EDA9150A 16 路开关量输入模块使用手册

目录

- 一、产品简介
- 二、产品功能说明
- 三、技术指标
- 四、产品应用
- 五、MODBUS-RTU 规约通讯数据表及说明
- 六、MODBUS-RTU 规约通讯例子

一、 产品简介

EDA9150A 是一款高性价比的开关量输入模块,其主要功能有: 16 路隔离开关量输入,隔离 RS-485/RS-232 通讯接口, MODBUS-RTU 通讯规约,10~30V 宽输入电源;外形小巧(145*90*40mm)、高可靠性与极高性价比,使其可广泛应用于各种工业测量与控制系统中。

- Ⅰ 16 路隔离开关量输入,可有源或无源空触点输入;
- Ⅰ 计数功能: 16 路输入都带计数功能,可用作 16 路脉冲计数输入;
- 通讯接口: 1 路,隔离的标准 RS-485 通讯接口(可选 RS-232 接口),MODBUS-RTU 通讯协议;可与多种品牌的 PLC、RTU 及工控组态软件进行网络通讯;
- 供电电源: +10~30V, 宽电源输入;
- Ⅰ 隔离: 开关量输入、电源、通讯接口间互相隔离; 隔离电压 2500V;
- 产品可广泛应用于:分布式电力系统监控、各种工业自动化测控系统。

二、产品功能说明:

- 1 开关量输入: 16 路;
 - 1.1 开关量输入功能: 可有源或无源空触点输入;逻辑电平 0:0~+0.5V 或短接,逻辑电平 1:+3V~+30V 或开路。
 - 1.2 计数功能: 16 路输入都带计数功能,可用作 16 路脉冲计数输入;其脉冲计数值掉电存储;应用于计数时:要求脉冲高低电平的宽度都>500 uS;当模块检测到每个通道有 1 至 0 的跳变时其计数值加 1;每一路最大计数值 4 字节: FFFFFFFFH。
- 2 通讯:
 - 2.1 1 路标准的隔离 RS-485 通讯接口 (可选 RS-232 接口、CAN 接口):
 - 2.2 通讯规约:标准 MODBUS-RTU 通讯规约;可实现与多种品牌的 PLC、RTU 或计算机监控软件进行网络通讯;
 - 2.3 数据格式:可设置; 10 位,1 位起始位 0,8 位数据位,1 位停止位 1; 或 11 位,为奇、偶或无校验可软件设置;
 - 2.4 通讯地址(1~247)和波特率(1200、2400、4800、9600、19200bps)均可设定;通讯网络最长距离可达1200米,通过双绞屏蔽电缆联接,每条通讯线路最多可连接64台本系列模块。
 - 2.5 通讯接口由高速光耦隔离,高抗干扰设计;通信响应时间: <0.1S(典型)。

三、技术指标:

1、基本参数:

开关量输入:输入电平范围为0~30V;极限范围为-10~40V;

脉冲计数输入:要求脉冲高低电平的宽度都>500 uS;每一路最大计数值4字节:FFFFFFH。

绝缘强度: 2500V/AC, 50/60Hz; 绝缘电阻: ≥100MΩ; 输入与输出端子间,有: 开关量输入、通讯接口、供电电源;供电电源与功耗: $\underline{DC10}\sim30V$, <1W;

WWW. SDLCKJ. COM TEL: 0634-6251397 - 1 -

抗干扰: 受强干扰产生故障时能立即自动复位; 设置的参数、计数值等不出错;

平均无故障工作时间: ≥50000h;

外型: 外型尺寸: 145*90*40 mm; 安装方式: 导轨式,或螺丝孔固定;

工作环境:工作温度: -20~70℃;存储温度: -40~85℃;相对湿度≤93%,86~106kPa,无腐蚀气体场所;

四、应用:

1. 产品外型图

2. 安装固定方法

结构尺寸图、安装示意及说明

3. 端子定义 (EDA9150A):

端子号	符号	说明	端子号	符号	说明
1	D+, TXD	485 数据正, 或 232 发送端	21	DI6	第6路开关量输入
2	D-, RXD	485 数据负,或 232 接收端	22	DGND	开关量输入地
3	RGND	通讯接口地,与其他地隔离	23	DI7	第7路开关量输入
4	GND	电源地	24	DGND	开关量输入地
5	+5V	+5V 电源输入或输出	25	DI8	第8路开关量输入
6	VCC	+10~30V 电源输入	26	DGND	开关量输入地

WW. SDLCKJ. COM TEL: 0634-6251397 - 2 -

7	NC	保留	27	DI9	第9路开关量输入
8	NC	保留	28	DGND	开关量输入地
9	DIO	第0路开关量输入	29	DI10	第 10 路开关量输入
10	DGND	开关量输入地	30	DGND	开关量输入地
11	DI1	第1路开关量输入	31	DI11	第 11 路开关量输入
12	DGND	开关量输入地	32	DGND	开关量输入地
13	DI2	第2路开关量输入	33	DI12	第 12 路开关量输入
14	DGND	开关量输入地	34	DGND	开关量输入地
15	DI3	第3路开关量输入	35	DI13	第13路开关量输入
16	DGND	开关量输入地	36	DGND	开关量输入地
17	DI4	第4路开关量输入	37	DI14	第 14 路开关量输入
18	DGND	开关量输入地	38	DGND	开关量输入地
19	DI5	第5路开关量输入	39	DI15	第 15 路开关量输入
20	DGND	开关量输入地	40	DGND	开关量输入地

4. 典型应用

- 4.1. EDA9150A 模块可广泛应用于各种工业测控系统中,可用作 16 路脉冲计数输入或 16 路开关量输入;能用于流量计量、变送器脉冲输出的计数、开关状态检测等;通过 RS-485 总线将数据上传到计算机或终端。
- 4.2. 主计算机 RS-232 串口通过 EDA485TZ 转换器可接到模块的 485 总线,通过 "E系列产品测试软件"可对模块进行测试;将模块安装入网络前,须对其配置,将模块的波特率与网络的波特率设为一致,地址无冲突(与网络已有模块的地址不重叠)。配置一个模块应有: RS232/RS485 转换器,带 RS-232 通讯口的计算机和模块配置软件。通过"E系列产品测试软件"可最容易地进行配置,也可根据指令集进行配置。
- 4.3. 模块出厂时,都已经过测试,且模块地址为01号,波特率为9600bps,数据格式为"n,8,1";
- 4.4. 模块地址可从 1~247 随意设定; 波特率有 1200、2400、4800、9600、19200BPS 五种可配置; 数据格式可设置为 10 位或 11 位奇或偶或无校验; 模块地址、波特率、计数值底数等参数修改后, 其值存于 EEPROM 中。
- 4.5. RS-485 网络: 最多可将 64 个 EDA 系列模块挂于同一 485 总线上,但通过采用 RS-485 中继器,可将多达 256 个模块连接到同一网络上,最大通讯距离达 1200m。
- 4.6. 隔离与共地: 开关量输入、电源、通讯接口间三方互相隔离,隔离电压 2500V; 开关量输入的各通道间为共地; 各开关量可有源或无源空触点输入; 逻辑电平 0: 0~+0.5V 或短接,逻辑电平 1: +3V~+30V 或开路。
- 4.7. 计数功能: 16 路输入都带计数功能,可用作 16 路脉冲计数输入;其脉冲计数值掉电存储;应用于计数时:要求脉冲高低电平的宽度都>500 uS;当模块检测到每个通道有 1 至 0 的跳变时其计数值加 1;每一路最大计数值 4 字节: FFFFFFFH。

五、MODBUS-RTU 规约通讯数据表及说明

1、系统参数寄存器:

表 1: 系统只读参数寄存器地址和通讯数据表(功能码 03H, 只读):

序号	寄存器地址	参数符号	说明
1	0000Н	MK	模块型号 1 值为 9150
2	0001H	LX	模块型号 2 值为 A000
3	0002Н, 0003Н		保留

表 2 : 系统配置参数寄存器地址和通讯数据表(功能码 03H 读、10H 写):

序号	寄存器地址	参数符号	说明
1	0004H	ADDR, BPS	高字节8位为地址,1~247;0为广播地址;
			低字节的高 2 位为数据格式位,为 "00"表示为 10 位即 "n, 8, 1";
			为 "01"表示为 11 位,偶校验,即 "e, 8, 1";
			为"10"表示为11位,奇校验,即"o,8,1";
			为"11"表示为11位,无校验,2停止位,即"n,8,2";

WW. SDLCKJ. COM TEL: 0634-6251397 - 3 -

		低字节的低 4 位为波特率: 03~07 表示 1200~19200BPS;	默认值6
2	0005H∼0FH	保留	

表 3 : 计数寄存器地址和通讯数据表: (功能码 03H 读、10H 写)

序号	寄存器地址	参数	说明
1	0010Н	DIO	第0通道输入计数值(高位)
	0011H		第0通道输入计数值(低位)
2	0012Н	DI1	第1通道输入计数值(高位)
	0013Н		第1通道输入计数值(低位)
3	0014H	DI2	第2通道输入计数值(高位)
	0015Н		第2通道输入计数值(低位)
4	0016Н	DI3	第3通道输入计数值(高位)
	0017Н		第3通道输入计数值(低位)
5	0018H	DI4	第4通道输入计数值(高位)
	0019Н		第4通道输入计数值(低位)
6	001AH	DI5	第5通道输入计数值(高位)
	001BH		第5通道输入计数值(低位)
7	001CH	DI6	第6通道输入计数值(高位)
	001DH		第6通道输入计数值(低位)
8	001EH	DI7	第7通道输入计数值(高位)
	001FH		第7通道输入计数值(低位)
9	0020Н	DI8	第8通道输入计数值(高位)
	0021H		第8通道输入计数值(低位)
10	0022Н	DI9	第9通道输入计数值(高位)
	0023Н		第9通道输入计数值(低位)
11	0024H	DI10	第 10 通道输入计数值(高位)
	0025Н		第 10 通道输入计数值(低位)
12	0026Н	DI11	第 11 通道输入计数值(高位)
	0027Н		第 11 通道输入计数值(低位)
13	0028H	DI12	第 12 通道输入计数值(高位)
	0029Н		第 12 通道输入计数值(低位)
14	002AH	DI13	第 13 通道输入计数值(高位)
	002BH		第 13 通道输入计数值(低位)
15	002CH	DI14	第 14 通道输入计数值(高位)
	002DH		第 14 通道输入计数值(低位)
16	002EH	DI15	第 15 通道输入计数值(高位)
	002FH		第 15 通道输入计数值(低位)

表 4: 开关量输入状态位地址及通讯数据表 (用"0x02"功能码,只读):

开关量名称	状态位地址	说明	备注
DIO	0000Н	第0路开关量输入	位状态值为"0"表示输入为0~+0.5V或短接;
DI1	0001H	第1路开关量输入	位状态值为"1"表示输入为+3V~+30V或开路
DI2	0002Н	第2路开关量输入	
DI3	0003H	第3路开关量输入	
DI4	0004H	第4路开关量输入	
DI5	0005H	第5路开关量输入	
DI6	0006Н	第6路开关量输入	
DI7	0007Н	第7路开关量输入	
DI8	0008H	第8路开关量输入	
DI9	0009Н	第9路开关量输入	
DI10	000AH	第10路开关量输入	
DI11	000BH	第 11 路开关量输入	
DI12	000CH	第 12 路开关量输入	
DI13	000DH	第13路开关量输入	
DI14	000EH	第 14 路开关量输入	
DI15	000FH	第 15 路开关量输入	

<u>WWW. SDLCKJ. COM</u>
TEL: 0634-6251397 - 4 -

六、MODBUS-RTU 规约通讯例子

1、功能码 02 (0x02): 读 1 路或多路开关量输入状态 DI

起始位: 为0~15; 开关量个数: 为1~16; 超过范围命令无效

起始位+开关量个数: 1~16; 超过范围命令无效

例: 主机要读取地址为 01, 开关量 DIO~DI15 的输入状态

主机发送: 01 02 0000 0010 CRC

地址 功能码 起始位 读开关量个数 CRC码

从机响应: 01 02 02 8F FE CRC

地址 功能码 数据长度 DI7~DI0 DI15~DI8 状态数据 CRC 码

2、功能码 03 (0x03): 读多路寄存器

起始地址: 0000H~002FH, 超过范围命令无效

数据长度: 0001H~0020H, 最多可一次读取 32 个连续寄存器

起始地址+数据长度:1~0030H, 超过范围命令无效

例: 主机要读取地址为 01, 开始地址为 0004H 的 2 个从机寄存器数据

主机发送: 01 03 0004 0002 CRC

地址 功能码 起始地址 数据长度 CRC 码

从机响应: 01 03 04 0106 0000 CRC

地址 功能码 返回字节数 寄存器数据 1 寄存器数据 2 CRC 码

3、功能码 10 (0x10): 写多路寄存器

起始地址: 0004H~002FH, 超过范围命令无效

寄存器数量:0001~0010H,最多可一次设置 16 个连续寄存器

起始地址+写寄存器数量:0005H~0030H,超过范围命令无效

例: 主机要把 0001, 0014 保存到地址为 0004, 0005 的从机寄存器中去(从机地址码为 01)。

主机发送: 01 10 0004 0002 04 0001 0014

地址 功能码 起始地址 写寄存器数量 字节计数 保存数据 1 保存数据 2 CRC 码

从机响应: 01 10 0004 0002

地址 功能码 起始地址 写寄存器数量 CRC 码

注: MODBUS 通讯规约中的寄存器指的是 16 位(即2字节),并且高位在前。

设置参数时,注意不要写入非法数据(即超过数据范围限制的数据值);

EDA 从机返送的错误码的格式如下 (CRC 码除外):

地址码: 1 字节

功能码: 1 字节(最高位为 1)

错误码: 1 字节

CRC 码: 2 字节。

EDA 响应回送如下错误码:

81: 非法的功能码。 接收到的功能码 EDA 模块不支持。

82: 读取或写入非法的数据地址。 指定的数据位置超出 EDA 模块的可读取或写入的地址范围。

83: 非法的数据值。 接收到主机发送的数据值超出 EDA 模块相应地址的数据范围。