EEL1010 Introduction to Electrical EngineeringLab Report

Roll Number	B21CH013	
Name	Kshitij Aphale	
Experiment Number	7	
Experiment Title	Thevenin's Theorem in AC Circuits	

Objective

To verify the Thevenin's Theorem in AC circuits (on Falstad simulator)

Circuit Diagram

Step 1: Measurement of V_{Th}

From the voltage probe, RMS value of V_{Th} is found to be <u>71.432V</u>.

Step 2: Measurement of |ZTh|

From the voltage probe and ammeter in falstad, RMS value of V_{Test} and I_{Test} is found to be 70.622V and 329.437mA. Hence $|Z_{Th}| = \frac{V_{Test}/I_{Test}}{214.371} \Omega$

Step 3: Measurement of ∠ZTh

From the voltage probe and ammeter in falstad, RMS value of V'Test and I'Test is found to be $\underline{70.624V}$ and $\underline{207.365mA}$. Hence $|Z'Th| = \underline{V'Test/I'Test} = \underline{340.578\ \Omega}$. After simultaneously solving equations 1 and 2, we get $\underline{\angle ZTh} = \underline{42.3^{\circ}}$ (Calculations below).

	UNIC PAGE					
	Exp-7 Kshitij Aphale					
	82104013					
0	Vtest = $(e')^2 + (x')^2 = 214.37$					
U	- 112					
	Ttest					
3	,					
2	$V \text{ test} = \sqrt{(R'+150)^2+(x')^2} = 340.58$					
0	T'test					
	(2) - (1) =>					
	(0) 2 122					
	$(R'+150)^{2}-(R')^{2}=70,040.24$					
	150 (2R+150) = 70,040.24					
	: R' = 70,040.24 150					
	160					
	2					
	: (R=158.47.2) :. LZm=tan(x')					
	$\therefore \begin{bmatrix} R = 158 \cdot 47 \cdot \Omega \end{bmatrix} \therefore \angle Z_m = \tan \left(\frac{X'}{R'} \right)$					
	$x' = (214.37)^{2} - (R')^{2} = tan^{2}(0.91)$					
	: LZm=42.3°					

Step 4: Calculation of Theoretical Values

 $|V_{Th}| = 71.276V$

 $|Z_{Th}| = 215.47 \Omega$

∠ZTh= 42.27°

Observation Table and Conclusion

Quantity	Theoretical (Calculated)	Experimental (Measured)	Error (%) ((Measured – Theoretical)/Theoretical)×100
V _{Th}	71.276 V	71.432V	0.21%
Z _{Th}	215.470 Ω	214.371Ω	-0.51%
∠ZTh	42.27°	42.30°	0.07%

As measured and calculated values are almost same, **Thevenin's theorem is verified**