Microelectronics Circuit Analysis and Design Homework(3rd)

Yuejin Xie U202210333

Sept 15th, 2023

1.45 The diode cut-in voltage is $V_{\gamma}=0.7$ V for the circuits shown in Figure P1.45. Plot V_O and I_D versus I_I over the range $0 \le I_I \le 2$ mA for the circuit shown in (a) Figure P1.45(a), (b) Figure P1.45(b), and (c) Figure P1.45(c).

Figure 1: (a)

Solution:

(a)KCL:
$$I_I = \frac{V_O}{R_F} + I_D$$

(a) KCL: $I_I = \frac{V_O}{R_F} + I_D$ When $V_O \ge V_\gamma = 0.7$ V, the diode is conducted, so R_F is shorted $\Rightarrow I_D = I_I - 0.7, V_O = 0.7$ V To satisfy the circumstance, we need $I_I \ge 0.7 \text{mA}$.

When $V_O \leq V_\gamma = 0.7 \mathrm{V}$, the diode isn't conducted and can be regarded as open $\Rightarrow I_D =$ $0, V_O = I_I R_F$

To satisfy the circumstance, we need $I_I \leq 0.7 \text{mA}$.

Figure 2: (a)

(b)KCL:
$$I_I = \frac{V_O}{R_E} + I_D$$

(b) KCL: $I_I = \frac{V_O}{R_F} + I_D$ When $V_O \ge V_\gamma + V_B = 1.7$ V, the diode is conducted, so R_F is shorted $\Rightarrow I_D = I_I - 1.7$, $V_O = I_I - 1.7$ 1.7V

To satisfy the circumstance, we need $I_I \ge 1.7 \text{mA}$.

When $V_O \leq V_\gamma + V_B = 1.7 \, \mathrm{V}$, the diode isn't conducted and can be regarded as open \Rightarrow $I_D = 0, V_O = I_I R_F$

To satisfy the circumstance, we need $I_I \leq 1.7 \text{mA}$.

Figure 3: (b)

(c) We can know that D_1 will be conducted forever (ideal Current Source), and at this time D_2 and R_F will be shorted.

$$\Rightarrow V_O = 0.7V, I_{D1} = I_I \text{ and } I_{D2} = 0$$

Figure 4: (a)

1.50 Assume each diode in the circuit shown in Figure P1.50 has a cut-in voltage of $V_{\gamma} = 0.65$ V. (a) The input voltage is $V_I = 5$ V. Determine the value of R1 required such that ID1 is one-half the value of I_{D2} . What are the values of I_{D1} and I_{D2} ? (b) If $V_I = 8V$ and $R_1 = 2k\Omega$, determine I_{D1} and I_{D2} .

Figure 5: Problem 1.50

Solution:

(a) Actually, we can know that \mathcal{D}_1 and \mathcal{D}_2 are conducted, so we have equation:

$$\begin{cases} V_{O} = V_{\gamma} \\ I_{D1} = \frac{1}{2}I_{D2} \\ V_{I} - V_{O} = I_{D2}R_{1} + 2V_{\gamma} \\ I_{D2} = \frac{V_{O}}{R_{2}} + I_{D1} \end{cases} \Rightarrow \begin{cases} R_{1} = 1.56k\Omega \\ I_{D2} = 1.3\text{mA} \\ I_{D1} = 1.95\text{mA} \end{cases}$$

(b) We assume D_1 and D_2 are conducted, so we have equation

$$\begin{cases} V_O = V_{\gamma} \\ V_I - V_O = I_{D2}R_1 + 2V_{\gamma} \\ I_{D2} = \frac{V_O}{R_2} + I_{D1} \end{cases} \Rightarrow \begin{cases} I_{D1} = 3.025 \text{mA} \\ I_{D2} = 2.375 \text{mA} \end{cases}$$

1.57 Consider the Zener diode circuit shown in Figure P1.57. The Zener breakdown voltage is $V_Z = 5.6 \text{V}$ at $I_Z = 0.1 \text{mA}$, and the incremental Zener resistance is $r_z = 10 \Omega$. (a) Determine V_O with no load($R_L = \infty$). (b) Find the change in the output voltage if V_{PS} changes by $\pm 1 \text{V}$. (c) Find V_O if $V_{PS} = 10 \text{V}$ and $R_L = 2k\Omega$.

Figure 6: Problem 1.57

Solution:

(a) Because of KCL and information provided by problem:

$$\frac{V_{PS} - V_O}{R} = \frac{V_O - V_z}{r_z} \Rightarrow V_O = 5.686 \text{V}$$

(b) When $V_{PS} = 9V$:

$$\frac{V_{PS} - V_O}{R} = \frac{V_O - V_z}{r_z} \Rightarrow V_{O1} = \frac{17}{3} V$$

When $V_{PS} = 11V$:

$$\frac{V_{PS} - V_O}{R} = \frac{V_O - V_z}{r_z} \Rightarrow V_{O2} = \frac{97}{17} V$$
$$\Rightarrow \Delta V_O = V_{O1} - V_{O2} = 0.0392 V$$

(c)Because of KCL and information provided by problem, we have equation:

$$\frac{V_{PS}-V_O}{R} = \frac{V_O-V_Z}{r_z} + \frac{V_O}{R_L} \Rightarrow V_O = 5.659 \text{V}$$