Отчёт о выполненой лабораторной работе Измерение теплопроводности воздуха при постоянном давлении (2.2.3)

Каплин Артём Б01-402

1 марта 2025

1 Аннотация

Цель работы: измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

Оборудование: цилиндрическая колба с натянутой по оси платиновой нитью; термостат; вольтметр и амперметр; источник постоянного напряжения; магазин сопротивлений.

2 Теоретические сведения

Теплопроводность — это процесс передачи тепловой энергии от нагретых частей системы к холодным за счёт хаотического движения частиц среды . В газах теплопроводность осуществляется за счёт непосредственной передачи кинетической энергии от быстрых молекул к медленным при их столкновениях. Перенос тепла описывается законом Фурье, утверждающим, что плотность потока энергии \vec{q} (количество теплоты, переносимое через единичную площадку в единицу времени) пропорциональна градиенту температуры ∇T :

$$\vec{q} = -\kappa \cdot \nabla T$$
,

где $\kappa - \kappa$ оэффициент теплопроводности.

МКТ даёт следующую оценку для коэффициента теплопроводности газов:

$$\kappa \sim \lambda \vec{v} \cdot nc_V$$

где λ — длина свободного пробега молекул газа, $\vec{v} = \sqrt{\frac{8k_{\rm B}T}{\pi m}}$ — средняя скорость их теплового движения, n — концентрация (объёмная плотность) газа, $c_V = \frac{i}{2}k_{\rm B}$ — его теплоёмкость при постоянном объёме в расчёте на одну молекулу (i — число степеней свободы молекулы).

Рассмотрим стационарную теплопроводность в цилиндрической геометрии. Пусть тонкая нить радиусом r_1 и длиной L помещена на оси цилиндра радиусом r_0 . Температура стенок цилиндра T_0 поддерживается постоянной. Пусть в нити выделяется некоторая тепловая мощность Q [Вт]. Если цилиндр длинный ($L\gg r_0$), можно пренебречь теплоотводом через его торцы. Тогда все параметры газа можно считать зависящими только от расстояния до оси системы r, а поток тепла \vec{q} направлен строго радиально. Вместо первой формулы имеем скалярное уравнение

$$q = -\kappa \frac{dT}{dr}.$$

В стационарном состоянии полный поток тепла через любую цилиндрическую поверхность радиуса r площадью $S=2\pi rL$ должен быть одинаков и равен Q:

$$Q = -2\pi L \cdot \kappa \frac{dT}{dr} = \text{const.}$$

Если перепад температуры $\Delta T = T_1 - T_0$ между нитью и стенками цилиндра мал ($\Delta T \ll T_0$), то в (4) можно пренебречь изменением теплопроводности от температуры в пределах системы, положив $\kappa \approx \kappa(T_0)$. Тогда, разделяя переменные и интегрируя от радиуса нити до радиуса колбы, получим

 $Q = 2\pi L \frac{\kappa \Delta T}{\ln(r_0/r_1)}.$

2.1 Эксперименатльная установка

Схема установки приведена на рис. 1. На оси трубки с внутренним диаметром $2r_0 \sim 0.7$ см размещена платиновая нить диаметром $2r_1 \sim 0.05$ мм и длиной $L \sim 40$ см. Полость трубки заполнена воздухом (полость через небольшое отверстие сообщается с атмосферой). Стенки трубки помещены в кожух, через которых пропускается вода из термостата, так что их температура t_0 поддерживается постоянной. Для предотвращения конвекции трубка расположена вертикально. Платиновая нить служит как источником тепла, так и датчиком температуры (термометром сопротивления). По пропускаемому через нить постоянному току I и напряжению U на ней вычисляется мощность нагрева по закону Джоуля–Ленца: $Q=UI_{\underline{1}}$, и сопротивление нити по закону Ома: $R = \frac{\dot{U}}{I}$. Сопротивление нити является однозначной функцией её температуры R(t).

Рис. 1: Схема установки

В схеме рис. 2 для измерения напряжения и тока используется два мультиметра, работающие в режимах вольтметра и амперметра соответственно. Подключение к нити $R_{\rm H}$ осуществляется по четырёхпроводной схеме. По двум проводам (токовая пара I_+ и I_-) через сопротивление пропускается измерительный ток, а два других (потенциальная пара (U_+ и U_-) используются для параллельного подключения вольтметра. Заметим, что при такой схеме внутреннее сопротивление приборов и сопротивление подводящих проводов практически не влияет на измерения: сопротивление амперметра не влияет на результат вовсе, а сопротивление вольтметра составляет обычно 1-100 МОм, что при $R_{\rm H}\sim 10$ Ом вносит относительную ошибку не более 10^{-5} .

2.2 Методика измерений

Принципиально неустранимая систематическая ошибка измерения температуры с помощью термометра сопротивления возникает из-за необходимости пропускать через резистор (нить) измерительный ток. Чем этот ток выше, тем с большей точностью будет измерен как он сам, так и напряжение. Однако при этом квадратично возрастает выделяющаяся на резисторе мощность Q = UI. Следовательно, температура резистора становится выше, чем у объекта, температуру которого надо измерить. Измерения же при малых токах не дают достаточной точности. Эта проблема решается построением нагрузочной кривой - зависимости измеряемого сопротивления R от выделяющейся в нём мощности R(Q), с последующей экстраполяцией к нулевой мощности $Q \to 0$ для определения сопротивления $R_0 = R(0)$, при котором его температура равна температуре измеряемого объекта. Кроме того, в данной работе измерение нагрузочных кривых позволяет в ходе эксперимента получить температурную зависимость сопротивления нити, так как при $Q \to 0$ температура нити равна

Рис. 2: Электрическая схема измерения сопротивления нити и мощности нагрева

температуре термостата $(T \approx T_0)$. В исследуемом интервале (20-80 0C) зависимость сопротивления от температуры можно с хорошей точностью аппроксимировать линейной функцией:

$$R(t) = R_{273} \cdot (1 + \alpha t),$$

где $\alpha=rac{1}{R_{273}}rac{dR}{dT}$ - температурный коэффициент сопротивления материала.

3 Приборы и данные

- Магазин сопротивлений МЕГЕОН05350, погрешность 5% 2% 1% 0,5% для декад х0,1; х1; х10; х100 соответственно
- Мультиметры АКИП B7-78/3, погрешность в режиме амперметра (0.15 % ; 0.02 мA), в режиме вольтметра (0.004 % ; 0.007 мB)
- Источник питания
- Термостат жидкостный WCR-P12 (Daihan), погрешность 0,1 K
- Источник питания постоянного напряжения GW Instek GPS-2303 (0,5 %; 10 мВ)

4 Ход работы

4.1 Предварителные расчёты

Оценим максимальную мощность нагрева Q_{max} [мВт], которую следует подавать на нить. Для оценки коэффициент теплопроводности воздуха примите равным $k \sim 25 \, \frac{\text{м·Вт}}{(\text{м·K})}$. Проведём предварительные расчёты параметров опыта. Сопротивление нити $R_{\text{H}} = 20 \, \text{Ом}$.

Получаем такую оценку: $Q_{max}\approx 381,4$ мВт. Так же оцениваем максимальные ток и напряжение $I_{max}\approx 138,1$ мА; $U_{max}\approx 2,76$ В. В ходе работы не будем их превышать.

4.2 Подготовка экспериментальной устаноки

- 1. Проверяем, что измерительная цепь соответствует схеме.
- 2. На магазине сопротивлений устанавливаем максимальное сопротивление, чтобы ток в цепи при её замыкании был минимален.
- 3. По техническому описанию к установке включаем вольтметр и амперметр.
- 4. Включаем источник питания. Убеждаемся, что напряжение на нём не превышает максимальное (3 В).
- 5. Включаем термостат. Убеждаемся, что он находится при комнатной температуре (23 $^{\circ}C$).

4.3 Проводим измерения

При комнатной температуре термостата измеряем зависимость сопротивления нити $R=\frac{U}{I}$ от подаваемой на неё мощности Q=UI. Понижая сопротивление на магазине, будем ждать около 30с для установления теплового равновесия. По окончании первой серии повысим температуру термостата. Для установления теплового равновесия будем ждать 5-7 минут. Сделаем 3 таких серии опытов. Результаты измерений представлены в таблицах.

U, MB	I, мА	$R_{,\mathrm{Om}}$	Q, м B т
310	15,73	19,71	4,9
560	28,28	19,80	15,8
937	47,00	19,94	44,0
1285	63,76	20,15	81,9
2035	97,88	20,79	199,2
2376	112,28	21,16	266,8

Таблица 1: Т термостата $23^{\circ}C$

U, MB	I, мА	$R_{,\mathrm{Om}}$	Q, м B т
324	16,04	20,20	5,2
595	29,32	20,29	17,4
894	43,81	20,41	39,2
1195	58,09	20,57	69,4
1799	85,53	21,03	153,9
2392	110,69	21,61	264,8
2649	120,96	21,90	320,4
2960	132,86	22,28	393,3

Таблица 3: Т термостата $30^{\circ}C$

U, MB	<i>I</i> , мА	$R_{,\mathrm{Om}}$	Q, мВт
354	15,89	22,28	5,6
645	28,84	22,36	18,6
960	42,73	22,47	41,0
1271	56,21	22,61	71,4
1879	81,63	23,02	153,4
2458	104,49	23,52	256,8

Таблица 2: Т термостата $59^{\circ}C$

U, MB	<i>I</i> , мА	$R_{,\mathrm{Om}}$	Q, мВт
337	15,98	21,09	5,4
616	29,13	21,15	17,9
922	43,36	21,26	40,0
1228	57,29	21,43	70,4
1833	83,84	21,86	153,7
2421	108,02	22,41	261,5
2673	117,84	22,68	315,0
2977	129,26	23,03	384,8

Таблица 4: Т термостата $42^{\circ}C$

4.4 График зависимости сопротивления нити от мощности

Построим по МНК график зависимости R(Q) и определим по нему $\frac{dR}{dQ}$ и R_0 .

$t, {}^{o}C$	$dR/dQ, \frac{O_{\rm M}}{B_{\rm T}}$	R_0 , Om
23	$(5,48 \pm 0,04)$	$(19,6988 \pm 0,0046)$
30	$(5,33 \pm 0,02)$	$(20,1952 \pm 0,0050)$
42	$(5,13 \pm 0,05)$	$(21,0627 \pm 0,0038)$
59	$(4,90 \pm 0,04)$	$(22,2628 \pm 0,0031)$

Таблица 5: Результаты: dR/dQ и R_0

4.5 График зависимости сопротивления нити от температуры

Также по МНК построим график зависимости $R_0(T)$, найдём $\frac{dR_0}{dT}$. Потом по формуле вычислим температурный коэфициент сопротивления $\alpha = \frac{1}{R_{273}} \cdot \frac{dR_0}{dT}$

$$\frac{dR_0}{dT} = 71{,}30 \cdot 10^{-3} \frac{1}{\mathrm{K}} \qquad \sigma_{\frac{dR_0}{dT}} = 0{,}18 \cdot 10^{-3} \frac{1}{\mathrm{K}} \qquad R_{273} = (18{,}06 \pm 0{,}06) \text{ Om}$$

$$\alpha = (3.948 \pm 0.016) \cdot 10^{-3} \frac{1}{\text{K}} \quad \sigma_{\alpha} = \alpha \cdot \sqrt{\left(\frac{\sigma_{dR_0}}{\frac{dR_0}{dT}}\right)^2 + \left(\frac{\sigma_{R_{273}}}{R_{273}}\right)^2}$$

Результаты измерений оказались достаточно точными, мы видим, что температурный коэфициент сопротивления почти полностью совпадает с табличным значением для платины Pt, равным $3.9\cdot 10^{-3}~\frac{1}{\rm K}$

4.6 График зависимости теплопроводности воздуха от температуры

Используя данные из предыдущих пунктов найдём зависимость выделяющейся на нити мощности Q от её перегрева ΔT относительно стенок, а также найдём коэффициенты теплопроводности воздуха.

$$\frac{dQ}{d(\Delta T)} = \frac{dR_0}{dT} / \frac{dR}{dQ} \qquad k = \frac{dQ}{d(\Delta T)} / \frac{2\pi L}{\ln \frac{r_0}{r_1}} = \frac{dR_0}{dT} \frac{\ln \frac{r_0}{r_1}}{2\pi L} / \frac{dR}{dQ}$$

$$\sigma_k = \sqrt{\left(\frac{\partial k}{\partial \left(\frac{dR_0}{dT}\right)} \sigma_{\frac{dR_0}{dT}}\right)^2 + \left(\frac{\partial k}{\partial \left(\frac{dR}{dQ}\right)} \sigma_{\frac{dR}{dQ}}\right)^2 + \left(\frac{\partial k}{\partial L} \sigma_L\right)^2 + \left(\frac{\partial k}{\partial r_0} \sigma_{r_0}\right)^2 + \left(\frac{\partial k}{\partial r_1} \sigma_{r_1}\right)^2}$$

$$\frac{t, C \mid k, 10^{-3} \frac{BT}{M \cdot K}}{23 \mid (25, 57 \pm 0, 33)}$$

$$\frac{30 \mid (26, 32 \pm 0, 29)}{42 \mid (27, 31 \pm 0, 39)}$$

$$\frac{42 \mid (27, 31 \pm 0, 39)}{59 \mid (28, 56 \pm 0, 38)}$$

Таблица 6: Коэффициенты теплопроводности воздуха для каждой температуры термостата Из графика видно, что экспер. значения теплопроводности близки к табличным.

Теперь построим график ln(k)(ln(T)). Предполагая, что k степенным образом зависит от абсолютной температуры T: $T \sim k^{\beta}$, построим график в двойном логарифмическом масштабе ln(k)(ln(T)) и определите из него показатель степени β .

Построим график зависимости теплопроводности воздуха от температуры и сравним с теоретическим значением. В теории $\beta=0.5$, так как коэффициент теплопроводности газа пропорционален корню из температуры. $\beta_{\rm skc}=0.57$

5 Выводы

В данной работе были измерены зависимости сопротивления платиновой нити от подаваемой на нее мощности при различных температурах. Построены графики зависимости R(Q), получены угловые коэффициенты $\frac{dR}{dQ}$, а также определены сопротивления нити при данных температурах (при $Q \to 0$). Используя полученные значения сопротивления, построен график зависимости со-

противления нити от температуры R(T), а также вычислен температурный коэффициент сопротивления платиновой нити. Экспериментальное значение $\alpha_{\text{эксп}}=3.948\pm0.013\cdot10^{-3}\,\text{K}^{-1}$ с относительной погрешностью $\varepsilon_{\alpha}=0.41\%$ совпадает с теоретическим значением $\alpha_{\text{теор}}=3.9\cdot10^{-3}\,\text{K}^{-1}$. Были вычислены коэффициенты теплопроводности воздуха при атмосферном давлении и разных температурах. Из графика $\mathbf{k}(\mathbf{t})$ можно увидеть, что экспериментальные значения достаточно сильно совпадают с теоретическими. На графике зависимости $\mathbf{ln}(k)$ от $\mathbf{ln}(T)$ был определен показатель β . Экспериментальное значение $\beta_{\text{эксп}}=0.57$ не сильно отличается от теоретического значения $\beta_{\text{теор}}=0.5$.