Properties of Logarithms

Week 12 – October 16, 2023

Objectives

Rewrite
exponential
equations into
logarithmic
form and vice

Apply the properties of logarithms

Solve problems involving logarithms

versa

Investigation 12

Consider the exponential equation $2^x = 8$. How could you describe the solution in words? What is the exact solution?

The number 2 must be multiplied by itself 3 times to get 8. So, x = 3.

Consider the exponential equation $2^x = 5$. How could you describe the b solution in words? Why can't you determine the exact numerical solution without the use of technology? Sketch the graph $f(x) = 2^x$ and the horizontal line y = 5 in order to solve the equation.

The value of x is between 2 and 3. It is not a whole number (x = 2.321...)

Consider the exponential equation $2^x = -2$. Does this equation have a solution?

There is no solution. Any positive number raised to an exponent results to a positive answer.

Consider the equation $a^x = b$. Can you describe the solution in words?

x is a real number, a and b > 0, $a \ne 1$.

Do all exponential equations have a solution? How can you find the No. Question (c) is an example of an solution to an exponential equation?

exponential equation with no solution.

Exponential to Logarithmic Form and Vice Versa

• $a^x = b \leftrightarrow log_a b = x$, a and b > 0, a $\neq 1$

- a is called the base
- x is the exponent
- b is the argument

- $log_{10}x \rightarrow log x$
- $log_e x \rightarrow ln x$
- Euler's ("oiler") number ($e = 2.71828 \dots$) is an important constant that is found in many contexts and is the base for natural logarithms.
- Euler's number is used from explaining exponential growth to radioactive decay.
- In finance, Euler's number is used to calculate how wealth can grow due to compound interest.

On your GDC, \log_{10} is called "LOG" and \log_{e} is called "LN".

5 — Presentation title — 20XX

Two Fundamental exponential equations:

$$\bullet 10^x = c \leftrightarrow \log c = x$$

$$e^x = c \leftrightarrow \ln c = x$$

Presentation title ————— 20XX

Two Fundamental logarithmic equations:

- $\log x = c \leftrightarrow 10^c = x$
- $\bullet \ln x = c \leftrightarrow e^c = x$

7 — Presentation title — 20XX

Examples

 Find the exact values of x in each of the following equations.

1.
$$10^x = 5$$

$$2. e^{2x} = 12$$

$$3. \log x = 3$$

4.
$$3lnx = 7$$

1
$$x = \log 5$$

2
$$2x = \ln 12 \Rightarrow x = \frac{1}{2} \ln 12$$

3
$$x = 10^3 = 1000$$

$$4 \quad \ln x = \frac{7}{3} \Rightarrow x = e^{\frac{7}{3}}$$

8

Investigation 13

1 Consider the equations $10^x = 1$ and $e^x = 1$ or even the general case $a^x = 1$.

Find the value of x.

x = 0.

What is the solution in terms of logs?

 $log_a 1 = 0$

2 Consider the equations $10^x = 10$ and $e^x = e$ or even the general case $a^x = a$.

Find the value of x.

x = 1.

What is the solution in terms of logs?

 $log_a a = 1$

3 Consider the equations $10^x = 10^n$ and $e^x = e^n$ or even the general case $a^x = a^n$, where x is the unknown variable and n is a constant parameter.

Find the value of x.

x = n.

What is the solution in terms of logs?

 $log_a a^n = x$

4 Use your GDC to copy and complete the following table, giving your answers to three significant figures.

log 2	0.301	log 3	0.477	log 6	0.778
log 3	0.477	log 4	0.602	log 12	1.079
ln 5	1.609	ln 7	1.945	ln 35	3.555

What do you notice? What can you conjecture about $\log_a x + \log_a y$?

 $log_a xy$

5 Use your GDC to copy and complete the following table, giving your answers to three significant figures.

log 12	1.079	log 2	0.301	log 6	0.778
log 15	1.176	log 3	0.477	log 5	0.698
ln 11	2.397	ln 7	1.945	$\ln \frac{11}{7}$	0.451

What do you notice? What can you conjecture about $\log_a x - \log_a y$?

 $log_a \frac{x}{y}$

6 Use your GDC to copy and complete the following table, giving your answers to three significant figures.

log (3 ²)	0.954	log 3	0.477	2log 3	0.954
$\ln \sqrt{2}$	0.346	ln 2	0.693	$\frac{1}{2} \ln \sqrt{2}$	0.346

What do you notice? What can you conjecture about $\log_a(x^n)$?

 $\log 1 = 0$, $\ln 1 = 0$ and in general, $\log_a 1 = 0$ $\log 10 = 1$, $\ln e = 1$ and in general, $\log_a a = 1$ $\log 10^n = n$, $\ln e^n = n$ and in general, $\log_a a^n = n$

Laws of logarithms:

- $\log_a x + \log_a y = \log_a xy$
- $\log_a x \log_a y = \log_a \frac{x}{y}$
- $\log_a(x)^n = n\log_a x$

Write each of the following as a single logarithm:

a
$$3 \log x$$

$$\frac{\log x}{2}$$

c
$$2 \log x + \log y$$

d
$$\log x - 2 \log y$$

$$e - \ln x$$

$$f 1 + \ln x$$

g
$$\ln x + \ln y - \ln z$$

a
$$3 \log x = \log(x^3)$$

b
$$\frac{\log x}{2} = \frac{1}{2} \log x = \log \left(x^{\frac{1}{2}} \right) = \log \sqrt{x}$$

c
$$2 \log x + \log y = \log(x^2) + \log y = \log(x^2y)$$

d
$$\log x - 2\log y = \log x - \log(y^2) = \log\left(\frac{x}{y^2}\right)$$

e
$$-\ln x = -\ln x = \ln(x^{-1}) = \ln\left(\frac{1}{x}\right)$$

$$f 1 + \ln x = \ln e + \ln x = \ln(ex)$$

g
$$\ln x + \ln y - \ln z = \ln(xy) - \ln z = \ln\left(\frac{xy}{z}\right)$$

Thank you!