

Applications

- ORing, eFuse, and high current load switch
- Load switch for battery application
- Inverter switches for DC motor application

DirectFET® N-Channel Power MOSFET ②

Typical values (unless otherwise specified)								
R _{DS(on)}	R _{DS(on)}	R _{DS(on)}						

V _{DSS}	V _{GS}	$V_{gs(th)}$	R _{DS(on)}	R _{DS(on)}	R _{DS(on)}
20V max	±12V max	0.8V	0.50mΩ@10V	0.65mΩ@4.5V	1.1mΩ@2.5V

Features and Benefits

- Environmentally Friendly Product
- · RoHs compliant containing no Lead, no Bromide and no Halogen
- Very Low R_{DS(on)}

Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) ①

SQ	SX	ST		MQ	MD	MT	MP	MC		
----	----	----	--	----	----	----	----	----	--	--

Description

The IRL6283MTRPbF combines the latest HEXFET® N-Channel Power MOSFET Silicon technology with the advanced DirectFET® packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.6 mm profile. The Direct-FET[®] package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.

Base part number	Package Type	Standard Pack		Orderable Part Number
		Form	Quantity	
IRL6283MTRPbF	DirectFET Medium Can	Tape and Reel	4800	IRL6283MTRPbF

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{GS}	Gate-to-Source Voltage	±12	V
$I_D @ T_A = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 4.5V 3	38	
$I_D @ T_A = 70^{\circ}C$	Continuous Drain Current, V _{GS} @ 4.5V 3	30	Α
I_D @ T_C = 25°C	Continuous Drain Current, V _{GS} @ 4.5V ④	211	
I_{DM}	Pulsed Drain Current S	305	
E _{AS}	Single Pulse Avalanche Energy ©	406	mJ
I _{AR}	Avalanche Current ®	30	Α

Fig 1. Typical On-Resistance vs. Gate Voltage

Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage

Notes:

- Click on this section to link to the appropriate technical paper.
- Click on this section to link to the DirectFET Website.
- Surface mounted on 1 in. square Cu board, steady state.
- Tc measured with thermocouple mounted to top (Drain) of part.
- © Repetitive rating; pulse width limited by max. junction temperature.
- © Starting $T_J = 25$ °C, L = 0.88mH, $R_G = 50Ω$, $I_{AS} = 30$ A.

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		4.8		mV/°C	Reference to 25 $^{\circ}$ C, I_D = 1.0mA
			0.50	0.75		V _{GS} = 10V, I _D = 50A ⑦
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.65	0.87	mΩ	$V_{GS} = 4.5V, I_D = 50A$ ⑦
			1.1	1.5		$V_{GS} = 2.5V, I_{D} = 50A $
$V_{GS(th)}$	Gate Threshold Voltage	0.5	0.8	1.1	V	$V_{DS} = V_{GS}$, $I_D = 100\mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-3.9		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			1.0	μΑ	$V_{DS} = 16V, V_{GS} = 0V$
				150		$V_{DS} = 16V, V_{GS} = 0V, T_J = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 12V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -12V
gfs	Forward Transconductance	320			S	$V_{DS} = 10V, I_{D} = 30A$
Q_g	Total Gate Charge		105	158		
Q _{gs1}	Pre-VthGate-to-Source Charge		9.7			$V_{DS} = 10V$
Q_{gs2}	Post-Vth Gate-to-Source Charge		8.9		nC	$V_{GS} = 4.5V$
Q_{gd}	Gate-to-Drain Charge		35			I _D = 30A
Q_{odr}	Gate Charge Overdrive		51			
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		44			
Q_{oss}	Output Charge		50		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_G	Gate Resistance		1.1		Ω	
$t_{d(on)}$	Turn-On Delay Time		23			$V_{DD} = 20V, V_{GS} = 4.5V$ ⑦
t _r	Rise Time		160		ns	I _D = 30A
$t_{d(off)}$	Turn-Off Delay Time		116			$R_G = 1.8\Omega$
t _f	Fall Time		192			
C _{iss}	Input Capacitance		8292			$V_{GS} = 0V$
Coss	Output Capacitance		2012		pF	$V_{DS} = 10V$
C _{rss}	Reverse Transfer Capacitance		1526			f = 1.0MHz

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I_S	Continuous Source Current			211	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			305		integral reverse
	(Body Diode) ©					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 30A$, $V_{GS} = 0V$ ⑦
t _{rr}	Reverse Recovery Time		48	72	ns	$T_J = 25^{\circ}C$, $I_F = 30A$, $V_{DD} = 10V$
Q_{rr}	Reverse Recovery Charge		84	126	nC	di/dt = 200A/µs ⑦

Notes:

 $^{\ \ \,}$ Repetitive rating; pulse width limited by max. junction temperature. $\ \ \,$ Pulse width \le 400µs; duty cycle \le 2%.

Absolute Maximum Ratings

	Parameter	Max.	Units
P _D @T _A = 25°C	Power Dissipation ③	2.1	
P _D @T _A = 70°C	Power Dissipation ③	1.3	W
$P_D @ T_C = 25^{\circ}C$	Power Dissipation ④	63	
T _P	Peak Soldering Temperature	270	
T_J	Operating Junction and	-40 to + 150	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{ hetaJA}$	Junction-to-Ambient ③		60	
$R_{ heta JA}$	Junction-to-Ambient ®	12.5		
$R_{ heta JA}$	Junction-to-Ambient	20		°C/W
$R_{ heta JC}$	Junction-to-Case @ @		1.97	
$R_{\theta J\text{-PCB}}$	Junction-to-PCB Mounted	1.0		
	Linear Derating Factor 3	0.	0.02	

Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 3

- 3 Surface mounted on 1 in. square Cu board, steady state.
- Tc measured with thermocouple mounted to top (Drain) of part.
- Subset of the second of the
- Mounted on minimum footprint full size board with metalized back and with small clip heat sink.
- 0 R₀ is measured at TJ of approximately 90°C.

Fig 4. Typical Output Characteristics

Fig 6. Typical Transfer Characteristics

Fig 8. Typical Capacitance vs. Drain-to-Source Voltage

Fig 5. Typical Output Characteristics

Fig 7. Normalized On-Resistance vs. Temperature

Fig 9. Typical On-Resistance vs. Drain Current and Voltage

Fig 10. Typical Source-Drain Diode Forward Voltage

Fig 12. Maximum Drain Current vs. Case Temperature

Fig 11. Maximum Safe Operating Area

Fig 13. Typical Threshold Voltage vs. Junction Temperature

Fig 14. Maximum Avalanche Energy vs. Drain Current

Fig 15a. Gate Charge Test Circuit

Fig 15b. Gate Charge Waveform

Fig 16a. Unclamped Inductive Test Circuit

Fig 16b. Unclamped Inductive Waveforms

Fig 17a. Switching Time Test Circuit

Fig 17b. Switching Time Waveforms

Fig 18. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

DirectFET® Board Footprint, MD Outline (Medium Size Can, D-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

DirectFET® Outline Dimension, MD Outline (Medium Size Can, D-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

	DIMENSIONS									
	MET	ETRIC IMPERIAL								
CODE	MIN	MAX	MIN	MAX						
Α	6.25	6.35	0.246	0.250						
В	4.80	5.05	0.189	0.199						
С	3.85	3.95	0.152	0.156						
D	0.35	0.45	0.014	0.018						
E	0.58	0.62	0.023	0.024						
F	0.58	0.62	0.023	0.024						
G	0.93	0.97	0.037	0.038						
Н	1.28	1.32	0.050	0.052						
J	0.38	0.42	0.015	0.017						
J1	1.08	1.12	0.043	0.044						
K	0.88	0.92	0.035	0.036						
L	2.08	2.12	0.082	0.083						
М	0.535	0.595	0.021	0.023						
R	0.02	0.08	0.0008	0.0031						
Р	0.08	0.17	0.003	0.007						

Dimensions are shown in millimeters (inches)

DirectFET® Part Marking

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

DirectFET® Tape & Reel Dimension (Showing component orientation).

NOTE: CONTROLLING DIMENSIONS IN MM

DIMENSIONS									
	MET	TRIC	IMPE	RIAL					
CODE	MIN	MAX	MIN	MAX					
Α	7.90	8.10	0.311	0.319					
В	3.90	4.10	0.154	0.161					
С	11.90	12.30	0.469	0.484					
D	5.45	5.55	0.215	0.219					
E	5.10	5.30	0.201	0.209					
F	6.50	6.70	0.256	0.264					
G	1.50 N.C		0.059	N.C					
Н	1.50	1.60	0.059	0.063					

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRL6283MTRPBF). For 1000 parts on 7" reel, order IRL6283MTR1PBF

	REEL DIMENSIONS										
S	STANDARD OPTION (QTY 4800)					1 OPTION	(QTY 10	00)			
	ME	TRIC	IMP	ERIAL	ME	TRIC	IMP	ERIAL			
CODE	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX			
Α	330.0	N.C	12.992	N.C	177.77	N.C	6.9	N.C			
В	20.2	N.C	0.795	N.C	19.06	N.C	0.75	N.C			
С	12.8	13.2	0.504	0.520	13.5	12.8	0.53	0.50			
D	1.5	N.C	0.059	N.C	1.5	N.C	0.059	N.C			
E	100.0	N.C	3.937	N.C	58.72	N.C	2.31	N.C			
F	N.C	18.4	N.C	0.724	N.C	13.50	N.C	0.53			
G	12.4	14.4	0.488	0.567	11.9	12.01	0.47	N.C			
Н	11.9	15.4	0.469	0.606	11.9	12.01	0.47	N.C			

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

dammarian managar		
Moisture Sensitivity Level	DirectFET	MSL1
		(per JEDEC J-STD-020D ^{††)}
RoHS Compliant	Yes	

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability/
- †† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments	
2/4/2014	Converted the data sheet to StrongIRFET template.	
2/4/2014	Updated the schematic drawing, on page 1.	
9/24/2014	Updated notes on page 2 & page 3	

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/