ECE 463 Lecture: Internet Security

Sanjay Rao

Security Services

Assume A is sending data to B across a network What security properties are desirable to preserve?

Key Security Services

- Confidentiality
 - Keep information from all except authorized
- Data Integrity
 - Detect unauthorized alteration of data
- Authentication
 - Confirms identity of peer entity during communication
- Non-repudiation
 - Prevent entities from denying previous actions

This Class

- Classes of cryptographic functions
 - Symmetric Key
 - Public/Private Key
 - One-way Hash
- Pros and cons of each class
- Use in SSL

Symmetric Key Cryptography

Caesar Cipher

- Shift by a few characters
- can define transformation as:

```
abcdefghijklmnopqrstuvwxyz
DEFGHIJKLMNOPQRSTUVWXYZABC
```

mathematically give each letter a number

```
abcdefghijklm
0 1 2 3 4 5 6 7 8 9 10 11 12
n opqrstuvwxyZ
13 14 15 16 17 18 19 20 21 22 23 24 25
```

then have Caesar cipher as:

$$C = E(p) = (p + k) \mod (26)$$

 $p = D(C) = (C - k) \mod (26)$

Example

- Caesar Cipher (Substitution-based)
 - Algorithm: "letter shift"
 - Key: "Amount of shift"
 - $C_i = E(p_i) = p_i + 3$
 - PlainText: A B C D ..
 - CipherText: defg...
 - Raw Message: TREATY
 - Encrypted Message: WUHDWB

Cryptanalysis of Caesar Cipher

- only have 26 possible ciphers
 - A maps to A,B,..Z
- could simply try each in turn
- a brute force search
- given ciphertext, just try all shifts of letters
- do need to recognize when have plaintext

Monoalphabetic Cipher

- rather than just shifting the alphabet
- each plaintext letter maps to a different random ciphertext letter

```
Plain: abcdefghijklmnopqrstuvwxyz
```

Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext: ifwewishtoreplaceletters

Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA

How many keys in all?

How easy is a brute force search?

- always possible to simply try every key
- most basic attack, proportional to key size
- assume either know / recognise plaintext

Key Size (bits)	Number of Alternative Keys	Time required at 1 encryption/µs	Time required at 106 encryptions/µs
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s = 35.8 \text{ minutes}$	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	$2^{55} \mu s = 1142 \text{ years}$	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu s = 5.4 \times 10^{24} \text{ years}$	5.4×10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu s = 5.9 \times 10^{36} \text{ years}$	5.9×10^{30} years
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu \text{s} = 6.4 \times 10^{12} \text{years}$	6.4×10^6 years

CryptAnalysis of Monoalphabetic cipher

- No of keys: (26!)
 - Brute force search not as easy
- However, easy to cryptanalyze
 - Letters are not equally commonly used
 - E.g. **e** is by far the most common letter
- Have tables of single, double & triple letter frequencies

English Letter Frequencies

Transposition Ciphers

- Ciphers discussed so far:
 - "Substitution" based
 - Alter letters used based on keys
- Another class:
 - Transposition or permutation ciphers
 - "Permute" characters of the original text

Permutations

- Rearrange letters of a word.
- E.g. Columnar transposition
 - Plain text: HAPPY HOLIDAYS

HAPPY HOLID AYS

Encrypted Text: HHAAOYPLSPIYD

What's used in practice?

- Data Encryption Standard (DES)
- Careful and complex combination of:
 - Substitutions
 - Permutations
- Text encrypted as blocks of 64 bits.
- DES Key is 64 bits long
 - Effectively 56

DES: Objectives

- Input: 64 bits Output: 64 bits
 - Looks "random"

- Confusion/Diffusion:
 - "Dissipate" statistical structure of plaintext
 - 1 bit input change must affect many op bits
 - Every cipher bit affected by several input bits

DES Design

- Building blocks
 - Substitutions
 - Permutations
- DES:
 - Cycles of substitutions & permutations
- Design process not made public
 - Not always clear why certain choices were made

DES Top View

Feistel Cipher Structure

F: "Mangler Function"

$$Li = Ri-1$$

$$Ri = Li$$
-1 XOR $F(Ri$ -1, Ki)

DES Box Summary

- Simple, easy to implement:
 - Hardware/gigabits/second, software/megabits/second
- 56-bit key DES acceptable for non-critical applications
- Achieving greater security: Triple DES: 112 bit effective key.
- More recent trends:
 - AES (Advanced Encryption Standard)

Achieving Security Services

- Symmetric cryptography may be used to achieve...
 - Confidentiality ? Yes!
 - Authentication ? Yes!
 - Data Integrity ? Yes!
 - Non-repudiation ???

Non-Repudiation

- A sends B a message
 - (e.g. ordering equipment)
- A refuses to accept this at a later point.
- How does B prove to a judge C that A indeed placed the order?

 Cannot be achieved with symmetric key systems.

Another issue with Symm key

- Assume a set of N people
- Assume every pair wants to communicate

- Number of symmetric keys needed:
 - -N * (N-1)/2.

Public-Key Cryptography

Public-Key Cryptography

- Two keys
 - Public key: globally known
 - Anyone can send by encrypting using public
 - Private-key: known only to the recipient
 - Only recipient can decrypt messages
- is asymmetric because
 - those who encrypt messages cannot decrypt messages

Public-Key Characteristics

- Public-Key algorithms rely on two keys with the characteristics that it is:
 - computationally infeasible to find decryption key knowing only algorithm & encryption key
 - computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known

RSA (Rivest, Shamir, Adleman)

- The most popular one.
- Support both public key encryption and digital signature.
- Assumption/theoretical basis:
 - Factoring a big number is hard.
- Variable key length (usually 512 bits).

Factoring

- Creating database of all primes impractical
 - Knowing a few large primes easier...
 - Knowing all primes less than (large) number harder!
- Number of primes with 1024 bit RSA:
 - Approx 10 ^ 297
- Analogies:
 - Atoms in the universe: 10^{77}
 - Seconds in a year: 10⁷
 - Age of the universe: 10¹⁰ years

Other public-key cryptosystems

- Many other public-key cryptosystems
 - Diffie Hellman
 - -DSS
 - ECC (Elliptic Curve)

Non-Repudiation

- Feasible with public-key.
- "Digital Signatures".

Dual use of public key systems

- A sends data to B
 - Encrypt with B's pub key
 - Sign with A's private key
- On receiving data:
 - B decrypts with its private key
 - Verifies signature with A's public key
- Clarification:
 - RSA allow both encryption/signatures
 - Some public-key systems allow only one or the other

Another win with public-key

- Assume N nodes
- Every pair communicates
 - Symmetric key: (N * (N-1)) / 2 keys
 - Public key: 2*N keys

Question

Why use symmetric key at all?

Example Application

- Public key systems are much slower.
- Public key crypto & Symmetric Crypto combined
 - Assume C wants to talk to S
 - C uses S's public key to encrypt "secret key" used for the session.
 - "Secret key" used to encrypt messages
 - This concept used in SSL, PGP etc.

Hash Functions

- Applied to any sized message M
- Produces a fixed-length output h

- Easy to compute h=H (M) for any M
- Hard to "invert":
 - Given h, hard to find M such that H (M) =h

All algorithms are public!

Hash Functions

- One-way hash functions
 - Given message M, produce h(m) (smaller)
 - Given h(m), hard to find m (or alternate m1)

- Application to digital signature:
 - Produce "hash" of message m
 - Sign the hash using sender's private key

Hash Functions & Digital Signatures

Hash Function Properties

- Hash function algorithms public
- Can be applied to any sized message M
- Produces fixed-length output h
- Is easy to compute h=H (M) for any message M
- Popular Example : MD5

Requirements for Hash Functions

- 1. Given h is infeasible to find x s.t. H(x) = hOne-way property
- 2. given x is infeasible to find y s.t. H(y) = H(x)
 - Weak collision resistance
- 3. is infeasible to find any x, y s.t. H(y) = H(x)
 - Strong collision resistance

SSL and TLS History

- SSL was originated by Netscape
 - SSLv1 never deployed
 - SSLv2 deployed in Netscape 1.1 in 1995
 - SSLv3 fixed several security issues
- TLS: standardization process
 - http://www.ietf.org/html.charters/tls-charter.html

When invoked?

Using https:// (instead of http://)

Obtaining a Certificate

- E.g. Server generates RSA key pair
- Obtains "certificate" for public key
- Issued by one of certificate authorities
- Key of CA must be present in client browser
- Typically browsers shipped with keys
 - Several CA's
 - Many issues due to this dependency

Key Generation

- Client receives server certificate
- Verifies certificate using public key of CA
 - Extracts server's public key
- Client generates 48 byte pre-master secret
 - Used to produce master secret
 - Encrypted with server public-key, sent back