Dacon 잡케어 추천 알고리즘 경진대회

1. 배경

잡케어는 일자리를 탐색하는 구직자에게 구직자의 이력서를 인공지능 기술로 직무역량을 자동 분석하여 훈련, 자격, 일자리 상담에 활용할 수 있도록 지원하는 시스템이다.

한국고용정보원은 구인구직 빅데이터 기반으로 커리어 관리 서비스인 잡케어 서비스를 구축하고 있다.

본 대회를 통해 데이터를 기반으로 개인별 맞춤형 컨텐츠 추천 모델을 만들고자 한다.

2. 목적

잡케어 서비스에 적용 가능한 추천 알고리즘 개발

3. 주최 / 주관

- 주최 : 한국고용정보원
- 주관 : 데이콘

4. 참가 대상

일반인, 학생 등 누구나

잡케어 추천 알고리즘 경진대회

고용정보원 | 정형데이터 | 추천

- ₩ 상금:총1,000만원
- (§ 2021.12.06 ~ 2022.01.28 18:00

+ Google Calendar

ஃ 1,490명 📋 마감

주최 : 한국고용정보원, 주관 : Dacon

Contents

01. 경진대회 소개

02. 아키텍쳐 개요

03. 결과 정리

01 경진대회 소개

1. 배경

잡케어는 일자리를 탐색하는 구직자에게 구직자의 이력서를 인공지능 기술로 직무역량을 자동 분석하여 훈련, 자격, 일자리 상담에 활용할 수 있도록 지원하는 시스템이다.

한국고용정보원은 구인구직 빅데이터 기반으로 커리어 관리 서비스인 잡케어 서비스를 구축하고 있다.

본 대회를 통해 데이터를 기반으로 개인별 맞춤형 컨텐츠 추천 모델을 만들고자 한다.

2. 목적

잡케어 서비스에 적용 가능한 추천 알고리즘 개발

3. 주최 / 주관

• 주최 : 한국고용정보원

• 주관 : 데이콘

4. 참가 대상

일반인, 학생 등 누구나

경진대회 소개

1. 규칙

- 제출 횟수 및 최대 팀원
 - a. 1일 최대 제출 횟수 : 3회
 - b. 팀 최대 인원 : 5명
- 리더보드
 - a. 평가 산식 : F1-score
 - b. Public Score: 전체 테스트 데이터 중 33%
 - c. Private Score : 전체 테스트 데이터 중 67%
- Test Dataset은 추론과정에서만 사용 가능
- 코드 평가(1차 평가)
 - a. 다음 조건을 만족하며 제출한 코드로 Private score 복원된 상위 4팀에게 상금 수여
 - b. 대회 종료 후 평가 희망자는 코드 공유 게시판에 코드 게시 및 코드와 설명자료를 dacon@dacon.jo로 제출
 - i. 코드에 './data' 데이터 입/출력 경로 포함
 - ii. 코드 파일 확장자 : .R, .rmd, .py, .ipynb
 - c. 코드 제출 유의사항
 - i. 코드 인코딩 : UTF-8
 - ii. 개발환경(OS) 및 라이브러리 버전 기재
 - iii. 전체 실행 프로세스 및 코드 실행방법을 readme파일로 정리해서 제출
 - iv. 실행 방법대로 실행 시 모든 코드가 오류 없이 실행되어야 합니다.
- 설명자료 제출 유의사항
 - a. 데이터 전처리/모델링에 대한 설명
 - b. (사용했을 시) 추가 데이터셋 혹은 Pre-trained 모델 명시
- 코드공유 게시판 게시
 - a. 제목 양식 : 팀 이름, Private 순위와 점수, 모델 이름. 예) 데이콘팀, Private 1위/0.82, ResNet
 - b. 내용: 전처리, 학습, 후처리, 추론 일련의 과정을 담은 코드를 게시
 - c. ipynb형식의 게시가 어려울 경우 qithub링크와 함께 코드 주요 부분과 마크다운을 작성하여 게시
- 코드 검증 환경
 - a. NVIDIA GeForce RTX 3090 / Ubuntu 18.04.6 LTS (64bit)
 - b. Tesla V100-PCIE-32GB / Ubuntu 16.04.6 LTS (64bit)
 - c. Colab GPU / Linux-5.4.104+-x86 64-with-Ubuntu-18.04-bionic
- 발표 평가(2차 평가)
 - a. 1차평가를 통해 상위 6팀 대상으로 진행
 - b. 2차 평가 대상자는 발표 영상을 10분 내외로 녹화하여 제출
 - c. 2차 평가 항목

✓ Task : Classification (Binary)

한국고용정보원 잡케어 서비스 사용자의 데이터를 바탕으로 특정 구직관련 컨텐츠 를 열람했는지 예측하는 것이 목적

Metric: F1 Score

Recall과 Prescision의 조화평균

2 * Recall * Precision / (Recall + Prescion)

아키텍쳐 개요 – Preprocessing & Feature Engineering

요일, 주말, office hour 등 feature 추출 sin, cos 주기성 feature 추출 (year-normalized) 3개 이상의 클래스가 있을 경우 one-hot encoding

```
# Feature Engineering
# 1. 일자 관련
# train set
full_x["quarter"] = full_x["contents_open_dt"].dt.quarter
full_x["month"] = full_x["contents_open_dt"].dt.month
full_x["season"] = full_x["contents_open_dt"].apply(getSeason)
full_x["week_of_month"] = full_x["contents_open_dt"].apply(week_of_month)
# monday 0, sunday 6
full_x["weekday"] = full_x["contents_open_dt"].dt.weekday
full_x["hour"] = full_x["contents_open_dt"].dt.hour
full_x["office_hour"] = [1 if 18 >= i >= 9 else 0 for i in full_x["contents_open_dt"].dt.hour]
# sin, cos 주기성 변환 파생변수 컬럼추가
time_zero = datetime(1970, 1, 1, 0, 0, 0)
day_to_sec = 24 * 60 * 60
year_to_sec = 365.2425 * day_to_sec
full_x["freq_sin_year"] = np.sin(((full_x["contents_open_dt"] - time_zero).dt.total_seconds() / year_to_sec) * 2 * np.pi)
full_x["freq_cos_year"] = np.cos(((full_x["contents_open_dt"] - time_zero).dt.total_seconds() / year_to_sec) * 2 * np.pi)
full_x["freq_sin_day"] = np.sin(((full_x["contents_open_dt"] - time_zero).dt.total_seconds() / day_to_sec) * 2 * np.pi)
full_x["freq_cos_day"] = np.cos(((full_x["contents_open_dt"] - time_zero).dt.total_seconds() / day_to_sec) * 2 * np.pi)
```

아키텍쳐 개요 – XGBoost

√ 5-Folds CV Model Ensemble

✓ Hyper-parameter tuning with Optuna

```
<10-folds inference>
 fold spliter setting
kfolds_spliter = StratifiedKFold(10, random_state=42, shuffle=True)
categoIdx = findIdx(full_x.columns, cat_vars)
cut_off = 0.5
val_prob = np.zeros((full_x.shape[0], 2))
test_prob = np.zeros((test_x.shape[0], 2))
val_perf = []
 optuna function
 def optuna_objective_function(trial: Trial, train_x, train_y, val_x, val_y, model_name, ntrees=None, eta=None):
    tuning_params = {
        "max_depth": trial.suggest_int("max_depth", 4, 8, step=1),
        "subsample": trial.suggest_float("subsample", 0.5, 0.95, step=0.05),
        "colsample_bynode": trial.suggest_float("colsample_bynode", 0.5, 0.95, step=0.05),
        "reg_lambda": trial.suggest_float("reg_lambda", 0.01, 10.0, step=0.01),
        "scale_pos_weight": trial.suggest_float("scale_pos_weight", 1.0, 3.0, step=0.01)
    model = xgb.XGBClassifier(booster="gbtree", objective="binary:logistic",
                            tree_method="gpu_hist", gpu_id=0, sampling_method="gradient_based",
                            n_estimators=ntrees,
                            learning_rate=eta,
                            random_state=fold, verbosity=0, use_label_encoder=False,
                            **tuning_params)
    model.fit(train_x, train_y, eval_metric=xgb_f1_score, verbose=False,
           eval_set=[(val_x, val_y)], early_stopping_rounds=int(ntrees * 0.2))
    prob = model.predict_proba(val_x)
    pred = [1 if i > cut_off else 0 for i in prob[:, 1]]
    opt_score = metrics.f1_score(val_y, pred)
    trial.report(opt_score, step=trial.number)
    if trial.should_prune():
       raise optuna.exceptions.TrialPruned()
    return opt_score
```

03 결과 정리

- ✓ 다양한 모델을 시도하였고 그 중 최고 스코어인 XGBoost를 최종 모델로 선정 타 모델과 ensemble을 시도 하지 못한 것이 아쉬운 점
- ✓ 단일 모델로 상위 32% 수준에 랭크하며 대회를 마무리

628256	submission_LightGBM_GOSS_Try5.csv edit	2022-01-01 18:11:20	0.6910780298	
625629	submission_XGBoost_Gbtree_Try3.csv edit	2021-12-23 20:16:28	0.6925325801	∨
625627	submission_LightGBM_GOSS_Try4.csv edit	2021-12-23 20:15:34	0.6911621569	
623895	submission_XGBoost_Gbtree_Try2.csv edit	2021-12-21 20:11:58	0.6919947056	
622830	submission_CatBoost_GBM_Try1.csv edit	2021-12-19 19:47:36	0.6877318048	
622292	submission_LightGBM_GOSS_Try3.csv edit	2021-12-18 13:44:07	0.6884925483 -	

감사합니다

```
# optuna function
def optuna_objective_function(trial: Trial, train_x, train_y, val_x, val_y, model_name, ntrees=None, eta=None):
    tuning_params = {
        "max_depth": trial.suggest_int("max_depth", 4, 8, step=1),
        "subsample": trial.suggest_float("subsample", 0.5, 0.95, step=0.05),
        "colsample_bynode": trial.suggest_float("colsample_bynode", 0.5, 0.95, step=0.05),
        "req_lambda": trial.suggest_float("req_lambda", 0.01, 10.0, step=0.01),
        "scale_pos_weight": trial.suggest_float("scale_pos_weight", 1.0, 3.0, step=0.01)
    model = xgb.XGBClassifier(booster="gbtree", objective="binary:logistic",
                            tree_method="gpv_hist", gpv_id=0, sampling_method="gradient_based",
                            n_estimators=ntrees,
                            learning_rate=eta,
                            random_state=fold, verbosity=0, use_label_encoder=False,
                            **tuning_params)
    model.fit(train_x, train_y, eval_metric=xgb_f1_score, verbose=False,
            eval_set=[(val_x, val_y)], early_stopping_rounds=int(ntrees * 0.2))
    prob = model.predict_proba(val_x)
    pred = [1 if i > cut_off else 0 for i in prob[:, 1]]
    opt_score = metrics.f1_score(val_y, pred)
    trial.report(opt_score, step=trial.number)
    if trial.should_prune():
        raise optuna.exceptions.TrialPruned()
    return opt_score
```