Cvičení k přednášce Atomová fyzika (NFUF301)

Pavel Stránský

4. října 2022

Obsah

1	Ceri	né těleso	2
	1.1	Rayleighův-Jeansův zákon	2
	1.2	Planckův zákon	2
		Wienův posunovací zákon	
		Stefanův-Boltzmannův zákon	
		Slunce	
	1.6	Žárovka	2
	1.7	Hlava	2
	1.8	Fotonová plachetnice	2
	1.9	Vlákno žárovky	3

1 Černé těleso

1.1 Rayleighův-Jeansův zákon

Odvoď te objemovou hustotu energie černého tělesa pro frekvenci ν a vlnovou délku λ . Předpokládejte, že energie jednotlivých módů elektromagnetického záření může nabývat jakýchkoliv hodnot.

1.2 Planckův zákon

Odvoď te objemovou hustotu energie černého tělesa za předpokladu, že energie jednotlivých energie módů elektromagnetického záření může nabývat jen celočíselných násobků frekvence módů v, 1

$$E_n = h \nu n$$

kde *n* je přirozené číslo a *h* je konstanta (Planckova konstanta).

1.3 Wienův posunovací zákon

Odvoď te, pro jakou frekvenci a pro jakou vlnovou délku je objemová hustota energie černého tělesa daná Planckovým zákonem maximální.

1.4 Stefanův-Boltzmannův zákon

Odvoď te celkový zářivý výkon černého tělesa o teplotě *T*.

1.5 Slunce

Je-li Slunce v zenitu, je intenzita slunečního záření dopadající na Zemi $I_{\oplus} = 1367 \, \mathrm{Wm}^{-2}$. Za předpokladu, že vyzařování Slunce lze považovat za záření černého tělesa, a znáte-li poloměr Slunce R_{\odot} a vzdálenost Země od Slunce d, určete teplotu na povchu Slunce.

1.6 Žárovka

Wolframové vlákno v klasické žárovce se rozžhaví na teplotu $T = 4000 \,\text{K}$. Jaké procento vyzařované energie je ve viditelné části spektra mezi vlnovými délkami $\lambda \in [380 \,\text{nm}, 750 \,\text{nm}]$?

1.7 Hlava

Odhadněte celkový zářivý výkon holé lidské hlavy bez pokrývky. Jaký je rozdíl zářivého výkonu a zářivého příkonu v prostředí, které má $t_{\rm okolí}=0\,^{\circ}{\rm C}$? Bazální metabolismus dospělého člověka je přibližně $P_B=1700\,{\rm kcal\,den^{-1}}$. Určete, jaké procento energie získané metabolismem se v chladném počasí ztratí hlavou vyzařováním.²

1.8 Fotonová plachetnice

Určete, jaká síla by díky slunečnímu záření působila na čtvercovou plachtu o rozměru 100 m × 100 m, nacházející se ve vzdálenosti Země. Jak musí být plachta orientovaná, aby síla byla co největší? Je síla větší, když plachta záření pohltí, nebo když ho odrazí?

$$E_n = \hbar \omega n \tag{1.2.1}$$

 $^{^{1}}$ Vztah lze ekvivalentně zapsat pomocí úhlové frekvence ω a redukované Planckovy konstanty \hbar jako

²Proto je dobré nosit v zimě čepici.

1.9 Vlákno žárovky

Odhadněte délku a poloměr wolframového vlákna žárovky s příkonem $P=100\,\mathrm{W},$ víte-li, že teplota vlákna je $T=2700\,\mathrm{K}.$