

FHGR MSc Data Visualization

Consultancy Project 1 - 05.07.2024

Tamara Nyffeler, Sharon Reiser, Serge Pellegatta

## Inhalt

- **AUSGANGSLAGE** 01
- **DATENBASIS** 02
- EYE TRACKING DASHBOARD 03
- **AUSBLICK** 04

## 01

## Ausgangslage



#### **AUFGABE**

Vergleich von Metrokarten aus 24 Städten, dargestellt in Grau und Farbe



#### **ZIELSETZUNG**

Visualisierungstool für die Exploration aus verschiedenen Blickwinkeln



#### HERAUSFORDERUNG

Harmonisierung von Benutzerfreundlichkeit, korrekter Datenaggregation und visuellem Design



#### Vergleich zwischen farbigen und graustufen Metrokarten

- Ausgangsfragen
  - Welche Pfade wählen die Proband:innen?
  - An welchen visuellen Punkten verweilen die Proband:innen wie lange?
  - Sind farbige Metrokarten einfacher zu lesen als graue?
- Aufgabe
  - Visulisierungswerkzeug zur Untersuchung solcher Fragen

## Zielsetzung

"Das angestrebte Projektziel bis Juli 2024 besteht darin, ein ansprechendes webbasiertes Dashboard zu entwickeln. Dieses soll bereits erfasste Eye Tracking Daten durch vielfältige Visualisierungsmöglichkeiten darstellen. Das Hauptziel des Dashboards besteht darin, die zugrunde liegenden Eye Tracking Daten aus verschiedenen Blickwinkeln zu betrachten und zu analysieren."

Auszug aus Projektauftrag vom 11.03.2024



#### Harmonisierung von Ästhetik und Funktionalität

• Die Optimierung eines Aspekts kann zu Einschränkungen des anderen führen



02

## Datenbasis



**ROHDATEN** 

Eye Tracking Daten verschiedener Probanden aus einer Studie



**KPI BERECHNUNG** 

Aufbereitung der KPI's für die Visualisierung im Dashboard



**CITY MAPS** 

Städtekarte in Grau und Farbe als Grundlage

## Rohdaten

- Daten stammen aus einer Studie von Herrn Dr. Burch
- Aufzeichnung der Blickbewegungen beim Lösen einer visuellen Aufgabe

| Timestamp | StimuliName  | FixationIndex | <b>FixationDuration</b> | <b>MappedFixationPointX</b> | <b>MappedFixationPointY</b> | user | description |
|-----------|--------------|---------------|-------------------------|-----------------------------|-----------------------------|------|-------------|
| 2586      | 01_Antwerper | 9             | 250                     | 1151                        | 458                         | p1   | color       |
| 2836      | 01_Antwerper | 10            | 150                     | 1371                        | 316                         | p1   | color       |
| 2986      | 01_Antwerper | 11            | 283                     | 1342                        | 287                         | p1   | color       |
| 3269      | 01_Antwerper | 12            | 433                     | 762                         | 303                         | p1   | color       |
| 3702      | 01_Antwerper | 13            | 183                     | 624                         | 297                         | p1   | color       |
| 3885      | 01_Antwerper | 14            | 333                     | 712                         | 303                         | p1   | color       |

Task Duration [sec.]

Fixation Duration [User, Karte]

Saccade Length

$$\sqrt{(X_2-X_1)^2+(Y_2-Y_1)^2}$$

Task Duration Kategorie

K1 < 10 sec.  $K2 \ge 10$  sec.

> Number Fixation Points

Anz. Fixation Points<sub>1-n</sub> [User, Karte]

Berechnete Kennzahlen und Datenaggregation

Avg. Fixation Duration [sec.]

Ø Fixation Duration
[User, Karte]



## City Maps – 24 Metrokarten





### City Maps und User

#### Stimuli

- 24 Metrokarten à jeweils 2 Ausrichtungen (S1 und S2) pro Farbausprägung:
  - → 48 Stimuli in Farbe vs. 48 Stimuli in Grau

#### **Probanden**

- 40 User haben an der Studie teilgenommen
- Jeder User hat eine Kartenausprägung S1 in Farbe und eine Ausprägung S2 in Graugesehen (oder umgekehrt):
  - → 24 Farbkarten vs. 24 Graukarten
- Jeder Stimulus zählt Eye Tracking Daten von 20 Probanden

03

## Eye Tracking Dashboard



**MOCKUP** 

Dashboard Entwurf mit Desing- und Interaktionskomponente



**PLOTLY** 

Code Aufbau in Python



LIVE DEMO

Vorstellung des Dashboards



## Mockup – Landing Page

#### Analysis of Eye-Tracking Data

#### 2) Boxplot I

Übersicht **Task Duration** aller Karten, Farbe vs. Grau



#### 1) Input Section

- Dropdown für City-Map
- Click-Buttons für Visualisierungstyp

#### 2) KPI Section

- Tabellarische Übersicht
- Grafische Verteilung der Task Duration









## Mockup – Analyse spezifischer Karten

Analysis of Eye-Tracking Data

**2) Color-Plot Section**Visualisierung für die Farb-Karten

Light Theme

#### 1) Input Section

- Filter auf eine Stadt,
   z.B. «Berlin»
- Auswahl einer Visualisierung, z.B. «Gazeplot»

#### 2) KPI Section für Berlin

- Tabellarische Übersicht
- Grafische Verteilung der Task Duration







#### Abschnitt 1:

Datenimport und Vorbereitung

- CSV-Import des Datenfiles
- Berechnung einzelner Kennzahlen
- Kategorisierung der Daten

#### Abschnitt 2:

Definition des Dash-Layouts

- Grundstruktur des Layouts in drei Spalten
- Designaspekte in CSS-File ausgelagert

#### Abschnitt 3:

Steuerung der Interaktionselemente

- Update Buttons für Art der Visualisierung
- Aktualisierung der Filter / Slider
- Aktualisierung des Thememode

#### Abschnitt 4:

Definition und Callback der Grafiken

- Erzeugung verschiedenerVisualisierungen
- Einbindung in die Input- und Output Funktion



## Visualisierungstypen



## Live Demo

Link zum Web-Dashboard





## 04

## Ausblick





Implikation und Nutzen für die Praxis



WEITERENTWICKLUNG

Optimierungspunkte für zukünftigen Nutzen



**DISKUSSION** 

Fragerunde und Diskussion der Ergebnisse

## Praxisbezug

- Erkenntnisse aus dem Dashboard
  - Visualisierung hilft unterschiedliche Forschungsfragen (Unterschiedshypothesen) nachzugehen
  - Unterschied Greyscale und Farbig durch Gazeplot und Heatmap
    - Basierend auf dem Dashboard könnte die Metrokarte Hamburg schwarz-weiss gedruckt werden, um Kosten zu sparen.



## Weiterentwicklung

- Anwendung für weitere Vergleiche (Verkehrsdaten, Vogelschwärme, etc.)
  - Daten mit zwei Stimuli
  - Daten selber hochladen
- Aus User Sicht (Vergleich pro User zwischen verschiedenen Karten)
- Signifikanztest einbauen
- Daten müssen aufbereitet und korrekt sein

# Fragen & Diskussion

