Analiza Matematyczna 2

Adrian Madajewski

Semestr II

8 Całka Riemanna

8.1 Definicja i podstawowe własności całki

Definicja 68. Niech [a,b] będzie danym przedziałem. Przez podział P przedziału [a,b] będziemy nazywali skończony zbiór punktów x_0, x_1, \ldots, x_n , gdzie

$$a = x_0 < x_1 < \dots < x_n = b$$

Będziemy pisać $\Delta x_i = x_i - x_{i-1}$ $(i=1,\ldots,n)$. Długość największego z odcinków $[x_{i-1},x_i]$ nazywać będziemy średnicą podziału P i oznaczamy ją symbolem $\delta(P)$. $\delta(P) = \max_{1 \leq i \leq n} \Delta x_i$. Niech f będzie ograniczoną funkcją rzeczywistą określoną na [a,b]. W każdym z przedziałów $[x_{i-1},x_i]$ wybierzmy dowolny punkt ξ_i $(i=1,\ldots n)$ i utwórzmy sumę $R = \sum_{i=1}^n f(\xi_i) \Delta x_i$. Sumę te nazywamy sumą Riemanna odpowiadającą podziałowi P, przy ustalonym wyborze punktów ξ_i . Przez $\Re(f,P)$ oznaczać będziemy zbiór wszystkich możliwych sum Riemanna odpowiadających podziałowi P. Utwórzmy teraz ciąg (P_k) podziałów przedziału [a,b]:

$$a = x_0^{(k)} < x_1^{(k)} < \dots < x_{n(k)}^{(k)} = b;$$

$$\Delta_i^{(k)} = x_i^{(k)} - x_{i-1}^{(k)};$$

$$\delta(P_k) = \max_{1 \le i \le n(k)} \Delta x_i^{(k)}, k = 1, 2, \dots$$

Ciąg (P_k) nazywamy ciągiem normalnym podziałów, jeśli $\delta(P_k) \to 0$ przy $k \to \infty$. Oznaczmy przez $\Re(f, P_k)$ zbiór wszystkich sum Riemanna odpowiadających podziałowi P_k .

Definicja 69. Jeśli dla dowolnego ciągu normalnego podziałów (P_k) i dla dowolnych sum Riemanna $R_k \in \mathfrak{R}(f, P_k)$ istnieje skończona granica $I = \lim_{k \to \infty} R_k$,

to tę granicę nazywamy całką Riemanna funkcji f na przedziale [a,b] i oznaczamy ją symbolem

 $\int_a^b f dx \text{ lub } \int_a^b f(x) dx$

O funkcji f mówimy wówczas, że jest całkowalna w sensie Riemanna na przedziale [a,b], lub że jest ona R-całkowalna na tym przedziale.

Powyższą definicję mozna sformułować w następujący równoważny sposób.

Definicja 70. Mówimy, że funkcja f jest całkowalna w sensie Riemanna na przedziałe [a, b], jeśli istnieje liczba $I \in \mathbb{R}$ taka, że

$$\forall_{\epsilon>0} \exists_{\delta>0} \forall_P \forall_{R \in \mathfrak{R}(f,P)} \delta(P) < \delta \implies |R - I| < \epsilon$$

Piszemy wówczas $I = \int_a^b f(x)dx = \lim_{\delta(P) \to 0} R$.

Równoważność definicji 69 i 70 można pokazać analogicznie jak w dowodzie twierdzenia 35.

Przykład 25. (a) Funkcja stała $f(x) = c, c \in \mathbb{R}, x \in [a, b]$ jest całkowalna w sensie Riemanna na tym przedziałe. Niech P będzie dowolnym podziałem przedziału [a, b]:

$$a = x_0 < x_1 < \dots < x_n = b$$

Dowolna suma Riemanna odpowiadającą podziałowi P ma postać:

$$R = \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) = \sum_{i=1}^{n} c(x_i - x_{i-1}) = c(b - a),$$

$$(\xi_i \in [x_{i-1}, x_i], i = 1, \dots, n)$$

Stąd wynika, że $\int_a^b f(x)dx = c(b-a)$.

(b) Roważmy ponownie funkcję Dirichleta z Przykładu 18 (a), zawężoną do przedziału [a,b]. Dla każdego podziału P przedziału [a,b] można utworzyć sumę Riemanna równą zeru, jeśli wszystkie punkty ξ_i będą liczbami niewymiernymi, lub równą (b-a), jeśli wszystkie punkty ξ_i będą liczbami wymiernymi. Jest więc jasne, że dla każdego ciągu normalnego podziałów (P_k) granica $\lim_{k\to\infty} R_k$, gdzie $R_k \in \Re(f, P_k)$, $k \in \mathbb{N}$, nie istnieje.

Definicja 71. Niech f będzie ograniczoną funkcją rzeczywistą określona na [a,b]. Każdemu podziałowi P przedziału [a,b] odpowiadają liczby:

$$M_i = \sup_{x_{i-1} \le x \le x_i} f(x)$$
 $m_i = \inf_{x_{i-1} \le x \le x_i} f(x)$

$$U(f,P) = \sum_{i=1}^{n} M_i \Delta x_i \quad L(f,P) = \sum_{i=1}^{n} m_i \Delta x_i$$

Liczby U(f, P) i L(f, P) nazywamy odpowiednio sumą górną i dolną lub sumami Darboux funkcji f przy podziałe P przedziału [a, b]. Dalej,

(36)
$$\overline{\int_{a}^{b} f(x)dx} = \inf_{P} U(f, P),$$

(37)
$$\int_{a}^{b} f(x)dx = \sup_{P} L(f, P),$$

gdzie kres górny i dolny są brane ze względu na wszystkie podziały P przedziału [a,b]. Lewe strony równości (36) i (37) nazywają się odpowiednio górną i dolną całką Darboux funkcji f na przedziale [a,b].

Ponieważ funkcja fjest ograniczona, więc istnieją liczby rzeczywistę miMtakie, że

$$m \le f(x) \le M$$
 dla $x \in [a, b]$

Oznacza to, że przy dowolnym podziale P przedziału [a, b] mamy

$$m(b-a) \le L(f,P) \le U(f,P) \le M(b-a)$$

a zatem zbiory $\{L(f,P):P\}$ i $\{U(f,P):P\}$ są ograniczone. Wynika stąd, że całki górna i dolna są określone przy dowolnej funkcji ograniczonej f.

Definicja 72. Mówimy, że podział P^* przedziału [a,b] jest rozdrobnieniem (lub zagęszczeniem) podziału P tego przedziału, jeśli $P \subset P^*$, to znaczy, jeśli każdy punkt przedziału P jest także punktem przedziału P^* . Jeśli dane są dwa podziały P_1,P_2 , to podział $P^*=P_1\cup P_2$ nazywać będziemy ich wspólnym rozdrobnieniem (lub wspólnym zagęszczeniem).

Twierdzenie 74. Jeśli P^* jest rozdrobnieniem podziału P, to

$$L(f, P) \le L(f, P^*)$$
 $U(f, P) \le U(f, P^*)$

Dowód. Załóżmy wpierw, że P^* zawiera tylko o jeden punkt więcej niż P. Niech tym dodatkowym punktem będzie x^* i niech $x_{i-1} < x^* < x_i$, gdzie x_{i-1}, x_i są dwoma kolejnymi punktami przedziału P. Przyjmijmy

$$\omega_1 = \inf_{x_{i-1} \le x \le x^*} f(x), \quad \omega_2 = \inf_{x^* \le x \le x_i} f(x)$$

Wtedy $\omega_1 \ge m_i$ i $\omega_2 \ge m_i$, gdzie $m_i = \inf_{x_{i-1} \le x \le x_i} f(x)$. Mamy więc

$$L(f, P^*) - L(f, P) = \omega_1(x^* - x_{i-1}) + \omega_2(x_i - x^*) - m_i(x_i - x_{i-1})$$

= $(\omega_1 - m_i)(x^* - x_{i-1}) + (\omega_2 - m_i)(x_i - x^*) > 0$

Jeśli P^* zawiera o k punktów więcej niż P, to powtarzając powyższe rozumowanie k razy otrzymamy pierwszą nierówność tezy. Dowód drugiej przebiega analogicznie.

Twierdzenie 75. Jeśli f jest funkcją ograniczoną na przedziale [a,b], to

$$\int_{a}^{b} f(x)dx \le \overline{\int_{a}^{b} f(x)dx}$$

Dowód. Niech P^* będzie wspólnym rozdrobnieniem podziałów P_1 i P_2 przedziału [a,b]. Z Twierdzenia 75 wynika, że

$$L(f, P_1) \le L(f, P^*) \le U(f, P^*) \le U(f, P_2)$$

Stąd $L(f, P_1) \leq U(f, P_2)$. Traktując P_2 jako ustalone i obliczając kres górny ze względu na wszystkie podziały P_1 , wobec poprzedniej nierówności otrzymujemy

$$\int_{a}^{b} f(x)dx \le U(f, P_2)$$

Przechodząc do kresu dolnego ze względu na wszystkie podziały P_2 otrzymujemy tezę dowodzonego twierdzenia.

Udowodnimy teraz dwa kryteria całkowalności funkcji w sensie Riemanna. W oparciu o drugie z tych kryteriów podamy równoważną definicję całki w sensie Riemanna.

Twierdzenie 76. Na to, aby ograniczona funkcja f była całkowalna w sensie Riemanna na przedziale [a,b] potrzeba i wystarcza, aby dla dowolnego $\epsilon > 0$ istniał taki podział P przedziału [a,b], że

$$(38) U(f,P) - L(f,P) \le \epsilon$$

Dowód. Załóżmy wpierw, że funkcja f jest całkowalna w sensie Riemanna na przedziałe [a,b]. Wówczas dla każdego danego $\epsilon>0$ istnieje taki podział P przedziału [a,b], że nierówność

$$|R - \int_a^b f(x)dx| < \frac{\epsilon}{2}$$
, czyli
$$\int_a^b f(x)dx - \frac{\epsilon}{2} < R < \int_a^b f(x)dx + \frac{\epsilon}{2}$$

jest spełniona przy dowolnym wyborze punktów ξ_i w każdym z przedziałów podziału. Ponieważ sumy Darboux są — przy danym podziałe przedziału — odpowiednio kresem górnym i dolnym sum całkowych, zatem spełniają one nierówności

$$\int_{a}^{b} f(x)dx - \frac{\epsilon}{2} \le L(f, P) \le U(f, P) \le \int_{a}^{b} f(x)dx + \frac{\epsilon}{2}$$

a więc $U(f,P)-L(f,P)<\epsilon.$ Załóżmy teraz, że (38) zachodzi. Dla dowolnego podziału Pmamy

$$L(f,P) \le \int_a^b f(x)dx \le \overline{\int_a^b f(x)dx} \le U(f,P)$$

Jeśli $U(f, P) - L(f, P) < \epsilon$, to wówczas

$$0 \le \overline{\int_a^b f(x)dx} - \int_a^b f(x)dx < \epsilon$$

Z dowolności $\epsilon>0$ wynika, że $\underline{\int_a^b f(x)dx}=\overline{\int_a^b f(x)dx}$. Oznaczając ponadto $\underline{\int_a^b f(x)dx}=\overline{\int_a^b f(x)dx}=I$ mamy $L(f,P)\leq I\leq U(f,P)$. Ustalmy $\epsilon>0$ i niech P bedzie danym podziałem przedziału [a,b], dla którego (38) zachodzi. Jeśli przez R oznaczymy jedną z wartości sum Riemanna odpowiadającej podziałowi P, to

$$L(f, P) \le R \le U(f, P)$$

Ponieważ liczby R oraz I znajdują się w przedziale [L(f, P), U(f, P)], zatem

$$|R - I| \le \epsilon$$

Wobec Twierdzenia 74 oraz Definicji 70 wnioskujemy, że $I = \int_a^b f(x) dx$

Jako wniosek z powyższego twierdzenia otrzymujemy następujące

Twierdzenie 77. Na to by ograniczona funkcja f byla całkowalna w sensie Riemanna na przedziale [a, b] potrzeba i wystarcza, by

(39)
$$\int_{a}^{b} f dx = \overline{\int_{a}^{b} f dx}$$

Dowód. W dowodzie Twierdzenia 76 pokazaliśmy, że (38) implikuje (39). Załóżmy teraz, że (39) zachodzi. Dla danej liczby $\epsilon>0$ istnieją podziały P_1 i P_2 przedziału [a,b] takie, że

$$\int_{a}^{b} f dx - \frac{\epsilon}{2} < L(f, P_1), \quad U(f, P_2) < \overline{\int_{a}^{b} f dx} + \frac{\epsilon}{2}$$

Jeśli podział P jest wspólnym rozdrobniemiem podziałów P_1 i P_2 , to na mocy Twierdzenia 74 otrzymujemy

$$U(f,P) \le U(f,P_2) < \overline{\int_a^b f dx} + \frac{\epsilon}{2} = \int_a^b f dx + \frac{\epsilon}{2} < L(f,P_1) + \epsilon \le L(f,P) + \epsilon$$

Stąd $U(f,P)-L(f,P)\leq \epsilon$, a zatem warunek (38) jest spełniony. Wobec Twierdzenia 76 dowód jest zakończony.

Definicja 73. Mówimy, że ograniczona funkcja f jest całkowalna w sensie Riemanna, jeśli

$$\overline{\int_{a}^{b} f dx} = \int_{a}^{b} f dx$$

Wspólną wartość określoną powyższą równością nazywamy całką Riemanna funkcji f na przedziale [a,b].

Zbadamy teraz całkowalność w sensie Riemanna pewnych klas funkcji.

Twierdzenie 78. Funkcja ciągła na przedziale [a,b] jest na tym przedziale całkowalna w sensie Riemanna.

Dowód. Funkcja f jest jednostajnie ciągła na [a,b] (por. Tw. 51), a zatem dla dowolnego $\epsilon > 0$ istnieje $\delta > 0$ taka, że $|f(x) - f(t)| < \frac{\epsilon}{b-a}$ dla wszystkich $x,t \in [a,b]$, dla których $|x-t| < \delta$. Niech P będzie podziałem przedziału [a,b], dla którego $\delta(P) < \delta$. Wtedy mamy $M_i - m_i \leq \frac{\epsilon}{b-a}$ dla $i = 1, \ldots, n$ i wobec tego

$$U(f,P) - L(f,P) = \sum_{i=1}^{n} (M_i - m_i) \Delta x_i \le \frac{\epsilon}{b-a} \sum_{i=1}^{n} \Delta x_i = \epsilon$$

Na mocy Twierdzenia 76 funkcja f jest całkowalna w sensie Riemanna na [a, b].

Udowodnimy teraz następujące uogólnienie powyższego twierdzenia.

Twierdzenie 79. Jeśli f jest funkcją ograniczoną i mającą tylko skończoną liczbę punktów nieciągłości na przedziale [a,b], to jest ona całkowalna w sensie Riemanna na tym przedziale.

Dowód. Ponieważ funkcja f jest ograniczona, więc istnieją liczby rzeczywiste m, M takie, że $m \leq f(x) \leq M$ dla wszystkich $x \in [a, b]$. Załóżmy, że f ma kpunktów nieciągłości na przedziale [a,b]. Weźmy dowolne $\epsilon > 0$ i $\delta_1 < \frac{\epsilon}{8(M-m)k}$ (oczywiście $M \neq m$). Rozważmy przedziały otwarte $(x_l - \delta_1, x_l + \delta_1), l = 1, \ldots, k$ gdzie x_l są punktami nieciągłości funkcji f. Dopełnienie sumy tych przedziałów do przedziału [a, b] składa się ze skończonej liczby przedziałów domknietych, na których funkcja f jest ciągła, a więc i jednostajnie ciągła. Ponieważ tych przedziałów jest skończenie wiele, więc dla danego $\epsilon > 0$ istnieje liczba $\delta_2 > 0$ taka, że dla dowolnych punktów x,t należacych do jednego z tych przedziałów, na których funkcja f jest ciągła i spełniająca nierówność $|x-t|<\delta_2$ mamy $|f(x)-f(t)|<\frac{\epsilon}{2(b-a)}$. Weźmy teraz liczbe $\delta=\min{(\delta_1,\delta_2)}$. Niech $P = \{x_0, \dots, x_n\}$ będzię dowolnym podziałem przedziału [a, b], dla którego $\delta(P) < \delta$. Ponadto rozbijmy zbiór indeksów $\{1, \ldots, n\}$ na dwa rozłączne zbiory A i B w następujący sposób: do zbioru A zaliczymy te liczby i, dla których przedział $[x_{i-1}, x_i]$ nie ma punktów wspólnych z żadnym z skontruowanych powyżej otoczeń punktów x_l , $l=1,\ldots,k$, a do zbioru B pozostałe przedziały powstające z podziału P przedziału [a,b]. Wówczas

$$U(f,P) - L(f,P) = \sum_{i=1}^{n} (M_i - m_i) \Delta x_i = \sum_{i \in A} (M_i - m_i) \Delta x_i + \sum_{i \in B} (M_i - m_i) \Delta x_i$$

Ponadto

$$\sum_{i \in A} (M_i - m_i) \Delta x_i \le \frac{\epsilon}{2(b-a)} \sum_{i \in A} \Delta x_i \le \frac{\epsilon}{2(b-a)} (b-a) = \frac{\epsilon}{2}$$

Suma długości podprzedziałów przedziału [a,b] indeksowanych przez liczby ze zbioru Bjest nie większa niż

$$(\delta + 2\delta_i + \delta)k < 4\frac{\epsilon}{8(M-m)k}k = \frac{\epsilon}{2(M-m)}$$

Dlatego

$$\sum_{i \in B} (M_i - m_i) \Delta x_i \le (M - m) \sum_{i \in B} \Delta x_i < (M - m) \frac{\epsilon}{2(M - m)} = \frac{\epsilon}{2}$$

Dla podziału P o średnicy mniejszej niż δ otrzymujemy zatem

$$U(f,P) - L(f,P) = \sum_{i=1}^{n} (M_i - m_i) \Delta x_i < \epsilon$$

co kończy dowód.

Uwaga 38. Twierdzenie 78 można istotnie uogólnić. Mianowicie dowodzi się, że jeśli f jest ograniczoną funkcją na przedziale [a,b], to jest ona całkowalna w sensie Riemanna na tym przedziale wtedy i tylko wtedy, gdy jest ona ciągła prawie wszędzie ma [a,b], to znaczy zbiór punktów nieciągłości funkcji f ma miarę Lebesgue'a równą zeru. (por. [7], s. 270). Przykładów takich funkcji dostarcza następujące

Twierdzenie 80. Funkcja monotoniczna na przedziale [a, b] jest na tym przedziale całkowalna w sensie Riemanna.

Dowód. Załóżmy, że f jest funkcją niemalejącą. Niech będzie dane dowolne $\epsilon > 0$. Weźmy podział P przedziału [a,b] na n równych części o długości $\frac{b-a}{n}$. Ponieważ f jest niemalejącą zatem $M_i = f(x_i)$ oraz $m_i = f(x_{i-1})$ dla $i = 1, \ldots, n$. Mamy więc

$$U(f,P) - L(f,P) = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \frac{b-a}{n} = (f(b) - f(a)) \frac{b-a}{n}$$

Biorąc n tak duże, aby $(f(b)-f(a))\frac{b-a}{n}<\epsilon$ i stosując twierdzenie 76 otrzymujemy tezę. W przypadku funkcji nierosnącej dowód jest analogiczny.

Twierdzenie 81. Jeśli f jest całkowalna w sensie Riemanna na przedziale [a,b], $m \leq f(x) \leq M$ dla $x \in [a,b]$ oraz ϕ jest funkcją ciągłą na [m,M], to funkcja złożona $h = \phi \circ f$ jest R-całkowalna na [a,b].

Dowód. Ustalmy $\epsilon > 0$. Ponieważ funkcja ϕ jest jednostajnie ciągła na [M,m], więc istnieje $\delta > 0$ taka, że $\delta < \epsilon$ i $|\phi(s) - \phi(t)| < \epsilon$, jeśli $|s - t| < \delta$. Ponieważ f jest R-całkowalna na [a,b], więc istnieje podział $P = \{x_0,\ldots,x_n\}$ przedziału [a,b] taki, że $U(f,P) - L(f,P) < \delta^2$. Niech

$$M_i = \sup_{x_{i-1} \le x \le x_i} f(x), \quad m_i = \inf_{x_{i-1} \le x \le x_i} f(x),$$

$$M_i^* = \sup_{x_{i-1} \le x \le x_i} h(x), \quad m_i^* = \inf_{x_{i-1} \le x \le x_i} h(x)$$

dla $i=1,\ldots,n$. Podzielmy zbiór $\{1,\ldots,n\}$ na dwa rozłącznę zbiory A i B w taki sposób, że $i\in A$, jeśli $M_i-m_i<\delta$ oraz $i\in B$ w przypadku przeciwnym. Wówczas wobec powyższego wyboru δ mamy $M_i^*-m_i^*<\epsilon$ dla $i\in A$. Natomiast dla $i\in B$ mamy $M_i^*-m_i^*\leq 2K$, gdzie $K=\sup\{|\phi(t)|:m\leq t\leq M\}$. Stąd otrzymujemy

$$\delta \sum_{i \in B} (x_i - x_{i-1}) \le \sum_{i \in B} (M_i - m_i)(x_i - x_{i-1}) < \delta^2, \quad \text{zatem } \sum_{i \in B} (x_i - x_{i-1}) < \delta$$

Mamy wiec

$$U(h, P) - L(h, P) = \sum_{i \in A} (M_i^* - m_i^*)(x_i - x_{i-1}) + \sum_{i \in B} (M_i^* - m_i^*)(x_i - x_{i-1})$$

a zatem

$$U(h, P) - L(h, P) < \epsilon(a + b + 2K)$$

Ponieważ ϵ było dowolne, zatem na mocy twierdzenia 76 funkcja hjest R-całkowalna.

Następujące twierdzenie opisuję związek całki Riemanna z operacjami arytmetycznymi.

Twierdzenie 82. Jeśli funkcje f i g są R-całkowalne na przedziale [a,b], to również R-całkowalne są funkcje f+g, λf (λ jest dowolną stałą rzeczywistą) i fg oraz prawdziwe są równości:

(41)
$$\int_{a}^{b} (\lambda f)(x)dx = \lambda \int_{a}^{b} f(x)dx$$

Dowód. Jest jasne, że dla dowolnego $R \in \mathfrak{R}(f+g,P)$ mamy $R = R_f + R_g$, gdzie $R_f \in \mathfrak{R}(f,P), R_g \in \mathfrak{R}(g,P)$. Niech $I_1 = \int_a^b f(x) dx, I_2 = \int_a^b f(x) dx$ oraz $I = I_1 + I_2$. Mamy

$$\forall_{\epsilon>0} \exists_{\delta>0} \forall_P \forall_{R_f \in \mathfrak{R}(f,P)} \delta(P) < \delta \implies |R_f - I_1| < \frac{\epsilon}{2} \quad \text{oraz}$$

$$\forall_{\epsilon>0}\exists_{\delta>0}\forall_P\forall_{R_g\in\Re(g,P)}\delta(P)<\delta\implies |R_g-I_2|<\frac{\epsilon}{2}\quad \mathrm{Stad}$$

$$\forall_{\epsilon>0} \exists_{\delta>0} \forall_P \forall_{R \in \mathfrak{R}(f+g,P)} \delta(P) < \delta \implies |R-I| \le |R_f - I_1| + |R_g - I_2| < \epsilon$$

Wobec powyższego jest jasne, że funkcja f + g jest R-całkowalna na przedziale [a,b] oraz, że spełniony jest wzór 40. Dowód wzoru 41 jest analogiczny.

Dalej przyjmując $\phi(t)=t^2$ oraz stosując do ϕ poprzednie twierdzenie (81) otrzymujemy R-całkowalność funkcji f^2 .

R-całkowalność iloczynu funkcji fgwynika z tożsamości

$$fg = \frac{1}{4}[(f+g)^2 - (f-g)^2].$$