.297

CLAIMS

1. Polyhydroxyalkanoate comprised of at least a unit represented by a chemical formula (1) within the molecule:

$$\begin{array}{c}
R \\
N-H \\
C=O \\
(CH_2)m \\
O \\
(CH_2)n
\end{array}$$
(1)

wherein R represents -A₁-SO₂R₁; R₁ represents OH, a halogen atom, ONa, OK or OR_{1a}; R_{1a} and A₁ each independently represents a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure or a substituted or unsubstituted heterocyclic structure; n represents an integer selected from 0 to 4; m represents an integer selected from 0 - 8 in case n is 0, 2, 3 or 4, and m represents 0 in case n is 1; and in case plural units are present, R, R₁, R_{1a}, A₁, m and n have the aforementioned meanings independently for each unit.

Polyhydroxyalkanoate according to claim 1,
 comprised of, as the unit represented by the chemical formula (1), at least a unit represented by a chemical formula (2), a chemical formula (3), a chemical formula (4A) or (4B), within the molecule:

$$\begin{array}{c}
SO_2R_2\\
A_2\\
N-H\\
C=O\\
(CH_2)m\\
O\end{array}$$
(CH₂)m
(CH₂)n
(2)

wherein R₂ represents OH, a halogen atom, ONa, OK or OR_{2a}; R_{2a} represents a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or

5 unsubstituted phenyl group, A₂ represents a linear or branched alkylene group with 1 to 8 carbon atoms; n represents an integer selected from 0 to 4; m represents an integer selected from 0 - 8 in case n is 0, 2, 3 or 4, and m represents 0 in case n is 1;

10 and in case plural units are present, A₂, R₂, R_{2a}, m and n have the aforementioned meanings independently for each unit;

$$R_{3b}$$
 R_{3c}
 R_{3d}
 R_{3e}
 R_{3e}
 $N-H$
 $C=O$
 $(CH_2)m$
 O
 $(CH_2)m$
 $(CH_2)m$
 O
 $(CH_2)m$
 $(CH_2$

wherein R_{3a} , R_{3b} , R_{3c} , R_{3d} and R_{3e} each independently represents SO_2R_{3f} (R_{3f} representing OH, a halogen atom, ONa, OK or OR_{3f1} (R_{3f1} representing a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted

or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group with 1-20 carbon atoms, an alkoxy group with 1-20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{3g} (R_{3g} representing a H atom, a Na atom or a K atom), an acetamide group, an OPh group, a NHPh group, a CF₃ group, a C₂F₅ group or a C₃F₇ group (Ph indicating a phenyl group), of which at least one is SO_2R_{3f} ; n represents an integer selected from 0 to 4; m represents an integer selected from 0 - 8 in case n is 0, 2, 3 or 4, and m represents 0 in case n is 1; and in case plural units are present, R_{3a}, R_{3b}, R_{3c}, R_{3d}, R_{3e}, R_{3f1}, R_{3g1}, m and n have the aforementioned meanings independently for

each unit;

15

20

10

wherein R_{4a} , R_{4b} , R_{4c} , R_{4d} , R_{4e} , R_{4f} and R_{4g} each independently represents SO_2R_{4o} (R_{4o} representing OH, a halogen atom, ONa, OK or OR_{4o1} (R_{4o1} representing a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl

WO 2005/121204

group with 1 - 20 carbon atoms, an alkoxy group with 1 - 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{4p} (R_{4p} representing a H atom, a Na atom or a K atom), an acetamide group, an OPh group, an NHPh group, a CF₃ group, a C₂F₅ group or a C₃F₇ group (Ph indicating a phenyl group), of which at least one is SO₂R_{4o}; n represents an integer selected from 0 to 4; m represents an integer selected from 0 - 8 in case n is 0, 2, 3 or 4, and m represents 0 in case n is 1; and in case plural units are present, R_{4a}, R_{4b}, R_{4c}, R_{4d}, R_{4e}, R_{4f}, R_{4g}, R_{4o}, R_{4o1}, R_{4p}, m and n have the aforementioned meanings independently for each unit;

wherein R_{4h}, R_{4i}, R_{4j}, R_{4k}, R_{4l}, R_{4m} and R_{4n} each

independently represents SO₂R_{4o} (R_{4o} representing OH, a halogen atom, ONa, OK or OR_{4o1} (R_{4o1} representing a linear or branched alkyl group with 1 to 8 carbon atoms or a substituted or unsubstituted phenyl group)), a hydrogen atom, a halogen atom, an alkyl group with 1 - 20 carbon atoms, an alkoxy group with 1 - 20 carbon atoms, an OH group, an NH₂ group, an NO₂ group, COOR_{4p} (R_{4p} representing a H atom, a Na atom or

WO 2005/121204 PCT/JP2005/010996

a K atom), an acetamide group, an OPh group, an NHPh group, a CF₃ group, a C₂F₅ group or a C₃F₇ group (Ph indicating a phenyl group), of which at least one is $S\dot{\phi}_2R_{4o}$; n represents an integer selected from 0 to 4; m represents an integer selected from 0 - 8 in case n is 0, 2, 3 or 4, and m represents 0 in case n is 1; and in case plural units are present, R_{4h} , R_{4i} , R_{4j} , R_{4k} , R_{41} , R_{4m} , R_{4n} , R_{4o} , R_{4o1} , R_{4p} , m and n have the aforementioned meanings independently for each unit.

3. Polyhydroxyalkanoate comprised of at least a unit represented by a chemical formula (5) within the molecule:

$$(CH_2)m$$

$$(CH_2)n$$

$$(CH_2)n$$

$$(5)$$

10

15

20

wherein R_5 represents hydrogen, a group capable of forming a salt or R_{5a} ; R_{5a} represents a linear or branched alkyl group with 1-12 carbon atoms, an aralkyl group or a substituent having a sugar; n represents an integer selected from 0, 2, 3, 4; m represents an integer selected from 2-8 in case n is 0, wherein R_5 represents R_{5a} only in case m is 2, and m represents an integer selected from 0-8 in case n is an integer selected from 2-4; and in case plural units are present, R_5 , R_{5a} , m and n have the aforementioned meanings independently for each unit.

WO 2005/121204 PCT/JP2005/010996

302

4. Polyhydroxyalkanoate comprised of at least a unit represented by a chemical formula (6) within the molecule:

$$(CH_2)m$$
 O
 $(CH_2)n$
 O
 $(CH_2)n$
 O
 $(CH_2)n$

wherein n represents an integer selected from 0, 2, 3, 4; m represents an integer selected from 2 - 8 in case n is 0, m represents an integer selected from 0 - 8 in case n is 2 or 3, and m represents an integer selected from 0 and 2 - 8 in case n is 4; and in case plural units are present, m and n have the aforementioned meanings independently for each unit.

5. Polyhydroxyalkanoate according to any one of claims 1 to 4, further comprising a unit represented by a chemical formula (7) within the molecule:

15

20

wherein R₇ represents a linear or branched alkylene with 1 - 11 carbon atoms, alkyleneoxyalkylene group (each alkylene group being independently with 1 - 2 carbon atoms), a linear or branched alkenyl group with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms which is unsubstituted or substituted with an aryl group; and in case plural

15

20

units are present, R_7 has the aforementioned meanings independently for each unit.

6. A method for producing polyhydroxyalkanoate represented by a chemical formula (9), comprised of a step of polymerizing a compound represented by a chemical formula (8) in the presence of a catalyst:

wherein R₈ represents a linear or branched alkylene with 1 - 11 carbon atoms, alkyleneoxyalkylene group (each alkylene group being independently with 1 - 2 carbon atoms), a linear or branched alkenyl group with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms which is unsubstituted or substituted with an aryl group; and m represents an integer selected from 2 - 8;

wherein R_9 represents a linear or branched alkylene or alkyleneoxyalkylene group with 1-11 carbon atoms (each alkylene group being independently with 1-2 carbon atoms), a linear or branched alkenyl group

10

15

with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms which is unsubstituted or substituted with an aryl group; m represents an integer selected from 2 - 8; and in case plural units are present, R₉ and m have the aforementioned meanings independently for each unit.

7. A method for producing polyhydroxyalkanoate represented by a chemical formula (13), comprised of a step of polymerizing a compound represented by a chemical formula (12) in the presence of a catalyst:

wherein n represents an integer selected from 2 to 4; m represents an integer selected from 0 - 8 in case n is 2 or 3, and m represents an integer selected from 0 and 2 - 8 in case n is 4:

wherein n represents an integer selected from 2 to 4; m represents an integer selected from 0 - 8 in case n is 2 or 3, and m represents an integer selected from 20 0 and 2 - 8 in case n is 4, and in case plural units are present, m and n have the aforementioned meanings independently for each unit.

8. A method for producing polyhydroxyalkanoate represented by a chemical formula (15), comprised of a step of polymerizing a compound represented by a chemical formula (14) in the presence of a catalyst:

$$O \xrightarrow{(CH_2)n} O CR_{14b}$$

$$O \xrightarrow{(CH_2)n} OR_{14b}$$

wherein R_{14a} represents a linear or branched alkylene with 1 - 11 carbon atoms, alkyleneoxyalkylene group (each alkylene group being independently with 1 - 2 carbon atoms), a linear or branched alkenyl group

10 with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms which is unsubstituted or substituted with an aryl group; R_{14b} represents a linear or branched alkyl group with 1 - 12 carbon atoms or an aralkyl group; n represents an integer selected from 0, 2, 3 and 4; m represents an integer selected from 2 - 8 in case n is 0 and an integer selected from 0 - 8 in case n is selected from 2 - 4;

$$(CH_2)m$$

$$(CH_2)m$$

$$(CH_2)n$$

$$(CH_2)n$$

$$(15)$$

wherein R_{15a} represents a linear or branched alkylene 20 with 1 - 11 carbon atoms, alkyleneoxyalkylene group

(each alkylene group being independently with 1 - 2
carbon atoms), a linear or branched alkenyl group
with 1 - 11 carbon atoms or an alkylidene group with
1 - 5 carbon atoms which is unsubstituted or
5 substituted with an aryl group; R_{15b} represents a
linear or branched alkyl with 1 - 12 carbon atoms or
an aralkyl group; n represents an integer selected
from 0, 2, 3 and 4; m represents an integer selected
from 2 - 8 in case n is 0 and an integer selected
0 from 0 - 8 in case n is selected from 2 - 4; and in
case plural units are present, R_{15a}, R_{15b}, m and n have
the aforementioned meanings independently for each
unit.

9. A method for producing a

polyhydroxyalkanoate comprising a unit represented by a chemical formula (17), comprised of a step of oxidizing a double bond portion of a polyhydroxyalkanoate comprising a unit represented by a chemical formula (16):

$$(CH_2)m$$
 $(CH_2)n$
 (16)

20

wherein m represents an integer selected from 0 - 8; n represents 0, 2, 3 or 4; and, in case plural units are present, m and n have the aforementioned meanings independently for each unit:

$$(CH2)m$$

$$(CH2)m$$

$$(CH2)n$$

$$(17)$$

wherein m represents an integer selected from 0-8; R_{17} represents hydrogen, or a group capable of forming a salt; n represents 0, 2, 3 or 4; and, in case plural units are present, m, n and R_{17} have the aforementioned meanings independently for each unit.

10. A method for producing a polyhydroxyalkanoate comprising a unit represented by a chemical formula (19), comprised of a step of

10 executing hydrolysis of a polyhydroxyalkanoate comprising a unit represented by a chemical formula (18) in the presence of an acid or an alkali, or a step of executing hydrogenolysis comprising a catalytic reduction of a polyhydroxyalkanoate

15 comprising a unit represented by a chemical formula (18):

wherein R₁₈ represents a linear or branched alkyl group with 1 - 12 carbon atoms or an aralkyl group; n 20 represents an integer selected from 0, 2, 3 and 4; m represents an integer selected from 2 - 8 in case n WO 2005/121204 PCT/JP2005/010996

308

is 0, or an integer selected from 0 - 8 in case n is 2, 3 or 4; and in case plural units are present, R_{18} , m and n have the aforementioned meanings independently for each unit;

5

20

wherein R₁₉ represents hydrogen, or a group capable of forming a salt; n represents an integer selected from 0, 2, 3 and 4; m represents an integer selected from 2 - 8 in case n is 0, or an integer selected from 0 - 8 in case n is 2, 3 or 4; and, in case plural units are present, R₁₉, m and n have the aforementioned meanings independently for each unit.

11. A method for producing a polyhydroxyalkanoate comprising a unit represented by a chemical formula (1), comprised of a step of executing a condensation reaction of a polyhydroxyalkanoate comprising a unit represented by a chemical formula (20) and an amine compound represented by a chemical formula (21):

$$(CH_2)m$$
 $(CH_2)n$
 $(CH_2)n$
 $(CH_2)n$

wherein R20 represents hydrogen, or a group capable of

WO 2005/121204

5

10

15

PCT/JP2005/010996

forming a salt; n represents an integer selected from 0-4; m represents an integer selected from 0-8 in case n is 0, 2, 3 or 4, or m is 0 in case n is 1; and, in case plural units are present, m and n and R_{20} have the aforementioned meanings independently for each unit;

309

$$H_2N - A_3 - SO_2R_{21}$$
 (2.1)

wherein R_{21} represents OH, a halogen atom, ONa, OK or OR_{21a} ; R_{21a} and A_3 each independently is selected from a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure; and, in case plural units are present, R_{21} , R_{21a} and A_3 have the aforementioned meanings independently for each unit;

wherein R represents -A₁-SO₂R₁; R₁ represents OH, a halogen atom, ONa, OK or OR_{1a}; R_{1a} and A₁ each independently represents a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure; n represents an integer selected from 0 to 4; m represents an integer selected from 0 - 8 in

case n is 0, 2, 3 or 4, and m represents 0 in case n is 1; and in case plural units are present, R, R_1 , R_{1a} , R_1 , m and n have the aforementioned meanings independently for each unit.

12. A compound represented by a chemical formula (8):

wherein R₈ represents a linear or branched alkylene 1
- 11 carbon atoms, or alkyleneoxyalkylene group with

10 (each alkylene group being independently with 1 - 2
carbon atoms), a linear or branched alkenyl group
with 1 - 11 carbon atoms or an alkylidene group with
1 - 5 carbon atoms which is unsubstituted or
substituted with an aryl group; and m represents an

15 integer selected from 2 - 8.

13. A compound represented by a chemical formula (14):

$$O = (CH_2)n$$
 OR_{14b} OR_{14

wherein R_{14a} represents a linear or branched alkylene 20 with 1 - 11 carbon atoms, alkyleneoxyalkylene group

15

20

(each alkylene group being independently with 1 - 2 carbon atoms), a linear or branched alkenyl group with 1 - 11 carbon atoms or an alkylidene group with 1 - 5 carbon atoms which is unsubstituted or substituted with an aryl group; R_{14b} represents a linear or branched alkyl group with 1 - 12 carbon atoms or an aralkyl group; n represents an integer selected from 0, 2, 3 and 4; m represents an integer selected from 2 - 8 in case n is 0 and an integer selected from 0 - 8 in case n is selected from 2 - 4.

14. A method for producing a polyhydroxyalkanoate comprising a unit represented by a chemical formula (170), comprised of:

a step of reacting a polyhydroxyalkanoate comprising a unit represented by a chemical formula (168) with a base; and

a step of reacting a compound obtained in the aforementioned step with a compound represented by a chemical formula (169):

X(CH₂)mCOOR 169

(169)

wherein m represents an integer selected from 0 - 8; X represents a halogen atom; and R_{169} represents a linear or branched alkyl group with 1 - 12 carbon

atoms or an aralkyl group:

(170)

wherein m represents an integer selected from 0 - 8; R_{170} represents a linear or branched alkyl group with 1 - 12 carbon atoms or an aralkyl group; and in case plural units are present, R_{170} and m have the aforementioned meanings independently for each unit.

15. A method for producing a
polyhydroxyalkanoate comprising a unit represented by
10 a chemical formula (172), comprised of:

a step of reacting a polyhydroxyalkanoate comprising a unit represented by a chemical formula (168) with a base; and

a step of reacting a compound obtained in the

15 aforementioned step with a compound represented by a

chemical formula (171):

wherein R_{171} represents $-A_{171}-SO_2R_{171a}$; R_{171a} represents OH, a halogen atom, ONa, OK or OR_{171b} ; R_{171b} and A_{171} each independently is selected from a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure; and in case plural units are present, R_{171} , R_{171a} , R_{171b} , and A_{171} have the aforementioned meanings independently for each unit;

$$\begin{array}{c}
R_{172} \\
N-H \\
O = \\
(CH_2)_2 \\
O
\end{array}$$
(1 7 2)

10

15

5

wherein R_{172} represents $-A_{172}-SO_2R_{172a}$; R_{172a} represents OH, a halogen atom, ONa, OK or OR_{172b} ; R_{172b} and A_{172} each independently represents a group having a substituted or unsubstituted aliphatic hydrocarbon structure, a substituted or unsubstituted aromatic ring structure, or a substituted or unsubstituted heterocyclic structure; and in case plural units are present, R_{172} , R_{172a} , R_{172b} , and A_{172} have the aforementioned meanings independently for each unit.