Fast Abstractive Summarization with Reinforce-Selected Sentence Rewriting-hoho

论文试图解决什么问题?

文档归纳总结当前使用两种范式:信息抽取或抽象化归纳。但是这两种方法对于篇幅长的文档来说,处理速度慢并且结果不准确。即使有attention机制,可以考虑所有的单词,但也是很慢。另外生成句子时也比较容易出发重复单词的现象。

本文需要解决这种文档归纳不准确且生成速度慢的问题

这是否是一个新的问题?

不是新的问题。从最开始只使用信息抽取来归纳,到后来尝试用抽象化归纳,再后来有seq2seq神经网络的加持,一直在力图提升模型的准确度。

这篇文章要验证一个什么科学假设?

用强化学习来架构语义归纳生成模型,能否提高生成的准确度和生成速度。

有哪些相关研究?如何**归类?谁是这一课题在领域内值得关注的研究** 员?

当时的研究工作主要有:

- 1. 基础模型的研究,包括早期的信息抽取与压缩的基本方法,如基于HMM、基于规则的信息提取,后来出现用神经网络的抽象概括方法,还有在神经网络上加上分层注意力机制的
- 2. 基于强化学习来优化不可微语言生成度量的方法
- 3. 在机器翻译上如何提高解码质量和实时性
- 4. QA领域用于生成answer的方法

比较值得关注的研究员如Abigail See和Oriol Vinyals,跟pointer network相关的研究。 而且本文的实验大部分是跟Abigail See的研究作对比。

论文中提到的解决方案之关键是什么?

作者构建如下MDP进行文档总结归纳:

. ~

Figure 2: Reinforced training of the extractor (for

• Extractor作为Agent,接收环境状态(输入) $c=(D,d_{j_{t-1}})$,D是文档的句子集合, $d_{j_{t-1}}$ 是上一个时间步的归纳出来的句子

Extractor的架构如图:

1. conv卷积网络encode每一个句子

- 2. 句子向量输入到Bi-LSTM(上图蓝色)提取特征 h_j
- 3. 使用另一个LSTM(上图绿色)训练一个pointer network,目的是学习一个提取句子的概率分布(策略):

$$u_j^t = egin{cases} v_p^T tanh(W_{p1}h_j + W_{p2}e_t) & ext{ if } j_t
eq j_k \ -\infty & ext{ if } otherwise \end{cases}$$

$$P(j_t|j_1,...,j_{t-1}) = softmax(u^t)$$

其中,

$$egin{aligned} a_j^t &= v_g^T tanh(W_{g1}h_j + W_{g2}z_t) \ lpha^t &= softmax(a^t) \ e_t &= \sum_j lpha_j^t W_{g1}h_j \end{aligned}$$

W和v都是训练参数。

这里其实使用了两个注意力机制: z_t 是绿色部分的LSTM的输出,它attent到 h_j 生成 e_t ,然后又attent到 h_j 生成 u_i^t

 Abstractor使用标准的encoder-decoder架构,对extractor agent的输出进行抽象 改写

学习过程如下:

- 1. 为了避免随机初始化时Extractor的网络总是选择不相关的句子传给Abstractor进行抽象改写,另一方面,Abstractor由于没经过训练,使得最终产生带noisy的回报。于是首先分别对Extractor和Abstractor进行最大似然估计的优化:
- (1)Extractor最大似然:由于训练集是"文档-归纳文本"的数据对,这里需要对训练标签进行转换,对每个归纳文本寻找最相近的文档中的句子 $d_i:j_t=$ $rg\max_i(ROUGE-L_{recall}(d_i,s_t))$,然后最小化交叉熵进行优化;
- (2)Abstractor最大似然:使用归纳文本与Extractor提取的句子进行训练数据,进行交叉熵: $L(heta_{abs})=-rac{1}{M}\sum_{m=1}^{M}logP_{ heta_{abs}}(w_m|w_{1:m-1})$

2. RL训练过程:环境输入状态 $c_t=(D,d_{j_{t-1}})$,agent采样动作 $j_t\sim P(j)$ 以提前文档中的一个句子 d_{j_t} ,环境返回回报: $r(t+1)=ROUGE-L_{F_1}(g(d_{j_t}),s_t)$,其中g是Abstractor,整个过程使用A2C算法

论文中的实验是如何设计的?

作者另外建立了一个简单的feed forward network extractor作为baseline。对 extractor、abstractor与RL的搭配组合进行实验对照。

使用ROUGE和METEOR作为模型度量。

本文也是使用了人类直觉进行验证,使用Amazon Mturk实验平台,将Abigail See研究员的研究模型跟本文模型的输出做对比,进行好坏排序。

用于定量评估的数据集是什么?代码有没有开源?

使用CNN/Daily Mail数据集(<u>https://www.github.com/deepmind/rc-data/</u>),使用DUC-2002数据集用于测试

代码已经开源:https://github.com/ChenRocks/fast_abs_rl

论文中的实验及结果有没有很好地支持需要验证的科学假设?

实验基本上达到当时的SOTA

Models	ROUGE-1	ROUGE-2	ROUGE-L	METEOR	
Extractive Results					
lead-3 (See et al., 2017)	40.34	17.70	36.57	22.21	
Narayan et al. (2018) (sentence ranking RL)	40.0	18.2	36.6	-	
ff-ext	40.63	18.35	36.82	22.91	
rnn-ext	40.17	18.11	36.41	22.81	
rnn-ext + RL	41.47	18.72	37.76	22.35	
Abstractive Results					
See et al. (2017) (w/o coverage)	36.44	15.66	33.42	16.65	
See et al. (2017)	39.53	17.28	36.38	18.72	
Fan et al. (2017) (controlled)	39.75	17.29	36.54	-	
ff-ext + abs	39.30	17.02	36.93	20.05	
rnn-ext + abs	38.38	16.12	36.04	19.39	
rnn-ext + abs + RL	40.04	17.61	37.59	21.00	
rnn-ext + abs + RL + rerank	40.88	17.80	38.54	20.38	

在人类验证上,从CNN/DM数据集随机采样100个样本,对每个样本使用本文的模型与Abigail See研究的模型输出作对比,从可读性和相关性方面,每个样本询问3个测

试员,对结果进行排序。结果显示本文模型较优:

	Relevance	Readability	Total
See et al. (2017)	120	128	248
rnn-ext + abs + RL + rerank	137	133	270
Equally good/bad	43	39	82

在生成速度上也较优:

	Speed		
Models	total time (hr)	words / sec	
(See et al., 2017)	12.9	14.8	
rnn-ext + abs + RL	0.68	361.3	
rnn-ext + abs + RL + rerank	2.00 (1.46 +0.54)	109.8	

Table 5: Speed comparison with See et al. (2017)

这篇论文到底有什么贡献?

- 1. 是第一个提出句子级别的使用RL技术的文档归纳生成方法,有效利用word-then-sentence分层结构,使用不带标记的机器学习方法(文档-归纳文本对)
- 2. 达到当时SOTA,无论从人工验证还是机器验证
- 3. 比之前最好的生成模型生成速度快10~20倍

下一步呢?有什么工作可以继续深入?

结合强化学习的一些NLP任务。