Fyzikální praktikum II 3. Měření teploty wolframového vlákna

Jméno: Michal Červeňák Kolega: Ondřej Glac

Kruh: **Útorok** Číslo skup.: 1

Měřeno: 28.3.2017 Zpracování: 7 h Klasifikace:

1 Pracovní úkol

1. DU: Z Planckova vyzařovacího zákona odvoďťe Stefan-Boltzmannův zákon a určete tvar konstanty σ pomocí c, k a \hbar .

- 2. Ocejchujte referenční žárovku pomocí měření odporu. Diskutujte, zda α v rovnici (9)[1] je konstanta. Výsledky zpracujte graficky. Ověřte správnost výsledků pomocí závislosti výkonu na čtvrté mocnině teploty. Pomocí fitu určete konstantu β .
- 3. Ověřte Stefan-Boltzmanův zákon (7)[1], výsledky vyneste do grafu a určete konstatu e.
- 4. Zjistěte teplotu žárovky připojené k neznámému zdroji (alespoň 6 měření) pomocí závislosti transmise na vlnové délce. Graficky zpracujte a teplotu získejte pomocí aritmetického průměru z fitů závislosti intenzity na vlnové délce $I = I(\lambda)$.

2 Teória

Ohmov zákon ná vyjadruje závislosť napätia U na prúde I pomocou odporu R

$$U = RI. (1)$$

FJFI ČVUT v Praze

Výkon resp. prikon Pspočítame ako súčin napätia Ua prúdu I

$$P = UI. (2)$$

Podľa Stefan-Boltzmannovho zákona poznáme vzťah medzi teplotou T a I,vyžarovaným výkonom,

$$I = \varepsilon \sigma T \,, \tag{3}$$

kde $\sigma=5.76\cdot 10^{-8}Wm^{-2}K^{-4}$ a ε je emisivita povrchu telesa, túto možeme prespisať pre výkon Pa dostávame

$$P = \beta T^4 \,,$$

kde β je konštanta.

Pre meraní pomerov transmise využijeme vzťah

$$I = \frac{2hc}{\lambda^2 \left(\exp\left(\frac{hc}{kT\lambda}\right) - 1\right)} \frac{T_M}{T_R}, \tag{4}$$

kde T_M je merená a T_R referenční transmisia, λ je vlnová dlžka, T je teplota, h je Planckova konštanta, k je Boltzmanova konštanta, c je rýchlosť svetla.

2.0.1 Spracovanie chýb merania

Označme $\langle t \rangle$ aritmetický priemer nameraných hodnôt t_i , a Δt hodnotu $\langle t \rangle - t$, pričom

$$\langle t \rangle = \frac{1}{n} \sum_{i=1}^{n} t_i \,, \tag{5}$$

a chybu aritmetického priemeru

$$\sigma_0 = \sqrt{\frac{\sum_{i=1}^n (t_i - \langle t \rangle)^2}{n(n-1)}},$$
(6)

pričom n je počet meraní.

3 Pomôcky

Pulfrichův fotometr, zdroj napětí 0–30 V, wolframová vlákna (dvě světelné žárovky), multimetr, ohmmetr, zdroj referenčního napětí.

4 Postup merania

Pomocou multimetrov bola v rozsahu od 0 do 50 W určena Volt Ampérová charakteristika žiarovky.

Opotom bola žiarovka 3-krát menej a 3-krát viac rozžiarená ako referenčná žiarovka a pomocou fotometru sa namerali pomery transmysí.

5 Výsledky merania

V tabuľke Tab. 1 sú namerané hodnoty napätia U a prúdu I.

Závislosť napätia na prúde bola vynesená do grafu Obr. 2.

Závislosť výkonu P na teplote bola vynesená do grafu obr. 1, z fitu bola určená hodnota $\beta = (1.62 \pm 0.10) \, 10^1 2 \, \mathrm{WK^{-1}}$.

Závislosť intenzity I na teplote bola vynesené do grafu Obr 3, z fitu bola tentokrát určená $\varepsilon=(1.15\pm0.02)\,10^{-8}\,\mathrm{Wm^{-2}K^{-2}}$

Obr. 1: Závislosť výkonu Pna 4-tej mocnine teploty T preložená funkcou $P(T^4)==(1{,}62\pm 0{,}10)\,10^12T^4.$

Obr. 2: Voltampérová charakteristika žiarovky, kde ${\cal U}$ je napätie a ${\cal I}$ prúd.

Obr. 3: Závislosť intenzity I na teplote T preložená závislosťou $I(T^4)=(1,15\pm0,02)\,10^{-8}\sigma T^4.$

Obr. 4: Závislosť intenzity I na vlnovej dĺžke λ preložená $I(\lambda) = \frac{2hc^2}{\lambda^5\left(exp\left(\frac{hc}{\lambda k(1040.59\pm 20.91)}\right)-1\right)}$.

Obr. 5: Závislosť intenzity I na vlnovej dĺžke λ preložená $I(\lambda) = \frac{2hc^2}{\lambda^5 \left(exp\left(\frac{hc}{\lambda k(1177.62\pm 19.92)}\right)-1\right)}$.

Obr. 6: Závislosť intenzity I na vlnovej dĺžke λ preložená $I(\lambda) = \frac{2hc^2}{\lambda^5\left(exp\left(\frac{hc}{\lambda k(1493.54\pm15.63)}\right)-1\right)}$.

Obr. 7: Závislosť intenzity I na vlnovej dĺžke λ preložená $I(\lambda) = \frac{2hc^2}{\lambda^5\left(exp\left(\frac{hc}{\lambda k(1253.00\pm18.90)}\right)-1\right)}$.

Obr. 8: Závislosť intenzity I na vlnovej dĺžke λ preložená $I(\lambda)=\frac{2hc^2}{\lambda^5\left(exp\left(\frac{hc}{\lambda k(1129.08\pm 32.93)}\right)-1\right)}.$

$\frac{U}{[V]}$	$\frac{I}{[\mathrm{A}]}$	$\frac{R}{[\omega]}$	$\frac{P}{[\mathrm{W}]}$	$\frac{T}{[\mathrm{K}]}$	$\frac{\lambda}{[\mu\mathrm{m}]}$	$\frac{I_{\alpha}}{[\mathrm{W/m^2}]}$
$11,60 \pm 0,05$	$3,68 \pm 0,05$	$3,15 \pm 0,01$	$42,7 \pm 0,1$	2410 ± 12	$1,20 \pm 0,50$	$(6,27\pm0,05)\cdot10^{12}$
9.66 ± 0.05	$3,58 \pm 0,05$	$2,70 \pm 0,01$	$34,6 \pm 0,1$	2074 ± 12	$1,40 \pm 0,50$	$(2.96 \pm 0.05) \cdot 10^{12}$
8.49 ± 0.05	$3,33 \pm 0,05$	$2,54 \pm 0,01$	$28,3 \pm 0,1$	1958 ± 12	$1,48 \pm 0,50$	$(2,22\pm0,05)\cdot10^{12}$
4.56 ± 0.05	$2,36 \pm 0,05$	$1,93 \pm 0,01$	10.8 ± 0.1	1501 ± 12	$1,93 \pm 0,50$	$(5.89 \pm 0.05) \cdot 10^{11}$
3.50 ± 0.05	$2,05 \pm 0,05$	$1,71 \pm 0,01$	7.2 ± 0.1	1337 ± 12	$2,17 \pm 0,50$	$(3.31 \pm 0.05) \cdot 10^{11}$
2.00 ± 0.05	$1,52 \pm 0,05$	$1,31 \pm 0,01$	3.1 ± 0.1	1042 ± 12	$2,78 \pm 0,50$	$(9.51 \pm 0.05) \cdot 10^{10}$
1.18 ± 0.05	$1,15 \pm 0,05$	$1,03 \pm 0,01$	1.3 ± 0.1	833 ± 12	$3,47 \pm 0,50$	$(3.11 \pm 0.05) \cdot 10^{10}$
0.73 ± 0.05	0.91 ± 0.05	0.80 ± 0.01	0.7 ± 0.1	666 ± 12	$4,35 \pm 0,50$	$(1.02 \pm 0.05) \cdot 10^{10}$
5.46 ± 0.05	$2,62 \pm 0,05$	$2,08 \pm 0,01$	$14,3 \pm 0,1$	1614 ± 12	$1,79 \pm 0,50$	$(8,46 \pm 0,05) \cdot 10^{11}$
6.30 ± 0.05	$2,84 \pm 0,05$	$2,22 \pm 0,01$	17.9 ± 0.1	1717 ± 12	$1,69 \pm 0,50$	$(1.15 \pm 0.05) \cdot 10^{12}$
7.05 ± 0.05	$3,02 \pm 0,05$	$2,33 \pm 0,01$	$21,3 \pm 0,1$	1802 ± 12	$1,61 \pm 0,50$	$(1,47\pm0,05)\cdot10^{12}$
8.29 ± 0.05	$3,30 \pm 0,05$	$2,51 \pm 0,01$	$27,4 \pm 0,1$	1934 ± 12	$1,50 \pm 0,50$	$(2.09 \pm 0.05) \cdot 10^{12}$
8.89 ± 0.05	$3,42 \pm 0,05$	$2,59 \pm 0,01$	$30,4 \pm 0,1$	1995 ± 12	$1,45 \pm 0,50$	$(2,44 \pm 0,05) \cdot 10^{12}$

Tab. 1: Namerané hodnoty napätia U a prúdu V a z nich vypočítané podľa vzťahu 1 odpor R, podľa vzťahu 2 Výkon P, podľa vzťahu (11), (12)[1], teplota T (11), (12) [1] a podľa vzťahu 4 intenzita I_{α} .

6 Diskusia

V prvej časti merania pri meraní VA charakteristiky, sme nedošli na maximálne napätie čo umožnovala žiarovka a jej výkon sme držali pod hladinou $P_{max} = 50 \,\mathrm{W}$. Z tohoto dôvodu nám vychádza teplota oprosti predpokladu o kusok nižšia.

V druhej časti úlohy sme porovnávali intenzity cez fotometer, toto sa ukázalo ako najvačší problém. Pri niektorých farbávh neboli schopné naše oč rozpoznať kedy presne nastane rovnosť intenzít a teda je hlavne pri clonke 9 a 10 hodnota veľmi nepresná. Preto je v tabuľkách použité značenie iné značenie chýb. Obecne nám však teplota vyšlo vždy menšia ko teplota spočítaná.

7 Záver

Namerali sme voltaméprvu charakteristiku žiarovky viď Obr. 2, a overerili Stephan-Boltzmanov vyžarovací zákon, viď Obr. 1 a Obr. 3

Následne sme namerali transmisi žiarovky na jej vlnovej dlžke a z nej určili tepl
ttu vlákna viď Tab $2\,$

Reference

[1] Měření teploty wolframového vlákna [cit. 27.03.2017]Dostupné po prihlásení z Kurz: Fyzikální praktikum II:https://praktikum.fjfi.cvut.cz/pluginfile.php/3964/mod_resource/content/19/wolfram170321.pdf

$\frac{U}{[V]}$	$\frac{I}{[\mathrm{A}]}$	$\frac{R}{[\Omega]}$	$\frac{T_s}{[\mathrm{K}]}$	$rac{T_f}{[ext{K}]}$	graf	tabuľka hodnôt
4,59	2,38	1,93	1502,5	$1040,59 \pm 20,91$	Obr. 4	Tab. 3
4,76	2,44	1,95	1519,0	$1177,62 \pm 19,92$	Obr. 5	Tab. 4
5,65	2,67	2,12	1641,4	$1493,54 \pm 15,63$	Obr. 6	Tab. 5
8,10	$3,\!25$	2,49	1919,5	$1253,00 \pm 18,90$	Obr. 7	Tab. 6
9,75	3,60	2,71	2081,2	$1129,08 \pm 32,93$	Obr. 8	Tab. 7
7,19	3,04	2,37	1828,8	$1357,27 \pm 28,47$	Obr. 9	Tab. 8

Tab. 2: Namerané hodnoty napätia U a prúdu I a T_s teplota vypočítaná podľa vzťahu (11), (12) [1] a teplota T_f zistená z fitu a referencie na grafy a tabuľky pre dané merania.

clonka ID	$rac{bubon_R}{[-]}$	$\frac{bubon_M}{[-]}$	$\frac{\lambda}{[10^{-6}\text{m}]}$	$\frac{I}{[\mathrm{W/m^2}]}$
3	25.0 ± 0.5 mer. ± 5.0 met.	100	0,47	$(8,45\pm0,16)\cdot10^{12}$
4	24.5 ± 0.5 mer. ± 5.0 met.	100	0,50	$(7,44 \pm 0,14) \cdot 10^{12}$
5	23.0 ± 0.5 mer. ± 5.0 met.	100	0,53	$(6,26\pm0,12)\cdot10^{12}$
6	21.0 ± 0.5 mer. ± 5.0 met.	100	0,57	$(4.92 \pm 0.08) \cdot 10^{12}$
7	29.0 ± 0.5 mer. ± 5.0 met.	100	0,61	$(5.85 \pm 0.11) \cdot 10^{12}$
8	52.0 ± 0.5 mer. ± 5.0 met.	100	0,66	$(8,71 \pm 0,17) \cdot 10^{12}$
9	42.0 ± 0.5 mer. ± 5.0 met.	100	0,72	$(5,65\pm0,11)\cdot10^{12}$
10	41.0 ± 0.5 mer. ± 5.0 met.	100	0,75	$(4.95 \pm 0.09) \cdot 10^{12}$

Tab. 3: Namerané hodnoty napätia otvorenia bubonov a z nich vypočítané podľa vzťahu 4 intenzita I, a z typu clonky určená vlnová dĺžka λ , viď [1].

clonka ID	$rac{bubon_R}{[-]}$	$\frac{bubon_M}{[-]}$	$\frac{\lambda}{[10^{-6}\mathrm{m}]}$	$rac{I}{[\mathrm{W/m^2}]}$
3	32.5 ± 0.5 mer. ± 5.0 met.	100	0,47	$(1.14 \pm 0.02) \cdot 10^{13}$
4	44.3 ± 0.5 mer. ± 5.0 met.	100	0,50	$(1,39 \pm 0,02) \cdot 10^{13}$
5	37.0 ± 0.5 mer. ± 5.0 met.	100	0,53	$(1.04 \pm 0.02) \cdot 10^{13}$
6	44.5 ± 0.5 mer. ± 5.0 met.	100	0,57	$(1.08 \pm 0.02) \cdot 10^{13}$
7	48.5 ± 0.5 mer. ± 5.0 met.	100	0,61	$(1,01\pm0,02)\cdot10^{13}$
8	71.0 ± 0.5 mer. ± 5.0 met.	100	0,66	$(1,22\pm0,02)\cdot10^{13}$
9	57.0 ± 0.5 mer. ± 5.0 met.	100	0,72	$(7.87 \pm 0.15) \cdot 10^{12}$
10	58.0 ± 0.5 mer. ± 5.0 met.	100	0,75	$(7.19 \pm 0.15) \cdot 10^{12}$

Tab. 4: Namerané hodnoty napätia otvorenia bubonov a z nich vypočítané podľa vzťahu 4 intenzita I, a z typu clonky určená vlnová dĺžka λ , viď [1].

clonka ID	$rac{bubon_R}{[-]}$	$\frac{bubon_M}{[-]}$	$\frac{\lambda}{[10^{-6}\mathrm{m}]}$	$rac{I}{[\mathrm{W/m^2}]}$
3	78.0 ± 0.5 mer. ± 5.0 met.	100	0,47	$(3.51 \pm 0.07) \cdot 10^{13}$
4	76.0 ± 0.5 mer. ± 5.0 met.	100	0,50	$(3.03 \pm 0.06) \cdot 10^{13}$
5	65.0 ± 0.5 mer. ± 5.0 met.	100	0,53	$(2,29\pm0,04)\cdot10^{13}$
6	78.0 ± 0.5 mer. ± 5.0 met.	100	0,57	$(2.34 \pm 0.04) \cdot 10^{13}$
7	70.0 ± 0.5 mer. ± 5.0 met.	100	0,61	$(1.78 \pm 0.04) \cdot 10^{13}$
8	86.0 ± 0.5 mer. ± 5.0 met.	100	0,66	$(1.79 \pm 0.04) \cdot 10^{13}$
9	92.0 ± 0.5 mer. ± 5.0 met.	100	0,72	$(1.52 \pm 0.03) \cdot 10^{13}$
10	89.0 ± 0.5 mer. ± 5.0 met.	100	0,75	$(1,31\pm0,02)\cdot10^{13}$

Tab. 5: Namerané hodnoty napätia otvorenia bubonov a z nich vypočítané podľa vzťahu 4 intenzita I, a z typu clonky určená vlnová dĺžka λ , viď [1].

clonka ID	$\frac{bubon_R}{[-]}$	$rac{bubon_M}{[-]}$	$\frac{\lambda}{[10^{-6}\mathrm{m}]}$	$\frac{I}{[\mathrm{W/m^2}]}$
3	100	28.0 ± 0.5 mer. ± 5.0 met.	0,47	$(1.99 \pm 0.04) \cdot 10^{13}$
4	100	23.0 ± 0.5 mer. ± 5.0 met.	0,50	$(1.42 \pm 0.03) \cdot 10^{13}$
5	100	26.0 ± 0.5 mer. ± 5.0 met.	$0,\!53$	$(1.39 \pm 0.03) \cdot 10^{13}$
6	100	24.0 ± 0.5 mer. ± 5.0 met.	$0,\!57$	$(1.07 \pm 0.02) \cdot 10^{13}$
7	100	34.0 ± 0.5 mer. ± 5.0 met.	0,61	$(1,26\pm0,02)\cdot10^{13}$
8	100	42.0 ± 0.5 mer. ± 5.0 met.	$0,\!66$	$(1,25\pm0,02)\cdot10^{13}$
9	100	42.0 ± 0.5 mer. ± 5.0 met.	0,72	$(9.72 \pm 0.19) \cdot 10^{12}$
10	100	40.0 ± 0.5 mer. ± 5.0 met.	0,75	$(8,20\pm0,16)\cdot10^{12}$

Tab. 6: Namerané hodnoty napätia otvorenia bubonov a z nich vypočítané podľa vzťahu 4 intenzita I, a z typu clonky určená vlnová dĺžka λ , viď [1].

clonka ID	$\frac{bubon_R}{[-]}$	$\frac{bubon_M}{[-]}$	$\frac{\lambda}{[10^{-6}\mathrm{m}]}$	$\frac{I}{[\mathrm{W/m^2}]}$
3	100	13.0 ± 0.5 mer. ± 5.0 met.	0,47	$(1.15 \pm 0.02) \cdot 10^{13}$
4	100	14.0 ± 0.5 mer. ± 5.0 met.	0,50	$(1,06\pm0,02)\cdot10^{13}$
5	100	12.0 ± 0.5 mer. ± 5.0 met.	0,53	$(7.83 \pm 0.15) \cdot 10^{12}$
6	100	14.0 ± 0.5 mer. ± 5.0 met.	0,57	$(7,51 \pm 0,15) \cdot 10^{12}$
7	100	16.0 ± 0.5 mer. ± 5.0 met.	0,61	$(7,10\pm0,14)\cdot10^{12}$
8	100	39.0 ± 0.5 mer. ± 5.0 met.	0,66	$(1,38 \pm 0,02) \cdot 10^{13}$
9	100	29.0 ± 0.5 mer. ± 5.0 met.	0,72	$(7.89 \pm 0.15) \cdot 10^{12}$
10	100	27.0 ± 0.5 mer. ± 5.0 met.	0,75	$(6,48 \pm 0,12) \cdot 10^{12}$

Tab. 7: Namerané hodnoty napätia otvorenia bubonov a z nich vypočítané podľa vzťahu 4 intenzita I, a z typu clonky určená vlnová dĺžka λ , viď [1].

clonka ID	$\begin{bmatrix} bubon_R \\ - \end{bmatrix}$	$rac{bubon_M}{[-]}$	$\frac{\lambda}{[10^{-6}\mathrm{m}]}$	$\frac{I}{[\mathrm{W/m^2}]}$
3	100	47.0 ± 0.5 mer. ± 5.0 met.	0,47	$(2.92 \pm 0.06) \cdot 10^{13}$
4	100	37.0 ± 0.5 mer. ± 5.0 met.	$0,\!50$	$(2.01 \pm 0.04) \cdot 10^{13}$
5	100	29.0 ± 0.5 mer. ± 5.0 met.	$0,\!53$	$(1.37 \pm 0.02) \cdot 10^{13}$
6	100	44.0 ± 0.5 mer. ± 5.0 met.	$0,\!57$	$(1.74 \pm 0.03) \cdot 10^{13}$
7	100	41.0 ± 0.5 mer. ± 5.0 met.	$0,\!61$	$(1,36\pm0,02)\cdot10^{13}$
8	100	55.0 ± 0.5 mer. ± 5.0 met.	$0,\!66$	$(1.47 \pm 0.03) \cdot 10^{13}$
9	100	56.0 ± 0.5 mer. ± 5.0 met.	0,72	$(1.17 \pm 0.02) \cdot 10^{13}$
10	100	51.0 ± 0.5 mer. ± 5.0 met.	0,75	$(9,47 \pm 0,18) \cdot 10^{12}$

Tab. 8: Namerané hodnoty napätia otvorenia bubonov a z nich vypočítané podľa vzťahu 4 intenzita I, a z typu clonky určená vlnová dĺžka λ , viď [1].

Obr. 9: Závislosť intenzity I na vlnovej dĺžke λ preložená $I(\lambda)=\frac{2hc^2}{\lambda^5\left(exp\left(\frac{hc}{\lambda k(1357.27\pm28.47)}\right)-1\right)}$.