Evaluation of Classification Models

Limitation of Accuracy

- Consider a 2-class problem:
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If the model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading!

Measuring model performance

- Problem domain and business needs will decide what metric to use for measuring model performance
- Do you always want your model to be accurate?

Classifier Evaluation

- Metrics for Performance Evaluation How to evaluate the performance of a model?
- Methods for Performance Evaluation How to obtain reliable estimates?
- Methods for Model Comparison How to compare the relative performance among competing models?

Model Evaluation

- Metrics for Performance Evaluation How to evaluate the performance of a model?
- Methods for Performance Evaluation How to obtain reliable estimates?
- Methods for Model Comparison How to compare the relative performance among competing models?

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	а	b
	Class=No	С	d

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) = $\frac{a}{a+b}$
F- measure (F) = $\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

WILL MY MODEL BETRAY ME?

Perils of Overfitting

Perils of #overfitting @kaggle restaurant revenue prediction Pos 1 drops to 2041 in final ranking.

2041	↑7	Cheng Jiang
2042	↓2041	BAYZ, M.D. 🎩
2043	↓81	Alberto

Overfitting

- The gravest and most common sins of machine learning
- Overfitting is when you try to learn so much from data that you memorize it.
 - You do well on training data
 - But don't do well (or even fail miserably) on test data

Bias/Variance Tradeoff

You can beat your data to confess anything

Bias/Variance Tradeoff

Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k = n

- Random subsampling
 - Repeated holdout
- Stratified sampling
 - Oversampling vs undersampling
- Bootstrap
 - Sampling with replacement

You have done everything

- Data is clean
- Missing values, noise etc. are dealt with
- Features engineered
- Right metric has been chosen
- Model is trained.
- What is the next step?

Now tune the parameters

 You will tune the parameters until you get the right trade-off between bias and variance

Model Evaluation

- Metrics for Performance Evaluation How to evaluate the performance of a model?
- Methods for Performance Evaluation How to obtain reliable estimates?
- Methods for Model Comparison
 How to compare the relative performance among competing models?

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - Changing the threshold of the algorithm, sample distribution, or cost matrix changes the location of the point

ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)
- Any points located at x > t are classified as positive

unleash the data scientist in you

ROC Curve

- **■** (TP,FP):
- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - Prediction is opposite of the

Using ROC for Model Comparison

- No model consistently outperforms the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

QUESTIONS

