MINISTRY OF EDUCATION, BOTSWANA

in collaboration with

UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE

Botswana General Certificate of Secondary Education

SCIENCE: DOUBLE AWARD

0569/03

Paper 3

October/November 2006

Candidates answer on the Question Paper No Additional Materials are required.

2 hours

Read the following carefully before you start.

Write your centre number, candidate number and name in the spaces provided at the top of this page.

Answer all questions.

Write your answers in the spaces provided on the question paper.

Do not use staples, paper clips, highlighters, glue or correction fluid.

The number of marks is given in brackets [] at the end of each question or part question.

You may use a calculator.

A copy of the Periodic Table is printed on Page 20.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9	,-	
10		
11	:	
12		
13		
14	-	
15		
16		
17		
18		
19		
TOTAL		

This question paper consists of 20 printed pages.

SP (KN) T09341/4 © BEC 2006

Turn over

	ne well. (g = 10 N/kg).
(a)	Calculate the depth of the well.
	depth =[2]
(b)	Calculate the kinetic energy of the stone just before it reaches the bottom of the well.
	kinetic energy =[2]
(c)	Calculate the velocity of the stone just before hitting the bottom of the well.
	velocity =[2]
(d)	What assumption did you make in answering (b)?
	[2]
(e)	If the boy now drops a 1.0 kg stone into the well, how would the value of the kinetic energy compare with your answer to (b) ?
	[1]

1

2 A student performs an experiment to determine the period of a simple pendulum. She uses a stopwatch to record the time taken for 20 oscillations. Fig. 2.1 shows the face of the stopwatch used.

Fig. 2.1

	3
(a)	What is the time recorded by the stopwatch?
	time =[1]
(b)	Calculate the period of the pendulum.
	· ·
	period =[2]
(c)	State one factor that would affect the period of the pendulum.
	[1]
(d)	After some time, the pendulum would stop oscillating. Give a reason for this observation.
	[1]

3 (a) A hot metal block is immersed in a beaker containing 500 g of water. The temperature of the water rises by 20 °C. Calculate the amount of heat energy gained by the water (specific heat capacity of water = 4200 J/kg °C).

heat energy =[2]

(b) Explain why the energy lost by the metal block does not equal the energy gained by the water.

4 Fig. 4.1 shows a slide projector.

screen

Fig. 4.1

(a) On Fig. 4.1, draw two rays to show how an image of the slide is formed on the screen. [2]

(b) Give two properties of the image formed.

1

2[2]

(c)	If the image is not clear, how can it be focused?		
	[1]		
(d)	Give one way in which the image formed by a projector is different from that formed by a camera.		
	[1]		

5 (a) Fig. 5.1 shows the charge on a balloon after it has been rubbed with a woollen cloth.

Fig. 5.1

(i)	Explain why the balloon becomes negatively charged.
	[1]
(ii)	Explain why the balloon is attracted to the woollen cloth.

(b) Fig. 5.2 shows a plastic rod brought near the metal cap of a positively charged gold-leaf electroscope. The divergence of the leaf increases.

Fig. 5.2

(i) What is the charge on the plastic rod?
.....[1]

ii)	The plastic rod is taken away, and the cap of the electroscope is touched with a finge What will be observed?	r.
	Explain your answer.	••
		••
		וי

6 Fig. 6.1 shows two bulbs connected in a circuit with a battery and two ammeters. Ammeter A reads 2 A and ammeter A₁ reads 0.5 A.

Fig. 6.1

Calculate:

(a) The current through the 2Ω bulb.

(b) The potential difference across the 6Ω bulb.

(c) What is the potential difference across the battery?

7 The equation shows how calcium carbonate reacts with hydrochloric acid.

$$CaCO_3 + 2HCl \longrightarrow CaCl_2 + H_2O + CO_2$$

(a) Calculate the relative molecular mass of calcium carbonate. Use the Data Sheet on page 20 to help with your calculation.

RMM =[1]

(b) (i) Calculate the mass of carbon dioxide produced when 25.0 g of calcium carbonate reacts with excess hydrochloric acid.

mass =[2]

(ii) Calculate the volume occupied by the mass of carbon dioxide in (b)(i) measured at room temperature and pressure.

volume =[2]

8 The diagram shows how a door handle was electroplated with copper.

(a)	Complete the statement below by using some words in the diagram.						
	In th	ne electrolytic cell the door handle is connected as the	nd				
	the	electrolyte is	[2]				
The	The process was carried out for 2 hours.						
(b)	Describe the appearance of each of the following after 2 hours;						
	(i)	electrolyte;					
			••••				
	(ii)	copper rod;					
			[2]				
(c)	Ехр	plain why the colour of the solution does not change.					
			[1]				
(d)	Wri	te ionic equations for the anode and cathode reactions.					
	(i)	anode					

cathode[2]

9 The chemical equation represents the process of photosynthesis.

The reaction proceeds in stages. Bonds between atoms in reactant molecules have to be broken, and then new bonds formed between atoms in the product molecules.

Use this information to explain why the reaction is endothermic.

,
[2]

10 The structure of a macromolecule, nylon, is shown.

(a) What is a macromolecule?

7.3

Proteins are also macromolecules. The structure of a protein is shown.

(b)	Write one similarity	and one difference	between the structures	of nylon and the protein
-----	----------------------	--------------------	------------------------	--------------------------

(i)	similarity:	•	
	[1][1]	1	

(iii) Name the type of compounds produced by the hydrolysis of proteins.

(c) What are the products of the hydrolysis of fats?

	to:	ı
and		ı
	,	•

- 11 Nitrogen is used for making ammonia in the Haber process.
 - (a) Suggest a reason why oxygen should be removed from nitrogen in air before the nitrogen is used.
 - (b) (i) Name one acidic oxide of nitrogen formed in car engines.
 - (ii) What is the purpose of a catalytic converter in a car exhaust system?
 -
- **12** Fig. 12.1 shows the laboratory preparation of chlorine.

Fig. 12.1

(a) (i) Name the solid labelled X.

.....[1]

-[1]
- (ii) What is the purpose of the water in the test tube?
-[1]
- (b) What is the colour of chlorine gas?

	(c)	Chlo	orine reacts with water as shown by the equation.	
			$H_2O(l) + Cl_2(g) \longrightarrow HOCl(aq) + HCl(aq)$	
		(i)	Name the two products for the reaction.	
			and	.[2]
		(ii)	One of the products is a bleaching agent. Write the formula of this product.	
				.[1]
13			e a chemical test for the presence of aluminium ions, Al^{3+} , in an aqueous solution.	
	posi		results	
	•••••			.[3]

14 An experiment was carried to investigate the activity of the enzyme amylase. Two test tubes, P and Q, were set up, each containing equal volumes of amylase, its substrate and either an acidic or alkaline solution, as shown in Fig. 14.1.

Fig. 14.1

Samples from the test tubes were tested for starch at the start of the experiment. The test tubes were then placed in a water bath kept at 35 °C for one hour. The contents were tested for starch again. The results are as shown in Table 14.1.

Table 14.1

tube	start of experiment	end of experiment
P	blue – black	blue – black
Q	blue – black	brown

(a)	Nai	me the reagent that was used to test for starch.
	••••	[1]
(b)	(i)	In which test tube would the contents test positive for reducing sugar at the end of the experiment?
		[1]
	(ii)	Explain your answer to (i).
		[2]
(c)		at factor was being investigated in the experiment?
	••••	[1]
(d)	Nar	ne a part of the alimentary canal where amylase acts.
		f 1 1

15 Fig. 15.1 shows variation in oxygen concentration, number of bacteria and fish in a river a distance of 50 km from point **P**, which is up stream from a source of pollution.

Fig. 15.1

(a)	At what distance from P did the river become polluted?
	[1]
(b)	With reference to the three curves on Fig. 15.1, state the effect of the pollution on the following:
	concentration of dissolved oxygen
	numbers of fish
	numbers of bacteria[3]
(c)	Explain why the numbers of bacteria started decreasing after a distance of 20 km from point ${\bf P}.$

16 Fig. 16.1 shows the changes in numbers of three organisms, **X**, **Y** and **Z** in a pond between January and August.

Fig. 16.1

(a)	Wł	nich organism has the largest numbers in June?
		[1]
(b)	Αļ	pesticide was sprayed to kill organisms X .
	(i)	Suggest in which month organism X was sprayed.
		[1]
	(ii)	Give a reason for your answer.
		[1]
(c)	Su	ggest why the population of organism Y remained constant.
	•••	
	•••	
		[2]

17 Fig. 17.1 shows three cuttings from one plant placed in a tray of moist soil. The tray and cuttings were covered with a polythene bag. The cuttings developed into individual plants.

Fig. 17.1

(a)	Wha	at form of reproduction is represented in the diagram?
		[1]
(b)	The	clear polythene bag reduces water loss by evaporation.
	(i)	Describe how the polythene bag helps to reduce water loss through leaves of stem cuttings.
		[2]
	(ii)	Why is it better to use a clear plastic bag rather than a dark coloured one?
		[4]

18 Fig. 18.1 shows apparatus used to measure the rate at which a certain gas is used.

Fig. 18.1

(a)	Name the process under investigation.
	[1]
(b)	What is the purpose of soda lime in the test-tube?
	[1]
(c)	After 20 minutes, would the coloured liquid move towards or away from the test-tube?
	[1]
	Explain your answer.
	[2]

19 Fig. 19.1 shows two types of cells A and B.

Fig. 19.1

(a)	Nan	ne cells A and B .		
	A			
	В			[2]
(b)	Give	e two visible differences between cells A	\ and B .	
		A	В	
	1			
	2			[2]
(c)		each cell A and B state its function a	nd describe how it is adapted for the	
	A	function		
		adaptation		
				[2]
	В	function		
		adaptation		

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (BEC) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

DATA SHEET
The Periodic Table of the Elements

								6	cio.								
_	=							5	B			≡	≥	>	5	=	0
							- I										⁴ He
							Hydrogen 1										Helium 2
7	6											F	12	4	16	19	50
<u>:</u>	Be											Δ	ပ	z	0	Щ.	Se
Cithium 3	Benyllium 4											Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
ន	24											27	28	31	32	35.5	6
R	Mg											ΑĮ	Š	۵	တ	ರ	Ā
Sodium 11	Magnesium 12											Aluminium 13	Silicon 14	Phosphorus 15	Sulphur 16	Chlorine 17	Argon 18
98	40	ĺ	48	51	52	55	95	59	69	2	99	92	73	7.5	6/	80	2 8
¥	S.	သွ	F		ပ်	Mn	ъ	ပိ	z	రె	Zn	Ga	ge	As	Se	ă	호
Potassium 19		Scandium 21	_	Vanadium 23	Ε	Manganese 25	lron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Galfium 31	Germanium 32		Setenium 34		Krypton 36
88	88		91	93	96		101	103	106	108	112	115	119	122	128	127	131
8	ഗ്	>	ZŁ	å	₽	ည	BG	뜐	Pd	Ag	ප	드	S	Sb	鱼	-	×e
Rubidium 37	Strontium 38	Yttrium 39	Zirconium 40		Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46		Садтыт 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	508			
င်	Ba	r _a	Ŧ		>	Re	SO	<u>-</u>	폾	Αn	Hg	11	Pb	<u>.</u>	ይ	¥	뜐
Caesium 55	92	Lanthanum 57 *		ε	Tungsten 74	- 1	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
		227															
亡		Ac															
Francium 87	Radium 88	Actinium 89 †															
			_														

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

b = proton (atomic) number

a = relative atomic mass X = atomic symbol

, Key

*58-71 Lanthanoid series †90-103 Actinoid series