QUALIDADE EM SISTEMAS DE VÍDEOS DIGITAIS

Visão geral das ferramentas Merge, Skip & DIS

Érick Moreira Heitor Almeida Marcos Bueno Ruhan Conceição Thiago Bubolz

INTRODUÇÃO

Vídeos 3D e o padrão HEVC

VÍDEOS 3D — MULTIVIEW PLUS DEPTH (MVD)

- Possuem diversas vistas
- Quadros de textura (cores)
- Mapas de profundidade
 - Utilizado no processo de síntese de vist

VÍDEOS 3D — MULTIVIEW PLUS DEPTH (MVD)

- Possuem diversas vistas
- Quadros de textura (cores)
- Mapas de profundidade
 - Utilizado no processo de síntese de vist

\/1

<u>VÍDEOS 3D — MULTIVIEW PLUS DEPTH (MVD)</u>

- Possuem diversas vistas
- Quadros de textura (cores)
- Mapas de profundidade
 - Utilizado no processo de síntese de vist

V1

<u>VÍDEOS 3D — MULTIVIEW PLUS DEPTH (MVD)</u>

- Possuem diversas vistas
- Quadros de textura (cores)
- Mapas de profundidade
 - Utilizado no processo de síntese de vista

- Lançado em 2013
- Estado-da-arte em codificação de vídeos (MPEG)
- Atinge o dobro da taxa de compressão (H.264/AVC)
- Complexidade elevada
- Possui diversas extensões
 - Range Extension (RExt)
 - Scalable Coding (SHVC)
 - Screen Content (SCC)
 - 3D (3D-HEVC)

- Lançado em 2013
- Estado-da-arte em codificação de vídeos (MPEG)
- Atinge o dobro da taxa de compressão (H.264/AVC)
- Complexidade elevada
- Possui diversas extensões
 - Range Extension (RExt)
 - Scalable Coding (SHVC)
 - Screen Content (SCC)
 - 3D (3D-HEVC)

- Lançado em 2013
- Estado-da-arte em codificação de vídeos (MPEG)
- Atinge o dobro da taxa de compressão (H.264/AVC)
- Complexidade elevada
- Possui diversas extensões
 - Range Extension (RExt)
 - Scalable Coding (SHVC)
 - Screen Content (SCC)
 - 3D (3D-HEVC)

- Lançado em 2013
- Estado-da-arte em codificação de vídeos (MPEG)
- Atinge o dobro da taxa de compressão (H.264/AVC)
- Complexidade elevada
- Possui diversas extensões
 - Range Extension (RExt)
 - Scalable Coding (SHVC)
 - Screen Content (SCC)
 - 3D (3D-HEVC)

- Lançado em 2013
- Estado-da-arte em codificação de vídeos (MPEG)
- Atinge o dobro da taxa de compressão (H.264/AVC)
- Complexidade elevada
- Possui diversas extensões
 - Range Extension (RExt)
 - Scalable Coding (SHVC)
 - Screen Content (SCC)
 - 3D (3D-HEVC)

- Cada imagem é dividida em Coding Tree Units (CTUs)
- · Cada CTU é dividida em Coding Units (CUs)
- Cada CU é dividida em Prediction Units (PUs)
- Predição é realizada a nível de PUs
 - Predição Intra e Interquadros

- Cada imagem é dividida em Coding Tree Units (CTUs)
- Cada CTU é dividida em Coding Units (CUs)
- Cada CU é dividida em Prediction Units (PUs)
- Predição é realizada a nível de PUs
 - Predição Intra e Interquadros

- Cada imagem é dividida em Coding Tree Units (CTUs)
- Cada CTU é dividida em Coding Units (CUs)
- Cada CU é dividida em Prediction Units (PUs)
- Predição é realizada a nível de PUs
 - Predição Intra e Interquadros

- Cada imagem é dividida em Coding Tree Units (CTUs)
- Cada CTU é dividida em Coding Units (CUs)
- Cada CU é dividida em Prediction Units (PUs)
- Predição é realizada a nível de PUs
 - Predição Intra e Interquadros

Predição intraquadro: explora redundância espacial

Predição interquadros: explora redundância temporal

Predição intervistas: explora redundância entre vistas (não há no HEVC)

FERRAMENTAS DE CODIFICAÇÃO

- HEVC
 - Merge
 - Skip
 - etc
- 3D-HEVC
 - Illumination Compensation (IC)
 - Depth-Based Block Partitioning (DBBP)
 - Depth Modeling Mode (DMM)
 - Depth Intra Skip (DIS)

FERRAMENTAS DE CODIFICAÇÃO

- HEVC
 - Merge
 - Skip
 - etc
- 3D-HEVC
 - Illumination Compensation (IC)
 - Depth-Based Block Partitioning (DBBP)
 - Depth Modeling Mode (DMM)
 - Depth Intra Skip (DIS)

Visão geral

- Ferramenta de codificação *Interquadros* e *Intervistas*
- Pode ser aplicado em textura e mapa de profundidade
- Possui algumas pequenas diferenças entre:
 - HEVC
 - 3D-HEVC (Textura)
 - 3D-HEVC (Profundidade)

- Ferramenta de codificação *Interquadros* e *Intervistas*
- Pode ser aplicado em textura e mapa de profundidade
- Possui algumas pequenas diferenças entre:
 - HEVC
 - 3D-HEVC (Textura)
 - 3D-HEVC (Profundidade)

- Ferramenta de codificação *Interquadros* e *Intervistas*
- Pode ser aplicado em textura e mapa de profundidade
- Possui algumas pequenas diferenças entre:
 - HEVC
 - 3D-HEVC (Textura)
 - 3D-HEVC (Profundidade)

Antes de descrever a ferramenta (Merge), é importante comentar sobre a predição Interquadros

PREDIÇÃO INTERQUADROS

 Cada PU assinalada com predição Interquadros possui um vetor de movimento associado

PREDIÇÃO INTERQUADROS

- Para codificar uma PU com modo *Inter*, deve constar no bitstream:
 - O modo (Inter)
 - O particionamento da PU
 - Vetor de movimento: X
 - Vetor de movimento: Y
 - Vetor de movimento: Quadro de referência
 - Resíduo da codificação

PREDIÇÃO INTERQUADROS

- Para codificar uma PU com modo *Inter*, deve constar no bitstream:
 - O modo (Inter)
 - O particionamento da PU
 - Vetor de movimento: X
 - Vetor de movimento: Y
 - Vetor de movimento: Quadro de referência
 - Resíduo da codificação

- Blocos vizinhos (espacial e temporalmente) tendem a possuir vetores de movimento semelhantes
- Neste cenário entra o modo Merge, o qual possibilita herdar para o bloco atual um dos vetores de movimento dos blocos vizinhos
- É criada uma lista com todos os vetores de movimentos possíveis de serem herdados (essa lista também é criada no *decoder*)
 - Merge Candidates List (MCL)

- Blocos vizinhos (espacial e temporalmente) tendem a possuir vetores de movimento semelhantes
- Neste cenário entra o modo Merge, o qual possibilita herdar para o bloco atual um dos vetores de movimento dos blocos vizinhos
- É criada uma lista com todos os vetores de movimentos possíveis de serem herdados (essa lista também é criada no *decoder*)
 - Merge Candidates List (MCL)

- Blocos vizinhos (espacial e temporalmente) tendem a possuir vetores de movimento semelhantes
- Neste cenário entra o modo Merge, o qual possibilita herdar para o bloco atual um dos vetores de movimento dos blocos vizinhos

• É criada uma lista com todos os vetores de movimentos possíveis de serem herdados (essa lista também é criada no *decoder*)

Merge Candidates List (MCL)

- Para codificar uma PU com modo Merge, deve constar no bitstream:
 - O modo (Merge)
 - O particionamento da PU
 - Índice da MCL
 - Vetor de movimento: X
 - Vetor de movimento: Y
 - Vetor de movimento: Quadro de referência
 - Resíduo da codificação

 Desta forma, reduz-se a quantidade de informação a ser transmitida ao decodificador

Visão geral

SKIP

- Caso especial do modo Merge.
- Quando o bloco predito pelo modo Merge é tão semelhante que a codificação gera um resíduo desprezível, este é descartado: Merge -> Skip

SKIP

- Caso especial do modo Merge.
- Quando o bloco predito pelo modo Merge é tão semelhante que a codificação gera um resíduo desprezível, este é descartado: Merge -> Skip

SKIP

- Para codificar uma PU com modo Skip, deve constar no bitstream:
 - O modo (Skip)
 - O particionamento da PU
 - Índice da MCL
 - Vetor de movimento: X
 - Vetor de movimento: Y
 - Vetor de movimento: Quadro de referência
 - Resíduo da codificação

Depth Intra Skip - Visão geral

- Os modos Merge e Skip foram propostos no HEVC, e, visto que o 3D-HEVC é uma extensão deste padrão, este herda tais ferramentas daquele.
- Além disso, outras ferramentas são propostas, tal como o DIS

- Os modos Merge e Skip foram propostos no HEVC, e, visto que o 3D-HEVC é uma extensão deste padrão, este herda tais ferramentas daquele.
- Além disso, outras ferramentas são propostas, tal como o Depth Intra Skip

- Exclusivo para mapas de profundidade (Depth Intra Skip)
- · Realiza predição utilizando informação intraquadro (Depth Intra Skip)
- Não transmite informação residual (Depth Intra Skip)

- Exclusivo para mapas de profundidade (Depth Intra Skip)
- Realiza predição utilizando informação intraquadro (Depth Intra Skip)
- · Não transmite informação residual (Depth Intra Skip)

- Exclusivo para mapas de profundidade (Depth Intra Skip)
- Realiza predição utilizando informação intraquadro (Depth Intra Skip)
- Não transmite informação residual (Depth Intra Skip)

- 2 modos direcionais do HEVC
- 2 modos de valor de profundidade único

- Para codificar uma PU com modo DIS, deve constar no bitstream:
 - O modo (DIS)
 - Modo da predição
 - Resíduo da codificação

- Utilizando QP 34:
 - Os modos Merge/Skip ocorrem em cerca de 40% a 70% dos blocos codificados em mapas de profundidade*
 - O modo DIS ocorre entre 10% a 30%*
- Os modos Merge e Skip proporcionam uma redução média de BD-rate entre 7,2% a 8,0%**
- Conclui-se que tais modos são de grande relevância para o HEVC/3D-HEVC

- Utilizando QP 34:
 - Os modos Merge/Skip ocorrem em cerca de 40% a 70% dos blocos codificados em mapas de profundidade*
 - O modo DIS ocorre entre 10% a 30%*
- Os modos Merge e Skip proporcionam uma redução média de BD-rate entre 7,2% a 8,0%**
- Conclui-se que tais modos são de grande relevância para o HEVC/3D-HEVC

*R. Conceição - Early Skip/DIS: Úma Heurística para Redução de Complexidade no Codificador de Mapas de Profundidade do 3D-HEVC ** V. Sze, M. Budagavi, G. Sullivan - High Efficiency Video Coding (HEVC): Algorithms and Architectures

- Utilizando QP 34:
 - Os modos Merge/Skip ocorrem em cerca de 40% a 70% dos blocos codificados em mapas de profundidade*
 - O modo DIS ocorre entre 10% a 30%*
- Os modos Merge e Skip proporcionam uma redução média de BD-rate entre 7,2% a 8,0%**
- Conclui-se que tais modos são de grande relevância para o HEVC/3D-HEVC

OBRIGADO, PERGUNTAS?

Visão geral das ferramentas Merge, Skip & DIS

Érick Moreira Heitor Almeida Marcos Bueno Ruhan Conceição Thiago Bubolz