Lectures 6-7

Simple Linear Regression

DSC 40A, Fall 2024

Agenda

- Simple linear regression.
- Minimizing mean squared error for the simple linear model.
- Correlation.
- Interpreting the formulas.
- Connections to related models.
- What next? Linear algebra.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " E Lecture Questions" link in the top right corner of dsc40a.com.

Linear regression model

A hypothesis function, H, takes in an x as input and returns a predicted y.

Parameters define the relationship between the input and output of a hypothesis function.

Simple linear regression model, $H(x)=w_0+w_1x$, has two parameters: w_0 and w_1 .

The modeling recipe

1. Choose a model.

2. Choose a loss function.

3. Minimize average loss to find optimal model parameters.

Finding the best linear model

- Goal: Out of all linear functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean squared error.
 - \circ Linear functions are of the form $H(x)=w_0+w_1x$.
 - \circ They are defined by a slope (w_1) and intercept (w_0) .
- That is, $H^*=w_0^*+w_1^*x$ should be the linear function that minimizes

$$R_{ ext{sq}}(H) = rac{1}{n} \sum_{i=1}^n ig(y_i - H(x_i)ig)^2$$

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2 .$$

- We chose squared loss, since it's the easiest to minimize.
- How do we find the parameters w_0^* and w_1^* that minimize $R_{
 m sq}(w_0,w_1)$?

Minimizing mean squared error for the simple linear model

Minimizing multivariate functions

• Our goal is to find the parameters w_0^* and w_1^* that minimize mean squared error:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2 .$$

- $R_{
 m sq}$ is a function of two variables: w_0 and w_1 .
- To minimize a function of multiple variables:
 - Take partial derivatives with respect to each variable.
 - Set all partial derivatives to 0.
 - Solve the resulting system of equations.
 - Ensure that you've found a minimum, rather than a maximum or saddle point (using the second derivative test for multivariate functions).

Example

Find the point (x, y, z) at which the following function is minimized.

$$f(x,y) = x^2 - 8x + y^2 + 6y - 7$$

Minimizing mean squared error

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n \left(y_i - \left(w_0 + w_1 x_i
ight)
ight)^2$$

To find the w_0^* and w_1^* that minimize $R_{\mathrm{sq}}(w_0,w_1)$, we'll:

- 1. Find $\frac{\partial R_{\text{sq}}}{\partial w_0}$ and set it equal to 0.
- 2. Find $\frac{\partial R_{\text{sq}}}{\partial w_1}$ and set it equal to 0.
- 3. Solve the resulting system of equations.

Question 🤔

Answer at q.dsc40a.com

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2 .$$

Which of the following is equal to $\frac{\partial R_{\text{sq}}}{\partial w_0}$?

$$ullet$$
 A. $\dfrac{1}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)
ight)$

• B.
$$-\frac{1}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1x_i)\right)$$

$$ullet$$
 C. $-rac{2}{n}\sum_{i=1}^n{(y_i-(w_0+w_1x_i))x_i}$

$$ullet$$
 D. $-rac{2}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)
ight)$

$$egin{align} R_{ ext{sq}}(w_0,w_1) &= rac{1}{n} \sum_{i=1}^n \left(y_i - \left(w_0 + w_1 x_i
ight)
ight)^2 \ rac{\partial R_{ ext{sq}}}{\partial w_0} &=
onumber \ rac{\partial R_$$

$$egin{align} R_{ ext{sq}}(w_0,w_1) &= rac{1}{n} \sum_{i=1}^n \left(y_i - \left(w_0 + w_1 x_i
ight)
ight)^2 \ rac{\partial R_{ ext{sq}}}{\partial w_1} &= \ \end{array}$$

Strategy

We have a system of two equations and two unknowns (w_0 and w_1):

$$-rac{2}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)
ight)=0 \qquad -rac{2}{n}\sum_{i=1}^n\left(y_i-(w_0+w_1x_i)
ight)\!x_i=0$$

To proceed, we'll:

- 1. Solve for w_0 in the first equation. The result becomes w_0^* , because it's the "best intercept."
- 2. Plug w_0^* into the second equation and solve for w_1 . The result becomes w_1^* , because it's the "best slope."

Solving for w_0^st

$$-rac{2}{n}\sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight) = 0$$

Solving for w_1^*

$$-rac{2}{n}\sum_{i=1}^n{(y_i-(w_0+w_1x_i))x_i}=0$$

Least squares solutions

We've found that the values w_0^* and w_1^* that minimize $R_{
m sq}$ are:

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (y_i - ar{y}) x_i}{\displaystyle\sum_{i=1}^n (x_i - ar{x}) x_i} \qquad \qquad w_0^* = ar{y} - w_1^* ar{x}$$

where:

$$ar{x} = rac{1}{n} \sum_{i=1}^n x_i \qquad \qquad ar{y} = rac{1}{n} \sum_{i=1}^n y_i$$

These formulas work, but let's re-write w_1^* to be a little more symmetric.

An equivalent formula for w_1^*

Claim:

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (y_i - ar{y}) x_i}{\displaystyle\sum_{i=1}^n (x_i - ar{x}) (y_i - ar{y})} = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x}) (y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2}$$

Proof:

Least squares solutions

• The **least squares solutions** for the intercept w_0 and slope w_1 are:

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2} \qquad \qquad w_0^* = ar{y} - w_1^* ar{x}$$

- We say w_0^* and w_1^* are **optimal parameters**, and the resulting line is called the regression line.
- The process of minimizing empirical risk to find optimal parameters is also called "fitting to the data."
- ullet To make predictions about the future, we use $H^*(x)=w_0^*+w_1^*x$.

Causality

Solving for best linear model for commute

Can we conclude that leaving later causes you to get to school quicker?

What's next?

We now know how to find the optimal slope and intercept for linear hypothesis functions. Next, we'll:

- See how the formulas we just derived connect to the formulas for the slope and intercept of the regression line we saw in DSC 10.
 - They're the same, but we need to do a bit of work to prove that.
- Learn how to interpret the slope of the regression line.
- Discuss causality.
- Learn how to build regression models with multiple inputs.
 - To do this, we'll need linear algebra!

Agenda

- Simple linear regression.
- Correlation.
- Interpreting the formulas.
- Connections to related models.

Least squares solutions

• Our goal was to find the parameters w_0^* and w_1^* that minimized:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2$$

• To do so, we used calculus, and we found that the minimizing values are:

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2} \qquad \qquad w_0^* = ar{y} - w_1^* ar{x}$$

• We say w_0^* and w_1^* are **optimal parameters**, and the resulting line is called the regression line.

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

Now what?

We've found the optimal slope and intercept for linear hypothesis functions using squared loss (i.e. for the regression line). Now, we'll:

- See how the formulas we just derived connect to the formulas for the slope and intercept of the regression line we saw in DSC 10.
 - They're the same, but we need to do a bit of work to prove that.
- Learn how to interpret the slope of the regression line.
- Understand connections to other related models.
- Learn how to build regression models with multiple inputs.
 - To do this, we'll need linear algebra!

Question 🤔

Answer at q.dsc40a.com

Consider a dataset with just two points, (2,5) and (4,15). Suppose we want to fit a linear hypothesis function to this dataset using squared loss. What are the values of w_0^* and w_1^* that minimize empirical risk?

- A. $w_0^* = 2$, $w_1^* = 5$
- B. $w_0^* = 3$, $w_1^* = 10$
- C. $w_0^* = -2$, $w_1^* = 5$
- D. $w_0^* = -5$, $w_1^* = 5$

Correlation

Quantifying patterns in scatter plots

- In DSC 10, you were introduced to the idea of the **correlation coefficient**, r.
- It is a measure of the strength of the linear association of two variables, x and y.
- Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
- It ranges between -1 and 1.

The correlation coefficient

- The correlation coefficient, r, is defined as the average of the product of x and y, when both are in standard units.
- Let σ_x be the standard deviation of the x_i s, and \bar{x} be the mean of the x_i s.
- x_i in standard units is $\frac{x_i \bar{x}}{\sigma_x}$.
- The correlation coefficient, then, is:

$$r = rac{1}{n} \sum_{i=1}^n \left(rac{x_i - ar{x}}{\sigma_x}
ight) \left(rac{y_i - ar{y}}{\sigma_y}
ight)$$

The correlation coefficient, visualized

Another way to express w_1^*

• It turns out that w_1^* , the optimal slope for the linear hypothesis function when using squared loss (i.e. the regression line), can be written in terms of r!

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2} = r rac{\sigma_y}{\sigma_x}$$

- It's not surprising that r is related to w_1^* , since r is a measure of linear association.
- Concise way of writing w_0^* and w_1^* :

$$w_1^* = r rac{\sigma_y}{\sigma_x} \qquad w_0^* = ar{y} - w_1^* ar{x}$$

Proof that
$$w_1^* = r rac{\sigma_y}{\sigma_x}$$

Interpreting the formulas

Interpreting the slope

$$w_1^* = r rac{\sigma_y}{\sigma_x}$$

- The units of the slope are units of y per units of x.
- In our commute times example, in H(x)=142.25-8.19x, our predicted commute time decreases by 8.19 minutes per hour.

Interpreting the slope

$$w_1^* = r rac{\sigma_y}{\sigma_x}$$

- Since $\sigma_x \geq 0$ and $\sigma_y \geq 0$, the slope's sign is r's sign.
- As the y values get more spread out, σ_y increases, so the slope gets steeper.
- ullet As the x values get more spread out, σ_x increases, so the slope gets shallower.

Interpreting the intercept

$$w_0^*=ar{y}-w_1^*ar{x}$$

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

• What are the units of the intercept?

• What is the value of $H^*(\bar{x})$?

Question 🤔

Answer at q.dsc40a.com

We fit a regression line to predict commute times given departure hour. Then, we add 75 minutes to all commute times in our dataset. What happens to the resulting regression line?

- A. Slope increases, intercept increases.
- B. Slope decreases, intercept increases.
- C. Slope stays the same, intercept increases.
- D. Slope stays the same, intercept stays the same.

Correlation and mean squared error

• Claim: Suppose that w_0^* and w_1^* are the optimal intercept and slope for the regression line. Then,

$$R_{ ext{sq}}(w_0^*,w_1^*) = \sigma_y^2(1-\pmb{r}^2)$$

- That is, the mean squared error of the regression line's predictions and the correlation coefficient, *r*, always satisfy the relationship above.
- Even if it's true, why do we care?
 - $^{\circ}$ In machine learning, we often use both the mean squared error and r^2 to compare the performances of different models.
 - If we can prove the above statement, we can show that finding models that minimize mean squared error is equivalent to finding models that maximize r^2 .

Proof that
$$R_{ ext{sq}}(w_0^*,w_1^*)=\sigma_y^2(1-r^2)$$

Connections to related models

Question 🤔

Answer at q.dsc40a.com

Suppose we chose the model $H(x)=w_1x$ and squared loss. What is the optimal model parameter, w_1^st ?

$$ullet$$
 A. $rac{\sum_{i=1}^n (x_i-ar{x})(y_i-ar{y})}{\sum_{i=1}^n (x_i-ar{x})^2}$

$$ullet$$
 B. $rac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2}$

$$ullet$$
 C. $rac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2}$

$$ullet$$
 D. $rac{\sum_{i=1}^n y_i}{\sum_{i=1}^n x_i}$

Exercise

Suppose we chose the model $H(x)=w_1x$ and squared loss. What is the optimal model parameter, w_1^st ?

Predicted Commute Time = 142.25 - 8.19 * Departure Hour Predicted Commute Time = 8.41 * Departure Hour

Exercise

Suppose we choose the model $H(x)=w_0$ and squared loss. What is the optimal model parameter, w_0^st ?

Comparing mean squared errors

- With both:
 - \circ the constant model, H(x)=h, and
 - \circ the simple linear regression model, $H(x)=w_0+w_1x$,

when we chose squared loss, we minimized mean squared error to find optimal parameters:

$$R_{ ext{sq}}(H) = rac{1}{n} \sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

Which model minimizes mean squared error more?

Comparing mean squared errors

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

- The MSE of the best simple linear regression model is ≈ 97 .
- ullet The MSE of the best constant model is pprox 167

•

 The simple linear regression model is a more flexible version of the constant model.

Linear algebra review

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature.
 - Example: Predicting commute times using departure hour and temperature.
- Thinking about linear regression in terms of **matrices and vectors** will allow us to find hypothesis functions that:
 - Use multiple features (input variables).
 - \circ Are non-linear, e.g. $H(x)=w_0+w_1x+w_2x^2$.
- Before we dive in, let's review.

Spans of vectors

- One of the most important ideas you'll need to remember from linear algebra is the concept of the **span** of two or more vectors.
- To jump start our review of linear algebra, let's start by watching this video by 3blue1brown.

Next time

- We'll review the necessary linear algebra prerequisites.
- We'll then start to formulate the problem of minimizing mean squared error for the simple linear regression model using matrices and vectors.
- We'll send some relevant linear algebra review videos on Ed.