## A Chemical Kinetics Network for Lightning and Life in Planetary Atmospheres

## P. B. Rimmer<sup>1</sup> and Ch Helling

School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, United Kingdom

### ABSTRACT

There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistry outside the solar system. We present an ion-neutral chemical network constructed from scratch, STAND2015, that treats hydrogen, nitrogen, carbon and oxygen chemistry accurately within a temperature range between 100 K and 30000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. STAND2015 is successfully tested against atmospheric chemistry models for HD209458b, Jupiter and the present-day Earth using a simple 1D photochemistry/diffusion code. Our results for the early Earth agree with those of Kasting (1993) for CO<sub>2</sub>, H<sub>2</sub>, CO and O<sub>2</sub>, but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present. Very little glycine is produced in the absence of any molecular nitrogen and oxygen. This suggests that production of glycine is inhibited if a gas is too strongly reducing. Possible applications and limitations of the chemical kinetics network are also discussed.

Subject headings: astrobiology — atmospheric effects — molecular processes — planetary systems

#### 1. Introduction

The potential connection between a focused source of energy and life was first made apparent in the Miller-Urey experiment (Miller 1953), set to test a hypothesis proposed by Haldane (1928). In this experiment, a gas composed of water vapor, ammonia, methane and molecular hydrogen was circulated past an electric discharge. After a week's time, various biologically relevant chemicals had developed, including glycine and alanine, identified with a paper chromatrogram. A followup study of Miller's samples, carried out approximately fifty years later, discovered a much richer variety of prebiotic compounds than originally thought (Johnson et al. 2008). Since then, numerous related experiments have been carried out under a variety of conditions (see Miller & Urey 1959; Cleaves et al. 2008, and references therein).

The input energy source and the initial chemistry have been varied across these different experiments. An energy source may have been important for the production of prebiotic species on Earth, because the pathways to formation have considerable activation barriers, often on the order of 0.1-1 eV. Patel et al. (2015) generated prebiotic species by exposing HCN and H<sub>2</sub>S to ultraviolet light. The experimental results from Powner et al. (2009) suggest that the aqueous synthesis of amino acids, nucleobases and ribose is predisposed, starting from glyceraldehyde and glycoaldehyde, which they suggest would most likely form through heating and UV irradiation. Shock synthesis of amino acids due to the atmospheric entry of cometary meteors and micrometeorites or thunder is also sufficient to overcome these barriers and produce amino acids (Bar-Nun et al. 1970).

The initial chemical conditions are naturally significant to the formation of prebiotic chemistry.

<sup>&</sup>lt;sup>1</sup>pr33@st-andrews.ac.uk

Of course, in an environment where hydrogen or carbon were lacking, there would be no complex hydrocarbons. Nitrogen and phosphorus are also essential to the origins of terrestrial life, although some scientists, such as Benner et al. (2004), have speculated that life could occur under very different chemistries; presently, we lack the ability to explore this possibility. The initial chemical composition also has an effect on the production of prebiotic chemical species. For example, hydrogen can be bound in a reducing species, CH<sub>4</sub>, in an oxidizing species, H<sub>2</sub>SO<sub>4</sub>, or into the neutral species of water (H<sub>2</sub>O). Both Schlesinger & Miller (1983) and Miyakawa et al. (2002) have found that performing a Miller-Urev like experiment in an oxidizing environment produces only trace amounts of prebiotic materials, whereas performing the experiment in a reducing environment produces a great number of prebiotic materials.

The atmosphere of Earth in its present state is oxidizing ( $\approx 21\% \text{ O}_2$ , 78 % N<sub>2</sub>). The atmosphere of the Earth during its first billion years (first 1 Gyr) would have had a very different composition, probably oxidizing or at least only weakly reducing (Kasting 1993), although Tian et al. (2005) suggest that the Earth's atmosphere was once highly reducing. Even if the Earth never possessed a strongly reducing atmosphere, other planets and moons are known to have both reducing atmospheres and active lighting and UV photochemistry, Jupiter for example. Extrasolar planets may not simply have diverse compositions, but also widely varied gas-phase C/O ratios, either intrinsically at formation, as may be the case with Wasp-12b, XO-1b, CoRoT-2b (Madhusudhan et al. 2011; Moses et al. 2013), and possibly the interior of 55 Cancri e (Madhusudhan et al. 2012, but see also Nissen 2013); or alternatively due to oxygen depletion into the cloud particles (Bilger et al. 2013; Helling et al. 2014). The question of the C/O ratio is not a settled matter (Benneke 2015).

These diverse planetary and exoplanetary environments provide unique "laboratories" within which to explore prebiotic chemistry. There are many potential drivers for prebiotic chemistry in planets and exoplanets, from the steep thermal gradients in hot Jupiters and close-in Super-Earths to the thermal production of organics and complex hydrocarbons in Saturn's storms (Moses 2015) and photochemical production of complex

organics in Titan (Yung et al. 1984; Loison et al. 2015). There is some evidence that cosmic rays drive the formation of hydrogen cyanide in Neptune (Lellouch et al. 1994). Molina et al. (1999) have proposed pathways to formation of a rich variety of nitriles via cosmic rays in Titan's atmosphere.

As mentioned above, electric discharges may also be an important source of energy driving the production of prebiotic species, and are ubiquitous throughout the gas giants. Discharges in the form of lightning are known to occur within our solar system, on Earth, Jupiter (Little et al. 1999), Saturn (Dyudina et al. 2007), Uranus (Zarka & Pedersen 1986), and Neptune (Gurnett et al. 1990). There are some indications of lightning discharges on Venus (Taylor et al. 1979), and possibly also in Titan's nitrogen chemistry (Borucki et al. 1984), although these traces are still tentative. Lightning is hypothesized to occur on exoplanets (Aplin 2013; Helling et al. 2013) and brown dwarfs (Helling et al. 2013; Bailey et al. 2014). Simulated plasma discharges initiated within Jupiter-like gas compositions suggest that lightning on Jupiter may produce a significant amount of trace gases (Borucki et al. The comparison between experimental 1985). rates of production of organic compounds in high-temperature plasmas to chemical equilibrium models is unsurprisingly poor (Scattergood et al. 1989), and indicates that a chemical kinetics approach will be important in explaining the results of these experiments, Chemical kinetics seems to be necessary for exploring any of these pathways to the formation of prebiotic species.

Chemical kinetics models have been applied to planetary and exoplanetary atmospheric conditions in such a diverse range that it is impractical to provide complete references, so a brief summary of the work will instead be provided. Photochemical models of the modern Earth have been applied in the context of 1D models (Owens et al. 1985), up to fully coupled 3D general circulation models (Roble & Ridley 1994), and even within a flexible modular framework that can be included as a module within other codes (Sander et al. 2005). The Earth's atmosphere during its first billion years has been extensively modeled (Kasting 1993; Chemical kinetics models have Zahnle 1986). been applied also to Jupiter's atmosphere, from

the deep atmosphere (Fegley & Lodders 1994; Visscher et al. 2010) through the stratosphere (Zahnle et al. 1995; Moses et al. 2005). The atmosphere of the moon Titan has also been analyzed using ion-neutral chemical kinetics to better explain the abundance of rich hydrocarbons in its atmosphere and its stratospheric haze (Yung et al. 1984; Keller et al. 1998; Lavvas et al. 2008a,b).

Chemical kinetics models for exoplanetary atmospheres have been typically developed for hot Jupiters, especially HD189733b and HD209458b (Moses et al. 2011; Venot et al. 2012; Zahnle et al. 2009). Almost all of the models for hot Jupiters have been applied only in two dimensions, and so have not taken a more complete account of the atmospheric dynamics, instead relying on a parameterization of vertical mixing using the eddy diffusion coefficient,  $K_{zz}$  [cm<sup>2</sup> s<sup>-1</sup>] (see Lee et al. 2015, their Sec. 4.2). Agúndez et al. (2014) have taken on the ambitious task of coupling a chemical kinetics model to 2D dynamics for both HD189733b and HD209458b. Ion-neutral models have been applied to exoplanets, taking account of photochemistry (Lavvas et al. 2014), and additionally of cosmic ray ionization (Walsh & Millar 2011; Rimmer et al. 2014). Chemical kinetics models have also been applied to the extrasolar super-earths (Hu et al. 2012; Hu et al. 2013; Hu & Seager 2014), and have been used to explore possible biosignatures on rocky planets (Seager et al. 2013a,b). There has also been some recent investigation into chemistry on helium dominated exoplanets (Hu et al. 2015).

Lightning chemistry has been explored with some basic chemical kinetics models, e.g. within Earth's mesosphere (Luque & Ebert 2009 and Parra-Rojas et al. 2013) and Saturn's lower ionosphere (Dubrovin et al. 2014). Dubrovin et al. (2014) present interesting results for Saturn's lower ionosphere, predicting that TLE's within this region would produce mostly  $H_3^+$ , what they identify as the primary positive charge carrier during the duration of the TLE and for sometime after. This would mimic the effect of cosmic ray ionization. Parra-Rojas et al. (2013) presented similar results involving terrestrial nitrogen chemistry. The products of discharge chemistry in the upper part of both hydrogen-rich and nitrogen-rich atmospheres seem to be similar to the products of cosmic ray chemistry in these same atmospheres.

There are many open questions about prebiotic chemistry in diverse planetary and exoplanetary environments, as well as in the lab. In this paper, we present a candidate network for exploring UV photochemistry, cosmic ray chemistry and lightning-driven chemistry, constructed from scratch. We will explore mostly the photochemistry and thermochemistry within this paper, leaving the exploration of lightning-driven chemistry and cosmic ray chemistry to future work.

The largest task in developing this network has been the collation of a full set of chemical reactions that treat both reducing and oxidizing chemistries at temperatures ranging from 100 K through 30000 K (the approximate peak temperature of lightning, see Orville 1968; Price et al. 1997) and the selection of rate constants when more than one is published. Since one interest is the investigation of the formation rate of prebiotic species in diverse environments, the network is made extensive enough to include the simplest amino acid, glycine. In this paper, we present this chemical network (STAND2015), and test in a diversity of environments. For these tests, we developed a simple 1D photochemistry/diffusion code (Argo). Argo was developed based on Nahoon (Wakelam et al. 2012) by including wavelengthdependent photochemistry, cosmic ray transport, water condensation and chemical mixing.

The Stand2015 network is presented in Section 2. We compare the predictions of our network using a simplified 1D photochemistry/diffusion code called Argo (Section 3). The model and network are then combined and tested against other model results for HD209458b and the early Earth, and compared to observation for Jupiter and the present-day Earth in Section 4. Finally, in Section 5 we simulate a Miller-Urey type experiment and explore the formation of glycine under various chemical conditions. Section 6 contains a short discussion of the results and possible future applications of this model.

### 2. The Chemical Network

The STAND2015 Atmospheric Chemical Network is an H/C/N/O network with reactions involving He, Na, Mg, Si, Cl, Ar, K, Ti and Fe, developed from scratch. It contains all known reactions for species of up to 6 hydrogen, 2 carbon, 2

nitrogen and 3 oxygen atoms, for which a rate constant has been published, as well as a less complete network involving species with 3+ carbon atoms, 3 nitrogen atoms and/or 4 oxygen atoms. A chemical network is effectively a list of chemical reactions and reaction rate constants. Rate constants are used to calculate the rates of production and loss of a particular molecular or ionic species,  $P_i$  $[\text{cm}^{-3} \text{ s}^{-1}]$  and  $L_i$   $[\text{cm}^{-3} \text{ s}^{-1}]$  respectively, and i is enumerated over the list of species. Rate constants are of zeroth order (e.g., source terms,  $S_i$  [cm<sup>-3</sup>]  $s^{-1}$ ), first order (involving interactions with particles not accounted in the network, such as photons or cosmic rays,  $k_1$  [s<sup>-1</sup>]), second order (collisions between particle i and other particles within the network,  $k_2$  [cm<sup>3</sup> s<sup>-1</sup>]), or third order (collisions between particle i and other particles, as well as a third body, denoted here as  $k_3$  [cm<sup>6</sup> s<sup>-1</sup>]). The rates of production and loss for a given species, i, in terms of rate constants, are generally:

$$P_i = S_i + \sum k_1 n_j + \sum k_2 n_j n_k + \sum k_3 n_{gas} n_j n_k,$$
(1)

$$L_i = \sum k_1 n_i + \sum k_2 n_j n_i + \sum k_3 n_{gas} n_j n_i.$$
(2)

Summation is over all the relevant reactions, some involving species j and/or k, that result in the production (Eq. (1)) or loss (Eq. (2)) of species i. The symbol  $n_i$  [cm<sup>-3</sup>] denotes the number density of species i and  $n_{\rm gas}$  [cm<sup>-3</sup>] denotes the total gas number density.

The reaction rate constants have been assembled from various databases. With only a couple hundred exceptions, the rate constants for 2-body and 3-body neutral reactions have been assembled from the NIST Chemical Kinetics Database (Manion et al. 2013). Virtually all of the ion-neutral reactions were taken from Ikezoe et al. (1987). Several rate constants that we have used, relevant for terrestrial atmospheric chemistry, are taken from Sander et al. (2011). The KIDA database provided the rate constants for several dissociative recombination reactions (Wakelam et al. 2012). Coefficients for the cosmic ray ionization rate constant were taken from the OSU chemical network (Harada et al. 2010).

Rate constants were compared to the publicly available networks of Moses et al. (2011); Venot et al. (2012), and ion-neutral rate coeffi-

cients were checked against the KIDA database (Wakelam et al. 2012)<sup>1</sup>, as well as the OSU 09 2010 high temperature network (Harada et al. 2010)<sup>2</sup>. Some further ion-neutral reactions involving the alkali ion chemistry were appropriated from Lavvas et al. (2014). Finally,  $\sim 20$  more reactions for suspected formation pathways for glycine have been added to the network, from Blagojevic et al. (2003); Patel et al. (2015). The full network and references are provided in Appendix A. The following subsections contain brief discussions about the different classes of reactions, their rate coefficients and whether reverse reactions have been included.

### 2.1. 2-Body Neutral-Neutral and Ion-Neutral Reactions

Two-body neutral-neutral and ion-neutral reactions follow the basic scheme:

$$A + B \rightarrow Y + Z$$
, and (3)

$$A^{+} + B \to Y^{+} + Z.$$
 (4)

The rate constants for these reactions are approximated by the Kooij equation (Kooij 1893):

$$k_2 = \alpha \left(\frac{T}{300 K}\right)^{\beta} e^{-\gamma/T}, \tag{5}$$

where T [K] is the gas temperature<sup>3</sup>,  $k_2$  [cm<sup>3</sup> s<sup>-1</sup>] is the rate constant, and  $\alpha$  [cm<sup>3</sup> s<sup>-1</sup>],  $\beta$  and  $\gamma$  are constants characterizing the reaction. All of these reactions are reversed in our network and we use the rate coefficients for the best characterized direction for each reaction, which is typically the exothermic direction. For neutral-neutral reactions, even when exothermic, there is often a sizable barrier to reaction, allowing certain elements to be locked into non-equilibrium configurations at low temperatures effectively for eternity, because the barrier to the lower energy state is too large to be overcome in the current environment.

Ion-neutral reactions do not typically have barriers in the exothermic direction, and in many cases the rate constants are altogether temperature independent, closely approximating the

<sup>1</sup>http://kida.obs.u-bordeaux1.fr/

<sup>&</sup>lt;sup>2</sup>http://faculty.virginia.edu/ericherb/research.html

<sup>&</sup>lt;sup>3</sup>Surface chemistry is not considered in this paper, and the temperature of all chemical species including electrons is set equal to the gas-phase temperature.

Langevin approximation. A notable exception are charge exchange reactions,

$$A^+ + B \to B^+ + A, \tag{6}$$

which, due to the differences in energy between ionic and neutral ground states, often contains barriers on the order of a few x 100 K.

The rate constants for the forward reactions are given in Appendix A with the label '2n', reactions 577-1352. These reactions are reversed following the scheme described in Appendix B. The ionneutral reactions are also reversed, are listed in Appendix A with '2i', reactions 1353-2569.

## 2.2. 3-Body Neutral Reactions, Dissociation Reactions, and Radiative Association Reactions

Reactions that involve a third body occur primarily in the two forms:

$$A + M \to Y + Z + M, \tag{7}$$

$$A + B + M \to Z + M, \tag{8}$$

where M represents any third body. Decomposition reactions are well studied at high temperatures, being important for various combustion processes. Just as in Section 2.1, we choose the reactions best characterized, which in this case often involve endothermic reactions. The rate coefficients for the majority of these reactions follow the Lindemann form (Lindemann et al. 1922). In this form, we first determine the rate constants in the low-pressure  $(k_0 \text{ [cm}^6 \text{ s}^{-1}])$  and high-pressure  $(k_\infty \text{ [cm}^3 \text{ s}^{-1}])$  limits:

$$k_0 = \alpha_0 \left(\frac{T}{300 \, K}\right)^{\beta_0} e^{-\gamma_0/T},$$
 (9)

$$k_{\infty} = \alpha_{\infty} \left(\frac{T}{300 \, K}\right)^{\beta_{\infty}} e^{-\gamma_{\infty}/T}. \tag{10}$$

These are combined with the number density of the neutral third species, [M] [cm<sup>-3</sup>] to determine the reduced pressure,  $p_r = k_0[\mathrm{M}]/k_{\infty}$ , and this can then be utilized to set the pressure-dependent effective "two-body" rate:

$$k_2 = \frac{k_\infty p_r}{1 + p_r}. (11)$$

Sometimes this expression is multiplied by a dimensionless function F(p,T) to more accurately

approximate the transition between the low-pressure and high-pressure limits, and this provides the Troe form (Troe 1983). The coefficients for the Troe form are not explicitly given.

We favor using the rate constants for three-body combination reactions, and reversing these reaction to determine the rate of thermal decomposition. In many cases, however, the rate constants are unavailable. When we have only the rate coefficients for the decomposition reactions, we add an additional 500 K barrier to both the decomposition and three body combination rate constants. This barrier is added in order to limit runaway three body reactions that can result from reversing decomposition reactions at low temperature.

Additionally, we incorporate a small number of radiative association reactions, of the form:

$$A + B \rightarrow Z + \gamma,$$
 (12)

where  $\gamma$  is the radiated photon that carries the excess energy from the association. We appropriate the Kooij form for this reaction, as with 2-Body Neutral-Neutral reactions, in order to determine the rate constant  $k_{\rm ra}$  [cm<sup>3</sup> s<sup>-1</sup>]. We then apply this rate constant, along with the rate constant for the corresponding three-body reaction, to the adduct form of the overall rate constant (Hébrard et al. 2013, their eq. (B.2)):

$$k = \frac{\left(k_0[M]F + k_r\right)k_\infty}{k_0[M] + k_\infty},\tag{13}$$

where the function F is from the Troe form of the transition from high to low pressure.

The rate constants for the forward reactions are given in Appendix A with the labels '2d' for the neutral species and '3i' for ion-neutral species. These reactions are reversed in the manner described by Appendix B. Reactions 1-420 are reactions of this type, for which each odd-numbered reaction gives the low-pressure rate constant  $k_0$  [cm<sup>6</sup> s<sup>-1</sup>] and each even-numbered reaction gives the high-pressure rate constant  $k_\infty$  [cm<sup>3</sup> s<sup>-1</sup>]. Reactions labeled 'ra' are radiative association reactions, numbered 2974-2980.

## 2.3. Thermal Ionization & Recombination Reactions

A special set of three-body reactions are thermal ionization and three-body recombination re-

actions, which proceed by the pair of equations (analogous to Eq's (7) and (8)):

$$A + M \rightarrow Z^{+} + e^{-} + M,$$
 (14)

$$A^{+} + e^{-} + M \to Z + M.$$
 (15)

For which we again use published rates wherever possible for the ionization reactions, (Eq. (14)), but in many cases here use the simple approximation:

$$k_0 = \left(\frac{8\pi e^8}{m_e k_B T}\right)^{1/2} e^{-I/k_B T},$$
 (16)

where  $e = 4.9032 \times 10^{-10}$  esu is the elementary charge,  $k_B = 1.38065 \times 10^{-16}$  erg/K is the Boltzmann constant,  $m_e = 9.1084 \times 10^{-28}$  g is the mass of the electron, I is the ionization energy (here in units of erg) which we determine from the change in the Gibbs free energy for the reaction.  $k_{\infty}$  is then estimated from  $k_0$ .

Three-body recombination and ionization reactions have been well studied, and in many cases have well-characterized rate constants. Here we treat the three body recombinations as the reverse reactions for the collisional ionization reactions, but the studied rate coefficients for these reactions generally have a temperature dependence of  $T^{-4.5}$ , at least for T > 1 K (Hahn 1997). This creates a problem for reversibility. Using these rates will not allow us to reproduce chemical equilibrium for plasmas and this is largely because we are not properly treating the time-dependent plasma conditions in which these rates are often measured. Many of these rate constants may accurately describe the time to achieve an equilibrium electron density in a regime where a strong ionizing source has recently been removed from the environment.

With this in mind, we instead set the recombination rate constants such that, when dissociative recombination reactions are disabled, the Saha equation is upheld.

These reactions and rate coefficients are also given in Appendix A. The ionization reactions are labeled 'ti' and numbered 421-576. As with Section 2.2, the odd reactions are  $k_0$  [cm<sup>6</sup> s<sup>-1</sup>] and the even numbers are  $k_{\infty}$  [cm<sup>3</sup> s<sup>-1</sup>].

Finally, we include a series of dissociative recombination reactions, which take the form:

$$A^{+} + e^{-} \to Y + Z.$$
 (17)

These have rate constants parameterized in the form of Eq. (5). The reverse reactions can in principle be calculated, and their rate constants could be calculated straight-forwardly using the same principles used for the three-body reactions. This would effectively be analogous to the rates of three body recombination for any third body, and we do not find that reversing these reactions changes the results much. When we compare with chemical equilibrium, however, we disable these reactions. The dissociative recombination reactions are taken only from the OSU 09 2010 high temperature network (Harada et al. 2010), and shown in Appendix A, numbered 2777-2973, and labeled 'dr'.

## 2.4. Photochemistry and Cosmic Ray Chemistry

Photochemistry is considered for the species H, H<sup>-</sup>, He, C, C( $^{1}$ D), C( $^{1}$ S), N, O, O( $^{1}$ D), O( $^{1}$ S), H<sup>-</sup>, C<sub>2</sub>, CH, CN, CO, H<sub>2</sub>, N<sub>2</sub>, NO, O<sub>2</sub>, OH, CO<sub>2</sub>, H<sub>2</sub>O, HO<sub>2</sub>, HCN, NH<sub>2</sub>, NO<sub>2</sub>, O<sub>3</sub>, C<sub>2</sub>H<sub>2</sub>, H<sub>2</sub>CO, H<sub>2</sub>O<sub>2</sub>, NH<sub>3</sub>, NO<sub>3</sub>, CH<sub>4</sub>, HCOOH, HNO<sub>3</sub>, N<sub>2</sub>O<sub>3</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, CH<sub>3</sub>CHO, C<sub>4</sub>H<sub>2</sub>, C<sub>4</sub>H<sub>4</sub>, Na, K, and HCl. The photoionization and photodissociation cross-sections are taken almost entirely from PHIDRATES<sup>4</sup> (Huebner & Carpenter 1979; Huebner et al. 1992; Huebner & Mukherjee 2015), with the exception of C<sub>4</sub>H<sub>2</sub>, C<sub>4</sub>H<sub>4</sub> and N<sub>2</sub>O<sub>3</sub>, the cross-sections of which are taken from the MPI-Mainz UV/VIS Spectral Atlas<sup>5</sup> (Keller-Rudek et al. 2013).

We divide the cross-sections between 200 bins each  $\approx 50$  Å wide. A comparison between our binned cross-sections and the raw cross-sections from PhIDRates is plotted for an example reaction (Figure 1). The cross-sections, both in the database and here, of the form  $\sigma(\lambda)$  with  $\sigma$  in units cm<sup>2</sup> and wavelength in units of Å. The resolution for the UV cross-sections is fairly low, and cannot encapsulate the fine structure of the UV emission lines or the UV cross-sections. This is especially important when treating ionospheres of gas giants, since, e.g. the fine structure in the H<sub>2</sub> bands leave small spectral windows through which photons can penetrate and effectively ionize deeper in the atmosphere. Such a low resolution spectrum will effectively close these windows

 $<sup>^4</sup>$ phidrates.space.swri.edu

 $<sup>^5 {\</sup>it http://satellite.mpic.de/spectral\_atlas/index.html}$ 

and underestimate the ion production in the ionosphere (Kim & Fox 1994; Kim et al. 2014). High resolution is also a important for capturing where the UV flux and cross sections both peak; a low resolution cross section can in this case underestimate the destruction rate of the species with this resonant photochemical cross-section. As can be seen below, these issues do not significantly affect the comparisons of this model for HD209458b, Jupiter or Earth. For photoionization deep in the atmosphere, where high resolution is essential, the network itself need not be modified. The transport of UV photons line by line would need to be calculated.

The tabulated chemical cross-sections are combined with  $F(\lambda, z)$  [photons cm<sup>-2</sup> s<sup>-1</sup> Å<sup>-1</sup>], the radiant flux density onto a unit sphere (hereafter called the actinic flux) located at atmospheric height, z [cm], to determine the photochemical rate constants.

$$k_{\mathrm{ph},i}(z) = \tau_f \int_{1\stackrel{\wedge}{A}}^{10^4 \stackrel{\wedge}{A}} \sigma_i F(\lambda, z) \, d\lambda, \qquad (18)$$

where i is indexed over the molecules listed above, for which photochemistry is considered.  $\tau_f$  is a dimensionless parameter representing the fraction of time (over a period much longer than the longest characteristic time scale for the atmosphere) the particular atmospheric region is irradiated; for tidally locked planets,  $\tau_f = 1$  (dayside) or 0 (nightside), the diurnal average for a rotating planet is  $\tau_f = 1/2$ . The photoionization and photodissociation reactions are listed in Appendix A, reactions numbered 2570-2693, and labeled 'pi' for photoionization reactions & 'pd' for photodissociation reactions.

Cosmic ray ionization and dissociation is parameterized by  $\zeta$  (Rimmer & Helling 2013), to treat both direct ionization by galactic cosmic rays and ionization by secondary particles produced in air showers. The cosmic ray ionization rate depends on the chemical species in question, since different species will have different chemical cross-sections for the photons produced by cosmic rays, and this is accounted for by multiplying  $\zeta(z)$  by a constant  $\kappa_{\text{CR},i}$  such that:

$$k_{\mathrm{CR},i}(z) = \kappa_{\mathrm{CR},i}\zeta(z).$$
 (19)

We treat low energy cosmic rays (E < 1 GeV) for these objects as though they have been sig-

nificantly shielded by the astrospheres of the host stars, and therefore set the fitting parameters for the incident cosmic ray flux to  $\alpha=0.1$  and  $\gamma=-1.3$  in the equation for the flux of cosmic ray particles:

$$j(E) = \begin{cases} j(E_1) \left(\frac{p(E)}{p(E_1)}\right)^{\gamma}, & \text{if } E > E_2\\ j(E_1) \left(\frac{p(E_2)}{p(E_1)}\right)^{\gamma} \left(\frac{p(E)}{p(E_2)}\right)^{\alpha}, & \text{if } E_{\text{cut}} < E < E_2\\ 0, & \text{if } E < E_{\text{cut}} \end{cases}$$
(20)

where  $p(E) = \frac{1}{c}\sqrt{E^2 + 2EE_0}$ ,  $E_0 = 9.38 \times 10^8$  eV,  $E_1 = 10^9$  eV, and  $E_2 = 2 \times 10^8$  eV, and the flux at  $E_1$  is set to  $j(E_1) = 0.22$  cm<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup> (GeV/nucleon)<sup>-1</sup>. All of these parameters except  $\alpha$  are observationally well-constrained (Indriolo et al. 2009). For a demonstration of how  $\alpha$  affects the cosmic ray spectrum, and a discussion of the Monte Carlo transport we use for cosmic rays of energy < 1 GeV, see Rimmer et al. (2012); Rimmer & Helling (2013). For ionization rate by cosmic rays of energy > 1 GeV,  $Q_{\rm HECR}$  [cm<sup>-3</sup> s<sup>-1</sup>], we use the analytical method of Velinov & Mateev (2008).

Cosmic ray reactions are listed in Appendix A, numbered 2694-2776, and labeled 'cr'.

### 2.5. Test for Chemical Equilibrium

At sufficiently high temperatures and pressures, a gas should rapidly settle into chemical equilibrium. An important test for a chemical network is that its steady state solution converges to the chemical equilibrium solution. To perform this test of our network, we solve the chemical kinetics at a single (T,p) point, using the rate constants from the STAND2015 network, disabling the cosmic ray reactions, photochemistry and dissociative recombination. We compute a time-dependent solution of the equation

$$\frac{dn_i}{dt} = P_i - L_i. (21)$$

We solve this equation for  $T=1000~{\rm K}$  and p=1 bar, with solar abundances from Asplund et al. (2009). We compare our results to chemical equilibrium calculations using the Burcat polynomials (Burcat & Ruscic 2005), and plot our comparisons in Figure 2 and find excellent agreement. This agreement is not surprising; we have used the same

thermochemical data to reverse our reactions, and only include reversed reactions in this test, so once the system achieves steady state, computationally achievable at this pressure and temperature, the chemistry has effectively settled into equilibrium.

We also compare our electron number density to the electron number density achieved using the Saha equation, this time at a pressure of  $10^{-4}$  bar and over a range of temperatures from 1000 K to 10000 K. This comparison is plotted in Figure 3. The comparison is virtually perfect when  $T \gtrsim 2000 \text{ K}$ , unsurprising given the way the threebody recombination reactions are calculated (see Section 2.3). At  $\sim 1000$  K, our results diverge from the Saha equation. This is because the integrator does not reliably calculate mixing ratios below  $\sim 10^{-30}$ . Indeed, at this stage, the electron number density achieves  $\sim 10^{-300}$  cm<sup>-3</sup> while the H<sup>+</sup> number density rests at  $\sim 10^{-60}$  ${\rm cm}^{-3}$ , producing significant charge balance errors. These large errors in the charge balance fluctuate, and only appear when the ionization fraction is  $\lesssim 10^{-30}$ , at which point ion-neutral chemistry is inconsequential.

## 3. 1-D Photochemistry/Diffusion Code

We have developed a simple 1D photochemistry/diffusion code (Argo), for the purposes of testing the Stand2015 network. The required inputs for Argo are:

- (p,T) profile of the atmosphere.
- Vertical eddy diffusion  $(K_{zz} [\text{cm}^2 \text{ s}^{-1}])$  profile of the atmosphere (see discussion in Lee et al. 2015).
- Atmospheric elemental abundances.
- Boundary conditions at top and bottom of the p, T profile.
- Actinic flux<sup>6</sup> at the top of the atmosphere.
- Chemical Network (in our case, Stand2015).
- Initial chemical composition

All of these inputs except the chemical composition are fixed.

With these inputs, ARGO solves molecular transport in a fully Lagrangian manner, similar to Alam & Lin (2008) and Zahnle et al. (1995). The model consists of two parts: (1) A chemical transport model (Section 3.1) and (2) calculation of the photochemical and cosmic ray chemical rate constants from cross-sections and a depth-dependent actinic flux (Section 3.2). A conceptual illustration is shown in Figure 4.

# 3.1. The Continuity Equations for Chemical Species

The coupled 1D continuity equations describing the time-dependent vertical atmospheric chemistry are:

$$\frac{\partial n_i}{\partial t} = P_i - L_i - \frac{\partial \Phi_i}{\partial z},\tag{22}$$

where  $n_i$  [cm<sup>-3</sup>] is the number density of species i, and  $i = 1, ..., N_s$ , and  $N_s$  is the total number of species.  $P_i$  [cm<sup>-3</sup> s<sup>-1</sup>] is the rate of production and  $L_i$  [cm<sup>-3</sup> s<sup>-1</sup>] is the rate of loss of species i. The right-most term is the vertical change in flux  $\Phi_i$  [cm<sup>-2</sup> s<sup>-1</sup>], and represents the flux due to both eddy (K [cm<sup>2</sup> s<sup>-1</sup>]) and molecular diffusion (D [cm<sup>2</sup> s<sup>-1</sup>]) respectively, related as (Banks & Kockarts 1973, their Eq. (15.14)),

$$\Phi_{i} = -K \left[ \frac{\partial n_{i}}{\partial z} + n_{i} \left( \frac{1}{H_{0}} + \frac{1}{T} \frac{dT}{dz} \right) \right] 
-D \left[ \frac{\partial n_{i}}{\partial z} + n_{i} \left( \frac{1}{H_{i}} + \frac{1 + \alpha_{T}}{T} \frac{dT}{dz} \right) \right], \quad (23)$$

where  $H_0[\mathrm{cm}]$  is the pressure scale height of the atmosphere at z [cm],  $H_i[\mathrm{cm}]$  is the molecular scale height of the atmosphere for species i, and  $\alpha_T$  is the thermal diffusion factor (Banks & Kockarts 1973; Yung & Demore 1999; Zahnle et al. 2006; Hu et al. 2012). For molecular diffusion coefficients, we adopt Chapman-Enskog theory (Enskog 1917; Chapman & Cowling 1991). Eddy diffusion coefficients are either determined empirically, as with Earth and Jupiter, or are derived from global circulation models, as is the case for HD209458b.

In Eq. (23), the terms dealing with eddy diffusion and molecular diffusion are separated out, clarifying four regions that Eq's (22), (23) describe. (1) Deep within the atmosphere, where pressures and temperatures are sufficiently large,

<sup>&</sup>lt;sup>6</sup>The actinic flux is the radiance integrated over all angles, expressing flow of energy through a unit sphere. There are subtle differences between the actinic flux and the spectral irradiance, see Madronich (1987).

the thermochemistry dominates, and the equation simplifies to Equation (21). spheric chemical composition converges to chemical equilibrium or at least to some stable quasiequilibrium. (2) Higher in the atmosphere, the eddy diffusion may dominate, and the species are quenched, their abundance mixed evenly over a wide range of the atmosphere at time-scales shorter than the chemical time-scales. (3) Above this region, molecular diffusion may dominate, and at that point, species lighter than the mean molecular mass of the atmospheric gas will rise up, and species heaver than the mean molecular mass will settle down, and the chemistry will largely be determined by the individual scale heights of the atmospheric constituents. (4) Non-equilibrium processes, such as photochemistry or cosmic ray chemistry, may create a fourth region, the composition of which is determined by irreversible chemical reactions.

Since the purpose of this paper is to introduce a new chemical kinetics network for lightning and prebiotic processes, our focus is not on the atmospheric dynamics (for this, see Lee et al. 2015). We therefore apply a simple approximation to Eq. (22), inspired by Alam & Lin (2008). We first cast Eq. (22) in a Lagrangian formulation, and consider Eddy diffusion to be moving small parcels of the gas vertically. We follow a single parcel as it moves up from the lower boundary of the temperature profile, and then returns down again. In reality, the parcel would be jostled in all three dimensions as it makes a complex journey up to the top of the atmosphere, but 1D transport models are unable to capture this effect in full.

The differential diffusion of molecules into and out of the parcel requires a different approach. The discrete formulas used by Hu et al. (2012, their Eq. 9) in the Lagrangian frame are:

$$\frac{\partial n_{i,j}}{\partial t} = P_{i,j} - L_{i,j} n_{i,j} - d_{j+1/2} \frac{n_{\text{gas},j+1/2}}{n_{\text{gas},j+1}} n_{i,j+1} 
- \left( d_{j+1/2} \frac{n_{\text{gas},j+1/2}}{n_{\text{gas},j}} - d_{j-1/2} \frac{n_{\text{gas},j-1/2}}{n_{\text{gas},j}} \right) n_{i,j} 
+ d_{j-1/2} \frac{n_{\text{gas},j-1/2}}{n_{\text{gas},j-1}} n_{i,j-1}.$$
(24)

Here, j represents the parcel being followed, j-1 the parcel directly beneath j, j+1 the parcel above j, and  $j\pm 1/2$  an arithmetic average between j and  $j\pm 1$ . n without any i subscript represents  $n_{\rm gas}$  at

the relevant parcel, and

$$d_{j\pm 1/2} = \frac{D_{j\pm 1/2}}{2(\Delta z)^2} \left[ \frac{(\bar{m} - m_i)g\Delta z}{k_B T_{j\pm 1/2}} - \frac{\alpha_T}{T_{j\pm 1/2}} (T_{j\pm 1} - T_j) \right].$$
(25)

 $\bar{m}[g]$  denotes the mean molecular mass of the atmosphere at z and  $m_i[g]$  the mass of species i.

Both the third and last terms on the R.H.S. of Eq. (24) do not depend on  $n_i$  and can therefore be treated as source terms,  $P_i$ . The fourth term can be treated as a term in  $L_i$ , such that molecules "destroyed" by this reaction are "banked", A  $\rightarrow$ BA. The "banked" molecules re-enter the parcel at a rate determined by the third and last terms on the R.H.S. of the equation, thus conserving mass throughout the parcel's travels. Violations of this conservation do not appear here, but can be accounted for via further reactions, settling, condensation and evaporation, outgassing and escape, discussed in Appendix C. Although it is straightforward to handle atmospheric escape with this method, we do not do so for any of the test cases in this paper.

Equation (24) is solved within Argo in the same numerical manner as Nahoon (Wakelam et al. 2012), by the implicit time-dependent Gear method as incorporated by the Livermore Solver for Ordinary Differential Equations (DLSODE) (Gear 1971; Brown & Hindmarsh 1989).

### 3.2. Calculating the XUV and Cosmic Ray Flux

Once the fluid parcel has completed the atmospheric profile, the solar XUV actinic flux from 1 Å to 10000 Å as a function of depth, z [cm]<sup>7</sup> and wavelength  $\lambda$  [Å] is calculated. We consider both the direct and approximate diffusive actinic flux. The local height-dependent actinic flux is calculated without any iteration on the local temperature. The cross-sections for various photochemical reactions (Sect. 2.4), are multiplied by each vertical step  $(\Delta z)_j$  [cm], where  $(\Delta z)_j$  is the size of the step at height  $z_j$ . The total optical depth as a function of the wavelength takes the form

$$\tau(\lambda, z) = \sum_{j} \left[ (\Delta z)_{j} \sum_{i} \sigma_{i} n_{ij} \right] + \tau_{s}, \qquad (26)$$

<sup>&</sup>lt;sup>7</sup>The depth for this model extends from z=0, the bottom of the temperature profile for the planet in question, to  $z=z_{\rm top}$ , the top of the profile.

where i is summed over all species for which photoabsorption is considered (see Section 2.4 for a list of these species).  $\tau_s$  is the optical depth due to Rayleigh scattering, and the actinic flux as a function of depth is defined as (Hu et al. 2012):

$$F(\lambda, z) = F(\lambda, z_{\text{top}})e^{-\tau(\lambda, z)/\mu_0} + F_{\text{diff}}, \quad (27)$$

where  $\mu_0 = \cos \theta$ , where  $\theta$  is the stellar zenith angle; we set  $\mu_0 = 1/2$  for all calculations within this paper (see Hu et al. 2012, their Fig. 7).  $F_{\text{diff}}$  denotes the actinic flux of the diffusive radiation, determined using the  $\delta$ -Eddington 2-stream method (Toon et al. 1989). Once the actinic flux is calculated, the photochemical rates are determined as in Section 2.4. Once the depth dependent flux,  $F(z,\lambda)$  [cm<sup>-2</sup> s<sup>-1</sup> Å<sup>-1</sup>], is determined for all layers, the parcel's path through the atmospheric profile is repeated, now accounting for the photochemistry. The cosmic ray ionization rate,  $\zeta(z)$  [s<sup>-1</sup>] is likewise calculated in a depth-dependent manner following Rimmer & Helling (2013) and incorporated into the chemistry (Sec. 2.4).

A new depth-dependent composition is constructed, then applied to Eq. (26) to solve again for  $F(z,\lambda)$ . The value of  $\zeta(z)$  does not change significantly between iterations. This process is repeated until the results converge; i.e. until the profile from the previous global calculation (transport + depth-dependent flux) agrees to within 1% the profile from the current global calculation. The number of repetitions depends on the parameters, but is typically between 5 and 12 global iterations. This iterative process is represented as a flow-chart in Figure 5.

This method is both simple and functional, requiring relatively little computational resources. It is also straight-forward to adapt to diverse chemical environments, since it does not require the selection of "fast" and "slow" chemistry to ease computational speed. These strengths do not come without a cost: The simplistic dynamics does not transition as smoothly from the eddy diffusion regime to the molecular diffusion regime as the Eulerian formulation, and can result in steep changes over a handful of height-steps.

## 3.3. Testing the Atmospheric Transport Model for Molecular Diffusion

In order to benchmark the STAND2015 chemical network in different planetary atmospheres, we

test the molecular diffusion within Argo. We consider a 1D isothermal gas under a constant surface gravity,  $g=10^3~{\rm cm/s^2}$ , with temperature  $T=300~{\rm K}$ , at hydrostatic equilibrium. The gas is initially composed of carbon and hydrogen atoms, each with a mixing ratio of  $X_0({\rm C})=n({\rm C})/n_{\rm gas}=0.5$  and  $X_0({\rm O})=0.5$  throughout. All chemistry is disabled. It is expected that the heavier species, carbon, will settle into the atmosphere, and the lighter species, hydrogen, will rise up, until they stratify. The analytic solution to this system is well-known. The mixing ratio should be determined by the scale-heights of the individual species such that, for the carbon abundance:

$$X(C) = \frac{X_0(C)e^{-z/H_C}}{X_0(H)e^{-z/H_H} + X_0(C)e^{-z/H_C}}, \quad (28)$$

where X(C) is the final steady state carbon mixing ratio, and  $H_H$  [cm] and  $H_C$  [cm] are the atmospheric scale heights for the hydrogen and carbon.

The code is run until steady state is achieved, when the carbon in the very upper atmosphere diffuses into the lower atmosphere. The steady-state mixing ratio, as a function of height is compared the analytic mixing ratio, Eq. (28), in Figure 6. The comparison is reasonable through the extent of the atmosphere.

# 4. Testing the Network for Planetary Environments

The Stand2015 network contains chemical reactions for an H/C/N/O gas, and including both highly reducing to highly oxidizing atmospheres, and for a temperature range of 100 K to 30000 K. The network should then be tested for a variety of planetary atmospheres with different chemical compositions, from the (probably) oxidizing atmosphere of the early Earth to the highly reducing atmosphere of Jupiter. The large range of temperatures is tested for the irradiated exoplanet HD209458b. We also test our model against the height dependent measurements of select trace species within the atmosphere of the present-day Earth. It would be interesting to apply our model to Titan, due to its rich nitrile and organic chemistry. Titan's atmosphere is a very rich and complex environment, and it is important to account for these complexities when modeling Titan. Titan has upper atmospheric hazes, temperatures low enough to condense several molecular species, and ionization and dissociation by energetic particles including cosmic rays, Saturn magnetospheric particles, solar wind protons and interplanetary electrons. As useful as a study of the atmosphere of Titan would be for exploring Miller-Urey-like chemistry (Waite et al. 2007), such a model is beyond the scope of this paper. The boundary conditions for these various objects are given in Section 4.1. We then compare our results to the results from other chemical kinetics models and, where possible, with observations, for HD209458b (Section 4.2), Jupiter (Section 4.3), and the Earth (Section 4.4).

## 4.1. Boundary Conditions for Three Test Cases: HD209458b, Jupiter and the Earth

Below, we compare the results of our chemical kinetics to other results for HD209458b and also for Jupiter and the Earth. Each of these objects has different boundary conditions and parameters. These conditions and parameters include the temperature profile of the object's atmosphere, the eddy diffusion profile, the elemental abundances, the initial composition at the lower boundary of the atmospheric profile, and the unattenuated UV flux. For HD209458b, the conditions at the lower boundary of the atmospheric profile rapidly develop from the prescribed initial conditions toward chemical equilibrium. For Jupiter and the early Earth, the composition at the lower boundary is stable over the dynamical time-scale  $(dn_i(z=0)/dt\approx 0)$ , and so the initial composition effectively acts as a lower boundary condition. The assumed elemental abundances and initial conditions at the lower boundary of the atmospheric profile are given in Table 1.

We take HD209458b to have solar elemental abundances throughout its atmosphere, and set the initial conditions at the lower boundary of the atmosphere to be entirely atomic. The initial composition hardly matters here, since the composition quickly settles to chemical equilibrium at such a high temperature and pressure. The temperature profile and eddy diffusion profile for HD209458b are both taken from Moses et al. (2011), so that we can directly compare results.

Since HD209458 is a G0 star, we use the solar UV flux. The unattenuated solar UV flux

at 1 AU is obtained from the SORCE data (Rottman et al. 2006) for 1 Å - 350 Å and 1150 Å - 10000 Å with data from PhIDRATES for the 350 - 1150 Å range. The binned flux we use is plotted in Figure 7. This flux is adapted to HD209458b by multiplying the solar UV flux by a factor of  $(d_{\oplus}/d_p)^2$ , where  $d_{\oplus}$  [AU] is the distance from the Earth to the Sun and  $d_p \approx 0.047$  AU is the approximate distance between HD209458b and its host star. This may not be the most accurate approximation to the UV behavior of HD209458, since it might have quite different activity from our sun (Tu et al. 2015).

For Jupiter, we use the temperature and eddy profiles from Moses et al. (2005). For consistency, we set the initial conditions at the lower boundary of Jupiter's atmosphere to be the same as Moses et al. (2005); see Table 1. The solar UV spectrum at 1 AU is used for Jupiter, although multiplied by a factor of  $(d_{\oplus}/d_J)^{-2}$ , where  $d_J \approx 4.5$  AU is the square of the distance between the sun and Jupiter.

For the present-day Earth, we use the measured surface mixing ratios from the US Standard Atmosphere 1976 (see Table1) and the temperature profile from Hedin (1987, 1991), Fig. 13. We use the present day solar flux at 1 AU as our incident UV flux.

We use the same chemical lower boundary conditions as from Kasting (1993) for the atmosphere of the early Earth (Table 1). The temperature profile for the early Earth is assumed to be the same as that of the present Earth (Hedin 1987, 1991), Fig. 13. The UV field used for this model is that of the young Sun calculated using the scaling relationships of Ribas et al. (2005) for wavelengths between 1 Å – 1200 Å and the UV field of the solar analogue  $\kappa^1$  Cet above 1200 Å (Ribas et al. 2010).

#### 4.2. HD209458b

HD209458b was first observed by Henry et al. (2000), and is one of a growing number of Hot Jupiters to have a measured spectrum, via transit (e.g. Queloz et al. 2000), and also in emission (e.g. Knutson et al. 2008). Various molecular species have been tentatively identified in the spectrum, such as TiO (Désert et al. 2008), water (Madhusudhan & Seager 2009; Swain et al. 2009; Beaulieu et al. 2010), CO, CO<sub>2</sub> and methane fea-

tures (Madhusudhan & Seager 2009; Swain et al. 2009). HD209458b has been extensively modeled, with retrieval modeling (Madhusudhan & Seager 2009), and with hydrodynamic global circulation models (Showman et al. 2008). This planet has also been a popular target for non-equilibrium chemistry models such as those of Liang et al. (2003); Zahnle et al. (2009); Moses et al. (2011); Venot et al. (2012); Agúndez et al. (2014) and Lavvas et al. (2014).

We have chosen the atmosphere of HD209458b as one candidate for benchmarking our results because it is well characterized and has been the subject of several non-equilibrium chemistry models, and it has a very high temperature even among Hot Jupiters. An additional benefit to HD209458b is its suspected temperature inversion (Knutson et al. 2008, although this is debated, see also Schwarz et al. 2015), which allows us to test our chemistry at very high temperatures both at both high and low pressures. The thermal profile of HD209458b from Moses et al. (2011) is shown in Figure 8. The local gas-phase temperature T > 2000 K both when p > 100 bar and when the gas-phase pressure,  $p < 10^{-4}$  bar. This is a wide parameter space relevant for ion-neutral chemistry initiated via thermal ionization.

We compare our results to the predictions of two different chemical kinetics models. (1) We compare our results to the results of Moses et al. (2011) with the ion-neutral chemistry disabled. (2) We compare the ionic abundances for our most abundant ions to the results of Lavvas et al. (2014). Also in this case, we disable cosmic ray chemistry in order to draw a better comparison to the ion-neutral chemistry.

We compare our network and transport model to Moses et al. (2011) by examining the volume mixing ratios of major neutral species: H, H<sub>2</sub>, He (hydrogen/helium chemistry), OH, H<sub>2</sub>O, O and O<sub>2</sub> (oxygen/water chemistry), N<sub>2</sub> and NH<sub>3</sub> (nitrogen chemistry), and CO, CH<sub>4</sub> and CO<sub>2</sub> (carbon chemistry). See Figure 9. These species were chosen because they are abundant and, in the case of H<sub>2</sub> and N<sub>2</sub>, play an important role in the nonequilibrium chemistry. N<sub>2</sub> provides the reservoir for the transition between N<sub>2</sub>  $\rightleftharpoons$  NH<sub>3</sub>. Other species were chosen because they contribute to features observed in transit spectroscopy, (e.g. CO<sub>2</sub>). The molecules CO and H<sub>2</sub>O do both. Helium was

chosen because its mixing ratio is not significantly affected by the chemistry. It changes with pressure due to molecular diffusion, and so it provides a useful comparison between our dynamical calculations and those of Moses et al. (2011).

The transition of carbon between CO and CH<sub>4</sub>, and nitrogen between N<sub>2</sub> and NH<sub>3</sub> is very sensitive to non-equilibrium chemistry, as  $CH_4 \approx CO$  when  $p \sim 100$  bar and  $T \sim 2000$  K. As the pressure decreases rapidly while the temperature remains relatively high (T > 1000 K), the thermochemical equilibrium ratio for CH<sub>4</sub>/CO plummets, approaching  $10^{-7}$  at 0.1 bar in the HD209458b atmosphere. The time it takes the carbon to meander from CH<sub>4</sub> to CO, however, becomes significantly longer than the relevant dynamical timescales (for HD209458b, this time-scale is prescribed by the eddy diffusion coefficient, see Bilger et al. 2013), and the CH<sub>4</sub> and CO abundances are quenched. The same sort of process governs the transition of nitrogen from  $N_2$  to  $NH_3$ .

The pathways for both  $CH_4 \rightleftharpoons CO$  and  $N_2 \rightleftharpoons$ NH<sub>3</sub> interconversions are not well understood. In both cases, the paths competing with one another are often circuitous, and tend to be regulated by one of several reactions encountered along the journey, a slow rate-limiting step (Moses 2014). The time-scale of the transition between species is almost entirely set by the rate by which that single reaction proceeds. As discussed in Section 2, rate coefficients can be frustratingly uncertain, with different estimations sometimes varying by more than an order of magnitude. For example, compare the rate experimental and theoretical rate constants for  $C_2H_6 \rightarrow CH_3 + CH_3$  (Yang et al. 2009 and Kiefer et al. 2005, respectively). The path that one believes regulates these central transitions can be very different depending on what rate coefficients are used.

An illustrative example is the reaction  $CH_3 + H_2O \rightarrow CH_3OH + H$ . Hidaka et al. (1989) has determined the rate for  $CH_3 + H_2O \rightarrow Products$ , Reaction (29), proceeds with a barrier of  $\approx 2670$  K (see Visscher et al. 2010, for a discussion on this reaction). With reasonable assumptions of the branching ratios for this reaction, namely that the branching ratios do not change much with temperature, one would set the same barrier to  $CH_3 + H_2O \rightarrow CH_3OH + H$ , as done by Venot et al. (2012). However, Moses et al. (2011)

carried out quantum chemical calculations for this reaction using MOLPRO and estimate a barrier for this particular branch of  $\approx 10380$  K, much larger than the activation energies of the other branches. With the smaller barrier, the path carbon takes from CH<sub>4</sub> to CO proceeds as:

$$H_{2} + M \rightarrow H + H + M$$

$$CH_{4} + H \rightarrow CH_{3} + H_{2}$$

$$CH_{3} + H_{2}O \rightarrow CH_{3}OH + H$$

$$CH_{3}OH + H \rightarrow CH_{2}OH + H_{2}$$

$$CH_{2}OH + M \rightarrow H_{2}CO + H_{2} + M$$

$$H_{2}CO + H \rightarrow HCO + H_{2}$$

$$HCO + H \rightarrow CO + H_{2}$$

$$HCO + M \rightarrow CO + H + M$$

$$(29)$$

(30)

We adopt the rates of Moses et al. (2011) for this pathway, as well as the smaller rate coefficient for the three-body reaction  $H_2O + CH_2 + M \rightarrow CH_3OH$ . An examination of our results would reveal that, as with Venot et al. (2012), the transition of carbon from  $CH_4$  to CO is much more efficient than with Moses et al. (2011). We have examined the rates at which reactions proceed in our network and find another formation pathway:

 $CH_4 + H_2O \rightarrow CO + 3H_2$ .

$$H_{2} + OH \leftrightarrow H_{2}O + H$$

$$OH + O \rightarrow O_{2} + H$$

$$CH_{4} + H \rightarrow CH_{3} + H_{2}$$

$$CH_{3} + H \rightarrow CH_{2} + H_{2}$$

$$CH_{2} + O_{2} \rightarrow COOH + H$$

$$COOH + H_{2}O \rightarrow CH_{2}O_{2} + OH$$

$$CH_{2}O_{2} + M \rightarrow CO_{2} + H_{2} + M$$

$$CO_{2} + H \rightarrow CO + OH$$

$$(31)$$

The atomic oxygen arises from thermal dissociation of OH or photodissociation of  $H_2O$  followed by diffusion downward. This pathway is critically dependent on Reaction (31). To our knowledge, the three-body rate coefficient for this reaction has not been determined. This reaction has instead appeared in our network as the reverse reaction of  $CH_2O_2 + OH \rightarrow COOH + H_2O$ , for which

 $CH_4 + O \rightarrow CO + 2H_2$ ,

we use an estimate based on reaction energetics (Mansergas & Anglada 2006). This pathway is highly uncertain, and removing it makes up the majority of the difference between our results and those of Moses et al. (2011) for methane between  $1-10^{-4}$  bar. We suspect further differences owe to our different thermochemical constants and the use of slightly different solar abundances.

The path of nitrogen from NH<sub>3</sub> to N<sub>2</sub> is considerably more uncertain. The path is believed to roughly follow from NH<sub>3</sub> to NH via hydrogen abstraction, which will in turn react with another NH<sub>X</sub> species to form N<sub>2</sub>H<sub>Y</sub>. This species will be destroyed either by reacting with hydrogen or via thermal decomposition, to form N<sub>2</sub>. The reactions N<sub>2</sub>H<sub>X+2</sub>  $\rightarrow$  NH<sub>2</sub> + NH<sub>X</sub> involve large uncertainties, which result in variations of the NH<sub>3</sub> quenched abundance by an order of magnitude. We find, similar to Moses et al. (2011), that:

$$H_{2} + M \rightarrow H + H + M$$

$$NH_{3} + H \rightarrow NH_{2} + H_{2}$$

$$NH_{2} + H \rightarrow NH + H_{2}$$

$$NH_{2} + NH \rightarrow N_{2}H_{2} + H$$

$$N_{2}H_{2} + H \rightarrow NNH + H_{2}$$

$$NNH + M \rightarrow N_{2} + H + M$$

$$2NH_{3} \rightarrow N_{2} + 3H_{2}$$
(34)

with Reaction (33) as the rate limiting step. The profile we have for NH<sub>3</sub> deviates considerably from the results of Moses et al. (2011), but this is for large part due to a difference in the nitrogen thermochemistry and initial abundances at high pressures propagating up through the atmosphere. Figure 9 shows that our quenching height is in both cases higher than for Moses et al. (2011), suggesting that the nitrogen in NH<sub>3</sub> migrates to N<sub>2</sub> more slowly in our network, even overtaking Moses et al. (2011) at  $\sim 10^{-4}$  bar, but that we start with less NH<sub>3</sub> than Moses et al. (2011). The increase in NH<sub>3</sub> abundance at  $\sim 5 \times 10^{-6}$  bar is due to a formation path for NH<sub>3</sub> in Moses et al. (2011) that is less efficient in our network.

We conclude this section with a brief discussion of the most neutral ions, in comparison with Lavvas et al. (2014). We have plotted the most abundant ions in Figure 10. Note that, for this paper,  $n_{\rm gas}$  is a sum of all neutral gas particles,

(32)

cations, ions and electrons, so the mixing ratio of ions cannot increase above unity. This plot allows a direct comparison to Lavvas et al. (2014, their Fig's 5 & 6). In our model,  $K^+$  is the most abundant ion deep within the atmosphere, followed by Mg<sup>+</sup> and Fe<sup>+</sup>. Lavvas et al. (2014) does not consider these species, but they don't seem to affect the abundances of other ions very much deep within the atmosphere. When the pressure delves to 10<sup>-2</sup> bar, K<sup>+</sup> deviates considerably between our results and those of Lavvas et al. (2014). This is likely due to the inclusion of several other ions in our model that become dominant charge carriers at this height, including several complex hydrocarbon ions, of the form  $C_nH_m^+$ . This indicates that ion-neutral chemistry can be significantly influenced by the variety of ions and neutral species under consideration. This will be especially true for the potassium chemistry. Our network contains a small number of potassium-bearing species. Including new species and reactions could significantly affect the degree of ionization. It will be interesting to discover how an expanded potassium and sodium chemistry affects the overall ionneutral chemistry and the resulting abundances of trace species.

Between  $10^{-3}$  and  $10^{-4}$  bar, Na<sup>+</sup> overtakes K<sup>+</sup> as the dominant positive charge carrier, and remains so until  $\sim 10^{-7}$  bar. This transition, the ratios between the ions, and the abundances of the ions, are nearly identical between our model and that of Lavvas et al. (2014). Within the thermosphere of HD209458b, there are some small discrepancies between our model and Lavvas et al. (2014) for He<sup>+</sup>, and quite large discrepancies for C<sup>+</sup> which we suggest are owing to the non-Alkali photochemistry that Lavvas et al. (2014) include, but that we have not included here.

#### 4.3. Jupiter

The atmosphere of Jupiter is divided into three regions: (1) the troposphere, where the gas-phase temperature T decreases with atmospheric height, (2) the stratosphere, where T is roughly constant with increasing height, and (3) the thermosphere, where T increases with height. In this section, we consider the chemical composition of Jupiter's stratosphere. The stratosphere of Jupiter is rich in hydrocarbons, owing to its large gas-phase C/O ratio, because the majority of the

oxygen is locked in water ice and then gravitationally settling to below the tropopause. This is predicted to lead to a C/O  $\sim 2 \times 10^6$  (Moses et al. 2005) in the absence of external sources of H<sub>2</sub>O and CO<sub>2</sub> (Feuchtgruber et al. 1997; Moses et al. 2000a,b) such as Shoemaker-Levy 9 (Cavalié et al. Jupiter's stratosphere provides an extreme example of how surface deposition can radically affect the C/O ratio, an effect more recently predicted for exoplanets and brown dwarfs (Bilger et al. 2013; Helling et al. 2014). The high C/O ratio, in combination with the large abundance of hydrogen (H<sub>2</sub> and CH<sub>4</sub> are the two most abundant volatiles in the stratosphere and lower thermosphere), means that the stratosphere of Jupiter is strongly reducing (Strobel 1983).

Fouchet et al. (2000) have observed ethane and acetylene in Jupiter's stratosphere. Ethylene has also been observed by Bézard et al. (2001). The stratospheric chemistry of Jupiter has been modeled by several groups, including Gladstone et al. (1996) and Moses et al. (2005). We adopt the lower boundary conditions and temperature profile that Moses et al. (2005) used and model the carbon-oxygen chemistry in the stratosphere of Jupiter, ignoring the nitrogen chemistry (most of the nitrogen will be locked in NH<sub>3</sub> ice). Boundary conditions are discussed in Section 4.1.

Our lower boundary is set to be identical to Moses et al. (2005). These boundary conditions are somewhat artificial; the carbon budget is controlled by the photochemistry and the dynamics. There is no effective destruction pathway for the stable hydrocarbons, but the time-scale for their formation is often competing with the dynamical time-scales. In the thermosphere,  $\sim 10^{-7} - 10^{-8}$ bar, these hydrocarbons are lost through photodissociation and photoionization as well as molecular diffusion. At the base, the chemistry is halted once the dynamical timescale is reached, effectively treating the bottom boundary as an open boundary through which the hydrocarbons would continue to diffuse. In reality, the complex hydrocarbons are carried into Jupiter's deep atmosphere, where the high temperatures and pressures dissociate these hydrocarbons, and force the carbon budget to return to chemical equilibrium values: CH<sub>4</sub> with trace amounts of CO and other species. Visscher et al. (2010, their Fig. 6) demonstrate how the carbon budget is set deep within Jupiter's

atmosphere; we do not model this region.

With these reactions removed from the network, we ran the network using the temperature and  $K_z z$  profiles from Moses et al. (2005), shown in Figure 11. Comparisons between our results and a representative set of observations for the depth dependent mixing ratios, for the species  $CH_4$ ,  $C_2H_2$ ,  $C_2H_4$ ,  $C_2H_6$  and  $C_4H_2$ , are shown in Figure 12. The observations for  $CH_4$  are taken from Drossart et al. (1999) and Yelle et al. (1996), C<sub>2</sub>H<sub>2</sub> observations are from Fouchet et al. (2000), Moses et al. (2005) and Kim et al. (2010),  $C_2H_4$  observations are from Romani et al. (2008) and Moses et al. (2005),  $C_2H_6$  observations are from Fouchet et al. (2000), Moses et al. (2005), Yelle et al. (2001) and Kim et al. (2010), and the  $C_4H_2$  observations are from Fouchet et al. (2000) and Moses et al. (2005). We also incorporate observations for C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub> and C<sub>2</sub>H<sub>6</sub> from Gladstone et al. (1996) and references therein.

Many of the published observations do not include error bars in atmospheric pressure. ditionally, there may seasonal in the pressuretemperature structure and the location of the homopause, which adds uncertainty to our predictions as a function of pressure. To account for these sources of uncertainty, we place error bars for the pressure at a factor of two above and below the published observations when errors in pressure were not given. These errors in pressure are of the same order as observations where errors in pressure are given. We do not compare our results for oxygen-bearing species, because the abundances of these species are expected to be greatly enhanced in the stratosphere by the addition of an external source of oxygen, such as Shoemaker-Levy 9.

The differences between our results and those of other models arise primarily because of different photochemistries and different rate constants, especially for the re-formation of methane after its photodissociation,

$$CH_3 + H_2 \rightarrow CH_4 + H$$
, and (35)

$$CH_3 + H + M \rightarrow CH_4 + M. \tag{36}$$

Differences between Jovian photochemical models can result in very large discrepancies between stratospheric abundances of complex hydrocarbons. The differences between Gladstone et al. (1996) and Moses et al. (2005) span several orders

of magnitude in some cases (see Moses et al. 2005, their Fig. 14).

Both ethane and acetylene agree reasonably well between our model and the observations, and the results for C<sub>4</sub>H<sub>2</sub> lie more than a factor of five below the observational upper limits. Our predictions for the location of the methane homopause do not agree very well with observations. We use the eddy diffusion coefficient from Model C in Moses et al. (2005), and either this or the use of the Chapman-Enskog diffusion coefficient for Methane may be the source of the discrepancy. Our results are similar to the Model C results of Moses et al. (2005, their Fig. 14). The molecule with the largest discrepancy between the two models is ethylene  $(C_2H_4)$ , with the largest discrepancy between our predictions and the 1 millibar observations (ignoring the observation from Gladstone et al. 1996 that predicts a mixing ratio of  $\sim 10^{-8}$ ). In our model, the primary path of formation for ethylene follows from the photodissociation of ethane (Reaction 2679 in the network),

$$C_2H_6 + \gamma \to C_2H_4 + H_2,$$
 (37)

and ethane is formed from CH<sub>4</sub> following paths to formation like this one:

$$2(CH_4 + \gamma \to {}^{1}CH_2 + H_2),$$

$$2({}^{1}CH_2 + H_2 \to CH_3 + H),$$

$$CH_3 + CH_3 + M \to C_2H_6 + M;$$

$$2CH_4 + 2\gamma \to C_2H_6 + 2H.$$
(38)

These differences may be resolved by a more careful accounting of pressure-dependent branching ratios, such as those of:

$$H + C_2H_5 \rightarrow CH_3 + CH_3 \tag{39}$$

from Loison et al. (2015). We use the Kooij form for these reactions (Section 2.1), which does not account for the effect that pressure has on the rate constant.

Ion-neutral chemistry also makes a contribution, via the formation of  $C_2H_4$  from the reaction

$$CH_5^+ + C_2H_2 \rightarrow C_2H_3^+ + CH_4$$
  
 $C_2H_3^+ + e^- + M \rightarrow C_2H_3 + M$   
 $C_2H_3 + CH_4 \rightarrow C_2H_4 + CH_3,$  (40)

and  $\mathrm{CH}_5^+$  forms from a series of reactions starting with the photoionization of  $\mathrm{CH}_3$  and then a series of hydrogen abstractions,  $\mathrm{CH}_x^+ + \mathrm{H}_2 \to \mathrm{CH}_{x+1}^+ + \mathrm{H}$ . It should be emphasized that this is not the primary formation pathway for ethylene, but it is an important path of formation in our chemistry and makes some contribution to the mixing ratios at 1 millibar.

Finally, there is a large discrepancy for CO, but this is not due to differences in the chemistry. Rather, this results from Moses et al. (2005) injecting CO,  $\rm CO_2$  and  $\rm H_2O$  into Jupiter's stratosphere. Inclusion of this external source of oxygenbearing species is justified by a number of datamodel comparisons mentioned at the beginning of this section. We neglected to include these external sources, and therefore oxygen-bearing species, especially  $\rm H_2O$  and  $\rm CO_2$  (not shown) fail to agree with observations. Our results therefore suggest that some external source of oxygen-bearing species is necessary to explain the  $\rm H_2O$  and  $\rm CO_2$  observations in Jupiter's stratosphere.

#### 4.4. The Earth

The Earth's atmosphere is well studied, and the profiles of trace species are well constrained, and the formation and destruction of these species is controlled by photochemistry and deposition. Comparing our results to the present day Earth atmosphere therefore provides a comprehensive test of our chemical network (Section 4.4.1). Additionally, the connection between lightning-driven and  $NO_x$  chemistry<sup>8</sup> has been extensively studied with experiments, observations and models, and provides a useful regime in which to compare the results of STAND2015 applied to a lightning shock model (Section 4.4.2). It is important to find out what our model predicts in habitable environments before the onset of life, and so we apply our model to the Early Earth (Section 4.4.3).

## 4.4.1. Present Day Earth Atmosphere

The best understood planetary atmosphere, in terms of both models and observations, is the atmosphere of the present day Earth. Earth's atmosphere has been studied *in situ*, with the use of countless balloon experiments used to mea-

sure various trace elements, and remotely, with satellite measurements. Models of Earth's atmosphere range from simple to complex, both dynamically (1D diffusion to 3D global circulation models) and chemically (from treating only oxygen and hydrogen chemistry to modeling the transport and chemistry of chlorofluorocarbons and biological aerosols). Seinfeld & Pandis (2006) provide a useful introduction and review to the subject.

Our interest is in validating our photochemical network to the present-day Earth, and not in coupling Earth's geochemistry to its atmospheric chemistry. We therefore make some simplifying assumptions when we set our boundary conditions. We compare our model to the contemporary Earth by setting the lower boundary conditions, temperature profile and external UV field as given in Section 4.1. We present these comparisons for  $O_3$ ,  $CH_4$  and  $N_2O$  (Figure 14), NO and  $NO_2$  (Figure 15) and OH and  $H_2O$  (Figure 16).

The data for  $O_3$ ,  $CH_4$  and  $N_2O$  is taken from the globally averaged mixing ratios from Massie & Hunten (1981). Following Hu et al. (2012), we apply error bars spanning an order of magnitude in mixing ratio to reflect the temporal and spatial variations. Our model fits the measured CH<sub>4</sub> to within the error bars throughout the atmosphere. The  $O_3$  predicted by the model deviates from the data with errors at 15 km, and the N<sub>2</sub>O deviates from the data with errors between 40 km - 55 km. This may be due to an over-estimation of the optical depth. If more UV photons in the model penetrated through to  $\sim 10$ km, the  $O_3$  mixing ratios would be enhanced at 15 km, and the N<sub>2</sub>O mixing ratios would be destroyed more efficiently deeper in the atmosphere.

The data for NO and  $NO_2$  is taken from balloon observations at 35 deg N in 1993 (Sen et al. 1998), and here also we apply error bars spanning an order of magnitude to reflect spatial and temporal variations. As with Hu et al. (2012), we seem to overpredict the abundance of NO in the upper atmosphere (30-40 km). We find that this overprediction is due to Reaction 1300 in the network:

$$N_2O + O(^1D) \to NO + NO;$$
 (41)  
 $k = 7.25 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}.$ 

We use the rate suggested by the JPL Chemical

<sup>&</sup>lt;sup>8</sup>Referring primarily to NO and NO<sub>2</sub> chemistry.

Kinetics and Photochemical Data for Use in Atmospheric Studies (Sander et al. 2011). If the rate constant for this reaction is decreased by a factor somewhere between 2 and 10, we come into much better agreement at 30-40 km, and worse agreement between 20-30 km (see Figure 15).

Finally, the data from OH and H<sub>2</sub>O was taken from balloon measurements at various latitudes and heights in 2005 (Kovalenko et al. 2007). We plot each individual datapoint without error bars in order to represent the observed variations; changes at other points of the globe or at other times of the year or day may lead to more significant variations in the abundances. The H<sub>2</sub>O predictions are within a factor of five of the observed water abundance, and our OH predictions lie within the measurements, indicating that the model correctly reproduces the water and OH mixing ratios.

## 4.4.2. Lightning Shock Model and $NO_x$ chemistry

It is also useful to to the model's  $NO_x$  lightning-driven chemistry in the present day atmosphere. For this purpose, we apply a simple shock model in order to explore the formation of  $NO_x$  species due to lightning at a single small region in the atmosphere. We employ the temperature and pressure calculations of Orville (1968, his Fig's 1 and 3) and the time-scaled results of Jebens et al. (1992, their Fig's 2 and 3), fitting these to an exponential function. We use the following functions of temperature and pressure:

$$T(t) = 300 \,\mathrm{K} + (29800.0 \,\mathrm{K}) \,e^{-t/(55.56 \,\mu\mathrm{s})};$$
 (42)

$$P(t) = 1.0 \,\text{bar} + (7.0 \,\text{bar}) \,e^{-t/(5.88 \,\mu\text{s})}.$$
 (43)

a We start with present day atmospheric chemistry at the base of the troposphere, except without the  $N_2O$ , NO and  $NO_2$  species, and with  $T=300~\rm K$  and p=1 bar. The shock occurs at 1 ns, and is allowed to evolve until 0.1 ms. At this point the calculation is terminated, and another calculation initiated using for its initial conditions the final conditions of the shock model, except with temperature and pressure returned to 300 K and 1 bar, respectively. This model is run until  $10^4~\rm s$  and results are shown in Figure 17.

We find that the  $NO_x$  species are formed in our model thermally by the Zel'dovich mechanism (Zel'dovich & Raizer 1966):

$$O_2 + M \rightleftharpoons O + O + M,$$
 (44)

$$N_2 + M \rightleftharpoons N + N + M, \tag{45}$$

$$O + N_2 \rightarrow NO + N,$$
 (46)

$$N + O_2 \rightarrow NO + O,$$
 (47)

$$O_2 + N_2 \rightarrow 2NO.$$
 (48)

We compare our NO yield to the lightning discharge experiments performed by Navarro-González et al. (2001). We use for our NO mixing ratio the values found before the end of the shock ( $10^{-4}$  s in Fig. 17), between  $10^{-2}$  and  $10^{-3}$ , to (Navarro-González et al. 2001, their Eq. 4). We find that:

$$P(\text{NO}) \approx (2.4 \times 10^{22} \,\text{K/J}) \frac{X(\text{NO})}{T_f}$$
$$\approx 2 - 20 \times 10^{16} \,\text{molecules J}^{-1}, \quad (49)$$

where  $T_f$  [K] is the "freeze-out" temperature after which the NO mixing ratio does not change appreciably over the time-scale of the experiment, which we set to 1000 K (the approximate temperature of our model at  $t \approx 10^{-4}$  s). This is consistent with the production of NO in the "hot core" region of the experiment. This is also roughly consistent with the literature values for NO production of  $10^{17}$  molecules  $J^{-1}$  (Borucki et al. 1984; Price et al. 1997).

This is an order-of-magnitude comparison between the code and lightning experiments and models, and for a more complete comparison will need to be applied to a model atmosphere, where diffusion and photochemistry together will further process the  $\mathrm{NO}_x$  species. We plan to do this in a future paper.

### 4.4.3. The Early Earth

The presence of life and the evolution of the sun both have radically altered Earth's atmospheric chemistry. Oparin (1957) and Miller & Urey (1959) thought that the atmosphere of the early Earth<sup>9</sup> was largely reducing, dominated by methane, ammonia and molecular hydrogen. Kasting (1993) made a compelling case

 $<sup>^9\,\</sup>mbox{``early Earth"}$  in this context means the Earth in its first 1  $\,{\rm Gyr}$ 

that prebiotic formation of hydrogen would be too slow to allow for much molecular hydrogen in the atmosphere of the early Earth. Furthermore, a major constituent in the early Earth atmosphere needs to be a strong greenhouse gas, in order to compensate for the cooler young sun. The atmospheric chemistry of the early Earth is difficult to determine, and a severe lack of data results in many possible early Earth chemistries. As an illustrative example, Tian et al. (2005) argue that hydrogen escape was less efficient during the first 1 Gyr as was previously thought<sup>10</sup>. If Tian et al. (2005) are correct, then Earth's early atmospheric composition could have been reducing.

We present a model of the atmosphere of the early Earth, using the same lower boundary conditions as shown in Kasting (1993, his Fig. 1), and a temperature profile for the present Earth (Hedin 1987, 1991)<sup>11</sup>, shown in Figure 13. The lower boundary conditions used for the early Earth are given in Section 4.1. We treat outgassing using the deposition method (Appendix C).

We compare our results to those of Kasting (1993, esp his Fig. 1). Our results are presented in Figure 18. The results compare reasonably well for CO and  $O_2$ , but not for  $H_2O$  and O. The CO abundance begins to increase at 30 km, 10 km higher than for Kasting (1993), and achieves a mixing ratio of  $\approx 5 \times 10^{-3}$  at 60 km, which is within a factor of 2 of Kasting (1993). The O<sub>2</sub> likewise begins to rise above a mixing ratio of  $10^{-6}$  10 km higher in the atmosphere, and also achieves a mixing ratio of  $\approx 2.5 \times 10^{-3}$ , again within a factor of 2 of Kasting (1993). The water vapor profile is quite different, however. Instead of falling below a mixing ratio of  $10^{-6}$  at 10 km, the H<sub>2</sub>O mixing ratio in our model levels out at  $5 \times 10^{-4}$ , increasing slightly at  $\sim 50$ km before plummeting. Also, the oxygen mixing ratio only reaches  $\approx 3 \times 10^{-6}$ , approximately two orders of magnitude below the mixing ratio predicted by Kasting (1993). These differences may be due to the different assumed young solar UV fields between ourselves and Kasting (1993), but we suspect that the differences are more likely due either to differences in the water condensation or the temperature profiles used. This seems especially likely for atomic oxygen, which is primarily

destroyed by the reaction:

$$O + H_2O \rightarrow OH + OH,$$
 (50)

in spite of the sizeable 7640 K barrier. When the water vapor drops off at  $\sim 55$  km, this destruction route becomes unviable, and the atomic oxygen mixing ratio rapidly increases. a

## 5. Glycine Formation in a Laboratory Environment

The formation of glycine, among several other amino acids, amines and nucleotides, has been investigated for a variety of chemical compositions, from reducing (Miller 1953) to oxidizing (Schlesinger & Miller 1983; Miyakawa et al. 2002; Cleaves et al. 2008), and exploring various energy sources (see Miller & Urey 1959, and references therein). In a recent experiment, HCN and  $\rm H_2S$  were exposed to UV light (peak frequency 2540 Å), resulting in the formation of numerous complex prebiotic compounds (Patel et al. 2015). The techniques used in this experiment afforded the experimenters to track the pathways of formation for these various species.

Prebiotic species are produced in smaller concentrations within a more oxidizing environments (Miller & Urey 1959). Methane has been found to be important for the formation of prebiotic compounds (Schlesinger & Miller 1983; Miyakawa et al. 2002). The correlation between reducing chemistry and the efficient production of prebiotic molecules, combined with compelling evidence that the atmosphere of the early Earth was oxidizing (Kasting 1993), would suggest that other processes were responsible for producing the prebiotic chemical inventory on Earth. This process is hypothesized to have taken place within hydrothermal vents (e.g. Ferris 1992), on the surfaces of crystals (Vijayan 1980), or possibly within the interstellar medium (e.g. Greenberg et al. 1995).

Cleaves et al. (2008) have repeated Miller's experiment in a reducing environment, and discovered that amino acids can be efficiently produced in such environments, but that nitrites (e.g. HONO) destroy these species as quickly as they are produced. Adding ferrous iron, in the form of FeO or  $\text{FeS}_2$  (in the form of pyrite surfaces) effectively removes the nitrites and allows the amino acids to survive.

 $<sup>^{10}</sup>$ The debate is ongoing (Claire et al. 2006; Catling 2006).

<sup>11</sup>http://omniweb.sci.gsfc.nasa.gov/vitmo/

We explore the formation of glycine in the context of a weak radiating source. An unattenuated monochromatic beam of light at  $\lambda_0=1000$  Å is applied with an intensity of  $\approx 2\times 10^{-3}$  erg cm<sup>-2</sup> s<sup>-1</sup>, corresponding to a flux of  $F_0=10^8$  photons cm<sup>-2</sup> s<sup>-1</sup>. This flux is applied to Eq. (18) such that:

$$k_{\text{ph},i}(z) = \int_{1\text{Å}}^{10^4\text{Å}} \sigma_i(\lambda) F_0 \delta(\lambda - \lambda_0) d\lambda;$$
  
=  $F_0 \sigma_i(\lambda_0),$  (51)

where  $\delta$  is the Dirac delta function.

The formation pathways for glycine have not been rigorously determined, although there are some proposed pathways. We include four possible pathways to glycine formation in our network. First, we include glycine formation via the three body interaction of various species. These reactions have significant barriers, and so will only occur efficiently at rather high temperatures. The reactions are:

$$C_2H_4 + HNO_2 \rightarrow NH_2CH_2COOH,$$
 (52)

$$C_2H_5 + NO_2 \rightarrow NH_2CH_2COOH,$$
 (53)

$$CH_3NO + H_2CO \rightarrow NH_2CH_2COOH,$$
 (54)

with rate constants set equal to the three-body formation for analogous chemical species (e.g. CH<sub>2</sub>COOH). Also included is the ion-neutral pathway proposed for interstellar formation for glycine from Charnley (1997),

$$CH_6NO^+ + HCOOH \rightarrow C_2H_6NO_2^+ + H_2O, (55)$$
  
 $C_2H_6NO_2^+ + e^- \rightarrow NH_2CH_2COOH + H.$  (56)

And finally, the formation of glycine by a possible pathway similar to that suggested by Patel et al. (2015),

$$CH_3NO + CH_3O \rightarrow NH_2CH_2COOH + H$$
 (57)

is included.

Additionally, we include FeO and reactions between FeO and nitrites. We also inject our gas with HCOOH in order to facilitate the ion-neutral formation pathway; it is likely that there are other presently unknown paths of formation for formic acid. We run this network for a set of five different initial compositions given in Table 2, labeled

Model A - E. Model A is a strongly reducing environment, with only the gases NH<sub>3</sub>, CH<sub>4</sub>, H<sub>2</sub> and H<sub>2</sub>O, FeO and HCOOH (Model A). We transition to a more reducing environment in the successive models (Models B, C, D). Finally, for Model E, we run the experiment starting solely from CO<sub>2</sub>, N<sub>2</sub>, H<sub>2</sub>O, FeO and HCOOH. We run all models using the unattenuated UV flux, at 1 bar pressure and 300 K temperature. The model is run to  $t \approx 1$  week. Our results are plotted in Figure 19.

Moving from Model B to E, less and less glycine is formed, falling from a mixing ratio of  $10^{-6}$  for Model B to  $10^{-8}$  for Model E. This is what is expected from the Miller-Urey experiments performed for various chemical compositions: as the chemistry becomes less reducing, it becomes more difficult to form prebiotic molecules.

More interesting is Model A. If all  $N_2$  and  $CO_2$  are removed, certain formation pathways to  $NO_2$ ,  $HNO_2$  and especially  $H_2CO$  are inhibited. Additionally, HCNO forms more slowly from HCN, and especially the ionic form,  $CHNO^+$  (in its various permutations) is difficult to form without some excess unbonded atomic nitrogen or oxygen present in the gas. Model A produces virtually no glycine. We traced this back to the key reactions:

$$N_2 + \gamma \rightarrow N_2^+ + e^-,$$

$$N_2^+ + e^- \rightarrow N + N,$$

$$CO_2 + \gamma \rightarrow CO + O$$
(58)

the same formation pathway for amines in the early Earth as suggested by Zahnle (1986). In our case, however, the atomic nitrogen and oxygen are both important in completing the formation of HCNO and its isomers.

### 6. Conclusion

In this paper, we have presented a gas-phase chemical network, STAND2015. The photochemistry/diffusion code, Argo, was used to test the network. We have shown that the predictions from STAND2015 converge to chemical equilibrium under the appropriate conditions and also that the molecular diffusion modeled by Argo makes a reasonable approximation to analytical calculations of molecular diffusion for an isothermal gas in hydrostatic equilibrium. We have compared our model results (STAND2015+Argo) to

chemical kinetics models for HD209458b, Jupiter and the Earth. For Jupiter, we found that ion-neutral chemistry may provide significant alternative pathways to formation of various hydrocarbons, especially ethylene  $(C_2H_4)$ .

Finally, we numerically simulate a Urey-Millerlike experiment<sup>12</sup> under various initial chemistries. We found that, in an artificial environment, when derivatives of FeO and pyrite (FeS<sub>2</sub>) can destroy nitrites in the presence of a reservoir of formic acid, the formation of glycine is considerable also in reducing environments, approaching a mixing ratio of  $\sim 10^{-6}$ . For an environment more similar to the atmosphere of the early Earth, the mixing ratio drops to  $\sim 10^{-8}$ . Surprisingly, for a gas without any CO2, O2 or N2, virtually no glycine is formed. If this result is robust for various other energy sources (shocks, thermal energy, etc.) and for other prebiotic species, this would suggest that the early Earth chemistry should not be too strongly reducing, else the formation of glycine and other prebiotic species would be severely inhibited.

This network has limitations. It has only been tested for 1D atmosphere models, with non-selfconsistent temperature profiles. Using this network within a global circulation model is presently unrealistic, but a reduced version of this network, constructed specifically for given atmospheres, could in principle be employed in 2D or 3D atmosphere simulations. Sulfur chemistry has been shown to play an important role in the formation of prebiotics, and is an essential constituent in volcano plumes. The inclusion of sulfur chemistry will be a natural next step to take the model. Additionally, the models of prebiotic chemistry should consider the formation of species other than glycine. The formation of ribose  $(C_5H_{10}O_5)$ of nucleotides, such as adenine  $(C_5H_5N_5)$ , and of phosphorus-bearing species should also be included to more fully encapsulate the formation of the prebiotic chemical reservoir.

One serious problem with this network, and indeed with any chemical kinetics network, is the uncertainty in rate coefficients. The effects of this uncertainty can be estimated using sensitivity analysis (e.g., within Venot et al. 2012), but can ultimately only be resolved slowly as better ex-

perimental and theoretical determinations of the reaction rates are made available. More accurate determinations, especially of the reaction rates for the nitrogen chemistry, would be extremely helpful. This network and model provide a window into a detailed analysis of prebiotic chemistry, but much work must still be done in order to accurately predict the full budget of prebiotic molecules in the variety of environments in which they may occur.

Both authors gratefully acknowledge the support of the ERC Starting Grant #257431. P. B. R. is grateful to J. I. Moses for several helpful discussions about the network and model comparisons, to G. Laibe for his help with the Lagrangian numerical methods, and to C. R. Stark for his help understanding prebiotic formation in plasma environments. Both authors are grateful for the anonymous referee whose report has helped significantly improve this paper. They also express thanks to Ian Taylor at St Andrews for his help with computational resources. Finally, they acknowledge the National Institute of Standards and Technology, the databases of which were essential to the completion of this project.

 $<sup>^{12}</sup>$ The experiment we simulate is more like that of Patel et al. (2015).

### A. List of Species, Reactions and Rates

The purpose of this appendix is to explicitly lay out the content of the chemical network itself. We list the species considered in the network and the reactions.

The species include the elements H/C/N/O, and the network includes a complete chemistry for molecules and ions of up to 2 carbon, 6 hydrogen, 2 nitrogen and 3 oxygen atoms. The different chemical kinetics for various neutral molecular isomers is included as completely as possible, although much about branching ratios for reactions is presently not well understood. A list of all the neutral species is given in Table 4. This table lists the species considered and includes the formula as used in the network, the standard formula, the name of the molecule and the source we used for the thermochemical data. In some cases, the chemical formula in the network is different from the standard chemical formula. This is because we incorporated our own method for distinguishing isomers, in order to make sure that we did not incorporate the same molecule under two different formulas.

This list also includes some species with the elements Na, Mg, Si, Cl, K, Ti and Fe. The chemistry attempts to include only the dominant species with these elements, in which they would be present in the gas phase. These species are generally only present in the gas-phase for very high temperatures (generally > 1000 K). For cooler objects, these species are typically ignored. The noble gases He and Ar are included, both for the sake of completeness, and because they can play an important role in organic ion-neutral chemistry through charge-exchange reactions.

Ions are also included, and a list of the ionic species is given in Table 5. In this case, the uncertainty in reaction rates and branching ratios is much more severe, and so we made no attempt at present to distinguish isomers of ionic species.

It is difficult to determine which rate constants to use for a specific reaction, since there are often many to choose from, and they do not always agree well with each other. We employed the following method for determining which rate constant to include in our network, after plotting all the rate constants versus temperature over a range of 100 K to 30000 K:

- 1. If there exists only one published rate constant for a given reaction, we use that value.
- 2. Reject all rate constants that become unrealistically large at extreme temperature.
- 3. Choose rate constants that agree with each other over the range of validity.
- 4. If the most recent published rate constant disagrees with (3), and the authors give convincing arguments for why the previous rates were mistaken, we use the most recently published rate.

The full list of forward reactions and rate constants determined by this method comprise the STAND2015 network and are given in Table 6. Reverse reactions are not explicitly shown; when reactions are reversible, bidirectional arrows are shown. When they are irreversible, or simply not reversed in the network, only unidirectional arrows are shown. Table 6 additionally includes a full list of the references for the rate constants used for each given reaction.

#### B. Reversing Reactions

For reverse reactions, we follow the prescription given by Burcat & Ruscic (2005). For the reaction:

$$A + B \to C + D + E, \tag{B1}$$

there is a rate constant,  $k_f$ . We resolve to determine the reverse rate constant,  $k_r$ , for the reaction:

$$C + D + E \to A + B. \tag{B2}$$

Note that the number of species is different between the r.h.s. and l.h.s. of Eq. (B1). We denote this difference in number of reactants and products ( $n_{\text{react}}$  and  $n_{\text{prod}}$ , respectively) by  $\Delta \nu$ , which in our case  $= n_{\text{prod}} - n_{\text{react}} = 2 - 3 = -1$ . We then solve for the reaction rate constant as (Burcat & Ruscic 2005, their Eq. (6)),

$$K_c = (RT)^{-\Delta\nu} \exp\left(\Delta a_1 \left(\log T - 1\right) + \frac{\Delta a_2 T}{2} + \frac{\Delta a_3 T^2}{6} + \frac{\Delta a_4 T^3}{12} + \frac{\Delta a_5 T^4}{20} - \frac{\Delta a_6}{T} + \Delta a_7\right),\tag{B3}$$

where  $R = 8.314472 \text{ J mol}^{-1} \text{ K}^{-1}$  is the gas constant, and  $\Delta a_i = a_i(\text{C} + \text{D} + \text{E}) - a_i(\text{A} + \text{B})$  for  $1 \le i \le 7$  are the NASA thermodynamics coefficients, which Burcat & Ruscic (2005) describes and tabulates. It is important to emphasize here, as done by Visscher & Moses (2011), the multiplicative factor  $(RT)^{-\Delta\nu}$ , which in our example would be  $1.38065 \times 10^{-22} T$ .

The Burcat values for the NASA coefficients have been used for all possible species (see Tab. 4. For some species, however, the coefficients had to be obtained from other sources. For sources with elements Na, Mg, Si, Cl, K, Ti and Fe, the Burcat values were sparse, so we made use instead of the NASA-CEA values (McBride et al. 1993; Gordon & McBride 1999), which use 9-coefficient polynomials, so we fit them to a series of 7-coefficient polynomials for various temperature ranges. We do the same for the monatomic gases and ions at high temperatures 6000 K < T < 20000 K, using fits to the polynomials provided by Gordon & McBride (1999). For some species, the thermodynamic properties have not been determined. In these cases, for neutral species we use Benson's additivity method as described by Cohen & Benson (1993).

Benson's additivity method can be naturally combined with the NASA and Burcat polynomial coefficients using the experimental values for the small alkanes listed within Cohen & Benson (1993). For the arbitrary alcohol from Cohen & Benson (1993), we use methanol, and for the arbitrary ether, dimethyl ether. The Benson coefficients are:

$$P_i = \frac{1}{2} a_i(C_2 H_6),$$
 (B4)

$$S_i = a_i(C_3H_8) - a_i(C_2H_6),$$
 (B5)

$$D_i = a_i(C_2H_6O) - a_i(C_2H_6),$$
 (B6)

$$F_i = a_i(\mathrm{CH_3OH}) - a_i(\mathrm{CH_4}). \tag{B7}$$

Here,  $a_i(X)$  denotes the seven coefficients, i = 1, ..., 7 for species X. The coefficients for fundamental bonds are calculated using these coefficients as follows:

$$a_i([C - H]) = \frac{1}{2}P - \frac{1}{4}S,$$
 (B8)

$$a_i([C-C]) = \frac{3}{2}S - P,$$
(B9)

$$a_i([C - O]) = \frac{1}{2}D + \frac{3}{4}S - \frac{1}{2}P,$$
 (B10)

$$a_i([O - H]) = F - \frac{1}{2}D - \frac{1}{2}S.$$
 (B11)

The values for these bonds are given in Table 3. The values for [N-H], [N-C] and [N-O] are similarly determined.

It has been suggested by Lias (1988) and Cohen & Benson (1993) that using Benson's additivity method to determine the thermodynamic properties of ions, or at least strongly of strongly polarizing groups, can lead to large errors, because the thermodynamic properties of ions do not depend linearly on their length, although Hammerum & Sølling (1999) have had some success applying Benson's method to ions.

We found, by investigating the thermodynamic properties of ionic species tabulated by Burcat & Ruscic (2005), that the thermodynamic properties of ions do depend nonlinearly but predictably based on size. We therefore placed all the known thermodynamic properties of ions into a database, and have extrapolated to calculate the thermodynamic properties for the undetermined ions.

## C. Outgassing, Condensation, Evaporation and Escape

Boundary conditions play a key role in determining the atmospheric compositions of planets. For rocky planets, these boundary conditions are set by outgassing and escape into the exosphere. At temperatures  $\lesssim 1500$  K, metals such as silicates, iron, corundum, begin to condense out of the exoplanet and brown dwarf atmospheric gas phase. At much lower temperatures, when, various other species (e.g. water, ammonia, methane) may also condense out. It is important for comparison to previous models to consider both the atmospheric boundary conditions and atmospheric condensation.

As discussed in Section 3.1, there exist, in addition to the STAND2015 reactions, a series of "banking" reactions for all major species, that collect particles and reintroduce them to the fluid parcel at a rate determined by the diffusion time-scales. The very bottom banking reaction can be set to act effectively as an outgassing rate. Imagine a particular reservoir for a species, A. This reservoir is outgassing into the atmosphere with a flux,  $\Phi(A)$  [cm<sup>-2</sup> s<sup>-1</sup>]. This can be accounted by first taking a reservoir concentration of A, which for a large reservoir will be  $\gg [A](z=0)$ , the bottom of the atmosphere. For a reservoir that will not be appreciably depleted over the chemical-dynamical time-scale of the atmosphere, the rate is simply:

$$P_{\text{out}}(\mathbf{A}) = \frac{\Phi(\mathbf{A})}{\Delta z}.$$
 (C1)

For a finite reservoir, we can place the reservoir concentration into the bottom "bank" for the species in question, and the t=0 flux,  $\Phi(A,0)$ , and concentration ([BA]) can be used to determine the rate of outgassing,

$$P_{\text{out}}(\mathbf{A}) = L(\mathbf{B}\mathbf{A})[\mathbf{B}\mathbf{A}],\tag{C2}$$

where

$$L(BA) = \frac{\Phi(A,0)}{[BA(t=0)] \Delta z}.$$
 (C3)

These approximations are not used anywhere in this paper. For HD209458b, we simply start with solar elemental abundances, with everything in atomic form at the bottom of the atmosphere. For both Jupiter and Earth, we start with fixed lower boundary conditions.

Condensation or evaporation of species A can be treated by the reactions ("JA" represents "A in condensate form"):

$$A \to JA$$
, for condensation; (C4)

$$JA \to A$$
, for evaporation. (C5)

This physical process is treated in two ways in this paper for Earth and Jupiter. The first method is by considering supersaturation concentrations, above which the species in question condenses out and below which the species in question will evaporate. This method is given by (Hamill et al. 1977; Toon & Farlow 1981; Hu et al. 2012), and has the form (for species A):

$$P = \frac{[A]}{t_c}, \qquad L = \frac{[JA]}{t_c} \tag{C6}$$

$$t_c = \frac{m_{\rm A} v_{th}}{4\rho_{\rm nuc}} \frac{n_{\rm gas} - n_c(T, p)}{a} \tag{C7}$$

where  $m_{\rm A}$  [g] is the mass of the condensing species,  $v_{th}$  is the thermal velocity of the gas,  $\rho_{\rm nuc}$  [g cm<sup>-3</sup>] is the material density of the condensation seed,  $n_{\rm gas}$  [cm<sup>-3</sup>] is the density of the gas, and  $n_c$  [cm<sup>-3</sup>] is the saturation number density, at the given temperature and pressure, and a [cm] is the average radius of the nucleation site. We consider condensation only for low temperatures, so  $n_c = p_v/k_BT$ , where  $p_v$  [dyn cm<sup>-2</sup>] is the vapor pressure, and is estimated using the relatively simple Antoine equation:

$$\log p_v = A - \frac{B}{C+T},\tag{C8}$$

where A, B and C are all parameters taken from the tabulated NIST chemistry webbook<sup>13</sup>.

Alternatively, one can use the method commonly used in the astrochemical context (Hasegawa et al. 1992; Caselli et al. 1998), where

$$L\left[\mathbf{s}^{-1}\right] = \pi a^2 v_{th} n_{\text{nuc}} \tag{C9}$$

and

$$P = \nu_0[JA] e^{-E_D/k_B T}.$$
 (C10)

Here,  $E_D$  is the desorption energy, an empirically determined quantity, taken from Garrod et al. (2008). The frequency,

$$\nu_0 [\text{Hz}] = \left(\frac{2n_s E_D}{\pi^2 m_A}\right)^{1/2},$$
 (C11)

is the characteristic frequency of the surface. The number of sites is estimated, also empirically, by the relation  $n_s = 1.5 \times 10^{15} \, \mathrm{cm}^2 \, \left(a/a_0\right)^2$ , where  $a_0 = 0.1 \, \mu\mathrm{m}$ . The advantage of this approximation is that it is identical to the form generally used for complex surface chemistry in protoplanetary disks. This would allow one to take the results from disk chemistry and utilize them straightforwardly in atmospheric outgassing models.

It is worth pointing out that exponentiating Eq. (C8), dividing by  $k_BT$ , and then placing the resulting form of  $n_c$  into Eq. (C7), yields a form:

$$\frac{P}{L} \sim \frac{\text{Const.}}{v_{th}} e^{T_c/T}$$
 (C12)

where  $T_c/T = B/(C+T)$  from Eq. (C8). The two forms are therefore analogous parameterizations, with the same temperature dependence, but the saturation approach is dependent on the parameterized vapor pressure, and the deposition approach is parameterized by the number of nucleation sites and the binding energy of the nucleation particle.

Neither the supersaturation method nor the deposition method explain where the condensation seeds first arise. It is assumed that the condensation seeds are already present, and therefore that condensation occurs whenever the supersaturation ratio,  $S \gtrsim 1$ . In some environments like Earth, the condensation seeds come in the form of sand or ash particles, and the supersaturation ratio for water to condense is very small,  $S \approx 1.01$ . If the seed particles are not already present in the atmosphere, they must form within the gas phase by the growth from small to large, complex clusters. This requires a supersaturation ratio  $S \gg 100$ , which only occurs when  $T \ll T_c$  (Helling & Fomins 2013). Zsom et al. (2012) explore the microphysics of water condensation and cloud formation for Earth and Earth-like planets

None of these reactions appear in the generic kinetic network, because their inclusion is atmosphere dependent. Condensation is not considered at all for HD209458b because it is too hot, but is considered for Earth and Jupiter for water. Ammonia and methane condensation can also be considered for Jupiter and methane and other condensation should be considered for even colder planets, such as Uranus and Neptune.

<sup>13</sup>http://webbook.nist.gov/chemistry/

#### REFERENCES

- Ackerman, M. 1971, in Mesospheric Models and Related Experiments (Springer), 149
- Adachi, H., Basco, N., & James, D. 1981, Int J Chem Kin, 13, 1251
- Adam, L., Hack, W., Zhu, H., Qu, Z., & Schinke, R. 2005, JChPh, 122, 114301
- Adams, N., Bohme, D., & Ferguson, E. 1970, JChPh, 52, 5101
- Adams, N., & Smith, D. 1976a, JPhB, 9, 1439
- —. 1976b, IJMIP, 21, 349
- —. 1977, CPL, 47, 383
- —. 1978, CPL, 54, 530
- Adams, N., Smith, D., & Grief, D. 1978a, IJMIP, 26, 405
- —. 1978b, IJMIP, 26, 405
- Adams, N. G., Smith, D., & Paulson, J. F. 1980, JChPh, 72, 288
- Adamson, J., DeSain, J., Curl, R., & Glass, G. 1997, JPCA, 101, 864
- Aders, W.-K., & Wagner, H. G. 1973, Berich Bunsen Gesell, 77, 712
- Agúndez, M., Parmentier, V., Venot, O., Hersant, F., & Selsis, F. 2014, A&A, 564, A73
- Alam, J. M., & Lin, J. C. 2008, MWRv, 136, 4653
- Albritton, D., Dotan, I., Streit, G., et al. 1983, JChPh, 78, 6614
- Allison, T. C., Lynch, G. C., Truhlar, D. G., & Gordon, M. S. 1996, JPhCh, 100, 13575
- Almatarneh, M., Flinn, C., & Poirier, R. 2005, CaJCh, 83, 2082
- Alvarez, R. A., & Moore, C. B. 1994, JPhCh, 98, 174
- Anastasi, C., & Hancock, D. U. 1988, FaTr II, 84, 1697
- Andersson, S., Markovic, N., & Nyman, G. 2003, JPCA, 107, 5439

- Anglada, J. M. 2004, JAChS, 126, 9809
- Anicich, V. G., Huntress, W. T., & Futrell, J. H. 1976, CPL, 40, 233
- Anicich, V. G., Huntress, W. T., & McEwan, M. J. 1986, JPhCh, 90, 2446
- Aplin, K. L. 2013, Electrifying Atmospheres: Charging, Ionisation and Lightning in the Solar System and Beyond (Springer Science & Business Media)
- Arenas, J. F., Marcos, J. I., López-Tocón, I., Otero, J. C., & Soto, J. 2000, JChPh, 113, 2282
- Armentrout, P., Berman, D., & Beauchamp, J. 1978, CPL, 53, 255
- Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
- Atkinson, R., Baulch, D., Cox, R., et al. 1989, JPCRD, 18, 881
- —. 1992, AtmEn A, 26, 1187
- —. 1997, JPCRD, 26, 521
- —. 2001, Summary of Evaluated Kinetic & Photochemical Data for Atmospheric Chemistry
- Atkinson, R., Baulch, D., Cox, R., et al. 2004, ACP, 4, 1461
- Atkinson, R., Finlayson, B., & Pitts, J. 1973, JAChS, 95, 7592
- Atreya, S. K., Mahaffy, P. R., Niemann, H. B., Wong, M. H., & Owen, T. C. 2003, Planet. Space Sci., 51, 105
- Ausloos, P., 1975, Interactions between Ions and Molecules, ed. P. Ausloos (Plenum Press), 489
- Ausloos, P., & Lias, S. 1981, JAChS, 103, 3641
- Avramenko, L., & Krasnen'kov, V. 1966, Russ Chem B, 15, 394
- Back, R., & Griffiths, D. 1967, JChPh, 46, 4839
- Badnell, N. R., Bautista, M., Butler, K., et al. 2005, MNRAS, 360, 458
- Bailey, R. L., Helling, Ch., Hodosán, G., Bilger, C., & Stark, C. R. 2014, ApJ, 784, 43

- Baker, R., Baldwin, R., & Walker, R. 1971 in International Symposium on Combustion (Elsevier), 291
- Baker, R., Kerr, J., & Trotman-Dickenson, A. 1969, J Chem Soc A, 390
- Baldwin, R. R., Booth, D., & Brattan, D. 1961, CaJCh, 39, 2130
- Baldwin, R. R., Keen, A., & Walker, R. W. 1984, FaTr I, 80, 435
- Baldwin, R. R., Langford, D., Matchan, M., Walker, R., & Yorke, D. 1971 in International Symposium on Combustion (Elsevier), 251
- Banks, P. M., & Kockarts, G. 1973, Aeronomy (Elsevier)
- Bar-Nun, A., Bar-Nun, N., Bauer, S. H., & Sagan,C. 1970, Science, 168.3930, 470
- Barassin, J., Barassin, A., & Thomas, R. 1983, IJMIP, 49, 51
- Barfield, W., Koontz, G., & Huebner, W. 1972, JQSRT, 12, 1409
- Barnett, A. J., Marston, G., & Wayne, R. P. 1987, FaTr II, 83, 1453
- Barsuhn, J., & Nesbet, R. 1978, JChPh, 68, 2783
- Bass, A. M., Ledford, A. E., & Laufer, A. H. 1976, J Res NBS A Phys Chem, 80A, 143
- Batt, L., McCulloch, R., & Milne, R. 1975, Int J Chem Kinet, 7, 1
- Batt, L., Milne, R., & McCulloch, R. 1977, Int J Chem Kin, 9, 567
- Batt, L., & Rattray, G. 1979, Int J Chem Kin, 11, 1183
- Bauer, W., Becker, K., & Meuser, R. 1985, Berich Bunsen Gesell, 89, 340
- Bauerle, S., Klatt, M., & Wagner, H. 1995, Berich Bunsen Gesell, 99, 870
- Baulch, D., Bowman, C. T., Cobos, C. J., et al. 2005, JPCRD, 34, 757
- Baulch, D., Cobos, C., Cox, R., et al. 1992, JPCRD, 21, 411

- —. 1994, JPCRD, 23, 847
- Baulch, D., Cox, R., Crutzen, P., et al. 1982, JPCRD, 11, 327
- Baulch, D., Duxbury, J., Grant, S., & Montague, D. 1981, Evaluated kinetic data for high temperature reactions. Volume 4. Homogeneous gas phase reactions of halogen-and cyanide-containing species, Tech. rep., DTIC Document
- Beaty, E., & Patterson, P. 1965, PhRv, 137, A346
- Beaulieu, J. P., Kipping, D. M., Batista, V., et al. 2010, MNRAS, 409, 963
- Becker, E., Rahman, M., & Schindler, R. 1992a, Berich Bunsen Gesell, 96, 776
- Becker, K., König, R., Meuser, R., Wiesen, P., & Bayes, K. D. 1992b, J Photoch Photobio A, 64, 1
- Benneke, B. 2015, arXiv:1504.07655
- Benner, S. A., Ricardo, A., & Carrigan, M. A. 2004, Curr Opin Chem Biol, 8, 672
- Benson, S. W. 1994, Int J Chem Kin, 26, 997
- Bergeat, A., Calvo, T., Daugey, N., Loison, J.-C., & Dorthe, G. 1998, JCPA, 102, 8124
- Bergeat, A., Moisan, S., Méreau, R., & Loison, J.-C. 2009, CPL, 480, 21
- Bethe, H. A., & Salpeter, E. E. 1957, Quantum mechanics of one-and two-electron atoms, Vol. 63 (Springer Berlin)
- Betowski, D., Payzant, J., Mackay, G. I., & Bohme, D. 1975, CPL, 31, 321
- Bézard, B., Drossart, P., Encrenaz, T., & Feucht-gruber, H. 2001, Icarus, 154, 492
- Bierbaum, V. M., DePuy, C., Shapiro, R., & Stewart, J. H. 1976, JAChS, 98, 4229
- Bierbaum, V. M., Grabowski, J. J., & DePuy,C. H. 1984, JPhCh, 88, 1389
- Biggs, P., Canosa-Mass, C. E., Fracheboud, J.-M., Shallcross, D. E., & Wayne, R. P. 1995, FaTr, 91, 817

- Bilger, C., Rimmer, P., & Helling, Ch. 2013, MN-RAS, 435, 1888
- Blagojevic, V., Petrie, S., & Bohme, D. K. 2003, MNRAS, 339, L7
- Blake, P., & Jackson, G. 1969, J Chem Soc B, 94
- Blitz, M., Johnson, D., Pilling, M., et al. 1997, JCS(FaTr), 93, 1473
- Bogan, D. J., & Hand, C. W. 1978, JPhCh, 82, 2067
- Bogdanchikov, G., Baklanov, A., & Parker, D. 2004, CPL, 385, 486
- Böhland, T., Dõb, S., Temps, F., & Wagner, H. G. 1985, Berichte Bunsen Gesell, 89, 1110
- Bohme, D., Adams, N., Mosesman, M., Dunkin, D., & Ferguson, E. 1970, JChPh, 52, 5094
- Bohme, D. K., & Fehsenfeld, F. 1969, CaJCh, 47, 2717
- Bohme, D. K., Lee-Ruff, E., & Young, L. B. 1971, JAChS, 93, 4608
- Bohme, D. K., & Mackay, G. I. 1981, JAChS, 103, 2173
- Bohme, D. K., Mackay, G.-I., & Schiff, H. 1980, JChPh, 73, 4976
- Bohme, D. K., Mackay, G., Schiff, H., & Hemsworth, R. 1974, JChPh, 61, 2175
- Bohme, D. K., Mackay, G., & Tanner, S. 1979, JAChS, 101, 3724
- Bohme, D. K., & Raksit, A. B. 1985, CaJCh, 63, 3007
- Bohme, D. K., Raksit, A., & Schiff, H. 1982, CPL, 93, 592
- Bolden, R., Hemsworth, R., Shaw, M., & Twiddy, N. 1970, JPhB, 3, 45
- Bolden, R., & Twiddy, N. 1972, FaDi, 53, 192
- Borisov, A., Zamanskii, V., Potmishil, K., Skachkov, G., & Foteenkov, V. 1977, Kinet. Catal. (USSR), 18
- Borucki, W., Kenzie, R. M., McKay, C., Duong, N., & Boac, D. 1985, Icarus, 64, 221

- Borucki, W. J., McKay, C. P., & Whitten, R. C. 1984, Icarus, 60, 260
- Bose, D., & Candler, G. V. 1996, JChPh, 104, 2825
- Boughton, J., Kristyan, S., & Lin, M. 1997, CP, 214, 219
- Bowers, M., Elleman, D., & King, J. 1969, JChPh, 50, 4787
- Bozzelli, J. W., Chang, A. Y., & Dean, A. M. 1994 in International Symposium on Combustion (Elsevier), 965
- Bozzelli, J. W., & Dean, A. M. 1989, JPhCh, 93, 1058
- —. 1990, JPhCh, 94, 3313
- —. 1995, Int J Chem Kin, 27, 1097
- Bravo-Pérez, G., Alvarez-Idaboy, J. R., Cruz-Torres, A., & Ruíz, M. E. 2002, JCPA, 106, 4645
- Breen, J., & Glass, G. 1971, Int J Chem Kin, 3, 145
- Brion, C., Tan, K., Van der Wiel, M., & Van der Leeuw, P. E. 1979, JESRP, 17, 101
- Broad, J. T., & Reinhardt, W. P. 1976, PhRvA, 14, 2159
- Brown, P. N., & Hindmarsh, A. C. 1989, ApMaC, 31, 40
- Browning, R., & Fryar, J. 1973, JPhB, 6, 364
- Brownsword, R., Gatenby, S., Herbert, L., et al. 1996, FaTr, 92, 723
- Brunetti, B., & Liuti, G. 1975, ZPC, 94, 19
- Bryukov, M. G., Dellinger, B., & Knyazev, V. D. 2006, JPCA, 110, 936
- Bryukov, M. G., Knyazev, V. D., Lomnicki, S. M., McFerrin, C. A., & Dellinger, B. 2004, JCPA, 108, 10464
- Bulatov, V., Buloyan, A., Cheskis, S., et al. 1980, CPL, 74, 288

- Burcat, A., & Ruscic, B. 2005, Third millenium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables
- Burt, J., Dunn, J., McEwan, M., et al. 1970, JChPh, 52, 6062
- Büttrill, S., Kim, J., & Huntress, W. 1974, J. Chem. Phys, 61, 2122
- Cairns, R. B., & Samson, J. A. R. 1965, J. Geophys. Res., 70, 99
- Calvert, J., & Pitts, J. 1966, Photochemistry (Wiley: New York)
- Campomanes, P., Menéndez, I., & Sordo, T. L. 2001, JPCA, 105, 229
- Canosa, C., Penzhorn, R.-D., & Von Sonntag, C. 1979, Berich Bunsen Gesell, 83, 217
- Canosa, C., Smith, S. J., Toby, S., & Wayne, R. P. 1988, FaTr II, 84, 263
- Caridade, P., Rodrigues, S., Sousa, F., & Varandas, A. 2005, JPCA, 109, 2356
- Carl, S., Sun, Q., Teugels, L., & Peeters, J. 2003, PCCP, 5, 5424
- Carstensen, H.-H., & Dean, A. M. 2005, P Combust Inst, 30, 995
- —. 2008, JCPA, 113, 367
- Caselli, P., Hasegawa, T. I., & Herbst, E. 1998, ApJ, 495, 309
- Catling, D. C. 2006, Science, 311, 38
- Cavalié, T., Biver, N., Hartogh, P., et al. 2012, Planet. Space Sci., 61, 3
- Cermak, V., Dalgarno, A., Ferguson, E., Friedman, L., & McDaniel, E. 1970, Ion Molecule Reactions (New York: Wiley)
- Ceursters, B., Nguyen, H. M. T., Nguyen, M. T., Peeters, J., & Vereecken, L. 2001 PCCP, 3, 3070
- Chakraborty, D., & Lin, M. 1999, JCPA, 103, 601
- Chakraborty, D., Park, J., & Lin, M. 1998, CP, 231, 39

- Chan, W.-T., Heck, S. M., & Pritchard, H. O. 2001, PCCP, 3, 56
- Chang, J.-G., Chen, H.-T., Xu, S., & Lin, M. 2007, JPCA, 111, 6789
- Chang, N.-Y., & Yu, C.-H. 1995, CPL, 242, 232
- Chapman, S., & Cowling, T. G. 1991, The Mathematical Theory of Non-uniform Gases (Cambridge University Press)
- Charnley, S. B. 1997, in IAU Colloq. 161: Astronomical and Biochemical Origins and the Search for Life in the Universe, ed. C. Batalli Cosmovici, S. Bowyer, & D. Werthimer, 89
- Chau, M., & Bowers, M. T. 1976, CPL, 44, 490
- Cheng, T., & Lampe, F. 1973, JPhCh, 77, 2841
- Cheng, T., Yu, T.-Y., & Lampe, F. 1973, JPhCh, 77, 2587
- —. 1974, JPhCh, 78, 1184
- Choi, Y., & Lin, M. 2005, Int J Chem Kin, 37, 261
- Christie, M. I., & Voisey, M. 1967, TrFa, 63, 2702
- Chuchani, G., Martin, I., Rotinov, A., & Dominguez, R. M. 1993, J Phys Org Chem, 6, 54
- Cimas, A., & Largo, A. 2006, JCPA, 110, 10912
- Claire, M. W., Catling, D. C., & Zahnle, K. J. 2006, Geobiology, 4, 239
- Clark, J. H., Moore, C. B., & Nogar, N. S. 1978, JChPh, 68, 1264
- Clary, D., Smith, D., & Adams, N. 1985, CPL, 119, 320
- Cleaves, H. J., Chalmers, J. H., Lazcano, A., Miller, S. L., & Bada, J. L. 2008, OLEB, 38, 105
- Cobos, C., & Troe, J. 1985, JChPh, 83, 1010
- Cohen, N. 1991, Int J Chem Kin, 23, 397
- Cohen, N., & Benson, S. 1993, ChRv, 93, 2419
- Cohen, N., & Westberg, K. 1991, JPCRD, 20, 1211

- Colberg, M., & Friedrichs, G. 2006, JCPA, 110, 160
- Cook, G., & Metzger, P. 1964, JOSA, 54, 968
- Cook, R. D., Davidson, D. F., & Hanson, R. K. 2009, JPCA, 113, 9974
- Corchado, J. C., & Espinosa-Garcia, J. 1997, JChPh, 106, 4013
- Corchado, J. C., Espinosa-Garcia, J., Hu, W.-P., Rossi, I., & Truhlar, D. G. 1995, JPhCh, 99, 687
- Corchado, J. C., Espinosa-García, J., Roberto-Neto, O., Chuang, Y.-Y., & Truhlar, D. G. 1998, JCPA, 102, 4899
- Cox, R., & Derwent, R. 1977, J Photochem, 6, 23
- Cribb, P. H., Dove, J. E., & Yamazaki, S. 1992, CoFl, 88, 169
- Crosley, D. R. 1989, JPhCh, 93, 6273
- Curran, H. 2006, Int J Chem Kin, 38, 250
- Cvetanović, R. J. 1987, JPCRD, 16, 261
- Daele, V., Laverdet, G., Le Bras, G., & Poulet, G. 1995, JPhCh, 99, 1470
- Dammeier, J., Colberg, M., & Friedrichs, G. 2007, PCCP, 9, 4177
- Davidson, D. F., Kohse-Höinghaus, K., Chang, A. Y., & Hanson, R. K. 1990, Int J Chem Kin, 22, 513
- De Cobos, A. E. C., & Troe, J. 1984, Int J Chem Kinet, 16, 1519
- Dean, A. J. 1985, JPhCh, 89, 4600
- Dean, A. J., Davidson, D., & Hanson, R. 1991, JPhCh, 95, 183
- Dean, A. J., & Hanson, R. K. 1992, Int J Chem Kin, 24, 517
- Dean, A. J., & Kistiakowsky, G. 1971, JChPh, 54, 1718
- Debrou, G. B., Fulford, J. E., Lewars, E. G., & March, R. E. 1978, IJMIP, 26, 345

- Demott, P. J., Cziczo, D. J., Prenni, A. J., et al. 2003, PNAS, 100, 14655
- Deppe, J., Friedrichs, G., Ibrahim, A., Römming, H.-J., & Wagner, H. G. 1998, Berich Bunsen Gesell, 102, 1474
- DeSain, J. D., Klippenstein, S. J., Miller, J. A., & Taatjes, C. A. 2003, JCPA, 107, 4415
- Désert, J.-M., Vidal-Madjar, A., Lecavelier Des Etangs, A., et al. 2008, A&A, 492, 585
- Dheandhanoo, S., Johnsen, R., & Biondi, M. A. 1984, P&SS, 32, 1301
- Dibeler, V. H., Walker, J. A., & Rosenstock, H. M. 1966, J Res Nat Bur Stand A, 70, 459
- Ditchburn, R. 1955, RSPSA, 229, 44
- Dixon, R., & Kirby, G. 1968, TrFa, 64, 2002
- Dombrowsky, C., Hoffmann, A., Klatt, M., et al. 1991, Berich Bunsen Gesell, 95, 1685
- Dombrowsky, C., & Wagner, H. G. 1992, Berich Bunsen Gesell, 96, 1048
- Dong, H., Ding, Y.-h., & Sun, C.-c. 2005, JChPh, 122, 204321
- Donovan, T., Dorko, W., & Harrison, A. 1971, CaJCh, 49, 828
- Dorko, E. A., Pchelkin, N. R., Wert, J. C., & Mueller, G. W. 1979, JPhCh, 83, 297
- Dotan, I., & Lindinger, W. 1982, JChPh, 76, 4972
- Dotan, I., Lindinger, W., Rowe, B., et al. 1980, CPL, 72, 67
- Drossart, P., Fouchet, T., Crovisier, J., et al. 1999, "The Universe as Seen by ISO", Vol. 427, 169
- Duan, X., & Page, M. 1995, JAChS, 117, 5114
- Dubrovin, D., Luque, A., Gordillo-Vazquez, F. J., et al. 2014, Icarus, 241, 313
- Duff, J., & Sharma, R. 1996, GeoRL, 23, 2777
- Dunbar, R. C., Shen, J., & Olah, G. A. 1972, JChPh, 56, 3794
- Dunkin, D., Fehsenfeld, F., & Ferguson, E. 1970, JChPh, 53, 987

- —. 1972, CPL, 15, 257
- Dunkin, D., McFarland, M., Fehsenfeld, F., & Ferguson, E. 1971, JGR, 76, 3820
- Duran, R., Amorebieta, V., & Colussi, A. 1988, JPhCh, 92, 636
- Durup-Ferguson, M., Bohringer, H., Fahey, D. W., & Ferguson, E. E. 1984, JChPh, 79, 265
- Dyudina, U. A., Ingersoll, A. P., Ewald, S. P., et al. 2007, Icarus, 190, 545
- Edelbüttel-Einhaus, J., Hoyermann, K., Rohde, G., & Seeba, J. 1992 in International Symposium on Combustion (Elsevier), 661
- Edwards, D., Kerr, J., Lloyd, A., & Trotman-Dickenson, A. 1966, J Chem Soc A, 1500
- England, C., & Corcoran, W. H. 1975, Ind Eng Chem, 14, 55
- Enskog, D. 1917, Kinetische Theorie der Vorgaenge in maessig verduennten Gasen. I. Allgemeiner Teil, Dissertation
- Ercolano, B., & Storey, P. J. 2006, MNRAS, 372, 1875
- Eremin, A., Ziborov, V., Shumova, V., Voiki, D., & Roth, P. 1997, Kin Catal, 38, 1
- Espinosa-Garcia, J., Corchado, J., & Sana, M. 1993, J Chim Phys, 90, 1181
- Fahey, D., Böhringer, H., Fehsenfeld, F., & Ferguson, E. 1982, JChPh, 76, 1799
- Fahey, D., Fehsenfeld, F., Ferguson, E., & Viehland, L. 1981, JChPh, 75, 669
- Fahr, A., & Nayak, A. 1994, CP, 189, 725
- Fahr, A., & Nayak, A. 1996, CP, 203, 351
- Fahr, A., & Stein, S. 1989 in International Symposium on Combustion (Elsevier), 1023
- Faigle, J. F. G., Isolani, P. C., & Riveros, J. M. 1976, JAChS, 98, 2049
- Fairbairn, A. 1969, RSPSA, 312, 207
- Faravelli, T., Goldaniga, A., Zappella, L., et al. 2000, P Combust Inst, 28, 2601

- Fegley, B., & Lodders, K. 1994, Icarus, 110, 117
- Fehsenfeld, F. 1969, CaJCh, 47, 1808
- —. 1975, JChPh, 63, 1686
- —. 1976, ApJ, 209, 638
- —. 1977, P&SS, 25, 195
- Fehsenfeld, F., Albritton, D., Burt, J., & Schiff, H. 1969, CaJCh, 47, 1793
- Fehsenfeld, F., Dotan, I., Albritton, D., Howard, C., & Ferguson, E. 1978, JGR:Oceans, 83, 1333
- Fehsenfeld, F., Dunkin, D., & Ferguson, E. 1970, P&SS, 18, 1267
- —. 1974, ApJ, 188, 43
- Fehsenfeld, F., & Ferguson, E. 1970, JChPh, 53, 2614
- —. 1971, JGR, 76, 8453
- —. 1972, JChPh, 56, 3066
- —. 1974, JChPh, 61, 3181
- Fehsenfeld, F., Ferguson, E., & Bohme, D. 1969b, P&SS, 17, 1759
- Fehsenfeld, F., Ferguson, E., & Mosesman, M. 1969c, CPL, 4, 73
- Fehsenfeld, F., Ferguson, E., & Schmeltekopf, A. 1966a, JChPh, 45, 1844
- Fehsenfeld, F., Howard, C. J., & Ferguson, E. 1973, JChPh, 58, 5841
- Fehsenfeld, F., Howard, C. J., & Schmeltekopf, A. 1975a, JChPh, 63, 2835
- Fehsenfeld, F., Lindinger, W., & Albritton, D. 1975b, JChPh, 63, 443
- Fehsenfeld, F., Lindinger, W., Schiff, H., Hemsworth, R., & Bohme, D. 1976, JChPh, 64, 4887
- Fehsenfeld, F., Schmeltekopf, A., & Ferguson, E. 1967a, The JChPh, 46, 2802
- Fehsenfeld, F., Schmeltekopf, A., Goldan, P., Schiff, H., & Ferguson, E. 1966b, JChPh, 44, 4087

- Fehsenfeld, F., Schmeltekopf, A., Schiff, H., & Ferguson, E. 1967b, P&SS, 15, 373
- Feng, W., & Hershberger, J. F. 2007, JCPA, 111, 3831
- Ferguson, E. 1968, Adv Electron Electron Phys, 24, 1
- Ferguson, E., & Fehsenfeld, F. 1968, JGR, 73, 6215
- Ferguson, E., Fehsenfeld, F., & Schmeltekopf, A. L. 1969, Adv Chem Ser, 80, 83
- Fernandes, R. X., Giri, B. R., Hippler, H., Kachiani, C., & Striebel, F. 2005, JCPA, 109, 1063
- Fernández-Ramos, A., Martínez-Núñez, E., Ríos, M. A., et al. 1998, JAChS, 120, 7594
- Ferradaz, T., Benilan, Y., Fraya, A., et al. 2009, P&SS, 57, 10
- Ferris, J. P. 1992, OLEB, 22, 109
- Feuchtgruber, H., Lellouch, E., de Graauw, T., et al. 1997, Nature, 389, 159
- Field, F., Franklin, J., & Lampe, F. 1957, JAChS, 79, 2419
- Fifer, R. 1975, Ber Bunsenges Phys Chem, 10
- Fluegge, R. A. 1969a in the Bulletin of the American Physical Society, (New York: APS), 14(2), 261
- Fluegge, R. A. 1969b, JChPh, 50, 4373
- Fontijn, A., Fernandez, A., Ristanovic, A., Randall, M. Y., & Jankowiak, J. T. 2001, JCPA, 105, 3182
- Forst, W., Evans, H., & Winkler, C. 1957, JPhCh, 61, 320
- Fouchet, T., Lellouch, E., Bézard, B., et al. 2000, A&A, 355, L13
- Frank, P. 1986, in 15th International Symposium on Rarefied Gas Dynamics (Tuebner)
- Frank, P., Bhaskaran, K., & Just, T. 1986, JPhCh, 90, 2226

- Frank, P., Bhaskaran, K., & Just, T. 1988 in the International Symposium on Combustion (Elsevier), 885
- Freeman, C., Harland, P., & McEwan, M. 1978a, IJMIP, 28, 19
- —. 1978b, AJCh, 31, 2157
- Friedrichs, G., Colberg, M., Dammeier, J., Bentz, T., & Olzmann, M. 2008, PCCP, 10, 6520
- Friedrichs, G., DAvidson, D. F., & Hanson, R. K. 2002, Int J Chem Kinet, 37, 374
- Fulle, D., & Hippler, H. 1997, JChPh, 106, 8691
- Gannon, K. L., Glowacki, D. R., Blitz, M. A., et al. 2007, JPCA, 111, 6679
- Gao, Y., & Macdonald, R. G. 2006, JCPA, 110, 977
- Garrod, R. T., Weaver, S. L. W., & Herbst, E. 2008, ApJ, 682, 283
- Gear, C. W. 1971, Comm ACM, 14, 185
- Gehring, M., Hoyermann, K., Wagner, H. G., & Wolfrum, J. 1969, Berich Bunsen Gesell, 73, 956
- Geiger, H., Wiesen, P., & Becker, K. H. 1999, PCCP, 1, 5601
- Geltman, S. 1962, The Astrophysical Journal, 136, 935
- Gentieu, E., & Mentall, J. 1970, Science, 169, 681
- Gill, R., Johnson, W., & Atkinson, G. 1981, CP, 58, 29
- Gladstone, G. R., Allen, M., & Yung, Y. L. 1996, Icarus, 119, 1
- Glänzer, K., & Troe, J. 1973, AcHCh, 56, 577
- —. 1975, Berich Bunsen Gesell, 79, 465
- Glarborg, P., Dam-Johansen, K., & Miller, J. A. 1995, Int J Chem Kinet, 27, 1207
- Glosik, J., Raksit, A., Twiddy, N., Adams, N., & Smith, D. 1978, JPhB, 11, 3365
- Gonzalez, C., Theisen, J., Schlegel, H. B., Hase,
   W. L., & Kaiser, E. 1992, JPhCh, 96, 1767

- Gorden, R., & Ausloos, P. 1961, JPhCh, 65, 1033
- —. 1967, JChPh, 46, 4823
- Gordon, S., & McBride, B. J. 1999, Thermodynamic Data to 20000 K for Monatomic Gases (Cleveland: NASA)
- Grabowski, J. J. 1983, Doctoral Thesis (University of Colorado)
- Graham, R. A., & Johnston, H. S. 1978a, JPhCh, 82, 254
- —. 1978b, JPhCh, 82, 254
- Graham, E., James, D., Keever, W., et al. 1973, JChPh, 59, 4648
- Gray, P., & Herod, A. 1968, Transactions of the Faraday Society, 64, 2723
- Greenberg, J. M., Kouchi, A., Niessen, W., et al. 1995, J Biol Phys, 20, 61
- Griggs, M. 1968, JChPh, 49, 857
- Grotheer, H., & Just, T. 1981, CPL, 78, 71
- Grussdorf, J., Nolte, J., Temps, F., & Wagner, H. G. 1994, Berich Bunsen Gesell, 98, 546
- Gupta, S., Jones, E., Harrison, A. G., & Myher, J. J. 1967, CaJCh, 45, 3107
- Gurnett, D. A., Kurth, W. S., Cairns, I. H., & Granroth, L. J. 1990, NASA STI/Recon Technical Report N, 91, 11642
- Guyon, P. M., Chupka, W. A., & Berkowitz, J. 1976, JChPh, 64, 1419
- Hack, W., Hold, M., Hoyermann, K., Wehmeyer, J., & Zeuch, T. 2005, PCCP, 7, 1977
- Hahn, Y. 1997, PhLA, 231, 82
- Haldane, J. B. S. 1928, Ration Annu, 148, 3
- Hamill, P., Toon, O. B., & Kiang, C. S. 1977, JAtS, 34, 1104
- Hammerum, S., & Sølling, T. I. 1999, JAChS, 121, 6002
- Hanson, R. K., & Salimian, S. 1984, in Symposium on Combustion Chemistry (Springer), 361

- Harada, N., Herbst, E., & Wakelam, V. 2010, ApJ, 721, 1570
- Harding, L. B., Guadagnini, R., & Schatz, G. C. 1993, JPhCh, 97, 5472
- Harding, L. B., Klippenstein, S. J., & Georgievskii, Y. 2005, P Combust Inst, 30, 985
- Harding, L. B., Klippenstein, S. J., & Miller, J. A. 2008, JPCA, 112, 522
- Harding, L. B., & Wagner, A. F. 1989 in International Symposium on Combustion (Elsevier), 983
- Hartmann, D., Karthäuser, J., Sawerysyn, J., & Zellner, R. 1990, Berich Bunsen Gesell, 94, 639
- Hasegawa, T. I., Herbst, E., & Leung, C. M. 1992, ApJS, 82, 167
- Hassinen, E., Kalliorinne, K., & Koskikallio, J. 1990, Int J Chem Kin, 22, 741
- Hassinen, E., Riepponen, P., Blomqvist, K., et al. 1985, Int J Chem Kin, 17, 1125
- Hastie, D., Freeman, C., McEwan, M., & Schiff, H. 1976, Int J Chem Kin, 8, 307
- Haworth, N. L., Mackie, J. C., & Bacskay, G. B. 2003, JPCA, 107, 6792
- He, Y., Liu, X., Lin, M., & Melius, C. 1993, Int J Chem Kin, 25, 845
- He, Y., Sanders, W., & Lin, M. 1988, JPhCh, 92, 5474
- Hébrard, E., Dobrijevic, M., Loison, J. C., et al. 2013, A&A, 552, A132
- Hedin, A. E. 1987, JGR: Space Physics, 92, 4649
- —. 1991, JGR: Space Physics, 96, 1159
- Heicklen, J., & Johnston, H. S. 1962, JAChS, 84, 4394
- Heimerl, J., Johnsen, R., & Biondi, M. A. 1969, JChPh, 51, 5041
- Helling, Ch., & Fomins, A. 2013, RSPTA, 371, 20110581

- Helling, Ch., Jardine, M., Diver, D., & Witte, S. 2013, Planet. Space Sci., 77, 152
- Helling, Ch., Woitke, P., Rimmer, P. B., et al. 2014, Life, 4, 142
- Hemsworth, R., Payzant, J., Schiff, H., & Bohme, D. 1974, CPL, 26, 417
- Hemsworth, R., Rundle, H., Bohme, D., et al. 1973, JChPh, 59, 61
- Henis, J., Stewart, G., & Gaspar, P. 1973, JChPh, 58, 3639
- Hennig, G., & Wagner, H. 1994, Berich Bunsen Gesell, 98, 749
- Henry, G. W., Marcy, G. W., Butler, R. P., & Vogt, S. S. 2000, ApJ, 529, L41
- Henry, R. J. 1970, ApJ, 161, 1153
- Henry, R. J., & McElroy, M. B. 1968, Adv Space Res, 1, 251
- Herbst, E., Payzant, J., Schiff, H., & Bohme, D. 1975, ApJ, 201, 603
- Herman, J., & Mentall, J. 1982, JGR: Oceans, 87, 8967
- Herron, J. T. 1988, JPCRD, 17, 967
- —. 1999, JPCRD, 28, 1453
- Hidaka, Y., Nakamura, T., Tanaka, H., Inami, K., & Kawano, H. 1990, Int J Chem Kin, 22, 701
- Hidaka, Y., Oki, T., Kawano, H., & Higashihara,T. 1989, JPhCh, 93, 7134
- Hidaka, Y., Sato, K., & Yamane, M. 2000, CoFl, 123, 1
- Hinshelwood, C., & Askey, P. 1927, RSPSA, 215
- Hiraoka, K., & Kebarle, P. 1980, CaJCh, 58, 2262
- Hoehlein, G., & Freeman, G. 1970, JAChS, 92, 6118
- Homann, K., & Wellmann, C. 1983, Berich Bunsen Gesell, 87, 609
- Hopkinson, A., Mackay, G., & Bohme, D. 1979, CaJCh, 57, 2996

- Horne, D., & Norrish, R. 1970, RSPSA, 315, 301
- Howard, C. J. 1979, JChPh, 71, 2352
- Howard, C. J., Fehsenfeld, F., & McFarland, M. 1974, JChPh, 60, 5086
- Howorka, F., Lindinger, W., & Varney, R. N. 1974, JChPh, 61, 1180
- Hoyermann, K., Olzmann, M., Seeba, J., & Viskolcz, B. 1999, JPCA, 103, 5692
- Hsu, C.-C., Lin, M., Mebel, A., & Melius, C. 1997, JPCA, 101, 60
- Hu, R., & Seager, S. 2014, ApJ, 784, 63
- Hu, R., Seager, S., & Bains, W. 2012, ApJ, 761, 166
- Hu, R., Seager, S., & Bains, W. 2013, ApJ, 769, 6
- Hu, R., Seager, S., & Yung, Y. L. 2015, arXiv:1505.02221
- Huebner, W. F., & Carpenter, C. W. 1979, NASA STI/Recon Technical Report N, 80, 24243
- Huebner, W. F., Keady, J. J., & Lyon, S. P. 1992, Ap&SS, 195, 1
- Huebner, W. F., & Mukherjee, J. 2015, Planet. Space Sci., 106, 11
- Huffman, R. E. 1969, CaJCh, 47, 1823
- Huffman, R. E., Tanaka, Y., & Larrabee, J. 1963, JChPh, 39, 910
- Humpfer, R., Oser, H., & Grotheer, H.-H. 1995, Int J Chem Kin, 27, 577
- Hunt, M., Kerr, J., & Trotman-Dickenson, A. 1965, J Chem Soc, 5074
- Huntress, W. T., Anicich, V., McEwan, M., & Karpas, Z. 1980, ApJS, 44, 481
- Huntress, W. T., & Baldeschwieler, J. D. 1969, Nature, 223, 468
- Huntress, W. T., & Elleman, D. 1970, JAChS, 92, 3565
- Huntress, W. T., Mosesman, M. M., & Elleman,D. D. 1971, JChPh, 54, 843

- Huntress, W. T., Pinizzotto, R. F., & Laudenslager, J. B. 1973, JAChS, 95, 4107
- Husain, D., & Lee, Y. 1988, Int J Chem Kin, 20, 223
- Husain, D., & Marshall, P. 1986, Int J Chem Kin, 18, 83
- Husain, D., & Young, A. N. 1975, FaTr II, 71, 525
- Huynh, L. K., & Truong, T. N. 2008, Theoretical Chemistry Accounts, 120, 107
- Huynh, L. K., & Violi, A. 2008, J Org Chem, 73, 94
- Ibragimova, L. 1986, Kin Catal, 27
- Ikeda, E., & Mackie, J. C. 1996 in International Symposium on Combustion (Elsevier), 597
- Ikezoe, Y., Matsuoka, S., & Takebe, M. 1987, Gas phase ion-molecule reaction rate constants through 1986 (Ion reaction research group of the Mass spectroscopy society of Japan)
- Imai, N., & Toyama, O. 1962, Bulletin of the Chemical Society of Japan, 35, 860
- Indriolo, N., Fields, B. D., & McCall, B. J. 2009, ApJ, 694, 257
- Ing, W.-C., Sheng, C. Y., & Bozzelli, J. W. 2003, Fuel Process Technol, 83, 111
- Inn, E. C. 1975, JAtS, 32, 2375
- Jachimowski, C. J. 1977, CoFl, 29, 55
- Jaffe, S., Karpas, Z., & Klein, F. S. 1973, JChPh, 58, 2190
- Jaffe, S., & Klein, F. 1974, IJMIP, 14, 459
- Jamieson, J., Brown, G., & Tanner, J. 1970, Ca-JCh, 48, 3619
- Jarrold, M. F., Bass, L. M., Kemper, P. R., van Koppen, P. A., & Bowers, M. T. 1983, JChPh, 78, 3756
- Jasper, A. W., Klippenstein, S. J., Harding, L. B., & Ruscic, B. 2007, JCPA, 111, 3932
- Javoy, S., Naudet, V., Abid, S., & Paillard, C. 2003, ExTFS, 27, 371

- Jebens, D. S., Lakkaraju, H. S., McKay, C. P., & Borucki, W. J. 1992, GRL, 19, 273
- Jensen, D. E. 1982, FaTr I, 78, 2835
- Johnsen, R., Brown, H., & Biondi, M. A. 1970, JChPh, 52, 5080
- Johnsen, R., Castell, F., & Biondi, M. A. 1974, JChPh, 61, 5404
- Johnson, A. P., Cleaves, H. J., Dworkin, J. P., et al. 2008, Science, 322, 404
- Johnston, H. S. 1951, JAChS, 73, 4542
- Jones, J., Birkinshaw, K., & Twiddy, N. 1981a, CPL, 77, 484
- —. 1981b, JPhB, 14, 2705
- Jones, J., Lister, D., & Twiddy, N. 1979, JPhB, 12, 2723
- Joshi, A., You, X., Barckholtz, T. A., & Wang, H. 2005, JPCA, 109, 8016
- Ju, L.-P., Han, K.-L., & Varandas, A. J. 2007, Int J Chem Kin, 39, 148
- Kappes, M. M., & Staley, R. H. 1981, JAChS, 103, 1286
- Karkach, S. P., & Osherov, V. I. 1999, JChPh, 110, 11918
- Karpas, Z., Anicich, V., & Huntress, W. 1978, CPL, 59, 84
- —. 1979, JChPh, 70, 2877
- Karpas, Z., & Klein, F. S. 1975, IJMIP, 16, 289
- Kasper, S., & Franklin, J. 1972, JChPh, 56, 1156
- Kasting, J. F. 1993, Science, 259, 920
- Katayama, D., Huffman, R., & O'Bryan, C. 1973, JChPh, 59, 4309
- Kato, A., & Cvetanovic, R. 1967, CaJCh, 45, 1845
- Keller, C., Anicich, V., & Cravens, T. 1998, P&SS, 46, 1157
- Keller-Rudek, H., Moortgat, G. K., Sander, R., & Sörensen, R. 2013, ESSD, 5, 365

- Kelly, N., & Heicklen, J. 1978, J Photochem, 8, 83
- Kemper, P. R., & Bowers, M. 1984, Int J Chem Kin, 16, 707
- Kemper, P. R., Bowers, M. T., Parent, D. C., et al. 1983, JChPh, 79, 160
- Kern, R., Singh, H., & Wu, C. 1988, Int J Chem Kin, 20, 731
- Kiefer, J., Mitchell, K., Kern, R., & Yong, J. 1988, JPhCh, 92, 677
- Kiefer, J., Santhanam, S., Srinivasan, N. K., et al. 2005, Proceedings of the Combustion Institute, 30, 1129
- Kim, J., Theard, L., & Huntress, W.-T. 1975, JChPh, 62, 45
- Kim, S. J., Geballe, T. R., Kim, J., et al. 2010, Icarus, 208, 837
- Kim, Y. H., & Fox, J. L. 1994, Icarus, 112, 310
- Kim, Y. H., Fox, J. L., Black, J. H., & Moses, J. I. 2014, JGRA, 119, 384
- Klatt, M., Spindler, B., & Wagner, H. G. 1995, ZPC, 191, 241
- Klemm, R. 1965, CaJCh, 43, 2633
- Knutson, H. A., Charbonneau, D., Allen, L. E., Burrows, A., & Megeath, S. T. 2008, ApJ, 673, 526
- Knyazev, V. D., Benscura, Á, Stoliarov, S. I., et al. 1996, JPhCh, 100, 11346
- Knyazev, V. D., Stoliarov, S. I., & Slagle, I. R. 1996b in International Symposium on Combustion (Elsevier), 513
- Koch, E.-E., & Skibowski, d. M. 1971, CPL, 9, 429
- Koike, T., Kudo, M., Maeda, I., & Yamada, H. 2000, Int J Chem Kin, 32, 1
- Kooij, D. M. 1893, ZPC, 12, 155
- Korovkina, T. 1976, High Energ Chem, 10, 75
- Kovalenko, L. J., Jucks, K. W., Salawitch, R. J., et al. 2007, JGL, 34, 19801

- Kretschmer, C., & Petersen, H. 1963, JChPh, 39, 1772
- Kronebusch, P., & Berkowitz, J. 1976, IJMIP, 22, 283
- Kruse, T., & Roth, P. 1997, JCPA, 101, 2138
- —. 1999, Int J Chem Kin, 31, 11
- Kukui, A., Jungkamp, T., & Schindler, R. 1995, Berich Bunsen Gesell, 99, 1565
- Kumakura, M., Arakawa, K., & Sugiura, T. 1978a, B Chem Soc Jpn, 51, 49
- —. 1978b, IJMIP, 26, 303
- —. 1979, IJMIP, 29, 21
- Laidler, K., & McKenney, D. 1964, RSPSA, 278, 517
- Laidler, K., & Wojciechowski, B. 1961, RSPSA, 260, 103
- Lamb, J. J., Mozurkewich, M., & Benson, S. W. 1984, JPhCh, 88, 6441
- Lambert, R., Christie, M., Golesworthy, R., & Linnett, J. 1968, RSPSA 302, 167
- Lambert, R., Christie, M., & Linnett, J. 1967, Chem Commun (London), 388
- Langer, S., & Ljungström, E. 1994, Int J Chem Kin, 26, 367
- —. 1995, FaTr, 91, 405
- Laudenslager, J. B., Huntress, W. T., & Bowers,
   M. T. 1974, JChPh, 61, 4600
- Laufer, A. H., & Fahr, A. 2004, ChRv, 104, 2813
- Lavendy, H., Gandara, G., & Robbe, J. 1984, JMoSp, 106, 395
- Lavendy, H., Robbe, J., & Gandara, G. 1987, JPhB, 20, 3067
- Lavvas, P., Coustenis, A., & Vardavas, I. 2008a, P&SS, 56, 27
- —. 2008b, P&SS, 56, 67
- Lavvas, P., Koskinen, T., & Yelle, R. V. 2014, ApJ, 796, 15

- Lawson, G., Bonner, R. F., Mather, R. E., Todd, J. F., & March, R. E. 1976, FaTr I, 72, 545
- Lee, G., Helling, Ch., Dobbs-Dixon, I., & Juncher, D. 2015, arXiv:1505.06576
- Lee, J., & Bozzelli, J. W. 2003, Int J Chem Kin, 35, 20
- Lee, L., Carlson, R., Judge, D., & Ogawa, M. 1973, JQSRT, 13, 1023
- Lellouch, E., Romani, P. N., & Rosenqvist, J. 1994, Icarus, 108, 112
- Levush, S., Abadzhev, S., & Shevchuk, V. 1969, Neftekhimiya, 9, 215
- Levy, J. B. 1956, JAChS, 78, 1780
- Li, Q.-S., & Wang, C. Y. 2004, JCoCh, 25, 251
- Li, Q. S., Zhang, Y., & Zhang, S. 2004, JCPA, 108, 2014
- Li, S., & Williams, F. 1996 in International Symposium on Combustion (Elsevier), 1017
- Li, S., Zhang, Q., & Wang, W. 2006, CPL, 428, 262
- Liang, M.-C., Parkinson, C. D., Lee, A. Y.-T., Yung, Y. L., & Seager, S. 2003, ApJ, 596, L247
- Lias, S. 1988, JPCRD, 17, 1
- Lias, S., Collin, G., Rebbert, R., & Ausloos, P. 1970, JChPh, 52, 1841
- Lichtin, D., Berman, M., & Lin, M. 1984, CPL, 108, 18
- Liddy, J., Freeman, C., & McEwan, M. 1977a, MNRAS, 180, 683
- —. 1977b, IJMIP, 23, 153
- Lifshitz, A., & Ben-Hamou, H. 1983, JPhCh, 87, 1782
- Lifshitz, A., & Frenklach, M. 1980, Int J Chem Kin, 12, 159
- Lifshitz, A., & Tamburu, C. 1994, JPhCh, 98, 1161
- —. 1998, Int J Chem Kin, 30, 341

- Lifshitz, A., Tamburu, C., & Carroll, H. F. 1997, Int J Chem Kin, 29, 839
- Lifshitz, A., Tamburu, C., Frank, P., & Just, T. 1993, JPhCh, 97, 4085
- Lifshitz, C., & Tassa, R. 1973, IJMIP, 12, 433
- Lifshitz, C., Wu, R., Haartz, J., & Tiernan, T. 1977, JChPh, 67, 2381
- Lifshitz, C., Wu, R., Tiernan, T., & Terwilliger, D. 1978, JChPh, 68, 247
- Lin, M., He, Y., & Melius, C. 1992, Int J Chem Kin, 24, 1103
- —. 1993, JPhCh, 97, 9124
- Lindemann, F. A., Arrhenius, S., Langmuir, I., et al. 1922, TrFa, 17, 598
- Linder, D. P., Duan, X., & Page, M. 1996, JChPh, 104, 6298
- Lindinger, W. 1973, PhRvA, 7, 328
- —. 1976, JChPh, 64, 3720
- Lindinger, W., Albritton, D., & Fehsenfeld, F. 1979, JChPh, 70, 2038
- Lindinger, W., Albritton, D., Fehsenfeld, F., & Ferguson, E. 1975a, JGR, 80, 3725
- —. 1975b, JChPh, 63, 3238
- Lindinger, W., Albritton, D., Fehsenfeld, F., Schmeltekopf, A., & Ferguson, E. 1975c, JChPh, 62, 3549
- Lindinger, W., Albritton, D., Howard, C. J., Fehsenfeld, F., & Ferguson, E. 1975d, JChPh, 63, 5220
- Lindinger, W., Albritton, D., McFarland, M., et al. 1975e, JChPh, 62, 4101
- Lindinger, W., Fehsenfeld, F., Schmeltekopf, A., & Ferguson, E. 1974, JGR, 79, 4753
- Lindinger, W., Howorka, F., Lukac, P., et al. 1981, PhRvA, 23, 2319
- Lindinger, W., McFarland, M., Fehsenfeld, F., et al. 1975f, JChPh, 63, 2175

- Lindley, C. R., Calvert, J. G., & Shaw, J. H. 1979, CPL, 67, 57
- Little, B., Anger, C. D., Ingersoll, A. P., et al. 1999, Icarus, 142, 306
- Liu, G.-x., Ding, Y.-h., Li, Z.-s., et al. 2002, PCCP, 4, 1021
- Lloyd, A. C. 1974, Int J Chem Kin, 6, 169
- Loison, J. C., Hébrard, E., Dobrijevic, M., Hickson, K. M., Caralp, F., et al. 2015, Icarus, 247, 218
- Lombos, B., Sauvageau, P., & Sandorfy, C. 1967, JMoSp, 24, 253
- Louge, M. Y., & Hanson, R. K. 1984, CoFl, 58, 291
- Lukirskii, A., Brytov, I., & Zimkina, T. 1964, OptSp, 17, 234
- Luque, A., & Ebert, U. 2009, NatGe, 2, 757
- Macdonald, R. G. 2007, PCCP, 9, 4301
- Mackay, G. I., Betowski, L., Payzant, J., Schiff, H., & Bohme, D. 1976a, JPhCh, 80, 2919
- Mackay, G. I., & Bohme, D. K. 1978, IJMIP, 26, 327
- Mackay, G. I., Hemsworth, R. S., & Bohme, D. K. 1976b, CaJCh, 54, 1624
- Mackay, G. I., Hopkinson, A., & Bohme, D. 1978, JAChS, 100, 7460
- Mackay, G. I., Rakshit, A. B., & Bohme, D. K. 1982, CaJCh, 60, 2594
- Mackay, G. I., Schiff, H., & Bohme, D. 1981, Ca-JCh, 59, 1771
- Mackay, G. I., Tanaka, K., & Bohme, D. K. 1977, IJMIP, 24, 125
- Mackay, G. I., Tanner, S. D., Hopkinson, A. C., & Bohme, D. K. 1979, CaJCh, 57, 1518
- Mackay, G. I., Vlachos, G., Bohme, D.-K., & Schiff, H. 1980, IJMIP, 36, 259
- Madhusudhan, N., Harrington, J., Stevenson, K. B., et al. 2011, Nature, 469, 64

- Madhusudhan, N., Lee, K. K. M., & Mousis, O. 2012, ApJ, 759, L40
- Madhusudhan, N., & Seager, S. 2009, ApJ, 707, 24
- Madronich, S. 1987, JGR: Atmospheres, 92, 9740
- Magnotta, F., & Johnston, H. S. 1980, GeoRL, 7, 769
- Mahmud, K., Marshall, P., & Fontijn, A. 1987, JPhCh, 91, 1568
- Manion, J. A., Huie, R. E., Levin, R. D., et al. 2013, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8, Data version 2013.03
- Mansergas, A., & Anglada, J. M. 2006, JCPA, 110, 4001
- Marinov, N. M., Pitz, W. J., Westbrook, C. K., et al. 1998, CoFl, 114, 192
- Märk, T. D., & Oskam, H. 1971, PhRvA, 4, 1445
- Marmo, F. 1953, JOSA, 43, 1186
- Marx, R., Mauclaire, G., Fehsenfeld, F., Dunkin, D., & Ferguson, E. 1973, JChPh, 58, 3267
- Massie, S. T., & Hunten, D. M. 1981, JGR, 86, 9859
- Masuoka, T., & Samson, J. A. 1981, JChPh, 74, 1093
- Matsui, Y., & Nomaguchi, T. 1978, CoFl, 32, 205
- Matsumoto, A., Okada, S., Misaki, T., Taniguchi, S., & Hayakawa, T. 1975, B Chem Soc Jpn, 48, 794
- Matsunaga, F., & Watanabe, K. 1967, Sci<br/> Light, 16, 31
- Matsuoka, S., & Ikezoe, Y. 1988, JPhCh, 92, 1126
- Mauclaire, G., Derai, R., & Marx, R. 1978, IJMIP, 26, 289
- Mayer, S., & Schieler, L. 1968, JPhCh, 72, 2628
- Mayer, S., Schieler, L., & Johnston, H. S. 1966, JChPh, 45, 385

- —. 1967 in International Symposium on Combustion (Elsevier), 837
- Mayer, T., & Lampe, F. 1974a, JPhCh, 78, 2645
- —. 1974b, JPhCh, 78, 2433
- McAllister, T. 1973, IJMIP, 10, 419
- McAllister, T., & Pitman, P. 1976, IJMIP, 19, 423
- McBride, B. J., Gordon, S., & Reno, M. A. 1993, Coefficients for calculating thermodynamic and transport properties of individual species, Tech. rep.
- McElroy, M. B., & McConnell, J. C. 1971, JGR, 76, 6674
- McEwan, M., Anicich, V., & Huntress, W. 1981, IJMIP, 37, 273
- McEwan, M., Anicich, V., Huntress, W., Kemper, P., & Bowers, M. 1983, IJMIP, 50, 179
- McFarland, M., Dunkin, D., Fehsenfeld, F., Schmeltekopf, A., & Ferguson, E. 1972, JChPh, 56, 2358
- McKenney, D., Wojciechowski, B., & Laidler, K. 1963, CaJCh, 41, 1993
- McKnight, L. 1970, PhRvA, 2, 762
- McNesby, J. R., & Okabe, H. 1964, Adv Photochem, 3, 157
- McNesby, J. R., Tanaka, I., & Okabe, H. 1962, J. Chem. Phys., 36, 605
- Meaburn, G., & Gordon, S. 1968, JPhCh, 72, 1592
- Meagher, N. E., & Anderson, W. R. 2000, JCPA, 104, 6013
- Mebel, A., & Lin, M. 1997, IRPC, 16, 249
- —. 1999, JCPA, 103, 2088
- Mebel, A., Lin, M., Morokuma, K., & Melius, C. 1996, Int J Chem Kin, 28, 693
- Melton, C., & Rudolph, P. 1960, JChPh, 32, 1128
- Mentall, J., Gentieu, E., Krauss, M., & Neumann, D. 1971, JChPh, 55, 5471

- Meot-Ner, M., Karpas, Z., & Deakyne, C. A. 1986, JAChS, 108, 3913
- Mertens, J. D., & Hanson, R. K. 1996 in International Symposium on Combustion (Elsevier), 551
- Mertens, J. D., Kohse-Höinghaus, K., Hanson, R. K., & Bowman, C. T. 1991, Int J Chem Kin, 23, 655
- Metcalfe, E., Booth, D., McAndrew, H., & Wooley, W. 1983, Fire Mater, 7, 185
- Metzger, P., & Cook, G. 1964, JChPh, 41, 642
- Meyer, E., Olschewski, H., Troe, J., & Wagner, H. G. 1969 in International Symposium on Combustion (Elsevier), 345
- Meyer, J. P., & Hershberger, J. F. 2005, JCPA, 109, 4772
- Michael, J., Kumaran, S., & Su, M.-C. 1999, JPhCh A, 103, 5942
- Mick, H.-J., Burmeister, M., & Roth, P. 1993, AIAA, 31, 671
- Miller, J. A., & Glarborg, P. 1999, Int J Chem Kin, 31, 757
- Miller, J. A., & Melius, C. F. 1988 in International Symposium on Combustion (Elsevier), 919
- Miller, J. A., & Melius, C. F. 1989 in International Symposium on Combustion (Elsevier), 1031
- Miller, J. A., & Melius, C. F. 1992, Int J Chem Kin, 24, 421
- Miller, J. A., Pilling, M. J., & Troe, J. 2005, P Combust Inst, 30, 43
- Miller, J. L., McCunn, L. R., Krisch, M. J., Butler, L. J., & Shu, J. 2004, JChPh, 121, 1830
- Miller, S. L. 1953, Science, 117, 528
- Miller, S. L., & Urey, H. C. 1959, Science, 130, 245
- Miller, T. M., Wetterskog, R. E., & Paulson, J. F. 1984, JChPh, 80, 4922
- Miyakawa, S., Yamanashi, H., Kobayashi, K., Cleaves, H. J., & Miller, S. L. 2002, PNAS, 99, 14628

- Miyoshi, A., Ohmori, K., Tsuchiya, K., & Matsui, H. 1993, CPL, 204, 241
- Molina, L. T., & Molina, M. J. 1981, J Photochem, 15, 97
- Molina-Cuberos, G. J., Lopez-Moreno, J. J., Rodrigo, R., Lara, L. M., & O'Brien, K. 1999, P&SS, 47, 1347
- Monks, P., Romani, P., Nesbitt, F., Scanlon, M., & Stief, L. 1993, JGR: Planets, 98, 17115
- Moortgat, G., SSlemr, F., & Warneck, P. 1977, Int J Chem Kin, 9, 249
- Moortgat, G., & Warneck, P. 1975, ZNatA, 30, 835
- Morris, E., & Niki, H. 1973, Int J Chem Kin, 5, 47
- Morrissey, R. J., & Schubert, C. 1963, CoFl, 7, 263
- Moses, J. I. 2014, RSPTA, 372, 20130073
- Moses, J. I., Armstrong, E. S., Fletcher, L. N., et al. 2015, Icarus, in press
- Moses, J. I., Bézard, B., Lellouch, E., et al. 2000a, Icarus, 143, 244
- Moses, J. I., Fouchet, T., Bézard, B., et al. 2005, JGR: Planets, 110, 8001
- Moses, J. I., Lellouch, E., Bézard, B., et al. 2000b, Icarus, 145, 166
- Moses, J. I., Madhusudhan, N., Visscher, C., & Freedman, R. S. 2013, ApJ, 763, 25
- Moses, J. I., Visscher, C., Fortney, J. J., et al. 2011, ApJ, 737, 15
- Moshkina, R., Polyak, S., Sokolova, N., Masterovoi, I., & Nalbandyan, A. 1980, Int J Chem Kin, 12, 315
- Mount, G., & Moos, H. 1978, ApJ, 224, L35
- Mousavipour, S. H., & Saheb, V. 2007, B Chem Soc Jpn, 80, 1901
- Moylan, C. R., Jasinski, J. M., & Brauman, J. I. 1985, JAChS, 107, 1934

- Mulvihill, J. N., & Phillips, L. F. 1975 in International Symposium on Combustion (Elsevier), 1113
- Munson, M. S., & Field, F. H. 1969, JAChS, 91, 3413
- Munson, M. S., Franklin, J., & Field, F. 1964, JPhCh, 68, 3098
- Murrell, J., & Rodriguez, J. 1986, JMoSt, 139, 267
- Musin, R., & Lin, M. 1998, JCPA, 102, 1808
- Myer, J. A., & Samson, J. A. 1970, JChPh, 52, 266
- Myerson, A. L. 1973in, Elsevier, 219-228
- Nadtochenko, V., Sarkisov, O., & Vedeneev, V. 1979, Doklady Akademii Nauk SSSR, 244, 152
- Nakata, R., Watanabe, K., & Matsunaga, F. 1965, Sci Light, 14, 54V71
- Nakayama, T., Kitamura, M. Y., & Watanabe, K. 1959, JChPh, 30, 1180
- Nakayama, T., & Watanabe, K. 1964, JChPh, 40, 558
- Natarajan, K., & Bhaskaran, K. 1981, Experimental and analytical investigation of high temperature ignition of ethanol, Tech rep, Indian Inst of Tech, Madras Dept of Mechanical Engineering
- Natarajan, K., Thielen, K., Hermanns, H., & Roth, P. 1986, Berich Bunsen Gesell, 90, 533
- Navarro-González, R., Villagrán-Muniz, M., Sobral, H., Molina, L. T., & Molina, M. J. 2001, GRL, 28, 3867
- Nee, J. B., & Lee, L. 1984, JChPh, 81, 31
- Neilson, P. V., Bowers, M. T., Chau, M., Davidson, W. R., & Aue, D. H. 1978, JAChS, 100, 3649
- Neiman, M., & Feklisov, G. 1961, Zh Fiz Khim, 35, 1064
- Nissen, P. E. 2013, A&A, 552, 10
- Nguyen, H. M. T., Zhang, S., Peeters, J., Truong, T. N., & Nguyen, M. T. 2004, CPL, 388, 94

- Nielsen, O. J., Sidebottom, H. W., Donlon, M., & Treacy, J. 1991, CPL, 178, 163
- Nizamov, B., & Dagdigian, P. J. 2003, JCPA, 107, 2256
- Oehlschlaeger, M. A., Davidson, D. F., & Hanson, R. K. 2004, JPCA, 108, 4247
- Ohmori, K., Miyoshi, A., Matsui, H., & Washida, N. 1990, JPhCh, 94, 3253
- Okabe, H. 1970, JChPh, 53, 3507
- —. 1980, JChPh, 72, 6642
- —. 1981, JChPh, 75, 2772
- —. 1983, JChPh, 78, 1312
- Okabe, H., & Becker, D. 1963, JChPh, 39, 2549
- Okabe, H., et al. 1978, Photochemistry of Small Molecules, Vol. 431 (New York: Wiley)
- Okada, S., Matsumoto, A., Dohmaru, T., Taniguchi, S., & Hayakawa, T. 1972, Mass Spectroscopy (Japan), 20, 311
- O'Neal, E., & Benson, S. W. 1962, JChPh, 36, 2196
- Opansky, B. J., & Leone, S. R. 1996a, JPhCh, 100, 4888
- Opansky, B. J., & Leone, S. R. 1996b, JPhCh, 100, 19904
- Oparin, A. I. 1957, The Origin of Life on the Earth.
- Orville, R. E. 1968, JAtS, 25, 852
- Osborn, D. L. 2003, JCPA, 107, 3728
- Owens, A., Hales, C., Filkin, D., et al. 1985, JGR: Atmospheres, 90, 2283
- Padial, N., Collins, L., & Schneider, B. 1985, ApJ, 298, 369
- Pang, J.-L., Xie, H.-B., Zhang, S.-W., Ding, Y.-H., & Tang, A.-Q. 2008, JCPA, 112, 5251
- Paraskevopoulos, G., & Winkler, C. A. 1967, JPhCh, 71, 947

- Park, J., & Hershberger, J. F. 1993, JChPh, 99, 3488
- Park, J., & Lin, M. 1997, JCPA, 101, 5
- Parkes, D. A. 1972a, FaTr I, 68, 613
- —. 1972b, FaTr I, 68, 627
- Parra-Rojas, F. C., Luque, A., & Gordillo-VáZquez, F. J. 2013, JGR:Space Physics, 118, 5190
- Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D., & Sutherland, J. D. 2015, NatCh, 7, 301
- Patrick, R., & Golden, D. M. 1984, Int J Chem Kin, 16, 1567
- Patterson, W., & Greene, E. 1962, JChPh, 36, 1146
- Payzant, J., Tanaka, K., Betowski, L., & Bohme,
   D. 1976, JAChS, 98, 894
- Peeters, J., Boullart, W., & Devriendt, K. 1995, JPhCh, 99, 3583
- Petrov, Y. P., Turetskii, S., & Bulgakov, A. 2009, Kin Catal, 50, 344
- Petty, J. T., Harrison, J. A., & Moore, C. B. 1993, JPhCh, 97, 11194
- Phillips, E., Lee, L., & Judge, D. 1977, JQSRT, 18, 309
- Pitts, W. M., Pasternack, L. & McDonald, J. R. 1982, CP, 68, 417
- Porter, R. P., & Noyes, W. A. 1959, JAChS, 81, 2307
- Pouilly, B., Robbe, J., Schamps, J., & Roueff, E. 1983, JPhB, 16, 437
- Powner, M. W., Gerland, B, & Sutherland, J. D. 2009, Nature, 459.7244, 239
- Prasad, S. S., & Huntress, W. T. 1980, ApJ, 43, 1
- Price, C., Penner, J., & Prather, M. 1997, J. Geophys. Res., 102, 5929
- Pshezhetskii, S. Y., Morozov, N., Kamenetskaya, S., Siryatskaya, V., & Gribova, E. 1959, Russ J Phys Chem, 33, 402

- Quandt, R. W., & Hershberger, J. F. 1995, JPhCh, 99, 16939
- Queloz, D., Eggenberger, A., Mayor, M., et al. 2000, A&A, 359, L13
- Raksit, A. B. 1982, IJMIP, 41, 185
- —. 1986, IJMSI, 69, 45
- Raksit, A. B., & Bohme, D. K. 1984, IJMSI, 57, 211
- —. 1985, IJMSI, 63, 217
- Raksit, A. B., Schiff, H., & Bohme, D. 1984, IJMSI, 56, 321
- Raksit, A. B., & Warneck, P. 1979, ZNatA, 34, 1410
- —. 1980a, JChPh, 73, 2673
- —. 1980b, IJMIP, 35, 23
- —. 1980c, FaTr II, 76, 1084
- —. 1981, JChPh, 74, 2853
- Ray, A., Daële, V., Vassalli, I., Poulet, G., & Le Bras, G. 1996, JPhCh, 100, 5737
- Reitel'boim, M., Romanovich, L., & Vedeneev, B. 1978, Kin Catal, 19, 1131
- Ribas, I., Guinan, E. F., Güdel, M., & Audard, M. 2005, ApJ, 622, 680
- Ribas, I., Porto de Mello, G. F., Ferreira, L. D., Hébrard, E., Selsis, F., et al. 2010, ApJ714, 384
- Rim, K. T., & Hershberger, J. F. 1999, JCPA, 103, 3721
- Rimmer, P. B., Herbst, E., Morata, O., & Roueff, E. 2012, A&A, 537,
- Rimmer, P. B., & Helling, Ch. 2013, ApJ, 774, 108
- Rimmer, P. B., Helling, Ch., & Bilger, C. 2014, IJAsB, 13, 173
- Robertson, R., Hils, D., Chatham, H., & Gallagher, A. 1983, ApPhL, 43, 544
- Roble, R., & Ridley, E. 1994, GeoRL, 21, 417
- Roche, A., Sutton, M., Bohme, D., & Schiff, H. 1971, JChPh, 55, 5480

- Rogers, J. D. 1990, JPhCh, 94, 4011
- Röhrig, M., Römming, H.-J., & Wagner, H. G. 1994, Berich Bunsen Gesell, 98, 1332
- Röhrig, M., & Wagner, H. G. 1994 in International Symposium on Combustion (Elsevier), 975
- Romani, P. N., Jennings, D. E., Bjoraker, P. V., et al. 2008, Icarus, 198, 420
- Roose, T., Hanson, R., & Kruger, C. 1978, in 11th International Symposium on Shock Tubes and Waves, 245
- Roscoe, J. M., & Roscoe, S. G. 1973, CaJCh, 51, 3671
- Ross, S. K., Sutherland, J. W., Kuo, S.-C., & Klemm, R. B. 1997, JPCA, 101, 1104
- Rottman, G. J., Woods, T. N., & McClintock, W. 2006, AdSpR, 37, 201
- Rowe, B., Fahey, D., Fehsenfeld, F., & Albritton, D. 1980, JChPh, 73, 194
- Rowe, B., Fahey, D., Ferguson, E., & Fehsenfeld, F. 1981, JChPh, 75, 3325
- Rustgi, O. P. 1964, JOSA, 54, 464
- Saeys, M., Reyniers, M.-F., Van Speybroeck, V., Waroquier, M., & Marin, G. B. 2006, CPPC, 7, 188
- Safrany, D. R., & Jaster, W. 1968, JPhCh, 72, 3305
- Sahetchian, K., Heiss, A., & Rigny, R. 1987, JPhCh, 91, 2382
- Saito, K., Kakumoto, T., & Murakami, I. 1984, CPL, 110, 478
- Saito, K., Mochizuki, Y., Yoshinobu, I., & Imamura, A. 1990, CPL, 167, 347
- Salahub, D., & Sandorfy, C. 1971, CPL, 8, 71
- Samson, J. A., & Cairns, R. 1964, JGR, 69, 4583
- —. 1965, JOSA, 55, 1035
- Sander, R., Kerkweg, A., Jöckel, P., & Lelieveld, J. 2005, ACP, 5, 445

- Sander, S. P., Friedl, R. R., Barker, J. R., et al. 2011, Chemical Kinetics and Photochemical Data for use in Atmospheric Studies 17, (JPL Publications)
- Sanders, N., Butler, J., Pasternack, L., & McDonald, J. 1980, CP, 48, 203
- Sanders, W., Lin, C., & Lin, M. 1987, CST, 51, 103
- Sato, K., & Hidaka, Y. 2000, CoFl, 122, 291
- Saxon, R. P., Lengsfield III, B. H., & Liu, B. 1983, JChPh, 78, 312
- Sayah, N., Li, X., Caballero, J., & Jackson, W. M. 1988, J Photoch Photobio A, 45, 177
- Scattergood, T. W., McKay, C. P., Borucki, W. J., et al. 1989, Icarus, 81, 413
- Schacke, H., Schmatjko, K., & Wolfrum, J. 1974, Arch Procesow Spalania, 5
- Scherzer, K., Löser, U., & Stiller, W. 1987, ZCh, 27, 300
- Schiff, H., & Bohme, D. K. 1979, ApJ, 232, 740
- Schildcrout, S. M., & Franklin, J. 1970, JAChS, 92, 251
- Schlesinger, G., & Miller, S. L. 1983, JMolE, 19, 376
- Schoen, R. I. 1962, JChPh, 37, 2032
- Schulz, G., Klotz, H.-D., & Spangenberg, H.-J. 1985, ZCh, 25, 88
- Schurath, U., Tiedemann, P., & Schindler, R. N. 1969, JPhCh, 73, 456
- Schwarz, H., Brogi, M., de Kok, R., Birkby, J., & Snellen, I. 2015, arXiv:1502.04713
- Seager, S., Bains, W., & Hu, R. 2013a, ApJ, 775, 104
- —. 2013b, ApJ, 777, 95
- Seery, D. 1969 in the International Symposium on Combustion, 12
- Seetula, J., Blomqvist, K., Kalliorinne, K., & Koskikallio, J. 1986, Acta Chem Scand, 40, 653

- Seinfeld, J. H., & Pandis, S. N. 2006, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (2nd ed.; New Jersey: Wiley)
- Selwyn, G., Podolske, J., & Johnston, H. S. 1977, GeoRL, 4, 427
- Sen, B., Toon, G. C., Osterman, G. B. 1998, JGR, 103, 3571
- Senosiain, J. P., Klippenstein, S. J., & Miller, J. A. 2006, JPCA, 110, 5772
- Setser, D., & Rabinovitch, B. 1962, CaJCh, 40, 1425
- Shardanand, & Rao, A. D. P. 1977, J. Quant. Spec. Radiat. Transf., 17, 433
- Shaw, R. 1977, Int J Chem Kin, 9, 929
- —. 1978, JPCRD, 7, 1179
- Sheng, C. Y., Bozzelli, J. W., Dean, A. M., & Chang, A. Y. 2002, JPCA, 106, 7276
- Showman, A. P., Cooper, C. S., Fortney, J. J., & Marley, M. S. 2008, ApJ, 682, 559
- Shul, R., Upschulte, B., Passarella, R., Keesee, R., & Castleman, A. 1987a, JPhCh, 91, 2556
- —. 1987b, JPhCh, 91, 2556
- Sieck, L. W. 1978, Int J Chem Kin, 10, 335
- Sieck, L. W., & Futrell, J. 1968, JChPh, 48, 1409
- Sieck, L. W., & Searles, S. K. 1970, JChPh, 53, 2601
- Sims, I. R., Queffelec, J.-L., Travers, D., et al. 1993, CPL, 211, 461
- Sivaramakrishnan, R., Michael, J., & Klippenstein, S. 2009, JPCA, 114, 755
- Skinner, G. B., & Ruehrwein, R. A. 1959, JPhCh, 63, 1736
- Slack, M., & Fishburne, E. 1970, JChPh, 52, 5830
- Slanger, T. G., & Black, G. 1982, JChPh, 77, 2432
- Smith, D. L., & Adams, N. 1977a, ApJ, 217, 741
- —. 1977b, CPL, 47, 145

- —. 1978, CPL, 54, 535
- —. 1980, CPL, 76, 418
- —. 1981, MNRAS, 197, 377
- Smith, D. L., Adams, N. G., & Alge, E. 1982, JChPh, 77, 1261
- Smith, D. L., Adams, N. G., & Miller, T. 1978, JChPh, 69, 308
- Smith, R. D., Smith, D. L., & Futrell, J. H. 1976, IJMIP, 19, 369
- Song, S., Golden, D. M., Hanson, R. K., et al. 2003, Int J Chem Kin, 35, 304
- Song, X., Hou, H., & Wang, B. 2005, PCCP, 7, 3980
- Spokes, G. N., & Benson, S. W. 1967, JAChS, 89, 6030
- Sridharan, U., & Kaufman, F. 1983, CPL, 102, 45
- Srinivasan, N., Su, M.-C., & Michael, J. 2007, JPCA, 111, 3951
- Srinivasan, N., Su, M.-C., Sutherland, J., & Michael, J. 2005, JPCA, 109, 1857
- Stevenson, D. P., & Schissler, D. O. 1955, JChPh, 23, 1353
- Stief, L., Donn, B., Glicker, S., Gentieu, E., & Mentall, J. 1972, ApJ, 171, 21
- Stockwell, W. R., & Calvert, J. G. 1978, J Photochem, 8, 193
- Stothard, N., Humpfer, R., & Grotheer, H.-H. 1995, CPL, 240, 474
- Strausz, O. P., Duholke, W., & Gunning, H. E. 1970, JAChS, 92, 4128
- Streit, G. E. 1982, JPhCh, 86, 2321
- Striebel, F., Jusinski, L. E., Fahr, A., et al. 2004, PCCP, 6, 2216
- Strobel, D. F. 1983, IRPC, 3, 145
- Su, M.-C., Kumaran, S., Lim, K., et al. 2002, JPCA, 106, 8261

- Sumathi, R., & Nguyen, M. T. 1998, JCPA, 102, 8013
- Sumathi, R., & Peyerimhoff, S. 1996, CPL, 263, 742
- Sun, F., DeSain, J., Scott, G., et al. 2001, JPCA, 105, 6121
- Sun, H., He, H.-Q., Hong, B., et al. 2006, IJQC,  $106,\,894$
- Sun, H., & Weissler, G. 1955, JChPh, 23, 1160
- Sun, Y., Zhang, Q.-y., Ai, X.-c., Zhang, J.-p., & Sun, C.-c. 2004, JMoSt, 686, 123
- Suzaki, K., Kanno, N., Tonokura, K., et al. 2006, CPL, 425, 179
- Suzaki, K., Tsuchiya, K., Koshi, M., & Tezaki, A. 2007, JPCA, 111, 3776
- Swain, M. R., Tinetti, G., Vasisht, G., et al. 2009, ApJ, 704, 1616
- Szabo, I., & Derrick, P. 1971, IJMIP, 7, 55
- Szekely, A., Hanson, R. K., & Bowman, C. T. 1985 in International Symposium on Combustion (Elsevier), 647
- Tabayashi, K., & Bauer, S. 1979, CoFl, 34, 63
- Takahashi, K., Yamamoto, O., Inomata, T., & Kogoma, M. 2007, Int J Chem Kin, 39, 97
- Takahashi, S. 1972, Mem Def Acad: Phys & Chem Eng, 12
- Tanaka, K., Betowksi, L., Mackay, G., & Bohme, D. 1976, JCP, 65, 3203
- Tanaka, Y., Inn, E. C., & Watanabe, K. 1953, JChPh, 21, 1651
- Tang, Y., Wang, R., & Wang, B. 2008, JCPA, 112, 5295
- Tanner, S. D., Mackay, G. I., & Bohme, D. K. 1979b, CaJCh, 57, 2350
- —. 1979c, CaJCh, 57, 2350
- —. 1981, CaJCh, 59, 1615
- Tanner, S. D., Mackay, G. I., Hopkinson, A., & Bohme, D. K. 1979a, IJMIP, 29, 153

- Tanzawa, T., & Gardiner, W. 1980, JPhCh, 84, 236
- Tao, Y.-g., Ding, Y.-h., Li, Z.-s., Huang, X.-r., & Sun, C.-C. 2001, JCPA, 105, 9598
- Taylor, W. W. L., Scarf, F. L., Russell, C. T., & Brace, L. H. 1979, Nature, 279, 614
- Thaxton, A. G., Hsu, C.-C., & Lin, M. 1997, Int J Chem Kin, 29, 245
- Theard, L. P., & Huntress, W. T. 1974, JChPh, 60, 2840
- Thielen, K., & Roth, P. 1986, AIAA, 24, 1102
- Thomas, R., Barassin, A., & Burke, R. 1978, IJMSI, 28, 275
- Thompson, B., Harteck, P., & Reeves, R. 1963, JGR, 68, 6431
- Thweatt, W. D., Erickson, M. A., & Hershberger, J. F. 2004, JPCA, 108, 74
- Thynne, J., & Gray, P. 1963a, TrFa, 59, 1149
- —. 1963b, TrFa, 59, 1149
- Tian, F., Toon, O. B., Pavlov, A. A., & De Sterck, H. 2005, Science, 308, 1014
- Tichỳ, M., Raksit, A., Lister, D., et al. 1979, IJMIP, 29, 231
- Tomeczek, J., & Gradoń, B. 2003, CoFl, 133, 311
- Tonkyn, R., & Weisshaar, J. C. 1986, JPhCh, 90, 2305
- Toon, O. B., & Farlow, N. H. 1981, AREPS, 9, 19
- Toon, O. B., McKay, C. P., Ackerman, T. P., & Santhanam, K. 1989, J. Geophys. Res., 94, 16287
- Trenwith, A. 1960, J Chem Soc, 3722
- Troe, J. 1983, Berich Bunsen Gesell, 87, 161
- —. 2005, JCPA, 109, 8320
- Tsang, W. 1987, JPCRD, 16, 471
- —. 1992, JPCRD, 21, 753
- —. 2004, Int J Chem Kin, 36, 456

- Tsang, W., & Hampson, R. 1986, JPCRD, 15, 1087
- Tsang, W., & Herron, J. T. 1991, JPCRD, 20, 609
- Tsuboi, T., & Hashimoto, K. 1981, CoFl, 42, 61
- Tsuboi, T., Katoh, M., Kikuchi, S., & Hashimoto, K. 1981, JaJAP, 20, 985
- Tu, L., Johnstone, C. P., Güdel, M., & Lammer, H. 2015, arXiv:1504.04546
- Tuazon, E. C., Carter, W. P., Atkinson, R., Winer, A. M., & Pitts, J. N. 1984, EnST, 18, 49
- Tzeng, S.-Y., Chen, P.-H., Wang, N. S., et al. 2009, JPCA, 113, 6314
- Vaghjiani, G. L. 1995, Int J Chem Kin, 27, 777
- Vakhtin, A. B., Hard, D. E., Smith, I. W. M., & Leone, S. R. 2001, CPL, 344, 317
- van Dishoeck, E. F. 1984, Dissertation
- van Dishoeck, E. F. 1987, JChPh, 86, 196
- Vandooren, J., Bian, J., & Van Tiggelen, P. 1994, CoFl, 98, 402
- Vandooren, J., & Van Tiggelen, P. 1977in , Elsevier, 1133–1144
- Vardanyan, I., Sachyan, G., Philiposyan, A., & Nalbandyan, A. 1974, CoFl, 22, 153
- Velinov, P. I. Y., & Mateev, L. N. 2008, Journal of Atmospheric and Solar-Terrestrial Physics, 70, 574
- Venot, O., Hébrard, E., Agúndez, M., et al. 2012, A&A, 546, A43
- Verner, D., Ferland, G., Korista, K., & Yakovlev, D. 1996, ApJ, 465, 487
- Verner, D., & Yakovlev, D. 1995, A&AS, 109, 125
- Verner, D., Yakovlev, D., Band, I., & Trzhaskovskaya, M. 1993, ADNDT, 55, 233
- Veyret, B., Rayez, J. C., & Lesclaux, R. 1982, JPhCh, 86, 3424
- Viggiano, A., Albritton, D., Fehsenfeld, F., et al. 1980, ApJ, 236, 492

- Viggiano, A., & Paulson, J. F. 1983, JChPh, 79, 2241
- Vijayan, M. 1980, FEBS Lett, 112, 135
- Villinger, H., Futrell, J., Howorka, F., Duric, N., & Lindinger, W. 1982, JChPh, 76, 3529
- Visscher, C., & Moses, J. I. 2011, ApJ, 738, 72
- Visscher, C., Moses, J. I., & Saslow, S. A. 2010, Icarus, 209, 602
- Vogt, J., Williamson, A. D., & Beauchamp, J. 1978, JAChS, 100, 3478
- Vuitton, V., Yelle, R. V., Lavvas, P., & Klippenstein, S. J. 2012, ApJ, 744, 11
- Wagner, A. F., & Bowman, J. M. 1987, JPhCh, 91, 5314
- Wagner, H. G., Warnatz, J., & Zetzsch, C. 1971, An Asoc Quim Argent, 59
- Wagner-Redeker, W., Kemper, P. R., Jarrold, M. F., & Bowers, M. T. 1985, JChPh, 83, 1121
- Waite, J. H., Young, D. T., Cravens, T. E., Coates, A. J., Crary, F. J., et al. 2007, Science, 316.5826, 870
- Wakamatsu, H., & Hidaka, Y. 2008, Int J Chem Kin, 40, 320
- Wakelam, V., Herbst, E., Loison, J.-C., et al. 2012, ApJS, 199, 21
- Walker, T., & Kelly, H. 1972, CPL, 16, 511
- Wallington, T. J., & Japar, S. M. 1989, JAtC, 9, 399
- Walsh, C., & Millar, T. J. 2011, in IAU Symposium, Vol. 280, IAU Symposium, ed. J. Cernicharo & R. Bachiller, 56
- Wang, C. Y., Zhang, S., & Li, Q. S. 2002, Theor Chem Acc, 108, 341
- Wang, S., Cui, J.-P., He, Y.-Z., Fan, B.-C., & Wang, J. 2001, ChPhL, 18, 289
- Warnatz, J. 1984, in Combustion Chemistry (Springer), 197
- Warneck, P. 1972, Berich Bunsen Gesell, 76, 421

- Watanabe, K. 1954, JChPh, 22, 1564
- Watanabe, K., & Jursa, A. 1964, JChPh, 41, 1650
- Watanabe, K., Matsunaga, F. M., & Sakai, H. 1967, ApOpt, 6, 391
- Watanabe, K., & Sood, S. 1965, Sci Light, 14, 36
- Watanabe, K., & Zelikoff, M. 1953, JOSA, 43, 753
- Weaver, J., Meagher, J., & Heicklen, J. 1977, J. Photochem, 6, 111
- Westenberg, A. A., & De Haas, N. 1969, JPhCh, 73, 1181
- Whyte, A., & Phillips, L. 1983, CPL, 98, 590
- Wight, C. A., & Beauchamp, J. 1980, JPhCh, 84, 2503
- Wijnen, M. 1960, JAChS, 82, 3034
- Williamson, A. D., & Beauchamp, J. 1975, JAChS, 97, 5714
- Williamson, D. G., & Bayes, K. D. 1967, JAChS, 89, 3390
- Wilson, W. E. 1972, JPCRD, 1, 535
- Woods, I., & Haynes, B. 1994 in International Symposium on Combustion (Elsevier), 909
- Wooldridge, M. S., Hanson, R. K., & Bowman, C. T. 1996, Int J Chem Kin, 28, 361
- Wu, C., Wang, H., Lin, M., & Fifer, R. 1990, JPhCh, 94, 3344
- Wu, C.-W., Lee, Y.-P., Xu, S., & Lin, M. 2007, JPCA, 111, 6693
- Wu, J.-Y., Liu, J.-Y., Li, Z.-S., & Sun, C.-c. 2003, JChPh, 118, 10986
- Xu, S., & Lin, M. 2007, JCPA, 111, 6730
- Xu, Z.-F., & Lin, M. 2004, Int J Chem Kin, 36, 205
- Xu, Z.-F., & Sun, C.-C. 1999, JMoSt, 459, 37
- Xu, Z.-F., & Sun, J.-Z. 1998, JCPA, 102, 1194
- Yang, J., Li, Q. S., & Zhang, S. 2008, JCoCh, 29, 247

- Yang, X., Goldsmith, C. F., & Tranter, R. S. 2009, JPCA, 113, 8307
- Yang, Y., Zhang, W., Pei, S., et al. 2005, JMoSt, 725, 133
- Yasunaga, K., Kubo, S., Hoshikawa, H., Kamesawa, T., & Hidaka, Y. 2008, Int J Chem Kin, 40, 73
- Yee Quee, M., & Thynne, J. 1968, Berich Bunsen Gesell, 72, 211
- Yelle, R. V., Griffith, C. A. & Young, L. A. 2001, Icarus, 152, 331
- Yelle, R. V., Young, L. A., Vervack, R. J., et al. 1996, JGR, 101, 2149
- You, X., Wang, H., Goos, E., Sung, C.-J., & Klippenstein, S. J. 2007, JCPA, 111, 4031
- Young, J. 1958, J Chem Soc, 2909
- Young, L. B., Lee-Ruff, E., & Bohme, D. 1971, CaJCh, 49, 979
- Yumura, M., & Asaba, T. 1981 in International Symposium on Combustion (Elsevier), 863
- Yung, Y. L., Allen, M., & Pinto, J. P. 1984, ApJS, 55, 465
- Yung, Y. L., & Demore, W. B., eds. 1999, Photochemistry of Planetary Atmospheres (New York: OUP)
- Zabarnick, S., & Heicklen, J. 1985, Int J Chem Kin, 17, 455
- Zahnle, K. 1986, JGR: Atmospheres, 91, 2819
- Zahnle, K., Claire, M., & Catling, D. 2006, Geobiology, 4, 271
- Zahnle, K., Mac Low, M.-M., Lodders, K., & Fegley, B. 1995, GeoRL, 22, 1593
- Zahnle, K., Marley, M. S., Freedman, R. S., Lodders, K., & Fortney, J. J. 2009, ApJ, 701, L20
- Zalotai, L., Hunyadi-zoltán, Z., Bérces, T., & Marta, F. 1983, Int J Chem Kin, 15, 505
- Zarka, P., & Pedersen, B. M. 1986, Nature, 323, 605

- Zaslonko, I., Petrov, Y. P., & Smirnov, V. 1997, Kinetics and catalysis, 38, 321
- Zaslonko, I., Smirnov, V., & Tereza, A. 1993, Kin Catal, 34, 531
- Zel'dovich, Y. B., & Raizer, Y. P. 1996, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, (New York, NY: Academic Press)
- Zelikoff, M., Watanabe, K., & Inn, E. C. 1953, JChPh, 21, 1643
- Zhang, Y.-X., & Bauer, S. 1997, JPCB, 101, 8717
- Zhang, Y.-X., Zhang, S., & Li, Q. S. 2004, CP, 296, 79
- —. 2005, CP, 308, 109
- Zhu, R., & Lin, M. 2003, JChPh, 119, 10667
- —. 2007, JCPA, 111, 6766
- —. 2009, CPL, 478, 11
- Zhu, R., & Lin, M.-C. 2005, Int J Chem Kin, 37, 593
- Zielinska, T. J., & Wincel, H. 1970, Nukleonika, 15, 343
- Zsom, A., Kaltenegger, L., & Goldblatt, C. 2012, Icarus, 221, 603

This 2-column preprint was prepared with the AAS IATEX macros v5.2.

| Table 2: I | Mixing 1 | Ratios f        | 4 0.04 0.04 0.04 0.04<br>2 0.02 0.04 0.06 0.06 |       |        |       |
|------------|----------|-----------------|------------------------------------------------|-------|--------|-------|
| Model      | $H_2O$   | $\mathrm{CH}_4$ | $NH_3$                                         | $H_2$ | $CO_2$ | $N_2$ |
| A          | 0.80     | 0.08            | 0.08                                           | 0.04  | 0.0    | 0.0   |
| В          | 0.80     | 0.06            | 0.06                                           | 0.04  | 0.02   | 0.02  |
| С          | 0.80     | 0.04            | 0.04                                           | 0.04  | 0.04   | 0.04  |
| D          | 0.80     | 0.02            | 0.02                                           | 0.04  | 0.06   | 0.06  |
| E          | 0.84     | 0.00            | 0.00                                           | 0.00  | 0.08   | 0.08  |

<sup>\*</sup> Not including the injected FeO and HCOOH



Fig. 1.— The photodissociation cross sections of  $\mathrm{NH_3} \to {}^1\mathrm{NH} + \mathrm{H_2}, \, \sigma \, [\mathrm{cm^2}], \, \mathrm{as} \, \mathrm{a} \, \mathrm{function} \, \mathrm{of} \, \mathrm{wavelength}, \, \lambda \, (\mathring{\mathrm{A}}), \, \mathrm{from} \, \, \mathrm{PHIDRATES} \, \, \mathrm{(original \, data} \, \mathrm{from} \, \, \mathrm{McNesby} \, \mathrm{et} \, \mathrm{al.} \, \, 1962; \, \mathrm{Schurath} \, \mathrm{et} \, \mathrm{al.} \, \, 1969, \, \mathrm{red} \, \, \mathrm{line}).$  The data is compared to our binned fit (blue line).



Fig. 3.— Mixing ratio as a function of temperature. The solid line is from the Saha equation and the dashed line is the result from our model calculation.



Fig. 4.— Picture representation of the model. The picture on the left represents the motion of the single parcel from the bottom of the atmosphere,  $T_1, P_1$ , up to the top of the atmosphere,  $T_4, P_4$ , and then back down, see Section 3.1. Once this journey is completed, we irradiate the atmosphere, by stacking up the parcel at different times, when it was located at different parts of the atmosphere. The picture on the right represents the calculation of the depth-dependent actinic flux discussed in Section 3.2. Only photons of wavelength between 1-10000 Å are considered Figure 5 gives a flowchart for the calculation.



Fig. 5.— A flow-chart representation for the program.



Fig. 2.— Mixing ratios as a function of time [s] at 1 bar and 1000 K (dashed lines), compared to chemical equilibrium (solid lines) for  $H_2$ , H, CO,  $CH_4$  and  $H_2O$ .



Fig. 9.— Mixing ratios for various chemical species as a function of pressure, p [bar]. A comparison between our model (solid lines) and that of Moses et al. (2011, dashed lines), for H/H<sub>2</sub> chemistry, water and O<sub>2</sub> chemistry, nitrogen chemistry and carbon chemistry in the atmosphere of HD209458b.

Table 1: Initial Conditions for the Chemistry at the Lower Boundary in terms of  $n(X)/n_{\rm gas}$ 

| Species             | $\mathrm{HD209458b^a}$ | Earth <sup>b</sup> | Early Earth <sup>c</sup> | Jupiter <sup>d</sup> |
|---------------------|------------------------|--------------------|--------------------------|----------------------|
| Н                   | 9.2092(-1)             |                    |                          |                      |
| He                  | 7.8383(-2)             |                    |                          | 1.3600(-1)           |
| $^{\mathrm{C}}$     | 2.4787(-4)             |                    |                          |                      |
| N                   | 6.2262(-5)             |                    |                          |                      |
| O                   | 4.5105(-4)             |                    |                          |                      |
| $\operatorname{Ar}$ | 2.3133(-6)             |                    | 9.1150(-3)               |                      |
| K                   | 9.8766(-8)             |                    |                          |                      |
| Cl                  | 2.9122(-7)             |                    |                          |                      |
| Fe                  | 2.9122(-5)             |                    |                          |                      |
| Mg                  | 3.6663(-5)             |                    |                          |                      |
| Na                  | 1.6004(-6)             |                    |                          |                      |
| Si                  | 2.9800(-5)             |                    |                          |                      |
| ${ m Ti}$           | 8.2077(-8)             |                    |                          |                      |
| CO                  |                        | 1.1300(-7)         | 4.9005(-5)               | 8.0000(-10)          |
| $\mathrm{H}_2$      |                        | 1.0000(-6)         | 9.8010(-4)               | 8.6219(-1)           |
| $N_2$               |                        | 7.9172(-1)         | 7.8408(-1)               |                      |
| NO                  |                        | 2.4000(-11)        |                          |                      |
| $O_2$               |                        | 1.9793(-1)         |                          |                      |
| $CO_2$              |                        | 3.5000(-4)         | 1.9602(-1)               |                      |
| $H_2O$              |                        | 1.0000(-2)         | 9.8010(-3)               |                      |
| $N_2O$              |                        | 3.0200(-7)         |                          |                      |
| $NH_3$              |                        | 2.4000(-10)        |                          |                      |
| $CH_4$              |                        | 1.9390(-6)         |                          | 1.8100(-3)           |

 $<sup>^</sup>a$  Solar metallicity, from Asplund et al. (2009).

Table 3: Bond Constants for Benson Additivity

| Species                | $a_1$   | $a_2$   | $a_3$   | $a_4$   | $a_5$    | $a_6$  | $a_7$   |
|------------------------|---------|---------|---------|---------|----------|--------|---------|
| С–Н                    |         |         |         |         |          |        |         |
| 300-1000K              | 1.1E0   | -3.0E-3 | 1.2E-5  | 5.8E-8  | 4.8E-12  | -2.5E3 | -2.5E-2 |
| $1000-6000 { m K}$     | 4.0E-1  | 2.3E-3  | -1.9E-6 | 1.4E-10 | -8.3E-15 | -2.0E3 | 2.8E0   |
| C-C                    |         |         |         |         |          |        |         |
| 300-1000K              | -2.4E0  | 1.3E-3  | -1.4E-5 | -2.8E-7 | -5.0E-13 | 3.0E3  | 3.0E0   |
| $1000-6000 { m K}$     | 1.8E0   | 1.5E-3  | 5.7E-7  | 4.0E-11 | -2.5E-15 | 2.5E2  | -1.8E1  |
| C-O                    |         |         |         |         |          |        |         |
| 300-1000K              | -6.8E-1 | 8.3E-3  | -1.0E-5 | -2.0E-7 | -2.3E-12 | 9.0E2  | 4.8E-1  |
| $1000-6000 { m K}$     | 1.7E0   | 1.3E-3  | 8.3E-6  | 5.5E-11 | -3.8E-15 | -6.5E2 | -1.1E1  |
| О-Н                    |         |         |         |         |          |        |         |
| 300-1000K              | 5.0E-2  | -7.3E-3 | 1.8E-5  | 1.2E-7  | 8.5E-12  | -9.0E3 | -4.2E0  |
| $1000-6000 \mathrm{K}$ | -4.5E-1 | -3.1E-3 | -6.7E-6 | -1.6E10 | -5.4E-14 | -7.5E3 | 5.2E0   |

 $<sup>^</sup>b$  Surface mixing ratios based on the US Standard Atmosphere 1976.

 $<sup>^{</sup>c}\,\mathrm{Based}$  on Early Earth models (Kasting 1993).

 $<sup>^</sup>d$  Moses et al. (2005).

 $\begin{tabular}{ll} Table 4 \\ Neutral Species included in the Stand2015 Network \\ \end{tabular}$ 

| Network Formula       | Standard Formula                          | Name                         | Thermochem Data |
|-----------------------|-------------------------------------------|------------------------------|-----------------|
| Н                     | Н                                         | Atomic hydrogen              | Burcat          |
| $^{\mathrm{C}}$       | C                                         | Atomic carbon                | Burcat          |
| $C(^{1}D)$            | $C(^{1}D)$                                | Singlet D carbon             | Burcat          |
| $C(^1S)$              | $C(^1S)$                                  | Singlet S carbon             | Burcat          |
| N                     | N                                         | Atomic nitrogen              | Burcat          |
| O                     | O                                         | Atomic oxygen                | Burcat          |
| $O(^{1}D)$            | $O(^{1}D)$                                | Singlet D oxygen             | Burcat          |
| $O(^1S)$              | $O(^1S)$                                  | Singlet S oxygen             | Burcat          |
| He                    | He                                        | Helium                       | Burcat          |
| Na                    | Na                                        | Atomic sodium                | Burcat          |
| ${ m Mg}$             | ${ m Mg}$                                 | Atomic magnesium             | Burcat          |
| Si                    | Si                                        | Atomic silicon               | Burcat          |
| Cl                    | Cl                                        | Atomic chlorine              | Burcat          |
| $\operatorname{Ar}$   | $\operatorname{Ar}$                       | Argon                        | Burcat          |
| K                     | K                                         | Atomic potassium             | Burcat          |
| ${ m Ti}$             | ${ m Ti}$                                 | Atomic titanium              | Burcat          |
| Fe                    | Fe                                        | Atomic iron                  | Burcat          |
| $\mathrm{H}_2$        | $\mathrm{H}_2$                            | Molecular hydrogen           | Burcat          |
| $C_2$                 | $C_2$                                     | Dicarbon                     | Burcat          |
| $N_2$                 | $N_2$                                     | Molecular nitrogen           | Burcat          |
| $O_2$                 | $\mathrm{O}_2$                            | Molecular oxygen             | Burcat          |
| $O_2(a^1\Delta)$      | $O_2(a^1\Delta)$                          | Singlet oxygen               | Burcat          |
| ĊН                    | СН                                        | Methylidyne radical          | Burcat          |
| $_{ m HN}$            | NH                                        | Nitrogen monohydride         | Burcat          |
| $HN(a^1\Delta)$       | $NH(a^1\Delta)$                           | Singlet nitrogen monohydride | Burcat          |
| ĤO                    | ÒН                                        | Hydroxyl radical             | Burcat          |
| CN                    | $_{ m CN}$                                | Cyano radical                | Burcat          |
| CO                    | CO                                        | Carbon monoxide              | Burcat          |
| KH                    | KH                                        | Potassium hydride            | Burcat          |
| NO                    | NO                                        | Nitric oxide                 | Burcat          |
| HCl                   | HCl                                       | Hydrogen chloride            | Burcat          |
| NaH                   | NaH                                       | Sodium hydride               | Burcat          |
| MgO                   | $_{ m MgO}$                               | Magnesium oxide              | Burcat          |
| $\operatorname{SiH}$  | $\operatorname{SiH}$                      | Silylidyne                   | NASA-CEA        |
| SiO                   | SiO                                       | Silicon monoxide             | NASA-CEA        |
| KCl                   | KCl                                       | Potassium chloride           | Burcat          |
| TiO                   | TiO                                       | Titanium(II) oxide           | NASA-CEA        |
| FeO                   | FeO                                       | Iron(II) oxide               | Burcat          |
| $O_3$                 | $O_3$                                     | Ozone                        | Burcat          |
| $^3\mathrm{CH}_2$     | $\mathrm{CH}_2(\mathrm{X}^3\mathrm{B}_1)$ | Triplet methylene            | Burcat          |
| $^{1}\mathrm{CH}_{2}$ | $\mathrm{CH}_2(\mathrm{a}^1\mathrm{A}_1)$ | Singlet methylene            | Burcat          |



Fig. 12.— Mixing ratios for various chemical species as a function of pressure, p [bar]. A comparison between our model (solid lines) and that of various observations, for complex hydrocarbons in the stratosphere of Jupiter.



Fig. 6.— The carbon mixing ratio as a function of atmospheric height [km]. We test for diffusion, with chemistry turned off, for carbon atoms and hydrogen atoms in a gas at hydrostatic equilibrium for an isothermal gas  $(g = 10^3 \text{ cm s}^{-2}, T = 300 \text{ K})$ . The solid line is the result from Argo and the dashed line is the analytic result (Eq. (28)).



Fig. 7.— The solar flux used in our model [photons cm<sup>-2</sup> s<sup>-1</sup> Å<sup>-1</sup>], as a function of wavelength,  $\lambda$  [Å], taken from Huebner & Carpenter (1979); Huebner et al. (1992); Huebner & Mukherjee (2015). Weighted versions of this flux are used for HD209458b and Jupiter. This flux is used, unadjusted, for the early Earth.



Fig. 8.— Temperature profile for HD209458b, T [K] as a function of p [bar], as used by Moses et al. (2011).



Fig. 11.— Temperature profile for Jupiter, T [K] as a function of p [bar] (Moses et al. 2005).



Fig. 10.— Mixing ratios for the dominant ionic species as a function of pressure, p [bar] for the atmosphere of HD209458b.



Fig. 13.— Temperature profile used for the Early Earth chemistry, temperature [K] vs. height [km]. This profile is a synthetic profile for the Earth's atmosphere generated with the MSIS-E-90 model for the date 2000/1/1 (Hedin 1987, 1991).



Fig. 14.— Mixing ratios of ozone, methane and nitrous oxide as a function of atmospheric height [km] for the atmosphere of the present-day Earth. The lines are produced by our model and the points are taken from globally averaged measurements (Massie & Hunten 1981). Errors are set to an order of magnitude to account for diurnal and latitudinal variations.



Fig. 15.— Mixing ratios of NO and  $NO_2$  as a function of atmospheric height [km]for the atmosphere of the present-day Earth. The lines are produced by our model and the points are taken from balloon measurements (Sen et al. 1998). Errors are set to an order of magnitude to account for diurnal and latitudinal variations. We also show the results from suppressing the rate constant for Reaction 1300 in the network by a factor of 2 (dashed) and a factor of 10 (dotted).



Fig. 16.— Mixing ratios of OH and  $\rm H_2O$  as a function of atmospheric height [km] for the atmosphere of the present-day Earth. The lines are produced by our model and the points are taken from balloon measurements at various latitudes, heights, and times (Kovalenko et al. 2007).



Fig. 17.— Mixing ratios of NO (solid) and NO<sub>2</sub> (dashed) vs time [s] in a simulation of a lightning shock on a parcel of gas with an Earth-like atmospheric composition, initially at 300 K and 1 bar. The temperature and pressure vary as a function of time as described by Orville (1968), until  $10^{-4}$  s, at which time conditions are returned to 300 K and 1 bar, and the system is allowed to further evolve.



Fig. 18.— Mixing ratios for O, H<sub>2</sub>, CO, O<sub>2</sub>, H<sub>2</sub>O and CO<sub>2</sub>, as a function of height [km], for early Earth photochemistry. These results can be compared to the results of Kasting (1993, his Fig. 1).



Fig. 19.— Mixing ratio of glycine as a function of time, for five lab simulations, labelled Models A-E, with parameters given in Table 2 and described in Section 5.

Table 4—Continued

| TABLE 4—Continuea        |                                           |                         |                 |  |  |  |  |
|--------------------------|-------------------------------------------|-------------------------|-----------------|--|--|--|--|
| Network Formula          | Standard Formula                          | Name                    | Thermochem Data |  |  |  |  |
| $^{1}\mathrm{CH}_{2}$    | $\mathrm{CH}_2(\mathrm{a}^1\mathrm{A}_1)$ | Singlet methylene       | Burcat          |  |  |  |  |
| $C_2H$                   | CCH                                       | Ethynyl radical         | Burcat          |  |  |  |  |
| $\mathrm{H_2N}$          | $\mathrm{NH}_2$                           | Amidogen                | Burcat          |  |  |  |  |
| $\mathrm{HN}_2$          | $\mathrm{N}_{2}\mathrm{H}$                | Amino radical           | Burcat          |  |  |  |  |
| $\mathrm{H}_2\mathrm{O}$ | $\mathrm{H}_2\mathrm{O}$                  | Water                   | Burcat          |  |  |  |  |
| $\mathrm{HO}_2$          | $\mathrm{HO}_2$                           | Hydroperoxyl            | Burcat          |  |  |  |  |
| $C_2N$                   | CCN                                       | Cyano-methylidyne       | Burcat          |  |  |  |  |
| CNC                      | CNC                                       | CNC radical             | Burcat          |  |  |  |  |
| $CN_2$                   | CNN                                       | CNN radical             | Burcat          |  |  |  |  |
| $C_2O$                   | $C_2O$                                    | Dicarbon monoxide       | Burcat          |  |  |  |  |
| $CO_2$                   | $CO_2$                                    | Carbon dioxide          | Burcat          |  |  |  |  |
| $N_2O$                   | $N_2O$                                    | Nitrous oxide           | Burcat          |  |  |  |  |
| $NO_2$                   | $NO_2$                                    | Nitrogen dioxide        | Burcat          |  |  |  |  |
| HCN                      | HCN                                       | Hydrogen cyanide        | Burcat          |  |  |  |  |
| HNC                      | HNC                                       | Hydrogen isocyanide     | Burcat          |  |  |  |  |
| HNO                      | HNO                                       | Nitroxyl                | Burcat          |  |  |  |  |
| NCO                      | NCO                                       | Isocyanato radical      | Burcat          |  |  |  |  |
| NaOH                     | NaOH                                      | Sodium hydroxide        | Burcat          |  |  |  |  |
| MgHO                     | MgOH                                      | Magnesium monohydroxide | NASA-CEA        |  |  |  |  |
| NaCl                     | NaCl                                      | Sodium chloride         | Burcat          |  |  |  |  |
| $\mathrm{SiH}_2$         | $\mathrm{SiH}_2$                          | Silylene                | NASA-CEA        |  |  |  |  |
| KOH                      | КОН                                       | Potassium hydroxide     | Burcat          |  |  |  |  |
| $FeO_2$                  | $\mathrm{FeO}_2$                          | Iron oxide              | Burcat          |  |  |  |  |
| $CH_3$                   | $\mathrm{CH}_3$                           | Methyl radical          | Burcat          |  |  |  |  |
| $C_2H_2$                 | $C_2H_2$                                  | Acetylene               | Burcat          |  |  |  |  |
| $\mathrm{H_{3}N}$        | $\mathrm{NH}_3$                           | Ammonia                 | Burcat          |  |  |  |  |
| $\mathrm{H_2N_2}$        | $N_2H_2$                                  | Diimide                 | Burcat          |  |  |  |  |
| HNNH                     | HNNH                                      | (Z)-Diazene             | Burcat          |  |  |  |  |
| $\mathrm{H_2O_2}$        | $\mathrm{H_2O_2}$                         | Hydrogen peroxide       | Burcat          |  |  |  |  |
| NCCN                     | $(CN)_2$                                  | Cyanogen                | Burcat          |  |  |  |  |
| $H_2CN$                  | $H_2CN$                                   | Dihydrogen cyanide      | Burcat          |  |  |  |  |
| HCCN                     | HCCN                                      | HCCN radical            | Burcat          |  |  |  |  |
| $CHN_2$                  | HCNN                                      | HCNN                    | Burcat          |  |  |  |  |
| $\mathrm{CH_{2}O}$       | $\mathrm{H}_{2}\mathrm{CO}$               | Formaldehyde            | Burcat          |  |  |  |  |
| HOCH                     | НСОН                                      | Hydroxymethylene        | Burcat          |  |  |  |  |
| HCCO                     | HCCO                                      | Ethynyloxy radical      | Burcat          |  |  |  |  |
| COOH                     | СООН                                      | Hydrocarboxyl radical   | Burcat          |  |  |  |  |
| $NH_2O$                  | NHOH                                      | NHOH                    | Burcat          |  |  |  |  |
| $\mathrm{HNO}_2$         | $\mathrm{HNO}_2$                          | Nitrous acid            | Burcat          |  |  |  |  |
| OCCN                     | NCCO                                      | NCCO                    | Burcat          |  |  |  |  |
| OCCIV                    | NCCO                                      | NCCO                    | Durcat          |  |  |  |  |

Table 4—Continued

| TABLE 4—Continuea                  |                              |                       |                 |  |  |  |  |  |
|------------------------------------|------------------------------|-----------------------|-----------------|--|--|--|--|--|
| Network Formula                    | Standard Formula             | Name                  | Thermochem Data |  |  |  |  |  |
| HNCO                               | HNCO                         | Isocyanic acid        | Burcat          |  |  |  |  |  |
| CHNO                               | CHNO                         | Cyanic acid           | Burcat          |  |  |  |  |  |
| HCNO                               | HCNO                         | HCNO                  | Burcat          |  |  |  |  |  |
| $SiH_3$                            | $\mathrm{SiH}_3$             | Silyl radical         | Burcat          |  |  |  |  |  |
| $\mathrm{CH}_4$                    | $\mathrm{CH}_4$              | Methane               | Burcat          |  |  |  |  |  |
| $C_2H_3$                           | $C_2H_3$                     | Vinyl radical         | Burcat          |  |  |  |  |  |
| $\mathrm{NH_{2}NH}$                | $\mathrm{NH_{2}NH}$          | Hydrazinyl radical    | Burcat          |  |  |  |  |  |
| $N_2O_3$                           | $N_2O_3$                     | Nitrogen trioxide     | Burcat          |  |  |  |  |  |
| $\mathrm{CH_{3}N}$                 | $\mathrm{CH_{2}NH}$          | Methanimine           | Burcat          |  |  |  |  |  |
| $\mathrm{CH_{2}CN}$                | $\mathrm{CH_{2}CN}$          | Cyanomethyl radical   | Burcat          |  |  |  |  |  |
| $\mathrm{CH_2N_2}$                 | $\mathrm{CH_{2}N_{2}}$       | Diazomethane          | Burcat          |  |  |  |  |  |
| $HC_3N$                            |                              | Propiolonitrile*      | Burcat          |  |  |  |  |  |
| $\mathrm{CH_{2}OH}$                | $\mathrm{CH_{2}OH}$          | Hydroxymethyl radical | Burcat          |  |  |  |  |  |
| $\mathrm{CH_{3}O}$                 | $\mathrm{CH_{3}O}$           | Methoxy radical       | Burcat          |  |  |  |  |  |
| $C_2H_2O$                          | $\mathrm{H}_{2}\mathrm{CCO}$ | Ethenone              | Burcat          |  |  |  |  |  |
| HCOOH                              | HCOOH                        | Formic acid           | Burcat          |  |  |  |  |  |
| $\mathrm{CH_2O_2}$                 | $\mathrm{CH_{2}OO}$          | CH2OO                 | Burcat          |  |  |  |  |  |
| $\mathrm{HNO}_3$                   | $\mathrm{HNO}_3$             | Nitric acid           | Burcat          |  |  |  |  |  |
| $\mathrm{NH_{2}OH}$                | $\mathrm{NH_{2}OH}$          | Hydroxylamine         | Burcat          |  |  |  |  |  |
| HCOCN                              | HCOCN                        | HCOCN                 | Benson          |  |  |  |  |  |
| ${\rm MgO_2H_2}$                   | $\mathrm{H_2MgO_2}$          | Magnesium hydroxide   | NASA-CEA        |  |  |  |  |  |
| $\mathrm{SiH}_4$                   | $\mathrm{SiH}_4$             | Silane                | Burcat          |  |  |  |  |  |
| $C_2H_4$                           | $C_2H_4$                     | Ethylene              | Burcat          |  |  |  |  |  |
| $C_3H_3$                           |                              | Propargyl radical*    | Burcat          |  |  |  |  |  |
| $\mathrm{H_4N_2}$                  | $\mathrm{N_{2}H_{4}}$        | Hydrazine             | Burcat          |  |  |  |  |  |
| $\mathrm{H_4O_2}$                  | $H_2O \cdot H_2O$            | Water dimer           | Burcat          |  |  |  |  |  |
| $\mathrm{CH_{3}CN}$                | $\mathrm{CH_{3}CN}$          | Acetonitrile          | Burcat          |  |  |  |  |  |
| $C_2H_3N$                          | $\mathrm{CH_{2}CNH}$         | CH2=C=NH              | Burcat          |  |  |  |  |  |
| $\mathrm{CH_{3}N_{2}H}$            | $\mathrm{CH_{3}N_{2}H}$      | Methyl diazene        | Burcat          |  |  |  |  |  |
| $\mathrm{CH_{3}OH}$                | $\mathrm{CH_{3}OH}$          | Methanol              | Burcat          |  |  |  |  |  |
| $\mathrm{CH_{3}O_{2}}$             | $\mathrm{CH_{3}O_{2}}$       | CH3O2                 | Burcat          |  |  |  |  |  |
| $C_2H_3O$                          | $\mathrm{CH_{3}CO}$          | Acetyl radical        | Burcat          |  |  |  |  |  |
| $\text{cyc-C}_2\text{H}_3\text{O}$ | Oxyranyl                     | Oxiranyl radical      | Burcat          |  |  |  |  |  |
| $\mathrm{CH_{2}CHO}$               | $\mathrm{CH_{2}CHO}$         | CH2CHO                | Burcat          |  |  |  |  |  |
| $C_3H_2O$                          |                              | 2-Propynal*           | Benson          |  |  |  |  |  |
| $C_2H_2O_2$                        | $(CHO)_2$                    | Glyoxal               | Burcat          |  |  |  |  |  |
| $H_2NNO_2$                         | $ m H_2N-NO_2$               | H2N-NO2               | Burcat          |  |  |  |  |  |
| $\mathrm{CH_{3}NO}$                | $HCONH_2$                    | Formamide             | Burcat          |  |  |  |  |  |
| $C_2H_5$                           | $C_2H_5$                     | Ethyl radical         | Burcat          |  |  |  |  |  |
| $C_3H_4$                           |                              | Propyne*              | Burcat          |  |  |  |  |  |
| $\mathrm{CH_{5}N}$                 | $\mathrm{CH_{3}NH_{2}}$      | Methylamine           | Burcat          |  |  |  |  |  |

Table 4—Continued

| Network Formula                  | Standard Formula                | Name                                | Thermochem Data |
|----------------------------------|---------------------------------|-------------------------------------|-----------------|
| $C_3H_3N$                        | • • •                           | Acrylonitrile*                      | Burcat          |
| $C_2H_4O$                        | $\mathrm{CH_{3}CHO}$            | Acetaldehyde                        | Burcat          |
| $H_2C_2HOH$                      | $\mathrm{CH_{2}CHOH}$           | Vinyl alcohol                       | Burcat          |
| Oxirane                          | Oxirane                         | Oxirane                             | Burcat          |
| $C_3H_3O$                        |                                 | 1-Oxoprop-2-3nyl*                   | Burcat          |
| $\mathrm{CH_4O_2}$               | $\mathrm{CH_{3}OOH}$            | Methyl peroxide                     | Burcat          |
| $\mathrm{CH_{3}OCO}$             | $\mathrm{CH_{3}OCO}$            | $\mathrm{CH3OC}(\cdot)(\mathrm{O})$ | Burcat          |
| $\mathrm{CH_{3}NO_{2}}$          | $\mathrm{CH_{3}NO_{2}}$         | Nitromethane                        | Burcat          |
| $\mathrm{CH_{3}ONO}$             | $\mathrm{CH_{3}ONO}$            | Methyl nitrite                      | Burcat          |
| $C_2H_6$                         | $C_2H_6$                        | Ethane                              | Burcat          |
| $C_4H_4$                         |                                 | 1-Buten-3-yne*                      | Burcat          |
| $\mathrm{CH_{2}NCH_{3}}$         | $NH_2NCH_3$                     | N-Methyl methanimine                | Benson          |
| $CH_3COOH$                       | $CH_3COOH$                      | Acetic acid                         | Burcat          |
| $CH_3OCHO$                       | $CHOOCH_3$                      | Methyl formate                      | Burcat          |
| $CH_3CHOH$                       | $CH_3CHOH$                      | 1-hydroxy Ethyl radical             | Burcat          |
| $\mathrm{CH_{3}CH_{2}O}$         | $\mathrm{CH_{3}CH_{2}O}$        | Ethoxy radical                      | Burcat          |
| $\mathrm{CH_{3}OCH_{2}}$         | $\mathrm{CH_{3}OCH_{2}}$        | Methoxymethyl radical               | Burcat          |
| $\mathrm{CH_{3}NO_{3}}$          | $\mathrm{CH_{3}NO_{3}}$         | Methyl nitrate                      | Burcat          |
| $C_2H_3NO_2$                     | $C_2H_3NO_2$                    | Nitroethylene                       | Burcat          |
| $\mathrm{Si}_{2}\mathrm{H}_{6}$  | $\mathrm{Si}_{2}\mathrm{H}_{6}$ | Disilane                            | Burcat          |
| $C_3H_6$                         |                                 | Propene*                            | Burcat          |
| $C_2H_6N$                        | $(CH_3)_2N$                     | Dimethyl amidogen                   | Burcat          |
| $C_2H_5OH$                       | $\mathrm{CH_{3}CH_{2}OH}$       | Ethanol                             | Burcat          |
| $C_2H_5OO$                       | $C_2H_5OO$                      | C2H5OO                              | Burcat          |
| $C_2H_4O_3$                      | $HOCH_2COOH$                    | Glycolic acid                       | Burcat          |
| $(CH_3)_2O$                      | $(CH_3)_2O$                     | Dimethyl ether                      | Burcat          |
| $C_2H_5NO$                       | $C_2H_5NO$                      | Acetaldoxime                        | Benson          |
| $C_4H_6$                         | • • •                           | 1,3-Butadiene*                      | Burcat          |
| $(CH_3N)_2$                      | $(CH_3N)_2$                     | Dimethyl diazene                    | Burcat          |
| $(CH_3O)_2$                      | $(CH_3O)_2$                     | Dimethyl peroxide                   | Burcat          |
| $(CH_2OH)_2$                     | $(CH_2OH)_2$                    | 1,2-Ethanediol                      | Burcat          |
| $(CH_3)_2CO$                     | $(CH_3)_2CO$                    | Acetone                             | Burcat          |
| $C_2H_6O_2$                      | $HOCH_2CH_2OH$                  | Ethylene glycol                     | Burcat          |
| $C_2H_5NO_2$                     | $NH_2CH_2COOH$                  | Glycine                             | Burcat          |
| aC2H5NO2                         | $C_2H_5NO_2$                    | Nitroethane                         | Burcat          |
| bC2H5NO2                         | $C_2H_5ONO$                     | Ethyl nitrate                       | Benson          |
| $C_3H_8$                         | • • •                           | Propane*                            | Burcat          |
| $(\mathrm{CH_3})_2\mathrm{N_2O}$ | $(CH_3)_2N_2O$                  | Dimethylnitrosamine                 | Benson          |
| $C_4H_{10}$                      | • • •                           | Butane*                             | Burcat          |

Table 5: List of ions included the Stand 2015 Net-

| work                                             |                                     |                                     |                                     |                                      |                                     |                                     |
|--------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|
| e-                                               | $C^{+}$                             | C-                                  | $\mathrm{H}^{+}$                    | H-                                   | $K^{+}$                             | $N^+$                               |
| $O_{+}$                                          | $O^{+}(^{2}D)$                      | $O^{+}(^{3}P)$                      | $O_{-}$                             | $\mathrm{Ar}^{+}$                    | $\mathrm{Cl}^+$                     | $C_2^+$                             |
| $C_2^-$                                          | $C_3^+$                             | $C_4^+$                             | $\mathrm{CH}^{+}$                   | $CN^+$                               | $CN^-$                              | $CO_{+}$                            |
| $\mathrm{Fe^{+}}$                                | $\mathrm{H}_2^+$                    | $\mathrm{H}_3^+$                    | $\mathrm{HN}^+$                     | $\mathrm{HO}^{+}$                    | $\mathrm{HO}^-$                     | $\mathrm{He^{+}}$                   |
| $\mathrm{Mg}^{+}$                                | $Na^{+}$                            | $N_2^+$                             | $N_3^+$                             | $N_3^-$                              | $NO^{+}$                            | NO-                                 |
| $O_2^+$                                          | $O_2^+(X^2\Pi_g)$                   | $O_2^-$                             | $O_3^-$                             | Si <sup>+</sup>                      | $\mathrm{Ti}^+$                     | $\operatorname{Ar}_2^+$             |
| $ArH^+$                                          | $C_2H^+$                            | $C_2H^-$                            | $C_2N^+$                            | $C_2O^+$                             | $C_3H^+$                            | $C_3N^+$                            |
| $C_3O^+$                                         | $C_4H^+$                            | $C_5N^+$                            | $\mathrm{CH}_2^+$                   | $\mathrm{CH}_3^+$                    | $\mathrm{CH}_4^+$                   | $\mathrm{CH}_5^+$                   |
| $\mathrm{CHN}^+$                                 | $\mathrm{CHO}^+$                    | $CN_2^+$                            | $CNO^+$                             | $CNO^-$                              | $CO_2^+$                            | $CO_3^-$                            |
| $CO_4^+$                                         | $CO_4^-$                            | $FeO^+$                             | $\mathrm{H_2N^+}$                   | $\mathrm{H_2N^-}$                    | $\mathrm{H_2O}^+$                   | $\mathrm{H_{3}N^{+}}$               |
| $\mathrm{H_{3}O^{+}}$                            | $\mathrm{H_4N^+}$                   | $\mathrm{HN}_2^+$                   | $\mathrm{HN}_3^+$                   | $\mathrm{HNO}^{+}$                   | $\mathrm{HO}_2^+$                   | $HO_2^-$                            |
| $\mathrm{HO}_4^+$                                | $\mathrm{HSi}^+$                    | $\mathrm{He}_2^+$                   | $\mathrm{HeH^{+}}$                  | ${\rm MgO^+}$                        | $N_2O^+$                            | $NO_2^+$                            |
| $NO_{2}^{-}$                                     | $NO_{3}^{-}$                        | $\mathrm{Si}_2^{ar{+}}$             | SiH <sup>+</sup>                    | $SiO^+$                              | $TiO^+$                             | $Ar_2H^+$                           |
| $ArH_3^+$                                        | $C_2H_2^+$                          | $C_2H_2^-$                          | $C_2H_3^+$                          | $C_2H_3^-$                           | $C_2H_4^+$                          | $C_2H_5^+$                          |
| $C_2H_6^+$                                       | $\mathrm{C_2H}_7^+$                 | $C_2HN^+$                           | $C_2HO^+$                           | $C_2HO^-$                            | $C_2N_2^+$                          | $C_3H_2^+$                          |
| $C_3H_3^+$                                       | $C_3H_4^+$                          | $\mathrm{C_3H}_5^+$                 | $\mathrm{C_3H_6^+}$                 | $\mathrm{C_3H}_7^+$                  | $\mathrm{C_3H_8^+}$                 | $C_3H_9^+$                          |
| $C_3HN^+$                                        | $C_3N_2^+$                          | $C_3N_3^+$                          | $C_4H_2^+$                          | $C_4H_3^+$                           | $C_4H_4^+$                          | $C_4H_5^+$                          |
| $\mathrm{C_4H_7^+}$                              | $C_4H_8^+$                          | $C_4H_9^+$                          | $C_5HN^+$                           | $\mathrm{CH_2N^+}$                   | $\mathrm{CH_2O^+}$                  | $\mathrm{CH_{3}N^{+}}$              |
| $\mathrm{CH_{3}O^{+}}$                           | $\mathrm{CH_{3}O^{-}}$              | $\mathrm{CH_4N^+}$                  | $\mathrm{CH_4N^-}$                  | $\mathrm{CH_4O^+}$                   | $\mathrm{CH_5N^+}$                  | $\mathrm{CH_{5}O^{+}}$              |
| $\mathrm{CH_6N^+}$                               | CHNO <sup>+</sup>                   | $CHO_2^+$                           | $CHO_2^-$                           | $FeO_2^+$                            | $H_2NO^+$                           | $\mathrm{H_2O}_2^+$                 |
| $H_3O_2^+$                                       | $\mathrm{HN_2O^+}$                  | $HNO_2^{\overline{+}}$              | $MgHO^+$                            | $MgO_2^+$                            | $\mathrm{Si}_{2}\mathrm{H}^{+}$     | SiCH <sup>+</sup>                   |
| $SiH_2^+$                                        | $SiH_3^+$                           | $SiH_3^-$                           | $SiH_4^+$                           | $\mathrm{SiH}_5^+$                   | SiHO <sup>+</sup>                   | $C_2H_2N^+$                         |
| $C_2H_2N^-$                                      | $C_2H_2O^+$                         | $C_2H_3N^+$                         | $C_2H_3O^+$                         | $C_2H_3O^-$                          | $C_2H_4N^+$                         | $C_2H_4O^+$                         |
| $C_2H_5N^+$                                      | $C_2H_5O^+$                         | $C_2H_5O^-$                         | $C_2H_6O^+$                         | $C_2H_7O^+$                          | $C_2HN_2^+$                         | $C_3H_2N^+$                         |
| $C_3H_4O^+$                                      | $C_3H_5O^+$                         | $C_3H_6N^+$                         | $C_3H_6O^+$                         | $C_3H_7O^+$                          | $C_3H_9O^+$                         | $C_3HN_2^+$                         |
| $C_4H_2N^+$                                      | $\mathrm{CH_2NO}^+$                 | $\mathrm{CH_{3}NO^{+}}$             | $\mathrm{CH_4NO^+}$                 | $\mathrm{CH_{5}NO^{+}}$              | $\mathrm{CH_6NO^+}$                 | $\mathrm{CH_2O}_2^+$                |
| $\mathrm{CH_{2}OH^{+}}$                          | $\mathrm{CH_3O_2^+}$                | $\mathrm{H_2NO}_2^+$                | $H_2NO_3^+$                         | $\mathrm{Si}_{2}\mathrm{H}_{2}^{+}$  | $\mathrm{Si}_{2}\mathrm{H}_{3}^{+}$ | $\mathrm{Si}_{2}\mathrm{H}_{4}^{+}$ |
| $\mathrm{Si}_{2}\mathrm{H}_{5}^{+}$              | $\mathrm{Si}_{3}\mathrm{H}_{2}^{+}$ | $\mathrm{Si}_{3}\mathrm{H}_{3}^{+}$ | $\mathrm{Si}_{3}\mathrm{H}_{4}^{+}$ | $\mathrm{Si}_{3}\mathrm{H}_{5}^{+}$  | $\mathrm{Si}_{3}\mathrm{H}_{6}^{+}$ | $\mathrm{Si}_{3}\mathrm{H}_{7}^{+}$ |
| $\mathrm{Si}_4\mathrm{H}_2^+$                    | $\mathrm{Si}_4\mathrm{H}_3^+$       | $\mathrm{Si}_{4}\mathrm{H}_{4}^{+}$ | $\mathrm{Si}_{4}\mathrm{H}_{5}^{+}$ | $\mathrm{Si}_{4}\mathrm{H}_{6}^{+}$  | $\mathrm{Si}_4\mathrm{H}_7^+$       | $SiCH_2^+$                          |
| $SiCH_3^+$                                       | $SiCH_4^+$                          | $SiCH_5^+$                          | $SiC_2H^+$                          | $SiH_3O^+$                           | $SiH_3O^-$                          | aCHNO <sup>+</sup>                  |
| $C_2H_4NO^-$                                     | $C_2H_5O_2^+$                       | $C_4H_7O_2^+$                       | $\mathrm{CH_2NO_2^-}$               | $\mathrm{CH_3NO}_2^+$                | $\mathrm{CH_4NO}_2^+$               | $MgH_2O_2^+$                        |
| $\operatorname{SiC}_{2}\operatorname{H}_{3}^{+}$ | $SiC_2H_4^+$                        | $SiC_2H_5^+$                        | $SiC_2H_6^+$                        | $\mathrm{TiC}_{2}\mathrm{H}_{4}^{+}$ |                                     |                                     |

 ${\it TABLE~6} \\ {\it STAND2015~CHEMICAL~KINETICS~NETWORK}$ 

| #  | Type | Reaction                          | α            | β     | $\gamma$ | Ref |
|----|------|-----------------------------------|--------------|-------|----------|-----|
| 1  | 2d   | $C_2 \leftrightharpoons C + C$    | 2.49e-08     | 0.00  | 71600    | 1   |
| 2  | 2d   | $C_2 \leftrightharpoons C + C$    | 6.01e + 11   | -1.00 | 71600    |     |
| 3  | 2d   | $CH \leftrightharpoons C + H$     | 3.16e-10     | 0.00  | 33700    | 2   |
| 4  | 2d   | $CH \leftrightharpoons C + H$     | 7.63e + 09   | -1.00 | 33700    |     |
| 5  | 2d   | $CN \leftrightharpoons C + N$     | 1.00e-09     | 0.00  | 71000    | 3   |
| 6  | 2d   | $CN \leftrightharpoons C + N$     | 2.42e + 10   | 0.00  | 71000    |     |
| 7  | 2d   | CO = C + O                        | 1.52e-04     | -3.10 | 129000   | 4   |
| 8  | 2d   | CO = C + O                        | 3.67e + 15   | -4.10 | 129000   |     |
| 9  | 2d   | $H + H \leftrightharpoons H_2$    | 9.13e-33     | -0.60 | 0        | 30  |
| 10 | 2d   | $H + H \leftrightharpoons H_2$    | 1.00e-11     | 0.00  | 0        | 5   |
| 11 | 2d   | $HN \leftrightharpoons H + N$     | 2.99e-10     | 0.00  | 37700    | 6   |
| 12 | 2d   | $HN \leftrightharpoons H + N$     | 7.22e + 09   | -1.00 | 37700    |     |
| 13 | 2d   | $H + O \leftrightharpoons HO$     | 4.33e-32     | -1.00 | 0        | 7   |
| 14 | 2d   | $H + O \leftrightharpoons HO$     | 1.05e-12     | -2.00 | 0        |     |
| 15 | 2d   | $N_2 \leftrightharpoons N + N$    | 8.86e-05     | -3.33 | 113000   | 8   |
| 16 | 2d   | $N_2 \leftrightharpoons N + N$    | 2.14e + 15   | -4.33 | 113000   |     |
| 17 | 2d   | $NO \leftrightharpoons N + O$     | 4.98e-10     | 0.00  | 76600    | 9   |
| 18 | 2d   | $NO \leftrightharpoons N + O$     | 1.20e + 10   | -1.00 | 76600    |     |
| 19 | 2d   | $O_2 = O + O$                     | 5.65e-10     | 0.00  | 55700    | 10  |
| 20 | 2d   | $O_2 \leftrightharpoons O + O$    | 1.36e + 10   | -1.00 | 55700    |     |
| 21 | 2d   | $O_2 + O \leftrightharpoons O_3$  | 6.00e-34     | -2.40 | 0        | 169 |
| 22 | 2d   | $O_2 + O \leftrightharpoons O_3$  | 2.81e-12     | 0.00  | 0        | 11  |
| 23 | 2d   | $C_2H \leftrightharpoons C_2 + H$ | 5.00e-01     | -5.16 | 57400    | 1   |
| 24 | 2d   | $C_2H \leftrightharpoons C_2 + H$ | 1.21e + 18   | -6.16 | 57400    |     |
| 25 | 2d   | $CNC \leftrightharpoons C_2 + N$  | 5.00e-01     | -5.16 | 57400    | Est |
| 26 | 2d   | $CNC \leftrightharpoons C_2 + N$  | $1.21e{+18}$ | -6.16 | 57400    |     |
| 27 | 2d   | $C_2O \leftrightharpoons C_2 + O$ | 5.00e-01     | -5.16 | 57400    | Est |
| 28 | 2d   | $C_2O \leftrightharpoons C_2 + O$ | 1.21e + 18   | -6.16 | 57400    |     |
| 29 | 2d   | $CH_2 \leftrightharpoons CH + H$  | 9.33e-09     | 0.00  | 45100    | 12  |
| 30 | 2d   | $CH_2 \leftrightharpoons CH + H$  | $2.25e{+}11$ | -1.00 | 45100    |     |
| 31 | 2d   | $C + H_2 \leftrightharpoons CH_2$ | 7.00e-32     | 0.00  | 0        | 13  |
| 32 | 2d   | $C + H_2 \leftrightharpoons CH_2$ | 1.70e-11     | 0.00  | 57       |     |
| 33 | 2d   | $HCN \leftrightharpoons HNC$      | 1.45 e - 06  | 1.00  | 23800    | 14  |
| 34 | 2d   | $HCN \leftrightharpoons HNC$      | $3.50e{+13}$ | 0.00  | 23800    |     |
| 35 | 2d   | $HCN \leftrightharpoons CN + H$   | 6.14e-06     | -1.58 | 61500    | Est |
| 36 | 2d   | $HCN \leftrightharpoons CN + H$   | $2.55e{+}12$ | 0.00  | 0        |     |
| 37 | 2d   | $H + CO \leftrightharpoons CHO$   | 1.40e-34     | 0.00  | 100      | 15  |
| 38 | 2d   | $H + CO \leftrightharpoons CHO$   | 1.96e-13     | 0.00  | 1370     |     |
| 39 | 2d   | $NCO \leftrightharpoons CO + N$   | 3.65e-10     | 0.00  | 27200    | 16  |
| 40 | 2d   | $NCO \leftrightharpoons CO + N$   | 8.82e + 09   | -1.00 | 27200    |     |
| 41 | 2d   | $CO_2 \leftrightharpoons CO + O$  | 1.81e-10     | 0.00  | 49000    | 17  |

Table 6—Continued

| TABLE 0—Commuea |      |                                      |              |       |          |     |  |  |
|-----------------|------|--------------------------------------|--------------|-------|----------|-----|--|--|
| #               | Type | Reaction                             | $\alpha$     | β     | $\gamma$ | Ref |  |  |
| 42              | 2d   | $CO_2 \leftrightharpoons CO + O$     | 8.99e + 12   | 0.00  | 65300    |     |  |  |
| 43              | 2d   | $H_2N \leftrightharpoons HN + H$     | 1.99e-09     | 0.00  | 38300    | 6   |  |  |
| 44              | 2d   | $H_2N \leftrightharpoons HN + H$     | 4.81e + 10   | -1.00 | 38300    |     |  |  |
| 45              | 2d   | $HO + H \leftrightharpoons H_2O$     | 6.78e-31     | -2.00 | 0        | 5   |  |  |
| 46              | 2d   | $HO + H \leftrightharpoons H_2O$     | 2.09e-10     | 0.00  | 0        |     |  |  |
| 47              | 2d   | HNO = NO + H                         | 5.48e-07     | -1.24 | 25300    | 18  |  |  |
| 48              | 2d   | $HNO \leftrightharpoons NO + H$      | 1.00e + 13   | 0.00  | 24200    |     |  |  |
| 49              | 2d   | $HO_2 \leftrightharpoons O_2 + H$    | 2.41e-08     | -1.18 | 24400    | 7   |  |  |
| 50              | 2d   | $HO_2 \leftrightharpoons O_2 + H$    | 5.82e + 11   | -2.18 | 24400    |     |  |  |
| 51              | 2d   | $N_2O \leftrightharpoons N_2 + O$    | 9.51e-10     | 0.00  | 29000    | 19  |  |  |
| 52              | 2d   | $N_2O \leftrightharpoons N_2 + O$    | 2.30e + 10   | -1.00 | 29000    |     |  |  |
| 53              | 2d   | $NO + O \leftrightharpoons NO_2$     | 9.00e-32     | -1.50 | 0        | 169 |  |  |
| 54              | 2d   | $NO + O \leftrightharpoons NO_2$     | 3.00e-11     | 0.00  | 0        |     |  |  |
| 55              | 2d   | $CH + H_2 \leftrightharpoons CH_3$   | 9.00e-31     | 0.00  | 550      | 21  |  |  |
| 56              | 2d   | $CH + H_2 \leftrightharpoons CH_3$   | 2.01e-10     | 0.15  | 0        | 20  |  |  |
| 57              | 2d   | $H + CH_2 \leftrightharpoons CH_3$   | 5.63e-31     | 0.00  | 0        | 21  |  |  |
| 58              | 2d   | $H + CH_2 \leftrightharpoons CH_3$   | 2.01e-11     | 0.15  | 0        |     |  |  |
| 59              | 2d   | $H_3N \leftrightharpoons H_2N + H$   | 2.96e-08     | 0.00  | 46300    | 22  |  |  |
| 60              | 2d   | $H_3N \leftrightharpoons H_2N + H$   | 6.60e + 17   | 0.00  | 49000    |     |  |  |
| 61              | 2d   | $H_3N \leftrightharpoons HN + H_2$   | 1.05e-09     | 0.00  | 47000    | 23  |  |  |
| 62              | 2d   | $H_3N \leftrightharpoons HN + H_2$   | 3.62e + 10   | -1.00 | 47000    |     |  |  |
| 63              | 2d   | $NO_3 \leftrightharpoons NO + O_2$   | 2.51e-14     | 0.00  | 1230     | 24  |  |  |
| 64              | 2d   | $NO_3 \leftrightharpoons NO + O_2$   | 6.06e + 05   | -1.00 | 1230     |     |  |  |
| 65              | 2d   | $H + CH_3 \leftrightharpoons CH_4$   | 8.90e-29     | -1.80 | 318      | 31  |  |  |
| 66              | 2d   | $H + CH_3 \leftrightharpoons CH_4$   | 3.20e-10     | 0.13  | 25       |     |  |  |
| 67              | 2d   | $HN_2 \leftrightharpoons N_2 + H$    | 1.15e-10     | -0.11 | 2510     | 25  |  |  |
| 68              | 2d   | $HN_2 \leftrightharpoons N_2 + H$    | 6.35e + 13   | -0.53 | 3400     |     |  |  |
| 69              | 2d   | $C_2N \leftrightharpoons CNC$        | 5.00e-01     | -5.16 | 57400    | Est |  |  |
| 70              | 2d   | $C_2N \leftrightharpoons CNC$        | $1.21e{+18}$ | -6.16 | 57400    |     |  |  |
| 71              | 2d   | CNO = CO + N                         | 3.95 e-06    | -1.90 | 30100    | 3   |  |  |
| 72              | 2d   | CNO = CO + N                         | $9.54e{+13}$ | -2.90 | 30100    |     |  |  |
| 73              | 2d   | $H + C_2H \leftrightharpoons C_2H_2$ | 2.63e-26     | -3.10 | 740      | 7   |  |  |
| 74              | 2d   | $H + C_2H \leftrightharpoons C_2H_2$ | 3.00e-10     | 0.00  | 0        |     |  |  |
| 75              | 2d   | $HCCN \leftrightharpoons CNC + H$    | 5.00e-01     | -5.16 | 57400    | Est |  |  |
| 76              | 2d   | $HCCN \leftrightharpoons CNC + H$    | $1.21e{+18}$ | -6.16 | 57400    |     |  |  |
| 77              | 2d   | $NCCN \leftrightharpoons CN + CN$    | 2.97e-07     | 0.00  | 53600    | 26  |  |  |
| 78              | 2d   | $NCCN \leftrightharpoons CN + CN$    | 7.17e + 12   | -1.00 | 53600    |     |  |  |
| 79              | 2d   | OCCN = CN + CO                       | 2.97e-07     | 0.00  | 53600    | Est |  |  |
| 80              | 2d   | OCCN = CN + CO                       | 7.17e + 12   | -1.00 | 53600    |     |  |  |
| 81              | 2d   | $CH_2O \leftrightharpoons CHO + H$   | 6.20 e-09    | 0.00  | 36900    | 27  |  |  |
| 82              | 2d   | $CH_2O \leftrightharpoons CHO + H$   | 8.00e + 15   | 0.00  | 44100    |     |  |  |
|                 |      |                                      |              |       |          |     |  |  |

Table 6—Continued

|     |      | TABLE 0—C                                | отитиви    |       |          |                      |
|-----|------|------------------------------------------|------------|-------|----------|----------------------|
| #   | Type | Reaction                                 | α          | β     | $\gamma$ | Ref                  |
| 83  | 2d   | $CH_2O \leftrightharpoons CO + H_2$      | 9.40e-09   | 0.00  | 33200    | 27                   |
| 84  | 2d   | $CH_2O \leftrightharpoons CO + H_2$      | 3.70e + 13 | 0.00  | 36200    |                      |
| 85  | 2d   | $CHN_2 \leftrightharpoons CH + N_2$      | 2.97e-07   | 0.00  | 53600    | Est                  |
| 86  | 2d   | $CHN_2 \leftrightharpoons CH + N_2$      | 7.17e + 12 | -1.00 | 53600    |                      |
| 87  | 2d   | HNCO = NCO + H                           | 1.66e-07   | 0.00  | 56400    | 28                   |
| 88  | 2d   | HNCO = NCO + H                           | 4.01e + 12 | 0.00  | 56400    |                      |
| 89  | 2d   | HNCO = CO + HN                           | 7.69e-04   | -3.10 | 51400    | 3                    |
| 90  | 2d   | HNCO = CO + HN                           | 6.00e + 13 | 0.00  | 50200    |                      |
| 91  | 2d   | $HOCN \leftrightharpoons CN + HO$        | 1.66e-09   | 0.00  | 0        | 29                   |
| 92  | 2d   | $HOCN \leftrightharpoons CN + HO$        | 4.01e + 10 | 0.00  | 0        |                      |
| 93  | 2d   | $HCNO \leftrightharpoons CNO + H$        | 1.66e-07   | 0.00  | 56400    | 28                   |
| 94  | 2d   | $HCNO \leftrightharpoons CNO + H$        | 4.01e + 12 | 0.00  | 56400    |                      |
| 95  | 2d   | $HCNO \leftrightharpoons CN + HO$        | 1.66e-09   | 0.00  | 0        | 29                   |
| 96  | 2d   | $HCNO \leftrightharpoons CN + HO$        | 4.01e + 10 | 0.00  | 0        |                      |
| 97  | 2d   | $HONC \leftrightharpoons CN + HO$        | 1.66e-09   | 0.00  | 0        | 29                   |
| 98  | 2d   | $HONC \leftrightharpoons CN + HO$        | 4.01e + 10 | 0.00  | 0        |                      |
| 99  | 2d   | $H_2N_2 \leftrightharpoons H_2 + N_2$    | 1.00e-09   | 0.00  | 10000    | Est                  |
| 100 | 2d   | $H_2N_2 \leftrightharpoons H_2 + N_2$    | 2.42e + 10 | -1.00 | 10000    |                      |
| 101 | 2d   | $H_2O_2 \leftrightharpoons HO + HO$      | 3.01e-08   | 0.00  | 21700    | $\operatorname{Est}$ |
| 102 | 2d   | $H_2O_2 \leftrightharpoons HO + HO$      | 3.00e + 14 | 0.00  | 24400    |                      |
| 103 | 2d   | $HNO_2 \leftrightharpoons HO + NO$       | 2.23e-03   | -3.80 | 25200    | 18                   |
| 104 | 2d   | $HNO_2 \leftrightharpoons HO + NO$       | 1.09e + 16 | -1.23 | 25000    |                      |
| 105 | 2d   | $N_2O_2 \leftrightharpoons NO + NO$      | 1.00e-09   | 0.00  | 1500     | Est                  |
| 106 | 2d   | $N_2O_2 \leftrightharpoons NO + NO$      | 2.42e + 10 | -1.00 | 1500     |                      |
| 107 | 2d   | $H + C_2H_2 \leftrightharpoons C_2H_3$   | 4.87e-30   | -1.07 | 83       | 31                   |
| 108 | 2d   | $H + C_2H_2 \leftrightharpoons C_2H_3$   | 1.06e-11   | 1.64  | 1060     | 30                   |
| 109 | 2d   | $CH_3N \leftrightharpoons HCN + H_2$     | 5.00e-01   | -5.16 | 57400    | Est                  |
| 110 | 2d   | $CH_3N \leftrightharpoons HCN + H_2$     | 1.21e + 18 | -6.16 | 57400    |                      |
| 111 | 2d   | $CH_3O \leftrightharpoons CH_2O + H$     | 6.59 e-05  | -2.70 | 15400    | $\operatorname{Est}$ |
| 112 | 2d   | $CH_3O \leftrightharpoons CH_2O + H$     | 2.87e + 13 | 1.31  | 15800    |                      |
| 113 | 2d   | $NO_2 + HO \leftrightharpoons HNO_3$     | 1.14e-06   | 0.00  | 23100    | 169                  |
| 114 | 2d   | $NO_2 + HO \leftrightharpoons HNO_3$     | 9.33e + 15 | 0.00  | 24700    |                      |
| 115 | 2d   | $HO_2 + NO \leftrightharpoons HNO_3$     | 8.00e-02   | -6.55 | 26100    | 169                  |
| 116 | 2d   | $HO_2 + NO \leftrightharpoons HNO_3$     | 5.56e + 17 | -2.27 | 26300    |                      |
| 117 | 2d   | $N_2O_3 \leftrightharpoons NO_2 + NO$    | 1.91e-07   | -8.70 | 4880     | 32                   |
| 118 | 2d   | $N_2O_3 \leftrightharpoons NO_2 + NO$    | 4.70e + 15 | 0.40  | 4880     |                      |
| 119 | 2d   | $H + C_2H_3 \leftrightharpoons C_2H_4$   | 1.49e-29   | -1.00 | 0        | 21                   |
| 120 | 2d   | $H + C_2H_3 \leftrightharpoons C_2H_4$   | 2.30e-10   | 0.20  | 0        |                      |
| 121 | 2d   | $C_2H_4 \leftrightharpoons C_2H_2 + H_2$ | 5.80 e-08  | 0.00  | 36000    | 33                   |
| 122 | 2d   | $C_2H_4 \leftrightharpoons C_2H_2 + H_2$ | 9.75e + 13 | 0.44  | 44700    |                      |
| 123 | 2d   | $H + C_4H \leftrightharpoons C_4H_2$     | 2.64e-26   | -3.10 | 72       | 21                   |
|     |      |                                          |            |       |          |                      |

Table 6—Continued

| TABLE 0—Communeu |      |                                           |              |       |          |     |  |  |  |
|------------------|------|-------------------------------------------|--------------|-------|----------|-----|--|--|--|
| #                | Type | Reaction                                  | α            | β     | $\gamma$ | Ref |  |  |  |
| 124              | 2d   | $H + C_4H \leftrightharpoons C_4H_2$      | 3.00e-10     | 0.00  | 0        |     |  |  |  |
| 125              | 2d   | $C_2H + C_2H \leftrightharpoons C_4H_2$   | 5.56e-28     | -3.00 | 300      | 31  |  |  |  |
| 126              | 2d   | $C_2H + C_2H \leftrightharpoons C_4H_2$   | 2.60e-10     | 0.00  | 0        |     |  |  |  |
| 127              | 2d   | $H + C_4H_2 \leftrightharpoons C_4H_3$    | 5.53e-25     | -2.93 | 176      | 31  |  |  |  |
| 128              | 2d   | $H + C_4H_2 \leftrightharpoons C_4H_3$    | 2.66e-12     | 5.55  | 0        |     |  |  |  |
| 129              | 2d   | $H + C_4H_3 \leftrightharpoons C_4H_4$    | 5.41e-23     | -3.97 | 177      | 31  |  |  |  |
| 130              | 2d   | $H + C_4H_3 \leftrightharpoons C_4H_4$    | 1.39e-10     | 0.00  | 0        |     |  |  |  |
| 131              | 2d   | $H_4N_2 \leftrightharpoons H_2N + H_2N$   | 6.61e-09     | 0.00  | 20600    | 34  |  |  |  |
| 132              | 2d   | $H_4N_2 \leftrightharpoons H_2N + H_2N$   | 7.94e + 13   | 0.00  | 27700    |     |  |  |  |
| 133              | 2d   | $H_4O_2 \leftrightharpoons H_2O + H_2O$   | 1.00e-09     | 0.00  | 1500     | Est |  |  |  |
| 134              | 2d   | $H_4O_2 \leftrightharpoons H_2O + H_2O$   | $2.42e{+10}$ | -1.00 | 1500     |     |  |  |  |
| 135              | 2d   | $H + C_2H_4 \leftrightharpoons C_2H_5$    | 9.23e-29     | -1.51 | 73       | 31  |  |  |  |
| 136              | 2d   | $H + C_2H_4 \leftrightharpoons C_2H_5$    | 1.08e-12     | 5.31  | 0        |     |  |  |  |
| 137              | 2d   | $CH_5N \leftrightharpoons CH_3 + H_2N$    | 5.25e-11     | 0.00  | 17700    | 35  |  |  |  |
| 138              | 2d   | $CH_5N \leftrightharpoons CH_3 + H_2N$    | 6.92e + 10   | 0.00  | 24200    |     |  |  |  |
| 139              | 2d   | $CH_5N \leftrightharpoons CH_4 + HN$      | 2.66e-11     | 0.00  | 24300    | 36  |  |  |  |
| 140              | 2d   | $CH_5N \leftrightharpoons CH_4 + HN$      | 6.43e + 08   | -1.00 | 24300    |     |  |  |  |
| 141              | 2d   | $CH_3 + CH_3 \leftrightharpoons C_2H_6$   | 3.05e-26     | -3.77 | 62       | 31  |  |  |  |
| 142              | 2d   | $CH_3 + CH_3 \leftrightharpoons C_2H_6$   | 6.78e-11     | -0.36 | 30       |     |  |  |  |
| 143              | 2d   | $H + C_2H_5 \leftrightharpoons C_2H_6$    | 2.00e-28     | -1.50 | 0        | 31  |  |  |  |
| 144              | 2d   | $H + C_2H_5 \leftrightharpoons C_2H_6$    | 1.70e-10     | 0.00  | 0        |     |  |  |  |
| 145              | 2d   | $C_2H_6 \leftrightharpoons C_2H_4 + H_2$  | 3.80e-07     | 0.00  | 34000    | 37  |  |  |  |
| 146              | 2d   | $C_2H_6 \leftrightharpoons C_2H_4 + H_2$  | 9.18e + 12   | -1.00 | 34000    |     |  |  |  |
| 147              | 2d   | $C_3H_4 \leftrightharpoons C_2H_2 + CH_2$ | 2.19e-10     | 1.00  | 27900    | Est |  |  |  |
| 148              | 2d   | $C_3H_4 \leftrightharpoons C_2H_2 + CH_2$ | 5.30e + 09   | 0.00  | 27900    |     |  |  |  |
| 149              | 2d   | $C_3H_4 \leftrightharpoons C_2H_4 + C$    | 2.40e-13     | 1.00  | 20100    | Est |  |  |  |
| 150              | 2d   | $C_3H_4 \leftrightharpoons C_2H_4 + C$    | 5.79e + 06   | 0.00  | 20100    |     |  |  |  |
| 151              | 2d   | $C_3H_4 \leftrightharpoons CH_4 + C + C$  | 2.82e-11     | 1.00  | 23500    | Est |  |  |  |
| 152              | 2d   | $C_3H_4 \leftrightharpoons CH_4 + C + C$  | 6.81e-08     | 0.00  | 23500    |     |  |  |  |
| 153              | 2d   | $C_3H_4 \leftrightharpoons C_3H_3 + H$    | 7.80e-06     | 0.00  | 40300    | Est |  |  |  |
| 154              | 2d   | $C_3H_4 \leftrightharpoons C_3H_3 + H$    | 1.88e + 14   | -1.00 | 40300    |     |  |  |  |
| 155              | 2d   | $C_3H_3 \leftrightharpoons C_2H_2 + CH$   | 1.00e-14     | 0.00  | 0        | Est |  |  |  |
| 156              | 2d   | $C_3H_3 \leftrightharpoons C_2H_2 + CH$   | 2.00e + 05   | 0.00  | 0        |     |  |  |  |
| 157              | 2d   | $C_3H_5 \leftrightharpoons C_3H_4 + H$    | 4.14e-05     | 1.00  | 32000    | 38  |  |  |  |
| 158              | 2d   | $C_3H_5 \leftrightharpoons C_3H_4 + H$    | 1.00e + 15   | 0.00  | 32000    |     |  |  |  |
| 159              | 2d   | $C_3H_5 \leftrightharpoons C_2H_2 + CH_3$ | 5.22 e-07    | 1.00  | 16800    | 39  |  |  |  |
| 160              | 2d   | $C_3H_5 \leftrightharpoons C_2H_2 + CH_3$ | 1.26e + 13   | 0.00  | 16800    |     |  |  |  |
| 161              | 2d   | $HOCH = CO + H_2$                         | 9.40e-09     | 0.00  | 33200    | 27  |  |  |  |
| 162              | 2d   | $HOCH = CO + H_2$                         | 3.70e + 13   | 0.00  | 36200    |     |  |  |  |
| 163              | 2d   | $HOCH \leftrightharpoons CHO + H$         | 6.20e-09     | 0.00  | 36900    | 27  |  |  |  |
| 100              | 2u   | $110011 \rightarrow 0110 + 11$            | 0.200 05     | 0.00  | 00000    | 41  |  |  |  |

Table 6—Continued

| TABLE 0—Continued |      |                                             |              |       |          |                      |
|-------------------|------|---------------------------------------------|--------------|-------|----------|----------------------|
| #                 | Type | Reaction                                    | α            | β     | $\gamma$ | Ref                  |
| 165               | 2d   | $HC_3N \leftrightharpoons HCN + C_2$        | 1.00e-08     | 0.00  | 81900    | Est                  |
| 166               | 2d   | $HC_3N \leftrightharpoons HCN + C_2$        | 2.42e + 11   | -1.00 | 81900    |                      |
| 167               | 2d   | $NH_2O \leftrightharpoons H_2 + NO$         | 4.14e-07     | 1.00  | 6830     | 40                   |
| 168               | 2d   | $NH_2O \leftrightharpoons H_2 + NO$         | 1.00e + 13   | 0.00  | 6830     |                      |
| 169               | 2d   | $HCCO \leftrightharpoons CO + CH$           | 1.08e-08     | 0.00  | 29600    | 41                   |
| 170               | 2d   | $HCCO \leftrightharpoons CO + CH$           | $2.61e{+11}$ | -1.00 | 29600    |                      |
| 171               | 2d   | $C_4H_3 \leftrightharpoons C_2H_2 + C_2H$   | 5.34e-05     | 1.00  | 41500    | $\operatorname{Est}$ |
| 172               | 2d   | $C_4H_3 \leftrightharpoons C_2H_2 + C_2H$   | 1.29e + 15   | 0.00  | 41500    |                      |
| 173               | 2d   | $C_4H_4 \leftrightharpoons C_2H_2 + C_2H_2$ | 5.34 e-05    | 1.00  | 41500    | 42                   |
| 174               | 2d   | $C_4H_4 \leftrightharpoons C_2H_2 + C_2H_2$ | 1.29e + 15   | 0.00  | 41500    |                      |
| 175               | 2d   | $C_4H_6 \leftrightharpoons C_4H_4 + H_2$    | 2.90e-05     | 1.00  | 47800    | Est                  |
| 176               | 2d   | $C_4H_6 \leftrightharpoons C_4H_4 + H_2$    | 7.00e + 14   | 0.00  | 47800    |                      |
| 177               | 2d   | $C_4H_6 \leftrightharpoons C_3H_3 + CH_3$   | 4.14e-08     | 1.00  | 30000    | 43                   |
| 178               | 2d   | $C_4H_6 \leftrightharpoons C_3H_3 + CH_3$   | 1.00e + 12   | 0.00  | 30000    |                      |
| 179               | 2d   | $C_4H_6 \leftrightharpoons C_2H_3 + C_2H_3$ | 1.27e-07     | 1.00  | 33600    | 43                   |
| 180               | 2d   | $C_4H_6 \leftrightharpoons C_2H_3 + C_2H_3$ | 3.07e + 12   | 0.00  | 33600    |                      |
| 181               | 2d   | $C_4H_6 \leftrightharpoons C_2H_4 + C_2H_2$ | 2.90e-07     | 1.00  | 33800    | 43                   |
| 182               | 2d   | $C_4H_6 \leftrightharpoons C_2H_4 + C_2H_2$ | 7.00e + 12   | 0.00  | 33800    |                      |
| 183               | 2d   | $HNNH \leftrightharpoons N_2 + H_2$         | 1.00e-08     | 0.00  | 10000    | $\operatorname{Est}$ |
| 184               | 2d   | $HNNH \leftrightharpoons N_2 + H_2$         | 2.42e + 11   | -1.00 | 10000    |                      |
| 185               | 2d   | $HNNH \leftrightharpoons HN + HN$           | 1.00e-08     | 0.00  | 70000    | Est                  |
| 186               | 2d   | $HNNH \leftrightharpoons HN + HN$           | 2.42e + 11   | -1.00 | 70000    |                      |
| 187               | 2d   | $H_2CN \leftrightharpoons HCN + H$          | 1.00e-08     | 0.00  | 27000    | 44                   |
| 188               | 2d   | $H_2CN \leftrightharpoons HCN + H$          | 2.42e + 11   | -1.00 | 27000    |                      |
| 189               | 2d   | $CH_2CN \leftrightharpoons CH_2 + CN$       | 5.00e-01     | -5.16 | 57400    | $\operatorname{Est}$ |
| 190               | 2d   | $CH_2CN \leftrightharpoons CH_2 + CN$       | $1.21e{+18}$ | -6.16 | 57400    |                      |
| 191               | 2d   | $C_2H_2O \leftrightharpoons CH_2 + CO$      | 5.98e-09     | 0.00  | 29000    | 45                   |
| 192               | 2d   | $C_2H_2O \leftrightharpoons CH_2 + CO$      | 3.00e + 14   | 0.00  | 35700    |                      |
| 193               | 2d   | $HCOCN \leftrightharpoons HNC + CO$         | 9.23e-06     | 1.00  | 32100    | 46                   |
| 194               | 2d   | $HCOCN \leftrightharpoons HNC + CO$         | 2.23e + 14   | 0.00  | 32100    |                      |
| 195               | 2d   | $HCOCN \leftrightharpoons HCN + CO$         | 1.00e-05     | 1.00  | 33100    | 46                   |
| 196               | 2d   | $HCOCN \leftrightharpoons HCN + CO$         | 2.42e + 14   | 0.00  | 33100    |                      |
| 197               | 2d   | $CH_2OH \leftrightharpoons CH_2O + H$       | 1.66e-10     | 0.00  | 12600    | 47                   |
| 198               | 2d   | $CH_2OH \leftrightharpoons CH_2O + H$       | 5.60e + 10   | 0.00  | 14600    |                      |
| 199               | 2d   | $CH_2N_2 \leftrightharpoons CH_2 + N_2$     | 4.97e-08     | 1.00  | 17100    | 48                   |
| 200               | 2d   | $CH_2N_2 \leftrightharpoons CH_2 + N_2$     | 1.20e + 12   | 0.00  | 17100    |                      |
| 201               | 2d   | $CH_2O_2 \leftrightharpoons CO_2 + H_2$     | 2.81e-09     | 0.00  | 25700    | Est                  |
| 202               | 2d   | $CH_2O_2 \leftrightharpoons CO_2 + H_2$     | 4.46e + 13   | 0.00  | 34400    |                      |
| 203               | 2d   | $HCOOH = CO_2 + H_2$                        | 2.81e-09     | 0.00  | 25700    | 49                   |
| 204               | 2d   | $HCOOH = CO_2 + H_2$                        | 4.46e + 13   | 0.00  | 34400    |                      |
| 205               | 2d   | $HCOOH = H_2O + CO$                         | 6.73e-09     | 0.00  | 26700    | 49                   |
|                   |      |                                             |              |       |          |                      |

Table 6—Continued

|     |      | TABLE 0—Co                                 | пиниеи     |       |          |     |
|-----|------|--------------------------------------------|------------|-------|----------|-----|
| #   | Type | Reaction                                   | α          | β     | $\gamma$ | Ref |
| 206 | 2d   | $HCOOH = H_2O + CO$                        | 7.49e + 14 | 0.00  | 34500    |     |
| 207 | 2d   | $HCOOH = CH_2O_2$                          | 1.20e-12   | 0.00  | 0        | 49  |
| 208 | 2d   | $HCOOH = CH_2O_2$                          | 2.90e + 07 | -1.00 | 0        |     |
| 209 | 2d   | $CH_3CN \leftrightharpoons C_2H_3N$        | 4.17e-11   | 0.00  | 19100    | 50  |
| 210 | 2d   | $CH_3CN \leftrightharpoons C_2H_3N$        | 1.01e + 09 | -1.00 | 19100    |     |
| 211 | 2d   | $CH_3CN \leftrightharpoons CH_2CN + H$     | 4.00e-04   | 1.00  | 48400    | 51  |
| 212 | 2d   | $CH_3CN \leftrightharpoons CH_2CN + H$     | 1.00e + 16 | 0.00  | 48400    |     |
| 213 | 2d   | $C_2H_3N \leftrightharpoons CH_2CN + H$    | 4.00e-04   | 1.00  | 48400    | Est |
| 214 | 2d   | $C_2H_3N \leftrightharpoons CH_2CN + H$    | 1.00e + 16 | 0.00  | 48400    |     |
| 215 | 2d   | $C_2H_3O \leftrightharpoons CH_2CHO$       | 1.24e-04   | 1.00  | 14200    | 52  |
| 216 | 2d   | $C_2H_3O \leftrightharpoons CH_2CHO$       | 3.00e + 15 | 0.00  | 14200    |     |
| 217 | 2d   | $C_2H_3O \leftrightharpoons CH_3 + CO$     | 5.25e-10   | 0.00  | 6040     | 53  |
| 218 | 2d   | $C_2H_3O \leftrightharpoons CH_3 + CO$     | 2.00e + 10 | 0.00  | 7550     |     |
| 219 | 2d   | $C_2H_2 + HO \leftrightharpoons C_2H_3O$   | 5.00e-30   | -1.50 | 0        | 54  |
| 220 | 2d   | $C_2H_2 + HO \leftrightharpoons C_2H_3O$   | 9.00e-13   | 2.00  | 0        |     |
| 221 | 2d   | $C_2H_3O \leftrightharpoons C_2H_2O + H$   | 3.61e-07   | 2.94  | 23100    | 55  |
| 222 | 2d   | $C_2H_3O \leftrightharpoons C_2H_2O + H$   | 8.74e + 12 | 1.94  | 23100    |     |
| 223 | 2d   | $CH_3OH \leftrightharpoons H_2O + CH_2$    | 1.16e-08   | 0.00  | 33400    | 56  |
| 224 | 2d   | $CH_3OH \leftrightharpoons H_2O + CH_2$    | 2.80e + 11 | -1.00 | 33400    |     |
| 225 | 2d   | $CH_3OH \leftrightharpoons CH_2OH + H$     | 2.16e-08   | 0.00  | 33600    | 57  |
| 226 | 2d   | $CH_3OH \leftrightharpoons CH_2OH + H$     | 2.30e + 10 | 5.04  | 42500    |     |
| 227 | 2d   | $HO + CH_3 \leftrightharpoons CH_3OH$      | 6.40e-29   | 0.00  | 1030     | 21  |
| 228 | 2d   | $HO + CH_3 \leftrightharpoons CH_3OH$      | 6.33e-11   | 0.10  | 0        |     |
| 229 | 2d   | $CH_3OH \leftrightharpoons CH_3O + H$      | 4.04e-07   | 3.39  | 50200    | 58  |
| 230 | 2d   | $CH_3OH \leftrightharpoons CH_3O + H$      | 9.75e + 12 | 2.39  | 50200    |     |
| 231 | 2d   | $CH_3OH \leftrightharpoons HOCH + H_2$     | 8.78e-07   | 2.22  | 43500    | 58  |
| 232 | 2d   | $CH_3OH \leftrightharpoons HOCH + H_2$     | 2.12e + 13 | 1.22  | 43500    |     |
| 233 | 2d   | $C_2H_4O \leftrightharpoons CH_3 + CHO$    | 2.48e-05   | 1.00  | 39800    | 59  |
| 234 | 2d   | $C_2H_4O \leftrightharpoons CH_3 + CHO$    | 6.00e + 14 | 0.00  | 39800    |     |
| 235 | 2d   | $C_2H_4O \leftrightharpoons C_2H_2O + H_2$ | 1.24 e-05  | 1.00  | 42200    | 59  |
| 236 | 2d   | $C_2H_4O \leftrightharpoons C_2H_2O + H_2$ | 3.00e + 14 | 0.00  | 42200    |     |
| 237 | 2d   | $C_2H_4O \leftrightharpoons CH_4 + CO$     | 4.14e-05   | 1.00  | 42800    | 59  |
| 238 | 2d   | $C_2H_4O \leftrightharpoons CH_4 + CO$     | 1.00e + 15 | 0.00  | 42800    |     |
| 239 | 2d   | $CH_4O_2 \leftrightharpoons CH_3O + HO$    | 2.48e-05   | 1.00  | 21300    | 33  |
| 240 | 2d   | $CH_4O_2 \leftrightharpoons CH_3O + HO$    | 6.00e + 14 | 0.00  | 21300    |     |
| 241 | 2d   | $C_2H_6N \leftrightharpoons CH_3N + CH_3$  | 5.25 e-11  | 0.00  | 17700    | Est |
| 242 | 2d   | $C_2H_6N \leftrightharpoons CH_3N + CH_3$  | 6.92e + 10 | 0.00  | 24200    |     |
| 243 | 2d   | $NH_2OH \leftrightharpoons H_2N + HO$      | 9.30e-11   | 0.20  | 45800    | 60  |
| 244 | 2d   | $NH_2OH \leftrightharpoons H_2N + HO$      | 2.25e + 09 | -0.80 | 45800    |     |
| 245 | 2d   | $C_3H_3N \leftrightharpoons HC_3N + H_2$   | 8.28 e-07  | 1.00  | 38700    | 61  |
| 246 | 2d   | $C_3H_3N \leftrightharpoons HC_3N + H_2$   | 2.00e + 13 | 0.00  | 38700    |     |
|     |      |                                            |            |       |          |     |

Table 6—Continued

|     |      | TABLE 0—Con                                                                   |              |        |          |     |
|-----|------|-------------------------------------------------------------------------------|--------------|--------|----------|-----|
| #   | Type | Reaction                                                                      | α            | β      | $\gamma$ | Ref |
| 247 | 2d   | $C_3H_3N \leftrightharpoons C_2H_2 + HCN$                                     | 7.37e-08     | 1.00   | 34200    | 61  |
| 248 | 2d   | $C_3H_3N \leftrightharpoons C_2H_2 + HCN$                                     | 1.78e + 12   | 0.00   | 34200    |     |
| 249 | 2d   | $C_3H_3O \leftrightharpoons C_2H_3 + CO$                                      | 5.22e-06     | 1.63   | 13700    | 55  |
| 250 | 2d   | $C_3H_3O \leftrightharpoons C_2H_3 + CO$                                      | 1.26e + 14   | 0.63   | 13700    |     |
| 251 | 2d   | $CH_3NO \leftrightharpoons HCN + H_2O$                                        | 5.25 e-11    | 0.00   | 25300    | 62  |
| 252 | 2d   | $CH_3NO \leftrightharpoons HCN + H_2O$                                        | 1.27e + 09   | -1.00  | 25300    |     |
| 253 | 2d   | $C_4H_{10} \leftrightharpoons C_2H_5 + C_2H_5$                                | 7.84e-06     | 0.00   | 24900    | 63  |
| 254 | 2d   | $C_4H_{10} \leftrightharpoons C_2H_5 + C_2H_5$                                | 2.72e + 15   | 0.00   | 38000    |     |
| 255 | 2d   | $C_3H_2O \leftrightharpoons C_2H_2 + CO$                                      | 3.52e-05     | 1.00   | 35700    | 64  |
| 256 | 2d   | $C_3H_2O \leftrightharpoons C_2H_2 + CO$                                      | $8.51e{+14}$ | 0.00   | 35700    |     |
| 257 | 2d   | $CH_3O_2 \leftrightharpoons CH_3 + O_2$                                       | 2.03e+00     | -10.00 | 16700    | 7   |
| 258 | 2d   | $CH_3O_2 \leftrightharpoons CH_3 + O_2$                                       | 4.90e + 19   | -11.00 | 16700    |     |
| 259 | 2d   | $CH_2CHO \leftrightharpoons C_2H_2O + H$                                      | 1.00e-12     | 0.00   | 20700    | 65  |
| 260 | 2d   | $CH_2CHO \leftrightharpoons C_2H_2O + H$                                      | 2.42e + 07   | -1.00  | 20700    |     |
| 261 | 2d   | $CH_2CHO \leftrightharpoons CH_3 + CO$                                        | 1.00e-09     | 0.00   | 20700    | 66  |
| 262 | 2d   | $CH_2CHO \leftrightharpoons CH_3 + CO$                                        | 2.42e + 10   | -1.00  | 20700    |     |
| 263 | 2d   | $C_2H_2O_2 \leftrightharpoons CHO + CHO$                                      | 1.06e + 04   | -9.90  | 41300    | 67  |
| 264 | 2d   | $C_2H_2O_2 \leftrightharpoons CHO + CHO$                                      | 2.57e + 23   | -10.90 | 41300    |     |
| 265 | 2d   | $H_2NNO_2 \leftrightharpoons H_2N + NO_2$                                     | 1.00e-09     | 0.00   | 5000     | Est |
| 266 | 2d   | $H_2NNO_2 \leftrightharpoons H_2N + NO_2$                                     | 2.42e + 10   | -1.00  | 5000     |     |
| 267 | 2d   | $Oxyrane = CH_2CHO + H$                                                       | 2.38e-06     | 1.20   | 36100    | 68  |
| 268 | 2d   | Oxyrane $\rightleftharpoons$ CH <sub>2</sub> CHO + H                          | 5.75e + 13   | 0.20   | 36100    |     |
| 269 | 2d   | Oxyrane $\rightleftharpoons$ C <sub>2</sub> H <sub>3</sub> O + H              | 4.18e-06     | 1.25   | 32800    | 68  |
| 270 | 2d   | Oxyrane $\rightleftharpoons$ C <sub>2</sub> H <sub>3</sub> O + H              | 1.01e + 14   | 0.25   | 32800    |     |
| 271 | 2d   | Oxyrane $\rightleftharpoons$ CH <sub>3</sub> + CHO                            | 2.25 e-05    | 1.40   | 31200    | 68  |
| 272 | 2d   | Oxyrane $\rightleftharpoons$ CH <sub>3</sub> + CHO                            | $5.44e{+}14$ | 0.40   | 31200    |     |
| 273 | 2d   | $Oxyrane = C_2H_2O + H_2$                                                     | 4.72e-08     | 0.80   | 31800    | 68  |
| 274 | 2d   | $Oxyrane \leftrightharpoons C_2H_2O + H_2$                                    | 1.14e + 12   | -0.20  | 31800    |     |
| 275 | 2d   | Oxyrane $\rightleftharpoons$ C <sub>2</sub> H <sub>4</sub> O                  | 1.83e-09     | 0.25   | 23300    | 68  |
| 276 | 2d   | Oxyrane $\rightleftharpoons$ C <sub>2</sub> H <sub>4</sub> O                  | 4.43e + 10   | -0.75  | 23300    |     |
| 277 | 2d   | Oxyrane $\rightleftharpoons$ C <sub>2</sub> H <sub>2</sub> + H <sub>2</sub> O | 4.43e-07     | 1.06   | 35000    | 68  |
| 278 | 2d   | Oxyrane $\rightleftharpoons$ C <sub>2</sub> H <sub>2</sub> + H <sub>2</sub> O | 1.07e + 13   | 0.06   | 35000    |     |
| 279 | 2d   | $Oxyrane = CH_4 + CO$                                                         | 8.28e-07     | 1.11   | 32100    | 68  |
| 280 | 2d   | $Oxyrane = CH_4 + CO$                                                         | 2.00e + 13   | 0.11   | 32100    |     |
| 281 | 2d   | $CH_3N_2H \leftrightharpoons HCN + H_3N$                                      | 2.66e-11     | 0.00   | 24300    | 69  |
| 282 | 2d   | $CH_3N_2H \leftrightharpoons HCN + H_3N$                                      | 2.66e-11     | -1.00  | 24300    |     |
| 283 | 2d   | $CH_3NO_2 \leftrightharpoons CH_3 + NO_2$                                     | 3.32e-07     | 0.00   | 21100    | 70  |
| 284 | 2d   | $CH_3NO_2 \leftrightharpoons CH_3 + NO_2$                                     | $1.58e{+}16$ | 0.00   | 30000    |     |
| 285 | 2d   | $CH_3ONO \leftrightharpoons CH_2O + HNO$                                      | 1.15e-06     | 1.00   | 19500    | 71  |
| 286 | 2d   | $CH_3ONO \leftrightharpoons CH_2O + HNO$                                      | 2.77e + 13   | 0.00   | 19500    |     |
| 287 | 2d   | $CH_3ONO \leftrightharpoons CH_3O + NO$                                       | 1.32e-06     | 0.00   | 17200    | 71  |

Table 6—Continued

| TABLE 0—Continued |      |                                                                                               |            |        |          |     |  |
|-------------------|------|-----------------------------------------------------------------------------------------------|------------|--------|----------|-----|--|
| #                 | Type | Reaction                                                                                      | α          | β      | $\gamma$ | Ref |  |
| 288               | 2d   | $CH_3ONO \leftrightharpoons CH_3O + NO$                                                       | 1.06e + 15 | 0.00   | 18000    |     |  |
| 289               | 2d   | $CH_3NO_3 \leftrightharpoons CH_3O + NO_2$                                                    | 4.14e-07   | 1.00   | 16800    | 72  |  |
| 290               | 2d   | $CH_3NO_3 \leftrightharpoons CH_3O + NO_2$                                                    | 1.00e + 13 | 0.00   | 16800    |     |  |
| 291               | 2d   | $C_2H_5OH = CH_2OH + CH_3$                                                                    | 5.42e + 14 | -18.90 | 57700    | 73  |  |
| 292               | 2d   | $C_2H_5OH = CH_2OH + CH_3$                                                                    | 2.99e + 18 | -2.16  | 44300    |     |  |
| 293               | 2d   | $C_2H_5OH = C_2H_5 + HO$                                                                      | 1.14e + 16 | -19.70 | 57600    | 73  |  |
| 294               | 2d   | $C_2H_5OH \leftrightharpoons C_2H_5 + HO$                                                     | 1.37e + 17 | -2.16  | 48600    |     |  |
| 295               | 2d   | $C_2H_5OH \leftrightharpoons C_2H_4 + H_2O$                                                   | 2.05e + 12 | -17.90 | 42700    | 73  |  |
| 296               | 2d   | $C_2H_5OH = C_2H_4 + H_2O$                                                                    | 1.41e + 13 | 1.36   | 33100    |     |  |
| 297               | 2d   | $(CH_3)_2O = CH_3O + CH_3$                                                                    | 1.25 e-08  | 0.00   | 21500    | 74  |  |
| 298               | 2d   | $(CH_3)_2O \leftrightharpoons CH_3O + CH_3$                                                   | 5.71e + 17 | -1.57  | 42200    |     |  |
| 299               | 2d   | $(CH_3)_2O = CH_2O + CH_4$                                                                    | 4.17e-11   | 0.00   | 20500    | 75  |  |
| 300               | 2d   | $(CH_3)_2O = CH_2O + CH_4$                                                                    | 1.53e + 13 | 0.00   | 29400    | 76  |  |
| 301               | 2d   | $C_2H_5NO = C_2H_2O + H_3N$                                                                   | 2.07e-05   | 1.00   | 36900    | 77  |  |
| 302               | 2d   | $C_2H_5NO = C_2H_2O + H_3N$                                                                   | 5.01e + 14 | 0.00   | 36900    |     |  |
| 303               | 2d   | $C_2H_5OO = CH_3CH_2O + O$                                                                    | 7.37e-05   | 0.91   | 31000    | 78  |  |
| 304               | 2d   | $C_2H_5OO = CH_3CH_2O + O$                                                                    | 1.78e + 15 | -0.09  | 31000    |     |  |
| 305               | 2d   | $C_2H_5OO \leftrightharpoons C_2H_5 + O_2$                                                    | 1.40e + 02 | -9.85  | 19600    | 78  |  |
| 306               | 2d   | $C_2H_5OO \leftrightharpoons C_2H_5 + O_2$                                                    | 5.30e + 15 | -0.83  | 17200    |     |  |
| 307               | 2d   | $C_2H_5OO = C_2H_4O + HO$                                                                     | 1.34e-07   | 2.37   | 20900    | 78  |  |
| 308               | 2d   | $C_2H_5OO \leftrightharpoons C_2H_4O + HO$                                                    | 3.24e + 12 | 1.37   | 20900    |     |  |
| 309               | 2d   | $C_2H_5OO \leftrightharpoons C_2H_4 + HO_2$                                                   | 3.59e-05   | -5.88  | 17100    | 79  |  |
| 310               | 2d   | $C_2H_5OO \leftrightharpoons C_2H_4 + HO_2$                                                   | 8.66e + 14 | -6.88  | 17100    |     |  |
| 311               | 2d   | $C_2H_4O_3 \leftrightharpoons CH_2O + H_2O + CO$                                              | 4.43e-06   | 1.00   | 25300    | 80  |  |
| 312               | 2d   | $C_2H_4O_3 \leftrightharpoons CH_2O + H_2O + CO$                                              | 1.07e + 14 | 0.00   | 25300    |     |  |
| 313               | 2d   | $(CH_3N)_2 \leftrightharpoons CH_3 + CH_3 + N_2$                                              | 8.28e-09   | 1.00   | 16800    | 81  |  |
| 314               | 2d   | $(CH_3N)_2 \leftrightharpoons CH_3 + CH_3 + N_2$                                              | 2.00e + 11 | 0.00   | 16800    |     |  |
| 315               | 2d   | $(CH_3O)_2 \leftrightharpoons CH_3O + CH_3O$                                                  | 1.04e-03   | 1.00   | 19400    | 82  |  |
| 316               | 2d   | $(CH_3O)_2 \leftrightharpoons CH_3O + CH_3O$                                                  | 2.51e + 16 | 0.00   | 19400    |     |  |
| 317               | 2d   | $\text{cyc-C}_2\text{H}_3\text{O} \leftrightharpoons \text{CH}_2\text{CHO}$                   | 3.06e-05   | -5.90  | 7540     | 68  |  |
| 318               | 2d   | $\text{cyc-C}_2\text{H}_3\text{O} \leftrightharpoons \text{CH}_2\text{CHO}$                   | 7.40e + 14 | -6.90  | 7540     |     |  |
| 319               | 2d   | $\text{cyc-C}_2\text{H}_3\text{O} \leftrightharpoons \text{CH}_3 + \text{CO}$                 | 3.03e-07   | 1.00   | 7190     | Est |  |
| 320               | 2d   | $\text{cyc-C}_2\text{H}_3\text{O} \leftrightharpoons \text{CH}_3 + \text{CO}$                 | 7.31e + 12 | 0.00   | 7190     |     |  |
| 321               | 2d   | $\text{cyc-C}_2\text{H}_3\text{O} \leftrightharpoons \text{C}_2\text{H}_2\text{O} + \text{H}$ | 2.05e-06   | 1.00   | 7480     | 68  |  |
| 322               | 2d   | $\operatorname{cyc-C_2H_3O} \leftrightharpoons \operatorname{C_2H_2O} + \operatorname{H}$     | 4.96e + 13 | 0.00   | 7480     |     |  |
| 323               | 2d   | $CH_3OCO = CH_3O + CO$                                                                        | 1.35e-06   | 1.65   | 10600    | 55  |  |
| 324               | 2d   | $CH_3OCO = CH_3O + CO$                                                                        | 3.27e + 13 | 0.65   | 10600    |     |  |
| 325               | 2d   | $CH_3OCO = CH_3 + CO_2$                                                                       | 1.14e-06   | 2.11   | 7990     | 55  |  |
| 326               | 2d   | $CH_3OCO = CH_3 + CO_2$                                                                       | 2.76e + 13 | 1.11   | 7990     |     |  |
| 327               | 2d   | $C_2H_6O_2 \leftrightharpoons CH_3CH_2O + HO$                                                 | 1.66e-04   | 1.00   | 21700    | 33  |  |
| 328               | 2d   | $C_2H_6O_2 \leftrightharpoons CH_3CH_2O + HO$                                                 | 4.00e + 15 | 0.00   | 21700    |     |  |
| -                 |      | _ 0 _ 0 - 2 - 1 0                                                                             |            |        |          |     |  |

Table 6—Continued

| TABLE 0—Continued |      |                                                |              |       |          |     |  |
|-------------------|------|------------------------------------------------|--------------|-------|----------|-----|--|
| #                 | Type | Reaction                                       | $\alpha$     | β     | $\gamma$ | Ref |  |
| 329               | 2d   | $H_2C_2HOH \leftrightharpoons CH_3 + CHO$      | 2.48e-05     | 1.00  | 39800    | Est |  |
| 330               | 2d   | $H_2C_2HOH \leftrightharpoons CH_3 + CHO$      | 6.00e + 14   | 0.00  | 39800    |     |  |
| 331               | 2d   | $CH_3COOH \leftrightharpoons C_2H_2O + H_2O$   | 5.50e-12     | 0.00  | 19700    | 83  |  |
| 332               | 2d   | $CH_3COOH = C_2H_2O + H_2O$                    | 2.82e + 12   | 0.00  | 32700    |     |  |
| 333               | 2d   | $CH_3COOH \leftrightharpoons CH_4 + CO_2$      | 2.93e-06     | 1.00  | 37500    | 84  |  |
| 334               | 2d   | $CH_3COOH \leftrightharpoons CH_4 + CO_2$      | 7.08e + 13   | 0.00  | 37500    |     |  |
| 335               | 2d   | $C_2H_3NO_2 \leftrightharpoons CH_2CHO + NO$   | 1.32e-06     | 0.00  | 17200    | Est |  |
| 336               | 2d   | $C_2H_3NO_2 \leftrightharpoons CH_2CHO + NO$   | 1.60e + 15   | 0.00  | 18000    |     |  |
| 337               | 2d   | $(CH_2OH)_2 \leftrightharpoons CH_3CH_2O + HO$ | 1.66e-04     | 1.00  | 21700    | 33  |  |
| 338               | 2d   | $(CH_2OH)_2 \leftrightharpoons CH_3CH_2O + HO$ | $4.00e{+15}$ | 0.00  | 21700    |     |  |
| 339               | 2d   | $C_2H_5NO_2 \leftrightharpoons C_2H_4 + HNO_2$ | 2.32e-08     | 1.00  | 21600    | 85  |  |
| 340               | 2d   | $C_2H_5NO_2 \leftrightharpoons C_2H_4 + HNO_2$ | $5.60e{+11}$ | 0.00  | 21600    |     |  |
| 341               | 2d   | $C_2H_5NO_2 \leftrightharpoons C_2H_5 + NO_2$  | 1.66e-06     | 0.00  | 18000    | 86  |  |
| 342               | 2d   | $C_2H_5NO_2 \leftrightharpoons C_2H_5 + NO_2$  | 7.94e + 15   | 0.00  | 28800    |     |  |
| 343               | 2d   | $C_2H_5NO_2 \leftrightharpoons CH_3NO + CH_2O$ | 2.42e-11     | 0.50  | 2340     | Est |  |
| 344               | 2d   | $C_2H_5NO_2 \leftrightharpoons CH_3NO + CH_2O$ | 5.85e + 08   | -0.50 | 2340     |     |  |
| 345               | 2d   | $aCO2H5N \leftrightharpoons C_2H_4 + HNO_2$    | 2.32e-08     | 1.00  | 21600    | 85  |  |
| 346               | 2d   | $aCO2H5N \leftrightharpoons C_2H_4 + HNO_2$    | $5.60e{+11}$ | 0.00  | 21600    |     |  |
| 347               | 2d   | $aCO2H5N \leftrightharpoons C_2H_5 + NO_2$     | 1.66e-06     | 0.00  | 18000    | 86  |  |
| 348               | 2d   | $aCO2H5N \leftrightharpoons C_2H_5 + NO_2$     | 7.94e + 15   | 0.00  | 28800    |     |  |
| 349               | 2d   | $bCO2H5N \leftrightharpoons CH_3CH_2O + NO$    | 2.53e-06     | 1.00  | 18900    | 87  |  |
| 350               | 2d   | $bCO2H5N \leftrightharpoons CH_3CH_2O + NO$    | 6.10e + 13   | 0.00  | 18900    |     |  |
| 351               | 2d   | $bCO2H5N \leftrightharpoons C_2H_4O + HNO$     | 2.61e-06     | 1.00  | 18900    | 88  |  |
| 352               | 2d   | $bCO2H5N \leftrightharpoons C_2H_4O + HNO$     | 6.31e + 13   | 0.00  | 18900    |     |  |
| 353               | 2d   | $CH_3OCH_2 \leftrightharpoons CH_2O + CH_3$    | 2.09e-10     | 0.00  | 9560     | 89  |  |
| 354               | 2d   | $CH_3OCH_2 \leftrightharpoons CH_2O + CH_3$    | 1.27e + 14   | -0.22 | 13700    |     |  |
| 355               | 2d   | $CH_3CHOH \leftrightharpoons C_2H_4O + H$      | 8.30e-11     | 0.00  | 11000    | 90  |  |
| 356               | 2d   | $CH_3CHOH \leftrightharpoons C_2H_4O + H$      | 2.00e+09     | -1.00 | 11000    |     |  |
| 357               | 2d   | $CH_2NCH_3 \leftrightharpoons CH_3CN + H_2$    | 1.00e-08     | 1.00  | 7950     | 91  |  |
| 358               | 2d   | $CH_2NCH_3 \leftrightharpoons CH_3CN + H_2$    | 2.10e + 17   | 0.00  | 7950     |     |  |
| 359               | 2d   | $(CH_3)_2CO \leftrightharpoons CH_2O + C_2H_4$ | 1.09e-04     | 1.00  | 31200    | 92  |  |
| 360               | 2d   | $(CH_3)_2CO \leftrightharpoons CH_2O + C_2H_4$ | 2.63e + 15   | 0.00  | 31200    |     |  |
| 361               | 2d   | $(CH_3)_2CO = cyc-C_2H_3O + CH_3$              | 1.33e-08     | 0.00  | 46300    | 93  |  |
| 362               | 2d   | $(CH_3)_2CO = cyc-C_2H_3O + CH_3$              | $3.21e{+11}$ | -1.00 | 46300    |     |  |
| 363               | 2d   | $(CH_3)_2CO \leftrightharpoons C_2H_5 + CHO$   | 1.01 e-06    | 1.00  | 29400    | 93  |  |
| 364               | 2d   | $(CH_3)_2CO \leftrightharpoons C_2H_5 + CHO$   | 2.45e + 13   | 0.00  | 29400    |     |  |
| 365               | 2d   | $(CH_3)_2CO \leftrightharpoons C_2H_3O + CH_3$ | 5.80e-06     | 1.00  | 35700    | 94  |  |
| 366               | 2d   | $(CH_3)_2CO \leftrightharpoons C_2H_3O + CH_3$ | 1.40e + 14   | 0.00  | 35700    |     |  |
| 367               | 2d   | $CH_3CH_2O \leftrightharpoons CH_3CHOH$        | 3.29e-07     | 1.00  | 14800    | 95  |  |
| 368               | 2d   | $CH_3CH_2O \leftrightharpoons CH_3CHOH$        | 1.87e + 00   | 12.40 | 2130     | 96  |  |
| 369               | 2d   | $CH_3CH_2O \leftrightharpoons C_2H_4O + H$     | 1.76e-07     | 2.42  | 10300    | 97  |  |

Table 6—Continued

| #   | Type | Reaction                                        | α            | β     | $\gamma$ | Ref   |
|-----|------|-------------------------------------------------|--------------|-------|----------|-------|
| 370 | 2d   | $CH_3CH_2O \leftrightharpoons C_2H_4O + H$      | 4.24e + 12   | 1.42  | 10300    |       |
| 371 | 2d   | $CH_3CH_2O \leftrightharpoons CH_2O + CH_3$     | 5.51e-05     | -1.02 | 10400    | 98    |
| 372 | 2d   | $CH_3CH_2O \leftrightharpoons CH_2O + CH_3$     | $1.33e{+}15$ | -2.02 | 10400    |       |
| 373 | 2d   | $Na + HO \leftrightharpoons NaOH$               | 1.90e-25     | -2.21 | 41       | 99    |
| 374 | 2d   | $Na + HO \leftrightharpoons NaOH$               | 1.00e-11     | 0.00  | 0        | 100   |
| 375 | 2d   | $Na + H \leftrightharpoons NaH$                 | 1.90e-25     | -2.21 | 41       | 100   |
| 376 | 2d   | $Na + H \leftrightharpoons NaH$                 | 1.00e-11     | 0.00  | 41       |       |
| 377 | 2d   | $K + HO \leftrightharpoons KOH$                 | 1.90e-25     | -2.21 | 41       | 99    |
| 378 | 2d   | $K + HO \leftrightharpoons KOH$                 | 1.00e-11     | 0.00  | 41       | 100   |
| 379 | 2d   | $K + H \leftrightharpoons KH$                   | 1.90e-25     | -2.21 | 41       | 100   |
| 380 | 2d   | $K + H \leftrightharpoons KH$                   | 1.00e-11     | 0.00  | 41       | • • • |
| 381 | 2d   | $HCl \leftrightharpoons Cl + H$                 | 7.31e-11     | 0.00  | 41000    | 101   |
| 382 | 2d   | $HCl \leftrightharpoons Cl + H$                 | 1.81e + 09   | -1.00 | 41000    | • • • |
| 383 | 2d   | $O(^{1}D) + N_{2} \leftrightharpoons N_{2}O$    | 2.80e-36     | -0.90 | 0        | 21    |
| 384 | 2d   | $O(^{1}D) + N_{2} \leftrightharpoons N_{2}O$    | 6.76e-17     | -1.90 | 0        |       |
| 385 | 2d   | $CH_3OH \leftrightharpoons CH_2^* + H_2O$       | 3.94e-04     | -0.02 | 46200    | 21    |
| 386 | 2d   | $CH_3OH \leftrightharpoons CH_2^* + H_2O$       | 9.51e + 15   | -1.02 | 46200    |       |
| 387 | 2d   | $HN^* \leftrightharpoons HN$                    | 1.35e-10     | 0.00  | 0        | 102   |
| 388 | 2d   | $HN^* \leftrightharpoons HN$                    | 3.29e+09     | -1.00 | 0        | • • • |
| 389 | 3i   | $Ar^+ + Ar \leftrightharpoons Ar_2^+$           | 1.46e-31     | 0.00  | 0        | 103   |
| 390 | 3i   | $Ar^+ + Ar \leftrightharpoons Ar_2^+$           | 3.53e-12     | -1.00 | 0        | • • • |
| 391 | 3i   | $C^+ + H_2 \leftrightharpoons CH_2^+$           | 2.10e-29     | 0.00  | 0        | 104   |
| 392 | 3i   | $C^+ + H_2 \leftrightharpoons CH_2^+$           | 5.07e-10     | -1.00 | 0        | • • • |
| 393 | 3i   | $CH_3^+ + H_2 \leftrightharpoons CH_5^+$        | 1.10e-28     | 0.00  | 0        | 105   |
| 394 | 3i   | $CH_3^+ + H_2 \leftrightharpoons CH_5^+$        | 2.66e-09     | -1.00 | 0        | • • • |
| 395 | 3i   | $C_2H_2^+ + C_2H_2 \leftrightharpoons C_4H_4^+$ | 1.60e-26     | 0.00  | 0        | 106   |
| 396 | 3i   | $C_2H_2^+ + C_2H_2 \leftrightharpoons C_4H_4^+$ | 3.86e-07     | -1.00 | 0        |       |
| 397 | 3i   | $C_2H_2^+ + H_2 \leftrightharpoons C_2H_4^+$    | 1.20e-27     | 0.00  | 0        | 107   |
| 398 | 3i   | $C_2H_2^+ + H_2 \leftrightharpoons C_2H_4^+$    | 2.90e-08     | -1.00 | 0        | • • • |
| 399 | 3i   | $C_2H_3^+ + H_2 \leftrightharpoons C_2H_5^+$    | 1.49e-29     | 0.00  | 0        | 107   |
| 400 | 3i   | $C_2H_3^+ + H_2 \leftrightharpoons C_2H_5^+$    | 3.60e-10     | -1.00 | 0        | • • • |
| 401 | 3i   | $C_2H_4^+ + C_2H_4 \leftrightharpoons C_4H_8^+$ | 6.30e-26     | 0.00  | 0        | 107   |
| 402 | 3i   | $C_2H_4^+ + C_2H_4 \leftrightharpoons C_4H_8^+$ | 1.52e-06     | -1.00 | 0        | • • • |
| 403 | 3i   | $Fe^+ + O_2 \leftrightharpoons FeO_2^+$         | 1.00e-30     | 0.00  | 0        | 108   |
| 404 | 3i   | $Fe^+ + O_2 = FeO_2^+$                          | 2.42e-11     |       | 0        | • • • |
| 405 | 3i   | $H^+ + H_2 \leftrightharpoons H_3^+$            | 3.05e-29     | 0.00  | 0        | 109   |
| 406 | 3i   | $H^+ + H_2 \leftrightharpoons H_3^+$            | 7.37e-10     | -1.00 | 0        |       |
| 407 | 3i   | $H_3^+ + Ar \leftrightharpoons Ar H_3^+$        | 1.00e-31     | 0.00  | 0        | 110   |
| 408 | 3i   | $H_3^+ + Ar \leftrightharpoons ArH_3^+$         | 2.42e-12     | -1.00 | 0        |       |
| 409 | 3i   | $H_3^+ + O_2 \leftrightharpoons H_3O_2^+$       | 3.00e-29     | 0.00  | 0        | 111   |
| 410 | 3i   | $H_3^+ + O_2 \leftrightharpoons H_3O_2^+$       | 7.25e-10     | -1.00 | 0        | • • • |

Table 6—Continued

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | #   | Туре       | Reaction                                                         | α            | β     | $\gamma$ | Ref |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|------------------------------------------------------------------|--------------|-------|----------|-----|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 411 | 3i         | $\mathrm{He^+} + \mathrm{He} \leftrightharpoons \mathrm{He}_2^+$ | 1.06e-31     | -1.00 | 0        | 112 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 412 | 3i         | $\mathrm{He^+} + \mathrm{He} \leftrightharpoons \mathrm{He}_2^+$ | 2.56e-12     | -2.00 | 0        |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 413 | 3i         | $Mg^+ + O_2 \leftrightharpoons MgO_2^+$                          | 2.50e-30     | 0.00  | 0        | 108 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 414 | 3i         | $Mg^+ + O_2 \leftrightharpoons MgO_2^+$                          | 6.04e-11     | -1.00 | 0        |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 415 | 3i         | $N^+ + N_2 \leftrightharpoons N_3^+$                             | 2.00e-28     | 0.00  | 0        | 113 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 416 | 3i         | $N^+ + N_2 \leftrightharpoons N_3^+$                             | 4.83e-09     | -1.00 | 0        |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 417 | 3i         | $NO_2^+ + H_2O \rightleftharpoons H_2NO_3^+$                     | 5.00e-28     | 0.00  | 0        | 114 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 418 | 3i         | $NO_2^+ + H_2O \leftrightharpoons H_2NO_3^+$                     | 1.21e-08     | -1.00 | 0        |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 419 | 3i         |                                                                  | 4.60e-30     | 0.00  | 0        | 115 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 420 | 3i         | $O_2^{\frac{1}{7}} + CO_2 \leftrightharpoons CO_4^{\frac{1}{7}}$ | 1.11e-10     | -1.00 | 0        |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 421 | ti         | $C = C^+ + e^-$                                                  |              | 0.50  | 0*       | 116 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 422 | ti         | $C \leftrightharpoons C^+ + e^-$                                 | 2.77e + 10   | -0.50 | 0*       |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 423 | ti         | $H \leftrightharpoons H^+ + e^-$                                 | 5.31e-12     | 0.50  | 0*       | 116 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 424 | $_{ m ti}$ | $H \leftrightharpoons H^+ + e^-$                                 | 1.28e + 08   | -0.50 | 0*       |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 425 | $_{ m ti}$ | $N \leftrightharpoons N^+ + e^-$                                 | 1.83e-09     | 0.50  | 0*       | 116 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 426 | $_{ m ti}$ | $N \leftrightharpoons N^+ + e^-$                                 | $4.41e{+10}$ | -0.50 | 0*       |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 427 | $_{ m ti}$ | $O \leftrightharpoons O^+ + e^-$                                 | 2.72e-09     | 0.50  | 0*       | 116 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 428 | $_{ m ti}$ |                                                                  | 6.57e + 10   | -0.50 | 0*       |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 429 | $_{ m ti}$ |                                                                  | 3.10e-08     | 0.50  | 0*       | 116 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 430 | $_{ m ti}$ | $Ar \leftrightharpoons Ar^+ + e^-$                               | 7.48e + 11   | -0.50 | 0*       |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 431 | $_{ m ti}$ | $C_2 \leftrightharpoons C_2^+ + e^-$                             | 9.18e-09     | 0.50  | 0*       | 116 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 432 | ti         | $C_2 \leftrightharpoons C_2^+ + e^-$                             | $2.22e{+}11$ | -0.50 | 0*       |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 433 | $_{ m ti}$ |                                                                  | 1.83e-09     | 0.50  | 0*       | 116 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 434 | $_{ m ti}$ | $CH \leftrightharpoons CH^+ + e^-$                               | $4.41e{+10}$ | -0.50 | 0*       |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 435 | $_{ m ti}$ | $CN \leftrightharpoons CN^+ + e^-$                               | 1.17e-08     | 0.50  | 0*       | 116 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 436 | $_{ m ti}$ | $CN \leftrightharpoons CN^+ + e^-$                               | $2.81e{+11}$ | -0.50 | 0*       |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                           | 437 | $_{ m ti}$ |                                                                  | 1.45 e - 08  | 0.50  | 0*       | 116 |
| 440 ti Fe $\rightleftharpoons$ Fe <sup>+</sup> + e <sup>-</sup> 2.25e+12 -0.50 0*<br>441 ti H <sub>2</sub> $\rightleftharpoons$ H <sub>2</sub> <sup>+</sup> + e <sup>-</sup> 4.25e-11 0.50 0* 116<br>442 ti H <sub>2</sub> $\rightleftharpoons$ H <sub>2</sub> <sup>+</sup> + e <sup>-</sup> 1.03e+09 -0.50 0* | 438 | $_{ m ti}$ | $CO \leftrightharpoons CO^+ + e^-$                               | $3.53e{+}11$ | -0.50 | 0*       |     |
| 441 ti $H_2 = H_2^+ + e^-$ 4.25e-11 0.50 0* 116<br>442 ti $H_2 = H_2^+ + e^-$ 1.03e+09 -0.50 0* ···                                                                                                                                                                                                            | 439 | $_{ m ti}$ | $Fe \leftrightharpoons Fe^+ + e^-$                               | 9.33e-08     | 0.50  | 0*       | 116 |
| 442 ti $H_2 = H_2^{+} + e^{-}$ 1.03e+09 -0.50 0* ···                                                                                                                                                                                                                                                           | 440 | $_{ m ti}$ | $Fe \leftrightharpoons Fe^+ + e^-$                               | $2.25e{+}12$ | -0.50 | 0*       |     |
|                                                                                                                                                                                                                                                                                                                | 441 | $_{ m ti}$ | $H_2 \leftrightharpoons H_2^+ + e^-$                             | 4.25e-11     | 0.50  | 0*       | 116 |
| 443 ti $HN = HN^+ + e^-$ 2.72e-09 0.50 0* 116                                                                                                                                                                                                                                                                  | 442 | $_{ m ti}$ | $H_2 \leftrightharpoons H_2^+ + e^-$                             | 1.03e + 09   | -0.50 | 0*       |     |
|                                                                                                                                                                                                                                                                                                                | 443 | $_{ m ti}$ | $HN \leftrightharpoons HN^+ + e^-$                               | 2.72e-09     | 0.50  | 0*       | 116 |
| 444 ti $HN = HN^+ + e^-$ 6.57e+10 -0.50 0* ···                                                                                                                                                                                                                                                                 | 444 | $_{ m ti}$ | $HN \leftrightharpoons HN^+ + e^-$                               | 6.57e + 10   | -0.50 | 0*       |     |
| 445 ti $HO = HO^+ + e^-$ 3.87e-09 0.50 0* 116                                                                                                                                                                                                                                                                  | 445 | ti         | $HO \leftrightharpoons HO^+ + e^-$                               | 3.87e-09     | 0.50  | 0*       | 116 |
| 446 ti $HO = HO^+ + e^-$ 9.35e+10 -0.50 0*                                                                                                                                                                                                                                                                     | 446 | $_{ m ti}$ |                                                                  | 9.35e + 10   | -0.50 | 0*       |     |
| 447 ti $He = He^+ + e^-$ 4.25e-11 0.50 0* 116                                                                                                                                                                                                                                                                  | 447 | ti         |                                                                  | 4.25e-11     | 0.50  | 0*       | 116 |
| 448 ti $\text{He} \leftrightharpoons \text{He}^+ + e^ 1.03\text{e} + 09 - 0.50  0^*  \cdots$                                                                                                                                                                                                                   | 448 | $_{ m ti}$ |                                                                  | 1.03e + 09   | -0.50 | 0*       |     |
| 449 ti $Mg = Mg^+ + e^-$ 9.18e-09 0.50 0* 116                                                                                                                                                                                                                                                                  | 449 | ti         |                                                                  | 9.18e-09     | 0.50  | 0*       | 116 |
| 450 ti $Mg = Mg^{+} + e^{-}$ 2.22e+11 -0.50 0* ···                                                                                                                                                                                                                                                             | 450 | ti         |                                                                  | $2.22e{+}11$ | -0.50 | 0*       |     |
| 451 ti $N_2 = N_2^+ + e^-$ 1.45e-08 0.50 0* 116                                                                                                                                                                                                                                                                | 451 | ti         | $N_2 \leftrightharpoons N_2^+ + e^-$                             | 1.45 e-08    | 0.50  | 0*       | 116 |

Table 6—Continued

| #   | Type       | Reaction                               | α            | β     | $\gamma$ | Ref |
|-----|------------|----------------------------------------|--------------|-------|----------|-----|
| 452 | ti         | $N_2 \leftrightharpoons N_2^+ + e^-$   | 3.53e+11     | -0.50 | 0*       |     |
| 453 | ti         | $NO = NO^+ + e^-$                      | 1.80e-08     | 0.50  | 0*       | 116 |
| 454 | $_{ m ti}$ | $NO = NO^+ + e^-$                      | 4.32e + 11   | -0.50 | 0*       |     |
| 455 | ti         | $O_2 \leftrightharpoons O_2^+ + e^-$   | 2.18e-08     | 0.50  | 0*       | 116 |
| 456 | $_{ m ti}$ | $O_2 \leftrightharpoons O_2^+ + e^-$   | $5.26e{+}11$ | -0.50 | 0*       |     |
| 457 | $_{ m ti}$ | $Si = Si^+ + e^-$                      | 1.45 e - 08  | 0.50  | 0*       | 116 |
| 458 | $_{ m ti}$ | $Si = Si^+ + e^-$                      | $3.53e{+}11$ | -0.50 | 0*       |     |
| 459 | ti         | $Ti \leftrightharpoons Ti^+ + e^-$     | 5.65 e - 08  | 0.50  | 0*       | 116 |
| 460 | ti         | $Ti \leftrightharpoons Ti^+ + e^-$     | 1.37e + 12   | -0.50 | 0*       |     |
| 461 | $_{ m ti}$ | $C_2H \leftrightharpoons C_2H^+ + e^-$ | 1.17e-08     | 0.50  | 0*       | 116 |
| 462 | $_{ m ti}$ | $C_2H \leftrightharpoons C_2H^+ + e^-$ | $2.81e{+11}$ | -0.50 | 0*       |     |
| 463 | $_{ m ti}$ | $C_2N \leftrightharpoons C_2N^+ + e^-$ | 3.64e-08     | 0.50  | 0*       | 116 |
| 464 | ti         | $C_2N \leftrightharpoons C_2N^+ + e^-$ | $8.80e{+11}$ | -0.50 | 0*       |     |
| 465 | ti         | $C_2O \leftrightharpoons C_2O^+ + e^-$ | 4.25 e-08    | 0.50  | 0*       | 116 |
| 466 | ti         | $C_2O \leftrightharpoons C_2O^+ + e^-$ | 1.03e + 12   | -0.50 | 0*       |     |
| 467 | ti         | $CH_2 \leftrightharpoons CH_2^+ + e^-$ | 2.72e-09     | 0.50  | 0*       | 116 |
| 468 | ti         | $CH_2 \leftrightharpoons CH_2^+ + e^-$ | 6.57e + 10   | -0.50 | 0*       |     |
| 469 | $_{ m ti}$ | $CH_3 \leftrightharpoons CH_3^+ + e^-$ | 3.87e-09     | 0.50  | 0*       | 116 |
| 470 | $_{ m ti}$ | $CH_3 \leftrightharpoons CH_3^+ + e^-$ | $9.35e{+}10$ | -0.50 | 0*       |     |
| 471 | ti         | $CH_4 \leftrightharpoons CH_4^+ + e^-$ | 5.31e-09     | 0.50  | 0*       | 116 |
| 472 | $_{ m ti}$ | $CH_4 \leftrightharpoons CH_4^+ + e^-$ | $1.28e{+11}$ | -0.50 | 0*       |     |
| 473 | $_{ m ti}$ | $HCN \leftrightharpoons CHN^+ + e^-$   | 1.45 e - 08  | 0.50  | 0*       | 116 |
| 474 | $_{ m ti}$ | $HCN \leftrightharpoons CHN^+ + e^-$   | $3.53e{+}11$ | -0.50 | 0*       |     |
| 475 | $_{ m ti}$ | $CHO \leftrightharpoons CHO^+ + e^-$   | 1.80e-08     | 0.50  | 0*       | 116 |
| 476 | ti         | $CHO \leftrightharpoons CHO^+ + e^-$   | $4.32e{+11}$ | -0.50 | 0*       |     |
| 477 | $_{ m ti}$ | $CN_2 \leftrightharpoons CN_2^+ + e^-$ | 4.25 e - 08  | 0.50  | 0*       | 116 |
| 478 | ti         | $CN_2 \leftrightharpoons CN_2^+ + e^-$ | 1.03e + 12   | -0.50 | 0*       |     |
| 479 | ti         | $CNO \leftrightharpoons CNO^+ + e^-$   | 4.91e-08     | 0.50  | 0*       | 116 |
| 480 | ti         | $CNO \leftrightharpoons CNO^+ + e^-$   | $1.19e{+12}$ | -0.50 | 0*       |     |
| 481 | $_{ m ti}$ | $CO_2 \leftrightharpoons CO_2^+ + e^-$ | 5.65 e - 08  | 0.50  | 0*       | 116 |
| 482 | $_{ m ti}$ | $CO_2 \leftrightharpoons CO_2^+ + e^-$ | 1.37e + 12   | -0.50 | 0*       |     |
| 483 | $_{ m ti}$ | $FeO = FeO^+ + e^-$                    | 2.09e-07     | 0.50  | 0*       | 116 |
| 484 | $_{ m ti}$ | $FeO = FeO^+ + e^-$                    | 5.04e + 12   | -0.50 | 0*       |     |
| 485 | $_{ m ti}$ | $H_2N \leftrightharpoons H_2N^+ + e^-$ | 3.87e-09     | 0.50  | 0*       | 116 |
| 486 | $_{ m ti}$ | $H_2N \leftrightharpoons H_2N^+ + e^-$ | $9.35e{+}10$ | -0.50 | 0*       |     |
| 487 | ti         | $H_2O \leftrightharpoons H_2O^+ + e^-$ | 5.31e-09     | 0.50  | 0*       | 116 |
| 488 | ti         | $H_2O \leftrightharpoons H_2O^+ + e^-$ | $1.28e{+11}$ | -0.50 | 0*       |     |
| 489 | ti         | $H_3N \leftrightharpoons H_3N^+ + e^-$ | 5.31e-09     | 0.50  | 0*       | 116 |
| 490 | ti         | $H_3N \leftrightharpoons H_3N^+ + e^-$ | $1.28e{+11}$ | -0.50 | 0*       |     |
| 491 | ti         | $HN_2 \leftrightharpoons HN_2^+ + e^-$ | 1.80e-08     | 0.50  | 0*       | 116 |
| 492 | ti         | $HN_2 \leftrightharpoons HN_2^+ + e^-$ | $4.32e{+11}$ | -0.50 | 0*       |     |

Table 6— Continued

| #   | Type       | Reaction                                         | α            | β     | $\gamma$ | Ref |
|-----|------------|--------------------------------------------------|--------------|-------|----------|-----|
| 493 | ti         | $HNO = HNO^+ + e^-$                              | 2.18e-08     | 0.50  | 0*       | 116 |
| 494 | $_{ m ti}$ | $HNO \leftrightharpoons HNO^+ + e^-$             | $5.26e{+11}$ | -0.50 | 0*       |     |
| 495 | $_{ m ti}$ | $HO_2 \leftrightharpoons HO_2^+ + e^-$           | 2.61e-08     | 0.50  | 0*       | 116 |
| 496 | $_{ m ti}$ | $HO_2 \leftrightharpoons HO_2^+ + e^-$           | 6.30e + 11   | -0.50 | 0*       |     |
| 497 | $_{ m ti}$ | $MgO = MgO^+ + e^-$                              | 4.25 e-08    | 0.50  | 0*       | 116 |
| 498 | $_{ m ti}$ | $MgO \leftrightharpoons MgO^+ + e^-$             | 1.03e + 12   | -0.50 | 0*       |     |
| 499 | $_{ m ti}$ | $N_2O \leftrightharpoons N_2O^+ + e^-$           | 5.65 e - 08  | 0.50  | 0*       | 116 |
| 500 | $_{ m ti}$ | $N_2O \leftrightharpoons N_2O^+ + e^-$           | 1.37e + 12   | -0.50 | 0*       |     |
| 501 | $_{ m ti}$ | $NO_2 \leftrightharpoons NO_2^+ + e^-$           | 6.46 e - 08  | 0.50  | 0*       | 116 |
| 502 | $_{ m ti}$ | $NO_2 \leftrightharpoons NO_2^+ + e^-$           | 1.56e + 12   | -0.50 | 0*       |     |
| 503 | $_{ m ti}$ | $SiH = SiH^{+} + e^{-}$                          | 1.80e-08     | 0.50  | 0*       | 116 |
| 504 | $_{ m ti}$ | $SiH \leftrightharpoons SiH^+ + e^-$             | $4.32e{+11}$ | -0.50 | 0*       |     |
| 505 | $_{ m ti}$ | $SiO \leftrightharpoons SiO^+ + e^-$             | 5.65 e - 08  | 0.50  | 0*       | 116 |
| 506 | $_{ m ti}$ | $SiO \leftrightharpoons SiO^+ + e^-$             | 1.37e + 12   | -0.50 | 0*       |     |
| 507 | $_{ m ti}$ | $TiO \leftrightharpoons TiO^+ + e^-$             | 1.43e-07     | 0.50  | 0*       | 116 |
| 508 | $_{ m ti}$ | $TiO \leftrightharpoons TiO^+ + e^-$             | 3.46e + 12   | -0.50 | 0*       |     |
| 509 | $_{ m ti}$ | $C_2H_2 \leftrightharpoons C_2H_2^+ + e^-$       | 1.45 e - 08  | 0.50  | 0*       | 116 |
| 510 | $_{ m ti}$ | $C_2H_2 \leftrightharpoons C_2H_2^+ + e^-$       | $3.53e{+}11$ | -0.50 | 0*       |     |
| 511 | $_{ m ti}$ | $C_2H_3 \leftrightharpoons C_2H_3^+ + e^-$       | 1.80e-08     | 0.50  | 0*       | 116 |
| 512 | $_{ m ti}$ | $C_2H_3 \leftrightharpoons C_2H_3^+ + e^-$       | $4.32e{+11}$ | -0.50 | 0*       |     |
| 513 | $_{ m ti}$ | $C_2H_4 \leftrightharpoons C_2H_4^+ + e^-$       | 2.18e-08     | 0.50  | 0*       | 116 |
| 514 | ti         | $C_2H_4 \leftrightharpoons C_2H_4^+ + e^-$       | 5.26e + 11   | -0.50 | 0*       |     |
| 515 | ti         | $C_2H_5 \leftrightharpoons C_2H_5^+ + e^-$       | 2.61e-08     | 0.50  | 0*       | 116 |
| 516 | ti         | $C_2H_5 \leftrightharpoons C_2H_5^+ + e^-$       | 6.30e + 11   | -0.50 | 0*       |     |
| 517 | ti         | $C_2H_6 \leftrightharpoons C_2H_6^+ + e^-$       | 3.10e-08     | 0.50  | 0*       | 116 |
| 518 | ti         | $C_2H_6 \leftrightharpoons C_2H_6^+ + e^-$       | 7.48e + 11   | -0.50 | 0*       |     |
| 519 | ti         | $NCCN \leftrightharpoons C_2 N_2^+ + e^-$        | 9.33e-08     | 0.50  | 0*       | 116 |
| 520 | ti         | $NCCN \leftrightharpoons C_2N_2^+ + e^-$         | 2.25e + 12   | -0.50 | 0*       |     |
| 521 | ti         | $CH_2O \leftrightharpoons CH_2\tilde{O}^+ + e^-$ | 2.18e-08     | 0.50  | 0*       | 116 |
| 522 | $_{ m ti}$ | $CH_2O \leftrightharpoons CH_2O^+ + e^-$         | 5.26e + 11   | -0.50 | 0*       |     |
| 523 | $_{ m ti}$ | $CH_3N \leftrightharpoons CH_3N^+ + e^-$         | 2.18e-08     | 0.50  | 0*       | 116 |
| 524 | $_{ m ti}$ | $CH_3N \leftrightharpoons CH_3N^+ + e^-$         | 5.26e + 11   | -0.50 | 0*       |     |
| 525 | $_{ m ti}$ | $CH_3O \leftrightharpoons CH_3O^+ + e^-$         | 2.61e-08     | 0.50  | 0*       | 116 |
| 526 | $_{ m ti}$ | $CH_3O \leftrightharpoons CH_3O^+ + e^-$         | 6.30e + 11   | -0.50 | 0*       |     |
| 527 | ti         | $CH_3OH \leftrightharpoons CH_4O^+ + e^-$        | 3.10e-08     | 0.50  | 0*       | 116 |
| 528 | ti         | $CH_3OH \leftrightharpoons CH_4O^+ + e^-$        | 7.48e + 11   | -0.50 | 0*       |     |
| 529 | ti         | $CH_5N \leftrightharpoons CH_5N^+ + e^-$         | 3.10e-08     | 0.50  | 0*       | 116 |
| 530 | ti         | $CH_5N \leftrightharpoons CH_5N^+ + e^-$         | 7.48e + 11   | -0.50 | 0*       |     |
| 531 | ti         | $HNCO \leftrightharpoons CHNO^+ + e^-$           | 5.65 e-08    | 0.50  | 0*       | 116 |
| 532 | ti         | $HNCO \leftrightharpoons CHNO^+ + e^-$           | 1.37e + 12   | -0.50 | 0*       |     |
| 533 | ti         | $FeO_2 = FeO_2^+ + e^-$                          | 3.94 e-07    | 0.50  | 0*       | 116 |

Table 6— Continued

| #   | Type       | Reaction                                       | α            | β     | $\gamma$ | Ref   |
|-----|------------|------------------------------------------------|--------------|-------|----------|-------|
| 534 | ti         | $FeO_2 \leftrightharpoons FeO_2^+ + e^-$       | 9.51e + 12   | -0.50 | 0*       |       |
| 535 | $_{ m ti}$ | $H_2O_2 \leftrightharpoons H_2O_2^+ + e^-$     | 3.10e-08     | 0.50  | 0*       | 116   |
| 536 | $_{ m ti}$ | $H_2O_2 \leftrightharpoons H_2O_2^+ + e^-$     | 7.48e + 11   | -0.50 | 0*       |       |
| 537 | $_{ m ti}$ | $HNO_2 \leftrightharpoons HNO_2^+ + e^-$       | 7.34e-08     | 0.50  | 0*       | 116   |
| 538 | $_{ m ti}$ | $HNO_2 \leftrightharpoons HNO_2^+ + e^-$       | 1.77e + 12   | -0.50 | 0*       |       |
| 539 | $_{ m ti}$ | $MgHO \leftrightharpoons MgHO^+ + e^-$         | 4.91e-08     | 0.50  | 0*       | 116   |
| 540 | ti         | $MgHO \leftrightharpoons MgHO^+ + e^-$         | $1.19e{+12}$ | -0.50 | 0*       |       |
| 541 | $_{ m ti}$ | $MgO_2 \leftrightharpoons MgO_2^+ + e^-$       | 1.17e-07     | 0.50  | 0*       | 116   |
| 542 | $_{ m ti}$ | $MgO_2 \leftrightharpoons MgO_2^+ + e^-$       | $2.81e{+12}$ | -0.50 | 0*       |       |
| 543 | $_{ m ti}$ | $SiH_2 \leftrightharpoons SiH_2^+ + e^-$       | 2.18e-08     | 0.50  | 0*       | 116   |
| 544 | $_{ m ti}$ | $SiH_2 \leftrightharpoons SiH_2^{+} + e^{-}$   | $5.26e{+11}$ | -0.50 | 0*       |       |
| 545 | $_{ m ti}$ | $SiH_3 \leftrightharpoons SiH_3^+ + e^-$       | 2.61e-08     | 0.50  | 0*       | 116   |
| 546 | ti         | $SiH_3 \leftrightharpoons SiH_3^+ + e^-$       | 6.30e + 11   | -0.50 | 0*       |       |
| 547 | $_{ m ti}$ | $SiH_4 \leftrightharpoons SiH_4^+ + e^-$       | 3.10e-08     | 0.50  | 0*       | 116   |
| 548 | $_{ m ti}$ | $SiH_4 \leftrightharpoons SiH_4^+ + e^-$       | 7.48e + 11   | -0.50 | 0*       |       |
| 549 | ti         | $CH_2CN \leftrightharpoons C_2H_2N^+ + e^-$    | 4.91e-08     | 0.50  | 0*       | 116   |
| 550 | $_{ m ti}$ | $CH_2CN \leftrightharpoons C_2H_2N^+ + e^-$    | 1.19e + 12   | -0.50 | 0*       |       |
| 551 | $_{ m ti}$ | $C_2H_2O \leftrightharpoons C_2H_2O^+ + e^-$   | 5.65e-08     | 0.50  | 0*       | 116   |
| 552 | ti         | $C_2H_2O \leftrightharpoons C_2H_2O^+ + e^-$   | 1.37e + 12   | -0.50 | 0*       |       |
| 553 | ti         | $C_2H_3N \leftrightharpoons C_2H_3N^+ + e^-$   | 5.65 e-08    | 0.50  | 0*       | 116   |
| 554 | ti         | $C_2H_3N \leftrightharpoons C_2H_3N^+ + e^-$   | 1.37e + 12   | -0.50 | 0*       |       |
| 555 | ti         | $C_2H_3O \leftrightharpoons C_2H_3O^+ + e^-$   | 6.46 e - 08  | 0.50  | 0*       | 116   |
| 556 | ti         | $C_2H_3O \leftrightharpoons C_2H_3O^+ + e^-$   | 1.56e + 12   | -0.50 | $0^{*}$  |       |
| 557 | ti         | $C_2H_4O \leftrightharpoons C_2H_4O^+ + e^-$   | 7.34e-08     | 0.50  | $0^{*}$  | 116   |
| 558 | $_{ m ti}$ | $C_2H_4O \leftrightharpoons C_2H_4O^+ + e^-$   | 1.77e + 12   | -0.50 | 0*       |       |
| 559 | $_{ m ti}$ | $CH_2NCH_3 \leftrightharpoons C_2H_5N^+ + e^-$ | 7.34e-08     | 0.50  | 0*       | 116   |
| 560 | $_{ m ti}$ | $CH_2NCH_3 \leftrightharpoons C_2H_5N^+ + e^-$ | 1.77e + 12   | -0.50 | 0*       |       |
| 561 | $_{ m ti}$ | $CH_3CH_2O \leftrightharpoons C_2H_5O^+ + e^-$ | 8.30e-08     | 0.50  | 0*       | 116   |
| 562 | $_{ m ti}$ | $CH_3CH_2O \leftrightharpoons C_2H_5O^+ + e^-$ | 2.00e + 12   | -0.50 | 0*       |       |
| 563 | ti         | $C_2H_5OH \leftrightharpoons C_2H_6O^+ + e^-$  | 9.33e-08     | 0.50  | 0*       | 116   |
| 564 | ti         | $C_2H_5OH \leftrightharpoons C_2H_6O^+ + e^-$  | $2.25e{+}12$ | -0.50 | 0*       | • • • |
| 565 | ti         | $CH_2O_2 \leftrightharpoons CH_2O_2^+ + e^-$   | 7.34e-08     | 0.50  | 0*       | 116   |
| 566 | $_{ m ti}$ | $CH_2O_2 \leftrightharpoons CH_2O_2^+ + e^-$   | 1.77e + 12   | -0.50 | 0*       |       |
| 567 | $_{ m ti}$ | $HCOOH \leftrightharpoons CH_2O_2^+ + e^-$     | 7.34e-08     | 0.50  | 0*       | 116   |
| 568 | $_{ m ti}$ | $HCOOH = CH_2O_2^+ + e^-$                      | 1.77e + 12   |       | 0*       |       |
| 569 | $_{ m ti}$ | $CH_2OH = CH_2OH^+ + e^-$                      | 2.61e-08     | 0.50  | 0*       | 116   |
| 570 | ti         | $CH_2OH \leftrightharpoons CH_2OH^+ + e^-$     | 6.30e + 11   | -0.50 | 0*       |       |
| 571 | $_{ m ti}$ | $CH_3O_2 \leftrightharpoons CH_3O_2^+ + e^-$   | 8.30e-08     | 0.50  | 0*       | 116   |
| 572 | ti         | $CH_3O_2 \leftrightharpoons CH_3O_2^+ + e^-$   | 2.00e + 12   | -0.50 | 0*       |       |
| 573 | ti         | $Na = Na^+ + e^-$                              | 8.49e + 05   | 0.77  | 0*       | 116   |
| 574 | $_{ m ti}$ | $Na = Na^+ + e^-$                              | 2.48e + 12   | -0.23 | 0*       |       |

Table 6—Continued

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     |     |      | TABLE 6—Cor                             | ıtınuea    |       |          |     |
|------------------------------------------------------------------------------------------|-----|------|-----------------------------------------|------------|-------|----------|-----|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | #   | Type | Reaction                                | α          | β     | $\gamma$ | Ref |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 575 | ti   | $K \leftrightharpoons K^+ + e^-$        | 8.49e + 05 | 0.77  | 0*       | 116 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 576 | ti   | $K \leftrightharpoons K^+ + e^-$        | 2.48e + 12 | -0.23 | 0*       |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 577 | 2n   | $C + CN \leftrightharpoons C_2 + N$     | 6.64e - 11 | 0.00  | 0        | 118 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 578 | 2n   | $CH + H \leftrightharpoons C + H_2$     | 1.30e-10   | 0.00  | 80       | 163 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 579 | 2n   | $C + N_2 \leftrightharpoons CN + N$     | 8.70e-11   | 0.00  | 22600    | 33  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 580 | 2n   | $C + NO \leftrightharpoons CO + N$      | 3.49e-11   | -0.02 | 0        | 120 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 581 | 2n   | $C + O_2 \leftrightharpoons CO + O$     | 1.99e-10   | 0.00  | 2010     | 119 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 582 | 2n   | $C + CH_2 \leftrightharpoons CH + CH$   | 2.69e-12   | 0.00  | 23500    | 121 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 583 | 2n   | $C + H_2N \leftrightharpoons CH + HN$   | 9.61e-13   | 0.00  | 10500    | 121 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 584 | 2n   | $C + H_2O \leftrightharpoons CH + HO$   | 1.30e-12   | 0.00  | 19800    | 121 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 585 | 2n   | $C + NCCN \leftrightharpoons CN + C_2N$ | 3.01e-11   | 0.00  | 0        | 122 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 586 | 2n   | $H + HN \leftrightharpoons H + H + N$   | 4.02e-10   | -0.20 | 27300    | 123 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 587 | 2n   | $H + HN \leftrightharpoons H_2 + N$     | 2.14e-12   | 1.55  | 120      | 124 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 588 | 2n   | $H + HO \leftrightharpoons H_2 + O$     | 6.86e-14   | 2.80  | 1950     | 7   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 589 | 2n   | $H + N_2 \leftrightharpoons HN + N$     | 5.27e-10   | 0.50  | 74500    | 123 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 590 | 2n   | $H + NO \leftrightharpoons HN + O$      | 9.30e-10   | -0.10 | 35200    | 125 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 591 | 2n   | $H + NO \leftrightharpoons HO + N$      | 3.60e-10   | 0.00  | 24900    | 33  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 592 | 2n   | $H + O_2 \leftrightharpoons HO + O$     | 6.73e-10   | -0.59 | 8150     | 126 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 593 | 2n   | $H + C_2H \leftrightharpoons H_2 + C_2$ | 5.99e-11   | 0.00  | 14200    | 7   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 594 | 2n   | $H + C_2O \leftrightharpoons CO + CH$   | 2.19e-11   | 0.00  | 0        | 127 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 595 | 2n   | $H + CH_2 \leftrightharpoons H_2 + CH$  | 2.60e-10   | 0.00  | 0        | 5   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 596 | 2n   | $H + HCN \leftrightharpoons HNC + H$    | 3.53e-13   | 0.00  | 0        | 128 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 597 | 2n   | $H + HCN \leftrightharpoons CN + H_2$   | 6.19e-10   | 0.00  | 12500    | 18  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 598 | 2n   | $H + CHO \leftrightharpoons O + CH_2$   | 6.61e-11   | 0.00  | 51600    | 129 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 599 | 2n   | $H + CHO \leftrightharpoons CO + H_2$   | 1.50e-10   | 0.00  | 0        | 5   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 600 | 2n   | $H + NCO \leftrightharpoons CO + HN$    | 8.90e-11   | 0.00  | 0        | 3   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 601 | 2n   | $H + NCO \leftrightharpoons HCN + O$    | 1.86e-11   | 0.90  | 2920     | 3   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 602 | 2n   | $H + CO_2 \leftrightharpoons CO + HO$   | 2.51e-10   | 0.00  | 13400    | 7   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 603 | 2n   | $H + H_2N \leftrightharpoons H_2 + HN$  | 1.05e-10   | 0.00  | 4450     | 130 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 604 | 2n   | $H + H_2O \leftrightharpoons H_2 + HO$  | 6.82e-12   | 1.60  | 9720     | 5   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 605 | 2n   | $H + HNO \leftrightharpoons H_2N + O$   | 1.05e-09   | -0.30 | 14700    | 125 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 606 | 2n   | $H + HNO \leftrightharpoons HO + HN$    | 2.41e-09   | -0.50 | 9010     | 125 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 607 | 2n   | $H + HNO \leftrightharpoons H_2 + NO$   | 5.63e-11   | 0.62  | 179      | 131 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 608 | 2n   | $H + HO_2 \leftrightharpoons H_2O + O$  | 6.55e-12   | 1.47  | 6990     | 132 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 609 | 2n   | $H + HO_2 \leftrightharpoons HO + HO$   | 5.50e-11   | 0.88  | 0        | 132 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 610 | 2n   | $H + HO_2 \leftrightharpoons H_2 + O_2$ | 5.60 e-12  | 1.72  | 0        | 132 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                     | 611 | 2n   | $H + N_2O \leftrightharpoons O + HN_2$  | 2.18e-08   | -1.06 | 23800    | 133 |
| $514 	 2n 	 H + NO_2 = HO + NO 	 1.47e-10 	 0.00 	 0 	 134$                              | 612 | 2n   | $H + N_2O \leftrightharpoons NO + HN$   | 5.03e-07   | -2.16 | 18600    | 133 |
| <del>-</del>                                                                             | 613 | 2n   | $H + N_2O \leftrightharpoons HO + N_2$  | 1.60e-10   | 0.00  | 7600     | 18  |
| $315$ 2n H + O <sub>3</sub> $\rightleftharpoons$ HO + O <sub>2</sub> 2.72e-11 0.75 0 135 | 614 | 2n   | $H + NO_2 \leftrightharpoons HO + NO$   | 1.47e-10   | 0.00  | 0        | 134 |
|                                                                                          | 615 | 2n   | $H + O_3 \leftrightharpoons HO + O_2$   | 2.72e-11   | 0.75  | 0        | 135 |

Table 6—Continued

| #                 | Type | Reaction                                                                                     | $\alpha$  | β     | $\gamma$ | Ref |
|-------------------|------|----------------------------------------------------------------------------------------------|-----------|-------|----------|-----|
| 616               | 2n   | $H + C_2H_2 \leftrightharpoons H_2 + C_2H$                                                   | 2.49e-10  | 1.30  | 15400    | 373 |
| 617               | 2n   | $H + NCCN \leftrightharpoons CN + HCN$                                                       | 5.25 e-10 | 0.00  | 4030     | 136 |
| 618               | 2n   | $H + CH_3 \leftrightharpoons H_2 + CH_2$                                                     | 1.00e-10  | 0.00  | 7600     | 5   |
| 619               | 2n   | $H + CH_2O \leftrightharpoons H_2 + CHO$                                                     | 2.14e-12  | 1.62  | 1090     | 33  |
| 620               | 2n   | $H + HNCO \leftrightharpoons H_2 + NCO$                                                      | 2.67e-13  | 2.50  | 6690     | 137 |
| 621               | 2n   | $H + HNCO = CO + H_2N$                                                                       | 5.99e-13  | 1.70  | 1910     | 137 |
| 622               | 2n   | $H + HOCN \leftrightharpoons H_2 + NCO$                                                      | 1.66e-12  | 0.00  | 0        | 138 |
| 623               | 2n   | $H + HOCN = CN + H_2O$                                                                       | 1.66e-12  | 0.00  | 0        | 138 |
| 624               | 2n   | $H + H_3N \leftrightharpoons H_2 + H_2N$                                                     | 6.54 e-13 | 2.76  | 5170     | 139 |
| 625               | 2n   | $H + H_2N_2 \leftrightharpoons HN_2 + H_2$                                                   | 4.53e-13  | 2.63  | 0        | 140 |
| 626               | 2n   | $H + H_2O_2 \leftrightharpoons HO + H_2O$                                                    | 4.00e-11  | 0.00  | 1800     | 7   |
| 627               | 2n   | $H + H_2O_2 \leftrightharpoons H_2 + HO_2$                                                   | 8.00e-11  | 0.00  | 4000     | 7   |
| 628               | 2n   | $H + HNO_2 \leftrightharpoons H_2O + NO$                                                     | 6.39e-13  | 1.89  | 1940     | 141 |
| 629               | 2n   | $H + HNO_2 \leftrightharpoons HO + HNO$                                                      | 1.26e-11  | 0.86  | 2500     | 141 |
| 630               | 2n   | $H + HNO_2 \leftrightharpoons H_2 + NO_2$                                                    | 2.27e-12  | 1.55  | 3330     | 141 |
| 631               | 2n   | $H + NO_3 \rightleftharpoons HO + NO_2$                                                      | 1.10e-10  | 0.00  | 0        | 142 |
| 632               | 2n   | $H + C_2H_3 \leftrightharpoons C_2H_2 + H_2$                                                 | 2.03e-10  | -1.00 | 0        | 21  |
| 633               | 2n   | $H + C_2H_2O \rightleftharpoons CO + CH_3$                                                   | 4.99e-12  | 1.45  | 1400     | 143 |
| 634               | 2n   | $H + CH_4 \leftrightharpoons H_2 + CH_3$                                                     | 5.94e-13  | 3.00  | 4050     | 5   |
| 635               | 2n   | $H + CH_3O \rightleftharpoons CH_2O + H_2$                                                   | 3.14e-10  | -0.58 | 855      | 89  |
| 636               | 2n   | $H + CH_2OH \Rightarrow CH_3 + HO$                                                           | 1.60e-10  | 0.00  | 0        | 145 |
| 637               | 2n   | $H + CH_2OH \leftrightharpoons CH_2O + H_2$                                                  | 1.00e-11  | 0.00  | 0        | 145 |
| 638               | 2n   | $H + CH_2N_2 \leftrightharpoons CH_3 + N_2$                                                  | 1.60e-11  | 0.00  | 0        | 146 |
| 639               | 2n   | $H + HNO_3 \leftrightharpoons H_2O + NO_2$                                                   | 1.39e-14  | 3.29  | 3160     | 147 |
| 640               | 2n   | $H + HNO_3 \leftrightharpoons H_2 + NO_3$                                                    | 5.65e-12  | 1.53  | 8250     | 147 |
| 641               | 2n   | $H + C_2H_4 \leftrightharpoons H_2 + C_2H_3$                                                 | 5.08e-12  | 1.93  | 6520     | 148 |
| 642               | 2n   | $H + CH_3CN \leftrightharpoons HCN + CH_3$                                                   | 3.39e-12  | 0.00  | 3950     | 149 |
| 643               | 2n   | $H + CH_3CN \leftrightharpoons CN + CH_4$                                                    | 1.66e-13  | 0.00  | 1530     | 149 |
| 644               | 2n   | $H + C_2H_3O \leftrightharpoons CH_3 + CHO$                                                  | 3.32e-11  | 0.00  | 0        | 150 |
| 645               | 2n   | $H + C_2H_2O_2 \leftrightharpoons CO + H_2 + CHO$                                            | 8.97e-11  | 0.00  | 0        | 151 |
| 646               | 2n   | $H + CH_3OH \Rightarrow CH_3 + H_2O$                                                         | 9.41e-09  | 0.00  | 12400    | Est |
| 647               | 2n   | $H + CH_3OH = CH_2OH + H_2$                                                                  | 2.42e-12  | 2.00  | 2270     | 152 |
| 648               | 2n   | $H + CH_3OH = CH_3O + H_2$                                                                   | 6.64e-11  | 0.00  | 3070     | 45  |
| 649               | 2n   | $H + H_4N_2 \leftrightharpoons NH_2NH + H_2$                                                 | 1.17e-11  | 0.00  | 1260     | 153 |
| 650               | 2n   | $H + H_2NNO_2 \leftrightharpoons HNO + NO + H_2$                                             | 1.66e-12  |       | 0        | 14  |
| 651               | 2n   | $H + C_2H_5 \leftrightharpoons CH_3 + CH_3$                                                  | 2.00e-10  | 0.00  | 0        | 144 |
| 652               | 2n   | $H + C_2H_5 \leftrightharpoons C_2H_4 + H_2$                                                 | 3.01e-12  | 0.00  | 0        | 7   |
| 653               | 2n   | $H + C_2H_4O \leftrightharpoons C_2H_4 + H_2$ $H + C_2H_4O \leftrightharpoons C_2H_3O + H_2$ | 5.27e-13  | 2.58  | 614      | 154 |
| 654               | 2n   | $H + C_2H_4O \Rightarrow CH_2CHO + H_2$                                                      | 2.12e-13  | 3.10  | 2620     | 154 |
| (),) <del>+</del> |      |                                                                                              |           |       |          |     |
| 655               | 2n   | $H + C_2H_4O \leftrightharpoons CH_3 + CO + H_2$                                             | 4.88e-13  | 2.75  | 486      | 154 |

Table 6—Continued

|     |      | TABLE 0—Continue                                 | <i>u</i>  |      |          |     |
|-----|------|--------------------------------------------------|-----------|------|----------|-----|
| #   | Type | Reaction                                         | $\alpha$  | β    | $\gamma$ | Ref |
| 657 | 2n   | $H + Oxyrane = C_2H_4O + H$                      | 9.22e-11  | 0.00 | 5510     | 68  |
| 658 | 2n   | $H + Oxyrane = C_2H_4 + HO$                      | 1.58e-13  | 0.00 | 2520     | 156 |
| 659 | 2n   | $H + Oxyrane = C_2H_3 + H_2O$                    | 8.30e-15  | 0.00 | 2520     | 156 |
| 660 | 2n   | $H + Oxyrane = cyc-C_2H_3O + H_2$                | 3.32e-11  | 0.00 | 4180     | 156 |
| 661 | 2n   | $H + CH_3NO_2 \leftrightharpoons CH_3 + HNO_2$   | 5.28e-09  | 0.00 | 7920     | 157 |
| 662 | 2n   | $H + CH_3ONO \leftrightharpoons CH_3OH + NO$     | 2.03e-13  | 0.00 | 665      | 158 |
| 663 | 2n   | $H + C_2H_6 \leftrightharpoons C_2H_5 + H_2$     | 1.22e-11  | 1.50 | 3730     | 144 |
| 664 | 2n   | $H + C_2H_5OH \leftrightharpoons C_2H_5 + H_2O$  | 9.80e-13  | 0.00 | 1740     | 159 |
| 665 | 2n   | $N + CH \leftrightharpoons C + HN$               | 3.02e-11  | 0.65 | 1210     | 160 |
| 666 | 2n   | $N + CH \leftrightharpoons CN + H$               | 1.66e-10  | 0.00 | 0        | 161 |
| 667 | 2n   | N + CO = CN + O                                  | 3.84e-09  | 0.00 | 36000    | 162 |
| 668 | 2n   | $N + HO \leftrightharpoons HN + O$               | 1.88e-11  | 0.10 | 10700    | 125 |
| 669 | 2n   | $N + NO \leftrightharpoons N_2 + O$              | 3.40e-11  | 0.00 | 0        | 164 |
| 670 | 2n   | $N + O_2 \leftrightharpoons NO + O$              | 3.44e-12  | 1.18 | 4000     | 165 |
| 671 | 2n   | $N + C_2N \leftrightharpoons CN + CN$            | 1.00e-10  | 0.00 | 0        | 122 |
| 672 | 2n   | $N + C_2O \leftrightharpoons CN + CO$            | 5.50 e-10 | 0.00 | 0        | 166 |
| 673 | 2n   | $N + CH_2 \leftrightharpoons CH + HN$            | 9.96e-13  | 0.00 | 20500    | 121 |
| 674 | 2n   | $N + NCO = CO + N_2$                             | 3.30e-11  | 0.00 | 0        | 5   |
| 675 | 2n   | $N + NCO \leftrightharpoons CN + NO$             | 1.66e-12  | 0.00 | 0        | 167 |
| 676 | 2n   | $N + CO_2 \leftrightharpoons CO + NO$            | 3.20e-13  | 0.00 | 1710     | 168 |
| 677 | 2n   | $N + H_2N \leftrightharpoons HN + HN$            | 2.99e-13  | 0.00 | 7600     | 121 |
| 678 | 2n   | $N + H_2O \leftrightharpoons HO + HN$            | 6.03e-11  | 1.20 | 19200    | 125 |
| 679 | 2n   | $N + NO_2 \leftrightharpoons N_2O + O$           | 5.80e-12  | 0.00 | 0        | 169 |
| 680 | 2n   | $N + N_2O \leftrightharpoons N_2 + NO$           | 1.50e-11  | 0.00 | 51       | 169 |
| 681 | 2n   | $N + O_3 \leftrightharpoons O_2 + NO$            | 1.00e-16  | 0.00 | 0        | 170 |
| 682 | 2n   | $N + HCCN \leftrightharpoons NCCN + H$           | 6.00 e-15 | 0.00 | 0        | 171 |
| 683 | 2n   | $N + CH_3 \leftrightharpoons H_2CN + H$          | 1.18e-10  | 0.00 | 0        | 172 |
| 684 | 2n   | $N + CH_3 \leftrightharpoons HCN + H + H$        | 3.33e-13  | 0.00 | 0        | 173 |
| 685 | 2n   | $N + HNCO \leftrightharpoons HN + NCO$           | 3.85 e-05 | 0.00 | 26500    | 174 |
| 686 | 2n   | $N + C_2H_3 \leftrightharpoons CH_2CN + H$       | 7.70e-11  | 0.00 | 0        | 175 |
| 687 | 2n   | $N + CH_4 \leftrightharpoons HCN + H_2 + H$      | 2.51e-14  | 0.00 | 0        | 176 |
| 688 | 2n   | $N + C_2H_4 \leftrightharpoons HCN + CH_3$       | 2.66e-14  | 0.00 | 352      | 177 |
| 689 | 2n   | $N + CH_3CN \leftrightharpoons HCN + HCN + H$    | 2.27e-15  | 0.00 | 813      | 178 |
| 690 | 2n   | $N + CH_3OH \leftrightharpoons CH_3 + HNO$       | 3.99e-10  | 0.00 | 4330     | 179 |
| 691 | 2n   | $N + C_2H_4O \leftrightharpoons HCN + CHO + H_2$ | 1.99e-14  | 0.00 | 0        | 180 |
| 692 | 2n   | $N + C_2H_5OH \leftrightharpoons C_2H_5 + HNO$   | 3.32e-10  | 0.00 | 4210     | 179 |
| 693 | 2n   | $O + C_2 \leftrightharpoons CO + C$              | 5.99e-10  | 0.00 | 0        | 181 |
| 694 | 2n   | $O + CH \leftrightharpoons HO + C$               | 2.52e-11  | 0.00 | 2380     | 182 |
| 695 | 2n   | $O + CH \leftrightharpoons CO + H$               | 1.02e-10  | 0.00 | 914      | 182 |
| 696 | 2n   | $O + CN \leftrightharpoons NO + C$               | 5.37e-11  | 0.00 | 13700    | 120 |
| 697 | 2n   | $O + C_2H \leftrightharpoons CO + CH$            | 1.69e-11  | 0.00 | 0        | 5   |
|     |      |                                                  |           |      |          |     |

Table 6—Continued

| #   | Type | Reaction                                    | α         | β     | $\gamma$ | Ref |
|-----|------|---------------------------------------------|-----------|-------|----------|-----|
| 698 | 2n   | $O + C_2N \leftrightharpoons CN + CO$       | 5.99e-12  | 0.00  | 0        | 166 |
| 699 | 2n   | $O + C_2O \leftrightharpoons CO + CO$       | 8.60e-11  | 0.00  | 0        | 127 |
| 700 | 2n   | $O + CH_2 \leftrightharpoons CO + H + H$    | 1.33e-10  | 0.00  | 0        | 183 |
| 701 | 2n   | $O + CH_2 \leftrightharpoons CO + H_2$      | 6.64 e-11 | 0.00  | 0        | 41  |
| 702 | 2n   | $O + HCN \leftrightharpoons CO + HN$        | 8.88e-13  | 1.21  | 3820     | 18  |
| 703 | 2n   | $O + HCN \leftrightharpoons CN + HO$        | 3.65e-11  | 1.58  | 13300    | 18  |
| 704 | 2n   | $O + HNC \leftrightharpoons CO + HN$        | 7.64e-12  | 0.00  | 1100     | 14  |
| 705 | 2n   | $O + CHO \leftrightharpoons CO + HO$        | 5.00e-11  | 0.00  | 0        | 5   |
| 706 | 2n   | $O + CHO \leftrightharpoons CO_2 + H$       | 5.00e-11  | 0.00  | 0        | 5   |
| 707 | 2n   | $O + NCN \leftrightharpoons CO + N_2$       | 2.22e-16  | 2.32  | 0        | 184 |
| 708 | 2n   | $O + NCN \leftrightharpoons NCO + N$        | 2.26e-11  | 0.18  | 0        | 184 |
| 709 | 2n   | $O + NCO \leftrightharpoons CO + NO$        | 7.51e-11  | 0.00  | 0        | 3   |
| 710 | 2n   | $O + NCO \leftrightharpoons CN + O_2$       | 4.05e-10  | -1.43 | 3400     | 3   |
| 711 | 2n   | $O + CO_2 \leftrightharpoons CO + O_2$      | 1.41e-11  | 0.00  | 22100    | 185 |
| 712 | 2n   | $O + H_2N \leftrightharpoons HO + HN$       | 1.16e-11  | 0.00  | 0        | 125 |
| 713 | 2n   | $O + H_2N \leftrightharpoons H_2 + NO$      | 8.30e-12  | 0.00  | 0        | 125 |
| 714 | 2n   | $O + H_2O \leftrightharpoons HO + HO$       | 6.68e-13  | 2.60  | 7640     | 186 |
| 715 | 2n   | $O + H_2O \leftrightharpoons H_2 + O_2$     | 4.48e-12  | 0.97  | 35300    | 187 |
| 716 | 2n   | $O + HNO \leftrightharpoons HO + NO$        | 5.99e-11  | 0.00  | 0        | 18  |
| 717 | 2n   | $O + HO_2 \leftrightharpoons HO + O_2$      | 1.36e-11  | 0.75  | 0        | 135 |
| 718 | 2n   | $O + N_2O \leftrightharpoons NO + NO$       | 1.52e-10  | 0.00  | 14000    | 188 |
| 719 | 2n   | $O + N_2O \leftrightharpoons N_2 + O_2$     | 6.13e-12  | 0.00  | 8020     | 188 |
| 720 | 2n   | $O + NO_2 \leftrightharpoons NO + O_2$      | 6.51e-12  | 0.00  | 0        | 169 |
| 721 | 2n   | $O + O_3 \leftrightharpoons O_2 + O_2$      | 2.23e-12  | 0.75  | 1580     | 135 |
| 722 | 2n   | $O + C_2H_2 \leftrightharpoons HCCO + H$    | 7.14e-10  | 0.00  | 6100     | 189 |
| 723 | 2n   | $O + C_2H_2 \leftrightharpoons CH_2 + CO$   | 3.49e-12  | 1.50  | 850      | 189 |
| 724 | 2n   | $O + NCCN \leftrightharpoons CN + NCO$      | 4.15e-11  | 0.00  | 5500     | 101 |
| 725 | 2n   | $O + CH_3 \leftrightharpoons CH_2O + H$     | 1.40e-10  | 0.00  | 0        | 5   |
| 726 | 2n   | $O + CH_3 \leftrightharpoons CO + H_2 + H$  | 5.72e-11  | 0.00  | 0        | 190 |
| 727 | 2n   | $O + CH_2O \leftrightharpoons CHO + HO$     | 1.78e-11  | 0.57  | 1390     | 5   |
| 728 | 2n   | $O + CH_2O \leftrightharpoons CO + HO + H$  | 1.00e-10  | 0.00  | 0        | 191 |
| 729 | 2n   | $O + HNCO \leftrightharpoons CO_2 + HN$     | 4.93e-13  | 1.41  | 4290     | 3   |
| 730 | 2n   | $O + HNCO \leftrightharpoons NCO + HO$      | 6.61e-13  | 2.11  | 5750     | 3   |
| 731 | 2n   | $O + H_3N \leftrightharpoons HO + H_2N$     | 1.60e-11  | 0.00  | 3670     | 5   |
| 732 | 2n   | $O + H_3N \leftrightharpoons H_2O + HN$     | 2.98e-13  | 0.00  | 2420     | Est |
| 733 | 2n   | $O + H_2O_2 \leftrightharpoons HO_2 + HO$   | 1.42e-12  | 2.00  | 2000     | 7   |
| 734 | 2n   | $O + HNO_2 \leftrightharpoons HO + NO_2$    | 2.01e-11  | 0.00  | 3000     | 18  |
| 735 | 2n   | $O + NO_3 \leftrightharpoons O_2 + NO_2$    | 1.70e-11  | 0.00  | 0        | 32  |
| 736 | 2n   | $O + C_2H_3 \leftrightharpoons C_2H_2O + H$ | 1.60e-10  | 0.00  | 0        | 7   |
| 737 | 2n   | $O + C_2H_3 \leftrightharpoons C_2H_2 + HO$ | 5.50e-12  | 0.20  | 0        | 192 |
| 738 | 2n   | $O + CH_4 \leftrightharpoons CH_3 + HO$     | 5.63e-10  | 0.00  | 6230     | 193 |

Table 6—Continued

| #   | Type | Reaction                                          | α         | β    | $\gamma$ | Ref                  |
|-----|------|---------------------------------------------------|-----------|------|----------|----------------------|
| 739 | 2n   | $O + CH_4 \leftrightharpoons CH_2O + H_2$         | 7.51e-12  | 0.00 | 6230     | Est                  |
| 740 | 2n   | $O + CH_3O \leftrightharpoons CH_2O + HO$         | 1.00e-11  | 0.00 | 0        | 7                    |
| 741 | 2n   | $O + CH_3O \leftrightharpoons CH_3 + O_2$         | 3.55e-11  | 0.00 | 0        | 194                  |
| 742 | 2n   | $O + CH_2OH \leftrightharpoons CH_2O + HO$        | 7.01e-11  | 0.00 | 0        | 145                  |
| 743 | 2n   | $O + C_2H_4 \leftrightharpoons C_2H_3O + H$       | 6.24 e-13 | 0.00 | 0        | 195                  |
| 744 | 2n   | $O + C_2H_4 \leftrightharpoons C_2H_3 + HO$       | 2.31e-11  | 0.00 | 3620     | 196                  |
| 745 | 2n   | $O + C_2H_4 \leftrightharpoons CH_3 + CHO$        | 1.50e-12  | 1.55 | 0        | 7                    |
| 746 | 2n   | $O + C_2H_4 \leftrightharpoons C_2H_2O + H_2$     | 3.82e-14  | 0.00 | 0        | 33                   |
| 747 | 2n   | $O + C_2H_4 \leftrightharpoons CH_2O + CH_2$      | 8.30e-12  | 0.00 | 754      | 197                  |
| 748 | 2n   | $O + C_2H_3O \leftrightharpoons C_2H_2O + HO$     | 6.40 e-11 | 0.00 | 0        | 33                   |
| 749 | 2n   | $O + C_2H_3O \leftrightharpoons CO_2 + CH_3$      | 1.60e-11  | 0.00 | 0        | 7                    |
| 750 | 2n   | $O + CH_3OH \leftrightharpoons CH_2OH + HO$       | 5.71e-11  | 0.00 | 2750     | 198                  |
| 751 | 2n   | $O + CH_3OH \leftrightharpoons CH_3O + HO$        | 1.66e-11  | 0.00 | 2360     | 45                   |
| 752 | 2n   | $O + H_4N_2 \leftrightharpoons H_2N_2 + H_2O$     | 1.41e-10  | 0.00 | 603      | 199                  |
| 753 | 2n   | $O + C_2H_5 \leftrightharpoons H_2C_2HOH + H$     | 1.33e-10  | 0.00 | 0        | $\operatorname{Est}$ |
| 754 | 2n   | $O + C_2H_5 \leftrightharpoons C_2H_4 + HO$       | 6.31e-12  | 0.03 | 0        | 192                  |
| 755 | 2n   | $O + C_2H_5 \leftrightharpoons CH_2O + CH_3$      | 2.67e-11  | 0.00 | 0        | 7                    |
| 756 | 2n   | $O + C_2H_4O \leftrightharpoons CH_2CHO + HO$     | 2.49e-11  | 0.00 | 2520     | 59                   |
| 757 | 2n   | $O + C_2H_4O \leftrightharpoons C_2H_3O + HO$     | 2.81e-11  | 0.00 | 1680     | 200                  |
| 758 | 2n   | $O + Oxyrane = cyc-C_2H_3O + HO$                  | 3.17e-12  | 0.00 | 2640     | 201                  |
| 759 | 2n   | $O + C_2H_6 \leftrightharpoons C_2H_5 + HO$       | 5.11e-12  | 2.40 | 2930     | 202                  |
| 760 | 2n   | $O + C_2H_5OH \leftrightharpoons CH_3CHOH + HO$   | 1.03e-13  | 0.00 | 0        | 203                  |
| 761 | 2n   | $O + C_2H_5OH \leftrightharpoons CH_3CH_2O + HO$  | 1.23e-15  | 4.73 | 870      | 204                  |
| 762 | 2n   | $O + (CH_3)_2O \leftrightharpoons CH_3OCH_2 + HO$ | 4.68e-10  | 0.00 | 2590     | 205                  |
| 763 | 2n   | $CN + CN \leftrightharpoons C_2 + N_2$            | 2.66e-09  | 0.00 | 21700    | 206                  |
| 764 | 2n   | $HN + HN \leftrightharpoons N_2 + H + H$          | 1.16e-09  | 0.00 | 0        | 207                  |
| 765 | 2n   | $NO + NO \leftrightharpoons N_2 + O_2$            | 5.10e-10  | 0.50 | 30600    | $\operatorname{Est}$ |
| 766 | 2n   | $O_3 + O_3 \leftrightharpoons O_2 + O_2 + O_2$    | 7.47e-12  | 0.00 | 9310     | 208                  |
| 767 | 2n   | $C_2 + HO = CO + CH$                              | 8.30e-12  | 0.00 | 0        | 209                  |
| 768 | 2n   | $C_2 + NO = C_2O + N$                             | 3.75e-11  | 0.00 | 4350     | 210                  |
| 769 | 2n   | $C_2 + NO \leftrightharpoons C_2N + O$            | 8.75e-11  | 0.00 | 4350     | 210                  |
| 770 | 2n   | $C_2 + O_2 \leftrightharpoons CO + CO$            | 1.10e-11  | 0.00 | 381      | 211                  |
| 771 | 2n   | $CH + N_2 \leftrightharpoons NCN + H$             | 4.06e-13  | 1.12 | 8820     | 212                  |
| 772 | 2n   | $CH + N_2 \leftrightharpoons HCN + N$             | 6.64e-13  | 0.00 | 6840     | 213                  |
| 773 | 2n   | $CH + NO \leftrightharpoons NCO + H$              | 4.40e-11  | 0.00 | 0        | 214                  |
| 774 | 2n   | $CH + NO \leftrightharpoons CHO + N$              | 1.33e-11  | 0.00 | 0        | 215                  |
| 775 | 2n   | $CH + NO \leftrightharpoons CO + HN$              | 2.00e-10  | 0.00 | 0        | 214                  |
| 776 | 2n   | $CH + NO \leftrightharpoons HCN + O$              | 1.37e-10  | 0.00 | 0        | 215                  |
| 777 | 2n   | $CH + NO \leftrightharpoons CN + HO$              | 1.40e-10  | 0.00 | 0        | 214                  |
| 778 | 2n   | $CH + O_2 \leftrightharpoons CHO + O$             | 1.66e-11  | 0.00 | 0        | 216                  |
| 779 | 2n   | $CH + O_2 \leftrightharpoons CO + HO$             | 8.30e-11  | 0.00 | 0        | 217                  |

Table 6—Continued

| #   | Type | Reaction                                      | α         | β     | $\gamma$ | Ref                  |
|-----|------|-----------------------------------------------|-----------|-------|----------|----------------------|
| 780 | 2n   | $CH + H_2O \leftrightharpoons CH_2O + H$      | 2.82e-11  | -1.22 | 0        | 218                  |
| 781 | 2n   | $CH + N_2O \leftrightharpoons HCN + NO$       | 7.82e-11  | 0.00  | 0        | Est                  |
| 782 | 2n   | $CH + N_2O \leftrightharpoons CO + N_2 + H$   | 3.09e-11  | 0.00  | 0        | Est                  |
| 783 | 2n   | $CH + NO_2 \leftrightharpoons CHO + NO$       | 1.45e-10  | 0.00  | 0        | 219                  |
| 784 | 2n   | $CH + CH_4 \leftrightharpoons C_2H_4 + H$     | 9.25 e-11 | -0.90 | 0        | 220                  |
| 785 | 2n   | $CH + C_2H_4 \leftrightharpoons C_3H_4 + H$   | 2.84e-10  | -0.31 | 0        | Est                  |
| 786 | 2n   | $CN + HO \leftrightharpoons NCO + H$          | 7.01e-11  | 0.00  | 0        | 3                    |
| 787 | 2n   | $CN + NO \leftrightharpoons CO + N_2$         | 1.79e-10  | 0.00  | 4040     | 221                  |
| 788 | 2n   | $CN + O_2 \leftrightharpoons CO + NO$         | 2.42e-12  | 0.18  | 0        | 222                  |
| 789 | 2n   | $CN + CHO \leftrightharpoons HCN + CO$        | 1.00e-10  | 0.00  | 0        | 3                    |
| 790 | 2n   | $CN + NCO \leftrightharpoons NCN + CO$        | 5.18e-11  | 0.16  | 0        | 223                  |
| 791 | 2n   | $CN + NCO \leftrightharpoons CN_2 + CO$       | 3.01e-11  | 0.00  | 0        | 3                    |
| 792 | 2n   | $CN + H_2O \rightleftharpoons HCN + HO$       | 3.82e-11  | 0.00  | 6700     | 224                  |
| 793 | 2n   | $CN + HNO \leftrightharpoons HCN + NO$        | 3.01e-11  | 0.00  | 0        | 3                    |
| 794 | 2n   | $CN + N_2O \leftrightharpoons NCO + N_2$      | 2.01e-12  | 0.00  | 0        | 171                  |
| 795 | 2n   | $CN + N_2O \leftrightharpoons CNN + NO$       | 1.73e-14  | 2.60  | 1860     | 3                    |
| 796 | 2n   | $CN + NO_2 \leftrightharpoons NCO + NO$       | 4.00e-11  | 0.00  | 0        | 3                    |
| 797 | 2n   | $CN + NO_2 \leftrightharpoons N_2O + CO$      | 7.11e-12  | 0.00  | 0        | 225                  |
| 798 | 2n   | $CN + NO_2 \leftrightharpoons CO_2 + N_2$     | 5.20e-12  | 0.00  | 0        | 225                  |
| 799 | 2n   | $CN + C_2H_2 \leftrightharpoons HC_3N + H$    | 2.43e-10  | 0.00  | 0        | 226                  |
| 800 | 2n   | $CN + C_2H_2 \leftrightharpoons HCN + C_2H$   | 2.19e-10  | 0.00  | 0        | 227                  |
| 801 | 2n   | $CN + CH_2O \rightleftharpoons HCN + CHO$     | 7.01e-11  | 0.00  | 0        | 3                    |
| 802 | 2n   | $CN + HNCO \leftrightharpoons HCN + NCO$      | 2.51e-11  | 0.00  | 0        | 3                    |
| 803 | 2n   | $CN + HCNO \leftrightharpoons HCCN + NO$      | 3.95e-11  | 0.00  | 0        | 228                  |
| 804 | 2n   | $CN + HCNO \leftrightharpoons HCN + NCO$      | 1.10e-10  | 0.00  | 0        | 229                  |
| 805 | 2n   | $CN + H_3N \leftrightharpoons HCN + H_2N$     | 1.66e-11  | 0.00  | 0        | 101                  |
| 806 | 2n   | $CN + HNO_2 \leftrightharpoons HCN + NO_2$    | 2.01e-11  | 0.00  | 0        | 3                    |
| 807 | 2n   | $CN + C_2H_2O \leftrightharpoons HNC + HCCO$  | 2.37e-11  | 0.00  | 0        | 230                  |
| 808 | 2n   | $CN + CH_4 \leftrightharpoons HCN + CH_3$     | 5.11e-13  | 2.64  | 0        | 33                   |
| 809 | 2n   | $CN + C_2H_4 \leftrightharpoons C_3H_3N + H$  | 3.49e-10  | 0.00  | 0        | Est                  |
| 810 | 2n   | $CN + C_2H_4 \leftrightharpoons C_2H_3 + HCN$ | 2.09e-10  | 0.00  | 0        | 227                  |
| 811 | 2n   | $CN + CH_3OH \leftrightharpoons CH_3O + HCN$  | 1.20e-10  | 0.00  | 0        | Est                  |
| 812 | 2n   | $CN + C_2H_6 \leftrightharpoons C_2H_5 + HCN$ | 2.08e-11  | 0.22  | 0        | 231                  |
| 813 | 2n   | $CO + HNO = CO_2 + HN$                        | 3.32e-12  | 0.00  | 6190     | 130                  |
| 814 | 2n   | $CO + HO_2 = CO_2 + HO$                       | 6.46e-14  | 2.18  | 9030     | 232                  |
| 815 | 2n   | $CO + N_2O \leftrightharpoons CO_2 + N_2$     | 5.30e-13  | 0.00  | 10200    | 18                   |
| 816 | 2n   | $CO + NO_2 = CO_2 + NO$                       | 1.50e-10  | 0.00  | 17000    | 18                   |
| 817 | 2n   | $CO + C_2H_2 \leftrightharpoons C_2H + CHO$   | 8.00e-10  | 0.00  | 53600    | 7                    |
| 818 | 2n   | $CO + CH_3 \leftrightharpoons C_2H_2 + HO$    | 6.31e-11  | 0.00  | 30400    | 233                  |
| 819 | 2n   | $CO + CH_3O = CH_3 + CO_2$                    | 2.61e-11  | 0.00  | 5940     | 7                    |
| 820 | 2n   | $CO + CH_3O \leftrightharpoons CH_2O + CHO$   | 3.23e-13  | 2.28  | 10100    | $\operatorname{Est}$ |

Table 6—Continued

| $\begin{array}{c} 221 & 2n & CO + C_2H_4 \leftrightharpoons C_2H_3 + CHO \\ 222 & 2n & H_2 + O_2 \leftrightharpoons HO + HO \\ 222 & 2n & H_2 + HNO \leftrightharpoons H_2O + HN \\ 223 & 2n & H_2 + HNO \leftrightharpoons H_2O + HN \\ 224 & 2n & H_2 + N_2O \leftrightharpoons H_2O + N_2 \\ 225 & 2n & H_2 + H_2O_2 \leftrightharpoons HO + HO + H_2 \\ 226 & 2n & H_2 + H_2O_2 \leftrightharpoons HO + HO + H_2 \\ 226 & 2n & HN + NO \leftrightharpoons HN_2 + O \\ 227 & 2n & HN + NO \leftrightharpoons HN_2 + O \\ 228 & 2n & HN + NO \leftrightharpoons HO + N_2 \\ 229 & 2n & HN + NO \leftrightharpoons HO + N_2 \\ 229 & 2n & HN + NO \leftrightharpoons HO + N_2 \\ 220 & 2n & HN + O_2 \leftrightharpoons HO + NO \\ 220 & 2n & HN + O_2 \leftrightharpoons HO + NO \\ 220 & 2n & HN + O_2 \leftrightharpoons HO + NO \\ 220 & 2n & HN + O_2 \leftrightharpoons HNO + O \\ 220 & 2n & HN + O_2 \leftrightharpoons HNO + O \\ 220 & 2n & HN + O_2 \leftrightharpoons HNO + O \\ 220 & 2n & HN + O_2 \leftrightharpoons HNO + NO \\ 220 & 2n & HN + O_2 \leftrightharpoons HNO + NO \\ 220 & 2n & HN + H_2N \leftrightharpoons H_2N_2 + H \\ 220 & 2n & HN + H_2O \leftrightharpoons H_2N + HO \\ 220 & 2n & HN + H_2O \leftrightharpoons H_2N + HO \\ 220 & 2n & HN + H_2O \leftrightharpoons H_2N + HO \\ 220 & 2n & HN + H_2O \leftrightharpoons H_2N + HO \\ 220 & 2n & HN + H_2O \leftrightharpoons H_2N + HO \\ 220 & 2n & HN + H_2O \leftrightharpoons H_2N + HO \\ 220 & 2n & HN + HO_2 \leftrightharpoons HNO + NO \\ 220 & 2n & HN + HO_2 \leftrightharpoons HNO + NO \\ 220 & 2n & HN + HO_2 \leftrightharpoons HNO + NO \\ 220 & 2n & HN + HO_2 \leftrightharpoons HNO + NO \\ 220 & 34 & 2n & HN + HO_2 \leftrightharpoons H_2N + HO \\ 230 & 2n & HN + HNCO \leftrightharpoons H_2N + HOO \\ 230 & 2n & HN + H_3N \leftrightharpoons H_2N + H_2N \\ 230 & 2n & HN + H_3N \leftrightharpoons H_2N + H_2N \\ 230 & 2n & HN + C_2H_4O \leftrightharpoons C_2H_3O + H_2N \\ 230 & 2n & HN + C_2H_4O \leftrightharpoons C_2H_3O + H_2N \\ 230 & 2n & HN + C_2H_4O \leftrightharpoons C_2H_3O + H_2N \\ 230 & 2n & HO + C_2H \leftrightharpoons CH_2 + CO \\ 240 & 2n & HO + C_2H \leftrightharpoons CH_2O + H \\ 241 & 2n & HO + HCN \leftrightharpoons HOCN + H \\ 242 & 2n & HO + HCN \leftrightharpoons HOCN + H \\ 244 & 2n & HO + HCN \leftrightharpoons HOCO + H \\ 245 & 2n & HO + HNC \leftrightharpoons H_2O + NO \\ 246 & 2n & HO + HNC \leftrightharpoons H_2O + NO \\ 247 & 2n & HO + HNO \leftrightharpoons H_2O + NO \\ 248 & 2n & HO + HNO \leftrightharpoons H_2O + NO \\ 249 & 2n & HO + HNO \leftrightharpoons H_2O + NO \\ 240 & 2n & HO + HNO \leftrightharpoons H_2O + NO \\ 240 & 2n & HO + HNO \leftrightharpoons H_2O + NO \\ 240 & 2n & HO + HNO \leftrightharpoons H_2O + NO \\ 240 & 2n & HO + HNO \leftrightharpoons H_2O + NO \\ 240 & 2n & HO + HNO \leftrightharpoons H_2O + NO \\ 240 & 2n & HO + HNO \leftrightharpoons H_2O + NO \\ 240 & 2n & HO + HNO \leftrightharpoons H_2O + NO \\ 240 & 2n & HO + HNO \leftrightharpoons H_2O + NO \\ 240 & 2n & HO + HNO \leftrightharpoons H_2O + NO \\ 240 & 2n & HO + HNO \leftrightharpoons H_2O + NO \\ 240 & 2n & HO + H$ |     |      | TABLE 0—Continu                                  | .cu       |       |          |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|--------------------------------------------------|-----------|-------|----------|-----|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | #   | Type | Reaction                                         | α         | β     | $\gamma$ | Ref |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 821 | 2n   | $CO + C_2H_4 \leftrightharpoons C_2H_3 + CHO$    | 2.51e-10  | 0.00  | 45600    | 7   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 822 | 2n   | $H_2 + O_2 \leftrightharpoons HO + HO$           | 4.15e-11  | 0.44  | 34800    | 187 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 823 | 2n   | $H_2 + HNO \leftrightharpoons H_2O + HN$         | 1.66e-10  | 0.00  | 8060     | 130 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 824 | 2n   | $H_2 + N_2O \leftrightharpoons H_2O + N_2$       | 5.73e-12  | 0.50  | 0        | 234 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 825 | 2n   | $H_2 + H_2O_2 \leftrightharpoons HO + HO + H_2$  | 7.04e-08  | 0.00  | 22900    | 235 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 826 | 2n   | $HN + NO \leftrightharpoons HN_2 + O$            | 3.07e-11  | 0.21  | 5470     | 133 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 827 | 2n   | $HN + NO \leftrightharpoons HO + N_2$            | 5.86e-12  | -0.50 | 0        | 133 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 828 | 2n   | $HN + O_2 \leftrightharpoons HNO + O$            | 6.79 e-14 | 2.00  | 3270     | 137 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 829 | 2n   | $HN + O_2 \leftrightharpoons HO + NO$            | 1.09e-14  | 1.50  | 0        | 137 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 830 | 2n   | $HN + H_2N \leftrightharpoons H_2N_2 + H$        | 1.44e-10  | -0.50 | 0        | 236 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 831 | 2n   | $HN + H_2O \leftrightharpoons H_2N + HO$         | 1.81e-12  | 1.60  | 14100    | 125 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 832 | 2n   | $HN + NO_2 \leftrightharpoons HNO + NO$          | 9.50 e-12 | 0.00  | 0        | Est |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 833 | 2n   | $HN + NO_2 \leftrightharpoons N_2O + HO$         | 6.60 e-12 | 0.00  | 0        | 237 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 834 | 2n   | $HN + HNCO \leftrightharpoons H_2N + NCO$        | 1.04e-11  | 1.82  | 12000    | 238 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 835 | 2n   | $HN + H_3N \leftrightharpoons H_2N + H_2N$       | 5.25 e-10 | 0.00  | 13500    | 239 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 836 | 2n   | $HN + CH_4 \leftrightharpoons CH_3 + H_2N$       | 1.49e-10  | 0.00  | 10100    | 130 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 837 | 2n   | $HN + C_2H_4O \rightleftharpoons C_2H_3O + H_2N$ | 8.30e-11  | 0.00  | 5770     | 130 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 838 | 2n   | $HN + C_2H_6 \leftrightharpoons C_2H_5 + H_2N$   | 1.16e-10  | 0.00  | 8420     | 130 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 839 | 2n   | $HO + C_2H \leftrightharpoons CH_2 + CO$         | 3.01e-11  | 0.00  | 0        | 7   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 840 | 2n   | $HO + C_2H \leftrightharpoons C_2H_2 + O$        | 3.01e-11  | 0.00  | 0        | 7   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 841 | 2n   | $HO + CH_2 \leftrightharpoons CH_2O + H$         | 3.01e-11  | 0.00  | 0        | 7   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 842 | 2n   | $HO + HCN \leftrightharpoons H_2N + CO$          | 1.07e-13  | 0.00  | 5890     | 240 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 843 | 2n   | $HO + HCN \leftrightharpoons HOCN + H$           | 2.01e-11  | 0.00  | 8520     | 240 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 844 | 2n   | $HO + HCN \leftrightharpoons HNCO + H$           | 2.84e-13  | 0.00  | 4390     | 240 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 845 | 2n   | $HO + HNC \leftrightharpoons HNCO + H$           | 4.65e-11  | 0.00  | 1860     | 14  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 846 | 2n   | $HO + CHO \leftrightharpoons H_2O + CO$          | 1.69e-10  | 0.00  | 0        | 5   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 847 | 2n   | $HO + NCO \leftrightharpoons CHO + NO$           | 3.99e-13  | 0.00  | 0        | 241 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 848 | 2n   | $HO + NCO \leftrightharpoons CO + NO + H$        | 2.99e-13  | 0.00  | 0        | 241 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 849 | 2n   | $HO + HNO \leftrightharpoons H_2O + NO$          | 4.72e-12  | 0.94  | 0        | 131 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 850 | 2n   | $HO + HO_2 \leftrightharpoons H_2O + O_2$        | 7.11e-11  | -0.21 | 0        | 242 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 851 | 2n   | $HO + N_2O \leftrightharpoons HNO + NO$          | 1.01e-17  | 4.33  | 12600    | 243 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 852 | 2n   | $HO + N_2O \leftrightharpoons HO_2 + N_2$        | 1.03e-14  | 4.72  | 18400    | 243 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 853 | 2n   | $HO + NO_2 \leftrightharpoons HO_2 + NO$         | 2.25e-11  | 0.00  | 3830     | 244 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 854 | 2n   | $HO + O_3 \leftrightharpoons HO_2 + O_2$         | 3.76e-13  | 1.99  | 603      | 245 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 855 | 2n   |                                                  | 4.12e-13  | 2.30  | 6790     | 246 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 856 | 2n   |                                                  |           |       | 6060     | 7   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 857 | 2n   | $HO + C_2H_2 \leftrightharpoons HCCO + H_2$      | 1.91e-13  | 0.00  | 0        | 247 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 858 | 2n   |                                                  |           | 0.00  | 1400     | 33  |
| $200 	 2n 	 HO + CH_3 \leftrightharpoons CH_2O + H_2 	 9.10e-11 	 0.00 	 1500 	 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 859 | 2n   |                                                  |           | 1.01  | 6010     | 248 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 860 | 2n   |                                                  |           | 0.00  | 1500     | 249 |
| $661 	 2n 	 HO + CHN_2 \leftrightharpoons NCO + H_2N 	 7.93e-13 -0.18 	 4770 	 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 861 | 2n   | $HO + CHN_2 \leftrightharpoons NCO + H_2N$       | 7.93e-13  | -0.18 | 4770     | 250 |

Table 6—Continued

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          |     |      | TABLE 0—Continued                                    |          |      |          |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------------------------------------------------------|----------|------|----------|-----|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | #   | Type | Reaction                                             | $\alpha$ | β    | $\gamma$ | Ref |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 862 | 2n   | $HO + CHN_2 \leftrightharpoons HNC + HNO$            | 1.09e-17 | 4.44 | 4960     | 250 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                          | 863 |      |                                                      |          |      |          | 250 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                          | 864 | 2n   | $HO + CHN_2 \leftrightharpoons HCN + HNO$            | 6.21e-14 |      | 6750     | 250 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                          | 865 | 2n   |                                                      | 2.94e-13 |      | 1810     | 251 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                          | 866 | 2n   | $HO + HNCO = CO_2 + H_2N$                            | 1.54e-14 | 1.50 | 1810     | 251 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                          | 867 | 2n   |                                                      | 2.55e-12 | 0.00 | 0        | Est |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 868 | 2n   |                                                      | 1.34e-13 | 0.00 | 0        | Est |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 869 | 2n   | $HO + H_3N \leftrightharpoons H_2O + H_2N$           | 5.25e-12 | 0.00 | 1010     | 252 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 870 | 2n   |                                                      | 2.54e-14 | 3.40 | 0        | 140 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 871 |      |                                                      |          |      |          |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 872 |      |                                                      |          |      | 0        | 18  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 873 |      |                                                      |          | 0.00 | 0        | 142 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                          | 874 |      |                                                      | 5.00e-11 |      | 0        |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 875 |      |                                                      | 1.01e-11 | 0.00 | 0        | 253 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                          | 876 |      |                                                      | 4.98e-12 |      | 0        | 254 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                          | 877 |      | $HO + C_2H_2O \leftrightharpoons CH_2O + CHO$        | 4.65e-11 |      | 0        | 255 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                          | 878 |      |                                                      | 2.96e-13 |      |          | 256 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 879 |      |                                                      |          |      |          |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 880 |      |                                                      |          |      | 0        | 145 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 881 | 2n   |                                                      |          |      | 3280     | 257 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                          | 882 | 2n   |                                                      | 9.85e-13 |      | 1040     | 258 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 883 | 2n   |                                                      | 4.50e-13 | 0.00 | 0        | Est |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 884 | 2n   | $HO + HCOOH = CH_2O + HO_2$                          |          | 0.00 | 0        | Est |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 885 | 2n   | $HO + HNO_3 = NO_3 + H_2O$                           |          |      | 0        | 259 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 886 | 2n   |                                                      | 1.37e-12 |      | 2190     | 260 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 887 | 2n   |                                                      | 6.43e-13 | 2.49 | 2120     | 261 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 888 | 2n   | $HO + C_2H_3O \leftrightharpoons C_2H_2O + H_2O$     | 2.01e-11 | 0.00 | 0        | 7   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 889 | 2n   | $HO + C_2H_2O_2 \leftrightharpoons H_2O + CHO + CO$  | 1.10e-11 | 0.00 | 0        | 54  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 890 |      |                                                      | 2.13e-13 |      | 0        | 152 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 891 |      |                                                      | 1.66e-11 | 0.00 | 834      | 45  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 892 | 2n   |                                                      | 1.10e-12 |      | 0        | 262 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 893 | 2n   |                                                      | 6.09e-11 | 0.00 | 0        | Est |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 894 | 2n   | $HO + C_2H_5 \rightleftharpoons C_2H_4 + H_2O$       | 4.00e-11 | 0.00 | 0        |     |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                          | 895 |      |                                                      |          | 0.00 | 1010     | 59  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                          | 896 |      |                                                      |          | 0.00 |          |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 897 |      |                                                      |          |      |          | 263 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                          | 898 |      | v                                                    |          | 0.00 |          |     |
| 900 2n $HO + CH_3NO_3 \leftrightharpoons CH_3O + HNO_3$ 3.01e-13 0.00 0 265<br>901 2n $HO + C_2H_5OH \leftrightharpoons CH_3CH_2O + H_2O$ 1.60e-13 0.00 0 266 | 899 |      |                                                      |          |      |          | 264 |
| 901 2n $HO + C_2H_5OH = CH_3CH_2O + H_2O$ 1.60e-13 0.00 0 266                                                                                                 | 900 |      |                                                      |          |      |          | 265 |
|                                                                                                                                                               | 901 |      |                                                      |          |      |          | 266 |
|                                                                                                                                                               | 902 | 2n   | $HO + (CH_3)_2O \leftrightharpoons CH_3OCH_2 + H_2O$ | 5.28e-13 | 2.91 | 410      | 267 |

Table 6—Continued

|     |      | TABLE 0—Continued                                     |          |       |          |     |
|-----|------|-------------------------------------------------------|----------|-------|----------|-----|
| #   | Type | Reaction                                              | $\alpha$ | β     | $\gamma$ | Ref |
| 903 | 2n   | $HO + bCO2H5N \rightleftharpoons C_2H_4O + H_2O + NO$ | 8.21e-13 | 0.00  | 960      | 268 |
| 904 | 2n   | $N_2 + CH_2 \leftrightharpoons HCN + HN$              | 8.00e-12 | 0.00  | 18000    | 269 |
| 905 | 2n   | $NO + C_2O \leftrightharpoons CN + CO_2$              | 2.16e-11 | 0.00  | 337      | 270 |
| 906 | 2n   | $NO + CH_2 \leftrightharpoons HNCO + H$               | 4.17e-12 | 0.00  | 3010     | 12  |
| 907 | 2n   | $NO + CH_2 \leftrightharpoons HCN + HO$               | 8.32e-13 | 0.00  | 1440     | 12  |
| 908 | 2n   | $NO + CHO \leftrightharpoons HNO + CO$                | 1.18e-11 | 0.00  | 0        | 271 |
| 909 | 2n   | $NO + NCO \leftrightharpoons N_2O + CO$               | 5.15e-11 | -1.34 | 360      | 272 |
| 910 | 2n   | $NO + NCO \leftrightharpoons N_2 + CO + O$            | 4.21e-11 | -1.98 | 380      | 3   |
| 911 | 2n   | $NO + NCO = N_2 + CO_2$                               | 8.05e-11 | -1.98 | 380      | 3   |
| 912 | 2n   | $NO + H_2N \leftrightharpoons N_2 + H_2O$             | 1.28e-10 | -2.65 | 632      | 273 |
| 913 | 2n   | $NO + H_2N \leftrightharpoons HN_2 + HO$              | 5.15e-09 | -3.02 | 4830     | 274 |
| 914 | 2n   | $NO + H_2N \leftrightharpoons N_2 + HO + H$           | 1.49e-12 | 0.00  | 0        | 275 |
| 915 | 2n   | $NO + HO_2 \leftrightharpoons HNO + O_2$              | 1.17e-14 | 0.00  | 0        | 276 |
| 916 | 2n   | $NO + N_2O \leftrightharpoons NO_2 + N_2$             | 2.87e-13 | 2.23  | 23300    | 243 |
| 917 | 2n   | $NO + O_3 = NO_2 + O_2$                               | 3.00e-12 | 0.00  | 1500     | 169 |
| 918 | 2n   | $NO + C_2H_2 \leftrightharpoons HCN + CO + H$         | 8.97e-12 | 0.00  | 19000    | 278 |
| 919 | 2n   | $NO + CH_3 \leftrightharpoons H_2CN + HO$             | 8.63e-12 | 0.00  | 12200    | 279 |
| 920 | 2n   | $NO + CH_3 \leftrightharpoons HCN + H_2O$             | 4.00e-12 | 0.00  | 7900     | 279 |
| 921 | 2n   | $NO + CH_2O = CHO + HNO$                              | 1.69e-11 | 0.00  | 20500    | 18  |
| 922 | 2n   | $NO + HNCO = HN_2 + CO_2$                             | 8.28e-13 | 1.00  | 0        | 280 |
| 923 | 2n   | $NO + H_3N \leftrightharpoons H_2N + HNO$             | 3.29e-13 | 1.73  | 28500    | 281 |
| 924 | 2n   | $NO + NO_3 \leftrightharpoons NO_2 + NO_2$            | 2.60e-11 | 0.00  | 0        | 32  |
| 925 | 2n   | $NO + C_2H_3 \leftrightharpoons CH_2O + HCN$          | 5.02e-11 | -3.38 | 515      | 282 |
| 926 | 2n   | $NO + CH_3O \Rightarrow CH_2O + HNO$                  | 4.00e-12 | -0.70 | 0        | 54  |
| 927 | 2n   | $NO + C_2H_6 \leftrightharpoons C_2H_5 + HNO$         | 1.66e-10 | 0.00  | 26200    | 283 |
| 928 | 2n   | $NO + (CH_3)_2O \leftrightharpoons CH_3OCH_2 + HNO$   | 1.66e-10 | 0.00  | 21800    | 284 |
| 929 | 2n   | $NO + C_2H_5OO \Rightarrow CH_3CH_2O + NO_2$          | 8.70e-12 | 0.00  | 0        | 54  |
| 930 | 2n   | $O_2 + C_2O = CO_2 + CO$                              | 4.05e-13 | 0.00  | 0        | 285 |
| 931 | 2n   | $O_2 + C_2O \leftrightharpoons CO + CO + O$           | 4.21e-13 | 0.00  | 0        | 286 |
| 932 | 2n   | $O_2 + CH_2 \leftrightharpoons COOH + H$              | 5.74e-12 | 0.00  | 751      | 287 |
| 933 | 2n   | $O_2 + CH_2 \leftrightharpoons H_2O + CO$             | 4.00e-13 | 0.00  | 0        | 7   |
| 934 | 2n   | $O_2 + CH_2 \leftrightharpoons CO_2 + H + H$          | 3.74e-11 | -3.30 | 1440     | 288 |
| 935 | 2n   | $O_2 + CH_2 \leftrightharpoons CO_2 + H_2$            | 2.99e-11 | -3.30 | 1440     | 288 |
| 936 | 2n   | $O_2 + CH_2 \leftrightharpoons CH_2O + O$             | 3.74e-11 | -3.30 | 1440     | 288 |
| 937 | 2n   | $O_2 + CHO \leftrightharpoons HO_2 + CO$              | 6.14e-11 |       | 1560     | 151 |
| 938 | 2n   | $O_2 + CHO \leftrightharpoons CO_2 + HO$              | 1.17e-11 | 0.00  | 1560     | 289 |
| 939 | 2n   | $O_2 + NCN \leftrightharpoons CNO + NO$               | 2.19e-14 | 0.54  | 12300    | 290 |
| 940 | 2n   | $O_2 + NCN \leftrightharpoons NCO + NO$               | 1.15e-13 | 0.51  | 12400    | 290 |
| 941 | 2n   | $O_2 + NCO \leftrightharpoons CO_2 + NO$              | 1.32e-12 | 0.00  | 0        | 291 |
| 942 | 2n   | $O_2 + H_2N \leftrightharpoons NH_2O + O$             | 8.93e-10 | -1.34 | 17000    | 292 |
|     |      | $O_2 + H_2N \leftrightharpoons HNO + HO$              | 2.72e-13 | -     |          |     |

Table 6—Continued

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                         |    |      | TABLE 6—Continue                                    | <u>a</u>  |       |          |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|-----------------------------------------------------|-----------|-------|----------|-----|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | #  | Type | Reaction                                            | α         | β     | $\gamma$ | Ref |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                         | 44 | 2n   | $O_2 + C_2H_2 \leftrightharpoons C_2H + HO_2$       | 2.01e-11  | 0.00  | 37500    | 7   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 45 | 2n   | $O_2 + OCCN \leftrightharpoons CO_2 + NCO$          | 5.17e-13  | 1.64  | 593      | 293 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 46 | 2n   | $O_2 + CH_3 \leftrightharpoons CH_2O + HO$          | 2.81e-13  | 0.00  | 4980     | 294 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 47 | 2n   | $O_2 + CH_3 \leftrightharpoons CHO + H_2O$          | 1.66e-12  | 0.00  | 0        | 295 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 48 | 2n   | $O_2 + CH_2O \leftrightharpoons CHO + HO_2$         | 9.14e-12  | 2.05  | 19100    | 296 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 49 | 2n   | $O_2 + H_2O_2 \leftrightharpoons HO_2 + HO_2$       | 9.00e-11  | 0.00  | 20000    | 7   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 50 | 2n   | $O_2 + C_2H_3 \leftrightharpoons CH_2CHO + O$       | 1.79e-11  | -0.61 | 2650     | 297 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 51 | 2n   | $O_2 + C_2H_3 \leftrightharpoons C_2H_2 + HO_2$     | 6.58 e-12 | -1.26 | 1670     | 297 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 52 | 2n   | $O_2 + C_2H_3 \leftrightharpoons CH_2O + CHO$       | 2.03e-08  | -5.31 | 3270     | 297 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                          | 53 | 2n   | $O_2 + CH_4 \leftrightharpoons CH_3O_2 + H$         | 4.01e-12  | 1.96  | 43900    | 298 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 54 | 2n   | $O_2 + CH_4 \leftrightharpoons CH_3 + HO_2$         | 1.26e-12  | 2.00  | 26200    | 299 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 55 | 2n   | $O_2 + CH_3O \leftrightharpoons CH_2O + HO_2$       | 3.60e-14  | 0.00  | 880      | 33  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 56 | 2n   | $O_2 + CH_2OH \leftrightharpoons CH_2O + HO_2$      | 2.01e-12  | 0.00  | 0        | 145 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 57 | 2n   | $O_2 + C_2H_4 \leftrightharpoons C_2H_3 + HO_2$     | 7.01e-11  | 0.00  | 29000    | 7   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                          | 58 | 2n   | $O_2 + C_2H_3O \leftrightharpoons C_2H_2O + HO + O$ | 4.20e-12  | 0.00  | 0        | 65  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 59 | 2n   | $O_2 + CH_2CHO = CH_3O + CO_2$                      | 1.10e-12  | 0.00  | 0        | 300 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 60 | 2n   | $O_2 + CH_3OH \leftrightharpoons CH_2OH + HO_2$     | 3.40e-11  | 0.00  | 22600    | 145 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 61 | 2n   | $O_2 + C_2H_5 \leftrightharpoons CH_3CH_2O + O$     | 6.14e-12  | -0.20 | 14100    | 301 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 62 | 2n   | $O_2 + C_2H_5 \leftrightharpoons Oxyrane + HO$      | 4.32e-15  | 0.00  | 0        | 302 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 63 | 2n   | $O_2 + C_2H_5 \leftrightharpoons C_2H_4O + HO$      | 2.14e-13  | -1.03 | 4860     | 301 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 64 | 2n   | $O_2 + C_2H_5 \leftrightharpoons C_2H_4 + HO_2$     | 1.61e-12  | -1.87 | 707      | 79  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 65 | 2n   | $O_2 + C_2H_4O \leftrightharpoons CH_2CHO + HO_2$   | 3.32e-10  | 0.00  | 24400    | 59  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 66 | 2n   |                                                     | 5.00e-11  | 0.00  | 19700    | 5   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 67 | 2n   |                                                     | 1.00e-10  | 0.00  | 26100    | 5   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 68 | 2n   |                                                     | 1.00e-14  | 0.00  | 4100     | Est |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                          | 69 | 2n   |                                                     | 5.10e-12  | 0.00  | 0        | Est |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 70 | 2n   | $O_3 + CH_4 \leftrightharpoons HO_3 + CH_3$         | 2.66e-13  | 0.00  | 7700     | Est |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 71 | 2n   |                                                     | 1.20e-14  | 0.00  | 2630     | 169 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 72 | 2n   | $O_3 + C_2H_5 \leftrightharpoons CH_3CH_2O + O_2$   | 3.32e-14  | 0.00  | 0        | 303 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 73 | 2n   | $O_3 + C_2H_4O \leftrightharpoons CH_2CHO + HO_3$   | 7.12e-18  | 3.94  | 14600    | 304 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                          | 74 | 2n   | $O_3 + C_2H_4O \leftrightharpoons C_2H_3O + HO_3$   | 9.37e-18  | 3.90  | 7710     | 304 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          | 75 | 2n   | $O_3 + CH_3ONO = CH_3NO_3 + O_2$                    | 6.76e-13  | 0.00  | 5320     | 305 |
| 78       2n $HN_2 + O \leftrightharpoons HNO + N$ 9.72e-19       4.84       0         79       2n $HN_2 + O \leftrightharpoons N_2 + HO$ 2.56e-11       -1.23       0         80       2n $HN_2 + CH \leftrightharpoons HCN + HN$ 3.31e-12       1.00       0 | 76 | 2n   | $O_3 + C_2H_6 \leftrightharpoons C_2H_5OH + O_2$    | 3.94e-13  | 0.00  | 7200     | 306 |
| 79 2n $HN_2 + O = N_2 + HO$ 2.56e-11 -1.23 0<br>80 2n $HN_2 + CH = HCN + HN$ 3.31e-12 1.00 0                                                                                                                                                                  | 77 | 2n   | $HN_2 + H \leftrightharpoons N_2 + H_2$             | 1.66e-12  | 0.00  | 0        | 25  |
| 79 2n $HN_2 + O = N_2 + HO$ 2.56e-11 -1.23 0<br>80 2n $HN_2 + CH = HCN + HN$ 3.31e-12 1.00 0                                                                                                                                                                  | 78 | 2n   |                                                     | 9.72e-19  | 4.84  | 0        | 307 |
| 80 2n $HN_2 + CH = HCN + HN$ 3.31e-12 1.00 0                                                                                                                                                                                                                  | 79 |      |                                                     |           |       |          | 25  |
|                                                                                                                                                                                                                                                               | 80 | 2n   |                                                     |           |       | 0        | Est |
|                                                                                                                                                                                                                                                               | 81 |      |                                                     |           |       |          | 25  |
| 82 2n $HN_2 + O_2 = N_2O + HO$ 6.94e-14 -0.34 0                                                                                                                                                                                                               | 82 |      |                                                     |           |       |          | 25  |
|                                                                                                                                                                                                                                                               | 83 |      |                                                     |           |       |          | 25  |
|                                                                                                                                                                                                                                                               | 84 |      |                                                     |           |       |          | Est |

Table 6—Continued

|      |      | TABLE 0—Continued                                  |          |      |          |                      |
|------|------|----------------------------------------------------|----------|------|----------|----------------------|
| #    | Type | Reaction                                           | $\alpha$ | β    | $\gamma$ | Ref                  |
| 985  | 2n   | $C_2H + C_2H \leftrightharpoons C_2H_2 + C_2$      | 3.01e-12 | 0.00 | 0        | 7                    |
| 986  | 2n   | $CH_2 + CH_2 \leftrightharpoons C_2H_2 + H + H$    | 2.99e-10 | 0.00 | 397      | 12                   |
| 987  | 2n   | $CH_2 + CH_2 \leftrightharpoons C_2H_2 + H_2$      | 1.80e-10 | 0.00 | 400      | 5                    |
| 988  | 2n   | $CHO + CHO \leftrightharpoons CO + CO + H_2$       | 3.64e-11 | 0.00 | 0        | 308                  |
| 989  | 2n   | $CHO + CHO \leftrightharpoons CH_2O + CO$          | 5.00e-11 | 0.00 | 0        | 5                    |
| 990  | 2n   | $NCO + NCO \leftrightharpoons CO + CO + N_2$       | 3.01e-11 | 0.00 | 0        | 3                    |
| 991  | 2n   | $H_2N + H_2N \leftrightharpoons NH_2NH + H$        | 1.00e-13 | 0.00 | 0        | 309                  |
| 992  | 2n   | $H_2N + H_2N \leftrightharpoons HNNH + H_2$        | 1.30e-12 | 0.00 | 0        | 309                  |
| 993  | 2n   | $HNO + HNO = H_2O + N_2O$                          | 1.40e-15 | 0.00 | 1560     | 18                   |
| 994  | 2n   | $HO_2 + HO_2 \leftrightharpoons H_2 + O_2 + O_2$   | 1.49e-12 | 0.00 | 503      | 310                  |
| 995  | 2n   | $NO_2 + NO_2 \leftrightharpoons NO + NO + O_2$     | 2.71e-12 | 0.00 | 13100    | 18                   |
| 996  | 2n   | $CH_3 + CH_3 \leftrightharpoons C_2H_4 + H_2$      | 1.66e-10 | 0.00 | 16100    | 311                  |
| 997  | 2n   | $CH_3 + CH_3 \leftrightharpoons CH_4 + CH_2$       | 7.14e-12 | 0.00 | 5050     | 183                  |
| 998  | 2n   | $NO_3 + NO_3 \leftrightharpoons NO_2 + NO_2 + O_2$ | 8.50e-13 | 0.00 | 2450     | 24                   |
| 999  | 2n   | $C_2H + CH_2 \leftrightharpoons C_2H_2 + CH$       | 3.01e-11 | 0.00 | 0        | 7                    |
| 1000 | 2n   | $C_2H + HO_2 \leftrightharpoons HCCO + HO$         | 3.01e-11 | 0.00 | 0        | 7                    |
| 1001 | 2n   | $C_2H + CH_3 \leftrightharpoons C_3H_3 + H$        | 4.00e-11 | 0.00 | 0        | 7                    |
| 1002 | 2n   | $C_2H + CH_2O \leftrightharpoons C_3H_2O + H$      | 4.00e-11 | 0.00 | 0        | 312                  |
| 1003 | 2n   | $C_2H + CH_2O \leftrightharpoons C_2H_2 + CO + H$  | 4.00e-11 | 0.00 | 0        | 312                  |
| 1004 | 2n   | $C_2H + C_2H_3 \leftrightharpoons C_2H_2 + C_2H_2$ | 1.60e-12 | 0.00 | 0        | 7                    |
| 1005 | 2n   | $C_2H + CH_4 \leftrightharpoons C_2H_2 + CH_3$     | 1.20e-11 | 0.00 | 491      | 277                  |
| 1006 | 2n   | $C_2H + CH_3O \leftrightharpoons CH_2O + C_2H_2$   | 4.00e-11 | 0.00 | 0        | 7                    |
| 1007 | 2n   | $C_2H + CH_2OH \leftrightharpoons CH_2O + C_2H_2$  | 5.99e-11 | 0.00 | 0        | 145                  |
| 1008 | 2n   | $C_2H + CH_2OH = C_3H_3 + HO$                      | 2.01e-11 | 0.00 | 0        | Est                  |
| 1009 | 2n   | $C_2H + C_2H_4 \leftrightharpoons C_4H_4 + H$      | 1.22e-10 | 0.00 | 0        | 277                  |
| 1010 | 2n   | $C_2H + CH_3OH \leftrightharpoons C_2H_2 + CH_2OH$ | 1.00e-11 | 0.00 | 0        | 145                  |
| 1011 | 2n   | $C_2H + CH_3OH \leftrightharpoons C_2H_2 + CH_3O$  | 2.01e-12 | 0.00 | 0        | 145                  |
| 1012 | 2n   | $C_2H + C_2H_5 \leftrightharpoons C_2H_4 + C_2H_2$ | 3.01e-12 | 0.00 | 0        | 7                    |
| 1013 | 2n   | $C_2H + C_2H_5 \leftrightharpoons C_3H_3 + CH_3$   | 3.01e-11 | 0.00 | 0        | 7                    |
| 1014 | 2n   | $C_2H + C_2H_6 \leftrightharpoons C_2H_5 + C_2H_2$ | 4.72e-11 | 0.54 | 0        | 356                  |
| 1015 | 2n   | $C_2O + NO_2 = CO + CO + NO$                       | 2.84e-11 | 0.00 | 0        | $\operatorname{Est}$ |
| 1016 | 2n   | $C_2O + NO_2 = CO_2 + CNO$                         | 2.84e-11 | 0.00 | 0        | Est                  |
| 1017 | 2n   | $C_2O + NO_2 = CO_2 + NCO$                         | 2.84e-11 | 0.00 | 0        | Est                  |
| 1018 | 2n   | $C_2O + C_2H_4 \leftrightharpoons C_3H_4 + CO$     | 1.00e-14 | 0.00 | 0        | Est                  |
| 1019 | 2n   | $C_2O + Oxyrane = C_2H_4 + CO + CO$                | 1.60e-12 | 0.00 | 0        | 313                  |
| 1020 | 2n   | $C_2O + Oxyrane = CH_2O + C_2H_2 + CO$             | 1.00e-14 | 0.00 | 0        | 313                  |
| 1021 | 2n   | $CH_2 + CHO \Rightarrow CH_3 + CO$                 | 3.01e-11 | 0.00 | 0        | 7                    |
| 1022 | 2n   | $CH_2 + CO_2 \leftrightharpoons CH_2O + CO$        | 3.90e-14 | 0.00 | 0        | 7                    |
| 1023 | 2n   | $CH_2 + N_2O \Rightarrow HCN + NO + H$             | 1.00e-14 | 0.00 | 0        | Est                  |
|      | 2n   | $CH_2 + N_2O \Rightarrow CH_2O + N_2$              | 1.00e-14 | 0.00 | 0        | Est                  |
| 1024 |      |                                                    |          |      |          |                      |

Table 6—Continued

| #    | Type | Reaction                                           | $\alpha$ | β     | $\gamma$ | Ref |
|------|------|----------------------------------------------------|----------|-------|----------|-----|
| 1026 | 2n   | $CH_2 + CH_3 \leftrightharpoons C_2H_4 + H$        | 1.20e-10 | 0.00  | 0        | 30  |
| 1027 | 2n   | $CH_2 + CH_2O \leftrightharpoons CH_3 + CHO$       | 1.00e-14 | 0.00  | 0        | 7   |
| 1028 | 2n   | $CH_2 + H_2O_2 \leftrightharpoons CH_3 + HO_2$     | 1.00e-14 | 0.00  | 0        | 7   |
| 1029 | 2n   | $CH_2 + C_2H_3 \leftrightharpoons C_2H_2 + CH_3$   | 8.00e-11 | 0.00  | 0        | 30  |
| 1030 | 2n   | $CH_2 + C_2H_2O \leftrightharpoons C_2H_4 + CO$    | 2.00e-10 | -2.40 | 0        | 315 |
| 1031 | 2n   | $CH_2 + CH_3O \leftrightharpoons CH_2O + CH_3$     | 3.01e-11 | 0.00  | 0        | 7   |
| 1032 | 2n   | $CH_2 + CH_2OH \leftrightharpoons C_2H_4 + HO$     | 4.00e-11 | 0.00  | 0        | 145 |
| 1033 | 2n   | $CH_2 + CH_2OH \leftrightharpoons CH_2O + CH_3$    | 2.01e-12 | 0.00  | 0        | 145 |
| 1034 | 2n   | $CH_2 + C_2H_3O \leftrightharpoons C_2H_2O + CH_3$ | 3.01e-11 | 0.00  | 0        | 7   |
| 1035 | 2n   | $CH_2 + CH_3OH \leftrightharpoons CH_2OH + CH_3$   | 4.38e-15 | 3.20  | 3610     | 145 |
| 1036 | 2n   | $CH_2 + CH_3OH \leftrightharpoons CH_3O + CH_3$    | 1.12e-15 | 3.10  | 3490     | 145 |
| 1037 | 2n   | $CH_2 + C_2H_5 \leftrightharpoons C_2H_4 + CH_3$   | 8.00e-11 | 0.00  | 0        | 21  |
| 1038 | 2n   | $CH_2 + C_2H_6 \leftrightharpoons C_2H_5 + CH_3$   | 1.07e-11 | 0.00  | 3980     | 316 |
| 1039 | 2n   | $HCN + C_2H_3 \leftrightharpoons C_3H_3N + H$      | 4.50e-14 | 0.00  | 0        | 317 |
| 1040 | 2n   | $HNC + C_2H_3 \leftrightharpoons C_3H_3N + H$      | 4.50e-14 | 0.00  | 0        | Est |
| 1041 | 2n   | $CHO + NCO \rightleftharpoons HNCO + CO$           | 5.99e-11 | 0.00  | 0        | 3   |
| 1042 | 2n   | $CHO + H_2O \leftrightharpoons CH_2O + HO$         | 8.54e-13 | 1.53  | 13100    | 7   |
| 1043 | 2n   | $CHO + HNO = NH_2O + CO$                           | 8.13e-23 | 3.27  | 882      | 318 |
| 1044 | 2n   | $CHO + NO_2 \leftrightharpoons CO_2 + NO + H$      | 1.94e-10 | -0.75 | 971      | 18  |
| 1045 | 2n   | $CHO + O_3 = CO_2 + O_2 + H$                       | 8.30e-13 | 0.00  | 0        | 303 |
| 1046 | 2n   | $CHO + CH_3 \leftrightharpoons CH_4 + CO$          | 2.01e-10 | 0.00  | 0        | 7   |
| 1047 | 2n   | $CHO + HNCO = CH_2O + NCO$                         | 5.00e-12 | 0.00  | 13100    | 3   |
| 1048 | 2n   | $CHO + H_2O_2 = CH_2O + HO_2$                      | 1.69e-13 | 0.00  | 3490     | 7   |
| 1049 | 2n   | $CHO + HNO_2 \leftrightharpoons CH_2O + NO_2$      | 3.05e-15 | 4.18  | 1060     | 318 |
| 1050 | 2n   | $CHO + CH_4 \leftrightharpoons CH_2O + CH_3$       | 1.36e-13 | 2.85  | 11300    | 7   |
| 1051 | 2n   | $CHO + CH_3O \leftrightharpoons CH_3OH + CO$       | 1.50e-10 | 0.00  | 0        | 7   |
| 1052 | 2n   | $CHO + CH_2OH \leftrightharpoons CH_3OH + CO$      | 2.01e-10 | 0.00  | 0        | 145 |
| 1053 | 2n   | $CHO + CH_2OH \Rightarrow CH_2O + CH_2O$           | 3.01e-10 | 0.00  | 0        | 145 |
| 1054 | 2n   | $CHO + C_2H_3O \leftrightharpoons C_2H_4O + CO$    | 1.50e-11 | 0.00  | 0        | 7   |
| 1055 | 2n   | $CHO + CH_3OH \Rightarrow CH_2OH + CH_2O$          | 2.41e-13 | 2.90  | 6600     | 145 |
| 1056 | 2n   | $CHO + C_2H_5 \leftrightharpoons C_2H_6 + CO$      | 2.01e-10 | 0.00  | 0        | 7   |
| 1057 | 2n   | $CHO + C_2H_6 \leftrightharpoons C_2H_5 + CH_2O$   | 6.71e-15 | 3.74  | 8520     | 319 |
| 1058 | 2n   | $NCO + HNO \Rightarrow HNCO + NO$                  | 3.01e-11 | 0.00  | 0        | 3   |
| 1059 | 2n   | $NCO + HO_2 \leftrightharpoons HNCO + O_2$         | 3.32e-11 | 0.00  | 0        | 142 |
| 1060 | 2n   | $NCO + N_2O = CO + N_2 + NO$                       | 1.50e-10 |       | 14000    | 3   |
| 1061 | 2n   | $NCO + NO_2 \leftrightharpoons CO_2 + N_2O$        | 2.79e-11 | 0.00  | 0        | 3   |
| 1062 | 2n   | $NCO + NO_2 = CO + NO + NO$                        | 2.21e-12 | 0.00  | 0        | 142 |
| 1063 | 2n   | $NCO + CH_3 = CH_2O + HNC$                         | 7.57e-11 | 0.00  | 1840     | 320 |
| 1064 | 2n   | $NCO + CH_3 = CH_2O + HCN$                         | 1.34e-10 | 0.00  | 1840     | 320 |
| 1065 | 2n   | $NCO + HCNO = HCCO + N_2O$                         | 3.95e-12 | 0.00  | 0        | Est |
|      |      | -: , 11-01-0 , 11-0-0 , 11-2-0                     | J.000 12 | 0.00  | ~        |     |

Table 6—Continued

|      |      | TABLE 0—Commueu                                    |           |       |          |     |
|------|------|----------------------------------------------------|-----------|-------|----------|-----|
| #    | Type | Reaction                                           | α         | β     | $\gamma$ | Ref |
| 1067 | 2n   | $NCO + HCNO = CO_2 + CHN_2$                        | 3.95e-12  | 0.00  | 0        | Est |
| 1068 | 2n   | $NCO + HCNO \Rightarrow HCN + CO + NO$             | 3.95e-12  | 0.00  | 0        | Est |
| 1069 | 2n   | $NCO + HNO_2 \leftrightharpoons HNCO + NO_2$       | 5.99e-12  | 0.00  | 0        | 3   |
| 1070 | 2n   | $NCO + C_2H_2O \leftrightharpoons HCNO + HCCO$     | 4.61e-12  | 0.00  | 0        | Est |
| 1071 | 2n   | $NCO + C_2H_2O \leftrightharpoons HOCN + HCCO$     | 4.61e-12  | 0.00  | 0        | Est |
| 1072 | 2n   | $NCO + C_2H_2O \leftrightharpoons HNCO + HCCO$     | 4.61e-12  | 0.00  | 0        | Est |
| 1073 | 2n   | $NCO + C_2H_6 \leftrightharpoons HNCO + C_2H_5$    | 6.20 e-14 | 3.27  | 0        | 321 |
| 1074 | 2n   | $H_2N + HO_2 \leftrightharpoons NH_2O + HO$        | 2.61e-10  | -1.32 | 628      | 322 |
| 1075 | 2n   | $H_2N + HO_2 \leftrightharpoons H_3N + O_2$        | 1.88e-16  | 1.55  | 1020     | 322 |
| 1076 | 2n   | $H_2N + HO_2 \leftrightharpoons HNO + H_2O$        | 1.60e-11  | -1.12 | 0        | 322 |
| 1077 | 2n   | $H_2N + NO_2 \leftrightharpoons NH_2O + NO$        | 5.81e-12  | 0.00  | 0        | 323 |
| 1078 | 2n   | $H_2N + NO_2 \leftrightharpoons N_2O + H_2O$       | 7.01e-12  | -1.44 | 0        | 274 |
| 1079 | 2n   | $H_2N + O_3 \leftrightharpoons NH_2O + O_2$        | 4.10e-12  | 0.00  | 1160     | 324 |
| 1080 | 2n   | $H_2N + HNCO \leftrightharpoons H_3N + NCO$        | 8.30e-13  | 0.00  | 0        | 325 |
| 1081 | 2n   | $H_2N + HNO_2 \leftrightharpoons H_3N + NO_2$      | 7.33e-10  | 0.00  | 0        | 326 |
| 1082 | 2n   | $H_2N + CH_4 \leftrightharpoons CH_3 + H_3N$       | 6.84e-14  | 3.01  | 5000     | 327 |
| 1083 | 2n   | $H_2N + H_4N_2 \leftrightharpoons NH_2NH + H_3N$   | 6.46 e-15 | 3.60  | 386      | 40  |
| 1084 | 2n   | $H_2N + C_2H_6 \leftrightharpoons C_2H_5 + H_3N$   | 2.74e-14  | 3.46  | 2820     | 328 |
| 1085 | 2n   | $H_2O + N_2O_3 \leftrightharpoons HNO_2 + HNO_2$   | 6.29 e-11 | 0.00  | 4470     | 329 |
| 1086 | 2n   | $HNO + NO_2 \leftrightharpoons HNO_2 + NO$         | 1.00e-12  | 0.00  | 999      | 18  |
| 1087 | 2n   | $HNO + O_3 \leftrightharpoons HNO_2 + O_2$         | 9.61e-15  | 3.59  | 0        | 250 |
| 1088 | 2n   | $HNO + CH_3 \leftrightharpoons CH_3NO + H$         | 1.16e-14  | 2.40  | 3100     | 330 |
| 1089 | 2n   | $HNO + CH_3 \leftrightharpoons CH_4 + NO$          | 1.85e-11  | 0.76  | 0        | 330 |
| 1090 | 2n   | $HNO + CH_3O \leftrightharpoons CH_3OH + NO$       | 5.00e-11  | 0.00  | 0        | 331 |
| 1091 | 2n   | $HO_2 + NO_2 \leftrightharpoons HNO_2 + O_2$       | 2.31e-13  | 0.58  | 720      | 332 |
| 1092 | 2n   | $HO_2 + O_3 \leftrightharpoons HO + O_2 + O_2$     | 1.66e-13  | 0.00  | 1410     | 333 |
| 1093 | 2n   | $HO_2 + C_2H_2 \leftrightharpoons C_2H_2O + HO$    | 1.00e-14  | 0.00  | 4000     | 7   |
| 1094 | 2n   | $HO_2 + CH_3 \leftrightharpoons CH_3O + HO$        | 3.01e-11  | 0.00  | 0        | 5   |
| 1095 | 2n   | $HO_2 + H_2O_2 \leftrightharpoons H_2O + HO + O_2$ | 1.00e-13  | 0.00  | 0        | 334 |
| 1096 | 2n   | $HO_2 + NO_3 \leftrightharpoons HNO_3 + O_2$       | 1.91e-12  | 0.00  | 0        | 335 |
| 1097 | 2n   | $HO_2 + NO_3 \leftrightharpoons NO_2 + O_2 + HO$   | 2.51e-12  | 0.00  | 0        | 335 |
| 1098 | 2n   | $HO_2 + CH_4 \leftrightharpoons CH_3 + H_2O_2$     | 1.50e-11  | 0.00  | 12400    | 5   |
| 1099 | 2n   | $HO_2 + CH_3O \leftrightharpoons CH_2O + H_2O_2$   | 5.00e-13  | 0.00  | 0        | 7   |
| 1100 | 2n   | $HO_2 + CH_2OH \leftrightharpoons CH_2O + H_2O_2$  | 2.01e-11  | 0.00  | 0        | 145 |
| 1101 | 2n   | $HO_2 + C_2H_4 \leftrightharpoons Oxyrane + HO$    | 3.70e-12  | 0.00  | 8650     | 5   |
| 1102 | 2n   | $HO_2 + C_2H_4 \leftrightharpoons C_2H_4O + HO$    | 1.00e-14  | 0.00  | 4000     | 7   |
| 1103 | 2n   | $HO_2 + CH_3OH \leftrightharpoons CH_2OH + H_2O_2$ | 1.66e-12  | 0.00  | 5050     | 129 |
| 1104 | 2n   | $HO_2 + C_2H_5 \leftrightharpoons CH_3CH_2O + HO$  | 4.98e-11  | 0.00  | 0        | 301 |
| 1105 | 2n   | $HO_2 + C_2H_5 \leftrightharpoons C_2H_4 + H_2O_2$ | 5.00e-13  | 0.00  | 0        | 7   |
| 1106 | 2n   | $HO_2 + C_2H_4O \Rightarrow CH_2CHO + H_2O_2$      | 1.66e-12  | 0.00  | 7050     | 59  |
| 1107 | 2n   | $HO_2 + C_2H_4O \Rightarrow C_2H_3O + H_2O_2$      | 5.00e-12  | 0.00  | 6000     | 5   |

Table 6—Continued

|      |      | TABLE 0—Continued                                     |           |       |          |     |
|------|------|-------------------------------------------------------|-----------|-------|----------|-----|
| #    | Type | Reaction                                              | $\alpha$  | β     | $\gamma$ | Ref |
| 1108 | 2n   | $HO_2 + C_2H_6 \leftrightharpoons C_2H_5 + H_2O_2$    | 6.54 e-13 | 2.69  | 9510     | 336 |
| 1109 | 2n   | $HO_2 + C_2H_5OO \leftrightharpoons C_2H_6O_2 + O_2$  | 7.63e-12  | 0.00  | 0        | 266 |
| 1110 | 2n   | $N_2O + CH_3 \leftrightharpoons CH_3O + N_2$          | 1.66e-09  | 0.00  | 14300    | 337 |
| 1111 | 2n   | $N_2O + C_2H_4 \leftrightharpoons C_2H_4O + N_2$      | 1.32e-14  | 0.00  | 19100    | 338 |
| 1112 | 2n   | $NO_2 + O_3 \leftrightharpoons NO_3 + O_2$            | 1.40e-13  | 0.00  | 2740     | 32  |
| 1113 | 2n   | $NO_2 + C_2H_2 \leftrightharpoons C_2H_2O + NO$       | 2.09e-12  | 0.00  | 7550     | Est |
| 1114 | 2n   | $NO_2 + CH_3 \leftrightharpoons CH_3O + NO$           | 2.26e-11  | 0.00  | 0        | 339 |
| 1115 | 2n   | $NO_2 + CH_3 \leftrightharpoons CH_2O + HNO$          | 5.39e-12  | 0.00  | 0        | 340 |
| 1116 | 2n   | $NO_2 + NO_3 \leftrightharpoons NO_2 + NO + O_2$      | 6.64e-12  | 0.00  | 2520     | 341 |
| 1117 | 2n   | $NO_2 + CH_4 \leftrightharpoons HNO_2 + CH_3$         | 1.16e-12  | 0.00  | 15200    | 342 |
| 1118 | 2n   | $NO_2 + CH_3O \leftrightharpoons CH_2O + HNO_2$       | 3.01e-13  | 0.00  | 0        | 343 |
| 1119 | 2n   | $NO_2 + C_2H_3O \leftrightharpoons CH_3 + CO_2 + NO$  | 1.66e-12  | 0.00  | 0        | 344 |
| 1120 | 2n   | $NO_2 + CH_3OH \leftrightharpoons CH_2OH + HNO_2$     | 6.09e-13  | 0.00  | 10800    | 345 |
| 1121 | 2n   | $NO_2 + C_2H_5 \leftrightharpoons CH_3CH_2O + NO$     | 4.34e-12  | -0.34 | 0        | 340 |
| 1122 | 2n   | $NO_2 + C_2H_4O \rightleftharpoons C_2H_3O + HNO_2$   | 5.18e-13  | 0.00  | 13600    | 346 |
| 1123 | 2n   | $NO_2 + C_2H_6 \leftrightharpoons C_2H_5 + HNO_2$     | 2.66e-10  | 0.00  | 17000    | 342 |
| 1124 | 2n   | $NO_2 + C_2H_6N \leftrightharpoons CH_2NCH_3 + HNO_2$ | 6.97e-14  | 0.00  | 0        | 347 |
| 1125 | 2n   | $CH_3 + C_2H_3 \leftrightharpoons C_3H_5 + H$         | 1.20e-10  | 0.00  | 0        | 348 |
| 1126 | 2n   | $CH_3 + C_2H_3 \leftrightharpoons CH_4 + C_2H_2$      | 3.00e-11  | 0.00  | 0        | 349 |
| 1127 | 2n   | $CH_3 + C_2H_2O \leftrightharpoons C_2H_5 + CO$       | 8.30e-12  | 0.00  | 0        | 350 |
| 1128 | 2n   | $CH_3 + CH_4 \leftrightharpoons C_2H_6 + H$           | 4.95e-13  | 1.00  | 22600    | 351 |
| 1129 | 2n   | $CH_3 + CH_4 \leftrightharpoons C_2H_5 + H_2$         | 1.66e-11  | 0.00  | 11600    | 352 |
| 1130 | 2n   | $CH_3 + CH_3O \leftrightharpoons CH_2O + CH_4$        | 4.00e-11  | 0.00  | 0        | 7   |
| 1131 | 2n   | $CH_3 + CH_2OH = CH_2O + CH_4$                        | 4.00e-12  | 0.00  | 0        | 145 |
| 1132 | 2n   | $CH_3 + C_2H_4 \leftrightharpoons C_2H_3 + CH_4$      | 6.91e-12  | 0.00  | 5600     | 5   |
| 1133 | 2n   | $CH_3 + CH_3CN \leftrightharpoons CH_2CN + CH_4$      | 1.66e-14  | 0.00  | 0        | 353 |
| 1134 | 2n   | $CH_3 + C_2H_3O \leftrightharpoons C_2H_6 + CO$       | 5.43e-11  | 0.00  | 0        | 354 |
| 1135 | 2n   | $CH_3 + C_2H_3O \leftrightharpoons C_2H_2O + CH_4$    | 1.01e-11  | 0.00  | 0        | 355 |
| 1136 | 2n   | $CH_3 + CH_3OH = CH_2OH + CH_4$                       | 4.38e-15  | 3.20  | 3630     | 145 |
| 1137 | 2n   | $CH_3 + CH_3OH = CH_3O + CH_4$                        | 1.12e-15  | 3.10  | 3490     | 145 |
| 1138 | 2n   | $CH_3 + H_4N_2 \leftrightharpoons NH_2NH + CH_4$      | 1.04e-14  | 4.00  | 2040     | 40  |
| 1139 | 2n   | $CH_3 + C_2H_5 \leftrightharpoons C_2H_4 + CH_4$      | 1.50e-12  | 0.00  | 0        | 30  |
| 1140 | 2n   | $CH_3 + C_2H_4O \leftrightharpoons C_2H_3O + CH_4$    | 2.66e-12  | 0.00  | 4030     | 357 |
| 1141 | 2n   | $CH_3 + C_2H_4O \leftrightharpoons CH_2CHO + CH_4$    | 9.96e-12  | 0.00  | 5530     | 59  |
| 1142 | 2n   | $CH_3 + C_2H_4O \leftrightharpoons (CH_3)_2CO + H$    | 2.76e-14  |       | 6240     | Est |
| 1143 | 2n   | $CH_3 + Oxyrane = cyc - C_2H_3O + CH_4$               | 1.78e-12  | 0.00  | 5950     | 263 |
| 1144 | 2n   | $CH_3 + C_2H_6 \leftrightharpoons C_2H_5 + CH_4$      | 2.99e-10  | 0.00  | 7510     | 358 |
| 1145 | 2n   | $CH_3 + CH_3COOH = CH_3OCO + CH_4$                    | 8.32e-13  | 0.00  | 5180     | 359 |
| 1146 | 2n   | $CH_3 + C_2H_6N \leftrightharpoons CH_2NCH_3 + CH_4$  | 1.31e-11  | 0.00  | 0        | 360 |
| 1147 | 2n   | $CH_3 + C_2H_5OH \Rightarrow CH_3OCH_2 + CH_4$        | 1.32e-13  | 0.00  | 4730     | 361 |
| 1148 | 2n   | $CH_3 + C_2H_5OH \Rightarrow CH_3CHOH + CH_4$         | 6.61e-13  | 0.00  | 4880     | 361 |
| -    |      | 5 . 2 5 - 7 - 4                                       |           |       |          |     |

Table 6—Continued

| #    | Type | Reaction                                                    | α        | β     | $\gamma$ | Ref |
|------|------|-------------------------------------------------------------|----------|-------|----------|-----|
| 1149 | 2n   | $CH_3 + (CH_3)_2O \leftrightharpoons CH_3OCH_2 + CH_4$      | 1.33e-11 | 0.00  | 6290     | 362 |
| 1150 | 2n   | $CH_3 + (CH_3O)_2 = CH_3O + CH_2O + CH_4$                   | 6.03e-12 | 0.00  | 5010     | 363 |
| 1151 | 2n   | $H_3N + CH_3O \Rightarrow CH_3OH + H_2N$                    | 8.32e-14 | 0.00  | 0        | 364 |
| 1152 | 2n   | $H_3N + HNO_3 \leftrightharpoons H_2NNO_2 + H_2O$           | 5.18e-16 | 3.47  | 21700    | 365 |
| 1153 | 2n   | $NO_3 + CH_4 \leftrightharpoons HNO_3 + CH_3$               | 8.12e-11 | 0.00  | 7060     | 366 |
| 1154 | 2n   | $NO_3 + CH_3O \rightleftharpoons CH_3O_2 + NO_2$            | 1.79e-12 | 0.00  | 0        | 367 |
| 1155 | 2n   | $NO_3 + CH_3O \leftrightharpoons CH_2O + HNO_3$             | 1.51e-12 | 0.00  | 0        | 368 |
| 1156 | 2n   | $NO_3 + CH_3OH = CH_2OH + HNO_3$                            | 9.40e-13 | 0.00  | 2650     | 369 |
| 1157 | 2n   | $NO_3 + C_2H_5 \leftrightharpoons C_2H_4 + HNO_3$           | 4.00e-11 | 0.00  | 0        | 370 |
| 1158 | 2n   | $NO_3 + C_2H_4O \rightleftharpoons C_2H_3O + HNO_3$         | 1.40e-12 | 0.00  | 1860     | 266 |
| 1159 | 2n   | $NO_3 + C_2H_6 \leftrightharpoons C_2H_5 + HNO_3$           | 1.38e-10 | 0.00  | 4960     | 366 |
| 1160 | 2n   | $NO_3 + C_2H_5OH = CH_3CHOH + HNO_3$                        | 6.99e-13 | 0.00  | 1820     | 369 |
| 1161 | 2n   | $NO_3 + (CH_3)_2O \leftrightharpoons CH_3CHOH + HNO_3$      | 1.40e-12 | 0.00  | 2500     | 371 |
| 1162 | 2n   | $NO_3 + C_2H_5OO \rightleftharpoons CH_3CH_2O + NO_2 + O_2$ | 2.30e-12 | 0.00  | 0        | 266 |
| 1163 | 2n   | $HOCH + HO = CO_2 + H_2 + H$                                | 1.79e-11 | 0.00  | 0        | 249 |
| 1164 | 2n   | $NH_2O + H \leftrightharpoons HNO + H_2$                    | 1.66e-12 | 0.00  | 0        | 14  |
| 1165 | 2n   | $NH_2O + HO = HNO + H_2O$                                   | 1.80e-11 | 0.00  | 0        | 372 |
| 1166 | 2n   | $NH_2O + CHO = NH_2OH + CO$                                 | 1.54e-05 | -2.15 | 0        | 318 |
| 1167 | 2n   | $NH_2O + CHO = HNO + CO + H_2$                              | 1.87e-08 | -1.09 | 757      | 318 |
| 1168 | 2n   | $NH_2O + CHO \leftrightharpoons CH_2O + HNO$                | 1.68e-05 | -3.46 | 0        | 318 |
| 1169 | 2n   | $NH_2O + HNO = NH_2OH + NO$                                 | 1.66e-12 | 0.00  | 1500     | 14  |
| 1170 | 2n   | $NH_2O + H_2NNO_2 = NH_2OH + HNO + NO$                      | 1.66e-12 | 0.00  | 1500     | 14  |
| 1171 | 2n   | $HCCO + H = CH_2 + CO$                                      | 2.49e-10 | 0.00  | 0        | 41  |
| 1172 | 2n   | HCCO + O = CO + CO + H                                      | 1.60e-10 | 0.00  | 0        | 5   |
| 1173 | 2n   | $HCCO + O = CO_2 + CH$                                      | 4.90e-11 | 0.00  | 560      | 373 |
| 1174 | 2n   | $HCCO + H_2 = C_2H + H_2O$                                  | 2.20e-11 | 0.00  | 2000     | 374 |
| 1175 | 2n   | HCCO + NO = HCNO + CO                                       | 6.38e-11 | 0.00  | 0        | 374 |
| 1176 | 2n   | $HCCO + NO = HCN + CO_2$                                    | 1.16e-11 | -0.75 | 0        | 374 |
| 1177 | 2n   | $HCCO + O_2 = CO_2 + CO + H$                                | 2.44e-13 | 0.00  | 431      | 375 |
| 1178 | 2n   | $HCCO + O_2 = CO + CO + HO$                                 | 2.71e-13 | 0.00  | 431      | 375 |
| 1179 | 2n   | $HCCO + NO_2 = CHO + CO + NO$                               | 2.58e-11 | 0.00  | 0        | 376 |
| 1180 | 2n   | $HCCO + C_2H_2 = C_3H_3 + CO$                               | 1.66e-14 | 0.00  | 0        | 314 |
| 1181 | 2n   | $HNNH + H = HN_2 + H_2$                                     | 6.67e-13 | 2.63  | 0        | 140 |
| 1182 | 2n   | $HNNH + HO = HN_2 + H_2O$                                   | 2.49e-13 | 3.40  | 0        | 140 |
| 1183 | 2n   | $HNNH + H_2N = H_3N + HN_2$                                 | 2.27e-14 |       | 0        | 140 |
| 1184 | 2n   | $COOH + CO = CO_2 + CHO$                                    | 1.00e-14 | 0.00  | 0        | 377 |
| 1185 | 2n   | $COOH + O_2 \leftrightharpoons CO_2 + HO_2$                 | 2.09e-12 | 0.00  | 0        | 377 |
| 1186 | 2n   | $COOH + C_2H_2 \leftrightharpoons C_2H_3 + CO_2$            | 3.01e-14 | 0.00  | 0        | 377 |
| 1187 | 2n   | $COOH + C_2H_4 \leftrightharpoons C_2H_5 + CO_2$            | 1.00e-14 | 0.00  | 0        | 377 |
| 1188 | 2n   | $H_2CN + H \leftrightharpoons HCN + H_2$                    | 2.07e-12 | 0.00  | 0        | Est |
|      | 2n   | $H_2CN + O = HCN + HO$                                      | 2.07e-12 | 0.00  | 0        | Est |

Table 6—Continued

|      |      | TABLE 0—Continuea                                      |          |      |          |     |
|------|------|--------------------------------------------------------|----------|------|----------|-----|
| #    | Type | Reaction                                               | $\alpha$ | β    | $\gamma$ | Ref |
| 1190 | 2n   | $H_2CN + HO \leftrightharpoons HCN + H_2O$             | 7.70e-12 | 0.00 | 0        | 378 |
| 1191 | 2n   | $H_2CN + N_2O \leftrightharpoons CH_2N_2 + NO$         | 9.93e-12 | 0.00 | 22000    | 379 |
| 1192 | 2n   | $HOCH + CNO \leftrightharpoons HNCO + CHO$             | 1.00e-11 | 0.00 | 0        | 3   |
| 1193 | 2n   | $HOCH + CH_3O_2 \leftrightharpoons CH_4O_2 + CHO$      | 3.30e-12 | 0.00 | 5790     | 7   |
| 1194 | 2n   | $C_2H_2 + C_2H_2 \leftrightharpoons C_4H_3 + H$        | 3.32e-12 | 0.00 | 32200    | 380 |
| 1195 | 2n   | $C_2H_3 + C_2H_3 \leftrightharpoons C_4H_4 + H + H$    | 1.30e-11 | 0.00 | 0        | 381 |
| 1196 | 2n   | $C_2H_3 + C_2H_3 \leftrightharpoons C_2H_4 + C_2H_2$   | 1.40e-10 | 0.00 | 0        | 21  |
| 1197 | 2n   | $CH_3O + CH_3O \leftrightharpoons CH_3OH + CH_2O$      | 1.00e-10 | 0.00 | 0        | 7   |
| 1198 | 2n   | $CH_3O + CH_2OH \leftrightharpoons CH_3OH + CH_2O$     | 4.00e-11 | 0.00 | 0        | 145 |
| 1199 | 2n   | $C_2H_5 + C_2H_3 \leftrightharpoons C_2H_4 + C_2H_4$   | 8.00e-13 | 0.00 | 0        | 7   |
| 1200 | 2n   | $C_2H_4 + C_2H_4 \leftrightharpoons C_4H_6 + H_2$      | 4.47e-08 | 0.00 | 28800    | 382 |
| 1201 | 2n   | $C_2H_5 + C_2H_5 \leftrightharpoons C_2H_6 + C_2H_4$   | 2.41e-12 | 0.00 | 0        | 5   |
| 1202 | 2n   | $C_2H_2 + NO_3 \leftrightharpoons C_2H_2O + NO_2$      | 4.90e-13 | 0.00 | 2770     | 383 |
| 1203 | 2n   | $C_2H_2 + C_2H_3 \leftrightharpoons C_4H_4 + H$        | 2.62e-11 | 0.00 | 12600    | 384 |
| 1204 | 2n   | $C_2H_2 + CH_3O \leftrightharpoons CH_2O + C_2H_3$     | 2.01e-13 | 0.00 | 10000    | 7   |
| 1205 | 2n   | $C_2H_2 + CH_2OH \leftrightharpoons CH_2O + C_2H_3$    | 1.20e-12 | 0.00 | 4530     | 145 |
| 1206 | 2n   | $C_2H_5 + C_2H_3 \leftrightharpoons C_2H_2 + C_2H_6$   | 8.00e-13 | 0.00 | 0        | 7   |
| 1207 | 2n   | $HCCN + CH_4 \leftrightharpoons CH_3N + C_2H_2$        | 1.00e-13 | 0.00 | 0        | 386 |
| 1208 | 2n   | $HCCN + C_2H_4 \leftrightharpoons C_2H_3N + C_2H_2$    | 1.00e-13 | 0.00 | 0        | 386 |
| 1209 | 2n   | $CH_2O + C_2H_3 \leftrightharpoons C_2H_4 + CHO$       | 8.07e-14 | 2.81 | 2950     | 7   |
| 1210 | 2n   | $CH_2O + CH_3O \leftrightharpoons CH_3OH + CHO$        | 1.69e-13 | 0.00 | 1500     | 7   |
| 1211 | 2n   | $CH_2O + C_2H_3O \leftrightharpoons C_2H_4O + CHO$     | 3.01e-13 | 0.00 | 6500     | 7   |
| 1212 | 2n   | $HNCO + NO_3 \leftrightharpoons HNO + CO_2 + NO$       | 1.66e-12 | 0.00 | 5030     | 142 |
| 1213 | 2n   | $H_2O_2 + C_2H_3 \leftrightharpoons C_2H_4 + HO_2$     | 5.45e-14 | 0.00 | 0        | 7   |
| 1214 | 2n   | $HNO_2 + NO_3 \leftrightharpoons HNO_3 + NO_2$         | 2.01e-15 | 0.00 | 0        | 387 |
| 1215 | 2n   | $C_2H_3 + CH_3O \leftrightharpoons CH_2O + C_2H_4$     | 4.00e-11 | 0.00 | 0        | 7   |
| 1216 | 2n   | $C_2H_3 + CH_2OH \leftrightharpoons CH_2O + C_2H_4$    | 5.00e-11 | 0.00 | 0        | 145 |
| 1217 | 2n   | $C_2H_3 + CH_2OH \leftrightharpoons C_3H_5 + HO$       | 2.01e-11 | 0.00 | 0        | 145 |
| 1218 | 2n   | $C_2H_3 + C_2H_4 \leftrightharpoons C_4H_6 + H$        | 8.30e-13 | 0.00 | 3860     | 388 |
| 1219 | 2n   | $C_2H_3 + C_2H_3O \leftrightharpoons C_3H_3O + CH_3$   | 3.01e-11 | 0.00 | 0        | 7   |
| 1220 | 2n   | $C_2H_3 + CH_3OH = CH_2OH + C_2H_4$                    | 4.38e-15 | 3.20 | 3630     | 145 |
| 1221 | 2n   | $C_2H_3 + CH_3OH \leftrightharpoons CH_3O + C_2H_4$    | 1.12e-15 | 3.10 | 3490     | 145 |
| 1222 | 2n   | $C_2H_3 + C_2H_4O \leftrightharpoons C_2H_3O + C_2H_4$ | 1.35e-13 | 0.00 | 1850     | 389 |
| 1223 | 2n   | $C_2H_3 + C_2H_6 \leftrightharpoons C_2H_5 + C_2H_4$   | 1.46e-13 | 3.30 | 5280     | 7   |
| 1224 | 2n   | $CH_3O + C_2H_3O \leftrightharpoons C_2H_2O + CH_3OH$  | 1.00e-11 | 0.00 | 0        | 7   |
| 1225 | 2n   | $CH_3O + C_2H_3O \leftrightharpoons CH_2O + C_2H_4O$   | 1.00e-11 | 0.00 | 0        | 7   |
| 1226 | 2n   | $CH_3O + C_2H_5 \leftrightharpoons CH_2O + C_2H_6$     | 4.00e-11 | 0.00 | 0        | 7   |
| 1227 | 2n   | $CH_3O + C_2H_4O \leftrightharpoons CH_3OH + C_2H_3O$  | 8.30e-15 | 0.00 | 0        | 390 |
| 1228 | 2n   | $CH_3O + C_2H_6 \leftrightharpoons CH_3OH + C_2H_5$    | 4.00e-13 | 0.00 | 3570     | 7   |
| 1229 | 2n   | $CH_3O + CH_3COOH \Rightarrow CH_3OH + CH_3OCO$        | 1.69e-11 | 0.00 | 4120     | 391 |
| 1230 | 2n   | $C_2H_4 + C_2H_5OO = Oxyrane + CH_3CH_2O$              | 3.79e-08 | 0.00 | 11000    | 392 |
|      |      | =                                                      |          |      |          |     |

Table 6—Continued

| #    | Type | Reaction                                                    | α         | β    | $\gamma$ | Ref |
|------|------|-------------------------------------------------------------|-----------|------|----------|-----|
| 1231 | 2n   | $H_4N_2 + C_2H_5 \leftrightharpoons C_2H_6 + NH_2NH$        | 8.32e-14  | 0.00 | 2300     | 393 |
| 1232 | 2n   | $C_2H_5 + C_2H_4O \leftrightharpoons C_2H_6 + C_2H_3O$      | 2.09e-12  | 0.00 | 4280     | 394 |
| 1233 | 2n   | $C_2H_5 + C_2H_5NO \leftrightharpoons C_4H_{10} + NO$       | 1.66e-10  | 0.00 | 0        | 395 |
| 1234 | 2n   | $C_2H_6 + C_2H_5OO \leftrightharpoons (CH_3O)_2 + C_2H_5$   | 2.87e-14  | 3.76 | 8650     | 396 |
| 1235 | 2n   | $H_2CN + H_2CN \leftrightharpoons CH_3N + HCN$              | 7.70e-12  | 0.00 | 0        | 397 |
| 1236 | 2n   | $CH_3O_2 + H \leftrightharpoons CH_3O + HO$                 | 1.60e-10  | 0.00 | 0        | 7   |
| 1237 | 2n   | $CH_3O_2 + O \leftrightharpoons CH_3O + O_2$                | 8.30e-11  | 0.00 | 0        | 398 |
| 1238 | 2n   | $CH_3O_2 + H_2 \leftrightharpoons CH_4O_2 + H$              | 5.00e-11  | 0.00 | 13100    | 7   |
| 1239 | 2n   | $CH_3O_2 + HO \leftrightharpoons CH_3OH + O_2$              | 1.00e-10  | 0.00 | 0        | 7   |
| 1240 | 2n   | $CH_3O_2 + NO \leftrightharpoons CH_3O + NO_2$              | 7.51e-12  | 0.00 | 0        | 399 |
| 1241 | 2n   | $CH_3O_2 + O_2 \leftrightharpoons HCOOH + HO_2$             | 3.50e-14  | 0.00 | 0        | 400 |
| 1242 | 2n   | $CH_3O_2 + C_2H \leftrightharpoons CH_3O + HCCO$            | 4.00e-11  | 0.00 | 0        | 7   |
| 1243 | 2n   | $CH_3O_2 + CH_2 \leftrightharpoons CH_3O + CH_2O$           | 3.01e-11  | 0.00 | 0        | 7   |
| 1244 | 2n   | $CH_3O_2 + HO_2 \leftrightharpoons CH_4O_2 + O_2$           | 1.57e-11  | 0.00 | 0        | 7   |
| 1245 | 2n   | $CH_3O_2 + CH_3 \leftrightharpoons CH_3O + CH_3O$           | 4.00e-11  | 0.00 | 0        | 7   |
| 1246 | 2n   | $CH_3O_2 + CH_2O \leftrightharpoons CH_4O_2 + CHO$          | 3.30e-12  | 0.00 | 5870     | 7   |
| 1247 | 2n   | $CH_3O_2 + H_2O_2 \leftrightharpoons CH_4O_2 + HO_2$        | 4.00e-12  | 0.00 | 5000     | 7   |
| 1248 | 2n   | $CH_3O_2 + NO_3 \leftrightharpoons CH_3O + NO_2 + O_2$      | 3.11e-12  | 0.00 | 0        | 368 |
| 1249 | 2n   | $CH_3O_2 + C_2H_3 \leftrightharpoons cyc-C_2H_3O + CH_3O$   | 4.00e-11  | 0.00 | 0        | 7   |
| 1250 | 2n   | $CH_3O_2 + CH_4 \leftrightharpoons CH_4O_2 + CH_3$          | 3.01e-13  | 0.00 | 9300     | 7   |
| 1251 | 2n   | $CH_3O_2 + CH_3O \leftrightharpoons CH_4O_2 + CH_2O$        | 5.00e-13  | 0.00 | 0        | 7   |
| 1252 | 2n   | $CH_3O_2 + CH_2OH \leftrightharpoons CH_4O_2 + CH_2O$       | 2.01e-11  | 0.00 | 0        | Est |
| 1253 | 2n   | $CH_3O_2 + CH_3OH \leftrightharpoons CH_4O_2 + CH_2OH$      | 3.01e-12  | 0.00 | 6900     | 145 |
| 1254 | 2n   | $CH_3O_2 + C_2H_5 \leftrightharpoons CH_3CH_2O + CH_3O$     | 4.00e-11  | 0.00 | 0        | 7   |
| 1255 | 2n   | $CH_3O_2 + C_2H_6 \leftrightharpoons CH_4O_2 + C_2H_5$      | 4.90e-13  | 0.00 | 7520     | 7   |
| 1256 | 2n   | $C_2H_2O + C_2H_2O \leftrightharpoons C_3H_4 + CO_2$        | 1.83e-11  | 0.00 | 18000    | 401 |
| 1257 | 2n   | $CH_2OH + CH_2OH \leftrightharpoons CH_3OH + CH_2O$         | 8.00e-12  | 0.00 | 0        | 145 |
| 1258 | 2n   | $C_2H_3O + C_2H_3O \leftrightharpoons C_2H_2O + C_2H_4O$    | 1.49e-11  | 0.00 | 0        | 355 |
| 1259 | 2n   | $CH_2OH + C_2H_5 \leftrightharpoons CH_2O + C_2H_6$         | 4.00e-12  | 0.00 | 0        | 145 |
| 1260 | 2n   | $CH_2OH + C_2H_5 \leftrightharpoons CH_3OH + C_2H_4$        | 4.00e-12  | 0.00 | 0        | 145 |
| 1261 | 2n   | $CH_2OH + C_2H_6 \leftrightharpoons CH_3OH + C_2H_5$        | 8.73 e-15 | 3.00 | 7030     | 145 |
| 1262 | 2n   | $C_2H_3O + CH_3OH \leftrightharpoons C_2H_4O + CH_2OH$      | 2.13e-13  | 3.00 | 6210     | 145 |
| 1263 | 2n   | $C_2H_3O + C_2H_4O \leftrightharpoons (CH_3)_2CO + CHO$     | 2.84e-13  | 0.00 | 0        | 402 |
| 1264 | 2n   | $C_2H_3O + C_2H_6N \leftrightharpoons C_2H_4O + CH_2NCH_3$  | 5.98e-11  | 0.00 | 0        | 360 |
| 1265 | 2n   | $CH_3NO + CH_3O \leftrightharpoons C_2H_5NO_2 + H$          | 1.00e-10  | 0.50 | 2340     | 403 |
| 1266 | 2n   | $NH_2OH + HO \leftrightharpoons H_2O + NH_2O$               | 4.13e-11  | 0.00 | 2140     | 257 |
| 1267 | 2n   | $CH_3O_2 + CH_3O_2 \leftrightharpoons CH_3O + CH_3O + O_2$  | 7.40e-13  | 0.00 | 519      | 266 |
| 1268 | 2n   | $CH_3O_2 + CH_3O_2 \leftrightharpoons (CH_3O)_2 + O_2$      | 3.01e-14  | 0.00 | 0        | Est |
| 1269 | 2n   | $CH_3O_2 + CH_3O_2 \leftrightharpoons CH_3OH + CH_2O + O_2$ | 2.22e-13  | 0.00 | 0        | Est |
| 1270 | 2n   | $CH_3OCO + CH_3O \leftrightharpoons CH_3COOH + CH_2O$       | 3.79e-11  | 0.00 | 0        | 404 |
|      |      | $C_2H_6O_2 + O \leftrightharpoons CH_3CH_2O + HO_2$         | 8.80e-12  |      |          | 5   |

Table 6—Continued

| # Type Reaction $\alpha$ $\beta$ $\gamma$ 1272 2n $C_2H_6O_2 + O = CH_3CHOH + HO_2$ 8.80e-12 0.57 139 2n $CH_2CHO + CH_3OH = C_2H_4O + CH_2OH$ 2.13e-13 3.00 621 1274 2n $CH_2CHO + C_2H_4O = (CH_3)_2CO + CHO$ 2.84e-13 0.00 0 1275 2n $CH_2CHO + C_2H_6 = C_2H_4O + C_2H_5$ 1.91e-13 2.75 882 1276 2n $CH_2CHO + C_2H_6 = C_2H_4O + C_2H_5$ 1.91e-13 2.75 882 1276 2n $CH_2CHO + C_2H_6N = C_2H_4O + C_2H_5$ 1.91e-13 2.75 882 1276 2n $CH_2CHO + C_2H_6N = C_2H_4O + C_2H_5$ 3.01e-12 0.00 0 0 1277 2n $(CH_3)_2N_2O + HO = C_2H_6 + HO_2 + N_2$ 3.01e-12 0.00 0 0 1277 2n $(CH_3)_2N_2O + HO = C_2H_6 + HO_2 + N_2$ 3.01e-12 0.00 0 0 1278 2n $CH_3OCH_2 + H = C_2H_4O + H_2$ 3.32e-11 0.00 0 0 1280 2n $CH_3OCH_2 + O = CH_3COOH + H$ 3.03e-09 0.00 0 0 1280 2n $CH_3OCH_2 + O = CH_3O + CH_2O$ 1.50e-10 0.00 0 0 1281 2n $CH_3OCH_2 + O = C_2H_4O + HO$ 3.16e-10 0.00 0 0 1282 2n $CH_3OCH_2 + O = C_2H_4O + HO$ 3.16e-10 0.00 0 0 1283 2n $CH_3OCH_2 + O = C_2H_4O + HNO$ 1.30e-11 0.00 0 0 1283 2n $CH_3OCH_2 + O = C_2H_4O + CH_2O + CH_2O$ 1.11e-13 0.00 38 1284 2n $CH_3OCH_2 + O = C_2H_4O + CH_2O + HO$ 8.30e-12 0.00 106 1285 2n $CH_3OCH_2 + O = C_2H_4O + CH_2O + HO$ 8.30e-12 0.00 106 1285 2n $CH_3OCH_2 + NO = C_2H_4O + HNO_2$ 6.61e-12 0.00 0 1286 2n $CH_3OCH_2 + NO_3 = C_2H_3O + CH_2O + HO$ 8.30e-12 0.00 106 1286 2n $CH_3OCH_2 + NO_3 = C_2H_3O + C_2H_4$ 1.14e-07 1.00 0 1287 2n $CH_3OCH_2 + C_2H_5 = C_2H_4O + C_2H_6$ 6.46e-08 1.00 0 1288 2n $CH_3OCH_2 + C_2H_5 = C_2H_4O + C_2H_6$ 6.46e-08 1.00 0 0 1290 2n $CH_3CHOH + H = C_2H_4O + HO$ 3.32e-11 0.00 0 0 1291 2n $CH_3CHOH + NO = C_2H_4O + HO$ 3.32e-11 0.00 0 0 1292 2n $CH_3CHOH + NO = C_2H_4O + HO$ 3.32e-11 0.00 0 0 1292 2n $CH_3CHOH + NO = C_2H_4O + HO$ 3.30e-12 0.00 0 0 1299 2n $CH_3CHOH + NO = C_2H_4O + HO$ 3.30e-12 0.00 0 0 1299 2n $CH_3CHOH + NO = C_2H_4O + HO$ 3.30e-12 0.00 0 0 1299 2n $CH_3CHOH + NO = C_2H_4O + HO$ 3.30e-12 0.00 0 0 1299 2n $CH_3CHOH + NO = C_2H_4O + HO$ 3.30e-12 0.00 0 0 1299 2n $CH_3CHOH + NO = C_2H_4O + HO$ 4.40e-11 0.00 55 1299 2n $CH_3CH_2O + NO_3 = C_2H_4O + HNO$ 3.30e-12 0.00 0 0 1299 2n |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ref   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 5   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 145 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 402   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7     |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 360   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 405   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 406   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 407   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 407   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 406   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 408   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 409 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 410   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 411   |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Est   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Est   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 406   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 406   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 410   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 412 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 413 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54    |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 414   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 410   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 411   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 415   |
| 1301 2n $O(^{1}D) + O_{2} = O + O_{2}$ 4.00e-11 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 415   |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 416   |
| 1302 2n $O(^{1}D) + O_{3} = O_{2} + O_{2}$ 1.20e-10 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 169   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 169   |
| 1303 2n $O(^{1}D) + O_{3} = O_{2} + O + O$ 1.20e-10 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 169   |
| 1304 2n $O(^{1}D) + H_{2} = HO + H$ 1.20e-10 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 169   |
| 1305 2n $O(^{1}D) + H_{2}O = HO + HO$ 2.00e-10 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 169   |
| 1306 2n $O(^{1}D) + N_{2} = O + N_{2}$ 3.10e-11 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 169   |
| 1307 2n $O(^{1}D) + N_{2}O = N_{2} + O_{2}$ 4.95e-11 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 169   |
| 1308 2n $O(^{1}D) + N_{2}O = NO + NO$ 7.25e-11 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 169   |
| 1309 2n $O(^{1}D) + H_{3}N = H_{2}N + HO$ 2.50e-10 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 169   |
| 1310 2n $O(^{1}D) + CO_{2} = O + CO_{2}$ 1.10e-10 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 169   |
| 1311 2n $O(^{1}D) + CH_{4} = CH_{3} + HO$ 1.31e-10 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 169   |
| 1312 2n $O(^{1}D) + CH_{4} = CH_{3}O + H$ 3.50e-11 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 169   |

Table 6— Continued

| #            | Type     | Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | α                    | β             | $\gamma$       | Ref              |
|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|----------------|------------------|
| 1313         | 2n       | $O(^{1}D) + CH_{4} \leftrightharpoons CH_{2}O + H_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.00e-12             | 0.00          | 0              | 169              |
| 1314         | 2n       | $O(^{1}D) + CH_{4} \leftrightharpoons CH_{2}O + H_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.00e-12             | 0.00          | 0              | 169              |
| 1315         | 2n       | $O(^{1}S) + O_{2} \leftrightharpoons O + O_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.85e-13             | 0.00          | 0              | 169              |
| 1316         | 2n       | $O(^{1}S) + O_{3} \leftrightharpoons O_{2} + O_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.30e-10             | 0.00          | 0              | 169              |
| 1317         | 2n       | $O(^{1}S) + O_{3} \leftrightharpoons O_{2} + O + O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.30e-10             | 0.00          | 0              | 169              |
| 1318         | 2n       | $O(^{1}S) + H_{2}O \leftrightharpoons HO + HO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.38e-10             | 0.00          | 0              | 169              |
| 1319         | 2n       | $O(^{1}S) + CO_{2} \leftrightharpoons O + CO_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.09e-13             | 0.00          | 0              | 169              |
| 1320         | 2n       | $O(^{1}S) + H_{2} \leftrightharpoons HO + H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.60e-10             | 0.00          | 0              | 169              |
| 1321         | 2n       | $O(^{1}S) + N_{2} \leftrightharpoons O + N_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.09e-13             | 0.00          | 0              | 169              |
| 1322         | 2n       | $C(^{1}D) + H_{2} \leftrightharpoons CH + H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.50e-11             | 0.00          | 0              | 169              |
| 1323         | 2n       | $C(^{1}S) + H_{2} \leftrightharpoons CH + H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.10e-10             | 0.00          | 0              | 169              |
| 1324         | 2n       | $O_2(a^1 \Delta_g) + O_3 = O_2 + O_2 + O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.20e-11             | 0.00          | 2840           | 169              |
| 1325         | 2n       | $O_2(a^1\Delta_g) + H_2O \leftrightharpoons O_2 + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00e-11             | 0.00          | 0              | 169              |
| 1326         | 2n       | $CH_2^* + H \leftrightharpoons CH + H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.00e-10             | 0.00          | 0              | 21               |
| 1327         | 2n       | $CH_2^* + H_2 \leftrightharpoons CH_3 + H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.26e-11             | 0.00          | 0              | 21               |
| 1328         | 2n       | $CH_2^* + H_2 \leftrightharpoons CH_2 + H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.24e-11             | 0.00          | 0              | 21               |
| 1329         | 2n       | $CH_2^* + O_2 \leftrightharpoons HO + CO + H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.60e-11             | 0.00          | 0              | 21               |
| 1330         | 2n       | $CH_2^* + O_2 = H_2O + CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.00e-11             | 0.00          | 0              | 21               |
| 1331         | 2n       | $CH_3 + HO = CH_2^* + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.61e-13             | 2.57          | 2010           | 21               |
| 1332         | 2n       | $CH_2^* + H_2O = CH_2 + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.00e-11             | 0.00          | 0              | 21               |
| 1333         | 2n       | $CH_2^* + H_2O \leftrightharpoons CH_2 + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.00e-11             | 0.00          | 0              | 21               |
| 1334         | 2n       | $CH_2^* + CO \leftrightharpoons CH_2 + CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.00e-11             | 0.00          | 0              | 21               |
| 1335<br>1336 | 2n<br>2n | $CH_2^* + N_2 \leftrightharpoons HN + HCN$<br>$CH_2^* + NO \leftrightharpoons HCNO + H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.66e-13<br>6.43e-12 | 0.00<br>-0.40 | $32700 \\ 292$ | 21<br>21         |
| 1337         | 2n       | $CH_2 + NO = HCNO + HC$ |                      | -0.40         | 382            | 21               |
| 1338         | 2n       | $CH_2 + NO \rightarrow HCN + HO$<br>$CH_2^* + CH_3 \Leftrightarrow C_2H_4 + H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.86e-12<br>7.00e-11 | 0.00          | 0              | $\frac{21}{385}$ |
| 1339         | 2n       | $CH_2 + CH_3 \rightarrow C_2H_4 + H$ $CH_2 + C_3H_3 \leftrightharpoons C_4H_4 + H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.00e-11             | 0.00          | 0              | 21               |
| 1340         | 2n       | $C_1 + C_3 + C_3 + C_4 + C_4 + C_4 + C_4 + C_4 + C_5 + C_6 $ | 5.05e-11             | 0.00          | 297            | 685              |
| 1341         | 2n       | $C_2H + C_2H_2 \rightleftharpoons C_4H_2 + H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.30e-10             | 0.00          | 0              | 686              |
| 1342         | 2n       | $C_4H + H_2 \leftrightharpoons C_4H_2 + H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.18e-12             | 2.17          | 478            | 385              |
| 1343         | 2n       | $C_4H + CH_4 \rightleftharpoons C_4H_2 + CH_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.20e-11             | 0.00          | 491            | 385              |
| 1344         | 2n       | $C_4H + C_2H_6 \leftrightharpoons C_4H_2 + C_2H_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.72e-11             | 0.54          | 0              | 385              |
| 1345         | 2n       | $NaH + H \leftrightharpoons Na + H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.38e-12             | 0.69          | 2360           | 160              |
| 1346         | 2n       | $Na + H_2O \rightleftharpoons NaOH + H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.07e-10             | 0.00          | 21900          | 417              |
| 1347         | 2n       | $KH + H = K + H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.38e-12             | 0.69          | 2360           | 100              |
| 1348         | 2n       | $K + H_2O = KOH + H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.00e-10             | 0.00          | 20000          | 417              |
| 1349         | 2n       | $H + HCl \leftrightharpoons H_2 + Cl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.84e-19             | 0.00          | 1730           | 418              |
| 1350         | 2n       | $HCl + HO = H_2O + Cl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.89e-18             | 2.12          | 0              | 419              |
| 1351         | 2n       | K + HCl = KCl + H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.60 e-10            | 0.00          | 4170           | 420              |
| 1352         | 2n       | $Na + HCl \leftrightharpoons NaCl + H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.00e-10             | 0.00          | 4090           | 421              |
| 1353         | 2i       | $Ar^+ + CH_4 \leftrightharpoons CH_2^+ + H_2 + Ar$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.00e-10             | 0.00          | 0              | 422              |

Table 6—Continued

| #    | Type | Reaction                                                                     | α         | β    | $\gamma$ | Ref |
|------|------|------------------------------------------------------------------------------|-----------|------|----------|-----|
| 1354 | 2i   | $Ar^+ + CH_4 \leftrightharpoons CH_3^+ + H + Ar$                             | 9.00e-10  | 0.00 | 0        | 422 |
| 1355 | 2i   | $Ar^+ + CH_4 \leftrightharpoons CH_4^+ + Ar$                                 | 9.00e-10  | 0.00 | 0        | 422 |
| 1356 | 2i   | $Ar^+ + CO = CO^+ + Ar$                                                      | 5.00e-11  | 0.00 | 0        | 423 |
| 1357 | 2i   | $Ar^+ + CO_2 \leftrightharpoons CO_2^+ + Ar$                                 | 5.00e-10  | 0.00 | 0        | 424 |
| 1358 | 2i   | $Ar^+ + C_2H_6 \leftrightharpoons C_2H_5^+ + H + Ar$                         | 5.00e-10  | 0.00 | 0        | 425 |
| 1359 | 2i   | $Ar^+ + C_2H_6 \leftrightharpoons C_2H_4^+ + H_2 + Ar$                       | 5.00e-10  | 0.00 | 0        | 425 |
| 1360 | 2i   | $Ar^+ + C_2H_6 \leftrightharpoons C_2H_3^+ + H_2 + H + Ar$                   | 5.00e-10  | 0.00 | 0        | 425 |
| 1361 | 2i   | $Ar^{+} + C_{2}H_{6} \leftrightharpoons C_{2}H_{2}^{+} + H_{2} + H_{2} + Ar$ | 5.00e-10  | 0.00 | 0        | 425 |
| 1362 | 2i   | $Ar^+ + H_2 \leftrightharpoons ArH^+ + H$                                    | 2.20e-09  | 0.00 | 2320     | 426 |
| 1363 | 2i   | $Ar^+ + H_2 \leftrightharpoons H_2^+ + Ar$                                   | 1.00e-09  | 0.00 | 0        | 426 |
| 1364 | 2i   | $Ar^+ + H_2O = ArH^+ + HO$                                                   | 1.30e-09  | 0.00 | 0        | 427 |
| 1365 | 2i   | $Ar^+ + H_2O \leftrightharpoons H_2O^+ + Ar$                                 | 1.50e-10  | 0.00 | 0        | 427 |
| 1366 | 2i   | $Ar^+ + H_3N \leftrightharpoons H_3N^+ + Ar$                                 | 1.69e-09  | 0.00 | 0        | 428 |
| 1367 | 2i   | $Ar^+ + H_3N \leftrightharpoons H_2N^+ + H + Ar$                             | 5.52e-11  | 0.00 | 0        | 428 |
| 1368 | 2i   | $Ar^+ + H_3N \leftrightharpoons ArH^+ + H_2N$                                | 9.20e-11  | 0.00 | 0        | 428 |
| 1369 | 2i   | $Ar^+ + NO \leftrightharpoons NO^+ + Ar$                                     | 4.00e-10  | 0.00 | 464      | 429 |
| 1370 | 2i   | $Ar^+ + NO_2 \leftrightharpoons NO_2^+ + Ar$                                 | 1.30e-10  | 0.00 | 464      | 430 |
| 1371 | 2i   | $Ar^+ + NO_2 \leftrightharpoons NO^+ + O + Ar$                               | 1.30e-10  | 0.00 | 464      | 430 |
| 1372 | 2i   | $Ar^+ + N_2 \leftrightharpoons N_2^+ + Ar$                                   | 6.50 e-10 | 0.00 | 1740     | 431 |
| 1373 | 2i   | $Ar^+ + N_2O \leftrightharpoons N_2O^+ + Ar$                                 | 3.10e-10  | 0.00 | 1740     | 426 |
| 1374 | 2i   | $Ar^+ + O_2 = O_2^+ + Ar$                                                    | 6.00e-11  | 0.00 | 464      | 429 |
| 1375 | 2i   | $ArH^+ + CH_4 \leftrightharpoons CH_5^+ + Ar$                                | 1.00e-9   | 0.00 | 580      | 432 |
| 1376 | 2i   | $ArH^+ + CO \leftrightharpoons CHO^+ + Ar$                                   | 1.25e-9   | 0.00 | 580      | 432 |
| 1377 | 2i   | $ArH^+ + CO_2 \leftrightharpoons CHO_2^+ + Ar$                               | 1.10e-9   | 0.00 | 580      | 432 |
| 1378 | 2i   | $ArH^+ + H_2 \leftrightharpoons H_3^+ + Ar$                                  | 1.50e-9   | 0.00 | 0        | 433 |
| 1379 | 2i   | $ArH^+ + H_2O \leftrightharpoons H_3O^+ + Ar$                                | 4.50e-09  | 0.00 | 0        | 434 |
| 1380 | 2i   | $ArH^+ + N_2 \leftrightharpoons HN_2^+ + Ar$                                 | 8.00e-10  | 0.00 | 580      | 432 |
| 1381 | 2i   | $ArH^+ + O_2 \leftrightharpoons HO_2^+ + Ar$                                 | 4.10e-10  | 0.00 | 0        | 435 |
| 1382 | 2i   | $ArH_3^+ + CO \leftrightharpoons CHO^+ + H_2 + Ar$                           | 1.20e-09  | 0.00 | 0        | 436 |
| 1383 | 2i   | $ArH_3^+ + CO_2 \leftrightharpoons CHO_2^+ + H_2 + Ar$                       | 1.20e-09  | 0.00 | 0        | 436 |
| 1384 | 2i   | $ArH_3^+ + C_2H_4 \leftrightharpoons C_2H_3^+ + H_2 + H_2 + Ar$              | 1.75e-09  | 0.00 | 0        | 436 |
| 1385 | 2i   | $ArH_3^+ + C_2H_4 \leftrightharpoons C_2H_5^+ + H_2 + Ar$                    | 7.50e-10  | 0.00 | 0        | 436 |
| 1386 | 2i   | $ArH_3^+ + NO \leftrightharpoons HNO^+ + H_2 + Ar$                           | 1.60e-09  | 0.00 | 0        | 436 |
| 1387 | 2i   | $ArH_3^+ + N_2 \leftrightharpoons HN_2^+ + H_2 + Ar$                         | 8.50e-10  | 0.00 | 0        | 436 |
| 1388 | 2i   | $ArH_3^+ + N_2O \leftrightharpoons HN_2O^+ + H_2 + Ar$                       | 1.80e-09  | 0.00 | 0        | 436 |
| 1389 | 2i   | $Ar_2^+ + CO = CO^+ + Ar + Ar$                                               | 8.50e-10  | 0.00 | 0        | 437 |
| 1390 | 2i   | $Ar_2^+ + CO_2 \leftrightharpoons CO_2^+ + Ar + Ar$                          | 1.10e-09  | 0.00 | 0        | 437 |
| 1391 | 2i   | $Ar_2^+ + H_2 \leftrightharpoons Ar_2H^+ + H$                                | 4.90e-10  | 0.00 | 0        | 438 |
| 1392 | 2i   | $Ar_2^+ + H_2 \leftrightharpoons ArH^+ + H + Ar$                             | 4.70e-10  | 0.00 | 0        | 439 |
| 1393 | 2i   | $Ar_2^+ + H_3N \leftrightharpoons H_3N^+ + Ar + Ar$                          | 4.50 e-10 | 0.00 | 0        | 430 |
| 1394 | 2i   | $Ar_2^+ + NO \leftrightharpoons NO^+ + Ar + Ar$                              | 2.40e-11  | 0.00 | 0        | 437 |

Table 6—Continued

| #    | Type | Reaction                                              | α         | β    | $\gamma$ | Ref |
|------|------|-------------------------------------------------------|-----------|------|----------|-----|
| 1395 | 2i   | $Ar_2^+ + NO_2 \leftrightharpoons NO_2^+ + Ar + Ar$   | 2.80e-10  | 0.00 | 0        | 430 |
| 1396 | 2i   | $Ar_2^+ + NO_2 \leftrightharpoons NO^+ + O + Ar + Ar$ | 2.80e-10  | 0.00 | 0        | 430 |
| 1397 | 2i   | $Ar_2^+ + N_2O \leftrightharpoons N_2O^+ + Ar + Ar$   | 8.20e-10  | 0.00 | 0        | 430 |
| 1398 | 2i   | $Ar_2^+ + O_2 \leftrightharpoons O_2^+ + Ar + Ar$     | 7.40e-11  | 0.00 | 0        | 430 |
| 1399 | 2i   | $Ar_2H^+ + H_2 \leftrightharpoons ArH_3^+ + Ar$       | 1.20e-10  | 0.00 | 0        | 440 |
| 1400 | 2i   | $C^+ + HCN \leftrightharpoons C_2N^+ + H$             | 1.30e-09  | 0.00 | 0        | 441 |
| 1401 | 2i   | $C^+ + CH_2O \leftrightharpoons CH_2^+ + CO$          | 2.34e-09  | 0.00 | 0        | 442 |
| 1402 | 2i   | $C^+ + CH_2O \leftrightharpoons CHO^+ + CH$           | 7.80e-10  | 0.00 | 0        | 442 |
| 1403 | 2i   | $C^+ + CH_2O \leftrightharpoons CH_2O^+ + C$          | 7.80e-10  | 0.00 | 0        | 442 |
| 1404 | 2i   | $C^+ + HCOOH = CHO^+ + CHO$                           | 3.30e-09  | 0.00 | 0        | 443 |
| 1405 | 2i   | $C^+ + CH_4 \leftrightharpoons C_2H_3^+ + H$          | 1.03e-09  | 0.00 | 0        | 442 |
| 1406 | 2i   | $C^+ + CH_4 \leftrightharpoons C_2H_2^+ + H_2$        | 4.21e-10  | 0.00 | 0        | 442 |
| 1407 | 2i   | $C^+ + CH_3OH \leftrightharpoons CH_4O^+ + C$         | 1.35e-09  | 0.00 | 0        | 442 |
| 1408 | 2i   | $C^+ + CH_3OH \leftrightharpoons CH_3O^+ + CH$        | 1.23e-09  | 0.00 | 0        | 442 |
| 1409 | 2i   | $C^+ + CH_3OH = CH_3^+ + CHO$                         | 1.19e-09  | 0.00 | 0        | 442 |
| 1410 | 2i   | $C^+ + CH_3OH \leftrightharpoons CHO^+ + CH_3$        | 3.28e-10  | 0.00 | 0        | 442 |
| 1411 | 2i   | $C^+ + CH_5N \leftrightharpoons CH_5N^+ + C$          | 3.07e-09  | 0.00 | 0        | 442 |
| 1412 | 2i   | $C^+ + CH_5N \leftrightharpoons CH_4N^+ + CH$         | 7.98e-10  | 0.00 | 0        | 442 |
| 1413 | 2i   | $C^+ + CH_5N \leftrightharpoons CH_2N^+ + CH_3$       | 2.52e-10  | 0.00 | 0        | 442 |
| 1414 | 2i   | $C^+ + CH_5N \leftrightharpoons CH_3^+ + HCN + H$     | 1.26e-10  | 0.00 | 0        | 442 |
| 1415 | 2i   | $C^+ + CO_2 \leftrightharpoons CO^+ + CO$             | 1.60e-09  | 0.00 | 0        | 444 |
| 1416 | 2i   | $C^+ + C_2H_2 \leftrightharpoons C_3H^+ + H$          | 2.20e-09  | 0.00 | 0        | 445 |
| 1417 | 2i   | $C^+ + C_2H_4 \leftrightharpoons C_3H_2^+ + H_2$      | 5.20 e-10 | 0.00 | 0        | 445 |
| 1418 | 2i   | $C^+ + C_2H_4 \leftrightharpoons C_3H_3^+ + H$        | 3.90e-10  | 0.00 | 0        | 445 |
| 1419 | 2i   | $C^+ + C_2H_4 \leftrightharpoons C_2H_4^+ + C$        | 1.95e-10  | 0.00 | 0        | 445 |
| 1420 | 2i   | $C^+ + C_2H_4 \leftrightharpoons C_2H_3^+ + CH$       | 1.95e-10  | 0.00 | 0        | 445 |
| 1421 | 2i   | $C^+ + C_2H_6 \leftrightharpoons C_3H_3^+ + H_2 + H$  | 4.80e-10  | 0.00 | 0        | 445 |
| 1422 | 2i   | $C^+ + C_2H_6 \leftrightharpoons C_2H_3^+ + CH_3$     | 4.80e-10  | 0.00 | 0        | 445 |
| 1423 | 2i   | $C^+ + C_2H_6 \leftrightharpoons C_2H_4^+ + CH_2$     | 3.20e-10  | 0.00 | 0        | 445 |
| 1424 | 2i   | $C^+ + C_2H_6 \leftrightharpoons C_2H_5^+ + CH$       | 3.20e-10  | 0.00 | 0        | 445 |
| 1425 | 2i   | $C^+ + NCCN \leftrightharpoons C_2N^+ + CN$           | 1.90e-09  | 0.00 | 0        | 446 |
| 1426 | 2i   | $C^+ + H_2 \leftrightharpoons CH^+ + H$               | 2.20e-12  | 0.00 | 4480     | Est |
| 1427 | 2i   | $C^+ + H_2O \leftrightharpoons CHO^+ + H$             | 2.70e-09  | 0.00 | 0        | 442 |
| 1428 | 2i   | $C^+ + H_3N \leftrightharpoons H_3N^+ + C$            | 1.15e-09  | 0.00 | 0        | 442 |
| 1429 | 2i   | $C^+ + H_3N \leftrightharpoons CH_2N^+ + H$           | 1.08e-09  | 0.00 | 0        | 442 |
| 1430 | 2i   | $C^+ + H_3N \leftrightharpoons CHN^+ + H_2$           | 6.90e-11  | 0.00 | 0        | 442 |
| 1431 | 2i   | $C^+ + SiH_4 \leftrightharpoons Si^+ + H_2 + H_2 + C$ | 4.36e-09  | 0.00 | 0        | 447 |
| 1432 | 2i   | $C^+ + SiH_4 \leftrightharpoons SiH^+ + H_2 + H + C$  | 4.36e-09  | 0.00 | 0        | 447 |
| 1433 | 2i   | $C^+ + SiH_4 \leftrightharpoons SiH_2^+ + H_2 + C$    | 4.36e-09  | 0.00 | 0        | 447 |
| 1434 | 2i   | $C^+ + SiH_4 \leftrightharpoons SiH_3^+ + H + C$      | 4.36e-09  | 0.00 | 0        | 447 |
| 1435 | 2i   | $C^+ + SiH_4 \leftrightharpoons SiH_4^+ + C$          | 4.36e-09  | 0.00 | 0        | 447 |

Table 6—Continued

| #    | Type | Reaction                                                          | α         | β    | $\gamma$ | Ref |
|------|------|-------------------------------------------------------------------|-----------|------|----------|-----|
| 1436 | 2i   | $C^+ + SiH_4 \leftrightharpoons SiCH^+ + H_2 + H$                 | 4.36e-09  | 0.00 | 0        | 447 |
| 1437 | 2i   | $C^+ + SiH_4 \leftrightharpoons SiCH_2^+ + H_2$                   | 4.36e-09  | 0.00 | 0        | 447 |
| 1438 | 2i   | $C^+ + NO = NO^+ + C$                                             | 8.50 e-10 | 0.00 | 0        | 442 |
| 1439 | 2i   | $C^+ + N_2O \leftrightharpoons NO^+ + CN$                         | 9.10e-10  | 0.00 | 0        | 448 |
| 1440 | 2i   | $C^+ + O_2 \leftrightharpoons CO^+ + O$                           | 7.81e-10  | 0.00 | 0        | 442 |
| 1441 | 2i   | $C^+ + O_2 \leftrightharpoons O^+ + CO$                           | 4.39e-10  | 0.00 | 0        | 442 |
| 1442 | 2i   | $CH^+ + HCN \leftrightharpoons C_2N^+ + H_2$                      | 4.29e-10  | 0.00 | 0        | 441 |
| 1443 | 2i   | $CH^+ + HCN \leftrightharpoons C_2HN^+ + H$                       | 2.31e-10  | 0.00 | 0        | 441 |
| 1444 | 2i   | $CH^+ + HCN \leftrightharpoons CH_2N^+ + C$                       | 2.80e-09  | 0.00 | 0        | 441 |
| 1445 | 2i   | $CH^+ + CH_2O \leftrightharpoons CHO^+ + CH_2$                    | 9.60e-10  | 0.00 | 0        | 449 |
| 1446 | 2i   | $CH^+ + CH_2O \leftrightharpoons CH_3^+ + CO$                     | 9.60e-10  | 0.00 | 0        | 449 |
| 1447 | 2i   | $CH^+ + CH_2O \rightleftharpoons CH_3O^+ + C$                     | 9.60e-10  | 0.00 | 0        | 449 |
| 1448 | 2i   | $CH^+ + CH_2O \rightleftharpoons C_2H_2O^+ + H$                   | 3.20e-10  | 0.00 | 0        | 449 |
| 1449 | 2i   | $CH^+ + CH_4 \leftrightharpoons C_2H_3^+ + H_2$                   | 1.09e-09  | 0.00 | 0        | 107 |
| 1450 | 2i   | $CH^{+} + CH_{4} \leftrightharpoons C_{2}H_{2}^{+} + H_{2} + H$   | 1.43e-10  | 0.00 | 0        | 107 |
| 1451 | 2i   | $CH^+ + CH_4 \leftrightharpoons C_2H_4^+ + H$                     | 6.50 e-11 | 0.00 | 0        | 107 |
| 1452 | 2i   | $CH^+ + CH_3OH \leftrightharpoons CH_3^+ + CH_2O$                 | 1.45e-09  | 0.00 | 0        | 449 |
| 1453 | 2i   | $CH^+ + CH_3OH \rightleftharpoons CH_5O^+ + C$                    | 1.16e-09  | 0.00 | 0        | 449 |
| 1454 | 2i   | $CH^+ + CH_3OH \leftrightharpoons CH_3O^+ + CH_2$                 | 2.90e-10  | 0.00 | 0        | 449 |
| 1455 | 2i   | $CH^+ + CH_5N \leftrightharpoons CH_4N^+ + CH_2$                  | 1.10e-09  | 0.00 | 0        | 449 |
| 1456 | 2i   | $CH^+ + CH_5N \leftrightharpoons CH_6N^+ + C$                     | 8.80e-10  | 0.00 | 0        | 449 |
| 1457 | 2i   | $CH^+ + CH_5N \leftrightharpoons CH_5N^+ + CH$                    | 2.20e-10  | 0.00 | 0        | 449 |
| 1458 | 2i   | $CH^+ + CO \leftrightharpoons CHO^+ + C$                          | 7.00e-12  | 0.00 | 0        | 450 |
| 1459 | 2i   | $CH^+ + CO_2 \leftrightharpoons CHO^+ + CO$                       | 1.60e-09  | 0.00 | 0        | 450 |
| 1460 | 2i   | $CH^+ + C_2H_2 \leftrightharpoons C_3H_2^+ + H$                   | 2.40e-09  | 0.00 | 0        | 451 |
| 1461 | 2i   | $CH^+ + H_2 \leftrightharpoons CH_2^+ + H$                        | 1.20e-09  | 0.00 | 0        | 450 |
| 1462 | 2i   | $CH^+ + H_2O \leftrightharpoons CHO^+ + H_2$                      | 1.35e-09  | 0.00 | 0        | 450 |
| 1463 | 2i   | $CH^+ + H_2O \leftrightharpoons CH_2O^+ + H$                      | 6.75e-10  | 0.00 | 0        | 450 |
| 1464 | 2i   | $CH^+ + H_2O \leftrightharpoons H_3O^+ + C$                       | 6.75e-10  | 0.00 | 0        | 450 |
| 1465 | 2i   | $CH^{+} + H_{3}N \leftrightharpoons CH_{2}N^{+} + H_{2}$          | 1.84e-09  | 0.00 | 0        | 452 |
| 1466 | 2i   | $CH^+ + H_3N \leftrightharpoons H_3N^+ + CH$                      | 4.59e-10  | 0.00 | 0        | 452 |
| 1467 | 2i   | $CH^+ + H_3N \leftrightharpoons H_4N^+ + C$                       | 4.05e-10  | 0.00 | 0        | 452 |
| 1468 | 2i   | $CH^{+} + SiH_{4} \leftrightharpoons Si^{+} + H_{2} + H_{2} + CH$ | 4.56e-09  | 0.00 | 0        | 447 |
| 1469 | 2i   | $CH^+ + SiH_4 \leftrightharpoons SiH^+ + H_2 + CH + H$            | 4.56e-09  | 0.00 | 0        | 447 |
| 1470 | 2i   | $CH^+ + SiH_4 \leftrightharpoons SiH_2^+ + H_2 + CH$              | 4.56e-09  | 0.00 | 0        | 447 |
| 1471 | 2i   | $CH^+ + SiH_4 \leftrightharpoons SiH_3^+ + CH + H$                | 4.56e-09  | 0.00 | 0        | 447 |
| 1472 | 2i   | $CH^+ + SiH_4 \leftrightharpoons SiCH_2^+ + H_2 + H$              | 4.56e-09  | 0.00 | 0        | 447 |
| 1473 | 2i   | $CH^+ + SiH_4 \leftrightharpoons SiCH_3^+ + H_2$                  | 4.56e-09  | 0.00 | 0        | 447 |
| 1474 | 2i   | $CH^+ + N \leftrightharpoons CN^+ + H$                            | 1.90e-10  | 0.00 | 0        | 453 |
| 1475 | 2i   | $CH^+ + N \leftrightharpoons H^+ + CN$                            | 1.90e-10  | 0.00 | 0        | 453 |
| 1476 | 2i   | $CH^+ + NO \leftrightharpoons NO^+ + CH$                          | 7.60e-10  | 0.00 | 0        | 453 |

Table 6—Continued

| #    | Type | Reaction                                                      | α        | β    | $\gamma$ | Ref |
|------|------|---------------------------------------------------------------|----------|------|----------|-----|
| 1477 | 2i   | $CH^+ + O \leftrightharpoons CO^+ + H$                        | 3.50e-10 | 0.00 | 0        | 453 |
| 1478 | 2i   | $CH^+ + O = H^+ + CO$                                         | 3.50e-10 | 0.00 | 0        | 453 |
| 1479 | 2i   | $CH^+ + O_2 \leftrightharpoons CHO^+ + O$                     | 4.85e-10 | 0.00 | 0        | 450 |
| 1480 | 2i   | $CH^+ + O_2 \leftrightharpoons CO^+ + HO$                     | 2.43e-10 | 0.00 | 0        | 450 |
| 1481 | 2i   | $CH^+ + O_2 \leftrightharpoons O^+ + CHO$                     | 2.43e-10 | 0.00 | 0        | 450 |
| 1482 | 2i   | $CHN^+ + HCN \leftrightharpoons CH_2N^+ + CN$                 | 1.20e-09 | 0.00 | 0        | 441 |
| 1483 | 2i   | $CHN^{+} + HCN \leftrightharpoons C_{2}HN_{2}^{+} + H$        | 3.20e-11 | 0.00 | 0        | 441 |
| 1484 | 2i   | $CHN^{+} + CH_{4} \leftrightharpoons CH_{2}N^{+} + CH_{3}$    | 1.09e-09 | 0.00 | 0        | 454 |
| 1485 | 2i   | $CHN^{+} + CH_{4} \leftrightharpoons C_{2}H_{3}^{+} + H_{2}N$ | 2.08e-10 | 0.00 | 0        | 454 |
| 1486 | 2i   | $CHN^{+} + CH_{5}N \leftrightharpoons CH_{6}N^{+} + CN$       | 1.50e-09 | 0.00 | 0        | 455 |
| 1487 | 2i   | $CHN^{+} + CO \leftrightharpoons CHO^{+} + CN$                | 1.40e-10 | 0.00 | 0        | 456 |
| 1488 | 2i   | $CHN^{+} + CO_{2} \leftrightharpoons CHO_{2}^{+} + CN$        | 2.10e-10 | 0.00 | 0        | 456 |
| 1489 | 2i   | $CHN^+ + H_2 \leftrightharpoons CH_2N^+ + H$                  | 9.81e-10 | 0.00 | 0        | 457 |
| 1490 | 2i   | $CHN^{+} + H_{2}O \rightleftharpoons H_{3}O^{+} + CN$         | 1.80e-09 | 0.00 | 0        | 456 |
| 1491 | 2i   | $CHN^{+} + H_{2}O \rightleftharpoons H_{2}O^{+} + HCN$        | 1.80e-09 | 0.00 | 0        | 456 |
| 1492 | 2i   | $CHN^{+} + H_{2}O \leftrightharpoons CH_{2}N^{+} + HO$        | 1.44e-10 | 0.00 | 0        | 456 |
| 1493 | 2i   | $CHN^{+} + H_{3}N \leftrightharpoons H_{3}N^{+} + HCN$        | 1.89e-09 | 0.00 | 0        | 456 |
| 1494 | 2i   | $CHN^{+} + H_{3}N \leftrightharpoons CH_{2}N^{+} + H_{2}N$    | 8.40e-10 | 0.00 | 0        | 456 |
| 1495 | 2i   | $CHN^{+} + H_{3}N \leftrightharpoons H_{4}N^{+} + CN$         | 1.40e-10 | 0.00 | 0        | 456 |
| 1496 | 2i   | $CHN^{+} + O_{2} \leftrightharpoons O_{2}^{+} + HCN$          | 3.20e-10 | 0.00 | 0        | 456 |
| 1497 | 2i   | $CHNO^{+} + HNCO = CH_{2}NO^{+} + CNO$                        | 8.30e-10 | 0.00 | 0        | 458 |
| 1498 | 2i   | $CHO^+ + Ar \leftrightharpoons ArH^+ + CO$                    | 3.90e-10 | 0.00 | 0        | 459 |
| 1499 | 2i   | $CHO^+ + HCN \rightleftharpoons CH_2N^+ + CO$                 | 4.00e-09 | 0.00 | 0        | 457 |
| 1500 | 2i   | $CHO^+ + HNCO = CH_2NO^+ + CO$                                | 1.34e-09 | 0.00 | 0        | 458 |
| 1501 | 2i   | $CHO^+ + CH_2O \rightleftharpoons CH_3O^+ + CO$               | 6.10e-10 | 0.00 | 0        | 460 |
| 1502 | 2i   | $CHO^{+} + HCOOH = CH_{3}O_{2}^{+} + CO$                      | 1.80e-09 | 0.00 | 0        | 461 |
| 1503 | 2i   | $CHO^+ + CH_3NO_2 \leftrightharpoons CH_4NO_2^+ + CO$         | 3.33e-09 | 0.00 | 0        | 462 |
| 1504 | 2i   | $CHO^{+} + CH_{3}NO_{2} = NO^{+} + CH_{3}OH + CO$             | 3.33e-09 | 0.00 | 0        | 462 |
| 1505 | 2i   | $CHO^{+} + CH_{3}OH = CH_{5}O^{+} + CO$                       | 2.40e-09 | 0.00 | 0        | 463 |
| 1506 | 2i   | $CHO^+ + CO_2 \leftrightharpoons CHO_2^+ + CO$                | 1.25e-09 | 0.00 | 0        | 459 |
| 1507 | 2i   | $CHO^{+} + C_{2}H_{2} = C_{2}H_{3}^{+} + CO$                  | 1.36e-09 | 0.00 | 0        | 464 |
| 1508 | 2i   | $CHO^{+} + C_{2}H_{2}O = C_{2}H_{3}O^{+} + CO$                | 1.80e-09 | 0.00 | 0        | 461 |
| 1509 | 2i   | $CHO^{+} + CH_{3}CN = C_{2}H_{4}N^{+} + CO$                   | 4.10e-09 | 0.00 | 0        | 465 |
| 1510 | 2i   | $CHO^{+} + C_{2}H_{4}O = C_{2}H_{5}O^{+} + CO$                | 3.69e-09 | 0.00 | 0        | 466 |
| 1511 | 2i   | $CHO^{+} + CH_{3}COOH = C_{2}H_{5}O_{2}^{+} + CO$             | 2.50e-09 | 0.00 | 0        | 461 |
| 1512 | 2i   | $CHO^{+} + C_{2}H_{6} = C_{2}H_{7}^{+} + CO$                  | 1.20e-10 | 0.00 | 0        | 467 |
| 1513 | 2i   | $CHO^{+} + C_{2}H_{5}OH = C_{2}H_{7}O^{+} + CO$               | 2.20e-09 | 0.00 | 0        | 461 |
| 1514 | 2i   | $CHO^{+} + (CH_3)_2O = C_2H_7O^{+} + CO$                      | 2.10e-09 | 0.00 | 0        | 468 |
| 1515 | 2i   | $CHO^{+} + HC_{3}N = C_{3}H_{2}N^{+} + CO$                    | 4.00e-09 | 0.00 | 0        | 469 |
| 1516 | 2i   | $CHO^+ + H_2O \rightleftharpoons H_3O^+ + CO$                 | 2.50e-09 | 0.00 | 0        | 463 |
| 1517 | 2i   | $CHO^+ + H_3N \leftrightharpoons H_4N^+ + CO$                 | 1.12e-09 | 0.00 | 0        | 470 |

Table 6—Continued

| #           | Type       | Reaction                                                                                             | α                    | β              | $\gamma$ | Ref          |
|-------------|------------|------------------------------------------------------------------------------------------------------|----------------------|----------------|----------|--------------|
| 1518        | 2i         | $CHO^+ + N_2O \leftrightharpoons HN_2O^+ + CO$                                                       | 2.70e-12             | 0.00           | 0        | 435          |
| 1519        | 2i         | $CHO^+ + O_2 \leftrightharpoons HO_2^+ + CO$                                                         | 4.80e-10             | 0.00           | 0        | 459          |
| 1520        | 2i         | $CHO_2^+ + CH_3NO_2 = CH_4NO_2^+ + CO_2$                                                             | 2.81e-09             | 0.00           | 0        | 462          |
| 1521        | 2i         | $CHO_2^+ + CH_3NO_2 \leftrightharpoons NO^+ + CH_3OH + CO_2$                                         | 8.46e-12             | 0.00           | 0        | 462          |
| 1522        | 2i         | $CHO_2^+ + CH_4 \leftrightharpoons CH_5^+ + CO_2$                                                    | 1.30e-10             | 0.00           | 0        | 471          |
| 1523        | 2i         | $CHO_2^+ + C_2H_2 \leftrightharpoons C_2H_3^+ + CO_2$                                                | 1.37e-09             | 0.00           | 0        | 464          |
| 1524        | 2i         | $CHO_2^+ + CH_3CN \leftrightharpoons C_2H_4N^+ + CO_2$                                               | 4.10e-09             | 0.00           | 0        | 465          |
| 1525        | 2i         | $CHO_2^+ + H_2O \leftrightharpoons H_3O^+ + CO_2$                                                    | 3.00e-09             | 0.00           | 0        | 472          |
| 1526        | 2i         | $CH_2^+ + HCN \leftrightharpoons C_2H_2N^+ + H$                                                      | 1.80e-09             | 0.00           | 0        | 473          |
| 1527        | 2i         | $CH_2^+ + CH_2O \leftrightharpoons CH_3^+ + CHO$                                                     | 6.40 e-10            | 0.00           | 0        | 460          |
| 1528        | 2i         | $CH_2^+ + CH_2O \leftrightharpoons CHO^+ + CH_3$                                                     | 2.80e-09             | 0.00           | 0        | 449          |
| 1529        | 2i         | $CH_2^+ + CH_2O \leftrightharpoons C_2H_3O^+ + H$                                                    | 3.30e-10             | 0.00           | 0        | 449          |
| 1530        | 2i         | $CH_2^+ + CH_2O \leftrightharpoons C_2H_2O^+ + H_2$                                                  | 1.65e-10             | 0.00           | 0        | 449          |
| 1531        | 2i         | $CH_2^+ + CH_4 \leftrightharpoons C_2H_4^+ + H_2$                                                    | 8.40e-10             | 0.00           | 0        | 107          |
| 1532        | 2i         | $CH_2^+ + CH_4 \leftrightharpoons C_2H_5^+ + H$                                                      | 3.60e-10             | 0.00           | 0        | 107          |
| 1533        | 2i         | $CH_2^+ + CH_3OH \leftrightharpoons CH_3O^+ + CH_3$                                                  | 1.30e-09             | 0.00           | 0        | 449          |
| 1534        | 2i         | $CH_2^+ + CH_3OH \leftrightharpoons CH_5O^+ + CH$                                                    | 1.30e-09             | 0.00           | 0        | 449          |
| 1535        | 2i         | $CH_2^+ + CH_5N \leftrightharpoons CH_4N^+ + CH_3$                                                   | 1.16e-09             | 0.00           | 0        | 449          |
| 1536        | 2i         | $CH_2^+ + CH_5N \leftrightharpoons CH_5N^+ + CH_2$                                                   | 7.35e-10             | 0.00           | 0        | 449          |
| 1537        | 2i         | $CH_2^+ + CH_5N \leftrightharpoons CH_6N^+ + CH$                                                     | 2.10e-10             | 0.00           | 0        | 449          |
| 1538        | 2i         | $CH_2^+ + CO = CHO^+ + CH$                                                                           | 4.99e-12             | -2.50          | 0        | 104          |
| 1539        | 2i         | $CH_2^+ + CO_2 \leftrightharpoons CH_2O^+ + CO$                                                      | 1.60e-09             | 0.00           | 0        | 450          |
| 1540        | 2i         | $CH_2^+ + C_2H_2 \leftrightharpoons C_3H_3^+ + H$                                                    | 2.50e-09             | 0.00           | 0        | 473          |
| 1541        | 2i         | $CH_2^+ + C_2H_2O = C_2H_2O^+ + CH_2$                                                                | 3.80e-10             | 0.00           | 0        | 474          |
| 1542        | 2i         | $CH_2^+ + H_2 = CH_3^+ + H$                                                                          | 1.60e-09             | 0.00           | 0        | 450          |
| 1543        | 2i         | $CH_2^+ + H_2O \rightleftharpoons CH_3O^+ + H$                                                       | 2.90e-09             | 0.00           | 0        | 450          |
| 1544        | 2i         | $CH_2^+ + H_2O = H_3O^+ + CH$                                                                        | 2.90e-09             | 0.00           | 0        | 450          |
| 1545        | 2i         | $CH_2^+ + H_3N \leftrightharpoons CH_4N^+ + H$                                                       | 1.54e-09             | 0.00           | 0        | 452          |
| 1546        | 2i         | $CH_2^+ + H_3N \leftrightharpoons H_4N^+ + CH$                                                       | 1.26e-09             | 0.00           | 0        | 452          |
| 1547        | 2i         | $CH_2^+ + SiH_4 \leftrightharpoons SiH^+ + CH + H_2 + H_2$                                           | 3.49e-09             | 0.00           | 0        | 447          |
| 1548        | 2i         | $CH_2^{+} + SiH_4 = SiH_2^{+} + CH + H_2 + H$                                                        | 3.49e-09             | 0.00           | 0        | 447          |
| 1549        | 2i         | $CH_2^{\overline{1}} + SiH_4 = SiH_3^{\overline{1}} + CH + H_2$                                      | 3.49e-09             | 0.00           | 0        | 447          |
| 1550        | 2i         | $CH_2^+ + SiH_4 \leftrightharpoons SiCH_2^+ + H_2 + H_2$                                             | 3.49e-09             | 0.00           | 0        | 447          |
| 1551        | 2i<br>2i   | $CH_2^+ + SiH_4 \leftrightharpoons SiCH_3^+ + H_2 + H$<br>$CH_2^+ + N \leftrightharpoons CN^+ + H_2$ | 3.49e-09<br>2.20e-10 | 0.00           | 0        | 447 $453$    |
| 1552 $1553$ | 21<br>2i   | $CH_2 + N = CN^+ + H_2$<br>$CH_2^+ + N = CHN^+ + H$                                                  | 2.20e-10<br>2.20e-10 | $0.00 \\ 0.00$ |          | 453 $453$    |
|             |            | $CH_2 + N = CHN^+ + H$<br>$CH_2^+ + NO = NO^+ + CH_2$                                                |                      |                | 0        |              |
| 1554 $1555$ | 2i<br>2i   | $CH_2^+ + NO = NO^+ + CH_2$<br>$CH_2^+ + O_2 = CHO^+ + HO$                                           | 4.20e-10<br>9.10e-10 | $0.00 \\ 0.00$ | 0        | $453 \\ 450$ |
| 1556        | 21<br>2i   | $CH_2^+ + O_2 = CHO^+ + HO$<br>$CH_2^+ + O_2 = CH_2O^+ + O$                                          | 9.10e-10<br>9.10e-10 | 0.00           | 0        | $450 \\ 450$ |
| 1550 $1557$ | 2i         | $CH_2 + O_2 = CH_2O^+ + O$<br>$CH_2N^+ + CH_2O = CH_3O^+ + HCN$                                      | 9.10e-10<br>2.10e-09 | 0.00           | 0        | 475          |
| 1557 $1558$ | 2i         | $CH_2N^+ + CH_2O \Rightarrow CH_3O^+ + HCN$<br>$CH_2N^+ + CH_3NO_2 \Rightarrow CH_4NO_2^+ + HCN$     | 3.75e-09             | 0.00           |          | 462          |
| 1999        | $\angle 1$ | $O_{112}$ IN + $O_{113}$ IN $O_2 \Rightarrow O_{14}$ IN $O_2 + IIO$ IN                               | 5.75e-09             | 0.00           | 0        | 402          |

Table 6—Continued

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            |      |      | Table 6—Continued                                        |          |      |          |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|----------------------------------------------------------|----------|------|----------|-----|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | #    | Type | Reaction                                                 | α        | β    | $\gamma$ | Ref |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1559 | 2i   | $CH_2N^+ + CH_5N \leftrightharpoons CH_6N^+ + HNC$       | 5.00e-10 | 0.00 | 0        | 455 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1560 | 2i   | $CH_2N^+ + H_3N \leftrightharpoons H_4N^+ + HCN$         | 2.40e-09 | 0.00 | 0        | 457 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1561 | 2i   | $CH_2O^+ + CH_2O \leftrightharpoons CH_3O^+ + CHO$       | 1.65e-09 | 0.00 | 0        | 460 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1562 | 2i   | $CH_2O^+ + CH_2O \leftrightharpoons CH_4O^+ + CO$        | 1.24e-10 | 0.00 | 0        | 460 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1563 | 2i   |                                                          | 9.35e-11 | 0.00 | 0        | 463 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1564 | 2i   | $CH_2O^+ + CH_4 \leftrightharpoons C_2H_5O^+ + H$        | 1.65e-11 | 0.00 | 0        | 463 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1565 | 2i   |                                                          | 2.16e-09 | 0.00 | 0        | 463 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1566 |      |                                                          |          |      | 0        |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1567 |      |                                                          | 2.60e-09 |      | 0        |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1568 |      |                                                          | 1.28e-09 |      | 0        |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1569 |      |                                                          |          |      | 0        |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1570 |      |                                                          |          |      | 0        |     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1571 |      |                                                          | 3.30e-11 | 0.00 | 0        | 463 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1572 |      |                                                          | 1.60e-09 | 0.00 | 0        | 449 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1573 | 2i   |                                                          | 1.50e-09 | 0.00 | 0        | 476 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1574 | 2i   |                                                          | 1.00e-09 | 0.00 | 0        | 476 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1575 | 2i   | $CH_3^+ + CH_3OH \leftrightharpoons CH_3O^+ + CH_4$      | 2.30e-09 | 0.00 | 0        | 449 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1576 | 2i   | $CH_3^+ + CH_5N \leftrightharpoons CH_5N^+ + CH_3$       | 1.21e-09 | 0.00 | 0        | 477 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1577 | 2i   | $CH_3^+ + CH_5N \leftrightharpoons CH_4N^+ + CH_4$       | 9.90e-10 | 0.00 | 0        | 477 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1578 | 2i   | $CH_3^+ + C_2H_2 \leftrightharpoons C_3H_3^+ + H_2$      | 1.20e-09 | 0.00 | 0        | 477 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1579 | 2i   | $CH_3^+ + C_2H_4O \leftrightharpoons C_2H_3O^+ + CH_4$   | 2.10e-10 | 0.00 | 0        | 478 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1580 | 2i   | $CH_3^+ + C_2H_4O \leftrightharpoons CH_3O^+ + C_2H_4$   | 5.61e-10 | 0.00 | 0        | 478 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1581 | 2i   | $CH_3^+ + C_2H_4O \leftrightharpoons C_2H_3^+ + CH_3OH$  | 3.08e-10 | 0.00 | 0        | 478 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1582 | 2i   | $CH_3^+ + C_2H_4O \leftrightharpoons C_2H_4^+ + CH_3O$   | 1.98e-10 | 0.00 | 0        | 478 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1583 | 2i   | $CH_3^+ + C_2H_4O \leftrightharpoons C_3H_5O^+ + H_2$    | 3.30e-11 | 0.00 | 0        | 478 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1584 | 2i   | $CH_3^+ + C_2H_4O \leftrightharpoons C_3H_5O^+ + H_2$    | 3.30e-11 | 0.00 | 0        | 478 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1585 | 2i   | $CH_3^+ + C_2H_4O \leftrightharpoons C_3H_6O^+ + H$      | 1.68e-11 | 0.00 | 0        | 478 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1586 | 2i   | $CH_3^+ + (CH_3)_2O \leftrightharpoons C_2H_5O^+ + CH_4$ | 1.98e-09 | 0.00 | 0        | Est |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1587 | 2i   | $CH_3^+ + HC_3N \leftrightharpoons C_3H_3^+ + HCN$       | 2.52e-09 | 0.00 | 0        | 479 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1588 | 2i   | $CH_3^+ + H_2 \leftrightharpoons CH_4^+ + H$             | 5.00e-13 | 0.00 | 0        | 480 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1589 | 2i   | $CH_3^+ + H_2O \leftrightharpoons CH_2OH^+ + H_2$        | 9.99e-12 | 0.00 | 0        | 481 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1590 | 2i   | $CH_3^+ + H_3N \leftrightharpoons CH_4N^+ + H_2$         | 2.00e-09 | 0.00 | 0        | 482 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1591 | 2i   | $CH_3^+ + H_3N \leftrightharpoons H_4N^+ + CH_2$         | 1.66e-10 | 0.00 | 0        | 482 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1592 | 2i   | $CH_3^+ + SiH_4 \leftrightharpoons SiH_3^+ + CH_4$       | 2.39e-09 | 0.00 | 0        | 447 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1593 | 2i   |                                                          | 2.39e-09 | 0.00 | 0        | 447 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                            | 1594 |      |                                                          |          |      | 0        |     |
| 1596       2i $CH_3^+ + NO \leftrightharpoons NO^+ + CH_3$ 1.00e-09       0.00       0       453         1597       2i $CH_3^+ + O \leftrightharpoons CHO^+ + H_2$ 3.08e-10       0.00       0       483         1598       2i $CH_3^+ + O \leftrightharpoons H_3^+ + CO$ 8.80e-11       0.00       0       483 | 1595 |      |                                                          |          |      |          |     |
| 1597 2i $CH_3^+ + O = CHO^+ + H_2$ 3.08e-10 0.00 0 483<br>1598 2i $CH_3^+ + O = H_3^+ + CO$ 8.80e-11 0.00 0 483                                                                                                                                                                                                 | 1596 |      |                                                          |          |      |          |     |
| 1598 2i $CH_3^+ + O = H_3^+ + CO$ 8.80e-11 0.00 0 483                                                                                                                                                                                                                                                           | 1597 |      |                                                          |          |      |          |     |
|                                                                                                                                                                                                                                                                                                                 | 1598 |      |                                                          |          |      |          |     |
|                                                                                                                                                                                                                                                                                                                 | 1599 | 2i   | $CH_3^+ + O \leftrightharpoons CH_2O^+ + H$              | 4.40e-11 | 0.00 | 0        | 483 |

Table 6—Continued

| #    | Type | Reaction                                                                 | α         | β    | $\gamma$ | Ref |
|------|------|--------------------------------------------------------------------------|-----------|------|----------|-----|
| 1600 | 2i   | $CH_3O^+ + HCN \leftrightharpoons CH_2N^+ + CH_2O$                       | 1.30e-09  | 0.00 | 0        | 475 |
| 1601 | 2i   | $CH_3O^+ + CH_2O \leftrightharpoons C_2H_2O^+ + H_2O + H$                | 1.81e-12  | 0.00 | 0        | 460 |
| 1602 | 2i   | $CH_3O^+ + CH_2O \leftrightharpoons C_2H_3O^+ + H_2O$                    | 1.81e-12  | 0.00 | 0        | 460 |
| 1603 | 2i   | $CH_3O^+ + CH_2O \leftrightharpoons C_2H_5O^+ + O$                       | 1.81e-12  | 0.00 | 0        | 460 |
| 1604 | 2i   | $CH_3O^+ + CH_2O \leftrightharpoons CH_5O^+ + CO$                        | 1.21e-12  | 0.00 | 0        | 460 |
| 1605 | 2i   | $CH_3O^+ + H_2O \leftrightharpoons H_3O^+ + CH_2O$                       | 3.00e-11  | 0.00 | 0        | 463 |
| 1606 | 2i   | $CH_3O^+ + H_3N \leftrightharpoons H_4N^+ + CH_2O$                       | 8.57e-10  | 0.00 | 0        | 470 |
| 1607 | 2i   | $CH_4^+ + HCN \leftrightharpoons CH_2N^+ + CH_3$                         | 3.23e-09  | 0.00 | 0        | 473 |
| 1608 | 2i   | $CH_4^+ + HCN \leftrightharpoons C_2H_4N^+ + H$                          | 6.60e-11  | 0.00 | 0        | 473 |
| 1609 | 2i   | $CH_4^+ + CH_2O \leftrightharpoons CH_3O^+ + CH_3$                       | 1.98e-09  | 0.00 | 0        | 449 |
| 1610 | 2i   | $CH_4^+ + CH_2O \leftrightharpoons CH_2O^+ + CH_4$                       | 1.62e-09  | 0.00 | 0        | 449 |
| 1611 | 2i   | $CH_4^+ + CH_4 \leftrightharpoons CH_5^+ + CH_3$                         | 1.20e-09  | 0.00 | 0        | 484 |
| 1612 | 2i   | $CH_4^+ + CH_3OH \leftrightharpoons CH_4O^+ + CH_4$                      | 1.80e-09  | 0.00 | 0        | 449 |
| 1613 | 2i   | $CH_4^+ + CH_3OH \leftrightharpoons CH_5O^+ + CH_3$                      | 1.20e-09  | 0.00 | 0        | 449 |
| 1614 | 2i   | $CH_4^+ + CH_5N \leftrightharpoons CH_5N^+ + CH_4$                       | 1.32e-09  | 0.00 | 0        | 449 |
| 1615 | 2i   | $CH_4^+ + CH_5N \leftrightharpoons CH_4N^+ + CH_4 + H$                   | 8.80e-10  | 0.00 | 0        | 449 |
| 1616 | 2i   | $CH_4^+ + CO \leftrightharpoons CHO^+ + CH_3$                            | 1.40e-09  | 0.00 | 0        | 485 |
| 1617 | 2i   | $CH_4^+ + CO \leftrightharpoons C_2H_3O^+ + H$                           | 6.08e-10  | 0.00 | 0        | 485 |
| 1618 | 2i   | $CH_4^+ + CO_2 \leftrightharpoons CHO_2^+ + CH_3$                        | 1.20e-09  | 0.00 | 0        | 485 |
| 1619 | 2i   | $CH_4^+ + CO_2 \leftrightharpoons C_2H_3O^+ + HO$                        | 9.60e-12  | 0.00 | 0        | 485 |
| 1620 | 2i   | $CH_4^+ + C_2H_2 \leftrightharpoons C_2H_3^+ + CH_3$                     | 1.25 e-09 | 0.00 | 0        | 473 |
| 1621 | 2i   | $CH_4^+ + C_2H_2 \leftrightharpoons C_2H_2^+ + CH_4$                     | 1.13e-09  | 0.00 | 0        | 473 |
| 1622 | 2i   | $CH_4^{+} + C_2H_2 \leftrightharpoons C_3H_3^{+} + H_2 + H$              | 1.25e-10  | 0.00 | 0        | 473 |
| 1623 | 2i   | $CH_4^+ + C_2H_4 \leftrightharpoons C_2H_5^+ + CH_3$                     | 2.90e-09  | 0.00 | 0        | 486 |
| 1624 | 2i   | $CH_4^+ + C_2H_4 \leftrightharpoons C_2H_4^+ + CH_4$                     | 2.90e-09  | 0.00 | 0        | 486 |
| 1625 | 2i   | $CH_4^+ + C_2H_4 \leftrightharpoons C_3H_6^+ + H_2$                      | 2.90e-09  | 0.00 | 0        | 486 |
| 1626 | 2i   | $CH_4^+ + C_2H_4 \leftrightharpoons C_3H_7^+ + H$                        | 2.90e-09  | 0.00 | 0        | 486 |
| 1627 | 2i   | $CH_4^+ + H_2 \leftrightharpoons CH_5^+ + H$                             | 3.30e-11  | 0.00 | 0        | 450 |
| 1628 | 2i   | $CH_4^+ + H_2O \leftrightharpoons H_3O^+ + CH_3$                         | 3.33e-09  | 0.00 | 0        | 427 |
| 1629 | 2i   | $CH_4^+ + H_2O \leftrightharpoons CH_5O^+ + H$                           | 1.75e-10  | 0.00 | 0        | 427 |
| 1630 | 2i   | $CH_4^+ + H_3N \leftrightharpoons H_3N^+ + CH_4$                         | 1.65e-09  | 0.00 | 0        | 485 |
| 1631 | 2i   | $CH_4^+ + H_3N \leftrightharpoons H_4N^+ + CH_3$                         | 1.15e-09  | 0.00 | 0        | 485 |
| 1632 | 2i   | $CH_4^+ + H_3N \leftrightharpoons CH_5^+ + H_2N$                         | 6.32e-11  | 0.00 | 0        | 485 |
| 1633 | 2i   | $CH_4^+ + SiH_4 \leftrightharpoons SiH_2^+ + CH_4 + H_2$                 | 2.04e-09  | 0.00 | 0        | 447 |
| 1634 | 2i   | $CH_4^{\uparrow} + SiH_4 \leftrightharpoons SiH_3^{\uparrow} + CH_4 + H$ | 2.04e-09  | 0.00 | 0        | 447 |
| 1635 | 2i   | $CH_4^+ + SiH_4 \leftrightharpoons SiCH_4^+ + H_2 + H_2$                 | 2.04e-09  | 0.00 | 0        | 447 |
| 1636 | 2i   | $CH_4^+ + SiH_4 \leftrightharpoons SiCH_5^+ + H_2 + H$                   | 2.04e-09  | 0.00 | 0        | 447 |
| 1637 | 2i   | $CH_4^+ + NO = NO^+ + CH_4$                                              | 2.80e-10  | 0.00 | 0        | 487 |
| 1638 | 2i   | $CH_4^+ + N_2O \leftrightharpoons HN_2O^+ + CH_3$                        | 1.01e-09  | 0.00 | 0        | 488 |
| 1639 | 2i   | $CH_4^+ + N_2O \leftrightharpoons HNO^+ + CH_3N$                         | 3.12e-11  | 0.00 | 0        | 488 |
| 1640 | 2i   | $CH_4^+ + O_2 \leftrightharpoons O_2^+ + CH_4$                           | 4.40e-10  | 0.00 | 0        | 450 |

Table 6—Continued

|      |      | TABLE 0—Continued                                            |          |      |          |     |
|------|------|--------------------------------------------------------------|----------|------|----------|-----|
| #    | Type | Reaction                                                     | α        | β    | $\gamma$ | Ref |
| 1641 | 2i   | $CH_4N^+ + CH_5N \leftrightharpoons CH_6N^+ + CH_3N$         | 4.00e-10 | 0.00 | 0        | 455 |
| 1642 | 2i   | $CH_4N^+ + CH_5N \leftrightharpoons CH_6N^+ + CH_3N$         | 4.00e-10 | 0.00 | 0        | 455 |
| 1643 | 2i   | $CH_4NO_2^+ + HC_3N \leftrightharpoons C_3H_2N^+ + CH_3NO_2$ | 9.00e-10 | 0.00 | 0        | 469 |
| 1644 | 2i   | $CH_4O^+ + CH_3OH \leftrightharpoons CH_5O^+ + CH_3O$        | 2.50e-09 | 0.00 | 0        | 489 |
| 1645 | 2i   | $CH_4O^+ + H_3N \leftrightharpoons H_4N^+ + CH_3O$           | 3.40e-09 | 0.00 | 0        | 470 |
| 1646 | 2i   | $CH_5^+ + CH_2O \leftrightharpoons CH_3O^+ + CH_4$           | 4.50e-09 | 0.00 | 0        | 490 |
| 1647 | 2i   | $CH_5^+ + HCOOH \leftrightharpoons CH_3O_2^+ + CH_4$         | 2.90e-09 | 0.00 | 0        | 491 |
| 1648 | 2i   | $CH_5^+ + CH_3NO_2 \leftrightharpoons CH_4NO_2^+ + CH_4$     | 4.13e-09 | 0.00 | 0        | 462 |
| 1649 | 2i   | $CH_5^+ + CH_3NO_2 \leftrightharpoons NO^+ + CH_3OH + CH_4$  | 2.89e-12 | 0.00 | 0        | 462 |
| 1650 | 2i   | $CH_5^+ + CO \leftrightharpoons CHO^+ + CH_4$                | 9.90e-10 | 0.00 | 0        | 492 |
| 1651 | 2i   | $CH_5^+ + CO_2 \leftrightharpoons CHO_2^+ + CH_4$            | 3.30e-11 | 0.00 | 0        | 493 |
| 1652 | 2i   | $CH_5^+ + C_2H_2 \leftrightharpoons C_2H_3^+ + CH_4$         | 1.56e-09 | 0.00 | 0        | 464 |
| 1653 | 2i   | $CH_5^+ + C_2H_4 \leftrightharpoons C_2H_5^+ + CH_4$         | 1.00e-09 | 0.00 | 0        | 494 |
| 1654 | 2i   | $CH_5^+ + CH_3OCHO = C_2H_5O_2^+ + CH_4$                     | 4.10e-09 | 0.00 | 0        | 495 |
| 1655 | 2i   | $CH_5^+ + C_2H_6 \leftrightharpoons C_2H_7^+ + CH_4^-$       | 1.28e-09 | 0.00 | 0        | 467 |
| 1656 | 2i   | $CH_5^+ + C_2H_6 \leftrightharpoons C_2H_5^+ + CH_4 + H_2$   | 2.25e-10 | 0.00 | 0        | 467 |
| 1657 | 2i   | $CH_5^+ + H_2O \leftrightharpoons H_3O^+ + CH_4$             | 3.70e-09 | 0.00 | 0        | 472 |
| 1658 | 2i   | $CH_5^+ + H_3N \leftrightharpoons H_4N^+ + CH_4$             | 2.30e-09 | 0.00 | 0        | 496 |
| 1659 | 2i   | $CH_5^+ + SiH_4 \leftrightharpoons SiH_3^+ + CH_4 + H_2$     | 1.99e-09 | 0.00 | 0        | 447 |
| 1660 | 2i   | $CH_5^+ + NO = HNO^+ + CH_4$                                 | 9.99e-12 | 0.00 | 0        | 433 |
| 1661 | 2i   | $CH_5^+ + N_2O \rightleftharpoons HN_2O^+ + CH_4$            | 9.50e-10 | 0.00 | 0        | 497 |
| 1662 | 2i   | $CH_5^+ + O \rightleftharpoons H_3O^+ + CH_2$                | 2.16e-10 | 0.00 | 0        | 453 |
| 1663 | 2i   | $CH_5^+ + O = CH_3O^+ + H_2$                                 | 4.40e-12 | 0.00 | 0        | 453 |
| 1664 | 2i   | $CH_5O^+ + HCN = C_2H_4N^+ + H_2O$                           | 2.30e-11 | 0.00 | 0        | 498 |
| 1665 | 2i   | $CH_5O^+ + CH_2O \leftrightharpoons C_2H_5O^+ + H_2O$        | 2.10e-11 | 0.00 | 0        | 499 |
| 1666 | 2i   | $CH_5O^+ + CH_3NO_2 \leftrightharpoons CH_4NO_2^+ + CH_3OH$  | 1.32e-09 | 0.00 | 0        | 462 |
| 1667 | 2i   | $CH_5O^+ + CH_3OH = C_2H_7O^+ + H_2O$                        | 1.08e-10 | 0.00 | 0        | 499 |
| 1668 | 2i   | $CN^+ + HCN = CHN^+ + CN$                                    | 1.79e-09 | 0.00 | 0        | 500 |
| 1669 | 2i   | $CN^+ + HCN \leftrightharpoons C_2N_2^+ + H$                 | 3.15e-10 | 0.00 | 0        | 500 |
| 1670 | 2i   | $CN^+ + HCOOH = \tilde{C}HO^+ + HCNO$                        | 5.30e-09 | 0.00 | 0        | 443 |
| 1671 | 2i   | $CN^+ + CH_4 \leftrightharpoons CH_3^+ + HCN$                | 4.50e-10 | 0.00 | 0        | 500 |
| 1672 | 2i   | $CN^+ + CH_4 = CH_4^+ + CN$                                  | 1.35e-10 | 0.00 | 0        | 500 |
| 1673 | 2i   | $CN^+ + CH_4 \leftrightharpoons CHN^+ + CH_3$                | 1.35e-10 | 0.00 | 0        | 500 |
| 1674 | 2i   | $CN^+ + CH_4 \leftrightharpoons CH_2N^+ + CH_2$              | 9.00e-11 | 0.00 | 0        | 500 |
| 1675 | 2i   | $CN^+ + CH_4 \leftrightharpoons C_2H_2N^+ + H_2$             | 9.00e-11 | 0.00 | 0        | 500 |
| 1676 | 2i   | $CN^+ + CH_3OH = CH_3O^+ + HCN$                              | 1.56e-09 | 0.00 | 0        | 500 |
| 1677 | 2i   | $CN^+ + CH_3OH = CH_4O^+ + CN$                               | 7.80e-10 | 0.00 | 0        | 500 |
| 1678 | 2i   | $CN^+ + CH_3OH = CH_2N^+ + CH_2O$                            | 2.60e-10 | 0.00 | 0        | 500 |
| 1679 | 2i   | $CN^+ + CO = CO^+ + CN$                                      | 6.30e-10 | 0.00 | 0        | 501 |
| 1680 | 2i   | $CN^+ + CO_2 = CO_2^+ + CN$                                  | 3.00e-10 | 0.00 | 0        | 500 |
| 1000 | 21   | $Civ + CO_2 \rightarrow CO_3 + Civ$                          | 0.000 10 |      |          | 000 |

Table 6—Continued

| #    | Type | Reaction                                                | α         | β    | $\gamma$ | Ref |
|------|------|---------------------------------------------------------|-----------|------|----------|-----|
| 1682 | 2i   | $CN^+ + CO_2 \leftrightharpoons C_2O^+ + NO$            | 2.25e-10  | 0.00 | 0        | 500 |
| 1683 | 2i   | $CN^+ + C_2H_4 = C_2H_4^+ + CN$                         | 8.80e-10  | 0.00 | 0        | 501 |
| 1684 | 2i   | $CN^+ + C_2H_4 \leftrightharpoons CHN^+ + C_2H_3$       | 4.00e-10  | 0.00 | 0        | 501 |
| 1685 | 2i   | $CN^+ + C_2H_4 \leftrightharpoons C_2H_3^+ + HCN$       | 1.60e-10  | 0.00 | 0        | 501 |
| 1686 | 2i   | $CN^+ + C_2H_4 \leftrightharpoons CH_2N^+ + C_2H_2$     | 1.60e-10  | 0.00 | 0        | 501 |
| 1687 | 2i   | $CN^+ + C_2H_6 \leftrightharpoons C_2H_4^+ + HCN + H$   | 1.24e-09  | 0.00 | 0        | 501 |
| 1688 | 2i   | $CN^+ + C_2H_6 \leftrightharpoons C_2H_5^+ + HCN$       | 3.80e-10  | 0.00 | 0        | 501 |
| 1689 | 2i   | $CN^+ + C_2H_6 \leftrightharpoons C_2H_3^+ + HCN + H_2$ | 2.85e-10  | 0.00 | 0        | 501 |
| 1690 | 2i   | $CN^+ + NCCN \leftrightharpoons C_2N_2^+ + CN$          | 1.19e-09  | 0.00 | 0        | 500 |
| 1691 | 2i   | $CN^+ + NCCN \leftrightharpoons C_3N^+ + N_2$           | 1.40e-10  | 0.00 | 0        | 500 |
| 1692 | 2i   | $CN^+ + NCCN \leftrightharpoons C_2N^+ + CN_2$          | 7.00e-11  | 0.00 | 0        | 500 |
| 1693 | 2i   | $CN^+ + HC_3N \leftrightharpoons C_3HN^+ + CN$          | 3.12e-09  | 0.00 | 0        | 479 |
| 1694 | 2i   | $CN^+ + HC_3N \leftrightharpoons C_3N^+ + HCN$          | 7.80e-10  | 0.00 | 0        | 479 |
| 1695 | 2i   | $CN^+ + H_2 \leftrightharpoons CHN^+ + H$               | 1.00e-09  | 0.00 | 0        | 500 |
| 1696 | 2i   | $CN^+ + H_2O \leftrightharpoons CHN^+ + HO$             | 1.60e-09  | 0.00 | 0        | 501 |
| 1697 | 2i   | $CN^+ + H_2O \leftrightharpoons CHNO^+ + H$             | 6.40 e-10 | 0.00 | 0        | 501 |
| 1698 | 2i   | $CN^+ + H_2O \leftrightharpoons CH_2N^+ + O$            | 4.80e-10  | 0.00 | 0        | 501 |
| 1699 | 2i   | $CN^+ + H_2O \rightleftharpoons H_2O^+ + CN$            | 3.20e-10  | 0.00 | 0        | 501 |
| 1700 | 2i   | $CN^+ + H_2O \rightleftharpoons CHO^+ + HN$             | 1.60e-10  | 0.00 | 0        | 501 |
| 1701 | 2i   | $CN^+ + H_3N \leftrightharpoons H_3N^+ + CN$            | 1.20e-09  | 0.00 | 0        | 501 |
| 1702 | 2i   | $CN^+ + H_3N \leftrightharpoons CHN^+ + H_2N$           | 4.00e-10  | 0.00 | 0        | 501 |
| 1703 | 2i   | $CN^+ + H_3N \leftrightharpoons CH_2N^+ + HN$           | 3.00e-10  | 0.00 | 0        | 501 |
| 1704 | 2i   | $CN^+ + H_3N \leftrightharpoons H_2N^+ + HCN$           | 1.00e-10  | 0.00 | 0        | 501 |
| 1705 | 2i   | $CN^+ + NO \rightleftharpoons NO^+ + CN$                | 5.70e-10  | 0.00 | 0        | 500 |
| 1706 | 2i   | $CN^+ + NO \leftrightharpoons CNO^+ + N$                | 1.90e-10  | 0.00 | 0        | 500 |
| 1707 | 2i   | $CN^+ + N_2O \rightleftharpoons N_2O^+ + CN$            | 4.56e-10  | 0.00 | 0        | 500 |
| 1708 | 2i   | $CN^+ + N_2O \leftrightharpoons CNO^+ + N_2$            | 1.52e-10  | 0.00 | 0        | 500 |
| 1709 | 2i   | $CN^+ + N_2O \rightleftharpoons NO^+ + CN_2$            | 1.52e-10  | 0.00 | 0        | 500 |
| 1710 | 2i   | $CN^+ + O_2 \leftrightharpoons O_2^+ + CN$              | 2.58e-10  | 0.00 | 0        | 500 |
| 1711 | 2i   | $CN^+ + O_2 \leftrightharpoons CNO^+ + O$               | 8.60e-11  | 0.00 | 0        | 500 |
| 1712 | 2i   | $CN^+ + O_2 \leftrightharpoons NO^+ + CO$               | 8.60e-11  | 0.00 | 0        | 500 |
| 1713 | 2i   | $CNO^+ + HCNO \leftrightharpoons CHNO^+ + NCO$          | 1.06e-09  | 0.00 | 0        | 458 |
| 1714 | 2i   | $CO^+ + HCN \leftrightharpoons CHN^+ + CO$              | 3.06e-09  | 0.00 | 0        | 456 |
| 1715 | 2i   | $CO^+ + HCN \leftrightharpoons CHO^+ + CN$              | 3.40e-10  | 0.00 | 0        | 456 |
| 1716 | 2i   | $CO^+ + HNCO \leftrightharpoons CHO^+ + NCO$            | 2.16e-09  | 0.00 | 0        | 458 |
| 1717 | 2i   | $CO^+ + CH_2O \rightleftharpoons CHO^+ + CHO$           | 1.65e-09  | 0.00 | 0        | 463 |
| 1718 | 2i   | $CO^+ + CH_2O \rightleftharpoons CH_2O^+ + CO$          | 1.35e-09  | 0.00 | 0        | 463 |
| 1719 | 2i   | $CO^+ + HCOOH = CHO^+ + CH + O_2$                       | 4.10e-09  | 0.00 | 0        | 443 |
| 1720 | 2i   | $CO^+ + CH_4 = CH_4^+ + CO$                             | 7.93e-10  | 0.00 | 0        | 443 |
| 1721 | 2i   | $CO^+ + CH_4 \Rightarrow CHO^+ + CH_3$                  | 4.55e-10  | 0.00 | 0        | 443 |
| 1722 | 2i   | $CO^+ + CH_4 \leftrightharpoons C_2H_3O^+ + H$          | 5.20e-11  | 0.00 | 0        | 443 |

Table 6—Continued

| #    | Type | Reaction                                                   | α         | β     | $\gamma$ | Ref |
|------|------|------------------------------------------------------------|-----------|-------|----------|-----|
| 1723 | 2i   | $CO^+ + CO_2 \leftrightharpoons CO_2^+ + CO$               | 3.70e-09  | 0.00  | 0        | 502 |
| 1724 | 2i   | $CO^+ + C_2H_2O \leftrightharpoons C_2H_2O^+ + CO$         | 3.20e-11  | 0.00  | 0        | 474 |
| 1725 | 2i   | $CO^+ + HC_3N \leftrightharpoons C_3HN^+ + CO$             | 3.10e-09  | 0.00  | 0        | 479 |
| 1726 | 2i   | $CO^+ + H_2 \leftrightharpoons CHO^+ + H$                  | 1.80e-09  | 0.00  | 0        | 463 |
| 1727 | 2i   | $CO^+ + H_2O \leftrightharpoons H_2O^+ + CO$               | 1.72e-09  | 0.00  | 0        | 427 |
| 1728 | 2i   | $CO^+ + H_2O \leftrightharpoons CHO^+ + HO$                | 8.84e-10  | 0.00  | 0        | 427 |
| 1729 | 2i   | $CO^+ + H_3N \leftrightharpoons H_3N^+ + CO$               | 1.20e-09  | 0.00  | 0        | 428 |
| 1730 | 2i   | $CO^+ + H_3N \leftrightharpoons CHO^+ + H_2N$              | 3.00e-10  | 0.00  | 0        | 428 |
| 1731 | 2i   | $CO^+ + H_3N \leftrightharpoons CHO^+ + H_2N$              | 3.00e-10  | 0.00  | 0        | 485 |
| 1732 | 2i   | $CO^+ + N \leftrightharpoons NO^+ + C$                     | 1.99e-11  | 0.00  | 0        | 503 |
| 1733 | 2i   | $CO^+ + NO \leftrightharpoons NO^+ + CO$                   | 3.30e-10  | 0.00  | 0        | 503 |
| 1734 | 2i   | $CO^+ + O \leftrightharpoons O^+ + CO$                     | 1.40e-10  | 0.00  | 0        | 503 |
| 1735 | 2i   | $CO^+ + O_2 \leftrightharpoons O_2^+ + CO$                 | 1.20e-10  | 0.00  | 0        | 463 |
| 1736 | 2i   | $CO_2^+ + HCN \leftrightharpoons CHN^+ + CO_2$             | 8.10e-10  | 0.00  | 0        | 456 |
| 1737 | 2i   | $CO_2^+ + HCN \leftrightharpoons CHO_2^+ + CN$             | 9.00e-11  | 0.00  | 0        | 456 |
| 1738 | 2i   | $CO_2^+ + CH_4 \leftrightharpoons CH_4^+ + CO_2$           | 5.50 e-10 | 0.00  | 0        | 471 |
| 1739 | 2i   | $CO_2^+ + CH_4 \leftrightharpoons CHO_2^+ + CH_3$          | 5.50 e-10 | 0.00  | 0        | 471 |
| 1740 | 2i   | $CO_2^+ + C_2H_2 \leftrightharpoons C_2H_2^+ + CO_2$       | 7.30e-11  | 0.00  | 0        | 504 |
| 1741 | 2i   | $CO_2^+ + C_2H_4 \leftrightharpoons C_2H_2^+ + CO_2 + H_2$ | 5.04e-10  | 0.00  | 0        | 505 |
| 1742 | 2i   | $CO_2^+ + C_2H_4 \leftrightharpoons C_2H_3^+ + CO_2 + H$   | 2.43e-10  | 0.00  | 0        | 505 |
| 1743 | 2i   | $CO_2^+ + C_2H_4 \leftrightharpoons C_2H_4^+ + CO_2$       | 1.53e-10  | 0.00  | 0        | 505 |
| 1744 | 2i   | $CO_2^+ + H \leftrightharpoons CHO^+ + O$                  | 2.41e-10  | 0.00  | 0        | 506 |
| 1745 | 2i   | $CO_2^+ + H \leftrightharpoons H^+ + CO_2$                 | 4.93e-11  | 0.00  | 0        | 506 |
| 1746 | 2i   | $CO_2^+ + H_2 \leftrightharpoons CHO_2^+ + H$              | 1.40e-09  | 0.00  | 0        | 110 |
| 1747 | 2i   | $CO_2^+ + H_2O \leftrightharpoons H_2O^+ + CO_2$           | 2.04e-09  | 0.00  | 0        | 427 |
| 1748 | 2i   | $CO_2^+ + H_2O \leftrightharpoons CHO_2^+ + HO$            | 7.56e-10  | 0.00  | 0        | 427 |
| 1749 | 2i   | $CO_2^+ + H_3N \leftrightharpoons H_3N^+ + CO_2$           | 1.86e-09  | 0.00  | 0        | 428 |
| 1750 | 2i   | $CO_2^+ + NO \leftrightharpoons NO^+ + CO_2$               | 1.20e-10  | 0.00  | 0        | 507 |
| 1751 | 2i   | $CO_2^+ + NO_2 \leftrightharpoons NO_2^+ + CO_2$           | 7.80e-10  | 0.00  | 0        | 508 |
| 1752 | 2i   | $CO_2^+ + O \leftrightharpoons O_2^+ + CO$                 | 1.64e-10  | 0.00  | 0        | 507 |
| 1753 | 2i   | $CO_2^{+} + O = O^{+} + CO_2$                              | 9.62e-11  | 0.00  | 0        | 507 |
| 1754 | 2i   | $CO_2^+ + O_2 \leftrightharpoons O_2^+ + CO_2$             | 6.30e-11  | -1.06 | 0        | 509 |
| 1755 | 2i   | $C_2^+ + HCN = C_3N^+ + H$                                 | 1.56e-09  | 0.00  | 0        | 473 |
| 1756 | 2i   | $C_2^{+} + HCN = C_3H^{+} + N$                             | 7.80e-10  | 0.00  | 0        | 473 |
| 1757 | 2i   | $C_2^+ + HCN \leftrightharpoons C_2H^+ + CN$               | 2.60e-10  |       | 0        | 473 |
| 1758 | 2i   | $C_2^+ + CH_4 \leftrightharpoons C_3H_2^+ + H_2$           | 5.74e-10  | 0.00  | 0        | 107 |
| 1759 | 2i   | $C_2^+ + CH_4 \leftrightharpoons C_2H^+ + CH_3$            | 2.38e-10  | 0.00  | 0        | 107 |
| 1760 | 2i   | $C_2^+ + CH_4 \leftrightharpoons C_3H_3^+ + H$             | 2.10e-10  | 0.00  | 0        | 107 |
| 1761 | 2i   | $C_2^+ + CH_4 \leftrightharpoons C_3H^+ + H_2 + H$         | 1.96e-10  | 0.00  | 0        | 107 |
| 1762 | 2i   | $C_2^+ + CH_4 \leftrightharpoons C_2H_2^+ + CH_2$          | 1.82e-10  | 0.00  | 0        | 107 |
| 1763 | 2i   | $C_2^+ + C_2H_2 \leftrightharpoons C_4H^+ + H$             | 1.70e-09  | 0.00  | 0        | 473 |

Table 6—Continued

| #    | Type | Reaction                                                | α         | β    | $\gamma$ | Ref |
|------|------|---------------------------------------------------------|-----------|------|----------|-----|
| 1764 | 2i   | $C_2^+ + NCCN \leftrightharpoons C_2N^+ + C_2N$         | 7.50e-10  | 0.00 | 0        | 446 |
| 1765 | 2i   | $C_2^+ + NCCN \leftrightharpoons C_3N^+ + CN$           | 4.50e-10  | 0.00 | 0        | 446 |
| 1766 | 2i   | $C_2^+ + NCCN \leftrightharpoons C_4^+ + N_2$           | 3.00e-10  | 0.00 | 0        | 446 |
| 1767 | 2i   | $C_2^+ + HC_3N \leftrightharpoons C_3N^+ + C_2H$        | 2.40e-09  | 0.00 | 0        | 479 |
| 1768 | 2i   | $C_2^+ + HC_3N \leftrightharpoons C_5N^+ + H$           | 9.60 e-10 | 0.00 | 0        | 479 |
| 1769 | 2i   | $C_2^+ + HC_3N \leftrightharpoons C_3H^+ + C_2N$        | 9.60e-10  | 0.00 | 0        | 479 |
| 1770 | 2i   | $C_2^+ + H_2 \leftrightharpoons C_2 H^+ + H$            | 1.40e-09  | 0.00 | 0        | 107 |
| 1771 | 2i   | $C_2^+ + N \leftrightharpoons C^+ + CN$                 | 3.99e-11  | 0.00 | 0        | 453 |
| 1772 | 2i   | $C_2^+ + NO \leftrightharpoons NO^+ + C_2$              | 3.40e-10  | 0.00 | 0        | 453 |
| 1773 | 2i   | $C_2^+ + O \leftrightharpoons C^+ + CO$                 | 3.10e-10  | 0.00 | 0        | 453 |
| 1774 | 2i   | $C_2^+ + O \leftrightharpoons CO^+ + C$                 | 3.10e-10  | 0.00 | 0        | 453 |
| 1775 | 2i   | $C_2H^+ + HCN \leftrightharpoons C_2H_2^+ + CN$         | 1.40e-09  | 0.00 | 0        | 510 |
| 1776 | 2i   | $C_2H^+ + HCN \leftrightharpoons CH_2N^+ + C_2$         | 1.40e-09  | 0.00 | 0        | 510 |
| 1777 | 2i   | $C_2H^+ + CH_4 \leftrightharpoons C_2H_2^+ + CH_3$      | 3.74e-10  | 0.00 | 0        | 107 |
| 1778 | 2i   | $C_2H^+ + CH_4 \leftrightharpoons C_3H_3^+ + H_2$       | 3.74e-10  | 0.00 | 0        | 107 |
| 1779 | 2i   | $C_2H^+ + CH_4 \leftrightharpoons C_3H_4^+ + H$         | 1.32e-10  | 0.00 | 0        | 107 |
| 1780 | 2i   | $C_2H^+ + C_2H_2 \leftrightharpoons C_2H_3^+ + C_2$     | 2.40e-09  | 0.00 | 0        | 451 |
| 1781 | 2i   | $C_2H^+ + C_2H_2 \leftrightharpoons C_4H_2^+ + H$       | 2.40e-09  | 0.00 | 0        | 451 |
| 1782 | 2i   | $C_2H^+ + C_2H_4 \leftrightharpoons C_4H_3^+ + H_2$     | 5.80e-10  | 0.00 | 0        | 511 |
| 1783 | 2i   | $C_2H^+ + HC_3N \leftrightharpoons C_3H_2N^+ + C_2$     | 1.60e-09  | 0.00 | 0        | 479 |
| 1784 | 2i   | $C_2H^+ + HC_3N \leftrightharpoons C_4H_2^+ + CN$       | 6.40 e-10 | 0.00 | 0        | 479 |
| 1785 | 2i   | $C_2H^+ + HC_3N \leftrightharpoons C_5HN^+ + H$         | 6.40 e-10 | 0.00 | 0        | 479 |
| 1786 | 2i   | $C_2H^+ + HC_3N \leftrightharpoons C_3HN^+ + C_2H$      | 3.20e-10  | 0.00 | 0        | 479 |
| 1787 | 2i   | $C_2H^+ + H_2 \leftrightharpoons C_2H_2^+ + H$          | 1.70e-09  | 0.00 | 0        | 107 |
| 1788 | 2i   | $C_2H^+ + N \leftrightharpoons CH^+ + CN$               | 9.00e-11  | 0.00 | 0        | 453 |
| 1789 | 2i   | $C_2H^+ + NO = NO^+ + C_2H$                             | 1.20e-10  | 0.00 | 0        | 453 |
| 1790 | 2i   | $C_2H^+ + O \leftrightharpoons C^+ + CHO$               | 3.30e-10  | 0.00 | 0        | 453 |
| 1791 | 2i   | $C_2H^+ + O \leftrightharpoons CH^+ + CO$               | 3.30e-10  | 0.00 | 0        | 453 |
| 1792 | 2i   | $C_2H^+ + O \leftrightharpoons CHO^+ + C$               | 3.30e-10  | 0.00 | 0        | 453 |
| 1793 | 2i   | $C_2H^+ + O = CO^+ + CH$                                | 3.30e-10  | 0.00 | 0        | 453 |
| 1794 | 2i   | $C_2HN^+ + HCN \leftrightharpoons C_3HN_2^+ + H$        | 1.40e-11  | 0.00 | 0        | 441 |
| 1795 | 2i   | $C_2HN_2^+ + CH_3OH \Rightarrow CH_5O^+ + NCCN$         | 1.50e-09  | 0.00 | 0        | 469 |
| 1796 | 2i   | $C_2HN_2^+ + C_2H_4 \leftrightharpoons C_2H_5^+ + NCCN$ | 3.92e-10  | 0.00 | 0        | 469 |
| 1797 | 2i   | $C_2HN_2^+ + H_2O \Longrightarrow H_3O^+ + NCCN$        | 5.10e-10  | 0.00 | 0        | 469 |
| 1798 | 2i   | $C_2H_2^+ + HCN \leftrightharpoons CH_2N^+ + C_2H$      | 2.34e-10  | 0.00 | 0        | 510 |
| 1799 | 2i   | $C_2H_2^+ + HCN \leftrightharpoons C_3H_2N^+ + H$       | 1.26e-10  | 0.00 | 0        | 510 |
| 1800 | 2i   | $C_2H_2^+ + CH_4 \leftrightharpoons C_3H_5^+ + H$       | 7.80e-10  | 0.00 | 0        | 107 |
| 1801 | 2i   | $C_2H_2^+ + CH_4 \leftrightharpoons C_3H_4^+ + H_2$     | 2.20e-10  | 0.00 | 0        | 107 |
| 1802 | 2i   | $C_2H_2^+ + C_2H_2 \leftrightharpoons C_4H_3^+ + H$     | 1.25e-09  | 0.00 | 0        | 486 |
| 1803 | 2i   | $C_2H_2^+ + C_2H_2 \leftrightharpoons C_4H_2^+ + H_2$   | 1.25e-09  | 0.00 | 0        | 486 |
| 1804 | 2i   | $C_2H_2^+ + C_2H_2 \leftrightharpoons C_2H_3^+ + C_2H$  | 1.25e-09  | 0.00 | 0        | 486 |

Table 6—Continued

| #    | Type | Reaction                                                       | α         | β    | $\gamma$ | Ref |
|------|------|----------------------------------------------------------------|-----------|------|----------|-----|
| 1805 | 2i   | $C_2H_2^+ + C_2H_4 \leftrightharpoons C_2H_4^+ + C_2H_2$       | 8.96e-10  | 0.00 | 0        | 512 |
| 1806 | 2i   | $C_2H_2^+ + C_2H_4 \leftrightharpoons C_3H_3^+ + CH_3$         | 2.80e-10  | 0.00 | 0        | 512 |
| 1807 | 2i   | $C_2H_2^+ + C_2H_4 \leftrightharpoons C_4H_5^+ + H$            | 2.24e-10  | 0.00 | 0        | 512 |
| 1808 | 2i   | $C_2H_2^+ + HC_3N \leftrightharpoons C_4H_2^+ + HCN$           | 1.60e-09  | 0.00 | 0        | 479 |
| 1809 | 2i   | $C_2H_2^+ + H_2 \leftrightharpoons C_2H_3^+ + H$               | 1.00e-11  | 0.00 | 0        | 107 |
| 1810 | 2i   | $C_2H_2^+ + SiH_4 \leftrightharpoons Si^+ + C_2H_6$            | 1.79e-09  | 0.00 | 0        | 513 |
| 1811 | 2i   | $C_2H_2^+ + SiH_4 \leftrightharpoons SiH^+ + C_2H_5$           | 1.79e-09  | 0.00 | 0        | 513 |
| 1812 | 2i   | $C_2H_2^+ + SiH_4 \leftrightharpoons SiH_2^+ + C_2H_4$         | 1.79e-09  | 0.00 | 0        | 513 |
| 1813 | 2i   | $C_2H_2^+ + SiH_4 \leftrightharpoons SiH_3^+ + C_2H_3$         | 1.79e-09  | 0.00 | 0        | 513 |
| 1814 | 2i   | $C_2H_2^+ + SiH_4 \leftrightharpoons SiCH_3^+ + CH_3$          | 1.79e-09  | 0.00 | 0        | 513 |
| 1815 | 2i   | $C_2H_2^+ + SiH_4 \leftrightharpoons SiC_2H^+ + H_2 + H_2 + H$ | 1.79e-09  | 0.00 | 0        | 513 |
| 1816 | 2i   | $C_2H_2^+ + SiH_4 \leftrightharpoons SiC_2H_3^+ + H_2 + H$     | 1.79e-09  | 0.00 | 0        | 513 |
| 1817 | 2i   | $C_2H_2^+ + SiH_4 \leftrightharpoons SiC_2H_5^+ + H$           | 1.79e-09  | 0.00 | 0        | 513 |
| 1818 | 2i   | $C_2H_2^+ + N \leftrightharpoons C_2HN^+ + H$                  | 1.50e-10  | 0.00 | 0        | 453 |
| 1819 | 2i   | $C_2H_2^+ + N \leftrightharpoons C_2N^+ + H_2$                 | 7.50e-11  | 0.00 | 0        | 453 |
| 1820 | 2i   | $C_2H_2^+ + N \leftrightharpoons CH^+ + HCN$                   | 2.50e-11  | 0.00 | 0        | 453 |
| 1821 | 2i   | $C_2H_2^+ + NO \leftrightharpoons NO^+ + C_2H_2$               | 1.20e-10  | 0.00 | 0        | 453 |
| 1822 | 2i   | $C_2H_2^+ + O \leftrightharpoons CHO^+ + CH$                   | 8.50e-11  | 0.00 | 0        | 453 |
| 1823 | 2i   | $C_2H_2^+ + O \leftrightharpoons C_2HO^+ + H$                  | 8.50e-11  | 0.00 | 0        | 453 |
| 1824 | 2i   | $C_2H_2O^+ + C_2H_2O \leftrightharpoons C_3H_4O^+ + CO$        | 3.84e-10  | 0.00 | 0        | 514 |
| 1825 | 2i   | $C_2H_2O^+ + C_2H_2O \leftrightharpoons C_2H_4^+ + CO + CO$    | 1.42e-10  | 0.00 | 0        | 514 |
| 1826 | 2i   | $C_2H_2O^+ + C_2H_2O \leftrightharpoons C_2H_3O^+ + CHO + C$   | 6.49e-11  | 0.00 | 0        | 514 |
| 1827 | 2i   | $C_2H_3^+ + HCN \leftrightharpoons CH_2N^+ + C_2H_2$           | 2.90e-09  | 0.00 | 0        | 510 |
| 1828 | 2i   | $C_2H_3^+ + CH_4 \leftrightharpoons C_3H_5^+ + H_2$            | 1.70e-10  | 0.00 | 0        | 107 |
| 1829 | 2i   | $C_2H_3^+ + C_2H_2 \leftrightharpoons C_4H_3^+ + H_2$          | 2.16e-10  | 0.00 | 0        | 473 |
| 1830 | 2i   | $C_2H_3^+ + C_2H_4 \leftrightharpoons C_2H_5^+ + C_2H_2$       | 3.80e-10  | 0.00 | 0        | 515 |
| 1831 | 2i   | $C_2H_3^+ + C_2H_6 \leftrightharpoons C_2H_5^+ + C_2H_4$       | 4.80e-10  | 0.00 | 0        | 516 |
| 1832 | 2i   | $C_2H_3^+ + NCCN \leftrightharpoons C_2HN_2^+ + C_2H_2$        | 4.00e-10  | 0.00 | 0        | 469 |
| 1833 | 2i   | $C_2H_3^+ + H_2 \leftrightharpoons C_2H_4^+ + H$               | 9.99e-13  | 0.00 | 0        | 517 |
| 1834 | 2i   | $C_2H_3^+ + SiH_4 \leftrightharpoons SiH_3^+ + C_2H_4$         | 2.49e-10  | 0.00 | 0        | 518 |
| 1835 | 2i   | $C_2H_3^+ + SiH_4 \leftrightharpoons SiH_5^+ + C_2H_2$         | 3.08e-11  | 0.00 | 0        | 518 |
| 1836 | 2i   | $C_2H_3N^+ + CH_3CN \rightleftharpoons C_2H_4N^+ + CH_2CN$     | 1.96e-09  | 0.00 | 0        | 489 |
| 1837 | 2i   | $C_2H_3O^+ + C_2H_4O \leftrightharpoons C_2H_5O^+ + C_2H_2O$   | 7.14e-10  | 0.00 | 0        | 519 |
| 1838 | 2i   | $C_2H_3O^+ + H_3N \leftrightharpoons H_4N^+ + C_2H_2O$         | 4.99e-11  | 0.00 | 0        | 470 |
| 1839 | 2i   | $C_2H_4^+ + C_2H_2 \leftrightharpoons C_3H_3^+ + CH_3$         | 6.73 e-10 | 0.00 | 0        | 512 |
| 1840 | 2i   | $C_2H_4^+ + C_2H_2 \leftrightharpoons C_4H_5^+ + H$            | 2.37e-10  | 0.00 | 0        | 512 |
| 1841 | 2i   | $C_2H_4^+ + C_2H_4 \leftrightharpoons C_3H_5^+ + CH_3$         | 3.29e-10  | 0.00 | 0        | 520 |
| 1842 | 2i   | $C_2H_4^+ + C_2H_4 \leftrightharpoons C_4H_7^+ + H$            | 1.53e-10  | 0.00 | 0        | 520 |
| 1843 | 2i   | $C_2H_4^+ + C_2H_4 \leftrightharpoons C_4H_7^+ + H$            | 1.53e-10  | 0.00 | 0        | 520 |
| 1844 | 2i   | $C_2H_4^+ + C_2H_6 \leftrightharpoons C_3H_7^+ + CH_3$         | 8.40e-10  | 0.00 | 1960     | 521 |
| 1845 | 2i   | $C_2H_4^+ + SiH_4 \leftrightharpoons SiH_2^+ + C_2H_6$         | 1.41e-09  | 0.00 | 0        | 518 |

Table 6—Continued

|      |      | TABLE 0—Continued                                            |                      |      |          |     |
|------|------|--------------------------------------------------------------|----------------------|------|----------|-----|
| #    | Type | Reaction                                                     | $\alpha$             | β    | $\gamma$ | Ref |
| 1846 | 2i   | $C_2H_4^+ + SiH_4 \leftrightharpoons SiH_3^+ + C_2H_5$       | 1.41e-09             | 0.00 | 0        | 518 |
| 1847 | 2i   | $C_2H_4^+ + SiH_4 \leftrightharpoons SiC_2H_4^+ + H_2 + H_2$ | 1.41e-09             | 0.00 | 0        | 518 |
| 1848 | 2i   | $C_2H_4^{\uparrow} + SiH_4 = SiC_2H_5^{\uparrow} + H_2 + H$  | 1.41e-09             | 0.00 | 0        | 518 |
| 1849 | 2i   | $C_2H_4^{\uparrow} + SiH_4 = SiC_2H_6^{\uparrow} + H_2$      | 1.41e-09             | 0.00 | 0        | 518 |
| 1850 | 2i   | $C_2H_4^+ + NO = NO^+ + C_2H_4$                              | 3.60e-10             | 0.00 | 0        | 487 |
| 1851 | 2i   | $C_2H_4N^+ + CH_3OH \Rightarrow C_3H_6N^+ + H_2O$            | 2.70e-11             | 0.00 | 0        | 522 |
| 1852 | 2i   | $C_2H_4N^+ + CH_3CN \leftrightharpoons C_3H_6N^+ + HCN$      | 6.30e-11             | 0.00 | 0        | 523 |
| 1853 | 2i   | $C_2H_4O^+ + C_2H_4O \leftrightharpoons C_2H_5O^+ + C_2H_3O$ | 2.95e-09             | 0.00 | 0        | 466 |
| 1854 | 2i   | $C_2H_4O^+ + H_3N \leftrightharpoons H_4N^+ + C_2H_3O$       | 1.20e-10             | 0.00 | 0        | 470 |
| 1855 | 2i   | $C_2H_5^+ + HCN \leftrightharpoons CH_2N^+ + C_2H_4$         | 2.70e-09             | 0.00 | 0        | 510 |
| 1856 | 2i   | $C_2H_5^+ + CH_2O \leftrightharpoons CH_3O^+ + C_2H_4$       | 3.10e-09             | 0.00 | 0        | 524 |
| 1857 | 2i   | $C_2H_5^+ + HCOOH \Rightarrow CH_3O_2^+ + C_2H_4$            | 1.50e-09             | 0.00 | 0        | 443 |
| 1858 | 2i   | $C_2H_5^+ + C_2H_2 \leftrightharpoons C_4H_5^+ + H_2$        | 1.24e-10             | 0.00 | 0        | 473 |
| 1859 | 2i   | $C_2H_5^+ + C_2H_2 \leftrightharpoons C_3H_3^+ + CH_4$       | $6.65 e{\text{-}}11$ | 0.00 | 0        | 473 |
| 1860 | 2i   | $C_2H_5^+ + C_2H_4 \leftrightharpoons C_3H_5^+ + CH_4$       | 6.10e-10             | 0.00 | 0        | 111 |
| 1861 | 2i   | $C_2H_5^+ + C_2H_6 = C_4H_9^+ + H_2$                         | 3.44e-11             | 0.00 | 0        | 525 |
| 1862 | 2i   | $C_2H_5^+ + C_2H_6 \rightleftharpoons C_3H_7^+ + CH_4$       | 5.60e-12             | 0.00 | 0        | 525 |
| 1863 | 2i   | $C_2H_5^+ + H_2 = C_2H_6^+ + H$                              | 7.30e-14             | 0.00 | 589      | Est |
| 1864 | 2i   | $C_2H_5^+ + H_3N = H_4N^+ + C_2H_4$                          | 2.10e-09             | 0.00 | 0        | 497 |
| 1865 | 2i   | $C_2H_5O^+ + (CH_3)_2O = C_3H_9O^+ + CH_2O$                  | 2.60e-11             | 0.00 | 0        | 499 |
| 1866 | 2i   | $C_2H_5O^+ + H_3N = H_4N^+ + C_2H_4O$                        | 4.73e-10             | 0.00 | 0        | 470 |
| 1867 | 2i   | $C_2H_5O_2^+ + C_2H_4O = C_2H_5O^+ + CH_3COOH$               | 2.43e-09             | 0.00 | 0        | 519 |
| 1868 | 2i   | $C_2H_5O_2^+ + C_2H_4O = C_4H_7O_2^+ + H_2O$                 | 8.42e-10             | 0.00 | 0        | 519 |
| 1869 | 2i   | $C_2H_6^+ + C_2H_6 \leftrightharpoons C_3H_8^+ + CH_4$       | 1.01e-10             | 0.00 | 0        | 526 |
| 1870 | 2i   | $C_2H_6^+ + C_2H_6 \leftrightharpoons C_4H_9^+ + H_2 + H$    | 1.01e-10             | 0.00 | 0        | 526 |
| 1871 | 2i   | $C_2H_6^+ + C_2H_6 \leftrightharpoons C_3H_9^+ + CH_3$       | 1.01e-10             | 0.00 | 0        | 526 |
| 1872 | 2i   | $C_2H_6^+ + C_2H_6 \leftrightharpoons C_3H_7^+ + CH_4 + H$   | 1.01e-10             | 0.00 | 0        | 526 |
| 1873 | 2i   | $C_2H_6^+ + C_2H_6 \leftrightharpoons C_2H_5^+ + C_2H_6 + H$ | 1.01e-10             | 0.00 | 0        | 526 |
| 1874 | 2i   | $C_2H_6^+ + H_2O \leftrightharpoons H_3O^+ + C_2H_5$         | 1.20e-09             | 0.00 | 0        | 527 |
| 1875 | 2i   | $C_2H_6^+ + O_2 = C_2H_5^+ + HO_2$                           | 1.15e-10             | 0.00 | 0        | 528 |
| 1876 | 2i   | $C_2H_6O^+ + (CH_3)_2O = C_2H_7O^+ + CH_3OCH_2$              | 1.93e-09             | 0.00 | 0        | 489 |
| 1877 | 2i   | $C_2H_6O^+ + H_3N \leftrightharpoons H_4N^+ + CH_3CH_2O$     | 8.43e-10             | 0.00 | 0        | 470 |
| 1878 | 2i   | $C_2H_7^+ + HCN \leftrightharpoons CH_2N^+ + C_2H_6$         | 1.98e-09             | 0.00 | 0        | 510 |
| 1879 | 2i   | $C_2H_7^+ + HCN \leftrightharpoons C_2H_4N^+ + CH_4$         | 2.20e-10             | 0.00 | 0        | 510 |
| 1880 | 2i   | $C_2H_7^+ + H_3N \leftrightharpoons H_4N^+ + C_2H_6$         | 2.00e-09             | 0.00 | 0        | 497 |
| 1881 | 2i   | $C_2H_7O^+ + HCN \rightleftharpoons C_3H_6N^+ + H_2O$        | 1.50e-11             | 0.00 | 0        | 522 |
| 1882 | 2i   | $C_2H_7O^+ + HCN \leftrightharpoons C_2H_4N^+ + CH_3OH$      | 1.80e-11             | 0.00 | 0        | 522 |
| 1883 | 2i   | $C_2H_7O^+ + CH_2O = C_3H_7O^+ + H_2O$                       | 1.70e-11             | 0.00 | 0        | 499 |
| 1884 | 2i   | $C_2H_7O^+ + CH_3CN \leftrightharpoons C_3H_6N^+ + CH_3OH$   | 7.20e-11             | 0.00 | 0        | 522 |
| 1885 | 2i   | $C_2H_7O^+ + (CH_3)_2O = C_3H_9O^+ + CH_3OH$                 | 1.20e-11             | 0.00 | 0        | 499 |
|      |      | $C_2N^+ + HCN \rightleftharpoons C_3N_2^+ + H$               | 1.50e-11             | 0.00 |          |     |

Table 6—Continued

| #    | Type | Reaction                                                                                                                              | α        | β    | $\gamma$ | Ref |
|------|------|---------------------------------------------------------------------------------------------------------------------------------------|----------|------|----------|-----|
| 1887 | 2i   | $C_2N^+ + CH_4 \leftrightharpoons C_2H_3^+ + HCN$                                                                                     | 2.64e-12 | 0.00 | 0        | 454 |
| 1888 | 2i   | $C_2N^+ + CH_4 \leftrightharpoons C_3H_2N^+ + H_2$                                                                                    | 1.32e-12 | 0.00 | 0        | 454 |
| 1889 | 2i   | $C_2N^+ + CH_4 \leftrightharpoons CH_2N^+ + C_2H_2$                                                                                   | 4.40e-13 | 0.00 | 0        | 454 |
| 1890 | 2i   | $C_2N^+ + C_2H_2 \leftrightharpoons C_3H^+ + HCN$                                                                                     | 8.01e-10 | 0.00 | 0        | 501 |
| 1891 | 2i   | $C_2N^+ + C_2H_4 \leftrightharpoons C_2H_2N^+ + C_2H_2$                                                                               | 5.85e-10 | 0.00 | 0        | 501 |
| 1892 | 2i   | $C_2N^+ + C_2H_4 \leftrightharpoons C_3H_3^+ + HCN$                                                                                   | 3.51e-10 | 0.00 | 0        | 501 |
| 1893 | 2i   | $C_2N^+ + C_2H_4 \leftrightharpoons C_2H_4^+ + C_2N$                                                                                  | 1.17e-10 | 0.00 | 0        | 501 |
| 1894 | 2i   | $C_2N^+ + C_2H_4 \leftrightharpoons C_4H_2N^+ + H_2$                                                                                  | 1.17e-10 | 0.00 | 0        | 501 |
| 1895 | 2i   | $C_2N^+ + C_2H_6 \leftrightharpoons C_3H_3^+ + HCN + H_2$                                                                             | 3.60e-10 | 0.00 | 0        | 501 |
| 1896 | 2i   | $C_2N^+ + C_2H_6 \leftrightharpoons C_2H_2N^+ + C_2H_4$                                                                               | 3.00e-10 | 0.00 | 0        | 501 |
| 1897 | 2i   | $C_2N^+ + C_2H_6 \leftrightharpoons C_2H_3^+ + CH_3CN$                                                                                | 1.20e-10 | 0.00 | 0        | 501 |
| 1898 | 2i   | $C_2N^+ + C_2H_6 \leftrightharpoons C_2H_5^+ + HCCN$                                                                                  | 1.20e-10 | 0.00 | 0        | 501 |
| 1899 | 2i   | $C_2N^+ + HC_3N \leftrightharpoons C_3H^+ + NCCN$                                                                                     | 3.10e-09 | 0.00 | 0        | 479 |
| 1900 | 2i   | $C_2N^+ + H_2O \leftrightharpoons CHO^+ + HCN$                                                                                        | 2.55e-10 | 0.00 | 0        | 501 |
| 1901 | 2i   | $C_2N^+ + H_2O \leftrightharpoons C_2HN^+ + HO$                                                                                       | 8.50e-11 | 0.00 | 0        | 501 |
| 1902 | 2i   | $C_2N^+ + H_3N \leftrightharpoons CH_2N^+ + HCN$                                                                                      | 1.71e-09 | 0.00 | 0        | 501 |
| 1903 | 2i   | $C_2N^+ + H_3N \leftrightharpoons HN_2^+ + C_2H_2$                                                                                    | 1.90e-10 | 0.00 | 0        | 501 |
| 1904 | 2i   | $C_2N_2^+ + HCN \leftrightharpoons C_3N_3^+ + H$                                                                                      | 1.60e-11 | 0.00 | 0        | 441 |
| 1905 | 2i   | $C_2N_2^+ + HC_3N \leftrightharpoons C_3HN^+ + NCCN$                                                                                  | 1.60e-09 | 0.00 | 0        | 479 |
| 1906 | 2i   | $H^+ + HCN \leftrightharpoons CHN^+ + H$                                                                                              | 1.10e-09 | 0.00 | 0        | 529 |
| 1907 | 2i   | $\mathrm{H}^+ + \mathrm{CH}_4 \leftrightarrows \mathrm{CH}_3^+ + \mathrm{H}_2$                                                        | 4.50e-09 | 0.00 | 0        | 525 |
| 1908 | 2i   | $\mathrm{H^+} + \mathrm{CH_4} \leftrightarrows \mathrm{CH_4^+} + \mathrm{H}$                                                          | 4.50e-09 | 0.00 | 0        | 525 |
| 1909 | 2i   | $H^+ + CO_2 \leftrightharpoons CHO^+ + O$                                                                                             | 3.00e-09 | 0.00 | 0        | 506 |
| 1910 | 2i   | $\mathrm{H}^{+} + \mathrm{C}_{2}\mathrm{H}_{6} \leftrightharpoons \mathrm{C}_{2}\mathrm{H}_{4}^{+} + \mathrm{H}_{2} + \mathrm{H}$     | 3.90e-09 | 0.00 | 0        | 467 |
| 1911 | 2i   | $\mathrm{H}^{+} + \mathrm{C}_{2}\mathrm{H}_{6} \leftrightharpoons \mathrm{C}_{2}\mathrm{H}_{3}^{+} + \mathrm{H}_{2} + \mathrm{H}_{2}$ | 3.90e-09 | 0.00 | 0        | 467 |
| 1912 | 2i   | $H^+ + C_2H_6 \leftrightharpoons C_2H_5^+ + H_2$                                                                                      | 3.90e-09 | 0.00 | 0        | 467 |
| 1913 | 2i   | $H^+ + NO = NO^+ + H$                                                                                                                 | 1.90e-09 | 0.00 | 0        | 530 |
| 1914 | 2i   | $H^+ + O \leftrightharpoons O^+ + H$                                                                                                  | 3.75e-10 | 0.00 | 0        | 530 |
| 1915 | 2i   | $HN^+ + CH_2O \leftrightharpoons CHO^+ + H_2N$                                                                                        | 1.82e-09 | 0.00 | 0        | 531 |
| 1916 | 2i   | $HN^+ + CH_2O \rightleftharpoons CH_2O^+ + HN$                                                                                        | 9.90e-10 | 0.00 | 0        | 531 |
| 1917 | 2i   | $HN^+ + CH_2O \rightleftharpoons CH_3O^+ + N$                                                                                         | 4.95e-10 | 0.00 | 0        | 531 |
| 1918 | 2i   | $HN^+ + CH_4 \leftrightharpoons CH_2N^+ + H_2 + H$                                                                                    | 6.72e-10 | 0.00 | 0        | 531 |
| 1919 | 2i   | $HN^+ + CH_4 \leftrightharpoons H_2N^+ + CH_3$                                                                                        | 1.92e-10 | 0.00 | 0        | 531 |
| 1920 | 2i   | $HN^+ + CH_4 \leftrightharpoons CH_5^+ + N$                                                                                           | 9.60e-11 | 0.00 | 0        | 531 |
| 1921 | 2i   | $HN^+ + CH_3OH \Rightarrow CH_3O^+ + H_2N$                                                                                            | 2.10e-09 |      | 0        | 531 |
| 1922 | 2i   | $HN^+ + CH_3OH = CHO^+ + H_3N + H$                                                                                                    | 4.50e-10 | 0.00 | 0        | 531 |
| 1923 | 2i   | $HN^+ + CH_3OH \Rightarrow CH_2O^+ + H_3N$                                                                                            | 4.50e-10 | 0.00 | 0        | 531 |
| 1924 | 2i   | $HN^+ + CH_3OH = CH_5O^+ + N$                                                                                                         | 2.10e-10 | 0.00 | 0        | 531 |
| 1925 | 2i   | $HN^+ + CH_5N \Rightarrow CH_4N^+ + H_2N$                                                                                             | 9.45e-10 | 0.00 | 0        | 531 |
| 1926 | 2i   | $HN^+ + CH_5N \leftrightharpoons CH_5N^+ + HN$                                                                                        | 4.20e-10 | 0.00 | 0        | 531 |
| 1927 | 2i   | $HN^+ + CH_5N \leftrightharpoons CH_6N^+ + N$                                                                                         | 4.20e-10 | 0.00 | 0        | 531 |

Table 6—Continued

| #    | Type | Reaction                                                   | α         | β    | $\gamma$ | Ref |
|------|------|------------------------------------------------------------|-----------|------|----------|-----|
| 1928 | 2i   | $HN^+ + CH_5N \leftrightharpoons CH_2N^+ + H_3N + H$       | 4.20e-10  | 0.00 | 0        | 531 |
| 1929 | 2i   | $HN^+ + CH_5N \leftrightharpoons CH_3N^+ + H_3N$           | 1.05e-10  | 0.00 | 0        | 531 |
| 1930 | 2i   | $HN^+ + CO \leftrightharpoons CNO^+ + H$                   | 5.39e-10  | 0.00 | 0        | 531 |
| 1931 | 2i   | $HN^+ + CO \leftrightharpoons CHO^+ + N$                   | 4.41e-10  | 0.00 | 0        | 531 |
| 1932 | 2i   | $HN^+ + CO_2 \leftrightharpoons CHO_2^+ + N$               | 3.85e-10  | 0.00 | 0        | 531 |
| 1933 | 2i   | $HN^+ + CO_2 \leftrightharpoons HNO^+ + CO$                | 3.85e-10  | 0.00 | 0        | 531 |
| 1934 | 2i   | $HN^+ + CO_2 \leftrightharpoons NO^+ + CHO$                | 3.30e-10  | 0.00 | 0        | 531 |
| 1935 | 2i   | $HN^+ + C_2H_4 \leftrightharpoons C_2H_3^+ + H_2N$         | 3.75e-10  | 0.00 | 0        | 532 |
| 1936 | 2i   | $HN^+ + C_2H_4 \leftrightharpoons C_2H_4^+ + HN$           | 3.75e-10  | 0.00 | 0        | 532 |
| 1937 | 2i   | $HN^+ + C_2H_4 \leftrightharpoons CH_2N^+ + CH_3$          | 3.00e-10  | 0.00 | 0        | 532 |
| 1938 | 2i   | $HN^+ + C_2H_4 \leftrightharpoons C_2H_2^+ + H_3N$         | 1.50e-10  | 0.00 | 0        | 532 |
| 1939 | 2i   | $HN^+ + C_2H_4 \leftrightharpoons CH_3N^+ + CH_2$          | 1.50e-10  | 0.00 | 0        | 532 |
| 1940 | 2i   | $HN^+ + C_2H_4 \leftrightharpoons C_2H_3N^+ + H_2$         | 1.50e-10  | 0.00 | 0        | 532 |
| 1941 | 2i   | $HN^+ + H_2 \leftrightharpoons H_2N^+ + H$                 | 1.28e-09  | 0.00 | 0        | 531 |
| 1942 | 2i   | $HN^+ + H_2 \leftrightharpoons H_3^+ + N$                  | 2.25e-10  | 0.00 | 0        | 531 |
| 1943 | 2i   | $HN^+ + H_2O \leftrightharpoons H_3O^+ + N$                | 1.05e-09  | 0.00 | 0        | 531 |
| 1944 | 2i   | $HN^+ + H_2O \leftrightharpoons H_2O^+ + HN$               | 1.05e-09  | 0.00 | 0        | 531 |
| 1945 | 2i   | $HN^+ + H_2O \leftrightharpoons H_2N^+ + HO$               | 8.75e-10  | 0.00 | 0        | 531 |
| 1946 | 2i   | $HN^+ + H_2O \leftrightharpoons HNO^+ + H_2$               | 3.50e-10  | 0.00 | 0        | 531 |
| 1947 | 2i   | $HN^+ + H_3N \leftrightharpoons H_3N^+ + HN$               | 1.80e-09  | 0.00 | 0        | 531 |
| 1948 | 2i   | $HN^+ + H_3N \leftrightharpoons H_4N^+ + N$                | 6.00e-10  | 0.00 | 0        | 531 |
| 1949 | 2i   | $HN^+ + NO \leftrightharpoons NO^+ + HN$                   | 7.12e-10  | 0.00 | 0        | 531 |
| 1950 | 2i   | $HN^+ + NO \leftrightharpoons HN_2^+ + O$                  | 1.78e-10  | 0.00 | 0        | 531 |
| 1951 | 2i   | $HN^+ + N_2 \leftrightharpoons HN_2^+ + N$                 | 6.50 e-10 | 0.00 | 0        | 531 |
| 1952 | 2i   | $HN^+ + O_2 \leftrightharpoons O_2^+ + HN$                 | 4.51e-09  | 0.00 | 0        | 531 |
| 1953 | 2i   | $HN^+ + O_2 \leftrightharpoons NO^+ + HO$                  | 2.05e-09  | 0.00 | 0        | 531 |
| 1954 | 2i   | $HN^+ + O_2 \leftrightharpoons HO_2^+ + N$                 | 1.64e-09  | 0.00 | 0        | 531 |
| 1955 | 2i   | $HNO^+ + CH_4 \leftrightharpoons CH_5^+ + NO$              | 1.01e-10  | 0.00 | 0        | 433 |
| 1956 | 2i   | $HNO^+ + CO \leftrightharpoons CHO^+ + NO$                 | 1.01e-10  | 0.00 | 0        | 433 |
| 1957 | 2i   | $HNO^+ + CO_2 \leftrightharpoons CHO_2^+ + NO$             | 1.01e-10  | 0.00 | 0        | 433 |
| 1958 | 2i   | $HNO^+ + H_2O \leftrightharpoons H_3O^+ + NO$              | 2.30e-09  | 0.00 | 0        | 436 |
| 1959 | 2i   | $HNO^+ + NO \leftrightharpoons NO^+ + HNO$                 | 7.00e-10  | 0.00 | 0        | 111 |
| 1960 | 2i   | $HNO^+ + N_2 \leftrightharpoons HN_2^+ + NO$               | 9.99e-12  | 0.00 | 0        | 433 |
| 1961 | 2i   | $HN_2^+ + HCN \leftrightharpoons CH_2N^+ + N_2$            | 3.20e-09  | 0.00 | 0        | 465 |
| 1962 | 2i   | $HN_2^+ + CH_2O \leftrightharpoons CH_3O^+ + N_2$          | 3.30e-09  | 0.00 | 0        | 490 |
| 1963 | 2i   | $HN_2^+ + CH_3NO_2 \leftrightharpoons CH_4NO_2^+ + N_2$    | 3.27e-09  | 0.00 | 0        | 462 |
| 1964 | 2i   | $HN_2^+ + CH_3NO_2 \leftrightharpoons NO^+ + CH_3OH + N_2$ | 1.65e-11  | 0.00 | 0        | 462 |
| 1965 | 2i   | $HN_2^+ + CH_4 \leftrightharpoons CH_5^+ + N_2$            | 8.90e-10  | 0.00 | 0        | 111 |
| 1966 | 2i   | $HN_2^+ + CO \leftrightharpoons CHO^+ + N_2$               | 8.79e-10  | 0.00 | 0        | 533 |
| 1967 | 2i   | $HN_2^+ + CO_2 \leftrightharpoons CHO_2^+ + N_2$           | 9.80e-10  | 0.00 | 0        | 534 |
| 1968 | 2i   | $HN_2^{+} + C_2H_2 \leftrightharpoons C_2H_3^{+} + N_2$    | 1.41e-09  | 0.00 | 0        | 464 |

Table 6—Continued

|      |      | TABLE 0—Continued                                                                            |          |      |          |     |
|------|------|----------------------------------------------------------------------------------------------|----------|------|----------|-----|
| #    | Type | Reaction                                                                                     | α        | β    | $\gamma$ | Ref |
| 1969 | 2i   | $HN_2^+ + CH_3CN \leftrightharpoons C_2H_4N^+ + N_2$                                         | 4.10e-09 | 0.00 | 0        | 465 |
| 1970 | 2i   | $HN_2^+ + C_2H_6 \leftrightharpoons C_2H_5^+ + H_2N_2$                                       | 1.13e-09 | 0.00 | 0        | 467 |
| 1971 | 2i   | $HN_2^+ + C_2H_6 \leftrightharpoons C_2H_7^+ + N_2$                                          | 1.69e-10 | 0.00 | 0        | 467 |
| 1972 | 2i   | $HN_2^+ + NCCN \leftrightharpoons C_2HN_2^+ + N_2$                                           | 1.20e-09 | 0.00 | 0        | 469 |
| 1973 | 2i   | $HN_2^+ + HC_3N \leftrightharpoons C_3H_2N^+ + N_2$                                          | 4.20e-09 | 0.00 | 0        | 469 |
| 1974 | 2i   | $HN_2^{+} + H_2O \leftrightharpoons H_3O^{+} + N_2$                                          | 5.50e-09 | 0.00 | 0        | 535 |
| 1975 | 2i   | $HN_2^{+} + H_3N \leftrightharpoons H_4N^+ + N_2$                                            | 2.30e-09 | 0.00 | 0        | 497 |
| 1976 | 2i   | $HN_2^+ + NO \leftrightharpoons HNO^+ + N_2$                                                 | 3.40e-10 | 0.00 | 0        | 436 |
| 1977 | 2i   | $HN_2^{+} + N_2O \leftrightharpoons HN_2O^{+} + N_2$                                         | 7.90e-10 | 0.00 | 0        | 111 |
| 1978 | 2i   | $HN_2^+ + O_2(a^1\Delta_q) \leftrightharpoons HO_2^+ + N_2$                                  | 8.00e-11 | 0.00 | 0        | 536 |
| 1979 | 2i   | $HN_2O^+ + CH_3NO_2 \leftrightharpoons CH_4NO_2^+ + N_2O$                                    | 2.70e-09 | 0.00 | 0        | 462 |
| 1980 | 2i   | $HN_2O^+ + CH_3NO_2 = NO^+ + CH_3OH + N_2O$                                                  | 1.62e-12 | 0.00 | 0        | 462 |
| 1981 | 2i   | $HN_2O^+ + C_2H_2 \leftrightharpoons C_2H_3^+ + N_2O$                                        | 1.21e-09 | 0.00 | 0        | 464 |
| 1982 | 2i   | $HN_2O^+ + CH_3CN = C_2H_4N^+ + N_2O$                                                        | 3.80e-09 | 0.00 | 0        | 465 |
| 1983 | 2i   | $HN_2O^+ + C_2H_6 \leftrightharpoons C_2H_7^+ + N_2O$                                        | 1.05e-09 | 0.00 | 0        | 467 |
| 1984 | 2i   | $HN_2O^+ + C_2H_6 \leftrightharpoons C_2H_5^+ + N_2O + H_2$                                  | 5.50e-11 | 0.00 | 0        | 467 |
| 1985 | 2i   | $HN_2O^+ + H_2O \rightleftharpoons H_3O^+ + N_2O$                                            | 2.80e-09 | 0.00 | 0        | 472 |
| 1986 | 2i   | $HN_2O^+ + H_3N \leftrightharpoons H_4N^+ + N_2O$                                            | 2.10e-09 | 0.00 | 0        | 497 |
| 1987 | 2i   | $\mathrm{HO^{+}} + \mathrm{CH_{4}} \leftrightharpoons \mathrm{H_{3}O^{+}} + \mathrm{CH_{2}}$ | 1.31e-09 | 0.00 | 0        | 492 |
| 1988 | 2i   | $HO^+ + CH_4 \leftrightharpoons CH_5^+ + O$                                                  | 1.95e-10 | 0.00 | 0        | 492 |
| 1989 | 2i   | $HO^+ + CO = CHO^+ + O$                                                                      | 8.20e-10 | 0.00 | 0        | 492 |
| 1990 | 2i   | $HO^+ + CO_2 \leftrightharpoons CHO_2^+ + O$                                                 | 1.44e-09 | 0.00 | 0        | 537 |
| 1991 | 2i   | $HO^{+} + C_{2}H_{6} = C_{2}H_{4}^{+} + H_{2}O + H$                                          | 1.04e-09 | 0.00 | 0        | 467 |
| 1992 | 2i   | $\mathrm{HO^{+} + C_{2}H_{6} \leftrightharpoons C_{2}H_{5}^{+} + H_{2}O}$                    | 3.20e-10 | 0.00 | 0        | 467 |
| 1993 | 2i   | $HO^{+} + C_{2}H_{6} = H_{3}O^{+} + C_{2}H_{4}$                                              | 1.60e-10 | 0.00 | 0        | 467 |
| 1994 | 2i   | $HO^{+} + C_{2}H_{6} = C_{2}H_{6}^{+} + HO$                                                  | 4.80e-11 | 0.00 | 0        | 467 |
| 1995 | 2i   | $HO^{+} + C_{2}H_{6} = C_{2}H_{7}^{+} + O$                                                   | 3.20e-11 | 0.00 | 0        | 467 |
| 1996 | 2i   | $HO^+ + H_2 \leftrightharpoons H_2O^+ + H$                                                   | 1.50e-09 | 0.00 | 0        | 110 |
| 1997 | 2i   | $\mathrm{HO^{+}} + \mathrm{H_{2}O} \leftrightharpoons \mathrm{H_{2}O^{+}} + \mathrm{HO}$     | 2.87e-09 | 0.00 | 0        | 538 |
| 1998 | 2i   | $\mathrm{HO^{+}} + \mathrm{H_{2}O} \leftrightharpoons \mathrm{H_{3}O^{+}} + \mathrm{O}$      | 2.87e-09 | 0.00 | 0        | 538 |
| 1999 | 2i   | $HO^+ + NO = HNO^+ + O$                                                                      | 6.11e-10 | 0.00 | 0        | 537 |
| 2000 | 2i   | $HO^+ + NO = NO^+ + HO$                                                                      | 3.59e-10 | 0.00 | 0        | 537 |
| 2001 | 2i   | $HO^+ + NO_2 = NO_2^+ + HO$                                                                  | 1.30e-09 | 0.00 | 0        | 539 |
| 2002 | 2i   | $HO^+ + N_2 \stackrel{-}{\rightleftharpoons} HN_2^+ + O$                                     | 3.60e-10 | 0.00 | 0        | 537 |
| 2003 | 2i   | $HO^+ + N_2O \rightleftharpoons HN_2O^+ + O$                                                 | 1.12e-09 | 0.00 | 0        | 537 |
| 2004 | 2i   | $\mathrm{HO^{+}} + \mathrm{N_{2}O} \leftrightarrows \mathrm{N_{2}O^{+}} + \mathrm{HO}$       | 2.50e-10 | 0.00 | 0        | 537 |
| 2005 | 2i   | $HO^+ + N_2O = NO^+ + HNO$                                                                   | 1.72e-10 | 0.00 | 0        | 537 |
| 2006 | 2i   | $\mathrm{HO^{+}} + \mathrm{O_{2}} \leftrightharpoons \mathrm{O_{2}^{+}} + \mathrm{HO}$       | 2.00e-10 | 0.00 | 0        | 110 |
| 2007 | 2i   | $HO_2^+ + Ar \leftrightharpoons ArH^+ + O_2$                                                 | 1.90e-11 | 0.00 | 0        | 435 |
| 2008 | 2i   | $\mathrm{HO}_2^+ + \mathrm{CO}_2 \leftrightharpoons \mathrm{CHO}_2^+ + \mathrm{O}_2$         | 1.10e-09 | 0.00 | 0        | 496 |
| 2000 |      |                                                                                              |          |      |          |     |

Table 6— Continued

| #    | Type | Reaction                                                                                                                                         | α         | β    | $\gamma$ | Ref |
|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|----------|-----|
| 2010 | 2i   | $HO_2^+ + H_3N \leftrightharpoons H_4N^+ + O_2$                                                                                                  | 2.00e-09  | 0.00 | 0        | 496 |
| 2011 | 2i   | $HO_2^+ + NO \leftrightharpoons HNO^+ + O_2$                                                                                                     | 7.30e-10  | 0.00 | 0        | 541 |
| 2012 | 2i   | $HO_2^+ + NO \leftrightharpoons NO^+ + HO_2$                                                                                                     | 7.30e-10  | 0.00 | 0        | 541 |
| 2013 | 2i   | $HO_2^+ + N_2 \leftrightharpoons HN_2^+ + O_2$                                                                                                   | 8.00e-10  | 0.00 | 0        | 496 |
| 2014 | 2i   | $SiH^{+} + SiH_{4} \leftrightharpoons Si_{2}H^{+} + H_{2} + H_{2}$                                                                               | 1.20e-10  | 0.00 | 0        | 542 |
| 2015 | 2i   | $SiH^+ + SiH_4 \leftrightharpoons Si_2H_2^+ + H_2 + H$                                                                                           | 5.20e-11  | 0.00 | 0        | 542 |
| 2016 | 2i   | $SiH^+ + Si_2H_6 \leftrightharpoons Si_3H_5^+ + H_2$                                                                                             | 3.80e-10  | 0.00 | 0        | 543 |
| 2017 | 2i   | $SiH^+ + Si_2H_6 \leftrightharpoons Si_2H_3^+ + SiH_4$                                                                                           | 3.30e-10  | 0.00 | 0        | 543 |
| 2018 | 2i   | $SiH^+ + Si_2H_6 \leftrightharpoons Si_3H_3^+ + H_2 + H_2$                                                                                       | 1.80e-10  | 0.00 | 0        | 543 |
| 2019 | 2i   | $SiH^+ + Si_2H_6 \leftrightharpoons Si_2H^+ + SiH_4 + H_2$                                                                                       | 1.10e-10  | 0.00 | 0        | 543 |
| 2020 | 2i   | $\mathrm{Si}_{2}\mathrm{H}^{+}+\mathrm{Si}_{2}\mathrm{H}_{6} \leftrightharpoons \mathrm{Si}_{4}\mathrm{H}_{3}^{+}+\mathrm{H}_{2}+\mathrm{H}_{2}$ | 3.19e-10  | 0.00 | 0        | 543 |
| 2021 | 2i   | $Si_2H^+ + Si_2H_6 \leftrightharpoons Si_4H_5^+ + H_2$                                                                                           | 1.73e-10  | 0.00 | 0        | 543 |
| 2022 | 2i   | $\mathrm{Si}_{2}\mathrm{H}^{+} + \mathrm{Si}_{2}\mathrm{H}_{6} \leftrightharpoons \mathrm{Si}_{3}\mathrm{H}_{3}^{+} + \mathrm{SiH}_{4}$          | 4.86e-11  | 0.00 | 0        | 543 |
| 2023 | 2i   | $Si_2H^+ + Si_2H_6 \leftrightharpoons Si_3H_3^+ + SiH_4$                                                                                         | 4.86e-11  | 0.00 | 0        | 543 |
| 2024 | 2i   | $\mathrm{H}_2^+ + \mathrm{CO}_2 \leftrightharpoons \mathrm{CHO}_2^+ + \mathrm{H}$                                                                | 2.35e-09  | 0.00 | 0        | 544 |
| 2025 | 2i   | $H_2^+ + H \leftrightharpoons H^+ + H_2$                                                                                                         | 6.40 e-10 | 0.00 | 0        | 545 |
| 2026 | 2i   | $H_2^+ + H_2 \leftrightharpoons H_3^+ + H$                                                                                                       | 2.11e-09  | 0.00 | 0        | 546 |
| 2027 | 2i   | $H_2^+ + He \leftrightharpoons HeH^+ + H$                                                                                                        | 1.40e-10  | 0.00 | 0        | 547 |
| 2028 | 2i   | $H_2^+ + O_2 \leftrightharpoons HO_2^+ + H$                                                                                                      | 7.56e-09  | 0.00 | 0        | 548 |
| 2029 | 2i   | $H_2N^+ + CH_2O \leftrightharpoons CH_3O^+ + HN$                                                                                                 | 2.24e-09  | 0.00 | 0        | 531 |
| 2030 | 2i   | $H_2N^+ + CH_2O \leftrightharpoons H_3N^+ + CHO$                                                                                                 | 5.60e-10  | 0.00 | 0        | 531 |
| 2031 | 2i   | $H_2N^+ + HCOOH \leftrightharpoons H_4N^+ + CO_2$                                                                                                | 2.70e-09  | 0.00 | 0        | 443 |
| 2032 | 2i   | $H_2N^+ + CH_4 \leftrightharpoons H_3N^+ + CH_3$                                                                                                 | 9.20e-10  | 0.00 | 0        | 531 |
| 2033 | 2i   | $H_2N^+ + CH_3OH \leftrightharpoons CH_5O^+ + HN$                                                                                                | 2.64e-09  | 0.00 | 0        | 531 |
| 2034 | 2i   | $H_2N^+ + CH_3OH \leftrightharpoons H_3N^+ + CHO + H_2$                                                                                          | 4.65e-10  | 0.00 | 0        | 531 |
| 2035 | 2i   | $H_2N^+ + CH_5N \leftrightharpoons CH_5N^+ + H_2N$                                                                                               | 9.00e-10  | 0.00 | 0        | 549 |
| 2036 | 2i   | $H_2N^+ + CH_5N \leftrightharpoons CH_6N^+ + HN$                                                                                                 | 3.60e-10  | 0.00 | 0        | 549 |
| 2037 | 2i   | $H_2N^+ + CH_5N \leftrightharpoons CH_4N^+ + H_3N$                                                                                               | 3.60e-10  | 0.00 | 0        | 549 |
| 2038 | 2i   | $H_2N^+ + CH_5N \leftrightharpoons H_4N^+ + CH_3N$                                                                                               | 1.80e-10  | 0.00 | 0        | 549 |
| 2039 | 2i   | $H_2N^+ + C_2H_4 \leftrightharpoons C_2H_4^+ + H_2N$                                                                                             | 4.50e-10  | 0.00 | 0        | 532 |
| 2040 | 2i   | $H_2N^+ + C_2H_4 \leftrightharpoons CH_4N^+ + CH_2$                                                                                              | 4.50e-10  | 0.00 | 0        | 532 |
| 2041 | 2i   | $H_2N^+ + C_2H_4 \leftrightharpoons C_2H_5^+ + HN$                                                                                               | 3.00e-10  | 0.00 | 0        | 532 |
| 2042 | 2i   | $H_2N^+ + C_2H_4 \leftrightharpoons C_2H_5N^+ + H$                                                                                               | 3.00e-10  | 0.00 | 0        | 532 |
| 2043 | 2i   | $H_2N^+ + H_2 \leftrightharpoons H_3N^+ + H$                                                                                                     | 1.00e-09  | 0.00 | 0        | 110 |
| 2044 | 2i   | $H_2N^+ + H_2O \rightleftharpoons H_3O^+ + HN$                                                                                                   | 2.76e-09  |      | 0        | 531 |
| 2045 | 2i   | $H_2N^+ + H_2O \leftrightharpoons H_4N^+ + O$                                                                                                    | 1.45e-10  | 0.00 | 0        | 531 |
| 2046 | 2i   | $H_2N^+ + H_3N \leftrightharpoons H_4N^+ + HN$                                                                                                   | 1.10e-09  | 0.00 | 0        | 550 |
| 2047 | 2i   | $H_2N^+ + H_3N \leftrightharpoons H_3N^+ + H_2N$                                                                                                 | 1.10e-09  | 0.00 | 0        | 550 |
| 2048 | 2i   | $H_2N^+ + NO \leftrightharpoons NO^+ + H_2N$                                                                                                     | 7.00e-10  | 0.00 | 0        | 531 |
| 2049 | 2i   | $H_2N^+ + O_2 \leftrightharpoons H_2NO^+ + O$                                                                                                    | 1.19e-10  | 0.00 | 0        | 531 |
| 2050 | 2i   | $H_2N^+ + O_2 \leftrightharpoons HNO^+ + HO$                                                                                                     | 2.10e-11  | 0.00 | 0        | 531 |

Table 6—Continued

| #           | Type     | Reaction                                                                                                                                                                            | α                    | β    | $\gamma$ | Ref        |
|-------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|----------|------------|
| 2051        | 2i       | $H_2NO_3^+ + H_3N \leftrightharpoons H_4N^+ + HNO_3$                                                                                                                                | 6.40e-10             | 0.00 | 0        | 114        |
| 2051 $2052$ | 2i       | $H_2NO_3^+ + NO \rightleftharpoons H_2NO_2^+ + NO_2$                                                                                                                                | 3.10e-11             | 0.00 | 0        | 114        |
| 2052 $2053$ | 2i       | $H_2NO_3 + NO \rightarrow H_2NO_2 + NO_2$<br>$H_2O^+ + HCN \rightleftharpoons CH_2N^+ + HO$                                                                                         | 2.10e-11<br>2.10e-09 | 0.00 | 0        | 456        |
| 2053 $2054$ | 2i       | $H_2O^+ + HCN \Rightarrow CH_2N^- + HO$<br>$H_2O^+ + HCN \Leftrightarrow H_3O^+ + CN$                                                                                               | 2.10e-09<br>2.10e-09 | 0.00 | 0        | 456        |
| 2054 $2055$ | 2i       | $H_2O^+ + CH_4 \rightleftharpoons CH_4^+ + H_2O$                                                                                                                                    | 1.20e-09             | 0.00 | 0        | 551        |
| 2056        | 2i       | $H_2O^+ + CH_4 \Rightarrow CH_4 + H_2O^+$<br>$H_2O^+ + CH_4 \Rightarrow H_3O^+ + CH_3$                                                                                              | 1.20e-09<br>1.20e-09 | 0.00 | 0        | 551        |
| 2050 $2057$ | 2i       | $H_2O^+ + CH_4 \rightarrow H_3O^+ + CH_3$<br>$H_2O^+ + CO \rightleftharpoons CHO^+ + HO$                                                                                            | 5.30e-10             | 0.00 | 0        | 492        |
| 2058        | 2i       | $H_2O^+ + C_2H_2 \leftrightharpoons C_2H_2^+ + H_2O$                                                                                                                                | 1.90e-09             | 0.00 | 0        | 504        |
| 2059        | 2i       | $H_2O^+ + C_2H_2 \rightarrow C_2H_2 + H_2O$<br>$H_2O^+ + C_2H_4 \rightleftharpoons C_2H_4^+ + H_2O$                                                                                 | 1.60e-09             | 0.00 | 0        | 551        |
| 2060        | 2i       | $H_2O^+ + C_2H_4 \Rightarrow C_2H_4 + H_2O^+$<br>$H_2O^+ + C_2H_4 \Leftrightarrow C_2H_5^+ + HO$                                                                                    | 1.60e-09             | 0.00 | 0        | 551        |
| 2061        | 2i       | $H_2O^+ + C_2H_4 \Rightarrow C_2H_5 + H_0$<br>$H_2O^+ + C_2H_6 \Leftrightarrow H_3O^+ + C_2H_5$                                                                                     | 1.33e-09             | 0.00 | 0        | 467        |
| 2062        | 2i       | $H_2O^+ + C_2H_6 \Rightarrow H_3O^- + C_2H_5$<br>$H_2O^+ + C_2H_6 \Leftrightarrow C_2H_4^+ + H_2O^- + H_2$                                                                          | 1.92e-10             | 0.00 | 0        | 467        |
| 2063        | 2i       | $H_2O^+ + C_2H_6 = C_2H_4 + H_2O + H_2$<br>$H_2O^+ + C_2H_6 = C_2H_6^+ + H_2O$                                                                                                      | 6.40e-11             | 0.00 | 0        | 467        |
| 2064        | 2i       | $H_2O^+ + C_2H_6 \Rightarrow C_2H_6 + H_2O$<br>$H_2O^+ + C_2H_6 \Leftrightarrow C_2H_5^+ + H_2O + H$                                                                                | 1.60e-11             | 0.00 | 0        | 467        |
| 2065        | 2i       | $H_2O^+ + C_2H_6 \rightarrow C_2H_5 + H_2O + H$<br>$H_2O^+ + NCCN \rightleftharpoons C_2HN_2^+ + HO$                                                                                | 1.00e-11<br>1.00e-09 | 0.00 | 0        | 469        |
| 2066        | 2i       | $H_2O^+ + H_2 \rightleftharpoons H_3O^+ + H$                                                                                                                                        | 1.40e-09             | 0.00 | 0        | 110        |
| 2067        | 2i       | $H_2O^+ + H_2 = H_3O^+ + H$<br>$H_2O^+ + H_2O = H_3O^+ + HO$                                                                                                                        | 1.40e-09<br>1.80e-09 | 0.00 | 0        | 538        |
| 2068        | 2i       | $H_2O^+ + N \rightleftharpoons HNO^+ + H$                                                                                                                                           | 1.90e-09             | 0.00 | 0        | 453        |
| 2069        | 2i       | $H_2O^+ + N \Rightarrow HNO^- + H$<br>$H_2O^+ + N \Leftrightarrow NO^+ + H_2$                                                                                                       | 1.90e-10<br>1.90e-10 | 0.00 | 0        | 453        |
| 2070        | 2i       | $H_2O^+ + NO = NO^+ + H_2O$                                                                                                                                                         | 3.60e-10             | 0.00 | 0        | 552        |
| 2071        | 2i       | $H_2O^+ + NO \Rightarrow NO^+ + H_2O$<br>$H_2O^+ + NO_2 \Leftrightarrow NO_2^+ + H_2O$                                                                                              | 1.20e-09             | 0.00 | 0        | 551        |
| 2072        | 2i       | $H_2O^+ + N_2O \rightleftharpoons HN_2O^+ + HO$                                                                                                                                     | 4.80e-12             | 0.00 | 0        | 553        |
| 2073        | 2i       | $H_2O^+ + O \rightleftharpoons O_2^+ + H_2$                                                                                                                                         | 3.99e-11             | 0.00 | 0        | 453        |
| 2073        | 2i       | $H_2O^+ + O_2 = O_2^+ + H_2O^+$                                                                                                                                                     | 2.00e-10             | 0.00 | 0        | 110        |
| 2074        | 2i       | $H_2O_+^+ + CO = CHO_+^+ + HO_2$                                                                                                                                                    | 5.50e-10             | 0.00 | 0        | 554        |
| 2076        | 2i       | $H_2O_2^+ + H_2O = H_3O^+ + H_2O_2$                                                                                                                                                 | 1.70e-09             | 0.00 | 0        | 554        |
| 2077        | 2i       | $H_2O_2^+ + H_2O_2 \Rightarrow H_3O_2^+ + HO_2$<br>$H_2O_2^+ + H_2O_2 \Rightarrow H_3O_2^+ + HO_2$                                                                                  | 6.00e-10             | 0.00 | 0        | 554        |
| 2078        | 2i       | $H_2O_2^+ + H_2O_2 \rightarrow H_3O_2 + H_2O_2$<br>$H_2O_2^+ + H_3N \rightleftharpoons H_4N^+ + HO_2$                                                                               | 1.80e-09             | 0.00 | 0        | 554        |
| 2079        | 2i       | $H_2O_2^+ + H_3N \rightarrow H_4N^+ + HO_2$<br>$H_2O_2^+ + NO \rightleftharpoons NO^+ + H_2O_2$                                                                                     | 5.00e-09             | 0.00 | 0        | 554        |
| 2019        | 2i       | $SiH_2^+ + SiH_4 \leftrightharpoons Si_2H_2^+ + H_2 + H_2$                                                                                                                          | 6.98e-11             | 0.00 | 0        | 542        |
| 2080        | 2i       | $SiH_2^+ + SiH_4 \rightarrow Si_2H_2^- + H_2^- + H_2^-$<br>$SiH_2^+ + SiH_4 \Rightarrow Si_2H^+ + H_2 + H_2^- + H_2^-$                                                              | 1.26e-11             | 0.00 | 0        | 542        |
| 2081        | 2i       | $SiH_2^+ + SiH_4 \Rightarrow Si_2H^- + H_2^- + H_1^-$<br>$SiH_2^+ + SiH_4 \Leftrightarrow Si_2H_3^+ + H_2^- + H_1^-$                                                                | 1.26e-11<br>1.16e-11 | 0.00 | 0        | 542        |
| 2082        | 2i       | $SiH_2^+ + SiH_4 \rightarrow Si_2H_3^- + H_2^- + H_1^-$<br>$SiH_2^+ + SiH_4 \rightleftharpoons Si_2^+ + H_2^- + H_2^- + H_2^-$                                                      | 2.91e-12             | 0.00 |          | 542        |
| 2083        | 2i       | $SiH_2 + SiH_4 = Si_2 + H_2 + H_2 + H_2$<br>$SiH_2^+ + Si_2H_6 = Si_2H_5^+ + SiH_3$                                                                                                 | 3.70e-10             | 0.00 | 0        | 542 $543$  |
|             | 2i       | $SiH_{2}^{+} + Si_{2}H_{6} = Si_{2}H_{5}^{-} + SiH_{3}$<br>$SiH_{2}^{+} + Si_{2}H_{6} = Si_{2}H_{4}^{+} + SiH_{4}$                                                                  |                      | 0.00 |          |            |
| 2085        | 21<br>2i | $SiH_{2}^{+} + Si_{2}H_{6} = Si_{2}H_{4}^{+} + SiH_{4}^{+}$<br>$SiH_{2}^{+} + Si_{2}H_{6} = Si_{3}H_{6}^{+} + H_{2}^{-}$                                                            | 3.15e-10             |      | $0 \\ 0$ | 543<br>543 |
| 2086        | 21<br>2i | $SiH_{2}^{+} + Si_{2}H_{6} = Si_{3}H_{6}^{+} + H_{2}$<br>$SiH_{2}^{+} + Si_{2}H_{6} = Si_{3}H_{7}^{+} + H$                                                                          | 2.33e-10<br>2.33e-10 | 0.00 |          | 543<br>543 |
| 2087        | 2i       | $SiH_{2}^{+} + Si_{2}H_{6} = Si_{3}H_{7}^{-} + H$<br>$SiH_{2}^{+} + Si_{2}H_{6} = Si_{2}H_{2}^{+} + SiH_{4} + H_{2}$                                                                |                      | 0.00 | 0        | 543<br>543 |
| 2088        | 21<br>2i | $Sin_2 + Si_2n_6 = Si_2n_2 + Sin_4 + n_2$<br>$Si_2H_2^+ + Si_2H_6 = Si_4H_4^+ + H_2 + H_2$                                                                                          | 1.37e-10             | 0.00 | 0        | 543<br>543 |
| 2089        |          |                                                                                                                                                                                     | 2.26e-10             | 0.00 | 0        | 543        |
| 2090        | 2i       | $Si_2H_2^+ + Si_2H_6 \leftrightharpoons Si_3H_4^+ + SiH_4$                                                                                                                          | 1.11e-10             | 0.00 | 0        | 543        |
| 2091        | 2i       | $\operatorname{Si}_{2}\operatorname{H}_{2}^{+} + \operatorname{Si}_{2}\operatorname{H}_{6} \leftrightharpoons \operatorname{Si}_{4}\operatorname{H}_{6}^{+} + \operatorname{H}_{2}$ | 7.38e-11             | 0.00 | 0        | 543        |

Table 6—Continued

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                      | TABLE 0—Commuea |      |                                                            |          |      |          |     |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|------------------------------------------------------------|----------|------|----------|-----|--|--|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                      | #               | Type | Reaction                                                   | α        | β    | $\gamma$ | Ref |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                      | 2092            | 2i   | $H_3^+ + Ar \leftrightharpoons ArH^+ + H_2$                | 9.99e-12 | 0.00 | 0        | 433 |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                      | 2093            | 2i   | $H_3^+ + HCN \leftrightharpoons CH_2N^+ + H_2$             | 7.00e-09 | 0.00 | 0        | 555 |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                      | 2094            | 2i   | $H_3^+ + CH_2O \leftrightharpoons CH_3O^+ + H_2$           | 6.30e-09 | 0.00 | 0        | 490 |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                      | 2095            | 2i   | $H_3^+ + HCOOH = CHO^+ + H_2O + H_2$                       | 4.27e-09 | 0.00 | 0        | 491 |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                      | 2096            | 2i   | $H_3^+ + HCOOH \leftrightharpoons H_3O^+ + CO + H_2$       | 1.83e-09 | 0.00 | 0        | 491 |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                      | 2097            | 2i   | $H_3^+ + CH_3NO_2 \leftrightharpoons CH_4NO_2^+ + H_2$     | 4.42e-09 | 0.00 | 0        | 462 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2098            | 2i   | $H_3^+ + CH_3NO_2 \leftrightharpoons NO^+ + CH_3OH + H_2$  | 3.53e-09 | 0.00 | 0        | 462 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2099            | 2i   | $H_3^+ + CH_3NO_2 \leftrightharpoons CH_3NO_2^+ + H_2 + H$ | 8.03e-11 | 0.00 | 0        | 462 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2100            | 2i   | $H_3^+ + CH_4 \leftrightharpoons CH_5^+ + H_2$             | 1.60e-09 | 0.00 | 0        | 111 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2101            | 2i   | $H_3^+ + CO = CHO^+ + H_2$                                 | 1.40e-09 | 0.00 | 0        | 111 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2102            | 2i   | $H_3^+ + CO_2 \leftrightharpoons CHO_2^+ + H_2$            | 1.90e-09 | 0.00 | 0        | 111 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2103            | 2i   | $H_3^+ + C_2H_2 \leftrightharpoons C_2H_3^+ + H_2$         | 2.90e-09 | 0.00 | 0        | 464 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2104            | 2i   | $H_3^+ + CH_3CN \leftrightharpoons C_2H_4N^+ + H_2$        | 7.30e-09 | 0.00 | 0        | 555 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2105            | 2i   | $H_3^+ + C_2H_4 \leftrightharpoons C_2H_5^+ + H_2$         | 1.90e-09 | 0.00 | 0        | 111 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2106            | 2i   |                                                            | 1.21e-09 | 0.00 | 0        | 111 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2107            | 2i   |                                                            | 6.80e-09 | 0.00 | 0        | 491 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2108            | 2i   |                                                            | 7.30e-09 | 0.00 | 0        | 495 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2109            | 2i   |                                                            | 7.30e-09 | 0.00 | 0        | 495 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2110            | 2i   | $H_3^+ + C_2H_6 \leftrightharpoons C_2H_7^+ + H_2$         |          | 0.00 | 0        | 111 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2111            |      |                                                            | 2.40e-09 |      | 0        |     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2112            |      |                                                            |          |      | 0        | 555 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2113            | 2i   |                                                            | 1.05e-08 | 0.00 | 0        | 469 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2114            | 2i   |                                                            |          |      | 0        |     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2115            |      |                                                            |          |      | 0        |     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2116            |      |                                                            | 1.40e-09 |      | 0        |     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2117            |      |                                                            |          |      | 0        |     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2118            |      |                                                            |          |      |          |     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2119            |      |                                                            |          |      |          |     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2120            |      |                                                            |          |      |          |     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2121            |      |                                                            |          |      |          |     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2122            |      |                                                            |          |      |          |     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2123            |      |                                                            |          |      |          |     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2124            | 2i   |                                                            |          |      | 0        | 485 |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2125            |      |                                                            | 9.00e-10 |      |          |     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2126            |      | $H_3N^+ + CH_5N \leftrightharpoons CH_5N^+ + H_3N$         |          |      |          |     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2127            |      |                                                            |          |      |          |     |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                       | 2128            | 2i   | $H_3N^+ + CH_5N \leftrightharpoons H_4N^+ + CH_3 + HN$     | 2.70e-10 | 0.00 | 0        | 531 |  |  |
| 2130 2i $H_3N^+ + C_2H_4O = H_4N^+ + C_2H_3O$ 4.37e-10 0.00 0 470<br>2131 2i $H_3N^+ + (CH_3)_2O = H_4N^+ + CH_3CH_2O$ 9.37e-10 0.00 0 470 | 2129            | 2i   | $H_3N^+ + C_2H_4 \leftrightharpoons H_4N^+ + C_2H_3$       | 1.40e-09 | 0.00 | 0        | 532 |  |  |
| 2131 2i $H_3N^+ + (CH_3)_2O = H_4N^+ + CH_3CH_2O$ 9.37e-10 0.00 0 470                                                                      | 2130            | 2i   |                                                            | 4.37e-10 | 0.00 | 0        | 470 |  |  |
|                                                                                                                                            | 2131            | 2i   |                                                            | 9.37e-10 | 0.00 | 0        | 470 |  |  |
|                                                                                                                                            | 2132            | 2i   | $H_3N^+ + H_2 \leftrightharpoons H_4N^+ + H$               | 4.89e-12 | 0.00 | 510      |     |  |  |

Table 6— Continued

| #    | Type | Reaction                                                                                                                                                                                                     | α        | β    | $\gamma$ | Ref |
|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|----------|-----|
| 2133 | 2i   | $H_3N^+ + H_2O \leftrightharpoons H_4N^+ + HO$                                                                                                                                                               | 1.63e-10 | 0.00 | 0        | 558 |
| 2134 | 2i   | $H_3N^+ + H_2O \leftrightharpoons H_3O^+ + H_2N$                                                                                                                                                             | 8.75e-11 | 0.00 | 0        | 558 |
| 2135 | 2i   | $H_3N^+ + H_3N \leftrightharpoons H_4N^+ + H_2N$                                                                                                                                                             | 1.07e-09 | 0.00 | 0        | 538 |
| 2136 | 2i   | $H_3N^+ + NO \leftrightharpoons NO^+ + H_3N$                                                                                                                                                                 | 7.20e-10 | 0.00 | 0        | 531 |
| 2137 | 2i   | $H_3O^+ + HCN \leftrightharpoons CH_2N^+ + H_2O$                                                                                                                                                             | 3.50e-09 | 0.00 | 0        | 465 |
| 2138 | 2i   | $H_3O^+ + CH_2O \leftrightharpoons CH_3O^+ + H_2O$                                                                                                                                                           | 3.00e-09 | 0.00 | 0        | 463 |
| 2139 | 2i   | $H_3O^+ + HCOOH \leftrightharpoons CH_3O_2^+ + H_2O$                                                                                                                                                         | 2.70e-09 | 0.00 | 0        | 491 |
| 2140 | 2i   | $\mathrm{H_3O^+} + \mathrm{CH_3NO_2} \leftrightharpoons \mathrm{CH_4NO_2^+} + \mathrm{H_2O}$                                                                                                                 | 4.11e-09 | 0.00 | 0        | 462 |
| 2141 | 2i   | $H_3O^+ + CH_3OH \leftrightharpoons CH_5O^+ + H_2O$                                                                                                                                                          | 2.20e-09 | 0.00 | 0        | 559 |
| 2142 | 2i   | $H_3O^+ + C_2H_2O \leftrightharpoons C_2H_3O^+ + H_2O$                                                                                                                                                       | 2.00e-09 | 0.00 | 0        | 560 |
| 2143 | 2i   | $H_3O^+ + CH_3CN \leftrightharpoons C_2H_4N^+ + H_2O$                                                                                                                                                        | 4.70e-09 | 0.00 | 0        | 465 |
| 2144 | 2i   | $H_3O^+ + C_2H_4 \leftrightharpoons C_2H_5^+ + H_2O$                                                                                                                                                         | 6.30e-11 | 0.00 | 0        | 561 |
| 2145 | 2i   | $H_3O^+ + C_2H_4O \leftrightharpoons C_2H_5O^+ + H_2O$                                                                                                                                                       | 3.60e-09 | 0.00 | 0        | 560 |
| 2146 | 2i   | $H_3O^+ + CH_3COOH \rightleftharpoons C_2H_5O_2^+ + H_2O$                                                                                                                                                    | 2.85e-09 | 0.00 | 0        | 491 |
| 2147 | 2i   | $H_3O^+ + CH_3COOH \rightleftharpoons C_2H_3O^+ + H_2O + H_2O$                                                                                                                                               | 1.50e-10 | 0.00 | 0        | 491 |
| 2148 | 2i   | $H_3O^+ + CH_3OCHO \rightleftharpoons C_2H_5O_2^+ + H_2O$                                                                                                                                                    | 3.00e-09 | 0.00 | 0        | 562 |
| 2149 | 2i   | $H_3O^+ + (CH_3)_2O = C_2H_7O^+ + H_2O$                                                                                                                                                                      | 2.70e-09 | 0.00 | 0        | 560 |
| 2150 | 2i   | $H_3O^+ + C_2H_5OH \rightleftharpoons C_2H_7O^+ + H_2O$                                                                                                                                                      | 2.80e-09 | 0.00 | 0        | 560 |
| 2151 | 2i   | $H_3O^+ + HC_3N \leftrightharpoons C_3H_2N^+ + H_2O$                                                                                                                                                         | 3.80e-09 | 0.00 | 0        | 469 |
| 2152 | 2i   | $H_3O^+ + HNO_3 \rightleftharpoons H_2NO_3^+ + H_2O$                                                                                                                                                         | 1.60e-09 | 0.00 | 0        | 114 |
| 2153 | 2i   | $H_3O^+ + H_3N \leftrightharpoons H_4N^+ + H_2O$                                                                                                                                                             | 2.50e-09 | 0.00 | 0        | 563 |
| 2154 | 2i   | $H_3O^+ + NO = NO^+ + H_2O + H$                                                                                                                                                                              | 1.50e-12 | 0.00 | 0        | 564 |
| 2155 | 2i   | $H_3O_2^+ + H_2O = H_3O^+ + H_2O_2$                                                                                                                                                                          | 1.00e-10 | 0.00 | 0        | 554 |
| 2156 | 2i   | $H_3O_2^+ + O_2 \leftrightharpoons HO_4^+ + H_2$                                                                                                                                                             | 5.00e-10 | 0.00 | 0        | 111 |
| 2157 | 2i   | $SiH_3^+ + H_2O \leftrightharpoons SiH_3O^+ + H_2$                                                                                                                                                           | 5.80e-12 | 0.00 | 0        | 565 |
| 2158 | 2i   | $SiH_3^+ + SiH_4 = Si_2H^+ + H_2 + H_2 + H_2$                                                                                                                                                                | 1.30e-10 | 0.00 | 0        | 542 |
| 2159 | 2i   | $SiH_3^+ + SiH_4 \leftrightharpoons Si_2H_3^+ + H_2 + H_2$                                                                                                                                                   | 1.20e-10 | 0.00 | 0        | 542 |
| 2160 | 2i   | $SiH_3^+ + SiH_4 \leftrightharpoons Si_2H_2^+ + H_2 + H_2 + H$                                                                                                                                               | 2.50e-11 | 0.00 | 0        | 542 |
| 2161 | 2i   | $SiH_3^+ + Si_2H_6 \leftrightharpoons Si_2H_5^+ + SiH_4$                                                                                                                                                     | 5.22e-10 | 0.00 | 0        | 543 |
| 2162 | 2i   | $\operatorname{SiH}_{3}^{+} + \operatorname{Si}_{2}\operatorname{H}_{6} \leftrightharpoons \operatorname{Si}_{3}\operatorname{H}_{7}^{+} + \operatorname{H}_{2}$                                             | 3.48e-10 | 0.00 | 0        | 543 |
| 2163 | 2i   | $\mathrm{Si}_{2}\mathrm{H}_{3}^{+} + \mathrm{Si}_{2}\mathrm{H}_{6} \leftrightharpoons \mathrm{Si}_{4}\mathrm{H}_{5}^{+} + \mathrm{H}_{2} + \mathrm{H}_{2}$                                                   | 3.13e-10 | 0.00 | 0        | 543 |
| 2164 | 2i   | $\operatorname{Si}_{2}\operatorname{H}_{3}^{+} + \operatorname{Si}_{2}\operatorname{H}_{6} \leftrightharpoons \operatorname{Si}_{3}\operatorname{H}_{5}^{+} + \operatorname{Si}\operatorname{H}_{4}$         | 1.20e-10 | 0.00 | 0        | 543 |
| 2165 | 2i   | $\operatorname{Si}_{2}\operatorname{H}_{3}^{+} + \operatorname{Si}_{2}\operatorname{H}_{6} \leftrightharpoons \operatorname{Si}_{3}\operatorname{H}_{3}^{+} + \operatorname{SiH}_{4} + \operatorname{H}_{2}$ | 6.77e-11 | 0.00 | 0        | 543 |
| 2166 | 2i   | $\operatorname{Si}_{2}\operatorname{H}_{3}^{+} + \operatorname{Si}_{2}\operatorname{H}_{6} \leftrightharpoons \operatorname{Si}_{4}\operatorname{H}_{7}^{+} + \operatorname{H}_{2}$                          | 2.08e-11 | 0.00 | 0        | 543 |
| 2167 | 2i   | $H_4N^+ + CH_5N \leftrightharpoons CH_6N^+ + H_3N$                                                                                                                                                           | 2.00e-09 | 0.00 | 0        | 566 |
| 2168 | 2i   | $Fe^+ + N_2O \leftrightharpoons FeO^+ + N_2$                                                                                                                                                                 | 7.00e-11 | 0.00 | 0        | 567 |
| 2169 | 2i   | $Fe^+ + O_3 \leftrightharpoons FeO^+ + O_2$                                                                                                                                                                  | 1.50e-10 | 0.00 | 0        | 108 |
| 2170 | 2i   | $FeO^+ + CO \leftrightharpoons Fe^+ + CO_2$                                                                                                                                                                  | 9.00e-10 | 0.00 | 0        | 567 |
| 2171 | 2i   | $He^+ + Ar \leftrightharpoons Ar^+ + He$                                                                                                                                                                     | 5.00e-14 | 0.00 | 0        | 568 |
| 2172 | 2i   | $He^+ + HCN \leftrightharpoons CN^+ + H + He$                                                                                                                                                                | 1.95e-09 | 0.00 | 0        | 457 |
| 2173 | 2i   | $He^+ + HCN \leftrightharpoons CHN^+ + He$                                                                                                                                                                   | 7.80e-10 | 0.00 | 0        | 457 |

Table 6—Continued

| #    | Type | Reaction                                                                                          | α        | β    | $\gamma$ | Ref |
|------|------|---------------------------------------------------------------------------------------------------|----------|------|----------|-----|
| 2174 | 2i   | $He^+ + HCN \leftrightharpoons CH^+ + He + N$                                                     | 7.80e-10 | 0.00 | 0        | 457 |
| 2175 | 2i   | $He^+ + HCN = C^+ + H + He + N$                                                                   | 3.90e-10 | 0.00 | 0        | 457 |
| 2176 | 2i   | $He^+ + HCOOH = CHO^+ + HO + He$                                                                  | 2.87e-09 | 0.00 | 0        | 443 |
| 2177 | 2i   | $He^+ + HCOOH = CHO_2^+ + H + He$                                                                 | 1.23e-09 | 0.00 | 0        | 443 |
| 2178 | 2i   | $He^+ + HCOOH = CH_2O_2^+ + He$                                                                   | 4.10e-10 | 0.00 | 0        | 443 |
| 2179 | 2i   | $He^+ + CH_4 \leftrightharpoons CH_2^+ + H_2^- + He$                                              | 9.12e-10 | 0.00 | 0        | 569 |
| 2180 | 2i   | $He^+ + CH_4 \leftrightharpoons H^+ + CH_3 + He$                                                  | 3.04e-10 | 0.00 | 0        | 569 |
| 2181 | 2i   | $He^+ + CH_4 \leftrightharpoons CH^+ + H_2 + H + He$                                              | 2.72e-10 | 0.00 | 0        | 569 |
| 2182 | 2i   | $He^+ + CH_4 \leftrightharpoons CH_3^+ + H + He$                                                  | 9.60e-11 | 0.00 | 0        | 569 |
| 2183 | 2i   | $He^+ + CH_4 \leftrightharpoons CH_4^+ + He$                                                      | 1.60e-11 | 0.00 | 0        | 569 |
| 2184 | 2i   | $He^+ + CO \leftrightharpoons CO^+ + He$                                                          | 1.60e-09 | 0.00 | 0        | 423 |
| 2185 | 2i   | $He^+ + CO \leftrightharpoons C^+ + O + He$                                                       | 1.05e-09 | 0.00 | 0        | 422 |
| 2186 | 2i   | $He^+ + CO \leftrightharpoons O^+ + C + He$                                                       | 3.50e-10 | 0.00 | 0        | 422 |
| 2187 | 2i   | $He^+ + CO_2 \leftrightharpoons CO^+ + O + He$                                                    | 8.69e-10 | 0.00 | 0        | 569 |
| 2188 | 2i   | $He^+ + CO_2 \leftrightharpoons CO_2^+ + He$                                                      | 1.21e-10 | 0.00 | 0        | 569 |
| 2189 | 2i   | $He^+ + CO_2 \leftrightharpoons O^+ + CO + He$                                                    | 9.90e-11 | 0.00 | 0        | 569 |
| 2190 | 2i   | $He^+ + CO_2 \leftrightharpoons O_2^+ + C + He$                                                   | 1.10e-11 | 0.00 | 0        | 569 |
| 2191 | 2i   | $\mathrm{He^+} + \mathrm{C_2H_6} \leftrightharpoons \mathrm{C_2H_6^+} + \mathrm{He}$              | 2.66e-09 | 0.00 | 0        | 425 |
| 2192 | 2i   | $\mathrm{He^+} + \mathrm{C_2H_6} \leftrightharpoons \mathrm{C_2H_5^+} + \mathrm{H} + \mathrm{He}$ | 2.66e-09 | 0.00 | 0        | 425 |
| 2193 | 2i   | $\mathrm{He^+} + \mathrm{C_2H_6} \leftrightharpoons \mathrm{H^+} + \mathrm{C_2H_5} + \mathrm{He}$ | 2.66e-09 | 0.00 | 0        | 425 |
| 2194 | 2i   | $He^{+} + C_{2}H_{6} \leftrightharpoons C_{2}H_{4}^{+} + H_{2} + He$                              | 2.66e-09 | 0.00 | 0        | 425 |
| 2195 | 2i   | $He^+ + C_2H_6 \leftrightharpoons C_2H_3^+ + H_2 + H + He$                                        | 2.66e-09 | 0.00 | 0        | 425 |
| 2196 | 2i   | $He^+ + HC_3N \leftrightharpoons C_2^+ + HCN + He$                                                | 2.30e-09 | 0.00 | 0        | 479 |
| 2197 | 2i   | $He^+ + HC_3N \leftrightharpoons C_3^+ + HN + He$                                                 | 2.30e-09 | 0.00 | 0        | 479 |
| 2198 | 2i   | $He^+ + HC_3N \leftrightharpoons C_2H^+ + CN + He$                                                | 2.30e-09 | 0.00 | 0        | 479 |
| 2199 | 2i   | $\mathrm{He^+} + \mathrm{H_2} \leftrightharpoons \mathrm{HeH^+} + \mathrm{H}$                     | 5.00e-13 | 0.00 | 0        | 547 |
| 2200 | 2i   | $\mathrm{He^+} + \mathrm{H_2} \leftrightharpoons \mathrm{H_2^+} + \mathrm{He}$                    | 5.00e-13 | 0.00 | 0        | 547 |
| 2201 | 2i   | $He^+ + H_2 \leftrightharpoons H^+ + H + He$                                                      | 2.00e-12 | 0.00 | 0        | 547 |
| 2202 | 2i   | $He^+ + H_2O \leftrightharpoons HeH^+ + HO$                                                       | 1.00e-10 | 0.00 | 0        | 570 |
| 2203 | 2i   | $He^+ + H_2O \leftrightharpoons HO^+ + H + He$                                                    | 4.57e-10 | 0.00 | 0        | 570 |
| 2204 | 2i   | $He^+ + H_2O \leftrightharpoons H_2O^+ + He$                                                      | 9.35e-11 | 0.00 | 0        | 570 |
| 2205 | 2i   | $He^+ + H_3N \leftrightharpoons H_2N^+ + H + He$                                                  | 1.60e-09 | 0.00 | 0        | 428 |
| 2206 | 2i   | $He^+ + H_3N \leftrightharpoons H_3N^+ + He$                                                      | 2.40e-10 | 0.00 | 0        | 428 |
| 2207 | 2i   | $He^+ + H_3N \leftrightharpoons HN^+ + H_2 + He$                                                  | 1.60e-10 | 0.00 | 0        | 428 |
| 2208 | 2i   | $He^+ + SiH_4 \leftrightharpoons Si^+ + H_2 + H_2 + He$                                           | 2.40e-09 | 0.00 | 0        | 425 |
| 2209 | 2i   | $He^+ + SiH_4 \leftrightharpoons SiH^+ + H_2 + H + He$                                            | 2.40e-09 | 0.00 | 0        | 425 |
| 2210 | 2i   | $He^+ + SiH_4 \rightleftharpoons H^+ + SiH_3 + He$                                                | 2.40e-09 | 0.00 | 0        | 425 |
| 2211 | 2i   | $He^{+} + Si_{2}H_{6} \leftrightharpoons Si_{2}H_{2}^{+} + H_{2} + H_{2} + He$                    | 2.40e-09 | 0.00 | 0        | 425 |
| 2212 | 2i   | $He^+ + NO = NO^+ + He$                                                                           | 1.60e-09 | 0.00 | 0        | 423 |
| 2213 | 2i   | $He^+ + NO \leftrightharpoons N^+ + O + He$                                                       | 9.38e-10 | 0.00 | 0        | 422 |
| 2214 | 2i   | $He^+ + NO \leftrightharpoons O^+ + N + He$                                                       | 3.13e-10 | 0.00 | 0        | 422 |

Table 6—Continued

| #    | Type | Reaction                                                                                                                                                | α         | β    | $\gamma$ | Ref |
|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|----------|-----|
| 2215 | 2i   | $He^+ + N_2 \leftrightharpoons N^+ + N + He$                                                                                                            | 8.25e-10  | 0.00 | 0        | 571 |
| 2216 | 2i   | $He^+ + N_2 \leftrightharpoons N_2^+ + He$                                                                                                              | 6.75 e-10 | 0.00 | 0        | 571 |
| 2217 | 2i   | $He^+ + N_2O = N_2O^+ + He$                                                                                                                             | 2.30e-09  | 0.00 | 0        | 423 |
| 2218 | 2i   | $He^+ + O_2 \leftrightharpoons O^+ + O + He$                                                                                                            | 6.80 e-10 | 0.00 | 0        | 571 |
| 2219 | 2i   | $He^+ + O_2 \leftrightharpoons O_2^+ + He$                                                                                                              | 1.70e-10  | 0.00 | 0        | 571 |
| 2220 | 2i   | $HeH^{+} + C_{2}H_{6} = C_{2}H_{5}^{+} + H_{2} + He$                                                                                                    | 2.10e-09  | 0.00 | 0        | 467 |
| 2221 | 2i   | $HeH^+ + C_2H_6 \leftrightharpoons C_2H_3^+ + H_2 + H_2 + H_2$                                                                                          | 2.10e-09  | 0.00 | 0        | 467 |
| 2222 | 2i   | $HeH^+ + H_2 \leftrightharpoons H_3^+ + He$                                                                                                             | 1.50e-09  | 0.00 | 0        | 572 |
| 2223 | 2i   | $HeH^+ + N_2 \leftrightharpoons HN_2^+ + He$                                                                                                            | 1.70e-09  | 0.00 | 0        | 556 |
| 2224 | 2i   | $HeH^+ + O_2 \leftrightharpoons HO_2^+ + He$                                                                                                            | 1.10e-09  | 0.00 | 0        | 492 |
| 2225 | 2i   | $He_2^+ + Ar \leftrightharpoons Ar^+ + He + He$                                                                                                         | 2.00e-10  | 0.00 | 0        | 437 |
| 2226 | 2i   | $He_2^+ + CO = CO^+ + He + He$                                                                                                                          | 1.40e-09  | 0.00 | 0        | 437 |
| 2227 | 2i   | $\operatorname{He}_{2}^{+} + \operatorname{CO}_{2} \leftrightharpoons \operatorname{CO}^{+} + \operatorname{O} + \operatorname{He} + \operatorname{He}$ | 1.80e-09  | 0.00 | 0        | 437 |
| 2228 | 2i   | $\operatorname{He}_{2}^{+} + \operatorname{CO}_{2} \leftrightharpoons \operatorname{CO}_{2}^{+} + \operatorname{He} + \operatorname{He}$                | 1.80e-09  | 0.00 | 0        | 437 |
| 2229 | 2i   | $\operatorname{He}_{2}^{+} + \operatorname{CO}_{2} \leftrightharpoons \operatorname{O}^{+} + \operatorname{CO} + \operatorname{He} + \operatorname{He}$ | 1.80e-09  | 0.00 | 0        | 437 |
| 2230 | 2i   | $\text{He}_2^+ + \text{NO} \leftrightharpoons \text{NO}^+ + \text{He} + \text{He}$                                                                      | 1.30e-09  | 0.00 | 0        | 437 |
| 2231 | 2i   | $\operatorname{He}_{2}^{+} + \operatorname{N}_{2} \leftrightharpoons \operatorname{N}_{2}^{+} + \operatorname{He} + \operatorname{He}$                  | 1.20e-09  | 0.00 | 0        | 437 |
| 2232 | 2i   | $He_2^+ + O_2 \leftrightharpoons O_2^+ + He + He$                                                                                                       | 7.88e-10  | 0.00 | 0        | 437 |
| 2233 | 2i   | $\operatorname{He}_{2}^{+} + \operatorname{O}_{2} = \operatorname{O}^{+} + \operatorname{O} + \operatorname{He} + \operatorname{He}$                    | 2.63e-10  | 0.00 | 0        | 437 |
| 2234 | 2i   | $He_2^+ + O_2 \leftrightharpoons O^+ + O + He + He$                                                                                                     | 2.63e-10  | 0.00 | 0        | 437 |
| 2235 | 2i   | $Mg^+ + HNO_3 \leftrightharpoons MgHO^+ + NO_2$                                                                                                         | 5.80e-11  | 0.00 | 0        | 573 |
| 2236 | 2i   | $Mg^+ + H_2O_2 \leftrightharpoons MgHO^+ + HO$                                                                                                          | 1.30e-09  | 0.00 | 0        | 573 |
| 2237 | 2i   | $Mg^+ + N_2O \leftrightharpoons MgO^+ + N_2$                                                                                                            | 7.00e-10  | 0.00 | 0        | 573 |
| 2238 | 2i   | $Mg^+ + O_3 \leftrightharpoons MgO^+ + O_2$                                                                                                             | 2.30e-10  | 0.00 | 0        | 108 |
| 2239 | 2i   | $MgO^+ + CO \leftrightharpoons Mg^+ + CO_2$                                                                                                             | 3.20e-10  | 0.00 | 0        | 573 |
| 2240 | 2i   | $MgO^+ + NO \leftrightharpoons Mg^+ + NO_2$                                                                                                             | 4.30e-10  | 0.00 | 0        | 573 |
| 2241 | 2i   | $MgO^+ + O \leftrightharpoons Mg^+ + O_2$                                                                                                               | 1.00e-10  | 0.00 | 0        | 108 |
| 2242 | 2i   | $MgO^+ + O_3 \leftrightharpoons Mg^+ + O_2 + O_2$                                                                                                       | 8.00e-10  | 0.00 | 0        | 573 |
| 2243 | 2i   | $MgHO^+ + HNO_3 \leftrightharpoons NO_2^+ + MgO_2H_2$                                                                                                   | 4.40e-10  | 0.00 | 0        | 573 |
| 2244 | 2i   | $MgHO^+ + H_2O_2 \leftrightharpoons MgH_2O_2^+ + HO$                                                                                                    | 1.00e-09  | 0.00 | 0        | 573 |
| 2245 | 2i   | $N^+ + CH_2O \rightleftharpoons CH_2O^+ + N$                                                                                                            | 1.89e-09  | 0.00 | 0        | 574 |
| 2246 | 2i   | $N^+ + CH_2O \leftrightharpoons CHO^+ + HN$                                                                                                             | 7.25e-10  | 0.00 | 0        | 574 |
| 2247 | 2i   | $N^+ + CH_2O \leftrightharpoons NO^+ + CH_2$                                                                                                            | 2.90e-10  | 0.00 | 0        | 574 |
| 2248 | 2i   | $N^+ + HCOOH = CHO^+ + HNO$                                                                                                                             | 6.20e-09  | 0.00 | 0        | 443 |
| 2249 | 2i   | $N^+ + CH_4 \leftrightharpoons CH_3^+ + HN$                                                                                                             | 4.79e-10  | 0.00 | 0        | 574 |
| 2250 | 2i   | $N^+ + CH_4 \leftrightharpoons CH_2N^+ + H_2$                                                                                                           | 3.76e-10  | 0.00 | 0        | 574 |
| 2251 | 2i   | $N^+ + CH_4 \leftrightharpoons CHN^+ + H_2 + H$                                                                                                         | 5.64e-11  | 0.00 | 0        | 574 |
| 2252 | 2i   | $N^+ + CH_4 \leftrightharpoons CH_4^+ + N$                                                                                                              | 2.82e-11  | 0.00 | 0        | 574 |
| 2253 | 2i   | $N^+ + CH_3OH \leftrightharpoons CH_4O^+ + N$                                                                                                           | 1.40e-09  | 0.00 | 0        | 574 |
| 2254 | 2i   | $N^+ + CH_3OH \rightleftharpoons CH_2O^+ + H_2N$                                                                                                        | 6.00e-10  | 0.00 | 0        | 574 |
| 2255 | 2i   | $N^+ + CH_3OH \rightleftharpoons CH_3O^+ + HN$                                                                                                          | 3.20e-10  | 0.00 | 0        | 574 |

Table 6— Continued

| #    | Type | Reaction                                                | α        | β    | $\gamma$ | Ref |
|------|------|---------------------------------------------------------|----------|------|----------|-----|
| 2256 | 2i   | $N^+ + CH_3OH \leftrightharpoons NO^+ + CH_4$           | 2.00e-10 | 0.00 | 0        | 574 |
| 2257 | 2i   | $N^+ + CH_3OH \leftrightharpoons CH_3^+ + HNO$          | 8.00e-11 | 0.00 | 0        | 574 |
| 2258 | 2i   | $N^+ + CH_5N \leftrightharpoons CH_4N^+ + HN$           | 1.40e-09 | 0.00 | 0        | 574 |
| 2259 | 2i   | $N^+ + CH_5N \leftrightharpoons CH_2N^+ + HN + H_2$     | 2.00e-10 | 0.00 | 0        | 574 |
| 2260 | 2i   | $N^+ + CH_5N \leftrightharpoons CH_3N^+ + H_2N$         | 1.40e-10 | 0.00 | 0        | 574 |
| 2261 | 2i   | $N^+ + CH_5N \leftrightharpoons CH_5N^+ + N$            | 1.40e-10 | 0.00 | 0        | 574 |
| 2262 | 2i   | $N^+ + CH_5N \leftrightharpoons CH_3^+ + H_2 + N_2$     | 1.20e-10 | 0.00 | 0        | 574 |
| 2263 | 2i   | $N^+ + CO = CO^+ + N$                                   | 3.96e-10 | 0.00 | 0        | 574 |
| 2264 | 2i   | $N^+ + CO = NO^+ + C$                                   | 5.40e-11 | 0.00 | 0        | 574 |
| 2265 | 2i   | $N^+ + CO_2 \leftrightharpoons CO_2^+ + N$              | 7.50e-10 | 0.00 | 0        | 574 |
| 2266 | 2i   | $N^+ + CO_2 = CO^+ + NO$                                | 2.50e-10 | 0.00 | 0        | 574 |
| 2267 | 2i   | $N^+ + C_2H_4 \leftrightharpoons C_2H_3^+ + HN$         | 4.80e-10 | 0.00 | 0        | 532 |
| 2268 | 2i   | $N^+ + C_2H_4 \leftrightharpoons C_2H_4^+ + N$          | 4.00e-10 | 0.00 | 0        | 532 |
| 2269 | 2i   | $N^+ + C_2H_4 \leftrightharpoons CHN^+ + CH_3$          | 2.40e-10 | 0.00 | 0        | 532 |
| 2270 | 2i   | $N^+ + C_2H_4 \leftrightharpoons C_2H_2^+ + H_2N$       | 1.60e-10 | 0.00 | 0        | 532 |
| 2271 | 2i   | $N^+ + C_2H_4 \leftrightharpoons CH_2N^+ + CH_2$        | 1.60e-10 | 0.00 | 0        | 532 |
| 2272 | 2i   | $N^+ + C_2H_4 \leftrightharpoons C_2H_2N^+ + H_2$       | 1.60e-10 | 0.00 | 0        | 532 |
| 2273 | 2i   | $N^+ + NCCN \rightleftharpoons C_2N^+ + N_2$            | 9.80e-10 | 0.00 | 0        | 446 |
| 2274 | 2i   | $N^+ + NCCN \leftrightharpoons C_2N_2^+ + N$            | 4.20e-10 | 0.00 | 0        | 446 |
| 2275 | 2i   | $N^+ + H_2 \leftrightharpoons HN^+ + H$                 | 4.80e-10 | 0.00 | 0        | 574 |
| 2276 | 2i   | $N^+ + H_2O \rightleftharpoons H_2O^+ + N$              | 2.80e-09 | 0.00 | 0        | 574 |
| 2277 | 2i   | $N^+ + H_3N \leftrightharpoons H_3N^+ + N$              | 1.97e-09 | 0.00 | 0        | 574 |
| 2278 | 2i   | $N^+ + H_3N \leftrightharpoons HN_2^+ + H_2$            | 2.16e-10 | 0.00 | 0        | 574 |
| 2279 | 2i   | $N^+ + H_3N \leftrightharpoons H_2N^+ + HN$             | 2.16e-10 | 0.00 | 0        | 574 |
| 2280 | 2i   | $N^+ + NO = NO^+ + N$                                   | 4.51e-10 | 0.00 | 0        | 575 |
| 2281 | 2i   | $N^+ + NO = N_2^+ + O$                                  | 7.95e-11 | 0.00 | 0        | 575 |
| 2282 | 2i   | $N^+ + O_2 = O_2^+ + N$                                 | 3.11e-10 | 0.00 | 0        | 574 |
| 2283 | 2i   | $N^+ + O_2 = NO^+ + O$                                  | 2.62e-10 | 0.00 | 0        | 574 |
| 2284 | 2i   | $N^+ + O_2 \leftrightharpoons O^+ + NO$                 | 3.66e-11 | 0.00 | 0        | 574 |
| 2285 | 2i   | $NO^+ + CH_5N \leftrightharpoons CH_5N^+ + NO$          | 8.20e-10 | 0.00 | 0        | 574 |
| 2286 | 2i   | $NO^+ + C_2H_4O \rightleftharpoons C_2H_3O^+ + HNO$     | 3.50e-10 | 0.00 | 0        | 576 |
| 2287 | 2i   | $NO^+ + C_2H_5OH \rightleftharpoons C_2H_5O^+ + HNO$    | 8.00e-10 | 0.00 | 0        | 576 |
| 2288 | 2i   | $NO_2^+ + C_2H_6 \rightleftharpoons C_2H_5^+ + NO + HO$ | 8.90e-10 | 0.00 | 0        | 528 |
| 2289 | 2i   | $NO_2^+ + N \leftrightharpoons NO^+ + NO$               | 7.99e-12 | 0.00 | 0        | 577 |
| 2290 | 2i   | $NO_2^+ + NO \leftrightharpoons NO^+ + NO_2$            | 2.90e-10 |      | 0        | 578 |
| 2291 | 2i   | $NO_2^+ + O = NO^+ + O_2$                               | 7.99e-12 | 0.00 | 0        | 577 |
| 2292 | 2i   | $N_2^+ + Ar \leftrightharpoons Ar^+ + N_2$              | 3.50e-11 | 0.00 | 0        | 431 |
| 2293 | 2i   | $N_2^+ + CH_2O \rightleftharpoons CHO^+ + N_2 + H$      | 2.52e-09 | 0.00 | 0        | 574 |
| 2294 | 2i   | $N_2^+ + CH_2O \rightleftharpoons CH_2O^+ + N_2$        | 3.77e-10 | 0.00 | 0        | 574 |
| 2295 | 2i   | $N_2^+ + HCOOH \rightleftharpoons CHO^+ + N_2 + HO$     | 4.60e-09 | 0.00 | 0        | 443 |
| 2296 | 2i   | $N_2^+ + CH_4 \leftrightharpoons CH_3^+ + N_2 + H$      | 9.30e-10 | 0.00 | 0        | 574 |

Table 6—Continued

| #    | Type | Reaction                                                    | α        | β    | $\gamma$ | Ref |
|------|------|-------------------------------------------------------------|----------|------|----------|-----|
| 2297 | 2i   | $N_2^+ + CH_4 \leftrightharpoons CH_2^+ + N_2 + H_2$        | 7.00e-11 | 0.00 | 0        | 574 |
| 2298 | 2i   | $N_2^+ + CH_3OH = CH_3^+ + HO + N_2$                        | 1.11e-09 | 0.00 | 0        | 574 |
| 2299 | 2i   | $N_2^+ + CH_3OH \leftrightharpoons CH_3O^+ + N_2 + H$       | 1.68e-10 | 0.00 | 0        | 574 |
| 2300 | 2i   | $N_2^+ + CH_3OH = CH_4O^+ + N_2$                            | 1.26e-10 | 0.00 | 0        | 574 |
| 2301 | 2i   | $N_2^{+} + CH_5N \leftrightharpoons CH_4N^+ + N_2 + H$      | 8.76e-10 | 0.00 | 0        | 574 |
| 2302 | 2i   | $N_2^{+} + CH_5N \leftrightharpoons CH_3^{+} + H_2N + N_2$  | 2.52e-10 | 0.00 | 0        | 574 |
| 2303 | 2i   | $N_2^+ + CH_5N \leftrightharpoons CH_5N^+ + N_2$            | 7.20e-11 | 0.00 | 0        | 574 |
| 2304 | 2i   | $N_2^+ + CO = CO^+ + N_2$                                   | 7.40e-11 | 0.00 | 0        | 574 |
| 2305 | 2i   | $N_2^+ + CO_2 \leftrightharpoons CO_2^+ + N_2$              | 7.70e-10 | 0.00 | 0        | 574 |
| 2306 | 2i   | $N_2^+ + NCCN \leftrightharpoons \overline{C_2}N_2^+ + N_2$ | 8.17e-10 | 0.00 | 0        | 436 |
| 2307 | 2i   | $N_2^+ + NCCN \leftrightharpoons N_3^+ + C_2N$              | 2.15e-11 | 0.00 | 0        | Est |
| 2308 | 2i   | $N_2^+ + NCCN \leftrightharpoons CN_2^+ + CN_2$             | 2.15e-11 | 0.00 | 0        | Est |
| 2309 | 2i   | $N_2^+ + HC_3N \leftrightharpoons C_3HN^+ + N_2$            | 4.10e-09 | 0.00 | 0        | 479 |
| 2310 | 2i   | $N_2^+ + H_2 \leftrightharpoons HN_2^+ + H$                 | 1.41e-09 | 0.00 | 0        | 574 |
| 2311 | 2i   | $N_2^+ + H_2O \leftrightharpoons HN_2^+ + HO$               | 9.88e-10 | 0.00 | 0        | 535 |
| 2312 | 2i   | $N_2^+ + H_2O \leftrightharpoons H_2O^+ + N_2$              | 9.12e-10 | 0.00 | 0        | 535 |
| 2313 | 2i   | $N_2^+ + H_3N \leftrightharpoons H_3N^+ + N_2$              | 1.90e-09 | 0.00 | 0        | 574 |
| 2314 | 2i   | $N_2^{\dagger} + N \leftrightharpoons N^+ + N_2$            | 9.99e-12 | 0.00 | 0        | 579 |
| 2315 | 2i   | $N_2^+ + NO = NO^+ + N_2$                                   | 3.30e-10 | 0.00 | 0        | 507 |
| 2316 | 2i   | $N_2^{\dagger} + N_2 \leftrightharpoons N_3^+ + N$          | 2.76e-12 | 0.00 | 0        | 580 |
| 2317 | 2i   | $N_2^+ + N_2O \leftrightharpoons N_2O^+ + N_2$              | 7.00e-10 | 0.00 | 0        | 579 |
| 2318 | 2i   | $N_2^+ + O \leftrightharpoons NO^+ + N$                     | 1.34e-10 | 0.00 | 0        | 507 |
| 2319 | 2i   | $N_2^+ + O \leftrightharpoons O^+ + N_2$                    | 5.60e-12 | 0.00 | 0        | 507 |
| 2320 | 2i   | $N_2^+ + O_2 \leftrightharpoons O_2^+ + N_2$                | 5.10e-11 | 0.00 | 0        | 581 |
| 2321 | 2i   | $N_2O^+ + CH_4 = HN_2O^+ + CH_3$                            | 9.74e-10 | 0.00 | 0        | 582 |
| 2322 | 2i   | $N_2O^+ + CH_4 \leftrightharpoons CH_4^+ + N_2O$            | 1.23e-10 | 0.00 | 0        | 582 |
| 2323 | 2i   | $N_2O^+ + CO = NO^+ + NCO$                                  | 3.14e-10 | 0.00 | 0        | 582 |
| 2324 | 2i   | $N_2O^+ + CO \leftrightharpoons CO_2^+ + N_2$               | 2.57e-10 | 0.00 | 0        | 582 |
| 2325 | 2i   | $N_2O^+ + H_2 \leftrightharpoons HN_2O^+ + H$               | 2.60e-10 | 0.00 | 0        | 582 |
| 2326 | 2i   | $N_2O^+ + H_3N \leftrightharpoons H_3N^+ + N_2O$            | 1.82e-09 | 0.00 | 0        | 582 |
| 2327 | 2i   | $N_2O^+ + NO \leftrightharpoons NO^+ + N_2O$                | 4.30e-10 | 0.00 | 0        | 582 |
| 2328 | 2i   | $N_2O^+ + NO_2 \leftrightharpoons NO^+ + N_2 + O_2$         | 4.29e-10 | 0.00 | 0        | 583 |
| 2329 | 2i   | $N_2O^+ + NO_2 \leftrightharpoons NO_2^+ + N_2O$            | 2.21e-10 | 0.00 | 0        | 583 |
| 2330 | 2i   | $N_2O^+ + N_2O \leftrightharpoons NO^+ + N_2 + NO$          | 1.20e-11 | 0.00 | 0        | 583 |
| 2331 | 2i   | $N_2O^+ + O_2 \leftrightharpoons O_2^+ + N_2O$              | 3.90e-10 | 0.00 | 0        | 582 |
| 2332 | 2i   | $N_3^+ + CH_2O \leftrightharpoons HN_3^+ + CHO$             | 9.88e-10 | 0.00 | 0        | 574 |
| 2333 | 2i   | $N_3^+ + CH_2O \leftrightharpoons CH_2O^+ + N_2 + N$        | 4.94e-10 | 0.00 | 0        | 574 |
| 2334 | 2i   | $N_3^+ + CH_2O \leftrightharpoons CHO^+ + HN + N_2$         | 3.04e-10 | 0.00 | 0        | 574 |
| 2335 | 2i   | $N_3^+ + CH_2O \leftrightharpoons H_2N^+ + CO + N_2$        | 1.14e-10 | 0.00 | 0        | 574 |
| 2336 | 2i   | $N_3^+ + CH_4 \leftrightharpoons CH_2N^+ + H_2 + N_2$       | 4.56e-11 | 0.00 | 0        | 574 |
| 2337 | 2i   | $N_3^+ + CH_4 \leftrightharpoons CH_4N^+ + N_2$             | 2.40e-12 | 0.00 | 0        | 574 |

Table 6—Continued

| #    | Type | Reaction                                                | α        | β    | $\gamma$ | Ref |
|------|------|---------------------------------------------------------|----------|------|----------|-----|
| 2338 | 2i   | $N_3^+ + CH_3OH = CH_4O^+ + N_2 + N$                    | 5.00e-10 | 0.00 | 0        | 574 |
| 2339 | 2i   | $N_3^+ + CH_3OH \Rightarrow CH_3O^+ + HN + N_2$         | 2.80e-10 | 0.00 | 0        | 574 |
| 2340 | 2i   | $N_3^+ + CH_3OH \Rightarrow NO^+ + CH_4 + N_2$          | 2.20e-10 | 0.00 | 0        | 574 |
| 2341 | 2i   | $N_3^+ + CH_5N \leftrightharpoons CH_4N^+ + HN + N_2$   | 8.69e-10 | 0.00 | 0        | 574 |
| 2342 | 2i   | $N_3^+ + CH_5N \leftrightharpoons CH_5N^+ + N_2 + N$    | 2.31e-10 | 0.00 | 0        | 574 |
| 2343 | 2i   | $N_3^+ + H_2 \leftrightharpoons HN_2^+ + HN$            | 2.00e-13 | 0.00 | 0        | 574 |
| 2344 | 2i   | $N_3^+ + H_2O \leftrightharpoons H_2NO^+ + N_2$         | 3.30e-10 | 0.00 | 0        | 574 |
| 2345 | 2i   | $N_3^+ + H_3N \leftrightharpoons H_3N^+ + N_2 + N$      | 2.10e-09 | 0.00 | 0        | 574 |
| 2346 | 2i   | $N_3^+ + NO \leftrightharpoons NO^+ + N_2 + N$          | 1.40e-10 | 0.00 | 0        | 584 |
| 2347 | 2i   | $N_3^+ + NO \leftrightharpoons N_2O^+ + N_2$            | 1.40e-10 | 0.00 | 0        | 584 |
| 2348 | 2i   | $N_3^+ + O_2 \leftrightharpoons NO^+ + N_2O$            | 3.57e-11 | 0.00 | 0        | 574 |
| 2349 | 2i   | $N_3^+ + O_2 \leftrightharpoons NO_2^+ + N_2$           | 1.53e-11 | 0.00 | 0        | 574 |
| 2350 | 2i   | $O^+ + HCN \leftrightharpoons CO^+ + HN$                | 3.50e-09 | 0.00 | 0        | 529 |
| 2351 | 2i   | $O^+ + HCN \leftrightharpoons CHO^+ + N$                | 3.50e-09 | 0.00 | 0        | 529 |
| 2352 | 2i   | $O^+ + HCN \leftrightharpoons NO^+ + CH$                | 3.50e-09 | 0.00 | 0        | 529 |
| 2353 | 2i   | $O^+ + CH_2O \leftrightharpoons CH_2O^+ + O$            | 2.10e-09 | 0.00 | 0        | 574 |
| 2354 | 2i   | $O^+ + CH_2O \leftrightharpoons CHO^+ + HO$             | 1.40e-09 | 0.00 | 0        | 574 |
| 2355 | 2i   | $O^+ + HCOOH \leftrightharpoons CHO^+ + O_2 + H$        | 3.50e-09 | 0.00 | 0        | 443 |
| 2356 | 2i   | $O^+ + HCOOH = CHO^+ + HO_2$                            | 1.50e-09 | 0.00 | 0        | 443 |
| 2357 | 2i   | $O^+ + CH_4 \leftrightharpoons CH_4^+ + O$              | 8.90e-10 | 0.00 | 0        | 574 |
| 2358 | 2i   | $O^+ + CH_4 \leftrightharpoons CH_3^+ + HO$             | 1.10e-10 | 0.00 | 0        | 574 |
| 2359 | 2i   | $O^+ + CH_3OH \leftrightharpoons CH_3O^+ + HO$          | 1.33e-09 | 0.00 | 0        | 574 |
| 2360 | 2i   | $O^+ + CH_3OH \leftrightharpoons CH_4O^+ + O$           | 4.75e-10 | 0.00 | 0        | 574 |
| 2361 | 2i   | $O^+ + CH_3OH \leftrightharpoons CH_2O^+ + H_2O$        | 9.50e-11 | 0.00 | 0        | 574 |
| 2362 | 2i   | $O^+ + CH_5N \leftrightharpoons CH_4N^+ + HO$           | 1.66e-09 | 0.00 | 0        | 574 |
| 2363 | 2i   | $O^+ + CH_5N \leftrightharpoons CH_3N^+ + H_2O$         | 3.15e-10 | 0.00 | 0        | 574 |
| 2364 | 2i   | $O^+ + CH_5N \leftrightharpoons CH_5N^+ + O$            | 1.26e-10 | 0.00 | 0        | 574 |
| 2365 | 2i   | $O^{+}(^{2}D) + CO = CO^{+} + O$                        | 1.30e-09 | 0.00 | 0        | 585 |
| 2366 | 2i   | $O^+(^3P) + CO = CO^+ + O$                              | 1.30e-09 | 0.00 | 0        | 585 |
| 2367 | 2i   | $O^+ + CO_2 \leftrightharpoons CO_2^+ + O$              | 9.00e-10 | 0.00 | 0        | 586 |
| 2368 | 2i   | $O^+ + CO_2 \leftrightharpoons O_2^+ + CO$              | 9.00e-10 | 0.00 | 0        | 586 |
| 2369 | 2i   | $O^+ + C_2H_6 \leftrightharpoons C_2H_4^+ + H_2O$       | 1.33e-09 | 0.00 | 0        | 467 |
| 2370 | 2i   | $O^+ + C_2H_6 \leftrightharpoons C_2H_5^+ + HO$         | 5.70e-10 | 0.00 | 0        | 467 |
| 2371 | 2i   | $O^+ + H_2 \leftrightharpoons HO^+ + H$                 | 1.70e-09 | 0.00 | 0        | 574 |
| 2372 | 2i   | $O^+ + H_2O \rightleftharpoons H_2O^+ + O$              | 3.20e-09 | 0.00 | 0        | 574 |
| 2373 | 2i   | $O^+ + H_3N \leftrightharpoons H_3N^+ + O$              | 1.20e-09 | 0.00 | 0        | 574 |
| 2374 | 2i   | $O^{+}(^{2}D) + NO = NO^{+} + O$                        | 1.20e-09 | 0.00 | 0        | 585 |
| 2375 | 2i   | $O^+(^3P) + NO = NO^+ + O$                              | 1.20e-09 | 0.00 | 0        | 585 |
| 2376 | 2i   | $O^+ + NO_2 = NO_2^+ + O$                               | 1.60e-09 | 0.00 | 0        | 587 |
| 2377 | 2i   | $O^{+}(^{2}D) + N_{2} \leftrightharpoons N_{2}^{+} + O$ | 1.35e-10 | 0.00 | 0        | 585 |
| 2378 | 2i   | $O^+(^2D) + N_2 \leftrightharpoons NO^+ + N$            | 1.50e-11 | 0.00 | 0        | 585 |

Table 6—Continued

| #    | Type | Reaction                                                             | α         | β    | $\gamma$ | Ref |
|------|------|----------------------------------------------------------------------|-----------|------|----------|-----|
| 2379 | 2i   | $O^+(^3P) + N_2 \leftrightharpoons N_2^+ + O$                        | 1.35e-10  | 0.00 | 0        | 585 |
| 2380 | 2i   | $O^+(^3P) + N_2 \leftrightharpoons NO^+ + N$                         | 1.50e-11  | 0.00 | 0        | 585 |
| 2381 | 2i   | $O^+(^2D) + O_2 = O_2^+ + O$                                         | 5.67e-10  | 0.00 | 0        | 588 |
| 2382 | 2i   | $O^{+}(^{2}D) + O_{2} = O^{+} + O_{2}$                               | 2.43e-10  | 0.00 | 0        | 588 |
| 2383 | 2i   | $SiO^+ + H_2 \leftrightharpoons SiHO^+ + H$                          | 3.20 e-10 | 0.00 | 0        | 589 |
| 2384 | 2i   | $SiO^+ + N \leftrightharpoons Si^+ + NO$                             | 2.01e-10  | 0.00 | 0        | 590 |
| 2385 | 2i   | $SiO^+ + N \leftrightharpoons NO^+ + Si$                             | 9.90e-11  | 0.00 | 0        | 590 |
| 2386 | 2i   | $O_2^+(X^2\Pi_g) + Ar \leftrightharpoons Ar^+ + O_2$                 | 5.00e-10  | 0.00 | 0        | 591 |
| 2387 | 2i   | $O_2^+(X^2\Pi_g) + Ar \leftrightharpoons O_2^+ + Ar$                 | 5.00e-10  | 0.00 | 0        | 591 |
| 2388 | 2i   | $O_2^+ + CH_2O \leftrightharpoons CH_2O^+ + O_2$                     | 2.07e-09  | 0.00 | 0        | 574 |
| 2389 | 2i   | $O_2^+ + CH_2O \leftrightharpoons CHO^+ + HO_2$                      | 2.30e-10  | 0.00 | 0        | 574 |
| 2390 | 2i   | $O_2^+ + HCOOH \leftrightharpoons CH_2O_2^+ + O_2$                   | 1.17e-09  | 0.00 | 0        | 443 |
| 2391 | 2i   | $O_2^+ + HCOOH \leftrightharpoons CHO_2^+ + HO_2$                    | 6.30 e-10 | 0.00 | 0        | 443 |
| 2392 | 2i   | $O_2^+ + CH_4 \leftrightharpoons CH_3O_2^+ + H$                      | 4.41e-12  | 0.00 | 0        | 574 |
| 2393 | 2i   | $O_2^+ + CH_4 \leftrightharpoons CH_2O^+ + H_2O$                     | 9.45e-13  | 0.00 | 0        | 574 |
| 2394 | 2i   | $O_2^+ + CH_4 \leftrightharpoons H_2O^+ + CH_2O$                     | 9.45e-13  | 0.00 | 0        | 574 |
| 2395 | 2i   | $O_2^+(X^2\Pi_g) + CH_4 \leftrightharpoons CH_3O_2^+ + H$            | 7.70e-10  | 0.00 | 0        | 592 |
| 2396 | 2i   | $O_2^+(X^2\Pi_g^-) + CH_4 \leftrightharpoons CH_2O^+ + H_2O$         | 1.65e-10  | 0.00 | 0        | 592 |
| 2397 | 2i   | $O_2^+(X^2\Pi_g) + CH_4 \leftrightharpoons H_2O^+ + CH_2O$           | 1.65e-10  | 0.00 | 0        | 592 |
| 2398 | 2i   | $O_2^+ + CH_3OH \leftrightharpoons CH_3O^+ + HO_2$                   | 5.00e-10  | 0.00 | 0        | 574 |
| 2399 | 2i   | $O_2^+ + CH_3OH \leftrightharpoons CH_4O^+ + O_2$                    | 5.00e-10  | 0.00 | 0        | 574 |
| 2400 | 2i   | $O_2^+ + CH_5N \leftrightharpoons CH_5N^+ + O_2$                     | 8.45 e-10 | 0.00 | 0        | 574 |
| 2401 | 2i   | $O_2^+ + CH_5N \leftrightharpoons CH_4N^+ + HO_2$                    | 4.55e-10  | 0.00 | 0        | 574 |
| 2402 | 2i   | $O_2^+(X^2\Pi_g) + CO \leftrightharpoons CO^+ + O_2$                 | 1.49e-10  | 0.00 | 0        | 591 |
| 2403 | 2i   | $O_2^+(X^2\Pi_g) + CO \leftrightharpoons O_2^+ + CO$                 | 1.00e-10  | 0.00 | 0        | 591 |
| 2404 | 2i   | $O_2^+(X^2\Pi_g) + CO \leftrightharpoons CO_2^+ + O$                 | 3.06e-11  | 0.00 | 0        | 585 |
| 2405 | 2i   | $O_2^+(X^2\Pi_g) + CO_2 \leftrightharpoons CO_2^+ + O_2$             | 9.00e-10  | 0.00 | 0        | 591 |
| 2406 | 2i   | $O_2^+(X^2\Pi_g) + CO_2 \leftrightharpoons O_2^+ + CO_2$             | 9.00e-10  | 0.00 | 0        | 591 |
| 2407 | 2i   | $O_2^+ + C_2H_4 \leftrightharpoons C_2H_4^+ + O_2$                   | 6.80 e-10 | 0.00 | 0        | 593 |
| 2408 | 2i   | $O_2^+ + C_2H_6 \leftrightharpoons C_2H_6^+ + O_2$                   | 1.21e-09  | 0.00 | 0        | 528 |
| 2409 | 2i   | $O_2^+(X^2\Pi_g) + H_2 = O_2^+ + H_2$                                | 6.00e-10  | 0.00 | 0        | 591 |
| 2410 | 2i   | $O_2^+(X^2\Pi_g) + H_2 \leftrightharpoons HO_2^+ + H$                | 1.02e-09  | 0.00 | 0        | 585 |
| 2411 | 2i   | $O_2^+(X^2\Pi_g) + H_2 \leftrightharpoons H_2^+ + O_2$               | 1.80e-10  | 0.00 | 0        | 585 |
| 2412 | 2i   | $O_2^+ + H_2O_2 \leftrightharpoons H_2O_2^+ + O_2$                   | 1.50e-09  | 0.00 | 0        | 554 |
| 2413 | 2i   | $O_2^+ + H_3N \leftrightharpoons H_3N^+ + O_2$                       | 1.00e-09  | 0.00 | 0        | 574 |
| 2414 | 2i   | $O_2^+ + N \leftrightharpoons NO^+ + O$                              | 1.20e-10  | 0.00 | 0        | 577 |
| 2415 | 2i   | $O_2^+ + NO \leftrightharpoons NO^+ + O_2$                           | 3.00e-10  | 0.00 | 0        | 581 |
| 2416 | 2i   | $O_2^{-1}(X^2\Pi_g) + NO \leftrightharpoons NO^+ + O_2$              | 1.10e-09  | 0.00 | 0        | 541 |
| 2417 | 2i   | $O_2^+(X^2\Pi_g) + NO \leftrightharpoons O_2^+ + NO$                 | 1.10e-09  | 0.00 | 0        | 541 |
| 2418 | 2i   | $O_2^+ + NO_2 \leftrightharpoons NO_2^+ + O_2$                       | 8.20e-10  | 0.00 | 0        | 593 |
| 2419 | 2i   | $O_2^+(X^2\Pi_g) + N_2 \stackrel{-}{\leftrightharpoons} N_2^+ + O_2$ | 4.10e-10  | 0.00 | 0        | 591 |

Table 6—Continued

| #    | Type | Reaction                                                                                                                                                                           | α         | β    | $\gamma$ | Ref |
|------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|----------|-----|
| 2420 | 2i   | $O_2^+(X^2\Pi_q) + N_2 \leftrightharpoons O_2^+ + N_2$                                                                                                                             | 4.10e-10  | 0.00 | 0        | 591 |
| 2421 | 2i   | $O_2^+(X^2\Pi_g) + O_2 \leftrightharpoons O_2^+ + O_2$                                                                                                                             | 4.60 e-10 | 0.00 | 0        | 591 |
| 2422 | 2i   | $Si^+ + H_2O \leftrightharpoons SiHO^+ + H$                                                                                                                                        | 2.30e-10  | 0.00 | 0        | 589 |
| 2423 | 2i   | $\mathrm{Si^+} + \mathrm{SiH_4} \leftrightharpoons \mathrm{Si_2H^+} + \mathrm{H_2} + \mathrm{H}$                                                                                   | 2.08e-11  | 0.00 | 0        | 542 |
| 2424 | 2i   | $\mathrm{Si^+} + \mathrm{SiH_4} \leftrightharpoons \mathrm{Si_2^+} + \mathrm{H_2} + \mathrm{H_2}$                                                                                  | 1.02e-11  | 0.00 | 0        | 542 |
| 2425 | 2i   | $\mathrm{Si^+} + \mathrm{Si_2H_6} \leftrightharpoons \mathrm{Si_2H_2^+} + \mathrm{SiH_4}$                                                                                          | 7.85e-10  | 0.00 | 0        | 543 |
| 2426 | 2i   | $\mathrm{Si}^+ + \mathrm{Si}_2\mathrm{H}_6 \leftrightharpoons \mathrm{Si}_3\mathrm{H}_4^+ + \mathrm{H}_2$                                                                          | 2.35e-10  | 0.00 | 0        | 543 |
| 2427 | 2i   | $\mathrm{Si^+} + \mathrm{O_2} \leftrightharpoons \mathrm{SiO^+} + \mathrm{O}$                                                                                                      | 9.20e-11  | 0.00 | 4000     | 589 |
| 2428 | 2i   | $\mathrm{Si}_2^+ + \mathrm{Si}_2\mathrm{H}_6 \leftrightharpoons \mathrm{Si}_4\mathrm{H}_2^+ + \mathrm{H}_2 + \mathrm{H}_2$                                                         | 3.06e-10  | 0.00 | 0        | 543 |
| 2429 | 2i   | $\operatorname{Si}_{2}^{+} + \operatorname{Si}_{2}\operatorname{H}_{6} \leftrightharpoons \operatorname{Si}_{4}\operatorname{H}_{3}^{+} + \operatorname{H}_{2} + \operatorname{H}$ | 1.53e-10  | 0.00 | 0        | 543 |
| 2430 | 2i   | $\mathrm{Si}_2^+ + \mathrm{Si}_2\mathrm{H}_6 \leftrightharpoons \mathrm{Si}_4\mathrm{H}_4^+ + \mathrm{H}_2$                                                                        | 1.30e-10  | 0.00 | 0        | 543 |
| 2431 | 2i   | $\operatorname{Si}_{2}^{+} + \operatorname{Si}_{2}\operatorname{H}_{6} \leftrightharpoons \operatorname{Si}_{3}\operatorname{H}_{2}^{+} + \operatorname{Si}\operatorname{H}_{4}$   | 1.22e-10  | 0.00 | 0        | 543 |
| 2432 | 2i   | $\mathrm{Si}_{2}^{+} + \mathrm{Si}_{2}\mathrm{H}_{6} \leftrightharpoons \mathrm{Si}_{3}\mathrm{H}_{3}^{+} + \mathrm{SiH}_{3}$                                                      | 5.36e-11  | 0.00 | 0        | 543 |
| 2433 | 2i   | $\mathrm{Ti^+} + \mathrm{C_2H_6} \leftrightharpoons \mathrm{TiC_2H_4^+} + \mathrm{H_2}$                                                                                            | 7.50e-11  | 0.00 | 0        | 594 |
| 2434 | 2i   | $Ti^+ + NO \leftrightharpoons TiO^+ + N$                                                                                                                                           | 9.50e-11  | 0.00 | 0        | 595 |
| 2435 | 2i   | $Ti^+ + O_2 \leftrightharpoons TiO^+ + O$                                                                                                                                          | 5.00e-10  | 0.00 | 0        | 595 |
| 2436 | 2i   | $C^- + HCN \leftrightharpoons CN^- + CH$                                                                                                                                           | 1.10e-09  | 0.00 | 0        | 596 |
| 2437 | 2i   | $C^- + CO \leftrightharpoons C_2O + e^-$                                                                                                                                           | 4.10e-10  | 0.00 | 0        | 597 |
| 2438 | 2i   | $C^- + CO_2 \leftrightharpoons CO + CO + e^-$                                                                                                                                      | 4.70e-11  | 0.00 | 0        | 597 |
| 2439 | 2i   | $C^- + H_2 \leftrightharpoons CH_2 + e^-$                                                                                                                                          | 1.00e-13  | 0.00 | 0        | 597 |
| 2440 | 2i   | $C^- + SiH_4 \leftrightharpoons SiH_3^- + CH$                                                                                                                                      | 6.20e-11  | 0.00 | 0        | 596 |
| 2441 | 2i   | $C^- + N_2O \leftrightharpoons CO + N_2 + e^-$                                                                                                                                     | 9.00e-10  | 0.00 | 0        | 597 |
| 2442 | 2i   | $C^- + O_2 \leftrightharpoons O^- + CO$                                                                                                                                            | 3.40e-10  | 0.00 | 0        | 597 |
| 2443 | 2i   | $C^- + O_2 \leftrightharpoons CO_2 + e^-$                                                                                                                                          | 6.00e-11  | 0.00 | 0        | 597 |
| 2444 | 2i   | $CH_3O^- + HCN \leftrightharpoons CN^- + CH_3OH$                                                                                                                                   | 3.30e-09  | 0.00 | 0        | 598 |
| 2445 | 2i   | $CH_3O^- + C_2H_2O \leftrightharpoons C_2HO^- + CH_3OH$                                                                                                                            | 1.40e-09  | 0.00 | 0        | 599 |
| 2446 | 2i   | $CH_3O^- + CH_3CN \leftrightharpoons C_2H_2N^- + CH_3OH$                                                                                                                           | 3.50e-09  | 0.00 | 0        | 465 |
| 2447 | 2i   | $CH_3O^- + C_2H_4O \leftrightharpoons C_2H_3O^- + CH_3OH$                                                                                                                          | 2.00e-09  | 0.00 | 0        | 598 |
| 2448 | 2i   | $CH_3O^- + C_2H_5OH \leftrightharpoons C_2H_5O^- + CH_3OH$                                                                                                                         | 3.30e-09  | 0.00 | 0        | 598 |
| 2449 | 2i   | $CH_4N^- + C_2H_2 \leftrightharpoons C_2H^- + CH_5N$                                                                                                                               | 1.33e-09  | 0.00 | 0        | 464 |
| 2450 | 2i   | $CH_4N^- + H_2 \leftrightharpoons H^- + CH_5N$                                                                                                                                     | 2.00e-10  | 0.00 | 0        | 600 |
| 2451 | 2i   | $CN^- + C_2H_4O \leftrightharpoons CNO^- + C_2H_4$                                                                                                                                 | 9.99e-13  | 0.00 | 0        | 458 |
| 2452 | 2i   | $CN^- + H \leftrightharpoons HCN + e^-$                                                                                                                                            | 1.30e-09  | 0.00 | 0        | 601 |
| 2453 | 2i   | $CN^- + HNO_3 \leftrightharpoons NO_3^- + HCN$                                                                                                                                     | 2.00e-09  | 0.00 | 0        | 602 |
| 2454 | 2i   | $CO_3^- + H \leftrightharpoons HO^- + CO_2$                                                                                                                                        | 1.70e-10  | 0.00 | 0        | 603 |
| 2455 | 2i   | $CO_3^- + NO \leftrightharpoons NO_2^- + CO_2$                                                                                                                                     | 1.00e-11  | 0.00 | 0        | 604 |
| 2456 | 2i   | $CO_3^- + NO_2 \leftrightharpoons NO_3^- + CO_2$                                                                                                                                   | 2.00e-10  | 0.00 | 0        | 605 |
| 2457 | 2i   | $CO_3^- + O \leftrightharpoons O_2^- + CO_2$                                                                                                                                       | 1.10e-10  | 0.00 | 0        | 606 |
| 2458 | 2i   | $CO_4^- + H \leftrightharpoons CO_3^- + HO$                                                                                                                                        | 1.65e-10  | 0.00 | 0        | 603 |
| 2459 | 2i   | $CO_4^- + H \leftrightharpoons HO^- + CO + O_2$                                                                                                                                    | 5.50e-11  | 0.00 | 0        | 603 |
| 2460 | 2i   | $CO_4^- + NO \leftrightharpoons NO_3^- + CO_2$                                                                                                                                     | 4.80e-11  | 0.00 | 0        | 607 |

Table 6—Continued

| #    | Type | Reaction                                                                                   | α         | β    | $\gamma$ | Ref |
|------|------|--------------------------------------------------------------------------------------------|-----------|------|----------|-----|
| 2461 | 2i   | $CO_4^- + O \leftrightharpoons CO_3^- + O_2$                                               | 7.00e-11  | 0.00 | 0        | 606 |
| 2462 | 2i   | $CO_4^{\frac{1}{4}} + O = O^{-3} + CO_2 + O_2$                                             | 3.50e-11  | 0.00 | 0        | 606 |
| 2463 | 2i   | $CO_4^{\frac{1}{4}} + O \leftrightharpoons O_3^{-} + CO_2$                                 | 3.50e-11  | 0.00 | 0        | 606 |
| 2464 | 2i   | $CO_4^{\frac{1}{2}} + O_3 = O_3^{-} + CO_2 + O_2$                                          | 1.30e-10  | 0.00 | 0        | 605 |
| 2465 | 2i   | $C_2^- + HCN \leftrightharpoons CN^- + C_2H$                                               | 2.00e-09  | 0.00 | 0        | 536 |
| 2466 | 2i   | $C_2^- + O_2 \leftrightharpoons CO_2 + C + e^-$                                            | 2.10e-11  | 0.00 | 0        | 608 |
| 2467 | 2i   | $C_2^-H^- + HCN \leftrightharpoons CN^- + C_2H_2$                                          | 3.90e-09  | 0.00 | 0        | 465 |
| 2468 | 2i   | $C_2H^- + CH_3NO_2 \leftrightharpoons CH_2NO_2^- + C_2H_2$                                 | 2.38e-09  | 0.00 | 0        | 462 |
| 2469 | 2i   | $C_2H^- + CH_3NO_2 \leftrightharpoons NO_2^- + C_3H_4$                                     | 1.26e-10  | 0.00 | 0        | 462 |
| 2470 | 2i   | $C_2H^- + CH_3OH \leftrightharpoons CH_3O^- + C_2H_2$                                      | 5.00e-11  | 0.00 | 0        | 609 |
| 2471 | 2i   | $C_2H^- + CH_3CN \leftrightharpoons C_2H_2N^- + C_2H_2$                                    | 1.50e-09  | 0.00 | 0        | 465 |
| 2472 | 2i   | $C_2H^- + C_2H_5OH \leftrightharpoons C_2H_5O^- + C_2H_2$                                  | 1.00e-10  | 0.00 | 0        | 609 |
| 2473 | 2i   | $C_2H^- + O_3 \leftrightharpoons O_3^- + C_2H$                                             | 2.00e-12  | 0.00 | 0        | 610 |
| 2474 | 2i   | $C_2H_2^- + O_2 \leftrightharpoons O_2^- + C_2H_2$                                         | 3.00e-10  | 0.00 | 0        | 611 |
| 2475 | 2i   | $C_2H_2N^- + H \leftrightharpoons CH_3CN + e^-$                                            | 1.90e-09  | 0.00 | 0        | 612 |
| 2476 | 2i   | $C_2H_2N^- + HNO_3 \leftrightharpoons NO_3^- + CH_3CN$                                     | 1.40e-09  | 0.00 | 0        | 602 |
| 2477 | 2i   | $C_2H_2N^- + NO_2 \leftrightharpoons NO_2^- + CH_2CN$                                      | 1.00e-09  | 0.00 | 0        | 602 |
| 2478 | 2i   | $H^- + HCN \leftrightharpoons CN^- + H_2$                                                  | 1.50e-08  | 0.00 | 0        | 465 |
| 2479 | 2i   | $\mathrm{H^-} + \mathrm{CH_3NO_2} \leftrightharpoons \mathrm{CH_2NO_2^-} + \mathrm{H_2}$   | 1.22e-08  | 0.00 | 0        | 462 |
| 2480 | 2i   | $\mathrm{H^-} + \mathrm{CH_3NO_2} \leftrightarrows \mathrm{NO_2^-} + \mathrm{CH_4}$        | 6.45 e-10 | 0.00 | 0        | 462 |
| 2481 | 2i   | $H^- + CO = CHO + e^-$                                                                     | 5.00e-11  | 0.00 | 0        | 613 |
| 2482 | 2i   | $\mathrm{H^-} + \mathrm{C_2H_2} \leftrightharpoons \mathrm{C_2H^-} + \mathrm{H_2}$         | 4.42e-09  | 0.00 | 0        | 464 |
| 2483 | 2i   | $\mathrm{H^-} + \mathrm{CH_3CN} \leftrightharpoons \mathrm{C_2H_2N^-} + \mathrm{H_2}$      | 1.30e-08  | 0.00 | 0        | 465 |
| 2484 | 2i   | $H^- + H \leftrightharpoons H_2 + e^-$                                                     | 1.80e-09  | 0.00 | 0        | 612 |
| 2485 | 2i   | $\mathrm{H^-} + \mathrm{H_2O} \leftrightharpoons \mathrm{HO^-} + \mathrm{H_2}$             | 3.70e-09  | 0.00 | 0        | 472 |
| 2486 | 2i   | $\mathrm{H^-} + \mathrm{H_3N} \leftrightharpoons \mathrm{H_2N^-} + \mathrm{H_2}$           | 8.80e-13  | 0.00 | 0        | 600 |
| 2487 | 2i   | $\mathrm{H}^- + \mathrm{SiH}_4 \leftrightharpoons \mathrm{SiH}_3^- + \mathrm{H}_2$         | 5.70e-10  | 0.00 | 0        | 614 |
| 2488 | 2i   | $H^- + NO \leftrightharpoons HNO + e^-$                                                    | 4.60e-10  | 0.00 | 0        | 613 |
| 2489 | 2i   | $\mathrm{H^-} + \mathrm{NO}_2 \leftrightharpoons \mathrm{NO}_2^- + \mathrm{H}$             | 2.90e-09  | 0.00 | 0        | 615 |
| 2490 | 2i   | $\mathrm{H^-} + \mathrm{N_2O} \leftrightharpoons \mathrm{HO^-} + \mathrm{N_2}$             | 1.10e-09  | 0.00 | 0        | 613 |
| 2491 | 2i   | $\mathrm{H}^- + \mathrm{O}_2 \leftrightharpoons \mathrm{HO}_2 + e^-$                       | 1.20e-09  | 0.00 | 0        | 613 |
| 2492 | 2i   | $HO^- + HCN \rightleftharpoons CN^- + H_2O$                                                | 4.10e-09  | 0.00 | 0        | 465 |
| 2493 | 2i   | $HO^- + HCOOH \leftrightharpoons CHO_2^- + H_2O$                                           | 2.20e-09  | 0.00 | 0        | 616 |
| 2494 | 2i   | $\mathrm{HO^-} + \mathrm{CH_3NO_2} \leftrightharpoons \mathrm{CH_2NO_2^-} + \mathrm{H_2O}$ | 3.61e-08  | 0.00 | 0        | 462 |
| 2495 | 2i   | $\mathrm{HO^-} + \mathrm{CH_3NO_2} \leftrightharpoons \mathrm{NO_2^-} + \mathrm{CH_3OH}$   | 1.90e-09  | 0.00 | 0        | 462 |
| 2496 | 2i   | $HO^- + CH_3OH \leftrightharpoons CH_3O^- + H_2O$                                          | 2.20e-09  | 0.00 | 0        | 616 |
| 2497 | 2i   | $\mathrm{HO^-} + \mathrm{C_2H_2} \leftrightharpoons \mathrm{C_2H^-} + \mathrm{H_2O}$       | 2.18e-09  | 0.00 | 0        | 464 |
| 2498 | 2i   | $HO^- + C_2H_2O \leftrightharpoons C_2HO^- + H_2O$                                         | 2.20e-09  | 0.00 | 0        | 616 |
| 2499 | 2i   | $HO^- + CH_3CN \leftrightharpoons C_2H_2N^- + H_2O$                                        | 4.40e-09  | 0.00 | 0        | 465 |
| 2500 | 2i   | $\mathrm{HO^-} + \mathrm{C_2H_4} \leftrightharpoons \mathrm{C_2H_3^-} + \mathrm{H_2O}$     | 3.00e-11  | 0.00 | 0        | 611 |
| 2501 | 2i   | $HO^- + C_2H_4O \leftrightharpoons C_2H_3O^- + H_2O$                                       | 3.10e-09  | 0.00 | 0        | 617 |

Table 6— Continued

| #    | Type | Reaction                                                                                  | α        | β    | $\gamma$ | Ref |
|------|------|-------------------------------------------------------------------------------------------|----------|------|----------|-----|
| 2502 | 2i   | $\mathrm{HO^-} + \mathrm{CH_3OCHO} \leftrightharpoons \mathrm{CHO_2^-} + \mathrm{CH_3OH}$ | 8.40e-10 | 0.00 | 0        | 618 |
| 2503 | 2i   | $HO^- + CH_3OCHO = CH_3O^- + H_2O + CO$                                                   | 6.60e-10 | 0.00 | 0        | 618 |
| 2504 | 2i   | $HO^- + C_2H_5OH \leftrightharpoons C_2H_5O^- + H_2O$                                     | 2.70e-09 | 0.00 | 0        | 616 |
| 2505 | 2i   | $HO^- + H \leftrightharpoons H_2O + e^-$                                                  | 1.40e-09 | 0.00 | 0        | 619 |
| 2506 | 2i   | $\mathrm{HO^-} + \mathrm{H_3N} \leftrightharpoons \mathrm{H_2N^-} + \mathrm{H_2O}$        | 5.00e-12 | 0.00 | 0        | 620 |
| 2507 | 2i   | $HO^- + SiH_4 \leftrightharpoons SiH_3^- + H_2O$                                          | 8.71e-10 | 0.00 | 0        | 614 |
| 2508 | 2i   | $\mathrm{HO^-} + \mathrm{SiH_4} \leftrightharpoons \mathrm{SiH_3O^-} + \mathrm{H_2}$      | 4.29e-10 | 0.00 | 0        | 614 |
| 2509 | 2i   | $HO^- + N \leftrightharpoons HNO + e^-$                                                   | 9.99e-12 | 0.00 | 0        | 621 |
| 2510 | 2i   | $HO^- + NO_2 \leftrightharpoons NO_2^- + HO$                                              | 1.10e-09 | 0.00 | 0        | 622 |
| 2511 | 2i   | $HO^- + O \leftrightharpoons HO_2 + e^-$                                                  | 2.00e-10 | 0.00 | 0        | 621 |
| 2512 | 2i   | $HO^- + O_3 \leftrightharpoons O_3^- + HO$                                                | 9.00e-10 | 0.00 | 0        | 622 |
| 2513 | 2i   | $H_2N^- + HCN \leftrightharpoons CN^- + H_3N$                                             | 4.80e-09 | 0.00 | 0        | 465 |
| 2514 | 2i   | $H_2N^- + CH_3NO_2 \leftrightharpoons CH_2NO_2^- + H_3N$                                  | 4.61e-09 | 0.00 | 0        | 462 |
| 2515 | 2i   | $H_2N^- + CH_3NO_2 \leftrightharpoons NO_2^- + CH_5N$                                     | 2.23e-10 | 0.00 | 0        | 462 |
| 2516 | 2i   | $H_2N^- + CH_5N \leftrightharpoons CH_4N^- + H_3N$                                        | 1.01e-10 | 0.00 | 0        | 600 |
| 2517 | 2i   | $H_2N^- + CO_2 \leftrightharpoons CNO^- + H_2O$                                           | 9.30e-10 | 0.00 | 0        | 463 |
| 2518 | 2i   | $H_2N^- + C_2H_2 \leftrightharpoons C_2H^- + H_3N$                                        | 1.84e-09 | 0.00 | 0        | 464 |
| 2519 | 2i   | $H_2N^- + CH_3CN \leftrightharpoons C_2H_2N^- + H_3N$                                     | 5.10e-09 | 0.00 | 0        | 465 |
| 2520 | 2i   | $H_2N^- + C_2H_4O \leftrightharpoons CN^- + CH_2O + H_2 + H_2$                            | 1.20e-10 | 0.00 | 0        | 617 |
| 2521 | 2i   | $H_2N^- + C_2H_4O \leftrightharpoons C_2H_4NO^- + H_2$                                    | 3.00e-11 | 0.00 | 0        | 617 |
| 2522 | 2i   | $H_2N^- + NO_2 \leftrightharpoons NO_2^- + H_2N$                                          | 1.00e-09 | 0.00 | 0        | 615 |
| 2523 | 2i   | $H_2N^- + N_2O \leftrightharpoons N_3^- + H_2O$                                           | 2.09e-10 | 0.00 | 0        | 624 |
| 2524 | 2i   | $H_2N^- + O_2 \leftrightharpoons HO^- + HNO$                                              | 4.60e-11 | 0.00 | 0        | 625 |
| 2525 | 2i   | $NO^- + NO_2 \leftrightharpoons NO_2^- + NO$                                              | 7.40e-10 | 0.00 | 0        | 626 |
| 2526 | 2i   | $NO^- + O_2 \leftrightharpoons O_2^- + NO$                                                | 5.00e-10 | 0.00 | 0        | 626 |
| 2527 | 2i   | $NO_2^- + H \leftrightharpoons HNO_2 + e^-$                                               | 1.85e-10 | 0.00 | 0        | 603 |
| 2528 | 2i   | $NO_2^- + H \leftrightharpoons HO^- + NO$                                                 | 1.85e-10 | 0.00 | 0        | 603 |
| 2529 | 2i   | $NO_2^- + HNO_3 \leftrightharpoons NO_3^- + HNO_2$                                        | 1.60e-09 | 0.00 | 0        | 114 |
| 2530 | 2i   | $NO_2^- + O_3 \leftrightharpoons NO_3^- + O_2$                                            | 1.20e-10 | 0.00 | 0        | 622 |
| 2531 | 2i   | $NO_2^- + O_3 \leftrightharpoons O_3^- + NO_2$                                            | 9.00e-11 | 0.00 | 0        | 610 |
| 2532 | 2i   | $O^- + HCN \leftrightharpoons CN^- + HO$                                                  | 3.70e-09 | 0.00 | 0        | 536 |
| 2533 | 2i   | $O^- + CH_4 \leftrightharpoons HO^- + CH_3$                                               | 1.10e-10 | 0.00 | 0        | 627 |
| 2534 | 2i   | $O^- + CO \leftrightharpoons CO_2 + e^-$                                                  | 7.30e-10 | 0.00 | 0        | 628 |
| 2535 | 2i   | $O^- + C_2H_2 \leftrightharpoons C_2H_2O + e^-$                                           | 1.31e-09 | 0.00 | 0        | 627 |
| 2536 | 2i   | $O^- + C_2H_2 \leftrightharpoons C_2H^- + HO$                                             | 8.07e-10 | 0.00 | 0        | 627 |
| 2537 | 2i   | $O^- + C_2H_2 \leftrightharpoons C_2HO^- + H$                                             | 6.54e-11 | 0.00 | 0        | 627 |
| 2538 | 2i   | $O^- + CH_3CN \leftrightharpoons C_2H_2N^- + HO$                                          | 3.50e-09 | 0.00 | 0        | 602 |
| 2539 | 2i   | $O^- + C_2H_4 \leftrightharpoons C_2H_4O + e^-$                                           | 4.10e-10 | 0.00 | 0        | 627 |
| 2540 | 2i   | $O^- + C_2H_4 \leftrightharpoons C_2H_2^- + H_2O$                                         | 1.89e-10 | 0.00 | 0        | 627 |
| 2541 | 2i   | $O^- + C_2H_4 \leftrightharpoons C_2H_3O^- + H$                                           | 1.95e-11 | 0.00 | 0        | 627 |
| 2542 | 2i   | $O^- + C_2H_6 \leftrightharpoons HO^- + C_2H_5$                                           | 7.00e-10 | 0.00 | 0        | 629 |

Table 6— Continued

| #                   | Type             | Reaction                                                                                       | $\alpha$  | β     | $\gamma$ | Ref        |
|---------------------|------------------|------------------------------------------------------------------------------------------------|-----------|-------|----------|------------|
| 2543                | 2i               | $O^- + H_2 \leftrightharpoons H_2O + e^-$                                                      | 7.01e-10  | 0.00  | 0        | 627        |
| 2544                | 2i               | $O^- + H_2 \leftrightharpoons HO^- + H$                                                        | 2.92e-11  | 0.00  | 0        | 627        |
| 2545                | 2i               | $O^- + H_3N \leftrightharpoons HO^- + H_2N$                                                    | 1.50e-09  | 0.00  | 0        | 611        |
| 2546                | 2i               | $O^- + N \leftrightharpoons NO + e^-$                                                          | 2.20e-10  | 0.00  | 0        | 630        |
| 2547                | 2i               | $O^- + NO \leftrightharpoons NO_2 + e^-$                                                       | 3.10e-10  | -0.83 | 0        | 631        |
| 2548                | 2i               | $O^- + NO_2 \leftrightharpoons NO_2^- + O$                                                     | 1.25 e-09 | 0.00  | 0        | 632        |
| 2549                | 2i               | $O^- + N_2O \leftrightharpoons NO^- + NO$                                                      | 2.20e-10  | 0.00  | 0        | 633        |
| 2550                | 2i               | $O^- + O \leftrightharpoons O_2 + e^-$                                                         | 1.90e-10  | 0.00  | 0        | 606        |
| 2551                | 2i               | $O^- + O_2 \leftrightharpoons O_2^- + O$                                                       | 7.00e-13  | 0.00  | 0        | 634        |
| 2552                | 2i               | $O^- + O_2(a^1 \Delta_g) \leftrightharpoons O_3 + e^-$                                         | 3.00e-10  | 0.00  | 0        | 635        |
| 2553                | 2i               | $O^- + O_3 \leftrightharpoons O_2 + O_2 + e^-$                                                 | 3.01e-10  | 0.00  | 0        | 636        |
| 2554                | 2i               | $O^- + O_3 \leftrightharpoons O_3^- + O$                                                       | 1.99e-10  | 0.00  | 0        | 636        |
| 2555                | 2i               | $O^- + O_3 \leftrightharpoons O_2^- + O_2$                                                     | 1.02e-11  | 0.00  | 0        | 636        |
| 2556                | 2i               | $O_2^- + H \leftrightharpoons HO_2 + e^-$                                                      | 1.40e-09  | 0.00  | 0        | 603        |
| 2557                | 2i               | $O_2^- + H \leftrightharpoons H^- + O_2$                                                       | 1.40e-09  | 0.00  | 0        | 603        |
| 2558                | 2i               | $O_2^- + N \leftrightharpoons NO_2 + e^-$                                                      | 4.00e-10  | 0.00  | 0        | 630        |
| 2559                | 2i               | $O_2^- + NO_2 \leftrightharpoons NO_2^- + O_2$                                                 | 7.00e-10  | 0.00  | 0        | 622        |
| 2560                | 2i               | $O_2^- + O \leftrightharpoons O_3 + e^-$                                                       | 1.50e-10  | 0.00  | 0        | 603        |
| 2561                | 2i               | $O_2^- + O \leftrightharpoons O^- + O_2$                                                       | 1.50e-10  | 0.00  | 0        | 603        |
| 2562                | 2i               | $O_2^- + O_3 \leftrightharpoons O_3^- + O_2$                                                   | 7.80e-10  | 0.00  | 0        | 637        |
| 2563                | 2i               | $O_3^- + CO_2 \leftrightharpoons CO_3^- + O_2$                                                 | 5.50e-10  | 0.00  | 0        | 628        |
| 2564                | 2i               | $O_3^- + H \leftrightharpoons HO^- + O_2$                                                      | 8.40e-10  | 0.00  | 0        | 603        |
| 2565                | 2i               | $O_3^- + NO \leftrightharpoons NO_2^- + O_2$                                                   | 1.65e-12  | 0.00  | 0        | 604        |
| 2566                | 2i               | $O_3^- + NO_2 \leftrightharpoons NO_3^- + O_2$                                                 | 2.80e-10  | 0.00  | 0        | 638        |
| 2567                | 2i               | $O_3 + O = O_2 + O_2$                                                                          | 2.50e-10  | 0.00  | 0        | 606        |
| 2568                | 2i               | $Na^+ + K \leftrightharpoons K^+ + Na$                                                         | 1.00e-11  | 0.00  | 0        | 100        |
| 2569                | 2i               | $Na + H = Na^+ + H^-$                                                                          | 1.00e-11  | 0.00  | 50900    | 100        |
| 2570                | pi               | $C + \gamma \rightarrow C^+ + e^-$                                                             |           | • • • | • • •    | 639        |
| 2571                | pi<br>:          | $C(^{1}D) + \gamma \rightarrow C^{+} + e^{-}$                                                  | • • •     | • • • |          | 640        |
| 2572                | pi<br>:          | $C(^{1}S) + \gamma \rightarrow C^{+} + e^{-}$<br>$H + \gamma \rightarrow H^{+} + e^{-}$        | • • •     | • • • |          | 640        |
| 2573                | pi<br>ri         | $H + \gamma \rightarrow H^+ + e^-$<br>$H + \gamma \rightarrow H + e^+$                         | •••       |       |          | 641        |
| $2574 \\ 2575$      | pi<br>ri         | $N + \gamma \rightarrow N^+ + e^-$                                                             | •••       |       | • • •    | 642<br>643 |
| 2576                | pi<br>pi         | $0 + \gamma \to 0^+ + e^-$                                                                     | •••       | • • • |          | 644        |
| 2570 $2577$         | -                | $O(^{1}D) + \gamma \rightarrow O^{+} + e^{-}$                                                  |           |       |          | 645        |
| $\frac{2577}{2578}$ | pi<br>pi         | $O(^{1}S) + \gamma \rightarrow O^{+} + e^{-}$<br>$O(^{1}S) + \gamma \rightarrow O^{+} + e^{-}$ |           |       |          | 645        |
| 2579                | рі<br>pi         | $H^- + \gamma \rightarrow H^+ + e^- + e^-$                                                     |           |       |          | 646        |
| 2580                | pi<br>pi         | $\mathrm{H^-} + \gamma \rightarrow \mathrm{H} + e^-$                                           |           |       |          | 646        |
| 2580 $2581$         | $^{\mathrm{pr}}$ | $C_2 + \gamma \rightarrow C(^1D) + C(^1D)$                                                     |           |       |          | 647        |
| 2582                | pi<br>pi         | $C_2 + \gamma \rightarrow C_2^+ + e^-$                                                         |           |       |          | 647        |
| 2583                | pi               | $CH + \gamma \rightarrow CH^+ + e^-$                                                           |           |       |          | 648        |
| _500                | L'1              | , ,                                                                                            |           |       |          | 0.10       |

Table 6—Continued

| #    | Type                | Reaction                                                 | α | β | $\gamma$ | Ref |
|------|---------------------|----------------------------------------------------------|---|---|----------|-----|
| 2584 | $_{\mathrm{pd}}$    | $CH + \gamma \rightarrow C(^{1}S) + H$                   |   |   |          | 648 |
| 2585 | $\operatorname{pd}$ | $CH + \gamma \rightarrow C(^{1}D) + H$                   |   |   |          | 648 |
| 2586 | $\operatorname{pd}$ | $CH + \gamma \rightarrow C + H$                          |   |   |          | 648 |
| 2587 | $\operatorname{pd}$ | $CN + \gamma \rightarrow C + N$                          |   |   |          | 649 |
| 2588 | pi                  | $CO + \gamma \rightarrow CO^{+} + e^{-}$                 |   |   |          | 650 |
| 2589 | pi                  | $CO + \gamma \rightarrow C^+ + O + e^-$                  |   |   |          | 651 |
| 2590 | pi                  | $CO + \gamma \rightarrow O^+ + C + e^-$                  |   |   |          | 651 |
| 2591 | $\operatorname{pd}$ | $CO + \gamma \rightarrow C + O$                          |   |   |          | 652 |
| 2592 | $\operatorname{pd}$ | $CO + \gamma \rightarrow C(^{1}D) + O(^{1}D)$            |   |   |          | 652 |
| 2593 | $\operatorname{pd}$ | $H_2 + \gamma \rightarrow H + H$                         |   |   |          | 653 |
| 2594 | pi                  | $\mathrm{H_2} + \gamma \rightarrow \mathrm{H_2^+} + e^-$ |   |   |          | 653 |
| 2595 | pi                  | $H_2 + \gamma \rightarrow H^+ + H + e^-$                 |   |   |          | 653 |
| 2596 | $\operatorname{pd}$ | $N_2 + \gamma \rightarrow N + N$                         |   |   |          | 654 |
| 2597 | pi                  | $N_2 + \gamma \rightarrow N^+ + N + e^-$                 |   |   |          | 654 |
| 2598 | pi                  | $N_2 + \gamma \to N_2^+ + e^-$                           |   |   |          | 654 |
| 2599 | pi                  | $NO + \gamma \rightarrow NO^+ + e^-$                     |   |   |          | 655 |
| 2600 | pi                  | $NO + \gamma \rightarrow O^+ + N + e^-$                  |   |   |          | 655 |
| 2601 | pi                  | $NO + \gamma \rightarrow N^+ + O + e^-$                  |   |   |          | 655 |
| 2602 | $\operatorname{pd}$ | $NO + \gamma \rightarrow N + O$                          |   |   |          | 655 |
| 2603 | $\operatorname{pd}$ | $O_2 + \gamma \rightarrow O + O$                         |   |   |          | 656 |
| 2604 | $\operatorname{pd}$ | $O_2 + \gamma \rightarrow O + O(^1D)$                    |   |   |          | 656 |
| 2605 | pi                  | $O_2 + \gamma \rightarrow O^+ + O + e^-$                 |   |   |          | 656 |
| 2606 | $\operatorname{pd}$ | $O_2 + \gamma \rightarrow O(^1S) + O(^1S)$               |   |   |          | 656 |
| 2607 | pi                  | $O_2 + \gamma \rightarrow O_2^+ + e^-$                   |   |   |          | 656 |
| 2608 | $\operatorname{pd}$ | $HO + \gamma \rightarrow O + H$                          |   |   |          | 657 |
| 2609 | $\operatorname{pd}$ | $HO + \gamma \rightarrow O(^{1}S) + H$                   |   |   |          | 657 |
| 2610 | pi                  | $HO + \gamma \rightarrow HO^+ + e^-$                     |   |   |          | 657 |
| 2611 | $\operatorname{pd}$ | $HO + \gamma \rightarrow O(^{1}D) + H$                   |   |   |          | 657 |
| 2612 | $\operatorname{pd}$ | $CO_2 + \gamma \rightarrow CO + O(^1D)$                  |   |   |          | 658 |
| 2613 | pi                  | $CO_2 + \gamma \rightarrow CO_2^+ + e^-$                 |   |   |          | 658 |
| 2614 | pi                  | $CO_2 + \gamma \rightarrow CO^+ + O + e^-$               |   |   |          | 658 |
| 2615 | pi                  | $CO_2 + \gamma \rightarrow O^+ + CO + e^-$               |   |   |          | 658 |
| 2616 | pi                  | $CO_2 + \gamma \rightarrow C^+ + O_2 + e^-$              |   |   |          | 658 |
| 2617 | $\operatorname{pd}$ | $CO_2 + \gamma \rightarrow CO + O$                       |   |   |          | 658 |
| 2618 | $\operatorname{pd}$ | $H_2O + \gamma \rightarrow HO + H$                       |   |   |          | 659 |
| 2619 | $\operatorname{pd}$ | $H_2O + \gamma \rightarrow H_2 + O(^1D)$                 |   |   |          | 659 |
| 2620 | $\operatorname{pd}$ | $H_2O + \gamma \rightarrow O + H + H$                    |   |   |          | 659 |
| 2621 | pi                  | $H_2O + \gamma \rightarrow HO^+ + H + e^-$               |   |   |          | 659 |
| 2622 | pi                  | $H_2O + \gamma \rightarrow O^+ + H_2 + e^-$              |   |   |          | 659 |
| 2623 | pi                  | $H_2O + \gamma \rightarrow H^+ + HO + e^-$               |   |   |          | 659 |
| 2624 | pi                  | $H_2O + \gamma \rightarrow H_2O^+ + e^-$                 |   |   |          | 659 |

Table 6— Continued

| #    | Type                | Reaction                                                           | α     | β     | $\gamma$ | Ref |
|------|---------------------|--------------------------------------------------------------------|-------|-------|----------|-----|
| 2625 | $\operatorname{pd}$ | $HCN + \gamma \rightarrow CN + H$                                  |       |       |          | 660 |
| 2626 | pi                  | $HCN + \gamma \rightarrow CHN^+ + e^-$                             |       |       |          | 660 |
| 2627 | $\operatorname{pd}$ | $HO_2 + \gamma \rightarrow HO + O$                                 |       |       |          | 661 |
| 2628 | $\operatorname{pd}$ | $N_2O + \gamma \rightarrow N_2 + O(^1S)$                           |       |       |          | 662 |
| 2629 | $\operatorname{pd}$ | $N_2O + \gamma \rightarrow N_2 + O(^1D)$                           |       |       |          | 662 |
| 2630 | $\operatorname{pd}$ | $H_2N + \gamma \rightarrow HN + H$                                 |       | • • • | • • •    | 663 |
| 2631 | pi                  | $NO_2 + \gamma \rightarrow NO_2^+ + e^-$                           |       |       |          | 664 |
| 2632 | $\operatorname{pd}$ | $NO_2 + \gamma \rightarrow NO + O(^1D)$                            |       | • • • | • • •    | 664 |
| 2633 | $\operatorname{pd}$ | $NO_2 + \gamma \rightarrow NO + O$                                 |       |       |          | 664 |
| 2634 | $\operatorname{pd}$ | $O_3 + \gamma \rightarrow O_2 + O$                                 |       | • • • | • • •    | 665 |
| 2635 | $\operatorname{pd}$ | $O_3 + \gamma \rightarrow O_2 + O(^1S)$                            | • • • |       |          | 665 |
| 2636 | pi                  | $C_2H_2 + \gamma \to C_2H_2^+ + e^-$                               |       |       |          | 666 |
| 2637 | pi                  | $C_2H_2 + \gamma \to C_2H^+ + H + e^-$                             |       |       |          | 666 |
| 2638 | $\operatorname{pd}$ | $C_2H_2 + \gamma \to C_2 + H_2$                                    |       |       |          | 666 |
| 2639 | $\operatorname{pd}$ | $C_2H_2 + \gamma \rightarrow C_2H + H$                             | • • • | • • • |          | 666 |
| 2640 | $\operatorname{pd}$ | $CH_2O + \gamma \rightarrow CHO + H$                               | • • • | • • • |          | 667 |
| 2641 | $\operatorname{pd}$ | $CH_2O + \gamma \rightarrow CO + H_2$                              | • • • |       |          | 667 |
| 2642 | $\operatorname{pd}$ | $CH_2O + \gamma \rightarrow CO + H + H$                            | • • • |       |          | 667 |
| 2643 | pi                  | $CH_2O + \gamma \rightarrow CH_2O^+ + e^-$                         | • • • | • • • |          | 667 |
| 2644 | pi                  | $CH_2O + \gamma \rightarrow CHO^+ + H + e^-$                       | • • • |       |          | 667 |
| 2645 | pi                  | $CH_2O + \gamma \rightarrow CO^+ + H_2 + e^-$                      | • • • | • • • |          | 667 |
| 2646 | $\operatorname{pd}$ | $H_2O_2 + \gamma \rightarrow HO + HO$                              | • • • |       |          | 667 |
| 2647 | $\operatorname{pd}$ | $\text{HNCO} + \gamma \rightarrow \text{HN} + \text{CO}$           |       |       |          | 668 |
| 2648 | $\operatorname{pd}$ | $\text{HNCO} + \gamma \rightarrow \text{NCO} + \text{H}$           | • • • |       |          | 668 |
| 2649 | $\operatorname{pd}$ | $HNO_2 + \gamma \rightarrow HO + NO$                               |       | • • • |          | 669 |
| 2650 | $\operatorname{pd}$ | $H_3N + \gamma \rightarrow H_2N + H$                               |       | • • • |          | 670 |
| 2651 | $\operatorname{pd}$ | $H_3N + \gamma \rightarrow HN^* + H_2$                             | • • • | • • • |          | 670 |
| 2652 | $\operatorname{pd}$ | $H_3N + \gamma \rightarrow HN + H + H$                             | • • • | • • • |          | 670 |
| 2653 | pi                  | $H_3N + \gamma \rightarrow H_3N^+ + e^-$                           | • • • | • • • |          | 670 |
| 2654 | pi                  | $H_3N + \gamma \rightarrow H_2N^+ + H + e^-$                       | • • • | • • • |          | 670 |
| 2655 | pi                  | $H_3N + \gamma \rightarrow HN^+ + H_2 + e^-$                       |       | • • • |          | 670 |
| 2656 | $\operatorname{pd}$ | $NO_3 + \gamma \rightarrow NO_2 + O$                               | • • • | • • • |          | 671 |
| 2657 | $\operatorname{pd}$ | $NO_3 + \gamma \rightarrow NO + O_2$                               | • • • | • • • |          | 671 |
| 2658 | $\operatorname{pd}$ | $CH_4 + \gamma \rightarrow CH_2^* + H_2$                           | • • • |       |          | 672 |
| 2659 | $\operatorname{pd}$ | $CH_4 + \gamma \rightarrow CH_3 + H$                               | • • • | • • • |          | 672 |
| 2660 | $\operatorname{pd}$ | $CH_4 + \gamma \rightarrow CH_2 + H + H$                           | • • • |       |          | 672 |
| 2661 | pi                  | $CH_4 + \gamma \rightarrow CH_4^+ + e^-$                           | • • • |       |          | 672 |
| 2662 | pi                  | $\mathrm{CH_4} + \gamma \to \mathrm{CH_3^+} + \mathrm{H} + e^-$    |       |       |          | 672 |
| 2663 | pi                  | $CH_4 + \gamma \rightarrow CH_2^+ + H_2 + e^-$                     | • • • |       |          | 672 |
| 2664 | $\operatorname{pd}$ | $CH_4 + \gamma \rightarrow CH + H_2 + H$                           |       |       |          | 672 |
| 2665 | $\operatorname{pd}$ | $\mathrm{HCOOH} + \gamma \rightarrow \mathrm{CO}_2 + \mathrm{H}_2$ |       |       |          | 673 |

Table 6—Continued

| #    | Type                | Reaction                                                           | α     | β     | $\gamma$ | Ref |
|------|---------------------|--------------------------------------------------------------------|-------|-------|----------|-----|
| 2666 | pi                  | $\text{HCOOH} + \gamma \rightarrow \text{CH}_2\text{O}_2^+ + e^-$  |       |       |          | 673 |
| 2667 | pi                  | $\text{HCOOH} + \gamma \rightarrow \text{CHO}^+ + \text{HO} + e^-$ |       |       |          | 673 |
| 2668 | $\operatorname{pd}$ | $\text{HCOOH} + \gamma \rightarrow \text{CHO} + \text{HO}$         |       |       |          | 673 |
| 2669 | $\operatorname{pd}$ | $HNO_3 + \gamma \rightarrow NO_2 + HO$                             |       |       |          | 674 |
| 2670 | pi                  | $C_2H_4 + \gamma \to C_2H_4^+ + e^-$                               |       |       |          | 675 |
| 2671 | pi                  | $C_2H_4 + \gamma \rightarrow C_2H_2^+ + H_2 + e^-$                 |       |       |          | 675 |
| 2672 | pi                  | $C_2H_4 + \gamma \to C_2H_3^+ + H + e^-$                           |       |       |          | 675 |
| 2673 | $\operatorname{pd}$ | $C_2H_4 + \gamma \rightarrow C_2H_2 + H + H$                       | • • • |       | • • •    | 675 |
| 2674 | $\operatorname{pd}$ | $C_2H_4 + \gamma \to C_2H_2 + H_2$                                 | • • • | • • • | • • •    | 675 |
| 2675 | $\operatorname{pd}$ | $C_2H_6 + \gamma \rightarrow CH_3 + CH_3$                          | • • • | • • • | • • •    | 676 |
| 2676 | $\operatorname{pd}$ | $C_2H_6 + \gamma \rightarrow C_2H_5 + H$                           | • • • | • • • | • • •    | 676 |
| 2677 | $\operatorname{pd}$ | $C_2H_6 + \gamma \rightarrow CH_2^* + CH_4$                        | • • • | • • • | • • •    | 676 |
| 2678 | pi                  | $C_2H_6 + \gamma \to C_2H_6^+ + e^-$                               |       |       |          | 676 |
| 2679 | $\operatorname{pd}$ | $C_2H_6 + \gamma \to C_2H_4 + H_2$                                 | • • • | • • • | • • •    | 676 |
| 2680 | $\operatorname{pd}$ | $C_2H_4O + \gamma \rightarrow CH_4 + CO$                           | • • • | • • • | • • •    | 677 |
| 2681 | $\operatorname{pd}$ | $C_2H_4O + \gamma \rightarrow CH_3 + CHO$                          | • • • | • • • | • • •    | 677 |
| 2682 | $\operatorname{pd}$ | $CH_3OH + \gamma \rightarrow CH_3 + HO$                            |       |       |          | 678 |
| 2683 | pi                  | $CH_3OH + \gamma \rightarrow CH_4O^+ + e^-$                        |       |       |          | 678 |
| 2684 | $\operatorname{pd}$ | $CH_3OH + \gamma \rightarrow CH_2O + H_2$                          |       |       |          | 678 |
| 2685 | $\operatorname{pd}$ | $C_4H_2 + \gamma \to C_2H_2 + C_2$                                 |       |       |          | 687 |
| 2686 | $\operatorname{pd}$ | $C_4H_2 + \gamma \to C_2H + C_2H$                                  | • • • | • • • | • • •    | 687 |
| 2687 | $\operatorname{pd}$ | $C_4H_2 + \gamma \rightarrow C_4H + H$                             | • • • |       | • • •    | 687 |
| 2688 | $\operatorname{pd}$ | $C_4H_4 + \gamma \to C_4H_2 + H_2$                                 | • • • | • • • | • • •    | 688 |
| 2689 | $\operatorname{pd}$ | $C_4H_4 + \gamma \rightarrow C_2H_2 + C_2H_2$                      |       |       |          | 688 |
| 2690 | pi                  | $Na + \gamma \rightarrow Na^+ + e^-$                               |       |       |          | 679 |
| 2691 | pi                  | $K + \gamma \rightarrow K^+ + e^-$                                 | • • • | • • • | • • •    | 680 |
| 2692 | $\operatorname{pd}$ | $HCl + \gamma \rightarrow H + Cl$                                  | • • • | • • • | • • •    | 681 |
| 2693 | $\operatorname{pd}$ | $N_2O_3 + \gamma \rightarrow NO_2 + NO$                            | • • • | • • • | • • •    | 684 |
| 2694 | $\operatorname{cr}$ | $C + CR \rightarrow C^{+} + e^{-} + CR$                            | • • • | • • • | • • •    | 682 |
| 2695 | cr                  | $Fe + CR \rightarrow Fe^+ + e^- + CR$                              | • • • |       | • • •    | 682 |
| 2696 | $\operatorname{cr}$ | $H + CR \rightarrow H^+ + e^- + CR$                                | • • • | • • • | • • •    | 682 |
| 2697 | $\operatorname{cr}$ | $He + CR \rightarrow He^+ + e^- + CR$                              | • • • | • • • | • • •    | 682 |
| 2698 | $\operatorname{cr}$ | $Mg + CR \rightarrow Mg^+ + e^- + CR$                              | • • • | • • • | • • •    | 682 |
| 2699 | $\operatorname{cr}$ | $N + CR \rightarrow N^{+} + e^{-} + CR$                            | • • • | • • • | • • •    | 682 |
| 2700 | $\operatorname{cr}$ | $O + CR \rightarrow O^{+} + e^{-} + CR$                            | • • • | • • • | • • •    | 682 |
| 2701 | $\operatorname{cr}$ | $Si + CR \rightarrow Si^+ + e^- + CR$                              | • • • | • • • | • • •    | 682 |
| 2702 | $\operatorname{cr}$ | $C_2 + CR \rightarrow C + C + CR$                                  |       |       |          | 682 |
| 2703 | cr                  | $CH + CR \rightarrow C + H + CR$                                   | • • • | • • • | • • •    | 682 |
| 2704 | cr                  | $CN + CR \rightarrow C + N + CR$                                   | • • • | • • • | • • •    | 682 |
| 2705 | $\operatorname{cr}$ | $CO + CR \rightarrow C + O + CR$                                   |       |       |          | 682 |
| 2706 | $\operatorname{cr}$ | $CO + CR \rightarrow CO^{+} + e^{-} + CR$                          | • • • |       | • • •    | 682 |

Table 6—Continued

| #    | Type                | Reaction                                                                           | α     | β     | $\gamma$ | Ref |
|------|---------------------|------------------------------------------------------------------------------------|-------|-------|----------|-----|
| 2707 | cr                  | $H_2 + CR \rightarrow H + H + CR$                                                  |       |       |          | 682 |
| 2708 | $\operatorname{cr}$ | $H_2 + CR \to H^+ + H + e^- + CR$                                                  |       |       |          | 682 |
| 2709 | cr                  | $\mathrm{H_2} + \mathrm{CR} \rightarrow \mathrm{H^+} + \mathrm{H^-} + \mathrm{CR}$ |       |       |          | 682 |
| 2710 | cr                  | $\mathrm{H}_2 + \mathrm{CR} \to \mathrm{H}_2^+ + e^- + \mathrm{CR}$                |       |       |          | 682 |
| 2711 | cr                  | $N_2 + CR \rightarrow N + N + CR$                                                  |       |       |          | 682 |
| 2712 | $\operatorname{cr}$ | $HN + CR \rightarrow N + H + CR$                                                   |       |       |          | 682 |
| 2713 | $\operatorname{cr}$ | $NO + CR \rightarrow N + O + CR$                                                   |       |       |          | 682 |
| 2714 | $\operatorname{cr}$ | $NO + CR \rightarrow NO^+ + e^- + CR$                                              |       |       |          | 682 |
| 2715 | cr                  | $O_2 + CR \rightarrow O + O + CR$                                                  |       |       | • • •    | 682 |
| 2716 | cr                  | $O_2 + CR \rightarrow O_2^+ + e^- + CR$                                            | • • • | • • • | • • •    | 682 |
| 2717 | $\operatorname{cr}$ | $HO + CR \rightarrow O + H + CR$                                                   |       |       |          | 682 |
| 2718 | cr                  | $SiH + CR \rightarrow Si + H + CR$                                                 | • • • | • • • | • • •    | 682 |
| 2719 | cr                  | $SiO + CR \rightarrow Si + O + CR$                                                 |       |       | • • •    | 682 |
| 2720 | cr                  | $C_2H + CR \rightarrow C_2 + H + CR$                                               |       |       | • • •    | 682 |
| 2721 | cr                  | $C_2N + CR \rightarrow C + CN + CR$                                                |       |       | • • •    | 682 |
| 2722 | cr                  | $C_2O + CR \rightarrow C_2 + O + CR$                                               |       |       | • • •    | 682 |
| 2723 | cr                  | $C_2O + CR \rightarrow CO + C + CR$                                                |       |       | • • •    | 682 |
| 2724 | cr                  | $CH_2 + CR \rightarrow CH_2^+ + e^- + CR$                                          |       |       | • • •    | 682 |
| 2725 | cr                  | $CO_2 + CR \rightarrow CO + O + CR$                                                |       |       | • • •    | 682 |
| 2726 | $\operatorname{cr}$ | $H_2O + CR \rightarrow HO + H + CR$                                                |       |       | • • •    | 682 |
| 2727 | cr                  | $HCN + CR \rightarrow CN + H + CR$                                                 |       |       | • • •    | 682 |
| 2728 | cr                  | $CHO + CR \rightarrow CO + H + CR$                                                 |       |       | • • •    | 682 |
| 2729 | cr                  | $CHO + CR \rightarrow CHO^{+} + e^{-} + CR$                                        |       |       | • • •    | 682 |
| 2730 | cr                  | $HNC + CR \rightarrow CN + H + CR$                                                 |       |       | • • •    | 682 |
| 2731 | cr                  | $\text{HNO} + \text{CR} \rightarrow \text{HNO}^+ + e^- + \text{CR}$                |       |       | • • •    | 682 |
| 2732 | cr                  | $N_2O + CR \rightarrow NO + N + CR$                                                |       |       | • • •    | 682 |
| 2733 | cr                  | $H_2N + CR \rightarrow HN + H + CR$                                                |       |       | • • •    | 682 |
| 2734 | cr                  | $H_2N + CR \rightarrow H_2N^+ + e^- + CR$                                          |       |       | • • •    | 682 |
| 2735 | cr                  | $NO_2 + CR \rightarrow NO + O + CR$                                                |       |       | • • •    | 682 |
| 2736 | cr                  | $HO_2 + CR \rightarrow O + HO + CR$                                                |       |       | • • •    | 682 |
| 2737 | cr                  | $HO_2 + CR \rightarrow O_2 + H + CR$                                               |       |       | • • •    | 682 |
| 2738 | cr                  | $CNO + CR \rightarrow CN + O + CR$                                                 |       |       | • • •    | 682 |
| 2739 | cr                  | $SiH_2 + CR \rightarrow SiH + H + CR$                                              |       |       | • • •    | 682 |
| 2740 | cr                  | $C_2H_2 + CR \rightarrow C_2H + H + CR$                                            |       |       | • • •    | 682 |
| 2741 | $\operatorname{cr}$ | $C_2H_2 + CR \to C_2H_2^+ + e^- + CR$                                              |       |       | • • •    | 682 |
| 2742 | $\operatorname{cr}$ | $CH_3 + CR \rightarrow CH_2 + H + CR$                                              |       |       | • • •    | 682 |
| 2743 | $\operatorname{cr}$ | $CH_3 + CR \rightarrow CH_3^+ + e^- + CR$                                          |       |       |          | 682 |
| 2744 | cr                  | $CH_2O + CR \rightarrow CO + H_2 + CR$                                             |       |       | • • •    | 682 |
| 2745 | cr                  | $H_2O_2 + CR \rightarrow HO + HO + CR$                                             |       |       | • • •    | 682 |
| 2746 | $\operatorname{cr}$ | $H_3N + CR \rightarrow HN + H_2 + CR$                                              |       |       | • • •    | 682 |
| 2747 | cr                  | $H_3N + CR \rightarrow H_2N + H + CR$                                              |       |       | • • •    | 682 |

Table 6—Continued

| #    | Type                | Reaction                                                                    | α        | β     | $\gamma$ | Ref |
|------|---------------------|-----------------------------------------------------------------------------|----------|-------|----------|-----|
| 2748 | cr                  | $H_3N + CR \rightarrow H_3N^+ + e^- + CR$                                   |          |       |          | 682 |
| 2749 | cr                  | $C_2H_2O + CR \rightarrow CH_2 + CO + CR$                                   |          |       |          | 682 |
| 2750 | cr                  | $C_2H_2O + CR \to C_2H_2O^+ + e^- + CR$                                     |          |       |          | 682 |
| 2751 | cr                  | $C_2H_3 + CR \rightarrow C_2H_2 + H + CR$                                   |          |       |          | 682 |
| 2752 | $\operatorname{cr}$ | $CH_2O_2 + CR \rightarrow CHO + HO + CR$                                    |          |       |          | 682 |
| 2753 | cr                  | $\mathrm{CH_2O_2} + \mathrm{CR} \to \mathrm{CH_2O_2^+} + e^- + \mathrm{CR}$ |          |       |          | 682 |
| 2754 | cr                  | $CH_3N + CR \rightarrow HCN + H_2 + CR$                                     |          |       |          | 682 |
| 2755 | cr                  | $CH_4 + CR \rightarrow CH_2 + H_2 + CR$                                     | • • •    |       |          | 682 |
| 2756 | cr                  | $HC_3N + CR \rightarrow C_2H + CN + CR$                                     | • • •    |       |          | 682 |
| 2757 | $\operatorname{cr}$ | $SiH_4 + CR \rightarrow SiH_2 + H_2 + CR$                                   | • • •    | • • • |          | 682 |
| 2758 | $\operatorname{cr}$ | $C_2H_3N + CR \rightarrow CH_3 + CN + CR$                                   | • • •    |       |          | 682 |
| 2759 | $\operatorname{cr}$ | $C_2H_3N + CR \to C_2H_3N^+ + e^- + CR$                                     | • • •    | • • • |          | 682 |
| 2760 | $\operatorname{cr}$ | $C_2H_4 + CR \rightarrow C_2H_2 + H_2 + CR$                                 | • • •    |       |          | 682 |
| 2761 | cr                  | $C_2H_4 + CR \to C_2H_4^+ + e^- + CR$                                       |          |       |          | 682 |
| 2762 | $\operatorname{cr}$ | $CH_3OH + CR \rightarrow CH_3O^+ + H + e^- + CR$                            | • • •    | • • • |          | 682 |
| 2763 | $\operatorname{cr}$ | $CH_3OH + CR \rightarrow CH_4O^+ + e^- + CR$                                | • • •    | • • • |          | 682 |
| 2764 | $\operatorname{cr}$ | $C_2H_4O + CR \rightarrow CH_3 + CHO + CR$                                  | • • •    | • • • |          | 682 |
| 2765 | $\operatorname{cr}$ | $C_2H_4O + CR \rightarrow CH_4 + CO + CR$                                   | • • •    | • • • |          | 682 |
| 2766 | cr                  | $C_2H_4O + CR \to C_2H_4O^+ + e^- + CR$                                     | • • •    |       |          | 682 |
| 2767 | cr                  | $C_2H_5 + CR \rightarrow C_2H_4 + H + CR$                                   | • • •    |       |          | 682 |
| 2768 | cr                  | $C_3H_3N + CR \rightarrow C_2H_3 + CN + CR$                                 | • • •    |       |          | 682 |
| 2769 | $\operatorname{cr}$ | $C_3H_4 + CR \rightarrow C_3H_3 + H + CR$                                   | • • •    | • • • |          | 682 |
| 2770 | cr                  | $C_3H_4 + CR \to C_3H_4^+ + e^- + CR$                                       | • • •    |       |          | 682 |
| 2771 | cr                  | $CH_5N + CR \rightarrow HCN + H_2 + H + CR$                                 | • • •    |       |          | 682 |
| 2772 | $\operatorname{cr}$ | $CH^{+} + CR \rightarrow C + H^{+} + CR$                                    | • • •    | • • • |          | 682 |
| 2773 | cr                  | $Cl + CR \rightarrow Cl^+ + e^- + CR$                                       | • • •    |       |          | 682 |
| 2774 | cr                  | $K + CR \rightarrow K^+ + e^- + CR$                                         | • • •    | • • • |          | 682 |
| 2775 | cr                  | $Na + CR \rightarrow Na^+ + e^- + CR$                                       | • • •    | • • • |          | 682 |
| 2776 | cr                  | $NaH + CR \rightarrow Na + H + CR$                                          |          |       |          | 682 |
| 2777 | dr                  | $C_2^+ + e^- \rightarrow C + C$                                             | 8.84e-08 | -0.50 | 0        | 683 |
| 2778 | dr                  | $CH^+ + e^- \rightarrow C + H$                                              | 7.00e-08 | -0.50 | 0        | 683 |
| 2779 | dr                  | $CN^+ + e^- \rightarrow C + N$                                              | 3.38e-07 | -0.55 | 0        | 683 |
| 2780 | dr                  | $CO^+ + e^- \rightarrow O + C$                                              | 2.75e-07 | -0.55 | 0        | 683 |
| 2781 | dr                  | $\mathrm{H_2^+} + e^- \rightarrow \mathrm{H} + \mathrm{H}$                  | 2.53e-07 | -0.50 | 0        | 683 |
| 2782 | dr                  | $HeH^+ + e^- \rightarrow H + He$                                            | 3.00e-08 | -0.50 | 0        | 683 |
| 2783 | dr                  | $N_2^+ + e^- \rightarrow N + N$                                             | 1.80e-07 | -0.39 | 0        | 683 |
| 2784 | dr                  | $HN^+ + e^- \rightarrow N + H$                                              | 1.18e-07 | -0.50 | 0        | 683 |
| 2785 | dr                  | $NO^+ + e^- \rightarrow N + O$                                              | 4.10e-07 | -1.00 | 0        | 683 |
| 2786 | dr                  | $O_2^+ + e^- \rightarrow O + O$                                             | 1.95e-07 | -0.70 | 0        | 683 |
| 2787 | dr                  | $\mathrm{HO^+} + e^- \rightarrow \mathrm{O} + \mathrm{H}$                   | 6.30e-09 | -0.48 | 0        | 683 |
| 2788 | $d\mathbf{r}$       | $SiH^+ + e^- \rightarrow Si + H$                                            | 2.00e-07 | -0.50 | 0        | 683 |

Table 6— Continued

| #    | Type                   | Reaction                                                                 | α         | β     | $\gamma$ | Ref |
|------|------------------------|--------------------------------------------------------------------------|-----------|-------|----------|-----|
| 2789 | dr                     | $SiO^+ + e^- \rightarrow Si + O$                                         | 2.00e-07  | -0.50 | 0        | 683 |
| 2790 | dr                     | $C_2H^+ + e^- \rightarrow C_2 + H$                                       | 1.16e-07  | -0.76 | 0        | 683 |
| 2791 | $d\mathbf{r}$          | $C_2H^+ + e^- \rightarrow CH + C$                                        | 1.05e-07  | -0.76 | 0        | 683 |
| 2792 | $\mathrm{d}\mathrm{r}$ | $C_2H^+ + e^- \rightarrow C + C + H$                                     | 4.80e-08  | -0.76 | 0        | 683 |
| 2793 | $\mathrm{d}\mathrm{r}$ | $C_2N^+ + e^- \rightarrow C + CN$                                        | 1.50e-07  | -0.50 | 0        | 683 |
| 2794 | dr                     | $C_2N^+ + e^- \rightarrow C_2 + N$                                       | 1.50e-07  | -0.50 | 0        | 683 |
| 2795 | dr                     | $C_2O^+ + e^- \rightarrow CO + C$                                        | 3.00e-07  | -0.50 | 0        | 683 |
| 2796 | dr                     | $\mathrm{CH}_2^+ + e^- \to \mathrm{C} + \mathrm{H}_2$                    | 7.70e-08  | -0.60 | 0        | 683 |
| 2797 | dr                     | $\mathrm{CH}_2^+ + e^- \to \mathrm{CH} + \mathrm{H}$                     | 1.60e-07  | -0.60 | 0        | 683 |
| 2798 | dr                     | $\mathrm{CH}_2^+ + e^- \to \mathrm{C} + \mathrm{H} + \mathrm{H}$         | 4.00e-07  | -0.60 | 0        | 683 |
| 2799 | dr                     | $SiCH^+ + e^- \rightarrow Si + CH$                                       | 1.50e-07  | -0.50 | 0        | 683 |
| 2800 | dr                     | $\mathrm{CO}_2^+ + e^- \to \mathrm{O} + \mathrm{CO}$                     | 4.20e-07  | -0.75 | 0        | 683 |
| 2801 | dr                     | $\mathrm{H_2O^+} + e^- \rightarrow \mathrm{O} + \mathrm{H_2}$            | 3.90e-08  | -0.50 | 0        | 683 |
| 2802 | dr                     | $\mathrm{H_2O^+} + e^- \rightarrow \mathrm{HO} + \mathrm{H}$             | 8.60e-08  | -0.50 | 0        | 683 |
| 2803 | dr                     | $\mathrm{H_2O^+} + e^- \rightarrow \mathrm{O} + \mathrm{H} + \mathrm{H}$ | 3.05e-07  | -0.50 | 0        | 683 |
| 2804 | dr                     | ${\rm H_3^+} + e^- \to {\rm H} + {\rm H} + {\rm H}$                      | 4.36e-08  | -0.52 | 0        | 683 |
| 2805 | dr                     | ${\rm H_3^+} + e^- \to {\rm H_2} + {\rm H}$                              | 2.34e-08  | -0.52 | 0        | 683 |
| 2806 | dr                     | $\mathrm{CHN^+} + e^- \to \mathrm{CN} + \mathrm{H}$                      | 2.00e-07  | -0.50 | 0        | 683 |
| 2807 | dr                     | $CHO^+ + e^- \rightarrow CO + H$                                         | 2.80e-07  | -0.69 | 0        | 683 |
| 2808 | $d\mathbf{r}$          | $CHN^+ + e^- \rightarrow CN + H$                                         | 2.00e-07  | -0.50 | 0        | 683 |
| 2809 | dr                     | $\text{HNO}^+ + e^- \rightarrow \text{NO} + \text{H}$                    | 3.00e-07  | -0.50 | 0        | 683 |
| 2810 | dr                     | $SiHO^+ + e^- \rightarrow Si + HO$                                       | 1.50e-07  | -0.50 | 0        | 683 |
| 2811 | dr                     | $SiHO^+ + e^- \rightarrow SiO + H$                                       | 1.50e-07  | -0.50 | 0        | 683 |
| 2812 | dr                     | $\mathrm{HN}_2^+ + e^- \rightarrow \mathrm{N}_2 + \mathrm{H}$            | 9.00e-08  | -0.51 | 0        | 683 |
| 2813 | dr                     | $HN_2^+ + e^- \rightarrow HN + N$                                        | 1.00e-08  | -0.51 | 0        | 683 |
| 2814 | dr                     | $\text{CNO}^+ + e^- \rightarrow \text{CO} + \text{N}$                    | 3.00e-07  | -0.50 | 0        | 683 |
| 2815 | dr                     | $H_2N^+ + e^- \rightarrow N + H + H$                                     | 2.00e-07  | -0.50 | 0        | 683 |
| 2816 | dr                     | $H_2N^+ + e^- \rightarrow HN + H$                                        | 1.00e-07  | -0.50 | 0        | 683 |
| 2817 | dr                     | $NO_2^+ + e^- \rightarrow O + NO$                                        | 3.00e-07  | -0.50 | 0        | 683 |
| 2818 | dr                     | $\mathrm{HO}_2^+ + e^- \rightarrow \mathrm{O}_2 + \mathrm{H}$            | 3.00e-07  | -0.50 | 0        | 683 |
| 2819 | dr                     | $SiH_2^+ + e^- \rightarrow Si + H + H$                                   | 2.00e-07  | -0.50 | 0        | 683 |
| 2820 | dr                     | $SiH_2^+ + e^- \rightarrow Si + H_2$                                     | 1.50e-07  | -0.50 | 0        | 683 |
| 2821 | $\mathrm{d}\mathrm{r}$ | $SiH_2^+ + e^- \rightarrow SiH + H$                                      | 2.00e-07  | -0.50 | 0        | 683 |
| 2822 | $\mathrm{d}\mathrm{r}$ | $C_2H_2^+ + e^- \rightarrow C_2H + H$                                    | 2.90e-07  | -0.50 | 0        | 683 |
| 2823 | $d\mathbf{r}$          | $C_2H_2^+ + e^- \to C_2 + H + H$                                         | 1.70e-07  | -0.50 | 0        | 683 |
| 2824 | dr                     | $C_2H_2^+ + e^- \rightarrow CH + CH$                                     | 7.50e-08  | -0.50 | 0        | 683 |
| 2825 | dr                     | $C_2H_2^+ + e^- \rightarrow CH_2 + C$                                    | 2.89e-08  | -0.50 | 0        | 683 |
| 2826 | $d\mathbf{r}$          | $C_2H_2^+ + e^- \to C_2 + H_2$                                           | 1.15e-08  | -0.50 | 0        | 683 |
| 2827 | $d\mathbf{r}$          | $C_2HO^+ + e^- \rightarrow CO + C + H$                                   | 1.50 e-07 | -0.50 | 0        | 683 |
| 2828 | $d\mathbf{r}$          | $C_2HO^+ + e^- \rightarrow CO + CH$                                      | 1.00e-07  | -0.50 | 0        | 683 |
| 2829 | $d\mathbf{r}$          | $C_2HO^+ + e^- \rightarrow C_2H + O$                                     | 1.50e-07  | -0.50 | 0        | 683 |

Table 6— Continued

| #    | Type                   | Reaction                                                                    | α         | β     | $\gamma$ | Ref |
|------|------------------------|-----------------------------------------------------------------------------|-----------|-------|----------|-----|
| 2830 | $d\mathbf{r}$          | $C_2HO^+ + e^- \rightarrow C_2O + H$                                        | 1.00e-07  | -0.50 | 0        | 683 |
| 2831 | $d\mathbf{r}$          | $C_2N_2^+ + e^- \rightarrow CN + CN$                                        | 1.50 e-07 | -0.50 | 0        | 683 |
| 2832 | $d\mathbf{r}$          | $C_2N_2^+ + e^- \rightarrow CNC + N$                                        | 1.50 e-07 | -0.50 | 0        | 683 |
| 2833 | $d\mathbf{r}$          | $C_2HN^+ + e^- \rightarrow CH + CN$                                         | 1.50 e-07 | -0.50 | 0        | 683 |
| 2834 | $d\mathbf{r}$          | $C_2HN^+ + e^- \rightarrow CNC + H$                                         | 1.50 e-07 | -0.50 | 0        | 683 |
| 2835 | $\mathrm{d}\mathrm{r}$ | $C_3H^+ + e^- \rightarrow C_2H + C$                                         | 1.50e-07  | -0.50 | 0        | 683 |
| 2836 | $d\mathbf{r}$          | $C_3N^+ + e^- \rightarrow C_2 + CN$                                         | 3.00e-07  | -0.50 | 0        | 683 |
| 2837 | dr                     | $SiCH_2^+ + e^- \rightarrow Si + CH_2$                                      | 2.00e-07  | -0.50 | 0        | 683 |
| 2838 | dr                     | $\mathrm{CH_3^+} + e^- \to \mathrm{H_2} + \mathrm{C} + \mathrm{H}$          | 3.00e-07  | -0.30 | 0        | 683 |
| 2839 | $\mathrm{d}\mathrm{r}$ | $\mathrm{CH}_3^+ + e^- \to \mathrm{CH} + \mathrm{H} + \mathrm{H}$           | 1.60e-07  | -0.30 | 0        | 683 |
| 2840 | $\mathrm{d}\mathrm{r}$ | $\mathrm{CH}_3^+ + e^- \to \mathrm{CH} + \mathrm{H}_2$                      | 1.40e-07  | -0.30 | 0        | 683 |
| 2841 | $\mathrm{d}\mathrm{r}$ | $\mathrm{CH_3^+} + e^- \to \mathrm{CH_2} + \mathrm{H}$                      | 4.00e-07  | -0.30 | 0        | 683 |
| 2842 | $d\mathbf{r}$          | $\mathrm{CH_2O^+} + e^- \to \mathrm{CO} + \mathrm{H} + \mathrm{H}$          | 5.00e-07  | -0.50 | 0        | 683 |
| 2843 | $d\mathbf{r}$          | $\mathrm{CH_2O^+} + e^- \to \mathrm{CHO} + \mathrm{H}$                      | 1.00e-07  | -0.50 | 0        | 683 |
| 2844 | $d\mathbf{r}$          | $\mathrm{H_3O^+} + e^- \rightarrow \mathrm{HO} + \mathrm{H} + \mathrm{H}$   | 2.60e-07  | -0.50 | 0        | 683 |
| 2845 | $d\mathbf{r}$          | $\mathrm{H_3O^+} + e^- \rightarrow \mathrm{H_2O} + \mathrm{H}$              | 1.10e-07  | -0.50 | 0        | 683 |
| 2846 | $d\mathbf{r}$          | $\mathrm{H_3O^+} + e^- \rightarrow \mathrm{HO} + \mathrm{H_2}$              | 6.00e-08  | -0.50 | 0        | 683 |
| 2847 | $d\mathbf{r}$          | $H_3O^+ + e^- \to H_2 + H + O$                                              | 5.60e-09  | -0.50 | 0        | 683 |
| 2848 | $d\mathbf{r}$          | $CHO_2^+ + e^- \to CO + H + O$                                              | 8.10e-07  | -0.64 | 0        | 683 |
| 2849 | $d\mathbf{r}$          | $CHO_2^+ + e^- \rightarrow HO + CO$                                         | 3.20e-07  | -0.64 | 0        | 683 |
| 2850 | $d\mathbf{r}$          | $CHO_2^+ + e^- \to CO_2 + H$                                                | 6.00e-08  | -0.64 | 0        | 683 |
| 2851 | $d\mathbf{r}$          | $\text{CHNO}^+ + e^- \rightarrow \text{CO} + \text{HN}$                     | 3.00e-07  | -0.50 | 0        | 683 |
| 2852 | $d\mathbf{r}$          | $H_3N^+ + e^- \rightarrow HN + H + H$                                       | 1.55e-07  | -0.50 | 0        | 683 |
| 2853 | $d\mathbf{r}$          | $\mathrm{H_3N^+} + e^- \rightarrow \mathrm{H_2N} + \mathrm{H}$              | 1.55e-07  | -0.50 | 0        | 683 |
| 2854 | $d\mathbf{r}$          | $\mathrm{SiC}_2\mathrm{H}^+ + e^- \to \mathrm{C}_2\mathrm{H} + \mathrm{Si}$ | 1.50e-07  | -0.50 | 0        | 683 |
| 2855 | $d\mathbf{r}$          | $SiH_3^+ + e^- \rightarrow SiH + H_2$                                       | 1.50e-07  | -0.50 | 0        | 683 |
| 2856 | dr                     | $SiH_3^+ + e^- \rightarrow SiH_2 + H$                                       | 1.50e-07  | -0.50 | 0        | 683 |
| 2857 | $d\mathbf{r}$          | $C_2H_2N^+ + e^- \rightarrow CH + HCN$                                      | 3.00e-07  | -0.50 | 0        | 683 |
| 2858 | $d\mathbf{r}$          | $C_2H_2N^+ + e^- \rightarrow CN + CH_2$                                     | 3.00e-07  | -0.50 | 0        | 683 |
| 2859 | $d\mathbf{r}$          | $C_2H_2N^+ + e^- \to C_2N + H_2$                                            | 3.00e-07  | -0.50 | 0        | 683 |
| 2860 | $d\mathbf{r}$          | $C_2H_2O^+ + e^- \to C_2 + H_2O$                                            | 2.00e-07  | -0.50 | 0        | 683 |
| 2861 | $d\mathbf{r}$          | $C_2H_2O^+ + e^- \rightarrow CH_2 + CO$                                     | 2.00e-07  | -0.50 | 0        | 683 |
| 2862 | $d\mathbf{r}$          | $C_2H_2O^+ + e^- \to C_2H_2 + O$                                            | 2.00e-07  | -0.50 | 0        | 683 |
| 2863 | $d\mathbf{r}$          | $C_2H_3^+ + e^- \to C_2H + H + H$                                           | 2.95e-07  | -0.84 | 0        | 683 |
| 2864 | $d\mathbf{r}$          | $C_2H_3^+ + e^- \to C_2H + H_2$                                             | 3.00e-08  | -0.84 | 0        | 683 |
| 2865 | $d\mathbf{r}$          | $C_2H_3^+ + e^- \to C_2H_2 + H$                                             | 1.45 e-07 | -0.84 | 0        | 683 |
| 2866 | $d\mathbf{r}$          | $C_2H_3^+ + e^- \to C_2 + H + H_2$                                          | 1.50e-08  | -0.84 | 0        | 683 |
| 2867 | $d\mathbf{r}$          | $C_2H_3^+ + e^- \rightarrow CH_3 + C$                                       | 3.00e-09  | -0.84 | 0        | 683 |
| 2868 | $d\mathbf{r}$          | $C_2H_3^+ + e^- \rightarrow CH_2 + CH$                                      | 1.50e-08  | -0.84 | 0        | 683 |
| 2869 | $d\mathbf{r}$          | $C_3H_2^+ + e^- \to C_2H_2 + C$                                             | 3.00e-08  | -0.50 | 0        | 683 |
| 2870 | $d\mathbf{r}$          | $C_3HN^+ + e^- \rightarrow C_2 + HCN$                                       | 3.00e-07  | -0.50 | 0        | 683 |

Table 6—Continued

| #    | Type                   | Reaction                                                            | α         | β     | $\gamma$ | Ref |
|------|------------------------|---------------------------------------------------------------------|-----------|-------|----------|-----|
| 2871 | $\mathrm{d}\mathrm{r}$ | $C_3HN^+ + e^- \rightarrow C_2H + CN$                               | 1.50e-07  | -0.50 | 0        | 683 |
| 2872 | $d\mathbf{r}$          | $CH_2O_2^+ + e^- \to CO_2 + H + H$                                  | 3.00e-07  | -0.50 | 0        | 683 |
| 2873 | $d\mathbf{r}$          | $CH_4^+ + e^- \rightarrow CH_2 + H + H$                             | 3.00e-07  | -0.50 | 0        | 683 |
| 2874 | $d\mathbf{r}$          | $\mathrm{CH_4^+} + e^- \to \mathrm{CH_3} + \mathrm{H}$              | 3.00e-07  | -0.50 | 0        | 683 |
| 2875 | $d\mathbf{r}$          | $CH_3O^+ + e^- \rightarrow CO + H + H_2$                            | 2.00e-07  | -0.50 | 0        | 683 |
| 2876 | $d\mathbf{r}$          | $CH_3O^+ + e^- \rightarrow CHO + H + H$                             | 2.00e-07  | -0.50 | 0        | 683 |
| 2877 | dr                     | $CH_3O^+ + e^- \rightarrow CH_2O + H$                               | 2.00e-07  | -0.50 | 0        | 683 |
| 2878 | $d\mathbf{r}$          | $SiH_3O^+ + e^- \rightarrow SiO + H_2 + H$                          | 1.50e-07  | -0.50 | 0        | 683 |
| 2879 | $d\mathbf{r}$          | $H_4N^+ + e^- \to H_2N + H + H$                                     | 3.20e-07  | -0.50 | 0        | 683 |
| 2880 | $d\mathbf{r}$          | $H_4N^+ + e^- \to H_2N + H_2$                                       | 1.50e-07  | -0.50 | 0        | 683 |
| 2881 | $d\mathbf{r}$          | $H_4N^+ + e^- \rightarrow H_3N + H$                                 | 1.05e-06  | -0.50 | 0        | 683 |
| 2882 | dr                     | $SiH_4^+ + e^- \rightarrow SiH_2 + H_2$                             | 1.50 e-07 | -0.50 | 0        | 683 |
| 2883 | $d\mathbf{r}$          | $SiH_4^+ + e^- \rightarrow SiH_3 + H$                               | 1.50e-07  | -0.50 | 0        | 683 |
| 2884 | $d\mathbf{r}$          | $C_2H_3N^+ + e^- \to C_2N + H_2 + H$                                | 2.00e-07  | -0.50 | 0        | 683 |
| 2885 | $d\mathbf{r}$          | $C_2H_3N^+ + e^- \rightarrow CH_2 + HCN$                            | 3.00e-07  | -0.50 | 0        | 683 |
| 2886 | $d\mathbf{r}$          | $C_2H_3N^+ + e^- \rightarrow CH_3 + CN$                             | 2.00e-07  | -0.50 | 0        | 683 |
| 2887 | $d\mathbf{r}$          | $C_2H_3O^+ + e^- \rightarrow CH_3 + CO$                             | 1.50e-07  | -0.50 | 0        | 683 |
| 2888 | $d\mathbf{r}$          | $C_2H_3O^+ + e^- \to C_2H_2O + H$                                   | 1.50e-07  | -0.50 | 0        | 683 |
| 2889 | $d\mathbf{r}$          | $C_2H_4^+ + e^- \to C_2H_2 + H + H$                                 | 3.70e-07  | -0.76 | 0        | 683 |
| 2890 | $d\mathbf{r}$          | $C_2H_4^+ + e^- \to C_2H_2 + H_2$                                   | 3.36e-08  | -0.76 | 0        | 683 |
| 2891 | $d\mathbf{r}$          | $C_2H_4^+ + e^- \to C_2H_3 + H$                                     | 6.16e-08  | -0.76 | 0        | 683 |
| 2892 | $d\mathbf{r}$          | $C_2H_4^+ + e^- \to C_2H + H_2 + H$                                 | 5.60e-08  | -0.76 | 0        | 683 |
| 2893 | $d\mathbf{r}$          | $C_2H_4^+ + e^- \rightarrow CH_4 + C$                               | 5.60e-09  | -0.76 | 0        | 683 |
| 2894 | dr                     | $C_2H_4^+ + e^- \rightarrow CH_3 + CH$                              | 1.12e-08  | -0.76 | 0        | 683 |
| 2895 | $d\mathbf{r}$          | $C_2H_4^+ + e^- \rightarrow CH_2 + CH_2$                            | 2.24e-08  | -0.76 | 0        | 683 |
| 2896 | $d\mathbf{r}$          | $C_3H_2N^+ + e^- \rightarrow C_2H + HNC$                            | 7.50e-08  | -0.50 | 0        | 683 |
| 2897 | $d\mathbf{r}$          | $C_3H_2N^+ + e^- \rightarrow HC_3N + H$                             | 1.50e-07  | -0.50 | 0        | 683 |
| 2898 | $d\mathbf{r}$          | $C_3H_3^+ + e^- \rightarrow C_2H_2 + CH$                            | 6.99 e-08 | -0.50 | 0        | 683 |
| 2899 | $d\mathbf{r}$          | $CH_3O_2^+ + e^- \to CO_2 + H_2 + H$                                | 1.50e-07  | -0.50 | 0        | 683 |
| 2900 | $d\mathbf{r}$          | $\mathrm{CH_3O_2^+} + e^- \to \mathrm{CH_2O_2} + \mathrm{H}$        | 1.50e-07  | -0.50 | 0        | 683 |
| 2901 | $d\mathbf{r}$          | $CH_4N^+ + e^- \to CN + H_2 + H_2$                                  | 3.00e-08  | -0.50 | 0        | 683 |
| 2902 | $d\mathbf{r}$          | $\mathrm{CH_4N^+} + e^- \rightarrow \mathrm{CH_2} + \mathrm{H_2N}$  | 1.50 e-07 | -0.50 | 0        | 683 |
| 2903 | $d\mathbf{r}$          | $CH_4N^+ + e^- \rightarrow HCN + H + H_2$                           | 3.00e-07  | -0.50 | 0        | 683 |
| 2904 | $d\mathbf{r}$          | $\mathrm{CH_4N^+} + e^- \to \mathrm{CH_3N} + \mathrm{H}$            | 1.50e-07  | -0.50 | 0        | 683 |
| 2905 | $d\mathbf{r}$          | $\mathrm{CH_4O^+} + e^- \to \mathrm{CH_3} + \mathrm{HO}$            | 3.00e-07  | -0.50 | 0        | 683 |
| 2906 | $d\mathbf{r}$          | $\mathrm{CH_4O^+} + e^- \rightarrow \mathrm{CH_2O} + \mathrm{H_2}$  | 3.00e-07  | -0.50 | 0        | 683 |
| 2907 | $d\mathbf{r}$          | $CH_5^+ + e^- \rightarrow CH_3 + H_2$                               | 1.40e-08  | -0.52 | 0        | 683 |
| 2908 | $d\mathbf{r}$          | $\mathrm{CH}_5^+ + e^- \to \mathrm{CH}_4 + \mathrm{H}$              | 1.40e-08  | -0.52 | 0        | 683 |
| 2909 | $d\mathbf{r}$          | $\mathrm{CH}_5^+ + e^- \to \mathrm{CH}_3 + \mathrm{H} + \mathrm{H}$ | 1.95 e-07 | -0.52 | 0        | 683 |
| 2910 | $d\mathbf{r}$          | $CH_5^+ + e^- \to CH_2 + H_2 + H$                                   | 4.80e-08  | -0.52 | 0        | 683 |
| 2911 | $d\mathbf{r}$          | $CH_5^+ + e^- \to CH + H_2 + H_2$                                   | 3.00e-09  | -0.52 | 0        | 683 |

Table 6—Continued

| #    | Type                   | Reaction                                                                        | α         | β     | $\gamma$ | Ref |
|------|------------------------|---------------------------------------------------------------------------------|-----------|-------|----------|-----|
| 2912 | dr                     | $SiH_5^+ + e^- \rightarrow SiH_3 + H_2$                                         | 1.50e-07  | -0.50 | 0        | 683 |
| 2913 | dr                     | $SiH_5^+ + e^- \rightarrow SiH_4 + H$                                           | 1.50e-07  | -0.50 | 0        | 683 |
| 2914 | $d\mathbf{r}$          | $C_2H_4N^+ + e^- \rightarrow CH_2CN + H + H$                                    | 1.50e-07  | -0.50 | 0        | 683 |
| 2915 | $d\mathbf{r}$          | $C_2H_4N^+ + e^- \to C_2H_3N + H$                                               | 1.50e-07  | -0.50 | 0        | 683 |
| 2916 | dr                     | $C_2H_4O^+ + e^- \rightarrow CH_3 + CHO$                                        | 1.50 e-07 | -0.50 | 0        | 683 |
| 2917 | dr                     | $C_2H_4O^+ + e^- \to C_2H_2O + H + H$                                           | 1.50 e-07 | -0.50 | 0        | 683 |
| 2918 | $d\mathbf{r}$          | $C_2H_4O^+ + e^- \to C_2H_2O + H_2$                                             | 1.50 e-07 | -0.50 | 0        | 683 |
| 2919 | dr                     | $C_2H_5^+ + e^- \to C_2H + H_2 + H_2$                                           | 1.50 e-07 | -0.50 | 0        | 683 |
| 2920 | $d\mathbf{r}$          | $C_2H_5^+ + e^- \to C_2H_2 + H_2 + H$                                           | 3.00e-07  | -0.50 | 0        | 683 |
| 2921 | $d\mathbf{r}$          | $C_2H_5^+ + e^- \to C_2H_3 + H_2$                                               | 1.50 e-07 | -0.50 | 0        | 683 |
| 2922 | $d\mathbf{r}$          | $C_2H_5^+ + e^- \to C_2H_4 + H$                                                 | 1.50 e-07 | -0.50 | 0        | 683 |
| 2923 | $d\mathbf{r}$          | $C_3H_4^+ + e^- \to C_3H_3 + H$                                                 | 2.57e-06  | -0.67 | 0        | 683 |
| 2924 | $d\mathbf{r}$          | $C_3H_4^{+} + e^{-} \rightarrow C_2H_3 + CH$                                    | 2.95e-08  | -0.67 | 0        | 683 |
| 2925 | $d\mathbf{r}$          | $C_3H_4^+ + e^- \to C_2H_2 + CH_2$                                              | 1.77e-07  | -0.67 | 0        | 683 |
| 2926 | $d\mathbf{r}$          | $C_3H_4^{+} + e^{-} \rightarrow C_2H + CH_3$                                    | 2.95 e-08 | -0.67 | 0        | 683 |
| 2927 | $d\mathbf{r}$          | $\mathrm{CH_5N^+} + e^- \rightarrow \mathrm{CH_3} + \mathrm{H_2N}$              | 1.50 e-07 | -0.50 | 0        | 683 |
| 2928 | dr                     | $\mathrm{CH_5N^+} + e^- \rightarrow \mathrm{CH_3N} + \mathrm{H_2}$              | 1.50 e-07 | -0.50 | 0        | 683 |
| 2929 | $d\mathbf{r}$          | $\mathrm{CH_5O^+} + e^- \rightarrow \mathrm{CH_2O} + \mathrm{H_2} + \mathrm{H}$ | 9.10e-08  | -0.67 | 0        | 683 |
| 2930 | $d\mathbf{r}$          | $\mathrm{CH_5O^+} + e^- \rightarrow \mathrm{CH_3} + \mathrm{H_2O}$              | 8.19e-08  | -0.67 | 0        | 683 |
| 2931 | $d\mathbf{r}$          | $\mathrm{CH_5O^+} + e^- \rightarrow \mathrm{CH_3} + \mathrm{HO} + \mathrm{H}$   | 4.64e-07  | -0.67 | 0        | 683 |
| 2932 | $d\mathbf{r}$          | $CH_5O^+ + e^- \to CH_2 + H_2O + H$                                             | 1.91e-07  | -0.67 | 0        | 683 |
| 2933 | dr                     | $\mathrm{CH_5O^+} + e^- \rightarrow \mathrm{CH_3OH} + \mathrm{H}$               | 2.73e-08  | -0.67 | 0        | 683 |
| 2934 | dr                     | $C_4H_2N^+ + e^- \rightarrow HC_3N + CH$                                        | 3.00e-07  | -0.50 | 0        | 683 |
| 2935 | $\mathrm{d}\mathrm{r}$ | $C_2H_5O^+ + e^- \rightarrow CH_2O + CH_3$                                      | 1.50e-07  | -0.50 | 0        | 683 |
| 2936 | dr                     | $C_2H_5O^+ + e^- \to C_2H_2O + H_2 + H$                                         | 1.50e-07  | -0.50 | 0        | 683 |
| 2937 | $d\mathbf{r}$          | $C_2H_5O^+ + e^- \rightarrow CH_4 + CO + H$                                     | 3.00e-07  | -0.50 | 0        | 683 |
| 2938 | $d\mathbf{r}$          | $C_2H_5O^+ + e^- \to C_2H_4O + H$                                               | 1.50e-07  | -0.50 | 0        | 683 |
| 2939 | $d\mathbf{r}$          | $C_2H_6^+ + e^- \to C_2H_4 + H_2$                                               | 1.50e-07  | -0.50 | 0        | 683 |
| 2940 | dr                     | $C_2H_6^+ + e^- \to C_2H_5 + H$                                                 | 1.50e-07  | -0.50 | 0        | 683 |
| 2941 | $d\mathbf{r}$          | $C_3H_5^+ + e^- \to C_3H_3 + H_2$                                               | 1.50e-07  | -0.50 | 0        | 683 |
| 2942 | $d\mathbf{r}$          | $C_3H_5^+ + e^- \to C_3H_4 + H$                                                 | 1.50e-07  | -0.50 | 0        | 683 |
| 2943 | dr                     | $C_4H_4^+ + e^- \to C_4H_3 + H$                                                 | 3.30e-07  | -0.50 | 0        | 683 |
| 2944 | $\mathrm{d}\mathrm{r}$ | $CH_6N^+ + e^- \to CH_3N + H_2 + H$                                             | 1.50e-07  | -0.50 | 0        | 683 |
| 2945 | $d\mathbf{r}$          | $\mathrm{CH_6N^+} + e^- \rightarrow \mathrm{CH_5N} + \mathrm{H}$                | 1.50e-07  | -0.50 | 0        | 683 |
| 2946 | dr                     | $C_2H_6O^+ + e^- \to C_2H_2O + H_2 + H_2$                                       | 1.50e-07  | -0.50 | 0        | 683 |
| 2947 | $d\mathbf{r}$          | $C_2H_6O^+ + e^- \rightarrow CH_4 + CH_2O$                                      | 1.50e-07  | -0.50 | 0        | 683 |
| 2948 | $d\mathbf{r}$          | $C_2H_6O^+ + e^- \to C_2H_4O + H_2$                                             | 1.50e-07  | -0.50 | 0        | 683 |
| 2949 | $d\mathbf{r}$          | $C_2H_6O^+ + e^- \to C_2H_5 + HO$                                               | 1.50e-07  | -0.50 | 0        | 683 |
| 2950 | $d\mathbf{r}$          | $C_2H_7O^+ + e^- \to C_2H_4 + H_2O + H$                                         | 1.50e-07  | -0.50 | 0        | 683 |
| 2951 | $d\mathbf{r}$          | $C_2H_7O^+ + e^- \to C_2H_4O + H_2 + H$                                         | 1.50e-07  | -0.50 | 0        | 683 |
| 2952 | $d\mathbf{r}$          | $C_2H_7O^+ + e^- \rightarrow C_2H_5OH + H$                                      | 1.50e-07  | -0.50 | 0        | 683 |

Table 6—Continued

| #    | Type          | Reaction                                             | α         | β     | $\gamma$ | Ref |
|------|---------------|------------------------------------------------------|-----------|-------|----------|-----|
| 2953 | $d\mathbf{r}$ | $C_3H_6O^+ + e^- \to CH_3 + CH_3 + CO$               | 1.50e-07  | -0.50 | 0        | 683 |
| 2954 | $d\mathbf{r}$ | $C_3H_6O^+ + e^- \to C_2H_4O + CH_2$                 | 1.50 e-07 | -0.50 | 0        | 683 |
| 2955 | $d\mathbf{r}$ | $C_3H_7O^+ + e^- \to C_2H_4O + CH_3$                 | 1.50 e-07 | -0.50 | 0        | 683 |
| 2956 | $d\mathbf{r}$ | $C_4H_7^+ + e^- \to C_3H_3 + CH_4$                   | 1.95 e-07 | -0.50 | 0        | 683 |
| 2957 | $d\mathbf{r}$ | $C_4H_7^+ + e^- \to C_2H_3 + C_2H_4$                 | 2.25 e-08 | -0.50 | 0        | 683 |
| 2958 | $d\mathbf{r}$ | $C_4H_7^+ + e^- \to C_2H_2 + C_2H_5$                 | 2.25 e-08 | -0.50 | 0        | 683 |
| 2959 | $d\mathbf{r}$ | $C_2H_6NO_2^+ + e^- \to C_2H_5NO_2 + H$              | 2.34e-08  | -0.52 | 0        | 683 |
| 2960 | $d\mathbf{r}$ | $C_2H_7^+ + e^- \to C_2H_5 + H_2$                    | 1.50 e-07 | -0.50 | 0        | 683 |
| 2961 | dr            | $C_2H_7^+ + e^- \to C_2H_6 + H$                      | 1.50 e-07 | -0.50 | 0        | 683 |
| 2962 | $d\mathbf{r}$ | $C_3H_6^+ + e^- \to C_3H_3 + H_2 + H$                | 1.50 e-07 | -0.50 | 0        | 683 |
| 2963 | dr            | $C_3H_6^+ + e^- \to C_3H_4 + H_2$                    | 1.50 e-07 | -0.50 | 0        | 683 |
| 2964 | $d\mathbf{r}$ | $C_3H_7^+ + e^- \rightarrow C_2H_2 + CH_3 + H_2$     | 2.53e-08  | -0.73 | 0        | 683 |
| 2965 | $d\mathbf{r}$ | $C_3H_7^+ + e^- \to C_2H_3 + CH_3 + H$               | 4.37e-08  | -0.73 | 0        | 683 |
| 2966 | dr            | $C_3H_7^+ + e^- \to C_2H_4 + CH_2 + H$               | 9.20e-09  | -0.73 | 0        | 683 |
| 2967 | dr            | $C_3H_7^+ + e^- \to C_3H_4 + H_2 + H$                | 6.60 e-08 | -0.73 | 0        | 683 |
| 2968 | $d\mathbf{r}$ | $C_3H_7^+ + e^- \to C_2H_6 + CH$                     | 1.50 e-07 | -0.73 | 0        | 683 |
| 2969 | $d\mathbf{r}$ | $C_4H_2^+ + e^- \to C_2H + C_2H$                     | 2.75 e-07 | -0.79 | 0        | 683 |
| 2970 | $d\mathbf{r}$ | $C_4H_2^+ + e^- \to C_4H + H$                        | 8.25 e-07 | -0.79 | 0        | 683 |
| 2971 | $d\mathbf{r}$ | $C_3H_8^+ + e^- \to C_2H_6 + CH_2$                   | 1.50 e-07 | -0.50 | 0        | 683 |
| 2972 | $d\mathbf{r}$ | $C_3H_9^+ + e^- \to C_2H_6 + CH_3$                   | 1.50 e-07 | -0.50 | 0        | 683 |
| 2973 | dr            | $C_4H_9^+ + e^- \to C_2H_6 + C_2H_3$                 | 1.50 e-07 | -0.50 | 0        | 683 |
| 2974 | ra            | $H + CH_3 \rightarrow CH_4 + \gamma$                 | 1.31e-16  | -1.29 | 20       | 31  |
| 2975 | ra            | $H + C_2H_4 \rightarrow C_2H_5 + \gamma$             | 4.46e-17  | -0.53 | 19       | 31  |
| 2976 | ra            | $H + C_4H_2 \rightarrow C_4H_3 + \gamma$             | 5.64e-13  | 2.75  | 50       | 31  |
| 2977 | ra            | $H + C_4H_3 \rightarrow C_4H_4 + \gamma$             | 6.22e-12  | -3.01 | 162      | 31  |
| 2978 | ra            | $CH_3 + CH_3 \rightarrow C_2H_6 + \gamma$            | 2.96e-14  | -3.23 | 75       | 31  |
| 2979 | ra            | $\mathrm{H^+} + e^- \rightarrow \mathrm{H} + \gamma$ | 3.50 e-12 | -0.75 | 0        | 689 |
| 2980 | ra            | $\mathrm{He^+}+\ e^- \to \mathrm{He} + \gamma$       | 5.36e-12  | -0.50 | 0        | 690 |

<sup>\*</sup>Consult Section 2.3 on how the reaction barrier is calculated.

References. — (1) Kruse & Roth 1997; (2) Dean & Hanson 1992; (3) Tsang 1992; (4) Mick et al. 1993; (5) Baulch et al. 1992; (6) Deppe et al. 1998; (7) Tsang & Hampson 1986; (8) Thielen & Roth 1986; (9) Myerson 1973; (10) Javoy et al. 2003; (11) De Cobos & Troe 1984; (12) Bauerle et al. 1995; (13) Husain & Young 1975; (14) Lin et al. 1992; (15) Wagner & Bowman 1987; (16) Mertens & Hanson 1996; (17) Eremin et al. 1997; (18) Tsang & Herron 1991; (19) Ross et al. 1997; (20) Fulle & Hippler 1997; (21) Moses et al. 2005; (22) Yumura & Asaba 1981; (23) Hanson & Salimian 1984; (24) Graham & Johnston 1978a; (25) Bozzelli & Dean 1995; (26) Natarajan et al. 1986; (27) Troe 2005; (28) Wu et al. 1990; (29) Lifshitz et al. 1997; (30) Baulch et al. 2005; (31) Vuitton et al. 2012; (32) Atkinson et al. 2004; (33)

Baulch et al. 1994; (34) Meyer et al. 1969; (35) Dorko et al. 1979; (36) Klatt et al. 1995; (37) Schulz et al. 1985; (38) Fernandes et al. 2005; (39) Dean 1985; (40) Li et al. 2006; (41) Frank et al. 1988; (42) Kiefer et al. 1988; (43) Kern et al. 1988; (44) Yang et al. 2005; (45) Warnatz 1984; (46) Chang & Yu 1995; (47) Cribb et al. 1992; (48) Setser & Rabinovitch 1962; (49) Chang et al. 2007; (50) Saito et al. 1984; (51) Ikeda & Mackie 1996; (52) Wakamatsu & Hidaka 2008; (53) O'Neal & Benson 1962; (54) Atkinson et al. 1997; (55) Huynh & Violi 2008; (56) Dombrowsky et al. 1991; (57) Koike et al. 2000; (58) Ing et al. 2003; (59) Yasunaga et al. 2008; (60) Herron 1999; (61) Lifshitz & Tamburu 1998; (62) Lifshitz et al. 1993; (63) Oehlschlaeger et al. 2004; (64) Saito et al. 1990; (65) Lee & Bozzelli 2003; (66) Miller et al. 2004; (67) Friedrichs et al. 2008; (68) Joshi et al. 2005; (69) Almatarneh et al. 2005; (70) Zaslonko et al. 1997; (71) Fernández-Ramos et al. 1998; (72) Zaslonko et al. 1993; (73) Tsang 2004; (74) Cook et al. 2009; (75) Imai & Toyama 1962; (76) Hinshelwood & Askey 1927; (77) Hunt et al. 1965; (78) Sheng et al. 2002; (79) DeSain et al. 2003; (80) Chuchani et al. 1993; (81) Petrov et al. 2009; (82) Batt & Rattray 1979; (83) Blake & Jackson 1969; (84) Duan & Page 1995; (85) Spokes & Benson 1967; (86) Glänzer & Troe 1973; (87) Levy 1956; (88) Batt et al. 1975; (89) Li et al. 2004; (90) Natarajan & Bhaskaran 1981; (91) Arenas et al. 2000; (92) Zalotai et al. 1983; (93) Lifshitz & Tamburu 1994; (94) Sato & Hidaka 2000; (95) Hoyermann et al. 1999; (96) Zhang et al. 2005; (97) Zhang et al. 2004; (98) Curran 2006; (99) Patrick & Golden 1984; (100) Lavvas et al. 2014; (101) Baulch et al. 1981; (102) Crosley 1989; (103) Kretschmer & Petersen 1963; (104) Fehsenfeld et al. 1974; (105) Smith et al. 1982; (106) Raksit & Warneck 1979; (107) Adams & Smith 1977; (108) Ferguson & Fehsenfeld 1968; (109) Graham et al. 1973; (110) Fehsenfeld et al. 1967a; (111) Burt et al. 1970; (112) Beaty & Patterson 1965;(113) Märk & Oskam 1971; (114) Fehsenfeld et al. 1975a; (115) Sieck 1978; (116) See Section 2.3; (117) Wang et al. 2001; (118) Slack & Fishburne 1970; (119) Dean et al. 1991; (120) Andersson et al. 2003; (121) Mayer et al. 1967; (122) Whyte & Phillips 1983; (123) Caridade et al. 2005; (124) Adam et al. 2005; (125) Cohen & Westberg 1991; (126) Miller et al. 2005; (127) Bauer et al. 1985; (128) Sumathi & Nguyen 1998; (129) Tsuboi & Hashimoto 1981; (130) Röhrig & Wagner 1994; (131) Nguyen et al. 2004; (132) Mousavipour & Saheb 2007; (133) Bozzelli et al. 1994; (134) Su et al. 2002; (135) Shaw 1977; (136) Louge & Hanson 1984; (137) Miller & Melius 1992; (138) Szekely et al. 1985; (139) Corchado & Espinosa-Garcia 1997; (140) Linder et al. 1996; (141) Hsu et al. 1997; (142) He et al. 1993; (143) Senosiain et al. 2006; (144) Loison et al. 2015; (145) Tsang 1987; (146) Morris & Niki 1973; Boughton et al. 1997; (148) Knyazev et al. 1996a; (149) Jamieson et al. 1970; (150) Ohmori et al. 1990; (151) Colberg & Friedrichs 2006; (152) Li & Williams 1996; (153) Vaghjiani 1995; (154) Sivaramakrishnan et al. 2009; (155) Lambert et al. 1967; (156) Lifshitz & Ben-Hamou 1983; (157) Zhang & Bauer 1997; (158) Moortgat et al. 1977; (159) Aders & Wagner 1973; (160) Mayer et al. 1966; (161) Brownsword et al. 1996; (162) Ibragimova 1986; (163) Harding, et al. 1993; (164) Duff & Sharma 1996; (165) Bose & Candler 1996; (166) Brunetti & Liuti 1975; (167) Lifshitz & Frenklach 1980; (168) Avramenko & Krasnen'kov 1966; (169) Sander et al. 2011; (170) Barnett et al. 1987; (171) Safrany & Jaster 1968; (172) Cimas & Largo 2006; (173) Wagner et al. 1971; (174) Xu & Sun 1999; (175) Sun et al. 2004; (176) Takahashi 1972; (177) Paraskevopoulos & Winkler 1967; (178) Forst et al. 1957; (179) Roscoe & Roscoe 1973; (180) Lambert et al. 1968; (181) Fairbairn 1969; (182) Murrell & Rodriguez 1986; (183) Frank 1986; (184) Zhu & Lin 2007; (185) Korovkina 1976; (186) Harding & Wagner 1989; (187) Karkach & Osherov 1999; (188) Meagher & Anderson 2000; (189) Cvetanović 1987; (190) Hack et al. 2005; (191) Dean & Kistiakowsky 1971;

(192) Harding et al. 2005; (193) Corchado et al. 1998; (194) Cobos & Troe 1985; (195) Sridharan & Kaufman 1983; (196) Mahmud et al. 1987; (197) Westenberg & De Haas 1969; (198) Grotheer & Just 1981; (199) Gehring et al. 1969; (200) Mayer & Schieler 1968; (201) Bogan & Hand 1978; (202) Miyoshi et al. 1993; (203) Kato & Cvetanovic 1967; (204) Wu et al. 2007; (205) Takahashi et al. 2007; (206) Patterson & Greene 1962; (207) Meaburn & Gordon 1968; (208) Pshezhetskii et al. 1959; (209) Wilson (210) Kruse & Roth 1999; (211) Fontijn et al. 2001; (212) Harding et al. 1972;2008; (213) Matsui & Nomaguchi 1978; (214) Geiger et al. 1999; (215) Bergeat et al. 1998; (216) Jachimowski 1977; (217) Lichtin et al. 1984; (218) Bergeat et al. 2009; (219) Tao et al. 2001; (220) Blitz et al. 1997; (221) Mulvihill & Phillips 1975; (222) Rim & Hershberger 1999; (223) Tzeng et al. 2009; (224) Wang et al. 2002; (225) Park & Hershberger 1993; (226) Gannon et al. 2007; (227) Sayah et al. 1988; (228) Feng & Hershberger 2007; (229) Pang et al. 2008; (230) Sun et al. 2006; (231) Sims et al. 1993; (232) You et al. 2007; (233) Tsuboi et al. 1981; (234) Roose et al. 1978; (235) Baldwin et al. 1961; (236) Davidson et al. 1990; (237) Quandt & Hershberger 1995; (238) Xu & Sun 1998; (239) Röhrig et al. 1994; (240) Miller & Melius 1988; (241) Campomanes et al. 2001; (242) Gonzalez et al. 1992; (243) Mebel et al. 1996; (244) Srinivasan et al. 2007; (245) Ju et al. 2007; (246) Miller & Melius 1989; (247) Breen & Glass 1971; (248) Jasper et al. 2007; (249) Humpfer et al. 1995; (250) Xu & Lin 2007; (251) Wooldridge et al. 1996; (252) Corchado et al. 1995; (253) Grussdorf et al. 1994; (254) Faravelli et al. 2000; (255) Vandooren & Van Tiggelen 1977; (256) Bryukov et al. 2004; (257) Espinosa-Garcia et al. 1993; (258) Anglada 2004; (259) Lamb et al. 1984; (260) Liu et al. 2002; (261) Li & Wang 2004; (262) Srinivasan et al. 2007; (263) Baldwin et al. 1984; (264) Cohen 1991; (265) Nielsen et al. 1991; (266) Atkinson et al. 2001; (267) Wu et al. 2003; (268) Zabarnick & Heicklen 1985; (269) Sanders et al. 1987; (270) Thweatt et al. 2004; (271) Dammeier et al. 2007; (272) Lin et al. 1993; (273) Miller & Glarborg 1999; (274) Park & Lin 1997; (275) Vandooren et al. 1994; (276) Howard 1979; (277) Opansky & Leone (1996a,b); (278) Benson 1994; (279) Hennig & Wagner 1994; (280) Tomeczek & Gradoń 2003; (281) Mebel & Lin 1997; (282) Striebel et al. 2004; (283) Laidler & Wojciechowski 1961; (284) McKenney et al. 1963; (285) Becker et al. 1992b; (286) Williamson & Bayes 1967; (287) Alvarez & Moore 1994; (288) Dombrowsky & Wagner 1992; (289) Nadtochenko et al. 1979; (290) Zhu & Lin 2005; (291) Schacke et al. 1974; (292) Bozzelli & Dean 1989; (293) Tang et al. 2008; (294) Reitel'boim et al. 1978; (295) Seery 1969; (296) Michael et al. 1999; (297) Marinov et al. 1998; (298) Bogdanchikov et al. 2004; (299) Shaw 1978; (300) Neiman & Feklisov 1961; (301) Bozzelli & Dean 1990; (302) Baker et al. 1971; (303) Atkinson et al. 1973; (304) Yang et al. 2008; (305) Hastie et al. 1976; (306) Morrissey & Schubert 1963; (307) Haworth et al. 2003; (308) Yee Quee & Thynne 1968; (309) Stothard et al. 1995; (310) Sahetchian et al. 1987; (311) Hidaka et al. 1990; (312) Dong et al. 2005; (313) Baker et al. 1969; (314) Homann & Wellmann 1983; (315) Frank et al. 1986; (316) Böhland et al. 1985; (317) Monks et al. 1993; (318) Xu & Lin 2004; (319) Huynh & Truong 2008; (320) Gao & Macdonald 2006; (321) Macdonald 2007; (322) Sumathi & Peyerimhoff 1996; (323) Glarborg et al. 1995; (324) Bulatov et al. 1980; (325) Mertens et al. 1991; (326) Thaxton et al. 1997; (327) Song et al. 2003; (328) Mebel & Lin 1999; (329) England & Corcoran 1975; (330) Choi & Lin 2005; (331) He et al. 1988; (332) Glänzer & Troe 1975; (333) Lloyd 1974; (334) Vardanyan et al. 1974; (335) Becker et al. 1992a; (336) Carstensen & Dean 2008; (337) Borisov et al. 1977; (338) Trenwith 1960; (339) Srinivasan et al. 2005; (340) Canosa et al. 1979; (341) Johnston 1951; (342) Chan et al. 2001; (343) Atkinson et al. 1989;a(344) Christie & Voisev 1967; (345) Anastasi & Hancock 1988; (346) Fifer 1975;

(347) Lindley et al. 1979; (348) Hébrard et al. 2013; (349) Laufer & Fahr 2004; (350) Woods & Haynes 1994; (351) Skinner & Ruehrwein 1959; (352) Tabayashi & Bauer 1979; (353) Metcalfe et al. 1983; (354) Adachi et al. 1981; (355) Hassinen et al. 1990; (356) Ceursters et al. 2001; (357) Baldwin et al. 1971; (358) Saevs et al. 2006; (359) Donovan et al. 1971; (360) Seetula et al. 1986; (361) Gray & Herod 1968; (362) Hidaka et al. 2000; (363) Thynne & Gray 1963a; (364) Sanders et al. 1980; (365) Musin & Lin 1998; (366) Bravo-Pérez et al. 2002; (367) Daele et al. 1995; (368) Kukui et al. 1995; (369) Langer & Ljungström 1995; (370) Biggs et al. 1995; (371) Langer & Ljungström 1994; (372) Sun et al. 2001; (373) Peeters et al. 1995; (374) Carl et al. 2003; (375) Osborn 2003; (376) Meyer & Hershberger 2005; (377) Petty et al. 1993; (378) Nizamov & Dagdigian 2003; (379) Chakraborty & Lin 1999; (380) Duran et al. 1988; (381) Knyazev et al. 1996b; (382) Levush et al. 1969; (383) Canosa-Mas et al. 1988; (384) Tanzawa & Gardiner 1980; (385) Moses (priv. comm.); (386) Adamson et al. 1997; (387) Wallington & Japar 1989; (388) Fahr & Stein 1989; (389) Scherzer et al. 1987; (390) Kelly & Heicklen 1978; (391) Thynne & Gray 1963b; (392) Moshkina et al. 1980; (393) Edwards et al. 1966; (394) Hoehlein & Freeman 1970; (395) Laidler & McKenney 1964; (396) Carstensen & Dean 2005; (397) Horne & Norrish 1970; (398) Herron 1988; (399) Atkinson et al. 1992; (400) Veyret et al. 1982; (401) Young 1958; (402) Gill et al. 1981; (403) Zhu & Lin 2009; (404) Hassinen et al. 1985; (405) Tuazon et al. 1984; (406) Edelbüttel-Einhaus et al. 1992; (407) Song et al. 2005; (408) Suzaki et al. 2007; (409) Suzaki et al. 2006; (410) Batt et al. 1977; (411) Ray et al. 1996; (412) Natarajan & Bhaskaran 1981; (413) Klemm 1965; (414) Hartmann et al. 1990: (415) Wijnen 1960: (416) Heicklen & Johnston 1962: (417) Jensen 1982: (418) Allison et al. 1996; (419) Bryukov et al. 2006; (420) Husain & Lee 1988; (421) Husain & Marshall 1986; (422) Bolden et al. 1970; (423) Laudenslager et al. 1974; (424) Raksit & Warneck 1980a; (425) Robertson et al. 1983; (426) Dotan & Lindinger 1982; (427) Karpas et al. 1978; (428) Chau & Bowers 1976; (429) Thomas et al. 1978; (430) Shul et al. 1987a; (431) Lindinger et al. 1981; (432) Villinger et al. 1982; (433) Roche et al. 1971; (434) Lindinger 1973; (435) Lindinger et al. 1975f; (436) Raksit 1982; (437) Bohme et al. 1970; (438) Adams et al. 1970; (439) Shul et al. 1987b; (440) Raksit & Warneck 1981; (441) Huntress & Baldeschwieler 1969; (442) Anicich et al. 1976; (443) Freeman et al. 1978b; (444) Schildcrout & Franklin 1970; (445) Bohme et al. 1982; (446) Raksit & Bohme 1985; (447) Cheng et al. 1973; (448) Cermak et al. 1970; (449) Adams & Smith 1978; (450) Adams et al. 1978a; (451) Szabo & Derrick 1971; (452) Smith & Adams 1977b; (453) Viggiano et al. 1980; (454) Schiff & Bohme 1979; (455) Zielinska & Wincel 1970; (456) McEwan et al. 1981; (457) Liddy et al. 1977a; (458) Wight & Beauchamp 1980; (459) Wagner-Redeker et al. 1985; (460) Karpas & Klein 1975; (461) Tanner et al. 1979a; (462) Mackay & Bohme 1978; (463) Adams et al. 1978b; (464) Mackay et al. 1977; (465) Mackay et al. 1976a; (466) Okada et al. 1972; (467) Mackay et al. 1981; (468) Kumakura et al. 1978a; (469) Raksit & Bohme 1984; (470) Matsumoto et al. 1975; (471) Kasper & Franklin 1972; (472) Betowski et al. 1975; (473) Anicich et al. 1986; (474) Debrou et al. 1978; (475) Freeman et al. 1978a; (476) Fluegge 1969a; (477) Smith & Adams 1978; (478) Kumakura et al. 1978b; (479) Bohme & Raksit 1985; (480) Kim et al. 1975; (481) Huntress et al. 1973; (482) Huntress & Elleman 1970; (483) Fehsenfeld 1976; (484) Fluegge 1969b; (485) Huntress et al. 1980; (486) Warneck 1972; (487) Sieck & Futrell 1968; (488) McAllister 1973; (489) Gupta et al. 1967; (490) Tanner et al. 1979b; (491) Mackay et al. 1978; (492) Bohme et al. 1980; (493) Hemsworth et al. 1973; (494) Munson & Field 1969; (495) Hopkinson et al. 1979; (496) Lindinger et al. 1975c; (497) Hemsworth et al. 1974; (498) Ikezoe et al. 1987; (499) Meot-Ner et al. 1986;

(500) Raksit et al. 1984; (501) McEwan et al. 1983; (502) Jaffe & Klein 1974; (503) Fehsenfeld & Ferguson 1972; (504) Raksit & Warneck 1980c; (505) Raksit & Warneck (506) Fehsenfeld & Ferguson 1971; (507) Fehsenfeld et al. 1970; (508) Ikezoe et al. 1987; (509) Miller et al. 1984; (510) Mackay et al. 1980; (511) Field et al. 1957; (512) Jarrold et al. 1983; (513) Mayer & Lampe 1974a; (514) Vogt et al. 1978; (515) Melton & Rudolph 1960; (516) Munson et al. 1964; (517) Büttrill et al. 1974; (518) Mayer & Lampe 1974b; (519) Kumakura et al. 1979; (520) Strausz et al. 1970; (521) Hiraoka & Kebarle 1980; (522) Ikezoe et al. 1987; (523) Ausloos & Lias 1981; (524) Tanner et al. 1979c; (525) Dheandhanoo et al. 1984; (526) Dunbar et al. 1972; (527) Sieck & Searles 1970; (528) Matsuoka & Ikezoe 1988; (529) Clary et al. 1985; (530) Armentrout et al. 1978; (531) Adams et al. 1980; (532) Smith & Adams 1980; (533) Herbst et al. 1975; (534) Fehsenfeld et al. 1976; (535) Howorka et al. 1974; (536) Ausloos 1975; (537) Jones et al. 1981a; (538) Lawson et al. 1976; (539) Ikezoe et al. 1987; (540) Fehsenfeld et al. 1975b; (541) Lindinger et al. 1975a; (542) Henis et al. 1973; (543) Cheng et al. 1974; (544) McAllister & Pitman 1976; (545) Karpas et al. 1979; (546) Bowers et al. 1969; (547) Smith et al. 1976; (548) Stevenson & Schissler 1955; (549) Barassin et al. 1983; (550) Huntress et al. 1971; (551) Dotan et al. 1980; (552) Durup-Ferguson et al. 1984; (553) Ikezoe et al. 1987; (554) Lindinger et al. 1975d; (555) Liddy et al. 1977b; (556) Adams & Smith 1976b; (557) Smith & Adams 1981; (558) Kemper et al. 1983; (559) Fehsenfeld et al. 1978; (560) Mackay et al. 1979; (561) Bohme & Mackay 1981; (562) Bohme et al. 1979; (563) Smith & Adams 1977a; (564) Ikezoe et al. 1987; (565) Cheng & Lampe 1973; (566) Neilson et al. 1978; (567) Kappes & Staley 1981; (568) Fehsenfeld et al. 1966b; Jones et al. 1979; (569) Adams & Smith 1976a; (570) Bolden & Twiddy 1972; Mauclaire et al. 1978; (571) Heimerl et al. 1969; (572) Theard & Huntress 1974; (573) Rowe et al. 1981; (574) Smith et al. 1978; (575) Tichỳ et al. 1979; (576) Williamson & Beauchamp 1975; (577) Fehsenfeld 1977; (578) Fehsenfeld et al. 1969c; (579) Ferguson 1968; (580) Jaffe et al. 1973; (581) Johnsen et al. 1970; (582) Jones et al. 1981b; (583) Kemper & Bowers 1984; (584) Lindinger 1976; (585) Glosik et al. 1978; (586) Lindinger et al. 1974; (587) Dunkin et al. 1971; (588) Rowe et al. 1980; (589) Fahey et al. 1981; (590) Fehsenfeld 1969; (591) Lindinger et al. 1975e; (592) Lindinger et al. 1979; (593) Raksit 1986; (594) Tonkyn & Weisshaar 1986; (595) Johnsen et al. 1974; (596) Tanaka et al. 1976; (597) Fehsenfeld & Ferguson 1970; (598) Mackay et al. 1982; (599) Moylan et al. 1985; (600) Mackay et al. 1976b; (601) Ausloos 1975; (602) Ikezoe et al. 1987; (603) Fehsenfeld 1975; (604) Albritton et al. 1983; (605) Fehsenfeld & Ferguson 1974; (606) Ikezoe et al. 1987; (607) Fehsenfeld et al. 1969b; (608) Bohme et al. 1974; (609) Bohme et al. 1971; (610) Lifshitz et al. 1978; (611) Lindinger et al. 1975b; (612) Fehsenfeld et al. 1973; (613) Dunkin et al. 1970; (614) Payzant et al. 1976; (615) Ferguson et al. 1969; (616) Tanner et al. 1981; (617) Bierbaum et al. 1976; (618) Faigle et al. 1976; (619) Howard et al. 1974; (620) Young et al. 1971; (621) Fehsenfeld et al. 1966a; (622) Ikezoe et al. 1987; (623) Bierbaum et al. 1984; (624) Grabowski 1983; (625) Streit 1982; (626) McFarland et al. 1972; (627) Parkes 1972a; (628) Parkes 1972b; (629) Bohme & Fehsenfeld 1969; (630) Fehsenfeld et al. 1967b; (631) Viggiano & Paulson 1983; (632) Lifshitz & Tassa 1973; (633) Marx et al. 1973; (634) McKnight 1970; (635) Fehsenfeld et al. 1969; (636) Lifshitz et al. 1977; (637) Fahey et al. 1982; (638) Dunkin et al. 1972; (639) 0.1 Å – 370 Å: Verner et al. 1993; Verner & Yakovlev 1995; Verner et al. 1996, 375.8 Å - 1083 Å: Badnell et al. 2005; (640) 0 Å - 120 Å: Barfield et al. 1972, 120 Å - 310 Å: Henry 1970, 313.3 Å - 1226 Å: Badnell et al. 2005; (641) Bethe & Salpeter 1957; (642) 0 Å – 20 Å: Verner et al. 1993; Verner & Yakovlev 1995; Verner et al. 1996, 22.78 Å - 504.26 Å: Badnell et al. 2005; (643) 0.1 Å - 250

Å: Verner et al. 1993; Verner & Yakovlev 1995; Verner et al. 1996, 256.8 Å - 851.3  $ilde{A}$ : Badnell et al. 2005; (644) 0.1  $ilde{A}$  – 230  $ilde{A}$ : Verner et al. 1993; Verner & Yakovlev 1995; Verner et al. 1996, 235.9 Å - 910.44 Å: Badnell et al. 2005; (645) 1 Å - 130 Å: Barfield et al. 1972, 130 Å – 200 Å: Henry 1970, 227.3 Å – 790.1 Å: Badnell et al. 2005; (646) 180 Å - 16640 Å: Geltman 1962; Broad & Reinhardt 1976; (647) 0.6 Å − 918 Å: Barfield et al. 1972; Padial et al. 1985, 918 Å − 1210 Å: Pouilly et al. 1983; Padial et al. 1985; (648) 12 Å – 617 Å: Walker & Kelly 1972, 827 Å – 1170 Å: Barsuhn & Nesbet 1978; van Dishoeck 1987, 1200 Å - 3589.9 Å: van Dishoeck 1987, branching ratio: Barsuhn & Nesbet 1978; (649) 0.61 Å - 626.8 Å: Barfield et al. 1972, 905.8 Å - 1108 Å: Lavendy et al. 1984, 1987; (650) 89.6 Å - 564.5 Å: Masuoka & Samson 1981, 584.3 Å – 835.29 Å: Cairns & Samson 1965; Kronebusch & Berkowitz 1976; (651) 89.6 Å – 584 Å: Masuoka & Samson 1981; Kronebusch & Berkowitz 1976; (652) 0 Å – 1117.8 Å: McElroy & McConnell 1971; (653) 1 Å – 200 Å:  $\sigma(H_2) \approx 2\sigma(H)$ , 209.3 Å - 500 Å: Samson & Cairns 1965; Browning & Fryar 1973, 500 Å - 844 Å: Cook & Metzger 1964; Browning & Fryar 1973; (654) 9.9 Å – 247.2 Å: Huffman 1969, 303.8 Å – 1037 Å: Samson & Cairns 1965; Cook & Metzger 1964; Huffman et al. 1963; Kronebusch & Berkowitz 1976; (655) 1 Å – 180 Å: Huebner & Mukherjee 2015, 180 Å – 580 Å: Lee et al. 1973; Kronebusch & Berkowitz 1976, 580 Å - 1350 Å: Watanabe et al. 1967; Kronebusch & Berkowitz 1976, 1350 Å – 1910 Å: Marmo 1953; (656) 1 Å – 1771.2 Å: Barfield et al. 1972; Brion et al. 1979, 1771.2 Å – 2000 Å: Ackerman 1971, 2000 Å – 2200 Å: Herman & Mentall 1982, 2250 Å – 2423.7 Å: Shardanand & Rao 1977, branching ratio: Huffman 1969; Samson & Cairns 1964; Matsunaga & Watanabe 1967; Brion et al. 1979; (657) Experimental 0.61 Å - 625.8 Å: Barfield et al. 1972, 1150 Å - 1830 Å: Nee & Lee 1984, Theoretical: Van Dishoeck 1984; (658) 2 Å – 270 Å: Henry & McElroy 1968, 303.78 Å – 555.26 Å: Cairns & Samson 1965, 580 Å – 1670 Å: Nakata et al. 1965, branching ratio: Kronebusch & Berkowitz 1976; Nakata et al. 1965; (659) 1 Å - 100 Å: Barfield et al. 1972, 180 Å - 700 Å: Phillips et al. 1977; Dibeler et al. 1966, 700 Å - 980.8 Å: Phillips et al. 1977; Katayama et al. 1973; Watanabe & Jursa 1964, 980.8 Å – 1860 Å: Watanabe & Jursa 1964; Watanabe & Zelikoff 1953, branching ratio: McNesby et al. 1962; Slanger & Black 1982; Kronebusch & Berkowitz 1976; (660) 1 Å – 1950 Å: Huebner & Mukherjee 2015; (661) 1 Å – 1850 Å: Huebner & Mukherjee 2015;  $(662)\ 0.61\ \text{Å} - 625\ \text{Å}$ : Huebner & Mukherjee 2015; Barfield et al. 1972, 1080 Å - 1700 Å: Zelikoff et al. 1953, 1730 Å – 2400 Å: Selwyn et al. 1977, branching ratio: Okabe et al. 1978; (663) 1 Å - 840 Å:  $\sigma(H_2N) \approx 2\sigma(H) + \sigma(N)$ , 1250 Å - 1970 Å: Saxon et al. 1983; (664) 0.6 Å – 940 Å: Huebner & Mukherjee 2015, 1080 Å – 1800 Å: Nakayama et al. 1959, 1850 Å – 3978 Å: Bass et al. 1976, branching ratio: Nakayama et al. 1959; (665)  $0.6 \text{ Å} - 742 \text{ Å}: \sigma(O_3) \approx 3\sigma(O), 1060 \text{ Å} - 1360 \text{ Å}: Tanaka et al. 1953, 1365 \text{ Å} -$ 2000 Å: Ackerman 1971, 2975 Å - 3300 Å: Moortgat & Warneck 1975, 3300 Å -8500 Å: Griggs 1968; (666) 600 Å - 1000 Å: Metzger & Cook 1964, 1050 Å - 2011 A: Nakayama & Watanabe 1964, branching ratio: Schoen 1962; Okabe 1981, 1983; (667) 0 Å -500 Å: Barfield et al. 1972, 600 Å -1760 Å: Mentall et al. 1971, 1760 Å - 1850 Å: Gentieu & Mentall 1970, 2000 Å - 2634.7 Å: Calvert & Pitts 1966, 2635.7  $Å - 3531.7 \ Å$ : Rogers 1990, 3531.7  $Å - 3740 \ Å$ : Calvert & Pitts 1966, branching ratio: Clark et al. 1978; Mentall et al. 1971; Guyon et al. 1976; (668) 0.61 Å - 627 Å: Barfield et al. 1972, 1200 Å - 2000 Å: Okabe 1970, 2100 Å - 2550 Å: Dixon & Kirby 1968; (669) 0.6 Å – 940 Å: Barfield et al. 1972, 2000 Å – 4000 Å: Cox & Derwent 1977, 3120 Å - 3900 Å: Stockwell & Calvert 1978; (670) 1 Å - 350 Å: Huebner & Mukherjee 2015, 374.1 Å – 1650 Å: Sun & Weissler 1955; Watanabe & Sood 1965, 1650 Å – 2170 Å: Watanabe 1954, 2140 Å – 2330 Å: Thompson et al. 1963, branching ratio: McNesby et al. 1962; Schurath et al. 1969; Kronebusch & Berkowitz 1976; (671) 0.6 Å

-630 Å: Huebner & Mukherjee 2015, 915 Å -3980 Å:  $\sigma(NO_3) \approx \sigma(NO_2)$ , 4000 Å - 7030 Å: Graham & Johnston 1978b, branching ratio: Magnotta & Johnston 1980; (672) 23.6 Å - 1370 Å: Lukirskii et al. 1964; Rustgi 1964; Ditchburn 1955, 1380 Å -1600 Å: Mount & Moos 1978, branching ratio: Gorden & Ausloos 1967; Calvert & Pitts 1966; Stief et al. 1972; Slanger & Black 1982; Kronebusch & Berkowitz 1976; (673) 1 A - 1100 A: Huebner & Mukherjee 2015, branching ratio: Gorden & Ausloos 1961; Huebner & Mukherjee 2015; (674) 0 Å – 1100 Å:  $\sigma(\text{HNO}_3) \approx \sigma(\text{NO}_3)$ , 1100 Å – 1900Å: Okabe 1980, 1900 Å – 3300Å: Molina & Molina 1981; (675) 1 Å – 100 Å:  $\sigma(C_2H_4) \approx 2\sigma(C) + 4\sigma(H)$ , 180 Å – 1065 Å: Lee et al. 1973; Schoen 1962, 1065 Å – 1960 Å: Schoen 1962; Zelikoff et al. 1953, branching ratio: Lee et al. 1973; McNesby & Okabe 1964; Back & Griffiths 1967; (676) 0.61 Å - 250 Å:  $\sigma(C_2H_4) \approx 2\sigma(C) + 6\sigma(H)$ , 354 Ä – 1127 Ä: Koch & Skibowski 1971, 1160 Ä – 1200 Ä: Lombos et al. 1967, 1200 Ä – 1380 Å: Okabe & Becker 1963, 1380 Å – 1600 Å: Mount & Moos 1978, branching ratio: Lias et al. 1970; Huebner & Mukherjee 2015; (677) 2000 Å – 3450 Å: Baulch et al. 1982, branching ratio: Weaver et al. 1977; (678) 1200 Å – 2053 Å: Salahub & Sandorfy 1971, branching ratio: Porter & Noyes 1959; Huebner & Mukherjee 2015; (679) 0.1 Å - 2412.63 A: Verner et al. 1993; Verner & Yakovley 1995; Verner et al. 1996; (680) 0.1 A – 2856.34 Ä: Verner et al. 1993; Verner & Yakovlev 1995; Verner et al. 1996; (681) 0.61 Å – 877.46 Å: Barfield et al. 1972, 1050 Å - 1350 Å: Myer & Samson 1970, 1400 Å - 2200 Å: Inn 1975; (682) Harada et al. 2010; Rimmer & Helling 2013; (683) Harada et al. 2010; (684) 1 Å - 3000 Å:  $\sigma(N_2O_3) \approx \sigma(NO_2) + \sigma(NO)$ , 3000 Å - 4000 Å: Stockwell & Calvert 1978; (685) Pitts et al. 1982; (686) Vakhtin et al. 2001; (687) Fahr & Nayak 1994; Ferradaz et al. 2009; Friedrichs et al. 2002; Okabe 1981; (688) Fahr & Nayak 1996; (689) Prasad & Huntress 1980; (690) Ercolano & Storey 2006.