Lecture 5 More on perfect secrecy

Nicola Laurenti October 14, 2020

Except where otherwise stated, this work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

Lecture 5— Contents

Review of basic Information Theory notions

The price of perfect secrecy Necessary condition Unconditional secrecy

Classification of attacks

Security goals, threats, services and mechanisms

Visualization of entropy relationships

x and y independent

Chain rules for (conditional) entropy

Some basic properties of entropy:

- 1. $H(x,z) \ge H(x)$
- 2. $H(x|z) \leq H(x)$
- 3. H(x,z) = H(x|z) + H(z)

They can be generalized to any collection of rvs $x_1, \ldots, x_n, y_1, \ldots, y_m, z_1, \ldots, z_\ell$ as the following chain rules:

- 1. $H(x_1,\ldots,x_n,z_1,\ldots,z_\ell|y_1,\ldots,y_m) \geq H(x_1,\ldots,x_n|y_1,\ldots,y_m)$, entropy increases with more conditioned variables
- 2. $H(x_1, \ldots, x_n | y_1, \ldots, y_m, z_1, \ldots, z_\ell) \leq H(x_1, \ldots, x_n | y_1, \ldots, y_m)$, entropy decreases with more conditioning variables
- 3. $H(x_1, \ldots, x_n, z_1, \ldots, z_\ell | y_1, \ldots, y_m) = H(x_1, \ldots, x_n | y_1, \ldots, y_m, z_1, \ldots, z_\ell) + H(z_1, \ldots, z_\ell | y_1, \ldots, y_m)$

Necessary condition for perfect secrecy

Theorem

A necessary condition for perfect secrecy and decodability is that

$$H(k) \ge H(u)$$

Proof.

Assume perfect secrecy holds, that is u is independent of x. Then,

$$\begin{split} H(u) &= H(u|x) & \text{by independence of } u, x \\ &\leq H(u, k|x) & \text{by chain rule 1} \\ &= H(u|x, k) + H(k|x) & \text{by chain rule 3} \\ &= H(k|x) & \text{by perfect decodability} \\ &\leq H(k) & \text{by chain rule 2} \end{split}$$

Necessary condition for perfect secrecy (cont.)

Corollary

In a system with perfect secrecy for all message distributions p_u we have

$$\log_2 |\mathcal{K}| \ge H(k) \ge \log_2 |\mathcal{M}|$$

Proof.

 $H(k) \leq \log_2 |\mathcal{K}|$ is the upper bound for entropy.

From the previous theorem $H(k) \geq H(u)$ must hold for any p_u . In particular, for uniform $u \sim \mathcal{U}(\mathcal{M})$, where $H(u) = \log_2 |\mathcal{M}|$.

Corollary

In a system with $\mathcal{M}=\mathcal{A}^{\ell_u}$, $\mathcal{K}=\mathcal{A}^{\ell_k}$, and perfect secrecy, it is $\ell_k > \ell_u$

So, in order to have perfect secrecy, the key must be "at least as long as" the message. Nicola Laurenti @ @@ More on perfect secrecy October 14, 2020

7 / 14

Why "one-time"?

We may wonder if, in case several messages u_1, u_2, \ldots need to be encrypted, the same key k can be reused without sacrificing perfect secrecy, that is

$$x_1 = E_k(u_1)$$
 , $x_2 = E_k(u_2)$, $x_3 = E_k(u_3)$, \cdots

Alas! This is not possible. In fact, observe that the above problem can be viewed as the encryption of a large plaintext message $u = (u_1, u_2, \ldots)$ into a large ciphertext $x = (x_1, x_2, \ldots)$ with the same key k.

So, the entropy of u increases with each u_i , while that of k remains constant, eventually violating the necessary condition for perfect secrecy

Example

In fact, it turns out that by reusing k, u is no longer statistically independent from x. For instance if $u_1 = u_2$, it must also be $x_1 = x_2$

Repeated use of the same key can only offer computational secrecy

Nicola Laurenti

More properties of the Kullback-Leibler divergence

1. (relation with entropy) If x, y are discrete and $y \sim \mathcal{U}(\mathcal{A}_x)$, $D(p_x || p_y) = H(y) - H(x)$. Proof:

$$D(p_x || p_y) = E\left[\log_2 \frac{p_x(x)}{p_y(x)}\right] = E\left[\log_2 p_x(x)\right] - E\left[\log_2 p_y(x)\right] = -H(x) + \log_2 |\mathcal{A}_x|$$

2. (relation with mutual information) Let x, y have joint pmd p_{xy} and let x', y' be independent rvs with $p_{x'} = p_x$ and $p_{y'} = p_y$. Then,

$$D(p_{xy}||p_{x'y'}) = E\left[\log_2 \frac{p_{xy}(x,y)}{p_{x'y'}(x,y)}\right] = E\left[\log_2 \frac{p_{xy}(x,y)}{p_{x'}(x)p_{y'}(y)}\right]$$

$$= E\left[\log_2 \frac{p_{xy}(x,y)}{p_{x}(x)p_{y}(y)}\right] = I(x,y) \quad (\text{aka } D(p_{xy}||p_xp_y))$$

Measuring unconditional (not perfect) secrecy

For a non perfect secrecy system M

$$\begin{split} d(M, M^{\star}) &= \max_{a \in \mathcal{M}} d_{\mathsf{V}}(p_{\tilde{u}x|u=a}, p_{\tilde{u}^{\star}x^{\star}|u^{\star}=a}) \\ &\leq \max_{a \in \mathcal{M}} d_{\mathsf{V}}(p_{\tilde{u}x|u=a}, p_{\tilde{u}^{\star}x|u^{\star}=a}) + d_{\mathsf{V}}(p_{\tilde{u}^{\star}x|u=a}, p_{\tilde{u}^{\star}x^{\star}|u^{\star}=a}) \\ &\leq \max_{a \in \mathcal{M}} \mathrm{P}\left[\tilde{u} \neq u|u=a\right] + d_{\mathsf{V}}(p_{ux}, p_{u}p_{x}) \end{split}$$

Then, by Pinsker inequality

$$\leq \max_{a \in \mathcal{M}} P\left[\tilde{u} \neq u | u = a\right] + \frac{1}{2} \sqrt{D\left(p_{ux} \| p_u p_x\right)}$$
$$= \max_{a \in \mathcal{M}} P\left[\tilde{u} \neq u | u = a\right] + \frac{1}{2} \sqrt{I(u, x)}$$

If in a system M, we have $P\left[\tilde{u} \neq u | u = a\right] \leq \varepsilon'$ and $I(u,x) \leq \varepsilon''$, then it is ε -unconditionally secure with $\varepsilon = \varepsilon' + \frac{1}{2}\sqrt{\varepsilon''}$

Nicola Laurenti

More on perfect secrecy

Classification of attacks against encryption

The attacks carried out against an encryption method reusing the same key for many instances are classified according to:

- known ciphertext attacks (KCA) after observing N ciphertexts x_1, \ldots, x_N the attacker aims to find u_N , or the key k
- known plaintext attacks (KPA) after observing N-1 ciphertexts-plaintext pairs $(u_1,x_1),\ldots,(u_{N-1},x_{N-1})$ and the ciphertext x_N the attacker aims to find the plaintext u_N , or the key k
- chosen plaintext attacks (CPA) the attacker is allowed to access the encoder E_k ; he can choose N-1 plaintext values $a_1,\ldots,a_{N-1}\in\mathcal{M}$ and learn the corresponding ciphertext values $b_1,\ldots,b_{N-1}\in\mathcal{X}$, with $b_i=E_k(a_i)$. Then he aims to find the plaintext u_N , or the key k from the observation of x_N
- chosen ciphertext attacks (CCA) the attacker is allowed to temporarily access the decoder D_k ; he can choose N-1 ciphertext values $b_1,\ldots,b_{N-1}\in\mathcal{X}$ and learn the corresponding plaintexts $a_1,\ldots,a_{N-1}\in\mathcal{M}$. Then he aims to find the plaintext u_N , or the key k from the observation of x_N

Classification of attacks against encryption

Ordering of attacks

In increasing order of strength (or information available to the attacker) we have

Which of the above attack classes can break a "one-time pad" reusing the same key k?

Summary

In this lecture we have:

- reviewed basic notions of Information Theory:
 - entropy of a rv
 - joint and conditional entropies
 - mutual information
- stated a necessary condition for perfect secrecy
- introduced unconditional secrecy measures
- classified attacks according to the information available to the attackers

Assignment

- class notes
- ► textbook, §3.4–§3.6

End of lecture

THROUGH 2D YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

this comic reproduced from XKCO URL: xkcd.com/936