Aardvark Elephant Platypus Zebra text text	Portugal Zimbabwe text	$ \begin{cases} \text{things beginning with vowels} \\ \text{things beginning with consonants} \\ \text{things beginning and ending with t} \\ \text{TABLE V}^1 \end{cases} $					
	v_2	$(v_2'-v_2)$					
	$\frac{.5222}{12.45} = .041$ $\frac{.5222}{[21.85]} = .023$	}					
	. ,	$\}.00885 \div 1 = .00885$					
	$\frac{.5222}{34.7} = .015$	$05 \\ \}.00891 \div 1 = .00891$					
	$\frac{.5222}{85.0} = .0061$	44					
	$\frac{.5222}{34.7} = .015$	$\begin{cases} .00891 \div 1 = .00891 \\ 05 \end{cases}$					
	$\frac{.5222}{16.0} = .023$	$\}.01759 \div 2 = .00880$					
	10.0	$3.01759 \div 2 = .00880$					
	$\frac{.5222}{34.7} = .015$	$05 \\ \{ [.00885 \div 1 = .00885] $					
	$\frac{.5222}{21.85} = .023$						
		TABLE V^2					
	v_2	$(v_2'-v_2)$					
	$\frac{.5222}{12.45} = .041$ $.5222 = .022$	$3.01806 \div 2 = .00903$					
	$\frac{.5222}{[21.85]} = .023$	$3.00885 \div 1 = .00885$					
	$\frac{.5222}{34.7} = .015$	$3.00891 \div 1 = .00891$					
	$\frac{.5222}{85.0} = .0061$	$3.00891 \div 1 = .00891$					
	$\frac{.5222}{34.7} = .0150$	05					
	$\frac{.5222}{16.0} = .023$						
	$\frac{.5222}{34.7} = .015$	$\}.01759 \div 2 = .00880$					
	$\frac{.5222}{21.85} = .023$	$][.00885 \div 1 = .00885]$					

¹[The bracketed numbers are our corrections of typos in Millikan's original table.]

	TABLE IV
t_g	t_F
13.6	12.5
13.8	12.4
13.4	21.8
13.4	34.8
13.6	84.5
13.6	85.5
13.7	34.6
13.5	34.8
13.5	16.0
13.8	34.8
13.7	34.6
13.8	21.9
13.6	
13.5	
13.4	
13.8	
13.4	
Mean 13.59	95

	TABLE VII								
\overline{n}	$4.917 \times n$	Observed Charge	n	$4.917 \times n$	Observed Charge				
1	4.917		10	49.17	49.41				
2	9.834		11	54.09	53.91				
3	14.75		12	59.00	59.12				
4	19.66	19.66	13	63.92	63.68				
5	24.59	24.60	14	68.84	68.65				
6	29.50	29.62	15	73.75					
7	34.42	34.47	16	78.67	78.34				
8	39.34	39.38	17	83.59	83.22				
9	44.25	44.42	18	88.51					

²[The bracketed numbers are our corrections of typos in Millikan's original table.]

	d = 0.5cm		d = 0.5cm	Charge			Frictional		
			a = 0.5cm	on ion			charge		
t_g	$ \begin{array}{c c} v_1(=d/t_g) \\ (\text{cm/sec}) \end{array} $	t_F	$ v_2(=d/t_F) $ (cm/sec)	$(v_2'-v_2)$	n'	$\frac{v_2'-v_2}{n'}$	$v_1 + v_2$	n	$\frac{v_1+v_2}{n}$
18.2	.00286	3.8	0.01316				0.01602	3	.00534
18.6	avr			.00470	1	.00470			
19.2		2.8	.01786						
18.0				.01561	3	.00520			
17.2		22.2	.00225						
15.4				.00544	1	.00544			
16.7		6.5	.00769						
18.0				.00541	1	.00541			
15.4		21.9	.00228						
17.3				.01123	2	.00562			
<u>18.4</u>		3.7	.01351						
17.5						.00527			.00534
avr						avr			

TABLE VI^a

t_g Sec.	t_F Sec.	$\frac{1}{t_F}$	$\frac{1}{t_F'} - \frac{1}{t_F}$	n'	$\frac{1}{n'} \left(\frac{1}{t_F'} - \frac{1}{t_F} \right)$	$\frac{1}{t_g} + \frac{1}{t_F}$	n	$\frac{1}{n}(\frac{1}{t_g} + \frac{1}{t_F})$
11.848	80.708	.01236				.09655	18	.005366
2	9.834		11	54.09	53.91			'
3	14.75		12	59.00	59.12			
4	19.66	19.66	13	63.92	63.68			
5	24.59	24.60	14	68.84	68.65			
6	29.50	29.62	15	73.75				
7	34.42	34.47	16	78.67	78.34			
8	39.34	39.38	17	83.59	83.22			
9	44.25	44.42	18	88.51				

 $[^]a$ Several values have been corrected in this table from the original paper.