Una dualidad topológica para conjuntos parcialmente ordenados

Luciano González, Ramon Jansana y Sergio Celani

Resumen

En este trabajo presentamos una dualidad topológica para conjuntos parcialmente ordenados (posets). Un concepto fundamental a tener en cuenta en esta dualidad es la de orden-filtro sobre un poset. Dado un conjunto parcialmente ordenado P, un subconjunto no vacío F de P es llamado orden-filtro si (1) dados $a,b \in P$ tal que $a \le b$ y $a \in F$ entonces, $b \in F$ (a esta clase de subconjuntos se la denomina conjuntos crecientes); (2) si $a,b \in F$ entonces, existe un elemento $c \in F$ tal que $c \le a$ y $c \le b$. Fi(P) denota la familia de todos los orden-filtros de P.

Consideramos la categoría \mathcal{C} cuyos objetos son los conjuntos parcialmente ordenados y los morfismos son las funciones crecientes entre posets tales que la imagen inversa de todo orden-filtro es un orden-filtro.

Dado un espacio topológico $\langle X, \mathcal{T} \rangle$, un subconjunto F de X se dice filtro si satisface las condiciones (1) y (2) anteriores con respeto al cuasi-orden especialización del espacio X, el cual denotamos por \sqsubseteq . KOF(X) denota la familia de todos los filtros abiertos compactos del espacio X. Diremos que un espacio topológico $\langle X, \mathcal{T} \rangle$ es un P-espacio si se cumple las siguientes condiciones:

- 1. X es un espacio sober;
- 2. KOF(X) forman una base del espacio X.

Dados dos P-espacios X e Y, diremos que una función $f: X \to Y$ es F-continua si para cada $U \in KOF(Y)$, $f^{-1}(U) \in KOF(X)$. También, decimos que f^{-1} preserva filtros abiertos compactos. Denotaremos por \mathcal{D} la categoría cuyos objetos son los P-espacio y cuyo morfismos son las funciones F-continuas entre P-espacios.

Dado un poset P, su P-espacio dual es $\langle Fi(P), \mathcal{T} \rangle$ donde \mathcal{T} es la topología Scott del poset $\langle Fi(P), \subseteq \rangle$. Ahora, dado un P-espacio X, el conjunto

parcialmente ordenado asociado a él es KOF(X).

Una aplicación de la equivalencia dual entre posets y P-espacios antes descrita es la de proveer una construcción topologica de las extensiones canónicas de conjuntos parcialmente ordenados. Además, también dicha dualidad es útil para caracterizar topologicamente las funciones n-arias sobre posets que en cada argumento son crecientes o decrecientes.