2023 年全国硕士研究生入学统一考试

计算机学科专业基础综合试题

—	、 单项选择题 (1~40 小题,每小题 2 分,共 80)分。下列每小题给出的	的四个选项中, 只有一项符
1.	合题目要求) 下列对顺序存储的有序表(长度为 n)实现给定	· 接操作的算法中,平均时	间复杂度为 O(1)的
	是。		
		B. 插入包含指定值元素	素的算法
	C. 删除第 i (1 $\leq i \leq n$) 个元素的算法	***************************************	
2.	现有非空双向链表 L, 其结点结构为: prev c		
	next 是指向直接后继结点的指针。若要在 L 中打		
	指向的新结点,则在执行了语句序列: "s->next	_	
	执行的是。	r, r ,,,,	/ 1 / 4 · E 4/4 / 4 · = 104 / 5
	* * * * * * * * * * * * * * * * * * *	B. p->next->prev=s; s->	prev=p;
	C. s->prev=s->next->prev; s->next->prev=s;		
3.	若采用三元组表存储结构存储稀疏矩阵 M。则	除三元组表外,下列数据	居中还需要保存的
	是。		
	I. M 的行数	II. M 中包含非零元素的	的行数
	III. M 的列数	IV. M 中包含非零元素	的列数
	A. 仅 I、III B. 仅 I、IV	C. 仅 II、IV	D. I、II、III、IV
4.	在由6个字符组成的字符集S中,各字符出现的		
	编码的加权平均长度为。		
	A. 2.4 B. 2.5	C. 2.67	D. 2.75
5.	已知一棵二叉树的树形如下图所示,若其后序边	遍历为 f, d, b, e, c, a,则非	其先
	(前)序遍历序列是。		\searrow
	A. a, e, d, f, b, c B. a, c, e, b, d, f		
	C. c, e, b, e, f, d D. d, f, e, b, a, c		
6.	已知无向连通图 G 中各边的权值均为 1, 下列算	算法中,一定能够求出图	IG中 ()
	从某项点到其余各项点最短路径的是。		
	I. 普里姆(Prim)算法 II. 克鲁斯卡尔(Krusk	al)算法	
	III. 图的广度优先搜索算法		
	A. 仅 I B. 仅 III		D. I、II、III
7.	下列关于非空 B 树的叙述中,正确的是		
	I. 插入操作可能增加树的高度	II. 删除操作一定会导到	致叶结点的变化
	III. 查找某关键字总是要查找到叶结点		
	A.仅 I B. 仅 I、II		
8.	对含有600个元素的有序顺序表进行折半查找,		
	A. 9 B. 10		
9.	现有长度为 5、初始为空的散列表 HT,散列表	* * * * *	
	突。若将关键字序列 2022, 12, 25 依次插入 HT	中,然后删除关键字 25	,则 HT 中查找失败的平
	均查找长度为。		
		C. 1.8	D. 2.2
	下列排序算法中,不稳定的是。		++ 10/11/11/2-
	I. 希尔排序 II. 归并排序 III. 快速打		
	A. I、II B. II、V 使用快速排序管注对数据讲行升序排序。若经过		
1 1		・1 ・ ・ // 1 マロンオプラー 7字(3年11月7日27月7月	

2023年全国硕士研究生入学统一考试计算机学科专业基础综合试题 第 1 页 (共 11 页)

	77, 48, 81, 93, 88,则该次划分的枢轴是		
	A. 11 B. 70	C. 80	D. 81
12.	若机器 M 的主频为 1.5GHz, 在 M 上执行程序 I	P的指令条数为 5×10⁵,	P 的平均 CPI 为 1.2,则
	P在M上的指令执行速度和用户 CPU 时间分别		
	A. 0.8GIPS, 0.4ms B. 0.8GIPS, 0.4μs	C. 1.25GIPS, 0.4ms	D. 1.25GIPS, 0.4μs
13.	若 short 型变量 $x = -8 190$,则 x 的机器数是		•
	A. E002H B. E001H		D. 9FFEH
14.	已知 float 型变量用 IEEE 754 单精度浮点数格式		
	则 x 的值是。	(70.7% 肾 110110 主义主.1	, H4 / B HH /9(/) 4 00 = 0 00 011/
	A. -2^{-128} B. -1.01×2^{-127}	$C = 1.01 \times 2^{-126}$	D 非数 (NAN)
15	某计算机的 CPU 有 30 根地址线,按字节编址,		
10.	可能存储地址空间,并且 RAM 区和 ROM 区所		
	区,ROM 在连续高地址区,则 ROM 的地址范围		
			SEEEN
	A. 0000 0000H~0FFF FFFFH C. 3000 0000H~3FFF FFFFH	D. 1000 0000H 2FFF I	TTTTT CEEEU
16	己知 x 、 y 为 int 类型,当 $x=100$ 、 $y=200$ 时,执		
10.	CF 分别为 0 、 1 ,那么当 $x=10$, $y=-20$ 时,执行	•	
	A. OF=0, CF=0 B. OF=0, CF=1		
17			
11.	某运算类型指令中有一个地址码为通用寄存器编	两与,	'仔从的定保作致以保作致
	的地址,CPU区分两者的依据是。	C 通用宏方思始绰旦	D 海田安方思始由宏
10	A. 操作数的寻址方式 B. 操作数的编码方式 数据通路中组合逻辑示件(操作示件)和时序设		
10.	数据通路由组合逻辑元件(操作元件)和时序设	2再几件组成(扒芯几件	7 组成,以下给面的几件
	中,属于操作元件的是。	H 和亨兰教明(DC)	
	I. 算术逻辑部件(ALU) III. 通用寄存器组(GPRs)	II. 住戶订效益(PC)	
	A.仅 I、II B.仅 I、IV		
19.	某系统采用"取指、译码/取数、执行、访存、写		处埋益中执行如下指令序
	列 (第一列为指令序号), 其中 s0、s1、s2、s3、		
	I1 add s2, s1, s0 $//R[s2] \leftarrow R[s1] +$		
	I2 load s3, 0(s2) //R[s3] \(\text{M}[R[s2] \)		
	I3 beq t2, s3, L1 //if R[t2]=R[s		
	I4 addi t2, t2, 20 //R[t2]←R[t2]	+ 20	
	IS L1:	F /J. 70 chr	
	若采用转发(旁路)技术处理数据冒险,采用硬	理件阻塞万式处理控制冒	险,则在 II~I4 执行过程
	中,发生流水线阻塞的指令有。	- /	
	A. 仅 I3 B. 仅 I2、I4		
20.	某存储总线宽度为 64b, 总线时钟频率为 1GHz,		
	不支持突发传送方式。若通过该总线连接 CPU		一个 $64b$ 数据需要 $6ns$,主
	存块大小为 32B,则读取一个主存块需要的时间		
			D. 32ns
21.	下列关于硬件和异常/中断关系的叙述中,错误的	的是()。	
	A. CPU 在执行一条指令过程中检测异常事件		
	B. CPU 在执行完一条指令时检测中断请求信号		
	C. 开中断时 CPU 检测到中断请求后就进行中断	前响应	
	D. 外部设备通过中断控制器向 CPU 发中断结束	[信号	
22.	下列关于 I/O 控制方式的叙述中,错误的是	0	
	A. 查询方式下,通过 CPU 执行查询程序进行 I/	O 操作	

	B. 中断方式下, 追	通过 CPU	执行中断服务程序进行	f I/O 操作		
	C. DMA 方式下,	通过 CPU	执行 DMA 传送程序员	性行 I/O 搏	操作	
	D. 对于 SSD、网络	各适配器等	等高速设备,采用 DM	A 方式输	入/输出	
23.	与宏内核操作系统	相比,下	· 列特征中,微内核操作	序系统具有	育的是	_0
	I. 较好的性能	II.	较高的可靠性 II	I. 较高的]安全性 Γ	V. 较强的可扩展性
			仅 I、II、III C			
24.			量表适合采用的数据组			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
_ 1.			队列C			双向链表
25						内存大小为 16 GB ,则位
40.	图所占空间的大小			ログハイ	·/)···································	MTDC/1/21 100円
			° 128KB	5 519KD	Г	AMD
വെ						7. 4NIB
26.			J 从内核态转为用户态			、北ケズは四田
			执行 CPU 调度 C			
27.		引起的事	4件或执行的操作中,	可能导	致该线程由基	1.行形态变为就绪态的
	是。					
	A. 键盘输入		B D	. 缺页异	常	
	C. 主动出让 CPU). 执行信	号量的 wait()操	身作
28.	对于采用虚拟内存	管理方式	的系统,下列关于进程	星虚拟地均	止空间的叙述中	,错误的是。
	A. 每个进程都有自	自己独立的	的虚拟地址空间			
	B. C 语言中 malloc	:()函数返	回的是虚拟地址			
			可以有不同的访问权限			
	D. 虚拟地址空间的	勺大小由戶	内存和硬盘的大小决定			
29.	讲程 P1、P2 和 P3	讲入就绪	队列的时刻, 优先级(值越大份	(先权越高)以	及 CPU 的执行时间如下
	表所示:	, , , , , , ,	10 12 4 14 1 4 2 14 2 15 15 15 15 15 15 15 15 15 15 15 15 15	· (EE)	27274,6147 247	>c H44/14 : 41 4> 1 1
		进程名	进入就绪队列的时刻	优先数	CPU 执行时间	ī
		P1	0ms	1	60ms	3
		P2	20ms	10	42ms	_
						_
	サズクジロサエル	P3	30ms	100	13ms	THE DUDY DO THE DO
			占式 CPU 调度算法,	从 Ums 时	刻开始进行调 <i>。</i>	更,则 P1、P2 和 P3
	的平均周转时间为		=			
		В.				0.71ms
30.					号分别为 p1 和	p2,两个页所对应的页
			列叙述中,正确的是			
	A. p1 和 p2 一定相	等,f1 和	If2一定相等 B	3. p1 和 p2	2一定相等,f1	和 f2 不一定相等
			和 f2 一定相等 D			
31.	若文件 F 仅被进程	呈 P 打开	·并访问,则当进程 P	关闭 F B	寸,下列操作中	7,文件系统需要完成的
	是。					
	A. 删除目录文件中	Þ F 的目录	录项 B	. 释放 F	的索引节点所成	占的内存空间
	C. 释放 F 的索引节	卢点所占 自	的外存空间 D). 将文件	磁盘索引结点。	中的链接计数减 1
32.	下列因素中,设备	分配需要	考虑的是。			
	I.设备的类型		I	[. 设备的	访问权限	
	III.设备的占用状态	Ş	Γ	V. 逻辑设	备与物理设备	的映射关系
			仅 II、III C			
33						各的带宽均为 100Mb/s、
J .						个大小为 1MB 的文件,
						引止,所需的时间至少是
	/ 组 k 浸 / 1000 B (注: M=10 ⁶)	, 753/7 5 11	工厂和人人心时 外型到 11	2 汉川又		5年,// 100月1月日上少尺
	(1T: INI_IO)					

B. 80.08ms C. 80.09ms A. 80.02ms D. 80.10ms 34. 某无噪声理想信道带宽为 4MHz, 采用 QAM 调制, 若该信道的最大数据传输速率是 48Mb/s,则 该信道采用的 QAM 调制方案是____。 B. QAM-32 C. QAM-64 D. OAM-128 A. OAM-16 35. 假设通过同一信道,数据链路层分别采用停止-等待协议、GBN 协议和 SR 协议(发送窗口和接 收窗口相等)传输数据,3个协议数据帧长相同,忽略确认帧长度,帧序号位数为3比特。若对应 3 个协议的发送方最大信道利用率分别是 U1、U2 和 U3,则 U1、U2 和 U3 满足的关系是 B. U1≤U3≤U2 C. U2≤U3≤U1 A. U1≤U2≤U3 D. U3≤U2≤U1 36. 已知 10BaseT 以太网的争用时间片为 51.2μs。若网卡在发送某帧时发生了连续 4 次冲突,则基于 二进制指数退避算法确定的再次尝试重发该帧前等待的最长时间是 D. 819.2us A. 51.2µs B. 204.8µs C. 768µs 37. 若甲向乙发送数据时采用 CRC 校验, 生成多项式为 $G(X)=X^4+X+1$ (即 G=10011),则乙接收到下列 比特串时,可以断定其在传输过程中未发生错误的是。 C. 1 0111 1000 A. 1 0111 0000 B. 1 0111 0100 D. 1 0111 1100 38. 某网络拓扑如下图所示,其中路出器 R2 实现 NAT 功能。若主机 H 向 Internet 发送 1 个 IP 分组,

- A. 195.123.0.33
- **B**. 192.123.0.35

则经过 R2 转发后,该 IP 分组的源 IP 地址是。

- C. 192.168.0.1
- D. 192.168.0.3
- 39. 主机 168.16.84.24/20 所在子网的最小可分配 IP 地址和最大可分配 IP 地址分别是_____
 - A. 168.16.80.1, 168.16.84.254

B. 168.16.80.1, 168.16.95.254

C. 168.16.84.1, 168.16.84.254

- D. 168.16.84.1, 168.16.95.254
- 40. 下列关于 IPv4 和 IPv6 的叙述中, 正确的是()。
 - I. IPv6 地址空间是 IPv4 地址空间的 96 倍
 - II. IPv4 首部和 IPv6 的基本首部的长度均可变
 - III. IPv4 向 IPv6 过渡可以采用双协议栈和隧道技术
 - IV. IPv6 首部的 Hop Limit 等价于 IPv4 首部的 TTL 字段
 - A. 仅 I、II
- B. 仅 I、IV
- C. 仅 II、III
- D. 仅 III、IV

二、综合应用题 (第 $41 \sim 47$ 小题, 共 70 分)

41. (13 分) 已知有向图 G 采用邻接矩阵存储,类型定义如下:

```
typedef struct //图的类型定义
{
   int numVertices, numEdges; //图的顶点数和有向边数
   char VerticesList[MAXV]; //顶点表, MAXV 为已定义常量
   int Edge[MAXV][MAXV]; //邻接矩阵
}MGraph
```


题 41 图

将图中出度大于入度的顶点称为 K 顶点。例如题 41 图中,顶点 a 和顶点 b 为 K 顶点。请设计算法: int printVertices (MGraph G),对给定的任意非空有向图 G,输出图 G 中所有的 K 顶点,并返回 K 顶点的个数。要求:

- (1)给出算法的基本设计思想。
- (2) 根据设计思想,采用 C 或 C++语言描述算法,关键之处给出注释。

- 42. (10 分) 对含有 n (n > 0) 个记录的文件进行外部排序,采用置换-选择排序生成初始归并段时需要使用一个工作,工作区中能保存 m 个记录,请回答下列问题:
 - (1) 若文件中含有 19 个记录,其关键字依次是 51, 94, 37, 92, 14, 63, 15, 99, 48, 56, 23, 60, 31, 17, 43, 8, 90, 166, 100,当 m = 4 时,可生成几个初始归并段?各是什么?
 - (2) 对任意的 m (n>>m>0), 生成的第一个初始归并段的长度最大值和最小值分别是多少?

43. (14分) 已知计算机 M 字长为 32 位,按字节编址,采用请求调页策略的虚拟存储管理方式,虚拟地址 32 位,页面大小为 4KB;数据 Cache 采用 4 路组相联映射方式,数据区大小为 8KB,主存块大小为 32B。现有 C 语言程序段如下:

int a[24][64];

...

for (i=0; i<24; i++)

for (j=0; j<64; j++)a[i][j]=10;

已知二维数组 a 按行优先存放,在虚拟地址空间中分配的起始地址为 0042 2000H, sizeof(int) = 4。假定在 M 上执行上述程序段之前数组 a 不在主存,且在该程序执行过程中不会发生页面置换。请回答下列问题:

- (1)数组分布在几个页面中?对于数组 a 的访问,会发生几次缺页异常?页故障地址各是什么?
- (2) 不考虑变量 i 和 j, 该程序段的数据访问是否具有时间局部性? 为什么?
- (3) 计算机 M 的虚拟地址(A31~A0)中哪几位用作块内地址?哪几位用作 Cache 组号? a[1][0]的虚拟地址是多少? 其所在主存块对应的 Cache 组号是多少?
- (4)数组 a 占用多少主存块?假设上述程序段执行过程中数组 a 的访问不会和其他数据发生 Cache 访问冲突,则数组 a 的 Cache 命中率是多少?若将循环中 i 和 j 的次序按如下方式调换:

for (j=0; j<64; j++)

for (i=0; i<24; i++)a[i][j]=10;

则数组 a 的 Cache 命中率又是多少?

44. (9分) 43 题中 C 程序段在计算机 M 上的部分机器级代码如下,每个机器级代码行中依次包含指令序号、虚拟地址、机器指令和汇编指令。

11 C / 1 2 C / WE TANK CO. T. C. L.			
	for $(i=0;$	i<24; i++)	
1	00401072	C7 45 F8 00 00 00 00	mov [ebp-8], 0
2	00401079	EB 09	jmp 00401084h
3	0040107B	8B 55 F8	mov eax, [ebp-8]
	• • •	• • •	• • •
7	00401088	7D 32	jge 004010BCh
	for (j=	=0; j<64; j++)	
8	0040108A	C7 45 FC 00 00 00 00	mov [ebp-4], 0
		•••	•••
	a[i]	[j]=10;	
19	004010AE	C7 84 82 00 20 42 00 0A	mov [ecx + edx * 4+
		00 00 00	00422000h], 0Ah
) 士 口	ᄷᄼᄀᄀᄼᄓᄀᄪ		

请回答下列问题。

- (1) 第20条指令的虚拟地址是多少?
- (2) 已知第 2 条 jmp 和第 7 条 jge 都是跳转指令,其操作码分别是 EBH 和 7DH,跳转目标地址分别为 0040~1084H、0040~10BCH,这两条指令分别采用什么寻址方式?请给出第 2 条指令 jmp 的跳转目标地址计算过程。
- (3) 已知第 19 条 mov 指令的功能是 "a[i][j] \leftarrow 10",其中 ecx 和 edx 为寄存器名,0042 2000H 是数组 a 的首地址,指令中源操作数采用什么寻址方式? 已知 edx 中存放的是变量 j,ecx 中存放的是什么?根据该指令的机器码判断计算机 M 采用的是大端还是小端方式。
- (4) 第1次执行第19条指令时,取指令过程中是否会发生缺页异常?为什么?

45. (7分) 现要求学生使用 swap 指令和布尔型变量 lock,实现临界区互斥。lock 为线程间共享的变量。lock 的值为 TRUE 时线程不能进入临界区,为 FALSE 时,线程能进入临界区。某同学编写的实现临界区互斥的伪代码如题 45(a)图所示:请回答下列问题。

题 45(b)图

请回答下列问题:

- (1)题 45(a)图的伪代码中哪些语句存在错误?将其改为正确的语句(不增加语句条数)。
- (2)题 45(b)图给出了两个变量值的函数 newSwap()的代码,是否可以用函数调用语句 "newSwap(&key, &lock)"代替指令"swap key, lock"以实现临界区的互斥?为什么?

- 46. (8分)进程 P 通过执行系统调用从键盘接收一个字符的输入,已知此过程中与进程 P 相关的操作包括:
 - ①将进程 P 插入就绪队列;②将进程 P 插入阻塞队列;③将字符从键盘控制器读入系统缓冲区;④启动键盘中断处理程序;⑤进程 P 系统调用返回;⑥用户在键盘上输入字符。以上编号①~⑥仅用于标记操作,与操作的先后顺序无关,请回答下列问题。
 - (1) 按照正确的操作顺序,操作①的前一个和后一个操作分别是上述操作中的哪一个?操作⑥的后一个操作是上述操作中的哪一个?
 - (2) 在上述哪个操作之后 CPU 一定从进程 P 切换到其他进程? 在上述哪个操作之后 CPU 调度程序才能选中进程 P 执行?
 - (3) 完成上述哪个操作的代码属于键盘驱动程序?
 - (4) 键盘中断处理程序执行时,进程 P 处于什么状态? CPU 处于内核态还是用户态?

47. (9分) 某网络拓扑如题 47 图所示,主机 H 登录 FTP 服务器后,向服务器上传一个大小为 18000B 的文件 F。假设 H 为传输 F 建立数据连接时,选择的初始序号为 100, MSS=1000B,拥 塞控制初始阈值为 4MSS,RTT=10ms,忽略 TCP 段的传输时延;在 F 的传输过程中,H 均以 MSS 段向服务器发送数据,且未发生差错、丢包和乱序现象。

请回答下列问题。

- (1) FTP 的控制连接是持久的还是非持久的? FTP 的数据连接是持久的还是非持久的? H 登录 FTP 服务器时,建立的 TCP 连接是控制连接还是数据连接?
- (2) H 通过数据连接发送 F 时, F 的第 1 个字节的序号是多少? 在断开数据连接的过程中, FTP 服务器发送的第二次挥手 ACK 段的确认序号是多少?
- (3) H 通过数据连接发送 F 时,当 H 收到确认序号为 2101 的确认段时,H 的拥塞窗口调整为 8少?收到确认序号为 7101 的确认段时,H 的拥塞窗口调整为多少?
- (4) H 从请求建立数据连接开始,到确认 F 已被服务全部接收为止,至少需要多长时间?期间应用层数据的平均发送速率是多少?