Inferência Estatística Paramétrica

Propriedades dos Estimadores Pontuais

Camila Borelli Zeller

Introdução

- Já vimos três métodos de construção de estimadores pontuais para parâmetros desconhecidos.
 - Método dos Momentos.
 - Método de Máxima Verossimilhança.
 - Método dos Mínimos Quadrados.
- Em alguns casos, estes métodos obtém o mesmo estimador e em diversos outros casos não.

- Qual estimador devo utilizar?
- Como selecionar o melhor estimador?
- Quais as propriedades que um bom estimador deve ter?

- O estimador $\widehat{\boldsymbol{\theta}}$ de um parâmetro desconhecido $\boldsymbol{\theta}$ é uma estatística e como tal uma variável aleatória que tem uma lei de probabilidade.
- Se consideramos dois estimadores $\widehat{\theta_1}$ e $\widehat{\theta_2}$ para o mesmo parâmetro θ , podemos derivar as leis de probabilidades dos estimadores e compará-las de algum modo.
- Por exemplo, se $\widehat{\boldsymbol{\theta}}_1 \sim U(\boldsymbol{\theta} 0.5, \boldsymbol{\theta} + 0.5)$ e $\widehat{\boldsymbol{\theta}}_2 \sim U(\boldsymbol{\theta} 0.01, \boldsymbol{\theta} + 0.01)$, qual estimador devo utilizar? (Questão 1)
- Em geral, esta comparação não é tão direta!!!

• A distribuição de $\widehat{\boldsymbol{\theta}} = \widehat{\boldsymbol{\theta}}(X_1, \dots, X_n)$ nos diz como os valores observados $\widehat{\boldsymbol{\theta}} = \widehat{\boldsymbol{\theta}}(x_1, \dots, x_n)$ (estimativas) estão distribuídos e gostaríamos de ter valores de $\widehat{\boldsymbol{\theta}} = \widehat{\boldsymbol{\theta}}(X_1, \dots, X_n)$ distribuídos próximos de $\boldsymbol{\theta}$.

- Como selecionar o melhor estimador? (Questão 2)
- Intuitivamente, queremos um estimador que seja "próximo" do verdadeiro valor do parâmetro.

• Sabemos que a média e a variância são medidas de locação e dispersão, daí o sentido de $\widehat{\boldsymbol{\theta}} = \widehat{\boldsymbol{\theta}}(X_1, \dots, X_n)$ ser "próximo" de $\boldsymbol{\theta}$ seria

$$E[\widehat{\boldsymbol{\theta}} = \widehat{\boldsymbol{\theta}}(X_1, \dots, X_n)]$$
 "próximo" de $\boldsymbol{\theta}$ e $Var[\widehat{\boldsymbol{\theta}} = \widehat{\boldsymbol{\theta}}(X_1, \dots, X_n)]$ "próximo" de 0 .

Propriedades dos Estimadores

• Precisamos definir propriedades desejáveis para os estimadores.

• Quais as propriedades que um bom estimador deve ter? (Questão 3)

• Vejamos um exemplo!!

Estimadores Não Viesados

Um estimador $\widehat{\theta}$ é considerado um estimador não viesado (não tendencioso ou não viciado) de θ se

$$\mathbf{E}[\widehat{\boldsymbol{\theta}}] = \boldsymbol{\theta},\tag{1}$$

para todo $\boldsymbol{\theta}$.

- Em outras palavras, um estimador é não viesado se o seu valor esperado coincide com o parâmetro de interesse.
- $\bullet\,$ Se (1) não valer, $\widehat{\boldsymbol{\theta}}$ diz-se viesado e a diferença

$$E(\widehat{\boldsymbol{\theta}}) - \boldsymbol{\theta}$$

é chamada viés (ou vício, desvio) de $\widehat{\boldsymbol{\theta}}$.

• Desenho esquemático!!

• Vejamos exemplos!!

Primeiro Critério

Princípio da Estimação Não Viesada

Ao escolher dentre diversos estimadores diferentes de θ , selecione um que seja não viesado.

• Será que apenas este critério é suficiente?

Proposição

Se X_1, \ldots, X_n forem uma amostra aleatória de uma distribuição com média $\mu = E[X]$, então \overline{X} é um estimador não viesado de μ . Se além disso, a distribuição for contínua e simétrica, então \tilde{X} (mediana amostral) é também um estimador não viesado de μ .

• Precisamos de um meio de selecionar os estimadores não viesados.

A propriedade de ser não viesado, embora desejável para um estimador, não deve ser o único critério utilizado para comparar estimadores, também devemos ter estimadores mais "concentrados" em torno do verdadeiro valor do parâmetro.

Erro Padrão do Estimador

Convém notar que a variância ou o desvio padrão de um estimador fornece uma idéia da sua precisão.

O erro padrão de um estimador θ é o seu desvio padrão $\sigma_{\widehat{\theta}} = \sqrt{Var[\widehat{\theta}]}.$

• Vejamos um exemplo!!

${\it Estimadores \ Eficientes}$

Dados dois estimadores $\widehat{\theta_1}$ e $\widehat{\theta_2}$, não viesados para um parâmetro θ , dizemos que $\widehat{\theta_1}$ é mais eficiente do que $\widehat{\theta_2}$ se

$$Var[\widehat{\boldsymbol{\theta}_1}] < Var[\widehat{\boldsymbol{\theta}_2}].$$

• Vejamos exemplos!!

Segundo Critério

Princípio da Estimação Não Viesada de Mínima Variância

Dentre todos os estimadores não viesados de θ , escolha aquele que tiver variância mínima. O $\hat{\theta}$ é chamado estimador não viesado de mínima variância de θ .

• Mais detalhes serão dados em Inferência II