ECE459: Programming for Performance

Winter 2019

Lecture 19 — Single-Thread Performance, Compiler Optimizations

Patrick Lam 2018-12-04

Single-Thread Performance

"Can you run faster just by trying harder?"

The performance improvements we've seen to date have been leveraging parallelism to improve throughput. Decreasing latency is trickier—it often requires domain-specific tweaks. We'll look at one example of decreasing latency today, Stream VByte [LKR18]. Even this example leverages parallelism—it uses vector instructions. But there are some sequential improvements, e.g. Stream VByte takes care to be predictable for the branch predictor.

Context. We can abstract the problem to that of storing a sequence of small integers. Such sequences are important, for instance, in the context of inverted indexes, which allow fast lookups by term, and support boolean queries which combine terms.

Here is a list of documents and some terms that they contain:

docid	terms
1	dog, cat, cow
2	cat
3	dog, goat
4	cow, cat, goat

The inverted index looks like this:

term	docs
dog	1, 3
cat	1, 2, 4
cow	1, 4
goat	3, 4

Inverted indexes contain many small integers in their lists: it is sufficient to store the delta between a doc id and its successor, and the deltas are typically small if the list of doc ids is sorted. (Going from deltas to original integers takes time logarithmic in the number of integers).

VByte is one of a number of schemes that use a variable number of bytes to store integers. This makes sense when most integers are small, and especially on today's 64-bit processors.

VByte works like this:

- x between 0 and $2^7 1$, e.g. 17 = 0b10001: 0xxxxxxx, e.g. 00010001;
- x between 2^7 and $2^{14} 1$, e.g. 1729 = 0b11011000001: 1xxxxxxx/0xxxxxxx, e.g. 11000001/00001101;
- x between 2^{14} and $2^{21} 1$: 0xxxxxxx/1xxxxxx/1xxxxxx;
- etc.

That is, the control bit, or high-order bit, is 0 if you have finished representing the integer, and 1 if more bits remain. (UTF-8 encodes the length, from 1 to 4, in high-order bits of the first byte.)

It might seem that dealing with variable-byte integers might be harder than dealing fixed-byte integers, and it is. But there are performance benefits: because we are using fewer bits, we can fit more information into our limited

RAM and cache, and even get higher throughput. Storing and reading 0s isn't an effective use of resources. However, a naive algorithm to decode VByte also gives lots of branch mispredictions.

Stream VByte is a variant of VByte which works using SIMD instructions. Science is incremental, and Stream VByte builds on earlier work—masked VByte as well as VARINT-GB and VARINT-G8IU. The innovation in Stream VByte is to store the control and data streams separately.

Stream VByte's control stream uses two bits per integer to represent the size of the integer:

```
00 1 byte 10 3 bytes
01 2 bytes 11 4 bytes
```

Each decode iteration reads a byte from the control stream and 16 bytes of data from memory. It uses a lookup table over the possible values of the control stream to decide how many bytes it needs out of the 16 bytes it has read, and then uses SIMD instructions to shuffle the bits each into their own integers. Note that, unlike VByte, Stream VByte uses all 8 bits of each data byte as data.

For instance, if the control stream contains 0b1000 1100, then the data stream contains the following sequence of integer sizes: 3, 1, 4, 1. Out of the 16 bytes read, this iteration will use 9 bytes; it advances the data pointer by 9. It then uses the SIMD "shuffle" instruction to put the decoded integers from the data stream at known positions in the 128-bit SIMD register; in this case, it pads the first 3-byte integer with 1 byte, then the next 1-byte integer with 3 bytes, etc. Let's say that the input is 0xf823 e127 2524 9748 1b.................. The 128-bit output is 0x00f8 23e1/0000 0027/2524 9748/0000/001b, with the /s denoting separation between outputs. The shuffle mask is precomputed and, at execution time, read from an array.

The core of the implementation uses three SIMD instructions:

```
uint8_t C = lengthTable[control];
__m128i Data = _mm_loadu_si128 ((__m128i *) databytes);
__m128i Shuf = _mm_loadu_si128(shuffleTable[control]);
Data = _mm_shuffle_epi8(Data, Shuf);
databytes += C; control++;
```

Discussion. The paper [LKR18] includes a number of benchmark results showing how Stream VByte performs better than previous techniques on a realistic input. Let's discuss how it achieves this performance.

- control bytes are sequential: the processor can always prefetch the next control byte, because its location is predictable:
- data bytes are sequential and loaded at high throughput;
- shuffling exploits the instruction set so that it takes 1 cycle;
- control-flow is regular (executing only the tight loop which retrieves/decodes control and data; there are no conditional jumps).

We're exploiting SIMD, so this isn't quite strictly single-threaded performance. Considering branch prediction and caching issues, though, certainly improves single-threaded performance.

Compiler Optimizations

"Is there any such thing as a free lunch?"

Compiler optimizations really do feel like a free lunch. But what does it really mean when you say -02? We'll see some representative compiler optimizations and discuss how they can improve program performance. Because we're talking about Programming for Performance, I'll point out cases that stop compilers from being able to optimize your code. In general, it's better if the compiler automatically does a performance-improving transformation rather than you doing it manually; it's probably a waste of time for you and it also makes your code less readable.

Many pages on the Internet describe optimizations. Here's one that contains good examples:

```
http://www.digitalmars.com/ctg/ctgOptimizer.html
```

You can find a full list of gcc options here:

```
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
```

About Compiler Optimizations. First of all, "optimization" is a bit of a misnomer, since compilers generally do not generate "optimal" code. They just generate *better* code.

Often, what happens is that the program you literally wrote is too slow. The contract of the compiler (working with the architecture) is to actually execute a program with the same behaviour as yours, but which runs faster.

gcc **optimization levels.** Here's what -0n means for gcc. Other compilers have similar (but not identical) optimization flags.

- -00 (default): Fastest compilation time. Debugging works as expected.
- -01 (-0): Reduce code size and execution time. No optimizations that increase compiliation time.
- -02: All optimizations except space vs. speed tradeoffs.
- -03: All optimizations.
- -Ofast: All -O3 optimizations, plus non-standards compliant optimizations, particularly -ffast-math. (Like -fast on the Solaris compiler.)

This flag turns off exact implementations of IEEE or ISO rules/specifications for math functions. Generally, if you don't care about the exact result, you can use this for a speedup.

Scalar Optimizations

By scalar optimizations, I mean optimizations which affect scalar (non-array) operations. Here are some examples of scalar optimizations.

Constant folding. Probably the simplest optimization one can think of. Tag line: "Why do later something you can do now?" We simply translate:

```
i = 1024 * 1024 \implies i = 1048576
```

Enabled at all optimization levels. The compiler will not emit code that does the multiplication at runtime. It will simply use the computed value.

Common subexpression elimination. We can do common subexpression elimination when the same expression x op y is computed more than once, and neither x nor y change between the two computations. In the below example, we need to compute c + d only once.

```
a = (c + d) * y;
b = (c + d) * z;
w = 3;
x = f(); y = x;
z = w + y;
```

*Enabled at -*02, -03 *or with -*fgcse. These flags actually enable a global (i.e. across-basic-blocks) CSE pass. This also enables global constant and copy propagation.

Constant propagation. Moves constant values from definition to use. The transformation is valid if there are no redefinitions of the variable between the definition and its use. In the above example, we can propagate the constant value 3 to its use in z = w + y, yielding z = 3 + y.

Copy propagation. A bit more sophisticated than constant propagation—telescopes copies of variables from their definition to their use. This usually runs after CSE. Using it, we can replace the last statement with z = w + x. If we run both constant and copy propagation together, we get z = 3 + x.

These scalar optimizations are more complicated in the presence of pointers, e.g. z = *w + y. More next time.

Redundant Code Optimizations. In some sense, most optimizations remove redundant code, but one particular optimization is *dead code elimination*, which removes code that is guaranteed to not execute. For instance:

```
int g() {
    if (f(5) % 2 == 0) {
    int f(int x) {
        return x * 2;
    } else {
        // do other stuff
        }
    }
}
```

We see that the then-branch in g() is always going to execute, and the else-branch is never going to execute.

The general problem, as with many other compiler problems, is undecidable. Let's not get too caught up in the semantics of the *Entscheidungsproblem*, even if you do speak German and like to show it off by pronouncing that word correctly.

Loop Optimizations

Loop optimizations are particularly profitable when loops execute often. This is often a win, because programs spend a lot of time looping. The trick is to find which loops are going to be the important ones. Profiling is helpful.

A loop induction variable is a variable that varies on each iteration of the loop; the loop variable is definitely a loop induction variable, but there may be others. *Induction variable elimination* gets rid of extra induction variables.

Scalar replacement replaces an array read a[i] occurring multiple times with a single read temp = a[i] and references to temp otherwise. It needs to know that a[i] won't change between reads.

Sane languages include array bounds checks, and loop optimizations can eliminate array bounds checks if they can prove that the loop never iterates past the array bounds.

Loop unrolling. This optimization lets the processor run more code without having to branch as often. *Software pipelining* is a synergistic optimization, which allows multiple iterations of a loop to proceed in parallel. This optimization is also useful for SIMD. Here's an example.

```
for (int i = 0; i < 4; ++i) \implies f(0); f(1); f(2); f(3);
```

Enabled with -funroll-loops.

Loop interchange. This optimization can give big wins for caches (which are key); it changes the nesting of loops to coincide with the ordering of array elements in memory. For instance, in C:

```
for (int i = 0; i < N; ++i)

for (int j = 0; j < M; ++j) \Longrightarrow for (int j = 0; j < M; ++j)

a[j][i] = a[j][i] * c a[j][i] = a[j][i] * c
```

since C is row-major (meaning a[1][1] is beside a[1][2]), rather than column-major.

Enabled with -floop-interchange.

Strangely enough, sometimes you want to do things the column-major way even though it's "wrong". If your two dimensional array is of an appropriate size then by intentionally hitting things in the "wrong" order, you'll trigger all your page faults up front and load all your pages into cache and then you can go wild. This was suggested as a way to make matrix multiplication faster for a sufficiently large matrix...

Loop fusion. This optimization is like the OpenMP collapse construct; we transform

```
for (int i = 0; i < 100; ++i)
a[i] = 4
for (int i = 0; i < 100; ++i) {
b[i] = 7
b[i] = 7
for (int i = 0; i < 100; ++i) {
a[i] = 4
b[i] = 7
}
```

There's a trade-off between data locality and loop overhead; hence, sometimes the inverse transformation, *loop fission*, will improve performance.

Loop-invariant code motion. Also known as *Loop hoisting*, this optimization moves calculations out of a loop.

This reduces the amount of work we have to do for each iteration of the loop.

Miscellaneous Low-Level Optimizations

Some optimizations affect low level code generation; here are two examples.

Branch Prediction. gcc attempts to guess the probability of each branch to best order the code. (For an if, fall-through is most efficient. Why?)

This isn't quite an optimization, but you can use __builtin_expect(expr, value) to help GCC, if you know the run-time characteristics of your program. An example, from the Linux kernel:

Architecture-Specific. gcc can also generate code tuned to particular processors and processor variants. You can specify this using -march and -mtune. (-march implies -mtune). This will enable specific instructions that not all CPUs support (e.g. SSE4.2). For example, -march=corei7.

Good to use on your local machine or your cloud servers, not ideal for code you ship to others.

References

[LKR18] Daniel Lemire, Nathan Kurz, and Christoph Rupp. Stream vbyte: Faster byte-oriented integer compression. *Information Processing Letters*, 130(Supplement C):1 – 6, 2018. URL: http://www.sciencedirect.com/science/article/pii/S0020019017301679.