Naloga 2.1

Univerzalna množica $U=\{0,1,2...24\}$ naj predstavlja slovensko abecedo, kjer je $A=0, B=1, ... \check{Z}=24.$

A)

a) Imamo razpršilno tabelo velikosti m=7 in zgoščevalno funkcijo $h(k)=(p\cdot k)modm$, $kjer\ p=11$ in sovpadanje razrešujemo z veriženjem. V tabelo vstavite elemente s ključi P, O, D, A, T, E in K. Narišite dobljeno tabelo.

0	A		
1	P		
2	D	 —→ K	
3	T		
4	О		
5			
6	Е		

B)

b) V razpršilno tabelo želimo vstaviti elemente iz točke a) tako, da ne bo sovpadanj. Kolikšna je najmanjša možna velikost razpršene tabele m in koliko je tedaj p zgoščevalne funkcije h(k)? Opišite postopek iskanja rešitve!

m = 13

p = 11

Napisal sem program ki je šel čez vse smiselne možnosti in vrnil prvo ko se 2 inta ne ponovita. V mislih sem imel tudi da bi p dal necelo število ampak to sem dobil grde cifre in potem bi zaokrožil na gor in dobil pri m=7 in p=sqrt(5) zaokroženo navzgor vendar semr ajši dal »safe« rešitev z malo večjim m-jem

Namig: Čim manjši m boste poiskali, več točk dobite.

c) Na predavanjih smo si pogledali razpršilne tabele, kjer smo sovpadanja razreševali z veriženjem ali z odprtim naslavljanjem. Eden drugačnih način razprševanja je **Cuckoo hashing**, ki hkrati uporablja več tabel (podobno kot Bloomovi filtri). Najprej poiščite opis kukavičjega razprševanja in ga nato uporabite. Pri tem uporabite funkciji $h_1(k) = kmodm$ in $h_2(k) = km modm$, kjer je m = 5 velikost posameznih tabel. V takšno podatkovno strukturo vstavite naslednje elemente (v vrstnem redu kot so zapisani): 7, 9, 12, 11, 3, 17, 1, 23, 10 in 8.

Po vsaki operaciji narišite obe tabeli.

Najlažje je reči sam pogelj tutoriale...

Insert(7)

Insert(9)

7	
9	

Insert(12)

	7
12	
9	

Insert(11)

11	7
12	
9	

Insert(3)

11	7
12	
3	
9	

Insert(17)

11	7
17	12
3	
9	

$\mathit{Insert}(1)$

1	7
12	11
3	17
9	

Insert(23)

	3
1	7
12	11
23	17
9	

Insert(10)

10	3
1	7
12	11
23	17
9	

Insert(8)

10	3
1	7
12	11
8	17
9	23