Grupa Dziekańska I3 Kierunek Informatyka Wydział Informatyki Politechnika Poznańska

Fizyka dla informatyków Sprawozdanie z zadania w zespołach nr. 1 prowadzący: dr. Gustaw Szawioła

Zależność drgań oscylatora harmonicznego z siłą wymuszającą od częstości ω siły wymuszającej.

autorzy:

Rafał Wójcik nr. indeksu 136831 Mariusz Sałaj nr. indeksu 136795 Piotr Więtczak nr. indeksu 132339 Robert Ciemny nr. indeksu 136693 Kamil Basiukajc nr. indeksu 136681

27 marca 2018

1 Wprowadzenie

Sprawozdanie w formacie plików .pdf i .tex, wraz z plikiem o rozszerzeniu .nb w którym zostały wykonane wszystkie obliczenia potrzebne do wykonania zadania są dostępne w formie repozytorium git pod adresem https://goo.gl/deaW5U.

2 Cel zadania

Celem tego zadania jest, korzystając z programu Mathematica zbadanie na drodze eksperymentu numerycznego zależności drgań oscylatora harmonicznego z siłą wymuszającą $\frac{d^2x(t)}{dt^2} + b\frac{dx}{dt} + \omega_0^2x(t) = sin(\omega t)$ od częstości ω siły wymuszającej. Należy wykonać wykres zależności amplitudy drgań w funkcji częstości ω i wyznaczyć tzw. częstość rezonansową, dla której drgania przyjmują wartość największą. Do obliczeń przyjmujemy f=1, a reszta wartości według wskazań prowadzącego.

3 Generowanie wykresów przykładowych rozwiązań numerycznych

3.1 Wyznaczenie wartości: s, $\triangle s$, w_0 , b, f, n, t (w naszym przypadku timelimit), według wskazań prowadzącego

```
 \begin{array}{l} (\star Z a danie \ 1 \star) \\ N_{\theta} = 5; \\ nralbumu_1 = 136 831; \\ nralbumu_2 = 136 693; \\ nralbumu_3 = 132 339; \\ nralbumu_4 = 136 681; \\ nralbumu_5 = 136 693; \\ s = \frac{\sum_{i=1}^{N_{\theta}} nralbumu_i}{N_{\theta}}; \\ \Delta s = \sqrt{\frac{\sum_{i=1}^{N_{\theta}} (nralbumu_i - s) ^2}{N_{\theta}}}; \\ \omega_{\theta} = \Delta s + 1; \\ b = \frac{\omega_{\theta}}{4}; \\ f = 1; \\ n = 10; \\ timelimit = \frac{n \star (2 \pi)}{\omega_{\theta}}; \\ \end{array}
```

Zrzut ekranu kodu napisanego w programie Mathematica w celu wykonania zadania

3.2 Przeprowadzenie rozwiązań numerycznych, oraz prezentacja ich wyników dla podpunktu a) $\omega=\sqrt{\omega_0^2-\frac{1}{2}b^2}$

Zrzut ekranu kodu napisanego w programie Mathematica w celu wykonania zadania

Prezentacja wyników dla podpunktu a

Zrzut ekranu prezentujący wyniki wygenerowane przez program Mathematica dla podpunku a

3.3 Przeprowadzenie rozwiązań numerycznych, oraz prezentacja ich wyników dla podpunktu b) $\omega=\frac{3}{4}\sqrt{\omega_0^2-\frac{1}{2}b^2}$

Zrzut ekranu kodu napisanego w programie Mathematica w celu wykonania zadania

Prezentacja wyników dla podpunktu b

Zrzut ekranu prezentujący wyniki wygenerowane przez program Mathematica dla podpunku b

3.4 Przeprowadzenie rozwiązań numerycznych, oraz prezentacja ich wyników dla podpunktu c) $\omega=\frac{5}{4}\sqrt{\omega_0^2-\frac{1}{2}b^2}$

$$(*podpunkt c)*) \\ \omega_0 = \Delta s + 1; \\ Print["c)"] \\ [drukuj] \\ \omega = 5 / 4 \sqrt{\omega_0^2 - \frac{b^2}{2}}; \\ s = NDSolve[\\ [rozwiąż numerycznie równanie różniczkowe \\ \{b x'[t] + x''[t] + \omega_0^2 x[t] = f Sin[t \omega], x[0] = 0, x'[0] = 0\}, x, \{t, 0, timelimit\}] \\ [sinus] \\ Plot[Evaluate[\{x[t]\} /. s], \{t, 0, timelimit\}, PlotStyle \rightarrow Automatic, [wyk... [oblicz] [styl grafiki [automatyczny]] [vyk... [oblicz] [vyk... [vyk... [oblicz] [vyk... [v$$

Zrzut ekranu kodu napisanego w programie Mathematica w celu wykonania zadania

Prezentacja wyników dla podpunktu c

Zrzut ekranu prezentujący wyniki wygenerowane przez program Mathematica dla podpunku c

4 Generacja wykresu punktowego, oraz tabeli $X_0(\omega)$, zależności maksymalnej amplitudy drgań X_0 od częstotliwości ω przyjmując wartości $\omega_k = \frac{5}{4} \sqrt{\omega_0^2 - \frac{1}{2}b^2}$, gdzie $k = 1, 2, \cdots, 19$;

```
(*Zadanie 2*)
alist = {};
\omegalist = {};
\omega_{\Theta} = \Delta S + 1;
timelimit = \frac{n*(2\pi)}{\omega_{\Theta}};
For [k = 1, k \le 19, k++,
 \omega_0 = \Delta S + 1;
 b=\frac{\omega_0}{2};
 \omega = (k/10) * Sqrt[\omega_0^2 - (1/2) * b^2];
                 pierwiastek kwadratowy
 \omegalist = Append[\omegalist, N[\omega]];
           dołącz na końcu przybliżenie numeryczne
 s = NDSolve[\{b x'[t] + x''[t] + \omega_0^2 x[t] = fSin[t\omega], x[0] = 0, x'[0] = 0\},
     rozwiąż numerycznie równanie różniczkowe
    x, {t, 0, timelimit}];
 amplituda = First[NMaximize[{Abs[x[t]] /. s[[1]], 0 < t < timelimit}, t]];</pre>
                pierw··· maksymaliza··· wartość bezwzględna
 alist = Append[alist, amplituda];
           dołącz na końcu
dane = Transpose[{ωlist, alist}];
        transpozycja
Print["
                              X<sub>0</sub>"]
drukuj
Grid[dane, Frame → All]
              _ramka _wszystko
ListPlot[dane, PlotStyle → Automatic, PlotRange → All,
wykres danych z li··· styl grafiki automatyczny zakres wykresu wszystko
 AspectRatio \rightarrow 1, AxesLabel \rightarrow {"\omega", "Amplituda"}, Filling \rightarrow Axis]
                                                                wypełnienie Loś
                       oznaczenia osi
```

Zrzut ekranu kodu napisanego w programie Mathematica w celu wykonania zadania

Prezentacja wyników

Zrzut ekranu prezentujący wyniki wygenerowane przez program Mathematica

$ \begin{array}{r} 172.841 3.29214 \times 10^{-7} \\ 345.682 3.33245 \times 10^{-7} \\ 518.523 4.05995 \times 10^{-7} \\ 691.364 4.55362 \times 10^{-7} \\ 864.206 4.79099 \times 10^{-7} \\ 1037.05 4.85455 \times 10^{-7} \\ 1209.89 6.76731 \times 10^{-7} \\ 1382.73 7.67327 \times 10^{-7} \\ 1555.57 1.08512 \times 10^{-6} \\ \end{array} $
518.523 4.05995×10^{-7} 691.364 4.55362×10^{-7} 864.206 4.79099×10^{-7} 1037.05 4.85455×10^{-7} 1209.89 6.76731×10^{-7} 1382.73 7.67327×10^{-7} 1555.57 1.08512×10^{-6}
$691.364 4.55362 \times 10^{-7}$ $864.206 4.79099 \times 10^{-7}$ $1037.05 4.85455 \times 10^{-7}$ $1209.89 6.76731 \times 10^{-7}$ $1382.73 7.67327 \times 10^{-7}$ $1555.57 1.08512 \times 10^{-6}$
$864.206 4.79099 \times 10^{-7}$ $1037.05 4.85455 \times 10^{-7}$ $1209.89 6.76731 \times 10^{-7}$ $1382.73 7.67327 \times 10^{-7}$ $1555.57 1.08512 \times 10^{-6}$
1037.05 4.85455×10^{-7} 1209.89 6.76731×10^{-7} 1382.73 7.67327×10^{-7} 1555.57 1.08512×10^{-6}
1209.89 6.76731×10^{-7} 1382.73 7.67327×10^{-7} 1555.57 1.08512×10^{-6}
1382.73 7.67327×10^{-7} 1555.57 1.08512×10^{-6}
1555.57 1.08512 × 10 ⁻⁶
1730 41 1 20640 10-6
Out[$=$]= 1728.41 1.30649 \times 10 ⁻⁶
1901.25 1.04765 x 10 ⁻⁶
2074.09 7.852×10^{-7}
2246.93 6.323×10^{-7}
2419.78 5.05963×10^{-7}
2592.62 4.48396×10^{-7}
2765.46 3.93726×10^{-7}
2938.3 3.42918×10^{-7}
3111.14 2.96148×10^{-7}
3283.98 2.57102×10^{-7}

Zrzut ekranu prezentujący tabele wygenerowaną przez program Mathematica

5 Obliczenie wartości $\triangle \omega$

```
(*3*)
Print["X<sub>0</sub>"]
drukuj
max = Max[alist]
      maksimum
index = Position[alist, max];
        pozycja
index = index[[1]];
index = index[[1]];
timelimit = \frac{n * (2 \pi)}{};
Print["ω dla X<sub>0</sub>"]
drukuj
\omega_{\text{max}} = \omega \text{list}[[\{\text{index}\}]]
polowamax = 1 / 2 * max;
\omega_{\text{temp}} = \omega_{\text{max}}[[1]];
test = max;
While [test > polowamax,
podczas
 \omega_{\text{temp}} = \omega_{\text{temp}} * 1.001;
 s = NDSolve[\{b x'[t] + x''[t] + \omega_0^2 x[t] = fSin[t * \omega_{temp}], x[0] = 0, x'[0] = 0\},
     rozwiąż numerycznie równanie różniczkowe
    x, {t, 0, timelimit}];
 test = First[NMaximize[{Abs[x[t]] /. s[[1]], 0 < t < timelimit}, t]];</pre>
         pierw -- maksymaliza -- wartość bezwzględna
While [test < polowamax,
 \omega_{\mathsf{temp}} = \omega_{\mathsf{temp}} * \texttt{0.999999};
 s = NDSolve[\{b x'[t] + x''[t] + \omega_0^2 x[t] = fSin[t * \omega_{temp}], x[0] = 0, x'[0] = 0\},
     rozwiąż numerycznie równanie różniczkowe
    x, {t, 0, timelimit}];
 test = First[NMaximize[{Abs[x[t]] /. s[[1]], 0 < t < timelimit}, t]];</pre>
         pierw maksymaliza wartość bezwzględna
Print["ω_"]
drukuj
\omega_- = \omega_{\text{temp}}
polowamax = 1 / 2 * max;
\omega_{\text{temp}} = \omega_{\text{max}}[[1]];
test = max;
While test > polowamax,
 \omega_{\text{temp}} = \omega_{\text{temp}} \star 0.999;
 s = NDSolve[\{b x'[t] + x''[t] + \omega_0^2 x[t] = fSin[t * \omega_{temp}], x[0] = 0, x'[0] = 0\},
     rozwiąż numerycznie równanie różniczkowe sinus
    x, {t, 0, timelimit}];
 test = First[NMaximize[{Abs[x[t]] /. s[[1]], 0 < t < timelimit}, t]];]</pre>
```

```
While [test < polowamax,
podczas
 \omega_{\text{temp}} = \omega_{\text{temp}} \star 1.000001;
 s = NDSolve \Big[ \Big\{ b \, x' \, [t] \, + \, x'' \, [t] \, + \, \omega_0 \,^2 \, x \, [t] \, = \, f \, Sin \, \Big[ \, t \, \star \, \omega_{temp} \, \Big] \, , \, \, x \, [\theta] \, = \, \theta \, , \, \, x' \, [\theta] \, = \, \theta \Big\} \, ,
       rozwiąż numerycznie równanie różniczkowe
                                                                           sinus
      x, {t, 0, timelimit}];
 test = First[NMaximize[{Abs[x[t]] /. s[[1]], 0 < t < timelimit}, t]];
            _pierw -- _maksymaliza -- _wartość bezwzględna
Print["\omega_+"]
drukuj
\omega_+ = \omega_{\text{temp}}
Print["\Delta\omega"]
drukuj
\Delta \omega = Abs[\omega_+ - \omega_-]
       Lwartość bezwzględna
```

Zrzut ekranu kodu napisanego w programie Mathematica w celu wykonania zadania

Prezentacja wyników

```
Out[100]= 1.30649 \times 10^{-6}
\omega d1a X_{\theta}
Out[106]= \{1728.41\}
\omega_{-}
Out[113]= 2216.01
\omega_{+}
Out[120]= 1270.1
\Delta\omega
Out[122]= 945.908
In[123]=
```

Zrzut ekranu prezentujący wyniki wygenerowane przez program Mathematica

Spis treści

1	Concert with the property of the contract of t		1 1 1
2			
3			
	3.1	Wyznaczenie wartości: s , $\triangle s$, w_0 , b , f , n , t (w naszym przypadku $timelimit$), według wskazań prowadzącego	1
	3.2	Przeprowadzenie rozwiązań numerycznych, oraz prezentacja ich wyników dla podpunktu $a)$ $\omega = \sqrt{\omega_0^2 - \frac{1}{2}b^2}$	2
	3.3	Przeprowadzenie rozwiązań numerycznych, oraz prezentacja ich wyników dla podpunktu $b)$ $\omega =$	_
		$\frac{3}{4}\sqrt{\omega_0^2-\frac{1}{2}b^2}$	3
	3.4	Przeprowadzenie rozwiązań numerycznych, oraz prezentacja ich wyników dla podpunktu c) $\omega = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$	
		$\frac{5}{4}\sqrt{\omega_0^2-\frac{1}{2}b^2}$	4
4		eracja wykresu punktowego, oraz tabeli $X_0(\omega)$, zależności maksymalnej amplitudy drgań X_0 od	
	częs	totliwości ω przyjmując wartości $\omega_k = \frac{5}{4} \sqrt{\omega_0^2 - \frac{1}{2}b^2}$, gdzie $k = 1, 2, \dots, 19$;	5
5	Obli	iczenie wartości 🛆 🗅	7