PRUEBA DE ACCESO Y ADMISIÓN A LA UNIVERSIDAD

TECNOLOGÍA INDUSTRIAL II

CURSO 2017-2018

|--|

- a) Duración: 1 hora y 30 minutos.
- b) El alumno elegirá una única opción de las dos propuestas, indicando la opción elegida.
- c) Puede alterarse el orden de los ejercicios y no es necesario copiar los enunciados.
- d) No se permite el uso de calculadoras programables, gráficas o con capacidad para transmitir datos.
- e) Las respuestas deberán estar suficientemente justificadas y los resultados se expresarán en unidades del S.I., salvo que se pidan en otras unidades.
- f) Cada uno de los cuatro ejercicios se puntuará con un máximo de 2,5 puntos.
- g) Dentro de un mismo ejercicio, cada apartado podrá tener el valor máximo que se especifica.

Opción A

Ejercicio 1.- Se quiere diseñar una pieza para un coche de F1 que debe medir 187 mm de largo y tener una sección de 30 mm². La pieza debe soportar una carga de 8200 N sin experimentar deformación plástica.

- a) ¿Cuál de las aleaciones propuestas en la tabla adjunta sería la mejor opción? (1 punto).
- b) Determine el precio y el peso de la pieza, si se realiza con el material elegido en el apartado anterior (1 punto).

Material	Límite Elástico (MPa)	Densidad (g/cm ³)	Precio (€/Kg)
Aleación de Al	250	2,8	12
Aleación de Ti	850	4,8	60
Aleación de Mg	170	1,8	24

c) Explique en qué consiste el fenómeno de fluencia de un material (0,5 puntos).

Ejercicio 2.- Un motor de explosión de cuatro tiempos y cuatro cilindros tiene una relación de compresión de 10:1. La carrera es 80 mm y el diámetro de cada pistón es 60 mm. Cuando gira a 3000 rpm consume 10 l/h de un combustible de densidad 0,85 kg/l.

- a) Calcule la cilindrada del motor y el volumen que ocupa la mezcla comprimida (1 punto).
- b) Determine la masa de combustible consumida en cada ciclo expresada en gramos (1 punto).
- c) Razone por qué los motores Diesel no necesitan bujías para su funcionamiento a diferencia de los motores Otto (0,5 puntos).

Ejercicio 3.- El sistema de control de una guillotina para cortar papel tiene una salida (G) para el corte y una salida luminosa (A) de aviso, dos pulsadores (I) y (D) y dos interruptores (M) y (E). Su funcionamiento es el siguiente: si E está inactivo (E = 0), la salida G no se activa en ningún caso (G = 0). Si E = 1 y M = 1, la máquina funciona en modo seguro y es preciso que se pulsen simultáneamente los pulsadores (I = 1) y (D = 1) para que se active la salida (G = 1) y se corte el papel. Si E = 1 y M = 0, la guillotina se activa pulsando cualquiera de los dos pulsadores (I) o (D) o ambos a la vez y además se activará la señal de aviso (A) para que el operario tenga cuidado durante esa operación.

- a) Obtenga la tabla de verdad y las funciones canónicas G y A (1 punto).
- b) Simplifique las funciones G y A por Karnaugh y obtenga los correspondientes circuitos lógicos (1 punto).
- c) En relación con los sistemas de control, indique el significado de los conceptos perturbación y error (0,5 puntos).

Ejercicio 4.- Una máquina selladora utiliza un cilindro de simple efecto cuyo émbolo tiene 50 mm de diámetro y una carrera de 20 cm. La presión de trabajo es 800 kPa. El muelle desarrolla una fuerza recuperadora igual al 6% de la teórica. La fuerza de rozamiento es el 12% de la aplicada sobre el émbolo. El consumo de aire durante una hora, en las condiciones de trabajo, ha sido de 10 litros.

- a) Calcule la fuerza efectiva ejercida en el avance y en el retroceso del vástago (1 punto).
- b) Determine el número de ciclos completados durante una hora (1 punto).
- c) Explique el enunciado del teorema de Pascal y cite dos ejemplos de aplicación (0,5 puntos).