

Exame Teórico de Recurso

Física Computacional — 2015/2016

5 de julho de 2016 — Duração: 2:30 horas

Universidade de Aveiro Departamento de Física

Justifique as suas respostas às perguntas.

Note que os símbolos a **negrito** representam vetores.

1. (5 val) Considere os seguintes problemas e diga qual o método numérico que usaria para os resolver. Note que em alguns dos casos pode aplicar-se mais que um método. Indique apenas um deles e dê uma justificação sucinta.

a)
$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \alpha \frac{\partial^2 u}{\partial x^2}$$
, $-L < x < L$, $u(x,0) = f(x)$, $u(-L,t) = a$, $u(L,t) = b$

b)
$$\frac{d^2y}{d\tau^2} = -\frac{1}{(1+\epsilon y)^2}$$
, $y(0) = 0$, $y'(0) = 1$

c)
$$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = g(x)$$
, $0 < x < 1$, $0 < y < 1$,

$$T(0, y) = T(1, y) = T_a, \quad T(x, 0) = T_b, \quad \frac{\partial T}{\partial y}(x, 1) = 0$$

d)
$$\frac{d^2u}{dx^2} + \alpha \frac{du}{dx} + \beta u = f(x), \quad u(0) = u_0, \quad u(L) = u_L$$

e)
$$\frac{d^2F}{dz^2} + \left(ax - \frac{F^2}{1 + F^2}\right)F = 0$$
, $F(\pm L) = 0$,

e a desconhecido.

2. (4 val) A equação seguinte modela a distribuição de temperatura T(r) numa resistência elétrica cilíndrica de raio R

$$\frac{\mathrm{d}^2 T}{\mathrm{d}r^2} + \frac{1}{r} \frac{\mathrm{d}T}{\mathrm{d}r} + \frac{Q}{\lambda} = 0.$$

- a) Derive a expressão da aproximação da 2ª derivada usando diferenças finitas centradas, de forma a reconhecer a ordem da mesma.
- b) Por uma questão de simetria, sabe-se que a derivada da temperatura em ordem a r é nula para r=0. Num caso particular, sabe-se que a temperatura na superfície da resistência é $T(R)=20\,^{\circ}\text{C}$. Aproxime a equação acima usando diferenças finitas centradas e diga qual a matriz e o vetor de elementos independentes associados a essa aproximação.

3. (2.5 val) Foram utilizados dois métodos de ordens diferentes para resolver um problema de valor inicial. O valor de $x(t_{\rm final})$ em função do passo, para cada cada método, está representado no gráfico ao lado. Diga, justificando, qual o método de maior ordem.

4. (4.5 val) Considere a equação de Laplace aplicada a um domínio quadrado discretizado numa matriz 5×5 . A tabela seguinte representa essa matriz com os valores fronteira no exterior e estimativas iniciais nulas nos pontos interiores.

1	0.75	0.5	0.25	0
0.75	0	0	0	0.25
0.5	0	0	0	0.5
0.25	0	0	0	0.75
0	0.25	0.5	0.75	1

- a) Determine os valores do potencial nos pontos interiores após a primeira iteração de Jacobi.
 Pode apenas enunciar os cálculos.
- b) Determine os valores do potencial nos pontos interiores após a primeira iteração de Gauss—Seidel. Mais uma vez, pode apenas enunciar os cálculos.
- c) Porque é que nestes métodos nunca alteramos os valores na fronteira do domínio?
- **5.** (4 val) O erro associado ao cálculo de integrais usando o método de Monte Carlo estudado nas aulas é dado por

$$e = D \frac{\sigma}{\sqrt{N}}$$

onde σ é o desvio padrão da função, D é o domínio de integração e N é o número usado de pontos do domínio.

a) Considere os gráficos abaixo de duas áreas a determinar. Se usar o método de Monte Carlo para calcular as áreas usando o mesmo número de pontos, qual dos integrais apresentará maior erro? Porquê?

b) Para a mesma função obtivemos os seguintes valores para o seu integral no mesmo domínio, mas usando um número de pontos diferente, N_1 e N_2 . Determine a relação entre N_1 e N_2

Λ	I_1	I_2	I_3	I_4	I_5	I_6	I_7	I_8	I_9	I_{10}	Ī	σ_I
N	0.84	6 0.89	7 0.906	0.814	0.841	0.872	0.850	0.880	0.885	0.819	0.861	0.03
N	0.86	3 0.84	4 0.876	0.859	0.853	0.862	0.851	0.865	0.859	0.887	0.862	0.01

Formulário:

Discretização da equação de Laplace

$$V(i,j) = \frac{1}{4} \Big[V(i+1,j) + V(i-1,j) + V(i,j+1) + V(i,j-1) \Big]$$