

The Geometry Processing Pipeline

Geometric Computer Vision

GCV v2021.1, Module 1

Alexey Artemov, Spring 2021

Lecture Outline

§1. The geometry processing pipeline [45 min]

- 1.1. Goals of 3D/geometric computer vision systems
- 1.2. Common stages of geometry processing
- 1.3. Scanning [next video]
- 1.4. Registration
- 1.5. Reconstruction and meshing
- 1.6. Postprocessing [next videos]

Lecture Outline

§2. 3D representations in computer vision/graphics [15 min, Friday]

- 2.1. Directly measurable: multiple-view images, range-images, point clouds, volumes
- 2.2. Derived: surface meshes, implicit functions
- 2.3. Higher-level: CAD, shape programs

Goals of 3D/geometric computer vision systems

1.1. Goals of 3D/geometric computer vision systems.

- Two main aspects:
- Construct 3D geometry representations suitable for various tasks from raw data (range images, volumetric CT and MRI, LIDAR)
 - Usually involves multiple steps going from low to high level
 - As an intermediate tool, requires analysis, e.g. segmentation
 - E.g.: Points → meshes → parametrized patch layout
- Manipulate and analyze geometry:
 - Deformations, boolean operations, comparisons, physically-based deformations (related to CAE)

1.1. Goals of 3D/geometric computer vision Skoltech

- The geometry processing pipeline: a highly modular sequence of interrelated stages for manipulations with 3D data, commonly for 3D reconstruction and understanding
 - Convenient concept of conversions between 3D representations
 - Flow: going from low-level to higher-level representations/properties
 - Modularity: injecting methods/models easier

1.1. Goals of 3D/geometric computer vision Skoltech

- Why need to study an entire pipeline for 3D processing? Don't 3D scanners have it all?
 - Most hardware systems for 3D acquisition: standard/proprietary algorithms, no customization, limited conversion options
 - Being able to intervene at any stage: flexibility, "debugging", performance gains
- Today: go over the "standard" reconstruction pipeline for 3d scanning
- Consider two types of problems with existing techniques (how these can be addressed by ML-based methods?):
 - "Low-level": related to local surface properties, e.g., noise, normals, curvature, outliers,
 - "High-level": involve object semantic (e.g., high level part segmentation)

Common stages of geometry processing

1.2. Common stages of geometry processing chology

§1. The geometry processing pipeline

Scanning:

results in range images

Registration:

bring all range images to one coordinate system

Stitching/ reconstruction:

Integration of scans into a single mesh

Postprocess:

- Topological and geometric filtering
- Remeshing
- Compression

1.2. Common stages of geometry processing chologometry processing chologometry

§1. The geometry processing pipeline

Slide Credit: Denis Zorin

1.2. Common stages of geometry processing echology

§1. The geometry processing pipeline

Scanning: results in range images

Registration: bring all range images to one coordinate system

Postprocess:

- Topological and geometric filtering
- Remeshing
- Compression

1.2. Common stages of geometry processing echology

§1. The geometry processing pipeline

Scanning: results in range images

Registration: bring all range images to one coordinate system

Stitching/ reconstruction: Integration of scans into a single mesh

Postprocess:

- Topological and geometric filtering
- Remeshing
- Compression

Slide Credit: Denis Zorin

1.2. Common stages of geometry processing chologometry processing chologometry

1.2. Common stages of geometry processing chology

1.2. Common stages of geometry processing concessing control of the control of th

- The "standard" geometry pipeline for 3d scanning:
 - Scanning → registration → reconstruction → postprocessing
- From low-level to higher-level representations
- Natural modularity, allows extension/injection of stages

Scanning

1.3. Scanning

- Analyze a real-world object or environment to collect data on its shape/appearance
 - Many technologies: contact, optical, computed tomography, structured light...

- Today: do not consider the first step in detail (obtaining depth data)
- Assume depth images/range scans are available
- Focusing on the next steps
- Next week: detailed lecture about depth acquisition

Registration

1.2. Registration: context

Skolkovo Institute of Science and Technology

1.2. Registration: problem statement Institute of Science and Technology

§1. The geometry processing pipeline

$$M_1$$
 M_2 M_2 $M_1 \approx T(M_2)$

T: Translation + Rotation

1.2. Registration: context

§1. The geometry processing pipeline

Scanning: results in range images

Registration: bring all range images to one coordinate system

Stitching/ reconstruction: Integration of scans into a single mesh

Postprocess:

- Topological and geometric filtering
- Remeshing
- Compression

1.2. Registration: local vs global

§1. The geometry processing pipeline

Global Registration

Arbitrary Transformation

Local Registration

"Small" Transformation

Given M_1, \ldots, M_n , find T_2, \ldots, T_n such that

$$M_1 \approx T_2(M_2) \cdots \approx T_n(M_n)$$

1.2. Registration: correspondences Skolkovo Institute of Science and Technology

§1. The geometry processing pipeline

- How many points are needed to define a unique rigid transformation?
- The first problem is finding corresponding pairs!

Let $\mathbf{p}_i, \mathbf{q}_i$ define points on M_1 and M_2

$$\mathbf{p}_1 o \mathbf{q}_1$$

$$\mathbf{p}_2 o \mathbf{q}_2$$

$$\mathbf{p}_3 \rightarrow \mathbf{q}_3$$

$$R\mathbf{p}_i + t \approx \mathbf{q}_i$$

1.2. Registration via ICP: Iterative Closest Point Chinology

- Idea: Iteratively (1) find correspondences and (2) use them to find a transformation
- Intuition: If you have the right correspondences, then the problem is easy

1.2. Registration via ICP: Iterative Closest Point Echnology

- Idea: Iteratively (1) find correspondences and (2) use them to find a transformation
- Intuition: If you don't have the right correspondences, you still can make progress

1.2. Registration via ICP: Iterative Closest Point Chologo

§1. The geometry processing pipeline

This algorithm converges to the correct solution only if the starting scans are "close enough"

1.2. Registration via ICP: basic algorithmence and Technology

§1. The geometry processing pipeline

- Select (e.g., 1000) random points
- Match each to closest point on other scan, using data structure such as k-d tree
- Reject pairs with distance > k times median
- Construct error function:

$$E := \sum (R\mathbf{p}_i + t - \mathbf{q}_i)^2$$

Minimize (closed form solution
 i
 comparison of four major algorithms", http://dl.acm.org/citation.ctm?id=250160)

1.2. Registration via ICP: important Skoltech

§1. The geometry processing pipeline

Point-to-Point

Point-to-Plane

See http://resources.mpi-inf.mpg.de/deformableShapeMatching/EG2012_Tutorial/ for details

1.2. Registration via ICP: example implications

§1. The geometry processing pipeline

30 GCV v2021.1, Module 1

1.2. Registration via ICP: example implementations of Science and Technology

31

1.2. Registration via ICP: Related Work titule of Science and Technology

- Original ICP:
 http://graphics.stanford.edu/courses/cs164-10-spring/Handouts/paper_icp.pdf
- Commonly used improvement:
 http://www8.cs.umu.se/research/ifor/dl/fasticp_paper.pdf
- Global registration, one of initial reliable methods:
 http://vecg.cs.ucl.ac.uk/Projects/SmartGeometry/global_registration/paper_docs/global_registration_sgp_05.pdf
- Recent paper, with a few refs:
 http://vladlen.info/publications/fast-global-registration/ (Talk by V. Koltun: http://vladlen.info/publications/fast-global-registration/)

- In reality, registration needs to be non-rigid: e.g. range scans are usually warped
 - matters only for high quality
 - no direct ground truth may be available
 - data: for a set of objects, a collections of warped scans for each
 - learn an alignment/dewarping transformation
- Extension of ICP: http://gfx.cs.princeton.edu/pubs/Brown 2007 GNA/global tps.pdf
- Related, more difficult (in general form) problem that received a lot of attention: non-rigid reconstruction

1.2. Registration: Non-Rigid

§1. The geometry processing pipeline

Results: Correspondence Matching

Reference

Predictions

Reconstruction

35

1.5. Reconstruction: Digital Michelangelo Project Chology

1G sample points → 8M triangles

4G sample points → 8M triangles

1.5. Reconstruction: Problem statement Skoltech

- Given partial information of an unknown surface, construct, to the extent possible, a compact representation of the surface (Hoppe et al., 1992)
 - Commonly (in this course): use multiple viewpoints and range data
- ullet Surface: compact, connected, orientable 2D manifold, possibly with boundary, embedded in \mathbb{R}^3
 - Closed surface: a surface without a boundary, bordered surface: non-empty boundary
 - Simplicial surface: piecewise linear surface with triangular faces
- ullet Goal: given samples $X=\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}$ on or near an unknown surface M, recover M'pprox M

1.5. Reconstruction

§1. The geometry processing pipeline

Scanning:

results in range images

Registration:

bring all range images to one coordinate system

Stitching/reconstruction:

Integration of scans into a single mesh

Postprocess:

- Topological and geometric filtering
- Remeshing
- Compression

1.5. Reconstruction: Input to Process

§1. The geometry processing pipeline

- Input option 1: just a set of 3D points, irregularly spaced
 - Need to estimate normals

Input option 2:
 normals come from the range scans

set of raw scans

reconstructed model

§1. The geometry processing pipeline

Explicit reconstruction:
 stitch the range scans together

"Zippered Polygon Meshes from Range Images", Greg Turk and Marc Levoy, ACM SIGGRAPH 1994

§1. The geometry processing pipeline

Explicit reconstruction:
 stitch the range scans together

- Connect sample points by triangles
- Exact interpolation of sample points
- Bad for noisy or misaligned data
- Can lead to holes or nonmanifold situations

1.5. Reconstruction: Range-Image to Skoltech Mesh Science and Technology

§1. The geometry processing pipeline

Fig. 1. a. Laves $[4.8^2]$ tiling with one of the basic blocks outlined. b. Two bisection refinement steps are equivalent to a face split. Vertices inserted at each step are shown as circles, new edges are shown as dotted lines.

Velho, Luiz, and Denis Zorin. "4–8 Subdivision." *Computer Aided Geometric Design* 18.5 (2001): 397-427.

1.5. Reconstruction: Range-Image to Skoltech Mesh Science and Technology

§1. The geometry processing pipeline

Low resolution

High resolution

Range-images

Explicit reconstruction

GCV v2021.1, Module 1

§1. The geometry processing pipeline

• Implicit reconstruction: estimate a signed distance function (SDF); extract 0-level set

§1. The geometry processing pipeline

• Implicit reconstruction: estimate a signed distance function (SDF); extract 0-level set

§1. The geometry processing pipeline

• Implicit reconstruction: estimate a signed distance function (SDF); extract 0-level set

- Approximation of input points
- Watertight manifold results by construction

§1. The geometry processing pipeline

• Implicit reconstruction: estimate a signed distance function (SDF); extract 0-level set

Assumes the existence of a function

$$f: \mathbb{R}^3 \to \mathbb{R}$$

with value > 0 outside the shape and < 0 inside

Extract zero-level set

$$\{\mathbf{x}: f(\mathbf{x}) = 0\}$$

1.5. Reconstruction: SDF from Points and Normals echnology

§1. The geometry processing pipeline

 Compute signed distance function (SDF) to the tangent plane of the closest point

- Normals help to distinguish between inside and outside
- "Surface reconstruction from unorganized points", Hoppe et al., ACM SIGGRAPH 1992 http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

1.5. Reconstruction: SDF from Points and Normals echnology

- Compute signed distance function (SDF) to the tangent plane of the closest point
- Problem??

1.5. Reconstruction: SDF from Points and Normals echnology

§1. The geometry processing pipeline

 Compute signed distance function (SDF) to the tangent plane* of the closest point

The function will be discontinuous

^{*} The Hoppe92 paper computes the tangent planes slightly differently (by PCA on k-nearest-neighbors of each data point, see next class), but the consequences are still the same.

Slide Credit: Denis Zorin

1.5. Reconstruction: Smooth SDF

- Instead find a smooth formulation for F.
- Scattered data interpolation:
 - $\bullet F(\mathbf{p}_i) = 0$
 - F is smooth
 - Avoid trivial $F \equiv 0$

[&]quot;Reconstruction and representation of 3D objects with radial basis functions", Carr et al., ACM SIGGRAPH 2001

1.5. Reconstruction: Smooth SDF

§1. The geometry processing pipeline

- Scattered data interpolation:
 - $\bullet F(\mathbf{p}_i) = 0$
 - F is smooth
 - ullet Avoid trivial $F\equiv 0$

Add off-surface constraints

[&]quot;Reconstruction and representation of 3D objects with radial basis functions", Carr et al., ACM SIGGRAPH 2001

1.5. Reconstruction: Radial Basis Function Interpolation

§1. The geometry processing pipeline

• RBF: Weighted sum of shifted, smooth kernels

Spline
$$\varphi(r) = r^2 \log r$$

Gaussian $\varphi(r) = \exp\{-cr^2\}$

$$F(\mathbf{x}) = \sum_{i=0}^{N-1} w_i \, \varphi(\|\mathbf{x} - \mathbf{c}_i\|)$$
Smooth kernels (basis functions) centered at constraine points.

Unknow
$$N=3n$$

centered at constrained points. For example: $\varphi(r) = r^3$

1.5. Reconstruction: Implicit vs. Explicit vo Institute of Science and Technology

- Surface reconstruction: create a surface representation from sparse input points
 - Explicit: directly create connectivity by linking close points together
 - Implicit: recover a signed distance function (SDF) with values < 0 inside the shape and
 > 0 outside, then extract level set (next section)
 - State-of-the-art reconstruction algorithm: Poisson Surface Reconstruction (more in ~Lecture 6)

Meshing

56

1.5. Meshing: Motivation

§1. The geometry processing pipeline

57

- Wish to compute a manifold mesh of the level set
- Mesh: a subdivision of a continuous geometric space into discrete geometric and topological cells (often simplicial surface is constructed)
- Meshing: implicit surface → simplicial surface

1.5. Meshing: Sample the SDF

1.5. Meshing: Sample the SDF

§1. The geometry processing pipeline

Slide Credit: Denis Zorin

- Want to approximate an implicit surface with a mesh
- Can't explicitly compute all the roots
 - Sampling the level set is difficult (root finding)
- Solution: find approximate roots by trapping the implicit surface in a grid (lattice)

- 16 different configurations in 2D
- 4 equivalence classes (up to rotational and reflection symmetry + complement)

4 equivalence classes (up to rotational and reflection symmetry + complement)

• Case 4 is ambiguous:

Always pick consistently to avoid problems with the resulting mesh

1.5. Meshing: 3D Marching Cubes

- Marching Cubes (Lorensen and Cline 1987)
 - 1. Load 4 layers of the grid into memory
 - 2. Create a cube whose vertices lie on the two middle layers
 - 3. Classify the vertices of the cube according to the implicit function (inside, outside or on the surface)

Unique cases (by rotation, reflection and complement)

Implementation

1.5. Meshing: Marching Cubes - Problems technology

Output aliasing artefacts

Postprocessing

69

1.6. Postprocessing

Skoltech

Skolkovo Institute of Science and Technology

§1. The geometry processing pipeline

Highly application-dependent

Mesh smoothing/de-noising

Re-meshing/quadrangulation

Simplification, compression

§2. 3D representations in vision and graphics [Friday Tutorial]

References

Skolkovo Institute of Science and Technology

1. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., & Lévy, B. (2010). *Polygon mesh processing*. CRC press.

