Using the transformation x+y=u, y=uv, prove that $\iint xy (1-x-y)^{1/2} dxdy = \frac{2\pi}{105} + a_{ken} \text{ over the area}$ of triangle bounded by the lines x=0, y=0, x+y=1.

Evaluate the integral $\iint_{R} (n-y)^{2} (\omega s^{2}(n+y)) dn dy$, where R is the shombus with vertices at (T,0), $(2\pi,\pi)$, $(T,2\pi)$ and $(0,\pi)$, Any, T_{3}

3) Using the transformation $\frac{y+y-u}{y-u}$, $\frac{y-u}{y-u}$, $\frac{y-u}{u-y}$, $\frac{y-$

n+y=1. Evaluate $\iint_{D} (y-n) dndy$ where D is the region evaluate $\iint_{D} (y-n) dndy$ where D is the region in x-y-p lane bounded by the straight lines y=x+1, y=x-3, $y=-\frac{x}{3}+\frac{7}{3}$, $y=-\frac{x}{3}+5$.