Proofs

We first present several lemmas to deal with various terms concerning the bias and variance components in (8), (12), and (18). In the proofs, we use C to denote a generic positive constant that can take different values at different places.

Lemma 1. Under assumptions (A1), (A2) and (A4), $E[(B(T) - A_0X)^{\otimes 2}]$ has eigenvalues bounded away from zero and infinity.

Proof of Lemma 1. By the smoothness assumption (A4), there exists $\gamma = (\gamma_1, \dots, \gamma_p) \in \mathbb{R}^{K \times p}$ such that

$$|E[X_j|T=t] - \gamma_j^{\mathrm{T}} \mathbf{B}(t)| \le CK^{-d'}. \tag{27}$$

Since $E[X_j|T=t]$ is assumed to be smooth for $t \in [0,1]$, it is also bounded on [0,1]. Then by (27), $\boldsymbol{\gamma}_j^{\mathrm{T}} \int_0^1 \mathbf{B}(t) \mathbf{B}^{\mathrm{T}}(t) dt \boldsymbol{\gamma}_j$ is bounded by a constant. By well-known properties of splines, eigenvalues of $\int_0^1 \mathbf{B}(t) \mathbf{B}^{\mathrm{T}}(t) dt$ are bounded away from zero, and thus we can deduce that $\|\boldsymbol{\gamma}_j\|$ is bounded. In turn this implies that the operator norm of $\boldsymbol{\gamma}$ is bounded.

Then we show that the operator norm of

$$\begin{pmatrix}
\mathbf{I} & \mathbf{0} \\
-\boldsymbol{\gamma}^{\mathrm{T}} & \mathbf{I}
\end{pmatrix}$$
(28)

is bounded. This is easily shown by definition, since

where $\|.\|_{op}$ for a matrix denotes its operator norm (and we shall use $\|.\|$ to denote its Frobenius norm). Note that the inverse of (28) is $\begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \boldsymbol{\gamma}^{\mathrm{T}} & \mathbf{I} \end{pmatrix}$ which also has a bounded operator norm.

Let

$$\mathbf{A} = E \left[\left(\begin{array}{cc} B(T)B^{\mathrm{T}}(T) & B(T)X^{\mathrm{T}} \\ XB^{\mathrm{T}}(T) & XX^{\mathrm{T}} \end{array} \right) \right] = E \left[\left(\begin{array}{c} B(T) \\ X \end{array} \right) \left(B^{\mathrm{T}}(T) & X^{\mathrm{T}} \right) \right].$$

Premultiplying \mathbf{A} by (28) and post-multiplying \mathbf{A} by the transpose of (28), we get the matrix

$$E\left[\left(\begin{array}{c}B(T)\\X-\pmb{\gamma}^{\mathrm{T}}B(T)\end{array}\right)\left(\begin{array}{c}B^{\mathrm{T}}(T)&X^{\mathrm{T}}-B^{\mathrm{T}}(T)\pmb{\gamma}\end{array}\right)\right].$$

The operator norm for the difference between the above and

$$E\left[\left(\begin{array}{c}B(T)\\X-E[X|T]\end{array}\right)\left(B^{\mathrm{T}}(T)\ X^{\mathrm{T}}-E[X^{\mathrm{T}}|T]\right)\right]$$

is (using operator norm is bounded by the maximum row sum of absolute values of entires) $O(K^{-d'}) = o(1)$. The displayed matrix above is block diagonal and the eigenvalues of both blocks are bounded and bounded away from zero by assumptions (A2) and (A3). This proves **A** has eigenvalues bounded away from zero and infinity.

Since $A_0 = E[B(T)X^{\mathrm{T}}](E[XX^{\mathrm{T}}])^{-1}$, $E[(B(T) - A_0X)^{\otimes 2}] = E[B(T)B^{\mathrm{T}}(T)] - E[B(T)X^{\mathrm{T}}](E[XX^{\mathrm{T}}])^{-1}E[XB^{\mathrm{T}}(T)]$ has eigenvalues bounded away from zero by Lemma 2.

Lemma 2. If a symmetric matrix $\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{C} \end{pmatrix}$ has all eigenvalues inside the interval [c,C] for some $0 < c < C < \infty$, then $\mathbf{C} - \mathbf{B}^T \mathbf{A}^{-1} \mathbf{B}$ also has all its eigenvalues inside the interval [c,C].

Proof of Lemma 2. Obviously eigenvalues of $\mathbf{C} - \mathbf{B}^{\mathrm{T}} \mathbf{A}^{-1} \mathbf{B}$ are no larger than

that of C and thus bounded by C. Next, we have the identity

$$\left(\begin{array}{cc} \mathbf{I} & \mathbf{0} \\ -\mathbf{B}^{\mathrm{T}}\mathbf{A}^{-1} & \mathbf{I} \end{array}\right) \left(\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\mathrm{T}} & \mathbf{C} \end{array}\right) \left(\begin{array}{cc} \mathbf{I} & -\mathbf{A}^{-1}\mathbf{B} \\ \mathbf{0} & \mathbf{I} \end{array}\right) = \left(\begin{array}{cc} \mathbf{A} & \mathbf{0} \\ \mathbf{0}^{\mathrm{T}} & \mathbf{C} - \mathbf{B}^{\mathrm{T}}\mathbf{A}^{-1}\mathbf{B} \end{array}\right)$$

Thus for any vector \mathbf{b} with dimension same as that of \mathbf{C} , we have

$$\begin{aligned} &\mathbf{b}^{\mathrm{T}}(\mathbf{C} - \mathbf{B}^{\mathrm{T}}\mathbf{A}^{-1}\mathbf{B})\mathbf{b} \\ &= & (\mathbf{0}^{\mathrm{T}}, \mathbf{b}^{\mathrm{T}}) \left(\begin{array}{cc} \mathbf{A} & \mathbf{0} \\ \mathbf{0}^{\mathrm{T}} & \mathbf{C} - \mathbf{B}^{\mathrm{T}}\mathbf{A}^{-1}\mathbf{B} \end{array} \right) \left(\begin{array}{cc} \mathbf{0} \\ \mathbf{b} \end{array} \right) \\ &= & (\mathbf{0}^{\mathrm{T}}, \mathbf{b}^{\mathrm{T}}) \left(\begin{array}{cc} \mathbf{I} & \mathbf{0} \\ -\mathbf{B}^{\mathrm{T}}\mathbf{A}^{-1} & \mathbf{I} \end{array} \right) \left(\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\mathrm{T}} & \mathbf{C} \end{array} \right) \left(\begin{array}{cc} \mathbf{I} & -\mathbf{A}^{-1}\mathbf{B} \\ \mathbf{0} & \mathbf{I} \end{array} \right) \left(\begin{array}{cc} \mathbf{0} \\ \mathbf{b} \end{array} \right) \\ &= & (-\mathbf{b}^{\mathrm{T}}\mathbf{B}^{\mathrm{T}}\mathbf{A}^{-1}, \mathbf{b}^{\mathrm{T}}) \left(\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\mathrm{T}} & \mathbf{C} \end{array} \right) \left(\begin{array}{cc} -\mathbf{A}^{-1}\mathbf{B}\mathbf{b} \\ \mathbf{b} \end{array} \right) \\ &\geq & \|\mathbf{b}\|^{2}c, \end{aligned}$$

which completes the proof.

Lemma 3. For any unit vector $\mathbf{a} \in R^K$, $\|\mathbf{a}^{\mathrm{T}}(\mathbf{Z}^{\mathrm{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathrm{T}}\mathbf{X}\| = O_p(1)$. If \mathbf{a} has bounded support, $\|\mathbf{a}^{\mathrm{T}}(\mathbf{Z}^{\mathrm{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathrm{T}}\mathbf{X}\| = O_p(K^{-1/2})$.

Proof of Lemma 3. The first statement is easily obtained by the bound $\|(\mathbf{Z}^T\mathbf{Z})^{-1}\|_{op} = O_p(1/n)$ (using for example Lemma 3 in Wang et al. (2011)) and $\|\mathbf{Z}^T\mathbf{X}\| = O_p(n)$ (using that $E[B_k(T_i)X_{ij}] = E[B_k(T_i)E[X_{ij}|T_i]] \leq CE[B_k(T_i)] = O(1/\sqrt{K})$).

For the second statement, we assume $\mathbf{a} = (1, 0, \dots, 0)^{\mathrm{T}}$ without loss of generality. We also condition on the event that eigenvalues of $(\mathbf{Z}^{\mathrm{T}}\mathbf{Z}/n)^{-1}$ are bounded. By Lemma 6.3 of Zhou et al. (1998), the (j, j') entry of $(\mathbf{Z}^{\mathrm{T}}\mathbf{Z})^{-1}$ is bounded by $(C/n)\gamma^{|j-j'|}$ for some $\gamma < 1$. This means the j-th component of $\mathbf{a}^{\mathrm{T}}(\mathbf{Z}^{\mathrm{T}}\mathbf{Z})^{-1}$ is bounded by $(C/n)\gamma^{j}$. Thus, denoting the j-th column of \mathbf{X} as \mathbf{X}_{j} ,

$$|\mathbf{a}^{\mathrm{T}}(\mathbf{Z}^{\mathrm{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathrm{T}}\mathbf{X}_{i}|$$

$$\leq C \sum_{k=1}^{K} \gamma^k \sum_{i=1}^{n} B_k(T_i) |X_{ij}| / n.$$
(29)

Since $E[B_k(T)|X_j|] \leq CK^{-1/2}$, the above is $O_p(K^{-1/2})$ and the lemma is proved. \square

Lemma 4. For any unit vector $\mathbf{a} \in R^K$, $|\mathbf{a}^{\mathrm{T}}(\mathbf{Z}^{\mathrm{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathrm{T}}\mathbf{R}| = O_p(K^{-d})$. If \mathbf{a} has bounded support, $|\mathbf{a}^{\mathrm{T}}(\mathbf{Z}^{\mathrm{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathrm{T}}\mathbf{R}| = O_p(K^{-d-1/2})$.

Proof of Lemma 4. Using that the components of \mathbf{R} are bounded by CK^{-d} , the proof is basically the same as the proof of Lemma 3 and thus omitted.

Lemma 5. Suppose now θ_0 is chosen as in (19). For any unit vector $\mathbf{a} \in R^K$, $|\mathbf{a}^{\mathrm{T}}(\mathbf{Z}^{\mathrm{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathrm{T}}\mathbf{R}| = O_p(n^{-1/2}K^{-d+1/2})$. If \mathbf{a} is bounded support, it has order $O_p(n^{-1/2}K^{-d})$.

Proof of Lemma 5. For general \mathbf{a} , this is easily proved by noting that $\sum_i B(T_i)r_i$ has mean zero and thus is $O_p(\sqrt{n}K^{-d})$ and thus $\|\mathbf{Z}^T\mathbf{R}\| = O_p(\sqrt{n}K^{-d+1/2})$. For \mathbf{a} with a bounded support, we can improve the rate as follows. Suppose without loss of generality $\mathbf{a} = (1, 0, \dots, 0)^T$. By Lemma 6.3 of Zhou et al. (1998), the (j, j') entry of $(\mathbf{Z}^T\mathbf{Z})^{-1}$ is bounded by $(C/n)\gamma^{|j-j'|}$ for some $\gamma < 1$. Thus

$$|\mathbf{a}^{\mathrm{T}}(\mathbf{Z}^{\mathrm{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathrm{T}}\mathbf{R}|$$

$$\leq (C/n)\sum_{k}\gamma^{k}|\sum_{i}B_{k}(T_{i})r_{i}|.$$

Let $b_k = |\sum_i B_k(T_i)r_i|$ and then $Eb_k^2 \leq CnK^{-2d}$ and by Cauchy-Schwarz inequality $E[b_k b_{k'}] \leq CnK^{-2d}$. Thus

$$E\left[\left(\sum_{k} \gamma^{k} | \sum_{i} B_{k'}(T_{i}) r_{i}|\right)^{2}\right]$$

$$= \sum_{k,k'} \gamma^{k+k'} E[b_{k} b_{k'}]$$

$$< CnK^{-2d}.$$

which implies $\mathbf{a}^{\mathrm{T}}(\mathbf{Z}^{\mathrm{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathrm{T}}\mathbf{R} = O_p(n^{-1/2}K^{-d}).$

Lemma 6.

$$\|(\mathbf{X}^{\mathrm{T}} - \mathbf{X}^{\mathrm{T}} \mathbf{P}_{\mathbf{Z}}) \mathbf{R}\| = o_{p}(\sqrt{n}).$$

Proof of Lemma 6.

$$\begin{aligned} &\|(\mathbf{X}^{\mathrm{T}} - \mathbf{X}^{\mathrm{T}} \mathbf{P}_{\mathbf{Z}}) \mathbf{R}\| \\ &\leq &\|(\mathbf{X} - E[\mathbf{X}|\mathbf{T}])^{\mathrm{T}} \mathbf{R}\| + \|(E[\mathbf{X}^{\mathrm{T}}|\mathbf{T}] - \mathbf{X}^{\mathrm{T}} \mathbf{P}_{\mathbf{Z}}) \mathbf{R}\| \\ &\leq &\|(\mathbf{X} - E[\mathbf{X}|\mathbf{T}])^{\mathrm{T}} \mathbf{R}\| + \|(E[\mathbf{X}|\mathbf{T}] - \mathbf{X})^{\mathrm{T}} \mathbf{Z} (\mathbf{Z}^{\mathrm{T}} \mathbf{Z})^{-1} \mathbf{Z}^{\mathrm{T}} \mathbf{R}\| + \|(E[\mathbf{X}|\mathbf{T}])^{\mathrm{T}} (\mathbf{I} - \mathbf{P}_{\mathbf{Z}}) \mathbf{R}\| \\ &\leq &\|(\mathbf{X} - E[\mathbf{X}|\mathbf{T}])^{\mathrm{T}} \mathbf{R}\| + \|(E[\mathbf{X}|\mathbf{T}] - \mathbf{X})^{\mathrm{T}} \mathbf{Z} (\mathbf{Z}^{\mathrm{T}} \mathbf{Z})^{-1} \mathbf{Z}^{\mathrm{T}} \mathbf{R}\| + \|(E[\mathbf{X}|\mathbf{T}] - \mathbf{Z}\boldsymbol{\gamma})^{\mathrm{T}} (\mathbf{I} - \mathbf{P}_{\mathbf{Z}}) \mathbf{R}\|, \end{aligned}$$

where $E[\mathbf{X}|\mathbf{T}] = (E[X|T=T_1], \dots, E[X|T=T_n])^{\mathrm{T}}$, $\boldsymbol{\gamma}$ is such that $||E[\mathbf{X}|\mathbf{T}] - \mathbf{Z}\boldsymbol{\gamma}|| = O_p(\sqrt{n}K^{-d'})$, and the last equality is due to that $(\mathbf{I} - \mathbf{P}_{\mathbf{Z}})\mathbf{Z} = 0$. Since E[X|T] is the projection of X to the space of square-integrable functions of T, X - E[X|T] is orthogonal to this space and thus $(\mathbf{X} - E[\mathbf{X}|\mathbf{T}])^{\mathrm{T}}\mathbf{R}$ and $(E[\mathbf{X}|\mathbf{T}] - \mathbf{X})^{\mathrm{T}}\mathbf{Z}$ both have mean zero. Thus by direct calculation of their variances the first and the second terms in the displayed above are $O_p(\sqrt{n}K^{-d})$ and $O_p(\sqrt{n}K^{-d+1/2})$, respectively, using that $||\mathbf{Z}^{\mathrm{T}}\mathbf{R}|| = O_p(nK^{-d})$. The third term above is bounded by $||(E[\mathbf{X}|\mathbf{T}] - \mathbf{Z}\boldsymbol{\gamma})|| \cdot ||\mathbf{R}|| = O_p(nK^{-d-d'})$. This completes the proof since we assumed $\sqrt{n}K^{-d-d'} = o(1)$.

Lemma 7.
$$\|(\mathbf{X} - \mathbf{P}_{\mathbf{Z}}\mathbf{X})^{\otimes 2}/n - E[(X - E[X|T])^{\otimes 2}]\| = o_p(1).$$

Proof of Lemma 7. Let $E[\mathbf{X}|\mathbf{T}] = (E[X|T=T_1], \dots, E[X|T=T_n])^{\mathrm{T}}$. Law of large numbers implies

$$\left\| \frac{1}{n} (\mathbf{X} - E[\mathbf{X}|\mathbf{T}])^{\mathrm{T}} (\mathbf{X} - E[\mathbf{X}|\mathbf{T}]) - E[(X - E[X|T])^{\otimes 2}] \right\| = o_p(1).$$
Since $(\mathbf{X} - \mathbf{P}_{\mathbf{Z}}\mathbf{X})^{\mathrm{T}} (\mathbf{X} - \mathbf{P}_{\mathbf{Z}}\mathbf{X}) = (\mathbf{X} - \mathbf{P}_{\mathbf{Z}}\mathbf{X})^{\mathrm{T}}\mathbf{X}$, we have

$$(\mathbf{X} - \mathbf{P}_{\mathbf{Z}}\mathbf{X})^{\mathrm{T}}(\mathbf{X} - \mathbf{P}_{\mathbf{Z}}\mathbf{X}) - (\mathbf{X} - E[\mathbf{X}|\mathbf{T}])^{\mathrm{T}}(\mathbf{X} - E[\mathbf{X}|\mathbf{T}])$$

$$= (\mathbf{X} - \mathbf{P}_{\mathbf{Z}}\mathbf{X})^{\mathrm{T}}\mathbf{X} - (\mathbf{X} - E[\mathbf{X}|\mathbf{T}])^{\mathrm{T}}\mathbf{X} + (\mathbf{X} - E[\mathbf{X}|\mathbf{T}])^{\mathrm{T}}E[\mathbf{X}|\mathbf{T}]$$

$$= (E[\mathbf{X}|\mathbf{T}] - \mathbf{P}_{\mathbf{Z}}\mathbf{X})^{\mathrm{T}}\mathbf{X} + (\mathbf{X} - E[\mathbf{X}|\mathbf{T}])^{\mathrm{T}}E[\mathbf{X}|\mathbf{T}]$$

$$= \mathbf{X}^{\mathrm{T}}\mathbf{Z}(\mathbf{Z}^{\mathrm{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathrm{T}}(\mathbf{X} - E[\mathbf{X}|\mathbf{T}]) + \mathbf{X}^{\mathrm{T}}(\mathbf{I} - \mathbf{P}_{\mathbf{Z}})E[\mathbf{X}|\mathbf{T}] + (\mathbf{X} - E[\mathbf{X}|\mathbf{T}])^{\mathrm{T}}E[\mathbf{X}|\mathbf{T}]$$

$$= \mathbf{X}^{\mathrm{T}}\mathbf{Z}(\mathbf{Z}^{\mathrm{T}}\mathbf{Z})^{-1}\mathbf{Z}^{\mathrm{T}}(\mathbf{X} - E[\mathbf{X}|\mathbf{T}]) + \mathbf{X}^{\mathrm{T}}(\mathbf{I} - \mathbf{P}_{\mathbf{Z}})(E[\mathbf{X}|\mathbf{T}] - \mathbf{Z}\gamma) + (\mathbf{X} - E[\mathbf{X}|\mathbf{T}])^{\mathrm{T}}E[\mathbf{X}|\mathbf{T}],$$

where γ is such that $||E[\mathbf{X}|\mathbf{T}] - \mathbf{Z}\gamma|| = O_p(\sqrt{n}K^{-d'})$, and the last equality is due to that $(\mathbf{I} - \mathbf{P}_{\mathbf{Z}})\mathbf{Z} = 0$. Using $||E[\mathbf{X}|\mathbf{T}] - \mathbf{Z}\gamma|| = O_p(\sqrt{n}K^{-d'})$ and that $||\mathbf{I} - \mathbf{P}_{\mathbf{Z}}||_{op} \leq 1$, the second term above is $O_p(nK^{-d'})$. Since $\mathbf{Z}^{\mathrm{T}}(\mathbf{X} - E[\mathbf{X}|\mathbf{T}])$ and $(\mathbf{X} - E[\mathbf{X}|\mathbf{T}])^{\mathrm{T}}E[\mathbf{X}|\mathbf{T}]$ both have mean zero by the characterization of conditional expectation as a projection, the first term and the third term above are $O_p(\sqrt{nK})$ and $O_p(\sqrt{n})$, respectively. These bounds show that

$$\left\| \frac{1}{n} (\mathbf{X} - \mathbf{P}_{\mathbf{Z}} \mathbf{X})^{\mathrm{T}} (\mathbf{X} - \mathbf{P}_{\mathbf{Z}} \mathbf{X}) - \frac{1}{n} (\mathbf{X} - E[\mathbf{X}|\mathbf{T}])^{\mathrm{T}} (\mathbf{X} - E[\mathbf{X}|\mathbf{T}]) \right\| = o_p(1),$$

which completes the proof.

Lemma 8. $\|(\mathbf{Z} - \mathbf{P_X Z})^{\otimes 2}/n - E[(B(T) - A_0 X)^{\otimes 2}]\| = o_p(1) \text{ if } K^2 \log n/n \to 0; \|(\mathbf{Z} - \mathbf{P_X Z})^{\otimes 2}/n - E[(B(T) - A_0 X)^{\otimes 2}]\| = o_p(K^{-1/2}) \text{ if } K^3 \log n/n \to 0.$

Proof of Lemma 8. Let $\mathbf{X}A_0^{\mathrm{T}} = (A_0X_1, \dots, A_0X_n)^{\mathrm{T}}$. We first show

$$\left\| \frac{1}{n} (\mathbf{Z} - \mathbf{X} A_0^{\mathrm{T}})^{\mathrm{T}} (\mathbf{Z} - \mathbf{X} A_0^{\mathrm{T}}) - E[(B(T) - A_0 X)^{\otimes 2}] \right\| = o_p(1).$$
 (30)

Since $|B_k(t)B_{k'}(t)| \leq K$ and $E|B_k(T)B_{k'}(T)|^2 \leq CK$ (because B_k is bounded by \sqrt{K} and it has a support on an interval with length O(1/K)), by Bernstein's inequality,

$$P\left(\left|\frac{1}{n}\sum_{i}B_{k}(T_{i})B_{k'}(T_{i}) - E[B_{k}(T)B_{k'}(T)]\right| > t\right) \le C\exp\{-C\frac{n^{2}t^{2}}{nK + nKt}\},$$

and thus

$$\|\mathbf{Z}^{\otimes 2}/n - E[B(T)^{\otimes 2}]\| = o_p(1).$$

if $K \log n/n \to 0$.

We have $||X_{ij}B_k(T_i)||_{\psi_1} \leq C||X_{ij}||_{\psi_2}||B_k(T_i)||_{\psi_2} \leq C\sqrt{K}$, where ψ_1 and ψ_2 are the sub-exponential norm and the sub-gaussian norm, respectively (see for example Definition 5.7 and 5.13 in Vershynin (2011)). Again by Bernstein's inequality,

$$P\left(\left|\frac{1}{n}\sum_{i}X_{ij}B_{k}(T_{i}) - E[X_{ij}B_{k}(T_{i})]\right| > t\right) \leq C\exp\left\{-C\frac{nt^{2}}{K + \sqrt{Kt}}\right\},$$

and thus

$$\|\mathbf{Z}^{\mathrm{T}}\mathbf{X}A_{0}/n - E[B(T)XA_{0}^{\mathrm{T}}]\| = o_{p}(1),$$

if $K^2 \log n/n \to 0$.

Furthermore,

$$||A_0(\mathbf{X}^{\mathrm{T}}\mathbf{X}/n - E[XX^{\mathrm{T}}])A_0^{\mathrm{T}}|| = o_p(1)$$

by law of large numbers and that $||A_0||_{op}$ is bounded. The latter can be shown as follows. Since $A_0 = E[B(T)X^{\mathrm{T}}](E[XX^{\mathrm{T}}])^{-1}$, we only need to show $||E[B(T)X^{\mathrm{T}}]||_{op}$ is bounded. In turn, this is seen by $|\mathbf{a}^{\mathrm{T}}E[B(T)X^{\mathrm{T}}]\mathbf{b}| \leq (\mathbf{a}^{\mathrm{T}}E[B(T)B(T)^{\mathrm{T}}]\mathbf{a})^{1/2}(\mathbf{b}^{\mathrm{T}}E[XX^{\mathrm{T}}]\mathbf{b})^{1/2}$. Thus we complete the proof of (30).

Since
$$(\mathbf{Z} - \mathbf{P}_{\mathbf{X}} \mathbf{Z})^{\mathrm{T}} (\mathbf{Z} - \mathbf{P}_{\mathbf{X}} \mathbf{Z}) = (\mathbf{Z} - \mathbf{P}_{\mathbf{X}} \mathbf{Z})^{\mathrm{T}} \mathbf{Z}$$
, we have
$$(\mathbf{Z} - \mathbf{P}_{\mathbf{X}} \mathbf{Z})^{\mathrm{T}} (\mathbf{Z} - \mathbf{P}_{\mathbf{X}} \mathbf{Z}) - (\mathbf{Z} - \mathbf{X} A_0^{\mathrm{T}})^{\mathrm{T}} (\mathbf{Z} - \mathbf{X} A_0^{\mathrm{T}})$$

$$= (\mathbf{Z} - \mathbf{P}_{\mathbf{X}} \mathbf{Z})^{\mathrm{T}} \mathbf{Z} - (\mathbf{Z} - \mathbf{X} A_0^{\mathrm{T}})^{\mathrm{T}} \mathbf{Z} + (\mathbf{Z} - \mathbf{X} A_0^{\mathrm{T}})^{\mathrm{T}} \mathbf{X} A_0^{\mathrm{T}}$$

$$= (\mathbf{X} A_0^{\mathrm{T}} - \mathbf{P}_{\mathbf{X}} \mathbf{Z})^{\mathrm{T}} \mathbf{Z} + (\mathbf{Z} - \mathbf{X} A_0^{\mathrm{T}})^{\mathrm{T}} \mathbf{X} A_0^{\mathrm{T}}$$

$$= -\mathbf{Z}^{\mathrm{T}} \mathbf{X} (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} (\mathbf{Z} - \mathbf{X} A_0^{\mathrm{T}}) + (\mathbf{Z} - \mathbf{X} A_0^{\mathrm{T}})^{\mathrm{T}} \mathbf{X} A_0^{\mathrm{T}}$$

Since $\mathbf{X}^{\mathrm{T}}(\mathbf{Z} - \mathbf{X}A_0^{\mathrm{T}})$ has mean zero, and $\|\mathbf{Z}^{\mathrm{T}}\mathbf{X}\| = O_p(n)$ as shown in the proof of Lemma 3, the two terms above are $O_p(\sqrt{nK})$. Thus

$$\left\| \frac{1}{n} (\mathbf{Z} - \mathbf{P}_{\mathbf{X}} \mathbf{Z})^{\mathrm{T}} (\mathbf{Z} - \mathbf{P}_{\mathbf{X}} \mathbf{Z}) - \frac{1}{n} (\mathbf{Z} - \mathbf{X} A_0^{\mathrm{T}})^{\mathrm{T}} (\mathbf{Z} - \mathbf{X} A_0^{\mathrm{T}}) \right\| = o_p(1),$$

which completes the proof.

Lemma 9.

$$\left(\mathbf{a}^{\mathrm{T}}\left(nE[(B(T)-A_0X)^{\otimes 2}]\right)^{-1}\mathbf{a}\right)^{-1/2}\mathbf{a}^{\mathrm{T}}\left((\mathbf{Z}-\mathbf{P_XZ})^{\mathrm{T}}(\mathbf{Z}-\mathbf{P_XZ})\right)^{-1}(\mathbf{Z}-\mathbf{P_XZ})^{\mathrm{T}}\boldsymbol{\epsilon} \stackrel{d}{\to} N(0,1).$$

Proof of Lemma 9. Obviously $\mathbf{a}^{\mathrm{T}}(nE[(B(T)-A_0X)^{\otimes 2}])^{-1}\mathbf{a} \approx 1/n$ by Lemma 1. We have

$$\mathbf{a}^T((\mathbf{Z} - \mathbf{P_XZ})^T(\mathbf{Z} - \mathbf{P_XZ}))^{-1}(\mathbf{Z} - \mathbf{P_XZ})^T\boldsymbol{\epsilon} - \mathbf{a}^T((\mathbf{Z} - \mathbf{P_XZ})^T(\mathbf{Z} - \mathbf{P_XZ}))^{-1}(\mathbf{Z} - \mathbf{X}A_0^T)^T\boldsymbol{\epsilon}$$

$$= \mathbf{a}^{\mathrm{T}}((\mathbf{Z} - \mathbf{P}_{\mathbf{X}}\mathbf{Z})^{\mathrm{T}}(\mathbf{Z} - \mathbf{P}_{\mathbf{X}}\mathbf{Z}))^{-1}(\mathbf{X}A_{0}^{\mathrm{T}} - \mathbf{P}_{\mathbf{X}}\mathbf{Z})^{\mathrm{T}}\boldsymbol{\epsilon}$$

$$= \mathbf{a}^{\mathrm{T}}((\mathbf{Z} - \mathbf{P}_{\mathbf{X}}\mathbf{Z})^{\mathrm{T}}(\mathbf{Z} - \mathbf{P}_{\mathbf{X}}\mathbf{Z}))^{-1}(\mathbf{X}A_{0}^{\mathrm{T}} - \mathbf{Z})^{\mathrm{T}}\mathbf{X}(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\boldsymbol{\epsilon}$$

$$= O_{p}(\sqrt{K}/n) = o_{p}(n^{-1/2}),$$

since its (conditional) second moment is

$$\sigma^2 \left\| \mathbf{a}^{\mathrm{T}} ((\mathbf{Z} - \mathbf{P}_{\mathbf{X}} \mathbf{Z})^{\mathrm{T}} (\mathbf{Z} - \mathbf{P}_{\mathbf{X}} \mathbf{Z}))^{-1} (\mathbf{X} A_0^{\mathrm{T}} - \mathbf{Z})^{\mathrm{T}} \mathbf{X} (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1/2} \right\|^2 = O_p(K/n^2),$$

using Lemma 8 and that $\|(\mathbf{X}A_0^{\mathrm{T}} - \mathbf{Z})^{\mathrm{T}}\mathbf{X}\| = O_p(\sqrt{nK})$ (note $(\mathbf{X}A_0^{\mathrm{T}} - \mathbf{Z})^{\mathrm{T}}\mathbf{X}$ has mean zero). Furthermore,

$$\mathbf{a}^{\mathrm{T}}((\mathbf{Z} - \mathbf{P}_{\mathbf{X}}\mathbf{Z})^{\mathrm{T}}(\mathbf{Z} - \mathbf{P}_{\mathbf{X}}\mathbf{Z}))^{-1}(\mathbf{Z} - \mathbf{X}A_{0}^{\mathrm{T}})^{\mathrm{T}}\boldsymbol{\epsilon} - \mathbf{a}^{\mathrm{T}}(nE[(B(T) - A_{0}X)^{\otimes 2}])^{-1}(\mathbf{Z} - \mathbf{X}A_{0}^{\mathrm{T}})^{\mathrm{T}}\boldsymbol{\epsilon}$$

$$= \mathbf{a}^{\mathrm{T}}((\mathbf{Z} - \mathbf{P}_{\mathbf{X}}\mathbf{Z})^{\mathrm{T}}(\mathbf{Z} - \mathbf{P}_{\mathbf{X}}\mathbf{Z}))^{-1}\left(E[(B(T) - A_{0}X)^{\otimes 2}] - (\mathbf{Z} - \mathbf{P}_{\mathbf{X}}\mathbf{Z})^{\mathrm{T}}(\mathbf{Z} - \mathbf{P}_{\mathbf{X}}\mathbf{Z})/n\right)$$

$$(E[(B(T) - A_{0}X)^{\otimes 2}])^{-1}(\mathbf{Z} - \mathbf{X}A_{0})^{\mathrm{T}}\boldsymbol{\epsilon}$$

$$= o_{p}(n^{-1/2}),$$

using again Lemma 8 and that $\|\mathbf{Z} - \mathbf{X}A_0^{\mathrm{T}}\| \leq \|\mathbf{Z}\| + \|\mathbf{X}\| \|A_0\|_{op} = O_p(\sqrt{nK})$. The proof would be complete if we show

$$(\sigma^2 \mathbf{a}^{\mathrm{T}} (nE[(B(T) - A_0 X)^{\otimes 2}])^{-1} \mathbf{a})^{-1/2} \mathbf{a}^{\mathrm{T}} (E[(B(T) - A_0 X)^{\otimes 2}])^{-1} (\mathbf{Z} - \mathbf{X} A_0^{\mathrm{T}})^{\mathrm{T}} \epsilon \to N(0, 1).$$

By Lemma 3.1 of Huang (2003), we only need to show that

$$\frac{\max_i \alpha_i^2}{\sum_i \alpha_i^2} = o_p(1),$$

where $\alpha_i = \mathbf{a}^T (E[(B(T) - A_0 X)^{\otimes 2}])^{-1} (B(T_i) - A_0 X_i)$. It is easy to see that $\sum_i \alpha_i^2$ is of order n while $|\alpha_i| \leq ||B(T_i) - A_0 X_i|| = O_p(\sqrt{K})$ since $B_k(T_i)$ is bounded by \sqrt{K} and only at most s basis functions B_k are nonzero at the point T_i (s is the order of the splines), thus the above displayed is verified and the proof of the Lemma is complete.

Proof of Theorem 1. Most of the results are derived based on the expression (11). (20) is standard and well-known and thus omitted from the proof. The stochastic

terms (12) are order $O_p(n^{-1/2})$ whether or not **a** has bounded support, by (17) and Lemmas 3 and 7. The first bias term in (18) is dealt with in Lemma 4 while the second bias term in (18) is dealt with in Lemmas 3, 6 and 7 which is $o_p(n^{-1/2})$ whether **a** has bounded support or not. These proved (21) and (22).

When θ_0 is chosen as in (9), the bias term is of order $o_p(n^{-1/2})$ by Lemma 5 which established (23).

Asymptotic normality (24) is obtained by Lemma 9 and (8) and noting that the second term in the bias (18) is $o_p(n^{-1/2})$. The equivalence between (24) and (25) when **a** has bounded support is due to that (17) is $o_p(1/n)$ by Lemmas 3 and 7. When θ_0 is chosen as in (9), the bias term can be removed from (24) and (25) since the bias term is of order $o_p(n^{-1/2})$ by Lemma 5.