Transferencia de Potencia

OPTIMIZACIÓN
PERDIDAS DE INSERCIÓN
ADAPTACIÓN DE IMPEDANCIAS

Potencia eléctrica

- La potencia eléctrica instantánea es el producto en el dominio del tiempo entre los valores instantáneos de la tensión y la corriente asociadas al elemento o punto de la red de interés
- Por lo tanto, la potencia entregada a cualquier dispositivo en función del tiempo está dada por la tensión instantánea a través del dispositivo y la corriente instantánea que pasa por él.

$$p(t) = u(t) \cdot i(t)$$

- La potencia instantánea es útil por sí misma para muchas aplicaciones, ya que su valor máximo debe ser limitado para no sobrepasar el *rango* de operación *útil* o *seguro* de un dispositivo.
- Además, proporciona un medio para determinar la potencia promedio o potencia media que es una magnitud mucho más relevante.
- Cuando se habla del valor promedio de la potencia instantánea o potencia media, debe especificarse claramente el intervalo sobre el que se toma el promedio. Si se adopta un intervalo general de tiempo comprendido entre t_1 y t_2 la potencia promedio resulta

$$P = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} p(t) dt$$

Potencia eléctrica

• Si se considera ahora la tensión y la corriente en un dado punto de la red o sobre un dado elemento en régimen sinusoidal permanente:

$$u(t) = U_m \cos(\omega t + \theta_u) \qquad i(t) = I_m \cos(\omega t + \theta_i)$$

La potencia instantánea resulta:

$$p(t) = U_m I_m \cos(\omega t + \theta_u) \cos(\omega t + \theta_i)$$

Considerando propiedades trigonométricas, la expresión anterior resulta:

$$p(t) = \frac{1}{2}U_m I_m \cos(\theta_u - \theta_i) + \frac{1}{2}U_m I_m \cos(2\omega t + \theta_u + \theta_i)$$

- El primer término es una constante, independiente de t. El término restante es una función coseno; por lo tanto, p(t) es periódica, y su periodo es T/2, siendo T el período de la corriente y la tensión.
- Considerando un período de promediado T, la integral del segundo término resulta nula. Por lo tanto,

$$P = \frac{1}{2} U_m I_m \cos(\theta_u - \theta_i)$$

Denotando la diferencia angular entre tensión y corriente como φ, y considerando los valores eficaces de tensión y corriente

$$U = \frac{U_m}{\sqrt{2}}$$

Potencia aparente Factor de potencia

Potencia eléctrica compleja

Si consideramos el análisis fasorial para el estudio de excitaciones senoidales, podemos expresar

$$\mathbf{U} = U \cdot e^{j\omega t + \theta} \qquad \mathbf{I} = I \cdot e^{j\omega t + \psi}$$

Donde la magnitud de los fasores corresponde a sus valores eficaces.

La impedancia de carga resulta entonces

$$\mathbf{Z} = \frac{\mathbf{U}}{\mathbf{I}} = \frac{U \cdot e^{j(\omega t + \theta)}}{I \cdot e^{j(\omega t + \psi)}} = \frac{U}{I} \cdot e^{j(\theta - \psi)} = \frac{U}{I} \cdot e^{j\phi}$$

Donde se observa que su expresión involucra la diferencia de fase entre U e I

La potencia compleja puede calcularse entonces como

$$\mathbf{S} = \mathbf{U} \cdot \mathbf{I}^* = U \cdot e^{j(\omega t + \theta)} \cdot I \cdot e^{-j(\omega t + \psi)} = UI \cdot e^{j(\theta - \psi)} = UI \cdot e^{j\phi} = P + jQ$$

Donde por la fórmula de Euler se obtiene que la potencia activa media P corresponde a la parte real de S, la potencia reactiva Q corresponde a la parte imaginaria de S y la potencia aparente corresponde al |S|

Utilizando la expresión de la impedancia, puede arribarse a expresiones equivalentes:

$$\mathbf{S} = P + jQ = \mathbf{U} \cdot \mathbf{I}^* = \mathbf{I} \cdot Z \cdot \mathbf{I}^* = \mathbf{I} \cdot \mathbf{I}^* \cdot Z = I^2 \cdot Z = I^2 (R + jX)$$

$$P = I^2 R \qquad Q = I^2 X$$

- Como se mencionó anteriormente, uno de los principales objetivos de diseño de una aplicación de Ingeniería en Energía Eléctrica o Electrónica es lograr la máxima transferencia de potencia de la fuente a la carga.
- Para ello, se realizan diferentes consideraciones al momento del diseño del sistema o red que permitan optimizar el flujo de potencia de la fuente hacia la carga.
- La carga puede considerarse a cualquier aparato, dispositivo, elemento o porción de red que se conecta a la fuente a través de una red de dos puertos.
- •En la mayoría de los casos, resulta conveniente utilizar como modelo de red y fuente al equivalente Thévenin visto desde el punto de conexión de la carga o *punto de suministro*.

Corrección del factor de potencia

- El factor de potencia tiene una gran importancia para las instalaciones eléctricas de potencia.
- Si suponemos una carga de potencia nominal P con un dado $cos(\varphi)$ o FP, y considerando que la tensión U está determinada por la instalación, es posible determinar la corriente demandada por la carga:

$$I = \frac{P}{U\cos(\phi)}$$

- Puede observarse que con un factor de potencia elevado (cercano a 1), la carga demanda menor corriente para desarrollar la misma potencia P.
- Análogamente, un valor bajo del factor de potencia da lugar a corrientes eficaces más elevadas y, por consiguiente, a potencias aparentes más elevadas. Esto implica que se requieren conductores de mayor sección y/o generadores de mayor porte.
- Dado que las compañías suministradoras de electricidad facturan sólo la potencia activa consumida, los costos de un factor de potencia bajo repercuten íntegramente en la compañía suministradora y nada en el consumidor.
- ■Por ello, las compañías obligan a mejorar factores de potencia bajos, o penalizan a los usuarios imponiendo costos adicionales como señal correctora tendiente a su mejora.

Corrección del factor de potencia

- El objetivo de diseño de una buena instalación es lograr que *FP* sea tan cercano a 1 como resulte económicamente posible.
- A partir de la expresión del Factor de Potencia en función de P y Q, es posible inferir que si el FP_{actual} es muy bajo, esto se debe a que $|Q_{actual}|$ no es mucho menor que P.

$$FP = \frac{P}{UI} = \frac{P}{\sqrt{P^2 + Q^2}}$$

- Para mejorarlo, entonces debe agregarse una reactancia de compensación que aporte una potencia reactiva Q_C con la que se obtendrá un valor de potencia reactiva resultante Q_T menor que Q_{actual} , con el que se logrará el valor de $Fp_{correaido}$.
 - Z_L Q_C P; Q_{actual}
- Está claro que Q_C será de signo opuesto a Q_{actual} . Es decir, si Q_{actual} es inductiva, Q_C será capacitiva y viceversa.

Capacitiva:
$$Q_C = -2\pi f C U^2$$

Inductiva:
$$Q_C = \frac{U^2}{2\pi f L}$$

$$Q_T = P \cdot \sqrt{\frac{1}{FP_{corregido}^2} - 1}$$

$$Q_C = Q_T - Q_{actual}$$
 >0: Capacitiva

Máxima Transferencia de Potencia

• Si se analiza con más detalle el modelo de Thevenin de la red, es posible obtener el circuito que sigue, donde U_g y Z_g representan la tensión e impedancia interna del generador o el equivalente Thevenin de una red más compleja.

$$U_g = U_{\text{max}} e^{j\phi_U} : \text{fasor de tensión}$$

$$U_g = U_{\text{max}} e^{j\phi_U} : \text{fasor de tensión}$$

$$U_g = \frac{U_{\text{max}}}{\sqrt{2}} : \text{valor eficaz de la tensión}$$

• El objetivo es determinar el valor de R_c y X_c que proporcionen la máxima transferencia de potencia a la carga. Para ello, se considera que R_c y X_c pueden variar en forma independiente. La potencia media en la carga resulta:

$$P_{c} = \frac{1}{2} \operatorname{Re} \left[\mathbf{U_{c}} \cdot \mathbf{I}^{*} \right] = \frac{1}{2} \operatorname{Re} \left[\frac{\mathbf{U_{g}} Z_{c}}{Z_{g} + Z_{c}} \left(\frac{\mathbf{U_{g}}}{Z_{g} + Z_{c}} \right)^{*} \right] = \frac{\left| \mathbf{U_{g}} \right|^{2}}{4} \frac{Z_{c} + Z_{c}^{*}}{\left(Z_{g} + Z_{c} \right) \left(Z_{g}^{*} + Z_{c}^{*} \right)} = \frac{\left| \mathbf{U_{g}} \right|^{2} R_{c}}{2 \left[\left(R_{g} + R_{c} \right)^{2} + \left(X_{g} + X_{c} \right)^{2} \right]}$$

- En base a esta expresión, es posible determinar los valores de R_c y X_c para los cuales resulta máxima la potencia transferida desde el generador a la carga.
- Considerando R_c constante, es posible determinar el valor de X_c para que P_c sea máxima.

$$\frac{dP_c}{dX_c} = \frac{\left|\mathbf{U_g}\right|^2}{2} R_c \frac{-2\left(X_g + X_c\right)}{\left[\left(R_g + R_c\right)^2 + \left(X_g + X_c\right)^2\right]^2} = 0 \qquad X_c = -X_g$$

Máxima Transferencia de Potencia

• Con X_c =- X_g , la potencia en la carga resulta $P_c = \frac{\left|\mathbf{U_g}\right|^2 R_c}{2\left(R_g + R_c\right)^2}$

• Si ahora se busca el máxima de Pc $(dP_c/dR_c = 0)$

$$\frac{dP_c}{dR_c} = \frac{\left|\mathbf{U_g}\right|^2}{2} \frac{\left(R_g + R_c\right)^2 - 2R_c\left(R_g + R_c\right)}{\left(R_g + R_c\right)^4} = \frac{\left|\mathbf{U_g}\right|^2}{2} \frac{R_g^2 - R_c^2}{\left(R_g + R_c\right)^4} = 0 \qquad R_c = R_g$$

• La máxima transferencia de potencia se logra cuando las componentes reactivas de Z_g y Z_c se anulan y cuando las componentes reales son iguales. Es decir,

 $Z_c = Z_g^*$

• En esta condición, se dice que existe una adaptación conjugada de impedancias o una adaptación para máxima transferencia de potencia. Esta condición se denomina teorema de máxima transferencia de potencia y La potencia máxima en la carga resulta

$$P_{m\acute{a}x} = \frac{\left|\mathbf{U_{g}}\right|^{2}}{4} \frac{Z_{g}^{*} + Z_{g}}{\left(Z_{g} + Z_{g}^{*}\right)\left(Z_{g}^{*} + Z_{g}\right)} = \frac{\left|\mathbf{U_{g}}\right|^{2}}{4} \frac{1}{Z_{g}^{*} + Z_{g}} = \frac{U_{g}^{2}}{4R_{g}}$$

- La condición anterior sólo puede lograrse para una frecuencia única, que es la que satisface la igualdad.
- Si se requiere un acoplamiento para lograr la máxima transferencia de potencia en un amplio rango de frecuencias (de banda ancha) la carga debe ser resistiva pura y se debe adaptar perfectamente a la impedancia de la fuente, que también debe ser resistiva pura para minimizar la potencia reflejada en la carga.

Máxima eficiencia en la Transferencia de Potencia

• Si P_g es la potencia media en la parte real de Z_g y P_c la potencia media en la parte real de Z_c , la eficiencia o rendimiento de la transferencia de potencia se define como:

$$\eta_t = \frac{P_c}{P_g + P_c}$$

- Claramente η_t será máxima cuando P_q sea tan pequeña como sea posible.
- En condiciones de adaptación conjugada, η_t = 0,5. Es decir, la potencia de la fuente se comparte por partes iguales entre los dos resistores R_g y R_c .
- Sin embargo, la eficiencia obtenida seria intolerable para muchos sistemas, como por ej. sistemas de comunicaciones. Por lo tanto, la máxima transferencia de potencia no implica máxima eficiencia.

Máxima eficiencia en la Transferencia de Potencia

• Considerando reactancias adaptadas, es decir $X_c = -X_q$, la eficiencia resulta

$$\eta_t = \frac{R_c}{R_g + R_c} = \frac{1}{1 + R_g / R_c}$$

- Para lograr el valor 1 (eficiencia máxima), R_c debe ser infinitamente más grande que R_g , pero en tal caso la potencia transferida tiende a cero. En el otro extremo, cuando R_c es muy pequeña comparada con R_g , tanto la eficiencia como la potencia transferida tienden a cero.
- Si se analiza la eficiencia y la función $P_c/P_{m\acute{a}x}$ en términos de R_c/R_q

$$\frac{P_c}{P_{m\acute{a}x}} = \frac{\frac{U_g^2 R_c}{\left(R_g + R_c\right)^2}}{\frac{U_g^2}{4R_g}} = \frac{4R_g R_c}{\left(R_g + R_c\right)^2} = \frac{4\frac{R_g}{R_c}}{\left(1 + \frac{R_g}{R_c}\right)^2}$$

$$P_c = \eta_t \Rightarrow \frac{R_g}{R_c} = \frac{1}{3} \text{ y } \frac{P_c}{P_{m\acute{a}x}} = \frac{3}{4}$$

Potencia en la carga: $0.75P_{m\acute{a}x}$ Eficiencia de la transferencia: 0.75

Flujo de Potencia

• Si se analiza el flujo de potencia entre un generador de impedancia interna Z_a y una impedancia de carga Z_c

- En condiciones de adaptación conjugada, toda la potencia $P_{m\acute{a}x}$ que es capaz de entregar el generador será suministrada a la carga, es decir $P_{20}=P_{m\acute{a}x}$.
- Si la carga no está adaptada, la potencia suministrada será $P_{20} < P_{m\acute{a}x}$. La diferencia $(P_{m\acute{a}x} P_{20})$ es la parte de potencia P_{ref} que se refleja en el punto de desadaptación, es decir, los terminales de la carga

$$P_{ref} = P_{m\acute{a}x} - P_{20} = \frac{\left|\mathbf{U_{g}}\right|^{2}}{4} \frac{1}{Z_{g}^{*} + Z_{g}} \left[1 - \frac{\left(Z_{c} + Z_{c}^{*}\right)\left(Z_{g} + Z_{g}^{*}\right)}{\left(Z_{g} + Z_{c}\right)\left(Z_{g}^{*} + Z_{c}^{*}\right)}\right] = \frac{\left|\mathbf{U_{g}}\right|^{2}}{4} \frac{1}{Z_{g}^{*} + Z_{g}} \left[\frac{\left(Z_{g} + Z_{c}\right)\left(Z_{g}^{*} + Z_{c}^{*}\right) - \left(Z_{c} + Z_{c}^{*}\right)\left(Z_{g} + Z_{g}^{*}\right)}{\left(Z_{g} + Z_{c}\right)\left(Z_{g}^{*} + Z_{c}^{*}\right)}\right]$$

$$P_{ref} = \frac{\left|\mathbf{U_{g}}\right|^{2}}{4} \frac{1}{2R_{g}} \left[\frac{\left(R_{c} + R_{g}\right)^{2} + \left(X_{c} + X_{g}\right)^{2} - 4R_{c}R_{g}}{\left|Z_{g} + Z_{c}\right|^{2}} \right] = \frac{\left|\mathbf{U_{g}}\right|^{2}}{4} \frac{1}{2R_{g}} \left[\frac{\left(R_{c} - R_{g}\right)^{2} + \left(X_{g} + X_{c}\right)^{2}}{\left|Z_{g} + Z_{c}\right|^{2}} \right] = \frac{\left|\mathbf{U_{g}}\right|^{2}}{8R_{g}} \frac{\left|Z_{c} - Z_{g}^{*}\right|^{2}}{\left|Z_{g} + Z_{c}\right|^{2}}$$

$$P_{ref} = P_{m\acute{a}x} \cdot \left| \frac{Z_c - Z_g^*}{Z_g + Z_c} \right|^2$$

Coeficiente de reflexión

• Se define el coeficiente de reflexión ρ_0 tal que,

$$\rho_0^2 = \frac{P_{ref}}{P_{máx}} = \left| \frac{Z_c - Z_g^*}{Z_g + Z_c} \right|^2$$

• ρ_0 es el coeficiente de reflexión de la onda de tensión que se propaga desde el generador hacia la carga. Es una magnitud compleja que es función de la frecuencia y resulta:

$$\rho_0(\omega) = \pm \frac{Z_c - Z_g^*}{Z_g + Z_c} \le 1$$

Pérdidas de Inserción

• Cuando entre el generador y la carga se inserta un cuadripolo recíproco no disipativo (constituido por elementos ideales LC y transformadores como puede ser una línea de transmisión, un filtro o una red de adaptación de impedancias), y haciendo $Z_2 = Z_c^*$

• La impedancia de entrada $Z_1(\omega) = R_1(\omega) + j X_1(\omega)$ del cuadripolo (cargado en la salida con Z_c) es la carga que ve el generador de impedancia Z_a

Pérdidas de Inserción

La potencia que se refleja P_{ref} en terminales de entrada del cuadripolo puede calcularse mediante el coeficiente de reflexión en la entrada del cuadripolo

$$\rho_1(\omega) = \pm \frac{Z_1(\omega) - Z_g^*}{Z_g + Z_1(\omega)}$$

• La impedancia de entrada Z_1 puede calcularse como

$$Z_{1}(\omega) = \frac{Z_{g}^{*} \pm \rho_{1}(\omega)Z_{g}}{1 \mp \rho_{1}(\omega)} \xrightarrow{Z_{g} resistiva} Z_{1}(\omega) = R_{g} \left(\frac{1 + \rho_{1}(\omega)}{1 - \rho_{1}(\omega)}\right)^{\pm 1}$$

• La potencia P_2 , suministrada a la carga a través del cuadripolo recíproco y no disipativo, si $Z_2 = Z_c^*$ resulta igual a P_1

$$P_{2} = P_{1} = \frac{1}{2} \operatorname{Re} \left[U_{1} \cdot I_{1}^{*} \right] = \frac{1}{2} \operatorname{Re} \left[\frac{U_{g} \cdot Z_{1}(\omega)}{Z_{g} + Z_{1}(\omega)} \cdot \left(\frac{U_{g}}{Z_{g} + Z_{1}(\omega)} \right)^{*} \right] = \frac{1}{2} \frac{U_{g}^{2}}{\left[Z_{g} + Z_{1}(\omega) \right] \cdot \left[Z_{g}^{*} + Z_{1}^{*}(\omega) \right]} \operatorname{Re} \left[Z_{1}(\omega) \right]$$

$$P_{2} = \frac{U_{g}^{2} \cdot R_{1}(\omega)}{\left\lceil R_{g} + R_{1}(\omega) \right\rceil^{2} + \left\lceil X_{g} + X_{1}(\omega) \right\rceil^{2}}$$

Pérdidas de Inserción

• Esta potencia P_2 es suministrada a Z_c a través del cuadripolo y será igual o menor que la potencia P_{20} suministrada sin el cuadripolo

$$P_{20} = \frac{U_g^2}{4} \frac{Z_c + Z_c^*}{(Z_g + Z_c)(Z_g^* + Z_c^*)} = \frac{U_g^2}{2} \frac{R_c}{\left[R_g + R_c\right]^2 + \left[X_g + X_c\right]^2}$$

Debido a la red insertada, existirá una perdida en la potencia transferida, denominada pérdida de inserción

$$PI = \frac{P_{20}}{P_2}$$

$$PI = \frac{P_{20}}{P_2} = \left(\frac{U_{20}}{U_2}\right)^2 = \left(\frac{R_c}{R_g + R_c}\right)^2 \left(\frac{U_g}{U_2}\right)^2$$

Adaptación de Impedancias

• Cuando la condición de adaptación conjugada no puede cumplirse por condiciones de diseño o requerimientos de la aplicación en cuestión, puede requerirse insertar un cuadripolo que permita adaptar ambas impedancias.

■ El objetivo de la adaptación es lograr la máxima transferencia de potencia, es decir, reducir la posible

reflexión de potencia.

- La adaptación ocurrirá cuando Z_1 sea igual al conjugado de Z_g y simultáneamente Z_2 sea igual al conjugado de Z_c .
- Como las reactancias dependen de la frecuencia, la condición de impedancias ocurre estrictamente a una frecuencia puntual. Sin embargo, si el ancho de banda Δf del sistema es muy pequeño respecto a la frecuencia de operación f_0 podría lograrse que la desviación respecto a la igualdad resulte aceptable. Esta es la condición de *adaptación de banda angosta*.
- La adaptación empleando elementos de parámetros concentrados se basa en la transformación de impedancias o admitancias que se consigue disponiendo elementos reactivos en serie o en derivación.