When Witnesses Defend: A Witness Graph Topological Layer for Adversarial Graph Learning

Naheed Anjum Arafat * , Debabrota Basu $^+$, Yulia R. Gel $^\#$, Yuzhou Chen $^\$$

*Nanyang Technological Univ. (Singapore), $^+$ Univ. Lille, Inria (France), $^\#$ Virginia Tech (USA), $^\$$ UC Riverside (USA)

Adversarial Attack on GNNs

The attacker **misleads GNNs** into making incorrect predictions by deliberately perturbing **a small number of edges** (e.g. remove/add edges) or node features.

Goal: Design a robust representation R such that $||R(\mathcal{G}) - R(\mathcal{G}')||_1 = \mathcal{O}(\delta)$ when $||\mathcal{G} - \mathcal{G}'||_1 = \delta$

Our Contributions

- This is the first work that shows that **topological features can make GNNs robust** against adversarial attacks.
- Our approach integrates **local** and **global** higher-order graph characteristics (**using Persistence homology**) and controls their potential defense role via a **topological regularizer**.
- Effective against a wide variety of attacks:
 - Targetted (perturbs neighbors of a set of target nodes)
 - Global (perturbs whichever edges minimizes the attackers loss)
 - Adaptive (White-box, the model architecture, parameters and the defense mechanisms are known to the attacker)
 - Node feature attack

Performance (Mettack)

Dataset	Models	Perturbation Rate	
		0%	10%
Cora-ML	GCN	82.87 ± 0.83	70.39 ± 1.28
	$GCN+WGTL_{P}(ours)$	$83.83 {\pm} 0.55$	$71.31 {\pm} 0.85$
	GAT	84.25 ± 0.67	72.63 ± 1.56
	$GAT+WGTL_{P}(ours)$	$*86.07{\pm}2.10$	$^*73.74{\pm}1.92$
	GraphSAGE	81.00 ± 0.27	70.92 ± 1.18
	$GraphSAGE+WGTL_{P}(ours)$	$83.63 {\pm} 0.35$	$73.57{\pm}0.73$
	ProGNN	82.98 ± 0.23	71.59 ± 1.33
	$ProGNN+WGTL_{P}(ours)$	$83.85 {\pm} 0.38$	$72.71{\pm}1.26$
	GCN+GNNGuard	83.21 ± 0.34	69.13 ± 0.77
	$GCN+GNNGuard+WGTL_P(ours)$	$84.78 {\pm} 0.43$	$70.15{\pm}0.89$
Polblogs	GCN	94.40 ± 1.47	69.16 ± 1.86
	$GCN+WGTL_{P}(ours)$	$95.95 {\pm} 0.15$	$74.52 {\pm} 0.28$
	GAT	95.28 ± 0.51	73.11 ± 1.20
	$GAT+WGTL_{P}(ours)$	$95.87{\pm}0.26$	$74.21 {\pm} 0.74$
	GraphSAGE	94.54 ± 0.27	74.66 ± 0.85
	$GraphSAGE+WGTL_{P}(ours)$	$95.58 {\pm} 0.50$	$^*74.93{\pm}0.81$
	GCN+GNNGuard	95.03 ± 0.25	72.76 ± 0.75
	$GCN+GNNGuard+WGTL_P(ours)$	$^*96.22{\pm}0.25$	$73.72{\pm}1.00$

Efficiency comparison

Datasets/ (# Landmarks)	Landmark selection time (s)	Local feat. comput. time (s)	Global feat. comput. time (s)
Cora-ML/124	0.01 ± 0.01	0.12 ± 0.03	5.11 ± 0.13
Citeseer/105	0.01 ± 0.01	0.16 ± 0.02	5.23 ± 1.22
Polblogs/61	0.01 ± 0.00	0.07 ± 0.01	4.64 ± 0.2
Snap-patents/91	0.03 ± 0.02	0.64 ± 0.00	7.54 ± 1.15
Pubmed/394	0.07 ± 0.01	0.51 ± 0.03	27.83 ± 0.47
OGBN-arXiv/84	1.02 ± 0.00	12.79 ± 0.31	83.04 ± 2.19

Witness Graph Topological Layer (WGTL)

- **Local Topology Encoding:** Encodes local topological features of every node. (\boldsymbol{Z}_{T_L})
- **Node Representation Learning**. Learns node representations using any backbone GNN. (\boldsymbol{Z}_G)
- **Global Topology Encoding.** Encodes topological features of the entire graph. (\boldsymbol{Z}_{T_G})
- lacktriangle Aggregated Topological Encoding. Encodes local and global topological priors. ($oldsymbol{Z}_{ ext{WGTL}}$)

 $z = [\boldsymbol{Z}_{T_L}, \boldsymbol{Z}_G]$ Attention coefficients, $\alpha_i = \mathbf{Softmax}(\boldsymbol{W}_2 \cdot \tanh(\boldsymbol{W}_1 z_i + \boldsymbol{b}_1))$ Additive attention, $\boldsymbol{Z}_{AGG} = \alpha_1 \times \boldsymbol{Z}_{T_L} + \alpha_2 \times \boldsymbol{Z}_G$ $\boldsymbol{Z}_{WGTL} = \boldsymbol{Z}_{AGG} \boldsymbol{Z}_{T_G}$

Topological Regularizer

$$L_{topo}(T(\mathcal{G})) \triangleq \sum_{i=1}^{m} (d_i - b_i)^2 \left(\frac{d_i + b_i}{2}\right)^2$$

- A localized attack appears as topological noise in the final persistent diagram (PD), and exhibit lower persistence.
- And minimising L_{topo} forces the Transformer to learn local topology encodings (Z_{T_L}) which produces PD with small persistence, i.e., $(d_i b_i)$.

Conclusion

- Proposed the first topological defense against adversarial attacks on graphs.
- We have derived theoretical properties of WGTL, both at the local and global levels.
- WGTL improves robustness against a wide variety of attacks.

Acknowledgements: NSF grant TIP-2333703, ONR grant N00014-21-1-2530, ANR JCJC project REPUBLIC (ANR-22-CE23-0003-01), PEPR project FOUNDRY (ANR23-PEIA-0003), and the CHIST-ERA project CausalXRL (ANR-21-CHR4-0007).

