Лабораторная работа №4 Шум

Крынский Павел

26 мая 2021 г.

Оглавление

1	Teo	ретич	еская часть	5		
	1.1 Общие сведения					
	1.2	Свойс	тва	5		
		1.2.1	Линейность	5		
		1.2.2	Смещение функции	6		
		1.2.3	Масштабирование функции	6		
		1.2.4	Перемножение функции	7		
		1.2.5	Свёртывание функции	7		
		1.2.6	Дифференцирование функции	7		
		1.2.7	Интегрирование функции	8		
		1.2.8	Обратимость	8		
2	Упр	ражне	ние 4.1	9		
3	Упр	ражне	ние 4.2	13		
4	Упр	ражне	ние 4.3	15		
5	Упражнение 4.4					
6	Упражнение 4.5					
7	Вы	волы		26		

Список иллюстраций

2.1	Спектр звука	10
2.2	Спектр мощности звука	
2.3	Спектр двух звуков	11
2.4	Спектр мощности двух звуков	12
2.5	Спектрограмма звука	12
3.1	Сегменты звуков	14
4.1	Таблица данных	15
4.2	Визуализация данных	16
4.3	Спектр искусственного звука	16
5.1	Визуализация звука	19
5.2	Спектр мощности звука	20
5.3	Визуализация нового звука	21
5.4	Сравнение спектров	21
6.1	Визуализация звука	23
6.2	Спектр мощности звука	24
6.3	Спектр мощности звука	25

Листинги

2.1	Прослушивание скачанного шума
2.2	Выбор короткого отрезка
2.3	Спектр звука
2.4	Спектр мощности звука
2.5	Выбор другого сегмента звука
2.6	Спектр двух звуков
2.7	Спектр мощности двух звуков
2.8	Спектрограмма звука
3.1	Функция bartlett_method
3.2	Сегменты звуков
4.1	Таблица данных
4.2	Визуализация данных
4.3	Спектр искусственного звука
4.4	Наклон прямой
5.1	Созданный класс UncorrelatedPoissonNoise
5.2	Создание звука
5.3	Создание звука
5.4	Визуализация звука
5.5	Спектр мощности звука
5.6	Наклон прямой
5.7	Создание нового звука
5.8	Визуализация нового звука
5.9	Сравнение спектров
6.1	Создание функции
6.2	Генерация значений
6.3	Создание звука
6.4	Визуализация звука
6.5	Спектр мощности звука
6.6	Наклон прямой
6.7	Генерация более длинной выборки
6.8	Использование метода Барлетта

6.9	Спектр мощности звука	24
6.10	Наклон прямой 2	25

Теоретическая часть

1.1 Общие сведения

Преобразование Фурье функции f вещественной переменной является интегральным и задаётся следующими формулами:

Прямое:
$$F(\nu) = \int_{-\infty}^{\infty} f(t)e^{-2\pi i\nu t}dt$$

Обратное:
$$f(t) = \int_{-\infty}^{\infty} F(\nu)e^{2\pi i\nu t}d\nu$$

1.2 Свойства

1.2.1 Линейность

По определению, для некоторого векторного пространства $(V,K,+,\cdot)$, $a,b\in V,\,\gamma\in K$:

$$f:V o V$$
 - линейна $\Longleftrightarrow egin{cases} \gamma\cdot f(a)=f(\gamma\cdot a)\ f(a)+f(b)=f(a+b) \end{cases}$

Очевидно, что преобразование Фурье (ПФ) удовлетворяет этому условию (как функция на ($\mathbb{R} \to \mathbb{R}, \mathbb{C}, +, \cdot$)), а следовательно:

Fourier
$$\left(\sum_{i} \alpha_{i} \phi_{i}(t)\right) = \sum_{i} \alpha_{i} \cdot Fourier(\phi_{i}(t))$$

$$= \sum_{i} \alpha_{i} \Phi_{i}(\nu)$$

1.2.2 Смещение функции

При смещении функции $\phi(t)$ на Δt результат ПФ умножается на $e^{2\pi i \nu \Delta t}$. Пусть $t'=t+\Delta t$, тогда:

Fourier
$$(\phi(t + \Delta t)) = \int_{-\infty}^{\infty} \phi(t + \Delta t)e^{-2\pi i\nu t}dt$$

= $\int_{-\infty}^{\infty} \phi(t')e^{-2\pi i\nu(t' - \Delta t)}dt$

Так как $dt' = d(t + \Delta t) = dt$, то:

$$\int_{-\infty}^{\infty} \phi(t')e^{-2\pi i\nu(t'-\Delta t)}dt' = e^{2\pi i\nu\Delta t} \cdot \int_{-\infty}^{\infty} \phi(t')e^{-2\pi i\nu t'}dt'$$
$$= e^{2\pi i\nu\Delta t} \cdot F(\nu)$$

1.2.3 Масштабирование функции

Пусть $t' = \alpha t$, тогда:

Fourier
$$(\phi(\alpha t)) = \int_{-\infty}^{\infty} \phi(\alpha t) e^{-2\pi i \nu t} dt$$

= $\int_{-\infty}^{\infty} \phi(t') e^{-2\pi i \nu \frac{t'}{\alpha}} dt$

Так как $dt' = \alpha dt$, то для a > 0:

$$\begin{split} \int_{-\infty}^{\infty} \phi(t') e^{-2\pi i \nu \frac{t'}{\alpha}} dt &= \frac{1}{\alpha} \int_{-\infty}^{\infty} \phi(t') e^{-2\pi i \frac{\nu}{\alpha} t'} dt \\ &= \frac{1}{\alpha} \Phi\left(\frac{\nu}{\alpha}\right) \end{split}$$

Для a<0 получится dt'<0 при dt>0. При этом нужно поменять пределы интегрирования местами, тогда получим результат с отрицательным знаком:

$$-\frac{1}{\alpha}\Phi\left(\frac{\nu}{\alpha}\right)$$

Таким образом, в одной форме это:

$$\frac{1}{|\alpha|}\Phi\left(\frac{\nu}{\alpha}\right)$$

Вывод: при сжатии функции по времени в α раз, её $\Pi\Phi$ расширяется по частоте в α раз.

1.2.4 Перемножение функции

ПФ произведения двух функций - это свёртка их ПФ.

Fourier
$$(\phi(t)\xi(t)) = \int_{-\infty}^{\infty} \phi(t)\xi(t)e^{-2\pi i\nu t}dt$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \Phi(k)e^{2\pi ikt}dk\right)\xi(t)e^{-2\pi i\nu t}dt$$

$$= \int_{-\infty}^{\infty} \Phi(k)\left(\int_{-\infty}^{\infty} \xi(t)e^{2\pi i(k-\nu)t}dt\right)dk$$

$$= \int_{-\infty}^{\infty} \Phi(k)\left(\int_{-\infty}^{\infty} \xi(t)e^{-2\pi i(\nu-k)t}dt\right)dk$$

$$= \int_{-\infty}^{\infty} \Phi(k)\Xi(\nu-k)dk$$

$$= (\Phi*\Xi)(\nu)$$

1.2.5 Свёртывание функции

 $\Pi\Phi$ свёртки двух функций есть произведение $\Pi\Phi$ этих функций. Доказывается аналогично в силу «симметрии» прямого и обратного преобразований Φ урье.

1.2.6 Дифференцирование функции

При дифференцировании $\phi(t)$ по t её $\Pi\Phi$ умножается на $2\pi i\nu$.

Fourier
$$\left(\frac{d\phi(t)}{dt}\right) = \int_{-\infty}^{\infty} \frac{d\phi(t)}{dt} e^{-2\pi i \nu t} dt$$

$$= \int_{-\infty}^{\infty} e^{-2\pi i \nu t} d\phi(t)$$

$$= \phi(t) e^{-2\pi \nu t} \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \phi(t) d\left(e^{-2\pi i \nu t}\right)$$

$$= \phi(t) e^{-2\pi \nu t} \Big|_{-\infty}^{\infty} + 2\pi i \nu \int_{-\infty}^{\infty} \phi(t) e^{-2\pi i \nu t} dt$$

$$= \phi(t) e^{-2\pi \nu t} \Big|_{-\infty}^{\infty} + 2\pi i \nu \cdot \Phi(\nu)$$

Прямое и обратное преобразование Фурье существует для функций с ограниченной энергией, то есть:

$$\int_{-\infty}^{\infty} |\phi(t)|^2 dt \neq \infty$$

И из этого следует, что первое слагаемое равно 0.

1.2.7 Интегрирование функции

При интегрировании $\Pi\Phi$ делится на $2\pi i\nu$.

Fourier
$$\left(\int_{-\infty}^{t} \phi(t')dt'\right) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{t} \phi(t')dt'\right) e^{-2\pi i \nu t} dt$$

$$= -\frac{1}{2\pi i \nu} \cdot \int_{-\infty}^{\infty} \left(\int_{-\infty}^{t} \phi(t')dt'\right) d\left(e^{-2\pi i \nu t}\right)$$

$$= -\frac{1}{2\pi i \nu} \cdot \left[e^{-2\pi i \nu t} \int_{-\infty}^{t} \phi(t')dt'\Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} e^{-2\pi i \nu t} d\left(\int_{-\infty}^{t} \phi(t')dt'\right)\right]$$

$$= -\frac{1}{2\pi i \nu} \cdot \left[e^{-2\pi i \nu t} \int_{-\infty}^{t} \phi(t)dt\Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} e^{-2\pi i \nu t} \phi(t)dt\right]$$

$$= -\frac{1}{2\pi i \nu} \cdot \left[0 - \int_{-\infty}^{\infty} e^{-2\pi i \nu t} \phi(t)dt\right]$$

$$= \frac{1}{2\pi i \nu} \cdot \int_{-\infty}^{\infty} e^{-2\pi i \nu t} \phi(t)dt$$

$$= \frac{1}{2\pi i \nu} \cdot \Phi(\nu)$$

0 возникает потому, что $\int_{-\infty}^{\infty} \phi(t') dt' = 0$.

1.2.8 Обратимость

Преобразования обратимы, причём обратное преобразование имеет практически такую же форму, как и прямое преобразование.

2 spectr.plot_power()

Упражнение 4.1

В этом упражениии необходимо скачать звук источников шума. Определить похож ли спектр мощности скаченного звука на белый розовый или броуновский шумы.

Я нашел звук обстановки в ресторане.

```
wave = thinkdsp.read_wave('401276__inspectorj__rain-moderate-b.wav')
wave.make_audio()

Листинг 2.1: Прослушивание скачанного шума

Выбрал отрезок:

sg = wave.segment(start=1, duration=2.0)
sg.make_audio()

Листинг 2.2: Выбор короткого отрезка

Посмотрим на спектр.

spectr = sg.make_spectrum()
```


Рис. 2.1: Спектр звука

Амплитуда падает с частотой, поэтому это может быть красный или розовый шум. Мы можем проверить это, посмотрев на спектр мощности в логарифмической шкале.

```
spectr.plot_power()
thinkdsp.decorate(xscale='log', yscale='log')
```

Листинг 2.4: Спектр мощности звука

Рис. 2.2: Спектр мощности звука

Эта структура с увеличением, а затем и с уменьшением амплитуды

кажется обычным явлением для естественных источников шума. Чтобы увидеть, как спектр меняется с течением времени, я выберу другой сегмент.

```
sg2 = wave.segment(start=3, duration=2.0)
sg2.make_audio()
```

Листинг 2.5: Выбор другого сегмента звука

Теперь рассмотрим два спектра:

```
spectr2 = sg2.make_spectrum()
spectr.plot_power()
spectr2.plot_power()
```

Листинг 2.6: Спектр двух звуков

Рис. 2.3: Спектр двух звуков

Теперь рассмотрим график мощности в логарифмическом масштабе.

```
spectr.plot_power()
spectr2.plot_power()
thinkdsp.decorate(xscale='log', yscale='log')
Листинг 2.7: Спектр мощности двух звуков
```


Рис. 2.4: Спектр мощности двух звуков

Таким образом, структура кажется неизменной с течением времени. Мы также можем посмотреть на спектрограмму:

segment.make_spectrogram(128).plot(high=5000)

Листинг 2.8: Спектрограмма звука

Рис. 2.5: Спектрограмма звука

В этом сегменте общая амплитуда падает, но смесь частот кажется стабильной.

Упражнение 4.2

bartlett_method создает спектрограмму и извлекает spec_map, который отображает время на объекты Spectrum. Он вычисляет PSD для каждого спектра, складывает их и помещает результаты в объект Spectrum.

```
1 from thinkdsp import Spectrum
2 def bartlett_method(wave, length=512, flag=True):
     spectr = wave.make_spectrogram(length, flag)
     spectr1 = spectr.spec_map.values()
     psds = [spectrum.power for spectrum in spectr1]
     hs = np.sqrt(sum(psds) / len(psds))
     fs = next(iter(spectr1)).fs
     spectrum = Spectrum(hs, fs, wave.framerate)
11
     return spectrum
                  Листинг 3.1: Функция bartlett_method
     Построим сегменты:
psd = bartlett_method(sg)
psd2 = bartlett_method(sg2)
4 psd.plot_power()
5 psd2.plot_power()
7 thinkdsp.decorate(xscale='log', yscale='log')
                      Листинг 3.2: Сегменты звуков
```


Рис. 3.1: Сегменты звуков

Теперь мы можем более чётко увидеть взаимосвязь между мощностью и частотой. Это не простая линейная зависимость, но она одинакова для разных сегментов, таких как около 1000 Γ ц, 6000 Γ ц и выше 10000 Γ ц.

Упражнение 4.3

На предложенной веб-странице я скачал данные о ежедневной цене BitCoin в течение года.

Листинг 4.1: Таблица данных

	Currency	Date	Closing Price (USD)	24h Open (USD)	24h High (USD)	24h Low (USD)
0	BTC	2013-10-01	123.654990	124.304660	124.751660	122.563490
1	BTC	2013-10-02	125.455000	123.654990	125.758500	123.633830
2	BTC	2013-10-03	108.584830	125.455000	125.665660	83.328330
3	BTC	2013-10-04	118.674660	108.584830	118.675000	107.058160
4	BTC	2013-10-05	121.338660	118.674660	121.936330	118.005660
2785	BTC	2021-05-18	43144.471291	46439.336570	46622.853437	42102.346430
2786	BTC	2021-05-19	43196.046480	43559.597561	45850.231665	42469.975570
2787	BTC	2021-05-20	39439.237635	42920.748859	43604.569586	30201.957317
2788	BTC	2021-05-21	39756.089849	36795.422984	42589.863965	35670.948379
2789	BTC	2021-05-22	36921.767808	40685.325138	42278.005178	33594.958899

2790 rows × 6 columns

Рис. 4.1: Таблица данных

Визуализируем скачанные данные.

```
wave = Wave(data['Closing Price (USD)'], data.index, framerate=1)
wave.plot()
```

Листинг 4.2: Визуализация данных

Рис. 4.2: Визуализация данных

Построим спектр искусственно созданного звука, где частотой будет выступать 1/дни.

```
spectr = wave.make_spectrum()
spectr.plot_power()
thinkdsp.decorate(xscale='log', yscale='log')
```

Листинг 4.3: Спектр искусственного звука

Рис. 4.3: Спектр искусственного звука

Спектр сход с прямой линией, поэтому можно предположить, что это

"красный" или "розовый" шум. Проверим это, узнав наклон прямой.

spectr.estimate_slope()[0]

Листинг 4.4: Наклон прямой

Наклон составляет -1.9438922304000437, что похоже на красный шум (который должен иметь наклон -2).

Упражнение 4.4

Созданный класс UncorrelatedPoissonNoise представляет некоррелированный пуассоновский шум. Оценивает сигнал в заданное время.

```
class UncorrelatedPoissonNoise(thinkdsp.Noise):

def evaluate(self, ts):

ys = np.random.poisson(self.amp, len(ts))

return ys

Листинг 5.1: Созданный класс UncorrelatedPoissonNoise
```

Рассмотрим как это звучит при низких уровнях «радиации».

```
amp = 0.001
framerate = 10000
duration = 1

signal = UncorrelatedPoissonNoise(amp=amp)
wave = signal.make_wave(duration=duration, framerate=framerate)
wave.make_audio()
```

Листинг 5.2: Создание звука

Звук действительно похож на звуки от счётчика Гейгера, будто бы находишься где-то в Припяти. Чтобы убедиться, что все работает, мы сравниваем ожидаемое количество частиц и фактическое количество:

```
1 expected = amp * framerate * duration
2 actual = sum(wave.ys)
3 print(expected, actual)
Листинг 5.3: Создание звука
```

Количество частиц в обоих случаях равняется 10. Теперь рассмотрим

полученный звук:

1 wave.plot()

Листинг 5.4: Визуализация звука

Рис. 5.1: Визуализация звука

Рассмотрим спектр мощности в логарифмическом масштабе:

- spectr = wave.make_spectrum()
- 2 spectr.plot_power()
- thinkdsp.decorate(xscale='log', yscale='log')

Листинг 5.5: Спектр мощности звука

Рис. 5.2: Спектр мощности звука

Рассмотрим наклон:

spectr.estimate_slope().slope

Листинг 5.6: Наклон прямой

Похоже на белый шум, а крутизна близка к 0 (-0.002016362457109945). При более высокой скорости поступления это больше похоже на белый шум:

```
amp = 1
framerate = 10000
duration = 1

signal = UncorrelatedPoissonNoise(amp=amp)
wave = signal.make_wave(duration=duration, framerate=framerate)
wave.make_audio()
```

Листинг 5.7: Создание нового звука

Построим его график.

1 wave.plot()

Листинг 5.8: Визуализация нового звука

Рис. 5.3: Визуализация нового звука

И спектр сходится на гауссовском шуме.

```
spectrum = wave.make_spectrum()
spectrum.hs[0] = 0

normal_prob_plot(spectrum.real, label='real')
thinkdsp.decorate()

normal_prob_plot(spectrum.imag, label='imag', color='C1')
thinkdsp.decorate()
```

Листинг 5.9: Сравнение спектров

Рис. 5.4: Сравнение спектров

Упражнение 4.5

Вот весь процесс в функции: Создает розовый шум с помощью алгоритма Восса-Маккартни.

```
def voss(nrows , ncols = 16):
     array = np.empty((nrows, ncols))
     array.fill(np.nan)
     array[0, :] = np.random.random(ncols)
     array[:, 0] = np.random.random(nrows)
     n = nrows
     cols = np.random.geometric(0.5, n)
     cols[cols >= ncols] = 0
     rows = np.random.randint(nrows, size=n)
     array[rows, cols] = np.random.random(n)
11
     df = pd.DataFrame(array)
     df.fillna(method='ffill', axis=0, inplace=True)
     total = df.sum(axis=1)
     return total.values
                     Листинг 6.1: Создание функции
```

Чтобы проверить это, я сгенерирую 12005 значений:

```
1 vo = voss(11875)
2 vo
```

Листинг 6.2: Генерация значений

Теперь создадим из них звук:

```
wave = thinkdsp.Wave(vo)
wave.unbias()
wave.normalize()
```

Листинг 6.3: Создание звука

Теперь посмотрим на его визуализацию.

1 wave.plot()

Листинг 6.4: Визуализация звука

Рис. 6.1: Визуализация звука

Как и ожидалось, это больше похоже на случайное блуждание, чем на белый шум, но более случайное, чем на красный шум. Теперь рассмотрим спектр мощности:

```
spectr = wave.make_spectrum()
spectr.hs[0] = 0
spectr.plot_power()
thinkdsp.decorate(xscale='log', yscale='log')
Листинг 6.5: Спектр мощности звука
```


Рис. 6.2: Спектр мощности звука

Посмотрим на наклон:

```
spectr.estimate_slope().slope
```

Листинг 6.6: Наклон прямой

Расчетный наклон близок к -1 (-1.0161982906577807).

Мы можем лучше понять средний спектр мощности, сгенерировав более длинную выборку:

```
1 sg_len = 44 * 124
2 iters = 100
3 wave = thinkdsp.Wave(voss(sg_len * iters))
4 len(wave)
```

Листинг 6.7: Генерация более длинной выборки

И используя метод Барлетта для вычисления среднего.

```
spectr = bartlett_method(wave, length=sg_len, flag=False)
spectr.hs[0] = 0
len(spectr)
```

Листинг 6.8: Использование метода Барлетта

Это довольно близко к прямой линии с некоторой кривизной на самых высоких частотах, если рассматривать спектр мощности звука.

```
spectr.plot_power()
```

2 thinkdsp.decorate(xscale='log', yscale='log') Листинг 6.9: Спектр мощности звука

Рис. 6.3: Спектр мощности звука

Посмотрим на наклон:

spectr.estimate_slope().slope

Листинг 6.10: Наклон прямой

Наклон теперь более близок к -1 (-1.0030119128556478).

Выводы

Во время выполнения лабораторной работы получены навыки работы с различными видами шумов. Также получены навыки создания этих шумов через различные данные.