Задания

28 апреля 2017 г.

- 1. Определите структуру монады на функторе $Term_{\Sigma}$ для любой сигнатуры Σ .
- 2. Определите регулярную теорию, моделями которой являются малые категории.
- 3. Докажите, что лемму о подстановке для \wedge : для любых формул φ и ψ , таких что $FV(\varphi) \cup FV(\psi) \subseteq \{x_1, \dots x_n\}$, и всех термов $t_1, \dots t_k$ верно, что $[\![(\varphi \wedge \psi)[x_1 := t_1, \dots x_n := t_n]\!]\!]$ является пулбэком $[\![\varphi \wedge \psi]\!]$ вдоль $\langle t_1, \dots t_n \rangle$. Можно пользоваться тем, что это верно для φ и ψ (по индукционной гипотезе).
- 4. Пусть ${\bf C}$ конечно полная категория. Тогда для любого морфизма $f:A\to B$ можно определть функтор $f^*:Sub(B)\to Sub(A)$, где Sub(X) полная подкатегория ${\bf C}/X$, объекты которой это стрелки $Y\to X$, являющиеся мономорфизмами. Докажите, что следующие утверждения эквивалентны:
 - (a) У любого морфизма $f: A \to B$ существует образ $im f \hookrightarrow B$.
 - (b) Для любого морфизма $f:A\to B$ у функтора f^* есть левый сопряженный функтор $\exists_f: Sub(A)\to Sub(B)$.