232 58-60 21/28 7 N91-17567

High Level Design Proof of a Reliable Computing Platform

Ben L. Di Vito Ricky W. Butler James L. Caldwell NASA Langley Research Center Hampton, VA 23665

• Research Objectives

• Reliable Computing Platform

• High-Level Design Specifications

Correctness Proofs

Voting Patterns

Digital Flight Control Systems

Reliable Computing Platform

Research Objectives

• Establish hardware/software platform for ultra-reliable computing

• Use fault-tolerant computer architecture

• Use formal methods to prevent design and implementation errors

- first specify in conventional mathematical notation

- then specify and mechanically verify in EHDM

• Construct reliability model to quantify reliability estimate

Operating System for Control Applications

Application Task Characteristics

- 1. Fixed set of tasks
- 2. Hard deadlines
- 3. Multi-rate cyclic scheduling
- 4. Minimal jitter
- 5. Upper bound on task execution time
- 6. Precedence constraints

Architectural Concept

Design Decisions

- 1. the system is non-reconfigurable
- 2. the system is frame-synchronous
- 3. the scheduling is static, non-preemptive
- 4. internal voting is used which can recover the state of a processor affected by a transient fault within a bounded time

Reliability Modeling

Reliability model of quadruplex version of system

 $\rho={
m rate}$ of recovery from transient fault (design-dependent) $\lambda_P = \text{permanent fault rate} (\sim 10^{-4}/\text{hr})$ $\lambda_T = \text{transient fault rate} (\sim 10^{-3}/\text{hr})$

Transient Fault Recovery

Note inflection point on the order of one minute

Application Definition

M frames = 1 cycle

 $M_i > 0$ subframes per frame

K tasks

 $(i,j) = \operatorname{cell} (\operatorname{frame,subframe})$

ST: scheduled task for cell (i, j)

TI: task inputs for cell (i,j) {tasks have no permanent state}

AO: actuator output tasks

IR: initial task inputs

Task Schedule

Uniprocessor Model

State of abstract machine given by:

$$OS_state = (frame: \{0..M-1\}, \\ results: \{0..M-1\} \times nat \rightarrow D)$$

The OS state transition is defined by the function OS.

$$OS: Sin \times OS_state \rightarrow OS_state$$

$$OS(s,u) = (u.frame \oplus 1, \lambda i, j.\ new_results(s,u,i,j))$$

where

$$x \oplus y = (x + y) \mod M$$

 $x \ominus y = (x + M - y) \mod M$

$$new_results(s,u,i,j) = \text{if } i = u.frame$$
 then $exec(s,u,i,j)$ else $u.results(i,j)$

Uniprocessor Model (Cont'd.)

$$exec: Sin \times OS_state \times \{0..M-1\} \times nat \rightarrow D$$

$$exec(s, u, i, j) = f_{ST(i,j)}(arg(TI(i,j)[1], s, u, i, j), \dots, arg(TI(i,j)[n], s, u, i, j))$$

$$arg: triple \times Sin \times OS_state \times \{0..M-1\} \times nat \rightarrow D$$

$$arg(t,s,u,i,j) = ext{if } t.type = sensor$$
 then $s[t.i]$ else if $t.i = i \land t.j < j$ then $exec(s,u,i,t.j)$ else $u.results(t.i,t.j)$

Actuator output is a function of the OS state:

$$UA(u) = \left[\begin{smallmatrix} q \\ k=1 \end{smallmatrix} Act(u,k) \right]$$

$$egin{aligned} u.results(u.frame \ominus 1,j) \ it \ \exists j: AO(u.frame \ominus 1,j) = k \ \phi \end{aligned}$$

Replicated Processor Model

The replicated processor model is based on a replicated state and transitions that allow for faults in the replicates

Repl:
$$ICin \times Repl_state \times fault_status \rightarrow Repl_state$$

$$Repl(c, r, \Phi) = \begin{bmatrix} R \\ k=1 \end{bmatrix} RT(c, r, k, \Phi)]$$

$$RT(c,r,k,\Phi)= ext{if } \Phi[k] ext{ then } \perp ext{else } (frame_vote(r,\Phi), Repl_results(c,r,k,\Phi))$$

$$frame_vote(r,\Phi) = maj([I_{l=1}^R FV_l])$$

where $FV_l = \text{if } \Phi[l] \text{ then } \bot \text{ else } r[l].frame \oplus 1$
 $maj: sequence(D \cup \{\bot\}) \to D \cup \{\bot\}$

Replicated Processor Model (Cont'd.)

$$VP: \{0..M-1\} \times nat \times \{0..M-1\} \rightarrow \{T, F\}$$

VP(i, j, n) = T iff we are to vote OS.results(i, j) during frame n.

$$Repl_results(c, r, k, \Phi) = \\ \lambda i, j. \text{ if } VP(i, j.r[k].frame) \\ \text{then } results_vote(c, r, i, j, \Phi) \\ \text{else } nev_results(c[k], r[k], i, j)$$

$$results_vote(c,r,i,j,\Phi) = maj([I_{l=1}^R RV_I])$$
 where $RV_I = ext{if } \Phi[I]$ then \bot else $new_results(c[I],r[I],i,j)$.

Replicated actuator output considers fault status indicators:

$$RA: Repl_state \times fault_status \rightarrow RAout$$

$$RA(r, \Phi) = [^R_{k=1} RA_k]$$
 where $RA_k = \text{if } \Phi[k] \text{ then } \bot \text{ else } UA(r[k])$

A Simple Fault Model

The results we seek must hold for all $\mathcal{F}: \{1..R\} \times nat \rightarrow \{T.F\}$ that satisfy a condition for maximally unfortunate fault behavior. Define a working processor as follows.

$$\mathcal{W}: \{1..R\} \times nat \times fault_fn \rightarrow \{T.F\}$$

 $\mathcal{W}(k, n, \mathcal{F}) = \forall j: 0 \leq j \leq min(n, N_R) \supset \sim \mathcal{F}(k, n - j)$

A processor that is nonfaulty, but not yet working, is considered to be recovering. The number of working processors is given by:

$$\omega(n,\mathcal{F}) = |\{k \mid \mathcal{W}(k,n,\mathcal{F})\}|$$

Definition 1 The Maximum Fault Assumption for a given fault function ${\mathcal F}$ is that $\omega(n,{\mathcal F}) >$ R/2 for every frame n.

All theorems about state machine correctness are predicated on this assumption.

Framework For Proving State Machine Correctness

Functions needed to bridge the gap between the two machines are those that do the fellowing:

- 1. Map sensor inputs for UM into replicated sensor inputs for RM.
- 2. Map replicated actuator outputs from RM into actuator outputs for UM.
- 3. Map replicated OS states of RM into uniprocessor OS states of UM.

Correctness Criteria

Definition 2 RM correctly implements UM under assumption \mathcal{P} iff the following formula holds:

$$\forall \mathcal{F}: \mathcal{P}(\mathcal{F} \supset \vec{\tau}S, \ \forall n > 0: \ a_n = \nu(b_n)$$
 (1)

where a_n and b_n can be characterized as functions of an initial state and all prior inputs.

We parameterize the concept of necessary assumptions using the predicate ${\cal P}$. For the replicated system. it will be instantiated by the Maximum Fault Assumption:

$$\mathcal{P}(\mathcal{F}) = (\forall m: \omega(m, \mathcal{F}) > R/2).$$

Derived Correctness Criteria

Definition 3 (Replicated OS Correctness Criteria) RM correctly implements UM if the following conditions hold:

(1)
$$u_0 = maj(r_0)$$

(2)
$$\forall \mathcal{F}$$
, $(\forall m: \mathcal{L}(m, \mathcal{F}) > R/2) \supset \forall S$, $\forall n > 0$: $OS(s_n, maj(r_{n-1}) = maj(Repl(IC(s_n), r_{n-1}, \mathcal{F}_n^R))$

(3)
$$\tau \mathcal{F}$$
, $(\forall m: \ \mathcal{L}(m, \mathcal{F}) > R/2) \supset \\ \forall S. \ \forall n > 0: \ UA(maj(r_n)) = maj(RA(r_n, \mathcal{F}_n^R))$

Sufficient Conditions for Correctness

Generic State Machine Correctness Criteria

Replicated OS Correctness Criteria

Consensus Property

Replicated State Invariant

Replicated State Invariant

Tull Recovery Property

Yoting Pattern

Intermediate Assertions

Definition 4 (Consensus Property) For F satisfying the Maximum Fault Assumption, the assertion

$$\mathcal{W}(p,n-1,\mathcal{F})\supset r_{n-1}[p]=maj(r_{n-1})\wedge r_n[p]=maj(r_n)$$

holds for all p and all n > 0.

Definition 5 (Replicated State Invariant) For fault function F satisfying the Maximum Fault Assumption, the following assertion is true for every frame n:

$$(n = 0 \lor \sim \mathcal{F}(p, n - 1)) \supset r_n[p]. frame = maj(r_n). frame = n \mod M \land (\forall i, j : rec(i, j, \mathcal{L}(p, n, \mathcal{F}), \mathcal{H}(p, n, \mathcal{F}), T) \supset r_n[p]. results(i, j) = maj(r_n). results(i, j)).$$

Recovery Concepts

Recovery of state element (i,j) where last faulty frame was f and processor has been healthy

$$rec(i,j,f,h,e) = \text{if } h \le 1 \text{ then } F$$

$$\text{else } (VP(i,j,f\oplus h) \land e) \lor$$

$$\text{if } i = f \oplus h$$

$$\text{then } \bigwedge_{l=1}^{|TI(i,j)|} RI(TI(i,j)[l],i,j,f,h)$$

$$\text{else } rec(i,j,f,h-1,T)$$

$$RI(t,i,j,f,h) = (t.type = sensor) \lor$$

$$\text{if } t.i = f \oplus h \land t.j < j$$

$$\text{then } rec(t.i,t.j,f,h,F)$$

$$\text{else } rec(t.i,t.j,f,h-1,T)$$

Definition 6 (Full Recovery Property) The predicate $rec(i,j,f,N_R,T)$ holds for all i, j, f.

Continuous Voting

$$VP(i,j,k) = T \quad \forall i,j,k$$

$$N_R = 2$$
 (Actual $N_R = 1$)

- Specifies that the entire state will be voted every frame
- Not very practical
- But proof is simple

Cyclic Voting

$$VP(i,j,k) = (i=k) \quad \forall i,j,k$$

$$N_R=M+1.$$

- Only results just computed will be voted in a frame
- More practical
- Proof almost as simple

Frame

3				>
2			Λ	
1		Λ		
0	Λ			
ဘ				>
7			Λ	
		Λ		
0	Λ			

Portion voted

Minimal Voting

- Vote only portion of state that will not be recovered from new sensor values.
- ullet Construct VP to ensure each cycle of graph is cut by at least one vote.
- $N_R = L_C + L_N + M$ where
- $-L_C = \text{maximum frame length for all cycles}$
- $-L_N = \text{maximum frame length for all noncyclic paths}$

Summary

- Ultra-reliable control systems hard to achieve
- Simple fault-tolerant design postulated
- Formal specification of design constructed
- Preliminary correctness proofs obtained
- Will extend from here
- more sophisticated designs
- mechanical verification