

ÉCOLE CENTRALE DES ARTS ET MÉTIERS

RAPPORT DE LABORATOIRE

Réglages échantillonnés

Thomas Anizet	14164	
Hadrien Hachez	15306	Enseignant : B. Arnould
Armen Hagopian	14040	
Amaury Lekens	14027	
Alexis Nootens	16139	
Benoît Wéry	14256	

Séance 1

Étude d'un premier ordre par les 4 méthodes de discrétisation.

1.1 Introduction

Durant la première séance de laboratoire, il nous a été demandé du calculer l'expression récurrente d'un premier ordre par les 4 méthodes de discrétisation, à savoir :

- La méthode de Euler 1;
- La méthode de Euler 2;
- La méthode bilinéaire;
- La méthode équivalent échantillonné bloqué.

Une fois les 4 expressions calculées, l'objectif était d'utiliser le logiciel MATLAB afin de représenter les réponses temporelles et fréquentielles de ces 4 expressions. Ceci, dans la but d'analyser les différents paramètres de ces 4 méthodes de discrétisation.

1.2 Rappels théoriques

Actuellement, les méthodes de traitements numériques pour l'analyse des signaux ont largement pris le dessus comparé aux méthodes analogiques ancestrales. C'est pourquoi nous abordons les notions de procédés de discrétisation. En effet, en traitement numérique, un signal analogique est tout d'abord échantillonné (= discrétisé) avant d'être quantifié et finalement codé. La discrétisation est le procédé par lequel un signal continu est transformé un signal discret. Autrement dit, la discrétisation d'un signal continu f(t) revient à garder un certain nombre de valeurs discrètes (..., f(t0), f(t1), f(t2), ...) correspondant aux valeurs (..., t0, t1, t2, ...) de la variable t: On parle également d'échantillonnage pour les signaux. les différentes valeurs discrètes (..., f(t0), f(t1), f(t2), ...) varient en fonction de la période d'échantillonnage. La figure 1.1 ci-dessous présente le principe d'échantillonnage.

 ${\it Figure}~1.1-{\it \acute{E}chantillonnage}~d'un~signal~continu~sinuso\"{i}dal.$

Ayant introduit la notion de discrétisation, il est intéressant de rappeler le principe des 4 méthodes de discrétisation étudiées en laboratoire :

La méthode de Euler 1 :

La méthode de Euler 2 :

La méthode bilinéaire :

La méthode équivalent échantillonné bloqué :

1.3 Analyse

1.4 Conclusion

Séance 2

Synthèse d'un régulateur continu.

2.1 Introduction

Durant cette seconde séance de laboratoire, il a été demandé aux étudiants de synthétiser sur le logiciel MATLAB un régulateur continu en boucle fermée. Une fois cette étape réalisée, la discrétisation de ce régulateur selon 3 périodes d'échantillonnage a été effectuée afin d'obtenir 3 régulateurs discrets. Le but final était alors de comparer, grâce à Simulink, les performances du régulateur continu avec les 3 régulateurs discrets obtenus.

- 2.2 Notions théoriques
- 2.3 Analyse
- 2.4 Conclusion

Séance 3

Synthèse d'un régulateur discret.

3.1 Introduction

Durant la troisième et dernière séance de laboratoire, il a été demandé aux élèves de synthétiser sur le logiciel MATLAB un régulateur discret de compensation en boucle fermée et d'en analyser la réponse. Pour ce faire, il a tout d'abord fallu calculer l'équivalent échantillonné bloqué de ce régulateur (discrétisation). Ensuite, il a fallut imposer un intégrateur dans le régulateur discret de compensation.

- 3.2 Notions théoriques
- 3.3 Analyse
- 3.4 Conclusion