Αναζήτηση Κατά Πλάτος

Επιμέλεια διαφανειών: Δ. Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Γραφήματα

- Μοντελοποίηση πολλών σημαντικών προβλημάτων
 (π.χ. δίκτυα συνεκτικότητα, διαδρομές, δρομολόγηση ανάθεση πόρων, layouts, ...).
- □ Γράφημα G(V, E): V κορυφές
 Ε ακμές (ζεύγη σχετιζόμενων κορυφών)
 - Τάξη |V| = n και μέγεθος |Ε| = m.
 - Κατευθυνόμενα και μη-κατευθυνόμενα, απλά μη-κατευθ.
 - lacksquare Βάρη (μήκη) στις ακμές $G(V,E,w)\,,\; m{w}: E\mapsto {
 m I\!R}$

Γραφήματα

- Βαθμός κορυφής deg(u): #ακμών εφαπτόμενων στη u.
 - Κατευθυνόμενα: εισερχόμενος και εξερχόμενος βαθμός.
 - \square Μη-κατευθυνόμενο G(V, E): $\sum_{v \in V} \deg(v) = 2|E|$
- Διαδρομή, μονοκονδυλιά, μονοπάτι (απλό).
- Κλειστή διαδρομή, κύκλωμα, κύκλος (απλός).
- Απόσταση d(u, v) (χωρίς και με βάρη).
- Συνεκτικό: μονοπάτι μεταξύ κάθε ζεύγους κορυφών.
- Δέντρο: ακυκλικό συνεκτικό γράφημα. Δάσος.

Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2018)

Υπο-Γραφήματα

- \square Υπογράφημα G'(V', E') του G(V, E) όταν $V' \subseteq V$ και $E' \subseteq E$.
 - Επικαλύπτον (spanning) όταν V' = V, δηλ. έχει όλες τις κορυφές του αρχικού γραφήματος.
 - Επαγόμενο (induced) όταν $E' = \{(u,v) \in E : u,v \in V'\}$ δηλ. έχει όλες τις ακμές του αρχικού μεταξύ των επιλεγμένων κορυφών.

- \square ... με πίνακα γειτνίασης: $A[i,j] = egin{cases} 1 & (v_i,v_j) \in E \ 0 & (v_i,v_j)
 otin E \end{cases}$
 - lacksquare Αν έχουμε βάρη, $A[i,j]=w(v_i,v_j)$
 - Μη-κατευθυνόμενο: συμμετρικός πίνακας.

	1	2	3	4	5	6
1	0	1	1	0	0	0
2	1	0	1	0	0	0
3	1	1	0	1	1	0
4	0	0	1	0	0	1
5	0	0	1	0	0	0
6	0	0	0	1	0	0

- \square ... με **πίνακα γειτνίασης**: $A[i,j] = egin{cases} 1 & (v_i,v_j) \in E \ 0 & (v_i,v_j)
 ot\in E \end{cases}$
 - lacksquare Αν έχουμε βάρη, $A[i,j]=w(v_i,v_j)$
 - Μη-κατευθυνόμενο: συμμετρικός πίνακας.
 - Χώρος Θ(n²).
 - Αμεσος έλεγχος για ὑπαρξη ακμής.

	1	2	3	4	5	6
1	0	0	1	0	0	0
2	1	0	0	1	0	0
3	0	1	0	1	1	0
4	0	1	0	0	0	1
5	0	0	0	0	0	1
6	0	0	1	0	0	0

- ... με λίστα γειτνίασης: γειτονικές κορυφές σε λίστα.
 - Βάρη αποθηκεύονται στους κόμβους της λίστας.

- ... με λίστα γειτνίασης: γειτονικές κορυφές σε λίστα.
 - Βάρη αποθηκεύονται στους κόμβους της λίστας.
 - Χώρος Θ(m).
 - Έλεγχος για ὑπαρξη ακμής σε χρόνο O(deg(u)).

Ασκήσεις

- Μετατροπή από μία αναπαράσταση σε άλλη;
- \Box Τετράγωνο $G^2(V, E')$ γραφήματος G(V, E) έχει ακμές μεταξύ κορυφών σε απόσταση ≤ 2 στο G.
 - Δίνεται λίστα (πίνακας) γειτνίασης του αρχικού γραφήματος.
 - Να υπολογισθεί λίστα (πίνακας) γειτνίασης τετραγώνου.
 - Ποιοι είναι οι αντίστοιχοι χρόνοι εκτέλεσης;
- □ Ανάστροφο (κατευθυνόμενο) γράφημα G^T(V, E^T) προκύπτει από αρχικό γράφημα G(V, E) με αντιστροφή φοράς ακμών.
 - Δίνεται λίστα (πίνακας) γειτνίασης του αρχικού γραφήματος.
 - Να υπολογισθεί λίστα (πίνακας) γειτνίασης ανάστροφου.
 - Ποιοι είναι οι αντίστοιχοι χρόνοι εκτέλεσης;

Εξερεύνηση Γραφημάτων

- □ Συστηματική «επίσκεψη» όλων των κορυφών και ακμών και εξαγωγή συμπερασμάτων σχετικά με βασικές ιδιότητες:
 - (Ισχυρά) συνεκτικές συνιστώσες.
 - Διμερές γράφημα.
 - Γέφυρες και σημεία κοπής.
 - Τοπολογική διάταξη για DAG.

10

Αναζήτηση Κατά Πλάτος (BFS)

- Εκκίνηση από αρχική κορυφή s και εξέλιξη σε φάσεις.
 - 1^η φάση: εξερεύνηση γειτόνων s (σε απόσταση 1 από s).
 - 2^η φάση: εξερεύνηση γειτόνων κορυφών 1^{ης} φάσης που δεν έχουν εξερευνηθεί ακόμη (σε απόσταση 2 από s).
 - 3^η φάση: εξερεύνηση γειτόνων κορυφών 2^{ης} φάσης που δεν έχουν εξερευνηθεί ακόμη (σε απόσταση 3 από s).
 -
 - φάση k: εξερεύνηση γειτόνων κορυφών φάσης k − 1 που δεν έχουν εξερευνηθεί ακόμη (σε απόσταση k από s).
- «Κατά Πλάτος»: ολοκληρώνει εξερεύνηση κορυφών σε απόσταση k από s πριν επεκταθεί σε κορυφές σε απόσταση k+1.
- Εξέλιξη αναζήτησης: BFS-δέντρο (ή δάσος).

Αναζήτηση Κατά Πλάτος (BFS)

- □ Τρία είδη κορυφών:
 - Ανεξερεύνητη: όχι επίσκεψη ακόμη.
 - Υπο-εξέταση: επίσκεψη αλλά όχι εξερεύνηση γειτόνων.
 - Εξερευνημένη: επίσκεψη και εξερεύνηση γειτόνων.
- Κορυφές περνούν από παραπάνω στάδια με αυτή τη σειρά.
 - Αρχικά όλες οι κορυφές ανεξερεύνητες.
 - Πρώτη επίσκεψη ανεξερεύνητης κορ. \rightarrow υπό-εξέταση.
 - Επίσκεψη των γειτόνων υπο-εξέταση κορ. \rightarrow εξερευνημένη.
- «Κατά Πλάτος»: σειρά που γίνονται υπο-εξέταση ίδια με σειρά που γίνονται εξερευνημένες.
 - (FIFO) ουρά: εισαγωγή όταν γίνονται υπο-εξέταση και εξαγωγή για εξερεύνηση γειτόνων.

Υλοποίηση

```
Πίνακας κατάστασης: m[v] = \{ A, Y, E \}.
Πίνακας γονέων: p[v] = πατέρας ν στο BFS-δάσος.
Χρόνος εκτέλεσης Θ(n + m).
     BFS(G(V,E),s)
          addToQueue(s); m[s] \leftarrow Y; p[s] \leftarrow NULL;
          for all v \in V \setminus \{s\} do
               m[v] \leftarrow A; p[v] \leftarrow NULL;
          while not emptyQueue() do
               u \leftarrow \text{extractFromQueue()}; m[u] \leftarrow E;
               for all v \in L[u] do
                   if m[v] = A then
                        addToQueue(v); m[v] \leftarrow Y; p[v] \leftarrow u;
```

Παράδειγμα

Παραδείγματα – Ιδιότητες

- BFS σε (α) πλήρες γράφημα, (β) δέντρο, (γ) κύκλο.
- Ψευδοκώδικας ολοκληρώνεται με κορυφές εξερευνημένες ή ανεξερεύνητες.
 - Αν γράφημα συνεκτικό, όλες εξερευνημένες.
 - Αν όχι, εξερευνημένες σε ίδια συνεκτική συνιστώσα με s.
 Υπόλοιπες ανεξερεύνητες
 - Τροποποίηση για ολοκλήρωση με όλες εξερευνημένες;

Ιδιότητες

ΒFS-Δάσος: υπογράφημα G_p(V_p, E_p) εξερευνημένων κορυφών και ακμών από όπου έγινε πρώτη επίσκεψη.

$$V_p = \{v \in V : m[v] = \mathrm{E}\}$$
 kai $E_p = \{(p[v], v) \in E : v \in V_p \setminus \{s\}\}$

- Νδο ένα μη κατευθυνόμενο γράφημα συνεκτικό ανν BFS παράγει spanning tree.
- Τροποποίηση για συνεκτικές συνιστώσες;
- □ Συνεκτικό γράφημα: BFS δέντρο είναι δέντρο συντομότερων μονοπατιών από s (ακμές θεωρούνται μοναδιαίου μήκους).
 - Πώς υπολογίζουμε αποστάσεις;
- Γραμμικός αλγόριθμος για αναγνώριση διμερούς γραφήματος;

