Rules of Thumb

Logic 1: PH126

s.butterfill@warwick.ac.uk

1. About

There are exceptions to these rules of thumb. But they are often useful.

2. Proofs

2.1. Starting

First ask, 'Which Elim rule can apply to this premise?' for each premise. Apply any Elim rules you can first (except $\forall Elim$ —see below).

Then ask, 'Which *Intro* rule would get me to this conclusion?'

If you still can't get to the conclusion, try using $\neg Intro$. (You can do use $\neg Intro$ even if the conclusion isn't a negated sentence. For example, if the conclusion is $A \vee B$, create a subproof with $\neg (A \vee B)$ as premise, derive a contradiction, use $\neg Intro$ to get $\neg \neg (A \vee B)$ then use $\neg Elim$.)

2.2. ∀*Elim*

Use $\forall Elim$ as late as possible in your proof.

Only apply $\forall Elim$ using names that already occur in your proof.

2.3. ⊥

Don't use $\perp Elim$: you need $\neg Intro$.

When using $\vee Elim$, if you are struggling to get two subproofs with matching conclusions try using $\perp Elim$ or $\vee Intro$.

2.4. What to do when ...

Having sentences that start with negation (\neg) as premises is awkward. Learning some standard proofs will help you.

If you have $\neg (A \lor B)$, you can get $\neg A$ like this:

$$\begin{array}{c|cccc}
1 & \neg(A \lor B) \\
2 & A \\
3 & (A \lor B) & \lor Intro, 2 \\
4 & \bot & \bot Intro, 1, 3 \\
5 & \neg A & \neg Intro 2-4
\end{array}$$

If you have $\neg(A \lor B)$, you can also get $\neg B$ using a proof just like the one above.

If you have $\neg(A \rightarrow B)$, you can get A like this:

If you have $\neg (A \rightarrow B)$, you can get $\neg B$ like this:

$$\begin{array}{c|cccc}
1 & \neg (A \rightarrow B) \\
2 & B \\
3 & A \\
4 & B \\
\hline
B & Reit, 2 \\
5 & A \rightarrow B & \rightarrow Intro, 3-4 \\
6 & \bot & \bot Intro, 1, 7 \\
7 & \neg B & \neg Intro 2-6
\end{array}$$

3. Translation

Use \forall with \rightarrow , e.g.

$$\forall x(Square(x) \rightarrow Broken(x))$$

means all squares are broken.

Use \exists with \land , e.g.

$$\exists x(Square(x) \land Broken(x))$$

means some square is broken.

English sentences with mixed quantifiers are ambiguous (e.g. 'There is a store for everything.').