K-Means, Expectation Max. with PCA, ICA, Decision Trees and ANN AMIT V GOTTIPATI

Introduction

As part of this assignment unsupervised learning techniques like K means and Expectation Maximization were implemented. Furthermore, dimensionality reduction techniques like PCA, ICA, Decision Trees and Randomized Projections were implemented. Then binary classification using Artificial Neural Networks (ANN) was implemented in Python and Google colab using the SGEMM GPU kernel performance data set from UCI Machine Learning repository and on the Rain in Australia dataset from Kaggle. The project involved data pre-processing, data visualization, algorithm application, prediction and experimenting with different parameters like Neurons, Activation Functions, K, etc.

Dataset Description

Dataset1 - SGEMM GPU:

- The First dataset contains 241600 observations and 18 variables with no missing values.
- There are 18 variables, the first 14 are parameters upon which we will train our model. The first 10 parameters are ordinal with 4 levels, the next 4 are binary and last 4 variables are 4 different run times for the SGEMM GPU
- The description for the independent variables is given in the dataset link.
- The dataset was divided into train and test with a 70:30 split.
- For dependent variable 'avg' was created using average of the 4 run times provided which tells us the average running time for matrix-matrix product of the four runs. For classification the dependent variable 'avg' was converted into a binary variable using median as the threshold. (High/Low)

Dataset2:

- This Dataset contains 142193 observations with 24 variables
- Here the Target variable is Rain Tomorrow, we need to predict if it will rain tomorrow or
- It is given that Risk_MM variable is a very good predictor of the outcome and is dropped.
- Variables with more than 35% missing values were dropped and Last observation carried forward LOCF was used to impute the remaining missing values

K-means: Dataset1

Cluster Output

avg	0	1												
Cluster														
Cluster 0	37902	42098	Cluster 0	6791	25977	Cluster 0	17864	54008	Cluster 0	6520	12424	Cluster 0	19927	29663
Cluster 1	19372	8628	Cluster 1	10610	21518	Cluster 1	19667	10829	Cluster 1	53573	55163	Cluster 1	25128	15573
Cluster 2	18898	9550	Cluster 2	27249	19119	Cluster 2	50043	15045	Cluster 2	40570	42054	Cluster 2	21096	24993
Cluster 3	4000	14464	Cluster 3	26725	21595	Cluster 3	11863	31337	Cluster 3		11158	Cluster 3	36063	19336
Cluster 4	34109	34659	Cluster 4	49426	32590				Cluster 3	20130	11100	Cluster 4	18587	31234
Cluster 5	6520	11400	Ciuster 4	40420	32330	Cluster 4	21364	9580				Gluster 4	10001	01204

Decision Trees

ICA

Randomized Projections

PCA

K-means

From the following experiment we saw the best K =6 for kmeans and k=5 for kmeans with PCA. The Best K chosen thorugh the elbow plot. The clusters were very close when kmeans without any dimensionality reduction was applied. We see the distribution of labels being different for kmeans with different dimensionality reduction. No best K was observed for ICA. When Using Decision Trees the best features were MWG,NWG,NDIMC, MDIMC. All features of ICA and Random Projections were used. Cluster plots were produced but when opening the jupyter notebook, did not resurface and notebook was crashing for this dataset.

The kmeans intercluster difference inndistance was maximum for kmeans and least for Randomized Projections

Expectation Maximization

PCA		De	cision Tr	ees	ICA	Randomized Pro			rojections		
avg	0	1				avg	0	1		0	1
EM_pred			21/0	0	4	EM_pred			avg EM pred	U	
0	4826	4349	avg	U		0	2353	2794	0	4910	5434
1	4078	4328	EM_pred			1	897	1330	1	27636	14708
-						2	16299	7899	2	1517	3711
2	21671	16331	0	21598	22882	3	2982	3151	3	4531	2721
3	7170	17247	•	2.000	22002	4	5189	16954	4	2445	4363
4	2940	7062	1	48533	78891	5	6654	11154	5	2968	4889
5	2851	5227		10000	70001	6	9346	11945	6	30308	38635
5		5221	2	19433	10711	7	6118	4407	7	3380	6058
6	23495	14828	_	10 100	10111	8	360	725	8	9607	2985
7	23709	12643	3	31237	8315	9	1768	1353	9	228	826
8	12352	18439		0.20.	00.0	10	12842	5717	10	15857	9272
_						11	52800	48919	11	1841	704
9	8286	14057				12	246	1597	12	7838	16166
10	9423	6288				13	2947	2854	13	7735	10327

When we applied Expectation maximization, we saw the time to train and fit on our data was longer than kmeans and kmeans with other dimensionality reduction techniques. Here we see that our label is classified with majority in many of the clusters.

	Train	Test	Input	Batch	Fnach	Activation	Neurons In Each
Dataset1	Accuracy	Accuracy	Dimensions	Size	Epoch	Functions	Layer
Orignal Dataset1	97.2593	97.0778	14	5	5	R,T,T,T,T	72,72,36,18,4
PCA Dataset	92.8736	92.7773	11	5	5	R,T,T,T,T	72,72,36,18,4
Decision Trees	88.3952	88.2188	4	5	5	R,T,T,T,T	72,72,36,18,4
ICA	50.0354	49.915	14	5	5	R,T,T,T,T	72,72,36,18,4
RP	95.62	95.3	14	5	5	R,T,T,T,T	72,72,36,18,4

NN with cluster							
labels	58.5737	58.3981	2	5	5	R,T,T,T,T	72,72,36,18,4

Neural Networks

From this experiment we saw that when neural network was applied with dimensionality reduction the performance did not improve. Best performance among dimensionality reduction was observed for Randomized projections and poor performance for ICA. When we use cluster labels of kmeans and expectation maximization as our input features to classify our target label, we observed a accuracy of 58%. RP performed very similar to our original dataset. The speed of these new neural networks was faster. Tuning our neural network may help us get better accuracy. Including more cluster labels may help us achieve better results.

K means: Dataset 2

K-means PCA Decision Trees ICA

Cluster Outputs

K-means		PCA				Decision Trees			Randomized Projections								
RainTomorrow Cluster		1	RainTomorrow Cluster		1		RainTomorrow Cluster	0	1	Ra	ainTomorrow Cluster	0	1	RainTomor Clus		0	1
Cluster 0	15070	10983	Cluster 0	20399	2259		Cluster 0	9625	9601					Cluster (1819)1	9757
			Glaster	20000	2200		Ciustei o	9020	9001		Cluster 0	37656	11765	Cluster '	3161	2	2665
Cluster 1	24149	8959	Cluster 1	26465	6439		Cluster 1	29786	14990		Cluster 1	12671	4551	6 1	104	7	7404
Cluster 2	42970	7775	Cluster 2	19676	9145						0140	07000	0707	Cluster :	2 4046)/	7424
							Cluster 2	35415	4770		Cluster 2	27289	6767	Cluster :	3 2004	6 1	12031
Cluster 3	906	2000	Cluster 3	32669	3137		Cluster 3	35490	2516		Cluster 3	32700	8794				
Cluster 4	27221	2160	Cluster 4	11107	10897		Glustel 3	00400	2010								

PCA Decision Trees

kmeans

From the following experiment we saw the best K=4 for kmeans and k=5 for kmeans with PCA. The Best K chosen thorugh the elbow plot. The clusters became seperated when kmeans with dimensionality reduction was applied. We see the distribution of labels being different for kmeans with different dimensionality reduction. No best K was observed for ICA. When Using Decision Trees the best features were Humidity3pm, WingustSpeed, Humidity9am, Pressure9am, Pressure3pm. All features of ICA and Random Projections were used.

We observe elongated clusters for randomized projections. Clusters were very compact for ICA. For Decision Trees the clusters seem seperated the most.

The kmeans intercluster difference inndistance was maximum for PCA and least for Decision Trees

Expectation Maximization

PCA	Decision Trees				ICA Randomized Projections								
RainTomorrow	0	1	RainTo	morrow	0	1	RainTomorrow EM_pred	Ø	1		RainTomorrow EM_pred	ø	1
Fu			-				0	1560	579		О	7576	2213
EM_pred			-	M_pred			1	2739	2549		1	7515	2693
							2	18504	1435		2	6650	1266
0	3540	846	()	9429	4760	3	185	621		3	6337	2632
							4	24833	5789		4	9118	2381
4	74382	12374	,	1	14585	4411	5	957	1421		5	7091	1241
1	14302	12374		ı	14000	4411	6	1718	599		6 7	12894	3897
							7	21055	6763		8	6454 10667	1013 3241
2	17025	7233		2	14479	5671	8	6668	2349		9	3317	937
							9	1621	2585		10	8243	2370
3	15369	11424		3	16202	10098	10	733	346		11	9860	3116
J	10000	11727	`	,	10202	10000	11	19529	2985		12	7968	2749
					55004	0007	12	534	933		13	6626	2128
			4	4	55621	6937	13	9680	2923				

When we applied Expectation maximization, We can see in ICA and kmeans that some of the clusters are having most of the points and other having very less points, the clusters are not unifromly distributed. We also saw the time to train and fit on our data was longer than kmeans and kmeans with other dimensionality reduction techniques.

Neural Networks

Dataset2	Train Accuracy	Test Accuracy	Input Dimensions	Batch Size	Epoch	Activation Functions	Neurons In Each Layer
Orignal Dataset1	87.04	86.1	111	5	5	R,S,S,R	64,32,16,8
PCA Dataset	82.43	82.45	4	5	5	R,S,S,R	64,32,16,8
Decision Trees	83.79	84.04	5	5	5	R,S,S,R	64,32,16,8

ICA	83.69	83.83	14	5	5	R,S,S,R	64,32,16,8
RP	85.9	85.44	111	5	5	R,S,S,R	64,32,16,8
NN with cluster labels	78.39	78.17	2	5	5	R,R,R,R	8,8,4,4

From this experiment we saw that when neural network was applied with dimensionality reduction the performance did not improve. Best performance among dimensionality reduction was observed for Randomized Projection RP and no dimensionality reduction technique performed poorly. When we used cluster labels of K-means and expectation maximization as our input features to classify our target label, we observed very good accuracy of 78%. Tuning our dimensionality reduction neural networks, especially Randomized projections may help us get better results. Also, if we use cluster labels of our dimensional reduction clustering, we may observe even better performance. We observed better performance for dataset2 than dataset1 for classification using Neural Networks with dimensionality reduction.