VIETNAM NATIONAL UNIVERSITY - HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY FACULTY OF COMPUTER SCIENCE & ENGINEERING

EMBEDDED SYSTEM

Analysis

POWER & PERFORMANCE

Instructor: Pham Hoang Anh

Student: Nguyen Tran Quang Minh - 1811083

Contents

1	Power				
	1.1	Datasheet information:	2		
	1 2	Calculation:	2		

1 Power

1.1 Datasheet information:

No.	Name	Description	Min	Max	Typical	Note
1.	ESP32 de-	The operating voltage of	500 mA	-	-	Average
	vkit	ESP32 ranges from 2.3				current in
		V to 3.6 V. When using				actual test
		a single-power supply,				is no more
		the recommended volt-				than 150
		age of the power supply				mA with
		is 3.3 V				$600 ext{mA}$
						spike
2.	MPU6050	The sensor has 3 dis-	3.6 mA	3.9	3.6 mA	Look like
		tinct feature and power		mA		only Gy-
		consumption is based				roscope is
		on what features are				used
		used in combination				
		Gyroscope/Accelerome-				
		$\mathrm{ter}/\mathrm{DMP}$				
3.	Nema 17	The motor operates in	0.85 A	0.9 A	0.88 A	The stats
		2 phase, with rated				in official
		voltage and currentin				datasheet
		the datasheet, model				and product
		KH42JM2B182A				mark is
						different so
						i take them
						as low/high
						values.

1.2 Calculation:

With the above stats, we can assume that the pair of motor will draw 0.88*2 = 1.76 A per phase and 3.52 A in total.

Therefore, we need about 4A current (at max) and about 3.7 A average. The battery we chose, a 3-cell Lion battery with 30 C max discharge current and 2000 mAh capacity, merely meets the requirement. We expect it to sustain at least half an hour before recharge.

With some calculation, we can get the maximum performance of the Nema 17 stepper motor [1]:

$$MaxSpeed = \frac{V}{2LI_{max} \cdot spr} \tag{1}$$

$$Mintimeperstep = \frac{2LI_{max}}{V} \tag{2}$$

$$P_{max} = I_{max}V (3)$$

Hence, at nominal voltage (3.7*3 = 11.1 V), we get the result of 6.18 revolutions/s, 0.809 ms/step and 9.77 W max power.

At max voltrage (4.2*3 = 12.6 V), we get 7.02 revolutions/s, 0.712 ms/step and 11.1 W max power.

References

[1] https://www.allaboutcircuits.com/tools/stepper-motor-calculator/