РАЗРАБОТКА БАЗОВОЙ ВЕРСИИ КОРПОРАТИВНОГО ПОРТАЛА КОМПАНИИ «ТЕХНОСТРОЙ»

Дипломник: Кононов Ф.В.

Руководитель: проф., д.т.н. Берлинер Э.М.

ЗАДАЧИ

- **×** Донесение информации до потребителя.
- Формирование единого рабочего пространства.
- Удаленное участие в рабочем процессе.
- Гибкость и возможность быстрой модификации.

СУЩЕСТВУЮЩИЕ РЕШЕНИЯ

Недостатки

- Недостаточная гибкость и трудность модификации.
- Избыточность функционала.
- Высокие требования к производительности сервера.

ПРОДУКТЫ И ТЕХНОЛОГИИ

СТРУКТУРА ПОРТАЛА

ОПТИМИЗАЦИЯ

- Оптимизация запросов к базе данных:
 - + проблема «N+1»;
 - + индексы.
- × Кэширование:
 - + кэширование объектов;
 - + кэширование страниц;
 - + кэширование действий;
 - + кэширование фрагментов.

РЕЗУЛЬТАТЫ ОПТИМИЗАЦИИ

Проблема «N+1» для моделей User и Task:

N	Кол-во	Время (с)		Увеличение
	повторений	Без оптимизации	С оптимизацией	производительности
50	100	16,16	8,14	в 1,98 раза
1000	100	613,97	259,33	в 2,36 раза

кэширование фрагмента «Список задач»:

Количество	Врег	мя (с)	Увеличение производительности
задач	Без оптимизации	С оптимизацией	
194	2,45	0,21	в 12 раз

РАСЧЕТ ОПТИМАЛЬНОЙ НАГРУЗКИ

Портал как система массового обслуживания со структурой:

Ряд показателей системы:

- средняя интенсивность обслуживания заявок

 p_{0} - вероятность простоя системы

 p_n - вероятность того, что в системе (в очереди и на обслуживании) находится п заявок в момент времени t

 T_{cucm} - средним временем ожидания требования в системе (т.е. среднее время пребывания требования в очереди и на обслуживании)

РАСЧЕТ ОПТИМАЛЬНОЙ НАГРУЗКИ(2)

 N_{cucm} - средние число заявок в системе (в очереди и на обслуживании)

$$p_0=1-arphi$$
,..., $p_n=arphi^n(1-arphi)$, $N_{cucm}=rac{p_0arphi}{(1-arphi)^2}$, $T_{cucm}=rac{N_{cucm}}{\lambda}$

интенсивность загрузки оборудования (сервера): $\varphi = \frac{\lambda}{\mu}$ среднее количество заявок в очереди: $N_{\text{oq}} = \frac{\lambda}{\mu} N_{\text{cucm}} = \frac{\varphi^2}{(1-\varphi)}$

среднее число заявок, находящихся на обслуживании:

$$N_{\text{обсл}} = N_{\text{сисm}} - N_{\text{оч}} = N_{\text{сисm}} (1 - \varphi) = \varphi$$

$$\varphi = 0.5$$
 $N_{oq} = N_{o6cn} = 0.5$

РЕЗУЛЬТАТЫ

- Создан гибкий и современный корпоративный интернет-портал, предназначенный для организации внутренней и внешней деятельности компании.
- Проведено исследование производительности различных компонентов системы, на основании результатов которого выполнена оптимизация, существенно увеличившая эффективность работы приложения.
- Корпоративный интернет-портал внедрен и активно используется в бизнес-процессе компании «Технострой»:
 - + более 1000 выполненных задач;
 - более 20 000 сессий;
 - + более 100 000 просмотренных страниц;
 - + общее время работы всех пользователей на сайте более 160 суток.