

Principal Component Analysis (PCA)

□ PCA: Data Analysis Technique

PCA

PCA: Introduction

- □ Variance of a random variable fluctuating about its mean value
 - Average of the square of the fluctuations
- Covariance for a pair of random variables, each fluctuating about its mean value
 - Average of product of fluctuations
- □ N random variables: Covariance matrix
 - N x N symmetric matrix
 - Diagonal elements are variances of individual random variables

PCA

3

PCA (optional)

- Covariance matrix
 - \blacksquare Let $~X_1~X_2...X_M$ be a set of M $~N\times 1$ vectors and let be their $~\overline{\mathbf{x}}$ mean vector

$$\mathbf{x}_{i} = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{iN} \end{bmatrix} \qquad \overline{\mathbf{x}} = \frac{1}{M} \sum_{i=1}^{M} \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{iN} \end{bmatrix}$$

- $\hfill\Box$ Construct a matrix $X\!=\![x_1\!-\!\overline{x}\ x_2\!-\!\overline{x}\ldots\,x_{\!\scriptscriptstyle M}\!-\!\overline{x}]$
- For the above set of observations, N x N covariance matrix can be computed as follows $\left[(x, -\overline{x})^T \right]$

puted as follows
$$C = XX^{T} = \begin{bmatrix} x_{1} - \overline{x} & x_{2} - \overline{x} \dots & x_{M} - \overline{x} \end{bmatrix} \begin{bmatrix} (x_{1} - \overline{x})^{T} \\ (x_{2} - \overline{x})^{T} \\ \vdots \\ (x_{M} - \overline{x})^{T} \end{bmatrix}$$

PCA

PCA

$$Av_i = \lambda_i v_i$$

- □ Principal eigenvector
 - Eigen vector corresponding to maximal eigenvalue

Principal eigenvector of the covariance matrix of the data >> Direction of maximum variance of data

PCA

5

PCA (optional)

Principal eigenvector of the covariance matrix of the data >> Direction of maximum variance of data

Find the direction w^* for which the variance c_{ONOC} is maximized

$$w^* = arg max_w var(w^TX)$$

subject to: $w^T w = 1$

$$var\left(\boldsymbol{w}^{T}\boldsymbol{X}\right) = \left(\boldsymbol{w}^{T}\boldsymbol{X}\right)\!\!\left(\boldsymbol{w}^{T}\boldsymbol{X}\right)^{\!T} = \boldsymbol{w}^{T}\!\left(\boldsymbol{X}\boldsymbol{X}^{T}\right)\!\!\boldsymbol{w} = \boldsymbol{w}^{T}\boldsymbol{C}\boldsymbol{w}$$

PCA

PCA

□ The optimal direction: The direction of maximum variance of the projected data

PCA

7

PCA (optional)

 Solving the constrained optimization (Lagrangian Multiplier Method)

 $L(\mathbf{w}, \lambda_1) = \mathbf{w}^{\mathsf{T}} \mathbf{C} \mathbf{w} + \lambda_1 (1 - \mathbf{w}^{\mathsf{T}} \mathbf{w})$

Computing the derivative of L relative to w and setting to zero $L(w, \lambda_1) = w^T C w + \lambda_1 (1 - w^T w)$

 $2Cw - 2\lambda_1 w >> Cw = \lambda_1 w$

- □ The above is the eigenvalue problem
- $\hfill \square$ Multiplying both the eqn. by $\hfill w^T$: $\hfill w^T C w = \lambda_1$
- ☐ Eigenvalue determines the projection variance of the corresponding eigenvector

PCA

PCA: Applications

- □ General Dimensionality Reduction
 - Feature vector
- □ Visualization of High-dimensional Data
 - Feature space visualization

PCA

11

Thank You!