Вывод демографических историй при помощи байесовской оптимизации

Илья Шешуков

Демографическая модель популяции

Имея геномы людей, хотим понять как изменялись их популяции. Как менялась численность, когда популяции разделялись, как сильно они мигрировали.

Рис. 1: Демографическая модель африканского происхождени человека

Аллель-частотный спектр

Аллель-частотный спектр это распределение частоты аллелей в данных локусах в популяции или выборке.

Рис. 2: График АЧС

Пример

	SNP 1	SNP 2	SNP 3	SNP 4	SNP 5	SNP 6	SNP 7	SNP 8
	0	1	0	0	0	0	1	0
	1	0	1	0	0	0	1	0
	0	1	1	0	0	1	0	0
	0	0	0	0	1	0	1	1
	0	0	1	0	0	0	1	0
	0	0	0	1	0	1	1	0
Сумма	1	2	3	1	1	2	5	1

Спектр: $\begin{pmatrix} 4 & 2 & 1 & 0 & 1 \end{pmatrix}$

https://bitbucket.org/gutenkunstlab/dadi/

- Плюсы
 - Она работает
 - Ей пользуются реальные люди
- Минусы
 - Решает дифференциальное уравнение в частных производных, что долго
 - Использует методы локальной оптимизации, что малоэффективно
 - Для работы необходимо руками писать Питон

moments

https://bitbucket.org/simongravel/moments

- Плюсы
 - Эффективнее, чем даді, особенно на больших популяциях

https://github.com/ctlab/GADMA

- · Основана на даді и moments
- Использует генетический алгоритм для поиска значения параметров демографической модели
- Не требует человеческого вмешательства

Что можно сделать

Заменим генетический алгоритм байесовской оптимизацей.

Байесовская оптимизация

- Алгоритм глобальной оптимизации
- Хорошо работает для сложновычислимых функций (например, если нужно решать уравнение в частных производных), т.е. хорошо подходит для задачи
- Можно параллелить
- Менее эвристична, чем генетический алгоритм

Красивые графики

Планы (промежуточная презентация)

- Заменить в даді алгоритм градиентного спуска на байесовскую оптимизацию.
- Посмотреть станет ли лучше
- · Интегрировать в GADMA

Реальность

- ⊠ Посмотреть станет ли лучше
- □ Интегрировать в GADMA

Сравнительная таблица

Данные	Оптимум	dadi	moments	GPyOpt	
2 популяции	1066.823	=	-	56 часов	
6 переменных				f(x) = 1066.954	
2 популяции	1070.048	-	-	24 часа	
8 переменных				f(x) = 1160.432	
3 популяции	6316.578	-	-	73 часа	
13 переменных				f(x) = 7377.065	

Torque Generating Mechanism

Спасибо за внимание

TODO

- время -> итерации
- анимированные графики в презентации
- убрать дади, получить данные по моментс
- графики сходимости по
- добавить лирики (что происходилов работе !!!!)
- сравнить на других данных