Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention

Jingyang Yuan^{1,2}, Huazuo Gao², Damai Dai², Junyu Luo¹, Liang Zhao², Zhengyan Zhang², Zhenda Xie², Y. X. Wei², Lean Wang², Zhiping Xiao³, Yuqing Wang², Chong Ruan², Ming Zhang¹, Wenfeng Liang², Wangding Zeng²

Correspondence to: Ming Zhang<mzhang cs@pku.edu.cn>, Wenfeng Liang <wenfeng.liang@deepseek.com> and Wangding Zeng <zengwangding@deepseek.com>

¹Peking Unviersity ²DeepSeek-AI ³University of Washington

The Challenges of Long-Context LLMs

Softmax Attention Faces...

- High Computational Cost
- Latency Bottleneck

Existing Sparse Attention Faces ...

- Unable to Speedup Training
- Illusion of Inference Efficiency

The NSA Solution: A Natively Trainable Sparse Attention

High Speed

Native Sparse Attention: Trainability & High Efficiency

Key Innovation: Natively Trainable Design

NSA Architecture: Enable End-to-end Training

FlashAttention

Group Query Attention

Figure 2: Overview of grouped-query method. Multi-head attention has H query, key, and value heads. Multi-query attention shares single key and value heads across all query heads. Grouped-query attention instead shares single key and value heads for each group of query heads, interpolating between multi-head and multi-query attention.

Key Innovation: Hardware-Aligned System

- Hardware-Friendly Blockwise Loading
- Customized Head-wise Vectorized Kernel
- Balanced Arithmetic Intensity

Evaluating Performance

Outperforming Full Attention!

Model		MMLU-PRO						MBPP		Avg.	
	Acc. 5-shot	Acc. 5-shot	Acc. 5-shot	Acc. 3-shot	Acc. 8-shot	Acc. 4-shot	F1 1-shot	Pass@1 3-shot	Pass@1 0-shot		
Full Attn	0.567	0.279	0.576	0.497	0.486	0.263	0.503	0.482	0.335	0.443	
NSA	0.565	0.286	0.587	0.521	0.520	0.264	0.545	0.466	0.348	0.456	

Superior General Performance

Model	SQA			MQA				Synthetic		Code	Avg.
	MFQA-en	MFQA-zh	Qasper	HPQ	2Wiki	GovRpt	Dur	PassR-en	PassR-zh	LCC	8
H2O	0.428	0.429	0.308	0.112	0.101	0.231	0.208	0.704	0.421	0.092	0.303
InfLLM	0.474	0.517	0.356	0.306	0.250	0.277	0.257	0.766	0.486	0.143	0.383
Quest	0.495	0.561	0.365	0.295	0.245	0.293	0.257	0.792	0.478	0.135	0.392
Exact-Top	0.502	0.605	0.397	0.321	0.288	0.316	0.291	0.810	0.548	0.156	0.423
Full Attn	0.512	0.623	0.409	0.350	0.305	0.324	0.294	0.830	0.560	<u>0.163</u>	0.437
NSA	0.503	0.624	0.432	0.437	0.356	0.307	0.341	0.905	0.550	0.232	0.469

Generation Token Limit	8192	16384
Full Attention-R	0.046	0.092
NSA-R	0.121	0.146

Reasoning Ability

Long-Context Capability: LongBench

Efficiency: Substantial Speedups

Forward/Prefill Speedup

Backward Speedup

Speedup in All Phases

Decoding Speedup

Context Length	8192	16384	32768	65536
Full Attention NSA	8192 2048	16384 2560	32768 3584	65536 5632
Expected Speedup	4 ×	6.4×	9.1×	11.6×

Future Work

- ✓ Investigate Attention Score Patterns
- ✓ Improve Alternative Selection Strategies
- ✓ Overcome Key-Clustering Bottlenecks
- ✓ Extend Natively Sparse Training

The future is **Sparse**. NSA provides a efficient foundation for the **next** generation of long-context LLMs.

Conclusion of Our NSA

A Dedicate Hardware-Aligned System

Breaking the Performance-Cost Trade-Off

Catalyzing the next frontier of efficient LLM