Basic stats using Scipy

In this example we will go over how to draw samples from various built in probability distributions and define your own custom distributions.

Packages being used

scipy: has all the stats stuffnumpy: has all the array stuff

Relevant documentation

scipy.stats: http://docs.scipy.org/doc/scipy/reference/tutorial/stats.html,
 http://docs.scipy.org/doc/scipy/reference/generated
 /scipy.stats.rv_continuous.html#scipy.stats.rv_continuous, http://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats

```
In [1]:
```

```
import numpy as np
import scipy.stats as st
# some special functions we will make use of later on
from scipy.special import erfc
from matplotlib import pyplot as plt
from astropy.visualization import hist
import mpl_style
%matplotlib inline
plt.style.use(mpl_style.style1)
```

There are many probability distributions that are already available in scipy: http://docs.scipy.org/doc/scipy/reference/stats.html#module-scipy.stats. These classes allow for the evaluations of PDFs, CDFs, PPFs, moments, random draws, and fitting. As an example lets take a look at the normal distribution.

```
In [2]:
         norm = st.norm(loc=0, scale=1)
         x = np.linspace(-5, 5, 1000)
         plt.figure(1, figsize=(8, 10))
         plt.subplot2grid((2, 2), (0, 0))
         plt.plot(x, norm.pdf(x))
         plt.xlabel('x')
         plt.ylabel('PDF(x)')
         plt.xlim(-5, 5)
         plt.subplot2grid((2, 2), (0, 1))
         plt.plot(x, norm.cdf(x))
         plt.xlabel('x')
         plt.ylabel('CDF(x)')
         plt.xlim(-5, 5)
         plt.subplot2grid((2, 2), (1, 0))
         sample_norm = norm.rvs(size=100000)
         hist(sample_norm, bins='knuth', histtype='step', lw=1.5, density=True)
         plt.xlabel('x')
         plt.ylabel('Random Sample')
         plt.tight_layout()
```


You can calculate moments and fit data:

Custom probability distributions

Sometimes you need to use obscure PDFs that are not already in scipy or astropy. When this is the case you can make your own subclass of st.rv_continuous and overwrite the _pdf or _cdf methods. This new sub class will act exactly like the built in distributions.

The methods you can override in the subclass are:

- _rvs: create a random sample drawn from the distribution
- _pdf: calculate the PDF at any point
- _cdf: calculate the CDF at any point
- _sf: survival function, a.k.a. 1-CDF(x)
- _ppf: percent point function, a.k.a. inverse CDF
- _isf: inverse survival function
- _stats: function that calculates the first 4 moments
- _munp: function that calculates the nth moment
- _entropy: differential entropy
- _argcheck: function to check the input arguments are valid (e.g. var>0)

You should override any method you have analytic functions for, otherwise (typically slow) numerical integration, differentiation, and function inversion are used to transform the ones that are specified.

The exponentially modified Gaussian distribution

As and example lets create a class for the EMG distribution (https://en.wikipedia.org /wiki/Exponentially_modified_Gaussian_distribution). This is the distributions resulting from the sum of a Gaussian random variable and an exponential random variable. The PDF and CDF are:

 $\label{lembda} $$ \left(\frac{1}{2} \exp(\left(\frac{2} \right) {2} \operatorname{lembda}_{2} \left(\frac{2} \right) {$

```
In [4]:
         # create a generating class
         class EMG_gen1(st.rv_continuous):
             def _pdf(self, x, mu, sig, lam):
                 u = 0.5 * lam * (2 * mu + lam * sig**2 - 2 * x)
                 v = (mu + lam * sig**2 - x)/(sig * np.sqrt(2))
                 return 0.5 * lam * np.exp(u) * erfc(v)
             def cdf(self, x, mu, sig, lam):
                 u = lam * (x - mu)
                 v = lam * sig
                 phi1 = st.norm.cdf(u, loc=0, scale=v)
                 phi2 = st.norm.cdf(u, loc=v**2, scale=v)
                 return phi1 - phi2 * np.exp(-u + 0.5 * v**2)
             def _stats(self, mu, sig, lam):
                 # reutrn the mean, variance, skewness, and kurtosis
                 mean = mu + 1 / lam
                 var = sig**2 + 1 / lam**2
                 sl = sig * lam
                 u = 1 + 1 / sl**2
                 skew = (2 / sl**3) * u**(-3 / 2)
                 v = 3 * (1 + 2 / sl**2 + 3 / sl**4) / u**2
                 kurt = v - 3
                 return mean, var, skew, kurt
             def argcheck(self, mu, sig, lam):
                 return np.isfinite(mu) and (sig > 0) and (lam > 0)
         class EMG_gen2(EMG_gen1):
             def _ppf(self, q, mu, sig, lam):
                 # use linear interpolation to solve this faster (not exact, but much
                 # pick range large enough to fit the full cdf
                 var = sig**2 + 1 / lam**2
                 x = np.arange(mu - 50 * np.sqrt(var), mu + 50 * np.sqrt(var), 0.01)
                 y = self.cdf(x, mu, sig, lam)
                 return np.interp(q, y, x)
         class EMG_gen3(EMG_gen1):
             def _rvs(self, mu, sig, lam):
                 # redefine the random sampler to sample based on a normal and exp dis
                 return st.norm.rvs(loc=mu, scale=sig, size=self._size) + st.expon.rvs
         # use generator to make the new class
         EMG1 = EMG gen1(name='EMG1')
         EMG2 = EMG_gen2(name='EMG2')
         EMG3 = EMG gen3(name='EMG3')
```

Lets look at how long it takes to create readom samples for each of these version of the EMG:

CPU times: user 3.88 s, sys: 7.93 ms, total: 3.88 s Wall time: 3.87 s $\,$

/mnt/lustre/shared_python_environment/DataLanguages/lib/python3.8/site-packag es/scipy/stats/_distn_infrastructure.py:1083: VisibleDeprecationWarning: The signature of <box/>bound method EMG_gen3._rvs of <__main__.EMG_gen3 object at 0x7f 779ee89760>> does not contain a "size" keyword. Such signatures are deprecated.

```
warnings.warn(
```

As you can see, the numerical inversion of the CDF is very slow, the approximation to the inversion is much faster, and defining _rvs in terms of the normal and exp distributions is the fastest.

Lets take a look at the results for EMG3:

```
In [6]:
         dist = EMG3(0, 1, 0.5)
         x = np.linspace(-5, 20, 1000)
         plt.figure(2, figsize=(8, 10))
         plt.subplot2grid((2, 2), (0, 0))
         plt.plot(x, dist.pdf(x))
         plt.xlabel('x')
         plt.ylabel('PDF(x)')
         plt.subplot2grid((2, 2), (0, 1))
         plt.plot(x, dist.cdf(x))
         plt.xlabel('x')
         plt.ylabel('CDF(x)')
         plt.subplot2grid((2, 2), (1, 0))
         sample_emg = dist.rvs(size=10000)
         hist(sample emg, bins='knuth', histtype='step', lw=1.5, density=True)
         plt.xlabel('x')
         plt.ylabel('Random Sample')
         plt.tight layout()
```

/mnt/lustre/shared_python_environment/DataLanguages/lib/python3.8/site-packag es/scipy/stats/_distn_infrastructure.py:1083: VisibleDeprecationWarning: The signature of <bound method EMG_gen3._rvs of <__main__.EMG_gen3 object at 0x7f 779ed58520>> does not contain a "size" keyword. Such signatures are deprecated.

```
warnings.warn(
```


As with the built in functions we can calculate moments and do fits to data. **Note** Since we are not using the built in loc and scale params they are fixed to 0 and 1 in the fit below.

```
import scipy.stats._continuous_distns as cd
np.source(cd.exponnorm_gen)
```

In file: /mnt/lustre/shared_python_environment/DataLanguages/lib/python3.8/si
te-packages/scipy/stats/_continuous_distns.py

```
class exponnorm gen(rv continuous):
    r"""An exponentially modified Normal continuous random variable.
    Also known as the exponentially modified Gaussian distribution [1].
    %(before notes)s
   Notes
    The probability density function for `exponnorm` is:
    .. math::
        f(x, K) = \frac{1}{2K} \exp\left(\frac{1}{2 K^2} - x / K \right)
                  \text{text}\{erfc\}\left(-\frac{x - 1}{K}{\sqrt{2}}\right)
    where :math:`x` is a real number and :math:`K > 0`.
    It can be thought of as the sum of a standard normal random variable
    and an independent exponentially distributed random variable with rate
    ``1/K``.
    %(after notes)s
    An alternative parameterization of this distribution (for example, in
    the Wikpedia article [1]_) involves three parameters, :math:`\mu`,
    :math:`\lambda` and :math:`\sigma`.
    In the present parameterization this corresponds to having ``loc`` and
    ``scale`` equal to :math:`\mu` and :math:`\sigma`, respectively, and
    shape parameter :math:`K = 1/(\sigma\lambda)`.
    .. versionadded:: 0.16.0
   References
    .. [1] Exponentially modified Gaussian distribution, Wikipedia,
           https://en.wikipedia.org/wiki/Exponentially modified Gaussian dist
ribution
    %(example)s
    def _rvs(self, K, size=None, random_state=None):
        expval = random state.standard exponential(size) * K
        gval = random_state.standard_normal(size)
        return expval + gval
    def _pdf(self, x, K):
        return np.exp(self._logpdf(x, K))
    def _logpdf(self, x, K):
        invK = 1.0 / K
        exparg = invK * (0.5 * invK - x)
        return exparg + _norm_logcdf(x - invK) - np.log(K)
    def _cdf(self, x, K):
        invK = 1.0 / K
        expval = invK * (0.5 * invK - x)
        logprod = expval + \_norm\_logcdf(x - invK)
```

```
return _norm_cdf(x) - np.exp(logprod)
            def _sf(self, x, K):
                invK = 1.0 / K
                expval = invK * (0.5 * invK - x)
                 logprod = expval + _norm_logcdf(x - invK)
                 return _norm_cdf(-x) + np.exp(logprod)
            def _stats(self, K):
                K2 = K * K
                opK2 = 1.0 + K2
                skw = 2 * K**3 * opK2**(-1.5)
                krt = 6.0 * K2 * K2 * opK2**(-2)
                return K, opK2, skw, krt
In [9]:
         %time st.exponnorm.rvs(0.5, size=1000)
         print('======')
        CPU times: user 868 \mus, sys: 0 ns, total: 868 \mus
        Wall time: 576 µs
        ========
In [ ]:
```