2CPI Contrôle intermédiaire en ANA3

Durée : 2 heures

Les documents, calculatrices et téléphones sont interdits.

Le sujet comporte 2 pages (3 exercices et 1 questionnaire).

Le barème est approximatif.

Vous devez répondre à chaque exercice sur une double feuille séparément.

Quelques DL au $v(0)$	Quelques comparaisons
$\bullet e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n).$	$\bullet \sin x \le 1, \ \forall x \in \mathbb{R}.$
• $\sin(x) = x - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+1}).$	$\bullet \sin x \le x , \ \forall x \in \mathbb{R}.$
• $\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$.	• $\log(1+x) \le x, \ \forall x \in \mathbb{R}_+.$

Exercice 1 (6 points): Les questions sont indépendantes.

- 1) Etudier la nature de la série numériqe suivante: $\sum_{n\geq 1} \frac{(-1)^n . n^4 . \sin\left(\frac{1}{n}\right)}{n!}.$
- 2) Etudier la nature (convergence absolue et semi-convergence) de la série numérique suivante: $\sum_{n\geq 1} \frac{(-1)^n}{\log\left(\sqrt{n}+1\right)}.$
- 3) Soient $u_n = \frac{1}{n} + \log n \log (n+1)$ et $v_n = \exp\left(\frac{(-1)^n}{n}\right) 1$.
- a) Montrer que la série $\sum_{n} u_n$ est convergente.
- b) Etudier la nature de $\sum_{n>1}^{n\geq 1} v_n$.

Exercice 2 (4 points): Soit la suite de fonctions $(f_n)_{n\geq 1}$ définie par :

$$f_n(x) = \frac{ne^x + xe^{-x}}{x+n}, \ x \in [0,1].$$

- 1) Etudier la convergence simple et uniforme de la suite $(f_n)_{n>1}$ sur [0,1].
- 2) Calculer $\lim_{n \longrightarrow +\infty} \int_{0}^{1} x.f_{n}(x) dx$.

Exercice 3 (5 points): Soit F la fonction définie par $F(x) = \sum_{n\geq 1} \frac{x^n \cdot \sin(nx)}{n}$.

- 1) Montrer que F est bien définie sur]-1,1[. Indication: Montrer la convergence uniforme de la série sur tout [-a,a], 0 < a < 1.
- 2) Montrer que F est continue sur]-1,1[. 3) Montrer que F est de classe C^1 sur]-1,1[.

ESI. 2023/2024. CI- ANA3.

Veuillez répondre au questionnaire sur le sujet.

Nom	Prénom	G	roupe	
Questionnaire (5 p	points):			
	$\overline{\mathrm{it},(u_n)_n}$ désigne une suite numéri			
	ations suivantes lesquelles sont vi	raies $oxdot M$, lesquel	lles sont	
fausses ${f E}$, justifier b		21		
A1 : Si u_n	> 0 et $\sum u_n$ converge alors $\lim_{n \to +\infty} u_n$	$\sum_{n=0}^{\infty} \frac{u_{n+1}}{u_n} = l < 1.$		
Δ2·Si ∇	u_n converge alors $\sum \frac{1+u_n}{2+u_n}$ con	verce		
A2 · 51	u_n converge alors $u_n = 2 + u_n$	verge.		
	_			
A3 : La sé	rie $\sum_{n>1} \left(1+\frac{1}{n}\right)^{\sqrt{n}}$ est convergent	e.		
	$\sum_{n\geq 1} \binom{n}{n}$			
	·			
A4 : Si	$(u_n)_n \subset \mathbb{R}_+^*$ est décroissante et	$ \sin \lim_{n \to +\infty} u_n = $	0 alors	
$\sum (-1)^n u_n$ converg	e.			
II- Completer: Se	oit I un intervalle de \mathbb{R} .			
Soit $(f_n)_n$ une suite	de fonctions convergente sur I ver			
On dira que $(f_n)_n$ es	t convergente uniformément sur ${\cal I}$	vers f si et seule	ement si	
:				
	·			

Un corrigé.

Exercice 1: (1,5+2,25+2,25)

1) Nature de la série numériqe $\sum_{n\geq 1} u_n / u_n = \frac{(-1)^n . n^4 . \sin\left(\frac{1}{n}\right)}{n!}.$

On a $|u_n| \underset{+\infty}{\sim} \frac{n^4 \cdot \left(\frac{1}{n}\right)}{n!} = \frac{n^3}{n!} = v_n$ et $\sum v_n$ converge par la règle de d'Alembert,

$$\lim_{n \to +\infty} \frac{v_{n+1}}{v_n} = \lim_{n \to +\infty} \frac{(n+1)^3}{(n+1)!} \frac{n!}{n^3} = \lim_{n \to +\infty} \frac{1}{(n+1)} \cdot \left(\frac{n+1}{n}\right)^3 = 0 < 1.$$

Donc $\sum u_n$ est convergente absolument par le critère d'équivalence ce qui don-

nera sa convergence.

2) Soit $u_n = \frac{(-1)^n}{\log(\sqrt{n}+1)}$.

a) Convergence simple: Utilisons la règle de Leibniz (la série numérique est altérnée), posons $v_n = \frac{1}{\log(\sqrt{n}+1)}$, on a:

 $(v_n)_n$ est décroissante, en effet on pose $f(t) = \log(\sqrt{t} + 1)$, $t \ge 1$, on a

$$f'(t) = \frac{\frac{1}{2\sqrt{t}}}{\sqrt{t}+1} = \frac{1}{2\sqrt{t}(\sqrt{t}+1)} > 0,$$

il vient que f est croissante donc $\frac{1}{f}$ est décroissante.

On en conclut la convergence de la série.

b) Convergence absolue:

$$|u_n| = \frac{1}{\log\left[\left(\sqrt{n}\right)\left(1 + \frac{1}{\sqrt{n}}\right)\right]} = \frac{1}{\frac{1}{2}\log\left(n\right) + \log\left(1 + \frac{1}{\sqrt{n}}\right)} \underset{+\infty}{\sim} \frac{2}{\log\left(n\right)} = v_n,$$

En fait on a :
$$|u_n| = \frac{1}{\frac{1}{2}\log(n)} \left(\frac{1}{1 + \frac{\log\left(1 + \frac{1}{\sqrt{n}}\right)}{\frac{1}{n}\log(n)}}\right) \underset{+\infty}{\sim} \frac{2}{\log(n)}$$

de plus $\sum v_n$ diverge (série de Bertrand).

Remarque: On peut utiliser

$$\log(\sqrt{n}+1) \le \sqrt{n} \le n \Longrightarrow |u_n| \ge \frac{1}{n} \cdots$$

- c) Semi convergence: $\sum u_n$ est semi convergente.
- 3) a) $u_n = \frac{1}{n} + \log n \log(n+1) = \frac{1}{n} \log\left(\frac{n+1}{n}\right) = \frac{1}{n} \log\left(1 + \frac{1}{n}\right)$, on a

$$u_n = \frac{1}{n} - \left(\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right) = \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) \underset{+\infty}{\sim} \frac{1}{2n^2} \ge 0,$$

or $\sum \frac{1}{n^2}$ est convergente car c'est une série de Riemann donc $\sum_{n\geq 1} u_n$ est con-

vergente par le critère d'équivalence

b) On a
$$v_n = \exp\left(\frac{(-1)^n}{n}\right) - 1 = \frac{(-1)^n}{n} + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$$
, or

- $\sum \frac{(-1)^n}{n}$ est convergente, série de Leibniz.
- $\sum u_n$ est convergente (déjà fait).

On en conclut que $\sum_{n} v_n$ est convergente par linéarité.

<u>Exercice 2</u>: (2+2)

1) a) Convergence simple: Il s'agit de calculer $\lim_{n \to +\infty} f_n(x)$, $\forall x \in [0,1]$.

$$\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{ne^x + xe^{-x}}{x+n} = \lim_{n \to +\infty} \frac{ne^x}{n} = e^x.$$

Donc $f_n \stackrel{\text{simple}}{\longrightarrow} f$ sur $E / f(x) = e^x$. b) Convergence uniforme: A t'on $\lim_{n \longrightarrow +\infty} ||f_n - f|| = 0$?

Posons $g_n(x) = |f_n(x) - f(x)|$,

$$g_n(x) = \left| \frac{ne^x + xe^{-x}}{x+n} - e^x \right| = \left| \frac{xe^{-x} - xe^x}{x+n} \right| = x \cdot \frac{|e^{-x} - e^x|}{x+n},$$

on a

$$g_n(x) \le \frac{e^{-x} + e^x}{n} \le \frac{1+e}{n} = M_n, \ \forall x \in [0,1],$$

et $\lim_{n \to +\infty} M_n = 0$.

Ceci montre que la convergence est uniforme sur [0,1].

2) Afin de calculer $\lim_{n\longrightarrow+\infty}\int\limits_{\hat{x}}x.f_{n}\left(x\right)dx$, appliquons le théorème de conservation

de l'intégrabilité à la suite de fonctions $(h_n)_n / h_n(x) = xf_n(x)$, on a tout d'abord $h_n \longrightarrow h$ sur [0,1] où $h(x) = xe^x$ et comme

$$h_n(x) = xg_n(x) \le \frac{1+e}{n} = M_n, \ \forall x \in [0,1],$$

donc $h_n \stackrel{\text{uniform}\, e}{\longrightarrow} h$ sur [0,1]. Utilisons le théorème de conservation de l'intégrabilité

- $\begin{cases} 1) \text{ Toutes les } h_n \text{ sont continues donc intégrables sur } [0,1]. \\ 2) h_n \stackrel{\text{uniforme}}{\longrightarrow} h \text{ sur } [0,1]. \end{cases}$

Alors h est intégrable sur [0,1] et on a

$$\lim_{n \longrightarrow +\infty} \left(\int_{0}^{1} h_{n}(t)dt \right) = \int_{0}^{1} \left(\lim_{n \longrightarrow +\infty} h_{n}(t) \right) dt = \int_{0}^{1} te^{t} dt.$$

Après une IPP $\begin{cases} u=t, \ u'=1 \\ v'=e^t, \ v=e^t \end{cases}$, on trouve

$$\int_{0}^{1} te^{t} dt = \left[te^{t} \right]_{0}^{1} - \int_{0}^{1} e^{t} dt = e - (e - 1) = 1.$$

On en conclut $\lim_{n \longrightarrow +\infty} \int_{0}^{1} x.f_{n}(x) dx = 1.$

Exercice 3: (1+1,75+2,25

$$F(x) = \sum_{n>1} x^n \frac{\sin(nx)}{n}$$
, on pose $u_n(x) = x^n \frac{\sin(nx)}{n}$, $x \in]-1,1[$.

1) On a $|u_n(x)| \leq \frac{|x|^n}{n} \leq |x|^n$, or la série $\sum |x|^n$ est une série géométrique convergente puisque $x \in]-1,1[$, et donc la série numérique $\sum_{n\geq 1} u_n(x)$ est absol-

ument convergente par le critère de comparaison et en particulier simplement convergente sur]-1,1[ce qui prouve que F est bien définie sur]-1,1[.

2) Etudions la convergence uniforme de $\sum_{n\geq 1} u_n$, on a

$$|u_n(x)| < |x|^n < a^n \ \forall x \in [-a, a], \ 0 < a < 1,$$

or $\sum a^n$ est une série géométrique convergente ce qui donne $\sum_{n\geq 1} u_n$ est normalisme de la convergence ce qui donne $\sum_{n\geq 1} u_n$ est normalisme de la convergence ce qui donne $\sum_{n\geq 1} u_n$ est normalisme de la convergence ce qui donne ce

malement donc uniformément convergente sur tout $[-a, a] \subset]-1, 1[$, de plus toutes les u_n sont continues car c'est le produit de fonctions continues, donc d'après le théorème de conservation de la continuité F est continue sur tout $[-a, a] \subset]-1, 1[$. Donc F est continue sur]-1, 1[.

3) Etudions la convergence uniforme de $\sum_{n\geq 1}u'_n, u'_n(x)=x^{n-1}\sin{(nx)}+x^n\cos{(nx)}$.

$$|u'_n(x)| \le |x|^{n-1} + |x|^n \le a^{n-1} + a^n = c_n \ \forall x \in [-a, a], \ 0 < a < 1,$$

or $\sum a^{n-1}$ et $\sum a^n$ sont des séries géométriques convergentes ce qui donne $\sum u_n'$ est normalement donc uniformément convergente sur tout $[-a,a]\subset]-1,1[$.

A présent appliquons le théorème de conservation de la dérivabilité:

- a) Toutes les fonctions u_n sont C^1 sur $[1, +\infty[$ (car c'est le produit de fcts C^1).
- b) $\exists x_0 \in [1, +\infty[$ telle que $\sum u_n(x_0)$ converge car on a montré precedemment que $\sum u_n$ est convergente sur] -1, 1[.
- c) $\sum_{n\geq 0} u'_n$ est convergente uniformément sur tout $[-a,a]\subset]-1,1[$. De a), b) et c) La fonction F est C^1 sur tout $[-a,a]\subset]-1,1[$. Conclusion: F est C^1 sur]-1,1[et :

$$F'(x) = \sum_{n \ge 0} (x^{n-1} \sin(nx) + x^n \cos(nx)), \ \forall x \in]-1, 1[.$$

Questionnaire (1 pt par question):

F A1: Si
$$u_n > 0$$
 et $\sum u_n$ converge alors $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = l < 1$.

Prendre le contre exemple $u_n = \frac{1}{n}$.

contre exemple, $u_n = 0...$

F A2: Si
$$\sum u_n$$
 converge alors $\sum \frac{1+u_n}{2+u_n}$ converge.

Puisque $\sum u_n$ converge alors $\lim_{n \to +\infty} u_n = 0$ donc $\lim_{n \to +\infty} \frac{1+u_n}{2+u_n} = \frac{1}{2} \neq 0$, ce qui donnera la divergence de $\sum_{n=0}^{\infty} \frac{1+u_n}{2+u_n}$ par la CN. On peut aussi donner un

F A3: La série
$$\sum_{n\geq 1} \left(1+\frac{1}{n}\right)^{\sqrt{n}}$$
 est convergente.

On a
$$\left(1+\frac{1}{n}\right)^{\sqrt{n}} \geq 1$$
 donc $\lim_{n \to +\infty} \left(1+\frac{1}{n}\right)^{\sqrt{n}} \neq 0$, ce qui donnera la

divergence de $\sum_{n\geq 1} \left(1+\frac{1}{n}\right)^{\sqrt{n}}$ par la CN. On peut aussi calculer

$$\lim_{n\longrightarrow +\infty}\left(1+\frac{1}{n}\right)^{\sqrt{n}}=\lim_{n\longrightarrow +\infty}e^{\sqrt{n}\log\left(1+\frac{1}{n}\right)}=\lim_{n\longrightarrow +\infty}e^{\sqrt{n}\left(\frac{1}{n}+o\left(\frac{1}{n}\right)\right)}=\lim_{n\longrightarrow +\infty}e^{\left(\frac{1}{\sqrt{n}}+o\left(\frac{1}{\sqrt{n}}\right)\right)}=1\neq 0.$$

$$V$$
 A4: Si $(u_n)_n \subset \mathbb{R}_+^*$ est décroissante et si $\lim_{n \to +\infty} u_n = 0$ alors $\sum u_n$ converge.

C'est la règle de Leibniz ($\sum u_n$ est une série de Leibniz)

II- Completer: Soit I un intervalle de \mathbb{R} .

Soit $(f_n)_n$ une suite de fonctions convergente sur I vers une fonction f. On dira que $(f_n)_n$ est convergente uniformément sur I vers f ssi

$$\forall \varepsilon > 0, \ \exists N, \ \forall n > N, \ \forall x \in A \implies |f_n(x) - f(x)| < \varepsilon.$$

Ou bien

$$\lim_{n \to +\infty} ||f_n - f|| = 0 / ||f_n - f|| = \sup_{x \in A} |f_n(x) - f(x)|.$$