IST557 Lecture Notes

Andrew Sugarman

September 3, 2024

Contents

1	08-1 1.1 1.2 1.3	Background	1 1 1 2
2		29-2024 - Math and Probability Review Linear Algebra	3
3 1	3.1 3.2 3.3 3.4 3.5 3.6	Argmax	5 5 5 5 5 5 5 5
1.		Syllabus	
		ll homework based unless people cheat	
		$-$ if you work together on homeworks you must report it and midterm is absolutely to be done alonely hw $+$ take home $^{\circ}$ A office hours 2-4pm mon and 9-11 Fri	n€
1.	2	Background	
	• re	eview cholesky factor	

- spend a fair bit of time over the next few days looking over linear algebra review and reference
- dont cheat
- For grading = understand the question
 - * more credit if you recognize the answer is wrong
 - * no late assignments
 - * murphy and elements of stat learning = best books
 - \cdot Review of math and probability = high-yield

1.3 Lecture 1

Machine Learning Overview and context

- inference = you care about what the model has learned
 - supervised learning = predict Y from X given training examples where both were known ie housing price pred problem
 - unsupervised = predict y from x given examples where only x is known ie identify 5 groups from a dataset
 - semi-supervised learning = y is only known for part of the training data
 - Regression = continuous Y, classification = discrete Y
 - Feature selection
 - \ast given Ys and Xs, figure out which covariates are the most important
 - Dimensionality reduction ex PCA

Model representations

- Data do not fall on a line
- Linear Regression
 - Probabilistic representation: Beta = vector containing m and b Beta = maximum likelihood of Y given beta*x and variance
 - * maximize prob of the data under this model
 - Loss representation
 - * find values of m and B that minimize the sum of the squared res

Black box model

• subjective label as to whether you can understand how it is working (nnet, random forest, decision tree)

Model evaluation

• are models any good? How do we define what good is?

P»N problem = more parameters than data points

• use penalizated or bayesian regression to help solve this

Stats vs ml

• stats generally focuses on inference

Types of Data

- discrete data with more than 2 categorical levels (one of K categories)
 - one hot encoding 000, 100, 010, 001
 - dumy encoding = new variable z that is categorical w k-1 dims
- ordinal data categorical with an order
- interval data protect identity
- time to event data how long to develop a condition of interest
 - special + complexities with specialized models
- Functional data (inf dim) measure continuous functions such as ekgs
- compositional data (sum constraints)

2 08-29-2024 - Math and Probability Review

2.1 Linear Algebra

 $A_{i,j}$ means element from ith row and jth column

- can only add matrices of same dimensions
- can multipy two matrices that do not have same dim
- For A*B, the num columns (m) in A must be same as num rows (n) in B
 - The inner dimensions cancel out
- Matmul is associative, distributive, and not commutative
- every linear transformation can be represented by a matrix

ONLY square matrices could be invertible, and not all matrices that are square have a unique inverse

- $AA^{-}1 = A^{-1}A = I$
- pseudoinverse = A^{dagger} : defined by $A^t * A = I$
 - there is not a unique solution to the inverse
 - * pseudoinverse in python gives arb value for Adagger
 - · this means that sometimes there are problems with random answers if code is using pseudoinv
 - · R does not give you an answer if the inverse is not defined
 - · assumptions can help ie most betas are small

Identity matrix

• zero except for diagonal of ones

Diagonal matrix

• usually only well-defined for square matrices Diag(X) -> shorthand notation for either extracting or creating a diagonal matrix

Special matrices

- symmetric = equal to the transpose (such as a covariance mat)
- orthogonal = things that rotate or translate vectors but do not scale them
 - the inv of an ortho matrix is its transpose

Linear dependence

- 3 matrices on the same plane are linearly dependent and the matrix with these three vectors as rows would have rank 2
- span(S) is the set of all linear combinations of the elements of S

Rank

- AR^mxn
- Rank(A) is the max num of linearly ind columns or rows

Eigenvectors and Eigenvalues

- eigenvectors are usually normalized to unit length
- if A is symmetric then all eigenvalues r real
- trace of a matrix = sum of the eigenvals
- det(A) = product of eigenvals
- If $X = VDV^T$ then: $X^-1 = V * D^-1 * V^T$
 - since D is diagonal its inverse is given by just taking the inverse of each of its diag elements
 - this is beneficial because matrix inversion is computationally expensive

A symmetric Positive definite matrices have all eigenvalues strictly greater than 0 A symmetric matrix is called pos semi definite if all eigvals are greater than 0 (but can include 0) = covariance matrices Matrix Square roots

- ullet the square root of a square matrix X is defined as mat V such that $X = VV^T$
 - eigen decomp provides means of finding such a mat V for sq mat X

$$* X^{1/2} = VD^{1/2}$$

IF X is spd (symmetric pos def) Cholesky decomp is faster than eigen decomp

- SPD matrix sigma has chol decomp: $Sigma = LL^T$ where L is a lower triangular matrix
 - TLDR Cholesky decomp for sigma = LL^T if sigma is a symmetric positive definite matrix
 - * upper cholesky = $U^T * U$

Vector norms Think of a norm as the length of a vector

- 1. Euclidean norm = $||\mathbf{x}_2|| = \sqrt{sumx^2} \setminus$
- 2. L1 norm = city block norm (Lasso)
- 3. p-norm = pthroot(sum of absval x^p)

Recall derivative = slope of tangent line, inst rate of change at a point The gradient = multivariate derivative

- for fn F that takes in a vector and outputs a scalar (such as a probability)
 - gradient is defined as a vector
 - nobla*f =
 - gradient points in the direction of steepest ascent from x and -nobla(f(x)) gives direction of steepest descent
 - this is used frequently in gradient descent

Jaccobian is a matrix of first order partial derivatives (when the output is a vector) ie a generalization of the multivariate gradient Hessian is a matrix of second order partial derivatives

- think of this as the curvature of a function
- comes in handy for newtons method
- serves also as the basis for the Laplace Approximation to a probability density

Review of Optimization

3 09-03-2024 - Math and probability review

3.1 The Eigendecomposition is ordered

• first eigenvector has the greatest value

3.2 Argmax

• For a function

3.3 Joint probability (memorize this)

- factor into a conditional and a marginal
- P(A|B) = P(A|B)(P(B)) = P(B|A)(P(A))

3.4 Conditional Probability

$$p(B|A = 7) = P(A = 7, B)/P(A)$$

3.5 Expectations, the Mean, and variance

• expectation = weighted avg

Variance is the spread about the mean - it must be positive

3.6 Mean and variance of finite samples

 $mean_{(x)=1/N*\sum x_i}$