Name: K

Richard

R. Hammack

Directions: Answer each question in the space provided. To get full credit you must show all of your work, unless instructed otherwise. Use of calculators is **not** allowed on this test.

1. (10 points) Write each set by listing its elements between braces.

(a)
$$\{m \in \mathbb{N} : 3|m\} = \begin{bmatrix} \{3, 6, 9, 12, 15, \cdots \} \end{bmatrix}$$

(b) $\{x \in \mathbb{R} : x^2 - 2x = 0\} = \left\{ \begin{array}{c} O_1 & 2 \end{array} \right\}$

(c) $\mathscr{D}(\{1,2\}) = \left\{ \begin{array}{c} \left\{ \begin{array}{c} \left\{1,2\right\} \\ \end{array} \right\} \\ \left\{ \begin{array}{c} \left\{1,2\right\} \\ \end{array} \right\} \end{array} \right\}$

 $\begin{cases} x^2 - 2x = 0 \\ \chi(x - 2) = 0 \\ x = 0 \quad x = 2 \end{cases}$

(d) $\{1,2\} \times \mathcal{P}(\{1,2\}) = \left\{ (1, \Phi), (2, \Phi), (1, \{1\}), (2, \{1\}), (1, \{2\}), (2, \{2\}), (1, \{1,2\}), (2,$

(e) $\{1,2\} \cap \mathcal{P}(\{1,2\}) =$ $\begin{cases}
\text{Note } 1 \notin \mathcal{P}(\{1,2\}) \\
\text{and } 2 \notin \mathcal{P}(\{1,2\})
\end{cases}$

- 2. (6 points)
 - (a) Suppose the following statement is false: $(P \land \sim Q) \Rightarrow (R \Rightarrow S)$ Is there enough information given to determine the truth values of P, Q, R and S? If so, what are they?

The only way that $(P \land \neg Q) \Rightarrow (R \Rightarrow S)$ can be false is if $(P \land \neg Q)$ is true and $(R \Rightarrow S)$ is false. This means P = T, Q = F, R = T, S = F

(b) Write a sentence that is the negation of the following sentence:

There exists a real number a for which a+x=x for every real number x. $\leftarrow \exists a \in \mathbb{R}$, $\forall x \in \mathbb{R}$, a+x=xNegation: $\sqrt{\exists a \in \mathbb{R}}$, $\forall x \in \mathbb{R}$, a+x=x) = $\forall a \in \mathbb{R}$, $\exists x \in \mathbb{R}$, $a+x \neq x$.

For any real number a, there is a real number x for which $a + x \neq x$,

(c) Decide if the following statement true or false. Briefly justify answer. $\forall n \in \mathbb{N}, \exists X \in \mathscr{P}(\mathbb{N}), |X| = n-1$

This is TRUE. If $n \in \mathbb{N}$, then $n \in \{1,2,3,4,\ldots\}$ so $n-1 \in \{0,1,3,3,\ldots\}$. You can certainly find an $X \subseteq \mathbb{N}$ with |X| = |n-1|.

3. (6 points) Write a truth table for $(P \Rightarrow Q) \Leftrightarrow (P \lor Q)$.

PQ	P⇒Q 1	PVQ	$(P \Rightarrow Q) \Leftrightarrow (PVQ)$
TT	T	T	T
TF	F	T	F
FT	T	T	Topos American
FF	T	F	- W

Answer The number of hards that are all the same suit is
$$4\binom{13}{5} = 4\frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9}{5 \cdot 4 \cdot 3 \cdot 2} = 4 \cdot 13 \cdot 11 \cdot 9 = 5148$$

5. (6 points) Consider 4-card hands dealt off of a standard 52-card deck. How many hands are there for which all 4 cards are of the same suit or all 4 cards are red?

Let A be the set of 4-card hands where all 4 cards have some suit Then A = { 5 10 7 K 3 7 5 2 8 7 KQ ... } Let B be the set of 4-card hands where all 4 cards are red

By inclusion - exclusion principle, the answer is

$$|AUB| = |A| + |B| - |A\cap B|$$

= $A(\frac{13}{4}) + (\frac{26}{4}) - 2(\frac{13}{4}) = 2(\frac{13}{4}) + (\frac{26}{4})$
= $2(\frac{13!}{4}) + \frac{26!}{1133!} = 13 \cdot 11 \cdot 10 + 26 \cdot 25 \cdot 23 = 16,380$

6. (6 points) In how many ways can you place 20 identical balls into five different boxes?

7. (6 points) Suppose $a, b, c, d \in \mathbb{Z}$ and $n \in \mathbb{N}$. Prove: If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$.

Proof (Direct) Suppose $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. This means $n \mid (a-b)$ and $n \mid (c-d)$ by def. of $\equiv \pmod{n}$. By definition of divisibility, we then have a-b = nk and c-d = nl for some $k, l \in \mathbb{Z}$. Consequently a = nk + b and c = nl + d. Hence $ac = (nk+b)(nl+d) = n^2kl + nkd + bnl + bd$. Therefore $ac-bd = n^2kl + nkd + bnl$ = n(nkl + kd + bl)

where nkl+kd+bl & Z.

From this the definition of divisibility gives $n \mid (ac-bd)$, and thus $ac \equiv bd \pmod{n}$

8. (6 points) Prove: If $n \in \mathbb{Z}$, then $4 \mid n^2$ or $4 \mid (n^2 + 3)$.

Proof (Direct) Suppose $n \in \mathbb{Z}$.

Case 1 Suppose n is even. Then n = 2k for some $k \in \mathbb{Z}$.

Therefore $n^2 = (2k)^2 - 4k^2$, meaning $4 \mid n^2$.

Case 2 Suppose n is odd. Then n = 2k+1 for $k \in \mathbb{Z}$.

Note that $n^2 + 3 = (2k+1)^2 + 3 = 4k^2 + 4k + 1 + 3$ $= 4k^2 + 4k + 4 = 4(k^2 + k + 1)$ with $k^2 + k + 1 \in \mathbb{Z}$.

As $n^2 + 3 = 4(k^2 + k + 1)$, we have $4 \mid (n^2 + 3)$.

Cases 1 and 2 above now show that $4 \mid n^2$ or $4 \mid (n^2 + 3)$.

9. (6 points) Prove: If $n \in \mathbb{Z}$, then $4 \nmid (n^2 - 3)$.

Proof (Contradiction) Suppose for the sake of Contradiction that nEZ but 4/(n²-3). Then

$$n^2 - 3 = 4a$$
 for some $a \in \mathbb{Z}$,
 $n^2 = 4a + 3$
 $n^2 = 4a + 2 + 1 = 2(2a + 1) + 1$.

Therefore h^2 is odd, so n is odd, that is, h=2b+1 for some $b \in \mathbb{Z}$. Now we have

$$h^{2}-3 = 4a$$

$$(2b+1)^{2}-3 = 4a$$

$$4b^{2}+4b+1-3 = 4a$$

$$4b^{2}+4b-2 = 4a$$

$$2b^{2}+2b-1 = 4a$$

$$2b^{2}+2b-4a = 1$$

$$2(b^{2}+b-2a) = 1$$

> Therefore 1 is even, which is a contradiction 12

10. (6 points) Suppose $a, b \in \mathbb{Z}$. Prove ab is odd if and only if both a and b are odd.

Proof (=) First we need to show that if ab is odd then both a and b are odd. We use contrapositive proof. Suppose that not both a and b are odd. Then at least one of them is even. Without loss of generality say a is even, so a = 2k for some k EZZ. Then ab = 2kb = 2(kb) with kb EZ, which means ab is even, so ab is not odd.

(\in) Now we need to prove that if a and b are both odd, then ab is odd. Let's use direct proof. Assume that both a and b are odd. Then a = 2k+1 and b = 2l+1 for k, $l \in \mathbb{Z}$. Now ab = (2k+1)(2l+1) = 4kl+2l+2k+1 = 2(2kl+l+k)+1. Because $2kl+l+k \in \mathbb{Z}$, this means ab is odd.

11. (6 points) Prove or disprove: If a relation R on a set A is both transitive and symmetric, then it is also reflexive.

This is FALSE. Here is a counterexample.

Let A = { a, b, c }

and R = {(a,a), (a,b), (b,a), (b,b)}

This is both transitive and symmetric, but it is not reflexive because (c,c) & R.

12. (6 points) Is f is injective? Let's check. Suppose f((a,b)) = f((c,d)). Then (3ab, b) = (3cd, d), which means $\lfloor 3ab = 3cd \rfloor$ and $\lfloor b = d \rfloor$. Putting thes together gives 3ab = 3cb and hence $\lfloor a = c \rfloor$. From this, (a,b) = (c,d) which proves $\lfloor f \rfloor$ is injective.

13. (6 points) Is f is surjective?

Given $(a,b) \in \mathbb{R} \times \mathbb{N}$, note that $(\frac{a}{3b},b) \in \mathbb{R} \times \mathbb{N}$ and $f((\frac{a}{3b},b)) = (3\frac{a}{3b}b,b) = (a,b)$ so

If is surjective

14. (6 points) Does the inverse function f-1 exist? If so, find it.

Because it's injective and surjective, f is bijective and thus has an inverse

13 above suggests that $f'(x,y) = \left(\frac{x}{3y}, y\right)$ Check: f'(f(x,y)) = f'((3xy,y)) $= \left(\frac{3xy}{3y}, y\right) = (x,y)$

15. (6 points) Use mathematical induction to prove $2^1 + 2^2 + 2^3 + 2^4 + \cdots + 2^n = 2^{n+1} - 2$ for every $n \in \mathbb{N}$.

Proof

O If
$$n=1$$
, this is $2=2^{l+1}-2$, that is, $2=4-2$, and that's true!

So we've shown that
$$2'+2^2+2^3+\cdots+2^{k+1}=2^{(k+1)+1}$$
This completes the proof by induction.

Proof Suppose for the sake of contradiction that $a,b \in \mathbb{Z}$, but $a^2-4b-3=0$. Then $a^2=4b+3=4b+2+1=2(2b+1)+1$. So $a^2=2(2b+1)+1$, where $2b+1\in\mathbb{Z}$, and this means a^2 is odd, so consequently a is odd. Therefore a=2k+1 for some $k\in\mathbb{Z}$.

Now plug a = 2k + 1 into $a^2 - 4b - 3 = 0$ to get $(2k+1)^2 - 4b - 3 = 0$ $4k^2 + 4k + 1 - 4b - 3 = 0$ $4k^2 + 4k - 4b = 2$ $\frac{1}{2}(4k^2 + 4k + 4b) = \frac{1}{2} \cdot 2$ $2k^2 + 2k + 2b = 1$ $2(k^2 + k + b) = 1$

Thus we have $l = 2(k^2+k+b)$, where $k^2+k+b \in \mathbb{Z}$, which means 1 is even, a contradiction