Cours 4: Les arbres binaires

Définition Implémentation Manipulation

Définition

Un arbre binaire est un arbre qui possède au maximum deux sous-arbres (d'où le binaire)

Deux implémentations possibles

Version itérative

- Un arbre binaire est constitué de nœuds
- Chaque nœud « pointe » vers deux nœuds de l'étage inférieur

Version récursive

- Un arbre binaire peut être vide
- Un arbre binaire possède un nœud (étiqueté ou pas)
- Un arbre binaire possède deux sous-arbres « fils »

Utilisation

- Enormément d'applications, que ce soit dans le domaine informatique ou pas :
 - Expressions mathématiques : 3 + 2*5 4

Autres exemples

Résultats d'un tournoi à élimination directe (tennis par exemple)

Arborescence de *si-alors-sinon* (voir les arbres de décision pour les tris vus à la première séance)

Un peu de vocabulaire

Un arbre est constitué de nœuds (ou sommets)

- ❖Ces sommets sont reliés par des arcs (ou arêtes) orientés : père → fils
- Il existe dans tout arbre un nœud qui n'est le point d'arrivée d'aucun arc : c'est la racine

Un peu de vocabulaire (2)

- Tout autre nœud est la racine d'un sous-arbre de l'arbre principal
- Un nœud qui n'est le point de départ d'aucun arc est appelé feuille
- Pour les arbres binaires, on distinguera de façon visuelle le fils gauche du fils droit

Un exemple

Un exemple

sous-arbre gauche de « - »

sous-arbre droit de « - »

Un peu de vocabulaire (3)

- La hauteur d'un nœud est la longueur du plus long chemin de ce nœud aux feuilles qui en dépendent plus 1
 - C'est le nombre de nœuds du chemin
 - La hauteur d'un arbre est la hauteur de sa racine
 - L'arbre vide a une hauteur 0
 - L'arbre réduit à une racine étiqueté a une hauteur 1

Un peu de vocabulaire (4)

- La profondeur d'un nœud est le nombre de nœuds du chemin qui va de la racine à ce nœud
 - La racine d'un arbre est à une profondeur 0
 - La profondeur d'un nœud est égale à la profondeur de son père plus 1
 - Si un nœud est à une profondeur p, tous ses fils sont à une profondeur p+1
- Tous les nœuds d'un arbre de même profondeur sont au même niveau

Premier traitement sur un arbre

L'affichage

- Trois façons d'afficher
 - Préfixe
 - Infixe
 - Postfixe

Affichages

Préfixe :

 On affiche la racine, puis le sous-arbre gauche, puis le sous-arbre droit

Infixe:

 On affiche le sous-arbre gauche, puis la racine, puis le sous-arbre droit

Postfixe:

 On affiche le sous-arbre gauche, puis le sous-arbre droit, puis la racine

Un exemple

Résultats

- Préfixe :
 - 124356
- Infixe:
 - 421563
- Postfixe
 - 426531

Deuxième traitement

Recherche d'un élément

- Au moins deux façons de faire :
 - DFS : Depth-First Search ou recherche en profondeur d'abord
 - BFS : Breadth-First Search ou recherche en largeur d'abord

DFS en détail

DFS:

- On cherche à la racine
- S'il n'y est pas :
 - On cherche dans le fils gauche
 - Puis s'il n'était pas dans le fils gauche, on cherche dans le fils droit
- Idée : explorer à fond chaque branche avant de passer à la suivante
- On s'arrête quand on a trouvé ou qu'il n'y a plus de branches à explorer

Réflexions

On reconnaît encore une fois un fonctionnement récursif

Problème : si l'élément est dans le sous arbre droit de la racine, on va quand même explorer tout le sous-arbre de gauche

Exemples

Avec DFS: on cherche 4

- $Racine = 1 \rightarrow non$
 - On explore le fils gauche
 - Racine = $2 \rightarrow non$
 - On explore le fils gauche
 - Racine = $4 \rightarrow TROUV\acute{E}$

Avec DFS (2): on cherche 3

- $Racine = 1 \rightarrow non$
 - On explore le fils gauche
 - Racine = $2 \rightarrow non$
 - On explore le fils gauche
 - Racine = 4 → non
 - Pas de fils
 - Pas de fils droit
 - On explore le fils droit
 - Racine = 3 → TROUVÉ

BFS en détail

***BFS**:

- On cherche à la racine
- Si l'élément n'y est pas :
 - On cherche dans les nœuds de profondeur 1
 - S'il n'est pas dans à la profondeur 1, on cherche à la profondeur 2
 - Etc...

Réflexions

- Plutôt un fonctionnement itératif
- On va avoir besoin d'une file FIFO (ou autre structure équivalente) pour stocker les nœuds à explorer :
 - On ne peut pas « sauter » d'un nœud de profondeur p à un autre
 - Il faut se souvenir de la liste des nœuds à traiter

Fonctionnement de la file

- Au début, la file contient l'arbre principal
- Si la valeur n'est pas à la racine du premier arbre de la file
 - On supprime l'arbre de la file
 - On ajoute ses deux sous-arbre en fin de file s'ils ne sont pas vides
 - Et on explore l'arbre suivant, qui est le premier de la file
- On s'arrête quand on a trouvé ou que la file est vide

Exemples

Avec BFS: on cherche 3

- ❖ File = [arbre " 1 »]
- ❖ Valeur de la racine = 1 \rightarrow *non*
- On enlève l'arbre « 1 » et on ajoute ses deux sous-arbres
 - File = [sous-arbre gauche de « 1 », sous-arbre droit de « 1 »]
 - On explore le premier : racine = 2 → non
 - On l'enlève et on ajoute ses sous-arbres
 - File= [sous-arbre droit de « 1 », sous-arbre gauche de « 2 »]
 - On explore le premier : racine = 3 → TROUVÉ

Avec BFS (2): on cherche 4

- ❖ File = [arbre « 1 »]
- ❖ Valeur de la racine = 1 \rightarrow *non*
- On enlève l'arbre « 1 » et on ajoute ses deux sous-arbres
 - File = [s.-a. gauche de « 1 », s.-a. droit de « 1 »]
 - On explore le premier : racine = 2 → non
 - On l'enlève et on ajoute ses deux sous-arbres
 - File = [s.-a. droit de « 1 », s.-a. gauche de « 2 »]
 - On explore le premier : racine = $3 \rightarrow non$
 - On l'enlève et on ajoute ses deux sous-arbres
 - File = [s.-a. gauche de « 2 », s.-a. gauche de « 3 », s.-a. droit de « 3 »]
 - On explore le premier : racine = $4 \rightarrow TROUV\acute{E}$

Comparatif

- Avec DFS, on n'a besoin d'aucun stockage en plus mais on peut s'attarder trop longtemps dans une branche
- Avec BFS, on fonctionne par profondeur incrémentale donc on évite le piège mais on a besoin d'un stockage dont la taille augmente à chaque étape

Les ABR

- On voit que la recherche dans les arbres binaires est peu aisée
- Autre problème : où ajouter un élément ?

Solution : les ABR ou arbres binaires de recherche

Définition

- Un arbre binaire de recherche (ABR) est un arbre binaire dans lequel chaque nœud possède une clé telle que
 - chaque nœud du sous-arbre gauche possède une clé inférieure ou égale à celle du nœud considéré
 - chaque nœud du sous-arbre droit possède une clé supérieure ou égale à celle-ci
 - (on pourra interdire ou non des clés de valeur égale)

Pourquoi les problèmes sont-ils réglés ?

- Pour la recherche : à partir de la racine, on sait si on doit explorer le fils gauche ou le fils droit
 - DFS devient très efficace
- Pour l'ajout, le nouveau nœud ajouté devient une feuille
 - Ici aussi il suffit de faire une DFS en descendant systématiquement à droite ou à gauche suivant qu'on est inférieur ou supérieur à la racine

Et si on veut supprimer un nœud?

- Si c'est une feuille
 - Facile, rien à faire
 - On garde un ABR
- Sinon si c'est un nœud avec un seul s.-a.
 - On le remplace par son sous-arbre
- Sinon
 - On lui donne la valeur minimale de son sousarbre droit et on supprime ce nœud (récursif)

Exemple

Exemple

Exemple

On supprime 3

38