

Clustering

Prepared by Raymond Wong
Some parts of this notes are borrowed from LW Chan's notes
Presented by Raymond Wong
raywong@cse

Clustering

Cluster 2 (e.g. High Score in History and Low Score in Computer)

	Computer	History
Raymond	100	40
Louis	90	45
Wyman	20	95
	•••	

Cluster 1 (e.g. High Score in Computer and Low Score in History)

Problem: to find all clusters

Why Clustering?

- Clustering for Utility
 - Summarization
 - Compression

Why Clustering?

- Clustering for Understanding
 - Applications
 - Biology
 - Group different species
 - Psychology and Medicine
 - Group medicine
 - Business
 - Group different customers for marketing
 - Network
 - Group different types of traffic patterns
 - Software
 - Group different programs for data analysis

- K-means Clustering
 - Original k-means Clustering
 - Sequential K-means Clustering
 - Forgetful Sequential K-means Clustering
- Hierarchical Clustering Methods
 - Agglomerative methods
 - Divisive methods polythetic approach and monothetic approach

K-mean Clustering

- Suppose that we have n example feature vectors x₁, x₂, ..., x_n, and we know that they fall into k compact clusters, k < n</p>
- Let m_i be the mean of the vectors in cluster i.
- we can say that x is in cluster i if distance from x to m_i is the minimum of all the k distances.

Procedure for finding k-means

- Make initial guesses for the means m₁, m₂, .., m_k
- Until there is no change in any mean
 - Assign each data point to the cluster whose mean is the nearest
 - Calculate the mean of each cluster
 - For i from 1 to k
 - Replace m_i with the mean of all examples for cluster i

Procedure for finding k-means

k=2
Arbitrarily choose k
means

center

Initialization of k-means

- The way to initialize the means was not specified. One popular way to start is to randomly choose k of the examples
- The results produced depend on the initial values for the means, and it frequently happens that suboptimal partitions are found. The standard solution is to try a number of different starting points

Disadvantages of k-means

Disadvantages

- In a "bad" initial guess, there are no points assigned to the cluster with the initial mean m_i.
- The value of k is not user-friendly. This is because we do not know the number of clusters before we want to find clusters.

Clustering Methods

- K-means Clustering
 - Original k-means Clustering
 - Sequential K-means Clustering
 - Forgetful Sequential K-means Clustering
- Hierarchical Clustering Methods
 - Agglomerative methods
 - Divisive methods polythetic approach and monothetic approach

- Another way to modify the k-means procedure is to update the means one example at a time, rather than all at once.
- This is particularly attractive when we acquire the examples over a period of time, and we want to start clustering before we have seen all of the examples
- Here is a modification of the k-means procedure that operates sequentially

1

Sequential k-Means Clustering

- Make initial guesses for the means m₁, m₂, ..., m_k
- Set the counts n₁, n₂, ..., n_k to zero
- Until interrupted
 - Acquire the next example, x
 - If m_i is closest to x
 - Increment n_i
 - Replace m_i by $m_i + (1/n_i) \cdot (x m_i)$

Clustering Methods

- K-means Clustering
 - Original k-means Clustering
 - Sequential K-means Clustering
 - Forgetful Sequential K-means Clustering
- Hierarchical Clustering Methods
 - Agglomerative methods
 - Divisive methods polythetic approach and monothetic approach

Forgetful Sequential k-means

- This also suggests another alternative in which we replace the counts by constants. In particular, suppose that a is a constant between 0 and 1, and consider the following variation:
- Make initial guesses for the means m₁, m₂, ..., m_k
- Until interrupted
 - Acquire the next example x
 - If m_i is closest to x, replace m_i by m_i+a(x-m_i)

Forgetful Sequential k-means

- The result is called the "forgetful" sequential kmeans procedure.
- It is not hard to show that m_i is a weighted average of the examples that were closest to m_i, where the weight decreases exponentially with the "age" to the example.
- That is, if m₀ is the initial value of the mean vector and if x_j is the j-th example out of n examples that were used to form m_i, then it is not hard to show that

$$m_n = (1-a)^n m_0 + a \sum_{k=1}^n (1-a)^{n-k} x_k$$

Forgetful Sequential k-means

- Thus, the initial value m₀ is eventually forgotten, and recent examples receive more weight than ancient examples.
- This variation of k-means is particularly simple to implement, and it is attractive when the nature of the problem changes over time and the cluster centres "drift".

Clustering Methods

- K-means Clustering
 - Original k-means Clustering
 - Sequential K-means Clustering
 - Forgetful Sequential K-means Clustering
- Hierarchical Clustering Methods
 - Agglomerative methods
 - Divisive methods polythetic approach and monothetic approach

CSTT5210

Hierarchical Clustering Methods

- The partition of data is not done at a single step.
- There are two varieties of hierarchical clustering algorithms
 - Agglomerative successively fusions of the data into groups
 - Divisive separate the data successively into finer groups

 Hierarchic grouping can be represented by two-dimensional diagram known as a dendrogram.

Distance

- Single Linkage
- Complete Linkage
- Group Average Linkage
- Centroid Linkage
- Median Linkage

- Also, known as the nearest neighbor technique
- Distance between groups is defined as that of the closest pair of data, where only pairs consisting of one record from each group are considered

$$(12) \quad 3 \quad (45)$$

$$(12) \quad \begin{pmatrix} 0.0 \\ 5.0 \quad 0.0 \\ 8.0 \quad 4.0 \end{pmatrix}$$

$$(45) \quad \begin{pmatrix} 8.0 \quad 4.0 \quad 0.0 \\ \end{pmatrix}$$

$$(12) (3 4 5)$$

$$(12) (0.0)$$

$$(3 4 5) (5.0) (0.0)$$

Distance

- Single Linkage
- Complete Linkage
- Group Average Linkage
- Centroid Linkage
- Median Linkage

 The distance between two clusters is given by the distance between their most distant members

-

$$(12) \quad 3 \quad 4 \quad 5$$

$$(12) \quad \begin{pmatrix} 0.0 \\ 6.0 \quad 0.0 \\ 4 \quad 10.0 \quad 4.0 \quad 0.0 \\ 5 \quad 9.0 \quad 5.0 \quad 3.0 \quad 0.0 \end{pmatrix}$$

$$\begin{array}{cccc}
 & (12) & 3 & (45) \\
 & (12) & 0.0 & & \\
 & 6.0 & 0.0 & \\
 & (45) & 10.0 & 5.0 & 0.0
\end{array}$$

$$(12) \quad 3 \quad (45)$$

$$(12) \quad \begin{pmatrix} 0.0 \\ 6.0 \quad 0.0 \\ 10.0 \quad 5.0 \quad 0.0 \end{pmatrix}$$

$$\begin{array}{c}
(12) & (3 4 5) \\
(12) & 0.0 \\
(3 4 5) & 10.0 & 0.0
\end{array}$$

$$\begin{array}{c}
(12) & (3 4 5) \\
(12) & \begin{pmatrix} 0.0 \\ 10.0 & 0.0 \end{pmatrix}
\end{array}$$

$$\begin{array}{c}
(12) & (3 4 5) \\
(12) & 0.0 \\
(3 4 5) & 10.0 \\
\end{array}$$

Distance

- Single Linkage
- Complete Linkage
- Group Average Linkage
- Centroid Linkage
- Median Linkage

Group Average Clustering

- The distance between two clusters is defined as the average of the distances between all pairs of records (one from each cluster).
- $d_{AB} = 1/6 (d_{13} + d_{14} + d_{15} + d_{23} + d_{24} + d_{25})$

40

Distance

- Single Linkage
- Complete Linkage
- Group Average Linkage
- Centroid Linkage >
- Median Linkage

- The distance between two clusters is defined as the distance between the mean vectors of the two clusters.
- $\mathbf{d}_{\mathsf{AB}} = \mathbf{d}_{\mathsf{ab}}$
- where a is the mean vector of the cluster A and b is the mean vector of the cluster B.

Distance

- Single Linkage
- Complete Linkage
- Group Average Linkage
- Centroid Linkage
- Median Linkage

Median Clustering

- Disadvantage of the Centroid Clustering: When a large cluster is merged with a small one, the centroid of the combined cluster would be closed to the large one, ie. The characteristic properties of the small one are lost
- After we have combined two groups, the mid-point of the original two cluster centres is used as the centre of the newly combined group

Clustering Methods

- K-means Clustering
 - Original k-means Clustering
 - Sequential K-means Clustering
 - Forgetful Sequential K-means Clustering
- Hierarchical Clustering Methods
 - Agglomerative methods
 - Divisive methods polythetic approach and monothetic approach

Divisive Methods

- In a divisive algorithm, we start with the assumption that all the data is part of one cluster.
- We then use a distance criterion to divide the cluster in two, and then subdivide the clusters until a stopping criterion is achieved.
 - ✓ Polythetic divide the data based on the values by all attributes
 - Monothetic divide the data on the basis of the possession of a single specified attribute

- Distance
 - Single Linkage
 - Complete Linkage
 - Group Average Linkage
 - Centroid Linkage
 - Median Linkage

$$B = \{2, 3, 4, 5, 6, 7\}$$
CSIT5210

$$D(1, *) = 26.0$$

$$D(2, *) = 22.5$$

$$D(3, *) = 20.7$$

$$D(4, *) = 17.3$$

$$D(5, *) = 18.5$$

$$D(6, *) = 22.2$$

$$D(7, *) = 25.5$$

•

Polythetic Approach

```
      1
      2
      3
      4
      5
      6
      7

      1
      0
      10
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
```

$$D(3, A) = 7$$

$$D(4, A) = 30$$

$$D(5, A) = 29$$

$$D(6, A) = 38$$

D(7, A) = 42

$$A = \{1 \}$$

```
      1
      2
      3
      4
      5
      6
      7

      1
      0

      2
      10
      0

      3
      7
      7
      0

      4
      30
      23
      21
      0

      5
      29
      25
      22
      7
      0

      6
      38
      34
      31
      10
      11
      0

      7
      42
      36
      36
      13
      17
      9
      0
```

$$D(2, A) = 10$$
 $D(2, B) = 25.0$

$$D(3, A) = 7$$
 $D(3, B) = 23.4$

$$D(4, A) = 30$$
 $D(4, B) = 14.8$

$$D(5, A) = 29 D(5, B) = 16.4$$

$$D(6, A) = 38$$
 $D(6, B) = 19.0$

$$B = \{2, 3, 4, 5, 6, 7\}$$
CSIT5210

$$D(7, A) = 42$$
 $D(7, B) = 22.2$

```
      1
      2
      3
      4
      5
      6
      7

      1
      0
      10
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
```

D(2, A) = 10 D(2, B) = 25.0
$$\triangle_2$$
 = 15.0

D(3, A) = 7
$$D(3, B) = 23.4$$
 $\triangle_3 = 16.4$

D(4, A) = 30 D(4, B) = 14.8
$$\triangle_4$$
 = -15.2

D(5, A) = 29 D(5, B) = 16.4
$$\triangle_5$$
 = -12.6

$$D(6, A) = 38$$
 $D(6, B) = 19.0$ $\triangle_6 = -19.0$

$$A = \{1, 3\}$$
 $D(7, A) = 42$

$$D(7, A) = 42$$
 $D(7, B) = 22.2$ $\triangle_7 = -19.8$

$$B = \{2, 2, 4, 5, 6, 7\}$$
CSIT5210

D(2, A) = 10 D(2, B) = 25.0
$$\triangle_2$$
 = 15.0 D(3, A) = 7 D(3, B) = 23.4 \triangle_3 = 16.4

D(4, A) = 30 D(4, B) = 14.8
$$\triangle_4$$
 = -15.2

D(5, A) = 29 D(5, B) = 16.4
$$\triangle_5$$
 = -12.6

D(6, A) = 38 D(6, B) = 19.0
$$\triangle_6$$
 = -19.0

$$A = \{1, 3\}$$
 $D(7, A) = 42$ $D(7, B) =$

$$B = \{2, 4, 5, 6, 7\}$$
CSIT5210

$$D(7, A) = 42$$
 $D(7, B) = 22.2$ $\triangle_7 = -19.8$

```
      1
      2
      3
      4
      5
      6
      7

      1
      0

      2
      10
      0

      3
      7
      7
      0

      4
      30
      23
      21
      0

      5
      29
      25
      22
      7
      0

      6
      38
      34
      31
      10
      11
      0

      7
      42
      36
      36
      13
      17
      9
      0
```

$$D(2, A) = 8.5$$

$$D(4, A) = 25.5$$

$$D(5, A) = 25.5$$

$$D(6, A) = 34.5$$

$$D(7, A) = 39.0$$

$$A = \{1, 3\}$$

$$B = \{2, 4, 5, 6, 7\}$$
CSIT5210

```
3
                 5
                     6
10
    23
        21
30
        22
29
38
    34
             13
                17
```

$$D(2, A) = 8.5$$
 $D(2, B) = 29.5$

$$D(7, A) = 39.0 D(7, B) = 18.75$$

$$A = \{1, 3\}$$

$$B = \{2, 4, 5, 6, 7\}$$
CSIT5210

```
      1
      2
      3
      4
      5
      6
      7

      1
      0
      10
      0

      2
      10
      0
      0

      3
      7
      7
      0

      4
      30
      23
      21
      0

      5
      29
      25
      22
      7
      0

      6
      38
      34
      31
      10
      11
      0

      7
      42
      36
      36
      13
      17
      9
      0
```

D(2, A) = 8.5 D(2, B) = 29.5
$$\triangle_2 = 21.0$$

D(4, A) = 25.5 D(4, B) = 13.2
$$\triangle_4$$
 = -12.3

D(5, A) = 25.5 D(5, B) = 15.0
$$\triangle_5 = -10.5$$

D(6, A) = 34.5 D(6, B) = 16.0
$$\triangle_6$$
 = -18.5

D(7, A) = 39.0 D(7, B) = 18.75
$$\triangle_7$$
 = -20.25

$$A = \{1, 3, 2\}$$

$$B = \{ 4, 5, 6, 7 \}$$

$$D(2, A) = 8.5$$
 $D(2, B) = 29.5$ $\triangle_2 = 21.0$

D(4, A) = 25.5 D(4, B) = 13.2
$$\triangle_4$$
 = -12.3

D(5, A) = 25.5 D(5, B) = 15.0
$$\triangle_5 = -10.5$$

D(6, A) = 34.5 D(6, B) = 16.0
$$\triangle_6$$
 = -18.5

D(7, A) = 39.0 D(7, B) = 18.75
$$\triangle_7$$
 = -20.25

$$A = \{1, 3, 2\}$$

$$B = \{ 4, 5, 6, 7 \}$$
CSIT5210

•

```
      1
      2
      3
      4
      5
      6
      7

      1
      0
      10
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
```

$$D(4, A) = 24.7$$

$$D(5, A) = 25.3$$

$$D(6, A) = 34.3$$

$$D(7, A) = 38.0$$

$$A = \{1, 3, 2\}$$

$$B = \{4, 5, 6, 7\}$$
CSIT5210

```
5
                      6
                        7
10
    23
         21
30
    25
29
38
    34
             13
    36
```

$$D(4, A) = 24.7$$
 $D(4, B) = 10.0$

$$D(7, A) = 38.0$$
 $D(7, B) = 13.0$

$$A = \{1, 3, 2\}$$

$$B = \{4, 5, 6, 7\}$$
CSIT5210

4

Polythetic Approach

```
      1
      2
      3
      4
      5
      6
      7

      1
      0
      10
      0

      2
      10
      0
      0

      3
      7
      7
      0

      4
      30
      23
      21
      0

      5
      29
      25
      22
      7
      0

      6
      38
      34
      31
      10
      11
      0

      7
      42
      36
      36
      13
      17
      9
      0
```

D(4, A) = 24.7
 D(4, B) = 10.0

$$\triangle_4 = -14.7$$

 D(5, A) = 25.3
 D(5, B) = 11.7
 $\triangle_5 = -13.6$

 D(6, A) = 34.3
 D(6, B) = 10.0
 $\triangle_6 = -24.3$

D(7, B) = 13.0

$$A = \{1, 3, 2\}$$

$$B = \{4, 5, 6, 7\}$$
CSIT5210

All differences are negative. The process would continue on each subgroup separately.

D(7, A) = 38.0

 $\triangle_7 = -25.0$

Clustering Methods

- K-means Clustering
 - Original k-means Clustering
 - Sequential K-means Clustering
 - Forgetful Sequential K-means Clustering
- Hierarchical Clustering Methods
 - Agglomerative methods
 - Divisive methods polythetic approach and
 monothetic approach

It is usually used when the data consists of **binary** variables.

	Α	В	С
1	0	1	1
2	1	1	0
3	1	1	1
4	1	1	0
5	0	0	1

Monothetic

It is usually used when the data consists of **binary** variables.

	Α	В	С
1	0	1	1
2	1	1	0
3	1	1	1
4	1	1	0
5	0	0	1

BA	1	0
1	a=3	b=1
0	c=0	d=1

Chi-Square Measure

$$\chi_{AB}^{2} = \frac{(ad - bc)^{2} N}{(a+b)(a+c)(b+d)(c+d)}$$
$$= \frac{(3-0)^{2} \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1}$$
$$= 1.875$$

ВА	1	0	
1	a=3	b=1	L! -
0	c=0	d=1	etic

It is usually used when the data consists of **binary** variables.

	Α	В	C
1	0	1	1
2	1	1	0
3	1	1	1
4	1	1	0
5	0	0	1

$$\chi_{AB}^{2} = \frac{(ad - bc)^{2} N}{(a+b)(a+c)(b+d)(c+d)}$$
$$= \frac{(3-0)^{2} \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1}$$
$$= 1.875$$

ВА	1	0	
1	a=3	b=1	L! _
0	c=0	d=1	etic

It is usually used when the data consists of **binary** variables.

	Α	В	С
1	0	1	1
2	1	1	0
3	1	1	1
4	1	1	0
5	0	0	1

Attr.	AB	
a	3	
b	1	
С	0	
d	1	
N	5	
χ^2	1.87	

$$\chi_{AB}^{2} = \frac{(ad - bc)^{2} N}{(a+b)(a+c)(b+d)(c+d)}$$
$$= \frac{(3-0)^{2} \cdot 5}{4 \cdot 3 \cdot 2 \cdot 1}$$
$$= 1.875$$

ВА	1	0	
1	a=3	b=1	L! -
0	c=0	d=1	etic

It is usually used when the data consists of **binary** variables.

	Α	В	С
1	0	1	1
2	1	1	0
3	1	1	1
4	1	1	0
5	0	0	1

Attr.	AB	AC	ВС
a	3	1	2
b	1	2	1
С	0	2	2
d	1	0	0
N	5	5	5
χ^2	1.87	2.22	0.83

For attribute A,
$$\chi_{AB}^2 + \chi_{AC}^2 = 4.09$$

For attribute B,
$$\chi_{AB}^2 + \chi_{BC}^2 = 2.70$$

For attribute C,
$$\chi_{AC}^2 + \chi_{BC}^2 = 3.05$$

ВА	1	0	
1	a=3	b=1	11.
0	c=0	d=1	etic

It is usually used when the data consists of **binary** variables.

	Α	В	С
1	0	1	1
2	1	1	0
3	1	1	1
4	1	1	0
5	0	0	1

Attr.	AB	AC	BC
a	3	1	2
b	1	2	1

We choose attribute A for dividing the data into two groups. {2, 3, 4}, and {1, 5}

<u> </u>	7				
χ^2			7	2.22	0.83
	,	\ /			

For attribute A,
$$\chi_{AB}^2 + \chi_{AC}^2 = 4.09$$

For attribute B,
$$\chi_{AB}^2 + \chi_{BC}^2 = 2.70$$

For attribute C,
$$\chi_{AC}^2 + \chi_{BC}^2 = 3.05$$