Introduction to Big Data - Practice 4 (Data Manipulation II)

For each question, make sure you not only just "write down" the Python codes but also "explain the answer with your own language". All answers without explanation will not be accepted.

Problem

< Question 1 – User Consumption data>

Import 'UserConsumption.csv' to a data frame variable called *UserConsump*. This data is about user's OTT consumption in 2019. Here, the users are classified in one of three groups, Low (0), Medium (1) and High Consumption (2). Write down Python codes that corresponds to the following questions:

- (1-1, 5 pts) Explore the data set and answer the following question. 1) What is the number of rows and columns? 2) What does each column stand for? Explain.
- (1-2, 5 pts) Which variable can be used as an identifier? Write down Python codes that support your answer.
- (1-3, 5 pts) Are there any missing values? Which variable can be used as an identifier? Write down Python codes that support your answer.
- (1-4, 10 pts) There are so many zeros in this data set. Write down Python codes that count the total number of zeros. Do you think those zeros are acceptable? Explain.
- (1-5, 15 pts) We want to check the frequency of Google and Youtube's data consumption. Here we want to see four categories of low (0%<= x <= 25%), mid-low (25% < x <= 50%), mid-high (50% < x <= 75%), and high (75% < x <=100%). Create new variable called $UserConsump_ed$ (which is the same to UserConsump) and write down Python codes that produces the new columns called "YouTube_data_d" and "Google_data_d" (Hint: use numpy.percentile() & pandas.cut()). The expected result is shown below.

Ехр	ected Result				
	· -	_ed[['src_ip_numeric','Yo		cupation', 'YouTube_dat	a_d',
G0	THE RESIDENCE OF THE PROPERTY OF	pation', 'Google_data_d' YouTube_data_occupation	Weeking or the characters of the	Google_data_occupation	Google_data_d
0	3232266497	0.000000e+00	YT_low	0.000000e+00	GG_low
1	3232266498	3.296328e+04	YT_mid-low	2.714436e+04	GG_mid-high
2	3232266499	1.715216e+06	YT_high	3.240468e+04	GG_mid-high
3	3232266500	9.129252e+05	YT_high	2.514333e+04	GG_mid-low
4	3232266501	3.227430e+05	YT_mid-high	1.744453e+06	GG_high

(1-6, 10 pts) The new variables that we created from (1-2), "YouTube_data_d" and "Google_data_d", can tell us the user's YouTube and Google data consumption type. With these two variables, a frequency table (or pair matrix) can be used to see the relationship between two. Write down Python codes that produce this table and explain the meaning of the numbers and what you can notice from this. The expected result is shown below (Hint: use pandas.crosstab).

Expected Result				
>>> ???				
Google_data_d	GG_1 ow	GG_mid-low	GG_mid-high	66_high
YouTube_data_d				
YT_low	138	33	38	35
YT_mid-low	50	74	64	55
YT_mid-high	32	77	69	65
YT_high	24	59	72	88

(1-7, 10 pts) As you noticed, the current data format of *UserConsump_ed* is "wide". Convert this into a long format and create a variable called *UserConsump_long* as shown below. As we no longer need the new variables, "YouTube data d" and "Google data d", remove them.

Expe	ected Result			
>>>	UserConsump_	long.hea	ad()	
	src_ip_numeric	cluster	variable	value
0	3232266497	0	Amazon_time_occupation	0.000000
1	3232266498	0	Amazon_time_occupation	3335.361968
2	3232266499	1	Amazon_time_occupation	26998.860487
3	3232266500	1	Amazon_time_occupation	12373.206142
4	3232266501	0	Amazon_time_occupation	10672.896697

(1-8, 15 pts) In *UserConsump_long*, there are many elements included in "variable". Since these elements contain both the name of OTT service and type of occupation, it is difficult for us to separate them. In this respect, do the following task. 1) create a variable called "type", which indicates whether it is about "time" or "data" (Hint: Use numpy.where() & .str.contains()). 2) Convert the values of "variable" to have only the name of OTT (Hint: Use .str.replace()). 3) Rename "variable" to "OTT". Below is the updated *UserConsump_long*.

Exp	ected Result				
>>>	UserConsump_lo	ong.head()		
	src_ip_numeric	cluster	OTT	value	type
0	3232266497	0	Amazon	0.000000	time
1	3232266498	0	Amazon	3335.361968	time
2	3232266499	1	Amazon	26998.860487	time
3	3232266500	1	Amazon	12373.206142	time
4	3232266501	0	Amazon	10672.896697	time

(1-9, 10 pts) Write down Python codes that answer the following questions: 1) What are Top 10 OTT services that users consume the time mostly? 2) What are Top 10 OTT services that users consume the data mostly?

Expected Result	
(1)	(2)

0T	Γ time		OTT	
I1 Googl	e 9.279648e+07	53	YouTube	5.1581
17 GoogleService	s 1.208210e+07	12	GoogleDocs	5.1405
I8 HTT	P 1.082602e+07	18	HTTP	3.47797
0 Amazo	9.177739e+06	10	GMail	1.958448
3 YouTub	e 5.758410e+06	13	GoogleDrive	1.358791
19 HTTP_Prox	y 5.165123e+06	1	AmazonVideo	1.226594
IO GMa	il 4.546011e+06	0	Amazon	1.144235e
8 Dropbo	x 4.056039e+06	11	Google	9.639840e
47 WhatsAp	3.346472e+06	47	WhatsApp	5.248860e+
13 Twitte	r 3.202591e+06	3	AppleStore	5.221703e+

(1-10, 15 pts) Compare the average time consumption between "low" consumption group and "high" consumption group. To do so, (1) Create a table that shows average time consumption of "low" group (*UserConsump_long_low*) and "high" groups (name it *UserConsump_long_high*). (2) Calculate average the overall average time consumption for low and high groups. Knowing the fact the time is measured in seconds, compare those two with the unit of minutes.

Exp	ected Result	
(1)		
>>>	UserConsump	_long_low.he
	OTT	low
0	Amazon	3614.513789
1	AmazonVideo	270.677217
2	Apple	49.161219
3	AppleStore	1.897551
4	AppleiCloud	8.339664
>>>	UserConsump 0TT	_long_high.h high
0	Amazon	8225.398777
1	AmazonVideo	506.117874
2	Apple	857.780820
3	AppleStore	71.946701
4	AppleiCloud	607.130281
>>>	0646257767	