Sec 9.5-9.6 Grouping the: [

Reflexive

Symmetric
Anti symmetric
Transitive

Characteristics of a Relation

Comp 232

Instructor: Robert Mearns

Sections 9.5 – 9.6 include:

Review the types of Binary Relations Review Matrix use to manipulate Binary Relations Classification of different types of Relations and their significance Several application where different types of Relations exist

1 a) Review the types of Relations: Assume R is a relation on set $A = \{1,2,3,4\}$

Name	Definition	Comment	Examples	
Reflexive	∀a ∈ A aRa ∈ R ∃a∈A, aRa∉R →R not reflexive (R is Irreflexive)	Pair (a, a) must be present For every a∈A	1. {(1,1),(1,2),(2,2),(3,3),(4,4)} 2. Ones on main 1100 diagonal of 0100 Matrix 0010 0001 3. {(x,y) xRy → x ≤ y x, y∈Reals }	
Symmetric	$\forall a \forall b \in A$ $aRb \in R \rightarrow bRa \in R$ $\exists a \exists b \in A$, $aRb \land \neg bRa$ $\rightarrow R$ not Symmetric (R is asymmetric)	We do not need aRb∧bRa∈R For all a, b∈A, but IF aRb∈R THEN we need bRa∈R	1. $\{(1,3),(1,4),(2,2),(3,1),(4,1)\}$ 2. Matrix is 0 0 1 1 symmetric 0 1 0 0 1 0 0 0 1 0 0 0 3. $\{(x,y) xRy \rightarrow x-y < 1 x, y \in Reals\}$	
Antisymmetric	$\forall a \forall b \in A$ If aRb and bRa $\in R$ then $a = b$.	The only time we have aRb ∧ bRa ∈ R is when a=b	1. $\{(1,1),(1,2),(3,3),(4,4)\}$ 2. Matrix not 1100 symmetric unless 0000 all entries off main 0010 diagonal = 0 0001 3. $\{(x,y) xRy \rightarrow x y, x, y \in Reals \}$	
Transitive	$\forall a \forall b \in A$ If aRb and bRc \in R then aRc \in R	We do not need aRc For all a, c∈A, but IF aRb ∈R ∧ bRc∈R THEN we need aRc∈R	1. {(1,3),(1,4),(2,4),(3,4),(4,4)} 2. No general 0011 matrix form 0001 0001 0001 3 3. {(x,y) xRy → x < y x, y ∈ Z}	

- 1 b) Review Closure: The Closure Set for each one of Reflexive, Symmetric or Transitive means: Alter the original set so it has the desired property.
- Reflexive and Symmetric closures can be done by Inspection on the sets
- Transitive closures can be done by Inspection of the Di-graph
- All three closures can also be done With matrices

Ex: Consider the relation $R = \{ (a,a),(a,b),(b,c),(c,d) \}$

Reflexive closure: $R_R = \{(a, a), (a, b), (b, c), (c, d), (b, b), (c, c), (d, d)\}$

 $\label{eq:Symmetric Closure: RS = {(a, a),(a, b),(b, a),(b, c),(c, b),(c, d),(d, c)}} Symmetric Closure: RS = {(a, a),(a, b),(b, a),(b, c),(c, b),(c, d),(d, c)}$

Transitive Closure:

State all paths where path length n≥1. These pairs are added to set R to form its Transitive closure.

 $R_T = \{(a, a), (a, b), (a, c), (a, d), (b, c), (b, d), (c, d)\}$

Paths:	Length	
a to b	Yes, n=1	
a to c	Yes, n=2	
a to d	Yes, n=3	
b to a	No	
b to c	Yes, n=1	
b to d	Yes, n=2	
c to a	No	
c to b	No	
c to d	Yes, n=1	
d to a	No	
d to b	No	5
d to c	No	

- 2. Operations and Closures with matrix representation for a Relation
 - a) All set operations apply. Use bit-wise: And $\equiv \cap$, Or $\equiv \cup$, Compliment $\equiv \notin$ on corresponding entries.

b) Composition of relations $S \circ R : M_R O M_S$ [Same structure as matrix Mult.

Except: bit-wise And for Mult. Bit-wise Or for Add]

c) Reflexive closure: $M_{RR} = M_V V$ Identity matrix I

d) Symmetric Closure: $M_{Rs} = M_R \vee M_R^T$

Note: M_R^T denotes transpose of M_R : rows of M_R become the columns of M_R^T

e) Transitive Closure when original set has n elements: $M_{Rr} = M_R \vee M_R^2 \vee M_R^3 \vee ... \vee M_R^n$

3. Summary of Grouping the characteristics of a Relation R on a set S

If Relation R on set S is

- Reflexive
- Symmetric
- Transitive

R is called an Equivalence Relation

If Relation R on set S is

- Reflexive
- Antisymmetric
- Transitive

R is called a Partial Order

(S, R) is called a Partially Ordered set or Poset

(It is called a Partial Order Because there exists at least one pair of elements in S that are not related either way.)

> $\exists a \exists b \in S$ $(aRb \notin R) \land (bRa \notin R)$

If every pair of elements of S are related at least one way it is called a Total Order

 $\forall a \forall b \in S$ $(aRb \in R) \lor (bRa \in R)$

Ex 1: Equivalence Relation R

on Z:

 $\{(a,b) \mid aRb \rightarrow a \equiv b \mod m, a,b \in Z\}$

Also denoted: (Z, mod m)

Ex 2: Partial Order R:

 $\{(x,y) \mid xRy \to \ x \ \middle| \ y, \ x,y \ \in \ Z+\}$

R is not a Total Order.

Note: There exists 5, $7 \in \mathbb{Z}+$ and $5 \nmid 7 \land 7 \nmid 5$

Poset is: (Z+, Divides)

Ex 3: Partial Order R which is also a Total

Order: $\{(x,y) \mid xRy \rightarrow x \le y, x,y \in Z+\}$

Note: For all x, $y \in Z+$ $x \le y \lor y \le x$

Poset is: $(Z+, \leq)$ and is a Totally Ordered set

4. Equivalence Relation:

Prove $\{(a,b) \mid aRb \rightarrow a \equiv b \mod m, a, b \in Z \text{ is Reflexive, Symmetric and Transitive and hence by definition is an Equivalence Relation.}$

(i) Proof R is Reflexive (Direct):

Consider a-a, $a \in Z$

 $a-a = m \times 0$

 \rightarrow m | (a-a)

 \rightarrow a \equiv a mod m

 \rightarrow aRa

(ii) Proof R is symmetric (Direct):

Consider $aRb \in R$

 $\rightarrow a \equiv b \mod m \rightarrow m \mid (a-b)$

 \rightarrow (a-b) = mq, q∈Z

 \rightarrow (-1)(a-b) = (-1)mq

 \rightarrow (b-a) = m(-q)

 \rightarrow m | (b-a)

 \rightarrow b \equiv a mod m

→ bRa

Is aRa∈R for all a∈Z?

Algebra

Def div

Def≡

Def R

Does aRb∈R \rightarrow bRa∈R?

Def R. Def ≡

Def div

Mult by -1, Alg

Algebra

Def div. def ≡

Def R

(iii) Proof R is transitive (Direct):

Proof (direct) Consider $aRb \in R \land bRc \in R$

$$\begin{array}{l} aRb \rightarrow a \equiv b \ mod \ m \rightarrow m \, | \, (a\text{-}b) \rightarrow a\text{-}b\text{=} \ mq_1 \\ bRc \rightarrow b \equiv c \ mod \ m \rightarrow m \, | \, (b\text{-}c) \rightarrow b\text{-}c\text{=} \ mq_2 \\ (a\text{-}b) + (b\text{-}c) = mq_1\text{+}mq_2 \\ \rightarrow (a\text{-}c) = m(q_1\text{+}q_2) \rightarrow m \, | \, (a\text{-}c) \\ a \equiv c \ mod \ m \rightarrow aRc \end{array}$$

 $ightarrow \{(a,b) \mid aRb \rightarrow a \equiv b \mod m, a, b \in Z\}$ is an Equivalence Relation

Does $(aRb \in R \land bRc \in R) \rightarrow aRc \in R$

Def: R, \equiv , div Def: R, \equiv , div Addition of 2 lines

Algebra, Def div

Def≡, def R

- 5. What does an Equivalence Relation do to a set?
 - a) Ex: Consider $aRb \rightarrow a \equiv b \mod 4$, $a, b \in Z$

(Remainders when a, b are divided by 4 can only be: 0, 1, 2, 3

Case 1 Rem = 1: List the smallest non negative value of b: List all possible values of a?

Case 2 Rem = 2: List the smallest non negative value of b:

List all possible values of a?

b=2 a=..., -2, 2, 6, ...

Case 3 Rem = 3: List the smallest non negative value of b: List all possible values of a?

Case 4 Rem = 0: List the smallest non negative value of b:

List all possible values of a?

b=0 a=..., -4, 0, 4, ...

continued 17

- 5b) Definition: A Partition of a set S is a collection of sets $A_1, A_2, A_3, \ldots, A_n$ such that:
 - (i) $A_i \neq \phi$ for all i
 - (ii) $A_i \cap A_j = \phi$ for all i, j
 - all Ai are disjoint
 - (iii) S = union of all A_i

 A_1, A_2, A_3 is not a partition of S Condition (i) fails

 A_1, A_2, A_3 is not a partition of S Condition (ii) fails

A_i are non empty

 A_1, A_2, A_3 is not a partition of S Condition (iii) fails

 A_1, A_2, A_3 is a partition of S

If we look at a diagram of the previous congruence mod 4 relation we have:

(i) The previous relation $a \equiv b \mod 4$ Partitions the set of Integers Z into 4 different classes

- (ii) Since it was an equivalence relation that did the partition the classes are called Equivalence Classes
- (iii) The members of each equivalence class are called equivalent elements Ex: In the congruence mod 4 example: 5 is equivalent to 1:5≡1, also 9≡1
- (iv) Any member of the equivalence class can represent the class. Ex: 1 or 5 or 9 or.... can represent the equivalence class in (iii)
- (v) In general any equivalence relation on a set S partitions the set S
- 6. Partial Ordering Relation for a set:
 - a) Prove $R = \{(x,y) \mid xRy \rightarrow x \mid y, x,y \in Z+\}$ is Reflexive, Anti-symmetric and Transitive
 - (i) Proof R is Reflexive (Direct):

Consider any value $a \in Z +$

$$a = a \times 1$$
 $\rightarrow a \mid a \rightarrow aRa$
 $\rightarrow aRa \in R \text{ for all } a \in Z+$

→ R is Reflexive

ii) Proof R is Anti-symmetric (Direct):

Consider any values $a,b \in Z^+$ where aRb, bRa

a=b→ R is Anti-symmetric

Is aRa∈R for all a∈Z+?

Def div, Def R

Def Reflexive

Does $xRy \in R \land yRx \in R \rightarrow x=y$?

Def R, def div
Def R, def div
Subst value of a in eq 2 for a in eq 1
Associative

Divide by b: $(b \in Z^+ \rightarrow b \neq 0)$ $q_1, q_1 \in Z^+$ and $q_1 q_1 = 1$

Sub $q_1=1$ in eq 1, Def Anti-sym.

(iii) Proof R is Transitive (Direct):

Consider a, b, $c \in Z^+$ where aRb, bRc $\Rightarrow a \mid b \Rightarrow b = aq_1, q_1 \in Z^+$ $\Rightarrow b \mid c \Rightarrow c = bq_2, q_2 \in Z^+$ $\Rightarrow bq_2 = aq_1q_2$ $\Rightarrow c = a(q_1q_2)$ $\Rightarrow a \mid c \Rightarrow aRc$ $\Rightarrow R$ is Transitive

QED

Does (aRb∈R \land bRc∈R) \rightarrow aRc∈R?

Def R, def div Def R, def div Multiply eq 1 by q_2 Substitute value c in eq 2 for b q_2 in eq 3 Def div. Def R, Def Trans.

b) Why is this Reflexive, Antisymmetric and Transitive Relation not called a Total Ordering Relation?

```
Ex 1: Consider the above Relation R = \{(x,y) \mid xRy \rightarrow x \mid y, x,y \in Z+\}

(i) let x = 3 and y = 8:

3 \nmid 8 and 8 \nmid 3

\rightarrow 3, 8 are not comparable using this relation R

(ii) let x = 12 and y = 3:

3 \mid 12

\rightarrow 3, 12 are comparable this relation R
```

In the above Reflexive, Antisymmetric and Transitive relation R on Z+ there exist elements

Where we do not have xRy and do not have yRx. (We cannot use R to relate them) The term Total Order is used for a Relation R that is Reflexive, Antisymmetric and Transitive if

we can relate all elements in Domain with R. Hence R of Ex 1 is not a Total Ordering Relation.

Ex 2: Is $R = \{(x,y) \mid xRy \rightarrow x < y, x,y \in Z+\}$ a Partial Order ? No: R is not Reflexive, x not Related to y

- 7. Total Ordering Relation for a set:
 - a) Prove $R = \{(x,y) \mid xRy \rightarrow x \le y \ x,y \in Z+\}$ is Reflexive, Antisymmetric and Transitive
 - (i) Proof R is Reflexive (Direct): Consider $a \in Z + a \le a \rightarrow aRa$

Algebra, def R

Is aRa∈R for all a∈Z+

(ii) Proof R is Antisymmetric (Direct):

Does (xRy∈R∧yRx∈R)→x=y

Consider a, $b \in Z^+$ where aRb, bRa \rightarrow a \leq b and b \leq a

Def R Algebra

→ b=a

(iii) Proof R is Transitive (Direct):

Consider a, b, $c \in Z^+$ where aRb, bRc

Does (xRy∈R∧yRz∈R)→xRz∈R Def R, Alg

 \rightarrow a \leq b and b \leq c \rightarrow a \leq c

Def R

→aRc

- b) In this Reflexive, Antisymmetric and Transitive relation R on Z+ $\,$ all x, y ε Z+ $\,$
 - \rightarrow x \leq y or y \leq x
 - \rightarrow for all x, y \in Z+ xRy or yRx (We can use this R to relate all x,y \in Z+)

The term Total Ordering Relation is used for Partial Order Relation if:

We can relate all elements in Domain with R. Hence the above R is a Total Ordering relation.

8. Applications

Ex 1: Total Ordering Relation:

An Algorithm calls for the input of any Integers in any order. Repeats allowed The Algorithm is required to produce a sequence of the Integers in order (smallest to greatest)

a) What Relation R can be used?

$$R = \{(x, y) \mid xRy \rightarrow x \leq y \ x, y \in Z\}$$

b) What kind of a Relation is R?

R is Reflexvie, Antisymmetric and Transitive and xRy or yRx for all x, y \in Z

 \rightarrow R is a Total Ordering Relation

c) Describe the steps of the Algorithm using Relation R at every step

Step 1 Consider the first two input digits x, y.

xRy gives correct order for x, y

Step 2 Consider the third input digit z:

xRz gives correct order for z, x

yRz gives correct order fo z, y

Step 3 Repeat the process as in Step 2 until the remaining several digits have been placed in the correct order

41 65

15(16)=240 140(16)=2240 2480

R={ $(x,y) \mid xRy \rightarrow tweet \ x \ and \ tweet \ y \ have the same first 240 bits}$

 $(xRx) \rightarrow Reflexive$

 $(xRy\rightarrow yRx) \rightarrow Symmetric$

(xRy and yRz \rightarrow xRz) \rightarrow Transitive

an Equivalence Relation

R Partitions the Twitter cyber space into disjoint Equivalence classes Each Equivalence class contains all tweets belonging to a single tag

