Homework 2: Bayesian Decision Theory

(DHS) Chapter 2, p65: 2, 6, 37, and the following.

Problem 4

Two one-dimensional distributions are uniform in [0,2] for ω_1 and [1,4] for ω_2 , and $P_1=P_2=0.5$.

- 1. Find the Bayes boundary for minimum error, and compute the probability of error.
- 2. Find the Bayes decision boundary if $\lambda_{11} = \lambda_{22} = 0$ and $\lambda_{12} = 2\lambda_{21}$.

Problem 5

For a two-class recognition problem with salmon ($\omega=1$) and sea bass ($\omega=2$), suppose we have two features $\mathbf{x}=(x1,x2)$ and the two class-conditional densities, $p(x|\omega=1)$ and $p(x|\omega=2)$, are 2D Gaussian distributions centered at points (4, 16) and (16, 4) respectively with the same covariance matrix $\mathbf{\Sigma}=4\mathbf{I}$ (with \mathbf{I} is the identity matrix). Suppose the priors are $P(\omega=1)=0.6$ and $P(\omega=2)=0.4$.

- 1. Suppose we use a Bayes decision rule, write the two discriminant functions $g_1(\mathbf{x})$ and $g_2(\mathbf{x})$.
- 2. Derive the equation for the decision boundary $g_1(\mathbf{x}) = g_2(\mathbf{x})$. Draw the boundary on the feature space (the 2D plane).

Section 2.2

- 2. Suppose two equally probable one-dimensional densities are of the form $p(x|\omega_i) \propto e^{-|x-a_i|/b_i}$ for i=1,2 and $0 < b_i$.
 - (a) Write an analytic expression for each density, that is, normalize each function for arbitrary a_i and positive b_i .
 - (b) Calculate the likelihood ratio as a function of your four variables.
 - (c) Sketch a graph of the likelihood ratio $p(x|\omega_1)/p(x|\omega_2)$ for the case $a_1 = 0$, $b_1 = 1$, $a_2 = 1$ and $b_2 = 2$.

- 6. Consider the Neyman-Pearson criterion for two univariate normal distributions: $p(x|\omega_i) \sim N(\mu_i, \sigma_i^2)$ and $P(\omega_i) = 1/2$ for i = 1, 2. Assume a zero-one error loss, and for convenience let $\mu_2 > \mu_1$.
 - (a) Suppose the maximum acceptable error rate for classifying a pattern that is actually in ω_1 as if it were in ω_2 is E_1 . Determine the single-point decision boundary in terms of the variables given.
 - (b) For this boundary, what is the error rate for classifying ω_2 as ω_1 ?
 - (c) What is the overall error rate under zero-one loss?
 - (d) Apply your results to the specific case $p(x|\omega_1) \sim N(-1, 1)$ and $p(x|\omega_2) \sim$ N(1, 1) and $E_1 = 0.05$.
- (e) Compare your result to the Bayes error rate (i.e., without the Neyman-Pearson conditions).
 - (c) Integrate explicitly the term
- 37. Consider a two-category classification problem in two dimensions with

$$p(\mathbf{x}|\omega_1) \sim N(\mathbf{0}, \mathbf{I}), p(\mathbf{x}|\omega_2) \sim N\left(\binom{1}{1}, \mathbf{I}\right), \text{ and } P(\omega_1) = P(\omega_2) = 1/2.$$

- (a) Calculate the Bayes decision boundary.
- (b) Calculate the Bhattacharyya error bound.
- (c) Repeat the above for the same prior probabilities, but

$$p(\mathbf{x}|\omega_1) \sim N\left(\mathbf{0}, \begin{pmatrix} 2 & .5 \\ .5 & 2 \end{pmatrix}\right) \text{ and } p(\mathbf{x}|\omega_2) \sim N\left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 5 & 4 \\ 4 & 5 \end{pmatrix}\right).$$