Unconstrained Optimization

Ch.17

eyeofyou@korea.ac.kr

July 10, 2020

1 Definitions

Definitions

Definition 1 ((strict) max/min, (strict) local max/min). Let $f: U \in \mathbb{R}^n \to \mathbb{R}$

- 1. A point \mathbf{x}^* is a <u>(global, or absolute) max, maximizer, maximum point</u> of f on U if $f(\mathbf{x}^*) \geq f(\mathbf{x}) \quad \forall \mathbf{x} \in U$
- 2. $\mathbf{x}^* \in U$ is a strict (global, or absolute) max if \mathbf{x}^* is a max and $f(\mathbf{x}^*) > f(\mathbf{x}) \quad \forall \mathbf{x} \in U \{\mathbf{x}^*\}$
- 3. $\mathbf{x}^* \in U$ is a local (relative) max of f if $\exists \epsilon > 0$ s.t. $f(\mathbf{x}^*) \geq f(\mathbf{x}) \quad \forall \mathbf{x} \in B_{\epsilon}(\mathbf{x}^*) \cap U$
- 4. $\mathbf{x}^* \in U$ is a <u>strict local (relative) max</u> of f if $\exists \epsilon > 0$ s.t. $f(\mathbf{x}^*) > f(\mathbf{x}) \quad \forall \mathbf{x} \in B_{\epsilon}(\mathbf{x}^*) \cap U \{\mathbf{x}^*\}$
- Definition of min: $>, \ge \to <, \le$

2 First Order Conditions

FOC

Theorem 1 (17.1). Let $f: U \in \mathbb{R}^n \to \mathbb{R}$ be a C^1 function. If \mathbf{x}^* is a local max or min of f and \mathbf{x}^* is an interior point of U, then

$$\frac{\partial f}{\partial x_i}(\mathbf{x}^*) = 0 \quad \forall i$$

In short,

$$Df_{\mathbf{x}}(\mathbf{x}^*) = \mathbf{0}$$

 \mathbf{x}^* is a critical point of f

Note: Compare with one-var version FOC (Theorem 3.3)

Theorem 2 (3.3: First Order Condition (FOC)). x_0 is an interior max or min of $f \Rightarrow x_0$ is a critical point of f. i.e., $f'(x_0) = 0$ (Inverse is not always true)

3 Second Order Conditions

SOC (Sufficient Conditions)

Theorem 3 (17.2). Let $f: U \in \mathbb{R}^n \to \mathbb{R}$ be a C^2 function and U is open. Suppose \mathbf{x}^* is a critical point of f. (i.e., $Df_{\mathbf{x}}(\mathbf{x}^*) = \mathbf{0}$) Then,

- 1. If Hessian $(D^2 f_{\mathbf{x}}(\mathbf{x}^*))$ is ND, then \mathbf{x}^* is a strict local max of f
- 2. If Hessian $(D^2 f_{\mathbf{x}}(\mathbf{x}^*))$ is PD, then \mathbf{x}^* is a strict local min of f
- 3. If Hessian is ID, \mathbf{x}^* is neither a local max nor local min of f. (saddle point)

Note: one-var version: (Theorem 3.4)

$$f'(x^*) = 0 \quad \land \quad f'' < 0 \quad \Rightarrow \quad x^* \text{ is a local max}$$

SOC (Necessary Conditions)

Theorem 4 (17.6). Let $f: U \in \mathbb{R}^n \to \mathbb{R}$ be a C^2 function and U is open. Then,

- 1. \mathbf{x}^* is a local min of $f \Rightarrow Df(\mathbf{x}^*) = \mathbf{0} \land D^2f(\mathbf{x}^*)$ is PSD
- 2. \mathbf{x}^* is a local max of $f \Rightarrow Df(\mathbf{x}^*) = \mathbf{0} \land D^2f(\mathbf{x}^*)$ is NSD

Note: one-var version:

$$x^*$$
 is local max \Rightarrow $x' = 0 \land f'' < 0$

4 Global Maxima and Minima

Finding Global Max/Min

Different from one-var function, condition 1 (below) is not true when f is multi-var function Sufficient Conditions for Global Max/Min $(f: I \in \mathbb{R} \to \mathbb{R})$

- 1. x^* is a local max/min and x^* is the only critical point of f in I
- 2. $f'' \leq 0 \quad \forall I. i.e., f \text{ is concave on } I \text{ (max)}$
 - $f'' \le 0 \quad \forall I \text{ (max)}$
 - $f'' \ge 0 \quad \forall I \text{ (min)}$

However, condition 2 is true even when f is multi-var function!

Theorem 5 (17.8). Let $f: U \in \mathbb{R}^n \to \mathbb{R}$ be a C^2 function with convex open domain U.

- 1. $DF(\mathbf{x}^*) = \mathbf{0}$ and $D^2 f_{\mathbf{x}}$ is PSD on $U \Rightarrow \mathbf{x}^*$ is a global min of f on U
- 2. $DF(\mathbf{x}^*) = \mathbf{0}$ and $D^2 f_{\mathbf{x}}$ is NSD on $U \Rightarrow \mathbf{x}^*$ is a global max of f on U

5 Economic Applications

Ordinary Least Squares (OLS)

OLS

Find
$$y = \mathbf{x}\beta + c$$
 for given N data $X = \begin{pmatrix} \mathbf{x_1} \\ \vdots \\ \mathbf{x_N} \end{pmatrix}$, $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}$ satisfying:
$$\arg\min_{\beta,c} \sum_{i}^{N} ((\mathbf{x_i}\beta + c) - y_i)^2 \qquad \text{(Least Square)}$$

$$y = \mathbf{x}\beta + c = x_1\beta_1 + \dots + x_m\beta_m + c$$

Note: given points $-(y_1, \mathbf{x_1}) = (y_1, x_{11}, x_{12}, \cdots, x_{1m}), (y_2, \mathbf{x_2}), \cdots, (y_N, \mathbf{x_N})$ – are not variables. Our object is to find β^*, c^* (linear equation) from given data X, Y.

OLS: Solution

Let our object function
$$f(\beta_1, \dots, \beta_n, c) := \sum_{i=1}^{N} ((\mathbf{x}_i \beta + c) - y_i)^2$$
. Then FOC is:

$$Df_{\beta, c}(\beta^*, c^*) = \mathbf{0}$$
(FOC)

This leads to m+1 equations:

$$\frac{\partial f}{\partial \beta_1}(\beta^*, c^*) = 2(\mathbf{x}_1 \beta^* + c^* - y_1)x_{11} + 2(\mathbf{x}_2 \beta^* + c^* - y_2)x_{21} + \dots + 2(\mathbf{x}_N \beta^* + c^* - y_N)x_{N1} = 0$$

 $\frac{\partial f}{\partial \beta_m}(\beta^*, c^*) = 2(\mathbf{x}_1 \beta^* + c^* - y_1) x_{1m} + 2(\mathbf{x}_2 \beta^* + c^* - y_2) x_{2m} + \dots + 2(\mathbf{x}_N \beta^* + c^* - y_N) x_{Nm} = 0$ $\Rightarrow 2(\mathbf{x}_1 \beta^* + c^* - y_1) \mathbf{x}_1^T + 2(\mathbf{x}_2 \beta^* + c^* - y_2) \mathbf{x}_2^T + \dots + 2(\mathbf{x}_N \beta^* + c^* - y_N) \mathbf{x}_N^T = \mathbf{0}_{m \times 1} \quad (B)$ $\frac{\partial f}{\partial c}(\beta^*, c^*) = 2(\mathbf{x}_1 \beta^* + c^* - y_1) 1 + 2(\mathbf{x}_2 \beta^* + c^* - y_2) 1 + \dots + 2(\mathbf{x}_N \beta^* + c^* - y_N) 1 = 0 \quad (C)$

OLS (2)

Remember
$$X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1m} \\ x_{21} & x_{22} & \cdots & x_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{Nm} \end{pmatrix} = \begin{pmatrix} C_1 & \cdots & C_m \end{pmatrix} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_N \end{pmatrix}$$

Rearrange FOCs:

$$\begin{pmatrix} \mathbf{x_1}^T & \mathbf{x_2}^T & \cdots & \mathbf{x_N}^T \end{pmatrix} \begin{pmatrix} \mathbf{x_1}\beta^* + c^* - y_1 \\ \vdots \\ \mathbf{x_N}\beta^* + c^* - y_N \end{pmatrix} = X^T (X\beta^* + \mathbf{1}_{N \times 1}c^* - Y) = \mathbf{0}_{m \times 1}$$
(B2)

$$c^* = \frac{1}{N} \begin{pmatrix} 1 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} y_1 - \mathbf{x}_1 \beta^* \\ \vdots \\ y_N - \mathbf{x}_N \beta^* \end{pmatrix} = \frac{1}{N} \mathbf{1}_{1 \times N} (Y - X \beta^*)$$
 (C2)

OLS (3)

From (C2) and (B2),

$$X^{T}\left(X\beta^{*} + \mathbf{1}_{N\times 1}\frac{1}{N}\mathbf{1}_{1\times N}(Y - X\beta^{*}) - Y\right) = \mathbf{0}_{m\times 1}$$
 (D)

Rearrange (D) with regard to β^* yields:

$$X^{T}(X - \frac{1}{N} \mathbf{1}_{N \times 1} \mathbf{1}_{1 \times N} X) \beta^{*} = X^{T}(I_{N} - \frac{1}{N} \mathbf{1}_{N \times 1} \mathbf{1}_{1 \times N}) Y$$

Let $\mathbf{1}_{N\times 1}\mathbf{1}_{1\times N}=\mathbf{1}_N$. $(N\times N \text{ matrix with all elements are } 1)$

$$\beta^* = \left(X^T \left(X - \frac{1}{N} \mathbf{1}_N X \right) \right)^{-1} \left(X^T \left(Y - \frac{1}{N} \mathbf{1}_N Y \right) \right)$$
$$= \left(X^T \left(I_N - \frac{1}{N} \mathbf{1}_N \right) X \right)^{-1} \left(X^T \left(I_N - \frac{1}{N} \mathbf{1}_N \right) Y \right)$$

OLS (4)

Sample Mean \bar{X}, \bar{Y}

$$\frac{1}{N} \mathbf{1}_N X = \frac{1}{N} \begin{pmatrix} 1 & \cdots & 1 \\ 1 & \cdots & 1 \\ \vdots & \vdots & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} x_{11} & \cdots & x_{1m} \\ x_{21} & \cdots & x_{2m} \\ \vdots & \vdots & \vdots \\ x_{N1} & \cdots & x_{Nm} \end{pmatrix} = \begin{pmatrix} \bar{\mathbf{x}}_1 & \cdots & \bar{\mathbf{x}}_m \\ \bar{\mathbf{x}}_1 & \cdots & \bar{\mathbf{x}}_m \\ \vdots & \vdots & \vdots \\ \bar{\mathbf{x}}_1 & \cdots & \bar{\mathbf{x}}_m \end{pmatrix} = \bar{X}$$

$$\frac{1}{N} \mathbf{1}_N Y = \frac{1}{N} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix} = \begin{pmatrix} \bar{y} \\ \vdots \\ \bar{y} \end{pmatrix} = \bar{Y}$$

Here $\bar{\mathbf{x}}_j$, \bar{y} means sample mean of x_{ij} , y_i

$$\bar{\mathbf{x}}_j := \frac{1}{N} \sum_{i=1}^{N} x_{ij}, \quad \bar{y} := \frac{1}{N} \sum_{i=1}^{N} y_i$$

OLS (5)

Therefore, β^* is:

$$\beta^* = (X^T(X - \bar{X}))^{-1}X^T(Y - \bar{Y})$$

Note1: If $N \to \infty$, then $I_N - \frac{1}{N} \mathbf{1}_N \to I_N$ and

$$\beta^* \to (X^T X)^{-1} X^T Y$$

Note2: We should check SOC: whether $H = D^2 f_{\beta,c}(\beta^*, c^*)$ is PD or not. Our object function has quadratic form with positive sign with regard to β, c when $\mathbf{x_j}$ is independent with each other and this means f is PD (when $\mathbf{x_j}$ is independent with each other: covariance with other variables are 0).

Note3: Some researchers denote X^T by X'