UNIVERSITE DE CERGY-POINTOISE. L2 ECO-FIN-G Cours de Probabilités. Imèd CHERIF

TD 2

Exercice 1: 1) Soit $f: IR \to IR$, $x \mapsto |x|$. Montrer que f est une application qui n'est ni injective, ni surjective ni bijective.

- 2) Soit $g: IR_+ \to IR$, $x \mapsto |x|$. Montrer que g est une application injective qui n'est ni surjective ni bijective.
- 3) Soit $h: IR \to IR_+$, $x \mapsto |x|$. Montrer que h est une application surjective qui n'est ni injective ni bijective.
 - 4) Soit $\sigma: IR_+ \to IR_+$, $x \mapsto |x|$. Montrer que σ est une application bijective.

Exercice 2: Soit $E = \{a, b, c\}$ et $F = \{1, 2, 3\}$.

- 1) Soit $f: E \to F$ t.q. f(a) = 2 et f(b) = 1. f est-elle une application? injection? surjection? bijection?
- 2) Soit $g: E \to F$ t.q. $g(a) = \{1,2\}$, g(b) = 3 et g(c) = 3. f est-elle une application? injection? surjection? bijection?
- 3) Soit $h: E \to F$ t.q. h(a) = 2, h(b) = 1 et h(c) = 2. f est-elle une application? injection? surjection? bijection?

Exercice 3: Soit $E = \{a, b\}$ et $F = \{1, 2, 3\}$.

Soit $f: E \to F$ t.q. f(a) = 2 et f(b) = 1. f est-elle une application? injection? surjection?

Exercice 4: Soit $E = \{a, b, c\}$ et $F = \{1, 2\}$.

Soit $f: E \to F$ t.q. f(a) = 2, f(b) = 1 et f(c) = 2. f est-elle une application? injection? surjection?

Exercice 5: 1) Soit $E = \{a, b, c\}$ et $F = \{1, 2\}$. Peut-on construire une application injective $f: E \to F$.

- 2) Soit $E = \{a, b\}$ et $F = \{1, 2, 3\}$. Peut-on construire une application surjective $f: E \to F$.
- 3) Soit $E = \{a, b, c\}$ et $F = \{1, 2, 3\}$. Construire une application bijective $f: E \to F$.

Exercice 6: Soit E un ensemble. On dit que E est un ensemble fini si:

il existe un entier naturel n et il existe une application bijective de [|1,n|] vers E. (n est le nombre d'élément de E). On note n = card(E).

On rappelle que si A et B sont deux sous-ensembles de E disjoints $(A \subset E, B \subset E \text{ avec } A \cap B = \emptyset)$ alors $card(A \cup B) = card(A) + card(B)$.

- 1) Soit A un sous-ensemble de E. Montrer que : $card(\overline{A}) = card(E) card(A)$.
- 2) Soit A et B deux sous-ensembles de E. Montrer que : $card(B) = card(B \setminus A) + card(A \cap B)$.

En déduire que : $card(A \cup B) = card(A) + card(B) - card(A \cap B)$.

3) Soit A, B et C trois sous-ensembles de E. Montrer que :

 $card(A \cup B \cup C) =$

 $card(A) + card(B) + card(C) - card(A \cap B) - card(A \cap C) - card(B \cap C) + card(A \cap B \cap C)$