# **HOJA TRABAJO 3**





EBER JARED GUERRA COY 1136617

# **CONCEPTOS**

- Estándar de cableado
  - a. TIA/EIA
    - TIA (Telecommunications Indrustry Association)
    - EIA (Electronic Industries Alliance)
    - Estos son dos tipos de estándares que se aplican en redes de datos
    - Nos sirve para saber como debemos de cablear una red de Ethernet
    - También para identificar el tipo de combinación de colores dentro de los conectores TIA/EIA-568A y TIA/EIA-568B
  - **b.** 568A/568B
    - a. Es un estándar que indica como debemos de colocar los 8 hilos de colores en un conector



- b. Permite tener un cableado de red compatible y constante
- c. Son utilizados en
  - a. Informática
  - b. Telefonía
  - c. Telecomunicaciones

HOJA TRABAJO 3

#### Componentes de la fibra optica

- Núcleo
  - a. Es la parte central, por donde viaja la luz
  - b. Esta compuesto por vidrio o plástico puro
- o Revestimiento
  - a. Su función es reflejar a la luz hacia el núcleo
  - b. Evita que la luz se escape
- Recubrimiento
  - a. Protege la fibra de daños físicos y humedad
- o Cubierta
  - Protege contra productos químicos, abrasion
  - Echo de PVC

### UPT

- Es un tipo de cable trenzado que es utilizado en redes de datos y telecomunicaciones
- No tiene blindaje
- Es mas económico y fácil de instalar que otros cables
- No recomendable donde hay mucha interferencia electromagnética

### Monomodo

- o Fibra óptica muy pequeña
- o Permite transmitir datos a grandes distancias y altas velocidades
- Se utiliza en telecomunicaciones
- Suele ser mas costoso
- o Requiere fuentes de luz mas precisas

# Multimodo

- o Fibra de óptica mas grande
- o Trasmite varios modos de luz
- Es mas recomendado en distancias cortas

### RJ45

- Es un conector estándar utilizado en cables de par trenzado
- Utilizados en Ethernet
- **RJ** (Conector Registrado)
- 45 Es el numero de diseño
- Los encontramos en entradas de:
  - Red de computadoras
  - Impresoras
  - Routers
  - Switch

### • SFP

- Small Form Factor Pluggable
- o Se utiliza para conectar equipos de red
  - Switches
  - Routers
  - Servidores
- o Conexiones con redes de fibra óptica o cobre
- Velocidades de 1 Gbps
- o Permite escalablidad y flexibilidad
- Precios
  - Genéricos → \$60
  - Marca → \$200

# • SFP+

- Version mejorada del modulo SFP
- o Permite velocidades de transmisión de 10 Gbps
- Los SFP+ pueden ser utilizados en puertos SFP pero si usar su potencial
- Precios
  - Genéricos → \$(20-120)
  - Marca  $\rightarrow$  \$(100-350)

### QSFP

Soporta cuatro cales de transmisión

- Velocidades mayor que las de SFP+/SFP
- Velocidades de 40 Gbps
- Usos
  - Centro de datos
  - Redes troncales
  - Switches de alta capacidad
  - Interconexión de servidores
- Precios
  - **QSFP+** → \$(80-400)
  - QSFP28 → \$(150 \$800)

### • Transiver

- o Dispositivo que combina funciones de transmisor y receptor en una sola unidad
- Usan el mismo modulo para transmitir y recibir
- Ahorra espacios y costos
- o Permite recibir información por cable o aire

### • Tipo de conectores de Fibra Optica

- o LC
  - Lucent Connector
  - Es compacto y similar al RJ45
  - Es un tipo de conector mas pequeño, que permite alta densidad de conexiones en paneles y equipos
  - Usado en:
    - Switches
    - Routers
    - Servidores
    - Paneles de parcheo
  - Permite conexión de muchos cables en poco espacio
  - Es utilizado en la actualizad
- o sc
  - Subscriber Connector o Standard Connector
  - Es utilizado en conexiones mas antiguas o equipos que requieres robustez

- Sistema de "push-pull"
- En que pines transmiten los dispositivos
  - o NIC PC, Router, Switch
    - 10/100 Mbps
      - Transmiten:
        - o Pin1: TX+
        - o Pin2: TX-
      - Reciben
        - o Pin3: RX+
        - o Pin6: RX-
    - 1000 Mbps
      - Todos los pines reciben y transmiten

# **TABLA**

| Velocidad | Nombre<br>Común         | Nombre<br>informal del<br>Estándar IEEE | Nombre formal<br>del Estándar<br>IEEE | Tipo de cable | Distancia<br>Máxima |
|-----------|-------------------------|-----------------------------------------|---------------------------------------|---------------|---------------------|
| 10 Mbps   | Ethernet                | 10BASE-T                                | 802.3                                 | Cobre         | 100 Metros          |
| 100 Mbps  | Fast Ethernet           | 100BASE-TX                              | 802.3u                                | Cobre         | 100 Metros          |
| 1000 Mbps | Gigabit<br>Ethernet     | 1000BASE-SX                             | 802.3z                                | Fibra         | 550 Metros<br>(MMF) |
| 1000 Mbps | Gigabit<br>Ethernet     | 1000BASE-T                              | 802.3ab                               | Cobre         | 100 Metros          |
| 1 Gbps    | Gigabit<br>Ethernet     | 1000BASE-T                              | 802.3ab                               | Cobre         | 100 Metros          |
| 10 Gbps   | 10 Gigabit<br>Ethernet  | 10GBASE-SR                              | 802.3ae                               | Fibra         | 300 Metros<br>(MMF) |
| 40 Gbps   | 40 Gigabit<br>Ethernet  | 40GBASE-SR4                             | 802.3ba                               | Fibra         | 100 Metros<br>(MMF) |
| 100 Gbps  | 100 Gigabit<br>Ethernet | 100GBASE-<br>SR10                       | 802.3bm                               | Fibra         | 100 Metros<br>(MMF) |

# **CONCEPTOS 2**

HOJA TRABAJO 3 5

### • Estructura general de paquete IPV4

- Trama Ethernet
  - **Preámbulo:** 56 bits (7 bytes) secuencia para sincronización.
  - SFD (Start Frame Delimiter): 8 bits (1 byte) indica inicio de la trama.
  - MAC destino: 48 bits (6 bytes).
  - MAC origen: 48 bits (6 bytes).
  - Tipo/Longitud: 16 bits (2 bytes). Para IPv4, el valor típico es 0x0800.
  - Datos (Payload): 46–1500 bytes (variable, contiene el datagrama IPv4).
  - FCS (Frame Check Sequence): 32 bits (4 bytes) control de errores.
- Datagrama IPV4
  - Versión: 4 bits (siempre 4 para IPv4).
  - IHL (Internet Header Length): 4 bits (tamaño del encabezado).
  - Tipo de servicio: 8 bits.
  - Longitud total: 16 bits.
  - Identificación: 16 bits.
  - Flags y fragment offset: 3 bits + 13 bits.
  - TTL (Time to Live): 8 bits.
  - Protocolo: 8 bits (TCP=6, UDP=17, ICMP=1).
  - Checksum: 16 bits.
  - IP origen: 32 bits.
  - IP destino: 32 bits.
  - Opciones: Variable (si existe).
  - Datos: Variable (contenido útil).

HOJA TRABAJO 3 6



# Half Duplex

- Semi-duplex
- La comunicación se da en ambos sentidos pero no al mismo tiempo
- Se usa el enfoque Walkie-Talkie

# Full Duplex

- o La comunicación ocurre en ambos sentidos al mismo tiempo
- o Dos dispositivos envían y reciben datos al mismo tiempo
- Utilizado
  - Comunicación
  - Redes de Ethernet Modernas

# **IDENTIFICACIÓN DE CAPAS DEL MODELO OSI**

### PDU

Nombre único de unidad de datos de protocolo

| Сара                 | N° | Nombre del PDU   |
|----------------------|----|------------------|
| Capa física          | 1  | Bit              |
| Capa de enlace       | 2  | Trama (Frame)    |
| Capa de red          | 3  | Paquete (Packet) |
| Capa de transporte   | 4  | Segmento         |
| Capa de sesión       | 5  | Dato             |
| Capa de presentación | 6  | Dato             |
| Capa de aplicación   | 7  | Dato             |

# • EJEMPLOS

- o HTTP
  - HyperText Transfer Protocol
  - Se utiliza para transferencia de paginas web y recursos de la World Wide Web
  - Capa de aplicación

#### • FTP

- File Transfer Protocol
- Permite la transferencia de archivo entre sistemas en una red
- Capa de aplicación

### o TCP

- Transmissio Control Protocol
- Responsable de que los datos lleguen completos y en orden
- Proporciona una comunicación confiable
- Capa de trasnporte

#### o IP

- Internet Protocol
- Se encarga de direccional y enlutar los paquetes de datos entre dispositivos en diferentes redes
- Capa de red
- Ethernet
  - o Permite la comunicación entre una Red LAN
  - O Capa de enlace de datos