

ELMA: Early-Exit Offloading for Embedded Question Answering Applications

Capstone Design Dec 15, 2021

Group: 3

Instructor: Prof. An Zou

Sponsor: UM-SJTU Joint Institute

Group Member: Yihua Liu, Shuocheng Chen, Yiming Ju

Team Members

Yihua Liu

Shuocheng Chen

Yiming Ju

Overview

- > Introduction
- Design Specifications
- Concept Generation & Selection
- Design Description
- Implementation & Validation
- Discussion & Conclusion

1. Introduction

Introduction

NLP

16000 words / s 0.2 s

Large computation

High performance

Cloud

2. Design Specifications

Design Specifications

Customers Requirements

Functionality Question answering on embedded systems Similar accuracy

Efficiency Network latency Faster prediction

Security Personal sensitive data A safer method

Cost Need network connection Work without network

Design Specifications

Engineering Specifications

Functionality Train on the cloud and predict locally

Offloading

Efficiency The whole model for prediction is large

Early exit

Security

Encryption and decryption consume resources

Simplify

Cost

Storage and computation on the cloud

Work remotely

Design Specifications

3. Concept Generation & Selection

Concept Generation & Selection

Dataset selection

Environment Selection

Develop Kit Selection

Concept Generation & Selection

BERT vs. ALBERT Tensorflow vs. PyTorch

Criterion	Weight(%)	BERT				ALBERT			
		Tensorflow		PyTorch		Tensorflow		PyTorch	
		Score	Rating	Score	Rating	Score	Rating	Score	Rating
Performance	0.35	8	2.8	8	2.8	9	3.15	9	3.15
Space occupation	0.35	4	1.4	4	1.4	7	2.45	7	2.45
Flexibility	0.2	3	0.6	8	1.6	3	0.6	8	1.6
Derivative	0.1	7	0.7	5	0.5	7	0.7	5	0.5
Total			5.5		6.3		6.9		7.7

ALBERT + Pytorch

Concept Generation & Selection

ALBERT

Parameter Sharing ————— Save memory space

Embedding Factorization Better performance

Sentence Order Prediction

4. Design Description

Design Description

Remote Server: Full model

Embedded System: Lite model

Design Description

Remote Server: Full model

- 12 layers ALBERT
- Optimizer
- Fine-tuning

Design Description

Embedded System: Lite model

- Early-Exit
- Synchronization

Concept Diagram

Early Exit


```
Input: x_n(transformer output),E_T(threshold of entropy)
Output: z_N (output of last transformer) or unsolvable
For n = 1...N do
      z_n = f_{exit}(x_n)
      y_n = softmax(z_n)
      e_n = entropy(y_n)
      if e < E_T then
             return argmax(y_n)
      End if
End for
If the question is solvable
       return z<sub>N</sub>
Else
       return unsolvable question to the server
```


Adaptive Attention

Attention Mechanism

Multi-Head Attention

Adaptive Attention Span

Fp16 Quantization

Floating Point defined by IEEE 754

Numerical form:

$$V_{10} = (-1)^{5} * M * 2^{E}$$

Sign bit s determines whether number is negative or positive

Significand (mantissa) M usually a fractional value in range [1.0,2.0)

Exponent *E* weights value by a (-/+) power of two

Analogous to scientific notation

Addition
$$(\pm s1 \times b^{e1}) + (\pm s2 \times b^{e2}) = (\pm s1 \times b^{e1}) + (\pm s2/b^{e1-e2}) \times b^{e1}$$

= $(\pm s1 \pm s2/b^{e1-e2}) \times b^{e1} = \pm s \times b^{e}$

Multiplication
$$(\pm s1 \times b^{e1}) \times (\pm s2 \times b^{e2}) = (\pm s1 \times s2) \times b^{e1+e2}$$

Division
$$(\pm s1 \times b^{e1}) / (\pm s2 \times b^{e2}) = (\pm s1/s2) \times b^{e1-e2}$$

Fp16 Quantization

Network Pruning

Method:

Movement Pruning

Magnitude Pruning

5. Implementation & Validation

Implementation

Implementation

Implementation

FP16

Magnitude Prune

```
mask = MagnitudeBinarizer.apply(inputs=tensor, threshold=threshold)
pruned model[name] = tensor * mask
```

Validation

exact = (norm(orig answer) == norm(pred answer))

$$f1 = (2 * precision * recall) / (precision + recall)$$

 $precision = \frac{TP}{TP + FP}$, $recall = \frac{TP}{TP + FN}$

63 Aug 03, 2020	AMBERT-H (single model) ByteDance	76.710	79.659
63 Aug 03, 2020	AMBERT-S (single model) ByteDance	76.563	79.776
64 Jan 05, 2019	synss (single model) bert_finetune	76.055	79.329
65 May 21, 2021	mgrc single model	75.344	78.381
65 Apr 05, 2021	BERT-Base-L (single model) Anonymous	75.457	78.232
66 Dec 18, 2018	ARSG-BERT (single model) TRINITI RESEARCH LABS, Active.ai https://active.ai	74.746	78.227
66 Aug 29, 2020	BERT-Base-V (single model) Anonymous	75.073	77.805
66 Nov 05, 2018	MIR-MRC(F-Net) (single model) Kangwon National University, Natural Language Processing Lab. & ForceWin, KP Lab.	74.791	77.988
67 Aug 06, 2020	BERT-Base-DT (single model) Anonymous	74.769	77.706
68 Dec 03, 2020	BERT-Base-V2 single model	74.656	77.404

Metrics	Values
HasAns_exact	65.72199730094466
HasAns_f1	71.02531166019085
HasAns_total	5928
NoAns_exact	84.44070647603027
NoAns_f1	84.44070647603027
NoAns_total	5945
exact	75.09475280047165
f1	77.74261328405724
Total	11873

6. Discussion & Conclusion

Discussion

Functionality

Encryption: Localized encryption

Synchronization: Network communication automation

Discussion

Optimization

- Distillation rate
- Choice of entropy
- Introduce a true error dataset
- Parameter sharing within each of the layer groups

Conclusion

Thanks!

ELMA: Early-Exit Offloading for Embedded Question Answering Applications

Group: 3

Instructor: Prof. An Zou

Sponsor: UM-SJTU Joint Institute

Group Member: Yihua Liu, Shuocheng Chen, Yiming Ju