

| Nint HD LOWI-|
| Report 2330

DETERMINATION OF LOW-LEVEL CONCENTRATIONS OF LEAD IN PAINT

D

Approved for public release; distribution unlimited.

U.S. ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COMMAND FORT BELVOIR, VIRGINIA

405160 81 9 21 079 75

Destroy this report when it is no longer needed. Do not return it to the originator.

The citation in this report of trade names of commercially available products does not constitute official endorsement or approval of the use of such products.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION N 2.3.30	NO. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)	5 TYPE OF REPORT & PERIOD COVE
DETERMINATION OF LOW-LEVEL CONCENTRATION	S
OF LEAD IN PAINT	6. PERFORMING ORG. REPORT NUMBE
7. AUTHOR(s)	B. CONTRACT OR GRANT NUMBER(*)
Dario A. Emeric	
9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Mobility Equipment Research &	10. PROGRAM ELEMENT, PROJECT, TA
Development Command; ATTN: DRDME-VC;	PRO. A1-0-P6350-01-AW-EF
Fort Belvoir, Virginia 22060	AMS NO: 5397DM6350
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
US Army Mobility Equipment Research & Development Command; ATTN: DRDME-VC;	July 1981
Fort Belvoir, Virginia 22060	17
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office	15. SECURITY CLASS. (of this report)
	Unclassified
	15a. DECLASSIFICATION/DOWNGRADII
Approved for public release; distribution unlimited.	
Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different	from Report)
	from Report)
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different	
17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, If different	upervision of Sidney Levine, C, . York, C, Material Technology
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different 18. SUPPLEMENTARY NOTES This work was accomplished by Dario A. Emeric; under the st Chemistry Research Group, and under the direction of Emil J Laboratory, US Army Mobility Equipment Research and Dev	upervision of Sidney Levine, C, I. York, C, Material Technology elopment Command.
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different 18. SUPPLEMENTARY NOTES This work was accomplished by Dario A. Emeric; under the st Chemistry Research Group, and under the direction of Emil J Laboratory, US Army Mobility Equipment Research and Dev	upervision of Sidney Levine, C, I. York, C, Material Technology elopment Command.
18. SUPPLEMENTARY NOTES This work was accomplished by Dario A. Emeric; under the st Chemistry Research Group, and under the direction of Emil J Laboratory, US Army Mobility Equipment Research and Dev 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Lead-Free Paints Spectroscopic Analysis Oil-Base Paints	upervision of Sidney Levine, C, I. York, C, Material Technology elopment Command.
18. SUPPLEMENTARY NOTES This work was accomplished by Dario A. Emeric; under the st Chemistry Research Group, and under the direction of Emil J Laboratory, US Army Mobility Equipment Research and Dev 19. KEY WORDS (Continue on reverse side it necessary and identity by block numb Lead-Free Paints Spectroscopic Analysis	upervision of Sidney Levine, C, I. York, C, Material Technology elopment Command.
18. SUPPLEMENTARY NOTES This work was accomplished by Dario A. Emeric; under the st Chemistry Research Group, and under the direction of Emil J Laboratory, US Army Mobility Equipment Research and Dev 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Lead-Free Paints Spectroscopic Analysis Oil-Base Paints Emission Spectroscopy 20. ABSTRACT (Continue on reverse side if necessary and identify by block numbers.)	upervision of Sidney Levine, C, . York, C, Material Technology elopment Command.
18. SUPPLEMENTARY NOTES This work was accomplished by Dario A. Emeric; under the st Chemistry Research Group, and under the direction of Emil J Laboratory, US Army Mobility Equipment Research and Dev 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Lead-Free Paints Spectroscopic Analysis Oil-Base Paints Emission Spectroscopy 20. ABSTRACT (Continue on reverse side if necessary and identify by block numbes.) **Report describes an instrumental method of analysis to pre-	upervision of Sidney Levine, C, . York, C, Material Technology elopment Command. per) ovide a direct-reading emission
18. SUPPLEMENTARY NOTES This work was accomplished by Dario A. Emeric; under the st Chemistry Research Group, and under the direction of Emil J Laboratory, US Army Mobility Equipment Research and Dev 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Lead-Free Paints Spectroscopic Analysis Oil-Base Paints Emission Spectroscopy 20. ABSTRACT (Continue on reverse side if necessary and identify by block numbes. **Export describes an instrumental method of analysis to prespectroscopic technique to the problem of analyzing oil-base.	upervision of Sidney Levine, C, . York, C, Material Technology elopment Command. per) ovide a direct-reading emission
18. SUPPLEMENTARY NOTES This work was accomplished by Dario A. Emeric; under the st Chemistry Research Group, and under the direction of Emil J Laboratory, US Army Mobility Equipment Research and Dev 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Lead-Free Paints Spectroscopic Analysis Oil-Base Paints Emission Spectroscopy 20. ABSTRACT (Continue on reverse side if necessary and identify by block numbes.) **Report describes an instrumental method of analysis to pre-	upervision of Sidney Levine, C, . York, C, Material Technology elopment Command. per) ovide a direct-reading emission
18. SUPPLEMENTARY NOTES This work was accomplished by Dario A. Emeric; under the st Chemistry Research Group, and under the direction of Emil J Laboratory, US Army Mobility Equipment Research and Dev 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Lead-Free Paints Spectroscopic Analysis Oil-Base Paints Emission Spectroscopy 20. ABSTRACT (Continue on reverse side if necessary and identify by block numbes. **Export describes an instrumental method of analysis to prespectroscopic technique to the problem of analyzing oil-base.	upervision of Sidney Levine, C, . York, C, Material Technology elopment Command. per) ovide a direct-reading emission
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES This work was accomplished by Dario A. Emeric; under the st Chemistry Research Group, and under the direction of Emil J Laboratory, US Army Mobility Equipment Research and Dev 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Lead-Free Paints Spectroscopic Analysis Oil-Base Paints Emission Spectroscopy 20. ABSTRACT (Continue on reverse side if necessary and identify by block numbe Report describes an instrumental method of analysis to pr spectroscopic technique to the problem of analyzing oil-base	upervision of Sidney Levine, C, . York, C, Material Technology elopment Command. per) ovide a direct-reading emission

DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

CONTENTS

Section	Title	Page
ı	INTRODUCTION	
	1. Statement of the Problem	1
	2. Background	1
II	EXPERIMENTAL PROCEDURE	
	3. Approach to the Problem	1
111	RESULTS	
	4. Laboratory	2
IV	DISCUSSION	
	5. Discussion	3
v	CONCLUSIONS	
	6. Conclusions	4
	BIBLIOGRAPHY	5
	APPENDIX Analytical Procedure for Determining Lead in Oil-Base Paints	6

DETERMINATION OF LOW-LEVEL CONCENTRATIONS OF LEAD IN PAINTS

I. INTRODUCTION

- 1. Statement of the Problem. This investigation was undertaken to provide a direct-reading emission spectroscopy technique to the problem of analyzing oil-base paints for low-level concentrations of lead or any other element of interest.
- 2. Background. Public Law 94-317 (Lead-Based Paint Poison Protection Act of 1976) limits lead to a maximum content of 0.06 percent (600 p/m) by weight in certain paints and tinting colors. Atomic absorption spectroscopy is the only accepted procedure of the American Society Testing of Materials (ASTM) for analysis of lead in paints. (See ASTM Method D-3335 Low Concentrations of Lead in Paint by Atomic Absorption Spectroscopy.) This procedure is time consuming, requiring extensive handling of the sample to reduce it to a form suitable for the determination of lead. Military Specification MIL-E-52798, "Enamel, Alkyd, Camouflage," has an alternate method using X-ray fluorescence on a dried film. Other methods for analysis of lead in liquid paint are: anodic stripping voltammetry by Environmental Sciences Associates for acrylic and latex paints, and X-ray fluorescence by Princeton Gamma Techniques.

An emission spectroscopic technique has been developed which will provide a rapid analytical method to analyze for lead in liquid oil-base paints. This procedure may also be used for the quantitative determination of other elements of interest (such as chromium) in liquid oil-base paints. A drastic savings in time and manpower could be achieved by using this direct-reading emission spectrometric technique for the analysis of paints for their lead content. This technique makes use of the rotating disk electrode system, specifically designed for the analysis of liquid samples. The samples and the standards are excited in an electric arc or spark discharge. The light intensity will vary directly with the lead content of the samples and the standards. The lead content of the unknown samples may be found by comparing their intensity values with the plotted intensity values of the standards.

II. EXPERIMENTAL PROCEDURE

3. Approach to the Problem. Laboratory experiments were carried out to investigate variables as: shelf life of the paint standard (prepared in-house), consequences of delays in the analysis of the samples, analytical parameters (source type, preburn time, exposure time, circuit capacitance and inductance), precision, sensi-

tivity, sample preparation, etc. Paint formulations of MIL-E-52798 and TT-P-636 ("Primer, Coating, Alkyd, Wood and Ferrous Metal") were prepared with lead contents ranging from blank to 0.055 percent based on total paint or from blank to 0.09 percent based on nonvolatile vehicles. In addition, paint formulations of MIL-P-52977 ("Red Oxide Primer Lead- and Chromium-free Paint") were also prepared. The lead and chromium contents of all of these standards were verified by atomic absorption spectroscopy according to ASTM Method D-3335. Commercial samples that conformed to the above-mentioned specifications were obtained and were analyzed by atomic absorption spectroscopy and by emission spectroscopy (the subject method). The standards, in storage, were checked on a periodic basis by atomic absorption and the subject emission spectroscopic method of analyses to determine their shelf life.

III. RESULTS

4. Laboratory. The analytical parameters of the 0.75-m Jarrell-Ash Model 750 Atom Counter Spectrometer selected for the analysis of the paints are as follows:

Wavelength: 283.3 nanometers - lead.

Wavelength: 267.7 nanometers - chromium.

Flushing gas: carbon dioxide (CO₂). Mode of excitation: high-voltage spark.

Capacitance: residual.

Inductance: 31-microhenries.

Resistance: residual.

Repetition rate: 4 breaks/1/2 cycle.

Current: 4 amperes.

Gas flow rate: 25 standard cubic feet per hour.

Preflush: 5 seconds.

Preburn: 6 seconds.

Exposure: 20 seconds.

Background: 442.4 nanometers (hydrogen).

Counter electrode: ASTM C-5. Rotating disk: ASTM D-1.

The paint samples could not be analyzed as received because the paint spattered and coagulated on the rotating disk. The samples and standards were diluted 1:1 with nondrying oils such as alkali-refined linseed oil and soybean oil to overcome the problem of spattering and coagulation. Although linseed oil could be used as well as soybean oil, we selected the latter because it is nontoxic and has a higher autoignition temperature.

It was noted that paint samples were polymerizing (forming skins) during early storage. To avoid loss of analyzable lead in the standards, they were diluted 1:1 with clarified raw soybean oil. This dilution accomplished several purposes: (a) It protected the paint from oxidation or drying, (b) it provided standard samples having the same dilution at all times, and (c) it provided good storage stability. The stored standards (diluted with soybean oil) were reanalyzed by ASTM Method D-3335 after 2 and 9 months; no changes were observed in the lead content. The lead content was also reanalyzed by emission spectroscopy, and in 11 months, the lead content was found to be virtually unchanged. The results obtained by atomic absorption and by emission spectroscopy are shown in the table.

	Atomic Absorption (%)		Atomic Emission (%)	
Sample	Chromium	Lead	Chromium	Lead
TB145		0.004		0.005
TB146		0.003		0.005
TB153		0.002		0.005
TB172		0.005		0.006
TB178	0.085*	0.008	0.08*	0.009
0.015%Pb		0.014		0.014
0.055%Pb		0.056		0.053

^{*} Simultaneous analysis with lead. Although the objective of this investigation concerned lead, it was broadened slightly to incorporate chromium, in a limited fashion.

Results are in percent based on total paint. Different paint standards, their lead and/or chromium content already verified by atomic absorption have been used as unknowns in order to check the spectroscopic results.

IV. DISCUSSION.

5. Discussion. Although experimental data obtained during the course of this investigation has indicated the feasibility of utilizing an emission spectroscopic technique for the determination of low levels of lead in liquid oil-base paints, a number of precuations must be observed. Since this procedure utilizes a noncompensated rotating-disk-method excitation stand, it is sensitive to the viscosity of the various specification paints and, therefore, individual standard working curves must be prepared for each of the paint specifications. Also, paint standards (known lead content) always should be carried along when an unknown product is being analyzed. This method should be considered applicable to oil-base paints only and, even then, should

be checked for compatibility when other oil-base paint specifications are used. Finally, fast-drying oil-base paints may be incompatible with this procedure as they may tend to coagulate on the rotating disk and spatter in spite of the 1:1 dilution with a non-drying oil.

V. CONCLUSIONS

6. Conclusions. It is concluded that:

- a. A rapid and convenient emission spectroscopic technique has been developed for the quantitative determination of lead in liquid oil-base paints.
- b. This technique may be utilized as an alternate to an atomic absorption spectroscopic method for the determination of lead (ASTM D-3335).
- c. This technique may be applied to the analyses of other elements of interest in liquid oil-base paints.

4

A ...

BIBLIOGRAPHY

American Society Test of Materials – Standard Test Method (ASTM D 3335) for Low Concentrations of Lead, Cadmium, and Cobalt in Paint by Atomic Absorption Spectroscopy.

Environmental Sciences Associates Inc., "The Direct Analysis of Lead in Liquid Paint by Anodic Stripping Voltammetry."

Federal Specification TT-P-636, "Primer, Coating, Alkyd, Wood and Ferrous Metals."

Military Specification MIL-E-52798, "Enamel, Alkyd, Camouflage."

Military Specification MIL-P-52977, "Red Oxide Primer."

Princeton Gamma-Tech-PGT Model 100 Chemical Analyzer for Lead in Paint Analysis.

APPENDIX

ANALYTICAL PROCEDURE FOR DETERMINING LEAD IN OIL-BASE PAINTS

- 1. Equipment and Materials.
 - a. Apparatus:
- (1) Direct-reading emission spectrometer with rotating disk capabilities.
 - (2) Graphite disk electrode ASTM D-1.
 - (3) Graphite counterelectrode ASTM C-5.
 - (4) Sample holder that will fit the spectrometer (plastic cap or boat).

1_

- (5) Disposable graduated pipettes and cups.
- (6) One-half-pint paint cans.
- b. Reagents: Clarified soybean oil.

2. Procedure.

The standard paints ranging in concentration from blank to 0.06 percent (based on total paint) are shaken or stirred to assure uniformity. A portion of each standard concentration is analyzed by atomic absorption spectroscopy (ASTM D-3335) or any other acceptable standard method. The remainders of each of the standard samples are diluted 1:1 with soybean oil in an appropriate-sized can and shaken or stirred until uniform. The paint standards containing the soybean oil as well as the unknown (diluted 1:1 with soybean oil) are poured into a suitably sized bottle cap or a boat and analyzed using the parameters described in the list (page 2). Prepare calibration curves, if necessary, by plotting counts or voltage against p/m percent. (Instrument may be calibrated to read directly in p/m or percent). Record the concentration of lead of the unknown sample and report it as percent of the lead in total paint. If the percent of the nonvolatile vehicle is known, divide percent lead obtained based on total paint (A) by the percent of the nonvolatile vehicle (B) to obtain the percent of

lead based on nonvolatile vehicle (C) % C = $\frac{A}{B}$ x 100.

DISTRIBUTION FOR MERADCOM REPORT 2330

No. Copies	Addressee	No. Copies	Addressee
2	Metals and Ceramics Info Ctr ATTN: Mr. Harold Mindlin, Dir Mr. James Lynch, Asst Dir 505 King Ave, Columbus, OH 43201	2	Commander US Army Electronics R&D Com ATTN: DRSEL-PA-E Mr. Stan Alster Mr. J. Quinn Fort Monmouth, NJ 07703
12	Commander Defense Technical Info Ctr Cameron Station Alexandria, VA 22314	8	Commander US Army Missile Research and Development Command ATTN: DRDMI-TB, Redstone
l	Commander US Army Foreign Science & Tech Ctr ATTN: DRXST-SD3 220 Seventh St, NE Charlottesville, VA 22901		Scientific Info Ctr (2 cys) (1 cy) DRDME-TK, Mr. J. Alley DRDMI-M IDRDMI-ET, Mr. Robert O. Black DRDMI-OS.
2	Office of the Deputy Chief of Staff for Research, Development, and Acquisition ATTN: DAMA-ARZ-E DAMA-CSS Washington, DC 20310		Mr. George L. Stewart, Jr. DRDMI-EAT, Mr. R. Talley DRDMI-QP Redstone Arsenal, AL 35809
2	Commander Army Research Ofc ATTN: Dr. George Mayer Mr. J. J. Murray P.O. Box 12211 Research Triangle, Park, NC 27709	3	Commander US Army Troop Support & Aviation Materiel Readiness Com ATTN: DRSTS-PLE (2) Mr. J. Corwin (1) DRSTS-Q (1) DRSTS-M (1) 4300 Goodfellow Boulevard
7	Commander US Army Materiel Development and Readiness Command ATTN: DRCQA-E, DRCQA-P DRCDE-D, DRCDMD-FT DRCLDC, DRCMT DRCMM-M Alexandria, VA 22333	1	St. Louis, MI 63120 Commander US Army Natick Research & Development Command ATTN: DRDNA-EM Natick, MA 01760

lo. Copies	Addressee	No. Copies	Addressee
10	Commander US Army Mobility Equipment Research & Develpmt Com ATTN: DRDME-D, DRDME-E DRDME-M, DRDME-H	2	Commander Edgewood Arsenal ATTN: DRDAR-CLR, Mr. Montanary (1) DRDAR-QAC, Dr. Mauritis (1) Aberdeen Proving Ground, MD 21010
2	DRDME-M, DRDME-T DRDME-TO, DRDME-V DRDME-ZE, DRDME-N Fort Belvoir, VA 22060	2	Commander Watervliet Arsenal ATTN: DRDAR-LCB, Mr. T. Moraczewski SARWV-PPI, Mr. L. Jette
2	Commander US Army Tank-Automotive Materiel Readiness Com	4	Watervliet, NY 12189
	ATTN: DRSTA-O Warren, MI 48090	•	Commander US Army Aviation R&D Com ATTN: DRDAV-EXT, DRDAV-QR
6	Commander US Army Armament Materiel Readiness Com		DRDAV-QP, DRDAV-QE St Louis, MI 63166
	ATTN: DRSAR-QA (2) DRSAR-SC (1) DRSAR-RDP (1) DRSAR-EN (1) DRSAR-QAE (1) Rock Island, IL 61299	7	Commander US Army Tank-Automotive Research and Development Com ATTN: DRDTA-UL, Tech Lib (1) DRDTA-RCKM, Mr. S. Goodman (1) DRDTA-RCKT, Mr. J. Fix (1) DRDTA-RTAS, Mr. S. Catalano (1)
3	Commander Rock Island Arsenal ATTN: SARRI-EN, Mr. W. M. Kisner SARRI-ENM, W. D. McHenry SARRI-QA Rock Island, IL 61299		DRDTA-TTM, Mr. W. Moncrief (1) DRDTA-ZS, Mr. O. Renius (1) (Only infrared, Ultrasonic, or Holographic reports) DRDTA-JA, Mr. C. Kedzior (1) Warren, MI 48090
12	Commander US Army Armament Research & Development Command ATTN: DRDAR-LC, Mr. E. Kelly (1) DRDAR-LCA, Dr. Sharkoff (1)	1	Director US Army Industrial Base Engineering Activity ATTN: DRXIB-MT, Mr. D. Brim Rock Island, IL 61299
	DRDAR-LCE, Dr. Walker (1) DRDAR-QAS, Mr. Fitzsimmons (5) DRDAR-SCM, Mr. J. Corrie (1) DRDAR-TSP, Mr. Stephans (1) DRDAR-TSS, (STINFO) (2) Dover, NJ 07801	1	Commander Harry Diamond Laboratories ATTN: DELHD-EDE, Mr. B. F. Willis 2800 Powder Mill Road Adelphi, MD 20783

No. Copies	Addressee	No. Copies	Addressee
2	Commander US Army Test and Fvaluation	1	Commander Jefferson Proving Ground
	Command		ATTN: STEJP-TD-I
	ATTN: DRSTE-AD-M		Madison, IN 47250
	Aberdeen Proving Ground, MD 21005	5	
	,	1	Commander, US Army Aircraft
3	Commander		Development Test Activity
	US Army White Sands Missile Range		ATTN: STEBG-TD
	ATTN: STEWS-AD-L, STEWS-ID STEWS-TD-PM		Ft. Rucker, AL 36362
	White Sands Missile Range, NM 8800.	2 1	President
	•		US Army Armor & Engineer Board
1	Commander		ATTN: ATZKOAE-TA
	US Army Yuma Proving Ground		Ft. Knox, KY 40121
	ATTN: Tech Library		B
	Yuma, AZ 85364	1	President
			US Army Field Artillery Board
1	Commander		ATTN: ATZR-BDOP Ft. Sill, OK 73503
	US Army Tropic Test Center		11. Sii, OK 75505
	ATTN: STETC-TD, Drawer 942 Fort Clayton, Canal Zone	1	Commander
	For Clayton, Canal Zone	•	Anniston Army Depot
4	Commander		ATTN: SDSAN-QA
•	Aberdeen Proving Ground		Anniston, AL 36202
	ATTN: STEAP-MT, STEAP-TL		
	STEAP-MT-M, Mr. J. A. Ferol	li 1	Commander
	STEAP-MT-G, Mr. Huddleston	n	Corpus Christi Army Depot
	Aberdeen Proving Ground, MD 2100:	5	ATTN: SDSCC-MEE, Mr. Haggerty
			Mail Stop 55
1	Commander, US Army Cold Region Test Ctr		Corpus Christi, TX 78419
	ATTN: STECR-OP-PM	ı	Commander
	APO Seattle, WA 98733		Letterkenny Army Depot
			ATTN: SDSLE-QA
1	Commander,		Chambersburg, PA 17201
	US Army Dugway Proving Ground	1	Commander
	ATTN: STEDP-MT	ı	Lexington-Bluegrass Army Depot
	Dugway, UT 84022		ATTN: SDSRR-QA
1	Commander		Lexington, KY 40507
	US Army Electronic Proving Ground	•	
	ATTN: STEFP-MT	1	Commander
	Ft Huachuca, AZ 85613		New Cumberland Army Depot
			ATTN: SDSNC-QA New Cumberland, PA 17070
			жем Сиппенана, ГА 17070

No. Copies	Addressee	No. Copies	Addressee
2	Commander US Army Depot Activity, Pueblo ATTN: SDSTE-PU-Q Pueblo, CO 81001	1	Director DARCOM Ammunition Ctr ATTN: SARAC-DE Savanna, IL 61074
1	Commander Red River Army Depot ATTN: SDSRR-QA Texarkana, TX 75501	2	Naval Research Lab ATTN: Dr. J. M. Krafft Code 8430, Library, Code 2620 Washington, DC 20375
1	Commander Sacramento Army Depot ATTN: SDSSA-QA Sacramento, CA 95813 Commander	3	Air Force Materials Laboratory ATTN: AFML-DO, Library AFML-LTM, Mr. E. Wheeler AFML-LLP, Mr. R. Rowand Wright-Patterson, AFB, OH 45433
	Savanna Army Depot Activity ATTN: SDSSV-S Savanna, IL 61074	14	Director Army Materials and Mechanics Research Center ATTN: DRXMR-P(1 cy)
1	Commander Seneca Army Depot ATTN: SDSSE-R Romulus, NY 14541		DRXMR-PL (2) DRXMR-M (2) DRXMR-MQ (1) DRXMR-MI, Mr. Darcy (1) DRXMR-L, Dr. Chait (1)
t	Commander Sharpe Army Depot ATTN: SDSSH-QE Lathrop, CA 95330		DRXMR-E, Dr. Chait (1) DRXMR-RA, Mr. Valente (1) DRXMR-AG-MD (1) DRXMR-X (1) DRXMR-PR (1) DRXMR-T (1)
1	Commander Sierra Army Depot ATTN: SDSSI-DQA Herlong, CA 96113		DRXMR-E (1) MERADCOM
1	Commander Tobyhanna Army Depot ATTN: SDSTO-Q Tobyhanna, PA 18466	1	Commander, DRDME-Z Tech Dir, DRDME-ZT Assoc Tech Dir/R&D, DRDME-ZN Assoc Tech Dir/Engrg & Acq, DRDME-ZE Spec Asst/Matl Asmt, DRDME-ZG Spec Asst/Scs & Tech, DRDME-ZK
1	Commander Toocle Army Depot ATTN: SDSTE-QA Toocle, UT 84074		CIRCULATE

No. Copies Addressee ì C, Ctrmine Lab, DRDMF-N C. Engy & Wtr Res Lab, DRDME-G C, Elec Pwr Lab, DRDME-E C, Camo & Topo Lab, DRDME-R C. Mar & Br Lab, DRDME-M C. Mech & Constr Eqpt Lab, DRDME-H C, Ctr Intrus Lab, DRDME-X C, Matl Tech Lab, DRDME-V Dir, Product A&T Dir, DRDME-T **CIRCULATE** Matl Tech Lab, DRDME-V 20 Chem Res Grp, DRDME-VC Tech Rpts Ofc, DRDME-WP Security Ofc (for liaison officers), DRDME-S Tech Library, DRDME-WC Programs & Anal Dir, DRDME-U Pub Affairs Ofc, DRDME-1 Ofc of Chief Counsel, DRDME-L

END

DATE FILMED ORDER ORDER

DTIC