Examen Final de Théorie des Graphes

Exercice 1. (9 points)

Soit le graphe orienté G = (X, U) dont la matrice d'adjacence M est donnée ci-dessous :

	1	2	3	4	5	6	7	8
1	0	0	0	0	0	1	0	0
2	0	0	0	0	0	0	1	0
3	0	0	0	1	0	1	1	0
4	1	0	0	0	0	0	0	0
5	0	1	0	0	0	0	0	0
6	0	0	0	1	0	0	0	1
7	0	1	0	0	1	1	0	0
8	0	0	0	1	0	0	0	0

- 1. Déterminer si G admet une chaîne Eulérienne. Justifier.
- 2. On dit que Si un graphe G admet un cycle Hamiltonien, Alors pour tout sous ensemble de sommets S, on a : $p(G_{X-S}) \leq |S|$, où $p(G_{X-S})$ est le nombre de composantes connexes du sous graphe de G induit par l'ensemble X-S. Montrer que G n'admet pas de cycle Hamiltonien.
- 3. Donner la matrice de fermeture transitive \hat{M} .
- 4. Trouver les composantes fortement connexes (c.f.c.) de G puis tracer le graphe réduit G_R .
- 5. On ajoute des poids aux arcs comme le montre le tableau ci-dessous. Appliquer l'algorithme le plus adéquat pour calculer les chemins de poids minimaux à partir du sommet 3.

	1	2	3	4	5	6	7	8
1						1		
2							3	
2 3 4 5 6				4		9	2	
4	1							
5		1						
6				2				1
7		3			2	1		
8				3				

Exercice 2. (7 points)

Soit un projet constitué des huit (8) tâches décrites dans le tableau ci-dessous :

N° Tâche	Durée en jours	Tâches précédentes		
1	2	-		
2	3	-		
3	7	-		
4	4	2		
5	10	1		
6	6	1, 4		
7	5	1, 3		
8	2	5, 6, 7		

- 1. Modéliser le problème sous forme d'un graphe potentiel tâches.
- 2. Calculer les dates au plus tôt et les dates au plus tard de chaque tâche.
- 3. Calculer la marge totale pour chaque tâche et déduire les tâches critiques ainsi que le chemin critique.

Exercice 3. (4 points)

Soit la matrice A (4x4), composée de 4 sous-matrices (2x2).

Il est demandé de la remplir par des valeurs dans l'ensemble {1, 2, 3, 4}, tel que les valeurs soient distinctes :

- Sur chaque ligne de la matrice *A*.
- Sur chaque colonne de la matrice *A*.
- Dans chaque sous-matrice de A.

Comme l'illustre l'exemple ci-dessous :

1	4	3	2
2	3	4	1
3	2	1	4
4	1	2	3

- 1. Présenter le problème sous forme de graphe.
- 2. Décrire une méthode de résolution.