Московский физико-технический университет Факультет радиотехники и кибернетики

Лабораторная работа № 4.4.1 (Общая физика: оптика)

Амплитудная дифракцонная решётка

Работу выполнил: **Милославов Глеб, группа Б01-103**

г. Долгопрудный 2023 год

Цель работы: знакомство с работой и настройкой гониометра Γ 5, определение спектральных характеристик амплитудной решетки.

В работе используются: гониометр, дифракционная решетка, ртутная лампа.

1 Теоретическая часть

Основное соотношение приближенной теории дифракционной решётки:

$$d\sin\varphi_m = m\lambda$$

Угловая дисперсия D характеризует угловое расстояние между близкими спектральными линиями:

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - m^2\lambda^2}}.$$

Разрешающая способность R характеризует возможность прибора различать две близкие спектральные линии с длинами волн λ и $\lambda + \delta \lambda$:

$$R = \frac{d\varphi}{d\lambda}$$

Дисперсионная область – предельная ширина спектрального интервала $\Delta\lambda$ прибора, для которой дифракционные максимумы соседних порядков не перекрываются. Она определяет диапазон длин волн, при которых прибор может быть использован для анализа спектра.

В работе предстоит определить эти три основных параметра амплитудной дифракционной решётки.

2 Экспериментальная установка

При работе с дифракционной решёткой основной задачей является точное измерение углов, при которых наблюдаются главные максимумы для различных длин волн. В нашей работе для измерения углов используется гониометр $\Gamma 5$. Принципиальная схема экспериментальной установки приведена на рис. 1.

Рис. 1: Схема установки.

3 Эксперементальная часть

Снимем значения угловых координат спектральных линий ртути в ± 1 порядке:

	градусы	минуты	секунды	φ,°	sinφ	λ, нм	σ(sinφ)	σ(λ), нм
Начало отсчёта	19	50	8	19,84				
Красный(1)	2	0	0	-17,84	0,306	690,7	0,00013	0,5
Красный(2)	2	17	37	-17,54	0,301	623,4	0,00014	0,5
Жёлтый(1)	2	67	37	-16,71	0,287	579,1	0,00014	0,5
Жёлтый(2)	3	12	3	-16,64	0,286	577,0	0,00014	0,5
Зелёный	3	65	47	-15,74	0,271	546,1	0,00015	0,5
Голубой	5	41	51	-14,14	0,244	491,6	0,00016	0,5
Синий	7	19	30	-12,51	0,217	435,8	0,00017	0,5
Фиолетовый	8	12	56	-11,62	0,201	404,7	0,00018	0,5
Белый	19	50	8	0,00				
Фиолетовый	31	35	47	11,76	0,204	404,7	0,00018	0,5
Синий	32	31	55	12,70	0,220	435,8	0,00017	0,5
Голубой	34	13	19	14,39	0,248	491,6	0,00016	0,5
Зелёный	35	50	51	16,01	0,276	546,1	0,00015	0,5
Жёлтый(1)	36	47	4	16,95	0,292	577,0	0,00014	0,5
Жёлтый(2)	36	50	49	17,01	0,293	579,1	0,00014	0,5
Красный(1)	37	42	52	17,88	0,307	623,4	0,00013	0,5
Красный(2)	37	52	3	18,03	0,310	690,7	0,00013	0,5

Рис. 2: Данные для спектральных линий ±1 порядка

Посмтроим график зависимости $\sin \varphi_m(\lambda)$ для ± 1 порядка и его линейную аппроксимацию. По данным графика рассчитаем шаг решётки:

$$d=m\frac{d\lambda}{d\sin\varphi}$$

$$d = (2.58 \pm 0.42) \text{ MKM}$$

Рассчитаем по линиям жёлтого дуплета угловую дисперсию решётки:

$$D = \frac{d\varphi}{d\lambda} = (3.9 \pm 0.3) \cdot 10^{-4} \; \text{рад/нм}$$

Тогда, зная угловую полуширину жёлтой линии, найдём разрешимый спектральный интервал, разрешающую способность и эффективное число штрихов:

$$\delta\lambda \approx \Delta\varphi/D = 4.4 \pm 0.5 \text{ Å}$$
 ; $R = \frac{\lambda}{\delta\lambda} = 1328 \pm 153 = N \ (m = 1)$