AD-A094 298 GENERAL ELECTRIC CO CINCINNATI OM AIRCRAFT ENGINE GROUP F/G 20/1 High Velocity jet noise source location and reduction. Task 6. --Etc(u) Mar 79 P R GLIEBE, R E MOTSINGER, A SIECKMAN DOT-OS-30034 R793E6290 FAA-RD-76-79-6A NL UNCLASSIFIED 1 e# 3 40 # 094299

PHOTOGRAPH THIS SHEET LEVEL A09429 GENERAL ELECTRIC CO CINCINNATI ONIO AIRCRAFT ENGINE GROUP HIGH VELOCITY JET NOISE SOURCE LOCATION AND REDUCTION TASK 6. SUPPLEMENT - COMPUTER PROGRAMS: ENGINEERING CORRELATION(M*S) JET NOISE PREDICATION METHOD and UNIFIED AEROACOUSTIC PREDICTION MODEL (M*G*B) FOR NOZZLES OF ARBITRARY SHAPE. FINAL REPT. MAR. 179 REPT NO. R79AEG290 CONTRACT DOT-OS-30034 FAA_RD_76_79_6A DISTRIBUTION STATEMENT A Approved for public releases Distribution Unlimited **DISTRIBUTION STATEMENT ACCESSION FOR** GRA&I NTIS DTIC TAB UNANNOUNCED ELECTE **JUSTIFICATION** JAN 29 1981 BY D DISTRIBUTION / AVAILABILITY CODES AVAIL AND/OR SPECIAL DATE ACCESSIONED DISTRIBUTION STAMP 81 1 27 007 DATE RECEIVED IN DTIC PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2 DOCUMENT PROCESSING SHEET DTIC FORM 70A

HIGH VELOCITY JET NOISE SOURCE LOCATION AND REDUCTION

TASK 6 SUPPLEMENT - COMPUTER PROGRAMS:
ENGINEERING CORRELATION (M°S)

JET NOISE PREDICTION METHOD and
UNIFIED AEROACOUSTIC PREDICTION MODEL (M°G°B)
FOR NOZZLES OF ARBITRARY SHAPE

TECHNICAL CONTRIBUTORS:

P.R. Gliebe R.E. Motsinger A. Sieckman

GENERAL ELECTRIC COMPANY AIRCRAFT ENGINE GROUP CINCINNATI, OHIO 45215

MARCH 1979 FINAL REPORT

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Systems Research & Development Service
Washington, D.C. 20590

NOTICE

The contents of this report reflect the views of the General Electric Company which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification or regulation.

1. Report No. FAA-RD-76-79, VIa	2. Government Accession No.	3. Recipient's Catalog No.
	Engineering Correlation (M*S) Jet ied Aeroacoustic Prediction Model	5. Report Date March 1979 6. Performing Organization Code
7. Author(s) P.R. Gliebe, R.E. Motsinger, and	Performing Organization Report No. R79AEG290 10. Work Unit No.	
9. Performing Organization Name and Address General Electric Company Group Advanced Engineering Divis Aircraft Engine Group Cincinnati, Ohio 45215	11. Contract or Grant No. DOT-OS-30034 13. Type of Report and Period Covered	
12. Sponsoring Agency Name and Address U.S. Department of Transportation Federal Aviation Administration Systems Research and Development Washington, D.C. 20590	July 1973 - July 1978 14. Sponsoring Agency Code	

15. Supplementary Notes This report is in partial fulfillment of the Subject Program. Related documents to be issued in the course of the program include Final Reports of the following tasks: Task 1 - Activation of Facilities and Validation of Source Location Techniques; Task 1 Supplement - Certification of the General Electric Jet Noise Anechoic Facility; Task 2 - Theoretical Developments and Basic Experiments; Task 2 Supplement - Computer Program for Calculating the Aeroacoustic Characteristics of Jets from Nozzles of Arbitrary Shape; Task 3 - Experimental Investigation of Suppression Principles; Task 4 - Development/Evaluation of Techniques for In-flight/Investigation; Task 5 - Investigation of In-Flight Aeroacoustic Effects; Task 6 - Noise Abatement Nozzle Design Guide. FAA Program Manager, Mr. R.S. Zuckerman

16. Abstrac

This General Supplement Report documents two (2) Computerized Jet Noise Prediction Techniques: the Engineering Method (M*S) and the Unified Aeroacoustic Prediction Model (M*G*B). A complete description of the computer programs is provided, including examples of input preparation and output cases, plus a listing of the FORFRAN computer code.

The comprehensive, empirical, jet noise prediction method (M*S) has been developed by correlating extensive data from this program and available data from other published scarces. The data were correlated by means of basic engineering principles and physical parameters. The resulting (M*S) prediction method includes unsuppressed conical nozzles; multitube and multichute single- and dualflow suppressed nozzles; and multitube/multichute nozzles with hardwall and treated sectors.

A unified aerodynamic/acoustic prediction technique has also been developed (M*G*B) for assessing the noise characteristics of suppressor nozzles. The technique utilizes an extension of Reichardt's method so as to provide predictions of the jet plume flow field. The turbulent fluctuations in the mixing regions of the jet are assumed to be the primary source of noise generation, as in Classical Theories of Jet Noise. The alteration of the generated noise by the jet plume itself as it propagates through the jet to the farfield is modeled utilizing the high-frequency shielding theory based on Lilley's equation. These basic modeling elements have been coupled together in a discrete volume-element formulation. The individual volume elements are assumed to be uncorrelated with each other, so that the total contribution to the farfield is simply the sum of the individual volume element contributions.

The programs presented herein are primarily directed toward prediction of high-velocity jet noise (1500-2900 feet per second) for arbitrary nozzle shapes, including sound pressure level spectra at any observer location. Static as well as in-flight capability is included in be models, albeit the "flight" data base and subsequent verification are quite limited.

18. Distribution Statement

17.	Key Words (Suggested by Author(s))
	M*G*B, M*S
	Jet Noise, Suppressors, Ejectors, Jet Flows,
	Turbulence, Acoustics, In-Flight Effects,
1	Prediction Method(s).

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

19. Security Classif (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price*
		206	

^{*} For sale by the National *echnica: Information Service, Springfield, Virginia 22151

METRIC CONVERSION FACTORS

	Sympo		e e	z [']	P Ē				2 P.					20	₽					. 6	Š.	}				۳.	2		7 002		
c Messures	To Find		inches	feet	yards			Square inches	squere yards	square miles	BCIGS			OUNCES	spunod	short tons			Tillia ounces	querts	gations	cubic feet				Fahrenheit	temperature		9		
Approximate Conversions from Metric Messures	Multiply by		0.04 4.0	3.3	0.6		AREA	0.16			Z.5		MASS (weight)	0.035	2.2	7	VOLUME		0.03	8.	92.0	×.	2		TEMPERATURE (exect)	9/5 (then	add 32)		90 120		*
Approximate Conv	When You Know	J	milimeters	meters	meters kilometers		j	square centimeters	square meters	square kilometers	nectares (10,000 m ⁻)			grams	kilograms	tonnes (1000 kg)			titees	liters	liters	cubic meters	cubic meters		<u></u>	Celsius	temperature		-40 0 40	-40-50-	
	Symbol		E 5	E	€ 5			cm2	~ _E `	,	2			6	ą,	-			Ē-	_	_'	Ē	Ė			ပ္			•	,	
111111111111111111111111111111111111111		8 	61	. (81 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	91 		ST		• t 	3 S	T	21); 	6		 	111111		9	 '	S	ין יוייןיי יןייןי	ין ויןיו),1, 	T w	
	Symbol			E	5 6	5		,	, Ca,	E E	~ §	2		,	, S	۲.			ĒĒ	Ē	-			"E	"E		ç	,		. 296,	
Measures	To Find			Centimeters	centimeters	kilometers			square centimeters	square meters	Square kilometers	hectares		***************************************	kilograms	tonnes			millipes millipes	milliters	liters	liters	riers	cubic meters	cubic meters		Calcius	temperature		tables, see NBS Arisc. Pub	
Approximate Conversions to Metric	Multiply by	LENGTH		*2.5	90	9.1	AREA		رم دن د	6.0 8.0	5.6	₽.0	MASS (weight)	52	0.45	6.0	VOLUME	•	u Æ	2 8	0.24	0.47	3.8	0.03	9.76	TEMPERATURE (exact)	5/9 (after	subtracting 32)	ì	ersions and more detailed D Catalog No. C13,t0/286	
Approximate Conv	When You Know			uches	feet	S ej E	-		square inches	Souare vards	square miles	acres	2	Ounces	bounds	short tons (2000 ib)	į		tablesmos	fluid ounces	gdino	pints	suolleg	cubic feet	cubic yards	TEMPI	Fabrachait	temperature		*1 in 1-25d reactivit, for other exact conversions and more detailed tables, see NBS Misc. Pith. 286. Units of the oths and Messures, Price 12-25, SD Catalog No. C13.10-286.	
	Sympo			ē	£ \$	Ē		•	<u>'</u> e "3	. ^σ	Ē		ii		•			į	2	20	v	ĸ.	; 3 .	J-'	, S					of in a 2,54 -	

PREFACE

This report describes the work performed under the DOT/FAA High-Velocity Jet Noise Source Location and Reduction Program (Contract DOT-OS-30034).

- Investigation, including scaling effects, of the aerodynamic and acoustic mechanisms of various jet noise suppressors.
- Analytical and experimental studies of the acoustic source distribution in such suppressors, including identification of source location, nature, and strength and noise reduction potential.
- Investigation of in-flight effects on the aerodynamic and acoustic performance of these suppressors.

The results of these investigations led to the preparation of a design guide report for predicting the overall characteristics of suppressor concepts, from models to full scale, from static to in-flight conditions, as well as a quantitative and qualitative prediction of the phenomena involved.

The work effort in this program was organized under the following major Tasks, each of which is reported in a separate Final Report:

- Task 1 Activation of Facilities and Validation of Source Location Techniques.
- Task 2 Theoretical Developments and Basic Experiments.
- Task 3 Experimental Investigation of Suppression Principles.
- Task 4 Development and Evaluation of Techniques for In-Flight Investigation.
- Task 5 Investigation of In-Flight Aeroacoustic Effects on Suppressed Exhausts.
- Task 6 Preparation of Noise Abatement Nozzle Design Guide Report.

Task 1 was an investigative and survey effort designed to identify acoustic facilities and test methods best suited to jet noise studies.

Task 2 was a theoretical effort complemented by theory verification experiments which extended across the entire contract period of performance.

Task 3 represented a substantial contract effort to gather various test data on a wide range of high-velocity jet noise suppressors. These data, intended to help identify five optimum nozzles for in-flight testing in Task 5, provided an extensive high quality data bank useful to the preparation of the Task 6 design guide as well as for future studies.

Task 4 was similar to Task 1, except that it dealt with the specific test facility requirements, measurement techniques, and analytical methods necessary to evaluate the in-flight noise characteristics of simple and complex suppressor nozzles. This effort provided the capability to conduct the flight effects test program of Task 5.

Task 6 embodies the salient results of Task 2, 3, 4 and 5, and combines them with other contractor results into a noise abatement nozzle design guide which permits acoustic and performance prediction of future high-speed engine-suppressor installations.

The present volume, a supplement to the design guide, documents two jet noise prediction methods developed under the contract: the engineering correlation of (M*S) model and the unified aeroacoustic model (M*G*B) (each capable of accounting for flight effects). The objective of this report is to provide users with a description of the methods and associated computational procedures in sufficient detail that either method can be implemented and utilized as a useful engineering tool. The empirical M*S method is capable of predicting static and in-flight acoustic characteristics of multi-element suppressors applicable to both advanced turbojet and variable-cycle engines. The theoretically based M*G*B method is capable of predicting static and in-flight aerodynamic and acoustic characteristics of jets from nozzles of arbitrary shape, and as such provides more insight into the fundamental mechanisms involved in a given configuration's noise signature.

TABLE OF CONTENTS

Section		Page
1.0	SUMMARY	1
	1.1 The Engineering Correlation (M*S) Method 1.2 The Unified Aeroacoustic Prediction (M*G*B) Method	thod 1
2.0	INTRODUCTION	3
3.0	ENGINEERING CORRELATION (M*S) JET NOISE PREDICTION COMPUTER PROGRAM	4
	 3.1 Introduction 3.2 Program Nomenclature 3.3 Description of Program and Subroutines 3.4 Input Description 3.5 Output Description 3.6 Sample Cases 3.7 Program Source Code Listing Section 3 References 	4 4 37 38 54
4.0	UNIFIED AEROACOUSTIC PREDICTION MODEL (M*G*B) COMPUTE PROGRAM	FER 96
	4.1 Introduction4.2 Program Nomenclature and Symbol Convention4.3 Description of Program and Subroutines	96 97 100
	4.3.1 Main 4.3.2 ARCCOS(X) 4.3.3 ERF(X) 4.3.4 LSPFIT 4.3.5 SLICE 4.3.6 CRD 4.3.7 OUTPUT 4.3.8 SHOCK 4.3.9 ATMOS 4.3.10 PNLC	100 100 100 112 113 113 115 115
	4.4 Program Usage and Logic 4.5 Description of Input	116 118
	4.5.1 Notes on Input 4.5.2 Example Case Input Selection	126 132
	4.6 Output Description4.7 Sample Output Listing4.8 Program Source Code Listing	134 136
	Section 4 References	170
5.0	CONCLUDING REMARKS	206

v

....

LIST OF ILLUSTRATIONS

Figure		Page
3-1.	Computer Program Flow Chart.	12
3-2.	Nozzle Types Included in the Correlation.	50
3-3.	FORTRAN Symbol Convention for Acoustic Arena Variables.	51
3-4.	Definition of Cant Angles for Multielement Nozzles.	52
4-1.	FORTRAN Symbol Convention for Coordinates and Geometric Variables.	98
4-2.	FORTRAN Symbol Convention for Acoustic Arena Variables.	99
4-3.	Computer Program Flow Chart.	109
4-4.	Possible Solution Types for a Maximum of Two Turning Points.	114
4-5.	Examples of How Boundary Parameters are Specified.	128
4-6.	Centerbody Input Coordinate Examples.	129
4-7.	Example Demonstration of Nozzle Geometry Specification with a Generalized Nozzle Exit Configuration.	130

LIST OF TABLES

Table		Page
3-1.	Definition of FORTRAN Symbols.	5
3-2.	Overall Flow of Program Input Format.	11
3-3.	Input Format.	39
3-4.	Input Variable Descriptions.	45
3-5.	Output Symbol Descriptions.	53
3-6.	Input Data Card Listing Sample Case.	54
4-1.	List of FORTRAN Symbols.	101
4-2.	Suggested Input Format.	119
4-3.	Input Variable Definitions.	121
4-4.	Preset Input Values.	125
4-5.	Input Data Card Listing Sample Case.	132

1.0 SUMMARY

This supplement to the Task 6, Noise Abatement Nozzle Design Guide documents two computerized jet noise prediction techniques: the engineering correlation method, and the unified aeroacoustic prediction model. A complete description of the computer programs are provided, including examples of input preparation and output cases, plus a listing of the FORTRAN computer code.

1.1 THE ENGINEERING CORRELATION (M*S) METHOD

A comprehensive, empirical, jet-noise-prediction method has been developed by correlating extensive data from this program with available data from other published sources. This engineering correlation prediction model has been designated as the M*S model (after the authors: Motsinger and Sieckman) for ease of reference, as well as to distinguish it from the more theoretical prediction model (M*G*B) developed by authors Mani, Gliebe and Balsa.

The data were correlated by means of basic engineering principles and physical parameters. The resulting M*S prediction methods includes unsuppressed conical nozzles; multitube and multichute, single and dual-flow, suppressed nozzles; and multitube/chute nozzles with hardwall and treated ejectors.

1.2 THE UNIFIED AEROACOUSTIC PREDICTION (M*G*B) METHOD

A unified aerodynamic/acoustic prediction technique has been developed for assessing the noise characteristics of suppressor nozzles. The technique utilizes an extension of Reichardt's method so as to provide predictions of the jet plume flow field (velocity, temperature and turbulence intensity distributions). The turbulent fluctuations produced in the mixing regions of the jet are assumed to be the primary source of noise generation, as in the classical theories of jet noise. The altering of the generated noise by the jet plume itself as it propagates through the jet to the farfield observer (sound/flow interaction or fluid shielding) is modeled utilizing the high-frequency shielding theory based on Lilley's equation.

These basic modeling elements (flow field prediction, turbulent mixing noise generation, and sound/flow interaction) have been coupled together in a discrete volume-element formulation. The jet plume is divided into elemental volumes, each roughly the size of a representative turbulence correlation volume appropriate to that particular location in the plume. Each volume element is assigned its own characteristic frequency, spectrum, and acoustic intensity. The sound/flow interaction effects for each volume element are evaluated from the flow environment of the element. The individual

volume elements are assumed to be uncorrelated with each other, so that the total contribution $t\in {\mathbb R}$ the farfield is simply the sum of the individual volume element contributions.

The programs presented herein are primarily directed toward prediction of high-velocity jet noise (1500-2900 feet per second) for arbitrary nozzle shapes, including sound pressure level spectra at any observer location. Static as well as in-flight capability is included in both models; however, the flight data base and subsequent verifications are somewhat limited at the time of this program's conclusion.

2.0 INTRODUCTION

Many jet noise suppressor nozzles have been designed utilizing intuitive notions of how to suppress jet noise which have demonstrated substantial noise reduction, but often at the expense of considerable thrust loss as well as increased engine weight, manufacturing cost, and complexity. Seemingly minor changes in suppressor nozzle design, for the purpose of improving thrust performance, often result in substantial loss of noise suppression. It is therefore highly desirable to have available a quantitative prediction technique for estimating the aerodynamic flow field and acoustic characteristics of suppressor-type nozzle configurations, so that design and optimization studies can be made prior to construction and testing in order to minimize the time and cost of development. Ideally, any technique should be sensitive to the controllable design variables and contain a little empiricism as possible. When empiricism is necessary, it should be based more or less on physical characteristics (flow, acoustic propagation, etc.) engineering principles rather than on geometric parameters.

The computer programs included herein represent a conventional engineering correlation technique and a more theoretical approach derived from engineering principles. The design engineer can exercise either or both models, depending on the type of results required. The correlation method provides a preliminary design prediction of aerodynamic and acoustic performance; the theoretical M*G*B method provides a means of assessing the relative importance of various jet noise mechanisms.

Section 3.0 describes the computer program for the engineering correlation jet noise prediction method (M*S model); Section 4.0 presents the computer program for the unified aeroacoustic prediction method (M*G*B model).

3.0 ENGINEERING CORRELATION (M*S) JET NOISE PREDICTION COMPUTER PROGRAM

3.1 INTRODUCTION

This section documents the computer program for the prediction of jet noise by the engineering correlation method (M*S). The mathematical model appears in detail in Reference 1. A description of the computer program is provided herein including examples of input preparation and output cases, plus a listing of the FORTRAN computer code.

The computer program is written in FORTRAN Y language. It has been programmed for use on both the GE/Honeywell 6080 and the CDC 7600 computers.

The range of valid application of the program, the limiting assumptions, and documentation of the data base used for developing the correlation can be found in both the Task 3 (Reference 1) and Task 6 (Reference 2) reports.

3.2 PROGRAM NOMENCLATURE

Table 3-1 defines the FORTRAN symbols used in the program. The listing and descriptions of input variables are given in the Input Description section.

3.3 DESCRIPTION OF PROGRAM AND SUBROUTINES

Table 3-2 gives a description of the overall flow of the computer program including all routines used in each step. Figure 3-1 gives a detailed flow chart of the computer program logic. A description of the main program and each of the subroutines is given in the following paragraphs.

M*S Routine - This routine reads the input curves needed for the various prediction routines. Depending on nozzle type it reads the nozzle input, initializes variables, and computes flow parameters and flow and physical geometries. The computation of gamma (ratio of specific heats) involves an iteration using input temperature and pressure ratio. The output and use of prediction subroutines are controlled by this routine.

Following the preliminary calculations, control is routed through the multielement, conical, or dual-flow section of the program. In the multielement part, calculations are first made for the postmerged noise. The coefficients for the Potter and Crocker equation are set up, and, because it is a third-order equation (after simplification), a Newtonian convergence routine is used to determine the first root. Density and diameter are then calculated and a check is made for other possible roots. Static and total

Table 3-1. Definition of FORTRAN Symbols.

FORTRAN Symbol	Meaning	Related Subroutines
A	Ejector treatment parameters	MS, EJECTS
AA8, A8	Inner nozzle flow area	MS, SHKSUB
AJ	Acoustic angle, degrees	MS, SUB3, SUB5
		EXTP, SHKSUB, EJECTS
AJA	Jet plume spreading angle, radians	
AJR	Acoustic angle, radians	MS, EXTP, EJECTS
ALT	Input altitude or arc distance	MS, EXTP
AN	Noy Weighting	PNLPT
AN1	Number of elements	MS
ASK	Intermediate variable	PNTT8
Α0	Ambient speed of sound	MS, SUB1
		SHKSUB, PNTT8
A1	Intermediate variable	MS, EJECTS
A1	Ratio of merged to exit area	MS
A2	Ratio of merged to exit area	EJECTS
A3 A3	Single-flow nozzle total exit area Intermediate variable	MS E IRCTC
A3 A4	Intermediate variable Intermediate variable	EJECTS MS
A4 A4	Ejector treatment PWL Insertion loss	EJECTS
A5	Area of multielement merged stream	MS
A5	Ejector treatment SPL insertion loss at	rБ
R.J	given acoustic angle	EJECTS
A6	Ratio of ejector inlet area to nozzle	LULUIS
110	total area	MS, EJECTS
A7	Multielement nozzle area ratio	MS
A9	Outer nozzle flow area	MS
В	Shock strength parameter, β	SHKSUB
B1	Intermediate variable	EXTP
В2	Intermediate variable	EXTP
В3	Intermediate variable	EXTP
В8	Tube or chute/spoke cant angle, radians	MS
В9	Tube or chute/spoke cant angle, degrees	MS
С	Normalized OASPL jet mixing noise curve-fit	
	coefficients	MS, SUB1
CJ	Ten dB down value for EPNL	PNTT8
CMAX	Intermediate tone correction	TPNLC
C1	Jet mixing noise OASPL corrections	MS, SUB1
C1J	Intermediate variable	EXTP, SHKSUB
C2	Jet mixing noise relative velocity	
	exponents	MS, SUB1
C3	Inner stream specific heat	MS
C4	Outer stream specific heat	MS
C9	Local speed of sound	MS, SHKSUB

Table 3-1. Definition of FORTRAN Symbols (Continued).

FORTRAN Symbol	Meaning	Related Subroutines
D	Intermediate variable	MS, PNTT8
DE	Hard-wall ejector reference effect at θ_T	EJECTS
DEK	Flight Effect at 90° on Shock Cell Noise	SHKSUB
DEN	Density correction $(\rho_1/\rho_0)^{\omega}$	SUB1
DIS	Intermediate variable	EXTP
DJ	Characteristic element dimension	MS
DN	Nozzle outer diameter	MS
DOP	Doppler Factor	EXTP
DT	Tube diameter	MS
DUM	Intermediate variable	SUB1
DO	Shock-noise normalization parameter	SHKSUB
D1	Reference far-field distance	MS, EXTP, SHKSUB
D2	Hard-wall ejector reference effect	EJECTS
D3	Ejector radius or diameter	EJECTS
D4	Equivalent area diameter	MS, EJECTS
D5	Merged flow diameter	MS
D7	Initial time for EPNL	PNTT8
D8	Nozzle characteristic dimension for shock	
	noise	MS, SHKSUB
D9	Final time for EPNL	PNTT8
E	Jet mixing noise spectral distribution at θ	SUB1
Е	Intermediate Variable	EXTP
E1	Ejector effect	EJECTS
E3	EPNL	PNTT8
E9	EGA indicator	MS, EXTP, PNTT8
F	Center frequency	MS, EXTP, SHKSUB
	,	PNTT8, EJECTS
F	Intermediate variable	TPNLC
FP	Peak frequency	EJECTS
F0	Critical frequency for effective number of	
	elements	MS
F1	Intermediate variable	MS, SHKSUB
F2	Intermediate variable	MS, SHKSUB
F3	Intermediate variable	SHKSUB
G	Shock-cell noise prediction input curve	MS, SHKSUB
GJ	Critical refraction angle indicator	MS
G1	Intermediate variable	SHKSUB
G2	Outer stream ratio of specific heats, γ	MS
G3	EGA at output distance	EXTP
G8	Intermediate γ	MS
G9	Inner stream ratio of specific heats, γ	MS
Н	Output sideline or arc distance	MS, EXTP, PNTT8
H1	Intermediate variable	SHKSUB
I	Index	MS, SUB1, SUB5,
		SUB4, SUB2, SUB6,
		EXTP, SHKSUB, TPNLC,
		PNTT8, EJECTS

Table 3-1. Definition of FORTRAN Symbols (Continued).

FORTRAN Symbol	Meaning	Related Subroutines
0711001	THE CHILLIAN	<u>Just out thes</u>
IDCASE	Case Description	MS
IDENT	Run Description	MS
IM	Intermediate variable	MS
IP	Intermediate variable	EJECTS
11	Indicator	TPNLC
IIAS	Noise component identification	MS, PNTT8
IICASE	Case Description	MS, PNTT8
IIP	Intermediate variable	MS
ISPLF	Intermediate variable	TPNLC
J	Index	All Subroutines
JJ	Index	PNTT8, EJECTS
K	Index	SUB1, SUB3
KK	Jet mixing noise spectral distribution	5051, 5053
	curve-fit coefficients	MS, SUB1
KSTART	Index	SHKSUB
KT	Intermediate variable	PNTT8
KO	Intermediate variable	MS
K1	Extrapolation indicator	MS, SUB3
K2	Intermediate variable	MS
K6	Intermediate variable	SUB1, EJECTS
K7	Shock-noise case indicator	MS
к <i>7</i> к8	Index	SHKSUB, EJECTS
к9	Print Indicator	MS
L	PNL calculation coefficients	MS, PNLPT
Ll	Output acoustic range	EXTP
L1 L2	Reflected axial source location	EJECTS
L3	Ejector length	EJECTS
L8	Ejector length effect	EJECTS
LO L9	Ejector length to suppressor nozzle	LUECIS
L7	equivalent diameter	
м	Mach number	MS, EJECTS
MP	Maximum PNL	PNTT8
MM	Intermediate variable	MS
N	Number of elements in nozzle	MS
N NFLT		
	Flight Effects Exponent Indicator	MS, SUB1
N1	Angle indicator	MS, SUB1
0.J	OASPL	SUB1, SUB3, PNTT8
	Critical refraction angle	MS, EJECTS
09 P	OAPWL	SUB5, SUB6, PNTT8
P PA	PNL	SUB3, PNTT8
PA PJ	Air attenuation	EXTP
	Intermediate variable	MS
PTCOR PO	Tone correction	TPNLC
ru	Ambient static pressure	MS

Table 3-1. Definition of FORTRAN Symbols (Continued).

FORTRAN Symbol	Meaning	Related Subroutines
P1	π (3.14159)	EXTP, SHKSUB
P3	Frequency	EXTP, EJECTS
P4	Inner nozzle total to ambient pressure ratio	MS
P5	Outer nozzle total to ambient pressure	
P9	ratio	MS
	Nozzle total to ambient pressure ratio	MS EXTP
Q Q1	Spherical spreading effect Intermediate variable	MS, PNTT8
Q2	Jet mixing noise normalization parameter	SUB1
R	Intermediate storage variable	SUB4, SUB6
RJ	Ambient density	MS, SUB1
RJ1	Intermediate variable	SUB1, PNTT8
RP	Centerbody plug radius	MS
RS, RR	Specific resistance	EJECTS
RVE	Flight Effects	SUB1
RX	Specific reactance	EJECTS
R1	Tube equivalent radius	MS
R2	Nozzle outer diameter	MS
R 3	Inner flow density	MS
R4	Chute/spoke outer flow width	MS
R5	Outer flow density	MS
R6	Chute/spoke inner flow width	MS
R7	Outer nozzle duct height	MS, SUB1
R8	Outer nozzle radius ratio	ms
R9	Centerbody plug radius	MS
S	Predicted SPL	MS, SUB1, SUB3, SUB5, SUB4, SUB2, SUB6, SHKSUB, PNTT8
SBAR	Intermediate variable	TPNLC
SC	Intermediate variable	TPNLC
SJ	Intermediate variable	MS, PNTT8
SL	Input sideline distance	MS, EXTP
SP	Intermediate variable	TPNLC
SPI.	Intermediate variable	TPNLC
SPLP	Intermediate variable	TPNLC
SPLPP	Intermediate variable	TPNLC
SS	Outer chute/spoke width	MS
SX	Source location	MS
S1	Shock-cell noise prediction input curves	MS, SHKSUB
SlJ	Outer element spacing to characteristic diameter ratio	MS
S2J	Relative source strength	EJECTS

Table 3-1. Definition of FORTRAN Symbols (Continued).

FORTRAN Symbol	Meaning	Related Subroutines
S6	Nozzle outer radius	MS, EJECTS
T	Temperature	SUB1
T	PNL	SUB3
T	Flyover time	PNTT8
TC	Cutoff effect	MS
TC2	Intermediate variable	TPNLC
TC3	Intermediate variable	TPNLC
TJ	Intermediate variable	PNLPT, PNTT8
TT	Intermediate variable	PNTT8
TT3, T3	Nozzle total temperature	MS
TT4, T4	Inner nozzle total temperature	MS MS, SUB1
TT5, T5 TZ	Outer nozzle total temperature Initial time for EPNL	PNTT8
T0	Ambient temperature	MS, SUB1, PNTT8
T1	Intermediate variable	PNTT8, EJECTS
T2	Intermediate variable	MS
Т8	Total temperature	MS, SUB1
บ	Arc or sideline indicator	MS, EXTP, PNTT8
บ3	Nozzle fully expanded velocity	MS
ช5	Outer nozzle fully expanded velocity	MS
V	Intermediate variable	SUB3, PNLPT
VJ	Suppressor merged velocity	MS
VO	Aircraft velocity	MS, SUB1, SHKSUB, PNTT8
V1	Ratio of merged velocity to exit velocity	MS
V6	Intermediate variable	MS
V 7	Intermediate variable	MS
v 8	Fully expanded jet velocity input to jet	
***	mixing noise routine	MS, SUB1
V9	Fully expanded jet velocity input to shock-cell noise routine	Mc cuveilb
W	Density exponent curve-fit coefficients	MS, SHKSUB MS, SUB1
w WE	Density exponent	SUB1
WJ	Intermediate variable	SUB1, PNTT8
W4	Inner stream weight flow	MS
W5	Outer stream weight flow	MS
w8	Weight flow	MS, SUB1
X	Source location	MS, EJECTS
X	SPL	SUB3, EXTP, PNLPT
ХJ	Intermediate variable	SUB1, EJECTS
XM	Point of merging	MS
XO	Potter and Crocker equation coefficient	MS
X1	Potter and Crocker equation coefficient	MS
X 2	Potter and Crocker equation coefficient	MS

Table 3-1. Definition of FORTRAN Symbols (Concluded).

FORTRAN Symbol	Meaning	Related Subroutines
х3	Potter and Crocker equation coefficient	MS
X 4	Specific reactance	EJECTS
Y	PWL	SUB5, SUB4, SUB6, PNTT8
ΥJ	Intermediate variable	SUB5, EJECTS
Y1	Intermediate variable	MS, SUB4, SUB6
Y1J	Intermediate variable	MS
Y2	Intermediate variable	MS
Y9	Nozzle type indicator	MS, SUB1
ZI	Intermediate variable	SHKSUB
ZJ	Intermediate variable	EXTP, EJECTS
ZK	Intermediate variable	SHKSUB
ZZ	Effective number of elements effect	MS
Z 1	Intermediate variable	SUB1, PNTT8
Z 2	Intermediate variable	MS
Z 3	Intermediate variable	MS, PNTT8
Z 5	Number of rows of tubes	MS
Z8	Effective number of elements adder	MS
Z9	Total number of elements adder	MS
Z9	Constant	MS. SUB2

Table 3-2. Overall Flow of Program.

- 1. Read Input Curves (M*S).
- 2. Read Input and Calculate Flow Parameters for each Stream (M*S).

The Following through 11 are used or Skipped as Necessary.

- 3. Determine Postmerged Noise (M*S, SUB1, SUB5).
- 4. Determine Premerged Noise (M*S, SUB1).
- 5. Determine Premerged Cutoff and Shielding Effects (M*S).
- Calculate Ejector Effects and Correct the Premerged Noise (M*S, EJECTS, SUB5).
- 7. Sum the Premerged and Postmerged Noise (SUB6).
- 8. Calculate Shock Noise for Outer Stream and Apply Cutoff, Shielding, and Ejector Effects (M*S, SHKSUB, EJECTS, SUB5).
- 9. Add to the Sum of Premerged and Postmerged (SUB6).
- 10. Calculate Shock Noise for Inner Stream (M*S, SHKSUB, SUB5).
- 11. Add to the Sum of Premerged and Postmerged and Outer Stream Shock (SUB6).
- 12. Extrapolate and Calculate OASPL, PNL and PNLT (this may be done after each Component is Calculated for Print Purposes) (SUB3).
- 13. Print Output and Calculate EPNL (PNTT8).

M*S Routine READ INPUT CURVES READ INPUT INITIALIZE VARIABLES CALCULATE FLOW PARAMETERS Y9 > 3 ? YES RESET VARIABLES NO CALCULATE OUTER PRINT INPUT STREAM FLOW PARAMETERS Y9 > 3 GO TO YES NO GO TO

Figure 3-1. Computer Program Flow Chart.

Figure 3-1. Computer Program Flow Chart (Continued).

Figure 3-1. Computer Program Flowchart (Continued).

Figure 3-1. Computer Program Flow Chart (Continued).

b) SUBROUTINE SUB3

Figure 3-1. Computer Program Flowchart (Continued).

c) SUBROUTINE SUB5 SET OAPWI = 0DO FOR SUM FOR 24 FREQ OAPWL POWER = 0END FREQUENCY LOOP DO FOR 15 ANGLES DETERMINE OAPWL IN DB SET ANGLE RETURN CALC STRIP AREA AND POWER END ANGLE LOOP CALC POWER IN DB

Figure 3-1. Computer Program Flowpath (Continued).

Figure 3-1. Computer Program Flowchart (Continued).

1) SUBROUTINE SUB6

Figure 3-1. Computer Program Flowchart (Continued).

g) SUBROUTINE EXTP

Figure 3-1. Computer Program Flowchart (Continued).

h) SUBROUTINE PNTT8

Figure 3-1. Computer Program Flowchart (Continued).

Figure 3-1. Computer Program
Flowchart (Continued).

i) SUBROUTINE EJECTS

Figure 3-1. Computer Program Flowchart (Continued).

Figure 3-1. Computer Program Flowchart (Continued).

NO FLOW CHART IS SUPPLIED FOR THE FOLLOWING ROUTINES BECAUSE OF THE COMPLETE NATURE OF THEIR DOCUMENTATION IN PUBLISHED LITERATURE

- SHKSUB
- PNLPT
- TPNLC

Figure 3-1. Computer Program Flow Chart (Concluded).

temperature are determined, the input variables to the conical nozzle noise routine are set, the noise is calculated, and flight effects are applied if necessary. This component is then extrapolated and (if desired) printed.

The premerged noise is then calculated. The effective number of tubes and the critical angle are determined. Then the length of the potential core, $X_{\rm C}$, the point of merging (used for cutoff only), and the radius ratio are determined. The axial location of the beginning of peak noise generation, $X_{\rm D}$, and the critical frequency for absorption are calculated before entering the frequency loop to calculate source locations, absorption effects, and cutoff effects. These are then applied to all angles forward of critical with angles aft of critical set equal to critical angle SPL. Ejector effects are determined and applied before extrapolation and (if desired) printed. Shock-cell noise (if applicable) is determined after summing the premerged and postmerged components. It is then corrected for ejector effects and flight effects, whereupon multielement corrections are applied, extrapolated, printed, and added to the other components. The total is then extrapolated (if required) and printed, and a return is made for the next case.

The conical part of the routine calculates the conical mixing noise and shock noise, applies flight effects, extrapolates and prints them separately if desired, sums them, and prints the total; after which, a return is made for the next case.

The coannular part uses the premerged and postmerged routines of the multielement part if a suppressor is involved. Variables are set, and, if a suppressor is involved, the postmerged routine of the multielement part is entered to calculate merged flow conditions. Mixed conditions are then determined and the merged noise is calculated, extrapolated, and printed (if desired).

The premerged noise is now calculated in accordance with whether a suppressor is present or not. This component is extrapolated, printed if desired, and added to the postmerged. Outer-stream, shock-cell noise is determined, depending on whether a suppressor is present or not, extrapolated, printed (if desired), and added to the other components. Finally, the inner stream shock is computed, extrapolated, printed (if desired), and added to the other components. The total is then extrapolated as required, and printed; and control is returned for the next case.

SUB1 Subroutine - This subroutine provides SAE ARP 876 (1975 revision) conical nozzle noise predictions and determines and applies mixing noise flight effects. Use and limitations are as described in the aforementioned documents. Output from this routine is on a one-foot arc. Basically, polynominal curve fits of the data in SAE ARP 876 (1975 revision) were used. A correction was made to the predicted OASPL to increase the accuracy of the routine based on available data on suppressor nozzles. This correction amounts to +1 dB at all angles and frequencies.

SUB3 Subroutine - This routine resets the variables for input into the extrapolation and PNL calculation subroutines. It determines whether extrapolation is required and calls EXTP. PNLPT is called to determine PNL and OASPL. TPNLC is called from PNLPT to determine PNLT. The variables are then reset maintaining the newly calculated values.

SUB5 Subroutine - This routine calculates sound power level from sound pressure level for each one-third-octave band, and then antilogarithmically sums them to obtain the overall levels.

SUB4 Subroutine - This routine places previously calculated sound pressure level and sound power level in other variable name storage for future use in the program.

SUB2 Subroutine - This routine adds a constant value to the one-third-octave band SPL at all angles and frequencies.

SUB6 Subroutine - This routine antilogarithmically sums different SPL and PWL spectra to obtain a total spectra, and then sums the total PWL spectrum to obtain OAPWL.

EXTP Subroutine - This routine extrapolates an input spectrum to a desired acoustic range using the inverse-square law (spherical spreading), air attenuation per SAE ARP 866 (Reference 3), and, if desired, extra ground attenuation (EGA) per the routine presented in SAE AIR 923 (Reference 4). A curve fit of the 59° F, 70% relative humidity, standard-day-air attenuation is used, as well as curve fits for EGA. The routine automatically accounts for range changes from angle to angle on a sideline and includes the option of a 100-ft layer of EGA, full EGA, or no EGA as per SAE AIR 923.

SHKSUB Subroutine - This routine predicts shock-cell noise by the procedure defined in SAE ARP 876 (1976 proposed revision). Output from this routine is on a one-foot arc. The definition of D8 was varied to allow calculations for nonround nozzles. Shock-cell noise flight effects are determined and applied in this section.

PNLPT Subroutine - This routine sums the SPL in a given sp.ctrum antilogarithmically to obtain OASPL and uses the procedure defined in SAE ARP 865A (Reference 31) to calculate PNL.

TPNLC Subroutine - This routine calculated tone-corrected PNL via Section B36.3 of the FAA Noise Certification Document (Nov. 17, 1969) as a function of the uncorrected one-third-octave spectrum SPL.

PNTT8 Subroutine - This routine sets the format and prints the noise output from the main program. It prints the identification of the noise output and one-third-octave band SPL and PWL for 24 frequencies and 15 angles (20° to 160° to the inlet) as well as OASPL, PNL, and PNLT for each angle.

The second part of the routine calculates EPNL (if required) according to the procedure described in FAR Part 36, using PNL rather than PNLT. Times associated with given acoustic angles for a level flyover (assuming the engine centerline is parallel to the ground) are determined first. Peak PNL,

the associated time, and the 10-dB down levels are determined. Initial and final times are then determined by linear interpolation (using, when necessary, extrapolation using the first or last two points). The PNL history is then integrated between the 10-dB down points by summing half-second increments (determined by linear interpolation) to obtain the duration correction. This is added to the maximum PNL to obtain EPNL; the EPNL is then printed. It should also be noted that the program automatically calculates an EPNL for static sideline cases assuming a 300 ft/sec flyover velocity.

EJECTS Subroutine - This routine first determines the effect of a hardwall ejector of given geometry in terms of the reference SPL. Directivity and spectral effects are then determined. If no treatment is present in the ejector, control is returned to the main program. If treatment is present, an impedance prediction routine for SDOF treatment (single degree of freedom) is entered. The resistance and reactance of the treatment panel is determined; this yields a coefficient of absorption. The location of a given source and the strength relative to the peak are then calculated. The coefficient of absorption multiplied by the number of reflections for a given acoustic angle plus the relative source strength when summed over all sources yields an SPL reduction. This, when integrated over all angles, gives a sound power insertion loss. This reduction is log-averaged over the lower limiting, center, and upper limiting frequencies for the given one-third-octave band. The sound power insertion loss is then converted into a delta SPL for each acoustic angle and added to the hard-wall effect. Control is then returned to the main program.

3.4 INPUT DESCRIPTION

The input data are supplied through NAMELIST input format. Any number of successive cases can be run consecutively, limited only by the users execution time available. Each successive case requires only the INPUT NAMELIST. The data from preceding cases remain in storage; thus, only those variables which are to be changed from the preceding case input value need be included in the INPUT file of succeeding cases.

The input format is given in Table 3-3. The definitions of each of the input variables given in Table A-3 are given in Table 3-4. All variables are preset to zero before the first-case input is read. Only the input variables listed under a nozzle type in Table 3-3 need be input for any case. Notes on the input follow the tables. Further descriptions of input variables are given in Figures 3-2 and 3-3.

3.4.1 Notes on Input

- 1. The ALT variable is used as the main distance indicator; therefore, for ground static arc or sideline cases the distance of interest is input through this variable, and the SL variable is set to zero. In flyover cases, ALT is used as the altitude indicator, and SL is used as the sideline distance.
- 2. EGA is "Extra Ground Attenuation" as defined in SAE AIR 923 "Method for Calculating the Attenuation of Aircraft Ground to Ground Noise Propagation During Takeoff and Landing." The "100-ft layer" is defined in Figure 3 of the above-mentioned document.

- 3. Major nozzle dimensions are input in feet; element or ejector-treatment dimensions are input in inches. This alleviates inputting very small numbers (i.e., 0.1 inch versus 0.0083 foot).
- 4. Cant angles for multitube and multichute/spoke nozzles are defined in Figure 3-4.
- 5. The "A" variables are input as 10 if treatment other than SDOF is used. In this case RR and RX must be input.
- 6. The specific resistances and reactances of the treatment used in the ejector are input through the RR and RX variables. Values at the lower limiting, upper limiting, and midpoint frequencies are used. For ease of input, the program assumes the value at the upper limiting frequency of one one-third-octave band to be equal to the value at the lower limiting frequency of the next highest band. Therefore, only 49 values must be input.

3.5 OUTPUT DESCRIPTION

The output format is generally self-explanatory. The input is printed out using the nomenclature defined in Table 3-5. Output flow conditions follow. Finally, SPL and PWL spectra, OASPL, OAPWL, PNL, PNLT, and EPNL are printed as required.

A warning flag is built into the iterations for gamma and merged velocity. The flag message for either iteration is: DID NOT CONVERGE; and when it appears the run terminates. Gross input errors have been the only cause of this message encountered in the development of the program.

At the beginning of each run, an unlimited number of cards can be input for the run identification. (A case identification card is available before each case also). The format for each card is:

60 - Character Title Card, Columns 1-60

To enter the case section of the input the following card is required:

CASES (Starting in Column 2)

The run or case identification cards may be omitted but the "CASES" card must be present. The case identification is saved and will be printed on succeeding cases unless another case identification card is read.

Table 3-3. Input Format.

(FOR CONICAL NOZZLES)

Column

<u>2</u>

(60-Character Identification Card, Columns 1-60)

\$ INPUT Y9 = 1,

P9 = ____, TT3 = ____, A9 = ____,

K9 = _____, ALT = _____, SL = _____,

U = _____, E9 = _____, VO = _____, NFLT = _____,

\$

Table 3-3. Input Format (Continued).

(FOR SINGLE-FLOW, MULTITUBE NOZZLES)

 ${\tt Column}$

2

(60-Character Identification Card, Columns 1-60)

\$ INPUT Y9 = 2,

 $DT = ____, A7 = ____, Z5 = ____,$

 $S1J = ____, TT3 = ____, P9 = ____,$

K9 = _____, ALT = _____, SL = _____,

U = _____, E9 = _____, VO = _____,

A6 = _____, L9 = _____, NFLT = _____,

A = _____, _____, _____,

Table 3-3. Input Format (Continued).

Column 2				
RR =,		-,,	,	•
	,	_,,	·	·
	'	_,,	,	
	,	_,,		.•
,	,	_,,	·	
	,	_,,	,	,
,	,	_,,	'	,
RX =,	,	_,,	······································	,
	,	_,,	,	,
	,	_,,	,	,
	,	_,,	,	,
	,	_,,		,
	,	_,,	,	,
,	,	_,,	,	.,

Table 3-3. Input Format (Continued).

(FOR SINGLE-FLOW, MULTICHUTE/SPOKE NOZZLES)

Column

<u>2</u>

(60-Character Identification Card, Columns 1-60)

\$ INPUT Y9 = 3,

R4 = _____, R6 = _____, SS = _____, A7 = _____,

TT3 = _____, P9 = _____, NFLT = _____,

E9 = _____, VO = _____, A6 = _____, L9 = _____,

A = ____, ____, ____, ____,

RR and RX as per the multitube nozzle case.

\$

Table 3-3. Input Format (Continued).

(FOR DUAL-FLOW NOZZLES WITH MULTITUBE SUPPRESSORS ON THE OUTER STREAM)

Column 2

(60-Character Identification Card, Columns 1-60)

\$ INPUT Y9 = 5,

RP = _____, DN = _____, AA8 = _____, A9 = _____,

TT4 = _____, P4 = _____, TT5 = _____, P5 = _____,

Z5 = _____, S1J = _____, NFLT = _____,

K9 = _____, ALT = _____, SL = _____, U = _____,

E9 = ____, VO = ____, A6 = ____, L9 = ____,

A = _____, _____, _____, _____,

RR and RX as per multitube case.

\$

Table 3-3. Input Format (Concluded).

(FOR DUAL-FLOW NOZZLES WITH MULTICHUTE/SPOKE SUPPRESSOR ON THE OUTER STREAM)

Column

(60-Character Identification Card, Columns 1-60)

\$ INPUT Y9 = 6,

RP = _____, DN = ____, AA8 = ____, A9 = ____,

TT4 = _____, P4 = _____, TT5 = ____, P5 = ____,

N = ____, B9 = ____, NFLT = ____,

R4 = ____, R6 = ____, SS = ____, A7 = ____,

K9 = ____, ALT = ____, SL = ____, U = ___,

E9 = ____, VO = ____, A6 = ____, L9 = ____,

A = ____, ____, ____, ____,

\$

RR and RX as per multitube case.

Table 3-4. Input Variable Descriptions.

(FOR CONICAL NOZZLES)

Variable	Note	Description
Р9		Nozzle Total to Ambient Pressure Ratio
TT3		Nozzle Exit Total Temperature, ° R
А9		Nozzle Exit Flow Area, ft^2
к9		Print Indicator: 0 = Total Nozzle Noise Only 1 = Nozzle Component and Total Noise
ALT	1	Altitude, Ground Sideline, or Arc Distance at which Prediction is to be made, ft
SL	1	Sideline Distance at Which Prediction is to be made, ft (Used for Flyover Cases Only)
υ		Arc or Sideline Indicator 1 = Predictions to be made on an Arc 2 = Predictions to be made on a Sideline (or Flyover)
Е9	2	EGA Indicator 0 = No EGA 1 = Full EGA 2 = 100-ft Layer of EGA
vo		Aircraft Flight Velocity
NFLT		<pre>Flight Effects Indicator 1 = "Free Jet" 2 = "True Flight"</pre>

Table 3-4. Input Variable Descriptions (Continued).

(FOR SINGLE-FLOW, MULTITUBE NOZZLES)

Variable	Note	Description
N		Number of Tubes
RP	3	Centerbody Plug Radius, ft
В9	4	Tube Centerline Cant Angle, degrees
DT	3	Tube Diameter, in.
A7		Nozzle Area Ratio
Z 5		Number of Rows of Tubes Counting Center Tube (if Present) as zero
S1J		Tube Centerline Spacing to Tube Diameter Ratio
TT3, P9, SL, U, E9		Same as Conical Nozzle
А6		Ratio of Ejector Inlet Area to Nozzle Total (or Annulus) Area (Input Zero for no Ejector)
L9		Ratio of Ejector Length to Suppressor Nozzle Equivalent Diameter
A(1)	3,5	Ejector Treatment Faceplate Thickness, in.
A(2)	3,5	Ejector Treatment Hole Diameter, in.
A(3)	3,5	Ejector Treatment Cavity Depth, in.
A(4)	3,5	Ejector Treatment Open Area Ratio
RR	6	Ejector Treatment Specific Resistance, Rayls (49 Values Required)
RX	6	Ejector Treatment Specific Reactance, Rayls (49 Values Required)

Table 3-4. Input Variable Descriptions (Continued).

(FOR SINGLE-FLOW, MULTICHUTE/SPOKE NOZZLES)

Variable	Note	Description
N		Number of Elements
RP	3	Centerbody Plug Radius, ft
В9	4	Chute/Spoke Exit Cant Angle, degrees
R4		Outer Circumferential Flow Dimension, in.
R6		Inner Circumferential Flow Dimension, in.
SS		Outer Circumferential Element Dimension, in.
А7		Nozzle Area Ratio
TT3, P9, SL, V, E9	•	Same as Conical Nozzle
A6, L9, A	. RR. RX	Same as Multitube Nozzle

Table 3-4. Input Variable Descriptions (Continued).

(FOR DUAL-FLOW NOZZLES WITH A MULTITUBE SUPPRESSOR ON THE OUTER STREAM)

Variable	Note	Description
RP		Centerbody Plug Radius, ft
DN		Nozzle Outer Diameter, ft
AA8		Inner Nozzle Flow Area, ft ²
А9		Outer Nozzle Flow Area, ft ²
TT4		Inner Nozzle Exit Total Temperature, ° R
P4		Inner Nozzle Total to Ambient Pressure Ratio
TT5		Outer Nozzle Exit Total Temperature, ° R
Р5		Outer Nozzle Total to Ambient Pressure Ratio
N, DT, A7, 1 Z5, S1J, A6 A, RR, RX	•	Same as Multitube Nozzle
K9, ALT, SL	, U, E9, VO	Same as Conical Nozzle

Table 3-4. Input Variable Descriptions (Concluded).

(FOR DUAL-FLOW NOZZLES WITH MULTICHUTE/SPOKE SUPPRESSORS ON THE OUTER STREAM)

Variable	Note	Description	n
RP, DN, AA8, TT4, P4, TT5,		Same as Dual-Flow/Multit	tube
N, B9, R4, R6	, SS, A7	Same as Multichute/Spoke	e
K9, ALT, SL,	U, E9, VO	Same as Conical	
A6. I.9. A. RE	R. RX	Same as Multitube	

Figure 3-2. Nozzle Types Included in the Correlation.

Figure 3-3. FORTRAN Symbol Convention for Acoustic Arena Variables.

Multitube Nozzles

Multichute/Spoke Nozzles

Figure 3-4. Definition of Cant Angles for Multielement Nozzles.

Table 3-5. Output Symbol Descriptions.

Symbol Symbol	Description
ARD	Suppressor Nozzle Area Ratio
AT	Area of an Individual Flow Element
A5	Merged Flow Area
A6	Mixed Flow Area
A8	Inner Nozzle Flow Area
A28	Outer Nozzle Flow Area
DUCT H	Outer Nozzle Duct Height
D5	Diameter of the Merged Flow Stream
PO	Ambient Pressure
PT8/P0	Inner Nozzle Pressure Ratio
PT28/P0	Outer Nozzle Pressure Ratio
RHO5	Density of the Merged Stream
RHO8	Density of the Inner Stream
RHO28	Density of the Outer Stream
TO	Ambient Temperature
TT5	Total Temperature of the Merged Stream
TT6	Total Temperature of the Mixed Stream
TT8	Total Temperature of the Inner Stream
TT28	Total Temperature of the Outer Stream
U5	Fully Expanded Merged Velocity
U6	Fully Expanded Mixed Velocity
U8	Fully Expanded Inner Stream Velocity
U28	Fully Expanded Outer Stream Velocity
W6	Mixed Stream Weight Flow
PWL	Sound Power Level, dB re: 10 ⁻¹³ watts
OASPL	Overall Sound Pressure Level re: 2 dynes/m ²
OAPWL	Overall PWL
PNL	Perceived Noise Level, PNdB
PNLT	Tone-Corrected PNL, PNdB
EPNL	Static Effective Perceived Noise Level, EPNdB

3.6 SAMPLE CASES

Example cases for a conical nozzle with and without EGA, a dual-flow nozzle with a multitube suppressor and a treated ejector, and a dual-flow nozzle with a multichute suppressor are given. The input data cards are listed in Table 3-6 as per the format given in Table 3-3.

Table 3-6. Input Data Card Listing Sample Case.

```
AR SIECKMAN
                  TASK 3 HIGH VELOCITY JET NOISE PROGRAM
GENERAL ELECTRIC CO. BLDG 300 BIN 79 M.D. H77 X2261
MS -- ENGINEERING CORRELATION MODEL -- CDC VERSICN
CASES
CONICAL NOZZLF CHECK CASE
SINPUT Y9#1,
P9#3.247, TT3#1380, A9#2.346, RP#0, K9#1,
ALT#2400, U#2, F9#0, V0#350, A6#0, 19#0, A#4±0,
SINPUT E9#25
DUAL FLOW MULTI-TUBF CHECK CASE
SINPUT Y9#5,
RP#1.423, DN#6.687, AA8#7.649, A9#5, ORZ, TT4#1010,
P4#1.567, TT5#1632, P5#3.278, K9#1, N#69,
 DT#3.672, A7#2.75, B9#0, Z5#3,
S1J#2.818, ALT#320, U#1, E9#0, V0#0.
A6#0, L9#0, A#4+0,
A6#1.303,L9#3.952,A#4*10,
RR#49±0.311,
RX#-R7.135,-77.549,-69.239,-61.153,-54.949,-48.463,
-43.269,-38.767,-34,611,-31.008,-27,683,-24.219,-21.620,
-19.367,-17.287,-15.484,-13.819,-12.277,-10.954,-9.652,-8.608,
-7.702,-6.864,-6.08A,-5.370,-4.762,-4.232,-3.771,-3.342,
-2.968,-2.619,-2.251,-1.970,-1.722,-1.487,-1.278,-1.077,-.882,
-.704,-.515,-.347,-.185,-.010,.185,.401,.703,1.1,1.794,4.097,
DUAL FLOW MULTI-CHUTE CHECK CASE
$INPUT Y9#6,
RP#.624, DN#2.671, AA8#.811, A9#1.555, TT4#1470,
P4#1.490, TT5#1750, P5#3.97, K9#0, N#20,
89#0, R4#2.874, R6#2.060, SS#2.155,
A7#1.75, ALT#2400, 11#2, E9#0, V0#350,
A6#0, L9#0, A#4+0,
```

NOTE: The symbol # indicates an equal sign (=).

ХX	ХX	XXXXXX	
XXX	XXX	XXXXXX	, we see that
XXXX	XXXX	ХX	
XX XX	XX XX	ΧX	
XX X	X XX	XXXXXX	
ХX	ХX	XXXXXX	
XX	ХX	ХX	
XX	XX	, XX	
ΧХ	ХX	XXXXXX	
ХX	XX	X	

XXXXX	X X	XXXXX	****	XXXXXX	X	X
X	X X	X	×	X	XX X	ΧX
XXX	XX	XXX	X	X	X = X X	X
XXX	, X	XXX	X	XXXX	X	,X
Χ.	×	Х	χ	×	>	X
XXXXX	×	XXXXX	X	XXXXXX	λ	X

HIGH VELOCITY JET NOISE PROGRAM (CONTRACT_DOT-05.30034)

1858 -- ENGINEERING CORRELATION

AR SIECKMAN TASK 3 HIGH VELOCITY JET NOISE PROGRAM GENERAL ELECTRIC CO. RLDG 300 BIN 79 M.D. H77 X2261 MS -- ENGINEERING CORRELATION MODEL -- CDC VERSION

HIGH VELOCITY JET WOTSF PROGRAM - ENGINFFFING CORRELATION

CONTCAL NOTZLE CHECK CASE

*** INDINI ***

000. TIRE 13" - FIM/ENGLE 7.247

*JECTOR AGES (ATIM DAMANETERS
PLUG DIA= 6. 50 CANT= 14.7.1 # #! 4/r! a TA = 514.

35.2.9

*** !:IdIn()***

1.728 MA OF DUTER ROLL

OUTV AREA DIA=

= LV

によりとこ

VOZZLE EXIT CONDITIONS

A 8=

56

TICH VELPCITY OF T MOTSE PROGRAM - ENGINEEFING COPPELATION	C ETCAL (DIZZLE CHCK (ASE		Actor Arthres of the second se	# 24304.0 F.001 ALTIUDE # 7.6 F.001 STRELERE # NO F.CA # 5194.0 F.GFEE STANDARD DAY
	; ; ;	 		
	1		- 1	

50 54.1 1.0 54.5 54.5 50.1 64.9 65.8 64.1 66.0 71.7 86.2 86.2 86.2 86.2 16.0 10.1 1.	e ids	27	1.9	(:3	ι. [*]	4.0	7	a C	J.b.	100	119	120	1.30	140	150	160	ي پ
57.0	ر د	24.1	, c	ין שיני מיני	5.65	40.4	ç•19	5.54	65.8	64.1	66.D	73.7	AC.3	P4.2	86.2	83.1	158.4
	53	57.0	и. Э	51.4	4.24	53.4	69.0	622	57AB	66.4	- 6843_	75.1	_ B2.7	86.5.	. Re.1	B4.5	161.0
	i	5.4.7	-	* * *	44.44	4.5.4	A.F. of	6.8.3	4.0°	F.H. 7	70.6	74.7	A4.5A	ς. απ	40.3	9.50	16.7.P
		~ ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		1.54	6.6.3	1.2.4	2.	73.6	2.17	7.4	12.6	5.61	F. 7.	5. 6H	6. вя	HC.0	164.4
K2.K 'K.5. K4.0 K2.K 'K.5. K4.0 <	125	۴1.۴	д•е.	1.6.47	4.1.4	68.5	2	12.1	(300)	12.5	14.5	81.6	HZah	9003	90.0	84.3	165.2
Heart Hear	الون	42.6	5 · y .	0.44	6.64	76.4	71.0	73.6	74.5	74.3	74.4	R2.9	RH.5	9006	89.6	83.1	165.A
64.1 77.0 77.6 77.0 77.0 79.1 84.6 89.4 90.1 87.5 77.9 77.5 77.5 77.5 77.5 77.5 77.5 77.5 77.9 <td< td=""><td>200</td><td>£.</td><td>7.</td><td>ر د د</td><td>19.6</td><td>7.</td><td>72.5</td><td>74.8</td><td>15.1</td><td>75. P</td><td>77.8</td><td>P3.9</td><td>A9.1</td><td>50.5</td><td>A B . 7</td><td>81.5</td><td>166.0</td></td<>	200	£.	7.	ر د د	19.6	7.	72.5	74.8	15.1	75. P	77.8	P3.9	A9.1	50.5	A B . 7	81.5	166.0
64.7 76.4 77.5 <td< td=""><td>250</td><td>64.1</td><td>0.1.</td><td>70.5</td><td>71.6</td><td>77.8</td><td>73.6</td><td>75.7</td><td>76,7</td><td>77.0</td><td>79.1</td><td>84.6</td><td>89.4</td><td>90.1</td><td>87.65</td><td>19.4</td><td>166.0</td></td<>	250	64.1	0.1.	70.5	71.6	77.8	73.6	75.7	76,7	77.0	79.1	84.6	89.4	90.1	87.65	19.4	166.0
544.2 14.5 77.9 74.8 77.9 <t< td=""><td>-</td><td>64.</td><td>7.</td><td>7.01</td><td>12.4</td><td>1</td><td>74.5</td><td>76.5</td><td>11.5</td><td>78.1</td><td>ر. د د د د</td><td>1.58</td><td>89.3</td><td>7°64</td><td>8°.</td><td>76.8</td><td>165 P</td></t<>	-	64.	7.	7.01	12.4	1	74.5	76.5	11.5	78.1	ر. د د د د	1.58	89.3	7°64	8°.	76.8	165 P
52.7 74.5 71.3 74.4 85.6 84.5 85.6 84.5 70.4 81.4 85.6 87.7 86.8 87.7 86.8 87.7 86.8 87.7 86.8 87.7 86.8 87.7 86.8 87.7 86.8 87.7 86.8 87.7 86.8 87.7 86.8 87.7 86.8 87.7 86.8 87.7 86.8 87.7 86.8 87.8 <th< td=""><td>* 7</td><td>44.7</td><td>ī,</td><td>71.7</td><td>72.9</td><td>74.3</td><td>75.2</td><td>77.1</td><td>74.0</td><td>74.5</td><td>9 ° 0 H</td><td>P.S. 2</td><td>жж. 2</td><td>P.B.2</td><td>я3•н</td><td>73.9</td><td>169.4</td></th<>	* 7	44.7	ī,	71.7	72.9	74.3	75.2	77.1	74.0	74.5	9 ° 0 H	P.S. 2	жж. 2	P.B.2	я3•н	73.9	169.4
66.8 67.7 77.1 77.3 79.5 81.5 87.2 87.0 78.7 66.8 61.0 77.0 77.0 77.3 77.9 77.3 81.5 85.8 85.0 78.7 67.6 53.4 77.6 77.4 77.3 77.1 77.8 77.3 80.5 80.3 86.8 87.8 <td>. O</td> <td>7.54</td> <td>√. ∀.</td> <td>71.4</td> <td>73.2</td> <td>14.1</td> <td>13.6</td> <td>77.3</td> <td>78.3</td> <td>70.4</td> <td>81.4</td> <td>A5.</td> <td>80.3</td> <td>PK. H</td> <td>81.5</td> <td>70.5</td> <td>165.0</td>	. O	7.54	√. ∀.	71.4	73.2	14.1	13.6	77.3	78.3	70.4	81.4	A5.	80.3	PK. H	81.5	70.5	165.0
61.0	630	4.5.4	(a ,	11.17	73.1	74.7	75.7	77.3	78.87	79.5	7,14	84.5	87.2	85.0	78.7	66.8	164.5
58.4	ACO.	٠1،	7.0	70.4	72.6	74.47	75.5	74.9	77.9	79.3	41.2	83.6	A5.8	A2.8	75.6	67.h	163.9
55.4 31.5 67.4 72.5 72.1 73.0 74.1 76.1 77.8 74.3 80.5 81.8 77.2 68.1 52.6 51.3 46.1 51.3 75.1 75.2 78.1 77.5 78.1 77.5 68.1 52.6 51.3 46.1 51.3 70.3 45.1 75.2 75.4 69.2 57.9 38.7 38.7 51.0 29.4 57.9 67.9 67.1 68.0 69.1 71.0 71.8 71.3 70.9 63.8 51.0 29.4 57.9 67.9 67.1 67.9 67.1 67.9 67.1 67.9 67.1 67.9 67.1 67.9 67.1 67.9 67.1 67.9 67.1 67.9 67.1 67.9 67.1 67.9 67.1 67.9 67.1 67.9 67.1 67.9 67.1 67.1 67.1 67.1 67.1 67.1 67.1 67.1	1500.	r ac ur	7.5.	40.4	71.7	73.7	74.9	76.2	77.2	78. A	80.5	. K2.3	84.1	BO. 3	12.2	58.1	163.2
51.3	12.	5.5	٠,٠	2.72	5.07	17.51	73.0	74.1	16.1	77.8	74.3	80.5	a.14	17.2	6β.1	52.6	162.4
38.0 50.9 57.9 67.1 65.2 67.6 68.0 68.1 71.0 71.8 71.3 70.9 63.8 51.0 29.4 57.9 57.9 65.1 65.2 67.6 67.1 68.0 68.1 71.0 71.8 71.3 70.9 63.8 51.0 29.4 57.9 62.1 65.2 67.9 67.1 65.9 64.8 51.0 29.4 11.0 17.1 63.0 64.8 66.6 67.1 65.9 64.8 56.3 66.8 56.0 29.4 11.0 15.1 11.0 11.0 11.0 11.0 11.0 11.0	167.	٠١٠	¥ • 6 •	4.5.4	, a 4	70.	17.7	7.1.	14.3	76.1	77.5	78.1	7H.9	73.5	63,3	46.1	161.5
34.9 59.9 57.9 67.1 65.2 67.0 64.0 69.1 71.0 71.8 71.3 70.9 63.8 51.0 29.4 77.0 43.1 51.7 56.9 60.4 62.7 63.6 64.8 66.6 67.1 65.9 64.8 56.5 41.9 16.8 16.1 41.4 42.4 40.6 53.4 56.1 57.2 54.2 61.2 58.3 56.3 46.5 29.3 -10 -70.5 11.4 36.3 40.1 57.2 57.2 54.2 61.2 58.3 58.3 50.3 16.3 16.3 16.3 -70.5 11.4 36.3 10.3 11.4 27.2 57.4 47.5 46.7 47.0 40.3 16.3 16.3 27.1 -84.5 -70.5 11.4 20.3 10.3 11.4 27.5 27.2 57.4 57.4 47.5 47.6 114.0 37.5 -14.7 -37.0 -76.0 -151.3 -70.5 17.3 47.9 86.5 89.2 91.4 92.8 94.2 95.3 95.5 98.0 100.7 103.9 102.9 99.7 91.3	2000	45.7	F. P. J.	6.5.2	π π	1 . I	7.01	71.0	72.1	74.0	75.1	75.2	75.4	69.2	57.9	38.7	160.5
77.0 47.1 51.7 56.9 60.4 62.7 63.6 64.8 66.6 67.1 65.9 64.8 56.5 41.9 16.8 16.8 16.3 16.3 16.4 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5	250C.	34.9	6.6%	47.9	62.1	55.24	67.6	0.49	69.1	0.17	71.8	711.3	6.07	63.8	51.0	59.4	159.4
16.3 11.4 42.4 40.0 53.4 56.1 57.2 58.5 50.2 50.2 56.3 46.5 29.3 -1.0 -1	3157	27.9	43.1	51.7	54.9	40.04	42.7	63.6	64.A	46.4	67.1	65.9	64.A	56.5	41.9	16.8	158.2
-, 1 1, 4 36, 3 4, 3 4, 7 48, 5 51, 4 36, 5 55, 4 41, 5 42, 5 51, 9 51, 6 51, 9 51, 6 50, 8 12, 6 50, 8 12, 6 50, 8 12, 6 51, 9 51, 3 36, 3 36, 3 36, 3 51, 3 36, 3 51,	4007	16.3	7.1.	45.4	0.07	53.4	56.1	51.2	5 × 5	60.2	5000	582	56.3	46.5	29.1	-1.0	156.9
-29.5 1.6 20.3 3.1 14.5 4.5 4.7 41.5 46.9 41.3 16.3 16.3 23.02 -42.6 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	, J C 3	-	3	14.1	4.1.7	4.B.	2.11.	52.4	5.44.	4.65	ر د • د	63.0	វេ 🕯	30.6	7.0 H	٠, ١	155.
-74.5 -77.6 -4.3 4.31 [H. 73.2 25.4 27.1 24.2 25.3 71.3 15.0 -2.2 -32.1 -84.5 -13.6 1 -37.5 -14.8 -7. 2 3.3 5.3 6.1 35.3 -14.7 -37.0 -76.0 -151.3 3. 15.0 -16.1 3.0 -5.3 -14.7 -37.0 -76.0 -151.3 3.0 -10.3 16.2 3.0 -15.3 14.7 -37.0 -76.0 -151.3 3.0 -10.3 16.2 3.0 -15.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3 16	637 V	5.66-	~	٠,٥٠		£.	45	42.7	43.5	4. 775	0.54	40.3	16.3	73.0	۲•۶	4.5.4	154.1
-136.0 -76.1 -37.5 -14.8 -7? 3.3 5.3 6.1 3.2 -5.3 -14.7 -37.0 -76.0 -151.3 73.6 (9.0 80.8 82.7 84.1 85.3 87.6 88.9 90.8 94.6 96.9 99.7 98.4 92.8 77.1 42.9 86.5 89.2 91.4 92.8 96.2 95.3 95.4 98.0 100.7 103.9 102.9 99.4 91.3 77.1 42.9 86.5 89.6 92.8 95.3 96.5 96.3 96.6 98.0 100.7 103.9 104.0 100.7 91.3	Acto	7427	H. 1.	-4.3	- 3		23.2	25.4	27.1	24.2	26.1	77	15.6	-2.2	-32-1	-8×5	152.5
73.4 (9.0 80.8 82.7 84.1 85.3 87.6 88.9 90.8 94.6 98.9 99.7 98.4 92.8 77.1 42.9 86.5 89.4 92.8 95.3 95.4 95.8 17.1 42.9 86.5 89.4 92.8 95.4 95.3 77.1 42.9 86.5 89.5 91.4 92.8 94.2 95.3 95.4 98.5 100.7 101.9 102.9 99.4 91.3	10000	-134.0	-16.1	-17.5	-14.8	-7.	۲.	3,3	5,3	0.0	3.	-5,3	-14.7	-37.0	-76.0	-151.3	151.0
77, 1 42, 9 86, 5 84, 2 91, 4 92, 8 94, 2 95, 3 95, 5 95, 0 100, 1 101, 9 102, 9 95, 4 51.3	Jaspr	73.4	0.8/	н, н	7.54	F4. 1	85.3	91.6	HH.O	J. ∺ K	9.0 A	£	6.86	1.66	4. A.C	92.A	176.7
47.6 80.2 91.4 97.8 94.2 95.3 91.6 00.0 100.7 103.9 104.0 100.7) PIC	77.1	5 C X	R6.5	P. 4. 7	4.15	a 26	2.46	95,3	36.6	98.0	100.7	103.9	162.9	99.4	51.3	1
	1 Pid	17.1	F.6.3	47.6	80.2	7.16	a * > c	94.2	45.3	36.45	c do	100.7	103.9	104.0	100.7	91.3	

Forn = 103.5

THE VELUCITY JET MOTSE PROGRAM - ENGINEENING CORPELATION

35V)
¥ U 44 U
1771
0.7

		1		- E	140.4	143.9	147.2	150.0	1520/	155.8	158.4	150.9	164.4	167.7	168.3	167.5	166.6	166.0	165.1	164.2	16343	162.3	160.9	159.3	158.0	156.7	155.3	154.0	176.6	!	
		:		160	55,3	59.6	4.00 6.00 9.00 9.00 9.00 9.00 9.00 9.00 9	65.1	9.69	72.3	74.5	16.1	16.9	15.9	73.7	10.4	66.5	. 62.3	29.0	56.1	51.4	43.6	31.2	14.2	ب م	-52-1	-71-1	-133.9	A3.6	_ H7.1	87.1
		j ;		150	ع ، و	62.6	£4.0	0.00 0.00	73.3	76.4	74.8	80.8	82 . 0	R1.7	87.2	77.8	75.0	71.8	6.19	63.6	59.6	24.7	47.2	35.1	27.1	ν·υ	-24.9	-68.B	1.64	93.4	94 . 8
				140	61.1	64.9.	2°	5.17	15.8	19.0	9 · i a	93.E8	P.C. 3	P.5.3	P4.3	P.2.5	A 0. 6	18.4	75.F	75.2	68.1	62.5	55.1	45.2	34.5	22.1	-2.0	-36.9	92.B	676	0.66
				1 16	62.7	66.5	7 C • O	73.5	17.4	A.O.A	A3.2	A5.4	46.9	24.0	н5, в	94.0	A2.0	79.7	76.7	73.3	69,3	4.4	54.9	5123	46.1	32.1	111	-1H.6	94.3	99.5	90.5
				120	63.7	67.5	71.0	74.4	7× 2	R1.3	83.6	85.5	X. Y	86.0	84.2	81.5	78.5	76.0	75.3	75.2	73.4	SR.H	42.7	55,3	50.4	37.9	19,2	-7.4	93.6	99,3	49.3
	LL.	D DAY	NL F 1	110	61.07	64.3	٠ ٢ ٢	71.4	74.5	72.1	R.0.8	A2.6	н3. в	H3.9	82.5	19.A	77.5	7A,5	80.0H	7H.9	75,3	71.1	2.99	59.2	54.3	6.24	25.5	2.3	616	94.8	α α Φ
CK NOTES	0.0 FOOT SINELINE	STABOAE	FRUM INLET	100	61.0	5,12	7.H.	71.4	74.4	77.5	79.7	д . 0н	- 1 ×	4.0H	7.7.0	79.3	82.4	A3.6	F. 1.	77.9	75.6	72.3	67.4	4.09	7. CC	d * 1,1	28.1	6.0	91.5	98.5	Q8.5
CAL 3H0	0 F00T	DESPEE	C ANGLE	00	61.0	64.4	6.14	70.9	73.6	76.2	77.7	78.1	C.H.	77.8	86.0	84.2	85.K	H3.5	80.2	7¥.7	76.1	12.6	67.7	8.09	56.2	45.4	0.62	7.7	91.8	66	1.66
5 CONTCA	٠ ١ ١	-813 -	acons110	90	41.6	F5.0	5. A. A.	73.0	73.4	75.4	76.3	76.2	76.6	X 7 /	A.5.2	P.7.7	0.0	A 2 6	S. 1 H	70.07	7.67	73.3	68.3	61.3	H. 4.	45 H	23.1	7.5	93.2	130.4	1.00.4
				102	54.0	61.9	65.1	7x • 7	y•01	77.06	76.	74.5	74.6	76.3	A3. K	C . X 7	H7.7	0 * 4 H	3 ZX	ı,	, H/	74.6	54.7	67.0	5.7.6	46.	2 4 4	5.7	93.5	100.5	С
		:		4	26,	5 0	£5.	5.1	.07	71.2	72.6		74.1	7, 62	3	H. J.	96.5	A 3. 7	42 CH	A.0.4	77.	73.9	A. A.A.	61.2	2	4 4 4	74.4	-	70	100.3	100.
				ų	3. H.S.	51.5	14.5	6.7.1	64.3	70.2	70.0	71.6	76.66	H 1 • 7	7.	98.2	0.94	A de A	7.1.	79.57	11.02	12.2	46.7	4.20	13	74.7	17.8	-16.3	63.4	176.0	3.4.
				7	57.6	50.00	1.2.4	1	4.14	48.3		7	, y	7 CX	۲.74	46.	2.54	100	4.00	77.0	7 3. 0	49.1	1.5.	60.08		2	ص ک	-27.7	25.50	9 40	1. ct
		!		Ξ	. v	a.	 	1.4.7	7.5.	C .	7.6	o.	10.00	7	5.	1	α. 	٠ ٢٠	17.	(* ,	J	63.3	: 5 • A	. 3.2		. 1 . j	4.571	0 H.	7.1.	π̈́	1.7.
				23	± 2.	7.52	S.H.P.	40.3	5.1.5	62.2	60.7		17.17	7 8 7	, CH	77.9	7. A	7 3 . 1	7.57	, N.	ر رون د	7	604	23.2	2.2	6 9 1 -	-F2.2	-121-	7.51	4,66	7 00
				7 T	· ·					-	- 6		1 5 1 5	7		9 3 5	α	1000	200			2500	3150	7000		1 C C C C	0000	10000	745PI	IV o	1 luc

FPN = 102.9

The VELOCIIY OF MISS OFFICER - PAINCETON ONESSATION

a CONTCAL TOTAL MOISE

1						0:1 0:1 a	٥.								
	-	1				* 519*	519 OUEGREE STANDARD DAY	SIANDAE	L DAY			1	!	!	İ
						118h03 v	JUNA DITRUOM	FDOM INLFT	NLF 1						
i	٦٠	C	2	90			(4)	100	11.5	120	1 46	140	150	160	1 1 1 1 1 1
£, F	9. 5.	.1.1	42.1	たい エ	1.5.7	5.00	6.7.0	A5.8	67.1	74.1	At 4	2.00	46.2	я3.1	ر و ماري ا
.+	1.2.3	6.24	65.3	45.7	10,41	-1.594.1-	. 4.64	68.E.	69.₽	76.7	82.8	Ab. 6	B. 1	24.5	161.1
. ú	,	46.64	1.7.4	7° 0'4	i Z	71.5	71.9	71.4	12.5	74.9	7.4 a A	, dq	6.64	, , ,	1
	ۍ ب	3° 89	49.1	10.07	71.1	13.H	7.4.7	74.0	75."	0.1.3	प्रकृष	n 9 e	o .	ت ا ا	164.5
٠,٢	5.1.	/0.1	71.4	12.	73.1	15.8	1623	16.6	77.00	83.3	BRat	50.4	30.1	5 5H	165.5
-	0 a4	71.2	72.7	74.	74.3	77.6	7A.5	19.2	80.3	85.2	89.1	6.06	89.8	83.4	166.2
٨	J.C.	5.00	73.A	75.2	14.3	78.4	19.8	٦.١	82.6	8.48	1.06	61.1	49.1	82.3	166.7
_	71.2	73.2	74.6	75.5	77.1	79.0	80.5	82.3	44.2	88.1	4. JE	91.0	88.3	010	167.1
		74.1	1	7.4	11.4	7.9.5	N. 7	r. Cx	9.6 P.H	0.11	91.3	9.02	А7.3	エ・ナル	154.7
4	1.5.	ن• د α	62.2	23.62	7.4.7	4.10	5 ° ξα	1.0.1	7.5×	A. H.R.	ت <u>. ا د</u>	0.00	85.9	18.0	169.7
4. na	5.72	7.4	6.70	7.34	44.0	x • 5,4	42.2	A.7. 2	F. C.	1.7.7	200	98.7	R3.9	15.4	176.0
6	r I	46.4	84.3	1.64	7 x x x	R. 1	85.2	4.5A	H3.7	H6.3	р. на	86.9	R1.3	71.9	169.3
6.51	0.1%	43.4	5.PA	か。じょ	9.1 H	44.4	86.3	14.1	A2.7	84.8	R7.3	84.A	7P.4	0.93	168.5
77.3	7.61	62,34	A 7. 9	H4.1	1. 1.	43.5	7. PH	H4.H	R2.6	83.2	A5.4	B2.5	75.1	63.7	167.8
70.4	17.1	7.00	10.5x	10.01	C . X	10.4	H1.7	H 3. 3	A2.7	7.14	83.0	5.61	71.0	30.00	167.0
٥.	13.2	77.3	79.H	- -	ر • - ت	6,64	6.67	1.00	E . E	5.07	74.9	75.9	7.	54.5	166.1
7.65	2.4.	74.1	76.5	77.4	7. 4. T	7.0.7	77.6	17.9	18,2	77.4	75.64	1127	61.8	520	165.2
a	۳. پ	40.4	72.6	74.5	75.1	74.5	14.2	74.7	74.5	73.2	٦١.٩	2.99	, Y.	43.8	164.1
40.5	35.4	63.0	61.2	4.04	7.1.5	69.5	69.5	70.0	1.63	67.6	6.7.8 A.	58.9	£8.3	31.4	162.H
J	43.6	53,3	7.42	61.4	63.5	52.	62.R	63.3	62.1	1.03	57.5	48.9	36.1	1949	161.3
10.		2.5	2.5	1.4.7	J. 7. 5	7.8°	5H.	ת מי	57.4	5.45	۲. دار	42.3	0°46	3.7	150.0
7	15.1	40.04	19.3	44.44	6.14	47.3	41.1	6.7.	46.4	42.3	37.7	25.9	7.4	1.55-	15B.6
-6.54-	c. • 4 1 1	c	* · ii	75.1	25.00	30.00	31.2	31.2	28.4	23.4	16.5	U.	-24.1	-11-0	15/21
~	ナルエ・ナ	-27.3	-9.7		4.7	A.5	4.6	0.6	E . 1	-3.3	-13.2	-33.9	-6A.0	-133.A	155.7
~	C:37	92.A	0.76	4.46	1.40	2.70	93.3	43.4	7.76	97.2	100.	100.5	0 NO	93.3	179.7
0	۲. ۲.	1.00	1001	4.101	101.3	101.5	1.00.6	100.7	101.5	103.2	105.4	104.4	100.6	93.2	•
ı Ic		1 1 1 1	F 1												

HIGH VELOCITY JET ADISF PROGRAM - ENGINEFRING CORRELATION

CONTCAL MOZZLE CHECK CASE

*** INDNI ***

000°0 TL = 514. Din/FR = 14.7.7 TTH= 134. Din/FR = 3.247 SJECTOR APEA (ATIU) DAMAMFTEHE PLUG DIA= 0.00 CANT=

- OUIV APEA (-IA= 1.728

JIA OF CUITER FORE

*** 11141110

1.728

A T == . 397

HIZCITE

NOZZLE EXIT CONDITIONS
JA= 2184.1 BHON=

2.34K

ARE

60

other velocity JET maiss PROGRAM - FrichmerEffing Commentation

C NICAL BUTZLE CHEFK CASE

* CONTGAL MIXING POLYE * 292242 EVOT ALTAINE * 0.0 FOOT SIMELINE * 100 FOOT LAYEM ESA * 51940EGWEE SIAMMARD DAY

ACOUSTIC AUGLE FROM TALFT

F jds	23	5.	42	r	6.3	7.0	ύά	06	100	116	120	39	140	150	140	¥ ¥
-; (j)	4.50	-4.3	0 • X [7.75	4.07	f C • 5	64.3	45.2	63.6	65.4	73.2	74°X	A3.7	85.7	82.5	15 P . 4
, ,	56.4	2.65	7.04	6.19	42.4	63.4	65.3	67.2	459	- 67.2	_75.6	82.2	B6.0-	87.5	- H3.H-	161.0
7	7 a 5	1	42.7	a . E . Y	7.00		64.3	2.64	F. H. 1	7.9.0.5	77.6	υ• * α	47.6	944	H4.3	163.0
	10.	, Cu	4.44	6.F.	5.0	6.7.2	20.00	7(• A	70.0	72.0	79.3	η. Υ.	P. 3 d	1.64	1.44	164.4
	ب د ک	3.00	3 4 4	6.7.1	5. H.	0.44	71.4	12.3	71.H	73.4	410	86.9	89.5	89.2	H3.3	165.2
166	41.4	1.44	67.2	A. P. S.	40.6	10.7	72.9	13.8	73.6	75.6	82.2	A7.7	89°8	RA.7	82.0	165.R
700	62.4	1	4.8.4	4.04	711.	711.7	74.0	75.0	75.0	77.1	A3.1	84.3	1.68	87.H	A0.3	166.0
25.2	α	5.00	64.9	70.B	72	12.8	75.0	75.9	76.2	78.3	83.8	88.5	89.2	B6.4	78.1	166.0
316	0.2	1.7.	3	71.5	17.4	73.7	15.1	16.6	77.3	79.3	H4.3	4.44	AR.	H4.7	15.4	16.5.8
, J	1.54	7.1	70.7	12.6	73.4	74.3	76.7	71.2	78.0	HO.1	P4.3	٥.	47.7	85.e	72.4	165.4
1	1,54	.7.	711.3	72.2	7.5.7	74.7	74.4	17.4	78.5	Ω. • ⊃ ×	84.1	47.3	85.7	P.2.2	0.49	165.0
616.	6.04	1.6.7	70.0	72.1	73.7	74.8	76.3	77.3	78.6	80.5	83.5	A6.2	A3.B	77.4	65.1	164.5
960	50.5	75.6	F - 54	71.6	73.4	74.5	75.0	76.9	7B.4	80.2	A2.6	A4.7	91.6	74.3	₽. 9.	163.9
000	96.9	1.40	2.4	7:1.7	15.7	73.9	75.2	76.2	77.8	79.5	81.3	82.9	19.1	70 a.B.	56.1	163.2
7::-	α . C . S	7.1	44.5	49.4	71.	2.2.	74.7	75.1	76. K	7 H. 1	74.5	A. C. R	75.9	44.4	5.0°	162.4
	2.67	7.10	0.44	۲۰۲۶	1.69	71.2	12.2	73.3	75.1	76.4	77.0	71.1	72.2	41.7	44.0	٦٠١٠،
	47.4	7.4.	4.04	6.4.5	6.7.3	5.4.5	70.0	71.0	72.9	13.9	74.0	74.1	67.B	56.2	35.5	2000
50.0	35. H	6.	54.5	6.09	64.	65.9	44.4	68.0	6.69	70.6	70.1	49.7	45.4	7.07	27.1	159.4
150	7.45	61.5	50.3	7. 5.	59,3	61.5	62.5	63.7	65.5	65.9	64.7	63.6	55.1	40.3	14.5	158.2
300	α	# 5 X	41.0	47.7	52.8	55.0	54.1	57.4	59.1	59.2	57.1	55.1	45,1	27.6	-343	156.2
500	->-	5.00	7,00	47.4	47.7	J.	1. 1.	53.1	54.7	54.3	٩.١٢	49.3	38.2	19.2	-14.9	155.5
	7.11-	?	· K	V. H.	35.4	3.9.3	5.57	45.4	43.R	42.7	39.1	35.1	21.6	6.1-	6.77-	154.1
1.00	17.19	7.4.	-5.7	ς•α	x.	22.1	24.3	26.0	27.1	25.2	20.1	13.A	-3.6	-13.8	-90 B	152.5
000	13A.2	-711.7	-38.9	0-62-	-A.2	-1.0	2.2	6.3	5.0	o•1	-6.5	-15.9	-38°4	-77.7	-153.6	151.0
Jassi	75.7	76.9	10.4	A1.7	A 3. 3	7. 77	A4.1	87.1	9н.	69.3	63.6	98.0	9 H &	91.6	616	176.7
_	75.7	7.1.	7.7.4	r z	7°06	. H. C.	93.2	64.3	95.6	97.0	99.8	102.9	101.5	98.4	0000	
1	75.1		AK.S	- u 2	\$ ve	a.16	2.10	6.76	95.4	97.6	43.8	102.9	103.0	90.5	0.05	

FPMI = 102.5

61

THE VITCELL OF FROME PROPORT - PROJUCTED GOODFFATOR

•
-
-
٠.
_
_
_
¥
_
=
-
-
_
_
-
_
\sim
_
- 1
-
_
• 1
~

-
•

1		
		1
;		:
i		!
1		•
:		- 1
4		
ï	i	
1		
		ì
ì		
		DAY
!	- <u>-</u>	ED
		VI TO
1	AL STO	ST
	2 T T	37
1	I CAL) HE
1	* COLICAL SHORE DOT E 2 240.12 FOOT ALLITUDE F 6.0 FOOT STORETWE * 100 FOOT LAYER FGA	SISAUE OPEE STANDARD DAY
1	* CONTON SHORT FOR STANDER CONTON SHORT FOR SH	•
:		
1		
:		i
i		i
i		i
i		ı
i		I
1		;
1		•
1		
į		

ACOUSTIC ANGLE FROM TULFT

51	58.2 58.4 51.4 51.4 54.4 54.5			-			•	· •	>		
755.0 67.0 67.0 67.0 67.0 67.0 67.0 77.1			64.4	۶.a.۶	6.1.1	ر • د د د	62.1	40.6	58.3	24.7	140.6
### ### ### ### ### ### ### ### ### ##		1	53.9	6.4.10	£327	6.99	6.83	64.3	62.0	54.3	153.9
7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7			11.3	F.7.5	61.4	7.0.4	6.9.4	4.7.A	65.4	4.4	147.2
77. 6 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			7 1	70.7	70.1	7 1. 8	12.4	71.2	40.7	6.04	150.6
77			73.0	73.7	74.6	77.5	74.7	75.0	72.5	2 2 2 2	152.1
77. 7 7. 7 7. 7 7. 7 7. 7 7. 7 7. 7 7.		74.7	75.5	75.A	17.4	H10.5	4.67	74.2	75.5	71.2	155.8
77 6 13 6 17 5 19 6 1 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			17.0	78.9	۳).۱	2, Ca	4.68	P. 0 d	17.9	73.3	158.4
77. 6 11 13.9 2 17. 7 17			77.3	9 OH	HI.9	A4.7	5.78	82.9	79.8	14.8	1.50.9
77.1 77.7 77.7 77.7 77.7 71.7 71.7 71.7 71.7 71.7 71.7 72.7 73.7 73.1 74.1	 		77.1	40.3	י אר א	15.7	A. C	p4.3	KO. 0	75.5	164.4
76.7 1.0 85.1 76.7 7.0 85.1 77.7 7.0 89.0 71.2 77.6 89.0 71.2 77.6 89.0 71.3 77.6 70.1 70.1 77.7 77.7 70.1 77.7 77.7 70.1 77.7 77.7 70.1 77.7 77.7 70.1 77.7 77.7 70.1 77.7 77.7 70.1 77.7 77.7 77.7 77.7 77.7 77.7 77.7			11.9	1.4.6	x3.	1.5.1	6.54	p4.3	5.0x	70.07	167.7
76.7 1.0 85.1 76.7 7.7 7.7 89.0 77.7 7.7 7.7 89.0 57.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7			19.1	74.1	× 1 ×	е3.3	7 · 7 d	43,2	79.0	72.1	15897
71.2 77.6 89.9 9 67.7 7 7 6 89.9 9 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			63.3	77.7	7 P. 9	80.5	65.9	P.1.4	74.5	or.	167.5
			7.77	7° 1 8	76.6	17.5	3°0a	19.4	73.7	64.0	y*991
21.0			#2.5	A2.4	77.5	6.42	78.5	77.2	70.4	649	166.0
21.0 11.0 75.7 4.3 72.4 4.1 72.4 4.1 72.4 4.1 72.4 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1			7.1	X.	7.6.5	74.2	75.6	74.3	44.44	57.0	165.1
21.0 11.1 20.4 1			11.4	76.4	77.9	74.0	12.0	4°0'L	42.6	53.9	164.2
10 10 10 10 10 10 10 10			15.0	74.6	14.	72.2	العم	66.1	57.9	49.5	16343
21.0 01.5 51.5 17.5 11.1 20.8 -19.2 11.1 20.8 -125.7			71.5	71.2	13.0	67.6	63.3	61.1	53.1	7.[7	162.3
			4.44	66.3	65.1	61.5	57.7	53.7	45.5	50.0	160.9
-19.2 18.1 28.8 4 -19.2 18.1 28.8 4 -19.2 18.1 28.9 4 -19.2 18.1 28.9 4 -19.2 18.1 28.9 4 -19.2 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0			20.65	59.3	58.1	54.1	50.0	43.9	33.4	Iran.	159.3
-19.7 13.1 20.4 -12.5 7 -1.5 4.1 -12.5 7 -1.5 5 -29.1			7.15	54.7	53.1	2.64	7. 77	37.5	75.4	1.3	15,40
-125.7 -7.5 4.1 -125.7 -7.5.5 -79.1 -			44.44	43.7	н • I 5	34.7	ر د	21.3	7.7	0.42-	156.7
- 125.7 - 7.6.5			27.9	27.6	74.3	14.0	6.6	-3.4	-26.5	-73.3	155.3
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ì		5.1	5.3	~	- A - 6	H-19.R	-38.3	-70.4	-136.1	154.1
J			66	90.00	91.6	1.60	93.4	a.10	AR.O	F - 24	174.4
PA 1 "4.5 27.5			98.2	97.6	97.8	94,3	34.6	96.8	92.2	95.6	1
0 tot 5 00 1 1 1 da 1 1 da	i 1		~ 3.4	4.70	2.7.	64.9	d a c	975	7. F.	יר מי ה"ר מי	

F DNI = 101.0

ofon vir of the lift raffer Dissipant - Fraffiff for Coskitation

C. P. Fral. THE ZZEE CHECK CAPP

CCLICAL TOTAL PICTSE

24.07.4 FOOL ALTITUDE

7.6 FOOT SIDELINE

100 FOOT LAYEP F-A

5.19.PEGFEE STANDARD DAY

ACQUISTIC ANGLE FOOM TREET

FLF	27	رد	0.4	5	9		: :	ر. ج	100	ĩ	120	-	<u>ا</u> 4 ت	150	ပ -	ب خ م
- 10 17	26.0	σ 1	50.A	1.	62.3	2.5	46.6	5.44	65.3	66.e.f.	13.6	α• ₇ ,	H3.7	Ac. 1	X2.5	156.5
, j	7.00 Y	7.1.	63.5	54.5	5.24	5.54	7.84	64.9	68 ù	69.2	16.1	.82.3.	P6.0	87.5	83.8	.161.1
	4.1.7	7	45.7	H . 4.4	57.	3.5	71.17	11.1	7.3 . K	٠.١٧	78.3	C • 5 x	9.14	A4.6	A4.3	16.3.
. ~	42.4	کر • د د	1.1.	6.6.4	7.04	7 4	73.5	73.6	13.4	14.6	80°C	7 × ×	я. 9.	7°04	۲4.	164.5
12 :	4 3. F	. 7.1	500	1 - 1	71.	12.5	75.1	15.1	75.9	76.3	82.6	H7.3	H9.1	89.1	83.5	165.5
160	64.2	ر بار د	76.64	72.0	730.4	7.4.7	74.9	77.8	78.5	79.6	A6.4	BH	90.1	6,48	R2.3	166.2
22.	7.00	3	71.3	73.0	74.4	75.6	77.8	19.1	A. O. H	۲ ۰ ا م	34.0	۳ ۰ څو	2°06	ς. αμ	<u>.</u>	166.7
200	4.4.4	70.07	72.3	73.0	75.1	74.3	7A.2	79.7	81.5	H 3 • 4	87.3	0.06	0.00	P7.3	1.67	157.1
15.16	71.1	14.02	7:03	1.5.4	74.	14.7	7.12	6.57	P.7.	H4.5	0.11	7. I.C	a . 01	ر. عرب عرب	70.46	164.7
. 7	77,	2 1	C. < a	F - 1 H	10.1	74.3	π , α	- ::x	6.1×	a. 7 3	1.14	6	0.09	7.78	76.5	169.7
, U	70.1	,	94.3	4. A.	ე^• წ⊒	۳٦٠,	3.70	4. LR	я1.3	H4.1	7.44	6.6H	7.19	A2.7	73.A	170.0
K30.	76.7	17.0	H5.3	A7.3	Ap. 1	81.3	47.2	84.3	A . 5	H 2. KH	H5.3	R7.9	45.B	A0.0	70.7	16.0.3
B.C.C.	74.1	70.6	42.2	1.44	I T	0.VE	45.5	85.3	A3.2	T.	83.R	Hf. 2	P3.7	77.0	64.	164.5
1000	71.3	17.8	1.10	x 0.7	н.	8.3°	ريم ديم	F.3.4	P 3.9	H 1 . A	2.24	P4.3	81.2	73.6	61.9	157.A
125	10.1	1,5,11	70.3	3	1.3	A.Z.	1.12	ž.	R2.3	F-1-7	A0.6	я. 4.	74.2	6.9.5	57.4	147.0
1600.	F 3 C	11.4	76.0	74.4	10.07	3.57	79.3	7 H. B	J. 51	40.V	7H.H	7 H - 1	74.6	6.94	7. 75	166.
70.0	51.2	5.1	15.1	75.3	76.5	77.5	74.4	76.5	75.	77.1	76.2	75.1	70.3	500	1456	165.2
2500	5.07	6.14	68.0	71.4	73.1	74.0	73.4	73.1	73.6	73.4	72.0	70.6	64.B	54.6	41.5	164.1
3150.	19.3	ار ا	41.4	64.59	KB. C	7.74	68.5	5A.4	68.9	4.9	4.4	44.4	51.5	44.6	76.7	162.A
4000	21.5	¥•	51.9	57.5	5.0.7	4.50	61.7	516	52.5	61.5	5 A 9	56.3	47.5	34.4	121	161.3
5007	2.0	3	7.57	7	100	515	1.75	57.3	1.7.7	1,4,4	53.7	ر ار ار	6.04	26.3	1.4	2.00
ال عال يا	-19.	13.4	< 0.0°	0 • HE	11.30	46.00	45.2	46.5	7.72	45.3	41.1	36.55	24.5	α •	-27.9	158.6
, (1) (1) (1)	5.44.7-	-17.4	4.4	17.1	74.4	α • τ <u>ς</u>	5.4.	39.	30.1	27.P	22.2	15,3	- 5	-25. H	-11.62	15741
10000	-125.4	2.0.5	-2H.7	-11.0	٠,٠	√C Ui	7.4		7.9	4.6	7.5-	-14.4	-35.3	1.64-	-136.0	155.7
JUSTO	84,1	1.67	91.1	93.6	93.4	43.2	93.2	4.56	5.26	93.5	4.46	66.3	99.6	98.1	92.3	1.621
٦٨٢	89.2	5.70	6.16	90.5	100.5	100.3	103.5	99.7	99.7	100.5	10203	104.4	10323	99.5	91.9	
1 11/2	K 0.2	ئە. 1	000	100. 17.00.	7.00	-0.5	5	1.66	1.66	100.5	102.3	104.4	164.4	100.4	3. 5	

HIGH VELOCITY JET LOTSE PROGRIM - ENGINFERING CORRELATION

Post allerian and the constructions

*** [UdNI ***

۱۱ > 1.333 0.70. 3.212 5.0k3 1.547 FURCTOR AREA JATES BAJANAMENTE CANT= 744.0 DC= 14.730 =0d/821c ٠. =. d/-1c W フェニ 7.45 4CZ7LF - 011ER 011A= 18= 7.649 JIA OF TUBES= 20 OF TUBES= TT28= 1632. TS= 519. 7 IIG 01 V=

*** [NdLn0***

JOHE NOZZLE EXTL CONDITIONS
JOHE 2384.2 PHO24= ...33 DUCT HE

5740

INNER NOZZLE FXII CONDITIONS
J8= 1299.8 PHOM= .9442

COANTILLAR MOZZLE FLOW PARANETERS

A5= 6.178 - (55°) RHO5# WERGED FLOW CONDITIONS US= 1024.5 PHOS

29.978

4IXF0 FLOW CO*01110NS 16= 1269.6 TT6= 1016. W6= 2027.7H A6=

TOW VELUCITY JET NOTSE PRUGPAM - ENGINEFULIO (OPERTATION

DOMESTION WITH PETTING CHECK CASE

!		<u> </u>					MFPG	MFFARED NOTSE	r APC			1				
							519.1	40 EGA 519.DEGREE STA	STANDARD DAY) DAY						
							DI I SINO DE	ANGL!	ANGLE FROM INLET	VER 7		!	 		:	i ! !
(10 L	~	20	4	Ū.	ž	/	3	49	001	110	120	130	140	150	160	Pwl
50.		43.2	43.6	84.1	R4. H	A5.5	85.5	H 7. H	7° X (I	90°H	93.7	0.70	100.2	102.5	102.9	155.1
ζ.		O E I	84.4	84.9	A.0. P.	86.3	H7.3	AH.	40°0	a.15	94.5	4.16	1001	101.8	101.7	154.9
. 0 e	3.48	7.4 D	2 24	X 5.5	A6.2	P. P. P.	H7.9	45.2	20.7	-9246	95.1	97.6	99 B	100.8	7000	154.6.
100	1	H 7	ר הא	a	エチュ	. 11	7.11	\$. 54	41.5	63.5	46.4	٩٧.٩	₹.05	4°60	ı. X	154.2
		. 5	์ น	T. C.	x6.7	A 7 . E.	2. KA	1.6H	91.6	93.5	45.5	97.3	ਪੂ ਕੁਲ	۴. ۹۴	ر د د	a * ' ' '
9		, 'r'	ָ ֓ ֖֖֖֖֓	י עד דע	1,94	274	υ, π	H 6H	91.7	93.6	35.4	96.7	97.4	96.66	44.3	153.2.
200	ı	27	E L	a.	AF. S	F. 7 A	C # a	9.68	916	93.5	95.1	94.1	96.3	6.76	92.2	152.5
000		7.77	94.9	7.00	66.2	T.	87.9	49.2	7.16	93.2	94.5	95.2	95,1	93.1	6.68	4.151
315		H. H.	84.3	84.9	85.6	H5.4	A7.4	84.7	6.06	92.7	93.8	94.2	93,7	91.1	87.5	150.9
		1, 5	ר א	1.4.	1, 971	まり。た	X.	J. / X	5.06	61.6	6.76	6.26	92.0	A9.0	o. **x	6.671
, C C U		٠,	100	۲.۲۵	H4.	a • 50	A. r.	A7.1	7.60	91.	4.1 6	91.6	7.06	A7.0	τ. Υ	4.4.
,		7	4.19	7.02	, ξα	H 3.7	7.44	86.0	7. HH	90.0	9006	ر ن ا	P. P. J	H4.9	80.1	14727
A O D		A.67	A0.4	0.18	H1.1	47.5	A 1.5	B4.8	87.3	H8.7	40.1	AH.S	g. 93	82.6	77.6	146.3
1000		78.6	79.1	79.7	90.5	7.	A2.3	83.6	86.0	87.3	R7.7	86.9	85.0	40.5	15.2	145.0
1250		17.2	77.8	74.3	79.1	79.9	5°0 K	H2.2	84.7	P5.A	86.1	85.1	B3.1	18.4	73.0	143.6
1630		15.66	74.2	76.7	77.5	7.4	73.3	¥	A3.1	H4.	84.3	A 3. 2	د . ا ط	74.1	70.5	142.0
2965		14.1	74.4	75.2	14.	7. 2	77.H	1.67	A1.6	82.3	A2.6	z	1.6.	74.0	6 × 3	140.4
25.55		72.5	73.9	73.6	1, 0 7/	13.2	76.2	77.5	HOOC	A0.5	80.8	79.4	77.0	71.9	66.	119.2
3150		76.7	71.2	71.8	72.6	73.4	74.4	75.7	78.3	78.5	78.8	77.3	74.8	69.6	63.9	137.7
4000		DA. 7	69.2	69.A	70.6	71.4	12.4	73.7	76.3	76.3	76.6	75.0	72.4	67.1	61.5	136.3
5000		5.70	67.7	6.83	49.1	8.69 8	7.9.8	72.1	74.7	74.5	74.9	7322	70.5	_65.1_	_ 59.5_	135.1
6300		0.31	15.54	6.5.0	C. 5	67.6	64.5	н. 69	75.57	71.9	12.4	7	67.7	42.5	44.9	133.9
9000		٠٠,	4. CY	53.2	5.00 c	64.7	45.7	67.0	49.F	a a a	69.3	67.3	64.3	5A.1	53.5	132.4
13001		ă,	59,3	6.65	AC. 6	7.14	42.4	63.7	444	65.6	65.9	6307	6063	54.6	49.4	132.2
OASPL		95.2	95.7	96.2	97.	7.70	7.46	100.0	102.0	103.7	105.4	106.9	108.2	108.7	1040	163.9
PNF		1.1.2	101.7	102.3	193,1	103.A	104 H	166.1	104.4	109.8	1.0.7	6.011	110.5	10A.7	106.2	
5 N T	100.6	1.1.2	101.7	1.52.3	103.1	103.8	104.R	10601	168.4	149.P	7,011	113-9	110.5	108-1-	105.2	-

				1	TOP ALCOHA SEL BAISE AROCAM	131, 111	Partse 6	RUCDAM	- then	9N[833"	ENGINEEPING CORRELATION	Notes	:			
		† ! !	•	; c	1 do 14	Flow with Herbird	40440	(A-F								
				1										:	!	
	 - 	: !		: 1		!	i in incl	STOLENST NOOR	3510							
							10 FGA	SPEF	STANDERD DAY	י מח נ					; ; ;	! :
		;		1	;		ACOUSTIC ARGLE	ARGLE	Aug 4	14141	:	1	1	4		
â	^	2		L	3	~	c	3	001	÷.	120	132	140	150	169	Piel
6.5	66.1	2.5.5		64.5	4.5.	4.4	68.0	73.1	73.5	77.4	75.6	73.6	12.A	75.2	711.7	132.6
63.	A. R.	q.7.	6.7.3	6.7.9	67.5	6.7.9	70.5	12.6	75.2	70.01	74.5	74.7	4.0.4 6.0.4 6.0.4	73,3	12.7	133.4
F0.	71.5	70.0		4.04	125	70.5	73.	73.5	5 2	6467	1257	1 (c	76.9	7.4.4	α	137.6
, , , , , , , , , , , , , , , , , , , ,	. ° . ' . ' . ' . ' . ' . ' . ' . ' . '	x - v	7.6.7	- · · · · · · · · · · · · · · · · · · ·	1.7.2	 	 	 	i ox		y. [d	4.5.4	1.	7 P 2	17.7	130.
	7 4 6	17.6	77.	0 2	77.	7m.3	ς. Υ.	47.7	а С	7.00	α 3° εα	7	C 1 2	10.5	77.64	142.0
2000	HC.S	4.27	70.4	79.3	70.3	F.0. X	P.5.9	H4.9	84.9	H7.7	45.9	84.0	F3.1	82.6	0.29	144.2
25.0	A 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 1 7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 X	ر د د د د د د د د د د د د د د د د د د د	20° 40° 40° 40° 40° 40° 40° 40° 40° 40° 4	2. V. X. C. V. V. V. V. V. C. V.	87.1	87.0 89.1	0 - C	88. 90.3	7.00 0.00	85.4 P. 4.9	2.7. 2.7. 2.7. 2.7.	7 7 7 7	7.04 14.04 14.04
	0.40	12	E U	75.56	200	2 61	V 1.4	3	21.3	7.55	95.6	7.5	3. 5.	E . DK	x .	σ•)ς <u>.</u>
• • • • • • • • • • • •	1.14	1.4	47.7	97.7	1. • 11	1 1	ે• I 6	93.1	43.2	4.76	2.06	1.26	6.15	61.3	α : : : :	152.7
• 16 •		π •	٠. م	1	F. 6.	4.77	92.5	7.4.	6.46	98.2	94.6	7. 3.	٥.		3	124.
A 0.5.	00.00	e (0.00	2.00	6 36	200	93°E	96.0	96.5	0000	0.00	24.0	95.7	0 o	, d	157.6
- 0 U C C) (0 - 10		92.8	92.5	95.2	7.26	98.5	102.0	101.1	1.66	96,3	97.97	2126	15p.6
140.	4.15	1.	6.2.	- 64	100	4.00	6.36	2.16	0 HO	142.4	101.9	100.0	2.60	0 H 0 H	- ·	15.5.4
2100.	96.6	1.0		41.6	47.4	2.16	o ⊙	96.1	d 16	E E	101°4		¥ ;	÷ 2	- 1	114
25000	H 7	- -	32	C-64	5	·	0.00	43.1	45.0	χ, ο	200	70	200	3.0	5.50	154.2
4000 4000	2 0		χ χ ν ν τ ς	- 0 - 0 2 2		, c.	, a	35.0	28.5	91.0	43.E	**	0.16	90.5	0.51	151.7
000000000000000000000000000000000000000	78.7	7.5.3	20.5	C	7. 13	74.	δ.	H3.1	85.8	9 6 H	9143	P944	88.5	BR.0	H7.4-	149.5
63.	74.1	12. 11	76.2	76.9	7.5.	74.2	11.11	14.9	ਲ• ?*	ت ب ع	x .	X	P5.3	H. 74	£	147.4
* 10 0 M	72.1	12.0	73.7	74.5	15.1	7 3.1	76.0	78.5	41.2	ر . ع	x5.7	43.R	42.9	A 2 . 4	æ i	7 6 7 6 5
1,001	71.5	17.04	71.3	14.1	75.4	14.7	411	8 6	R7 89	KG 5	85°	7976	45.4	82ev	4.5	150.5
J4586	ċ	c) .	•	C • 0 J	101	١٠٠٠ .	7°E 01	6601	6.00	200	0.00	200	2001		7.71	•
N C	20.0		~ = :	7,11	112.6		114.2	7.91	5.7.	121.3	121.3	119.3	118.5	118.0	117.4	;
17.	•	-	al.		115					-				•		

1				1				7637	34.9	4.75	4t.5	 	~ ~	4.72	۲. اع د	- φ • α • •	7	3.	197	ا ال ال ال ال		· .	;	ni T	~ ₫	**	7.17	4 .	# ~ / ^	. I O	- d	440
		: : : :						٦٤٥	20.5	43.2	J*1+	1. 1. 1. 1.	7.4	2.42	4.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		15.7	10.0	7.7	~	n 0	۲,	· · ·	1 0 1	J Į	۲. د ه د	۲.				- 1	10.
		· '		!				J+[40.0	43.7	47.6	2.13	7.73	~ 11 1	ر م		~		~. ∎ ⊥	۰ ۰ ۱		-	:	•	r. • 4	્ સ્ 1	1		•			3.211
11011		; ;		1			•	3	0	4.77	5.17	4, 6, 3	۷. ت	. n	- 4	7		11.	- -	a -		•	·. -	· · ·	- 1	·.		•				27111
13da00							ť	ůζľ	H . 2 7	ړ. ۲.	5°05		٠ ٠	21.2	- 4 - 4	72.3	: .		- .	4 .		· -	:		.	, ,	I	·.	••			115.1
ENGINE EDING COMMETATION						∀	1 1 1 1	=	44.6	J. 1. 7	-52.22-	n 1	٠,٠	- 1		.	. ~	· - 1	9	4 · ·		7 r.	•	• 1	٠ م	7.04	- -	- :	•	• • • •	2 0 2 0 2 0	, 2 , 0 , 1
- Engly			Js. 1 0ta	F	:	STAHIDAKD	Linkl moes	ر د د	44.6	~ · H 7	-52.22 -	1 	~ ?;	7	7. A .	20.0	77.	1.000	7.	٠. نور	,	· •	; ; ;	7,	74.47	1.5.1		: :		- 7	\	107.
PEGNAMA	f a SF		J-10t2 (J-N)	375 V FUUT AFC		514.0FGFFE S	ALCLE	c J	44.6	د. • ۲۹	52.2	24.7	ر ب ب	412	7.67	73.7	11.7	~. `.		ac r				7	٠.	c c 1	, a .	· ·	a. 7:	-	ָרָי. רַיּי	1)6.7
HOISE D	F CHECK		JOH'S	¥ 4.7.5	_	5.5	ACOPETTO	č	44.1	H . 7 4	51.7	2.5	τ ~ √	12.1	66.1	7.5	-	··· /	,	ू । इ.स.	ר מ ריי	177	7.	7.7.	,,,	<u>.</u>	X C	· · ·	τ · ·			
14 . JF 1	1901-11 PM			٥	•	•		7	46.3	4.7.4	24.46	o•€7	ر ، د ،		a .	7.7	74.7	11.3	1	ر ج	, L . I	1	: -, -,	70	ur a	14.7		~ :		- -	۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲	105.2
STON 14F ALLOCISE	1 40 14		! ! !				1	<u>ر</u>	47.5	44.3	53.41	• • • •	· 1·	4	56.4			. • • /	17.4	5 . 5 .	() () ()	Į,	1.1-	-	,	· .	,	, • • • •		- -	- I	(1 ₁ 6 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1
1	=		: !					٠,	1	~			ر		7.	1 1.	7.	77	11.4	v. a.	7 12		^.		47.3	۲.			• • •		, r	
			! !				!	. 3	47.5	44.7	50.0	ر م ر	ر• ۲۰		1.6.	70.07		٥٠٠	74.5	77.2	7 0 0	1.43	? -	7	۵۰,3	<u>.</u>	7. 1	ر. د.:	· ;		5 4 G	119.2
	! !							-	5.5	- 27	7		σ• ε	74	1 2 4	· (·		14.	15.7	15.4	\ 0 • 1	1	7.00	-	ر ک ک	0.	J.		<u>.</u> -	1		1 7 . 6
	 		!					2.0	42.5	44.1	0 67	73.4	ر ا ا	F. P. P.	0.0	, t	12.1	14.1	.2.	ر م م		o x	93.1	ر ر ن ر	ř.	σ.	ا ت		•	0 40	. 4	
								· 101	50.5	63.	▼ je	· - -	->-	١٠ ١	ر د در د در		7	• 10 kg	- F 1:			140	• 556	25.2.	1153	ာ ပေ ပ ို	2005	· · · · · · · · · · · · · · · · · · ·		JACDI	010	י אור ז

*** Triangle (***) *** Tr			1														
* 17.7 10.		!			- V	-	11-14 m	1 1	_								
**************************************				:					1 (44)	AVC							
10 10 10 10 10 10 10 10							-			STANDAP	PAY C						
10. 20 3. 3. 2. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	1		 		:		1		C ABOLE	Local	111	!					1
7.	1	ć		•	J.	į	'	c T	.*	-	- 1	170	١٤٠	140	150	150	<u>ا</u> د ت
# # # # # # # # # # # # # # # # # # #	1	20.0	3.2	43.7	94.1	1.4.1	H.S. 6.	Ah. h	a	0.30	61.0	4	97.0	100.2	102.5	102.9	155.1
Hare	٤3.	A. F. B	G. 4 4	7° 70	5.Va	P. 5 • 1.	46.4	47.4	7. dx	0.06	65.	44.6	4.10	1001	101.8	101.7	155.0
70. H5.4 H5.4 H5.3 H7.2 H7.9 H9.4 H9.5 H7.9 H2.7 H7.9 H7.9 H7.9 H7.9 H7.9 H7.9 H7.9 H7	3	74 e 2	7		4	F. 1. 2.	H 1 . K	학교 조 :	49.63	9 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	200	95.2	97.6	9.00 0.00	100.8	100 a 2	154.7
μ5. μ5. μ5. μ5. μ6. μ6. <td>. J</td> <td>u a</td> <td>- 7</td> <td>^ %</td> <td></td> <td></td> <td>, ~ Y</td> <td> </td> <td>^</td> <td>7</td> <td>; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;</td> <td>, , , , , , , , , , , , , , , , , , ,</td> <td></td> <td>O. O.</td> <td>90</td> <td>7.47</td> <td>153</td>	. J	u a	- 7	^ %			, ~ Y	 	^	7	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	, , , , , , , , , , , , , , , , , , ,		O. O.	90	7.47	153
15. 96.9 97.5 96.6 96.1 96.9 96.5 96.6 96.1 96.1 96.2 96.7 96.9 96.7 96.7 96.9 96.7	· •	χ υ	~ .		, Y. Y. Y.	~ ~ x	0 1 1	2 2	رد در ۱	2 26	(14.3	95.7	9	97.5	1.96	94.5	153
15. 86.3 -6.6 06.6 07.5 07.5 07.5 07.3 07.7 04.9 95.4 95.7 15. 47.2 -7.6 07.1 07.1 07.1 07.1 07.2 07.2 05.2 15. 47.2 -7.6 07.1 07.1 07.1 07.1 07.2 07.2 07.5 07.5 15. 47.2 -7.7 07.7 07.7 07.1 07.1 07.2 07.2 07.5 07.5 15. 29.4 -2.7 07.7 07.7 07.1 07.1 07.2 07.2 07.5 15. 29.4 -2.7 07.7 07.7 07.7 07.7 07.7 07.7 07.7 07.7 15. 29.4 -2.7 07.7 07.7 07.7 07.7 07.7 07.7 07.7 15. 27.5 -2.7 07.7 07.7 07.7 07.7 07.7 07.7 15. 27.5 -2.7 07.7 07.7 07.7 07.7 07.7 07.7 15. 27.5 -2.7 07.7 07.7 07.7 07.7 07.7 07.7 16. 27.7 07.7 07.7 07.7 07.7 07.7 07.7 07.7 17. 17. 17. 07.7 07.7 07.7 07.7 07.7 07.7 17. 17. 17. 07.7 07.7 07.7 07.7 07.7 17. 17. 17. 07.7 07.7 07.7 07.7 07.7 17. 17. 17. 07.7 07.7 07.7 07.7 07.7 17. 17. 17. 07.7 07.7 07.7 07.7 07.7 17. 17. 17. 07.7 07.7 07.7 07.7 07.7 07.7 17.	200	45.4	200	A6.3	P. 4. 7	P7.4	2 x x	7.6d	0.1.0	92.5	44.5	95.6	96.3	96.5	95.1	95.4	153
15. 47.2 76.9 87.1 87.3 88.6 95.4 92.1 93.2 95.4 95.4 15. 17.2 77.2 77.2 87.2 87.3 97.3 97.2 97.4 15. 17.2 77.2 87.7 87.7 97.3 97.5 97.4 15. 17.2 17.2 97.7 97.7 97.1 97.5 97.5 97.4 15. 17.2 17.5 97.7 97.7 97.7 97.5 97.5 97.7 15. 17.2 17.3 97.5 97.7 97.5 97.5 97.5 15. 17.2 17.3 97.1 97.7 97.5 97.5 97.5 15. 17.2 17.3 97.7 97.7 97.5 97.5 97.5 17. 17.2 17.3 97.7 97.7 97.5 97.5 97.5 17. 17.2 17.4 97.7 97.7 97.7 97.5 17. 17.2 17.4 97.7 97.7 97.7 97.5 17. 17.2 17.4 97.7 97.7 97.7 97.7 17. 17.4 17.7 97.7 97.7 97.7 97.7 17. 17.4 17.7 97.7 97.7 97.7 97.7 17. 17.4 17.7 97.7 97.7 97.7 97.7 17. 17.4 17.7 97.7 97.7 97.7 97.7 17. 17. 17. 17. 97.7 97.7 97.7 97.7 17. 17. 17. 17. 97.7 97.7 97.7 97.7 97.7 97.7 17. 17. 17. 17. 97.7 97.7 97.7 97.7 97.7 97.7 97.7 17. 17. 17. 17. 97.7 9	7 c.		4.4	24.6	6.49	87.5	F. 6. 3	80°	91.3	1.36	5.45	95.4	95.7	95.5	93.7	91.0	152.
10. 84.4	4 15		z	1 2 x	S	I I	T T	70 5	3 -	2 1 5	2 3	27.72	122 122	24.0	92.2	25	153
39, 39, 4 44, 7 44, 7 44, 9 41, 7 41, 1 43, 5 45, 5 46, 1 49, 4 47, 7 46, 1 10, 6 40, 7 41, 6 40, 7 41, 9 41, 7 92, 6 92, 1 94, 6 96, 7 97, 6 100, 5 99, 2 97, 4 10, 6 40, 7 41, 1 91, 7 92, 6 92, 9 97, 5 48, 7 10, 7 10, 6 97, 8 10, 7 10, 6 97, 8 10, 7 10, 6 97, 7 10, 7 10, 6 97, 7 10, 7 1	٠ . ٢.٠		T. H.	7.40	3.3		5	92.3	26.2	J	4.6	٥. ٨.	95.3	6.46	92.8	41.5	154.
00. 90.7 46.6 99.7 91.7 97.8 92.8 97.4 100.5 99.2 97.4 100.5 99.2 97.4 100.5 91.4 11.3 91.5 91.7 97.8 97.8 97.5 97.4 100.5 99.2 97.4 10.5 97.4 100.5 91.4 97.5 97.4 100.5 97.4 100.5 97.4 100.5 97.4 100.5 97.4 100.5 97.4 100.5 97.8 92.8 92.8 102.5 101.7 100.9 10.5 97.5 92.8 92.8 92.8 102.5 101.7 100.9 10.5 97.5 92.8 92.8 92.8 92.8 92.8 100.5 97.5 97.5 97.5 97.5 97.5 97.8 97.8 97.8 97.8 97.8 100.5 97.8 97.8 97.8 97.8 97.8 97.8 97.8 97.8	6.35		1.0.7		6.0	1 . (.	[•]5	43.5	5.65	96,1	49.1	47.7	96.91	95.2	0.46	93.2	155.
15. 91.4 31.3 91.5 91.7 92.5 92.8 95.5 94.5 94.5 101.7 100.5 94.7 55.9 92.0 31.2 101.7 100.5 94.7 55.9 92.0 31.2 101.7 100.5 94.7 101.7 101.5 91.7 91.5 92.0 99.3 102.5 101.7 101.7 101.5 91.7 91.5 91.7 91.7 91.7 91.7 91.7 91.7 91.7 91.7	AUC.	40.1	4.06	40.1	61.9	41.7	92.1	4.46	1.96	4.16	100.5	2.66	4.16	96.5	9.56	6.46	157.
7. 31.6 (3.1 47.1 47.1 47.1 47.1 47.1 47.2 47.0 49.2 102.2 101.1 102.7 101.5 1		7. (6. (<u>ر</u> :	5°16	41.7	95.6	92° p	٠ ٩ ١	97.5	ສຸດ ສຸດ ທູ	101.	. 00 .	94.00	9.4°	97.1	4.6	4. S.
50. HA.1 'R.4 HO.5 G13G G17G G1.9 G4.4 G1.5 G1.5 G1.5 G1.5 G1.5 G1.5 G1.5 G1.5		75.6				7.5		2,70	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200	2 = 2	102.7	700	100	000	2 H	160.0
56. HH.1 'R.4 A9.0 FO.R 97.2 9.1 91.7 91.5 95.5 95.5 100.1 98.4 56. HH.1 'R.4 A9.0 FO.R 99.8 FR.0 R9.3 90.3 92.3 95.7 97.4 95.7 50. R4.7 4.9 HS.1 HS.2 FS.5 HS.3 HS.0 HS.1 R8.9 92.0 94.2 92.5 50. R4.7 1.9 HS.2 FS.6 HS.3 R.0 FS.6 HS.5 HS.2 91.6 FS.8 50. R1.7 11.9 HS.2 FS.6 HS.3 HS.0 HS.1 HS.1 HS.3 HS.3 HS.3 FS.8 50. R4.7 10.5 10.5 10.5 10.5 10.5 10.6 10.5 10.6 10.6 11.3 111.3 111.3 110.6 11.6		i i	0.07			7 7 2	5		ر د م	7 46	5.10	102.3	5°01	4 66	5°46	~ ±5	.54
59, HH.1 'R.4 A9.0 FO.R 99.8 RH.0 H9.3 90.3 95.7 97.4 95.7 97.4 95.7 97.4 95.7 97.4 95.7 97.4 95.7 97.4 95.7 97.4 95.7 97.4 95.7 97.5 84.7 44.7 44.9 87.1 RH.9 92.0 94.2 97.5 97.5 97.7 97.7 97.7 97.7 97.7 97.7	75.11		H . C .			ر د د د د	- -	91.7	93.5	95.5	99.0	1001	9H 4	97.5	1 96	96.0	15.74
00, 84.7 44.9 45.1 45.2 86.2 83.7 46.0 87.1 88.9 92.0 94.2 92.5 00.5 81.7 41.9 42.2 92.5 92.5 91.5 89.2 92.5 92.5 91.5 89.2 92.5 92.5 91.5 89.2 92.5 92.5 91.5 89.2 92.5 92.5 91.5 82.5 92.5 91.5 82.5 92.5 91.5 82.5 92.5 92.5 92.5 92.5 92.5 92.5 92.5 9	3150.		7° a.		ļ	9.06	0.XX	89.3	96.3	92.3	45.7	7.70	45.7	94.B	0.46	43.2	155.
05:0 51.6 1.9 42.2 72.6 83.3 81.0 82.6 84.6 86.5 89.2 91.6 89.9 89.9 89.0 87.7 7.7 7.7 74.4 74.3 70.3 80.0 77.7 77.7 77.7 74.4 74.3 80.0 86.7 77.7 77.7 77.7 77.7 77.7 77.7 77.7	*ଓଡ଼ିଆ	7.52	3 ·	4 u		86.8	43.7	46.	A7.1	9 8 B	92.0	2.46	2.5	91.6	¥.00	1.05	152
CC. 75.2 75.4 76.0 76.5 77.4 76.0 77.2 70.1 R1.9 R4.3 R5.5 R3.7 70.1 R1.9 R4.3 R5.5 R3.7 R5.6 176.9 76.5 R5.5 R3.7 R5.6 176.7 R5.7 R5.7 R5.9 R5.5 R3.7 R5.6 R5.5 R3.7 R5.6 R5.5 R3.7 R5.6 R5.5 R3.7 R5.6 R5.6 R5.6 R5.6 R5.6 R5.6 R5.6 R5.6	3000	7.1.7	7	7.00			2 2	82.6h	44.6	86.5	116.5	916	2 4 4 3	200	V 2	24.4	ο α α α
PL 192-5 1 2-5 172-6 172-7 133-3 102-9 1 15-3 166-9 108-3 111-3 111-3 110-6 1	• (. c.α	75.2	• •	76.0		7	. 0 . 72	77. 2	707	α		0		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	α 		144
PL 1925 1 2.5 172.6 172.7 133.3 167.9 1 15.3 166.9 168.3 111.3 111.3 116.6 1	 	7.00		. v.	76.5	· · ·		α τ	α 	- α α	X 50 0	7.	A3.7	42.7	82.1	H. P.	151
	JASPL	192.5	~	117.6	1.2.7	133.3	162.9	1.5.0	106.9	104.3	111.3	11.3	110.6	110.8	110.8	110.1	169.3
114.7 114.7 115.0 115.1 115.5 113.8 115.9 117.8 119.5 127.6 121.9 1	livo.	114.7	4	115.0	115.1	ر,•\$۱۱	113.8	115.9	117.8	119.5	122.6	123.2	121.9	121.3	120.6	119.7	

HIN THIS OLLY OF TOUST DROGRAM - ENGINERATING CODSELATION

THE WILL ADMINISTRATION OF STREET

dad jiidivl dad

ななな ここしし かなな

INNEW NOZZLE EXIL COGNITIONS
URE 1382.8 BHORE . 1294

COMPANIE A MOZZE FLOW DAVANETERS

MERGED FLOW CONDITIONS

US= 1475.7 PHUS= .0542 05= 2.673

A 6 = 445.354 = 445.354 STOLLING COLD SEXIF 1444.2

	THAT VEHICLITY JET MOUSE PENGRAM - ENGINEERING COMPETATION	
•	- MARIORAM -	1
	OK LBC	1
	VEL S.C.LLY	!
	···1.	
		1

JSV) with the million of the Code

e 1914L h015f	• 2406.6 FOUT ALTHINE	• 0.0 FOOT SIDELINE	• 1:0 FGA	* 519 DEGPEE STANDAPD DAY

-
_
ž
Š
ũ.
٠.
ل
<u></u>
152
٥
C
Ξ
Ξ
Ξ
E-51

F107	56	30	0.0	5	ž	13	c a	06	160	110	120	139	140	150	09.	Pir
\$ 0.5°	51.4	1,66.	7. A. 1	40.0	- • 99	y • 5 y	63.9	4.5	63.5	4.79	40.4	73.8	77.4	19.9	74.3	154.4
٠,	54.3	6.00	0.14	62.1	1.0 %	43.5	65.5	65.H	6542	56.43	71.0	75.2	78.4	80.4	78.3	155.4
,	r 1	٦,	\$. ? `	4.1.7			47.	4.14	46.4	6.14	12.3	76.7	14.0	2°08	17.4	156.0
-	£3°	~ • ? .	1.4.	6.5.2	****	y**	- 1 3	- H.	6.4.3	5.00 Y	7.1.5	76.9	79.3	90°5	16.9	156.3
• • • • • • • • • • • • • • • • • • • •	7 L .	, , 7	4.04	6.6.9.3	1.7.1	o*/ /	5.4.4	1. 1.	4.9.4	10.7	74.5	77.5	19,3	79.5	75.6	150.04
160.	α.	3.4.	44.6	47.7	6. A. S.	0.04	70.7	71.6	70.9	71.9	75.2	7.77	19.0	7A.5	74.0	156.4
٠ ٢٠٠	61.1	16.2	6.7.9	68.9	1.64	40.7	711.7	72.0	72.0	73.0	75.7	17.8	78.5	77.3	72.1	156.3
750.	64.7	17.	A 0.1	73.0	70 . H	71.2	72.A	73.0	72.9	74.0	76.3	77.7	77.8	75,8	70.0	155.3
- 1.	1.04		1.01	71.1	717	1	7 3.H	74.1	74.0	75.0	14.9	11.6	77.0	74.3	6.19	154.4
•	រ ប្រ រ	F. 3.	71.1	12.1	77.8	7 4.1	75.0	75.3	75.1	76.1	77.6	77.6	76.3	73.0	66.4	156.9
, IC 2	1.4	1:1	17.1	1.57	73.7	74.2	76.1	14.5	76.44	77.4	74.9	78.1	76.2	12.5	66.0	157.7
630.	44.4	10.6	12.7	73.8	74.1	75.0	17.1	77.7	77.8	78.9	80.3	19.0	76.7	12.6	2.99	154.0
₽ 00.	65.9	11	73.1	74.3	75.3	75.7	77.7	7H.4	78.4	80.3	9 1 · 4	6.61	77.2	72.8	6.59	160.5
1000	65.3	10.1	73.3	74.6	75.6	76.0	77.9	78.7	79.5	41.2	R2.3	A0.7	17.6	72,7	65,1	162.0
1200	12.	1:1	7.7	75.1	75.1	15.	11.2	7.H.	10.1	т	H2.3	a F	77.0	71.4	62.B	164.2
1600.	0.44	17.4	75.5	14.4	76.1	7',, 0	77.4	17.9	74.17	5.18	ح• ن≽لا	74.7	14.1	1.14	S7.8	166.0
2010	۲ <mark>۰</mark> ۰	0.00	۸.۲	7 11 6	74.	5. 1/	71.4	16.2	76.5	P. H.	72.6	74.3	69.6	45.4	51.1	165.4
20,00	5.65	64.3	10.5	74.1	74.3	16.4	75.1	7 1.6	73.2	75.1	72.3	5.69	64.0	54.0	4.2.A	163.7
9120	4° ° n	4.5.4	45.4	4.4.4	69.6	71.2	6.69	49.R	49.6	10.1	54.6	63.2	56.8	47.5	31.6	162.1
40000	23.0	43.3	52.A	ע. ע.		62.7	6.19	6.2.B	65.9	63.6	58.7	54.5	46.1	35.5	15.1	160.4
500 i	٠. ـــ	X . 37	:4.	1.5.2	· .	2.7	1.7.	27.4	5K.5	£,4,3	ر د د	4 H . 3	30.9	7.1	۲.4	158.7
43.	· a	٠,٠٠	24.1	17.H	4.3.4	4.5.6	44.5	44.1	0.7.	46.7	6.04	34.5	74.0	7.7	-52-	156.4
ď	-64.6	1 . I	~ -	-:	73.	7.19	24.1	6.62	7.06	29.6	22.9	14.2	7	-23.2	6-69-	155.6
10000	-125.9	٠٠١٠ ،	-24.5	7.1.	-1.5	4.6	7.7	4.9	9.5	7.2	-3.7	-15.5	-34.7	-67.1	-132.7	154.9
JASPL	76.0	· -	A 3.B	A.5.3	9K.	Ar. 1	47.5	87.7	ня. 1	H.C.	4.06	F. 06	80°	H9.	A5.6	174.0
PNL	A2,9	5.0	0.46	96.1	3 40	97.1	7.76	97.0	97.3	99.1	98.8	91.1	95.1	91.1	P5.0	
1 1116	7	7.	ر . دو	- 44.	r. Ye	1.7.	41.4	0.16	17.3	1.06	4. A.	1.15	4. AC	95.5	45.0	

EPHL# 109.2

3.7 PROGRAM SOURCE CODE LISTING

This section contains the FORTRAN IV source code listing for the engineering correlation computer program, suitable for running on the CDC 7600 computer. The listing of subroutines is as follows:

- (1) Main Program (MS)
- (2) SUB1 (Contains SUB1 through SUB6)
- (3) EXTP
- (4) SHKSUB
- (5) PNLPT
- (6) TPNLC
- (7) PNTT8
- (8) A block data listing
- (9) EJECTS

: :	1.1. 1.7.1		4.10, 44.14.41.4	1. 11. 11. 11.	14. 31. 6. 14	1.616
	A CONTRACTOR OF THE CONTRACTOR	processing the state of the sta	1.1AFF 6=011F1.13			
	(10.4) (20.4) (10.4) (10.4) (10.4)		7 (3-57) 71 (3-58) - (3-51-6) (3-1-6) (3-1-6) (3-1-6) (15-59) - (3-1-6) (15-5) -	•		
		15.27 (20) (15.24) 15.27 (20) (16.24)	2. (14 2. (2. (2.) - 2. (15 2.4) - 3. (1.23.) <u>2. (2.43 C.1.15.) 12. (1.5.)</u> 2. (2. (2. (15.2) - 1. (2.9) - 10. (2.) - M. (5 4.0) + V. (3) - 1. (15 2.4) 22. (26 26 26 1.) 2. (2. (2. (2. (2. (2. (2. (2. (2. (2.	-		!
		8 2 4 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10 + 11 + V(+ 17 + 12 + 12 + 13 + 12 + 14 + 14 + 14 + 14 + 14 + 14 + 14		;	
-					; ;	
	I NI-DT-/S-JH-AAN-TTO	4.14.173.44.000.KG	11.44 17 44 174 174 174 174 175 174 175 174 174 174 174 174 174 174 174 174 174			
51						
	1.0 T & 1.0 C	12001-12501620	25 15 2 4 40 6 2 1 20 4 1 2 1 5 1 6 1 6 1 8 2 8 2 2 2 3 1 5 2 4 60 6 2 5 2 0 8 2 5 2 6 2 8 2 8 2 3 8 2 8 2 8 2 8 2 8 2 8 2 8 2	7		
į	- ,					
	CATA [P. 21 47					
	6ATS 2MV2F (7					
	C2/0.	+1.(.1.75+1.8+2.35+2-7+3.4+4.2+5+0+	3.4.4.2.5.0.			
52	40	A-2-8-0-0-0-0-0-4-	.9.4.5.3.8.2.8.2.4.0.0.0.0.0.0.0.0.0.0.0.0. .0.1.1.0.4.(
	7.10.21	- αρξ c	**************************************			
30	-	1.0=1.24)/131.81	114. 1-14.7) + J=1+24/7131-84-724135-44-724139-24-724			
	2 . 5 . 1	.145.734.144.R	46.5.45.145.7.39.144.8.33.143.9.27.142.5.2			
	1 141	34.54.0341374.34.0441374. 31.3474135.49.7	3 4, 5 + 20 4 + 1 3 4			
16	WILL (A. 1111					
	//////////////////////////////////////	//////				
	×	/0××××××				
7	, ,	/ a a x x				
	×	XXXX				
	DOX OF A	_ * * * * * * * * * * * * * * * * * * *				
		\				
45		XXXXXXX				
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	× × × × × × ×			
			X XX X			
ç	XX	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *			
		 	×			
	X	XXXXXX	(x x xxxxx			
	1	AX A A POST OF THE JET	JET 4015-F PROPRIEM CONTRACT NOT-US.	15.		
ኢ	∵ ∵	1120-120F	Frankering COOPELATION ZZZ			
	the constant					

	•	.,,	4.6.44.13A A6.74.17B	14.33.533	1, 46,6 2
	47		10 14 10 244		
		FORMATICAX. KAII)			
		CONTRACTOR (1) 1 10 to CONTRACTOR (1) 1 10 to CONTRACTOR (1) 1 10 to CONTRACTOR (1) 10 to CON			
7;		~			
			21 01 03		
75	-1	90 TO 21			
	12	10=514 4 13=14.7 4 11-174475 5 11=3.14159			
	133	(5 1 kg			
β	6736				
	753 1	ORMAT (1H1 /	M - ENGINERRING**		
		FURNATION X-6-A13/7/1			
55		60 10(295,176-120,415,425,425),19			
_	245	13 15 15 15 15 15 15 15	0=68 1=118 \$ (a)		
16t C	329	60 TO 399 MULTI-CHUIF/SPUNF A015E FATRY 92=N* (84+55)/(2*F))			
		J .			
ارة الا الا	50.7	2692-44-2001-87 1(0-10-06 CHUTES/SDAK[S±0-14/0-010-06 =0-610,3-53-00-05-0-610,3)	CHUTE FOITIV AREA*.		
	, Z1	10 10 10 10 10 10 10 10 10 10 10 10 10 1			
	35	### ##################################	**************************************		

1 ACA								
26/06/7E 14.33.59*								
F.12. 4.6.4.13A	N=e.f 10.33 		CX.8AUG=8.610.37	P4 • AR=0.F 15.3.5X.*APR=0. /P 10=0.F 6.0.5X. 0.3)	10 550\$RR=SAPT(PR)			Zenta Para
[:]	119-12-4119-21 11-3-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	14 Av 19 1 A 19	1 ARS	A OF CHUTE FOULV AMEN TURE=*FIN.31 PSINT 2014-R2-AR-69-IS-P5-10-P0-14-P4 PSINT 2014-R2-AR-69-IS-10-P0-14-P4 PSINT 2014-R2-10-X/12	P2*42-40A90A7/P1))/2 2+4 202) 2 ATIO CALCULATION P19P2082)*IF(P8.L1.3) GO TO	15 06 5A179A -1176E11	13.11.7Pb. (42.) (40. 10. 590 12.2 (7)4/138.387271 18.1 ACSOL-GOLL(1) (60.10. 61)5 9.1 (10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	7 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1/1	27.24 EDWALL (2.143.2E. 17.24.10.10.10.10.10.10.10.10.10.10.10.10.10.	~ 3 %I ~ ≥ +11 < 1	CO TO 485 WULTI-CHUTE/SPUKE 460	445 STUESS/R4+1 STUESS/R4+1 STUESS/R4+1 PRINT 2014.6	17.00 17.00 17.00 17.00 17.00 10.00	545 THIT THERE 1. 15 545 THIT THERE 1. 15 11. DATION FOR JE1.53 13-14/6900 ((AP-11/GF1)		03=20,730,711 04=20,511 04=20,730,711 04=20,130,111 15 (10,511,62)
	1118	130	136	146	145	1-49	165	17.

195 515 115 115 115 115 115 115 115 115

25 25 25 25 25 25 25 25 25 25 25 25 25 2
--

	A J = A J M [[J [20 2 2 J]]]] [M] M] M] M] M] M] M] M		SYEARL(E(J)9 AN OUDTE 77=70 1F (E(1) (114) 77=78	1F (F () , G1 (G 10 1220) 29 1220 S2 ((27-48) / (+16226)) 9 ALVIO 10 (E (4) / E0) + 29 S2 ((27-48) / (+16226)) 9 ALVIO 10 (E (4) / E0) + 29 S2 ((27-48) / (+16226)) 8 1 = 20 + 60 Po x (Property 2) Po x (Property 2)	TC=FR(1)=3416(P7.64.2) 60 TO 12658X(J)=73 C CHTOFE EFFECT IF (PP.611.55) 60 TO 12658IF(\$3.46E.4) 60 TO 1265 TC=22.44,74,74.74.44.44.44.44.44.46.314.44.49.82.22.22.44.491.83.38.43 TC=22.44.44.44.44.44.44.44.48.4.44.48.34.4.46.34.48.48.48.48.48.48.48.48.48.48.48.48.48	. 4	1) = 3 (6.14, 1) + 6.46 10 - 2 - 9.5 5 (1+.1) = 5 (1+.1 CONTINUE EJECTOR FFFEC	16 (A6.Fu.0) (0 to 10 1104)F (K7.F0.2) (0 to 1306%CALL FJFCTS 1300	1 4 -1	IF CALL	1373 CALL SIMP CALL SIMP (ALL SIMP)
ļ		25.	3.5	305	316	3 l e	32.	375	33.	375	347

-	From an mr. 10 / 10 months 1 / 10 / 10 / 10 / 10 / 10 / 10 / 10	1 1. a.d.	,
	11AS(1)=10:SHOCE (M-F)		
3.5	IAS(22.101)		; !
350			
	CALL OF UTAKE TO THE CALL OF T		
355	1425 V==134AA=K34MA=R34AA 11A5(1)=19HCON1(ch 11A5(1)=19HCON1(ch		
	CALL STRICTLY NOTED BY GG TO 14454JF (P9.11.9) GO TO 1475 CALL STRICTLY NOTED BY GG TO 14454JF (P9.11.1.9) GO TO 1475		!
360	1445		
344	1E(KG.E0.0.0) 10 1461FCALL SUB3 11AS(1) = 10 + CM SM SM SM SM SM SM SM	!	I
	1461 (ALL SUNA 1465 CONTINUE 1185 (1)=10HCONI(AL TO		
17.1			
175			ļ
380			
385			i
	545 W-=P jaAqail3485=LCaAqail5 545 A3=Aa244=LA4AA		
399	. OS		
		!	!
395	ا ت		
	2131 Fighat(ze wjat) FLCb (COMPTTOHSB) 2-39 F DMATTO UA=e.flc.l.sx.eTfA=B+fA,c.sx.ew6=e.flc.3+5X.		
	1 *A6=*•[1]•3}		

0.05	1995 VNEUN#13=7-278PQ/FS#TR#TS
404	01 09 0 2 09 0 2 09 0 09
7	
415	_ * % = %
470	CALL PULLS 16AS, 1F (PGLT 11.3) GO TO 1725\$C9=41.43*SOPT (69*2.7*Pg/F3)\$V9=U3 CALL SUPSACALL SURA DR=SOPT (4*A3/Pl)\$1F (Y9.E0.4)60 TO 1700 DR=SOPT (D8*P2-(2*P9)**2)-(2*PY)
425	1700 CALL SHESUB
439	
435	I A C C C C C C C C C

_	12050	,					
		COPRES /CHI/ (9.24) . (24) . (24) . (24) . (2	3.24) + 1 (24) + 1 (24) + 1 (24) + 5 (15,24) + + 1 (24,5) + ((15,5) +	:			
ı.	~ -	Q(29) •	- - -				
	,	COMMON ZCMP/ VA.AQ.WH-171-YG-TP-15.	VA. AQ. W. F. T. Y. Y. T. T. T. F. P. T. P.			:	:
		•	D1.V0.00.00.40.00.00.00.00.00.00.00.00.00.00		:	:	1
	ر		NOZZLE MOTSE (
		7-1					
		F(×J。GT。0。22) GC 10 3(10 PFIN(1)+N(2)+N(2)+X(4) (3) 8XJ882+N(4)+XJ8844	5**(Xo(5)#+6*p				
15	3.19	D. 21 - ((947 (AHOVE)) / 076475) *** F CO=14 0 (10 (10 (10 (10 (10 (10 (10 (10 (10 (
		00 3524 1=1415			1		
۲,	-	0AJPL AMD FLIGHT EFFECTS 0(1)=02+C(1+1)+C(1+2)*XJ+C(1+3)*XJ C1(1)) FLIGHT EFFECTS)+C(I+2)*XJ+C(I+3)*XJ**?+C(I+4)*XJ**3+C(I+5)*XJ**C++	•	i	: - - - -	į
	1	CHEMIN	F FFECTS				
	<u> </u>	F (K1.:0.1)	10011/100101010111				
	1	60 TO 3.24					
	- 1	DIM=(1-(V)/A0)*C/S(((1+1)*10)*PI/IRJ)) PVE(1)=10*ALOG1C((VR/(VH-VQ))**CZ(1*NFLT)*DUW)	.nFLT) *DUW)				
	77 76	CONTINUE IF (Y9.NE.4) GO 10 36245IF (TA.LE.	GO 10 3C244[F(18.LE.15)GO 10 30203AP=(R7/2)**2*#]	=			
	3128	- 4					
ري د		T(1)#5+3*T(2)#1080*1(3)#1620 00 3040 1+1-46					
!		SINCCIALL					
		X.)=A[.010 (F(1) *7*50FT(AA/P1) / (VH*/1.44 (1-71)))	1+Ace(1-71)))				
35		. Y	+KP. (K.2) *XJ+KF (K.3) 4X J882+FF (K.44) 8XJ983+FE (F.5) 4XJ*84	5.0			
	1942	SONT INCO					
		IF (K6.61.0) 60 [0 3050					
	9 3 7 6						
-		NI=3*K:-2					
		PJ1=1					
,	3 154	60 TO 3057 Ni=3*K6-1					ĺ
45	5,	PJJ=2 \$(1,J)=2(1)+(F(C1+1)+F(2J1)*((TR+T(PJ1))/(T(RJ1+1)+T(PJ1)))+F(B1) \$(1,1)=5(1,1)+PVF(1)	PJ11177(1(PJ1+1)+1(PJ11)))+F(B	•	!		
	3366						
35		EMIN AND AND					1
		FXIDAFILE	IL CALCULATION				
	1	DO 10 1=1.244X(1)=5(K+J)					
_ር	· -	Tree Plans Control of the Tree Control of the Contr					
		C 0 C 1 X 1 II					

1	ON TENUM. C-LL PRICETT (K) = V(2) \$0 (F) = V(1) \$0 (F) = V(3) C-ELL PRICETT (K) = V(2) \$0 (F) = V(1) \$0 (F) = V(3) C-ELL PRICETE LUZ. ENTRY SHR5 PML CALCULATION VJ=1, S-V10 (CALCULATION VJ=1, S-V10 (CALCULATION VJ=1, S-V10 (CALCULATION C-NTTANF C-NTTANF C-NTTANF C-NTTANF C-NTTANF C-NTTANF PETINN PETIN	
110 3110 CSURA 1704 CSURA 2 CSURA 2 CSURA 2 CSURA 1404 1404 1404	L PREPITE (K) = V(2) % O(R) = V(1) % O(R) = V(3) JIMUE & ELIDA. CALCULATION. A O	
12)4 12)4 1467 1467 1468 2 CSUR2 1406	#\$\frac{CalCulailOk}{3\infty} \frac{12\infty}{3\infty} \frac{1}{1}\frac{12\infty}{2\infty} \frac{1}{2\infty} \frac{1}{2\	
17)4 1608 1608 1608 1608 1608 1408	#\$\text{Calculation} \text{Calculation} \text{3.00} \t	
12)4 1267 14012 1404 1404 1404 1404 1404	1207 [=1,245Az=1900 3204 J=1,154A.]=(J+1)*10 1°(COS((A 1-5)*P+17180)-COS((AJ+5)*P+17140)) -227524-1°44-4°47J910*°(S(J+1716)) 11016	
12)4 (CSUR4 (CSUR4 (CSUR4 (CSUR2) (CSUR2)	10 (COS ((A 1-5) 40 1 / 140) - COS ((A 1-5) 40 1 / 140)	
170/4 CSUR4 CSUR4 CSUR2 CSUR2 CSUR2 CSUR2	1144F ALUGIO (A21+136+1,24939 BELY (1) / 10) TITHIF HC10 (A2)	
7674 CSUR4 CSUR4 CSUR2 CSUR2 CSUR2	ALUGIO (AZ) +130+1,24939 BELY (1) / 10) Titule III (A) ALUGIO (A)	
1267 09=19 09=19 04:10 14:11 14:11 14:12 14:14 1	1 Trust (1921) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
CSUR4 ENTRY (1921) CSUR4 ENTRY (1921) 34.01 34 34.04 (100 34 3		
CSUB4 ENTPY CSUB4 ENTPY 34.31 34.22 COULIN CSUB2 ENTRY COULIN 34.44 14.44 ENTPY ENTPY	, , , , , , , , , , , , , , , , , , , ,	
CSURA ENTRY (C) 100 34 (C) 1		
ENTRY 34-31 34-31 34-62 CSUR2 CQ D CQ D 34-74 14-74 ENTRY	70	
14.)1 346.2 COLITIN CSUR2 CSUR2 CSUR2 14.44 14.44 CSUR3 14.44 CSUR3	7	
34-31 DO 34 3462 COUTIN CSUR2 CSUR2 CSUR2 CSUR2 CSUR2 CSUR2 CSUR2 CSUR6 CSUR6 ENTPY	I VADIABLES	
3402 COUTIN CSUR2 C C D 3404 CSUR6 ENTRY		
CSUR2 ENTRY C CSUR2 ENTRY D 34 14 15 15 15 15 15 15 15 15 15 15 15 15 15	hFTHM1	
ENTRY D		
14.04 14.04 (Slibb ENTPY	H.S. COBESCITOR	
3404 CSIID6 ENTPY	J=1.24 500 34 6 1=1.1545(1.J)=5(1.J)+79	
1	Continuesment	
	нк	
C SPL AND	AND PML ADDITION	
= , 05 00		
ŀ	Y(J)=10+ALOG10(10+(Y1(J)/10)+10+4(Y1J)/10!)	
01+01+60=60 01+01+60=60 01-01+60=60	1+10+*(Y(J)/10)	
01=60	(60)	

1

	1:774 0:1=1	F 11, 4.6.433A	41790796	94704774 14.33.548	{·yv·1
03-082- 03-082-	63=(7J*(61-62))*62. 669_CQR=9453+PA*(111-1111/1011) C				
11	IF (DOP-61-1-12) GG IO 561				
661 16 	F(J)=x(J)=rnp % r0 f0 f7m F(J,En+1) r0 f0 f6 % F(J)=x(J+1)=c0P % E[J4_EY424]_60_10_563 % F(J)=x(J+1)=C0P	60 TO 670			
13 67 4 30 67 4 00	56.1 F (J) = x (J) = 4-COP 57.9 CONTINU 50 549; J=1.24				
70 680 XI	((J) = (J) PETIIPN END				

•			4) (un) (4 . 3 1 . 3 . 4 .	
· ·	de la service		,		
ı	tolder of the l	(3, 5) (3, 1) (4, 6) (4, 7) (4, 7) (4, 7) (4, 7) (4, 7) (4, 7) (4, 7) (4, 7) (4, 7) (4, 7) (4, 7) (4, 7) (4, 7) (4, 7) (4, 7) (7) (7) (7) (7) (7) (7) (7) (7) (7)	• •		
		+) + L2 (1) + L3 + L12 \(\begin{array}{c} \) + \(\cdot \) + \(\cdo \) + \(\cdot \) + \(\cdo \) + \(\cdot \) + \(\cdot \) + \(\cdot \)			
	: 🔪	.61.v6.88.8.1.61.9.v6.87.55.P9.89.81.11.51.4N1.NETT. 1145(2).11145.E0.81V6ASE161.10ENI.60	:		:
:-	- [
	DJ=17835001 ((V4/C4)892-1) DJ=1783[U4]6(((D882)808/D1)882)				
	DO 392 #341415	Par		!	:
	.67311	171991			
	- 1				
	SJEALO(1)(F(1)) 1. BUHOM/A.1				
2	() <u> </u>		:		
	((1-8) (5-(2) + (1-8)(6) (2) (1)	(1)=-(2,x-1)+(x)-51(x-1))*(6(2,x)-6(2,v-1))/(4)(x)-41(x-1))			
	01=0(11*x-1)*(5/1-5](x-1))*(0(1) 60 TO 6/				i
	X) 31				
52	250 . CONTINUE				
	F1=(20, 101 CH	11. 11 600 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
	00 364 = •5 62=0				
30	KEND=A-(1+1)				
	KSTAPTHOROO 33: MEKSTAHINKEND Zimi no zmek				
	:	· · · · · · · · · · · · · · · · · · ·			
35	* Zer Zer (Cos (F. 4) * STE(* 11 Ser 51 Zer 51) Co. 1 Freifi	((, ,, <))			
•	360 CO-11500F		:		
	0 + 30 - 5	FFECTS			!
6.7	S(KP. 1)=D^+G]+ -FALCG]O(]+.25+H])+DEK IF IED of 70 CO TO 200	1) • DEK			
	A. J) = 5 (KA.				
	1922 CO - LINIE				

1 100				
7 1				

41/10/90				
AFF 4. 4. A.	D_ENLI +5(15+24) +** (24+5) +* ((15+5) +* (105) +* (20) +* (20) +* (105) +* (20) +* (20) +* (105) +* (20) +*			
177 - 17-1	SPH-CATITUL FOR ET PRILP	DO 373 J=1,24 If (x(1), x(1),	GO TO 320 AN=10°0 (L (4, J) 0 (X(J) - L (5, J))) GO TO 330 AN=10°0 (L (6, J) 0 (X(J) - L (5, J))) AN=10°0 (L (4, J) 0 (X (J) - L (0, J))) V(J) = V(Z) = V(Z) + AN IF (1J, 67, AN) GO TO 370	~~~~~!~!!
Lather avide asset		2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	25 280 300 120 30	17.0 9AQ

					:		:
20 02 10 11 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	-	วาพสมจ	T. 15 SECTION CALCULATES TONE CORPEC				
11	!!!!		TOTAL THE TOTAL PROPERTY OF THE PROPERTY OF TH				
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	d		THE PROCEDURE OF TRANSFES A SPECTON	H IRPEGILARITY			
1	! 		OF THE FAS MOTSE CENTIFICATION DUCK A FURCTION OF THE UNCOPRECTED 1/3 G	JMENT (NOV 17.1969) AS	f !		:
1	_	_	S. (2001) Tel. 1Pri C(5PL+PT(0P) WENSION (29) (24) (15PL (24) (20) (29) (29) (29)	24) . Set pp (24) . Sp (25) .			
10	,				:		
1 1 1 1 1 1 1 1 1 1		- - -	_				
20. 0.1 1. (2.0) 1		•	2 20				
20	24.		- (1) Tas=(1)		i	-	:
20			2 Att) 30				
10 CONT. 10 CONT. 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, i		1 (SC(1) -61.00.00.00(1) -15.51.01 60 10)) ISPLF(I)=1			
11		7	CONTINUE CONTINUE	SPLF (1-1)=			1
11		t	4.0 17.1 20				
2	ÚĚ		IF (15PLF(1).Eu.0) 60 10 20				
1		ں	IP (I.EG.24) GO TO 15 STEP 48 MODIFIED SUCH INAT PRECEDIN	G AND FOLLOWING			
1		Ü	NUM-FLAGGED SOUND PRESSURE LEVELS F	MPLOYED IN AVERAGE.			
	35		=				
13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15		=					
13 5 14 15 15 0 20 25 75 75 75 19	به ر	2	841 = 54(11)				
13 5 14 15 15 7 20 8576.0 5			16 (1591 F(J) 160.0) 60 TO 14				
20 57 19 19 19 19 19 19 19 19 19 19 19 19 19		13	CONTINUE				
15	4.5	14	5-(1) = 50((J) 5-(D(I) = 150) +50(H) /2				
15		1	Gy 10-25				
20 SYLP(1) 25 C NITU 30 ST C ST (1) 31 S C (1)		51	5×1 p (24) = 5PL (24) +SC (23)				
85 E 111 Se (1) Se (1) Se (1) Se (1)	6.3	20	(I) 1d5 * (1) d1.45				
3) S-(1) S-(1) S-(1)		ξ	ج ک				
8.00	!	315 g	5.0				
\$\(\((1) \) \(\(\pi\)\) \(\pi\)		33					
		1	5.(1) x 5p(4)			!	

GENERAL ELECTRIC CO CINCINNATI OM AIRCRAFT ENGINE GROUP F/G 20/1 HIGH VELOCITY JET NOISE SOURCE LOCATION AND REDUCTION. TASK 6. --ETC(U) MAR 79 P R GLIEBE, R E MOTSINGER, A SIECKMAN DOT-OS-30034 F79AE0290 FAA-RD-76-79-6A NL AD-A094 298 UNCLASSIFIED 2 or 3

					1
	C				
**	C *STEP 6*	- *9			
		Pet 35 1=3+23			
	35 F	SHAR(1) = (SP(1)+SP(1+1)+SP(1+2))/3.			
	C *SYFP	78			ı
		(1) ldS = (1) dd leS			
65		SP[pp(2) = SP[(2)			
		(t) ds = (t) dd ds			
		D 40 1=4.24			
	40	SFLPP(1) = SPLPP(J-1)+SBAP(J-1)			
	U				
ù.	C #STEP A#				
		0.0 45 I=1,24			i
	57	F(1) = SPL(1)-SPLPF(1)			
	υ				
		*315 to 100 10 to 10 10			- i
75		CAAX # 0.0			
		Po 65 [#1+24			
		IF (I.GE.11.AND.I.LE.21) 60 10 50			- {
	C *FREC	5.047 OF FRE0\$5600HZ#			
		102 = F(1)/6.			
93		1(3 = 3,333		į	- 1
		GU 10 SS			
	+200	**			
	50	IC2 = F(1)/3			- 1
L	•	1. 1 = 6.656			
ŗ	ť	Jr (F(T) .LI.3.0) 60 TO 65			
		I* (F(I),6!,20,0) GC TO 60			- 1
		CMAX = AMAXI (CMAX+TC2)			
		60 TO 65			
	99	CMAX = AMAX) (CMAX+1C3)			- 1
26	59	C.NT INITE			l
		PICOP=CMAX			
	500	Pt 10RN			

जारीकार्वार	Suppointing parts 75/76 nFT=1	FIN 4.6+433A	06/06/78	14,33,59%	PAGF	-
-	SUMPOUTINE PATTR C PATTR PRINT AND EPM CALC SUBROUTINE					
ď	C COMMON/CH1/L(9,24).x(24).f(24).5(15,24).x(15,24).c(15,5).c(15,5).c(15,5).c(15,5).c(15,5).c(15,5).c(15,5).c(15,2).c(1	74) • Kh (24-5) • C (15-5) • <u>x (24) • C I (15) • RVE (20) •</u> (44) • V (3) • E I (15, 24) • • DJ • AJ • H • I) • E 9 P9 • AI I • SI • ANI • NE I				
1.0	COMMIN /CM3/ TTAS(2),TTCASF (6),TDCASE(6),TDENT(6) RFAL LyKK,K; PEAL MP9KT	DENT (6)				1
15	- 1					
20	FUPMAT(50x,9H* NO EGA) FURMAT(50x,1)H* FULL EGA) FURMAT(50x,2)H* 100 FOOT L FORMAT(50x,2)H* 100 FOOT L FORMAT(50x,1)H*,56,0,40EGREE 51Ax	790X ** ACOUSTIC ANGLE**				
35	1 * 160 PWL*) 1012 FORMAT(F7.0016F7.1) 1016 FORMAT(* EPNL**) 1016 FURMAT(* EPNL**)					
Q.	FORWAT(1H1///-	PROGRÂM - *				
A	PRINT 1-17 WRIE(6-1018) (116ASE (12-11-11-1999 PPINT 1000-(11AS(112-11-11-11-11-11-11-11-11-11-11-11-11-					
35	IF (SL-NE.0.0) GO IO 159 \$ JF (VC.NE.0.0) GO IO 159 PRINT 1002-H \$ GO TO 170 159 PRINT 1001-ALT DOINT 1002-SI	60 10 159				
4.)	GO TO 170 PRINT 1004.H IF (E9-1) 171,172,173	,				
ኒ _ያ	171 PRINT 1006 \$ 60 TO 200 172 PRINT 1009 \$ 60 TO 200 173 PRINT 1009 2-40 PRINT 1010-10 DO 370 1012-10 (1010-1010-1010-1010-1010-1010-1010-					
20	320 CONTINUE 11AS(1)=SHOASPL PPINI 1 14,11AS(1),(Q(1),[=1,1S),09. 11AS(1)=34PML 11AS(1)=44PM T					
8						Ì
	1					

149 540 540 540 540 540 540 540 540 540 540							
S		2101	_=				i
F (1, E ⁴ , 1) E 1 E E 1 E S E	o.	BHZS					
The fire field of the field of			15 (Vant Oates) 60 10 14Rc				ļ
11=0. NP=0.0 SJ=0. SJ=0. SJ=0. SJ=0. SJ=0. SJ=0. ADC 500 Jla FLYOV ASK=(AJ=10) KT=(H/CSIN MD-1/1: TO TO :00 ASK=(AJ=10) TO TO :00		ı	THISTORY OF CO. 10 TO THE PARTON				
23=0. 23=0. 23=0. 23=0. 23=0. 53=0. 53=0. 53=0. 63=0.	65	,					ł
23=0. SJ=0. SJ=0. SJ=0. SJ=0. ASK=(AJ=10 KT=(H/SIN T=(H/SIN T			MP = 0 = 0				
5350. 530. 540. 7685. 7685. 7685. 7685. 7685. 7685. 7685. 7685. 7685. 7687. 7687. 7687. 76888. 76888. 76888. 76888. 76888. 76888. 76888. 768888. 76888. 76888.			Z] = 0. Z] = 0.				
76.00 See Jia H See See Jia H See See Jia H See See See See See See See See See S			SJ=0.				
76.0 250 JEH/ 76.0 250 JEH/ 76.0 10 200 JEL/19 76.0	0,	U	FLYOVER TIME CALCULATION				
7670 HJ=H7 7685 (AJ-10 KT=(H/15IN 7685 (AJ-10 760 TO :00 760			DU 599 JA 1615				1
76.70 ASK (AJ-10 KT = (H/ (SIN 1E (JJ) = T(JJ) = T(T(J1) + (H/SIN/AU+P1/180.) /A0				
7685 KT=(AJ-10 7685 KT=(H/(SIN 7690 A290 760 T0 :00 760 E0 Jel		7470	W-J=H/(SIN(AJ*P1/180.)/CUS(AJ*P1/180	n		}	- 1
7685 KT=(H/15IN 7607 BT (1) = (1) 1 760	2		ASK# (AJ-10) +P1/180.				
540 010 = 1(1) =		74.9E	KIR(H/(SIN(BSK)/COS(BSK))*#J)/VG				
540 010 060 010 010 010 010 010 010 010 01		1203					ļ
500							
540 540 Jel 10, 11, 12, 12, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	Bo	064	- PF				- [
540 569 Jel 1 (1)=(1) (1)=(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		200	CONTINUE				
540 CO:1110 CO:1110 CO:1110 GO 10 610 FF (P(J) 617 GO 10 610 FF (P(J) 617 FF (J) 617 FF			KT#0(8)				
540 CONTING CO			1(J) #D(J) +K1				I
The Do Do Do Do Do Do Do D	ž	540	CO 11 INUE				
DO 610 Jet DO 610 Jet DO 610 Jet DO 60 Jet D		U					- [
610 Cold Mespel (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			3				
610 (2) TJ=T(J) 610 (2) TJ=T(J) CO-11N CJ=MP-10. CJ=MP-10. IN IT I IF (P(J) LT I IF (P(J)			-				
610 CJ=R(1) CJ=RP=10 CO-TIN TN 11 TN 11 TN 11 TF (1-1) LT TF (1	5	690	Mp=p(j)				l
C CJERP-10. C CARP-10. C CARP-10. IF (P (J) - LT (1/1) - LT (1/		,	17=1(7)				
TNITE TNIT		019	30,11,100				1
PO 640 JE IF (P (J)							
15 ((1-1) -11 589 689 689 689 689 689 689 689	£	• ! !	5				ł
689							
689 60 FILE 689 60 FILE 689 60 FILE 680 60 FILE 690 FILE 60 FILE 750 60 FILE 750 750 750 750 750 750 750 750 750 750				4			
699 Da 740 699 DA 740 699 DA 740 699 DA 740 740 CONTIN 750 CONTIN			-	-111			1
699 00 740 J=16-JJJ J=16-JJJ IF (P(J)-LI 09=F(JJ)-(I) 60 TO #20 750 CONIIM 750 750 750 760 TO 70 780 73-FILLS 10 10 11 10 11 11 10 11	6	689	Z				
1) - (1) 1 = 60 1) - (1) 1 = 60 1) - (1) 1 = 70 2) 01 09 2) 01 09 2) 02 01 09 2) 02 01 09 2) 02 01 09 2) 03 01 09 2) 04 01 09 2) 04 01 09 2) 05 01 09		669	00 740 JJ=1,15				- 1
15 (C) 10							
149 09=1(1)+(1)+(1)+(1)+(1)+(1)+(1)+(1)+(1)+(1)			ن 🗕				
749 GO TO M20 750 710-(27 60 TO M92 780 710-(11 780 710-(11 7811)-(11	15		. I.	•111			1
750 CONTIN 750 71 = 012 60 79 "97 780 73 = 019 71161 10 10			10 H20				
73 = 71 = 70 07 = 710 - (1) -		749					1
780 CT CA 790 CT CA 1194 CT CA 1194 CT CA 1194 CT CA 1194 CT CA 1195 CT		ŞC					
1) q=1,7 087 1+(-1) 7=60 9u=(31) T	_						
101211110		780	JEP (1				Ĺ
P(14) 1			-				
			4(16) 10				

115 C	SUMMOUTER PNTTA	P.F PNTTR	1=1-40 - 91/-1	FIN 4.54433A	04/06/78	06/06/78 14.33.544	PAGE	•
950 950 990 990 1653 1960	511		1-41EGPATION START					
90.9 91.0 95.0 990 1.50 1.50 1.040			= [F] \ (\langle \text{.} \PI \rangle \Taxt{.} \PI \rangle \text{.} \PI \rangle \text{.} \PI \rangle \Taxt{.} \PI \rangle \text{.} \PI					
990 990 990 1050 1080	120							
450 460 990 1950 1960	7.1		F (T.1.6T.1([+])) GO TO 1020 F=T(1) F= (.) TI=D7					ļ
990 990 1050 1960		- e ē	f(T1,t0,T(1+1)) 60 TO 950 =(1-T1)/(T(1+1)-T1) 				1	
1990 1950 1960	130		01=(LJ+T(1+1))/(1(1+2)+T(1+1)) RJ=p(1)+o1*(P(1+1)+P(1)) RJ=LT*(LJ) G0 T0 990					
1.720 F=[+1]			J=S.J+10.**(RJ/10.) TJ=TJ+.5 D_TO 910					
60 TO 310 1650 TF (1- 1760 F9HNT 1015 1990 VO=XXX PETHPN END	135	- 1	اکنت سے					
PETUPN PETUPN END	14.		17 (1. F = (1					
		9	Neu I					

41N 4.64433A

19V (J

UK/0K/7F 14.33.591

	-	MLOCK -1410 COMMODIZEM ZL1912433X(24)1812431812431815124318XLZ44531CL151531	
155_61_2[5] 156_61_2] 155_61_2[5] 156_61_2] 156_64_61_61_61_61_61_61_61_61_61_61_61_61_61_	ע	D(20)+PP(49)+FX(49)+P(29)+P(15+24)+YI(24)+Y(24)+CI(15)+PVF(29)+ 51(24)+G(2-24)+G2(15+2)+I(20)+D(20)+W(5)+A(4)+V(3)+FI(15+24) COMMONTAGE VS+RO+WB+FI*Y+IPZA+ ICI	PEAL
115_\$12(5)16_10_10_10_10_10_10_10_10_10_10_10_10_10_	AF JENG NORVE FIFICIE	[6[1] 00 (No.1) AC	584482891.5827.78.14.71
100,000 100,		-31242	
7.			
25 - 25 - 1 1 1 1 1 1 1 1 1 1	. ~	1 14-21 6:00.05132-23-77034:-31-549665-146-2695-	
1 42, 143 19, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12		1 14:077:5.43.32237.21.1304434.51163119.4429.	
75 147,147,147,176,176,176,176,176,176,176,176,176,17			
75 1 14.4.5.4.7.115.4.6.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.		1 142 N. S.	
1 15, 61, 25, 107, 012, 013, 013, 013, 013, 013, 013, 013, 013	7	1 144-54 52 154 646 8 154 54 55 54 54 56 56 56 56 56 56 56 56 56 56 56 56 56	
1 151,01 +9,04,94,95,94,954,954,954,954,954,954,957,127,127,127,127,127,127,127,127,127,12		1.15.15.107.0227.32.56691150.7574323.1343.	
1 10,47 1711 10,47 1711 10,47 171		1 151.01.9.4.94.94.94.5215.66443131.61.8088.577.6/	
35 -10.645.0241.771 -10.64.7727.33 -10.64.951.11 -10.64.951.11 -10.64.951.11 -10.64.951.11 -10.64.951.11 -10.64.951.11 -10.64.971.2.93 -10.67.11.2.1.29 -10.67.11.2.1.99 -10.67.11.2.1.99 -10.67.11.2.1.99 -10.67.11.2.1.99 -10.67.11.2.1.99 -10.67.11.3417.89 -10.67.11.3417.89 -10.67.11.3427.99 -20.64.11.3427.99 -20.64.11.3427.99 -20.64.11.3427.99 -20.64.12.11.3427.99 -20.64.12.12.1327.99 -20.64.1327.99 -20.64.1327.99 -2		UATA ((KK([:N1)-N=1+51+1=1+121)	
35 -10,47.72,-2,33 -10,47.72,-2,33 -10,610.39,44.445.455.43 -10,60.39,44.455.43 -10,60.39,316,-1,51 -10,60.44,-3,316 -10,60.44,-1,52,13,45 -10,60.39,316,13,45 -10,60.39,316,45 -10,60.39,44,-1,67 -1		1 -10.59.02.1.1710046.731992101391863636305.	
35 -10,97 33,-2,99, -10,00 23,-2,99, -10,00 25,-1,11,11,12,00 15,-1,65, -10,00 25,-1,11,11,12,12,13,-13,14, -10,00 25,-1,12,14, -10,00 25,-1,1	٦,	1 -10.47.722.3383449.375026.1.1171839349618.	
35 -10.640.28.44.45.2 -10.640.22.1.1.1.1.1.1.1.2.1.1.2.1.1.2.1.2.1.2		1 -11.97 337.9575669.846431.1.2694247143903.	
-10.0040221.11		1 -11.610.39.44.45.28478.554.26447.37891.4.7829465.	
35 -10.20.10.1.0.55 -10.20.10.1.0.59 -10.64441.78 -10.627.11.2-1.78 -10.64441.78 -10.627.11.2-1.67 -10.667.11.11.18 -10.67.11.1.18 -10.67.11.1.18 -10.67.11.1.18 -10.67.11.1.18 -10.67.11.18		1 -10.000221.1149910.29345.1.4076779611449.	
49 -17.52.7151.77 -17.62.7151.78 -17.62.7		- D-20 x D-1 S-26 kR - D-7 X R - D-7 X R - D-7 X R - D-7 X R - D-7 X R - D-7 X R - D-7 X R - D-7 X R	
-19.544444-3, 38 -11.55771-2, 105 -11.673.52-3, 56 -11.6736, 13, 52 -11.20.701, 42 -11.20.701, 42 -12.46.132, 142 -13.49.132, 142 -14.57.444-11.7 -15.46.132, 142 -16.53-9915.3 -16.53-9915.3 -16.70-2, 14.8 -17.49.70-2, 12.9 -22.7844-21.9 -19.70-2, 12.9 -22.7844-21.9 -19.70-2, 12.9 -22.7844-21.9 -23.7844-21.9	}	1 -17 -21-15 -1 -24-64-11 11 10 -1 -27-14 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	
-10.52771.2.105 -11.63.523.66 -11.68.7366.14 -12.676.1.11.11.11.11.11.11.11.11.11.11.11.11.		-10.444443.3H354611.9754-1.695872-1.549694-	
-11.63.523.66 -11.68.936.13 -11.80.936.13.42 -11.80.991.42 -12.66.1267.142 -13.19.089.25 -14.57.14611.7 -14.57.14611.7 -16.20.74611.7 -17.11.3417.6 -19.20.78.4621.1 -19.20.78.4621.1 -19.20.78.4621.1 -19.20.78.4621.1 -19.20.78.4621.1		1 -1:35/71.7-1657048-993265-4974295-7HP2992-	
-11.682936.13 DATA (ICK [1911]19. -11.26.1507.142 -13.19 (049.25) -11.886136.25 -14.57.14411.7 -17.11.3417.8 -14.70 7314.8 -14.70 7314.8 -14.70 7317.8 -14.70 7317.8 -14.70 7317.8 -14.70 7317.8		1 -11.63.523.66533610.5132.1.7844957993335.	
DATA (ICK INNIN) 1 - 11 - 20 570 - 11 - 14 - 27 14 - 4 - 22 1 - 13 - 19 0 9 - 9 - 2 - 22 1 - 15 - 19 90 - 15 - 3 - 22 1 - 16 - 57 14 - 11 - 7 1 - 16 - 57 14 - 11 - 7 1 - 17 - 11 34 11 - 7 1 - 19 - 70 4 14 - 11 - 7 1 - 19 - 70 4 14 - 27 - 27 - 9 1 - 19 - 70 4 14 - 27 - 27 - 9 1 - 19 - 70 4 14 - 27 - 27 - 9 1 - 22 - 76 - 46 - 26 - 26 - 26 - 26 - 26 - 26 - 2	64	1 -11.68/936.13487110.17443.1.9939655746519/	
-11.20.70*-1.44 -12.470*-1.14 -13.19 (6.4-9.2)! -11.48.7144*-11.7 -14.5744*-11.7 -14.5744*-11.7 -17.46*-11.7 -17.46*-11.7 -17.46*-11.7 -19.70 (3.4-7.2) -22.78*46*-26.4 -22.78*46*-26.4 -22.78*46*-26.4 -22.78*46*-26.4		CEK (Tohlor	
-17.46 120.4.1.2.1.1 1.1.4.1.2.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		1 -11.20.200-1.42.37878.568622-1.369792-5003525-	
-11,686.135,26 -14,57,464-11,7 -16,53-6915,2 -17,6474-11,7 -17,671,344-17,6 -77,673-17,6 -19,571,4,8 -19,571,4,8 -19,571,4,8 -19,571,4,8 -19,571,4,8 -19,571,4,8 -19,571,4,8 -19,571,4,8 -19,571,4,8		1 - 17-464 (26-47-4) HYGYSZ-1-4-4010HY	
- 4.57 44 1.7 - 6.53-99 5.3 - 7.96.41 0.5 - 7.96.41 0.5		1 -11 APAC 13 2 2 4 0 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7	
1 -16.5349915.3 1 -17.11 3411.7 1 -17.11 3417.8 1 -16.20 13.4-21.1 1 -16.20 1314.8 1 -19.20 4326.4 1 -19.20 4326.4 1 -19.20 4326.4 1 -19.20 4326.4			
1 -12,96-41,-10,7 1 -17,11 34,-17,1 1 -17,11 34,-17,6 1 -12,03 14,04,-14,8 1 -19,01 43,-21,1 1 -19,01 43,-25,4 1 -19,01 43,01,1 1 49,01,10,29,15,5		1 ~16.53+9915,34AB5,~5.695258,4.655082.~.9454673.	
1 -17.11 3417.6 1 -12.6814421.1 1 -14.50 7314.8 1 -19.70 4327.9 1 -27.84627.9 1 -27.94627.9 1 -49		1 -12.96-4110.84358R.531673.3.485636195912.	
1 -75-08/4421-1 1 -14-20 7314-8 1 -19-20 78-4526-4 1 -22-78-4526-4 P-1 (alcrit	1	1 -17-11 3417-64036-628926-4-8503268765574•	
1 -14-20 7314-8 1 -19-20 4327-9 1 -22-78-46-26-4 6 Feb (ALCHI 1 494 (1-()-1)-1	50	1 -25.08/4421.118273.229254.5.8179811.727925.	
1 -19.20 435-22.9 1 -22.78446-2644 F.1 (alcrit PATA (L(1.1)) 1		1 -14.20 73-14.89855-7.363175-4.301735494157-	
C DATA (1((3-1)) 1 49.00 (950) 15.00 (10.1) 1 40.00 (950) 15.00 (10.1) 1 40.00 (950) 15.00 (10.1) 1 40.00 (950) 15.00 (10.1) 1 40.00 (950) 15.00 (10.1) 1 40.00 (950) 15.00 (10.1) 1 40.00 (950) 15.00 (10.1) 1 40.00 (950) 15.00 (10.1) 1 40.00 (950) 15.00 (10.1) 1 40.00 (10.1) 1		1 -19-20 43-22-94389-4-5-963727-6-964622-1-109933-	
Port (alcord) 1 49.0.0 (45.20) 55.0.0 (45.20) 65.20		1 - < < (8"45 - < 76.49345 - 1.35545 (495.45.49343)	
1 49 (19		DATE ALLOHOM COPPETITIONS	
1 474-01-75/01-75-01-95/04-15-16-16-16-16-16-16-16-16-16-16-16-16-16-	ţ	TOTAL	
		1 474.60 73/4123-6142774161434160471414.41414.41414.41414.41414.41414.41414.41414.41414.41414.41414.41414.41414.41414.41414.4144.41	

tove	1	 		
16/116/72 14.13.544				
45/40/3)				
F 16. 4.6.4.43	21+0,46652286.56036831.87.32030103.49 22:40:42642534453.4.635834.72.8554.030103.47 32:13:3264573.51054336.7476037103.44 31:13:4464574.4603333.7704632103.44	3013,30037344,444032651,74.91030103,42 3013,27034859,42030675,94.63,.030103,42 3013,25034859,420301033100,20.030103,40 3013,55034859,44030103,100.0.030104,40	167:3013.25034859.46030103.100.0030103.40 160.3013.25034859.46030103.100.0030103.40 152:2540.22034859.38030103.100.0030103.38 170.3013.210348271.34029960.100.0029960.34 090.3113.14037349.30029960.100.0029960.32	14)+7712-1403489.29029960.100.0.029960.29 1503013,14034859.29029960.100.0.029960.29 1603013,14034859.29029960.100.0029960.20 16078160.17037349.31029960.100.0029960.31 1727950.23037349.37042285.44.29029960.37.2
7 / f6 (0 tal			1603013.25034 1603013.25034 1503013.25034 1703013.11040	200
HECE O TA PURBAT.	39.	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 04. 1 05. 1 10. 1 17. 1 21.
-	ı	45	7.	م و

C	S F. FECTOW EFFECT SUMEQUIINE	
C. EJECIS FOR COMPANY AND	FEFECT SUMEDUILINE 1, 7 (24), 7 (24), 7 (15,24), 7 (15,24), 7 (15,5), 7 (15,1), 7 (15,1), 7 (15,1), 7 (15,1), 7 (15,1), 7 (15,1), 1 (15	
CONTROLL CONTROLL CONTROLL CENT 1 S1 (24) 6 (20) 2 CONTROLL CENT CONTROLL CENT EARL CENT (CENT EARL CENT (CENT EARL CENT EAR	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
	1321.1(23).1(124).1(124).2(115).1EVE [20]. (152).1(23).1(124).1(124).2(115).1EVE [20]. (152).1(23).1(120).W(5).a(4).V(3).E1(15.24) (152).1(23).1(120).W(5).a(4).V(3).E1(15.24) (2.12.a.a.1.y.1.y.1.a.1.s.1.s.1.s.1.s.1.s.1.s.1.s.1.s.1.s	
51(24)-6(2+2)	(15.2), T(20), M(20), W(5), A(4), V(3), E1 (15.74) 5, AA, A(17.7), M(20), W(5), A(4), V(3), E1 (15.74) 5, AA, A(17.7), AA, AA, AA, AA, AA, AA, AA, AA, AA, A	
12.494.09.08.014.40.00.00.00.00.00.00.00.00.00.00.00.00	######################################	
CONTON YCC37 11036 PEAL L-10-L2-L2-L5-K6-L DO 110 1=1-15 DO 110 1=1-15 DO 110 1=1-15 PEAL L-10-L0-L0-L0-L0-L0-L0-L0-L0-L0-L0-L0-L0-L0	(7). FICASE (h). 10CASE (h). 10ENT (h) Link CTUR EFFECTS ANI/P1. SA**2-A7*A88*ANI/P1) SA**ANI/P1. SA**2-A7*A88*ANI/P1) EFFECTS Jail 10 180 C 2. G A DE 2. C 40 C 2. G A DE 2. C 5 G T C 2. C TO 165 S DE 2. C T C 2. C TO 165 S DE 2. C T C 2. C TO 165 S DE 2. C T C 2. C TO 165 S DE 2. C T C 2. C TO 165 S DE 2. C T C 2. C TO 165 S DE 2. C T C 2. C TO 165 S DE 2. C T C 2. C TO 165 S DE 2. C T C 2. C TO 2. G A DE 2. C T C 2. C TO 2. G A DE 2. C T C 2. C TO 2. C A DE 2. C T C C 2. C TO 3. C A DE 2. C T C C T C TO 4. C A DE 2. C T C C T C TO 4. C A DE 2. C T C C T C TO 4. C A DE 2. C T C C T C TO 4. C A DE 2. C T C C T C TO 4. C A DE 2. C T C C T C TO 5. C A DE 2. C T C C T C TO 5. C T C T C T C TO 5. C T C T C T C	
PEAL L-16-16-16-16-16-16-16-16-16-16-16-16-16-	### FFECTS ###################################	
C HARD, ALL E JEC DO 11) 1=1.15 DO 110 J=1.26 E 1 (1.) = 0.7 E 2 1.0 = 0.10 (1.0.2) DO 3 = 50 P (1 (1.0.2) E 3	### EFFECTS ###################################	
DO 11) 1=1.15 DO 110 J=1.26 PP = 1 = 14.2	ANI/PISK**2-A7*A8*ANI/PI) ANI/PISK**2-A7*A8*ANI/PI) 2.78*(D3/S4-1)**2*.04611 2.78*(D3/S4-1)**2*.04611 2.78*(D3/S4-1)**2*.04611 2.78*(D3/S4-1)**2*.04611 2.78*(D3/S4-1)**2*.04611 2.78*(D3/S4-1)**2*.04611 2.78*(D3/S4-1)**2*.049 2.78*(D3/S4-1)**2*.049 2.78*(D3/S4-1)**2*.049 2.78*(D3/S4-1)**2**3**3**3**3**3**3**3**3**3**3**3**3*	
10 10 112 124	ANI/PI>SK**2-A7*A8*ANI/PI) ANI/PI>SK**2-A7*A8*ANI/PI) 3) 6n 10 13 % IF (R9*E0.0) 60 TO 140 3-78*(D3/S4-1)**2-404611 5-11:* (ALOfi0(P4/1.91)**2).*,005*(TH-T0)*30 2+5 EFFECTS Jac(1)**() 0 0 10 180 0 2:0 % DE=2*PD2 % GO TO 220 0 2:0 % DE=2*D2 % GO TO 220 10 2:0 % DE=2*SRT((AJ-OJ)/20) % GO TO 220 *(AJ-OJ-29)**1) ECIS \$ IF (FP.GT. 12*F(J)) GO TO 250 \$ A F (FP.GT. 12*F(J)) GO TO 250 *(AJ-OJ-29)**1) \$ GO TO 240 \$ A F (FP.GT. 12*F(J)) GO TO 250 *(AJ-OJ-29)**1)	
FP= 1***/FSOP (4*APAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAPAP	ANI/PISSE*2-A7*A8*ANI/PI) 3) 6n TO 133 % IFP9-E0.01 60 TO 140 3) 6n TO 133 % IFP9-E0.01 60 TO 140 2-78*(D3/S6=1)**2*.04611 2-11: «(4_Orio(P4/1.91)**2)*.005*(TH-TO)*30 2-5-5 EFFECTS Jac(1)**(10.100.04/1.91)**2*.045) 0) 60 TO 189 0 2.0 % DE=2-0.02 % GO TO 220 10 2.0 % DE=2-0.02 % GO TO 220 10 2.0 % DE=2-0.03 % GO TO 220 10 2.0 % GO TO 220	
LA=SealOG104/21 D3=SQB114646APARARARARARARARARARARARARARARARARARARA	ANI/PI-SK**2-A7*A8*ANI/PII 3. Gn 10 133	
133 ASSA 1 (Yes of 1) 133 ASSA 1 140	ANI/P1-SA*2-A7*A8*ANI/P1) 3) 6n 10 133 % IF (R9.E0.0) 60 TO 140 3) 6n 10 133 % IF (R9.E0.0) 60 TO 140 4.78*(03/S6-1)**2-404611 5-(11.* (ALOnio (P4/1.9))**2)**.005*(TH-TO)*30 2H3 EFFECTS Jacif 1)**19 0 60 10 189 0 70 10 80 0 70 10 80 0 70 10 80 10 2:0 % nE=2*64*0 10 2:0 % nO 2:0	
133 AS=A6 F V94, C17, J 140 D2=L1-51 G0 T0 160 D2 D2 D3 D4 D4 160 D2 D3 D4 D4 160 D2 D4 D4 D4 160 D2 D4 D4 D4 160 D2 D4 D4 160 D2 D4 D4 160 D2 D4 D4 160 D3 D4 160 D4 D4	2.78=(03/254=1)==2-04611 2.78=(03/254=1)==2-04611 2.78=(03/254=1)==2-04611 2.45 2.45 2.45 2.45 2.45 2.45 2.60 2.00	
40	EFFECTS Jack 111 = (ALOnio (P4/1,91) = 0.05 = (TH-T0) + 30 2H 5 Jack 112 = (ALOnio (P4/1,91) = 0.05 = (TH-T0) + 30 2H 5 Jack 113 = (ALOnio (P4/1,91) = 0.05 = (TH-T0) + 30 Jack 113 = (ALOnio (P4/1,91) = 0.05	
	EFFECTS Jai(+1)*+19 Jai(+1)*+	
F (A.) (1) = 1.15	EFFECTS Jai(+1)**) Jai(+1)**) 10 165 8 DE=.64*D7 \$ 60 TO 220 10 160 180 U. 2.0 * OE=.2*D2 * GO TO 220 12 2 1 * OE=0 TO 270 12 2 1 * OE=0 TO 270 13 2 10 \$ DE=D2*SORT((AJ-OJ)/20) \$ 00 TO 220 * (AJ-OJ-20)*!) ECTS \$ 16 (FP.GT*, 12*F(J)) GO TO 250 \$ 16 (FP.GT*, 12*F(J)) GO TO 250	
165 16 165 16 165 16 165 16 16	Jai(+))++) To 165 & DE=-64*DP & GO TO 220 To 165 & DE=-7012 & GO TO 220 U 2-0 & D 180 E-4*(AJ-0J+hO)**2+.64) P2f & D 18 & DE=D2*SART((AJ-0J)/20) % NO TO 220 *(AJ-0J-29)+) \$ If (FP-0T-12*F(J)) GO TO 250 \$ 16 (FP-0T-12*F(J)) GO TO 250	
165	10 165 \$ DE=.644D2 \$ GO TO 220 0 50 10 180 0 2.0 4 DE=.2202 \$ GO TO 220 0 2.0 4 DE=.2202 \$ GO TO 220 10 210 \$ DE=D2=SORT((AJ-0J)/20) \$ GO TO 220 10 210 \$ DE=D2=SORT((AJ-0J)/20) \$ GO TO 220 10 210 \$ DE=02=SORT((AJ-0J)/20) \$ GO TO 220 10 210 \$ DE=02=SORT((AJ-0J)/20) \$ GO TO 220 10 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	
165 15 (A) 15 (A) 16 (0) to 10 ft	
1 1 1 1 1 1 1 1 1 1	F-4*(AJ-0J*K0)**?*,64) 22' & nF=0 \$ 60 T0 270 T0 210 \$ DE=D2*SARI((AJ-0J)/20) \$ 60 T0 220 *(AJ-0J-20)*1) ECIS GO 10 24' FP-11**2-0F \$ 60 T0 250	
F (P - -	72' & nE=0 \$ 60 TO 270 TO 210 \$ DE#D2*SART((AJ-OJ)/20) \$ 00 TO 220 *(AJ-OJ-20)*1) ECIS GO 10 24' FP-11**2-0F \$ 60 TO 240	
210 DE=0.05-0.06.05-05-06.06.05-05-06.06.05-05-06.06.05-05-06.05-05-06.05-05-06.05-05-05-05-05-05-05-05-05-05-05-05-05-0	TO 210 % DE#D2*SORT((AJ-OJ)/20) % NO TO 220 *(AJ-OJ-20)*1) ECIS 60 10 24 60 10 24 60 10 260	
C S C C C C C C C C	ECTS FCTS 60 Tn 24" FP=11**2-0F \$ GO TO 240	
727 D0 75.0 1	\$ F(FP.GT.).12*F(J)) GO TO 250 GO TO 24' FP-11**2-DE \$ GO TO 260	
F(F(J)/FP.6 E1(I+J)=2*(Z-60 E1(I+J)= Z-50 E1(I+J)= 		
240 E1(1,J)=,2*(240 E1(1,J)=,2*(250 E0(11,J)= 250 E0(11,J)= 250 E0(11,J)= 270 E0(11,J)= 270 E0(11,J)= 310 E0(11,J)=,2*(310 E0(11,J)		
240 E1 (1-3)= 253 E0 (1-3)= 253 C0.111/0E 270 C0.111/0E 270 C0.111/0E 270 E1(1-3)= 270 C0.111/0E 270 E1(1-3)= 310 03=03=07 7.5=0.75 7.5=0.		
26.3 CO-111AUE 27.0 CO-111AUE 27.0 CO-111AUE 27.0 CO-111AUE 27.0 CO-111AUE 27.0 F 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E \$ 60 TO 260	
240 C0.4ITHE 240 IF (A(1). C XJ=M/5.0 f 1 330 03=03=02.0 C Y 15.40.6 PE		
743 IF (A(1)) C EJECION XJ=M/5.0 f 1 330 03=03=0.20 C XJ=M/5.0 f 1 Y I= 82.0 F PE		
310 03=03=07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GO TO 829	
310 03=03=01 110 03=03=020 C 03=03=02 C 7 15 40 2 C		
34 30:25 34 30:25 2-4 20:25 2-2-4 24:24 ×	F (W.) [-] - - - - - - - - -	
30 30.5 5 C-9 CB = 1 A	NI/171 & COECA-CO	
1 1 1 2 2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2	SISTANCE ALE PEACTANCE	
1F (XJ. 1 1. 04929) 60	4929) 60 (0 46,	
	4A606*(xJ-,0R924)	•
(3)	110FCC - 31X) \$15FCD - 3	
T 1 (X) 4 I	741) 66 10 44.	
	(x.1-,247945)	
Je-1 - 37	1431 Ca 10 4K	
7,7=0 55 440 T1=(A(1)+,45=A(.	•• 45 PA (3) PY J) / 1 2	
(3) N/ (f X + L *) = Sa	(9)	

	•					
	Ľ,					
		10 (35 Mail + 1 + 1 + (KH-2) 520+510+540			 1	i i l
		000 01 05 % AX. ex. ox. ox. ox. ox. ox. ox. ox. ox. ox. o				
	<u>.</u>			٠		
	3	D 1-E (J) 46.2431 H8 1.2				1
	י ע	x4=(D1=11)/(Q0+Q(2))-1/1VN((D3+Q(4)/15)/Q0)	(40)			
!		IF(A(1), NF. 10) GO TO 590				
5.5		D=KR+, 4J-2			 -	-
		(d)) 19#54				
		X4=DX (1D)				
	593	A3=0 1 NO 736 I=9+15.5 K6=0 \$ AJP=({I+1}*10=90)*PI/180	*10-901*P1/180			-
			3 (AJR) + 42)			
70	ر	AASOBOTION DEP DEFIETION				
,	,	A2#10#41 0610 (1-A1)		,	!	
		10. 690 K=1.25 % X (= (2.56 x (1)) /35) 6K				
	ن					
1		10 × 11 × 10 × 10 × 10 × 10 × 10 × 10 ×				İ
Ţ.			Exercise 1			
			3/6959*/ 3**6			
		527=527-11.6		***************************************		
	C	EFFECT FOR ALL REFLECTIONS				
		00 675 JJ=1:1191F(JJ.6T.1) GO TO 669%LP=(D3	77-S61 * FAN (AJR) + XJ			
٠. م		00 IO 6/ú				
	349	L2=L2+03*TA4(A.1R)				
	21	IF (L2.61.L3) GO TO 5R3				
	5/5	30W1 1: OD				}
į	3 (101/(725+2Va-(1-171))aa01+1414				
ť	064	CO .TTring				
	٥	PUNES LEVEL FEDUCTION				١
		YJ=1.5*P1*(COS((AJ-5)*P1/180)-COS((AJ+5)*P1/180))	180)			
		A3=A3+(2.227525E-644E-84YJ#10##(K6/10))				i
36	7.19	3014116				
		A3=1:00(0010(A3)+130-6.45175				
	755	CONTINUE \$ 44=19*AL 0616 (A4/3)				
	U	DIDECTIVITY EFFECTS				
55		00 A15 [#1.15 \$ AJ#([+])#10 \$ A5=A4				١
		IF (A.J.LT.0.)-50) GO TO HOD & IF (A.J.LT.0.) GO TO PLO	TO HIS			
	COX	47.2 A 5-47.2				
	- C-	F1(1,1)=F1(1,1)+(A5#1,2)				
	AIS	CO1. \$ 10.16				
401						

3.0 REFERENCES

- 1. Clapper, W.S., Sieckman, A., Motsinger, R.E., et al., "High Velocity Jet Noise Source Location and Reduction: Task 3 Experimental Investigation of Suppression Principles," General Electric Company, FAA-RD-76-79, 111-1, (to be published).
- Stringas, E.J., Sieckman, A., Whittaker, R., Wolf, J., et al, "High Velocity Jet Noise Source Location and Reduction: Task 6 - Noise Abatement Nozzle Design Guide," General Electric Company, FAA-RD-76-79, V1, (to be published).
- 3. "Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity for Use in Evaluating Aircraft Flyover Noise," SAE, ARP 866, August 1964.
- 4. "Method of Calculating the Attenuation of Aircraft Ground-to-Ground Noise Propagation During Takeoff and Landing," SAE, AIR 923, August 1965.

4.0 UNIFIED AEROACOUSTIC PREDICTION MODEL (M*G*B) COMPUTER PROGRAM

4.1 INTRODUCTION

This section describes the computational algorithms and associated computer program that provide the necessary link between the symbolic representation of the M*G*B model and the actual numerical results of the prediction method.

The computer program is written in FORTRAN IV language. It has been run on both the GE/Honeywell 6080 and CDC 7600 computers, and can easily be modified for running on other systems. The program subdivides the jet plume utilizing a built-in grid system which requires minimal input for specification. This grid system can be superseded by the user through more complex input if desired. The nozzle geometry is input through discrete point coordinates for each nozzle element boundary, and up to 109 elements can be input for a given case. A maximum of 24 axial stations along the jet plume is permitted, and up to 200 radial points per axial station can be accommodated. These limits can be changed if so desired by modifying the appropriate DIMENSION and COMMON statements in the program logic.

The limiting assumptions made in developing the method have been discussed in Reference 1, but it is appropriate to summarize them here to warn against indiscriminate violation of these limitations. They are as follows:

- The exhaust nozzle elements should be coplanar; that is, each tube or chute of a multielement configuration should exhaust at the same axial plane. However, nozzle element exit planes can be staggered, provided that the mixing layer of a given element does not impinge on the wall of another element.
- The jet exhaust gases must all be of the same constituent, for the calculation cannot accommodate gas mixtures or species concentrations.
- 3. Within any nozzle element, the flow is assumed to be uniform at the exit plane.
- 4. The time-averaged static pressure is assumed to be constant and uniform throughout the jet flow field and surrounding ambient field.
- 5. The exhaust nozzle elements must discharge axially, radial mean flow and swirl are neglected in the model.

6. The effects of shock formations on mixing and turbulence levels are neglected.

These assumptions and limitations are those which pertain to the types of problems which can be analyzed. There are, of course, additional assumptions that went into the formulation of the model itself which may restrict the accuracy of the model, but which do not restrict the type of problem which can be analyzed. The user is advised to consult Reference 2 for the details of the model formulation.

4.2 PROGRAM NOMENCLATURE AND SYMBOL CONVENTION

The jet plume and nozzle geometry coordinates are computed in the MAIN routine. The jet plume is divided into KX axial slices, specified by KA ($1 \le KA \le KX$). The FORTRAN symbol variables for the various coordinate parameters and indices are shown in Figure 4-1. Note that the radial subdivision, specified by index M ($1 \le M \le NR$), proceeds in increments DSIG(KA), from SIG = RMIN(KA) to the maximum value set by NR. The value of NR is determined during the calculation from the location where the axial momentum flux is within a certain tolerance of being equal to the ambient level, i.e.,

$$|RU2 - RU2E(1)| \le RU2M$$

where RU2M is a specified input tolerance. The maximum allowable value of NR can be specified by the input variable IQUIT. The program dimension sizes limit KX and IQUIT to the following maximum values:

$$KX \leq 24$$
 IQUIT ≤ 200

The nozzle geometry itself is input as a number (NEST) of boundary elements. Each element is specified by coordinate pairs RA(I,J) and DALP(I,J), where RA(I,J) denotes the radius and DALP(I,J) denotes the angular increment, as shown in Figure 4-1. The index I denotes the boundary contour point number, and the index J denotes the boundary number. The reference angular location for each boundary is given by ALPO(J). For each boundary, the exit-plane values of total pressure PT(J) and total temperature TT(J) are also specified. Boundary Number One (J=1) is always considered to be the ambient field.

The farfield acoustic calculations are performed on either a constantradius arc or a sideline parallel to the jet axis, according to whether the
input variable NUMANG is set equal to 1 or 2, respectively. For NUMANG = 1,
the input DIST is the arc radius; for NUMANG = 2, DIST is the sideline distance. The acoustic arena geometry specification in terms of FORTRAN variables is shown in Figure 4-2. Note that a distinction is made between the
source-to-observer distance RSTAR and the nozzle-to-observer distance RADIUS.
The observer angle relative to the jet axis THETA is always in units of
radians, while the observer angle relative to the inlet axis THETD is in
units of degrees. The farfield sound pressure level SPL(I,J) is computed at

(b) Nozzle Exit Plane Example Nozzle
Element Coordinates

(a) Radial/Axial Plane

Figure 4-1. FORTRAN Symbol Convention for Coordinates and Geometric Variables.

Figure 4-2. FORTRAN Symbol Convention for Acoustic Arena Variables.

every 1/3-octave frequency from FMIN to FMAX, at ten-degree increments from THETD = 20° to 160° .

A list of the important FORTRAN symbols used in the computer program is given in Table 4-1, along with their algebraic equivalents where possible. A complete description of all of the input variables and examples of input preparation are given in Section 4.5.

4.3 DESCRIPTION OF PROGRAM AND SUBROUTINES

A flow chart of the computer program logic is shown in Figure 4-3. It indicates the sequence of operations, the interconnections of various portions of the program, and their functions. A description of the main program and each of the subroutines is given in the following paragraphs.

4.3.1 MAIN

The main program initiates the computation and controls the sequence of operations. It reads the input data, computes the grid system for the aerodynamic flow field, and computes the various required nozzle exit plane flow parameters such as velocities, Mach numbers, momentum and enthalpy fluxes, etc. The main program prints out all input data, nozzle exit conditions, nozzle geometry, and coordinate system parameters.

The main program controls and executes the jet plume flow field computation. After each axial slice has been evaluated, the MAIN program calls subroutine SLICE to perform the requested acoustic calculations. Upon completing the calculations at all axial slices, MAIN then calls OUTPUT to perform some final calculations and print out the farfield noise levels. If additional cases are requested, the entire procedure is repeated, beginning with reading of input data; otherwise the execution is halted.

4.3.2 ARCCOS(X)

This is a function subroutine which computes the principal value of the arc cosine of the variable X. It is used in MAIN in evaluating certain angles relating boundary coordinate points and flow field location points.

4.3.3 ERF(X)

This function subroutine evaluates the error function of argument X using polynomial approximations as given in Reference 3. It is used in MAIN for evaluating flow field integrands.

Table 4-1. List of FORTRAN Symbols.

FORTRAN Symbol	Meaning	Related Subroutines
	•	
AA	Air attenuation factor	ATMOS
AAA	Intermediate variable	LSPFIT, MAIN
ABDTH	$ \Delta \Phi $	MAIN
ABLE	Intermediate variable	MAIN
ABPA	$ \phi - \alpha $	MAIN
ACH	Mach number M	MAIN
ACHM	Average mach number	MAIN
ACH2	M ²	MAIN
AK	Sound level constant	MAIN, OUTPUT
AL	Lighthill parameter	MAIN
ALFA	Frequency constant	MAIN
ALP	Angle	MAIN
ALPHT	Convection constant α_t	SLICE
ALPØ	Reference boundary angle	MAIN
AMUIN	Input turbulence constant μ _t	MAIN
AMULT	Intermediate value for μ _t	MAIN
AO	Speed of sound Ca	MAIN
ATOTAL	Total flow area	MAIN
В	Intermediate variable	LSPFIT
BETA	Shock strength parameter β	SHOCK
BETAIN	Input turbulence constant β _t	MAIN
BETAMC	Convection constant β_{MC}	MAIN, SLICE
BK	Intermediate variable	SLICE
BKR	Intermediate variable	MAIN
BOT	Intermediate variable	LSPFIT
BUG	Intermediate variable	MAIN
С	Constant	LSPFIT
CH	Spreading parameter C_{h}/C_{m}	MAIN
CHX	Spreading parameter Chx	MAIN
CTOCO	Ratio of C _i /C _a	SLICE
CM	Spreading parameter C _m	MAIN
CMAX	Intermediate variable	TPNLC
CMC	Intermediate variable	MAIN
CMMC	Spreading constant C ₁	MAIN
CMVR	Spreading constant C2	MAIN
CNST	Constant	SLICE
CO	Ambient speed of sound Ca	MAIN, SLICE, SHOCK
COEF	Conversion factor	OUTPUT
CONV	Convection factor	SHOCK
CONVF	Flight dynamic factor	SLICE
CONVO	Convection factor	SLICE
CONV2	Modified convection factor C	SLICE
CONT	Constant	SLICE

Table 4-1. List of FORTRAN Symbols (Continued).

FORTRAN		
Symbol	Meaning	Related Subroutines
CON2	Constant	SLICE
COST	Cos Φ	MAIN
COSTO	Cos Φ	MAIN
CP	Specific heat C _p	MAIN
CT	Cos θ	SLICE, CRD
CTSQ	$\cos^2 \theta$	SLICE
CTH	Cos θ	SHOCK
CVR	Intermediate variable	MAIN
DALP	Boundary coordinate $\Delta \alpha$	MAIN
DDTHE	Tolerance on $\Delta\theta$, radians	SLICE
DDTHED	Tolerance on $\Delta\theta$, degrees	SLICE
DELRA	Transformed boundary radius Δv	MAIN
DELSIG	Transformed radius Δr	MAIN
DELTA	Turbulence constant δ_{t}	MAIN
DELTIN	Input array of $\delta_{f t}$	MAIN
DEQ	Equivalent diameter D _{eq}	MAIN, SLICE, SHOCK
DIA	Reference D _{eq}	MAIN
DIRECT	Directivity factor	SLICE
DIST	Sideline or arc distance	MAIN, SLICE
DJET	Reference diameter	MAIN
DPHI	Δφ	MAIN
DRMIN	Δr - minimum value	SLICE
DS	Source strength amplitude	SLICE
DSIG	Δr	MAIN, SLICE
DSPL	Mixing noise pressure	SLICE, OUTPUT
DSPL1	Intermediate variable	SHOCK
DSPL2	Intermediate variable	SHOCK
DTHED	Δθ, degrees	SLICE
DTHM	Maximum increment of φ	MAIN
DU	Intermediate variable	MAIN
DUDR	∂U/∂ r	MAIN, SLICE
DV	Eddy volume dV	SLICE
DX	Axial step size Δx	MAIN, SLICE
EF	Enthalpy flux	MAIN
EFE	Enthalpy flux	MAIN
EM	Mach number	SLICE
EMACH	Exit Mach number	MAIN, SLICE, OUTPUT
F	Intermediate variable	LSPFIT
FAC	Intermediate variable	PNLC
FC	Center frequency	SLICE
FIRSTU	Flight velocity U _a	MAIN, SLICE
FIS	Intermediate variable	MAIN
FM	Mass flow	MAIN

Table 4-1. List of FORTRAN Symbols (Continued).

FORTRAN Symbol	Meaning	Related Subroutines
Symbol	meaning	Related Suproutines
FMAX	Maximum observed frequency	MAIN, OUTPUT
FMIN	Minimum observed frequency	MAIN, OUTPUT
FO	Observed frequency	SLICE, SHOCK, OUTPUT
FP	Peak frequency	SHOCK
FR	Frequency ratio	SLICE
FRSQ	Intermediate variable	SLICE
FS	Source frequency	SLICE
GAM	Specific heat ratio Y	MAIN, SHOCK
GAMA	Gas constant parameter	MAIN
GEXP	Gas constant parameter	SHOCK
GM	Shielding function	CRD
GOSQ	Shielding function	CRD
G2	Shielding function	SLICE, CRD
HF	Spectrum function	SLICE
HPSI	Intermediate variable	MAIN
HTR	Stagnation enthalpy	MAIN
1	Index	ALL
IC	Index	LSPFIT
I DENT	Title (80-characters)	MAIN
ΙΙ	Index	TPNLC
IMH	Index	MAIN
IQUIT	Maximum number of points	MAIN
IS	Index	MAIN
ISSY	Index	MAIN
ISAVE	Index	LSPFIT
ISYM	Symmetry indicator	MAIN
ΙΤ	Symmetry indicator	MAIN
J	Index	ALL
JMAX	Maximum band number	OUTPUT, SHOCK, SLICE
JMIN	Minimum band number	OUTPUT, SHOCK, SLICE
Jl	Index	CRD
J11	Index	CRD
J2	Index	CRD
J21	Index	CRD
J211	Index	CRD
K	Index, also wave number	MAIN, SLICE, PNLC
KN	Surrounding boundary index	MAIN
KNCAS	Case counter	MAIN
KNK	Surrounding boundary index	MAIN
KX	Number of axial slices	MAIN
L	Index	MAIN
LAVG	Shock spacing	SHOCK
LEAF	Number of boundary leaves	MAIN

Table 4-1. List of FORTRAN Symbols (Continued).

FORTRAN Symbol	Meaning	Related Subroutines
0,11001	The difference of the differen	neideed bubliodelines
LEAV	Number of boundary leaves	MAIN
LINE	Printout counter	MAIN
LPHI	Number of flow field leaves	MAIN
LQ	Index	MAIN
M	Index	MAIN, SLICE
MACH	Mach number	SLICE
MAXNOY	Maximum noy value	PNLC
MC	Convection Mach number	SLICE, SHOCK, CRD
MCIN	Input array of M _C	SLICE
MIN	Input array of Mo	CRD
MJ	Jet exit Mach number	SHOCK
N	Index, also number of shocks	MAIN, SHOCK, LSPFIT
NBREF	Reference boundary number	MAIN
NCASE	Number of cases	MAIN
NCBDY	Number of centerbody points	MAIN
NCELL	Number of shock cells	MAIN, SHOCK
NCOUNT	Counter	LSPFIT
NN	Acoustic calculation selector	MAIN, SLICE
NODE	Intermediate variable	MAIN
NOV	Minimum number of points	MAIN
NOY	Noy value	PNLC
NPAGE	Page counter	MAIN
NPR	Printout counter	MAIN
NPRINT	Printout selector	MAIN, SLICE
NPTS	Number of points	LSPFIT
NR	Number of points	SLICE, CRD
NR1	Index	SLICE
NTP	Number of turning points	SLICE, CRD
NUM	Number of boundary points	MAIN SLICE
NUMANG	Arena selector	MAIN, SLICE
NUMK NXC	Number of boundary points	MAIN LSPFIT
OAPWL	Overall power level	OUTPUT
OASPL	Overall sound pressure level Observed Strouhal number	OUTPUT, PNLC
OBSTN		OUTPUT
OMEGR PAA	Source radian frequency Ambient static pressure	SLICE
P.C.	Intermediate variable	MAIN
PC		PNLC
PHI	Gas constant parameter Angle φ	MAIN
PI	Angle φ Constant π	MAIN SLICE OUTDUT
P1 P102	T/2	MAIN, SLICE, OUTPUT
P102 P12	7/2 2n	CRD
r12	∠ n	MAIN

Table 4-1. List of FORTRAN Symbols (Continued).

PNDB PNdB PNL PNL OUTPUT, PNLC OUTPUT, PNLC PNLT PNLt, tone-corrected PNL OUTPUT, PNLC OUTPUT POWER Exponent MAIN PS Ambient static pressure MAIN, SHOCK PSQ Square of acoustic pressure OUTPUT PSQM Mixing noise p^2 SHOCK PSQS Shock noise p^2 SHOCK PSQT Total noise p^2 SHOCK PSQT Total noise p^2 SHOCK PWL Power level OUTPUT OUTPUT PWR Sound power, watts OUTPUT OUTPUT QUITDUT QUITD	FORTRAN Symbol	Meaning	Related Subroutines
PNL PNL PNL, tone-corrected PNL OUTPUT, PNLC PNLT PNLT, tone-corrected PNL OUTPUT PNLC, tone-corrected PNL POWER Exponent MAIN MAIN PS Ambient static pressure OUTPUT PSQN Square of acoustic pressure OUTPUT PSQN Mixing noise p^2 SHOCK PSQS Shock noise p^2 SHOCK PSQT Total noise p^2 SHOCK PT Stagnation pressure MAIN, SHOCK OUTPUT PWR Sound power, watts OUTPUT PWR Sound power, watts Q Intermediate variable MAIN MAIN RAD Flow integration variable R_0 MAIN RAD Flow integration variable R_0 MAIN RADIUS Nozzle-to-observer radius R SLICE, OUTPUT, ATMOS RADX Argument R_0/C_{mx} MAIN RCBDY Centerbody radial cooordinate MAIN RCC Intermediate variable MAIN RCC Intermediate variable MAIN RCC Intermediate variable MAIN MAIN RCC Intermediate variable MAIN RCC Intermediate variable MAIN RCC Intermediate variable MAIN RCC Intermediate variable MAIN RCC Intermediate variable MAIN RCC Intermediate variable MAIN RCC Intermediate variable MAIN RCC Intermediate variable MAIN RCC Intermediate variable MAIN RCC Intermediate variable MAIN RCC Intermediate variable MAIN RCC Intermediate variable MAIN RCC Intermediate variable MAIN RCC Intermediate variable MAIN RCC Intermediate variable MAIN RCC Intermediate variable MAIN RCC Intermediate variable MAIN RCC Intermediate variable RCC Intermediate Variable MAIN RCC Intermediate Variable MAIN RCC Intermediate Variable RCC Intermediate Variable MAIN RCC Intermediate Variable RCC Intermediate Variable MAIN RCC Intermediate Variable RCC Intermediate Variable RCC Intermediate Variable RCC Intermediate Variable RCC Intermediate Variable RCC Intermediate Variable RCC Intermediate Variable RCC Intermediate RCC Interme			
PNLT PNLt, tone-corrected PNL MAIN PS Ambient static pressure PSQ Square of acoustic pressure PSQ Square of acoustic pressure PSQM Mixing noise p ² PSQS Shock noise p ² PSQT Total noise p ² PSQT Total noise p ² PSQT Total noise p ² PWL Power level PWR Sound power, watts Q Intermediate variable RA Boundary coordinate radius RAD Flow integration variable R _O RADO Flow integration variable R _O RADO Flow integration variable R _O RADO Flow integration variable R _O RADO Flow integration variable R _O RADO Flow integration variable R _O RADO Flow integration variable R _O RADO Flow integration variable R _O RADO Flow integration variable R _O RADIUS Nozzle-to-observer radius R RADO Flow integration variable R _O RADO Centerbody radial cooordinate RADO Flow integration variable MAIN RCBDY Centerbody radial cooordinate RFO Intermediate variable RHOE Density ρ RHOE Ambient density ρ _A RHOE Ambient density ρ _A RHOE Ambient density ratio RHIN Input radius RJET Reference jet density ratio RMIN MInimum value of r RMINS Exit plane value of RMIN RMINSQE Square of RMIN RMINSQE Square of RMINEX RMP Dummy variable RND Normalized radius r/Deq RND Normalized radius r/Deq RND Normalized radius r/Deq RND Normalized radius r _O RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG CRD RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG Source location correction (R*/R) ² SLICE	*		
POWER Exponent PS Ambient static pressure PSQ Ambient static pressure PSQ Square of acoustic pressure PSQM Mixing noise_p² SHOCK PSQS Shock noise p² SHOCK PSQS Shock noise p² SHOCK PSQT Total noise p² SHOCK PSQT Total noise p² SHOCK PWL Power level PWL Power level PWR Sound power, watts Q Intermediate variable RA Boundary coordinate radius RAD Flow integration variable Ro RADO Flow integration variable Ro RADO Flow integration variable Ro RADO Nozzle-to-observer radius R RADIUS Nozzle-to-observer radius R RCBDY Centerbody radial cooordinate PRCRIT Critical pressure ratio RCRC Intermediate variable RFO Intermediate variable RFO Intermediate variable RFO Intermediate variable RHOE Ambient density ρα RHOESQ ρ² RHOESQ RIN Input radius RJET Reference jet density ratio RMIN Minimum value of r RMINK Exit plane value of RMIN RMINSQ Square of RMINEX RMIN Minimum value of r RMINSQ Square of RMINEX RMP Dummy variable RND Normalized radius r/Deq RND Normalized radius r/Deq RND Normalized radius r/Deq RSIG Turning point radius r RSIG? rol RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG Source location correction (R*/R)² SLICE SLICE SLICE RDCR RSIGC RDCR RSIGC RSORSQ Source location correction (R*/R)² SLICE SLICE SLICE RDCR RSIGC RDCR RSIGC RDCR RSIGC RS			
PS Ambient static pressure PSQ Square of acoustic pressure PSQM Mixing noise p² PSQS Shock noise p² PSQT Total noise p² PT Stagnation pressure PML Power level PWR Sound power, watts Q Intermediate variable RA Boundary coordinate radius RADD Flow integration variable R₀ RADO Flow integration variable R₀ RADIS Nozzle-to-observer radius R RADS Centerbody radial cooordinate PRCRIT Critical pressure ratio RCRC Intermediate variable RHO Density ρ RHOE Ambient density ρa RHOE Ambient density ρa RIN Input radius RJICE RIN Input radius RJICE RIN Input radius RJICE RIN Minimum value of r RMINEX RMIN		- ·	
PSQ Square of acoustic pressure $PSQM = PSQM		•	
PSQM Mixing noise p2 SHOCK PSQS Shock noise p2 SHOCK PSQT Total noise p2 SHOCK PT Stagnation pressure MAIN, SHOCK PT Stagnation pressure MAIN, SHOCK PWL Power level OUTPUT Q Intermediate variable MAIN RA Boundary coordinate radius MAIN RAD Flow integration variable R ₀ MAIN RADO Flow integration variable R ₀ MAIN RADIUS Nozzle-to-observer radius R RADX Argument R ₀ /C _m x MAIN RCBDY Centerbody radial cooordinate MAIN PRCRIT Critical pressure ratio SHOCK RCRC Intermediate variable MAIN RFO Intermediate variable MAIN RFO Intermediate variable MAIN RFO Intermediate variable MAIN RHOD Density ρ MAIN RHOESQ ρ2 RHOR AZ imuthally-averaged ρ MAIN, SLICE RIN Input radius SLICE, CRD RMIN Minimum value of r MAIN RMINEX Exit plane value of RMIN MAIN RMINEX Exit plane value of RMIN MAIN RMINSQE Square of RMINEX RMP Dummy variable MAIN RNSQE Square of RMINEX RMP Dummy variable MAIN RND Normalized radius r/Deq RSIG Turning point radius r ₀ SLICE, CRD RSIG Turning point radius r ₀ SLICE, CRD RSIG Turning point radius r ₀ SLICE, CRD RSIG Turning point radius r ₀ SLICE, CRD RSIG Turning point radius r ₀ SLICE, CRD RSIG Turning point radius r ₀ SLICE RSORSQ Source location correction (R*/R) ² SLICE			
PSQS Shock noise $\overline{p^2}$ SHOCK PSQT Total noise $\overline{p^2}$ SHOCK PT Stagnation pressure MAIN, SHOCK PWL Power level OUTPUT QWR Sound power, watts OUTPUT Q Intermediate variable MAIN RAD Flow integration variable Ro MAIN RADO Flow integration variable Ro MAIN RADIUS Nozzle-to-observer radius R RADS Argument Ro/Cmx MAIN RCBDY Centerbody radial cooordinate MAIN RCBDY Centerbody radial cooordinate MAIN RCBOY Centerdiate variable MAIN RFO Intermediate variable MAIN RFO Intermediate variable MAIN RHOE Ambient density ρa MAIN RHOE Azimuthally-averaged ρ MAIN, SLICE RIN Input radius RJET Reference jet density ratio MAIN RMIN MINIMUM value of r RMIN Minimum value of r RMIN Minimum value of r RMIN Minimum value of r RMINSQ Square of RMIN RMINSQ Square of RMIN RMINSQE Square of RMIN RMSQE Square of RMIN RMSQE Square of RMINEX RMP Dummy variable RND Normalized radius r/Deq RSIG Turning point radius r RSIG Turning point radius r RSIG Turning point radius r RSIG Turning point radius r RSIG Turning point radius r RSIG Turning point radius r RSIG CRD RSIG Turning point radius r RSIGC RSORSQ Source location correction (R*/R) ² SLICE			
PSQT Total noise p2 PT Stagnation pressure MAIN, SHOCK PT Stagnation pressure PWL Power level PWR Sound power, watts Q Intermediate variable RA Boundary coordinate radius RAD Flow integration variable R ₀ RADO Flow integration variable R ₀ RADIUS Nozzle-to-observer radius R RADX Argument R ₀ /C _m x RADX Argument R ₀ /C _m x RCBDY Centerbody radial cooordinate PRCRIT Critical pressure ratio RFO Intermediate variable RFO Intermediate variable RHOE Ambient density ρ _a RHOE Azimuthally-averaged ρ RIN Input radius RJET Reference jet density ratio RMIN Minimum value of r RMIN Minimum value of r RMIN Minimum value of r RMIN Square of RMINEX RMP Dummy variable RND Normalized radius r/Deq RND Normalized radius r/Deq RSIG Turning point radius r RSIG Turning point radius r RSIG Turning point radius r RSIC CRD RSIG Turning point radius correction (R*/R) ² SLICE RSICE RSORSQ Source location correction (R*/R) ² SLICE	•		
PT Stagnation pressure PWL Power level OUTPUT PWR Sound power, watts Q Intermediate variable MAIN RA Boundary coordinate radius MAIN RAD Flow integration variable R _O MAIN RADO Flow integration variable R _O MAIN RADO Flow integration variable R _O MAIN RADOUS Nozzle-to-observer radius R SLICE, OUTPUT, ATMOS RADX Argument R _O /C _m x MAIN RCBDY Centerbody radial cooordinate MAIN PRCRIT Critical pressure ratio SHOCK RCRC Intermediate variable MAIN RFO Intermediate variable MAIN RHOE Ambient density ρ _A MAIN RHOE Adimuthally-averaged ρ MAIN, SLICE RHOR Azimuthally-averaged ρ MAIN, SLICE RIN Input radius SLICE, CRD RJET Reference jet density ratio MAIN RMINEX Exit plane value of RMIN MAIN RMINEX Square of RMIN MAIN RMINEX Square of RMIN MAIN RMINSQ Square of RMIN MAIN RMINSQE Square of RMINEX RMP Dummy variable MAIN RND Normalized radius r/Deq MAIN RND Normalized radius r/Deq MAIN RND Normalized radius r/Deq MAIN RND Source radius r _O CRD RSIG Turning point radius r _O SLICE, CRD RSIG Turning point radius r _O SLICE, CRD RSIG Turning point radius r _O SLICE, CRD RSIG Turning point radius r _O SLICE RSORSQ Source location correction (R*/R) ² SLICE	•		
PWL Power level PWR Sound power, watts Q Intermediate variable RA Boundary coordinate radius RAD Flow integration variable R _O RADD Flow integration variable R _O RADD Flow integration variable R _O RADD Nozzle-to-observer radius R RADD Argument R _O /C _m × RCBDY Centerbody radial cooordinate PRCRIT Critical pressure ratio RFO Intermediate variable RFO Intermediate variable RHOD Density ρ RHOE Ambient density ρ _A RHOE Adimuthally-averaged ρ RIN Input radius RJET Reference jet density ratio RMIN Minimum value of r RMIN Minimum value of r RMIN Minimum value of RMIN RMINSQ Square of RMIN RMINSQ Square of RMIN RMINSQE Square of RMINEX RMP Dummy variable RND Normalized radius r/Deq RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG Turning point radius r/R*/R) ² SLICE RMAIN MAIN RMINSIC Scurce location correction (R*/R) ² SLICE CRD RSIG1 Turning point radius r _O RSIG2 RSORSQ Source location correction (R*/R) ² SLICE CUTPUT MAIN ROCRD RSIG2 CRD RSIG2 CRD RSIG3 CRD RSIG2 CRD RSIG2 Source location correction (R*/R) ²	•	•	
PWR Sound power, watts Q Intermediate variable RA Boundary coordinate radius RAD Flow integration variable R _O RADDO Flow integration variable R _O RADIUS Nozzle-to-observer radius R RADX Argument R _O /C _m x RADX Argument R _O /C _m x RADX Centerbody radial cooordinate RCRIT Critical pressure ratio RCRC Intermediate variable RFO Intermediate variable RHO Density ρ RHOE Ambient density ρ _a RHOESQ ρ ² RHOR Azimuthally-averaged ρ RIN Input radius RJET Reference jet density ratio RMIN Minimum value of r RMINEX Exit plane value of RMIN RMINSQ Square of RMIN RMINSQE Square of RMINEX RMP Dummy variable RND Normalized radius r/Deq ROOT ROOT (zero) of g ² RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG Turning point radius r _O RSIG CRD RSIG1 r _{O1} RSIG2 r _{O2} RSORSQ Source location correction (R*/R) ² SLICE	-	-	•
Q Intermediate variable	•		
RA Boundary coordinate radius RAD Flow integration variable R _O RADO Flow integration variable R _O RADO Nozzle-to-observer radius R RADIUS Nozzle-to-observer radius R RADIUS Nozzle-to-observer radius R RADIUS Nozzle-to-observer radius R RADIUS Nozzle-to-observer radius R RADIUS Nozzle-to-observer radius R SLICE, OUTPUT, ATMOS RADX Argument R _O /C _m x MAIN RCBDY Centerbody radial cooordinate MAIN RCBDY Centerbody radial cooordinate MAIN RCRC Intermediate variable RFO Intermediate variable RHO Density ρ MAIN RHOE Ambient density ρ _a MAIN, SLICE RHOESQ ρ ² RHOR Azimuthally-averaged ρ RHOR Azimuthally-averaged ρ RJET Reference jet density ratio RMIN Minimum value of r RMIN Minimum value of r MAIN RMINSQ Square of RMIN RMINSQ Square of RMIN RMINSQ Square of RMIN RMINSQ Square of RMINEX RMP Dummy variable RND Normalized radius r/Deq RND Normalized radius r/Deq RNOT Root (zero) of g ² SLICE ROOT2 √2 RO Source radius r _O RSIG Turning point radius r _G RSIG Turning point radius r _G RSIG Turning point radius r _G RSIG CRD RSIG1 r _G RSIG2 r _G 2 RSORSQ Source location correction (R*/R) ² SLICE	•		· · · · · ·
RAD Flow integration variable R _O MAIN RADO Flow integration variable R _O MAIN RADIUS Nozzle-to-observer radius R SLICE, OUTPUT, ATMOS RADX Argument R _O /C _m x MAIN RCBDY Centerbody radial cooordinate MAIN PRCRIT Critical pressure ratio SHOCK RCRC Intermediate variable MAIN RFO Intermediate variable OUTPUT RHO Density ρ MAIN RHOE Ambient density ρ _a MAIN, SLICE RHOESQ ρ ² SLICE RHOR Azimuthally-averaged ρ MAIN, SLICE RIN Input radius SLICE, CRD RJET Reference jet density ratio MAIN RMIN Minimum value of r MAIN RMINEX Exit plane value of RMIN MAIN RMINSQ Square of RMIN RMINSQ Square of RMINEX RMP Dummy variable MAIN RND Normalized radius r/Deq MAIN ROOT Root (zero) of g ² SLICE ROOT2 √2 SLICE ROO Source radius r _O CRD RSIG Turning point radius r _G SLICE, CRD RSIG Turning point radius r _G CRD RSIG2 r _{G2} RSORSQ Source location correction (R*/R) ² SLICE	•		
RADO Flow integration variable R_O MAIN RADIUS Nozzle-to-observer radius R SLICE, OUTPUT, ATMOS RADX Argument R_O/C_mx MAIN RCBDY Centerbody radial cooordinate MAIN PRCRIT Critical pressure ratio SHOCK RCRC Intermediate variable MAIN MAIN RFO Intermediate variable OUTPUT RHO Density ρ MAIN AMIN MAIN SLICE RHOESQ ρ^2 SLICE RHOR Azimuthally-averaged ρ MAIN, SLICE, CRD RIN Input radius SLICE, CRD RJET Reference jet density ratio MAIN MAIN RMINEX Exit plane value of r MAIN MAIN RMINEX Exit plane value of RMIN MAIN RMINSQ Square of RMINEX MAIN MAIN RMINSQ Square of RMINEX RMP Dummy variable MAIN ROOT Root (zero) of g^2 SLICE ROOT2 $\sqrt{2}$ SLICE RSIG Turning point radius r_O SCRD RSIG Turning point radius r_O CRD RSIG r_{O2} Source location correction $(R*/R)^2$ SLICE			
RADIUS Nozzle-to-observer radius R SLICE, OUTPUT, ATMOS RADX Argument $R_{\rm O}/C_{\rm m}x$ MAIN RCBDY Centerbody radial cooordinate MAIN PRCRIT Critical pressure ratio SHOCK RCRC Intermediate variable MAIN RFO Intermediate variable MAIN RFO Intermediate variable MAIN RHOE Ambient density $\rho_{\rm a}$ MAIN, SLICE SLICE RHOESQ $\rho_{\rm a}^2$ SLICE RHOR Azimuthally-averaged ρ MAIN, SLICE SLICE RIN Input radius SLICE, CRD RJET Reference jet density ratio MAIN RMINEX Exit plane value of RMIN MAIN RMINSQ Square of RMIN MAIN RMINSQ Square of RMIN MAIN RMINSQE Square of RMINEX MAIN RMINSQE Square of RMINEX MAIN RND Normalized radius $r/D_{\rm eq}$ MAIN ROOT Root (zero) of g^2 SLICE ROOT2 $\sqrt{2}$ SLICE SLICE RO Source radius $r_{\rm O}$ SLICE, CRD RSIG Turning point radius $r_{\rm G}$ SLICE, CRD RSIG $r_{\rm G1}$ CRD RSIG1 $r_{\rm G2}$ Source location correction $(R*/R)^2$ SLICE			
RADX Argument $R_{\rm O}/C_{\rm m}x$ RCBDY Centerbody radial cooordinate MAIN PRCRIT Critical pressure ratio SHOCK RCRC Intermediate variable MAIN RFO Intermediate variable OUTPUT RHO Density ρ MAIN RHOE Ambient density $\rho_{\rm a}$ MAIN, SLICE RHOESQ ρ^2 SLICE RHOR Azimuthally-averaged ρ MAIN, SLICE RIN Input radius SLICE, CRD RJET Reference jet density ratio MAIN RMIN Minimum value of r MAIN RMINEX Exit plane value of RMIN MAIN RMINSQ Square of RMIN MAIN RMINSQ Square of RMINEX MAIN RMNSQE Square of RMINEX MAIN RMP Dummy variable MAIN RND Normalized radius $r/D_{\rm eq}$ MAIN ROOT Root (zero) of g^2 SLICE ROOT2 $\sqrt{2}$ SLICE RO Source radius r_0 CRD RSIG Turning point radius r_0 CRD RSIG1 $r_{\sigma 1}$ CRD RSIG2 $r_{\sigma 2}$			
RCBDY Centerbody radial cooordinate MAIN PRCRIT Critical pressure ratio SHOCK RCRC Intermediate variable MAIN RFO Intermediate variable OUTPUT RHO Density ρ MAIN RHOE Ambient density ρ_a MAIN, SLICE RHOESQ ρ_a^2 SLICE RHOR Azimuthally-averaged ρ MAIN, SLICE RIN Input radius SLICE, CRD RJET Reference jet density ratio MAIN RMIN Minimum value of r MAIN RMINEX Exit plane value of RMIN MAIN RMINEX Exit plane value of RMIN MAIN RMINSQ Square of RMIN MAIN RMINSQ Square of RMINEX MAIN RMIN RMP Dummy variable MAIN RND Normalized radius r/Deq MAIN ROOT Root (zero) of g^2 SLICE ROOT2 $\sqrt{2}$ SLICE CRD RSIG Turning point radius r_{σ} SLICE, CRD RSIG Turning point radius r_{σ} SLICE, CRD RSIG1 $r_{\sigma 1}$ CRD CRD RSIG2 $r_{\sigma 2}$ Source location correction $(R*/R)^2$ SLICE			
PRCRIT Critical pressure ratio SHOCK RCRC Intermediate variable MAIN PRO Intermediate variable OUTPUT MAIN PRO Density ρ MAIN MAIN RHOE Ambient density ρ_a MAIN, SLICE SLICE RHOESQ ρ^2 SLICE RHOR Azimuthally-averaged ρ MAIN, SLICE SLICE, CRD RJET Reference jet density ratio MAIN Minimum value of r MAIN Minimum value of r MAIN RMINEX Exit plane value of RMIN MAIN RMINSQ Square of RMIN MAIN RMINSQ Square of RMIN MAIN RMINSQE Square of RMINEX MAIN RMIN RMIN RMINEX Exit plane value of r MAIN RMIN SQE Square of RMINEX MAIN RMIN RMIN SQE Square of RMINEX MAIN RMIN RMIN ROOT Root (zero) of g^2 SLICE ROOT2 $\sqrt{2}$ SLICE ROOT2 $\sqrt{2}$ SLICE SLICE RO Source radius r_O CRD RSIG Turning point radius r_O SLICE, CRD RSIG1 r_{O1} CRD RSIG2 r_{O2} Source location correction $(R*/R)^2$ SLICE	RADX		
RCRC Intermediate variable MAIN RFO Intermediate variable OUTPUT RHO Density ρ MAIN RHOE Ambient density ρ_a MAIN, SLICE RHOESQ ρ_a^2 SLICE RHOR Azimuthally-averaged ρ MAIN, SLICE RIN Input radius SLICE, CRD RJET Reference jet density ratio MAIN RMIN Minimum value of r MAIN RMINEX Exit plane value of RMIN MAIN RMINSQE Square of RMIN MAIN RMINSQE Square of RMINEX MAIN RMP Dummy variable MAIN RND Normalized radius r/D_{eq} MAIN ROOT Root (zero) of g^2 SLICE ROOT2 $\sqrt{2}$ SLICE RO Source radius r_0 CRD RSIG Turning point radius r_0 SLICE, CRD RSIG1 $r_{\sigma 1}$ CRD RSIG2 $r_{\sigma 2}$ CRD RSORSQ Source location correction $(R*/R)^2$ SLICE	RCBDY		MAIN
RFO Intermediate variable OUTPUT RHO Density ρ MAIN RHOE Ambient density ρ_a MAIN, SLICE RHOESQ ρ_a^2 SLICE RHOR Azimuthally-averaged ρ MAIN, SLICE RIN Input radius SLICE, CRD RJET Reference jet density ratio MAIN RMIN Minimum value of r MAIN MAIN RMINEX Exit plane value of RMIN MAIN RMINEX Exit plane value of RMIN MAIN RMINSQ Square of RMIN MAIN RMINSQ Square of RMINEX MAIN RMP Dummy variable MAIN RND Normalized radius r/D_{eq} MAIN ROOT Root (zero) of g^2 SLICE ROOT2 $\sqrt{2}$ SLICE ROOT2 $\sqrt{2}$ SLICE ROOT3 Source radius r_0 CRD RSIG Turning point radius r_0 CRD RSIG1 r_{01} CRD CRD RSIG2 r_{02} CRD CRD RSIG2 Source location correction $(R*/R)^2$ SLICE		•	
RHO Density ρ MAIN RHOE Ambient density ρ_a MAIN, SLICE RHOESQ ρ^2 SLICE RHOR Azimuthally-averaged ρ MAIN, SLICE RIN Input radius SLICE, CRD RJET Reference jet density ratio MAIN RMIN Minimum value of r MAIN RMINEX Exit plane value of RMIN MAIN RMINSQ Square of RMIN MAIN RMNSQE Square of RMINEX MAIN RMP Dummy variable MAIN RND Normalized radius r/D_{eq} MAIN ROOT Root (zero) of g^2 SLICE ROOT2 $\sqrt{2}$ SLICE RO Source radius r_O CRD RSIG Turning point radius r_O SLICE, CRD RSIG1 $r_{\sigma 1}$ CRD RSIG2 $r_{\sigma 2}$ SOurce location correction $(R^*/R)^2$ SLICE	RCRC	Intermediate variable	MAIN
RHOE Ambient density ρ_a MAIN, SLICE RHOESQ ρ_a^2 SLICE RHOR Azimuthally-averaged ρ MAIN, SLICE RIN Input radius SLICE, CRD RJET Reference jet density ratio MAIN Minimum value of r MAIN Minimum value of RMIN MAIN RMINEX Exit plane value of RMIN MAIN RMINSQ Square of RMIN MAIN RMINSQE Square of RMINEX MAIN RMP Dummy variable MAIN RND Normalized radius r/D_{eq} MAIN ROOT Root (zero) of g^2 SLICE ROOT2 $\sqrt{2}$ SLICE RO Source radius r_0 CRD RSIG Turning point radius r_0 SLICE, CRD RSIG1 $r_{\sigma 1}$ CRD CRD RSIG2 $r_{\sigma 2}$ Source location correction $(R*/R)^2$ SLICE	RFO	Intermediate variable	OUTPUT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RHO	Density ρ	MAIN
RHOR Azimuthally-averaged ρ MAIN, SLICE RIN Input radius SLICE, CRD RJET Reference jet density ratio MAIN RMIN Minimum value of r MAIN RMINEX Exit plane value of RMIN MAIN RMINSQ Square of RMIN MAIN RMINSQE Square of RMINEX MAIN RMP Dummy variable MAIN RND Normalized radius r/D_{eq} MAIN ROOT Root (zero) of g^2 SLICE ROOT2 $\sqrt{2}$ SLICE RO Source radius r_0 CRD RSIG Turning point radius r_{σ} SLICE, CRD RSIG1 $r_{\sigma 1}$ CRD RSIG2 $r_{\sigma 2}$ CRD RSORSQ Source location correction $(R*/R)^2$ SLICE	RHOE	Ambient density $ ho_{f a}$	MAIN, SLICE
RIN Input radius SLICE, CRD RJET Reference jet density ratio MAIN MAIN RMIN Minimum value of r MAIN MAIN RMINEX Exit plane value of RMIN MAIN RMINSQ Square of RMIN MAIN RMINSQE Square of RMINEX MAIN RMNSQE Square of RMINEX MAIN RND Dummy variable MAIN RND Normalized radius r/D_{eq} MAIN ROOT Root (zero) of g^2 SLICE ROOT2 $\sqrt{2}$ SLICE Sclice RO Source radius r_O CRD RSIG Turning point radius r_O SLICE, CRD RSIG1 r_{O1} CRD CRD RSIG2 r_{O2} CRD CRD RSIG2 Source location correction $(R*/R)^2$ SLICE	RHOESQ	ρ_2^2	SLICE
RJET Reference jet density ratio MAIN RMIN Minimum value of r MAIN RMINEX Exit plane value of RMIN MAIN RMINSQ Square of RMIN MAIN RMNSQE Square of RMINEX MAIN RMP Dummy variable MAIN RND Normalized radius r/D_{eq} MAIN ROOT Root (zero) of g^2 SLICE ROOT2 $\sqrt{2}$ SLICE RO Source radius r_O CRD RSIG Turning point radius r_O SLICE, CRD RSIG1 r_{O1} CRD RSIG2 r_{O2} CRD RSORSQ Source location correction $(R*/R)^2$ SLICE	RHOR	Azimuthally-averaged $ ho$	MAIN, SLICE
RMIN Minimum value of r MAIN MAIN RMINEX Exit plane value of RMIN MAIN RMINSQ Square of RMIN MAIN RMINSQE Square of RMINEX MAIN RMP Dummy variable MAIN RND Normalized radius r/D_{eq} MAIN ROOT Root (zero) of g^2 SLICE ROOT2 $\sqrt{2}$ SLICE RO Source radius r_O CRD RSIG Turning point radius r_O SLICE, CRD RSIG1 r_{O1} CRD RSIG2 r_{O2} CRD RSORSQ Source location correction $(R*/R)^2$ SLICE	RIN	Input radius	SLICE, CRD
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RJET	Reference jet density ratio	MAIN
RMINSQ Square of RMIN MAIN RMNSQE Square of RMINEX MAIN RMNSQE Square of RMINEX MAIN RMP Dummy variable MAIN RND Normalized radius r/D_{eq} MAIN ROOT Root (zero) of g^2 SLICE ROOT2 $\sqrt{2}$ SLICE RO Source radius r_O CRD RSIG Turning point radius r_O SLICE, CRD RSIG1 r_{O1} CRD CRD RSIG2 r_{O2} CRD CRD RSIG2 r_{O3} Source location correction $(R*/R)^2$ SLICE	RMIN	Minimum value of r	MAIN
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RMINEX	Exit plane value of RMIN	MAIN
RMP Dummy variable MAIN RND Normalized radius r/D_{eq} MAIN ROOT Root (zero) of g^2 SLICE ROOT2 $\sqrt{2}$ SLICE RO Source radius r_0 CRD RSIG Turning point radius r_σ SLICE, CRD RSIG1 $r_{\sigma 1}$ CRD CRD RSIG2 $r_{\sigma 2}$ CRD CRD RSORSQ Source location correction $(R^*/R)^2$ SLICE	RMINSQ	Square of RMIN	MAIN
RND Normalized radius r/D_{eq} MAIN ROOT Root (zero) of g^2 SLICE ROOT2 $\sqrt{2}$ SLICE ROOT3 $\sqrt{2}$ SUICE ROOT5 $\sqrt{2}$ SUICE RO Source radius r_0 CRD RSIG Turning point radius r_0 SLICE, CRD RSIG1 r_{01} CRD CRD RSIG2 r_{02} CRD CRD CRD RSORSQ Source location correction $(R^*/R)^2$ SLICE	RMNSQE	Square of RMINEX	MAIN
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RMP	Dummy variable	MAIN
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RND	Normalized radius r/D _{eq}	MAIN
RO Source radius r_0 CRD RSIG Turning point radius r_σ SLICE, CRD RSIG1 $r_{\sigma 1}$ CRD CRD RSIG2 $r_{\sigma 2}$ CRD CRD CRD RSORSQ Source location correction $(R^*/R)^2$ SLICE	ROOT		SLICE
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ROOT2	$\sqrt{2}$	SLICE
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RO	Source radius ro	CRD
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RSIG		SLICE, CRD
$\begin{array}{ccc} \text{RSIG2} & r_{\sigma 2}^{-1} & \text{CRD} \\ \text{RSORSQ} & \text{Source location correction } (\text{R*/R})^2 & \text{SLICE} \end{array}$	RSIGI	•	
RSORSQ Source location correction $(R*/R)^2$ SLICE	RSIG2	• •	
	RSORSQ	Source location correction (R*/R) ²	
	•	Source-to-observer radius R*	SLICE

Table 4-1. List of FORTRAN Symbols (Continued).

FORTRAN Symbol	Meaning	Related Subroutines
RU	Mass flux ρU	MAIN
RU2	Momentum flux oU2	MAIN
RU2E	Exit plane value of ρU^2	MAIN
RU2M	Minimum value of ρU^2	MAIN
RU2REF	Reference value of pU2	MAIN
R1	Intermediate variable	CRD
R2	Intermediate variable	CRD
S	Intermediate variable	TPNLC
SA	Intermediate variable	MAIN
SAC	Intermediate value of $ au_{f \varphi}$	MAIN
SACO	Intermediate value of τ_{ϕ}	MAIN
SAR	Intermediate value of τ_r^{γ}	MAIN
SARO	Intermediate value of $ au_{f r}$	MAIN
SAX	Intermediate value of τ_{X}	MAIN
SAXO	Intermediate value of τ_{X}	MAIN
SBAR	Intermediate variable	TPNLC
SDU	Intermediate value of $\partial U/\partial r$	MAIN
SEFE	Integral of enthalpy flux	MAIN
SGN	Sign	LSPFIT
SGN1	Sign	CRD
SGN2	Sign	CRD
SG1	Intermediate variable	CRD
SG2	Intermediate variable	CRD
SHIELD	Shielding integral	SLICE, CRD
SIC	Intermediate value of τ_{ϕ}	MAIN
SIG	Radius r	MAIN
SIGN	Sign r ²	ERF
SIGSQ	-	MAIN
SIGR SINT	Radius r Sin θ	MAIN, SLICE
SINTO	$\sin \theta$	MAIN MAIN
SIR		
SIX	Intermediate value of $\tau_{\mathbf{r}}$ Intermediate value of $\tau_{\mathbf{x}}$	MAIN MAIN
SPL	SPL array	ALL
SPLL	Intermediate variable	TPNLC
SPLMAX	Maximum SPL	SHOCK
SPLP	Intermediate variable	TPNLC
SPLPP	Intermediate variable	TPNLC
SPLU	Intermediate variable	TPNLC
SRU	Mass flux integral	MAIN
SRUM	Mass flux integral	MAIN MAIN
SRU2	Momentum flux integral	MAIN
SRU2M	Momentum flux integral	MAIN

Table 4-1. List of FORTRAN Symbols (Continued).

ELBIBIN		
Symbol	Meaning	Related Subroutines
SS	SPL array	PNLC
SSPL	Shock noise SPL array	SHOCK
STC	Azimuthal shear stress $ au_{\phi}$	MAIN
STR	Radial shear stress τ _r	MAIN
STRFR	Radial coordinate stretching factor	MAIN
STRFX	Axial coordinate stretching factor	MAIN
STX	Axial shear stress t _x	MAIN
SUE	Reference velocity	MAIN
SUM	Sum	OUTPUT
SUMNOY	Sum of noy value	PNLC
SUMSPL	Sum of SPL	PNLC
SUM1	Sum	CRD
SUM2	Sum	CRD
SU8	Integral of source strength	MAIN
SU8M	Integral of source strength	MAIN
SV2	Square of velocity	MAIN
Sl	Intermediate variable	LSPFIT
T	Temperature	ERF, MAIN
TA	Intermediate variable	MAIN
TAA	Ambient static temperature	MAIN
TAO	Intermediate variable	MAIN
TAU	Total shear stress τ	MAIN
TAUR	Azimuthal average of $ au$	MAIN, SLICE
TC2	Intermediate variable	TPNLC
TC3	Intermediate variable	TPNLC
TE	Exit static temperature	MAIN
TEMP	Normalized temperature T/Ta	SLICE
TERM	Directivity factor	SLICE
TH	Angle \$	MAIN
THCR	Critical angle θ_{cr}	SHOCK
TERM	Directivity factor	SLICE
THE	Angle θ	SLICE, CRD
THETA	Observer angle θ , radians	SLICE, OUTPUT
THETD	Observer angle $\theta_{\rm I}$, degrees	SLICE, OUTPUT, SHOCK
THO	‡ 0	MAIN
THT	Observer angle θ_{I} , radians	SHOCK
TI	Intermediate value of enthalpy flux	MAIN
TOP	Intermediate variable	LSPFIT
TSR	Static temperature	MAIN
TSTD	Circumferential asymmetry test parameter	MAIN
TSTH	Circumferential asymmetry test parameter	MAIN
rsian,	Circumferential asymmetry test parameter	MAIN
TSTL	Circumferential asymmetry test parameter	MAIN

Table 4-1. List of FORTRAN Symbols (Concluded).

FORTRAN Symbol	Meaning	Related Subroutines
TT	Stagnation temperature	MAIN
TTR	Stagnation temperature	MAIN
TURBIN	Turbulence intensity, u'	MAIN
U	Mean velocity	MAIN
UAP	Intermediate variable	MAIN
UAVG	Mass-average of U at x	MAIN
UC	Convection velocity U _C	SHOCK
UE	Exit plane velocity U _j	MAIN, SHOCK
UGLY	Intermediate variable	MAIN
UJET	Reference exit velocity	MAIN
UMAX	Maximum local value of U at x	MAIN
UND	Normalized value of U, U/UREF	MAIN
UNITS	Constant for units conversion	MAIN, OUTPUT
UR	Azimuthal average of U	MAIN, SLICE
UREF	Reference exit velocity	MAIN
U8	Intermediate value of source strength	MAIN
U8I	Integral of source strength	MAIN
VA	Intermediate value of momentum	MAIN
VAO	Intermediate value of momentum	MAIN
VI	Intermediate value of momentum	MAIN
VMAX	Maximum of velocities inside and outside	MAIN
VMIN	Minimum of velocities inside and outside	MAIN
vo	Flight velocity Ua	SHOCK
VR	Velocity ratio VMIN/VMAX	MAIN
WITHIN	Dummy variable	LSPFIT
X	Axial distance x	MAIN, SLICE
XCBDY	Centerbody axial coordinate	MAIN
XD	Intermediate variable	LSPFIT
ΧE	Exit plane axial coordinate	MAIN
XND	Normalized axial coordinate X/D _{eq}	MAIN
XOR	Variable x/R	SLICE
X1	Intermediate variable for curve fitting	LSPFIT
X13	Intermediate variable for curve fitting	LSPFIT
X4	Intermediate variable for curve fitting	LSPFIT
X43	Intermediate variable for curve fitting	LSPFIT
Y	Intermediate variable for curve fitting	LSPFIT
YC	Intermediate variable for curve fitting	LSPFIT
ΥI	Intermediate variable for curve fitting	LSPFIT
Y3	Intermediate variable for curve fitting	LSPFIT

Figure 4-3. Computer Program Flow Chart.

Figure 4-3. Computer Program Flow Chart (Continued).

(c) Subroutine OUTPUT

Figure 4-3. Computer Program Flow Chart (Concluded).

4.3.4 LSPFIT

Subroutine LSPFIT is a curve-fitting routine which utilizes least-squares polynomial fits of second order to perform interpolation, differentiation and integration of input discrete-point data. The calling statement is:

CALL LSPFIT(X, Y, N, XC, YC, NC, NF, A)

where (X, Y) are the input data coordinates (N values of each), XC are the values of X where output is requested, YC are the output functions, NC is the number of output data points, and NF indicates the type of output desired. The coding for NF is as follows:

NF = 0, YC are interpolated values of Y

NF = 1, YC are derivatives of Y

NF = -1, YC is the integral of Y from XC(1) to XC(J), 1 < J < NC.

The parameter A is the second derivative of Y. Subroutine LSPFIT is used in MAIN to interpolate input plug/centerbody geometry coordinates at various axial stations in the flow field, and to obtain radial gradients of density from the computed density profiles.

4.3.5 **SLICE**

Subroutine SLICE directs the mixing noise calculation for each axial slice. The calling sequence is as follows:

CALL SLICE (X(KA), DSIG(KA), DX, M)

where X(KA) is the axial location, DSIG(KA) is the radial step size, DX is the axial slice thickness, and M is the number of radial points in the slice. The flow parameters (which are circumferentially mass-averaged values) are transferred through labeled COMMON statements. Subroutine SLICE computes the acoustic arena geometry parameters THETA, THETD, RADIUS and initializes SPL (I,J) to zero during the first call, skipping this calculation on succeeding calls. The normalized radial profiles of velocity (MACH) and temperature (TEMP) are evaluated, followed by a calculation of source strength amplitude DS and characteristic frequency FS for each radial volume element.

Subroutine SLICE computes the acoustic shielding function profiles G2(J), the number of turning points NTP, and their locations RSIG. Subroutine CRD is then called to calculate the acoustic shielding exponentials and quadrupole directivity functions. Subroutine SLICE then sums up the mixing noise contributions from each radial volume element, factoring in their individual source strengths, characteristic frequencies, spectrum shapes, directivities, and shielding factors. The resulting noise spectrum from each slice is stored as the variable DSPL(I,J), where I denotes the observer angle index and J is the 1/3-octave frequency band index. Upon completing the calculation for a given slice, SLICE returns control to MAIN.

4.3.6 CRD

Subroutine CRD computes the shielding function integrals and quadrupole directivity factors for a given axial slice as a function of radial source location. The radial distributions of normalized velocity (MACH) and temperatures (TEMP) and shielding function (G2) are transferred to CRD through labeled COMMON statements. The calling statement is:

CALL CRD

At each source radius, subroutine CRD interrogates the data to determine which of the six shielding conditions in Figure 4-4 applies, and computes the appropriate shielding integral (β_{01} , β_{02} , or β_{12}) and the appropriate directivity factors. After all radial source volumes have been evaluated, CRD returns control to SLICE.

4.3.7 OUTPUT

Subroutine OUTPUT performs the final acoustic calculations and prints out the far field SPL spectra, OASPL, PNL and PNLT directivities. The calling sequence is as follows:

CALL OUTPUT (EMACH, DJET, RJET, UJET, UNITS)

where EMACH, DJET, RJET, and UJET are the characteristic (usually reference) jet Mach number, diameter, density ratio and velocity, respectively. The parameter UNITS is a conversion factor for converting from $1b_f/ft^2$ to $dynes/cm^2$ relative to $0.0002\ dynes/cm^2$. Subroutine OUTPUT converts the narrowband spectra from SLICE into 1/3-octave levels. Subroutine SLICE then calls SHOCK to compute SSPL spectra (shock noise) and adds these to the turbulent mixing noise spectra to obtain the total-noise spectra. The corresponding power spectrum (PWL) is then computed, and subroutine ATMOS is then called to correct all SPL spectra for atmospheric attenuation. Subroutines PNLC and TPNLC are then called to calculate perceived noise level

Figure 4-4. Possible Solution Types for a Maximum of Two Turning Points. (Shaded Areas Denote Shielding of Source.)

PNL and tone-corrected noise level PNLT. Finally, overall sound pressure level OASPL is computed, and all of these acoustic parameters are then printed out. Subroutine OUTPUT then returns control to MAIN.

4.3.8 SHOCK

Subroutine SHOCK computes the broadband shock-associated noise spectra at each observer angle. The calling statement is as follows:

CALL SHOCK

All parameters are transferred into and out of this subroutine through labeled COMMON statements. Subroutine SHOCK computes the 1/3-octave SPL spectra for each nozzle boundary element which has a non-zero shock cell number input, NCELL > 0. The individual boundary contributions are summed on a mean-square pressure basis and added to the mixing noise spectra.

4.3.9 ATMOS

Subroutine ATMOS corrects the input SPL spectra for atmospheric attenuation effects using standard-day atmospheric absorption factors for 70% relative humidity and 59° F ambient conditions. The calling sequence is as follows:

CALL ATMOS (SPL, RADIUS)

where SPL(1,J) is the sound pressure spectrum array, I denotes the index for observer angle, J denotes the index on frequency, and RADIUS(I) is the nozzle-to-observer distance array. The atmospheric absorption in dB per 1000 ft, from Reference 4, is corrected to the proper distance RADIUS(J), and the result is subtracted from SPL(I,J). The array of SPL(I,J) returned to OUTPUT is the corrected array.

4.3.10 PNLC

Subroutine PNLC computes the perceived noise level in PNdB at each observer angle from the input 1/3-octave spectra. The calling sequence is as follows:

CALL PNLC (SS, FAC, PNDB, OASPL)

where SS is the input array of either 1/3-octave or octave SPL values, FAC is a constant equal to 0.15 for 1/3-octave and 0.3 for octave levels, PNDB is the output PNL, and OASPL is the conventional overall level. The method used to calculate PNL is taken from Reference 5. The OASPL output from subroutine PNLC is discarded because it only computes the summation for the first 24 values of SS. This is sometimes insufficient for scale model condition, where the frequency range of interest can cover as many as thirty-three 1/3-octave frequency bands.

4.3.11 TPNLC

Subroutine TPNLC determines a pure-tone correction factor to the PNL value as a function of the 1/3-octave SPL spectrum. The calling sequence is as follows:

CALL TPNLC (SPL, PTCOR)

where SPL is the input 1/3-octave spectrum and PTCOR is the correction to be applied to PNL to account for the presence of tones in the spectrum. Subroutine TPNLC reads in SPL and returns PTCOR. The tone correction and detection procedure is based on the method proposed in Reference 7.

4.4 PROGRAM USAGE AND LOGIC

A complete description of the program input variables and input format is given in Section 4.5. A list of notes and suggestions on running the program is also included. A description of program output format, including warning flags and diagnostics, is given in Section 4.6. A sample case listing (including input data card images) is given in Section 4.7 for a 7-tube suppressor nozzle, one of the data-theory comparison cases presented in Reference 2. A complete FORTRAN source listing of the program logic is given in Section 4.8.

Program users should be completely familiar with Appendix A, since there are many pitfalls which can be avoided by giving attention to the recommendations presented therein. The program flexibility permits analysis of nozzle planforms of any imaginable shape, so long as certain input rules and guidelines are followed. When non-axisymmetric nozzles are run, a completely three-dimensional, turbulent, compressible flow field analysis is performed, and input mistakes can be costly in terms of computer processor time. The user should make initial checkout runs for complex nozzles, running just one or two axial slices at first, to ensure that all input is as desired, before running a complete jet plume.

The program is designed to serve as a diagnostic tool, in addition to functioning in the standard jet noise prediction mode. Individual slice calculations can be made by suitable input selection, running each slice (or

axial station) as a separate case. This mode permits evaluation of the relative contributions of each slice at each frequency and observer angle. Various components of the acoustic model can be bypassed to assess, for example, the separate effects of convection, acoustic shielding, etc. The program can also be used to predict only the jet flow field, if desired.

4.5 DESCRIPTION OF INPUT

The input data is supplied through NAMELIST input format, with the exception of the alphanumeric title data card, which precedes the input NAMELIST data. Any number of successive cases can be run consecutively, limited only by the user's execution time available. Each successive case requires a title card (80 - character label in columns 1 - 80), followed by the INPUT NAMELIST. The data from preceding cases remain in storage, so only those variables which are to be changed from the preceding case input value need be included in the INPUT file of succeeding cases.

A suggested input preparation format is given in Table 4-2. Those variables marked by an asterisk (*) have preset values built into the program, and need not be input unless the user desires to override the preset values with a different one. The definitions of each of the input variables given in Table 4-2 are listed in Table 4-3. Again, preset variables are marked by an asterisk (*). The values of those variables which are preset are given in Table 4-4. The format of Table 4-3 is such that a note number (where appropriate) is given for each variable which corresponds to the note number in Section 4.5.1 ("Notes on Input"). These notes give further elaboration on how to specify and prepare the input data.

Table 4-2. Suggested Input Format.

Column 2			
(80 - CHARACTER T	TITLE CARD, COLUM	NS 1-80)	
\$INPUT			
KX* =,	NEST =	, LPHI * =	_, ISYM =,
IQUIT* =	, NN* =	, NCASE* =	, NBREF* =
NPRINT* =	, NCBDY =	······································	
NØV =	_,,	,,	,
X =	_,,	,,	,,
DSIG =	_,,	,,	,,
BETAIN* =	,, _	,	_,,,
			, <u></u> _,,
			_,,
			_,,,
XE = 0	_,,	,,	,
$ALP\emptyset = 0$	_,,	·,	,
LEAV =1	_,,	,,	,
			,
			· · · · · · · · · · · · · · · · · · ·
DS =	_,,	,	,
			,
PT =	, ,	,	,
TT =		,,	· · · · · · · · · · · · · · · · · · ·

Table 4-2. Suggested Input Format (Concluded).

Column 2		
DALP(1,2) =,,		,,
DALP(1,3) =,, (etc., for boundary 4, 5, 6,		······································
RA(1, 2) =,,	,	,,
RA(1, 3) =,, (etc., for boundary 4, 5, 6,		,,
CM* =, CH* =	_, CMVR* =	, CMMC * =,
GAM =, CP =	_, PS =	_, ALFA* =,
DTHM* =, RU2M* =	, AK* =	, BK* =,
STRFR* =, STRFX* =	, ATØTAL = _	······································
ALPHMC* =, BETAMC* =	<u></u> ,	
NUMANG =, DIST =	, FMIN * =	, FMAX* =,
ALPHT* =,,	·,	
XCBDY =,,	,,	
RCBDY =,,	,	
\$		

(NEXT CASE, IF ANY)

Table 4-3. Input Variable Definitions.

Variable	Note	Description
KX *		Number of axial stations to be analyzed; a maximum of 24 stations is permitted.
NEST	1	Number of closed boundary contours defining the nozzle exit geometry; a maximum of 110 is permitted.
LPHI	7	Number of symmetric leaves (repeating segments in the nozzle exit planform.
ISYM		Nozzle symmetry indicator; ISYM = 1 for ax- symmetric nozzles or completely asymmetric nozzles, = 0 otherwise.
IQUIT		Maximum number of radii at which flow field is calculated (≤ 200).
nn *	12	Acoustic Calculation option indicator.
NCASE*		Number of cases to be run consecutively.
NBREF*		Reference condition boundary number.
NPRINT*	13	Aerodynamic station printout indicator.
NCBDY	9	Number of centerbody input coordinate points. A maximum of 40 is permitted.
NØV		Minimum number of radii at which flow field is to be calculated, for each axial station (KX values required).
X	11	Axial location of each axial station, ft. (KX values' required).
DSIG	11	Radial step size to be taken for flow field calculation at each axial station, ft. (KX values required).
BETAIN*	15	Axial shear stress turbulence constant (KX values required).
DELTIN*		Azimuthal shear stress turbulence constant (KX values required).

Table 4-3. Input Variable Definitions. (Continued)

Variable	Note	Description
AMUIN*		Azimuthal velocity gradient turbulence frequency constant (KX values required).
RMIN	9	Minimum radius for flow field calculation at each axial station (KC values required).
XE	8	Axial location of exit plane of each boundary, ft. (NEST values required).
ALPØ	2	Reference angle α_0 from which the coordinates of each boundary point are specified, radians (NEST values required).
LEAV	1,4	Number of symmetric leaves (repeating segments) of each boundary (NEST values required).
NUM	1,5	Number of input points (coordinate pairs) to be supplied for each boun ary (NEST values required).
KN	1	The number of the boundary which encloses a given boundary (NEST values required).
DEQ	16	Equivalent flow area diameter of each boundary, ft. (NEST values required).
DS	16	Shock-cell spacing characteristic dimension, usually hydraulic diameter, of each boundary, ft. (NEST values required).
NCELL	16	Number of shock cells for each boundary element (NEST values required).
PT	6	Stagnation pressure inside each boundary, $1b_f/ft^2$ (NEST values required).
TT	6	Stagnation temperature inside each boundary ° R (NEST values required).
DALP(I,J)	2,3,5	Angular increment $\Delta\alpha$ from preceding boundary point which locates the given boundary point I on boundary J, radians (omit boundary number 1, ambient field).

Table 4-3. Input Variable Definitions (Continued).

Variable	Note	Description
RA (I,J)	2,3,5	Radial coordinates of boundary point I on boundary J, ft. (omit boundary number 1, ambient field).
CM*	10	Empirical jet momentum diffusion rate spreading parameter C_{m} .
CH *	10	Ratio of enthalpy-to-momentum spreading parameters $C_{\rm h}/C_{\rm m}$.
CMVR*	10	Momentum spreading parameter velocity ratio influence coefficient.
CMMC*	10	Momentum spreading parameter Mach number influence coefficient.
GAM		Specific heat ratio $\gamma = C_p/C_v$.
СР		Specific heat at constant pressure C_p , in $(ft-lb_f)/(slug - °R)$
PS		Ambient static pressure, 1bf/ft ² .
ALFA*		Turbulence characteristic frequency constant.
DTHM*	7	Maximum allowable increment in angular coordinate, $(d\phi)_{max}$, for flow field calculation.
RU2M*		Minimum value of jet momentum flux, $(\rho U^2)_{min}$, below which the flow is not calculated.
AK *		Sound pressure level proportionality constant for mixing noise calculation.
BK *		Sound pressure level proportionality confor dipole density-gradient noise calculation.
STRFR*	11	Radial coordinate stretching factor for use of automatic mesh calculation.
STRFX*	11	Axial coordinate stretching factor for use of automatic mesh calculation.

Table 4-3. Input Variable Definitions (Concluded).

Variable	Note	Description
ATØTAL		Nozzle Total exit flow area, ft ² .
ALPHMC *	14	Convection Mach number weighting factor.
BETAMC*	14	Convection Mach number weighting factor.
NUMANG		Arena selection indicator; NUMANG = 1 indicates constant radius arc, NUMANG = 2 indicates sideline parallel to the jet axis.
DIST		Arc or sideline distance, ft.
FMIN*		Minimum frequency for which acoustic calculations are required, Hz (>50); an integer variable.
FMAX *		Maximum frequency for which acoustic calculations are required, Hz (<100,000); an integer variable.
ALPHT*		Convective amplification factor turbulence constant α_t ; 15 values required, one for each observer angle θ_I from θ_I = 20° to 160° in 10° increments.
XCBDY	9	Centerbody input point axial coordinate, NCBDY values required.
RCBDY	9	Centerbody input point radial coordinate, NCBDT values required.

Table 4-4. Preset Input Values.

Variable	Value
AK	0.08
ALFA	1.0
ALPHT	15* 0.5
ALPHMC	0.5
AMUIN	24* 0.2
BETAIN	24* 4.0
BETAMC	0.325
ВК	0.0
СН	1.15
СМ	0.075
CMMC	0.08
CMVR	0.25
DELTIN	24* 4.0
DTHM	0.1
FMAX	100000
FMIN	50
IQUIT	50
KX	15
LPHI	9999
NBREF	2
NCASE	1
NN	0
NPRINT	1
RU2M	3.0
STRFR	0.01
STRFX	1.259921

4.5.1 Notes on Input

- 1. The jet nozzle geometry is specified by input of the number of component boundaries, NEST, along with pairs of coordinates, RA and DALP, for each boundary element. The ambient field is always treated as the first boundary in the input arrays for UE, PT, TT, LEAV, NUM, KN, XE, and ALPO. This is why some numbers have already been filled in on Table 4-2 in the first column for these arrays. A nozzle with N elements has NEST = N + 1 boundaries.
- The steps to specifying nozzle geometry input are as follows, referring to Figure 4-1:
 - a. Obtain sketch or drawing of nozzle exit cross section and select a coordinate origin which is optimum from the standpoint of symmetry and boundary point specification.
 - b. Number each boundary, reserving boundary Number 1 for the ambient field.
 - c. With respect to the coordinate origin, select a reference angular location for each boundary, ALPØ.
 - d. For each boundary, select points represented by pairs of coordinates. The coordinates used as input are radius, RA(I,J), and angular increment from the preceding point, DALP(I,J). For the first point, DALP(I,J) is the angular increment from the reference angle ALPØ. The index I is the boundary point number, and the index J is the boundary number. Both ALPØ and DALP are to be input in radians, and RA is input in feet.
- 3. The last point on a given boundary should be located at ALPØ if the boundary has only one leaf. The sum of all DALP(I,J) should equal zero if the boundary has only one leaf.
- 4. If the boundary is a circle about the origin, only one point on the boundary need be supplied, and the value of LEAV for that boundary is set equal to the number of boundary points desired on the circle.
- 5. The program uses linear interpolation between input boundary points. If a boundary is made up of or contains straight line segments, only the end-points of the straight line segments need be input.
- 6. The variables PT and TT refer to stagnation pressure and temperature at the exit plane inside the boundary of interest. Setting the first value of PT equal to PS gives a static ambient field. The tirst value of PT greater than PS simulates non-zero flight velocity.

- 7. The variable LPHI determines what angular extent of the flow field needs to be calculated. If the nozzle geometry is axisymmetric, setting LPHI equal to a large number (such that 2m/LPHI is less than DTHM) torces the program to calculate the thow field at only one angular location. The flow field for a nozzle containing two adjacent circular jets, for example, has LPHI = 4, since the flow is the same each quadrant. Several examples of how boundary parameters are specified are shown in Figure 4-5.
- 8. The program can currently only handle coplanar nozzles; that is, every nozzle element must terminate at the same axial location. Therefore XE must be the same for all input boundaries.
- 9. The centerbody, if any, is input through coordinates pairs XCBDY(J), RCBDY(J), where $1 \le J \le NCBDY$. A maximum of 40 points can be input. The LSPFIT subroutine uses this input to interpolate for finding the values of RMIN at each axial location X. The LSPFIT routine can treat line segments, both straight and curved. Typical examples of centerbody coordinate input are shown in Figure 4-6. If there is no centerbody, the user can avoid automatic computation of the potential core of axisymmetric nozzles (which has no impact on mixing noise) by specifying RMIN as input, but with NCBDY = 0. This option causes the computation to begin at r = RMIN(KA), where KA is the axial station number.
- 10. The input value of CM is modified for velocity ratio and Mach number effects by the relation

$$DBDX = \frac{CM}{(1 + CMVR*VR)(1 + CMMC*ACH)}$$

where DBDX is the modified value of C_{m} , and VR and ACH are the velocity ratio and Mach number, respectively, of a given boundary. The heat transport spreading parameter is then calculated from the relation

$$C_h = CH * DBDX$$

The values of CM, CMMC, CMVR and CH recommended and preset in the program are given in Table 4-4. These values can be changed by the user to reflect experimental evidence if so desired.

11. The axial locations of the axial stations can be input by the array X(KA), where $1 \le KA \le KX$. The radial mesh step size can also be input by the array DSIG(KA). An automatic grid selection procedure has been devised to obviate the need for supplying all values of X(KA) and DSIG(KA). The only input required is the first axial station X(1), and the grid stretching factors STRFR and STRFX. The grid is then calculated from the following relations:

NEST = 2J - 1 J 2 -(a) Circular Jet

Figure 4-5. Examples of How Boundary Parameters are Specified.

NCBDY = 7,

 $XCBDY = X_1, X_2, X_3, X_4, X_5, X_6 (= X_5), X_7,$

 $RCBDY = R_1, R_2, R_3, R_4, 0, 0, 0,$

(a) Example 1 - Curved Centerbody

NCBDY = 10,

 $\label{eq:xcbdy} \texttt{xcbdy} \ = \ x_1 \,, x_2 \,, x_3 \, \ (=\!x_2) \,, x_4 \,, x_5 \, (=\!x_4) \,, x_6 \,, x_7 \,, x_8 \,, x_9 \, (=\!x_8) \,, x_{10} \,,$

(b) Example 2 - Segmented-Cone Centerbody with Curved Tip

Figure 4-6. Centerbody Input Coordinate Examples.

Figure 4-7. Example Demonstration of Nozzle Geometry Specification with a Generalized Nozzle Exit Configuration.

X(KA) = STRFX * X(KA-1)

DSIG(KA) = STRFR * X(KA)

This provides a grid which exhibits larger and larger step sizes as the plume is developed downstream. Recommended value of STRFR and STRFX are preset and listed in Table 4-4.

12. The variable NN determines the type of acoustic calculation desired. Normal (preset) operation is with NN = 0, which give the complete acoustic calculation. The user may desire to perform diagnostic computations to assess the relative importance of convection, shielding, etc. By selecting the appropriate value of NN, the various components of the acoustic calculation can be switched on and off in various combinations. Setting NN = 4 gives only the aerodynamic calculation, and the acoustic calculations are bypassed. The various options for NN are listed below:

NN = 0 - complete acoustic calculation.

NN = 1 - convective amplification, no shielding.

NN = 2 - no convective amplification, no shielding.

NN = 3 - no convective amplification, with shielding.

NN = 4 - no acoustic calculation, aerodynamics only.

- The printout of aerodynamic flow field data is controlled by NPRINT. When NPRINT = 0, no aerodynamic printout is provided. If NPRINT = 1, aerodynamic printout is provided at every axial station. If NPRINT = 2, aerodynamic printout is provided at every second axial station (i.e., KA = 1, 3, 5, 7, etc). For PRINT = 3, printout is provided at every third station, etc.
- 14. For dual flow nozzles, if the inner stream has a higher velocity than the outer stream, use ALPHMC = 0.5 and BETAMC = 0.325 (preset values). These variables are weighting factors in the convection Mach number calculation, which is computed from the relation

MC = ALPHMC * MACH + BETAMC * EMACH

where MACH is the local acoustic Mach number U/C_a and EMACH is the exit plane reference Mach number U_j/C_a . If the outer stream has a higher velocity than the inner stream, use ALPHMC = 0.5 and BETAMC = 0.325/VR, where VR = $(U_{outer}/U_{inner})_j$. For multielement suppressor nozzles, VR = U_j/U_m , where U_m is the postmerged potential core velocity. If U_m is not known, BETAMC = 0.2 to 0.25 is usually a good approximation.

- of X, provided the inner stream velocity is higher than the outer stream velocity at the exit plane. If the outer stream velocity is higher than the inner stream velocity at the exit plane, input BETAIN = 0 for all axial stations where X \leq 10*DEQ(NBREF), and BETAIN = 4.0 thereafter, where NBREF is the outer stream boundary number. For multielement nozzles, input BETAIN = 0 for axial distances less than 10*DEQ(1), where DEQ(1) is the equivalent diameter based on total flow area at the exit plane.
- 16. For each boundary element DEQ, DS and NCELL are input. The first value of DEQ is the total flow area equivalent diameter. The first value of NCELL determines whether or not the shock cell noise is computed. If NCELL(1) is input zero, no shock noise is computed; for NCELL(1) 0, the shock cell noise routine is called. The shock noise of each boundary element is computed separately and added to the total noise. If any boundary has a value of NCELL = 0, that boundary element is bypassed in the shock noise calculation. It is recommended that NCELL = 8 be used for each element unless the actual number is known.

4.5.2 Example Case Input Selection

To illustrate how geometric input parameters are selected for a complex nozzle geometry, an example is presented, taken from Reference 6. The example nozzle exit geometry is shown in Figure 4-7. Consideration of this figure indicates that information over a 45° sector of the flow field will be sufficient to describe the complete flow field. This is one-eighth of a circle, thus LPHI = 8. Neither axial total similarity or dissimilarity exists so ISYM is 0. Counting the number of closed contours indicates a value of NEST of 12, where one is included for the ambient or external field. Values of PT and TT must be provided for the exit state existing just within each of these contours. Values of XE, ALPO, LEAV, NUM, KN, DEQ, DS, and NCELL must be provided for all the contours except the first which is the boundary at infinity. Values of these parameters for the contours shown in Figure A-3 are now considered in the following discussion.

Boundary 2: Description of this boundary starting at 45° to the system baseline is convenient. Thus $ALPO = \pi/4$ radians. Since each 90° sector of the contour is identical with the proceeding one, LEAV = 4. Since the program assumes straight lines to exist between successive boundary points, description of this boundary is possible with only three points for each quadrant. These are P(1,2), P(2,2), and P(3,2). Each point is described by (1) its distance from the system origin and (2) the angle between (a) the line joining it with the origin and (b) the line joining the preceding point with the origin. Note that no value of RA is given for the point P(0,2) since it will be identical to RA(3,2). The value of NUM for boundary 2 will therefore be 3.

Boundary 3: This contour has eight symmetric leaves; thus LEAV = 8. ALPO of 0.0 is as convenient as any other value. The eight points indicated, P(1,3) through P(8,3), probably are sufficient to describe the boundary. Thus NUM = 8.

Boundary 4: Since this is a circle about the origin, it can be divided into a convenient number of leaves and only one point need be given for each (NUM = 1). If a hundred boundary points are desired, set LEAV = 100, DALP(1,4) = $\pi/50$ and RA(1,4) equal to the circle radius.

Boundary 5 through 12: Each of these contours must be described individually unless certain artifical changes are made in the arrangement. A partial representation of Boundary 9 is shown in Figure 4-7. Note that successive points on the boundary are obtained by progressing around the boundary in a counter-clockwise fashion. In order to reduce the labor of representing each circle separately, a straight line can be drawn connecting each circle. Two contours can then be visualized, one consisting of the outer halves of the circles and the lines, the other consisting of the inner halves of the circles and the lines. Each contour has eight leaves and only one need be represented by the programmer. Since this technique requires the computer to integrate along each straight line twice in the course of computation, it will definitely increase the computational time over the method in which each contour is represented separately.

4.6 OUTPUT DESCRIPTION

The output format is generally self-explanatory. The input data are first printed out, using the same nomenclature previously defined in Table 4-1. Nozzle exit plane flow conditions (static temperature, velocity, Mach number, momentum flux, and enthalpy flux) are then printed out for each boundary contour.

At each axial location specified, the radial and tangential distributions of flow field properties are printed out. After the flow field information, the noise characteristics of that particular axial station are then listed.

Following all of the axial station flow field data, a summary table of the noise characteristics (SPL spectra, PNL, PWL, OASPL) is given.

Section 4.7 contains an input deck card listing and output printout for a sample case run. This particular case is for a 7-tube nozzle presented in Reference 2. For brevity, only a portion of the total output is shown; but the formats of the various output data are all included.

Two warning flags are built into the program. The first is a case termination flag, which occurs whenever an input total pressure (P_T) is less than the input static pressure (P_S). The flag message is as follows:

****ERROR - MACH NO. SQUARE IS NOT GREATER THAN ZERO - CASE WILL TERMINATE****

The second flag is a warning detected in subroutine SLICE, which occurs whenever the number of turning points (NTP) is found to be greater than 2. The flag message is as follows:

WARNING - NO. OF TURNING POINTS IS GREATER THAN 2 AT

KA = ____, X = ____, ITH = ____, THETA = ____, NTP = ____

where KA is the axial station number, X is the axial location, ITH is the observer angle index, THETA is the observer angle in degrees $(\theta_I),$ and NTP is the number of turning points found. The two outermost turning points are used and those inboard of these two are discarded in such cases, since the acoustic shielding model can only accommodate up to 2 turning points. The noise output at those values of θ_I where this warning appears should be

treated as suspect, since the acoustic shielding effects are not properly modeled. This is most likely to occur in the initial mixing regions of multitube nozzles, where multiple peaks in the azimuthally averaged velocity profiles are likely to occur.

4.7 SAMPLE OUTPUT LISTING

An example case of a 7-tube multielement nozzle is described here, selected from one of the data/theory comparison cases presented in Reference 2. The nozzle consists of a hexagonal array of 0.875-inch-diameter tubes, with a spacing/diameter ratio of 3. The acoustic arena is a 9-ft-radius arc. The geometry is illustrated in the sketch below.

- d 0.875 in.
- D = 3.0 in.

The input data cards for this case are listed in Table 4-5. Note that all geometry input lengths are in feet, and all input geometry angles are in radians. The output listing for this case follows Table 4-5.

Table 4-5. Input Data Card Listing Sample Case.

```
5R329 01 10-06-77
                   16.471 *** INPUT DATA CARD LISTING -- M*G*8 ***
         CRD 7-TURE AR#2.3 Nn7ZLE - VJ#2200 FPS - TTJ#1600 DEG-R
 SINPUT
 NEST=8, LPHI=12, ISYM=0, IQUIT=100,
 RU2M=3, DTHM=0.1, PS=2116,
 ATOTAL=0.029231, DEQ=8+0.0729167, DS=8+0.0729167, NCELL=8+8,
 KN=8+1, XE=8+0,
 GAM=1.35, CP=6619,
 ALPJ=0.0,5.96144,0.725447,1.77264,2.8198,3.8670,4.9142,0.0,
 LEAV=0,6+1,24, NUM=1,6+24,1, KN=8+1, XE=8+3,
 DALP(1,2)=
 .033596,.045590,.354084,.059862,.063450,.065168,
 .065168,.063450,.059862,.054084,.045590,.033596,
 .017039,-.005317,-.334336,-.068984,-.103591,-.126562,
 -.126562,-.103591,-.068984,-.034336,-.005317,.017039,
 DALP(1,3)=
 .033596,.045590,.054084,.059862,.063450,.065168,
 .065168,.063450,.057862,.054084,.045590,.033596,
 .017039,-.005317,-.034336,-.068984,-.103591,-.126562,
 -.126562,-.103591,-.068984,-.034336,-.005317,.017039,
 DALP(1,4)=
 .033596,.045590,.054084,.059862,.063450,.065168,
 .065163,.063450,.057862,.054084,.045590,.033596,
 .017039,-.005317,-.034336,-.068984,-.103591,-.126562,
 -.126562,-.103591,-.068984,-.034336,-.005317,.017039,
 DALP(1.5)=
 .033596,.[45590,.054084,.059862,.063450,.065168,
 .065163,.063450,.059862,.054084,.045590,.033596,
 .017039,-.005317,-.034336,-.068934,-.103591,-.126562,
 -.126552,-.103591,-.068984,-.034336,-.005317,.017039,
 DALP (1.6) =
 .033596,.045590,.054084,.059862,.063450,.065168,
 .065168,.063450,.059862,.054084,.045590,.033596,
 .017039,-.005317,-.034336,-.068984,-.103591,-.126562,
 -.126552,-.103591,-.368984,-.034336,-.005317,.017039,
 DALP (1.7) =
 .033595,.045590,.054084,.059862,.063450,.065168,
 .065163,.063450,.059862,.054084,.045590,.033596,
 .017039,-.005317,-.034336,-.068984,-.103591,-.126562,
 -.126552,-.103591,-.068984,-.034336,-.005317,.017039,
 RA(1,2)=
 .12392,.13145,.13759,.14212,.14489,.14583,
 .14489,.14212,.13759,.13145,.12392,.11529,
 .10596,.39646,.03748,.07991,.07476,.07292,
 .07476,.37991,.08748,.09646,.10596,.11529,
 RA(1,3) =
 .12392,.13145,.13759,.14212,.14489,.14583,
 .14489,.14212,.13759,.13145,.12392,.11529,
 .10596,.39646,.08748,.07991,.07476,.07292,
 .07476,.37991,.08748,.09646,.10596,.11529,
 RA(1,4) =
 .12392,.13145,.13759,.14212,.14489,.14583,
 .14489,.14212,.13759,.13145,.12392,.11529,
```

.10596,.09646,.08748,.07991,.07476,.07292,

Table 4-5. Input Data Card Listing Sample Case (Concluded).

```
5R329 01 10-06-77
                     16.471
                               *** INPUT DATA CARD LISTING -- M*G*B ***
 .07476,.07991,.08748,.09646,.10596,.11529,
 RA(1.5) =
 .12392,.13145,.13759,.14212,.14489,.14583,
 .14489,.14212,.13759,.13145,.12392,.11529,
 .10596,.39646,.03748,.07991,.07476,.37292,
 .07476,.37991,.08748,.09646,.10596,.11529,
 RA(1/6) =
 .12392,.13145,.13759,.14212,.14489,.14583,
 .14489,.14212,.13759,.13145,.12392,.11529,
.10596,.39646,.08748,.07991,.07476,.07292,
 .07476,.37991,.08748,.09646,.10596,.11529,
 RA(1,7) =
.12392,.13145,.13759,.14212,.14489,.14583,
 .14489,.14212,.13759,.13145,.12392,.11529,
 .10596,.09646,.08748,.07991,.07476,.07292,
 .07476,.07991,.08748,.09646,.10596,.11529,
 DALP(1,8)=0.2618, RA(1,8)=0.036458,
 ALPHMC=0.5, BETAMC=0.25,
 FMIN=100, FMAX=80000, NUMANG=1, DIST=9.0,
KX=24, X=0.0729167, STRFR=0.01,
DSIG=10*0.00729167, 14*0, NOV=10*20,14*0,
 BETAIN=15 . O.C.
NPRINT=
NCASE=1.
 PJ=2116,7*5732, TT#540,7*1605,
```

COMPUTATION OF AERO-ACOUSTIC PROPERTIES OF SUPPRESSON NOZZEES

CASE NO. 1 CHO 7-TOHE 42=2.3 5077LF - VJ=2200 FPS - TTJ=1600 DEG-P

			INPUT DAT	Δ						
الميا الماسي		-								
KX= 24	NEST= 8	LPHI	= 12	15Y4= .		NPH INT =	6	CM=	.075	
CH= 1.150	GAM= 1.39	Si CP=	6619.0	NTHM= -1	C00	Ru2M=	3.0000	PS=	2116.0	
203	PUTATION ME	ESH COMTROL	PARAMETERS			•••••	./ TUP	BULENCE.	CONSTANTS	
SLI	CE NO.	x .	- 0516		PMIN .	N	òÀ	RETA .	DELTA	MU
		.27292	.06.729	(20	0.00	4.00	.20
	2	.091H7	.03729		.00000		20 _	_0.00	4.00	20
	3	.11575	.11729		0000u		24)	0.00	4.00	.20
	4	-14583	.00729		100000		?)	0.00	4.00	
	5	.16374	.00729		•00000		20	0.00	4.00	•20
- · - ·-	<u> </u>	.23150	01729		.00000	-	20	_0.on	4.00	
	7	.29167	• 1772		0.0000		5.9	0.60	4.00	-20
	ч.	. 34748	• 31° <u>7</u> 2°		.00000		20	0.00	4.00	20
	•	.46.293	.0 724		-20000		26	0.00	4.00	•20
	1)	*EH113	.0.7>9		00000	•	59	0.00	4.00	•20.
	11	.73495	.01730		30000		ě A	0.00	4.00	.20
	12	9.2544	•011-7		(•))000 (•)		· · · · · ·	_0.00 _0.00	4.00	.20
		1.46941	.3147		0.3000			0.00	4.00	.20
		1	• 24 miles)•3092 '•10696		0	0.00	4.00	.20
		2.17713	درون درون درون درون درون درون درون درون		.:002)	4.00	4.00	. 20
		43442	9244		1.0000)	4.00	4.90	.20
		3.7:193	23729				. j	_4.01	4.00	٥٥ مـــ
		4.56657	.04667		.00000		0	4.00	4.00	.20
		5.87963	- 05642		.00000		ā	4.00	4.00	20
		7.40787	.0740		.00000		0	4.00	4.00	.20
		9.33333	.0933		.00000		. G	4.00	4.00	20_
		1.75926	.11759		.00200		0	4.00	4.00	•20
	241	4.81574	14616	<u> </u>	0.00000			4.00	4.00	20_
= (S.) 3X	0.00 _A	LPO(21=_5.	9614 LEAV	(21=_ 1 .	NUM.C. 2	21= 24_	KN1 2	1=_1_		
	DALP(1. 2)	= .1336	. RAC.1. 2)	= .1239	DALP (2, 21=	.0456	RAL	2)= 1	315
	DALP(3.2	1=0541	PAL 3. 21	1=1376_	DALP	4. 21=	.0599	RAL	<u> 2)= 1</u>	421
	OALP(5. 2)	.0635	PAL 54 .21	= .1449	DALPI	6. 2)=	.0652	RA1 . 9	5 <u> 21 = .</u> 1	458
	DALP1 7. 2	= .0652	. RAC.7+ -21	= .1449	DALP	8 21 = .	.0635	RAL_	3+, 2)=, _a1	421
	DALPE 9+ 2	.1599	PA (9+ 2)	= .1376	DALP (1	= 15 .0.	.0541	RACL), 21=_al	315
	DALP(11. 2)≈ .3456	RA(11 = 2)	- 1239	DALPI	21 2)=	.0336	RA L1	2+ 21=1	153
	DALP(13. 2)	= .1170	_RA(13: 2)	= .1060.	DALP (1	.4+. 2)= -	0053	RA(14	<u>.0.</u> = (2 ±	965
	DALP (152)) = <u>. 1143</u>	RA (15±_2)	LEQE75.	_DALP(1	51. <u>21=</u> :	-0690	RACL	. 21= .0	799
	DALP(17. 2)								. 2)=0	
	0ALP(19. 2		20 (19 · 2)			10 - 21 = -				799
	DALP (21 - 2)					(21. 2) <u>=</u>			? <u>. 2) =</u> (<u>.</u> 2)	
	DALP (23+ 2))=0053	©A(23+ 2)	= .1060	UALPIZ	4 + 21 =	.01/0	×4 (54	1. = 15 .1	153

• • • • G B • • •

COMPUTATION OF AERD-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

NO. 1		CR	n 7-TI	URE AR≖	2.3	N077	LE -	VJ=2700 FF	·s -	TTJ=1600 (DEG-R		
XE(3)=	0.00	ALPO(3)=	.7254	LE#	4v (3) = 1	NUM(3)=	24	KN(3)=	. 1	· —	
-	DALP(1.	3)=	.0336	PA (1.	3)=	.1239	DALP(2.	3)=	.0456	PA (2.	3) =	.1315
	DALP(3.	3)=	.0541	RA (3,	3)=	.1376	DALPE 4.	3)=	.0549	RA(4,	3)=	.1421
-	DALP(5.	31=	.0635	RAC	5,	3)=	.1449	DALPI 6.	3)=	• 0652	RAL 6	3)=	.1458
10.01	DALPE 7.	3)=	•0652	PA (7•	3)=	.1449	DALPI A.	3)=	.0635	RAC B	3)=	.1421
	DALP(9.	3)=	.0599	RA (4.	3)=	.1376	DALP(10.	3)=	.0541	RA (10+	3)=	.1315
	DALP(11.	3)=	.0456	RA (11•	3)=	.1239	DALP (12+	3)=	.0336	RA (12+	3)=	.1153
	DALP(13.	3)=	.0170	RA (13•	3)=	.1060	DALP (14+	31=	eo53	RA(14.	3)=	•0965
	DALP (15.	3)= -	.0343	KA (15.	31=	.0875	DALPHI6.	3)=	0640	RACIA	3)=	.0794
	DALP(17.	3)= -	.1036	RAt	17•	3)=	.0744	UALP (18.	3)=	1266	RACIB	3)=	.0729
	DALP(19.	3)= -	.1266	RA(19•	3)=	.0748	DALP (20+	3)=	1636	RA (20	3)=	.0799
	DALP(21.	3)= -	.0690	RA(21.	3)=	.0875	DALP (22+	3)=	0343	RA (22	3)=	•0965
	DALP(23.	3)= -	0053	HA (23+	3)=	.1960	DALP (24+	3)=	.0170	RA (24	31=	.1153
XE (4)=	0.00	ALPO	(4)=	1.7726	LE/	AV (4	1 = 6	N(IM (41=	24	*N(4)=	1		
	DALP(1.	4)=	.0336	FAI	1 •	4)=	.1239	DALPE 2+	4)=	.0456	RAC 2	4) =	.1315
	DALPE 3.	4)=	.0541	RAC	3•	4)=	.1376	DALP(4.	4)=	.0599	RA (4	4)=	.1421
-	DALP(5.	4)=	.0635	PA (5•	4)=	.1449	DALPI 6.	4)=	• 655	RAL 6	4)=	•145F
	DALPE 7.	4)=	.0652	PA (7.	4)=	.1449	OALP(8.	41=	.0635	RA(8	4)=	.1471
	DALPE 9.	41=	.0599	RA(9.	41=	.1376	DALPI10.	4)=	.0541	RA (10	4)=	.1319
	DALP (11) .	4)=	.0456	RA (11.	4)=	.1239	DALP (12.	4)=	.0336	RA (12	4)=	.1153
	DALP (13.	4)=	.0170	HA (13,	4)=	-1060	PALP ()4,	4)=	0053	PA (14	4)=	-0965
	DALP (15+	4)=	0343) RA(15+	4)=	.0875	DALP (16.	4)=	0690	RA (16	4)=	.0799
	DALP(17.	4)= -	1036	, ₩A(17.	4)=	.0748	DALP (18.	41=	1266	RA (18	41=	.0729
	OALP(19.	41=	1266	RA(19,	4)=	•074P	DALP (20+	4)=	-,1036	RA (20	4)=	.0799
	OALP(2).	4)=	0690) PA(21.	41=	•0875	DALP (22+	4)=	6343	RA (22	4)=	.0965
	DALP(23.	4)=	1053	I PA	23.	4)=	.1060	DALP (24+	4)=	.0170	PA (24	, 4)=	.1153

COMPUTATION OF AERO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

CASE NO.	1	CRD 7-16	HE AR=2.3 NOZZLE -	VJ=2200 FPS - TTJ=16	000 DEG-R
xE (·	51= 0.00	ALPO(5)= 2	1.8198 LEAV(5)= 1	NUM (5) = 24 KN (51= 1
	DALP(1.	51= .0336	RA(1. 51= .1239	DALP(2. 5)= .0456	RA(2+ 5)= .1315
	DALP(3.	5)= .0541	RA(3. 5)= .1376	DALP(4. 5)= .0599	RA(4+ 5)= .1421
	DALPI 5.	51= .0635	RA(5. 5)= .1449	DALP(6+ 5)= +0652	RA(6+ 5)= .1458
	DALP(7.	51= .0652	RA(7. 5)= .1449	DALP(8. 5)= .063	6 PA(H. 5)= .1421
	DALP (9.	5)= .0599	PA(9+ 5)= .1376	DALP(10.5)= .0541	RA(10+ 5)= .1315
	DALP(11+	5)= .0456	RA(11. 5)= .1239	DALP(12+ 5)= .0336	PA(12+ 5)= .1153
	DALP(13+	5)= .0170	RA(13. 5)= .1060	DALP(14. 5)=005	3 RA(14+ 5)= .0965
	DALP (15.	5)=0343	RA(15. 5)= .0875	DALP(16. 5)= 0696	RA(16, 5)= .0799
•	DALP(17.	51=1036	RA(17, 5)= .074H	DALP(18, 5)=1266	RA(18, 5)= .0729
	DALP(19.	5)=1266	RA(19, 5)= .074H	DALP(20. 5)=1036	HA(20, 5)= .0799
	DALP(21.	5)=0690	RA(21, 5)= .0875	DALP(22, 5)=034	RA(22, 5)= .0965
	DAI,P(23+	5}=0053	RA(23+ 5)= .1060	PALP(24. 5)= .0170	PA(24+ 5)= .1153
XEC	61= 0.90	ALPO(6) = 3	8.8670 LEAV(6) = 1	NUM(6)= 24 KN(6)= 1
	DALP! 1.	6)= .0336	RA(1. 6)= .1239	DAEP(2. 6)= .0456	RA(2. 6)= .1315
	DALP(3+	6)= .0541	RA(3, 6)= .1376	DALP(4+ 6)= .0599	9 RA(4+ 6)= +1421
	DALP(5+	6)= .0635	RA(5, 6)= .1449	(IALP(6+ 6)= +065)	P RA(6+ 6)= .1458
	DALP(7.	6)= .0652	PA(7. 61= .1449	DAIP(H+ 6)= .0639	6 RA(8+ 6)= .1421
	DALP(9.	6)= .0599	RA(9+ 6)= .1376	DALP(10+ 6)= .054	PA(10+ 6)= .1315
	DALP (11.	6)= .0456	RA(11+ 6)= +1239	DALP(12. 6)= .0330	6 RA(12. 6)= .1153
	DALP (13.	6)= .0170	FA(13, 6)= .1060	DALP(14. 6)=005	RA(14, 6)= .0965
	DALP (15.	6)=0343	RA(15. 6)= .0875	DALP(16. 6)=069	RA(16, 6)= .0799
	DALP(17.	6)=1036	RA(17, 6)= .0748	OALP(18, 6)=1266	RA(18. 6)= .0729
	DALP(19.	6)=1266	RA(19. 6)= .0748	DALP(20+ 6) =1036	RA(20. 6)= .0799
	DALP (21+	6)=0690	RA(21. 6)= .0d75	DALP(22+ 6) =034	RA(22+ 6)= .0965
	DALP (23.	61=0053	RA(23+ 6)= +1060	DALP(24+ 6)= .0170	RA(24+ 6)= .1153

4 300c

COMPLIBITION OF AFRO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

VJ=2200 FPS - TTJ=1600 DEG-P
١
CPN 7-TURE AR=2.3 MOZZLE
-
CASF 147.

xF (7)=	0.00	ALPO	0.4 = (7)	(+1) ALPO(7) = 4.9142 LEAV(7) = 1	= (2) /	_	NUM(7)= 24	54	KN(7)=	-	
	0ALP(1. 7)=	7)=	.1336	PA(1. 7) = .1239	· = (5821	DALP(2. 7)=	7)=	.0456	PA(2. 7)=	.1315
	(ALP(3. 7)=	7)=	.0541	FA (3. 7)=		1376	DALP(4, 7)=	= ()	6650*	RA(4. 7)=	.1421
	[ALP(5. 7)=	7)=	2£49.	PA(5. 7)=		.1449	DALP(6, 7)=	7)=	.0652	RA(6. 7)=	.1458
	UALP (7, 7)=	7)=	.1652	KA(7. 7)=		.1449	DALP(8, 7)=	7) =	.0435	RA(8, 7)=	.1421
	11 P (6 . 7) =	7)=	4450.	= (7 . 9) AH		.1376	DALP(10, 7)=	= (/	.0541	RA(16, 7)=	.1315
	UALP(11. 7)=	= (• 456	RA(11, 7)=		1239	DALP(12, 7)=	= (/	.0336	RA(12. 7)=	.1153
	DALP(13, 7)=	7)=	6216.	PA(13, 7)=		.1046	DALP(14. 7)=0653	. = (,	-•0653	PA(14. 7)=	• 0965
	OALP(15, 7)= < 343	7)= .	(343	RA(15. 7)=		.0875	DALP(16. 7)=0690	7)= .	0690	FA(16. 7)=	6620.
	DALP(17. 7)=	7)= .	1636	KA(17, 7)=		.374A	DALP(18. 7)=1266	. =(/	1266	PA(18. 7)=	•220•
	DALP(19. 7)=1266	7) = .	1266	RA(19. 7)=		.C74A	DALP(20. 7)=1036	. = (7	1036	RA (20. 7)=	6620.
	04[P(2], 7)=3693	7)= .	3693	PA(21, 71=		.0A75	DALP(22. 7)= 6343	. =(7	.,(343	RA(22+ 7)=	960.
	UALP (23. 7)=0053	7)= .	0053	44(23, 7)=		.1060	DALP(24, 7)=	7)=	0116.	RA(24+ 7)=	1153
XE (A) =	60.2		(8)= 6.0	ALDA(8)= 6.9600 LEAV(8)= 24	=(8)	54	RUM (A) =	_	KN (8)=	-	
	0A(P(). R)= .261P	B) =	9192	RA(1. H) = .0365 DALP)=(;	365	DALP				

COMPLIATION OF AFRO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

VJ=2200 FPS - TTJ=1600 DEG-P
ŧ
CPN 7-TURE AR=2.3 NO7ZLE
_
NO.
CASE

	ENTHALPY FLUX (LK/S9-FT)	0. 15423E+08 15423E+08 15423E+08 15423E+08 15423E+08 15423E+08
	MOMENTUM FLUX (LR/SQ-FT)	.20000E-03 .48123E+04 .48123E+04 .48123E+04 .48123E+04 .48123E+04 .48123E+04
SNO	MACH	
EXIT CONDITIONS	VFLOCITY (FPS)	2199.45 2199.45 2199.45 2199.45 2199.45 2199.45
X	STATIC TEMP• (DEG P)	540.00 1239.57 1239.57 1239.57 1239.57 1219.57
	TOTAL TEMP. (DEG R)	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.
	TOTAL PRESS. (PSF)	2116.00 5732.00 5732.00 5732.00 5732.00 5732.00
	C07- T00P	→ N m ± m x m a.

OLINOARY 10. 2 HAS REFN DESTANATED AS THE HEFERENCE

	TOUIT= 100 NN = 0 URFF = 2199,45			
• 0	UREF			
ď.	0			
AK = .80000E-01 PK = 6.	 2 2			
. A0009E	100			
UK II	TOUIT			
1.00000	66220	STRFR= .01000	.2500	.250000
ALFA = 1.00000	# 030	STRFR=	RETAMC=	CMVP=
AL = . 20886E+08	ATOTAL= .02923	STREX= 1.25992	0105° = 50€0	0000H0" = JMW0
4L = .2	ATOTAL=	STDFX=	≠JMHd TV	= J _M WJ

* * * W G H * * * PAGE 6

COMPUTATION OF AERO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

CASE NO. 1 CPD 7-TURE AR=2.3 NOTZLE - VJ=2200 FPS - TTJ=1600 DEG-P

AXIAL	LOCATION	= •0	7292 (X/	DEO = 1.00	0000)			
M	þ	ANGLE	υ	DENSITY	TEMP.	UZUREF	TURH.INT.	RYDEQ
1	.00001	9.00	2199.45	.0009948	1239,57	1.00000	.00037	.00010
1	.00001	15.00	2199.45	.0009948	1239.57	1.00000	.00038	.00010
1	.00001	24.00	2199.45	•0009948	1239.57	1.00000	.00040	.00010
i	.00001	30.00	2199.45	.0009948	1239,57	1.00000	.00043	.00010
2	.^0729)•0C	2199.46	.1009948	1239.57	1.00000	.00156	.10000
2	.00729	13.00	2199.46	.0009948	1239.57	1.00000	.00189	.10000
2	.00729	50.00	2199,46	.(.)09948	1239,57	1.00000	.00186	.10000
2	.00729	33.00	2199.46	•500994A	1239.57	1.00000	.00180	.10000
3	• ^145B	2.00	2199.46	1009948	1239.57	1.00000	.00044	.20000
3	## 1458 # 1458	7.50	2199.46	.0009948	1239.57	1.00000	.00079	.20000
3	.(1458 :1458	15.00 22.50	2199.46 2199.46	.0009948 .0009948	1239,57 1239,57	1.00100	.00122	.20000
3	• (1458 • (1458	31.30	2199.46	1009948	1239.57	1.00000	•00090 •00099	.20000
4	•32188	0.00	2199.20	•0009450	1239.31	99988	.00289	.30000
4	12188	7.50	2199.20	.0009950	1239.31	99988	.00303	.30000
4	.22188	15.00	2199.20	.0009950	1239.31	99988	.002H8	.30000
4	1218H	22.50	2199.26	0009950	1239.31	99988	.00298	.30000
4	12188	30.00	2199.19	.2009950	1239.31	99988	.00293	.30000
5	02917	0.00	2145.44	.0010195	1209.46	97562	. 35247	.40000
5	.:2917	6.00	2145.76	.0010195	1204.52	97559	.05261	.40000
5	. 12917	12.00	2145.20	.0010195	1209.48	97561	.05253	.40000
5	.02917	18.00	2145.40	.0010195	1209.48	97560	.05253	40000
5	.02917	24.00	2145.75	.0010195	1209.52	97558	.05261	.40000
5	.02917	30.00	2145.83	.3010195	1209,46	•97562	.05247	.40000
6	.03646	2.00	1378,61	.0011597	1063.24	•62680	.13781	.50000
6	. 13646	6.00	1371.48	•4011595	1063.44	.62355	•13785	.50000
6	.:3646	12.00	1373.67	•0011692	1462.79	•6242R	.13785	<u>.</u> 50000
6	• 13646	18.00	1373.47	.0011602	1(62.79	.62428	.13785	.50000
6	.13646	24.0C	1371.48	· 011595	1063.44	•6 <i>23</i> 55	.13785	•50000
6	• 13646	30.00	1378.61	.0011597	1663.24	. 62680	.13781	.50000
7	•64375	0.00	203.54	.0016983	726.07	.09254	.04225	•60000
7	• 04375	5.00	202.12	.3016972	726.54	.09189	.04202	•60000
7	. 4375	10.00	202.14	.0016972	726.54	.09190	.04202	•60000
7	•04375	15.00	263.59	•0016983	726.06	.09257	.04224	.60000
7	. C4375	20.00	262.17	.016972	726.53	.09192	.04200	.60000
7	.04375	25.00	202.17	•0016972	726.53	.09192	.04200	.60000
7 A	.54375	30.00	203.61	.6016983	726.06	.09257	.04223	.60000
	•05104	0.00	2.52	.021214	581.26	.00114	.00253	.70000
В В	• 05104 65166	5.06	2.53 2.04	•1021241	581.51	.00115	.00292	.70000
ล	.05104	10.00	2.94	.0021451 .0021627	574.83 570.17	.00134	.00294	.70000
Ą	. 15104 .(5104	15.00 20.00	3.47 3.64	•4021627 •4021692	568.44	.00158	.00284 00287	.70000
Ŕ	./5104	25.30	3.86	• 021748	566,98	.00175	.00287 .00287	70000
8	15104	36.00	4.12	. (021794	565.79	.00187	00278	.70000
9	5833	.00	3.24	021555	572.06	.00147	.00145	.80000
ý	5433	4.29	1.35	1020752	594.21	.00062	.00191	.80000
ģ	5833	4.57	0.00	· 0022935	545.05	0.00000	0.00000	.80000
9	5833	12.86	nión	.1022835	540.00	0.00000	0.00606	.80000

COMPUTATION OF AERO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

CASE NO. 1 CRD 7-TURE AR=2.3 NOZZLE - VJ=2200 FPS - TTJ=1600 DFG-P

AXIAL	LOCATION	= .67	292 (X/NE	(a) = 1.000	1001			
м	R	ANGLE	U	DENSITY	TEMP.	UZUREF	TURH.INT.	PYDEU
	ve 0.2.3	17.14	0.40	.0022835	543.09	6.00000	0.00000	. 80000
9	.15833		0.60	0022A35	540.00	0.00000	0.00000	. 80000
9	.45833	21.43	0.00	0022835	540.00	0.00000	0.00000	.80000
9	•55833 •5633	25.71	0.10	0022835	540.00	0.00000	0.00000	. 80000
9	. 15833	33.00	213.37	6016986	725.94	.09246	.04216	.90000
10	• (6563	0.00		.0017420	707.84	.07638	.03716	.90000
10	.:6563	4.29	168.10	1018676	663.25	.04335	.02447	.90000
10	• ^6563	H.57	95.34	(020323	666.73	01523	.01067	.40000
10	• 06563	12.86	33.49	.0021636	569.91	.00266	.00325	•40000
10	• (6563	17.14	5.94	1022835	546.69	0.00000	0.00000	.90000
10	6563	21.43	$\phi \cdot \gamma$	9922835	54	2.00000	0.00006	90000
1.0	·16563	25.71	0.40	1022835	54 1 (0	0.00000	0.00000	.90000
10	• 16563	33.36	0.16	1011548	1163.19	.62672	.13779	1.00000
11	67792	3.60	1378.45		1349.07	.5H3U2	.13990	1.00000
11	.27292	3.75	1282.33	.9011754	994.75	.46165	.13664	1.00000
11	•0 7 292	7.50	1015.37	.012396	894 . 58	27674	.10947	1.00000
11	. 17797	11.2%	698.69	.0013846	747.13	.11037	05941	1.00000
11	•n7292	15.00	242.76	.0016534	629.66	92660	01884	1.00000
11	• ^7292	14.7°	57.25	.3019585		.00293	00379	1.60000
11	.07292	22.50	6.44	.0021637	564.96 57.00	0.00000	0.00000	1.00000
11	. 47292	26.25	0.00	.0022835	540.00		0.00000	1.00000
11	. 47292	30.60	00	.0022835	540.00	0.00100 .97558	65248	1.10000
12	. 18021	0.00	2145.74	.1010196	1209.42		.06481	1.10000
12	. 38021	3.75	2124.54	.0010266	1201.14	96594	10460	1.10000
12	.08021	7.50	2025.14	.0010525	1171.60	•92075	15852	1.10000
12	. 180≥1	11.25	1717.49	.0011052	1115.68	.78387	16340	1.10000
12	15080.	15.00	1059.47	.0012270	1004-97	46188	.08533	1.10000
12	.08021	10.75	343.54	.0015447	798.27	.16074	.01880	1.10000
12	15080	22.50	53.70	•0019665	627.03	.02441		1.10000
12	.68021	26.25	2.21	.0021721	567.69	.00100	.00334	1.16000
12	. 18021	30.00	0.40	•0022835	540.05	0.0000	0.0000	1.20000
13	.08750	6.03	2149.14	<u>.</u> 0009950	1239.31	.9998A	.00213	1.20000
13	09750	3.33	2198.94	•0009952	1239.07	.99977	.00350	1.20000
13	18750	6.67	2196.64	.0009967	1237.12	.99872	.01146	1.20000
13	.04750	15.00	2175.86	.0010076	1223.83	. 98925	.04213	
13	08750	13.33	2032.46	•0 010 508	1173.47	.92408	.11890	1.20000
13	08750	16.67	1500.16	.0011379	1083.61	68216	.18610	1.20000
13	. (1875)	20.00	616.35	*0013HSB	ਖ਼ ਾ. 74	.28023	.13029	1.20000
13	02760	23.33	110.21	·(018367	671.34	.05011	.03566	1.20000
13	A8750	26.67	7.85	.4021552	572,14	.00357	.00463	1.20000
13	08750	30.00	0.40	.∵y22835	540.00	0.00000	0.00000	1.20000
	09479	0.00	2199.45	.000994H	1239.57	1.00000	.00140	1.30000
14 14	(9479	3.33	2199.45	. 1009948	1239.57	1.00000	.00161	1.30000
	. 19479	6.67	2109.44	·(009948	1239,55	99999	.00087	1.30000
14	59479	10.60	2148.75	.0009953	1238.90	• 94468	.00583	1.30000
	19479	13.33	2175.18	.0010078	1223.48	, 9889 7	.64684	1.30000
14	19479	16.67	1911.43	.1010745	1147.62	.86495	.15684	1.30000
14	,9479	20.00	1022.16	.0012373	496.57	•46469		1.30000
14	19479	23.33	208.70	0016920	72H.79	.09449	.06070	1.30000
14	* 14414	, , , , ,		-				

PAGE 8

COMPUTATION OF AERO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOTZLES

CASE NO. 1 CRD 7-TURE AR=2.3 NO7ZLE - VJ=2200 FPS - TTJ=1600 DEG-R

AXIAL	LOCATION	= •·	7292 (X/	DEO = 1.00	onue)			
м	R	ANGLE	U	DENSITY	TEMP.	UZUREF	TURB.INT.	P/DEQ
14	.09479	26,67	14.75	• 021165	582.59	.00671	.00707	1.30000
14	• 19479	35.00	0.00	•00228 3 5	540.00	0.00000	C.00000	1.30000
15	•10208	5.60	2199.45	.0009948	1239.57	1.00000	.00031	1.40000
15	·10208	3.00	2199.45	•0009948	1239.57	1.00000	.00186	1.40000
15	•102CB	6.00	2199.45	• C 9 9 4 9 4 A	1239,57	1.00000	.00140	1.40000
15	•1020B	9.00	2199.45	•0009948	1239.56	1.00000	.00159	1.40000
15	•1020B	12.00	2198.55	•0009954	1238.72	•99959	.00723	1.40000
15	*16509	15.00	2161.63	•0010135	1216.62	• 48580	.06164	1.40000
15	•1020B	16.00	1801.51	.1010451	1129.12	·81907	.17685	1.40000
15	•1020B	21.00	R34.46	•0012917	454.61	• 37939	16055	1.40000
15	.10208	24.00	146.71	.0617738	695.16	•06670	.04583	1.40000
15	.10208	27.00	9.45	.0021459	574.63	.00430	.00516	1.40000
15	.10208	30.00	0.00	•0022835	54(.00	0.00000	0.00000	1.40000
16	.1093A	0.00	2199.45	•000994A	1239.57	1.00000	.00104	1.50000
16	.10938	3.00	2199.45	• 100994R	1239,57	1.00000	.06222	1.50000
16	.10938	6.00	2199.45	• 000994A	1234.57	1.00000	.00272	1.50000
16	.1093A	9.00	2199.45	• 300994A	1239.56	1.00000	-00182	1.50000
16	•1093A	12.00	2198.81	• 1009953	1238.95	.99971	.00629	1.50000
16	.10938	15.00	2161.18	.0010137	1216.41	.98260	.06199	1.50000
16	.10938	18.00	1752.09	•010996	1121.40	.7966û	.18152	1.50000
16	.10938	21.00	710.45	•1013394	42(.63	.32301	.14531	1.50000
16	.10938	24.61	98.25	.0018615	662.41	.04468	.03259	1.50000
16	.10938	27.00	4.21	• 1021836	564.70	.00192	.00363	1.50000
16	.1093A	33.00	0.00	•(022835	54(.00	0.00000	0.00000	1.50000
17	.11667	9.00	2199.45	.0009948	1239,57	1.00000	.00206	1.60000
17	.11667	2.73	2199.45	.0009948	1239.57	1.00000	.00239	1.60000
17	.11667	5,45	2199.45	•000994A	1239,57	1.00000	.06178	1.60000
17	.11667	8.18	2199.45	.0009948	1239,56	1.00000	.00157	1.60000
17 17	•11667 •11667	17.61	2148.41 2174.43	.3009952 .0010080	1239.14 1223.34	.99975 .98885	•00557	1.60000
17	•11667	16.36	1996.35	• 1010753	1146.71	.86674	.04751 .15670	1.60000
17	.11667	14.09	1039.03	•0012332	499.94	.47241	.17474	1.60000
17	11667	21.82	235.27	•0016698	742.44	.10687	.06531	1.60000
17	.11667	24.55	21.71	• 2020856	591.22	00942	00875	1.60000
17	.11667	27.27	0.00	•0022835	540.00	0.00000	6.60000	1.60000
17	.11667	30.00	0)	.0022835	540.00	0.00000	0.00000	1.60000
18	12396	9.90	2199.45	.0009948	1239.57	1.00000	.00154	1.70000
18	12396	2.73	2199.45	0009948	1239.57	1.00000	.00141	1.70000
18	.12396	5.45	2199.45	.0009948	1239.56	1.00000	.00162	1.70000
18	12396	8 1ª	2199.13	• 1009950	1239.25	99985	.00436	1.70000
18	12396	10.91	2188.71	•2010013	1231.46	99512	.02817	1.70000
18	12396	13.64	2051.20	.0010465	1178.33	93259	.11403	1.70000
18	12396	16.36	1433.87	.3011478	1274.26	.65192	18468	1.70000
18	12396	14.(9	478.5°	.0014574	846.59	21756	.10756	1.70000
18	12396	21.92	62.84	.0019461	635.56	วอห57	.02146	1.70000
18	12396	24.55	2.80	.0021965	561.37	.00127	.00342	1.70000
18	12396	27.27	0.00	1022535	540.00	0.00000	0.00000	1.70000
18	12396	30.00	0.0	1022835	547.00	0.00000	0.00000	1.70000
• • •	• • • • • • • • • • • • • • • • • • • •		• '					

PAGE 9

COMPUTATION OF AERO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

CASE NO.	1	CRD 7-TURE	AR=2.3 NOZZLE	-	VJ=2200 FPS -	TTJ=1600	DEG-R

AXIAL	LOCATION	= .3	7292 (X/	0E0 = 1.09	36001			
м	P	ANGLE	U	DENSITY	TEMP.	UZUREF	TURB.INT	. RZDEQ
19	.13125	3.00	2109.14	.0009950	1239.31	.99988	.00325	1.80000
19	.13125	2.50	2198.99	1009951	1239.12	99979	.00412	1.40000
19	.13125	5.90	2197.42	.3009962	1237.75	.99908	.00926	1.80000
19	.13125	7.50	2145.46	.3010633	1229.37	99361	.02954	1.80000
19	.13125	10.00	2106.46	.0010321	1194.73	.95772	.08446	1.80000
19	.13125	12.50	1776.53	.6610963	1124.81	.80771	.15885	1.80000
19	.13125	15.00	1038.20	.0012327	1000.33	.47203	.16182	1.80000
19	.13125	17.50	318.73	•4015743	783,25	.14491	.07710	1.80000
19	.13125	20 . 00	47.64	•3019859	62J . 91	.02166	.01638	1.80000
19	.13125	22.51	2.44	. 1021988	5679	.00131	.00326	1.80000
19	.13125	25.00	0.30	€022835	540.00	0.00000	0.0000c	1.80000
19	.13125	27.50	9.00	• 2022835	540.09	0.00000	0.00000	1.80000
19	.13125	30.00	0.70	.0022835	541.00	0.0000	0.00000	1.80000
20	.13854	0.30	2145.69	.0010196	1209.39	.97555	05255	1.90000
50	13854	2.50	2129.H5	.1010244	1263.69	.96835	.06116	1.90000
20	.13854	5.00	2061.96	. 1016438	1181.35	.93749	.08886	1.90000
20	.13854	7.51	1867.77	.0010820	1139.65	.84920	.13235	1.90000
20	.13854	10.00	1436.12	.0011483	1673.86	•65295 •4305	.16129	1.90000
20	.13854	12.50	756.51	.0013212	433.33 741.44	.34395	.12913	1.90000
20 20	• 1 3454 • 1 3854	15.00 17.50	231.75 37.77	•9016626 •9020145	741.66 6190	.16537	.05730 .01295	1.90000
20	.13854	20.00	2.50	.0022007	560.32	.00114	.00315	1.90000
2)	13854	22,50	0	.022835	54, 65	0.00000	0.00000	1.90000
20	13854	25.30	0.0	.0022835	543.00	0.00000	0.00000	1.90000
23	13854	27.5	0.00	0022835	549.66	0.00000	0.00000	1.90000
23	13854	3/ .00	0.00	· U022835	545.00	0.00000	0.00000	1.90000
21	.14583	2.30	1378.11	·6011599	1963.15	.62657	.13781	2.00000
21	.14583	2.31	1303.87	.1011715	1052.52	59281	.13796	2.00000
21	.14583	4.67	1130.68	.0012170	1013.17	.50043	.13495	2.00000
21	•14583	6.92	773,47	.0013145	438.05	.35189	.11671	2.00000
21	.145R3	9.23	414.00	.0015002	H21.91	·18823	.08055	2.00000
21	.14583	11.54	154.16	•017639	694.68	.07304	.03861	2.00000
21	.145R7	13.85	37.12	. €0202∂4	614.32	•01648	.01201	5.00000
21	.14583	16.15	4.97	•6051456	564.95	•00226	.00328	2.00000
21	•145P3	18.45	0.00	• 022835	541.00	0.00000	0.00000	5.00000
21	•145H3	20.77	0.00	• 1022H3P	54 1.03	0.00000	0.00000	5.00000
21	.14583	23.38	0.00	• 1022835	540.00	0.00000	0.00000	2.00000
21	.14583	25.38	0.00	• 022835	547.50	0.00000	0.00000	2.00000
21	•14583	27.69	0.00	.0022835	540.00	0.00000	0.00000	2.10000
21	•145A3	30.00	0.40	•1022835	540.00	0.00000	0.00000	2.00000
22	.15717	2.16	203.27	•4016988 •4017236	725.85	• 09242 09236	.04220 03975	2.10000
22 22	•15313 •15313	2.14 4.29	181.15	.1017236 .0018316	715.40 684.65	.08236 .06001	.03875 .03049	2.10000 2.10000
25	.15313	6.43	131.99 73.29	• 1019140	644.25	•(3332	.01912	2.10000
22	.15313	8.57	31.17	.020427	603.66	•(1417	00955	2.10000
22	15313	10.71	9 13	•1021524	572.8A	.00410	.00396	2.10000
22	15313	17.86	1.10	•:021963	561.44	•00050	.00274	2.10000
22	15313	15.00	0.00	11022835	541.01	0.0000	0.00000	2.10000
	• •		-					

* M 6 H * * *

COMPUTATION OF AERO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

CASE NO. 1 CPD 7-TURE AR=2.3 NO77LE - VJ=2200 FPS - TTJ=1600 DEG-P

AXIAL	LOCATION	=7	242 (X/0	E0 = 1.00	0001			
М	¢	ANGLE	U	DENSTTY	TEMP.	UZUREF	TURA.INT	. K/DEU
22	.15313	17.14	7.40	.3022835	549.60	0.00000	0.00000	2.10000
22	.15313	14.29	0.05	.0022835	540.00	0.90666	0.60000	2.10000
22	.15313	21.43	0.00	•4022H35	545.10	0.00000	0.00006	2.10000
22	.15313	23.57	0.00	•0022835	546.Ur	0.00000	0.0000	2.10000
22	.15313	25 .71	0.13	•1022H35	540.00	0.00000	0.00000	2.10000
22	.15313	27.46	0.30	. JUZZB35	540.00	0.00000	6.00000	2.10000
22	.15313	30.99	0.11	. 3022H35	549.29	0.00000	0.00000	2.10000
23	.16042	3.00	4.61	·1021890	563,29	.00210	.00280	2.20000
23	.16042	7.14	3.77	.0021944	561.93	.00172	.00285	2.20000
23	.16042	4.29	2.16	.0022076	558,56	86500	.00276	2.20000
23	16042	6.43	3.0	.0022A35	540.03).conon	0.00000	2.20000
23	.16042	o.57	0 • '	•€022835	542.06	0.00000	0.00000	2.20000
23	.16042	10.71	0.00	•1022H35	541.50	0.00000	9.00000	2.20000
23	.16942	12.46	0.10	• 1022835	540.00	9.00000	0.00000	2.20000
23	.16042	15.00	0. C	. 2622435	544.20	0.00000	0.00000	2.20000
23	.16942	17.14	$0 \bullet 0 \circ$.1022H35	543.99	0.00000	0.00000	2.20000
23	.16942	14.24	0.00	• 022×35	545.00	0.00000	0.00000	2.20000
23	.14942	21.43	0.51	.∺022835	547.60	0.00000	U.00000	2.20000
23	.16042	71.57	0.19	· 1022×35	54%.90	0.00000	9.00000	2.20090
23	.16042	2°.71	0.10	.0022H35	547.00	0.00000	0.00000	2.20000
23	.16042	27.86	0.00	· ^622635	540.00	0.00000	0.0000	2.20000
23	.16342	31.00	0.10	·6022835	546.00	0.00000	0.00000	5.50000

CIPCHMFERENTIALLY-AVERAGED PARAMETERS

NP	Ę	2 A () 1 ()	S MA	CH NO.	TEMP.	INTENSITY	FREQUENCY
1		.000	1 1	.9662	2.2955	•66906E =1 2	c •
2		-100	0 1	•9662	2.2955	.24773E-06	3.
3		.200	n 1	.9662	2.2955	.95416E-08	c.
4		.300	າ 1	.9666	2.2951	.21384E-04	7.
5		.400	0 1	.9182	2.2398	.16103F+05	2416.
6		.500	^ l	.227H	1.9688	.17198E+08	2595A
7		.699	1	.1809	1.3452	-51043E+04	16407.
8		.700		.002B	1.0583	39885E-04	4377.
9		.800	n	.0019	1.6777	-41234E-06	524.
10		.920		.1277	1.2755	•10304E+04	5139.
11	1	.000		8929	1.8257	•11824E+08	12312.
12		-100		.5573	2.1133	•29016E+08	5707.
13		.200		.7232	2.2014	.42213E+08	2595
14		-300		.7745	2.2247	.41008E+08	1676.
15		.400		.7964	2.2343	•41582F+08	1326.
16		-500		F024	2.2367		
17		-600		• 7963	2.2339	.42918F+08	1313.
18		.70C	•	• 7 7 6 }	2.2255	.43543E+08	1513.
19		. HOC		.7236	2.2014	•30032E+08	1888.
20		900		5589		•	2593.
21		-)00	_	*4956	2.1139	-24184E+08	4755.
22		.100		.1275	1.8257	•14303E+08	я933.
23		.2001		-	1.2751	•15J46E+04	3436.
23	•	• 649		•0059	1.6397	•19514F-04	733.
WARNING	- NO	- OF	TOPNIUG	POINTS	IS GREATER	THAN: 3 AT	
KΔ= 1	X		•67292	ITH=			N7D- 2
•			•••	.,	100	FTA= 110.00	NTP= 3
WARNING	- NO	. OF	TURNING	POINTS	IS GREATER	THAN 2 AT	
ΚΔ= 1	Х	=	.07292	ITH=		ETA= 120.00	NTP= 3
-				• • • • •	• • • • • • • • • • • • • • • • • • • •	127.00	17 [P-)
WARNING	- NO	. OF	THRAITMG	POINTS	IS GREATER	THAN: 2 AT	
κ A = 1	×		.07292	ITH=		ETA= 130.00	NYD- 3
•	,		• • • • • • • • • • • • • • • • • • • •	1,	12 (11)	170.00	NTP= 3
JAPNITAG	- NO	. OF	THENTNE	DATNITE	IS GREATER	THAN O AT	
KA= 1	X		.07292	ITH=		·	
	^	_	•01772	117-	15 140	ETA= 140.00	NTP= 3
MADA TAIC	- NO	05	TINDALTALO	DOLLIZE	TC ('DEATER	T1144 3 47	
					IS GREATER		
KA= 1	X	=	•07292	ITH=	14 146	TA= 150.00	NTP= 3
AADNITNIC		25	71			.	
					IS GREATER		
× ∆ = 1	X :	=	•07292	TTH=	15 THE	TA= 160.00	NTP= 3

x ()) =	.0729	UBI(1)= .25899E+21 FM(1)= .2	419E+01 (IAVG(1) = 1847.59 UMAX(1) = 2199.46
		TURNING POINTS IS GREATER THAN .09187 THE TO THETAE		NTP= 3
		TURNING POINTS IS GREATER THAN .09187 ITH= 11 THETA=		NTP= 3
		TURNING POINTS IS GREATER THAN .09187 ITH= 12 THETA=		NTP= _3
		TURNING POINTS IS GREATER THAN		NTP= 3
		THENING POPTS IS GREATER THAN THETA		NIP= 3
MARNING -	NO. OF	TURNING POINTS IS GREATER THAT	2 1	04VG(2)=_1767 ₊ 58_ UMAX(2)=_2199 ₊ 46
		-11575 THE TO THETAE		NTP# 3
		THENING PORTS IS GREATED THAT THETAE .		NTP= 3
		TURNING POINTS IS GREATER THAN .11575 ITH= 12 THETA=		NTP= 3
		THRNING POINTS IS GREATER THAN .11575 . ITHE 13 THETA=		NTP= 3
WARNING - KA= 3	NO. OF	TURNING POINTS IS GREATER THAN .11575 ITH# 14 THETA=	2 AT 150.90	NTP= 3
x (3) =	•1157	181(31= .26192F+21 FM(31= .2	664E+07 (AVG(3) = 1674.56 UMAX(3) = 2199.45
WARNING - KA= 4		TURNING POINTS IS GREATER THAN .14583 THE 10 THETA=		NTP= 3
		TURNING POINTS IS GREATER THAN		NID= 3

		UMAX (4)=	
Ю	e	= 1572,60	€
NTP= 3	NTP= 3	UAVG(4)=	NTP= 3
130.00	2 AT 140.00	2843E+01 2 AT 116.00	2 AT
PEATEU THAN THETA=	ZFATER THAN THETA=	FM (4) = . PEATED THAM	PEATER THAU THETA=
448NING - NO. OF TURVING POINTS IS GREATED THAN 2 AT XA= 4	MARNING - NO. OF TURNING POINTS IS GREATER THAN 2 AT KA= 4 x= .14583 ITH= 13 THETA= 140.00	X(4)= .1459 UAI(4)= .25722E+21 FM(4)= .2843E+01 UAVG(4)= 1572.60 UMAX(4)= WAPNING - NO. OF TUPMING POINTS IS GPFATED THAM 2 AT KA= 5 x= .18374 ITH=1) THETA= 116.00 NTP= 3	#ARNING - NO. OF TURNING POINTS IS GPEATER THAU 2 AT
	TUPYING •14583	UMI(4)= TUPMING .18374	TUPNING .
48RNING - NO. OF 48= 4 x=	- NO. OF	.1458 NO.0F	+ NO. OF
AARNING AA = 4	AARNING .	X (4) = WAPNING KA= 5	*APNING

2199,41

UMAX (5)= 2197.57		
UAVG(5)= 1467.27	NTP= 3	NTP= 3
X(5)= .1837 UBI(5)= .24966E+21 FM(5)= .3047E+01 UAVG(5)= 1467.27 UMAX(5)= 2197.57	WARNING - NO. OF TURNING POINTS IS GREATER THAM, 2 AT KA= 6 x= .23150 ITH= 10 THETA= 110.30	4APNING - NO. OF TUPNING POINTS IS GREATER THAN 2 AT KA= 6 X= .23159 ITH= 11 THETA= 129.00
U81(5)	TUPNING •23150	TUPNING •23154
1837	- NO. OF	- NO. OF
x(5)=	#ARNING KA= 6	AAPNING KA= 6

N TP#

.2315 1181(6)= .23294E+21 FM(6)= .3277F+01 UAVG(6)= 1364.33 UMAX(41= 2179.00 #(Y) #

PAGE 11

COMPUTATION OF AERO-ACOUNTIC PROFERTIES OF SUPPRESSOR NOZZLES

CASE 1.1. 1 CAD 7-THAE AR=2.3 MO77LE - VJ=2200 FPS - ITJ=1600 DEG-R

AXTAL LOCATION	=	 (X20E0 =	4 - 0 0 0 0 0 0 1

**	i.	ΑυσμΕ	11	MINSITY	TENP.	UZUREF	TURB.INT.	FIDEO
1	.00001	. • (;	2106.11	•(01046B	1177.91	.45756	.03168	.00010
1	. 10001	1 1.00	2176.11	. 1010469	1177.90	.95756	.00168	.00010
1	.00001	20.00	2106.11	.001046H	1177.95	.45756	.0016H	.69010
1	.00001	30.00	2106.11	•401046H	1177.90	. 45756	.06168	.00010
2	27 24	.00	2079.75	• 1 0 1 0 5 5 1	1168.73	• 44554	.05557	.10000
2	· C3724	13.30	2079.72	. 1010550	1158.73	.94556	. 05K5H	.10000
2	. 23724	2 . 10	2079.72	. +010550	1168.73	94556	.05658	10000
2	. (2724	าย เยื่อ	2119.71	. 1010551	1168.73	44555	.0565A	10000
3	-1454	0.00	1404.74	.4010776	1144.29	4(694	.08729	20000
3	11454	1.5	1994.74	.1010775	1144.27	99692	.08729	20000
3	1454	15.00	1914 77	.:010775	1144.24	90694	08730	20000
3	.0145H	22.55	1994.73	- 010776	1144.27	90642	.08730	.20000
3	. 1455	300	1994.77	.0010776	1144.2K	.40694	.0H73u	.20000
4	· 12144	1.01	1938.10	.1011199	1111.71	. 43571	.11429	.30000
4	•021A8	7.50	1438.13	.0011099	1111.02	.83572	.11430	.30000
4	. n21HP	15.00	1 = 3 + . ~ 4	. 1011699	1111.97	. H356B	.11431	.30000
4	• 12199	22.6	1434. h	.0011699	111: •95	· 87564	.11432	.30000
4	* 45 1 BH	30.00	1437.00	.0011190	1116.92	. 43566	.11432	30000
5	12917	.50	1661.57	.0011489	1073.31	.72817	.13158	40000
5	.02917	5.00	16:1.44	.0011489	1073.23	.72811	.13160	.40000
5,	. 2917	12.00	1601.31	.0011491	1.73.07	72864	.13166	40000
5,	. 2917	ل ن ⊾۱۹	1601.42	.0011443	1172.85	.72742	.13172	40000
ς.	. 12917	24.00	1600.72	.:011446	1 72.64	7277B	.13176	40000
Ε,	12917	36.00	1470.64	. 211496	1072.58	.72776	.13178	40000
6	. 3646	u.)č	1298.70	.0011469	1031.04	59:46	.13255	50000
6	.:3646	h • 6 th	1248.51	·1011463	1030.74	59043	.1326B	50000
6	.: 3646	12.00	1246.97	.1011975	1 29.74	. 58968	.13295	.50000
6	. 13646	18.00	1295.36	.30119EB	1628.56	้รยชอร	.13329	50000
6	. 13546	ون و نو	1294.41	.0011949	1927.64	·58851	13355	50000
6	. ^ 3646	10.00	1293.49	.0012004	11.27.20	.58810	.13363	.50000
7	. 4374	9.00	980.18	· 012487	987.46	44565	.11324	.60000
7	04375	5.00	978.21	.0012502	984.28	.44475	.11362	.+6000
7	. 4375	100	973.63	·C012537	4H 1.54	.44267	.11462	.60000
7	.:4375	15.00	967.62	. 312544	479 85	43994	.11590	.60000
7	. 4375	20.00	961.3H	. 4012636	975.87	.43710	.11703	.60000
7	.)4375	24.00	956.95	.012673	972,99	.435nA	.11782	.60000
7	. 14374	33.00	<i>ڹڎ</i> ڋۦۜڎڐ	·1012645	972.0R	43445	.11812	.60000
Q	.05104	6.00	758.09	.7012799	963.41	34467	.06822	.70000
н	. 15104	5.10	741.56	· (612834	461.81	.34170	.07114	.70000
н	. 15104	10.00	733.43	·1012928	953.81	33369	.07705	.70000
я	.15104	15.00	710.	. 1013364	443.44	.32285	. 38252	.70000
В	. 15104	27.00	คลัด ำห	.0013216	933.04	.31193	.08631	.70000
н	. (5104	25.00	669.47	• 7013335	424.72	.3/393	.48843	./0000
ρ	.:5104	31.00	662.17	013379	421.68	.36101	.08911	.70000
9	.05833		764.65	.1012749	463.41	. 34465	.06817	. 80000
Q	. SP 33	4.29	745.61	•1012H39	46.44	.33900	.07124	. 40000
9	่∌รฅจา	H.57	710.47	• 1012950	452.16	. 32362	.07635	.60000
Ġ.	<u>.</u> 55833	12.86	42 " H24	.0013121	934.74	. 29434	. ^7x55	. ᲠᲘᲢᲘᲘ

PAGE 12

COMPUTATION OF AFRO-ACOUSTIC PROPERTIES OF SUPPRESSOR NUZZLES

CASE NO. 1 CRD 7-TURE AR=2.3 NOZZLE - VJ=2200 FPS - ITJ=1606 DEG-R

AXIAL	LOCATION	= •2	9167 (x/	neo = 4.00	1000			
м	þ	ANGLE	U	DENSTRY	TEMP.	UZUREF	TURB.INT	R/DEQ
9	. 15833	17.14	59 7. ##	•(0)3330	925 . 03	.27183	.07582	.86000
9	.:5833	21.43	5411.35	.0013531	911.29	.24567	.06819	.80000
Q	. ^SB37	25.71	49H. P7	. (013676	9(1.61	.226H2	.C571A	.80000
ý	. (5937	30.00	483.64	.0013728	898.19	.21991	.05027	.80000
10	16563	0.00	สหน้าหล	·0012487	487.45	44561	.11321	90000
10	16563	4.24	954.94	.012541	483.25	43599	.11533	96000
10	- 6567	H.57	ឣ៰ឣ៝៓៓៓៓៓៓៓៓៓៓៹ៜ	. 1012642	971.57	40849	.11492	90000
10	. 16563	12.86	805.40	.001243P	453.69	.36618	.11906	90000
10	. 16563	17.14	692.79	.0013244	931.01	31498	.11248	.90000
1.4	**6563	21.43	579 9H	1013541	91. (3	26369	09745	90000
ie	. 6563	25.71	492.43	6013716	400 63	22389	. 07158	96000
iò	16563	30.00	458.74	. 1013756	496 JH	29861	03069	90000
11	. 47292	. • 1 (·	1298.64	. 011960	1-31-04	.54-44	.13253	1.06000
11	. 77292	3.75	1278.41	."011997	1.27.81	•S8150	.1358A	1.00000
1.1	. 17292	7.50	1213.17	• 012120	1-17.42	•5515B	.14287	1.00000
11	.:7242	11.25	11:19.42	. 1012334	494.73	5:459	.14800	1.00000
11	•:7292	15.00	477.73	. 1012630	476.32	44453	.14727	1.00000
11	. 292	14.75	429.45	.1012940	953.06	. 37712	13834	1.00000
11	.27292	وعودج	AHA . CT	.6013339	426.50	.3119n	.11965	1.00000
1.1	17292	11. 25	576. 2	.00135 16	912.95	26149	.08882	1.00000
11	17202	37.00	533,54	• 1013553	400.83	. 2425H	(4985	1.00000
12	.08021	3.00	1501.50	011489	1 177 35	72813	.13157	1.10000
12	.18021	1.75	1577.02	.0011528	1664.60	.71701	.13788	1.10000
12	.08021	7.50	15.3.79	1011649	1654.63	68367	.15133	1.10000
12	.18021	11.25	1343.35	•0011H4H	1:40.71	62895	.16335	1.10000
12	.98921	15.05	1219.62	. 012135	1316.11	55451	.16798	1.10000
12	15,690	18.75	1028.14	.:012577	985.89	46745	.16135	1.10000
12	9021	22.50	нзн. эз	.0012885	956.97	.38102	.14139	1.10000
12	.08021	26.25	KHH. 35	.1013137	938.6r	.31296	10494	1.10000
12	.08021	33.00	629.41	.0013231	934.09	.28617	. 0505C	1.10000
13	• 38 7 50	1.91	1×3×.04	. 1011200	1111.01	. H3568	.11424	1.20000
13	· 14750	1.33	1417.98	.5011135	1107.37	. H265h	.12296	1.20000
13	· :075(6.67	1756.96	.^011241	1096.90	.79882	.141An	1.20000
13	. I. 8759	10.00	1653.43	.)011412	1580.52	.75174	.16119	1.20000
13	•98 7 50	13.33	15,7.73	.0011642	1359.16	.68550	.17533	1.20000
13	• 11.9 7 50	16.67	1326.82	.0011932	1/33.45	•60325	.18014	1.20000
1.3	• 1×75 °	23.00	1116. ⁴³	.0012287	1 103.54	.5077H	.17240	1.20000
1.3	. ^ 4 7 5 3	23.33	915.3H	•0012641	475.46	.41619	.15031	1.20000
13	• 94 7 5€	74.67	750.14	• 1012869	958.21	.34563	.11059	1.20000
13	. \H75c	35. • 0€	699.78	A545101.	453.93	.31416	.(3942	1.20000
14	. 19479	• 00	1994.74	·(010776	1144.28	.93693	.08729	1.30000
14	9474	3.13	1474.99	.0010822	1139.46	.89795	.10155	1.30000
14	·r9479	F.F7	1914.12	.0010953	1125.76	.87023	.12855	1.30000
14	. 19479	15.00	1807.55	.3011154	1145.52	<u>.</u> 82182	.15554	1.30000
14	. 19479	13.33	1652.47	.7011410	71.81.71	.75131	.17663	1.30000
14	. 19474	16.67	1451.76	. 1011721	1552.06	•66505	.18673	1.30000
14	.09474	20.00	1218.12	.0012089	1614.96	•55383	.18205	1.30000
14	.119479	21.13	147.56	·00124H5	987.61	.44677	.15948	1.30000

PAGE 13

COMPUTATION OF AFRO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

CASE NO. 1 CRD 7-TURE AR=2.3 NO77LE - VJ=22v0 FPS - TTJ=1600 DEG-P

AXIAL	LOCATION	= .2	9167 (X/I)EQ = 4.0(50CA)			
٧,	¢.	ANGLE	υ	DENSITY	. 4M3T	UZUREF	THRE.INT.	, RZDEQ
14	.19479	26.67	798,29	.(012757	966 , 58	.36291	•11775	1.30000
14	. 19479	30.60	725.24	·012831	961. 9A	. 32973	•00455	1.30000
15	*10508	3.00	20 79. 68	• e010551	1168.72	•94554	• 75622	1.40000
15	•1050H	3.00	2064.03	·^017596	1163,69	•93843	• 07H55	1.40000
15	.10208	6.10	2,415,26	·1010726	1144.60	.91626	.10976	1.46000
15	-1020P	9.00	1928.64	• 010923	1128.86	.87687	.14000	1.40000
15	.1020H	12.00	1799.20	•4011158	1164.08	.81865	.16625	1.46000
15	.16204	15.00	1624.44	•0611454	1676.54	.73881	.18425	1.40000
15	•1020B	18.00	1411.64	•1011788	1946.01	.54181	.19610	1.40000
15	.1023H	21.90	1172,55	. 1012141	1/12.27	.53311	.18135	1.40000
15	.10208	24 .00	942.79	• C312592	979.23	•42KK5	.15690	1.40060
15	.1020°	27.35	766.69	• 1012H72	957.97	. 34858 21742	.11462	1.40000
15	.10215	31.00		. 1012947	452.41	.31742	.04002	1.40000
16	.10934 .10938	1.10	21(6.6H	010469	1177.88	95755	.00131	1.50000
16	10938	3.00 5.00	2049.92 2049.91	0679170.	1172.16	.95)20	.06982	1.50000 1.50000
16	10934	-	1948.12	•0010665		.92714	.10518	-
16 16	.10938	9.05 12.66	1810.36	-1015882 0013161	1133.09 1105.80	**************************************	.13772 .16571	1.50000
16	10919	15.00	1523.35	.0011151 .0011464	1 75.63	•32310 •73857	.18444	1.50000 1.50000
16	10934	18.90	1393.64	•0011837	1:41.70	.63363	18980	1.50000
16	10938	21.):	1135.88	.(91230	1.02.50	-51644	17962	1.50000
16	•1093⊬	24.00	нчн 64	•01286₽	962.75	.40473	15401	1.50000
16	10934	27.00	598.73	.2013180	935.53	.31767	.11212	1.50000
16	•1093 ⁸	3.00	624.17	·^01325 <	427.94	28.178	.05158	1.56000
17	11667	, , , , (,	2079 n4	-014551	1168.69	94553	.u5661	1.0000
17	11667	2.73	2044.46	.00105 ·4	1163.93	93881	07639	1.60000
17	.11567	5.45	2018.48	.0010717	1150.53	.91790	10564	1.60000
17	11667	n.19	1937.32	.0010936	1130.61	באו אא	13436	1.60000
17	.11667	10.91	1815.35	.0011144	1106.47	R2536	15985	1.60000
17	.11667	13.64	1650 35	.0011426	1579.16	75034	17H34	1.60000
17	.11667	16.36	1445.30	.0011768	1)47.82	65716	18636	1.00000
17	.11667	19.09	1210.33	1012213	1,10,61	55029	18208	1.60000
17	.11667	21.82	465.46	.0012752	466.93	43895	16525	1.60000
17	.11667	24.55	743.54	.0013331	424.94	. 33606	.13778	1.60000
1.7	.11667	27.27	578 HH	.0013749	HOR H3	.26319	.09931	1.60000
17	.11667	30.00	515.41	.6013475	888.71	.23434	.05403	1.60000
1 2	.12396	4.00	1994 . 5.4	.0010777	1144.15	91685	.0H734	1.70000
18	.12396	2.73	1977.24	.f010×19	1179.85	89849	.09823	1.70000
18	.12396	5.45	1924.1	. 01/935	1127.67	.87477	.12056	1.70000
18	.12396	4.1ª	1831.25	. 1011116	1109.29	. K3259	14455	1.70000
1.8	.12394	1 .91	1645.34	• 2011354	1086.06	.77080	.16479	1.70000
1 4	.12706	13.64	1516.33	•011654	1758.07	• KR941	.17735	1.70000
1.9	. 1270h	16.36	1302.49	•5012 ⁶ 43	1123.87	.59237	.17931	1.70000
1 14	.12796	19.19	1057.75	·(012582	974.99	·48091	.16939	1.70000
1 15	.12396	٠١. ٣٦	н] н.59	· 1013262	474.74	•3721H	.14418	1.70000
1 4	.12344	24 - 55	606.74	· 013991	प्रम ा. ३ २	.275H6	.12197	1.70000
1 H	•1230h	27.27	452.12	.(014540	H4H . 74	• 50, 22,	• ٥ برتر دو تر	1.70000
† A	.12396	11.90	392.42	. 00147e9	43H.30	.17842	-04472	1.70660

PAGE 14

COMPUTATION OF AFRO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOTZLES

CASE NO. 1 CPD 7-TURE 4R=2.3 MOZZLE - VJ=2200 EPS - ITJ=1600 PEG-H

AXIAL	LOCATION	= .2	9167 (XZI	NEO = 4.00	(690			
М	12	AMOLE	ŧ.	DENSTIY	TEMP.	UZUREF	TURB.INT	• HADEO
19	•13125	`•00	1637.39	.6611105	1114.42	. H3539	.11439	1.80600
114	•13125	2.50	1823.44	. 011136	1167.30	.92768	.12067	1.80000
19	.13125	5.00	176.4.49	.601122B	1498.22	B5424	.13359	1.80000
19	.131.25	7.50	1681.42	• 011379	1083.77	. 16447	.14907	1.80000
19	.13125	16.00	1556.42	·0011587	1064.21	.7(7H7	.16264	1.80000
19	.13125	12.50	1397.48	.0011866	1:34.14	.63537	.16931	1.80000
19	•13125	15.00	1206.75	.012245	1 06.47	.54864	.1686P	1.40000
19	.13125	17.53	997.54	.0012764	966.03	.45354	.15935	1.80060
19	.13125	20.00	747.42	.0013429	914.24	.35419	.14249	1.50000
14	.13125	22.50	593.76	.:014217	867.30	26996	·12005	1.86000
19	13125	25.10	431.72	.0015617	821.12	.19696	.09427	1.80000
19	.13125	27.51	116.89	.6015595	79%.6R	.1446H	.06545	1.40000
19	.13125	30.00	273.46	.1015771	751.86	.12433	.04087	1.80000
23	.13854	3.30	1599.74	.0011516	1:7:.72	.72688	.13194	1.90000
20	.13AC4	2,50	1579.49	• (n]] 548	1:67.79	.71831	.13512	1.90000
20	.13854	5.60	1523.25	• 0011644	1658.99	•64256	.14277	1.40000
20	·13854	7.53	1429.27	• 3011Hc9	1:44.23	·44443	·15099	1.90000
20	•13R54	10.00	1301.85	• 2015625	1523.13	•59190	.1 5622	1.90000
20	·13854	12.55	1136.77	.5012457	493.H4	.5]684	.15577	1.40000
۶,	· 1 3HE4	15.00	954.54	· 012896	956.17	•43399	·14844	1.90000
2 د	13854	11.0	766.15	• 1013530	911.36	.34834	•13455	1.90000
2 ሶ	·17854	20.00	ty se tag ● f ≥a	.101432¢	⁶ 61.67	.266(1	•11544	1.96000
20	·13854	22.5	425.42	 01523[↑] 	4179.65	•19342	• 19352	1.40000
20	·13854	25.66	296.45	•0016132	764,39	.13496	.07079	1.40000
2 U	·13854	27.5^	508 • (]	• 9A 7 KR	734.4R	• 09457	•04826	1.40000
20	.13254	30.00	174.26	·1016987	725.87	•07923	.03019	1.46000
21	.14507	6.00	1247.46	.^012579	1.2.84	•585 3 5	•13417	5.0000
21	.145H 7	2.31	1273.23	•7012169	1 ·1H • 35	•57HH8	•13532	2.00000
21	•14543	4.62	1221.46	.0012216	1(09.39	• 426932	.13771	2.00000
21	.14583	4.45	1143.20	.0012400	994.44	•51840	·13956	2.00000
2!	· 145H3	9.23	1::33.5(• -012672	473.0B	•46989	•13924	5.00000
21	·145H3	11.54	9(5,48	• 201334B	944.99	•41169	.13506	5.00000
21	•145 ⁸³	13.85	764.63	• "013539	91 .74	. 34764	.12545	5.00000
21	.14543	16.15	619.74	•0014161	471.74	•2⊬177	•11370	5.00000
21	•145H3	14.45	481.43	.:014913	826.87	•21HR9	.04777	5.00000
21	.14587	20.77	357.41	.0015764	782.29	•16273	.08012	5.00000
21	.14543	23.6₩	254.57	.0016664	730.96	•11574	•06236	5.00000
21	.14543	55.38	175.31	.0017501	704.58	.07957	.045R4	5.00000
21	.14547	27.60	121.64	.0018079	682.13	• 05530	.03092	2.00000
21	.145#3	33.00	101.49	. 1019249	675.79	. 74614	• 05011	5.00000
22	.15313	3.50	437.77	• 017946	952.48	.42637	.11983	2.10000
22	.16313	2.14	924.95	• 7612987	949.49	•42653	.11979	2.10000
22	.15313	4 (3	нн 7. н1	• 2013173	941.64	•40365 37560	.11943	2.10000
22	•15313	1.43	H28.€R	•10133dH	426.59	.37549	11795	2.10000
22	.15313	×,67	749.54	.601359A	966.8¢	.34679	•11460	2.10000
27	16313	1.71	456.04	.9013999	881.41	.29570	.10H76	2.10000
77	.15314	17.06	556.37	. 7014486	251.20	• 2529h	.10008	2.16000
7,5	.15.31.4	11.40	45.4.66	• 0015083	H17.51	.20667	агеча.	2.1c000

M G R * * * PAGE 15

COMPUTATION OF AEPO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

CASE NO. 1 CRD 7-TURE AP=2.3 NO77LE - VJ=2200 EPS - TTJ=1600 DEG-P

AXTAL	LOCATION	= •29	9167 (XZD	FO = 4.00	0 053)			
М	Q	ANGLE	IJ	DENSITY	TEMP.	UZUREF	TURB.INT	• R/DFQ
22	.15313	17.14	357.45	.015777	781.57	.16252	.07634	2.10000
22	.15313	19.29	270.54	.0016543	745.39	.12301	.06280	2.10000
22	.15313	21.43	197.22	.0017346	719.86	.08967	.04961	2.10000
22	.15313	23.57	137.95	.0018142	679.67	.36272	.03736	2.10000
22	.15313	25.71	93.70	1018844	654.37	.04260	02675	2.10000
22	15313	27.66	64.47	.3019313	638.46	.02931	61786	2.10000
22	15313	3 .06	53.60	0019445	634.12	\$2437	.01197	2.10000
23	.16042	0.00	613.13	. 014195	864.70	.27876	.09412	2.29000
23	.16042	2.14	M3.2H	.0014242	865.80	.27429	.04360	2.20000
23	.16042	يا⊂ پن	675.4	.4614387	157.06	.26145	.19196	2.20000
23	16042	r.43	510.34	1014629	H42.91	24114	แลลลล	2.20000
23	16042	4.57	472.73	.0014970	H23.72	21493	08401	2.26000
23	.16042	11.71	406.78	.0015419	H00.25	.18495	.07730	2.20000
23	.16042	12.86	337.15	4015942	773.46	.15329	.06887	2.20000
23	.16042	15.00	269.33	• 0.01655B	744.68	.12246	15929	2.20000
23	.16042	17.14	2(6.72	•C017239	715.3r	04394	.04904	2.20000
23	.16042	14.29	152.21	.017959	686.64	. 16420	·03887	2.20000
23	.16042	21.43	1 7.77	. 1018681	66).68	.04900	•02951	2.20000
23	.16042	23.57	73.44	.019367	636.75	.03339	.02149	2.20000
23	.16042	25.71	48.22	.0019964	617.66	.02193	.01484	2.20000
23	.16042	27.86	31.74	.1026367	665.42	.01443	• 0095B	2.20000
23	.16042	37.00	25.54	· 1020484	691.96	.(1161	.00650	2.20000
24	.16771	1.60	357.30	.0015779	781.4R	.16245	.06487	2.30000
24	.16771	2.30	351.61	·1015424	779.25	15986	.06431	2.36000
24	.16771	4.00	335.59	• 101545.7	772.74	• 1 5258	.06270	2.36000
24	.16771	5.00	310.58	.3016176	762.26	.1 4398	•05941	2.30000
24	.16771	8.66	277.7	•901648t	74원 • 17	•12597	• 05592	2.30000
24	.16771	10.00	240.00	·(0]6H6]	731.32	.16915	• 25046	2.30000
24	.16771	15.00	200.67	• 4017312	712.27	.09123	• 04505	2.30000
24	.16771	14.00	161.87	•0017820	691.95	•07360	.03854	2.30000
24	.16771	16.00	126.11	• 1018367	671.37	.05734	.03189	5.30000
24	.16771	1 ~ . 60	44.46	•0018979	f [] • 41	• 94314	• 0 5 5 5 6	2.30000
24	•16771	27.69	48.n7	.2019495	632.46	•03122	.01954	5.30000
24	.16771	22•90 22•90	47.91	• 1050030	615.35	.02178	• 01446	5.30000
24	.16771	24.00	32.27	• 9020531	$600 \cdot 69$.31467	•01931	2.30000
24	.16771	26.GA	20.97	• 1026947	588.65	.06954	.00709	5.30000
24	.16771	24.39	13.73	•1021219	LH1.12	.00624	.00464	2.30000
24	•15771	37.00	10.48	• 6651549	570.95	.00499	.00727	2.30000
34	•1750c	1.00	186.12	• 017 • 95	764.81	.08462	03924	2.43000
ي د	•1750c	6.00	192.55	• 1017534	7(3.08	.08394	• 03H73	2.40000
26	175	4.00	173.41	• 017661	€64.50 1.044.50	.07884	• 03741	2.40000
ي د	•17500	6.00	159.16	• 1017H+0	696, 39	•07236	• 03532	2.40000
) (,) (,	•175C3	4.07	140.63	•0018134	674.99	.06394	• 03232	2.40000
	.17%	10.00	120.CH	•01846B	667.68	.05460	•0247 8	2.40000
515 515	.17500	17.00	94.15 79.66	• 16 [PHS]	654.15	. ()4513	.02488	2.40000
25 E	17500	14.0	78.44 59.41	• (019274 • (019714	434 ,77 525 , 49	•63566 •02724	.02070	2.40000
25	• 1 75 1 3	16.00 18.00	44.11	• 919714 • 5626153	611.86	.02006	.01663 .01290	2.40000 2.40000
,		** ** *	I 1	* *** [1.1.3.3	0.11400	• 07 000	• 11 4 7 7 11	e = -+ : (1111)

* * * M G R * * * PAGE 16

COMPUTATION OF AFRO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

CASE NO. 1 CRD 7-TURE AP=2.3 NO7ZLE - VJ=2200 FPS - TTJ=1600 DEG-R

AXIAL	LOCATION	= .29	167 (XZD	FQ = 4.00	0000)			
м	R	ANGLE	()	DENSITY	TEMP.	UZUREF	TUR8.INT	• PIDEO
25	.17500	21.50	31.18	.1020543	599.09	.01418	.00964	2.40000
25	.17500	25.00	21.12	•00209H7	597.55	•00960	•00694	2.40000
25	.17500	24.00	13.77	.^021344	5 77.71	.0626	.00481	2.40000
25	.17500	26.00	8.66	.0021636	569.92	.00394	.00334	2.40000
25	.17500	54.9C	5.41	.0021826	564.96	.00246	•00535	2.40000
25	.17500	30.00	4.18	•0021877	563.64	.00190	.00192	2.40000
26	.18229	a_60	46.65	•0 01 9698	645.67	.63940	.02081	2.5000 0
26	18550	1.47	45. 4	.0019131	544.56	• C3869	•02052	2.50000
26	.18229	3.75	80.94	.019217	641.64	•6368 0	.01974	2.50000
26	.18224	5.62	74.69	.6019357	637.02	.03396	.01860	2.50000
26	•14229	7.50	66.49	1019552	63(67	.03919	.01697	2.50000
26	.18229	4.37	57.15	• CC197⊬6	623.19	•0259A	.01510	2.50000
26	.14229	11.25	47.65	•002004a	615.05	.(5166	.01303	2.50000
26	•18229	13.12	38.24	• 0620337	606.33	.01741	•01087	2.50000
26	.18229	15.33	24.65	·11020641	597.41	•01348	.00879	2.50000
26	.18229	16.H7	22.17	.020942	548.8 1	.01COP	.00693	2.50000
56	•18229	14.75	16.03	•021229	58.1 . 84	•00729	.00534	2.50000
26	.18229	23.62	11.14	.0021501	573.50	•00517	•00396	2.50000
26	.18229	22.50	7.44	• C021746	567.55	•0033H	.00293	2.50000
26	.18229	24.37	4.76	•^021955	561.63	.00216	.00224	2.50000
26	.18229	26.25	2.44	.1022116	557 •56	.00131	.00172	2.50000
26	.18229	24.12	1.66	·6055184	555.72	.00076	.00151	2.50000
26	.18229	30.00	1.19	.4022174	556.68	• 20054	.00132	2.50000
27	.18958	0.00	36.06	.3020411	604.12	.01640	.00971	2.60000
27	.1895H	1.87	35.36	.1021436	603.37	.01698	.06957	2.60000
27	.14952	3.75	33.52	•00205in	501.50	.01524	.00917	2.60000
27	.18958	5.62	30.72	.3023603	594,59	.01397	•068 <u>5</u> 8	2.60000
27	·1895H	7.5€	27.12	• 020736	594.64	.01233	.00776	2.60000
27	.18958	4.37	23.12	•4020915	589.H4	.01046	.06681	2.60000
27	•1R95P	11.25	18.93	•50210H7	584.75	•3 0 861	.0058 7	5.60000
27	• 1 × 95A	13.12	14.96	•00212±5	579.32	.00680	·00485	2.60000
27	.18954	15.00	11.39	.1021486	573.90	•0051H	.00342	2.60000
27	.1895A	15.87	8.35	• ^0216HS	564.62	• 0037H	.00304	2.60000
27	.18958	18.75	5.P4	• J021868	563.87	.00265	.00246	2.60000
2 7	.18958	21.62	3.49	•4622033	559,65	.00177	.00192	2.60000
27	.18958	22.50	2.43	.0022167	556.26	.00111	.00165	2.60000
27	.1295A	24.37	1.34	.0022241	554.42	•00v61	.00160	2.60000
27	• 1495H	26.25	. 34	· J021745	567.36	.00(15	.00148	2.60000
27	•1H9EH	24.12	0.0	· 1422×35	540.	0.00000	0.00000	2.66000
27	·18958	30.00	0.00	·1022835	544 . Ot	0.00000	0.00000	2.00000

SHELLANDER OF THE AND A MARKET FROM THE SHELL SH

KDRBOOBAS	1	554.
Y1187.4171	7	.54414F+0A
:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 J C 1 1

<u>r</u>		7.500
uk Ž		27

#ABRING - 10. OF THATING PULLING SPEATED THAT, 2 AT MAE 7 x= .29127 THE 11 THETAE 123.00 NIDE 3

UMAX(8)= 1951.76 UMAX (10) = 1506. P5 UMAX (111) = 1347.75 UMAX (12) = 1276.87 141(7)= 14442F+21 FY(7)= 3531F+01 HAVG(7)= 1266.63 UMAX(7)= 2106.11 UMAX (9)= 1731.67 16.524 BAVG(1()= 986.98 70×.47 UAVG(41= 1170.16 HAVE (3) = 1077.16 141 (111) = .3471 15 +19 FM (111) = .4472E+61 HAVG(111) = =(41) 0 AV (12) = (1212) € +1 × € + (12) = (519) € +51 (12) = (446) € FY(10)= .4537F+91 [0+365×6. =(×) 74 F" (9)= .4151F+6] 141011 = 117529F+27 1.2+ 3585. 1 = 18 11e 12+3611811 = (H) I H 05**67.** 1150. €£ 77. .5213 3475 =(1) "(x) * x(11)= =(5) =(010)= x(12)=

PAGE 17

COMPUTATION OF AFRO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOTZLES

CASE NO. 1 CPD 7-TURE AR=2.3 NOTTLE - VJ=2200 FPS - TTJ=1600 DEG-R

AXIAI	LOCATION	= 1.1	6567 (X/0	eεn = 15•9°	1949)			
М	ρ	ANGLE	H	DEDS11A	TEMP.	UZUREF	THRH.INT.	⊬/DF W
1		3.30	1238,43	.012299	1 (7.62	•56366	.00079	•00016
1	. 1011	11.3	1234.43	012249	1762.62	.5631h	.00079	.00916
1	.00001	200	1234.43	.^012249	1 .02.62	.56366	.00079	.04016
1	.00001	30.00	1238.43	. 1012299	1-62.62	.56326	.00079	.00016
2	.^1167		1236.43	.1012310	1,01,65	•56215	.01959	.16000
2	. 1167	100	1236.43	.°012311	1:(1,65	.56215	.61960	.16000
2	.:1167	20.00	1236.44	.3012310	1701.66	•56216	.01961	.1+050
2	. 1167	31.01	1236.44	.1012310	1001.66	<u>.</u> 56216	. L1960	.16000
3	2333	2.00	1230.90	. 012345	AOK HH	,55464	.02794	.32006
3	.^2333	7.5	1276.44	. 2012345	44H.87	<u>.55963</u>	.02794	.32000
3	- 2777	15.00	1230.43	01 > 345	уон _а ня	55964	.02797	.32000
3	• 2333	22.51	1530.05	• 10 1 2345	44× 44	• 55965	. 52797	•35000
3	. 2311	30.00	1230.98	* 10 \$ 2 344	494.44	•559h7	• C2798	•3200 0
4	• 1 35 (ca)		1221.34	• (0124.5	444.64	•55529	23476	•4800 0
4	• 6 35 n c	7 • 500	1221.47	• 3174 4	444.17	• 6,6535	.03477	.48000
4	• -35 /	15.00	1221.39	. 012454	494.67	•55532	.113482	•48000
4	• 35()	> >_5	1271.41	. 10124 14	994.18	• 555.32	.43489	. 48000
4	• 350c	W.01	1221.32	.1012414	994.67	•555 <u>28</u>	.03491	•4H000
5,	· 14667	1.00	1216.44	•4012443	9MF . 99	•54H72	.04115	.64000
c	. 4667	6.57	1276.94	. 1015443	447.02	•54H75	.114119	.64000
5 ,	· 4667	12.10	3504.6H	. 012493	987.u5	•54H76	.04135	.64000
ς.	· "4667	18.)	1216.80	. 1012445	987 . 97	.54871	.04154	.64000
5	. 4667	ره ۹۰	1206.74	. 1012492	987.1%	.54865	.114169	.64000
ς.	.14667	1 .00	1206.84	. 012492	487.12	.54870	.04170	.64000
+	. 45833	• 00	1147.62	.0012613	977.66	•53996	. 14768	•40000
6	• -2833	5• 3″	1147.62	• 012612	977.69	•53996	.947H3	.80000
6	• (·5433	12.00	1147.26	.1012611	977.75	-5.39ki)	.04814	•66000
6	• - EB33	1 ** • **	1167.6	. 012610	977.86	.53971	• 64 450	•H0000
4	• 45H 3 4	24.01	1107.19	· 0126 /8	977.94	•5397 <i>2</i>	. (14878	.H11000
6	. 5833	35.40	11×7.17	• 10126- R	478 . N 3	•53971	•0488H	.80000
7	• ^ 7 ^ 9 ?	• 3 ^	1162.27	•1012765	966.(1	-52843	. 0546(.96000
7	• 5 7 0 0 C	5.111	1162.31	.)012764	466. JH	•52845	.0547H	.96000
7	. 17030	10.00	1161.97	.0012762	966.24	.52830	.05520	.46000
7	• · · 7000	15.00	1161.48	.0012759	466.44	•52หาค	.05571	• 96000
7	.07000	31.15	1161.28	•0012755	466.7:	.52799	.0561H	•96060
7	• 47000	25.00	1160.97	•6012753	966.86	•52784 •53703	•05648	.96000
7	. 27006	3.00	1160.42	.0012752	966.94	.52782	• 05655	•96000
H	. 18167	.00	1130.21	. 012946	452.48	•51386 • 5333	.36181	1.12000
я	·/ 8167	6.59	1130.05	.0012944	952.6T	-5137R	•06208	1.12000
4	. 14167	19.00	1129.59	. 1012940	452.92	•5135H	.46272	1.12000
н	• 1H167	15.00	1128.75	.012935	953,32	.51320	.06347	1.12000
ρ	.78167	20.66	1128.07	.0012928	453.79	.51289	.06411	1.12000
į.	. 9167	25.31	1127.39	. 012924	964.15	.5125A	. 36453	1.12000
H	. 18167	3 ()	1127.07	. 012923	454.2	51243	. 16465	1.12000
Ç	• (4333	•) •	1040.28	. (013155	937.34	44576	• C6894	1.24000
9	. 14333	4 . 19	1790.98	. 1013163	937.51	.49561	.u6919	1.28000
9	. 14333	" · 57	1584, 76	.013147	937.91	.49529	• 66987	1.24000
Q	.69313	12.46	1028.33	. " 11 31 39	434.49	-494HZ	. 1.7.172	1.28010

PAGE 18

COMPRIATION OF AERO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOTZLES

G A

EPD 7-TUBE AR=2.3 MO77LE - VJ=2200 FPS - TTJ=1600 DEG-H CASE NO.

1.16667 (X/DEQ = 15,99999) AXIAL LOCATION = UZUREF THPR.INT. HZDFU TEMP. DENSITY υ ALGLE M .07151 .49436 1.24000 .013129 934.17 1387.31 .19333 17.14 .07268 1.24000 939.73 .4437H .0013122 1086.74 . < 9333 1.28900 21.43 .07242 .49342 .3013115 941.17 25.71 1645.25 .49777 .67253 Q .49325 1.28000 945.31 .1913113 3:.00 1004 HA . 19333 .07553 1,44000 .47394 .0013387 421.08 1042.41 1,44000 .10500 0.60 .07585 .47369 10 .1013385 421.26 .10555 1941.47 4.24 .07667 .47317 1.44000 10 .0013376 451.HH .10500 1040.72 H.57 .67767 1.44900 10 .47237 .0013363 422.76 1034.46 .10530 12.46 .07854 1.44300 10 423.7A .47154 .101334A 17.14 1037.13 .10500 .07414 1.44000 10 .47ii65 . 013336 424.64 1:15.17 .1050. 21.43 .07946 1.44000 13 925,35 925,51 47307 .: 013326 1:33,91 .1050 25.71 . 1)7454 1.44000 1: 46978 1233.26 • 013323 .10500 3 4.00 1.60000 16 . OKTUS 963**.**86 .44424 .0013n47 4.00 445,40 .11667 .JH133 1.50000 11 .44875 .1013639 4114.118 3.75 145.47 .CH206 1.60000 .11667 11 414.73 .44742 7.50 444. 4 • 1013679 .11667 **.**58298 1.0000 11 .44644 481.42 .:013616 465.71 .11667 11.25 1.60000 . OH 3H4 11 .44526 .:n13598 444 . 44 $I \cong \bullet \circ \circ$ 479.34 .11667 • 9H44H 1.60000 11 .44419 មកអ.្ . 0135FC 476.76 .11667 14.75 1.00000 . CH4HH 11 464,49 .44299 . 1017EKG .11667 23 - 26 974.14 ,08504 1.00000 11 .44225 . 13444 41.9.65 24.25 472.75 .11667 •บ8514 1.60000 11 .44217 . (6) 3551 4,19,95 972.11 .11667 3 . . ₽ . .08510 1.76000 11 414"4 445.44 . 913617 121.76 .12433 . . 1.1 1.76000 .41873 12 .68538 RR6.24 420.93 .0013414 .12833 1.75 12 . 98610 1.76000 .41779 • €0139^1 HH7.12 914.91 .12433 7.50 .08701 12 1.76000 .41640 15.444 · 013843 915.45 1.76000 .12433 11.26 12 .41475 .087Pl 912.22 10HE163. H94.63 .12433 15.00 •UBB35 12 .41297 1.76600 491.05 •119] 3H3A 1-.75 908.30 .12977 1.76000 12 .08861 .41140 892.27 404.HF · 613350 .12813 22.53 1.76000 *(HA66 12 .41.36 497.49 412.56 . 1 01 3H 17 .12833 24.25 .08866 12 1.76000 .40997 .001350 493.3A 35.00 901.71 .12833 .0H73u 1.42000 12 867.36 . 38651 ..014216 45(.II 1.42000 .14696 13 . 11/1 .98750 . 3H617 .:014212 26.7.61 .1400 H49.37 3.33 .38523 1.92000 **.**98805 1.314201 MF-H . 33 .14000 847.35 A. A.7 .08976 1.92000 13 **.**38363 MF4.34 .0614183 1.... H43.77 1.42110 13 .140)^ .08943 .38166 474.72 .0014161 279.44 .14600 14.33 AHPHD. .37954 1.52000 13 F72.18 .1314138 15.67 A34.79 .14000 1.92000 .09009 13 .37753 . 4614115 H77.58 H 30.35 .14000 20.01 .09609 1.92000 .37593 13 ×74.76 .11914596 A26.45 .14000 23.33 . 37484 1,92009 13 .09901 £75.51 .0014084 924.45 24.67 .14000 13 .44498 1,92000 H75.8 . .37452 .0014:79 н23.73 .14930 30.00 .08750 2.04000 17 .35122 H47.97 . 014541 .15167 772.44 ن يا ۽ د .08767 .35072 14 2.04000 848.19 . 161453H 771.32 .15167 3.33 2.08000 . 0881 T . 1014525 H44.91 . 34947 768.55 .15167 5.67 .0HH71 2.08000 14 134752 451.16 . 3014576 764.35 .15167 . 745 14 .0H91H 2.08000 14 H51.47 . 0144H2 .15167 759.11 14.33 2.08000 .08943 14 .34257 . 114455 HS 3. 5 10.67 743.47 .15167 .08941 2.04070 14 .34308 454.50 · 1014436 747.99 2000 .15167 FSPRO 2.08000 1 4

110144.9

747.72

21.11

.15167

14

H55.79

. 33814

PAGE 19

COMPUTATION OF AFRO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

CASE NO. 1 CRD 7-TUR	F AR=2.3 MOZZLE	-	VJ=2200 FPS -	_TIJ=[500_0F6=8
----------------------	-----------------	---	---------------	-----------------

AXTAL	LOCATION	= 1.16	5667 (XZI	nen = 15.99	994)			
м	L.	AMGLE	(I	DENSITY	TEMP.	UZUREF	INDB*INI	KNDE0
14	.15167	26.67	740.75	.014395	H56.5H	.33679	• 68402	2.08000
14	.15147	3(• 0€	739.65	.3014391	856.84	• 33629	•68893	5.08000
15	.16333	0.00	490.42	• 1314849	827.68	.31391	. ∀8564	2.24000
15	.16333	3.00	624.54	· 1014KY4	427 . 84	.31353	• 08575	2.24900
15	.16333	6.90	<u> ሐ</u> ባሐ• ሐሶ	•□014885	H2H.43	.31226	.08603	2.24000
15	.16333	4.00	682 . 73	.:014n68	H29.35	.31041	. 98638	2.24000
15	.16333	12.00	677.69	.C014846	43 _• 56	.36812	<u>. 88667</u>	2.24000
15	.16333	15.00	671.45	·1014822	431.94	.30546	.08677	2.24000
15	.16333	1 25 🛖 1270	PP₽•93	•a914799	P33,24	.39272	•08666	2.24610
15	.16333	21.16	449.62	.0014775	834.56	. 30035	. ᲔᲧᲠ40	2.24000
15	16333	24.00	6º6.27	· (0)4757	635,59	.2983H	• 0K605	2.24000
15	.16333	57.00	463.21	. 114745	H36.28	.29712	• 28578	2.24000
15	.16333	30. • € 7	652.64	· 014740	H36.57	.29675	• 48568	2.24000
16	•175cc	1.00	646.41	• ±0152H9	H16.53	.27549	• (FR1 H4	2.45000
16	•1753c	3 • U J	n115.00	· 1152HS	806.75	• 27552	.88193	2.49000
16	•17500	6.33	₽05°40	· 015276	407.20	.27411	• 68508	2.40000
16	•17500	4.10	23H . UP	• 4615260	40x.06	.27214	• 68227	2.40000
16	•1756€	12.00	445.04	. 015240	würd" ud	• 26946	•08234	2.40000
16	.17573	1200	544.4°	• 5015216	H11,36	.26661	. 44225	2.40000
16	.17511	124.455	579.23	. 015142	H11.65	•26362	•08193	2.40000
16	•175¢1	21.10	574.0	. 7015169	F12.9J	<u>,</u> 26697	.08149	2.40090
16	.17 500	24 → 3°)	249.59	.∞015150	H13.93	. 25883	.34161	2.40000
16	.17500	27.00	566.13	• 01513A	414.55	.25740	.08062	2.40000
16	.1750r	30.00	566.13	.015133	H14.81	.25694	.04049	2.40000
17	.18667	00	524.23	.4315714	784.69	.23834	.07644	2.56900
17	.18667	2.73	523.45	. 015711	784 . 83	.23799	. 67647	2.56000
17	.18667	5 . 4 C	520.44	.00157.5	785.15	.23680	.07651	2.56000
17	.14667	쓰.1개	516.92	· +015693	785.74	.235r2	. 3755	5.56000
17	.18667	15.91	511.73	•°015678	786.5:	. 23266	.07649	2.56000
17	.18667	13.64	505.65	.0015661	787.38	. <i>22</i> 993	.07627	2.56000
17	. 14667	16.36	499.45	. 1015647	784.42	,227aB	.07592	2.56000
17	.14667	19.43	443.13	.5015619	789,45	.2243n	.07540	2.56000
17	.18667	21.82	447.93	. 1015676	19 .42	.22184	. 07443	2.56000
17	. 18667	,24 , 55	427.66	.015585	791.2	.21990	. 17429	2. 56600
17	.14667	27.27	441.72	·· 015574	791.74	.21871	.17392	2.56000
17	.18667	30.00	443.13	•301557a	791.94	.21829	.07378	2.56000
10	.19833	ch	444,45	. 1016173	762.41	.20226	.0697H	2.12000
٦H	.19477	2.73	444.06	.0016171	762.53	.20190	.06978	2.72060
15	.19813	5.45	441.44	.(016166	762.75	.20170	.06974	2.720n0
18	.19837	H • 1 B	437.39	.0016157	763.17	.19886	.66964	2.72000
18	.19833	13.91	432.15	.0016145	763.74	.1964H	.06942	2.72000
18	.19833	13.64	426.13	.0016130	164.46	19373	.06906	2.72000
19	19837	16.36	419.72	.3016113	765.27	.19uH3	.06954	2.72000
18	10474	14.0	413.45	. (016695	766.1.	18798	06790	2.72000
j u	.19833	21.82	407.44	·1016078	766.94	18550	06722	2.72000
18	.19413	24.55	4/3.63	· 0 C 1 6 0 6 4	167.62	18352	. 06660	2.12000
14	.19431	27.27	400.90	. 5016054	76H.UH	18227	.06616	2.72030
18	.19877	31.00	394.40	.0016351	764.23	18182	-66606	2.12000

PAGE 26

COMPUTATION OF AFRO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOTZLES

CASE NO. 1 CHO 7-THRE AR=2.3 MOZZIE - VJ=2200 EPS - TTJ=1600 PEG-H

4XIAL	LOCATION	= 1.16	667 (X/I	nen = 15.99	999)			
м	D	AMGLE	U	Ut vie 11A	At Wb.	HZUREF	THER.INT	• HYDEW
19	.21000	4.60	373.73	• 1016662	74 ° • 06	.16855	.66228	2.84660
19	.21000	2.5∪	370.01	€016661	74,13	.16823	• 66225	5.8H040
19	.21000	5.01	367.92	•0016658	74 . 23	.16728	.06217	2.86000
19	.21000	7.50	364.5H	· 2016653	74; 45	.16576	.06260	S.88500
19	.21300	10.00	160.11	· (016647	74:.74	.16373	.06172	2.44000
19	.21100	12.53	354.93	· 1016637	741.15	.16137	.06133	5.84000
19	• 21 000	15.00	340,34	• 1016625	741.68	<u>.15883</u>	.060H1	2.44000
19	.21000	17.51	343.54	• (0 1 5 6 1 3	742.23	.15621	.06017	5. 84000
19	• 51000	20.00	335.14	• ,614229	742.84	.15376	. 05444	2.88000
19	·21000	25.5	333.44	• 1016587	743.4 1	.15166	•05H79	7. FROCO
19	.21000	50.0	₹54.74	· . (1) 65.76	743.89	.14494	· 45821	5.44600
19	.21000	27.5	327.48	• . 016565	144.21	·14HRY	• 057E1	S. HBU!!O
19	.21000	30.00	324.44	• 016566	144.32	.14853	.05767	2.PH000
20	. 22167	6.50	303.31	•6017173	718.03	.1379.	.05436	3.04000
26	.22167	> 61	3)2.67	• (017173	718.02	.13758	• 65431	3.04000
20	.22167		100.64	.0017172	718.06	•13669	.05414	3.04000
20	.22167	7.6	297.45	. 017171	718.13	.13524	· 15,394	3.04000
25	.22167	1.00	343.36	. 017167	71H.3\	•1333B	• 05 359	3.04000
20	22167	17.55	248.44	017161	71×.52	.13116	.05312	3.04000
5ú	•221h7	15.34	243.14	.1917155	71H.P3	.12873	. 5252	3.04000
20	•22167	17.5	277.74	.1017145	719.18	•1262B	•05183	3.04000
23	.22167	20.00	272.66	• .017136	719.6	12394	.(5109	3.04000
50 50	.22167	25.50	264.15	. 017125	72(***3	.12142	• 15 u 3 B	3.04000
20	.22167	25 • 37	264.66	. 017117	72: 4:	.12.33	.04977	3.04000
20	.22167	27.5	212.47	. 017111	721.66	.11933	.04937	3.04000
50	.22167	3.00	261.72	. /17119	721.75	.11899	.04922	3.04000
21	. 23333	`• (ee	243.54	.0017699	606.6H	.11:73	•9454U	3.20000
21	.23333	2.31	243.12	.0017700	696.67	.11:49	.04635	3.20000
21	.23733	4.62	241.46	.0017771	696.63	.10978	.04621	3.20000
21	.23333	6.92 4.23	239,)6 235,84	• 0017701	696.62	.lun69	04548	3.20000
21	.23333	-	•	. 10177.1	696.61	10721	.04564	3.20000
21	.23333	11.54 13.85	23 1. 46 22 7. 52	1017731	696.62 696.7 i	.10542	.04520	3.20000
21 21	.23333 .23333	16.15	722.94	.6917649 .017645	696.83	10136	.1144th .04404	3.20000 3.20000
21	.23333	14.46	218.46	1017640	£97.114	69432	. 14376	3.20000
21	.23733	> 77	214.31	017653	697.31	54744	04268	3.20000
21	.23333	23.09	211,74	017676	697.58	าครหล	.04264	3.20000
2)	23333	ဉ်ရှိ ရှိရှိ	208.05	.017670	697.83	39457	.04152	3.20000
21	.23737	27.69	206.28	• 017666	10.8Pd	19379	.04118	3.20000
21	.23333	30.00	215.69	.::017664	69H 07	(9352	.04106	3.20000
22	24500		191.94	014229	676.44	·08727	.63H74	3.36000
22	24590	2.14	191.56	(01823)	676.41	68769	63869	3.36000
22	24506	- 29	190.41	• 01#231	676.35	08657	• 63A57	3.36000
22	.245jn	6.43	186.54	·^01×234	676.25	68572	03835	3.36000
22	24576	4.57	lan 4	-014237	676.15	48459	03864	3.36060
22	• 3450r	1:.71	183.00	3018245	676.94	08320	.03765	3.36000
22	24520	12.86	179.59	0018242	£75.97	.08165	.33718	3.16000
22	24500	15.07	175.41	018242	675.94	1799H	.63664	3.36000
				-	-	•		

COMPUTATION OF AFRO-ACQUISTIC PROPERTIES OF SUPPRESSOR NUZZLES

CASE NO. 1 CRD 7-THRE AR=2.3 MO77LE - VJ=2200 FPS - TTJ=1600 DEG-R

AXIAL	LOCATION	= 1.16	566 7 (X/I)) <u>E</u> 0 = 15.49	1999)			
м	μ	ANGLE	H	DENSITY	TEMP.	UZUPEF	TUPB.INT	, K/DFu
22	.24500	17.14	172.18	•C018241	675.97	.07828	.03605	3.36000
22	.24500	19.29	168.57	· (018239	676.07	•07664	• 03544	3.36000
22	.245nr	21.43	165.24	·0018235	676.21	.17515	· 634H4	3. 16000
22	.24531	23.57	162.49	•0019231	676.37	•0 7 388	• 6343c	3.36000
22	.24501	25.71	160.36	*101×554	676.53	. 17291	• 63386	3.3€000
22	.24505	27.86	1-0-63	£558160.	676.64	.:7231	• €335x	3.36000
22	.24500	3.0 € 6 €	12×*2×	1018252	£76.68	.07210	.UJ348	3.3600 0
23	• 25667	• 8 °	144,67	• JE19751	657.61	• ○6 7 55	• 03165	3.52000
23	. 25557	2.14	144.74	•C018752	£57.5H	• (674)	.0316ú	3,52100
23	.25667	4.29	147.25	. 1018754	57.48	. 66695	.03147	3.52000
23	· 25667	6.47	145.47	018759	657.34	• 26623	.03126	3.52000
23	.25667	~ <u>. 5.7</u>	143.53	• 1018764	657.16	• 66526	•03096	3.52000
23	. 25667	13.71	140.44	• 018769	656.97	.064UH	• (F305A	3.52000
23	.25667	12.86	178.1	• C419774	656.79	• 06275	.03013	3.52000
23	. 25667	15.0	134.37	• . 018778	650.66	.66132	. 12962	3.52000
23	.25667	17.14	141.67	•00107H0	556.5A	.15987	-02466	3.52000
23	25667	19.29	124.57	•+91H7H6	656.57	.15846	. 62849 . 2764	3.52000
23	25667	21.43	125.74	•°118779	h5h•h2	•(5717	.02794	3.52000
23	• 25667 30663	23.57	123,43	•018776	656.71	.05607	•02744	3.52000
23	.25667	25.71	121.49	• J(18774	656.81	.65524	.02704	3.52000
23	. 25667	27.86	124.34	• 418771	656.89 457.03	• 65471	• 0267A	3.52000
2.3	.25667	3 • 11	119.96	• C18771	656.92	• , 5453	• 45446	3.52000
24 24	• 24433	•)^	112.74	•1019255 010354	641 . 3H	.15132	• 92529	3.68000
24	•26833 •26833	2•17 4•17	112.64 111.93	• .019256 • 1619263	643.24	• วร121 • แระเหต	•02526 •02515	3.68000 3.68000
24	26433	** • 11 ° · 11	110.78	• (619264	644.18	.05037	.02497	3.68000
24	.26833		119.22	• 1019271	639.87	. 34466	.02473	1.68000
24	26H33	1.03	1.7.32	. 1019278	F34.64	C4H79	02442	3.68000
24	26H33	12.5	1.5.13	019285	639.41	04740	•62466	3.68000
24	26833	14.00	112.75	. 019291	639.19	24672	02364	3.68000
24	26433	10.0	103.27	1019246	639.02	04559	02319	3.68000
24	26H33	18.00	97.79	0197.)	67H 96	04446	62272	3.58020
24	26H33	23	44	0193-2	£ 38 .84	94339	02224	3.68000
24	.2hh33	27.35	63.31	. (3)9362	638.83	.04242	02179	3.68300
24	·26 4 3 4	24.00	91.51	. (191)	638.87	.04161	22139	3.68000
24	•26833	26.31	99.16	•(619299	634.92	34049	.02108	3.68000
24	·26H34	2 H	99.31	· c419244	63H.97	.04950	88050	3.68960
24	26433	3 .63	44. 2	.2019297	638.99	.04347	14050	3.68000
25	.24 16A	• 1	44.14	. 1619734	624.84	.5382H	.01978	3.84000
25	. 2400)	٠,١٠٠ م	-4.	.0019735	624 A.	.03819	21975	3.84000
25	.ZANA.	4 . 1"	4 4 4 2	.0619739	674.69	.03793	31966	3.84660
ع د	.2Hcgr	0.60	عي آين	. 019745	524.51	.03751	01950	3.64000
عر	20200	A	41.24	. 014752	624.28	. 43694	41928	3.84010
24	• 247 Jr	1 .	74.7.	· (C1976)	624.91	.03624	.01901	3.84000
2 د	م به هر و	17.0	77.44	. 91476)	623.74	.17544	.61868	3.84000
25	.24000	14.	76. 1	. 014777	623.4H	. 03456	.61432	3.84000
25	• >4002	1	74.1	• (0) 9785	623.25	•03365	.(1792	3.84000
٤٢	./H141	18.00	71.99	. 1119791	473.CH	. 43273	. 11751	3.84000

* " " " PAGE 22

COMPUTATION OF AEPO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOTZLES

CASE NO. 1 CPD 7-TURE ARER. 3 MOTTLE - VJ=2200 FPS - TTJ=1600 DEG-R

A Y T A I	LOCATION	= 1.16	467 (V)D	EQ = 15.99	0061			
M	P COCATION	AtiGLE	O CAN	DENSTIA	TEMP.	UZUPEF	TURH.INT	• K/UEG
25	.28990	ورساخ	70.17	.3019794	622.97	12186	•C1710	3.84000
25	.28000	25.00	68.33	.1019795	622.91	.03186 .03107	.01671	
25	• 2839C	24.00	66.33 66.87	.1019795	-	.03040	.01637	3.84000 3.84000
25	· 29000	26.00	65.76	019795	622 . 91 622 . 93	.03940	.01611	3.84000
þE	28000	26	65. 6	.019744	622,96	92958	.01593	3.84000
25	28000	3' . 00	64.13	019793	622,97	02947	.01587	3.84000
26	29167	• (* (61.51	• 020180	611.34	.02802	.v1514	4.00000
24	29167	1.87	61.51	•0020181	63.66	.02796	.01512	4.60000
26	29167	3.75	61.11	020145	61 96	.0277H	01505	4.00000
26	391n7	5,62		320190	617.73	02749		
26	24167	7.5	61.46 59.40	. 020147	h1/ 52	02799	.01493 .01476	4.00000 4.00000
26	29167	9.37	58.51	• 020215	63.26	*V2650	01455	4.00000
26	29167	11.25	57.25	1020215	K14 99	.626.13	.(1431	4.00000
26	29167	13.12	55 PH	0.20224	649.71	.02540	01403	4.01100
26	29167	15.10	54.41	•0020232	46445	.02474	.01373	4.00000
26	29167	16.67	52.11	529249	669 24	32405	.01341	4.00000
26	24167	15.76	41.64	027245	h(4.0h	12339	.0130H	4.00000
26	>9147	2 62	50	02,249	674.95	.02276	.01277	4.00000
26	29167	22.6	49,41	320252	h(H PA	52219	01247	4,69900
26	29167	24.37	47.76	020252	e 18.86	12172	51222	4.00000
26	29147	26. 26	46,96	676242	6/8,86	02136	01202	4,00000
26	29167	24.12	46,44	1020252	ธ เค.ลิ7	02114	21189	4.00000
26	24167	30	46.12	1812021.2	е н ва	02106	01185	4.66000
27	31/323	• Q ()	44 2M	926548	592.94	02613	.01135	4.16000
27	1/333	1.87	44.1"	126549	କୃଷ୍ଣ ସଞ୍	02009	.01133	4.16000
27	33333	3.75	43 69	وكالافراق	SOH HU	01995	.01127	4.16600
27	30333	5.63	43,39	020598	598.63	.31973	.01117	4.16000
27	30333	7.50	42.72	(029666	598.42	01942	.01103	4.16000
27	. 71773	4.37	41.11	1020614	594.16	61904	.01686	4.16000
27	30333	11.25	40,43	11201124	597 AH	11861	.01066	4.16000
27	3(333	11.12	34.37	110271 14	597.66	61813	01043	4.16000
27	30332	15.0	14.74	1021643	597.34	.01761	.0101B	4.16060
27	. 70333	16.47	37 5H	.029551	597.10	.01709	.00992	4.16000
27	<u>.</u> 78373	1 4 . 75	36.4"	1.023653	596.91	01657	.00966	4.16000
27	. 22777	20.62	35.37	. 1029662	496.77	.01668	60940	4.16000
27	. 30333	77.60	34.41	·6020465	591.69	.01564	00916	4.16000
27	.30333	24.37	33.00	.0025667	594 KG	.01528	. 90895	4.16000
27	.36333	26.23	12,64	1027667	596.63	.01510	.00879	4.16000
27	. 30333	20.12	12.61	. ,021667	596.64	.51482	. 10469	4.16000
27	. 30 333	10.00	37.49	. 02:667	596.64	. 21477	.00465	4.16000
24	31600	1	31.22	. 12:055	58H 45	.01419	.00832	4.32000
28	.31513	1.74	31.35	.102,455	544.42	.31416	16800.	4.32000
24	. 3155.	1.47	30.44	· 1026953	59H. 34	.01447	.00827	4.32010
29	. 31500	5.29	30.43	· 1020914	488 .1 9	.31392	.00819	4.32000
24	• 315 a	7.16	30.10	•5526970	5H4.31	.01372	01300	4.32000
20	11811	" • H 3	29.62	• . 0/1147A	597.7A	•C1347	.0179H	4.32000
توحر	. 31500	11,54	2M.47	· 1 625 947	547.54	.01317	.00783	4.32000
29	. 31500	1 5 " 3 m	24,25	• 6482.446	447.2H	. 71.284	-06767	4.32000

PAGF 23

COMPLITATE OF AFRU-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES

- VJ=2200 FPS - TTJ=1600 DEG-P	
1	
CUD 7-TURE AR=2.3 NO77LE	
-	
CASE	

CASES	÷		UA)	C40 7-108F A8=2.3 NOZZLE	• 3 MOZZLE	1	VJ=2200 FPS - TTJ=1600	117=160
AXIAL LOCA	LOCALION	li	1.16667 (X/NEG =	£0 = 12•66066)	(650			
Σ	ü	ANGLE	٥	DENSITY	TE WD.	UZUREF	UZUREF THRM.INT. PZDEG	• R/DEU
ر ع	31500	14.12	77.47	.:021046	547.32	.01249	67400	4.32900
م د	31500	3 K • 1	26.46	.021314	524.7R	.61212	.00730	4.32000
α Λ	.31500	17.65	シカ・オ4 カカ・オ4	. 001022	586.57	.01175	.60710	4.32000
α	.31500	14.41	550	. JJ21628	586.41	.01139	.60691	4.32000
<u>م</u> ر	.3150c	×1.17	24,31	.6021932	45.34F	.01105	.00672	4.32000
87	.31560	75.94	23.64	.0021035	585.22	.01075	.00655	4.32000
a N	3150	24.71	23.9	. 6021536	91°985	05010	.00440	4,32000
) T	.31500	74.47	22.58	.0021637	586,15	.01031	.00629	4.32000
v x	. 1159¢	74.24	25.42	. 0921537	584.14	.01020	.00622	4.32000
م م	.31549	30018	22.34	. 021337	586.14	.01016	.00619	4.32000

SUBLIBEREAL TIME LY-AVENAGED FANAMETERS

		UMAX (13)= 1238.43	UMAx (141= 1165.93	UMAX (15)= 1043.83	UMAX (16) = 892.50	UMAX (17) = 737.45	UMAx (18) = 595.63
>		715,36	623.99	437.77	06.977	366.21	362.27
FREGUENCY	1117. 1877. 1877. 1877. 1877. 1877. 1811. 1877. 1877. 1877. 1877. 1877. 1877. 1877. 1877. 1877.	UAV6(13)=	1,446(14)=	UAVG(15)=	U4V6(16)=	JAVG(17)=	UAVG (18) =
INTENSITY	. 36 x 59 5 x 4 x 59 5 x 4 x 59 5 x 4 x 59 5 x 4 x 50 5 x 4 x 50 5 x 50	= .6247E+G1	= .7156F+01	= .a293F+6]	= .0976F+01	= .1217F+02	FM(1H) = .1471F+C2
• 45.41	7. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	*1× FW(13)=	+1+ FP(14)=	*12 Fa(15)=	+14 FM(16)=	+1F FU(17)=	
жа(т. h.б.	1000 1000	1(13)= .764),F+1×	+1+3d8342. =(41)]8H	41+382256 = (51) [31	41+3688,0, =(41)180	41+369264 = (21)140	r[+30644]. =(MI)[44 6467.e
PACTOS		1.1667 (18)=	1.4649	1.452(118	2.3333 UF	411 MOE6.5	84 6662°C
2		x(13)=	= (1 ())	= ('51') x	x(16)=	₹(11) ≠	x (15)=

Œ

PAGE 24

COMPUTATION OF AFRO-ACOUSTIC PROPERTIES OF SUBPRESSOR NOTZLES

VJ=22n6 FPS - TTJ=1600 DEG-P	
1	
CMD 7-1046 68=2.3 0072LF	
_	
CASE NO.	

AXIAL LOCE 3	CA110E =		4.5665 (X/DEO =	FO = 63.99995)				
	a	17.44			4471			
	I	א און וויי	Ξ	KITSHEO	TEMP.	UZUMEF	TURK.INT.	RZDEG
	50000°	ن م س	74.50	. C017543	7:1.27	.21573	.08242	.00064
	. 14667	ر د • د	449.72	. (0176.1	71:58	.<1356	• CH109	.64600
	16333	د. • •	455.47	. (17655	404.464	.26768	.07720	1.28000
	14000	0000	435.74	.017745	6.94.9	.19677	.07119	1.92000
		200 ° C	405.88	STR7101.	449,95	,1E317	.06377	2.56000
	.23333	() 3 € €	367.44	.001AU37	683.64	.16796	•05560	3.20000
	78030	(()	324.34	68.2×100°	474.36	14928		3.84000
	. 32667	00.0	247.48	+2411)·•	6,67,39	13,71		4.48000
	.37333	و بان	246.42	.7912745	647.82	.11213	.04208	5,12600
	しむいとち	0000	2,7,33	98.06166	647,65	92460		5,76000
	46667		77.47	F26100.	637,15	.07766		0000+.4
	51333	9 J • 3	137.05	a [α] α] •	626.63	.04272		7.03999
	26900	() () ()	139.22	10500.	614.34	99650.	.03041	7.67999
	46647	0.000	P4.77	.0620331	£36.53	.03854	.02621	R.31999
	45333	ر. (• ۍ	44°52	3443C3	62.765	.62933	.02197	4.95999
	70007	() S • 5	48.15	1950000	5x 3x 3x 3x	98150°	.91791	66665.6
	- 3	00°€	35.23	.0021217	241.17	-61662	.01423	10.23999
V W 4 V V V	51333 5606 6567 65333 70006		137.05 139.22 84.77 64.52 48.15	. (0105/8 . (020/07 . (020/33) . (020/44) . (021/217	ξεννωι	626.63 616.34 636.53 597.29 588.82		. 64272 . 63426 . 64966 . 03041 . 03854 . 02521 . 62933 . 02197 . 62189 . 01791

SMILLING OVER THE AND HIS PARTY OF THE SMILLING

	474.50	375.14	295,51	532.49	182.92	144.02
	UMAX (19)=	U4Ax (20)=	UMAX (21)=	UMAX (22)=	UMAX (23)=	UMAx (24)=
_	244.56	197.74	160,31	126.19	102.85	84.39
FREGUET CY 45. 126. 127. 127. 263. 127. 127. 127. 127. 127. 127. 127. 127	UAVG(19)=	UAVG(23)=	UAVG(21)=	1)AVG(22)=	UAVG(23)=	HAVG(24)=
10.77.5.17Y 2.10.20.745.6.4 2.11.72.6.4.0.4 2.72.75.6.4.0.4 2.72.75.6.4.0.4 2.72.75.6.4.0.4 2.72.75.6.4.0.4 2.72.75.6.4.0.4 2.72.75.6.4.0.4 2.72.75.6.4.0.4 2.72.75.6.4.0.4 2.72.75.6.4.0.4 2.72.75.6 2.72.75.6 2.	FR(19)= +1815F+62	F"(2()= .2238F+92 HAVG(23)=	FW(2])= .2746F+62	FM(22)= .3491E+62	F2(23)= ,4246F+62 UAVG(23)=	F.3(24)≈ .5598F+62 HAVG(24)=
4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	17 FE (19):					
2	181(19)= .421(8F+17	71+37.401. = (15) 180	HAT(21)= .736176+16	51+388272 = (58) IBO	143632 - 11568g+14	14.4157 181(24)= .21549[+14
	4. 6667 .)	5.4796 1)	11 6205.7	0.8888.0	11.7603 11	14.4157 1)
;	= (61) x	*(20) *	x(21)=	= (¿¿) >	* (23)=	= (50) =

*** SOUND DEFSSURE LEVEL DIRECTIVITY ***

.4356	661)*
S CITA STINE TELES	JET EGUIV. DIAM. =
1.5602	2199,16
JET MACH NO. =	JET VELOCITY =

9.0 FT. AMC

44916 ==	53.5	3€.0	0.64	ر د. د.	6.04	2.0.5	H 9	6. 3	163.0	116.0	126.0	130.0	140.0	150.0	150.0	7
	71.4	73.7	74.1	74.7	75.5	75.4	77.			1.5.1	9 6 7 1	r r	42.1	91.6	162.1	114.6
125	75.0	76.3	76.8	77.4	74.2	1.62	7.0	: - - -	· • 5 · ·	10 ,5 1	F.H. 3	91.4	45.7	100.6	1:4.9	122.5
0 7 1	٧٠٠/	7 a a	70.01	P.O.O.	o• 0 €	J.	٠ <u>.</u>	۷	٠ • •	•	ŗ. J	1.17	0.55	103.7	1. /• h	125.4
230		= 0 =	¥1.4	×2.1_	1.53	-2462-	3 H	·		1.1.	4.4	-4.1.	131.7	100,3	115.1	127,9
ر د د د د د د د د د د د د د د د د د د د	۲,	٠. د.	13.1	σ• Έ	0.54	× 4 ×	4.61	•	-	~ . ~	0.35	ر د د	104.4	184.E	117.2	130.2
315	7 . 1	2.67	n • 7 i	. 4.88	86.7	6.75	3. 3. 1.	., • I.,	7.	\$.	ر. ت. ت. ت.	102.01	107.6	11.1	114.1	132.4
061	1 1	o. V.	#6.5	67.3	£ * 7 d	J	- -	, • ;	1.5%	5.11	166.3	7.4.7	109.4	113.3	115.9	134.5
9.00	7.02	7.7 H	- P.74 -	X	а Э ч	 5	4.75	•	1,	٠،٠	102.1	106.05	111.4	115.1	· /	13h.2
٠.٠ ١٠	7.7.4	F. 8. 3	⊕ • •		61.1	5.77	1.4.	•	`	7.	10 1.7	1.7.6	113.2	116.5	٠ <u>٠</u>	137.7
66 a	راہ ئ	3	04.00	61.0	6		ر. خ خ	• • •	4 .	~• -	7.5.5		114.7	117.7	;	1. r.
000	د.	J.	- -	æ•10	٥٠ ٠ ٥٠	3 .	Ç.	:	` .	, -	ر. د د د د د د د د د د د د د د د د د د د	~. = :	4. 1.	<u>.</u>	; ; =	ر ا ج ج
1250	(·	; ;		55.4	o . E	^• .;	***		-	7.	107.6	717	: :	~ <u>`</u>	711.	13.4.7
1600	7 . M 0	2.5	04.3	7.06	54.7	c.	+1.1+	\ •	```	,	16.5.7	7.1	116.4	· -	~	13.4
3000	04.1	m•45	4.40	44.7	67.0	4.15	1 7			7	€ • · • · • · · • · · · · · · · · · · ·	7.7	٠.٠	117.4	117.4	135.4
りこさら	- 1 1	£. 4 20 £.	ა. ე•	τ. Ι	- 70	5.,	7.	- 		5°	J	7.	1.0° E	117.1	1.17.1	7.7
3152	400	ا ما ما	160.2	1:2.7	1:1:1.	13.0	132.5	_	· · · · · · · · · · · · · · · · · · ·	~. `	110.3	1.5	117.4	3 * x 1 1	a * / E1	140.5
CO C 7	انن.	1) 0 . 9	101.4	102.0	102.	١٠ ١٠ ٩	1,4,1	`•; _	·	1 1 10	0.111	1.4	4. a.	119.2	1.1	14].
5000	101.4	101.6	162.1	152.8	103.7	1:4.7	1.5.	·•.		1.7	116.7	117.3	1.00.2	120.3	1.5	146.P
00E4	163.6	133.3	2.101	13.5	164.3	1,5,4	1:4.1	7.	1, ,	~ -	ع : د ا	c • 7	121.4	121.1	114	14.4.1
0 0 1.	108.4	137.4	106.2	1,5,3	105.1	105.9	1,7,61	, ·	E : 3	ê•111	7	15.51	123.2	121.4	117.7	145.3
15000		113.2	1111.4	130.3	107.5	17. p	167.1	· · · · · · · · · · · · · · · · · · ·	`. =	7.7.	117.2	122.0	154.1	121.2	114.7	1000
- 12509 -	113.8.	3.4.11	.114.3	114.7	112.2	153.4.		: :		11.44	11-1	122.	124.4	129.5	117,4	147.4
500-41	112.5	112.7	113.3	113.4	114.3	114.1		`· -	=	٠ <u>٠</u> ت	114.3	123.5	124.1	11,7.2	ĭ .	141.
0000A	111.3	5.	111.8	112.2	112.7	113.4	Ţ., [7.1.		5.7		122.5	123.3	1.	*	147.0
56.032	110.5	10.7	٠. ا	?. 	111.4	11/.1		1.4.5.1	÷:	11.	11/	۲۰۱۰	162.0	116.3	7.1.	2
31203		108.7	103.0	139.3	139.9	110.5	111.		7.5	111.	115.5	· · ·	120.4	114.7	1.0.1	747.
70007	•	ა. ქი_ -	107.2	1,77,1	104.1	1,4.1	ار د د	· · · · · · · · · · · · · · · · · · ·			113.C	117.7	110.4	112.5	J•	144.3
- 00005-	164.3	135.6	155.2	165.6.	196.1	116.9	167.4	· ·	11°.c	1111.	.110.6.	-115.2	116.	110.4	107.3	
63530	192.3	132.5	102.8	7.1	101.7	154.3	· -	1.4.7	7.7	J	1(7.9	112.0	113.6	104.0	165.0	142.0
() () v	2.66	7. 66	2.66	100.1	196.6	131.2	162.6		1.4.5	<u>ا:</u> ا	16 M • 2	167.6	6.091	104.0	161.1	141.0
7788300	121.6	120.8	120.1	120.9	120.7	121.9	121.1	121.5	122.3	123.3	127.2	131.9	133.6	131.8	1.10.6	157.2
Pit.	.126.2.	125.6	124 al	124.1	124.9	7.57	124.7	· · · · · · · · · · · · · · · · · · ·	1,14,3	136.6	1 14. н	139.7	142.6	143.0	142.6	İ
1 146	129.6	128.9	128.1	127.7	126.2	0.621	1.05.1	111.3	12.	134.0	134.2	143.0	146.0	146.3	145.9	
!			•	•	3	5 •	•	•	•	-	-		>	2	•	

4.8 PROGRAM SOURCE CODE LISTING

This section contains the FORTRAN IV source code listing for the aeroacoustic prediction model, suitable for running on the CDC 7600 computer. The listing of subroutines is in alphabetical order, as follows:

- 1. MAIN Program (MGB)
- 2. ARRCCOS
- 3. ATMOS
- 4. CRD
- 5. ERF
- 6. LSPFIT
- 7. OUTPUT
- 9. PNLC
- 9. SHOCK
- 10. SLICE
- 11. TPNLC

	Σ : Σ
Chasan Mayled Itherapalsa JET 2015E PAROICTION	¥ E E
HEAL VELOCITY SUPPRESSOR ROSSEL JET NOISE	£ Ω Σ
	₩
GENEVAL FOR CITATO COMPANY - STRONGAFT FINGUME	a ∑ ¥
215767	۲ ک
	Σ Σ
TARE OF JET TOTSE THEORY ONE TO F. MACH. (C. Fr. + O. C.)	Z S S S
AFRICENSAMIC FLOW FIFT PARENCIAM DUF TO M. MENUALI	ر ان اک
ACOUSTIC SOUGHE INTERSTITY SPECTRUM MODEL TO P. GLIEBE	Ω Σ
ACOUSTIC DECORACTION MODEL TO THAT SA (C.E.+C).(C.)	¥ .
TUCCAAN WRITHER BY 0. GLIFFE	MGB
	MGF
A BROGHAM MEVISED 10/20/74 TO WELLECT MODIFICATIONS DEVELOPED	MGR
OF CCC VERSION AT C.F.+0.C. AUGCCI1976 **	ع S S
	₩68
	MGB
COMMONITIOIS/ALFA.PFTA.AM.PF.OIA.ASP.AL.NUMANG.DISI	MGB
COMMONIZAEDIJSHE + FIRSTII. + K X + K A + CO + CHOE + A TOTAL + H JF T + NIPFINI + NPF	₩ 68
] . UM. PHOM. AL PHAC. AE TAMC. AIN.	MGA
COMMON/PROFI / 114 (200) +1 AUR (200) + FHOR (200) + SIGR (200)	₩GB
1.000 (000) • (000) • (000) • (000) • (000)	MGB
COMMONYFAPELDY SSTN(34)+08STN(34)+F0(34)+SPL0(34)+PAPIHS(19)+	αυ Σ
1THFTA(19).THFTD(19).DSDL(19.34).SPL(19.34).PWL(34).OML(14)	M GR
7.F41t4FXAX	MGP
COMMON/SHLD/ G2(200)+410(200)+MACH(200)+TFMP(200)+DSIG(19+5)+	¥GR
11EPM(2)6).SHIFLD(200).MCIN(200).THE.CI.NID.NP.ALPHI(19).IIH	MGB
COMMON/ARPEZ/X (24) + IMAX X (24) + IMAX G (24) + FM (24) + IMX (24)	α. Σ
COMMON/SHKTTA/FI-FS-FE-AC-OFC-OS-UESI-SAM-UCELL	₩ 68
	00 ₹
01WENSTON 0515(24).XF(110).4LP0(110).LEAV(116).NUM(116).	Z D
1 P (40.	ت 2
20F(11) *FF(110) *ACH(110) *10FNI(13) *PMIR(24) *F0V(24)	E 00
3. PCHDY (4.7) • XCHDY (4.0) • 6.00 (20.0) • PFTATE (24.) • (1.FTTE (24.)	g 2 2
4. AMULTI (24) . DS (110) . DE G (110) . MCFL (119)	90 V
A CAMP AND THE STATE OF THE STA	2 2
	1 1 2 2 2 3
DATA EDVEGLES BOLIDALISELIES SECTIONS SECTIONS	2 0
1704 L 707 LUISTING AND TO THE TOTAL MARKET STRUCTURE ST	ב ב ב
TICH, FROM DESCRIPTION OF A FACTOR AND ADVISOR DOCUMENT OF A TOUGH	E 3
ADDIAGNACO CARRANTO E CONTROLO	Σ :
04 4 ALTHIVIANOSAN	۲ (۱ ۲ :
	I E

۲

52

30

35

4

нум акарола

75/75 (07=1

10/10/77 14.30.05%

FIL 4.5+410

<u>с.</u>

	* AMFLISTALSWITZ TX*LFST*LPHI*ISYM*NOV*CM*CH*6AM*CP*NTHV*FU2M		45
	1PS.**USIG.XE.&LPO.LFAV."UM.KN.NALP.PA.PT.	ଞ∂ହ	42
	211.10011.48 FA.AK.HH.ATOTAL.DEG.NN.NUMANG.DIST.	MGP	47
	ALCASF. UF . WHEFF . CAMC . (MV RM IM. MPRINT . STRFX.	35₹	4.30
	4STRF 2.NG20Y.BCRUY.XCB0Y.ALPHT.RFTAIN.DELTIN.	MGM	64
	SAMIT, *FMIT, *FMAX * ALPHHC. * HETAMC * OS * NCFLL	MGB	50
Ų.		MOM	51
U	1/111AL176	#5¥	52
U		±0.5₹	53
	Ú = QV	MGM	54
	\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\	30° №	55
	1001	I S	29
	1=111 ddN	MGB	57
	6666=[4d]	MGB	58
	NCASE=1	R0M	88
	×NCAS=3	MGB	9
	NPA6E=0	MGH	61
	いちなドドニア	MGR	62
	FMIN=50	₹ 0₽	63
	FMAX=100000	₹ 08	94
	2/55171°L=Ia	MGB	65
	PI2=6.2431853	MGR	99
	P0012=S0RT(2.)	₩GP	67
	0714=0.]	MGR	68
	£1124=3 ° €	MGF	69
	CM=0.475	RGF	70
	CH=1.159	MGR	7.1
	CMVF≡0.◆25	£0₽	72
	αφ•∪=W≡U=W	MGB	73
	STEFx=1.259921	₹ GD	14
	STPFR=.01	MGB	75
	ALPHMC=0.5	₹ GP	16
	HETAMC=C.325	MON	7.7
	A[f A = 1 • ()	MGR	78
	AK = U. D. AK	MGR	4
	TK 110.0	₩ 08	80
U		E CON	8
	KNCAS#KNCAS+1	H SE	×
	FEAD(5,554) (IDE4T(K),K=1,R)	MOM .	93
	-	MCH	9. 4.
	MPAGE=NPAGF +1	₩ GB	A5
	I T = 1	MGB	86
	WRITE (6.500) NPAGE.KNCAS. (IDFNIK).K=1.R)	MGB	87
ر		MGB	88
U	WRITE INPUT DATA	MGB	
U		MGR	06

ć	15100 15 0.1 CO=1716. (GGM/(GAM+).)	мбн	91
T:		MGR	95
	WELLE (4.504) FX LIFSI - LPHI - ISYM - NPFINI - CM - CH - GAM - CP -	٤٠	63
	VA: 2000 - 1100	MGR	76
	11 (x (1)) x (1) = (1) (1)	K C B	95
i,	(一) X # 近日子 (一) (1) (1)	MGR	96
ı,	TO US ANIMARY	MGR	16
	TO THE STATE OF THE PROPERTY O	AGE AGE	86
	・ ロース・フェー・ロース・ファン・コース・コース・コース・コース・コース・コース・コース・コース・コース・コース	MGR	66
		MGB	100
	70 CONTESS.	₩ GB	101
100	TH (C.C.) VI TO TO TO TO TO TO TO TO TO TO TO TO TO	M. M.	102
	FIT (XCHUY+FCHIY+FCHIY+FFFIR+FA+U+	a 20 20 20 20 20 20 20 20 20 20 20 20 20	101
	15 CONTINUE	00.3	70
	PRITE (4.506)	C (0	1 0
	WPITE(6.50P)(I.X(I).DSIG(I).PMIN(I).NOV(I).AETAIN(I).DELTIN(I).	π Σ:	۲01 دورز
40	1 MATITAL (1) - [=] - (X X)	M C H	901
		MGB	107
ر	0 (MS8	108
	M < 0.5 < 7.5 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.	₩GB	109
(MGB	110
U.		¥ GR	1 1
110	L 17 = 50 + P X	a de	717
	1=2		, ,
	00 100 K=2+UFST	E :	7 7
	ΣΚΙΤΗ (Λ.Ω] Ω) Κ.ΧΠ (Κ) «Κ-ΔLPO (Κ) «Κ-ΠΕΔV (Κ) «	MGH	7
	1	M GR	115
i •	A STATE OF THE STA	MGB	116
115	AMBINATION OF STATE O	X	117
	AND THE PROPERTY OF THE PROPER	. a	811
	LINE=LINE+NUMK	0 0	
	1F(L1NF.L1.50) 60 TO 100	E I	
	IF(F.6F.NEST) GO TO 100	¥5.	021
12.	*,PAGF=\PAGF +1	₹ 68	121
,	WELLER (A. CAROCA MERCER KRICAS (TOF MICK) - MRINE (A. CAROCA) - M	MGB	122
		₩GR	123
	SHALL AND OC	MGB	124
,		MGB	125
J. 1901	TOUR TOUR TOUR	MGF	126
<u> </u>	AMAD_(0) [+] [+] [-] [-] [-] [-] [-] [-] [-] [-] [-] [-	MGB	127
	į	A C B	128
		MCM	129
	SV2 = SAMPPIS, PI (T)	202	0.0
	DU2F(K) *ACHV*GAM*PS	0 0	2 .
130	11€ (⊀) = ऍ * 3	E OF	701
	FF(K)=1.0	# 5 E	136
	IF(ACH2.E0.0.0) 60 TO 263	d S ₩	5
	UE (Y) = SQPT (ACH2*SV2)	¥Q¥	134
	FF (K) =D112E (K) +CD+(11 (K) -11 (1)) / 11E (K)	мСВ	135

135	IF (ACH2.51.0.0) 60 10 200	¥ S¥	136
•		MGB	137
	STOP	MGR	138
, e 2	0 ACH (x) = 40H(x) =	₩CB	139
		MGR	140
147	SUPERFICE (NOVER)	MGR	141
	FIRST:=()E(1)	MGR	142
	SHE HOEF	MGB	143
	144=15(1)	MGF	144
	PAA=PS	MGB	145
145	FHOF=PDAA/(1716.)*TAA)	MGB	146
	C0=SORT(1716.08;5AM8TAA)	MGB	147
	AG=C0	MGB	148
	AL=DHOF	MCR	149
	ASP=PS@GAM@GAM@FGC@SO41(FAM@PGC@TE(1))*TE(1)	MGB	150
15.	PJFT=TAA/TE (NRPEF)	MGR	151
	71A=DF0(1)	MGE	152
	nJFT=nIA	MGB	153
	UJFT=SUE→FTPSTU	MGB	154
	EMACH=IJFT/CO	MGB	155
155	11NITS=47A,8047A,40,25E94PH0E4CO	MGR	156
U		MGB	157
U	WPITE FXIT CONDITIONS	MGB	158
U		MGB	159
	NPAGE=NPAGE +1	MGR	160
140	WPITE(6,501) HPAGE,KNCAS,(IDENT(K),K=1,R)	MGB	161
	WRITE(6.514)	MGB	162
	WPITE(6.520) (K.PT(K).1T(K).TE(K).UF(K).ACH(K).RU2E(K).EF(K).	MGB	163
	1×=1•NEST)	MGR	164
	WDITE(6.540) NHPEF	M GB	165
165 C		MGB	166
U	WATTE ADDITIONAL IMPUT	MGB	167
U		¥ Œ	168
	RETA=PETAIN(1)	MCB MCB	169
	_	K CH	27
170		W CB	171
		MGR	172
		MGR T	173
	WPITE(6.542) CMMC.CMVW	MGP	174
		₩ 03	175
ر آ		E C	176
υ (HEGINNING OF X LOOP (KA = INDFX ON X)	X CB	177
ر		E 0	9/1
	APPENDED IN TO NEW TO THE CASE OF	E 25	7 0
	1,000 TAN (00	COL	004

- a	で で で で が が が が が が が が が が が が が が が が	¥ G	181
	• aaa aaa	₹	182
	F 14 = 60	MGB	183
		MGR	184
	918=913	MGB	185
185	SIS=SIS+015(KA)	MGB	186
	SRU2M=1.6	MGB	187
	0 * 0 H W (1 o V)	M68	188
	STEMM#3.€	MGB	189
	TST0=0.9	MGB	190
190	- MAX (XA) = 0.0 0	MGR	191
	xND=x(KA)/DIA	MGB	192
	()X=X(KA)*(STRFX=)*()/(STRFX+)*()	MGB	193
	HETA=RETA 1(KA)	80 ¥	194
	DELTA=DELTIN(KA)	E S	195
195	AMILT=AMIIN(KA)	E GE	196
ى ر		D 0	367
ی ر	CO NO XAMMEN / SULONG OF TORONOR HITM ROTTANGULINE	0 00 E X	067
ى (WGB.	200
006	00 1562 ¥=1.10UIT	MGB	201
•	0 - 3 H H L S L	MGB	202
	0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	MGR	203
	2 = 3 = 3 d S	MGB	204
	SUBS	M GB	202
205		æ3¥	206
	NET III (MGB	207
U		MGB	208
	60 TO(104+105)+IT	MGB	503
	0-13-(44-(M-1))/(7-LPH1)+3	MGB	210
210	IF (LPHI_6T_500) IS#1	MGB	211
	134 OPHI=LPHI*IS	MGB	212
	THOINT = I THOINT I T	MGB	213
	MY21-1+21=Y221	MGR	214
	O•C=1Hd	₩GB	512
215 C		MGB	516
U ·		MGB	217
U i	INTEGRATION WITH RESPECT TO ANGLE (I = INDEX ON PHI)	M GH	218
U		WCB	219
	00 1240 1=1.155V	MGB	220
220		MGB	221
	PU2 =PU2F(1)	₩GB	222
	FFF = 3.0	8 38	223
	STR =0.0	E GB	224
,	STC = 0.3	MGR	225
22¢		30 € ¥	226
	_	W.	221
	(:* (II = 81)	MGB	228
	ני •)=(ומ	¥GF	224

ં ગ પેદ૮	PU=0-0	ж 808 808	230
, U (INITIALIZATION AND HOUNDARY INTEGRATION. (κ = INDEX ON ROUNDARY)	0 CL 0	233
	00 1110 M=2+MEST	MGB RGB	235
235	NONE = >	MGB MGB	236
)•0=d1S	¥GB	238
	SIx=0.	MGB	539
		8 0 0 2 0 0 2 0 0	240
	11 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C C C	24.2
		W CB	243
	KAT HKM (K)	MGB	544
		MGB	542
545		MGB.	546
	IF ((UE (K) FO.00.5) AND (UF (KWK) FO.00.0) GO TO 1100	& 0.0 ¥ 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	247
	VMIN=AMIN] (UF (X) • UF (XNX))	¥ 30 €	546
	NO II ON II ON II ON	MGB	250
250	CVR=1.7(1.0+CMVD4VR)	MGB.	251
:	CMC=1.+CMMC*ACH(K)	мев	252
	DRDX=CM*CVP/CMC	MGB	253
	PHDX=CH*DHC;X	MGB	524
	If (DHDx.fru.DHDx) IMH=2	MGB	255
255	CMX=DFDX*(X(KA)-XE(K))	MGB	256
	CHX=DHDX*(X(KA)-XE(K))	MGB	257
		₩28	258
	SKO ARPA=ABS(PHAL)	MGB G	259
• > •		20 20 20 20 20 20 20 20 20 20 20 20 20 2	097
Ē	7741-7150 (FICTOR)	000	242
•		0 00 Σ Σ	763
•	575 COSPA=COS (AHPA)	MGR	564
	DEL516=516	MGB	565
245	OELKA=KA (NIMK+K)	MGB	992
	IF (YCH)Y_LE_C) GO TO 665	MGB	267
	CALL LSPFIT (XCBDY+PCHDY+NCBDY+XE(K)+RMINEX+1+0+AAA)	MCB	568
	pmnS0E=pmInEx*pmInEx	¥GB.	569
1	51650=516#516	MGB	270
273	DWINSO=DWIT(KA) *XMIN(KA)	₩QB	271
	DASO=BA (NUMX.K) *RA (KUMX.K)	HOW :	272
	0ELS16=5041(S1650=4M1NSQ)	# CB	273
	DELMA=SORT (PASO-PMNSOF)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	276
		C S	כיי

275,	1	PANU=594T((NFL9A—NFLSIG)*(NFLPA—NELSIG) 1+2,3*NFLPA*NFLSIG*(1,0+COSPA))	M GP	276
U		IF (PADO.GI.1.0005#DELSIG)) GO TO 690	4 68 468	278 279
749	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	MORE = 1 60 TO 450 CONTO-10FI CIG-0FI EASCROADA ZEADA	a B B B B B B B B B B B B B B B B B B B	280
U	2		C & C C C C C C C C C C C C C C C C C C	283
7.7.	71 11 12	IF (=MS(COSTO) -LI-1-0130 TO SLS THOSE (PI-S)GM(PI-COSTO) /2-1	1 0 0 3 0 0 3 1 1	285 285 285
C		GO TO 520	M M G M	287
	919	SINTO=SIGM(SORT(1.0-CUSTO*COSTO).PHAL) THO=PI-SIGM(PI-ARCCOS(CUSTO).PHAL)	₹ ₹ 68	289
562 C	620	PADX=PADO/CMX	K GB K GB	291 292
	ы Б	POWFR=PADX*FADX IF(POWFK.GT.25.1) GO TO 625	X X 68 89 89	293
295	4 > 0 < 4	VAO=1.0-EXP(-POWEP) 0 TO (-A)0-4-4-0)-11x1 1-4-01-11x2	E X Z	295 296 796
		180-1*(**LEATT-LIAMOOVCEATT-LIA	1 00 00 2 3	298
000	4 0	547(-54*C5510 647(-54851010 6470-1700(44040104) -17401	0 00 0 0 0 0 E X 3	300
200	60 60 625 CO	5440-(UNDATEDIA)	M M M M M M M M M M M M M M M M M M M	302
	> F (VAO=1.0 TAO=1.0	K GB	305
36. 2		SA = 0. MB6.7 (*DHD)X SAP()=SA*CO5TO SACO=SA*SINTO SAXO=0.0.	9 4 8 8 8 9 0 0 0 8 X X X	308
31	635	CONTINUE LEAF INTEGRATION J = LEAF NUMBER OF BOUNDARY K N = POINT NUMBER OF BOUNDARY K	2 2 2 2 2 2 3 2 3 2 3 2 3 3 3 3 3 3 3 3	312
315	653	DO 1009 J=1.LEAF DO 1035 M=1.NUMK PHAL=PHAL-DALP(N.K) ABPA=AHS(PHAL)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	316
320		IF(ARPA_LF.PI)GO TC 67N PHAL=PHAL-SIGN(PI2•PHAL) GO TO 469	X X X X X X X X X X X X X X X X X X X	320 321 322
,	679	COSPA=COS (AMPA) PEL PA=PA (1,4K)	MGB MGB	324

325		If $(P(CMDY_*GT_*Q) - OFLPA=SCOT(RA(U_*K)*PPA(t_*K)+DMUSGE)$ PAD $=SORPT(OFLPA+DELSIG)*(DELPA+GELSIG)$ 1-2 3 3 3 3 4	X X X X X X X X X X X X X X X X X X X	326 327 328 329
939		50 T0 40€	n oc o o o e æ 3	331
	, ARG C	COST=(((ELSTG-NELPA*C))SPA)/PAN	¥ GP	333
	1	IF(ARS(COST), LT.1,0)60 TO 690	d Q G	334
335	3		n α υ υ Σ Σ	336
, ((•	60 10 710	¥GB	337
			MGB	338
	C 7 C	SIMILESIGN(SORT(1.0+COST#COST) *PHAL)	T. C.	93.5
345			1 U U U I I	340
	719 1	100€±2	MGR	345
	_	יייודר ווייים אורי	MGB	343
		60 TO 400	MGB	344
			æ0æ	345
345	1012	01141140	₩CB	346
		·	₹ 08	347
		14 (AKI) 14 [E OLIMA) (3) 10 KGC 15 (ABDIH. 15, PI) 60 10 730	r a 2 X	340
	U	-	MGB	350
350	ں	CORMECTION:0-360	₩GB	351
	í		₩ 08	352
	120	THOMTHO+SIGN(PIZ+DTH)	X X C X C X	353
			N CO	355
355	Ú	INITIATION OF AUXILIARY INTEGRATION	MGB	356
	,		3 00 3 00 300 300 300 300 300 300 300 300 300	357
	7.56	[Q=AH]]]H/]] HM+].6	I O	358
		0/11/11/07	i di	360
360		PCPC=PADO*C0ST0-PAD*C0ST	α. Σ	361
	•	FCRC#PCPC+SIGN(*00000001+RCRC)	MGF	362
	•	ABLE=(PADO*SINTO-PAD*SINT)/PCPC	MGB	363
		RKP=PADO*SINTO-AALF*FADO*COSTO	MGB	364
346			₩ ₩ ₩	365
111	د د		C C S	367
		00 793 L=1.LQ	MGB	368
		H10+0+1=H1	MGR	369
	_	COST=CO5(TH)	MGP	370

37.0			Œ Œ	37.1
			Z	372
			. a.	373
		7	. a	775
		C		275
		=======================================	E O	2 0
375		VA = 1.0-FXP(-BOWFR)	MOM.	2/9
		SA=DHDX*(0.RAK23*[PF(HADX)+PADX*(VA-1.0))	₹ 38	377
		SAP=SA+COST	E C	378
		SAC=SA&SINI	MGB	379
		SAX= ((DROX4DADX)44)+ (1VA)	MGR	380
380		60 10 735	MGR	381
•	725	ELIVI TINOCO	MGR	382
	•		MCB MCB	383
		100	£0.00 ₹	384
		SA = 0 = 4P + 2 3 = DRD ×	MGR	385
385		SAR=SA*COST	MGB	386
i !		SAC=SA¢51N1	MGB	387
		0 = 0 = × 4 × 5	MGP	388
	735	SONI LNOC	MGB	388
		VI=VI+(VA+VAO) +DIH	MGB	390
366		SID=SIR+(SAR+SARD) #11H	MGB	391
		S10+510+(SAC+SACO) *01H	MGB	392
		SIX#SIX+(SAX+SAXQ)#DII	MGB	393
		GO TO (740 - 750) - IMH	MGB	394
	ر		MGR	395
395	74.0	CONTINE	MGR	396
		1F(POWFP,G1,25,0) GO TO 745	MGR	397
			MGB	39₿
	745	JUNI TUNC	MGR	399
	1	7]=7;+(TA+TAO)	MGR	400
027		TAO≈TA	MGR	401
	ں		X.	402
	750	VA0=VA	M.G.W.	403
		SACO=SAC	æ. ¥	707
		SAPO=SAP	a €	405
40r		SAXOESAX	a 0.0	404
		H1=0H1	20 W	407
	707	3 I I I I I I I I I I I I I I I I I I I	2	
		CONT. 1700.C	12 d 25 d 2 d	\$ C
	ţ		D 1	7 0
717	ے ر	ANT THE TATEOUR THE CONTROL	E Z	0 7 7
) †) ر		D (0	- 1 - 1 - 1
			HON :	715
	ב כ		HON.	413
			I CX	7 7
		IF (#OWE #.61.25.0) 50 10 #25	₩QB	415

410	(XLADA) 0 X L10 " A X	MGR	416
•	SA=NHOX* (0.49423*EPF (420X)+420)X* (VA-1.61)	MGB	417
	SAR=SAPCOST	MGB	418
	SAC=5A#SINT	₩GR	614
	SAX=((DUDX*DADX)**2)*(1VA)	MGB	420
420	00 to 435	MGB	421
	H2S CONTINUE	MGR	455
	0 • 1 = 1 • 0	MGB	423
	TA=1.0	₩GB	454
	SA= 6. 844234040x	₹GR	425
425	SAR=SA • COST	₩GB	456
	SACESA¢SINI	MGF	427
	SAX BOOK	MGR	428
	R3S CONTINUE	MGB	429
		MGR	430
430	SIR=SIP+(SAR+SARO)*DIH	MGB	431
	SIC=SIC+(SAC+SACO)*DIH	MGB	435
	SIX=SIX+ (SAX+SAXO) +XIS	MGB	433
	Tal. (00.00.00.0) old	MGH	434
	O	MGB	435
4 35	RIO CONTINUE	MGB	436
		MGB	437
		MGR	438
	X 4 10	MGB	439
		MGR	044
	TAO=TA	¥GB	44]
		м6В	244
	H29	MGB	443
	SACU=SAC	мGВ	555
	SAP0=SAX	MGB	445
445	SAX0=SAX	MGB	944
	11=011	MGB	447
	YOU PADUEPAD	MGB	448
	C0ST0=C0ST	MGB	655
	SINTO=SINT	MGB	450
450	1860 CONTINUE	MGB	451
	U	MGB	452
	C NEST SUMMATTONS	MGB	453
	O	MGB	424
	GO TO(1020.1010).IMH	MGB	452
455	1010 11=11	MGH	456
	1320 CONTINUE	MGB	457
	O	MGB	458
	1959 4GLY=_07957747*(PUZE(K)_RUZE(KNK))	MGP	459
	EFE ==07957747*(FF(K)-EF(KNK))*I1+EFE	MGB	460
694	1340 PUP=UGLY*VI+PUZ	MGB	461
	11GLY=.57957747*(11E(K)**2-11E(KNK)**2)	MGB	462

	STC=11/4LY 2TC+STC	T C E	463
	1	Ε.	† L
		I :	0.0
፤ ቢ	11.0 COSTINIE	æ Z	466
	U	JON.	467
	C FINAL CALCULATIONS	мбв	468
		MGH	694
	1F(202,61.0.0) GO TO 1110	MGB	67 ()
. 25		MGB	47]
	O • CH =	MGB	472
	2010=010	MGF	473
	[=11(1)	MGF	474
	c. • 0 = C.7.	мсв	475
475	0.0=11401	MGB	476
	0.12=0.0	MGB	477
	C • 55 B B B B B B B B B B B B B B B B B	MG8	478
		MGB	479
	0 = 00	мбР	480
264	C • 0 = 11.	₩Q£	481
	0.00	MGB	485
	IF(NPPINI*LF.0) GO TO 1115	₩GB	483
	IF (NPP-L1-NPPINT) 60 TO 1116	MGB	484
	50 TO 1117	мСВ	485
ፋጸ5	O	₩GP	486
	1110 FWP=RU2*PGC/PS	MGB	487
		MGB	488
	DMETRD/(5.0¢CD)	MGR	685
	IMELLE PER V (IIAD & VII)	MGR	065
604	D9d/Sd*d*d*2+0*2/2nd=18d	MGR	165
	HPS1#5FE/(?•0¢DSI)	MGB	265
	(I=HbS1+SOb1 (HbS1*e\$+hd5eCb*11(1))	MGB	665
	IF (11.65T.11MAX(KA)) HMAX(KA)=1	MGB	765
		MGB	495
563		MGB	965
	TAU=SOPT(STR*STP + DELTA*STC*STC + BETA*STX*STX)	MGP	164
	ACHM=1/SOMT(GAM*PGC*T)	MGP	498
	813=819ZU	₩ SB	665
	UZIIBEOHA	MGB	200
200		MGB	501
		#9 #	505
	COMPORT (STREAMILE FOR CONTINUE OF CONTINU	H 0H	503
		0 0 Z	10 C
u c	TENDER TENDERALIS OF THE TENDE	E 0	C 0 C 7
r. > 0		£ 3€	507
	3407 (UAT) 100 X (UAT)	Œ	900
		MGB	509
		MGB	510
510		MGR	511
		MGB	515
	IPAGE = NPAGE + 1	MGR	513
	WRITE (4.500) MPAGE. KUCAS. (IUFWI(K). K=1.8)	MOF	514

	1) 1 x x 1 x 2 x 1 x 1 x 1 x 1 x 1 x 1 x 1	ar S	<u>,</u>
		10°2	516
	_	3.0E	517
	0/nd*/11ma(11*0/nd*1*0/14d*915**/ (985**)311**	MCR	518
	30111100 7111	MGR	519
	IF (1.61.1) 60 TO 1136	MGR	520
		мсв	521
		MSF	555
		¥ GF	523
	60 10 1140	æ0æ	254
		MGR	555
		MGP	256
	IF (1.44E.135Y) GO	MGB	521
	_	MGB	528
		MGB	556
		MGP	530
		¥G¥	531
		al ∪ ₩	535
		мев	533
	SErr=Sprp+6F/2.0	MGP	534
	60 TO 1150	MGR	535
		MGR	536
		MGB	237
		ი Σ	53B
		MGF	539
		MGB	240
		MGB	541
		MGR	245
	1350 CONTINUE	мGР	543
		π Ω Σ	244
		₩ 0₩	545
	1200 CONTINUE	K CB	546
	F1S=1S	M GB	547
	TST0=MAX1(TSTD+AMS(TSTH-TSTL))	MGR	548
	SIJBM=SIB/FIS*SIG+SHHM	MGB	249
	SRIM=SPU/FIS*516+SRIM	MGR	550
950	Sp112M=SP112/F13+SH02M	MGP	551
	TAIH (M)=(SIH/FIS)**0.2P57143	MGR	555
	SIJ/I)S=(w) dOnu	MGB	553
	1F(SRU, LE.O.O) GO TO 1210	мсв	554
	IF(SPUZ-LE.0.0) GO TO 1210	жGв	552
555	119 (W) = SP(1)2/SR(J)	æ∪æ	556
	HIDESFEESE	MGB	557
		MOM	558
	TSF=TTB=0.5*UB(M)*UP(M) XCP	MCR	559
	PHGP (M) =D5/1DGC*15P)	MGR	260

560	1210	49	MGB	562
		· ·	# 09 # 09 # M #	563 564
565		TAUR (*) =0.6	X 63	565 566
	1220		MGB	267
			80 W	568
		TSTHL=AMAX1(TSTHL+ABS(TSTH)+ABS(TSTL))	E 0	569
570		00 TO 1510	E 20	572
2	1260		MGB	572
			MGB	573
	1500		MGB	574
	1510	STD.6T.2.0*RU2M)GO TO 1600	₩ 6₽	575
د/د		Zn-1.	E E	577
		IF(TSTD.6T.RUZM)G0 T0 1600	M GB	578
		I SKAR-1	MGB	579
	1600	CONTINUE	MGB	580
580	ပ		MGB	581
	U		MGB	585
		CALL LSPFIT(SIGR.RHOR.M.SIGR.DRDP.M.1.D2RDR2)	MGB	583
			MGB	584
			MGB	585
585		•0) 60 TO 1605	MGB	586
		=DUDR(IR)/(UR(IR)+CM+CMX)	MGB	587
	1695		MGB	588
		SIG(KA) *32.17405	MGB	589
			108	290
290		(*A)*JMAX(*A)/X(*A)	₩GB	591
			MGB	265
		CALL SLICE(X(KA)+DSIG(KA)+DX+M)	MGB	593
	1890		MGB	294
			MGR	595
565		A.URI (KA).KA.FM (KA).KA.UAVG (KA).KA.UMAX (KA)	MGB	296
		E.NPRINT) NPR=0	MGB	597
	2000		MGB	598
	ပ		MGB	599
			MGB	909
603		PUT (EMACH+DJET+PJET+UJET+UNITS)	MGB	601
	4000		MGB	602
		VCAS.LT.NCASE) GO TU 1	HGB	603
		STOP	MGB	604
	ر		MGB	605
605	υ (FORMAT SECTION	MGB	909
	ပ		#GR	607

M M M M M M M M M M M M M M M M M M M			=	-	M M M M M M M M M M M M M M M M M M M
5.00 F.O.P.Mat(1H1.10X.21H* * * M G R * * *.20X.4HPAGEI4//5X.4HCOMPU ITATION OF AERO-ACOUSTIC PROPERTIES OF SUPPRESSOR NOZZLES//2X. ZAHCASF NO.15.5X.8A10//) 5.04 F.O.P.Mat(1H6.40X.10HIND/I) NATA//) 115.12H SYM=12.14H NPRINT=I3. 11H CM=F4.3// 2 9H CH=F6.3.9H GAM=F6.3.8H CP=F7.1.10H DTH 3M=F7.4.10H RUZM=F7.4.8H PS=F7.1/)	0.//15%,82HCOMPUTATION **** TUPRULENCE CONST X*4HRMIN,09%,3HNOV,6%,4 0.3F15,5,110,3F10,2) H0	52.2H)=I3) 512 FOPMAT(23H0 112.2H)=F7.4.7H 112.2H)=F7.4.7H 112.2H)=F7.4.7H 514 FOPMAT(7.7AUH**** EPPUP - MACH NO. SOUARF IS NOT GREATEP THAN ZEPO 1 CASE WILL TERMINATE ****) 518 FOPMAT(1140.35x.15HEXIT CONDITIONS//3x.4HCON2x.5HTOTAL.6X.5HTOTAL 1.5x.6H5TAIIC.2x.8HVELOCITY.5x.4HMACH.5x.8HMOMENIUM.6x.8HENTHALPY/ 23x.4HTOUR.2x.6HPRFSS5x.5HTFMP5x.5HTFMP6x.5H(FPS).6x.6HNUMBER	3.6X.44FLUX.10X.44FLUX.9X.5H(PSF).5X.7H(DEG R).3X.7H(DEG R).23X.410H(LR/SO-FT).4X.10H(LR/SO-FT)./) 520 FORMAT(16.4F10.2.F10.4.2E14.5) 522 FORMAT(1H0. 5X.5H AL =F11.5, SX.6HALFA =F10.5. 15X.44AK =E12.5.5X.44HR =E12.5./ 6X.7HATOTAL=F 9.5.5X.6HDEG =F10.5 52.4 FORMAT(1H).	\$26 FORMAT(3H X(12,2H)=F9.4.6H UBI(12,2H)=E11.5.5H FM(12,2H)=E10.4, 17H UAVG(12,2H)=F8.2.7H UMAX(12,2H)=F8.2) 528 FORMAT(6E12.5) 534 FORMAT(17H AXIAL LOCATION =F10.5.11H (X/DE® = F10.5.1H)// 13X.1HM.5X.1HR.7X.5HA?IGLE.5X.1HU.7X.7HDENSITY.6X.5HTEMP3XKHU/UREF 7.2X.9HTURH.INT.2X.5HR/DE9.// 536 FORMAT(114.F10.5.F8.2.F9.2.F12.7.F10.2.3F9.5) 540 FORMAT(114.F10.5.F8.2.F9.2.F12.7.F10.2.3F9.5) 1 FFFRENCE//)	542 FORMAT(1140, 5x,5HCMMC=F11,6,05x,5HCMVR=F11,6//) 548 FOPMAT(1140, 5x,6HSTRFX=F10,5,6HSTRFR=F10,5,1 550 FORMAT(1140,5x,7HALPHMC=F9,4,5x,7HBETAMC=F9,4) 557 FORMAT(141) 554 FOPMAT(8A10)
619	615	625	630	079	650

Sugpoutly CPD	080 Jul	76/76 OPT=1 FTN 4.5+410	10/10/77	14.30.05
-	•	SURROUTINE CPD	CRD	~ ^
	• •			ባቀ
s		COMMON/SHLD/ G2(700).KIN(200).MACH(200).TEMP(200).KS1G(19.5). TEPM(200).SHIELD(200).MCIN(200).THE.CT.NTP.NP.ALPHT(19).ITH REAL MACH.MCIN.MC.KIN.K.MO	388	n 4 r
	• • •	CALCULATION OF DIRECTIVITY	888	æ o∙ 5
01	• •	PI=3,1415926 PIO2=PI/2,	36666	21263
15	* * *	DO 1) INSTANCE POSSIBLE OF THE POSSIBLE OF THE POSSIBLE OF THE POSSIBLE OF THE POSSIBLE OF THE POSSIBLE OF THE POSSIBLE OF THE POSSIBLE OF THE POSSIBLE OF THE POSSIBLE OF THE POSSIBLE OF THE POSSIBLE OF THE POSSIBLE OF T	32223	11 12 13 14
36	*	IT (1HE.6) PIUZ 7 50 10 750 ****** FINDING RELATIONSHIP HETWEEN RO AND TURNING PIS.	3888	20 21 22
52	•	IF(NTP.EQ.0) GO TO 260 IF(NTP.EQ.1) GO TO 230 IF(NTP.EQ.2) GO TO 230 RSIG(ITH.1)=RSIG(ITH.NTP-1) PSIG(ITH.2)=RSIG(ITH.NTP)	8888888	58 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 6 6 6 6
30	23.	NIPSC 50 TO 250 CONTINUS ONE TURNING POINT	32223	7 9 3 3 6 7 3 3 3 3 6 7
35	•	RSIG1=RSIG(ITH,1) IF(P0,6E,RSIG1) GO TO 260 R1=R0 P2=RSIG1	388888	39 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
c 4	250	CONTINUE TWO TURNING POINTS PSIG1=RSIG(ITH,1)	3888888	70 - 0 H 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		20167HR016C1H407	283	t U

	15 00 CO 100 CO 100 SE	600	7.7
	200	קאר) קאר)	*
	.LE.RSIGI) 60 TO	CKO	4
	A1=R0	CRO	4
	P2=RS162	CRO	4
	60 10 261	CRO	Š
262	CONTINUE	CRD	5
 	R)=85161	CRD	25
	P>= RS162	CRO	in.
261	E Z I Z C C	280	Š
•		CSC	Š
•	CALCII ATTON OF EXP. SHIFT DING	G _S O	, ič
•		C C C	1
*	2	080	Š
•		Cas	ŭ
	00 246 I-1 ND	2 6	7
	01 05 (10	35	5 Z
265		CED	; ;è
566	CONTINCE	C&D	6
	7=17	CRD	3
	J11=J1=1	CRO	9
	00 267 USI NR	Cas	3
	60 10	6	.
267		2	, Z
26.8	TO THE PROPERTY OF THE PROPERT	5 5	3 4
	102	2 6) ř
	101101	2 5	2 7
4	1-20-1-20	250	- 1
. 4	4		2;
	5	250	, ,
ı	15/ 11 EO 121 CO TO 240	2 6	
		2 6	2 }
	IF (31.EU-321) 60 10 2/0	CRO	~
	I=12C=112C	CRD	7
	SUM≅⊅•	CRD	76
	DO 281 J=J1+J211	CRO GRO	2
	GENESS (SOX CARS (GC (U)) + SOX CARS (GC (U+1)))	26	ğ.
,	(2 6	≅ č
₹	CONTINUE	2	3 0
	00 TO 284	CRO	ac
569	CONTINUE	CRO	æ
•		C&0	80
• •	J1=1/5	CRO	& 1
•		CRO	30
	• NH MACOU	250	ž i
	- I	280	á à
		2 6	3 6
	17 (G/ (J) (G/ (G/ (G/ (G/ (G/ (G/ (G/ (G/ (G/ (G/	2 6	₹ ?
		ב ב ב	÷ 6
	2200 - 1 1 10 100 10 14 1 1 20 1 20 1 20 1 20	2	,
	265	F (RG.LE.RSIGI) GO TO 262 R1=R0	ν -

	σ (SLOPE=(SG2-SG1)/(RIN(J1))-RIN(J11))	CRD	76
	Ŋ	SUM=SG1+RZ+SLOPE+(-S+RZ+EZ+RIN(JII)+RZ)	CRO	95
ዕ ሪ	A	-SG1+P1-SL:DE+(-5+R1++Z-RIN(-)11)+R1)	080	96
	Ō	SUM==SIM	CRO	97
	ێ	GO 10 286	CRD	96
		CONTINUE	CRD	66
	-	- OHELO	CBO	100
100	_	COMINUE	CRD	101
	•		CRD	102
	•	CALCULATION OF END CONTRIBUTIONS	CRD	103
			CRD	104
	Š	S6N1=1.	CRO	105
105	Ň		CRO	106
	<u> </u>		CRD	107
	Ē	IF(G2(J1).LT.0.) SGN2=-1.	CRO	108
	Ň	SG1=SORT(AMS(G2(J11)))*SGN1	CPO	109
	Š	SG2=SOPT(AHS(G2(J1)))#SGN2	CRO	110
011	Ñ	SLOPE=(562-561)/(PIN(J1)-PIN(J1))	C _P O	=======================================
	ν.	2++(IC)NId+(IC)+(IC)NId+(IC)NI	CRO	112
	4	A-RIS (CII) +XIN(CI) - NOI +XI	CRD	
	1	1-StOpE (C + C C C C C C C C C	OBO OBO	1
	Ñ	SUM =-SUM	CRO	115
115	Š	SGN1=1.	CRD	116
	Š	SGN2=1•	CRD	117
	=	IF(G2(J21),LI,0,) SGN1=-1,	CPO	118
	=	IF(62(J2).LT.0.) SGN2=-1.	CPO	119
	Š	SG1=SQPT(A9S(G2(J21)))	CRD	120
120	Š	SG2=SQRT (ARS (G2 (.12))) *SGN2	CP0	121
	5	SLOPE=(SG2-SG1)/(PIN(J2)-PIN(J21))	CPO	122
	<u>₹</u>	SUMP=SG1*R2+SLOPE*(.5*R2**)	CRD	123
	4	-PIN(J21)*42)-561*PI4(J21)	CRD	124
	a	R-SLOPE*(.5*PIN(J21)**2-FIN(J21)*RIN(J21))	CPO	22
125	Š	SUMPE-SUMP	CRO	126
		SUM=SIJM1+SUM2+SUM	CRO	127
		CONTINUE	040	128
	.	SHIELD (IR) = SUM	040	62
•	_	CONTINUE	2 (200
اعر			040	131
	_	CALCILATION OF UNSHIELDED SOLUTION	200	75
			0.00	
	₹ ₹	190728A3(67(1X))		25
135	Ē		080	136
		TEPM(IR) = (CT*CT+6050) **2/Tn	CRO ORO	137
	کن وک	CONTINUE	CBC CBC	138
		31N1 I N1E	CPC	<u></u>
47.	ฉัน		2 6	2 :
D .	ī) E	7

14.30.05\$	N m a u	\ \rac{1}{2} = \frac{1}{2} = \	2121	14.30.05\$	~ ™	9	n ø	~ a	•	01	12	E 4	5	16	60 0	202	23	ನ್ನಿ ನಿನ್ನ ನ	ì •
10/10/101				10/10/11	LSPF17			LSPF11	LSPF11	LSPFIT	LSPF17 LSPF17	LSPF17		LSPF11	LSPFIT	LSPFIT	LSPFIT	LSPF11 LSPF11 LSPF11	
FIN 4.5.410	No	1.0.7478556#T#T#T)#EXP(-X#X)		FTN 4.5.410		PAPABOLA WHICH PASSED THROUGH THE		CT TIAT		(x-x(11)**2	NXC+ND+AAA)	10	T NEED TO AGREE WITH THE CALLIN			TU BE DONE	ZDE-1	ET 1ST NERIVATIVE.	
74/74 0PT=1	FUNCTION EWF(X) STEWNING EWF(X)	r(xeligo);	END 100	76/76 OPT=1	INTEGRATE OR LUTERPOLATE	INTEGRATE OF INTEPPOLATE USING A	AND (1+1) POINTS RUT MISSES THE (1-1) AND (1+2) EXIST) SUCH THAT THE SOUAPE OF THE DEVIATION IS	THAT I IS GENERALLY SELECTED SU	THE EQUATION FOR THE PARABOLA IS	Y-Y([] = P#(X-X([]) + C#(X-X([])) +2	HOROUTINE LSPFIT (X.Y.NPTS.XC.YC.	DIMENSION ABA(1)0)	NOTE. THE DIMENSION FIRE DOES NOT NEED TO AGREE WITH THE CALLING	1		LIST OF X AT WHICH CALC		NXC ND. OF XC ND =0 TO GET COORD. =1 TO GET 1ST DERIVATIVE. =-1 FOR INTEGRATION	
FUNCTION FUE	34 67		2 9 2 9	SUPPOUTT'4E LSPFIT	et Sprit	ں د					VI	<u>.</u>	, U		-			000	
F 1347	~	v	9	SUPPOUT	-		ď				01			15			20		

UUU		NITPUT YC	COORDINATE OF DEPIVATIVE AT XC OF YC(IC) WHERE IC=2.NXC	LSPF11 LSPF11 LSPF11	282
0000		NOTES- #X# MAY FOR INTE	OTES- #X# MAY RE IN EITHER ASCENDING OR DESCENDING ORDER. FOW INTEGRATION #XC# MUST RE IN THE SAME ORDER AS #X#. FOR INTERP NO SPECIAL ORDEP IS REQUIRED.	LSPF11 LSPF11 LSPF11 LSPF11	20000
		COMMON	COMMON /CLSPF / I	LSPF11 LSPF11	2 C C
		LOGICAL WITHIN	ZIII	LSPFIT	37.
		# # Z =	NPIS-1	LSPFIT	6 6 6 6 6 6
		IF (ND.EG	IF(ND,EQ,(-1)) 1=1 ISAVE = 0	LSPFIT LSPFIT	45
				LSPFIT	4
ပ	_	HEGIN INT	BEGIN INTERPOLATION LOOP FOR XC(IC) IC=1+NXC	LSPFIT	1 4 1 10
		IC ==		LSPFIT	9 T
ں	_	LOCATE AP	LOCATE APPROPRIATE INTERVAL	LSPFIT	- 0
	100	WITHING NO.	•FALSE• N	LSPFIT ISPFIT	4 to
	162	IF (NCOUN	IF (NCOUNT) 119,103,103	LSPFIT	51
	163	NCOON	NCOUNT = NCOUNT-1	LSPF 1T LSPF 1T	53 53
			(1) x H	LSPFIT	54
		XU = 15 (N) 10	XU = XC(1C)-XI 1F(N) 104+120+134	LSPF 17 LSPF 17	5. 5.
_	194		IF(SGN*XD) 105,107,110	LSPFIT	51
(e L		LSPFIT	တို့ က
	195		FORTING 15 THE PRACTIONAL POSITION IN THE INTERVAL) IF (1.E0.1) 60 TO 120	LSPF 11	y &
		IF (ND EQ. (0.(-1)) 60 TO 119	LSPFIT	19
		0 T0	* CO	LSPFIT	Š
		1		LSPFIT	2
- ر	107		F-E13-3 TF(X(1+1), NF, X1) GO TO 120	LSPFIT	99
•	•			LSPFIT	5
Ų		F.GT.D.		LSPF 11	89
	119		IF (SGN*(XC(IC)-X(I+1))) 120.112.114	LSPFIT	2
ິບ	?		F-EG-1-00 CHECK FOR INTEGRATION AND DOUBLE POINT BEFORE INCREMEN		22
_	-		10.(-1)) .OM. (1.NE.N .DND. X(1+1).E9.X(1+2))) GO TO 120	LSPFIT	7

		SPFIT	7.7
	0 67.1.0	LSPFIT	75
75	114 1F(1.En.N) GO TO 120	LSPFIT	16
	IF (ND.EO. (-1)) GO TO 122	LSPFIT	77
	116 1 = [+1	LSPFIT	78
	50 10 102	LSPFIT	79
		SPETT	60
O.	119 CONTINUE	LSPFIT	8
•		LSPFIT	82
	C PRELIMINARY CALCULATIONS FOR INTEMPOLATION OR INTEGRATION	LSPFIT	83
	129 WITHIN= TRUE.	LSPFIT	84
	122 JF (I-ISAVE) 124+129+124	LSPFIT	85
P.	124 TSAVE = 1	LSPFIT	86
		LSPFIT	87
	x3 = x(1+1) + x1	LSPFIT	88
	11	LSPFIT	89
	C H 0.	LSPFIT	90
06	ti d	LSPFIT	91
	ROT = 0.	LSPFIT	95
	IF(1.LF.1) GO TO 127	LSPFIT	93
		LSPFIT	76
	x 13 = x(I-1) + x(I-1)	LSPFIT	95
95	10p = X e(\3exx]-(\([-1)\-\1]) eX3) eX 3	LSPFIT	96
	BOT = X1eX1eX13eX3	LSPFIT	97
	127 IF(1.6F.N .OK. (XD.EG.0. AND. BOT.NE.0.) GO TO 128	LSPFIT	86
	x(1+5)-x1	LSPFIT	66
	x43 = x(1+5)+x(1+1)	LSPFIT	100
001	Ħ	LSPFIT	101
	= 80T +	LSPFIT	102
	•	LSPFIT	103
		LSPFIT	104
	IF (N.GT	LSPFIT	105
105	129 IF (ND) 130.140.141	LSPFIT	106
		LSPFIT	107
	C NORTH CANADA	LSPFII	901
	CY-OY (NILINATIONALIN	** LOC -	<u> </u>
5	TELETHEN OF TO 126	Sprit	
2	TATION TATOONOOF CHAIN TO CAMP ADDONOOF ANTENNA	1 5051	
	C +1+ 15 MEING INCREMENTED TO FING PAYOFF TATE INTERVAL. PENUE.	SPF11	113
	CA THE THE THICKNESS OF THE THE THICKNESS OF	1 5051	711
	TO 116	SPFIT	511
115	C APPROPRIATE INTERVAL FOUND. X(I)-XC(IC)-X(I+1)	LSPFIT	116
ı	135 JF(IC.EO.1) SA=YC(IC)-SI	LSPF 17	117
	_	LSPF 1T	118
	60 TO 150	LSPFIT	119
		LICOLIT	-

120	C ND=0+ INTEMPOLATE FOR COORDINATES 14.) YC(IC)= YI + (B + C*XD)*XD GO TO 150	LSPFIT	
125	C ND=1. FIRST DERIVATIVE 141 YC(IC)= R + 2.*C*XD 60 TO 150	LSPF11 LSPF11 LSPF11 LSPF11	129
130	15n IC = IC+1 AAA(IC-1)=2.*C IF(NXC-IC) 960+160+16J 160 IF(ND.NE.(-1).AND.XC(IC).EO.XC(IC-1)) I=1+1 60 TO 160	LSPFIT LSPFIT LSPFIT LSPFIT LSPFIT	922
135	430 PETURN FND	LSPFIT LSPFIT LSPFIT	134 135 136
SUBROUTI	SUBROUTINE OUTPUT 76/76 OPT=1	10/10/11	14.30.0
-	SUBROUTINE OUTPUT (EMACH+DJET+RJET+UJET+(INITS)	OUTPUT	~
	COMMON/NOIS/ALFA+HETA+AK+BK+DIA+ASR+AL+NUMANG+DIST	OUTPUT	m
	COMMON/FAMFLD/ SSTN(34).0PSTN(34).F0(34).SPL0(34).RADIUS(19).	OUTPUT	5
ı	17HE 74 (19), 7HETD (19), DSPL (19,34), SPL (19,34), PWL (34), OASPL (19)	001701	SO V
Ţ.	XIZINEN ZINEN	104100	0 1
	017F NG* (51) NG* (51) 100 (61) 100 (61)	00100	- 00
	INTROFIG TOPES AND THE PROPERTY OF THE PROPERT	OUTPUT	o-
	· ·	OUTPUT	10
10		OUTPUT	13
	p1=3,1415926	OUTPUT	21
	00 34 Jan 34	001100	7
	IF (FOL) LE FMIN) UMIN=J	001701	15
15	[F(FO(J).LE.FMAX) JMAX=J	OUTPUT	36
		OUTPUT	17
	34 CONTINUE	CUTOUT	9 0
Š	C C CONTROL FOOD AND DOLL DAILY OF CO. C. C. C. C. C. C. C. C. C. C. C. C. C.	OUTPUT	38
2		TO TO TO	7 6
		0017901	\$ 30 5 50
	DO S JECKINOURAN	OUTPUT	25

IF(0SPL(I,J),LE,0.0) GN TO 7 IF(ORSIN(J),GT,30.0) GN TO 7 SPL(I,J)=10,*ALOG10(COEF*DSPL(I,J)) DFO=E1OAI(E0,1)
SPL(I,J)=SPL(I,J)+l0.*ALCG10(RFO)-6.3536 GO TO 5 CONTINUE SPL(I,J)=0.0 CONTINUE
SUM=0.0 SUM=0.0
IF(OHSTN(J).6T.30.0) GO TO PWR=0.0
NO 60 [=1.15 PSG=10.**(SPL(I.J)/10.)
PWR=PWR+PSO*(RADIUS(I)**2)*SIN(THETA(I)) CONTINUF
PWP=2.1*PI/UNITS*DELTH*PWR PWL(J)=130.+10.*ALOG10(1.3558*PWR)
OAPWL=139.0+10.*4LOG10(1.3558*SUM) CALL ATMOS(SPL.RADIUS)
COMPUTE PNL AND PNLT
CALL TPNEC(TSPL(1,1), PNLT(1)) CALL TPNEC(TSPL(1,1), PNLT(1))
PNLT(I)=PNLT(I)+PNL(I) CONTINUE
OVERALL SOUND PHESSURE LEVEL CALCULATION
DO 90 JEJMINAJMAX IFYORSTNIN GILBOLD GO IO 90
SUM=SUM+10.## (SPL (1, J) /10.)
CONTINUE 045P((1)=10-44/0610(55M)

76	79	90	81	82	83	8	85	98	87	88	88	06	16	85	93	76	95	96	26	96	66	100	101	102	103	104
OUTPUT OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	0UTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT	OUTPUT
C PHINT ORSERVED SOUND PRESSURE LEVEL SPECTPA	-	IF (NUMANG. LE.1) WPITE (A.114) RADIUS (B)	IF (NUMANG.GE.2) WRITE (K.116) PADIUS (R)	WPITE(6,104)(THETD(1)+1=1+15)	NO 40 IMP IMP IMP IMP IMP IMP IMP IMP IMP IMP	IF(OBSIN(J), GI, 30,0) 60 TO 40	WPITE(6,110) FO(J) * (SPL (I.J) * I=1,15) * PWL (J)	49 CONTINUE	WRITE(4,112)(0ASPL(I)+I=1+15)+0APWL	WRITE(6,124) (PNL(I),1=1,15)	WRITE(6,130) (PNLT(I),1=1,15)	PETURN	U	C FORMAT SECTION		100 FOFMAT(1H1//20x,40H*** SOUND PRESSURE LEVEL DIRECTIVITY ***//	110x+154JET MACH NO. = F10.4+5x+20HJET DENSITY RATIO = F10.4//	210x+15HJET VELOCITY = F10.2+5x+20HJET EQUIV. DIAM. = F10.4//)	106 FORMAT(1140,7HANGLE =15F7,1,3X,7HPWL/8H FREG.)	110 FORMAT(IA.16F7.1)	112 FOPMAT(8H00VERALL.+16F7-1)	114 FORMAT(1140.30X.F10.1.2X.7HFT. ARC//)	116 FORMAT(1Hn,27x,F10,1,7x,12HFT. SIDELINE//)		130 FORMAT (RH) PNLT +15F7.1)	FND

g g c

SNA BATTHOARDS	ناي مالان	75/16	(PT=)	FTN 4.5+410	10/10/77	14.30.
-	0 170		TOTION OF PUBLICATION OF STREET	-	0	^
_		H LINE D		_) L N N	, L
	DFAI	TON SOUNT I	AUN		, <u>z</u>	•
	¥.C	PNSTON PC	01MFNS10N PC(9,04) + SS(24)		2 2	· L
r		•			PNLC	•
	* DAT	A FUNM SA	DATA FUOM SAF AVP HSSA (1969 REVISION)		PNLC	~
					PNLC	œ
	TAC	A ((PC()	/121*1=1*(5*1=1*(6*		PNLC	œ
	149.	.0.279520	490.379520,550.058098.640.043478.91.01.0.0301	0.030103.52.	PNLC	10
<u>ب</u>	144.	• 6 . 3681r 9	44f.J681r9.510.05R09R.6n0.040570.85.8R.0.030103.51	0.030103.51.	PNC	=
	119.	+0.16A1+0	119.00.16414046600052749.56.00.036431.47.32.00.030103,49.0	0.030103,49.	PNLC	12
	134.0	.0.159640	. 159640,447.,0.047534,53.,0.036831,79.85,0.030103,47	0.030103.47.	PNLC	13
	130.	130.00.653013.79.0	436.40.043573.51.40.035336.79.76.0.03010	0.030103.46	PNLC	14
	127.	27.00.053513	•36 • • 0 • 04 3573 • 48 • • 0 • 033333 • 75 • 96 •	0.030103.45.	PNLC	15
15	124.	1246.053013	3,33,,0,046221,46,,0,033333,73,96,0,030103,43,	0.030103+43.	PNLC	16
	121.	•6.053313	1210.053313.300.037349.440.032051.74.91.0.030103.42	0.030103.42	PNLC	17
	118.	• 0.053013	+27.+0.034A59+42.+0.030675+94.63+	0.030103.41	PNLC	18
	116.	• (• 453013	116.,(.,753313,25.,0.034859.40.,0.039103.100.00.0.030103.40	.0.030103.40	PNLC	13
	116.	.0.053013	*250.034859.400.030103.100.00	.0.030103.40	PNLC	20
20	116.	+6.453013	+25.+0.034859.46.+0.030103.100.00	0.030103.40./	PNLC	21
	DAT	1) Jd) V	DATA ((PC(I+J)+I=I+9)+J=13+24)/		PNLC	22
	• > :	.0.653013	425. +0.034F24.40.030103+100.03	.0.030103.40.	U L	รัง
	<u>.</u>	610530-04	00*001*501050*0**6**50*0**62*	• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	י גיי גיי גיי	* t
•		949646.00	11.4.4.4.9.19646.4.23.4.4.9.4.4.59.38.4.6.6.30103.100.00.00.4.6.30103.38.	.0.030103.38.,	S C	£ 2
25	112.	•0.553013	1120.553313.210.046221.340.029960.100.00+0.029960.34.	•0.029960•34••	DING DING DING DING DING DING DING DING	9 5
	0 .	0.0530130	180.03/344.325.029960.100.00.	0.029960.32.	D NC	72
	-	621114000	**************************************	0.05950.00		9 6
	14.	0.047717.	146.047717.140.034459.790.629960.100.60.0.029960.29	0.029960.29.	PNEC	52
		6.19659.5	14.,0.03.634879.69.0.029960.100.00.	0.029960,29.1	PNC	0
30	- -	0.0534134	15.,0.034459,30.,0.029960,100.00.	0.029960.30	PNC	31
	119.	.0.068140	+17. +0.037349+31. +0.029960+100.00	.0.029960.31	PNC	35
	117.	.0.079520	.230.637349.370.042285.44.29.	0.029960.34	PNC	33
	121.	0.059640	121.,0.059640,29.,0.043573,41.,0.042285,50.72,0.029960,37	0.029960.37./	PNLC	34
					PNLC	32
35	SUM	SUMSPL=C.			PNLC	36
	NOS	SUMMOY=0.			PNLC	37
	MAX	NOY=0.			PNLC	38
					PNLC	38
	W FILLD MA	XIMUM NOA	IND MAXIMUM NOY VALUE AND SUM OF NOY VALUES AND SUMSPL	SUMSPL	PNLC	0 4
0 7					PNC	7
	00	50 K=1.24			PNC	45
	¥ii				PNC	4
	IF (IF (FAC.LT2) GO TO	1 60 10 10		PNLC	44
	I=3	I=34K-1			PNLC	45

- C	<pre>IF(1.61.23) G0 T0 55 **XP.SPL=10.**(.1*55(1)) 5UMSPL=SUMSPL************************************</pre>	ā ā ā ā	D C C C C C C C C C C C C C C C C C C C	9 T B C
	55(1).6F.PC(7*1)) 6(1)0 30U 55(1).6F.PC(5*1)) 60 TO 280 55(1).6F.PC(13*1)) 60 TO 240 55(1).6F.PC(1*1)) 60 TO 240		C C C C C C C C C C C C C C C C C C C	52 52 53 53
000000	60 TO 33 43 NOY=,1*10,**(PC(2*1)*(SS(1)-PC(1*1))) 60 TO 39 60 NOY=10,**(PC(4*1)*(SS(1)-PC(S*1))) 60 TO 39 60 TO 39	តិតិតិតិ	PNLC PNLC PNLC PNLC	55 55 57 50 50 50
ころうぶこく	0 TO 30 0 YET C ** (PC(A.1) * (SS(I) - PC(9.1))) 0 MINY=SUMNNY+NOY F (MAKNOY-GT-NOY) GO TO 56		S LC C C C C C C C C C C C C C C C C C C	652 652 766 766 766 766 766 766 766 766 766 76
	SO CONTINUE CALCULATE OASPL.PNDH,TPNL	. α. α. α. ί	C C C C C C C C C C C C C C C C C C C	6 6 6 5 4 6 6 6 5 4
	5 DASPL=10.*ALOGIO(SUMSPL) PNL=MAXNOY+FAC*(SUMNOY-MAXNOY) IF(PNL.6T0525) GO TO 60 PNDH=!! RETURN O PNDS=40.*33.22*ALOGIG(PNL)	. ā ā ā ā ā ā	C C C C C C C C C C C C C C C C C C C	668 777 73 73
ர் ட்	FTURN	. ā. ā.	DNC BNC C	. 5.2
	76/76 OPT=1 FTN 4.5+410		72/01/01	14.30.05\$
22 3	EMPIRICAL SHOCK-CELL NOISE CORRELATION EMPIRICAL SHOCK CELL NOISE PREDICTION HASED ON SNECMA AND MODIFICATIONS HY GLIERE (GE TM 76-673) SURROUTINE SHOCK	CORRELATION SH	SHOCK SHOCK SHOCK SHOCK SHOCK SHOCK	0 4 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6

COMMON/FARFLD/ SSIN(34).0HSIN(34).FO(34).SPL0(34).RADIUS(19) 1THEIA(19).THFID(19).DSPL(19.34).SPL(19.34).PWL(34).RADIUS(19) 2-FMIN.FMAX COMMON/SHKDIA/PI.PS.UF.CO.DFO.DS.NFSI.GAM.NCFI
INTEGER FO.FMIN.FMAX
PETUPN
JHINA JHANL
INNEX OVER ROUNDARY NUMPER
GEXP=(GAM=1.0)/GAW PPCRIT=(0.5+(GAM+1.0))++(GAM/(GAM=1.0))
PP=PI(NA)/PS F(PP=LE=PKCRIT) GC 10
PSPL1=40.0*ALOG10(RETA) + 10.0*ALOG10(FLOAT(N)/8.0) + 10.0*ALOG10(DS(NA)/DEO(NA))
VO=UE (1)
INDEX OVEM FACH OBSEMVER ANGLE
CONT. 1 30E THTEO. 21745329*THETD(I) CTHEO. (THT) THORES. 1415926
IF (AC_LE_1_0) GO IN 12 THCP=THCP=ATAN(SORT(AC**2=1_0)) CONTINUE IF (THT.GE.THCR) GO TO 1^

S HOCK	STOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK	SHOCK
C COMPLITE DEAK FREGUENCY AND MAXIMUM SPL	COPY	FP #UC/LAVG/CONV/(1." - VO*CTH/CO)	OSPL2=20.6*ALOG19(DE=1(NH)/HAD1US(1))	SPLMAX=151.6+05PL1+05PL?	2 - 41.004LOG16(1.0+VU*CTH/CO)	J	C COMPLITE SPECTRA	U	OF IN INTERPRETARY	FR=FLODT(F()(J))/FP	IF (FR. GT. 1.0) GO TO 18	SSPL(I.J)=SPLMAX+ 70.; *ALOG10(FR)	60 10 19	14 CONTIPULE	SSPL(1,1)=SPLMAX-10,0*ALOG1)(FP)	19 CONTINIE	IA CONTINUE	10 COMTINUE		C ADD SHOCK MOTSE TO TOTAL NOTSE	O	00 40 [=1•15	NO 40 U=UMIN+UMAX	IF(SSPL(I+J),LT.0.6) GO TO 40	pSOM=10.0**(SPL(1.J)/10.0)	PSGS=10.0+*(SSPL(I.1)/10.0)	PS01=PS0M+PS0S	SPL(1.J)=1^00*ALOG10(PSOT)	40 CONTINIE	1 CONTINUE	PETURN	GNA
	o				ń					9					ľ					c					ũ					0		

Simpor	SUMPOUTINE SLICE 7	76/74 OPT=1 FIN 4.5+410	10/10/77	14.30.
-	c 301762	PABIAL PENFILE PAHAMETEK CALCULATION	St.1cf	٥.
	3NI Ino⊬bliS	INE SLICE (x.DSIG.DX.M)	S. 106	7 - \$* U
ď		COMMONIANTS/ALFA+GETA+AR+GK+DEO+ASP+AL+NUMANG+DIST COMMONIAFFULSIFF=FIPSTU+RX+RA+CM+CO+GHOF-ATOTAL+HIT+NPFINT+NPP	SLICE SLICE SLICE	n • ~
	I.Unwon	*!IM.PHOW.ALPHWC.RETAMC.4N COMMON/PROFLY 11F (2001) *TAUR (2001) *RHOP (2001) *SIGP (2001)	SLICE SLICE	ac or
<u> </u>	1.0P9R(79G) COMMON/FAB THETA(191.	.DPDR(??C).nPPñ+Z(?ng).DUDR(??C) COMMON/FAPFLD/ SSTN(34).ORSTN(34).F()(34).SPL()(34).PADIUS(19). THETA(19).THETN(19).DSPL(19.34).SPL(19.34).PWL(34).OASPL(19) PMIN.FMAX	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	21.20
51	COMMON 1TEGM(2) 71WENSI PERL	COMMON/SHLUX G2(260).4TP(200).4MCH(200).TEMP(200).4SIG(19.5). ITEM(2)0).SHIFLE(200).MCIN(200).THE.CT.NTP.NP.ALPHT(19).ITH ITMNS10D. P3(250).F5(20).Ada(200) PEAL MACH-MCIN.MC.FIP.K.WG INTEGED FOLEMEDEDAX	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4597
50	C INITIAL	INITIALIZE CONSTANTS AND AGENA GEOMETRY	2225 8888	50 61 50 75 50 75
	-	IF(KA.GT.1) GO TO 18 PI=3.1415426 PAD=PI/180.	\$ 106 \$ 106 \$ 106 \$ 106	25 28 28 28
X.	CON1=50PT (PIX) CON7=50PT (PIX) CNST=6.283185 6HOF SORBHOF 0=	CON1=50PT (P1/2.0) CON7=50PT (P1) CNST=6.2R31HS3 FMOFSQ=PDF=0>	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2002
or.	EMACHELJETZCO	FMACHELLY TYCO NOTHECHOOL OTHER = 10 1 OTHER = 10 1 THETHOUSHOUSE	133333 133333 133333	36888
չ է	115175(1 15(1) 1 115(1) 1 115(1) 1	THETA())=1h0,0ePAD DO 11 I=1015 IF(10F0.1) GO TO 12 THETD(1)=THFTD(1-1)+0THED THETA(1)=HAD0(180.0-THETC(1))	S. 1.06 S. 1.06 S. 1.06 S. 1.06 S. 1.06 S. 1.06	9 M M M M 9 0 9
ç. 4	12 CONTINUE NO 11 JE1+34 NSPL (1+3)=6+0 SPL (1+3)=6+0 11 CONTINUE 15 CONTINUE	CONTINUE O 1) J=1+34 SPL (1-J)=0.0 SPL (1-J)=0.0 F. CLUS NO 10.7	2123333 2233333	14444
•	1		10.00	,

17 17 15 15 15 15 15 15 15 15 15 15 15 15 15		SLICE SI ICE	7 3
TOOTTINE F(ILMANG, CT, C)		St ICE	3
1	20 40 5	SLICE	50
		SLICE	5.1
	01 05 13-15	St ICF	55
110; FODDATIGGHOUSE ADE DAILIUS ONITITE - 10; FT. ADE ASSUMED ***) *** CONTINUE *** ON 1 Tals 15 *** CONTINUE *** ON TRUE **	£0117E (4.011.0)	SL ICE	53
nisting. (Orithis) (FORMAT (4940000 ADC DAISTINS OMITTED - INU FT. APC ASSUMED	SLICE	54
CALCULATION OF DIMENSIONLESS WANIAL PHONETIES COLTINUE	71413C.		55
DOLITHIE DOLITHIE DOLITHIE DOLITHIE DOLITHIE DOLITHIE DOLITHIE DOLITHIE DOLITHIE DOLITHIE DOLITHIE DOLITHIE DOLITHIE DOLITHIE CONTINIE CONTINIE CONTINIE CONTINIE CONTINIE CONTINIE CONTINIE CONTINIE CONTINIE FOR CONTINIE FOR CONTIN		SL ICE	56
DANTUS(I)=[151] DANTUS(I)=[151] CONTINUE CO		St. ICE	57
3 CONTINUE 3 CONTINUE 3 CONTINUE 3 CONTINUE 5 CONTINUE 6 INDEL ** 6 INDEL ** 6 INDEL ** 6 INDEL ** 6 INDEL ** 7 CONTINUE 6 INDEL ** 7 CONTINUE 7 CONTINUE 7 CONTINUE 7 CONTINUE 7 CONTINUE 8 COLICC STRENGTH EVALUATION 7 ONE 25 SPI ** 7 CONTINUE 8 COLICC STRENGTH EVALUATION 7 ONE 25 SPI ** 7 CONTINUE 8 COLICC STRENGTH EVALUATION 7 ONE 25 SPI ** 7 CONTINUE 8 CONTINUE 9 CONTINUE 9 CONTINUE 9 CONTINUE 9 CONTINUE 9 CONTINUE 9 CONTINUE 9 CONTINUE 9 CONTINUE 9 CONTINUE 9 CONTINUE 9 CONTINUE 9 CONTINUE 9 CONTINUE 1 F (PURRING TO 135) 1 F (PURRING TO 135) 1 F (PURRING TO 100 CO 10) 1 F (PURRI		SLICE	58
COLTINIE 1) CONTINIE 5 PHORMAL STORE FOR STORE SERVINGE PACH 1) CONTINIE 5 COURCE STRENGTH EVALUATION 1) CONTINIE 5 COURCE STRENGTH EVALUATION 1) CONTINIE 5 COURCE STRENGTH EVALUATION 1) CONTINIE 5 COURCE STRENGTH EVALUATION 1) CONTINIE 5 COURCE STRENGTH EVALUATION 1) CONTINIE	3 COP [1871]	SUICE	59
1		SUICE	9
CALCILLATIO: OF DIMENSIONLESS HAPIAL PHUFILES OQ 1 NP=1.** PIGITUDISTICUTURE SIGNED OF DIMENSIONLESS HAPIAL PHUFILES OQ 1 NP=1.** PIGITUDISTICUTURE SIGNED OF DIMENSION OF TAMCHEND OF	-	SUICE	19
CALCULATION OF DIMENSIONLESS HADIAL DWOFILES OO 1 NP=1.** PIN(TH) = SICP (TH) / DE G WACH (NE) = (TH) (TH) / DE G WACH (NE) = ELD PHACE (NE) - RETAIN COEVACH TEMP (NE) = PHOF / MHOF (NE) - RETAIN COEVACH TEMP (NE) = PHOF / MHOF (NE) - RETAIN COEVACH OVE = 25 PP = (TSIG=P) * UX OVE = 25 PP = (TSIG=		SLICE	62
CALCHLAITOR OF DIMENSIANLESS HAPIAL PHOFILES OC 1 NP=1,** PINITIAL = SIGDIND / DE O WACHIND = SIGDIND / DE O WACHIND = SIGDIND / DE O WACHIND = SIGDIND / DE O WACHIND = SIGDIND / DE O WACHIND = SIGDIND / DE O WACHIND = SIGDIND / DE O WACHIND = SIGDIND / DE O WACHIND = SIGDIND / DE O WACHIND = SIGDIND / DE O WACHIND = SIGDIND / DE O WACHIND = SIGDIND / DE O WACHIND = SIGDIND / DE O WACHIND = SIGDIND / DE O WACHIND = SIGDIND / DE O WACHIND = SIGDIND / DE O SIGNIAND = SIGNIAND / DE O SIGNIAND + DE O SIGNIAN	U	St. ICE	63
DO 1 NP=1.* PIN(IND) = SIGP(PP) / PE 9 PIN(IND) = SIGP(PP) / PE 9 MCIN(IND) = ALPHMC**WAC**(NP) * AETAMC**EVACH TEMP(IND) = ALPHMC**WAC**(NP) * AETAMC**EVACH TEMP(IND) = ALPHMC**WAC**(NP) * AETAMC**EVACH TEMP(IND) = PHOF / KHOF (NP) TOWTINIE SOURCE STWENGTH EVALUATION DV = , 25*PI***(OSIG**P) * DX NPMIN=DSIG**(P) * DX NPMIN=DSIG**(P) * DX NPMIN=DSIG**(P) * DX NS (NP) = , 0 * DX NS (NP) = ,	CALCULATION OF DIMENSIONLESS HADIAL PHOFILE	SL ICE	49
DO 1 NP=1** DIN(TW) = SIGD (ND) / DE 0 WCIT(ND) = ALDHWC * WACH (ND) * KE TAMC * E V ACH TEMP (NP) = ALDHWC * WACH (ND) * KE TAMC * E V ACH TEMP (NP) = ALDHWC * WACH (ND) * KE TAMC * E V ACH TEMP (NP) = PHOF / KHOP (NP) CONTINUE SOURCE STVENCTH EVALUATION DV = * 25 * PI * (NS IG** * E) * E NP MIN) DV = * NP = 1 * NP * E NP * E NP MIN) DV = * NP = 1 * NP * E NP MIN * E NP MIN) DV = * NP = 1 * NP * E NP MIN * E NP MIN) DV = * NP = 1 * NP * E NP MIN	U	St.1ce	9
PIN(PW) = SICP (PP) / DF 0 WACH (NC) = (IW) (NL) - FIPS FOUNCE WACH (NC) = (IW) (NL) - FIPS FOUNCE TEMP (PA) = PHOF / KHOP (NR) CONTINUE SOUNCE STEFNOTH EVALUATION DV = 25 ePI = (DSIGe 2) = UX DW IND SIGNATION DV = 25 ePI = (DSIGE (NL) - IE & DPM IN) DV = 26 ePI = (DSIGE (NL) - IE & DPM IN) DV = 26 ePI = (DSIGE (NL) - IE & DPM IN) DV = 26 ePI = (DSIGE (NL) - IE & DPM IN) DV = 26 ePI = (DSIGE (NL) - IE & DPM IN) DV = 26 ePI = (DSIGE (NL) - IE & DPM IN) DV = 26 ePI = (DSIGE (NL) - IE & DPM IN) DV = 26 ePI = (DSIGE (NL) - IE & DPM IN) DV = 26 ePI = (DSIGE (NL) - IE & DPM IN) DV = 26 ePI = (DSIGE (NL) - IE & DPM IN) DV = 26 ePI = (DSIGE (NL) - IE & DPM IN) DV = 26 ePI = (DSIGE (NL) - IE & DPM INITE (PSIC) ES (NP) = (DSIGE (NL) - IE & DPM INITE (PSIC) ES (NP) = (DSIGE (NL) - IE & DPM INITE (PSIC) ES (NP) = (DSIGE (NL) - IE & DPM INITE (PSIC) ES (NP) = (DSIGE (NL) - IE & DPM INITE (NEST (NL) - IE & DPM INITE (NEST (NE	30 - APA - 30	SLICE	99
MACH (NE) = (!!! (NE) = FISS!!)/CO WCITIND = ALPHMC@MACH (NP) + AE TAMC@EWACH TEMP (NP) = ALPHMC@MACH (NP) + AE TAMC@EWACH TEMP (NP) = ALPHMC@MACH (NP) + AE TAMC@EWACH TEMP (NP) = PHOF/WHOF (NP) DV = 25 = PI = (NSIG=0 P) = Ux NPMIN=NSIG/20 DO 5 NP=1.** IF (NP EO, 1 AND SIGE(1) LE.NPMIN) GO TO 6 NP = 2 = PI = SIGE(NP) = CSIG=NX NP = 2 = PI = SIGE(NP) = CSIG=NX CONTINIE NS (NP) = N - N NM GD = APS (!)UPP (NP) IF (NP EN EO + NP) I	014(nn)=S10a(nn) /010	St. Icf	19
MCININD = ALDHMC = WACH (NP) - RETAMC = EVACH TEWPIND E CONTINUE CONTINUE CONTINUE CONTINUE COUPCE STHENGTH EVALUATION DV = 25 = PI = (DSIG = 2) = UX DN = 10 = 10 = 10 = 10 DV = 25 = PI = (DSIG = 2) = UX DN = 20 = PI = 10 = 10 DV = 20 = PI = 10 = 10 DV = 20 = PI = 10 = 10 DV = 20 = PI = 10 = 10 DV = 20 = PI = 10 = 10 DV = 20 = PI = 10 = 10 DV = 20 = PI = 10	MACH (NE) = (1.10 (NE) -F IDS 1.11 / CO	SLICE	99
TEMP (h, P) = PHOF / LHOF (n, P)	MCIV(N) = ALDHMC+MACH (ND) + AE TAMC+EMACH	St Ice	69
1 CONTINUE SOURCE STHENGTH EVALUATION DV=.25ePI=(DSIG=2)=Ux DN 5 NH=1.** IF (NH=10.** IF (NH=10.** IF (NH=10.** CONTINUE DS(PD)=1.0 DS(PD)=1.	TEMP (P.D) = PHOF /GHOF (NY)	SLICE	2
SOURCE STHENGTH EVALUATION OVE.25010(DSIGNO) 0 DX OD 5 NH=1.W IF (NP.E0.1 aND.SIGE(I).LE.DRWIN) GO TO 6 OVE2.8P105IGE(N.M.) 0 DSIGNIX A CONTINUE NS(PRINCE) OMEGREARS (NUDP (N.M.)) IF (OMEGRELE.0.0) GC TO 5 UPWESORT (TAUP (N.M.)) IF (OMEGRELE.0.0) GC TO 5 UPWESORT (TAUP (N.M.)) IF (OMEGRELE.0.0) GO TO 135 IF (NPD.GE.NDWINT) NS(ARTICHELE.0.0) GO TO 135 IF (NPD.GE.NDWINT) WPITE (A.120) IR (NPD.GE.NDWINT) WPITE (A.120) IR (NPD.GE.NDWINT) WPITE (A.120) IR (NPD.GE.NDWINT) WPITE (A.120) IR (NPD.GE.NDWINT) WPITE (A.120) IR (NPD.GE.NDWINT) WPITE (A.120) IR (NPD.GE.NDWINT) WPITE (A.120) IR (NPD.GE.NDWINT) WPITE (A.120) IR (NPD.GE.NDWINT) WPITE (A.120) IR (NPD.GE.NDWINT) WPITE (A.120) IR (NPD.GE.NDWINT) WPITE (A.120)	_	St. Ice	71
SOUNCE STWENCTH EVALUATION DV=.25ePI=(DSIG=2)=UX DPMIN=DSIG/2.0 DO 5 NH=1.w IF (NW.E0.1 and SIGE(1).LE.DRWIN) GO TO 6 DV=2.aPI=SIGE(NW)=ESIGE(NW)=ESIGE(NW)=ESIGE(NW) CONTINUE A CONTINUE A CONTINUE A CONTINUE B CONTINUE DSIGNALE.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O	C	SLICE	72
SQUIRCE STRENGTH EVALUATION DVE.25 PT (OSIGN-2) PUX DPMIN=DSIG/2.0 DO 5 NP=1.w IF (NP EQ.1 and SIGE(1) at E.DRMIN) GO TO 6 DVE2. PT (SIGN-2) PUSIGNED OSIGN (NP) PUSIGN (St ICE	73
0V=25ePIe(nSIG=2)*UX DPMIN=DSIG/2*0 DO 5 NH=1** IF (NH E 0.1 and SIGF(1) LE.DPMIN) GO TO 6 OV=2*PI=SIGP(NU)*CISIG=1X CONTINUE OMEGA=APS(UUDP(NR)) IF (OMEGR=LE.0.0) GC TO 5 UPW=SOR (TAUP(NR)) IF (OMEGR=LE.0.0) GC TO 5 UPW=SOR (TAUP(NR)) OS (NR)*#0.5*ALFA*OMEGH/PI F (NP)*#0.5*ALFA*OMEGH/PI S CONTINUE IF (NPP, GE.NPMINI) WPITE(6.120) 120 FOW************************************	4011BCF	SLICE	2
DVE.25 PT CONTINE DPMIN=DSIG(Ze) DO S NH=1-W DO S NH=1-W DO S NH=1-W TE (NH CO. 1) DVEZ. = PT SIGE(1) LE.DPMIN) GO TO A DVEZ. = PT SIGE(NH) = LE.DPMIN) GO TO A DVEZ. = PT SIGE(NH) = LE.DPMIN) DVEZ. = PT SIGE(NH) DVEZ. = PT SIG		St Ice	75
DPMIN=DSIG/Z.0 DPMIN=DSIG/Z.0 DO 5 NP=1.* If (NP=1.*) DVE2.*PI=SIGP(N) = CSIG** DVE2.*PI=SIGP(N) = CSIG** CONTINUE CONTINUE DSIGPEAPS (DUDP(NP)) IF (OMFGR=LF.0.0) GC TO 5 UPW=SOPT(TAUP (NP)) IF (OMFGR=LF.0.0) GC TO 5 UPW=SOPT(TAUP (NP)) IF (OMFGR=LF.0.0) GC TO 5 UPW=SOPT(TAUP (NP)) IF (MPP NP) = CS = CPP NP) IF (MPP NP)	0V=.25eP1 • (nS1G=€2) • Ux	SLICE	92
DO 5 NR=1.** IF (NR EQ. 1 aND. SIGE(1) .LE.DRWIN) GO TO 6 OVEZ. **PISSIGE(NA) **FISIGEN** CONTINUE OS (PRINCE) IF (OMEGRALE. 0.0) GC TO 5 UPW=SORT(TAUR(NA)) IF (OMEGRALE. 0.0) GC TO 5 UPW=SORT(TAUR(NA)) OS (PRINCE) IF (OMEGRALE. 0.0) GO TO 135 IF (OMETRICE. 0.0) GO TO	DPMIN=DSIG/2.0	St Ice	11
IF (NP.EO.) AND.SIGE(1).LE.DRWIN) GO TO A DVEZ.*PISIGE(NY)*ENSIGENX CONTINUE DS(PPISION) IF (OMEGRALE.O.) GC TO S HPWESORT(TAUP(ND)) DS(PNISION) S(NR)*EHOESO**O******************************	00 5 NH=1.M	SL ICE	18
DVEZ.*PI*SIGE(NW)*FISIGEFX CONTINUE DS(PDET)*0 OMEGR=ARS(UUDP(NR)) IF (OMEGR=LE.0.0) GC 10 S UPW=SORT(TAUP(NR)) DS(AR)=ARUGESO*OV*UPD**7 FS(NR)*R*O*SO*OV*UPD**7 FS(NR)*R*O*O*C*ONTINUE IF (UPRINT)*LE.0) GO TU 13S IF (UPRINT)*LE.0) GO TU 13S IF (UPRINT)*C*O*O*O*O*O*O*O*O*O*O*O*O*O*O*O*O*O*O*	10	SLICE	4
\(\text{CONTINUE} \) \\ \text{ONEQUE (NR)} \) \\ \text{ONEQUE (NR)} \) \\ \text{ONEQUE (NR)} \) \\ \text{ONEQUE (NR)} \) \\ \text{IF (OMEGR = LE 0.0) GC 10 S} \\ \text{ONEQUE (NP)} \) \\ \text{ONEQUE (NP)} \) \\ \text{ONEQUE (NP)} \\ \tex		SLICE	8
OWEGE		SLICE SLICE	80
OMEGNEARS (UDDP (UR)) IF (OMEGRELE,0.0) GC TO S HDW=SORT (TAUD (UR)) OS (AR) = ARD (SO = OVE DE OF OF OF OF OF OF OF OF OF OF OF OF OF		אר זכני פר זכני	20
IF (OMFGR-LF.0.0) GC TO 5 IPOMESORT (TAUR (NP)) INDMESORT (TAUR (NP)) INSCRETE WHO SCIENCE STATE		SLICE	80
INDESORT(TAUP(NP)) INDESORT(TAUP(NP)) INSCRETARE TARGET TO THE STANDE TO	ت ا	St. ICE	40
ns(AR)=RHUESO@NVeUPP@P7 FS(NP)=n=5-8LFa@NEGE/P] S (ONITNUE If (HPRINT-LE-0) GO TO 135 If (HPRINT-LE-0) GO TO 135 If (HPRINT-LE-0) GO TO 135 If (HPRINT-LE-0) GO TO 135 IF (HPRINT-LE-0) AND TE (A-120) FOW-MAT(IHIX/Z)AX*37HCIMCUMF.PENTIALLY-AVEWAGED PAKAMFTFPX/Z4X*2HNR 1-K**KHYADIHS**F**HHMACH HO.*5X*5HTEMP.*5X*9HINTENSITY*5X*9HFREQUENCY 2//)	:PF=50PT (TAUP (NF))	SLICE	8 2
FS(NP)=0.50alFa0NEGF/PI S CONTINUE If CHUPPINT-LE.01 GO FU 135 IF CHUPPINT-SE.NPTIT (4.120) IF CHUPPINT (1.11) WPITE(4.120) 0 FOF-MAT(1.11//?AX.37HCIVCUMF.FENTIALLY-AVEWAGED PAKAMFTFWK//4X.2HNP 1-KK.6HYAD[HS.6X.3HMACH NO.5X.5HTEMP.5X.9HINTENSITY-5X.9HFREQUENCY 2//)	DS (P.B.) #BHOE SO#UNESD##7	SL ICE	96
5 CONTINUE IF (HPRINT.LE.A) GO TO 135 IF (HPP.GE.HPHINT) WPITE(4.120) O FOWAT([HI///PRX.37HCIMCUMFEPENTIALLY-AVEWAGED PAKAMFTFWS//4X.2MNP IAX.6H9ADIUS.5X.HHMACH HO.5X.5HTEMP.5X.9HINTENSITY.5X.9HFPEQUENCY 27/)		St 1ce	87
IF(PPPINT.LE.A) GO TO 135 IF(PPP.GE.NPWINT) WPITE(4.120) FOWMAT(IHI///PNX.37HCIMCUMFEPENTIALLY-AVEWAGED PAKAMFTFPS//4X.2MNP IAX.6H9ADIIIS.5X.HHMACH NO.5X.5HTEMP.5X.9HINTENSITY.5X.9HFPEQUENCY 2//)	-	St Ice	88
IF(PPP.GE.NPWINI) WPITE(6.120) 0 FOFWAT([HI///PNX.37HCIUCUMFEPENTIALLY-AVEWAGED PAMAMFTFPK//4X.2HNP-ICK.CHUAT([HI///PNX.37HCIUCUMFEPENTIALLY-AVEWAGED PAMAMFTFPK//4X.2HNP-ICK.CHUADIIIS.FX.HHMACH NO.5X.5HTEMP.5X.9HINTENSITY.5X.9HFPEQUENCY 2//)	IF (MPRINT-LE-A) GO TO 135	SLICE	8
O_FOFWAT(]HI///20x+37HCIUCUMFEPENTIALLY-AVEWAGED_PAMMFTFW4//4x+2HNP Ax+AHGADIUS+FX+HHMACH_NO+5x+5HTEMP+5x+9HINTENSITY+5x+9HFPEQUENCY 2//)	IF (NPP.GE.NPWINT) WPITE (A.120)		96
KHGADIIIS.FX.HHMACH NO.5X.SHTEMPSX.9HINTENSITY.SX.9HFREQUENCY	o		6
	IAX.AHGADTUS.AX.HHMACH NO.SX.SHTEMP.ASX.OHINTENSITY.SX.OHFPEQUEN		6
	1//2		6

		(8N)20. (9N) 9H31. (30) H3AM. (9.) (10.90) (201.9) 113M (17199). 37. 99/ 31	371.15	70
			SL ICE	95
90	126	FOEWAT (14. 1812, 4. 614, 4. 610, 6)	21 12	9
•	135		SLICE	67
			1 L L	ď
	, _U		SLICE	66
	Ų	INDEX OF THETA FOR SHIELDING/DIRECTIVITY	SLICE	100
100	ں ،		SL ICE	101
•		2.00.2	St. ICE	102
			St. Ice	103
		:: ·]S	SLICE	104
	•		SLICE	105
105	•	CALCHLATION OF G AND ITS FRUS	SL ICE	106
	•		SL ICE	107
		THE =THETA(ITH)	St.ICE	108
	£3	CONTINUE	SLICE	109
		(T=COS(THE)	St ICE	011
-11			SL ICE	===
	•		SL ICE	112
	•	CALCULATION OF G-SOMARE	SLICE	113
	•		SLICE	114
		70 20 J=1.4NP	SLICE	115
115) *CT	SL 1CE	116
		IF(62(J),F0,0,) GO TO 42	SLICE	117
	2	CONTINUE	SL ICE	118
		GO TO 44	St 1CE	119
	29	CONTINUE	St Ice	120
126		THENTHENNTHE	St Ice	121
		60 10 43	St Ice	122
	7 7	CONTINUE	SLICE	123
	•		SL ICE	124
	•	CALCULATION OF ZEMOS OF G	St. Ice	125
125	•		St ICE	126
		P\$15(114.1)=6.	St Ice	127
		PSIG(114.2)=0.	St 1ce	128
		5SI3(114.3) #0.	St ICE	159
•		RSIG(TTH.4)=0.	SLICE	130
130		\$\$16(114.5)#0.	St ICE	131
		NTPHO	SLICE	132
			SLICE	133
		SECULO	3. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	\$ C
			36.1CE	66.
<u>.</u>			SLICE	92
		AT TRUCK STATE TO COMPANY OF THE PRINCIPLE OF THE STATE O	50 1CE	\ <u>\</u>
	0		St 106	130
	1		St. Ice	140
)

071			SLICE	7
			St 1ce	7
	IF (CTP, GT, C) GO TO 41		SL 108	*
			3L 1CE	-
571			101	3
	STATE TO STATE OF THE STATE OF		1 1 CF	4
	_		SUTCE	14.
	150 FORWATISSHIWARMING - NO. OF TURNING POINTS IS GHEATER	THAN 2 AT /	SLICE	7
	14H KARI3-5x-2rxEFIQ-5-5xx4HITHRI3-5x-6HTHETAEFH-2-5X-4HNTPRI3//)	HNTP=13//)	St. ICE	15(
15.			SL ICE	15
	U		SL ICE	15
	C CALCULATION OF DIPECTIVITY		St. Ice	15
			SL 1CE	15.
	XOP=X/RADIUS (ITH)		SLICE	5
154			SLICE	<u>.</u>
	CONTRACTOR OF THE CONTRACTOR O		34.1CE	<u> </u>
			3L 1CE	֓֞֝֜֞֜֝֞֜֝֓֓֓֓֓֞֜֜֜֝֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֜֝֡֓֡֓֡֓֓֡֓֡֓
	1100000		34.105	61
• • • • • • • • • • • • • • • • • • • •	OF CH CU A C U A C		2010	9
<u>.</u>			36.10	
			3C 1CE	Š
			St. 105	é :
	CONCARCONCAPA - 140 + (41) +		SLICE	Ė
!			SE ICE	0
٠9	IF (TIME CT. 3. AND. MALL T. 3) SHIFLUIR) = 0.0		SLICE	9
	00 45 J=1.34		SLICE	9
	FC=FLOAT(FO(J))		SLICE	9
	K=ChST+FC+DF0/CO		St. ICE	9
1	FR=FC/FS(TP)		SLICE	
170			St. ICE	17
			SL ICE	17.
	IF (POWER.61.20.0) GO TO 45		SLICE	17
	(1 LBOOT) OX SHINORY		SL ICE	17
			SL ICE	17
۲.	,		SL ICE	17
	1F(SHIELD(IR), GT.00.) (A) TO 46		SL ICE	
			SCICE	7
			SL ICE	
, q	TOBETHOLOGICAL TO THE CONTRACT OF THE CONTRACT		SLICE	œ :
			St ICE	9
			SLICE	8
	AUNITARIA PARA		SL ICE	8
	1) VI (114 - 1) HDSD (114 - 11 + 12 + 05 (11 + 01 12 12 12 12 12 12 12		SL ICE	ž
1			St. ICE	89
(S. 175	č
			SLICE	9
			St Ice	<u>~</u>
			SLICE	
			SLICE	ð

45	14 Splin = Spl(J)	TPNC
	\$PLP(1) = (SPLL+SP(U)/?•	TPNIC
	(と2)5+(と2)1d5 = (76)1d15 51	TPNC
	60 10 25	TPNC
5.6		TPNC
	25 CONTINUE	TPNLC
	ن	TPNC
	*	TPNC
	ر 00	TPNC
5 5		
	SP(4) = SP(4)	TPNIC
	(13) 16	IPNLC
	STFD 6	TPNLC
60		TPNLC
	35 SHAR(I) = (SP(I)+SP(I+1)+SP(I+2))/3.	TPNEC
		TPNEC
	#STED 7#	TPNC
!		TPNIC
65		TPNIC
	SP(PP(3) = SP(3)	TPNEC
	00 40 I=4	TPNC
	40 SPLPP(I) = SPLPP(I-1)+SHAP(I-1)	TPNC
) L
٦٥	*	TPNC
		TPNLC
	45 F(I) = SPL(I)-SPLPP(I)	TPNC
	ω	TPNC
	#SIED 9	TPNC
75	CMAX ≡ 0	TPNLC
	00 65 1=1+24	TPNC
	IF(I.GF.11.AND.I.LF.21) GO TO 50	TPNLC
	C *FRFO 500HZ OR FREO%5000HZ*	TPNC
	TC? = F(1)/6.	TPNC
96	TC3 = 3,333	TPNCC
	90 10	TPNLC
	\$200	TPNC
	H	TPNC
		TPNC
85 5	55 IF(F(I).LT.3.0) GO TU 65	TPNLC
	IF(F(1),6E,20,0) GO TU 60	TPNC
	CMAX = AMAX1 (CMAX+TC2)	TPNC
	60 TO 65	TPNLC
	_	TONFC
06	65 CONTINUE	TPNLC
		TONTC
	500 PETURN	TPNIC
	CNU	TPNC

4.0 REFERENCES

- 1. Gliebe, P.R., "High Velocity Jet Noise Source Location and Reduction: Task 2 Supplement Computer Program for Calculating the Aeroacoustic Characteristics of Jets From Nozzles of Arbitrary Shapes," General Electric Company, FAA-RD-76-79, 11a, May, 1978.
- 2. Mani, R. (Ed.), "High Velocity Jet Noise Source Location and Reduction: Task 2 Theoretical Developments and Basic Experiments," General Electric Company, FAA-RD-76-79-II, May, 1978.
- 3. Abramowitz, M., and Stegun, I.A. (Ed.), <u>Handbook of Mathematical Functions</u>, National Bureau of Standards Applied Mathematics Series 55, June 1964 (1972 printing).
- 4. Anon, "Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity for Use in Evaluating Aircraft Flyover Noise," SAE ARP 866, 1964.
- 5. Anon, "Definitions and Procedures for Computing the Perceived Noise Level of Aircraft Noise," SAE ARP 865A, August 15, 1969 Revision.
- 6. Lee, R., Kendal, R.M., et al, "Research Investigation of the Generation and Suppression of Jet Noise," General Electric Company Contractor Report No. NOAS 59-6160-C, January 1961.
- 7. Anon, "Noise Standards: Aircraft Type Certification," FAA Part 36, Vol. III, Appendix B, 1969.

5.0 CONCLUDING REMARKS

Two computer programs capable of predicting the jet noise of high velocity exhausts from nozzles of arbitrary geometry are presented. The computerized procedures presented herein provide reasonably accurate methods of predicting maximum sideline PNL as well as EPNL (with and without flight effects) over the range of flow conditions and observer angles of interest.

