Data Visualizations

Uncertainty

Standard error

$$SE = \frac{\sigma}{\sqrt{n}} \qquad CI = \bar{x} \pm z \frac{\sigma}{\sqrt{n}}$$

Standard error

Uncertainty range for linear regression

Uncertainty range for polynomial regression

Geospatial

Why we need maps?

	country	GDP per capita (USD)
0	Austria	55060
1	Belgium	46421
2	Bulgaria	9828
3	Croation	14936
4	Cyprus	27858
5	Czech Republic	23495
6	Denmark	60170
7	Estonia	23723
8	Finland	48783
9	France	40494

Why we need maps?

Why we need maps?

GDP per capita in EU 2019 (USD)

Ways of representing

a map

Many, many different projections...

Mercator projection

Projection Cylinder

Albers projection

Mercator projection

Albers projection

Mercator vs. Albers projection comparison

Types of map visualizations

GDP per capita in EU 2019 (USD)


```
Poland = [
P_1(x_1, y_1),
P_2(x_2, y_2),
...,
P_n(x_n, y_n)
]
```


GeoJSON

```
"type": "FeatureCollection",
"features": [
   "type": "Feature",
    "properties":{"name":"Poland"},
    "geometry":{
        "type": "Polygon",
        "coordinates":[[
                [15.016996,51.106674],
                [14.607098,51.745188],
                [15.490972,50.78473],
                [15.016996,51.106674]
        },
        "id":"POL"
```

Bubble graph on map

Cartogram heatmap

Cartogram heatmap

References

Information sources:

- [1] Wes McKinney, Python for Data Analysis, 3E (2022), Wes's Blog
- [2] Claus O. Wilke, Fundamentals of Data Visualization (2019), Claus Website
- [3] Geoplot documentation
- [4] Map projection, Wikipedia, access date: 23.10.2024
- [5] Mercator projection, Wikipedia, access date: 23.10.2024
- [6] Albers projection, Wikipedia, access date: 23.10.2024
- [7] List of map projections, Wikipedia, access date: 23.10.2024
- [8] Cylindrical Projections Mercator, Miller and Pseudocylindrical (2024), GISGeography
- [9] Conic Projection Lambert, Albers and Polyconic (2023), GISGeography

Data sources:

- [10] Rachael Tatman, Chocolate Bar Ratings (2017), Kaggle
- [11] Chris Riederer, world.geo.json, Github
- [12] Piotr Patrzyk, polska-geosjon, Github

Other:

[13] My private notes about data visualization an examples

Presentation author: Maksymilian Norkiewicz