

CANOPIE HPC Workshop@2023

Mohak Chadha: mohak.chadha@tum.de

Chair of Computer Architecture and Parallel Systems (CAPS)
Technical University of Munich

Germany

About Me

Final-year PhD candidate at TUM

Focusing on: Serverless Computing

Domains: Cloud Computing, High Performance Computing, Parallel Computing, Systems for ML

Website:

Table of Contents

Rise of Containers in HPC

[PloS one'17]

Why containers in HPC?

Enabling custom user-defined software stacks

Challenges in Container-based HPC application Development

- 1 Root privileges for running containers
- 2 Increasing heterogeneity of HPC nodes
- (3) Requirement for special networking libraries or compilers

Only, 8% of the total jobs at NERSC use containers [2018]

4 Building high-performant application container images.

Alternative to containers?

Introduction: WebAssembly (Wasm)

Binary format, with alternative human-readable text representation

Virtual ISA

Linear 32-bit memory space

Lightweight userspace isolation mechanism

Import/export system for granting capabilities

Introduction: WASI: Wasm System Interface

Standardized non-Web system-oriented API for Wasm

Capability-oriented

Portable

Custom libc implementation integrated into WASI-SDK

What we did?

MPIWasm

Extends Wasmer.

Support for C/C++ applications conforming to MPI-2.2 standard.

Support for both x86_64 and aarch64 processors.

High performance execution of MPI-based Wasm modules.

Low-overhead for MPI calls through zero-copy memory operations.

Support for high-performance network interconnects.

Executing Wasm Code with High-Performance

SuperMUC-NG Thin Node Specifications

Experimental Evaluation

5		CPU Model	AWS Graviton2 (Neoverse-N1)	CPU Model	Intel Skylake Xeon Platinum 8174
	128 nodes of HPC system	CPU Cores	32	CPU Cores	48
	One node of AWS Graviton2 processor	CPU Frequency	2.50 GHz	CPU Base Frequency	2.10 GHz
		CPU Turbo Frequency	3.00 GHz	CPU Turbo Frequency	3.00 GHz
	Comparison with standardized HPC benchmarks	CPU L1 Cache	2 MB	CPU L1 Cache	32 KB
		CPU L2 Cache	32 MB	CPU L2 Cache	1 MB
		CPU L3 Cache	32 MB	CPU L3 Cache	16.5 MB
		Memory	64 GB	Memory	96 GB

AWS Graviton 2 Specification

Mohak Chadha | Lightweight Isolation for HPC Applications | CANOPIE HPC Workshop@2023

PingPong and SendRecv (x86_64)

PingPong: 0.05x GM average slowdown

Sendrecv 6144 Ranks (time) ≤ 1024 Bytes Sendrecv 6144 Ranks (time) > 1024 Bytes

SendRecv: 0.06x GM average slowdown

Exploring the Use of WebAssembly in HPC

Mohak Chadha, Nils Krueger, Jophin John, Anshul Jindal, Michael Gerndt Chair of Computer Architecture and Parallel Systems, Technische Universität München, Germany

Abstract

Containerization approaches based on *namespaces* offered by the Linux kernel have seen an increasing popularity in the HPC community both as a means to isolate applications and as a format to package and distribute them. However, their adoption and usage in HPC systems faces several challenges. These include difficulties in unprivileged running and build-

Shajulin Benedict

Department of Computer Science and Engg., Indian Institute of Information Technology Kottayam, Kerala

ACM Reference Format:

Mohak Chadha, Nils Krueger, Jophin John, Anshul Jindal, Michael Gerndt and Shajulin Benedict. 2023. Exploring the Use of WebAssembly in HPC. In *The 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming (PPoPP '23), February 25-March 1, 2023, Montreal, QC, Canada.* ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3572848.3577436

Scan Me

Serverless MPI with Wasm


```
{
    "uuid": "d4c6570e-991b-467c-a601-789241ec8d1a",
    "path": "imb.wasm",
    "argv": [],
    "world_size": 8,
    "state": "Submitted",
    "callback": http://localhost:8080/jobs/d4c6...8d1a/callback
}
```

JSON API Response for MPI Job Status

WASI(X)

☐ WASI on **Steroids**

Essential Features:

- Support for networking
- ☐ Support for efficient multi-threading
- Support for process forking

More Information

Questions?

Key Takeaways:

- Wasm and HPC is an exciting research direction.
- MPIWasm delivers competive native application performance.
- □ Support fo x86_64 and aarch64 architectures.
- Support for applications written with the MPI-2.2 standard.
- Support for OpenMPI and MVAPICH.

Thank you for your attention!

Find Us:

MPIWasm:

