Chapter 1 Introduction

- 1.1 Historical Perspective
- 1.2 A Digital Circuit Design Example
- 1.3 VLSI Design Methodologies
- 1.4 VLSI Design Styles
- 1.5 Design Quality
- 1.6 Packaging Technology
- 1.7 CAD Technology

1.1 Historical Perspective

□ Evolution of logic complexity in integrated circuits

Era	Date	# of logic blocks
MSI	1967	20-200
LSI	1972	200-2000
VLSI	1978	2000-20000
ULSI	1989	> 200000

☐ Prominent driving trends in information service technologies

- ☐ CMOS technology advances
 - ☐ Device scaling with smaller transistor feature size
 - ☐ Increasing operating speeds and packing density
 - ☐ Increasing process complexity and fabrication cost
- ☐ Evolution of minimum feature size and level of integration

☐ Classifications of digital integrated circuits □ NMOS logics ☐ NMOS logic with resistive load □ NMOS logic with depletion-mode load □ NMOS logic with enhancement-mode load ☐ CMOS logics ☐ Static circuits ■ Classical CMOS ■ Transmission-gate CMOS ■ Cascade voltage switch logic (CVSL) ☐ Dynamic circuits ■ Domino logic ■ NORA logic ■ TSPC logic

A Digital Circuit Design Example

□ Design flow for digital integrated circuits
□ Define the logic functionality
□ Required specifications include:
□ Operating speed
□ Chip area
□ Power consumption
□ Noise margins
□ Circuit performance is verified during design and layout phases
□ Design iteration may be needed during design and layout phases

☐ Tradeoff is typically involved in

circuit designs

- □ One-bit binary full-adder with 0.8-µm CMOS
 - ☐ Specifications:
 - ☐ Propagation delay of sum and carry_out signals < 1.2 ns (worst case)
 - ☐ Transition delay of sum and carry_out signals < 1.2 ns (worst case)
 - □ Circuit area < 1500 µm²
 - \square Dynamic power dissipation (@ $V_{DD} = 5 \text{ V}$ and $f_{max} = 20 \text{ MHz}$) <1 mW
 - ☐ Boolean description:
 - ☐ Input:A, B and C
 - ☐ Output: sum_out, carry_out

☐ Gate-level schematic A _ B _

☐ Transistor-level schematic

☐ Alternative transistor-level schematic

- ☐ Preliminary layout
 - \square Minimum device size (2 μ m/0.8 μ m) for NMOS and PMOS
 - \square Total Si area = 1134 μ m²

- ☐ Post-layout simulation
 - ☐ Parasitics extracted from the layout are included in the simulation
 - \square Worst-case delay = 2.0 ns > 1.2 ns
 - ☐ The carry_out is used to generate sum output (critical path)

- ☐ Modified full-adder design
 - ☐ Resize PMOS and NMOS devices
 - \Box Chip area = 1290 μ m²
 - \square Worst-case delay = 1.0 ns
 - \square Dynamic power dissipation = 460 μ W

1.3 VLSI Design Methodologies

☐ Performance versus design cycle

☐ Technology window

- □ VLSI design flow
 - ☐ Representations or abstractions:
 - ☐ Behavior representation
 - ☐ Logic representation
 - ☐ Circuit representation
 - ☐ Layout representation
 - ☐ Verification is essential in every step during the process

1.4 VLSI Design Styles

- ☐ Field programmable gate array (FPGA)
 - ☐ Logic gates with programmable interconnects
 - ☐ I/O buffers, configurable logic blocks (CLBs) and programmable interconnect structures
 - ☐ Requires no process steps for logic realization
 - ☐ For fast prototyping and small-volume ASIC production (short turn-around time)
 - ☐ Design flow of FPGA:
 - ☐ Behavioral description of its functionality
 - ☐ Technology-mapped into circuits or logic cells
 - ☐ Assigns logic cells to FPGA CLBs and determines the routing pattern

- ☐ Configurable logic blocks (CLBs)
 - ☐ Independent combinational function generators (memory look-up table)
 - ☐ Clock signal terminal
 - ☐ User-programmable multiplexers
 - ☐ Flip-flops
- ☐ Programmable interconnect
 - ☐ Six pass transistors per switch matrix interconnect point
 - ☐ Accomplished by data in RAM cells

- ☐ Gate array design
 - ☐ Uncommitted transistors separated by routing channels
 - ☐ Circuit implementation:
 - □ 1st phase: generic masks for uncommitted transistors on each GA chip (stored)
 - \square 2nd phase: Customization by (multiple) metal fabrication process
 - ☐ Ranks second after FPGA with a turn-around time of a few days
 - ☐ Chip utilization factor is higher than that of the FPGA

Standard-cell based design
☐ Commonly used logics are developed, characterized and stored in a standard cell library
☐ Cell library includes:
☐ Delay time versus load capacitance
☐ Circuit simulation model
☐ Timing simulation model
☐ Fault simulation model
☐ Cell data for place-and-route
☐ Mask data
☐ Standard cell arrangement:
☐ Fixed cell height
☐ Parallel power and ground rails
☐ Input and output pins are located on the upper and lower boundaries
☐ Cells are placed side by side in standard-cell based design
☐ The required logic circuits are realized using the cells in the library
☐ Complete mask sets are developed for chip fabrication
☐ One of the most prevalent design style for ASIC applications

☐ Layout of a standard cell and floorplan of a standard-cell based design

- ☐ Full custom design
 - ☐ Design and develop the IC from scratch
 - ☐ Possibly to achieve the highest performance compared with other design styles
 - ☐ Highest development cost and design cycle time
 - ☐ Design reuse is coming popular to alleviate the design effort
 - ☐ Suitable for design of high-performance processors, FPGAs and memory chips

1.5 Design Quality

Testability
☐ Time and effort for chip test increase exponentially with design complexity
☐ The test task requires
☐ Generation of good test vectors
☐ Availability of reliable test fixture at speed
☐ Design of testable chip
Yield and manufacturability
☐ The ratio of good tested chips to total tested chips
☐ Functionality yield:
☐ Testing the chips at lower speed
☐ Identify problems of shorts, opens and leakage current
☐ Detect logic and circuit design failure
☐ Parametric yield
☐ Test at the required speed
☐ Delay testing is performed at this stage
☐ Consider manufacturability of the chip in the design phase
☐ Sufficient tolerance to device fluctuations and margin for measurement uncertainty

□ Reliability
☐ Depends on the design and process conditions
☐ Reliability problems:
☐ Electrostatic discharge (ESD) and electrical overstress (EOS)
☐ Electromigration
☐ Latch-up in CMOS I/O and internal circuits
☐ Hot-carrier induced aging
☐ Oxide breakdown
☐ Single event upset
☐ Power and ground bouncing
☐ On-chip noise and crosstalk
☐ Technology updateability
☐ Be technology-updated to new design rules
☐ Fast migration to new process technology
☐ "Dumb shrink" method with uniform scaling is rarely practiced
☐ Silicon compilation: generate physical layout from high-level specifications

1.6 Packaging Technology

Packaging for integrated circuits	
	Proper packaging technology is critical to the success of the chip development
	Package issues have to be taken into consideration in early stages of chip development
	Ensure sufficient design margins to accommodate the parasitics of the package
	Important packaging concerns:
	☐ Hermetic seals to prevent the penetration of moisture
	☐ Thermal conductivity
	☐ Thermal expansion coefficient
	☐ Pin density
	☐ Parasitic inductance and capacitance
	\square α -particle protection
	□ Cost
	Types of packaging technology
	☐ Classified by the method used to solder the package on the printed PCB
	□ Pin-through-hole (PTH)
	☐ Surface-mounted technology (SMT)

Dual in-line packages (DIP)	
☐ Advantage of low cost	
☐ Not applicable for high-speed operations due to the inductance of the bond wires	
☐ Maximum pin count is typically limited to 64	
Pin grid array (PGA) packages	
☐ Offers a higher pin count (several houndreds)	
☐ High thermal conductivity especially with a passive or active heat sink	
☐ Requires large PCB area	
☐ Cost is higher than DIP	
Chip carrier packages (CCP)	
☐ Leadless chip carrier:	
☐ Chip mounted on PCB directly	
☐ Supports higher pin count	
Problem with difference in thermal coefficient	
☐ Leaded chip carrier:	
Quad flat packages (QFP)	
☐ Similar to leaded chip carrier with leads extending outward	

- ☐ Multi-chip modules (MCM)
 - ☐ Used for very high performance in special applications
 - ☐ Multiple chips are assembled on a common substrate in a single package
 - ☐ A large number of critical interconnects among the chips are made within the package
 - ☐ Important features:
 - ☐ Significant reduction in the overall system size
 - ☐ Reduced package lead counts
 - ☐ Faster operation allowed
 - ☐ Higher implementation cost

1.7 CAD Technology

☐ Categories of CAD tools for VLSI chip design
☐ Synthesis tools:
☐ High-level synthesis tools with hardware description language
☐ Address automation of the design phase in the top level
☐ Layout tools:
☐ Floorplanning
☐ Place-and-route
☐ Module generation
☐ Simulation and verification tools
☐ Behavior simulation
☐ Logic level simulation
■ A number of test vectors are applied
■ Verify logic functionality
☐ Timing level simulation
☐ Circuit-level simulation
■ Determine nominal and worst-case delays
■ High computational cost