Calculus and Analytical Geometry

Lecture no. 5

Amina Komal

April 2022

Topic: Limit of a Function

Outline of the lecture:

- 1. Introduction
 - *x* approaches to zero
 - x approaches to infinity
 - x approaches to a
- 2. Limit of a function
 - Left hand limit of a function
 - Right hand limit of a function
 - Two-sided limit of a function
- 3. Graphical representation of limit of a function
 - Examples
- 4. Practice questions

1) Introduction:

Finding limit at a point means finding height of the function near that point.

To understand the concept of limit we need to understand the meaning of following phrases:

- x approaches to zero, i.e., $x \to 0$
- x approaches to infinity, i.e., $x \to \infty$
- x approaches to a, i.e., $x \rightarrow a$

1.1) x approaches to zero, i.e., $x \to 0$

Suppose the series of values as:

$$x = 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, ...$$

 $x = 1, 0.5, 0.25, 0.1250, 0.0625, ...$

As you can see the values are approaching towards 0 because the values are decreasing and becoming smaller and smaller. The unending decrease of x is written as $x \to 0$, which means x is approaching towards 0 but it is not exactly 0.

1.2) x approaches to infinity, i.e., $x \to \infty$

Suppose a variable x in the form of the values

$$x = 1,10,100,1000,10000,...$$

The values of x are increasing and these values are approaching towards ∞ .

1.3) x approaches to a, i.e., $x \rightarrow a$

 $x \to a$ means x approaching towards a specific number a or it is getting close to the number a, but different from a from both left and right side of a.

2. Limit of a function:

• Left-Hand limit: The height l_1 of the function f as x approaches a from the left is called the left-hand limit, and is denoted by

$$\lim_{x \to a^{-}} f(x) = L_1$$

How to find the Left-Hand Limit: The following is the geometrical approach.

Step 1. Mark the point a at which the left-hand limit is to find.

Step 2. Mark a point x on the left of a.

Step 3. Draw a vertical line through x so that it intersects the graph of f.

Step 4. Move x towards a. As x gets very close to a, the height of the point of intersection of the vertical line (through x) and the graph is the left-hand limit. In the following figure it is L_1 .

• **Right-Hand Limit:** The height l_2 of the function f as x approaches a from the right is called the right-hand limit, and is denoted by $\lim_{x \to a^+} f(x) = L_2$

How to find the Left-Hand Limit: The following is the geometrical approach.

Step 1. Mark the point *a* at which the right-hand limit is to find

Step 2. Mark a point *x* on the right of *a*.

Step 3. Draw a vertical line through x so that it intersects the graph of f.

Step 4. Move x towards a. As x gets very close to a, the height of the point of intersection of the vertical line (through x) and the graph is the left-hand limit. In the following figure it is L_2 .

• Two-sided limit of the function: A function f is said to have a two-sided limit at a point x = a, if both the left-hand limit and right-hand limit are same, say L. i.e.,

$$\lim_{x \to a^{-}} f(x) = L \text{ and } \lim_{x \to a^{+}} f(x) = L \text{ then } \lim_{x \to a} f(x) = L$$

3. Graphical concept of a limit:

After the understanding of basic concept of limit, now we'll understand that if a graph of a function is given then how can we find the limit of that function at any point a.

Example 3.1: Consider the graph of a function

Solution:

$$\lim_{x \to a^{-}} f(x) = 2 \qquad \text{and} \qquad \lim_{x \to a^{+}} f(x) = 3$$

As left and right-hand side is not equal $\lim_{x \to a} f(x) = \text{does not exist.}$

Example 3.2: Consider another function and find the limit at $\lim_{x \to -4} f(x)$, $\lim_{x \to 1} f(x)$,

$$\lim_{x\to 4} f(x)$$

Solution:

a)
$$\lim_{x \to -4^{-}} f(x) = 1$$
, $\lim_{x \to -4^{+}} f(x) = -1$, $\lim_{x \to -4} f(x) = does$ not exist

b)
$$\lim_{x \to 1} f(x) = 4$$
, $\lim_{x \to 1} f(x) = 4$, $\lim_{x \to 1} f(x) = 4$

c)
$$\lim_{x \to 4^{-}} f(x) = \infty$$
, $\lim_{x \to 4^{+}} f(x) = \infty$, $\lim_{x \to 4} f(x) = \infty$

Example 3.2: find the limit at x = 0,1,2,3 and 4 of the following function

Solution:

a)
$$\lim_{x\to 0^-} f(x) = does \ not \ exist$$
, $\lim_{x\to 0^+} f(x) = 1$, $\lim_{x\to 0} f(x) = does \ not \ exist$

b)
$$\lim_{x \to 1^{-}} f(x) = 0$$
, $\lim_{x \to 1^{+}} f(x) = 1$, $\lim_{x \to 1} f(x) = does not exist$

c)
$$\lim_{x \to 2^{-}} f(x) = 1$$
, $\lim_{x \to 2^{+}} f(x) = 1$, $\lim_{x \to 2} f(x) = 1$ even though f(2)=2

d)
$$\lim_{x \to 3^{-}} f(x) = 2$$
, $\lim_{x \to 3^{+}} f(x) = 2$, $\lim_{x \to 3} f(x) = 2$

d)
$$\lim_{x \to 3^{-}} f(x) = 2$$
, $\lim_{x \to 3^{+}} f(x) = 2$, $\lim_{x \to 3} f(x) = 2$
e) $\lim_{x \to 4^{-}} f(x) = 1$ even though $f(4) \neq 1$, $\lim_{x \to 4^{+}} f(x) = does \ not \ exist$, $\lim_{x \to 4} f(x) = does \ not \ exist$

Example 3.4: which of the following statements about the graph y=f(x) are true?

a.
$$\lim_{x \to -1^+} f(x) = 1$$

b.
$$\lim_{x \to 0^{-}} f(x) = 0$$

c.
$$\lim_{x \to 0^{-}} f(x) = 1$$

d.
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$$

e.
$$\lim_{x \to 0} f(x)$$
 exists

$$\mathbf{f.} \lim_{x \to 0} f(x) = 0$$

$$\mathbf{g.} \lim_{x \to 0} f(x) = 1$$

$$\mathbf{h.} \lim_{x \to 1} f(x) = 1$$

$$\mathbf{i.} \ \lim_{x \to 1} f(x) = 0$$

j.
$$\lim_{x \to 2^-} f(x) = 2$$

k.
$$\lim_{x \to 1^{-}} f(x)$$
 does not exist.

1.
$$\lim_{x \to 2^{+}}^{x \to 2} f(x) = 0$$

Practice Questions:

 $\overline{1}$. Find the limit of the following function at x=-3,0,2,4

2. Find the limit of the following function at x=-3,-2,-1,0,1,2

3. Determine the following statements for the graph are true or false?

Let
$$f(x) = \begin{cases} 3 - x, & x < 2 \\ \frac{x}{2} + 1, & x > 2. \end{cases}$$

- **a.** Find $\lim_{x\to 2^+} f(x)$ and $\lim_{x\to 2^-} f(x)$.
- **b.** Does $\lim_{x\to 2} f(x)$ exist? If so, what is it? If not, why not?
- **c.** Find $\lim_{x\to 4^-} f(x)$ and $\lim_{x\to 4^+} f(x)$.
- **d.** Does $\lim_{x\to 4} f(x)$ exist? If so, what is it? If not, why not?
- 4. Determine the given statements are true or false for the graph?

- **a.** $\lim_{x \to -1^+} f(x) = 1$
- **c.** $\lim_{x \to 0^{-}} f(x) = 1$
- e. $\lim_{x \to 0} f(x)$ exists
- **g.** $\lim_{x \to 0} f(x) = 1$
- i. $\lim_{x \to 1} f(x) = 0$
- **k.** $\lim_{x \to -1^{-}} f(x)$ does not exist.
- **b.** $\lim_{x \to 0^-} f(x) = 0$
- **d.** $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$
- $\mathbf{f.} \lim_{x \to 0} f(x) = 0$
- **h.** $\lim_{x \to 1} f(x) = 1$
- **j.** $\lim_{x \to 2^{-}} f(x) = 2$
- 1. $\lim_{x \to 2^{-}} f(x) = 0$