#### **ECN 6338 Cours 8**

La génération de variables aléatoires univariées

William McCausland

2022-04-12

#### Survol du cours 8

- 1. Suites quasi-aléatoires
- 2. Suites pseudo-aléatoires uniformes
- 3. Variables (pseudo)-aléatoires non-uniformes
  - a. Par inversion de la fonction de répartition
  - b. Par la méthode de rejet
  - c. Par la méthode de Ziggurat
- 4. Variables (pseudo)-aléatoires multivariée "faisables"
  - a. de la loi gaussienne multivariée (généralisation de la loi gaussienne)
  - b. de la loi Dirichlet (généralisation de la loi beta)
  - c. de la loi Wishart (généralisation de la loi gamma)

# Suites quasi-aléatoires

- 1. Suites univariées
- 2. Suites multivariées

## Suites univariées quasi-aléatoires

▶ Une suite quasi-aléatoire sur l'intervalle [a, b] est une suite  $\{x_i\}_{i=1}^{\infty} \subseteq [a, b]$ , qui est equidistribuée : pour chaque fonction  $f: \mathbb{R} \to \mathbb{R}$ , intégrable dans le sens de Riemann,

$$\lim_{n\to\infty}\frac{b-a}{n}\sum_{i=1}^n f(x_i)=\int_a^b f(x)\,dx.$$

Une suite sur [0,1] qui n'est pas équidistribuée, deux autres qui le sont

La suite  $\{w_i\}_{i=1}^{\infty}$ :

$$w_n = 0, 1, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}, \frac{1}{16}, \frac{3}{16}, \dots$$

Elle n'est pas équidistribuée, Pour la fonction f(x) = 1, la somme suivante ne converge pas :

$$\frac{1}{n}\sum_{i=1}^{n}f(w_{i})=\frac{1}{n}\sum_{i=1}^{n}w_{i}.$$

Par contre, la suite  $\{x_i\}_{i=1}^{\infty}$  de Halton (pour le nombre premier 2) est semblable, mais équidistribuée :

$$x_n = \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{1}{8}, \frac{5}{8}, \frac{3}{8}, \frac{7}{8}, \frac{1}{16}, \frac{9}{16}, \dots$$

Pour  $\theta$  irrationnel (réel et non une fraction d'entiers), la suite  $\{i\theta\}$ ,  $i=1,\ldots$  est équidistribuée ( $\{x\}$  ici est la partie fractionnaire de x)

### Suites univariées pseudo-aléatoires

- Une suite pseudo-aléatoire est une suite  $\{u_i\}_{i=1}^{\infty}$  en  $\mathbb{R}$  pour laquelle le modèle  $u_i \sim \operatorname{iid} U([0,1])$  est "bonne".
- Souvent on utilise  $\{u_i\}_{i=1}^{\infty}$  pour construire une suite  $\{X_i\}_{i=1}^{\infty}$ ,  $X_i \in \mathbb{R}^d$ , et on démontre que si  $u_i \sim \operatorname{iid} U([0,1])$  alors  $X_i$  est iid avec densité cible q(x).
- Le modèle implique (pourvu que E[f(X)] et Var[f(X)] existent)

$$\hat{I} \equiv \frac{1}{n} \sum_{i=1}^{\infty} f(X_i) \stackrel{p.s.}{\to} I \equiv E[f(X)] = \int_{-\infty}^{\infty} f(x) q(x) dx,$$

$$\operatorname{Var}[\hat{I}] = \frac{\operatorname{Var}[f(X_i)]}{n}.$$

Notez le cas spécial

$$\frac{1}{n}\sum_{i=1}^{n}f(a+u_{i}(b-a))\stackrel{p.s.}{\to}\frac{1}{b-a}\int_{a}^{b}f(x)\,dx.$$

### Suites multivariés quasi-aléatoires

Une suite quasi-aléatoire sur  $D \subseteq \mathbb{R}^d$  est une suite  $\{x_i\}_{i=1}^{\infty} \subseteq D$  qui est equidistribuée sur D: pour chaque fonction  $f: \mathbb{R}^d \to \mathbb{R}$ , intégrable dans le sens de Riemann,

$$\lim_{n\to\infty}\frac{\mu(D)}{n}\sum_{i=1}^n f(x_i)=\int_D f(x)\,dx.$$

- ▶ Très souvent,  $D = [a_1, b_1] \times [a_2, b_2] \times ... \times [a_d, b_d]$ , auquel cas on peut transformer à  $D = [0, 1]^d$ .
- ▶ Intuition : on veut des suites univariées "indépendantes"
- Suite de Weyl (torus, dans le paquet R quasiRNG) :

$$(\{i\sqrt{p_1}\},\{i\sqrt{p_2}\},\ldots,\{i\sqrt{p_d}\}),$$

où  $p_i$  est le j-ième nombre premier.

- La suite de Sobol est populaire mais difficile à décrire.
- ► La suite de Halton est populaire et relativement simple à décrire (diapo suivante)

# Illustration de la suite Halton, d = 2

| i | $x_1^i$        | (binaire)   | $x_2^i$        | (base 3)         |
|---|----------------|-------------|----------------|------------------|
| 1 | $\frac{1}{2}$  | 0.12        | <u>1</u> 3     | 0.1 <sub>3</sub> |
| 2 | $\frac{1}{4}$  | $0.01_{2}$  | $\frac{2}{3}$  | 0.23             |
| 3 | $\frac{3}{4}$  | $0.11_{2}$  | $\frac{1}{9}$  | 0.013            |
| 4 | $\frac{1}{8}$  | $0.001_{2}$ | $\frac{4}{9}$  | $0.11_{3}$       |
| 5 | <u>5</u>       | $0.101_{2}$ | $\frac{7}{9}$  | 0.213            |
| 6 | $\frac{3}{8}$  | $0.011_{2}$ | $\frac{2}{9}$  | 0.023            |
| 7 | <del>7</del> 8 | $0.111_{2}$ | <u>5</u><br>9  | $0.12_{3}$       |
| 8 | $\frac{1}{16}$ | $0.0001_2$  | <u>8</u>       | 0.223            |
| 9 | $\frac{9}{16}$ | $0.1001_2$  | $\frac{1}{27}$ | $0.001_{3}$      |

# Suites multivariés pseudo-aléatoires

Si 
$$U_i \sim \text{iid } U([0,1]), i = 1, ...,$$

$$V_j = (U_{(j-1)d+1}, U_{(j-1)d+2}, \dots, U_{jd}) \sim \text{iid } U([0,1]^d)$$

# 256 points pseudo-aléatoire dans $[0, 1]^2$

```
set.seed(1234567890); x = runif(256); y = runif(256)
plot(x, y, asp=1, pch=20, xlim=c(0,1))
abline(h=seq(0.0, 1.0, by=0.1), col='grey')
abline(v=seq(0.0, 1.0, by=0.1), col='grey')
```



# Distribution binomial Bi(256, 0.01) des comptes

```
x = seq(0, 10)

y = dbinom(x, 256, 0.01)

plot(x, y)
```



#### Suite de Sobol'

```
library(randtoolbox)
plot(sobol(256, 2), asp=1, pch=20, xlim=c(0,1), width=10, labline(h=seq(0.0, 1.0, by=0.1), col='grey')
abline(v=seq(0.0, 1.0, by=0.1), col='grey')
```



#### Suite de Halton

```
plot(halton(256, 2), asp=1, pch=20, xlim=c(0,1))
abline(h=seq(0.0, 1.0, by=0.1), col='grey')
abline(v=seq(0.0, 1.0, by=0.1), col='grey')
```



## Méthodes pour les suites pseudo-aléatoires

- ► Il y a plusieurs suites pseudo-alétoires proposées.
- ▶ Une méthode répandue est le Mersenne Twister.
- Les Tests Diehard est une suite de tests de plusieurs implications de l'hypothèse que  $U_i \sim \operatorname{iid} U(0,1)$ .
- Souvent, il y a un état  $x_i$  qui suit une règle déterministe  $x_i = f(x_{i-1}, x_{i-2}, ...)$  et une suite de nombres  $y_i$  (fournit) qui suit une régle déterministe  $y_i = g(x_i)$ , où g est une fonction à sens unique qui rend infaisable le calcul de l'état à partir des observations des  $y_i$ .
- L'utilisateur peut initialiser l'état avec le choix d'une graine (seed), pour la reproductibilité.

#### set.seed(1234567890)

Sinon, l'état est souvent une fonction de l'heure actuelle (en UNIX, le nombre de secondes depuis le début de 1/1/1970)

# Variables (pseudo)-aléatoires non-uniformes

- 1. Méthode de l'inversion de la fonction de répartition
- 2. Méthode de rejet
- 3. Méthode de Ziggurat

## Inversion de la fonction de répartition I

Théorème 2.1 de Devroye : Supposez que F(x) est une fonction de répartition continue; son inverse  $F^{-1}$  est définie par

$$F^{-1}(u) = \inf \{x \colon F(x) = u, \ 0 \le u \le 1\}.$$

#### Alors

- 1. Si la variable aléatoire U suit la loi uniforme sur [0,1], la fonction de répartition de la variable aléatoire  $X \equiv F^{-1}(U)$  est F.
- 2. Si la variable aléatoire X a F comme fonction de répartition, la loi de F(X) est la loi uniforme sur [0,1].

La deuxième résultat est utilisé souvent en économétrie : transformation intégrale de probabilité, valeurs *p*.

# Inversion de la fonction de répartition II

Preuve de 1 :

$$\Pr[F^{-1}(U) \le x] = \Pr[\inf\{y : F(y) = U\} \le x]$$
  
=  $\Pr[U \le F(x)] = F(x).$ 

Preuve de 2 :

$$\Pr[F(X) \le U] = \Pr[X \le F^{-1}(u)] = F(F^{-1}(u)) = u.$$

# Quelques exemples où l'inverse analytique est disponible

| Loi                   | F(x)                                                                     | $F^{-1}(u)$                                                  |
|-----------------------|--------------------------------------------------------------------------|--------------------------------------------------------------|
| Exponentiel           | $1 - e^{-\lambda x}$                                                     | $\frac{1}{\lambda}\log(1-u)$                                 |
| Cauchy                | $rac{1}{2} + rac{1}{\pi} 	an^{-1} \left(rac{x - ar{x}}{\sigma} ight)$ | $\bar{x} + \tan\left(\pi\left(u - \frac{1}{2}\right)\right)$ |
| Pareto, $x \ge b > 0$ | $1-\left(\frac{b}{x}\right)^a$                                           | $\frac{b}{(1-u)^{1/a}}$                                      |
| Weibull, $x \ge 0$    | $1 - e^{(x/\lambda)^k}$                                                  | ?                                                            |

## Lois non-uniformes par la méthode de rejet

- Deux densités de la méthode de rejet :
  - densité cible f(x) (on veut simuler de cette loi)
  - densité de proposition g(x) (tirer de cette loi est facile)
- ▶ Il faut que g(x) domine f(x) dans le sens que

$$\sup_{x} \frac{f(x)}{g(x)} \equiv M < \infty$$

- La méthode consiste en répétant les étapes suivantes jusqu'à une acceptation
  - $\blacktriangleright$  tirer X de la loi avec densité g(x)
  - ightharpoonup tirer U de la loi uniforme sur [0,1]
  - ▶ accepter X comme un tirage de la loi cible si  $U \le f(X)/(g(X)M)$ .

## La méthode de rejet : probabilité d'acceptation

► La probabilité conditionnelle d'accepter, sachant X, est

$$\Pr\left[\left.U \le \frac{f(X)}{Mg(X)}\right|X\right] = \frac{f(X)}{Mg(X)}.$$

La probabilité inconditionnelle est (plus de rigueur ici)

$$E_g\left[\frac{f(X)}{Mg(X)}\right] = \int \frac{f(x)}{Mg(x)}g(x) dx = \frac{1}{M} \int f(x) dx = \frac{1}{M}.$$

# Exemple, loi gaussienne tronqué à $(-\infty, c]$ , c > 0.

Considérez la loi cible avec densité

$$f(x) = \frac{1}{\Phi(c)} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} 1_{(-\infty, c]}(x),$$

où c > 0.

- ightharpoonup C'est une loi gaussienne tronqué à la région  $(-\infty, c]$ .
- Notez que l'intégral de f(x) est 1.
- lacktriangle Choisissez maintenant la loi N(0,1) comme loi de proposition :

$$g(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

- $M \equiv \sup f(x)/g(x) = 1/\Phi(c).$
- ightharpoonup Avec la méthode de rejet, on accept X non-tronqué ssi X < c:

$$\frac{f(X)}{Mg(X)} = \begin{cases} 1 & X \le c \\ 0 & X > c \end{cases}$$

# Exemple, loi gaussienne tronqué à $(c, \infty)$ , c > 0.

- On peut utiliser la g(x), mais ici la probabilité d'acceptation inconditionnelle serait  $1 \Phi(c)$ , qui peut être très petite.
- ▶ Première idée alternative : choisir une loi exponentielle avec déplacement par c :

$$g(x) = \lambda e^{-\lambda(x-c)} 1_{(c,\infty)}(x).$$

- ▶ La dérivée de  $\log f(x)$  est -x et la dérivéee de  $\log g(x)$  est  $-\lambda$ .
- On met les deux en égalité à x = c avec le choix  $\lambda = c$ .
- Le ratio f(x)/g(x) est maximisé à  $x=c^+$ , où

$$M = \frac{f(c^+)}{g(c^+)} = \frac{e^{-c^2/2}}{\sqrt{2\pi}(1 - \Phi(c))c}.$$

Pour c = 2, M = 1.186608 et la probabilité d'acceptation est  $M^{-1} = 0.8427385$ .

# Première idée, code pour la graphique

```
# Point de troncation
c = 2
A = 1 - pnorm(c, 0, 1)
# Grille de points, densité cible (qaussienne tronquée)
x = seq(c-0.2, 4, by=0.001)
f = (dnorm(x) / A) * (x > c)
# Densité de proposition, M, aPr
lambda = c
g = lambda * exp(-lambda * (x-c)) * (x > c)
M = dnorm(c) / (A*lambda)
aPr = 1/M
c(M. aPr)
```

## [1] 1.1866078 0.8427385

# Première idée, graphique

```
plot(x, f, type='l')
lines(x, g*M, col='blue', lty='dashed')
```



#### Deuxième idée

- ▶ Retenons  $g_{\lambda}(x) = \lambda e^{-\lambda(x-c)} 1_{(c,\infty)}$ , mais cherchons la valeur optimal de  $\lambda$ .
- On peut écarter  $\lambda < c$ , où  $f(x)/g_{\lambda}(x)$  est maximisée à x = c.
- Pour  $\lambda > c$ ,  $f(x)/g_{\lambda}(x)$  est maximisé au même point  $x^*$  que

$$\log f(x) - \log g_{\lambda}(x) = k - \frac{1}{2}x^2 + \lambda(x - c)$$

- La dérivée est  $-x + \lambda = 0$  alors  $f(x)/g_{\lambda}(x)$  est maximal à  $x^* = \lambda$ , peu importe la valeur de  $\lambda > c$ .
- Maintentant on calcule M comme fonction de  $\lambda$  :

$$\left. \frac{f(x)}{g_{\lambda}(x)} \right|_{x=\lambda} = \frac{e^{-\lambda^2/2}}{\sqrt{2\pi}(1-\Phi(c))} \cdot \frac{1}{\lambda e^{-\lambda(\lambda-c)}} = \frac{e^{\lambda^2/2-\lambda c}}{\sqrt{2\pi}(1-\Phi(c))\lambda}$$

▶ Une condition de première ordre nécessaire pour un minimum :

$$\lambda - c - \frac{1}{\lambda} = 0.$$

▶ Une racine plus grand que  $c: \lambda^* = (c + \sqrt{c^2 + 4})/2$ 

### Deuxième idée, code

## [1] 1.0710705 0.9336453

```
# Densité de proposition, M, aPr
lambda = (c + sqrt(4 + c^2))/2
g = lambda * exp(-lambda * (x-c)) * (x > c)
M = exp(lambda^2/2 - lambda*c) / (A*sqrt(2*pi)*lambda)
aPr = 1/M
c(M, aPr)
```

# Deuxième idée, graphique

```
plot(x, f, type='l')
lines(x, g*M, col='blue', lty='dashed')
```



# Deuxième idée, comparaison efficace de U et f/Mg

Rappel : pour  $x \ge c$ ,

$$\frac{f(x)}{g(x)} = \frac{e^{-x^2/2}}{\sqrt{2\pi}(1 - \Phi(c))} \cdot \frac{1}{\lambda e^{-\lambda(x-c)}},$$
$$M = \frac{e^{\lambda^2/2 - \lambda c}}{\sqrt{2\pi}(1 - \Phi(c))\lambda}.$$

La probabilité conditionnele d'acceptation f(x)/(Mg(x)) simplife à

$$\frac{f(x)}{Mg(x)} = e^{-(x-\lambda)^2/2}.$$

Notez que  $e^{-(x-\lambda)^2/2} \ge 1 - \frac{(x-\lambda)^2}{2}$ , qui permet une acceptation rapide si  $U \le 1 - \frac{(x-\lambda)^2}{2}$ , sans évaluer la fonction exponentielle.

## La méthode Ziggurat



### Commentaires sur la construction de la Ziggurat

- ightharpoonup n=256 niveaux est typique (8 bits aléatoire, car  $256=2^8$ ).
- ▶ L'aire de la couche i,  $(y_{i+1} y_i)x_i = A$  est constante.
- ▶ L'aire constante donne  $y_{i+1} = (A/x_i) + y_i$ .
- L'inversion de  $y_i = f(x_i)$  donne  $x_i = f^{-1}(y_i)$  (la monotonicité est importante).
- Si le support de la loi cible est  $[0, \infty)$ , la couche zéro est la région en dessous de min $(y_1, f(x))$ , qui doit avoir l'aire A.
- ► Le coût élevé de la construction de la Ziggurat est justifié s'il faut le faire seulement une fois pour tout.
- ▶ Convenable pour les lois N(0,1), Exp(1), parce que
  - $N(\mu, \sigma)$  et  $Exp(\lambda)$  sont des transformations simples de N(0, 1) et Exp(1).
  - La densité  $\phi(x)$  de la loi N(0,1) est symmétrique autour de zéro, montone pour x>0
  - La densité de la loi Exp(1) est monotone sur son support  $[0,\infty)$ .

## Commentaires sur le tirage des variables aléatoires

- Supposez que la Ziggurat est déjà construite.
- ► La méthode de Ziggurat consiste en répétant les étapes suivantes jusqu'à une acceptation :
  - tirer l'index de la couche, de la loi uniforme sur  $\{0, 1, \dots, n-1\}$ .
  - tirer  $U_x$  de la loi uniforme sur  $[0, x_i]$ .
  - ▶ Si  $U_x \le x_{i+1}$ , accepter  $U_x$  comme le tirage de la loi cible.
  - Sinon, tirer  $U_y$  de la loi uniforme sur  $[y_i, y_{i+1}]$ , accepter si  $f(U_x) \leq U_y$ .
- Si le support de la loi cible est  $[0,\infty)$ , le tirage de la couche zéro doit utiliser une autre méthode.
- L'aire constante des régions est importante pour un coût de tirage qui ne dépend pas de *n*.
- Pour *n* grand, on accepte avec haute probabilité sans tirer  $U_y$  ni évaluer  $f(U_x)$ .

# Une Ziggurat (édifice religieux mésopotamien)



Figure 1. 7iggurat

Ziggurat de neige



Figure 2: Ziggurat de neige

# Variables (pseudo)-aléatoires multivariée "faisables"

- 1. de la loi gaussienne multivariée (généralisation de la loi gaussienne)
- 2. de la loi Dirichlet (généralisation de la loi beta)
- 3. de la loi Wishart (généralisation de la loi gamma)

#### Tirer de la loi multivariée gaussienne

- Une transformation linéaire d'un vecteur de variables aléatoires gaussiennes
- ▶ Pour tirer  $Y \sim N(\mu, \Sigma)$ ,
  - $\blacktriangleright \text{ Tirer } X \sim N(0, I_n)$
  - ▶ Effectuer la décomposition de Cholesky  $\Sigma = LL^{\top}$ .
  - $Y = \mu + LX$ .
- Variants :
  - loi uniforme sur la surface d'une hypersphère
  - loi uniforme sur une hypersphère
  - loi t de Student et autres mélanges de lois gaussiennes

#### Tirer de la loi Dirichlet

- Généralisation de la loi  $Be(\alpha, \beta)$  (beta)
- Elle est une loi sur le *n*-simplexe  $\Delta^n$  standard (ou de probabilité)

$$\Delta^n \equiv \left\{ x \in \mathbb{R}^n \colon x_i \geq 0, \ i = 1, \dots, n, \ \sum_{i=1}^n = 1 \right\}$$

- Pour tirer  $Y \sim \text{Di}(\alpha_1, \dots, \alpha_n)$ ,
  - ► Tirer  $X_i \sim \operatorname{iid} \operatorname{Ga}(\alpha_i, \beta)$ ,  $i = 1, \ldots, n$ .

  - $Y \equiv X_{\text{tot}}^{-1}(X_1,\ldots,X_n) \sim \text{Di}(\alpha_1,\ldots,\alpha_n).$
- Variants :
  - Loi uniforme sur un simplexe standard (Di(1,...,1))
  - Loi uniforme sur un simplexe arbitraire par transformation linéaire

#### Tirer de la loi Wishart

- Généralisation de la loi  $Ga(\alpha, \beta)$  (gamma)
- Elle est une loi sur l'espace de matrices symmétriques et définies positives.
- ▶ Pour tirer  $\Sigma \sim Wi(\nu, V)$ , où V est une matrice définie positive,
  - ▶ Effectuer la décomposition de Cholesky  $V = LL^{\top}$ .
  - ► Tirer la matrice A : ses éléments sont indépendants et

$$A_{ij} = \begin{cases} N(0,1) & i < j \\ \chi^2(\nu - i + 1) & i = j \\ 0 & i < j \end{cases}$$

- Σ ≡  $LAA^TL^T$  (LA est le facteur triangulaire inférieure de Σ)
- Variant : loi de Wishart inverse