Так, вот тут будут расписаны прошлогодние рубежки, постараюсь расписать все понятно, кратко и без ошибок

1 вариация прошлогодней рубежки

Ссылка: https://www.notion.so/555833bc79984a33980d91b371a6b0ae

Вариант 1

1. Типовые функции информационной системы:

- Функции сбора и регистрации информационных ресурсов
- Функции хранения информационных ресурсов
- Функции актуализации информационных ресурсов
- Функции обработки информационных ресурсов
- Функции предоставления информационных ресурсов пользователям

2. Отличия иерархической модели данных от сетевой:

- *Иерархическая модель:* связи "один-к-многим", один родитель на узел и несколько детей
- Сетевая модель: связи "многие-ко-многим", представляется в виде графа, может быть несколько родителей и детей для одного узла, обеспечивается целостность, так как нет дублирования данных из-за поддержки более гибких связей

3. Типы атрибутов:

- Простые атрибуты не делятся на подчасти
 Пример: ФИО не делится, так как одна строка цельная
- *Составные атрибуты* состоят из нескольких атрибутов Пример: Адрес можно разделить на Улицу, Номер дома, Город и т.д.
- Идентифицирующие атрибуты (Обязательные атрибуты) однозначно идентифицируют сущность
 - Пример: Номер ИСУ уникален для каждого студента
- *Необязательные атрибуты* могут не иметь значения для некоторых записей и могут быть NULL
 - Пример: Отчество может просто не быть у некоторых студентов
- Однозначные атрибуты хранят только одно значение
 Пример: Дата рождения у каждого студента только одна дата рождения
- Многозначные атрибуты могут содержать несколько значений
 Пример: Телефонные номера у студента может быть несколько телефонных номеров

4. Свойство отношений:

- Уникальность имени таблицы каждая таблица имеет уникальное имя в БД, что позволяет однозначно ее идентифицировать
- Уникальность кортежей и атрибутов- каждый кортеж и атрибут в таблице уникален, что исключает возможность дублирования данных
- Неупорядоченность кортежей и атрибутов порядок атрибутов и кортежей не имеет значения, так как данные идентифицируются по именам атрибутов и извлекаются независимо от порядка
- *Атомарность значений* каждая ячейка в таблице содержит одно неделимое значение
- Однородность доменов значения атрибутов берутся из одного и того же домена (типа данных), чтобы сохранить единообразие
- *Целостность данных* значения атрибутов должны соответствовать определенным правилам и ограничениям, например, NOT NULL для обязательных полей или ограничение уникальности для первичного ключа

5. Оператор SELECT и порядок выполнения операторов:

SELECT - оператор, который используется для извлечения данных из одной или нескольких таблиц, он позволяет указать, какие поля вернуть, какие условия применить и в каком порядке вывести данные

Порядок выполнения операторов:

- 1. *FROM*
- 2. **JOIN**
- 3. WHERE
- 4. GROUP BY
- 5. HAVING
- 6. SELECT
- 7. DISTINCT
- 8. ORDER BY
- 9. LIMIT

6. Определение БД:

База данных - набор постоянно хранимых данных, используемых прикладными системами какого-либо предприятия

7. Уровни архитектуры ANSII/Sparc:

ANSII/Sparc - это стандарты подходов к построению архитектуры БД:

- 1. Внутренний уровень отвечает за физическое хранение данных на диске и оптимизацию работы с ними. Скрыт от пользователя, влияет на производительность и безопасность
- 2. Концептуальный уровень логическая структура данных (сущности, атрибуты, связи), с которой работают разработчики при проектировании базы

3. Внешний уровень - представление данных для пользователей, показывающее нужную информацию и скрывающее технические детали хранения

8. Определение тета-соединения:

Тета-соединение — определяет отношение, содержащее кортежи из декартового произведения $R \times S$, удовлетворяющие предикату $F = R \cdot a_i \theta S \cdot b_j$, где θ — одна из операций сравнения (>, <, =, ...).

9. Определение операции "проекция":

Проекция П_{a1, ..., an}(R) — результатом является новое отношение, содержащее вертикальное подмножество исходного отношения, создаваемое посредством извлечения указанных атрибутов и исключения из результата дублирующихся атрибутов.

10. В чём отличие дублирования от избыточности?

Отличие заключается в том, что *избыточность* подразумевает, что есть возможность восстановить или получить данные на основе других записей, но при это они все равно хранятся повторно, хотя их можно было бы извлечь из других данных. В случае дублирования такой возможности нет - это просто повторение данных, которые никак не зависят от других записей не могут быть восстановлены из них.

Дублирование — это прямое повторение одних и тех же данных в разных местах (например, хранение имени студента в нескольких таблицах), что может привести к несоответствиям при обновлении

Избыточность — более широкое понятие, которое включает дублирование, но также охватывает излишние данные, которые не обязательны для уникальной идентификации объекта

Пример избыточности:

Таблица "Студенты"

ФИО	Номер группы	Факультет
Иванов И.И.	M3210	ФИТИП
Петров П.П.	M3211	ФИТИП
Сидоров С.С.	M3212	ФИТИП

Таблица "Группы"

Номер группы	Факультет
M3210	ФИТИП
M3211	ФИТИП

Номер группы	Факультет
M3212	ФИТИП

В этом случае информация о факультете хранится как отдельный атрибут у каждого студента, хотя её можно получить, исходя из номера группы

Пример дублирования:

Таблица "Студенты" с дублированием

ФИО	Номер группы	Факультет	Форма обучения
Иванов И.И.	M3210	ФИТИП	Контракт
Петров П.П.	M3211	ФИТИП	Бюджет
Сидоров С.С.	M3212	ФИТИП	Контракт

В этом случае информация о факультете повторяется для каждого студента, принадлежащего одной и той же группе, но её нельзя восстановить из других данных — это просто дублирование значений, так как факультет зависит от группы, а не от каждого студента

11. Функциональная зависимость:

Функциональная зависимость между атрибутами - это связь, при которой каждому значению атрибута X соответствует ровно одно значение атрибута Y.

$$R: X \rightarrow Y$$

12. Когда отношение в 1-ой Нормальной Форме:

1-я Нормальная Форма - таблица находится в **первой нормальной форме**, если все ее атрибуты являются атомарными, то есть неделимыми

13. Степень отношения:

Степень отношения - это количество его атрибутов. Степень отношения показывает, сколько различных характеристик описывает объекты, которые есть в таблице

Вариант 2:

1. Что описывается на верхнем уровне архитектуры ANSI/SPARC?

Внешний уровень - представление данных для пользователей, показывающее нужную информацию и скрывающее технические детали хранения. Этот уровень абстракции про то, как принимать эффективные решения на основе данных

2. Определение СУБД:

СУБД - программное обеспечение с помощью которого пользователи могут определять, создавать и поддерживать базу данных, а так же осуществлять к ней контролируемый доступ

3. Типы связей в модели сущность связь:

- Один-к-одному
- Один-ко-многим
- Многие-ко-многим

4. В чем отличие реляционной и постреляционной моделей данных?

- *Реляционная модель данных* требует, чтобы каждое поле таблицы содержало неделимое (атомарное) значение. Связи между таблицами задаются через общие атрибуты, и структура данных строго фиксирована
- Постреляционная модель данных позволяет хранить сложные данные в одном поле, например, массивы или JSON, что удобно для записей с разными атрибутами. Это снижает разряженность таблиц, но усложняет проверку данных и может замедлять поиск
- 5. **Что такое кардинальность отношения в реляционной модели данных?** Кардинальность отношения - это количество кортежей, которое содержит отношение
- 6. Дайте определение операции "Выборка":

Выборка
$$\sigma_{\text{предикат}}(R)$$
 —

Операция, результатом которой является отношение, которое содержит только те кортежи из исходного отношения, которые удовлетворяют заданному условию (предикату)

7. Дайте определение операции "Естественное соединение":

Естественное соединение $R\bowtie S$

Операция, которая выполняет соединение по эквивалентности двух отношений по всем общим атрибутам, из результатов которого исключили по одному экземпляру каждого атрибута

8. Дайте определение аномалии модификации:

Изменение данных в одной записи может потребовать внесения изменений в другие записи

Пример: Если изменить название факультета для группы М3212, то необходимо внести изменения для всех студентов этой группы. Если не внести их для одного из студентов, данные окажутся несогласованными

- 9. **Порядок команд в SQL для написании запросов и порядок их выполнения:** Порядок команд при написании SQL-запросов:
 - 1. SELECT
 - 2. DISTINCT
 - 3. FROM
 - 4. JOIN

- 5. WHERE
- 6. GROUP BY
- 7. HAVING
- 8. ORDER BY
- 9. LIMIT

Порядок их выполнения:

- 1. FROM
- 2. JOIN
- 3. WHERE
- 4. GROUP BY
- 5. HAVING
- 6. SELECT
- 7. DISTINCT
- 8. ORDER BY
- 9. LIMIT

10. Какие условия должны быть, чтобы отношение находилось во второй нормальной форме?

2-я Нормальная Форма - таблица находится во **второй нормальной форме**, если находится в первой нормальной форме и все неключевые атрибуты функционально полностью зависят от первичного ключа

11. Суперключ:

Суперключ - это атрибут (множество атрибутов), который единственным, уникальным образом идентифицирует кортеж.

12. Частичная функциональная зависимость:

Частичная функциональная зависимость - зависимость от части составного ключа

Вариант 3:

1. Определение "Данные":

- Данные это отдельные факты или значения без какого-либо контекста, которые сами по себе не имеют смысла (из инета)
- Данные это поддающиеся многократной интерпретации представления информации в формализованном виде, пригодном для передачи, интерпретации и обработки (Маятин)

2. Что такое полная функциональная зависимость?

Полная функциональная зависимость - явление, когда неключевой атрибут зависит от всего составного ключа

3. Концептуальный уровень ANSI/SPARC:

Концептуальный уровень - логическая структура данных (сущности, атрибуты, связи), с которой работают разработчики при проектировании базы

4. В чем отличие между концептуальной и логической модели данных? Концептуальная модель данных отражает общее представление данных без привязки к техническим деталям, описывая основные сущности, их атрибуты и связи. Она фокусируется на том, какие данные важны и как они соотносятся

Погическая модель данных конкретизирует концептуальную модель, добавляя структуру для реализации в СУБД. Она включает типы данных, ключи и ограничения, но остаётся независимой от конкретных технологий хранения данных

- 5. Определение "Домен":
 - Домен это множество допустимых значений атрибутов
- 6. Что такое левое-внешнее соединение в реляционной алгебре?
 Левое внешнее соединение R ⊃ Ч S это естественное соединение, при котором в результирующее отношение включаются также кортежи отношения R, не имеющие совпадающих значений в общих атрибутах отношения S
- 7. Операция объединения:
 - Объединение двух отношений R и S определяет новое отношение, которое включает все кортежи, содержащиеся только в R, все кортежи, содержащиеся только в S и кортежи, содержащиеся и в R, и в S с исключением дубликатов
- 8. Третья нормальная форма:
 - 3-я Нормальная Форма таблица находится в **третьей нормальной форме**, если она находится во второй нормальной форме и все неключевые атрибуты независимы друг от друга и функционально полностью зависят от первичного ключа (отсутствуют транзитивные зависимости)
- 9. Алгоритм соединения таблиц вложенными циклами:

10. Плюсы и минусы иерархической модели данных:

Плюсы:

- Удобна для восприятия человеком, так как соответствует реальным иерархиям
- Простая структура, легко понимать и использовать для хранения иерархических данных
- Быстро при транзакциях

• Минусы:

- Дублирование данных, что приводит к избыточности
- Сложности в поддержании целостности данных и обновлении при изменении иерархии
- Нельзя сделать связь "многие-ко-многим"

11. Определение "Потенциальный ключ":

Потенциальный ключ — это суперключ, который не содержит подмножества, также являющегося суперключом этого отношения

12. Определение "База данных":

База данных - набор постоянно хранимых данных, используемых прикладными системами какого-либо предприятия

Вариант 4:

1. В чем минусы хранения в файловой системе (файловом хранилище)?

- *Отсутствие структурированности* данные хранятся в виде файлов без строгой структуры
- Ограниченные возможности поиска
- Отсутствие транзакций и целостности данных невозможно гарантировать целостность данных и выполнять атомарные операции
- *Отсутствие параллельной работы* нет возможности одновременно работать нескольким пользователям с файлами из-за возможных ошибок

2. Определение "СУБД"

СУБД - программное обеспечение с помощью которого пользователи могут определять, создавать и поддерживать базу данных, а так же осуществлять к ней контролируемый доступ

3. Внешний/внутренний ключ, супер ключ:

- Внешний ключ это атрибут (множество атрибутов) внутри отношения, который соответствует потенциальному ключу некоторого (возможно того же самого) отношения
- Внутренний ключ атрибут, предназначенный для внутреннего использования в системе, например, технический идентификатор, который

не связан напрямую со значением данных (!!!**Не уверен, правильно ли** это!!!)

• *Супер ключ* - это атрибут (множество атрибутов), который единственным образом идентифицирует кортеж

4. Что такое разность, полусоединение?

- Разность R-S состоит из кортежей, которые есть в R, но отсутствуют в S.
 Разность двух отношений определена только если они совместны по объединению
- *Полусоединение* $R \triangleright F$ S отношение, содержащее кортежи R, которые входят в тета-соединение R и S

5. Что такое транзитивная функциональная зависимость?

Транзитивная функциональная зависимость - зависимость через промежуточный атрибут (Y зависит от X, X не зависит от Y, Z зависит от Y), то зависимость A -> C - транзитивная

6. Внутренний уровень ANSII/SPARC:

Внутренний уровень - отвечает за физическое хранение данных на диске и оптимизацию работы с ними. Скрыт от пользователя, влияет на производительность и безопасность

7. Плюсы и минусы многомерной конструкции:

- Плюсы:
 - Быстрая агрегация и анализ данных
 - Поддержка сложных аналитических запросов
 - Удобна для сводок и отчетности
- Минусы:
 - Высокий расход памяти
 - Трудности с обновлением данных в реальном времени
 - Ограничена в работе с детализированными данными

8. Определение "Кортеж"

Кортеж - отдельная строка в таблице

9. Виды связей в таблице:

- Один-к-одному одна запись соответствует одной записи
- Один-ко-многим одна запись связана с несколькими записями
- Многие-ко-многим записи из одной таблицы могут быть связаны с несколькими записями в другой таблице через промежуточную таблицу

10. Аномалия добавления:

Невозможно добавить данные без указания дополнительных сведений, которые могут быть избыточными

11. Нормальная форма и нормализация:

Нормальные формы - это стандартизированные правила для организации данных в реляционных таблицах, которые помогают минимизировать избыточность и избежать аномалий

Нормализация - преобразования отношения к виду, отвечающему нормальной форме

12. Плюсы и минусы иерархической модели данных:

Плюсы:

- Удобна для восприятия человеком, так как соответствует реальным иерархиям
- Простая структура, легко понимать и использовать для хранения иерархических данных
- Быстро при транзакциях

• Минусы:

- Дублирование данных, что приводит к избыточности
- Сложности в поддержании целостности данных и обновлении при изменении иерархии
- Нельзя сделать связь "многие-ко-многим"

3 вариация прошлогодней рубежки

Ссылка: https://docs.google.com/document/d/12czJriBtfu75eg8bcXLX3mTt hKFpLts/edit

Вариант 1:

1. Типовые функции информационной системы:

- Функции сбора и регистрации информационных ресурсов
- Функции хранения информационных ресурсов
- Функции актуализации информационных ресурсов
- Функции обработки информационных ресурсов
- Функции предоставления информационных ресурсов пользователям

2. Отличия иерархической модели данных от сетевой:

- *Иерархическая модель:* связи "один-к-многим", один родитель на узел и несколько детей
- Сетевая модель: связи "многие-ко-многим", представляется в виде графа, может быть несколько родителей и детей для одного узла, обеспечивается целостность, так как нет дублирования данных из-за поддержки более гибких связей

3. Типы атрибутов:

- Простые атрибуты не делятся на подчасти
 Пример: ФИО не делится, так как одна строка цельная
- *Составные атрибуты* состоят из нескольких атрибутов Пример: Адрес можно разделить на Улицу, Номер дома, Город и т.д.
- Идентифицирующие атрибуты (Обязательные атрибуты) однозначно идентифицируют сущность

Пример: Номер ИСУ - уникален для каждого студента

- *Необязательные атрибуты* могут не иметь значения для некоторых записей и могут быть NULL
 - Пример: Отчество может просто не быть у некоторых студентов
- Однозначные атрибуты хранят только одно значение
 Пример: Дата рождения у каждого студента только одна дата рождения
- Многозначные атрибуты могут содержать несколько значений
 Пример: Телефонные номера у студента может быть несколько телефонных номеров

4. Свойство отношений:

- Уникальность имени таблицы каждая таблица имеет уникальное имя в БД, что позволяет однозначно ее идентифицировать
- Уникальность кортежей и атрибутов- каждый кортеж и атрибут в таблице уникален, что исключает возможность дублирования данных
- *Неупорядоченность кортежей и атрибутов* порядок атрибутов и кортежей не имеет значения, так как данные идентифицируются по именам атрибутов и извлекаются независимо от порядка
- *Атомарность значений* каждая ячейка в таблице содержит одно неделимое значение
- Однородность доменов значения атрибутов берутся из одного и того же домена (типа данных), чтобы сохранить единообразие
- *Целостность данных* значения атрибутов должны соответствовать определенным правилам и ограничениям, например, NOT NULL для обязательных полей или ограничение уникальности для первичного ключа

5. Оператор SELECT и порядок выполнения операторов:

SELECT - оператор, который используется для извлечения данных из одной или нескольких таблиц, он позволяет указать, какие поля вернуть, какие условия применить и в каком порядке вывести данные

Порядок выполнения операторов:

- 1. FROM
- 2. JOIN
- 3. WHERE
- 4. GROUP BY
- 5. HAVING
- 6. SELECT
- 7. DISTINCT
- 8. ORDER BY
- 9. LIMIT

6. Определение База данных:

База данных - набор постоянно хранимых данных, используемых прикладными системами какого-либо предприятия

7. Уровни архитектуры ANSII/Sparc:

ANSII/Sparc - это стандарты подходов к построению архитектуры БД:

- 1. Внутренний уровень отвечает за физическое хранение данных на диске и оптимизацию работы с ними. Скрыт от пользователя, влияет на производительность и безопасность
- 2. *Концептуальный уровень* логическая структура данных (сущности, атрибуты, связи), с которой работают разработчики при проектировании базы
- 3. Внешний уровень представление данных для пользователей, показывающее нужную информацию и скрывающее технические детали хранения

8. Определение тета-соединения:

Тета-соединение — определяет отношение, содержащее кортежи из декартового произведения $R \times S$, удовлетворяющие предикату $F = R.a_i \ \theta \ S.b_j$, где θ — одна из операций сравнения (>, <, =, ...).

9. Определение операции "проекция":

Проекция П_{a1, ..., an}(R) — результатом является новое отношение, содержащее вертикальное подмножество исходного отношения, создаваемое посредством извлечения указанных атрибутов и исключения из результата дублирующихся атрибутов.

10. В чём отличие дублирования от избыточности?

Отличие заключается в том, что *избыточность* подразумевает, что есть возможность восстановить или получить данные на основе других записей, но при это они все равно хранятся повторно, хотя их можно было бы извлечь из других данных. В случае дублирования такой возможности нет - это просто повторение данных, которые никак не зависят от других записей не могут быть восстановлены из них.

Дублирование — это прямое повторение одних и тех же данных в разных местах (например, хранение имени студента в нескольких таблицах), что может привести к несоответствиям при обновлении

Избыточность — более широкое понятие, которое включает дублирование, но также охватывает излишние данные, которые не обязательны для уникальной идентификации объекта

Пример избыточности:

Таблица "Студенты"

ФИО	Номер группы	Факультет
Иванов И.И.	M3210	ФИТИП
Петров П.П.	M3211	ФИТИП
Сидоров С.С.	M3212	ФИТИП

Таблица "Группы"

Номер группы	Факультет
M3210	ФИТИП
M3211	ФИТИП
M3212	ФИТИП

В этом случае информация о факультете хранится как отдельный атрибут у каждого студента, хотя её можно получить, исходя из номера группы

Пример дублирования:

Таблица "Студенты" с дублированием

ФИО	Номер группы	Факультет	Форма обучения
Иванов И.И.	M3210	ФИТИП	Контракт
Петров П.П.	M3211	ФИТИП	Бюджет
Сидоров С.С.	M3212	ФИТИП	Контракт

В этом случае информация о факультете повторяется для каждого студента, принадлежащего одной и той же группе, но её нельзя восстановить из других данных — это просто дублирование значений, так как факультет зависит от группы, а не от каждого студента

11. Функциональная зависимость:

Функциональная зависимость между атрибутами - это связь, при которой каждому значению атрибута X соответствует ровно одно значение атрибута Y.

12. Когда отношение в 1-ой Нормальной Форме:

1-я Нормальная Форма - таблица находится в **первой нормальной форме**, если все ее атрибуты являются атомарными, то есть неделимыми

13. Степень отношения:

Степень отношения - это количество его атрибутов. Степень отношения показывает, сколько различных характеристик описывает объекты, которые есть в таблице

Вариант 2:

1. **Что описывается на верхнем уровне архитектуры ANSI/SPARC?**Внешний уровень - представление данных для пользователей, показывающее

нужную информацию и скрывающее технические детали хранения. Этот уровень абстракции про то, как принимать эффективные решения на основе данных

2. Определение СУБД:

СУБД - программное обеспечение с помощью которого пользователи могут определять, создавать и поддерживать базу данных, а так же осуществлять к ней контролируемый доступ

3. Типы связей в модели сущность связь:

- Один-к-одному
- Один-ко-многим
- Многие-ко-многим

4. В чем отличие реляционной и постреляционной моделей данных?

- Реляционная модель данных требует, чтобы каждое поле таблицы содержало неделимое (атомарное) значение. Связи между таблицами задаются через общие атрибуты, и структура данных строго фиксирована
- Постреляционная модель данных позволяет хранить сложные данные в одном поле, например, массивы или JSON, что удобно для записей с разными атрибутами. Это снижает разряженность таблиц, но усложняет проверку данных и может замедлять поиск
- 5. **Что такое кардинальность отношения в реляционной модели данных?** Кардинальность отношения - это количество кортежей, которое содержит отношение
- 6. Дайте определение операции "Выборка":

Выборка
$$\sigma_{\text{предикат}}(R)$$
 —

Операция, результатом которой является отношение, которое содержит только те кортежи из исходного отношения, которые удовлетворяют заданному условию (предикату)

7. Дайте определение операции "Естественное соединение":

Естественное соединение $R \bowtie S$

Операция, которая выполняет соединение по эквивалентности двух отношений по всем общим атрибутам, из результатов которого исключили по одному экземпляру каждого атрибута

8. Дайте определение аномалии модификации:

Изменение данных в одной записи может потребовать внесения изменений в другие записи

Пример: Если изменить название факультета для группы М3212, то необходимо внести изменения для всех студентов этой группы. Если не внести их для одного из студентов, данные окажутся несогласованными

9. Порядок команд в SQL для написании запросов и порядок их выполнения: Порядок команд при написании SQL-запросов: 1. SELECT 2. DISTINCT 3. FROM 4. JOIN 5. WHERE 6. GROUP BY 7. HAVING 8. ORDER BY 9. LIMIT Порядок их выполнения: 1. FROM 2. JOIN 3. WHERE 4. GROUP BY 5. HAVING 6. SELECT 7. DISTINCT 8. ORDER BY 9. LIMIT нормальной форме? 2-я Нормальная Форма - таблица находится во второй нормальной форме, если находится в первой нормальной форме и все неключевые атрибуты

10. Какие условия должны быть, чтобы отношение находилось во второй

функционально полностью зависят от первичного ключа

11. Суперключ:

Суперключ - это атрибут (множество атрибутов), который единственным, уникальным образом идентифицирует кортеж.

12. Частичная функциональная зависимость:

Частичная функциональная зависимость - зависимость от части составного ключа

- 13. Какие есть группы основных требований к информационным системам и какое между ними противоречие?
 - Надежность и безопасность
 - Производительность и малое потребление памяти
 - Гибкость и расширяемость Увеличение надежности и безопасности может снижать производительность, а добавление гибкости — увеличивать сложность и снижать скорость работы

Вариант 3:

1. Определение "Данные":

- *Данные* это отдельные факты или значения без какого-либо контекста, которые сами по себе не имеют смысла (из инета)
- Данные это поддающиеся многократной интерпретации представления информации в формализованном виде, пригодном для передачи, интерпретации и обработки (Маятин)

2. Концептуальный уровень ANSII/SPARC:

Концептуальный уровень - логическая структура данных (сущности, атрибуты, связи), с которой работают разработчики при проектировании базы

3. В чем отличие между концептуальной и логической модели данных? Концептуальная модель данных отражает общее представление данных без привязки к техническим деталям, описывая основные сущности, их атрибуты и связи. Она фокусируется на том, какие данные важны и как они соотносятся

Погическая модель данных конкретизирует концептуальную модель, добавляя структуру для реализации в СУБД. Она включает типы данных, ключи и ограничения, но остаётся независимой от конкретных технологий хранения данных

4. Определение База данных:

База данных - набор постоянно хранимых данных, используемых прикладными системами какого-либо предприятия

5. Плюсы и минусы иерархической модели данных:

Плюсы:

- Удобна для восприятия человеком, так как соответствует реальным иерархиям
- Простая структура, легко понимать и использовать для хранения иерархических данных
- Быстро при транзакциях

• Минусы:

- Дублирование данных, что приводит к избыточности
- Сложности в поддержании целостности данных и обновлении при изменении иерархии
- Нельзя сделать связь "многие-ко-многим"

6. Определение "Домен":

Домен - это множество допустимых значений атрибутов

7. Определение "Потенциальный ключ":

Потенциальный ключ — это суперключ, который не содержит подмножества, также являющегося суперключом этого отношения

8. Операция объединения:

Объединение двух отношений R и S определяет новое отношение, которое

включает все кортежи, содержащиеся только в R, все кортежи, содержащиеся только в S и кортежи, содержащиеся и в R, и в S с исключением дубликатов

- 9. Что такое левое-внешнее соединение в реляционной алгебре?
 Левое внешнее соединение R ⊃ < S это естественное соединение, при котором в результирующее отношение включаются также кортежи отношения R, не имеющие совпадающих значений в общих атрибутах отношения S</p>
- 10. Алгоритм соединения таблиц вложенными циклами:

```
type Row struct {
        Attr int
        Data string
}
func nestedLoopJoin(R, S []Row) []Row {
        var F []Row
        for _, r := range R {
                for _, s := range S {
                        if r.Attr == s.Attr {
                                 joinedRow := Row{Attr: r.Attr, Data:
r.Data + " " + s.Data}
                                F = append(F, joinedRow)
                        }
                }
        }
        return F
}
```

11. Определение "Аномалия удаления":

Аномалия удаления - удаление одной записи может случайно удалить важную информацию

12. Что такое полная функциональная зависимость?

Полная функциональная зависимость - явление, когда неключевой атрибут зависит от всего составного ключа

13. Когда отношение находится в 3-ей нормальной форме?

Таблица находится в *темьей нормальной форме*, если она находится во второй нормальной форме и все неключевые атрибуты независимы друг от друга и функционально полностью зависят от первичного ключа (отсутствуют транзитивные зависимости)

Вариант 4:

1. Определение "СУБД"

СУБД - программное обеспечение с помощью которого пользователи могут

определять, создавать и поддерживать базу данных, а так же осуществлять к ней контролируемый доступ

2. Внешний/внутренний ключ, супер ключ:

- Внешний ключ это атрибут (множество атрибутов) внутри отношения, который соответствует потенциальному ключу некоторого (возможно того же самого) отношения
- Внутренний ключ атрибут, предназначенный для внутреннего использования в системе, например, технический идентификатор, который не связан напрямую со значением данных (!!!Не уверен, правильно ли это!!!)
- *Супер ключ* это атрибут (множество атрибутов), который единственным образом идентифицирует кортеж

3. Что такое полусоединение?

- Разность R-S состоит из кортежей, которые есть в R, но отсутствуют в S.
 Разность двух отношений определена только если они совместны по объединению
- *Полусоединение* $R \triangleright F$ S отношение, содержащее кортежи R, которые входят в тета-соединение R и S

4. Определение "кортеж" в реляционных моделях:

Кортеж - отдельная строка в таблице

5. Что такое транзитивная функциональная зависимость?

Транзитивная функциональная зависимость - зависимость через промежуточный атрибут (Y зависит от X, X не зависит от Y, Z зависит от Y), то зависимость A -> C - транзитивная

6. Внутренний уровень ANSII/SPARC:

Внутренний уровень - отвечает за физическое хранение данных на диске и оптимизацию работы с ними. Скрыт от пользователя, влияет на производительность и безопасность

7. Что такое разность?

• *Разность R-S* - состоит из кортежей, которые есть в *R*, но отсутствуют в *S*. Разность двух отношений определена только если они совместны по объединению

8. Отличия логической и физической модели данных:

- **Логическая модель** описывает данные и связи между ними без указания, как они будут физически храниться
- **Физическая модель** детализирует способы хранения и доступ к данным, учитывая технические аспекты

9. В чем плюсы и минусы хранения в файловой системе (файловом хранилище)?

- Минусы:
 - Отсутствие структурированности данные хранятся в виде файлов без строгой структуры

- Ограниченные возможности поиска
- Отсутствие транзакций и целостности данных невозможно гарантировать целостность данных и выполнять атомарные операции
- Отсутствие параллельной работы нет возможности одновременно работать нескольким пользователям с файлами из-за возможных ошибок

Плюсы:

- Простота реализации и использования легко организовать и управлять, особенно для небольших объемов данных
- Низкие затраты на хранение данные размещаются без дополнительного слоя управления, что снижает стоимость
- *Гибкость форматов данных* можно хранить разные типы данных, от текстовых до бинарных файлов
- Независимость от платформы файлы можно перемещать между системами без преобразований

10. Плюсы и минусы сетевой модели данных:

• Плюсы сетевой модели данных:

- *Гибкость связей* поддерживает многие-ко-многим, что позволяет создавать сложные связи между данными
- Эффективность доступа позволяет быстро находить и связывать данные, благодаря оптимизации связей и указателей
- Экономия на дублировании данных связи создаются напрямую, что снижает избыточность данных по сравнению с иерархической моделью

• Минусы сетевой модели данных:

- Сложность управления управление и администрирование такой модели требуют сложной логики и специализированного программного обеспечения
- *Трудность обновлений* изменения структуры могут потребовать значительных изменений в приложениях
- Ограниченная поддержка разработка и поддержка сетевой модели были частично вытеснены реляционной моделью, что ограничивает её применение

4 вариация прошлогодней рубежки

Ссылка: https://aboba228.notion.site/c8fe49fb2496491ebb4cd1861bbbcbbd

Вариант 1:

1. В чем разница плотного и разреженного индекса?

Плотный индекс — хранит указатель на каждую запись, обеспечивая быстрый поиск для уникальных значений

 Разреженный индекс — хранит указатель только на первый элемент блока, занимая меньше места, но может потребовать дополнительного поиска в блоке

2. *Недостатки представлений:

- 1. *Ограниченность обновлений* не все представления поддерживают изменение данных, особенно сложные запросы
- 2. Снижение производительности сложные представления могут замедлять запросы, так как данные извлекаются на лету
- 3. *Структурные ограничения* любые изменения в таблицах требуют изменений в представлениях
- 4. *Материализованные представления* требуют места для хранения и периодического обновления, что увеличивает нагрузку на систему

3. Транзакция:

• Транзакция - это последовательность, набор операций, которые выполняются как единое целое. Если хотя бы одна операция из набора не выполнится, все изменения отменяются. Это гарантирует целостность данных

4. *Какие системы попадают в класс безопасности "D"?*Сюда относятся те системы, которые не удовлетворяют требованиям других классов (A, B, C, D)

- 5. Перечислите типы идентификаторов (типы аутентификации): Аутентификация - это механизм проверки идентификатора (сопоставление пользователя с его идентифи-катором)

 Бывает три вида идентификаторов:
 - 1. То, что пользователь знает. Например, пароль, кодовое слово и т.п.
 - 2. То, чем пользователь владеет. Например, телефон, ключ-карта и т.п.
 - 3. То, чем является неотъемлемой частью пользователя (чаще всего это биометрия). Например, отпечаток пальца и т.п.

6. В чем разница горизонтального и вертикального фрагментирования в распределенной БД?

- *Горизонтальное (шардирование)* делит таблицу на подмножества кортежей, распределяя их по узлам
- *Вертикальное* делит таблицу на подмножества атрибутов, храня их отдельно, что усложняет поддержание целостности

7. Перечислите виды прозрачности в распределенных СУБД:

Прозрачность в распределенных СУБД — это свойство системы, скрывающее от пользователя детали распределения данных для удобства и согласованности работы с ними.

1. *Прозрачность фрагментации* - скрывает от пользователя, что данные разделены на фрагменты

- 2. *Прозрачность расположения фрагмента* скрывает физическое местоположение фрагментов, позволяя обращаться к данным, не зная их расположения
- 3. *Прозрачность количества реплик* скрывает количество копий данных, гарантируя доступ к данным независимо от числа их реплик
- 4. *Прозрачность контроля доступа* скрывает механизмы безопасности, предоставляя доступ к данным только авторизованным пользователям

8. Перечислите предпосылки к возникновению NoSQL решений:

- Увеличение объёма хранимых данных необходимость масштабируемых решений.
- *Слабо структурированные данные* гибкость для хранения данных без строгой схемы.
- Высокая взаимосвязность данных поддержка графов и сложных связей.
- Архитектура информационных систем распределённые и облачные системы с горизонтальным масштабированием
- 9. Опишите принцип хранения данных в базах "ключ-значение": Данные хранятся в виде пар "ключ-значение", где ключ уникально идентифицирует элемент, а значение это связанные с ключом данные. Каждая пара записывается как отдельный объект, и доступ к данным осуществляется по ключу благодаря этому получаем быстрый поиск и добавление
- 10. Опишите принцип построения логической модели базы знаний:

$$M = \langle T, P, A, B \rangle$$

- Т множество базовых знаний (алфавит).
- Р множество синтаксических правил.
- *A* аксиомы.
- *B* множество правил вывода (применяя их к аксиомам, можно получить новые синтаксические правила).

Вариант 2:

1. В чем разница первичного индекса и кластерного индекса:

Первичный индекс — это индекс, построенный по первичному ключу при условии, что исходный файл отсортирован по нему же Индекс кластеризации — это индекс, построенный по ключевому или неключевому полю при условии, что исходный файл отсортирован по нему же

2. В чем разница представления замены и материализованного представления?

Представление - это динамически сформированный результат одной или нескольких реляционных операций, сохраненный в виде нового отношения. Делятся на два типа

Материализованные - на самом деле дубликаты хранятся в памяти, которые были поучены при выполнении некоторого запроса

Представления замены - хранит только сам запрос, а не его результат. При каждом обращении этот запрос подставляется в основной запрос, и данные извлекаются заново

3. Свойства транзакций (грубо говоря ACID)

- 1. *Атомарность (Atomicity)* транзакция выполняется полностью или не выполняется вовсе. Если одна часть операции не удается, все изменения откатываются
- 2. Согласованность (Consistency) после завершения транзакции данные должны оставаться в согласованном состоянии, соблюдая все правила и ограничения базы данных
- 3. *Изолированность (Isolation)* параллельные транзакции не должны влиять друг на друга. Результат одной транзакции виден другим только после её завершения
- 4. Долговечность (Durability) после завершения транзакции все изменения сохраняются и остаются неизменными даже при сбоях системы
- 4. *Какие системы попадают в класс безопасности "С": Класс С (Дискреционный доступ)* система относится к классу С, если она имеет систему аутентификации/идентификации и дискреционное управление доступом
- 5. Что такое дискреционный (избирательный) контроль доступа? Дискреционный (избирательный) контроль доступа это метод управления доступом, при котором права доступа к объектам определяются индивидуально для каждой пары "субъект-объект". В этой модели для каждого субъекта (например, пользователя или группы) можно настроить конкретные права на доступ к объекту (например, файлу или записи в БД) с указанием, какие действия разрешены (чтение, запись, удаление и т.д.)
- 6. В чем суть стратегии раздельного (фрагментного) размещения данных в распределенной БД?

Стратегия раздельного (фрагментного) размещения данных в распределенной базе данных заключается в том, что база данных делится на отдельные, не пересекающиеся фрагменты, и каждый фрагмент хранится на своём узле. Такая схема позволяет эффективно распределять данные и снижать нагрузку на отдельные узлы

7. **В чем различие гомогенной и гетерогенной распределенной БД?**Гомогенная распределённая база данных — это система, в которой все узлы используют одну и ту же СУБД и, как правило, одну модель данных

Гетерогенная распределённая база данных — это система, в которой узлы могут использовать разные СУБД и даже разные модели данных. Это позволяет интегрировать разнообразные источники данных, но усложняет управление и согласованность данных

8. Перечислите общие характеристики NoSQL решений:

- *Omcymcmвue SQL* используются альтернативные языки запросов, не основанные на SQL.
- *Отсутствие жесткой схемы (Schemaless)* данные могут храниться без фиксированной структуры, что повышает гибкость.
- *Поддержка агрегатов (Aggregates)* возможность хранить частично агрегированные данные для повышения производительности, хотя это может вызвать избыточность.
- Слабые свойства ACID (BASE) NoSQL решения часто придерживаются модели BASE:
 - Basic Availability каждый запрос завершается ответом, пусть даже временным.
 - Soft State данные могут быть в изменяемом состоянии в любое время.
 - Eventual Consistency система достигнет консистентного состояния после завершения всех операций.

9. Принцип хранения данных в документоориентированных БД:

В документоориентированных базах данные хранятся в виде самостоятельных документов (например, JSON, BSON, XML), содержащих вложенные структуры, массивы и пары «ключ-значение»

10. Принцип построения сетевой модели базы данных:

В сетевой модели данных информация представлена в виде графа, где сущности связаны отношениями типа "многие ко многим". В этой структуре узлы графа — это записи данных (например, объекты), а рёбра — связи между ними. Каждая запись может иметь несколько родителей и потомков