#### **Intro**

- Hi! My name is Andrey. This week you will learn how to solve computer vision tasks with neural networks
- You already know about MLP that has lots of hidden layers
- In this video we will introduce a new layer of neurons specifically designed for image input

# Digital representation of an image

- Grayscale image is a matrix of pixels (picture elements)
- Dimensions of this matrix are called image resolution (e.g. 300 x 300)
- Each pixel stores its brightness (or **intensity**) ranging from 0 to 255, 0 intensity corresponds to black color:



• Color images store pixel intensities for 3 channels: red, green and blue

# Image as a neural network input

• Normalize input pixels:  $x_{norm} = \frac{x}{255} - 0.5$ 

# Image as a neural network input

- Normalize input pixels:  $x_{norm} = \frac{x}{255} 0.5$
- Maybe MLP will work?



### Image as a neural network input

- Normalize input pixels:  $x_{norm} = \frac{x}{255} 0.5$
- Maybe MLP will work?



Actually, no!

### Why not MLP?

• Let's say we want to train a "cat detector"



On this training image red weights  $w_{ij}$  will change a little bit to better detect a cat

### Why not MLP?

• Let's say we want to train a "cat detector"



On this training image red weights  $w_{ij}$  will change a little bit to better detect a cat

On this training image green weights  $w_{ij}$  will change...

### Why not MLP?

• Let's say we want to train a "cat detector"



On this training image red weights  $w_{ij}$  will change a little bit to better detect a cat

On this training image green weights  $w_{ij}$  will change...

- We learn the same "cat features" in different areas and don't fully utilize the training set!
- What if cats in the test set appear in different places?

### **Convolutions will help!**

Convolution is a dot product of a **kernel** (or filter) and a patch of an image (**local receptive field**) of the same size



### **Convolutions will help!**

Convolution is a dot product of a **kernel** (or filter) and a patch of an image (**local receptive field**) of the same size



#### Convolutions have been used for a while

Kernel

 -1
 -1

 +1
 8

 -1
 -1

 -1
 -1



Edge detection



Original image

Sums up to 0 (black color) when the patch is a solid fill

#### Convolutions have been used for a while

Kernel





Edge detection



Original image

|   | 0  | -1 | 0  |  |  |
|---|----|----|----|--|--|
| * | -1 | 5  | -1 |  |  |
|   | 0  | -1 | 0  |  |  |



Sharpening

Doesn't change an image for solid fills Adds a little intensity on the edges

#### Convolutions have been used for a while

Kernel

| * | -1 | -1 | -1 |
|---|----|----|----|
|   | -1 | 8  | -1 |
|   | -1 | -1 | -1 |



Edge detection



Original image

| 0  | -1 | 0  |
|----|----|----|
| -1 | 5  | -1 |
| 0  | -1 | 0  |

\*



Sharpening

| 1 | 1 | 1 |   |
|---|---|---|---|
| 1 | 1 | 1 | = |
| 1 | 1 | 1 |   |



Blurring

### Convolution is similar to correlation

| 0 | 0  | 0   | 0 |   |     |     |   | 0      | 0     |   |
|---|----|-----|---|---|-----|-----|---|--------|-------|---|
| 0 | 0  | 0   | 0 |   | 1   | 0   |   |        |       | 0 |
| 0 | 0  | 1   | 0 | * | 0   | 1   | = | 0      | 1     | 0 |
|   | U  | 1   | U |   |     |     |   | 0      | 0     | 2 |
| 0 | 0  | 0   | 1 |   | V a | 1   | l |        | )4-o- | 4 |
|   | In | put |   |   | Keı | mei |   | Output |       |   |

#### Convolution is similar to correlation



#### Convolution is similar to correlation



# **Convolution is translation equivariant**

| 0 | 0  | 0   | 0 |   |      |    |   | 0      | 0 |   |  |
|---|----|-----|---|---|------|----|---|--------|---|---|--|
| 0 | 0  | 0   | 0 | * | 1    | 0  |   | -      | 0 | 0 |  |
|   |    | 1   |   |   | 0 1  | =  | 0 | 1      | 0 |   |  |
| 0 | 0  | l   | 0 |   | U    | 1  |   | 0      | 0 | 2 |  |
| 0 | 0  | 0   | 1 |   |      |    | [ |        |   |   |  |
|   |    |     |   |   | Kern | el |   | Output |   |   |  |
|   | In | put |   |   |      |    |   |        |   |   |  |

# Convolution is translation equivariant

| 0<br>0<br>0 | 0<br>0<br>0 | 0<br>0<br>1<br>0 | 0<br>0<br>0 | * | 1 0<br>0 1 |   | 0 0 0 | 0 1 0 | 0 0 2 |
|-------------|-------------|------------------|-------------|---|------------|---|-------|-------|-------|
|             | In          | put              |             |   | Kernel     |   | (     | Outp  | ut    |
| 1           | 0           | 0                | 0           |   |            |   | 2     |       |       |
| 0           | 1           | 0                | 0           | * | 1 0<br>0 1 | = | 2     | 0     | 0     |
| 0           | 0           | 0                | 0           |   |            |   | 0     | 1     | 0     |
| 0           | 0           | 0                | 0           |   |            |   | 0     | 0     | 0     |
|             | In          | put              |             |   | Kernel     |   | (     | Outp  | ut    |

# Convolution is translation equivariant



# Convolutional layer in neural network



# Convolutional layer in neural network



# **Backpropagation for CNN**

Gradients are first calculated as if the kernel weights were not shared:



### **Backpropagation for CNN**

Gradients are first calculated as if the kernel weights were not shared:



$$a = a - \gamma \frac{\partial L}{\partial a} \qquad b = b - \gamma \frac{\partial L}{\partial b}$$

$$c = c - \gamma \frac{\partial L}{\partial c} \qquad d = d - \gamma \frac{\partial L}{\partial d}$$

### **Backpropagation for CNN**

Gradients are first calculated as if the kernel weights were not shared:



$$a = a - \gamma \frac{\partial L}{\partial a}$$
  $b = b - \gamma \frac{\partial L}{\partial b}$   $c = c - \gamma \frac{\partial L}{\partial c}$   $d = d - \gamma \frac{\partial L}{\partial d}$ 

$$w_4 = w_4 - \gamma \left( \frac{\partial L}{\partial a} + \frac{\partial L}{\partial b} + \frac{\partial L}{\partial c} + \frac{\partial L}{\partial d} \right)$$

Gradients of the same shared weight are summed up!

# Convolutional vs fully connected layer

• In convolutional layer the same kernel is used for every output neuron, this way we share parameters of the network and train a better model;

# Convolutional vs fully connected layer

- In convolutional layer the same kernel is used for every output neuron, this way we share parameters of the network and train a better model;
- 300x300 input, 300x300 output, 5x5 kernel 26 parameters in convolutional layer and 8.  $1 \times 10^9$  parameters in fully connected layer (each output is a perceptron);

# Convolutional vs fully connected layer

- In convolutional layer the same kernel is used for every output neuron, this way we share parameters of the network and train a better model;
- 300x300 input, 300x300 output, 5x5 kernel 26 parameters in convolutional layer and 8.  $1 \times 10^9$  parameters in fully connected layer (each output is a perceptron);
- Convolutional layer can be viewed as a special case of a fully connected layer when all the weights outside the **local receptive field** of each neuron equal 0 and kernel parameters are shared between neurons.

# **Summary**

- We've introduced a convolutional layer which works better than fully connected layer for images: it has fewer parameters and acts the same for every patch of input.
- This layer will be used as a building block for larger neural networks!
- In the next video we will introduce one more layer that we will need to build our first fully working convolutional network!