Out[ ]: Click here to toggle on/off the raw code.

# Case Study One

### **Group Members:**

- Alva, Albert
- Gardner, Hollie
- · Kumsa, Bethel

# Business Understanding - 5 pts

You should always state the objective at the beginning of every case (a guideline you should follow in real life as well) and provide some initial "Business Understanding" statements (i.e., what is trying to be solved for and why might it be important)

The client has provided data on materials that have been identified as potential superconductors. The client would like to know what are the important features that impact a material's critical temperature, or the temperature at which the material acts as a superconductor (source) and more specifically, the critical temperature is the point at which the material "loses all electric resistance" (source).

The critical temperature is important because the expense of cooling can be quite costly. This project will seek to understand what factors are important for developing a material with higher critical temperatures. The commercial implications is that this allows for more plentiful and low-cost refrigerants which have a higher boiling point, like liquid nitrogen, to be used over other more expensive and rare materials with lower boiling points, such as liquid helium (source).

# Part One: Data Evaluation/Engineering - 10 pts

Summarize the data being used in the case using appropriate mediums (charts, graphs, tables); address questions such as: Are there missing values? Which variables are needed (which ones

are not)? What assumptions or conclusions are you drawing that need to be relayed to your audience?

# Importing Libraries and Reading in Data

```
In [ ]:
         #importing libraries
         import pandas as pd
         import warnings
         import sys
         from sklearn.preprocessing import StandardScaler
         import numpy as np
         import matplotlib.pyplot as plt
         %matplotlib inline
         import seaborn as sb
         from simple colors import *
         #modeling and regularization
         from sklearn.linear_model import LinearRegression
         from sklearn.linear_model import Lasso
         from sklearn.linear model import Ridge
         from sklearn.linear_model import RidgeCV
         #evaluation metrics
         from sklearn.model selection import cross val score
         from sklearn.model selection import train test split
         from sklearn.metrics import mean squared error, r2 score, mean absolute error
         #from ml metrics import rmse
         warnings.filterwarnings("ignore")
```

```
In [ ]: print(black('Imported packages',['bold', 'underlined']))
    print(blue('pandas, warnings, sys, StandardScaler, matplotlib.pyplot, matplotlib
```

### Imported packages

```
pandas, warnings, sys, StandardScaler, matplotlib.pyplot, matplotlib inline,seab
orn,simple_colors,
LinearRegression, Lasso Ridge, cross_val_score, mean_squared_error,r2_score, mean
n absolute error
```

#### The Data

(21263, 169)

The train dataset contains 21,263 observations with 82 variables. The train dataset contained the critical operating temperature plus 5 summary statistics for 8 variables (listed below)

### \*\*\*Summary Statistics

- Mean
- · Geometric mean
- Entropy
- Range
- Standard Deviation

### \*\*\*Summarized Variables

- Atomic Mass
- Atomic Radius
- Density
- Electron Affinity
- First Ionization Energy
- Fusion Heat
- Thermal Conductivity
- Valence
- Number of Elements

\*\*\*Target variable and non-numeric variable

Material

In [ ]:

• Critical Temperature

The unique\_m dataset contains 21,263 observations for 88 elements and are float variables. It also contains the target variable 'critical\_temp'

```
In [ ]:
         #Reading in Data. We received the data in two separate csv files.
         train = pd.read_csv('train.csv')
         unique_m = pd.read_csv('unique_m.csv')
         print(black('Train dataset\n',['bold']),black(train.dtypes,['bold']))
         print(black('unique m dataset\n',['bold']),black(unique m.dtypes,['bold']))
        Train dataset
        number_of_elements
mean_atomic_mass
                                      int64
                                 float64
        wtd_mean_atomic_mass float64 gmean_atomic_mass float64
        wtd_gmean_atomic_mass float64
                                   . . .
        range_Valence
                                    int64
        wtd_range_Valence float64
        std_Valence
                                 float64
        wtd_std_Valence float64
critical_temp float64
        Length: 82, dtype: object
        unique_m dataset
                           float64
        He
                            int64
        Li
                          float64
        Be
                          float64
        В
                          float64
                           ...
        Po
                            int64
        Αt
                            int64
                            int64
        critical_temp float64 material object
        Length: 88, dtype: object
```

#Dropping critical temp from train, since the column is present in both files.

print (black("'Crititcal\_temp' is in both datasets, dropped crititcal\_temp from

train.drop('critical\_temp', inplace=True, axis=1)

# 'Crititcal\_temp' is in both datasets, dropped crititcal\_temp from train In [ ]: #quick look at data to verify same length print(black('train shape\n',['bold']),train.shape) print(black('unique\_m shape\n',['bold']),unique\_m.shape) train shape (21263, 81)unique\_m shape (21263, 88) In [ ]: # Combining columns of the datasets SuperConductors = pd.concat([train,unique\_m],axis=1) In [ ]: # Creating dataframe named SuperConductors SuperConductors = pd.DataFrame(SuperConductors) # verifying df looks as expected SuperConductors.shape print(black('Created SuperConductors = train + unique m\nshape',['bold']),SuperC Created SuperConductors = train + unique\_m **shape** (21263, 169)

### EDA

### **Data Summary**

No missing values

#### **Dropped Features**

- material non-numeric data type
- 'He', 'Ne', 'Ar', 'Kr', 'Xe', 'Pm', 'Po', 'At', 'Rn' these features had only 0's in the columns and would not add to the model

### Analytical Dataset

The analytical dataset. SuperConductors contains 21,263 observations and 159 numeric features. The predictor and target variables are on the same dataset.

#### *Impression*

### **Predictors**

There predictor summary statistics showed high variance among the variable means. This would indicate normalization is needed to equate the variable means and standard deviation. Summary statistics for predictor means

- The smallest mean = 0.00229
- The largest mean = 8665.43882
- Average = 277.16908
- Standard Deviation = 1083.74335

#### Target Variable

The graph below shows the critical\_temp is not normally distributed.

```
# checking to see if all data types are numeric
pd.set_option('display.max_rows', None)
print(black('SuperConductors data types\n',['bold']),SuperConductors.dtypes)
pd.reset_option('display.max_rows')
```

```
SuperConductors data types
 number_of_elements
                                     int64
mean_atomic_mass
                                  float64
wtd mean atomic mass
                                  float64
gmean_atomic_mass
                                  float64
                                 float64
wtd_gmean_atomic_mass
                                 float64
entropy_atomic_mass
wtd_entropy_atomic_mass
                                float64
range_atomic_mass
                                 float64
                                 float64
wtd_range_atomic_mass
                                 float64
std_atomic_mass
wtd_std_atomic_mass
                                  float64
mean_fie
                                  float64
wtd_mean_fie
                                  float64
                                  float64
gmean_fie
wtd_gmean_fie
                                 float64
entropy_fie
                                 float64
                                  float64
wtd_entropy_fie
range fie
                                  float64
wtd range fie
                                  float64
                                 float64
std fie
wtd std fie
                                 float64
mean atomic radius
                                 float64
                                float64
wtd mean atomic radius
                                float64
float64
float64
gmean atomic radius
gmean_atomic_radius
wtd_gmean_atomic_radius
entropy atomic radius
wtd_entropy_atomic_radius
                                float64
range atomic radius
                                   int64
                               float64
float64
wtd range_atomic_radius
std atomic radius
wtd std atomic radius
                                 float64
                                 float64
mean Density
                                 float64
wtd mean Density
gmean Density
                                 float64
                                 float64
wtd_gmean_Density
entropy_Density
                                 float64
                                 float64
wtd entropy Density
                                 float64
range Density
wtd range Density
                                 float64
                                 float64
std Density
                                 float64
wtd std Density
mean_ElectronAffinity
                                 float64
                                float64
float64
wtd mean ElectronAffinity
gmean ElectronAffinity
                                float64
float64
wtd gmean ElectronAffinity
entropy ElectronAffinity
wtd entropy ElectronAffinity
                                float64
                                 float64
range ElectronAffinity
wtd_range_ElectronAffinity
                              float64
std ElectronAffinity
                                 float64
wtd std ElectronAffinity
                                 float64
mean FusionHeat
                                 float64
wtd mean FusionHeat
                                 float64
gmean_FusionHeat
                                  float64
```

| wtd_gmean_FusionHeat            | float64 |
|---------------------------------|---------|
| entropy_FusionHeat              | float64 |
| wtd_entropy_FusionHeat          | float64 |
|                                 | float64 |
| range_FusionHeat                |         |
| wtd_range_FusionHeat            | float64 |
| std_FusionHeat                  | float64 |
| wtd_std_FusionHeat              | float64 |
| mean ThermalConductivity        | float64 |
| wtd_mean_ThermalConductivity    | float64 |
| gmean ThermalConductivity       | float64 |
| <del>-</del> -                  | float64 |
| wtd_gmean_ThermalConductivity   |         |
| entropy_ThermalConductivity     | float64 |
| wtd_entropy_ThermalConductivity | float64 |
| range_ThermalConductivity       | float64 |
| wtd_range_ThermalConductivity   | float64 |
| std ThermalConductivity         | float64 |
| wtd_std_ThermalConductivity     | float64 |
|                                 | float64 |
| mean_Valence                    |         |
| wtd_mean_Valence                | float64 |
| gmean_Valence                   | float64 |
| wtd_gmean_Valence               | float64 |
| entropy_Valence                 | float64 |
| wtd_entropy_Valence             | float64 |
| range_Valence                   | int64   |
| <del>_</del>                    |         |
| wtd_range_Valence               | float64 |
| std_Valence                     | float64 |
| wtd_std_Valence                 | float64 |
| H                               | float64 |
| Не                              | int64   |
| Li                              | float64 |
| Be                              | float64 |
|                                 |         |
| В                               | float64 |
| C                               | float64 |
| N                               | float64 |
| 0                               | float64 |
| F                               | float64 |
| Ne                              | int64   |
| Na                              | float64 |
|                                 | float64 |
| Mg                              |         |
| Al                              | float64 |
| Si                              | float64 |
| P                               | float64 |
| S                               | float64 |
| Cl                              | float64 |
| Ar                              | int64   |
| K                               | float64 |
|                                 |         |
| Ca                              | float64 |
| Sc                              | float64 |
| Ti                              | float64 |
| V                               | float64 |
| Cr                              | float64 |
| Mn                              | float64 |
| Fe                              | float64 |
|                                 |         |
| Co                              | float64 |
| Ni                              | float64 |
| Cu                              | float64 |
| Zn                              | float64 |
| Ga                              | float64 |
| Ge                              | float64 |
| As                              | float64 |
| Se                              | float64 |
|                                 |         |
| Br<br>                          | float64 |
| Kr                              | int64   |
| Rb                              | float64 |
| Sr                              | float64 |
|                                 |         |

```
float64
Zr
                                      float64
Nb
                                      float64
Mo
                                      float64
Tc
                                      float64
Ru
                                      float64
Rh
Pd
                                      float64
                                      float64
Ag
                                      float64
Cd
                                      float64
In
Sn
                                      float64
Sb
                                      float64
                                      float64
Те
                                      float64
Ι
Хe
                                        int64
                                      float64
Cs
                                      float64
Ва
                                      float64
La
Ce
                                      float64
Pr
                                      float64
                                      float64
Nd
                                        int64
Pm
Sm
                                      float64
                                      float64
Eu
                                      float64
Gd
                                      float64
Tb
                                      float64
Dy
                                      float64
Но
                                      float64
Er
                                      float64
Tm
                                      float64
Yb
                                      float64
Lu
Ηf
                                      float64
Та
                                      float64
W
                                      float64
Re
                                      float64
                                      float64
0s
Ir
                                      float64
Pt
                                      float64
                                      float64
Au
                                      float64
Нg
Tl
                                      float64
Pb
                                      float64
Βi
                                      float64
Po
                                        int64
Αt
                                        int64
                                        int64
Rn
                                      float64
critical temp
material
                                       object
dtype: object
 # Material is an object - deleting
SuperConductors = SuperConductors.drop(['material'], axis=1)
 print(black("'material' is an object data type and was deleted\n",['bold']))
```

float64

'material' is an object data type and was deleted

# Checking for missing values

In [ ]:

Y

```
In [ ]: # Checking for missing values
null_counts = SuperConductors.isnull().sum()
```

```
Checked for null values, none found
         Series([], dtype: int64)
       Checking for features with only one value
In [ ]:
         # Finding features with only one value
         Myunique = []
         for col in SuperConductors.columns:
             if len (SuperConductors[col].unique ()) == 1:
                 Myunique.append(col)
         print(black("The following features have only one value:\n",['bold']),Myunique)
        The following features have only one value:
         ['He', 'Ne', 'Ar', 'Kr', 'Xe', 'Pm', 'Po', 'At', 'Rn']
In [ ]:
         # all nine features with single value have value of 0
         pd.set_option('display.max_rows', None)
         print(black("All nine features have only the value of zero\n",['bold']))
         to_drop = SuperConductors[['He', 'Ne', 'Ar', 'Kr', 'Xe', 'Pm', 'Po', 'At', 'Rn']
         #to_drop
         print(black("Maximum Value\n",['bold']),black(to_drop.max(),['bold']))
         #print(to_drop.max())
         print(black("Minimum Value\n",['bold']),black(to drop.min(),['bold']))
        All nine features have only the value of zero
        Maximum Value
               0
         He
              0
        Ne
              0
        Ar
        Kr
              0
              0
        Xe
        Pm
              0
        Po
              0
        At
              0
        Rn
              0
        dtype: int64
        Minimum Value
         He
              0
              0
        Ne
        Ar
              0
        Kr
              0
              0
        Xe
              0
        Pm
        Po
              0
        Αt
              0
              0
        Rn
        dtype: int64
In [ ]:
         # Dropping features wih only 0 values.
         SuperConductors = SuperConductors.drop(
             ['He', 'Ne', 'Ar', 'Kr', 'Xe', 'Pm', 'Po', 'At', 'Rn'], axis=1)
         print(black("None of the nine features add to the model and were dropped\n",['bo
```

None of the nine features add to the model and were dropped

print(black("Checked for null values, none found\n",['bold']),null counts[null c

### Verifying all features are numeric

```
# checking to see if all data types are numeric
pd.set_option('display.max_rows', None)

print(black("Verifying remaining Features are numeric\n",['bold']),black(SuperCo pd.reset_option('display.max_rows')
```

```
Verifying remaining Features are numeric
  number_of_elements
                                                                          int64
 mean_atomic_mass
                                                                    float64
 wtd mean atomic mass
                                                                  float64
 gmean_atomic_mass
                                                                 float64
 wtd_gmean_atomic_mass
                                                                 float64
 wtd_gmean_atomic_mass float64
entropy_atomic_mass float64
wtd_entropy_atomic_mass float64
range_atomic_mass float64
wtd_range_atomic_mass float64
std_atomic_mass float64
 wtd std atomic_mass
                                                                float64
 mean fie
                                                                 float64
 wtd mean fie
                                                                  float64
 gmean fie
                                                                  float64
 wtd gmean fie
                                                                   float64
                                                                 float64
 entropy_fie
 wtd_entropy_fie
                                                                 float64
 range fie
                                                                 float64
 wtd_range_fie
                                                                 float64
                                                                  float64
 std_fie
 wtd_std_fie
                                                                  float64
wtd_std_fie float64
mean_atomic_radius float64
wtd_mean_atomic_radius float64
gmean_atomic_radius float64
wtd_gmean_atomic_radius float64
entropy_atomic_radius float64
wtd_entropy_atomic_radius float64
range_atomic_radius int64
wtd_range_atomic_radius float64
std_atomic_radius float64
wtd_std_atomic_radius float64
wtd_std_atomic_radius float64
 std_atomic_radius
wtd_std_atomic_radius
                                                                 float64
                                                                 float64
 mean Density
 wtd mean Density
                                                                 float64
 gmean_Density
                                                                 float64
 wtd_gmean_Density
                                                                 float64
                                                                float64
float64
float64
 entropy Density
 wtd_entropy_Density
wtd_range_Density float64
std_Density float64
wtd_std_Density float64
mean_ElectronAffinity float64
wtd_mean_ElectronAffinity float64
gmean_ElectronAffinity float64
wtd_gmean_ElectronAffinity float64
wtd_gmean_ElectronAffinity float64
entropy_ElectronAffinity float64
wtd_entropy_ElectronAffinity float64
wtd_range_ElectronAffinity float64
wtd_range_ElectronAffinity float64
 range_Density
 range_ElectronAffinity
wtd_range_ElectronAffinity
std_ElectronAffinity
                                                                float64
                                                                 float64
 std_ElectronAffinity
wtd_std_ElectronAffinity
 std_ElectronAffinity
                                                                 float64
                                                                  float64
 mean FusionHeat
```

| wtd_mean_FusionHeat             | float64 |
|---------------------------------|---------|
| gmean_FusionHeat                | float64 |
| wtd gmean FusionHeat            | float64 |
| entropy_FusionHeat              | float64 |
| wtd_entropy_FusionHeat          | float64 |
| range FusionHeat                | float64 |
| wtd_range_FusionHeat            | float64 |
| std_FusionHeat                  | float64 |
| <del>_</del>                    | float64 |
| wtd_std_FusionHeat              |         |
| mean_ThermalConductivity        | float64 |
| wtd_mean_ThermalConductivity    | float64 |
| gmean_ThermalConductivity       | float64 |
| wtd_gmean_ThermalConductivity   | float64 |
| entropy_ThermalConductivity     | float64 |
| wtd_entropy_ThermalConductivity | float64 |
| range_ThermalConductivity       | float64 |
| wtd_range_ThermalConductivity   | float64 |
| std ThermalConductivity         | float64 |
| wtd std ThermalConductivity     | float64 |
| mean Valence                    | float64 |
| wtd mean Valence                | float64 |
| gmean Valence                   | float64 |
| wtd gmean Valence               | float64 |
|                                 |         |
| entropy_Valence                 | float64 |
| wtd_entropy_Valence             | float64 |
| range_Valence                   | int64   |
| wtd_range_Valence               | float64 |
| std_Valence                     | float64 |
| wtd_std_Valence                 | float64 |
| Н                               | float64 |
| Li                              | float64 |
| Ве                              | float64 |
| В                               | float64 |
| c                               | float64 |
| N                               | float64 |
| 0                               | float64 |
| F                               | float64 |
| r<br>Na                         | float64 |
|                                 | float64 |
| Mg                              |         |
| Al                              | float64 |
| Si                              | float64 |
| P                               | float64 |
| S                               | float64 |
| C1                              | float64 |
| K                               | float64 |
| Ca                              | float64 |
| Sc                              | float64 |
| Ti                              | float64 |
| V                               | float64 |
| Cr                              | float64 |
| Mn                              | float64 |
| Fe                              | float64 |
|                                 |         |
| Co                              | float64 |
| Ni                              | float64 |
| Cu                              | float64 |
| Zn                              | float64 |
| Ga                              | float64 |
| Ge                              | float64 |
| As                              | float64 |
| Se                              | float64 |
| Br                              | float64 |
| Rb                              | float64 |
| Sr                              | float64 |
| Y                               |         |
|                                 | float64 |
| Zr                              | float64 |

```
float64
         Nb
                                                float64
         Mo
         Tc
                                                float64
                                                float64
         Ru
         Rh
                                                float64
         Pd
                                                float64
                                                float64
         Ag
                                                float64
         Cd
         In
                                                float64
                                                float64
         Sn
                                                float64
         Sb
         Тe
                                                float64
         Ι
                                                float64
         Cs
                                                float64
                                                float64
         Ва
                                                float64
         La
         Ce
                                                float64
                                                float64
         Pr
         Nd
                                                float64
                                                float64
         Sm
         Eu
                                                float64
         Gd
                                                float64
         \mathbf{T}\mathbf{b}
                                                float64
                                                float64
         Dy
                                                float64
         Но
                                                float64
         Er
                                                float64
         \mathbf{T}\mathbf{m}
         Yb
                                                float64
                                                float64
         Lu
         Ηf
                                                float64
                                                float64
         Та
         W
                                                float64
         Re
                                                float64
         0s
                                                float64
         Ir
                                                float64
         Pt
                                                float64
         Au
                                                float64
         Нg
                                                float64
         T1
                                                float64
         Pb
                                                float64
                                                float64
         Βi
         critical_temp
                                                float64
         dtype: object
In [ ]:
          print(black("Cleaned dataset shape\n",['bold']), SuperConductors.shape)
         Cleaned dataset shape
          (21263, 159)
In [ ]:
          pd.set_option('display.max_columns', None)
          print(black("Cleaned dataset Summary Statistics\n",['bold']))
          SuperConductors.describe()
         Cleaned dataset Summary Statistics
```

| Out[ ]: |       | number_of_elements | mean_atomic_mass | wtd_mean_atomic_mass | gmean_atomic_mass | wtd |
|---------|-------|--------------------|------------------|----------------------|-------------------|-----|
|         | count | 21263.000000       | 21263.000000     | 21263.000000         | 21263.000000      |     |
|         | mean  | 4.115224           | 87.557631        | 72.988310            | 71.290627         |     |
|         | std   | 1.439295           | 29.676497        | 33.490406            | 31.030272         |     |

#### number\_of\_elements mean\_atomic\_mass wtd\_mean\_atomic\_mass gmean\_atomic\_mass wtd min 1.000000 6.941000 6.423452 5.320573 25% 3.000000 72.458076 52.143839 58.041225 50% 4.000000 84.922750 60.696571 66.361592 75% 5.000000 100.404410 86.103540 78.116681 9.000000 208.980400 208.980400 208.980400 max

```
In [ ]: #plt.plot(SuperConductors['critical_temp'])
    SuperConductors.critical_temp.plot.density(color='green')
    plt.title('Critical Temperature Distribution')

plt.show()
```



```
Summary statistics for predictor means
The smallest mean = 0.00229
The largest mean = 8665.43882
Average = 277.16908
Standard Deviation = 1083.74335
```

The majority of the features were correlated with other feature.

The heatmaps below show all features and the other shows just the features with correlations of at least .60.

Examples of correlated predictors:

- wtd\_mean\_Valence wtd\_gmean\_Valence 0.994939
- wtd\_mean\_fie wtd\_gmean\_fie 0.992331
- mean\_Valence gmean\_Valence 0.989911

## **Critical Temperature Correlations**

Critical Temperature was correlated with 11 features at .6 or above.

- wtd\_std\_ThermalConductivity 0.7213
- range\_ThermalConductivity 0.6877
- range\_atomic\_radius 0.6538
- std\_ThermalConductivity 0.6536
- wtd\_entropy\_atomic\_mass 0.6269
- wtd\_entropy\_atomic\_radius 0.6035
- number\_of\_elements 0.6011
- range\_fie 0.6008
- mean\_Valence -0.6001
- wtd\_gmean\_Valence -0.6157
- wtd\_mean\_Valence -0.6324

# Correlations

# **Correlations with Critical Temp**

```
Top 10 Correlations critical_temp sorted Decending.
critical_temp 1.0000
wtd_std_ThermalConductivity 0.7213
range_ThermalConductivity 0.6877
range_atomic_radius 0.6538
std_ThermalConductivity 0.6536
...
gmean_Density -0.5417
gmean_Valence -0.5731
mean_Valence -0.6001
```

```
wtd_gmean_Valence -0.6157
wtd_mean_Valence -0.6324
Length: 159, dtype: float64
```

### **Predictor Correlations**

Predictor feature correlation matrix showing high colinearity

```
In [ ]: mycorr = x.corr()
    plt.style.use('ggplot')
    plt.figure(figsize = (15, 5))
    plt.suptitle('Correlations for predictor features')

plt.subplot(1, 2, 1) # row 1, col 2 index 1
    plt.title('Predictor Features')
    sb.heatmap(mycorr, annot= False)

plt.subplot(1, 3, 3) # row 1, col 2 index 1
    plt.title('Predictor Features with correlations of at least .60')
    x_Filtered = mycorr[((mycorr >= 0.6) | (mycorr <= -0.6)) & (mycorr !=1.000)]
    sb.heatmap(x_Filtered, annot= False)

plt.show()</pre>
```



# Part Two: Modeling Preparations - 10 pts

Which methods are you proposing to utilize to solve the problem? Why is this method appropriate given the business objective?

The team has decided to utilize linear regression and Ridge regularization in order to predict the critical temperature of the superconductor materials based on the data provided to us. Since high interpretability is crucial to the business need, linear regression techniques can be used to perform quick, reliable predictions that are more interpretable over other types of machine

learning techniques. The RIDGE regularization was selected due to the data being highly colinear. The predictor variables are normalized to insure homogeneity of variance.

How will you determine if your approach is useful (or how will you differentiate which approach is more useful than another)? More specifically, what evaluation metrics are most useful given that the problem is a regression one (ex., RMSE, logloss, MAE, etc.)?

The team will use RMSE to serve as the metric for our model evaluation. Root mean square error gives us an idea of how far off our predictions are and we want to identify the parameters, such as the regularization loss penalty (alpha), that will produce accurate predictions with the least amount of error without also overfitting our model to the training data. In addition, the team will use MSE, MAE, and R^2 to further evaluate the effectiveness and accuracy of the model.

```
In [ ]:  # Making X and Y
x = SuperConductors.drop(['critical_temp'], axis=1)
y = SuperConductors['critical_temp']
```

# Normalizing the Data

The means of the predictor features have large variability.

The feature means range from .002 to 8665.439 with a standard deviation of 1080.480.

### Results of normalization

```
pd.set_option('display.float_format', lambda x: '%.5f' % x)
print(black( 'Scaled Predictor Data Summary',['bold']))
x_scaled.describe()
```

### Scaled Predictor Data Summary

| Out[ ]: | : number_of_elements |             | number_of_elements mean_atomic_mass v |             | wtd_mean_atomic_mass | gmean_atomic_mass | wtd |  |
|---------|----------------------|-------------|---------------------------------------|-------------|----------------------|-------------------|-----|--|
|         | count                | 21263.00000 | 21263.00000                           | 21263.00000 | 21263.00000          |                   |     |  |
|         | mean                 | -0.00000    | -0.00000                              | -0.00000    | -0.00000             |                   |     |  |
|         | std                  | 1.00002     | 1.00002                               | 1.00002     | 1.00002              |                   |     |  |

|     | number_ot_elements | mean_atomic_mass | wtd_mean_atomic_mass | gmean_atomic_mass | wta |
|-----|--------------------|------------------|----------------------|-------------------|-----|
| min | -2.16446           | -2.71658         | -1.98763             | -2.12604          |     |
| 25% | -0.77486           | -0.50882         | -0.62242             | -0.42699          |     |
| 50% | -0.08006           | -0.08879         | -0.36703             | -0.15885          |     |
| 75% | 0.61474            | 0.43290          | 0.39162              | 0.21999           |     |
| max | 3.39395            | 4.09164          | 4.06072              | 4.43738           |     |

# Part Three: Model Building and Evaluation - 40 pts

In this case, your primary task is to build a linear regression model using L1 or L2 regularization (or both) to predict the critical temperature and will involve the following steps:

Specify your sampling methodology

Our sampling methodology is to create a 70/30 split of training and test data. While in this iteration the data is standardized prior to the split of the training and test data, future iterations of this analysis will involve standarization practices that do not create data leakage.

Setup your model(s) - specifying the regularization type chosen and including the parameters utilized by the model

In addition to a simple linear regression, the team has opted to perform an L2, or Ridge regularlarization, regression model. The alpha, or loss, found to be the optimal amount was 1.0 which can be seen below.

Analyze your model's performance - referencing your chosen evaluation metric (including supplemental visuals and analysis where appropriate)

R2:0.750, MSE:286.21, RMSE:16.92

# **Linear Regression**

# Creating x\_train x\_test y\_train y\_test

# Ridge Regularization

```
In [ ]: | print(black('Innitial Training RIDGE model',['bold']))
         12_mod = Ridge(alpha=0, normalize=False).fit(x_train, y_train)
         print(12_mod.get_params())
        Innitial Training RIDGE model
        {'alpha': 0, 'copy_X': True, 'fit_intercept': True, 'max_iter': None, 'normaliz
        e': False, 'random_state': None, 'solver': 'auto', 'tol': 0.001}
In [ ]:
         # Innitial model Coefficients
         12_mod_coef = pd.DataFrame(12_mod.coef_)
         feature_name = pd.DataFrame(feature_names)
         12_mod_coefs = pd.concat([feature_name, 12_mod_coef], axis=1)
         12_mod_coefs.columns = ['Features', 'Coefficients']
         pd.set_option('display.max_rows', None)
         pd.set_option('display.float_format', lambda x: '%.9f' % x)
         print(black('Linear Regression Coefficients',['bold']))
         #order - greatest to least to support business need of creating higher crit temp
         12_mod_coefs.sort_values(by='Coefficients',ascending=False ,key=abs)
        Linear Regression Coefficients
```

| Out[ ]: | Features                     | Coefficients  |
|---------|------------------------------|---------------|
| 24      | wtd_gmean_atomic_radius      | -44.899742900 |
| 2:      | wtd_mean_atomic_radius       | 44.533539433  |
| :       | wtd_mean_atomic_mass         | -40.809621882 |
| 5:      | wtd_mean_FusionHeat          | -29.335837662 |
| 49      | std_ElectronAffinity         | 26.416083523  |
|         | mean_atomic_mass             | 26.225582661  |
| 70      | wtd_entropy_Valence          | -26.057044499 |
| 4       | wtd_gmean_atomic_mass        | 25.668638208  |
| 1:      | wtd_mean_fie                 | 25.485147184  |
| 62      | wtd_mean_ThermalConductivity | 24.810334739  |
| 7!      | entropy_Valence              | 23.089944547  |
| 2!      | entropy_atomic_radius        | -21.787900772 |
| 4       | range_ElectronAffinity       | -20.632183897 |
| 1       | l mean_fie                   | -20.591312849 |
| 69      | std_ThermalConductivity      | 19.728483824  |
| 54      | wtd_gmean_FusionHeat         | 18.901346338  |
| 6       | range_ThermalConductivity    | -17.798618266 |
| 33      | wtd_mean_Density             | 17.115315534  |
| 10      | wtd_entropy_fie              | 16.870734220  |
| 3       | mean_Density                 | -16.703720835 |
| 5       | mean_FusionHeat              | 16.004714277  |
| 44      | wtd_gmean_ElectronAffinity   | -15.909271650 |

|     | Features                      | Coefficients  |
|-----|-------------------------------|---------------|
| 13  | gmean_fie                     | 15.813892506  |
| 14  | wtd_gmean_fie                 | -15.730517642 |
| 72  | wtd_mean_Valence              | -15.700706724 |
| 64  | wtd_gmean_ThermalConductivity | -15.460867038 |
| 17  | range_fie                     | 14.971135536  |
| 3   | gmean_atomic_mass             | -13.649390979 |
| 42  | wtd_mean_ElectronAffinity     | 13.457942614  |
| 74  | wtd_gmean_Valence             | 12.744570946  |
| 50  | wtd_std_ElectronAffinity      | -11.104678414 |
| 15  | entropy_fie                   | 10.840718806  |
| 29  | std_atomic_radius             | -10.758005081 |
| 59  | std_FusionHeat                | -10.352584903 |
| 7   | range_atomic_mass             | 10.088856866  |
| 9   | std_atomic_mass               | -9.933473596  |
| 19  | std_fie                       | -9.307790651  |
| 56  | wtd_entropy_FusionHeat        | 9.293269020   |
| 55  | entropy_FusionHeat            | -9.082098026  |
| 5   | entropy_atomic_mass           | -9.076435040  |
| 53  | gmean_FusionHeat              | -8.990733308  |
| 21  | mean_atomic_radius            | -8.307677914  |
| 68  | wtd_range_ThermalConductivity | -8.053270483  |
| 77  | range_Valence                 | 7.980407498   |
| 58  | wtd_range_FusionHeat          | 7.869926168   |
| 131 | Ва                            | 7.407185450   |
| 26  | wtd_entropy_atomic_radius     | 7.085672313   |
| 60  | wtd_std_FusionHeat            | 7.013508291   |
| 80  | wtd_std_Valence               | -7.012208228  |
| 39  | std_Density                   | 6.915531428   |
| 20  | wtd_std_fie                   | -6.487081258  |
| 27  | range_atomic_radius           | 5.859659112   |
| 46  | wtd_entropy_ElectronAffinity  | -5.415700724  |
| 43  | gmean_ElectronAffinity        | 4.479215652   |
| 157 | Ві                            | 4.373627284   |
| 71  | mean_Valence                  | 4.126779408   |
| 33  | gmean_Density                 | 4.092484157   |
|     |                               |               |

|     | Features                    | Coefficients |
|-----|-----------------------------|--------------|
| 37  | range_Density               | -4.089764631 |
| 8   | wtd_range_atomic_mass       | 3.543842218  |
| 45  | entropy_ElectronAffinity    | 3.537682336  |
| 18  | wtd_range_fie               | 3.466260484  |
| 65  | entropy_ThermalConductivity | 3.364747168  |
| 6   | wtd_entropy_atomic_mass     | 3.318903378  |
| 23  | gmean_atomic_radius         | 3.310495738  |
| 92  | Si                          | -2.923526002 |
| 34  | wtd_gmean_Density           | -2.817448584 |
| 28  | wtd_range_atomic_radius     | -2.735923413 |
| 57  | range_FusionHeat            | -2.584580805 |
| 30  | wtd_std_atomic_radius       | 2.564986537  |
| 38  | wtd_range_Density           | -2.348549782 |
| 40  | wtd_std_Density             | -2.301276963 |
| 41  | mean_ElectronAffinity       | -2.075845115 |
| 61  | mean_ThermalConductivity    | -2.040583971 |
| 36  | wtd_entropy_Density         | -2.023821483 |
| 63  | gmean_ThermalConductivity   | -2.014400603 |
| 48  | wtd_range_ElectronAffinity  | -1.986792145 |
| 78  | wtd_range_Valence           | -1.939665211 |
| 123 | Ag                          | -1.879734812 |
| 110 | As                          | -1.684799222 |
| 79  | std_Valence                 | -1.677373347 |
| 155 | TI                          | 1.581966062  |
| 106 | Cu                          | -1.562778574 |
| 94  | S                           | -1.515067485 |
| 87  | 0                           | -1.448522167 |
| 152 | Pt                          | 1.347941204  |
| 154 | Hg                          | 1.312879729  |
| 96  | К                           | 1.270719839  |
| 70  | wtd_std_ThermalConductivity | -1.232854075 |
| 113 | Rb                          | 1.195812472  |
| 88  | F                           | 1.109016908  |
| 103 | Fe                          | 0.972300947  |
| 97  | Са                          | 0.960886842  |

|     | Features                        | Coefficients |
|-----|---------------------------------|--------------|
| 109 | Ge                              | -0.944874906 |
| 73  | gmean_Valence                   | -0.935490892 |
| 145 | Lu                              | 0.873579360  |
| 111 | Se                              | -0.739988717 |
| 95  | CI                              | -0.738041269 |
| 125 | In                              | 0.732493903  |
| 93  | Р                               | -0.706285211 |
| 66  | wtd_entropy_ThermalConductivity | 0.667891515  |
| 89  | Na                              | 0.655886845  |
| 144 | Yb                              | 0.641363509  |
| 156 | Pb                              | 0.626103277  |
| 129 | I                               | 0.595853063  |
| 0   | number_of_elements              | 0.528185155  |
| 153 | Au                              | -0.484757234 |
| 130 | Cs                              | 0.484262548  |
| 82  | Li                              | 0.466590581  |
| 136 | Sm                              | -0.461219952 |
| 133 | Ce                              | -0.460263353 |
| 135 | Nd                              | -0.444359909 |
| 108 | Ga                              | 0.444168569  |
| 140 | Dy                              | 0.428488265  |
| 141 | Но                              | 0.424452876  |
| 91  | Al                              | -0.401909888 |
| 105 | Ni                              | -0.383076258 |
| 117 | Nb                              | 0.377998149  |
| 10  | wtd_std_atomic_mass             | 0.351513307  |
| 118 | Мо                              | 0.305957942  |
| 114 | Sr                              | -0.304123929 |
| 104 | Co                              | -0.290816416 |
| 84  | В                               | -0.286614878 |
| 150 | Os                              | 0.278247669  |
| 142 | Er                              | 0.254510529  |
| 83  | Ве                              | -0.241888976 |
| 121 | Rh                              | -0.207827786 |
| 81  | Н                               | -0.175539894 |

|     | Features        | Coefficients |
|-----|-----------------|--------------|
| 143 | Tm              | 0.167439282  |
| 126 | Sn              | -0.150519026 |
| 120 | Ru              | 0.145727322  |
| 90  | Mg              | 0.138913915  |
| 99  | Ti              | -0.136406034 |
| 35  | entropy_Density | 0.132725908  |
| 146 | Hf              | -0.131171003 |
| 115 | Υ               | -0.129026758 |
| 116 | Zr              | 0.114915309  |
| 148 | W               | 0.105039752  |
| 124 | Cd              | -0.094863417 |
| 128 | Те              | 0.090182208  |
| 119 | Тс              | 0.078878586  |
| 149 | Re              | -0.075354995 |
| 122 | Pd              | -0.064695757 |
| 107 | Zn              | -0.063103875 |
| 134 | Pr              | -0.052693386 |
| 85  | С               | -0.047992553 |
| 101 | Cr              | -0.047606525 |
| 132 | La              | 0.040080931  |
| 102 | Mn              | -0.039684944 |
| 112 | Br              | -0.033489410 |
| 147 | Та              | 0.033158815  |
| 138 | Gd              | -0.030154144 |
| 137 | Eu              | 0.021921922  |
| 139 | Tb              | 0.020987313  |
| 98  | Sc              | -0.016269207 |
| 86  | N               | -0.011984692 |
| 127 | Sb              | -0.010511922 |
| 151 | Ir              | 0.004425107  |
| 100 | V               | 0.001638383  |

Alpha:0.000, R2:0.767867, MAE:12.360196, MSE:273.612070, RMSE:16.541223

### Tuning RIDGE model alpha

### Training RIDGE model with optimal alpha level alpha=1

```
print("R2:{0:.3f}, MSE:{1:.2f}, RMSE:{2:.2f}"
    .format(score, mse,np.sqrt(mse)))
```

R2:0.750, MSE:286.21, RMSE:16.92

```
In []: # Optimized model Coefficients
    ridge_mod_coef = pd.DataFrame(ridge_mod.coef_)
    feature_name = pd.DataFrame(feature_names)
    ridge_mod_coefs = pd.concat([feature_name,ridge_mod_coef],axis=1)
    ridge_mod_coefs.columns = ['Features', 'Coefficients']
    pd.set_option('display.max_rows', None)
    pd.set_option('display.float_format', lambda x: '%.9f' % x)

    print(black('Ridge Regression Coefficients',['bold']))
    #order - greatest to least to support business need of creating higher crit temp
    ridge_mod_coefs.sort_values(by='Coefficients',ascending=False ,key=abs)
```

#### Ridge Regression Coefficients

| Out[]: |    | Features                      | Coefficients  |
|--------|----|-------------------------------|---------------|
|        | 2  | wtd_mean_atomic_mass          | -34.830064942 |
|        | 22 | wtd_mean_atomic_radius        | 32.252686393  |
|        | 24 | wtd_gmean_atomic_radius       | -30.205166288 |
|        | 49 | std_ElectronAffinity          | 26.144060981  |
|        | 52 | wtd_mean_FusionHeat           | -25.541731343 |
|        | 62 | wtd_mean_ThermalConductivity  | 23.754868581  |
|        | 76 | wtd_entropy_Valence           | -23.384496458 |
|        | 1  | mean_atomic_mass              | 22.589498481  |
|        | 75 | entropy_Valence               | 21.514470002  |
|        | 47 | range_ElectronAffinity        | -20.273268643 |
|        | 4  | wtd_gmean_atomic_mass         | 19.686713305  |
|        | 69 | std_ThermalConductivity       | 18.343083341  |
|        | 25 | entropy_atomic_radius         | -17.926562964 |
|        | 67 | range_ThermalConductivity     | -17.359678700 |
|        | 44 | wtd_gmean_ElectronAffinity    | -16.063715537 |
|        | 54 | wtd_gmean_FusionHeat          | 15.415231682  |
|        | 16 | wtd_entropy_fie               | 15.403202956  |
|        | 32 | wtd_mean_Density              | 15.392051753  |
|        | 31 | mean_Density                  | -15.332116832 |
|        | 17 | range_fie                     | 14.599202460  |
|        | 64 | wtd_gmean_ThermalConductivity | -14.477835231 |
|        | 11 | mean_fie                      | -14.264642354 |
|        | 51 | mean_FusionHeat               | 13.725466190  |
|        | 42 | wtd_mean_ElectronAffinity     | 13.665567289  |

|     | Features                      | Coefficients  |
|-----|-------------------------------|---------------|
| 12  | wtd_mean_fie                  | 13.603430445  |
| 29  | std_atomic_radius             | -13.043719810 |
| 19  | std_fie                       | -11.524528016 |
| 50  | wtd_std_ElectronAffinity      | -11.090396139 |
| 13  | gmean_fie                     | 10.481432227  |
| 3   | gmean_atomic_mass             | -10.266421953 |
| 7   | range_atomic_mass             | 9.925761498   |
| 72  | wtd_mean_Valence              | -9.463105002  |
| 5   | entropy_atomic_mass           | -9.453522280  |
| 56  | wtd_entropy_FusionHeat        | 9.041976591   |
| 15  | entropy_fie                   | 9.039865293   |
| 9   | std_atomic_mass               | -8.701134777  |
| 55  | entropy_FusionHeat            | -8.475715944  |
| 59  | std_FusionHeat                | -8.365489936  |
| 77  | range_Valence                 | 7.921653895   |
| 68  | wtd_range_ThermalConductivity | -7.837346419  |
| 58  | wtd_range_FusionHeat          | 7.657012961   |
| 80  | wtd_std_Valence               | -7.515927926  |
| 131 | Ва                            | 7.383899482   |
| 74  | wtd_gmean_Valence             | 7.330349245   |
| 53  | gmean_FusionHeat              | -6.944928051  |
| 39  | std_Density                   | 6.794323321   |
| 27  | range_atomic_radius           | 6.322498628   |
| 14  | wtd_gmean_fie                 | -6.247110202  |
| 30  | wtd_std_atomic_radius         | 5.804623510   |
| 60  | wtd_std_FusionHeat            | 5.517724291   |
| 46  | wtd_entropy_ElectronAffinity  | -5.343021113  |
| 26  | wtd_entropy_atomic_radius     | 4.952532590   |
| 43  | gmean_ElectronAffinity        | 4.530810285   |
| 157 | Ві                            | 4.360185042   |
| 37  | range_Density                 | -4.356159623  |
| 6   | wtd_entropy_atomic_mass       | 4.280892843   |
| 8   | wtd_range_atomic_mass         | 3.527843891   |
| 45  | entropy_ElectronAffinity      | 3.510522659   |
| 18  | wtd_range_fie                 | 3.321546716   |

|     | Features                        | Coefficients |
|-----|---------------------------------|--------------|
| 20  | wtd_std_fie                     | -3.100868768 |
| 65  | entropy_ThermalConductivity     | 2.995673968  |
| 92  | Si                              | -2.912653122 |
| 57  | range_FusionHeat                | -2.887202773 |
| 28  | wtd_range_atomic_radius         | -2.810476805 |
| 23  | gmean_atomic_radius             | -2.646251606 |
| 63  | gmean_ThermalConductivity       | -2.570555740 |
| 21  | mean_atomic_radius              | -2.564808330 |
| 33  | gmean_Density                   | 2.532150700  |
| 38  | wtd_range_Density               | -2.400537473 |
| 41  | mean_ElectronAffinity           | -2.229091850 |
| 36  | wtd_entropy_Density             | -2.179099092 |
| 73  | gmean_Valence                   | 2.160131096  |
| 48  | wtd_range_ElectronAffinity      | -2.106397635 |
| 40  | wtd_std_Density                 | -2.038813626 |
| 123 | Ag                              | -1.852838329 |
| 110 | As                              | -1.744894021 |
| 78  | wtd_range_Valence               | -1.605430804 |
| 106 | Cu                              | -1.579564539 |
| 155 | TI                              | 1.563639462  |
| 94  | S                               | -1.555966291 |
| 61  | mean_ThermalConductivity        | -1.468369361 |
| 152 | Pt                              | 1.380789729  |
| 79  | std_Valence                     | -1.368485040 |
| 87  | 0                               | -1.341242488 |
| 154 | Hg                              | 1.284765713  |
| 96  | K                               | 1.202410160  |
| 113 | Rb                              | 1.139784410  |
| 88  | F                               | 1.086177039  |
| 10  | wtd_std_atomic_mass             | -1.071444113 |
| 103 | Fe                              | 1.017109748  |
| 66  | wtd_entropy_ThermalConductivity | 0.947665613  |
| 109 | Ge                              | -0.931289826 |
| 97  | Ca                              | 0.931266926  |
| 34  | wtd_gmean_Density               | -0.904550409 |

|     | Features                    | Coefficients |
|-----|-----------------------------|--------------|
| 145 | Lu                          | 0.859714745  |
| 95  | CI                          | -0.810106776 |
| 111 | Se                          | -0.764552552 |
| 125 | In                          | 0.747510971  |
| 93  | Р                           | -0.708380876 |
| 144 | Yb                          | 0.641815873  |
| 156 | Pb                          | 0.617596943  |
| 89  | Na                          | 0.607766432  |
| 0   | number_of_elements          | 0.598222678  |
| 129 | I                           | 0.571254332  |
| 153 | Au                          | -0.481680401 |
| 133 | Ce                          | -0.471396565 |
| 135 | Nd                          | -0.459254051 |
| 108 | Ga                          | 0.453978824  |
| 82  | Li                          | 0.444087310  |
| 136 | Sm                          | -0.442790230 |
| 91  | Al                          | -0.437818210 |
| 130 | Cs                          | 0.437647585  |
| 140 | Dy                          | 0.423537156  |
| 141 | Но                          | 0.420256515  |
| 117 | Nb                          | 0.380071156  |
| 114 | Sr                          | -0.375403326 |
| 105 | Ni                          | -0.372004393 |
| 71  | mean_Valence                | 0.360133932  |
| 104 | Co                          | -0.298448636 |
| 150 | Os                          | 0.296001002  |
| 118 | Мо                          | 0.277142470  |
| 84  | В                           | -0.272250609 |
| 81  | Н                           | -0.249979620 |
| 142 | Er                          | 0.245965671  |
| 83  | Ве                          | -0.212521112 |
| 121 | Rh                          | -0.187362483 |
| 35  | entropy_Density             | -0.185021494 |
| 70  | wtd_std_ThermalConductivity | -0.168242162 |
| 143 | Tm                          | 0.159886191  |

|     | Features | Coefficients |
|-----|----------|--------------|
| 120 | Ru       | 0.152732472  |
| 99  | Ti       | -0.142001288 |
| 90  | Mg       | 0.129395617  |
| 115 | Υ        | -0.128782964 |
| 146 | Hf       | -0.126472574 |
| 126 | Sn       | -0.123927810 |
| 116 | Zr       | 0.097575614  |
| 124 | Cd       | -0.095918339 |
| 128 | Те       | 0.090742786  |
| 149 | Re       | -0.085126816 |
| 119 | Тс       | 0.080493583  |
| 148 | W        | 0.071172320  |
| 122 | Pd       | -0.068498613 |
| 134 | Pr       | -0.061908478 |
| 107 | Zn       | -0.054532125 |
| 138 | Gd       | -0.050619717 |
| 101 | Cr       | -0.048576060 |
| 85  | С        | -0.048109796 |
| 112 | Br       | -0.042931910 |
| 102 | Mn       | -0.039653181 |
| 132 | La       | 0.036108054  |
| 86  | N        | -0.035540727 |
| 147 | Та       | 0.032972307  |
| 139 | Tb       | 0.026395660  |
| 127 | Sb       | -0.020434568 |
| 151 | Ir       | 0.011189135  |
| 100 | V        | -0.010799878 |
| 137 | Eu       | 0.010752678  |
| 98  | Sc       | -0.006142099 |

```
In [ ]:
    plt.figure(figsize=(14,5))
    plt.suptitle('Test Data Distributions')

    plt.subplot(1, 2, 1) # row 1, col 2 index 1
    sb.distplot(a=ridge_pred_y_diff_test.Difference, hist=False)
    plt.axvline(mae, linestyle='dashed', linewidth=1, color='blue')
    plt.xlabel('Error')
    plt.title('Distribution of Predicted Critical Temperature Error')
```

```
plt.subplot(1, 2, 2) # index 2
plt.plot(y_test, ypred, 'o', color='blue')
m, b = np.polyfit(y_test, ypred, 1)
plt.plot(y_test, m*y_test+b, color='red')
plt.xlabel('Actual Critical Temperature')
plt.ylabel('Predicted Critical Temperature')
plt.title('Predicted vs Actual Critical Temperature')
plt.show()
```



```
In [ ]: new = x_scaled.loc[5:5]
    new
```

 $\verb"Out[]: number_of_elements mean_atomic_mass wtd_mean_atomic_mass gmean_atomic_mass wtd_gmean_atomic_mass wtd_gmean_atomic_mass wtd_gmean_atomic_mass gmean_atomic_mass gmean_atomic_mass$ 

**5** -0.080057504 0.046732916 -0.453670942 -0.158849738

```
In [ ]: y[5]
```

Out[ ]: 23.0

```
print("Linear Prediction:",12_mod.predict(new))
print("RIDGE Prediction:",ridge_mod.predict(new),'\n')

print("Linear alpha:",12_mod.alpha)
print("RIDGE alpha:",ridge_mod.alpha,'\n')

print("Linear mae:",mean_absolute_error(y_train,12_y_pred_train))
print("RIDGE mae:",mean_absolute_error(y_test,ypred),'\n')

print("Linear rmse:",mean_squared_error(y_train,12_y_pred_train,squared=False))
print("RIDGE rmse:",mean_squared_error(y_test,ypred,squared=False),'\n')

print("Linear r2:",r2_score(y_train,12_y_pred_train))
print("RIDGE r2:",r2_score(y_test,ypred),'\n')
```

```
print("linear Regression:",cross_val_score(12_mod,x_scaled,y).mean())
print("RIDGE:",cross_val_score(ridge_mod,x_scaled,y).mean())
```

```
Linear Prediction: [35.21735867]
RIDGE Prediction: [35.16923057]

Linear alpha: 0
RIDGE alpha: 1

Linear mae: 12.3601958460669
RIDGE mae: 12.610302084821411

Linear rmse: 16.541223357152035
RIDGE rmse: 16.917601852583726

Linear r2: 0.7678670132794634
RIDGE r2: 0.7534192022353778

linear Regression: -0.7944407411247927
RIDGE: -0.7832389184906937
```

# Part Four: Model Interpretability & Explanation - 20 pts

Using at least one of your models above (if multiple were trained):

Which variable(s) was (were) "most important" and why?

The following three features are the most important in the prediction model as they had the highest absolute coefficients.

- wtd\_mean\_atomic\_mass -34.830064942
- wtd\_mean\_atomic\_radius 32.252686393
- wtd\_gmean\_atomic\_radius -30.205166288

As the wtd\_mean\_atomic\_mass and the wtd\_gmean\_atomic\_radius increase, the critical temperature falls.

As the wtd\_mean\_atomic\_radius increase, the critical temperature increases.

One concern is that the three variable identified above are highly correlated with each other. The client did not provide a data dictionary, therefore the team did not feel comfortable with removing variables without understanding the full rationale for the inclusion of the variables. It is recommended that the team meets with the client or representatives of the client to discuss which variables can be removed to address the overall issues with the multicollinearity taking place.

How did you come to the conclusion and how should your audience interpret this?

For every unit increase of wtd\_mean\_atomic\_mass there is a 34 unit decrease in the critical temperature. The wtd\_mean\_atomic\_radius and the wtd\_gmean\_atomic\_radius almost negate each other as there is a one unit increase in the former increases critical temperature by 32 units and the latter decreases the critical temperature by 30 units.

# Part Five: Case Conclusions - 10 pts

After all of your technical analysis and modeling; what are you proposing to your audience and why? How should they view your results and what should they consider when moving forward? Are there other approaches you'd recommend exploring? This is where you "bring it all home" in language they understand.

The data suffers from collinearity amoung the predictor variables. Before moving forward with modeling, the variables recording the same information (i.e. different calculations of mean, standard deviation, range) should be removed to reduce colllinearity. The above recommended meeting would be necessary to identify which of the variables can be removed based on domain knowledge.

As the conclusions now stand without further meetings, if the client is looking to find a superconductor that doesn't need as many resources to cool, then our recommendation would be to look for materials with less wtd\_mean\_atomic\_mass and less wtd\_gmean\_atomic\_radius and a greater wtd\_mean\_atomic\_radius.

| In [ ]: |  |
|---------|--|
|         |  |