BIL 111 Intro to Computer Engineering

Ammar Daskin

Course administrivia

Intro to CE

What is computer engineering?

Problem Solving with Computers

- Computers as binary machines
- Binary numeral system
- Data representation
 - Numerics, floating points, images, sounds, etc.
- Computer Architecture
 - Data and code representation
 - Von Neumann Architecture
 - CPU
 - Arithmetic logic unit
 - Logical gates (AND, OR, etc)
- Algorithm design and problem solving
- Complexity of the algorithms
 - Efficient and non-efficient algorithms
 - Difficult and easy problems

Derse İşlenişi ve Katılım

Dersimiz haftada 2 ders her Perşembe 13:30da B517 de

Normalde tüm teorik derslere %70, tüm uygulamalı derslere %80 katılım zorunluluğu var

Ancak derste yoklama almayacağım! İsteyenler gelmeyebilirler.

Ders teorik genelde notlar üzerinden anlatacağım.

Ders esnasında önemli gördüğünüz kısımları not alınız.

Ders notları classrooma atılır ancak bir çok şeyi bulamayabilirsiniz.

classroom.google.com

Dersle ilgili tüm duyurular

Ödevler

Sınav sonuçları ve cevapları

Ve tüm yazışmalar

Ödevlere **private comment** yazabiliyorsunuz.

Notifikasyonları düzenlemek için

Gmailde

Filte oluşturun: Create rules to filter your emails - Gmail Help

Kategorileri aktif edin: Add or remove inbox categories in Gmail - Computer

Ödevler

5 civarı

Toplam notun %30u

Haftalık konulardan sorular veya uygulamalar

Ödevlere yardım alma ve kopya

- Dersteki tüm ödevleri tek başınıza sadece dersin hocasından yardım alarak bitirmeniz beklenmektedir.
- Ödevlerin herhangi bir parçasını birbirinizle paylaşmanız kopya olarak nitelendirilmektedir.
- Eğer internet, kitap vb kaynaklardan faydalandıysanız bunları ödevlerde belirtmeniz zorunludur.
- Birbirinizle ödevleri tartışmanız önerilmektedir. Ancak bu tartışmalar ödevlerin beraber yapılması boyutuna gitmemelidir.

Ofis saatleri

Dersten hemen sonra

Ödevlerde takıldığınız kısımları,

Derste anlamadığınız kısımları

Veya başka konuları sorabilirsiniz

Derse Genel Bakış

Dersin haftalık sürecinde C, Python, ve SQL gibi programla dillerinde örnek yapılacak olup, yine web uygulamalarına yönelik HTML, CSS ve Javascript tanıtılacaktır. Dersin başarıyla bitirilmesi için haftalık derslerin takip edilmesi ve ödevlerin zamanında yapılması gerekmektedir.

Konular

- 1. Giriş: Bilgisayarla problem çözme: bilgisayar mimarisi, data gösterimi, ikili sayı sistemi, program
- 2. Algoritma: Pseudocode ve Scratch
- 3. Scratch de örnek problemler
- 4. OS: Linux yükleme ve terminal komutları
- 5. Vim, gedit, emacs, etc
- 6. Pseudocode ve Mantıksal Operatörler
- 7. Akış şemaları-şartlar-döngüler
- 8. C ve Python da akış şemasından koda çevirme
- 9. Latex, Jupyter notebook
- 10. Python pyplot, version control
- 11. Web sayfası tasarımı (HTML, CSS)
- 12. Intro Javascript
- 13. Database ve SQL
- 14. Intro to security
- 15. Intro to computer networks
- 16. Yapay zeka ve uygulamaları
- 17. Bulut servisler
- 18. Benzetim ve uygulamaları
- 19. Optimizasyon ve uygulamaları (Büyük veri ve uygulamaları)

Kitap ve Kaynaklar

Derste her hafta anlatılacaklar dersten önce veya bazen sonra classrooma yüklenecektir.

Ayrıca bir kitap yoktur.

Notlandırma

- %30 Ödev
- %30 Vize
- %40 Final

Intro to Computer Engineering

Who is an engineer?

Engineer vs Scientist

Engineer:

- A person who solves problems (or design solutions)
 - by using available scientific knowledge

Scientist:

- Extends the available scientific knowledge by exploring/observing/experimenting nature
- Or introduces new theories that can be used to explain/observe/experiment nature

Who is a computer engineer?

A computer engineer

Design/builds new computer systems that can be used to solve problems

Design/builds new tools that makes possible to use computer systems to solve problems

Design/builds new tools that improves available computer technologies

And many more

Problem solving with computers

<u>lecture1.pdf</u> ile birlikte islendi

What is a computer?

How computer works?

Von Neumann architecture

What is data?

Data representation:

- 1's complement
- 2's complement
- RGB images

What is code?

How a program works?

How to solve it?

Polya's Problem-Solving Method

- 1. First, you have to *understand the problem*.^[2]
- 2. After understanding, make a plan. [3]
- 3. Carry out the plan. [4]
- 4. Look back on your work. [5] How could it be better?

https://www.opepp.org/lesson/hsdm-unit7-tool-for-field/

How to use computers in problem solving?

What is a computer?

Replica of Konrad Zuse's Z3, 1st fully automatic, digital (electromechanical) computer

What is a computer?

Modern computers are **digital** machines?

- Hardware: All the electrical components
 - o Monitor, CPU, etc.
- Software: A computer runs a program
 - A game,
 - A movie program
 - Camera app

How to solve a problem by a program?

Program yapısı

How to represent data?

 Characters, Numbers, Images, Sounds, Movies, Game Characters, etc.

Symbols

Numerical Digits

Arabic numerals (symbols) for writing numbers

0123456789

Maya numeral systems

Binary (base 2) numeral system

Two symbols		Decimal number		Binary number		
J	0		0		8	1000
0	1		1		9	1001
1	2		10		10	1010
1	3		11		11	1011
	4		10	0	12	1100
	5		10	1	13	1101
	6		11	0	14	1110
	7		11	1	15	1111

Computers are electrical machines

A digital signal

We use binary numeral system.

Bit

1 or 0

Byte

bit bit bit bit bit bit bit o0000010

Decimal			Binary				
Valu	е	Metric	Valu	e	IEC		Memory
1000	kB	kilobyte	1024	KiB	kibibyte	KB	kilobyte
1000 ²	МВ	megabyte	1024 ²	MiB	mebibyte	МВ	megabyte
1000 ³	GB	gigabyte	1024 ³	GiB	gibibyte	GB	gigabyte
1000 ⁴	ТВ	terabyte	1024 ⁴	TiB	tebibyte	ТВ	terabyte
1000 ⁵	РΒ	petabyte	1024 ⁵	PiB	pebibyte		-
1000 ⁶	ЕВ	exabyte	1024 ⁶	EiB	exbibyte		<u>-</u>
1000 ⁷	ΖB	zettabyte	1024 ⁷	ZiB	zebibyte		1676
1000 ⁸	ΥB	yottabyte	1024 ⁸	YiB	yobibyte		
1000 ⁹	RB	ronnabyte	1024 ⁹		-		-
100010	QB	quettabyte	102410		20		10 <u>2</u> 5

https://en.wikipedia.org/wiki/Byte#Multiple-byte units

Conversions from base-x to base-y

Decimal counting

123

10

```
100 × 1 + 10 × 2 + 1 × 3
100 + 20 + 3
```

10² 10¹ 10⁰

Binary counting

2² 2¹ 2⁰

011

4 2 1

101

4 2 1

Binary counting

24	2 ³	2 ²	21	20	
16	8	4	2	1	
0	0	0	0	0	00

From base-2 to base-10

$$(10101110)_2 = (????)_{10}$$

From base-10 to base-2

$$(3456)_{10} = (????)_{2}$$

Hexadecimal(base-16) numeral system

10-11-12-13-14-15

A-B-C-D-E-F

a-b-c-d-e-f

Conversion from binary to hexadecimal

```
(1001011100)_2 = 512_{10} + 64_{10} + 16_{10} + 8_{10} + 4_{10}
= 604_{10}
(1001011100)_2 = 0010 \ 0101 \ 1100_2
= 2 \ 5 \ C_{16}
= 25C_{16}
```

Group of 2-quaternary(base-4)

2 5 C₁₆ = 02 11 30₄

Group of 3-octal(base-8)

Next week: How to represent data

Characters (symbols):

Images?

• 1,0, s, x_,!\$%^alsjkdom;lsmdf;l/*65

Musics?

Numbers

- Integers
- Signed integers

Floating point numbers

- 1.4
- 5.25