# Single-Source Shortest Paths

#### Contents

- Definition
- Dijkstra's algorithm
- The Bellman-Ford algorithm
- Single-source shortest paths in directed acyclic graphs

2

#### Definition

#### Edge weight

- Path weight
  - The sum of all edge weights in the path.
- A Shortest path from u to v.
  - A path from u to v whose weight is the smallest.
  - Vertex u is the source and v is the destination.
- The Shortest-path weight from u to v.
  - The weight of a shortest-path from u to v
  - $\delta(u,v)$

Hanyang Univ.

#### Definition

#### Shortest-path problems

- Single-source & single-destination
- Single-source (& all destinations)
- Single-destination (& all sources)
- All pairs
- An algorithm for single-source (& all destinations) problem can be used to solve all the other problems.

Hanyang Univ.

• What is a shortest path from *s* to *g*?





5

- Do all negative-weight edges cause a problem?
- Do all negative-weight cycles cause a problem?





 Do all negative-weight cycles reachable from the source cause a problem?





 Single-source shortest paths can be defined if there are not any negative-weight cycles reachable from the source.





#### Cycles

#### Cycles

- There is a shortest path that does not include cycles.
- A shortest-path length is at most |V| 1.

Hanyang Univ.

#### Predecessor subgraph

#### Predecessor subgraph

- Shortest-path tree (stores all SSSPs compactly.)
- Optimal substructure



# Predecessor subgraph





11

#### Predecessor subgraph



$$t: s \to t$$
  
 $y: s \to t \to y$   
 $x: s \to t \to y \to x$   
 $z: s \to t \to y \to x \to z$ 

 $O(V^2)$  space

*t*: *s* 

*y*: *t* 

*x*: *y* 

Z: X

O(V) space

#### Relaxation

#### Relaxation



#### RELAX(u, v, w)

1 **if** 
$$d[v] > d[u] + w[u, v]$$

2 **then** 
$$d[v] \leftarrow d[u] + w[u, v]$$

$$3 \qquad \pi[v] \leftarrow u$$

### Dijkstra's algorithm

It works properly when all edge weights are nonnegative.

Hanyang Univ.

14

#### DIJKSTRA(G, w, s)

```
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S = \emptyset
3 Q = G.V
4 while Q \neq \emptyset
5 u = \text{EXTRACT-MIN}(Q)
6 S = S \cup \{u\}
7 for each vertex v \in G.Adj[u]
8 RELAX(u, v, w)
```



| S | t | y        | $\mathcal{X}$ | Z |
|---|---|----------|---------------|---|
| 0 | 8 | $\infty$ | 8             | 8 |



S



| S | t | y | X | Z |
|---|---|---|---|---|
| 0 | 8 | 8 | 8 | 8 |



$$S = \{s\}$$



| S | t | y | X | Z |
|---|---|---|---|---|
| 0 | 8 | 8 | 8 | 8 |



$$S = \{s\}$$



| S | t  | У | $\chi$   | Z |
|---|----|---|----------|---|
| 0 | 8  | 8 | $\infty$ | 8 |
|   | 10 | I | -        | ı |



$$S = \{s\}$$



| S | t  | У | $\mathcal{X}$ | Z |
|---|----|---|---------------|---|
| 0 | 8  | 8 | 8             | 8 |
|   | 10 | ı | ı             | ı |



$$S = \{s\}$$



| S | t        | y        | X        | Z        |
|---|----------|----------|----------|----------|
| 0 | $\infty$ | $\infty$ | $\infty$ | $\infty$ |
|   | 10       | 5        | -        | -        |



$$S = \{s\}$$



| S | t  | У        | $\mathcal{X}$ | Z        |
|---|----|----------|---------------|----------|
| 0 | 8  | $\infty$ | $\infty$      | $\infty$ |
|   | 10 | 5        | -             | -        |



$$S = \{s, y\}$$



| S | t  | У        | $\mathcal{X}$ | Z        |
|---|----|----------|---------------|----------|
| 0 | 8  | $\infty$ | $\infty$      | $\infty$ |
|   | 10 | 5        | -             | -        |



$$S = \{s, y\}$$





$$S = \{s, y\}$$





$$S = \{s, y\}$$



| S | t  | y        | X  | Z |
|---|----|----------|----|---|
| 0 | 8  | $\infty$ | 8  | 8 |
|   | 10 | 5        | •  | ı |
|   | 8  |          | 14 | - |



$$S = \{s, y\}$$



| S | t  | y | $\chi$ | Z |
|---|----|---|--------|---|
| 0 | 8  | 8 | 8      | 8 |
|   | 10 | 5 | •      | ı |
|   | 8  |   | 14     | - |



$$S = \{s, y\}$$



| S | t  | $\mathcal{Y}$ | X  | Z |
|---|----|---------------|----|---|
| 0 | 8  | 8             | 8  | 8 |
|   | 10 | 5             | •  | ı |
|   | 8  |               | 14 | 7 |



$$S = \{s, y\}$$



| S | t  | $\mathcal{Y}$ | X  | Z |
|---|----|---------------|----|---|
| 0 | 8  | 8             | 8  | 8 |
|   | 10 | 5             | -  | ı |
|   | 8  |               | 14 | 7 |



$$S = \{s, y, z\}$$



14



$$S = \{s, y, z\}$$



| S | t  | $\mathcal{Y}$ | X  | Z |
|---|----|---------------|----|---|
| 0 | 8  | 8             | 8  | 8 |
|   | 10 | 5             | -  | ı |
|   | 8  |               | 14 | 7 |



$$S = \{s, y, z\}$$



| S | t  | y        | X  | Z        |
|---|----|----------|----|----------|
| 0 | 8  | $\infty$ | 8  | $\infty$ |
|   | 10 | 5        | -  | -        |
|   | 8  |          | 14 | 7        |



$$S = \{s, y, z\}$$

| Q |    |   |        |   |
|---|----|---|--------|---|
| S | t  | y | $\chi$ | Z |
| 0 | 8  | 8 | 8      | 8 |
|   | 10 | 5 | 1      | ı |
|   | 8  |   | 14     | 7 |
|   | 8  |   | 13     |   |



$$S = \{s, y, z\}$$

| Q |    |   |        |          |
|---|----|---|--------|----------|
| S | t  | y | $\chi$ | Z        |
| 0 | 8  | 8 | 8      | $\infty$ |
|   | 10 | 5 | _      | -        |
|   | 8  |   | 14     | 7        |
|   | 8  |   | 13     |          |



$$S = \{s, y, z, t\}$$

| Q |    |   |        |          |
|---|----|---|--------|----------|
| S | t  | y | $\chi$ | Z        |
| 0 | 8  | 8 | 8      | $\infty$ |
|   | 10 | 5 | _      | -        |
|   | 8  |   | 14     | 7        |
|   | 8  |   | 13     |          |



$$S = \{s, y, z, t\}$$

| Q |    |   |        |          |
|---|----|---|--------|----------|
| S | t  | y | $\chi$ | Z        |
| 0 | 8  | 8 | 8      | $\infty$ |
|   | 10 | 5 | ı      | ı        |
|   | 8  |   | 14     | 7        |
|   | 8  |   | 13     |          |



$$S = \{s, y, z, t\}$$

| Q |    |   |        |   |
|---|----|---|--------|---|
| S | t  | y | $\chi$ | Z |
| 0 | 8  | 8 | 8      | 8 |
|   | 10 | 5 | -      | 1 |
|   | 8  |   | 14     | 7 |
|   | 8  |   | 13     |   |



$$S = \{s, y, z, t\}$$

| Q |    |   |        |   |
|---|----|---|--------|---|
| S | t  | y | $\chi$ | Z |
| 0 | 8  | 8 | 8      | 8 |
|   | 10 | 5 | -      | 1 |
|   | 8  |   | 14     | 7 |
|   | 8  |   | 13     |   |
|   |    |   | 9      |   |



$$\mathbf{S} = \{s, y, z, t, x\}$$

| Q |    |   |        |   |
|---|----|---|--------|---|
| S | t  | y | $\chi$ | Z |
| 0 | 8  | 8 | 8      | 8 |
|   | 10 | 5 | -      | 1 |
|   | 8  |   | 14     | 7 |
|   | 8  |   | 13     |   |
|   | _  |   | 9      |   |



$$\mathbf{S} = \{s, y, z, t, x\}$$

| Q |    |   |               |   |
|---|----|---|---------------|---|
| S | t  | y | $\mathcal{X}$ | Z |
| 0 | 8  | 8 | 8             | 8 |
|   | 10 | 5 | -             | - |
|   | 8  |   | 14            | 7 |
|   | 8  |   | 13            |   |
|   |    |   | 9             |   |



$$\mathbf{S} = \{s, y, z, t, x\}$$

| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   |   |   |               |   |





| S | $\overline{t}$ | y | $\mathcal{X}$ | Z |
|---|----------------|---|---------------|---|
|   |                |   |               |   |





| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   |   |   |               |   |











| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | S |   |               |   |





| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | S |   |               |   |





| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | S |   |               |   |





| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | S | S |               |   |





| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | S | S |               |   |





| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | S | S |               |   |





| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | S | S |               |   |





| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | S | S |               |   |





| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | S | S |               |   |





| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | y | S |               |   |





| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | y | S |               |   |





| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | y | S | y             |   |





| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | y | S | y             |   |





| S | t             | y | $\mathcal{X}$ | Z             |
|---|---------------|---|---------------|---------------|
|   | $\mathcal{Y}$ | S | y             | $\mathcal{Y}$ |





Hanyang Univ.

| S | t | y | $\mathcal{X}$ | Z             |
|---|---|---|---------------|---------------|
|   | y | S | y             | $\mathcal{Y}$ |





| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | y | S | y             | y |





| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | y | S | y             | y |





| S | t             | y | $\mathcal{X}$ | Z |
|---|---------------|---|---------------|---|
|   | $\mathcal{Y}$ | S | y             | y |





| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | y | S | y             | y |





| S | t             | y | $\mathcal{X}$ | Z |
|---|---------------|---|---------------|---|
|   | $\mathcal{Y}$ | S | y             | y |





Hanyang Univ.

| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | y | S | y             | y |





| S | t             | y | $\mathcal{X}$ | Z |
|---|---------------|---|---------------|---|
|   | $\mathcal{Y}$ | S | Z             | y |





| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | y | S | Z             | y |





Hanyang Univ.

| S | t | y | $\mathcal{X}$ | Z             |
|---|---|---|---------------|---------------|
|   | y | S | Z             | $\mathcal{Y}$ |





| S | t | y | $\mathcal{X}$ | Z             |
|---|---|---|---------------|---------------|
|   | y | S | Z             | $\mathcal{Y}$ |





| S | t | y | $\mathcal{X}$ | Z             |
|---|---|---|---------------|---------------|
|   | y | S | Z             | $\mathcal{Y}$ |





| S | t | y | $\mathcal{X}$ | Z             |
|---|---|---|---------------|---------------|
|   | y | S | Z             | $\mathcal{Y}$ |





| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | y | S | t             | y |





Hanyang Univ.

| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | y | S | t             | y |



| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | y | S | t             | y |



Hanyang Univ.

74

| S | t | y | $\mathcal{X}$ | Z |
|---|---|---|---------------|---|
|   | y | S | t             | y |



#### DIJKSTRA(G, w, s)

```
1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S = \emptyset
3 Q = G.V
4 while Q \neq \emptyset
5 u = \text{EXTRACT-MIN}(Q)
6 S = S \cup \{u\}
7 for each vertex v \in G.Adj[u]
8 RELAX(u, v, w)
```

76

# Running time

- $O(V^2)$  if we use an (unsorted) array
- $O(V \lg V + E \lg V)$  if we use a heap

#### Definitions

- length of a path: sum of edge weights along the path
- distance from u to v,  $\delta(u, v)$ : minimum length
- Problem: Given a directed graph with NONNegative edge weights G = (V, E), and a special source vertex  $s \in V$ , determine the distance from the source vertex to every vertex in G.
  - -d[v]: estimate the shortest path
  - $\pi[v]$ : predecessor pointer of the path

### Principle Observation

- Any subpath of a shortest path must also be a shortest path. Maintain an Estimate of shortest path for each vertex d[v]
- Initially, d[s] = 0 and  $d[v] = \infty$
- $d[v] \ge \delta(s, v)$ : As the algorithm goes on, it updates d[v] until all d[v] converge to  $\delta(s, v)$  (This update process is called relaxation.)

if 
$$(d[u] + w[u, v] < d[v])$$
  
 $d[v] = d[u] + w[u, v];$   
 $\pi[v] = u;$ 

- Maintain a subset of vertices  $S \subseteq V$ , for which we claim we "know" the shortest distance,  $d[u] = \delta(s, u)$ .
- Initially,  $S = \{\}$  and one by one we selected vertices from V S to add to S at each stage.
- We select the vertex whose d[u] is minimum. We implement this on a *priority* queue where every operation (Insert, Delete\_min, Decrease\_key) can be done in  $O(\lg n)$  time.
- At each stage
  - select a vertex u, which has the smallest d[u] among all the unknown vertices.
  - declare that the shortest path from s to u is known
  - update d[v]:d[v]=d[u]+w[u,v] if this value for d[v] is an improvement. (decide if it is a good idea to use u on the path to v.)

80

**Lemma** When a vertex u is added to S,  $d[u] = \delta(s, u)$ .

**Proof:** We assume all edge weights are STRICTLY positive. Suppose the algorithm FIRST attempts to add a vertex u to S for which  $d[u] \neq \delta(s, u)$ , so  $d[u] > \delta(s, u)$ . Consider the situation JUST PRIOR to the insertion of u. Consider the true shortest path from s to u. Since s  $\in S$  and  $u \in V - S$ , at some point this path takes a jump out of S. Let (x, y)y) be the edge taken by the path where  $x \in S$  and  $y \in V - S$ . We argue  $y \neq u$ . (Why? Since  $d[x] = \delta(s, x)$  and we applied relaxation when we add x, we would have set  $d[u] = d[x] + w(x, u) = \delta(s, u)$ , but we assumed this is not the case.) Now since y appears midway on the path from sto u and all subsequent edges are positive, we have  $\delta(s, y) < \delta(s, u)$ , and thus,  $d[y] = \delta(s, y) < \delta(s, u) < d[u]$ . Thus, y would have been added BEFORE u, in contradiction to our assumption.

81

# The Bellman-Ford algorithm

 it solves the single source shortest-paths problem in the general case in which edge weights may be negative.

```
BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 for i = 1 to |G.V| - 1

3 for each edge(u, v) \in G.E

4 RELAX(u, v, w)

5 for each edge(u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```

#### Relaxation order

 $\bullet$ (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)





#### Relaxation order

$$\bullet$$
(t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)



#### Relaxation order

$$\bullet$$
(t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)



- The Bellman-Ford algorithm
  - Running time : O(VE)

Assume there is a negative cycle,  $< v_0, v_1, ..., v_k >$  where  $v_0 = v_k$ , and yet the Bellman-Ford returns True. Then, for all i = 1, 2, ..., k  $d[v_i] \le d[v_{i-1}] + w[v_{i-1}, v_i]$ .

Summing for all nodes in a cycle,

$$\sum_{i=1}^{k} d[v_i] \le \sum_{i=1}^{k} (d[v_{i-1}] + w[v_{i-1}, v_i])$$

$$= \sum_{i=1}^{k} d[v_{i-1}] + \sum_{i=1}^{k} w[v_{i-1}, v_i]$$

Because  $v_0 = v_k$ ,  $\sum_{i=1}^k d[v_i] = \sum_{i=1}^k d[v_{i-1}]$ Thus,  $0 \le \sum_{i=1}^k w[v_{i-1}, v_i]$ . Contradiction!

#### DAG-SHORTEST-PATHS(G, w, s)

- 1 topologically sort the vertices of G
- 2 INITIALIZE-SINGLE-SOURCE(G, s)
- 3 **for** each vertex u, taken in topologically sorted order
- 4 **for** each vertex  $v \in G.Adj[u]$
- 5 RELAX(u, v, w)















• Running time: O(V+E) time

#### PERT chart

#### PERT

- Program evaluation and review technique
- Edges represent jobs to be performed.
- Edge weights represent the times required to perform particular jobs.

#### PERT chart

#### PERT

- If edge (u, v) enters vertex v and edge (v, x) leaves v, then job (u, v) must be performed prior to job (v, x).
- A path through this dag represents a sequence of jobs that must be performed in a particular order.
- A critical path is a longest path through the dag.

#### PERT chart

# Finding a critical path in a dag

- Negate the edge weights and run DAG-SHORTEST-PATHS or
- Run DAG-SHORTEST PATHS, with the modification that we replace " $\infty$ " by "- $\infty$ " and ">" by "<".