CSE/ECE 848 Introduction to Evolutionary Computation

Module 3, Lecture 15, Part 3

Machine Learning Enhanced
Evolutionary Computation

Kalyanmoy Deb, ECE
Koenig Endowed Chair Professor

Content

- Machine learning to improve EC
- > Initial population generation
 - Create a uniformly distributed population in the feasible search space
- ML-augmented EC operators
 - Recombination: Find patterns in children using ML and share them with children
 - Mutation: Learn regions of less-dense region and create mutated points there or find most beneficial variable to mutate
- > Introduce new operators based on ML
- Better surrogates using Auto-Encoders
- > History based update operator ("Innovized" repair)

"Innovized" Repair Operator

- Targets: Current best pop members (output)
- Past clustered pop members (Input)
- Train an ANN to learn the relationship
- Apply Trained ML to repair an offspring pop member (input) to create an updated member (output)
- Apply after a few generations

Reference: K. Deb, S. Mittal, D. K. Saxena and E. Goodman (in press). Embedding a Repair Operator in Evolutionary Single and Multi-Objective Algorithms – An Exploitation-Exploration Perspective. *Proc. of Evolutionary Multi-criterion optimization* (EMO-2021). Springer. 3

EC with IR Operator

Algorithm 1 Generation t of EA with IR operator

Require: Parent population P_t , Archive A_t .

1: $A_t \leftarrow A_T \bigcup P_t \backslash P_{t-t_{past}}$

% Archive Update

- 2: $P_{mating} \leftarrow \text{Tournament Selection on } P_t$
- 3: $Q_t \leftarrow \text{Crossover and mutation on } P_{mating}$
- Choose Diverse 4: $T \leftarrow \text{Variable vector(s)}$ of target solution(s) identified from P_t solutions
- 5: $X \leftarrow \text{All variable vectors in } A_t$
- 6: $D \leftarrow \text{Map the solutions in } X \text{ to } T$
- 7: $D \leftarrow Dynamic normalization of D$

%using equation 1

- 8: $Model \leftarrow Train the ANN using D$
- 9: $Q_t \leftarrow \text{Repair randomly selected } 50\% \text{ offsprings } Q_t \text{ using } Model$
- 10: Evaluate Q_t
- 11: $P_{t+1} \leftarrow \text{Survival Selection on } P_t \bigcup Q_t$
- 12: **return** Next Parent Population P_{t+1}

$$x_k^{\min} = 0.5(x_k^{l,t} + x_k^l), \quad x_k^{\max} = 0.5(x_k^{u,t} + x_k^u).$$

EC with IR Operator Results

IR does not perform well

Multiple Targets from Population

Multi-Modal Optimization

- Cluster-based identification of multiple but diverse targets (Lecture 4, Module 16, Part 3)
- > Find multiple optimal solutions in one run

(a) Himmelblau Problem (n=2)

(b) MMP Problem (n = 15)

Multi-Objective Optimization

- ➤ Idea applicable to multi-objective optimization (Lecture 4, Module 17, Parts 1-3)
- > Multiple Targets based on reference lines

Enhanced IR with Random Forest

- > ANN is replaced with RF
- > IR2 is slight modification

Problems	NSGA-II-IR-ANN	NSGA-II-IR-RF	p-value
ZDT1	0.679193	0.680198	8.98E-11
ZDT2	0.345448	0.346683	1.33E-11
ZDT3	0.535027	0.535561	1.62E-11
ZDT4	0.680704	0.681041	4.93E-04
ZDT6	0.333949	0.304714	1.40E-05

(a) WFG4 (M = 3)

(b) Modified WFG4 (M=3)

Gear-box Design with 28 variables, 90 constraints 63.3% Reduction in FEs

- RF performs much better than ANN
- MOEA/D's performance improves with IR2

Mittal, S., Saxena, D., <u>Deb, K.</u> and Goodman, E. (2020). *Enhanced Innovized Repair Operator for Evolutionary Multi- and Many-objective Optimization*. COIN Report No. 2020020. https://www.coin-lab.org

- Machine learning methods can be used to improve performance of EC and EC's application
- Learn from past populations about progress of solutions
 - > Find target solutions from current population
 - > Map them with past solutions
 - > Train an ML system
- Use the learned ML to update offspring created by genetic operators
- Better performance in uni-modal, multi-modal and multiobjective problems
- IR concept implemented successfully with various EC methods