103rd American Meteorological Society Annual Meeting (23rd Conference on Air-Sea Interaction, Jan 2023

Interaction of swell with localized current

Han Wang, Bia Villas Bôas, Jacques Vanneste and Bill Young

Interaction of swell with localized current

Han Wang, Bia Villas Bôas, Jacques Vanneste and Bill Young

Motivation

Bôas, A. B. V., Cornuelle, B. D., Mazloff, M. R., Gille, S. T., & Ardhuin, F. (2020).

- •Swell-like waves interact with currents
- How to explain significant wave height patterns?

Setup and assumptions

Wave action conservation

$$\partial_{\mathbf{t}} \mathcal{A} + \nabla_{\mathbf{k}} \omega \cdot \nabla_{\mathbf{x}} \mathcal{A} - \nabla_{\mathbf{x}} \omega \cdot \nabla_{\mathbf{k}} \mathcal{A} = 0$$

wave action spectrum:

$$A = A(x, k)$$
, where $x = (x, y)$, $k = (k, \theta)$

frequency:

$$\omega(\boldsymbol{x}, \boldsymbol{k}) = \sigma(k) + \boldsymbol{k} \cdot \boldsymbol{U}(\boldsymbol{x}),$$

Swell-like incoming wave:

$$\mathcal{A}(x, y, k, \theta) = \mathcal{A}_{\star}(K, \Theta)$$
 as $x \to -\infty$

localized around $k = k_{\star}$ and $\theta = 0$

$$K = \frac{k - k_{\star}}{\delta}$$
 and $\Theta = \frac{\theta}{\delta}$, where $\delta \ll 1$

K and Θ are both O(1).

Weak current

$$\varepsilon \stackrel{\text{def}}{=} U/c_{\star} \ll 1,$$

where c_{\star} is intrinsic group velocity at $(k_{\star},0)$

Localized current

$$U << 1 \text{ at } |x| >> 1$$

$$\partial_{t} A + \nabla_{k} \omega \cdot \nabla_{x} A - \nabla_{x} \omega \cdot \nabla_{k} A = 0$$

Distinguished limit

$$\gamma = \varepsilon/\delta = O(1)$$

Advection

$$\nabla_{\mathbf{k}}\omega\cdot\nabla_{\mathbf{x}}\mathcal{A}\approx c_{\star}\partial_{x}\mathcal{A}+\delta c_{\star}\Theta\partial_{y}\mathcal{A}$$

Other terms ignored due to weak current

Refraction

$$\nabla_{\mathbf{x}}\omega\cdot\nabla_{\mathbf{k}}\mathcal{A}\approx\gamma k_{\star}\partial_{x}U\partial_{K}\mathcal{A}+\gamma\partial_{y}U\partial_{\Theta}\mathcal{A}$$

Simplified from $K = \frac{k - k_{\star}}{\delta}$ and $\Theta = \frac{\theta}{\delta}$.

$$\partial_{t} \mathcal{A} + \nabla_{k} \omega \cdot \nabla_{x} \mathcal{A} - \nabla_{x} \omega \cdot \nabla_{k} \mathcal{A} = 0$$

Distinguished limit

$$\delta, \varepsilon \to 0$$
 with $\gamma = \varepsilon/\delta = O(1)$

Advection

$$\nabla_{\mathbf{k}}\omega\cdot\nabla_{\mathbf{x}}\mathcal{A}\approx c_{\star}\partial_{x}\mathcal{A}+\delta c_{\star}\partial\partial_{y}\mathcal{A}$$

Other terms ignored due to weak current

Refraction

$$\nabla_{\mathbf{x}}\omega\cdot\nabla_{\mathbf{k}}\mathcal{A}\approx\gamma k_{\star}\partial_{x}U\partial_{K}\mathcal{A}+\gamma\partial_{y}U\partial_{\Theta}\mathcal{A}$$

$$\nabla_{\boldsymbol{x}}\omega\cdot\nabla_{\boldsymbol{k}}\mathcal{A}\approx\gamma k_{\star}\partial_{x}U\partial_{K}\mathcal{A}+\gamma\partial_{y}U\partial_{\Theta}\mathcal{A}$$
 Simplified from $K=\frac{k-k_{\star}}{\delta}$ and $\Theta=\frac{\theta}{\delta}$.

•For x = O(1)

$$\partial_{t} \mathcal{A} + \nabla_{k} \omega \cdot \nabla_{x} \mathcal{A} - \nabla_{x} \omega \cdot \nabla_{k} \mathcal{A} = 0$$

Distinguished limit

$$\delta, \varepsilon \to 0$$
 with $\gamma = \varepsilon/\delta = O(1)$

Advection

$$\nabla_{\mathbf{k}}\omega\cdot\nabla_{\mathbf{x}}\mathcal{A}\approx c_{\star}\partial_{x}\mathcal{A}+\delta c_{\star}\Theta\partial_{y}\mathcal{A}$$

Other terms ignored due to weak current

Refraction

$$\nabla_{\boldsymbol{x}}\omega\cdot\nabla_{\boldsymbol{k}}\mathcal{A}\approx\gamma k_{\star}\partial_{\boldsymbol{x}}\mathcal{U}\partial_{K}\mathcal{A}+\gamma\partial_{\boldsymbol{y}}U\partial_{\Theta}\mathcal{A}\quad\text{Simplified from}\quad K=\frac{k-k_{\star}}{\delta}\quad\text{and}\quad\Theta=\frac{\theta}{\delta}.$$

•For $x = O(\delta^{-1})$

$$X = \delta x = O(1)$$

• Incident:

$$\mathcal{A}(x, y, k, \theta) = \mathcal{A}_{\star}(K, \Theta) \quad \text{as} \quad x \to -\infty$$
 (1)

•For x = O(1): Matching 1

$$\rightarrow \mathcal{A} = \mathcal{A}_{\star} \left(K + \frac{\gamma k_{\star}}{c_{\star}} U(x, y), \Theta + \frac{\gamma}{c_{\star}} V(x, y) - \frac{\gamma}{c_{\star}} \int_{-\infty}^{x} Z(x', y) \, \mathrm{d}x' \right),$$
 where $Z \stackrel{\text{def}}{=} V_x - U_y$

•For $X=\delta x=O(1)$: Matching ② at $x\to\infty$ as $X\to0$

$$\rightarrow$$
 $\mathcal{A} = \mathcal{A}_{\star} (K, \Theta - \gamma \Delta (y - X\Theta))$.

where $\Delta(y) \stackrel{\text{def}}{=} \frac{1}{c_+} \int_{-\infty}^{\infty} Z(x', y) \, \mathrm{d}x'$.

• Incident:

$$\mathcal{A}(x, y, k, \theta) = \mathcal{A}_{\star}(K, \Theta) \quad \text{as} \quad x \to -\infty$$

•For x = O(1) : Matching 1

$$\rightarrow \mathcal{A} = \mathcal{A}_{\star} \left(K + \frac{\gamma k_{\star}}{c_{\star}} U(x, y), \Theta + \frac{\gamma}{c_{\star}} V(x, y) - \frac{\gamma}{c_{\star}} \int_{-\infty}^{x} Z(x', y) \, \mathrm{d}x' \right),$$

where $Z \stackrel{\text{def}}{=} V_x - U_y$

•For
$$X=\delta x=O(1)$$
 : Matching 2 at $x\to\infty$ as $X\to0$

$$\rightarrow$$
 $\mathcal{A} = \mathcal{A}_{\star} (K, \Theta - \gamma \Delta (y - X\Theta)).$

where
$$\Delta(y) \stackrel{\text{def}}{=} \frac{1}{c_+} \int_{-\infty}^{\infty} Z(x', y) \, \mathrm{d}x'$$
.

Dysthe's formula

ray curvature =
$$\frac{\text{vorticity}}{\text{group velocity}}$$
.

$$\rightarrow \Delta(y) \stackrel{\text{def}}{=} \frac{1}{c_{+}} \int_{-\infty}^{\infty} Z(x', y) \, \mathrm{d}x'$$

is ray curvature accumulated over x = O(1)

Comparison with WAVEWATCH III

•Current: Gaussian vortex localized within $|m{x}|=r_v$

$$Z = \frac{\kappa}{2\pi r_v^2} e^{-(x^2 + y^2)/(2r_v^2)}$$
.

•Swell: LHCS [Longuet-Higgins, Cartwright & Smith (1963)] model

$$\mathcal{A}_{\star} = F(k) \times N(s) \cos^{2s}(\theta/2)$$

$$\mathcal{A}_{\star} \approx \delta^{-1} F(k) G(\Theta)$$
, where $\delta = 2/\sqrt{s}$

- •Typical values of s for ocean swells: $s=10-20\,$ [Ewans, Kevin C. (2001)]
- Compare significant wave height disturbance

$$h_s(\mathbf{x}) = 4 \left(g^{-1} \int \sigma(k) \mathcal{A}(\mathbf{x}, \mathbf{k}, t) \, d\mathbf{k} \right)^{1/2} - \bar{H}_s$$
, where \bar{H}_s is basic state

Caustics

Caustics: rays at different wavenumbers cross at the same location in real space

$$U_{\text{max}} = 80 \text{cm/s}, s = 40$$

$$V_{\text{max}} = 80 \text{cm/s}, s = 40$$

Caustics

Caustics: rays at different wavenumbers cross at the same location in real space

$$U_{\text{max}} = 80 \text{cm/s}, s = 40$$

$\int \mathcal{A}(x,y,k,\theta) \,\mathrm{d}k,$

Caustics

Main messages

- •Solution found (swell & localized, weak current)

 Can modify for currents other than Gaussian vortex (e.g. Gaussian dipole)
- •Caustics are not relevant (i.e. no singularity in $\,h_s$) under realistic parameters Key difference between e.g. [White and Fornberg (1997)]:
 - ${\cal A}$ has angular spread; localized, but not plane wave

Next step: turbulent flows

• Have progress in the regime

$$\epsilon\ll 1 \ {
m and} \ \epsilon\ll \delta$$
 (δ doesn't need to be small)

- Current doesn't need to be localized
- ullet Found deterministic and spectral relationship between current velocities and h_s

Thank you!

Contact: hwang310@ed.ac.uk, or

491 - Observations and Modeling of Current Effects on Waves during the S-Mode Pilot Campaign

Tuesday, January 10, 2023

Olorado Convention Center - Hall A (Exhibit Hall Level)