WHAT IS CLAIMED IS:

A compound of formula I:

$$(R^{1})_{w}$$
 $Q = (R^{1})_{w}$
 $X - R^{2} - Y$
 (I)

wherein:

Q is
$$-O_{\gamma}^{-}$$
, $-S(O)_{m}^{-}$, $-(CR^{5}R^{6})_{p}^{-}$, $-O(CR^{5}R^{6})_{r}O_{r}$, or $-N(R^{k})_{r}$;

each R¹ is independently alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, or R^a;

each R² is independently a covalent bond or alkylene; wherein alkylene is optionally substituted with 1 to 4 substituents independently selected from R^b;

each X is independently oxy (-O-) or -N(R^m)-;

each Y is independently NR^nR^p or a heterocyclyl containing at least one nitrogen atom, wherein each nitrogen of the heterocyclyl is substituted with R^3 or is linked to R^2 , and wherein each heterocycle of Y is optionally substituted with 1, 2, 3, or 4 substituents independently selected from R^4 ;

each R^3 is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, oxo, or heterocyclyl; and each R^4 is independently alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, or R^b ; or R^3 and R^4 are joined to form a $C_{1.4}$ alkylene group, wherein the alkylene group is optionally substituted with 1 to 4 substituents independently selected from R^b ;

each R⁵ and R⁶ is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; or R⁵ and R⁶ together with the carbon atom to which they are attached form a ring having from 5 to 7 ring atoms, wherein the ring optionally contains 1 or 2 heteroatoms in the ring independently selected from oxygen, sulfur or nitrogen;

wherein for R¹-R⁶, each alkyl, alkenyl, and alkynyl is optionally substituted with R^x, or with 1, 2, 3, or 4 substituents independently selected from R^b; for R¹-R⁶, each aryl and heteroaryl is optionally substituted with 1 to 4 substituents independently selected from R^c, and for R¹-R⁶, each cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^b and R^c;

$$\begin{split} & \text{ each } R^a \text{ is independently -OR}^d, \text{-NO}_2, \text{ halo, -S(O)}_m R^d, \text{-SR}^d, \text{-S(O)}_2 OR^d, \\ & -\text{S(O)}_m N R^d R^e, \text{-NR}^d R^e, \text{-O(CR}^f R^g)_n N R^d R^e, \text{-C(O)} R^d, \text{-CO}_2 R^d, \\ & -\text{CO}_2 (CR^f R^g)_n CON R^d R^e, \text{-OC(O)} R^d, \text{-CN, -C(O)} N R^d R^e, \text{-NR}^d C(O) R^e, \\ & -\text{OC(O)} N R^d R^e, \text{-NR}^d C(O) O R^e, \text{-NR}^d C(O) N R^d R^e, \text{-CR}^d (=\text{N-OR}^e), \text{-CF}_3, \text{ or -OCF}_3; \\ & \text{each } R^b \text{ is independently } R^a, \text{ oxo or =N-OR}^e; \end{split}$$

each R^c is independently R^a, alkyl, alkenyl, or alkynyl; wherein each alkyl, alkenyl and alkynyl is optionally substituted with 1 to 4 substituents independently selected from R^b;

each R^d and R^e is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h; or R^d and R^e together with the atoms to which they are attached form a heterocyclic ring having from 5 to 7 ring atoms, wherein the heterocyclic ring optionally contains 1 or 2 additional heteroatoms independently selected from oxygen, sulfur or nitrogen;

each R^f and R^g is independently hydrogen, alkyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h; or R^f and R^g together with the carbon atom to which they are attached form a ring having from 5 to 7 ring atoms, wherein the ring optionally contains 1 or 2 heteroatoms independently selected from oxygen, sulfur or nitrogen;

each R^h is independently halo, C_{1-6} alkyl, C_{1-6} alkoxy, aryl, (aryl)- C_{1-6} alkyl, heteroaryl, (heteroaryl)- C_{1-6} alkyl, hydroxy, amino, -NHC₁₋₆ alkyl, -N(C_{1-6} alkyl, 2,

- $C(O)C_{1-6}$ alkyl, - $C(O)C_{1-6}$ alkyl, - $C(O)OC_{1-6}$ alkyl, - $C(O)NHC_{1-6}$ alkyl, carboxy, nitro, -CN, or - CF_3 ;

R^k is hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h;

R^m is hydrogen, alkyl, alkenyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h;

each Rⁿ and R^p is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h; and

each R^x is independently aryl, heteroaryl, cycloalkyl or heterocyclyl; wherein each aryl or heteroaryl is optionally substituted with 1 to 4 substituents selected from the group consisting of R^c, and wherein each cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents selected from R^b;

m is 0, 1, or 2; n is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10; p is 1, 2, or 3; r is 2, or 3; and

each w is independently 0, 1, 2, 3, or 4;

or a pharmaceutically-acceptable salt thereof;

provided that when any Y is NRⁿR^p or a nitrogen-linked heterocyclyl, then the R² attached to that Y is not a covalent bond or methylene.

2. The compound of claim 1 wherein each R^1 is independently C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, cycloalkyl, or R^a .

- The compound of claim 1 wherein each R^1 is independently C_{1-10} alkyl or halo.
- 4. The compound of claim 1 wherein each R¹ is independently methyl, ethyl, propyl, chloro, bromo, fluoro, or isopropyl.
- 5. The compound of claim 1 wherein each R¹ is independently methyl, or chloro.
- 6. The compound of claim 1 wherein each R^2 is independently a covalent bond or C_{1-10} alkylene.
- 7. The compound of claim 1 wherein each R² is independently a covalent bond, methylene, 1,2-ethylene, 1,3-propylene, (2R)-2-(methyl)ethane-1,2-diyl, (2S)-2-(methyl)ethane-1,2-diyl, 1-(methyl)butane-1,4-diyl, 1-(methyl)ethane-1,2-diyl, or 2,2-(dimethyl)propane-1,3-diyl.
- 8. The compound of claim 1 wherein each R² is independently a covalent bond, methylene, or ethylene.
- 9. The compound of claim 1 wherein Q is -O-, $-\S(O)_m$ -, or $-(CR^5R^6)_p$ -.
- 10. The compound of claim 1 wherein Q is $-O_{-}$, $-S(O)_{-}$, or $-N(R^k)_{-}$.
- 11. The compound of claim 1 wherein Q is $-(CR^5R^6)_p$, or $-Q(CR^5R^6)_rO$.
- 12. The compound of claim 1 wherein Q is -O-, $-S(O)_m$ -, $-(CR^5R^5)_p$ -, or $-N(R^k)$ -;
- 13. The compound of claim 1 wherein Q is methylene, 1,2-ethylene, 3,4

wherein R⁵ and R⁶ together with the carbon to which they are attached form a cyclonexylene ring.

- 14. The compound of claim 1 wherein each X is oxy.
- 15. The compound of claim 1 wherein each X is -NH-.
- 16. The compound of claim 1 wherein each Y is independently NRⁿR^p.
- 17. The compound of claim 1 wherein each Y is independently a heterocyclyl containing at least one nitrogen atom, wherein each nitrogen of the heterocyclyl is substituted with R³ or linked to R², and wherein each heterocycle of Y is optionally substituted with 1, 2, 3, or 4 substituents independently selected from R⁴.
- 18. The compound of claim 1 wherein each Y is independently a heterocyclyl containing at least one nitrogen atom, wherein each nitrogen of the heterocyclyl is substituted with R³.
- 19. The compound of claim 1 wherein each Y is independently a heterocyclyl containing at least one nitrogen atom, wherein each nitrogen of the heterocyclyl is linked to R², and wherein each heterocycle of Y is optionally substituted with 1, 2, 3, or 4 substituents independently selected from R⁴.
- 20. The compound of claim 1 wherein each Y is independently a heterocyclyl selected from pyrrolidinyl, piperidinyl, and morpholinyl, wherein each heterocycle of Y is optionally substituted with 1, 2, 3, or 4 substituents independently selected from R⁴.
- 21. The compound of claim 1 wherein each Y is independently a heterocycly

Selected from pyrrolidino, piperidino, and morpholino, wherein each heterocycle of Y is optionally substituted with 1, 2, 3, or 4 substituents independently selected from R⁴.

- 22. The compound of claim 1 wherein Y is independently amino, diethylamino, dimethylamino, 1-methyl-4-piperidinyl, 1-methyl-3-piperidinyl, 1-methyl-2-piperidinyl, 4-piperidinyl, 3-piperidinyl, 2-piperidinyl, 1-isopropyl-3-pyrrolidinyl, morpholino, (2R,4R)-2-methoxycarbonyl-4-pyrrolidinyl, 1-methyl-3-pyrrolidinyl, 1-methyl-2-pyrrolidinyl, 3-pyrrolidinyl, 2-pyrrolidinyl, 1-pyrrolidinyl, (2S,4R)-2-methyl-4-pyrrolidinyl, (2R,4R)-2-carboxy-4-pyrrolidinyl, (2S,4S)-2-(N,N-dimethylamino)carbonyl-4-pyrrolidinyl, (2R,4R)-2-hydroxymethyl-4-pyrrolidinyl, or (2R,4R)-2-methoxymethyl-4-pyrrolidinyl.
- 23. The compound of claim 1 wherein each w is 0.
- 24. The compound of claim 1 wherein each w is 1.
- 25. The compound of claim 1 wherein each w is 2.
- 26. The compound of claim 1 wherein each y is independently 1 or 2.
- 27. The compound of claim 1 wherein each z is independently 0, 1, or 2.
- 28. The compound of claim 1 wherein R_2 is a covalent bond or methylene; Q is SO_2 or $-CR^5R^6$ -; each w is independently 0, 1, or 2; and each y is 1 or 2.
- 29. The compound of claim 1 which is a compound of formula N:

$$(R^{4})_{z} \xrightarrow{N} R^{2} = O$$

$$(R^{1})_{w}$$

$$(R^{1})_{w}$$

$$(R^{1})_{w}$$

$$(R^{2})_{z}$$

$$(R^{4})_{z}$$

$$(R^{4})_{z}$$

$$(R^{4})_{z}$$

$$(R^{4})_{z}$$

$$(R^{4})_{z}$$

$$(R^{4})_{z}$$

$$(R^{4})_{z}$$

$$(R^{4})_{z}$$

$$(R^{4})_{z}$$

wherein:

Q is -O-, $-S(O)_{m}^{1}$ -, or $-CR^{5}R^{6}$ -;

each R¹ is independently alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, or R^a;

each R² is independently a covalent bond or alkylene; wherein alkylene is optionally substituted with 1 to 4 substituents independently selected from R^b;

each R^3 is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, oxo, or heterocyclyl; and each R^4 is independently alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, heterocyclyl, or R^b ; or R^3 and R^4 are joined to form a C_{1-4} alkylene group, wherein the alkylene group is optionally substituted with 1 to 4 substituents independently selected from R^b ;

each R⁵ and R⁶ is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; or R⁵ and R⁶ together with the carbon atom to which they are attached form a ring having from 5 to 7 ring atoms, wherein the ring optionally contains 1 or 2 heteroatoms in the ring independently selected from oxygen, sulfar and nitrogen;

wherein for R¹-R⁶, each alkyl, alkenyl, and alkynyl is optionally substituted with R^x or with 1 to 4 substituents independently selected from R^b; each aryl and heteroaryl is optionally substituted with 1 to 4 substituents independently selected from R^c, and each cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^b and R^c;

each R^a is independently -OR^d, -NO₂, halo, -S(O)_mR^d, -SR^d, -S(O)₂OR^d,
-S(O)_mNR^dR^e, -NR^dR^e, -O(CR^fR^g)_nNR^dR^e, -C(O)R^d, -CO₂R^d,
-CO₂(CR^fR^b)_nCONR^dR^e, -OC(O)R^d, -CN, -C(O)NR^dR^e, -NR^dC(O)R^e,
-OC(O)NR^dR^d, -NR^dC(O)OR^e, -NR^dC(O)NR^dR^e, -CR^d(=N-OR^e), -CF₃, or -OCF₃;
each R^b is independently R^a, oxo or =N-OR^e;

each R^c is independently R^a, alkyl, alkenyl, or alkynyl; wherein each alkyl, alkenyl and alkynyl is optionally substituted with 1 to 4 substituents independently selected from R^b;

each R^d and R^e is independently hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h; or R^d and R^e together with the atoms to which they are attached form a heterocyclic ring having from 5 to 7 ring atoms, wherein the heterocyclic ring optionally contains 1 or 2 additional heteroatoms independently selected from oxygen, sulfur and nitrogen;

each R^f and R^g is independently hydrogen, alkyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h; or R^f and R^g together with the carbon atom to which they are attached form a ring having from 5 to 7 ring atoms, wherein the ring optionally contains 1 or 2 heteroatoms independently selected from oxygen, sulfur and nitrogen;

each R^h is independently halo, C_{1-6} alkyl, C_{1-6} alkoxy, aryl, (aryl)- C_{1-6} alkyl, heteroaryl, (heteroaryl)- C_{1-6} alkyl, hydroxy, amino, -NHC₁₋₆ alkyl, -N(C_{1-6} alkyl)₂, -OC(O)C₁₋₆ alkyl, -C(O)C₁₋₆ alkyl, -C(O)OC₁₋₆ alkyl, -NHC(O)C₁₋₆ alkyl, -C(O)NHC₁₋₆ alkyl, carboxy, nitro, -CN, or -CF₃; and

each R^x is independently aryl, heteroaryl, cycloalkyl or heterocyclyl; wherein each aryl or heteroaryl is optionally substituted with 1 to 4 substituents selected from the group consisting of R^c, and wherein each cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents selected from R^b;

m is 0, 1, or 2;

each w is independently 0, 1, 2, 3, or 4; each y is independently 0, 1, 2, or 3; and each z is independently 0, 1, 2, 3, or 4; or a pharmaceutically-acceptable salt thereof.

30. The compound of claim 1 which is a compound of formula (III):

wherein

Q is -O-, $-S(O)_m$ -, or $-CR^5R^6$ -;

each R^7 is independently hydrogen, C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, cycloalkyl, or R^a ;

each R^2 is independently a covalent bond of C_{1-6} alkylene; wherein alkylene is optionally substituted with 1 to 4 substituents independently selected from R^b ;

each R³ is independently hydrogen, C₁₋₁₀ alkyl, or oxo;

each R⁵ and R⁶ is independently hydrogen or C₁₋₁₀ alkyl; or R⁵ and R⁶ together with the carbon atom to which they are attached form a ring having from 5 to 7 ring atoms, wherein the ring optionally contains 1 or 2 heteroatoms in the ring independently selected from oxygen, sulfur and nitrogen;

wherein for R³, R⁵, R⁶, and R⁷, each alkyl, alkenyl, and alkylyl is optionally substituted with R^x, or with 1 to 4 substituents independently selected from R^b; and each cycloalkyl is optionally substituted with 1 to 4 substituents independently selected from R^b and R^c;

each R^a is independently -OR^d, -NO₂, halo, -S(O)_mR^d, -SR^d, -S(O)₂OR

-\$ $(O)_mNR^dR^e$, $-NR^dR^e$, $-O(CR^fR^g)_nNR^dR^e$, $-C(O)R^d$, $-CO_2R^d$,

 $-CQ_2(CR^fR^g)_nCONR^dR^e$, $-OC(O)R^d$, -CN, $-C(O)NR^dR^e$, $-NR^dC(O)R^e$,

-OC(O)NR^dR^e, -NR^dC(O)OR^e, -NR^dC(O)NR^dR^e, -CR^d(=N-OR^e), -CF₃, or -OCF₃; each R^b is independently R^a, oxo or =N-OR^e;

each R^c is independently R^a , C_{1-10} alkyl, C_{2-10} alkenyl, or C_{2-10} alkynyl; wherein each alkyl, alkenyl and alkynyl is optionally substituted with 1 to 4 substituents independently selected from R^b ;

each R^d and R^e is independently hydrogen, C₁₋₁₀ alkyl, C₂₋₁₀ alkenyl, C₂₋₁₀ alkynyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl; wherein each alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h; or R^d and R^e together with the atoms to which they are attached form a heterocyclic ring having from 5 to 7 ring atoms, wherein the heterocyclic ring optionally contains 1 or 2 additional heteroatoms independently selected from oxygen, sulfur and nitrogen;

each R^f and R^g is independently hydrogen, C₁₋₁₀ alkyl, aryl, heteroaryl, cycloalkyl, or heterocyclyl, wherein each alkyl, aryl, heteroaryl, cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents independently selected from R^h; or R^f and R^g together with the carbon atom to which they are attached form a ring having from 5 to 7 ring atoms, wherein the ring optionally contains 1 or 2 heteroatoms independently selected from oxygen, sulfur and nitrogen;

each R^h is independently halo, C_{1-6} alkyl, C_{1-6} alkoxy, aryl, (aryl)- C_{1-6} alkyl, heteroaryl, (heteroaryl)- C_{1-6} alkyl, hydroxy, amino, -NHC₁₋₆ alkyl, -N(C_{1-6} alkyl)₂, -OC(O)C₁₋₆ alkyl, -C(O)C₁₋₆ alkyl, -C(O)OC₁₋₆ alkyl, -NHC(O)C₁₋₆ alkyl, -C(O)NHC₁₋₆ alkyl, carboxy, nitro, -CN, or -CF₃; and

each R^x is independently aryl, heteroaryl, cycloalkyl or heterocyclyl; wherein each aryl or heteroaryl is optionally substituted with 1 to 4 substituents selected from the group consisting of R^c, and wherein each cycloalkyl and heterocyclyl is optionally substituted with 1 to 4 substituents selected from R^b; and

each y is independently 1, 2, or 3;

or a pharmaceutically-acceptable salt thereof.

- The compound of claim 1 which is a compound of any one of formulae V-XXX, shown in Figures 1-3, wherein X, Y, Q, R¹, R², and w have the values given in claim 1.
- 32. The compound of claim 31 wherein each R¹ is independently methyl, or chloro; Q is methylene, 1,2-ethylene, 3,4-hexylene, dimethylene, oxy, -NH-, -OCH₂CH₂O-, or a group -C(R⁵)(R⁶)- wherein R⁵ and R⁶ together with the carbon to which they are attached form a cyclohexylene ring; each X is independently oxy or -NH-; each R² is independently a covalent bond, methylene, 1,2-ethylene, 1,3propylene, (2R)-2-(methyl)ethane-1,2-diyl, (2S)-2-(methyl)ethane-1,2-diyl, 1-(methyl)butane-1,4-diyl, 1-(methyl)ethane-1,2-diyl, or 2,2-(dimethyl)propane-1,3diyl; and each Y is independently amino, diethylamino, dimethylamino, 1-methyl-4piperidinyl, 1-methyl-3-piperidinyl, 1-methyl-2-piperidinyl, 4-piperidinyl, 3piperidinyl, 2-piperidinyl, 1-isopropyl-3-pyrrolidinyl, morpholino, (2R,4R)-2methoxycarbonyl-4-pyrrolidinyl, 1-methyl-3-pyrrolidinyl, 1-methyl-2-pyrrolidinyl, 3-pyrrolidinyl, 2-pyrrolidinyl, 1-pyrrolidinyl, (2S,4R)-2-methyl-4-pyrrolidinyl, (2R,4R)-2-carboxy-4-pyrrolidinyl, (2S,4S)-2\(N,N-dimethylamino)carbonyl-4pyrrolidinyl, (2R,4R)-2-hydroxymethyl-4-pyrrolidinyl, or (2R,4R)-2methoxymethyl-4-pyrrolidinyl.
- 33. The compound of claim 1 which is a compound of formula XX:

wherein Q is methylene, 1,2-ethylene, 3,4-hexylene, dimethylmethylene, oxy, or a group $-C(R^5)(R^6)$ - wherein R^5 and R^6 together with the carbon to which they are

attached form a cyclohexylene ring; and wherein X, Y, R¹, and R² have the values given in claim 1; or a pharmaceutically acceptable salt thereof.

34. The compound of claim 1 which is a compound of formula XXIX:

$$Y - R^2$$
 $X - R^2$
 Q
 R_1
 R_1
 $(XXIX)$

wherein Q is methylene; and each R¹ is chloro; or a pharmaceutically acceptable salt thereof.

35. The compound of claim 1 which is a compound of formula XXX:

$$Y \cdot R^2 \times R^1 \times R^2 \times$$

wherein Q is methylene; and each R¹ is chloro; or a pharmaceutically acceptable salt thereof.

- 36. The compound of claim 1, which is a compound shown in Table 1; or a pharmaceutically acceptable salt thereof.
- 37. A pharmaceutical composition comprising a compound as described in any one of claims 1, 29, 33, 34 or 35; and a pharmaceutically acceptable carrier.

add at

- 38. A method of treating a disease or condition associated with sodium channel activity in a mammal, comprising administering to the mammal, a therapeutically effective amount of a pharmaceutical composition of claim 37.
- 39. The method of claim 38 wherein the disease or condition is neuropathic pain.