\dot{z}c \phi(A)}{\dot{z}^2} \sqrt{1 - \left(\frac{\eta}{c}\right)^2}$$
(11)

Theoretical pressure distributions computed according to equation (11) for the non-chine-immersed region of the model are shown in figure 5 below the corresponding experimental pressure distributions. Most of these pressure distributions were computed by using  $\theta_3$  with J = 0.293. It is seen that on the non-chine-immersed region of the float bottom these pressure distributions computed by using  $\theta_3$  are in fair agreement with the experimental data for all trims. The pressure distribution computed by using  $\theta_1$  is shown in figure 5(a) for a trim of 0.20. As would be expected from the peak-pressure analysis (see fig. 4), this equation leads to pressures larger than the experimental pressure for this trim. However, for larger trims (not shown) there is little difference between the pressures predicted by using  $heta_1$  and  $heta_3$ . For all trims, predictions of the pressure distribution based on  $\theta_2$ (not shown) are conservative approximately to the same extent as the peak-pressure predictions of equation (5) are conservative (see fig. 4). It is noted that the theoretical effect of beam loading on the pressure distribution (which effect is given by expression (10)) appears to be greater than the experimental effect.

Chine-immersed region. A semiempirical procedure for predicting the pressure distribution on the chine-immersed region of a prismatic V-bottom wedge (fig. 7(b)) has been given in reference 3. It should be noted that this procedure requires a knowledge of the normal-load coefficient  $C_{N_p}$  of a rectangular flat plate as a function of trim and wetted length. For trims below  $16^{\circ}$  this variation can be found from figure 9 of reference 3. For larger trims the following equation, which can be obtained from the analysis of reference 8, can be used

$$C_{N} = \frac{\varphi(A) \sin \tau \cos \tau}{A} \left( \frac{\pi^{3}}{16} + 0.88A \tan \tau \right)$$

Usually A  $\approx \lambda_p$  so that CN is approximately equal to the quantity  $\text{CN}_p$  used in the analysis of reference 3. From the evidence presented in reference 3 for a model having a 30° angle of dead rise, it appears that this procedure gives reasonable results for cases where the chine-immersed wetted area of the model is a large fraction of the total wetted area.

Pressure distributions on the chine-immersed region of the float computed according to this semiempirical procedure are shown in figure 5 below the corresponding experimental pressure distributions. It is seen that where the chine-immersed wetted area is not too small a fraction of the total wetted area (figs. 5(d) and 5(e)) fair agreement exists.

### CONCLUDING REMARKS

From an analysis of the experimental data obtained during a smoothwater landing investigation of a substantially prismatic float having an angle of dead rise of  $22\frac{1}{2}^{0}$  and beam-loading coefficients of 0.48 and 0.97, it is seen that the experimental wave rise is in fair agreement with the theoretical prediction of Pierson and Leshnover.

Comparisons of computed and experimental peak pressures indicate that the peak-pressure equation advanced by Pierson and Leshnover appears to be conservative for trims below 10° and to be in reasonable agreement with the experimental data for trims between 10° and 30°. The peak-pressure equation advanced in NACA TN 2111 appears to be conservative for all trims. A third peak-pressure equation advanced herein appears to be in reasonable agreement with the experimental data for all trims.

An examination of the experimental pressure distributions indicates that there is no effect of flight-path angle on the pressure coefficients based on the velocity normal to the keel and that there is little difference in the experimental pressure coefficients for the two beam loadings tested. In non-chine-immersed regions of the float, computed pressure distributions corresponding to the three peak-pressure equations mentioned compare with the experimental pressure distributions in much the same manner as for the respective peak pressures. In chine-immersed regions of the float where the chine-immersed wetted area is not too small a fraction of the total wetted area, computed pressure distributions are in fair agreement with the experimental results.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., January 10, 1952

### REFERENCES

- 1. Smiley, Robert F.: An Experimental Study of Water-Pressure Distributions During Landings and Planing of a Heavily Loaded Rectangular Flat-Plate Model. NACA TN 2453, 1951.
- 2. Smiley, Robert F.: A Study of Water Pressure Distributions During Landings With Special Reference to a Prismatic Model Having a Heavy Beam Loading and a 30° Angle of Dead Rise. NACA TN 2111, 1950.
- 3. Smiley, Robert F.: A Semiempirical Procedure for Computing the Water-Pressure Distribution on Flat and V-Bottom Prismatic Surfaces During Impact or Planing. NACA TN 2583, 1951.
- 4. Pierson, John D., and Leshnover, Samuel: A Study of the Flow, Pressures, and Loads Pertaining to Prismatic Vee-Planing Surfaces. S.M.F. Fund Paper No. FF-2, Inst. Aero. Sci. (Rep. No. 382, Project No. NR 062-012, Office of Naval Res., Exp. Towing Tank, Stevens Inst. Tech.), May 1950.
- 5. Batterson, Sidney A.: The NACA Impact Basin and Water Landing Tests of a Float Model at Various Velocities and Weights. NACA Rep. 795, 1944. (Supersedes NACA ACR L4H15.)
- 6. Pierson, John D.: On the Pressure Distribution for a Wedge Penetrating a Fluid Surface. Preprint No. 167, S.M.F. Fund Paper, Inst. Aero. Sci. (Rep. No. 336, Project No. NR 062-012, Office of Naval Res., Exp. Towing Tank, Stevens Inst. Tech.), June 1948.
- 7. Wagner, Herbert: Landing of Seaplanes. NACA TM 622, 1931.
- 8. Schnitzer, Emanuel: Theory and Procedure for Determining Loads and Motions in Chine-Immersed Hydrodynamic Impacts of Prismatic Bodies. NACA TN 2813, 1952.

TABLE I
PRESSURE-GAGE POSITIONS

(See fig. 2)

| Gage                                                                                                                    | ( <b>ft</b> )                                                                                                                           | η<br>(ft)                                                                                                           | Gage                                                                                                                 | ζ<br>( <b>ft</b> )                                                                                                               | η<br>(ft)                                                         |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22 | 0.23<br>.23<br>.23<br>.73<br>.73<br>.73<br>1.02<br>1.07<br>1.07<br>1.07<br>1.17<br>1.48<br>1.48<br>1.48<br>1.48<br>1.82<br>1.82<br>1.82 | 0.47<br>.77<br>1.08<br>1.39<br>.47<br>.77<br>1.08<br>1.39<br>.62<br>.47<br>.77<br>1.08<br>1.39<br>.62<br>.47<br>.77 | 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>42<br>43 | 1.82<br>1.82<br>1.82<br>1.82<br>2.23<br>2.23<br>2.57<br>2.57<br>3.40<br>3.40<br>3.40<br>73<br>.73<br>.73<br>1.07<br>1.48<br>1.48 | 1.08 1.24 1.39 1.54 .47 .77 .47 .77 .47 .77 .62 .7762779332933777 |

NACA

TABLE II

INITIAL LANDING CONDITIONS AND OVER-ALL LOADS AND MOTIONS

|                                 |               |                                      | At co                             | ntact                                |                                                 | A                             | t (ni                        | w)                        |                          | At y                          | MAX                       |                                               |
|---------------------------------|---------------|--------------------------------------|-----------------------------------|--------------------------------------|-------------------------------------------------|-------------------------------|------------------------------|---------------------------|--------------------------|-------------------------------|---------------------------|-----------------------------------------------|
| Rur                             | n τ           | v <sub>o</sub>                       | ý <sub>o</sub>                    | × <sub>o</sub>                       | Yo                                              | t                             | niw                          |                           | ý                        | t                             | у                         | Time, t, at exit                              |
|                                 | (deg)         | (fps)                                | (fps)                             |                                      | i                                               | (sec)                         | (g)                          | (ft)                      | (fps)                    | (sec)                         | (ft)                      | (sec)                                         |
|                                 | -             | 1                                    |                                   |                                      | W = :                                           | 1177 1                        | b; C <sub>∆</sub>            | <b>-</b> 0.               | <b>4</b> 8               |                               |                           | <u> </u>                                      |
| 1<br>2<br>3                     | 0.2           | 10.5<br>10.5<br>10.5                 | 10.5<br>10.5<br>10.5              | 0                                    | 90.00                                           |                               | 3.42                         | .25                       | 8.8                      |                               |                           | No exit                                       |
| 5 6                             | 3.2           | 80.6<br>57.7                         | 10.1                              | 80.0<br>56.7                         | 90.00<br>7.20<br>10.69                          |                               | 3.30<br>4.81<br>4.41         | 0.36                      | 6.9                      | 0.116                         |                           | No exit<br>0.356<br>.545                      |
| 7 .8                            | 9.3           | 58.2<br>89.3<br>57.5                 | 10.5<br>7.2<br>10.2               | 57.2<br>89.0<br>56.6                 | 4.62                                            | 0.067                         | 3.77                         | 10.40                     | 3.0                      | 0.118<br>0.094<br>.106        | 0.64                      | 0.36k<br>0.205                                |
| 9<br>10<br>11<br>12<br>13<br>14 | 12 <b>.</b> h | 80.5<br>79.3<br>80.5<br>58.9<br>47.9 | 6.9<br>8.7<br>8.9<br>10.8<br>10.6 | 80.2<br>78.8<br>80.0<br>57.9<br>46.7 | 4.92<br>6.30<br>6.35<br>10.57<br>12.79<br>12.88 | 0.078<br>.068<br>.067         | 4.84<br>5.15<br>4.88<br>4.17 | .46<br>.48<br>.58         | 1.8                      | 0.093<br>.086<br>.087<br>.105 | 0.42<br>.48<br>.51<br>.68 | .304<br>0.208<br>.202<br>.197<br>.266<br>.331 |
| 15<br>16                        | 20.5          | 47.1<br>39.4<br>24.7                 | 10.5<br>10.5<br>10.8              | 45.9<br>38.0<br>22.2                 | 15.45                                           | .062<br>0.076<br>0.096        | 3.67                         | 0.67                      | 6.4<br>5.3<br>7.0        | .130<br>0.131<br>0.245        | 0.80                      | .345<br>0.359<br>0.656                        |
|                                 |               |                                      |                                   |                                      |                                                 | 2369 1t                       |                              | ·                         | ·                        | 0.245                         | 1.74                      | 0.090                                         |
| 17<br>18                        | 0.2           | 12.0<br>12.0                         | 12.0<br>12.0                      | 0                                    | 90.00<br>90.00                                  | 0.032                         | 2.63<br>2.49                 | 0.35                      | 10.2                     |                               |                           | No exit                                       |
| 19<br>20<br>21                  | 6.3           | 83.2<br>83.5<br>63.8                 | 8.0<br>11.1<br>11.1               | 82.8<br>82.8<br>62.8                 | 5.52<br>7.64<br>10.02                           | 0.072<br>.055<br>.058         | 3.02<br>4.64                 | 0.51                      | 7.4<br>7.4               | 0.140<br>.136<br>.173         | 0.66<br>.80<br>.89        | 0.32h<br>.330<br>.459                         |
| 22<br>23                        | 12.4          | 82.2<br>46.5                         | 7.8                               | 81.8<br>45.2                         | 5.45<br>13.68                                   | 0.086                         | 3.53<br>3.13                 | 0.54<br>.68               | 2.9<br>7.7               | 0.113                         | 0.58<br>1.05              | 0.256<br>.498                                 |
| 24<br>25<br>26                  | 15.4          | 63.5<br>46.8<br>82.2                 | 11.3<br>11.4<br>7.7               |                                      | 14.10                                           | 0.075                         | 3.14                         | 0.72<br>.79               | 7.2                      | 0.126                         | 1.10                      | 0.313<br>.460                                 |
| 27<br>28<br>29                  | 20.5          | 83.1<br>63.9<br>42.2                 | 10.8                              | 82.4<br>62.9                         | 5.38<br>7.47<br>10.01<br>14.96                  | 0.091<br>.074<br>.081<br>.087 | 5.59                         | 0.53<br>.63<br>.74<br>.84 | 1.5<br>3.6<br>5.0<br>6.8 | 0.103<br>.096<br>.123<br>.185 | 0.54<br>.67<br>.84        | 0.223<br>.218<br>.289                         |
| 30                              |               | 44.2                                 | 11.2                              | 42.8                                 | 14.66                                           |                               | 2.95                         |                           |                          |                               | T • T (1                  | .476<br>0.428                                 |

NACA

TABLE III

# VERTICAL-VELOCITY TIME HISTORIES

|                     |      |      |        |          |          |      |      | 1        |          |          |                                                                                              |      |      |      |      |      |      |          |      |     |        |         |        |          |      |          |     |      |          |      |      |
|---------------------|------|------|--------|----------|----------|------|------|----------|----------|----------|----------------------------------------------------------------------------------------------|------|------|------|------|------|------|----------|------|-----|--------|---------|--------|----------|------|----------|-----|------|----------|------|------|
|                     | 0.16 | ŧ    | İ      | 1        | l        | 1    | į    | -        | -        | I        | I                                                                                            | -    | 1    | i    | 1    | -    | 3.1  | I        | 1    | 1   | l      | 1       | -      | l        | ļ    | ٥,       | -   | •    |          | ļ    |      |
|                     | 0.15 | 1    | 1      | 1        | 1        | 1    | 1    | 1        | -        | I        | -                                                                                            | 1    | -    | I    | i    | -    | 3.6  | į        | 1    | -   | l      | -       | -      | ł        | 1    | 1.5      |     | l    | ١        | 1    |      |
|                     | भा•0 | 1    | f      | 1        | 1        | -    | ļ    | ł        | 1        | I        | j                                                                                            | İ    | l    | ł    | 1    | I    | 4.2  | -        | 1    | I   | I      | 1       | !      | ŀ        | -    | 2.0      | -   | -    | ł        | 1    | -    |
|                     | 0.13 | 1    | I      |          | -        | Į    | 1    | -        | l        |          | 1                                                                                            | -    | 1    | 1    | -    | 0.1  | 1.7  | 1        | I    |     | -      | -       |        | 1        | ł    | 2.7      | 1   | 1    | †        | -    | -    |
|                     | 0.12 | 1    | 1      | -        |          | 1    | 1    | i        | ł        | 1        | l                                                                                            | 1    |      | ٥.4  | 'n   | æ.   | 5.3  | ţ        | -    | 1.0 | -      |         | 9:-    | 1        | •    | 3.4      | ļ   | }    | <u>ښ</u> | 1.0  | !    |
|                     | 0.11 | İ    | 1      |          | !        | ł    | 1    | -        | 2        |          | 1                                                                                            | **** | 1    | 1.0  | 1.2  | 1.7  | 6.0  | l        | -    | 1.7 | -      | 5.6     | ņ      | 3.9      | 1.6  | 4.2      |     | 1    | 1.3      | 8.7  | l    |
| <b>○</b>            | 0.10 | 1    | 2.5    | 4.6      | -        | 1    | -    | -        | ν.       |          | Į                                                                                            | -    | ņ    | 1.9  | 2.0  | 5.6  | 6.7  | 7.1      | 7.3  | 2.h | 2.1    | 3.2     | 1.3    | 4.7      | 2.7  | 5.1      | ~.  | 7    | 2.5      | 5.6  | 1    |
| (fps) at time (sec) | 0.09 | 9•म  | 1,07   | 8:17     | 1.2      | 2°F  | 1.8  | <b>ب</b> | 7.7      | 7.       | 7                                                                                            | 7:-  | 1.6  | 2.9  | 2.9  | 3.7  | 7.4  | 7.4      | 7.5  | 3.2 | 3.0    | 7.0     | 7.₹    | 7.       | 3.9  | 6.0      | 1.7 | 6.   | 3.8      | 6.5  |      |
| at ti               | 0.08 | 4.9  | 200    | 5.2      | 2.0      | 3.1  | 2.7  | 1.4      | 2.5      | 1.5      | ∞.                                                                                           | 1.0  | 5.9  | 7.0  | 7.0  | 7.8  | 8.1  | 7.7      | 7.8  | 1:1 | 1.0    | 1.9     | ~<br>~ | 6.5      | 5.2  | 7.0      | 3.0 | 2.6  | 5.1      | 7.1  |      |
| 1                   | 0.07 | 5.3  |        | ν.<br>ν. | 2.9      | 3.9  | 3.8  | 5.6      | 3,8      | 2.7      | 2.3                                                                                          | 5.6  | 1º1  | د.   | 5.3  | 0.9  | 8.7  | œ<br>•   | 8.1  | 2.  | 5.3    | 6.0     | 7.0    | 7,5      | 9.9  | ©<br>®   | 4.2 | 7.7  | 6.5      | 8.3  | 1    |
| •                   | 90°0 | אַ   | ฬ      | ٠.       | <u>.</u> | ห่   | หํ   | m        | ᠾ        | ๛ํ       | m                                                                                            | خ.   | ٠,   | ٠.   | ٠    | ~    | 6    | <u> </u> | ∞    | 9   | ە<br>ص | ~       | ฬ      | <b>œ</b> | ~    | <u>~</u> | w   | 9    | <u>~</u> | .9.1 | i    |
|                     | 0.05 | ₹°9  | 6.5    | 6.7      | 5.4      | 6.3  | 6.5  | 4.9      | 6.7      | 4.9      | - 50<br>- 12<br>- 12<br>- 13<br>- 14<br>- 14<br>- 14<br>- 14<br>- 14<br>- 14<br>- 14<br>- 14 | 8    | 7.5  | 7.9  | 7.8  | 8.2  | 9.8  | &<br>&   | 9.1  | 6.8 | 8.1    | ₹.<br>8 | 7.9    | 9.4      | 9.1  | 6.6      | 6.2 | 7.7  | 9.0      | 9.8  | 1 .  |
|                     | 10.0 | 7.1  | 7.3    | 7.5      | 6.9      | 7.7  | 7.9  | 5.9      | 8.0      | ν.<br>•- | 6.7                                                                                          | 7.1  | 8.9  | 0.6  | 8.9  | 9.1  | 10.2 | 9.6      | 8.8  | 7.7 | 7.6    | 9.6     | 2.0    | 10.1     | 10.1 | 10.6     | 6.9 | 0.6  | 6.6      | 10.3 | -    |
|                     | 0.03 | 8.0  | ر<br>ه | 8,5      | 8.4      | 9.0  | 9.1  | 9.9      | 0.6      | 6.3      | 7.7                                                                                          | 8.1  | 6.6  | 8.6  | 7.6  | 9.8  | 10.5 | 10.4     | 10.6 | 7.8 | 10.4   | 10.4    | 7.4    | 10.5     | 10.7 | 11.0     | 7.3 | 6.6  | 10.5     | 10.7 |      |
|                     | 0.02 | %    | o.     | å        | o,       | ဗ္   |      | ~        | <u>۰</u> | જં.      | ထံ                                                                                           |      | ģ    |      |      |      |      | ä        | 11.  | ထံ  | 9      | ģ       | ~      | ģ        | ä    | ij       | ċ   | 10.  | 10.      | 10.8 |      |
|                     | 0.01 |      |        |          |          |      |      |          |          |          |                                                                                              |      |      |      |      |      |      |          |      |     |        |         |        |          |      |          |     |      |          | 10.9 |      |
|                     | 0.00 | 10.5 | 10.5   | 10.5     | 10.1     | 10.7 | 10.5 | 7.2      | 10.2     | 6.9      | œ.                                                                                           | 80   | 10.8 | 10.6 | 10.5 | 10.5 | 10.8 | 12.0     | 12.0 | 80  | 11.1   | ניוו    | 7.8    | 11.0     | 11,3 | 11.4     | 7.7 | 10.8 | 11.1     | 10.9 | 11.2 |
| Rith                |      | Ä    | ~      | ~        | <b>_</b> | 'n   | •    | ~        | <b>∞</b> | 0        | 얶                                                                                            | 11   | 12   | 13   | 7    | ኢ    | 97   | 17       | 18   | 13  | ຂ      | 7       | 22     | ຄ        | ₹    | X        | %   | 2    | 88       | &    | 8    |



TABLE IV

INITIAL LANDING CONDITIONS AND MAXIMUM BOTTOM PRESSURES

|   |                 |            |          | 7                           | 70.v  | o v    | 1 0    | v             |                    | •     |       |          | •            | Ň                | م      | <u>.</u> | ન        | 7        | \ .        |        | <b>6</b> 0                                   | ٥             | щ          | ۲į t                                    | -      | -         |                         | 70      |
|---|-----------------|------------|----------|-----------------------------|-------|--------|--------|---------------|--------------------|-------|-------|----------|--------------|------------------|--------|----------|----------|----------|------------|--------|----------------------------------------------|---------------|------------|-----------------------------------------|--------|-----------|-------------------------|---------|
|   |                 |            | -        |                             |       | 0 6    | 9 10.6 | 8 12          |                    | 4 0   |       | -        | 7.5          | 2                | 2 11,  | 8        | 1        | - 1      |            | -      | 3.8                                          | 11/2<br>5     | 9 16,      | 33.1                                    | ; (°   | 200       |                         | 0 16.2  |
|   |                 | 7          | 3        |                             | 99    |        | 11.9   | 5             | 0                  |       | 0 0   | <b>•</b> | 2            | 1                |        | ~        | 9        |          | •          | 17.0   |                                              | 20.4<br>19.6  | 17.9       |                                         |        | 30.5      | 2                       |         |
|   |                 | 6          | 3        | 6.7                         | 6.1   |        | 10.8   | 15.2          | 0                  |       | ı     | <b>c</b> | Ž,           | <b>%</b>         | 14.1   | •        | 5.9      | 7        |            | 17.1   | 23.3                                         | 23.6          | 16.9       | 31.3                                    |        | Z<br>Z    | 20.27                   | 15.7    |
|   |                 | 10         | 1        | 5.5                         | o v   | 7.0    | 8      | 12.0          | 10.3               | 5,0   |       | , L      | 17.9         | 13.4             | 11.9   | •        | 9.9      | 7 7      | 2 6        | 71     | 0.6                                          | 20.1          | 3.1        | 22.8                                    | 7.0    | <b>%</b>  |                         | 12.8    |
|   |                 | 8          | 2        |                             | 6.0   |        | 12.7   |               | 11.7               |       | 1 4   | 0        | ) <b>X</b> ( | 3.1              |        | ক্       | 7.7      | 0        | ) <u>-</u> | 200    | 2.2                                          | 21.7          | 8.2        | 2.0°4                                   | 2      | 24.5      |                         | 10      |
|   |                 | 17         |          | Ϊ́Τ                         |       | -<br>! | 1      | 1             | 0                  | 1     |       |          | 1            | $\frac{\sim}{1}$ | 1      | 7        | Ī        | 6        | <u> </u>   |        | 24.1                                         |               | 7          | 1-                                      | 7 4    | 39.02     | 1                       | 1 1 2   |
|   | er -            | 16         | ┨        | 5.8                         | אַע   | 11.9 - | 9.7    | - 6.          | 10                 | •     | 7,5   | v        | 1,70         | 14.8             | 15.0   | •        | 0        | 010      | 0          | 18.5   | 8.0<br>0.0                                   | 25.5<br>2.9.1 | 0.         | 29.1                                    | 2      |           | <del>-7</del> -         | a 20    |
|   | gage number     | , Y        | -        | 0.1                         |       | -      |        | .8 12         |                    | 0 0   | 28.8  |          | 13,          | 7                |        | 70       | 0        |          | - C        | 7 18   | <u>F</u>                                     | n∞<br>2%      | 9          | 2 E                                     |        |           |                         | ٠,      |
|   | gage            |            | -        | 8.7                         |       | 7 14.2 |        | 6 15          |                    | 2 K   | 182   | 8        |              |                  |        | 9 0      | 0        | 6        | 15         | 5 22.7 | <u> </u>                                     | OF.           | K          | <u>   </u>                              | 2.0    |           |                         | 700     |
|   | at (            | 1          | ł        |                             |       |        | - 14.0 | - 19.6        | 7. 27. A           |       | 23.8  |          |              | 5 17.3           | 9 17.4 | -        | •        | =        | 15         | 2 16.  | <u>,                                    </u> | 30.0          | 12.1       | 36.1                                    | 2      | 7.0       | 32:2                    | 11      |
|   | ( tn.)          | 13         |          | 3.9                         | •     | •      | -      |               | 1                  |       | 0     | 4        | 13.1         | 10.5             | 10.9   | 7        | ٠        | 9        | 4          | 12     | 5                                            | 11.1          | 15.        | 23.4                                    |        |           | 23.2                    | 16.6    |
|   | (1b/ <b>s</b> q | 12         |          |                             |       |        |        |               |                    |       |       | į        | İ            |                  |        |          |          | ļ        |            |        |                                              |               |            |                                         | 8,0    |           |                         |         |
|   |                 | Ħ          | í        | ກຸກ<br>ໝັກ                  | , ,   |        | 8.3    | 12.5          |                    | i     |       | 23.h     | 19.1         | 15.8             |        |          |          |          |            |        |                                              |               |            | 2.6                                     | 3.6    |           | 12.9                    | 16.4    |
|   | pressure        | 10         | ,        | 6. r                        |       | 11.2   | 12.2   | 17.0          | 32.8               | 0,12  | 38,5  | B.14     | 34.7         | 7.1              | 24.9   | 200      | 0.9      | 8.7      | 8.1        | 83     | W. 4                                         | 13.6          | 20         |                                         |        | 63.0      | ביי<br>היי              | 18.9    |
|   | d man           | ٥          | ა        | 0,4                         | 2 6   | 15.1   | 12.0   | 16.9          | 21.7               | 8     | 8     | 5,0      |              |                  | 16.6   | 7 6      | ک        | 8.3      | 9.9        | 15.7   | 25.0                                         | 100           | 19.7       | 22.0                                    | 35.6   |           | 8, r                    |         |
|   | Maxdama         | œ          |          | 0.4                         | 3.9   | 1.     | 5.1    | 'n            | .                  |       | 2.2   |          |              |                  | 8.11   | 3 6      |          |          | 2,2        | 7      | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1     | 19.9          | 7-1        | 16.7                                    | _      | -         | 22.52                   |         |
|   | }               | -          | 1177     | 5.3                         |       |        |        |               | 12.4               |       |       | 20.6     |              |                  | 14.5 1 |          | 2369     | 1        | 7.7        |        | 22.6 1                                       |               |            | 19.7                                    |        | 38.2      | 28.2                    | 14      |
|   | }               | •          | <b>=</b> | 5.3                         |       |        | 10.4   |               | 20.1<br>18.5<br>1  |       |       |          |              |                  | 16.7   | ;        | <b>=</b> | - 1      |            | ~      | 23.2                                         | 28.82         | ٽ<br>ڪاچ   | . 80                                    |        |           | 4,6                     |         |
|   |                 | <b>1</b> 0 |          | איר<br>איר<br>מיר           |       | 1      | 8      | _             | ~ ~                | 2     |       |          |              | 9)<br>3          |        | יא       |          |          | 7.1        |        | <u> </u>                                     | 82            | 2          | 12                                      | 2 35   |           | 2<br>7<br>7             |         |
|   |                 |            |          |                             |       |        |        | - 12.         | 5 19.7<br>h 17.0   | 5     |       | 2 26.2   |              |                  | 13.3   | 1        | 4        | $\vdash$ |            |        | 1 21.7                                       |               |            | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 |        |           | 7 26.2<br>2 15.1        | 6 16.8  |
|   |                 | 4          |          | 4,                          |       | - 4.3  | 4      | :             | 3.5                | 6     | 25.27 | ₩<br>-   | œ' 1         | <u>.</u>         | 1      |          | •        | 2        | - 2.1      | ـــــ  | 7.7                                          |               |            | 17.                                     | 7      | . 15.3    | 7.2                     |         |
|   |                 | 3          |          |                             | į     | li     |        |               | 2                  |       | -     | İ        | -            |                  |        |          |          |          |            | 12.0   |                                              | 22.8          | 1 66       | 14.2                                    |        |           |                         | 15.8    |
|   |                 | 2          |          | 7, 6<br>0, L                |       | _      | 12.1   |               | 20.3<br>15.7       | 22.9  |       |          | 19.9         |                  | 14.4   |          | '[       | 6.5      | 7.2        | 14.6   | 7,7                                          | ×2;           | 100        | 17.9                                    | 34.0   | 34.8      | 25.4<br>14.4            | 19.4    |
| ١ |                 | 1          |          | %<br>%<br>%                 | 6.3   | 14.0   | 11.5   | 0.01          | 22.2               | 23.1  | 26.3  | 27.3     | 22.9         | 2,               | 74.7   | 8        |          | 8.9      | 8          | 15.5   | 22.5<br>16.b                                 | 8,5           | 2000       | 18.4                                    | 38.0   | 1.00      | 20.4<br>14.8            | 15.2    |
|   | ×°              | (fps)      |          | •                           |       | -      | 56.7   | $\rightarrow$ | 76.0<br>5.0<br>5.0 | +     |       |          | 57.9         |                  | -+     | +-       | !        | 0        |            | 82.8   |                                              |               | _          |                                         |        |           | 60.0<br>10.8            |         |
| ŀ |                 |            |          | 0<br>0<br>0,0<br>0,0<br>0,0 |       |        | 200    | 10.2          | 10.2               | . 9 8 | 8.7   | <u>6</u> | 8            | ¥ -              | 10.5   |          |          | 12.0     | 0          | _      | 11.1                                         |               | 2001       | 11.16                                   | 7.7 81 | 10.8      | 10.01                   | 11.2 42 |
|   | ٠ <b>٠</b> °    | (fps)      |          |                             |       | -      | -+     | 4             |                    | 1     |       |          |              |                  |        |          | 1        | ـــ      | _          | Ľ      |                                              | ļ             | 1          |                                         |        |           |                         | 1 1     |
|   | <b>≻</b> °      | (deg)      |          | 88                          | 90.00 |        |        |               | 10.22              | 4.9   | 6.3   | 6.3      | 10.5         | 12°1             | 15,15  | 25.9     |          | 90.00    | 90.0       | 5.52   | -                                            | 5.45          | 1 5<br>5 5 | 14.1                                    | 5.3    | 7 6       | 15.00<br>14.00<br>10.00 | 14.66   |
|   | <b>~</b>        | (fps)      |          | 20,01                       | 10.5  | 80.6   | 57.7   |               | 57.5               | 80.5  | 79.3  | 80.      | 86.1         | 7.               | 7000   | 24.7     |          | 12.0     | 12.0       | 83.2   | 63.0                                         | 82.2          | 40°7       | 16.8                                    | 82.2   | 85<br>1.0 | 42.2 14.96              | 14.2    |
|   | ۲               | (deg) (    |          | 2.0                         |       | 3.2    | +      | ?             | 6.3                | -     |       |          | -            |                  | +      | ╀        | 1        | <u> </u> | y .        |        | 3                                            | -             | +          | -                                       |        |           |                         |         |
| - | Pan             |            | +        | ر<br>0                      |       |        | +      | +             |                    |       | _     | 12.h     |              |                  | 20.5   | Т        | 1        | ⊢        | -          |        |                                              | 12.4          | $\top$     | 15.4                                    |        | 20.5      |                         | 30.3    |
| L | Z               |            |          |                             |       | -31    |        | O             | ~ &                | _     | ឧ     | =        | 7,           | 77               | 1      | 19       |          | 7        | ä          | ~<br>유 | くね                                           | 32            | 14         | 8                                       | 8      | 2.6       | 2 %                     | R<br>N  |

TABLE IV - Concluded

INITIAL LANDING CONDITIONS AND MAXIMUM BOTTOM PRESSURES - Concluded

| т             |         | <del>,</del> | т           |            | _                                        | _        | _            |                  |                                                        |      |          | _             |            |               | т.    | -,   | -       | ,     | . ,        |                  |           |      |              |          |      |      |            |           |        | , |
|---------------|---------|--------------|-------------|------------|------------------------------------------|----------|--------------|------------------|--------------------------------------------------------|------|----------|---------------|------------|---------------|-------|------|---------|-------|------------|------------------|-----------|------|--------------|----------|------|------|------------|-----------|--------|---|
|               | 2       | 7            | 5.6         | w.         | 2.                                       | 11.1     |              | 12,1             | ֡֞֝֝֝֞֜֞֝֓֓֓֓֞֝֟֝֓֓֓֓֟֝֓֓֓֓֓֓֓֓֓֓֓֓֟֝֓֓֡֝֡֝֡֝֡֝֡֝֡֝֡֝֡ | 10   | 13.4     | 11.6          | 16.1       | 13.2          | 13.9  | 10,7 | 0.0     |       | <u>ر</u> ، | 9.0              | 101       | - 4  | 20.02        | 22.7     | 17.1 | 2.0  | 26.8       | 20.1      | 70.0   | 1 |
|               | 5       | 4            |             | - 1        | 9.5                                      | I        | •            | ٠<br>د<br>د<br>د | 0 %                                                    |      |          | 30.3          | -          |               | 1     | 7.07 | 7.4     |       |            | 1                |           | 2. 2 | 9            |          | -    |      | -          |           | 1 2    | • |
|               | 2       | 4            | 7.1         | 7.7        | ρ.ς                                      | •        | 72.0         | 7.6              | 200                                                    | 23.6 | 22.8     | 50°           | 26.4       | 20.5          | •     |      | 7.      |       | 6.0        |                  | 7.07      | 3    | • •          | 3/1.7    | 22.8 | 33.8 | m'         | 33.       | 10.0   |   |
|               | 90      | 2            | 7.4         | r,         | •                                        | •        | 1            | 13.5             | 1,7                                                    | ; †  | 19.1     | 200           | 18.3       | 9 9           | •     | 7.7  | 0       | - 1   | 7.6        | -                |           | 77.9 | 23.7         | .' χ<br> |      | 8    | 32.4       | ار<br>ارد | 18.1   |   |
|               | 39      | )            | 7.9         | 7.3        | 7.4                                      | 100      | ٦.           | • •              | 2                                                      |      |          | 6.0           | ٠          | ٠             | 75.22 | 0 C  | •       |       | M.         | 7.00             | ) (c)     |      |              |          | 10   | 16.2 | 2.12       | J<br>V    | 2.5    |   |
|               | 38      |              | h.2         | ۳.<br>و    | 4.1                                      | •        | •            | 15.2             | 15                                                     | 15.0 | •        | •             | •          | );            | 79.0  | •    | 3       |       | ٠          | 200              | • •       | 3,0  |              |          | •    | 22.9 | ر<br>ا     | 24.7      | 16.8   |   |
| number        | 37      |              |             | 13         | ر.<br>د                                  | 211      | •            | 7,1              | 17.1                                                   | 19.3 |          | 1             | 5.1        |               |       |      |         | - [   | i<br>N     | •                |           | , L  |              | 8.5%     |      | 25.0 | ø,         | J.        | 7.     |   |
| gage n        | 36      |              | 5.0         | ν,<br>ω,   | 7.5                                      | 100      | •            | 23.2             | 19.2                                                   | 22.3 | ×.       | 11.2          | 32.4       | 1 5           |       | 1.6  | •       | - 1   | 0 0        | 0 4              | 23.5      | 18,0 | 28.2         | • 1      | 19.4 | 36.8 | 42.5       | 24.8      |        |   |
| s<br>t        | 35      |              | 7.3         | 9,5        |                                          | 10       | •            | 21.8             | 20.7                                                   | 8.1  | 2.7      | 30.5          | 7.55       | 17.7          | ישע   | ·α   | •       |       | , o        | 30               | 23.1      | 8    | 1 00         | • 6      | • 1  | •    | •          | 2.6       | • I    | - |
| 1 1n.         | 34      |              |             | 0,0        | - 1                                      | × 0      | <b>a</b> l . | 0                | 0                                                      | 0    | 0        | 0 (           | 0 0        | > c           | 0     | c    | >       |       | 0 0        | 0                | 16.3      | 'n   | 00           |          | æ    |      |            | o c       | 1      |   |
| (1b/sq        | 33      |              | 7.2         | 7.1        | 400                                      | 2        |              | 0                | 0                                                      | 0    | 0 (      | <b>5</b> (    | <b>5</b> 0 | > c           | o     | c    | >       | ,     | T. 0       | ر<br>د<br>د<br>د | 19.0      |      |              | • 1      | 10.0 | 0    | 0 0        | o ċ       | ,      |   |
|               | 32      |              | 7.4         | . v        | 0 0                                      | , 0      | 7.01         | 0                | 2.8                                                    | 0    | 0        | 0             | > 0        | <b>&gt; C</b> | c     | c    | ,       |       | . t        | 12.7             | 20.3      | 17.2 | 0 5          | 10       | 11.5 | 0    | 0 0        | ) C       | ,      | 1 |
| pressure      | 31      | 0.18         |             | , c        | 7.67                                     | 72,5     | 13.3         | 0                | 10.8                                                   | 0    | 0        | <b>&gt;</b> 0 | <b>)</b>   | <b>&gt;</b> C | C     | c    | 0.97    | 0     | , c        | 16.9             | O         | ~    | v            | 0        | 13.7 | 0    | o <b>c</b> | 9         | 1      | - |
| Kaximum       | 30      | ດ            |             | ٠ «        | • 1 .                                    |          | af a         | 0                | 11.1                                                   | 0    | 0 0      | )<br>)        |            | - o           | • .   | 1    | #<br>ປັ | 3 6   | לי לי      | 16.1             | 22.7      | 1    | 0 0          |          | 18,1 | 0 (  | - c        | 11.6      |        |   |
| 4             | 8       | 7 1bg        | 7.3         | 0 4<br>2 0 | ֝֝֝֓֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֓֡֓֓֓֓֡֓֓֓ | 19.0     | 13.9         | •                | 11.5                                                   | 0    | 0        | ָר<br>ק       | 17.0       | 2             | 8     |      | 101     | α     | 10         | 13.2             | 20.1      | 15.8 | оñ<br>л      |          | 10,5 | 0 0  | ) c        | 10.8      | 11.11  |   |
|               | 28      | = 117        |             |            | -                                        | -        | i            |                  | 1                                                      | 0    |          |               |            |               | 1     |      | - 2369  |       |            | 14.6             | İ         | -    | ٥            | 1        |      |      |            |           | -      |   |
|               | 2       | *            |             | 8          |                                          |          | 15.          | 0                | 17.2                                                   | 0    | ء<br>ء د |               | - 4        | 74            | 8.2   |      |         | 0     | . 0        | 16.5             | 33.3      | 80.0 | 17.6         | 27.0     | 20.0 | 0 0  | 30         | 16.2      | 14.0   |   |
|               | %       |              | 3.          | :          |                                          | -        |              |                  |                                                        |      |          |               |            |               |       | -    |         |       |            |                  |           |      |              |          | 1    |      |            |           | 1      |   |
|               | 8       |              |             | ÷          | ┿┈                                       | · •      | œ            | 0                |                                                        | 0 (  |          |               | 1          |               |       | 1.7  |         | 7     | · <        | 1                | 17.7      | 14.4 | 13.5         | 17.      | 5.8  |      |            | •         | 10.5   |   |
|               | 72      |              | 2 4.7       | -          | 8                                        |          |              | 1                |                                                        | 0    | <u>،</u> |               |            |               |       | 1.2  |         | ٧     | 7 0        |                  | <u>بر</u> | 15.  | ., .         | (전       | 16.6 | ı    | <u> </u>   | 11.6      | 13.4   |   |
|               | 23      |              | ห้น         | . 6        | 2                                        | ထ        | 4            | 0,               |                                                        |      |          | 0             |            |               | ۴     | 9    |         | ,     |            | Ä                | 21.       |      | 16.2         | 22.      |      | >    | 3.61       | 12.7      | 15.1   |   |
| ·H°           | (fps)   | - 1          | 0           |            | 1                                        |          | 1            | 1                |                                                        |      |          |               |            |               |       |      |         | c     | c          | 82.8             | 828       | 62.E | 81.53        | 62.5     | 15.  |      | 200        | 10.8      | 12.8   |   |
| 30            | (fps)   |              | 7.01<br>7.7 | 10,0       | 10.1                                     | 10.7     | 10.5         | 7.2              | 10.2                                                   | 0 «  | · 0      | 10,8          | 10.6       | 10.5          | 10.5  | 10.8 |         | 12.0  | 0,0        | 8.0              | 11.1      | 11.1 | 8.11<br>0.11 | 11.3     | 11.4 | - 6  | 11.1       | 10.9      | 11.2   |   |
| ۰             | (deg)   |              | 8.8         | 8          | 2.20                                     | 69.0     | 0,40         | 4.62             | 0.25                                                   | 4.92 | 3,4      | 7,77          | 2.79       | 2.88          | 5.45  | 267  |         | 90,06 | 2          | 5.52             | 7.64      | 0.02 | 13.68        | 5<br>5   | 010  | 2.00 | 0.0        | 34.8      | 99.1   |   |
| . 0           |         | L            | 20.01       |            | L                                        |          |              |                  | -                                                      |      |          |               |            |               | 1 :   | 7    |         |       | 25.0       |                  |           |      | 82.2<br>16.5 |          |      |      |            |           | 14.2 1 |   |
| <b>&gt;</b> 0 | g) (fps |              | 2 2         |            |                                          | 306 57   | 6.3 58       | 58               |                                                        | × ×  |          |               | - 2        | 17            | 1 1   |      |         | L     | 0.2        | <u></u>          |           | 63   |              |          |      |      |            |           |        |   |
| ۲             | (deg)   |              |             | ·          |                                          | <u> </u> |              |                  |                                                        |      |          | 12.4          |            |               | 20.5  | _    |         |       | <u>.</u>   |                  | 6.3       |      | 12.4         | 15.h     |      |      | 20.5       |           | 30.3   |   |
| É             |         |              |             | ייי        | -27                                      | 7        | Ø            | ~                | <b>20</b> (                                            | ,    | 3 7      | 12            | 13         | 7             | Ή,    | 25   |         | 17    | 8          | 19               | ଥ         | Z    | 2 23         | ನೆತಿ     | 803  | 3 %  | - 8        | 3         | 30     |   |

TABLE V

## TIMES OF MAXIMUM BOTTOM PRESSURES

| •            |          |       |              |          |      |      |      |          |          |      |               |          |         |      |                 |      |                    |      |      |       |      |                                            |      |      |      |      |          |                |            |                                                                    |      |
|--------------|----------|-------|--------------|----------|------|------|------|----------|----------|------|---------------|----------|---------|------|-----------------|------|--------------------|------|------|-------|------|--------------------------------------------|------|------|------|------|----------|----------------|------------|--------------------------------------------------------------------|------|
|              | 2        | 0.07  | .027         | 920      | 010. | .037 | 670  | 3        | 86       | €.   | <b>E</b> .    | <b>a</b> | 570     | 8    | 10.             | 260  | 138                | .026 | •056 | 8     | 570  | 970.                                       | -    | 80   | 170  | 8    | <b>e</b> | 86             | .087       | 86.5                                                               | 777  |
|              | 12       | 0.022 | .023         | ,<br>10, | .035 | .033 | C40  | <b>E</b> | 9        | €.   | €.            | 3        | 3       | 8    | 78              | 087  | 19                 | •022 | .022 | 88.   | -042 | 070                                        | 5    | 9    | 989  | 290  |          | 260            | •020       | 170.                                                               | - // |
|              | 2        | 0.017 | 110.         | .017     | •030 | .027 | •036 | <b>.</b> | -<br>10. | 1;   | €(            | 3        | 5,5     | § §  | 5               | .077 | 860.               | .017 | •016 | 5     | .036 | 9                                          | 580  | 80   | 80   | 1    | <u>.</u> | -092           | 2200       | 88                                                                 | -2/2 |
|              | 19       | 0.013 | .013         | .015     | .023 | .023 | •032 | 080      | 010      | 9    | 500           | 56       | 5.5     | 5,5  | 100             | 170. | 160                | .013 | 013  | 970   | •032 | 500                                        | 073  | 770  | છુ   | હ    | <b>®</b> | 170.           | 267        | 5.5                                                                |      |
|              | 138      |       | .00 <b>8</b> | 8        | 020  | 10.  | 50.  | .89      | .038     | 18   | 35            | 3.5      | 1 7     | 37   | 9 5             | 9.6  | 700.               | 80   | 200  | 960   | 620  | 93                                         | 8    | 070  | 670. | 970  | <b>8</b> | 8.             | 8,8        | 5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5 | ,    |
|              | 17       | 0.032 | .033         | .034     |      | .131 | ,139 | 3        |          | 13   | •             | 8        | 38      | 700  | 1000            | 0,00 | .169               | 18   | 620  | 8 8   | 300  | 070                                        |      | 1    | 8    | 8    | .126     | 107            |            |                                                                    |      |
|              | 97       | 0.021 | .022         | .023     | 030  | 000  | 96   | 9 7      | <u>(</u> | (8)  | 2 6           |          | 2,5     | 36   | 35              | 3    | 200                | 20.6 | 7.50 | 5.5   | 9.5  | 9 5                                        | - \f | 5    | 6    | -052 | 1        | 8              | 200        | 96                                                                 |      |
| ber-         | H        | 0.01  | 110.         | 210.     | 020  | 810  | 50,5 | 500      | 3 5      | 3 2  | 3.5           | 3 6      | 2       | 2 6  | y v             | 200  | ָּעָרָ<br>מַלָּיִר | 1 6  | 210. | 750   | 200  | 2 6                                        | 9 8  | 5    |      |      | 66       | Š              | 220        | 5                                                                  |      |
| gage number- | 큐        | 0.016 | 210          | .017     | 120  | .023 | 2000 | 3.5      | 3.6      | 15   | 10            | 037      | 0.00    | 5    | 200             | 3 5  | 3 5                | 27.5 | 070  | 2000  | 3 6  | ֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֓֓֓֡֓֓֡ | 7    | 5.0  | 010. | 3    | 77.0     | 2010           | 97         | 3. <del>2</del>                                                    |      |
| on ga        | n        | 0.045 | 0.00         | 91       | 5    | 5,5  | 9    | 8        | 33       |      | )             | 070      | 8       | 8    | 223             | 6    | 100                | 2 6  | 200  | 2 6   | 3 8  | 5 5                                        | 7    | 5 6  | 3.5  | 3    |          | 0.00           | 2 <b>y</b> | 27.                                                                |      |
| (sec)        | 12       | 0.031 | .031         | 250.     | 3 6  | 5    | 770  | α, τ     | •        |      |               | 8        | 5       |      | 3               | 3    | 800                |      |      | 10    | 200  | 2                                          |      |      |      | 100  | 707      |                |            |                                                                    |      |
| pressure     | ជ        | 0.019 | 020          | 200      | 200  | 200  | 3,5  | 3,50     | 36       | 3,4  | 3             | 9        | olo     | Olo. |                 | 5    |                    | Š    | 200  | 30    | 000  | ů                                          |      | -    |      | 1 2  | 0.0      | 2 2            | 7          | 36                                                                 |      |
|              | ខ្ព      | 0.009 | 110.         | 150      | 200  | 35   | 170  | 0.00     | Š        | 9    | 030           | 33       | 031     | .032 | 039             | 8    | 0                  | 10   |      | 0     | 0    |                                            | 000  | 200  | 250  | 3 6  | 2.5      | 200            | 3,6        | 96                                                                 |      |
| of maximum   | 6        | 0.015 | 10.          | 9 6      | 2 6  | 3,5  | 20.0 | 200      | 8        | 0,3  | 10            | 160      | .033    | 936  | 0,12            | 20   | 0.1                | 2    | 038  | 3     | 20,  | Š                                          | 30   | 200  | 9.5  | 3,5  | 3 6      | ָבָּרָ<br>בַּי | 036        | 8                                                                  |      |
| Time         | 8        | 0.045 | 3 6          | 9 6      | 270  | 3 6  | 700  | 3,0      | 3        | )    | .088          | .059     | 9,0     | 8,6  | .062            | .067 | .039               | 039  | 88   | 970   | 910  | 280                                        | 8    | 7,6  | 36   | 8    | 200      | 3,5            | 36         | 8,                                                                 |      |
|              | 7        | 0.032 | 200          | 2        | 7    | 3.5  | 26   | 950      | 60       | 8    | 968           | 140.     | 540.    | 970. | .048            | 550  | 028                | .030 | 38   | .036  | 936  | 8                                          | 0,0  | 5    | 10   | 2.5  | 2 5      | 0              | 042        | .051                                                               |      |
|              | 9        | 0,019 |              | 200      | 3 6  | 000  | 0,0  | 028      | 2,0      | 9    | .042          | .034     | .033    | •035 | .038            | 50.  | .019               | 010  | 070  | 028   | •056 | 870.                                       | 030  |      | .033 | 7,7  | 200      | 960            | .032       |                                                                    |      |
|              | 5        | 0.008 | 100          | 200      | אנ   | 30   | 033  | 0,0      |          | .032 | •050          | •024     | °03     | •026 | •028            | .039 | 8                  | 010  | .028 | .020  | 910. | .03h                                       | 050  | 20,  | 0    | ż    | 8        | 028            | 20.        | -034                                                               |      |
|              | 4        | 940.0 | 200          | 2,10     | 7    | 2    | 060  | 0,15     | 060      | 070° | •059          | 970.     | •<br>2  | .047 | 9 <sub>10</sub> | .048 | ·042               | .042 | 190  | 1770. | 170. | 790.                                       | 070  | 0,0  | 01/2 | 8    | 012      | 012            | 010.       | °042                                                               |      |
|              | ٦        | - t c | 7-2          | + ~      | ~    |      |      | .032     | ~        | ~    | $\overline{}$ | -        | =       |      | _               | ~    | _                  | -    | ~    | _=    | Ω.   | ~                                          | _    | _    | _    |      | _        | .032           | _          | 10                                                                 |      |
|              | 2        | 0.019 | 16           | 020      | 0    | .023 | 980  | .021     | .039     | .029 | .028          | •02h     | 120.    | 980. | .026            | .027 | 018                | 010  | .033 | ,02h  | 20.  | .034                                       | 050  | ,02h | •023 | ,03  | 025      | .023           | .020       | 505                                                                |      |
|              | 1        |       | 200          | 010      | 015  | 013  | 050  |          | .024     | .018 | •018          | ਰੋ       | 10.     | 7    | .017            | •018 | 010                | 110. | 050  | 110.  | .013 | 20.                                        | -012 | 215  | 10.  | 120  | 10.      | .03            | 010        | 200°                                                               |      |
| ¢            | ran<br>u | ٦,    | . ~          | ٦.       | v    | 0    | ~    | 00       | 0        | 2    | Ħ             | 15       | ည.<br>— | 7    | 7.              | 91   | 17                 | 18   | 19   | 8     | ね    | 55                                         | ຄ    | 77   | Ж    | %    | 27       | 28             | 62         | 30                                                                 |      |



TABLE V - Concluded

TIME OF MAXIMUM BOTTOM PRESSURES - Concluded

|             | EJ  | 4666   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888   46. 888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 175 | 6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | 14  | eeeeeeeeeeeeeeeeeeee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | 01  | eeeeeeeeeeeeeeeeeeeee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | 39  | 22222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1           | 38  | 66. 66. 66. 66. 66. 66. 66. 66. 66. 66.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| gage number | 37  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 36  | 0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (sec) on    | 35  | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | 34  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| pressure    | 33  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| maxi mun    | 32  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ų,          | 31  | 0.012<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.022<br>0.023<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033<br>0.033 |
| Time        | 30  | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             | 29  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | 28  | (a)<br>(b)<br>(b)<br>(b)<br>(c)<br>(b)<br>(c)<br>(d)<br>(d)<br>(d)<br>(d)<br>(d)<br>(d)<br>(d)<br>(d)<br>(d)<br>(d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | 22  | (a)<br>(b)<br>(b)<br>(c)<br>(c)<br>(d)<br>(d)<br>(d)<br>(d)<br>(d)<br>(d)<br>(e)<br>(d)<br>(e)<br>(e)<br>(e)<br>(e)<br>(e)<br>(e)<br>(e)<br>(e)<br>(e)<br>(e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | 92  | 250.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | 25  | 0.047<br>.045<br>.059<br>.059<br>.075<br>.075<br>.075<br>.042<br>.042<br>.042<br>.042<br>.042<br>.042<br>.042<br>.042<br>.042<br>.042<br>.042<br>.042<br>.042<br>.042<br>.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | 24  | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | 23  | 0.033<br>0.033<br>0.033<br>0.045<br>0.052<br>0.052<br>0.052<br>0.052<br>0.052<br>0.052<br>0.052<br>0.052<br>0.052<br>0.052<br>0.052<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.053<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| P.          |     | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

aZero pressure on gage.

TABLE VI

INSTANTANEOUS PRESSURE DISTRIBUTIONS (a) W = 1177 lb;  $c_{\Delta} = o_{*} d \delta$ 

|                      |       |       |                                   |         |                                  |                         | <del></del>                               |                                         | <del>' ,                                     </del> |                    |                                         |                                                   |                                       |                                         |          |
|----------------------|-------|-------|-----------------------------------|---------|----------------------------------|-------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------------------|--------------------|-----------------------------------------|---------------------------------------------------|---------------------------------------|-----------------------------------------|----------|
| 1                    | 1     | 23    | 3.2                               |         | . 0 4 L Z                        | 0 v .                   | 2000                                      | 8 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 14.0                                                | 000                | 00                                      | 2000<br>2000<br>2000<br>2000                      | 0011                                  | 0 0 0                                   | 0.7      |
|                      |       | ี่ส   | 2.1<br>2.1<br>1.2                 | 2000    | 9.6.4                            | 6.2                     | Line,<br>orre                             | 8.00                                    | 1 20                                                | ~                  |                                         | ~ ~                                               |                                       |                                         |          |
|                      |       | 2     | 1.2                               | 0 1 1 1 | 3.2<br>1.8<br>0.9                | ۲, w و<br>بره ر         | 20.20                                     | 20 2 m                                  | 000                                                 | 3:5                | 0 0 % 6                                 | 000                                               | 16.1                                  | 000                                     |          |
|                      | Ī     | 19    | 9000                              | , mm 6. | 2.9                              | ~ ~ .<br>~ ~ .          | 2000                                      |                                         | 0,000                                               | 000                | 2000                                    | 0.00                                              | 2007                                  | 1010                                    | 0 N      |
|                      |       | 18    | 111                               | 0.00    | ゞ゚ゔ゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゙゚゙゙゙゙゙゙゚゚  | 1.00                    | N. W. W. W. W. W. W. W. W. W. W. W. W. W. | 1111                                    | 7.7.                                                | 0.9                | 001                                     | 0000                                              | 0000                                  | 0.7                                     | N. 0.V.  |
|                      | ľ     | 17    | III                               | İIII    | 11111                            | 11                      |                                           |                                         | 000                                                 | 111                | 111                                     |                                                   |                                       |                                         | 11       |
| ļ                    |       | 91    | 2000                              | 5 E 6 - | 20 V C &                         | 6.9<br>1.9              | 9.00                                      | **************************************  | 00%                                                 | 200                | 0000                                    |                                                   | 7,00                                  |                                         | 2.1      |
| roden muhor          |       | Ή.    | 040                               | بممت    | 1111                             | 2.5                     | 9999                                      | 1.50                                    | LL                                                  |                    |                                         | - 61<br>- 6.0<br>- 7.0<br>- 6.0<br>- 7.0<br>- 7.0 | -                                     |                                         |          |
| 8000                 | Rake. | 7,7   | 2007                              | 9.00    | 1.23 to 1.                       | 1.9                     | 200                                       |                                         | 0.01                                                | 9 8 8              | 2 6 6 7 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 | 25.6<br>6.6<br>7.6                                | 2 7 7 7 7 7                           | 1.8                                     |          |
| ÷                    | ,     | 5     | 9.6                               | 20-     |                                  | ੂੰ ਮ੍ਰ                  | 1111                                      | 1111                                    | 11:1                                                | 000                | 77.7.0                                  |                                                   | 1000                                  |                                         | NO M     |
|                      |       | 22    |                                   |         |                                  | 111                     | 1111                                      | 1111                                    | 111                                                 |                    |                                         |                                                   |                                       |                                         | 00       |
| Pressure (1h/en in ) | -     | 7     | 824.00                            | 6 C V   | 6411<br>6700                     |                         | 10.0<br>10.0<br>10.0                      | 1.22.                                   | 111                                                 |                    | 0.00 r                                  | N. 8 . 7                                          |                                       |                                         | 11       |
| a min                |       | ន     | 11.2                              |         | 8.1.                             | 202                     | 20014                                     |                                         | 7.5                                                 | 1 1 15             | , we e                                  | 12.51<br>7.8<br>7.8                               | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | W 1- 40                                 | W. W.    |
| , L                  |       | ٥     | 0.00.0                            | 7,000   |                                  |                         | i                                         | 2.52                                    | 7.7<br>8.2<br>1.1                                   | 5.4.2              | 12° C                                   | 12.0<br>12.0<br>2.6                               | 1000                                  | 2.01                                    | O, M     |
|                      | -     | æ     | 044                               |         | 8,1,8                            | 2,2                     | 11.2<br>6.9                               | 3.2                                     | 6                                                   | 000                | 6.6                                     | 1 6.7 0                                           | 8 4,                                  | 1.00                                    |          |
|                      | 1     | -     | 1000                              | 0 % H   | 6.00                             | 000                     | V 0 8 V                                   | 6.0                                     | 4 7 «                                               | 1.00               | 2007                                    | 7.2 1                                             | 6.91                                  | 20.5                                    | 1        |
|                      | ,     | ٥     | 87.1.                             |         | 2.7                              |                         | 2.1.0                                     | 2.1.6                                   | 7.0.4.<br>1.0.4.                                    | 3.90               | 2.0                                     | 11.2                                              | 1.25.4                                | ~ ~ ~                                   |          |
|                      | 1     | ^     |                                   |         | erii.                            |                         | 1                                         | 3.2                                     |                                                     | 8.3                | 200.                                    | 6.6.0<br>1.6.0<br>1.0.0                           | 10.00                                 | İ                                       |          |
|                      | -     | #     | 0000                              | 00.0    | 20.0                             | 3.5                     | 7075                                      | 1111                                    | 2000                                                |                    | 20.45                                   | ထိုထ                                              | 1111                                  | 0.7.80                                  | L        |
|                      | ,     | 2     | 9117                              | 967-    |                                  |                         |                                           |                                         |                                                     |                    |                                         | 1111                                              | [                                     | 111                                     | 11       |
|                      | -     | 7     | 0000<br>0011                      | 6.4     | 2000                             |                         | l                                         |                                         |                                                     |                    | 8.4                                     | 2.5                                               | 2.2                                   | 0 0 0<br>7 0 0                          | 3.4      |
| L                    |       | -     | 2882<br>25.4<br>2.4<br>1.4<br>1.4 | H       | 3.30 1.3<br>2.75 1.0<br>1.93 1.0 | 2 4 4<br>2 4 4<br>2 6 6 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2     | 8000                                    | 4 W. W. V.                                          | 55.5               | - m m                                   | 13.5<br>1.2.7<br>6 1.4<br>0 7                     |                                       | 2 4 4 5 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 1 2.0    |
| ä                    |       | 9     | ~~~                               |         | 1                                |                         |                                           | ~~                                      | 11.7.                                               | <del>     </del> - | <del></del>                             |                                                   |                                       |                                         | 1.7      |
| <b>*</b>             |       |       |                                   |         | 200 × 1                          |                         |                                           | 1 1                                     | 7.00                                                | 1 1 1              |                                         | 1 .                                               |                                       | 1                                       |          |
| h                    | . {   | ا ت   | 0                                 | 0       | 0.28<br>.38<br>.48               | 25.5                    | 0.33<br>5.43<br>4.63                      | 1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0  | 0<br>8.4.8.                                         | 0.11               | 37.0                                    | <u>े</u><br>इ <u>द</u> ेंदं                       | 24.0<br>24.0<br>26.                   | 0.17<br>-67<br>77                       | 0.63     |
| 43                   | 3     | (380) | 20.00                             | 0.027   | 0.028                            | 200                     | 0.033<br>0.045<br>0.059<br>0.059          | 0.043<br>0.056<br>4.056<br>101.         | 0.083<br>0.040<br>0.059<br>0.59<br>0.50<br>0.50     | 0.080              | 0.059                                   | 0.000<br>0.056<br>0.058<br>0.058<br>0.058         | 0.0 <u>42</u><br>.058<br>.071         | 0.048 0.47<br>6.076<br>7.107            | .00.0    |
| 1                    | 7     |       | 0.2                               | 0.2     | 2.0                              | 3.2                     | 3.2                                       | m                                       | 9.3                                                 | 12.4               |                                         | 12.և                                              | 12.4                                  | 20.5                                    | 30.3     |
|                      | Run   | 1     | ч                                 | ~       | ~                                | 7                       | 2                                         | 9                                       | - 80                                                | 901                | <del> </del>                            | £1                                                | 114 1                                 | 7.7                                     | ,,<br>12 |
| <u></u>              |       |       |                                   |         | <u> </u>                         |                         |                                           |                                         |                                                     |                    | <u> </u>                                | l                                                 |                                       | 1                                       |          |



TABLE VI - Continued
INSTANTANEOUS PRESSURE DISTRIBUTIONS - Continued

(a) Concluded

|             |            |                                         | <del>,,</del>      | ·                       | ,            |                                         |                                         |       | ,            |                                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            | <del></del>        | ·    |
|-------------|------------|-----------------------------------------|--------------------|-------------------------|--------------|-----------------------------------------|-----------------------------------------|-------|--------------|----------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------|------|
|             | 3          | 60 mg 8/8                               | 8 4 4              | 2                       | 0 W.         | 0000                                    | 4.6.                                    | براد  | 0.0          | 0                                            | 0.0  | 0 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 5 6 6<br>5 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.52 c                                     | 0 0 T              | 9.4  |
|             | 77         | 111                                     | 111                | 8 4 4                   | 11           | 20 m                                    | ~ w.i.                                  | 10.01 | 19.3         | 16.2                                         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | 10.3               | 50.7 |
|             | Ħ          | 2011<br>2011                            | 20.00              | 2,44                    | 2.2          | ~ · · · ·                               | N. 9. H.                                | 2     | 11.8<br>7.4  | 15.4                                         | 71.2 | 26.01<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10<br>20.10 | 10 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | 0.00               | 0.4  |
|             | 94         | 500 A                                   | 2.00               | 1:1                     | 3.3          | 8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 10.3                                    | 13.0  | •            | 2.1                                          | 4.   | 50.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 0 V L                                    | 8.00               | 3.7  |
|             | 39         | 60 M 60 M                               | 11<br>80 80 10 14  | 7.00                    | 200          | ~ .<br>                                 | -201                                    | 6     | 5.3          | 12.3                                         | 13.9 | 16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 V C                                    | 5.7                | E 8  |
|             | 82         | 200                                     | 004                | 9:1                     | 7. 80 o      | 8.5.                                    | - m - m - m - m - m - m - m - m - m - m | · a   | 5.6          | 13.9                                         | 14.3 | 7.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,7,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.5<br>6.5                                 | 0 20 0             | 2.0  |
| number -    | 37         | 1111                                    | 1111               | N. H.                   | 0 %<br>0 4 7 | 0 H C                                   | 0,2,4                                   | , C   | 11.9<br>1.2  | 11.8                                         | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                    |      |
|             | 36         | 2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 | 2 4<br>4 0 1/2 1/2 | 0200                    | 2.1          | 20.00                                   | 2227                                    | 7.7   | 0,00         | 10.1                                         | 13.8 | 12.1<br>7.7<br>13.8<br>8.6<br>8.6<br>8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.8                                        | 11.0<br>6.0.0      | 2.8  |
| at gage     | ×          | l                                       | i                  | 6 5 6 C                 | 1            |                                         | 1                                       | 6.7   | 6.9<br>L.1   | 8.1                                          | 20.5 | 12.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.00                                       | 4.6                | 2.6  |
| n.)         | <b>4</b> £ | 2.5.<br>1.3.                            | L                  | 2.2                     |              | 3.7                                     | 00 0                                    | ì     | 000          | 0                                            | 0    | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0000                                       | 000                | 00   |
| (1b/sq in.) | 33         | 8.4.1.                                  | 2000               | 113                     |              | ļ                                       |                                         | o     | 000          | 0                                            | 00   | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0000                                       | 000                | 00   |
|             | 32         |                                         | 08.44              | L                       | 20.4         |                                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | ٠.    | 000          | 0                                            | 0    | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0000                                       | 000                | 00   |
| Pressure    | īε         | 2.1<br>.9                               |                    | 1.0                     | 10.1         |                                         | <u> </u>                                | +-    | 007          | 0                                            | ٥    | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0000                                       | 000                | 00   |
| F           | 30         | 7.7<br>2.6<br>1.3                       |                    | 1                       | 0 % .        | L                                       | 00.6.                                   |       |              | <u>'                                    </u> | ٥    | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000                                        | 000                | 00   |
|             | 62         | 2.7<br>1.6<br>1.1                       | 4.1                | 2.1.<br>5.7.            | 2.6          | 45 C. C. I                              | 12.60                                   | 0     | 0 H 2        | 0                                            | 0 0  | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000-                                       | 0                  | 00   |
|             | 82         | 1111                                    | 1111               | 1111                    | 111          |                                         |                                         | ŀ     |              | 0                                            | اا   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                    |      |
|             | 27         |                                         | 1111               | 944                     | 111          | 1111                                    | 2.2                                     | 0     | 0 0 v        | 0                                            | 0    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6. 5. 4.                                   | 91.0               | 1.5  |
|             | 92         | 0 .7<br>3.4<br>1.6                      | 00 64              |                         | 0 20 50      | 0000                                    |                                         | 1     | 000          | 0                                            | 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000                                        |                    |      |
|             | x          | 0<br>.7<br>2.1<br>1.8                   | 01.01              |                         | 0 4 2        |                                         |                                         | ┸     | 001          | ┷                                            | 0 0  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000                                       |                    | 00   |
|             | 42         | 0.3                                     | 0411               |                         | 112          | 1.691                                   |                                         | ╄~    | ļ            | + +                                          | -    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 011.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6    | 9,10               | 2.3  |
|             | 23         | 2041                                    | 0 K II.            | 0 W W U                 |              |                                         | 0 H 2 8                                 |       | 0 8          | 0                                            |      | 01.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000                                       | 0.0 %              | 3.7  |
| a P         | (g)        | 3.28<br>2.62<br>1.85<br>1.85            | 2.5.4.4<br>2.9.2.8 | 2.75                    | 4.53<br>2.53 | 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.  | 4.12<br>1.17<br>3.16                    | 3.5   | 25.5         | ~                                            | 2 2  | 2. 4.4<br>8.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4.4.6.<br>1.9.0.%                        | 5, 5, 8<br>8, 5, 8 | 2.1  |
| >           | (fps)      | 8.b<br>7.2<br>6.0<br>5.3                | 8 6 9 7<br>6 6 2 4 | 8 - 8 N                 | 5.7          | 8,8<br>6.9<br>7.9                       | 7. 20 E                                 | 1:1   | & 7, %       | 1.5                                          | 7.0  | 8.8<br>6.1<br>3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 4 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 6 7 7                                    | 8.7.7.1<br>5.3.4.  | 6.0  |
| ۲           | (ft)       |                                         |                    | 85.<br>86.<br>84.       |              |                                         | 0                                       | 0.13  | ٠<br>پرنۍ    | 0.11                                         | 0.0  | 0.12<br>52.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>ु</u><br>उद्भव्य                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>'</b>                                   | 74.0               | 0.63 |
| 4           | (sec)      | 0.027<br>0.05<br>0.05<br>0.05           | 0.027              | 0.028<br>0.000<br>0.000 | 0<br>8.8.6   | 0.03<br>0.03<br>0.05<br>0.05            | 0.00<br>0.05<br>0.01                    | 0.083 | 0.000        | 0.080                                        | 96   | 1900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0. | 0.058                                      | 0.048              | .0.0 |
| ۲           | (deg)      | 0.2                                     | 0.2                | 0.2                     | 3.2          | 3.2                                     | 6.3                                     | 9.3   | m            | 4                                            | 12.7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.h                                       | 20.5               | 30.3 |
| 4           | TIPUL I    | н                                       | 62                 | m                       | 4            | · 20/                                   | •                                       | 7     | <b>&amp;</b> | H                                            | 3 4  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ភ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 77                                         | 25                 | 97   |
| L           |            |                                         |                    | 1                       | L            | l                                       | l                                       | 1     |              | L_1                                          | .1   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l                                          |                    | , 1  |



**4**J

TABLE VI - Continued

INSTANTANDOUS PRESSURE DISTRIBUTIONS - Continued

(b)  $\pi = 2369$  lb;  $C_{\Delta} = 0.97$ 

|                      | 2                | 8.9                   | 8.7<br>5.2            | 1.6               | 0.7           | 13.1                                        | 0.1    | 0 25.0                             | 3.3<br>18.3                | 5.5                                                          | 2000                                      | ٦.<br>٥٥ o .                    | 15.9        |
|----------------------|------------------|-----------------------|-----------------------|-------------------|---------------|---------------------------------------------|--------|------------------------------------|----------------------------|--------------------------------------------------------------|-------------------------------------------|---------------------------------|-------------|
|                      | 2                | 5.3                   |                       |                   |               | N 400 H                                     | 0.7    | 80 U.L.                            | h.3                        | 0 11 0                                                       | 0 0 0                                     |                                 | تاست        |
|                      | 2                | 2.2                   | 0<br>2<br>2<br>2<br>3 | 50 m              | 7,00          |                                             | œ, c   |                                    | h.2                        | 11                                                           | e de d                                    |                                 | 3.7         |
|                      | 5                | w. ev.                | v. % c.<br>w. %       | 46.0              | 11 5<br>2 2 3 |                                             |        | 1000N                              | 2 2 2                      | 080                                                          | <del></del>                               |                                 | 10.5        |
|                      | 18               | 11.8                  |                       | 12.8              | 15.3          |                                             | 0.5    |                                    | 7<br>1<br>1<br>1<br>1<br>1 | 1.80<br>1.00                                                 |                                           | 36.k.                           | 0.7<br>19.8 |
|                      | 17               | 2.2                   | :                     | 11.9              |               | 12.1                                        | 0      | 111                                |                            | 2.00                                                         |                                           |                                 |             |
| l<br>L               | 29               | 40.00                 | - W W                 | 10 W              |               | ownw<br>ownw                                | 00     | 8 7 8 6 6<br>8 6 7 6 6             | 0 1                        | 0 % 0                                                        | ° 50 €                                    | 5.051<br>5.051                  | 0 1         |
| numbe                | Ħ                | 2.6                   | 23.0                  | 6.0<br>6.3<br>6.3 | N = 6.        | 6 8 9 4<br>6 8 9 4                          |        | 11.67                              |                            | 1.6                                                          | 20.00                                     | 12.9                            |             |
| gage number          | #                | 8.2.                  | 13.6                  | 0 5.0             | 20.0          | 2 - 3 F                                     | 23.0   | 0 0 d                              | 9.7                        | 20 0<br>20 0<br>20 0<br>20 0<br>20 0<br>20 0<br>20 0<br>20 0 |                                           | 10.7<br>1.7.7<br>1.8.5<br>1.8.5 | 100.00      |
| #                    | H                | 0 .                   | 000                   | 1000              | 20 44         | 0 44.0<br>0.00.0                            | 000    |                                    | 10.8                       | 9.1                                                          |                                           | 10 U.                           | 10.3        |
| Pressure (1b/sq in.) | 12               |                       |                       |                   |               | 1111                                        |        |                                    |                            |                                                              |                                           |                                 |             |
| (1P/s                | п                |                       |                       |                   |               |                                             |        |                                    | 8.9                        | 33.2                                                         | 2.0.5<br>27.4                             | 2.5                             | 8.9         |
| sure                 | ន                | 2.0                   | 2.5                   | 27.               | 5 0 V         | 0 0 0 0<br>0 0 0 0                          | 28.2   | 2000                               | 29.5<br>12.4               | 20.4                                                         | 19.1<br>27.1<br>34.7                      | 20.01                           | 9.1         |
| Pres                 | 6                | 2.0<br>1.4            | 2.6                   | 0.00              | ) [ · ·       | 0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1   |        |                                    |                            | 7.7.7.<br>3.1.1.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.           | ゴトコウ                                      | ວຸດ<br>ຊຸດ ທ<br>ຊຸດ ທ           | 8.6         |
|                      | ∞                | 04.                   | 000                   | 10.3              | 0 27 0        | 10.2                                        |        |                                    | 2                          | 7                                                            | 22.4<br>0<br>18.1                         | 0 0 0 0                         | 2.5         |
|                      | 7                | 3.4                   |                       |                   |               |                                             | 70 =   | 0.00 d                             | 8.0                        |                                                              | ろうろう                                      | 0 - 0 -<br>0 - 1 - 0            | 9.1         |
|                      | 9                | 9.6                   | 8.50                  | 6.00              | 6.80          | 7.20                                        | 20.1   | W 0 0 0                            | مانيلم                     | 26.8                                                         | 32.7<br>17.6<br>12.5                      | 2027                            |             |
| ,                    | w                | 1.2                   | 1,5                   | W 60              | 7.6           | 2000                                        | w o    | me mi                              | 12.0                       |                                                              | 20.51<br>12.9<br>2.5.5<br>2.5.5           | 0 7 9                           | 7.7         |
|                      | -7               | η·<br>η·<br>ο         | 0 % «                 | 12.2<br>1.2.1     | 600           | , ω ч ς<br>∞ ν ∞                            | F- C   |                                    | -3 W/V                     |                                                              |                                           | 2000                            | 3.4         |
|                      | 3                |                       |                       | 5.2               |               |                                             | 17.1   |                                    | 11.7                       |                                                              |                                           |                                 | 5.1         |
|                      | 8                | 3.1<br>2.2<br>1.h     | 3.2                   | 2.40              | ~ X .         | 200                                         | 200    | 6 4 L 8                            | 10.1                       | 3.9                                                          | 17.2<br>9.5<br>10.4<br>5.8                | 20.20                           | 5.2         |
|                      | н                | 2.5<br>7.1            | 1                     | 1                 | •             | 200                                         |        | E. 2. C                            | 2.7                        | 13.9                                                         | 2.000<br>2.000<br>3.000                   | 2007                            | 5.1         |
| a P                  | ( <b>g</b> )     | 2.51<br>2.58<br>1.75  | 2.45<br>2.49          | 3.01              | 3.91          | 2.88.5<br>71.88.5                           | 2.2    | 25.55                              | 2.50                       | 45.                                                          | * 2 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 22:12                           |             |
| h                    | (fpe)            | 10.7<br>9.8<br>8.6    |                       |                   |               |                                             |        |                                    |                            |                                                              |                                           |                                 |             |
| h                    | 3                | 0.20<br>0.1.0<br>7.7. | 0<br>8,4,7            | 52.5              | 3.0°          | 22.00                                       | 21.5   | C. 25 45 8                         | 25.5                       | 200                                                          | 7.49.50                                   |                                 |             |
| <b>د</b>             | (deg) (sec) (ft) | 8.5.9                 | 032                   | 820               | 0.00          | 0.00.00<br>0.00.00.00.00.00.00.00.00.00.00. | 98.9   | 0.050 0.53<br>.060 .62<br>.076 .74 | 282                        | 270.                                                         | 2000                                      |                                 |             |
| ۲                    | (Meg             | 2.0                   | 0.2                   | 6.3               | 6.3           | 6.3<br>0                                    | 12.4 0 | 0<br>12.h                          | 7                          | 15.4<br>20.5                                                 | 20.5                                      | 20.5                            | 30.3        |
| , g                  |                  | ~                     | 80                    | 0                 |               | ļ <u>-</u>                                  | 1      | H                                  | 7                          | 귀중                                                           | × ×                                       | ٦                               | ~           |

TABLE VI - Concluded
INSTANTANEOUS PRESSURE DISTRIBUTIONS - Concluded

### (b) Concluded

|             |          |            |                      | т                                                                               | ·                    | ·                                                                  | <del>.,</del>                                                            | <del></del> |                                         | <del></del> | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1           |                      | ·.           |
|-------------|----------|------------|----------------------|---------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|-------------|-----------------------------------------|-------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|--------------|
|             |          | 3          | 2.2                  | 2.9                                                                             | 12.3                 | 10.2                                                               | 5 - 7 -                                                                  |             | 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0.4         | 0         | 10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 180          | 13.6                 | 20.5         |
| •           |          | 77         |                      |                                                                                 |                      |                                                                    | 10.3                                                                     | ,           |                                         |             |           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                      | -2.0<br>14.0 |
|             |          | 14         | 8 60                 | € 60°                                                                           | 1204                 |                                                                    | @ N.N.C                                                                  | 24.8        | 10.20                                   | 00          | 0 80      | 004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.1         | 12.8                 | 1.1          |
|             |          | <b>9</b>   | 3.0                  | 000                                                                             | 9.                   |                                                                    | 14.8<br>7.7<br>4.4                                                       | 1.5         |                                         |             | \r: ~     | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.00         | -00                  |              |
|             |          | 39         | W. 7.                | 2.0                                                                             | ייטיי<br>הטייה       | 7.7                                                                | - w - c                                                                  | 20.3        | 0.00 m                                  | 0° 8        | 2.9       | 8.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.8         | ناہ ہا د             | ~ e°         |
|             |          | 38         | 9.6                  | 020                                                                             | 10 V V               | ט<br>ה<br>ה<br>ה<br>ה                                              | 7.9                                                                      | 0~          | 0 V 4 C                                 |             | - ·       | 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10V          |                      |              |
|             | number-  | 37         | 4.0%                 | - 6°                                                                            | 10,1                 | N.W.                                                               | 000                                                                      |             |                                         | 22.0        |           | 11-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14<br>10-14 | 40.4         |                      | 2.2          |
|             |          | %          | 22.0                 | 000                                                                             | , 40 k               | 0 ~ v                                                              | 20 00 C                                                                  | 0 °         | 20 N 20 N                               |             | 5.8       | 33.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | • • •                | 14.3<br>8.4  |
|             | at gage  | *          | 7.82                 | 3.2                                                                             | 3.5                  | 8 4 4<br>8 4 4                                                     | 7,700                                                                    | 4.0         | 82.62                                   |             |           | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | 1000                 |              |
|             | in.)     | 7.         | 2000                 | 6 N 6                                                                           | 000                  | 000                                                                | 007                                                                      | 0 0         | 0000                                    | 00          | 00        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 000                  | , [ ]        |
|             | (lb/sq 1 | 33         | 202                  | 2. E.                                                                           | 005                  | 0 H Z                                                              | 0 0 0                                                                    | 00          | 0006                                    | 00          | 00        | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000          | 000                  |              |
|             |          | 35         | 8.6.2                |                                                                                 | 10 % Y               | <u> </u>                                                           | 0,7<br>9,0<br>8,6                                                        | 00          | 0000                                    | 00          | 00        | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000          | 000                  |              |
| Denn Tolloo | Pressure | ĸ          | 8.00                 | 2.00                                                                            | - 1-10               | 16.5                                                               | m0                                                                       |             | 0007                                    |             | 00        | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000          | 000                  |              |
|             |          | 30         | 9.01                 |                                                                                 |                      |                                                                    |                                                                          | 00          | 000                                     | 00          | 00        | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000          | 000                  |              |
| , a         |          | 29         | 25.7                 | 0.40                                                                            |                      | -1010                                                              | ກຸ ເ<br>ໝ ເ<br>ໝ ເ<br>ໝ ເ<br>ໝ ເ<br>ໝ ເ<br>ໝ ເ<br>ໝ ເ<br>ໝ ເ<br>ໝ ເ<br>ໝ | 00          | 0000                                    | 12,3        | 0.0       | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000          | 8                    | ا ها         |
| 1           |          | 28         |                      |                                                                                 | 2.5.3                |                                                                    |                                                                          |             | 0000                                    |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 1111                 | 11           |
|             |          | 2          | 7, W.L.              | <b>ω δ.</b> Γ                                                                   |                      |                                                                    | 2000<br>2000<br>2000                                                     | 01          | 0<br>11.6<br>7.3                        | ०प्र        | 0         | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000          | 000                  | 0            |
|             |          | %          |                      |                                                                                 |                      |                                                                    |                                                                          | 00          | 0000                                    |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                      |              |
|             |          | ж          | 1.4                  | 0,0                                                                             | 1.9                  | 0 % T                                                              | 13.1                                                                     | 00          | 00000                                   | 0.01        | 3.5       | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000          | 000                  | 7.6          |
|             |          | 24         | -0.2<br>6.6<br>1.4   | 1                                                                               | 8.3                  | 0<br>13.2                                                          | 80 80 0                                                                  | 6           | 2.8<br>2.8<br>3.7                       | . 0         | 9         | 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0          | ·                    | 22           |
|             |          | 23         | -0.5<br>4.7          |                                                                                 | 1220                 |                                                                    | 0 25 8 9<br>7.5 7.                                                       | 00          | 001006                                  | 20.0        | 0<br>16.1 | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 6        |                      | 14.9         |
|             | ੂੰ       | (g)        | 2.58<br>2.58<br>1.73 | 2.5<br>19.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8 | 2.61<br>2.02<br>11.5 | 3.91<br>4.57<br>4.28                                               | 3.17<br>3.38<br>1.34                                                     | 3.56        | 3.55<br>3.15<br>5.15<br>5.55            | 2.58        |           | £ 35.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.05         | 1.16<br>2.17<br>2.86 |              |
|             | ۰,       | (fps)      | 9.8                  | 0.0                                                                             |                      |                                                                    |                                                                          |             | 0.00 v                                  |             | 7.3       | د ه<br>د د د                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del> </del> | 8.9                  |              |
| -           | h        |            |                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                       |                      | 0.<br>52.<br>53.                                                   |                                                                          |             |                                         | 0.15        |           | 0 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64.0<br>88.6 | -                    | ri           |
|             | ٠٠٠      | (sec) (ft) | 0.026                |                                                                                 | 078                  | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 |                                                                          | 0.059       |                                         |             |           | 0.0170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |                      | 0.057 -      |
| -           | ۲        | (deg) (i   | 0,2                  | 0.2                                                                             | 6.3                  | ~                                                                  | 6.3                                                                      |             |                                         |             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                      |              |
| -           | ,<br>Eg  |            | <u> </u>             |                                                                                 |                      | •                                                                  |                                                                          | 2 12°h      | 3 12.h                                  | 4 15.h      |           | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8 20,5       | 9 20.5               | 30.3         |
|             | 2        |            | 17                   | 87                                                                              | 13                   | 8                                                                  | . 2                                                                      | 22          | ຄ                                       | <b>17</b>   | 80        | 2 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82           | 62                   | 8            |



Body plan



Figure 1.- Hull lines of float having a  $22\frac{1}{2}^{\circ}$  angle of dead rise. (All dimensions are in inches.)



Figure 2.- Location of pressure gages in float bottom.





(b) Run 16;  $\tau = 30.3^{\circ}$ .

Figure 3.- Experimental variation of the peak pressure with  $\frac{1}{2}\rho\dot{z}^2$  for two runs.



Figure 4. - Experimental and calculated variations of the peak-pressure  $\beta = 22\frac{1}{2}^{\circ}$ . coefficient with trim.



Experimental pressure distributions



(a)  $\tau = 0.2^{\circ}$ ; A  $\approx 3$ .

Figure 5.- Experimental and calculated pressure distributions.



Experimental pressure distributions



Calculated pressure distribution (based on  $\theta_3$ )

(b) 
$$\tau = 6.3^{\circ}$$
; A  $\approx 2.5$ .

Figure 5.- Continued.



Emerimental pressure distributions



Calculated pressure distribution (based on  $\theta_3$ )

(c) 
$$\tau = 12.4^{\circ}$$
;  $C_{\triangle} = 0.48$ ; A  $\approx 1.4$ .

Figure 5.- Continued.



Experimental pressure distributions



Calculated pressure distribution (based on  $\theta_3$ )

(d) 
$$\tau = 20.5^{\circ}$$
;  $C_{\triangle} = 0.97$ ; A  $\approx 0.9$ .

Figure 5. - Continued.



Experimental pressure distributions



Calculated pressure distribution (based on  $\theta_3$ )

(e) 
$$\tau = 30.3^{\circ}$$
;  $C_{\triangle} = 0.48$ ; A  $\approx 0.8$ .  
Figure 5.- Concluded.





(a) Geometry for small trims.



(b) Geometry for large trims.



(c) Geometry for very large trims.

Figure 7.- Wave rise and velocity relations for a prismatic V-bottom surface.

Robert F. Smiley. November 1952. 37p. diagrs., 6 tabs. (NACA TN 2816) LANDINGS OF A PRISMATIC MODEL HAVING AN ANGLE OF DEAD RISE OF  $22-1/2^{\rm O}$  AND BEAM-LOADING COEFFICIENTS OF 0.48 AND 0.97. WATER-PRESSURE DISTRIBUTIONS DURING National Advisory Committee for Aeronautics.

ing tests of a prismatic float having an angle of dead rise of  $22-1/2^{\rm O}$  were made. Water-pressure, ve-. The experimental pressure As part of an over-all program, smooth-water land  $30.3^{\circ}$  for a range of flight-path angles from 4.  $6^{\circ}$  to  $25.9^{\circ}$  and also for  $90^{\circ}$ . The experimental pressure distributions are found to be in fair agreement with Landings were made for beam-loading coefficients Water-pressure, velocity, draft, and acceleration data are presented. of 0.48 and 0.97 at fixed trims between 0.20 and the predictions of the available theory; however,

Copies obtainable from NACA, Washington

National Advisory Committee for Aeronautics. NACA TN 2816

Robert F. Smiley. November 1952. 37p. diagrs., LANDINGS OF A PRISMATIC MODEL HAVING AN ANGLE OF DEAD RISE OF  $22-1/2^{0}$  AND BEAM-WATER-PRESSURE DISTRIBUTIONS DURING LOADING COEFFICIENTS OF 0. 48 AND 0. 97. 6 tabs. (NACA TN 2816)

ing tests of a prismatic float having an angle of dead rise of  $22-1/2^{\circ}$  were made. Water-pressure, ve-25.90 and also for 900. The experimental pressure As part of an over-all program, smooth-water land-30.30 for a range of flight-path angles from 4.60 to distributions are found to be in fair agreement with Landings were made for beam-loading coefficients Water-pressure, velocity, draft, and acceleration data are presented. the predictions of the available theory; however, of 0.48 and 0.97 at fixed trims between 0.20 and

Copies obtainable from NACA, Washington

(2, 1) Hydrodynamic Theory

Hulls, Seaplane -જં

Loads, Landing - Im-

Smiley, Robert F. **NACA TN 2816** 

ᆸ

(4.1.2.1.2)pact, Water Deadrise

(2, 1) Hydrodynamic Theory

(2.3, 2)Loads, Landing - Im-Hulls, Seaplane -Deadrise જાં က

(4.1.2.1.2)Smiley, Robert F. **NACA TN 2816** Η̈́

pact, Water

Robert F. Smiley. November 1952. 37p. diagrs. LANDINGS OF A PRISMATIC MODEL HAVING AN ANGLE OF DEAD RISE OF 22-1/20 AND BEAM-LOADING COEFFICIENTS OF 0.48 AND 0.97. National Advisory Committee for Aeronautics. WATER-PRESSURE DISTRIBUTIONS DURING 6 tabs. (NACA TN 2816) NACA TN 2816

(2.3.2)

Hulls, Seaplane -

લં e.

Loads, Landing - Im-

pact, Water Deadrise

Hydrodynamic Theory

(4.1.2.1.2)

Smiley, Robert F.

NACA TN 2816

ij

ing tests of a prismatic float having an angle of dead rise of  $22-1/2^{\rm O}$  were made. Water-pressure, ve-As part of an over-all program, smooth-water land-. The experimental pressure  $30.3^{\rm o}$  for a range of flight-path angles from 4.6° to  $25.9^{\rm o}$  and also for  $90^{\rm o}$  . The experimental pressure distributions are found to be in fair agreement with Landings were made for beam-loading coefficients locity, draft, and acceleration data are presented. of 0.48 and 0.97 at fixed trims between 0.20 and the predictions of the available theory; however,

Copies obtainable from NACA, Washington

(over)

Robert F. Smiley. November 1952. 37p. diagrs. LANDINGS OF A PRISMATIC MODEL HAVING AN ANGLE OF DEAD RISE OF 22-1/20 AND BEAM-National Advisory Committee for Aeronautics. LOADING COEFFICIENTS OF 0. 48 AND 0.97. WATER-PRESSURE DISTRIBUTIONS DURING 6 tabs. (NACA TN 2816) NACA TN 2816

ing tests of a prismatic float having an angle of dead rise of  $22-1/2^{\rm O}$  were made. Water-pressure, ve-As part of an over-all program, smooth-water land- $30.3^{\rm o}$  for a range of flight-path angles from 4.6° to  $25.9^{\rm o}$  and also for  $90^{\rm o}$ . The experimental pressure distributions are found to be in fair agreement with Landings were made for beam-loading coefficients locity, draft, and acceleration data are presented. of 0. 48 and 0. 97 at fixed trims between 0. 20 and the predictions of the available theory; however,

(2, 1) Hydrodynamic Theory Hulls, Seaplane 4

(2.3.2)Deadrise

Loads, Landing - Impact, Water ຕ່

(4.1.2.1.2)Smiley, Robert F. **NACA TN 2816** ᆸᄇ

Copies obtainable from NACA, Washington

over)

better agreement is obtained by modification of the theory.

NACA TN 2816

better agreement is obtained by modification of the theory.

Copies obtainable from NACA, Washington

NACA TN 2816

better agreement is obtained by modification of the theory.

Copies obtainable from NACA, Washington

NACA TN 2816

better agreement is obtained by modification of the theory.

Copies obtainable from NACA, Washington.

Copies obtainable from NACA, Washington