МИКРОСХЕМА ИНТЕГРАЛЬНАЯ 1892ВМ14Я РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

Предварительная версия

Последнее изменение: 31 марта 2014 г.

ПЕРЕЧЕНЬ ПРИНЯТЫХ СОКРАЩЕНИЙ

- СБИС сверхбольшая интегральная схема;
- СФ-блок сложно-функциональный блок (ядро) в СБИС;
- ЦПОС цифровой процессор обработки сигналов;
- DSP (Digital Signal Processing) сопроцессор цифровой обработки сигналов с фиксированной точкой (далее может называться также ЦПОС – цифровой процессор обработки сигналов);
- DMA контроллер прямого доступа в память;
- UART универсальный асинхронный порт;
- XRAM, YRAM памяти данных DSP;
- PRAM память программ DSP;
- AGU адресный генератор;
- РСU устройство программного управления;
- PAG генератор адреса программ;
- PDC программный дешифратор;
- RF регистровый файл;
- ALU арифметическое устройство;
- ALUCtr управление ALU;
- XDB0 XDB3, GDB, PDB шина данных DSP;
- ХАВ, YАВ, РАВ адресные шины DSP;
- M, S, A, L арифметические узлы ALU DSP;
- СнК "система на кристалле";
- IP ядро (intellectual property) или СФ (сложно-функциональный) блок;
- GPS Global Position System
- ГЛОНАСС ГЛОбальная НАвигационная Спутниковая Система
- ПСП Псевдо-Случайная Последовательность
- ПЧ Промежуточная Частота
- FIFO First In First Out
- АЦП Аналого-Цифровой Преобразователь
- ГНСС Глобальная Навигационная Спутниковая Система
- ЦП (MPU) Центральный Процессор
- МКК (МСС) МногоКанальный Коррелятор
- АРУ Автоматическая Регулировка Уровня

ОГЛАВЛЕНИЕ

1.	ВВЕДЕНИЕ	5
1	Порядок использования данного документа	5
1		
1	ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ И ФУНКЦИОНАЛЬНЫЕ ВОЗМОЖНОСТИ	I
M	икросхемы сигнального микропроцессора 1892BM14Я (MCom-02)	
	1.3.1 Основные технические параметры микросхемы:	
	1.3.2 Многоядерная система центрального процессора Cortex-A9 (MPU)	
	!.3.3 Цифровой сигнальный процессор (DSP)	7
	!.3.4 Многоканальный коррелятор (MCC)	
	!.3.5 Ядро видеоакселератора VELCore-01 (VPU)	
	!.3.6 Ядро графического акселератора ARM MALI-300 (GPU)	
	1.3.7 Порт внешней памяти NOR/SRAM (NORMPORT)	
	!.3.8 Порт внешней памяти NAND (NANDMPORT)	
	!.3.9 Порты внешней памяти DDR3 (DDRMC0,1)	
	1.3.10 Система обмена данными в микросхеме	
	!.3.11 Периферийные устройства	
	1.3.12 Управление энергопотреблением	
	1.3.13 Возможности микросхемы по отладке программ	
1	Структурная схема	
1		
2.	СИСТЕМНАЯ ОРГАНИЗАЦИЯ МИКРОСХЕМЫ	15
2	Карта памяти микросхемы	15
2	Система коммутации микросхемы	17
2		
	2.3.1 Программная модель	
2		
	2.4.1 Введение	
	2.4.2 Функциональное описание	
	2.4.3 Программная модель	
2	Уменьшение потребляемой мощности микросхемы и контроллер PM	
	2.5.1 Введение	
	2.5.2 Обзор контроллера РМСТR	37
	2.5.3 Режимы работы микросхемы	
	2.5.4 Программная модель	
2	Б КОНТРОЛЛЕРЫ ПРЕРЫВАНИЙ В МИКРОСХЕМЕ	
	2.6.1 Обзор	
	2.6.2 Интеграция	
	2.6.3 Отображение прерываний	
2	1 1 1	
2		
2		
3.	ОПИСАНИЕ ВНЕШНИХ ВЫВОДОВ	59
3	Цифровые выводы	60
3		

4.	ИСТОРИЯ ИЗМЕНЕНИЙ95

1. ВВЕДЕНИЕ

1.1 Порядок использования данного документа

В данном документе рассмотрены вопросы архитектуры и функционирования микросхемы. Приведены ее электрические параметры, а также чертеж корпуса и назначение выводов. Рассмотрены вопросы типового включения микросхемы в систему и даны рекомендации по ее программированию.

Настоящая документация охраняется действующим законодательством Российской Федерации об авторском праве и смежных правах, в частности, законом Российской Федерации «Об авторском праве и смежных правах». ОАО НПЦ «ЭЛВИС» является единственным правообладателем исключительных авторских прав на настоящую документацию.

Настоящую документацию, не иначе как по предварительному согласию ОАО НПЦ «ЭЛ-ВИС», запрещается:

- воспроизводить, т.е. изготавливать один или более экземпляров настоящей документации, ее части, в любой форме, любым способом;
- сдавать в прокат;
- публично показывать, исполнять или сообщать для всеобщего сведения,
- переводить;
- переделывать или другим образом перерабатывать (дорабатывать).

ОАО НПЦ «ЭЛВИС» оставляет за собой право в любой момент вносить изменения (дополнения) в настоящую документацию без предварительного уведомления о таком изменении (дополнении).

ОАО НПЦ «ЭЛВИС» не несет ответственности за вред, причиненный при использовании настоящей документации.

Передача настоящей документации не означает передачи каких-либо авторских прав ОАО НПЦ «ЭЛВИС» на нее.

Возникновение каких-либо прав на материальный носитель, на котором передается настоящая документация, не влечет передачи каких-либо авторских прав на данную документацию

Все указанные в настоящей документации товарные знаки принадлежат их владельцам.

1.2 Назначение

1.3 Основные технические параметры и функциональные возможности микросхемы сигнального микропроцессора 1892ВМ14Я (МСот-02)

1.3.1 Основные технические параметры микросхемы:

- Технология изготовления КМОП, 40 нм, LP (малопотребляющая технология);
- Диапазон рабочих температур от -60 до +85°C;
- Корпус HFC FBGA 1296;
- Тактовая частота микропроцессора не менее 500 МГц;
- Энергопотребление ядра микропроцессора не более 2,5 Вт;
- Архитектура многоядерная (до девяти процессорных ядер и ядер акселераторов) гетерогенная MIMD-архитектура на базе стандартных процессорных и специализированных ядер:
 - стандартная многопроцессорная система центрального процессора (MPU) в виде 2-ядерного когкрентного кластера ARM Cortex-A9 MPCore с SIMD сопроцессорами Neon;
 - два DSP-ядра, совместимых с линейкой "DELCore" с плавающей и фиксированной точкой нового поколения с возможностью управления ресурсами микросхемы и внешней памяти;
 - встроенное ядро аппаратно-программного графического акселератора ARM MALI-300;
 - два ядра аппаратно-программного видео акселератора "VELCore-01",
 - ядро многоканального ГЛОНАСС/GPS коррелятора;

Ниже приведены функциональные возможности микросхемы.

1.3.2 Многоядерная система центрального процессора Cortex-A9 (MPU)

Система центрального процессора включает в себя следующие блоки:

- Кластер Cortex-A9 MPCore
 - Два ядра центрального процессора Cortex-A9 (CPU)
 - Система инструкций ARMv7 ISA: стандартная система инструкций ARM плюс акселераторы Thumb-2, Jazelle RCT и Jazelle DBX.
 - SIMD сопроцессор Neon на каждом из CPU
 - Встроенный контроллер прерываний с поддержкой до 128 отдельный прерываний
 - Встроенный таймер общего назначения и сторожевой таймер для каждого СРU
 - Средства отладки и трассирования.
 - Кэш инструкций 32 КВ и кэш данных 32 КВ на каждом из СРИ
- 1 MB разделяемый кэш второго уровня L2

1.3.3 Цифровой сигнальный процессор (DSP)

В качестве отличительных особенностей цифрового сигнального процессора можно назвать:

- 2-ядерный DSP-кластер "DELcore-40" (Dual ELVEESs Core) симметричный мультипроцессор (СМП) из IP –библиотеки платформы "МУЛЬТИКОР", состоящий из двух DSP-ядер "ELcore-40", работающих на общем поле памяти данных;
- «Гарвардская» архитектура DSP-ядер с оригинальной системой инструкций;
- Набор инструкций, совмещающий процедуры обработки и пересылки;
- Одно- и двухтактное исполнение вычислительных команд;
- 7-ступенчатый конвейер по выполнению 32- и 64-разрядных инструкций;
- Расширенные возможности по динамическому диапазону обрабатываемых данных, позволяющие обрабатывать данные в 8/16/32—разрядных форматах с фиксированной точкой, плавающей точкой в стандарте IEEE754, либо программно в формате с плавающей точкой 32E16 (расширенный формат). Обеспечение при этом компромиссного выбора между точностью и производительностью. Аппаратные меры повышения точности и динамического диапазона (блочная плавающая точка; режим насыщения; инструкции преобразования форматов);
- Аппаратная поддержка программных циклов;
- Общий объём памяти программ и данных DSP-кластера 320 Кбайт;
- Подвижная граница между памятью программ и данных: память программ PRAM каждого DSP-ядра может иметь объем от 32 до 128 Кбайт, общая для 2-х DSP-ядер память данных XYRAM объемом от 64 до 256 Кбайт; при распределении памяти выделяемый объем памяти одинаков для обоих ядер;
- Механизм прерываний каждого DSP от всех внешних портов, в том числе и от портов MFBSP (тот же набор запросов на прерывания, что и в MPU);
- Доступ DSP-ядер ко всему адресному пространству микросхемы адресуемым регистрам и памяти;
- Встроенный кодер Хаффмана (JPEG) для более эффективного сжатия изображений;
- Встроенный в каждый DSP 32-разрядный интервальный таймер, работающий от частоты DSP;
- Максимальная пропускная способность коммутатора ядер с памятью 512 бит за такт:
- Максимальная скорость обмена внешних устройств с памятью кластера 64 бит за такт;
- Пиковая суммарная производительность DSP-кластера (на частоте 500 МГц):
- в формате плавающей точки (24e8, стандарт IEEE754): 9000 Моп/с. или 8000 GFLOPs, что соответствует 16 операциям с плавающей точкой (IEEE 754) за 1 такт;
- в формате фиксированной точки (int32): 8000 Моп/с, что соответствует 16 32битным операциям с фиксированной точкой за 1 такт;
- в формате фиксированной точки (int16): 32000 Моп/с, что соответствует 64 16битным операциям с фиксированной точкой за 1 такт;
- в формате фиксированной точки (int8): 48000 Моп/с, что соответствует 96 байтным операциям с фиксированной точкой за 1 такт.

1.3.4 Многоканальный коррелятор (МСС)

В качестве отличительных особенностей многоканального коррелятора (МКК или МСС) можно назвать:

- 24 следящих каналов ГЛОНАСС/GPS повышенной точности, слежение за GPS L1, GLO L1, GLO L2 при помощи 6 подканалов, отстроенных друг от 4 следящих каналов ГЛОНАСС/GPS повышенной точности, слежение за GPS L1, GLO L1, GLO L2 при помощи 6 подканалов, отстроенных друг от друга на определенное количество отсчетов данных; входные данные две компоненты по 2 бита, накопленные на длительности от 1 до 16 мс, тактовая частота 15-40 МГц;
- 16 следящих каналов ГЛОНАСС/GPS, слежение за GPS L1, GLO L1, GLO L2 при помощи прямого и дифференциального подканалов, входные данные две компоненты по 2 бита, накопление на длительности 1 мс, тактовая частота 15-40 МГц;
- 4 поисковых машины ГЛОНАСС/GPS, поиск в диапазонах GPS L1, GLO L1, GLO L2 при помощи свертки сигнала с ПСП на длительности 1 мс; входные данные вещественная и мнимые компоненты по 2 бита. Накопление смешанного типа проходит в два этапа: сначала когерентно на длительности от 1 до 16мс, далее результаты учитываются в некогерентном накоплении, этот цикл повторяется заданное количество раз от 1 до 16. Тактовая частота 15-40 МГц, для работы требует дополнительно подачи повышенной частоты. Повышенная частота должна составлять не менее 66 МГц, что необходимо для обеспечения вычисления требуемого количества корреляций за длительность одного чипа ПСП;
- Канал прямого чтения данных с RFFE, выполняющий перенос сигнала с ПЧ на нулевую, снятие доплеровской частоты (ПЧ от 0 до Fs/2), накопления на длительности от одного отсчета данных, результаты накоплений сохраняются в буфере типа FIFO глубиной 2048 отсчетов;
- Модуль формирования временной шкалы 1мс с возможностью задания кода частоты;
- Модуль формирования секундной метки с возможностью задания кода частоты, начальной фазы и длительности активного состояния секундного импульса;
- Модуль интерфейса с АЦП, сэмплирующий отсчеты от АЦП по переднему либо заднему фронту частоты оцифровки, преобразующий входной сигнал различных кодировок во внутреннюю и подсчитывающий количество состояний АЦП для системы АРУ;
- Устройство расчета ПСП, используемое ЦП для оперативного вычисления параметров настройки следящих каналов для заданного номера спутника и задержки ПСП;
- Отладочный имитатор сигнала спутников ГНСС, предназначенный для проверки базовой функциональности МКК. Имитатор позволяет задавать ПСП спутника, коэффициент шума, смешиваемого с сигналом, а также доплеровское смещение сигнала.

1.3.5 Ядро видеоакселератора VELCore-01 (VPU)

Основными особенностями предлагаемой оригинальной архитектуры видеоакселератора являются:

• использование только с коротких 8/16-разрядных форматов данных, что позволяет существенно повысить тактовую частоту видеопроцессора по сравнению с сигнальным процессором общего назначения;

- увеличение параллелизма обработки данных она производится не попиксельно, а поблочно над блоками изображения размером 4*4 и 8*8 пикселей;
- введение спецфункции для обработки изображений и реализации стандартов сжатия;
- введение специализированного видео DMA контроллера;
- Максимальная частота работы акселератора: до 500 МГц;
- обеспечение для изображений формата Full HD (1920x1080) с частотой следования 60 кадров/с функций:
 - **H.264:** BP/MP/HP Encode and Decode:
 - **MPEG-4:** SP/ASP Encode/Decode;
 - **DivX 5.x** & higher Encode/Decode;
 - **H.263:** Profile 0 and 3 for Decode, Profile 0 for Encode;
 - **MPEG-2:** SP/MP Encode/Decode;
 - VC1/WMV9/RTV: SP/MP/AP Encode and Decode;
 - **JPEG (MJPEG)** Baseline Encode/Decode.

1.3.6 Ядро графического акселератора ARM MALI-300 (GPU)

Основными особенностями предлагаемой оригинальной архитектуры графического акселератора являются:

- Поддержка OpenVG 1.1, OpenGLES 2.0 / 1.1;
- Поддержка разрешения до HD 1080р с 4х сглаживанием;
- Встроенный 8КВ кэш второго уровня;
- Пиковая производительность RM: 250 миллионов пикселей в секунду;
- Максимальная частота графического акселератора: до 250 МГц.

1.3.7 Порт внешней памяти NOR/SRAM (NORMPORT)

В качестве отличительных особенностей порта внешней памяти можно назвать:

- шина данных 16 разрядов, шина адреса 24 разряда;
- встроенный контроллер для подключения к микропроцессору внешней памяти типов SRAM/ROM/MobileSDRAM(32бита)/EPROM/Synchronous NOR FLASH (16 разрядов)
- программное конфигурирование типа блоков памяти и их объема;
- режим передачи данных Flyby (обмен памяти с устройством ввода-вывода);
- программное управление числом тактов ожидания при обмене с асинхронной памятью.
- формирование сигналов выборки 2 блоков внешней памяти;

1.3.8 Порт внешней памяти NAND (NANDMPORT)

В качестве отличительных особенностей порта внешней памяти можно назвать:

- встроенный контроллер для подключения к микропроцессору внешней памяти типов NAND FLASH (8/16 разрядов) и внешних устройств;
- поддержка спецификации ONFI 2.0
- программное конфигурирование типа блоков памяти и их объема;
- формирование сигналов выборки 4 блоков внешней памяти;

1.3.9 Порты внешней памяти DDR3 (DDRMC0,1)

В качестве отличительных особенностей портов DDRMC можно назвать:

- Два порта с поддержкой памяти типа DDR3;
- Шина данных 16/32 разрядов, шина адреса 15 разрядов;
- Формирование сигналов выборки 2 блоков внешней памяти на каждый порт;
- Максимальная скорость передачи данных 1066 Мбит/с на частоте 533 МНz;
- Возможность назначения приоритетов на использование каждого порта вычислительными ядрами микросхемы.

1.3.10 Система обмена данными в микросхеме

Система обмена данными в микросхеме обладает следующими особеннастями:

- Универсальное высокоскоростное 8-ми канальное DMA с возможностью микропрограмированния SDMA;
- Универсальное 8-ми канальное DMA с возможностью непосредственного обслуживания периферийных устройств PDMA;
- Встроенные DMA в следующих устройствах: VPU, VPIN, VPOUT, MFBSP, SWIC, SDMMC, USB, EMAC.

1.3.11 Периферийные устройства

Список периферийных устройств:

- Порт видео выхода;
 - Поддержка формата MIPI DSI;
 - Поддержка формата ITU-R BT 601;
 - Разрешение до 1080р;
 - Встроенное DMA;
- Порт видео ввода;
 - Поддержка формата MIPI CSI2;
 - Поддержка формата ITU-R BT 601;
 - Разрешение до 1080р;
 - Встроенное DMA;
 - Встроенная предобработка изображения;
- Два порта SD/MMC;
 - поддержка протокола HS-MMC версии 4.5;
 - поддержка протокола SD версии 3.0;
 - встроенное DMA;
- USB 2.0 контроллер;
 - Работа в режиме Host;
 - Работа в режиме Device;
 - Работа в режиме OTG;
 - Скорость до 480 Мбит/с;
 - Встроенное DMA;
- Контроллер Ethernet MAC;
 - Поддержка скоростей 10/100/1000 МГц;
 - Встроенное DMA;
- Два многофункциональных порта MFBSP;
 - Работа в режиме LPORT;
 - Работа в режиме I2S;

- Работа в режиме SPI
- Работа в режиме GPIO;
- Встроенное DMA;
- Четыре универсальных асинхронных порта UART;
 - Работа в связке с системным DMA или по прерываниям;
 - Поддержка IrDA 1.0;
- Три порта интерфейса I2C;
 - Поддержка режима мультимастер;
 - Работа в связке с системным DMA или по прерываниям;
- Порт интерфейса I2S;
 - Работа в связке с системным DMA или по прерываниям;
- Два порта интерфейса SPI;
 - Работа в связке с системным DMA или по прерываниям;
- Контроллер ШИМ;
 - Поддержка до 4х каналов;
- Два порта SpaceWire (SWIC) для обеспечения сетевых возможностей микросхемы;
 - Соответствуют стандарту ECSS-E-50-12C;
 - Скорость приема и передачи данных от 2 до 300 Мбит/с;
 - Дуплексный режим работы;
- 128 мультиплексированых GPIO вывода
 - С возможностью ввода 32 внешних прерываний;
- 8 32-разрядных универсальных таймеров;
- 32-разрядный сторожевой таймер (WDT);
- Таймер реального времени (RTC);
 - Полная поддержка календаря: секунды, минуты, часы, дни, месяцы, годы;
 - Внешняя синхронизация 32,768 КГц;
- Модуль обмена межпроцессорными сообщениями Mailbox;
- Модуль аппаратной поддержки семафоров Spinlock для межпроцессорного взаимодействия;

1.3.12 Управление энергопотреблением

В микросхеме реализованы широкие возможности по снижению энергопотребления в зависимости от требуемой производительности. Управление энергопотреблением микросхемы имеет следующие особенности:

- Программное отключение сигналов тактовой частоты;
- Программное управление частотами синхронизации и напряжением питания в зависимости от требуемой производительности;
- Программное управление отключением до 20 доменов питания для снижения статического тока потребления;

1.3.13 Возможности микросхемы по отладке программ

Микросхема обеспечивает широкие возможности по отладке и трассированию программ

- Архитектура отладки и трассирования ARM CoreSight;
- Отладка по стандарту IEEE1149.1(JTAG);
- Совместимый IEEE1149.1 адаптер;
- Порт отладки DAP с доступом к внутренней памяти микросхемы;

- Подсистема сбора программной трассы от MPU и DSP в реальном времени;
- Вывод программноей трассы через внешний порт;

1.4 Структурная схема

Структурная схема микросхемы МСот-02 приведена на Рисунок 1.1.

Рисунок 1.1. Структурная схема сигнального микропроцессора MCom-02

В состав микросхемы МСот-02 входят следующие основные узлы:

- MPU двухъядерная подсистема центрального процессора;
- DSP цифровой сигнальный процессор;
- VPU видеопроцессор;
- GPU графический акселератор;
- MCC многоканальный коррелятор;
- ROM блок накристальной ПЗУ;
- RAM блок накристальной памяти общего назначения;
- SDMA универсальный высокоскростной контроллер DMA;
- PDMA универсальный периферийный контроллер DMA;
- Ln COMM многоуровневый коммутатор;
- NORMPORT порт внешней памяти типа SRAM, NOR Flash;
- NFCMPORT порт внешней памяти типа NAND Flash;
- DDRMC0, DDRMC1 порты памяти типа DDR3;
- MCC многоканальный навигационный коррелятор;
- CoreSight встроенные средства отладки и трассирования программ;
- UART0,1,2,3 асинхронный последовательный порты;
- xPLL умножители частоты;
- PMCTR контроллер управления энергопотреблением;
- CMCTR контроллер управления синхронизацией;
- SWIC0, SWIC1 контроллеры интерфейса SpaceWire;
- SDMMC0, SDMMC1 контроллеры накопителей SDIO/MMC;
- USBIC контроллер USB2.0;
- EMAC контроллер Ethernet MAC 10/100 МГц;
- VPIN порт ввода видео данных;
- VPOUT порт вывода видео данных;
- I2C0, I2C1, I2C2 контроллеры шины I2C;
- MFBSP0, MFBSP1 многофункциональные буферизированные последовательные порты (SPI, I2S, LPORT, GPIO);
- ТІМЕК блок универсальных таймеров;
- PWM контроллер ШИМ;
- RTC таймер реального времени;
- I2S контроллер интерфейса I2S;
- GPIO блок управления GPIO;
- SPI0, SPI1 контроллеры интерфейса SPI;
- MAILBOX блок для обмена сообщениями между ядрами микросхемы;
- SPINLOCK блок аппаратной поддержки семафоров;
- WDT сторожевой таймер.

Многоуровневый коммутатор микросхемы обеспечивает передачу данных между узлами микросхемы в пределах матрицы коммутации. Подробнее см. в главе

1.5 Инструментальное программное обеспечение

2. СИСТЕМНАЯ ОРГАНИЗАЦИЯ МИКРОСХЕМЫ

2.1 Карта памяти микросхемы

Карта физической памяти микросхемы MCom02 приведена в Таблица 2.1. Здесь и далее, если это не оговорено специально, коды адреса и данных указаны в шестнадцатеричной системе счисления.

Таблица 2.1. Карта физической памяти MCom-02

Базовый адрес	Конечный адрес	Размер области	Описание
0000_0000	1FFF_FFFF	512 Мбайт	Внешняя память NORMPORT
2000_0000	3FFF_FFFF	512 Мбайт	Внутренняя память
4000_0000	9FFF_FFFF	1,5 Гбайт	Внешняя память DDRMC0
A000_0000	FFFF_FFFF	1,5 Гбайт	Внешняя память DDRMC1

Внешняя память доступна через порты памяти GPMC, DDRMC0, DDRMC1. Порт память GPMC предназначен для доступа к памятям типа NAND Flash, NOR, SRAM, SDR SRAM. Порты памяти DDRMC0, DDRMC1 предназначены для доступа к памяти типа DDR3. Старшая четверть адресного пространства физической памяти доступная через порт DDRMC1 может быть переназначена для доступа через порт DDRMC0, подробнее см. в главе ...

Внутренняя и внешняя память, могут адресоваться с точностью до байта. Программный доступ к резервным областям запрещен, это может привести к непредсказуемым последствиям. Карта внутренней памяти MCom-02 приведена в таблице 2.2.

Таблица 2.2. Карта внутренней памяти MCom-02

Базовый адрес	Конечный адрес	Размер области	Описание		
2000_0000	2000_FFFF	64 Кбайт	RAM		
2000_8000	207F_FFFF		Резерв		
2080_2000	206F_FFFF		Резерв		
2720_0000	27FF_FFFF		Резерв		
2800_0000	2FFF_FFFF	128 Мбайт	Область трассирования CSSYS STM		
3000_0000	3000_7FFF	32 Кбайт	ROM		
3000_8000	313F_FFFF	28 Мбайт	Резерв		
3300_0000	36FF_FFFF	64 Мбайт	Резерв		
3700_0000	3701_FFFF	128 Кбайт	Регистры DSP и XBUF		
3702_0000	370F_FFFF		Резерв		
3710_0000	3712_FFFF	192 Кбайт	Регистры VPU и CBUF		
3713_0000	371F_FFFF		Резерв		
3720_0000	3720_3FFF	16 Кбайт	VPIN		
3720_4000	3720_4FFF	4 Кбайт	Регистры DDRMC0		
3720_5000	3720_5FFF	4 Кбайт	Регистры DDRMC0 PHY		
3720_6000	3720_6FFF	4 Кбайт	Регистры DDRMC1		
3720_7000	3720_7FFF	4 Кбайт	Регистры DDRMC1 PHY		
3720_2000	3720_FFFF		Резерв		
3721_0000	3721_FFFF	64 Кбайт	Регистры GPU		
3722_0000	3722_0FFF	4 Кбайт	SDMA		
3722_0000	37FF_FFFF		Резерв		
3800_0000	3800_1FFF	8 Кбайт	PDMA		
3800_2000	3800_2FFF	4 Кбайт	USBIC		
			Резерв		
3800_4000	3800_5FFF	8 Кбайт	VPOUT		
3800_5000	3800_9FFF		Резерв		

3800_7000	3800_7FFF	4 Кбайт	Регистры NFCMPORT
3800 8000	3800 AFFF	12 Кбайт	Регистры NORMPORT
_	_		
3800_B000	3800_CFFF	8 Кбайт	SDMMC0
3800_D000	3800_EFFF	8 Кбайт	SDMMC1
3800_F000	3800_FFFF	4 Кбайт	EMAC
3801 0000	3801 FFFF	64 Кбайт	Резерв
3802_6000	3802_6FFF	4 Кбайт	TIMERs
3802_7000	3802_7FFF	4 Кбайт	RTC
3802_8000	3802_8FFF	4 Кбайт	UART0
3802_9000	3802_9FFF	4 Кбайт	UART1
3802_A000	3802_AFFF	4 Кбайт	UART2
3802_B000	3802_BFFF	4 Кбайт	UART3
3802_C000	3802_CFFF	4 Кбайт	I2C0
3802_D000	3802_DFFF	4 Кбайт	I2C1
3802_E000	3802_EFFF	4 Кбайт	I2C2
3802_F000	3802_FFFF	4 Кбайт	Резерв
3803_0000	3803_0FFF	4 Кбайт	1280
3803 1000	3803 1FFF	4 Кбайт	WDT
3803_2000	3803_2FFF	4 Кбайт	SPI0
3803 3000	3803 3FFF	4 Кбайт	SPI1
3803 4000	3803 4FFF	4 Кбайт	GPIO0
3803 5000	3803 5FFF	4 Кбайт	EFUSE
3803 6000	3803 FFFF	36 Кбайт	Резерв
3804 2000	3807 FFFF	36 Кбайт	Резерв
3808 0000	3808 0FFF	4 Кбайт	MAILBOX
3808 1000	3808 1FFF	4 Кбайт	SPINLOCK
3808 2000	3808 3FFF	8 Кбайт	SWIC0
3808 4000	3808_5FFF	8 Кбайт	SWIC1
3808 6000	3808 7FFF	8 Кбайт	MFBSP0
3808 8000	3808 9FFF	8 Кбайт	MFBSP1
3808 A000	3808 FFFF	24 Кбайт	Резерв
3809 0000	3809 0FFF	4 Кбайт	PWM
3809 1000	3809 1FFF	4 Кбайт	MCC
3809 2000	3809 3FFF	8 Кбайт	Резерв
3809 4000	3809 4FFF	4 Кбайт	CMCTR
3809_5000	3809_5FFF	4 Кбайт	PMCTR
3809_6000	3809_6FFF	4 Кбайт	SMCTR
3809_7000	387F_FFFF	Мбайт	Резерв
3880_0000	389F_FFFF	2 Мбайт	Регистры отладки и трассы CSSYS
38A0_0000	38FF_FFFF	Мбайт	Резерв
3900_0000	3900_1FFF	8 Кбайт	Регистры Cortex A9 CPU0
3900_4000	3900_5FFF	8 Кбайт	Регистры MPU L2CACHE
3900_4000	3FFF_FFFF	96 Мбайт	Резерв
3A40_0000	3A87_FFFF	4 Мбайт	Память DSP-ядра
3A88_0000	3AFF_FFFF	8 Мбайт	Резерв
3B00 0000	3BFF FFFF	16 Мбайт	Память VPU-ядра
3C00_0000	3CFF_FFFF	16 Мбайт	Резерв
3D00_2000	3FFF_FFFF	48 Мбайт	Резерв

В таблице 2.2 даны лишь базовые адреса устройств, полные перечени программно досту регистров для каждого устройства приведены в главах документа описывающих эти устройства.

2.2 Система коммутации микросхемы

Многоуровневый коммутатор микросхемы обеспечивает передачу данных между исполнительными портами устройств (Slave Port) и задаточными портами устройств (Master Port). Устройства могут иметь одновременно оба типа портов. Например:

- GPMC имеет только исполнительные порты и обеспечивает по ним доступ к внешней памяти и к своим внутренним регистрам;
- DSP обладает задаточными портами, дающими доступ DSP процессорам к внутренней и внешней памяти, и исполнительными портами, через которые внутренняя память и регистры DSP доступны другим устройствам;

Таким образом, устройство может выступать одновременно, и в качестве исполнительного (Slave), и в качестве задаточного (Master). Процесс передачи данных в коммутаторе между любыми парами Slave → Master выполняется параллельно и без конфликтов.

Коммутатор содержит 4 уровня - L0_COMM, L1_COMM, L2_COMM, L3_COMM с различной пропускной способностью, выбранной изходя из требований по быстродействию и снижению энергопотребления (см. Рисунок 1.1). Уровень L0_COMM коммутатора является основным. Уровень L3_COMM являются управляющим, через него осуществляется доступ к регистрам большей части блоков микросхемы.

Передача данных в микросхеме между различными устройствами может осуществляться только в пределах матрицы коммутации. Матрица коммутации микросхемы MCom-02 приведена в Таблица 2.3.

MDII	MDII	VDII	Deb	CDII	CDMA	VDOLIT	VDIN	I 24aI 0	L1toL0
MP0_	MPU_ MP1	MP	MP	MP	_MP	_MP	MP	_MP	_MP
+									
		+	+		+	+	+	+	+
				+					
+									
		+	+		+	+	+	+	+
				+					
									+
+		+	+		+	+	+	+	+
+		+	+		+	+	+	+	+
	+	HP0 MP1 + + + + + + + + + + + + + + + + + + +	MP0	MP0 MP1 MP MP	MP0 MP1 MP MP MP MP H MP H MP H MP H MP H M	MP0 MP1 MP MP MP MP MP + + + + + + + + + + + + + + + + + + +	MP0 MP1 MP M	MP0 MP1 MP M	MP0 MP1 MP M

Таблица 2.3 Матрица коммутации микросхемы MCom-02

Матрица коммутации дана для уровня L0_COMM коммутатора (см. Рисунок 1.1), который соединяет все устройства микросхемы через следующие порты:

- MPU_MP0, MPU_MP1 задаточные порты MPU с изменяемым приоритетом (подробнее см. главу);
- VPU MP0, VPU MP1 задаточные порты VPU;
- DSP MP задаточный порт DSP кластера;
- GPU MP задаточный порт GPU;

L0toL1 S

• SDMA MP задаточный порт высокоскоросного универсального SDMA;

- VPOUT MP задаточный порт встроенного DMA порта видео вывода;
- VPIN_MP задаточный порт встроенного DMA порта видео ввода;
- L2toL0_MP задаточный порт уровня L2_COMM коммутатора, через который действуют встроенные DMA портов SWIC и MFBSP;
- L1toL0_MP задаточный порт уровня L1_COMM коммутатора, через который действуют PDMA и встроенные DMA портов EMAC, USBIC и SDMMC;
- DDRMC0_SP0, DDRMC0_SP1, DDRMC0_SP2 исполнительные порты DDRMC0 контроллера с изменяемым приоритетом (подробнее см. главу) для доступа к внешней памяти;
- DDR_MC1_SP0, DDRMC1_SP1, DDRMC0_SP2 исполнительные порты DDRMC0 контроллера с изменяемым приоритетом (подробнее см. главу) для доступа к внешней памяти;
- MPU_SP исполнительный порт MPU, через который может обеспечиваться коггерентность КЭШей MPU с другими исполнительными устройствами (подробнее см. главу);
- VPU SP исполнительный порт для доступа к внутренней памяти VPU;
- DSP SP исполнительный порт для доступа к внутренней памяти DSP;
- L0toL1_SP исполнительный порт уровня L1_COMM коммутатора, через который предоставлятся доступ к внешней памяти через порт GPMC, памяти ROM, ренним регистрам PDMA, SDMMC, EMAC, USBIC, GPMC, VPU, DSP, VPIN, VPOUT, SWIC, MFBSP, DDRMC, SDMA, PWM, MCC, UART, I2C, I2S, GPIO, SPI, TIMER, RTC, SCC, PWC, MAILBOX, SPINLOCK;
- RAM_SP исполнительный порт для доступа к блоку накристальной памяти RAM;

Обращение к исполнительному порту блока микросхемы с отключенным питанием или тактовой частотой может привести к зависанию коммутатора, поэтому при работе программного обеспечения использующего функционал отключения питания или частот блоков следует принимать дополнительные меры предосторожности для недопущения таких обращений.

Для индикации зависания коммутатора используется прерывание DLOCK_IRQ и регистр COMM DLOCK SMCTR.

2.3 Системные настройки микросхемы и контроллер SMCTR

2.3.1 Программная модель

Контроллер SMCTR позволяет управлять системными настройками микросхемы. Далее описаны программно доступные регистры SMCTR.

2.3.1.1 Сводная таблица регистров

Таблица 2.4 Сводная таблица регистров SMCTR

Смещение	Обозначение	Описание	Исходное состояние
0x000	ВООТ	Регистр отображения сигналов BOOT[1:0] микро- схемы	
0x004	BOOT_REMAP	Регистр управления картой памяти при начальной загрузке	
0x008	MPU_CFGNMFI	Регистр разрешения немаскируемого FIQ в MPU	
0x00c	DDR_REMAP	Регистр управления картой памяти для DDR	
0x010	CPU_SECURE_CTR	Регистр управления доступом внутри CPU	
0x020	ACP_CTL	Регистр управления возможностью АСР МРИ	

0x024	MIPI_MUX	Регистр мультиплексирования MIPI DSI
0x028	CHIP_ID	ID микросхемы
0x02c	CHIP_CONFIG	Регистр конфигурации микросхемы
0x030	EMA_ARM	Регистр подстройки памятей в ARM
0x034	EMA_L2	Регистр подстройки памятей в L2_CACHE
0x038	EMA_DSP	Регистр подстройки памятей в DSP и VPU
0x03c	EMA_CORE	Регистр подстройки памятей в CORE
0x040	IOPULL_CTR	Регистры управления подтягивающими резисторовами контактных площадок микросхемы
0x044	COMM_DLOCK	Регистр индикации зависания коммутатора мик- росхемы

2.3.1.2 **Perucmp BOOT**

Таблица 2.5. Формат регистра ВООТ

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя- ние
31:3	-	Не используется	R	0
2:0	ВООТ	Значение внешних выводов ВООТ, определяющих источник начальной загрузки микросхемы. 0x0 — загрузка из внешней памяти NOR Flash/SRAM с помощью контроллера NORMPORT; 0x1 — загрузка из внешней памяти NAND Flash с помощью контроллера NANDMPORT; 0x2-0x7 — опции загрузки из накристальной ROM памяти;	R	-

2.3.1.3 Perucmp BOOT_REMAP

Таблица 2.6. Формат регистра BOOT_REMAP

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя-
				ние
31:2	-	Не используется	R	0
1:0	REMAP	Биты управления наложением областей загрузки на карту памяти. 0x0 – адрес 0x00000000 доступен через контроллер NORMPORT, используется карта памяти по умолчанию, наложения нет; 0x1 – область 0x00000000 – 0x0000FFFF указывает на накристальную RAM память. Область 0x20000000 – 0x2000FFFF не отображается; 0x2 - область 0x20000000 – 0x20007FFF указывает на накристальную ROM память. Область 0x30000000 – 0x30007FFF не отображается; 0x3 – область 0x00000000 – 0x00007FFF указывает на накристальную ROM память. Область 0x30000000 – 0x30007FFF не отображается; Биты устанавливаются во время сброса в зависимости от значения входов ВООТ. Для значения входов ВООТ 0x0 биты устанавливаются в 0x0. Для значения 0x1 в 0x1. Для значений 0x2-0x7 в 0x2. Биты также устанавливаюся в значение 0x1 при записи 1 в бит ОN регистра ASP_CTR. Запись значения в регистр может быть использована для определенного наложения на карту памяти после процедуры начальной загрузки.	R/W	-

2.3.1.4 Perucmp MPU_CFGNMFI

Таблица 2.7. Формат регистра MPU_CFGNMFI

Номер	Условное	Назначение	Доступ	Исходное
разряда	обозначение			состоя-
				ние

31:2	-	Не используется	R	0
1	NMFI_EN0	Разрешает использование FIQ как немаскируемого прерывания для CPU1	R/W	0
0	NMFI_EN1	Разрешает использование FIQ как немаскируемого прерывания для CPU0	R/W	0

2.3.1.5 Perucmp DDR_REMAP

Таблица 2.8. Формат регистра DDR_REMAP

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя- ние
31:1	-	Не используется	R	0
0	REMAP	Бит управляет конфигурацие карты памяти для DDR Бит задан «0»: • адреса 0х40000000 − 0х9FFFFFFF отображаются в контроллер DDRMC0 • адреса 0хA0000000 − 0хFFFFFFFF отображаются в контроллер DDRMC1 Бит задан «1»: • все адресное пространство 0х40000000 − 0хFFFFFFFF отображается в контроллер DDRMC0	R/W	0

2.3.1.6 Perucmp CPU_SECURE_CTR

Таблица 2.9. Формат регистра CPU_SECURE_CTR

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя- ние
31:3	-	Не используется	R	0
2	CPU0_CP15S		R/W	
	DISABLE			
1	CPU0_CP15S		R/W	
1	DISABLE			
0	CFGDSISA-		R/W	0
	BLE			

2.3.1.7 Perucmp ASP_CTR

Таблица 2.10. Формат регистра ASP_CTR

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя- ние
31:1	-	Не используется	R	0
0	ON	Бит управляет конфигурацией коммутатора для реализации функции ARM ASP Бит задан «0»: Используется конфигурация коммутатора по умолчанию Бит задан «1»: Все обращения DMA устройств USBIC, EMAC, SDMMC0, SDMMC1, NFCMPORT, PDMA к области памяти 0х40000000 – 0хFFFFFFF направляются через контроллер КЭШа второго уровня ARM и обрабатываются с учетом наличия в КЭШе.	R/W	0

2.3.1.8 Perucmp MIPI_MUX

Таблица 2.11. Формат регистра MIPI_MUX

Номер	Условное	Назначение	Доступ	Исходное
разряда	обозначение			состоя-

				ние
31:1	-	Не используется	R	0
0	MUX_DSI	Контроль мультиплесирования второго блока интерфейса MIPI в микросхеме. "0" – MIPI используется в качестве MIPI CSI для второго контроллера CSI VPIN "1" – MIPI используется в качестве MIPI DSI для контроллера DSI VPOUT	R/W	1

2.3.1.9 Perucmp CHIP_ID

Таблица 2.12. Формат регистра CHIP_ID

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя-
ризриди	000311111111111111111111111111111111111			ние
31:0	ID	ID микросхемы	R	0xC02

2.3.1.10 Perucmp CHIP_CONFIG

Таблица 2.13. Формат регистра CHIP_CONFIG

Номер	Условное	Назначение	Доступ	Исходное
разряда	обозначение			состоя-
				ние
31:0	CONFIG	Конфигурация микросхемы	R	0x0

2.3.1.11 Perucmp EMA ARM

Таблица 2.14. Формат регистра EMA_ARM

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя-
				ние
31:6	-	Не используется	R	0
5	EMAS	Подстройка параметра EMAS памятей MPU ARM	R/W	0x0
4:3	EMAW	Подстройка параметра EMAW памятей MPU ARM	R/W	0x0
2:0	EMA	Подстройка параметра EMA памятей MPU ARM	R/W	0x0

2.3.1.12 Perucmp EMA_L2

Таблица 2.15. Формат регистра ЕМА_L2

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя- ние
31:6	-	Не используется	R	0
5	EMAS	Подстройка параметра EMAS памятей L2CACHE	R/W	0x0
4:3	EMAW	Подстройка параметра EMAW памятей L2CACHE	R/W	0x0
2:0	EMA	Подстройка параметра ЕМА памятей L2CACHE	R/W	0x0

2.3.1.13 Perucmp EMA_DSP

Таблица 2.16. Формат регистра EMA_DSP

Номер	Условное	Назначение	Доступ	Исходное
разряда	обозначение			состоя-
				ние
31:6	-	Не используется	R	0
5	EMAS	Подстройка параметра EMAS памятей DSP и VPU	R/W	0x0
4:3	EMAW	Подстройка параметра EMAW памятей DSP и VPU	R/W	0x0
2:0	EMA	Подстройка параметра EMA памятей DSP и VPU	R/W	0x0

2.3.1.14 Perucmp EMA_CORE

Таблица 2.17. Формат регистра EMA_CORE

Номер	Условное	Назначение	Доступ	Исходное
разряда	обозначение			состоя-
				ние
31:6	-	Не используется	R	0
5	EMAS	Подстройка параметра EMAS памятей ядра микросхемы	R/W	0x0
4:3	EMAW	Подстройка параметра EMAW памятей ядра микросхемы	R/W	0x0
2:0	EMA	Подстройка параметра ЕМА памятей ядра микросхемы	R/W	0x0

2.3.1.15 Perucmp IOPULL_CTR

Таблица 2.18. Формат регистра IOPULL_CTR

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя- ние
31:9	-	Не используется	R	0
8	SPULL_DISA BLE	Запрет резисторных подтяжек для группы контактных площадок SVDD	R/W	0x0
7	GP2_DISABL E	Запрет резисторных подтяжек для группы контактных площадок GP2 VDD	R/W	0x0
6	GP1_DISABL E	Запрет резисторных подтяжек для группы контактных площадок GP1 VDD	R/W	0x0
5	GP0_DISABL E	Запрет резисторных подтяжек для группы контактных площадок GP0 VDD	R/W	0x0
4	CIF_DISABL E	Запрет резисторных подтяжек для группы контактных площадок CIF VDD	R/W	0x0
3	LCD_DISAB LE	Запрет резисторных подтяжек для группы контактных площадок LCD VDD	R/W	0x0
2	GM_DISABL E	Запрет резисторных подтяжек для группы контактных площадок GMII_VDD	R/W	0x0
1	SMC_DISAB LE	Запрет резисторных подтяжек для группы контактных площадок SMC_VDD	R/W	0x0
0	FLASH_DIS ABLE	Запрет резисторных подтяжек для группы контактных площадок FLASH_VDD	R/W	0x0

2.3.1.16 Perucmp COMM_DLOCK

Таблица 2.19. Формат регистра COMM_DLOCK

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя-
_ ^ _				ние
31:13	-	Не используется	R	0
12	DLOCK_WR	Тип транзакции, приведшей к зависанию коммутатора. 0 – Чтение, 1 – Запись.	R/W	0x0
11:10	DLOCK_SLV	Номер исполнительного порта коммутатора для транзакции, приведшей к его зависанию	R/W	0x0
9:8	DLOCK_MS T	Номер задаточного порта коммутатора для транзакции, приведшей к его зависанию	R/W	0x0
7:0	DLOCK_ID	Идентификатор транзакции приведшей к зависанию коммутатора	R/W	0x0

2.4 Система синхронизации микросхемы и контроллер CMCTR

2.4.1 Введение

Система синхронизации микросхемы представлена контроллером управления синхронизацией (СМСТR) микросхемы. СМСТR управляет накристальными блоками PLL и организуют генерацию тактовых частот для процессорных ядер, шин коммутатора и периферийных блоков микросхемы. Контроллер СМСТR также взаимодействует с контроллером управления питания микросхемы PMCTR при необходимости отключить те или иные тактовые частоты во время выключения доменов питания.

2.4.2 Функциональное описание

Источниками тактовых частот в микросхеме являются входы синхронизации и контроллер CMCTR. Микросхема имеет следующие входы синхронизации:

- XTI_24M частота 24 МГц является опорной для контроллера управления синхронизацией СМСТR;
- XTI_32K частота 32,768 КГц для работы интервальных таймеров в режиме реального времени;
- MCC CLK частота от 12 до 44 МГц для синхронизация коррелятора МСС.

Контроллеры CMCTR генерируют внутренние тактовые частоты микросхемы, используя тактовую частоту с входа синхронизации XTI_24M и семь блоков PLL – APLL, CPLL, DPLL, SPLL, VPLL, SW0PLL, SW1PLL.

Каждая из PLL позволяет генерировать частоты в диапазоне от 48 до 1488 МГц с шагом 24 МГц. В типовых применениях микросхемы PLL используются:

- APLL для генерации тактовой частоты MPU Cortex A9, CSSYS CoreSight и памятей кэша второго уровня;
- CPLL для генерации тактовых частот уровня L0_COMM коммутатора микросхемы, блоков GPU, VPU, VPIN, VPOUT и контроллеров памяти DDRMC;
- SPLL для генерации тактовых частот уровней L1, L2, L3 коммутатора и основных частот периферийных блоков микросхемы;
- VPLL для генерации тактовых частот блока VPIN.
- DPLL для генерации тактовой частоты DSP.
- SW0PLL и SW1PLL для генерации тактовых частот передачи блоков SWIC0, SWIC1.

2.4.2.1 Генерация тактовой частоты

На рисунках Рисунок 2.1, Рисунок 2.3, Рисунок 2.2 показаны блок-схемы генерации тактовой частоты в микросхеме. Низкая входная частота с внешнего генератора поступает через вход XTI на PLL микросхемы. PLL преобразует низкую входную частоту в высокие частоты, необходимые для функциональных блоков. При включении микросхемы все PLL выключены, и все частоты поступают напрямую с входа XTI.

На блок-схемах Рисунок 2.1, Рисунок 2.3, Рисунок 2.2 отображены мультиплексоры, с помощью которых можно выбрать альтернативный источник для генерации тактовой частоты. Мультиплексорам соответсвуют регистры MUX CTR контроллеров CMCTR.

Делители частоты на рисунках Рисунок 2.1, Рисунок 2.3, Рисунок 2.2 показывают также возможные коэффициенты деления. Делителям соответсвуют регистры DIV_CTR контроллера CMCTR. Коэффициенты деления следует выбирать исходя из текущего значения делимой частоты и ограничений представленных в Таблица 2.20.

Возможность отключения частоты показана на рисунках Рисунок 2.1, Рисунок 2.3, Рисунок 2.2 в виде ключей. Ключам соответствуют поля регистров GATE_CTR контроллера CMCTR.

Рисунок 2.1 Генерация тактовой частоты в блока CMCTR_MPU

Рисунок 2.2 Генерация тактовой частоты в блоке CMCTR DSP

Рисунок 2.3 Генерация тактовой частоты в блоке CMCTR_CORE

Рисунок 2.4 Генерация тактовой частоты в блоке CMCTR_SPECIAL

В микросхеме присутсвует внешний вывод CLKOUT на который можно вывести частоту с любой PLL микросхемы. Схема разводки частот для вывода CLKOUT представлена на Рисунок 2.5

Рисунок 2.5 Вывод частот через CLKOUT

2.4.2.2 Описание тактовых частот микросхемы

В Таблица 2.20 дано описание тактовых частот микросхемы.

Таблица 2.20. Описание тактовых частот микросхемы

Название	Описание	Максимальные ра-	Ограничения	Источник
		бочие значения		
MPUCLK	Основная частота центрального про-	1488 МГц при 1.2 В,		APLL-
MFUCLK	цессора	792 МГц при 1.1 В		CLK,SPLL
	Частота интерфейсной части портов		Относится к MPUCLK	CLK
MPU MPSP ACLK	центрального процессора к уровню	744 МГц	как 1:1, 1:2	
	L1_COMM коммутатора			
ATCLK	Частота шины трассы CSSYS	192 МГц	Относится к MPUCLK	ļ

			как 1:1, 1:2, 1:4, 1:8	
APCLK	Частота шины отладки CSSYS	96 МГц	Относится к ATCLK как 1:1, 1:2	
DSP0_CLK, DSP1_CLK	Основные частоты ядер двухъядерного DSP кластера	792 МГц при 1.2 В, 504 МГц при 1.1 В		DPLLCLK, CPLLCLK, SPLLCLK
ENC_CLK	Частота JPEG энкодера в составе DSP кластера	792 МГц при 1.2 В, 504 МГц при 1.1 В		
VPIN_SCLK	Основная частота VPIN	384 МГц		VPLLCLK,
GPU_ACLK	Основная и интерфейсная частота GPU	312 МГц		DPLLCLK, CPLLCLK, SPLLCLK
DDR0_SCLK, DDR1_SCLK	Основные частоты контроллеров DDR памяти DDRMC0,1	533МГц		SPLLCLK
DDR0_ACLK, DDR1_ACLK	Частоты интерфейсной части контроллеров DDR памяти DDRMC0,1 к коммутатору L0_COMM	504 МГц	Относятся к L0_ACLK как 1:1, 1:2, 1:4, 1:8	CPLLCLK, SPLLCLK
L0_ACLK	Частота уровня L0_СОММ коммута- тора	504 МГц		
VPIN_ACLK, VPOUT_ACLK, VPU_ACLK, DSP_ACLK	Основные и интерфейсные частоты блоков VPIN, VPOUT, VPU, SDMA; интерфейсная частота для DSP кластера к коммутатору L0_COMM	504 МГц	Всегда равны L0_ACLK	
L1_HCLK	Частота уровня L1_СОММ коммутатора	288 МГц		
USB_HCLK, EMAC_HCLK, SDMMC0_HCLK, SDMMC1_HCLK, PDMA_HCLK, VPOUT_HCLK NFC_HCLK, NOR_HCLK	Основные и интерфейсные частоты блоков EMAC, SDMMC0,1, PDMA; интерфейсная частота для USBIC к коммутатору L1_COMM	288 МГц	Всегда равны L1_HCLK	
L3_PCLK	Частота уровней L3_СОММ и L2_СОММ коммутаторов	144 МГц	Всегда равны, отно- сятся к L1_HCLK как	
DDR0,1_PCLK, VPIN_PCLK, VPU_PCLK, DSP_PCLK, SWIC0,1_ACLK, MFBSP0,1_ACLK, UART0,1,2,3_PCLK, I2C0,1,2_PCLK, I2S_PCLK, SPI0,1_PCLK, PWM_PCLK, MCC_PCLK,	Основные и интерфейсные частоты блоков UART, I2C, I2S, SPI, PWM; Частота интерфейсной части блоков DDR0,1, VPIN, VPOUT, VPU, SDMA, DSP, MCC, SWIC0,1 и MFBSP0,1 к уровням L2_COMM и L3_COMM коммутаторов	144 МГц	1:1, 1:2	

2.4.2.3 *Блоки PLL*

Bce PLL в микросхеме являются однотипными. Англоязычное описание PLL доступно здесь.

2.4.3 Программная модель

Контроллер CMCTR позволяет управлять PLL и системой синхронизации микросхемы. Далее описаны программно доступные регистры CMCTR.

2.4.3.1 Сводная таблица регистров

В Таблица 2.21 представлена сводная таблица регистров контроллера управления синхронизацией.

В таблице указаны адреса смещения по отношению к базовому адресу контроллера СМСТR данному в Таблица 2.2.

Таблица 2.21. Сводная таблица регистров CMCTR

Смещение	Обозначение	Описание	Исходное состояние
		Регистры CMCTR_MPU	
0x000	Резерв	Резерв	
0x004	DIV_MPU_CTR	Регистр делителя частоты MPUCLK	
0x008	DIV_ATB_CTR	Регистр делителя частоты АТСЬК	
0x00c	DIV_APB_CTR	Регистр делителя частоты АРСЬК	
0x010	Резерв	Резерв	
0x014	GATE_MPU_CTR	Регистр по управлению отключением частот в CMCTR_MPU	
		Регистры CMCTR_CORE	
0x020	Резерв	Резерв	
0x024	Резерв	Резерв	
0x028	Резерв	Резерв	
0x02c	DIV_GPU_CTR	Регистр делителя частоты GPU_ACLK	
0x030	DIV_DDR0_CTR	Регистр делителя частоты DDR0_SCLK	
0x034	DIV_DDR1_CTR	Регистр делителя частоты DDR1_SCLK	
0x038	DIV_NFC_CTR	Регистр делителя частоты NFC_SCLK	
0x03c	DIV_NOR_CTR	Регистр делителя частоты NOR_SCLK	
0x040	DIV_SYS1_CTR	Регистр делителя частоты L1_HCLK и связанных с ней частот	
0x044	DIV_SYS2_CTR	Регистр делителя частоты L3_PCLK и связанных с ней частот	
0x048	GATE_CORE_CTR	Регистр по управлению отключением частот в CMCTR CORE	
0x04c	GATE_SYS_CTR	Регистр по управлению отключением частот в CMCTR SYS	
		Регистры CMCTR_DSP	
0x060	Резерв	Резерв	
0x064	Резерв	Резерв	
0x068	GATE_DSP_CTR	Регистр по управлению отключением частот в CMCTR_DSP	
		Регистры CLKOUT	
0x80	Резерв	Резерв	
0x84	DIV_CLKOUT	Регистр делителя частоты для вывода CLKOUT	
0x88	GATE_CLKOUT	Регистр управления отключением частоты для вывода CLKOUT	
		Регистр LS_ENABLE	
0x90	LS_ENABLE	Регистр контроля функции LightSleep памятей мик- росхемы	
		Регистры контроля PLL	
0x100	SEL_APLL	Регистр контроля APLL	
0x104	SEL_CPLL	Регистр контроля CPLL	
0x108	SEL_DPLL	Регистр контроля DPLL	
0x10c	SEL_SPLL	Регистр контроля SPLL	
0x110	SEL_VPLL	Регистр контроля VPLL	

2.4.3.2 Perucmp DIV_MPU_CTR

Таблица 2.22. Формат регистра DIV_MPU_CTR

Номер	Условное	Назначение	Доступ	Исходное
разряда	обозначение			состоя-

				ние
31:1	-	Не используется	R	0
0	DIV_MPU	Значение делителя тактовой частоты MPUCLK: 0x0 – 1; 0x1 – 2;	R/W	0

2.4.3.3 Perucmp DIV_ATB_CTR

Таблица 2.23. Формат регистра DIV_ATB_CTR

Номеј разряд	_	Назначение	Доступ	Исходное состоя- ние
31:1	-	Не используется	R	0
0	DIV_ATB	Значение делителя тактовой частоты ATCLK: 0x0 – 1; 0x1 – 2;	R/W	0

2.4.3.4 Perucmp DIV_APB_CTR

Таблица 2.24. Формат регистра DIV_APB_CTR

Ном разр		Условное обозначение	Назначение	Доступ	Исходное состоя- ние
31:	:1	-	Не используется	R	0
0		DIV_APB	Значение делителя тактовой частоты APCLK: 0x0 – 1; 0x1 – 2;	R/W	0

2.4.3.5 Perucmp GATE_MPU_CTR

Таблица 2.25. Формат регистра GATE_MPU_CTR

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя- ние
31:1	-	Не используется	R	0
0	CSSYS_EN	Разрешение для тактовых частот ATCLK, APCLK	R/W	1

2.4.3.6 Perucmp Perucmp DIV_GPU_CTR

Таблица 2.26. Формат регистра DIV_GPU_CTR

	Условное	Назначение	Доступ	Исходное
	обозначение			состоя-
				ние
31:2	-	Не используется	R	0
1:0	DIV_GPU	Значение делителя тактовых частот GPU_PCLK, GPU_ACLK: 0x0 - 1; 0x1 - 2; 0x2 - 4; 0x3 - 8;	R/W	0

2.4.3.7 Perucmp DIV_DDR0_CTR

Таблица 2.27. Формат регистра DIV_DDR0_CTR

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя- ние
31:2	-	Не используется	R	0
1:0	DIV_DDR0	Значение делителя тактовой частоты DDR0_SCLK: 0x0 - 1; 0x1 - 2;	R/W	0

_			
		0x2-4;	
		0x3 - 8;	

2.4.3.8 Perucmp DIV_DDR1_CTR

Таблица 2.28. Формат регистра DIV_DDR1_CTR

Номер	Условное	Назначение	Доступ	Исходное
разряда	обозначение			состоя-
				ние
31:2	-	Не используется	R	0
1:0	DIV_DDR1	Значение делителя тактовой частоты DDR1_SCLK: 0x0 – 1; 0x1 – 2; 0x2 – 4; 0x3 – 8;	R/W	0

2.4.3.9 Perucmp DIV_NFC_CTR

Таблица 2.29. Формат регистра DIV_NFC_CTR

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя- ние
31:2	-	Не используется	R	0
1:0	DIV_NFC	Значение делителя тактовой частоты NFC_SCLK 0x0 – 1; 0x1 – 2; 0x2 – 4; 0x3 – 8;	R/W	0

2.4.3.10 Perucmp DIV_NOR_CTR

Таблица 2.30. Формат регистра DIV_NOR_CTR

Номер	Условное	Назначение	Доступ	Исходное
разряда	обозначение			состоя-
				ние
31:1	-	Не используется	R	0
0	DIV_NOR	Значение делителя тактовой частоты NOR_SCLK 0x0 – 1; 0x1 – 2; 0x2 – 4; 0x3 – 8;	R/W	0

2.4.3.11 Perucmp DIV SYS0 CTR

Таблица 2.31. Формат регистра DIV_SYS0_CTR

Номер	Условное	Назначение	Доступ	Исходное
разряда	обозначение			состоя-
				ние
31:2	1	Не используется	R	0
1:0	DIV_SYS0	Значение делителя тактовой частоты L1_HCLK и связанных с ней частот: 0x0 – 1; 0x1 – 2; 0x2 – 4; 0x3 – 8;	R/W	0

2.4.3.12 Perucmp DIV SYS1 CTR

Таблица 2.32. Формат регистра DIV_SYS1_CTR

Номер	Условное	Назначение	Доступ	Исходное
разряда	обозначение			состоя-

				ние
31:1	-	Не используется	R	0
0	DIV_SYS1	Значение делителя тактовой частоты L2_ACLK, L3_PCLK и связанных с ними частот: $0x0-1$; $0x1-2$; Являтеся вторым в цепи после делителя контролируемого через DIV SYS0 CTR	R/W	0

2.4.3.13 Perucmp GATE_CORE_CTR

Таблица 2.33. Формат регистра GATE_CORE_CTR

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя-
				ние
31:7	-	Не используется	R	0
6	GPU_EN	Разрешение для интерфейсных частоты GPU GPU_ACLK	R/W	0
5	VPU_EN	Разрешение для интерфейсных частот VPU VPU_PCLK, VPU_ACLK	R/W	0
4	VPOUT_EN	Разрешение для интерфейсных частот VPOUT VPOUT_PCLK, VPOUT_ACLK	R/W	0
3	VPIN_EN	Разрешение для интерфейсных частот VPIN VPIN_PCLK, VPIN_ACLK	R/W	0
2	DDR1_EN	Разрешение для интерфейсных частот контроллера DDRMC1 DDRMC1_PCLK, DDRMC1_ACLK	R/W	0
1	DDR0_EN	Разрешение для интерфейсных частот контроллера DDRMC0 DDRMC0_PCLK, DDRMC0_ACLK	R/W	0
0	L0_EN	Разрешение для тактовой частоты L0_ACLK и связанных с ней частот	R/W	0

2.4.3.14 Perucmp GATE_SYS_CTR

Таблица 2.34. Формат регистра GATE_SYS_CTR

Номер разряда	Условное обо- значение	Назначение	Доступ	Исходное состоя- ние
31:19	-	Не используется	R	0
22	NOR_EN	Разрешение для частот контроллера NORMPORT	R/W	1
21	NFC_EN	Разрешение для частот контроллера NFCMPORT	R/W	1
20	SPI1_EN	Разрешение для интерфейсной частоты контроллера SPI1 SPI1 PCLK	R/W	0
19	SPI0_EN	Разрешение для интерфейсной частоты контроллера SPI0 SPI0_PCLK	R/W	0
18	I2C2_EN	Разрешение для интерфейсной частоты контроллера I2C2 I2C2 PCLK	R/W	0
17	I2C1_EN	Разрешение для интерфейсной частоты контроллера I2C1 I2C1_PCLK	R/W	0
16	I2C0_EN	Разрешение для интерфейсной частоты контроллера I2C0 I2C0 PCLK	R/W	0
15	UART3_EN	Разрешение для интерфейсной частоты контроллера UART3 UART3 PCLK	R/W	0
14	UART2_EN	Разрешение для интерфейсной частоты контроллера UART2 UART2 PCLK	R/W	0
13	UART1_EN	Разрешение для интерфейсной частоты контроллера UART1 UART1 PCLK	R/W	0
12	UART0_EN	Разрешение для интерфейсной частоты контроллера UART0 UART0 PCLK	R/W	0
11	SWIC1_EN	Разрешение для интерфейсной частоты контроллера SWIC1 SWIC1_HCLK	R/W	0
10	SWIC0_EN	Разрешение для интерфейсной частоты контроллера SWIC0 SWIC0_HCLK	R/W	0
9	MFBSP1_EN	Разрешение для интерфейсной частоты контроллера MFBSP1	R/W	0

		MFBSP1_HCLK		
8	MFBSP0_EN	Разрешение для интерфейсной частоты контроллера MFBSP0 MFBSP0_HCLK	R/W	0
7	PWM_EN	Разрешение для интерфейсной частоты контроллера MCC PWM_PCLK	R/W	0
6	MCC_EN	Разрешение для интерфейсной частоты контроллера МСС МСС_РСLК	R/W	0
5	USB_EN	Разрешение для интерфейсной частоты контроллера USBIC USBIC_HCLK	R/W	0
4	EMAC_EN	Разрешение для интерфейсной частоты контроллера EMAC EMAC_HCLK	R/W	0
3	SDMMC1_EN	Разрешение для интерфейсной частоты контроллера SDMMC0 SDMMC1_HCLK	R/W	0
2	SDMMC0_EN	Разрешение для интерфейсной частоты контроллера SDMMC0 SDMMC0_HCLK	R/W	0
1	I2S_EN	Разрешение для интерфейсной частоты контроллера I2S I2S_PCLK	R/W	0
0	SYS_EN	Разрешение для тактовых частот L1_HCLK, L3_PCLK и связанных с ними частот	R	1

2.4.3.15 Perucmp Perucmp GATE_DSP_CTR

Таблица 2.35. Формат регистра GATE_DSP_CTR

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя- ние
31:4	-	Не используется	R	0
3	DSPENC_EN	Разрешение для тактовой частоты DSP_ENCCLK	R/W	0
2	DSPEXT_EN	Разрешение для тактовых частот DSP_ACLK, DSP_PCLK	R/W	0
1	DSP1_EN	Разрешение для тактовых частот DSP1_CLK	R/W	0
0	DSP0 EN	Разрешение для тактовых частот DSP0 CLK	R/W	0

2.4.3.16 Perucmp MUX_CLKOUT

Таблица 2.36. Формат регистра MUX_CLKOUT

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя-
				ние
31:3	-	Не используется	R	0
2:0	MUX_CLKO UT	Выбор источника тактовой частоты для CLKOUT: 0x0 – SPLLCLK; 0x1 - CPLLCLK; 0x2 – APLLCLK; 0x3 – DPLLCLK; 0x4 – VPLLCLK; 0x5 – SW0PLLCLK; 0x6 – SW1PLLCLK; 0x7 – MIPIDSYPLLCLK;	R/W	0

2.4.3.17 Perucmp DIV_CLKOUT

Таблица 2.37. Формат регистра DIV_CLKOUT

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя- ние
31:2	-	Не используется	R	0
1:0	DIV_CLKOU T	Значение делителя тактовой частоты CLKOUT 0x0 – 1; 0x1 – 2; 0x2 – 4; 0x3 – 8;	R/W	0

2.4.3.18 Perucmp GATE_CLKOUT

Таблица 2.38. Формат регистра GATE_CLKOUT

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя- ние
31:1	-	Не используется	R	0
0	CLKOUT_EN	Разрешение для тактовой частоты CLKOUT	R/W	0

2.4.3.19 Perucmp LS_ENABLE

Таблица 2.39. Формат регистра LS_ENABLE

Номер разряда	Условное обозначение	Назначение		Исходное состоя- ние
31:1	-	Не используется	R	0
0	LS_ENABLE	Разрешение перехода памятей блоков микросхемы в режим LightSleep (пониженное потребление и сохранение содержания памяти) при отключении тактовой частоты у данного блока. Применяется для блоков SDMMC, VPIN, VPOUT, GPU, NFCMPORT, MCC.	R/W	1

2.4.3.20 Perucmp SEL_APLL

Таблица 2.40. Формат регистра SEL_APLL

Номер разряда	Условное обозначение	Назначение		Исходное состоя- ние
		Бит указывает окончание настройки PLL на новую заданную часто-	R	0
31	LOCK	ту работы. При начале процедуры настройки либо при выключенной		
		PLL сбрасывается в 0.		
30:8	-	Не используется	R	0
7:0	SEL	Определяет выходную частоту и режим работы PLL SEL Вых. частота 0x0 XTI, PLL выключена 0x1 XTI * 2 0x2 XTI * 3 0x3 XTI * 4 0x3D XTI * 62	R/W	0
		0x3E XTI * 62 0xFF XTI * 62		

2.4.3.21 Perucmp SEL_CPLL

Таблица 2.41. Формат регистра SEL_CPLL

Номер разряда	Условное обозначение	Назначение		Исходное состоя- ние
31	LOCK	Бит указывает окончание настройки PLL на новую заданную частоту работы. При начале процедуры настройки либо при выключенной PLL сбрасывается в 0.		0
30:8	-	Не используется	R	0
7:0	SEL	Определяет выходную частоту и режим работы PLL SEL Вых. частота 0x0 XTI, PLL выключена 0x1 XTI * 2 0x2 XTI * 3 0x3 XTI * 4 0x3D XTI * 62	R/W	0

0x3E	XTI * 62	
0xFF	XTI * 62	

2.4.3.22 Perucmp SEL_DPLL

Таблица 2.42. Формат регистра SEL_DPLL

Номер	Условное	Назначение		Доступ	Исходное	
разряда	обозначение				состоя-	
						ние
		Бит указын	ает окончание наст	ройки PLL на новую заданную часто-	R	0
31	LOCK	ту работы.	При начале процеду	ры настройки либо при выключенной	1	
			PLL сбр	расывается в 0.		
30:8	-	Не использ	уется		R	0
		Определяет	выходную частоту	и режим работы PLL	R/W	0
			SEL	Вых. частота		
			0x0	XTI, PLL выключена		
			0x1	XTI * 2		
			0x2	XTI * 3		
7:0	SEL		0x3	XTI * 4		
			•••	•••		
			0x3D	XTI * 62		
			0x3E	XTI * 62		
			 0xFF	 XTI * 62		

2.4.3.23 Perucmp SEL_SPLL

Таблица 2.43. Формат регистра SEL_SPLL

Номер	Условное	Назначение		Исходное
разряда	обозначение			состоя-
		Бит указывает окончание настройки PLL на новую заданную часто-	R	ние ()
31	LOCK	ту работы. При начале процедуры настройки либо при выключенной	K	U
		PLL сбрасывается в 0.		
30:8	-	Не используется	R	0
7:0	SEL	Определяет выходную частоту и режим работы PLL SEL Вых. частота 0x0 XTI, PLL выключена 0x1 XTI * 2 0x2 XTI * 3 0x3 XTI * 4 0x3D XTI * 62 0x3E XTI * 62	R/W	0
		0x5E		

2.4.3.24 Perucmp SEL_VPLL

Таблица 2.44. Формат регистра SEL_SPLL

Номер	Условное	Назначение		Исходное
разряда	обозначение			состоя-
				ние
		Бит указывает окончание настройки PLL на новую заданную часто-	R	0
31	LOCK	ту работы. При начале процедуры настройки либо при выключенной		
		PLL сбрасывается в 0.		
30:8	-	Не используется	R	0
		Определяет выходную частоту и режим работы PLL	R/W	0
		SEL Вых. частота		
7:0	SEL	0x0 XTI, PLL выключена		
		0x1 XTI * 2		
		0x2 XTI * 3		

0x3	XTI * 4	
0x3D	 XTI * 62	
0x3D 0x3E	XTI * 62	
0xFF	 XTI * 62	

2.5 Уменьшение потребляемой мощности микросхемы и контроллер PMCTR

2.5.1 Введение

В микросхеме МСот 22 вводится понятие домена питания. Домен питания – это часть логики микросхемы, отключение питания от которой не приводит к сбоям в других частях микросхемы, а включение возвращает в исходное состояние.

Домен питания может включать в себя логику, работающую на одной или нескольких тактовых частотах.

Домен питания может находиться в одном из четырех состояний:

- 1) Включен логика внутри домена питания работает в диапазоне рабочих частот.
- 2) Остановлен все или некоторые тактовые частоты внутри домена отключены.
- 3) Сон отлючено питание от всей логики внутри домена за исключением памяти, состояние которой сохраняется.
- 4) Выключен отключено питание от всей логики внутри домена включая память.

Концепция состояний домена питания покрывает весь спектр решений по уменьшению потребляемой мощности логики внутри домена:

- для снижения динамического потребления:
 - в состоянии «Включен» могут понижаться рабочие тактовые частоты;
 - в состоянии «Остановлен» все или несколько тактовых частот могут быть отключены;
- для снижения статического потребления домен питания может быть временно выключен, либо переведен в состояние «Сон»;

Домены питания микросхемы показаны на Рисунок 2.6.

Рисунок 2.6 Домены питания микросхемы

- Домен MPU CPU0 включает логику ядра процессора CPU0 и сопроцессора NEON0;
- Домен MPU CPU1 включает логику ядра процессора CPU1 и сопроцессора NEON1;
- Домен SYSTEM включает логику и память кэша второго уровня и системную часть подсистемы центрального процессора, в том числе контроллер прерываний; логику уровней коммутатора L1_COMM, L3_COMM, блоков GPMC, SDMMC, RAM, ROM, PDMA, EMAC, USBIC, PWM, UART1-3, I2C, I2S, SPI, MAILBOX, SPINLOCK, а также логику отладки и трассы;
- Домен VPU включает логику видеоакселератора;
- Домен DSP включает логику цифрового сигнального процессора;
- Домен CORE включает логику уровней коммутатора L0_COMM, L2_COMM, блоков SWIC, MFBSP, VPIN, VPOUT, SDMA, GPU, DDRMC, MCC;
- Домен ALIVE и RTC включает логику блока таймера реального времени RTC.

Состояния доменов питания управляются совместно контроллерами системы синхронизации СМСТК и управления питанием РМСТК микросхемы. Через контроллер СМСТК задаются рабочие частоты внутри доменов и производится включение/отключение частот. Посредством контроллера РМСТК домены питания переводятся в состояния «Сон» и «Выключено» и включаются обратно.

2.5.2 Обзор контроллера РМСТК

Для всех доменов питания микросхемы соблюдаются специальные процедуры включения и выключения питания. Они обеспечивают правильную работу логики изоляции доменов, тактовых частот и сигналов сброса. Выполнение этих процедур реализуется с помощью контроллера управления питанием PMCTR.

Структура контроллера РМСТК показана на Рисунок 2.7.

Рисунок 2.7 Структура контроллера PMCTR

PMCTR содержит шесть функциональных блоков, по числу доменов питания, которые управляют сигналами сброса, изоляции и включения доменов питания, программно доступные регистры для управления ими и интерфейс к контроллеру системы синхронизации микросхемы CMCTR.

Общая процедура, которую реализует PMCTR для выключения домена питания следующая:

- 1) Отключение тактовой частоты
- 2) Разрешение сигнала изоляции домена
- 3) Установка сигнала сброса
- 4) Выключение переключателей питания
- 5) Перевод памяти в режим сохранения содержимого (опционально)

Пример аппаратной процедуры выключения домена показан на Рисунок 2.8

Рисунок 2.8 Процедура выключения домена питания

Общая процедура, которую реализует PMCTR для включения домена питания следующая:

- 1) Включение переключателей питания
- 2) Снятие сигнала сброса
- 3) Снятие изоляции
- 4) Включение тактовой частоты
- 5) Выставление прерывания (опционально)

Пример аппаратной процедуры выключения домена показан на Рисунок 2.9

Рисунок 2.9 Процедура включения домена питания

2.5.3 Режимы работы микросхемы

Все разрешенные комбинации состояний доменов питания микросхемы образуют несколько режимов работы микросхемы, показанных в Таблица 2.45

Таблица 2.45. Режимы работы микросхемы и возможные состояния доменов питания

	Рабочий режим	Экономный режим	Режим сна	
SYSTEM	Остановлен/ Включен	Остановлен/ Включен	Выключен	
MPU CPU0	Остановлен/ Включен	Выключен/ Остановлен/ Включен	Выключен	
MPU CPU1	Выключен/ Остановлен/ Включен	Выключен/ Остановлен/ Включен	Выключен	
DSP	Выключен/ Сон/ Остановлен/ Включен	Выключен/ Сон	Выключен/ Сон	
VPU	Выключен/ Сон/ Остановлен/ Включен	Выключен/ Сон	Выключен/ Сон	
CORE	Остановлен/ Включен	Выключен	Выключен	
ALIVE и RTC	Включен	Включен	Включен	

Состояние «Сон» доступно только для доменов DSP, VPU с сохранением содержимого памяти DSP и VPU соответственно.

Разрешенные переходы между режимами работы микросхемы показаны на Рисунок 2.10.

Рисунок 2.10 Переходы между режимами работы микросхемы

По включению микросхема находится в рабочем режиме.

2.5.3.1 Рабочий режим

В рабочем режиме домены питания CORE, SYSTEM, RTC и ALIVE включены, т.е. включен коммутатор микросхемы, все периферийные блоки и системная часть центрального процессора. При этом домены CPU0, CPU1, DSP, VPU, т.е. вычислительные ядра могут быть как включенными, так и выключенными в зависимости от приложения. Кроме этого

во всех доменах микросхемы, кроме RTC и ALIVE в рабочем режиме могут отключаться все или некоторые тактовые частоты.

Для перехода в экономный режим:

- Программно завершить все операции блоков, входящих в домены CORE, DSP, VPU;
- Перевести память DDR в режим self-refresh;
- Отключить CPLL и DPLL записью 0x0 в регистры SEL CPLL, SEL DPLL;
- Записать в регистр CORE PWR DOWN значение 0x7.

При переходе в экономный режим аппаратно выполняются следующие действия:

- Выполняется ожидание завершения всех транзакций в рамках доменов CORE, DSP, VPU;
- Маскируются тактовые частоты доменов CORE, DSP, VPU;

2.5.3.2 Экономный режим

В экономном режиме домены питания SYSTEM, RTC и ALIVE включены, т.е. включена низкоскоростная часть системного коммутатора L1_COMM, L3_COMM и периферийные блоки доступные по этой части коммутатора. Выключен домен CORE, т.е. высокоскоростная часть системного коммутатора L0_COMM, L2_COMM и блоки доступные по этой части коммутатора. Домены DSP, VPU также выключены или переведены в состояния сна. При этом домены CPU0, CPU1, т.е. вычислительные ядра центрального процессора могут быть как включенными, так и выключенными в зависимости от приложения. Кроме этого в доменах микросхемы CPU0, CPU1, SYSTEM в рабочем режиме могут отключаться все или некоторые тактовые частоты.

Для перехода в рабочий режим:

- Записать в регистр CORE_PWR_UP значение 0x1, если необходимо включить только домен CORE;
- Провести процедуру инициализации регистров DDRMC0, DDRMC1, завершить ее записью в регистр DDR INIT END PMCTR;
- Включить CPLL и DPLL записью рабочих значений умножителя в регистры SEL_CPLL, SEL_DPLL;
- Вывести DDR из режима self-refresh.

При переходе в рабочий режим аппаратно выполняются следующие действия:

- Размаскируются тактовые частоты для доменов CORE и если задано DSP, VPU;
- На логику в доменах CORE и если задано DSP, VPU подается сигнал сброса.

Для перехода в режим сна:

- Замаскировать все прерывания в контроллере GIC MPU;
- Программно завершить все операции блоков, входящих в домен SYSTEM;
- Перевести контроллер кэша второго уровня MPU в состояние standby;
- Настроить регистры WAKEUP MASK в PMCTR и RTC таймер;
- Записать в регистр SYSTEM PWR DOWN PMCTR значение 0x7.

При переходе в режим сна аппаратно выполняются следующие действия:

- Выполняется ожидание завершения всех транзакций в рамках доменов SYSTEM, CPU0, CPU1;
- Отключаются тактовые частоты домена SYSTEM;

2.5.3.3 Режим сна

В режиме сна все домены питания микросхемы, кроме RTC и ALIVE выключены. Необходимо также сохранять питание для некоторых групп КП: GP1_VDD, SVDD, RTC_VDD, SMC VDD для обеспечения процедуры начальной загрузки.

Для перехода в рабочий режим применяется аппаратный механизм wakeup событий, такими событиями являются:

- Прерывание Wakeup RTC таймера;
- Внешние прерывания от входов nIRQ и nFIQ;
- Подача запроса CSYSPWRUPREQ от DAP контроллера отладчика;
- Подача сигнала сброса на вход NRST WARM.

При переходе в рабочий режим аппаратно выполняются следующие действия:

- На микросхему подается сигнал «теплого» сброса.

Для дальнейшего снижения потребления микросхемы допускается отключения ALIVE домена, т.е. полное отключение питания от VDD_SYSTEM и всех цепей питания КП кроме RTC_VDD. Однако в таком случае исключается возможность пробуждения микросхемы от wakeup событий, кроме подачи сброса на вход NRST_WARM. Перед подачей сброса, внешней логикой должно быть обеспечено преварительное включение всех цепей питания. Для инициации процедуры включения может быть использован сигнал внешнего прерывания RTC Wakeup от RTC таймера.

2.5.3.4 Включение и выключение доменов МРИ СРИО, МРИ СРИ1

В рабочем и экономном режиме работы микросхемы допускается отключение доменов MPU CPU0 и MPU CPU1, которые соответсвуют двум вычислительным ядрам Cortex A9 MPU кластера. При этом системная часть центрального процессора, контроллер прерывания GIC и кэш второго уровня остаются включенными.

Выключение доменов MPU CPU0 или MPU CPU1 выполняется с помощью внутреннего для MPU регистра SCU Power status. Последовательность следующая:

- Выполнить все необходимые программные процедуры, необходимые для последующего включения. Очистить и девалидировать кэш L1;
- Записать 0x3 в соответствующие данному CPU биты регистра SCU CPU Power Status;
- Выполнить иструкцию WFI.

Включение доменов MPU CPU0 или MPU CPU1 выполняется по любому прерыванию настроенному в MPU SCU GIC контроллере на прерывания nIRQ или nFIQ соответствующего CPU. При этом прерывание выдается GIC контроллером MPU в качестве запроса к

контроллеру питания PMCTR, который и выполняет аппаратную процедуру включения домена CPU0 или CPU1.

2.5.3.5 Включение, сон и выключение доменов DSP, VPU

В рабочем режиме работы микросхемы допускается отключение доменов DSP и VPU, а также перевод их в режим сна. В режиме сна DSP сохраняет содержимое памяти XYRAM и PRAM, VPU сохраняет содержимое памяти....

Перевод в режим сна доменов DSP или VPU осуществляется следующим образом:

- Выполнить все необходимые программные процедуры, необходимые для последующего включения;
- Остановить программу DSP или VPU и все внешние обмены;
- Co стороны MPU записать «1» в соответсвующий бит регистра CORE PWR SLEEP PMCTR.

Выключение доменов DSP или VPU осуществляется следующим образом:

- Выполнить все необходимые программные процедуры, необходимые для последующего включения;
- Остановить программу DSP или VPU и все внешние обмены;
- Co стороны MPU записать «1» в соответсвующий бит регистра CORE PWR DOWN PMCTR.

Включение доменов DSP или VPU осуществляется записть «1» в соответсвующий бит регистра CORE_PWR_UP PMCTR.

2.5.4 Программная модель

Далее описаны программно доступные регистры PMCTR.

2.5.4.1 Сводная таблица регистров

В Таблица 2.21 представлена сводная таблица регистров контроллера управления синхронизацией.

В таблице указаны адреса смещения по отношению к базовому адресу контроллера PMCTR данному в Таблица 2.2.

Таблица 2.46. Сводная таблица регистров PMCTR

Смещение	Обозначение	Описание	Исходное состояние				
		Домены MPU CPU0, MPU CPU1, SYSTEM					
0x000	-	Резерв					
0x004	SYS_PWR_DOWN	Регистр выключения доменов					
0x008	-	Резерв					
0x00c	SYS_PWR_STATUS	Регистр статуса доменов					
0x010	SYS_PWR_IMASK	Регистр маски прерывания SYS_PWR_INT					
0x014	SYS_PWR_IRSTAT	Регистр наличного статуса прерывания SYS PWR INT					
0x018	SYS_PWR_ISTAT	Регистр статуса прерывания SYS_PWR_INT					
0x01c	SYS_PWR_ICLR	Регистр очистки статуса прерывания SYS_PWR_INT					
0x020	SYS_PWR_DELAY	Регистр задания задержек автоматов доменов					
	DDR Control						

0x24	DDR_PIN_RET	Регистр перевода выводов DDR в режим хранения состояния	
0x28	DDR_INIT_END	Регистр вывода контроллеров DDRMC0, DDRMC1 из режима инициализации	
		Логика сброса и wakeup	
0x2c	WARM_RST_EN	Регистры разрешения «теплого» сброса	
0x30	WKP_IMASK	Регистр маски wakeup событий	
0x34	WKP_IRSTAT	Регистр наличного статуса wakeup событий	
0x38	WKP_ISTAT	Регистр статуса wakeup событий	
0x3c	WKP_ICLR	Регистр очистки wakeup событий	
0x40	SW_RST	Регистр программного «теплого» сброса	
0x44	WARM_RST_STATUS	Регистр статуса последнего сброса	
0x48	PDM_RST_STATUS	Регистр статуса сброса доменов питания	
0x4c	VMODE	Регистр управлния сигналами VMODE	
0x50 - 0x5c	CPU0_WKP_MASK	Регистр маски включения домена CPU0 по прерываниям	
0x60 - 0x6c	CPU1_WKP_MASK	Регистр маски включения домена CPU1 по прерываниям	
0x70	ALWAYS_MISC0	Регистр общего назначения в домене AL-WAYS_ON	
0x74	ALWAYS_MISC1	Регистр общего назначения в домене AL-WAYS_ON	
0x78	WARM_BOOT_OVRD	Регистр управления загрузкой при «теплом» сбро- се	
		Домены DSP, VPU, CORE	
0x080	CORE_PWR_UP	Регистр включения доменов	
0x084	CORE_PWR_DOWN	Регистр выключения доменов	
0x088	-	Резерв	
0x08c	CORE_PWR_STATUS	Регистр статуса доменов	
0x090	CORE_PWR_IMASK	Регистр маски прерывания CORE_PWR_INT	
0x094	CORE_PWR_IRSTAT	Регистр наличного статуса прерывания CORE_PWR_INT	
0x098	CORE_PWR_ISTAT	Регистр статуса прерывания CORE_PWR_INT	
0x09c	CORE_PWR_ICLR	Регистр очистки статуса прерывания CORE_PWR_INT	
0x0a0	CORE_PWR_DELAY	Регистр задания задержек автоматов доменов	

2.5.4.2 Perucmp SYS_PWR_DOWN

Таблица 2.47. Формат регистра SYS_PWR_DOWN

Номер разряда	Условное обо- значение	Назначение	Доступ	Исходное состоя- ние
31:3	-	Не используется	W	н.д.
2	CPU1_DOWN	Выключение домена СРU1	W	н.д.
1	CPU0_DOWN	Выключение домена СРИ0	W	н.д.
0	SYS DOWN	Выключение домена SYSTEM	W	н.д.

2.5.4.3 Perucmp SYS_PWR_STATUS

Таблица 2.48. Формат регистра SYS_PWR_STATUS

Номер	Условное обо-	Назначение	Доступ	Исходное
разряда	значение			состоя-
				ние
31:3	-	Не используется	R	0x0
		Статус домена СРU1	R	0x0
2	CPU1_DOWN	0 – включен		
		1 - выключен		
		Статус домена СРU1	R	0x0
1	CPU0_DOWN	0 – включен		
		1 - выключен		

		Статус домена SYSTEM	R	0x0
0	SYS_DOWN	0 – включен		
		1 - выключен		

2.5.4.4 SYS_PWR_DELAY

Таблица 2.49. Формат регистра SYS_PWR_DELAY

Номер разряда	Условное обо- значение	Назначение	Доступ	Исходное состоя- ние
31:16	-	Не используется	R	0x0
15:0	DELAY	Бит задает длительность аппаратной процедуры включения домена в тактах XTI_24M. Допустимые значения 0x0000 – 0xFFFF.	R/W	0xFF

2.5.4.5 Perucmp SYS_PWR_IMASK

Таблица 2.50. Формат регистра SYS_PWR_IMASK

Номер	Условное обо-	Назначение	Доступ	Исходное
разряда	значение			состоя-
				ние
31:1	-	Не используется	R	0x0
0	MASK	Маска прерывания по включению любого из доменов 1 – прерывание разрешено 0 – прервыание запрещено	R/W	0x1

2.5.4.6 Perucmp SYS PWR IRSTAT

Таблица 2.51. Формат регистра SYS_PWR_IRSTAT

Номер	Условное обо-	Назначение	Доступ	Исходное
разряда	значение			состоя-
				ние
31:1	-	Не используется	R	0x0
0	RSTAT	Показывает незамаскированный статус прервания. Запись «1» приводит к установке бита и генерации немаскируемого прерывания	R/W	0x0

2.5.4.7 Perucmp SYS PWR ISTAT

Таблица 2.52. Формат регистра SYS_PWR_ISTAT

	Номер разряда	Условное обо- значение	Назначение	Доступ	Исходное состоя- ние
ĺ	31:1	-	Не используется	R	0x0
ĺ	0	ISTAT	Показывает маскированный статус прервания	R	0x0

2.5.4.8 Perucmp SYS_PWR_ICLR

Таблица 2.53. Формат регистра SYS_PWR_ICLR

Номер	Условное обо-	Назначение	Доступ	Исходное
разряда	значение			состоя-
				ние
31:1	-	Не используется	W	н.д.
0	CLR	Запись «1» очищает статус прерывания	W	н.д.

2.5.4.9 Perucmp Perucmp DDR_PIN_RET

Таблица 2.54. Формат регистра DDR PIN RET

Номер Условное обо- Назначе	ние Доступ	Исходное
-----------------------------	------------	----------

разряда	значение			состоя-
				ние
31:2	-	Не используется	R	0x0
		Бит управляют логикой поддержания состояния выводов DDR в	R/W	0x1
1	RET DDRMC1	случае отключения питания		
1	KE1_DDKWIC1	«1» - выводы в режиме поддержания состояния		
		«0» - выводы в рабочем режиме		
		Бит управляют логикой поддержания состояния выводов DDR в	R/W	0x1
0	RET_DDRMC0	случае отключения питания		
U		«1» - выводы в режиме поддержания состояния		
		«0» - выводы в рабочем режиме		

2.5.4.10 Perucmp Perucmp DDR_INIT_END

Таблица 2.55. Формат регистра DDR_INIT_END

Номер	Условное обо-	Назначение	Доступ	Исходное
разряда	значение			состоя-
				ние
31:1	-	Не используется	R	0x0
0	INIT_END	Запись в бит должна завершать процедуру инициализации регистров контроллеров DDRMC0 и DDRMC1. Процедура инициализации проводится после сброса микросхемы или домена питания CORE. Для начала процедуры необходимо также включить частоту DDR через регистр GATE_CORE_CTR CMCTR. Процедура должна проводиться при выключенной PLL(CPLL или SPLL в зависимости от настроек источника тактовой частоты для DDR)	R/W	0x0

2.5.4.11 Perucmp CPU0_WKP_MASK

Таблица 2.56. Формат регистра SYS_PWR_IMASK

Номер	Условное обо-	Назначение	Доступ	Исходное
разряда	значение			состоя-
				ние
		Маска разрешения включения по прерываниям домена CPU0	R/W	0x0
		1 – прерывание разрешено		
127:0	MASK	0 – прервыание запрещено		
		Биты маски соответсвуют отображению прерываний в контроллере		
		прерываний MPU		

2.5.4.12 Perucmp CPU1_WKP_MASK

Таблица 2.57. Формат регистра SYS_PWR_IMASK

Номер	Условное обо-	Назначение	Доступ	Исходное
разряда	значение			состоя-
				ние
		Маска разрешения включения по прерываниям домена CPU1	R/W	0x0
127:0	MASK	1 – прерывание разрешено		
127.0	MASK	0 – прервыание запрещено		
		Биты маски соответсвуют отображению прерываний в контроллере		
		прерываний MPU		

2.5.4.13 ALWAYS_MISC0

Таблица 2.58. Формат регистра ALWAYS_MISC0

Номер разряда	Условное обо- значение	Назначение	Доступ	Исходное состоя- ние
31:0	MISC	Поле регистра общего назначения, которых находится в домене ALWAYS_ON и таким образом сохраняет свое значение в режиме «сон» микросхемы	R/W	0x0

2.5.4.14 ALWAYS_MISC1

Таблица 2.59. Формат регистра ALWAYS_MISC1

Номер разряда	Условное обо- значение	Назначение	Доступ	Исходное состоя- ние
31:0	MISC	Поле регистра общего назначения, которых находится в домене ALWAYS_ON и таким образом сохраняет свое значение в режиме «сон» микросхемы	R/W	0x0

2.5.4.15 WARM BOOT OVRD

Таблица 2.60. Формат регистра WARM_BOOT_OVRD

Номер	Условное обо-	Назначение	Доступ	Исходное
разряда	значение			состоя-
				ние
31:1	-	Не используется	R	0x0
0	OVRD_EN	Разрешение на принудительную установку значения регистра BOOT_REMAP в 0x2 при теплом сбросе, т.е. при теплом сбросе начальная загрузка осуществляется из ROM памяти, вне зависимости от значений на внешних входах BOOT микросхемы. Может использоваться, например, для передачи управления по теплому сбросу сразу программе восстановления контекста, минуя процедуры загрузки и инициализации необходимые при сбросе по включению питания микросхемы.	R/W	0x0

2.5.4.16 Perucmp CORE_PWR_UP

Таблица 2.61. Формат регистра CORE_PWR_UP

Номер разряда	Условное обо- значение	Назначение	Доступ	Исходное состоя- ние
31:3	-	Не используется	W	н.д.
2	VPU_UP	Включение домена VPU	W	н.д.
1	DSP_UP	Включение домена DSP	W	н.д.
0	CORE UP	Включение домена CORE	W	н.д.

2.5.4.17 Perucmp CORE_PWR_DOWN

Таблица 2.62. Формат регистра CORE_PWR_DOWN

Номер	Условное обо-	Назначение	Доступ	Исходное
разряда	значение			состоя-
				ние
31:3	-	Не используется	W	н.д.
2	VPU_DOWN	Выключение домена VPU	W	н.д.
1	DSP_DOWN	Выключение домена DSP	W	н.д.
0	CORE_DOWN	Выключение домена CORE	W	н.д.

2.5.4.18 CORE_PWR_SLEEP

Таблица 2.63. Формат регистра CORE_PWR_SLEEP

Номер разряда	Условное обо- значение	Назначение	Доступ	Исходное состоя-
				ние
31:3	-	Не используется	W	н.д.
2	VPU_SLEEP	Перевод домена VPU в сон, т.е. выключение с сохранением содержимого памяти	W	н.д.
1	DSP_SLEEP	Перевод домена DSP в сон, т.е. выключение с сохранением содержимого памяти	W	н.д.
0	-	Не используется	W	н.д.

2.5.4.19 Perucmp CORE_PWR_STATUS

Таблица 2.64. Формат регистра CORE_PWR_STATUS

Номер	Условное обо-	Назначение	Доступ	Исходное
разряда	значение			состоя-
				ние
31:3	-	Не используется	R	0x0
		Статус домена VPU	R	0x0
2	VPU_DOWN	0 – включен		
		1 - выключен		
		Статус домена DSP	R	0x0
1	DSP_DOWN	0 – включен		
	_	1 - выключен		
		Статус домена CORE	R	0x0
0	CORE_DOWN	0 – включен		
		1 - выключен		

2.5.4.20 Perucmp CORE_PWR_IMASK

Таблица 2.65. Формат регистра CORE_PWR_IMASK

Номер	Условное обо-	Назначение	Доступ	Исходное
разряда	значение			состоя-
				ние
31:1	-	Не используется	R	0x0
0	MASK	Маска прерывания по включению любого из доменов 1 – прерывание разрешено 0 – прервыание запрещено	R/W	0x1

2.5.4.21 Perucmp CORE_PWR_IRSTAT

Таблица 2.66. Формат регистра CORE_PWR_IRSTAT

Номер разряда	Условное обо- значение	Назначение	Доступ	Исходное состоя- ние
31:1	-	Не используется	R	0x0
0	RSTAT	Показывает незамаскированный статус прервания. Запись «1» приводит к установке бита и генерации немаскируемого прерывания	R/W	0x0

2.5.4.22 Perucmp CORE_PWR_ISTAT

Таблица 2.67. Формат регистра CORE_PWR_ISTAT

Номе разряд	·	Назначение	Доступ	Исходное состоя- ние
31:1	-	Не используется	R	0x0
0	ISTAT	Показывает маскированный статус прервания	R	0x0

2.5.4.23 Perucmp CORE PWR ICLR

Таблица 2.68. Формат регистра CORE_PWR_ICLR

Номер разряда	Условное обо- значение	Назначение	Доступ	Исходное состоя- ние
31:1	-	Не используется	W	н.д.
0	CLR	Запись «1» очищает статус прерывания	W	н.д.

2.5.4.24 Perucmp CORE_PWR_DELAY

Таблица 2.69. Формат регистра CORE_PWR_DELAY

Номер разряда	Условное обо- значение	Назначение	Доступ	Исходное состоя- ние
31:16	-	Не используется	R	0x0
15:0	DELAY	Поле задает длительность аппаратной процедуры включения домена в тактах XTI 24M. Допустимые значения 0x0000 – 0xFFFF.	R/W	0xFF

2.5.4.25 Perucmp WARM_RST_EN

Таблица 2.70. Формат регистра WARM_RST_EN

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя- ние
31:1	-	Не используется	R	0
0	EN	Разрешение «теплого» сброса в микросхеме. При бите установленном в «0» все источники «теплого» сброса микросхемы приводят к сбросу по включению питания.	R/W	1

2.5.4.26 Perucmp WKP_IMASK

Таблица 2.71. Формат регистра WKP_IMASK

Номер	Условное обо-	Назначение	Доступ	Исходное
разряда	значение			состоя-
				ние
31:6	-	Не используется	R	0x0
		Маска событий по выводу микросхемы из режима сна	R/W	0x0
		1 – прерывание разрешено		
		0 – прервыание запрещено		
		Бит 0 – WIRQ[0]		
5:0	MASK	Бит 1 – WIRQ[1]		
		Бит 2 – Резерв		
		Бит 3 – Резерв		
		Бит 4 – RTC wakeup		
		Бит 5 – CSYSPWRÛPREQ		

2.5.4.27 Perucmp WKP_IRSTAT

Таблица 2.72. Формат регистра WKP_IRSTAT

Номер разряда	Условное обо- значение	Назначение	Доступ	Исходное состоя- ние
31:6	-	Не используется	R	0x0
5:0	RSTAT	Показывает незамаскированный статус прервания. Запись «1» приводит к установке бита и генерации немаскируемого прерывания Бит 0 – WIRQ[0] Бит 1 – WIRQ[1] Бит 2 – Резерв Бит 3 – Резерв Бит 4 – RTC wakeup Бит 5 – CSYSPWRUPREQ	R/W	0x0

2.5.4.28 Perucmp WKP_ISTAT

Таблица 2.73. Формат регистра SYS_PWR_ISTAT

Γ	Номер	Условное обо-	Назначение	Лоступ	Исхолное
	11010	t thiobildt doo	11001111 1011110	A001711	11011011100

разряда	значение			состоя-
				ние
31:6	-	Не используется	R	0x0
5:0	ISTAT	Показывает маскированный статус прервания Бит 0 – WIRQ[0] Бит 1 – WIRQ[1] Бит 2 – Резерв Бит 3 – Резерв Бит 4 – RTC wakeup Бит 5 – CSYSPWRUPREQ	R	0x0

2.5.4.29 Perucmp WKP_ICLR

Таблица 2.74. Формат регистра SYS_PWR_ICLR

Номер разряда	Условное обо- значение	Назначение	Доступ	Исходное состоя-
				ние
31:6	-	Не используется	W	н.д.
5:0	CLR	Запись «1» очищает статус прерывания Бит 0 – WIRQ[0] Бит 1 – WIRQ[1] Бит 2 – Резерв Бит 3 – Резерв Бит 4 – RTC wakeup Бит 5 – CSYSPWRUPREQ	W	н.д.

2.5.4.30 Perucmp SW_RST

Таблица 2.75. Формат регистра SW_RST

	Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя- ние
Ī	31:1	-	Не используется	R	0
ĺ	0	RST	Запись «1» инициирует «теплый» сброс микросхемы.	W	-

2.5.4.31 Perucmp WARM_RST_STATUS

Таблица 2.76. Формат регистра WARM_RST_STATUS

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя-
				ние
31:4	-	Не используется	R	0
4	SOC_WDT	Сброс произошел по сторожевому таймеру WDT		
3	WKUP	Сброс произошел по wakeup событию	R	-
2	CPU0_WDT	Сброс произошел по сторожевому таймеру MPU CPU0	R	-
1	SW	Сброс произошел по программной записи	R	-
0	EXT	Сброс произошел от внешнего вывода NRST_WARM	R	-

2.5.4.32 Perucmp PDM_RST_STATUS

Таблица 2.77. Формат регистра PDM_RST_STATUS

Номер разряда	Условное обозначение	Назначение		Исходное состоя- ние
31:5	-	Не используется	R	0
4	CORE	Сброс логики CORE произошел по включению домена	R	0
3	VPU	Сброс VPU произошел по включению домена	R	0
2	DSP	Сброс DSP произошел по включению домена	R	0
1	CPU1	Сброс МРИ СРИ1 произошел по включению домена	R	0
0	CPU0	Сброс MPU CPU0 произошел по включению домена	R	0

2.5.4.33 Perucmp VMODE

Таблица 2.78. Формат регистра VMODE

Номер разряда	Условное обозначение	Назначение	Доступ	Исходное состоя- ние
31:2	-	Не используется	R	0
1:0	VMODE	Биты управляют состоянием внешних выводов NVMODE[1:0] и используются для задания напряжения ядра микросхемы	R/W	0x3

2.6 Контроллеры прерываний в микросхеме

2.6.1 Обзор

2.6.2 Интеграция

2.6.3 Отображение прерываний

Таблица 2.79. Отображение прерываний в контроллере прерываний MPU

	Адресат преры- вания	Источник преры- вания	Модуль	Описание
	MPU IRQS0	MPU L2CCINTR	MPU	Прерывание контроллера кэша второго уровня MPU
	MPU IRQS1	DSP INT DSP	DSP	Прерывание от DSP
	MPU IRQS2	GPU IRQPPMMU0	GPU	Прерывание от ММИ пиксельного процессора GPU
	MPU IRQS3	GPU IRQPP0	GPU	Прерывание от пиксельного процессора GPU
	MPU IRQS4	GPU IRQPMU	GPU	Прерывание от PMU GPU
	MPU IRQS5	GPU IRQGPMMU	GPU	Прерывание от MMU геометрического процессора GPU
	MPU_IRQS6	GPU_IRQGP	GPU	Прерывание от геометрического процессора GPU
	MPU_IRQS7	VPU_INT	VPU	Прерывание от VPU
	MPU_IRQS8	SDMA_IRQ0	SDMA	Прерывание 0 от SDMA
	MPU_IRQS9	SDMA_IRQ1	SDMA	Прерывание 1 от SDMA
	MPU_IRQS10	SDMA_IRQ2	SDMA	Прерывание 2 от SDMA
	MPU_IRQS11	SDMA_IRQ3	SDMA	Прерывание 3 от SDMA
	MPU_IRQS12	SDMA_IRQ4	SDMA	Прерывание 4 от SDMA
	MPU_IRQS13	SDMA_IRQ5	SDMA	Прерывание 5 от SDMA
	MPU_IRQS14	SDMA_IRQ6	SDMA	Прерывание 6 от SDMA
	MPU_IRQS15	SDMA_IRQ7	SDMA	Прерывание 7 от SDMA
	MPU_IRQS16	SDMA_IRQ8	SDMA	Прерывание 8 от SDMA
	MPU_IRQS17	SDMA_IRQ9	SDMA	Прерывание 9 от SDMA
	MPU_IRQS18	SDMA_IRQ10	SDMA	Прерывание 10 от SDMA
	MPU_IRQS19	SDMA_IRQ11	SDMA	Прерывание 11 от SDMA
	MPU_IRQS20	SDMA_IRQ12	SDMA	Прерывание 12 от SDMA
	MPU_IRQS21	SDMA_IRQ13	SDMA	Прерывание 13 от SDMA
	MPU_IRQS22	SDMA_IRQ14	SDMA	Прерывание 14 от SDMA
	MPU_IRQS23	SDMA_IRQ15	SDMA	Прерывание 15 от SDMA
	MPU_IRQS24	PDMA_INT_FLAG0	PDMA	
	MPU_IRQS25	PDMA_INT_FLAG1	PDMA	
	MPU_IRQS26	PDMA_INT_FLAG2	PDMA	
	MPU_IRQS27	PDMA_INT_FLAG3	PDMA	
	MPU_IRQS28	PDMA_INT_FLAG4	PDMA	
Ш	MPU_IRQS29	RTC_TICK_INT	RTC	
	MPU_IRQS30	RTC_PMWKP_INT	RTC	
	MPU_IRQS31	RTC_ALARM_INT	RTC	
	MPU_IRQS32	USBIC_INT	USBIC	
	MPU_IRQS33	USBIC_ENDP_INT	USBIC	
	MPU_IRQS34	VPIN_VIOINT	VPIN	

	MPU_IRQS35	VPIN_STR0INT	VPIN	
	MPU_IRQS36	VPIN_STR1INT	VPIN	
	MPU_IRQS37	VPOUT_LCDINT	VPOUT	
	MPU_IRQS38	VPOUT_DSIINT	VPOUT	
	MPU_IRQS39	NFC_MPORTINT	NFCMPORT	
	MPU_IRQS40	MFBSP0_DMAIRQ0	MFBSP0	
	MPU IRQS41	MFBSP0 DMAIRQ1	MFBSP0	
	MPU IRQS42	MFBSP1 DMAIRQ0	MFBSP1	
	MPU IRQS43	MFBSP1 DMAIRQ1	MFBSP1	
	MPU IRQS44	Резерв	Резерв	Резерв
	MPU IRQS45	Резерв	Резерв	Резерв
	MPU IRQS46	CPU0 PMUIRQ	MPU	Прерывание от монитора производительности СРИ0
	MPU IRQS47	CPU1 PMUIRQ	MPU	Прерывание от монитора производительности СРU1
	MPU IRQS48	SWIC0DMA IRQ0	SWIC0	прерывание от монитора производительности ст ст
	MPU IRQS49	SWIC0DMA_IRQ1	SWIC0	
	MPU IRQS50	SWIC0DMA_IRQ1	SWIC0	
	MPU IRQS51	SWIC0DMA_IRQ2	SWIC0	
	MPU IRQS52	SWIC1DMA_IRQ3	SWIC1	
	MPU_IRQS53	SWIC1DMA_IRQ1	SWIC1	
\vdash	MPU_IRQS54	SWIC1DMA_IRQ2	SWIC1	
	MPU_IRQS55	SWIC1DMA_IRQ3	SWIC1	
	MPU_IRQS56	SWIC0_INT	SWIC0	
	MPU_IRQS57	SWIC1_INT	SWIC1	
	MPU_IRQS58	MFBSP0_RXIRQ	MFBSP0	
	MPU_IRQS59	MFBSP0_TXIRQ	MFBSP0	
	MPU_IRQS60	MFBSP0_SRQ	MFBSP0	
	MPU_IRQS61	MFBSP1_RXIRQ	MFBSP1	
	MPU_IRQS62	MFBSP1_TXIRQ	MFBSP1	
	MPU_IRQS63	MFBSP1_SRQ	MFBSP1	
	MPU_IRQS64	UART0_INTR	UART0	Прерывание от UART0
	MPU_IRQS65	UART1_INTR	UART1	Прерывание от UART1
	MPU_IRQS66	UART2_INTR	UART2	Прерывание от UART2
	MPU_IRQS67	UART2_INTR	UART2	Прерывание от UART3
	MPU_IRQS68	I2C0_IC_INTR	I2C0	Прерывание от I2C0
	MPU_IRQS69	I2C1_IC_INTR	I2C1	Прерывание от I2С1
	MPU_IRQS70	I2C2_IC_INTR	I2C2	Прерывание от I2C2
	MPU_IRQS71	MCC_INT	MCC	
	MPU_IRQS72	I2S0_INTR	I2S0	Прерывание от I2S0
	MPU_IRQS73	EMAC_INT	EMAC	Прерывание от ЕМАС
	MPU_IRQS74	SSI0_SSI_INTR	SSI0	Прерывание от SSI0
	MPU_IRQS75	SSI1_SSI_INTR	SSI1	Прерывание от SSI1
	MPU_IRQS76	PWM_INT	PWM	
	MPU_IRQS77	PWM_INTU	PWM	
	MPU_IRQS78	SDMMC0_INT	SDMMC0	Прерывание от SDMMC0
	MPU IRQS79	SDMMC1 INT	SDMMC1	Прерывание от SDMMC1
	MPU IRQS80	TIMER INTRO	TIMER	Прерывание 0 от TIMER
	MPU IRQS81	TIMER INTR1	TIMER	Прерывание 1 от TIMER
	MPU IRQS82	TIMER INTR2	TIMER	Прерывание 2 от TIMER
	MPU IRQS83	TIMER INTR3	TIMER	Прерывание 3 от ТІМЕК
	MPU IRQS84	TIMER INTR4	TIMER	Прерывание 4 от TIMER
	MPU IRQS85	TIMER INTR5	TIMER	Прерывание 5 от ТІМЕR
	MPU IRQS86	TIMER INTR6	TIMER	Прерывание 6 от TIMER
\vdash	MPU IRQS87	TIMER INTR7	TIMER	Прерывание 7 от ТІМЕК
	MPU IRQS88	GPIO INTRO	GPIO	Прерывание 0 от GPIO
	MPU IRQS89	GPIO INTR1	GPIO	Прерывание 1 от GPIO
	MPU_IRQS90	GPIO INTR2	GPIO	Прерывание 2 от GPIO
\vdash	MPU IRQS91	GPIO INTR3	GPIO	Прерывание 3 от GPIO
	MPU IRQS92	GPIO INTR4	GPIO	Прерывание 4 от GPIO
Ш	0_II(0)/2	3110_111114	3110	Treephilbuille 101 0110

MPU_IRQS93	GPIO_INTR5	GPIO	Прерывание 5 от GPIO
MPU_IRQS94	GPIO_INTR6	GPIO	Прерывание 6 от GPIO
MPU_IRQS95	GPIO_INTR7	GPIO	Прерывание 7 от GPIO
MPU_IRQS96	GPIO_INTR8	GPIO	Прерывание 8 от GPIO
MPU_IRQS97	GPIO_INTR9	GPIO	Прерывание 9 от GPIO
MPU_IRQS98	GPIO_INTR10	GPIO	Прерывание 10 от GPIO
MPU_IRQS99	GPIO_INTR11	GPIO	Прерывание 11 от GPIO
MPU_IRQS100	GPIO_INTR12	GPIO	Прерывание 12 от GPIO
MPU_IRQS101	GPIO_INTR13	GPIO	Прерывание 13 от GPIO
MPU_IRQS102	GPIO_INTR14	GPIO	Прерывание 14 от GPIO
MPU_IRQS103	GPIO_INTR15	GPIO	Прерывание 15 от GPIO
MPU_IRQS104	GPIO_INTR16	GPIO	Прерывание 16 от GPIO
MPU_IRQS105	GPIO_INTR17	GPIO	Прерывание 17 от GPIO
MPU_IRQS106	GPIO_INTR18	GPIO	Прерывание 18 от GPIO
MPU_IRQS107	GPIO_INTR19	GPIO	Прерывание 19 от GPIO
MPU_IRQS108	GPIO_INTR20	GPIO	Прерывание 20 от GPIO
MPU_IRQS109	GPIO_INTR21	GPIO	Прерывание 21 от GPIO
MPU_IRQS110	GPIO_INTR22	GPIO	Прерывание 22 от GPIO
MPU_IRQS111	GPIO_INTR23	GPIO	Прерывание 23 от GPIO
MPU_IRQS112	GPIO_INTR24	GPIO	Прерывание 24 от GPIO
MPU_IRQS113	GPIO_INTR25	GPIO	Прерывание 25 от GPIO
MPU_IRQS114	GPIO_INTR26	GPIO	Прерывание 26 от GPIO
MPU_IRQS115	GPIO_INTR27	GPIO	Прерывание 27 от GPIO
MPU_IRQS116	GPIO_INTR28	GPIO	Прерывание 28 от GPIO
MPU_IRQS117	GPIO_INTR29	GPIO	Прерывание 29 от GPIO
MPU_IRQS118	GPIO_INTR30	GPIO	Прерывание 30 от GPIO
MPU_IRQS119	GPIO_INTR31	GPIO	Прерывание 31 от GPIO
MPU_IRQS120	MAILBOX_IRQR	MAILBOX	
MPU_IRQS121	MAILBOX_IRQW	MAILBOX	
MPU_IRQS122	IRQ_PMU0	PMCTR	
MPU_IRQS123	IRQ_PMU1	PMCTR	
MPU_IRQS124	CPU0_CTIIRQ	CPU0	
MPU_IRQS125	CPU1_CTIIRQ	CPU1	
MPU_IRQS126	DLOCK_IRQ	L0_COMM	Прерывание от коммутатора микросхемы
MPU_IRQS127	WDT_IRQ	WDT	Прерывание от сторожевого таймера
		•	

Таблица 2.72. Отображение прерываний в контроллере прерываний DSP

Адресат преры- вания	Источник преры- вания	Модуль	Описание
DSP QST0 0	MPU nIRQOUT 0	MPU	Прерывание от МРИ
DSP QST0 1	MPU nIRQOUT 1	MPU	Прерывание от МРИ
DSP QST0 2	GPU IRQPPMMU0	GPU	Прерывание от MMU пиксельного процессора GPU
DSP QST0 3	GPU IRQPP0	GPU	Прерывание от пиксельного процессора GPU
DSP_QST0_4	GPU_IRQPMU	GPU	Прерывание от PMU GPU
DSP_QST0_5	GPU_IRQGPMMU	GPU	Прерывание от ММИ геометрического процессора GPU
DSP_QST0_6	GPU_IRQGP	GPU	Прерывание от геометрического процессора GPU
DSP QST0 7	VPU INT	VPU	Прерывание от VPU
DSP_QST0_8	SDMA_IRQ0	SDMA	Прерывание 0 от SDMA
DSP_QST0_9	SDMA_IRQ1	SDMA	Прерывание 1 от SDMA
DSP_QST0_10	SDMA_IRQ2	SDMA	Прерывание 2 от SDMA
DSP_QST0_11	SDMA_IRQ3	SDMA	Прерывание 3 от SDMA
DSP_QST0_12	SDMA_IRQ4	SDMA	Прерывание 4 от SDMA
DSP_QST0_13	SDMA_IRQ5	SDMA	Прерывание 5 от SDMA
DSP_QST0_14	SDMA_IRQ6	SDMA	Прерывание 6 от SDMA
DSP_QST0_15	SDMA_IRQ7	SDMA	Прерывание 7 от SDMA
DSP_QST0_16	SDMA_IRQ8	SDMA	Прерывание 8 от SDMA
DSP QST0 17	SDMA IRQ9	SDMA	Прерывание 9 от SDMA

DSP_QST0_18		SDMA	Прерывание 10 от SDMA
DSP_QST0_19		SDMA	Прерывание 11 от SDMA
DSP_QST0_20	_ `	SDMA	Прерывание 12 от SDMA
DSP_QST0_21	_ `	SDMA	Прерывание 13 от SDMA
DSP_QST0_22	_ `	SDMA	Прерывание 14 от SDMA
DSP_QST0_23	SDMA_IRQ15	SDMA	Прерывание 15 от SDMA
DSP_QST0_24	PDMA_INT_FLAG0	PDMA	
DSP_QST0_25	PDMA_INT_FLAG1	PDMA	
DSP_QST0_26	PDMA_INT_FLAG2	PDMA	
DSP_QST0_27	PDMA_INT_FLAG3	PDMA	
DSP_QST0_28	PDMA_INT_FLAG4	PDMA	
DSP_QST0_29	RTC_TICK_INT	RTC	
DSP_QST0_30	RTC_PMWKP_INT	RTC	
DSP_QST0_31	RTC_ALARM_INT	RTC	
DSP_QST1_0	USBIC_INT	USBIC	
DSP_QST1_1	USBIC_ENDP_INT	USBIC	
DSP_QST1_2	VPIN_VIOINT	VPIN	
DSP_QST1_3	VPIN_STR0INT	VPIN	
DSP_QST1_4	VPIN_STR1INT	VPIN	
DSP_QST1_5	VPOUT_LCDINT	VPOUT	
DSP_QST1_6	VPOUT_DSIINT	VPOUT	
DSP_QST1_7	NFC_MPORTINT	NFCMPORT	
DSP_QST1_8	MFBSP0_DMAIRQ0	MFBSP0	
DSP_QST1_9	MFBSP0_DMAIRQ1	MFBSP0	
DSP_QST1_10	MFBSP1_DMAIRQ0	MFBSP1	
DSP_QST1_11	MFBSP1_DMAIRQ1	MFBSP1	
DSP_QST1_12	Резерв	Резерв	Резерв
DSP_QST1_13	Резерв	Резерв	Резерв
DSP QST1 14	Резерв	Резерв	Резерв
	-		
DSP_QST1_15	Резерв	Резерв	Резерв
DSP_QST1_15 DSP_QST1_16	Pезерв SWIC0DMA_IRQ0	Резерв SWIC0	
DSP_QST1_15 DSP_QST1_16 DSP_QST1_17	Pe3epb SWIC0DMA_IRQ0 SWIC0DMA_IRQ1	Pesepb SWIC0 SWIC0	
DSP_QST1_15 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18	Pe3epB SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2	Pesepb SWIC0 SWIC0 SWIC0	
DSP_QST1_15 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18 DSP_QST1_19	Pe3epB SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3	Pesepb SWIC0 SWIC0 SWIC0 SWIC0	
DSP_QST1_15 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18 DSP_QST1_19 DSP_QST1_20	Pe3epB SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0	Pesepb SWIC0 SWIC0 SWIC0 SWIC0 SWIC1	
DSP_QST1_15 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21	Pe3epB SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ0	Pesepb SWIC0 SWIC0 SWIC0 SWIC0 SWIC1	
DSP_QST1_15 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_21 DSP_QST1_21	Pe3epB SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ1	Pesepb SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1	
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_21 DSP_QST1_21 DSP_QST1_22 DSP_QST1_23	Pe3epb SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ1 SWIC1DMA_IRQ2 SWIC1DMA_IRQ2	Pesepb SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1	
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_22 DSP_QST1_22 DSP_QST1_23 DSP_QST1_24	Pe3epb SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ2 SWIC1DMA_IRQ2 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3	Pesepb SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1	
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_22 DSP_QST1_23 DSP_QST1_24 DSP_QST1_25	Pe3epb SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ2 SWIC1DMA_IRQ2 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3	Pesepb SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC0 SWIC1	
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_22 DSP_QST1_23 DSP_QST1_24 DSP_QST1_25 DSP_QST1_26	Pe3epB SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ2 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1_INT SWIC1_INT MFBSP0_RXIRQ	Pesepb SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC2 SWIC1 SWIC4 SWIC4	
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_21 DSP_QST1_22 DSP_QST1_24 DSP_QST1_25 DSP_QST1_26 DSP_QST1_26 DSP_QST1_27	Pe3epB SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ1 SWIC1DMA_IRQ2 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC0_INT SWIC1_INT MFBSP0_RXIRQ MFBSP0_TXIRQ	Pesepb SWIC0 SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC0 SWIC0 SWICO SWIC1	
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_21 DSP_QST1_22 DSP_QST1_23 DSP_QST1_24 DSP_QST1_25 DSP_QST1_26 DSP_QST1_27 DSP_QST1_28	Pe3epb SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ1 SWIC1DMA_IRQ2 SWIC1DMA_IRQ2 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC0_INT SWIC1_INT MFBSP0_RXIRQ MFBSP0_TXIRQ MFBSP0_SRQ	Pesepb SWIC0 SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC9 SWIC0 SWIC0 SWIC0 SWIC0 SWIC0 SWIC1 MFBSP0 MFBSP0 MFBSP0	
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_21 DSP_QST1_22 DSP_QST1_23 DSP_QST1_24 DSP_QST1_25 DSP_QST1_26 DSP_QST1_27 DSP_QST1_28 DSP_QST1_29	Pe3epb SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ2 SWIC1DMA_IRQ2 SWIC1DMA_IRQ2 SWIC1DMA_IRQ3 SWIC0_INT SWIC1_INT MFBSP0_RXIRQ MFBSP0_TXIRQ MFBSP0_SRQ MFBSP1_RXIRQ	Pesepb SWIC0 SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC9 SWIC1 MFBSP0 MFBSP0 MFBSP0 MFBSP1	
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_22 DSP_QST1_22 DSP_QST1_23 DSP_QST1_24 DSP_QST1_25 DSP_QST1_26 DSP_QST1_27 DSP_QST1_28 DSP_QST1_29 DSP_QST1_30	Pe3epb SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ2 SWIC1DMA_IRQ2 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC0_INT SWIC1_INT MFBSP0_RXIRQ MFBSP0_TXIRQ MFBSP0_TXIRQ MFBSP1_RXIRQ MFBSP1_TXIRQ	Pesepb SWIC0 SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC9 SWIC1 MFBSP0 MFBSP0 MFBSP0 MFBSP1 MFBSP1	
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_22 DSP_QST1_23 DSP_QST1_24 DSP_QST1_25 DSP_QST1_26 DSP_QST1_26 DSP_QST1_27 DSP_QST1_29 DSP_QST1_29 DSP_QST1_30 DSP_QST1_31	Pe3epb SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ2 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1_INT MFBSP0_RXIRQ MFBSP0_TXIRQ MFBSP0_TXIRQ MFBSP1_RXIRQ MFBSP1_TXIRQ MFBSP1_SRQ	Pesepb SWIC0 SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC9 SWIC1 MFBSP0 MFBSP0 MFBSP0 MFBSP1 MFBSP1 MFBSP1	Резерв
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_23 DSP_QST1_23 DSP_QST1_25 DSP_QST1_26 DSP_QST1_27 DSP_QST1_29 DSP_QST1_29 DSP_QST1_30 DSP_QST1_31 DSP_QST2_0	Pe3epb SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ2 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1_INT MFBSP0_RXIRQ MFBSP0_TXIRQ MFBSP0_TXIRQ MFBSP1_RXIRQ MFBSP1_TXIRQ MFBSP1_SRQ UART0_INTR	Pesepb SWIC0 SWIC0 SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC9 SWIC1 MFBSP0 MFBSP0 MFBSP0 MFBSP0 MFBSP1 MFBSP1 MFBSP1 UART0	Резерв Прерывание от UART0
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_23 DSP_QST1_23 DSP_QST1_24 DSP_QST1_25 DSP_QST1_26 DSP_QST1_27 DSP_QST1_27 DSP_QST1_28 DSP_QST1_29 DSP_QST1_30 DSP_QST1_31 DSP_QST2_0 DSP_QST2_1 DSP_QST2_1	Pe3epb SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ2 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 MFBSP0_INT MFBSP0_RXIRQ MFBSP0_TXIRQ MFBSP0_TXIRQ MFBSP1_RXIRQ MFBSP1_TXIRQ MFBSP1_SRQ UART0_INTR UART1_INTR	Pesepb SWIC0 SWIC0 SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC9 SWIC1 MFBSP0 MFBSP0 MFBSP0 MFBSP0 MFBSP1 MFBSP1 MFBSP1 UART0 UART1	Прерывание от UART0 Прерывание от UART1
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_21 DSP_QST1_24 DSP_QST1_25 DSP_QST1_25 DSP_QST1_26 DSP_QST1_27 DSP_QST1_27 DSP_QST1_28 DSP_QST1_29 DSP_QST1_30 DSP_QST1_31 DSP_QST2_1 DSP_QST2_1 DSP_QST2_1 DSP_QST2_1 DSP_QST2_2	Pe3epb SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ1 SWIC1DMA_IRQ2 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC0_INT SWIC1_INT MFBSP0_RXIRQ MFBSP0_TXIRQ MFBSP0_TXIRQ MFBSP1_TXIRQ MFBSP1_TXIRQ MFBSP1_TXIRQ MFBSP1_SRQ UART0_INTR UART1_INTR	Pesepb SWIC0 SWIC0 SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 MFBSP0 MFBSP0 MFBSP0 MFBSP1 MFBSP1 MFBSP1 UART0 UART1 UART2	Резерв Прерывание от UART0 Прерывание от UART1 Прерывание от UART2
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_21 DSP_QST1_24 DSP_QST1_25 DSP_QST1_25 DSP_QST1_26 DSP_QST1_27 DSP_QST1_28 DSP_QST1_29 DSP_QST1_30 DSP_QST1_31 DSP_QST2_0 DSP_QST2_1 DSP_QST2_1 DSP_QST2_1 DSP_QST2_2 DSP_QST2_3	Pe3epb SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ2 SWIC1DMA_IRQ2 SWIC1DMA_IRQ3 SWIC0_INT SWIC1_INT MFBSP0_RXIRQ MFBSP0_TXIRQ MFBSP0_TXIRQ MFBSP1_TXIRQ MFBSP1_TXIRQ MFBSP1_TXIRQ MFBSP1_TXIRQ UART0_INTR UART1_INTR UART2_INTR	Pesepb SWIC0 SWIC0 SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 MFBSP0 MFBSP0 MFBSP0 MFBSP1 MFBSP1 MFBSP1 UART0 UART1 UART2 UART2	Прерывание от UART0 Прерывание от UART1 Прерывание от UART2 Прерывание от UART3
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_22 DSP_QST1_23 DSP_QST1_24 DSP_QST1_25 DSP_QST1_26 DSP_QST1_27 DSP_QST1_28 DSP_QST1_29 DSP_QST1_30 DSP_QST1_31 DSP_QST1_31 DSP_QST2_0 DSP_QST2_1 DSP_QST2_1 DSP_QST2_2 DSP_QST2_3 DSP_QST2_3 DSP_QST2_4	Pesepb SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ2 SWIC1DMA_IRQ2 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC0_INT SWIC1_INT MFBSP0_RXIRQ MFBSP0_TXIRQ MFBSP0_TXIRQ MFBSP1_TXIRQ MFBSP1_TXIRQ MFBSP1_TXIRQ MFBSP1_TXIRQ MFBSP1_TXIRQ UART0_INTR UART1_INTR UART2_INTR UART2_INTR	Pesepb SWIC0 SWIC0 SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 MFBSP0 MFBSP0 MFBSP0 MFBSP1 MFBSP1 MFBSP1 UART0 UART1 UART2 UART2 I2C0	Прерывание от UART0 Прерывание от UART1 Прерывание от UART2 Прерывание от UART3 Прерывание от UART3
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_22 DSP_QST1_23 DSP_QST1_24 DSP_QST1_25 DSP_QST1_26 DSP_QST1_26 DSP_QST1_27 DSP_QST1_28 DSP_QST1_29 DSP_QST1_30 DSP_QST1_31 DSP_QST1_31 DSP_QST2_0 DSP_QST2_1 DSP_QST2_1 DSP_QST2_2 DSP_QST2_3 DSP_QST2_3 DSP_QST2_5	Pesepb SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ2 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1_INT MFBSP0_RXIRQ MFBSP0_RXIRQ MFBSP0_TXIRQ MFBSP1_TXIRQ MFBSP1_TXIRQ MFBSP1_TXIRQ MFBSP1_TXIRQ MFBSP1_TXIRQ MFBSP1_INTR UART1_INTR UART1_INTR UART2_INTR I2C0_IC_INTR	Pesepb SWIC0 SWIC0 SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 MFBSP0 MFBSP0 MFBSP0 MFBSP1 MFBSP1 MFBSP1 UART0 UART1 UART2 UART2 I2C0 I2C1	Прерывание от UART0 Прерывание от UART1 Прерывание от UART2 Прерывание от UART3 Прерывание от UART3 Прерывание от I2C0 Прерывание от I2C1
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_18 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_23 DSP_QST1_23 DSP_QST1_25 DSP_QST1_25 DSP_QST1_26 DSP_QST1_29 DSP_QST1_29 DSP_QST1_30 DSP_QST1_31 DSP_QST1_31 DSP_QST2_1 DSP_QST2_1 DSP_QST2_1 DSP_QST2_2 DSP_QST2_3 DSP_QST2_4 DSP_QST2_5 DSP_QST2_6	Pesepb SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 MFBSP0_INT MFBSP0_RXIRQ MFBSP0_RXIRQ MFBSP0_TXIRQ MFBSP1_RXIRQ MFBSP1_TXIRQ MFBSP1_TXIRQ MFBSP1_SRQ UART0_INTR UART1_INTR UART2_INTR IQART2_INTR I2C0_IC_INTR I2C1_IC_INTR	Pesepb SWIC0 SWIC0 SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 MFBSP0 MFBSP0 MFBSP0 MFBSP1 MFBSP1 MFBSP1 UART0 UART1 UART2 UART2 I2C0 I2C1 I2C2	Прерывание от UART0 Прерывание от UART1 Прерывание от UART2 Прерывание от UART3 Прерывание от UART3
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_23 DSP_QST1_24 DSP_QST1_25 DSP_QST1_25 DSP_QST1_26 DSP_QST1_27 DSP_QST1_28 DSP_QST1_29 DSP_QST1_30 DSP_QST1_30 DSP_QST1_31 DSP_QST2_0 DSP_QST2_1 DSP_QST2_1 DSP_QST2_1 DSP_QST2_2 DSP_QST2_3 DSP_QST2_5 DSP_QST2_5 DSP_QST2_5 DSP_QST2_7	Pesepb SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ0 SWIC1DMA_IRQ2 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 MFBSP0_INT MFBSP0_INT MFBSP0_INT MFBSP0_INTR MFBSP0_INTR MFBSP1_INTR UART0_INTR UART1_INTR UART2_INTR UART2_INTR I2C0_IC_INTR I2C1_IC_INTR I2C2_IC_INTR MCC_INT	Pesepb SWIC0 SWIC0 SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 MFBSP0 MFBSP0 MFBSP0 MFBSP1 MFBSP1 MFBSP1 UART0 UART1 UART2 UART2 I2C0 I2C1 I2C2 MCC	Прерывание от UART0 Прерывание от UART1 Прерывание от UART2 Прерывание от UART3 Прерывание от UART3 Прерывание от I2C0 Прерывание от I2C1 Прерывание от I2C2
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_23 DSP_QST1_24 DSP_QST1_25 DSP_QST1_25 DSP_QST1_26 DSP_QST1_27 DSP_QST1_28 DSP_QST1_30 DSP_QST1_30 DSP_QST1_31 DSP_QST1_31 DSP_QST2_1 DSP_QST2_1 DSP_QST2_1 DSP_QST2_2 DSP_QST2_3 DSP_QST2_3 DSP_QST2_5 DSP_QST2_5 DSP_QST2_6 DSP_QST2_8	Pesepb SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ1 SWIC1DMA_IRQ2 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC0_INT MFBSP0_RXIRQ MFBSP0_RXIRQ MFBSP0_TXIRQ MFBSP0_TXIRQ MFBSP1_TXIRQ MFBSP1_TXIRQ MFBSP1_SRQ UART0_INTR UART1_INTR UART1_INTR UART2_INTR I2C0_IC_INTR I2C1_IC_INTR I2C2_IC_INTR MCC_INT	Pesepb SWIC0 SWIC0 SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 MFBSP0 MFBSP0 MFBSP0 MFBSP1 MFBSP1 MFBSP1 UART0 UART1 UART2 UART2 I2C0 I2C1 I2C2 MCC I2S0	Прерывание от UART0 Прерывание от UART1 Прерывание от UART1 Прерывание от UART2 Прерывание от UART3 Прерывание от I2C0 Прерывание от I2C1 Прерывание от I2C2 Прерывание от I2C2
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_21 DSP_QST1_23 DSP_QST1_24 DSP_QST1_25 DSP_QST1_25 DSP_QST1_26 DSP_QST1_27 DSP_QST1_27 DSP_QST1_28 DSP_QST1_30 DSP_QST1_31 DSP_QST1_31 DSP_QST2_1 DSP_QST2_1 DSP_QST2_2 DSP_QST2_1 DSP_QST2_2 DSP_QST2_3 DSP_QST2_3 DSP_QST2_3 DSP_QST2_5 DSP_QST2_5 DSP_QST2_6 DSP_QST2_9 DSP_QST2_9 DSP_QST2_9 DSP_QST2_9	Pesepb SWIC0DMA_IRQ0 SWIC0DMA_IRQ1 SWIC0DMA_IRQ2 SWIC0DMA_IRQ2 SWIC0DMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ1 SWIC1DMA_IRQ2 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC0_INT SWIC1_INT MFBSP0_RXIRQ MFBSP0_TXIRQ MFBSP0_TXIRQ MFBSP1_TXIRQ MFBSP1_TXIRQ MFBSP1_TXIRQ MFBSP1_SRQ UART0_INTR UART1_INTR UART2_INTR UART2_INTR I2C0_IC_INTR I2C0_IC_INTR I2C1_IC_INTR I2C2_IC_INTR MCC_INT I2S0_INTR EMAC_INT	Pesepb SWIC0 SWIC0 SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 MFBSP0 MFBSP0 MFBSP0 MFBSP1 MFBSP1 MFBSP1 UART0 UART1 UART2 UART2 I2C0 I2C1 I2C2 MCC I2S0 EMAC	Прерывание от UART0 Прерывание от UART1 Прерывание от UART2 Прерывание от UART3 Прерывание от UART3 Прерывание от I2C0 Прерывание от I2C1 Прерывание от I2C2 Прерывание от I2C2
DSP_QST1_15 DSP_QST1_16 DSP_QST1_16 DSP_QST1_17 DSP_QST1_19 DSP_QST1_20 DSP_QST1_21 DSP_QST1_23 DSP_QST1_24 DSP_QST1_25 DSP_QST1_25 DSP_QST1_26 DSP_QST1_27 DSP_QST1_28 DSP_QST1_30 DSP_QST1_30 DSP_QST1_31 DSP_QST1_31 DSP_QST2_1 DSP_QST2_1 DSP_QST2_1 DSP_QST2_2 DSP_QST2_3 DSP_QST2_3 DSP_QST2_5 DSP_QST2_5 DSP_QST2_6 DSP_QST2_8	Pesepb SWICODMA_IRQ0 SWICODMA_IRQ1 SWICODMA_IRQ2 SWICODMA_IRQ2 SWICODMA_IRQ3 SWIC1DMA_IRQ0 SWIC1DMA_IRQ1 SWIC1DMA_IRQ1 SWIC1DMA_IRQ2 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 SWIC1DMA_IRQ3 MFBSP0_INT MFBSP0_INT MFBSP0_INT MFBSP0_INTR MFBSP0_INTR MFBSP1_INTR UART0_INTR UART1_INTR UART2_INTR UART2_INTR I2C0_IC_INTR I2C0_IC_INTR I2C1_IC_INTR I2C2_IC_INTR I2C2_IC_INTR I2C3_INTR EMAC_INT SSI0_SSI_INTR	Pesepb SWIC0 SWIC0 SWIC0 SWIC0 SWIC0 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 SWIC1 MFBSP0 MFBSP0 MFBSP0 MFBSP1 MFBSP1 MFBSP1 UART0 UART1 UART2 UART2 I2C0 I2C1 I2C2 MCC I2S0	Прерывание от UART0 Прерывание от UART1 Прерывание от UART1 Прерывание от UART2 Прерывание от UART3 Прерывание от I2C0 Прерывание от I2C1 Прерывание от I2C2

DCD OCTA 12	DWM INT	PWM	
DSP_QST2_12 DSP_QST2_13	PWM_INT PWM INTU	PWM	
DSP_QST2_13 DSP_QST2_14	SDMMC0 INT	SDMMC0	Прерывание от SDMMC0
DSF_QS12_14 DSP_QST2_15	SDMMC1 INT	SDMMC0 SDMMC1	Прерывание от SDMMC1
DSF_QST2_13 DSP_QST2_16	TIMER INTRO	TIMER	Прерывание 01 ЗБИМС1 Прерывание 0 от ТІМЕR
DSF QST2 17	TIMER_INTR1	TIMER	Прерывание 0 01 ТИЧЕК Прерывание 1 от ТІМЕК
DSI QS12_17 DSP QST2 18	TIMER_INTR1	TIMER	Прерывание 1 от ТИМЕК Прерывание 2 от ТІМЕК
DSF_QS12_18 DSP_QST2_19	TIMER_INTR3	TIMER	Прерывание 2 от ТІМЕК Прерывание 3 от ТІМЕК
DSF QST2_19	TIMER_INTR4	TIMER	Прерывание 3 от ТІМЕК Прерывание 4 от ТІМЕК
DSF QST2 21	TIMER_INTR5	TIMER	Прерывание 4 от ТИМЕК Прерывание 5 от ТІМЕК
DSP QST2 22	TIMER_INTR6	TIMER	Прерывание 5 от ТІМЕК Прерывание 6 от ТІМЕК
DSP QST2 23	TIMER INTR7	TIMER	Прерывание 7 от ТІМЕR
DSP QST2 24	GPIO INTRO	GPIO	Прерывание 0 от GPIO
DSP QST2 25	GPIO_INTR1	GPIO	Прерывание 1 от GPIO
DSP QST2 26	GPIO INTR2	GPIO	Прерывание 2 от GPIO
DSP QST2 27	GPIO_INTR3	GPIO	Прерывание 2 от GFIO
DSF QST2 28	GPIO_INTR4	GPIO	Прерывание 3 от GFIO
DSF QST2 29	GPIO_INTR5	GPIO	Прерывание 5 от GPIO
DSP QST2 30	GPIO_INTR6	GPIO	Прерывание 6 от GPIO
DSP QST2 31	GPIO_INTR7	GPIO	Прерывание 7 от GPIO
DSP QST3 0	GPIO_INTR8	GPIO	Прерывание 8 от GPIO
DSP_QST3_0	GPIO INTR9	GPIO	Прерывание 9 от GPIO
DSP QST3 2	GPIO INTR10	GPIO	Прерывание 10 от GPIO
DSP_QST3_3	GPIO INTR11	GPIO	Прерывание 11 от GPIO
DSP_QST3_4	GPIO INTR12	GPIO	Прерывание 12 от GPIO
DSP QST3 5	GPIO INTR13	GPIO	Прерывание 13 от GPIO
DSP QST3 6	GPIO INTR14	GPIO	Прерывание 14 от GPIO
DSP_QST3_7	GPIO INTR15	GPIO	Прерывание 15 от GPIO
DSP QST3 8	GPIO INTR16	GPIO	Прерывание 16 от GPIO
DSP QST3 9	GPIO INTR17	GPIO	Прерывание 17 от GPIO
DSP QST3 10	GPIO INTR18	GPIO	Прерывание 18 от GPIO
DSP_QST3_11	GPIO_INTR19	GPIO	Прерывание 19 от GPIO
DSP_QST3_12	GPIO_INTR20	GPIO	Прерывание 20 от GPIO
DSP_QST3_13	GPIO_INTR21	GPIO	Прерывание 21 от GPIO
DSP_QST3_14	GPIO_INTR22	GPIO	Прерывание 22 от GPIO
DSP_QST3_15	GPIO_INTR23	GPIO	Прерывание 23 от GPIO
DSP_QST3_16	GPIO_INTR24	GPIO	Прерывание 24 от GPIO
DSP_QST3_17	GPIO_INTR25	GPIO	Прерывание 25 от GPIO
DSP_QST3_18	GPIO_INTR26	GPIO	Прерывание 26 от GPIO
DSP_QST3_19	GPIO_INTR27	GPIO	Прерывание 27 от GPIO
DSP_QST3_20	GPIO_INTR28	GPIO	Прерывание 28 от GPIO
DSP_QST3_21	GPIO_INTR29	GPIO	Прерывание 29 от GPIO
DSP_QST3_22	GPIO_INTR30	GPIO	Прерывание 30 от GPIO
DSP_QST3_23	GPIO_INTR31	GPIO	Прерывание 31 от GPIO
DSP_QST3_24	MAILBOX_IRQR	MAILBOX	
DSP_QST3_25	MAILBOX_IRQW	MAILBOX	
DSP_QST3_26	IRQ_PMU0	PMCTR	
DSP_QST3_27	IRQ_PMU1	PMCTR	
DSP_QST3_28	CPU0_CTIIRQ	CPU0	
DSP_QST3_29	CPU1_CTIIRQ	CPU1	
DSP_QST3_30	DLOCK_IRQ	L0_COMM	Прерывание от коммутатора микросхемы
DSP_QST3_31	WDT_IRQ	WDT	Прерывание от сторожевого таймера

2.7 Логика сброса микросхемы

Функционально блок контроля сброса микросхемы входит в состав контроллера управления питанием PMCTR.

В микросхеме введено разделение на два типа сброса.

- Сброс по включению питания приводит к переводу в начальное состояние всей логики микросхемы без исключения.
- «Теплый» сброс аналогичен сбросу по включению питания, однако не приводит в начальное состояние логику отладки, трассы и таймера реального времени.

Рисунок 2.11 Внешние сигналы сброса микросхемы

Для микросхемы существует несколько источников сброса:

- Внешние выводы NRST PWON, NRST WARM;
 - Вывод NRST_PWON является единственным источником сброса по включению питания.
 - Вывод NRST_WARM является внешним источником «теплого» сброса, является двунаправленным и может использоваться для индикации сбоса вне микросхемы. Должен быть подключен к внешнему резистору с подтяжкой к питанию. См. Рисунок 2.11.
- Программный сброс по записи в регистр SWRESET контроллера SMCTR;
- Сброс от сторожевых таймеров ядер СРИО, СРИ1.
- Сигналы сброса для отдельных доменов питания при их включении от контроллера PMCTR;

Общая схема формирования сигналов сброса представлена на Рисунок 2.12.

Рисунок 2.12. Схема формирования сигналов сброса в микросхеме

Конечные сигналы сбороса микросхемы разъяснены на Рисунок 2.13.

Рисунок 2.13 Перечень конечных сигналов сброса в микросхеме

Последовательность формирования сигналов сброса при включении питания микросхемы представлена на Рисунок 2.14.

Рисунок 2.14. Последовательность формирования сигналов сброса по включению питания

2.8 Процедура начальной загрузки

2.9 Логика межпроцессорного взаимодействия в микросхеме

3. ОПИСАНИЕ ВНЕШНИХ ВЫВОДОВ

Параметры корпуса микросхемы MCom-02:

Тип корпуса: HFCBGA

– Размер корпуса (габариты): 19 х 19 мм

— Шаг по выводам: 0,5 мм— Матрица выводов: 36 х 36— Общее число выводов: 1296

Перечень сигналов микросхемы МСот-02 по группам, приведен в Таблица 3.1.

Таблица 3.1 Перечень сигналов по группам

Назначение	Число
	выводов
Порты внешней памяти DDRMC0, DDRMC1	138
Порт внешней памяти NFCMPORT	27
Порт внешней памяти NORMPORT	53
Порты внешней памяти SDMMC0, SDMMC1	24
Порт видео ввода VPIN	46
Порты видео вывода VPOUT	42
Порты MFBSP0, MFBSP1	20
Порт GPIO	0
Порт ЕМАС	26
Порт USBIC	6
Порты SWIC0, SWIC1	16
Порты I2C0, I2C1, I2C3	6
Порт I2S	8
Порты SPI0, SPI1	14
Порты UART0, UART1, UART2, UART3	12
Порт PWM	6
Интерфейс коррелятора МСС	14
Управление	20
JTAG	5
TRACE	18
Итого	499

Все неиспользуемые выводы типа «I», «IO» необходимо подключить к земле, если в этих таблицах не указано иное требование (кроме выводов шины данных D).

Выводы шины данных D подключать через резисторы к земле или электропитанию не требуется.

При сопряжении данной микросхемы с внешними устройствами, например памятью, в зависимости от параметров платы, необходимо устанавливать схемы последовательного или параллельного согласования. Необходимость их установки определяет разработчик аппаратуры самостоятельно.

3.1 Цифровые выводы

Таблица 3.2. Перечень цифровых выводов. DDRMC0

Название вы-	Вывод	Функция 0	Функция 1	Назначение	Тип вы-	Drive	Pull	Пита-
вода	на				вода		up/down	ние
	корпу-							
DDR0_ADD0	ce AF34			Шина адреса	0			DDR0_V
DDR0_ADD1	AC36	-		, _T				DDQ
DDR0_ADD2	AB32	-						
DDR0_ADD3	AC35	-						
DDR0_ADD4	AF35	_						
DDR0_ADD5	AE32	-						
DDR0_ADD6	AE34	-						
DDR0_ADD7	AE35	-						
DDR0_ADD8	AE36	-						
DDR0_ADD9	AE33	1						
DDR0_ADD10	AB34							
DDR0_ADD11	AC32	1						
DDR0_ADD12	AC34	1						
DDR0_ADD13	AC33	1						
DDR0_ADD14	AD32							
DDR0_ADD15	AD33							
DDR0_DQ0	V33			Шина данных	I/O			DDR0_V
DDR0_DQ1	U34							DDQ
DDR0_DQ2	V34	1						
DDR0_DQ3	U33	1						
DDR0_DQ4	V36	1						
DDR0_DQ5	U35	1						

Название вы-	Вывод	Функция 0	Функция 1	Назначение	Тип вы-	Drive	Pull up/down	Пита-
вода	на корпу-				вода		up/uown	ние
	ce							
DDR0_DQ6	V35							
DDR0_DQ7	U36							
DDR0_DQ8	Y36							
DDR0_DQ9	W36							
DDR0_DQ10	Y35							
DDR0_DQ11	W35							
DDR0_DQ12	Y33							
DDR0_DQ13	W33							
DDR0_DQ14	Y34							
DDR0_DQ15	W34							
DDR0_DQ16	AJ33							
DDR0_DQ17	AH34							
DDR0_DQ18	AJ34							
DDR0_DQ19	AH33							
DDR0_DQ20	AJ36							
DDR0_DQ21	AH35							
DDR0_DQ22	AJ35							
DDR0_DQ23	AH36							
DDR0_DQ24	AL36							
DDR0_DQ25	AK36							
DDR0_DQ26	AL35							
DDR0_DQ27	AK35							
DDR0_DQ28	AL33							
DDR0_DQ29	AK33							
DDR0_DQ30	AL34							
DDR0_DQ31	AK34							

Название вывода	Вывод на корпу- се	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/down	Пита- ние
DDR0_CSN0	AG35			Разрешение выборки блоков внешней памяти	0			DDR0_V
DDR0_CSN1	AG36							DDQ
DDR0_RASN	AB33			Строб адреса строки	О			DDR0_V DDQ
DDR0_CASN	AF32			Строб адреса колонки	О			DDR0_V DDQ
DDR0_WEN	AB35			Разрешение записи	О			DDR0_V DDQ
DDR0_DQS0	T35			Дифференциальные сигналы строба данных	О			DDR0_V
DDR0_DQS1	T33]						DDQ
DDR0_DQS2	AM35]						
DDR0_DQS3	AM33	1						
DDR0_DQS_B0	T36			Дифференциальные сигналы строба данных	О			DDR0_V
DDR0_DQS_B1	T34	1						DDQ
DDR0_DQS_B2	AM36							
DDR0_DQS_B3	AM34							
DDR0_DM0	V32			Маска выбора байтов	О			DDR0_V
DDR0_DM1	W32							DDQ
DDR0_DM2	AJ32							
DDR0_DM3	AK32							
DDR0_CK	AD36			Дифференциальная тактовая частота	О			DDR0_V
DDR0_CKN	AD35]						DDQ
DDR0_CKE0	AG32			Разрешение частоты	O			DDR0_V
DDR0_CKE1	AG34	1						DDQ
DDR0_BA0	AF36			Номер банка	О			DDR0_V
DDR0_BA1	AF33	1						DDQ
DDR0_BA2	AB36	-						
DDR0_VREF	AD34,			Референсное напряжение	I			

Название вы-	Вывод	Функция 0	Функция 1	Назначение	Тип вы-	Drive	Pull	Пита-
вода	на				вода		up/down	ние
	корпу- се							
	AH32							
DDR0_ODT0	AA34			Включение согласующей нагрузки (терминатора)	0			DDR0_V
DDR0_ODT1	AA33							DDQ
DDR0_RESET	AG33			Сигнал сброса (DDR3)	О			DDR0_V DDQ
DDR0_PZQ	Y32			Подключения резистора (240 Ом) для ZQ калибровки (DDR3)	I/O			DDR0_V DDQ
DDR0_ATO	AA32			Тестовый аналоговый вывод	О			DDR0_V DDQ
DDR0_DTO0	AA36			Тестовый цифровой вывод	О			DDR0_V DDQ
DDR0_DTO1	AA35			Тестовый цифровой вывод	О			DDR0_V DDQ

Таблица 3.3. Перечень цифровых выводов. DDRMC1

Название вы-	Вывод	Функция 0	Функция 1	Назначение	Тип вы-	Drive	Pull	Пита-
вода	на				вода		up/down	ние
	корпу-							
	ce							
DDR1_ADD0	AP21			Шина адреса	О			DDR1_V
DDR1_ADD1	AT24							DDQ
DDR1_ADD2	AM25							
DDR1_ADD3	AR24							
DDR1_ADD4	AR21							
DDR1_ADD5	AM22							
DDR1_ADD6	AP22							
DDR1_ADD7	AR22							
DDR1_ADD8	AT22							
DDR1_ADD9	AN22							

Название вы-	Вывод	Функция 0	Функция 1	Назначение	Тип вы-	Drive	Pull	Пита-
вода	на				вода		up/down	ние
	корпу-							
DDR1_ADD10	AP25							
DDR1_ADD11	AM24							
DDR1_ADD12	AP24							
DDR1_ADD13	AN24	1						
DDR1_ADD14	AM23							
DDR1_ADD15	AN23	1						
DDR1_DQ0	AN29			Шина данных	I/O			DDR1_V
DDR1_DQ1	AP30							DDQ _
DDR1_DQ2	AP29	1						
DDR1_DQ3	AN30							
DDR1_DQ4	AT29	1						
DDR1_DQ5	AR30							
DDR1_DQ6	AR29							
DDR1_DQ7	AT30							
DDR1_DQ8	AT27							
DDR1_DQ9	AT28							
DDR1_DQ10	AR27							
DDR1_DQ11	AR28							
DDR1_DQ12	AN27							
DDR1_DQ13	AN28							
DDR1_DQ14	AP27							
DDR1_DQ15	AP28							
DDR1_DQ16	AN18							
DDR1_DQ17	AP19							
DDR1_DQ18	AP18							
DDR1_DQ19	AN19	1						

Название вы-	Вывод	Функция 0	Функция 1	Назначение	Тип вы-	Drive	Pull	Пита-
вода	на корпу-				вода		up/down	ние
	ce							
DDR1_DQ20	AT18							
DDR1_DQ21	AR19							
DDR1_DQ22	AR18							
DDR1_DQ23	AT19							
DDR1_DQ24	AT16							
DDR1_DQ25	AT17	1						
DDR1_DQ26	AR16	1						
DDR1_DQ27	AR17							
DDR1_DQ28	AN16							
DDR1_DQ29	AN17							
DDR1_DQ30	AP16							
DDR1_DQ31	AP17							
DDR1_CSN0	AR20			Разрешение выборки блоков внешней памяти	О			DDR1_V
DDR1_CSN1	AT20							DDQ
DDR1_RASN	AN25			Строб адреса строки	О			DDR1_V DDQ
DDR1_CASN	AM21			Строб адреса колонки	О			DDR1_V DDQ
DDR1_WEN	AR25			Разрешение записи	О			DDR1_V DDQ
DDR1_DQS0	AR31			Дифференциальные сигналы строба данных	О			DDR1_V
DDR1_DQS1	AN31							DDQ
DDR1_DQS2	AR15							
DDR1_DQS3	AP15	=						
DDR1_DQS_B0	AT31			Дифференциальные сигналы строба данных	О			DDR1_V
DDR1_DQS_B1	AP31							DDQ
DDR1_DQS_B2	AT15							
DDR1_DQS_B3	AP15							

Название вы-	Вывод	Функция 0	Функция 1	Назначение	Тип вы-	Drive	Pull	Пита-
вода	на корпу- се				вода		up/down	ние
DDR1_DM0	AM29			Маска выбора байтов	О			DDR1_V
DDR1_DM1	AM28							DDQ
DDR1_DM2	AM18	_						
DDR1_DM3	AM17							
DDR1_CK	AT23			Дифференциальная тактовая частота	О			DDR1_V
DDR1_CKN	AR23							DDQ
DDR1_CKE0	AM20			Разрешение частоты	0			DDR1_V
DDR1_CKE1	AP20							DDQ
DDR1_BA0	AT21			Номер банка	0			DDR1_V
DDR1_BA1	AN21							DDQ
DDR1_BA2	AT25							
DDR1_VREF	AM19, AP23			Референсное напряжение	I			
DDR1_ODT0	AP26			Включение согласующей нагрузки (терминатора)	О			DDR1_V
DDR1_ODT1	AN26							DDQ
DDR1_RESET	AN20			Сигнал сброса (DDR3)	О			DDR1_V DDQ
DDR1_PZQ	AM27			Подключения резистора (240 Ом) для ZQ калибровки (DDR3)	I/O			DDR1_V DDQ
DDR1_ATO	AM26			Тестовый вывод	О			DDR1_V DDQ
DDR1_DTO0	AT26				О			DDR1_V DDQ
DDR1_DTO1	AR26				О			DDR1_V DDQ

Таблица 3.4. Перечень цифровых выводов. NANDMPORT

Название вывода	Вывод на корпу- се	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
NAND_DATA0	AL1							
NAND_DATA1	AL2							
NAND_DATA2	AM1			Шина данных				
NAND_DATA3	AM2							
NAND_DATA4	AN1							
NAND_DATA5	AN2							
NAND_DATA6	AP1							
NAND_DATA7	AP2				I/O	8	down	VDDPST
NAND_DATA8	AK3							VDDPS1
NAND_DATA9	AK4							
NAND_DATA10	AL3							
NAND_DATA11	AL4							
NAND_DATA12	AM3							
NAND_DATA13	AM4							
NAND_DATA14	AN3							
NAND_DATA15	AN4							
NAND_RBN0	AJ5			Готовность/занятость памяти				
NAND_RBN1	AK5				1		up	VDDPST
NAND_ALE	AK2			Разрешение защелкивания адреса	О	8		
NAND_CLE	AK1			Разрешение защелкивания команды	О	8		VDDPST
NAND_RDN	AN5			Чтение	О	8		VDDPST
NAND_WRN	AJ4			Запись	О	8		VDDPST
NAND_CSN0	AJ0			Разрешение выборки блоков внешней памяти	0	8		VDDPST

Название вывода	Вывод на корпу- се	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
NAND_CSN1	AJ1							
NAND_DQS	AJ3			Сигнал строба данных	I/O	8		VDDPST

Таблица 3.5. Перечень цифровых выводов. **NORMPORT**

Название вывода	Вывод на корпу- се	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
SMC_ADD0	T1			Шина адреса				
SMC_ADD1	T2							
SMC_ADD2	R1							
SMC_ADD3	R2				О	8		VDDDCT
SMC_ADD4	P1							VDDPST
SMC_ADD5	P2							
SMC_ADD6	N1							
SMC_ADD7	N2							
SMC_ADD8	M1	SMC_ADD8	GPIOB0 ^{a)}					
SMC_ADD9	M2	SMC_ADD9	GPIOB1 a)					
SMC_ADD10	L1	SMC_ADD10	GPIOB2 a)					
SMC_ADD11	L2	SMC_ADD11	GPIOB3 a)		7.00			
SMC_ADD12	K1	SMC_ADD12	GPIOB4 a)		I/O	8	down	VDDPST
SMC_ADD13	K2	SMC_ADD13	GPIOB5 a)					
SMC_ADD14	J1	SMC_ADD14	GPIOB6 a)					
SMC_ADD15	J2	SMC_ADD15	GPIOB7 ^{a)}					
SMC_ADD16	M3	SMC_ADD16	GPIOB8 a)					

Название вывода	Вывод на корпу- се	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
SMC_ADD17	M4	SMC_ADD17	GPIOB9 a)					
SMC_ADD18	L3	SMC_ADD18	GPIOB10 a)					
SMC_ADD19	L4	SMC_ADD19	GPIOB11 a)					
SMC_ADD20	K3	SMC_ADD20	GPIOB12 a)					
SMC_ADD21	K4	SMC_ADD21	GPIOB13 a)					
SMC_ADD22	J3	SMC_ADD22	GPIOB14 a)					
SMC_ADD23	J4	SMC_ADD23	GPIOB15 a)					
SMC_DATA0	H1	SMC_DATA0	GPIOB16 a)					
SMC_DATA1	H2	SMC_DATA1	GPIOB17 ^{a)}					
SMC_DATA2	G1	SMC_DATA2	GPIOB18 a)	Шина данных				
SMC_DATA3	G2	SMC_DATA3	GPIOB19 ^{a)}					
SMC_DATA4	F1	SMC_DATA4	GPIOB20 a)					
SMC_DATA5	F2	SMC_DATA5	GPIOB21 a)					
SMC_DATA6	E1	SMC_DATA6	GPIOB22 a)					
SMC_DATA7	E2	SMC_DATA7	GPIOB23 a)		I/O	8	up	VDDPST
SMC_DATA8	Н3	SMC_DATA8	GPIOB24 a)					VDDF31
SMC_DATA9	H4	SMC_DATA9	GPIOB25 a)					
SMC_DATA10	G3	SMC_DATA10	GPIOB26 a)					
SMC_DATA11	G4	SMC_DATA11	GPIOB27 ^{a)}					
SMC_DATA12	F3	SMC_DATA12	GPIOB28 a)					
SMC_DATA13	F4	SMC_DATA13	GPIOB29 ^{a)}					
SMC_DATA14	E3	SMC_DATA14	GPIOB30 ^{a)}					
SMC_DATA15	E4	SMC_DATA15	GPIOB31 a)					
SMC_BLSN0	N3				О	8		VDDPST
SMC_BLSN1	N4			Строб выбора байта				VDDESI
SMC_ADVN	N5			Строб записи адреса	О	8		VDDPST

Название вывода	Вывод на корпу- се	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
SMC_OEN	R5			Сигнал разрешения чтения	0	8		VDDPST
SMC_CSN0	R3			Разрешение выборки блоков внешней памяти	0	8		VDDPST
SMC_CSN1	R4							VDDF31
SMC_CLKO0	Т3			Тактовая частота	0	8		VDDPST
SMC_CLKO1	T4							VDDF31
SMC_BAA	Р3			Перевод памяти в режим BAA (PSRAM)	0	8		VDDPST
SMC_CRE	P4			Запись в конфигурационный регистр (PSRAM)	0	8		VDDPST
SMC_WAIT	M5			Сигнал неготовности данных при чтении в синхронном режиме	I		down	VDDPST
SMC_FBCLK	T5			Частота приема данных	I		up	VDDPST
SMC_WEN	P5			Запись асинхронной памяти	0	8		VDDPST

а) Вывод общего назначения порта GPIO В

Таблица 3.6. Перечень цифровых выводов. SDMMC0 и SDMMC1

Название вывода	Вывод на корпу- се	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
SDMMC0_CMD	AH2			Команда	О			VDDPST
SDMMC0_DATA0	AF4							
SDMMC0_DATA1	AF3			Шина данных				
SDMMC0_DATA2	AF2							
SDMMC0_DATA3	AF1				I/O			VDDPST
SDMMC0_DATA4	AG4							VDDFS1
SDMMC0_DATA5	AG3							
SDMMC0_DATA6	AG2							
SDMMC0_DATA7	AG1							
SDMMC0_CLK	AH3			Тактовая частота	О			VDDPST
SDMMC0_DETN	AH4			Определение наличия карты	I		up	VDDPST
SDMMC0_18EN	AH1			Напряжение работы	О	4		VDDPST
SDMMC1_CMD	AE2			Команда	О			VDDPST
SDMMC1_DATA0	AC4							
SDMMC1_DATA1	AC3			Шина данных				
SDMMC1_DATA2	AC2							
SDMMC1_DATA3	AC1				I/O			VDDPST
SDMMC1_DATA4	AD4							VDDFS1
SDMMC1_DATA5	AD3							
SDMMC1_DATA6	AD2							
SDMMC1_DATA7	AD1							
SDMMC1_CLK	AE3			Тактовая частота	О			VDDPST
SDMMC1_DETN	AE4			Определения наличия карты	I		up	
SDMMC1_18EN	AE1			Напряжение работы	0	4		

Таблица 3.7. Перечень цифровых выводов. ЕМАС

Название вывода	Вывод на корпу- се	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
GMII_MD	AB3			Данные по интерфейсу MD	I/O	8	down	VDDPST
GMII_MDC	AA3			Тактовая частота обмена данными по интерфейсу MD	О	8		VDDPST
GMII_TXCLK	AB2			Тактовая частота передачи данных по интерфейсу MII	I		up	VDDPST
GMII_RXCLK	AB5			Тактовая частота приема данных по интерфейсу MII	I		up	VDDPST
GMII_TXEN	AA1			Признак передачи данных по интерфейсу МІІ	О	8		VDDPST
GMII_TXD0	Y1			HI				
GMII_TXD1	Y2			Шина передаваемых данных по интерфейсу МІІ				
GMII_TXD2	W1							
GMII_TXD3	W2				О	8		VDDPST
GMII_TXD4	V1							VDDF51
GMII_TXD5	V2							
GMII_TXD6	U1							
GMII_TXD7	U2							
GMII_RXD0	Y3			History was a sure of the sure				
GMII_RXD1	Y4			Шина принимаемых данных по интерфейсу МІІ				
GMII_RXD2	W3							
GMII_RXD3	W4				I		up	VDDPST
GMII_RXD4	V3							VDDESI
GMII_RXD5	V5							
GMII_RXD6	U3							
GMII_RXD7	U4							
GMII_COL	AA2			Сигнал обнаружения коллизии в среде передачи	I		up	VDDPST

Название вывода	Вывод на корпу- се	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
GMII_CRS	AA5			Сигнал наличия несущей в среде передачи	I		up	VDDPST
GMII_RXER	AB1			Признак обнаружения ошибки в принимаемых данных	I		up	VDDPST
GMII_RXDV	AB4			Признак наличия данных для приема по интерфейсу МІІ	I		up	VDDPST
GMII_TXER	AA4			Признак обнаружения ошибки в передаваемых данных	О	8		VDDPST

Таблица 3.8. Перечень цифровых выводов. USBIC

Название вывода	Вывод на корпу- се	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
OTG_ID	AJ13			Тип соединителя (plug judge): 0 – mini-A plug (HOST); 1 – mini B plug (DEVICE).	I			
OTG_VBUS	AK13			Уровень напряжения VBUS: 0 – напряжение VBUS < 4,4 B; 1 – напряжение VBUS >= 4,4 B.	I/O			
OTG_DP	AT12			Данные (прямой)	I/O			OTG_VDD25
OTG_DM	AR12			Данные (инверсный)	I/O			OTG_VDD25
OTG_TXR_RKL	AP12			Калибровочный выход	О			
OTG_DRV_VBUS	AN12			Включение внешнего драйвера VBUS	0	8		

Таблица 3.9. Перечень цифровых выводов. SWIC0 и SWIC1.

Название вывода	Вывод на корпу- се	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
SW0_DINP	C27			Вход данных положительный	I			SW0_VDD25
SW0_DINN	D27			Вход данных отрицательный	I			SW0_VDD25
SW0_SINP	C26			Вход строба положительный	I			SW0_VDD25
SW0_SINN	D26			Вход строба отрицательный	I			SW0_VDD25
SW0_DOUTP	C24			Выход данных положительный	О			SW0_VDD25
SW0_DOUTN	D24			Выход данных отрицательный	0			SW0_VDD25
SW0_SOUTP	C25			Выход строба положительный	0			SW0_VDD25
SW0_SOUTN	D25			Выход строба отрицательный	0			SW0_VDD25
SW1_DINP	A24			Вход данных положительный	I			SW1_VDD25
SW1_DINN	B24			Вход данных отрицательный	I			SW1_VDD25
SW1_SINP	A25			Вход строба положительный	I			SW1_VDD25
SW1_SINN	B25			Вход строба отрицательный	I			SW1_VDD25
SW1_DOUTP	A27			Выход данных положительный	0			SW1_VDD25
SW1_DOUTN	B27			Выход данных отрицательный	0			SW1_VDD25
SW1_SOUTP	A26			Выход строба положительный	0			SW1_VDD25
SW1_SOUTN	B26			Выход строба отрицательный	О			SW1_VDD25

Таблица 3.10. Перечень цифровых выводов. **VPOUT**

Название вывода	Вывод на корпу-	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do	Питание
	ce						wn	
VPOUT_VDO0	C29							
VPOUT_VDO1	D29							
VPOUT_VDO2	A29							
VPOUT_VDO3	B29			Шина видеоданных				
VPOUT_VDO4	C30							
VPOUT_VDO5	D30							
VPOUT_VDO6	B30							
VPOUT_VDO7	A30							
VPOUT_VDO8	D31							
VPOUT_VDO9	C31							
VPOUT_VDO10	B31							
VPOUT_VDO11	A31				0	8		VDDPST
VPOUT_VDO12	D32							VDDFS1
VPOUT_VDO13	C32							
VPOUT_VDO14	B32							
VPOUT_VDO15	A32							
VPOUT_VDO16	B33							
VPOUT_VDO17	A33							
VPOUT_VDO18	B34							
VPOUT_VDO19	A34							
VPOUT_VDO20	B35							
VPOUT_VDO21	A35							
VPOUT_VDO22	B36							
VPOUT_VDO23	A36							

Название вывода	Вывод на корпу- се	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
VPOUT_VDEN	D28			Признак действидельности видеоданных	I/O	8	up	VDDPST
VPOUT_VSYNC	B28			Кадровая синхронизация	I/O	8	up	VDDPST
VPOUT_HSYNC	C28			Строчная синхронизация	I/O	8	up	VDDPST
VPOUT_VCLK	A28			Синхронизация пикселов	I/O	8	up	VDDPST
DSI_DATAP0	C34	DSI_DATAP0	CSI1_DATAP0	Данные (прямые)				DSI_VDDAC
DSI_DATAP1	D34	DSI_DATAP1	CSI1_DATAP1	данные (примые)	I/O			
DSI_DATAP2	E34	DSI_DATAP2	CSI1_DATAP2					
DSI_DATAP3	F34	DSI_DATAP3	CSI1_DATAP3					
DSI_DATAN0	C33	DSI_DATAN0	CSI1_DATAN0	Данные (инверсные)				DSI_VDDAC
DSI_DATAN1	D33	DSI_DATAN1	CSI1_DATAN1	данные (инверсные)	I/O			
DSI_DATAN2	E33	DSI_DATAN2	CSI1_DATAN2					
DSI_DATAN3	F33	DSI_DATAN3	CSI1_DATAN3					
DSI_CLKP	G33	DSI_CLKP	CSI1_CLKP	Синхронизация (прямая)	0			DSI_VDDAC
DSI_CLKN	G34	DSI_CLKN	CSI1_CLKN	Синхронизация (инверсная)	0			DSI_VDDAC

Таблица 3.11. Перечень цифровых выводов. VPIN

Название вывода	Вывод на корпу- се	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
GPIOC0	A12	GPIOC0 a)	VPIN_VDI0					
GPIOC1	B12	GPIOC1 a)	VPIN_VDI1	Шина видеоданных				
GPIOC2	A13	GPIOC2 a)	VPIN_VDI2					
GPIOC3	B13	GPIOC3 a)	VPIN_VDI3					
GPIOC4	A14	GPIOC4 a)	VPIN_VDI4					
GPIOC5	B14	GPIOC5 a)	VPIN_VDI5					
GPIOC6	A15	GPIOC6 a)	VPIN_VDI6					
GPIOC7	B15	GPIOC7 ^{a)}	VPIN_VDI7					
GPIOC8	A16	GPIOC8 a)	VPIN_VDI8					
GPIOC9	B16	GPIOC9 ^{a)}	VPIN_VDI9					
GPIOC10	A17	GPIOC10 ^{a)}	VPIN_VDI10					
GPIOC11	B17	GPIOC11 a)	VPIN_VDI11		I/O	8	up	VDDPST
GPIOC12	A18	GPIOC12 ^{a)}	VPIN_VDI12					VDDPS1
GPIOC13	B18	GPIOC13 a)	VPIN_VDI13					
GPIOC14	A19	GPIOC14 a)	VPIN_VDI14					
GPIOC15	B19	GPIOC15 a)	VPIN_VDI15					
GPIOC16	C17	GPIOC16 a)	VPIN_VDI16					
GPIOC17	D17	GPIOC17 ^{a)}	VPIN_VDI17					
GPIOC18	C18	GPIOC18 a)	VPIN_VDI18					
GPIOC19	D18	GPIOC19 ^{a)}	VPIN_VDI19					
GPIOC20	C19	GPIOC20 a)	VPIN_VDI20					
GPIOC21	D19	GPIOC21 a)	VPIN_VDI21					
GPIOC22	C20	GPIOC22 a)	VPIN_VDI22					
GPIOC23	D20	GPIOC23 a)	VPIN_VDI23					

Название вывода	Вывод на корпу- се	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
GPIOC24	C21	GPIOC24 a)	VPIN_VDI24					
GPIOC25	D21	GPIOC25 a)	VPIN_VDI25					
GPIOC26	C22	GPIOC26 a)	VPIN_VDI26					
GPIOC27	D22	GPIOC27 ^{a)}	VPIN_VDI27					
GPIOC28	C23	GPIOC28 a)	VPIN_VDI28					
GPIOC29	D23	GPIOC29 ^{a)}	VPIN_VDI29					
GPIOC30	A21	GPIOC30 ^{a)}	VPIN_RSTO0	Сброс CMOS сенсора	I/O	8	up	VDDPST
GPIOC31	B21	GPIOC31 a)	VPIN_RSTO1					VDDPS1
VPIN_PIXCLKO0	A23			Синхронизация пикселов	0	8		VDDPST
VPIN_PIXCLKO1	B23							VDDPS1
VPIN_FSYNC0	A20			Кадровая синхронизация	0	8		VDDPST
VPIN_FSYNC1	B20							VDDFS1
CSI0_DATAP0	C36			Данные (прямые)				
CSI0_DATAP1	D36			данные (примые)	I/O			CSI_VDDAC
CSI0_DATAP2	E36							CSI_VDDAC
CSI0_DATAP3	F36							
CSI0_DATAN0	C35			Данные (инверсные)				CSI_VDDAC
CSI0_DATAN1	D35			данные (инверсные)	I/O			
CSI0_DATAN2	E35							
CSI0_DATAN3	F35							
CSI0_CLKP	G35			Синхронизация (прямая)	0			CSI_VDDAC
CSI0_CLKN	G36			Синхронизация (инверсная)	0			CSI_VDDAC

а) Вывод общего назначения порта GPIO С. Данные выводы могут также использоваться как тестовые (см. Таблица 3.15)

Таблица 3.12 Перечень цифровых выводов. MFBSP0 и MFBSP1

Название вывода	Вы- вод на кор- пусе	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
MFBSP0_LDAT0	M33							
MFBSP0_LDAT1	N33			Шина данных	I/O	8	up	
MFBSP0_LDAT2	M32				I/O I/O	8	up	
MFBSP0_LDAT3	N32				I/O	8	up up	VDDPST
MFBSP0_LDAT4	M36				I/O	8	up	
MFBSP0_LDAT5	N36				I/O I/O	8	up	
MFBSP0_LDAT6	M35				I/O	8	up up	
MFBSP0_LDAT7	N35						1	
MFBSP0_LCLK	N34			Синхронизация данных	I/O	8	up	VDDPST
MFBSP0_LACK	M34			Подтверждение приема данных	I/O	8	up	VDDPST
MFBSP1_LDAT0	K33							
MFBSP1_LDAT1	L33			Шина данных	I/O	8	up	
MFBSP1_LDAT2	K32				I/O I/O	8	up	
MFBSP1_LDAT3	L32				I/O	8	up up	VDDPST
MFBSP1_LDAT4	K36				I/O	8	up	
MFBSP1_LDAT5	L36				I/O I/O	8 8	up	
MFBSP1_LDAT6	K35	1			I/O	8	up up	
MFBSP1_LDAT7	L35	1					1	
MFBSP1_LCLK	L34			Синхронизация данных	I/O	8	up	VDDPST
MFBSP1_LACK	K34			Подтверждение приема данных	I/O	8	up	VDDPST

Таблица 3.13. Перечень цифровых выводов. Периферийные порты и управление

Название вывода	Вывод на кор- пусе	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
GPIOA18	A5	GPIOA18 a)	UART0_SIN	Вход последовательных данных	I/O	8	up	VDDPST
GPIOA19	B5	GPIOA19 a)	UART0_SOUT	Выход последовательных данных	I/O	8	up	VDDPST
GPIOA20	B6	GPIOA20 a)	UART0_CTSN	Запрос на прекращение передачи	I/O	8	up	VDDPST
GPIOA21	A6	GPIOA21 a)	UART0_RTSN	Запрос на передачу	I/O	8	up	VDDPST
GPIOD0	C8	GPIOD0 6)	UART1_SIN	Вход последовательных данных	I/O	8	up	VDDPST
GPIOD1	D8	GPIOD1 ⁶⁾	UART1_SOUT	Выход последовательных данных	I/O	8	up	VDDPST
GPIOD2	G11	GPIOD2 6)	UART1_CTSN	Запрос на прекращение передачи	I/O	8	up	VDDPST
GPIOD3	H11	GPIOD3 6)	UART1_RTSN	Запрос на передачу	I/O	8	up	VDDPST
GPIOD4	E9	GPIOD4 ⁶⁾	UART2_SIN	Вход последовательных данных	I/O	8	up	VDDPST
GPIOD5	F9	GPIOD5 ⁶⁾	UART2_SOUT	Выход последовательных данных	I/O	8	up	VDDPST
GPIOD6	D9	GPIOD6 6)	TIM1_TGL	ШИМ вывод таймера	I/O	16	up	VDDPST
GPIOD7	C9	GPIOD7 6)	I2S_SCLKO	Выходная частота	I/O	8	down	VDDPST
GPIOD8	В9	GPIOD8 6)	I2S_SDI	Входные данные	I/O	8	down	VDDPST
GPIOD9	A9	GPIOD9 6)	I2S_SDO0	Division de la companie	I/O	8	down	
GPIOD10	F10	GPIOD10 ⁶⁾	I2S_SDO1	Выходные данные	I/O	8	down	LIDDROTT
GPIOD11	G12	GPIOD11 ⁶⁾	I2S_SDO2		I/O	8	down	VDDPST
GPIOD12	H12	GPIOD12 ⁶⁾	I2S_SDO3		I/O	8	down	
GPIOD13	E10	GPIOD13 ⁶⁾	I2S_WS	Частота дискретизации	I/O	8	down	VDDPST
GPIOD14	D10	GPIOD14 ⁶⁾	I2S_SCLK	Входная частота	I/O	8	down	VDDPST
GPIOD15	C10	GPIOD15 6)	SPI0_SCLK	Выходная частота	I/O	8	down	VDDPST
GPIOD16	B10	GPIOD16 6)	SPI0_TXD	Данные передачи	I/O	8	down	VDDPST
GPIOD17	A10	GPIOD17 ⁶⁾	SPI0_RXD	Данные приема	I/O	8	down	VDDPST
GPIOD18	F13	GPIOD18 6)	SPI0_SSN0	Выбор устройства	I/O	8	down	ADDDGT
GPIOD19	E13	GPIOD19 ⁶⁾	SPI0_SSN1	выоор устроиства	I/O	8	down	VDDPST

Название вывода	Вывод на кор- пусе	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
GPIOD20	F11	GPIOD20 ⁶⁾	SPI0_SSN2		I/O	8	down	
GPIOD21	E11	GPIOD21 6)	SPI0_SSN3		I/O	8	down	
GPIOA22	C6	GPIOA22 a)	SPI1_SCLK	Выходная частота	I/O	8	down	VDDPST
GPIOA23	A7	GPIOA23 a)	SPI1_TXD	Данные передачи	I/O	8	down	VDDPST
GPIOA24	В7	GPIOA24 a)	SPI1_RXD	Данные приема	I/O	8	down	VDDPST
GPIOA25	C7	GPIOA25 a)	SPI1_SSN0	Выбор устройства	I/O	8	down	
GPIOA26	D7	GPIOA26 a)	SPI1_SSN1	— Выоор устроиства	I/O	8	down	LIDDROT
GPIOA27	E8	GPIOA27 a)	SPI1_SSN2		I/O	8	down	VDDPST
GPIOA28	F8	GPIOA28 a)	SPI1_SSN3		I/O	8	down	
GPIOA29	G10	GPIOA29 a)	I2C0_SDA	Линия данных	I/O	8	up	VDDPST
GPIOA30	H10	GPIOA30 a)	I2C0_SCL	Линия синхронизации	I/O	8	up	VDDPST
GPIOA31	E7	GPIOA31 a)	TIM2_TGL	ШИМ вывод таймера	I/O	16	up	VDDPST
GPIOD22	D11	GPIOD22 ⁶⁾	I2C1_SDA	Линия данных	I/O	8	up	VDDPST
GPIOD23	C11	GPIOD23 ⁶⁾	I2C1_SCL	Линия синхронизации	I/O	8	up	VDDPST
GPIOD24	B11	GPIOD24 6)	I2C2_SDA	Линия данных	I/O	8	up	VDDPST
GPIOD25	A11	GPIOD25 6)	I2C2_SCL	Линия синхронизации	I/O	8	up	VDDPST
GPIOA0	A1	GPIOA0 a)	TRACE_D0	Шина данных трассы	I/O	8	up	
GPIOA1	B1	GPIOA1 a)	TRACE_D1		I/O	8	up	
GPIOA2	A2	GPIOA2 a)	TRACE_D2		I/O I/O	8	up	
GPIOA3	B2	GPIOA3 a)	TRACE_D3		I/O	8	up up	
GPIOA4	A3	GPIOA4 a)	TRACE_D4		I/O	8	up	
GPIOA5	В3	GPIOA5 a)	TRACE_D5		I/O I/O	8	up up	VDDPST
GPIOA6	A4	GPIOA6 a)	TRACE_D6		I/O	8	up	
GPIOA7	B4	GPIOA7 a)	TRACE_D7		I/O	8	up	
GPIOA8	C1	GPIOA8 a)	TRACE_D8		I/O I/O	8	up up	
GPIOA9	D1	GPIOA9 a)	TRACE_D9		I/O	8	up	

Название вывода	Вывод на кор- пусе	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
GPIOA10	C2	GPIOA10 a)	TRACE_D10		I/O	8	up	
GPIOA11	D2	GPIOA11 a)	TRACE_D11		I/O I/O	8	up	
GPIOA12	C3	GPIOA12 a)	TRACE_D12		1/0	8	up	
GPIOA13	D3	GPIOA13 a)	TRACE_D13					
GPIOA14	C4	GPIOA14 a)	TRACE_D14					
GPIOA15	D4	GPIOA15 a)	TRACE_D15					
GPIOA16	C5	GPIOA16 a)	TRACE_CTL	Управляющий сигнал трассы	I/O	8	down	VDDPST
GPIOA17	D5	GPIOA17 ^{a)}	TRACE_CLK	Синхронизация трассы	I/O	8	down	VDDPST
XTI_24M	AL5			Вход осциллятора 24МГц	I			ALIVE_VDD PST
XTO_24M	AM5			Выход осциллятора 24МГц	О			ALIVE_VDD PST
NRST_WARM	AT3			Сигнал «теплого» сброса микросхемы	I/O	8	up	ALIVE_VDD PST
NRST_PON	AR4			Установка исходного состояния	I		up	ALIVE_VDD PST
BOOT0	AR3			Источник данных при начальной загрузке про-				ALIVE_VDD
BOOT1	AT2			граммы микропроцессора после снятия сигнала сброса	I		down down	PST
BOOT2	AR2			Сороса	I		down	
NVMODE0	AR5			Индикация требуемого напряжения работы ядра	О	8		ALIVE_VDD
NVMODE1	AT4			микросхемы	o	8		PST
CLKOUT	AT6			Универсальный вывод синхросигнала	0	8		VDDPST
WIRQ0	AT1			W	I		down	ALIVE_VDD
WIRQ1	AR1	1		Wakeup прерывания	I		down	PST
JMODE0	AT5			Выбор режима JTAG	I		down	SVDD
JMODE1	AR7	1		1 1	I		down	SVDD
NSYSTEM_OFF	AP5			Признак перехода системы в экономный режим	О	8	up	ALIVE_VDD PST

Название вывода	Вывод на кор- пусе	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
TDO	AR6			Выход данных теста (JTAG)	О	8		VDDPST
TCK	AM10			Тестовый тактовый сигнал (JTAG)	I		up	VDDPST
TRSTN	AK10			Установка исходного состояния (JTAG)	I		up	VDDPST
TDI	AP6			Вход данных теста (JTAG)	I		up	VDDPST
TMS	AN6			Выбор режима теста (JTAG)	I		up	VDDPST
XTI_32K	AT13			Вход осциллятора 32 КГц	OSCI			RTC_VDDAC
XTO_32K	AR13			Выход осциллятора 32 КГц	OSCO			RTC_VDDAC
RTC_WAKEUP	AK16			Запрос на выход из экономного режима от RTC таймера	0	8	down	RTC_VDDPS T
RTC_ISO	AL16			Изоляция при работе в режиме глубокого сна	I	-	down	RTC_VDDPS T
GLN1_I0	C15	Тестовая		C DE (
GLN1_I1	D16	функция Ошибка!		Сигналы с RF (радиочастотный приемник) канала 1 GLONASS	I		up	
GLN1_Q0	C16	Ошиока: Источник		T GBOT WISS	I		up	VDDPST
GLN1_Q1	F17	ссылки не найден.			Ï		up up	
GLN2_I0	E17	Тестовая						
GLN2_I1	F18	функция		Сигналы с RF (радиочастотный приемник) канала 2 GLONASS	I		up	
GLN2_Q0	E18	Ошибка! Источник		2 GLONASS	I		up	VDDPST
GLN2_Q1	F19	ссылки не найден.			I		up up	
GPS1_I0	C13	Тестовая						
GPS1_I1	D14	функция		C PE	_			
GPS1_Q0	C14	Ошибка!		Сигналы с RF (радиочастотный приемник) канала GPS	I		up up	
GPS1_Q1	D15	Источник ссылки не найден.			I		up up	VDDPST

Название вывода	Вывод на кор- пусе	Функция 0	Функция 1	Назначение	Тип вы- вода	Drive	Pull up/do wn	Питание
MCC_PPS	D13			Секундная метка	0	8		VDDPST
MCC_CLKIN	E19			Частота от 12 до 44 МГц с RF	I		up	VDDPST
GPIOD26 GPIOD27 GPIOD28 GPIOD29	E14 F14 E12 F12	GPIOD26 ⁶⁾ GPIOD27 ⁶⁾ GPIOD28 ⁶⁾ GPIOD29 ⁶⁾	PWM_OUTA0 PWM_OUTA1 PWM_OUTB0 PWM_OUTB1	. ШИМ каналы	I/O I/O I/O I/O	16 16 16 16	up up up up	VDDPST
GPIOD30 GPIOD31	C12 D12	GPIOD30 ⁶⁾ GPIOD31	PWM_TU0 PWM_TU1	Размерность рабочего хода (Trip Unit) для ШИМ	I/O I/O	8 8	up up	VDDPST
UART3_SIN	A8			Вход последовательных данных	I		up	VDDPST
UART3_SOUT	В8			Выход последовательных данных	0	8		VDDPST

а) Вывод общего назначения порта GPIO А. Данные выводы могут также использоваться как тестовые (см. Таблица 3.15) б) Вывод общего назначения порта GPIO D

Таблица 3.14 Тестовые выводы

Название выводов	Вывод	Назначение	Тип	Привязка ^{а)}
	на		выво-	
	корпу-		да	
	ce			
TESTCLK	AL10	Тестовый клок	I	0
TESTMODE	AT11	Сигнал выбора режима для АТРС	I	0
TESTMODE_SC	AR11	Сигнал выбора режима компрессии для АТРС	I	0
TEST_MODE_PLL	AL9	Сигнал выбора режима at-speed для ATPG	I	0
TESTSE	AM9	Сигнал разрешения сдвига цепочек для АТРС	I	0
TESTSE_PLL	AL9	Сигнал разрешения сдвига цепочек для регистров PLL для ATPG	I	0
TESTRST	AP11	Сигнал сброса для ATPG	I	0
TESTSI_PLL	AN10	Вход скан цепочки для регистров PLL	I	0
TESTSO_PLL	AP10	Выход скан цепочки для регистров PLL	0	
DFTRAMBYP	AL6	Сигнал управления обходом L1(в режиме ATPG=1, в остальных случаях 0)	1	0
DFTTESTMODE	AT10	Сигнал выбора режима ATPG для ARM	I	0

Название выводов	Вывод	Назначение	Тип	Привязка ^{а)}
	на		выво-	
	корпу-		да	
	ce			
DFTATSPEEDENABLE	AP8	Сигнал выбора режима ATPG для ARM с использование контроллера OCC(capture на частоте	I	0
		PLL)		
DFTCLKBYPASS	AN7	Сигнал переключения клока на TESTCLK для ARM	I	0
DFTWINTEST	AL7	Сигнал выбора INTEST режима для ARM	I	0
DFTWEXTEST	AL8	Сигнал выбора EXTEST режима для ARM	I	0
DFTMAXCOMPMODE	AN8	Сигнал выбора режима компрессии для ARM	I	0
DFTSE	AR10	Сигнал разрешения сдвига цепочек для ARM	I	0
DFTWSE	AT9	Сигнал разрешения сдвига цепочек wrapper для ARM	I	0
DFTCPURSTDISABLE	AM6	Сигнал отключения внутренней подсинхронизации сигналов сброса в CPU для ARM	I	0
DFTRSTDISABLE	AP7	Сигнал отключения внутренней подсинхронизации сигналов сброса иериферии для ARM	I	0
DFTCOMPBYPASS	AM7	Не используется	I	0
DFTSCANMODE	AP9	Не используется	I	0
DFTWRPCLK	AN9	Не используется	I	0
DFTATEATCLK	AR9	Тестовый клок трассы(ATB) для тестирования основного домена для ARM	I	0
DFTATEATCLKVSOC	AM8	Тестовый клок трассы(ATB) для тестирования домена VSOC для ARM	I	0
DFTATECLK	AR8	Тестовый клок для тестирования основного домена для ARM	I	0
DFTATEPCLKVSOC	AT8	Тестовый клок debug(APB) для тестирования домена VSOC для ARM	I	0
TESTEN	AJ10	сигнал разрешения MBIST в ARM (L1MBISTENABLE)	I	0
NBISTRESET	AT7	Сигнал сброса MBIST в ARM	I	0
SIGRES0	AG10	сигнал завершения теста MBIST (L1MBISTRESULT[0])	0	
SIGRES1	AK9	сигнал ошибки теста MBIST L1MBISTRESULT[1]	0	
SIGRES2	AJ9	сигнал передачи инструкций и данных логов для CPU0 (L1MBISTRESULT[2])	О	
SIGRES3	AH10	сигнал передачи инструкций и данных логов для CPU1 (L1MBISTRESULT[3])	0	
SIGRES4	AH9	сигнал сдвига данных лога (L1MBISTDSHIFT)	I	0
SIGRES5	AK8	сигнал сдвига инструкций (L1MBISTSHIFT)	I	0
SIGRES6	AJ8	сигнал запуска проверки MBIST (L1MBISTRUN)	I	0
SIGRES7	AH8	последовательный вход данных для MBIST (L1MBISTDATAIN)	I	0

а) В функциональном режиме работы микросхемы выводы необходимо устнановить в приведенное значение

Таблица 3.15 Использование портов GPIOA и GPIOC в качестве тестовых выводов

Название	Вывод	Назначение	Тип
выводов	на		выво-
	корпу-		да
	ce		
GPIOA0	A1	Вход сканирующей цепочки 1 (mpu_DFTMAXSI[1])	I
GPIOA1	B1	Вход сканирующей цепочки 2 (mpu_DFTMAXSI[2])	I
GPIOA2	A2	Вход сканирующей цепочки 3 (mpu_DFTMAXSI[3])	I
GPIOA3	B2	Вход сканирующей цепочки 4 (mpu_DFTMAXSI[4])	I
GPIOA4	A3	Вход сканирующей цепочки 5 (mpu_DFTMAXSI[5])	I
GPIOA5	В3	Вход сканирующей цепочки 6 (mpu_DFTMAXSI[6])	I
GPIOA6	A4	Вход сканирующей цепочки 7 (mpu_DFTMAXSI[7])	I
GPIOA7	B4	Вход сканирующей цепочки 8 (mpu_DFTMAXSI[8])	I
GPIOA8	C1	Вход сканирующей цепочки 9 (mpu_DFTMAXSI[9])	I
GPIOA9	D1	Вход сканирующей цепочки 10 (mpu_DFTMAXSI[10])	1
GPIOA10	C2	Вход сканирующей цепочки 11 (mpu_DFTMAXSI[11])	I
GPIOA11	D2	Вход сканирующей цепочки 12 (mpu_DFTMAXSI[12])	I
GPIOA12	C3	Вход сканирующей цепочки 13 (mpu_DFTMAXSI[13])	I
GPIOA13	D3	Вход сканирующей цепочки 14 (mpu_DFTMAXSI[14])	I
GPIOA14	C4	Вход сканирующей цепочки 15 (mpu_DFTMAXSI[15])	I
GPIOA15	D4	Вход сканирующей цепочки 16 (mpu_DFTMAXSI[16])	I
GPIOA16	C5	Вход сканирующей цепочки 17 (mpu_DFTMAXSI[17])	I
GPIOA17	D5	Вход сканирующей цепочки 18 (mpu_DFTMAXSI[18])	I
GPIOA18	A5	Вход сканирующей цепочки 19 (mpu_DFTMAXSI[19])	I
GPIOA19	B5	Вход сканирующей цепочки 20 (mpu_DFTMAXSI[20])	I
GPIOA20	В6	Вход сканирующей цепочки 21 (mpu_DFTMAXSI[21])	I
GPIOA21	A6	Вход сканирующей цепочки 22 (mpu_DFTMAXSI[22])	I
GPIOA22	C6	Вход сканирующей цепочки 23 (mpu_DFTMAXSI[23])	I
GPIOA23	A7	Вход сканирующей цепочки 24 (mpu_DFTMAXSI[24])	I
GPIOA24	В7	Вход сканирующей цепочки 25 (mpu_DFTMAXSI[25])	I
GPIOA25	C7	Вход сканирующей цепочки 26 (mpu_DFTMAXSI[26])	I
GPIOA26	D7	Вход сканирующей цепочки 27 (mpu_DFTMAXSI[27])	I
GPIOA27	E8	Вход сканирующей цепочки 28 (mpu_DFTMAXSI[28])	I
GPIOA28	F8	Вход сканирующей цепочки 29 (mpu DFTMAXSI[29])	I
GPIOA29	G10	Вход сканирующей цепочки 30 (mpu DFTMAXSI[30])	I
GPIOA30	H10	Вход сканирующей цепочки 31 (mpu_DFTMAXSI[31])	I

Название	Вывод	Назначение	Тип
выводов	на		выво-
	корпу-		да
	ce		
GPIOA31	E7	Вход сканирующей цепочки 32 (mpu_DFTMAXSI[32])	I
GPIOC0	A12	Выход сканирующей цепочки 1 (mpu_DFTMAXSO[1])	О
GPIOC1	B12	Выход сканирующей цепочки 2 (mpu_DFTMAXSO[2])	О
GPIOC2	A13	Выход сканирующей цепочки 3 (mpu_DFTMAXSO[3])	О
GPIOC3	B13	Выход сканирующей цепочки 4 (mpu_DFTMAXSO[4])	О
GPIOC4	A14	Выход сканирующей цепочки 5 (mpu_DFTMAXSO[5])	О
GPIOC5	B14	Выход сканирующей цепочки 6 (mpu_DFTMAXSO[6])	О
GPIOC6	A15	Выход сканирующей цепочки 7 (mpu_DFTMAXSO[7])	О
GPIOC7	B15	Выход сканирующей цепочки 8 (mpu_DFTMAXSO[8])	О
GPIOC8	A16	Выход сканирующей цепочки 9 (mpu_DFTMAXSO[9])	О
GPIOC9	B16	Выход сканирующей цепочки 10 (mpu_DFTMAXSO[10])	О
GPIOC10	A17	Выход сканирующей цепочки 11 (mpu_DFTMAXSO[11])	О
GPIOC11	B17	Выход сканирующей цепочки 1 (mpu_DFTMAXSO[12])	О
GPIOC12	A18	Выход сканирующей цепочки 2 (mpu_DFTMAXSO[13])	О
GPIOC13	B18	Выход сканирующей цепочки 4 (mpu_DFTMAXSO[14])	О
GPIOC14	A19	Выход сканирующей цепочки 5 (mpu_DFTMAXSO[15])	O
GPIOC15	B19	Выход сканирующей цепочки 6 (mpu_DFTMAXSO[16])	О
GPIOC16	C17	Выход сканирующей цепочки 7 (mpu_DFTMAXSO[17])	О
GPIOC17	D17	Выход сканирующей цепочки 8 (mpu_DFTMAXSO[18])	O
GPIOC18	C18	Выход сканирующей цепочки 9 (mpu_DFTMAXSO[19])	0
GPIOC19	D18	Выход сканирующей цепочки 10 (mpu_DFTMAXSO[20])	0
GPIOC20	C19	Выход сканирующей цепочки 11 (mpu_DFTMAXSO[21])	0
GPIOC21	D19	Выход сканирующей цепочки 2 (mpu_DFTMAXSO[22])	0
GPIOC22	C20	Выход сканирующей цепочки 3 (mpu_DFTMAXSO[23])	О
GPIOC23	D20	Выход сканирующей цепочки 4 (mpu_DFTMAXSO[24])	О
GPIOC24	C21	Выход сканирующей цепочки 5 (mpu_DFTMAXSO[25])	O
GPIOC25	D21	Выход сканирующей цепочки 6 (mpu_DFTMAXSO[26])	0
GPIOC26	C22	Выход сканирующей цепочки 7 (mpu_DFTMAXSO[27])	O
GPIOC27	D22	Выход сканирующей цепочки 8 (mpu_DFTMAXSO[28])	О
GPIOC28	C23	Выход сканирующей цепочки 9 (mpu_DFTMAXSO[29])	0
GPIOC29	D23	Выход сканирующей цепочки 10 (mpu_DFTMAXSO[30])	0
GPIOC30	A21	Выход сканирующей цепочки 11 (mpu_DFTMAXSO[31])	0
GPIOC31	B21	Выход сканирующей цепочки 9 (mpu_DFTMAXSO[32])	0

Таблица 3.16 Электропитание

Название выводов	Назначение	Напря- жение,	Число выво-
		B	дов
DDR0_VDDQ, DDR1_VDDQ	Напряжение электропитания входных и выходных драйверов DDRMC0 и DDRMC1	1.2, 1.35, 1.5	32
DDR0_GNDQ, DDR1_GNDQ	Земля входных и выходных драйверов DDRMC0 и DDRMC1		36
CSI_VDDAC	Напряжение электропитания входных и выходных драйверов MIPI CSI порта VPIN	1.1	4
CSI_GNDAC	Земля входных и выходных драйверов MIPI CSI порта VPIN		4
DSI_VDDAC	Напряжение электропитания входных и выходных драйверов MIPI DSI порта VPOUT	1.1	4
DSI GNDAC	Земля входных и выходных драйверов MIPI DSI порта VPOUT		4
SDMMC0 VDD, SDMMC1 VDD	Напряжение электропитания входных и выходных драйверов SDMMC0 и SDMMC1	1.8, 3.3	2
SDMMC0 GND, SDMMC1 GND	Земля входных и выходных драйверов SDMMC0 и SDMMC1		4
SW0 VDD11, SW1 VDD11	Напряжение электропитания цифровой части портов SWIC0 и SWIC1	1.1, 1.2	4
SW0 GND11, SW1 GND11	Земля цифровой части портов SWIC0 и SWIC1	ĺ	4
SW0 VDD25, SW1 VDD25	Напряжение электропитания входных и выходных драйверов SWIC0 и SWIC1	2.5	4
SW0 GND25, SW1 GND25	Земля входных и выходных драйверов SWIC0 и SWIC1		4
OTG VDD25	2.5 В напряжение электропитания входных и выходных драйверов порта USBIC	2.5	1
OTG GNDAC	Земля для внутренней USBIC		1
OTG VDD33	3.3 В напряжение электропитания входных и выходных драйверов порта USBIC	3.3	4
OTG GNDA	Земля входных и выходных драйверов USBIC		2
ALIVE VDD	Напряжение электропитания ядра домена ALIVE микросхемы	1.1, 1.2	4
ALIVE VDDPST	Напряжение электропитания входных и выходных драйверов домена ALIVE микросхемы		2
RTC VDD	Напряжение электропитания ядра домена RTC микросхемы	1.1, 1.2	2
RTC VDDPST	Напряжение электропитания входных и выходных драйверов домена RTC микросхемы	1.8 - 3.3	2
RTC_VDDAC	Напряжение электропитания входных и выходных драйверов осциллятора XTI_32K/XTO_32K мик- росхемы	1.1	1
RTC GNDAC	Земля входных и выходных драйверов осциллятора XTI_32K/XTO_32K микросхемы		1
efuse VDDA	Напряжение электропитания eFuse		1
CPLL_VDDAC, APLL_VDDAC, SPLL_VDDAC, SW1PLL_VDDAC, SW0PLL_VDDAC,	Напряжения электропитаний блоков PLL микросхемы	1.1	8
DPLL_VDDAC, VPLL_VDDAC, UPLL_VDDAC			

Название выводов	Назначение	Напря-	Число
		жение,	выво-
		В	дов
CPLL_GNDAC, APLL_GNDAC,	Земли блоков PLL микросхемы		8
SPLL_GNDAC,			
SW1PLL_GNDAC,			
SW0PLL_GNDAC,			
DPLL_GNDAC,			
VPLL_GNDAC, UPLL_GNDAC			
VDDPST	Напряжение электропитания входных и выходных драйверов цифровых выводов микросхемы	1.8 - 3.3	33
VDD	Напряжение электропитания ядра микросхемы	1.1, 1.2	147
GND	Земля ядра и входных и выходных драйверов цифровых выводов микросхемы		396
	Итого		719

3.2 Расположение выводов на корпусе

Расположение выводов микросхемы 1892BM14Я в корпусе HFCBGA -1296 приведена на.

	1	2	3	4	5 GPIOA18/	6 GPIOA21/	7	8	9	10	11	12	13	14	15	16	17	18
	GPIOA0/T	GPIOA2/T	GPIOA4/T	GPIOA6/T	UARTO SI	UARTO R	GPIOA23/	UART3 SI	GPIOD9/I2	GPIOD17/	GPIOD25/I	GPIOC0/V	GPIOC2/V	GPIOC4/V	GPIOC6/V	GPIOC8/V	GPIOC10/VP	GPIOC12/VP
Α	RACE_D0	RACE_D2	RACE_D4	RACE_D6	N -	TSN	SPI1_TXD	N -	S_SDO0	SPIO_RXD	2C2_SCL	PIN_VDI0	PIN_VDI2	PIN_VDI4	PIN_VDI6	PIN_VDI8	IN_VDI10	IN_VDI12
	GPIOA1/T	GPIOA3/T	GPIOA5/T	GPIOA7/T	GPIOA19/ UART0 S	GPIOA20/ UART0 C	GPIOA24/	UART3 S	GPIOD8/I2	GPIOD16/	GPIOD24/I	GPIOC1/V	GPIOC3/V	GPIOC5/V	GPIOC7/V	GPIOC9/V	GPIOC11/VP	GPIOC13/VP
В	RACE D1	RACE D3	RACE D5	RACE D7	OUT	TSN	SPI1 RXD	OUT	S SDI	SPI0 TXD	2C2 SDA	PIN VDI1	PIN VDI3	PIN VDI5	PIN VDI7	PIN VDI9	IN VDI11	IN VDI13
		GPIOA10/	GPIOA12/	GPIOA14/	GPIOA16/	GPIOA22/				GPIOD15/			_					
С	GPIOA8/T RACE D8	TRACE_D 10	TRACE_D 12	TRACE_D 14	TRACE_C	SPI1_SCL K	GPIOA25/ SPI1 SSN0	GPIOD0/U ART1 SIN	GPIOD7/I2 S SCLKO	SPI0_SCL K	GPIOD23/I 2C1 SCL	GPIOD30/ PWM_TU0	GPS1 I0	GPS1 O0	GLN1 I0	GLN1 O0	GPIOC16/VP IN VDI16	GPIOC18/VP IN VDI18
	RACE_Do	GPIOA11/	GPIOA13/	GPIOA15/	GPIOA17/	K	5111_55110	GPIOD1/U	5_SCLKO	K	ZCI_SCL	1 WW_100	0131_10	GI 31_Q0	GEN1_IO	GENI_Q0	IN_VDIIO	IIV_VDII6
	GPIOA9/T	TRACE_D	TRACE_D	TRACE_D	TRACE_C		GPIOA26/	ART1_SO	GPIOD6/TI	GPIOD14/I	GPIOD22/I	GPIOD31/					GPIOC17/VP	GPIOC19/VP
D	RACE_D9 SMC_DAT	SMC DAT	SMC DAT	15 SMC DAT	LK	GND	SPI1_SSN1	UT	M1_TGL	2S_SCLK	2C1_SDA	PWM_TU1 GPIOD28/	MCC_PPS	GPS1_I1 GPIOD26/	GPS1_Q1	GLN1_I1	IN_VDI17	IN_VDI19
	A6/GPIOB	A7/GPIOB	A14/GPIO	A15/GPIO			GPIOA31/	GPIOA27/	GPIOD4/U	GPIOD13/I	GPIOD21/	PWM OU	GPIOD19/	PWM OU				
Е	22	23	B30	B31	GND	GND	TIM2_TGL	SPI1_SSN2	ART2_SIN	2S_WS	SPI0_SSN3	TB0	SPI0_SSN1	TA0	VDDPST	VDDPST	GLN2_I0	GLN2_Q0
	SMC_DAT A4/GPIOB	SMC_DAT A5/GPIOB	SMC_DAT A12/GPIO	SMC_DAT A13/GPIO				GPIOA28/	GPIOD5/U ART2 SO	GPIOD10/I	GPIOD20/	GPIOD29/ PWM OU	GPIOD18/	GPIOD27/ PWM OU				
F	20	21	B28	B29	GND	GND	GND	SPI1 SSN3	UT	2S SDO1	SPI0 SSN2	TB1	SPI0 SSN0	TA1	VDDPST	VDDPST	GLN1 Q1	GLN2 I1
	SMC_DAT	SMC_DAT	SMC_DAT	SMC_DAT							GPIOD2/U							
G	A2/GPIOB 18	A3/GPIOB 19	A10/GPIO B26	A11/GPIO B27	GND	GND	GND	GND	GND	GPIOA29/I 2C0 SDA	ART1_CT SN	GPIOD11/I 2S SDO2	GND	GND	VDDPST	VDDPST	GND	GND
0	SMC DAT	SMC DAT	SMC DAT	SMC DAT	GIVD	GND	GND	GIVD	GND	2C0_5DA	GPIOD3/U	25_5DO2	GIVD	GIVD	VDDI 31	VDDI 31	GIVD	GND
	A0/GPIOB	A1/GPIOB	A8/GPIOB	A9/GPIOB						GPIOA30/I	ART1_RT	GPIOD12/I						
Н	16	17	24 SMC ADD	SMC ADD	GND	GND	GND	GND	GND	2C0_SCL	SN	2S_SDO3	GND	GND	GND	GND	GND	GND
	SMC ADD	SMC ADD	22/GPIOB1	23/GPIOB1														
J	14/GPIOB6	15/GPIOB7	4	5	VDDPST	VDDPST	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND
	SMC ADD	SMC ADD	SMC_ADD 20/GPIOB1	SMC_ADD 21/GPIOB1														
K	12/GPIOB4	13/GPIOB5	2	3	VDDPST	VDDPST	GND	GND	GND	GND	GND	GND	GND	GND	GND	VDD	VDD	GND
			SMC_ADD	SMC_ADD														
т	SMC_ADD 10/GPIOB2	SMC_ADD 11/GPIOB3	18/GPIOB1	19/GPIOB1	VDDPST	VDDPST	GND	GND	GND	VDD	VDD	GND	GND	VDD	VDD	GND	GND	VDD
L	SMC ADD	SMC ADD	SMC ADD	SMC ADD	SMC WAI	VDDI 31	GND	GIVD	GIVD	VDD	VDD	GIVD	GIVD	VDD	VDD	GND	GND	VDD
M	8/GPIOB0	9/GPIOB1	16/GPIOB8	17/GPIOB9	Т -	VDDPST	GND	GND	GND	VDD	VDD	GND	GND	VDD	VDD	GND	GND	VDD
N	SMC_ADD	SMC_ADD	SMC_BLS N0	SMC_BLS	SMC_ADV	VIDDBCT	CND	CND	CND	CND	CND	VDD	VDD	CND	CND	VDD	VDD	GND
IN	SMC ADD	SMC ADD	INU	N1	N SMC WE	VDDPST	GND	GND	GND	GND	GND	VDD	VDD	GND	GND	VDD	VDD	GIND
P	4	5 SMC_ADD	SMC_BAA	SMC_CRE	N N	VDDPST	GND	GND	GND	GND	GND	VDD	VDD	GND	GND	VDD	VDD	GND
	SMC_ADD	SMC_ADD	SMC_CSN	SMC_CSN														
R	2 SMC_ADD	SMC ADD	0 SMC CLK	1 SMC CLK	SMC_OEN SMC_FBC	VDDPST	GND	GND	GND	VDD	VDD	GND	GND	VDD	VDD	GND	GND	VDD
Т	SMC_ADD 0	1	O0	O1	LK	GND	GND	GND	GND	VDD	VDD	GND	GND	VDD	VDD	GND	GND	VDD
	GMII_TX	GMII_TX	GMII_RX	GMII_RX														
U	D6	D7 _	D6	D7	GND	GND	GND	GND	GND	GND	GND	VDD	VDD	GND	GND	VDD	VDD	GND

Рисунок 3.1. Расположение выводов на корпусе (левый верхний угол)

	GMII TX	GMII TX	GMII RX	GMII RX	1										1			
V	D4 -	D5 -	D4 _	D5 _	GND	GND	GND	GND	GND	GND	GND	VDD	VDD	GND	GND	VDD	VDD	GND
	GMII_TX	GMII_TX	GMII_RX	GMII_RX	av in	an in	av In	an m	an in	unn		av m	av n	n		an in	av m	unn
W	D2 GMII TX	D3 GMII TX	D2 GMII RX	D3 GMII RX	GND	GND	GND	GND CPLL VD	GND CPLL GN	VDD	VDD	GND	GND	VDD	VDD	GND	GND	VDD
Y	D0	D1	D0	D1	GND	GND	GND	DAC	DAC	VDD	VDD	GND	GND	VDD	VDD	GND	GND	VDD
	GMII_TXE		GMII_MD	GMII_TXE				APLL_VD	APLL_GN									
AA	N _	GMII_COL	C	R	GMII_CRS	GND	GND	DAC	DAC	GND	GND	VDD	VDD	GND	GND	VDD	VDD	GND
AB	GMII_RXE R	GMII_TXC LK	GMII MD	GMII_RX DV	GMII_RX CLK	GND	GND	SPLL_VD DAC	SPLL_GN DAC	GND	GND	VDD	VDD	GND	GND	VDD	VDD	GND
AD	SDMMC1	SDMMC1	SDMMC1	SDMMC1	SDMMC1	ALIVE V	ALIVE V	SW1PLL	SW1PLL	GND	GND	VDD	VDD	GND	GND	VDD	VDD	GND
AC	DATA3	DATA2	DATA1	DATA0	VDD	DDPST	DDPST	VDDAC VDDAC	GNDAC	VDD	VDD	GND	GND	VDD	VDD	GND	GND	VDD
	SDMMC1_	SDMMC1_	SDMMC1_	SDMMC1_	SDMMC1_	ALIVE_V	ALIVE_V	SW0PLL_	SW0PLL_									
AD	DATA7	DATA6	DATA5	DATA4	GND	DD	DD	VDDAC	GNDAC	VDD	VDD	GND	GND	VDD	VDD	GND	GND	VDD
AE	SDMMC1_ 18EN	SDMMC1_ CMD	SDMMC1_ CLK	SDMMC1_ DETN	SDMMC1_ GND	ALIVE_V DD	ALIVE_V DD	DPLL_VD DAC	DPLL_GN DAC	GND	GND	VDD	VDD	GND	GND	VDD	VDD	GND
112	SDMMC0	SDMMC0	SDMMC0	SDMMC0	SDMMC0	55	55	VPLL VD	VPLL GN	0.15	GILD	100	122	GIAD	G. (E	122	100	0.15
AF	DATA3	DATA2	DATA1 -	DATA0	VDD -	SIGRES10	SIGRES8	DAC -	DAC _	GND	GND	VDD	VDD	GND	GND	VDD	VDD	GND
	SDMMC0_	SDMMC0_	SDMMC0_	SDMMC0_	SDMMC0_	GIGDEG15	GIGDEGIA	UPLL_VD	UPLL_GN	GIGDEGO	LIDDDGT	LIDDRIT	I/DD	CNID	CNID	CNID	CNID	DDR1_VD
AG	DATA7 SDMMC0	DATA6 SDMMC0	DATA5 SDMMC0	DATA4 SDMMC0	GND SDMMC0	SIGRES15	SIGRES14	DAC	DAC	SIGRES0	VDDPST	VDDPST	VDD	GND	GND	GND	GND	DQ DDR1 VD
AH	18EN	CMD	CLK	DETN	GND	SIGRES17	SIGRES16	SIGRES7	SIGRES4	SIGRES3	VDDPST	VDDPST	VDDPST	VDDPST	VDDPST	GND	GND	DDR1_VD DQ
	NAND_CS	NAND_CS	NAND_D	NAND_W	NAND_RB						OTG_VDD	OTG_VDD		RTC_VDD				
AJ	N0	N1	QS	RN	NO	SIGRES11	SIGRES12	SIGRES6	SIGRES2	TESTEN	33	33	OTG_ID	PST	GND	GND	GND	GND
AK	NAND_CL F	NAND_AL E	NAND_D ATA8	NAND_D ATA9	NAND_RB N1	SIGRES13	SIGRES9	SIGRES5	SIGRES1	TRSTN	OTG_VDD 33	OTG_VDD 33	OTG_VBU S	RTC_VDD PST	RTC VDD	RTC_WA KEUP	GND	GND
All	NAND D	NAND D	NAND D	NAND D	141	DFTRAM	DFTWINT	DFTWEXT	TESTMOD	TROTT	OTG GND	OTG GND	RTC GND	RTC VDD	KIC_VDD	REGI	GND	GND
AL	ATA0	ATA1	ATA10	ATA11	XTO_24M	BYP	EST	EST	E_PLL	TESTCLK	AC -	Α –	AC -	AC -	RTC_VDD	RTC_ISO	GND	GND
	NAND D	NAND D	NAND D	NAME D		DFTCPUR	DFTCOMP	DFTATEA			OTC VDD	OTC CND	DDD1 CN	DDD1 CN	DDD1 CN	DDB1 CN	DDD1 DM	DDD1 DM
AM	NAND_D ATA2	NAND_D ATA3	NAND_D ATA12	NAND_D ATA13	XTI 24M	STDISABL E	BYPASS	TCLKVSO C	TESTSE	TCK	OTG_VDD 25	OTG_GND A	DDR1_GN DO	DDR1_GN DO	DDR1_GN DQ	DDR1_GN DQ	DDR1_DM 3	DDR1_DM 2
					_			DFTMAX								- <		_
	NAND_D	NAND_D	NAND_D	NAND_D	NAND_RD	m 40	DFTCLKB	COMPMO	DFTWRPC	TESTSI_P	TESTSE_P	OTG_DRV	DDR1_GN	DDR1_GN	DDR1_DQ	DDR1_DQ	DDR1_DQ	DDR1_DQ
AN	ATA4	ATA5	ATA14	ATA15	N	TMS	YPASS	DE DFTATSP	LK	LL	LL	_VBUS	DQ	DQ	S3	28	29	16
	NAND D	NAND D	efuse VDD		NSYSTEM		DFTRSTDI	EEDENAB	DFTSCAN	TESTSO P		OTG TXR	DDR1 GN	DDR1 GN	DDR1 DQ	DDR1 DQ	DDR1 DQ	DDR1 DQ
AP	ATA6	ATA7	Α -	GND	_OFF	TDI	SABLE	LE	MODE	LL -	TESTRST	_RKL	DQ _	DQ -	S_B3	30	31	18
AR	WIRO1	BOOT2	BOOT0	NRST_PO N	NVMODE	TDO	JMODE1	DFTATEC LK	DFTATEA TCLK	DFTSE	TESTMOD E SC	OTG DM	XTO 32K	DDR1_GN DQ	DDR1_DQ S2	DDR1_DQ 26	DDR1_DQ 27	DDR1_DQ 22
AK	WIKQI	BO012	NRST WA	NVMODE	U	100	NBISTRES	DFTATEP	ICLK	DFTSE	TESTMOD	OTG_DM	A10_32K	DDR1 GN	DDR1 DO	DDR1 DQ	DDR1 DQ	DDR1 DQ
AT	WIRQ0	BOOT1	RM RM	1	JMODE0	CLKOUT	ET	CLKVSOC	DFTWSE	MODE	E	OTG_DP	XTI_32K	DQ DDR1_GIV	S_B2	24	25	20
					_													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

Рисунок 3.2. Расположение выводов на корпусе (левый нижний угол)

19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
GPIOC14/ VPIN_VDI 14	VPIN_FSY NC0	GPIOC30/ VPIN_RST O0	GND	VPIN_PIX CLK0	SW1_DIN P	SW1_SINP	SW1_SOU TP	SW1_DOU TP	VPOUT_V CLK	VPOUT_V DO2	VPOUT_V DO7	VPOUT_V DO11	VPOUT_V DO15	VPOUT_V DO17	VPOUT_V DO19	VPOUT_V DO21	VPOUT_V DO23	A
GPIOC15/ VPIN_VDI 15	VPIN_FSY NC1	GPIOC31/ VPIN_RST O1	GND	VPIN_PIX CLK1	SW1_DIN N	SW1_SIN N	SW1_SOU TN	SW1_DOU TN	VPOUT_V SYNC	VPOUT_V DO3	VPOUT_V DO6	VPOUT_V DO10	VPOUT_V DO14	VPOUT_V DO16	VPOUT_V DO18	VPOUT_V DO20	VPOUT_V DO22	В
GPIOC20/ VPIN_VDI 20	GPIOC22/ VPIN_VDI 22	GPIOC24/ VPIN_VDI 24	GPIOC26/ VPIN_VDI 26	GPIOC28/ VPIN_VDI 28	SW0_DOU TP	SW0_SOU TP	SW0_SINP	SW0_DIN	VPOUT_H SYNC	VPOUT_V DO0	VPOUT_V DO4	VPOUT_V DO9	VPOUT_V DO13	DSI_DAT AN0	DSI_DAT AP0	CSI0_DAT AN0	CSI0_DAT AP0	С
GPIOC21/ VPIN_VDI 21	GPIOC23/ VPIN_VDI 23	GPIOC25/ VPIN_VDI 25	GPIOC27/ VPIN_VDI 27	GPIOC29/ VPIN_VDI 29	SW0_DOU TN	SW0_SOU TN	SW0_SIN N	SW0_DIN N	VPOUT_V DEN	VPOUT_V DO1	VPOUT_V DO5	VPOUT_V DO8	VPOUT_V DO12	DSI_DAT AN1	DSI_DAT AP1	CSI0_DAT AN1	CSI0_DAT AP1	D
MCC_CLK IN	SW0_LVD S_VDD25	SW0_LVD S_GND25	SW0_LVD S_VDD11	SW0_LVD S_GND11	SW1_LVD S_VDD25	SW1_LVD S_GND25	SW1_LVD S_VDD11	SW1_LVD S_GND11	VDDPST	VDDPST	DSI_GND AC	DSI_GND AC	DSI_VDD AC	DSI_DAT AN2	DSI_DAT AP2	CSI0_DAT AN2	CSI0_DAT AP2	Е
GLN2_Q1	SW0_LVD S_VDD25	SW0_LVD S_GND25	SW0_LVD S_VDD11	SW0_LVD S_GND11	SW1_LVD S_VDD25	SW1_LVD S_GND25	SW1_LVD S_VDD11	SW1_LVD S_GND11	VDDPST	VDDPST	DSI_GND AC	DSI_GND AC	DSI_VDD AC	DSI_DAT AN3	DSI_DAT AP3	CSI0_DAT AN3	CSI0_DAT AP3	F
GND	GND	GND	GND	GND	GND	GND	VDDPST	VDDPST	VDDPST	VDDPST	GND	GND	DSI_VDD AC	DSI_CLKP	DSI_CLK N	CSI0_CLK P	CSI0_CLK N	G
GND	GND	GND	GND	GND	GND	GND	GND	VDDPST	VDDPST	GND	GND	GND	DSI_VDD AC	CSI_GND AC	CSI_GND AC	CSI_VDD AC	CSI_VDD AC	Н
GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	CSI_GND AC	CSI_GND AC	CSI_VDD AC	CSI_VDD AC	J
GND	VDD	VDD	GND	GND	VDD	VDD	GND	GND	GND	GND	GND	GND	MFBSP1_ LDAT2	MFBSP1_ LDAT0	MFBSP1_ LACK	MFBSP1_ LDAT6	MFBSP1_ LDAT4	K
VDD	GND	GND	VDD	VDD	GND	GND	VDD	VDD	GND	GND	GND	GND	MFBSP1_ LDAT3	MFBSP1_ LDAT1	MFBSP1_ LCLK	MFBSP1_ LDAT7	MFBSP1_ LDAT5	L
VDD	GND	GND	VDD	VDD	GND	GND	VDD	VDD	GND	GND	GND	GND	MFBSP0_ LDAT2	MFBSP0_ LDAT0	MFBSP0_ LACK	MFBSP0_ LDAT6	MFBSP0_ LDAT4	М
GND	VDD	VDD	GND	GND	VDD	VDD	GND	GND	GND	GND	GND	GND	MFBSP0_ LDAT3	MFBSP0_ LDAT1	MFBSP0_ LCLK	MFBSP0_ LDAT7	MFBSP0_ LDAT5	N
GND	VDD	VDD	GND	GND	VDD	VDD	GND	GND	GND	GND	GND	GND	DDR0_GN DQ	DDR0_GN DQ	DDR0_GN DQ	DDR0_GN DQ	DDR0_GN DQ	P
VDD	GND	GND	VDD	VDD	GND	GND	VDD	VDD	GND	GND	GND	GND	DDR0_GN DO	DDR0_GN DO	DDR0_GN DO	DDR0_GN DO	DDR0_GN DO	R
VDD	GND	GND	VDD	VDD	GND	GND	VDD	VDD	GND	GND	GND	GND	DDR0_GN DO	DDR0_DQ S1	DDR0_DQ S B1	DDR0_DQ S0	DDR0_DQ S B0	Т
GND	VDD	VDD	GND	GND	VDD	VDD	GND	DDR0_VD DQ	DDR0_VD DO	GND	GND	GND	DDR0_GN DQ	DDR0_DQ	DDR0_DQ	DDR0_DQ	DDR0_DQ	U

Рисунок 3.3. Расположение выводов на корпусе (правый верхний угол)

GND	VDD	VDD	GND	GND	VDD	VDD	GND	DDR0_VD DQ	DDR0_VD DQ	GND	GND	GND	DDR0_DM 0	DDR0_DQ 0	DDR0_DQ 2	DDR0_DQ 6	DDR0_DQ 4	V
LIDD	an in	an in	n	n	an in	an in	n	DDR0_VD	DDR0_VD	an in	au m	an in	DDR0_DM	DDR0_DQ	DDR0_DQ	DDR0_DQ	DDR0_DQ	
VDD	GND	GND	VDD	VDD	GND	GND	VDD	DQ DDR0 VD	DQ DDR0 VD	GND	GND	GND	DDR0 PZ	DDR0 DQ	DDR0 DQ	DDR0 DQ	DDR0 DQ	W
VDD	GND	GND	VDD	VDD	GND	GND	VDD	DDR0_VD DQ	DDR0_VD DQ	GND	GND	GND	Q Q	12	14	10	8 8	Y
								DDR0_VD	DDR0_VD				DDR0_AT	DDR0_OD	DDR0_OD	DDR0_DT	DDR0_DT	
GND	VDD	VDD	GND	GND	VDD	VDD	GND	DQ DDR0 VD	DQ DDR0 VD	GND	GND	GND	O DDR0 AD	T1 DDR0 RA	T0 DDR0 AD	O1 DDR0 WE	DDR0 BA	AA
GND	VDD	VDD	GND	GND	VDD	VDD	GND	DOKO_VD	DDR0_VD	GND	GND	GND	DDR0_AD	SN SN	DDR0_AD D10	N DDRU_WE	2 DDR0_BA	AB
								DDR0_VD	DDR0_VD				DDR0_AD	DDR0_AD	DDR0_AD	DDR0_AD	DDR0_AD	
VDD	GND	GND	VDD	VDD	GND	GND	VDD	DQ	DQ	GND	GND	GND	D11	D13	D12	D3	D1	AC
VDD	GND	GND	VDD	VDD	GND	GND	VDD	DDR0_VD DO	DDR0_VD DQ	GND	GND	GND	DDR0_AD D14	DDR0_AD D15	DDR0_VR EF	DDR0_CK N	DDR0 CK	AD
								- 4					DDR0_AD	DDR0_AD	DDR0_AD	DDR0_AD	DDR0_AD	
GND	VDD	VDD	GND	GND	VDD	VDD	GND	GND	GND	GND	GND	GND	D5	D9	D6	D7	D8	AE
GND	VDD	VDD	GND	GND	VDD	VDD	GND	GND	GND	GND	GND	GND	DDR0_CA SN	DDR0_BA	DDR0_AD D0	DDR0_AD D4	DDR0_BA	AF
DDR1 VD	DDR1 VD	0.15	0.12	0.15	0.15	G. (B	G. (E	DDR0 CK	DDR0 RE	DDR0 CK	DDR0 CS	DDR0 CS						
DQ _	DQ _	DQ _	DQ _	DQ -	DQ _	DQ _	GND	GND	GND	GND	GND	GND	E0 _	SET _	E1 _	N0 -	N1 _	AG
DDR1_VD	DDR1_VD	DDR1_VD	DDR1_VD	DDR1_VD	DDR1_VD	DDR1_VD	GND	GND	GND	GND	GND	GND	DDR0_VR EF	DDR0_DQ 19	DDR0_DQ 17	DDR0_DQ	DDR0_DQ 23	A 11
DQ	DQ	DQ	DQ	DQ	DQ	DQ	GND	GND	GND	GND	GND	GND	DDR0 DM	DDR0 DQ	DDR0 DQ	DDR0 DQ	DDR0 DQ	AH
GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	2	16	18	22	20 20	AJ
													DDR0_DM	DDR0_DQ	DDR0_DQ	DDR0_DQ	DDR0_DQ	
GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	DDR0 GN	DDR0 DQ	DDR0 DO	DDR0 DQ	DDR0 DO	AK
GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	GND	DORU_GIN	28	30	26	24	AL
DDR1_VR	DDR1_CK	DDR1_CA	DDR1_AD	DDR1_AD	DDR1_AD	DDR1_AD	DDR1_AT	DDR1_PZ	DDR1_DM	DDR1_DM	DDR1_GN	DDR1_GN	DDR1_GN	DDR0_DQ	DDR0_DQ	DDR0_DQ	DDR0_DQ	
EF	E0	SN	D5	D14	D11	D2	0	Q	1	0	DQ	DQ	DQ	S3	S_B3	S2	S_B2	AM
DDR1 DQ	DDR1 RE	DDR1 BA	DDR1 AD	DDR1 AD	DDR1 AD	DDR1 RA	DDR1 OD	DDR1 DQ	DDR1 DQ	DDR1 DQ	DDR1 DQ	DDR1 DQ	DDR1 GN	DDR0 GN	DDR0 GN	DDR0 GN	DDR0 GN	
19	SET _	1 -	D9 -	D15	D13 _	SN -	T1 -	12	13	0	3	S1	DQ _	DQ _	DQ _	DQ _	DQ -	AN
DDR1_DQ 17	DDR1_CK E1	DDR1_AD D0	DDR1_AD D6	DDR1_VR EF	DDR1_AD D12	DDR1_AD D10	DDR1_OD T0	DDR1_DQ 14	DDR1_DQ 15	DDR1_DQ	DDR1_DQ	DDR1_DQ S B1	DDR1_GN DQ	DDR0_GN DQ	DDR0_GN DO	DDR0_GN DO	DDR0_GN DO	AP
DDR1 DQ	DDR1 CS	DDR1 AD	DDR1 AD	DDR1 CK	DDR1 AD	DDR1 WE	DDR1 DT	DDR1 DQ	DDR1 DQ	DDR1 DQ	DDR1 DQ	DDR1 DQ	DDR1 GN	DDR1 GN	DDR1 GN	DDR1 GN	DDR1 GN	Ai
21	N0 -	D4 -	D7 -	N N	D3 -	N -	O1 _	10	11	6	5	S0	DQ -	DQ -	DQ -	DQ -	DQ -	AR
DDR1_DQ	DDR1_CS	DDR1_BA	DDR1_AD	DDB1 CV	DDR1_AD	DDR1_BA	DDR1_DT	DDR1_DQ	DDR1_DQ	DDR1_DQ	DDR1_DQ	DDR1_DQ	DDR1_GN	DDR1_GN	DDR1_GN	DDR1_GN	DDR1_GN	A.T.
23	N1	U	D8	DDR1_CK	D1	2	O0	δ	9	4	1	S_B0	DQ	DQ	DQ	DQ	DQ	AT
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	

Рисунок 3.4. Расположение выводов на корпусе (правый нижний угол)

4. ИСТОРИЯ ИЗМЕНЕНИЙ