An IntRoduction to gRey methods by using R

Tan Xi
Department of Statistics, NUFE
Nov 6, 2009

Contents:

- A brief introduction to Grey Methods
- An analysis of Degree of Grey Incidence
- Grey GM(1, 1) Model
 - (1)Construction
 - (2) Test the accuracy of the model
- Some Envisions

A brief introduction to Grey Methods

Who?

Professor Deng! A Chinese!

When?

Long ago... About 1970s!

What?

White, Grey, Black?

Application?

Many realms! Economics, Physics, Social Science, and the list will go on!

An easy example——Step by Step

Suppose that the original sequence is

$$Y_0 = \{ 8, 8.8, 16, 18, 24, 32 \}$$

comparative sequences are:

$$Y_1 = \{ 10, 12.12, 19.28, 20.25, 23.4, 30.69 \}$$

$$Y_2 = \{ 6, 6.35, 6.57, 6.98, 8.35, 8.75 \}$$

Which of the comparative sequences is much closer to the original series Y_0 ?

Before computing the exact values, you can get the intuition by looking at the graph.

(Ads: Where is Xie? ⊙).

5

• Step1: Initialize all sequences

$$X_0 = \{1, 1.1, 2, 2.25, 3, 4\}$$

 $X_1 = \{1, 1.212, 1.928, 2.205, 2.34, 3.069\}$
 $X_2 = \{1, 1.0583, 1.0950, 1.1633, 1.3917, 1.4583\}$

• **Step2**: Compute the absolute subtraction sequences $\Delta_{0i}(k) = |Y_0(k) - Y_i(k)|$

Table 1 Absolute subtraction sequences							
Number	1	2	3	4	5	6	
Δ_1	0.000	0.112	0.072	0.225	0.660	0.931	
$\Delta_{_2}$	0.0000	0.0417	0.9050	1.0867	1.6083	2.5417	

• Step3: Compute the two-step minimum and maximum of the absolute subtraction sequences

$$\Delta_{\min} = \min_{i} \min_{k} |Y_0(k) - Y_i(k)| = 2.5417$$

$$\Delta_{\max} = \max_{i} \max_{k} |Y_0(k) - Y_i(k)| = 0$$

• Step4: Compute coefficients of Grey incidence

Formula:
$$\gamma(Y_0(k), Y_i(k)) = \frac{\Delta_{\min} + \rho \cdot \Delta_{\max}}{\Delta_{oi}(k) + \rho \cdot \Delta_{\max}}$$

of which the distinguishing coefficient P is 0.5.

Number	1	2	3	4	5	6
$\gamma(Y_0(k),Y_1(k))$	1.0000	0.9190	0.9464	0.8496	0.6582	0.5772
$\gamma(Y_0(k),Y_2(k))$	1.0000	0.9683	0.5841	0.5391	0.4414	0.3333

• Step5: Compute the degree of Grey incidence

$$\gamma(Y_0, Y_i) = \frac{1}{n} \sum_{k=1}^{n} \gamma(Y_0(k), Y_i(k))$$

$$\gamma(Y_0, Y_1) = 0.8251$$
 $\gamma(Y_0, Y_2) = 0.6444$

And so our intuition is right!

The computed results show that Y_0 is much more closer to Y_1 than to Y_2 , which is in coincidence with our intuition!

Recap:

- Initialize all sequences.
- Compute the absolute subtraction sequences

$$\Delta_{0i}(k) = |Y_0(k) - Y_i(k)|$$

• Compute the two-step minimum and maximum of the absolute subtraction sequences

$$\Delta_{\min} = \min_{i} \min_{k} \left| Y_0(k) - Y_i(k) \right| \qquad \Delta_{\max} = \max_{i} \max_{k} \left| Y_0(k) - Y_i(k) \right|$$

Compute coefficients of Grey incidence

$$\gamma(Y_0(k), Y_i(k)) = \frac{\Delta_{\min} + \rho \cdot \Delta_{\max}}{\Delta_{oi}(k) + \rho \cdot \Delta_{\max}}$$

Recap:

• Bingo!!

Compute the degree of Grey incidence:

$$\gamma(Y_0, Y_i) = \frac{1}{n} \sum_{k=1}^{n} \gamma(Y_0(k), Y_i(k))$$

All steps in one function

Are you bored or puzzled with these steps??

Alternatives:

• The first: R functions!

I've involved all preceding steps in one function:

灰色关联分析函数.R

I'll show you how to use it!

• The second:

Click-Mouse Statistical Packages

• It's your choice! It's all up to you! For R-Users??

GM (1, 1) Model

- GM(1, 1) type of Grey model is the most widely used in the literature, pronounced as "Grey Model First Order One Variable".
- This model is a time series forecasting model.
 The differential equations of the GM(1, 1) model have time-varying coefficients.

How to construct the GM(1,1) Model?

- Consider a time sequence $X^{(0)}$, which has n observations, $X^{(0)} = \{X^{(0)}(1), X^{(0)}(2), \dots, X^{(0)}(n)\}$
- When this sequence is subjected to the Accumulating Generation Operation (AGO), the following sequence $X^{(1)}$ is obtained

$$X^{(1)} = \{X^{(1)}(1), X^{(1)}(2), \dots, X^{(1)}(n)\}$$

where

$$X^{(1)}(k) = \sum_{i=1}^{k} X^{(0)}(i)$$

How to construct the GM(1,1) Model?

• The grey difference equation of GM(1,1) is defined as follows:

$$\frac{dX^{(1)}}{dt} + aX^{(1)} = \mu$$

The least square estimate sequence of the grey difference equation of GM(1,1) is defined as follows:

$$\hat{\alpha} = \begin{pmatrix} \alpha \\ \mu \end{pmatrix} = (B^T B)^{-1} B^T Y_n$$

How to construct the GM(1,1) Model?

• Solve the grey difference equation of GM(1,1), the predicted GM(1,1) Model can be obtained:

$$\hat{X}^{(1)}(k+1) = \left(X^{(0)}(1) - \frac{\mu}{a}\right)e^{-ak} + \frac{\mu}{a}$$

• To obtain the predicted value of the primitive data at time (k+H), the IAGO is used to establish the following grey model:

$$X_p^{(0)}(k+H) = [X^{(0)}(1) - \frac{b}{a}]e^{-a(k+H-1)}(1-e^a)$$

Residual Tests

$$\Delta^{(0)}(i) = \left| X^{(0)}(i) - \hat{X}^{(0)}(i) \right| \quad i = 1, 2, \dots, n$$

$$\Phi(i) = \frac{\Delta^{(0)}(i)}{X^{(0)}(i)} \times 100\% \quad i = 1, 2, \dots, n$$

The Test of the degree of Grey incidence

$$\gamma(\hat{X}^{(0)}, X^{(0)}) = \frac{1}{n} \sum_{i=1}^{n} \gamma(\hat{X}^{(0)}(i), X^{(0)}(i))$$

According to experience, the GM(1,1) Model is qualified if

$$\gamma(\hat{X}^{(0)}, X^{(0)}) > 0.6$$
, when $\rho = 0.5$.

C and P Criteria

$$S_1 = \sqrt{\frac{\sum [X^{(0)}(i) - \overline{X}^{(0)}]^2}{n-1}}$$

$$S_2 = \sqrt{\frac{\sum \left[\Delta^{(0)}(i) - \overline{\Delta}^{(0)}\right]^2}{n-1}}$$

$$C = \frac{S_2}{S_1} = 0.01887908$$

$$P = p\{ \left| \Delta^{(0)}(i) - \overline{\Delta}^{(0)} \right| < 0.6745 S_1 \}$$

C and P Criteria

\overline{P}	C	判别 结果
> 0.95	< 0.35	好
> 0.80	< 0.50	合格
> 0.70	< 0.65	勉强合格
≤ 0.70	≥ 0.65	不合格

An easy example executed by R Program

Suppose the original sequence is:

	1	2	3	4	5	6
$X^{(0)}(i)$	26.7	31.5	32.8	34.1	35.8	37.5
	$X^{(0)}(1)$	$X^{(0)}(2)$	$X^{(0)}(3)$	$X^{(0)}(4)$	$X^{(0)}(5)$	$X^{(0)}(6)$

Construct the GM(1,1) Model and predict the values of $7\sim11$ th Periods.

R program:

GM(1,1)模型建立、检验和预测.R

• Step1: Construct the AGO sequence:

	1	2	3	4	5	6
$X^{(1)}(k)$	26.7	58.2	91.0	125.1	160.9	198.4

• Step2: Construct the matrix B and the vector Y_n

$$B = \begin{pmatrix} -\frac{1}{2}[X^{(1)}(1) + X^{(1)}(2)] & 1 \\ -\frac{1}{2}[X^{(1)}(2) + X^{(1)}(3)] & 1 \\ -\frac{1}{2}[X^{(1)}(3) + X^{(1)}(4)] & 1 \\ -\frac{1}{2}[X^{(1)}(4) + X^{(1)}(5)] & 1 \\ -\frac{1}{2}[X^{(1)}(5) + X^{(1)}(6)] & 1 \end{pmatrix} = \begin{pmatrix} -42.45 & 1 \\ -74.60 & 1 \\ -108.05 & 1 \\ -143.00 & 1 \\ -179.65 & 1 \end{pmatrix} \qquad Y_n = \begin{pmatrix} X^{(0)}(2) \\ X^{(0)}(3) \\ X^{(0)}(4) \\ X^{(0)}(5) \\ X^{(0)}(6) \end{pmatrix} = \begin{pmatrix} 31.5 \\ 32.8 \\ 34.1 \\ 35.8 \\ 37.5 \end{pmatrix}$$
9-12-5

• Step3: Compute $B^T B$, $(B^T B)^{-1}$ and $B^T Y_n$.

$$B^{T}B = \begin{pmatrix} 71765.09 & -547.75 \\ -547.75 & 5.00 \end{pmatrix} \qquad (B^{T}B)^{-1} = \begin{pmatrix} 0.000085 & 0.009316 \\ 0.009316 & 1.220591 \end{pmatrix}$$

$$B^T Y_n = \begin{pmatrix} -0.043804 \\ 29.541220 \end{pmatrix}$$

• Step4: Solve the vector of parameters by using the least square estimate.

$$\hat{\alpha} = \begin{pmatrix} -0.043804 \\ 29.541220 \end{pmatrix} \qquad \alpha = -0.043804 \qquad \mu = 29.541220$$

• Step5: Construct the GM(1,1) prediction Model

$$\frac{dX^{(1)}}{dt} + aX^{(1)} = \mu$$

$$\frac{dX^{(1)}}{dt} - 0.043804X^{(1)} = 29.541220$$

$$\begin{cases} \hat{X}^{(1)}(k+1) = \left(X^{(0)}(1) - \frac{\mu}{a}\right)e^{-ak} + \frac{\mu}{a} \\ X^{(0)}(1) = 26.7, \quad \frac{\mu}{a} = -674.3883 \end{cases}$$

So the GM(1,1) prediction model is:

$$\hat{X}^{(1)}(k+1) = 701.0883e^{0.043804k} -674.3883$$

Test the accuracy of the GM(1,1) Model

Residual Test

Computed Values 1	Actual Values	Computed Values2	Actual Values
$\hat{X}^{(1)}(1) = 26.70000$	$X^{(1)}(1) = 26.7$	$\hat{X}^{(0)}(1) = 26.70000$	$X^{(0)}(1) = 26.7$
$\hat{X}^{(1)}(2) = 58.09337$	$X^{(1)}(2) = 58.2$	$\hat{X}^{(0)}(2) = 31.39337$	$X^{(0)}(2)=31.5$
$\hat{X}^{(1)}(3) = 90.89246$	$X^{(1)}(3)=91.0$	$\hat{X}^{(0)}(3) = 32.79910$	$X^{(0)}(3)=32.8$
$\hat{X}^{(1)}(4) = 125.16024$	$X^{(1)}(4) = 125.1$	$\hat{X}^{(0)}(4) = 34.26778$	$X^{(0)}(4)=34.1$

• Residual Test

绝对误差序列	相对误差序列
$\Delta^{(0)}(i) = \left X^{(0)}(i) - \hat{X}^{(0)}(i) \right $	$\Phi(i) = \frac{\Delta^{(0)}(i)}{X^{(0)}(i)} \times 100\%$
$\Delta^{(0)}(1)=0.0000000$	$\Phi(1) = 0.000000\%$
$\Delta^{(0)}(2)=0.106635$	$\Phi(2) = 0.339673\%$
$\Delta^{(0)}(3)=0.000901$	$\Phi(3) = 0.002748\%$
$\Delta^{(0)}(4)=0.167778$	$\Phi(4) = 0.489609\%$
$\Delta^{(0)}(5) = 0.002222$	$\Phi(5) = 0.006207\%$
$\Delta^{(0)}(6)=0.094624$	Φ(6) = 0.252970%

The Test of the degree of Grey incidence

Number	1	2	3	4	5	6
$\gamma(\hat{X}^{(0)}(i), X^{(0)}(i))$	1.000000	0.440307	0.989374	0.333333	0.974196	0.469932

$$\gamma(\hat{X}^{(0)}, X^{(0)}) = \frac{1}{n} \sum_{i=1}^{n} \gamma(\hat{X}^{(0)}(i), X^{(0)}(i)) = 0.70119$$

C and P Criteria

$$S_1 = \sqrt{\frac{\sum [X^{(0)}(i) - \bar{X}^{(0)}]^2}{n-1}} = 3.775006$$

$$S_2 = \sqrt{\frac{\sum \left[\Delta^{(0)}(i) - \overline{\Delta}^{(0)}\right]^2}{n-1}} = 0.07126863$$

$$C = \frac{S_2}{S_1} = 0.01887908 \qquad S_0 = 2.546241$$

$$e_i = \left| \Delta^{(0)}(i) - \overline{\Delta}^{(0)} \right|$$
= {0.06202667, 0.04460833, 0.06112567, 0.10575133, 0.05980467, 0.03259733}

$$P = p\{ \left| \Delta^{(0)}(i) - \overline{\Delta}^{(0)} \right| < 0.6745 S_1 \} = 1$$

GM(1,1) Model can be used to predict.

	7	8	9	10	11
$\hat{X}^{(0)}$	39.08032	40.83026	42.65855	44.56872	46.56442
	$\hat{X}^{(0)}(7)$	$\hat{X}^{(0)}(8)$	$\hat{X}^{(0)}(9)$	$\hat{X}^{(0)}(10)$	$\hat{X}^{(0)}(11)$

Some Envisions

R package?

Any existing R package?

Or can we write the first one?

Collaboration

More R programs and R Functions On grey methods?

Reference:

- [1]邓聚龙,灰理论基础[M].上海:华中科技大学出版社,2003.
- [2]刘思峰,谢思明,灰色系统理论及其应用[M].北京:科学出版社,2008.
- [3]王庚,现代数学建模方法[M].北京:科学出版社,2008.
- [4]徐国祥,统计预测与决策[M].上海:上海财经大学出版社,2005.
- [5] Erdal Kayacan, Baris Ulutas, Okyay Kaynak, Grey system theory-based models in time series prediction[J]. Expert Systems with Applications, 2010:1784–1789.

Acknowledgements

- I am grateful to all members of COS, without your excellent work, no R conferences could be held currently in China.
- . I am also grateful to Professor Wang Gen for his help and suggestions on this topic.
- . And thank everyone here for your patient listening and welcome any suggestions.

Thank you!

Contact Information:

Tel: 13770636679

Email: xitannj@gmail.com