```
In [84]:
           import pandas as pd
           import numpy as np
           from sklearn.preprocessing import StandardScaler ,FunctionTransformer
           from sklearn.neighbors import KNeighborsClassifier
           import seaborn as sns
           import matplotlib.pyplot as plt
           from sklearn.compose import ColumnTransformer
           from sklearn.model selection import train test split ,GridSearchCV
           from sklearn.pipeline import Pipeline
           from sklearn.impute import SimpleImputer
In [107]: # import csv files
           data = pd.read csv("../DataSets/water potability.csv")
           data.head()
Out[107]:
                                        Solids Chloramines
                                                              Sulfate Conductivity Organic_carbon Trihalomethanes Turbidity Potability
                    ph
                         Hardness
            0
                  NaN
                       204.890455 20791.318981
                                                  7.300212 368.516441
                                                                       564.308654
                                                                                       10.379783
                                                                                                      86.990970 2.963135
                                                                                                                               0
            1 3.716080 129.422921 18630.057858
                                                  6.635246
                                                                       592.885359
                                                                                       15.180013
                                                                                                      56.329076 4.500656
                                                                                                                               0
                                                                 NaN
            2 8.099124 224.236259 19909.541732
                                                  9.275884
                                                                       418.606213
                                                                                       16.868637
                                                                                                      66.420093 3.055934
                                                                                                                               0
                                                                 NaN
            3 8.316766 214.373394 22018.417441
                                                  8.059332 356.886136
                                                                       363.266516
                                                                                       18.436524
                                                                                                     100.341674 4.628771
                                                                                                                               0
            4 9.092223 181.101509 17978.986339
                                                  6.546600 310.135738
                                                                       398.410813
                                                                                       11.558279
                                                                                                      31.997993 4.075075
                                                                                                                               0
In [108]: data.isna().sum()
Out[108]:
           ph
                                491
           Hardness
                                  0
           Solids
           Chloramines
                                  0
           Sulfate
                                781
           Conductivity
                                  0
```

0

0

0

162

Organic carbon

Turbidity

Potability

dtype: int64

Trihalomethanes

In [109]: data.describe()

Out[109]:

	ph	ph Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity
count	2785.000000	000000 3276.000000	3276.000000	3276.000000	2495.000000	3276.000000	3276.000000	3114.000000	3276.000000
mean	7.080795	196.369496	22014.092526	7.122277	333.775777	426.205111	14.284970	66.396293	3.966786
std	1.594320	594320 32.879761	8768.570828	1.583085	41.416840	80.824064	3.308162	16.175008	0.780382
min	0.000000	000000 47.432000	320.942611	0.352000	129.000000	181.483754	2.200000	0.738000	1.450000
25%	6.093092	93092 176.850538	15666.690297	6.127421	307.699498	365.734414	12.065801	55.844536	3.439711
50%	7.036752	36752 196.967627	20927.833607	7.130299	333.073546	421.884968	14.218338	66.622485	3.955028
75%	8.062066	062066 216.667456	27332.762127	8.114887	359.950170	481.792304	16.557652	77.337473	4.500320
max	14.000000	000000 323.124000	61227.196008	13.127000	481.030642	753.342620	28.300000	124.000000	6.739000
75%	8.062066	062066 216.667456	27332.762127	8.114887	359.950170	481.792304	16.557652	77.337473	4

In [110]: ## Fill the nan values with mean data.fillna(data.mean() , inplace = True) data.head()

Out[110]:

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potability
0	7.080795	204.890455	20791.318981	7.300212	368.516441	564.308654	10.379783	86.990970	2.963135	0
1	3.716080	129.422921	18630.057858	6.635246	333.775777	592.885359	15.180013	56.329076	4.500656	0
2	8.099124	224.236259	19909.541732	9.275884	333.775777	418.606213	16.868637	66.420093	3.055934	0
3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524	100.341674	4.628771	0
4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279	31.997993	4.075075	0

```
In [111]: # now try to visualize it

sns.boxplot(data = data )
plt.xticks(rotation = 45);
```



```
In [112]: d = data.corr()
    plt.figure(figsize=(12,12))
    sns.heatmap(d,annot=True)
Out[112]: <Axes: >
```


- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

In [113]: data.hist(figsize=(12,12));

In [114]: data.head()

Out[114]:

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potability
0	7.080795	204.890455	20791.318981	7.300212	368.516441	564.308654	10.379783	86.990970	2.963135	0
1	3.716080	129.422921	18630.057858	6.635246	333.775777	592.885359	15.180013	56.329076	4.500656	0
2	8.099124	224.236259	19909.541732	9.275884	333.775777	418.606213	16.868637	66.420093	3.055934	0
3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524	100.341674	4.628771	0
4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279	31.997993	4.075075	0

Out[115]: 0.6280487804878049

```
In [116]: params = {
              "estimator__n_neighbors": [1, 5, 10],
              "estimator__leaf_size": [1, 45],
              "estimator weights": ["uniform", "distance"]
          grid = GridSearchCV(pipeline, params ,cv = 5)
          grid.fit(x train , y train)
Out[116]:
                        GridSearchCV
                     estimator: Pipeline
             preprocessor: ColumnTransformer
                           scaler
                      ▶ StandardScaler
                   ▶ KNeighborsClassifier
In [117]: grid.best_params_
Out[117]: {'estimator__leaf_size': 1,
            'estimator__n_neighbors': 10,
            'estimator__weights': 'uniform'}
In [118]: grid.best_score_
Out[118]: 0.6358778625954198
```

Out[119]:

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity
2947	7.080795	183.521107	20461.252710	7.333212	333.119476	356.369022	20.179029	67.019903	4.886634
2782	6.643159	188.913541	32873.820022	6.791509	333.848842	336.561501	14.706810	67.844849	4.562198
1644	7.846058	224.058877	23264.109968	5.922367	300.402620	387.971336	13.406737	43.075186	2.487969
70	7.160467	183.089310	6743.346066	3.803036	277.599099	428.036344	9.799625	90.035374	3.884891
2045	6.615350	179.240661	26392.863612	9.309160	333.775777	496.363562	12.786595	78.262369	4.453443
208	10.026159	224.266358	14962.177833	7.428313	336.972950	517.512842	18.858519	65.363452	4.182278
1578	6.865569	231.445054	22585.788809	5.676387	333.775777	496.603425	16.154964	91.461709	4.916218
565	7.459145	217.700130	19436.503542	4.639116	352.424439	494.094339	14.460295	57.196188	3.841052
313	5.862641	185.065220	44069.272158	4.382721	412.690111	331.570139	15.306079	59.605812	5.507421
601	7.080795	220.552524	28135.076838	7.978098	307.652451	421.464253	17.532298	86.848098	3.569570

656 rows × 9 columns

In [121]: data.head()

Out[121]:

	ph	Hardness	Solids	Chloramines	Sulfate	Conductivity	Organic_carbon	Trihalomethanes	Turbidity	Potability
0	7.080795	204.890455	20791.318981	7.300212	368.516441	564.308654	10.379783	86.990970	2.963135	0
1	3.716080	129.422921	18630.057858	6.635246	333.775777	592.885359	15.180013	56.329076	4.500656	0
2	8.099124	224.236259	19909.541732	9.275884	333.775777	418.606213	16.868637	66.420093	3.055934	0
3	8.316766	214.373394	22018.417441	8.059332	356.886136	363.266516	18.436524	100.341674	4.628771	0
4	9.092223	181.101509	17978.986339	6.546600	310.135738	398.410813	11.558279	31.997993	4.075075	0

```
In [129]: # Prompt the user for input
          ph = float(input("Enter the pH: "))
          hardness = float(input("Enter the Hardness: "))
          solids = float(input("Enter the Solids: "))
          chloramines = float(input("Enter the Chloramines: "))
          sulfate = float(input("Enter the Sulfate: "))
          conductivity = float(input("Enter the Conductivity: "))
          organic carbon = float(input("Enter the Organic Carbon: "))
          trihalomethanes = float(input("Enter the Trihalomethanes: "))
          turbidity = float(input("Enter the Turbidity: "))
          # Create a DataFrame with the user input
          data = pd.DataFrame({
               'ph': [ph],
              'Hardness': [hardness],
              'Solids': [solids],
              'Chloramines': [chloramines],
               'Sulfate': [sulfate],
              'Conductivity': [conductivity],
              'Organic carbon': [organic carbon],
              'Trihalomethanes': [trihalomethanes],
               'Turbidity': [turbidity]
          })
          # Predict the data
          transformData = pipeline["preprocessor"].transform(data)
          prediction = pipeline["estimator"].predict(transformData)
          print("The Label is:", prediction[0])
          Enter the pH: 7
          Enter the Hardness: 204
          Enter the Solids: 20791
          Enter the Chloramines: 7.30
          Enter the Sulfate: 368
          Enter the Conductivity: 563.3
          Enter the Organic Carbon: 10.37
          Enter the Trihalomethanes: 86.9
          Enter the Turbidity: 2.9
          The Label is: 0
```

In []: