Lecture 06: Transformer overview & Positional encoding

Radoslav Neychev

MADE, Moscow 14.04.2021

Outline

- 1. recap: Self-attention
- 2. Positional encoding
- 3. Layer normalization
- 4. Decoder in Transformer

The Transformer

The Encoder Side

the word in each position flows through its own path in the encoder 4

The Encoder Side

the word in each position flows through its own path in the encoder 5

Multi-Head Attention

Positional Encoding

The Encoder Side

the word in each position flows through its own path in the encoder ₉

Positional encoding requirements

- Positional encoding should be unique for every position in the sequence
- Distance between two same positions should be preserved with sequences of different length
- The positional encoding should be deterministic
- It would be great if it would work with long sequences (longer than any sequence in the training set)

Positional Encoding

Positional Encoding: why sin and cos?

$$\vec{p_t}^{(i)} = f(t)^{(i)} = \begin{cases} \sin(\omega_k t), & \text{if } i = 2k \\ \cos(\omega_k t), & \text{if } i = 2k + 1 \end{cases}$$

$$\omega_k = \frac{1}{10000^{2k/d}} \qquad \vec{p_t} = \begin{cases} \sin(\omega_1 . t) \\ \cos(\omega_1 . t) \\ \sin(\omega_2 . t) \\ \cos(\omega_2 . t) \\ \vdots \\ \sin(\omega_{d/2} . t) \\ \cos(\omega_{d/2} . t) \\ \cos(\omega_{d/2} . t) \end{cases}$$
 t stays for position in the original sequence k is the index of the element in the positional vector

Positional Encoding

Positional Encoding

Image source: https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Positional Encoding: why sin and cos?

We chose this function because we hypothesized it would allow the model to easily learn to attend by relative positions, since for any fixed offset k, PEpos+k can be represented as a linear function of PEpos.

$$M \begin{bmatrix} \sin(\omega_k t) \\ \cos(\omega_k t) \end{bmatrix} = \begin{bmatrix} \sin(\omega_k (t + \phi)) \\ \cos(\omega_k (t + \phi)) \end{bmatrix}$$

Positional Encoding: why sin and cos?

$$\begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \end{bmatrix} \begin{bmatrix} \sin(\omega_k t) \\ \cos(\omega_k t) \end{bmatrix} = \begin{bmatrix} \sin(\omega_k (t + \phi)) \\ \cos(\omega_k (t + \phi)) \end{bmatrix}$$
$$\begin{bmatrix} u_1 & v_1 \\ u_2 & v_2 \end{bmatrix} \begin{bmatrix} \sin(\omega_k t) \\ \cos(\omega_k t) \end{bmatrix} = \begin{bmatrix} \sin(\omega_k t) \cos(\omega_k \phi) + \cos(\omega_k t) \sin(\omega_k \phi) \\ \cos(\omega_k t) \cos(\omega_k \phi) - \sin(\omega_k t) \sin(\omega_k \phi) \end{bmatrix}$$

$$M_{\phi,k} = \begin{bmatrix} \cos(\omega_k \phi) & \sin(\omega_k \phi) \\ -\sin(\omega_k \phi) & \cos(\omega_k \phi) \end{bmatrix}$$

Positional Encoding

Image source: https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Output

The Transformer: recap

19

Like BatchNorm

but normalize along all features representing latent vector

More info:

<u>Layer Normalization</u>

Image source: https://jalammar.github.io/illustrated-transformer/

Thinking Machines Image source: https://jalammar.github.fo/illustrated-transformer/

The Decoder

Image source: https://jalammar.github.io/illustrated-transformer/

Image source: https://jalammar.github.io/illustrated-transformer/

Decoding time step: 1 2 3 4 5 6 OUTPUT

The masked decoder input

Image source: https://jalammar.github.io/illustrated-transformer/

Final Linear and Softmax Layer

Image source: https://jalammar.github.io/illustrated-transformer/

The Transformer

Output

Image source: Attention Is All You Need, Neural Information Processing Systems 2017

Outro and Q&A

- Transformer is novel and very powerful architecture
- It is worth it to understand how Self-Attention works
- Physical analogues can help you

Further readings are available in the repo