C2 W2 Lab 3 Feature Selection

July 2, 2021

1 Ungraded Lab: Feature Selection

Feature selection involves picking the set of features that are most relevant to the target variable. This helps in reducing the complexity of your model, as well as minimizing the resources required for training and inference. This has greater effect in production models where you maybe dealing with terabytes of data or serving millions of requests.

In this notebook, you will run through the different techniques in performing feature selection on the Breast Cancer Dataset. Most of the modules will come from scikit-learn, one of the most commonly used machine learning libraries. It features various machine learning algorithms and has built-in implementations of different feature selection methods. Using these, you will be able to compare which method works best for this particular dataset.

1.1 Imports

```
[1]: # for data processing and manipulation
     import pandas as pd
     import numpy as np
     # scikit-learn modules for feature selection and model evaluation
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.feature selection import RFE, SelectKBest, SelectFromModel, chi2,
     →f classif
     from sklearn.model_selection import train_test_split
     from sklearn.metrics import accuracy_score, roc_auc_score, precision_score,
     →recall_score, f1_score
     from sklearn.svm import LinearSVC
     from sklearn.feature selection import SelectFromModel
     from sklearn.preprocessing import StandardScaler, MinMaxScaler
     # libraries for visualization
     import seaborn as sns
     import matplotlib
     import matplotlib.pyplot as plt
```

1.2 Load the dataset

We've already downloaded the CSV in your workspace. Run the cell below to load it in the lab environment and inspect its properties.

```
[2]: # Load the dataset
df = pd.read_csv('./data/breast_cancer_data.csv')

# Print datatypes
print(df.dtypes)

# Describe columns
df.describe(include='all')
```

id	int64
diagnosis	object
radius_mean	float64
texture_mean	float64
perimeter_mean	float64
area_mean	float64
smoothness_mean	float64
compactness_mean	float64
concavity_mean	float64
concave points_mean	float64
symmetry_mean	float64
fractal_dimension_mean	float64
radius_se	float64
texture_se	float64
perimeter_se	float64
area_se	float64
smoothness_se	float64
compactness_se	float64
concavity_se	float64
concave points_se	float64
symmetry_se	float64
fractal_dimension_se	float64
radius_worst	float64
texture_worst	float64
perimeter_worst	float64
area_worst	float64
smoothness_worst	float64
compactness_worst	float64
concavity_worst	float64
concave points_worst	float64
symmetry_worst	float64
fractal_dimension_worst	float64
Unnamed: 32	float64
dtype: object	

[2]:			diagnosis	radius_mean		-		\
	count	5.690000e+02	569	569.000000			.000000	
	unique	NaN	2	NaN			NaN	
	top	NaN	В	NaN			NaN	
	freq	NaN	357	NaN			NaN	
	mean	3.037183e+07	NaN	14.127292			.969033	
	std	1.250206e+08	NaN	3.524049			. 298981	
	min	8.670000e+03	NaN	6.981000			.790000	
	25%	8.692180e+05	NaN	11.700000			. 170000	
	50%	9.060240e+05	NaN	13.370000			. 240000	
	75%	8.813129e+06	NaN	15.780000			.100000	
	max	9.113205e+08	NaN	28.110000	39.28000	00 188	.500000	
		area_mean	smoothness	mean compa	ctness_mean	concavity_n	mean \	
	count	569.000000		00000	569.000000	569.000		
	unique	NaN		NaN	NaN		NaN	
	top	NaN		NaN	NaN		NaN	
	freq	NaN		NaN	NaN		NaN	
	mean	654.889104	0.0	96360	0.104341	0.088		
	std	351.914129		14064	0.052813	0.079		
	min	143.500000		52630	0.019380	0.000		
	25%	420.300000		86370	0.064920	0.029		
	50%	551.100000		95870	0.092630	0.061		
	75%	782.700000		05300	0.130400	0.130		
	max	2501.000000		63400	0.345400	0.426		
		concave point		texture_wor	-		rea_worst	
	count	569.	000000	569.0000			59.000000 N-N	
	unique		NaN		aN	NaN NaN	NaN	
	top		NaN		aN	NaN NaN	NaN Na	
	freq	0	NaN		aN	NaN	NaN	
	mean		048919	25.6772			30.583128	
	std		038803	6.1462			39.356993 25.300000	
	min		000000	12.0200			35.200000	
	25%		020310	21.0800			15.300000	
	50%		033500	25.4100			36.500000	
	75%		074000 201200	29.7200			34.000000	
	max	0.	201200	49.5400	00 251.	200000 425	54.000000	J
		smoothness_wo	rst compa	.ctness_worst	concavity_w	orst \		
	count	569.000	0000	569.000000	569.00	00000		
	unique		NaN	NaN		NaN		
	top		NaN	NaN		NaN		
	freq		NaN	NaN		NaN		
	mean	0.132	2369	0.254265	0.27	'2188		
	std	0.022	2832	0.157336	0.20	8624		
	min	0.071	170	0.027290	0.00	0000		

	25%	/	0.116600	0.	. 147200	0.114	:500		
	50%	/	0.131300	0.	.211900	0.226	700		
	75°	/	0.146000	0.	.339100	0.382	:900		
	max	ζ	0.222600	1.	.058000	1.252	:000		
		concave	points_wors	t symmeti	ry_worst	fractal_dim	ension_wors	st \	
	COI	ınt	569.000000	569	000000		569.00000	00	
	un	ique	Nal	V	NaN		Na	aN	
	toj	o o	Nal	V	NaN		Na	aN	
	fre	eq	Nal	V	NaN		Na	aN	
	mea	an	0.114606	3 (290076		0.08394	16	
	sto	i	0.065732	2 (0.061867		0.01806	31	
	miı	ı	0.000000) (0.156500		0.05504	10	
	25%	%	0.064930) (250400		0.07146	30	
	50%	%	0.099930) (282200		0.08004	10	
	75°,	/	0.161400) (317900		0.09208	30	
	max	ζ	0.291000) (0.663800		0.20750	00	
		Unnamed	: 32						
	COI	ınt	0.0						
	un	ique	NaN						
	toj	p.	NaN						
	fre	эq	NaN						
	mea	an	NaN						
	sto	i	NaN						
	miı	ı	NaN						
	25%	/	NaN						
	50%	/	NaN						
	75°,	/	NaN						
	max	ζ	NaN						
	[1:	l rows x 33 c	olumns]						
[3]:		Preview the d	lataset						
	df	.head()							
[3]:		id dia	gnosis radi:	ıs_mean t	texture_me	an perimet	or moon	ron monn	\
[0].	0	842302	gnosis radio M	17.99	exture_me 10.	-	122.80	rea_mean 1001.0	`
	1	842517	M	20.57	17.		132.90	1326.0	
	2	84300903	M	19.69	21.		130.00	1203.0	
	3	84348301	M	11.42	20.		77.58	386.1	
	4	84358402	M	20.29	14.		135.10	1297.0	
	7	0 1000402	11	∠∪.∠∂	14.	O f	100.10	1201.0	
		smoothness_m	ean compact:	ness_mean	concavit	v mean con	cave points	s_mean \	
	0	0.11	-	0.27760		0.3001	-	.14710	
	1	0.08		0.07864		0.0869		.07017	
	_	0.00	117	0.07004		0.0003	0.	.01011	

0.1974

0.12790

0.15990

2

0.10960

3		0.14250	0.28390	0.2	414	0.10520	
4		0.10030	0.13280	0.1	.980	0.10430	
	•••	texture_worst	perimeter_worst	area_worst	smoothness	s_worst \	
0		17.33	184.60	2019.0		0.1622	
1	•••	23.41	158.80	1956.0		0.1238	
2	•••	25.53	152.50	1709.0		0.1444	
3		26.50	98.87	567.7		0.2098	
4		16.67	152.20	1575.0		0.1374	
	со	mpactness_worst	concavity_worst	concave po	ints_worst	symmetry_worst	\
0		0.6656	0.7119		0.2654	0.4601	
1		0.1866	0.2416		0.1860	0.2750	
2		0.4245	0.4504		0.2430	0.3613	
3		0.8663	0.6869		0.2575	0.6638	
4		0.2050	0.4000		0.1625	0.2364	
	fr	actal_dimension	_worst Unnamed:	32			
0		0	.11890 N	aN			
1		0	.08902 N	aN			
2		0	.08758 N	aN			
3				aN			
4				aN			
_				-			

[5 rows x 33 columns]

1.3 Remove Unwanted Features

You can remove features that are not needed when making predictions. The column Unnamed: 32 has NaN values for all rows. Moreover, the id is just an arbitrary number assigned to patients and has nothing to do with the diagnosis. Hence, you can remove them from the dataset.

```
[4]: # Check if there are null values in any of the columns. You will see `Unnamed:□ → 32` has a lot.

df.isna().sum()
```

```
[4]: id
                                   0
     diagnosis
                                    0
     radius_mean
                                    0
     texture_mean
                                    0
     perimeter_mean
                                    0
     area_mean
                                   0
     smoothness_mean
                                    0
     compactness_mean
                                    0
     concavity_mean
                                    0
                                   0
     concave points_mean
     symmetry_mean
```

```
fractal_dimension_mean
                                   0
                                   0
     radius_se
                                   0
     texture_se
                                   0
     perimeter_se
                                   0
     area_se
     smoothness_se
                                   0
                                   0
     compactness_se
                                   0
     concavity_se
     concave points_se
                                   0
     symmetry se
                                   0
                                   0
     fractal_dimension_se
     radius_worst
                                   0
     texture_worst
                                   0
     perimeter_worst
                                   0
                                   0
     area_worst
                                   0
     smoothness_worst
                                   0
     compactness_worst
     concavity_worst
                                   0
                                   0
     concave points_worst
     symmetry_worst
                                   0
                                   0
     fractal_dimension_worst
     Unnamed: 32
                                 569
     dtype: int64
[5]: # Remove Unnamed: 32 and id columns
     columns to remove = ['Unnamed: 32', 'id']
     df.drop(columns_to_remove, axis=1, inplace=True)
     # Check that the columns are indeed dropped
     df.head()
[5]:
       diagnosis radius_mean texture_mean perimeter_mean area_mean \
               М
                        17.99
                                       10.38
                                                      122.80
                                                                  1001.0
     0
     1
               М
                        20.57
                                       17.77
                                                      132.90
                                                                  1326.0
     2
               М
                        19.69
                                       21.25
                                                      130.00
                                                                  1203.0
     3
               М
                        11.42
                                       20.38
                                                       77.58
                                                                   386.1
     4
               М
                        20.29
                                       14.34
                                                      135.10
                                                                  1297.0
        smoothness mean compactness mean concavity mean concave points mean \
     0
                0.11840
                                   0.27760
                                                    0.3001
                                                                         0.14710
     1
                0.08474
                                   0.07864
                                                    0.0869
                                                                         0.07017
     2
                0.10960
                                   0.15990
                                                    0.1974
                                                                         0.12790
     3
                0.14250
                                   0.28390
                                                    0.2414
                                                                         0.10520
     4
                0.10030
                                   0.13280
                                                    0.1980
                                                                         0.10430
        symmetry_mean ... radius_worst texture_worst perimeter_worst \
     0
                                  25.38
                                                 17.33
                                                                  184.60
               0.2419 ...
```

```
1
           0.1812
                              24.99
                                               23.41
                                                                158.80
2
           0.2069
                              23.57
                                               25.53
                                                                152.50
3
           0.2597
                              14.91
                                               26.50
                                                                 98.87
4
           0.1809
                              22.54
                                               16.67
                                                                152.20
                                                         concavity_worst
   area_worst
                smoothness_worst
                                    compactness_worst
0
       2019.0
                           0.1622
                                                                   0.7119
                                                0.6656
1
       1956.0
                           0.1238
                                                0.1866
                                                                   0.2416
2
       1709.0
                           0.1444
                                                0.4245
                                                                   0.4504
3
        567.7
                           0.2098
                                                0.8663
                                                                   0.6869
4
       1575.0
                           0.1374
                                                0.2050
                                                                   0.4000
   concave points_worst
                           symmetry_worst
                                            fractal_dimension_worst
0
                  0.2654
                                    0.4601
                                                              0.11890
                  0.1860
                                    0.2750
                                                              0.08902
1
2
                  0.2430
                                    0.3613
                                                              0.08758
3
                  0.2575
                                    0.6638
                                                              0.17300
4
                  0.1625
                                    0.2364
                                                              0.07678
```

[5 rows x 31 columns]

1.4 Integer Encode Diagnosis

You may have realized that the target column, diagnosis, is encoded as a string type categorical variable: M for malignant and B for benign. You need to convert these into integers before training the model. Since there are only two classes, you can use 0 for benign and 1 for malignant. Let's create a column diagnosis int containing this integer representation.

```
[6]: # Integer encode the target variable, diagnosis
df["diagnosis_int"] = (df["diagnosis"] == 'M').astype('int')

# Drop the previous string column
df.drop(['diagnosis'], axis=1, inplace=True)

# Check the new column
df.head()
```

```
[6]:
        radius mean
                      texture mean
                                     perimeter mean
                                                      area mean
                                                                   smoothness mean
                                                                           0.11840
               17.99
                              10.38
                                              122.80
                                                          1001.0
     0
     1
               20.57
                              17.77
                                              132.90
                                                          1326.0
                                                                           0.08474
     2
               19.69
                              21.25
                                              130.00
                                                          1203.0
                                                                           0.10960
     3
               11.42
                              20.38
                                               77.58
                                                           386.1
                                                                           0.14250
     4
               20.29
                              14.34
                                              135.10
                                                          1297.0
                                                                           0.10030
        compactness_mean
                            concavity_mean
                                             concave points_mean
                                                                    symmetry mean
                  0.27760
                                    0.3001
                                                          0.14710
                                                                           0.2419
     0
                  0.07864
                                    0.0869
                                                          0.07017
                                                                           0.1812
     1
```

```
2
            0.15990
                               0.1974
                                                    0.12790
                                                                      0.2069
3
            0.28390
                               0.2414
                                                    0.10520
                                                                      0.2597
4
            0.13280
                               0.1980
                                                    0.10430
                                                                      0.1809
   fractal_dimension_mean
                                texture_worst
                                               perimeter_worst
                                                                  area_worst
0
                   0.07871
                                         17.33
                                                                       2019.0
                                                          184.60
                                        23.41
1
                   0.05667
                                                          158.80
                                                                       1956.0
2
                   0.05999
                                        25.53
                                                          152.50
                                                                       1709.0
3
                   0.09744
                                        26.50
                                                                        567.7
                                                           98.87
4
                   0.05883
                                         16.67
                                                                       1575.0
                                                          152.20
                                          concavity_worst
                                                             concave points_worst
   smoothness_worst
                      compactness_worst
0
             0.1622
                                  0.6656
                                                    0.7119
                                                                            0.2654
1
             0.1238
                                  0.1866
                                                    0.2416
                                                                            0.1860
2
             0.1444
                                  0.4245
                                                    0.4504
                                                                            0.2430
3
             0.2098
                                  0.8663
                                                    0.6869
                                                                            0.2575
4
             0.1374
                                  0.2050
                                                    0.4000
                                                                            0.1625
                    fractal_dimension_worst
                                               diagnosis_int
   symmetry_worst
0
           0.4601
                                     0.11890
                                                            1
           0.2750
                                     0.08902
1
                                                            1
2
           0.3613
                                     0.08758
                                                            1
3
           0.6638
                                                            1
                                     0.17300
           0.2364
                                     0.07678
                                                            1
```

[5 rows x 31 columns]

1.5 Model Performance

Next, split the dataset into feature vectors X and target vector (diagnosis) Y to fit a Random-ForestClassifier. You will then compare the performance of each feature selection technique, using accuracy, roc, precision, recall and f1-score as evaluation metrics.

```
[8]: # Split feature and target vectors
X = df.drop("diagnosis_int", 1)
Y = df["diagnosis_int"]
```

1.5.1 Fit the Model and Calculate Metrics

You will define helper functions to train your model and use the scikit-learn modules to evaluate your results.

```
[9]: def fit_model(X, Y):
    '''Use a RandomForestClassifier for this problem.'''

# define the model to use
model = RandomForestClassifier(criterion='entropy', random_state=47)
```

```
model.fit(X, Y)
          return model
[10]: def calculate_metrics(model, X_test_scaled, Y_test):
          '''Get model evaluation metrics on the test set.'''
          # Get model predictions
          y_predict_r = model.predict(X_test_scaled)
          # Calculate evaluation metrics for assesing performance of the model.
          roc=roc_auc_score(Y_test, y_predict_r)
          acc = accuracy_score(Y_test, y_predict_r)
          prec = precision_score(Y_test, y_predict_r)
          rec = recall_score(Y_test, y_predict_r)
          f1 = f1_score(Y_test, y_predict_r)
          return acc, roc, prec, rec, f1
[11]: def train_and_get_metrics(X, Y):
          '''Train a Random Forest Classifier and get evaluation metrics'''
          # Split train and test sets
          X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.
       →2,stratify=Y, random_state = 123)
          # All features of dataset are float values. You normalize all features of \Box
       → the train and test dataset here.
          scaler = StandardScaler().fit(X_train)
          X_train_scaled = scaler.transform(X_train)
          X_test_scaled = scaler.transform(X_test)
          # Call the fit model function to train the model on the normalized features \Box
       \rightarrow and the diagnosis values
          model = fit_model(X_train_scaled, Y_train)
          # Make predictions on test dataset and calculate metrics.
          roc, acc, prec, rec, f1 = calculate_metrics(model, X_test_scaled, Y_test)
          return acc, roc, prec, rec, f1
[12]: def evaluate_model_on_features(X, Y):
          '''Train model and display evaluation metrics.'''
          # Train the model, predict values and get metrics
```

Train the model

```
acc, roc, prec, rec, f1 = train_and_get_metrics(X, Y)

# Construct a dataframe to display metrics.
display_df = pd.DataFrame([[acc, roc, prec, rec, f1, X.shape[1]]], ___
→columns=["Accuracy", "ROC", "Precision", "Recall", "F1 Score", 'Feature__
→Count'])

return display_df
```

Now you can train the model with all features included then calculate the metrics. This will be your baseline and you will compare this to the next outputs when you do feature selection.

```
[13]: # Calculate evaluation metrics
all_features_eval_df = evaluate_model_on_features(X, Y)
all_features_eval_df.index = ['All features']

# Initialize results dataframe
results = all_features_eval_df

# Check the metrics
results.head()
```

[13]: Accuracy ROC Precision Recall F1 Score Feature Count All features 0.967262 0.964912 0.931818 0.97619 0.953488 30

1.6 Correlation Matrix

It is a good idea to calculate and visualize the correlation matrix of a data frame to see which features have high correlation. You can do that with just a few lines as shown below. The Pandas corr() method computes the Pearson correlation by default and you will plot it with Matlab PyPlot and Seaborn. The darker blue boxes show features with high positive correlation while white ones indicate high negative correlation. The diagonals will have 1's because the feature is mapped on to itself.

```
[14]: # Set figure size
plt.figure(figsize=(20,20))

# Calculate correlation matrix
cor = df.corr()

# Plot the correlation matrix
sns.heatmap(cor, annot=True, cmap=plt.cm.PuBu)
plt.show()
```


1.7 Filter Methods

Let's start feature selection with filter methods. This type of feature selection uses statistical methods to rank a given set of features. Moreover, it does this ranking regardless of the model you will be training on (i.e. you only need the feature values). When using these, it is important to note the types of features and target variable you have. Here are a few examples:

- Pearson Correlation (numeric features numeric target, exception: when target is 0/1 coded)
- ANOVA f-test (numeric features categorical target)
- Chi-squared (categorical features categorical target)

Let's use some of these in the next cells.

1.7.1 Correlation with the target variable

Let's start by determining which features are strongly correlated with the diagnosis (i.e. the target variable). Since we have numeric features and our target, although categorical, is 0/1 coded, we can use Pearson correlation to compute the scores for each feature. This is also categorized as supervised feature selection because we're taking into account the relationship of each feature with the target variable. Moreover, since only one variable's relationship to the target is taken at a time, this falls under univariate feature selection.

```
[15]: # Get the absolute value of the correlation
    cor_target = abs(cor["diagnosis_int"])

# Select highly correlated features (thresold = 0.2)
    relevant_features = cor_target[cor_target>0.2]

# Collect the names of the features
    names = [index for index, value in relevant_features.iteritems()]

# Drop the target variable from the results
    names.remove('diagnosis_int')

# Display the results
    print(names)
```

```
['radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean', 'concave points_mean', 'symmetry_mean', 'radius_se', 'perimeter_se', 'area_se', 'compactness_se', 'concavity_se', 'concave points_se', 'radius_worst', 'texture_worst', 'perimeter_worst', 'area_worst', 'smoothness_worst', 'compactness_worst', 'concavity_worst', 'concave points_worst', 'symmetry_worst', 'fractal dimension worst']
```

Now try training the model again but only with the features in the columns you just gathered. You can observe that there is an improvement in the metrics compared to the model you trained earlier.

```
[16]: # Evaluate the model with new features
strong_features_eval_df = evaluate_model_on_features(df[names], Y)
strong_features_eval_df.index = ['Strong features']

# Append to results and display
results = results.append(strong_features_eval_df)
results.head()
```

```
[16]: Accuracy ROC Precision Recall F1 Score \
All features 0.967262 0.964912 0.931818 0.97619 0.953488
Strong features 0.974206 0.973684 0.953488 0.97619 0.964706
```

Feature Count

All features	30
Strong features	25

1.7.2 Correlation with other features

You will now eliminate features which are highly correlated with each other. This helps remove redundant features thus resulting in a simpler model. Since the scores are calculated regardless of the target variable, this can be categorized under *unsupervised* feature selection.

For this, you will plot the correlation matrix of the features selected previously. Let's first visualize the correlation matrix again.

```
[17]: # Set figure size
plt.figure(figsize=(20,20))

# Calculate the correlation matrix for target relevant features that you
    →previously determined
new_corr = df[names].corr()

# Visualize the correlation matrix
sns.heatmap(new_corr, annot=True, cmap=plt.cm.Blues)
plt.show()
```


You will see that radius_mean is highly correlated to radius worst, perimeter_worst, and area_worst. You can retain radius_mean and remove the rest of the features highly correlated to it.

Moreover, concavity_mean is highly correlated to concave points_mean. You will remove concave points_mean and retain concavity_mean from your set of features.

This is a more magnified view of the features that are highly correlated to each other.

```
[18]: # Set figure size plt.figure(figsize=(12,10))
```


You will now evaluate the model on the features selected based on your observations. You can see that the metrics show the same values as when it was using 25 features. This indicates that you can get the same model performance even if you reduce the number of features. In other words, the 4 features you removed were indeed redundant and you only needed the ones you retained.

```
[19]: # Remove the features with high correlation to other features subset_feature_corr_names = [x for x in names if x not in ['perimeter_mean', □ → 'radius_worst', 'perimeter_worst', 'area_worst', 'concavepoints_mean']]
```

```
Γ19]:
                                    ROC Precision
                                                    Recall F1 Score \
                     Accuracy
     All features
                     0.967262 0.964912
                                         0.931818 0.97619 0.953488
     Strong features 0.974206 0.973684
                                          0.953488 0.97619 0.964706
     Subset features 0.974206 0.973684
                                         0.953488 0.97619 0.964706
                     Feature Count
     All features
                                30
     Strong features
                                25
     Subset features
                                21
```

Bonus challenge (not required): Look back again at the correlation matrix at the start of this section and see if you can remove other highly correlated features. You can remove at least one more and arrive at the same model performance.

1.7.3 Univariate Selection with Sci-Kit Learn

Sci-kit learn offers more filter methods in its feature selection module. Moreover, it also has convenience methods for how you would like to filter the features. You can see the available options here in the official docs.

For this exercise, you will compute the ANOVA F-values to select the top 20 features using SelectKBest().

```
# Fit to scaled data, then transform it
X_new = selector.fit_transform(X_train_scaled, Y_train)

# Print the results
feature_idx = selector.get_support()
for name, included in zip(df.drop("diagnosis_int",1 ).columns, feature_idx):
    print("%s: %s" % (name, included))

# Drop the target variable
feature_names = df.drop("diagnosis_int",1 ).columns[feature_idx]
return feature_names
```

You will now evaluate the model on the features selected by univariate selection.

[22]: univariate_feature_names = univariate_selection()

radius_mean: True texture_mean: True perimeter_mean: True area mean: True smoothness_mean: False compactness mean: True concavity_mean: True concave points mean: True symmetry_mean: False fractal dimension mean: False radius_se: True texture_se: False perimeter_se: True area_se: True smoothness_se: False compactness_se: False concavity_se: False concave points_se: True symmetry_se: False fractal_dimension_se: False radius_worst: True texture_worst: True perimeter_worst: True area_worst: True smoothness worst: True compactness_worst: True concavity_worst: True concave points_worst: True symmetry_worst: True

fractal_dimension_worst: False

```
[23]: # Calculate and check model metrics
     univariate_eval_df = evaluate_model_on_features(df[univariate_feature_names], Y)
     univariate_eval_df.index = ['F-test']
      # Append to results and display
     results = results.append(univariate_eval_df)
     results.head(n=10)
[23]:
                                     ROC Precision
                                                      Recall F1 Score
                      Accuracy
     All features
                      0.967262
                                0.964912
                                           0.931818
                                                     0.97619 0.953488
     Strong features
                      0.974206
                                0.973684
                                                     0.97619 0.964706
                                           0.953488
     Subset features 0.974206
                               0.973684
                                           0.953488 0.97619 0.964706
     F-test
                      0.974206 0.973684
                                                     0.97619
                                           0.953488
                                                              0.964706
```

	Feature	Count
All features		30
Strong features		25
Subset features		21
F-test		20

You can see that the performance metrics are the same as in the previous section but it uses only 20 features.

1.8 Wrapper Methods

Wrapper methods use a model to measure the effectiveness of a particular subset of features. As mentioned in class, one approach is to remove or add features sequentially. You can either start with 1 feature and gradually add until no improvement is made (forward selection), or do the reverse (backward selection). That can be done with the SequentialFeatureSelector class which uses k-fold cross validation scores to decide which features to add or remove. Recursive Feature Elimination is similar to backwards elimination but uses feature importance scores to prune the number of features. You can also specify how many features to remove at each iteration of the recursion. Let's use this as the wrapper for our model below.

1.8.1 Recursive Feature Elimination

You used the **RandomForestClassifier** as the model algorithm for which features should be selected. Now, you will use **Recursive Feature Elimination**, which wraps around the selected model to perform feature selection. This time, you can repeat the same task of selecting the top 20 features using RFE instead of SelectKBest.

```
# All features of dataset are float values. You normalize all features of_
the train and test dataset here.
scaler = StandardScaler().fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

# Define the model
model = RandomForestClassifier(criterion='entropy', random_state=47)

# Wrap RFE around the model
rfe = RFE(model, 20)

# Fit RFE
rfe = rfe.fit(X_train_scaled, Y_train)
feature_names = df.drop("diagnosis_int",1 ).columns[rfe.get_support()]
return feature_names

rfe_feature_names = run_rfe()
```

You will now evaluate the **RandomForestClassifier** on the features selected by RFE. You will see that there is a slight performance drop compared to the previous approaches.

```
[25]: # Calculate and check model metrics
    rfe_eval_df = evaluate_model_on_features(df[rfe_feature_names], Y)
    rfe_eval_df.index = ['RFE']

# Append to results and display
    results = results.append(rfe_eval_df)
    results.head(n=10)
```

[25]:	Accuracy	ROC	Precision	Recall	F1 Score	\
All features	0.967262	0.964912	0.931818	0.97619	0.953488	
Strong featur	ces 0.974206	0.973684	0.953488	0.97619	0.964706	
Subset featur	ces 0.974206	0.973684	0.953488	0.97619	0.964706	
F-test	0.974206	0.973684	0.953488	0.97619	0.964706	
RFE	0.967262	0.964912	0.931818	0.97619	0.953488	

	Feature	Count
All features		30
Strong features		25
Subset features		21
F-test		20
RFE		20

1.9 Embedded Methods

Some models already have intrinsic properties that select the best features when it is constructed. With that, you can simply access these properties to get the scores for each feature. Let's look at some examples in the following sections.

1.9.1 Feature Importances

Feature importance is already built-in in scikit-learn's tree based models like **RandomForest-Classifier**. Once the model is fit, the feature importance is available as a property named **feature importances**.

You can use SelectFromModel to select features from the trained model based on a given threshold.

```
[26]: def feature_importances_from_tree_based_model_():
          # Split train and test set
          X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.
       →2,stratify=Y, random_state = 123)
          # Define the model to use
          scaler = StandardScaler().fit(X_train)
          X_train_scaled = scaler.transform(X_train)
          X_test_scaled = scaler.transform(X_test)
          model = RandomForestClassifier()
          model = model.fit(X train scaled, Y train)
          # Plot feature importance
          plt.figure(figsize=(10, 12))
          feat_importances = pd.Series(model.feature_importances_, index=X.columns)
          feat_importances.sort_values(ascending=False).plot(kind='barh')
          plt.show()
          return model
      def select_features_from_model(model):
          model = SelectFromModel(model, prefit=True, threshold=0.013)
          feature_idx = model.get_support()
          feature_names = df.drop("diagnosis_int",1 ).columns[feature_idx]
          return feature_names
      model = feature_importances_from_tree_based_model_()
      feature_imp_feature_names = select_features_from_model(model)
```



```
[27]: # Calculate and check model metrics
feat_imp_eval_df = evaluate_model_on_features(df[feature_imp_feature_names], Y)
feat_imp_eval_df.index = ['Feature Importance']

# Append to results and display
results = results.append(feat_imp_eval_df)
results.head(n=10)
```

```
[27]:
                           Accuracy
                                          ROC
                                                Precision
                                                            Recall F1 Score
                                                           0.97619
      All features
                           0.967262
                                     0.964912
                                                 0.931818
                                                                     0.953488
      Strong features
                           0.974206
                                     0.973684
                                                           0.97619
                                                 0.953488
                                                                     0.964706
      Subset features
                           0.974206
                                     0.973684
                                                 0.953488
                                                           0.97619
                                                                     0.964706
      F-test
                           0.974206
                                     0.973684
                                                 0.953488
                                                           0.97619
                                                                     0.964706
      RFE
                           0.967262
                                     0.964912
                                                 0.931818
                                                           0.97619
                                                                     0.953488
```

Feature Importance 0.974206 0.973684 0.953488 0.97619 0.964706

	Feature	Count
All features		30
Strong features		25
Subset features		21
F-test		20
RFE		20
Feature Importance		17

1.9.2 L1 Regularization

L1 or Lasso Regulartization introduces a penalty term to the loss function which leads to the least important features being eliminated. Implementation in scikit-learn can be done with a LinearSVC model as the learning algorithm. You can then use SelectFromModel to select features based on the LinearSVC model's output of L1 regularization.

```
[28]: def run_l1_regularization():
          # Split train and test set
          X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.
       →2,stratify=Y, random_state = 123)
          # All features of dataset are float values. You normalize all features of \Box
       → the train and test dataset here.
          scaler = StandardScaler().fit(X train)
          X_train_scaled = scaler.transform(X_train)
          X_test_scaled = scaler.transform(X_test)
          # Select L1 regulated features from LinearSVC output
          selection = SelectFromModel(LinearSVC(C=1, penalty='11', dual=False))
          selection.fit(X_train_scaled, Y_train)
          feature_names = df.drop("diagnosis_int",1 ).columns[(selection.
       →get_support())]
          return feature_names
      l1reg_feature_names = run_l1_regularization()
```

```
[29]: # Calculate and check model metrics
l1reg_eval_df = evaluate_model_on_features(df[l1reg_feature_names], Y)
l1reg_eval_df.index = ['L1 Reg']

# Append to results and display
results = results.append(l1reg_eval_df)
results.head(n=10)
```

[29]:		Accuracy	ROC	Precision	Recall	F1 Score	\
	All features	0.967262	0.964912	0.931818	0.976190	0.953488	
	Strong features	0.974206	0.973684	0.953488	0.976190	0.964706	
	Subset features	0.974206	0.973684	0.953488	0.976190	0.964706	
	F-test	0.974206	0.973684	0.953488	0.976190	0.964706	
	RFE	0.967262	0.964912	0.931818	0.976190	0.953488	
	Feature Importance	0.974206	0.973684	0.953488	0.976190	0.964706	
	L1 Reg	0.929563	0.929825	0.886364	0.928571	0.906977	
		Feature C	ount				
	All features		30				
	Strong features		25				
	Subset features		21				
	F-test		20				
	RFE		20				
	Feature Importance		17				

18

With these results and also your domain knowledge, you can decide which set of features to use to train on the entire dataset. If you will be basing it on the f1 score, you may narrow it down to the Strong features, Subset features and F-test rows because they have the highest scores. If you want to save resources, the F-test will be the most optimal of these 3 because it uses the least number of features (unless you did the bonus challenge and removed more from Subset features). On the other hand, if you find that all the resulting scores for all approaches are acceptable, then you may just go for the method with the smallest set of features.

1.10 Wrap Up

L1 Reg

That's it for this quick rundown of the different feature selection methods. As shown, you can do quick experiments with these because convenience modules are already available in libraries like sci-kit learn. It is a good idea to do this preprocessing step because not only will you save resources, you may even get better results than when you use all features. Try it out on your previous/upcoming projects and see what results you get!