Jason D. Chadwick

jchadwick@uchicago.edu | jason-chadwick.com

Education

Ph.D. Candidate, Computer Science, University of Chicago

2022-present

Studying quantum computer systems and architecture, advised by Fred Chong.

Research topics: quantum control, device calibration, circuit compilation, high-radix computation.

B.S. Physics, Carnegie Mellon University

2018-2022

Minor in Computer Science

GPA 3.95

Awards and Honors

Crerar Fellowship, University of Chicago

2022 2022

University Honors, Carnegie Mellon University **College Honors**, Mellon College of Science

2022

Dean's List, High Honors, Mellon College of Science

2018-2022

Skills

Programming: Python, Julia, C/C++, C#/Unity, Java, Clojure, Common Lisp, SML, Bash

Python libraries: QuTiP, qiskit, Cirq, Pulser, pandas, TensorFlow, PyTorch, SciPy

Julia packages: QuantumOptics.jl, DataFrames.jl, Juqbox.jl

Software: L^AT_EX, Unix, slurm, Mathematica

Experience

Graduate Researcher, University of Chicago

Summer 2022 - Present

Research in the areas of quantum control pulse engineering, device calibration, circuit compilation, and high-radix computation. Advised by Fred Chong.

Undergraduate Researcher, University of Chicago

Spring 2021 - Summer 2022

Optimized short-duration control pulses for high-radix quantum logic gates, motivating a new compiler design that takes advantage of mixed-radix operations. Research resulted in papers at QCE 2022 and ASPLOS 2023 (to appear).

Research Intern, Princeton Plasma Physics Laboratory

Summer 2020

As part of the Department of Energy SULI program, designed a neural network to predict fusion plasma cross-sectional density and pressure in real time, for use in control systems. Published work in *Nuclear Fusion*.

Service

Workshop co-organizer, QCE 2023

2023

Co-organized a day-long workshop "Advances in numerical quantum optimal control and characterization methods" at QCE 2023, featuring invited talks and guided discussions.

Physics Steering Committee, CMU Physics Department

2019-2021

Collaborated with physics department leadership to guide programs and policy.

Publications

Year	Title and Authors	Publisher	Category
2023	Efficient control pulses for continuous quantum gate families through coordinated re-optimization J. D. Chadwick and F. T. Chong arxiv.org/abs/2302.01553	2023 IEEE International Conference on Quantum Computing and Engineering (QCE)	Refereed conference paper
2023	Dancing the Quantum Waltz: Compiling Three-Qubit Gates on Four Level Architectures A. Litteken, L. M. Seifert, J. D. Chadwick, N. Nottingham, J. M. Baker, and F. T. Chong doi.org/10.1145/3579371.3589106	50th International Symposium on Computer Architecture (ISCA)	Refereed conference paper
2023	Qompress: Efficient Compilation for Ququarts Exploiting Partial and Mixed Radix Operations for Communication Reduction A. Litteken, L. M. Seifert, J. D. Chadwick, N. Nottingham, J. M. Baker, and F. T. Chong doi.org/10.1145/3575693.3575726	28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS)	Refereed conference paper
2022	Time-Efficient Qudit Gates through Incremental Pulse Reseeding L. M. Seifert [†] , J. D. Chadwick [†] , A. Litteken, F. T. Chong, and J. M. Baker doi.org/10.1109/QCE53715.2022.00051	2022 IEEE International Conference on Quantum Computing and Engineering (QCE)	Refereed conference paper
2021	Prediction of electron density and pressure profile shapes on NSTX-U using neural networks <i>M. D. Boyer and J. D. Chadwick</i> doi.org/10.1088/1741-4326/abe08b	Nuclear Fusion 61 046024	Journal

 $^{^{\}dagger}$ indicates equal contribution