FASHION CLASS CLASSIFICATION

Meet Shah

1. PROBLEM STATEMENT AND BUSINESS CASE UNDERSTANDING

Fashion training set consists of 70,000 images divided into 60,000 training and 10,000 testing samples. Dataset sample consists of 28x28 grayscale image, associated with a label from 10 classes.

The 10 classes are as follows:

 $0 \Rightarrow T-\text{shirt/top } 1 \Rightarrow Trouser 2 \Rightarrow Pullover 3 \Rightarrow Dress 4 \Rightarrow Coat 5 \Rightarrow Sandal 6 \Rightarrow Shirt 7 \Rightarrow Sneaker 8 \Rightarrow Bag 9 \Rightarrow Ankle boot$

Each image is 28 pixels in height and 28 pixels in width, for a total of 784 pixels in total. Each pixel has a single pixel-value associated with it, indicating the lightness or darkness of that pixel, with higher numbers meaning darker. This pixel-value is an integer between 0 and 255.

2. Importing Essential Libraries & Our Fashion Mnist Data

```
import pandas as pd
In [1]:
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         #import plotly.express as px
         import warnings
         warnings.filterwarnings('ignore')
In [2]:
         train_df = pd.read_csv('fashion-mnist_train.csv', sep = ',')
         test_df = pd.read_csv('fashion-mnist_test.csv', sep = ',')
         train_df.head(10)
In [3]:
Out[3]:
           label pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 pixel9 ... pixel775 pixel77
         0
               2
                      0
                                   0
                                          0
                                                 0
                                                        0
                                                               0
                                                                      0
                                                                             0
               9
                      0
                                    0
                                          0
                                                 0
                                                        0
                                                               0
                                                                      0
                                                                             0
                                                                                         0
                                   0
                                                        0
                                                               0
                                                                      5
         2
               6
                                          0
                                                 0
                                                                             0
```

	label	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	•••	pixel775	pixel77
3	0	0	0	0	1	2	0	0	0	0		3	
4	3	0	0	0	0	0	0	0	0	0		0	
5	4	0	0	0	5	4	5	5	3	5		7	
6	4	0	0	0	0	0	0	0	0	0		14	
7	5	0	0	0	0	0	0	0	0	0		0	
8	4	0	0	0	0	0	0	3	2	0		1	
9	8	0	0	0	0	0	0	0	0	0		203	21

10 rows × 785 columns

n [4]:	t	est_df	head(10)										
ıt[4]:		label	pixel1	pixel2	pixel3	pixel4	pixel5	pixel6	pixel7	pixel8	pixel9	•••	pixel775	pixel77
	0	0	0	0	0	0	0	0	0	9	8		103	8
	1	1	0	0	0	0	0	0	0	0	0		34	
	2	2	0	0	0	0	0	0	14	53	99		0	
	3	2	0	0	0	0	0	0	0	0	0		137	12
	4	3	0	0	0	0	0	0	0	0	0		0	
	5	2	0	0	0	0	0	44	105	44	10		105	6
	6	8	0	0	0	0	0	0	0	0	0		0	
	7	6	0	0	0	0	0	0	0	1	0		174	13
	8	5	0	0	0	0	0	0	0	0	0		0	
	9	0	0	0	0	0	0	0	0	0	0		57	7

10 rows × 785 columns

```
In [5]: train_df.shape
Out[5]: (60000, 785)
In [6]: test_df.shape
Out[6]: (10000, 785)
```

3. Data Visualization

Converting our data from 'dataframe' to an 'array' so that we can visualize our data.

```
In [7]: training = np.array(train_df, dtype = 'float32')
In [8]: test = np.array(test_df, dtype = 'float32')
```

```
In [9]: plt.imshow(training[55, 1:].reshape(28,28))
#plt.savefig('Example Image.png')
```

Out[9]: <matplotlib.image.AxesImage at 0x1b2b7395f40>

Moreover, we can use a for loop and create a grid of random images.

Model Building & Training

```
In [11]:
         # Splitting the Training Set
          X_train = training[:, 1:]/255
          y_train = training[:, 0]
          # Splitting the Test Set
          X_test = test[:, 1:]/255
          y_test = test[:, 0]
In [12]:
         from sklearn.model_selection import train_test_split
          X_train, X_validate, y_train, y_validate = train_test_split(X_train, y_train, test_s
In [13]:
          X_train.shape
Out[13]: (48000, 784)
          y_train.shape
In [14]:
Out[14]: (48000,)
In [15]:
          # Remember that * unpacks the tuple
```

```
X_train = X_train.reshape(X_train.shape[0], *(28, 28, 1))
          X_{\text{test}} = X_{\text{test.reshape}}(X_{\text{test.shape}}[0], *(28, 28, 1))
          X validate = X validate.reshape(X validate.shape[0], *(28, 28, 1))
         X_train.shape
In [16]:
Out[16]: (48000, 28, 28, 1)
In [17]:
          X_test.shape
Out[17]:
         (10000, 28, 28, 1)
In [18]:
          X_validate.shape
Out[18]: (12000, 28, 28, 1)
In [19]:
          import tensorflow
          tensorflow.__version__
In [20]:
         '2.3.1'
Out[20]:
          from tensorflow.keras.models import Sequential
In [21]:
          from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten, Dropout
          from tensorflow.keras.optimizers import Adam
          from tensorflow.keras.callbacks import TensorBoard
          cnn = Sequential()
In [22]:
In [23]:
          # Was first run with filter = 32 and then later changed it to 64 for better accuracy
          cnn.add(Conv2D(filters = 64, kernel_size = 3, input_shape = [28, 28, 1], activation
In [24]:
          cnn.add(MaxPooling2D(pool_size = (2, 2)))
In [25]:
          cnn.add(Flatten())
          cnn.add(Dense(units = 32, activation = 'relu'))
In [26]:
In [27]:
          cnn.add(Dense(units = 10, activation = 'sigmoid'))
          #cnn.add(Dropout(0.25))
In [ ]:
          cnn.compile(loss = 'sparse_categorical_crossentropy', optimizer = Adam(lr=0.001), me
In [28]:
          cnn.fit(X_train, y_train, epochs = 50, batch_size = 512, verbose = 1, validation_dat
In [29]:
         Epoch 1/50
         94/94 [========================] - 41s 431ms/step - loss: 0.8849 - accuracy:
         0.6748 - val_loss: 0.4992 - val_accuracy: 0.8219
         Epoch 2/50
         94/94 [===============] - 34s 364ms/step - loss: 0.4484 - accuracy:
         0.8426 - val_loss: 0.4152 - val_accuracy: 0.8547
         Epoch 3/50
         94/94 [============] - 34s 361ms/step - loss: 0.3906 - accuracy:
         0.8638 - val_loss: 0.3742 - val_accuracy: 0.8714
         Epoch 4/50
         94/94 [============] - 35s 376ms/step - loss: 0.3556 - accuracy:
         0.8764 - val_loss: 0.3692 - val_accuracy: 0.8717
         Epoch 5/50
```

```
0.8849 - val_loss: 0.3280 - val_accuracy: 0.8832
Epoch 6/50
0.8901 - val_loss: 0.3213 - val_accuracy: 0.8885
Epoch 7/50
0.8943 - val_loss: 0.3119 - val_accuracy: 0.8907
Epoch 8/50
0.8996 - val_loss: 0.3050 - val_accuracy: 0.8939
Epoch 9/50
94/94 [============= ] - 34s 366ms/step - loss: 0.2782 - accuracy:
0.9022 - val loss: 0.2902 - val accuracy: 0.8979
Epoch 10/50
0.9062 - val loss: 0.2968 - val accuracy: 0.8951
Epoch 11/50
94/94 [============= ] - 34s 364ms/step - loss: 0.2608 - accuracy:
0.9079 - val loss: 0.2808 - val accuracy: 0.9022
Epoch 12/50
0.9119 - val_loss: 0.2795 - val_accuracy: 0.9021
Epoch 13/50
94/94 [============== ] - 33s 348ms/step - loss: 0.2441 - accuracy:
0.9138 - val_loss: 0.2921 - val_accuracy: 0.8962
Epoch 14/50
0.9141 - val_loss: 0.2721 - val_accuracy: 0.9038
Epoch 15/50
94/94 [============== ] - 34s 356ms/step - loss: 0.2289 - accuracy:
0.9197 - val_loss: 0.2735 - val_accuracy: 0.9023
Epoch 16/50
0.9210 - val_loss: 0.2593 - val_accuracy: 0.9084
Epoch 17/50
0.9243 - val_loss: 0.2598 - val_accuracy: 0.9078
Epoch 18/50
0.9249 - val_loss: 0.2567 - val_accuracy: 0.9087
Epoch 19/50
0.9255 - val_loss: 0.2551 - val_accuracy: 0.9090
Epoch 20/50
94/94 [============] - 33s 356ms/step - loss: 0.2013 - accuracy:
0.9291 - val loss: 0.2563 - val accuracy: 0.9078
Epoch 21/50
94/94 [============ ] - 33s 355ms/step - loss: 0.2027 - accuracy:
0.9281 - val loss: 0.2604 - val accuracy: 0.9081
Epoch 22/50
94/94 [============ ] - 33s 355ms/step - loss: 0.1920 - accuracy:
0.9321 - val loss: 0.2521 - val accuracy: 0.9093
Epoch 23/50
94/94 [============ ] - 34s 365ms/step - loss: 0.1875 - accuracy:
0.9339 - val loss: 0.2531 - val accuracy: 0.9084
Epoch 24/50
94/94 [============ ] - 33s 356ms/step - loss: 0.1832 - accuracy:
0.9364 - val loss: 0.2563 - val accuracy: 0.9094
Epoch 25/50
94/94 [============ ] - 33s 356ms/step - loss: 0.1789 - accuracy:
0.9383 - val loss: 0.2498 - val accuracy: 0.9115
Epoch 26/50
94/94 [=============] - 33s 355ms/step - loss: 0.1757 - accuracy:
0.9381 - val loss: 0.2470 - val accuracy: 0.9120
Epoch 27/50
94/94 [=============] - 33s 355ms/step - loss: 0.1675 - accuracy:
0.9421 - val loss: 0.2486 - val accuracy: 0.9128
Epoch 28/50
```

```
0.9408 - val_loss: 0.2552 - val_accuracy: 0.9125
Epoch 29/50
0.9422 - val_loss: 0.2497 - val_accuracy: 0.9114
Epoch 30/50
94/94 [============= ] - 33s 356ms/step - loss: 0.1580 - accuracy:
0.9440 - val_loss: 0.2635 - val_accuracy: 0.9093
Epoch 31/50
0.9458 - val_loss: 0.2558 - val_accuracy: 0.9081
Epoch 32/50
94/94 [============= ] - 34s 365ms/step - loss: 0.1506 - accuracy:
0.9477 - val loss: 0.2515 - val accuracy: 0.9103
Epoch 33/50
0.9483 - val loss: 0.2482 - val accuracy: 0.9139
Epoch 34/50
94/94 [============ ] - 33s 354ms/step - loss: 0.1466 - accuracy:
0.9490 - val loss: 0.2708 - val accuracy: 0.9063
Epoch 35/50
0.9508 - val_loss: 0.2637 - val_accuracy: 0.9089
Epoch 36/50
94/94 [============= ] - 33s 352ms/step - loss: 0.1365 - accuracy:
0.9532 - val_loss: 0.2634 - val_accuracy: 0.9093
Epoch 37/50
0.9532 - val_loss: 0.2572 - val_accuracy: 0.9103
Epoch 38/50
94/94 [=============] - 34s 364ms/step - loss: 0.1294 - accuracy:
0.9551 - val_loss: 0.2561 - val_accuracy: 0.9128
Epoch 39/50
0.9543 - val_loss: 0.2584 - val_accuracy: 0.9133
Epoch 40/50
0.9568 - val_loss: 0.2574 - val_accuracy: 0.9138
Epoch 41/50
0.9590 - val_loss: 0.2619 - val_accuracy: 0.9113
Epoch 42/50
0.9602 - val_loss: 0.2631 - val_accuracy: 0.9118
Epoch 43/50
94/94 [============] - 34s 360ms/step - loss: 0.1146 - accuracy:
0.9604 - val loss: 0.2787 - val accuracy: 0.9084
Epoch 44/50
94/94 [============ ] - 33s 352ms/step - loss: 0.1123 - accuracy:
0.9617 - val loss: 0.2659 - val accuracy: 0.9139
Epoch 45/50
94/94 [============ ] - 36s 381ms/step - loss: 0.1059 - accuracy:
0.9648 - val loss: 0.2669 - val accuracy: 0.9127
Epoch 46/50
94/94 [============ ] - 34s 362ms/step - loss: 0.1077 - accuracy:
0.9640 - val loss: 0.2693 - val accuracy: 0.9121
Epoch 47/50
94/94 [============ ] - 33s 351ms/step - loss: 0.1034 - accuracy:
0.9648 - val loss: 0.2665 - val accuracy: 0.9135
Epoch 48/50
94/94 [============ ] - 33s 356ms/step - loss: 0.1005 - accuracy:
0.9659 - val loss: 0.3021 - val accuracy: 0.9014
Epoch 49/50
94/94 [============ ] - 33s 352ms/step - loss: 0.1001 - accuracy:
0.9656 - val loss: 0.2731 - val accuracy: 0.9146
Epoch 50/50
94/94 [=============] - 33s 352ms/step - loss: 0.0950 - accuracy:
0.9679 - val_loss: 0.2716 - val_accuracy: 0.9162
```

```
evaluation = cnn.evaluate(X_test, y_test)
In [30]:
          print('Test Accuracy : {:.3f}'.format(evaluation[1]))
         313/313 [================= ] - 3s 8ms/step - loss: 0.2745 - accuracy: 0.
         9172
         Test Accuracy: 0.917
In [31]: predicted_classes = cnn.predict_classes(X_test)
         WARNING:tensorflow:From <ipython-input-31-ef5bdc73df9d>:1: Sequential.predict_classe
         s (from tensorflow.python.keras.engine.sequential) is deprecated and will be removed
         after 2021-01-01.
         Instructions for updating:
         Please use instead: * `np.argmax(model.predict(x), axis=-1)`, if your model does mu
         lti-class classification (e.g. if it uses a `softmax` last-layer activation).* `(m
         odel.predict(x) > 0.5).astype("int32")`, if your model does binary classification
         (e.g. if it uses a `sigmoid` last-layer activation).
In [32]: predicted_classes
Out[32]: array([0, 1, 2, ..., 8, 8, 1], dtype=int64)
In [33]:
         L = 5
          W = 5
          fig, axes = plt.subplots(L, W, figsize = (12,12))
          axes = axes.ravel()
          for i in np.arange(0, L * W):
              axes[i].imshow(X_test[i].reshape(28, 28))
              axes[i].set_title("Prediction Class = {:0.1f}\n True Class = {:0.1f}".format(pre
              axes[i].axis('off')
          plt.subplots_adjust(wspace = 0.5)
```

#fig.savefig('Grid Image Showing Predicted Class vs True Class.png')

In [34]: from sklearn.metrics import confusion_matrix
 cm = confusion_matrix(y_test, predicted_classes)
 plt.figure(figsize = (14, 10))
 sns.heatmap(cm, annot = True)
 #plt.savefig('Heatmap Showing Predicted class vs True Class.png')


```
In [35]: from sklearn.metrics import classification_report

target_names = ["Class {}".format(i) for i in range(1, 11)]
    print(classification_report(y_test, predicted_classes, target_names = target_names))
```

	precision	recall	f1-score	support
61 1	0.05	0.07	0.06	1000
Class 1	0.85	0.87	0.86	1000
Class 2	0.99	0.99	0.99	1000
Class 3	0.91	0.84	0.87	1000
Class 4	0.92	0.92	0.92	1000
Class 5	0.86	0.91	0.88	1000
Class 6	0.99	0.96	0.98	1000
Class 7	0.77	0.78	0.77	1000
Class 8	0.95	0.96	0.96	1000
Class 9	0.98	0.98	0.98	1000
Class 10	0.96	0.97	0.97	1000
accuracy			0.92	10000
macro avg	0.92	0.92	0.92	10000
weighted avg	0.92	0.92	0.92	10000

Conclusion

As seen in output no. 29 & 30, our accuracies are as follows:

- 1. Training Data Accuracy 96.79%
- 2. Validation Data Accuracy 91.62%
- 3. Testing Data Accuracy 91.7%

So when we print out our classification report we finally get an average accuracy of 92%.