Question number			Answer	Notes	Marks
1	(a)	(i)	B - main sequence stars; A is not correct as black holes do not appear on the HR diagram C is not correct as neutron stars are not part of the main sequence. D is not correct as protostars are not part of the main sequence		1
		(ii)	bottom left area of the HR diagram;	unlabelled scores 0	1
		(iii)	top right hand area of HR diagram; red giants main sequence white dwarfs	unlabelled scores 0	1
		(iv)	a measure of brightness/luminosity; idea that a star would be at a standard distance (10 parsecs/32(.6) light years);	accept power ignore lack of or incorrect value for distance	2
	(b)	(i)	C - ultraviolet; A is not correct as microwaves cause internal heating B is not correct as radio waves do not give skin burns D is not correct as visible light cannot harm skin cells. A - sunbathing;		1
			B, C and D are not correct as all reduce the absorption of UV by skin.	Total for Question 1: 7	

Total for Question 1: 7 marks

Question number	Answer	Notes	Marks
6 (a)	creation of a (large) nucleus from small nuclei; resulting in a loss of mass; and the release of energy;	condone "fusing of two nuclei" accept reference to E=mc² condone "converted to energy"	3
(b) (i)	electrical working;	condone 'electrically'	1
(ii)	substitution in $V_{in}I_{in} = V_{out}I_{out}$; re-arrangement; evaluation; correct answer = 1.8 (kA) e.g. input power = output power $V_{in}I_{in} = V_{out}I_{out}$ $28 \times 21 = 330 \times I_{out}$ $I_{out} = (28 \times 21) \div 330$ $I_{out} = 1.7818$	-1 POT error	3

Total for Question 6: 7 marks

Question number	Answer	Notes	Marks
7 (a)	correct substitution KE = $\frac{1}{2}$ (mass) × (speed) ² ; re-arrangement to give v; evaluation to show 5.8(4) (m/s); e.g. KE = $\frac{1}{2}$ m v ² 0.29 = 0.5 × 0.017 × v ²	allow use of standard symbols e.g. KE = ½ m v ² allow mass = 17 at this point	3
	$v^2 = 0.29 \div (0.5 \times 0.017) = 34.1176471$ $v = \sqrt{34.1176471} = 5.8(4)$ (m/s)		
(b)	idea of conservation of momentum; idea that momentum before release was zero; evidence of re-arrangement;	however expressed allow idea that momenta of two blocks is equal in magnitude	4
	evaluation of large block speed giving 1.3 m/s; e.g. momentum of small block = 17 × 6 = 102 g m/s	allow 1.4 if v _{small} = 6 m/s ignore mass unit provided both masses consistent	
	therefore momentum of large block = 102 g m/s momentum = mass × velocity = 75 v so v = 102/75 = 1.36 m/s	v=1.31 if v _{small} = 5.8 m/s	
		v=1.32 if v _{small} = 5.84 m/s	_
(c)	substitution into given equation; idea of initial momentum = 0; evaluation; correct answer = 0.93 (N)	allow use of init velocity = 0	3
	e.g. force = change in momentum \div time taken force = $((0.017 \times 6) - 0) \div 0.11$ force = $0.102 \div 0.11$ force = 0.9272 (N)		
(d)	substitution and re-arrangement of given equation; conversion of 17.6 cm to 0.176 m; evaluation; correct answer = 0.18(41) (s)	accept 0.2 (s) accept use of v=5.84(m/s) -1 POT error	3
	e.g. orbital speed= $(2\pi \times \text{orbital radius})$ ÷time period $6 = (2\pi \times 0.176)$ ÷T $T = (2\pi \times 0.176)$ ÷ 6 $T = 0.1843 (s)$		
		0.092 (s) for using 17.6 cm as a diameter scores 2 marks	

Total for Question 7: 13 marks