## **Condensed Matter Physics 3 Example Workshop 5 – Solution**

## 1. Ferromagnetism

(a) See the figure below:



(b) Gd<sup>3+</sup> ions have 7 electrons in the 4f shell hence,

| $m_s$ | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 |
|-------|-----|-----|-----|-----|-----|-----|-----|
| $m_l$ | -3  | -2  | -1  | 0   | 1   | 2   | 3   |

Hund's rules: 
$$S = \sum m_S = 7 \times \frac{1}{2} = 3\frac{1}{2}, L = \sum m_l = 0, J = S = 3\frac{1}{2},$$
  
Hence the Landé *g*-factor  $g_J = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)} = 2.0.$ 

Given that the solid has magnetic ions at the corners of a primitive cubic lattice of length  $a = 0.75 \times 10^{-9}$  m. The number of atoms per unit volume is therefore  $N = \frac{1}{a^3} = 2.37 \times 10^{27}$  m<sup>-3</sup>.

i. At T = 0 K the magnetisation is at its saturation value  $M_{sat} = Ng_J\mu_B J$ 

$$M_{sat} = Ng_J \mu_{\rm B} J = 2.37 \times 10^{27} \times 2.0 \times 9.27 \times 10^{-24} \times 3.5 = 1.53 \times 10^5 {\rm Am}^{-1}$$

ii. Taking the alignment along the [100] direction,  $\theta_1 = 0^\circ$ ,  $\theta_2 = \theta_3 = 90^\circ$ ,  $\alpha_1 = \cos\theta_1 = 1$ ,  $\alpha_2 = \cos\theta_2 = 0$ ,  $\alpha_3 = \cos\theta_3 = 0$ , and hence:

$$U_{\text{anis}} = 5.4 \times 10^5 (1^2 \times 0^2 + 1^2 \times 0^2 + 0^2 \times 0^2) + 5.1 \times 10^3 (1^2 \times 0^2 \times 0^2) = 0$$

Taking the alignment along the [111] direction,  $\theta_1 = \theta_2 = \theta_3 = 54.7^{\circ}$ ,  $\alpha_1 = \alpha_2 = \alpha_3 = \cos\theta_1 = 0.577$ , and hence:

$$U_{\text{anis}} = 5.4 \times 10^5 (3 \times (0.577)^4) + 5.1 \times 10^3 (0.577^6) = 1.8 \times 10^5 \,\text{Jm}^{-3}$$

i.e. the magnetisation alignment along the <100> axes leads to the lowest energy state and therefore, these axes are 'easy'. However, the <111> axes are 'hard' as magnetisation leads to high energy states.

(c) Since  $\kappa > 0$  the summation  $\sum_{i} \left[ (S_i^x)^4 + (S_i^y)^4 + (S_i^z)^4 \right]$  must be as large as possible to lower the energy. We have:

$$(S_i^x)^4 + \left(S_i^y\right)^4 + (S_i^z)^4 = \left[ (S_i^x)^2 + \left(S_i^y\right)^2 + (S_i^z)^2 \right]^2 - 2\left[ \left(S_i^x S_i^y\right)^2 + \left(S_i^x S_i^z\right)^2 + \left(S_i^y S_i^z\right)^2 \right]$$

$$= S^4 - 2\left[ \left(S_i^x S_i^y\right)^2 + \left(S_i^x S_i^z\right)^2 + \left(S_i^y S_i^z\right)^2 \right]$$

Since S is a constant we need to minimise  $\left[\left(S_i^x S_i^y\right)^2 + \left(S_i^x S_i^z\right)^2 + \left(S_i^y S_i^z\right)^2\right]$ . This is satisfied for S along one of the cubic axes, e.g.  $S_i^x = S$ ,  $S_i^y = 0$ ,  $S_i^z = 0$ . Hence <100> directions are the easy axes of magnetisation.

## 2. Antiferromagnetism and Ferrimagnetism



i. The exchange energy is given by  $\sum_{i,j} -J_{\rm ex} \mathbf{S}_i \cdot \mathbf{S}_j$ . Treating the magnetisation as free vectors and making use of the fact that J=S the exchange interaction has the form  $-2J_{\rm ex}M^+M^-\cos(2\phi)=-2J_{\rm ex}M^2\cos(2\phi)$ , where for an antiferromagnet  $M=M^+=M^-$ . The magnetocrystalline anisotropy energy,  $K\sin^2\theta$ , is minimum for  $\theta=0,\pi$  rad (i.e. spin 'up' and spin 'down'). Therefore, the anisotropy energy is  $K\sin^2\left(\frac{\pi}{2}-\phi\right)=K\cos^2\phi$ . The Zeeman energy is  $-(M^++M^-)B\cos\phi=-2MB\cos\phi$ . The total energy is therefore:

$$E = -2J_{\rm ex}M^2\cos(2\phi) + K\cos^2\phi - 2MB\cos\phi$$

ii. The equilibrium angle  $\phi$  is determined by  $\frac{dE}{d\phi} = 0$ .

$$\frac{dE}{d\phi} = 4J_{\rm ex}M^2\sin(2\phi) - K\sin(2\phi) + 2MB\sin\phi = 0$$

Using the fact that  $\sin(2\phi) = 2\sin\phi\cos\phi$ , we have:

$$\cos \phi = \frac{MB}{K - 4J_{\rm ex}M^2}$$

(b) i. The Weiss model treats the exchange energy due to neighbouring spins as an effective 'molecular field'  $B_{\rm mf}$ . For example, the molecular field experience by a spin 'up' electron is due to the spin 'down' sub-lattice, and is proportional to the magnetisation of the spin 'down' sub-lattice, i.e.  $B_{\rm mf}^+ = -\lambda M^-$  and  $B_{\rm mf}^- = -\lambda M^+$ , where the '+' and '-' superscripts refer to spin 'up' and spin 'down' sub-lattices.



The magnetisation must simultaneously satisfy the equations:

$$\frac{M^{\pm}}{M_S^{\pm}} = B_J(y^{\pm}) \text{ and}$$

$$y^{\pm} = \frac{g_J \mu_B J^{\pm} (B + B_{\text{mf}}^{\pm})}{k_B T} = \frac{g_J \mu_B J^{\pm} (B - \lambda M^{\mp})}{k_B T}$$

where  $B_J$  is the Brillouin function and B is the applied magnetic field. The graphical solution for zero applied field is shown opposite.

It is clear that in a ferrimagnet the magnetisation of a given sub-lattice is a function of its saturation magnetisation  $M_s$  and J angular momentum. Therefore, the temperature dependence of the magnetisation for the two sub-lattices will be different, such that at the compensation temperature the magnetisation of the spin 'up' sub-lattice will cancel that of the spin 'down' sub-lattice.

ii. In the paramagnetic phase under small applied **B**-fields the term  $y^{\pm}$  is small. Using the approximation  $B_J(y) \approx \frac{(J+1)}{3J} y$ , we have:

$$\frac{M^{\pm}}{M_c^{\pm}} = B_J(y^{\pm}) \approx \frac{(J^{\pm} + 1)}{3J^{\pm}} y^{\pm} = \frac{g_J \mu_B (J^{\pm} + 1)(B - \lambda M^{\mp})}{3k_B T}$$

Rearranging:

$$M^{\pm} = \frac{c_{\pm}}{T}(B - \lambda M^{\mp})$$
 where  $C_{\pm} = \frac{g_J \mu_B (J^{\pm} + 1) M_S^{\pm}}{3k_B}$ 

Hence:

$$M^{+} = \frac{C_{+}}{T}(B - \lambda M^{-}) = \frac{C_{+}B}{T} - \frac{\lambda C_{+}}{T} \left[ \frac{C_{-}}{T}(B - \lambda M^{+}) \right] \text{ or}$$

$$M^{+} \left[ 1 - \frac{\lambda^{2}C_{+}C_{-}}{T^{2}} \right] = \left[ \frac{C_{+}}{T} - \frac{\lambda C_{+}C_{-}}{T^{2}} \right] B$$

Similarly, it easy to show that:

$$M^{-}\left[1 - \frac{\lambda^2 C_+ C_-}{T^2}\right] = \left[\frac{C_-}{T} - \frac{\lambda C_+ C_-}{T^2}\right] B$$

For weak magnetisations the susceptibility  $\chi = \frac{M}{H} = \frac{\mu_0 M}{B}$ . The susceptibility is due to both the spin 'up' and spin 'down' sub-lattices, i.e.  $\chi = \frac{\mu_0 (M^+ + M^-)}{B}$ . Hence:

$$\chi = \frac{\mu_0 \left[ \frac{(C_+ + C_-)}{T} - \frac{2\lambda C_+ C_-}{T^2} \right]}{\left[ 1 - \frac{\lambda^2 C_+ C_-}{T^2} \right]} = \frac{\mu_0}{T^2 - \theta^2} \left[ (C_+ + C_-)T - 2\lambda C_+ C_- \right]$$

where  $\theta^2 = \lambda^2 C_+ C_-$ .