ECT304 VLSI CIRCUIT DESIGN

SYLLABUS

MODULE-1

1.1	Introduction: Moore slaw .ASIC design, Full custom ASICs, Standard cell based ASICs, Gate array based ASICs,	3
1.2	SoCs, FPGA devices	2
1.3	ASIC and FPGA Design flows Top-Down and Bottom-Up design methodologies.	3
1.4	Logical and Physical design. Speed power and area considerations in VLSI design	

SYLLABUS

MODULE-2

2.1	MOSFET Logic Design - NMOS logic (Static analysis of Basic gates only)	3
2.2	CMOS logic, Static and transient analysis of CMOS inverter Switching power dissipation and delays	3
2.3	Realization logic functions in static CMOS logic, Pass transistor logic, and transmission gate logic (Static analysis only)	3

PROF. ARJUN PRABHUDAS, GCE KANNUR

SYLLABUS

MODULE-3

odule 3	Dynamic logic Design and Storage Cells (8 Hrs)	
3.1	Dynamic Logic Design-Pre charge- Evaluate logic, Domino Logic, NP domino logic.	3
3.2	Read Only Memory-4x4 MOS ROM Cell Arrays(OR,NOR,NAND)	2
3.3	Random Access Memory –SRAM-Six transistor CMOS SRAM cell, DRAM –Three transistor and One transistor Dynamic Memory Cell.	3

SYLLABUS

MODULE-4

lule 4:	Arithmetic circuits (5 Hrs)	
4.1	Adders- Static adder, Carry-Bypass adder, Linear Carry- Select adder, Square- root carry- select adder.	3
4.2	Multipliers-Array multiplier.	2

PROF. ARJUN PRABHUDAS, GCE KANNUR

SYLLABUS

MODULE-5

5.1	Material Preparation (qualitative analysis only) Purification and Crystal growth (CZ process), wafer preparation.	2
5.2	Thermal Oxidation- Growth mechanisms, Dry and Wet oxidation. Diffusion and ion implantation techniques.	3
5.3	Epitaxy: Molecular beam epitaxy. Lithography- Photo lithographic sequence, Electron Beam Lithography, Etching and metal deposition techniques	3
5.4	MOSFET Fabrication techniques(qualitative analysis only) Twin-Tub fabrication sequence, Fabrication process flow.	2
5.5	Layout Design and Design rules, Stick Diagram and Design rules- micron rules and Lambda rules. Layout of CMOS Inverter, two input NAND and NOR gates,	3

MODULE-2 Static CMOS logic design

ECT304 VLSI CIRCUIT DESIGN

TRANSISTOR CLASSIFICATION

PROF. ARJUN PRABHUDAS, GCE KANNUR

- BJT is a Current Controlled Device. i.e., output characteristics of the device is controlled by input current and not by input voltage.
- FET is a Voltage Controlled Device. i.e., output characteristics of the device is controlled by input voltage and not by input current.
- Two types of FET (Field effect Transistors)
 - Junction Field effect Transistors (JFET)
 - Metal Oxide Semiconductor/Silicon Field effect Transistors (MOSFET)

PROF. ARJUN PRABHUDAS, GCE KANNUR

CLASSIFICATION OF MOSFET

- DEPLETION TYPE MOSFET OR D-MOSFET
- Operated in both depletion/enhancement mode.
- · Sometimes called as depletion/enhancement MOSFET
- ENHANCEMENT TYPE MOSFET OR E-MOSFET
- · Can operate in Enhancement mode only

PROF. ARJUN PRABHUDAS, GCE KANNUR

CONSTRUCTION OF MOSFET

PROF. ARJUN PRABHUDAS, GCE KANNUR

E-MOSFET SYMBOL

N CHANNEL

PROF. ARJUN PRABHUDAS, GCE KANNUR

DEPLETION-MOSFET SYMBOL

N CHANNEL DEPLETION TYPE MOSFET

P- CHANNEL DEPLETION TYPE MOSFET

PROF. ARJUN PRABHUDAS, GCE KANNUR

MOS TRANSISTOR OPERATION

Vgs < 0 → ACCUMULATION MODE

Vt > Vgs > 0 → DEPLETION MODE

Vgs > Vt → INVERSION MODE

Vgs < Vt → CUT OFF REGION

Vgs > Vt & Vds < (Vgs - Vt) → LINEAR REGION

Vgs > Vt & Vds > (Vgs - Vt) → SATURATION REGION

PROF. ARJUN PRABHUDAS, GCE KANNUR

MOS TRANSISTOR OPERATION

Figure 5.2 The enhancement-type NMOS transistor with a positive voltage applied to the gate. An n channel is induced at the top of the substrate beneath the gate.

- The induced n region thus forms a channel for current flow from drain to source
- The channel is created by inverting the substrate surface from p type to n type. Hence the induced channel is also called an inversion layer.
- The value of V_{GS} at which a sufficient number of mobile electrons accumulate in the channel region to form a conducting channel is called the threshold voltage and is denoted Vt.
- Vt for an n-channel MOSFET is positive.
- The value of Vt is controlled during device fabrication and typically lies in the range of 0.3 V to 1.0 V.

PROF. ARJUN PRABHUDAS, GCE KANNUR

MOS TRANSISTOR OPERATION

Figure 5.3 An NMOS transistor with $v_{GS} > V_t$ and with a small v_{DS} applied. The device acts as a resistance whose value is determined by v_{GS} . Specifically, the channel conductance is proportional to $v_{GS} - V_t$, and thus i_D is proportional to $(v_{GS} - V_t)v_{DS}$. Note that the depletion region is not shown (for simplicity).

PROF. ARJUN PRABHUDAS, GCE KANNUR

MOS TRANSISTOR CHARACTERISTICS

PROF. ARJUN PRABHUDAS, GCE KANNUR

MOS TRANSISTOR CHARACTERISTICS

- > Three regions of operation
- 1. Cut Off Region

$$V_{GS} < V_{TH}$$

 I_{DS} will be 0. i.e., no current flow

2. Ohmic or Resistive or Triode or Non-Saturated Region

$$V_{GS} > V_{TH}$$
 and $V_{DS} < (V_{GS} - V_{TH})$

IDS greater than 0

3. Saturation Region

$$V_{GS} > V_{TH}$$
 and $V_{DS} \ge (V_{GS} - V_{TH})$

IDS greater than 0

PROF. ARJUN PRABHUDAS, GCE KANNUR

9

MOS TRANSISTOR CURRENT EQUATIONS

✓ Drain Current of EMOSFET is given by

$$I_{DS}=0$$
,

Cut Off region

$$I_{DS} = \mu C_{ox} \frac{w}{L} \Big[V_{DS} (V_{GS} - V_{TH}) - \frac{V_{DS}^2}{2} \Big], \text{Ohmic region}$$

$$I_{DS} = \mu C_{ox} \frac{w}{L} \left[\frac{(V_{GS} - V_{TH})^2}{2} \right], \qquad \text{Saturation Region}$$

- > Cox is the Gate/Channel Capacitance per unit area (F/cm²)
- \triangleright μ is the mobility of majority carrier (electron or hole mobility)
- $\geq \frac{w}{L}$ is the channel width to channel length ratio of MOS
- > V_{TH} is the threshold voltage

PROF. ARJUN PRABHUDAS, GCE KANNUR

BASIC INVERTER CIRCUITS

INVERTER CIRCUITS

- The basic requirement for producing a complete range of logic circuits is the inverter.
- Inverter is needed for restoring logic levels for NAND and NOR gates and for sequential and memory circuits of various forms.

Figure 2.1: Inverter Symbol

- CLASSIFICATION
 - NMOS INVERTER
 - RESISTIVE LOAD
 - DEPLETION TYPE LOAD
 - ENHANCEMENT TYPE LOAD
 - PSEUDO NMOS LOAD
 - CMOS INVERTER

PROF. ARJUN PRABHUDAS, GCE KANNUR

2

NMOS INVERTER

- The basic inverter circuit requires a transistor with source connected to ground and a load resistor of some sort connected from the drain to the positive supply rail V_{DD}.
- The output is taken from the drain and the input applied between gate and ground.
- · NMOS acts as a switch

PROF. ARJUN PRABHUDAS, GCE KANNUR

RESISTIVE LOAD NMOS INVERTER

- · Here the load used is a resistor.
- This arrangement is not often used because of the large space requirements of resistors produced in a silicon substrate.
- · Also standby leakage is more, poor noise margin
- Resistors are not conveniently produced on the silicon substrate; even modest values occupy excessively large areas so that some other form of load resistance is required.
- A convenient way to solve this problem is to use a transistor as the load.

PROF. ARJUN PRABHUDAS, GCE KANNUR

2

DEPLETION TYPE LOAD NMOS INVERTER

- With no current drawn from the output, the currents Ids for both transistors must be equal.
- For the depletion mode transistor, the **gate** is **connected to the source** so it is **always on** and only the characteristic curve Vgs = 0 is relevant.
- In this configuration the **depletion mode device** is called the **pull-up (p.u.)** and the **enhancement mode device the pull-down (p.d.) transistor**.
- The D-MOS here acts as a nonlinear resistor (as always on)
- D-MOS work in either in Linear region or in saturation region.

PROF. ARJUN PRABHUDAS, GCE KANNUR

DEPLETION TYPE LOAD NMOS INVERTER

- The maximum voltage across the enhancement mode device corresponds to minimum voltage across the depletion mode transistor.
- When Vin (= Vgs p.d. transistor) exceeds the p.d. threshold voltage current begins to flow.
- The output voltage Vout, thus decreases and the subsequent increases in Vin will cause the p.d. transistor to come out of saturation and become resistive.
- The p.u. transistor is initially resistive

PROF. ARJUN PRABHUDAS, GCE KANNUR

21

DEPLETION TYPE LOAD NMOS INVERTER

Figure 2.4: Derivation of NMOS Inverter transfer characteristics

Figure 2.5: NMOS Inverter transfer characteristics

PROF. ARJUN PRABHUDAS, GCE KANNUR

DEPLETION TYPE LOAD NMOS INVERTER

- Dissipation is high, since rail to rail current flows when Vin = logical 1.
- Switching of output from 1 to 0 begins when Vin exceeds V_{TH} of pull down device.
- When switching the output from 1 to 0, the pull up device is non-saturated initially and this presents lower resistance through which to charge capacitive loads.

PROF. ARJUN PRABHUDAS, GCE KANNUR

2

ENHANCEMENT TYPE LOAD NMOS INVERTER

- Dissipation is high since current flows when Vin = logical 1 (VGG is returned to VDD).
- Vout can never reach VDD (logical 1) if VGG = VDD as is normally the case.

PROF. ARJUN PRABHUDAS, GCE KANNUR

PSEUDO NMOS LOAD NMOS INVERTER

• The inverter that uses a p-device pull-up or load that has its gate permanently ground

PROF. ARJUN PRABHUDAS, GCE KANNUR

.

CMOS INVERTER

PROF. ARJUN PRABHUDAS, GCE KANNUR

CMOS INVERTER

- \triangleright A CMOS inverter consists of two opposite polarity MOSFETs M_n (nMOS) and M_p (pMOS) with their gates connected together at the input.
- > The applied voltage is denoted by V_{in}

➤ The inverter output voltage V_{out} is taken from the common drain terminals.

(a) Logic symbol

(b) CMOS circuit

PROF. ARJUN PRABHUDAS, GCE KANNUR

CMOS INVERTER

- ➤ An nMOS pMOS group with a common gate is called a **complementary pair,** which gives us the "C" in "CMOS."
- > The transistors are connected in a manner that ensures that only one of the MOSFETs conducts when the input is stable at a low or high voltage.
- This is due to the use of the complementary arrangement.
- > From the circuit we have

$$\begin{aligned} \mathbf{V}_{\mathrm{GSn}} &= \mathbf{V}_{\mathrm{in}} \\ \mathbf{V}_{\mathrm{SGp}} &= \mathbf{V}_{\mathrm{DD}} - \mathbf{V}_{\mathrm{in}} \end{aligned}$$

 \triangleright where V_{in} is assumed to be in the voltage range [0, V_{DD}] with V_{DD} the power supply.

 \triangleright When $V_{in} = V_{DD}$, i.e., high input voltage (Logic 1)

$$V_{GSn} = V_{DD}$$
$$V_{SGn} = 0$$

- ➤ pMOS M_p is in Cut off while nMOS M_n is conducting in the non-saturated mode.
- > M_n provide a current path to ground, resulting in an output voltage of

$$\min(V_{\text{out}}) = V_{\text{OL}} = 0$$

➤ where V_{OL} is called the output low voltage, and represents the smallest voltage available at the output.

PROF. ARJUN PRABHUDAS, GCE KANNUF

3

CMOS INVERTER - DC OPERATION

When $V_{in} = 0$, i.e., low input voltage (Logic 0)

$$\begin{aligned} \mathbf{V}_{\mathrm{GSn}} &= \mathbf{0} \\ \mathbf{V}_{\mathrm{SGp}} &= \mathbf{V}_{\mathrm{DD}} \end{aligned}$$

- \triangleright nMOS M_n is in Cut off while pMOS M_p is conducting in the non-saturated mode.
- ➤ The pMOS M_p provides a conductive path to the power supply and gives

$$max(V_{out}) = V_{OH} = V_{DD}$$

- ightharpoonup which defines the output high voltage V_{OH} of the circuit
- $ightharpoonup V_{OH}$ is the largest value of V_{out}

PROF. ARJUN PRABHUDAS, GCE KANNUR

PROF. ARJUN PRABHUDAS, GCE KANNUR

CMOS INVERTER - DC OPERATION

✓ The Current - Voltage relationships for the MOSFET is given by

$$I_D = \beta \left[V_{DS}(V_{GS} - V_{TH}) - \frac{V_{DS}^2}{2} \right]$$

> in the resistive region or

$$I_D = \frac{\beta}{2} (V_{GS} - V_{TH})^2$$

in the Saturation.

$$ightharpoonup$$
 where $ho = \mu C_{ox} \frac{W}{L}$

✓ CMOS inverter has five distinct regions of operation.

PROF. ARJUN PRABHUDAS, GCE KANNUR

✓ Region 1

- ➤ V_{in} = logic 0, we have the pMOS fully turned on while the nMOS is fully turned off.
- ➤ Thus no current flows through the inverter and the output is directly connected to V_{DD} through the p-transistor.
- A good logic 1 output voltage is thus present at the output.

✓ Region 5

- \triangleright V_{in} = logic 1, the nMOS is fully on while the pMOS is fully off.
- Again, no current flows and a good logic 0 appears at the output.

PROF. ARJUN PRABHUDAS, GCE KANNUF

27

CMOS INVERTER - DC OPERATION

✓ Region 2

- ➤ The input voltage has increased to a level which just exceeds the threshold voltage of the nMOS.
- > The nMOS conducts and has a large voltage between source and drain; so it is in saturation.
- ➤ The pMOS is also conducting but with only a small voltage across it, it operates in the unsaturated resistive region.
- ➤ A small current now flows through the inverter from V_{DD} to V_{SS}.

PROF. ARJUN PRABHUDAS, GCE KANNUR

✓ Region 4

- Region 4 is similar to region 2 but with the roles of the p- and n-transistors reversed.
- ➤ The input voltage has increased to a level which just exceeds the threshold voltage of the pMOS.
- ➤ The pMOS conducts and has a large voltage between source and drain; so it is in saturation.
- ➤ The nMOS is also conducting but with only a small voltage across it, it operates in the unsaturated resistive region.
- ➤ A small current now flows through the inverter from V_{DD} to V_{SS}.

PROF. ARJUN PRABHUDAS, GCE KANNUF

CMOS INVERTER - DC OPERATION

✓ Region 3

- ➤ The current magnitudes in regions 2 and 4 are small and most of the energy consumed in switching from one state to the other is due to the larger current which flows in region 3.
- > Region 3 is the region in which the inverter exhibits gain and in which both transistors are in saturation.
- The currents in each device must be the same since the transistors are in series i.e., $I_{dsn} = -I_{dsp}$

$$I_{dsp} = \frac{\beta_p}{2} (V_{in} - V_{DD} - V_{tp})^2$$
 and $I_{dsn} = \frac{\beta_n}{2} (V_{in} - V_{tn})^2$

> Hence
$$V_{in} = \frac{V_{DD} + V_{ip} + V_{in} (\beta_n / \beta_p)^{1/2}}{1 + (\beta_n / \beta_p)^{1/2}}$$

ightharpoonup If $eta_n = eta_p$ and if $V_{tn} = -V_{tp}$, then $V_{in} = 0.5 V_{DD}$

CMOS INVERTER

Because of the placement and operation of each MOSFET, M_n is called a pull-down transistor, while M_p is termed a pull-up device.

CMOS Inverter - Input and Output Voltages

PROF. ARJUN PRABHUDAS, GCE KANNUR

CMOS INVERTER - DC CHARACTERISTICS

Voltage Transfer Characteristics of CMOS Inverter

PROF. ARJUN PRABHUDAS, GCE KANNUR

- ➤ The DC input-output characteristics are portrayed graphically using the Voltage-Transfer Curve (or VTC)
- \succ This is simply a plot of V_{out} as a function of V_{in}
- ➤ When V_{in} is small, V_{out} is large, and vice-versa.
- ➤ The sharpness of the transition is a measure of how well the circuit is able to perform digital operations.
- The VTC itself gives a set of critical voltages to work with in creating the defined ranges.
- \succ The important values are the output voltages (V_{OH} and V_{OL}), the input voltages (V_{IH} and V_{IL}), and and the inverter threshold voltage (V_{I}).
- Assume that the MOSFETs have known device transconductance values of

$$\beta_n = k'_n \left(\frac{w}{L}\right)_n$$
 and $\beta_p = k'_p \left(\frac{w}{L}\right)_p$

PROF. ARJUN PRABHUDAS, GCE KANNUF

CMOS INVERTER - DC CHARACTERISTICS

- ➤ This means that the layout has been completed and the aspect ratios (W/L)_n and (W/L)_p are known quantities.
- > The critical voltages are established by the MOSFET parameters and characterize the DC response of the circuit.
- ➤ These are directly related to the method we use to define logic 0 and logic 1 levels.
- ➤ In CMOS circuit design, only the device aspect ratios (W/L)_n (for nMOS) and (W/L)_p (for the pMOS) can be adjusted in the design phase.
- \triangleright The other electrical parameters such as k' and V_{TH} and are a result of the fabrication and cannot be changed.
- ➤ The critical voltages may be computed by setting the input voltage to the desired value and then equating the drain currents I_{Dn}= I_{Dp} at the output node.

✓ OUTPUT HIGH VOLTAGE (V_{OH})

- \triangleright The output-high voltage V_{OH} is the largest value of V_{out} .
- ➤ It may be calculated by applying an input voltage V_{in}<V_{THn} which insures that the nMOS is in cut off while the pMOS is biased into the active region.
- ➤ Ideally, the simplified MOSFET equations give $I_{Dp}=0$, which implies that the source-drain voltage $V_{SDp}=0$.
- Since the source of the pMOS is connected to the power supply voltage V_{DD}, KVL gives

$$V_{out} = V_{DD} - V_{SDp} = V_{DD} = V_{OH}$$

PROF. ARJUN PRABHUDAS, GCE KANNUR

CMOS INVERTER - DC CHARACTERISTICS

✓ OUTPUT LOW VOLTAGE (V_{OL})

- The output-low voltage V_{OL} represents the smallest value of V_{out} from the circuit.
- > Setting the input voltage to a value $V_{in} = V_{DD} > (V_{DD} |V_{THp}|)$ places M_p in cut off and defines the condition needed to calculate the value of $V_{out} = V_{OL}$
- > Since M_n is biased active but has $I_{Dn}=0$, the drain-source voltage across the nMOS is $V_{DSn}=0$.
- > The inverter output is given by

$$V_{out} = V_{DSn} = 0 = V_{OL}$$

 \triangleright An important property of CMOS is that the output logic swing V_L is given by

$$V_{L} = V_{OH} - V_{OL}$$
$$= V_{DD}$$

- ➤ This shows that the CMOS inverter exhibits a **full-rail** output voltage swing, i.e., the entire power supply range.
- ➤ This helps provide well-defined logic 0 and logic 1 voltages.

PROF. ARJUN PRABHUDAS, GCE KANNUF

47

CMOS INVERTER - DC CHARACTERISTICS

✓ INPUT LOW VOLTAGE (V_{IL})

- ➤ The input low voltage V_{IL} represents the largest value of V_{in} that can be interpreted as a logic 0 input.
- \triangleright If the input voltage satisfies $V_{in} < V_{IL}$ then the output voltage V_{out} is either at V_{DD} or close to it, indicating that the output can be interpreted as a logic 1.
- \succ If V_{in} is increased above V_{IL} , the circuit moves into the transition region.
- ➤ Using stability arguments, we define V_{IL} as the point where the slope of the VTC has a value of -1, i.e.,

$$\frac{d\mathbf{V}_{\mathrm{out}}}{d\mathbf{V}_{\mathrm{in}}} = -1$$

PROF. ARJUN PRABHUDAS, GCE KANNUR

✓ INPUT LOW VOLTAGE (V_{IL})

- ➤ At this point, the M_n is saturated while the M_p is conducting in the non-saturated mode.
- \triangleright Equating currents $I_{Dn} = I_{Dp}$ gives

$$\frac{\beta_{n}}{2}(V_{in}-V_{THn})^{2} = \frac{\beta_{p}}{2} \left[2 \left(V_{DD}-V_{in}-|V_{THp}| \right) (V_{DD}-V_{out}) - (V_{DD}-V_{out})^{2} \right]$$
 EQN 2.13

➤ The derivative condition is applied by first writing the functional relationship

$$\mathbf{I}_{\mathrm{Dn}}(\mathbf{V}_{\mathrm{in}}) = \mathbf{I}_{\mathrm{Dp}}(\mathbf{V}_{\mathrm{in}}, \mathbf{V}_{\mathrm{out}})$$

> Taking differentials of both sides gives

PROF. ARJUN PRABHUDAS, GCE KANNUF

CMOS INVERTER - DC CHARACTERISTICS

✓ INPUT LOW VOLTAGE (V_{IL})

> Substituting and calculating the derivatives yields

$$V_{in}(1 + \frac{\beta_n}{\beta_p}) = 2V_{out} - V_{DD} - |V_{THp}| + \frac{\beta_n}{\beta_p} V_{THn}$$

✓ INPUT HIGH VOLTAGE (V_{IH})

- \succ The input high voltage V_{IH} is the smallest value of V_{in} that can be interpreted as a logic 1 level.
- ightharpoonup An input voltage of $V_{in} \ge V_{IH}$ gives an output voltage that is either 0V or close to it.
- \triangleright To calculate V_{IH} , we use the current flow equations and the unity slope condition as in finding V_{IL} .
- ➤ Now, M_n is non-saturated while M_p is saturated so that equating currents gives

$$\frac{\beta_{n}}{2}[2(V_{in}-V_{THn})V_{out}-V_{out}{}^{2}] \text{=} \frac{\beta_{p}}{2}\big(V_{DD}-V_{in}-|V_{THp}|\big)^{2}$$

PROF. ARJUN PRABHUDAS, GCE KANNUR

.

CMOS INVERTER - DC CHARACTERISTICS

✓ INPUT HIGH VOLTAGE (V_{IH})

> Substituting the current equations and differentiating equation

$$V_{in}(1+\frac{\beta_p}{\beta_n}) \text{= } 2V_{out} + V_{THn} + \frac{\beta_p}{\beta_n} (|V_{DD} - |V_{THp}|)$$

PROF. ARJUN PRABHUDAS, GCE KANNUR

✓ INVERTER THRESHOLD (MIDPOINT) VOLTAGE (V_I)

- ➤ The voltage V_I is called the **inverter gate threshold voltage**, and is defined by the point where the voltage transfer curve intersects the unity gain line defined by V_{out}=V_{in}
- ▶ V_I is the midpoint between the borders of the logic 0 and logic 1 input voltages V_{IL} and V_{IH} and is a very useful parameter that characterizes the entire VTC.
- ➤ This gives rise to the alternate notation and terminology in the literature for this voltage as V_M, the midpoint voltage.

PROF. ARJUN PRABHUDAS, GCE KANNUF

.

CMOS INVERTER - DC CHARACTERISTICS

\checkmark INVERTER THRESHOLD (MIDPOINT) VOLTAGE (V₁)

 \triangleright The value of V_I can be found by definition,

$$V_{out} = V_{in} = V_{I}$$

> so that

$$\begin{aligned} \mathbf{V}_{\mathrm{GSn}} &= \mathbf{V}_{\mathrm{I}} = \mathbf{V}_{\mathrm{DSn}} \\ \mathbf{V}_{\mathrm{SGp}} &= \mathbf{V}_{\mathrm{DD}} \text{-} \mathbf{V}_{\mathrm{I}} = \mathbf{V}_{\mathrm{SDp}} \end{aligned}$$

- ➤ holds for the MOSFET voltages.
- ➤ These equations show that both the nMOS and the pMOS are operating in the saturation region.
- > Equating currents gives

$$\frac{\beta_n}{2} (V_I - V_{THn})^2 = \frac{\beta_p}{2} (V_{DD} - V_I - |V_{THp}|)^2$$

✓ INVERTER THRESHOLD (MIDPOINT) VOLTAGE (V₁)

> so that

$$V_{I} = \frac{V_{DD} - \left|V_{THp}\right| + \sqrt{\frac{\beta_{n}}{\beta_{p}}}V_{THn}}{1 + \sqrt{\frac{\beta_{n}}{\beta_{p}}}} = V_{M}$$

- > gives the desired result.
- Note that the device ratio $\frac{\beta_n}{\beta_p}$ is the important quantity that determines the value of V_I for a given circuit.

PROF. ARJUN PRABHUDAS, GCE KANNUF

CMOS INVERTER - DC CHARACTERISTICS

✓ INTERPRETATION OF CRITICAL VOLTAGES

Figure 2.12: Interpretation Of Critical Voltages

PROF. ARJUN PRABHUDAS, GCE KANNUR

✓ INTERPRETATION OF CRITICAL VOLTAGES

- \triangleright Consider the input voltage V_{in} as it is increased from 0V.
- For input voltages in the range $0 \le V_{in} \le V_{IL}$, the output voltage is high at either a perfect logic 1 voltage $V_{out} = V_{DD}$ or very close to it.
- ➤ This then allows us to identify this range of voltages as logic 0 input values.
- When V_{in} is in the high range defined by $V_{IH} \le V_{in} \le V_{DD}$, then the output voltage is either at a perfect logic 0 value $V_{out} = 0V$ or very close to it.
- \triangleright We thus identify these values of V_{in} as corresponding to logic 1 inputs.

PROF. ARJUN PRABHUDAS, GCE KANNUF

CMOS INVERTER - DC CHARACTERISTICS

✓ INTERPRETATION OF CRITICAL VOLTAGES

- > The inverter threshold voltage always has the characteristic that $V_{IL} \leq V_{I} \leq V_{IH}$
- \succ We may thus interpret this as the midpoint voltage $V_M = V_I$ such that

 $V_{in} < V_M \rightarrow$ Input is probably a logic 0

and

 $V_{in} > V_M \rightarrow$ Input is probably a logic 1

 \triangleright with V_{IL} and V_{IH} providing more precise limits.

✓ NOISE MARGINS

- ➤ The meaning of the critical input and output voltages gains greater significance when coupled to the concept of noise margins.
- ➤ Consider the situation in Figure 2.13a where the input of an inverter is close to a neighbouring interconnect line.

Figure 2.13: Noise Margin

PROF. ARJUN P

PROF. ARJUN PRABHUDAS, GCE KANNUR

CMOS INVERTER - DC CHARACTERISTICS

✓ NOISE MARGINS

- ➤ A parasitic coupling capacitance C_C exists between the two, so that applying a voltage pulse to one line will cause a change in the voltage in the other.
- > Suppose that the input to the inverter is initially at 0v.
- ➤ With this type of electric coupling, the value of V_{in} can jump to a voltage as shown in Figure 2.13b.
- ➤ If the increase is large, then an incorrect switching event may occur.
- ➤ However, so long as the input voltage remains below V_{IL}, then the input will still be correctly interpreted as a logic 0 voltage.
- Noise margins provide a quantitative measure of how resistant a circuit is to false switches.

✓ NOISE MARGINS

➤ We define the voltage noise margin for logic 1 (high) voltages as

$$VNM_{H} = V_{OH} - V_{IH}$$
$$= V_{DD} - V_{IH}$$

➤ Similarly, the voltage noise margin for logic 0 (low) voltages as

PROF. ARJUN PRABHUDAS, GCE KANNUR

CMOS INVERTER - DC CHARACTERISTICS

✓ NOISE MARGINS

- For a functional digital circuit, we must have $VNM_L > 0$ and $VNM_H > 0$
- ➤ Noise margins are particularly important when designing low voltage circuits, i.e., those with small power supply values.
- \triangleright This is because as V_{DD} shrinks, the definitions of logic 0 and 1 voltage ranges also shrink, and the gates are more susceptible to spurious signals from neighboring lines.