MAT 311 Abstract Algebra

Peter Schaefer

Spring 2024

Contents

1	Sets and Relations	2
	1.1 Sets	
	1.2 Relations	
	1.3 Partitions and Equivalence Relations	3
2	Binary Operations 2.1 Finite Sets	5
3	Isomorphic Binary Structures	7
4	Groups	9

1 Sets and Relations

Definition: What is Abstract Algebra

- Algebra: procedures for performing operations, i.e. $+, -, \times, \div$, and methods for solving equations. It uses bldspecific operations on **specific** objects.
- Abstract Algebra: discuss **general** structures and the relationships between the elements of these structures.

1.1 Sets

Definition: Set

A set is a collection of objects. These objects are called "elements". A set is typically uppercase, and elements are typically lowercase.

Set Notation

1. List Notation:

$$B = \{\text{John}, \text{Paul}, \text{Ringo}, \text{George}\}$$

$$\mathbb{N} = \{1, 2, 3, \dots\}$$

2. Set-builder Notation:

$$B = \{b : b \text{ is a Beatle}\}\$$

Well-Defined Sets

Sets must be **well-defined**. That is, given set S and any element x, either $x \in S$ or $x \notin S$.

Definition: Subset

A set A is a subset of set B, written as $A \subseteq B$, if every element of A is also in B. Note: every non-empty set has at least two subsets:

- The set itself
- Ø

Definition: Proper Subset

If $A \subseteq B$ but $A \neq B$, then A is a **proper subset** of B, written $A \subset B$ or $A \subsetneq B$. Note: A set B is an *improper subset* of itself.

Definition: Cartesian Product

Let A and B be sets. The set $A \times B = \{(a,b) : a \in A \text{ and } b \in B\}$ is the cartesian product of A and B. Note: $A \times B = B \times A \iff A = B$, or $A \times B = \emptyset$.

Example

Let $A = \{c : c \text{ is a primary color}\}\$ and let $B = \{\epsilon, \delta\}$. Find:

1.
$$B \times B = \{(\epsilon, \epsilon), (\epsilon, \delta), (\delta, \epsilon), (\delta, \delta)\}$$

2.
$$A \times \emptyset = \emptyset$$

1.2 Relations

Definition: Relation

A **relation** between sets A and B is a subset \mathcal{R} of $A \times B$. It is a collection of ordered pairs. Note: $(a,b) \in \mathcal{R} \equiv a\mathcal{R}b$ means "a is related to b".

Definition: Function

A function is a relation in which no two of the ordered pairs have the same first term. Note: if $f : \mathbb{R} \to \mathbb{R}$ is a function, then is passes the vertical-line test.

Definition: One-to-One

A function is **one-to-one**, or **injective**, if no two ordered pairs have the same <u>second</u> term.

To prove f is one-to-one, first assume that $f(x_1) = f(x_2)$, then show that $x_1 = x_2$.

Definition: Onto

A function $f: X \to Y$ is **onto**, or **surjective**, if the codomain is equal to the range, meaning every element $y \in Y$ has some $x \in X$ such that f(x) = y.

Definition: One-to-One Correspondence

A function $f: X \to Y$ is a **one-to-one correspondence**, or a **bijection**, if it is both one-to-one and onto.

1.3 Partitions and Equivalence Relations

Definition: Partition

A partition of a set S is a collection of non-empty subsets of S such that:

- 1. The union of these subsets is S.
- 2. These subsets are pairwise disjoint.

Note: these subsets are called **cells** of the partition.

Definition: Equivalence Relation

An equivalence relation \mathcal{R} on a set S must be:

- 1. Reflexive, meaning $x\mathcal{R}x \quad \forall x \in S$.
- 2. Symmetric, meaning if $x\mathcal{R}y$, then $y\mathcal{R}x$.
- 3. Transitive, meaning if $x\mathcal{R}y$ and $y\mathcal{R}z$, then $x\mathcal{R}z$.

Definition: Equivalence Class

 $\overline{x} = \{y \in S : x \mathcal{R} y\}$ is the equivalence class of x

Example

Let $S = \mathbb{R}$. Define $x\mathcal{R}y$ iff $x \geq y$. Is \mathcal{R} an equivalence relation on S?

- 1. Is \mathcal{R} reflexive? $\forall x \in S, x\mathcal{R}x$, so YES.
- 2. Is \mathcal{R} symmetric? Consider 5 and 1: $5 \ge 1$ but $1 \not\ge 5$, so NO.
- 3. Is \mathcal{R} transitive? If $x \geq y$ and $y \geq z$ then $x \geq z$, so YES.

Since \mathcal{R} is not symmetric, it is not an equivalence relation on S.

Note on Partition Cells and Equivalence Classes

Partitions give rise to equivalence relations and vice versa. The *cells* of the partition are analogous to the *equivalence classes* of the equivalence relation.

2 Binary Operations

Definition: Binary Operation

A binary operation * on a set S is a function from $S \times S$ into $S, *: S \times S \to S$. That is, * is a rule which assigns to each ordered pair $(a,b) \in S \times S$ exactly one element $a*b \in S$.

Condition 1: Uniquely Defined

For all $a, b \in S \times S$, a * b must be **uniquely defined**. This means that * cannot be undefined for any a * b, and each a * b must have exactly one result, not two or more.

Condition 2: Closed under *

S must be **closed** under *. That is,

 $\forall a, b \in S, \qquad a * b \in S.$

Definition: Commutative

A binary operation * on a set S is commutative if

 $\forall a, b \in S, \qquad a * b = b * a.$

Definition: Associative

A binary operation * on a set S is associative if

$$\forall \ a, b, c \in S, \qquad a * (b * c) = (a * b) * c.$$

2.1 Finite Sets

Example

Let $S = \{a, b, c, d\}$. Define a binary operation * on S using the following table. Complete the table so that * is commutative.

Note: * is commutative iff the table is symmetric along the main diagonal.

Is * associative? Why or why not? **No**,

$$a * (b * c) = a * c = a$$

 $(a * b) * c) = d * c = b$

Example

Suppose that * is associative and commutative operation on a set S. Show that $H = \{a \in S : a * a = a\}$ is closed under *. Note that the elements of H are called **idenmptents** of the binary operation *.

Proof. Let $a, b \in H$. Show $a * b \in H$.

We know a * a = a and b * b = b. Show (a * b) * (a * b) = a * b.

$$LHS = (a*b)*(a*b)$$

$$= a*(b*a)*b$$

$$= a*(a*b)*b$$

$$= (a*a)*(b*b)$$

$$= a*b$$

$$= RHS$$
since * is associative
since * is associative

Thus, H is closed under *.

3 Isomorphic Binary Structures

Definition: Binary Algebraic Structure

A binary algebraic structure $\langle S, * \rangle$ is a set S together with a binary operation *.

Definition: Isomorphism

Let $\langle S, * \rangle$ and $\langle S', *' \rangle$ be binary structures. An **isomorphism** of S with S' is a *one-to-one* function $\phi : S \mapsto S'$ such that

$$\forall x, y \in S, \qquad \phi(x * y) = \phi(x) *' \phi(y).$$

Notation: $\langle S, * \rangle \simeq \langle S', *' \rangle$

Example 1

Prove that $\langle \mathbb{R}, + \rangle \simeq \langle \mathbb{R}^+, \cdot \rangle$.

Proof. Consider $\phi : \mathbb{R} \to \mathbb{R}^+$, where $\phi(x) = e^x$.

1. One-to-one: Assume $\phi(x_1) = \phi(x_2)$ for some $x_1, x_2 \in \mathbb{R}$.

$$\phi(x_1) = \phi(x_2)$$

$$e^{x_1} = e^{x_2}$$

$$\ln e^{x_1} = \ln e^{x_2}$$

$$x_1 = x_2$$

Thus ϕ is one-to-one.

2. Onto: Let $y \in \mathbb{R}^+$. Let us find $x \in \mathbb{R}$ such that $y = \phi(x)$.

$$y = \phi(x) = e^x$$
$$\ln y = \ln e^x = x$$

Choose $x = \ln y$. Thus ϕ is onto.

3. Operation Preserving: Need to show that $\phi(x+y) = \phi(x) \cdot \phi(y)$.

$$\phi(x+y) = e^{x+y}$$

$$= e^x \cdot e^y$$

$$= \phi(x) \cdot \phi(y)$$

Thus ϕ is operation preserving.

Since ϕ is one-to-one, onto, and operation preserving, thus ϕ is an isomorphism of $\langle \mathbb{R}, + \rangle$ and $\langle \mathbb{R}^+, \cdot \rangle$, and $\langle \mathbb{R}, + \rangle \simeq \langle \mathbb{R}^+, \cdot \rangle$.

Definition: Identity Element

Let $\langle S, * \rangle$ be an algebraic structure. An element $e \in S$ is the identity element **id** for * if for all $s \in S$:

left **id** right **id**

$$\underbrace{e * s}_{\text{two-sided id}} = s$$

Theorem: Identity Uniqueness

A binary structure $\langle S, * \rangle$ has at most one identity element.

Proof. Assume e_1 and e_2 are both identity elements for $\langle S, * \rangle$. Thus,

$$e_1 * e_2 = e_1$$
 since e_1 is **id** $e_1 * e_2 = e_2$ since e_2 is **id**

Since binary operations are uniquely defined, $e_1 = e_2$ must be true. $\therefore \langle S, * \rangle$ has at most one identity element.

Theorem: Isomorphism and Identity

Suppose $\langle S, * \rangle$ has identity element e. If $\phi : S \mapsto S'$ is an isomorphism of $\langle S, * \rangle$ with $\langle S', *' \rangle$, then $\phi(e)$ is the identity element for $\langle S', *' \rangle$.

Proof. Assume $\langle S, * \rangle$ has identity e and $\phi : S \mapsto S'$ is an isomorphism. Let $s' \in S'$.

$$\phi(e)*'s' = \phi(e)*'\phi(s)$$

$$= \phi(e*s)$$
 since ϕ is operation preserving
$$= \phi(s) = s'$$

Thus $\phi(e) *' s' = s'$.

$$s'*'\phi(e) = \phi(s)*'\phi(e)$$

$$= \phi(s*e)$$
 since ϕ is operation preserving
$$= \phi(s) = s'$$

Thus $s' *' \phi(e) = s'$. So $\phi(e) *' s' = s' *' \phi(e) = s'$. Thus $\phi(e)$ is the identity of $\langle S', *' \rangle$.

Showing Two Binary Structure are not Isomorphic

To show that two binary structures are *not* isomorphic, you need to show that one binary structure has some property that other does not, meaning they are structurally distinct.

Example

Is $\langle \mathbb{Z}, + \rangle \simeq \langle \mathbb{R}, \cdot \rangle$? **No**, because \mathbb{Z} is countably infinite, whereas \mathbb{R} are uncountably infinite. These two sets have different cardinalities.

4 Groups

Definition: Group

A group (G, *) is a set G closed under the binary operation *, such that the following axioms are satisfied:

 \mathfrak{G}_1 : For all $a, c, b \in G$, we have

$$(a*b)*c = a*(b*c).$$
 associativity of *

 \mathfrak{G}_2 : There is an element e in G such that for all $x \in G$,

$$e * x = x * e = x$$
. identity element e for *

 \mathfrak{G}_3 : Corresponding to each $a \in G$, there is an element a' in G such that

$$a * a' = a' * a = e$$
. inverse a' of a

Note: G does not *need* to be commutative.

Definition: Abelian Group

A group G is **Abelian** if its binary operation is **commutative**.

Theorem: Cancellation Laws

If $\langle G, * \rangle$ is a group, then the left and right cancellation laws hold in G.

• Left:

if
$$a * b = a * c$$
 then $b = c$

• Right:

if
$$b * a = c * a$$
 then $b = c$

Proof for Left. Assume $\langle G, * \rangle$ is a group and a * b = a * c:

$$a*b=a*c$$

$$\overline{a}*a*b=\overline{a}*a*c$$
 \mathfrak{G}_3
$$e*b=e*c$$

$$\mathfrak{G}_3$$

The proof for right cancellation follows the same structure.

Theorem: Unique Solutions

If $\langle G, * \rangle$ is a group and if $a, b \in G$, then a * x = b and y * a = b have unique solutions x and y in G.

Proof. Assume $\langle G, * \rangle$ is a group and consider a * x = b for $a, b \in G$.

$$a*x = b$$

$$\overline{a}*(a*x) = \overline{a}*b$$

$$(\overline{a}*a)*x = \overline{a}*b$$

$$e*x = \overline{a}*b$$

$$x = \overline{a}*b$$
 \mathfrak{G}_{3}

Assume x_1 and x_2 are both solutions to the above equation.

$$a * x_1 = b$$
 and $a * x_2 = b$

Thus $a * x_1 = a * x_2$. By left cancellation,

$$x_1 = x_2$$

Thus the solution is unique.

The y * a = b proof follows the same structure.