In [1]: import pandas as pd import numpy as np

In [2]: a=pd.read_csv(r"C:\All Datasets\train.csv")
a

Out[2]:

	ID	Customer_ID	Month	Name	Age	SSN	Occupation	Annual_Income	Мо	
0	5634	3392	1	Aaron Maashoh	23.0	821000265.0	Scientist	19114.12		
1	5635	3392	2	Aaron Maashoh	23.0	821000265.0	Scientist	19114.12		
2	5636	3392	3	Aaron Maashoh	23.0	821000265.0	Scientist	19114.12		
3	5637	3392	4	Aaron Maashoh	23.0	821000265.0	Scientist	19114.12		
4	5638	3392	5	Aaron Maashoh	23.0	821000265.0	Scientist	19114.12		
		•••								
99995	155625	37932	4	Nicks	25.0	78735990.0	Mechanic	39628.99		
99996	155626	37932	5	Nicks	25.0	78735990.0	Mechanic	39628.99		
99997	155627	37932	6	Nicks	25.0	78735990.0	Mechanic	39628.99		
99998	155628	37932	7	Nicks	25.0	78735990.0	Mechanic	39628.99		
99999	155629	37932	8	Nicks	25.0	78735990.0	Mechanic	39628.99		
100000 rows x 22 columns										

100000 rows × 28 columns

```
In [3]: |a.isnull().sum()
Out[3]: ID
                                     0
        Customer_ID
                                     0
        Month
                                     0
        Name
                                     0
        Age
                                     0
        SSN
                                     0
        Occupation
                                     0
        Annual_Income
                                     0
        Monthly_Inhand_Salary
                                     0
        Num_Bank_Accounts
                                     0
                                     0
        Num_Credit_Card
                                     0
        Interest Rate
        Num_of_Loan
                                     0
        Type of Loan
                                     0
        Delay_from_due_date
                                     0
        Num_of_Delayed_Payment
                                     0
        Changed_Credit_Limit
                                     0
        Num Credit Inquiries
                                     0
        Credit_Mix
                                     0
        Outstanding Debt
                                     0
        Credit Utilization Ratio
                                     0
        Credit History Age
                                     0
        Payment of Min Amount
                                     0
        Total EMI per month
                                     0
        Amount invested monthly
                                     0
        Payment_Behaviour
                                     0
                                     0
        Monthly Balance
        Credit Score
        dtype: int64
In [4]: | from sklearn.preprocessing import LabelEncoder
        l=LabelEncoder()
        a["Name"]=1.fit transform(a["Name"])
        a["Occupation"]=1.fit transform(a["Occupation"])
        a["Credit_Mix"]=1.fit_transform(a["Credit_Mix"])
        a["Payment_of_Min_Amount"]=1.fit_transform(a["Payment_of_Min_Amount"])
        a["Payment_Behaviour"]=1.fit_transform(a["Payment_Behaviour"])
        a["Type_of_Loan"]=1.fit_transform(a["Type_of_Loan"])
In [5]: a["Credit_Score"].unique()
Out[5]: array(['Good', 'Standard', 'Poor'], dtype=object)
In [6]: | a["Credit_Score"]=a["Credit_Score"].map({"Good":10,"Standard":20,"Poor":30})
```

In [7]: a

Out[7]:

	ID	Customer_ID	Month	Name	Age	SSN	Occupation	Annual_Income	Month
0	5634	3392	1	11	23.0	821000265.0	12	19114.12	
1	5635	3392	2	11	23.0	821000265.0	12	19114.12	
2	5636	3392	3	11	23.0	821000265.0	12	19114.12	
3	5637	3392	4	11	23.0	821000265.0	12	19114.12	
4	5638	3392	5	11	23.0	821000265.0	12	19114.12	
99995	155625	37932	4	6508	25.0	78735990.0	9	39628.99	
99996	155626	37932	5	6508	25.0	78735990.0	9	39628.99	
99997	155627	37932	6	6508	25.0	78735990.0	9	39628.99	
99998	155628	37932	7	6508	25.0	78735990.0	9	39628.99	
99999	155629	37932	8	6508	25.0	78735990.0	9	39628.99	

100000 rows × 28 columns

```
In [8]: | x=a.iloc[:,:-1].values
         y=a.iloc[:,-1].values
 In [9]: | from sklearn.preprocessing import StandardScaler
         s=StandardScaler()
         x1=s.fit_transform(x)
In [10]: a["Credit_Score"].value_counts()
Out[10]: 20
               53174
               28998
         30
               17828
         10
         Name: Credit_Score, dtype: int64
In [11]: from imblearn.over_sampling import SMOTE
         sm=SMOTE()
         X,Y=sm.fit_resample(x1,y)
In [12]: from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(X,Y,random_state=20,test_size=0.2)
```

```
In [13]: from sklearn.neighbors import KNeighborsClassifier
         kn=KNeighborsClassifier(n neighbors=5,metric="minkowski",p=2)
         kn.fit(x_train,y_train)
Out[13]: KNeighborsClassifier()
In [14]: from sklearn.tree import DecisionTreeClassifier
         d=DecisionTreeClassifier()
         d.fit(x_train,y_train)
Out[14]: DecisionTreeClassifier()
In [15]: | from sklearn.linear_model import LogisticRegression
         lr=LogisticRegression()
         lr.fit(x_train,y_train)
Out[15]: LogisticRegression()
In [16]: from sklearn.ensemble import VotingClassifier
         vc=VotingClassifier(estimators=[("Knn",kn),("Dec.Tree",d),("log.reg",lr)])
         vc.fit(x_train,y_train)
Out[16]: VotingClassifier(estimators=[('Knn', KNeighborsClassifier()),
                                       ('Dec.Tree', DecisionTreeClassifier()),
                                       ('log.reg', LogisticRegression())])
In [17]: p1=vc.predict(x_test)
In [18]: p1
Out[18]: array([20, 30, 10, ..., 30, 20, 20], dtype=int64)
In [19]: from sklearn.metrics import accuracy score
         accuracy_score(p1,y_test)*100
Out[19]: 82.37266886068014
In [20]: from sklearn.model_selection import StratifiedKFold
         sk=StratifiedKFold(n splits=5,random state=20,shuffle=True)
         sk.get_n_splits(x_train,y_train)
Out[20]: 5
In [21]: | from sklearn.model_selection import cross_val_score
         from sklearn.model selection import cross val predict
         from sklearn.metrics import accuracy score
```

```
In [22]: scores=cross_val_score(vc,x_train,y_train)
    pred=cross_val_predict(vc,x_test,y_test)
    print((scores)*100)
    print(pred)
    pred2=accuracy_score(pred,y_test)*100
    print(pred2)

[81.69565899 81.37047485 81.99271246 81.828155 81.62049916]
    [20 30 10 ... 30 20 20]
    75.17943895941075
In []:
```