Exact Inflation Targeting with Inflation Swaps

Tom Holden

Deutsche Bundesbank

SUPER PRELIMINARY!

The views expressed in this paper are those of the author and do not represent the views of the Deutsche Bundesbank, the Eurosystem or its staff.

Equilibrium selection in monetary economics

- Convention in New Keynesian macro: Select the equilibrium in which inflation is eventually stable.
 - Not justified: See Cochrane (2011). No transversality condition rules out non-bounded inflation.

- Convention in the FTPL literature: Select the equilibrium in which government debt prices are eventually stable.
 - Not justified: See Holden (2023). With multi-period debt, active fiscal only implies a lower bound on the price level.

- Both the NK and FTPL equilibrium selection mechanisms seem implausible.
 - Under NK selection: Sufficient that monetary policy eventually turns active (even after 1000 years). Active now is irrelevant.
 - Under FTPL selection: Sufficient that fiscal policy eventually turns active (even after 1000 years). Active now is irrelevant.

Can CBs/governments determine inflation without relying on asymptotic promises?

Recap: Filtering equilibria

• Assume no uncertainty. Start in period 0. Take the Fisher equation and monetary rule (real rate rule (Holden 2023)):

$$i_t = r_t + \pi_{t+1}, \qquad i_t = r_t + \phi_t \pi_t.$$

• So: $\pi_t = \phi_{t-1}\pi_{t-1}$ for $t \ge 1$, where π_0 can take any value. Infinitely many solutions independent of path of ϕ_t .

- NK selection: Assume $\pi_t \to 0$ as $t \to \infty$. Then if $\left| \prod_{t=0}^{\infty} \phi_t \right| \ge 1$, then $\pi_t \equiv 0$ is the unique solution.
 - Exogenously filtering out all those other asymptotically explosive equilibria.
 - Not justified by transversality, at least under flexible prices (Cochrane 2011).
- With multi-period debt, FTPL relies on a similar ad hoc pruning of equilibria.

- Central banks/governments try to do two things: set the monetary rule, and somehow impose the terminal condition.
- This paper: Instead, do two things now!

Nominal and real inflation swaps

- Standard "nominal" inflation swaps (already traded):
 - Contract agreed at t between parties A and B.
 - o Party A promises to make a net payment of $\Pi_{t+1} J_t$ to party B in period t+1.
 - $\circ \Pi_{t+1}$ is realized gross inflation.
 - \circ J_t is the negotiated contract rate on these nominal inflation swaps.

- "Real" inflation swaps (not currently traded):
 - o As before, but party A promises to make a net payment of $\Pi_{t+1}(\Pi_{t+1}-K_t)$ to party B in period t+1.
 - \circ K_t is the contract rate on these real inflation swaps.

• Asset pricing. Let Ξ_{t+1} be the real SDF between t and t+1. Then with competitive swap pricing:

$$0 = \mathbb{E}_t \frac{\Xi_{t+1}}{\Pi_{t+1}} (\Pi_{t+1} - J_t), \qquad 0 = \mathbb{E}_t \Xi_{t+1} (\Pi_{t+1} - K_t)$$

N/R Swap Targeting

Suppose the central bank intervenes in both the nominal swap market, and the real swap market.

- They set $J_t = K_t = \prod_{t+1|t}^*$.
 - \circ $\Pi_{t+1|t}^*$ is the CB's target for gross inflation in period t+1. A time-varying short-run inflation target. Not a varying long-run target!
 - \circ This means they: accept any contract offering them $\Pi_{t+1} \Pi_{t+1|t}^* + \varepsilon$ or $\Pi_{t+1} \left(\Pi_{t+1} \Pi_{t+1|t}^* + \varepsilon \right)$ in period t+1, for any $\varepsilon > 0$.
 - And they: offer market participants unlimited contracts paying $\Pi_{t+1} \Pi_{t+1|t}^* \varepsilon$ or $\Pi_{t+1} (\Pi_{t+1} \Pi_{t+1|t}^* \varepsilon)$ in period t+1, for any $\varepsilon > 0$.

- Nominal rates are left to float freely.
 - \circ To switch to this rule, the CB would gradually decrease ε , while increasing the width of their nominal rate target.

Implications

The swap pricing equations imply:

$$\left[\mathbb{E}_{t} \frac{\Xi_{t+1}}{\mathbb{E}_{t}\Xi_{t+1}} \Pi_{t+1}^{-1}\right]^{-1} = \Pi_{t+1|t}^{*} = \mathbb{E}_{t} \frac{\Xi_{t+1}}{\mathbb{E}_{t}\Xi_{t+1}} \Pi_{t+1}.$$

But by Jensen's inequality:

$$\left[\mathbb{E}_t \frac{\Xi_{t+1}}{\mathbb{E}_t \Xi_{t+1}} \Pi_{t+1}\right]^{-1} \leq \mathbb{E}_t \frac{\Xi_{t+1}}{\mathbb{E}_t \Xi_{t+1}} \Pi_{t+1}^{-1}$$

- \circ With equality if and only if there exists some $\Phi_t > 0$ (known at t) such that $\mathbb{E}_t \frac{\Xi_{t+1}}{\Xi_t \Xi_{t+1}} \mathbb{1}[\Pi_{t+1} = \Phi_t] = 1$.
- o (Because $z \mapsto z^{-1}$ is strictly convex for positive z, and $\frac{\Xi_{t+1}}{\Xi_t\Xi_{t+1}}$ defines a (risk neutral) probability measure.)
- $\circ \ \, \mathsf{But} \,\, \mathbb{E}_t \tfrac{\Xi_{t+1}}{\mathbb{E}_t \Xi_{t+1}} \Pi_{t+1}^{-1} = \left(\Pi_{t+1|t}^*\right)^{-1} = \mathbb{E}_t \tfrac{\Xi_{t+1}}{\mathbb{E}_t \Xi_{t+1}} \Pi_{t+1} \,\, \mathsf{so} \,\, \mathsf{there} \,\, \mathsf{is} \,\, \mathsf{indeed} \,\, \mathsf{equality!}$
- \circ Thus: inflation is at target with probability one under risk neutral measure. With $\Xi_{t+1} > 0$ this implies $\Pr_t(\Pi_{t+1} = \Pi_{t+1|t}^*) = 1$.

The CB hits its target with probability one! No asymptotic condition is needed.

How can the central bank set two prices?

• Standard argument: There is one source of nominal indeterminacy (the price level), so the CB can set one price.

- Note 1: Log-linearizing asset pricing conditions gives: $0 = \mathbb{E}_t \pi_{t+1} j_t \ 0 = \mathbb{E}_t \pi_{t+1} k_t$. (Lower case log deviations.)
 - o Identical! So, setting $j_t = k_t = \pi_{t+1|t}^*$ is consistent with both equations.
- Note 2: Suppose the CB just set $j_t = \pi_{t+1|t}^*$. By Fisher equation, this is equivalent to CB setting $i_t = r_t + \pi_{t+1|t}^*$.
 - o This monetary rule is indeterminate. Zero response to inflation. It means $\mathbb{E}_t \pi_{t+1} = \pi_{t+1|t}^*$, which leaves π_t free.
 - \circ Although in setting j_t the CB has set a price, they have not changed the original nominal indeterminacy.
- Note 3: Setting multiple prices perhaps seems less weird in a ZLB/QE context. For example:
 - o Suppose there are multiple equilibria at the ZLB, one with a long ZLB stay, and one with a short ZLB stay.
 - o The long ZLB stay equilibria has high government bond prices. By setting a low government bond price, can select good eq.

Choosing the target

- The time-varying short-run target $\Pi_{t+1|t}^*$ must satisfy a few conditions:
 - \circ The target for period t+1 inflation must be announced in period t.
 - \circ The economy must be determinate if the asset pricing and targeting equations are replaced with the equation $\Pi_t = \Pi_{t-1|t}^*$.
 - The target should be consistent with the ZLB on one period bonds. $I_t = [\mathbb{E}_t \Xi_{t+1}]^{-1} \Pi_{t+1|t}^* = R_t \Pi_{t+1|t}^* \ge 1$.
 - \circ Can instead use a modified target of $\widecheck{\Pi}_{t+1|t}^* = \max\{R_t^{-1}, \Pi_{t+1|t}^*\}$ following Holden (2023).

- Being determined one period in advance changes optimal policy calculations. For example:
 - \circ Suppose the economy has the Phillips curve: $\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \kappa x_t + \kappa \omega_t$, and the CB wants to minimise $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t [\pi_t^2 + \lambda x_t^2]$.
 - o With the target set one period in advance, CB minimises $\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\pi_{t|t-1}^2 + \lambda x_t^2 \right]$ subject to $\pi_{t|t-1} = \beta \pi_{t+1|t} + \kappa x_t + \kappa \omega_t$.
 - o Solution: $\pi_{t+1|t}^* = -\kappa^{-1}\lambda \mathbb{E}_t(x_{t+1} x_t)$. (Commitment=Discretion here.)

How does setting swap prices set inflation?

General equilibrium magic???

- Given the NK terminal condition, there are other approaches to hitting a target every period.
 - o E.g.: Follow a real rate rule (Holden 2023), or a standard Taylor rule with $\phi \approx \infty$.
 - o These approaches also seem like "equilibrium magic".

- Even if how future inflation is pinned down is clear, what stops price setters / markets from deviating today?
 - One case in which no deviation is intuitive follows.

A more intuitive special case

• Consider an OLG economy with two life stages. Young earn $y_t = a_t l_t$ units of consumption. Old earn nothing.

• Household born at t maximizes $\mathbb{E}_t[\log c_{0,t} - l_t + \beta \log c_{1,t+1}]$ such that:

$$P_t c_{0,t} + B_t + T_t = P_t a_t l_t, \qquad P_t c_{1,t} = I_{t-1} B_{t-1} + F_{t-1} \left(\Pi_t - \Pi_{t|t-1}^* \right) + G_{t-1} \Pi_t \left(\Pi_t - \Pi_{t|t-1}^* \right)$$

- Optimum: $c_{0,t} = a_t$, $b_t = \beta a_t$, $l_t = 1 + \beta + \frac{\tau_t}{a_t}$, $c_{1,t} = \beta a_t + \tau_t$. (Lower case *t*-dated is divided by P_t .)
- Government budget constraint: $b_t + \tau_t = \frac{I_{t-1}}{\Pi_t} b_{t-1} + \frac{f_{t-1}}{\Pi_t} (\Pi_t \Pi_{t|t-1}^*) + g_{t-1} (\Pi_t \Pi_{t|t-1}^*).$

- In desired equilibrium, $\Pi_t = \Pi_{t|t-1}^*$, so $\tau_t = I_{t-1} \frac{\beta}{\Pi_{t|t-1}^*} a_{t-1} \beta a_t$. Suppose government sets this τ_t irrespective of Π_t .
 - $\text{o Then market clearing implies: } 0 = \left[\Pi_{t|t-1}^*(f_{t-1} + g_{t-1}\Pi_t) \beta I_{t-1}a_{t-1}\right] \left(\Pi_t \Pi_{t|t-1}^*\right).$
 - \circ If g_{t-1} is non-positive and f_{t-1} is not too positive, then $\Pi_t = \Pi_{t|t-1}^*$ is the unique solution.
 - o Unexpected payoff is inflationary. Want this to happen when $\Pi_t < \Pi_{t|t-1}^*$.

Conclusion

- The central bank can hit a given time-varying inflation target with probability one.
- Real inflation swap markets do not currently exist but could be easily created (by CB or private sector).

- No need to rely on equilibrium selection based on dubious asymptotic assumptions.
- To move to N/R swap targeting CB would gradually increase interest rate corridor while tightening spread corridors.
- Is this too good to be true? Why?

Extra slides

References

Cochrane, John H. 2011. 'Determinacy and Identification with Taylor Rules'. *Journal of Political Economy* 119 (3): 565–615.

Holden, Tom D. 2023. Robust Real Rate Rules. Kiel, Hamburg: ZBW - Leibniz Information Centre for Economics.