高等数学公式

A STA

导数公式:

$$(tgx)' = \sec^2 x$$

$$(ctgx)' = -\csc^2 x$$

$$(sec x)' = \sec x \cdot tgx$$

$$(arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$$

$$(csc x)' = -\csc x \cdot ctgx$$

$$(arctgx)' = \frac{1}{1 + x^2}$$

$$(arctgx)' = \frac{1}{1 + x^2}$$

$$(arcctgx)' = -\frac{1}{1 + x^2}$$

基本积分表:

$$\int tgx dx = -\ln|\cos x| + C$$

$$\int ctgx dx = \ln|\sin x| + C$$

$$\int \sec x dx = \ln|\sec x + tgx| + C$$

$$\int \csc x dx = \ln|\csc x - ctgx| + C$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \frac{x - a}{x + a} + C$$

$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \frac{a + x}{a - x} + C$$

$$\int \frac{dx}{a^2 - x^2} = \arcsin \frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{x^2 + x^2}} = \arcsin \frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{x^2 + x^2}} = \arcsin \frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{x^2 + x^2}} = \arcsin \frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{x^2 + x^2}} = \ln(x + \sqrt{x^2 + x^2}) + C$$

$$I_{n} = \int_{0}^{\frac{\pi}{2}} \sin^{n} x dx = \int_{0}^{\frac{\pi}{2}} \cos^{n} x dx = \frac{n-1}{n} I_{n-2}$$

$$\int \sqrt{x^{2} + a^{2}} dx = \frac{x}{2} \sqrt{x^{2} + a^{2}} + \frac{a^{2}}{2} \ln(x + \sqrt{x^{2} + a^{2}}) + C$$

$$\int \sqrt{x^{2} - a^{2}} dx = \frac{x}{2} \sqrt{x^{2} - a^{2}} - \frac{a^{2}}{2} \ln|x + \sqrt{x^{2} - a^{2}}| + C$$

$$\int \sqrt{a^{2} - x^{2}} dx = \frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \arcsin \frac{x}{a} + C$$

三角函数的有理式积分:

$$\sin x = \frac{2u}{1+u^2}$$
, $\cos x = \frac{1-u^2}{1+u^2}$, $u = tg\frac{x}{2}$, $dx = \frac{2du}{1+u^2}$

一些初等函数:

双曲正弦:
$$shx = \frac{e^x - e^{-x}}{2}$$

双曲余弦: $chx = \frac{e^x + e^{-x}}{2}$
双曲正切: $thx = \frac{shx}{chx} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$
 $arshx = \ln(x + \sqrt{x^2 + 1})$
 $archx = \pm \ln(x + \sqrt{x^2 - 1})$
 $arthx = \frac{1}{2} \ln \frac{1+x}{1-x}$

两个重要极限:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e = 2.718281828459045...$$

三角函数公式:

• 诱导公式:

函数 角 A	sin	cos	tg	ctg
-α	-sina	cosα	-tga	-ctga
90°-α	cosa	sinα	ctga	tga
90°+α	cosa	-sina	-ctga	-tga
180°-α	sinα	-cosα	-tga	-ctga
180°+α	-sina	-cosa	tga	ctga
270°-α	-cosα	-sina	ctga	tgα
270°+α	-cosα	sinα	-ctga	-tga
360°-α	-sina	cosa	-tga	-ctga
360°+α	sinα	cosa	tgα	ctga

• 和差角公式:

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

$$tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha \cdot tg\beta}$$

$$ctg(\alpha \pm \beta) = \frac{ctg\alpha \cdot ctg\beta \mp 1}{ctg\beta \pm ctg\alpha}$$

• 和差化积公式:

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2\cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = 2\sin \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$

• 倍角公式:

 $\sin 2\alpha = 2\sin \alpha \cos \alpha$

$$\cos 2\alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha = \cos^2 \alpha - \sin^2 \alpha \qquad \sin^2 \alpha$$

$$\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$$

$$\cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha$$

$$ctg2\alpha = \frac{ctg^2\alpha - 1}{2ctg\alpha}$$

$$tg2\alpha = \frac{2tg\alpha}{1 - tg^2\alpha}$$

$$tg3\alpha = \frac{3tg\alpha - tg^3\alpha}{1 - 3tg^2\alpha}$$

• 半角公式:

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$$

$$tg\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = \frac{1-\cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1+\cos\alpha}$$

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$$

$$\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$

$$tg\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = \frac{1-\cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1+\cos\alpha}$$

$$ctg\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}} = \frac{1+\cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1-\cos\alpha}$$

• 正弦定理:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
 • 余弦定理: $c^2 = a^2 + b^2 - 2ab\cos C$

• 余弦定理:
$$c^2 = a^2 + b^2 - 2ab\cos C$$

• **反三角函数性质:**
$$\arcsin x = \frac{\pi}{2} - \arccos x$$
 $\operatorname{arctgx} = \frac{\pi}{2} - \operatorname{arcctgx}$

$$arctgx = \frac{\pi}{2} - arcctgx$$

高阶导数公式——莱布尼兹(Leibniz)公式:

$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(n-k)} v^{(k)}$$

$$= u^{(n)}v + nu^{(n-1)}v' + \frac{n(n-1)}{2!}u^{(n-2)}v'' + \dots + \frac{n(n-1)\cdots(n-k+1)}{k!}u^{(n-k)}v^{(k)} + \dots + uv^{(n)}$$

中值定理与导数应用:

拉格朗日中值定理: $f(b) - f(a) = f'(\xi)(b-a)$

柯西中值定理:
$$\frac{f(b)-f(a)}{F(b)-F(a)} = \frac{f'(\xi)}{F'(\xi)}$$

当F(x)=x时,柯西中值定理就是拉格朗日中值定理。

曲率:

弧微分公式: $ds = \sqrt{1 + {y'}^2} dx$,其中 $y' = tg\alpha$

平均曲率: $\overline{K} = \left| \frac{\Delta \alpha}{\Delta s} \right| . \Delta \alpha : \text{从M点到M'点,切线斜率的倾角变化量;} \Delta s: MM 弧长。$

M点的曲率:
$$K = \lim_{\Delta s \to 0} \left| \frac{\Delta \alpha}{\Delta s} \right| = \left| \frac{d\alpha}{ds} \right| = \frac{|y''|}{\sqrt{(1+y'^2)^3}}$$
.

直线: K = 0;

半径为a的圆: $K = \frac{1}{a}$.

定积分的近似计算:

矩形法:
$$\int_{a}^{b} f(x) \approx \frac{b-a}{n} (y_0 + y_1 + \dots + y_{n-1})$$

梯形法: $\int_{a}^{b} f(x) \approx \frac{b-a}{n} [\frac{1}{2} (y_0 + y_n) + y_1 + \dots + y_{n-1}]$
抛物线法: $\int_{a}^{b} f(x) \approx \frac{b-a}{3n} [(y_0 + y_n) + 2(y_2 + y_4 + \dots + y_{n-2}) + 4(y_1 + y_3 + \dots + y_{n-1})]$

定积分应用相关公式:

功: $W = F \cdot s$

水压力: $F = p \cdot A$

引力: $F = k \frac{m_1 m_2}{r^2}$, k为引力系数

函数的平均值: $\overline{y} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$

均方根:
$$\sqrt{\frac{1}{b-a}\int_a^b f^2(t)dt}$$

空间解析几何和向量代数:

空间2点的距离:
$$d = |M_1 M_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$
 向量在轴上的投影: $\Pr[j_u \overrightarrow{AB}] = |\overrightarrow{AB}| \cdot \cos \varphi, \varphi = \overrightarrow{AB} = u$ 轴的夹角。

$$\Pr j_u(\bar{a}_1 + \bar{a}_2) = \Pr j\bar{a}_1 + \Pr j\bar{a}_2$$

$$\bar{a} \cdot \bar{b} = |\bar{a}| \cdot |\bar{b}| \cos \theta = a_x b_x + a_y b_y + a_z b_z$$
,是一个数量,

两向量之间的夹角:
$$\cos\theta = \frac{a_x b_x + a_y b_y + a_z b_z}{\sqrt{a_x^2 + a_y^2 + a_z^2} \cdot \sqrt{b_x^2 + b_y^2 + b_z^2}}$$

$$\bar{c} = \bar{a} \times \bar{b} = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}, |\bar{c}| = |\bar{a}| \cdot |\bar{b}| \sin \theta.$$
例:线速度: $\bar{v} = \bar{w} \times \bar{r}$.

向量的混合积:
$$[\bar{a}\bar{b}\bar{c}] = (\bar{a}\times\bar{b})\cdot\bar{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = |\bar{a}\times\bar{b}|\cdot|\bar{c}|\cos\alpha,\alpha$$
为锐角时,

代表平行六面体的体积。

平面的方程:

1、点法式:
$$A(x-x_0)+B(y-y_0)+C(z-z_0)=0$$
, 其中 $\bar{n}=\{A,B,C\},M_0(x_0,y_0,z_0)$

$$2$$
、一般方程: $Ax + By + Cz + D = 0$

3、截距世方程:
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

平面外任意一点到该平面的距离:
$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

空间直线的方程:
$$\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p} = t$$
, 其中 $\bar{s} = \{m,n,p\}$; 参数方程: $\begin{cases} x = x_0 + mt \\ y = y_0 + nt \\ z = z_0 + pt \end{cases}$

二次曲面:

1、椭球面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

2、抛物面:
$$\frac{x^2}{2p} + \frac{y^2}{2q} = z, (p, q$$
同号)

3、双曲面:

单叶双曲面:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

双叶双曲面:
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1(3)$$
 等面)

多元函数微分法及应用

全微分:
$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$
 $du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz$

全微分的近似计算: $\Delta z \approx dz = f_x(x,y)\Delta x + f_y(x,y)\Delta y$

多元复合函数的求导法:

$$z = f[u(t), v(t)] \qquad \frac{dz}{dt} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial t} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial t}$$
$$z = f[u(x, y), v(x, y)] \qquad \frac{\partial z}{\partial r} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial r} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial r}$$

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy \qquad dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

隐函数的求导公式:

隐函数
$$F(x,y) = 0$$
, $\frac{dy}{dx} = -\frac{F_x}{F_y}$, $\frac{d^2y}{dx^2} = \frac{\partial}{\partial x}(-\frac{F_x}{F_y}) + \frac{\partial}{\partial y}(-\frac{F_x}{F_y}) \cdot \frac{dy}{dx}$

隐函数
$$F(x, y, z) = 0$$
, $\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$, $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$

隐函数方程组:
$$\begin{cases} F(x,y,u,v) = 0 \\ G(x,y,u,v) = 0 \end{cases} J = \frac{\partial (F,G)}{\partial (u,v)} = \begin{vmatrix} \frac{\partial F}{\partial u} & \frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \end{vmatrix} = \begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}$$

$$\frac{\partial u}{\partial x} = -\frac{1}{J} \cdot \frac{\partial (F,G)}{\partial (x,v)} \qquad \qquad \frac{\partial v}{\partial x} = -\frac{1}{J} \cdot \frac{\partial (F,G)}{\partial (u,x)}$$

$$\frac{\partial u}{\partial y} = -\frac{1}{J} \cdot \frac{\partial (F,G)}{\partial (y,v)} \qquad \qquad \frac{\partial v}{\partial y} = -\frac{1}{J} \cdot \frac{\partial (F,G)}{\partial (u,y)}$$

微分法在几何上的应用:

空间曲线
$$\begin{cases} x = \varphi(t) \\ y = \psi(t)$$
在点 $M(x_0, y_0, z_0)$ 处的切线方程: $\frac{x - x_0}{\varphi'(t_0)} = \frac{y - y_0}{\psi'(t_0)} = \frac{z - z_0}{\omega'(t_0)} \end{cases}$

在点M处的法平面方程: $\varphi'(t_0)(x-x_0)+\psi'(t_0)(y-y_0)+\omega'(t_0)(z-z_0)=0$

若空间曲线方程为:
$$\begin{cases} F(x,y,z)=0\\ G(x,y,z)=0 \end{cases}$$
,则切向量 $\bar{T}=\{\begin{vmatrix} F_y & F_z\\ G_y & G_z \end{vmatrix}, \begin{vmatrix} F_z & F_x\\ G_z & G_x \end{vmatrix}, \begin{vmatrix} F_x & F_y\\ G_x & G_y \end{vmatrix}\}$

曲面F(x,y,z) = 0上一点 $M(x_0,y_0,z_0)$,则:

- 1、过此点的法向量: $\bar{n} = \{F_x(x_0, y_0, z_0), F_y(x_0, y_0, z_0), F_z(x_0, y_0, z_0)\}$
- 2、过此点的切平面方程: $F_x(x_0,y_0,z_0)(x-x_0)+F_y(x_0,y_0,z_0)(y-y_0)+F_z(x_0,y_0,z_0)(z-z_0)=0$

3、过此点的法线方程:
$$\frac{x-x_0}{F_x(x_0,y_0,z_0)} = \frac{y-y_0}{F_y(x_0,y_0,z_0)} = \frac{z-z_0}{F_z(x_0,y_0,z_0)}$$

方向导数与梯度:

函数z = f(x,y)在一点p(x,y)沿任一方向l的方向导数为: $\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x}\cos\varphi + \frac{\partial f}{\partial y}\sin\varphi$ 其中 φ 为x轴到方向l的转角。

函数
$$z = f(x, y)$$
在一点 $p(x, y)$ 的梯度: $\operatorname{grad} f(x, y) = \frac{\partial f}{\partial x} \overline{i} + \frac{\partial f}{\partial y} \overline{j}$

它与方向导数的关系是: $\frac{\partial f}{\partial l} = \operatorname{grad} f(x,y) \cdot \bar{e}$,其中 $\bar{e} = \cos \varphi \cdot \bar{i} + \sin \varphi \cdot \bar{j}$,为l方向上的单位向量。

$$\therefore \frac{\partial f}{\partial l}$$
是grad $f(x,y)$ 在 l 上的投影。

多元函数的极值及其求法:

设
$$f_x(x_0,y_0) = f_y(x_0,y_0) = 0$$
, 令: $f_{xx}(x_0,y_0) = A$, $f_{xy}(x_0,y_0) = B$, $f_{yy}(x_0,y_0) = C$
$$\begin{cases} AC - B^2 > 0 \text{时}, \begin{cases} A < 0, (x_0,y_0) \text{为极大值} \\ A > 0, (x_0,y_0) \text{为极小值} \end{cases} \\ AC - B^2 < 0 \text{时}, \end{cases}$$
 无极值
$$AC - B^2 = 0 \text{时}, \qquad \text{不确定}$$

重积分及其应用:

$$\iint\limits_{D} f(x,y)dxdy = \iint\limits_{D'} f(r\cos\theta, r\sin\theta)rdrd\theta$$

曲面
$$z = f(x, y)$$
的面积 $A = \iint_D \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dxdy$

平面薄片的重心:
$$\bar{x} = \frac{M_x}{M} = \frac{\iint\limits_{D} x \rho(x,y) d\sigma}{\iint\limits_{D} \rho(x,y) d\sigma}, \qquad \bar{y} = \frac{M_y}{M} = \frac{\iint\limits_{D} y \rho(x,y) d\sigma}{\iint\limits_{D} \rho(x,y) d\sigma}$$

平面薄片的转动惯量: 对于x轴 $I_x = \iint_D y^2 \rho(x,y) d\sigma$, 对于y轴 $I_y = \iint_D x^2 \rho(x,y) d\sigma$

平面薄片(位于xoy平面)对z轴上质点M(0,0,a),(a>0)的引力: $F=\{F_x,F_y,F_z\},$ 其中:

$$F_{x} = f \iint_{D} \frac{\rho(x, y)xd\sigma}{(x^{2} + y^{2} + a^{2})^{\frac{3}{2}}}, \qquad F_{y} = f \iint_{D} \frac{\rho(x, y)yd\sigma}{(x^{2} + y^{2} + a^{2})^{\frac{3}{2}}}, \qquad F_{z} = -fa \iint_{D} \frac{\rho(x, y)xd\sigma}{(x^{2} + y^{2} + a^{2})^{\frac{3}{2}}}$$

柱面坐标和球面坐标:

柱面坐标:
$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta, & \iiint_{\Omega} f(x, y, z) dx dy dz = \iiint_{\Omega} F(r, \theta, z) r dr d\theta dz, \\ z = z & \text{其中, } F(r, \theta, z) = f(r\cos\theta, r\sin\theta, z) \end{cases}$$

其中:
$$F(r,\theta,z) = f(r\cos\theta,r\sin\theta,z)$$

球面坐标:
$$\begin{cases} x = r\sin\varphi\cos\theta \\ y = r\sin\varphi\sin\theta, & dv = rd\varphi \cdot r\sin\varphi \cdot d\theta \cdot dr = r^2\sin\varphi dr d\varphi d\theta \end{cases}$$
$$z = r\cos\varphi$$

$$\iiint_{\Omega} f(x,y,z) dx dy dz = \iiint_{\Omega} F(r,\varphi,\theta) r^{2} \sin\varphi dr d\varphi d\theta = \int_{0}^{2\pi} d\theta \int_{0}^{\pi} d\varphi \int_{0}^{r(\varphi,\theta)} F(r,\varphi,\theta) r^{2} \sin\varphi dr$$
重心: $\overline{x} = \frac{1}{M} \iiint_{\Omega} x \rho dv$, $\overline{y} = \frac{1}{M} \iiint_{\Omega} y \rho dv$, $\overline{z} = \frac{1}{M} \iiint_{\Omega} z \rho dv$, 其中 $M = \overline{x} = \iiint_{\Omega} \rho dv$
转动惯量: $I_{x} = \iiint_{\Omega} (y^{2} + z^{2}) \rho dv$, $I_{y} = \iiint_{\Omega} (x^{2} + z^{2}) \rho dv$, $I_{z} = \iiint_{\Omega} (x^{2} + y^{2}) \rho dv$

曲线积分:

第一类曲线积分(对弧长的曲线积分):

设
$$f(x,y)$$
在 L 上连续, L 的参数方程为: $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ $(\alpha \le t \le \beta)$,则:

$$\int\limits_{L} f(x,y)ds = \int\limits_{\alpha}^{\beta} f[\varphi(t),\psi(t)] \sqrt{{\varphi'}^{2}(t) + {\psi'}^{2}(t)} dt \quad (\alpha < \beta) \qquad \text{特殊情况:} \begin{cases} x = t \\ y = \varphi(t) \end{cases}$$

第二类曲线积分(对坐标的曲线积分):

设
$$L$$
的参数方程为 $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$,则:

$$\int\limits_{L} P(x,y)dx + Q(x,y)dy = \int\limits_{\alpha}^{\beta} \{P[\varphi(t),\psi(t)]\varphi'(t) + Q[\varphi(t),\psi(t)]\psi'(t)\}dt$$

两类曲线积分之间的关系: $\int_L P dx + Q dy = \int_L (P \cos \alpha + Q \cos \beta) ds$,其中 α 和 β 分别为 L上积分起止点处切向量的方向角。

格林公式:
$$\iint_{D} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy = \oint_{L} P dx + Q dy$$
格林公式:
$$\iint_{D} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy = \oint_{L} P dx + Q dy$$

当
$$P = -y, Q = x$$
, 即: $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 2$ 时,得到 D 的面积: $A = \iint_D dx dy = \frac{1}{2} \oint_I x dy - y dx$

·平面上曲线积分与路径无关的条件:

- 1、G是一个单连通区域;
- 2、P(x,y),Q(x,y)在G内具有一阶连续偏导数,且 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ 。注意奇点,如(0,0),应减去对此奇点的积分,注意方向相反!

·二元函数的全微分求积:

在
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
时, $Pdx + Qdy$ 才是二元函数 $u(x, y)$ 的全微分,其中:

$$u(x,y) = \int_{(x_0,y_0)}^{(x,y)} P(x,y)dx + Q(x,y)dy$$
, 通常设 $x_0 = y_0 = 0$.

曲面积分:

高斯公式:

对面积的曲面积分:
$$\iint_{\Sigma} f(x,y,z)ds = \iint_{D_{xy}} f[x,y,z(x,y)] \sqrt{1+z_x^2(x,y)+z_y^2(x,y)} dxdy$$
 对坐标的曲面积分:
$$\iint_{\Sigma} P(x,y,z) dydz + Q(x,y,z) dzdx + R(x,y,z) dxdy, \quad \text{其中:}$$

$$\iint_{\Sigma} R(x,y,z) dxdy = \pm \iint_{D_{xy}} R[x,y,z(x,y)] dxdy, \quad \text{取曲面的上侧时取正号:}$$

$$\iint_{\Sigma} P(x,y,z) dydz = \pm \iint_{D_{xy}} P[x(y,z),y,z] dydz, \quad \text{取曲面的前侧时取正号:}$$

$$\iint_{\Sigma} Q(x,y,z) dzdx = \pm \iint_{D_{xy}} Q[x,y(z,x),z] dzdx, \quad \text{取曲面的右侧时取正号:}$$
 两类曲面积分之间的关系:
$$\iint_{\Sigma} Pdydz + Qdzdx + Rdxdy = \iint_{\Sigma} (P\cos\alpha + Q\cos\beta + R\cos\gamma) ds$$

$$\iiint_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) dv = \bigoplus_{\Sigma} P dy dz + Q dz dx + R dx dy = \bigoplus_{\Sigma} (P \cos \alpha + Q \cos \beta + R \cos \gamma) ds$$

高斯公式的物理意义 ——通量与散度:

散度: $\operatorname{div} \bar{v} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$,即: 单位体积内所产生 的流体质量,若 $\operatorname{div} \bar{v} < 0$,则为养

通量:
$$\iint_{\Sigma} \bar{A} \cdot \bar{n} ds = \iint_{\Sigma} A_n ds = \iint_{\Sigma} (P \cos \alpha + Q \cos \beta + R \cos \gamma) ds$$
,

因此,高斯公式又可写 成:
$$\iint_{\Omega} \operatorname{div} \overline{A} dv = \iint_{\Sigma} A_n ds$$

斯托克斯公式——曲线积分与曲面积分的关系:

$$\iint\limits_{\Sigma}(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z})dydz+(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x})dzdx+(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})dxdy=\oint\limits_{\Gamma}Pdx+Qdy+Rdz$$

上式左端又可写成:
$$\iint_{\Sigma} \frac{dydz}{\partial x} \frac{dzdx}{\partial y} \frac{dxdy}{\partial z} = \iint_{\Sigma} \frac{\cos \alpha}{\partial x} \frac{\cos \beta}{\partial y} \frac{\cos \gamma}{\partial z}$$

空间曲线积分与路径无关的条件: $\frac{\partial R}{\partial y} = \frac{\partial Q}{\partial z}$, $\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}$, $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$

旋度:
$$rot\overline{A} = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$

向量场 \bar{A} 沿有向闭曲线 Γ 的环流量: $\int_{\Gamma} Pdx + Qdy + Rdz = \int_{\Gamma} \bar{A} \cdot \bar{t} ds$

常数项级数:

等比数列:
$$1+q+q^2+\cdots+q^{n-1}=\frac{1-q^n}{1-q}$$

等差数列:
$$1+2+3+\cdots+n=\frac{(n+1)n}{2}$$

调和级数:
$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
是发散的

级数审敛法:

1、正项级数的审敛法——根植审敛法(柯西判别法):

设:
$$\rho = \lim_{n \to \infty} \sqrt[n]{u_n}$$
, 则 $\begin{cases} \rho < 1$ 时,级数收敛 $\rho > 1$ 时,级数发散 $\rho = 1$ 时,不确定

2、比值审敛法:

设:
$$\rho = \lim_{n \to \infty} \frac{U_{n+1}}{U_n}$$
, 则 $\begin{cases} \rho < 1$ 时,级数收敛 $\rho > 1$ 时,级数发散 $\rho = 1$ 时,不确定

3、定义法:

$$s_n = u_1 + u_2 + \dots + u_n$$
; $\lim_{n \to \infty} s_n$ 存在,则收敛;否则发散。

交错级数 $u_1 - u_2 + u_3 - u_4 + \cdots$ (或 $-u_1 + u_2 - u_3 + \cdots, u_n > 0$)的审敛法——莱布尼兹定理:

如果交错级数满足 $\begin{cases} u_n \geq u_{n+1} \\ \lim_{n \to \infty} u_n = 0 \end{cases}$ 那么级数收敛且其和 $s \leq u_1$,其余项 r_n 的绝对值 $|r_n| \leq u_{n+1}$ 。

绝对收敛与条件收敛:

 $(1)u_1 + u_2 + \cdots + u_n + \cdots$, 其中 u_n 为任意实数;

$$(2)|u_1|+|u_2|+|u_3|+\cdots+|u_n|+\cdots$$

如果(2)收敛,则(1)肯定收敛,且称为绝对收敛级数;

如果(2)发散,而(1)收敛,则称(1)为条件收敛级数。

调和级数:
$$\sum_{n=1}^{\infty}$$
发散,而 $\sum_{n=1}^{\infty}$ (-1)ⁿ收敛;

级数:
$$\sum \frac{1}{n^2}$$
收敛;

$$p$$
级数: $\sum \frac{1}{n^p}$ $\begin{cases} p \le 1 \text{ 时发散} \\ p > 1 \text{时收敛} \end{cases}$

幂级数:

$$1+x+x^2+x^3+\cdots+x''+\cdots$$
 $\begin{vmatrix} |x|<1$ 时,收敛于 $\frac{1}{1-x}$ $|x|\ge1$ 时,发散

对于级数 $(3)a_0 + a_1x + a_2x^2 + \cdots + a_nx^n + \cdots$, 如果它不是仅在原点收敛,也不是在全

数轴上都收敛,则必存在R,使|x| < R时收敛 |x| > R时发散,其中R称为收敛半径。 |x| = R时不定

求收敛半径的方法: 设
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \rho$$
, 其中 a_n , a_{n+1} 是(3)的系数,则 $\left(\begin{array}{c} \rho \neq 0$ 时, $R = \frac{1}{\rho} \\ \rho = 0$ 时, $R = +\infty \\ \rho = +\infty$ 时, $R = 0$

函数展开成幂级数:

函数展开成泰勒级数:
$$f(x) = f(x_0)(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + \dots$$

余项:
$$R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}, f(x)$$
可以展开成泰勒级数的充要条件是: $\lim_{n\to\infty} R_n = 0$

$$x_0 = 0$$
时即为麦克劳林公式: $f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$

一些函数展开成幂级数:

$$(1+x)^{m} = 1 + mx + \frac{m(m-1)}{2!}x^{2} + \dots + \frac{m(m-1)\cdots(m-n+1)}{n!}x^{n} + \dots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + \dots$$

$$(-\infty < x < +\infty)$$

欧拉公式:

三角级数:

$$f(t) = A_0 + \sum_{n=1}^{\infty} A_n \sin(n\omega t + \varphi_n) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

其中,
$$a_0 = aA_0$$
, $a_n = A_n \sin \varphi_n$, $b_n = A_n \cos \varphi_n$, $\omega t = x$.

正交性: $1,\sin x,\cos x,\sin 2x,\cos 2x...\sin nx,\cos nx...$ 任意两个不同项的乘积在[$-\pi,\pi$] 上的积分=0。

傅立叶级数:

周期为21的周期函数的傅立叶级数:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi x}{l} + b_n \sin \frac{n\pi x}{l}), \quad$$
周期 = 2 l
其中
$$\begin{cases} a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx & (n = 0,1,2\cdots) \\ b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx & (n = 1,2,3\cdots) \end{cases}$$

微分方程的相关概念:

一阶微分方程: y' = f(x,y) 或 P(x,y)dx + Q(x,y)dy = 0 可分离变量的微分方程: 一阶微分方程可以化为g(y)dy = f(x)dx的形式,解法: $\int g(y)dy = \int f(x)dx$ 得: G(y) = F(x) + C称为隐式通解。

齐次方程: 一阶微分方程可以写成 $\frac{dy}{dx} = f(x,y) = \varphi(x,y)$, 即写成 $\frac{y}{x}$ 的函数, 解法:

设 $u = \frac{y}{x}$,则 $\frac{dy}{dx} = u + x \frac{du}{dx}$, $u + \frac{du}{dx} = \varphi(u)$, $\frac{dx}{x} = \frac{du}{\varphi(u) - u}$ 分离变量,积分后将 $\frac{y}{x}$ 代替u,即得齐次方程通解。

一阶线性微分方程:

全微分方程:

如果P(x,y)dx + Q(x,y)dy = 0中左端是某函数的全微分方程,即:

$$du(x,y) = P(x,y)dx + Q(x,y)dy = 0$$
, $\sharp \div : \frac{\partial u}{\partial x} = P(x,y), \frac{\partial u}{\partial y} = Q(x,y)$

 $\therefore u(x,y) = C$ 应该是该全微分方程的通解。

二阶微分方程:

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = f(x), \begin{cases} f(x) \equiv 0$$
的为齐次
$$f(x) \neq 0$$
的为非齐次

二阶常系数齐次线性微分方程及其解法:

(*)y'' + py' + qy = 0, 其中p,q为常数; 求解步骤:

- 1、写出特征方程: $(\Delta)r^2 + pr + q = 0$,其中 r^2 ,r的系数及常数项恰好是(*)式中y'',y',y的系数;
- 2、求出(Δ)式的两个根 r_1, r_2

3、根据 r_1, r_2 的不同情况,按下表写出(*)式的通解:

r_1 , r_2 的形式	(*)式的通解	
两个不相等实根 $(p^2-4q>0)$	$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$	
两个相等实根 $(p^2-4q=0)$	$y = (c_1 + c_2 x)e^{r_1 x}$	
一对共轭复根 $(p^2-4q<0)$	$y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$	
$r_1 = \alpha + i\beta, r_2 = \alpha - i\beta$ $\alpha = -\frac{p}{2}, \beta = \frac{\sqrt{4q - p^2}}{2}$		

二阶常系数非齐次线性微分方程

$$y'' + py' + qy = f(x)$$
, p,q 为常数

$$f(x) = e^{\lambda x} P_m(x)$$
型, λ 为常数;

$$f(x) = e^{\lambda x} [P_{I}(x) \cos \omega x + P_{n}(x) \sin \omega x]$$