Regularized theta lifting + theta CM values

Speaker: yang tonghai

Lots of people have different ways to find problems to work on. For this paper, the initial goal was not the Gross-Zagier formula at all. It was to try to understand Schofer's thesis and whether one can use it to generalize/understand the Bruinier-Yang 2006 paper

Schofer's thesis was very nice, and then Bruinier proposed to Yang "let's try solving an easier problem".

Let
$$\Phi(z,h,f)=\int f(au) heta_L(heta,z,h)d\mu(au)$$

Here, (z,h) live in a Shimura variety written X, and τ lives in the upper half plane τ . The integral is over a fundamental domain of $\mathrm{SL}_2(\mathbb{Z})\backslash\mathbb{H}$. Moreover, $f:\mathbb{H}\to\mathbb{C}$ is a weakly holomorphic modular form. For example, $j(z)=q^{-1}+\cdots$. However, a weakly holomorphic modular form blows up at $\tau=\infty$, so you need to regularize the integral

$$\Phi(z,h,f) = \int^{
m reg} f(au) heta_L(heta,z,h) d\mu(au)$$

We have $\Phi(\mathrm{CM}(E),f)=\sum_{(z,h)\in\mathrm{CM}(E)}\Phi(Z,h,f)$; here, $\mathrm{CM}(E)$ is a finite set in X.

Schofer's theorem

$$\Phi(ext{CM}(z),f) = \sum_{p ext{ prime}, p < \infty, p < d(Z)} a_p \log p$$

Consider the special case^[1] $f = j(\tau) - 744$ and $X = Y(1) \times Y(1) = \mathrm{Sl}(\mathbb{Z}) \setminus \mathbb{H} \times \mathrm{Sl}(\mathbb{Z}) \setminus \mathbb{H}$. Here,

$$\Phi(z_1,z_2,f) = -\log|j(z_1)-j(z_2)|^2$$

Write $E=\mathbb{Q}(\sqrt{d_1},\sqrt{d_2})$. Then $\Phi(\mathrm{CM}(E),j-744)=\sum_{\mathrm{disc}(\tau_1)=d_1,\mathrm{disc}(\tau_2)=d_2}-\log|j(\tau_1)-j(\tau_2)|^2$ By Gross Zagier, this then equals $\sum_{p\leq d_1d_2}a_p\log p$

We have an exact sequence

$$0 o M_{2-k}^!\hookrightarrow H_{2-k}\stackrel{\xi}{ o} S_k$$

 $M_{2-k}^!$ is the space of weakly holomorphic forms, H_{2-k} is the space of Harmonic Maass forms, and S_k is the space of holomorphic cuspidal forms of weight k.

The work of Bruinier-Yang tries out the following ideas:

- 1. $f \in M_{2-k}$: do the same calculation (First four sections of the paper; Theorem 4.6 is the main theorem)
- The analogue of Schofer's theorem: $\Phi(\mathrm{CM}(E),f) = \sum_{p<\infty} a_p \log p + L'(\xi(f),\theta,\mathrm{Center})$

 $\xi(f)$ is the Rankin-Selbert L-function

- 2. Conjecture: let $\hat{Z}(f) = (Z(f), \Phi(f)) \in \widehat{\operatorname{CH}}^1(\mathscr{X})$. Then $\langle \hat{Z}(f), \operatorname{CM}(z) \rangle_{\operatorname{Fal}} = L'(\xi(f), \theta, \operatorname{center})$ verify low dimension case. The conjecture was eventually proven in 2015 by Bruinier-Howard-Yang
- 3. Surprise: give a proof of a variant of Gross-Zagier formula without doing any finite intersection!!

modularity: $\sum \hat{Z}(m)q^m$ modular (Bruinier-Howard-Kudla-Rapoport-Yang, circa 2020)

Other CM values (2013) (Bruinier-Kudla-Yang)

Outline of paper

I: Weil representation, theta lifting, theta kernel

II: Shimura variety of orthogonal type O(n,2) (GSpin(V) \to SO(V)) and Siegel-Weil formula

- Special divisors
- Small CM cycles

III: The main formula (quite simple / Soft)

Let (V,Q) be a quadratic space of sign (n,2). Write m=n+2.

$$\mathsf{Let}\ H = \mathrm{SO}(V) = \{h \in \mathrm{End}(V) : (hx, hy) = (x, y) \text{ for all } x, y \in V, \det h = 1\}. \ \mathsf{Let}\ G = \mathrm{SP}_2 = \mathrm{SP}(W) = \mathrm{SL}_2. \ \mathsf{We have a map}$$

$$G \times H \to \mathrm{Sp}(V \otimes_{\mathbb{O}} W)$$

that we can also take adelically (over \mathbb{A}). We have a map $\operatorname{Mp}(V \otimes_{\mathbb{Q}} W)/\mathbb{A} \to \operatorname{Sp}(V \otimes_{\mathbb{Q}} W)/\mathbb{A}$. We also have $\omega = \omega_{\psi}$ on $S(V_{\mathbb{A}}) = \otimes_{p \leq \infty}' S(V_p)$.

Let $\psi:\mathbb{A} \to \mathbb{C}^1$ be an additive character.

 $\omega_{V,\psi}$ is a representation of $G/\mathbb{A} imes H_\mathbb{A}$ on $S(\mathbb{A})$ given by

$$\omega_{V,4}(h)\varphi(x)=\varphi(h^{-1}x)$$

We also have formulae

$$egin{aligned} \omega_{V,\psi}(n(b))arphi(x) &= \psi(Q(x))arphi(x) \ & \ \omega_{V,\psi}(m(b))arphi(x) &= \chi(a)|a|_{\mathbb{A}}^{rac{m}{2}}arphi(x\cdot a) \ & \ \omega_{V,\psi}(w)arphi(x) &= \gamma(v_{\mathbb{A}})\int_{V_{\mathbb{A}}}arphi(y)\psi(-(x,y))dy \end{aligned}$$

 $\text{where } n(b) = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \text{, } m(a) = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \text{, } w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{, } \chi(a) \text{ isa quadratic character, and } \gamma(V_{\mathbb{A}}) \text{ is roots of unity.}$

Theta kernel

For $\varphi \in S(V_{\mathbb{A}})$, define

$$\Theta(g,h,arphi) = \sum_{x \in V} \omega(g) arphi(h^{-1}x)$$

for $g \in G(\mathbb{A})$ and $h \in H(\mathbb{A})$. This converges and is $G(\mathbb{Q}) \times H(\mathbb{Q})$ -invertible, i.e. it is a modular form on $[G] \times [H]$. Here, [G] If f is a modular form on [G], then $G(\mathbb{Q}) \setminus G(\mathbb{A}) \subset [G]$.

$$\Theta(h,f) = \int_{[G]} f(g) \Theta(g,h,arphi) dg$$

is a modular form on [H]. Then you get that

$$\int_{[H]} f(h)\Theta(g,h)dh$$

is a modular form on [G]. We will modify $\Theta(h, f)$.

Siegel-Weil formula

The Siegel-Weil formula is the theta liting.

Let f = 1 on [H]. Then you get

$$\Theta(g,arphi) = \int_{[H]} \Theta(g,h,arphi) dh \cdot rac{1}{ ext{vol}([H])} = ?$$

What is this equal to? It turns out to be equal to an Eisenstein series by the Siegel-Weil formula:

$$=E(g,S_0,arphi)$$

where
$$S_0 = \frac{\dim V - 2}{2}$$
 .

Siegel did things where (V,Q) is a quadratic space of sign (n,0) instead, and then $\Theta(g,h,\varphi)$ apparently becomes a counting function (of numbers of ways to express integers are sums of squares).

Shimura variety

Given (V,Q), we get $H=\mathrm{SO}(V)$. Let $\mathbb{D}=\{\text{oriented negative 2-planes in }V_{\mathbb{R}}\}=\{Z\subset V|\dim Z=2,Q|_{Z}>0\}.$

Let $K \subset H(\mathbb{A}_f)$ be compact open. Then we can produce a Shimura variety X_K/\mathbb{Q} such that $X_K(\mathbb{C}) = H(\mathbb{Q}) \setminus \mathbb{D} \times H(\mathbb{A}_f)/K = \coprod \Gamma_j \setminus \mathbb{D}$.

Shimura actually studied $\Gamma_i \setminus \mathbb{D}$ and then Deligne came along to study Shimura varieties as we talk about them today.

For

- (0,2),
 - we have CM points,
- (1,2)
 - we have Shimura curves,
- (2,2),
 - · we have products of Shimura curves and Hilbert modular surfaces.
- (3, 2)
 - · We have Siegel 3-folds and probably other things

Given a lattice $L \subset V$, let

$$Z(m,L)'' = "\Gamma \setminus \{z \in \mathbb{D} : \exists x \in L \text{ with } Q(x) = m, x \perp z\}.$$

This is of codimension 1.

Small CM cycle

Take $U\subset V$ a negative 2 subspace. Then $U^\pm_\mathbb{R}\in\mathbb{D}$. We call z^\pm the points given by $U_\mathbb{R}.$

Also,
$$H_U = \mathrm{SO}(U) = k^1$$
 where $k = \mathbb{Q}(\sqrt{-\det U})$. Here,

$$Z(U) = \{Z_u^\pm\} imes k^1 ackslash k_f^1/K_U = ext{small CM cycles defined over } \mathbb{Q}$$

Main result

Let $L \subset V$ be unimodular. We have a Θ function

$$\Theta(g,h,\varphi)$$

 $\text{where } g \in \operatorname{SL}_2(\mathbb{A}) = \operatorname{SL}_2(\mathbb{Q}) \operatorname{SL}_2(\hat{\mathbb{Z}}) \operatorname{SL}_2(\mathbb{R}). \text{ Also, } \operatorname{SL}_2(\mathbb{R}) \text{ is } B \cdot \operatorname{SO}(2) \text{ where } B \text{ consists of real matrices of the form } \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}.$

Write
$$au=u+iv\in\mathbb{H}$$
, and $g_{ au}=egin{pmatrix}1&u\0&1\end{pmatrix}egin{pmatrix}\sqrt{u}&0\0&rac{1}{\sqrt{u}}\end{pmatrix}.$

Also, $h \in \mathrm{SO}(V)(\mathbb{A})$

..

For $z\in\mathbb{D}$, $z\subset V_{\mathbb{R}}$. Decompose $V_{\mathbb{R}}=z\oplus z^{\perp}$, so given $x\in V_{\mathbb{R}}$, write it as $x=x_z+x_{z^{\perp}}$. We have

$$arphi_{\infty}(z,x) = e^{-\pi((x_{z^{\perp}},x_{z^{\perp}})-(x_z,x_z))}$$

Then we have

$$\Theta(au,z,h,arphi_f,arphi_\infty) = \sum_{x\in V} \omega(g_z) arphi_\infty(x) arphi_f(h^{-1}x)$$

This is a modular form on au of weight $\frac{n-2}{2}$

 $f:\mathbb{H} o \mathbb{C}$ weight $rac{2-n}{2}$ Harmonoic Maass modular form.

$$\Phi(z,h,f) = \int_{ ext{fundamental domain}}^{ ext{reg}} f(z)\Theta(au,z,h) d\mu(au)$$

This Θ_{reg} function is a Green function of $Z(f) = \sum C_f(-m)Z(m,L)$ by the thesis of Bruinier, and by Bruinier-Funke

O Theorem

(Bruinier-Yang 2009)

$$\Phi(Z(U),f) = \sum_p a_p \log p + L'(\xi(f), heta_P, ext{center})$$

where $V=U\oplus P$ where U and P are the (0,2) and (n,0) parts of V and $L\supset L_U\oplus J_\Gamma...$

Proof: ...

See Also

Meta

References

Citations and Footnotes

1. Apparently, Schofer's theorem doesn't actually apply to this case. ←