2. Acondicionadores de señal

Julio Vega

julio.vega@urjc.es

Sensores y actuadores

(CC) Julio Vega

Este trabajo se entrega bajo licencia CC BY-NC-SA. Usted es libre de (a) compartir: copiar y redistribuir el material en cualquier medio o formato; y (b) adaptar: remezclar, transformar y crear a partir del material. El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia.

Contenidos

- Acondicionadores de señal
- Circuitos divisores
- Circuitos de puente
- 4 Circuitos amplificadores
- 6 Circuitos convertidores
- 6 Filtros
- Puentes, amplificadores y convertidores de alterna

- Sensor (transductor) cambia dom. variable física y vierte dato útil.
- Dato general/ necesita acondiciona/ para ser interpretada correcta/.
- Acondicionador de señal: circuito adecúa salida del sensor. Procesos:
 - Amplificación: aumentar magnitud de señal (e.g. 5-10mV a 0-5V).
 - Linealización: convertir señal no lineal en señal con compto. lineal.
 - Filtrado: despreciar componentes no deseadas de una señal.
 - Conversión: de señal continua o analógica a discreta o digital.
 - Raspberry necesita un DAC (Dig-Ana-Conv) si queremos señal analog.
 - Aislamiento eléctrico: interrumpir paso de señal entre entrada-salida.
 - General/ la entrada se convierte a señal óptica o magnét. como salida.
 - Excitación: requerida por muchos sensores para su funcionamiento.
 - Sens./act. con ppio. trans. reluctancia variable necesitan señal AC.

- Circuitos divisores: +sencillos para acondicionar sensores resistivos.
 - Contra vs. circuitos puente: alta sensibilidad a variaciones corriente.
- ullet Divisor de voltaje: permite distintos niveles de V con una fuente.

- Ley de mallas de Kirchhoff: $V=IR_1+IR_2$; $I=\frac{V}{R_1+R_2}\Longrightarrow L$. Ohm: $V_1=IR_1=\frac{V}{R_1+R_2}R_1$; $V_2=IR_2=\frac{V}{R_1+R_2}R_2$ (1)
- Vemos que cociente que multiplica V es < 1, así V_1 y V_2 son < V.
- Usos: como auxiliares para medición con sensores resistivos.
 - Si se mantiene resistencia fija se puede saber el valor de la otra (Ohm).
 - Al medir voltaje sobre el divisor se puede saber resistencia del sensor.

[Ejercicios: Kirchhoff, circuitos divisores de voltaje]

- Similar al de voltaje; diferencia: resistencias ahora en paralelo...
 - ...y en lugar de fuente de tensión, tenemos fuente de corriente.
 - Circuito electrónico necesita fuente energía: de tensión o de corriente.
 - Fuente tensión: tiene $R_{interna}$ pequeña; corriente: $R_{interna}$ enorme.
 - Ideal: $F_{\text{tension}} \text{ con } R_i = 0$; V = cte. o $F_{\text{corriente}} \text{ con } R_i = \infty$; I = cte.
 - Corolario: $F_t : V = cte.(R \uparrow \Longrightarrow I \downarrow); F_c : I = cte.(R \uparrow \Longrightarrow V \uparrow)$

$$V_2 = V_1 = V_T = I_1 R_1 = I_2 R_2 = IR = I \frac{R_1 R_2}{R_1 + R_2}$$
 (2)

$$I_1 = I \frac{R_2}{R_1 + R_2}; I_2 = I \frac{R_1}{R_1 + R_2}$$
 (3)

- Vemos que corriente del circuito se divide entre las dos resistencias.
- Uso: similar al de voltaje, que se usan más (preferible medir voltajes).

- Usados para obtener lectura de sensores resistivos y piezorresistivos.
 - E.g.: galgas extensiométricas, fotorresistencias.
- Se valen de variaciones de resistencia de los sensores y divisores de V.
 - Cambio resist. sensor implica cambio de V. entre terminales circuito.
- ullet Ventaja (vs. circuito divisor): sensible a variaciones $< 1 \,\% \,R_{nominal}$.
- Puentes de Wheatstone: +usados para acondic. señal salida sensor.
 - En realidad es como dos divisores de V, con $V_o = V_{o_{1-4}} V_{o_{2-3}}$.
 - Uso: si se cambia una R por un sensor, para medir cambios de este.

$$V_o(V_{out}) = V \frac{R_1}{R_1 + R_4} - V \frac{R_2}{R_2 + R_3} \tag{4}$$

- Circuitos amplificador
- Presentan muchas configuraciones = muchas aplicaciones.
- Nos centraremos en basados en amplificador operacional (OpAmp).
 - Es un circ. amplif. que se presenta normal/ en forma de circ. integrado.

- Posee dos entradas, inversora (V^-) y no inversora (V^+) y una salida.
- Para funcionar necesita dos conexiones de alimentación (+V y V).

- Ganancia ∞ : tener cualquier V_o . Pero V_o acotado por fuente.
 - (Gan.: magn. adimensional= $\frac{out}{in} = \frac{V_o}{V_i} = \frac{I_o}{I_i}$ (belio, decibelio(dB))
- ullet Ganancia nula: $V^+=V^- \implies ganancia_{salida}=0 \implies V_o=0$.
- V nulo entre entradas: si V^+ o V^- conectada tierra, otra =V.
- V de offset nulo: si $V_o = V_{in}(ganancia = 1)$. Normal/ $[1e_{10}^{-6}, 1e_{10}^{-3}]$.
- Impedancia ∞ de entrada: $I_{V^+} = I_{V^-} = 0A$. Normal/ $[1e^{-12}, 1e^{-6}]A$. • Imped. (Z): oposición del circuito a corriente cuando se aplica tensión.
- Z nula en salida: \forall carga \nexists caída de V. Normal/ $< 1\Omega$.
- Respuesta lineal en F: ganancia amplif. cte. aunque frec. entrada no.
- Transferencia de V: relación entre \dot{V}_o y la diferencia $V^+ V^-$.
 - Si $|V^+ V^-|$ es pequeño, el ampl. operac. se comporta de forma lineal.
 - ullet Si $V^-\gg V^+$, amplif. saturado: amplitud $V_o=$ valor máx. $=-V_{cc}.$
 - ullet Si $V^+\gg V^-$, amplif. saturado: amplitud $V_o=$ valor máx. $=+V_{cc}.$

- Se emplean en circuitos acondicionadores, para sensores y actuadores.
 - Amplificación, atenuación, filtrado, linealización, comparación señales.

- Configuraciones: lazo abierto o lazo cerrado (con realimentación).
 - Con realim.: hay conexión entre salida y entrada del mismo circuito.
- Dada versatilidad y uso extendido, nos centraremos en lazo cerrado.
 - En lazo hay cmpntes. para compto. resistivo, reactivo, (no)lineal.
 - Hace que las configuraciones posibles en lazo cerrado sean mayores.
 - Además, con realim., ganancia en circuito amplific. puede controlarse.
 - Permite trabajar con diferencias $|V^+ V^-|$ grandes antes de saturar.
 - El circuito es poco sensitivo a variaciones de ganancia propia.
 - E.g.: $\sim t.^a \implies \sim ganancia_{amplif.} \implies \sim ganancia_{circuito}.$

Seguidor o amplificador de ganancia unitaria

- Configuración más sencilla de conexión de amplif. operac. con realim.
- Debe su nombre, seguidor, a que $V_0 = V_i \implies$ no amplifica entrada.
 - Y amplif. ganancia unitaria (1), porque $V_o = V_i \implies \frac{V_o}{V_i} = 1$.
- Muy usados; gran impedancia entrada anula efectos de carga (EC).
 - ullet EC: cambios en V de circuito cuando carga conectada a este cambia.
- Perfectos como 1^a etapa acondiciona/, pues aíslan V_o respecto a V_i .

No inversor

- Aquí ya se incluyen otros componentes en el lazo de realimentación.
- Se conecta fuente de V a terminal V^+ , que tendrá V_i .
 - Considerando amplif. operac. ideal, también hay V_i en V^- .
- Sea lazo V_o , R_A , $nodo_1$, R_E y tierra, tenemos circ. divisor de voltaje.
 - Sabemos que: $V_i = V_o \frac{R_E}{R_E + R_A} \implies ganancia = \frac{V_o}{V_i} = \frac{R_E + R_A}{R_E} = 1 + \frac{R_A}{R_E}$.

Inversor

- Similar a anterior, pero fuente de V se conecta en terminal inversora.
- Cálculo de ganancia, aplicamos Kirchhoff sobre $nodo_1$: $I_1 = I_F + I_A$.
- Considerando amplif. ideal, corrientes en ambos terminales son nulas.
 - Por tanto: $I_1 = 0 = I_E + I_A$, donde $I_E = \frac{V_i V_1}{R_E}$ y $I_A = \frac{V_o V_1}{R_A}$.
- Además, $V^-=0$ (ideal); por tanto, $V_1=0 \implies I_E=\frac{V_i}{R_E}$; $I_A=\frac{V_o}{R_A}$.
 - Sustituyendo en fórmula inicial: $\frac{V_i}{R_E} + \frac{V_o}{R_A} = 0 \implies \frac{V_o}{V_i} = -\frac{R_A}{R_E}$.
- Corolario: el amplif. inversor cambia el signo del voltaje de entrada.

Otros

- Sumador: circ. amplif. inversor con varias entradas a un mismo nodo.
 - Su función: suma los voltajes de esas entrada al terminal.
- Diferencial: se obtiene la diferencia $|V^+ V^-|$.
 - Vtja vs. lazo abierto: control de ganancia para evitar saturación.
- Integral: incluir resistencia en entrada y capacitor en lazo.
- Derivador: incluir resistencia en lazo y capacitor en entrada.
- Logarítmico: incluir diodo en lazo y resistencia en entrada.
- Antilogarítmico: incluir diodo en entrada y resistencia en lazo.
- De instrumentación: para medir pequeñas \sim de V cuando hay ruido.

- Se usan fundamental/ como comparadores de voltaje.
- Se aplican dos voltajes, V_A y V_B en la entrada.
 - Si $V_A = V_B \implies V_0 = 0$.
 - Si no, amplif. satura ya que $gan._{circ.} = gan._{ampl.} = \infty (ideal)$.
- Inversor/no-inversor (V en terminal y otro a tierra) = ampl. difer.
 - Ampl. difer. compara dos V vs. inv./no-inv. compara V con 0.

- Linealización de puentes resistivos para medición con galgas.
 - Baja Z evita efectos de carga al conectar el puente a UCP.
- Leer sensor alta $Z(M\Omega)$: fotodiodos, piezoeléctr., det. humo.
- Medición de posición: lineal (LVDT) o angular (encoder).
 - LVDT = Transductor de Desplazamiento Lineal Variable.
 - Objetivo: amplificar valores salida para ser leídos con facilidad.
- Uso termocuplas; amplificación ayuda a compensación de unión fría.
 - O termopar: transductor hecho por 2 metales, genera V bajísimo (mV).

- Def. CC: transforma un tipo de señal de entrada a otro en salida.
- Def. ADC: acopla señal A. con circuito D. (e.g. microcontroladora).
 - ullet Procesos: t continuo o t discreto, cuantización amplitud señal.
- Conocer: v muestreo, resol., ancho banda para correcto tto. señal.
 - v muestreo, según t^a muestreo, debe ser $= 2 \times$ frec. máx. señal A.
- Resol.: determinada por el número de bits (e.g. 16b.) del convertidor.
- Ej. básico: amplif. difer. lazo abierto (o comparador) = ADC de 1 bit.
 - En entradas puede haber señales analógicas, si $V_A \neq V_B$ amplif. satura.
 - ullet Si una entrada es referencia, la otra puede ser > o < (¡ya digital!).

ullet Otros: ADC aprox. sucesivas, ADC flash, ADC integrador, ADC $\sigma-\delta$.

- Def.: reconstruir señal analógica a partir de datos binarios.
 - ullet En un DAC siempre se pierde información y \exists desfase.
- Procesos: almacenar señal, restituir amplitud, establecer correlación.
- Requerimientos DAC = ADC.
- Usos: punto de *unión* entre sist. dig. y otros elem. de sistema.
- ullet Tipos: DAC resist. ponderadas, DAC R-2R, DAC termóm., DAC $\sigma-\delta$.

- CVF: producen señal periódica con frecuencia \propto a V de control.
 - Pueden producir señales cuadradas, triangulares o sinusoidales.
- CFV: convierte señal entrada en tren pulsos de ampl. cte.; el pulso...
 - ullet ...es diferenciado, rectificado, promediado para obtener $V_o \propto$ frec.
 - Suelen usarse como circuitos integrados comerciales (e.g. encoders).

- ullet Emplea amplif. operac. y usa ley Ohm para lectura $\propto I$ o V.
- CCV: convierte señal corriente pequeña (> 0,01 μ A) a $V \propto$.
 - $V_o = -I_1R_A$
- CVC: lee un V de entrada en forma de corriente \propto .
 - $V^+ = V^-$ (ampl. operac. ideal) $\Longrightarrow I_o = \frac{V_1}{R_2}$.

- Aplicaciones de estos circuitos en los sistemas de sensado.
 - Lectura de sensores basados en efecto fotoeléctrico.
 - Como fuente de voltaje controlada por corriente.
 - Para medir corriente, se puede conectar CCV y luego voltímetro.

- La respuesta de un filtro depende de los elementos que lo componen.
 - Tiene 1 entrada y 1 salida, donde solo aparece parte de frec. entrada.
 - Se elimina una parte frec. de señal a partir de la frec. de corte.
 - Función de transferencia $H(\omega) = 1(\text{permite paso})/0(\text{impide paso})$.
 - Real/ lo que ocurre es que el filtro atenúa las frecuencias no deseadas.

- Z de elem. pasivos (capacitores, inductores) depende de F_{fuente} .
 - Valor y conexión de estos elem. ayudan diseñar filtro c/paso selectivo.
- Clasif.: según componentes que lo constituyen y su respuesta en frec.

- Pasivos: solo elem. pasivos: resist., capacit. e induct. No amplifican.
- Activos: no usan induct. pero sí *OpAmp*. Sí amplifican señal.
- De capacidades conmutadas: usan capacit. conmut. en vez de resist.
 - Los valores de resist. se consiguen variando la frec. de conmutación.
- Digitales: realizan la función de filtro mediante algoritmos numéricos.

Filtro paso bajo

- Atenúa según factor de escala frec. (ω) > a la de corte del filtro.
- El circuito de la figura puede ser un filtro paso bajo pasivo. Análisis:
 - Si $\omega = 0 \implies Z_{capacitor} = \infty \implies V_o = V_i$ (=circ. abierto).
 - Si $\omega \uparrow \implies Z_{capac.} \downarrow \implies V_o < V_i$ (=circ. divisor V entre R y capac.).
 - Si $\omega = \infty \implies Z_{capac.} = 0 \implies V_o = 0$ (=cortocircuito).
- Uso: e.g. dirigir frec. ↓↓ de señal de audio a subwoofer.

Filtro paso alto

- Permite paso de frec. > a la de corte y atenúa las frec. < corte.
- El circuito de la figura puede ser un filtro paso alto pasivo. Análisis:
 - Si $\omega = 0 \implies Z_{capac.} = \infty \implies V_o = 0$ (=cortocircuito).
 - Si $\omega = \infty \implies Z_{capac.} = 0 \implies V_o = V_i$ (=circ. abierto).
- Uso: e.g. dirigir frec. \\ \ de señal de audio a tweeter.
- Corolario: su comportamiento es complementario al filtro paso bajo.

Filtro paso banda

- Permite paso de frec. dentro de rango [min, max] determinado de frec.
- El circuito de la figura puede ser un filtro paso banda. Análisis:
 - Si $\omega=0 \implies Z_{capacitor}=\infty \implies V_o=0$ (=circ. abierto).
 - Si $\omega \uparrow \Longrightarrow Z_{cap.} = X, Z_{ind.} = Y \Longrightarrow V_o = W$ (=circ. divisor de V).
 - Si $\omega = \infty \implies Z_{inductor} = \infty \implies V_o = 0$ (=circ. abierto).
- En estos filtros se da el fenómeno frecuencia central del filtro.
 - Como $Z_{cap.}$ es -, cuando $Z_{cap.} = Z_{ind.} \implies Z_{total} = 0 \implies \omega_o = \omega_i$.

- Para cuando necesito usar señales de CA y CC en un mismo sistema.
- CA-CC: necesita circ. rectificador de onda y capacitor en paralelo.
 - Real/: 1° atenuar magnitud señal CA (220 V) con transformador.

- ullet CC-CA: usan transistores que activan-desactivan V_{cc} controlada/.
 - Circuitos comunes: *push-pull*, medio puente, puente completo.

- Puentes de alterna: circuitos para acondicionar señal de sensores...
 - ...de reactancia variable, como un LVDT (cargas inductivas).
- El puente se excita con señal de V o I alterna (debido a cargas ind.).

- Solo elemento 1 tiene impedancia variable = sensor que se desea leer.
 - El resto son resist. fijas con su correspondiente impedancia (Z).

2. Acondicionadores de señal

Julio Vega

julio.vega@urjc.es

Sensores y actuadores