

1.1 Definiciones

Definición 1.1 (Divisibilidad)

Sean a, b enteros con $b \neq 0$. Decimos que b divide a a si existe un entero ctal que a = bc. Si b divide a a escribimos bla

1.2 Teoremas

Teorema 1.1

Sean $a, b, d, p, q \in \mathbb{Z}$.

- 1. Si d|a y d|b entonces d|(ax+by) para cualquier $x, y \in \mathbb{Z}$
- 2. Si $a, b \in \mathbb{Z}$, $a|b \ y \ b|a \Longrightarrow |a| = |b|$

1.3 Ejemplos

Sean $a, b, d \in \mathbb{Z}$. Muestre que si a | d y d | b entonces a | b

Solución: Si $a|d \wedge d|b \implies d = k_1 a \wedge b = k_2 d$, $conk_1, k_2 \in \mathbb{Z}$. Luego

$$b = k_2d = k_2(k_1a) \implies a|b$$

1.1 Definiciones

Definición 1.1 (Divisibilidad)

Sean a, b enteros con $b \neq 0$. Decimos que b divide a a si existe un entero ctal que a = bc. Si b divide a a escribimos bla

1.2 Teoremas

Teorema 1.1

Sean $a, b, d, p, q \in \mathbb{Z}$.

- 1. Si $d|a \ y \ d|b$ entonces d|(ax+by) para cualquier $x, y \in \mathbb{Z}$
- 2. Si $a, b \in \mathbb{Z}$, $a|b \ y \ b|a \Longrightarrow |a| = |b|$

1.3 Ejemplos

Sean $a, b, d \in \mathbb{Z}$. Muestre que si a|d y d|b entonces a|b

Solución: Si $a|d \wedge d|b \implies d = k_1 a \wedge b = k_2 d$, $conk_1, k_2 \in \mathbb{Z}$. Luego

$$b = k_2 d = k_2(k_1 a) \implies a|b$$

1.1 Definiciones

Definición 1.1 (Divisibilidad)

Sean a, b enteros con $b \neq 0$. Decimos que b divide a a si existe un entero ctal que a = bc. Si b divide a a escribimos b a

1.2 Teoremas

Teorema 1.1

Sean $a, b, d, p, q \in \mathbb{Z}$.

- Si d|a y d|b entonces d|(ax+by) para cualquier x, y ∈ Z
- 2. Si $a, b \in \mathbb{Z}$, $a|b \ y \ b|a \Longrightarrow |a| = |b|$

1.3 Ejemplos

Sean $a, b, d \in \mathbb{Z}$. Muestre que si $a \mid d$ y $d \mid b$ entonces $a \mid b$

Solución: Si $a|d \wedge d|b \implies d = k_1 a \wedge b = k_2 d$, $conk_1, k_2 \in \mathbb{Z}$. Luego

$$b = k_2d = k_2(k_1a) \implies a|b$$