QUADRATICALLY CONSTRAINEY QUADRATIC PROGRAM

1) acap to socp

CONVERT THE FOLLOWING OLDP INTO SOCPI

SECONY-ORDER CONE PROGRAM

MINIMIZE
$$x_1^2 + 4x_1x_2 + 4x_2^2 = 5 \times^2 + 4x_2 + 4y^2$$

Subject to $4x_1^2 + 16x_2^2 \le 25$ $4x_1^2 + 16y^2 \le 252$ $4x_1^2 + 16y^2 \le 252$ $4x_1^2 + 16y^2 \le 252$

EXAMPLES:
$$1 \ QCQP$$
: $3x^2 + 2(y-2)^2 - xy$

$$2x^2 + 1.2y^2 - 2 \le 0$$

$$x^2 + 4y^2 - 4 \le 0$$

$$\|x\|_{2} \leqslant t \frac{20cP}{\sqrt{x^{2}}} \approx 1.5y$$

$$|x|^{2} \leqslant t \times 2y^{2} \leqslant 1$$

$$\begin{array}{ccc}
\times & + & y \\
-\sqrt{x^2} & \leq 1.5 & y \\
x^2 & + & 2y^2 & \leq 1
\end{array}$$

①
$$9x^{2} \le -16y^{2} + 25$$
 $\Rightarrow = 15$ $9x^{2} \le -(4y-5)(4y+5)$
③ $-y = 1-x$ $\Rightarrow y = x-1$

TODO FIND X, & X2 WITH SUBJECT IS THAT EMBUGH? OR JUST SAY QCOP C SOCP

FOR THE FOLLOWING OPTIMIZATION PROBLEM:

MINIMIZE
$$\|(2x_1 + 3x_2 - 3x_1)^T\|_{\infty}$$
 $\|(2x + 3y)\|_{\infty}$

Subject to $|x_1 - 2x_2| \leqslant 3$
 $|x - 2y| \leqslant 3$

$\underline{\mathbf{2}}$. Convert the LP so that all variables are in R+ and there is no other inequality constraints than ... \geq 0.

Subject to
$$2x_2 - x_1 \geqslant -3$$
 and $2x_2 - x_1 + 3 \geqslant 0$ $x_1 - 2x_2 \geqslant -3$ and $x_1 - 2x_2 + 3 \geqslant 0$

3 TRANSFORM GENERAL LA TO STANDARD FORM

A GENERAL LINEAR PROGRAM HAS THE FORM MINIMIZE
$$c^Tx + d$$

$$SUBJECT TO Gx $\leq h$

$$Ax = b$$$$

WHERE $G \in \mathbb{R}^{m \times n}$ and $A \in \mathbb{R}^{P \times n}$ transform the general LP to its standard form:

MINIMIZE
$$p^T x'$$

SUBJECT TO $\mathcal{B}x' = e$
 $x' \succeq 0$

Explain in detail the relation between the feasible sets, the optimal solutions, and the optimal values of the standard form LP and the original LP.