

HGM-133-A

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Yamada et al.
Serial Number: Unknown
Filed: Concurrently herewith
Group Art Unit: Unknown
Examiner: Unknown
Confirmation No.: Unknown
Title: VEHICLE STEERING DAMPER, STEERING DAMPER KIT FOR MOTORCYCLE, AND MOTORCYCLE INCORPORATING SAME

TRANSMITTAL OF PRIORITY DOCUMENTS

Commissioner For Patents
PO Box 1450
Alexandria, VA 22313-1450

Sir:

In connection with the identified application, applicant encloses for filing certified copies of: Japanese Patent Application 2003-079158 and Japanese Patent Application 2003-079156, both filed on 20 March 2003, to support applicant's claim for Convention priority under 35 USC §119.

Respectfully submitted,

Joseph P. Carrier
Attorney for Applicant
Registration No. 31,748
(248) 344-4422

Customer Number 21828
Carrier, Blackman & Associates, P.C.
24101 Novi Road, Suite 100
Novi, Michigan 48375
09 March 2004

I hereby certify that this correspondence is being deposited with the U.S. Postal Service as Express Mail Certificate ET986049630US in an envelope addressed to Mail Stop Patent Application, Commissioner For Patents, PO Box 1450, Alexandria VA 22313-1450 on 09 March 2004.

Dated: 09 March 2004
JPC/km
enclosures

Kathryn MacKenzie

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 2003年 3月20日
Date of Application:

出願番号 特願2003-079158
Application Number:

[ST. 10/C] : [JP2003-079158]

出願人 本田技研工業株式会社
Applicant(s):

2004年 1月19日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

【書類名】 特許願
【整理番号】 H103038501
【提出日】 平成15年 3月20日
【あて先】 特許庁長官 殿
【国際特許分類】 B62K 21/08
【発明の名称】 自動二輪車におけるステアリングダンパの取付構造
【請求項の数】 2
【発明者】
【住所又は居所】 埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内
【氏名】 山田 慎一
【特許出願人】
【識別番号】 000005326
【氏名又は名称】 本田技研工業株式会社
【代理人】
【識別番号】 100064908
【弁理士】
【氏名又は名称】 志賀 正武
【選任した代理人】
【識別番号】 100108578
【弁理士】
【氏名又は名称】 高橋 詔男
【選任した代理人】
【識別番号】 100101465
【弁理士】
【氏名又は名称】 青山 正和

【選任した代理人】**【識別番号】** 100094400**【弁理士】****【氏名又は名称】** 鈴木 三義**【選任した代理人】****【識別番号】** 100107836**【弁理士】****【氏名又は名称】** 西 和哉**【選任した代理人】****【識別番号】** 100108453**【弁理士】****【氏名又は名称】** 村山 靖彦**【手数料の表示】****【予納台帳番号】** 008707**【納付金額】** 21,000円**【提出物件の目録】****【物件名】** 明細書 1**【物件名】** 図面 1**【物件名】** 要約書 1**【包括委任状番号】** 9705358**【プルーフの要否】** 要

【書類名】 明細書

【発明の名称】 自動二輪車におけるステアリングダンパの取付構造

【特許請求の範囲】

【請求項1】 ハウジング内の油室を2つに区画するベーンの揺動時に前記2つの油室間を作動油が流通することで減衰力を発生させるとともに、前記ベーンの基部を固定状態に連結させながら前記ハウジングに対して前記ベーンを揺動可能に支持するシャフトを有してなるロータリ式のステアリングダンパと、該ロータリ式のステアリングダンパの減衰力を可変する油圧制御弁とを備え、前記ハウジングを車体フレーム側と操舵系側のいずれか一方に取り付けるとともに、前記シャフトを前記車体フレーム側と前記操舵系側の他方に取り付け、前記ハウジングをトップブリッジの上方に配置した自動二輪車におけるステアリングダンパの取付構造において、

前記ハウジングを前記トップブリッジより後方へ延出させるとともに、その延出部の下方に前記油圧制御弁の駆動手段を配置したことを特徴とする自動二輪車におけるステアリングダンパの取付構造。

【請求項2】 前記ハウジングが車体フレーム側に取り付けられ、

前記シャフトが操舵系側に取り付けられていることを特徴とする請求項1記載の自動二輪車におけるステアリングダンパの取付構造。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は自動二輪車におけるステアリングダンパの取付構造に関するものである。

【0002】

【従来の技術】

従来の自動二輪車におけるステアリングダンパの取付構造として、ハウジング内の油室を2つに区画するベーンの揺動時に2つの油室間を作動油が流通することで減衰力を発生させるとともに、ベーンの基部を固定状態に連結させながらハウジングに対してベーンを揺動可能に支持するシャフトを有してなるロータリ式

のステアリングダンパと、このロータリ式のステアリングダンパの減衰力を可変する油圧制御弁とを備え、ハウジングを操舵系に取り付けるとともに、シャフトを車体フレーム側に取り付けたものが知られている（例えば、特許文献1参照。）。

【0003】

【特許文献1】

特開2002-302085号公報（第3頁左欄、図2、図3）

【0004】

【発明が解決しようとする課題】

上述した従来の自動二輪車におけるステアリングダンパの取付構造にあっては次に示す課題があった。

すなわち、ロータリ式のステアリングダンパはトップブリッジの上方に取り付けられているが、実際には、減衰力調整用として、ハウジング内の2つの油室を連通する通路に設けられた油圧制御弁を駆動制御するため、例えばソレノイド等の駆動手段を設ける必要があった。ところが、駆動手段は比較的大きな配置スペースを要するのに対し、前記ロータリ式のステアリングダンパが配置されるトップブリッジの上方位置は、後方に燃料タンクが迫った状態で配置されるとともに前方にイグニッションスイッチが配置されるきわめて狭いスペースであり、しかも、操舵系を構成するトップブリッジやフロントフォーク等可動する種々の部品が配置される個所であり、このような狭小でかつ種々の可動部品が配置される個所に、大きな配置スペースを要する駆動手段を配置するのは非常に困難であるという課題があった。

【0005】

上記事情に鑑みてなされたもので、本発明の目的とするところは、減衰力調整用としての油圧制御弁を駆動制御するための比較的大きな配置スペースを要する駆動手段を容易に配置できる、自動二輪車におけるステアリングダンパの取付構造を提供しようすることにある。

【0006】

【課題を解決するための手段】

上記課題を解決するために、請求項1記載の自動二輪車におけるステアリングダンパの取付構造は、ハウジング（例えば、実施形態におけるハウジング52）内に2つに油室（例えば、実施形態における油室74a、74b）を区画するベーン（例えば、実施形態におけるベーン75）の揺動時に2つの油室間を作動油が流通することで減衰力を発生させるとともに、ベーンの基部を固定状態に連結させながらハウジングに対してベーンを揺動可能に支持するシャフト（例えば、実施形態におけるシャフト53）を有してなるロータリ式のステアリングダンパ（例えば、実施形態におけるステアリングソレノイド51）と、該ロータリ式のステアリングダンパの減衰力を可変する油圧制御弁（例えば、実施形態における油圧制御弁68）とを備え、前記ハウジングを車体フレーム（例えば、実施形態における車体フレーム2）側と操舵系（例えば、実施形態における操舵系50）側のいずれか一方に取り付けると共に、前記シャフトを前記車体フレーム側と前記操舵系の他方に取り付け、前記ハウジングをトップブリッジ（例えば、実施形態におけるトップブリッジ49）の上方に配置した自動二輪車におけるステアリングダンパの取付構造において、

前記ハウジングを前記トップブリッジより後方へ延出させるとともに、その延出部（例えば、実施形態における延出部52a）の下方に前記油圧制御弁の駆動手段（例えば、実施形態におけるリニアソレノイド69）を配置している。

【0007】

また、請求項2記載の自動二輪車におけるステアリングダンパは、請求項1記載のものにおいて、ハウジングが車体フレーム側に取り付けられ、前記シャフトが操舵系側に取り付けられている。

【0008】

一般に、自動二輪車では、トップブリッジとその後方に配置される燃料タンクとの間に隙間が形成されているが、この発明においては、この隙間の有効利用を図るために、トップブリッジより後方へ延出するようにハウジングを配置し、しかも、このトップブリッジより後方へ延出する延出部の下方に油圧制御弁の駆動手段を配置している。これにより、トップブリッジと燃料タンクとの間の隙間の有効利用が図れる他、駆動手段がハウジングから上方へ突出することなく、該駆

動手段とトップブリッジ近傍の可動部材とが干渉するのを回避できる。

また、ハウジングを車体フレーム側に取り付け、シャフトを操舵系側に取り付る場合には、ハウジング並びに駆動手段を車体フレーム側に固定するにほかならず、この場合、ハウジングを可動側である操舵系側に取り付けるのに比べて、車体フレーム側の逃げを小さくすることができる。

【0009】

【発明の実施の形態】

本発明に係る自動二輪車におけるステアリングダンパの取付構造を図面を参照しつつ以下に説明する。なお説明中、前後および左右といった方向の記載は、車体を基準にしたものとする。

【0010】

図1に示すように、自動二輪車1は略中央に車体フレーム2が設けられ、車体フレーム2の前端に設けられたヘッドパイプ3には、前輪4を支持するフロントフォーク5がステアリングシステム6を介して操舵可能に支持される。車体フレーム2のヘッドパイプ3からはメインフレーム7が左右に分かれて斜め後下方へ延び、その後屈曲部を経て下方へ延びるように設けられている。メインフレーム7の下方へ延びる箇所の略中央前端部はピボット部8が設けられ、このピボット部8によって、後輪9を支持するリアフォーク10が揺動可能に支持される。またリアフォーク10のピボット部8によって支持された箇所の若干後方部分は、リアクッション11及びリンク部12を介してメインフレーム7と連結されている。

【0011】

メインフレーム7の後方にはシートフレーム13が連結される。メインフレーム7の上方には燃料タンク14が配設され、メインフレーム7の下方には、水冷式並列四気筒型エンジンのエンジン本体15が配設される。メインフレーム7の前部からはエンジンハンガ16が下方に向かって延出され、このエンジンハンガ16は、メインフレーム7に設けられた他のエンジン本体支持用の取付部とともにエンジン本体15を支持する。

【0012】

燃料タンク14の後方には運転者用のシート17及び搭乗者用のピリオンシート18が各々シートフレーム13に支持される。また、車体フレーム2のピボット部8の後部には運転者用のステップ19が取り付けられ、シートフレーム13の下部には搭乗者用のステップ20が取り付けられる。さらに、フロントフォーク5の上端部には左右一対のハンドル21, 21がトップブリッジ49を介して取り付けられる。

自動二輪車1の車体前部はフロントカウル25により覆われ、シートフレーム13周辺はリアカウル26により覆われる。また、車体フレーム2の左側下部には格納可能なサイドスタンド27が配設され、このサイドスタンド27により自動二輪車1の車体が左側に傾斜した起立状態で支持される。

【0013】

フロントフォーク5の下端部にはブレーキキャリパ28が取り付けられ、前輪4にはブレーキキャリパ28に対応するブレーキロータ29が取り付けられてフロントブレーキ装置30が構成される。また、フロントフォーク5の下端部には前輪4の上方を覆うフロントフェンダ31が取り付けられる。

後輪9の左側にはリアスプロケット32が後輪9と一体的に回転するように取り付けられ、このリアスプロケット32とエンジン本体15の後部左側に配設されるドライブスプロケット33とにドライブチェーン34が掛け回されて、エンジン本体15の駆動力が後輪9に伝達されるようになっている。リアフォーク10の上部には後輪9の上部前側を覆う前側リアフェンダ35が取り付けられ、リアカウル26の下部には後輪9の上部後側を覆うリアフェンダ36が取り付けられる。なお、リアフレーム10には、前輪4のフロントブレーキ装置30と同様の構成を有するリアブレーキ装置が設けられる。

【0014】

エンジン本体15のシリンダ本体40はクランクケース41上にやや前傾した状態で配設される。シリンダ本体40の後部には各気筒に対応するスロットルボディ42が接続され、各スロットルボディ42はメインフレーム7と燃料タンク14との間に配置されたエアクリーナーケース43に接続される。また、シリンダ本体40の前部には各気筒に対応する排気管44が接続される。排気管44は、

シリンドラ本体40の前壁45からその前方に伸びた後に下方に向かって湾曲し、クランクケース41の前方及び下方を通ってエンジン本体15の後方に伸びている。

【0015】

前記ステアリングシステム6、該ステアリングシステム6のボトムブリッジの上方にボトムブリッジと平行に配置されるトップブリッジ49、及びハンドル21等は前輪4を操舵する操舵系50を構成する。この操舵系50と車体フレーム2との間には、ステアリングダンパ51が介装される（図2、図3参照）。

【0016】

ステアリングダンパ51は外乱時のキックバック等によるハンドル21の振れを低減するためのものであって、通常、ロッド式とロータリ式との2種類あるが、ここでは、コンパクト化の面で優れるロータリ式のステアリングダンパ51が用いられている。

【0017】

図2に示すように、ステアリングダンパ51は、ハウジング52と、該ハウジング52の下面部を貫通して外方に突出するシャフト53を有する。ハウジング52は、ヘッドパイプ3と一体に後方へ伸びて設けられた取付部3aに、第1、第2のブラケット54、55を介して取り付けられる。一方、シャフト53はリンク機構56を介してトップブリッジ49に取り付けられる。

【0018】

図4に示すように、第1のブラケット54は、内部がえぐられた略箱形形状となっていて、左右の側壁部54a、54a、底板部54b、及びそれら側板部54a及び底板部54bの後端部に連結された略Y字状の脚部54cを有している。そして、左右の側壁部54a、54aの上面部と脚部54cの上面部には、それぞれ取付孔54d、54d、54dが形成され、これら取付孔54d…を介して前記ステアリングダンパ51がボルト止めされる。また、底板部54bには被取付孔54e、54eが、また、脚部54cには被取付孔54f、54fがそれぞれ形成され、これら被取付孔54e、…を介して第1のブラケット54は、ヘッドパイプ3の取付部3aにボルト止めされる。

【0019】

図5に示すように、第2のブラケット55は、略直方体形状に形成された基部55aと、該基体の両側から上方に向けて張り出す左右の張出部55b、55bを有する。基部55aには、被取付孔55c、55cが第1のブラケット54の被取付孔54f、54fと同軸状となるように形成されている。そして、第2のブラケット55と第1のブラケット54とは共に重ねられた状態で、ともに同軸状とされる被取付孔54fと被取付孔55cに1本のボルトが挿通され、該ボルトによって、第2のブラケット55は第1のブラケット54とともに前記ヘッドパイプ3の取付部3aに取り付けられる。

【0020】

リンク機構56について説明すると、図2及び図3に、図6示すように、ステアリングダンパ51の下方へ突出するシャフト53にはアーム60の一端部60aが取り付けられ、該アーム60の二股に分かれる他端部60bにはボルト61及びこのボルト61の外周に嵌合されるボール部材62等を介して、メガネ状のリンク材63の一端部が球面支持される。また、リンク材63の他端部はトップブリッジ49に形成された取付部49aに、ボルト64及びこのボルト64の外周に嵌合されるボール部材65を介して球面支持される。つまり、アーム60、ボルト61、64、ボール部材62、65、リンク材63によって、トップブリッジの動きをシャフト53に伝えるリンク機構56が構成されている。

【0021】

ステアリングダンパ51のハウジング52は、前記第1、第2のブラケット54、55を介してトップブリッジ49に、その後方へ延出するように取り付けられる。そして、ハウジング52のトップブリッジ49より後方へ延出する延出部52aの下方には、油圧制御弁68を駆動制御する駆動手段の一例であるリニアソレノイド69が配置されている。

【0022】

燃料タンク14の前部には、ステアリングダンパ51及び第1、第2のブラケット54、55との干渉を避けるために、凹部14aが形成されている。なお、図2において、70はヘッドパイプの前方に配置されるイグニッションスイッチ

を示す。

【0023】

図7～図9、図11に示すように、ステアリングダンパ51のハウジング52は、ボディ71とキャップ72からなっている。ボディ71の上面部には扇状の凹部73が形成され、この凹部73はキャップ72によって覆われることで油室74が形成されている。油室74はベーン75によって左右2つの油室74a、74bに区画される。図10に示すように、ベーン75の基部75aは円筒状に形成され、この円筒状部分にはシャフト53が、スライド等の固定手段を介してベーン75と一緒に回転するように固定状態で連結される。そして、このシャフト53によってベーン75はハウジング52に対し揺動可能に支持される。

【0024】

ベーン75の油室74の内周面に対向する上端部、下端部及び後端部には、それらに連続するように溝75bが形成され、これら溝75bには同溝75bの形状に合わせてコ字状に形成されたシール部材76が嵌合されている。ここで、溝75b並びにシール部材76は、シャフト53までは達しておらずその手前まで延びて形成されあるいは嵌合されている。

【0025】

図10に示すように、シャフト53の外周には、ベーン75の基部75aの上下面部に当接するように、シール用のワッシャ77a、77bが嵌合されており、この上下のシール用のワッシャ77a、77bの外周の一部はシール部材76に当接している。つまり、ハウジング52内に区画された2つの油室74a、74bは、シール部材76及びシール用のワッシャ77a、77bによって、互いに液密に保持されるとともに、シャフト53に対しても液密に保持される。

【0026】

シャフト53のシール用のワッシャ77aが嵌合される箇所の上側部分にはブッシュ78が、またシール用のワッシャ77aが嵌合される箇所の下側部分にはサークリップ79がそれぞれ嵌合されている。また、シャフト53の下側のシール用ワッシャ77bが嵌合される箇所の下側部分には、ブッシュ80及びオイルシール81がそれぞれ嵌合される。

【0027】

図10～図12に示すように、前記ハウジング52のボディ71には、左右の油室74a、74bにそれぞれ連通する油通路83、84が、これら油室74a、74bの内周面後端からさらに後方へ延びるようにかつ互いに略平行になるよう形成されている。油通路83、84には逆止弁85、85がそれぞれ介装されている。さらに、油通路83、84の後端部は、それら油通路83、84どうしを連通する油通路86が油通路83、84に略直交するよう形成されている。油通路86は上下方向に配置された油圧制御弁68を介して、油通路86と略直交するよう延びる下段側の油通路87に接続される（図12参照）。油通路87は油室74の下方へ至るよう、油圧制御弁68が設けられた個所から前方へ延びていて、その前端が該油通路87と略直交する油通路88と連通されている。油通路88の左右の両端部近傍にはそれぞれ逆止弁89、89が介装され、油通路87の左右の両先端はさらにボディの側縁側へ延びた後、上方へ立ち上がりて前記左右の油室74a、74bとそれぞれ連通される。つまり、このハウジング52のボディ71には、油通路83、84、86、87、88は上下2段に形成されている。

【0028】

ここで、逆止弁85、89はともに同様な構成である。逆止弁85を例にとって説明すると、バルブボディ85aには、バルブシート85bが設けられるとともにボール85cが収納され、このボール85cはバルブシート85bに当接するよう、スプリング85dによって適宜押圧力をもって付勢されている。逆止弁85によれば、スプリング85dの付勢力に抗してボール85cをバルブシート85bから離間する方向への流体の流れは許容するものの、逆方向の流体の流れは阻止する。ここでは、逆止弁85は、油室74a、74bから作動油が油通路83、84を通って油通路86側へ流れるのを許容するが、逆方向の作動油の流れは阻止する。また、逆止弁89は、作動油が油通路88を通って油室74a、74b側へ戻るのを許容するが、逆方向の作動油の流れは阻止する。

【0029】

図10に示すように、油圧制御弁68は、ステアリングダンパ51の減衰力を

可変するものである。油圧制御弁68は、バルブボディ68aに、バルブシート68bが設けられるとともに、バルブシート68bに対向するようポペット68cが収納されている。ポペット68cは、バルブシート68bから離間するよう、該ポペット68cの底部バネ座とバルブシート68bとの間に介装されたスプリング68dにより適宜押圧力をもって付勢されている。ポペット68cの下端にはプッシュロッド68eの上端が挿入され、プッシュロッド68eの下端はリニアソレノイド69に接続されている。そして、リニアソレノイド69の励磁操作によって、ポペット68cは、スプリング68dの付勢力に抗して、その頭部がバルブシート68cに当接するよう押圧調整される。

【0030】

すなわち、油圧制御弁68によれば、ポペット68cが、その頭部と底部の空間に連通するハウジング52内の左右の油室74a、74bの差圧、スプリング68dの付勢力、及びプッシュロッド68eを介したリニアソレノイド69の励磁力によってその位置が定まり、左右の油室74a、74bの差圧に基づくポペット押圧力とスプリング68dの付勢力との合力が、リニアソレノイド69の励磁力より弱い場合には、ポペット68cがバルブシート68bに当接して当該油圧制御弁68は閉状態となり、左右の油室74a、74bの差圧に基づくポペット押圧力とスプリング68dの付勢力との合力が、リニアソレノイド69の励磁力を超える場合に、ポペット68cがバルブシート68bから離間して、油圧制御弁68は開状態となる。そして、作動油が油圧制御弁68のバルブシート68bとポペット68cとの間の隙間を通過するときに、所定の減衰力が得られるようになっている。

なお、リニアソレノイド69は、車速や車体加速度が増すと、より大きな励磁力が発揮されるように図示せぬ制御部により制御される。

【0031】

図12に示すように、油通路86と油通路87との間にはバイパス油通路91が形成され、このバイパス油通路91にはリリーフバルブ92が介装されている。リリーフバルブ92は、バルブボディ92aにバルブシート92bが設けられるとともにボール92cが収納され、ボール92cが、スプリング92dにより

適宜押圧力をもってバルブシート92b側へ付勢される構造になっている。そして、通常、ボール92cがバルブシート92bに当接しているが、油通路86と油通路87との差圧が所定値以上になると、該差圧に基づく押圧力により、スプリング92dの付勢力に抗してボール92cがバルブシートから離間するように移動して開弁し、油通路86と油通路87間の圧力差を緩和する。

【0032】

また、油通路88にはフリーピストン93が連通されている。フリーピストン93は、ボディ71に一体に形成されたシリンダ93aと、該シリンダ93aの前部に作動油を貯留するための貯留部93bを画成するピストン93cと、ピストン93cを貯留部側へ付勢するスプリング93dとを備える構造になっている。そして、このフリーピストン93では、前記油室74a、74b並びにそれら油室同士を連通する油通路83、84…等からなる閉空間内に充填される作動油が温度変化によって膨張あるいは収縮する際に、ピストン93cの移動によって貯留部93bが容量変化し、作動油の熱膨張等を吸収する。

【0033】

次に、上記構成の自動二輪車におけるステアリングダンパの取付構造の作用について説明する。

走行時においてハンドル21を例えば左側へ切ると、ハンドル21と一体的にトップブリッジ49が同方向へ回転し、このトップブリッジ49の動きがリンク機構56を介してステアリングダンパ51のシャフト53に伝わる。そして、シャフト53も図11において時計針の反回転方向へ回転し、それとともにベーン75が同方向（図11における（イ））へ回転する。これに伴い、油室74bが狭小となってそこに充填されている作動油の圧力が高まるとともに、油室74b内の作動油は、ベーン75と油室74を画成する内周面との間の隙間等を介して直接他側の油室74aへ移動する。このように、若干の作動油が直接油室74a、74b間を移動するものの、それでもなお狭小となる油室74b内の作動油の圧力が高くなるときには、この作動油は油通路84、逆止弁85を通って油通路86に至り、そこから圧力制御弁68へ至る。

【0034】

圧力制御弁68では、通常、ポペット68cがリニアソレノイド69の励磁力によってバルブシート68bに当接して閉状態になっており、例えば、油室74b側から若干の作動油圧力が加わっても閉状態を維持されるが、左右の油室74a、74bの差圧に基づく押圧力とスプリング68dの付勢力との合力が、リニアソレノイド69の励磁力を超える場合には、ポペット68cがバルブシート68bから離間し、油圧制御弁68は開状態となる。このとき、油通路86内の作動油は、油圧制御弁68のバルブシート68bとポペット68cとの間の隙間を通って、油通路87に至り、そこからさらに油通路88及び逆止弁89を通って左側の油室74aへ至る。このように作動油が圧力制御弁68等を通過するときの抵抗が、減衰力を発生させることとなってハンドル21に作用する。つまり、ハンドル21を切るときの抵抗力となり、ハンドルに働く瞬時の回転力に対する抵抗力となって作用する。

【0035】

上述の説明はハンドル21を左側へ切るときの説明であるが、逆に右側へ切るときも同様である。

【0036】

リニアソレノイド69は、車速や車体加速度によって制御され、例えば車速が増したり車体加速度が大きくなると励磁力が高まるよう図示せぬ制御部により制御される。したがって、このときには、油圧制御弁68の開弁タイミングが遅られ、しかも開弁後も励磁力が増した分だけ、弁開度は小さくなり、より大きな減衰力が発揮される。つまり、車速が速ければ速いほど、また、加速度が増せば増すほど、高い減衰力が発揮される。

【0037】

したがって、低速あるいは低加速度で走行するときは、ハンドリング性を重視し、比較的軽い力でハンドル21を切ることができると、高速あるいは高加速度で走行するときには、ハンドル21を切る際に高い減衰力が作用することとなり、キックバック現象の発生を低減することができる。

【0038】

なお、上記ステアリングダンパ51の制御の中で、何らかの原因で左右の油室

74a、74bのうちの一方の油室の作動油圧が高まり、作動油の油圧制御弁68の上流側と下流側の差圧が予め設定した値よりも大きくなる場合には、リリーフバルブ92が開き、バイパス油通路91を通じて油通路86内の作動油を油通路87へ流し、それらの開きすぎた差圧を緩和する。つまり、一方の油室の作動油圧が高くなりすぎるのを未然に防止する。また、油室74及び油通路83、84…等に充填された作動油の温度が変化して、該作動油が膨張あるいは収縮するときには、それに応じてフリーピストン93のピストン93cがシリンダ93a内を移動することにより、作動油の容量変化を吸収する。

【0039】

前述の実施の形態では、ステアリングダンパ51のハウジング52をトップブリッジ49より後方へ延出させるとともに、その延出部51の下方に油圧制御弁68の駆動手段を構成するリニアソレノイド69を配置したから、トップブリッジ49とその後方に配置される燃料タンク14との間に隙間の有効利用を図ることができ、ステアリングダンパ51の全体高さを低く抑えつつ、リニアソレノイド69を配置することができる。また、リニアソレノイド69がハウジング52から上方へ突出することがないから、同リニアソレノイド69がトップブリッジ49近傍のハンドル等に付随する可動部材に干渉するのを回避できる。さらに、リニアソレノイドを後方へ突出するように取り付ける場合に比べて、ステアリングダンパ51の全長を短くできる分、燃料タンク14等のレイアウトの自由度が増すことにもなる。

【0040】

また、シャフト53を操舵系50に取り付けるにあたり、リンク機構56を介して取り付けているので、ハウジング52をトップブリッジ49に取り付ける際に、シャフト53がヘッドパイプ3やステアリングシステム6の軸線からはずれて取り付けた場合でも、当該ステアリングダンパ51の機能が損なわれない。

すなわち、ステアリングダンパ51は、シャフト53がヘッドパイプ3やステアリングシステム6の軸線と同軸状となるように取り付けるのが好ましいが、部品の精度あるいはそれら部品の組付誤差等から、シャフト53がステアリングシステム6等の軸線からはずれて組み付けられるのは避けられない。この場合、シャフト

53を直接トップブリッジ49に取り付ける場合には、それらの回転中心がずれているため、スムーズな動きが保証されず、ステアリングダンパ51の機能が発揮できなくなる。ここでは、リンク機構56を介してシャフト53を操舵系50に取り付けていることで、このような不具合の発生を未然に防止することができる。

【0041】

また、前記ステアリングダンパ51では、ハウジング52内に油通路を上下2段になるように形成しているので、油通路を1段でつくる場合に比べ、ハウジング52を平面的な意味でのコンパクト化が図れ、もって、燃料タンク14等のレイアウトの自由度がさらに増す。

【0042】

なお、上記実施の形態はあくまで本発明の例示であり、必要に応じて発明の主旨を逸脱しない範囲で適宜設計変更可能である。

例えば、前述した実施の形態では、ステアリングダンパ51のハウジング52を車体フレーム2側に、シャフト53を操舵系50にそれぞれ取り付けているが、これとは逆に、ステアリングダンパ51のハウジング52を操舵系50に、シャフト53を車体フレーム2側に取り付けてもよい。

【0043】

また、前述した実施の形態では、ステアリングダンパ51のハウジング52をヘッドパイプ3に取り付けているが、ヘッドパイプ3から後方へ延びる車体フレーム2の後方延長部分に直接、あるいはステーを介して取り付けてもよい。

また、前述した実施の形態では、油圧制御弁68の駆動手段として、リニアソレノイド69を用いた例を示したが、これに限られることなく、油圧等を利用した駆動手段であっても良い。

【0044】

【発明の効果】

以上詳述したように、本願発明の自動二輪車におけるステアリングダンパの取付構造によれば、トップブリッジと通常その後方に配置される部品である燃料タンク等との間に隙間の有効利用を図れ、しかも、油圧制御弁を駆動する駆動手段

が比較的大きくても、高さを低く押さえつつ同駆動手段を配置することができる。また、駆動手段がハウジングから上方へ突出することがなく、このため、駆動手段がトップブリッジ近傍のハンドル等に付随する可動部材と干渉するのを回避できる。さらに、ステアリングダンパの全体長を短くすることができ、燃料タンク等他の部品のレイアウトの自由度が増す。

【図面の簡単な説明】

【図1】 本発明の実施の形態を示す自動二輪車の側面図である。

【図2】 同自動二輪車におけるステアリングダンパの取付構造を示す一部を断面した側面図である。

【図3】 同自動二輪車におけるステアリングダンパの取付構造を示す平面図である。

【図4】 ステアリングダンパ取付用の第1のブラケットを示し、(a)は平面図、(b)は側面図、(c)は(a)のA-A線に沿う断面図である。

【図5】 ステアリングダンパ取付用の第2のブラケットを示し、(a)は平面図、(b)は(a)のB-B線に沿う断面図である。

【図6】 図3のC-C線に沿う断面図である。

【図7】 ステアリングダンパの平面図である。

【図8】 図7のD矢視図である。

【図9】 ステアリングダンパの底面図である。

【図10】 ステアリングダンパの断面図である。

【図11】 ステアリングダンパのハウジングボディの一部を断面した平面図である。

【図12】 図10のE-E線に沿う断面図である。

【図13】 ステアリングダンパの構成を示す概略図である。

【符号の説明】

- | | |
|---------------|-----------------|
| 1 … 自動二輪車、 | 2 … 車体フレーム、 |
| 3 … ヘッドパイプ、 | 6 … ステアリングシステム、 |
| 14 … 燃料タンク、 | 21 … ハンドル、 |
| 49 … トップブリッジ、 | 51 … ステアリングダンパ、 |

52…ハウジング、 52a…延出部、
53…シャフト、 54…第1のブラケット、
55…第2のブラケット、 56…リンク機構、
68…油圧制御弁、 69…リニアソレノイド（駆動手段）、
74…油室、 75…ペーン、
91…バイパス油通路、 92…リリーフバルブ、
93…フリーピストン。

【書類名】 図面

【図1】

【図2】

【図3】

【図4】

【図 5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図12】

【図13】

【書類名】 要約書

【要約】

【課題】 減衰力調整用としての油圧制御弁を駆動制御する駆動手段を配置する。

【解決手段】 ハウジング52内の油室を2つに区画するベーンの揺動時に2つの油室間を作動油が流通することで減衰力を発生させるとともに、ベーンの基部を固定状態に連結させながらハウジングに対してベーンを揺動可能に支持するシャフト53を有してなるロータリ式のステアリングダンパ51と、このロータリ式のステアリングダンパの減衰力を可変する油圧制御弁とを備える。ハウジングをヘッドパイプ3に取り付けるとともに、シャフトを操舵系50に取り付ける。ハウジングをヘッドパイプ3に取り付けるときに、トップブリッジ49より後方へ延出させるとともに、その延出部52aの下方に油圧制御弁を駆動制御するリニアソレノイド69を配置し、これにより、リニアソレノイドが上方へ突出することのないコンパクトな配置を実現する。

【選択図】 図2

認定・付加情報

特許出願の番号	特願 2003-079158
受付番号	50300464640
書類名	特許願
担当官	第三担当上席 0092
作成日	平成 15 年 3 月 24 日

<認定情報・付加情報>

【特許出願人】

【識別番号】	000005326
【住所又は居所】	東京都港区南青山二丁目 1 番 1 号
【氏名又は名称】	本田技研工業株式会社

【代理人】

【識別番号】	100064908
【住所又は居所】	東京都新宿区高田馬場 3 丁目 23 番 3 号 ORビル 志賀国際特許事務所
【氏名又は名称】	志賀 正武

【選任した代理人】

【識別番号】	100108578
【住所又は居所】	東京都新宿区高田馬場 3 丁目 23 番 3 号 ORビル 志賀国際特許事務所
【氏名又は名称】	高橋 詔男

【選任した代理人】

【識別番号】	100101465
【住所又は居所】	東京都新宿区高田馬場 3 丁目 23 番 3 号 ORビル 志賀国際特許事務所
【氏名又は名称】	青山 正和

【選任した代理人】

【識別番号】	100094400
【住所又は居所】	東京都新宿区高田馬場 3 丁目 23 番 3 号 ORビル 志賀国際特許事務所
【氏名又は名称】	鈴木 三義

【選任した代理人】

【識別番号】	100107836
【住所又は居所】	東京都新宿区高田馬場 3 丁目 23 番 3 号 ORビル 志賀国際特許事務所

次頁有

認定・付力印青幸及（続き）

【氏名又は名称】 西 和哉
【選任した代理人】
【識別番号】 100108453
【住所又は居所】 東京都新宿区高田馬場3丁目23番3号 ORビ
ル 志賀国際特許事務所
【氏名又は名称】 村山 靖彦

次頁無

出証特2004-3000542

特願 2003-079158

出願人履歴情報

識別番号 [000005326]

1. 変更年月日 1990年 9月 6日

[変更理由] 新規登録

住 所 東京都港区南青山二丁目1番1号
氏 名 本田技研工業株式会社