Recurrent Neural Networks

Michał Filipiuk

Uwaga: Nie będzie dużo matmy!

Po co te RNNy?

Trochę historii

- Pierwsze sieci RNNy pojawiają się już w 1986
- Niestety początkowo są tylko naukową ciekawostką z powodu swojej kapryśności
- Naukowcy tworzą dziesiątki różnych implementacji, ale tylko dwie z nich dożywają "dorosłości":
 - Long short-term memory (1997)
 - Gated recurrent unit (2014)

Vanilla RNN

Jak to się uczy?

- "Rozwinięty" RNN jest skierowanym, grafem acyklicznym
- W związku z tym możemy dokonać backpropagacji jak w każdej sieci neuronowej! Super?

Jak to się uczy?

- "Rozwinięty" RNN jest skierowanym, acyklicznym grafem (w skrócie DAG)
- W związku z tym możemy dokonać backpropagacji jak w każdej sieci neuronowej! Super?
 - o Rozwijanie RNNów dla długich sekwencji powoduje duże problemy z gradientami:
 - "Eksplodujące" gradienty (exploding gradients)
 - "Znikające" gradienty (vanishing gradients)
 - Rozwiązanie?
 Rozwijać tylko do pewnego ustalonego momentu (truncated backpropagation through time)

Jak to się uczy?

Long short-term memory

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$h_t$$
 C_{t-1}
 f_t
 i_t
 \tilde{C}_t
 \tilde{C}_t
 h_{t-1}
 h_t

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Long Short Term Memory (LSTM)

vector from

[Hochreiter et al., 1997]

f: Forget gate, Whether to erase cell

i: Input gate, whether to write to cell

g: Gate gate (?), How much to write to cell

o: Output gate, How much to reveal cell

$$\begin{pmatrix} f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \tanh \end{pmatrix} W \begin{pmatrix} h_{t-1} \\ x_t \end{pmatrix}$$

$$c_t = f \odot c_{t-1} + i \odot g$$

$$h_t = o \odot \tanh(c_t)$$

Gated recurrent unit

GRU vs LSTM

Argumenty za LSTM:

 Większa moc wyrazu (choć nieznacznie)

Argumenty za GRU:

- Lżejsze w uczeniu
- Łatwiej uogólnia się

Dziękuję za uwagę

Bibliografia

- http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
- http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- http://karpathy.github.io/2015/05/21/rnn-effectiveness/
- https://en.wikipedia.org/wiki/Backpropagation_through_time
- https://en.wikipedia.org/wiki/Recurrent_neural_network
- https://en.wikipedia.org/wiki/Long_short-term_memory
- https://brohrer.github.io/how_rnns_lstm_work.html
- https://www.youtube.com/watch?v=6niqTuYFZLQ