CSCI 5525: Machine Learning (Fall'20)

Homework 0

(Due Tue, Sept 15, 11:59 PM central)

- 1. Have you read through the class syllabus, noted the important dates, and the class policies?
- 2. (i) Which of the following courses have you taken?
 - CSci 5512 Artificial Intelligence II
 - CSci 5521 Introduction to Machine Learning
 - CSci 5523 Introduction to Data Mining
 - (ii) Have you taken any course on Probability/Statistics? If yes, please write down the course department and course name.
 - (iii) Have you taken any course on Linear Algebra? If yes, please write down the course department and course name.
 - (iv) Have you taken any course on Optimization? If yes, please write down the course department and course name.
- 3. Let $X \in \mathbb{R}^{n \times p}$ and $y \in \mathbb{R}^n$ be given. The goal is to find a $w^* \in \mathbb{R}^p$ which solves the following problem:

$$\min_{w \in \mathbb{R}^p} \, \frac{1}{2} \|y - Xw\|^2 + \frac{c}{2} \|w\|^2 \; ,$$

where c > 0 is a constant. Give a closed form expression for w^* in terms of X, y and c. (Consult the *Matrix Cookbook* if you want to look up expressions for derivatives in matrix/vector form.)

4. Let A be a $n \times n$ positive definite matrix. The solutions to the following problems

$$\max_{w \in \mathbb{R}^n : w^T w \le 1} w^T A w \quad \text{and} \quad \min_{w \in \mathbb{R}^n : w^T w \le 1} w^T A w \tag{1}$$

have well known names—do you know what the solutions to these problems are called? (You can refer back to your Linear Algebra course if needed)

- 5. What is the probability density function $p(x; \mu, \Sigma)$ of a multivariate Gaussian distribution with mean μ and covariance Σ ? Please provide an expression in terms of x, μ, Σ , and clearly define any special function you use in the expression.
 - Let $\Theta = \Sigma^{-1}$ be the precision or inverse covariance matrix. What is expression of the probability density function $p(x; \mu, \Theta^{-1})$ of a multivariate Gaussian distribution in terms of the mean μ and precision matrix Θ ?