Calibration of the Neural Network PiCAP (Protein Interaction of CArbohydrates Predictor)

Sho Takeshita

Gray Lab

3.14.2025

Sam developed an algorithm to predict whether proteins bind to carbohydrates or not

Calibration is a technique that smooths binary classifications to a scalar distribution

- PBind does not reflect true positive rate
- If there are 100 predictions of .8 predicted PBind, 80 of the predictions should be true
- Reduces difference between TP rate and predicted PBind

Types of Calibration

Regularization methods

Post-hoc Methods

Uncertainty Estimation

Regularization Using Dice++

$$\mathcal{L}_{Dice} = 1 - \frac{2TP}{2TP + FP + FN} \rightarrow \mathcal{L}_{Dice++} = 1 - \frac{2TP}{2TP + (FP)^{\gamma} + (FN)^{\gamma}}$$

• Emphasizes greater loss when FP and FN are greater by adding γ hyperparameter

Regularization Using Focal loss

Puts more focus on hard, misclassified data g

Post-hoc Calibration with Isotonic Regression

Fits monotonically increasing function to True Probabilities vs. Raw Predictions on secondary training set

$$\min \sum_{i=1}^n w_i (\hat{y}_i - y_i)^2$$

$$\hat{y}_i \leq \hat{y}_j ext{ for all } (i,j) \in E$$

Uncertainty Estimation with Bayesian Neural Network (BNN)

- Learns a gaussian distribution for weights instead of 1 scalar value
- During inference samples from distribution
- Can quantify uncertainty

Accuracies

Calibration shifts the distributions

Metrics

$$acc(b_m) = \frac{1}{|b_m|} \sum_{i \in B_m} \mathbf{1}(\hat{y}_i = y_i), \ conf(b_m) = \frac{1}{|b_m|} \sum_{i \in B_m} p_i.$$

Maximum Calibration Error

Expected Calibration Error

$$MCE = \max_{m \in \{1,...,M\}} |acc(b_m) - conf(b_m)| \quad ECE = \frac{1}{N} \sum_{m=1}^{M} |b_m| |acc(b_m) - conf(b_m)|$$

Classwise Expected Calibration Error

$$CECE = \sum_{m=1}^{M} \sum_{c=1}^{K} \frac{|b_{m,c}|}{NK} |acc_{c}(b_{m,c}) - conf_{c}(b_{m,c})|$$

Reliability Diagram

- Gives a sense of how calibrated the model is
- Dashed line represents perfect calibration
- Red bars represent gap to perfect calibration

Vanilla Loss Binding Reliability

Dice++ Loss Binding Reliability

Vanilla Loss Binding Reliability

Focal Loss Binding Reliability

Vanilla Loss Binding Reliability

Isotonic Vanilla Binding Reliability

Vanilla Loss Binding Reliability

BNN n=100 Binding Reliability

Comparison of Metrics

Some Isotonic Predictions

Thoughts and Conclusions

- Later in the training cycle, the more dramatic the effects are on model calibration
- Isotonic regression may be the way to go
- Still needs improvement

Acknowledgements

- Samuel W Canner
- Dr. Jeffrey J Gray
- Gray Lab

Thank you for listening

Evaluating Protein-Carb Docking

Models

Google DeepMind Chai Discovery

Results

Top1/5 Success of *De novo* Predictions

Supplemental Slides

Nonbinder and binder of CArbohydrate Protein interactions dataset (NoCAP) characterizes proteins based on biological intuition

Vanilla PiCAP

- Pre-training: Dice loss
- Fine-tuning: Binary Cross Entropy (BCE) loss

$$\mathcal{L}_{Dice} = 1 - \frac{2TP}{2TP + FP + FN}$$

$$\mathcal{L}_{BCE} = -\log(P_t)$$

 P_t = probability of predicting the ground truth class

Calibration is a technique that smooths binary classifications to a scalar distribution

- Predictions reflect confidence
- If there are 100 predictions of .8 probability, 80 of the predictions should be true
- Prevents over-fitting and smooths distribution

Human Proteome Predictions

