FLASHATTENTION: Fast and Memory-Efficient Exact Attention with IO-Awareness

Tri Dao[†], Daniel Y. Fu[†], Stefano Ermon[†], Atri Rudra[‡], and Christopher Ré[†]

†Department of Computer Science, Stanford University ‡Department of Computer Science and Engineering, University at Buffalo, SUNY {trid,danfu}@cs.stanford.edu, ermon@stanford.edu, atri@buffalo.edu, chrismre@cs.stanford.edu

June 24, 2022

论文地址: https://arxiv.org/pdf/2205.14135.pdf

• 实现地址: <u>https://github.com/HazyResearch/flash-attention</u>

Content

- > Introduction
- > Motivation
- Background
- > Method
- > Experiment
- > Limitations and Future Directions

Introduction

- Transformers have grown **larger and deeper**, but equipping them with **longer context** remains difficult since the self-attention module at their heart has time and memory complexity quadratic in sequence length.
- Approximate attention methods (sparse-approximation、low-rank approximation、and their combinations...) 做法是: by trading off model quality to reduce the compute complexity aiming to reduce the compute and memory requirements of attention,效果是: reduce the compute requirements to linear or near-linear in sequence length,但是分析其缺陷在于they focus on FLOP reduction (which may not correlate with wall-clock speed) and tend to ignore overheads from memory access (IO).

Flops:每秒所执行的浮点数运算次数。

wall-clock time: 进程从开始执行到完成 所经历的完整的墙上时钟时间(wall clock)时间。

Motivation

- Transformer缺点: Transformers are slow and memory-hungry on long sequences
- **原因分析:** since the time and memory complexity of self-attention are **quadratic** (二次方的) in sequence length.
- An important question is whether making attention faster and more memory-efficient can help Transformer models address their runtime and memory challenges for long sequences.
- 作者分析想要wall-clock speedup的关键原则在于: making attention algorithms IO-aware—accounting for reads and writes between levels of GPU memory。原因是: On modern GPUs, compute speed has out-paced memory speed, and most operations in Transformers are bottlenecked by memory accesses, when reading and writing data can account for a large portion of the runtime.

IO-aware: 也即具有IO感知的。能考虑到I/O操作(在GPU指GPU内存级别的读写操作)

Background

- > Hardware Performance
- Standard Attention Implementation

Hardware Performance

Standard Attention Implementation

Given input sequences $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ where N is the sequence length and d is the head dimension, we want to compute the attention output $\mathbf{O} \in \mathbb{R}^{N \times d}$:

$$\mathbf{S} = \mathbf{Q}\mathbf{K}^{\top} \in \mathbb{R}^{N \times N}, \quad \mathbf{P} = \operatorname{softmax}(\mathbf{S}) \in \mathbb{R}^{N \times N}, \quad \mathbf{O} = \mathbf{P}\mathbf{V} \in \mathbb{R}^{N \times d},$$

Algorithm 0 Standard Attention Implementation

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM.

- 1: Load \mathbf{Q} , \mathbf{K} by blocks from HBM, compute $\mathbf{S} = \mathbf{Q}\mathbf{K}^{\top}$, write \mathbf{S} to HBM.
- 2: Read S from HBM, compute P = softmax(S), write P to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute $\mathbf{O} = \mathbf{PV}$, write **O** to HBM.
- 4: Return **O**.

Method

- > Algorithm: Tiling&Recomputation
- ➤ Analysis: IO Complexity
- > Extensions: Block-Sparse FlashAttention

Algorithm

FlashAttention旨在避免从高带宽显存HBM中读取和写入注意力矩阵(也即**减少HBM access**),这需要做到:

- 1. 在**不访问整个**输入的情况下计算softmax函数的缩减,而是使用spilt into block的技术**分块**计算。
- 2. 不存储用于反向传播的大的中间注意力矩阵。

tiling技术:是减少GPU HBM访问次数的一种常见的优化策略。实现思路是将数据分片,然后将每个小分片缓存到访存速度更快的SRAM中,通过利用GPU上的SRAM来减少对HBM的访问,以提高核函数的执行效率。

重计算(Recomputation):本质上是一种用时间换空间的策略,可以将它类比成一种 Tensor 缓存(Cache)策略,当显存空间不足时,可以选择把一些前向计算的结果清除;当需要再次用到这些计算结果时,再根据之前缓存的检查点(Checkpoint)去重新计算它们。

Tiling

针对上述第一点:

- Standard Attention中由于要计算softmax函数, 而softmax函数都是按行计算的,按照这个逻辑,在和V做矩阵乘法之前,需要让Q、K的各个分块完成整一行分块的计算。这会导致程序运行的过程中出现对HBM中同一个位置的多次重复读取,内存消耗非常大,在得到softmax结果之后,再和矩阵V分块做矩阵乘。
- 如左图所示, Flash Attention中作者考虑到这一点,避免进行整行的读入写入来计算,将输入分割成block块,并在输入块上进行多次传递,从而实现以增量的方式执行softmax缩减。这样就大大加快了计算运行的速度。

Tiling

这里根据Standard Attention的softmax函数计算公式,推导分块后的使用**缩放分解**大的softmax函数的方法:

$$m(x) := \max_{i} x_{i}, \quad f(x) := \left[e^{x_{1}-m(x)} \dots e^{x_{B}-m(x)}\right], \quad \ell(x) := \sum_{i} f(x)_{i}, \quad \text{softmax}(x) := \frac{f(x)}{\ell(x)}.$$

For vectors $x^{(1)}, x^{(2)} \in \mathbb{R}^B$, we can decompose the softmax of the concatenated $x = \begin{bmatrix} x^{(1)} & x^{(2)} \end{bmatrix} \in \mathbb{R}^{2B}$ as:

$$\begin{split} m(x) &= m(\left[x^{(1)} \ x^{(2)}\right]) = \max(m(x^{(1)}), m(x^{(2)})), \quad f(x) = \left[e^{m(x^{(1)}) - m(x)} f(x^{(1)}) \quad e^{m(x^{(2)}) - m(x)} f(x^{(2)})\right], \\ \ell(x) &= \ell(\left[x^{(1)} \ x^{(2)}\right]) = e^{m(x^{(1)}) - m(x)} \ell(x^{(1)}) + e^{m(x^{(2)}) - m(x)} \ell(x^{(2)}), \quad \text{softmax}(x) = \frac{f(x)}{\ell(x)}. \end{split}$$

Tiling

Algorithm 1 FlashAttention

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M.

- 1: Set block sizes $B_c = \left\lceil \frac{M}{4d} \right\rceil, B_r = \min\left(\left\lceil \frac{M}{4d} \right\rceil, d \right)$.
- 2: Initialize $\mathbf{O} = (0)_{N \times d} \in \mathbb{R}^{N \times d}, \ell = (0)_N \in \mathbb{R}^N, m = (-\infty)_N \in \mathbb{R}^N$ in HBM.

将注意力矩阵 QKV划分为块

- 3: Divide **Q** into $T_r = \left\lceil \frac{N}{B_r} \right\rceil$ blocks $\mathbf{Q}_1, \dots, \mathbf{Q}_{T_r}$ of size $B_r \times d$ each, and divide \mathbf{K}, \mathbf{V} in to $T_c = \left\lceil \frac{N}{B_c} \right\rceil$ blocks $\mathbf{K}_1, \dots, \mathbf{K}_{T_c}$ and $\mathbf{V}_1, \dots, \mathbf{V}_{T_c}$, of size $B_c \times d$ each.
- 4: Divide **O** into T_r blocks $\mathbf{O}_i, \ldots, \mathbf{O}_{T_r}$ of size $B_r \times d$ each, divide ℓ into T_r blocks $\ell_i, \ldots, \ell_{T_r}$ of size B_r each, divide m into T_r blocks m_1, \ldots, m_{T_r} of size B_r each.
- 5: for $1 \le j \le T_c$ do
- 6: Load \mathbf{K}_i , \mathbf{V}_i from HBM to on-chip SRAM.
- 7: for $1 \le i \le T_r$ do
- 8: Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM.
- 9: On chip, compute $\mathbf{S}_{ij} = \mathbf{Q}_i \mathbf{K}_i^T \in \mathbb{R}^{B_r \times B_c}$.

计算额外统计数据 (10:)

- On chip, compute $\tilde{m}_{ij} = \operatorname{rowmax}(\mathbf{S}_{ij}) \in \mathbb{R}^{B_r}$, $\tilde{\mathbf{P}}_{ij} = \exp(\mathbf{S}_{ij} \tilde{m}_{ij}) \in \mathbb{R}^{B_r \times B_c}$ (pointwise), $\tilde{\ell}_{ij} = \operatorname{rowsum}(\tilde{\mathbf{P}}_{ij}) \in \mathbb{R}^{B_r}$.
- 11: On chip, compute $m_i^{\text{new}} = \max(m_i, \tilde{m}_{ij}) \in \mathbb{R}^{B_r}$, $\ell_i^{\text{new}} = e^{m_i m_i^{\text{new}}} \ell_i + e^{\tilde{m}_{ij} m_i^{\text{new}}} \tilde{\ell}_{ij} \in \mathbb{R}^{B_r}$.

组合两个结果

- Write $\mathbf{O}_i \leftarrow \operatorname{diag}(\ell_i^{\text{new}})^{-1}(\operatorname{diag}(\ell_i)e^{m_i-m_i^{\text{new}}}\mathbf{O}_i + e^{\tilde{m}_{ij}-m_i^{\text{new}}}\tilde{\mathbf{P}}_{ij}\mathbf{V}_j)$ to HBM.
- 13: Write $\ell_i \leftarrow \ell_i^{\text{new}}$, $m_i \leftarrow m_i^{\text{new}}$ to HBM.
- 14: end for
- 15: end for
- 16: Return O.

Recomputation

针对上述第二点:

- Standard Attention中**存储**了每一步的**中间注意力矩阵**(S、P)。这两个矩阵由于更新QKV参数方面的需求在反向传播的时候是需要的,但由于这两个矩阵的长度与输入序列长度N相关($O(N^2)$),序列长度越大,矩阵大小就越大,对时间和内存的耗费也就越大。
- FlashAttention并不存储中间注意力矩阵。而是存储前向传递输出O和softmax归一化因子(m、⑥), (O(N))。通过这些可以很方便地在反向传递中根据存储在SRAM中的QKV分块快速地重新计算 (recoputation) S、P这两个矩阵, 这比从HBM上读取和写入完整的中间注意矩阵的标准方法更快, 占用的内存也更少。

Attention	Standard	FLASHATTENTION
GFLOPs	66.6	75.2
HBM R/W (GB)	40.3	4.4
Runtime (ms)	41.7	7.3

Analysis

We analyze its IO complexity, showing significant reduction in HBM accesses compared to standard attention.

- FlashAttention requires $\Theta(N^2d^2M^{-1})$ HBM accesses (d = head dimension, M = size of SRAM, N = seq len) as compared to $\Theta(Nd + N^2)$ of StandardAttention for typical values of d (64-128) and M (around 100KB), d² is many times smaller than M)
 - **Theorem 2.** Let N be the sequence length, d be the head dimension, and M be size of SRAM with $d \le M \le Nd$. Standard attention (Algorithm O) requires $\Theta(Nd + N^2)$ HBM accesses, while FlashAttention (Algorithm O) requires $\Theta(N^2d^2M^{-1})$ HBM accesses.
- We prove a lower-bound: one cannot asymptotically improve on the number of HBM accesses for all values of M (the SRAM size) when computing exact attention.
 - **Proposition 3.** Let N be the sequence length, d be the head dimension, and M be size of SRAM with $d \le M \le Nd$. There does not exist an algorithm to compute exact attention with $o(N^2d^2M^{-1})$ HBM accesses for all M in the range [d, Nd].

Analysis

Attention	Standard	FLASHATTENTION
GFLOPs	66.6	75.2
HBM R/W (GB)	40.3	4.4
Runtime (ms)	41.7	7.3

• 对比标准的Attention机制,FlashAttention虽然由于向后传播需要重新计算而导致了GFLOPs浮点数运算次数的增加,但是FlashAttention对HBM的读写和运行时间都有了显著的提高。

随着块的增大,HBM所读写的次数和运行时间都在不断地减少(由于对输入的块传递次数减少了)。而对于足够大的块大小,runtime主要受其他因素影响(例如:算术操作)。

Extensions

- Propose block-sparse FlashAttention, whose IO complexity is smaller than FlashAttention by a factor proportional to the sparsity.
- Analyze the IO complexity of block-sparse FlashAttention.
 - **Proposition 4.** Let N be the sequence length, d be the head dimension, and M be size of SRAM with $d \leq M \leq Nd$. Block-sparse FlashAttention (Algorithm 5) requires $\Theta(Nd + N^2d^2M^{-1}s)$ HBM accesses where s is the fraction of nonzero blocks in the block-sparsity mask.
- Validate that as the sparsity increases, the runtime of block-sparse FlashAttention improves proportionally.

Experiment

- > Training Speed
- Quality
- Benchmarking Attention

Training Speed

• BERT Implementation Training time (minutes) Nvidia MLPerf 1.1 [58] 20.0 ± 1.5 FLASHATTENTION (ours) 17.4 ± 1.4

• GPT-2

Model implementations	OpenWebText (ppl)	Training time (speedup)
GPT-2 small - Huggingface 87	18.2	9.5 days (1.0×)
GPT-2 small - Megatron-LM [77]	18.2	$4.7 \text{ days } (2.0 \times)$
GPT-2 small - FlashAttention	18.2	2.7 days $(3.5 \times)$
GPT-2 medium - Huggingface 87	14.2	21.0 days (1.0×)
GPT-2 medium - Megatron-LM [77]	14.3	11.5 days $(1.8\times)$
GPT-2 medium - FLASHATTENTION	14.3	6.9 days $(3.0 \times)$

Long-range Arena

Models	ListOps	Text	Retrieval	Image	Pathfinder	Avg	Speedup
Transformer	36.0	63.6	81.6	42.3	72.7	59.3	2
FLASHATTENTION	37.6	63.9	81.4	43.5	72.7	59.8	2.4×
Block-sparse FlashAttention	37.0	63.0	81.3	43.6	73.3	59.6	2.8×
Linformer 84	35.6	55.9	77.7	37.8	67.6	54.9	2.5×
Linear Attention [50]	38.8	63.2	80.7	42.6	72.5	59.6	2.3×
Performer 12	36.8	63.6	82.2	42.1	69.9	58.9	1.8×
Local Attention 80	36.1	60.2	76.7	40.6	66.6	56.0	1.7×
Reformer 51	36.5	63.8	78.5	39.6	69.4	57.6	1.3×
Smyrf [19]	36.1	64.1	79.0	39.6	70.5	57.9	1.7×

Quality

Language Modeling with Long Context

Model implementations	Context length	OpenWebText (ppl)	Training time (speedup)
GPT-2 small - Megatron-LM	1k	18.2	4.7 days (1.0×)
GPT-2 small - FlashAttention	1k	18.2	2.7 days $(1.7\times)$
GPT-2 small - FlashAttention	2k	17.6	$3.0 \text{ days } (1.6 \times)$
GPT-2 small - FlashAttention	4k	17.5	$3.6 \text{ days } (1.3\times)$

• Long Document Classification

	512	1024	2048	4096	8192	16384
MIMIC-III 47	52.8	50.7	51.7	54.6	56.4	57.1
ECtHR 6	72.2	74.3	77.1	78.6	80.7	79.2

• Path-X and Path-256

Model	Path-X	Path-256
Transformer	Х	Х
Linformer 84	X	×
Linear Attention 50	×	×
Performer 12	X	X
Local Attention 80	×	X
Reformer 51	X	×
SMYRF 19	X	X
FLASHATTENTION	61.4	X
Block-sparse FlashAttention	56.0	63.1

Benchmarking Attention

Runtime(left) & Memory Footprint(right)

Figure 3: **Left:** runtime of forward pass + backward pass. **Right:** attention memory usage.

Limitations and Future Directions

- Compiling to CUDA
- IO-Aware Deep Learning
- Multi-GPU IO-Aware Methods

Thanks!