Дискретная математика

Сидоров Дмитрий

Группа БПМИ 219

February 2, 2022

№1

В лотерее на выигрыши уходит 25% от стоимости проданных билетов. Каждый билет стоит 40 рублей. Докажите, что вероятность выиграть не менее 1000 рублей не больше 1%.

Доказательство:

По неравенству Маркова $Pr[f \geq \alpha] \leq \frac{E[f]}{\alpha}$. Если в лотерее на выигрыши уходит 25% от стоимости проданных билетов, и каждый билет стоит 40 рублей, то, если в лотерее учатвует n человек, они потратят 40n рублей, и общий выигрыш составит $40n \cdot 0.25 = 10n$ рублей, а значит математическое ожидание выигрыша равно $E[f] = \frac{10n}{n} = 10$. Таким образом, при $\alpha = 1000$ $Pr[f \geq 1000] \leq \frac{10}{1000} = \frac{1}{100} \Rightarrow$ вероятность выиграть не менее 1000 рублей не больше 1%.

№2

Магазин назначил за каждый товар целую цену, а при покупке добавляет равновероятно к цене товару случайное число копеек (от 0 до 99). Покупатель взял 20 разных товаров и направился к кассе. Найдите математическое ожидание доплаты покупателя — разности между итоговой суммой к оплате и суммой к оплате без добавленных копеек

Решение:

Вероятностное пространство состоит из чисел от 0 до 99. Обозначим переплату за i-ый товар как X_i , тогда $E[X_i] = \sum_{j=0}^{99} j \cdot Pr[j] = \frac{1}{100} \cdot (0+1+\dots+99) = \frac{1}{100} \cdot \frac{99\cdot100}{2} = 49,5$ (равновероятно добавляют от 0 до 99 копеек, всего 100 значений). Значит математическое ожидание доплаты покупателя за каждый товар равно 49,5 копеек, а значит за 20 товаров математическое ожидание доплаты покупателя равно 49,5 \cdot 20 = 990 копеек.

Ответ: 990

№3

Вероятностное пространство — перестановки (x_1, \dots, x_n) элементов от 1 до n. Найдите математическое ожидание количества чисел, не поменявших своё место. Формально, случайная величина — количество элементов в множестве $\{i|x_i=i\}$.

Решение:

Пусть для каждого элемента от 1 до n случайная величина f_i равна 1, если $x_i=i$, и $f_i=0$ иначе. Тогда $\sum_{i=1}^n f_i=S$, где S - количество чисел, не поменявших своё место. Тогда $E[f_i]=1\cdot Pr[A_i]+0\cdot Pr[\overline{A_i}]=Pr[A_i]$, где A_i - событие " $x_i=i$ ". Тогда $E[S]=E[f_1]+\cdots+E[f_n]=Pr[A_1]+\cdots+Pr[A_n]=n\cdot Pr[A_1]$ (тк $Pr[A_1]=Pr[A_2]=\cdots=Pr[A_n]$). Найдём $Pr[A_1]$. Исходы - перестановки, а значит всего исходов n!. Благоприятных (те в которых $x_1=1$) (n-1)! (фиксируем $x_1=1$, остальные x - любые). Значит $Pr[A_1]=\frac{(n-1)!}{n!}=\frac{1}{n}$. Таким образом, математическое ожидание количества чисел, не поменявших своё место, равно $E[S]=n\cdot\frac{1}{n}=1$.

Ответ: 1

№4

Вероятностное пространство: пары (X,Y) подмножеств n - элементного множества $\{1,2,\ldots,n\}$. Все исходы равновозможны. Найдите математическое ожидание $|X \cup Y|$.

Решение:

Найдём вероятность для каждого элемента множества $\{1,2,\ldots,n\}$, что он принадлежит $|X\cup Y|$. Произвольный элемент не принадлежит подмножеству X с вероятностью $\frac{1}{2}$ и так же не принадлежит подмножеству Y с вероятностью $\frac{1}{2}$ \Rightarrow вероятность того, что произвольный элемент не принадлежит $|X\cup Y|$ равна $\frac{1}{4}$ \Rightarrow вероятность события "элемент $i\in |X\cup Y|$ " равна $1-\frac{1}{4}=\frac{3}{4}$ \forall $0\leq i\leq n, i\in \mathbb{Z}$.

Пусть $f_i = 1$, если $i \in |X \cup Y|$, и $f_i = 0$ иначе. Тогда математическое ожидание $|X \cup Y|$ равно $E[X] = \sum_{i=1}^n f_i = n \cdot \frac{3}{4}$ (тк $E[f_i] = 1 \cdot Pr[A_i] + 0 \cdot Pr[\overline{A_i}] = Pr[A_i]$, где A_i - событие "элемент $i \in |X \cup Y|$ ").

Ответ: $\frac{3n}{4}$

№5

Про неотрицательную случайную величину X известно, что Pr[X < 3] = 1/3 и $Pr[X \ge 6] = 1/6$. Найдите все возможные значения математического ожидания E[X].

Решение:

X - неотрицательная величина $(X \in [0; +\infty)) \Rightarrow Pr[X \in [0; 3)] = 1/3, Pr[X \in [6; +\infty)] = 1/6 \Rightarrow Pr[X \in [3; 6)] = 1 - \frac{1}{3} - \frac{1}{6} = \frac{1}{2}$. Заметим, что если $X \in [0; 3)$ $X \geq 0$, если $X \in [3; 6)$ $X \geq 3$, а если $X \in [6; +\infty)$ $X \geq 6$. Таким образом $E[X] \geq 0 \cdot \frac{1}{3} + 3 \cdot \frac{1}{2} + 6 \cdot \frac{1}{6} = 2.5$. При этом, пусть максимальное значение, которое принимает X равно X. Тогда $E[X] = \frac{0+3}{2} \cdot \frac{1}{3} + \frac{3+6}{2} \cdot \frac{1}{2} + \frac{6+x}{2} \cdot \frac{1}{6} = 0.5 + 2.25 + 0.5 + \frac{x}{12} = 3.25 + \frac{x}{12}$. Тк X не ограничено сверху, то и E[X] не ограничено сверху. Таким образом, $E[X] \geq 2.5$.

Ответ: $E[X] \ge 2.5$

$N_{\overline{0}}6$

Игральная кость бросается три раза. M — максимальное количество очков, выпавшее в этих бросках. Найдите E[M].

Решение:

Пусть A_i - событие "i - максимальное количество очков, выпавшее за 3 броска". Тогда $E[M] = \sum_{i=1}^{6} i \cdot Pr[A_i]$. Найдём $Pr[A_1], Pr[A_2], \dots, Pr[A_6]$. Вероятностное пространство - тройки чисел от 1 до 6, всего 6^3 исходов. Если максимальное количество очков, выпавшее за 3 броска, равно 1, то в каждом броске выпало 1 очко, значит $Pr[A_1] = \frac{1}{6^3}$. Если максимальное количество очков, выпавшее за 3 броска, равно 2, то благоприятными исходами являются все тройки чисел вида $(x_1, x_2, x_3), 1 \le x \le 2$, кроме (1, 1, 1), значит всего благоприятных исходов $2^3 - 1 = 7, Pr[A_2] = \frac{7}{6^3}$. Аналогично для количества очков равного 3, благоприятными исходами являются все тройки чисел вида $(x_1, x_2, x_3), 1 \le x \le 3$, кроме тех, которые являются благоприятными исходами для A_1 или A_2 , те их $3^3 - 1 - 7 = 27 - 8 = 19, Pr[A_3] = \frac{19}{6^3}$. Аналогично получаем, что $Pr[A_4] = \frac{4^3 - 1 - 7 - 19}{6^3} = \frac{37}{6^3}, Pr[A_5] = \frac{5^3 - 1 - 7 - 19 - 37}{6^3} = \frac{61}{6^3}, Pr[A_4] = \frac{6^3 - 1 - 7 - 19 - 37 - 61}{6^3} = \frac{91}{6^3}$. Таким образом, $E[M] = \sum_{i=1}^6 i \cdot Pr[A_i] = 1 \cdot \frac{1}{6^3} + 2 \cdot \frac{7}{6^3} + 3 \cdot \frac{19}{6^3} + 4 \cdot \frac{37}{6^3} + 5 \cdot \frac{61}{6^3} + 6 \cdot \frac{91}{6^3} = \frac{1071}{216} = \frac{119}{24}$.

Ответ: $\frac{119}{24}$

№7

Каждое из чисел a_1, \ldots, a_n выбирается случайно, равномерно и независимо среди чисел $1, 2, \ldots, n$. Найдите математическое ожидание количества различных чисел среди a_1, \ldots, a_n .

Решение:

Пусть случайная величина X - количество различных чисел среди a_1, \ldots, a_n , те необходимо найти E[X]. По условию "каждое из чисел a_1, \ldots, a_n выбирается случайно, равномерно и независимо", а значит вероятность выбрать каждое число за одно действие равна $\frac{1}{n}$. Таким образом, вероятность не выбрать число k за одно действие равна $1-\frac{1}{n}$. Всего выбирают числа n раз, число k не будет выбрано, если за каждое действие выбрали не k, те с вероятностью $(1-\frac{1}{n})^n$, и значит число k будет выбрано с вероятностью $1-(1-\frac{1}{n})^n$. Таким образом, вероятность того, что число k будет выбрано, равна $1-(1-\frac{1}{n})^n$.

Пусть $I_k=1$, если число k выбрано, и $I_k=0$ иначе. Тогда математическое ожидание количества различных чисел среди a_1,\dots,a_n равно $E[X]=\sum\limits_{k=1}^n I_k=1-(1-\frac{1}{n})^n+\dots+1-(1-\frac{1}{n})^n=n(1-(1-\frac{1}{n})^n)$ (тк $E[I_k]=1\cdot Pr[A_k]+0\cdot Pr[\overline{A_k}]=Pr[A_k]$, где A_k - событие "k выбрано").

Ответ: $n(1-(1-\frac{1}{n})^n)$