M 361K: Real Analysis

Ishan Shah

Fall 2022

Contents

1	August 25 1 1.1 Algebraic Axioms 1.2 Order Axioms 2
2	August 30 3 2.1 Upper and Lower Bounds 4 2.2 Completeness Axiom 4
1	August 25
1.	1 Algebraic Axioms
$\forall a$	$a,b,c\in\mathbb{R}$
	$\bullet (A1) a + b = b + a.$
	• (A2) $(a+b) + c = a + (b+c)$.
	• (A3) \exists an element $o \in \mathbb{R}$ such that $a + o = o + a = a$.
	• (A4) For each element $a \in \mathbb{R}$, \exists an element $(-a) \in \mathbb{R}$ such that $a + (-a) = 0$.
	• (M1) $ab = ba$.
	• (M2) $(ab)c = a(bc)$.
	• (M3) \exists an element $1 \in \mathbb{R}$ such that $a * 1 = 1 * a = a$.
	• (M4) For each element $a \in \mathbb{R} \setminus 0$, \exists an element $\frac{1}{a} \in \mathbb{R}$ such that $a * \frac{1}{a} = \frac{1}{a} * a = 1$.
	• (D) $a * (b + c) = a * b + a * c$.
	\Rightarrow If $a - b$ and $c - d$ then $a + c - b + d$ and $a * c - b * d$ (assumed properties of equality)

Proofs $\forall x, y, z \in \mathbb{R}$

• If x + z = y + z then x = y.

$$x + z = y + z \quad (A4)$$

$$(x + z) + (-z) = (y + z) + (-z) \quad (A2)$$

$$x + (z + (-z)) = y + (z + (-z)) \quad (A4)$$

$$x + 0 = y + 0 \quad (A3)$$

$$x = y$$

• For any $x \in \mathbb{R}$, x * 0 = 0

$$x * 0 = x * (0 + 0)$$

$$x * 0 = x * 0 + x * 0$$

$$x * 0 + (-x * 0) = (x * 0 + x * 0) + (-x * 0)$$

$$0 = x * 0 + (x * 0 + (-x * 0))$$

$$= x * 0 + 0$$

$$= x * 0$$

• -1 * x = -x i.e. x + (-1) * x = 0

$$x + (-1) * x = x + x * (-1)$$

$$= x * 1 + x * (-1)$$

$$= x * (1 + (-1))$$

$$= x * 0$$

$$= 0$$

• **Theorem:** $\forall x, y \in \mathbb{R}, \ x * y = 0 \iff x = 0 \lor y = 0 \text{ (zero-product property)}.$ **Proof:** Let $x, y \in \mathbb{R}$, if x = 0 or y = 0, then x * y = 0. Suppose $x \neq 0$, then we must show y = 0. Since $x \neq 0$, $\frac{1}{x}$ exists. Thus, if:

$$xy = 0$$

$$\frac{1}{x} * (xy) = \frac{1}{x} * 0$$

$$(\frac{1}{x} * (xy)) * y = 0$$

$$1 * y = 0$$

$$y = 0 \blacksquare$$

1.2 Order Axioms

 $\forall x, y \in \mathbb{R}$

• (O1) One of x < y, x > y or x = y is true.

- (O2) If x < y and y < z, then x < z.
- (O3) If x < y then x + z < y + z.
- (O4) If x < y and z > 0 then xz < yz.

Proofs

• If x < y then -y < -x

$$x < y$$

$$x + (-x + -y) < y + (-x + -y)$$

$$(x + -x) + -y < (y + -y) + -x$$

$$0 + -y < 0 + -x$$

$$-y < -x$$

• Theorem: If x < y and z > 0 then xz > yz.

Proof: If x < y and z > 0 then -z > 0. Thus, x(-z) < y(-z). But,

$$x(-z) = x(-1 * z)$$

$$= (x * -1) * z$$

$$= (-1 * x) * z$$

$$= -1(x * z)$$

$$= -x * z$$

Similarly, y(-z) = -y * z. Thus, -x * z < -y * z, so xz > yz.

 $\implies \mathbb{R}$ is an ordered field. Reals are complete, rationals are not.

2 August 30

Theorem: $\sqrt{2}$ is irrational.

Proof: Suppose not. Suppose that $\sqrt{2}$ is rational. Then $\exists m, n \in \mathbb{Z}$ such that $\sqrt{2} = \frac{m}{n}, n \neq 0$ and m and n share no common factors. Then,

$$2 = \frac{m^2}{n^2}$$
$$2n^2 = m^2$$

Thus, m^2 is even and m is even. Then, m=2k for some $k \in \mathbb{Z}$. But, by substituting m=2k into the above equation, we get

$$2n^2 = (2k)^2$$
$$2n^2 = 4k^2$$
$$n^2 = 2k^2$$

Thus, n^2 is even, so n is even. So, n is a perfect square, which is a contradiction. Thus, $\sqrt{2}$ is irrational. \blacksquare

2.1 Upper and Lower Bounds

Theorem: Let S be a subset of \mathbb{R} . If there exists a real number m such that $m \geq s \forall s \in S$, m is called an **upper bound** for S. If $m \leq s \forall s \in S$, m is called a **lower bound** for S. **Minimums** and **maximums** must exist in the set to be valid.

$$T = \{ q \in \mathbb{Q} \mid 0 \le q \le \sqrt{2} \}$$

• Lower bound: -420, -1

• Upper bound: 100, 5, 2

• Minimum: 0

• Maximum: No max

Because rationals are not complete, there is no upper bound for T.

Supremum: The least upper bound of a set is called the supremum of the set.

Infimum: The greatest lower bound is called the infimum of the set.

2.2 Completeness Axiom

Completeness Axiom: Every nonempty subset of \mathbb{R} that is bounded above has a least upper bound. That is, sup S exists and is a real number.

Theorem: The set of natural numbers \mathbb{N} is unbounded above.

Proof: Suppose not. Suppose that \mathbb{N} is bounded above. If \mathbb{N} were bounded above, it must have a supremum m. Since $\sup \mathbb{N} = m$, m-1 is not an upper bound. Thus, $\exists n_0 \in \mathbb{N}$ such that $n_0 > m-1$. But then, $n_0 + 1 > m$. This is a contradiction since $n_0 + 1 \in N$. Thus, N is unbounded above. \blacksquare

Theorem: If A and B are nonempty subsets of \mathbb{R} , let $C = \{x + y \mid x \in A, y \in B\}$. If $\sup A$ and $\sup B$ exist, then $\sup C = \sup A + \sup B$.

Proof: Let $\sup A = a$ and $\sup B = b$. Then if $z \in C, z = x + y$ for some $x \in A, y \in B$. Then,

$$z=x+y\leq a+b=\sup A+\sup B$$

By the completeness axiom, \exists a least upper bound of $C, c = \sup C$. It must be that $c \le a + b$, so we must show $c \ge a + b$. Let $\epsilon > 0$. Since $a = \sup A$, $a - \epsilon$ is not an upper bound for A. $\exists x \in A$ such that $a - \epsilon < x$. Likewise, $\exists y \in B$ such that $b - \epsilon < y$. Then,

$$(a - \epsilon) + (b - \epsilon) = a + b - 2 * \epsilon < x + y \le c$$

Thus, $a + b < c + 2 * \epsilon \forall \epsilon > 0$. So, $a + b \le c$: c = a + b.