Mixture for M0530 Phusion PCR

New England Biolabs

Abstract

Citation: New England Biolabs Mixture for M0530 Phusion PCR. protocols.io

dx.doi.org/10.17504/protocols.io.cgztx5

Published: 30 Jan 2015

Protocol

Step 1.

Nuclease-free water

Step 2.

5X Phusion HF or GC Buffer

NOTES

New England Biolabs 16 Oct 2014

GC buffer should be used in experiments where HF buffer does not work. Detergent-free reaction buffers are also available for applications that do not tolerate detergents (e.g. microarray, DHPLC).

New England Biolabs 16 Oct 2014

5X Phusion HF Buffer and 5X Phusion GC Buffer are provided with the enzyme. HF buffer is recommended as the default buffer for high-fidelity amplification. For difficult templates, such as GC-rich templates or those with secondary structure, GC buffer can improve reaction performance.

Step 3.

10 mM dNTPs

Deoxynucleotide Solution Mix - 8 umol of each N0447S by New England Biolabs

NOTES

New England Biolabs 16 Oct 2014

Phusion cannot incorporate dUTP.

Step 4.

10 μM Forward Primer

Step 5.

10 μM Reverse Primer

Step 6.

Template DNA

Step 7.

DMSO (optional)

NOTES

New England Biolabs 16 Oct 2014

It is important to note that if a high concentration of DMSO is used, the annealing temperature

must be lowered as it decreases the primer Tm (2).

New England Biolabs 16 Oct 2014

Amplification of difficult targets, such as those with GC-rich sequences or secondary structure, may be improved by the presence of additives such as DMSO (included). A final concentration of 3% DMSO is recommended, although concentration can be optimized in 2% increments.

Step 8.

Phusion DNA Polymerase