Symbolic powers

Eloísa Grifo University of Nebraska – Lincoln

Contents

1	Prin	nary Decomposition	2		
	1.1	Minimal primes	2		
	1.2	Localization	4		
	1.3		8		
	1.4	1	.3		
	1.5	V	6		
	1.6	· · · · · · · · · · · · · · · · · · ·	20		
2	Sym	abolic powers 2	2		
	2.1		22		
	2.2		26		
	2.3		29		
	2.4		3 0		
3	Sharpening our tools 32				
	3.1	Dimension and height	32		
	3.2	The Koszul complex	8		
	3.3		14		
	3.4		18		
	3.5		53		
	3.6		6		
	3.7	1	3		
	3.8	$\sqrt{}$	69		
\mathbf{A}	Macaulay2 72				
	A.1	·	72		
	A.2		75		
	A.3		76		
	A.4		7		
			77		
		1	30		
			32		

\mathbf{B}	B Commutative algebra background			
	B.1 Prime Avoidance	86		
	B.2 NAK	87		
	B.3 Krull's Intersection Theorem	90		
Index				
Bibliography				

Warning!

These are notes for a topics course on symbolic powers I am teaching at the University of Nebraska — Lincoln in Spring 2022. These are under construction and are guaranteed to contain typos. Please let me know if you find any typos or errors, no matter how small.

Assumptions

Throughout, all rings are commutative with identity. Moreover, we will almost always assume our rings are Noetherian, so we settle on the convention that rings are Noetherian unless we say otherwise.

We will assume the reader has some knowledge of elementary commutative algebra, as in [AM69], [Mat80], [Mat89], [BH93], or [Eis95]. Any elementary commutative algebra details or proofs we skip can be found in the references above.

Chapter 1

Primary Decomposition

One of the first theorems one learns in abstract algebra is the Fundamental Theorem of Arithmetic:

Theorem 1.1. Every integer can be written as a product of primes, which is unique up to sign and the order of the factors. More precisely, for every $n \in \mathbb{Z}$ there exist primes $p_1, \ldots, p_k \in \mathbb{Z}$ and integers $a_1, \ldots, a_k > 0$ such that

$$n = \pm p_1^{a_1} \cdots p_k^{a_k}.$$

Under the philosophy that general rings are modeled after the integers, we might expect such a theorem in any ring. But what would a general version of this theorem look like? A first guess would perhaps be that every element in any reasonable ring should be a product of irreducible elements, unique up to the order of the factors and up to multiplication by a unit. But this fails easily.

Example 1.2. In $\mathbb{Z}[\sqrt{-5}]$,

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

are two different ways to write 6 as a product of irreducible elements: there is no way to obtain 2 or 3 from $1 + \sqrt{-5}$ or $1 - \sqrt{-5}$ by multiplying by a unit.

The problem here is that we are focusing on *elements* when we ought to focus on *ideals*. Instead of writing *elements* as products of irreducibles, we will write *ideals* in terms of *primary ideals*.

But before we discuss primary decomposition, we will need to recall some elementary facts about minimal primes and associated primes; the details and proofs we skip can be found in any standard introduction to commutative algebra, such as [Eis95], [AM69], or [BH93].

1.1 Minimal primes

Definition 1.3. Given a ring R, the set of prime ideals in R is denoted $\operatorname{Spec}(R)$, and called the **spectrum** of R. Given an ideal I, the set of all primes that contain I is denoted V(I).

Definition 1.4. Let I be an ideal in a ring R. A **minimal prime** of I is a minimal element (with respect to containment) in V(I). More precisely, P is a minimal prime of I if the following hold:

- P is a prime ideal,
- $P \supseteq I$, and
- if Q is also a prime ideal and $I \subseteq Q \subseteq P$, then Q = P.

The set of minimal primes of I is denoted Min(I).

Example 1.5. Let k be a field and R = k[x, y]. Every prime containing $I = (x^2, xy)$ must contain x^2 , and thus x. On the other hand, (x) is a prime ideal containing I. Therefore, I has a unique minimal prime, and $Min(I) = \{(x)\}$.

Remark 1.6. If \mathfrak{p} is prime, then $Min(\mathfrak{p}) = {\mathfrak{p}}$.

Minimal primes are closely associated to radicals.

Definition 1.7. The radical of an ideal I in a ring R is the ideal

$$\sqrt{I} := \{ f \in R \mid f^n \in I \text{ for some } n \}.$$

An ideal is a **radical ideal** if $I = \sqrt{I}$.

Example 1.8. Prime ideals are radical.

Example 1.9. The ideal $I = (x^2, xy)$ in the ring R = k[x, y] from Example 1.5 is not radical, since it contains x^2 but not x.

Theorem 1.10. Let R be a ring, and I be an ideal. Then

$$\sqrt{I} = \bigcap_{P \in V(I)} P = \bigcap_{P \in Min(I)} P.$$

Example 1.11. The radical of the ideal $I = (x^2, xy)$ in the ring R = k[x, y] from Example 1.5 is $\sqrt{I} = (x)$. We saw before that $Min(I) = \{(x)\}$.

Example 1.12. In R = k[x, y], the ideal $I = (xy, xz) = (x) \cap (y, z)$ is radical, and its minimal primes are (x) and (y, z).

Over a noetherian ring, we can realize every radical ideal as the intersection of finitely many primes.

Theorem 1.13. Over any noetherian ring, any ideal I has finitely many minimal primes, and thus \sqrt{I} is a finite intersection of primes.

Example 1.14. The nilpotent elements of a ring R are exactly the elements in the radical of (0). By Theorem 1.10, $\sqrt{(0)}$ is the intersection of the minimal primes of (0), or equivalently, the intersection of the minimal elements among all the primes in R. The radical of (0) is often called the **nilradical** of R, denoted $\mathcal{N}(R)$.

Remark 1.15. Since $I \subseteq \sqrt{I}$, any prime containing \sqrt{I} must also contain I. On the other hand, if P is a prime containing I, and $f \in \sqrt{I}$, then for some n we have $f^n \in I \subseteq P$, and since P is prime we must have $f \in P$. This shows that $V(I) = V(\sqrt{I})$, and therefore $\text{Min}(I) = \text{Min}(\sqrt{I})$.

Lemma 1.16. If $Min(I) = \{P_1, \dots, P_n\}$, no P_i can be deleted in the intersection $P_1 \cap \dots \cap P_n$.

Proof. Suppose that we can delete P_i , meaning that

$$\bigcap_{j=1}^{n} P_j = \bigcap_{j \neq i} P_j.$$

Then

$$P_i \supseteq \bigcap_{j=1}^n P_j = \bigcap_{j \neq i} P_j \supseteq \prod_{j \neq i} P_j.$$

Since P_i is prime, this implies that $P_i \supseteq P_j$ for some $j \neq i$, but this contradicts the assumption that the primes are incomparable.

Lemma 1.17. Let I be an ideal in R. If $I = P_1 \cap \cdots \cap P_n$ where each p_i is prime and $P_i \not\subseteq P_j$ for each $i \neq j$, then $Min(I) = \{P_1, \ldots, P_n\}$. Moreover, I must be radical.

Proof. If Q is a prime containing I, then $Q \supseteq (P_1 \cap \cdots \cap P_n)$. If $Q \not\supseteq P_i$ for each i, then there are elements $f_i \in P_i$ such that $f_i \notin Q$, so their product satisfies $f_1 \cdots f_n \in (P_1 \cap \cdots \cap P_n)$ but $f_1 \cdots f_n \notin Q$. This is a contradiction, so indeed any prime containing I must contain some P_i . Therefore, any minimal prime of I must be one of the P_i . Since we assumed that the P_i are incomparable, these are exactly all the minimal primes of I.

By assumption, I coincides with the intersection of its minimal primes, and by Theorem 1.10 this intersection is \sqrt{I} . Therefore, $I = \sqrt{I}$.

Remark 1.18. If $I = P_1 \cap \cdots \cap P_n$ for some primes P_i , we can always delete unnecessary components until no component can be deleted. Therefore, $Min(I) \subseteq \{P_1, \dots, P_n\}$.

1.2 Localization

Definition 1.19. A multiplicative closed set W in a ring R is a subset $W \subseteq R$ containing 1 and closed for products, meaning $a, b \in W \implies ab \in W$.

Given a multiplicative closed subset W, we can form a new ring, the **localization** of R at W, which is a ring with elements

$$W^{-1}R := \left\{ \frac{r}{w} \mid r \in R, w \in W \right\} / \sim$$

where \sim is the equivalence relation

$$\frac{r}{w} \sim \frac{r'}{w'}$$
 if there exists $u \in W : u(rw' - r'w) = 0$.

The operations are given by

$$\frac{r}{v} + \frac{s}{w} = \frac{rw + sv}{vw}$$
 and $\frac{r}{v}\frac{s}{w} = \frac{rs}{vw}$.

We write elements in $W^{-1}R$ in the form $\frac{r}{w}$ even though they are equivalence classes of such expressions. The zero in $W^{-1}R$ is $\frac{0}{1}$ and the identity is $\frac{1}{1}$. There is a canonical ring homomorphism

$$R \longrightarrow W^{-1}R$$
.
$$r \longmapsto \frac{r}{1}$$

We can also localize modules. Given a module M, the **localization** of M at W is a module over the ring $W^{-1}R$, given by

$$W^{-1}M:=\left\{\frac{m}{w}\;\middle|\; m\in M, w\in W\right\}/\sim$$

where \sim is the equivalence relation $\frac{m}{w} \sim \frac{m'}{w'}$ if u(mw' - m'w) = 0 for some $u \in W$. The operations are given by

$$\frac{m}{v} + \frac{n}{w} = \frac{mw + nv}{vw}$$
 and $\frac{r}{v} \frac{m}{w} = \frac{rm}{vw}$.

Remark 1.20. If $\alpha: M \to N$ is an R-module homomorphism, then there is a $W^{-1}R$ -module homomorphism $W^{-1}\alpha: W^{-1}M \to W^{-1}N$ given by the rule $W^{-1}\alpha(\frac{m}{w}) = \frac{\alpha(m)}{w}$.

One thing to keep in mind is that things might unexpectedly become zero in a localization.

Definition 1.21. The **annihilator** of an R-module M is the ideal

$$\operatorname{ann}(M) := \{ r \in R \mid rm = 0 \text{ for all } m \in M \}.$$

Given ideals I and J in R, the **colon** of I and J is the ideal

$$(J:I) := \{ r \in R \mid rI \subseteq J \}.$$

More generally, if M and N are submodules of some R-module A, the colon of N and M is

$$(N:_R M) := \{ r \in R \mid rM \subseteq N \}.$$

The annihilator of M is an ideal in R, and $\operatorname{ann}(M) = (0:_R M)$. Moreover, any colon $(N:_R M)$ is an ideal in R.

Lemma 1.22. Given an R-module M,

$$\frac{m}{w} \in W^{-1}M \quad \text{is zero} \iff vm = 0 \text{ for some } v \in W \iff \operatorname{ann}_R(m) \cap W \neq \varnothing.$$

Proof. For the first equivalence, we use the equivalence relation defining $W^{-1}R$ to note that $\frac{m}{w} = \frac{0}{1}$ in $W^{-1}M$ if and only if there exists some $v \in W$ such that 0 = v(1m - 0w) = vm. The second equivalence just comes from the definition of the annihilator.

Remark 1.23. As a corollary to Lemma 1.22, we obtain that if W is a multiplicatively closed set in R and W does not contain any zerodivisors, then the localization map $R \to W^{-1}R$ is injective, since no element in W can be in the annihilator of a nonzero element.

Notation 1.24. Let $f: R \to S$ be a ring homomorphism. Given an ideal I in R, the **expansion** of I to S is the ideal of S generated by f(I), and we denote it by IS. Given an ideal J of S, the contractionx of J to R is the preimage of J via f, which we denote by $J \cap R$:

$$J \cap R := f^{-1}(J) = \{r \in R \mid f(r) \in J\} \,.$$

There is much to say about expansion and contraction of ideals, the details of which can be found in any standard commutative algebra reference such as [Mat89] or [AM69]. Later on, it is will be helpful to know the following facts:

- For any ideals I in R and J in S, we have $(IS \cap R)S = IS$ and $(J \cap R)S \cap R = J \cap R$.
- The contraction of a prime ideal is prime.
- The expansion of a prime ideal might fail to be prime.
- Given a prime ideal P in R, P is the contraction of a prime in S if and only if $PS \cap R = P$.

We will see contractions of ideals most often when talking about localizations. Given a multiplicatively closed set W in a ring R and an ideal I in $W^{-1}R$, we write $I \cap R$ for the **contraction** of I into R, which is the preimage of I in R via the canonical map $R \to W^{-1}R$. More precisely,

$$I \cap R = \left\{ r \in R \,\middle|\, \frac{r}{1} \in I \right\}.$$

Here are some useful facts about ideals and localization:

Theorem 1.25. Let R be a ring and W be a multiplicatively closed set in R.

- a) If I is an ideal in R, then $W^{-1}I \cap R = \{r \in R \mid wr \in I \text{ for some } w \in W\}.$
- $b) \ \ \textit{If J is an ideal in $W^{-1}R$, then $W^{-1}(J\cap R)=J$.}$
- c) If P is a prime ideal and $W \cap P = \emptyset$, then $W^{-1}P = P(W^{-1}R)$ is prime.
- d) The set of prime ideals in $W^{-1}R$ is in bijection with

$$\{P\in\operatorname{Spec}(R)\ |\ P\cap W=\varnothing\}.$$

Theorem 1.26. Localization is exact: given a short exact sequence of R-modules

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

and a multiplicative set W, the sequence

$$0 {\:\longrightarrow\:} W^{-1}A {\:\longrightarrow\:} W^{-1}B {\:\longrightarrow\:} W^{-1}C {\:\longrightarrow\:} 0$$

is also exact.

The most important multiplicatively closed sets we will do localization on are the complements of prime ideals. As an immediate consequence of the definition of prime ideal, we get that $W = R \setminus P$ is a multiplicatively closed set.

Definition 1.27. Let R be a ring and P be a prime ideal in R. We write R_P for the localization $(R \setminus P)^{-1}R$, and call it the **localization of** R **at** P. Given an ideal I in R, we write I_P instead of $(R \setminus P)^{-1}I$, the ideal in R_P generated by all the images of elements in I. This ideal I_P is the same as IR_P , the expansion of I to R_P .

The ring R_P is a local ring with unique maximal ideal P_P . The proper ideals in R_P are of the form I_P , where $I \subseteq P$ is an ideal in R, and the primes in R_P are precisely the ideals of the form Q_P with $Q \subseteq P$ prime.

We can also localize at the complement of a union of primes.

Remark 1.28. Let A be a finite set of prime ideals in a noetherian ring R, and consider the set

$$W := \{ r \in R \mid r \notin \bigcup_{P \in A} P \}.$$

If $x, y \in W$, then $x, y \notin P$ for any of the primes $P \in A$, and thus $xy \in W$. Moreover, $1 \notin P$ for any $P \in A$, so $1 \in W$. We conclude that W is a multiplicatively closed set. The localization $W^{-1}R$ is now a semilocal ring, which means it has only finitely many maximal ideals — the maximal elements in A.

Definition 1.29. If M is an R-module, the **support** of M is

$$\operatorname{Supp}(M) := \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid M_{\mathfrak{p}} \neq 0 \}.$$

Example 1.30. If M = R/I, then Supp(M) = V(I). Indeed, $M_{\mathfrak{p}}$ is generated by the image of 1, so $M_{\mathfrak{p}} = 0$ iff the image of 1 is zero in the localization. But this happens if and only if

$$\exists w \notin \mathfrak{p} : w \cdot 1 = 0 \text{ in } R/I \Leftrightarrow \exists w \notin \mathfrak{p}, w \in I \Leftrightarrow \mathfrak{p} \not\supseteq I.$$

Proposition 1.31. Given M a finitely generated R-module over a ring R,

$$\operatorname{Supp}(M) = V(\operatorname{ann}_R(M)).$$

In particular, Supp(R/I) = V(I).

Proof. Let $M = Rm_i + \cdots + Rm_n$. We have

$$\operatorname{ann}_R(M) = \bigcap_{i=1}^n \operatorname{ann}_R(m_i),$$

SO

$$V(\operatorname{ann}_R(M)) = \bigcup_{i=1}^n V(\operatorname{ann}_R(m_i)).$$

Notice that we need finiteness here. Also, we claim that

$$\operatorname{Supp}(M) = \bigcup_{i=1}^{n} \operatorname{Supp}(Rm_i).$$

To show (\supseteq) , notice that $(Rm_i)_{\mathfrak{p}} \subseteq M_{\mathfrak{p}}$, so

$$\mathfrak{p} \in \operatorname{Supp}(Rm_i) \implies 0 \neq (Rm_i)_{\mathfrak{p}} \subseteq M_{\mathfrak{p}} \implies \mathfrak{p} \in \operatorname{Supp}(M).$$

On the other hand, the images of m_1, \ldots, m_n in $M_{\mathfrak{p}}$ generate $M_{\mathfrak{p}}$ for each \mathfrak{p} , so $\mathfrak{p} \in \operatorname{Supp}(M)$ if and only if $\mathfrak{p} \in \operatorname{Supp}(Rm_i)$ for some m_i . Thus, we can reduce to the case of a cyclic module Rm. Now $\frac{m}{1} = 0$ in $M_{\mathfrak{p}}$ if and only if $(R \setminus \mathfrak{p}) \cap \operatorname{ann}_R(m) \neq \emptyset$, which happens if and only if $\operatorname{ann}_R(m) \not\subseteq \mathfrak{p}$.

1.3 Associated primes

Remark 1.32. Let R be a ring, I be an ideal in R, and M be an R-module. To give an R-module homomorphism $R \longrightarrow M$ is the same as choosing an element m of M (the image of 1 via our map) or equivalently, to choose a cyclic submodule of M (the submodule generated by m).

To give an R-module homomorphism $R/I \longrightarrow M$ is the same as giving an R-module homomorphism $R \longrightarrow M$ whose image is killed by I. Thus giving an R-module homomorphism $R/I \longrightarrow M$ is to choose an element $m \in M$ that is killed by I, meaning $I \subseteq \operatorname{ann}(m)$.

Definition 1.33. Let R be a ring, and M a module. We say that $P \in \operatorname{Spec}(R)$ is an **associated prime** of M if $P = \operatorname{ann}_R(m)$ for some $m \in M$. Equivalently, P is associated to M if there is an injective homomorphism $R/P \longrightarrow M$. We write $\operatorname{Ass}_R(M)$ for the set of associated primes of M.

We will be primarily interested in the associated primes of R/I, where I is an ideal in R. We will abuse notation and call these the **associated primes of** I, and even write $Ass_R(I)$.

Lemma 1.34. Let R be a noetherian ring and M be an R-module. A prime P is associated to M if and only if $P_P \in Ass(M_P)$.

Proof. By Theorem 1.26, localization is exact, so any inclusion $R/P \subseteq M$ gives an inclusion $R_P/P_P \subseteq M_P$. Conversely, let $P_P = \operatorname{ann}(\frac{m}{w})$ for some $\frac{m}{w} \in M_P$. Let $P = (f_1, \ldots, f_n)$. Since $\frac{f_i}{1} \frac{m}{r} = \frac{0}{1}$, there exists $u_i \notin P$ such that $u_i f_i m = 0$. Then $u = u_1 \cdots u_n$ is not in P, since P is prime, and $u f_i m = 0$ for all i. Since the f_i generate P, we have P(um) = 0. On the other hand, if $r \in \operatorname{ann}(um)$, then $\frac{ru}{1} \in \operatorname{ann}(\frac{m}{w}) = P_P$. We conclude that $ru \in P_P \cap R = P$. Since $u \notin P$, we conclude that $r \in P$.

Lemma 1.35. If P is prime, then $Ass_R(R/P) = \{P\}$.

Proof. An element $r + P \in R/P$ is nonzero if and only if $r \notin P$. Given any nonzero $r + P \in R/P$ we have $\operatorname{ann}_R(r + P) = \{s \in R \mid rs \in P\} = P$ by definition of prime ideal. \square

Soon we will see that the converse does not hold.

Definition 1.36. Let M be an R-module. An element $r \in R$ is a **zerodivisor** on M if rm = 0 for some $m \in M$. We sometimes write the set of zerodivisors of M as $\mathcal{Z}(M)$.

Theorem 1.37. If R is Noetherian, and M is an arbitrary R-module, then the following hold:

- 1) For any nonzero $m \in M$, $\operatorname{ann}_R(m)$ is contained in an associated prime of M.
- 2) $\operatorname{Ass}(M) = \emptyset \iff M = 0$.
- 3) $\bigcup_{\mathfrak{p}\in \mathrm{Ass}(M)} \mathfrak{p} = \mathcal{Z}(M).$

Proof. Even if R is not Noetherian, M=0 implies $\mathrm{Ass}(M)=\varnothing$ by definition. So we focus on the case when $M\neq 0$.

First, we are going to show that 1) implies 2) and 3). To do that, let's suppose that we have shown 1). If $M \neq 0$, then M contains a nonzero element m, and $\operatorname{ann}(m)$ is contained in an associated prime of M. In particular, $\operatorname{Ass}(M) \neq 0$, and 2) holds. Now if $r \in \mathcal{Z}(M)$, then by definition we have $r \in \operatorname{ann}(m)$ for some nonzero $m \in M$. Since $\operatorname{ann}(m)$ is contained in some associated prime of M, so is r. On the other hand, if \mathfrak{p} is an associated prime of M, then by definition all elements in \mathfrak{p} are zerodivisors on M. This shows that 3) holds. So all that is left is to prove 1).

Now we show 1) for any $M \neq 0$. The set of ideals $S := \{\operatorname{ann}_R(m) \mid m \in M, m \neq 0\}$ is nonempty, and any element in S is contained in a maximal element, by Noetherianity. Note in fact that any element in S must be contained in a maximal element of S. Let $I = \operatorname{ann}(m)$ be any maximal element, and let $rs \in I$, $s \notin I$. We always have $\operatorname{ann}(sm) \supseteq \operatorname{ann}(m)$, and equality holds by the maximality of $\operatorname{ann}(m)$ in S. Then r(sm) = (rs)m = 0, so $r \in \operatorname{ann}(sm) = \operatorname{ann}(m) = I$. We conclude that I is prime, and therefore it is an associated prime of M.

Lemma 1.38. *If*

$$0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0$$

is an exact sequence of R-modules, then $\operatorname{Ass}(L) \subset \operatorname{Ass}(M) \subset \operatorname{Ass}(L) \cup \operatorname{Ass}(N)$.

Proof. If R/P includes in L, then composition with the inclusion $L \hookrightarrow M$ gives an inclusion $R/P \hookrightarrow M$. This shows that $\mathrm{Ass}(L) \subset \mathrm{Ass}(M)$.

Now let $\mathfrak{p} \in \mathrm{Ass}(M)$, and let $m \in M$ be such that $\mathfrak{p} = \mathrm{ann}(m)$. First, note that $\mathfrak{p} \subseteq \mathrm{ann}(rm)$ for all $r \in R$.

Thinking of L as a submodule of N, suppose that there exists $r \notin \mathfrak{p}$ such that $rm \in L$. Then

$$s(rm) = 0 \iff (sr)m = 0 \implies sr \in \mathfrak{p} \implies s \in p.$$

So $\mathfrak{p} = \operatorname{ann}(rm)$, and thus $\mathfrak{p} \in \operatorname{Ass}(L)$.

If $rm \notin L$ for all $r \notin \mathfrak{p}$, let n be the image of m in N. Thinking of N as M/L, if rn = 0, then we must have $rm \in L$, and by assumption this implies $r \in \mathfrak{p}$. Since $\mathfrak{p} = \operatorname{ann}(m) \subseteq \operatorname{ann}(n)$, we conclude that $\mathfrak{p} = \operatorname{ann}(n)$. Therefore, $\mathfrak{p} \in \operatorname{Ass}(N)$.

Note that the inclusions in Lemma 1.38 are not necessarily equalities.

Example 1.39. If M is a module with at least two associated primes, and P is an associated prime of M, then

$$0 \longrightarrow R/P \longrightarrow M$$

is exact, but $\{P\} = \operatorname{Ass}(R/P) \subsetneq \operatorname{Ass}(M)$.

Example 1.40. Let R = k[x], where k is a field, and consider the short exact sequence of R-modules

$$0 \longrightarrow (x) \longrightarrow R \longrightarrow R/(x) \longrightarrow 0.$$

Then one can check that:

- $Ass(R/(x)) = Ass(k) = \{(x)\}.$
- $Ass(R) = Ass((x)) = \{(0)\}.$

In particular, $Ass(R) \subseteq Ass(R/(x)) \cup Ass((x))$.

Corollary 1.41. Let A and B be R-modules. Then $Ass(A \oplus B) = Ass(A) \cup Ass(B)$.

Proof. Apply Lemma 1.38 to the short exact sequence

$$0 \longrightarrow A \longrightarrow A \oplus B \longrightarrow B \longrightarrow 0$$
.

This gives us $\operatorname{Ass}(A) \subseteq \operatorname{Ass}(A \oplus B) \subseteq \operatorname{Ass}(A) \cup \operatorname{Ass}(B)$. Repeating with

$$0 \longrightarrow B \longrightarrow A \oplus B \longrightarrow A \longrightarrow 0$$
.

we conclude that $Ass(B) \subseteq Ass(A \oplus B)$. So we have shown both $Ass(A) \subseteq Ass(A \oplus B)$ and $Ass(B) \subseteq Ass(A \oplus B)$, so $Ass(A) \cup Ass(B) \subseteq Ass(A \oplus B)$. Since we have also already shown $Ass(A \oplus B) \subseteq Ass(A) \cup Ass(B)$, we must have $Ass(A \oplus B) = Ass(A) \cup Ass(B)$.

Theorem 1.42. If R is a noetherian ring, and M is a finitely generated module, then $Ass_R(M)$ is finite. Moreover, if R and M are graded, then $Ass_R(M)$ is a finite set of homogeneous primes.

Macaulay2 can find the associated primes of a module or ideal. Given an R-module M, associatedPrimes M will return $\mathrm{Ass}_R(M)$. If I is an ideal in R, Macaulay2 follows the same convention we do: associatedPrimes I will return $\mathrm{Ass}(I)$, the associated primes of the module R/I. Macaulay2 returns a list of the primes that are associated to our module or ideal.

Example 1.43. Let k be a field and R = k[x, y]. We saw in Example 1.48 that (x) and (x, y) are both associated primes of $I = (x^2, xy)$, but now we can check that these are all the associated primes of I with Macaulay2 for some choice of k.

$$i1 : R = QQ[x,y];$$

i2 : I = ideal"x2,xy";

i3 : associatedPrimes I

o3 = {ideal x, ideal (y, x)}

o3 : List

In a Noetherian ring, associated primes localize.

Theorem 1.44. Let R be a Noetherian ring, W a multiplicative set, and M a module. Then

$$Ass_{W^{-1}R}(W^{-1}M) = \{W^{-1}P \mid P \in Ass_R(M), P \cap W = \emptyset\}.$$

Proof. Given $P \in \operatorname{Ass}_R(M)$ such that $P \cap W = \emptyset$, Theorem 1.25 says that $W^{-1}P$ is a prime in $W^{-1}R$. Since $P \in \operatorname{Ass}(M)$, we have an inclusion map $R/P \subseteq M$. Localization is exact, by Theorem 1.26, so we get an inclusion $W^{-1}R/W^{-1}P \cong W^{-1}(R/P) \subseteq W^{-1}M$, which says that $W^{-1}P$ is an associated prime of $W^{-1}M$.

Now suppose that $Q \in \operatorname{Spec}(W^{-1}R)$ is associated to $W^{-1}M$. By Theorem 1.25, we know this is of the form $W^{-1}P$ for some prime P in R such that $P \cap W = \emptyset$, so we just need to prove that $P \in \operatorname{Ass}(M)$. Since R is noetherian, P is finitely generated, say $P = (f_1, \ldots, f_n)$ in R, and so $Q = (\frac{f_1}{1}, \ldots, \frac{f_n}{1})$.

By assumption, $Q = \operatorname{ann}(\frac{m}{w})$ for some $m \in M$, $w \in W$. Since w is a unit in $W^{-1}R$, we can also write $Q = \operatorname{ann}(\frac{m}{1})$. By definition, this means that for each i

$$\frac{f_i}{1}\frac{m}{1} = \frac{0}{1} \iff u_i f_i m = 0 \text{ for some } u_i \in W.$$

Let $u = u_1 \cdots u_n \in W$. Then $uf_i m = 0$ for all i, and thus Pum = 0. We claim that in fact $P = \operatorname{ann}(um)$ in R. Given any $v \in \operatorname{ann}(um)$, we have u(vm) = v(um) = 0, and since $u \in W$, this implies that $\frac{vm}{1} = 0$. Therefore, $\frac{v}{1} \in \operatorname{ann}(\frac{m}{1}) = W^{-1}\mathfrak{p}$, and $vw \in P$ for some $w \in W$. But $P \cap W = \emptyset$, and thus $v \in P$. Thus $P \in \operatorname{Ass}(M)$.

Theorem 1.45. Let $R \subseteq S$ be an inclusion of noetherian rings, and let M be a finitely generated S-module. Then

$$\operatorname{Ass}_R(M) = \{ P \cap R \mid P \in \operatorname{Ass}_S(M) \}.$$

Proof. Given an element $m \in M$, an element $r \in R$ acts on m by $r \cdot m = f(r)m$, so

$$r \in (0:_R m) \Leftrightarrow r \cdot m = 0 \Leftrightarrow f(r)m = 0 \Leftrightarrow f(r) \in (0:_S m).$$

Therefore, $\operatorname{ann}_R(m) = \operatorname{ann}_S(m) \cap R$. In particular, if a prime P in S is associated to M, then $P = \operatorname{ann}_S(m)$ for some m, and $P \cap R = \operatorname{ann}_R(m)$. Since the contraction of a prime is prime, $P \cap R \in \operatorname{Ass}_R(M)$.

Now let $Q \in \operatorname{Ass}_R(M)$, and let $m \in M$ be such that $Q = \operatorname{ann}_R(m)$. Then $I := \operatorname{ann}_S(m)$ satisfies $I \cap R = Q$. We want to find a prime ideal P in S such that $P \cap R = Q$. First, note that since $I = \operatorname{ann}_S(m)$, the map $S \to M$ determined by sending 1 to m has kernel I, so we have an inclusion $S/I \hookrightarrow M$. By Lemma 1.38, $\operatorname{Ass}_S(S/I) \subset \operatorname{Ass}_S(M)$. So if we find a prime

 $Q \in \mathrm{Ass}_S(S/I)$ such that $P \cap R = Q$, this P will be an element of $\mathrm{Ass}_S(M)$, and we will be done.

Since $I \cap R = Q$, we have an inclusion $R/Q \to S/I$. Write $\overline{R} := R/Q$ and $\overline{S} := S/I$. Since \overline{R} is a domain, the zero ideal J in \overline{R} is prime. On the other hand, $J\overline{S}$ is the zero ideal in \overline{S} , so $J\overline{S} \cap \overline{R} = J$. Any prime ideal J satisfying $J\overline{S} \cap \overline{R} = J$ is the contraction of a prime, so let P be a prime ideal in S whose image in \overline{S} contracts to J = (0) in \overline{R} . Lifting to R and S, this prime ideal P in S must contract to Q. Moreover, we can take this P to be minimal over I: if P is not minimal over I, then it contains a minimal prime P' of I, and $Q = P \cap R \supseteq P' \cap R \supseteq I \cap R = Q$, so we can ultimately replace P with P'.

We found a prime ideal P in S with $P \cap R = Q$. By construction, this prime P is a minimal prime of I, and thus $P \in \mathrm{Ass}_S(R/I) \subseteq \mathrm{Ass}_S(M)$.

Corollary 1.46. Let R be Noetherian, and M be an R-module.

a)
$$\operatorname{Supp}_R(M) = \bigcup_{\mathfrak{p} \in \operatorname{Ass}_R(M)} V(\mathfrak{p}).$$

b) If M is a finitely generated R-module, then $Min(ann_R(M)) \subseteq Ass_R(M)$. In particular, $Min(I) \subseteq Ass_R(R/I)$.

Proof.

a) Let $P \in \operatorname{Ass}_R(M)$, and fix $m \in M$ such that $P = \operatorname{ann}_R(m)$. Let $Q \in V(P)$. By Proposition 1.31, $Q \in \operatorname{Supp}(R/P)$. Since $0 \to R/\mathfrak{p} \xrightarrow{m} M$ is exact and localization is exact, by Theorem 1.26, $0 \to (R/P)_Q \to M_Q$ is also exact. Since $(R/P)_Q \neq 0$, we must also have $M_Q \neq 0$, and thus $Q \in \operatorname{Supp}(M)$. This shows $\operatorname{Supp}_R(M) \supseteq \bigcup_{\mathfrak{p} \in \operatorname{Ass}_R(M)} V(\mathfrak{p})$.

Now let Q be a prime ideal and suppose that

$$Q \notin \bigcup_{\mathfrak{p} \in \mathrm{Ass}_R(M)} V(\mathfrak{p}).$$

In particular, Q does not contain any associated prime of M. Then there is no associated prime of M that does not intersect $R \setminus Q$, so by Theorem 1.44, $\operatorname{Ass}_{R_Q}(M_Q) = \emptyset$. By Theorem 1.37, $M_Q = 0$.

b) We have shown that

$$V(\operatorname{ann}_R(M)) = \operatorname{Supp}_R(M) = \bigcup_{\mathfrak{p} \in \operatorname{Ass}_R(M)} V(\mathfrak{p}),$$

so the minimal elements of both sets agree. In particular, the right hand side has the minimal primes of $\operatorname{ann}_R(M)$ as minimal elements, and they must be associated primes of M, or else this would contradict minimality.

So the minimal primes of a module M are all associated to M, and they are precisely the minimal elements in the support of M.

Definition 1.47. If I is an ideal, then an associated prime of I that is not a minimal prime of I is called an **embedded prime** of I.

Example 1.48. Let's get back to the ideal $I = (x^2, xy)$ in R = k[x, y] from Example 1.5. We saw before that this ideal has only one minimal prime, (x). We claim it also has an embedded prime: $\mathfrak{m} = (x, y)$. Indeed, x + I is a nonzero element in R/I killed by \mathfrak{m} , and since \mathfrak{m} is a maximal ideal and $x + I \neq 0$, we must have $\operatorname{ann}(x + I) = \mathfrak{m}$. We can also rewrite all this as $\mathfrak{m} = (I : x)$. This shows that indeed \mathfrak{m} is an associated prime of I.

1.4 Primary Ideals

Definition 1.49. We say that an ideal I is **primary** if

$$xy \in I \implies x \in I \text{ or } y \in \sqrt{I}.$$

We say that an ideal is P-primary if I is primary and $\sqrt{I} = P$.

Remark 1.50. Suppose that Q is primary and $xy \in \sqrt{Q}$. Then $x^ny^n \in Q$ for some n. If $y \notin \sqrt{Q}$, then $y^n \notin \sqrt{Q}$. Since Q is primary, we must have $x^n \in Q$, so $x \in \sqrt{Q}$. Therefore, the radical of a primary ideal is always prime, so every primary ideal Q is \sqrt{Q} -primary.

Example 1.51. a) Any prime ideal is primary.

b) If R is a UFD, we claim that a principal ideal is primary if and only if it is generated by a power of an irreducible element. If $f \in R$ is an irreducible element, then

$$xy \in (f^n) \iff f^n|xy.$$

Since f is irreducible and every element in R can be written as a unique product of irreducibles, if f^n divides xy but f^n does not divide x, then f must divide y. So

$$f^n|x \text{ or } f|y \iff x \in (f^n) \text{ or } y \in \sqrt{(f^n)} = (f).$$

We conclude that (f^n) is indeed primary. Conversely, if a is not a prime power, then a = gh, for some g, h nonunits with no common factor, so we can take $gh \in (a)$ but $g \notin a$ and $h \notin \sqrt{(a)}$. This shows that (a) is not primary.

- c) As a particular case of the previous example, the nonzero primary ideals in \mathbb{Z} are of the form (p^n) for some prime p and some $n \ge 1$. This example is a bit misleading, as it suggests that primary ideals are the same as powers of primes. We will soon see that it not the case.
- d) In R = k[x, y, z], the ideal $I = (y^2, yz, z^2)$ is primary. Give R the grading with weights |y| = |z| = 1, and |x| = 0. If $g \notin \sqrt{I} = (y, z)$, then g has a degree zero term. If $f \notin I$, then f has a term of degree zero or one, so it is not in I.

If the radical of an ideal is prime, that does not imply that ideal is primary.

Example 1.52. In R = k[x, y, z], the ideal $Q = (x^2, xy)$ is not primary, even though $\sqrt{Q} = (x)$ is prime. The offending product is xy: $x \notin Q$ and $y \notin Q$.

The definition of primary can be reinterpreted in many ways.

Proposition 1.53. If R is noetherian, the following are equivalent:

- (1) Q is primary.
- (2) Every zerodivisor in R/Q is nilpotent on R/Q.
- (3) Ass(R/Q) is a singleton.
- (4) Q has exactly one minimal prime, and no embedded primes.
- (5) $\sqrt{Q} = P$ is prime and for all $r, w \in R$ with $w \notin P$, $rw \in Q$ implies $r \in Q$.
- (6) $\sqrt{Q} = P$ is prime, and $QR_P \cap R = Q$.

Proof. (1) \iff (2): y is a zerodivisor modulo Q if there is some $x \notin Q$ with $xy \in Q$; the primary assumption translates to saying that a power of y is in Q.

(2) \iff (3): On the one hand, (2) says that the set of zerodivisors on R/Q coincides with the elements in the nilradical of R/Q. In general, the set of zerodivisors is the union of all the associated primes, while the nilradical is the intersection of all the minimal primes. Now notice that the associated primes of R/Q are the associated primes of the ideal Q, while the minimal primes of R/Q are the minimal primes of Q. So we always have

$$\bigcup_{\mathfrak{p}\in \mathrm{Ass}(R/Q)}\mathfrak{p} \ = \ \mathcal{Z}(R/Q) \ \supseteq \{r\in R \mid r+Q\in \mathcal{N}(R/\mathfrak{q})\} \ = \bigcap_{\mathfrak{p}\in \mathrm{Min}(Q)}\mathfrak{p} = \bigcap_{\mathfrak{p}\in \mathrm{Ass}(R/Q)}\mathfrak{p}.$$

The rest of the proof is elementary set theory: the intersection and union of a collection of sets agree if and only if there is only one set. More precisely, we have equality above if and only if there is only one associated prime.

- $(3) \iff (4)$ is clear, since each statement is just a restatement of the other one.
- (1) \iff (5): Given the observation that the radical of a primary ideal is prime, this is just a rewording of the definition.
 - (5) \iff (6): This is immediate from the following characterization:

$$QR_P \cap R = \left\{ r \in R \mid \frac{r}{1} \in QR_P \right\}$$
$$= \left\{ r \in R \mid \frac{r}{1} = \frac{a}{w} \text{ for some } a \in Q, w \notin P \right\}$$

The equality $\frac{r}{1} = \frac{a}{w}$ is equivalent to u(wr - a) for some $a \in Q$ and $u, w \notin P$, so equivalently $s := uw \in W$ satisfies $sr = ua \in Q$. Therefore,

$$QR_P \cap R = \{r \in R \mid sr \in Q \text{ for some } s \notin P\}$$

If the radical of an ideal is maximal, that does imply the ideal is primary.

Remark 1.54. Let I be an ideal with $\sqrt{I} = \mathfrak{m}$ a maximal ideal. If R is noetherian, then $\mathrm{Ass}_R(R/I)$ is nonempty and contained in $\mathrm{Supp}(R/I) = V(I) = \{\mathfrak{m}\}$, so $\mathrm{Ass}_R(R/I) = \{\mathfrak{m}\}$, and hence I is primary.

Note that the assumption that \mathfrak{m} is maximal was necessary here. Indeed, having a prime radical does not guarantee an ideal is primary, as we saw in Example 1.52. Moreover, even the powers of a prime ideal may fail to be primary.

Example 1.55. Let $R = k[x, y, z]/(xy - z^n)$, where k is a field and $n \ge 2$ is an integer. Consider the prime ideal P = (x, z) in R, and note that $y \notin P$. We have $xy = z^n \in P^n$, while $x \notin P^n$ and $y \notin \sqrt{P^n} = P$. Therefore, P^n is not a primary ideal, even though its radical is the prime P.

Lemma 1.56. Let P be a prime ideal in a noetherian ring R. If $Q \subseteq P$ is a primary ideal, then Q_P is a primary ideal in R_P , even if Q is not P-primary.

Proof. Since $Q \subseteq P$ and P is prime, we must have $\sqrt{Q} \subseteq P$, so $Q_P = QR_P$ and $\sqrt{Q}R_P$ are proper ideals of R_P with $\sqrt{Q}R_P$ prime. Since $\mathrm{Ass}(Q) = \{\sqrt{Q}\}$, by Theorem 1.44 we have $\mathrm{Ass}(Q_P) = \{\sqrt{Q}R_P\}$. By Proposition 1.53, Q_P is a primary ideal.

The contraction of primary ideals is always primary.

Lemma 1.57. Let $f: R \to S$ be a ring homomorphism. If Q is a primary ideal in S, then $Q \cap R$ is a primary ideal in R. In particular, given any multiplicatively closed set W in R, and a primary ideal Q in $W^{-1}R$, $Q \cap R$ is a primary ideal in R.

Proof. If $xy \in Q \cap R$ and $x \notin Q \cap R$, then $f(x) \notin Q$. But $f(x)f(y) = f(xy) \in Q$, and since Q is primary, so we must have $f(y^n) = f(y)^n \in Q$ for some n. Therefore, $y^n \in Q \cap R$, and $Q \cap R$ is indeed primary.

Lemma 1.58. Let Q be a primary ideal in a noetherian ring R. If P is a prime ideal containing Q, then $QR_P \cap R = Q$.

Proof. By 1.56, QR_P is a primary ideal in R_P . By Lemma 1.57, $QR_P \cap R$ is also primary.

$$Q = QR_{\sqrt{Q}} \cap R = \left\{ r \in R \mid sr \in Q \text{ for some } s \notin \sqrt{Q} \right\}$$

Since P is prime and $P \supseteq Q$, then $P \supseteq \sqrt{Q}$. Therefore, the complement of \sqrt{Q} contains the complement of P, and

$$\left\{r \in R \mid sr \in Q \text{ for some } s \notin \sqrt{Q}\right\} \supseteq \left\{r \in R \mid sr \in Q \text{ for some } s \notin P\right\} = QR_P \cap R.$$

Therefore, $Q \supseteq QR_P \cap R$. But by elementary set theory, $Q \subseteq QR_P \cap R$, so we must have $Q = QR_P \cap R$.

The intersection of primary ideals is also primary.

Lemma 1.59. If I_1, \ldots, I_t are ideals, then

$$\operatorname{Ass}\left(R/\bigcap_{j=1}^{t} I_{j}\right) \subseteq \bigcup_{j=i}^{t} \operatorname{Ass}(R/I_{j}).$$

In particular, a finite intersection of \mathfrak{p} -primary ideals is \mathfrak{p} -primary.

Proof. The map $R \to R/I_1 \oplus R/I_2$ given by $r \mapsto (r + I_1, r + I_2)$ has kernel $I_1 \cap I_2$, so there is an inclusion $R/(I_1 \cap I_2) \subseteq R/I_1 \oplus R/I_2$. Hence, by Lemma 1.38 we have

$$\operatorname{Ass}(R/(I_1 \cap I_2)) \subseteq \operatorname{Ass}(R/I_1) \cup \operatorname{Ass}(R/I_2).$$

For $t \geqslant 3$,

$$\operatorname{Ass}\left(R/\bigcap_{j=1}^{t} I_{j}\right) \subseteq \bigcup_{j=i}^{t} \operatorname{Ass}(R/I_{j})$$

can be shown by an easy induction.

Now suppose all the I_i are all \mathfrak{p} -primary. Then

$$\operatorname{Ass}(R/(\bigcap_{j=1}^{t} I_j)) \subseteq \bigcup_{j=i}^{t} \operatorname{Ass}(R/I_j) = \{\mathfrak{p}\}.$$

On the other hand, $\bigcap_{j=1}^t I_j \subseteq I_1 \neq R$, so $R/(\bigcap_{j=1}^t I_j) \neq 0$. Thus $\operatorname{Ass}(R/(\bigcap_{j=1}^t I_j))$ is nonempty, by Theorem 1.37, and therefore it must be the singleton $\{\mathfrak{p}\}$. Then $\bigcap_{j=1}^t I_j$ is \mathfrak{p} -primary by the characterization of primary in Proposition 1.53 (3).

1.5 Primary decomposition

Definition 1.60 (Primary decomposition). A **primary decomposition** of an ideal I is an expression of the form

$$I = Q_1 \cap \cdots \cap Q_t$$

with each \mathfrak{q}_i primary. An **irredundant primary decomposition** of an ideal I is a primary decomposition as above in which $\sqrt{Q_i} \neq \sqrt{Q_j}$ for $i \neq j$, and $Q_i \not\supseteq \bigcap_{i \neq j} Q_j$ for all i.

Remark 1.61. By Lemma 1.59, we can turn any primary decomposition into an irredundant one by combining the terms with the same radical, then removing redundant terms.

Example 1.62 (Primary decomposition in \mathbb{Z}). Given a decomposition of $n \in \mathbb{Z}$ as a product of distinct primes, say $n = p_1^{a_1} \cdots p_k^{a_k}$, then the primary decomposition of the ideal (n) is $(n) = (p_1^{a_1}) \cap \cdots \cap (p_k^{a_k})$. However, this example can be deceiving, in that it suggests that primary ideals are just powers of primes; as we saw in Example 1.55, they are not!

The existence of primary decompositions was first shown by Emanuel Lasker (yes, the chess champion!) for polynomial rings and power series rings in 1905 [Las05], and then extended to noetherian rings (in the same paper where she introduced noetherian rings – though not by that name) by Emmy Noether in 1921 [Noe21].

Theorem 1.63 (Existence of primary decompositions). Every ideal in a noetherian admits a primary decomposition.

Proof. We will say that an ideal is irreducible if it cannot be written as a proper intersection of larger ideals. If R is Noetherian, we claim that any ideal of R can be expressed as a finite intersection of irreducible ideals. If the set of ideals that are not a finite intersection of irreducibles were non-empty, then by Noetherianity there would be an ideal maximal with the property of not being an intersection of irreducible ideals. Such a maximal element must be an intersection of two larger ideals, each of which are finite intersections of irreducibles, giving a contradiction.

Next, we claim that every irreducible ideal is primary. To prove the contrapositive, suppose that \mathfrak{q} is not primary, and take $xy \in \mathfrak{q}$ with $x \notin \mathfrak{q}$, $y \notin \sqrt{\mathfrak{q}}$. The ascending chain of ideals

$$(\mathfrak{q}:y)\subseteq (\mathfrak{q}:y^2)\subseteq (\mathfrak{q}:y^3)\subseteq \cdots$$

stabilizes for some n, since R is Noetherian. It will soon be helpful to realize that this means that for any element $f \in R$, $y^{n+1}f \in \mathfrak{q} \implies y^n f \in \mathfrak{q}$. Using this, we will show that

$$(\mathfrak{q} + (y^n)) \cap (\mathfrak{q} + (x)) = \mathfrak{q},$$

proving that \mathfrak{q} is not irreducible.

The containment $\mathfrak{q} \subseteq (\mathfrak{q} + (y^n)) \cap (\mathfrak{q} + (x))$ is clear. On the other hand, if

$$a \in (\mathfrak{q} + (y^n)) \cap (\mathfrak{q} + (x)),$$

we can write $a = q + by^n$ for some $q \in \mathfrak{q}$, and

$$a \in \mathfrak{q} + (x) \implies ay \in \mathfrak{q} + (xy) = \mathfrak{q}.$$

So

$$by^{n+1} = ay - aq \in \mathfrak{q} \implies b \in (\mathfrak{q}: y^{n+1}) = (\mathfrak{q}: y^n).$$

By definition, this means that $by^n \in \mathfrak{q}$, and thus $a = q + by^n \in \mathfrak{q}$. This shows that \mathfrak{q} is not irreducible, concluding the proof.

Primary decompositions, even irredundant ones, are not unique.

Example 1.64. Let R = k[x, y], where k is a field, and $I = (x^2, xy)$. We can write

$$I = (x) \cap (x^2, xy, y^2) = (x) \cap (x^2, y).$$

These are two different irredundant primary decompositions of I: the ideals (x^2, xy, y^2) and (x^2, y) are primary because each has radical $\mathfrak{m} = (x, y)$, which is maximal, and by Remark 1.54 any ideal whose radical is maximal must be primary. In fact, our ideal I has infinitely many irredundant primary decompositions: given any $n \ge 1$,

$$I = (x) \cap (x^2, xy, y^n)$$

is a irredundant primary decomposition. One thing all of these have in common is the radicals of the primary components: they are always (x) and (x, y). Indeed, we saw in Example 1.48 that these are the associated primes of I.

In the previous example, the fact that all our irredundant primary decompositions had primary components always with the same radical was not an accident. Indeed, there are some aspects of primary decompositions that are unique, and this is one of them.

Theorem 1.65 (First uniqueness theorem for primary decompositions). Suppose I is an ideal in a noetherian ring R. Given any irredundant primary decomposition of I, say

$$I = Q_1 \cap \cdots \cap Q_t$$

we have

$$\{\sqrt{Q_1},\ldots,\sqrt{Q_t}\}=\mathrm{Ass}(R/I).$$

In particular, this set is the same for all irredundant primary decompositions of I.

Proof. For any primary decomposition, irredundant or not, we have

$$\operatorname{Ass}(R/I) \subseteq \bigcup_{i} \operatorname{Ass}(R/Q_i) = \{\sqrt{Q_1}, \dots, \sqrt{Q_t}\}$$

by Lemma 1.59. We just need to show that in an irredundant decomposition as above, every $P_j := \sqrt{Q_j}$ is indeed an associated prime of I.

So fix j, and let

$$I_j = \bigcap_{i \neq j} Q_i \supseteq I.$$

Since the decomposition is irredundant, the module I_j/I is nonzero, hence by Theorem 1.37 it has an associated prime, say \mathfrak{a} . Fix $x_j \in R$ such that \mathfrak{a} is the annihilator of $\overline{x_j}$ in I_j/I . Since

$$Q_j x_j \subseteq Q_j \cdot \bigcap_{i \neq j} Q_i \subseteq Q_1 \cap \cdots \cap Q_n = I,$$

we conclude that Q_j is contained in the annihilator of $\overline{x_j}$, meaning $Q_j \subseteq \mathfrak{a}$. Since P_j is the unique minimal prime of Q_j and \mathfrak{a} is a prime containing Q_j , we must have $P_j \subseteq \mathfrak{a}$. On the other hand, if $r \in \mathfrak{a}$, we have $rx_j \in I \subseteq Q_j$, and since $x_j \notin Q_j$, we must have $r \in \sqrt{Q_j} = P_j$ by the definition of primary ideal. Thus $\mathfrak{a} \subseteq P_j$, so we can now conclude that $\mathfrak{a} = P_j$. This shows that P_j is an associated prime of R/I.

If we do not assume that R is noetherian, we may or may not have a primary decomposition for a given ideal. It is true that if an ideal I in a general ring has a primary decomposition, then the primes occurring are the same in any irredundant decomposition. However, they are not the associated primes of I in general; rather, they are the primes that occur as radicals of annihilators of elements.

There is also a partial uniqueness result for the actual primary ideals that occur in an irredundant decomposition.

Theorem 1.66 (Second uniqueness theorem for primary decompositions). If I is an ideal in a noetherian ring R, then the minimal components in any irredundant primary decomposition of I are unique. More precisely, if

$$I = Q_1 \cap \dots \cap Q_t$$

is an irredundant primary decomposition, and $\sqrt{Q_i} \in \text{Min}(I)$, then Q_i is given by the formula

$$Q_i = IR_{\sqrt{Q_i}} \cap R,$$

which does not depend on our choice of irredundant decomposition.

Proof. Let Q be a primary ideal, and let P be any prime. The localization Q_P is either:

- the unit ideal, if $Q \not\subseteq P$, or
- a P-primary ideal, if $Q \subseteq P$.

This follows from Theorem 1.44, the fact that the associated primes of Q localize, since $Q \subseteq P$ implies $\sqrt{Q} \subseteq P$, and Q_P will still have a unique associated prime.

Finite intersections commute with localization, so for any prime P,

$$I_P = (Q_1)_P \cap \cdots \cap (Q_t)_P$$

is a primary decomposition, although not necessarily irredundant. Fix a minimal prime $P = P_i$ of I, and let $Q = Q_i$. When we localize at P, all the other components become the unit ideal, since their radicals are not contained in P, and thus $I_P = Q_P$. We can then contract to R to get $I_P \cap R = (Q_i)_{P_i} \cap R = Q_i$, since Q_i is P_i -primary and we can then apply Proposition 1.53 (6).

We saw in Example 1.64 that the components associated to embedded primes are not necessarily unique. One might be tempted to think that the formula above, $IR_P \cap R$, still gives a P-primary component for I for any associated prime; unfortunately, that is always false when P is embedded.

Remark 1.67. If P is an embedded prime of I, we claim that $IR_P \cap R$ is not primary. Let P_1, \ldots, P_k be all the associated primes of I that are contained in P, and let Q_1, \ldots, Q_k be the P_i -primary components and Q be the P-primary component in an irredundant primary decomposition of I. Since $Q_i \subseteq P_i \subseteq P$, by Lemma 1.58 we have $Q_iR_P \cap R = Q_i$. On the other hand, if \mathfrak{q} is another primary component of I but with $\sqrt{\mathfrak{q}} \not\subseteq P$, then $\mathfrak{q}R_P = R_P$, and $\mathfrak{q}R_P \cap R = R$.

Finally, localization commutes with intersections, so we conclude that

$$IR_P \cap R = (Q_1R_P \cap R) \cap \cdots \cap (Q_kR_P \cap R) = Q_1 \cap \cdots \cap Q_k.$$

This says $IR_P \cap R$ collects all the primary components of I corresponding to primes contained in P. If P is an embedded prime of I, there are at least two such components, and thus this ideal is not primary.

This does show, however, that if $\mathrm{mAss}(I)$ denotes the set of maximal elements in $\mathrm{Ass}(I)$, then

$$I = \bigcap_{P \in Ass(I)} IR_P \cap R = \bigcap_{P \in mAss(I)} IR_P \cap R,$$

since each $IR_P \cap R$ is the intersection of all the primary components associated to elements in Ass(I) that are contained in P.

Remark 1.68. Fix an ideal I and suppose that A is a finite set of primes that contains every associated prime of I. By Remark 1.28, $W = R \setminus \bigcup_{P \in A} P$ is a multiplicatively closed set, so we can consider the localization ring $W^{-1}R$. For each associated prime P of I, $R \setminus P \supseteq W$, so if

 $r \in W^{-1}I \cap R \implies sr \in I \text{ for some } s \in W \implies sr \in I \text{ for some } s \notin P \implies r \in IR_P \cap R.$ Therefore,

$$I \subseteq W^{-1}I \cap R \subseteq \bigcap_{P \in \mathrm{Ass}(I)} IR_P \cap R = I,$$

where the last equality was discussed in Remark 1.67. We conclude that $W^{-1}I \cap R = I$.

It is relatively easy to give a primary decomposition for a radical ideal:

Example 1.69. If R is noetherian, and I is a radical ideal, then we have seen that I coincides with the intersection of its minimal primes, say $I = P_1 \cap \cdots \cap P_t$. This is the *only* primary decomposition of a radical ideal.

For a more concrete example, take the ideal I=(xy,xz,yz) in k[x,y,z]. This ideal is radical, so we just need to find its minimal primes. And indeed, one can check that $(xy,xz,yz)=(x,y)\cap(x,z)\cap(y,z)$.

Example 1.70. Let's get back to our motivating example in $\mathbb{Z}[\sqrt{-5}]$, where some elements can be written as products of irreducible elements in more than one way. For example, we saw that

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$

In fact, $(6) = (2) \cap (3)$, but while (2) is primary, (3) is not. In fact, (3) has two distinct minimal primes, and the following is a minimal primary decomposition for (6):

$$(6) = (2) \cap (3, 1 + \sqrt{-5}) \cap (3, 1 - \sqrt{-5}).$$

1.6 Computing primary decompositions

Providing efficient algorithms for primary decomposition of an ideal [...] is [...] still one of the big challenges for computational algebra and computational algebraic geometry.

Computing primary decompositions is a computationally difficult problem. This is true in a formal sense: even if one restricts to ideals monomial in a polynomial ring over a field, the problem of finding a primary decompositions is NP-complete [HS02].

The method primaryDecomposition in Macaulay2 computes primary decompositions using several strategies: there are special algorithms for monomial and binomial ideals, which we will discuss later, an algorithm of Shimoyama and Yokoyama [SY96] for ideals in polynomial rings, and an algorithm by Eisenbud, Huneke, and Vasconcelos [EHV92], and a hybrid of the last two. The user can force Macaulay2 to choose a particular strategy using the command Strategy. Here's an example from the Macaulay2 documentation:

$$i2 : Q = QQ[a..d];$$

$$i3 : I = ideal(a^2*b,a*c^2,b*d,c*d^2);$$

o3 : Ideal of Q

i4 : primaryDecomposition(I, Strategy => Monomial)

2 2 ideal (b, d , c)}

o4 : List

To compute a primary decomposition of I, we want to isolate the components with a particular radical, which can be done via saturations.

Definition 1.71. Let I and J be ideals in a ring R. The saturation of I with respect to J is the ideal

$$(I:J^{\infty}):=\bigcup_{n\geqslant 1}(I:J^n)=\left\{r\in R\mid rJ^n\subseteq I \text{ for some } n\right\}.$$

Given an element $x \in R$, we write $(I : x^{\infty})$ instead of $(I : (x)^{\infty})$. Some authors drop the parenthesis altogether, and write simply $I : J^{\infty}$.

We leave the following basic properties of saturations as an exercise.

Exercise 1. Let I, J, and L be ideals in a noetherian ring R.

- a) There exists n such that $(I:J^{\infty})=(I:J^n)$.
- b) If Q is a P-primary ideal, then

$$(Q:J^{\infty}) = \left\{ \begin{array}{l} Q & \text{if } J \nsubseteq P \\ R & \text{if } J \subseteq P \end{array} \right..$$

- c) $(I \cap J : L^{\infty}) = (I : L^{\infty}) \cap (J : L^{\infty}).$
- d) Given a primary decomposition $I = Q_1 \cap \cdots \cap Q_k$,

$$(I:J^{\infty}) = \bigcap_{J \nsubseteq \sqrt{Q_i}} Q_i.$$

e) If $\operatorname{Ass}(I) = \operatorname{Min}(I) = \{P_1, \dots, P_k\}$, then for each *i* there exists an element $x_i \in R$ such that the P_i -primary component of I is given by $(I : x_i^{\infty})$.

Chapter 2

Symbolic powers

Given an ideal I, its nth power is the ideal

$$I^n := (f_1 \cdots f_n \mid f_i \in I).$$

By convention, we set $I^0 = R$. While $\sqrt{I^n} = \sqrt{I}$ and the minimal primes of I^n are the same as the minimal primes of R, I^n might have new, exciting embedded primes. This is the beginning of a beautiful friendship.

2.1 What are symbolic powers?

Definition 2.1. Let I be an ideal in a noetherian ring R and fix an integer $n \ge 1$. The nth symbolic power of I is the ideal

$$I^{(n)} := \bigcap_{P \in \mathrm{Ass}(I)} I^n R_P \cap R.$$

Our main focus will be on symbolic powers of ideals I with no embedded primes. In that case, Ass(I) = Min(I), and since $Min(I^n) = Min(I)$, the nth symbolic power of I is the ideal

$$I^{(n)} = \bigcap_{P \in \operatorname{Ass}(I)} I^n R_P \cap R = \bigcap_{P \in \operatorname{Min}(I)} I^n R_P \cap R = \bigcap_{P \in \operatorname{Min}(I^n)} I^n R_P \cap R.$$

For each minimal prime P of I^n , $I^nR_P \cap R$ is the P-primary component of I^n . The nth symbolic power of I is thus obtained by computing a primary decomposition for I^n , collecting the minimal components, and discarding the embedded ones.

When I does have embedded primes, the two ideals

$$\bigcap_{P \in \mathrm{Ass}(I)} I^n R_P \cap R \quad \text{ and } \bigcap_{P \in \mathrm{Min}(I)} I^n R_P \cap R$$

are necessarily distinct. Both appear in the literature as definitions for symbolic powers, and the ambiguity only arises when one considers ideals with embedded components. While we will briefly discuss the advantages and disadvantages of each definition, our main focus will be the situation where I has no embedded primes and there is no ambiguity to worry about. In fact, even the study of symbolic powers of primes is interesting enough to keep us busy all semester, and so focusing on ideals with no embedded primes is not a big concession.

Lemma 2.2. Let P be a prime ideal in a noetherian ring R.

- (1) $P^{(n)} = P^n R_P \cap P$.
- (2) $P^{(n)} = \{ r \in R \mid sr \in P^n \text{ for some } s \notin P \}.$
- (3) $P^{(n)}$ is the unique P-primary component in a primary decomposition of P^n .
- (4) $P^{(n)}$ is the smallest P-primary ideal containing P^n .

Moreover, $P^n = P^{(n)}$ if and only if P^n is primary.

Proof. Prime ideals are primary, and $Ass(P) = \{P\}$, so (1) is immediate. The characterization in (2) follows from (1) and the definition of R_P . Theorem 1.66 says that $P^nR_P \cap R$ is the unique minimal (P-primary) component in a primary decomposition of P^n , which is (3).

So $P^{(n)}$ is a P-primary ideal containing P^n . To show it is the smallest such ideal, consider any other P-primary ideal Q containing P^n . Since images and preimages preserve containments, $P^nR_P \cap R \subseteq QR_P \cap R$. Since Q is P-primary, the characterization of primary ideals in Proposition 1.53 says that $QR_P \cap R = Q$. We conclude that

$$P^{(n)} = P^n R_P \cap R \subseteq QR_P \cap R = Q,$$

and $P^{(n)}$ is the smallest P-primary ideal containing P^n , which is (4).

The final statement is now immediate from (4).

The symbolic powers of a prime ideal do not necessarily coincide with its powers.

Example 2.3. Fix $n \ge 2$. Let k be a field, $R = k[x, y, z]/(xy - z^n)$, and consider the prime ideal P = (x, z) in R. While $y \notin P$, $xy = z^n \in P^n$, so $x \in P^{(n)}$.

In fact, the symbolic powers of a prime ideal might not coincide with its powers even over a polynomial ring.

Example 2.4. Fix a field k, and let R = k[x, y, z]. Consider the ideal P in R defining the curve parametrized by (t^3, t^4, t^5) , that is,

$$P = \ker \begin{pmatrix} R \longrightarrow k[t] \\ x \longmapsto t^{3} \\ y \longmapsto t^{4} \\ z \longmapsto t^{5} \end{pmatrix} = \left(\underbrace{x^{3} - yz}_{f}, \underbrace{y^{2} - xz}_{g}, \underbrace{z^{2} - x^{2}y}_{h}\right).$$

Since P is the kernel of a map to a domain, P is prime. Notice also that P is a homogeneous ideal if give R the grading induced by setting $\deg(x) = 3$, $\deg(y) = 4$, and $\deg(z) = 5$: our generators f, g, and h are now homogeneous, with $\deg(f) = 9$, $\deg(g) = 8$, and $\deg(h) = 10$. We claim that $P^{(2)} \neq P^2$.

Consider the homogeneous element $fg \in (x)$, which has degree 18, and let q be such that fg = qx. Since $x \notin P$ and $xq = fg \in P^2$, we conclude that $q \in P^{(2)}$. However, since $\deg(x) = 3$ and $\deg(fg) = 18$, q must be a homogeneous element of degree 15, but the smallest degree of any element in P^2 is $2 \times 8 = 16$, so $q \notin P^2$.

The symbolic powers of an ideal do sometimes coincide with its ordinary powers.

Lemma 2.5. Let k be a field and consider a polynomial ring $R = k[x_1, ..., x_d]$. If I is an ideal generated by some of the variables, then $I^{(n)} = I^n$ for all $n \ge 1$.

Proof. Since I is a prime ideal, we want to show that I^n is primary for all n. Without loss of generality, assume $I=(x_1,\ldots,x_t)$ for some $t\leqslant d$. Give R the grading with weights $|x_1|=\cdots=|x_t|=1$, and $|x_{t+1}|=\cdots=|x_n|=0$. With this grading, I is a homogeneous ideal, and the nonzero homogeneous elements in I are precisely the homogeneous elements of positive degree. Similarly, the nonzero homogeneous elements in I^n are the homogeneous elements in I^n are the homogeneous elements in I^n of degree at least I^n . If I^n is I^n is primary. If I^n is primary. I^n degree strictly smaller than I^n . We conclude that I^n is primary. I^n

Lemma 2.6. If \mathfrak{m} is a maximal ideal in a noetherian ring R, then $\mathfrak{m}^n = \mathfrak{m}^{(n)}$ for all n.

Proof. We just need to show that \mathfrak{m}^n is primary. But \mathfrak{m} is the only prime containing \mathfrak{m}^n , so we necessarily have $\mathrm{Ass}(\mathfrak{m}^n) \subseteq \{\mathfrak{m}\}$. By Theorem 1.37 3, $\mathrm{Ass}(\mathfrak{m}^n) \neq \emptyset$, so $\mathrm{Ass}(\mathfrak{m}^n) = \{\mathfrak{m}\}$. \square

Now we are ready to discuss the general case. When I is an ideal with no embedded primes, the symbolic powers of I are given by

$$I^{(n)} = \bigcap_{P \in \mathrm{Ass}(I)} I^n R_P \cap R = \bigcap_{P \in \mathrm{Min}(I)} I^n R_P \cap R.$$

This is a primary decomposition of $I^{(n)}$: the associated primes of $I^{(n)}$ are precisely the minimal primes of I, and for each $P \in \text{Min}(I)$ the P-primary component of $I^{(n)}$ is given by $I^n R_P \cap R$.

Lemma 2.7. Let I be an ideal with no embedded primes in a noetherian ring R.

- (1) $I^n = I^{(n)}$ if and only if I^n has no embedded primes.
- (2) $\operatorname{Ass}(I^{(n)}) = \operatorname{Ass}(I) = \operatorname{Min}(I) = \operatorname{Min}(I^n).$

Proof.

(1) Since $\sqrt{I^n} = \sqrt{I}$, the minimal primes of I^n coincide with those of I. Therefore, an irredundant primary decomposition of I^n consists of

$$I^n = I^{(n)} \cap Q_1 \cap \dots \cap Q_k,$$

where Q_1, \ldots, Q_k are primary components corresponding to embedded primes of I^n . There are no such components precisely when $I^n = I^{(n)}$.

(2) Saying I has no embedded primes is the same as saying that $\operatorname{Ass}(I) = \operatorname{Min}(I)$, and $\operatorname{Min}(I) = \operatorname{Min}(I^n)$ always holds. For each $P \in \operatorname{Ass}(I) = \operatorname{Min}(I) = \operatorname{Min}(I^n)$, $I^n R_P \cap R$ is a P-primary ideal, so

$$\bigcap_{P \in \mathrm{Ass}(I)} I^n R_P \cap R$$

is an intersection of primary ideals with distinct, incomparable radicals. This must then be a primary decomposition of $I^{(n)}$, and the corresponding primes are the associated primes of $I^{(n)}$.

Remark 2.8. Let I be an ideal in a noetherian ring R. Setting

$$W := R \setminus \bigcup_{P \in \mathrm{Ass}(I)} P$$

we claim that

$$I^{(n)} = W^{-1}I^n \cap R = \{r \in R \mid sr \in I^n \text{ for some } s \in W\}.$$

If $a \in I^{(n)}$, then $a \in I^n R_P \cap R$ for each $P \in \text{Min}(I)$, so for each such P there exists an element $s \notin P$ with $sa \in I^n$. Therefore, $(I^n : a)$ is not contained in any $P \in \text{Ass}(I)$. There are finitely many such primes, by Theorem 1.42, so by Prime Avoidance

$$(I^n:a) \nsubseteq \bigcup_{P \in \mathrm{Ass}(I)} P.$$

Therefore, there exists $s \in W$ such that $sa \in I^n$. Now assume $s \in W$ and $a \in R$ satisfy $sa \in I^n$. For each $P \in Ass(I)$, $s \notin P$, so $sa \in I^n$ gives $a \in I^nR_P \cap R$. Therefore, $a \in I^{(n)}$.

Lemma 2.9. Let I be an ideal in a noetherian ring R.

- (1) For all $n \ge 1$, $I^n \subseteq I^{(n)}$.
- (2) If I has no embedded primes, then $I^{(1)} = I$.
- (3) $I^a \subseteq I^{(b)}$ if and only if $a \geqslant b$.
- (4) If $a \geqslant b$, then $I^{(a)} \subseteq I^{(b)}$.
- (5) For all $a, b \ge 1$, $I^{(a)}I^{(b)} \subseteq I^{(a+b)}$.

Proof.

- (1) This is a set-theoretic statement: any set is contained in the preimage of its own image by any map. In particular, for all associated primes P of I, $I^n \subseteq I^n R_P \cap R$.
- (2) By Theorem 1.66, the minimal primary components of I^n are unique, and the component associated to each $P \in \text{Min}(I^n) = \text{Min}(I) = \text{Ass}(I)$ is given by $IR_P \cap R$. Since all the associated primes of I are minimal,

$$I = \bigcap_{P \in \text{Min}(I)} (IR_P \cap R) = \bigcap_{P \in \text{Ass}(I)} (IR_P \cap R) = I^{(1)}.$$

(3) If $a \ge b$, then $I^a \subseteq I^b \subseteq I^{(b)}$. Conversely, if $I^a \subseteq I^{(b)}$, then given an associated prime P of I, we must have $(I_P)^a = (I^a)_P \subseteq (I^{(b)})_P = (I_P)^b$. Write $J = I_P$, and note that J is contained in the unique maximal ideal of R_P . If a < b, it would follow that $J^a = J^b$, which by NAK implies J = 0. Thus $P \notin \operatorname{Supp}(I)$, but $P \in \operatorname{Ass}(I) \subseteq \operatorname{Supp}(R/I)$ by Corollary 1.46, which is a contradiction. Therefore, $\operatorname{Ass}(I)$ must be empty and thus I = 0 by Theorem 1.37.

- (4) Since $a \ge b$, $I^a \subseteq I^b$, so $I^a R_P \subseteq I^b R_P$ for any prime ideal P. Since taking preimages preserves inclusions, we conclude that $I^a R_P \cap R \subseteq I^b R_P \cap R$, and thus $I^{(a)} \subseteq I^{(b)}$.
- (5) Let $P \in \operatorname{Ass}(I)$ and let π be the canonical homomorphism $R \to R_P$. Given $x \in I^{(a)}$ and $y \in I^{(b)}$, $\pi(xy) = \pi(x)\pi(y) \in I^aI^bR_P$. Now notice that $I^aI^b = I^{a+b}$, so $\pi(xy) \in I^{a+b}R_P$, and $xy \in I^{a+b}R_P \cap R$. Since this holds for all $P \in \operatorname{Ass}(I)$, we conclude that $xy \in I^{(a+b)}$.

Example 2.10. Consider the radical ideal $I = (xy, xz, yz) = (x, y) \cap (x, z) \cap (y, z)$. Its symbolic powers are given by

$$I^{(n)} = (x, y)^{(n)} \cap (x, z)^{(n)} \cap (y, z)^{(n)},$$

which by Lemma 2.5 can be simplified to

$$I^{(n)} = (x, y)^n \cap (x, z)^n \cap (y, z)^n$$
.

For example, notice that $xyz \in I^{(2)}$, while $xyz \notin I^2$, since I^2 is generated by homogeneous elements of degree 2.

2.2 Homogeneous ideals

We have already seen a few examples of homogeneous ideals where we took advantage of being able to look at degrees of homogeneous elements. And indeed, the symbolic powers of a homogeneous ideal are also homogeneous.

Theorem 2.11. Let R be a noetherian graded ring. If I is a homogeneous ideal, then its symbolic powers $I^{(n)}$ are homogeneous for all $n \ge 1$.

Proof. By Theorem 1.42, the associated primes of I are all homogeneous. Fix a homogeneous prime $P \in Ass(I)$, and $n \leq 1$. The localization R_P is still a graded ring, with grading

$$\deg\left(\frac{r}{w}\right) = \deg(r) - \deg(w),$$

and the canonical map $R \to R_P$ is graded. The image and contraction of a homogeneous ideal by a graded map is homogeneous, so since I^n is homogeneous, then so is $I^n R_P \cap R$. The intersection of homogeneous ideals is homogeneous, and thus $I^{(n)}$ is homogeneous for all n.

We have seen several examples of homogeneous ideals whose symbolic powers do not coincide with the powers because they have elements in *wrong* degrees. This is a very common phenomenon. In the examples we saw before, we had elements of degrees that were too small.

Definition 2.12. If I is a homogeneous ideal in an N-graded ring R, then

$$\alpha(I) := \min \left\{ \deg(f) \mid 0 \neq f \in I \text{ is a homogeneous element} \right\}.$$

So $\alpha(I)$ is the smallest degree of a homogeneous generator for I.

Example 2.13. Consider a 3×3 matrix of variables,

$$X = \begin{pmatrix} x_1 & x_2 & x_3 \\ x_4 & x_5 & x_6 \\ x_7 & x_8 & x_9 \end{pmatrix}.$$

Given a field k, we write R = k[X] for the polynomial ring $R = k[x_1, \ldots, x_9]$, and $I_t(X)$ for the ideal in R generated by the t-minors of X. Let $I = I_2(X)$, which is a homogeneous ideal generated in degree 2. It is a nontrivial fact (which we won't prove) that this ideal is in fact prime. We claim $I^{(2)} \neq I^2$, and once more we will use a degree argument. To see this, consider the element $\det(X)$, which we can write for example using cofactor expansion on the first row:

$$\det(X) = x_1 \begin{vmatrix} x_5 & x_6 \\ x_8 & x_9 \end{vmatrix} - x_2 \begin{vmatrix} x_4 & x_6 \\ x_7 & x_9 \end{vmatrix} + x_3 \begin{vmatrix} x_4 & x_5 \\ x_7 & x_8 \end{vmatrix}.$$

This is clearly an element in I, since we wrote it as a linear combination of elements in I. On the other hand, this is *not* an element in I^2 , since it has degree 3 and $\alpha(I^2) = 4$. On the other hand, with a few careful computations one can see that

$$x_1 \det(X) = \begin{vmatrix} x_1 & x_3 \\ x_7 & x_9 \end{vmatrix} \begin{vmatrix} x_1 & x_2 \\ x_4 & x_5 \end{vmatrix} - \begin{vmatrix} x_1 & x_2 \\ x_7 & x_8 \end{vmatrix} \begin{vmatrix} x_1 & x_3 \\ x_4 & x_6 \end{vmatrix} \in I^2,$$

and since $x_1 \notin I$, we conclude that $\det(X) \in I^{(2)}$. So we have shown that $I^2 \neq I^{(2)}$.

In Example 2.13, Example 2.4 and Example 2.10, we found a homogeneous element in $I^{(n)}$ of degree smaller than $\alpha(I^n)$. The existence of such elements is not necessary for $I^n \neq I^{(n)}$.

Example 2.14. Let $R = \mathbb{Q}[x, y, z]$, and let P be the defining ideal of the curve parametrized by (t^9, t^{11}, t^{14}) . Here are some Macaulay2 computations.

$$i1 : k = QQ;$$

$$i2 : a = 9; b = 11; c = 14;$$

i6 :
$$R = k[x,y,z, Degrees => \{a,b,c\}];$$

i7 :
$$P = \ker map(QQ[t],R,\{t^a,t^b,t^c\})$$

$$4$$
 2 3 3 5 32 o7 = ideal (x - y z, x*y - z , y - x z)

```
o8 : List
```

o9 : Ideal of R

i10 : degrees symbolic2

o10 = $\{\{72\}, \{78\}, \{84\}, \{88\}, \{91\}\}$

o10 : List

i11: degrees (P^2)

o11 = $\{\{72\}, \{78\}, \{91\}, \{84\}, \{97\}, \{110\}\}$

o11 : List

In line i8 we learned that P^2 has one embedded prime, the homogeneous maximal ideal. This automatically tells us that $P^2 \neq P^{(2)}$. We computed $P^{(2)}$ and called it symbolic2 by simply taking a primary decomposition of P^2 and selecting the P-primary component. Since both P^2 and $P^{(2)}$ are homogeneous ideals, we then asked Macaulay2 for the degrees of the generators using the command degrees, and found two interesting things:

- $\alpha(P^2) = \alpha(P^{(2)})$, despite the fact that $P^2 \neq P^{(2)}$.
- $P^{(2)}$ has a minimal generator of degree 84, while P^2 does not.

We can ask Macaulay2 to help us identify this generator of $P^{(2)}$ of degree 84:

o14 : List

We can do even more, and find all the generators of $P^{(2)}$ in our generating set that are not in P^2 .

i19 : select(flatten entries mingens (symbolic2), f
$$\rightarrow$$
 f%(P^2) != 0) 8 7 3 3 2 2 5

This last computation tells us that this element $f = y^8 + x^7yz - 3x^3y^3z^2 + x^2z^5$ of degree 88 satisfies $P^{(2)} = P^2 + (f)$.

2.3 Computing symbolic powers

From what we have seen so far, it appears that to compute the symbolic powers of a given ideal we need only to find a primary decomposition of I^n , and then collec the appropriate components. In practice, that would be a terrible idea: as we briefly discussed in the previous chapter, computing primary decompositions is a computationally difficult problem, and to add to that, the number of calculations involved in computing powers of ideals grows very fast. One of the problems we will study is how to find effective and practical ways to compute the symbolic powers of an ideal — and most importantly, to avoid computing primary decompositions.

We saw in Exercise 1 that we can compute the minimal primary components of any ideal via saturation, so we can now put the same trick to use to compute symbolic powers. More interestingly, given an ideal I with no embedded primes, we can construct an ideal J such that $I^{(n)} = (I^n : J^{\infty})$ for all n. Saturations are computationally simple, so the difficult task is only to find the appropriate ideal to saturate with.

To show that we can compute the symbolic powers of I by saturating with a fixed J, we will use the beautiful and extraordinary fact that the there are only finitely many primes that are associated to some power of I. Unfortunately, we will have to establish a bit more background before we can prove this.

Theorem 2.15 (Ratliff, 1976 [Rat76], Brodmann, 1979 [Bro79]). If I is an ideal in a noetherian ring R, then $Ass(I^n)$ stabilizes, meaning that there exists N such that $Ass(I^n)$ is independent of $n \ge N$. In particular,

$$\bigcup_{n\geqslant 1} \mathrm{Ass}(I^n)$$

is finite.

Notation 2.16. We denote the set of all primes that are associated to some power of I by

$$\mathcal{A}(I) := \bigcup_{n\geqslant 1} \mathrm{Ass}(I^n).$$

This will allow us to show that to compute the symbolic powers of an ideal I, we can now take saturations with respect to a fixed ideal; in fact, we can take saturations with respect to a fixed principal ideal. To do that, however, we will need to use prime avoidance.

Exercise 2. Let I be an ideal with no embedded primes in a noetherian ring R. There exists an ideal J, which we can take to be principal, such that $I^{(n)} = (I^n : J^{\infty})$ for all $n \ge 1$.

The hard part, of course, is constructing this ideal explicitly and in a computationally efficient way.

2.4 Where are we going?

In order to understand symbolic powers better, we will need to first take a short detour to develop a few more fundamental commutative algebra tools. Here are some of the main questions that will motivate our study:

Computing symbolic powers

As we saw in the previous section, we need only to find an appropriate element x such that $I^{(n)} = (I^n : J^{\infty})$. We have discussed how to find this element in theory, but our description appears to require knowledge of all the associated primes of all the powers of I. This is of course unreasonable, and our goal is to find more effective ways to find such an x.

We will also discuss how to find symbolic powers via other methods for some special classes of ideals. To do this, we will use all sorts of different tools. For example, we will discuss how to apply combinatorics to study the symbolic powers of monomial ideals.

Equality

Computing symbolic powers would be an easy problem if $I^{(n)} = I^n$. So when does this hold? What are some sufficient or necessary conditions for this to hold for some fixed n, or for all n? Can we test the equality $I^{(n)} = I^n$ for all n by doing only finitely many tests?

Minimal degrees

When I is a homogeneous ideal, $I^{(n)}$ is also homogeneous, but its elements may have unexpected degrees. We have briefly discussed some of the behavior we may find, but we would like to explore this further. Will keep a special eye towards lower bounds on $\alpha(I^{(n)})$, since $n\alpha(I) = \alpha(I^n)$ is the obvious upper bound.

Finite generation of symbolic Rees algebras

In Lemma 2.9 we showed that $I^{(a)}I^{(b)} \subseteq I^{(a+b)}$. So as we compute higher and higher symbolic powers of I, we can think of all the elements in

$$\sum_{a_1 + \dots + a_{n-1} = n} I^{a_1} \cdots (I^{(n-1)})^{a_{n-1}} \subseteq I^{(n)}$$

as expected, and any other element in $I^{(n)}$ as unexpected. Roughly speaking, we want to understand whether we will see unexpected elements in $I^{(n)}$ for arbitrarily large n, or whether there is a finite set of symbolic powers which describe all the remaining ones. We will make this problem precise when we study the symbolic Rees algebra of I, which is a graded algebra we construct from the symbolic powers of I. In a surprising twist, these algebras will sometimes be NOT noetherian.

Comparing powers and symbolic powers of ideals

While the symbolic and ordinary powers of an ideal are not necessarily equal, they are of course related. How different are I^n and $I^{(n)}$, really? And how can we formalize this question? One way is of course by studying $\alpha(I^{(n)})$ and comparing it to $\alpha(I^n)$, but there are other ways to formalize this comparison. One in particular we will discuss is known as the Containment Problem, which is the question of when $I^{(a)} \subseteq I^b$. Another way we can formalize this question is to ask whether $I^{(n+1)}$ contains any minimal generator of $I^{(n)}$, which is roughly speaking the content of an open problem known as the Eisenbud-Mazur conjecture.

A geometric perspective

Over a polynomial ring over a perfect field, there is a geometric interpretation for the symbolic powers of a radical ideal. We will discuss this, and take it in part as a motivation to study symbolic powers.

But before we do any of this, it's time for a short detour through some classical commutative algebra topics that algebraist should keep in their back pocket.

Chapter 3

Sharpening our tools

3.1 Dimension and height

Definition 3.1. A chain of prime ideals

$$\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n$$

has **length** n. We say a chain of primes is **saturated** if for each i there is no prime \mathfrak{q} with $\mathfrak{p}_i \subsetneq \mathfrak{q} \subsetneq \mathfrak{p}_{i+1}$. The **Krull dimension** of a ring R is the supremum of the lengths of chains of primes in R, and we denote it by $\dim(R)$. The **height** of a prime \mathfrak{p} is the supremum of the lengths of chains of primes in R that end in \mathfrak{p} , i.e., with $\mathfrak{p} = \mathfrak{p}_n$ above, and we denote it by $\operatorname{ht}(\mathfrak{p})$. The **height** of an ideal I is given by

$$ht(I) := \inf \{ ht(\mathfrak{p}) \mid \mathfrak{p} \in Min(I) \}$$

Definition 3.2. The **dimension** of an R-module M is defined as $\dim(R/\operatorname{ann}_R(M))$.

Note that if M is finitely generated, $\dim(M)$ is the same as the supremum of the lengths of chains of primes in $\operatorname{Supp}_R(M)$.

Remark 3.3.

1) If I is an ideal, then $\dim(R/I)$ is the supremum of the lengths oft chains of primes in R

$$\mathfrak{q}_0 \subsetneq \mathfrak{q}_1 \subsetneq \cdots \subsetneq \mathfrak{q}_n$$

with each $\mathfrak{q}_i \in V(I)$.

- 2) If W is a multiplicative set, then $\dim(W^{-1}R) \leq \dim(R)$.
- 3) If \mathfrak{p} is prime, then $\dim(R_{\mathfrak{p}}) = \operatorname{ht}(\mathfrak{p})$.
- 4) If $\mathfrak{q} \supseteq \mathfrak{p}$ are primes, then $\dim(R_{\mathfrak{q}}/\mathfrak{p}R_{\mathfrak{q}})$ is the supremum of the lengths of all chains of primes in R of the form

$$\mathfrak{p} = \mathfrak{a}_0 \subsetneq \mathfrak{a}_1 \subsetneq \cdots \subsetneq \mathfrak{a}_n = \mathfrak{q}.$$

5) $\dim(R) = \sup\{\operatorname{ht}(\mathfrak{m}) \mid \mathfrak{m} \in \operatorname{mSpec}(R)\}.$

- 6) $\dim(R) = \sup \{\dim(R/\mathfrak{p}) \mid \mathfrak{p} \in \min(R)\}.$
- 7) If I is an ideal, $\dim(R/I) + \operatorname{ht}(I) \leq \dim(R)$.
- 8) The ideal (0) has height 0.
- 9) A prime ideal has height zero if and only if it is a minimal prime of R.

We will need a few theorems before we compute the height and dimension of many examples, but we can handle a few basic cases.

Example 3.4.

- a) The dimension of a field is zero.
- b) A ring is zero-dimensional if and only if every minimal prime is maximal.
- c) The ring of integers \mathbb{Z} has dimension 1: there is one minimal prime (0) and every other prime is maximal. More generally, any principal ideal domain has dimension 1.
- d) In a UFD, we claim that I is a prime of height 1 if and only if I = (f) with f prime element.

To see this, note that if I = (f) with f irreducible, and $0 \subsetneq \mathfrak{p} \subseteq I$, then \mathfrak{p} contains some nonzero multiple of f, say af^n with a and f coprime. Since $a \notin I$, $a \notin \mathfrak{p}$, so we must have $f \in \mathfrak{p}$, so $\mathfrak{p} = (f)$. Thus, I has height one. On the other hand, if I is a prime of height one, we claim I contains an irreducible element. Indeed, I is nonzero, so it contains some $f \neq 0$, and primeness implies one of the prime factors of f is contained in I. Thus, any nonzero prime contains a prime ideal of the form (f), so a height one prime must be of this form.

e) If k is a field, then $\dim(k[x_1,\ldots,x_d]) \ge d$, since there is a saturated chain of primes $(0) \subsetneq (x_1) \subsetneq (x_1,x_2) \subsetneq \cdots \subsetneq (x_1,\ldots,x_d)$.

Definition 3.5. A ring is **catenary** if for every pair of primes $\mathfrak{q} \supseteq \mathfrak{p}$ in R, every saturated chain of primes

$$\mathfrak{p} = P_0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_n = \mathfrak{q}$$

has the same length. A ring is **equidimensional** if every maximal ideal has the same finite height, or equivalently $\dim(R/P)$ is the same finite number for every minimal prime P.

Here are some examples of what can go wrong.

Example 3.6. Consider the ring

$$R = \frac{k[x, y, z]}{(xy, xz)}.$$

We can find the minimal primes of R by computing $\operatorname{Min}((xy,xz))$ in k[x,y,z]. The prime ideals (x) and (y,z) are incomparable, and $(x) \cap (y,z) = (xy,xz)$, so $\operatorname{Min}(R) = \{(x),(y,z)\}$. We claim that the height of (x-1,y,z) is one: it contains the minimal prime (y,z), and any saturated chain from (y,z) to (x-1,y,z) corresponds to a saturated chain from (0) to (x-1) in k[x], which must have length 1 since this is a PID. The height of (x,y-1,z) is at least 2, as witnessed by the chain $(x) \subseteq (x,y-1) \subseteq (x,y-1,z)$. So R is not equidimensional.

Even domains may fail to be equidimensional.

Example 3.7. The ring $\mathbb{Z}_{(2)}[x]$ is a domain that is not equidimensional. On the one hand, the maximal ideal (2, x) has height at least two, which we see from the chain

$$(0) \subsetneq (x) \subseteq (x,2).$$

On the other hand, the ideal (2x-1) has height 1, and it is maximal since the quotient is \mathbb{Q} .

Remark 3.8.

- a) If R is a finite dimensional domain, and $f \neq 0$, then $\dim(R/(f)) < \dim(R)$.
- b) If R is equidimensional, then $\dim(R/(f)) < \dim(R)$ if and only if $f \notin \bigcup_{\mathfrak{p} \in Min(R)} \mathfrak{p}$.
- c) In general, $\dim(R/(f)) < \dim(R)$ if and only if $f \notin \bigcup_{\substack{\mathfrak{p} \in \operatorname{Min}(R) \\ \dim(R/\mathfrak{p}) = \dim(R)}} \mathfrak{p}$.
- d) $f \notin \bigcup_{\mathfrak{p} \in Min(R)} \mathfrak{p}$ if and only if $\dim(R/(\mathfrak{p} + (f))) < \dim(R/\mathfrak{p})$ for all $\mathfrak{p} \in Min(R)$.

While noetherian rings are ubiquitous, rings where all *descending* chains of ideals stop are not as important; in fact, these are exactly the noetherian rings of dimension zero.

Definition 3.9. A ring is **Artinian** if every descending chain of ideals eventually stabilizes. A module is **Artinian** if every descending chain of submodules eventually stabilizes.

Theorem 3.10. The following are equivalent:

- a) R is Noetherian of dimension zero.
- b) R is a finite product of local Noetherian rings of dimension zero.
- c) R is Artinian.

Krull's Height Theorem, which we will now prove, gives us the most elementary and important connection between height and number of generators. This is also an excellent example of a theorem in elementary commutative algebra that we can prove using symbolic powers.

Theorem 3.11 (Krull's Principal Ideal theorem). Let R be a Noetherian ring, and $f \in R$. Then, every minimal prime of (f) has height at most one.

Note that this is stronger than the statement that the height of (f) is at most one: that would only mean that some minimal prime of (f) has height at most one.

Proof. Suppose the theorem is false, so that there is some ring R, a prime \mathfrak{p} , and an element f such that \mathfrak{p} is minimal over (f) and $\operatorname{ht}(\mathfrak{p}) > 1$. If we localize at \mathfrak{p} and then mod out by an appropriate minimal prime, we obtain a Noetherian local domain (R,\mathfrak{m}) of dimension at least two in which \mathfrak{m} is the unique minimal prime of (f), so let's work over that Noetherian local domain (R,\mathfrak{m}) . Note that $\overline{R} = R/(f)$ is zero-dimensional, since \mathfrak{m} is the only minimal prime over (f). Back in R, let \mathfrak{q} be a prime strictly in between (0) and \mathfrak{m} , and notice that we necessarily have $f \notin \mathfrak{q}$.

Consider the symbolic powers $\mathfrak{q}^{(n)}$ of \mathfrak{q} . We will show that these stabilize in R. Since $\overline{R} = R/(f)$ is Artinian, the descending chain of ideals

$$\mathfrak{q}\overline{R}\supseteq\mathfrak{q}^{(2)}\overline{R}\supseteq\mathfrak{q}^{(3)}\overline{R}\supseteq\cdots$$

stabilizes. We then have some n such that $\mathfrak{q}^{(n)}\overline{R} = \mathfrak{q}^{(m)}\overline{R}$ for all $m \geqslant n$, and in particular, $\mathfrak{q}^{(n)}\overline{R} = \mathfrak{q}^{(n+1)}\overline{R}$. Pulling back to R, we get $\mathfrak{q}^{(n)} \subseteq \mathfrak{q}^{(n+1)} + (f)$. Then any element $a \in \mathfrak{q}^{(n)}$ can be written as a = b + fr, where $b \in \mathfrak{q}^{(n+1)} \subseteq \mathfrak{q}^{(n)}$ and $r \in R$. Notice that this implies that $fr \in \mathfrak{q}^{(n)}$. Since $f \notin \mathfrak{q}$, we must have $r \in \mathfrak{q}^{(n)}$. This yields $\mathfrak{q}^{(n)} = \mathfrak{q}^{(n+1)} + f\mathfrak{q}^{(n)}$. Thus, $\mathfrak{q}^{(n)}/\mathfrak{q}^{(n+1)} = f(\mathfrak{q}^{(n)}/\mathfrak{q}^{(n+1)})$, so $\mathfrak{q}^{(n)}/\mathfrak{q}^{(n+1)} = \mathfrak{m}(\mathfrak{q}^{(n)}/\mathfrak{q}^{(n+1)})$. By NAK, $\mathfrak{q}^{(n)} = \mathfrak{q}^{(n+1)}$ in R. Similarly, we obtain $\mathfrak{q}^{(n)} = \mathfrak{q}^{(m)}$ for all $m \geqslant n$.

Now, if $a \in \mathfrak{q}$ is nonzero, we have $a^n \in \mathfrak{q}^n \subseteq \mathfrak{q}^{(n)} = \mathfrak{q}^{(m)}$ for all m, so

$$\bigcap_{m\geqslant 1}\mathfrak{q}^{(m)}=\bigcap_{m\geqslant n}\mathfrak{q}^{(m)}=\mathfrak{q}^{(n)}.$$

Notice that $\mathfrak{q}^n \neq 0$ because R is a domain, and so $\mathfrak{q}^{(n)} \supseteq \mathfrak{q}^n$ is also nonzero. So

$$\bigcap_{m\geqslant 1}\mathfrak{q}^{(m)}=\mathfrak{q}^{(n)}\neq 0.$$

On the other hand, $\mathfrak{q}^{(m)} = \mathfrak{q}^m R_{\mathfrak{q}} \cap R$ for all m, and

$$\bigcap_{m\geqslant 1}\mathfrak{q}^{(m)}R_{\mathfrak{q}}\subseteq\bigcap_{m\geqslant 1}\mathfrak{q}^mR_{\mathfrak{q}}=\bigcap_{m\geqslant 1}(\mathfrak{q}R_{\mathfrak{q}})^m=0$$

by Krull's Intersection theorem. Since R is a domain, the contraction of (0) in $R_{\mathfrak{q}}$ back in R is (0). This is the contradiction we seek. So no such \mathfrak{q} exists, so that R has dimension 1, and in the original ring, all the minimal primes over f must have height at most 1.

We want to generalize this to ideals generated by n elements, but it is not so straightforward to run an induction. We will need a lemma that allows us to control the chains of primes we get.

Lemma 3.12. Let R be Noetherian, $\mathfrak{p} \subsetneq \mathfrak{q} \subsetneq \mathfrak{a}$ be primes, and $f \in \mathfrak{a}$. Then there is some \mathfrak{q}' with $\mathfrak{p} \subsetneq \mathfrak{q}' \subsetneq \mathfrak{a}$ and $f \in \mathfrak{q}'$.

Proof. If $f \in \mathfrak{p}$, there is nothing to prove, since we can simply take $\mathfrak{q}' = \mathfrak{q}$. Suppose $f \notin \mathfrak{p}$. After we quotient out by \mathfrak{p} and localize at \mathfrak{a} , we may assume that \mathfrak{a} is the maximal ideal. We want to find a nonzero prime $\mathfrak{q}' \subsetneq \mathfrak{a}$. Our assumption implies that $f \neq 0$, and then by Theorem 3.11, minimal primes of (f) have height one, hence are not \mathfrak{a} nor \mathfrak{p} . We can take \mathfrak{q}' to be one of the minimal primes of f.

Theorem 3.13 (Krull's Height Theorem). Let R be a Noetherian ring. If I is an ideal generated by n elements, then every minimal prime of I has height at most n.

Proof. By induction on n. The case n = 1 is the Principal Ideal Theorem 3.11.

Let $I = (f_1, \ldots, f_n)$ be an ideal, \mathfrak{p} a minimal prime of I, and $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_h = \mathfrak{p}$ be a saturated chain of length h ending at \mathfrak{p} . If $f_1 \in \mathfrak{p}_1$, then we can apply the induction hypothesis to the ring $\overline{R} = R/((f_1) + \mathfrak{p}_0)$ and the ideal $(f_2, \ldots, f_n)\overline{R}$. Then by induction hypothesis, the chain $\mathfrak{p}_1\overline{R} \subsetneq \cdots \subsetneq \mathfrak{p}_h\overline{R}$ has length at most n-1, so $h-1 \leqslant n-1$ and \mathfrak{p} has height at most n.

If $f_1 \notin \mathfrak{p}_1$, we use the previous lemma to replace our given chain with a chain of the same length but such that $f_1 \in \mathfrak{p}_1$. To do this, note that $f_1 \in \mathfrak{p}_i$ for some i; after all, $f_1 \in I \subseteq \mathfrak{p}$. So in the given chain, suppose that $f_1 \in \mathfrak{p}_{i+1}$ but $f_1 \notin \mathfrak{p}_i$. If i > 0, apply the previous lemma with $\mathfrak{a} = \mathfrak{p}_{i+1}$, $\mathfrak{q} = \mathfrak{p}_i$, and $\mathfrak{p} = \mathfrak{p}_{i-1}$ to find \mathfrak{q}_i such that $f_1 \in \mathfrak{q}_i$. Replace the chain with

$$\mathfrak{p}_0 \subset \mathfrak{p}_1 \subset \cdots \subset \mathfrak{p}_{i-1} \subset \mathfrak{q}_i \subset \mathfrak{p}_i \subset \cdots \subset \mathfrak{p}_h = \mathfrak{p}.$$

Repeat until $f_1 \in \mathfrak{p}_1$.

The bound given by Krull's Height Theorem is sharp:

Example 3.14. Any ideal generated by n variables $(x_1, x_2, ..., x_n)$ in a polynomial ring has height n. There are many other such ideals. For example, $(u^3 - xyz, x^2 + 2xz - 6y^5, vx + 7vy) \in k[u, v, w, x, y, z]$.

Here are some other examples.

Example 3.15.

- a) As we saw in Example 3.6, the ideal (xy, xz) in k[x, y, z] has minimal primes of heights 1 and 2. Its height is 1, though its minimal number of generators is 2.
- b) It is possible to have associated primes of height greater than the number of generators. For a cheap example, in $R = k[x, y]/(x^2, xy)$, the ideal generated by zero elements (the zero ideal) has an associated prime of height two, namely (x, y).
- c) The same phenomenon can happen even in a nice polynomial ring. For example, consider the ideal $I = (x^3, y^3, x^2u + xyv + y^2w)$ in R = k[u, v, w, x, y]. The element $x^2y^2 \notin I$ has $(u, v, w, x, y) = (I : x^2y^2)$, so I has an associated prime of height 5.
- d) Noetherianity is necessary. Let $R = k[x, xy, xy^2, \dots] \subseteq k[x, y]$. For all $a \geqslant 1$, $xy^a \notin (x)$, since $y^a \notin R$, but $(xy^a)^2 = x \cdot xy^{2a} \in (x)$. Then (x) is not prime in R, and moreover $\mathfrak{m} = (x, xy, xy^2, \dots) \subseteq \sqrt{(x)}$. Since \mathfrak{m} is a maximal ideal, we have equality, so Min $(x) = \{\mathfrak{m}\}$. However, $\mathfrak{p} = (xy, xy^2, xy^3, \dots) = (y)k[x, y] \cap R$ is prime, and the chain $(0) \subsetneq \mathfrak{p} \subsetneq \mathfrak{m}$ shows that $ht(\mathfrak{m}) > 1$.

Corollary 3.16. Let (R, \mathfrak{m}, k) be a Noetherian local ring. Then

$$\dim(R) \leqslant \mu(\mathfrak{m}).$$

In particular, a Noetherian local ring has finite dimension.

Proof. The dimension of a local ring is the height of its unique maximal ideal, so this is just Krull's Height Theorem applied to \mathfrak{m} . If R is noetherian, then $\mu(\mathfrak{m})$ is finite, so $\dim(R)$ must also be finite.

Definition 3.17. The **embedding dimension** of a local ring (R, \mathfrak{m}) is the minimal number of generators of \mathfrak{m} , $\mu(\mathfrak{m})$. We write $\operatorname{embdim}(R) := \mu(\mathfrak{m})$ for the embedding dimension of R.

So Corollary 3.16 can be restated as $\dim(R) \leq \operatorname{embdim}(R)$. Rings whose dimension and embedding dimension agree are very nicely behaved.

Definition 3.18. A Noetherian local ring (R, \mathfrak{m}) is **regular** if $\dim(R) = \operatorname{embdim}(R)$.

Corollary 3.19. Let k be a field. The power series ring $R = k[x_1, ..., x_d]$ is a regular local ring. Then $\dim(R) = d$ and R is a regular local ring.

Proof. Let $\mathfrak{m} = (x_1, \dots, x_d)$. The images of x_1, \dots, x_d in $\mathfrak{m}/\mathfrak{m}^2$ are linearly independent, so $\mu(\mathfrak{m}) = d$. To show that R is regular, we need to show that $\dim(R) = d$. The strict chain of primes

$$(0) \subsetneq (x_1) \subsetneq (x_1, x_2) \subsetneq \cdots \subsetneq (x_1, \dots, x_d)$$

shows that $\dim(R) \ge d$. By Corollary 3.16, $\dim(R) = d$.

But before we can say more about regular rings, we will need to discuss regular sequences. We record here a few results one would cover in a first course in commutative algebra that we will not prove, but that we will want to use later.

Theorem 3.20. If a domain R is a finitely generated algebra over a field k, or a quotient of a power series ring over a field, then all the maximal ideals of R have the same finite height. Moreover, $\dim(k[x_1,\ldots,x_d])=d$.

Theorem 3.21. Let R be a finitely generated algebra or a quotient of a power series ring over a field.

- 1) R is catenary.
- If additionally R is a domain, then
- 2) R is equidimensional, and
- 2) ht(I) = dim(R) dim(R/I) for all ideals I.

Definition 3.22. Let $K \subseteq L$ be an extension of fields. A **transcendence basis** for L over K is a maximal algebraically independent subset of L. The **transcendence degree** of a field extension L over K is the common size of any transcendence basis for the extension.

Definition 3.23. For a prime P in a ring R, we denote the residue field of R_P by $\kappa(P)$. Equivalently, $\kappa(P)$ is the field of fractions of R/P.

Theorem 3.24 (Dimension inequality). Let $R \subseteq S$ be an inclusion of domains with R noetherian. Let $\mathfrak{q} \in \operatorname{Spec}(S)$ and $\mathfrak{p} = \mathfrak{q} \cap R \in \operatorname{Spec}(R)$. Then

$$\operatorname{height}(\mathfrak{q}) + \operatorname{trdeg}(\kappa(\mathfrak{q})/\kappa(\mathfrak{p})) \leq \operatorname{height}(\mathfrak{p}) + \operatorname{trdeg}(\operatorname{frac}(S)/\operatorname{frac}(R)).$$

3.2 The Koszul complex

The Koszul complex is arguably the most important complex in commutative algebra (and beyond). It appears everywhere, and it is a very powerful yet elementary tool any homological algebraist needs in their toolbox. Every sequence of elements x_1, \ldots, x_n in any ring R gives rise to a Koszul complex.

Definition 3.25. The tensor product of two complexes of R-modules C_{\bullet} and D_{\bullet} is the complex $C_{\bullet} \otimes_R D_{\bullet}$ with

$$(C_{\bullet} \otimes_R D_{\bullet})_n = \bigoplus_{i+j=n} C_i \otimes_R D_j,$$

and with differential δ_n defined on simple tensors $x \otimes y \in C_i \otimes_R D_j$ by

$$\delta_n(x \otimes y) = \delta_i^{C_{\bullet}}(x) \otimes y + (-1)^i x \otimes \delta_i^{D_{\bullet}}(y).$$

Definition 3.26. The Koszul complex on $r \in R$ is the complex

$$K(r):= 0 \xrightarrow{\quad r\quad} R \xrightarrow{\quad r\quad} R \xrightarrow{\quad 0\quad} 0.$$

More generally, the **Koszul complex** on the *R*-module *M* with respect to $r \in R$ is the complex

$$K(r; M) = K(r) \otimes_R M = 0 \longrightarrow M \xrightarrow{r} M \longrightarrow 0.$$

Finally, given $x_1, \ldots, x_n \in R$, the **Koszul complex** on M with respect to x_1, \ldots, x_n is the complex $K(x_1, \ldots, x_n)$ defined inductively as

$$K(x_1,\ldots,x_n;M)=K(x_1,\ldots,x_{n-1};M)\otimes_R K(x_n).$$

Example 3.27. The Koszul complex on $f, g \in R$ is given by

$$K_{\bullet}(f,g) = 0 \xrightarrow{\downarrow 0} R \xrightarrow{-g} R \xrightarrow{-g} R \xrightarrow{} 0$$

$$0 \xrightarrow{\downarrow f} f \xrightarrow{f} f \xrightarrow{} 0 \xrightarrow{f} R \xrightarrow{} 0$$

$$0 \xrightarrow{\downarrow f} f \xrightarrow{} 0 \xrightarrow{} R \xrightarrow{} R \xrightarrow{} 0$$

$$0 \xrightarrow{\downarrow f} f \xrightarrow{} 0 \xrightarrow{} R \xrightarrow{} R \xrightarrow{} 0$$

$$0 \xrightarrow{\downarrow f} f \xrightarrow{} 0 \xrightarrow{} R \xrightarrow{} R \xrightarrow{} 0$$

Example 3.28.

$$K_{\bullet}(f,q,h) = 0 \longrightarrow R \xrightarrow{\left(\begin{matrix} -g \\ f \\ h \end{matrix}\right)} R^{3} \xrightarrow{\left(\begin{matrix} -h & 0 & -g \\ 0 & -h & -f \\ f & g & 0 \end{matrix}\right)} R^{3} \xrightarrow{\left(\begin{matrix} f & g & h \end{matrix}\right)} R \longrightarrow 0.$$

You will find different sign conventions for the Koszul complex in the literature, but at the end of the day they all lead to isomorphic complexes.

Remark 3.29. Easy induction arguments show that when $\underline{f} = f_1, \dots, f_n$:

- $K_i(\underline{f}) \cong R^{\binom{n}{i}}$, with a basis naturally indexed by the subsets of $I \subseteq [n]$ with i elements; we write Re_I for the corresponding free summand.
- The component of the map $K_i(\underline{f}) \to K_{i-1}(\underline{f})$ from $Re_I \to Re_J$ is zero if $J \nsubseteq I$, and is $\pm f_i$ if $I = J \cup \{i\}$.
- The last map is $R^n \xrightarrow{(f_1 \cdots f_n)} R$, and

• The first map is
$$R \xrightarrow{\begin{pmatrix} \pm f_1 \\ \vdots \\ \pm f_n \end{pmatrix}} R^n$$
.

Definition 3.30. If M is an R-module and $\underline{f} = f_1, \ldots, f_n$, then

$$K_{\bullet}(\underline{f}; M) := K_{\bullet}(\underline{f}) \otimes M$$

 $K^{\bullet}(f; M) := \operatorname{Hom}_{R}(K_{\bullet}(f), M)$

Another easy induction shows that $K_{\bullet}(f; M) \cong K^{n-\bullet}(f; M)$.

The Koszul complex has more structure than simply being a complex: it is an example of a differentially graded algebra, or DG algebra for short, meaning it has an algebra structure on it as well. We will briefly describe how to construct the Koszul complex in such a way, but emphasize that this is only the beginning of a beautiful story about DG algebras.

In a rare moment on non-commutativity, we will need to consider exterior algebras. The **exterior algebra** $\bigwedge M$ on an R-module M is obtained by taking the the free R-algebra $R \oplus M \oplus (M \otimes M) \oplus (M \otimes M \otimes M) \oplus \cdots$ modulo the relations $x \otimes y = -y \otimes x$ and $x \otimes x = 0$ for all $x, y \in N$. We again denote the product on $\bigwedge M$ by $a \wedge b$, and see $\bigwedge M$ as a graded algebra where the homogeneous elements in degree d are those in the image of $N^{\otimes n}$. This is a **skew commutative** algebra, since

$$a \wedge b = (-1)^{\deg(a)\deg(b)}b \wedge a$$

for any homogeneous elements a and b. We denote the homogeneous elements of degree n by $\bigwedge^n M$. Note also that this construction is functorial: a map $M \xrightarrow{f} N$ of R-modules induces a map $\bigwedge M \xrightarrow{\wedge f} \bigwedge N$ given by $m_1 \wedge \cdots \wedge m_s \mapsto f(m_1) \wedge \cdots \wedge f(m_s)$.

We will use this construction in the case of free modules. When $M = \mathbb{R}^n$ with basis $e_1, \ldots, e_n, \wedge^k M \cong \mathbb{R}^{\binom{n}{k}}$, with basis $e_{i_1} \wedge \cdots \wedge e_{i_s}$ ranging over $i_1 < i_2 < \cdots < i_s, s = \binom{n}{k}$.

Definition 3.31. Let x_1, \ldots, x_n be elements in R. The **Koszul complex** on x_1, \ldots, x_n is the complex

$$K(x_1, \dots, x_n) := 0 \longrightarrow \bigwedge^n R^n \longrightarrow \bigwedge^{n-1} R^n \longrightarrow \dots \longrightarrow \bigwedge^1 R^n \longrightarrow R \longrightarrow 0$$

with differential given by

$$d(e_{i_1} \wedge \cdots \wedge e_{i_s}) = \sum_{1 \le n \le s} (-1)^{p+1} x_{i_p} e_{i_1} \wedge \cdots \wedge \widehat{e_{i_p}} \wedge \cdots \wedge e_{i_s}.$$

More generally, given an R-module M, the Koszul complex on M with respect to x_1, \ldots, x_n is $K(x_1, \ldots, x_n; M) := K(x_1, \ldots, x_n) \otimes_R M$.

Exercise 3. Show that d as defined above is indeed a differential, meaning $d^2 = 0$.

Exercise 4. Check that our two definitions of the Koszul complex coincide.

The homology of the Koszul complex has some nice properties.

Definition 3.32. Let M be an R-module and $x_1, \ldots, x_n \in R$. The ith Koszul homology module of M with respect to x_1, \ldots, x_d is

$$H_i(x_1,\ldots,x_d;M):=H_i(K(x_1,\ldots,x_d;M)).$$

Example 3.33. In R = k[x, y],

$$H_1(x, y; R) = \text{ homology of } R \xrightarrow{\begin{pmatrix} -y \\ x \end{pmatrix}} R^2 \xrightarrow{\begin{pmatrix} x \\ y \end{pmatrix}} R = 0.$$

Example 3.34. In R = k[x, y, u, v]/(xu - yv),

$$H_1(x, y; R) = \frac{\left\langle {\binom{-y}{x}, \binom{u}{-v}} \right\rangle}{\left\langle {\binom{-y}{x}} \right\rangle}.$$

Note that

$$x \begin{pmatrix} u \\ -v \end{pmatrix} = \begin{pmatrix} xu \\ -xv \end{pmatrix} = \begin{pmatrix} yv \\ -xv \end{pmatrix} = -v \begin{pmatrix} -y \\ x \end{pmatrix} = 0 \text{ in } H_1(x,y;R).$$

Proposition 3.35. Let R be a ring, $\underline{x} = x_1, \dots, x_n \in R$, and $I = (x_1, \dots, x_n)$.

- a) $H_i(\underline{x}; M) = 0$ whenever i < 0 or i > n.
- b) $H_0(x; M) = M/IM$.
- c) $H_n(\underline{x}; M) = (0 :_M I) = \operatorname{ann}_M(I)$.
- d) Every Koszul homology module $H_i(\underline{x}; M)$ is killed by $\operatorname{ann}_R(M)$.
- e) Every Koszul homology module $H_i(\underline{x}; M)$ is killed by I.
- f) If M is a Noetherian R-module, so is $H_i(\underline{x}; M)$ for every i.
- g) For every i, $H_i(\underline{x}; -)$ is a covariant additive functor R-mod $\longrightarrow R$ -mod.
- h) Every short exact sequence of R-modules

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

gives rise to a long exact sequence on Koszul homology,

$$\cdots \longrightarrow H_1(\underline{x}; C) \longrightarrow H_0(\underline{x}; A) \longrightarrow H_0(\underline{x}; B) \longrightarrow H_0(\underline{x}; C) \longrightarrow 0.$$

Proof. First, note that the Koszul complex $K(\underline{x}; M)$ looks like

$$0 \longrightarrow M \longrightarrow M^n \longrightarrow \cdots \longrightarrow M^n \longrightarrow M \longrightarrow 0$$

where the map in degree n is given by

$$\begin{pmatrix} x_1 \\ -x_2 \\ x_3 \\ \vdots \\ (-1)^{n+1} x_n \end{pmatrix}$$

and the map in degree 0 is

$$\begin{pmatrix} x_1 & x_2 & x_3 & \cdots & x_n \end{pmatrix}$$
.

a) Immediate from the definition, since the Koszul complex is only nonzero in homological degrees 0 through n.

b) The comment above tells us that

$$H_n(\underline{x}; M) = \operatorname{coker} (x_1 \ x_2 \ x_3 \ \cdots \ x_n) = M/IM.$$

c) The comment above tells us that

$$H_n(\underline{x}; M) = \ker \left(M \xrightarrow{\left(x_1 - x_2 \ x_3 \ \cdots \ (-1)^{n+1} x_n \right)^T} M \right)$$

= $\{ m \in M \mid rx_1 = rx_2 = \cdots = rx_n = 0 \} = (0 :_M I).$

- d) In each homological degree, the Koszul complex is simply a direct sum of copies of M. So the modules in $K(\underline{x}; M)$ in each degree are themselves already killed by $\operatorname{ann}_{I}(M)$.
- e) We are going to show something stronger: that for every $a \in I$, multiplication by a on $K(\underline{x}; M)$ is nullhomotopic, which proves that a kills the homology of $K(\underline{x}; M)$. It is in fact sufficient to show that multiplication by a is nullhomotopic on $K(\underline{x})$, since additive functors preserve the homotopy relation. To do this, we will explicitly use the multiplicative structure of the Koszul complex, and think of our description of the Koszul complex via exterior powers. Given $a \in I = (x_1, \ldots, x_n)$, write $a = a_1x_1 + \cdots + a_nx_n$. Consider the map $s_a : K(\underline{x}) \longrightarrow \Sigma^{-1}K(\underline{x})$ given by multiplication by $a_1e_1 \wedge \cdots a_ne_n$, meaning

$$s_a(e_{i_1} \wedge \cdots \wedge e_{i_t}) = \sum_{j=1}^n a_j e_j \wedge e_{i_1} \wedge \cdots \wedge e_{i_t}.$$

Now we claim this map s_a is a nullhomotopy for the map of complexes $K(\underline{x}) \longrightarrow K(\underline{x})$ given by multiplication by a in every component. To check that, it is sufficient to check that

$$s_a d\left(e_{i_1} \wedge \dots \wedge e_{i_t}\right) + ds_a\left(e_{i_1} \wedge \dots \wedge e_{i_t}\right) = ae_{i_1} \wedge \dots \wedge e_{i_t}.$$

We have

$$s_a d\left(e_{i_1} \wedge \dots \wedge e_{i_t}\right) = s_a \left(\sum_{k=1}^t (-1)^{k+1} x_k e_{i_1} \wedge \dots \wedge \widehat{e_{j_k}} \wedge \dots \wedge e_{i_t}\right)$$
$$= \sum_{j=1}^n \sum_{k=1}^t (-1)^{k+1} a_j x_k e_j \wedge e_{i_1} \wedge \dots \wedge \widehat{e_{j_k}} \wedge \dots \wedge e_{i_t}$$

and

$$ds_a (e_{i_1} \wedge \dots \wedge e_{i_t}) = d \left(\sum_{j=1}^n a_j e_j \wedge e_{i_1} \wedge \dots \wedge e_{i_t} \right)$$

$$= \sum_{j=1}^n \sum_{k=1}^t (-1)^{k+2} a_j e_j \wedge e_{j_1} \wedge \dots \wedge \widehat{e_{i_k}} \wedge \dots \wedge e_{i_s} + \sum_{j=1}^n a_j x_j e_{i_1} \wedge \dots \wedge e_{i_t}$$

$$= -s_a d (e_{i_1} \wedge \dots \wedge e_{i_t}) + \sum_{j=1}^n a_j x_j e_{i_1} \wedge \dots \wedge e_{i_t}$$

and since $\sum_{j=1}^{n} a_j x_j = a$, we conclude that

$$(s_a d + ds_a) (e_{i_1} \wedge \cdots \wedge e_{i_t}) = ae_{i_1} \wedge \cdots \wedge e_{i_t}.$$

- f) If M is Noetherian, then so is M^k for any k, as well as any submodules of M^k and any of their quotients. Each $H_i(\underline{x}; M)$ is a subquotient of a direct sum of copies of M, so it must be Noetherian.
- g) An R-module homomorphism $M \xrightarrow{f} N$ induces map $K(f): K(\underline{x}; M) \longrightarrow K(\underline{x}; N)$ given by $K(\underline{x}) \otimes f$, so $H_i(\underline{x}; f) = H_i(K(\underline{x}) \otimes f)$.
- h) In each homological degree, $K(\underline{x})$ has a free module, so $K(\underline{x}) \otimes_R -$ is exact. We conclude that

$$0 \longrightarrow K(x) \otimes_R A \longrightarrow K(x) \otimes_R B \longrightarrow K(x) \otimes_R C \longrightarrow 0$$

is a short exact sequence of complexes, and the long exact sequence we want is precisely resulting the long exact sequence in homology. \Box

Remark 3.36. If C_{\bullet} is a complex, there exists a short exact sequence of complexes

$$0 \longrightarrow C_{\bullet} \longrightarrow C_{\bullet} \otimes K_{\bullet}(f) \longrightarrow C_{\bullet}(-1) \longrightarrow 0 \qquad \text{given by}$$

$$0 \longrightarrow C_{n} \xrightarrow{\begin{pmatrix} 1 \\ 0 \end{pmatrix}} C_{n} \oplus C'_{n-1} \xrightarrow{\begin{pmatrix} 0 & (-1)^{n-1} \end{pmatrix}} C'_{n-1} \longrightarrow 0$$

where $C_i' \cong C_i$, and the ' indicates that this is the copy tensored with $K_1(f)$. Indeed, these are clearly exact, and we only need to check that these give maps of complexes; i.e., that the maps above commute with the differentials. An element $\nu \in C_n$ maps to $(\nu, 0)$ in $C_n \oplus C'_{n-1}$, which maps to $(\delta(\nu), 0)$ by the differential on $C_{\bullet} \otimes K_{\bullet}(f)$, so the map $C_{\bullet} \to C_{\bullet} \otimes K_{\bullet}(f)$ is a map of complexes. Likewise, an element (ν, μ) in $C_n \oplus C'_{n-1}$ maps to an element with second component $\delta(\mu)$ by the differential on $C_{\bullet} \otimes K_{\bullet}(f)$, so the map $C_{\bullet} \otimes K_{\bullet}(f) \to C_{\bullet}(-1)$ is a map of complexes as well.

The corresponding long exact sequence in homology is

$$\cdots \longrightarrow H_n(C_{\bullet}) \longrightarrow H_n(C_{\bullet} \otimes K_{\bullet}(f)) \longrightarrow H_n(C'_{\bullet}(-1)) \xrightarrow{\delta} \cdots$$

$$\vdots \\ H_{n-1}(C_{\bullet})$$

We claim that the connecting homomorphism agrees with multiplication by f. Indeed, for $[\eta] \in H_i(C'_{\bullet})$, one has that $(0, [\eta]) \in H_i(C_{\bullet} \otimes K_{\bullet}(f)) \mapsto [\eta] \in H_i(C'_{\bullet})$. Applying the differential yields $([f\eta], [\delta(g)]) = ([f\eta], 0) \in H_{i-1}(C_{\bullet} \otimes K_{\bullet}(f))$, and $[f\eta] \in H_{i-1}(C_{\bullet}) \mapsto ([f\eta], 0) \in H_{i-1}(C_{\bullet} \otimes K_{\bullet}(f))$.

Thus, the long exact sequence breaks into short exact sequences

$$0 \longrightarrow \frac{\mathrm{H}_n(C_{\bullet})}{f \, \mathrm{H}_n(C_{\bullet})} \longrightarrow \mathrm{H}_n(C_{\bullet} \otimes K_{\bullet}(f)) \longrightarrow \mathrm{ann}_{\mathrm{H}_{n-1}(C_{\bullet})}(f) \longrightarrow 0 \ .$$

In particular, if \underline{x}, y is a sequence of elements of R, and M is an R-module, then

$$0 \longrightarrow \frac{\operatorname{H}_{n}(\underline{x};M)}{y \operatorname{H}_{n}(\underline{x};M)} \longrightarrow \operatorname{H}_{n}(\underline{x},y;M) \longrightarrow \operatorname{ann}_{\operatorname{H}_{n-1}(\underline{x})}(y) \longrightarrow 0$$

3.3 Regular sequences

Definition 3.37. Let R be a ring and M be an R-module. An element $r \in R$ is **regular** (or a nonzerodivisor) on an R-module M if

$$rm = 0 \implies m = 0$$

for any $m \in M$. More generally, a sequence of elements x_1, \ldots, x_n is a **regular sequence** on M if

- $(x_1,\ldots,x_n)M\neq M$, and
- for each i, x_i is regular on $M/(x_1, \ldots, x_{i-1})M$.

Remark 3.38. Requiring that x_i is regular on $M/(x_1, \ldots, x_{i-1})M$ is equivalent to asking that $((x_1, \ldots, x_{i-1})M :_M x_i) = (x_1, \ldots, x_{i-1})M$.

Example 3.39.

- a) Consider the polynomial ring $R = k[x_1, \ldots, x_n]$ in n variables over a field k. The variables x_1, \ldots, x_n for a regular sequence on R.
- b) Let k be a field and R = k[x, y, z]. The sequence xy, xz is not regular on R, since xz is kills y on R/(xy).

The order we write the elements in is important.

Example 3.40. Let k be a filed and R = k[x, y, z]. The sequence x, (x - 1)y, (x - 1)z is regular, while (x - 1)y, (x - 1)z, x is not.

Remark 3.41. An element r is regular on M if and only if $H_1(K(r; M)) = 0$. Indeed,

$$H_1(K(r;M)) = \ker(M \xrightarrow{r} M) = (0:_M r),$$

and by definition, r is regular on M if and only if $(0:_M r) = 0$.

The Koszul complex on a regular sequence is exact in all positive degrees.

Theorem 3.42. If $\underline{x} = x_1, \dots, x_n \in R$ is a regular sequence on the R-module M, then $H_i(\underline{x}; M) = 0$ for all i > 0.

Proof. We proceed by induction on the length of the sequence, noting that the case n=1 is Remark 3.41. Now suppose that $H_j(x_1,\ldots,x_i;M)=0$ for all j>0. The long exact sequence

$$\cdots \longrightarrow H_n(x_1,\ldots,x_{i+1};M) \longrightarrow H_{n-1}(x_1,\ldots,x_i;M) \xrightarrow{x_{i+1}} H_{n-1}(x_1,\ldots,x_i;M) \longrightarrow \cdots$$

we discussed in Remark 3.36 forces $H_j(x_1, \ldots, x_{i+1}; M) = 0$ for all j > 1. Moreover, Remark 3.36 also gave us the short exact sequence

$$0 \longrightarrow \frac{\operatorname{H}_{1}(x_{1}, \dots, x_{i}; M)}{x_{i+1} \cdot \operatorname{H}_{1}(x_{1}, \dots, x_{i}; M)} \longrightarrow \operatorname{H}_{1}(x_{1}, \dots, x_{i+1}; M) \longrightarrow \operatorname{ann}_{\operatorname{H}_{0}(x_{1}, \dots, x_{i}; M)}(x_{i+1}) \longrightarrow 0.$$

П

Since x_{i+1} is regular on $M/(x_1, \ldots, x_i)M = H_0(x_1, \ldots, x_i; M)$, $\operatorname{ann}_{H_0(x_1, \ldots, x_i; M)}(x_{i+1}) = 0$. Moreover, $H_1(x_1, \ldots, x_i; M) = 0$ by hypothesis. Therefore, the short exact sequence above gives us $H_1(x_1, \ldots, x_{i+1}; M) = 0$.

It is natural to ask if Theorem 3.42 has a converse; over a nice enough ring, the answer is yes: the vanishing of Koszul homology does characterize regular sequences.

Theorem 3.43. Let (R, \mathfrak{m}, k) is either a Noetherian local ring or an \mathbb{N} -graded algebra over a field k with $R_0 = k$ and homogeneous maximal ideal $\mathfrak{m} = R_+$. Let $M \neq 0$ be a finitely generated R-module, and consider $\underline{x} = x_1, \ldots, x_n \in \mathfrak{m}$. In the graded case, we assume that M is graded and x_1, \ldots, x_n are all homogeneous. If $H_i(\underline{x}; M) = 0$ for all $i \geq 1$, then x_1, \ldots, x_n is a regular sequence on R.

Proof. We proceed by induction on n, noting that the case n=1 is simply Remark 3.41. Now let n>1 and suppose that the statement holds for all sequences of n-1 elements. By Remark 3.36, we have short exact sequences

$$0 \longrightarrow \frac{\mathrm{H}_{i}(x_{1},\ldots,x_{n-1};M)}{x_{n}\cdot\mathrm{H}_{i}(x_{1},\ldots,x_{n};M)} \longrightarrow \mathrm{H}_{i}(x_{1},\ldots,x_{n};M) \longrightarrow \mathrm{ann}_{\mathrm{H}_{i-1}(x_{1},\ldots,x_{n-1};M)}(x_{n}) \longrightarrow 0,$$

and since the middle term is 0 for all $i \leq 1$, we conclude that

- $\frac{\mathrm{H}_i(x_1,\ldots,x_{n-1};M)}{x_n\cdot\mathrm{H}_i(x_1,\ldots,x_n;M)}=0$ for all $i\leqslant 1$, and
- $\operatorname{ann}_{H_0(x_1,\ldots,x_{n-1};M)}(x_n) = 0$, so x_n is regular on $H_0(x_1,\ldots,x_{n-1};M) = M/(x_1,\ldots,x_{n-1})M$.

By Proposition 3.35, $H_i(x_1, \ldots, x_{n-1}; M)$ is a finitely generated R-module for all i. Since $x_n \in \mathfrak{m}$ and $x_n H_i(x_1, \ldots, x_{n-1}; M) = H_i(x_1, \ldots, x_{n-1}; M)$, NAK (or Proposition B.11 in the graded case) implies that $H_i(x_1, \ldots, x_{n-1}; M) = 0$ for all $i \leq 1$. By induction hypothesis, x_1, \ldots, x_{n-1} is a regular sequence. We conclude that x_1, \ldots, x_n is a regular sequence. \square

A corollary of Theorem 3.43 is that in a regular ring, the order of the elements in a regular sequence does not matter.

Corollary 3.44. Let (R, \mathfrak{m}, k) is either a noetherian local ring or an \mathbb{N} -graded algebra over a field k with $R_0 = k$ and homogeneous maximal ideal $\mathfrak{m} = R_+$. Let M be a finitely generated R-module, and consider $\underline{x} = x_1, \ldots, x_n \in \mathfrak{m}$. In the graded case, we assume that M is graded and x_1, \ldots, x_n are all homogeneous. If the sequence \underline{x} is regular on M, then so is any of its permutations.

Proof. If x_1, \ldots, x_n is a regular sequence, then $H_i(x_1, \ldots, x_n; M) = 0$ for all i > 0, by Proposition 3.35. The Koszul homology on \underline{x} agrees with the Koszul homology on any permutation of \underline{x} , which must then also vanish. By Theorem 3.43, any permutation of \underline{x} is a regular sequence.

In fact, we can extend this to any ring and any module under a reasonable assumption.

Lemma 3.45. Let R be a ring and M an R-module. If x, y is a regular sequence on M and y is regular on M, then y, x is a regular sequence on M.

Proof. Suppose that xm = yn for some $m, n \in M$. Since x, y is a regular sequence on M and $yn \in (x)M$, we must have $n \in (x)M$, so there exists some $w \in M$ such that n = xw. But then xm = yn = xyw. Since x is regular on M, we conclude that m = yw, so $m \in (y)M$. In particular, this shows that x is regular on M/(y)M.

Lemma 3.46. Let (R, \mathfrak{m}) be a noetherian local ring. If x_1, \ldots, x_n is a regular sequence on M, then so is $x_1^{a_1}, \ldots, x_n^{a_n}$ for any integers $a_i > 0$.

Proof. By Corollary 3.44, we are allowed to permute the elements in our sequence. Let's use this fact to reduce our proof to the case n=1. If the case n=1 holds, since x_n is a regular sequence on $M/(x_1,\ldots,x_{n-1})$ we can now say $x_n^{a_n}$ is regular on $M/(x_1,\ldots,x_{n-1})$. Therefore, $x_1,\ldots,x_{n-1},x_n^{a_n}$ is regular on M. Now switch the order and repeat the argument with each x_i , until we conclude that $x_1^{a_1},\ldots,x_n^{a_n}$ is also regular on M.

Finally, we give a proof when n=1. Now if x is a regular element on M, if $x^a \neq 0$, then $x^a m = 0 \implies xx^{a-1}m = 0$, and since x is regular we must have $x^{a-1}m = 0$. Repeating this a-1 times, we conclude that xm = 0, and m = 0.

There is a connection between regular sequences and height.

Theorem 3.47. If x_1, \ldots, x_n is a regular sequence on R, then $\operatorname{ht}(x_1, \ldots, x_n) = n$.

Proof. We use induction on n. When $n=1, x_1$ is regular if and only if x_1 is not in the set of zero divisors of R. By Theorem 1.37, this means x_1 is not in any associated prime of R, and in particular, x_1 is not in any of the minimal primes of R. Therefore, any prime containing x_1 must have height at least 1. By Theorem 3.13, $\operatorname{ht}(x_1) \leq 1$, so $\operatorname{ht}(x_1) = 1$. When n > 1, x_n is regular on $R/(x_1, \ldots, x_{n-1})$, so by case $n = 1, (x_1, \ldots, x_n)/(x_1, \ldots, x_{n-1})$ has height 1 on $R/(x_1, \ldots, x_{n-1})$. By induction hypothesis, $\operatorname{ht}(x_1, \ldots, x_{n-1}) = n - 1$. We conclude that $\operatorname{ht}(x_1, \ldots, x_n) = n$.

We now record some useful facts about regular sequences we will need when we get back to talking about symbolic powers.

Lemma 3.48. Let x_1, \ldots, x_t be a regular sequence on R. If $r_1, \ldots, r_t \in R$ are such that $r_1x_1 + \cdots + r_tx_t = 0$, then $r_1, \ldots, r_t \in (x_1, \ldots, x_t)$.

Proof. We will do induction on t. When t = 1, x_1 is a regular element on R, so $r_1x_1 = 0$ implies $r_1 = 0 \in (x_1)$.

Now suppose the claim holds for all regular sequences of length t-1 for some $t-1 \ge 1$. Since x_t is regular on $R/(x_1, \ldots, x_{t-1})$, the fact that $r_t x_t = -(r_1 x_1 + \cdots + r_{t-1} x_{t-1}) \in (x_1, \ldots, x_{t-1})$ implies that $r_t \in (x_1, \ldots, x_{t-1})$. Rewriting $r_t = s_1 x_1 + \cdots + s_{t-1} x_{t-1}$, our assumption is that

$$0 = r_1 x_1 + \dots + r_t x_t = (r_1 + s_1 x_t) x_1 + \dots + (r_{t-1} + s_{t-1} x_t) x_{t-1}.$$

By induction hypothesis, we must have $r_1 + s_1 x_t, \ldots, r_{t-1} + s_{t-1} x_t \in (x_1, \ldots, x_{t-1})$, and thus $r_1, \ldots, r_{t-1} \in (x_1, \ldots, x_t)$.

Theorem 3.49. Let R be a ring and consider $I = (a_1, \ldots, a_t)$, where a_1, \ldots, a_t is a regular sequence on R. Given a homogeneous polynomial $F \in R[x_1, \ldots, x_t]$ of degree $n \ge 1$, if $F(a_1, \ldots, a_t) \in I^{n+1}$, then the coefficients of F must all be in I.

Proof. Fix nonnegative integers c_1, \ldots, c_t with $c_1 + \cdots + c_t = n$, and let u be the coefficient of F in $x_1^{c_1} \cdots x_t^{c_t}$. Since F is homogeneous, all the remaining monomials in F have a factor of at least one of the terms $x_1^{c_1+1}, \ldots, x_t^{c_t+1}$. So we can write

$$F(a_1, \dots, a_t) = u a_1^{c_1} \cdots a_t^{c_t} + \sum_{j=1}^t a_j^{c_j+1} v_j$$

for some $v_j \in R$. The ideal I^{n+1} is generated by all $a_1^{d_1} \cdots a_t^{d_t}$ with $d_1 + \cdots + d_t = n+1$. For each of these generators, we must have $d_i \ge c_i + 1$ for some i, since $c_1 + \cdots + c_t = n$, and thus $I^{n+1} \subseteq (a_1^{c_1+1}, \ldots, a_t^{c_t+1})$. Since $F(a_1, \ldots, a_t) \in I^{n+1}$, we can now find $b_j \in R$ such that

$$ua_1^{c_1}\cdots a_t^{c_t} = \sum_{j=1}^t a_j^{c_j+1}b_j.$$

We will show that this implies that $u \in I$, and since we chose c_1, \ldots, c_t to be arbitrary, we will then be able to conclude that all the coefficients of F are in I. To do that, we will do induction on the number of nonzero c_j . If all the c_j are 0, then the assumption is that $u = \sum_{j=1}^t a_j b_j$, so $u \in I = (a_1, \ldots, a_t)$. For the induction step, set

$$y := \prod_{j \neq i} a_j^{c_j}.$$

Now the equality

$$ua_1^{c_1}\cdots a_t^{c_t} = \sum_{j=1}^t a_j^{c_j+1}b_j$$

can be rewritten as

$$\sum_{j \neq i} a_j^{c_j + 1} b_j - a_i^{c_i} (uy - a_i b_i).$$

By Lemma 3.46, $a_1^{c_1+1}, \dots, a_{i-1}^{c_{i-1}+1}, a_i^{c_i}, a_{i+1}^{c_{i+1}+1}, \dots, a_t^{c_t+1}$ is also a regular sequence, so

$$\sum_{j \neq i} a_j^{c_j + 1} b_j - a_i^{c_i} (uy - a_i b_i)$$

is a linear combination of the elements in a regular sequence. By Lemma 3.48, all the coefficients must be in the ideal generated by this regular sequence. Therefore,

$$uy - a_i b_i \in (a_i^{c_i}) + \left(a_j^{c_j+1} \mid j \neq i\right) \implies uy \in (a_i) + \left(a_j^{c_j+1} \mid j \neq i\right).$$

Now

$$uy = u \prod_{j \neq i} a_j^{c_j} = u a_1^{c_1} \cdots a_{i-1}^{c_{i-1}} a_i^0 a_{i+1}^{c_{i+1}} \cdots a_t^{c_t} = b_i' a_i^{0+1} + \sum_{j \neq i} d_j a_j^{c_j+1}$$

has one fewer nonzero exponent than our original $ua_1^{c_1}\cdots a_t^{c_t}$, and it is of the form

$$uy = ua_1^{d_1} \cdot \dots \cdot a_t^{d_t} = \sum_{j=1}^t e_j a_j^{d_j + 1}$$

with $d_i = 0$ and $d_j = c_j$ for $j \neq i$, and some $e_j \in R$. Therefore, the induction hypothesis applies, and thus $u \in (a_1, \ldots, a_t)$.

3.4 Free resolutions

Definition 3.50. Let M be an R-module. A **projective resolution** is a complex

$$C_{\bullet} = \cdots \longrightarrow P_n \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow 0$$

where all the P_i are projective, $H_0(C) = M$, and $H_i(C) = 0$ for all $i \neq 0$. We may also write a projective resolution for M as an exact sequence

$$\cdots \longrightarrow P_n \longrightarrow \cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow M \longrightarrow 0$$

where all the modules P_i are projective.

You will find both these definitions in the literature, often indicating the second option as an abuse of notation. We will be a bit sloppy and consider both equivalently, since at the end of the day they contain the same information. The most important type of projective resolution is a free resolution.

Definition 3.51. A free resolution of an R-module M is a projective resolution for M by free modules, meaning each P_i is free.

We can think of a free resolution

$$\cdots \longrightarrow F_2 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow M$$

as giving a detailed description of our module M. The first free module, F_0 , gives us generators for M. The second free module, F_1 , gives us generators for all the relations among our generators for M. The next module describes the relations among the relations among our generators. And so on.

Theorem 3.52. Every R-module has a free resolution.

Proof. Let M be an R-module. We are going to construct a free resolution quite explicitly. The first step is to find a free module surjecting onto M, which we can do by taking a free module on any set of generators for M. Now consider the kernel of that projection, say

$$0 \longrightarrow K_0 \xrightarrow{i_0} P_0 \xrightarrow{\pi_0} M \longrightarrow 0.$$

Set $\partial_0 := \pi_0$. There exists a free module P_1 surjecting onto K_0 . Now the map $\partial_1 = i_0 \pi_1$ satisfies im $\partial_1 = K_0 = \ker \partial_0$.

Now the process continues analougously. We find a free module P_2 surjecting onto $K_1 := \ker \partial_1$, and set

At each stage, $\pi_i: P_i \longrightarrow K_{i-1}$ is a surjective map, $K_i := \ker \partial_i$, i_i is the inclusion of the kernel of ∂_i into P_i , and we get short exact sequences

$$0 \longrightarrow K_{n+1} \xrightarrow{i_{n+1}} P_{n+1} \xrightarrow{\pi_{n+1}} K_n \longrightarrow 0.$$

In fact, $\operatorname{im}(i_{n+1}) = \ker \partial_{n+1} = \ker(i_n \pi_{n+1}) = \ker \pi_{n+1}$. We can continue this process indefinitely for as long as $P_n \neq 0$, and the resulting sequence will be a projective resolution for M.

Definition 3.53. Let M be an R-module. The **projective dimension** of M

$$\operatorname{pdim}_R(M) := \inf \left\{ c \mid \ 0 \longrightarrow P_c \longrightarrow \cdots \longrightarrow P_0 \longrightarrow 0 \ \text{ is a projective resolution for } M \right\}.$$

The projective and injective dimension of a finitely generated module can be infinite.

Example 3.54. Let k be a field and $R = k[x]/(x^2)$, which is a local ring with maximal ideal $\mathfrak{m} = (x)$. The residue field $k = R/\mathfrak{m}$ has infinite projective dimension:

$$\cdots \longrightarrow R \xrightarrow{x} R \xrightarrow{x} R \xrightarrow{x} R \xrightarrow{x} R \longrightarrow k \longrightarrow 0.$$

So even cyclic modules can have infinite projective dimension.

When (R, \mathfrak{m}) be either a local ring or an N-graded graded k-algebra with $R_0 = k$ and homogeneous maximal ideal $\mathfrak{m} = R_+$, we can talk about **minimal** free resolutions. To construct a minimal free resolution of M, we simply take as few generators as possible in each step. This is equivalent to having a **minimal complex** F, meaning that the differential ∂ satisfies $\operatorname{im}(\partial^F) \subseteq \mathfrak{m}F$. If we find basis for each free module F_i , and write the differentials as matrices in those basis, the entries in every differential matrix are all in \mathfrak{m} . Ultimately, we can talk about the minimal free resolution of M, since all minimal free resolutions are isomorphic. While we will not discuss the details here, here are some examples.

Definition 3.55. Let (R, \mathfrak{m}) be either a local ring or an N-graded graded k-algebra with $R_0 = k$ and homogeneous maximal ideal $\mathfrak{m} = R_+$. Let F be a minimal free resolution for the finitely generated (graded) R-module M. The nth betti number of M is

$$\beta_i(M) := \operatorname{rank} F_i = \mu(F_i).$$

In the graded case, the (i, j)th betti number of M, $\beta_{ij}(M)$, counts the number of generators of F_i in degree j. We often collect the betti numbers of a module in its **betti table**:

By convention, the entry corresponding to (i, j) in the betti table of M contains $\beta_{i,i+j}(M)$, and not $\beta_{ij}(M)$. This is how Macaulay2 displays betti tables as well, using the command betti.

Example 3.56. Suppose that R = k[x, y, z] and that M = R/(xy, xz, yz) corresponds to the variety defining the union of the three coordinate lines in \mathbb{A}^3_k . This variety has dimension 1 and degree 3. The minimal free resolution for M is

$$0 \longrightarrow R^2 \xrightarrow{\begin{pmatrix} z & 0 \\ -y & y \\ 0 & -x \end{pmatrix}} R^3 \xrightarrow{\begin{pmatrix} xy & xz & yz \end{pmatrix}} R \longrightarrow M.$$

From this minimal resolution, we can read the betti numbers of M:

- $\beta_0(M) = 1$, since M is a cyclic module;
- $\beta_1(M) = 3$, and these three quadratic generators live in degree 2;
- $\beta_2(M) = 2$, and these represent linear syzygies on quadrics, and thus live in degree 3.

Here is the graded free resolution of M:

$$0 \longrightarrow R(-3)^{2} \xrightarrow{\begin{pmatrix} z & 0 \\ -y & y \\ 0 & -x \end{pmatrix}} R(-2)^{3} \xrightarrow{(xy \ xz \ yz)} R \longrightarrow M.$$

Notice that the graded shifts in lower homological degrees affect all the higher homological degrees as well. For example, when we write the map in degree 2, we only need to shift the degree of each generator by 1, but since our map now lands on $R(-2)^3$, we have to bump up degrees from 2 to 3, and write $R(-3)^2$. The graded betti number $\beta_{ij}(M)$ of M counts the number of copies of R(-j) in homological degree i in our resolution. So we have

$$\beta_{00} = 1, \beta_{12} = 3, \text{ and } \beta_{23} = 2.$$

We can collect the graded betti numbers of M in what is called a *betti table*:

Example 3.57. Let k be a field, R = k[x, y], and consider the ideal

$$I = (x^2, xy, y^3)$$

which has two generators of degree 2 and one of degree 3, so there are graded betti numbers β_{12} and β_{13} . The minimal free resolution for R/I is

$$0 \longrightarrow \bigoplus_{R(-4)^{1}}^{R(-3)^{1}} \xrightarrow{\begin{pmatrix} y & 0 \\ -x & y^{2} \\ 0 & -x \end{pmatrix}} \xrightarrow{R(-2)^{2}} \xrightarrow{\begin{pmatrix} x^{2} & xy & y^{3} \end{pmatrix}} R \longrightarrow R/I.$$

$$\beta_{23}(R/I) = 1 \qquad \beta_{12}(R/I) = 2$$

$$\beta_{24}(R/I) = 1 \qquad \beta_{13}(R/I) = 1$$

So the betti table of R/I is

These invariants can give us some information about Ext and Tor, and vice-versa.

Remark 3.58. If $\operatorname{pdim}_R(M) = n$ is finite, then we can take a free resolution of M with length n to compute $\operatorname{Tor}_i^R(M,-)$, and thus $\operatorname{Tor}_i^R(M,-) = 0$ for all i > n. For the same reason, $\operatorname{Ext}_R^i(M,-) = 0$ for all i > n.

Remark 3.59. Let (R, \mathfrak{m}, k) be either a local ring or an N-graded k-algebra, where k is a field, with $R_0 = k$ and homogeneous maximal ideal $\mathfrak{m} = R_+$, and M a finitely generated (graded) R-module. The homomorphisms of R-modules $R \longrightarrow R$ are precisely the multiplication maps by each fixed $r \in R$. The map $(r \cdot -) \otimes_R k$ is simply multiplication by the image of r in $k = R/\mathfrak{m}$ on k. More generally, a homomorphism of R-modules $R^n \xrightarrow{f} R^m$ can be represented by an $m \times n$ matrix R with entries in R after we fix bases for R^n and R^m , and the matrix representing $f \otimes_R k$ in the corresponding bases for k^m and k^n is the matrix obtained from R by considering the images of the entries in R.

Given any $g \in \operatorname{Hom}_R(R, k)$, the composition of f with multiplication by r is the map $g(r \cdot -) = rg(-)$. So $\operatorname{Hom}_R(r \cdot -, k)$ is multiplication by the image of r in k. More generally, if A is an $m \times n$ matrix representing $R^n \xrightarrow{f} R^m$, the map $\operatorname{Hom}_R(f, k)$ is represented in the corresponding bases for k^n and k^m by the transpose of A, where the entries are now replaced by their images in $k = R/\mathfrak{m}$.

Theorem 3.60. Let (R, \mathfrak{m}, k) be either a Noetherian local ring or an \mathbb{N} -graded k-algebra, where k is a field, with $R_0 = k$ and homogeneous maximal ideal $\mathfrak{m} = R_+$, and M a finitely generated (graded) R-module. Then

$$\beta_i(M) = \dim_k(\operatorname{Tor}_i^R(M,k)) = \dim_k(\operatorname{Ext}_R^i(M,k)).$$

Proof. Let F be a minimal free resolution for M. The module in degree i in the complex $F \otimes_R k$ is

$$F_i \otimes_R k = R^{\beta_i(M)} \otimes_R k = k^{\beta_i(M)}$$
.

Minimal free resolutions are minimal complexes, so $\operatorname{im}(\partial^F) \subseteq \mathfrak{m}F$, and thus $\partial \otimes_R k = 0$. So

$$F \otimes_R k = \cdots \longrightarrow k^{\beta_i(M)} \longrightarrow k^{\beta_{i-1}(M)} \longrightarrow \cdots \longrightarrow k^{\beta_1(M)} \longrightarrow k^{\beta_0} \longrightarrow 0.$$

Therefore,

$$\operatorname{Tor}_{i}^{R}(M,k) = \operatorname{H}_{i}(F \otimes_{R} k) = k^{\beta_{i}(M)}.$$

The module in degree i in the complex $\operatorname{Hom}_R(F,k)$ is

$$\operatorname{Hom}_{R}(F_{i}, k) = \operatorname{Hom}_{R}(R^{\beta_{i}(M)}, k) = k^{\beta_{i}(M)},$$

by ??. Following the discussion in Remark 3.59, the fact that $\partial(F) \subseteq \mathfrak{m}F$ implies $\operatorname{Hom}_R(\partial^F, k) = 0$. Therefore,

$$\operatorname{Hom}_{R}(F,k) = 0 \longrightarrow k^{\beta_{0}(M)} \xrightarrow{0} k^{\beta_{1}(M)} \longrightarrow \cdots \longrightarrow k^{\beta_{i}(M)} \longrightarrow \cdots$$

SO

$$\operatorname{Ext}_{R}^{i}(M,k) = \operatorname{H}^{i}(\operatorname{Hom}_{R}(F,k)) = k^{\beta_{i}(M)}.$$

Corollary 3.61. Let (R, \mathfrak{m}, k) be either a local ring or an \mathbb{N} -graded k-algebra, where k is a field, with $R_0 = k$ and homogeneous maximal ideal $\mathfrak{m} = R_+$. For every finitely generated (graded) R-module M, $\operatorname{pdim}_R(M) \leq \operatorname{pdim}_R(k)$.

Proof. When
$$i > \operatorname{pdim}_{R}(k)$$
, $\operatorname{Tor}_{i}^{R}(M, k) = 0$, so $\beta_{i}(M) = 0$ by Theorem 3.60.

Remark 3.62. Also as a consequence of Theorem 3.60, we learn that

$$\operatorname{pdim}_{R}(M) = \sup\{i \mid \beta_{i}(M) \neq 0\} = \sup\{i \mid \operatorname{Ext}_{R}^{i}(M, k) \neq 0\} = \sup\{i \mid \operatorname{Tor}_{R}^{i}(M, k) \neq 0\}.$$

We can extend this to graded betti numbers once we realize that Tor and Ext of graded modules can also be given graded structures.

Exercise 5. Let (R, \mathfrak{m}, k) be an N-graded k-algebra, where k is a field, with $R_0 = k$ and homogeneous maximal ideal $\mathfrak{m} = R_+$, and M a finitely generated graded R-module. Fix a graded minimal free resolution F of M. Then

$$\beta_{i,j}(M) = \text{number of copies of } R(-j) \text{ in } F_i = \dim_k(\operatorname{Tor}_i^R(M,k)_j) = \dim_k(\operatorname{Ext}_R^i(M,k)_j).$$

If only we had an explicit minimal free resolution of k, maybe we could use it to say something about the minimal free resolutions of other finitely generated R-modules. With that goal in mind, we return to regular sequences.

Corollary 3.63. If $x_1, \ldots x_n$ is a regular sequence on R, then the Koszul complex on x_1, \ldots, x_n is a free resolution for $R/(x_1, \ldots, x_n)$. Moreover, if (R, \mathfrak{m}, k) is either a local ring or an \mathbb{N} -graded algebra over a field k with $R_0 = k$ and homogeneous maximal ideal $\mathfrak{m} = R_+$, then $k(x_1, \ldots, x_n)$ is a minimal free resolution for $R/(x_1, \ldots, x_n)$.

Proof. By Theorem 3.42, $P = K(x_1, ..., x_n)$ has $H_i(P) = 0$ for all i > 0. This is a complex of free modules, and thus a free resolution of $H_0(P)$, which by Proposition 3.35 is $R/(x_1, ..., x_n)$.

Theorem 3.64 (Hilbert Syzygy Theorem). Every finitely generated graded module M over a polynomial ring $R = k[x_1, \ldots, x_n]$ over a field k has finite projective dimension. In fact, $\operatorname{pdim}(M) \leq n$.

Proof. By Corollary 3.63, the Koszul complex on the regular sequence x_1, \ldots, x_d is a minimal free resolution for $k = R/(x_1, \ldots, x_n)$, so $\operatorname{pdim}_R k = n$. But $\beta_i(M) = \operatorname{dim}_k \operatorname{Tor}_R^i(M, k)$ by Theorem 3.60, and since $\operatorname{Tor}_R^i(M, k) = 0$ for all $i > n = \operatorname{pdim}_R(k)$, $\operatorname{pdim}_R(M) \leq n$.

3.5 Regular rings

Regular rings are the nicest possible kinds of rings. A **regular local ring** (R, \mathfrak{m}, k) is a finite dimensional Noetherian ring of dimension d whose maximal ideal \mathfrak{m} is generated by d elements. When we discussed height and dimension, we saw that this is in fact the smallest possible value for the minimal number of generators of \mathfrak{m} ; in general, $\mu(\mathfrak{m}) \geqslant d$. We are now ready to give a completely homological characterization of regular local rings. This characterization, first proved by Auslander and Buchsbaum and independently by Serre, solved a famous open problem called the Localization Problem.

Problem 3.65 (Localization Problem). If R is a regular local ring, must R_P be regular for every prime P in R?

This is asking if being regular is a local property. A positive answer allows for a simple global definition of regularity:

Definition 3.66. A ring R is **regular** if R_P is a regular local ring for all prime ideals P.

Before we can get to this famous homological characterization of regular local rings, and the solution to the localization problem, we will need to sharpen our tools a bit.

Theorem 3.67 (Serre). Let (R, \mathfrak{m}, k) be a Noetherian local ring. Moreover, if $\mu(\mathfrak{m}) = s$, then

$$\dim_k(\operatorname{Tor}_i^R(k,k)) \geqslant {s \choose i}.$$

Replacing k by M in the previous result leads to a famous open question.

Conjecture 3.68 (Buchsbaum—Eisenbud, Horrocks). Let (R, \mathfrak{m}, k) be a Noetherian local ring of dimension d and M a finitely generated Artinian R-module of finite projective dimension. Then

$$\beta_i(M) = \dim_k(\operatorname{Tor}_i^R(M, k)) \geqslant \binom{d}{i}.$$

While this remains an open question, there is much evidence to support it. For example, the conjecture predicts that

$$\sum_{i} \beta_{i}(M) \geqslant \sum_{i} {d \choose i} = 2^{d}.$$

This is known as the Total Rank Conjecture, and it was recently shown by Walker in almost all cases.

Theorem 3.69 (Walker, 2017). Let (R, \mathfrak{m}, k) be a Noetherian local ring of dimension d and characteristic not 2, $M \neq 0$ a finitely generated R-module of finite projective dimension, and $c = \operatorname{ht}(\operatorname{ann}(M))$. Then

$$\sum_{i} \beta_i(M) \geqslant 2^c.$$

The famous homological characterization of regular rings that solved the localization problem is the following:

Theorem 3.70 (Auslander–Buchsbaum, Serre). Let (R, \mathfrak{m}, k) be a Noetherian local ring of dimension d. The following are equivalent:

- a) The residue field k has finite projective dimension.
- b) Every finitely generated R-module has finite projective dimension.
- c) The maximal ideal \mathfrak{m} is generated by a regular sequence.
- d) The maximal ideal \mathfrak{m} is generated by d elements.

Proof. The implication $b \implies a$ is obvious: just take M = k. The proof of $a \implies b$ is essentially the same as Hilbert's Syzygy Theorem: $\beta_i(M) = \dim_k \operatorname{Tor}_i^k(M,k)$ for all i, and $\operatorname{Tor}_i^k(M,k) = 0$ for all $i > \operatorname{pdim}_R(k)$.

If \mathfrak{m} is generated by a regular sequence, then the Koszul complex on that regular sequence is a minimal free resolution of k, by Corollary 3.63, so k has projective dimension d. This is $c \implies a$.

Let's now show that $\mathbf{d} \implies \mathbf{c}$. Set $\mathfrak{m} = (x_1, \dots, x_d)$. In fact, we will show something stronger: that $(0), (x_1), (x_1, x_2), \dots, (x_1, \dots, x_d)$ are distinct prime ideals in R. Notice in particular that this implies that x_1, \dots, x_d form a regular sequence.

If d = 0, then $\mathfrak{m} = (\{\}) = (0)$, and there is nothing to prove. We proceed by induction on d, assuming that d > 0 and that we have shown that whenever \mathfrak{m} is generated by d - 1 elements, x_1, \ldots, x_{d-1} , the ideals $(0), (x_1), (x_1, x_2), \ldots, (x_1, \ldots, x_{d-1})$ are distinct prime ideals in R.

When d > 0, **m** is not a minimal prime. By Prime Avoidance,

$$\mathfrak{m} \not\subseteq \bigcup_{P \in Min(R)} P,$$

and using Theorem B.3 we can find an element

$$y_1 = x_1 + r_2 x_2 + \dots + r_d x_d \notin \bigcup_{P \in Min(R)} P.$$

Now we can replace x_1 by y_1 , since $\mathfrak{m} = (y_1, x_2, \ldots, x_d)$, so we can assume that x_1 is not in any minimal prime. By Krull's Height Theorem 3.13, $\operatorname{ht}(x_1) \leq 1$, so $\dim(R/(x_1)) = \operatorname{ht}(\mathfrak{m}/(x_1)) \geq d-1$. By construction, $\mathfrak{m}/(x_1)$ is generated by d-1 elements, so again by Krull's Height Theorem, $\dim(R/(x_1)) = \operatorname{ht}(\mathfrak{m}/(x_1)) \leq d-1$. We conclude that $\dim(R/(x_1)) = d-1$. By induction hypothesis, $(x_1)/(x_1), \ldots, (x_1, \ldots, x_d)/(x_1)$ are distinct prime ideals in $R/(x_1)$. Therefore, $(x_1), (x_1, x_2), \ldots, (x_1, \ldots, x_d)$ are distinct prime ideals in R.

Now we claim that R is a domain, which will show that $(0) \subsetneq (x_1)$ is also a prime ideal. First, note that x_1 is not contained in any minimal prime, but (x_1) is a prime ideal, so there exists some minimal prime $P \subsetneq (x_1)$. Given any $y \in P \subseteq (x_1)$, we can write $y = rx_1$ for some r. By constrution, $x_1 \notin P$, so we must have $r \in P$. But we just showed that every element in P is of the form rx_1 , so $P = x_1P$. By NAK, P = (0). We conclude that R is a domain, and this finishes the proof of $d \implies c$.

Finally, all that's left to show is a \implies d. We claim that $\operatorname{pdim}_R(k) < \infty$ implies $\operatorname{pdim}_R(k) \leq \operatorname{dim}(R) = d$. If the claim holds, then Theorem 3.67 and Theorem 3.60 say that

$$\beta_i(k) = \dim_k(\operatorname{Tor}_i^R(k,k)) \geqslant {\mu(\mathfrak{m}) \choose i}$$

for all i. Since $\beta_i(k) = 0$ for all $i > \operatorname{pdim}_R(k)$, we must have

$$\mu(\mathfrak{m}) \leqslant \operatorname{pdim}_{R}(k) \leqslant \dim(R) = d.$$

But $\operatorname{ht}(\mathfrak{m}) = \dim(R) = d$, so by Theorem 3.13, $\mu(\mathfrak{m}) \leqslant d$. We conclude that \mathfrak{m} is generated by exactly d elements, which is precisely d. So all we have left to do is to prove the claim that $\operatorname{pdim}_R(k) < \infty$ implies $\operatorname{pdim}_R(k) \leqslant \dim(R) = d$.

By contradiction, suppose $\operatorname{pdim}_R(k) > d$ but $\operatorname{pdim}_R(k) < \infty$. Choose a maximal regular sequence $y_1, \ldots, y_t \in \mathfrak{m}$. By Theorem 3.47, $t \leq d$.

Since our regular sequence y_1, \ldots, y_t was chosen to be maximal inside \mathfrak{m} , every element in \mathfrak{m} is a zerodivisor on $R/(y_1, \ldots, y_t)$, or else we could increase our regular sequence. So \mathfrak{m} is contained in the union of the zerodivisors on $R/(y_1, \ldots, y_t)$, which by Theorem 1.37 is the same as the union of the associated primes of $R/(y_1, \ldots, y_t)$. By Prime Avoidance, \mathfrak{m} must be contained in some associated prime of $R/(y_1, \ldots, y_t)$. But \mathfrak{m} is maximal, so \mathfrak{m} is an associated prime of $R/(y_1, \ldots, y_t)$. Equivalently, $k = R/\mathfrak{m}$ embeds into $R/(y_1, \ldots, y_t)$. This gives us some short exact sequence

$$0 \longrightarrow k \longrightarrow R/(y_1, \dots, y_t) \longrightarrow M \longrightarrow 0.$$

The corresponding long exact sequence for Tor is

$$\cdots \longrightarrow \operatorname{Tor}_{i+1}^R(M,k) \longrightarrow \operatorname{Tor}_i^R(k,k) \longrightarrow \operatorname{Tor}_i^R(R/(y_1,\ldots,y_t),k) \longrightarrow \cdots$$

We know $t = \operatorname{pdim}_R(R/(y_1, \dots, y_t))$, by Corollary 3.63, so $\operatorname{Tor}_i^R(R/(y_1, \dots, y_t), k) = 0$ for i > t. But $t \leq d < \operatorname{pdim}_R(k)$, so in particular $\operatorname{Tor}_i^R(R/(y_1, \dots, y_t), k) = 0$ for $i = \operatorname{pdim}_R(k)$.

Moreover, Corollary 3.61 says that $\operatorname{pdim}_R(M) \leq \operatorname{pdim}_R(k)$ for any finitely generated R-module M, so in particular $\operatorname{Tor}_{i+1}^R(M,k) = 0$ for $i = \operatorname{pdim}_R(k)$. But this is impossible: our long exact sequence would then have $\operatorname{Tor}_{\operatorname{pdim}_R(k)}^R(k,k) \neq 0$ sandwiched between two zero modules.

Our proof also showed the following:

Corollary 3.71. Every regular local ring is a domain.

Corollary 3.72. Every regular local ring (R, \mathfrak{m}, k) has $\operatorname{pdim}_{R}(k) = \dim R$.

Now we can solve the localization problem very easily.

Exercise 6. If R is a regular local ring, then R_P is a regular local ring for every prime P.

Remark 3.73. If we want to show that a particular ring (not necessarily local) is regular, it is sufficient to show that $R_{\mathfrak{m}}$ is a regular local ring for every maximal ideal \mathfrak{m} — this will imply that R_P is a localization of a regular local ring for every prime P.

Exercise 7. Show that every principal ideal domain is a regular ring.

We have shown that finitely generated graded modules over a polynomial ring $k[x_1, \ldots, x_d]$ have finite projective dimension, but this is not quite enough to conclude that polynomial rings are regular.

Theorem 3.74. Every polynomial ring $R = k[x_1, \ldots, x_d]$ over a field k is a regular ring.

We have seen that regular rings are very nice. Modulo some technical conditions, it turns out that *every* noetherian local ring is a quotient of a regular ring. More precisely, every *complete* local ring is a quotient of a regular local ring. If a local ring R is not complete, we can always take its *completion*, which is now a quotient of a regular local ring. This very important fact is the Cohen Structure Theorem.¹ When our local ring R contains a field k, the Cohen Structure Theorem actually says that R is a quotient of $k[x_1, \ldots, x_d]$ for some d.

The nice things we proved about regular local rings have analogues in any regular ring, not necessarily local. For example, when R is a regular ring of dimension d, then it is still true that every finitely generated R-module has projective dimension at most d, even if R is not local; if R is not regular, then it has finitely generated modules with infinite projective dimension.

3.6 Depth

We now get back to regular sequences to talk about their length.

Definition 3.75. Let I be an ideal in a ring R and M be an R-module. The I-depth of M is the maximal length of a regular sequence on M consisting of elements in I, denoted depth_I(M). When (R, \mathfrak{m}) is a local ring, we write depth(M) for depth_{\mathfrak{m}}(M), and call it the depth of M.

While it is not yet clear that all maximal regular sequences on M inside an ideal I have the same length, we already have an upper bound for depth.

Remark 3.76. If x_1, \ldots, x_n is a regular sequence on R inside I, we saw in Theorem 3.47 that $\operatorname{ht}(x_1, \ldots, x_n) = n$, so $\operatorname{depth}_I(R) \leq \operatorname{ht}(I)$. In particular, $\operatorname{depth}(R) \leq \operatorname{dim}(R)$.

¹In fact, this amazing theorem was I. S. Cohen's PhD thesis!

We can construct maximal regular sequences explicitly.

Construction 3.77. Let R be a Noetherian ring, I be an ideal in R, and $M \neq 0$ be a finitely generated R-module. To construct a regular sequence on M inside I, we start by finding a regular element on M inside I. Either I is contained in some associated prime of M, in which case every element in I is a zerodivisor on M, or there exists an element x_1 in I not in any associated prime of M, by Prime Avoidance. Such an element is regular on M, since the union of the associated primes of M is precisely the set of zerodiviors, by Theorem 1.37.

Now we repeat the process: either I is contained in some associated prime of $M/(x_1)M$, in which case there are no regular elements on $M/(x_1)M$ inside I, or we can find $x_2 \in I$ not in any associated prime of $M/(x_1)M$, which is necessarily regular on $M/(x_1)M$. At each step, $(x_1, \ldots, x_i)M \subsetneq (x_1, \ldots, x_{i+1})M$, and since M is Noetherian, the process must stop.

In fact, we get such an increasing sequence given any regular sequence on M inside of I, so all such sequences are finite. We will now show that all maximal regular sequences on M inside I have the same length, which proves that $\operatorname{depth}_{I}(M)$ is finite. First, we need a few lemmas.

Lemma 3.78. Let R be a Noetherian ring, I be an ideal in R, and $M \neq 0$ be a finitely generated R-module. There exists $r \in I$ which is regular on M if and only if $I \not\subseteq P$ for all $P \in \mathrm{Ass}(M)$. In particular, if (R, \mathfrak{m}) is a noetherian local ring, $\mathfrak{m} \in \mathrm{Ass}(M)$ if and only if there are no regular elements on M.

Proof. If $r \in I$ is regular on M, then r is not a zerodivisor on M, so r is not in the union of the associated primes of M, by Theorem 1.37. As a consequence, I cannot be contained in any associated prime of M.

Conversely, recall that M has finitely many associated primes, by Theorem 1.42. If I is not contained in any associated prime of M, then by Prime Avoidance B.1 it also cannot be contained in the union of the associated primes of M. Recall Theorem 1.37, which says that the union of the associated primes is the set of zero divisors. We conclude that I contains some regular element on M.

The final statement now follows once we note that the fact that \mathfrak{m} is a maximal ideal implies that \mathfrak{m} in $\mathrm{Ass}(M)$ if and only if \mathfrak{m} is contained in some associated prime of M.

Lemma 3.79. Let R be a noetherian ring and M and N be finitely generated R-modules. If $a \in \operatorname{ann}_R(M)$, then $a \operatorname{Ext}_R^i(M,N) = 0$ for all i. Moreover, if $b \in \operatorname{ann}_R(N)$, then $b \operatorname{Ext}_R^i(M,N) = 0$ for all i.

Proof. When i = 0, we want to show that $a \in \operatorname{ann}(\operatorname{Hom}_R(M, N))$ and $b \in \operatorname{ann}(\operatorname{Hom}_R(M, N))$. Given any $f \in \operatorname{Hom}_R(M, N)$ and any $m \in M$,

$$af(m) = f(am) = f(0) = 0,$$

so af = 0. Moreover, b kills every element in N, so bf = 0. Now let $P \longrightarrow M$ be a projective resolution on M, and $N \longrightarrow E$ be an injective resolution of N. Then

$$\operatorname{Ext}_R^i(M,N) = \operatorname{H}^i \left(\ 0 \longrightarrow \operatorname{Hom}_R(P_0,N) \longrightarrow \operatorname{Hom}_R(P_1,N) \longrightarrow \operatorname{Hom}_R(P_2,N) \longrightarrow \cdots \right)$$
$$= \operatorname{H}^i \left(\ 0 \longrightarrow \operatorname{Hom}_R(M,E^0) \longrightarrow \operatorname{Hom}_R(M,E^1) \longrightarrow \operatorname{Hom}_R(M,E^2) \longrightarrow \cdots \right),$$

so $\operatorname{Ext}_R^i(M,N)$ is a subquotient of both $\operatorname{Hom}_R(P_i,N)$ and $\operatorname{Hom}_R(M,E^i)$. We conclude that a and b both kill $\operatorname{Ext}_R^i(M,N)$.

Theorem 3.80. Let R be a Noetherian ring, I be an ideal in R, and $M \neq 0$ be a finitely generated R-module with $M \neq IM$. Then all maximal regular sequences on M inside I have the same length.

Proof. Let $x_1, \ldots, x_n \in I$ and $y_1, \ldots, y_\ell \in I$ both be maximal regular sequences on M, and assume $n \leq \ell$.

When n=0, every element in I is a zerodivisor on M, so $\ell=0$. When n=1, every element in I is a zerodivisor on $M/(x_1)M$, so $I\subseteq P$ for some $P\in \mathrm{Ass}(M/(x_1)M)$. In particular, there exists some $m\in M$, $m\notin (x_1)M$, such that $I\subseteq ((x_1)M:_R m)$, so $Im\in (x_1)M$. In particular, $y_1m=x_1a$ for some $a\in M$. If $a\in (y_1)M$, then we would have $y_1m=x_1a\in (x_1y_1)M$, and since y_1 is regular on M, that would imply $m\in (x_1)M$, which is a contradiction. Thus $a\notin (y_1)M$. Moreover,

$$(x_1)Ia = Ix_1a = Iy_1m = y_1(Im) \subseteq (x_1)(y_1)M,$$

and since x_1 is a regular element on M, we must have $Ia \subseteq (y_1)M$. Therefore, $a \in M$ is an element that both satisfies $a \notin (y_1)M$ and $Ia \subseteq (y_1)M$, so every element in I kills a in $M/(y_1)M$, and is thus a zerodivisor on $M/(y_1)M$. This proves that $\ell = 1$.

We proceed by induction on n. Now assume that n>1 and $\ell>n$. In particular, I contains a regular element on $M/(x_1,\ldots,x_i)$ for all i < n and a regular element on $M/(y_1,\ldots,y_j)$ for all $j<\ell$, so by Prime Avoidance B.1 we can pick $c\in I$ that avoids both all the (finitely many) associated primes of $M/(x_1,\ldots,x_i)M$ for all i < n and $M/(y_1,\ldots,y_i)M$ for all $j < \ell$. In particular, x_1, \ldots, x_{n-1}, c and y_1, \ldots, y_n, c are both regular sequences on M. Now x_n and c are both regular sequences on $M/(x_1,\ldots,x_{n-1})$, so the case n=1 says x_1, \ldots, x_{n-1}, c is also a maximal regular sequence on M. Now by Lemma 3.45, x_1, \ldots, c, x_{n-1} is also a regular sequence on M, since c is also regular on $M/(x_1,\ldots,x_{n-2})$, and so on, until we conclude that c, x_1, \ldots, x_{n-1} is a regular sequence on M. Similarly, c, y_1, \ldots, y_n is a regular sequence on M. Notice in fact that c, x_1, \ldots, x_{n-1} is maximal inside I, or else we could increase its size, move c back to after x_{n-1} , and obtain a contradiction. Therefore, x_1, \ldots, x_{n-1} and c, y_1, \ldots, y_n are both regular sequences on M/(c)M, and x_1, \ldots, x_{n-1} is maximal. But by induction hypothesis, all maximal regular sequences on M/(c)M inside I have the same length, which would say that the length of y_1, \ldots, y_n , n, is at most n-1. This is a contradiction, and we conclude that $\ell = n$.

It turns out that depth can be described in a purely homological way.

Theorem 3.81. Let R be a Noetherian ring and M a finitely generated R-module. Then

$$\operatorname{depth}_{I}(M) = \min\{i \mid \operatorname{Ext}_{R}^{i}(R/I, M) \neq 0\}.$$

Proof. When depth_I(M) = 0, there is no regular sequence on M inside I. By Lemma 3.78, $I \subseteq P$ for some $P \in Ass(M)$. We have an inclusion $R/P \hookrightarrow M$, so consider the composition

$$R/I \twoheadrightarrow R/P \hookrightarrow M$$
.

This is a nonzero map, so $\operatorname{Ext}^0(R/I,M) = \operatorname{Hom}(R/I,M) \neq 0$. On the other hand, if $\operatorname{Hom}_R(R/I,M) = \operatorname{Ext}^0(R/I,M) \neq 0$, there exists a nonzero R-module homomorphism $R/I \longrightarrow M$. But to choose an R-module homomorphism $R/I \longrightarrow M$ is the same as choosing an element in M that is killed by I, so I contains no nonzero divisors on M and $\operatorname{depth}_I(M) = 0$.

We proceed by induction on $\operatorname{depth}_I(M) = n$, assuming we have proved the statement whenever $\operatorname{depth}_I(M) < n$. Suppose that x_1, \ldots, x_n is a maximal regular sequence on M inside I. Then x_2, \ldots, x_n is a maximal regular sequence on M/x_1M , so by induction we know $n-1=\min\{i\mid \operatorname{Ext}_R^i(R/I,M)\neq 0\}$. Applying $\operatorname{Hom}_R(R/I,-)$ to the short exact sequence

$$0 \longrightarrow M \xrightarrow{\cdot x_1} M \longrightarrow M/x_1M \longrightarrow 0$$

we get a long exact sequence

$$\cdots \longrightarrow \operatorname{Ext}_R^{i-1}(R/I, M/x_1M) \longrightarrow \operatorname{Ext}_R^i(R/I, M) \xrightarrow{x_1} \operatorname{Ext}_R^i(R/I, M) \longrightarrow \cdots$$

We know that $\operatorname{Ext}_R^{n-1}(R/I, M/x_1M) \neq 0$ and that $\operatorname{Ext}_R^i(R/I, M/x_1M) = 0$ for all i < n-1. Therefore, whenever i < n-1,

$$\operatorname{Ext}_R^i(R/I,M) \xrightarrow{x_1} \operatorname{Ext}_R^i(R/I,M)$$

is an isomorphism. However, $x_1 \in I = \operatorname{ann}(R/I)$, so $\operatorname{ann}(R/I) \subseteq \operatorname{ann}(\operatorname{Ext}_R^i(R/I, M))$ by Lemma 3.79. Therefore, $\operatorname{Ext}_R^i(R/I, M) = 0$ for all i < n-1. Moreover, multiplication by x_1 is the zero map on $\operatorname{Ext}_R^i(R/I, M)$ for any i, also by Lemma 3.79. Finally, we have an exact sequence

$$\operatorname{Ext}_R^{n-1}(R/I,M) \xrightarrow{x_1} \operatorname{Ext}_R^{n-1}(R/I,M) \longrightarrow \operatorname{Ext}_R^{n-1}(R/I,M/x_1M) \longrightarrow \cdots$$

where the multiplication by x_1 maps are 0, so our exact sequence is

$$0 \longrightarrow \operatorname{Ext}_R^{n-1}(R/I, M) \xrightarrow{0} \operatorname{Ext}_R^{n-1}(R/I, M) \longrightarrow \underbrace{\operatorname{Ext}_R^{n-1}(R/I, M/x_1M)}_{\neq 0} \longrightarrow \operatorname{Ext}_R^n(R/I, M) \xrightarrow{0} \cdots$$

In particular, $\operatorname{Ext}^{n-1}(R/I,M)=0$ and $\operatorname{Ext}^n(R/I,M)\neq 0$. We conclude that

$$\operatorname{depth}_{I}(M) = n = \min\{i \mid \operatorname{Ext}_{R}^{i}(R/I, M) \neq 0\}.$$

For yet another homological characterization of depth, we turn to Koszul homology.

Theorem 3.82 (Depth sensitivity of the Koszul complex). Let R be a Noetherian ring and M be finitely generated R-module. Given any $\underline{x} = x_1, \ldots, x_n$ such that $(\underline{x})M \neq M$,

$$depth_{(\underline{x})}(M) = \max\{r \mid H^{i}(\underline{x}; M) = 0 \text{ for all } i > n - r\}.$$

So we can measure $depth_I(M)$ by looking at the first nonzero Koszul homology we see when we start counting from the top.

$$K(\underline{x}; M)$$
 $0 \to M \to \cdots \to M^{\binom{n}{n-r+1}} \to M^{\binom{n}{n-r}} \to \cdots \to M \to 0$
 $H(\underline{x}; M)$ $0 \to 0 \neq 0$

Proof. We are going to show that if $I = (\underline{x})$ contains a regular sequence y_1, \ldots, y_m on M, then $H_{n-i+1}(\underline{x}; M) = 0$ for all $i = 1, \ldots, m$, and $H_{n-m}(\underline{x}; M) \cong \operatorname{Ext}_R^m(R/I, M)$. This will prove the theorem, since depth is the largest possible m we could take, and Theorem 3.81 says $\operatorname{Ext}_R^{\operatorname{depth}}(R/I, M) \neq 0$.

We proceed by induction on m. When m = 0, Proposition 3.35 c says that

$$H_n(\underline{x}; M) \cong (0:_M I) \cong Hom_R(R/I, M),$$

and we are done. When m > 0, the short exact sequence

$$0 \longrightarrow M \xrightarrow{y_1} M \longrightarrow M/(y_1)M \longrightarrow 0$$

induces a long exact sequence in koszul homology (see Proposition 3.35 h)

$$\cdots \longrightarrow H_{i+1}(\underline{x}; M/(y_1)M) \longrightarrow H_i(\underline{x}; M) \xrightarrow{y_1} H_i(\underline{x}; M) \longrightarrow H_i(\underline{x}; M/(y_1)M) \longrightarrow \cdots$$

Now by Proposition 3.35 e, I kills $H_i(\underline{x}; M)$, so the multiplication by y_1 map is zero in the long exact sequence above, which must then break into short exact sequences

$$0 \longrightarrow H_i(\underline{x}; M) \longrightarrow H_i(\underline{x}; M/(y_1)M) \longrightarrow H_{i-1}(\underline{x}; M) \longrightarrow 0.$$

We have an exact sequence y_2, \ldots, y_m of m-1 elements on M inside (\underline{x}) , so by induction hypothesis

$$H_{n-i+1}(\underline{x}; M/(y_1)M) = 0 \text{ for all } i = 1, ..., m-1$$

and

$$H_{n-m+1}(\underline{x}; M/(y_1)M) \cong \operatorname{Ext}_R^{m-1}(R/I, M/y_1M).$$

Therefore, for all $i \leq m-1$,

$$0 \longrightarrow H_{n-i+1}(\underline{x}; M) \longrightarrow \underbrace{H_{n-i+1}(\underline{x}; M/(y_1)M)}_{0} \longrightarrow H_{n-i}(\underline{x}; M) \longrightarrow 0.$$

This implies $H_{n-i+1}(\underline{x}; M) = 0$ for all i = 1, ..., m. Moreover, we have a short exact sequence

$$0 \longrightarrow \underbrace{\mathrm{H}_{n-m+1}(\underline{x}; M)}_{0} \longrightarrow \mathrm{H}_{n-m+1}(\underline{x}; M/(y_{1})M) \longrightarrow \mathrm{H}_{n-m}(\underline{x}; M) \longrightarrow 0.$$

SO

$$H_{n-m}(\underline{x}; M) \cong H_{n-m+1}(\underline{x}; M/(y_1)M) \cong \operatorname{Ext}_R^{m-1}(R/I, M/y_1M).$$

Finally, we claim that $\operatorname{Ext}_R^m(R/I,M) \cong \operatorname{Ext}_R^{m-1}(R/I,M/(y_1)M)$. For that purpose, consider the long exact sequence on $\operatorname{Ext}_R^i(R/I,-)$ induced by the short exact sequence

$$0 \longrightarrow M \xrightarrow{y_1} M \longrightarrow M/(y_1)M \longrightarrow 0,$$

which looks like

$$\cdots \longrightarrow \operatorname{Ext}_R^i(R/I, M) \xrightarrow{y_1} \operatorname{Ext}_R^i(R/I, M) \longrightarrow \operatorname{Ext}_R^i(R/I, M/(y_1)M) \longrightarrow \cdots$$

We do have a regular sequence on M of length m inside I, so depth_I $(M) \ge m$. Therefore, $\operatorname{Ext}_R^{m-1}(R/I,M) = 0$ by Theorem 3.81. By Lemma 3.79, multiplication by y_1 on $\operatorname{Ext}_R^i(R/I,M)$ is the zero map, since $y_1 \in I$, so we get an exact sequence

$$0 \longrightarrow \operatorname{Ext}_R^{m-1}(R/I, M/(y_1)M) \longrightarrow \operatorname{Ext}_R^m(R/I, M) \longrightarrow 0.$$

Therefore,

$$\operatorname{Ext}_{R}^{m}(R/I, M) \cong \operatorname{Ext}_{R}^{m-1}(R/I, M/(y_{1})M),$$

which finishes our proof.

Remark 3.83. If $I = (x_1, ..., x_n)$ and depth_I(M) = n, then by Theorem 3.82 the Koszul complex $K(\underline{x}; M)$ must be exact. This does not necessarily say that \underline{x} is a regular sequence, only that there exists some regular sequence on M of length n inside I. However, that implication does hold in the local or graded setting, by Theorem 3.43.

We now have all the tools we need to prove a very useful formula relating depth and projective dimension.

Theorem 3.84 (Auslander—Buchsbaum Formula). Let (R, \mathfrak{m}, k) be a Noetherian local ring and $M \neq 0$ a finitely generated R-module of finite projective dimension. Then

$$\operatorname{depth}(M) + \operatorname{pdim}_{R}(M) = \operatorname{depth}(R).$$

Proof. Suppose depth(R) = 0. In that case, the claim is that $\operatorname{pdim}_R(M) = \operatorname{depth}(M) = 0$. First, note that the fact that $\operatorname{depth}(R) = 0$ implies immediately that $\mathfrak{m} \in \operatorname{Ass}(R)$, by Lemma 3.78, so \mathfrak{m} kills some nonzero $r \in R$. Consider a minimal free resolution for M, say

$$0 \longrightarrow F_n \xrightarrow{\varphi_n} F_{n-1} \xrightarrow{\varphi_{n-1}} \cdots \longrightarrow F_1 \xrightarrow{\varphi_1} F_0 \xrightarrow{\varphi_0} M \longrightarrow 0.$$

Suppose n > 0, so that $\varphi_n \neq 0$. By minimality, $\varphi_n(F_n) \subseteq \mathfrak{m}F_{n-1}$, so $\varphi_n(r, 0, \dots, 0) = r\varphi_n(1, 0, \dots, 0) \in r\mathfrak{m} = 0$, so φ_n is not injective. This is a contradiction, so we must have n = 0, and M is free, say $M \cong R^n$. Therefore, $\operatorname{pdim}_R(M) = 0$ and $\operatorname{depth}(M) = \operatorname{depth}(R^n) = \operatorname{depth}(R) = 0$.

Now assume that $\operatorname{depth}(M) = 0$. Set $t := \operatorname{depth}(R)$, and fix a maximal regular sequence $x_1, \ldots, x_t \in \mathfrak{m}$. By Corollary 3.63, $\operatorname{pdim}_R(R/(x_1, \ldots, x_t)) = t$. Our goal is to show that that $n := \operatorname{pdim}_R(M) = \operatorname{depth}(R) = t$. Notice that $\operatorname{Tor}_i^R(R/(x_1, \ldots, x_t), M)$ can be computed via minimal free resolutions for either M or $R/(x_1, \ldots, x_t)$, so it vanishes for $i > \min\{t, n\}$. We are going to show that both $\operatorname{Tor}_t^R(R/(x_1, \ldots, x_t), M) \neq 0$ and $\operatorname{Tor}_n^R(R/(x_1, \ldots, x_t), M) \neq 0$, which proves that $\operatorname{depth}(R) = t = n = \operatorname{pdim}_R(M)$.

The Koszul complex is a minimal free resolution for $R/(x_1, \ldots, x_t)$, by Corollary 3.63, so the last map in the minimal free resolution looks like

$$0 \longrightarrow R \xrightarrow{\left(x_1 - x_2 \quad x_3 \quad \cdots \quad (-1)^{n+1} x_n\right)^T} R^t$$

so applying $-\otimes_R M$ gives

$$0 \longrightarrow M \xrightarrow{\left(x_1 - x_2 \ x_3 \ \cdots \ (-1)^{n+1} x_n\right)^T} M^t.$$

Therefore,

$$\operatorname{Tor}_t^R(R/(x_1,\ldots,x_t),M) = \bigcap_{i=1}^t \ker(M \xrightarrow{\pm x_i} M).$$

Our assumption that depth(M) = 0 says that there are no regular elements on M, so by Lemma 3.78, $\mathfrak{m} \in \mathrm{Ass}(M)$. Therefore, there exists a nonzero element $m \in M$ such that $\mathrm{ann}(m) = \mathfrak{m} \supseteq (x_1, \ldots, x_t)$, so $\mathrm{Tor}_t^R(R/(x_1, \ldots, x_t), M) \neq 0$.

 $\operatorname{ann}(m) = \mathfrak{m} \supseteq (x_1, \dots, x_t)$, so $\operatorname{Tor}_t^R(R/(x_1, \dots, x_t), M) \neq 0$. On the other hand, to compute $\operatorname{Tor}_n^R(R/(x_1, \dots, x_t), M)$ we can take a minimal free resolution of M, say

$$0 \longrightarrow R^{\beta_n} \xrightarrow{\varphi_n} R^{\beta_{n-1}} \xrightarrow{\varphi_{n-1}} \cdots \longrightarrow R^{\beta_1} \xrightarrow{\varphi_1} R^{\beta_0} \xrightarrow{\varphi_0} M \longrightarrow 0,$$

and apply $-\otimes_R M$, so that $\operatorname{Tor}_n^R(R/(x_1,\ldots,x_t),M)$ is the kernel of

$$(R/(x_1,\ldots,x_t))^{\beta_n} \longrightarrow (R/(x_1,\ldots,x_t))^{\beta_{n-1}}.$$

Our assumption that x_1, \ldots, x_t is a maximal regular sequence on R implies that any other element in R is a zerodivisor on $R/(x_1, \ldots, x_t)$, and depth $(R/(x_1, \ldots, x_t)) = 0$. In particular, $\mathfrak{m} \in \operatorname{Ass}(R/(x_1, \ldots, x_t))$, so there exists some $r \notin (x_1, \ldots, x_t)$ such that $\mathfrak{m} r \subseteq (x_1, \ldots, x_t)$. The map

$$(R/(x_1,\ldots,x_t))^{\beta_n} \longrightarrow (R/(x_1,\ldots,x_t))^{\beta_{n-1}}$$

is given by multiplication by a matrix whose entries are all in \mathfrak{m} , so its kernel is nonzero, meaning $\operatorname{Tor}_n^R(R/(x_1,\ldots,x_t),M)\neq 0$.

So we have shown the theorem holds in two situations: when $\operatorname{depth}(R) = 0$ and when $\operatorname{depth}(M) = 0$. So now we assume that both $t := \operatorname{depth}(R) > 0$ and $n := \operatorname{depth}(M) > 0$, and assume we have shown the theorem holds when $\operatorname{depth}(R) \leq t - 1$ and $\operatorname{depth}(M) \leq n - 1$.

By Prime Avoidance, Theorem B.1, we can find $r \in \mathfrak{m}$ that avoids both the associated primes of M and R, so r is both regular on M and on R. In particular, $\operatorname{pdim}_R(R/(x)) = 1$, by Corollary 3.63, so $\operatorname{Tor}_i^R(R/(x), M) = 0$ for all $i \geq 2$. Let

$$0 \longrightarrow R^{\beta_n} \xrightarrow{\varphi_n} R^{\beta_{n-1}} \xrightarrow{\varphi_{n-1}} \cdots \longrightarrow R^{\beta_1} \xrightarrow{\varphi_1} R^{\beta_0} \xrightarrow{\varphi_0} M \longrightarrow 0$$

be a minimal free resolution for M. In particular, if we choose basis for each R^{β_i} , the entries in the matrices representing φ_i are all in \mathfrak{m} . Applying $-\otimes_R R/(x)$, we get a complex

$$0 \longrightarrow (R/(x))^{\beta_n} \longrightarrow (R/(x))^{\beta_{n-1}} \longrightarrow \cdots \longrightarrow (R/(x))^{\beta_0} \longrightarrow M/xM \longrightarrow 0$$

which is exact at $M \otimes_R R/(x) \cong M/xM$, since tensor is right exact, and whose homology is otherwise given by $\operatorname{Tor}_i^R(R/(x), M)$. In particular, our complex is exact for all $i \geq 2$, since we have seen that $\operatorname{Tor}_i^R(R/(x), M) = 0$ for all $i \geq 2$. The only remaining possibly interesting homology is given by

$$\operatorname{Tor}_{1}^{R}(R/(x), M) = \operatorname{H}_{1}(M \otimes (0 \to R \xrightarrow{x} R \to 0)) = \operatorname{H}_{1}(0 \to M \xrightarrow{x} M \to 0) = (0 :_{M} x).$$

By assumption, x is regular on M, so $\operatorname{Tor}_1^R(R/(x), M) = (0:_M x) = 0$. So the complex above is exact, and thus a free resolution for M/xM over R/(x). In fact, the maps in this is free

resolution for M/xM were obtained by tensoring φ with R/(x), so we can obtain matrices representing each map by taking the matrix representing φ_i and setting all the entries in (x) equal to 0. In particular, all the entries are still in $\mathfrak{m}/(x)$, and our resolution for M/xM over R/(x) is minimal. This shows that $\operatorname{pdim}_{R/(x)}(M/xM) = \operatorname{pdim}_{R}(M)$.

Now notice that we picked x to be regular on M, so that $\operatorname{depth}(M/xM) = \operatorname{depth}(M) - 1$. Similarly, x is regular on R, so $\operatorname{depth}(R/(x)) = \operatorname{depth}(R) - 1$. Using our assumption, we conclude that

$$\begin{split} \operatorname{depth}(M/x) + \operatorname{pdim}_{R/(x)}(M/xM) &= \operatorname{depth}(R/(x)) \\ \Leftrightarrow \operatorname{depth}(M) - 1 + \operatorname{pdim}_R(M) &= \operatorname{depth}(R) - 1 \\ \Leftrightarrow \operatorname{depth}(M) + \operatorname{pdim}_R(M) &= \operatorname{depth}(R). \end{split}$$

This formula is very useful. For example, when doing explicit computations, it is often easier to compute a minimal free resolution for M than to compute its depth. If we happen to know depth(R), one can deduce depth(M) by computing $\operatorname{pdim}_{R}(M)$.

Remark 3.85. One of the consequences of Theorem 3.84 is that if a finitely generated R-module M has finite projective dimension, then $\operatorname{pdim}_R(M) \leq \operatorname{depth}(R) \leq \operatorname{dim} R$.

We close this section with an easy fact about depth.

Lemma 3.86. Let (R, \mathfrak{m}) be a Noetherian local ring and M a finitely generated R-module. Given any ideal I in R, $\operatorname{depth}_{I}(M) = \operatorname{depth}_{\sqrt{I}}(M)$.

Proof. On the one hand, $I \subseteq \sqrt{I}$, so $\operatorname{depth}_{I}(M) \leqslant \operatorname{depth}_{\sqrt{I}}(M)$. On the other hand, if x_1, \ldots, x_n is a maximal regular sequence on M inside \sqrt{I} , then there exists $a_1, \ldots, a_n > 0$ such that $x_1^{a_1}, \ldots, x_n^{a_n} \in I$, but by Lemma 3.46 $x_1^{a_1}, \ldots, x_n^{a_n}$ is a regular sequence on M. \square

3.7 Cohen-Macaulay rings

Life is really worth living in a Noetherian ring R when all the local rings have the property that every system of parameters is an R-sequence. Such a ring is called Cohen-Macaulay (C-M for short).

(Mel Hochster, page 887 of [Hoc78])

Cohen-Macaulay rings, named after Irvin Cohen and Francis Macaulay, two big influences in the early days of commutative algebra, are by some measure the largest class of nice rings commutative algebraists study. They are on the border of being just nice enough to make life is easier, and just broad enough to contain many interesting examples. One of the main reference books in any commutative algebraist's shelf is dedicated to Cohen-Macaulay rings specifically [BH93]. In this section, we will see some of the reasons why life really is worth living in a Cohen-Macaulay ring.

Given a local ring R,

$$\operatorname{depth}(R) \leqslant \dim(R) \leqslant \operatorname{embdim}(R).$$

When the second inequality is an equality, we have a regular ring. When the first inequality is an equality, our ring is Cohen-Macaulay.

Definition 3.87. A local Noetherian ring R is **Cohen-Macaulay** if depth $(R) = \dim(R)$. More generally, an R-module M is **Cohen-Macaulay** if depth $(M) = \dim(M)$. A Noetherian ring R is if $R_{\mathfrak{m}}$ is Cohen-Macaulay for every maximal ideal \mathfrak{m} .

Example 3.88.

- a) Every regular ring is Cohen-Macaulay, since our homological characterization of regular local rings, Theorem 3.70, says that the maximal ideal is generated by a regular sequence of dimension many elements.
- b) Every Artinian ring is Cohen-Macaulay, since $\dim(R) \ge \operatorname{depth}(R)$, so $\dim(R) = 0$ automatically implies $\operatorname{depth}(R) = 0$.
- c) Every 1-dimensional domain is Cohen-Macaulay, since any nonzero nonunit is a regular element.
- d) The ring $k[x]/(x^2)$ is Cohen-Macaulay because it has dimension 0, but it not regular, since 0-dimensional regular rings must be fields.
- e) The ring R = k[x, y, z]/(xy, xz) is not Cohen-Macaulay, because it is not equidimensional, which as we will see is a property shared by all Cohen-Macaulay rings.

Many rings with *nice* singularities are Cohen-Macaulay. For example, Hochster and Roberts famously showed [HR74] that rings of invariants of any finite group G over a field k of characteristic not dividing |G| are Cohen-Macaulay. Their proof used prime characteristic techniques, introducing what is now a very important class of characteristic p singularities, and are essentially homological in nature.

Remark 3.89. Given a Noetherian local ring (R, \mathfrak{m}) , we can decide whether R is Cohen-Macaulay by computing $\dim(R)$ and $\operatorname{depth}(R)$. By Theorem 3.81, we can compute $\operatorname{depth}(R)$ by finding the smallest i such that $\operatorname{Ext}^i_R(R/\mathfrak{m}, R) \neq 0$. On the other hand, if R can easily be seen to be regular, then we can immediately conclude R is Cohen-Macaulay. The easiest way to decide whether a given regular local ring is regular is by finding $\mu(\mathfrak{m})$ and to compare its size to $\dim(R)$.

To compute the depth of a finitely generated R-module M over a Cohen-Macaulay local ring (R, \mathfrak{m}) , we can start by computing a minimal free resolution of M. If $\operatorname{pdim}_R(M) < \infty$, then the Auslander–Buchsbaum formula 3.84 tells us that

$$\operatorname{depth}(M) = \operatorname{depth}(R) - \operatorname{pdim}_R(M) = \operatorname{dim}(R) - \operatorname{pdim}_R(M).$$

If R is not Cohen-Macaulay, we need to also compute $\operatorname{depth}(R)$, which we can do for example by finding the smallest i such that $\operatorname{Ext}^i - R(R/\mathfrak{m}, R) \neq 0$. If $\operatorname{pdim}_R(M) = \infty$, then Theorem 3.84 does not apply, and we need to explicitly find $\operatorname{depth}(M)$, for example by finding the smallest i such that $\operatorname{Ext}^i_R(R/\mathfrak{m}, M) \neq 0$.

Hochster's quote above pointed us to an equivalent characterization of Cohen-Macaulayness, for which we will need to recall the notion of a system of parameters.

Definition 3.90. A sequence of d elements x_1, \ldots, x_d in a d-dimensional noetherian local ring (R, \mathfrak{m}) is a **system of parameters** or **SOP** if $\sqrt{(x_1, \ldots, x_d)} = \mathfrak{m}$. If k is a field, a sequence of d homogeneous elements x_1, \ldots, x_d in a d-dimensional \mathbb{N} -graded finitely generated k-algebra R, with $R_0 = k$, is a homogeneous system of parameters if $\sqrt{(x_1, \ldots, x_d)} = R_+$.

We say that elements x_1, \ldots, x_t are **parameters** if they are part of a system of parameters; this is a property of the set, not just the elements.

By ??, every local (or graded) ring admits a system of parameters, and these can be useful in characterizing the dimension of a local Noetherian ring, or the height of a prime in a Noetherian ring. Moreover, we can characterize Cohen-Macaulayness in terms of sops.

Theorem 3.91. The following are equivalent for any Notherian local ring (R, \mathfrak{m}) :

- a) R is Cohen-Macaulay.
- b) Some system of parameters in R is a regular sequence on R.
- c) Every system of parameters in R is a regular sequence on R.

Proof. Clearly, $c \implies b \implies a$. Suppose R is Cohen-Macaulay and let $\underline{x} = x_1, \ldots, x_d$ be a system of parameters on R, meaning $\sqrt{(\underline{x})} = \mathfrak{m}$. By Lemma 3.86, $\operatorname{depth}_{(\underline{x})}(R) = \operatorname{depth}_{\mathfrak{m}}(R) = d$. By Theorem 3.82, $K(\underline{x})$ is exact, and by Theorem 3.43, this implies that \underline{x} is a regular sequence.

To prove some other nice properties of Cohen-Macaulay rings, we will need the following technical looking result.

Theorem 3.92. Let (R, \mathfrak{m}) be a Noetherian local ring and M and N finitely generated R-modules. Then $\operatorname{Ext}^i_R(M,N)=0$ for all $i<\operatorname{depth}(N)-\operatorname{dim}(M)$.

Proof. First, we reduce to the case when M = R/P for some prime ideal P. To do that, fix a prime filtration of M, meaning we get an ascending chain of submodules

$$0 = M_0 \subset M_1 \subset M_2 \subset \cdots \subset M_n = M$$

such that $M_i/M_{i-1} \cong R/P_i$ for some primes P. Remember that such a prime filtration exists, by ??. First, we claim that we can reduce the problem to showing $\operatorname{Ext}_R^j(R/P_i, N) = 0$ for all $j < \operatorname{depth}(N) - \dim(M)$ and all i.

Break this filtration into short exact sequences

$$0 \longrightarrow M_{i-1} \longrightarrow M_i \longrightarrow R/P_i \longrightarrow 0$$

and look at the long exact sequence we get when we apply $\operatorname{Hom}_R(-,N)$:

$$\cdots \longrightarrow \operatorname{Ext}_R^j(R/P_i, N) \longrightarrow \operatorname{Ext}_R^j(M_i, N) \longrightarrow \operatorname{Ext}_R^j(M_{i-1}, N) \longrightarrow \cdots$$

If $\operatorname{Ext}_R^j(R/P_i, N) = 0$ for all i, then we must have $\operatorname{Ext}_R^j(M_i, N) = 0$ for all i, and therefore $\operatorname{Ext}_R^j(M, N) = 0$.

So we have reduced the problem to showing that $\operatorname{Ext}_R^j(R/P_i, N) = 0$ for all i and all $j < \operatorname{depth}(N) - \dim(M)$. Notice also that by the construction in $\ref{eq:showing}$, all the P_i contain $\operatorname{ann}(M)$, so $\dim(R/P_i) \leq \dim(M)$. Therefore, it is sufficient to show that if P is prime, then $\operatorname{Ext}_R^i(R/P,N) = 0$ for all $i < \operatorname{depth}(N) - \dim(R/P)$.

We proceed by induction on $\dim(R/P)$. If $\dim(R/P) = 0$, then $P = \mathfrak{m}$, so by Theorem 3.81 we have $\operatorname{Ext}_R^i(R/\mathfrak{m}, N) = 0$ for all $i < \operatorname{depth}(N) = \operatorname{depth}(N) - \dim(R/P)$. If $\dim(R/P) > 0$, the $P \neq \mathfrak{m}$, so pick $x \in \mathfrak{m}$ but $x \notin P$. The short exact sequence

$$0 \longrightarrow R/P \xrightarrow{x} R/P \longrightarrow R/P + (x) \longrightarrow 0$$

gives rise to the long exact sequence

$$\cdots \longrightarrow \operatorname{Ext}_R^i(R/P + (x), N) \longrightarrow \operatorname{Ext}_R^i(R/P, N) \xrightarrow{x} \operatorname{Ext}_R^i(R/P, N) \longrightarrow \operatorname{Ext}_R^i(R/P + (x), N) \longrightarrow \cdots$$

Since $x \notin P$, we necessarily have $\dim(R/P + (x)) < \dim(R/P)$, so by induction hypothesis we have $\operatorname{Ext}_R^i(R/P + (x), N) = 0$ for all

$$i < \operatorname{depth}(N) - \dim(R/P + (x)) = \operatorname{depth}(N) - \dim(R/P) + 1.$$

Therefore, for all $i < \operatorname{depth}(N) - \dim(R/P)$,

$$\operatorname{Ext}_R^i(R/P,N) \xrightarrow{x} \operatorname{Ext}_R^i(R/P,N)$$

is an isomorphism. In particular, $\operatorname{Ext}^i_R(R/P,N) = x \cdot \operatorname{Ext}^i_R(R/P,N)$, so $\operatorname{Ext}^i_R(R/P,N) = 0$ by NAK B.5, where we used that $\operatorname{Ext}^i_R(R/P,N)$ is finitely generated by ??.

It remains to show that
$$\operatorname{Ext}^i_R(R/P,N)=0$$
 when $i<\operatorname{depth}(N)-\dim(R/P)$.

Corollary 3.93. Let (R, \mathfrak{m}) be a Noetherian local ring and M be a finitely generated R-module. For every associated prime of M, $\operatorname{depth}(M) \leq \dim(R/P)$.

Proof. By Theorem 3.92, $\operatorname{Ext}_R^i(R/P, M) = 0$ for all $i < \operatorname{depth}(M) - \operatorname{dim}(R/P)$. But every element in P is a zerodivisor on M, so $\operatorname{depth}_P(M) = 0$, and by Theorem 3.81, $\operatorname{Ext}_R^0(R/P, M) \neq 0$. We conclude that $\operatorname{depth}(M) \leq \operatorname{dim}(R/P)$.

One of the nicest properties all Cohen-Macaulay rings have is called unmixedness.

Theorem 3.94 (Unmixedness theorem). Let R be a Noetherian local ring. If M is a Cohen-Macaulay R-module, then

$$\operatorname{depth}(M) = \dim(R/\mathfrak{p})$$

for every $\mathfrak{p} \in \mathrm{Ass}(M)$. In particular, if R is a Cohen-Macaulay ring, then R has no embedded primes, and $\dim(R/\mathfrak{p}) = \dim(R)$ for each $\mathfrak{p} \in \mathrm{Min}(R)$.

Proof. This follows from the inequality on depth and dimension of associated primes from Corollary 3.93:

$$\dim(M) = \max\{\dim(R/\mathfrak{p}) \mid \mathfrak{p} \in \mathrm{Ass}(M)\} \geqslant \min\{\dim(R/\mathfrak{p}) \mid \mathfrak{p} \in \mathrm{Ass}(M)\} \geqslant \mathrm{depth}(M).$$

Since M is Cohen-Macaulay, equality holds throughout, and that implies in fact that equality holds for each $\dim(R/\mathfrak{p})$ with $\mathfrak{p} \in \mathrm{Ass}(M)$.

The Cohen-Macaulay property localizes.

Theorem 3.95. Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring and P be a prime ideal in R. Then R_P is a Cohen-Macaulay local ring.

Proof. We claim that there is a regular sequence contained in R of length equal to the height of P. If P is minimal, there is nothing to show. If P is not minimal, it is not contained in the union of the minimal primes, hence not in the union of the associated primes by Theorem 3.94. Thus, there is a nonzerodivisor in P. We can mod out by this to get a Cohen-Macaulay ring of lower dimension, and inductively, the claim follows. Now localizing at P this stays a regular sequence that is a system of parameters for R_P .

Theorem 3.96 (Dimension formula). Let R be a Cohen-Macaulay ring, and $\mathfrak{p} \subseteq \mathfrak{q}$ be primes. Then

$$\operatorname{ht}(\mathfrak{q}) - \operatorname{ht}(\mathfrak{p}) = \dim(R_{\mathfrak{q}}/\mathfrak{p}R_{\mathfrak{q}}).$$

In particular, if (R, \mathfrak{m}) is a Cohen-Macaulay local ring, then $\dim(R) - \operatorname{height}(\mathfrak{p}) = \dim(R/\mathfrak{p})$.

Proof. Cohen-Macaulayness localizes, by Theorem 3.95, so $R_{\mathfrak{q}}$ is a Cohen-Macaulay local ring of dimension $\operatorname{ht}(\mathfrak{q})$. Pick $h=\operatorname{ht}(\mathfrak{p})$ elements $r_1,\ldots,r_h\in\mathfrak{p}$ that form a regular sequence. Now $R_{\mathfrak{q}}/(r_1,\ldots,r_h)R_{\mathfrak{q}}$ is Cohen-Macaulay, and $\dim(R_{\mathfrak{q}}/(r_1,\ldots,r_h)R_{\mathfrak{q}})=\dim(R_{\mathfrak{q}}/\mathfrak{p}R_{\mathfrak{q}})$, since r_1,\ldots,r_h is a maximal regular sequence in \mathfrak{p} , so $\mathfrak{p}R_{\mathfrak{q}}\in\operatorname{Ass}(R_{\mathfrak{q}}/(r_1,\ldots,r_h)R_{\mathfrak{q}})$. On the other hand, $\dim(R_{\mathfrak{q}}/(r_1,\ldots,r_h)R_{\mathfrak{q}})=\dim(R_{\mathfrak{q}})-h$. The equality follows.

Remark 3.97. If (R, \mathfrak{m}) is Cohen-Macaulay and x_1, \ldots, x_a is a regular sequence on R, then we claim that $R/(x_1, \ldots, x_a)$ is also Cohen-Macaulay. On the one hand, $\operatorname{ht}(x_1, \ldots, x_a) = a$ by Theorem 3.47. On the other hand, by Theorem 3.13 all the minimal primes of $R/(x_1, \ldots, x_a)$ have height at most a, so we conclude that all the minimal primes of $R/(x_1, \ldots, x_a)$ have the same height a. By Theorem 3.96, $\dim(R/(x_1, \ldots, x_a)) = \dim(R) - a$. On the other hand, going modulo each x_i decreases the depth by 1, so $\operatorname{depth}(R/(x_1, \ldots, x_a)) = \operatorname{depth}(R) - a = \dim(R) - a$.

To help characterize systems of parameters, we we will use the following definition:

Definition 3.98. Let R be a Noetherian ring. A prime \mathfrak{p} of R is absolutely minimal if $\dim(R) = \dim(R/\mathfrak{p})$.

An absolutely minimal prime is minimal, since $\dim(R) \geqslant \dim(R/\mathfrak{p}) + \operatorname{height}(\mathfrak{p})$.

Theorem 3.99. Let (R, \mathfrak{m}) be a Noetherian local ring, and $x_1, \ldots, x_t \in \mathfrak{m}$.

- 1) $\dim(R/(x_1,\ldots,x_t)) \geqslant \dim(R) t$.
- 2) x_1, \ldots, x_t are parameters if and only if $\dim(R/(x_1, \ldots, x_t)) = \dim(R) t$.
- 3) x_1, \ldots, x_t are parameters if and only if x_1 is not in any absolutely minimal prime of R and x_i is not contained in any absolutely minimal prime of $R/(x_1, \ldots, x_{i-1})$ for each $i = 2, \ldots, t$.

Proof.

- 1) If $\dim(R/(x_1,\ldots,x_t))=s$, then take a system of parameters y_1,\ldots,y_s for $R/(x_1,\ldots,x_t)$, and pull back to R to get $x_1,\ldots,x_t,y_1,\ldots,y_s'$ in R such that the quotient of R modulo the ideal generated by these elements has dimension zero. By Krull's Height Theorem, we get that $t+s \geqslant \dim(R)$.
- 2) Let $d = \dim(R)$. Suppose first that $\dim(R/(x_1, \ldots, x_t)) = d t$. Then, there is a SOP y_1, \ldots, y_{d-t} for $R/(x_1, \ldots, x_t)$; lift back to R to get a sequence of d elements $x_1, \ldots, x_t, y_1, \ldots, y_{d-t}$ that generate an \mathfrak{m} -primary ideal. This is a SOP, so x_1, \ldots, x_t are parameters.
 - On the other hand, if x_1, \ldots, x_t , are parameters, extend to a SOP x_1, \ldots, x_d . If I is the image of (x_{t+1}, \ldots, x_d) in $R' = R/(x_1, \ldots, x_t)$, we have R'/I is zero-dimensional, hence has finite length, so $\operatorname{Ass}_{R'}(R'/I) = \{\mathfrak{m}\}$, and I is \mathfrak{m} -primary in R'. Thus, $\dim(R')$ is equal to the height of I, which is then $\leq d-t$ by Krull height. That is, $\dim(R') \leq d-t$, and using the first statement, we have equality.
- 3) This follows from the previous statement and the observation that $\dim(S/(f)) \leq \dim(S)$ if and only if f is not in any absolutely minimal prime of S.

Lemma 3.100. Given a Cohen-Macaulay local ring (R, \mathfrak{m}) and a regular sequence x_1, \ldots, x_n , every associated prime of (x_1, \ldots, x_n) must have height n.

Proof. First, note that $\dim(R/(x_1,\ldots,x_n))=\dim(R)-n$, by Remark 3.97, so x_1,\ldots,x_n form part of a system of parameters by Theorem 3.99. Let P be an associated prime of (x_1,\ldots,x_n) . Then P_P is an associated prime of $(x_1,\ldots,x_n)_P$, by Theorem 1.44, and R_P is Cohen-Macaulay by Theorem 3.95. The images of x_1,\ldots,x_n can be extended to a system of parameters, which by Theorem 3.91 must be a maximal regular sequence. However, every element in P_P is a zerodivisor on $R_P/(x_1,\ldots,x_n)_P$, since P_P is associated to x_1,\ldots,x_n , so x_1,\ldots,x_n cannot be extended inside P_P . Thus $\operatorname{depth}(R_P/(x_1,\ldots,x_n)_P=0$. By Remark 3.97, $R_P/(x_1,\ldots,x_n)_P$ is Cohen-Macaulay, so it must have dimension 0. Therefore, P is minimal over $(x_1,\ldots,x_n)_P$.

By Theorem 3.13, ht $P \leq n$. By Theorem 3.47, ht $(P) \leq n$, so ht(P) = n.

Theorem 3.101. Let R be a Noetherian ring. The following are equivalent:

- (a) R is Cohen-Macaulay.
- (b) Every ideal I in R contains a regular sequence of length ht(I).
- (c) Every maximal regular sequence inside I has length ht(I).

Proof. Notice that c) \Longrightarrow b) is obvious, and b) \Longrightarrow a) is clear once we take I to be equal to each maximal ideal in R. To show a) \Longrightarrow b), let x_1, \ldots, x_n be a maximal regular sequence inside I. The elements of I must all be zerodivisors on $R/(x_1, \ldots, x_n)$, by maximality, so by Lemma 3.78 we must have I contained in some associated prime P of $R/(x_1, \ldots, x_n)$. By 3.100, P has height n, so $ht(I) \leqslant ht(P) = n$. But $I \supseteq (x_1, \ldots, x_n)$ and $ht(x_1, \ldots, x_n) = n$ by Theorem 3.47, so ht(I) = n.

Remark 3.102. Let I be an ideal in a Cohen-Macaulay ring R. If I is generated by a regular sequence, then that regular sequence must have length $\operatorname{ht}(I)$, so I must be generated by exactly $\operatorname{ht}(I)$ elements. If R is a local ring and $\mu(I) > \operatorname{ht}(I)$, then I is not generated by a regular sequence.

3.8 A few direct applications to symbolic powers

We now collect some immediate applications of the tools we developed in the remainder of the chapter to associated primes and symbolic powers.

Theorem 3.103. Let I be an ideal in a noetherian ring R. A prime P is associated to I if and only if $\operatorname{depth}(R_P/I_P) = 0$. In particular, if (R, \mathfrak{m}) is a local ring, then $\mathfrak{m} \in \operatorname{Ass}(I)$ if and only if $\operatorname{depth}(R/I) = 0$.

Proof. By Lemma 1.34, $P \in \operatorname{Ass}(I)$ if and only if $P_P \in \operatorname{Ass}_{R_P}(I_P)$. This means we can reduce to the local case, and that it is enough to show that in a local ring (R, \mathfrak{m}) , $\mathfrak{m} \in \operatorname{Ass}(I)$ if and only if $\operatorname{depth}(R/I) = 0$. If \mathfrak{m} is associated to I, then every element in \mathfrak{m} is a zerodivisor on R/I, so there are no regular elements on R/I, and $\operatorname{depth}(R/I) = 0$. If $\operatorname{depth}(R/I) = 0$, then every element in \mathfrak{m} must be a zerodivisor on R/I, so \mathfrak{m} is contained in the zerodivisors of R/I. By Theorem 1.37, this means that

$$\mathfrak{m} \subseteq \bigcup_{P \in \mathrm{Ass}(I)} P.$$

By Theorem 1.42, this is a union of finitely many primes, so by Prime Avoidance \mathfrak{m} must be contained in some associated prime of I. But \mathfrak{m} is already maximal, so \mathfrak{m} is an associated prime of I.

Lemma 3.104. Let (R, \mathfrak{m}) be a local ring or an \mathbb{N} -graded algebra over a field k with $R_0 \cong k$. Given an ideal I in R, which is homogeneous in the graded setting, if all the associated primes of I have height $\dim(R) - 1$ then

$$I^{(n)} = I^n$$
 if and only if $depth(R/I^n) > 0$

for all $n \ge 1$.

For example, this applies if I is a prime of height $\dim(R) - 1$.

Proof. In the graded case, recall that all the associated primes of I must be homogeneous, by Theorem 1.42. Since all the associated primes of I have height $\dim(R) - 1$, \mathfrak{m} is the only possible embedded prime of I^n for any n. By Theorem 3.103, \mathfrak{m} is associated to I if and only if $\operatorname{depth}(R/I^n) = 0$.

And finally, here is a large class of ideals I satisfying $I^{(n)} = I^n$ for all n.

Theorem 3.105. Let R be a noetherian ring and consider an ideal $I = (f_1, \ldots, f_t)$. If f_1, \ldots, f_t is a regular sequence, then $\operatorname{Ass}(I^n) = \operatorname{Ass}(I)$ for all $n \ge 1$, and thus $I^{(n)} = I^n$.

Proof. We will construct a descending chain of ideals

$$I = I_0 \supseteq I_1 \supseteq I_2 \supseteq \cdots$$

containing all the powers of I and such that

$$I_{n+1}/I_n \cong R/I$$

for all n. Given this sequence, the quotient maps

$$R/I_{n+1} \twoheadrightarrow R/I_n$$

all have kernel R/I, giving us short exact sequences

$$0 \longrightarrow R/I \longrightarrow R/I_{n+1} \longrightarrow R/I_n \longrightarrow 0$$
.

By Lemma 1.38,

$$\operatorname{Ass}(I) \subseteq \operatorname{Ass}(I_{n+1}) \subseteq \operatorname{Ass}(I) \cup \operatorname{Ass}(I_n).$$

When n = 0, $I_n = I$, so

$$\operatorname{Ass}(I) \subseteq \operatorname{Ass}(I_1) \subseteq \operatorname{Ass}(I) \cup \operatorname{Ass}(I) \implies \operatorname{Ass}(I_1) = \operatorname{Ass}(I).$$

Proceeding inductively, this shows that $Ass(I_n) = Ass(I)$ for all n. In particular, all the powers I^n satisfy $Ass(I^n) = Ass(I)$.

So all that remains is to show the key technical point of the proof: the construction of the promised sequence. First, for each n we fix an order for the generators $g_1^{a_1} \cdots g_t^{a_t}$ of I^n ; for example, consider the lexicographical order

$$f_{n,0} = f_1^n, f_{n,1} = f_1^{n-1} f_2, \cdots, f_{n,t-1} = f_1^{n-1} f_t, f_{n,t} = f_1^{n-2} f_2^2, \cdots, f_{n,\binom{n+t-1}{t-1}} = f_t^n.$$

For each $n \ge 0$ and $0 \le m \le \binom{n+t-1}{t-1}$, set

$$I_{n,m} := I^{n+1} + (f_{n,k} \mid 0 \leqslant k \leqslant m)$$
.

By construction, $I_{0,0} = I$, $I_{n,m} \subseteq I_{n,m+1}$, and

$$I_{n,\binom{n+t-1}{t-1}} = I^{n+1} + I^n = I^n = I_{n-1,0}.$$

So these give us a descending chain of ideals

$$I = I_{0,0} = I_{1,t} \supseteq I_{1,t-1} \supseteq \cdots \supseteq I_{1,0} = I^2 = I_{2,\binom{n+1}{t-1}} \supseteq \cdots$$

If we can show that all the successive quotients are isomorphic to R/I, this chain of ideals will have all the promised features. To do that, it's sufficient to show that for all $n \ge 1$ and $0 \le m < \binom{n+t-1}{t-1}$,

$$I_{n,m+1}/I_{n,m} \cong R/I.$$

By construction, the quotient $I_{n,m+1}/I_{n,m}$ is a cyclic module, so

$$I_{n,m+1}/I_{n,m} \cong R/(I_{n,m}:I_{n,m+1}).$$

So all that remains to be shown is that $(I_{n,m}:I_{n,m+1})=I$. One containment is immediate from the construction: since $I_{n,m+1}\subseteq I^{n+1}+I^n$, then

$$I \cdot I_{n,m+1} \subseteq I(I^{n+1} + I^n) \subseteq I^{n+2} + I^{n+1} \subseteq I^{n+1} \subseteq I_{n,m}.$$

Now suppose that $g \in R$ satisfies $gI_{n,m+1} \subseteq I_{n,m}$. This is equivalent to the statement that

$$gf_{n,m+1} \subseteq I_{n,m} = I^{n+1} + (f_{n,k} \mid 0 \le k \le m)$$
.

Therefore, there exist $r_0, \ldots, r_m \in R$ such that

$$gf_{n,m+1} + r_0 f_{n,0} + \dots + r_m f_{n,m} \in I^{n+1}$$
.

The elements $f_{n,0}, \ldots, f_{n,m+1}$ are distinct monomials in f_1, \ldots, f_t of degree n, so

$$gf_{n,m+1} + r_0 f_{n,0} + \dots + r_m f_{n,m} = F(f_1, \dots, f_t)$$

for some homogeneous polynomial of degree n. By Theorem 3.49, the coefficients of F must be in I, so in particular $g \in I$. Since we took g to be any element in $(I_{n,m} : I_{n,m+1})$, we conclude that $(I_{n,m} : I_{n,m+1}) = I$.

Remark 3.106. What we showed in Theorem 3.105 is that $\operatorname{Ass}(I^n) = \operatorname{Ass}(I)$ for all $n \ge 1$ whenever I is generated by a regular sequence. With our definition of symbolic powers, this gives the equality $I^n = I^{(n)}$. Notice, however, that if we choose the other definition of symbolic powers — meaning, by taking $I^n R_P \cap R$ with P ranging over $\operatorname{Min}(I)$ instead of $\operatorname{Ass}(I)$ — we only obtain $I^n = I^{(n)}$ in Cohen-Macaulay rings, since all complete intersections are unmixed in a Cohen-Macaulay ring. If R is not Cohen-Macaulay, we can still say that $I^n = I^{(n)}$ whenever I is a complete intersection with no embedded primes.

Appendix A

Macaulay2

There are several computer algebra systems dedicated to algebraic geometry and commutative algebra computations, such as Singular (more popular among algebraic geometers), CoCoA (which is more popular with european commutative algebraists, having originated in Genova, Italy), and Macaulay2. There are many computations you could run on any of these systems (and others), but we will focus on Macaulay2 since it's the most popular computer algebra system among US based commutative algebraists.

Macaulay2, as the name suggests, is a successor of a previous computer algebra system named Macaulay. Macaulay was first developed in 1983 by Dave Bayer and Mike Stillman, and while some still use it today, the system has not been updated since its final release in 2000. In 1993, Daniel Grayson and Mike Stillman released the first version of Macaulay2, and the current stable version if Macaulay2 1.16.

Macaulay2, or M2 for short, is an open-source project, with many contributors writing packages that are then released with the newest Macaulay2 version. Journals like the *Journal of Software for Algebra and Geometry* publish peer-refereed short articles that describe and explain the functionality of new packages, with the package source code being peer reviewed as well.

The National Science Foundation has funded Macaulay2 since 1992. Besides funding the project through direct grants, the NSF has also funded several Macaulay2 workshops — conferences where Macaulay2 package developers gather to work on new packages, and to share updates to the Macaulay2 core code and recent packages.

A.1 Getting started

A Macaulay2 session often starts with defining some ambient ring we will be doing computations over. Common rings such as the rationals and the integers can be defined using the commands QQ and ZZ; one can easily take quotients or build polynomial rings (in finitely many variables) over these. For example,

```
i1 : R = ZZ/101[x,y]
o1 = R
```

```
o1 : PolynomialRing
    and
i1 : k = ZZ/101;
i2 : R = k[x,y];
```

both store the ring $\mathbb{Z}/101$ as R, with the small difference that in the second example Macaulay2 has named the coefficient field k. One quirk that might make a difference later is that if we use the first option and later set k to be the field $\mathbb{Z}/101$, our ring R is not a polynomial ring over k. Also, in the second example we ended each line with a ;, which tells Macaulay2 to run the command but not display the result of the computation — which is in this case was simply an assignment, so the result is not relevant.

We can now do all sorts of computations over our ring R. For example, we can define an ideal in R, as follows:

Above we have set I to be the ideal in R that is generated by x^2, y^2, xy . The notation ideal () requires the usage of $\hat{}$ for powers and * for products; alternatively, we can define the exact same ideal with the notation ideal" ", as follows:

Now we can use this ideal I to either define a quotient ring S = R/I or the R-module M = R/I, as follows:

```
i4 : M = R^1/I
o4 = cokernel | x2 y2 xy |
o4 : R-module, quotient of R
i5 : S = R/I
o5 = S
```

o5 : QuotientRing

It's important to note that while R is a ring, R^1 is the R-module R — this is a very important difference for Macaulay2, since these two objects have different types. So S defined above is a ring, while M is a module. Notice that Macaulay2 stored the module M as the cokernel of the map

$$R^3 \xrightarrow{\left[x^2 \quad y^2 \quad xy\right]} R .$$

When you make a new definition in Macaulay2, you might want to pay attention to what ring your new object is defined over. For example, now that we defined this ring S, Macaulay2 has automatically taken S to be our current ambient ring, and any calculation or definition we run next will be considered over S and not R. If you want to return to the original ring R, you must first run the command use R.

If you want to work over a finitely generated algebra over one of the basic rings you can define in Macaulay2, and your ring is not a quotient of a polynomial ring, you want to rewrite this algebra as a quotient of a polynomial ring. For example, suppose you want to work over the second Veronese in 2 variables over our field k from before, meaning the algebra $k[x^2, xy, y^2]$. We need 3 algebra generators, which we will call a, b, c, corresponding to x^2 , xy, and y^2 :

o9 : QuotientRing

Our ring T at the end is isomorphic to the 2nd Veronese of R, which is the ring we wanted. Note the syntax order in map: first target, then source, then a list with the images of each algebra generator.

A.2 Asking Macaulay2 for help

As you're learning how to use Macaulay2, you will often find yourself needing some help. Luckily, Macaulay2 can help you directly! For example, suppose you know the name of a command, but do not remember the syntax to use it. You can ask ?command, and Macaulay2 will show you the different usages of the command you want to know about.

i10 : ?primaryDecomposition

primaryDecomposition -- irredundant primary decomposition of an ideal

* Usage:

primaryDecomposition I

- * Inputs:
 - * I, an ideal, in a (quotient of a) polynomial ring R
- * Optional inputs:
 - * MinimalGenerators => a Boolean value, default value true, if false, the components will not be minimalized
 - * Strategy => ..., default value null,
- * Outputs:
 - st a list, containing a minimal list of primary ideals whose intersection is I

Ways to use primaryDecomposition :

* "primaryDecomposition(Ideal)" -- see "primaryDecomposition" -- irredundant primary decomposition of an ideal

- * "primaryDecomposition(Module)" -- irredundant primary decomposition of a module
- * "primaryDecomposition(Ring)" -- see "primaryDecomposition(Module)" -- irredundant primary decomposition of a module

For the programmer

The object "primaryDecomposition" is a method function with options.

If instead you'd rather read the complete Macaulay2 documentation on the command you are interested in, you can use the viewHelp command, which will open an html page with the documentation you asked for. So running

i11 : viewHelp "primaryDecomposition"

will open an html page dedicate to the method primaryDecomposition, which includes examples and links to related methods.

A.3 Basic commands

Many Macaulay2 commands are easy to guess, and named exactly what you would expect them to be named. Often, googling "Macaulay2" followed by a few descriptive words will easily land you on the documentation for whatever you are trying to do.

Here are some basic commands you will likely use:

- $ideal(f_1, ..., f_n)$ will return the ideal generated by $f_1, ..., f_n$. Here products should be indicated by *, and powers with $\hat{}$. If you'd rather not use $\hat{}$ (this might be nice if you have lots of powers), you can write $ideal(f_1, ..., f_n)$ instead.
- $map(S, R, f_1, ..., f_n)$ gives a ring map $R \to S$ if R and S are rings, and R is a quotient of $k[x_1, ..., x_n]$. The resulting ring map will send $x_i \mapsto f_i$. There are many variations of map for example, you can use it to define R-module homomorphisms but you should carefully input the information in the required format. Try viewHelp map in Macaulay2 for more details
- $\ker(f)$ returns the kernel of the map f.
- I + J and I*J return the sum and product of the ideals I and J, respectively.
- A = matrix $\{\{a_{1,1}, \ldots, a_{1,n}\}, \ldots, \{a_{m,1}, \ldots, a_{m,n}\}\}$ returns the matrix

$$A = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ & \ddots & \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix}$$

If you are familiar with any other programming language, many of the basics are still the same.

Some of the commands we will use return lists, and we might often need to do operations on lists. As with many other programming languages, a list is indicated by { } with the elements separated by commas.

As in most programming languages, Macaulay2 follows the convention that the first position in a list is the 0th position.

The method primaryDecomposition returns a list of primary ideals whose intersection is the input ideal, and associatedPrimes returns the list of associated primes of the given ideal or module. Operations on lists are often intuitive. For example, let's say we want to find the primary component of an ideal with a particular radical.

The method **select** returns a list of all the elements in our list with the required properties. In this case, if we actually want the primary ideal we just selected, as opposed to a list containing it, we need to extract the first component of our list L.

```
i5 : L_0
2
o5 = ideal (y, x )
o5 : Ideal of R
```

A.4 Complexes and homology in Macaulay2

There are two different ways to do computations involving complexes in Macaulay2: using ChainComplexes, or the new (and still under construction) Complexes package. To use Complexes, you must first load the Complexes package, while the ChainComplexes methods are automatically loaded with Macaulay2.

A.4.1 Chain Complexes

To create a new chain complex by hand, we start by setting up R-module maps.

Keep in mind that the syntax of map is a bit funny: we write map(target, source, matrix). To make sure we set up the next map in a way that is composable with d_1 , we can use the methods source and target:

We can also double check our maps do indeed map a complex, by checking the composition $d_1 \circ d_2$:

So now we are ready to set up our new chain complex.

i5 : C = new ChainComplex
o5 = 0

o5 : ChainComplex

i6 : C#0 = target d1

06 = R

o6 : R-module, free

i7 : C#1 = target d2

 $_{07} = R$

o7 : R-module, free

i8 : C#2 = source d2

$$08 = R$$

o8 : R-module, free

Given a chain complex C, we can ask Macaulay2 what our complex is by simply running the name of the complex:

i9 : C

$$09 = R < -- R < -- R$$

$$0 1 2$$

o9 : ChainComplex

Or we can ask for a better visual description of the maps, using C.dd:

i10 : C.dd

o10 = 0 :
$$R < ---- R : 1$$
0
1 : $R < ---- R : 2$
1 : $R < ---- R : 2$

o10 : ChainComplexMap

We can also set up the same complex in a more compact way, by simply feeding the maps we want in order. Macaulay2 will automatically place the first map with the target in homological degree 0 and the source in degree 1.

11 : D = chainComplex(d1,d2)

o11 : ChainComplex

Notice this is indeed the same complex.

o12 : ChainComplexMap

We can also ask Macaulay2 to compute the homology of our complex:

o13 : GradedModule

Or we could simply ask for the homology in a specific degree:

```
i14 : HH_0 D

o14 = cokernel | a b |

o14 : R-module, quotient of R
```

A.4.2 The Complexes package

To use this functionality, you must first load the Complexes package.

```
i15 : needsPackage "Complexes";
o15 = Complexes
o15 : Package
```

We can use our maps from above to set up a complex with the same maps. We feed a list of the maps we want to use to the method complex.

$$i16 : F = complex({d1,d2})$$

o16 =
$$R$$
 <--- R <--- R

0 1 2

o16 : Complex

We cam read off the maps and the homology in our complex using the same commands as we use with chainComplexes, although the information returned gets presented in a slightly different fashion.

o17 : Complex

i18 : F.dd

o18 : ComplexMap

If we want to set up our complex starting in a different homological degree, we can do the following:

i19 :
$$G = complex(\{d1, d2\}, Base \Rightarrow 7)$$

| a |

o19 : Complex

o20 : Complex

A.4.3 Maps of complexes

Suppose we are given two complexes C and D and a map of complexes $f: C \longrightarrow D$. The routine map can be used to define f using chainComplexes: it receives the target D, the source D, and a function f that returns f_i when we compute f(i).

```
i1 : R = QQ[a,b];
i2 : c1 = map(R^0, R^1, 0);
o2 : Matrix 0 <--- R
i3 : c2 = map(R^1, R^2, \{\{a,b\}\});
o3 : Matrix R <--- R
i4 : c3 = map(R^2, R^1, \{\{-b\}, \{a\}\});
                      1
o4 : Matrix R <--- R
i5 : c4 = map(R^1, R^0, 0);
o5 : Matrix R <--- 0
i6 : C = chainComplex(c1,c2,c3,c4);
i7 :
     d1 = map(R^0, R^1, 0);
                     1
o7 : Matrix 0 <--- R
```

```
i8 : d2 = id_(R^1);
o8 : Matrix R <--- R
i9 : d3 = map(R^1, R^0, 0);
o9 : Matrix R <--- 0
i10 : d4 = map(R^0, R^0, 0);
o10 : Matrix 0 <--- 0
i11 : D = chainComplex(d1,d2,d3,d4)
           1 1
o11 = 0 < -- R < -- R < -- 0 < -- 0
     0 1 2 3 4
o11 : ChainComplex
i12 :
     f0 = map(R^0, R^0, 0);
o12 : Matrix 0 <--- 0
i13 : f1 = map(R^1, R^1, matrix{\{0_R\}\}});
o13 : Matrix R <--- R
i14 : f2 = map(R^2, R^1, \{\{b\}, \{-a\}\});
o14 : Matrix R <--- R
i15 : f3 = map(R^1, R^0, 0);
o15 : Matrix R <--- 0
i16 : f4 = map(R^0, R^0, 0);
```

o17 : ChainComplexMap

Here's what we can do if we prefer to write a list with the maps in f:

o18 : ChainComplexMap

If we prefer to do the same with the Complexes package, one advantage is that map does receive (target, source, list of maps).

o44 : ComplexMap

Appendix B

Commutative algebra background

B.1 Prime Avoidance

Theorem B.1 (Prime avoidance). Let R be a ring, I_1, \ldots, I_n, J be ideals, and suppose that I_i is prime for i > 2. If $J \nsubseteq I_i$ for all i, then $J \nsubseteq \bigcup_i I_i$. Equivalently, if $J \subseteq \bigcup_i I_i$, then $J \subseteq I_i$ for some i. So if $J \nsubseteq I_i$ for all i, then we can find an element $x \in J$ such that $x \notin I_i$ for all i.

Moreover, if R is N-graded, and all of the ideals are homogeneous, all I_i are prime, and $J \not\subseteq I_i$ for all i, then there is a homogeneous element in J that is not in $\bigcup_i I_i$.

Proof. We proceed by induction on n. If n = 1, there is nothing to show.

By induction hypothesis, we can find elements a_i such that

$$a_i \notin \bigcup_{j \neq i} I_j \text{ and } a_i \in J$$

for each i. If some $a_i \notin I_i$, we are done, so let's assume that $a_i \in I_i$ for each i. Consider $a = a_n + a_1 \cdots a_{n-1} \in J$. Notice that $a_1 \cdots a_{n-1} = a_i(a_1 \cdots \widehat{a_i} \cdots a_{n-1}) \in I_i$. If $a \in I_i$ for i < n, then we also have $a_n \in I_i$, a contradiction. If $a \in I_n$, then we also have $a_1 \cdots a_{n-1} = a - a_n \in I_n$, since $a_n \in I_n$. If n = 2, this says $a_1 \in I_2$, a contradiction. If n > 2, our assumption is that I_n is prime, so one of $a_1, \ldots, a_{n-1} \in I_n$, which is a contradiction. So a is the element we were searching for, meaning $a \notin I_i$ for all i.

If all I_i are homogeneous and prime, then we proceed as above but replacing a_n and a_1, \ldots, a_{n-1} with suitable powers so that $a_n + a_1 \cdots a_{n-1}$ is homogeneous. For example, we could take

$$a := a_n^{\deg(a_1) + \cdots + \deg(a_{n-1})} + (a_1 \cdots a_{n-1})^{\deg(a_n)}.$$

The primeness assumption guarantees that noncontainments in ideals is preserved. \Box

Corollary B.2. Let I be an ideal and M a finitely generated module over a Noetherian ring R. If I consists of zerodivisors on M, then Im = 0 for some nonzero $m \in M$.

¹So all the ideals are prime, except we may allow two of them to not be prime.

Proof. The assumption says that

$$I \subseteq \bigcup_{\mathfrak{p} \in \mathrm{Ass}(M)} (\mathfrak{p}).$$

By the assumptions, Theorem 1.42 applies, and it guarantees that this is a finite set of primes. By Prime Avoidance, $I \subseteq \mathfrak{p}$ for some $\mathfrak{p} \in \mathrm{Ass}(M)$. Equivalently, $I \subseteq \mathrm{ann}_R(m)$ for some nonzero $m \in M$.

Later on, we will also need a slightly stronger version of Prime Avoidance, so we record it now.

Theorem B.3. Let R be a ring, P_1, \ldots, P_n prime ideals, $x \in R$ and I be an ideal in R. If $(x) + I \not\subseteq P_i$ for each i, then there exists $y \in J$ such that

$$x + y \notin \bigcup_{i=1}^{n} P_i.$$

Proof. We proceed by induction on n. When n = 1, if every element of the form x + y with $y \in R$ is in $P = P_1$, then multiplying by $r \in R$ we conclude that every $rx + y \in P$, meaning $(x) + I \subseteq P$.

Now suppose n > 1 and that we have shown the statement for n - 1 primes. If $P_i \subseteq P_j$ for some $i \neq j$, then we might as well exclude P_i from our list of primes, and the statement follows by induction. So assume that all our primes P_i are incomparable.

If $x \notin P_i$ for all i, we are done, since we can take x + 0 for the element we are searching for. So suppose x is in some P_i , which we assume without loss of generality to be P_n . Our induction hypothesis says that we can find $y \in I$ such that $x + y \notin P_1 \cup \cdots \cup P_{n-1}$. If $x + y \notin P_n$, we are done, so suppose $x + y \in P_n$. Since we assumed $x \in P_n$, we must have $I \not\subseteq P_n$, or else we would have had $(x) + I \subseteq P_n$. Now P_n is a prime ideal that does not contain P_1, \ldots, P_{n-1} , nor I, so

$$P \not\supseteq IP_1 \cdots P_{n-1}$$
.

Choose $z \in IP_1 \cdots P_{n-1}$ not in P_n . Then $x + y + z \notin P_n$, since $z \notin P_n$ but $x + y \in P_n$. Moreover, for all i < n we have $x + y + z \notin P_i$, since $z \in P_i$ and $x + y \notin P_i$.

B.2 NAK

We will now show a very simple but extremely useful result known as Nakayama's Lemma. As noted in [Mat89, page 8], Nakayama himself claimed that this should be attributed to Krull and Azumaya, but it's not clear which of the three actually had the commutative ring statement first. So some authors (eg, Matsumura) prefer to refer to it as NAK. There are actually a range of statements, rather than just one, that go under the banner of Nakayama's Lemma a.k.a. NAK.

Proposition B.4. Let R be a ring, I an ideal, and M a finitely generated R-module. If IM = M, then

a) there is an element $r \in 1 + I$ such that rM = 0, and

b) there is an element $a \in I$ such that am = m for all $m \in M$.

Proof. Let $M = Rm_1 + \cdots + Rm_s$. By assumption, we have equations

$$m_1 = a_{11}m_1 + \cdots + a_{1s}m_s$$
, ..., $m_s = a_{s1}m_1 + \cdots + a_{ss}m_s$,

with $a_{ij} \in I$. Setting $A = [a_{ij}]$ and $v = [x_i]$ we have a matrix equations Av = v. By the determinantal trick, ??, the element $\det(I_{s\times s} - A) \in R$ kills each m_i , and hence M. Since $\det(I_{s\times s} - A) \equiv \det(I_{s\times s}) \equiv 1 \mod I$, this determinant is the element r we seek for the first statement.

For the latter statement, set a = 1 - r; this is in I and satisfies am = m - rm = m for all $m \in M$.

Proposition B.5. Let (R, \mathfrak{m}, k) be a local ring, and M be a finitely generated module. If $M = \mathfrak{m}M$, then M = 0.

Proof. By the Proposition B.4, there exists an element $r \in 1+\mathfrak{m}$ that annihilates M. Notice that $1 \notin \mathfrak{m}$, so any such r must be outside of \mathfrak{m} , and thus a unit. Multiplying by its inverse, we conclude that 1 annihilates M, or equivalently, that M = 0.

Proposition B.6. Let (R, \mathfrak{m}, k) be a local ring, and M be a finitely generated module, and N a submodule of M. If $M = N + \mathfrak{m}M$, then M = N.

Proof. By taking the quotient by N, we see that

$$M/N = (N + \mathfrak{m}M)/N = \mathfrak{m}(M/N).$$

By Proposition B.5, M = N.

Proposition B.7. Let (R, \mathfrak{m}, k) be a local ring, and M be a finitely generated module. For $m_1, \ldots, m_s \in M$,

$$m_1, \ldots, m_s$$
 generate $M \Longleftrightarrow \overline{m_1}, \ldots, \overline{m_s}$ generate $M/\mathfrak{m}M$.

Thus, any generating set for M consists of at least $\dim_k(M/\mathfrak{m}M)$ elements.

Proof. The implication (\Rightarrow) is clear. If $m_1, \ldots, m_s \in M$ are such that $\overline{m_1}, \ldots, \overline{m_s}$ generate $M/\mathfrak{m}M$, let $N = Rm_1 + \cdots + Rm_s \subseteq M$. By Proposition B.5, M/N = 0 if and only if $M/N = \mathfrak{m}(M/N)$. The latter statement is equivalent to $M = \mathfrak{m}M + N$, which is equivalent to saying that $M/\mathfrak{m}M$ is generated by the image of N.

Remark B.8. Since R/\mathfrak{m} is a field, $M/\mathfrak{m}M$ is a vector space over the field R/\mathfrak{m} .

Definition B.9. Let (R, \mathfrak{m}) be a local ring, and M a finitely generated module. A set of elements $\{m_1, \ldots, m_t\}$ is a **minimal generating set** of M if the images of m_1, \ldots, m_t form a basis for the R/\mathfrak{m} vector space $M/\mathfrak{m}M$.

As a consequence of basic facts about basis for vector spaces, we conclude that any generating set for M contains a minimal generating set, and that every minimal generating set has the same cardinality.

Definition B.10. Let (R, \mathfrak{m}) be a local ring, and N an R-module. The **minimal number** of generators of M is

$$\mu(M) := \dim_{R/\mathfrak{m}} (M/\mathfrak{m}M)$$
.

Equivalently, this is the number of elements in a minimal generating set for M.

We commented before that graded rings behave a lot like local rings, so now we want to give graded analogues for the results above.

Proposition B.11. Let R be an \mathbb{N} -graded ring, and M a \mathbb{Z} -graded module such that $M_{\leq a} = 0$ for some a. If $M = (R_+)M$, then M = 0.

Proof. On the one hand, the homogeneous elements in M live in degrees at least a, but $(R_+)M$ lives in degrees strictly bigger than a. If M has a nonzero element, it has a nonzero homogeneous element, and we obtain a contradiction.

This condition includes all finitely generated \mathbb{Z} -graded R-modules.

Remark B.12. If M is finitely generated, then it can be generated by finitely many homogeneous elements, the homogeneous components of some finite generating set. If a is the smallest degree of a homogeneous element in a homogeneous generating set, since R lives only in positive degrees we must have $M \subseteq RM_{\geqslant a} \subseteq M_{\geqslant a}$, so $M_{< a} = 0$.

Just as above, we obtain the following:

Proposition B.13. Let R be an \mathbb{N} -graded ring, with R_0 a field, and M a \mathbb{Z} -graded module such that $M_{\leq a} = 0$ for some degree a. A set of elements of M generates M if and only if their images in $M/(R_+)M$ spans as a vector space. Since M and $(R_+)M$ are graded, $M/(R_+)M$ admits a basis of homogeneous elements.

In particular, if k is a field, R is a positively graded k-algebra, and I is a homogeneous ideal, then I has a minimal generating set by homogeneous elements, and this set is unique up to k-linear combinations.

Definition B.14. Let R be an \mathbb{N} -graded ring with R_0 a field, and M a finitely generated \mathbb{Z} -graded R-module. The **minimal number of generators** of M is

$$\mu(M) := \dim_{R/R_+} (M/R_+M).$$

We can use Macaulay2 to compute (the) minimal (number of) generators of graded modules over graded k-algebras, using the commands mingens and numgens.

Note that we can use NAK to prove that certain modules are finitely generated in the graded case; in the local case, we cannot.

B.3 Krull's Intersection Theorem

Theorem B.15 (Krull intersection theorem). Let (R, \mathfrak{m}, k) be a Noetherian local ring. Then

$$\bigcap_{n\geqslant 1}\mathfrak{m}^n=0.$$

Proof. Let $J = \bigcap_{n \in \mathbb{N}} \mathfrak{m}^n$. First, we claim that $J \subseteq \mathfrak{m}J$.

Let $\mathfrak{m}J = \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_t$ be a primary decomposition. To show that $J \subseteq \mathfrak{m}J$, it is sufficient to prove that $J \subseteq \mathfrak{q}_i$ for each i. If $\sqrt{\mathfrak{q}_i} \neq \mathfrak{m}$, pick $x \in \mathfrak{m}$ such that $x \notin \sqrt{\mathfrak{q}_i}$. Then $xJ \subseteq \mathfrak{m}J \subseteq \mathfrak{q}_i$, but $x \notin \sqrt{\mathfrak{q}_i}$, so $J \subseteq \mathfrak{q}_i$ by definition of primary. If instead $\sqrt{\mathfrak{q}_i} = \mathfrak{m}$, there is some N with $\mathfrak{m}^N \subseteq \mathfrak{q}_i$ by ??. By definition of J, we have $J \subseteq \mathfrak{m}^N \subseteq \mathfrak{q}_i$, and we are done.

We showed that
$$J \subseteq \mathfrak{m}J$$
, hence $J = \mathfrak{m}J$, and thus $J = 0$ by NAK B.5.

This also holds over any domain without the local assumption.

Theorem B.16 (Krull Intersection Theorem for domains). If R is a domain, then

$$\bigcap_{n\geq 1} I^n = 0.$$

for any proper ideal I in R.

Proof. Let \mathfrak{m} be a maximal ideal in R. The only minimal prime over \mathfrak{m}^n is \mathfrak{m} , so the powers of \mathfrak{m} have no embedded primes and must then all be \mathfrak{m} -primary. In particular, $\mathfrak{m}^n = \mathfrak{m}^n R_{\mathfrak{m}} \cap R$. Notice that taking pre-images commutes with taking intersections, so

$$\bigcap_{n\geqslant 1}\mathfrak{m}^n=\bigcap_{n\geqslant 1}(\mathfrak{m}^nR_{\mathfrak{m}}\cap R)=\left(\bigcap_{n\geqslant 1}\mathfrak{m}^nR_{\mathfrak{m}}\right)\cap R=\left(\bigcap_{n\geqslant 1}\mathfrak{m}^n_{\mathfrak{m}}\right)\cap R.$$

By Theorem B.15, $\bigcap_{n\geqslant 1} \mathfrak{m}_{\mathfrak{m}}^n = 0$. Since R is a domain, the localization map is injective, and we conclude that

$$\bigcap_{n\geqslant 1}\mathfrak{m}^n=0.$$

Now if I is any proper ideal in $R, I \subseteq \mathfrak{m}$ for some maximal ideal \mathfrak{m} , and

$$\bigcap_{n\geqslant 1} I^n = \bigcap_{n\geqslant 1} \mathfrak{m}^n = 0.$$

Index

(1 120) 01	1
$(I:J^{\infty}), 21$	betti numbers, 50
$I \cap R$, 6	catenary ring, 33
I-depth, 56	chain of primes, 32
IS, 6	Cohen-Macaulay, 64
$I^{n}, 22$	• /
K(r), 38	Cohen-Macaulay ring, 64
$K^{\bullet}(f_1,\ldots,f_n;M), 39$	colon, 5
$K_{\bullet}(f_1,\ldots,f_n;M), 39$	contraction, 6
P-primary ideal, 13	depth, 56
V(I), 2	dimension of a module, 32
$W^{-1}M$, 5	dimension of a ring, 32
$W^{-1}\alpha$, 5	difficultion of a fing, 52
$\operatorname{Ass}_R(M)$, 8	embedded prime, 13
$H_i(x_1, \ldots, x_d; M), 40$	embedding dimension, 37
Min(I), 3	equidimensional ring, 33
$\operatorname{Spec}(R)$, 2	expansion of an ideal, 6
Supp(M), 7	free regulation 48
$\alpha(I)$, 26	free resolution, 48
$\operatorname{ann}(M)$, 5	height, 32
depth(M), 56	height of a prime, 32
$\operatorname{depth}_{I}(M), 56$	height of an ideal, 32
$\dim(R)$, 32	homogeneous system of parameters, 65
$\mathcal{A}, 30$. 1 .11 .1 1 17
$\mathcal{N}(R),3$	irreducible ideal, 17
$\mathcal{Z}(M), 9$	irredundant primary decomposition, 16
$\operatorname{pdim}_{R}(M), 49$	Koszul complex, 38, 40
\sqrt{I} , 3	Koszul complex of a module, 39
embdim(R), 37	Koszul homology, 40
、	Krull dimension, 32
absolutely minimal prime, 67	Krull Intersection Theorem, 90
annihilator, 5	Krull's Height Theorem, 36
Artinian modules, 34	Krull's Principal Ideal Theorem, 34
Artinian ring, 34	man b i imeipai ideai i incorein, 04
associated prime, 8	length of a chain of primes, 32
associated primes of an ideal, 8	localization, 4
Auslander—Buchsbaum formula, 61	localization at a prime, 7

localization of a module, 5	radical ideal, 3
localization of a ring, 4	radical of an ideal, 3
minimal complex, 49 minimal free resolution, 49 minimal generating set, 88	regular element, 44 regular local ring, 37, 53 regular ring, 53
minimal generators, 88	saturated chain of primes, 32
minimal number of generators, 89	saturation, 21
minimal prime, 3	SOP, 65
nilradical, 3 nonzerodivisor, 44	spectrum of a ring, 2 support, 7 system of parameters, 65
parameters, 65	,
primary decomposition, 16	tensor product of complexes, 38
primary ideal, 13	transcendence basis, 37
Prime avoidance, 86	transcendence degree, 37
projective dimension, 49	
projective resolution, 48	zerodivisors, 9

Bibliography

- [AM69] Michael F. Atiyah and Ian G. Macdonald. *Introduction to commutative algebra*. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
- [BH93] Winfried Bruns and Jürgen Herzog. Cohen-Macaulay rings, volume 39 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993.
- [Bro79] Markus P. Brodmann. Asymptotic stability of $Ass(M/I^nM)$. Proc. Amer. Math. Soc., 74(1):16–18, 1979.
- [DGP99] Wolfram Decker, Gert-Martin Greuel, and Gerhard Pfister. Primary decomposition: algorithms and comparisons. In *Algorithmic algebra and number theory* (*Heidelberg*, 1997), pages 187–220. Springer, Berlin, 1999.
- [EHV92] David Eisenbud, Craig Huneke, and Wolmer Vasconcelos. Direct methods for primary decomposition. *Invent. Math.*, 110(1):207–235, 1992.
- [Eis95] David Eisenbud. Commutative algebra with a view toward algebraic geometry, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
- [Hoc78] Melvin Hochster. Some applications of the Frobenius in characteristic 0. Bulletin of the American Mathematical Society, 84(5):886 912, 1978.
- [HR74] Melvin Hochster and Joel L. Roberts. Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay. *Advances in Math.*, 13:115–175, 1974.
- [HS02] Serkan Hoşten and Gregory G. Smith. Monomial ideals. In *Computations in algebraic geometry with Macaulay 2*, volume 8 of *Algorithms Comput. Math.*, pages 73–100. Springer, Berlin, 2002.
- [Las05] Emanuel Lasker. Zur theorie der moduln und ideale. *Mathematische Annalen*, 60:20–116, 1905.
- [Mat80] Hideyuki Matsumura. Commutative algebra, volume 56 of Mathematics Lecture Note Series. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., second edition, 1980.
- [Mat89] Hideyuki Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1989. Translated from the Japanese by M. Reid.

- [Noe21] Emmy Noether. Idealtheorie in ringbereichen. *Mathematische Annalen*, 83(1):24–66, 1921.
- [Rat76] Louis J. Ratliff. On prime divisors of I^n , n large. $Michigan\ Math.\ J.,\ 23(4):337–352,\ 1976.$
- [SY96] Takeshi Shimoyama and Kazuhiro Yokoyama. Localization and primary decomposition of polynomial ideals. *J. Symbolic Comput.*, 22(3):247–277, 1996.