Representaciones Aplicaciones de caracteres

Resumen

En este texto puedes incluir un resumen del documento. Este informa al lector sobre el contenido del texto, indicando el objetivo del mismo y qué se puede aprender de él. D. Charte, J.C. Entrena,L. Soto, M. RománUniversidad de Granada

$\acute{\mathbf{I}}\mathbf{ndice}$

	Primera Sección 1.1. El grupo de rotación SO(3)	2 2
2.	Segunda Sección	2
3.	Referencias	2

1. Primera Sección

1.1. El grupo de rotación SO(3)

Definición 1. Llamamos O(n) al grupo de las **matrices ortogonales** de dimensiones $n \times n$, aquellas que cumplen que $Q^TQ = QQ^T = I$, bajo la composición.

Nótese que las matrices ortogonales forman un subgrupo del grupo lineal GL(n) de matrices invertibles; y que, por definición, sólo pueden tener determinante 1 y -1.

Definición 2. Llamamos SO(n) al **subgrupo de rotaciones**, definido como el subgrupo de O(n) formado por aquellas matrices que tienen determinante 1.

1.2. Conexión con SU(2)

[1]

2. Segunda Sección

3. Referencias

Referencias

[1] Gelfand, I.M.; Minlos, R.A.; Shapiro, Z.Ya. (1963), Representations of the Rotation and Lorentz Groups and their Applications, New York: Pergamon Press

Página 2 de 2