Теоријске основе информатике 1

Hенад Стојановић nenad.s@kg.ac.rs

Институт за математику и информатику Природно-математички факултет Универзитет у Крагујевцу

Крагујевац, 05.12.2015.

Дефиниција. Исказна формула α је логичка последица скупа формула Γ , у ознаци $\Gamma \models \alpha$, ако свака валуација која задовољава све формуле скупа Γ задовољава и формулу α .

Дефиниција. Исказна формула α је логичка последица скупа формула Γ , у ознаци $\Gamma \models \alpha$, ако свака валуација која задовољава све формуле скупа Γ задовољава и формулу α .

ullet $\{lpha_1,lpha_2,\ldots,lpha_n\}\modelslpha$ пише се $lpha_1,lpha_2,\ldots,lpha_n\modelslpha$

Дефиниција. Исказна формула α је логичка последица скупа формула Γ , у ознаци $\Gamma \models \alpha$, ако свака валуација која задовољава све формуле скупа Γ задовољава и формулу α .

- ullet $\{lpha_1,lpha_2,\ldots,lpha_n\}\modelslpha$ пише се $lpha_1,lpha_2,\ldots,lpha_n\modelslpha$
- ullet $\emptyset \models lpha$ пише се $\models lpha$

Дефиниција. Исказна формула α је логичка последица скупа формула Γ , у ознаци $\Gamma \models \alpha$, ако свака валуација која задовољава све формуле скупа Γ задовољава и формулу α .

- ullet $\{lpha_1,lpha_2,\ldots,lpha_n\}\modelslpha$ пише се $lpha_1,lpha_2,\ldots,lpha_n\modelslpha$
- ullet $\emptyset \models lpha$ пише се $\models lpha$

Теорема. $\alpha_1, \alpha_2, \dots, \alpha_n \models \beta$ акко $\models \alpha_1 \land \alpha_2 \land \dots \land \alpha_n \Rightarrow \beta$.

Дефиниција. Исказна формула α је логичка последица скупа формула Γ , у ознаци $\Gamma \models \alpha$, ако свака валуација која задовољава све формуле скупа Γ задовољава и формулу α .

- ullet $\{lpha_1,lpha_2,\ldots,lpha_n\}\modelslpha$ пише се $lpha_1,lpha_2,\ldots,lpha_n\modelslpha$
- ullet $\emptyset \models \alpha$ пише се $\models \alpha$

Теорема.
$$\alpha_1, \alpha_2, \dots, \alpha_n \models \beta$$
 акко $\models \alpha_1 \land \alpha_2 \land \dots \land \alpha_n \Rightarrow \beta$.

Теорема. Нека је Γ скуп формула и α и β неке формуле, тада важи $\Gamma \cup \{\alpha\} \models \beta$ акко $\Gamma \models \alpha \Rightarrow \beta$

1. Нека је скуп формула $\Gamma=\{p\Rightarrow q, \neg r\Rightarrow \neg q, p\}$. Испитати које од следећих формула су логичке последице скупа формула Γ :

- (a) $p \wedge \neg q$;
- (6) $r \Rightarrow q$;
- (B) $\neg r$;
- (r) $p \wedge q \wedge r$;
- $(\mathbf{Z}) \neg q \Rightarrow \neg p;$
- (ħ) $p \Rightarrow \bot$.

- 2. Нека је скуп формула $\Gamma=\{p\Rightarrow \neg q,r\Rightarrow q,r\}$. Испитати које од следећих формула су логичке последице скупа формула Γ :
 - (a) $p \wedge \neg q$;
 - (6) $\neg p \land q$;
 - (B) $\neg (p \Rightarrow q)$;
 - (Γ) p;
 - (д) $q \Rightarrow \neg p$;
 - (ħ) $p \Rightarrow \bot$.

- **2**. Нека је скуп формула $\Gamma=\{p\Rightarrow \neg q,r\Rightarrow q,r\}$. Испитати које од следећих формула су логичке последице скупа формула Γ :
 - (a) $p \wedge \neg q$;
 - (6) $\neg p \land q$;
 - (B) $\neg (p \Rightarrow q)$;
 - (Γ) p;
 - (д) $q \Rightarrow \neg p$;
 - (ħ) $p \Rightarrow \bot$.
- 3. Доказати да је формула $p \vee r \Rightarrow q$ логичка последица скупа формула $\{p \Rightarrow q, r \Rightarrow q\}$.

Дефиниција. Исказне формуле α и β су логички еквивалентне, у ознаци $\alpha \equiv \beta$, ако важи $\alpha \models \beta$ и $\beta \models \alpha$. Дакле, формуле α и β су логички еквивалентне уколико су њихове вредности међусобно једнаке за било коју валуацију.

Дефиниција. Исказне формуле α и β су логички еквивалентне, у ознаци $\alpha \equiv \beta$, ако важи $\alpha \models \beta$ и $\beta \models \alpha$. Дакле, формуле α и β су логички еквивалентне уколико су њихове вредности међусобно једнаке за било коју валуацију.

Теорема. Формуле α и β су логички еквивалентне акко је исказна формула $\alpha \Leftrightarrow \beta$ таутологија, тј. $\models \alpha \Leftrightarrow \beta$.

Дефиниција. Исказне формуле α и β су логички еквивалентне, у ознаци $\alpha \equiv \beta$, ако важи $\alpha \models \beta$ и $\beta \models \alpha$. Дакле, формуле α и β су логички еквивалентне уколико су њихове вредности међусобно једнаке за било коју валуацију.

Теорема. Формуле α и β су логички еквивалентне акко је исказна формула $\alpha \Leftrightarrow \beta$ таутологија, тј. $\models \alpha \Leftrightarrow \beta$.

- **4.** Испитати која од датих формула је логички еквивалентна формули $p \Rightarrow \neg (q \lor r)$:
 - (a) $\neg p \lor q \lor r$;
 - (6) $\neg p \lor \neg (q \Rightarrow \neg r)$;
 - (B) $\neg q \land \neg r \Rightarrow \neg p$;
 - (r) $\neg p \lor \neg (\neg q \Rightarrow r)$.

5. Испитати која од датих формула је логички еквивалентна формули $p \vee \neg q \Rightarrow \neg r$:

- (a) $\neg p \lor q \lor \neg r$;
- (6) $\neg (q \Rightarrow p) \lor \neg r$;
- (B) $\neg (p \Rightarrow q) \lor \neg r$;
- (r) $r \Rightarrow \neg p \lor q$

5. Испитати која од датих формула је логички еквивалентна формули $p \vee \neg q \Rightarrow \neg r$:

- (a) $\neg p \lor q \lor \neg r$;
- (6) $\neg (q \Rightarrow p) \lor \neg r$;
- (B) $\neg (p \Rightarrow q) \lor \neg r$;
- (r) $r \Rightarrow \neg p \lor q$

6. Доказати да су формуле $p\Rightarrow q$ и $\neg q\Rightarrow \neg p$ логички еквивалентне формуле.

7. Четири пријатеља - Милена, Сузана, Алекса и Милан осумњичени су за убиство. Пред истражним судијом они су изјавили следеће:

Милена: Ако је Сузана крива, крив је и Милан.

Сузана: Милена је крива, а Милан није крив.

Алекса: Ја нисам крив, али су Милена или Милан криви.

Милан: Ако Милена није крива, тада је крив Алекса.

- (a) Да ли су ове четири изјаве непротивречне, односно да ли је скуп формула добијен превођењем у исказну логику непротивречан?
- (б) Ако свако говори истину, ко је крив?

- **8.** Превести следећа тврђења у исказне формуле и одредити исправност аргументације:
 - (1) Ако су једине особе присутне у кући у време убиства били батлер и собарица, тада је батлер убица или је собарица убица.
 - (2) Једине особе присутне у кући у време убиства су били батлер и собарица.
 - (3) Ако је собарица убица, онда је собарица имала мотив за убиство.
 - (4) Собарица није имала мотив за убиство.

Закључак: Батлер је убица.

- 9. Пера, Влада и Сава су другари који често излазе заједно на пиће у кафану. Познато је да свако од њих пије увек исто пиће и то или вино или пиво (само једно од тога, јер знају ако се пиће меша, ујутро боли глава). У вези тога ко од њих шта пије, познати су следећи искази:
- (1) Ако Пера пије пиво, онда Влада пије исто пиће као и Сава.
- (2) Ако Влада наручује пиво, онда Сава пије другачије пиће од Периног.
- (3) Ако Сава наручује вино, онда Пера пије исто пиће као и Сава.

Да ли су ове изјаве непротивречне? За кога од њих са сигурношћу можете да тврдите шта пије?

10. Четворо пријатеља Аца, Боки, Цеца и Дуда су осумњичени за убиство. Могуће је да је више особа истовремено криво за убиство. Пред истражним судијом они су изјавили следеће:

Аца: Ако је Боки крив, крива је и Дуда.

Боки: Ако Аца није крив, онда је крива Цеца.

Цеца: Ја нисам крива, али је или Аца крив или је Дуда крива.

Дуда: Ја нисам крива.

Да ли су ове четири изјаве непротивречне? Ако свако говори истину ко је

крив? (Уколико има више могућих решења навести их сва!)