Khulna University of Engineering & Technology Department Of Computer Science And Engineering

CSE 4120: Technical Writing and Seminar

ANS-based compression and encryption with 128-bit security

Authored By:

Seyit Camtepe, Jarek Duda, Arash Mahboubi, Pawel Morawiecki, Surya Nepal, Marcin Pawlowski, Josef Pieprzyk

Source:

Springer IJIS DOI: https://doi.org/10.1007/s10207-022-00597-4

Presented By:

Partho Choudhury Shoumya Roll: 1807021

Outline

- > Problem Statement
- Objectives
- > Introduction
- > Related Works
- > Methodology
- > Result Analysis
- ➤ Discussion & Conclusion
- > References

Problem Statement

- ➤ Bulk of internet interaction requires data to squeeze out redundant bits and then get encrypted to reduce communication bandwidth and provide security.
- > Requires 2 independent algorithms.
- ➤ Single algorithm that does compression and encryption (called compcrypt) should provide benefits in terms of efficiency and security.

Objectives

To design a compcrypt algorithm using the ANS entropy coding so that:

- cost(compcrypt) << cost(compression) + cost(encryption)</pre>
- > security(compcrypt) = security(encryption)
- \triangleright comp_rate(compcrypt) \approx comp_rate(compression)

Introduction

➤ In a noisy and unreliable communication channel, there remains a problem of data transmission.

Error correcting codes were developed to deal with the errors precisely.

> Reverse problem still persists: redundancy of data.

Inroduction (Cont...)

- Entropy encoding mainly focuses on how to remove redundancy from transmitted data which is extremely important for ever growing internet applications.
- Asymmetric Numeral Systems (ANS) are a new and promising invention that provides both efficient and close to optimal entropy encoding.
- > It can ensure Confidentiality, Integrity and Authenticity

Related Works

Author	Approach	Problem		
Duda j. [1]	Applying Haffman coding	Suboptimal		
Duda J. et all. [2]	Arithmetic Range Coding	A heavy computation overhead		
Duda and Niemiec [3]	Plain ANS	Completely defenceless against integrity attack		

Table 1: Comparison of related works

Proposed Methodology

Fig1: Comparypt based on ANS and sponge, where r = 512 bits, c = 1088 bits and size of sponge state is b = 1600bits

Methodology(cont.)

Algorithm depicting compression and encryption in a single process.

- (h) **Data**: A symbol frame $S = (s_1, s_2, ..., s_\ell)$, a 128-bit secret key K and a 128-bit random nonce α .
- **Result**: A ciphertext frame $C = (\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_N)$ of compressed bit stream together with a 128-bit tag T, where \mathbf{c}_i is a 512-bit long block; $i = 1, \dots, N$.

begin

- (1) Upload the symbol frame and compute symbol probabilities $\{p_s | s \in \mathbb{S}\};$
- (2) Initialize a sponge for $K \parallel \alpha$ by running $f_{start} = P^6$, where the number of iterations $n_{start} \geq \lceil \frac{R \cdot \ell}{512} \rceil$;
- (3) Design ANS instance for the symbol statistics;
- (4) Compress S in the reverse order. This creates a bitstream frame;
- (5) Split the bitstream frame into 512-bit blocks $(\mathbf{b}_1, \dots, \mathbf{b}_N)$, where the last block is padded to the full length;
- (6) Encrypt the decoding table and the bitstream frame $(\mathbf{b}_1, \dots, \mathbf{b}_N)$ into $(\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_N)$ using the sponge;
- (7) Generate the 128-bit tag T. First, extract 128-bit string \mathbf{b}_T from ANS states when their jumps are controlled by LFSR only (no symbol compression) and then, create the tag $T = \mathbf{b}_T \oplus P(\mathbf{c}_N)|_{128}$, where $P(\mathbf{c}_N)|_{128}$ denotes the top 128 bits of the sponge state;
- (8) Send the ciphertext frame and the tag T to the receiver.

Fig 2: Compcrypt algorithm

Result Analysis

Comparisons with other techniques indicating efficiency is shown in below table:

Algorithm	Efficiency MB/s		Efficiency Drop			128-bit	Comp.	
	PC	RPI3	RPI4	PC	RPI3	RPI4		Rate Loss
Plain ANS	220	17	60				×	0
ANS*	182	15	49	17%	12%	18%	X	≈0.5%
$ANS^* + Keccak$	178	13	48	19%	24%	20%	✓	≈0.5%
ANS+Full_Keccak	135	9	27	39%	47%	55%	\checkmark	0
ANS+AES-NI	152	8	29	31%	53%	52%	√	0
ANS+AES	100	8	29	55%	53%	52%	√	0
ANS+ChaCha20	95	6	16	57%	65%	73%	✓	0

Table 2: Comparison of algorithms

Discussion & Conclusion

Prominent features:

- 1. Randomized ANS usage provides protection against statistical attack.
- 2. 128 bit security provides protection against brute-force attack.
- 3. Flexible enough to scale the security and speed levels.

Some Caveats:

- 1. Compression rate is slow which could lead to bigger problems for large systems.
- 2. Compression loss is shown to be 0.5% which can lead to significant penalty if the algorithm is applied to large system.

References

- ➤ [1] Duda, J.: Asymmetric Numeral Systems as Close to Capacity Low State Entropy Coders
- ➤ [2] Duda, J., Tahboub, K., Gadgil, N.J., Delp, E.J.: The use of asymmetric numeral systems as an accurate replacement for Huffman coding. In: Picture Coding Symposium (PCS), Cairns, QLD, Australia, 2015, pp. 65–69
- ➤ [3] Jarek Duda and Marcin Niemiec. Lightweight compression with encryption based on asymmetric numeral systems. arXiv preprint arXiv:1612.04662, 2016

Thank you