Heat Transfer: Conduction

Fin efficiency

Prof. Dr.-Ing. Reinhold Kneer

Prof. Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Learning goals

Fin design:

- Fin material
- Geometry

Fin efficiency:

- Derivation
- Interpretation

Review: Temperature profile in a fin

Boundary conditions:

At
$$x = 0$$
: $\theta(x) = \theta_B$

At
$$x = L$$
: $\dot{Q}_{head} = 0 \Rightarrow \left. \frac{d\theta}{dx} \right|_{x=L} = 0$

Fin temperature profile with given boundary conditions:

$$\theta(x) = \theta_B \cdot \left(\frac{e^{m (L-x)} + e^{-m (L-x)}}{e^{m L} + e^{-m L}} \right)$$

or

$$\theta(x) = \theta_B \cdot \left(\frac{\cosh(m(L - x))}{\cosh(mL)} \right)$$

Temperature profile: Comparison for different fin materials

Materials:

Copper: $\lambda_{\text{Cu}} = 385 \frac{W}{m \, K}$

Chrome-Nickel-Steel: $\lambda_{\text{Cr-Ni}} = 16 \frac{W}{m \, K}$

Glass: $\lambda_{\text{Glass}} = 0.8 \frac{W}{m \, K}$

Cylindrical pin fin \implies $m^2 = \frac{4 \alpha}{\lambda d}$

Temperature profile: Comparison for different fin materials

$$\theta(x) = \theta_B \cdot \left(\frac{e^{m (L-x)} + e^{-m (L-x)}}{e^{m L} + e^{-m L}} \right)$$

$$\theta(x) = \theta_B \cdot \left(\frac{\cosh(m(L-x))}{\cosh(mL)}\right)$$

Temperatures at the head and base:

At
$$x = 0$$
: $\theta(x) = \theta_B$

At
$$x = L$$
:
$$\frac{\theta(x = L)}{\theta_B} = \frac{e^0 + e^0}{e^{m L} + e^{-m L}} = \frac{2}{e^{m L} + e^{-m L}}$$

Temperature profile: Comparison for different fin materials

$$\frac{\theta(L)}{\theta_B} = \frac{2}{e^{m L} + e^{-m L}}$$

$$m^2 = \frac{4 \alpha}{\lambda d} \left[\frac{1}{m} \right]$$

Copper:

$$\lambda_{\text{Cu}} = 385 \frac{W}{m \, K}$$

$$m_{\rm Cu}^2 = 13 \ m^{-1}$$

$$(m \cdot L)_{Cu} = 0.144$$

$$\left(\frac{\theta(L)}{\theta_B}\right)_{Cu} = 0.9887$$

Chrome-Nickel-Steel:

$$\lambda_{\rm Cr-Ni} = 16 \frac{W}{m \, K}$$

$$m_{Cr-Ni}^2 = 312.5 \text{ m}^{-1}$$

$$(\mathbf{m} \cdot \mathbf{L})_{\mathrm{Cr-Ni}} = 0.707$$

$$\left(\frac{\theta(L)}{\theta_B}\right)_{Cr-Ni} = 0.7939$$

Glass:

$$\lambda_{\text{Glass}} = 0.8 \frac{W}{m K}$$

$$m_{Glass}^2 = 6250 \text{ m}^{-1}$$

$$(m \cdot L)_{Glass} = 3.16$$

$$\left(\frac{\theta(L)}{\theta_B}\right)_{Gravi} = 0.7939$$
 $\left(\frac{\theta(L)}{\theta_B}\right)_{Glass} = 0.085$

Dimensionless temperature profile for the three different materials

Dimensionless temperature profile for the three different materials

Fin efficiency

$$\eta_R = \frac{\text{Heat transferred from a fin}}{\text{Maximum amount of transferable heat}}$$

Maximum transferable heat flow is achieved when the temperature remains equal to the base temperature along the entire length of the fin.

Calculate total heat transferred by fin surface

Heat transferred from a fin Maximum amount of transferable heat

Heat flow transferred from the fin:

Transferred (convective) heat flow on the shell surface:

$$\dot{Q}_{Conv} = \int_0^L \dot{q}_{conv.} dx = \pi d \cdot \int_0^L \alpha \cdot (T(x) - T_A) dx$$
ternatively:
$$\theta(x)$$

Alternatively:

Heat flow by conduction at the base:

$$\dot{Q}_{\text{cond.,base}} = -\lambda \cdot A_c \cdot \frac{dT}{dx} \Big|_{x=0} = -\lambda \cdot A_c \cdot \frac{d\theta}{dx} \Big|_{x=0}$$

$$\dot{Q}_{\rm conv} = \dot{Q}_{\rm cond.,base}$$

Calculate total heat transferred by fin surface

$$\theta(x) = \theta_B \cdot \left(\frac{e^{m(L-x)} + e^{-m(L-x)}}{e^{mL} + e^{-mL}}\right)$$

Heat flow transferred from the fin:

$$\dot{Q}_{cond.,base} = -\lambda \cdot A_c \cdot \frac{dT}{dx} \Big|_{x=0} = -\lambda \cdot A_c \cdot \frac{d\theta}{dx} \Big|_{x=0}$$

$$\left. \frac{d\theta}{dx} \right|_{x=0} = -m \cdot \theta_B \cdot \left(\frac{e^{m L} - e^{-m L}}{e^{m L} + e^{-m L}} \right) = -m \cdot \theta_B \cdot \tanh(mL)$$

$$\dot{Q}_{cond.,base} = \lambda \cdot A_c \cdot m \cdot \theta_B \cdot tanh(mL)$$

$$\dot{Q}_{\rm conv} = \dot{Q}_{\rm cond.,base}$$

Calculate maximum amout of transferable heat

 $\eta_R = \frac{\text{Heat transferred from a fin}}{\text{Maximum amount of transferable heat}}$

Fin efficiency:

$$\dot{Q}_{max} = \pi \cdot d \cdot \alpha \int_{0}^{L} \theta_{B} dx = \pi \cdot d \cdot \alpha \cdot \theta_{B} \cdot L$$

$$\theta_{B} \cdot L$$

UNIVERSITY

OF TWENTE

$$\dot{Q}_{\rm conv} = \dot{Q}_{\rm cond.,base}$$

Course of the fin efficiency

 $\eta_R = \frac{\text{Heat transferred from a fin}}{\text{Maximum amount of transferable heat}}$

$$\eta_{R} = \frac{\tanh(mL)}{mL}$$

$$\dot{Q}_{\rm conv} = \dot{Q}_{\rm cond.,base}$$

Von Geek3 - Eigenes Werk, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4198479

Course of the fin efficiency

$$\eta_R = \frac{\text{Heat transferred from a fin}}{\text{Maximum amount of transferable heat}}$$

$$\eta_R = \frac{tanh(mL)}{mL}$$

$$\dot{Q}_{\rm conv} = \dot{Q}_{\rm cond.,base}$$

mL

Fin efficiency: Recapitulation of fin parameter

Fin parameter m:

$$m = \left(\frac{\alpha U}{\lambda A_c}\right)^{1/2}$$

$$\eta_{R} = \frac{\tanh(mL)}{mL}$$

Plain fin:

$$m = \left(\frac{2(\delta + T)\alpha}{\lambda \delta t}\right)^{1/2}$$

$$= \left(\frac{2\alpha}{\lambda} \left(\frac{1}{\delta} + \frac{1}{T}\right)\right)^{1/2}$$

$$= \left(\frac{2\alpha}{\lambda} \left(\frac{1}{\delta} + \frac{1}{T}\right)\right)^{1/2}$$
with $\frac{1}{\delta} \gg \frac{1}{T} \Rightarrow m \approx \left(\frac{2\alpha}{\lambda \delta}\right)^{1/2}$

Pin fin:

$$m = \left(\frac{\alpha \pi d}{\lambda \pi \frac{d^2}{4}}\right)^{\frac{1}{2}} = \left(\frac{4 \alpha}{\lambda d}\right)^{1/2}$$

Fin efficiency: Physical dependencies

$$\eta_{R} = \frac{\tanh(mL)}{mL}$$

Physical dependencies:

Material:

$$\lambda \uparrow \implies m^2 \downarrow \implies \eta \uparrow$$

Fin geometry (L = const.):

$$d \uparrow \implies m^2 \downarrow \implies \eta \uparrow$$

Convective heat transfer:

$$\alpha \downarrow \implies m^2 \downarrow \implies \eta \uparrow$$

Plain fin:

$$m = \left(\frac{2 \alpha}{\lambda \delta}\right)^{\frac{1}{2}}$$

Pin fin:

$$m = \left(\frac{4 \alpha}{\lambda d}\right)^{\frac{1}{2}}$$

Fin efficiency only indicates how well single sections of a fin are used!

 η_R does not provide information about the heat flow transferred \rightarrow although it decreases when a fin is extended \rightarrow $\dot{Q}_{\rm transferred}$ increases

Comprehension questions

What relationship does the fin efficiency describe?

What is the assumption for the theoretical maximum transferable heat of a fin?

How can the fin efficiency be increased?

