CAAM 336 · DIFFERENTIAL EQUATIONS

Homework 42

Posted Friday 28 March 2014. Due 1pm Friday 18 April 2014.

42. [25 points]

Let

$$\Omega = \{(x, y) : 0 \le x \le 1, 0 \le y \le 1\}$$

and let $f \in C(\Omega)$ be defined by f(x,y) = x(1-y). In this question we will consider the problem of finding the solution u(x,y) to the steady-state heat equation

$$-(u_{xx}(x,y) + u_{yy}(x,y)) = f(x,y), \qquad 0 \le x \le 1, \quad 0 \le y \le 1,$$

with homogeneous Dirichlet boundary conditions

$$u(x,0) = u(x,1) = u(0,y) = u(1,y) = 0,$$
 $0 \le x \le 1, 0 \le y \le 1.$

Let

$$C_D^2(\Omega) = \left\{ v \in C^2(\Omega) : v(x,0) = v(x,1) = v(0,y) = v(1,y) = 0, \, 0 \leq x \leq 1, \, 0 \leq y \leq 1 \right\}.$$

Let the linear operator $L: C_D^2(\Omega) \to C(\Omega)$ be defined by

$$(Lv)(x,y) = -(v_{xx}(x,y) + v_{yy}(x,y)).$$

Let the inner product $(\cdot,\cdot): C(\Omega) \times C(\Omega) \to \mathbb{R}$ be defined by

$$(v,w) = \int_0^1 \int_0^1 v(x,y)w(x,y) \, dx \, dy.$$

(a) Show that L is symmetric by showing that

$$(Lv, w) = (v, Lw)$$
 for all $v, w \in C_D^2(\Omega)$.

(b) The operator L has eigenvalues $\lambda_{j,k} \in \mathbb{R}$ and eigenfunctions

$$\psi_{j,k}(x,y) = 2\sin(j\pi x)\sin(k\pi y)$$

for j, k = 1, 2, ..., which are such that

$$L\psi_{i,k} = \lambda_{i,k}\psi_{i,k}$$

for $j, k = 1, 2, \ldots$ Obtain a formula for $\lambda_{j,k}$ for $j, k = 1, 2, \ldots$

(c) Let

$$C_D^2[0,1] = \{v \in C^2[0,1] : v(0) = v(1) = 0\}$$

and let the linear operator $L_1: C_D^2[0,1] \to C[0,1]$ be defined by

$$L_1w = -w''.$$

Use what you know about the eigenfunctions of L_1 to compute $(\psi_{j,k}, \psi_{m,n})$ for $j, k, m, n = 1, 2, \ldots$

(d) The solution to Lu = f that we obtain using the spectral method is

$$u(x,y) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{\lambda_{j,k}} \frac{(f, \psi_{j,k})}{(\psi_{j,k}, \psi_{j,k})} \, \psi_{j,k}(x,y).$$

Plot

$$u_N(x,y) = \sum_{j=1}^{N} \sum_{k=1}^{N} \frac{1}{\lambda_{j,k}} \frac{(f,\psi_{j,k})}{(\psi_{j,k},\psi_{j,k})} \,\psi_{j,k}(x,y)$$

for N = 1, 2, 3, 4, 5, 10. Note that, for j, k = 1, 2, ...,

$$(f, \psi_{j,k}) = 2 \frac{(-1)^{j+1}}{jk\pi^2}.$$

Also note that to plot $\psi_{1,1}(x,y) = 2\sin(\pi x)\sin(\pi y)$ you could use

```
x = linspace(0,1,50);
y = linspace(0,1,50);
[X,Y] = meshgrid(x,y);
psill = 2*sin(pi*X).*sin(pi*Y);
surf(X,Y,psill)
```