

Министерство науки и высшего образования Российской Федерации Санкт-Петербургский политехнический университет Петра Великого Высшая школа программной инженерии

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Применение нейронных сетей для оценки трафика магазина

По направлению подготовки 09.03.04 - Программная инженерия 09.03.04_01 Технология разработки и сопровождения качественногопрограммного продукта

Студентка: Ли Ицзя гр.3530904/90102

Руководитель: О. Г. Малеев к.т.н. доцент ВШПИ ИКНТ

Применение Нейронных Сетей Для Оценки Трафика Магазина

СОДЕРЖАНИЕ

- 01 / Актуальность, цель и задачи темы ВКР
- 02 / Архитектура моделей
- 03 / Система оценки трафика магазина
- 04 / Проведенные тестирования
- 05 / Заключение

PART 01

Актуальность, цель и задачи темы ВКР

Relevance, purpose and objectives of the topic

Традиционные методы оценки трафика магазина

Заключение

Цель и задачи работы

Актуальность, цель и задачи

Обучение и устраивание

Система оценки трафика магазина

Цель

новая система подсчета потока клиентов основана на технологии нейронных сетей

Технологи

- 1. Алгоритм обнаружения
- 2. Алгоритм повторной идентификации посетителей
- 3. Алгоритм отслеживания

Задачи

- l. YOLOv5
- 2. FastReID
- 3. DeepSORT
- 4. Система оценки трафика магазина
- 5. Экспериментальные оценки для всех модулей

PART 02

Архитектура моделей

Model architecture

Алгоритм повторной идентификации людей

Архитектура моделей

Person ReID - алгоритм повторной идентификации человека, цель состоит в том, чтобы найти того же человека, что и объект поиска в базе данных изображений.

Метрическое обучение

Определим отображение

$$f(x): \mathbb{R}^F \to \mathbb{R}^D$$

которое сопоставляет изображение из исходного домена с доменом объекта. Затем определим метрическую функцию расстояния

$$D(x,y): \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$$

для вычисления расстояния между двумя собственными векторами. Нужно найти оптимальное отображение f(x), сводя к минимуму метрическую потерю сети.

Обучение и устраивание

Актуальность, цель и задачи

Система оценки трафика магазина

Тестирования

Заключение

FastReID Архитектура моделей

Актуальность, цель и задачи

Обучение и устраивание

Система оценки трафика магазина

Тестирования

Заключение

Основные принципы обучения

- 1. Предварительная обработка данных
- 2. Извлечение признаков
- 3. Метрическое обучение
- 4. Оптимизация модели: оптимизатора Adam

Актуальность, цель и задачи

Обучение и устраивание

Система оценки трафика магазина

Заключение

Задача отслеживания (Трекинга) множества объектов (Multi-Object Tracking, MOT): обнаружения объектов в каждом кадре видео, получения позиции на кадре и присвоения идентификатора каждому объекту.

DeepSORTАрхитектура моделей

Актуальность, цель и задачи

Обучение и устраивание

Система оценки трафика магазина

Тестирования

Заключение

Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric[C]//2017 IEEE international conference on image processing (ICIP). IEEE, 2017: 3645-3649.

PART 03

Система оценки трафика магазина

Store traffic estimation system

Актуальность, цель и задачи

Обучение и устраивание

Система оценки трафика магазина

Тестирования

Блок схема системы

Актуальность, цель и задачи

Обучение и устраивание

Система оценки трафика магазина

Тестирования

Заключение

<u></u>

track_id-28

track_id-43

Актуальность, цель и задачи

Обучение и устраивание

Система оценки трафика магазина

Тестирования

Заключение

track_id-124

track_id-139

track_id-188

track_id-28

Актуальность, цель и задачи

Обучение и устраивание

Система оценки трафика магазина

Тестирования

Заключение

track_id-43

track id-124

track id-139

PART 04

Проведенные тестирования

Conducted tests

Model FastReid

Основна на

ResNet50-IBN

Показатели

Тренировка

MSMT17 Dataset

Rank-1: Средняя точность первого совпадения mAP (mean Average Precision): средняя точность

Актуальность, цель и задачи

Обучение и устраивание

Система оценки трафика магазина

Тестирования

Заключение

Тестирование

MARKET-1501, DukeMTMC

Сравнение с другими моделями

Methods	Market	1501	DukeMTMC		
	Rank-1 / % ↑	mAP / % ↑	Rank-1 / % ↑	mAP / % ↑	
IANet (IVPR'19)	94.4	83.1	87.1	73.4	
Auto-ReID (ICCV'19)	94.5	85.1	-	-	
OSNet (ICCV'19)	94.8	84.9	88.6	73.5	
ABDNet (ICCV'19)	95.6	88.3	89.0	78.6	
Circle Loss (CVPR'20)	96.1	87.4	89.0	79.6	
Ours	95.7	88.4	90.1	81.3	

Model DeepSORT

Тестирование

MOT16, MOT17 Dataset

Показатели

MOTA (Multiple Object Tracking Accuracy): описывает качество построения траекторий людей **MOTP** (Multiple Object Tracking Precision): точность определения положения людей на кадрах видеопоследовательности.

IDF1: Возможность сохранения ID пешеходов

МТ: наиболее отслеживаемые цели

IDs: Количество изменений ID пешеходов

ML: наиболее пропущенные цели

Актуальность, цель и задачи

Обучение и устраивание

Система оценки трафика магазина

Заключение

Результаты экспериментов на наборе данных МОТ-16

Methods	MOTA ↑	MOTP ↑	MT / % ↑	ML / % ↓	IDs / %↓	FPS / Hz ↑
SORT	59.8	79.6	25.4	22.7	1423	8.6
DeepSORT (Original)	61.4	79.1	32.8	18.2	781	6.4
JDE	64.4	-	35.4	20	1544	18.5
Ours	66.2	80.8	35.3	17.6	760	9.8

Результаты экспериментов на наборе данных МОТ-17

Tracker	MOTA / % ↑	IDF1 / %↑	MT/% ↑	ML/%↓	IDs ↓
MFI	60.1	58.8	26.0	29.7	2065
ISE_MOT17R	60.1	56.4	28.5	28.1	2556
SLA	59.7	63.4	24.0	31.1	1647
LPC_MOT	59.0	66.8	29.9	33.9	1122
MPNTrack	58.8	61.7	28.8	33.5	1185
Ours	60.4	64.9	30.2	27.9	1192

Тестирование системы на реальном супермаркете

Актуальность, цель и задачи

Обучение и устраивание

Система оценки трафика магазина

Тестирования

Заключение

Точность отслеживания системы =
$$\frac{\text{число правильно отслеженных людей}}{\text{общее число людей}} = \frac{17}{20} = 85.0\%$$

Заключение

Ре-идентификация

- Реализована FastReID
- Тестирования на MARKET 1501 и

DukeMTMC

MAP 88.4%

Rank-1 95.7%

Отслеживание

- Реализована DeepSORT
- Тестирования на MOT16 и MOT17

MOTA 66.2% MOTP 80.8%

Системы оценки трафика магазина

- Разработана система трафика магазина
- Тестирования на реальном супермаркет

Точность 85.0%

СПАСИБО ЗА ВНИМАНИЕ! ©

Студентка: Ли Ицзя rp.3530904/90102

Руководитель: О. Г. Малеев к.т.н. доцент ВШПИ ИКНТ

Результаты работы были представлены на конференции «Современные технологии в теории и практике программирования». Доклад отмечен дипломом 1 степени.