Mole Concept

DPP-4 Solutions

Ashish Bibyan B.Tech (IIT Delhi)

Referral Code: ABSIRLIVE

1. 57.28mL

Sol. Moles of oxalic acid = $\frac{3.225}{90} = 0.0358$

5 moles of oxalic acid reacts with 2 moles $${\rm of}\ {\rm KMnO_4}$$

0.0358 moles of oxalic acid reacts with = 0.01432 moles of $KMnO_4$

$$V = \frac{0.01432}{0.250} = 0.05728L$$

= 57.28 mL

- 2. 1.3925 M
- **Sol.** $2\text{NaOH} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2\text{H}_2\text{O}$ moles of NaOH = 0.3

Let conc. of $H_2SO_4 = M$

 \Rightarrow Moles of H₂SO₄ = 0.1 M

1 mole of $\rm H_2SO_4$ reacts with 2 moles of NaOH (0.1M) moles $\rm H_2SO_4$ reacts with (0.2 M) moles of NaOH

NaOH left = (0.3 - 0.2 M) moles

NaOH + HCl → NaCl + H₂O

1 mole of NaOH reacts with 1 mole of HCl

 \Rightarrow moles of HCl = 0.5 × 0.043 = 0.0215 moles

 $\therefore 0.3 - 0.2 \text{ M} = 0.0215$

M = 1.3925M

- 3. 66.67 mL
- **Sol.** $HCl + NaHCO_3 \rightarrow NaCl + CO_2 + H_2O$

moles of NaHCO₃ =
$$\frac{16.8}{84}$$
 = 0.2

1 moles of NaHCO3 reacts with 1 mole of HCl

.. moles of HCl = 0.2 moles

 \therefore 3 × V = 0.2

V = 66.67 mL.

- 4. 450 mL
- **Sol.** $M_1V_1 = M_2V_2$

 $200 \times 0.65 = 0.2 \times V$

v = 650mL

 \Rightarrow H₂O added = 650 - 200 = 450mL

- 5. 1.25 M
- **Sol.** $M_1V_1 + M_2V_2 = MV$

 $(2\times4) + (3\times1.5) = 10 \times M$

M = 1.25 M

- **6.** 426 ml
- **Sol.** $M_1V_1 = M_2V_2$ $70 \times 0.0913 = 0.0150 \times V_2$ $V_2 = 426 \text{ mL}$

- 7. 2.14L of 0.4M solution
- Sol. Let Volume of 2.5 M NaOH = VL
 - \Rightarrow Volume of 0.4 M NaOH = (3 V) L

 $\mathbf{M}_{1}\mathbf{V}_{1} + \mathbf{M}_{2}\mathbf{V}_{2} = \mathbf{M}\mathbf{V}$

 \therefore 2.5V + 0.4 (3 - V) = 3 × 1

 \Rightarrow V = 0.857L

⇒ Volume of 2.5M NaOH = 0.857L

Volume of 0.4M NaOH = 2.14L

- 8. (a) $0.8M \text{ Na}^+$, $0.8M \text{ Cl}^-$
 - (b) 0.8M Ba²⁺, 1.6M Cl⁻
 - (c) 3.6M Na⁺, 3.6M Cl⁻
 - (d) 1.6M Ba2+, 3.2M Cl-,
 - (e) 1.8M Na+, 1.6M Ba2+, 5M Cl-.
- **Sol.** (a) $M_1V_1 = M_2V_2$

$$200 \times 2 = 500 \times M$$
 $M_{NaCl} = 0.8M$

 \Rightarrow [Na⁺] = 0.8M

 $[Cl^{-}] = 0.8 \text{ M}$

(b) $M_1V_1 = M_2V_2$

$$200 \times 2 = 500 \times M$$
 $M_{BaCl_2} = 0.8M$

 \Rightarrow [Ba⁺²] = 0.8M

 $[Cl^-] = 1.6M$

(c) $M_1V_1 + M_2V_2 = MV$

 $200 \times 3 + 300 \times 4 = 500 \times M$

 \Rightarrow M_{NaCl} = 3.6M

 $[Na^{+}] = 3.6M$

 $[C1^{-}] = 3.6M$

(d) M₁V₁ + M₂V₂ = MV

 $200 \times 2 + 400 \times 3 = M \times 1000$

$$\Rightarrow$$
 M_{BaCl_2} = 1.6M

 $[Ba^{+2}] = 1.6M$

$$[C1^-] = 1.6 \times 2 = 3.2M$$

(e) moles of NaCl = $3 \times 0.3 = 0.9$ mol.

moles of $BaCl_2 = 4 \times 0.2 = 0.8$ mol.

 \Rightarrow moles of Na⁺ = 0.9 mol

moles of Ba⁺² = 0.8 mol

moles of $Cl^- = 0.9 + 2 \times 0.8 = 2.5$ mol

$$[\text{Na}^+] = \frac{0.9}{0.5} = 1.8 \text{ M}$$

$$[Ba^{+2}] = \frac{0.8}{0.5} = 1.6M$$

$$[Cl^-] = \frac{2.5}{0.5} = 5M$$

9. 56.03mL

Sol. we are diluting 95% alcohol to 30% alcohol by wt.
⇒ Mass of solute will remain same
Lets assume we have V' mL of 95% alcohol by wt.
Mass of solution = (0.809V) g
100g solution contains = 95g alcohol
(0.809V)g solution contains = (0.768V)g alcohol
Now same mass of alcohol will be present in 30% alcohol by wt.
mass of soln. = 150 × 0.957g

mass of soln. =
$$150 \times 0.957g$$

= $143.5g$

100g solution contains = 30g alcohol 143.5g solution contains = 43.05g \therefore 0.768V = 43.05 V = 56.05 mL

10. 0.08865g

11. 0.9375 g

+
$$\rm{H_2O}$$
 (ℓ)

1 mol of CaCO₃ react with = 2 moles of HCl.

moles of HCl = $0.75 \times 25 \times 10^{-3} = 0.01875$

2 moles of HCl react with = 1 mol CaCO₃

0.01875 moles of HCl react with
= 9.375×10^{-3} moles of CaCO₃

Sol. $CaCO_3$ (s) + 2HCl (aq) \rightarrow $CaCl_2$ (aq) + CO_2 (g)

mass of $CaCO_3 = 9.375 \times 10^{-3} \times 100$ = 0.9375 g

12. (b)

.
$$C_6H_5COOH + CH_3OH \rightarrow C_6H_5COOCH_3 + H_2O$$

mass of $CH_3OH = 70 \times 0.79$
= 55.3g
122 g $C_6H_5COOH \equiv 32$ g CH_3OH
24.4 g $C_6H_5COOH \equiv 6.4$ g CH_3OH
 C_6H_5COOH is the LR.
122 g C_6H_5COOH gives $\equiv 136$ g ester
24.4 g C_6H_5COOH gives $\equiv 27.2$ g ester
% yield $= \frac{21.6}{27.2} \times 100 = 79.4\%$

13. (c)

Sol. $90g\ H_2SO_4$ is present in 100g solution \Rightarrow mass of solute = 90g moles of solute = 90/98 mol ρ_{soln} = 1.8g/mL

$$\rho_{soln.} \frac{mass\ of\ solution}{volume\ of\ solution}$$

$$1.8 = \frac{100}{V_{\rm soln.}}$$

 $V_{\text{soln.}} = 55.55 \text{mL}$

Molarity =
$$\frac{90/98}{55.55 \times 10^{-3}}$$
 = 16.5M

$$M_1V_1 = M_2V_2$$

 $16.5 \times V = 0.2 \times 1$
 $V = 0.012L = 12 \text{ mL}$

14. (a

Sol. conc. of Na⁺ would be due to NaCl only $M_1V_1 = M_2V_2$ $200 \times 5 = M (100 + 200)$ M = 10/3

$$ppm = \frac{mass \ of \ solute}{mass \ of \ solution} \times 10^6 = \frac{23}{300} \times 10^6$$

= 76666.65 ppm