- A.

L29: Entry 1 of 247

File: JPAB

Jan 31, 2003

PUB-NO: JP02003030276A

DOCUMENT-IDENTIFIER: JP 2003030276 A

TITLE: INTERACTIVE TRY-ON PLATFORM FOR EYEGLASSES

PUBN-DATE: January 31, 2003

INVENTOR - INFORMATION:

NAME

COUNTRY

WAUPOTITSCH, ROMAN

MEDIONI, GERARD G

SHAMGIN, VLADIMIR GUIGONIS, DAVID

TSOUPKO-SITNIKOV, MIKHAIL

MISHIN, OLEG

CALLARI, FRANCESCO

ASSIGNEE-INFORMATION:

NAME

COUNTRY

GEOMETRIX INC

APPL-NO: JP2001148435 APPL-DATE: May 17, 2001

PRIORITY-DATA: 2001US-266799 (February 6, 2001), 2001US-823422 (March 29, 2001)

INT-CL (IPC): G06F 17/50; G06F 17/60; G06T 1/00; G06T 17/40

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a system for enabling a user to try on a selected item or service through the <u>Internet</u> before closing a purchase contract for the selected item.

SOLUTION: Techniques and systems that provide interactions between a 3D representation of a selected pair of glasses and a fully-textured 3D face model are disclosed. According to one embodiment, an interactive platform is <u>displayed</u> to allow the user to select a pair of glasses and try the selected glasses on a user-provided 3D face model. The interactions provided in the platform include spatial adjustments of the glasses around the face model, various <u>perspective views</u> of 3D face with the glasses on and other apparent alterations to the selected glasses. According to one application, when the user finishes the try-on process, the information about the glasses can be transmitted to a business that can subsequently produce a pair of customized glasses for the user.

COPYRIGHT: (C) 2003, JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-30276

(P2003-30276A)

(43)公開日 平成15年1月31日(2003.1.31)

(51) Int.Cl. ⁷	酸別記号	FΙ	テーマコード(参考)
G06F 17/50	680	G06F 17/50	680J 5B046
17/60	302	17/60	302A 5B050
	3 1 0	•	310E 5B057
	3 1 8		3 1 8 G
	5 0 4		5 0 4
	審査 韶求 未請求	朝求項の数34 OL 外国語出願	(全 75 頁) 最終頁に続く
(21)出顧番号	特顧2001-148435(P2001-148435)		
(22)出顧日	平成13年5月17日(2001.5.17)	ジオメトリックス インコーポレイテッド アメリカ合衆国 カリフォルニア州 95126 サン・ノゼ ジ・アラメダ 1590	
(31)優先権主張番号	266799	スイート	200
(32)優先日	平成13年2月6日(2001.2.6)	(72)発明者 ロマーン ヴァオポティッチュ	
(33)優先権主張国	米国 (US)	アメリカ合衆国 カリフォルニア州	
(31)優先権主張番号	823422	95124 サン・ノゼ コア・デ・アナ	
(32)優先日	平成13年3月29日(2001.3.29)	1643	
(33)優先權主張国	米国 (US)	(74)代理人 100070150 弁理士 伊東	忠彦
		カー カ	CAP

最終頁に続く

(54) 【発明の名称】 眼鏡用の対話式試着プラットフォーム

(57)【要約】

【課題】 ユーザが選択されたアイテムに対する売買契約を結ぶ前にインターネットを介して選択されたアイテム又はサービスを試しうるシステムを提供することを目的とする。

【解決手段】 選択された眼鏡の3次元表現と完全にテクスチャ化された3次元顔モデルの間の対話を与える技術及びシステムが開示されている。1つの実施例によれば、ユーザが眼鏡を選択し、選択された眼鏡をユーザによって与えられた3次元顔モデル上で試すことを可能とする対話式プラットフォームが表示される。プラットフォームの中で与えられる対話は、顔モデルの周辺での眼鏡の調整、眼鏡を着けた3次元顔の様々な視点のビュー、及び選択された眼鏡に対する他の見かけ上の変更を含む。1つの適用では、ユーザが試着プロセスを終了すると、眼鏡に関する情報はビジネスへ送信されえ、ビジネスは続いてユーザのためのカスタマイズされた眼鏡を製造しうる。

【特許請求の範囲】

【請求項1】 ネットワークを通じて眼鏡を市販する方 法であって、

コンピュータ装置上で表示されうる対話式プラットフォ ームを与える段階と、

ユーザから3次元顔モデルを要求する段階と、

3次元基準フレームに対して3次元顔モデルの特徴を決 定する段階と、

上記ネットワークを通じて眼鏡を識別する要求が受信さ れると眼鏡の3次元表現を検索する段階と、

上記眼鏡の3次元表現を上記3次元顔モデルに対してそ の特徴に従ってデフォルト位置に配置する段階とを含む

【請求項2】 上記眼鏡の3次元表現と上記3次元顔モ デルとの間の相互の対話を可能とする段階を更に含む、 請求項1記載の方法。

【 請求項3 】 上記3次元顔モデルを上記眼鏡の3次元 表現を着けた状態で選択された視点から見たビューを許 す段階を更に含む、請求項1記載の方法。

【請求項4】 上記対話式プラットフォームは夫々の眼 20 鏡の表示を含み、ユーザはそのうちの1つを選択しう る、請求項1記載の方法。

【請求項5】 上記要求は上記眼鏡のうちの1つが選択 されたときにコンピュータ装置上に発生される、請求項 4 記載の方法。

【 請求項6 】 上記要求は上記コンピュータ装置から上 記ネットワークを通じて伝達されうるよう上記ネットワ ークの通信プロトコルに準拠する、請求項5記載の方 法。

【 請求項7 】 上記ネットワークはインターネットであ 30 り、通信プロトコルはHypertext Transfer Protocol (HTTP)である、請求項6記載の方法。

【請求項8】 上記3次元顔モデルの特徴は、3次元基 準フレームを基準とした3次元顔モデルの瞳及び鼻の輪 郭の3次元位置を含む、請求項4記載の方法。

【請求項9】 上記デフォルト位置は「着けた」位置又 は「外した」位置であり、「着けた」位置は上記眼鏡の 3次元表現を上記3次元顔モデルの特徴に従って上記3 次元顔モデル上に配置するものであり、「外した」位置 従って上記3次元顔モデルから外した前方に配置するも のである、請求項1記載の方法。

【請求項10】 上記3次元顔モデルを要求する段階 は、上記ユーザによって既知の場所から上記3次元顔モ デルをアップロードする段階を含む、請求項1記載の方 法。

【請求項11】 上記既知の場所は、上記顔モデルを格 納するため又は上記3次元顔モデルを生成するために使 用されるコンピュータ装置である、請求項10記載の方

【請求項12】 ネットワークを通じて眼鏡を市販する 方法であって、

上記ネットワークから受信され、上記夫々の眼鏡の表示 を含む対話式プラットフォームを表示する段階と、

上記対話式プラットフォームへユーザの3次元顔モデル をインポートする段階と、

上記眼鏡のうちの1つが選択されたときに上記眼鏡のう ちの1つの3次元表現を3次元顔モデル上に配置する段 階とを含む方法。

10 【請求項13】 上記対話式プラットフォームを表示す る段階は、

眼鏡ビジネスによって管理されるwebサイトを識別す るアドレスを含む要求を発生し、

上記ネットワークを通じて上記要求を送信する段階とを 含む、請求項12記載の方法。

【請求項14】 上記ネットワークはインターネットで あり、上記要求はHypertext Transfer Protocol(HT TP)に実質的に準拠する、請求項13記載の方法。

【請求項15】 上記3次元顔モデルをインポートする 段階は、

上記ユーザの少なくとも1つの画像を撮像し、

上記少なくとも1つの画像から3次元顔モデルを生成す るために3次元モデリングアプリケーションを作動させ る段階を含む、請求項13記載の方法。

【請求項16】 上記3次元顔モデルをインポートする 段階は、上記3次元顔モデルの特徴を3次元基準フレー ムに対して決定する段階を含む、請求項15記載の方

【請求項17】 上記3次元顔モデルの特徴は、上記3 次元基準フレームを基準とした上記3次元顔モデルの暗 及び鼻の輪郭の3次元位置を含む、請求項16記載の方

【請求項18】 上記眼鏡のうちの1つの3次元表現を 3次元顔モデル上に配置する段階は、

上記眼鏡の3次元表現を上記3次元顔モデルに対してそ の特徴に従ってデフォルト位置に配置する段階を含む、 請求項15記載の方法。

【請求項19】 上記デフォルト位置は「着けた」位置 又は「外した」位置であり、「着けた」位置は上記眼鏡 は上記眼鏡の3次元表現を上記3次元顔モデルの特徴に 40 の3次元表現を上記3次元顔モデルの特徴に従って上記 3次元顔モデル上に配置するものであり、「外した」位 置は上記眼鏡の3次元表現を上記3次元顔モデルの特徴 に従って上記3次元顔モデルから外した前方に配置する ものである、請求項18記載の方法。

> 【請求項20】 上記眼鏡の3次元表現と上記顔モデル の間の相互の対話を与える段階を更に含む、請求項12 記載の方法。

【請求項21】 上記3次元顔モデルのビューを上記眼 鏡の3次元表現と共に選択された視点から与える段階を 50 更に含む、請求項12記載の方法。

【請求項22】 ネットワークを通じて眼鏡を市販する 方法であって、

上記ネットワークから受信され、第1のビュー及び第2 のビューといった、2つのビューがユーザによって与え られる3次元顔モデルを夫々受ける少なくとも2つのビ ューを含む対話式プラットフォームを表示する段階と、 ユーザが上記2つのビューの差異を認識しうるよう、上 記眼鏡のうちの一つの眼鏡の3次元表現を上記第1のビ ューの3次元顔モデル上に配置し、上記眼鏡のうちの他 の眼鏡の3次元表現を上記第2のビューの3次元顔モデ 10 を決定するためのプログラムコードと、 ル上に配置する段階とを含む方法。

【請求項23】 上記対話式プラットフォームは、複数 の機能ボタンを有するパネルを更に含み、上記ボタンの うちの少なくとも幾つかは、ユーザが、一つの眼鏡又は 他の眼鏡を上記3次元顔モデルに対して空間的に調整す るのを支援するために設けられる、請求項22記載の方 法.

【請求項24】 上記対話式プラットフォームは複数の 機能ボタンを有するパネルを更に含み、上記ボタンのう ちの少なくとも幾つかは、一つの眼鏡又は他の眼鏡の位 20 選択された視点からの上記眼鏡の3次元表現を着けた上 置情報を取り出すために設けられ、上記位置情報は新し く選択された眼鏡に対して適用されうる、請求項22記 載の方法。

【請求項25】 ネットワークを通じて眼鏡を市販する システムであって、

表示画面を含み、ブラウズアプリケーションを実行し、 データネットワークに結合されるクライアントコンピュ ータ装置と、

眼鏡ビジネスによって運用され、眼鏡のデータベースに アクセスするサーバコンピュータ装置とを含み、

上記クライアントコンピュータ装置のユーザは、上記サ ーバコンピュータ装置を識別するIPアドレスを入力 し、上記クライアントコンピュータ装置と上記サーバコ ンピュータ装置との間にデータリンクが確立した後に選 択された眼鏡の仕様を送信し、

上記クライアントコンピュータ装置は続いて3次元顔モ デル及び上記選択された眼鏡の3次元表現が表示される 対話式試着プラットフォームを表示し、

上記ユーザは上記選択された眼鏡を上記3次元顔モデル で仮想的に配置することが可能であるシステム。

【請求項26】 上記3次元顔モデルは、上記ユーザに 既知の場所から上記プラットフォームへアップロードさ れる、請求項25記載のシステム。

【請求項27】 上記ユーザに既知の場所は、上記顔モ デルを格納するため又は上記3次元顔モデルを生成する ために使用されるコンピュータ装置である、請求項26 記載のシステム。

【請求項28】 上記コンピュータ装置は、上記クライ

置のいずれかである、請求項27記載のシステム。

【請求項29】 ネットワークを通じて眼鏡を市販する ための、コンピュータ装置上で実行可能なソフトウエア 製品であって、

コンピュータ装置上に表示されうる対話式プラットフォ ームを与えるためのプログラムコードと、

ユーザから3次元顔モデルを要求するためのプログラム コードと、

3次元基準フレームに対する上記3次元顔モデルの特徴

上記眼鏡を識別する要求が上記ネットワークを通じて受 信されたときに眼鏡の3次元表現を取り出すためのプロ グラムコードと

上記眼鏡の3次元表現を上記3次元顔モデルに対してそ の特徴に従ってデフォルト位置に配置するためのプログ ラムコードとを含む、ソフトウエア製品。

【 請求項30】 上記眼鏡の3次元表現と上記3次元顔 モデルの間の相互の対話を可能とするためのプログラム

記3次元顔モデルのビューを可能とするためのプログラ ムコードとを更に含む、請求項29記載のソフトウエア 製品.

【請求項31】 上記対話式プラットフォームは、眼鏡 の夫々の表示を含み、ユーザはそのうちの1つを選択し うる、請求項29記載のソフトウエア製品。

【請求項32】 上記3次元顔モデルの特徴は、上記3 次元基準フレームを基準とした上記3次元モデルの瞳及 び鼻の輪郭の3次元位置を含む、請求項29記載のソフ トウエア製品。

【請求項33】 上記デフォルト位置は「着けた」位置 又は「外した」位置であり、「着けた」位置は上記眼鏡 の3次元表現を上記3次元顔モデルの特徴に従って上記 3次元顔モデル上に配置するものであり、「外した」位 置は上記眼鏡の3次元表現を上記3次元顔モデルの特徴 に従って上記3次元顔モデルから外した前方に配置する ものである、請求項29記載のソフトウエア製品。

【請求項34】 上記3次元顔モデルを要求するための プログラムコードは、既知の場所から上記ユーザによっ に着けた状態で又は上記3次元顔モデルから外した状態 40 て上記3次元顔モデルをアップロードするためのプログ ラムコードを含む、請求項29記載のソフトウエア製

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本願は、ここに参照として組 み入れられる02/06/2001出願の「Interactiv e 3D models for Online Commerce」なる名称の仮特許 出願第60/266,799号に基づいて優先権を主張

アントコンピュータ装置又は上記サーバコンピュータ装 50 【0002】本発明は概して電子商取引の分野に関連

し、更に特定的には、ユーザによって与えられる3次元 顔モデル上でユーザが異なるスタイルの眼鏡を試着する ことが可能な対話式の試し用又は試着プラットフォーム に関連し、3次元顔モデルはユーザが選択された眼鏡を 電子的に且つ対話式 (インタラクティブ) に試着しうる ようユーザから生成されることが望ましい。

[0003]

【従来の技術】インターネットは、全世界の相互接続さ れたコンピュータ及びコンピュータネットワークのデー タ通信ネットワークであり、電気通信、コンピューティ 10 ング、放送、出版、商取引、及び、情報サービスの要素 を、革命的なビジネスインフラストラクチャへ結合させ る点まで急速に成長している。インターネット上の経済 は、生活の全ての面において成長しており、株式取引、 商品取引、製品、小売り、サービス注文を含む広い範囲 のビジネスは全てインターネットを介して行なわれてい

【0004】しかしながら、インターネットに基づく電 子商取引は、ある種のサービス及びアイテムについては **幾らかの障害がある。例えば、履き物、眼鏡、及び、ア** クセサリといった装着可能なアイテムをオンラインで販 **売促進するのは非常に困難である。高価な革製の靴を購** 入するとき、殆どの消費者はインターネットを通じては 靴を注文しないであろう。その1つの理由は、全ての人 の足は、長年に亘る歩くときの癖で自分だけの形の足と なっているからである。一般的な寸法の靴は、全ての人 の足にぴったりと合うことは殆どない。一方、靴製造者 のための市場とビジネスは、一定の地域に限られてい る。他の例としては、眼鏡がある。一対の一般的な眼鏡 でないかぎり、殆どの消費者はインターネットを通じて 30 は例えば近視用の眼鏡といった個人に合わせた眼鏡を注 文しないであろう。消費者は選択された眼鏡を試着し、 選択された眼鏡をかけた自分がどのように見えるかを鏡 で見ようとするため、同様の理由が当てはまり、従って 眼鏡のための市場は主に地域的な小売りに限られてい る。実際、現在のインターネットに基づく商取引プラッ トフォームでは「試稿」をすることができないため、地 域的な市場に限られる多くの他の消費者製品及び工業製 品がある。

[0005]

【発明が解決しようとする課題】従って、ユーザ又は買 い手が、選択されたアイテムに対する売買契約を結ぶ前 に、インターネットを介して選択されたアイテム又はサ ービスを「試着」又は試しうる機構が必要とされる。 [0006]

【課題を解決するための手段】本発明は、選択されてい るアイテムの3次元表現と完全にテクスチャ化された対 象の3次元モデルとの間の対話を与える技術及びシステ ムに関する。本発明は、インターネットを介した電子商 対象上で仮想的に試着又は試すようアイテムの3次元表 現を与えうる。結果として、ユーザは対象上のアイテム の続く効果を視覚的に認めうる。

【0007】1つの実施例によれば、アイテムの3次元 表現と対象の3次元モデルを含む対話式の提示又はプラ ットフォームが提供される。アイテムはユーザによって 対象のために選択される。換言すれば、アイテムは、ユ ーザが好む対象によって装着されるか、対象に取り付け られるか、対象に合わされうる。対話式の提示の中で は、ユーザは例えば3次元空間内でアイテムを空間的に 調整又は操作することによってアイテムを対象上で試着 又は試しうる。更に、対話式プラットフォームは、任意 の選択された視点からアイテムと一緒に対象を示すビュ ーを提供する。

【0008】他の実施例によれば、眼鏡の3次元表現の ために設計された対話式プラットフォームが提供され る。プラットフォームはユーザ(例えば潜在的な買い 手)の3次元顔モデルのインポートを可能とする。対話 式プラットフォームでは、ユーザは3次元表現で表現さ 20 れた眼鏡を選択し、与えられた3次元顔モデル上で眼鏡 を試着又は試すことができる。特に、3次元顔モデルに 対する眼鏡のデフォルト位置が与えられる。「外した」 位置では、眼鏡は顔モデルの前方に外した状態で置かれ る。「着けた」位置では、眼鏡はモデル上に配置され る。結果として、ユーザは眼鏡が3次元の顔上で試着さ れているという感じを受けうる。 更に、対話式プラット フォームは、ユーザが顔モデルに対して眼鏡を空間的に 調整することを可能とすると共に任意の選択された視点 から組み合わされた3次元モデル(例えば顔モデル上の 眼鏡)を視覚化することを可能とする。

【0009】本発明は、方法、装置、システム、又はコ ンピュータ製品として実施されうる。異なる実施は、1 つ以上の以下の利点を与えうる。そのうちの1つは、ユ ーザが対象自体に対して望ましい対象に対して選択され たアイテムを視覚的又はグラフィックに試着又は試すこ とを可能とする対話式提示機構である。特徴は、包括的 な対象に対する「試着」経験を提供する幾つかの既存の Webサイトとはかなり異なるものである。本発明は、 現実の指定された対象の3次元モデルを供給する機構を 40 ユーザに提供するものである。例えば、アイテムが装着 可能な製品であり、対象がユーザ自身である場合、ユー ザは装着可能な製品を着けた状態でどのように自分が見 えるのかを知覚しうる。本発明によって与えられる他の 利点は、本発明なしでは地域的な小売りに制限されるで あろう幾つかの種類の商品を市場に出す機会を提供する ことである。本発明によれば、これらの商品又はサービ スは、遠隔ユーザがインターネットを通じてこれらの商 品又はサービスを「感じる」ことができることである。 【0010】本発明の他の利点、目的、及び特徴は、以 取引のために有利に使用されえ、ビジネスは、ユーザが 50 下の説明における本発明の実施と、添付の図面に示され

る実施例を与える。

[0011]

【発明の実施の形態】本発明の特徴、面、利点について は詳細な説明、請求の範囲、及び、添付の図面を参照し てより良く理解されよう。本発明は、インターネットを 通じた電子商取引のために選択されているアイテムの3 次元表現と対象の完全にテクスチャ化された3次元モデ ルの間の対話を与える技術、システム、又はプラットフ オームに関連する。本願ではアイテムとは、潜在的なユ ーザ又は買い手が製品又はサービスを取得すること又は 10 す工程フローチャート又は図のブロックの命令は、任意 使用することを考え得るよう、製品又はサービスビジネ スオンラインによって提供されることを意味する。この ようなアイテムは、例えば、消費者向けの装着可能なア イテム、装置の工業的な部品又は、又は、使用者又は買 い手がアイテムを取得又は使用することを考える前に対 象に対する試すことを必要としうる任意のサービス又は 物理的な物を含みうるが、これらに限られるものではな い。本願では、対象とは選択されたアイテムの潜在的な 受け手を意味する。このような対象は、例えば選択され たアイテムを奇けるユーザ自身及び選択されたアイテム が設置される装置でありうるが、これらに限られるもの ではない。

7

【0012】特に、本発明は眼鏡の電子商取引を容易と するために実施される。望ましくは眼鏡の潜在的な着用 者である3次元頭モデルのインポートを可能とする対話 式試着プラットフォームがユーザに与えられる。本発明 により、対話式プラットフォームは、ユーザが眼鏡を選っ 択し、選択された眼鏡を顔モデル上で試着し、眼鏡を空 間的に調整し、任意の選択された視点から眼鏡を着けた 顔を見ることを可能とする.

【0013】本発明は、データネットワークを通じた電 子商取引において有利に使用されうる。本発明を使用す ることにより、ビジネスはデータネットワークを通じ て、本発明によらなければ地域的な小売りに限られたで あろう多くの他のアイテムを提供しうる。本発明はビジ ネスが物理的な境界のない更に大きい市場に達するのに 役立つだけでなく、自宅又はオフィスを離れずに異なる 選択物を試着しうる買い手に対してもかなりの利便性を 与える.

統されたデータ処理装置の動作に直接的又は間接的に似 た手続き、手段、論理ブロック、処理、及び他の象徴的 な表現によって示される。これらの処理の説明及び表現 は、一般的には当業者が自分の作業の内容を他の当業者 に対して最も有効に伝えるために用いられる。本発明の 完全な理解のため、多くの特定的な詳細が与えられてい る。しかしながら、当業者によれば本発明はこれらの特 定の詳細なしに実施されうることが明らかとなろう。本 発明の面を不必要に不明瞭としないよう、他の事例、周 知の方法、手順、構成要素、及び回路ついては説明して 50 【0019】図示のため、ユーザ108はクライアント

いない。

【0015】本願では、「1つの実施例」又は「実施 例」とは、特定の特徴、構造、又は特性が、本発明の少 なくとも1つの実施例に含まれうる実施例と共に説明さ れることを意味する。本願の様々な場所に「1つの実施 例では」という句が現れるが、これは必ずしも全てが同 じ実施例を参照するものではなく、別個の又は他の実施 例が他の実施例に対して相互に排他的であることを示す ものではない。更に、本発明の1つ以上の実施例を表わ の特定の命令を示すものではなく、本発明の任意の限定 を意味するものでもない。

R

【0016】ここで図面を参照し、幾つかの図を通じて 同様の参照番号は同様の部分を示す。図1は、本発明が 実施されうるシステム構成100を示す図である。本願 では、サービス又はプロダクトプロバイダ、又は、単に プロバイダとは、種々の製品、アプリケーション、サー ビスをオンラインで提供する多数のビジネス、実体、卸 売業者、又は小売業者のうちの1 つを表わす。 このよう なプロバイダは、例えば本から消費者電子機器までのア イテムを提供するwww.amazon.comや入札 者と売り手が相互に対話しうるオークションプラットフ オームを提供するwww.ebay.comである。

【0017】図示されるように、プロバイダ102は、 一般的にはサーバコンピュータを通じて、インターネッ トや専用網又は公衆網のネットワークでありうるデータ ネットワーク104に結合される。プロバイダとユーザ (例えば消費者) との間のオンライン取引を容易とする ため、第三者実体106は、やはりサーバコンピュータ を通じてネットワーク104に結合されうる。第三者実 体106は、プロバイダが取引のために売り手によって 提出された様々な情報を照合するための機構を提供する こと又はプロバイダがユーザから要求する電子的な証明 のための機構を提供する銀行、クレジットカード機関、 又はエージェントといった金融的な又は認可された機関 を表わしうる。

【0018】本願では、取引とは、2つの実体の間で相 互に同意された電子同意を意味する。例えば、取引は、 プロバイダがユーザ又は買い手から或るアイテムの注文 【0014】本発明の詳細な説明は、ネットワークに接 40 を受け付けたときに生ずる。同様に、取引は、買い手が 自分の選択物を試着しこれを獲得することを決定した後 に買い手によって入力/提供された適切なデータ/情報 がプロバイダへ送られたときに生ずると見なされる。一 殷的に、「試着」又は「試す」とは、ユーザがユーザに よって決められた一組の規準に従ってアイテムを試すこ とを意味する。例えば、買い手が眼鏡を買う場合につい て考える。取引が生ずる前に、買い手は自分が眼鏡を装 着したときにどのように見えるかを確かめようとする。 従って、対象との「試着」又は試すことが行われる。

て分類されうる.

装置と称されるコンピュータ装置を通じてプロバイダ1 02と通信し、クライアント装置は、表示画面を有しオ ンラインビジネスによって提供される製品又はサービス を電子的に注文しブラウズするためのデータネットワー ク104との双方向データ通信が可能なパーソナルコン ピュータ、パームサイズコンピュータ、ワイヤレス移動 装置、及びパーソナル・データ・アシスタント(PD A)を含みうるがこれらに限られるものではない。

【0020】本発明の説明を容易とするため、本願では ュータにみられる15インチCRT又はLCDモニタと いった装置内の物理的な表示装置として定義される。同 様に画面表示又は単に表示とは、表示画面上に提示され る画像である。例えば、表示又は表示の一部を構成する ファイルは、HTML、VRMLファイル、或いは、ア イテムの3次元表現又は対象の3次元モデルを表わす複 数のデータである。表示は、ファイルがアプリケーショ ンによって読み出し又は実行されているとき、又はブラ ウザによって実行されているときに画面上に表示され

【0021】完全性のため、サービスプロバイダ又はビ ジネスユニット110もまた夫々のサービスコンピュー タを通じてネットワーク108とサブネットワーク11 2の間に結合される。一般的には、ネットワーク108 の部分であるか地域に属するローカルエリアネットワー ク (LAN) であるサブネットワーク112は、夫々が ユーザ又は消費者からサービスプロバイダへのアクセス を表わす多数のクライアント装置114(即ち114-1乃至114-n)を含む自分のコミュニティーにサー ビスを提供する。一般的に、各クライアント装置114 30 は、パーソナルコンピュータ、パームサイズコンピュー タ、移動装置、又はケーブルを通じたインターネットサ ービスを容易とするケーブルコントロールボックスであ りうる。インターネットサービスプロバイダ、ワイヤレ スキャリア、ケーブルサービスプロバイダ、又は任意の データサービスプロバイダでありうるサービスプロバイ ダ110を介して、各クライアント装置114は、プロ バイダ102によって提供される製品又はある種のサー ビスを電子的に注文し、見て、ブラウズするためにプロ バイダ102と通信しうる.

【0022】ここで図2Aを参照するに、本発明の1つ の実施例によるプロバイダのサーバ200の機能ブロッ ク図が示される。サーバ装置200は、オンラインで販 売用の製品又はサービスを提供するために図1のプロバ イダ102がホストとして用いるサーバコンピュータ又 はワークステーションでありうる。1つの実施例では、 サーバ装置200は、米国カリフォルニア州マウンテン ビューのSunMicrosystems社によって提 供され、オンライン取引モジュール204、アイテムリ

8を含むよう設定されうるサーバモジュール202がロ ードされうる。オンライン取引モジュール204は、ネ ットワークを介してクライアント装置との取引を容易と する指南されている又はカスタマイズされたアプリケー ションのいずれか1つでありうる。1つの典型的なオン ライン取引モジュール204は、米国カリフォルニア州 レッドウッドのOracle社製のものであり、多くの 頻繁にアクセスされるウェブサイトで使用されている。 【0023】ユーザ対話モジュール208の機能は、本 表示画面又は単に画面とは、一般的にパーソナルコンピ 10 発明の1つの実施例に従って図2日に示される。ユーザ 対話モジュール208は例えば、サイズA、型B、色C の帽子といったユーザからの仕様を受け取る。仕様を受 け取ると、ユーザ対話モジュール208はネットワーク を通じて提供するためのアイテムのリストを保守するデ ータベース220へ仕様を入力する。一般的には、デー タベース220の中に保守されるアイテムは夫々の仕様 を有し、アイテムがどのビジネスに当てはまるかによっ

1.0

【0024】本発明の1つの実施例によれば、少なくと 61つのアイテムは3次元表現又は3次元モデルに関連 付けられ、これはアイテムが3次元でグラフィックに表 現されることを意味する。アイテムの3次元表現は予 め、例えばGeometrix社 (www.geometrix.com参照)とい った3次元モデリングサービスの下で又は3次元モデリ ングサービスを通じて提供される設定のうちの1つによ って発生される。3次元表現は、VRML (Virtual Re ality Modeling Language) 及びRWX (MEME Shape fi le) といった3次元オブジェクトフォーマットのうちの 1つで1つ以上のファイル中に表現されうる。1つの実 施では、3次元表現はCult3次元オブジェクトファ イルで表現される。Cult3次元オブジェクトファイ ルは、Cult3次元社(www.cycore.com参照)によっ て提供されるCult3次元Viewer又はCult3次元 Exporterによってサポートされる。以下説明するよう に、ユーザがアイテムを選択した後、データベースから その3次元表現が検索され、対話環境(即ち提示)へ伝 違される.

【0025】データベース620では、仕様によって一 致したアイテムの詳細な情報の位置が探され、検索され 40 る。図2日に示されるように指定されたアイテムは3次 元表現224に関連付けられる。ここで、詳細な情報 は、価格、製造者、日付、又は選択されたアイテムに関 する他の関連する情報に加えて、3次元表現を含む。1 つの実施例では、3次元表現224はネットワークを介 して伝達され、続いてユーザによって使用されるクライ アント装置上に他の関連する情報と共に表示され、クラ イアント装置は3次元表現を見るためのアプリケーショ ン又はブラウザを実行する。

【0026】本発明の説明を容易とするため、対象の上 ストモジュール206、及びユーザ対話モジュール20 50 に試着されるアイテムの3次元モデルを3次元表現と称

するものとする。動作上、ユーザ対話モジュール208 は、選択されたアイテムを受けるための対象の3次元モ デルを必要とする。1つの実施では、対象の3次元モデ ルは既知の位置から(例えばローカルハードディスクか ら) ユーザによって与えられる。その場合、対象の3次 元モデルは予め発生される。他の実施では、対象の3次 元モデルは要求に応じて発生される.

11

【0027】図3Aは対象又は選択されるべき1つ以上 のアイテムの対象の3次元モデルを発生するために使用 モデリングされるアイテム302は、玩具、製品、又は 装置といった1つ以上の3次元対象の組合せでありう る。アイテム302は、ステッパモータ(図示せず)に よって制御されすることが望ましいターンテーブル30 4上に配置される。ステッパモータは、対象302が回 転されているときに撮像システム308によって見られ 撮像されうるよう、ターンテーブル304を回転させる ためにコンピュータシステム306の制御下で動作す る。続いて、撮像システム308は、夫々が撮像システ ム308に対する対象302の所定の相対位置で撮像さ れた多数の側面画像を含む周囲画像を生成する。画像 は、3次元モデリングアプリケーションがロードされた コンピュータシステム306で処理される。装置の配置 300と、3次元モデリングアプリケーションの詳細に ついては、ここに参照として組み入れられるZwern外に よる「Method and Systems for Generating Fully-Text ured 3D Models | なる名称の米国特許出願第09/35 7,528号に記載されている。

【0028】図3Bは、オフラインで又は要求に応じて (オンデマンドで)対象の3次元モデルを発生するため 30 に効率的に使用されうる他の典型的な装置の配置330 を示す図である。カメラシステム320は、ネットワー クに結合されうるクライアント装置332に結合され る。特に、クライアント装置には、対象の3次元モデル を発生する3次元モデリングアプリケーションがロード されている。1つの典型的な3次元モデリングアプリケ ーションは、クライアント装置322において実行され え、対象の1つ又は2つの画像に基づいて3次元モデル を発生する米国カリフォルニア州San JoseのGeometrix 社 (www.geometric.comを参照)のFaceCaptureと称され 40 るものである。図示されるように、対象でありうるユー ザ324は、カメラシステム320と3次元モデリング アプリケーションを用いて自分の3次元モデルを発生し うる。結果として、顔の完全にテクスチャ化した3次元 モデルが発生され、その例については以下に示す。幾つ かの実施例で使用したように、装置の配置330は他の 対象の3次元モデルを発生させるために使用されうる。 【0029】ここで、当業者によれば、図3A及び図3 Bの装置の配置が対象だけでなくアイテムの3次元表現 を発生するためにも使用されうることが明らかとなろ

う。本発明の説明を容易とするため、2つの用語「3次 元表現」及び「3次元モデル」を用いて2つの端から (即ちサーバ及びクライアントから)提示される3次元 情報を区別する物とする。実際は、これらは互いに交換 されてもよく、同一のフォーマット又は2つの同等のフ ォーマットで表現されうる。図3A及び図3Bの装置の 配置は例のためだけに示されていることに留意すべきで ある。人物又は物品を含む対象の完全にテクスチャ化さ れた3次元モデルを発生するために他の方法又はツール されうる典型的な設定300を示す図である。電子的に 10 が使用されうる。ここで重要なことは、ネットワークを 通じた電子商取引をサポートするためにこのような3次 元モデルを使用することである。更に、以下更に説明す るように、本発明の1つの特徴は、ユーザが選択された アイテムの3次元表現をユーザによって与えられた対象 の3次元モデル上で仮想的且つグラフィックに試着する こと、試すこと、又は操作することができる対話環境が 提供されることである。3次元表現を着けた3次元モデ ルの一体化された表現は、3次元空間中の任意の視点か ら見ること又はブラウズすることができる。或る意味で 20 は、ユーザはアイテム及び対象が実際に取り付けられ、 結合され、接続され、又は関連付けられた場合の次の効 果を知覚しうる。

12

【0030】図4は、データネットワークを通じてアイ テム又はサービスを提供し、上述した図面に関連して理 解される、本発明の1つの実施例による動作の処理フロ ーチャート400を示す図である。サーバ装置は、図1 のサーバ装置104に対応する。望ましい実施例では、 プロセス400は、図2Aのサーバモジュール202と して実施される。ステップ402において、プロセス4 00はネットワークからの要求を待つ、要求が来ると、 プロセス400は進む。1つの実施例では、要求はHT TP要求であり、ネットワークはインターネットであ る。要求は、一般的にはユーザに関連付けられるクライ アント装置から送信される。ユーザは、サーバ装置によ ってオンライン上で提供されているアイテムのカテゴリ 又はリストをブラウズした後に選択を行ったと想定す る。要求は、選択されたアイテムの仕様に加え、クライ アント装置を識別するIPアドレス又はユーザを識別す る識別子を含む。要求を受信すると、仕様が抽出され、 処理400は、おそらく、選択されたアイテムを参照す るためにデータベースへ進む。

【0031】ステップ404において、要求に対する探 索応答が戻り、選択されたアイテムが関連する3次元表 現を有するかどうかを示す。尚、サーバ装置又はビジネ スは夫々がユーザが対象に対して示すための3次元表現 を有さねばならないアイテムを提供する必要はない。探 索応答が、選択されたアイテムには関連する3次元表現 がないことを示すと、プロセス400はステップ406 へ進み、単に選択されたアイテムの写真を表示する。選 50 択されたアイテムに対して写真が必ずしも必要ではない が、一般的に選択されたアイテムがどのようなものであ るかをユーザに示すことが望ましい。ステップ416に おいて、プロセス400は、ユーザが選択されたアイテ ムで満足したか、又は、種々の製品関連情報と共に写真 で満足したかを知る必要がある。ユーザからの応答が肯 定的であれば、プロセス400は進み、例えばユーザと の又は他の相互に合意した取り決めでの取引に入る。ユ ーザが選択されたアイテムに満足しない場合、プロセス 400はステップ402へ戻り、他の選択(即ち新しい 要求)を待つ。

13

【0032】再びステップ404を参照するに、探索応 答が戻り、選択されたアイテムに関連付けられた3次元 表現があるかどうかを示す。プロセス400は、選択さ れたアイテムを試すことが可能な対象の3次元モデルが あるかどうかを調べるためにステップ407へ進む。3 次元モデルは、ユーザが使用しているコンピュータ装置 内にローカルに利用可能であるか(例えば予め発生され ているかオンデマンドで発生される)、サーバ装置又は ネットワークに結合された他の計算装置の中で遠隔に利 用可能である。

【0033】実際の実施に依存して、対象の3次元モデ ルは既知の場所に配置されうる。例えば、ユーザは自分 の自動車のためのスポイラーを探しているとする。自動 車の3次元モデルは、図3Aの装置の配置を用いて発生 されうる。すると、3次元モデルはハードディスク、又 は3次元モデルが必要なときにユーザによってアクセス 可能な他のコンピュータに格納される。ここで、3次元 モデルは、スポイラー(即ちその3次元表現)を試すた めにロードされる。これは、取引が行われる前に、選択 されたスポイラーを取り付けた場合に自動車がどのよう 30 に見えるかをユーザが知りうるようにすることを目的と する。以下詳述する他の適用では、ユーザは眼鏡を探し ている。眼鏡が選択された後、プロセス400は、誰か の(例えばユーザの)顔の3次元モデルがあるかどうか を調べる。3次元モデルは、図3Bに示される装置の配 置を用いてオンデマンドで発生されるか、既知の場所か らロードされうる。

【0034】ステップ407において、プロセス400 が選択されたアイテムを試すことが可能な3次元モデル があると判定すると、プロセスはステップ412へ進 む。一方、プロセス400が選択されたアイテムを試す ことが可能な3次元モデルがないと判定すると、プロセ ス400はステップ408へ進み、3次元モデルのイン ポートを要求する.

【0035】ステップ410では、プロセス400は3 次元モデルの使用可能性について待機する。1つの実施 例におけるオプションによれば、プロセス400は、ス テップ410において3次元モデルのフォーマットがサ ポートされるか否かを調べる。3次元モデルのロードに

られ、続いてクライアントと装置上に表示される。ステ ップ412のためには、少なくとも2つの可能な実施が ある。第1の実施は、3次元モデルをサーバへアップロ ードし、サーバ装置の中ではサーバモジュールがアイテ ムの3次元表現をアップロードされた対象の3次元モデ ルと組合せ、次にユーザのための対話環境が続くように するものである。第3の実施は、対話環境をクライアン ト装置へダウンロードし、対話環境が3次元モデル用の 位置ホルダを有するものである。3次元モデルが供給さ 10 れると、対話環境は3次元モデルを3次元表現と統合す る。ユーザは対話環境と対話しうる。実際の実施に関わ らず、対話環境は、3次元表現と3次元モデルの組み合 わされた又は統合されたビューを示す。

14

【0036】ステップ414において、ユーザは3次元 表現及び3次元モデルのうちのいずれか一方を対話環境 において他方に対して動かすことが可能である。1つの 適用では、ユーザは3次元表現又は3次元モデルを、夫 々、3次元モデル又は3次元表現に対して空間的に動か す。対象に対してカスタマイズ化された部分が要求され る他の適用では、対話環境は、ユーザが選択されたアイ テムの形状を、例えば対象に最も良く合うように変更す ることを可能とする。3次元表現を3次元モデルに対し て性格に操作することは、本発明の動作に影響を与えな い。いずれの場合も、3次元表現及び3次元モデルの操 作され、結合され、又は統合された表現は、ユーザが続 く効果の完全な視覚的なカバレッジを有し、アイテムを 対象に対して試着しうるよう、任意の視点から見ること 又はブラウズすることができる。

【0037】同様に、ステップ416において、プロセ ス400はユーザが選択されたアイテムに満足している か、又は他の情報と一緒である可能性の高い完全な視覚 的なカバレッジで満足しているかを知る必要がある。ユ ーザからの応答が肯定的であれば、プロセス400は、 例えばユーザとの又は他の相互に合意した取り決めでの 取引を行うために移動する。ユーザが選択されたアイテ ムに満足していなければ、プロセス400は他の選択 (即ち新しい要求)を待つためにステップ402へ戻 る.

【0038】図5Aは、サーバ装置によってネットワー クを介して提供される選択されたアイテムを試すか試着 するためにクライアント装置上でユーザによって用いら れる本発明の1つの実施例による動作を示すプロセスフ ローチャート500であり、先行する図面と共に理解さ れよう。クライアント装置は、図1中の108又は11 4に対応しうる。ステップ502において、プロセス5 00は、ネットワークを介してサーバ装置とのデータリ ンクが確立されていることを確実とする必要がある。1 つの実施例によれば、クライアント装置はインターネッ トを通じてHTTPリンクを提供するブラウザアプリケ 成功すると、ステップ412において対話式提示が与え 50 ーションを実行する。サーバ装置によって管理されるW

e bサイトが接続されると、ページ (例えばHTML) が表示され、ブラウズされうる。少なくとも1つのペー ジは、アドレス識別子(例えばUniversal Resource Ide ntifier又はLocator) によって識別されるサーバ装置に よってオンラインで提供されるアイテムのカテゴリ又は リストを示しうる。 ユーザはアイテムのうちの1つの探 索することに関心があり、(例えばその下のリンクをア クティブとするためのポインティングデバイスを介し て) それを選択するか、アイテムを指定するための仕様 **囮は要求を発生する。要求は、選択されたアイテムの仕** 様の他に、サーバ装置、クライアント装置及び/又はユ ーザを識別するIPアドレスを含む。

【0039】ステップ506において、クライアント装 **置又はユーザは要求に対するサーバ装置からの応答を待** つ。図4に示されるように、プロセス400は仕様に基 づいて選択されたアイテムを参照する必要がある。一旦 アイテムの位置が見つかると、特に関連する3次元表現 を有するアイテムの位置が見つかると、サーバ装置から 要求に対する応答が戻される。正確な実施に依存して、 応答は3次元表現を含み、ユーザからの3次元モデルを 必要とする対話環境をアクティブとさせうる。ステップ 508において、プロセス500は、試される対象の3 次元モデルが利用可能であるかを調べる。対象の3次元 モデルが準備できているとき、ユーザは選択されたアイ テムを供給された対象に対して試しうる。3次元モデル がまだ利用可能でない場合は、プロセス500はステッ プ509へ進み、その3次元モデルを要求する。

【0040】ここで図5Bを参照するに、本発明の1つ の実施例により対象の3次元モデルを提供するためのプ 30 ロセスフローチャート530が示される。プロセス53 Oは、図3A又は3Bの装置の設定と共に理解されるべ きである。ステップ532において、プロセス530 は、撮像システムの準備ができているかどうか、即ちモ デリングされるべき対象に構成又は照準が合わされてい るかを調べる。ステップ534において、撮像システム は対象の1つ以上の画像を撮像する。使用されている装 置の配置又は3次元モデリングアプリケーションに依存 め)又は対象の周りの一連の画像を撮像しうる。次に、 ステップ536において3次元モデリングアプリケーシ ョンが実行され、ステップ538において対象の3次元 モデルが発生される。1つの実施例によれば、3次元モ デルはCult3次元オブジェクトフォーマットで提示 され、Cult3次元ビューワによって見ることができ る。他の実施例によれば、3次元モデルは、www.pulse 3次元.comで提供されるpulse3次元ビューワによ ってサポートされるフォーマットで提示される。

【0041】再び図5Aを参照するに、3次元モデルが

いて、クライアント装置上の表示画面上に、3次元表現 及び3次元モデルの両方を含む対話式プラットフォーム が表示される。対話式プラットフォームは、ユーザがア イテムを対象の上に置き、ステップ512において3次 元表現又は3次元モデルを互いに対して3次元空間中で 空間的に調整することを可能とする。1つの実施例で は、アイテムの3次元表現はユーザが適当な当てはめが 達せられたと感じるまで、左右、上下、前後に調整され る。更に、対話式プラットフォームは、ユーザが、自分 を入力する。ステップ504において、クライアント装 10 が好む任意の視点から3次元表現と3次元モデルの結合 された表現を見ること又はブラウズすることを可能とす

16

【0042】ステップ514において、プロセス500 は、ユーザが選択されたアイテムで満足したかどうかを 判定する。ユーザが選択されたアイテムが気に入らない 場合、又は他の選択を行なうことを望む場合、プロセス 500はステップ504へ進む。ユーザが選択されたア イテムで満足である場合、プロセス500はステップ5 16へ進み、ユーザとwebサイトを管理しているビジ ネスとの間の取引を行いうる。

【0043】本発明の1つの実施例によれば、図6A乃 至6日は、クライアント装置の表示画面上に表示されう る一連の対話環境又は表示を示す。図6Aにおいて、w e bページとして表示された対話式プラットフォーム6 00は、写真又はその3次元表現602、604、及び 606として夫々表わされる3つの眼鏡のリストを含 む。Webページ600は更に、選択肢領域608、操 作テーブル120、並びに対話表現領域(即ち対話環 境) 612を含む。任意に、webページ600は、例 えば眼鏡ビジネスによって管理されたサーバ装置とのク ライアント装置の接続状態613を示す。

【0044】3つの最初の表示された眼鏡のうちの少な くとも1つの眼鏡又は夫々の眼鏡は、関連付けられた3 次元表現を有すると想定する。眼鏡のための試される対 象は、明らかに、人間の顔である。対象(即ち人間の 顔) の3次元モデル614は、選択された眼鏡を試すた めに与えられている。上述のように、3次元顔モデル6 14は、図3Bの方法を用いてオンデマンドで発生され るか、他の装置/メモリから予め発生されるか転送され 40 る。対話式プラットフォーム600は、ユーザが選択さ れた眼鏡を試着することを可能とするよう3次元顔モデ ル614を相互対話表現領域612ヘインポートするこ とを可能とする。

【0045】一般的に、3次元顔モデルの正確な向きに 依存して最初にポインティングデバイス(例えばマウ ス)を通じて選択された眼鏡を丁度3次元顔モデル61 4に配置することは容易ではない。本発明の特徴の1つ として、選択された眼鏡のデフォルト位置が3次元顔モ デルに対して与えられている。デフォルト位置は、最初 利用可能であると判定された後に、ステップ510にお 50 は2つの可能な位置、一方は「着けた」位置、他方は

「外した」位置に割り当てられうる。1 つの実施例によ れば、「着けた」位置が選択された場合は、選択された 眼鏡が、3次元顔モデルの所定の特徴に従って、3次元 顔モデル上に配置される。「外した」位置が選択された 場合は、選択された眼鏡は、3次元顔モデルの所定の特 徴に従って3次元顔モデルから外される。

17

【0046】実施例によれば、3次元顔モデルの特徴 は、基準空間又はフレーム中の瞳の3次元位置と3次元 顔モデルの鼻の先とを含む。更に、試着プロセスを容易 とするため鼻の輪郭は鼻の先を基準として導出されう る。ここで図7を参照するに、3次元顔モデル700の 特徴を決定する図が示されている。3次元基準空間又は フレーム702は、3次元顔モデル700を収容するた めに使用される。鼻の先704は、顔モデル700の最 も伸びた点から決定され、(Xnt, Ynt, Znt)と表わ される。鼻の先704を開始点として用いて、局所化さ れた窓710における上向き及び左右の探索が行われ る。例えばHIS色座標で顔モデル中の瞳の色及び/又 はテクスチャを介した照合により、2つの瞳(例えば黒 い穴)の座標が決定され、(x1e, y1e, Z1e)706 20 及び (xre, yre, Zre) 708と表わせる。座標は、 眼鏡がグラフィックに3次元顔に合うよう、眼鏡の3次 元表現を拡大縮小及び/又は向きを変えるために有用で ある。座標を用いると、鼻の輪郭、特に眼鏡を支える領 域の周りは、顔モデル700からも決定されうる。

【0047】ここで図6Bを参照するに、眼鏡のうちの 1つが示されており、眼鏡の3次元表現620は最初に 3次元モデル(即ち顔モデル)の前にデフォルト位置 (即ち「外した」位置)に配置される。この場合のデフ ォルト位置は、選択された眼鏡を顔モデルの前に、しか 30 し外した状態で配置するための位置である。デフォルト 位置はまた、予め固定された距離Dを(図示せず)を含 み、眼鏡は最初は顔モデルから離して配置される。眼鏡 と顔モデルが一致することを確実とするため、例えば、 向き及び/又は寸法は対応し、顔モデルの特徴は最初に 眼鏡の3次元表現を位置決め及び/又は拡大縮小するた めに使用される。

【0048】「着ける」ボタン624は、必須ではない が、計算された又は所定のデフォルトの「着けた」位置 る。図6Cは、「箱ける」ボタン624が作動され、そ れにより眼鏡620が「外した」位置から「着けた」位 置へ動かされることを示す。尚、「着けた」位置は、顔 モデルの特徴に従って決定されたデフォルト位置であ り、必ずしもユーザが眼鏡を装着するであろう方法でな 11.

【0049】図6Dは、選択された眼鏡を装着したとき に自分がどのように見えるかを右側から見るために、ユ ーザが眼鏡を着けた顔モデルを「回転」させた場合を示 す図である。ユーザは、自分が「良い」と思う規準に従 50

って眼鏡を上下左右に調整しうる。図6日は、選択され た眼鏡を着けた場合に自分がどのように見えるかをユー ザが他の視点から見て、更なる空間的な調整を行いうる 場合について示す図である。

【0050】図8は、本発明の1つの実施例による眼鏡 試着動作のプロセスフローチャートを示す図である。図 8のプロセス800は、一般的には、インターネットと いったデータネットワークに結合されたクライアントコ ンピュータ装置において実施され、眼鏡の潜在的な購買 10 者でありうるユーザによって使用される。1 つの望まし い実施例では、ユーザはブラウズアプリケーション(例 えばMicrosoft Internet Explore)を作動させ、眼鏡じ ジネスwebサイトを識別するIPアドレス(例えばww w. eyeglasses.com)を提供する。ステップ802におい て、コンピュータ装置が一旦接続されると、webサイ トから相互対話プラットフォームが提供又はダウンロー ドされる。対話式プラットフォームは、図6 Aのプラッ トフォーム600に対応しうる。実際の実施に依存し て、対話式プラットフォームは、異なる形の眼鏡の夫々 の表示からなるパネルを含みうる。本発明により、少な くとも1つの表示は、眼鏡の3次元表現に関連付けられ る。換言すれば、眼鏡が選択されたときに試すため又は 試着のためにコンピュータ装置へアップロードされうる 眼鏡の3次元モデルがある。

【0051】ステップ804において、プラットフォー ムは、望ましくは最終的に眼鏡を購入し装着するユーザ の3次元顔モデルのインポートを要求する。顔モデル は、リアルタイムで発生されるか、予め発生されるか、 他の装置/メモリからダウンロードされうる。プロセス 800は、ステップ806において適当な3次元顔モデ ルがインポートされることを確実とする必要がある。3 次元顔モデルが一旦受け入れられると、プロセス800 はステップ808において種々の形の眼鏡の表示からの ユーザによる選択を待つ。選択の後、顔モデルの特徴 は、プラットフォーム又はwebサイトに埋め込まれう るアプリケーションによって計算される。望ましい実施 例では、アプリケーションは、試着プロセスを容易とす るために顔モデルからの多数のパラメータ(例えば鼻の 先及び瞳の座標)を含む特徴を計算するアプレット又は に従って顔に眼鏡を自動的に装着させるために必要であ 40 スクリプトアプリケーションである。尚、顔モデルの特 徴の計算は、実際の試着プロセスが始まる前の任意の時 点において行われうる。

> 【0052】ステップ812において、選択された眼鏡 の3次元表現は、ネットワークからプラットフォームへ ロードされ、顔モデルの特徴に従って顔モデルの前方に しかし顔モデルから外して配置する。1つの実施では、 眼鏡は最初は顔から数インチ離して配置されるが、顔モ デルの瞳と一致する眼鏡レンズの中心と平行に維持され

【0053】ステップ814において、ユーザは例えば

10

指定される「着ける」ボタンをクリックすることによって眼鏡を装着するオプションを有する。内部的に、ステップ816において、眼鏡が実際に顔の「上にある」(顔にぶらさがっていない)ことを確実とするために顔モデルの特徴に従って眼鏡を顔モデルの上へ前方に動かすことを可能とする。以下説明する更なる実施例では、眼鏡は以前に選択された眼鏡から獲得された一組の位置パラメータに基づいて顔モデル上に配置される。この特徴は、新しく選択された眼鏡が、調整された以前に選択された眼鏡の位置を追従することを可能とする。ステップ818において、眼鏡を着けた顔モデルの組み合わされたビューが提供され、平面ビュー、側面ビュー、前方ビューを含みうる選択された視点から組み合わされたユーザがビューを見ることを可能とする。

19

【0054】図9は、一般的なブラウザによって表示された対話式試剤プラットフォーム900を示す図である。正確な表示形態は、実施毎に異なりうる。重要なことは、本発明の幾つかの特徴が、ユーザ又は潜在的な眼鏡装着者による試剤経験を容易とするためにプラットフォーム900において使用されることである。プラットフォーム900は、2つの表示窓902及び904が一体化されていることを示す。各表示窓は、ユーザが3次元顔モデルをロードし、眼鏡を選択し、上述のように選択された眼鏡を顔モデルに対して空間的に調整することを可能とする。プラットフォーム中に2つの表示窓があることは、2つの異なる眼鏡が夫々ユーザによって装着された場合にこれらを横に並べて2つの異なる眼鏡を視覚的に比較することを可能とすることである。

【0055】ユーザが顔モデル上で眼鏡を視覚的に調整することを支援するため、調整パネル906が設けられる。パネル906は、典型的なグラフィックユーザインタフェースであり、顔モデルの周りで眼鏡を調整するためにユーザによって都合良く使用されうる多数のボタンを含む。例えば、「Right_in」がクリックされるかアクティブとされると、眼鏡の右側のアームが内側へ動く。眼鏡がきつすざるようであれば、きつさを緩めるために、「Right_out」又は「left_out」がクリックされうる。パネル906はまた、3次元空間中で×、y及び2方向上に眼鏡を空間的に動かすための夫々のボタンを含む。

【0056】プラットフォーム900の1つの特徴として、選択された眼鏡のために最も適したレンズの不透明度をユーザが決定しうるよう、眼鏡のレンズに影響を与えるグラフィックな効果が与えられる。尚、眼鏡の3次元表現は、レンズについての様々な不透明度を含む必要はない。当業者は、適当な色、特に適当な画素値を選択することによって、選択された不透明度はグラフィックにペイントされうることを理解するであろう。

【0057】更に、ユーザが眼鏡を3次元顔モデルに対 るサ して調整した後に、眼鏡の位置(座標)を獲得する又は 50 る。

抽出するために、バラメータ制御部910が設けられる。位置は、眼鏡がどのようにして顔モデル上に位置決めされるかについての情報を含みうる。1つの実施例によれば、情報は、例えば、眼鏡の隅部、2つのアームの端部、(例えば鼻の先に対する)眼鏡の中心のうちの幾つかの複数の座標を含む。プラットフォーム900によれば、「Get P's」がクリックされると、座標情報が得られ、メモリ空間に保存される。新しい眼鏡が選択されると、他の試行錯誤を繰り返すのではなく、ユーザは単に「Get P's」をクリックし、収集された座標情報を新しい眼鏡に対して適用する。結果として、新しい眼鏡は以前に決定された位置に向かう。

20

【0058】本発明には多くの利点がある。方法、装 置、又はシステムとしての異なる実施例又は実施は、1 つ以上の以下の利点を生じさせる。利点の1つは、選択 されたアイテムをユーザによって与えられた対象に対し てユーザが仮想的に試す又は試着することを可能とする ためにオンラインビジネスによって要求される相作用提 示機構である。アイテムが装着可能な製品であり、対象 がユーザ自身である場合、ユーザは、自分が装着可能な 製品を着けたときにどのように見えるかを知ることがで きる。本発明によって与えられる他の利点又は利点は、 本発明を用いなければ地域的なものに限られていたであ ろうある種の商品又はサービスのマーケティング機会で ある。本発明によれば、これらの商品又はサービスはイ ンターネットを通じてオンラインで提供されうるため、 遠隔地のユーザがこれらの商品又はサービスを「感じ る」ことができる。

【0059】本発明はある程度の特性性で十分に詳細に 説明された。当業者によれば、本発明の実施例は例とし てのみ当てられ、本発明の精神及び範囲を逸脱すること なく部分及び段階の配置及び組合せについての多くの変 更がなされうることが理解されよう。従って、本発明の 範囲は上述の実施例の説明ではなく請求の範囲によって 限定されるものである。

【図面の簡単な説明】

【図1】本発明が実施されうるシステム形態を示す図である.

【図2A】本発明の1つの実施例によるプロバイダのサ 40 ーバを示す機能図である。

【図2B】本発明の1つの実施例によるプロバイダのサーバ中のユーザ対話モジュールの本質的な機能を示す図である。

【図3A】アイテムの3次元表現又は対象の3次元モデルを発生するための1つの可能な配置を示す図である。 【図3B】アイテムの3次元表現又は対象の3次元モデルを発生するための他の可能な配置を示す図である。 【図4】データネットワークを通じてアイテムを提供するサーバ装置の動作を示すプロセスフローチャートであ

【図5A】本発明の1つの実施例によるクライアント装 置上の動作を示す1つのプロセスフローチャートであ ъ.

【図5B】本発明の1つの実施例によるクライアント装 置上の動作を示す他のプロセスフローチャートである。

【図6A】本発明の1つの実施例による選択された眼鏡 と人物の顔を含む一連の対話式提示のうちの1つを例と して示す図である。

【図6B】本発明の1つの実施例による選択された眼鏡 と人物の顔を含む一連の対話式提示のうちの1つを例と 10 404 して示す図である。

【図60】本発明の1つの実施例による選択された眼鏡 と人物の顔を含む一連の対話式提示のうちの1つを例と して示す図である。

【図6D】本発明の1つの実施例による選択された眼鏡 と人物の顔を含む一連の対話式提示のうちの1つを例と して示す図である。

【図6E】本発明の1つの実施例による選択された眼鏡 と人物の顔を含む一連の対話式提示のうちの1つを例と して示す図である。

金融实体

買い手

22 【図7】3次元顔モデルの、顔モデルの鼻の先と瞳の座 標を含む特徴を決定する例を示す図である。

【図8】本発明の1つの実施例による眼鏡試着動作を示 すプロセスフローチャートである。

【図9】一般的なブラウザ上に表示される対話式試着プ ラットフォーム900を示す図である。

【符号の説明】

400 処理フローチャート

要求を受信したか 402

要求されたアイテムに関連する3次元表現が あるか

アイテムの画像を表示 406

408 アイテムが試されるべき対象の3次元モデル

を要求 410

3次元モデルを受信

3次元モデルをアイテムの3次元表現と共に 412

表示

414 3次元モデルと3次元表現との間の対話を可

能とする

416 満足したか

【図1】

【図2B】

【図5B】

【図6A】

【図6B】

【図6C】

【図6D】

【図6E】

【図7】

【図9】

フロントページの続き

(51) Int. Cl. 7

識別記号

FΙ

テーマコード(参考)

G06T 1/00

340

G06T 1/00 17/40

17/40

(72)発明者 ジェラルド ジー メディオニ アメリカ合衆国 カリフォルニア州 90035 ロサンジェルス ヒルズボロ・ア

ヴェニュー 1833

(72)発明者 ウラディミール シャムジン

アメリカ合衆国 カリフォルニア州 95014 クパティーノ ホームステッド・

ロード イー3 20900

(72)発明者 ダーヴィッド ガイゴニス アメリカ合衆国 カリフォルニア州 95126 サン・ノゼ エヌ・キーブル・ア ヴェニュー 53 1号

(72)発明者 ミハイル ツープコーシトニコフ アメリカ合衆国 カリフォルニア州 95008 キャンベル キース・ドライヴ 4150 (72)発明者 オレグ マイシン アメリカ合衆国 カリフォルニア州 94404 フォスター・シティー エッジウ ォーター・ブールヴァード 666 300号

(72)発明者 フランチェスコ カラーリアメリカ合衆国 カリフォルニア州 95008 キャンベル アルマリグ・ドライヴ 601 ジーー2号

Fターム(参考) 58046 AA10 CA06 FA10 HA05 KA05 58050 AA08 BA07 BA09 BA12 CA07 CA08 DA01 EA04 EA19 EA27 EA28 FA02 FA09 FA12 FA13 FA19 GA08

5B057 AA18 BA02 CA12 CA16 CB13 CB17 CE15 DA07 DA17 DB02 DC05 DC36

【外国語明細書】

1. Title of Invention

Interactive Try-on Platform for Eyeglasses

2. Claims

 A method for commercializing pairs of eyeglasses over a network, the method comprising:

providing an interactive platform that can be displayed on a computing device;

requesting a 3D face model from a user;

determining characteristics of the 3D face model with respect to a 3D reference frame;

retrieving a 3D representation of a pair of eyeglasses when a request identifying the pair of eyeglasses is received over the network; and

placing the 3D representation of the glasses onto a default position with respect to the 3D face model in accordance with the characteristics thereof.

- The method of claim 1 further comprising:
 permitting a relative interaction between the 3D
 representation of the glasses and the 3D face model;
- The method of claim 1 further comprising:
 permitting a view of the 3D face model with the 3D representation of the glasses on from a chosen perspective.

- The method of claim 1, wherein the interactive platform includes respective displays of the pairs of eyeglasses so that the user can choose one therefrom.
- The method of claim 4, wherein the request is generated on the computing device when one of the pairs of eyeglasses is selected.
- The method of claim 5, wherein the request conforms to a communication protocol in the network so that the request can transported over the network from the computing device.
- The method of claim 6, wherein the network is the Internet and the communication protocol is Hypertext Transfer Protocol (HTTP).
- 8. The method of claim 4, wherein the characteristics of the 3D face model include 3D positions of pupils and a nose profile of the 3D face model in reference to the 3D reference frame.
- 9. The method of claim 1, wherein the default position is either an "On" position or an "Off" position; and wherein the "On" position is to place the 3D representation of the glasses onto the 3D face model in accordance with the characteristics of the 3D face model, and the "Off" position is to place the 3D representation of

the glasses off and in front of the 3D face model in accordance with the characteristics of the 3D face model.

- 10. The method of claim 1, wherein the requesting of the 3D face model comprises uploading the 3D face model from a known location by the user.
- 11. The method of claim 10, wherein the known location is a computing device that stores the 3D face model, or is used to generate the 3D face model.
- 12. A method for commercializing pairs of eyeglasses over a network, the method comprising:
 - displaying an interactive platform received from the network, wherein the Interactive platform includes respective displays of the pairs of eyeglasses;
 - importing into the interactive platform a 3D face model of a user;
 - placing a 3D representation of one of the pairs of eyeglasses onto 3D face model when the one of the pairs of eyeglasses is selected.
- 13. The method of claim 12, wherein the displaying of the interactive platform comprises:

generating a request including an address identifying a web site hosted by an eyeglass business; and sending the request over the network.

- 14. The method of claim 13, wherein the network is the Internet; and wherein the request conforms substantially to Hypertext Transfer Protocol (HTTP).
- 15. The method of claim 13, wherein the Importing of the 3D face model comprises:
 - taking at least one image of the user; and activating a 3D modeling application to generate the 3D face model from the at least one image.
- 16. The method of claim 15, wherein the importing of the 3D face model further comprises determining characteristics of the 3D face model with respect to a 3D reference frame.
- 17. The method of claim 16, wherein the characteristics of the 3D face model include 3D positions of pupils and a nose profile of the 3D face model in reference to the 3D reference frame.
- 18. The method of claim 15, wherein the placing of the 3D representation of one of the pairs of eyeglasses onto 3D face model comprises:

placing the 3D representation of the glasses onto a default position with respect to the 3D face model in accordance with the characteristics thereof.

- 19. The method of claim 18, wherein the default position is either an "On" position or an "Off" position; and wherein the "On" position is to place the 3D representation of the glasses onto the 3D face model in accordance with the characteristics of the 3D face model, and the "Off" position is to place the 3D representation of the glasses off and in front of the 3D face model in accordance with the characteristics of the 3D face model.
- 20. The method of claim 12 further comprising providing a relative interaction between the 3D presentation of the glasses and the 3D face model.
- 21. The method of claim 12 further comprising providing a view of the 3D face model with the 3D representation of the glasses on from a chosen perspective.
- 22. A method for commercializing pairs of eyeglasses over a network, the method comprising:

displaying an interactive platform received from the network, wherein the interactive platform includes at least two

views, a first view and a second view, each of the two views receiving a 3D face model provided by a user, and placing a 3D representation of one of the pairs of eyeglasses onto the 3D face model in the first view and placing a 3D representation of another one of the pairs of eyeglasses onto the 3D face model in the second view so that the user can appreciate any differences between the two views.

- 23. The method of claim 22, wherein the interactive platform further includes a panel comprising a plurality of functional buttons, at least some of the buttons provided to assist the user to spatially adjust either the one of the pairs of eyeglasses or the another one of the pairs of eyeglasses with respect to the 3D face model.
- 24 The method of claim 22, wherein the interactive platform further includes a panel comprising a plurality of functional buttons, at least some of the buttons provided to retrieve position information of either the one of the pairs of eyeglasses or the another one of the pairs of eyeglasses, where in the position information can be applied to a newly selected pair of eyeglasses.
- 25. A system for commercializing pairs of eyeglasses over a network, the system comprising:

- a client computing device including a display screen,
 executing a browsing application and coupled to a data network;
- a server computing device operated by an eyewear business, the server computing device accessing a database of the pairs of eyeglasses; and
- wherein a user of the client computing device enters an IP address identifying the server computing device and sends out a specification of a selected pair of the pairs of eyeglasses after a data link is established between the client and server computing devices;
- wherein the client computing device subsequently displays
 an interactive try-on platform in which a 3D face model
 and a 3D representation of the selected pair of
 eyeglasses are displayed; and
 wherein the user is able to virtually place the selected pair of
- wherein the user is able to virtually place the selected pair of eyeglasses on or off the 3D face model.
- 26. The system of claim 25, wherein the 3D face model is uploaded into the platform from a location known to the user.
- 27. The system of claim 26, wherein the location known to the user includes a computing device that stores the 3D face model, or is used to generate the 3D face model.

- 28. The system of claim 27, wherein the computing device is either one of the client or the server computing devices.
- 29. A software product for commercializing pairs of eyeglasses over a network, the software product executable on a computing device and comprising:

program code for providing an interactive platform that can be displayed on a computing device; program code for requesting a 3D face model from a user; program code for determining characteristics of the 3D face model with respect to a 3D reference frame; program code for retrieving a 3D representation of a pair of eyeglasses when a request identifying the pair of eyeglasses is received over the network; and program code for placing the 3D representation of the glasses onto a default position with respect to the 3D face model in accordance with the characteristics thereof.

30. The software product of claim 29 further comprising:

program code for permitting a relative interaction between
the 3D representation of the glasses and the 3D face
model; and
program code for permitting a view of the 3D face model with
the 3D representation of the glasses on from a chosen
perspective.

- 31. The software product of claim 29, wherein the interactive platform includes respective displays of the pairs of eyeglasses so that the user can choose one therefrom.
- 32. The software product of claim 29, wherein the characteristics of the 3D face model include 3D positions of pupils and a nose profile of the 3D face model in reference to the 3D reference frame.
- 33. The software product of claim 29, wherein the default position is either an "On" position or an "Off" position; and wherein the "On" position is to place the 3D representation of the glasses onto the 3D face model in accordance with the characteristics of the 3D face model, and the "Off" position is to place the 3D representation of the glasses off and in front of the 3D face model in accordance with the characteristics of the 3D face model.
- 34. The software product of claim 29, wherein the program code for requesting of the 3D face model comprises program code for uploading the 3D face model from a known location by the user.

3. Detailed Description of Invention

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefits of the provisional application, No. 60/266,799, entitled "Interactive 3D Models for Online Commerce", filed 02/06/2001, which is hereby incorporated by reference for all purposes.

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention generally relates to the area of electronic commerce and more particularly relates to an interactive test or try-on platform in which a user can try on eyeglasses of different styles on a 3D face model provided by the user, wherein the 3D face model is preferably generated from the user so that the user can electronically and interactively try on a selected pair of glasses.

Description of the Related Art

The Internet is a data communication network of interconnected computers and computer networks around the world and is rapidly evolving to the point where it combines elements of telecommunications, computing, broadcasting, publishing, commerce, and information services into a revolutionary business

infrastructure. The economy on the Internet is growing in every aspect of life, a wide range of businesses including stock trading, commodities, products, retails and services ordering are all via the Internet.

The growth of Internet-based electronic commerce, however, is experiencing some obstacles when coming to certain types of services and goods. For example, it would be very difficult for a business to promote wearable goods online, such as footwear, glasses and accessories. When buying expensive leather shoes, very few consumers would order a pair over the Internet. One of the reasons is that everyone has developed his/her own shaped feet through years of walking habits. Generically sized shoes could hardly fit comfortably on everyone's foot. On the other hand, the markets for the shoe manufacturers and businesses are limited to certain geographic areas. Eyeglasses are another example. Unless it is a pair of generic sunglasses, very few consumers would order personalized glasses, such as near-sighted glasses, over the Internet. Similar reasons are applied because a consumer likes to try on a pair of chosen glasses and see from a mirror how he/she looks with the chosen pair, hence the market for eyeglasses is primarily limited to local retailing. Indeed, there are many other consumer products and industrial goods or services that are being limited to local markets because the current Internet-based commerce platform lacks "try on" experiences. There is, therefore, a need for a mechanism that a user or buyer could "try on" or test a

selected item or service over the Internet before a commitment to the selected item can be made.

SUMMARY OF THE INVENTION

The present invention relates to techniques and systems that provide interactions between a 3D representation of an item being selected and a fully-textured 3D model of an object. The present invention can be used advantageously for electronic commerce over the Internet, wherein a business can provide a 3D representation of an item for a user to virtually try or test on an object. As a result, a user can visually perceive subsequent effects of the item on the object.

According to one embodiment, an interactive presentation or platform including a 3D representation of an item and a 3D model of an object is provided. The item is selected by a user for the object. In other words, the item may be worn by, attached to or joined with the object preferred by the user. Within the interactive presentation, the user can try or test the item on the object by, perhaps, adjusting spatially or manipulating the item in a 3D space. Further the interactive platform provides a view of the object with the Item on from any selected perspective.

According to another embodiment, an interactive platform designed for 3D representations of eyeglasses is provided. The platform allows an import of a 3D face model of a user (e.g. a

potential buyer). Within the interactive platform, the user can select a pair of glasses expressed in a 3D representation and try or test the glasses on the provided 3D face model. In particular, a default position of the glasses is provided with respect to the 3D face model. At "OFF" position, a pair of glasses is placed in front of but off the face model. At "ON" position, the glasses is placed onto the face model. As a result, the user can feel the process in which the glasses is being tried on the 3D face. Further the interactive platform allows the user to adjust the glasses spatially with respect to the face model as well as to visualize the combined 3D models (e.g. the glasses on the face model) from any selected perspective.

The present invention may be implemented as a method, an apparatus, a system or a computer product. Different implementation may yield one or more of the following advantages and benefits. One of them is the interactive presentation mechanism that permits a user to try or test visually or graphically an item selected for a preferred object with respect to the object itself. The feature is believed to be significantly different from some existing web sites that offer "try-on" experiences on a generic object. The present invention offers the user a mechanism to supply a 3D model of the real and specified object. For example, when the item is a wearable product and the object is the user himself/herself, the user can perceive how he/she may look like with the wearable product. Another advantage or benefit provided by the present invention is the marketing opportunity of certain type of goods or services that

would otherwise be limited to local retailing. With the present invention, these goods or services can now be offered online so remote users can "feel" these goods or services over the Internet.

Other advantages, objects and features of the present invention, together with the foregoing, are attained in the exercise of the invention in the following description and resulting in the embodiment illustrated in the accompanying drawings.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention relates to techniques, systems or platforms that provide interactions between a 3D representation of an item being selected and a fully-textured 3D model of an object for electronic commerce over the Internet. An item or items herein mean that products or services are offered by a business online so that potential users or buyers may consider acquiring or using the products or services. The examples of such items may include, but not be limited to, wearable items for consumer, industrial parts for devices or services or any physical thing that may require a fitting trial on the object before a user or buyer may consider acquiring or using the item(s). An object herein means a potential receiver of the selected item(s). Examples of such object may include, but not be limited to, a user himself/herself to wear the selected item and a device to install the selected item.

In particular, the present invention is implemented to facilitate electronic commerce of eyeglasses. A user is provided with an interactive try-on platform that permits an import of a 3D face model, preferably, of a potential wearer of a pair of eyeglasses. By virtue of the present invention, the interactive platform allows the user to select a pair of glasses, try the selected glasses on the face model, adjust the glasses spatially and view the face model with the glasses on from any chosen perspective.

The present invention can be advantageously used in electronic commerce over a data network. With the employment of the present invention, a business can now offer through the data network many other items that would otherwise be limited to local retailing. Not only does the present invention now help a business reach more markets without physical boundaries but also provide remarkable convenience to buyers who could now try on different selections without leaving their home or office.

The detailed description of the invention is presented largely in terms of procedures, steps, logic blocks, processing, and other symbolic representations that directly or indirectly resemble the operations of data processing devices coupled to networks. These

process descriptions and representations are typically used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. Numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will become obvious to those skilled in the art that the present invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuitry have not been described in detail to avoid unnecessarily obscuring aspects of the present invention.

Reference herein to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the invention. The appearances of the phrase "in one embodiment" in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Further, the order of blocks in process flowcharts or diagrams representing one or more embodiments of the invention do not inherently indicate any particular order nor imply any limitations in the invention.

Referring now to the drawings, in which like numerals refer to like parts throughout the several views. Figure 1 shows a system configuration 100 in which the present invention may be practiced. As used herein, a service or product provider, or simply referred to as a provider represents one of numerous businesses, entities, merchants or retailers that offer various products, applications and services online. Examples of such a provider may include www.amazon.com that offers items from books to consumer electronics, www.ebay.com that offers an auction platform where bidders and sellers can interact with each other.

As shown in the figure a provider 102, typically through a server computer, is coupled to a data network 104 that may be the Internet or a network of private and/or public networks. To facilitate online transactions between the provider and a user (e.g. a consumer), a third party entity 106, also through a server computer, may be coupled to network 104. Third party entity 106 may represent a financial or authorized institution, such as a bank, a credit card authority or an agent, that provides a mechanism for the provider to verify various information submitted by the buyer for a transaction or to electronically proof anything required by the provider from the user.

As used herein, a transaction means an electronic agreement mutually agreed between two entities. For example, a transaction occurs when a provider accepts an order of certain items from a user or buyer. Likewise a transaction is deemed to occur when pertinent data/information entered/provided by the buyer is released to the provider after the buyer has tried on and decided to acquire his/her selections. In general a "try on" or "test" means a process in which the user tests an item in accordance with a set of criteria determined by the user. For example, a buyer is buying a pair of glasses. Before a transaction happens, the buyer wants to make sure how he/she may look like after he/she wears the glasses on. Hence a "try on" or a test with the object happens.

For illustration purpose, a user 108 communicates with provider 102 through a computing device, referred to as a client device, that may include, but not be limited to, a personal computer, a palm-size computing device, a wireless mobile device and a personal data assistant (PDA), having a display screen and capable of two-way data communications with data network 104 for ordering and browsing electronically products or services offered by an online business.

To facilitate the description of the present invention, it is defined herein a display screen or simply a screen is the physical display apparatus in a device, such as a 15 inch CRT or LCD monitor, commonly seen with a personal computer. Likewise, a

screen display or simply display is an image presented on the display screen. For example, a file that constitutes a display or part of the display may be an HTML, a VRML file, or a plurality of data representing a 3D representation for an item or a 3D model of an object. A display is displayed on a screen when the file is read or executed by an application or executed by a browser.

For completeness, a service provider or a business unit 110, also through a respective server computer, is coupled between network 108 and sub-network 112. Typically, sub-network 112 that may be part of network 108 or a local area network (LAN) belonging to a locality serves its own community comprising a number of client devices 114 (i.e. 114-1 to 114-n), each representing an access to the service provider from a user or a consumer. In general, each of client devices 114 may be a personal computer, a palm-size computing device, a mobile device or a cable control box facilitating internet services via a cable. Via service provider 110 that may be an Internet service provider, a wireless carrier, a cable service provider, or any data service provider, each of client devices 114 can communicate with provider 102 for ordering, viewing and browsing electronically a product or a certain type of services offered by provider 102.

Referring now to Figure 2A, there is shown a functional block diagram of a provider's server 200 according to one embodiment of the present invention. Server device 200 may be a server computer

or a workstation hosted by provider 102 of Figure 1 to offer products for sales or services online. In one embodiment, server device 200 is offered from Sun Microsystems of Mountain View, California and loaded with a server module 202 that may be configured to include an online transaction module 204, an item list module 206 and an user interactive module 208. Online transaction module 204 may be any one of the commercially available or customized applications that facilitate transactions with a client device over a network. One exemplary online transaction module 204 may be from Oracle Corporation in Redwood, California and commonly used in many of the frequently visited web sites.

The functions of user interactive module 208 is illustrated in Figure 2B according to one embodiment of the present invention. User interactive module 208 receives a specification from a user, for example, a hat with size A, style B and color C. Upon receiving the specification, user interactive module 208 inputs the specification to a database 220 that maintains a list of items for offering over the network. Generally, the items maintained in database 220 has respective specifications and may be categorized in a way that depends on what business the items fit into.

According to one embodiment of the present invention, at least one of the items is associated with a 3D representation or a 3D model, which means the item is represented graphically in 3-dimensions. The 3D representation of the item is preferably

generated in advance by one of the settings provided below or through a 3D modeling service such as Geometrix, Inc. (see www.geometrix.com). The 3D representation may be expressed by one or more files in one of the 3D object formats such as VRML (Virtual Reality Modeling Language) and RWX (MEME Shape file). In one implementation, the 3D representation is expressed as a Cult3D object file. Cult3D object file is supported by Cult3D Viewer or Cult3D Exporter offered by Cult3D Inc. (see www.cycore.com). After a user selects an item, the 3D representation thereof is retrieved from the database and transported to an interactive environment (i.e. a presentation) as will be further described below.

In database 220, detailed information of the item matched by the specification is located and retrieved. It is assumed that the specified item is associated with a 3D representation 224 as shown in Figure 2B. The detailed information now includes the 3D representation in addition to, perhaps, price, manufacturer, date or other related information about the selected item. In one embodiment, 3D representation 224 can be transported over a network and subsequently displayed along with other related information on a client device used by the user, wherein the client device is executing an application or browser to view the 3D representation.

To facilitate the description of the present invention, a 3D model of an item to be tried on an object is referred to as a 3D

representation. In operation, user interactive module **208** will require a 3D model of an object that is to receive the selected item.

According to one implementation, the 3D model of the object is provided by the user from a known location (e.g. from a local hard disk). In that case, the 3D model of the object is pre-generated. In another implementation, the 3D model of the object is generated on demand.

Figure 3A illustrates an exemplary setting 300 that may be used to generate a 3D model of the object or one or more of the items for selection. An item 302 to be modeled electronically may be a combination of one or more 3D objects such as toys, products or devices, Item 302 is placed on a turntable 304 that is preferably controlled by a stepper motor (not shown). The stepper motor operates under the control of a computer system 306 to rotate turntable 304 so that object 302, when being turned around, can be viewed and imaged by an imaging system 308. Subsequently imaging system 308 produces a surrounding imagery comprising a number of side view images, each taken at a predetermined relative position of object 302 with respect to imaging system 308. The images are then processed in computer system 306 that is loaded with a 3D modeling application. The detail description of the setting 300 as well as the 3D modeling application is provided in US App. No.: 09/357,528, entitled "Method and System for Generating Fully-Textured 3D Models" by Zwern et al, which is hereby incorporated by reference in its entirety.

Figure 3B illustrates another exemplary setting 330 that may be used efficiently to generate a 3D model of the object offline or on demand. A camera system 320 is coupled to a client device 322 that may be coupled to the network. In particular, the client device is loaded with a 3D modeling application that generates a 3D model of an object. One exemplary 3D modeling application called FaceCapture from Geometrix, Inc. (see www.geometrix.com) in San Jose, California, can be executed in client device 322 and generates a 3D model based on one or two Images of the object. As shown in the figure, a user 324 who may be an object can generate a 3D model of his/her face using the camera system 320 and the 3D modeling application. As a result, a fully-textured 3D model of the face is generated, an example thereof will be shown below. As used in some embodiments, setting 330 may be used to generate 3D models of other objects.

It is now evident to those skilled in that art that the setting in Figures 3A or 3B can be used to generate a 3D representation of an item as well as the object. To facilitate the description of the present invention, two words "3D representation" and "3D model" are used to distinguish 3D information presented from two ends (i.e. the server and the client). In reality, they can be interchangeably used and may be represented in the same format or two compatible formats. Also it should be noted that the setting in Figures 3A and 3B are for examples only. There may be other ways or tools that can be used to generate a fully-textured 3D model of an object that

includes a human being or an article. What is important herein is the use of such 3D models to support electronic commerce over a network. In addition, as will be further described below, it is one of the features in the present invention that an interactive environment is provided that a user can try, test, or manipulate virtually and graphically the 3D representation of a selected item on the 3D model of an object provided by the user. An integrated representation of the 3D model with the 3D representation on can be viewed or browsed from any perspective in a 3D space. In some sense, the user could perceive what might be subsequent effects when the item and the object are actually attached, joined, connected or affiliated.

Figure 4 is a process flowchart 400 of operations, according to one embodiment of the present invention, on a server device that offers items or services over a data network and shall be understood in conjunction with the preceding figures. The server device may correspond to server device 104 of Figure 1. In a preferable embodiment, process 400 is implemented as a server module 202 of Figure 2A. At 402, process 400 awaits a request from the network. When a request comes, process 400 proceeds. In one embodiment, the request is an HTTP request and the network is the Internet. The request is typically sent from a client device associated with a user. It is assumed that the user has made a selection after browsing a category or a list of items being offered online by the server device. In addition to a specification of the selected item, the

request includes an IP address identifying the client device or an identifier identifying the user. Upon receiving the request, the specification is extracted and process 400 goes to, perhaps, a database to look up for the selected item.

At 404, a search response to the request comes back and indicates if the selected item has an associated 3D representation. It is noted that it is not necessary for the server device or a business to offer items each of which must have a 3D representation for a user to test with an object. When the search response shows that the selected item has no associated 3D representation thereof, process 400 goes on to 406 that may simply display a picture of the selected item. Although a picture is not necessary for a selected item, it is generally preferable to show to the user what the selected item may look. At 416, process 400 needs to know if the user is satisfied with the selected item or pleased with the picture along with various product related information. If the response from the user is positive, process 400 moves along, for example, to enter a transaction with the user or other mutually agreed arrangement. If the user is not satisfied with the selected item, process 400 goes back to 402 to await another selection (i.e. a new request).

Referring back to **404**, the search response comes back and indicates that the selected item has an associated 3D representation. Process **400** moves on to **407** to see if there is a 3D model of an object available for trying on the selected item. The 3D

model may be locally available (e.g. pre-generated or generated on demand) in the computing device that the user is using or remotely available in the server device or another computing device coupled to the network.

Depending on an exact implementation, the 3D model of an object may be located in a known location. For example, the user is looking for a fancy spoiler for his car. A 3D model of the car may have been generated using the setting in **Figure 3A**. The 3D model is then stored in a hard disk or another computer accessible by the user when the 3D model is needed. The 3D model can now be loaded to test with the spoiler (i.e. the 3D representation thereof). The purpose is to let the user see how the car may look with a selected spoiler before a transaction takes place. In another application that will be further described below, a user is looking for a pair of glasses. After the glasses is selected, process 400 now checks if there is a 3D model of the face of someone (e.g. the user). The 3D model could be generated on demand using the setting illustrated in **Figure 3B** or loaded from a known location.

At 407, if process 400 determines that there is a 3D model available for trying on the selected item, process moves to 412. On the other hand, when process 400 determines that there is no 3D model available for trying on the selected item, process 400 moves to 408 to request the import of the 3D model.

At 410, process 400 awaits the availability of the 3D model. According to an option in one embodiment, process 400 checks if the format of the 3D model is supported or not at 410. Once the 3D model is successfully loaded, an interactive presentation is provided at 412 and subsequently displayed on the client device. There are at least two possible implementations for 412. The first one is to upload the 3D model to the server device in which the server module performs an integration process to combine the 3D representation of the item with the uploaded 3D model of the object and then present them in an interactive environment for the user to continue. The second one is to have the interactive environment downloaded to the client device wherein the interactive environment has a placeholder for the 3D model. Once the 3D model is supplied, the interactive environment integrates the 3D model with the 3D representation. The user can now interact with the interactive environment. Regardless of the exact implementation, the Interactive environment shows a combined or integrated view of the 3D representation and the 3D model.

At 414, the user is allowed to move either one of the 3D representation and the 3D model with respect to the other in the interactive environment. In one application, the user moves the 3D representation or 3D model spatially with respect to the 3D model or the 3D representation, respectively. In another application in which a customized part is required for the object, the interactive environment permits the user to modify the shape of the selected

item for, perhaps, best fitting into the object. The exact manipulation of the 3D representation with respect to the 3D model does not affect the operations of the present Invention. In any case, the manipulated, joined or integrated representation of the 3D representation and the 3D model can be viewed or browsed from any perspective so that the user could have a complete visual coverage of the subsequent effects or fitting of the item with the object.

Similar at 416, process 400 needs to know if the user is satisfied with the selected item or pleased with the complete visual coverage along possibly with other information. If the response from the user is positive, process 400 moves along, for example, to enter a transaction with the user or other mutually agreed arrangement. If the user is not satisfied with the selected item, process 400 goes back to 402 to await another selection (i.e. a new request).

Figure 5A is a process flowchart 500 of operations, according to one embodiment of the present invention, on a client device used by a user to test or try on a selected item offered over a network by a server device and shall be understood in conjunction with the preceding figures. The client device may correspond to any of 108 or 114 in Figure 1. At 502, process 500 needs to ensure that a data link has been established with the server device over the network. According to one embodiment, the client device executes a browser application that provides an HTTP link over the Internet.

Once the web site hosted by the server device is connected, pages (e.g. HTML) are displayed and can be browsed. At least one of the pages may show a category or a list of items being offered online by the server device identified by an address identifier (e.g. a Universal Resource Identifier or Locator). The user may be interested in exploring one of the items and hence selects thereon (e.g. via a pointing device to activate a link underneath) or enter a specification to specify an item. The client device then generates a request at 504. In addition to a specification of the selected item, the request includes an IP address identifying the server device, the client device and/or the user.

At 506, the client device or the user awaits a response from the server device to the request. As indicated in Figure 4, process 400 needs to look up for the selected item based on the specification. Once the item is located, specifically, the item with an associated 3D representation is located, a response to the request is returned from the server device. Depending on an exact implementation, the response may include the 3D representation and activates the interactive environment that may require a 3D model from the user. At 508, process 500 checks if a 3D model of an object to be tested with is available. When the 3D model the object is ready, the user can now test or try the selected item with the supplied object. If the 3D model is not readily available, process 500 will go to 509 to request for such 3D model.

Referring now to Figure 5B, there is shown a process flowchart 530 of providing the 3D model of the object according to one embodiment of the present invention. Process 530 shall be understood in conjunction with the setting in Figure 3A or 3B. At 532, process 530 examines if an imaging system is ready, namely if it is calibrated or aimed at the object to be modeled. At 534, the imaging system takes one or more images of the object. Depending on the setting or the 3D modeling application in use, the imaging system may take two images (e.g. for stereo imaging) or a sequence of images surrounding the object. The 3D modeling application is then executed on the images at 536 to generate a 3D model of the object at 538. According to one embodiment, the 3D model is presented in Cult3D object format and can be viewed by Cult3D viewer. According to another embodiment, the 3D model is presented in a format supported by pulse3D viewer provided at www.pulse3D.com.

Referring now back to Figure 5A, after it is determined that the 3D model is available, an interactive platform including both of the 3D representation and the 3D model is displayed on a display screen of the client device at 510. The interactive platform permits the user to get the item onto the object, adjust spatially in a 3D space the 3D representation or the 3D model with respect to each other, respectively at 512. In one embodiment, the 3D representation of the item is adjusted left/right, up/down and back/forth till the user feels an appropriate fitting is reached. Further

the Interactive platform permits the user to view or browse the jointed presentation of the 3D representation and the 3D model from any perspective the user prefers.

At 514, process 500 determines if the user is satisfied with the selected item. If the user does not like the selected item or wants to have another selection, process 500 goes to 504. If the user is satisfied with the selected item, process 500 goes to 516 that may enter a transaction between the user and the business hosting the web site.

According to one embodiment of the present invention,

Figures 6A-6E illustrates a sequence of interactive environments or
displays that may be displayed on the display screen of a client
device. In Figure 6A, an interactive platform 600 displayed as a web
page includes a list of 3 glasses that are respectively presented by
pictures or 3D representations thereof 602, 604 and 606. Web page
600 further includes a selection area 608 and a manipulation table
610 in addition to an interactive representation area (i.e. interactive
environment) 612. Optionally, web page 600 indicates a connection
status 613 of the client device with a server device hosted,
presumably, by an eyewear business.

It is assumed that at least one or each of the three initially displayed glasses has an associated 3D representation. A testing object for the glasses is evidently a human face. A 3D model of an object (i.e. a human face) 614 has been provided for testing a

selected pair of glasses. As described above, 3D face model 614 may be generated on demand using the method of Figure 3B or pre-generated or transferred from another device/memory.

Interactive platform 600 permits an import of 3D face model 614 into interactive representation area 612 as such the user is now able to try on a selected pair of glasses.

Generally, it is not easy to put a selected glasses right onto 3D face model 614 initially through a pointing device (e.g. a mouse) depending on the exact orientation of the 3D face model. As one of the features of the present invention, a default position of the selected glasses is provided with respect to the 3D face model. The default position may be assigned initially to two possible positions, one being "ON" position and the other being "OFF" position.

According to one embodiment, an "ON" position, when selected, causes the selected glasses to be on the 3D face model in accordance with predetermined characteristics of the 3D face model. An "OFF" position, when selected, causes the selected glasses to be placed before but off the 3D face model in accordance with the predetermined characteristics of the 3D face model.

According to the embodiment, the characteristics of the 3D face model include 3D positions of the pupils and the nose tip of the 3D face model in a reference space or frame. Additionally a nose profile may be derived with reference to the nose tip to facilitate the try-on process. Referring now to Figure 7, there is shown an

illustration of determining the characteristics of the 3D face model 700. A 3D reference space or frame 702 is used to accommodate 3D face model 700. Nose tip 704 is determined from a most extended point of face model 700 and expressed as (x_{nv}, y_{nv}, z_{nv}) . Using nose tip 704 as a starting point, an upward and left/right search in a localized window 710 can be conducted. A verification via color and/or texture of the pupils in the face model, e.g. in HIS color coordinates, can determine coordinates of the two pupils (e.g. black holes), expressed as (x_{te}, y_{te}, z_{te}) 706 and (x_{re}, y_{re}, z_{re}) 708. The coordinates are useful for scaling and/or orienting the 3D representation of the glasses so that the glasses can be graphically made fit to the 3D face. With the coordinates, the nose profile, especially around the area that holds the glasses, can be determined as well from the face model 700.

Referring now to **Figure 6B**, there is shown that one of the glasses is chosen, a 3D representation **620** of the glasses is initially positioned at a default position (i.e. "OFF" position) before the 3D model (i.e. the face model). The default position in this case is to position the selected glass before but off the face model. The default position also includes a pre-fixed distance D (not shown in the figure) the glasses shall be initially positioned away from the face model. To ensure that the glasses and the face model coincide, for example, the orientations and/or sizes correspond, the characteristics of the face model is used to initially position and/or scale the 3D representation of the glasses.

An "on" button 624 is not necessary but is desirable to automate wearing of the glasses on the face according to a calculated or predetermined default "ON" position. Figure 6C shows that "on" button 624 is activated, which causes glasses 620 to move from "OFF" position to "ON" position. It should be noted that the "ON" position is a default position that is determined in accordance with the characteristics of the face model and may not be necessarily the way the user would wear the glasses.

Figure 6D shows that the user has "rotated" the face model with the glasses on to view from right side how he/she may look when the selected glasses are worn. The user may adjust the glasses up or down, left or right in accordance with a set of criteria that the user feels "right". Figure 6E shows another perspective where the user views how he may look like with the selected glasses on and may perform additional spatial adjustment.

Figure 8 shows a process flowchart of the glasses fitting operations according to one embodiment of the present invention. The process 800 in Figure 8 is generally implemented in a client computing device coupled to a data network, such as the Internet, and used by a user who may be a potential buyer of eyeglasses. In one preferable embodiment, the user activates a browsing application (e.g. Microsoft Internet Explore) and provides an IP address identifying an eyeglass business web site (e.g. www.eyeglasses.com). Once connected, the computing device is

provided or downloaded from the web site an interactive platform at 802. The interactive platform may correspond to the one 600 of Figure 6A. Depending on an exact implementation, the interactive platform may include a panel consisting of respective displays of glasses of different style. By virtue of the present invention, at least one of the displays is associated with a 3D representation of the glasses. In other words, there is a 3D model of the glasses that can be uploaded to the computing device for testing or trying on if the pair of glasses is selected.

At 804, the platform requests an import of a 3D face model of a user who will preferably and ultimately buy and wear the glasses. The face model may be generated in real time, pre-generated or downloaded from another device/memory. Process 800 needs to ensure that an appropriate 3D face model is imported at 806. Once the 3D face model is accepted, process 800 awaits a selection from the user among the displays of glasses of various styles at 808. After a selection is made, the characteristics of the face model are computed by an application that may be embedded in the platform or in the web site. In a preferred embodiment, the application is an applet or script application that computes the characteristics including a number of parameters (e.g. the coordinates of the nose tip and pupils) from the face model to facilitate the try-on process. It should be noted that the computation of the characteristics of the face model may happen anywhere before an actual try-one process starts.

At 812, a 3D representation of the selected glasses is loaded into the platform from the network and places the glasses in front of but off the face model in accordance with the characteristics of the face model. In one implementation, the pair of glasses is initially placed a few inches away from the face but kept in parallel with the centers of the glasses lens coinciding with the pupils of the face model.

At 814, the user has an option to wear on the glasses by perhaps clicking a designated "On" button. Internally, at 816 the platform allows the glasses to move forward onto the face model in accordance with the characteristics of the face model to ensure that the pair of glasses is indeed "on' the face (not hanging on the face). In another embodiment that is further illustrated below, the pair of glasses is put onto the face model based on a set of position parameters that may have obtained from a previously selected pair of glasses. This feature will allow a newly selected pair of glasses to follow the positions a previously selected pair of glasses that has been adjusted. At 818, a combined view of the face model with the glasses on is provided and allows the user to view the combined view from any chosen perspective that may include a top, side, or front view.

Figure 9 shows an interactive try-on platform 900 displayed by a popular browser. The exact display configurations may differ from one implementation to another. What is important is some of the features in the present invention being utilized in platform 900 to facilitate the try-on experiences by a user or a potential glasses wearer. Platform 900 shows that two display windows 902 and 904 are integrated therein. Each of the display windows allows the user to load up a 3D face model, select a pair of glasses, perform spatial adjustments of the selected glasses with respect to the face model as described above. One of the advantages for two display windows in a platform is to allow the user to compare visually two different pairs of glasses side by side when they are respectively worn by the user.

To assist the user to visually adjust the glasses on the face model, an adjustment panel **906** is provided. Panel **906** is an exemplary graphic user interface and includes a number of buttons that can be conveniently used by the user to adjust the glasses around the face model. For example, when "Right_in" is clicked or activated, the right arm of the glasses goes inward. If it appears that the glasses too tight, "Right_out" or "left_out" could be clicked to release the tightness. Panel **906** also includes respective buttons to spatially move the glasses in a reference 3D space, along/around the x, y or z direction.

As one of the features in platform **900**, a graphic effect is provided to affect the opacity of the lens in the glasses so that the user can determine what is the most appropriate lens opacity for the selected glasses. It should be noted that the 3D representation of

the glasses does not have to include various opacities for the lenses.

Those skilled in the art understand that a selected opacity can be graphically painted by choosing appropriate colors, in particular, appropriate pixel values.

In addition, parameter control 910 is provided to get or extract the position (i.e. the coordinates) of the glasses after the user has adjusted the glasses with respect to the 3D face model. The position may include information how a pair of glasses is positioned on the face model. According to one embodiment, the information includes a plurality of coordinates of some of the corners of the glasses, for example, the end of the two arms, the center of the glasses (e.g. with respect to the nose tip). According to platform 900, when "Get P's" is clicked, the coordinate Information is obtained and saved in a memory space. When a new pair of glasses is selected, rather than performing another trial-and-error, the user can simply click "Set P's" to apply the collected coordinate information to the new pair of glasses. As a result, the new pair of glasses goes to the previously determined position.

The advantages of the invention are numerous. Different embodiments or implementations as a method, an apparatus or system may yield one or more of the following advantages. One of them is the interactive presentation mechanism desired by an online business to permit a user to try or test virtually a selected item for an object provided by the user. When the item is a wearable product

and the object is the user himself/herself, the user can perceive how he/she may look like with the wearable product on. Another advantage or benefit provided by the present invention is the marketing opportunity of certain type of goods or services that would otherwise be limited to localities. With the present invention, these goods or services can be now offered online over the Internet so remote users can "feel" these goods or services.

The present invention has been described in sufficient detail with a certain degree of particularity. It is understood to those skilled in the art that the present disclosure of embodiments has been made by way of examples only and that numerous changes in the arrangement and combination of parts as well as steps may be resorted without departing from the spirit and scope of the invention as claimed. Accordingly, the scope of the present invention is defined by the appended claims rather than the forgoing description of embodiments.

4. Brief Description of the Drawings

These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:

Figure 1 shows a system configuration in which the present invention may be practiced;

Figure 2A shows a functional diagram of a provider's server according to one embodiment of the present invention;

Figure 2B shows essential functions of a user interactive module in a provider's server according to one embodiment of the present invention;

Figure 3A and 3B show respectively two possible settings to generate a 3D representation of an item or a 3D model of an object;

Figure 4 is a process flowchart of operations on a server device that offers items over a data network;

Figure 5A and 5B show respectively two processes of operations on a client device according to one embodiment to the present invention; and

Figures 6A to 6E show, as an example, a sequence of interactive presentations, each including a selected eyewear and a human face according to one embodiment to the present invention;

Figure 7 shows an example of determining characteristics of a 3D face model, the characteristics including coordinates of a nose tip and pupils of the face model; and

Figure 8 shows a process flowchart of glasses fitting operations according to one embodiment of the present invention.

Figure 9 shows an interactive try-on platform 900 displayed by a popular browser.

[図1]

[図2A]

[図2B]

[図3A]

[図3B]

[図4]

[図5A]

[X] 5 B]

Fig. 5B

[図6A]

[図6B]

[図6C]

[図6D]

[図6E]

[図7]

[図8]

[図9]

1. Abstract

Techniques and systems that provide interactions between a 3D representation of a selected pair of glasses and a fully-textured 3D face model are disclosed. According to one embodiment, an interactive platform is displayed to allow a user to select a pair of glasses and try the selected glasses on a user-provided 3D face model. The interactions provided in the platform include spatial adjustments of the glasses around the face model, various perspective views of the 3D face with the glasses on and other cosmetic alternations to the selected glasses. According to one application, when the user finishes the try-on process, the information about the glasses can be transmitted to a business that can subsequently produce a pair of customized glasses for the user.