Teorija programskih jezikov: 1. izpit

31. januar 2020

Čas pisanja je 180 minut. Doseči je možno 80 točk. Veliko uspeha!

1. naloga (20 točk)

V λ -računu lahko vsako naravno število n predstavimo s $Churchevim\ naravnim\ številom$

$$e_n = \lambda s. \lambda z. \underbrace{s(s(\cdots(s\ z)\cdots))}_n$$

- a) Zapišite vse korake v evalvaciji izraza $(e_{2}\left(\lambda n.2*n\right))$ 1
- **b**) Napišite funkcijo f, ki vsako Churchevo naravno število pretvori v običajno naravno število. Veljati mora torej $f e_n \rightsquigarrow^* n$.
- **c**) Izračunajte najbolj splošen tip izraza e_2 .

2. naloga (20 točk)

Operacijsko semantiko programskega jezika IMP smo običajno podali z velikimi koraki, torej z relacijami

$$s, e \downarrow n$$
, $s, b \downarrow p$, $s, c \downarrow s'$,

vendar bi lahko podobno storili tudi z malimi koraki

$$s,e \leadsto e', \qquad s,b \leadsto b', \qquad s,c \leadsto s',c'$$

Pri tem aritmetični izrazi s koraki končajo, ko dosežejo število n, Booleovi izrazi takrat, ko dosežejo logično vrednost p, ukazi pa takrat, ko dosežejo s, skip.

- a) Podajte pravila, ki določajo relacijo $s, c \leadsto s', c'$.
- b) Jezik IMP razširimo s prepletenim izvajanjem $c_1 \leftrightharpoons c_2$, ki najprej izvede en korak ukaza c_1 , nato en korak ukaza c_2 , nato naslednji korak ukaza c_1 in tako naprej. Ko prvi izmed ukazov konča z izvajanjem, preostanek drugega ukaza izvedemo do konca. Zapišite dodatna pravila, s katerimi morate razširiti operacijsko semantiko.

3. naloga (20 točk)

Dana naj bo domena D in naj bo $fix: [D \to D] \to D$ preslikava, ki vsaki zvezni preslikavi $f: D \to D$ priredi njeno najmanjšo fiksno točko $fix(f) \in D$. Dokažite, da je preslikava fix zvezna.

4. naloga (20 točk)

Imejmo λ -račun samo z Booleovimi vrednostmi in funkcijami

$$A := bool \mid A_1 \rightarrow A_2$$
 $e := x \mid true \mid false \mid if e then e_1 else $e_2 \mid \lambda x.e \mid e_1 e_2$$

ter z običajnimi pravili za neučakano operacijsko semantiko malih korakov in določanje tipov. Ker v jeziku nimamo rekurzije, vsak program $\vdash e : A$ tudi konvergira (torej obstaja vrednost v, da velja $e \leadsto^* v$), vendar preprosta indukcija žal ne zadošča za dokaz. 1

Namesto tega za vsak tip A definirajmo množico normalnih izrazov \mathcal{N}_A kot

$$\mathcal{N}_{\texttt{bool}} = \{e \mid e \text{ konvergira}\} \qquad \qquad \mathcal{N}_{A_1 \to A_2} = \{e \mid e \text{ konvergira} \land (\forall e' \in \mathcal{N}_{A_1}.e \ e' \in \mathcal{N}_{A_2})\}$$

in dokaz razbijemo na dva dela...

- a) Dokažite, da za vsak tip A iz $e \leadsto e'$ in $e' \in \mathcal{N}_A$ sledi $e \in \mathcal{N}_A$.
- **b)** Dokažite, da za vsak izraz $x_1:A_1,\ldots,x_n:A_n\vdash e:A$ in vse vrednosti $v_1\in\mathcal{N}_{A_1},\ldots,v_n\in\mathcal{N}_{A_n}$ velja tudi $e[v_1/x_1,\ldots,v_n/x_n]\in\mathcal{N}_A$. Torej, vsak izraz, ki ima tip, je normalen, če vse proste spremenljivke zamenjamo z normalnimi izrazi.

 $^{^1}$ Za čast in slavo lahko poiščete izraz e, ki divergira, torej da obstaja neskončno zaporedje $e \leadsto e_1 \leadsto e_2 \leadsto \cdots$