Columbia MA Math Camp

Linear Algebra

Vinayak Iyer ^a

August 20, 2019

Motivation

- Linear systems show up all the time in economics
 - Systems because we deal with more than one quantity at a time (multiple agents, multiple goods/prices, multiple choice variables, etc.)
 - Linearity sometimes comes naturally (e.g. budget constraints), and sometimes we impose it by necessity (fully nonlinear system too hard to analyze) i.e. we "linearize" the equations.
- Linear algebra provides tools for working with these kinds of systems: can we solve them? If so, how? Many different techniques
- My two cents: get comfortable with this section. It's important to be comfortable
 working with vectors and matrices "as a single object" it will save you notation
 and brain space (and computing time if you're into that kind of stuff)

Table of Contents

Vectors and Matrices

Elementary Operations

Vectors

The basic unit in linear algebra is a **vector**. A vector **v** is an element of \mathbb{R}^n : $\mathbf{v} = (v_1, v_2, ..., v_n)$, where each $v_i \in \mathbb{R}$. In these notes I will denote vectors with boldface, lowercase type.

Two basic operations on vectors are addition and scalar multiplication:

ullet Addition: for two vectors of the same length, ${f v}$ and ${f w}$

$$\mathbf{v} + \mathbf{w} = (v_1 + w_1, ..., v_n + w_m)$$

• Scalar multiplication: given a vector \mathbf{v} and a scalar $\alpha \in \mathbb{R}$

$$\alpha \mathbf{v} = (\alpha v_1, ..., \alpha v_n)$$

4

Inner Product

There's another common operation between vectors, known as the **inner product** (or dot product). For two vectors, $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, we have:

$$\mathbf{v}\cdot\mathbf{w}=\sum_{i=1}^n v_iw_i$$

You may also see the inner product written as $\langle \mathbf{v}, \mathbf{w} \rangle$.

While it's not immediately clear that the dot product is a useful notion, the following hints at its importance:

- $\|\mathbf{v}\|^2 = \sum_{i=1}^n v_i^2 = \mathbf{v} \cdot \mathbf{v}$, where $\|\cdot\|$ represents the **norm**, or length, of a vector.
- $d(\mathbf{v}, \mathbf{w})^2 = \sum_{i=1}^n (v_i w_i)^2 = (\mathbf{v} \mathbf{w}) \cdot (\mathbf{v} \mathbf{w}) = \|\mathbf{v} \mathbf{w}\|^2$

5

Cauchy-Schwarz

Theorem 1.1

(Cauchy-Schwarz) For any vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, $|\mathbf{v} \cdot \mathbf{w}| \leq ||\mathbf{v}|| ||\mathbf{w}||$.

Proof.

We'll show this in \mathbb{R}^2 . The law of cosines tells us:

$$\|\mathbf{v} - \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - 2\|\mathbf{v}\|\|\mathbf{w}\|\cos\theta$$

Note
$$\|\mathbf{v} - \mathbf{w}\|^2 = (\mathbf{v} - \mathbf{w}) \cdot (\mathbf{v} - \mathbf{w}) = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - 2\mathbf{v} \cdot \mathbf{w}$$
. Simplify:

$$\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta$$

The result follows since $\cos \theta \leq 1$

Cauchy-Schwarz (cont.)

In \mathbb{R}^n , we use Cauchy-Schwarz to define the angle between two vectors.

$$\cos\theta = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|}$$

We say two vectors are **orthogonal** to each other if $\mathbf{v} \cdot \mathbf{w} = 0$.

Inner product (cont.)

Let's note a few things about the inner product:

- The inner product is **symmetric**: $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$
- The inner product is linear :

$$(\alpha \mathbf{v}) \cdot \mathbf{w} = \alpha (\mathbf{v} \cdot \mathbf{w})$$

 $(\mathbf{v} + \mathbf{z}) \cdot \mathbf{w} = \mathbf{v} \cdot \mathbf{w} + \mathbf{z} \cdot \mathbf{w}$

• The inner product is **positive definite**: $\mathbf{v} \cdot \mathbf{v} \geq 0$, with equality iff $\mathbf{v} = \mathbf{0}$

Q

Matrices

A matrix is just a rectangular array of numbers. An $m \times n$ matrix has m rows and n columns:

$$\mathbf{A} = (a_{ij})_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

A vector \mathbf{v} is a $n \times 1$ matrix (a column vector) or a $1 \times n$ matrix (a row vector).

Addition and scalar multiplication are defined just as with vectors:

$$\mathbf{A} + \mathbf{B} = (a_{ij} + b_{ij})_{m \times n}, \quad \alpha \mathbf{A} = (\alpha a_{ij})_{m \times n}$$

۵

Addition and scalar multiplication

Matrix addition and scalar multiplication are well-behaved:

$$\begin{array}{rcl} \mathbf{A} + \mathbf{B} &=& \mathbf{B} + \mathbf{A} \text{ (commutative)} \\ \mathbf{A} + (\mathbf{B} + \mathbf{C}) &=& (\mathbf{A} + \mathbf{B}) + \mathbf{C} \text{ (associative)} \\ \mathbf{A} + \mathbf{0} &=& \mathbf{A} \text{ (zero element)} \\ \mathbf{A} + (-1)\mathbf{A} &=& \mathbf{0} \text{ (additive inverse)} \\ (\alpha + \beta)(\mathbf{A} + \mathbf{B}) &=& \alpha \mathbf{A} + \beta \mathbf{A} + \alpha \mathbf{B} + \beta \mathbf{B} \text{ (distributive)} \end{array}$$

Matrix Multiplication

Matrix multiplication is hugely useful, but a little strange at first glance. We do not simply multiply element-by-element.

Let **A** be an $m \times n$ matrix and **B** a $n \times p$ matrix. Their product, **C** = **AB** is the $m \times p$ matrix whose ij element is the inner product of the i-th row of **A** with the j-th column of **B**:

$$c_{ij} = \sum_{r=1}^{n} a_{ir} b_{rj}$$

- Matrices must be conformable: No. cols of A = no. rows of B
- Matrix multiplication lets us write inner products: $\mathbf{v} \cdot \mathbf{w} = \mathbf{v}^T \mathbf{w}$

Matrix Multiplication: Perspectives

- A collection of dot products
- Linear combinations of columns/rows
 - Let A_i denote the i-th column of A
 - If **A** is $m \times n$ and x is an $n \times 1$ vector, then:

$$\mathbf{A}\mathbf{x} = \mathbf{A}_1 x_1 + ... + \mathbf{A}_n x_n$$

• If **A** is $m \times n$ and **B** is $n \times p$:

$$AB = (AB_1 AB_2 \dots AB_p)$$

• A linear function: $f(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}^m$ with $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$ where \mathbf{A} is an $m \times n$ matrix.

Matrix Multiplication: Properties

Matrix multiplication is generally well-behaved, with the important exception that it is not commutative.

- (AB)C = A(BC) (associative)
- A(B + C) = AB + AC (left distributive)
- (A + B)C = AC + BC (right distributive)
- ullet AB eq BA generally
- AB = 0 does not imply A or B is 0

Matrix Multiplication: Properties (cont.)

Matrices have an identity element:

$$(\mathbf{I}_n)_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- For any $m \times n$ matrix **A**, $\mathbf{AI}_n = \mathbf{I}_m \mathbf{A} = A$.
- For a square matrix A, if $AB = BA = I_n$, we call B the **inverse** of A, and write $B = A^{-1}$.

Matrix Multiplication: Why?

Why do we have such a strange definition for matrix multiplication? It's useful for representing **linear systems**. Consider:

$$2x_1 + x_2 = 3$$

 $x_1 + 2x_2 = 3$

We can write this as

$$\underbrace{\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}}_{\mathbf{A}} \underbrace{\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}}_{\mathbf{x}} = \underbrace{\begin{pmatrix} 3 \\ 3 \end{pmatrix}}_{\mathbf{b}}$$

Let's step back and think for a bit :

- Our goal is to find a tuple $(x_1, x_2) \in \mathbb{R}^2$ that satisfies both equations simultaneously.
- How do we know that a solution exists? Does it always? Can there be many?
- Is there a general method to solve linear systems, or must it be "by inspection" all the time?

Note: if we knew \mathbf{A}^{-1} we could find \mathbf{x} by calculating $\mathbf{A}^{-1}\mathbf{b}$. We'll come back to the question of how to (and when we can) find inverses of a square matrix

Matrices: Two Last Operations

The **transpose** of a $m \times n$ matrix **A**, written **A**' or **A**^T, is the $n \times m$ matrix with $a'_{ij} = a_{ji}$. A square matrix is **symmetric** if **A** = **A**'.

- $\bullet \ (\mathbf{A}')' = \mathbf{A}$
- $\bullet \ (\mathbf{A} + \mathbf{B})' = \mathbf{A}' + \mathbf{B}'$
- $(\alpha \mathbf{A})' = \alpha \mathbf{A}'$
- (AB)' = B'A'

The **trace** of a $n \times n$ matrix **A** is the sum of its diagonal elements:

$$tr(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$$

A little more about the trace

Being able to manipulate traces effectively can make some calculations dramatically simpler. Here are a few useful properties to keep in mind :

- For a scalar α , $tr(\alpha) = \alpha$
- So long as **A** and **B** are conformable, the trace commutes:

$$tr(AB) = tr(BA)$$

The above implies that the trace is invariant under cyclic permutations:

$$tr(ABC) = tr(CAB) = tr(BCA)$$

Table of Contents

Vectors and Matrices

Elementary Operations

Approach to solving linear systems

Consider how you would solve the system

$$2x_1 + x_2 = 3$$

 $x_1 + 2x_2 = 3$

One solution might be:

- Add the second equation to the first: $3x_1 + 3x_2 = 6$
- Divide by 3: $x_1 + x_2 = 2$
- Subtract this equation from the second: $x_2 = 1$
- Insert $x_2 = 1$ into the first equation: $x_1 = 1$

So the solution is $(x_1, x_2) = (1, 1)$

Elementary row operations

The types of steps we just performed are called the **elementary row operations** for matrices.

- Switching two rows of a matrix
- Multiplying one row by a non-zero scalar
- · Adding a multiple of one row to another row

We could replicate the steps above in matrix notation:

$$\begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 3 & 3 & 6 \\ 1 & 2 & 3 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

The corresponding action for columns are called elementary column operations

Matrix representation for elementary operations

Switching

- Let T_{ij} to be the identity matrix with rows i, j switched; T_{ij}A is the matrix with rows i, j of A switched
- T_{ij} is its own inverse

Scalar multiplication

- Let $\mathbf{D}_i(\alpha)$ be the identity matrix with α on the *i*-th diagonal; $\mathbf{D}_i(\alpha)\mathbf{A}$ is the matrix with the *i*-th row multiplied by α
- $\mathbf{D}_i\left(\frac{1}{\alpha}\right)$ is the inverse of $\mathbf{D}_i(\alpha)$

Row addition

- Let $L_{i,j}(m)$ be the identity matrix with m in the (i,j) position; $L_{i,j}(m)\mathbf{A}$ is the matrix with m times row j added to row i
- $L_{ij}(-m)$ is the inverse of $L_{ij}(m)$

To get column operations, multiply on the right instead of on the left

Using row operations to solve linear systems

- Let **R** be some row operation.
- ullet Since R is invertible, a vector x solves the system Ax = b iff it solves RAx = Rb
- To solve the system, we simply apply row operations on both sides until the solution is "easy" to read off
- What's "easy"? One common setup is row echelon form:
 - All non-zero rows are above all zero rows
 - The leading coefficient (first non-zero entry) of each row is strictly to the right of the leading coefficient of the prior row

Using row operations to find inverses

- Finding a matrix inverse is the same as finding vectors \mathbf{x}_i such that $\mathbf{A}\mathbf{x}_i = \mathbf{e}_i$, the i-th canonical basis vector.
- So just solve all n equations at once using the augmented matrix $(A \mid I)$.

Example:

$$\begin{pmatrix}
2 & 1 & 1 & 0 \\
1 & 2 & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & 1 & 1 & 0 \\
2 & 4 & 0 & 2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & 1 & 1 & 0 \\
0 & 3 & -1 & 2
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
2 & 1 & 1 & 0 \\
0 & 1 & -\frac{1}{3} & \frac{2}{3}
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & 0 & \frac{4}{3} & -\frac{2}{3} \\
0 & 1 & -\frac{1}{3} & \frac{2}{3}
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & 0 & \frac{2}{3} & -\frac{1}{3} \\
0 & 1 & -\frac{1}{3} & \frac{2}{3}
\end{pmatrix}$$

A note about column operations

- In general, column operations do not preserve the solutions of systems of equations. If Ax = b, can we say anything about ACx?
- Interestingly, we can use column operations to find inverses. This is due to the fact that left inverses are equal to right inverses, so if $R_n...R_1A = I$, then $AR_n...R_1 = I$
- Warning: do not mix and match column and row operations to find an inverse.