

ENSE 885AW – Spring/Summer, 2020

PAPER #1

- Helping and Hindering User Involvement A Tale of Everyday Design
- CHI Human Factors in Computing Systems
- 1997, Atlanta GA USA
- Stephanie Wilson, Mathilde Bekker, Peter Johnson, and Hilary Johnson
 - HCI Group, Department of Computer Science
 - Queen Mary and Westfield College, UK

Abstract

- •This paper presents the "obstacles" and "facilitators" to user involvement encountered during the different stages of designing a bespoke application. It also reports the views of different stakeholders throughout the whole process and compare them with their own observations as non-participant observers.
- •**Keywords** User-centered design, YOU != USER

Application details

- Custom-built application in a technical support department of a UK organization (approximately 30 people)
- Intended for in-house use to support form-based enquires and staff responses, and retrieval of the same from a database

Design activities

- designer application designer, user interface designer
- manager-user amember of staff withtechnical expertise

Data collection and analysis

- Both designers interviewed four times each during the first phase
- The researchers gathered all documents produced during the design (background information about the department, services offered, interview copies, task models, requirements, paper and software prototypes, user manuals)
- Videotaped design meetings with users

Data collection and analysis

- Nine users interviewed for usability test (four involved int the design process)
- Obstacle a factor which they perceived prevented the users from making a contribution to a design activity, or where they felt there would have been better or more user input if this factor did not exist
- Facilitator a factor which they perceived facilitated the users in making a contribution to a design activity, or where they felt there would have been worse or less user input if this factor did not exist

Results

1. Gaining access to users

O = Obstacle

F = Facilitator

D = Designer

U = User

R = Researcher

O/F	Summary of comment(s)	View
F	UI designer championed cause for user involve-	R
	ment	
F	UI designer was highly motivated to involve users	D
F	UI designer convinced management of the value	D
	of user involvement in design	
F	Management receptive to UI designer's ideas	D
0	Absence of the UI designer in phase two resulted	R
	in little user involvement	
0	Structure within which users could offer com-	U
	ments became unclear in second phase	
0	Users felt their views were not taken into account	U
	in second phase of project	11
0	One user did not know to whom he should give	U
0	his comments on the system	D
10	The designers decided not to involve users in the design of one subsystem	U
0	There was limited time for the project, and thus	D
١	also to involve the users	
0	The designers decided that they would only in-	D
ľ	volve a limited set of users	
F	Designers made the selection of users with the	D
	help of the manager-user	
F	Users were chosen because of perceived knowl-	D
	edge and experience	
F	Three users were selected to participate in sub-	D
	sequent modelling and design activities	
F	Users were keen to be involved in design	U
0	The needs of other users were disregarded	R

Results

2. Organising and facilitating ongoing user involvement

O = Obstacle

F = Facilitator

D = Designer

U = User

R = Researcher

O/F	Summary of comment(s)	View
F	Management gave consent to involve users	D
F	Users were willing to talk to designers	D
F	Manager-user explained structure of dept	D
0	Users not told it was okay to take time to be involved in design	R
0	Management and designers put no extra effort into convincing users to be involved	R
0	There was poor dissemination of information about design project within department	U
0	Junior staff were unaware of the project	U
0	Users were very busy	D
0	Difficult to make appointments with users	D
0 0	Designers expected users to come to them	U
0	Designers found it difficult to talk to users in their working environment	D
0	Users did not respond to email messages	D
0 0	Meetings were badly organised	D/U
0	Meetings started off on the wrong foot	D
F	Designers were located close to the users making contact easy	R
0	Designers felt the users were checking on their progress	D
F	Designers eager to involve motivated users	D
0	Designers reluctant to involve less motivated users	R
F	Users were motivated because of previous experiences and politics	D
0	User felt system was irrelevant to his work	U
0	Users unaware of opportunity to be involved	U
0	Users lacked confidence and were reluctant to talk to the designers	U
F	Users that were involved became more motivated and volunteered extra input	D

Results

3. Facilitating contributions to design

O = Obstacle

F = Facilitator

D = Designer

U = User

R = Researcher

		1.6
O/F	Summary of comment(s)	View
F	Easier for users to contribute if they are involved throughout the process	D
F	Designers came prepared to meetings	D
F	Designers were not judgmental	U
F	Meetings were not intimidating	U
F	Input was treated as confidential	U
0	Users agreed too quickly with designers	D
0	UI designers might have led the users	D
0	Users were unaware of implementation con-	U
	straints during task model activities	
0	UI designer didn't mediate one meeting well	D/U
F	Individual meetings first with users allowed them to give their opinion openly	D/U
F	Group meetings with users facilitated reaching agreement	D
0	Users from one group attended a meeting in	U
	larger numbers than another user group	
0	Conflicts were brought out in the open	D
F	Users asked about their area of expertise	D
F	Designers chose expert users to go first	D
F	Design representations acted as focus for com- munication	D
F	Users came up with ideas for notations	D
F	Whiteboard provided a useful focus	D/U
F	Some users were active during meetings	D
0	Some users were passive during meetings	D
0	One user wanted to work at his own pace	D
F	A hard copy of task model used to get input from more users	D
0	One user had a negative attitude towards paper prototyping	D/U
0	Hard to judge interaction issues with paper proto- types	D/U
F	First user negotiated task model notation	D
0	Subsequent users had to accept the notation	R
F	Some users found the notation useful	U
0	Some users found the notation confusing	U
0	Users did not always have enough time to assimi- late and understand the models	D
0	The notation did not capture all task aspects	U
0	Some users misunderstood the notation	D

Lessons Learned

- Motivate all stakeholders
- Select a representative cross-section of users
- Involve a champion for the cause of user involvement
- Organise meetings effectively
- Ensure active management buy-in
- Don't expect the users to be designers
- Follow user involvement through to the end
- Be flexible
- Facilitate later involvement through earlier involvement
- Educate users about the whole design process
- Organise both individual and group meetings

Conclusion

- Many complexities of involving users in design like need to balance conflicting demands
- This work, unlike earlier studies, has focused on both obstacles and facilitators to user involvement
- The case study indicates that it is necessary to make careful trade-offs between these factors in order to project the positive side of involving users in the design

Future Work

- The researchers planned on conducting further analyses of
 - how the user's contribution were actually incorporated into the final design, and
 - the efficacy of those contributions by studying their impacts on the usability of the system

PAPER #2

- Ambiguity as a Resource for Design
- CHI Designing Design
- 2003, Ft. Lauderdale FL USA
- William W Gaver¹, Jacob Beaver¹, Steve Benford²
 - ¹Interaction Design Research Studio, The Royal
 College of Art, London UK
 - ²The Mixed Reality Laboratory, University of Nottingham, Nottingham UK

Abstract

- This paper is an argument against the usual belief that ambiguity is anathema in human computer interaction. It proclaims that ambiguity is a resource for design and that it can be used to further personal engagements with systems. This is illustrated using examples from contemporary arts and design practice.
- Keywords Interaction design, Emotion, Affective UI

Projected Realities

a system intended to help increase the presence of older people in a large
Dutch housing estate Bijlmer

Projected Realities

- little context provided for the images and slogans presented
- benches created
 ambiguity between sitting
 and viewing
- local people were found to be attracted by this ambiguity to engage with the system

Desert Rain

- a mixed reality
 performance (touring internationally since 1999)
- designed to provoke participants to re-evaluate boundaries between reality and fiction
- achieved by literally making these boundaries ambiguous

The Pillow

- an LCD screen displaying
 geometric shapes
 embedded in a plastic brick
 enclosed in a plastic pillow
- electromagnetic waves
 (mobile phones, taxis, radio, etc) from surrounding
 environment processed to form sounds

The Pillow

- the generated information is distorted to producing an intriguing effect
- the pillow itself is ambiguous radio or aesthetics?
- the ability to eavesdrop
 the surrounding
 environment raises ethical
 questions about technology

Home Health Monitor

- "the superstitious home"
- a system that gives feedback about the home's emotional, social, and spiritual health on a daily basis

Home Health Monitor

- data collected through sensors ranging from light and temperature to stroke rate of hairbrush and state of toilet state
- sensor readings mapped
 sentences from
 published horoscopes to
 generate a tailored
 horoscope everyday

Home Health Monitor

- the generated horoscopes use a vague language providing the people knowledge about their relationship with their home
- all this ambiguity result in an organized yet questionable idea about one's emotional state

- Ambiguity of Information
 - ambiguity that arises by the way information is presented

Ambiguity of Information

- ambiguity that arises by the way information is presented
- Leonardo da Vinci'sMona Lisa

Ambiguity of Information

- ambiguity that arises by the way information is presented
- Leonardo da Vinci'sMona Lisa
- Picasso's Guernica

Ambiguity of Information

 Bystander - uses ambiguity to challenge users to join their knowledge to clues offered by the system to play the game

Ambiguity of Context

ambiguity that arises because certain things suggest different meaning different contexts

Ambiguity of Context

- ambiguity that arises because certain things suggest different meaning different contexts
- Duchamp's Fountain

Ambiguity of Relationship

ambiguity that arises froma viewer's personalrelationship with something

Ambiguity of Relationship

- ambiguity that arises froma viewer's personalrelationship with something
- Van Lieshout's La Bais-ô-Drôme

Ambiguity of Relationship

- ambiguity that arises froma viewer's personalrelationship with something
- Van Lieshout's La Bais-ô-Drôme
- Gaver and Martin'sPrayer Device

Tactics for Using Ambiguity

Enhancing ambiguity of information

- Use imprecise representations to emphasize uncertainty
- Over-interpret data to encourage speculation
- Expose inconsistencies to create a space of interpretation
- Cast doubt on sources to provoke independent assessment

Tactics for Using Ambiguity

Creating ambiguity of context

- Implicate incompatible contexts to disrupt preconceptions
- Add incongruous functions to breach existing genres
- Block expected functionality to comment on familiar products

Tactics for Using Ambiguity

Provoke ambiguity of relationship

- Offer unaccustomed roles to encourage imagination
- Point out things without explaining why
- Introduce disturbing side effects to question responsibility

Conclusion

- Ambiguity is not a virtue in itself, nor should it be used as an excuse for poor design
- If done correctly, ambiguity can be used a weapon to make designs more interactive, engaging, and thoughtprovoking
- In summary, ambiguity allows designers to overcome the limitations of technology by encouraging users to interpret things themselves

Concluding Remarks

- Both the papers had some things unconventional in their work.
 - Paper 1, unlike its contemporaries, focused on both obstacles and facilitators to user involvement
 - Similarly, Paper 2 argued against the common belief set by their fellow researcher's works that claimed ambiguity was the nemesis of usefulness and usability

References

- All figures and tables, unless stated otherwise, are from respective research papers
- Desert Rain video, https://www.youtube.com/watch?v=QMeW5snKvtl
- Mona Lisa, https://en.wikipedia.org/wiki/Mona_Lisa
- **Guernica**, https://en.wikipedia.org/wiki/Guernica_(Picasso)
- Fountain, https://en.wikipedia.org/wiki/Fountain_(Duchamp)
- La Bais-ô-Drôme, https://www.ateliervanlieshout.com/work/la-bais-drme/
- **Prayer Device**, Gaver, William & Martin, Heather. (2000). Alternatives: exploring information appliances through conceptual design proposals. 2. 209-216. 10.1145/332040.332433.

Thank You