Food-wastage Analysis

importing libraries

```
In [104...
          import pandas as pd
          # data cleaning, manipulation, and analysis
In [105...
          import numpy as np
          # numerical computation
          import plotly.express as px
          # px visualization library
          import matplotlib.pyplot as plt
          # basic plotting
          import plotly.graph_objects as go
          # go advance and customer graph
          import plotly.io as pio
          # pio help to customize the graph templates
          import plotly.colors as colors
          # colors for colors and Pick and use predefined color scales and color sets
          pio.templates.default = "plotly_white"
          # This line sets the default style (theme) for all your Plotly charts to use the
```

creating the data frame

```
In [106... data=pd.read_csv("Food_waste-dataset.csv ",encoding='latin-1') # Load the datase
In [107... data
```

Out[107...

	Customar Nama	Food Name	Dioto Si-o	Convine Food Weight a	Loftovor Food W	
	Customer_ivame	rood_ivame	Plate_Size	Serving_Food_Weight_g	Leftover_Food_v	
0	Customer_1	Ice Cream	2	400		
1	Customer_2	Soup	2	400		
2	Customer_3	Pizza	1	250		
3	Customer_4	Burger	1	250		
4	Customer_5	Thali	3	550		
•••						
755	Customer_756	Fried Rice	1	250		
756	Customer_757	Pasta	1	250		
757	Customer_758	Ice Cream	2	400		
758	Customer_759	Thali	3	550		
759	Customer_760	Fried Rice	3	550		
760 rows × 6 columns						
4					•	

Let's start by looking at the descriptive statistics of the dataset

In [108	data.head() # Display the first few rows of the DataFrame					
Out[108	Customer_Name		Food_Name	Plate_Size	Serving_Food_Weight_g	Leftover_Food_Wei
	0	Customer_1	Ice Cream	2	400	
	1	Customer_2	Soup	2	400	
	2	Customer_3	Pizza	1	250	
	3	Customer_4	Burger	1	250	
	4	Customer_5	Thali	3	550	
	4 6					-
In [109	<pre>data.describe() # for descriptive statistics</pre>					

Out[109...

	Plate_Size	Serving_Food_Weight_g	Leftover_Food_Weight_g	Price_Rs
count	760.000000	760.000000	760.000000	760.000000
mean	1.857895	378.684211	75.039605	250.386842
std	0.763679	114.551794	50.704225	121.983607
min	1.000000	250.000000	0.200000	90.000000
25%	1.000000	250.000000	35.125000	150.000000
50%	2.000000	400.000000	67.100000	220.000000
75%	2.000000	400.000000	106.150000	317.000000
max	3.000000	550.000000	218.200000	637.000000

In [110...

data.info() # for basic information about the DataFrame

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 760 entries, 0 to 759
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Customer_Name	760 non-null	object
1	Food_Name	760 non-null	object
2	Plate_Size	760 non-null	int64
3	Serving_Food_Weight_g	760 non-null	int64
4	Leftover_Food_Weight_g	760 non-null	float64
5	Price_Rs	760 non-null	int64

dtypes: float64(1), int64(3), object(2)

memory usage: 35.8+ KB

In [111...

recall the data

data

Out[111		Customer_Name	Food_Name	Plate_Size	Serving_Food_Weight_g	Leftover_Food_W
	0	Customer_1	Ice Cream	2	400	
	1	Customer_2	Soup	2	400	
	2	Customer_3	Pizza	1	250	
	3	Customer_4	Burger	1	250	
	4	Customer_5	Thali	3	550	
	•••					
	755	Customer_756	Fried Rice	1	250	
	756	Customer_757	Pasta	1	250	
	757	Customer_758	Ice Cream	2	400	
	758	Customer_759	Thali	3	550	

550

760 rows × 6 columns

Customer_760

759

Calculate waste percentage

Fried Rice

```
data["Waste_Percentage"] = (data["Leftover_Food_Weight_g"] / data["Serving_Food_
In [112...
          # Average waste percentage per food item
          avg_waste = data.groupby("Food_Name")["Waste_Percentage"].mean().reset_index().s
          # Show top 10 most wasted and bottom 10 least wasted foods
          top10_wasted = avg_waste.head(10)
          bottom10_wasted = avg_waste.tail(10)
          print("Top 10 most wasted foods (by avg waste %):")
          print(top10_wasted.to_string(index=False))
          print("\nBottom 10 least wasted foods (by avg waste %):")
          print(bottom10_wasted.to_string(index=False))
          # Visualize top 10 most wasted foods
          fig = px.bar(top10_wasted, x="Food_Name", y="Waste_Percentage",
                       title="Top 10 Foods by Average Waste Percentage",
                       labels={"Waste_Percentage": "Avg Waste (%)", "Food_Name": "Food"})
          fig.update_layout(xaxis_tickangle=-45)
          fig.show()
```

```
# Optional: distribution of waste percentage by plate size
 fig = px.box(data, x="Plate_Size", y="Waste_Percentage",
             title="Waste Percentage Distribution by Plate Size",
             labels={"Plate_Size": "Plate Size", "Waste_Percentage": "Waste (%)"
 fig.show()
Top 10 most wasted foods (by avg waste %):
Food_Name Waste_Percentage
 Sandwich
                  21.119018
  Biryani
                 20.669675
                 20.523709
     Dosa
   Burger
                  20.510603
    Pasta
                 20.014225
     Soup
                 19.917869
    Salad
                 19.770408
    Pizza
                  19.661927
Fried Rice
                19.603930
Ice Cream
                 19.420873
Bottom 10 least wasted foods (by avg waste %):
Food_Name Waste_Percentage
     Dosa
                  20.523709
   Burger
                  20.510603
    Pasta
                20.014225
                 19.917869
     Soup
                 19.770408
    Salad
    Pizza
                 19.661927
Fried Rice
                 19.603930
Ice Cream
                 19.420873
  Noodles
                 18.828202
    Thali
                  18.628011
```

Food item by oder count

```
# Group data by Food Name and count orders
In [113...
          food order counts = data.groupby('Food Name').size().reset index(name='Order Cou
          food_order_counts = food_order_counts.sort_values('Order_Count', ascending=False
          # Create an interactive bar plot
          fig = px.bar(food_order_counts,
                       x='Food Name',
                       y='Order Count',
                       title='Food Items by Order Frequency',
                       labels={'Food_Name': 'Food Item', 'Order_Count': 'Number of Orders'
                       color='Order Count',
                       color_continuous_scale='Viridis')
          # Update layout for better readability
          fig.update layout(
              xaxis_tickangle=-45,
              showlegend=False,
              height=500
          fig.show()
```

Food waste percentage Distribution by Plate size