

Past Papers Higher Chemistry

2018 Marking Scheme

Grade	Mark Required		% condidates cabiavina anada			
Awarded	(/ ₁₂₀)	%	% candidates achieving grade			
Α	80+	66.6%	28.3%			
В	67+	55.8%	25.3%			
С	54+	45.0%	23.0%			
D	47+	39.2%	9.5%			
No award	<47	<39.2%	13.9%			

Section:	Multiple Cha	oice	Extended A	Answer	Assignme	ent
Average Mark:	12.1	/20	42.9	/80	13.1	/20

	2018	3 Hi	gher Chemistry Marking Scheme		
MC Qu	Answer	% Pupils Correct	Reasoning		
1	В		 ☑A Forward reaction has an activation energy of +40kJ mol⁻¹ but always positive ☑B Enthalpy change is difference between P and R and downhill means exothermic ☑C This is enthalpy change for forward reaction from R to P (uphill = endothermic) ☑D This is the activation energy for the reverse reaction (P to top of hill) 		
2	A		Rate = $\frac{1}{t}$: $t = \frac{1}{\text{rate}} = \frac{1}{100 \text{ s}} = 0.01 \text{ s}^{-1}$		
3	D		 ☑A Decrease in temp decreases number of collisions with energy greater than Ea ☑B Activation Energy (Ea) is independent of temperature ☑C Activation Energy (Ea) is independent of temperature ☑D No change to activation energy & number of collisions decrease as temp decreases 		
4	C		$Al^{+}(g) \rightarrow Al^{2+}(g) + e^{-} \Delta H = 1817kJ$ $Al^{2+}(g) \rightarrow Al^{3+}(g) + e^{-} \Delta H = 2745kJ$ $Al^{+}(g) \rightarrow Al^{2+}(g) + e^{-}$ $Al^{2+}(g) \rightarrow Al^{3+}(g) + e^{-}$ $Al^{+}(g) \rightarrow Al^{3+}(g) + 2e^{-} \Delta H = 4562kJ$		
5	D		☑A Boron forms covalent network. No molecules to have London Dispersion Forces between ☑B Neon is a noble gas and contains no covalent bonds ☑C Sodium is an alkali metal and contains metallic bonds between atoms ☑D Sulphur has covalent bonds within its S ₈ rings and LDF between molecules.		
6	С		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
7	Α		✓ A main chain has 4 carbons, carboxyl functional group and methyls on C_2 , C_2 and C_3 ☑ B side groups incorrectly numbered as C_2 has two methyl groups attached. ☑ C carbon side groups e.g. methyl groups never appear on carbon number 1 ☑ D longest chain with functional group is four carbons : ends in butanoic acid		
8	D		$\blacksquare A$ $CH_3H_2CH(OH)CH_2CH_3$ is pentan-3-ol so cannot be an isomer of pentan-3-ol $\blacksquare B$ Structure has formula $C_6H_{13}OH$ so has different formula and not an isomer $\blacksquare C$ Structure has formula C_5H_9OH so has different formula and not an isomer $\blacksquare D$ Structure is pentan-1-ol, has same formula and a different structure		
9	A		4-methylpentan-2-ol $C_6H_{14}O \rightarrow$ 4-methylpentan-2-one $C_6H_{12}O :$ loss of 2xH atoms \square A Loss of 2g per mole would be losing 2xH atoms from 1mol of $C_6H_{14}O$ \square B Gain of 2g per mole would be gaining 2xH atoms on 1mol of $C_6H_{14}O$ \square C Loss of 16g per mole would be losing 1xO atom from 1mol of $C_6H_{14}O$ \square D Gain of 16g per mole would be gaining 1xO atom on 1mol of $C_6H_{14}O$		
10	В		A All amino acids are necessary for building the different types of proteins B Essential amino acids are the amino acids humans must acquire in their diet. C Plants produce the essential amino acids that humans consume in their diet D All types of amino acids are produced when a protein is hydrolysed		
11	D		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

12	D	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
13	A	✓ A 0.20g of H ₂ ∴ n o. of mol = $^{\text{mass}}/_{\text{gfm}} = ^{0.20}/_2 = 0.10$ mol ∴ largest volume × B 0.44g of CO_2 ∴ n o. of mol = $^{\text{mass}}/_{\text{gfm}} = ^{0.44}/_{44} = 0.01$ mol ∴ smallest volume × C 0.60g of Ne ∴ n o. of mol = $^{\text{mass}}/_{\text{gfm}} = ^{0.60}/_{20} = 0.03$ mol × D 0.80g of Ar ∴ n o. of mol = $^{\text{mass}}/_{\text{gfm}} = ^{0.80}/_2 = 0.02$ mol			
14	Α	$3CuO(s) + 2NH_{3(g)} \longrightarrow 2Cu(s) + N_{2(g)} + 3H_2O(l)$ $3mol 2mol $			
15	D	 ☑A Hydrogen gas (H₂) would have no effect as it is neither a reactant nor product ☑B HCl(g) would dissolve in water to form acid sending equilibrium to left to remove H⁺ ions ☑C Cl⁻ ions added so equilibrium would move to left to remove extra Cl⁻ ions ☑D OH⁻ ions would neutralise H⁺ ions sending equilibrium to right to replace H⁺ ions. 			
16	C	gfm $C_4H_9OH = 72$ no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{3.6}{72} = 0.05 \text{mol}$ 0.05mol C_4H_9OH releases 124kJ 1mol C_4H_9OH releases 124kJ × $^1/_{0.05} = -2480 \text{kJ mol}^{-1}$			
17	В	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
18	С	 XA Cr³+ 3e⁻ → Cr is higher in the electrochemical series than the equation SO₄²⁻ + 2H⁺ + 2e⁻ → SO₃²⁻ + H₂O is too low to turn Cr³+ into Cr BA I³+ 3e⁻ → AI is higher in the electrochemical series than the equation SO₄²⁻ + 2H⁺ + 2e⁻ → SO₃²⁻ + H₂O is too low to turn AI³+ into AI. CFe³+ e⁻ → Fe²+: Fe³+ ions will reduce to Fe²+ ions and is lower in electrochemical series than SO₃²⁻ + H₂O → SO₄²⁻ + 2H⁺ + 2e⁻ (reversed as it is higher in ECS) Sn⁴+ 2e⁻ → Sn²+ is higher in electrochemical series than the equation SO₄²⁻ + 2H⁺ + 2e⁻ → SO₃²⁻ + H₂O is too low to turn Sn⁴+ into Sn²+. 			
19	В	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
20	В	Increase in proportion of solid = Increase in rate of forward reaction Increase in pressure increases the rate of the pressure-reducing reverse reaction Increase in pressure increases the rate of the pressure-reducing reverse reaction Increase in temp and increases the rate of the pressure-reducing reverse reaction Increase in temp and increases the rate of the endothermic reverse reaction Increase in temperature increases the rate of the endothermic reverse reaction			

2018 Higher Chemistry Marking Scheme					
Long Qu	Answer	Reasoning			
1 a(i)	The attraction an atom/nucleus has for the electrons in a bond/shared electrons	Electronegativity is a measure of the attraction for the electrons in a bond by the nuclei at either end of that bond. Non-metals tend to have higher values of electronegativity and have a higher attraction for the electrons in a bond.			
1 a(ii)	One answer from:	Increased shielding/ Covalent radius increases/atom size increases/more more shielding shells so attraction of the nucleus/protons for the (from additional shells) (outer/shared) electrons decreases			
1b	Answer to include:	1 mark (Intermolecular) forces/bonds increas (going down the group	London Disp e are the for	ces (broken) st	1 mark e more electrons the tronger the London Dispersion Forces
2α	Increasing number of protons or increasing nuclear charge	Across a period the same outer shell is being filled by electrons. The number of protons in the nucleus is increasing as is the positive charge in the nucleus. The outer shell of electrons is pulled in closer to the nucleus due to electrostatic attraction making the atom size decrease.			
2b(i)	CI	Electronegativity Chlorine Difference Commentary	Si=1.9 Cl=3.0 1.1 st polar bonds	P=2.2 Cl=3.0 0.8	S=2.5 Cl=3.0 0.5 Least polar bonds
2b(ii)	Answer to include:	1 mark Silicon tetrachloride and hexane are both non-polar 1 mark Silicon tetrachloride is non-polar due to its tetrahedral shape (where polarities over molecule cancel out)			
2c(i)	Answer to include:		de is a covalent r nds need to be b	network roken before it will	melt
2c(ii)	17.9	atom economy = ${(3\times17)^{-1}}$	140.3 0.1) + (16×17.0) ×10	$00 = \frac{140.3}{510.3 + 272.0}$	x100 = 17.9%
2d(i)	Answer to include:	1 mark 1 mark aluminium HEAT			
2d(ii)	To supply activation energy	Although the reaction is exothermic, sufficient energy to form the activated complex initially must be supplied for the activation energy barrier to be overcome. Once the reaction gets going the exothermic reaction will provide the heat energy to maintain the reaction.			
3α	water bath or heating mantle or hot plate	A flame-based method of heating should not be used as the reactants and products are volatile and flammable.			
61	To condense anv	The reactants and products in the formation of esters can have low enough boiling points to			

benzoic Acid

C₆H₅COOH +

evaporate and escape from the test tube. A cold surface like a small test tube filled with

(Be careful, condensing gases give off heat which will rapidly heat up the water in the cold test tube)

cold water will give a surface for the escaping gases to condense on.

methanol

CH₃OH

3b

3c(i)

To condense any

escaping gases

water

water

H₂O

methyl benzoate

C₆H₅COOCH₃

3c(ii)	Answer showing:	no. of mol $C_6H_5COOH = \frac{\text{mass}}{\text{gfm}} = \frac{5.0}{122} = 0.0410 \text{mol}$ no. of mol $CH_3OH = \frac{\text{mass}}{\text{gfm}} = \frac{2.5}{32} = 0.0781 \text{mol}$ $C_6H_5COOH + CH_3OH \rightarrow C_6H_5COOCH_3 + H_2O$ $C_6H_5COOH + CH_3OH \rightarrow C_6H_5COOCH_3 + H_2O$ $C_6H_5COOH \rightarrow C_6H_5COOCH_3 + H_2O$ $C_6H_5COOCH_3 \rightarrow C_6H_5C$			
3c(iii)	12.84	500g Benzoic Acid. $+ £39.80 \times \frac{5}{500} = £0.3980$ $\therefore 3.1g \text{ methyl benzoate} + £0.3980 \times \frac{100}{3.1} = £12.84$			
4a	One diagram from:	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
4b	One oxidising agent from:	Oxidising Agent Start Colour End Colour Acidified Dichromate Orange Green Benedict's/Fehling's Solution Blue Brick Red (orange) Hot copper (II) oxide Black Brown Tollen's Reagent (Colourless) Silver mirror produced			
4c	Permanent dipole to permanent dipole	3-methylbutanal contains a carbonyl C=O bond. There is an electronegativity difference of 1.0 within the bond making the bond polar. The δ + and δ - charges across the bond are attractive to neighbouring molecules also with a carbonyl C=O group.			
4d	It will oxidise	Aldehydes will oxidise to carboxylic acids which gives food an unpleasant taste known as rancid.			
4e(i)	Two molecules join together with the loss of water/small molecule	Condensation Two small molecules join together to form a larger molecule with the loss of a small molecules (usually water) Hydrolysis A larger molecule splits into two smaller molecules with a small molecule (usually water) added across the break point			
4e (ii)	6-methylheptan-2-one	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
5	Open Question Answer to Include:	Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. Demonstrates a limited understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood. Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that the chemistry within the problem is understood.			

		,			
6a(i)	Hydrolysis	$C_{15}H_{31}-C$ + H_2O $O-C_{20}H_{29}$			
6a(ii)	C ₂₀ H ₂₉ OH or C ₂₀ H ₃₀ O	C ₁₅ H ₃₁ -C + H-O-C ₂₀ H ₂₉			
6b(i)	Bond breaking by u.v. light	The initiation step forms free radicals by breaking covalent bonds and free radical particles are formed with unpaired electrons e.g. $CI-CI \rightarrow CI^* + CI^*$			
6b(ii)	Propagation	Step Reactants (before Arrow) Initiation No free radicals on Reactant Side Propagation Free Radicals found on both sides of arrow Termination Reactant Side Product Side No free radicals on Reactant Side Product Side			
6b(iii)	One answer from:	Can react with free radicals Donates Acts as a Provides electrons to pair to form stable molecules electrons reducing agent with an unpaired electron			
6c(i)	0 - C - N -	NH ₂ CH ₃ CH ₃ NH ₂ OH			
6c(ii)	OH H CH ₂ O H-N-C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
7a(i)	One answer from:	CH ₂ H ₂ C CH H ₃ C CH ₂ CH H ₃ C CH ₃			
7a(ii)	Sesquiterpene	Isoprene (2-methylbuta-1,3-diene) has the formula C_5H_8 . Humulene has formula $C_{15}H_{24}$ and is formed when three C_5H_8 units join together.			
7b(i)	5.345	1 flu vaccine 1 flu vaccine 10.69 mg squalene 10.69 mg squalene × 500000/₁ = 5345000 mg squalene = 5345g squalene = 5.345 kg squalene			
7b(ii)	6	1 mol of H₂ will add across 1 mol C=C double bonds 6 mol of H₂ will add across 6 mol C=C double bonds 1 mol of Squalene contains 6 mol C=C double bonds ∴1 mol of squalene will react with 6 mol of H₂			

7c(i)	Addition or Hydration	Addition Reactions have a molecule adding across a $C=C$ double bond or a $C=C$ triple bond. If the molecule adding across the $C=C$ double bond is water then the reaction can also be described as hydration.			
7c(ii)	Terpineol is a tertiary alcohol	Hot copper (II) oxide oxidises primary alcohols into carboxylic acids and oxidises secondary alcohols into ketones. Tertiary alcohols do not oxidise.			
8a	286	$\begin{array}{ c c c c c }\hline Bond \ Breaking \ Steps & Bond \ Forming \ Steps \\ \hline 6xC-H \ bonds & 6x \ 412kJ = 2472kJ & 1xC=C \ bonds & 1x \ 838kJ = 838kJ \\ 1xC-C \ bond & 1x \ 348kJ = 348kJ & 2xC-H \ bonds & 2x \ 412kJ = 824kJ \\ 2xH-H \ bonds & 2x \ 436kJ = 872kJ \\ \hline Total \ bond \ breaking & = 2820kJ & Total \ bond \ Forming & = 2534kJ \\ \hline \Delta H & = & 2820 & - & 2534 \\ \Delta H & = & +286 \ kJ \ mol^{-1} \\ \hline \end{array}$			
8b	185				
8c(i)	48475	gfm $C_3H_4 = 40g$ no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{1000g}{40} = 25 \text{ mol}$ 1mol ← → -1939 kJ 25mol ← → -1939kJ × $^{25}/_1$ = 48475 kJ			
8c(ii)	13.76	$\begin{array}{lll} & & & & & & & & & & & & & & & & & &$			
8c(iii)	Methanol and ethanol contain oxygen in their structure	Methanol and ethanol are alcohols which contain the -OH hydroxyl group. This oxygen inside the molecule means less oxygen is required from air to burn the structure fully. Ethane and propane are alkanes and these hydrocarbons have no oxygen in their structure.			
9a(i)	Any two from:	recycle (waste) gases use catalyst low/reduce energy requirements reactors are run at lower temperatures feedstocks low/reduce energy requirements selling/using by-products			
9a(ii)	Distillation	Distillation separates chemicals with different boiling points. Ethane-1,2-diol has a higher boiling point due to hydrogen bonding by its two hydroxyl -OH groups.			
9b	Answer to include:	1st Mark: Propan-1-ol has one hydroxyl -OH group Ethane-1,2-diol has two hydroxyl -OH group 2nd Mark: Stronger/more hydrogen bonding in ethane-1,2-diol than propan-1-ol			

		OH O				
9c	One diagram from:	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
		(propane-1,1-aioi) (propane-1,2-aioi) (propane-1,3-aioi) 1st Mark: Use pipette to measure 20cm³ of ethanol				
9d(i)	Answer to include:	2 nd Mark: Fill up 100cm³ volumetric/standard flask up to mark with deionised water				
		1kg animal ← → 5cm³ ethanol solution				
		3.5kg animal ← → 5cm³ x ^{3.5} / ₁ ethanol solution				
_		= 17.5cm ³				
9d(ii)	157.5	1 dose for 3.5kg animal ← → 17.5cm³ ethanol solution				
		9 doses for 3.5kg animal $4 \rightarrow 17.5$ cm ³ $\times 9/_1$				
		= 157.5cm ³				
04						
9d(iii)	One answer from:	'c—c' 'c—c' н—c—c'				
PART A		н—о' о—н н—о' н н 'н он 'н				
04	HOCH2COONa					
9d(iii)	or NaC ₂ H ₃ O ₃	HOCH2COOH + NaOH → HOCH2COONa + H2O				
PARTB	01 114021 1505	3 mark answer 2 mark answer 1 mark answer				
		Demonstrates a <u>good</u> Demonstrates a <u>reasonable</u> Demonstrates a <u>limited</u>				
10	Open Question	understanding of the chemistry understanding of the chemistry understanding of the chemistry involved. A good comprehension of involved, making some understanding of the chemistry				
10	Answer to Include:	the chemistry has provided in a statement(s) which are relevant to logically correct, including a the situation, showing that the relevant to the situation, showing				
		statement of the principles problem is understood. that at least a little of the involved and the application of chemistry within the problem is				
		these to respond to the problem. understood.				
		Weighing By Difference Tare Method Set the balance to zero, place weighing bottle on balance. Place weighing boat/bottle on the balance.				
11a	One from:	Record empty mass. Add 50.0g of salt to weighing bottle Press TARE button on balance. When reading is a zero, add 50.0g of salt and read the mass on				
		masses is the mass of the substance in the bottle. the balance.				
		Redox equation: $2I^- + Br_2 \longrightarrow I_2 + 2Br^-$				
11b	2I⁻ → I₂ + 2e⁻	Reduction step: $Br_2 + 2e^- \longrightarrow + 2Br^-$				
		Oxidation step: $2I^ \longrightarrow$ I_2 + $2e^-$				
11	9.5	Average volume = $\frac{9.4 + 9.6}{2} = \frac{19.0}{2} = 9.5 \text{cm}^3$				
11c(i)	· 9:0	Average volume = ${2}$ = ${2}$ = 9.5cm ³				
	7.0	2 2 2 - 7.5cm				
		no. of mol = volume × concentration = 0.0095 tres × 0.0010 t1 = 9.5×10-6 mol				
11 <i>c</i> (ii)	4.75×10 ⁻⁶					
11c(ii)		no. of mol = volume × concentration = 0.0095 litres × 0.0010 mol t^{-1} = 9.5×10^{-6} mol $I_2 + 2Na_2S_2O_3 \rightarrow 2NaI + Na_2S_4O_6$ $1 \text{mol} \qquad 2 \text{mol}$				
11c(ii)	4.75×10 ⁻⁶ 0.00000475	no. of mol = volume × concentration = 0.0095 litres × 0.0010 mol t^{1} = 9.5×10^{-6} mol $I_{2} + 2Na_{2}S_{2}O_{3} \rightarrow 2NaI + Na_{2}S_{4}O_{6}$ 1mol 2mol 4.75×10^{-6} mol 9.5×10^{-6} mol				
11c(ii)	4.75×10 ⁻⁶ or 0.00000475	no. of mol = volume × concentration = 0.0095 litres × 0.0010 mol t^{1} = 9.5×10^{-6} mol $ I_{2} + 2Na_{2}S_{2}O_{3} \longrightarrow 2NaI + Na_{2}S_{4}O_{6} $ $ 1 mol $				
	4.75×10 ⁻⁶ or 0.00000475 1st Mark More chlorine atoms increases germ-killing power	no. of mol = volume × concentration = 0.0095 litres × 0.0010 mol t^{-1} = 9.5×10^{-6} mol $ I_2 + 2Na_2S_2O_3 \longrightarrow 2NaI + Na_2S_4O_6 $ $ 1 mol $				
11c(ii) 12a(i)	4.75×10 ⁻⁶ or 0.00000475 1st Mark More chlorine atoms increases germ-killing power 2nd Mark	no. of mol = volume × concentration = 0.0095 litres × 0.0010 mol t^{-1} = 9.5×10^{-6} mol $ I_2 + 2Na_2S_2O_3 \longrightarrow 2NaI + Na_2S_4O_6 $ $ 1 mol $				
	4.75×10 ⁻⁶ or 0.00000475 1st Mark More chlorine atoms increases germ-killing power	no. of mol = volume × concentration = 0.0095 litres × 0.0010 mol t^{-1} = 9.5×10^{-6} mol $ I_2 + 2Na_2S_2O_3 \longrightarrow 2NaI + Na_2S_4O_6 $ $ 1 mol $				
	4.75×10 ⁻⁶ or 0.00000475 1st Mark More chlorine atoms increases germ-killing power 2nd Mark Longer carbon chain	no. of mol = volume × concentration = 0.0095 litres × 0.0010 mol t^{-1} = 9.5 x 10^{-6} mol				
12a(i)	4.75×10 ⁻⁶ or 0.00000475 1st Mark More chlorine atoms increases germ-killing power 2nd Mark Longer carbon chain increases germ-killing power	no. of mol = volume × concentration = 0.0095 litres × 0.0010 mol t^{-1} = 9.5×10^{-6} mol $ I_2 + 2Na_2S_2O_3 \longrightarrow 2NaI + Na_2S_4O_6 $ $ 1 mol $				
	4.75×10 ⁻⁶ or 0.00000475 1st Mark More chlorine atoms increases germ-killing power 2nd Mark Longer carbon chain increases germ-killing power 2-chloro-4,5-	no. of mol = volume × concentration = 0.0095 litres × 0.0010 mol t^{-1} = 9.5 x 10^{-6} mol $I_2 + 2Na_2S_2O_3 \longrightarrow 2NaI + Na_2S_4O_6$ $1\text{mol} \qquad 2\text{mol}$ $4.75\text{x}10^{-6}\text{mol} \qquad 9.5\text{x}10^{-6}\text{mol}$ $Compound \qquad Phenol \qquad 2-chlorophenol \qquad 2,4-dichlorophenol \qquad 2,4,6-trichlorophenol \qquad 0,0 \text{ of Chlorine atoms} \qquad 0 \qquad 1 \qquad 2 \qquad 3 \qquad 3$				
12a(i)	4.75×10 ⁻⁶ or 0.00000475 1st Mark More chlorine atoms increases germ-killing power 2nd Mark Longer carbon chain increases germ-killing power	no. of mol = volume × concentration = 0.0095 litres × 0.0010 mol $t^2 = 9.5 \times 10^{-6}$ mol				

12b(i)	126.9	1mol 78g 117g 117kg	→ C ₆ H ₅ OH + Na ₂ SO ₃ + 2H ₂ O 1mol 94g 94g × 117/78 = 141g 141kg Yield × Theoretical 100 = $\frac{90 \times 141 \text{kg}}{100}$ = 126.9kg
12b(ii)	propanone	C ₃ H ₆ O has two possible struct Propanone HOH H—C—C—C—H H H	rures. propanal H H C-C-C-C H H nydroperoxide are attached to