# Pontificia Universidad Católica de Valparaiso





# Informe de Laboratorio Ventilador

Maximiliano Castillo Parra

Laboratorio De Maquinas Cristóbal Galleguillos Ketterer

12 de diciembre de 2020

# Índice

| 1.                                          | Introduce  | ión                                                                                 | 3 |  |  |  |  |  |  |  |  |
|---------------------------------------------|------------|-------------------------------------------------------------------------------------|---|--|--|--|--|--|--|--|--|
| 2.                                          | Objetivos  |                                                                                     |   |  |  |  |  |  |  |  |  |
| 3.                                          | Desarrolle | )                                                                                   | 4 |  |  |  |  |  |  |  |  |
|                                             |            | res calculados                                                                      |   |  |  |  |  |  |  |  |  |
|                                             | 3.2. Grá   | ficos                                                                               | 4 |  |  |  |  |  |  |  |  |
| 3.3. De isorendimiento y potencia vs caudal |            |                                                                                     |   |  |  |  |  |  |  |  |  |
|                                             | 3.3.1      | . ¿Cuáles son las condiciones óptimas de operación de esta bomba?                   | 4 |  |  |  |  |  |  |  |  |
|                                             | 3.3.2      | Las curvas tiene la forma esperada?                                                 | 5 |  |  |  |  |  |  |  |  |
|                                             | 3.3.3      | Cuál es la potencia máxima consumida?                                               | 5 |  |  |  |  |  |  |  |  |
|                                             |            | . ¿Qué tipo de curvas son?                                                          |   |  |  |  |  |  |  |  |  |
|                                             | 3.4. Curv  | a $\Psi vs\Phi$                                                                     | 6 |  |  |  |  |  |  |  |  |
|                                             | 3.4.1      | . Al observar todas las curvas anteriores ¿Qué tipo de bomba centrifuga es? Jus-    |   |  |  |  |  |  |  |  |  |
|                                             |            | tifíquelo                                                                           | 6 |  |  |  |  |  |  |  |  |
|                                             | 3.4.2      | Calcule la velocidad específica y determine si las características constructivas y  |   |  |  |  |  |  |  |  |  |
|                                             |            | operacionales son concordantes con esa velocidad específica y su respuesta anterior | 6 |  |  |  |  |  |  |  |  |
| 4.                                          | Conclusió  | n                                                                                   | 7 |  |  |  |  |  |  |  |  |
| 5.                                          | Referenci  | as, bibliografia v linkografia                                                      | 8 |  |  |  |  |  |  |  |  |

## 1. Introducción

En este ensayo se realizaran distintas mediciones a un compresor reciproco. Las mediciones tienen el objetivo de obtener diversos valores para poder analizar la bomba y su funcionamiento.

Además se realizara una serie de graficas con el objetivos de caracterizar a la bomba y sus parámetros de operación.

El informe fue escrito en Látex y calculado en Excel.

# 2. Objetivos

### **Generales**

- Realizar un ensayo de un compresor reciproco para obtener diversas curvas de funcionamiento.
- Calcular diversos factores para el aprendizaje del funcionamiento de un compresorr.

## **Específicos**

- Construir curvas características de una bomba, con el fin de aprender como seleccionar una bombas en el ámbito laboral.
- Responder preguntas planteadas con el fin de cumplir el objetivo de la clase.

#### 3. **Desarrollo**

#### 3.1. Valores calculados

Figura 1: Valores calculados 1

| 1 igara 1. Valores carcarados 1 |            |        |        |        |            |            |            |            |            |            |            |            |            |
|---------------------------------|------------|--------|--------|--------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 3070 [RPM]                      |            |        |        |        |            |            |            |            |            |            |            |            |            |
| Qx                              | Q          | Pax    | Pdx    | Нх     | Н          | Nex        | Ne         | Nh         | Ngl        | U2         | cm2        | ф          | ψ          |
| [m^3/h]                         | [m^3/h]    | mca    | mca    | mca    | mca        | kW         | kW         | kW         | %          | m/s        | m/s        | -          | -          |
|                                 |            |        |        |        |            |            |            |            |            |            |            |            |            |
| 111,6                           | 111,418537 | -1,165 | 2,765  | 1,6    | 1,59480098 | 3,48296025 | 3,46599781 | 0,48371273 | 13,9559445 | 21,7005513 | 3,00306709 | 0,13838667 | 0,06644525 |
| 108                             | 107,789337 | -0,915 | 5,605  | 4,69   | 4,67172136 | 3,80082864 | 3,77863048 | 1,37080698 | 36,2778786 | 21,7005513 | 2,90524916 | 0,13387905 | 0,19464103 |
| 104,4                           | 104,196359 | -0,635 | 7,925  | 7,29   | 7,26158821 | 4,04969242 | 4,0260408  | 2,05971786 | 51,1598854 | 21,7005513 | 2,80840752 | 0,12941641 | 0,30254438 |
| 100,8                           | 100,603381 | -0,415 | 9,965  | 9,55   | 9,51278016 | 4,1854363  | 4,16099189 | 2,60521525 | 62,610438  | 21,7005513 | 2,71156588 | 0,12495378 | 0,39633729 |
| 93,6                            | 93,3870653 | -0,175 | 11,805 | 11,63  | 11,577145  | 4,27732232 | 4,24819668 | 2,94314579 | 69,2798854 | 21,7005513 | 2,51706431 | 0,1159908  | 0,48234629 |
| 82,8                            | 82,5847953 | 0,055  | 13,925 | 13,98  | 13,9074239 | 4,32398979 | 4,29036202 | 3,12658589 | 72,8746402 | 21,7005513 | 2,22591041 | 0,10257391 | 0,57943425 |
| 72                              | 71,8128655 | 0,405  | 16,685 | 17,09  | 17,0012785 | 4,34662848 | 4,31282465 | 3,32358977 | 77,062947  | 21,7005513 | 1,93557427 | 0,08919471 | 0,70833557 |
| 61,2                            | 61,0409357 | 0,645  | 18,645 | 19,29  | 19,1898574 | 4,27871241 | 4,24543677 | 3,18872087 | 75,1093715 | 21,7005513 | 1,64523813 | 0,0758155  | 0,79951979 |
| 43,2                            | 43,0877193 | 0,885  | 19,845 | 20,73  | 20,6223818 | 4,14288027 | 4,110661   | 2,4188888  | 58,8442784 | 21,7005513 | 1,16134456 | 0,05351682 | 0,859204   |
| 28,8                            | 28,7344816 | 1,135  | 21,925 | 23,06  | 22,955199  | 3,82469562 | 3,79865206 | 1,79559341 | 47,2692256 | 21,7005513 | 0,77448133 | 0,03568948 | 0,95639772 |
| 10,8                            | 10,7719298 | 1,315  | 22,925 | 24,24  | 24,1141598 | 3,50899695 | 3,4817074  | 0,70711366 | 20,3093935 | 21,7005513 | 0,29033614 | 0,01337921 | 1,00468428 |
| 0                               | 0          | 2,05   | 25,005 | 27,055 | 26,914546  | 2,55817197 | 2,53827701 | 0          | 0          | 21,7005513 | 0          | 0          | 1,12135863 |

Figura 2: Valores calculados 2

| 2900 [RPM] |            |        |        |        |            |            |            |            |            |            |            |            |            |
|------------|------------|--------|--------|--------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Qx         | Q          | Pax    | Pdx    | Нх     | Н          | Nex        | Ne         | Nh         | Ngl        | U2         | cm2        | ф          | ψ          |
| [m^3/h]    | [m^3/h]    | mca    | mca    | mca    | mca        | kW         | kW         | kW         | %          | m/s        | m/s        |            |            |
| 108        | 107,888391 | -0,965 | 2,645  | 1,68   | 1,67652952 | 2,92516441 | 2,91610506 | 0,49239031 | 16,8852048 | 20,4988921 | 2,90791898 | 0,14185737 | 0,07827975 |
| 104,4      | 104,292112 | -0,725 | 5,245  | 4,52   | 4,51066277 | 3,13868006 | 3,12895944 | 1,28060559 | 40,927523  | 20,4988921 | 2,81098835 | 0,13712879 | 0,2106098  |
| 102,6      | 102,493972 | -0,485 | 6,725  | 6,24   | 6,22710966 | 3,30949258 | 3,29924295 | 1,73743438 | 52,6616078 | 20,4988921 | 2,76252303 | 0,1347645  | 0,29075336 |
| 93,6       | 93,5032725 | -0,245 | 8,725  | 8,48   | 8,46248236 | 3,45895353 | 3,44824102 | 2,15401222 | 62,4669855 | 20,4988921 | 2,52019645 | 0,12294306 | 0,39512636 |
| 86,4       | 86,3107131 | -0,065 | 10,605 | 10,54  | 10,5182269 | 3,52300823 | 3,51209733 | 2,47133042 | 70,366228  | 20,4988921 | 2,32633518 | 0,1134859  | 0,49111224 |
| 79,2       | 79,145417  | 0,225  | 12,365 | 12,59  | 12,5726524 | 3,58582728 | 3,57841855 | 2,70879573 | 75,6981245 | 20,4988921 | 2,13320875 | 0,10406459 | 0,58703654 |
| 72         | 71,9008264 | 0,445  | 14,365 | 14,81  | 14,7692292 | 3,60965748 | 3,59476208 | 2,89078164 | 80,4164943 | 20,4988921 | 1,93794509 | 0,09453902 | 0,6895981  |
| 61,2       | 61,1578222 | 0,695  | 16,245 | 16,94  | 16,9166586 | 3,58582728 | 3,57841855 | 2,816373   | 78,7044043 | 20,4988921 | 1,64838858 | 0,08041354 | 0,78986489 |
| 43,2       | 43,1553565 | 0,885  | 17,885 | 18,77  | 18,7312257 | 3,4162504  | 3,40567014 | 2,20051575 | 64,6132965 | 20,4988921 | 1,16316759 | 0,05674295 | 0,87458983 |
| 28,8       | 28,7702377 | 1,115  | 19,405 | 20,52  | 20,4776106 | 3,18138319 | 3,17153032 | 1,60378558 | 50,5681933 | 20,4988921 | 0,77544506 | 0,03782863 | 0,95613124 |
| 10,8       | 10,785124  | 1,345  | 20,645 | 21,99  | 21,9294632 | 2,92617204 | 2,91409707 | 0,64383817 | 22,0939163 | 20,4988921 | 0,29069176 | 0,01418085 | 1,02392047 |
| 0          | 0          | 1,95   | 22,605 | 24,555 | 24,487402  | 2,00773848 | 1,99945346 | 0          | 0          | 20,4988921 | 0          | 0          | 1,14335458 |

Figura 3: Valores calculados 3

| 2700 [RPM] |            |        |        |        |            |            |            |            |            |            |            |            |            |
|------------|------------|--------|--------|--------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Qx         | Q          | Pax    | Pdx    | Нх     | Н          | Nex        | Ne         | Nh         | Ngl        | U2         | cm2        | ф          | ψ          |
| [m^3/h]    | [m^3/h]    | mca    | mca    | mca    | mca        | kW         | kW         | kW         | %          | m/s        | m/s        | -          | -          |
| 104,4      | 104,322724 | -0,685 | 2,485  | 1,8    | 1,79733629 | 2,30529236 | 2,30017707 | 0,51042488 | 22,1906778 | 19,0851754 | 2,81181344 | 0,14732971 | 0,09681353 |
| 102,6      | 102,486127 | -0,435 | 4,365  | 3,93   | 3,9212812  | 2,46519006 | 2,45699099 | 1,09399829 | 44,5259381 | 19,0851754 | 2,76231158 | 0,14473598 | 0,21121983 |
| 93,6       | 93,4961154 | -0,265 | 5,965  | 5,7    | 5,68735441 | 2,58447345 | 2,57587765 | 1,44752954 | 56,195586  | 19,0851754 | 2,52000354 | 0,13203984 | 0,30634937 |
| 86,4       | 86,3041065 | -0,115 | 7,405  | 7,29   | 7,27382696 | 2,66399571 | 2,65513542 | 1,70890532 | 64,3622658 | 19,0851754 | 2,32615712 | 0,12188293 | 0,39180472 |
| 81         | 80,9400444 | 0,125  | 9,205  | 9,33   | 9,31619312 | 2,74250298 | 2,73641755 | 2,05270006 | 75,0141391 | 19,0851754 | 2,18157939 | 0,11430754 | 0,50181678 |
| 72         | 71,9200888 | 0,365  | 10,925 | 11,29  | 11,2649529 | 2,7832791  | 2,77402208 | 2,20548023 | 79,5047827 | 19,0851754 | 1,93846427 | 0,10156911 | 0,60678673 |
| 64,8       | 64,7280799 | 0,595  | 13,005 | 13,6   | 13,5698281 | 2,7832791  | 2,77402208 | 2,39106094 | 86,1947334 | 19,0851754 | 1,74461784 | 0,0914122  | 0,73093884 |
| 46,8       | 46,765359  | 0,795  | 14,605 | 15,4   | 15,3772105 | 2,74250298 | 2,73641755 | 1,95760654 | 71,5390289 | 19,0851754 | 1,26046809 | 0,06604435 | 0,8282935  |
| 32,4       | 32,3760178 | 1,015  | 16,125 | 17,14  | 17,1146356 | 2,5835173  | 2,57778465 | 1,50839353 | 58,5151104 | 19,0851754 | 0,87263176 | 0,04572301 | 0,92187991 |
| 18         | 17,9800222 | 1,245  | 17,565 | 18,81  | 18,7682696 | 2,34590667 | 2,33810433 | 0,91862451 | 39,2892868 | 19,0851754 | 0,48461607 | 0,02539228 | 1,01095291 |
| 7,2        | 7,19200888 | 1,375  | 18,285 | 19,66  | 19,6163838 | 2,08745933 | 2,08051656 | 0,3840544  | 18,4595693 | 19,0851754 | 0,19384643 | 0,01015691 | 1,05663658 |
| 0          | 0          | 1,96   | 19,805 | 21,765 | 21,7167138 | 1,55068407 | 1,54552659 | 0          | 0          | 19,0851754 | 0          | 0          | 1,16977087 |
|            |            |        |        |        |            |            |            |            |            |            |            |            |            |

#### 3.2. **Gráficos**

#### 3.3. De isorendimiento y potencia vs caudal.

#### 3.3.1. ¿Cuáles son las condiciones óptimas de operación de esta bomba?

El punto optimo de rendimiento esta en un funcionamiento de 2700 RPM, con un caudal de 0,018  $[m^3/s]$ . El rendimiento es de 86,19 %.





Figura 5: Gráfico rendimiento

### Rendimiento vs Caudal 100 80 60 40 20 0 0,005 0,01 0,015 0,02 0,025 0,03 0,035 [m^3/s] — 3070 RPM 2900 RPM

### 3.3.2. .¿Las curvas tiene la forma esperada?

Si, según las curvas mostradas en clases, tienen el mismo comportamiento, aunque estas están realmente menos suavizadas.

### 3.3.3. ¿Cuál es la potencia máxima consumida?

La potencia máxima se da en la séptima medición a 3070 RPM con un valor de 4,31282465 kW.

### 3.3.4. ¿Qué tipo de curvas son?

Ambas curvas son parábolas negativas, aunque la grafica de potencia es claramente mas abierta que la de rendimiento. Ambas curvas se caracterizan por tener un punto mayor.

#### 3.4. Curva $\Psi vs\Phi$



. ¿La nube de puntos que conforman esta curva son muy dispersos? Solo los de la tercera curva correspondiente a 2700 RPM. Teóricamente podríamos decir que puede ser porque la velocidad es mas divergente que el promedio de las tres velocidades. Otra teoría puede ser que mientras más bajos los valores de velocidad, mas divergen los puntos de las curvas.

# 3.4.1. Al observar todas las curvas anteriores ¿Qué tipo de bomba centrifuga es? Justifíquelo.

En primera parte, pareciera que la dirección del flujo es mixto. Eso explicaría porque el punto de máxima eficiencia esta en punto medio cercano al promedio de las mediciones. Sobre la posición del eje de rotación y la carcasa es más difícil de averiguar que solo con las curvas mostradas, sin embargo me atrevería a decir que la posición del eje de rotación es horizontal o mixto.

# 3.4.2. Calcule la velocidad específica y determine si las características constructivas y operacionales son concordantes con esa velocidad específica y su respuesta anterior

El valor de Ns me da un valor bastante cercano a los 10000 por lo que parece que la bomba más ideal debería ser la de hélice, por lo que me equivoque en la respuesta anterior.

#### Conclusión 4.

El experimento cumple con su objetivo final para permitir al ingeniero seleccionar un compresor reciproco de acuerdo a sus necesidades. También permite corregir valores operacionales para un correcto diseño de instalaciones con bombas.

#### Referencias, bibliografia y linkografia **5**.

ENSAYO N 13 CURVAS CARACTERÍSTICAS DE UNA BOMBA CENTRÍFUGA. , C.Galleguillos K.