### **Binary Adders (Half adder and full adder)**

### Half Adder:

**Specification:** 2 inputs (X,Y)

2 outputs (C,S)

From the verbal explanation of a half adder, we find that this circuit needs two binary inputs and two binary outputs. The input variables designate the augend and addend bits; the output variables produce the sum and carry. We assign symbols x and y to the two inputs and S (for sum) and C (for carry) to the outputs. The truth table for the half adder is listed in Table.

| X | Υ | С | S |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 |   | 1 | 0 |
|   |   |   |   |

The C output is 1 only when both inputs are 1. The S output represents the least significant bit of the sum.

FIGURE 4.5 Implementation of half adder





For S:



S = A ⊕ B

For C:



K Maps

## Adder

# Design an Adder for 1-bit numbers?

- 1. Specification:
  - 2 inputs (X,Y)
  - 2 outputs (C,S)

### 2. Formulation:

| X | Y | С | s |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 |

## 3. Optimization/Circuit



# **Full Adder**

A combinational circuit that adds 3 input bits to generate a Sum bit and a Carry bit

|   | - |   |   |   | 하스러 선생님들이 하고 보겠다. |    |    |     |        |                         |
|---|---|---|---|---|-------------------|----|----|-----|--------|-------------------------|
| X | Υ | z | С | s | Sum YZ            | 00 | 01 | 11  | 10     |                         |
| 0 | 0 | 0 | 0 | 0 | 0                 | 0  | 1  | 0   | 1      | S = X'Y'Z + X'Y'        |
| 0 | 0 | 1 | 0 | 1 | 1                 | 1  | 0  | 1   | 0      | + XY'Z' +XYZ            |
| 0 | 1 | 0 | 0 | 1 |                   |    |    |     |        | $= X \oplus Y \oplus Z$ |
| 0 | 1 | 1 | 1 | 0 | Carry             | z  |    |     |        |                         |
| 1 | 0 | 0 | 0 | 1 | X.                | 00 | 01 | 11_ | 10     | )                       |
| 1 | 0 | 1 | 1 | 0 | 0                 | 0  | 0  | 1   | 0      |                         |
| 1 | 1 | 0 | 1 | 0 | 1                 | 0  | 1  | 1   | 1      | e:                      |
| 1 | 1 | 1 | 1 | 1 |                   |    |    |     | C = XY | + YZ + XZ               |

| x | y | Z | C | S |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
|   | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 |

FIGURE 4.6 K-Maps for full adder



FIGURE 4.7 Implementation of full adder in sum-of-products form



FIGURE 4.8 Implementation of full adder with two half adders and an OR gate



### Full Adder = 2 Half Adders

#### Manipulating the Equations:

$$S = (X \oplus Y) \oplus Z$$

$$C = XY + XZ + YZ$$

$$= XY + XYZ + XY'Z + X'YZ + XYZ$$

$$= XY(1 + Z) + Z(XY' + X'Y)$$

$$= XY + Z(X \oplus Y)$$

## Full Adder = 2 Half Adders

### Manipulating the Equations:

$$S = (X \oplus Y) \oplus Z$$

$$C = XY + XZ + YZ = XY + Z(X \oplus Y)$$



## **Binary Subtractors (Half and full Subtractor)**

$$D = \overline{A}.B + A.\overline{B}$$
$$B_o = \overline{A}.B$$



| Α | В | D | Bo |
|---|---|---|----|
| 0 | 0 | 0 | 0  |
| 0 | 1 | 1 | 1  |
| 1 | 0 | 1 | 0  |
| 1 | 1 | 0 | 0  |

### Half Subtractor





**Full Subtractor** 



| Input |   |   | Output     |        |  |
|-------|---|---|------------|--------|--|
| Α     | В | С | Difference | Borrow |  |
| 0     | 0 | 0 | 0          | 0      |  |
| 0     | 0 | 1 | 1          | 1      |  |
| 0     | 1 | 0 | 1          | 1      |  |
| 0     | 1 | 1 | 0          | 1      |  |
| 1     | 0 | 0 | 1          | 0      |  |
| 1     | 0 | 1 | 0          | 0      |  |
| 1     | 1 | 0 | 0          | 0      |  |
| 1     | 1 | 1 | 1          | 1      |  |

#### For D

## For Bout



$$D = \overline{ABB}_{in} + \overline{ABB}_{in} + A\overline{BB}_{in} + ABB_{in}$$

$$B_{out} = \overline{A}B_{in} + \overline{A}B + BB_{in}$$

Fig. 3.21 Maps for full-subtractor

$$\begin{array}{lll} Difference &=& \overline{A} \ \overline{B} \ C \ + \ \overline{A} \ \overline{B} \ \overline{C} \ + \ A \overline{B} \ \overline{C} \ + \ A B C \\ &=& C \ (\overline{A} \ \overline{B} \ + \ A B) \ + \ \overline{C} \ (\overline{A} \ \overline{B} \ + \ A \overline{B} \ ) \\ &=& C \ (A \odot B) \ + \ \overline{C} \ (A \oplus B) \\ &=& C \ (A \oplus B) \ + \ \overline{C} \ (A \oplus B) \\ &=& C \ \oplus (A \oplus B) \end{array}$$



