Digital Integrated Circuit Lecture 24 Sequential Circuit Design

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

GIST Lecture

Review of Previous Lecture

Lecture 23

- Dynamic circuits
 - "Clocked" pull-up
 - Precharge and evaluate
 - Domino logic

10.2 Sequencing Static Circuits

10.2. Sequencing static circuits (1)

Latches

- When CLK=1, the latch is transparent. D flows through to Q like a buffer.
- When CLK=0, the latch is opaque. The latch holds its present Q output even if D changes.

10.2. Sequencing static circuits (2)

- Flip-flops (An edge-triggered device)
 - It copies D to Q on the rising edge of the clock.
 - It ignores D at all other time.

10.2. Sequencing static circuits (3)

Static sequencing methods

10.3 Circuit Design of Latches and Flip-Flops

10.3. Circuit design of latches and flip-flops (1)

- A very simple transparent latch built from a single transistor
 - It is compact and fast.
 - -The output does not swing from rail-to-rail. (From GND to V_{DD}) It never raises above $V_{DD}-V_t$.
 - -The output floats when the latch is opaque.
 - D drives the diffusion input of a pass transistor.
 - -The state node is exposed, so noise on the output can corrupt the state.

10.3. Circuit design of latches and flip-flops (2)

- CMOS transmission gate
 - It offers rail-to-rail output swings.
 - It requires a complementary clock, $\overline{\phi}$, which can be provided as an additional input or locally generated from ϕ through an inverter.

10.3. Circuit design of latches and flip-flops (3)

- Inverting latch
 - Fast dynamic latches

Fig. 10.17(c) and (d)

GIST Lecture

10.3. Circuit design of latches and flip-flops (4)

- Static latch, having feedback to prevent the output from floating
 - When CLK=1, the latch is transparent.

Feedback

tristate

When CLK=0, the feedback tristate turns ON, holding X at the correct level.

GIST Lecture

10.3. Circuit design of latches and flip-flops (5)

- Buffered input
 - -The input is a transistor gate rather than unbuffered diffusion.
 - It is noninverting.
 - A large noise spike on the output can propagate backward through the feedback gate and corrupt the state node X.

10.3. Circuit design of latches and flip-flops (6)

• A dynamic inverting flip-flop built from a pair of back-to-back dynamic latches

Thank you!