

Theoretische Informatik

Logik

- Definition BOOLEsche Werte
 - » Die Menge {wahr, falsch} wird auch als BOOLEsche Menge bezeichnet und als B notiert.
 - » Statt »wahr« wird oft auch True oder auch nur T oder 1 geschrieben.
 - » Statt »falsch« wird oft auch False oder auch nur F oder 0 geschrieben.

Wahrheitstafeln – Wahrheitswerte der Operatoren

Α	¬ A
0	1
1	0

Α	В	A ∧ B
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	$A \vee B$
0	0	0
0	1	1
1	0	1
1	1	1

Α	В	$A \vee B$
0	0	0
0	1	1
1	0	1
1	1	0

Α	В	$A \rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

Α	В	$A \leftrightarrow B$
0	0	1
0	1	0
1	0	0
1	1	1

Wahrheitstafeln – Beispiel

- Worin besteht das Geheimnis Ihres langen Lebens?", wurde ein 100 J\u00e4hriger gefragt.
- Ich halte mich streng an die Diätregeln:
 - » Wenn ich kein Bier zu einer Mahlzeit trinke, dann habe ich immer Fisch.
 - » Immer wenn ich Fisch und Bier zur selben Mahlzeit habe, verzichte ich auf Eiscreme.
 - » Wenn ich Eiscreme habe oder Bier meide, dann rühre ich Fisch nicht an.
- Fragen:
 - » Wie sind die logischen Formeln
 - » Bestimme anhand von Wahrheitstafeln, welche Menüs die Diätregel erfüllen

Wahrheitstafeln – Beispiel

- Ich halte mich streng an die Diätregeln:
 - » Wenn ich kein Bier zu einer Mahlzeit trinke, dann habe ich immer Fisch.

- $\rightarrow \neg B \rightarrow F$
- » Immer wenn ich Fisch und Bier zur selben Mahlzeit habe, verzichte ich auf Eiscreme.

$$F \land B \rightarrow \neg E$$

» Wenn ich Eiscreme habe oder Bier meide, dann rühre ich Fisch nicht an.

$$\rightarrow E \lor \neg B \rightarrow \neg F$$

Wie sind die logischen Formeln

$$\neg B \rightarrow F$$

$$F \land B \rightarrow \neg E$$

$$E \vee \neg B \rightarrow \neg F$$

Wahrheitstafeln – Beispiel

 $\neg B \rightarrow F$

 $F \land B \rightarrow \neg E$

$$E \lor \neg B \to \neg F$$

В	F	Е	$F \wedge B$	$E \vee \neg B$	$\neg B \to F$	$F \wedge B \rightarrow \neg E$	$E V \neg B \to \neg F$
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

Wahrheitstafeln – Beispiel

 $\neg B \rightarrow F$

$$F \land B \rightarrow \neg E$$

$$E \lor \neg B \to \neg F$$

В	F	E	$F \wedge B$	$E \vee \neg B$	$\neg B \to F$	$F \wedge B \rightarrow \neg E$	$E \vee \neg B \to \neg F$
0	0	0	0				
0	0	1	0				
0	1	0	0				
0	1	1	0				
1	0	0	0				
1	0	1	0				
1	1	0	1				
1	1	1	1				

Wahrheitstafeln – Beispiel

$$\neg B \rightarrow F$$

$$F \land B \rightarrow \neg E$$

$$F \land B \rightarrow \neg E$$
$$E \lor \neg B \rightarrow \neg F$$

В	F	Е	$F \wedge B$	E ∨ ¬ <i>B</i>	$\neg B \to F$	$F \wedge B \rightarrow \neg E$	$E \vee \neg B \to \neg F$
0	0	0	0	1			
0	0	1	0	1			
0	1	0	0	1			
0	1	1	0	1			
1	0	0	0	0			
1	0	1	0	1			
1	1	0	1	0			
1	1	1	1	1			

Wahrheitstafeln – Beispiel

$$\neg B \rightarrow F$$

$$F \land B \rightarrow \neg E$$

$$E \lor \neg B \rightarrow \neg F$$

В	F	Е	$F \wedge B$	E ∨ ¬ <i>B</i>	$\neg B \to F$	$F \wedge B \to \neg E$	$E \vee \neg B \to \neg F$
0	0	0	0	1	0		
0	0	1	0	1	0		
0	1	0	0	1	1		
0	1	1	0	1	1		
1	0	0	0	0	1		
1	0	1	0	1	1		
1	1	0	1	0	1		
1	1	1	1	1	1		

Wahrheitstafeln – Beispiel

$$\neg B \rightarrow F$$

$$F \land B \rightarrow \neg E$$

$$E \lor \neg B \rightarrow \neg F$$

В	F	Е	$F \wedge B$	E ∨ ¬ <i>B</i>	$\neg B \to F$	$F \wedge B \rightarrow \neg E$	$E \lor \neg B \to \neg F$
0	0	0	0	1	0	1	
0	0	1	0	1	0	1	
0	1	0	0	1	1	1	
0	1	1	0	1	1	1	
1	0	0	0	0	1	1	
1	0	1	0	1	1	0	
1	1	0	1	0	1	1	
1	1	1	1	1	1	0	

Wahrheitstafeln – Beispiel

$$\neg B \rightarrow F$$

$$F \land B \rightarrow \neg E$$

$$E \lor \neg B \rightarrow \neg F$$

В	F	E	$F \wedge B$	E ∨ ¬ <i>B</i>	$\neg B \rightarrow F$	$F \wedge B \rightarrow \neg E$	$E \vee \neg B \to \neg F$
0	0	0	0	1	0	1	1
0	0	1	0	1	0	1	1
0	1	0	0	1	1	1	0
0	1	1	0	1	1	1	0
1	0	0	0	0	1	1	1
1	0	1	0	1	1	0	1
1	1	0	1	0	1	1	1
1	1	1	1	1	1	0	0

Wahrheitstafeln – Beispiel

$$\neg B \rightarrow F$$

$$F \land B \rightarrow \neg E$$

$$E \lor \neg B \rightarrow \neg F$$

В	F	Е	$F \wedge B$	E ∨ ¬ <i>B</i>	$\neg B \rightarrow F$	$F \wedge B \rightarrow \neg E$	$E \vee \neg B \to \neg F$
0	0	0	0	1	0	1	1
0	0	1	0	1	0	1	1
0	1	0	0	1	1	1	0
0	1	1	0	1	1	1	0
1	0	0	0	0	1	1	1
1	0	1	0	1	1	1	1
1	1	0	1	0	1	1	1
1	1	1	1	1	1	0	0

Rechenregeln zum Umformen von Formeln – Vereinfachungen

- (1) a
- (2) a ∧ a
- (3) a \vee a
- (4) $a \wedge b$
- (5) a \vee b
- (6) $(a \wedge b) \wedge c$
- (7) $(a \lor b) \lor c$
- (8) $(a \lor b) \land c$
- (9) $(a \wedge b) \vee c$
- (10) \neg (a \land b)
- (11) \neg (a \lor b)
- (12) a \rightarrow b
- (13) $(a \leftrightarrow b)$

- \leftrightarrow $\neg \neg a$
- \leftrightarrow a
- \leftrightarrow a
- \leftrightarrow b \wedge a
- \leftrightarrow b \vee a
- \leftrightarrow a \wedge (b \wedge c)
- \leftrightarrow a \vee (b \vee c)
- $\leftrightarrow \qquad (a \land c) \lor (b \land c)$
- \leftrightarrow (a \vee c) \wedge (b \vee c)
- \leftrightarrow $\neg a \lor \neg b$
- \leftrightarrow $\neg a \land \neg b$
- \leftrightarrow $\neg a \lor b$
- \leftrightarrow (a \rightarrow b) \land (b \rightarrow a)

Idempotenz

- Kommutativität
- Assoziativität
- Distributivität
- De Morgan
- **Implikation**
- Äquivalenz

Rechenregeln zum Umformen von Formeln – Vereinfachungen

$$(14) \quad (a \to b) \land (b \to c) \quad \to \quad (a \to c)$$

 \leftrightarrow 0

(15) $a \wedge 0$

 \leftrightarrow a

neutrales Element

Transitivität

(17)
$$a \vee 0$$

 \leftrightarrow a

neutrales Element

$$(18)$$
 a \vee 1

 \leftrightarrow 1

 \leftrightarrow 0

 \leftrightarrow 1

(21)
$$a \wedge (a \vee b)$$

$$\leftrightarrow$$
 a

b ist überflüssige Aussage

$$(22) \qquad a \vee (a \wedge b)$$

$$\leftrightarrow$$
 a

b ist überflüssige Aussage

$$(23) \qquad (a \land b \leftrightarrow 1)$$

$$\leftrightarrow$$
 a \wedge b

(24)
$$(a \land b \leftrightarrow 1)$$

$$\leftrightarrow$$
 (a \leftrightarrow 1) \land (b \leftrightarrow 1)

Wahrheitstafeln – Nachweis der Regeln

■ Beispiel der Regel 8: $(a \lor b) \land c \leftrightarrow (a \land c) \lor (b \land c)$

```
a b c avb (avb) \c (a\c) (b\c) {(a\c) \( (b\c) \)} (8)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 1
1 1 0
1 1 1
```

- Wahrheitswert jeder Regel ist immer 1 (unabhängig von den Wahrheitswerten von a, b, c).
- → (8) ist eine allgemeingültige Formel oder Tautologie

Wahrheitstafeln – Nachweis der Regeln

■ Beispiel der Regel 8: $(a \lor b) \land c \leftrightarrow (a \land c) \lor (b \land c)$

```
a b c avb (avb) \c (a\c) (b\c) (a\c) (b\c) (a\c) (b\c) (8)

0 0 0 0 0 0

0 1 0 1 0

0 1 1 1 1

1 0 0 1 0

1 1 1 1

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1
```

- Wahrheitswert jeder Regel ist immer 1 (unabhängig von den Wahrheitswerten von a, b, c).
- → (8) ist eine allgemeingültige Formel oder Tautologie

Wahrheitstafeln – Nachweis der Regeln

■ Beispiel der Regel 8: $(a \lor b) \land c \leftrightarrow (a \land c) \lor (b \land c)$

a	b	С	a∨b	(a∨b)∧c	(a∧c)	(b∧c)	(a∧c)∨(b∧c)	(8)
0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	1
0	1	0	1	0	0	0	0	1
0	1	1	1	1	0	1	1	1
1	0	0	1	0	0	0	0	1
1	0	1	1	1	1	0	1	1
1	1	0	1	0	0	0	0	1
1	1	1	1	1	1	1	1	1

- Wahrheitswert jeder Regel ist immer 1 (unabhängig von den Wahrheitswerten von a, b, c).
- → (8) ist eine allgemeingültige Formel oder Tautologie

Wahrheitstafeln Beispiel zur Umformulierung

Was bedeutet die Formel

Wahrheitstafeln – unser Beispiel

- 1. Wenn ich genug Geld gespart habe, kaufe ich mir ein Auto.
- 2. Wenn ich nicht genug Geld gespart habe, kaufe ich mir ein Fahrrad.
- 3. Wenn ich ein Auto kaufe, fahre ich nach Spanien in Urlaub.
- 4. Wenn ich ein Fahrrad kaufe, bleibe ich im Urlaub in Karlsruhe.
- 5. Ich habe im Vorjahr kein gespartes Geld verbraucht.
- 6. In diesem Jahr habe ich keine anderen Ausgaben.
- 7. Es stimmt nicht, daß ich nicht genug Geld gespart habe und weder im Vorjahr gespartes Geld verbraucht habe noch in diesem Jahr andere Ausgaben habe.

G := XY hat genug Geld gespart

A := XY kauft ein Auto

F := XY kauft ein Fahrrad

S := XY fährt nach Spanien in Urlaub

K := XY bleibt im Urlaub in Karlsruhe

V := XY hat im Vorjahr gespartes Geld verbraucht

D := XY hat in diesem Jahr andere Ausgaben

B1	wenn G, dann A	$G \Rightarrow A$
B2	wenn (nicht G), dann F	$G \Rightarrow A$ $\neg G \Rightarrow F$ $A \Rightarrow S$ $F \Rightarrow K$
B3	wenn A, dann S	$A \Rightarrow S$
B4	wenn F, dann K	$F \Rightarrow K$
B5	nicht V	$\neg V$
B6	nicht D	$\neg D$
B7	nicht ((nicht G) und (nicht V und nicht D))	$\neg(\neg G \land (\neg V \land \neg D))$

Wahrheitstafeln – unser Beispiel

- 1. Wenn ich genug Geld gespart habe, kaufe ich mir ein Auto.
- 2. Wenn ich nicht genug Geld gespart habe, kaufe ich mir ein Fahrrad.
- 3. Wenn ich ein Auto kaufe, fahre ich nach Spanien in Urlaub.
- 4. Wenn ich ein Fahrrad kaufe, bleibe ich im Urlaub in Karlsruhe.
- 5. Ich habe im Vorjahr kein gespartes Geld verbraucht.
- 6. In diesem Jahr habe ich keine anderen Ausgaben.
- 7. Es stimmt nicht, daß ich nicht genug Geld gespart habe und weder im Vorjahr gespartes Geld verbraucht habe noch in diesem Jahr andere Ausgaben habe.

G := Max hat genug Geld gespart

A := Max kauft ein Auto

F := Max kauft ein Fahrrad

S := Max fährt nach Spanien in Urlaub

K := Max bleibt im Urlaub in Karlsruhe

V := Max hat im Vorjahr gespartes Geld verbraucht

D := Max hat in diesem Jahr andere Ausgaben

,	logazon nazo.	
B1	wenn G, dann A	$G \Rightarrow A$
B2	wenn (nicht G), dann F	$\neg G \Rightarrow F$
B3	wenn A, dann S	$A \Rightarrow S$
B4	wenn F, dann K	$G \Rightarrow A$ $\neg G \Rightarrow F$ $A \Rightarrow S$ $F \Rightarrow K$
B5	nicht V	$\neg V$
B6	nicht D	$\neg D$
B7	nicht ((nicht G) und (nicht V und nicht D))	$\neg(\neg G \land (\neg V \land \neg D))$

Dann wäre folgende Belegungsfunktionen

- $\alpha_1 = G \mapsto 1; A \mapsto 1; F \mapsto 0; S \mapsto 1; K \mapsto 0; V \mapsto 0; D \mapsto 0$ oder
- $\alpha_2 = G \mapsto 0$; $A \mapsto 0$; $F \mapsto 1$; $S \mapsto 0$; $K \mapsto 1$; $V \mapsto 0$; $D \mapsto 0$ $\alpha_1(S) = 1$, d. h. Max fährt nach Spanien und $\alpha_2(K) = 1$, d. h. Max bleibt in Karlsruhe.

Welche der beiden Belegungsfunktionen ist »richtig«?

- Satz: Anzahl Belegungsfunktionen (Interpretationen)
 - » Enthält eine Aussage a die Aussagenvariablen $A_1, A_2, ... A_n$, dann gibt es 2^n verschiedene Belegungsfunktionen α_i .
 - D. h. die Wahrheitstabelle hat 2ⁿ viele Zeilen.

- Belegungsfunktionen (Interpretationen)
 - » In der Aussagenlogik ist eine Belegung definiert als eine Abbildung der Menge der Aussagevariablen auf die Menge {0, 1}
 - » $\alpha(A_1, A_2, ... A_n)$ hat den Wert 0 oder 1 Je nach Belegung von $A_1, A_2, ... A_n$
- Zum Beispiel: A ^ B hat vier Belegungsfunktionen
 - $\alpha(0,0) = 0$
 - $\alpha(0,1) = 0$
 - $\alpha(1,0) = 0$
 - $\alpha(1,1) = 1$

Wahrheitstafeln

- Beweis: Anzahl Belegungsfunktionen (Interpretationen)
 - Für n = 1 gibt es genau zwei Funktionen $\alpha_1(A_1) \mapsto 0$ und $\alpha_2(A_1) \mapsto 1$.
 - Wenn es für eine Formel mit n Variablen 2^n viele Belegungsfunktionen $\alpha_1, \ldots \alpha_{2^n}$ gibt und man der Formel eine weitere Aussagenvariablen A_{n+1} »hinzufügt«, dann gibt es die für die neue Variable A_{n+1} die beiden Fälle $\alpha': A_{n+1} \mapsto 0$ und $\alpha'': A_{n+1} \mapsto 1$.

Es werden nun Funktion $\alpha'_i(x) = \alpha_i(x)$ und $\alpha''_i(x) = \alpha_i(x)$ (mit $x \in \{A_1, \dots, A_n\}$ und $1 \le i \le 2^n$) definiert.

Zusätzlich wird $\alpha'_i(A_{n+1}) \mapsto 0$ und $\alpha''_i(A_{n+1}) \mapsto 1$ definiert.

Somit ist die Zahl der Belegungsfunktion verdoppelt. D. h. die Zahl der Belegungsfunktionen beträgt nun 2^{n+1} .

- Definition Erfüllbarkeit
 - » Eine aussagenlogische Aussage a heißt erfüllbar, wenn es eine Belegungsfunktion α der in der Aussage a enthaltenen Aussagenvariablen (A, B, ...) gibt, so dass $\alpha(a) \to 1$,
 - » d. h. es gibt mindestens eine Zeile in der Wahrheitstafel, so dass a wahr ist.
- Definition Tautologie
 - » Eine Tautologie ist in der Logik eine Aussage a, die allgemeingültig, also immer wahr ist.
 - » Eine Aussage a ist immer wahr, wenn für alle Belegungsfunktion α_i der in der Aussage a enthaltenen Aussagenvariablen (A, B, ...) stets gilt, dass $\alpha_i(a) \to 1$ d. h. wenn die Wahrheitstafel für alle Belegungen »wahr« ist.

Wahrheitstafeln

Beispiele für Tautologie

a	a∨¬a	(<i>a</i> ∧ ¬ <i>a</i>)	\Leftrightarrow	0
0	1	0	1	
1	1	0	1	

Wahrheitstafeln – unser Beispiel

- 1. Wenn ich genug Geld gespart habe, kaufe ich mir ein Auto.
- 2. Wenn ich nicht genug Geld gespart habe, kaufe ich mir ein Fahrrad.
- 3. Wenn ich ein Auto kaufe, fahre ich nach Spanien in Urlaub.
- 4. Wenn ich ein Fahrrad kaufe, bleibe ich im Urlaub in Karlsruhe.
- 5. Ich habe im Vorjahr kein gespartes Geld verbraucht.
- 6. In diesem Jahr habe ich keine anderen Ausgaben.
- 7. Es stimmt nicht, daß ich nicht genug Geld gespart habe und weder im Vorjahr gespartes Geld verbraucht habe noch in diesem Jahr andere Ausgaben habe.

G := Max hat genug Geld gespart

A := Max kauft ein Auto

F := Max kauft ein Fahrrad

S := Max fährt nach Spanien in Urlaub

K := Max bleibt im Urlaub in Karlsruhe

V := Max hat im Vorjahr gespartes Geld verbraucht

D := Max hat in diesem Jahr andere Ausgaben

B1	wenn G, dann A	$G \Rightarrow A$
B2	wenn (nicht G), dann F	$ eg G \Rightarrow F$
B3	wenn A, dann S	$A \Rightarrow S$
B4	wenn F, dann K	$G \Rightarrow A$ $\neg G \Rightarrow F$ $A \Rightarrow S$ $F \Rightarrow K$
B5	nicht V	$\neg V$
B6	nicht D	$\neg D$
B7	nicht ((nicht G) und (nicht V und nicht D))	$\neg(\neg G \land (\neg V \land \neg D))$

Wahrheitstafeln – unser Beispiel

- 1. Wenn ich genug Geld gespart habe, kaufe ich mir ein Auto.
- Wenn ich nicht genug Geld gespart habe, kaufe ich mir ein Fahrrad.
- 3. Wenn ich ein Auto kaufe, fahre ich nach Spanien in Urlaub.
- 4. Wenn ich ein Fahrrad kaufe, bleibe ich im Urlaub in Karlsruhe.
- 5. Ich habe im Vorjahr kein gespartes Geld verbraucht.
- 6. In diesem Jahr habe ich keine anderen Ausgaben.
- 7. Es stimmt nicht, daß ich nicht genug Geld gespart habe und weder im Vorjahr gespartes Geld verbraucht habe noch in diesem Jahr andere Ausgaben habe.

G := Max hat genug Geld gespart

A := Max kauft ein Auto

F := Max kauft ein Fahrrad

S := Max fährt nach Spanien in Urlaub

K := Max bleibt im Urlaub in Karlsruhe

V := Max hat im Vorjahr gespartes Geld verbraucht

D := Max hat in diesem Jahr andere Ausgaben

Formal:

ronnai.	ı
B1	$G \Rightarrow A$
B2	$\neg G \Rightarrow F$
B3	$A \Rightarrow S$
B4	$F \Rightarrow K$
B5	$\neg V$
B6	$\neg D$
B7	$\neg(\neg G \land (\neg V \land \neg D))$

- Wie herausfinden, wohin Max reist?
- Prüfen der Erfüllbarkeit von B1^B2^B3^B4^B5^B6^B7

G	Α	F	S	K	٧	D	B1	B2	ВЗ	B4	B5	B6	В7	\\\ B
0	0	0	0	0	0	0	1	0	1	1	1	1	0	0
0	0	0	0	0	0	1	1	0	1	1	1	0	0 1 1	0
0	0	0	0	0	1	0	1	0	1	1	0	1	1	0

Max fährt nach Spanien!

Wahrheitstafeln – unser Beispiel

- 1. Wenn ich genug Geld gespart habe, kaufe ich mir ein Auto.
- Wenn ich nicht genug Geld gespart habe, kaufe ich mir ein Fahrrad.
- 3. Wenn ich ein Auto kaufe, fahre ich nach Spanien in Urlaub.
- 4. Wenn ich ein Fahrrad kaufe, bleibe ich im Urlaub in Karlsruhe.
- 5. Ich habe im Vorjahr kein gespartes Geld verbraucht.
- 6. In diesem Jahr habe ich keine anderen Ausgaben.
- Es stimmt nicht, daß ich nicht genug Geld gespart habe und weder im Vorjahr gespartes Geld verbraucht habe noch in diesem Jahr andere Ausgaben habe.

G := Max hat genug Geld gespart

A := Max kauft ein Auto

F := Max kauft ein Fahrrad

S := Max fährt nach Spanien in Urlaub

K := Max bleibt im Urlaub in Karlsruhe

V := Max hat im Vorjahr gespartes Geld verbraucht

D := Max hat in diesem Jahr andere Ausgaben

Formal:

Formai.	
B1	$G \Rightarrow A$
B2	$\neg G \Rightarrow F$
B3	$A \Rightarrow S$
B4	$F \Rightarrow K$
B5	$\neg V$
B6	$\neg D$
B7	$\neg(\neg G \land (\neg V \land \neg D))$

 Gibt es in diesem Beispiel weitere "Lösungen, d. weitere Zeilen mit B1^B2^B3^B4^B5^B6^B7 = 1

	G	Α	F	S	K	V	D
Ja:	1	1	0	1	0	0	0
Ja.	1	1	0	1	1	0	0
	1	1	1	1	1	0	0

D.h. Max macht beides

Wahrheitstafeln - Übung

- Formalisieren Sie folgende Behauptungen und stellen Sie über die Wahrheitstafel die Lösung fest.
- Ein Fall von Inspektor Craig (nach Smullyan):
 - Wenn A schuldig und B unschuldig ist, so ist C schuldig.
 - 2. C arbeitet niemals allein.
 - 3. A arbeitet niemals mit C.
 - 4. Niemand außer A, B und C war beteiligt, und mindestens einer von Ihnen ist schuldig.

- Satz: Aufwand Nachweis Tautologie bzw. Erfüllbarkeit
- Für den Nachweis der Erfüllbarkeit, nicht-Erfüllbarkeit, Tautologie, keine Tautologie einer Aussage müssen untersucht werden:

Was	günstigster Fall	ungünstigster Fall
Erfüllbarkeit	eine Zeile	alle Zeilen
nicht Erfüllbar	alle Zeilen	alle Zeilen
Tautologie	alle Zeilen	alle Zeilen
keine Tautologie	eine Zeile	alle Zeilen

- Bemerkungen
 - » Das Beweisen mittels Wahrheitstabellen ist ein semantisches Verfahren, da der Wahrheitsgehalt der Aussagenvariablen untersucht wird.
 - » Es hat oft exponentielle Laufzeit.
 - » Geht es auch anders?