Cryptography Lecture 10

Arkady Yerukhimovich

September 30, 2024

Outline

Chosen-ciphertext Attack (CCA) Security (Chapter 3.7)

③ Importance of CCA Security (Chapter 3.7)

Lecture 8 Review

- Proof of CPA-security for PRF+OTP
- Modes of operations

3/15

Outline

Lecture 8 Review

2 Chosen-ciphertext Attack (CCA) Security (Chapter 3.7)

3 Importance of CCA Security (Chapter 3.7)

ullet CPA security captures scenario where ${\cal A}$ may trick parties to encrypt messages on his behalf

- ullet CPA security captures scenario where ${\cal A}$ may trick parties to encrypt messages on his behalf
- But what if A can also trick parties to decrypt (some) ciphertexts for him.

- ullet CPA security captures scenario where ${\cal A}$ may trick parties to encrypt messages on his behalf
- ullet But what if ${\mathcal A}$ can also trick parties to decrypt (some) ciphertexts for him.
 - May be enough to just get partial decryptions
 - Security against such an attack is not addressed by CPA security

- ullet CPA security captures scenario where ${\cal A}$ may trick parties to encrypt messages on his behalf
- ullet But what if ${\mathcal A}$ can also trick parties to decrypt (some) ciphertexts for him.
 - May be enough to just get partial decryptions
 - Security against such an attack is not addressed by CPA security
- Want undecrypted messages to remain secure

PRF+OTP Encryption

- $Gen(1^n)$: $k \leftarrow \{0, 1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

Is this CCA Secure?

PRF+OTP Encryption

- Gen (1^n) : $k \leftarrow \{0,1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

The Attack:

• \mathcal{A} receives ciphertext $c = (r^*, F_k(r^*) \oplus m)$

PRF+OTP Encryption

- Gen (1^n) : $k \leftarrow \{0,1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

The Attack:

- \mathcal{A} receives ciphertext $c = (r^*, F_k(r^*) \oplus m)$
- \mathcal{A} constructs forged ciphertext $\overline{c} = (r^*, 0^n)$, and queries $\mathrm{Dec}_k(\overline{c})$

PRF+OTP Encryption

- $Gen(1^n)$: $k \leftarrow \{0,1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

The Attack:

- \mathcal{A} receives ciphertext $c = (r^*, F_k(r^*) \oplus m)$
- \mathcal{A} constructs forged ciphertext $\overline{c} = (r^*, 0^n)$, and queries $\mathrm{Dec}_k(\overline{c})$
- $\operatorname{Dec}_k(\overline{c})$ returns $\overline{m} = F_k(r^*) \oplus 0^n = F_k(r^*)$

PRF+OTP Encryption

- Gen (1^n) : $k \leftarrow \{0,1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

The Attack:

- \mathcal{A} receives ciphertext $c = (r^*, F_k(r^*) \oplus m)$
- \mathcal{A} constructs forged ciphertext $\overline{c} = (r^*, 0^n)$, and queries $\mathrm{Dec}_k(\overline{c})$
- $\operatorname{Dec}_k(\overline{c})$ returns $\overline{m} = F_k(r^*) \oplus 0^n = F_k(r^*)$
- \mathcal{A} can now use $F_k(r^*)$ to decrypt c

PRF+OTP Encryption

- Gen (1^n) : $k \leftarrow \{0,1\}^n$
- Enc(k, m): Choose $r \leftarrow \{0,1\}^n$, output $c = (r, F_k(r) \oplus m)$
- Dec(k, c): Parse c as (r, c'), compute $m = F_k(r) \oplus c'$

The Attack:

- \mathcal{A} receives ciphertext $c = (r^*, F_k(r^*) \oplus m)$
- \mathcal{A} constructs forged ciphertext $\overline{c} = (r^*, 0^n)$, and queries $\mathrm{Dec}_k(\overline{c})$
- $\operatorname{Dec}_k(\overline{c})$ returns $\overline{m} = F_k(r^*) \oplus 0^n = F_k(r^*)$
- \mathcal{A} can now use $F_k(r^*)$ to decrypt c

Takeaway

PRF+OTP is not CCA-Secure

7/15

Let $\Pi = (Gen, Enc, Dec)$ be an encryption scheme. Consider the following game between an adversary A and a challenger:

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

$\mathsf{PrivK}^{cca}_{\mathcal{A},\Pi}(n)$

• The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$

Let $\Pi = (Gen, Enc, Dec)$ be an encryption scheme. Consider the following game between an adversary A and a challenger:

- The challenger chooses $k \leftarrow \text{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot),\mathsf{Dec}_k(\cdot)}(1^n)$ outputs m_0,m_1 such that $|m_0|=|m_1|$.

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary \mathcal{A} and a challenger:

- The challenger chooses $k \leftarrow \text{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot),\mathsf{Dec}_k(\cdot)}(1^n)$ outputs m_0,m_1 such that $|m_0|=|m_1|$.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to \mathcal{A}

Let $\Pi =$ (Gen, Enc, Dec) be an encryption scheme. Consider the following game between an adversary $\mathcal A$ and a challenger:

- The challenger chooses $k \leftarrow \text{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot),\mathsf{Dec}_k(\cdot)}(1^n)$ outputs m_0,m_1 such that $|m_0|=|m_1|$.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to $\mathcal A$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot),\mathsf{Dec}_k(\cdot)}$ outputs a guess bit b' (\mathcal{A} may not query $\mathsf{Dec}_k(c)$)

Let $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ be an encryption scheme. Consider the following game between an adversary \mathcal{A} and a challenger:

- The challenger chooses $k \leftarrow \text{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot),\mathsf{Dec}_k(\cdot)}(1^n)$ outputs m_0,m_1 such that $|m_0|=|m_1|$.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to $\mathcal A$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot),\mathsf{Dec}_k(\cdot)}$ outputs a guess bit b' (\mathcal{A} may not query $\mathsf{Dec}_k(c)$)
- We say that $\operatorname{PrivK}_{\mathcal{A},\Pi}^{cca}(n)=1$ (i.e., \mathcal{A} wins) if b'=b.

Let $\Pi = (Gen, Enc, Dec)$ be an encryption scheme. Consider the following game between an adversary A and a challenger:

$\mathsf{PrivK}^{\mathit{cca}}_{\mathcal{A},\Pi}(n)$

- The challenger chooses $k \leftarrow \mathsf{Gen}(1^n)$
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot),\mathsf{Dec}_k(\cdot)}(1^n)$ outputs m_0,m_1 such that $|m_0|=|m_1|$.
- The challenger chooses $b \leftarrow \{0,1\}$, computes $c \leftarrow \operatorname{Enc}_k(m_b)$ and gives c to \mathcal{A}
- $\mathcal{A}^{\mathsf{Enc}_k(\cdot),\mathsf{Dec}_k(\cdot)}$ outputs a guess bit b' (\mathcal{A} may not query $\mathsf{Dec}_k(c)$)
- We say that $\operatorname{PrivK}^{cca}_{\mathcal{A},\Pi}(n)=1$ (i.e., \mathcal{A} wins) if b'=b.

Definition: An encryption scheme $\Pi=$ (Gen, Enc, Dec) with message space $\mathcal M$ is CCA-secure if for all PPT $\mathcal A$ it holds that

$$\Pr[\mathsf{PrivK}^{cca}_{\mathcal{A},\Pi}(n) = 1] \le 1/2 + \mathsf{negl}(n)$$

Outline

Lecture 8 Review

2 Chosen-ciphertext Attack (CCA) Security (Chapter 3.7)

3 Importance of CCA Security (Chapter 3.7)

ullet This assumes that |m| is a multiple of block-length L.

- This assumes that |m| is a multiple of block-length L.
- ullet If it is not, standard approach is to pad m to a multiple of L
 - ullet Need to be able to tell what is part of m and what is padding

- This assumes that |m| is a multiple of block-length L.
- If it is not, standard approach is to pad m to a multiple of L
 - ullet Need to be able to tell what is part of m and what is padding
 - Add 1 to L bytes to end of m to pad to next multiple of L.

- This assumes that |m| is a multiple of block-length L.
- If it is not, standard approach is to pad m to a multiple of L
 - ullet Need to be able to tell what is part of m and what is padding
 - Add 1 to L bytes to end of m to pad to next multiple of L.
 - To identify padding, pad value indicates number of Bytes of padding

- This assumes that |m| is a multiple of block-length L.
- If it is not, standard approach is to pad m to a multiple of L
 - ullet Need to be able to tell what is part of m and what is padding
 - Add 1 to L bytes to end of m to pad to next multiple of L.
 - To identify padding, pad value indicates number of Bytes of padding
 - Example: m' = m||0x2||0x2 if need 2 Bytes of padding

- This assumes that |m| is a multiple of block-length L.
- If it is not, standard approach is to pad m to a multiple of L
 - ullet Need to be able to tell what is part of m and what is padding
 - Add 1 to L bytes to end of m to pad to next multiple of L.
 - To identify padding, pad value indicates number of Bytes of padding
 - Example: m' = m||0x2||0x2 if need 2 Bytes of padding
- ullet Decryption can then remove padding and return m
 - If padding incorrect, return "bad padding" error

Consider encryption of a 2-block message m

Quiz

You will now develop an attack on this mode of operations.

Arkady Yerukhimovich Cryptography September 30, 2024 11/15

• Consider encryption of a 2-block message *m*

- Consider encryption of a 2-block message *m*
- Note that $m_2 = F_k^{-1}(c_2) \oplus c_1$

- Consider encryption of a 2-block message *m*
- Note that $m_2 = F_k^{-1}(c_2) \oplus c_1$
 - If we change c_1 to $c_1'=c_1\oplus \delta$ without changing c_2 then, we change m_2 to $m_2'=m_2\oplus \delta$

- (ロト(間) (注) (注) (注) (注) かく(C)

Observation: We know that m_2 ends in (0xb) repeated b times

Observation: We know that m_2 ends in (0xb) repeated b times

Step 1: Learn size of padding

Observation: We know that m_2 ends in (0xb) repeated b times

Step 1: Learn size of padding

- Change 1st Byte of c_1 (thus, also m_2) and see if error occurs
 - Error only occurs if |pad| = L

Observation: We know that m_2 ends in (0xb) repeated b times

Step 1: Learn size of padding

- Change 1st Byte of c_1 (thus, also m_2) and see if error occurs
 - Error only occurs if |pad| = L
- Change Bytes 2,..., L until first time we get error, this is first Byte of padding

Observation: We know that m_2 ends in (0xb) repeated b times

Step 2: Using knowledge of b = |pad|, decrypt m

Observation: We know that m_2 ends in (0xb) repeated b times

Step 2: Using knowledge of b = |pad|, decrypt m

$$\delta_{i} = \underbrace{\begin{array}{c} L-(b+1) \text{ Bytes} \\ 0\times00||\cdots||0\times00||0\times(i)|| \\ 0\times00||\cdots||0\times00||0\times00|| \\ L-b \text{ Bytes} \end{array}}_{b \text{ Bytes}} \underbrace{\begin{array}{c} b \text{ Bytes} \\ 0\times(b+1)||\cdots||0\times(b+1)| \\ 0\times(b+1)||\cdots||0\times(b+1)| \\ b \text{ Bytes} \end{array}}_{b \text{ Bytes}}$$

Observation: We know that m_2 ends in (0xb) repeated b times

Step 2: Using knowledge of b = |pad|, decrypt m

$$\delta_{i} = \underbrace{0 \times 00||\cdots||0 \times 00||0 \times (i)||}_{L-b \text{ Bytes}} \underbrace{0 \times 00||\cdots||0 \times 00||0 \times (i)||}_{b \text{ Bytes}} \underbrace{0 \times (b+1)||\cdots||0 \times (b+1)|}_{b \text{ Bytes}} \oplus$$

•
$$m_2 \oplus \delta_i = \overbrace{m_2^1 || \cdots || m_2^{L-(b+1)}}^{L-(b+1)} || (0x(i) \oplus m_2^{L-b}) || \overbrace{0x(b+1) || \cdots}^{b \text{ Bytes}}$$

Observation: We know that m_2 ends in (0xb) repeated b times

Step 2: Using knowledge of b = |pad|, decrypt m

• Change c_1 (and thus also m_2) by δ_i defined as

$$\delta_{i} = \underbrace{0 \times 00||\cdots||0 \times 00||0 \times (i)||}_{L-b \text{ Bytes}} \underbrace{0 \times 00||\cdots||0 \times 00||0 \times (i)||}_{b \text{ Bytes}} \underbrace{0 \times (b+1)||\cdots||0 \times (b+1)|}_{b \text{ Bytes}} \oplus$$

•
$$m_2 \oplus \delta_i = \underbrace{m_2^1 || \cdots || m_2^{L-(b+1)}}_{b \text{ Bytes}} || (0x(i) \oplus m_2^{L-b}) || \underbrace{0x(b+1) || \cdots}_{b \text{ Bytes}}$$

ullet Will only decrypt correctly if $0xi\oplus m_2^{L-b}=0x(b+1)$

Observation: We know that m_2 ends in (0xb) repeated b times

Step 2: Using knowledge of b = |pad|, decrypt m

$$\delta_{i} = \underbrace{0 \times 00||\cdots||0 \times 00||0 \times (i)||}_{L-b \text{ Bytes}} \underbrace{0 \times 00||\cdots||0 \times 00||0 \times (i)||}_{b \text{ Bytes}} \underbrace{0 \times (b+1)||\cdots||0 \times (b+1)|}_{b \text{ Bytes}} \oplus$$

•
$$m_2 \oplus \delta_i = \underbrace{m_2^1 || \cdots || m_2^{L-(b+1)}}_{b \text{ Bytes}} || (0x(i) \oplus m_2^{L-b}) || \underbrace{0x(b+1) || \cdots}_{b \text{ Bytes}}$$

- Will only decrypt correctly if $0xi \oplus m_2^{L-b} = 0x(b+1)$
 - Trying all 256 values for i, \mathcal{A} can learn m_2^{L-b} (a Byte of m)

Observation: We know that m_2 ends in (0xb) repeated b times

Step 2: Using knowledge of b = |pad|, decrypt m

$$\delta_{i} = \underbrace{0x00||\cdots||0x00||0x(i)||}_{L-b \text{ Bytes}} \underbrace{0xb||\cdots||0x(b+1)||\cdots||0x(b+1)|}_{b \text{ Bytes}} \oplus$$

•
$$m_2 \oplus \delta_i = \underbrace{m_2^1 || \cdots || m_2^{L-(b+1)}}_{b \text{ Bytes}} || (0x(i) \oplus m_2^{L-b}) || \underbrace{0x(b+1) || \cdots}_{b \text{ Bytes}}$$

- Will only decrypt correctly if $0xi \oplus m_2^{L-b} = 0x(b+1)$
 - Trying all 256 values for i, \mathcal{A} can learn m_2^{L-b} (a Byte of m)
- \bullet Repeat attack for all Bytes of m_2 by changing to appropriate padding

Observation: We know that m_2 ends in (0xb) repeated b times

Step 2: Using knowledge of b = |pad|, decrypt m

$$\delta_{i} = \underbrace{0 \times 00||\cdots||0 \times 00||0 \times (i)||}_{L-b \text{ Bytes}} \underbrace{0 \times 00||\cdots||0 \times 00||0 \times (i)||}_{b \text{ Bytes}} \underbrace{0 \times (b+1)||\cdots||0 \times (b+1)|}_{b \text{ Bytes}} \oplus$$

•
$$m_2 \oplus \delta_i = \underbrace{m_2^1 || \cdots || m_2^{L-(b+1)}}_{b \text{ Bytes}} || (0x(i) \oplus m_2^{L-b}) || \underbrace{0x(b+1) || \cdots}_{b \text{ Bytes}}$$

- Will only decrypt correctly if $0xi \oplus m_2^{L-b} = 0x(b+1)$
 - Trying all 256 values for i, A can learn m_2^{L-b} (a Byte of m)
- ullet Repeat attack for all Bytes of m_2 by changing to appropriate padding
- Can mount similar attack to decrypt m_1

Attack outline:

- Learn size of padding using decryption errors
- ② Using knowledge of |pad|, decrypt m Byte-by-Byte

Attack outline:

- Learn size of padding using decryption errors
- ② Using knowledge of |pad|, decrypt m Byte-by-Byte

Observations:

- Can view error as partial decryption
- Even very limited decryption oracle can lead to an attack

Attack outline:

- Learn size of padding using decryption errors
- ② Using knowledge of |pad|, decrypt m Byte-by-Byte

Observations:

- Can view error as partial decryption
- Even very limited decryption oracle can lead to an attack

Warning

Be very careful with error messages in crypto constructions