Data Mining and Text Mining

Rei Sanchez-Arias, Ph.D.

rsanchezarias@floridapoly.edu

Principal Component Analysis (PCA)

Goal: Reduce a set of numerical variables.

The idea: Remove the overlap of *information* between these variable. ["*Information*" is measured by the sum of the variances of the variables.]

Final product: A smaller number of numerical variables that contain most of the information

How does PCA do this?

Create **new variables** that are **linear combinations** of the original variables (i.e., they are weighted averages of the original variables).

These linear combinations are **uncorrelated** (no information overlap), and only a few of them contain most of the original information.

The new variables are called **principal components**.

Quick Example: Breakfast Cereals

name	mfr	type	calories	protein .	rating
100%_Bran	Ν	С	70	4 .	68
100%_Natural_Bran	Q	С	120	3.	34
All-Bran	K	С	70	4 .	59
All-Bran_with_Extra_Fiber	K	С	50	4 .	94
Almond_Delight	R	С	110	2 .	34
Apple_Cinnamon_Cheerios	G	С	110	2 .	30
Apple_Jacks	K	С	110	2 .	33
Basic_4	G	С	130	3 .	37
Bran_Chex	R	С	90	2 .	49
Bran_Flakes	Р	С	90	3.	53
Cap'n'Crunch	Q	С	120	1.	18
Cheerios	G	С	110	6.	51
Cinnamon_Toast_Crunch	G	С	120	1.	20

Name: name of cereal

mfr: manufacturer

type: cold or hot

calories: calories per serving

protein: grams

fat: grams

sodium: mg.

fiber: grams **weight**: oz. 1 serving **cups:** in one serving

rating: consumer reports

carbo: grams complex

carbohydrates sugars: grams

potass: mg.

vitamins: % FDA rec shelf: display shelf

Calories and Ratings Covariance Matrix

	calories	rating
calories	379.63	-189.68
rating	-189.68	197.32

Total **variance** (="information") is the sum of individual variances:
379.63 + 197.32

Calories accounts for 379.63/577 = 66%

$$C = \left(egin{array}{ccc} \sigma(x,x) & \sigma(x,y) \ \sigma(y,x) & \sigma(y,y) \end{array}
ight)$$

If we want to make do with just calories, we lose 34% of the variation

$$\sigma(x,y) = rac{1}{n-1} \sum_{i=1}^n \left(x_i - ar{x}
ight) (y_i - ar{y})$$

Linear Combinations

Using **linear combinations** to redistribute the variability in a more polarized way:

 Z_1 and Z_2 are two linear combinations. Z_1 has the highest variation (spread of values)

Z₂ has the *lowest* variation

In general: $X_1, X_2, X_3, ... X_p$, original p variables

- Generate Z_1 , Z_2 , Z_3 , ..., Z_p weighted averages of original variables
- All pairs of Z variables have 0 correlation
- Order Z's by variance $(Z_1 | Largest, Z_p | Smallest)$
- Usually the first few Z variables contain most of the information, and so the rest can be dropped.

Standardization

Using standardization, we **center** the features at mean 0 and standard deviation 1.

In the cereals dataset example, without standardization, sodium will dominate the first principal component (PC), simply because of the way it is measured (mg): its scale is greater than almost all other variables

Hence its variance will be a dominant component of the total variance

- Standardize each variable to remove scale effect
- Standardization is usually performed in PCA; otherwise measurement units affect results

First Two Principal Components

Using (standardized) cereals dataset and 13 different attributes

One can see that PC1 measures the balance between: (1) calories and cups vs. (2) protein, fiber, potassium, and consumer rating. PC2 is most affected by the weight of a serving.

Ideally, one finds a way to "labeling" the principal components in a similar fashion to learn about the **structure of the data**.

PCA in Classification/Prediction

Sometimes one can consider using PCA as part of a predictive model development.

- Apply PCA to training data
- Decide how many PC's to use
- Use variable weights in those PC's with validation/new data
- This creates a new **reduced** set of predictors in validation/new data