МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ

Построения защищённой сети IP-телефонии на базе Elastix

Практическая часть

содержание

	5.1 J	Пабораторная работа №1. Установка Elastix в VMware player.	
	Нач	альная конфигурация, связь между 2 абонентами	3
	5.2 3	Лабораторная работа №2. Использование встроенного Firewall'a	. 14
	5.3 Elas	Лабораторная работа №3. Настройка протокола SRTP и TLS в ОС tix	. 23
	5.4 J	Лабораторная работа №4. Использование программы Fail2Ban	. 33
	5.5	Лабораторная работа №5. Подключение к Elastix через VPN туннел 36	Ь.
C	Списо	к использованной литературы:	. 45

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ

Основной целью лабораторного практикума является изучение построения защищённой сети ір-телефонии на базе Elastix.

5.1 Лабораторная работа №1. Установка Elastix в VMware player. Начальная конфигурация, связь между 2 абонентами.

Цель работы: Ознакомление с принципами работы виртуальной машины, установка ОС Elastix на ВМ, настройка первоначальной конфигурации достаточной для совершения звонка между двумя абонентами внутренней сети, мониторинг проходящего звонка.

Подготовка к лабораторной работе:

На каждую машину должны быть установлены:

- 1. **Wireshark** инструмент для захвата и анализа сетевого трафика. Доступен бесплатно на сайте wireshark.org;
- 2. **Phoner** софтфон для системы Windows, поддерживающий VoIP связь.

Порядок выполнения лабораторной работы:

Часть первая – Установка Elastix на виртуальную машину.

1) Если требуется, настройте IP адреса на ПК1 и ПК2, чтобы они могли взаимодействовать между собой и заполните часть следующей таблицы

Таблица 5.1

ПК1	ПК2
IP адрес:	IP адрес:
МАС адрес:	МАС адрес:
Номер SIP:	Номер SIP:
IP адрес сервера Elastix	

Для проверки соединения откройте командную строку Windows и воспользуйтесь утилитами *ipconfig*, для вывода информации о текущих соединениях, и *ping*, для проверки соединения между ПК1 и ПК2. Сделайте скриншот.

Рис. 5.1 Конфигурация адаптеров сети

- 2) Установите **VMware player** на ПК1.
- 3) Выберите Create a new virtual machine

В процессе создания выбирайте следующее

- а) Установить операционную систему позже;
- b) Система Линукс, Версия CentOs;
- с) Введите имя своей виртуальной машины вида: StudXY, где X номер группы, а Y номер бригады;
- d) Ёмкость диска по умолчанию;
- e) При настройке Hardware переведите network adapter в bridge mode и укажите путь к образу диска elastix в разделе CD\DVD.

Рис. 5.2 Настройка Network Adapter

Рис. 5.3 Настройка CD\DVD

При запуске виртуальной машины появится следующий приветственный экран

Рис. 5.4 Установка Elastix – Экран приветствия

- 4) Для продолжения установки нажмите клавишу Enter
- 5) Как только закончится анализ системы, начнётся процесс установки.
 - Выберите *English* в качестве языка по умолчанию;
 - Тип клавиатуры us;
 - Partition type remove all partitions on selected drives and create default layout;
 - Откажитесь от ручной конфигурации eth0;
 - Оставьте значения адреса шлюза и DNS пустыми;
 - В разделе Hostname configuration введите имя хоста в виде; StudXY, по аналогии с именем виртуальной машины;
 - В разделе Time Zone Configuration выбираем нужный нам часовой пояс;
 - При настройке Root Password придумайте пароль администратора и запомните его;
 - В процессе установки придумайте пароль MySQL и пароль freePBX, который понадобится для входа в графический интерфейс Elastix.

б) По окончании установки, вы автоматически попадёте в консоль Elastix, войдите как администратор (user: root, password: задан в процессе установки). Сделайте скриншот.

Рис. 5.5 Консоль Elastix

Часть вторая – настройка Elastix

1) Через браузер вы сможете зайти по адресу https://ipaddress/ (например http://192.168.38.154) и попадёте на экран входа в веб-интерфейс. Когда вы введёте логин и пароль (user:admin, password:задан при установке), произойдёт вход в System centre Elastix. Сделайте скриншот.

Рис. 5.6 Экран System Status

System status выводит информацию о использующихся ресурсах и активности Elastix. Прежде чем пользоваться возможностями IP телефонии, нужно настроить Elastix. В данной лабораторной работе мы будем иметь дело только с базовыми настройками, которые потребуются для простого звонка между двумя абонентами.

2) Добавление пользователей

Перейдите во вкладку РВХ . В этой вкладке происходит добавление новых пользователей и конфигурация РВХ. Оставьте все настройки по умолчанию и сразу перейдем к настройке пользователей. Оставьте вид устройства "Generic SIP Device". Нажмите Submit.

Вам предстоит заполнить следующие поля

- 1) User Extension номер клиента. В нашем случае четырёхзначный номер вида 1X0Y, где X номер бригады, а Y номер;
- 2) Display Name имя клиента, которое будет выводиться при звонке;
- 3) Secret пароль клиента.

Остальные поля оставить по умолчанию.

Add Extension					
User Extension	1311				
Display Name	Andrei				
CID Num Alias					
SIP Alias					
Extension Options					
Outbound CID					
	Default ▼				
Ring Time Call Waiting	Disable V				
Call Screening	Disable T				
	Disable V				
Pinless Dialing	Disable *				
Emergency CID					
Assigned DID/CID					
DID Description					
Add Inbound DID					
Add Inbound CID					
Davis Ostis					
Device Options					
This device uses sip technology.					
secret	password1311				
dtmfmode	rfc2833				

Рис. 5.7 Добавления абонента

Повторите операции, в зависимости от количества человек в бригаде. Сделайте скриншот настроек для одного пользователя.

Существует также быстрый способ добавления множества пользователей. Этот инструмент позволяет использовать электронные таблицы для настройки пользователей, а затем выгрузить их в Эластикс. Благодаря чему, они все появятся в системе.

Предполагается, что вы уже создали как минимум двух пользователей. Выберите вкладку PBX=>Batch configurations и нажмите на *Download the current extensions in CSV format*. На жёсткий диск загрузится файл с расширением .csv, который можно открыть любым редактором таблиц.

Рис. 5.8 Extensions Batch

В таблице вы должны увидеть созданные профили пользователей. Руководствуясь примером, вы можете добавить новых пользователей. Этот метод более эффективен при большом количестве пользователей, с приблизительно одинаковыми настройками и позволяет сэкономить много времени. Отредактированный файл сохраняется в формате .csv выбирается в поле "File to upload" и загружается в Elastix нажатием кнопки "Upload CSV File".

После добавления трёх пользователей заполните следующую таблицу:

Таблица 5.2

Extension 1	Extension 2	Extension 3
Extension Number Extension Password Extension Name	Extension Number Extension Password Extension Name	Extension Number Extension Password Extension Name

Часть третья – настройка Phoner

1) Запустите программу Phoner и во вкладке Options выберите пункт Communications. На каждом компьютере настройте своего пользователя.

Рис. 5.9 Настройка Phoner

2) Сделайте скриншот настроек для любого пользователя. Если всё правильно, то в окне Phoner появится надпись вида (sip:1311@192.168.38.139 registered)

Рис. 5.10 Успешная регистрация

3) Запустите Wireshark, выберите основной интерфейс и начните захват пакетов с него.

Рис. 5.11 Основное окно wireshark

4) Совершите звонок с ПК1 на ПК2 через phoner. По его окончании, остановите захват пакетов в wireshark. В поле "Filter" наберите SIP, чтобы отсортировать и вывести пакеты данного протокола. Сделайте скриншот и сохраните дамп (File-Save as)

Рис. 5.12 Скриншот пакетов SIP

5) Используя меню Wireshark, проверьте VoIP запись звонка в дамп.

Для этого в разделе Telephony выбираем пункт VoIP Calls. Используя кнопку "Flow" – проверить обмен SIP message пакетами. Сделать скриншот. Используя "Player "- прослушать записанный звонок. Сделать скриншот записи прослушанного звонка.

Рис. 5.13 Анализ Flow

Рис. 5.14 RTP player

Содержание отчёта:

- 1) Титульный лист;
- 2) Цель работы;

- 3) Скриншоты: Установка Elastix, добавление пользователей, настройка phoner, дамп wireshark.
- 4) Выводы о проделанной работе

Контрольные вопросы:

- 1) Установка Elastix
- 2) Протоколы:SIP,RTP.
- 3) Анализ дампа wireshark
- 5.2 Лабораторная работа №2. Использование встроенного Firewall'a

Цель работы: Настройка встроенного в Elastix Firewall'а таким образом, чтобы исключить доступ к серверу по SSH и к веб-интерфейсу через http с незнакомых адресов. Установить допуск на совершение звонков только определённой группе абонентов.

Подготовка к лабораторной работе: У каждой бригады должно быть 2 PC с установленными программами Phoner и Wireshark. Один из PC должен иметь предустановленный Elastix PBX, на котором зарегистрировано, как минимум, 2 пользователя.

Таблица 5.3

ПК1	ПК2			
Ір адрес: MAC адрес: Номер SIP:	Ip адрес: MAC адрес: Номер SIP:			
IP адрес сервера Elastix:				

Часть первая: Включение Firewall

- 1) Запустите виртуальную машину с установленной Elastix, зайдите на веб-интерфейс (логин admin, пароль задан вами при установке).
- 2) Зайдите в настройки Firewall, выбрав опцию security

Рис. 5.15 Опция Security

Рис. 5.16 Включение Firewall

- 3) Включите firewall, нажав на кнопку "Activate Firewall".
- 4) Перед вами начальная установка firewall. Elastix уже имеет набор правил по умолчанию, которые охватывают все установленные компоненты системы. Сами по себе они не предоставляют защиты, так как принимают трафик к элементам данного списка из любой сети. Тем не менее, любой трафик, не представленный в данном списке, будет остановлен.

Рис. 5.17 Default Firewall

Данные правила являются стандартным набором для Elastix. Сделайте скриншот всех правил. Когда вы захотите удалить лишние правила, вернуться к настройкам по умолчанию – данный скриншот будет служить вам примером.

- Синие стрелки позволяют менять очерёдность правил;
- Зелёная стрелка на компьютере показывает, что трафик является входящим. Т.е. он установлен как трафик INPUT, пакеты идут в систему;
- Также может быть тип FORWARD пакеты проходят через систему Elastix, или OUTPUT – исходящие пакеты;
- Зелёный цвет светофора, означает что для данного правила происходит действие АССЕРТ;
- Interface к какому интерфейсу применяется правило. По умолчанию, ANY, т.е к любому;
- Source address адрес источника. Изначально, любой IP адрес может получить доступ к системе Elastix;
- Destination address обычно применяется для исходящих правил;
- Информация о протоколе и используемом порте;
- Лампочка показывает, активно ли данное правило.

5) Выберите в левом меню Define ports.

Как видно, номера портов настроены по умолчанию, при установке Elastix. Нажав на *view* в строке нужного порта, вы сможете узнать более подробную информацию. Если понадобится, номера портов можно изменить именно в этом меню. Сделайте скриншот со списком портов.

	Name	Protocol	Details	
0	НТТР	TCP	Port 80	
0	HTTPS	TCP	Port 443	
0	POP3	TCP	Port 110	
0	IMAPS	TCP	Port 993	
0	SSH	TCP	Port 22	
0	SMTP	TCP	Port 25	
0	POP3S	TCP	Port 995	
0	JABBER/XMPP	TCP	Port 5222	
0	OpenFire	TCP	Port 9090	
0	IMAP	TCP	Port 143	
0	SIP	UDP	Ports 5004:5082	
0	RTP	UDP	Ports 10000:20000	
0	MGCP	UDP	Port 2727	
0	IAX2	UDP	Port 4569	
0	IAX1	UDP	Port 5036	
0	DNS	UDP	Port 53	
0	TETP	UDP	Port 69	

Pис. 5.18 Define ports

Рис. 5.19 Редактирование порта

Протокол для данного порта установлен на прохождение только UDP трафика, поэтому если кто-то попытается подсоединиться по TCP к портам от 10000 до 20000, Firewall этого не позволит.

Имеются четыре опции:

- ТСР прохождение только ТСР трафика через данный порт.
 Обычно используется для НТТР, НТТРS;
- UDP прохождение только UDP трафика через данный порт. В основном используется протоколами SIP, RTP;
- ICMP прохождение пакетов вида Internet Control Message Protocol. К таким относятся ping, TraceRoute и т.д. То есть данные пакеты переносят не полезную нагрузку, а информацию о статусе сети;
- IP применяется крайне редко, в случае когда приходиться использовать номер протокола, а не номер порта.

Часть вторая: настройка Firewall

1) Ограничьте доступ по SSH

Скачайте Putty на ПК2 и зайдите на сервер Elastix, по его ір адресу. Введите логин и пароль для гоот, сделайте скриншот.

Рис. 5.20 Putty

2) Теперь настройте firewall так, чтобы доступ к серверу по SHH был доступен только с ПК1.

Отредактируйте 10 правило в Firewall rules. Нажмите на кнопку EDIT.

Рис. 5.21 Строка порта SSH

Предоставьте доступ по SSH только ПК1, только с его ір адреса. Нужно изменить поле "source address" прописав нужный ір адрес и маску.

Рис. 5.22 Изменение правила

Заметьте, что в конце адреса маска /32. Источником может являться IP Такая единственный адрес. один запись аналогична 192.168.38.155/255.255.255.255. Если же вы хотите разрешить доступ только из определённой подсети, то следует записать 192.168.38.155/24, аналогично 192.168.38.155/255.255.255.0. Тогда любой адрес вида 192.168.38.XX может осуществить доступ по SSH. Не забудьте нажать на save changes, когда измените правило и попадёте в окно "Firewall rules"

3) Запустите Wireshark и снимите дамп при доступе по SSH с одобренного и с запрещённого адреса. Сохраните данные дампы.

	Filter:	ip.dst == 1	192.168.38.139 or ip.src == 192	.168.38.139	Expre	ession	Clear	Apply	1	Save		
No.	Ti	ime	Source	Destination	Protocol	Length	Info					
	5 0	.5179880	0 192.168.38.139	94.100.207.29	NTP	90	NTP Vers	ion 4,	client			
	8 2	.7974720	0 192.168.38.161	192.168.38.139	TCP	66	58950→22	[SYN]	Seq=0	Win=8192	Len=0 MSS=1460	WS=256 SACK
	9 2	.7982230	0 192.168.38.139	192.168.38.161	ICMP	94	Destinat	ion un	eachal:	ole (Port	unreachable)	
	12 3	.5186820	0 192.168.38.139	195.3.254.2	NTP	90	NTP Vers	ion 4,	client	:		
	16 4	.5186190	0 192.168.38.139	93.180.6.3	NTP	90	NTP Vers	ion 4,	client	:		
	30 5	.7917070	0 192.168.38.161	192.168.38.139	TCP	66	[TCP Ret	ransmis	ssion]	58950→22	[SYN] Seq=0 Wi	n=8192 Len=0
	31 5	.7920960	0 192.168.38.139	192.168.38.161	ICMP	94	Destinat	ion un	eachal:	ole (Port	unreachable)	
	55 1	1.797469	0 192.168.38.161	192.168.38.139	TCP	62	[TCP Ret	ransmis	ssion]	58950→22	[SYN] Seq=0 Wi	n=8192 Len=0
	56 1	1.797823	0192.168.38.139	192.168.38.161	ICMP	90	Destinat	ion un	eachal:	ole (Port	unreachable)	

Рис. 5.23 Попытка доступа по SSH с запрещённого адреса

Рис. 5.24 Доступ по SSH с разрешённого адреса

4) Настройте протокол Https аналогично, чтобы доступ имел только ПК2. Сделайте скриншоты настроек и дампа в wireshark при правомерном и запрещённом доступе.

Рис. 5.26 Доступ по https с запрещённого адреса

59 3.60400400 Dell_df:9c:1c	Broadcast	ARP	42 Who has 192.168.38.139? Tell 192.168.38.155
60 3.60437800 Vmware_de:d6:86	Dell_df:9c:1c	ARP	60 192.168.38.139 is at 00:0c:29:de:d6:86
61 3.60440800 192.168.38.155	192.168.38.139	TCP	66 62322→80 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=256 SACK_PERM=1
62 3.60528200 192.168.38.139	192.168.38.155	TCP	66 80→62322 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 MSS=1460 SACK_PERM=1 WS=128
63 3.60545700 192.168.38.155	192.168.38.139	TCP	54 62322+80 [ACK] Seq=1 Ack=1 Win=65536 Len=0
64 3.60573500 192.168.38.155	192.168.38.139	TCP	66 62323-443 [SYN] Seq=0 win=8192 Len=0 MSS=1460 WS=256 SACK_PERM=1
65 3.60614000 192.168.38.139	192.168.38.155	TCP	66 443-62323 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 MSS=1460 SACK_PERM=1 WS=128
66 3.60630000 192.168.38.155	192.168.38.139	TCP	54 62323-443 [ACK] Seq=1 Ack=1 Win=65536 Len=0
67 3.60631200 192.168.38.155	192.168.38.139	TCP	66 62324-443 [SYN] Seq=0 win=8192 Len=0 MSS=1460 WS=256 SACK_PERM=1
68 3.60694400 192.168.38.155	192.168.38.139	TCP	66 62325-443 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=256 SACK_PERM=1
69 3.60699700 192.168.38.139	192.168.38.155	TCP	66 443-62324 [SYN, ACK] Seq=0 Ack=1 win=5840 Len=0 MSS=1460 SACK_PERM=1 WS=128
70 3.60713700 192.168.38.155	192.168.38.139	TCP	54 62324-443 [ACK] Seq=1 Ack=1 Win=65536 Len=0
71 3.60775300 192.168.38.155	192.168.38.139	TCP	66 62326-443 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=256 SACK_PERM=1
72 3.60804300 192.168.38.139	192.168.38.155	TCP	66 443-62325 [SYN, ACK] Seq=0 Ack=1 win=5840 Len=0 MSS=1460 SACK_PERM=1 WS=128
73 3.60818700 192.168.38.155	192.168.38.139	TCP	54 62325-443 [ACK] Seq=1 Ack=1 Win=65536 Len=0
74 3.60873500 192.168.38.139	192.168.38.155	TCP	66 443-62326 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 MSS=1460 SACK_PERM=1 WS=128
75 3.60889300 192.168.38.155	192.168.38.139	TCP	54 62326-443 [ACK] Seq=1 Ack=1 Win=65536 Len=0
76 3.61491500 192.168.38.155	192.168.38.139	TLSV1	255 Client Hello
77 3.61533200 192.168.38.139	192.168.38.155	TCP	60 443→62324 [ACK] Seq=1 Ack=202 Win=6912 Len=0
78 3.61654400 192.168.38.155	192.168.38.139	TLSV1	255 Client Hello
79 3.61716900 192.168.38.139	192.168.38.155	TCP	60 443→62326 [ACK] Seq=1 Ack=202 Win=6912 Len=0
80 3.61966900 192.168.38.155	192.168.38.139	TLSV1	255 Client Hello
81 3.61980900 192.168.38.155	192.168.38.139	TLSV1	255 Client Hello

Рис. 5.27 Доступ по https с разрешённого адреса.

5) Запретите регистрацию абонентов с определённого адреса. Отредактируйте правила для протокола SIP, чтобы происходил REJECT при попытке регистрации в phoner. Аналогично снимите дамп успешной и безуспешной регистрации.

Рис. 5.28 Успешная регистрация по SIP

Рис. 5.29 Неудачная попытка регистрации

Рис. 5.30 Блок схема работы firewall'a

Содержание отчёта:

- 1) Титульный лист;
- 2) Цель работы;
- 3) Скриншоты основного окна firewall'а и окна define ports;
- 4) Скриншоты wireshark успешного и неудачного подключения по SSH, https, SIP;
- 5) Блок схема работы firewall'a;
- 6) Выводы по проделанной работе.

Контрольные вопросы:

- 1) Действия АССЕРТ, DROP, REJECT;
- 2) Соответствие адресов и масок;
- 3) Протоколы: SSH, https, SIP;
- 4) Протоколы: TCP, UDP, ICMP.

5.3 Лабораторная работа №3. Настройка протокола SRTP и TLS в ОС Elastix.

Цель работы: Настроить защищённое соединение между двумя абонентами с применением протоколов SRTP и TLS. Убедиться в том, что данный вид связи шифрует как сессию, так и непосредственно голос.

Подготовка к лабораторной работе: У каждой бригады должно быть 2 РС с установленными программами Phoner и Wireshark. Один из РС должен иметь предустановленный Elastix PBX, на котором зарегистрировано, как минимум, 2 пользователя.

Таблица 5.4

ПК1	ПК2
Ір адрес:	Ір адрес:
МАС адрес:	МАС адрес:
Номер SIP:	Номер SIP:
IP адрес сервера Elastix:	

Порядок выполнения лабораторной работы:

Часть первая: Создание сертификатов.

- 1) Включите виртуальную машину с Elastix и зайдите как root.
- 2) Создайте директорию для хранения ключей и сертификатов с помощью команды:

```
mkdir /etc/asterisk/keys
```

3) Создайте само-подписанный сертификат сервера при помощи скрипта "ast_tls_cert". Для этого перейдите в директорию, где находится этот скрипт командой:

cd /usr/share/doc/asterisk-1.8.20.0/contrib./scripts/

Запустите скрипт для формирования сертификата:

```
./ast_tls_cert -C xxx.xxx.xxx.xxx -O "Group" -d
/etc/asterisk/keys
```

, где C – ір адрес сервера, O – название группы, d – директория для файлов

В процессе формирования сертификата необходимо установить пароль для са. key ,а затем подтвердить его.

```
[root@Stud163 scripts]# ./ast_tls_cert -C 192.168.38.154 -O "IKTZXX" -d /etc/ast
erisk/keys

No config file specified, creating '/etc/asterisk/keys/tmp.cfg'
You can use this config file to create additional certs without
re-entering the information for the fields in the certificate
Creating CA key /etc/asterisk/keys/ca.key
Generating RSA private key, 4096 bit long modulus
......*
e is 65537 (0x10001)
Enter pass phrase for /etc/asterisk/keys/ca.key:
Verifying - Enter pass phrase for /etc/asterisk/keys/ca.key:
Creating CA certificate /etc/asterisk/keys/ca.crt
Enter pass phrase for /etc/asterisk/keys/ca.key:
Creating certificate /etc/asterisk/keys/ca.key:
Creating certificate /etc/asterisk/keys/ca.key:
```

Рис. 5.31 Формирование сертификата сервера.

4) Сформируйте сертификат для клиента командой:

```
./ast_tls_cert -m client -c /etc/asterisk/keys/ca.crt -
k /etc/asterisk/keys/ca.key -C yyy.yyy.yyy -O
"Group" -d /etc/asterisk/keys -o clientXXXX
```

Где вместо XXXX введите SIP номер, а С - ір адрес ПК на который установлен phoner. Данную операцию следует повторить для формирования ключа на ПК2. Убедитесь, что вводите верные IP адреса машин. Сделайте скриншот формирования сертификата.

В процессе формирования сертификата будет запрошен пароль для са.key:

```
Iroot@Stud163 scripts]# ./ast_tls_cert -m client -c /etc/asterisk/keys/ca.crt -k /etc/asterisk/keys/ca.key -C 192.168.38.155 -O "IKTZXX" -d /etc/asterisk/keys -c client1111

No config file specified, creating '/etc/asterisk/keys/tmp.cfg'
You can use this config file to create additional certs without re-entering the information for the fields in the certificate
Creating certificate /etc/asterisk/keys/client1111.key
Generating RSA private key, 1024 bit long modulus
....++++++
e is 65537 (0x10001)
Creating signing request /etc/asterisk/keys/client1111.csr
Creating certificate /etc/asterisk/keys/client1111.crt
Signature ok
subject=/CN=192.168.38.155/0=IKTZXX
Getting CA Private Key
Enter pass phrase for /etc/asterisk/keys/ca.key:
Combining key and crt into /etc/asterisk/keys/client1111.pem
```

Рис. 5.32 Формирование клиентского сертификата

5) Перейдите в папку keys командой "Cd /etc/asterisk/keys" и командой ls выведите список всех файлов в папке. Сделайте скриншот.

```
Iroot@Stud163 scriptsl# cd /etc/asterisk/keys
Iroot@Stud163 keysl# ls
asterisk.crt ca.cfg client1111.csr client2222.csr
asterisk.csr ca.crt client1111.key client2222.key
asterisk.key ca.key client1111.pem client2222.pem
asterisk.pem client1111.crt client2222.crt tmp.cfg
```

Рис. 5.33 Директория keys

Часть вторая: Настройка Elastix для работы с TLS и SRTP

1) Запустите файловый менеджер Midnight Commander с помощью команды mc, перейдите в директорию /etc/asterisk, выберите нужный файл sip_general_custom.conf и нажмите "F4"(редактировать):

Рис. 5.34 Midnight Commander

2) Добавьте в этот файл следующие строки:

```
tlsenable=yes (включение tls)

tlsbindaddr=0.0.0.0 (адрес привязки)

tlscertfile=/etc/asterisk/keys/asterisk.pem (путь к сертификату)

tlscafile=/etc/asterisk/keys/ca.crt (путь к частному ключу)
```

```
tlscipher=ALL
tlsclientmethod=tlsv1 (метод шифрования)
```

Сохраните изменения клавишей "F2".

```
sip_general_custom.conf [-M--] 21 L:[ 1+ 6 7/ 7] *(162 / 162b)= <EOF>
allowguest=no
tlsenable=yes
tlsbinaddr=0.0.0.0
tlscertfile=/etc/asterisk/keys/asterisk.pem
tlscafile=/etc/asterisk/keys/ca.crt
tlscipher=ALL
tlsclientmethod=tlsv1_
tlsclientmethod=tlsv1_

1Help 2Save 3Mark 4Replac 5Copy 6Move 7Search 8Delete 9PullDn 10Quit
```

Puc. 5.35 Sip_general_custom.conf

3) Измените файл sip_custom_post.conf , прописав для номеров абонентов:

```
[XXXX] (+)
transport = tls
encryption=yes
[YYYY] (+)
transport = tls
encryption=yes
```

Сделайте скриншот.

4) Перейдите в директорию keys, введя в консоли:

```
cd /etc/asterisk/keys
выполните команду:
chmod 777 *
```

```
sip_custom_post.conf [----] 14 L:[
[1111](+)
transport=tls
encryption=yes
[2222](+)
transport=tls
encryption=yes_
```

Рис. 5.36 sip_custom_post.conf

5) Необходимо загрузить сертификаты с сервера на ПК1 и ПК2. Для этого воспользуемся web-оболочкой Webmin.

Введите в консоли:

```
wget http://www.webmin.com/download/rpm/webmin-
current.rpm
```

Установите Webmin, для этого в командной строке введите:

```
rpm - ivh webmin-XXXX.noarch.rpm
```

, где XXXX загруженная версия Webmin.

Рис. 5.37 Установка Webmin

6) Через браузер зайдите в Webmin по адресу https://ip_address:10000, где вместо ip_address подставьте адрес сервера Elastix (например, https://192.168.38.177:10000/). Введите логин, пароль (пользователь гооt, пароль - который указали при установке Elastix)

Рис. 5.38 Webmin – главный экран

7) Пройдя по пути Others->Upload and Download->download from server попадём на страницу загрузки файлов с сервера. Нас интересуют три файла: ca.crt, clientXXXX.crt и clientYYYY.crt. Выберите нужный файл в поле"File to Download" по адресу /etc/asterisk/keys и нажмите на кнопку download, чтобы загрузить файл на компьютер.

Рис. 5.39 Окно Webmin – Upload and Download

8) Установите оба сертификата на ПК1 и ПК2 (соответственно номерам клиентов) с помощью стандартного менеджера сертификатов. Для этого кликните по сертификату правой кнопкой мыши и выберите «Установить сертификат». Все опции оставить по умолчанию.

Рис. 5.40 Окно «Мастер импорта сертификатов»

9) Войдите к Asterisk, для этого в консоли Elastix введите asterisk -vr

В консоли Asterisk выполните команду, для сохранения изменений:

XXXXCLI> reload

Введите команду SIP SHOW PEER XXXX,где XXXX-номер пользователя. Убедитесь, что значения Prim.transp и Allowed.Trsp равны TLS, а encryption=yes. Сделайте скриншот.

```
192.168.38.155:60160
(null)
TLS
TLS
1111
Addr->IP
Defaddr->IP
Prim.Transp.
Allowed.Trsp :
Def. Username:
SIP Options :
                         (none)
                         0xe (gsm¦ulaw¦alaw)
(ulaw:20,alaw:20,gsm:20)
Codec Order
Auto-Framing
                        No
OK (6 ms)
SIPPER for phoner
sip:11110192.168.38.155:5062:transport=tls
Status
Useragent
Reg. Contact
Qualify Freq
Sess-Timers
Sess-Refresh
                         60000 ms
                         Accept
                         uas
1800 secs
Sess-Expires
Min-Sess
RTP Engine
                        90 secs
asterisk
Parkinglot
Use Reason
Encryption
                         Yes
```

Рис. 5.41 Данные о пользователе

Часть третья: Настройка Phoner и проверка Wireshark

1) Настройте Phoner на ПК1 и на ПК2, согласно вашим пользователям.

Рис. 5.42 Hастройка Phoner

Нажмите на кнопку "Codecs" и установите галочку рядом с SRTP, чтобы задействовать шифрование аудио.

Рис. 5.43 Включение SRTP

Убедитесь в том, что регистрация прошла успешно.

Рис. 5.44 Успешная регистрация

2) Откройте Wireshark и снимите дамп звонка с одного ПК на другой.

По умолчанию wireshark RTP пакеты не распознает и показывает простой UDP траффик.

2854 8.900175000	192.168.38.155	192.168.38.150	UDP	102 Source port: 5063	Destination port: 5063
2855 8.900248000	192.168.38.155	192.168.38.150	UDP	214 Source port: 5062	Destination port: 5062
2859 8.910349000	192.168.38.150	192.168.38.155	UDP	102 Source port: 5063	Destination port: 5063
2860 8.910826000	192.168.38.150	192.168.38.155	UDP	214 Source port: 5062	Destination port: 5062
2863 8.919925000	192.168.38.155	192.168.38.150	UDP	214 Source port: 5062	Destination port: 5062

Рис. 5.45 UDP пакеты

3) Зайдите в «Edit->Preferences->Protocols->RTP» и поставьте галочку «try to decode rtp outside of conversations».

Рис. 5.46 Настройка протокола RTP

4) Сделайте скриншот дампа, когда происходит обмен ключами.

2097 6.643859000 192.168.38.150 192.168.38.155 TCP 60 1057-5061 [ACK] Seq=1 Ack=1 Win=65535 L	en=0
2098 6.644874000 192.168.38.150 192.168.38.155 TLSv1.2 420 Client Hello	
2100 6.645451000 192.168.38.155 192.168.38.150 TLSv1.2 1514 Server Hello	
2101 6.645463000 192.168.38.155 192.168.38.150 TCP 1514 [TCP segment of a reassembled PDU]	
2102 6.646121000 192.168.38.150 192.168.38.155 TCP 60 1057+5061 [ACK] Seq=367 Ack=2921 Win=65	535 Len=0
2103 6.646163000 192.168.38.155 192.168.38.150 TCP 1514 [TCP segment of a reassembled PDU]	
2104 6.646170000 192.168.38.155 192.168.38.150 TLSv1.2 751 Certificate	
2105 6.647041000 192.168.38.150 192.168.38.155 TCP 60 1057-5061 [ACK] Seq=367 Ack=4381 Win=65	
2118 6.665763000 192.168.38.150 192.168.38.155 TLSV1.2 381 Client Key Exchange, Change Cipher Spec	
2122 6.697517000 192.168.38.155 192.168.38.150 TLSv1.2 305 New Session Ticket, Change Cipher Spec,	Encrypted Handshake Message
2125 6.699326000 192.168.38.150 192.168.38.155 TLSV1.2 697 Application Data	
2127 6.701777000 192.168.38.155 192.168.38.150 TLSv1.2 389 Application Data	
2193 6.881971000 192.168.38.150 192.168.38.155 TCP 60 1057-5061 [ACK] Seq=1337 Ack=5664 Win=6	4252 Len=0
2194 6.882053000 192.168.38.155 192.168.38.150 TLSv1.2 143 Application Data	
2258 7.083056000 192.168.38.150 192.168.38.155 TCP 60 1057-5061 [ACK] Seq=1337 Ack=5753 Win=6	4163 Len=0

Рис. 5.47 Обмен ключами

5) Убедитесь, что ваш звонок был зашифрован и при перехвате злоумышленник не смог бы его повторно воспроизвести.

В wireshark пройдите по пути Telephony-RTP-Show all streams. В открывшемся окне выберите два потока и нажмите на кнопку "Analyze".

Затем выберите опцию "Player" и декодируйте сообщение с помощью кнопки "Decode". Сделайте скриншот.

Рис. 5.48 Зашифрованная передача аудио

6) Отключите SRTP в Phoner и снова сделайте звонок. Декодируйте RTP, как было указано ранее. Переговоры не были зашифрованы, злоумышленник мог прослушать ваш разговор. Сделайте скриншот, не забудьте сохранить дамп.

Рис. 5.49 Звонок без SRTP

Содержание отчёта:

- 1) Титульный лист;
- 2) Цель работы;
- 3) Скриншоты настройки протоколов на сервере;

- 4) Скриншоты дампа и анализа звонков в wireshark;
- 5) Выводы о проделанной работе.

Контрольные вопросы:

- 1) Ход работы;
- 2) Протокол SRTP;
- 3) Протокол TLS.
 - 5.4 Лабораторная работа №4. Использование программы Fail2Ban

Цель работы: Настройка встроенной программы Fail2Ban, предназначенной для защиты от подбора пароля перебором. Проверка эффективности работы данного средства.

Подготовка к лабораторной работе: У каждой бригады должно быть 2 PC с установленными программами Phoner и Wireshark. Один из PC должен иметь предустановленный Elastix PBX, на котором зарегистрировано, как минимум, 2 пользователя.

Таблица 5.5

ПК1	ПК2			
Ір адрес:	Ір адрес:			
МАС адрес:	МАС адрес:			
Номер SIP:	Номер SIP:			
IP адрес сервера Elastix:				

Порядок выполнения лабораторной работы:

1) Fail2Ban уже входит в комплект Elastix. Следует только его правильно настроить для дальнейшей работы с системой asterisk. Требуется создать файл /etc/fail2ban/filter.d/asterisk.conf с определённым содержанием. Уточните местонахождение данного файла у преподавателя и проверьте его содержание.

Рис. 5.50 файл Asterisk.conf

2) Воспользуйтесь знакомым модулем Webmin, чтобы загрузить данный файл на сервер Elastix.

Зайдите через браузер по адресу - https://*Ірадрессервера*:10000/

Логин – root, пароль совпадает с паролем Elastix.

Проследуйте по пути: *others->upload and download->upload to server* Выберите файл asterisk.conf и загрузите по следующему адресу:

/etc/fail2ban/filter.d/

Рис. 5.51 Webmin:загрузка на сервер

Проверьте, успешно ли был загружен файл командой:

nano /etc/fail2ban/filter.d/asterisk.conf

Сделайте скриншот.

3) Отредактируйте файл jail.conf

```
nano /etc/fail2ban/jail.conf
```

Добавьте в конец файла следующие строки:

```
[asterisk-iptables]
enabled = true
filter = asterisk
action = iptables-allports[name=ASTERISK, protocol=all]
sendmail-
whois[name=ASTERISK,dest=root,sender=fail2ban@local]
logpath = /var/log/asterisk/full
maxretry = 3
bantime = 600
```

Последние 2 строки позволяют установить количество допустимых попыток логина и время бана.

Рис. 5.52 jail.conf

4) Запустите Fail2Ban с помощью следующей команды:

/etc/init.d/fail2ban start

Попробуйте несколько раз зарегистрироваться с помощью phoner с неправильным паролем и проверьте, произошла ли блокировка адреса злоумышленника.

fail2ban-client status asterisk-iptables

Рис. 5.53 Проверка списка заблокированных адресов

Содержание отчёта:

- 1) Титульный лист
- 2) Цель работы
- 3) Скриншоты процесса настройки и работы программы
- 4) Выводы о проделанной работе

Контрольные вопросы:

- 1) Принцип работы Fail2Ban
 - 5.5 Лабораторная работа №5. Подключение к Elastix через VPN туннель.

Цель работы: освоить применение технологии VPN туннеля в системах на базе UNIX, для обеспечения безопасного подключения к серверу через единственный порт VPN.

Подготовка к лабораторной работе: Каждая бригада должна иметь ПК с предустановленной системой Elastix. На Elastix должна быть загружена утилита Webmin.

Таблица 5.6

ПК1	IP-адрес сервера Elastix:	
Ір адрес:		
МАС адрес:		
Номер SIP:		

Порядок выполнения лабораторной работы:

Часть первая: генерация сертификатов и ключей.

1) Установите пакет OpenVPN с помощью команды:

yum install openvpn

======= Package	Arch	Version	Repository	Size
Installing: openvpn Transaction	i386 Summaru	2.3.6-1.el5	epe l	435 k
 Install Upgrade	1 Package(s) 0 Package(s)			======
Total downlo	oad size: 435 k .y/N]: y_			

Рис. 5.54 Установка OpenVPN

2) Установите пакет easy-rsa:

yum install easy-rsa

Рис. 5.55 Установка easy-rsa

3) Скопируйте папку easy-rsa и файл sever.conf в папку /etc/openvpn:

```
cp -a /usr/share/easy-rsa /etc/openvpn/
cp /usr/share/doc/openvpn-2.3.6/sample/sample-config-
files/server.conf /etc/openvpn/
```

4) Перейдите в папку /etc/openvpn/ и выведите список файлов

```
cd /etc/openvpn/
ls
```

```
[root@localhost sample]# cd /etc/openvpn/
[root@localhost openvpn]# ls
easy-rsa server.conf
[root@localhost openvpn]# _
```

Рис. 5.56 Список файлов в папке орепурп

5) Авторизация клиента будет происходить посредством RSA-ключей. Для упрощения процесса будут использоваться скрипты. Перейдите в папку, где будет происходить генерация ключей и отредактируйте файл vars, в котором подставьте свои значения переменных COUNTRY, PROVINCE, CITY и т.д.

```
cd /etc/openvpn/easy-rsa/2.0/
nano vars
```

```
# These are the default values for fields
# which will be placed in the certificate.
# Don't leave any of these fields blank.
export KEY_COUNTRY="RU"
export KEY_PROVINCE="SPB"
export KEY_CITY="Saint-Petersburg"
export KEY_ORG="Bonch"
export KEY_EMAIL="me@myhost.mydomain"
export KEY_OU="iktzunit"
```

Рис. 5.57 Значения для сертификатов по умолчанию

6) Загрузите переменные файла и постройте CA (Certificate Authority). В качестве common name укажите имя сервера Elastix

```
source ./vars
./clean-all
./build-ca
```

Рис. 5.58 Фрагмент создания СА

7) Создайте сертификат и ключ для сервера. В процессе создания, оставьте все значения по умолчанию и согласитесь на подписание сертификата.

```
./build-key-server server
```

Рис. 5.59 Генерация ключа сервера

8) Произведите генерацию ключа Диффи-Хеллмана. Учтите, что процесс генерации занимает довольно длительное время.

```
./build-dh
```

9) Клиенту необходимо выдать свой ключ. Для клиента с именем client1 ключ создаётся командой:

```
./build-key client
```

Все значения оставьте по умолчанию.

Рис. 5.60 Генерация ключа клиента

Часть вторая: настройка OpenVPN.

1) Войдите в midnight commander (команда mc) и отредактируйте файл server.conf следующим образом:

```
port 1194
proto udp
dev tun
ca /etc/openvpn/easy-rsa/2.0/keys/ca.crt
cert /etc/openvpn/easy-rsa/2.0/keys/server.crt
key /etc/openvpn/easy-rsa/2.0/keys/server.key
dh /etc/openvpn/easy-rsa/2.0/keys/dh2048.pem
server 10.8.0.0 255.255.255.0
ifconfig-pool-persist ipp.txt
push "route 10.8.0.0 255.255.255.0"
client-to-client
keepalive 10 120
comp-lzo
user nobody
group nobody
persist-key
persist-tun
status openvpn-status.log
log /var/log/openvpn.log
verb 3
mute 20
```

Рис. 5.61 Содержание файла server.conf

- 2) Установите на ПК программу OpenVPN, сохраните состояние виртуальной машины и перезагрузите компьютер.
- 3) С помощью утилиты webmin загрузите на свой компьютер 3 файла (ca.crt , client1.crt , client1.key) и поместите их в папку $C:\Program\Files\OpenVPN\config.$
- 4) В папке куда вы поместили ключи создайте файл voip.ovpn следующего содержания:

```
client
dev tun
proto udp
remote xxx.xxx.xxx.xxx 1194
resolv-retry infinite
persist-key
persist-tun
ca ca.crt
cert client1.crt
key client1.key
```

comp-lzo verb 3 ,где xxx.xxx.xxx.xxx — адрес сервера Elastix.

- 5) Запустите сервис OpenVPN на Elastix с помощью команды: Service openvpn start
- б) Запустите Firewall Elastix. При настройках по умолчанию, он не пропускает VPN трафик через порт 1194. Выберите опцию Define Ports и добавьте новый порт с названием VPN, протокол UDP, №1194.
- 7) Добавьте новое правило в Firewall для VPN. Protocol UDP, Source ANY, Destination VPN. Поднимите это правило на вторую позицию.

Рис. 5.62 Правило АССЕРТ для VPN трафика

8) Создайте правило ACCEPT с адресов 10.8.0.0/24, тип протокола – ALL.

Рис. 5.63 Правило АССЕРТ для группы адресов

- 9) Расположите правила следующим образом:
 - IN ACCEPT:lo 0.0.0.0 ALL;

- IN ACCEPT: ANY 0.0.0.0 UDP Dest. Port. VPN;
- IN ACCEPT: ANY 10.8.0.0/24 ALL;
- IN REJECT: ANY 0.0.0.0 ALL.
- Остальные правила по умолчанию

Будьте внимательны, после применения данных правил любое соединение с сервером будет запрещено. Если потребуется настроить firewall заново, наберите "setup" и отключите firewall.

Рис. 5.64 Порядок правил Firewall

10) Запустите от имени администратора openvpn-gui по адресу C:\Program Files\OpenVPN\bin и подключитесь к серверу. Сохраните сообщения журнала в отдельный файл. Если в журнале проскакивает сообщение о неправильном времени применения сертификата, переведите дату на день вперёд.

Рис. 5.65 Состояние подключения по VPN

11) Серверу теперь присвоен адрес 10.8.0.1, зайдите через браузер на webинтерфейс, а также произведите пинг с ПК на сервер и с сервера на ПК, сделайте скриншоты.

Содержание отчёта:

- 1) Титульный лист;
- 2) Цель работы;
- 3) Скриншоты: генерация сертификатов, настройка firewall'a, проверка орепурп, журнал подключения по VPN;
- 4) Выводы о проделанной работе.

Контрольные вопросы:

- 1) Принцип работы VPN туннеля;
- 2) Hacтройкa Firewall;
- 3) Шифрование: RSA, протокол Диффи-Хеллмана, TLS.

Список использованной литературы:

- 1. Меггелен Дж., Мадсен Л., Смит Дж. Asterisk: будущее телефонии, 2-е издание. Пер. с англ. СПб: Символ-Плюс, 2009. 656 с., ил.
- 2. Ben Sharif, Elastix without tears, 2009г 257с., ил.
- 3. Платов М. Asterisk и Linux миссия IP-телефония [Текст] /М. Платов// Системный Администратор. -2005 г. -№ 31. С. 12-19.
- 4. База знаний Asterisk [Электронный ресурс]. —режим доступа: asterisk.ru/knowledgebase
- 5. Bob Fryer, A Guide to the Elastix Firewall GUI [pdf], 2011r. 20c.
- 6. Bob Fryer, Elastix Security Guide V2.0 [pdf], 2014Γ. 26c.
- 7. RFC 3605. C. Huitema. RTCP: Real Time Control Protocol. IEFT, October 2003.
- 8. *ІР*-телефония / Б. С. Гольдштейн, А. В. Пинчук, А. Л. Суховицкий. М.: Москва "Радио и Связь", 2006. 334с. *ISBN* 5-256-01585-0
- 9. Asterisk будущее телефонии / Джим Ван Меггелен, Лейф Мадсен, Джаред Смит. - М.: Символ - Плюс, 2009. - 638с. - *ISBN* 5-93286-128-2
- 10.Протоколы обеспечения безопасности *IP*-телефонии / М. М. Ковцур // Первая миля. 2012. №5. С. 18-26.