

## Objective

- Building a prediction model to predict power consumption in every 15 minutes
- Algorithms used MLP and SVM models and hyper tuned parameters
- Datasets used from load Algarve forecasting using HEM where the data are already compiled, and parameters are selected



## **Datasets**

## **Processing**

- Separated into two dataframe depending on the suffix 1 and 2 and drop the nan rows from suffix 1 dataframe
- Concatenated two dataframes



## **Datasets**

### **Daycode**

DayCode has column elements: 0.05, 0.15, 0.25, 0.3, 0.35, 0.5, 0.8, 0.7, 1.0

- Renamed the column name: "DayCode","Occupation", "Power"
- Then normality test
- Then supervised data for next 48 timestamps in 12 hours which would show every 15 minutes interval
- Then the dataset is splited to train and test

## Dataset normality test

### For power column

Skewness for Power is 1.046 and kurtosis is 1.701

#### Performing Shapiro-Wilk test

- Shapiro Test Statistic 0.93622
- p-value 4.295927216204073e-34

#### Performing D'Agostino's K2 test

- D'Agostino's K2 Test Statistic 500.32654
- p-value 2.2671072101201093e-109

#### Performing Anderson-Darling test

- Anderson-Darling Test Statistic 37.10178617295105
- At 15.0% significance level, critical value is 0.575
- At 10.0% significance level, critical value is 0.655
- At 5.0% significance level, critical value is 0.786
- At 2.5% significance level, critical value is 0.917
- At 1.0% significance level, critical value is 1.091

## Dataset normality test result

## For power column

- We can reject the null hypothesis (D'Agostino's K²), so our series is not normally distributed.
- We can reject the null hypothesis (Anderson-Darling), so our series is not normally distributed.

Overall normality result for 'Power': Not Normal

- Kurtosis of normal distribution: 1.6963600512675807
- Skewness of normal distribution: 1.04577179073994

## Statistics plots













- Used robustScaler() because it is robust to outliers in the sense that adding or removing outliers in the training set will yield approximately the same transformation
- Then we have sampled the dataset with lookback=380 and horizon 48
- For lookback, 24 hours \* 4 (15-minute intervals per hour) the dataset is sampled every 15 minutes, so there are 4 samples per hour. For a 24-hour period, we need 24 hours \* 4 samples/hour = 96 samples. By setting lookback = 380, we are considering a period of 380 /  $4 \approx 95$  hours, which is approximately 4 days' worth of historical data.
- For horizon, The dataset is sampled every 15 minutes, so there are 4 samples per hour. To predict for the next 12 hours, we need 12 hours \* 4 samples/hour = 48 samples. By setting horizon = 48, we are defining that the model should predict the next 48 samples, which corresponds to 12 hours ahead.



# Model 1: Multi layered perceptron

- Hidden layer sizes= 100,50 (the number of neurons)
- Maximum iteration = 500
- Random state=42
- The activation function for hidden layer is by default relu
- Solver for weight optimization is adam
- Early\_stopping is false



# Model 2: Support Vector Machine Algorithm

- 'rbf' is used for kernel type.
- Other parameters are by default chosen such as gamma would be scale and it uses 1 / (n\_features \* X.var()) as value of gamma
- Regularization parameter C is 1.0
- Max\_iter is hard limit on iteration within solver or -1 for no limit



## Output comparison between MLP and SVM . In both

|                     | MLP Power | SVR Power | MLP Occupation | SVR Occupation |
|---------------------|-----------|-----------|----------------|----------------|
| Mean Squared Error  | 1.02      | 0.73      | 0.09           | 0.03           |
| Mean Absolute Error | 0.84      | 0.72      | 0.23           | 0.14           |
| R-squared           | -2.00     | -1.15     | 0.00           | 0.00           |
| Explained Variance  | -0.56     | -0.13     | 0.00           | 0.00           |

- In short, SVR consistently performs better than MLP across all metrics, especially for power prediction.
- However, both models struggle with occupation prediction, as indicated by low R<sup>2</sup> and explained variance.

- In both power and occupation models, SVR outperforms MLP, as it has lower MSE values.
- SVR performs better in both power and occupation models due to its lower MAE.
- For R<sup>2</sup> measures, both models perform poorly for power prediction. However, SVR is better for occupation prediction (though still not ideal).
- For explained variance, SVR slightly outperforms MLP for power prediction, but neither model explains much variance. For occupation, both models fail to capture any variance.



## Graph comparison between MLP and SVM







9/3/20XX

## Hyper-parameter tuning

#### **SVM**

- kernel: rbf, linear,
- C: 0.1, 1, 10,
- gamma: scale, auto

#### **MLP** classifier

- Hidden layer sizes: (50,), (100,), (100, 50), (50, 100)
- Max\_iter: 200,500
- alpha: 0.0001, 0.001, 0.01,
- learning\_rate: 'constant', 'adaptive'



# Output comparison between MLP and SVM after tuning

|                     | MLP Power | SVR Power | MLP Occupation | SVR Occupation |
|---------------------|-----------|-----------|----------------|----------------|
| Mean Squared Error  | 1.07      | 0.73      | 0.05           | 0.03           |
| Mean Absolute Error | 0.86      | 0.72      | 0.17           | 0.14           |
| R-squared           | -2.14     | -1.15     | 0.00           | 0.00           |
| Explained Variance  | -0.61     | -0.13     | 0.00           | 0.00           |

• **SVR** remains the better model overall, especially for power prediction.

**Mean Squared Error (MSE):** Both models show improvements in power prediction, with SVR maintaining its lower MSE. For occupation prediction, both models have lower MSE values, but SVR still performs better.

**Mean Absolute Error (MAE):** SVR continues to outperform MLP in both power and occupation prediction. The MAE values are lower for both models in the occupation task.

**R-squared (R<sup>2</sup>):** The R<sup>2</sup> values remain negative for both power and occupation prediction, indicating poor model fit. SVR is still the better performer, but neither model explains much variance.

**Explained Variance:** SVR maintains its advantage in explained variance for power prediction. Unfortunately, both models fail to capture any variance in occupation prediction.



# Graph comparison between MLP and SVM after tuning









Ali Ahammad

**Any Questions???** 

Presentation Title