

Z01xxxA

SENSITIVE GATE TRIACS

FEATURES

- $I_{T(RMS)} = 0.8A$
- $V_{DRM} = 400 \text{V to } 800 \text{V}$
- $\blacksquare \ I_{GT} \leq \ 3mA \ to \leq \ 25mA$

The Z01xxxA series of triacs uses a high performance TOP GLASS PNPN technology. These parts are intended for general purpose applications where gate high sensitivity is required.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Parameter		
I _{T(RMS)}	RMS on-state current (360° conduction angle)	TI= 70 °C	0.8	А
I _{TSM}	Non repetitive surge peak on-state current tp = 8.3 m		8.5	Α
	$(T_j initial = 25^{\circ}C)$	tp = 10 ms	8	
l ² t	I ² t Value for fusing	tp = 10 ms	0.32	A ² s
dI/dt	Critical rate of rise of on-state current $I_G = 50 \text{ mA}$ $d_{iG}/dt = 0.1 \text{ A/}\mu\text{s}$.	Repetitive F = 50 Hz	10	A/μs
		Non Repetitive	50	
T _{stg} T _j	Storage and operating junction temperature r	- 40, + 150 - 40, + 125	°C	
TI	Maximum lead temperature for soldering dur 2mm from case	260	°C	

Symbol	Parameter		Unit			
		D	М	S	N	
VDRM VRRM	Repetitive peak off-state voltage $T_j = 125^{\circ}C$	400	600	700	800	V

January 1995 1/5

Z01xxxA

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit
Rth(j-a)	Junction to ambient	150	°C/W
Rth(j-l)	Junction to leads for D.C	80	°C/W
Rth(j-l)	Junction to leads for A.C 360° conduction angle (F=50Hz)	60	°C/W

GATE CHARACTERISTICS (maximum values)

 $P_{G (AV)} = 0.1 \, W$ $P_{GM} = 2 \, W (tp = 20 \, \mu s)$ $I_{GM} = 1 \, A (tp = 20 \, \mu s)$

ELECTRICAL CHARACTERISTICS

Symbol	Test Conditions		Quadrant		Sensitivity				Unit
Syllibol	rest Conditions	•	Quadrani		03	07	09	10	Onit
lgт	$V_D=12V$ (DC) $R_L=140\Omega$	Tj= 25°C	1-11-111	MAX	3 5 10 25		mA		
			IV	MAX	5	7	10	25	
V_{GT}	$V_D=12V$ (DC) $R_L=140\Omega$	Tj= 25°C	I-II-III-IV	MAX		1	.5		V
V _{GD}	$V_D=V_{DRM}$ $R_L=3.3k\Omega$	Tj= 125°C	I-II-III-IV	MIN	0.2			V	
tgt	V _D =V _{DRM} I _G = 40mA	Tj= 25°C	I-II-III-IV	TYP	2			μs	
	$I_T = 1.1A$ $dI_G/dt = 0.5A/\mu s$								
I _H *	I _T = 50 mA Gate open	Tj= 25°C		MAX	7	10	10	25	mA
lι	I _G = 1.2 I _{GT}	Tj= 25°C	I-III-IV	TYP	7	10	10	25	mA
			11	TYP	14	20	20	50	
V _{TM} *	I _{TM} = 1.1A tp= 380μs	Tj= 25°C		MAX	1.5			V	
I _{DRM}	V _D = V _{DRM}	Tj= 25°C		MAX	10		μΑ		
I _{RRM}	$V_R = V_{RRM}$	Tj= 110°C		MAX	200				
dV/dt*	VD=67%V _{DRM}	Tj= 110°C		MIN	10	20	50	100	V/µs
	Gate open			TYP	20	50	150	400	
(dV/dt)c*	(dI/dt)c = 0.35 A/ms	Tj= 110°C		MIN			2	5	V/µs
				TYP	1	1			

^{*} For either polarity of electrode A2 voltage with reference to electrode A1

ORDERING INFORMATION

Fig.1: Maximum RMS power dissipation versus RMS on-state current.

Fig.3: RMS on-state current versus case temperature.

Fig.4: Relative variation of thermal impedance junction to ambient versus pulse duration.

Fig.5: Relative variation of gate trigger current and holding current versus junction temperature.

Fig.6: Non repetitive surge peak on-state current versus number of cycles.

Fig.7: Non repetitive surge peak on-state current for a sinusoidal pulse with width : $tp \le 10ms$, and corresponding value of I^2t .

Fig.8: On-state characteristics (maximum values).

PACKAGE MECHANICAL DATA

TO92 (Plastic)

	DIMENSIONS						
REF.	Millimeters			Inches			
	Тур.	Min.	Max.	Тур.	Min.	Max.	
Α	1.35			0.053			
В			4.7			0.185	
С	2.54			0.100			
D		4.4	4.8		0.173	0.189	
Е		12.7			0.500		
F			3.7			0.146	
а			0.45			0.017	

Marking: type number

Weight: 0.2 g

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to charge without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

