

CCF 编程能力等级认证图形化编程认证标准

CCF 编程能力等级认证(GESP)为青少年计算机和编程学习者提供学业能力验证的规则和平台。GESP 覆盖中小学阶段,符合年龄条件的青少年均可参加认证。图形化编程测试划分为一至四级,考察学生掌握图形化编程的相关知识和操作能力,熟悉编程各项基础知识和理论框架,通过设定不同等级的考试目标,让学生具备图形化编程从简单的程序到复杂的游戏设计的编程能力,为后期专业化编程学习打下良好基础。

图形化编程认证知识体系

级别	知识内容	知识目标
一级	计算机基础知识 计算机历史 图形化编程平台基本操作 背景/角色的添加和切换 角色的属性及控制 声音模块 触发事件 侦测条件 多角色设置 三大基本结构	具备图形化编程工具的应用能力,掌握图形化 编程基础,掌握三大基本结构,能够独立完成 基本作品。
二级	计算机网络和 Internet 基本概念 流程图的概念与描述 克隆 画笔拓展模块 算术运算 广播 变量 逻辑推理和编程数学(逻辑运算)	理解编程相关抽象概念,具备一定的逻辑推理 能力及基础设计能力,能够独立完成包含分支 语句、循环语句等比较综合的案例。
三级	程序输入与输出 字符串处理 列表的增删改查	熟悉图形化编程高级工具使用并能进行综合运用,能够实现知识迁移,通过编程解决生活中的问题。

	克隆的综合应用	
	复杂的嵌套结构	
	复杂的逻辑判断	
	算法概念与描述	
	枚举法	
	模拟法	
	函数	
	算法的复杂运用	
四级	排序概念和稳定性	具备计算思维,能够通过分层、抽象、模式识
四级	经典排序(冒泡排序、插	别、设计流程解决实际问题。
	入排序、选择排序等)	
	综合应用	

图形化编程一级标准

(一) 知识点详述

- (1) 了解计算机程序的基本定义和概念,了解计算机历史。
- (2)了解计算机操作系统的使用,能够熟练使用鼠标和键盘操纵计算机并进行信息输入。
 - (3) 熟悉计算机的文件管理,能进行文件的保存、粘贴、复制、删除等操作。
 - (4) 掌握图形化编辑器的基本区域划分及基本使用方法。
- (5)了解基本编辑工具的功能,能够使用基本编辑工具编辑背景、造型,以及录制和编辑声音等。
 - (6) 掌握图形化编程中角色和造型的含义,掌握程序对角色的灵活控制。
 - (7) 掌握图形化编程中舞台和背景的含义,掌握程序对背景的灵活控制。
- (8)掌握对角色的平移、旋转、控制运动方向、碰到边缘反弹等常用积木块的 使用。
 - (9) 掌握对角色说、颜色、大小、显示、隐藏等常用积木块的使用。
- (10)了解事件触发的基本概念,掌握运行点击、角色点击、键盘被按下等常用积木块的使用。
- (11)了解侦测的基本概念,初步掌握碰到鼠标/颜色/舞台、键盘按下等常用积木块的使用。
- (12)初步了解平面直角坐标系和坐标的表示,能在图形化编程中用坐标确定 角色的位置。
- (13)初步理解程序的三大基本结构:顺序、分支和循环;能使用等待、 重复 执行、如果···那么···等常用积木块编写简单程序。
 - (14) 掌握多角色设置,初步理解并发程序。
- (15)掌握图形化编程基本逻辑和思路,能够通过图形化编程软件独立完成简单程序编写。

(二) 考核目标

学生对编程工具的认识与基本操作,角色和背景的属性设置及动效处理,形成 一个具有简单控制结构的完整作品,对初级的计算思维、逻辑推理能力进行考查。

(三)知识块

(四)知识点描述

编号	知识块	知识点
1	计算机基础知识	认识计算机的软硬件组成,了解计算机历史,理解程序与编程
1	月异仍空仙对以	语言的概念,鼠标与键盘的基本使用等
2	图形化编程平台	舞台区、角色区、模块区、脚本区、背景区,新建和保存作品,
2	图形化绷性 口	语言的选择,从本地打开软件等
3	编程数学	坐标系、坐标变化,小数、负数、随机数,顺逆时针、角度等
4	三大基本结构	顺序结构、分支结构、循环结构
5	事件触发	事件的基本概念,点击运行、当角色被点击、键盘被按下等
6	角色的操作	导入角色,角色说…,颜色,大小,显示,隐藏,移动,旋转,
0	一用它的探作	造型编辑/切换,声音编辑,碰到边缘反弹,图形特效等
7	背景的操作	导入背景,背景和角色的区别,背景编辑/切换,声音编辑,设

		置背景音乐等
8	侦测与控制	碰到鼠标指针/舞台边缘/颜色,按下键盘/鼠标,停止脚本

(五) 题型分布

单选题	判断题	编程题
10 道(3 分/道)	5 道 (4 分/道)	2 道(25 分/道)

图形化编程二级标准

(一) 知识点详述

- (1)了解计算机网络安全知识,对计算机网络定义及其功能的理解,了解计算机网络的组成。
- (2) 了解什么是 Internet, Internet 的形成与发展。熟悉 Internet 的基本操作, 掌握信息浏览与搜索的方法, 查找并返回到最近的 web 网页, 掌握文件下载、电子邮件的使用等。
- (3)掌握流程图的概念,能对给定的任务使用编程思维进行分析,并画出相应 的程序流程图。
 - (4) 理解舞台区层的概念,并合理设置角色的叠放顺序。
- (5)掌握如果···那么··· 和 如果···那么···否则···、重复执行 和 重复执行直到···的区别,熟练使用选择结构、循环结构的指令。
- (6)掌握克隆的概念,熟练控制当作为克隆体启动时的基本操作,灵活控制克隆体和本体。
- (7)掌握画笔的使用方法,能够熟练控制画笔的大小、粗细、颜色、亮度等属性,掌握图章工具的使用方法,并能够实现相应的效果。
- (8)理解广播的基本概念,能够应用广播来传递数据,实现背景和角色、角色和角色之间消息的传递,理解广播和广播并等待的区别。
- (9)理解变量的基本概念,掌握新建、删除、修改变量等基本操作,能够根据 实际情况合理设置变量的作用域。
 - (10) 理解随机数的概念,能够产生一个正确的随机数。
- (11)掌握算术运算、逻辑运算、关系运算,并能够熟练应用,可以针对简单问题写出对应的筛选条件。
- (12)掌握图形化编程相关抽象概念,加强对程序中循环、条件的理解,掌握包含循环、条件的嵌套使用,完成较复杂程序的编写。

(二) 考核目标

学生对图形化编程工具的进一步操作能力,具备初步的程序设计思维,具有简单的逻辑运算能力,能独立完成一个较复杂的程序。

(三)知识块

(四)知识点描述

编号	知识块	知识点
1	计算机网络与 Internet	计算机网络和 Internet 的含义 浏览器的基本操作 电子邮件的发送与接收等
2	程序流程图	程序流程图的基本概念、标准符号、基本结构、绘制步骤
3	克隆	克隆自己/角色、克隆体启动的设置、删除克隆体
4	画笔	画笔的抬笔、落笔、擦除、大小、粗细、颜色等属性、图章工 具
5	广播	广播的概念、广播消息、广播并等待、角色/背景之间的交互
6	变量	变量的新建、删除、修改、初始化、显示/隐藏、变量的作用域
7	数据运算	随机数

		算术运算、关系运算、逻辑运算
	逻辑推理	かりに な ひ ひ ひ か m 4日 子 之
ŏ	编程数学	判断条件的逻辑关系、逻辑推理

(五) 题型分布

单选题	判断题	编程题
10 道(3 分/道)	5 道 (4 分/道)	2 道(25 分/道)

图形化编程三级标准

(一) 知识点详述

- (1)了解计算机的输入、输出功能,掌握程序交互设计技巧,能够根据需求分析,选择合适的人机交互方式设计较为丰富的角色间的交互行为。
 - (2) 了解字符串的概念,熟悉字符串的常用操作,如:连接、查找、替换等。
 - (3) 掌握列表的概念,掌握对列表的定义、存储、插入、删除等操作。
- (4)掌握克隆中更深层的用法并且在程序中综合使用,例如:克隆的私有变量、二阶克隆等。
- (5)深入理解嵌套的概念、特征与意义,掌握嵌套结构的流程图画法,体验嵌套结构解决复杂问题的思想方法。
- (6)熟练掌握图形化编程中的逻辑推理能力,可以针对复杂问题写出对应的筛选条件。
- (7)初步掌握基本数据结构,能分辨不同结构的特点,能够根据实际情况选择 合适的数据结构。
 - (8) 会应用实际的算法解决简单问题: 枚举法、模拟法。

(二) 考核目标

初步了解程序中数据结构与算法的概念,同时对逻辑推理能力进行考察;具备问题抽象能力,能对设定的任务进行分析,并提出解决方案,能理解和编写图形化编程中较复杂的程序,初步考察学生的综合操作能力。

(三)知识块

(四)知识点描述

编号	知识块	知识点	
1	输入与输出	计算机程序的输入与输出的概念	
2	字符串处理	连接、查找、替换、统计字符数、获取指定位置等	
3	列表	列表的创建	
J	994X	数据的增、删、改、查、显示/隐藏、找最值、平均值等	
4	克隆的综合应用	克隆的私有变量、二阶克隆	
5	复杂的嵌套结构	顺序语句、选择语句、循环语句的复杂嵌套	
6	有九份课提业帐	算术运算、关系运算、逻辑运算的综合应用	
6	复杂的逻辑判断	对复杂逻辑的推理、分析、梳理,解决综合问题	
7	算法	枚举法、模拟法	

(五) 题型分布

单选题	判断题	编程题
15 道(2 分/道)	10 道(2 分/道)	2 道(25 分/道)

图形化编程四级标准

(一) 知识点详述

- (1) 了解函数的概念及使用方法,了解多参函数,并能够熟练应用。
- (2) 具备问题分析能力,能够将实际问题对应到算法设计问题;掌握算法的概念及应用,了解算法优劣的评价。
 - (3) 理解排序的含义及排序算法的稳定性。
 - (4) 掌握基础经典排序算法,包括:冒泡排序、插入排序、选择排序等。
 - (5) 具备将复杂问题及复杂算法用流程图和语言表达的能力。
- (6)掌握程序的模块化搭建方法,具备在实际解决方案设计过程中对算法的综合应用能力。

(二) 考核目标

考察较高的逻辑推理能力、对模块化程序设计的能力,考察学生对已掌握知识的深度综合应用;具备一定的程序调试和优化能力,能评价同一任务的不同实现方法,对图形化编程软件编写的程序进行分析和改进。

(三)知识块

(四)知识点描述

编号	知识块	知识点
1	函数	函数的创建、参数的设置、返回值、函数的调用
2	多参函数	定义方法、形参、实参、参数的传递、调用
3	算法的复杂应用	概念及应用、将实际问题对应到算法设计问题
4	排序	概念、稳定性
5	经典排序	冒泡排序、插入排序、选择排序等
6	综合应用	对已学知识点的综合应用考察

(五) 题型分布

单选题	判断题	编程题
15 道 (2 分/道)	10 道(2 分/道)	2 道(25 分/道)