

Linear Classification

1

G V V Sharma*

1	The Gaussian Distribution	1
2	CDF and PDF	2
3	Detection & Estimation	3
4	The MAP criterion	4
5	Bayes Classifier	4
6	Least Discriminant Analysis	4
7	Ridge Regression	5
8	The Lasso	5

CONTENTS

Abstract—This manual provides an introduction to linear lethods in regression.

1 THE GAUSSIAN DISTRIBUTION

1.1 Generate a Gaussian random number with 0 mean and unit variance.

Solution: Open a text editor and type the following program.

#!/usr/bin/env python

#This program generates a Gaussian random no with 0 mean and unit variance

#Importing numpy import numpy as np

print (np.random.normal(0,1))

Save the file as gaussian_no.py and run the program.

1.2 The mean of a random variable X is defined as

$$E[X] = \frac{1}{N} \sum_{i=1}^{N} X_i$$
 (1.1)

and its variance as

$$var[X] = E[X - E[X]]^2$$
 (1.2)

Verify that the program in 1.1 actually generates a Gaussian random variable with 0 mean and unit variance.

Solution: Use the header in the previous program, type the following code and execute.

#This program generates a Gaussian random no with 0 mean and unit variance

#Importing numpy import numpy as np

simlen = int(1e5) #No of samples

n = np.random.normal(0,1,simlen)#Random vector

mean = np.sum(n)/simlen #Mean value

print (mean)

print (var)

1.3 Using the previous program, verify you results for different values of the mean and variance.

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

2 CDF AND PDF

2.1 A Gaussian random variable X with mean 0 and unit variance can be expressed as $X \sim \mathcal{N}(0,1)$. Its cumulative distribution function (CDF) is defined as

$$F_X(x) = \Pr(X < x), \qquad (2.1)$$

Plot $F_X(x)$.

Solution: The following code yields Fig. 2.1.

#Importing numpy, scipy, mpmath and pyplot import numpy as np import matplotlib.pyplot as plt

x = np.linspace(-4,4,30)#points on the x axis simlen = int(1e5) #number of samples err = [] #declaring probability list n = np.random.normal(0,1,simlen)

for i in range(0,30):

err_ind = np.nonzero(n < x[i]) #
 checking probability condition
err_n = np.size(err_ind) #
 computing the probability
err.append(err_n/simlen) #storing
 the probability values in a list</pre>

plt.plot(x.T,err)#plotting the CDF plt.grid() #creating the grid plt.xlabel('\$x\$') plt.ylabel('\$F_X(x)\$') plt.show() #opening the plot window

- 2.2 List the properties of $F_X(x)$ based on Fig. 2.1.
- 2.3 Let

$$p_X(x_i) = \frac{F_X(x_i) - F_X(x_{i-1})}{h}, i = 1, 2, \dots h$$
(2.2)

for $x_i = x_{i-1} + h$, $x_1 = -4$. Plot $p_X(x_i)$. On the same graph, plot

$$p_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, -4 < x < 4$$
 (2.3)

Solution: The following code yields the graph in Fig. 2.3

#Importing numpy, scipy, mpmath and pyplot

Fig. 2.1: CDF of *X*

import numpy as np import mpmath as mp import scipy import matplotlib.pyplot as plt

maxrange=50
maxlim=6.0
x = np.linspace(-maxlim,maxlim,maxrange)#
points on the x axis
simlen = int(1e5) #number of samples
err = [] #declaring probability list
pdf = [] #declaring pdf list
h = 2*maxlim/(maxrange-1);
n = np.random.normal(0,1,simlen)

for i in range(0,maxrange):

err_ind = np.nonzero(n < x[i]) #

checking probability condition

err_n = np.size(err_ind) #

computing the probability

err.append(err_n/simlen) #storing

the probability values in a list

for i in range(0,maxrange-1):
 test = (err[i+1]-err[i])/(x[i+1]-x[i])
 pdf.append(test) #storing the pdf
 values in a list

def gauss_pdf(x):
 return 1/mp.sqrt(2*np.pi)*np.exp(-x

Fig. 2.3: The PDF of X

Thus, the PDF is the derivative of the CDF. For $X \sim \mathcal{N}(0, 1)$, the PDF is

$$p_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad -\infty < x < \infty$$
 (2.4)

2.4 For $X \sim \mathcal{N}(\mu, \sigma^2)$,

$$p_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty \quad (2.5)$$

Plot $p_X(x)$ for different values of μ and σ in the same graph. Comment.

3 Detection & Estimation

3.1 Let $X \in \{1, -1\}$. Generate X such that the numbers 1 and -1 appear with equal probability. This is a random variable formulation of the coin tossing experiment.

Solution: The following script generates the numbers 1 and -1 with equal probability.

#Importing numpy import numpy as np

#Function for generating coin toss def coin(x):

return 2*np.random.randint(2,size=x)

print (coin(1))

- 3.2 Verify that the script in the previous problem generates equiprobable symbols.
- 3.3 Suppose $X \in \{1, -1\}$ and

$$Y = AX + N \tag{3.1}$$

where $N \sim \mathcal{N}(0,1)$ and A = 4. Obtain a scatterplot of (X, Y).

- 3.4 Given *Y* in the previous problem, how would you decide whether *X* is 1 or -1.
- 3.5 Suppose X = 1 and \hat{X} is what you detected. Find $P(\hat{X} = -1/X = 1)$.
- 3.6 Plot $Pr(\hat{X} = -1/X = 1)$ with respect to A.
- 3.7 For $X \sim \mathcal{N}(0,1)$, the Q-function is defined as

$$Q(x) = \Pr(X > x), \quad x > 0$$
 (3.2)

Express $Pr(\hat{X} = -1/X = 1)$ in terms of the *Q*-function. Plot this expression with respect to *A* and compare with the result obtained through simulation.

3.8 The signal to noise ratio of the above system is defined as

$$SNR = \frac{A^2}{E[N^2]} \tag{3.3}$$

Plot the thoeretical and simulated values of $Pr(\hat{X} = -1/X = 1)$ for the SNR ranging from 0 to 10 dB.

- 3.9 Now consider a threshold $\lambda > 0$ and find the average probability of error. Plot this with respect to λ .
- 3.10 From the graph in the previous problem, find the optimum threshold so that the probability of error is minimum.

4 THE MAP CRITERION

4.1 A Gaussian random variable $Y \sim \mathcal{N}(\mu, \sigma^2)$ has the pdf

$$p_Y(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2} - \infty < x < \infty$$
 (4.1)

4.2 Plot

$$p_Y(Y|X=1)$$
 and $p_Y(Y|X=-1)$ (4.2)

in the same graph with respect to A.

4.3 Graphically obtain the decision resulting from

$$p_Y(Y|X=1) \stackrel{1}{\underset{-1}{\gtrless}} p_Y(Y|X=-1)$$
 (4.3)

Comment.

5 Bayes Classifier

5.1 Let (X, G) be an input/output dataset, whose relation f is unknown. Also

$$\mathbf{g} \in \mathbf{G} = \{\mathbf{g}_k\}_{k=1}^K \tag{5.1}$$

Let

$$C\left(\mathbf{g}_{k},\mathbf{g}_{l}\right) = \begin{cases} 1 & k=l\\ 0 & k \neq l \end{cases}$$
 (5.2)

where \mathbf{g}_i are different classes of output data. Thus C is a *correctness* metric.

5.2 Show that

$$\max_{\mathbf{g} \in \mathbf{G}} E\left[C\left(\mathbf{G}, f\left(\mathbf{X}\right)\right)\right] = \max_{\mathbf{g} \in \mathbf{G}} p\left(\mathbf{g}|\mathbf{X} = \mathbf{x}\right) \quad (5.3)$$

Solution: In the above,

$$\max_{\mathbf{g} \in \mathbf{G}} E\left[C\left(\mathbf{G}, f\left(\mathbf{X}\right)\right)\right]$$

$$= \max_{\mathbf{g} \in \mathbf{G}} E_{\mathbf{X}}\left[E_{\mathbf{G}}\left\{C\left(\mathbf{G}, f\left(\mathbf{x}\right)\right)\right\}\right] \quad (5.4)$$

$$= \max_{\mathbf{g} \in \mathbf{G}} \sum_{k=1}^{K} C\{\mathbf{g}_k, \mathbf{g}\} p(\mathbf{g}_k | \mathbf{X} = \mathbf{x})$$
 (5.5)

From (5.2), the above expression simplifies to

$$\max_{\mathbf{g} \in \mathbf{G}} E\left[C\left(\mathbf{G}, f\left(\mathbf{X}\right)\right)\right] = \max_{\mathbf{g} \in \mathbf{G}} p\left(\mathbf{g} | \mathbf{X} = \mathbf{x}\right) \ (5.6)$$

6 Least Discriminant Analysis

6.1 Find

$$||\mathbf{y} - \mathbf{X}\mathbf{w}||^2 \tag{6.1}$$

Solution:

$$\|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 = (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$
 (6.2)

$$= \|\mathbf{y}\|^2 - \mathbf{w}^T \mathbf{X}^T \mathbf{y} \tag{6.3}$$

$$-\mathbf{y}^T A \mathbf{w} + \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} \qquad (6.4)$$

6.2 Assuming 2×2 matrices and 2×1 vectors, show that

$$\frac{\partial}{\partial \mathbf{w}} \mathbf{w}^T \mathbf{X}^T \mathbf{y} = \frac{\partial}{\partial \mathbf{w}} \mathbf{y}^T \mathbf{X} \mathbf{w} = \mathbf{y}^T \mathbf{X}$$
 (6.5)

6.3 Show that

$$\frac{\partial}{\partial \mathbf{w}} \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} = 2 \mathbf{w}^T \left(\mathbf{X}^T \mathbf{X} \right)$$
 (6.6)

6.4 Show that

$$\hat{\mathbf{w}} = \min_{\mathbf{w}} ||\mathbf{y} - \mathbf{X}\mathbf{w}||^2 \tag{6.7}$$

$$= \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y} \tag{6.8}$$

6.5 Using the Gram-Schmidt orthogonalization procedure, show that

$$\mathbf{X} = \mathbf{OR} \tag{6.9}$$

where $\mathbf{Q}^T\mathbf{Q} = \mathbf{I}$ and \mathbf{R} is upper triangular.

6.6 Show that

$$\hat{\mathbf{w}} = \mathbf{R}\mathbf{Q}^T \mathbf{y} \tag{6.10}$$

6.7 Find $\hat{\mathbf{y}}$

7 RIDGE REGRESSION

7.1 The ridge problem is defined as

$$\hat{\mathbf{w}} = \min_{\mathbf{w}} ||\mathbf{y} - \mathbf{X}\mathbf{w}|| \tag{7.1}$$

$$\text{s.t } \|\mathbf{w}\|^2 \le t \tag{7.2}$$

Using the Lagrangian, show that

$$\hat{\mathbf{w}} = \left(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}\right)^{-1} \mathbf{X}^T \mathbf{y} \tag{7.3}$$

8 THE LASSO

8.1 The Lasso is defined as

$$\hat{\mathbf{w}} = \min_{\mathbf{w}} ||\mathbf{y} - \mathbf{X}\mathbf{w}|| \tag{8.1}$$

$$s.t \sum_{i} |w_i| \le t \tag{8.2}$$

Obtain the corresponding Lagrangian.

8.2 Show that this is a quadratic programming problem and find a suitable algorithm.