

#### **Association Rule**

Ali Ridho Barakbah



#### Assocation rule?

- Mencari suatu kaidah keterhubungan dari data
- Diusulkan oleh Agrawal, Imielinski, and Swami (1993)



Dalam suatu supermarket kita ingin mengetahui seberapa jauh orang yang membeli celana juga membeli sabuk?



### Input & problema

- Input
  - Adanya sejumlah transaksi
  - Setiap transaksi memuat kumpulan item
- Problema
  - Bagaimana caranya menemukan association rule yang memenuhi minimum support dan minimum confidence yang kita berikan



#### Manfaat

- Dapat digunakan untuk Market Basket Analysis (menganalisa kebiasaan customer dengan mencari asosiasi dan korelasi dari data transaksi)
  - Sebagai saran penempatan barang dalam supermarket
  - Sebagai saran produk apa yang dipakai dalam promosi





#### Definisi umum

- Itemset: himpunan dari item-item yang muncul bersama-sama
- Kaidah asosiasi: peluang bahwa item-item tertentu hadir bersama-sama.
- Support dari suatu itemset X (supp(X)) adalah rasio dari jumlah transaksi dimana itemset muncul dengan total jumlah transaksi



#### Definisi umum

- Konfidence (keyakinan) dari kaidah X→Y, ditulis conf(X → Y) adalah
  - $-\operatorname{conf}(X \rightarrow Y) = \operatorname{supp}(X \cup Y) / \operatorname{supp}(X)$
  - Konfindence bisa juga didefinisikan dalam terminologi peluang bersyarat

$$conf(X \rightarrow Y) = P(Y|X) = P(X \cap Y) / P(X)$$

Database transaksi menyimpan data transaksi.
 Data transaksi bisa juga disimpan dalam suatu bentuk lain dari suatu database m x n.



### Ukuran support

- Misalkan I={I<sub>1</sub>, I<sub>2</sub>, ...,I<sub>m</sub>} merupakan suatu himpunan dari literal, yang disebut item-item.
- Misalkan  $D=\{T_1, T_2, ..., T_n\}$  merupakan suatu himpunan dari n transaksi, dimana untuk setiap transaksi  $T \subseteq D$ ,  $T \subseteq I$ .
- Suatu himpunan item X⊆I disebut itemset.
- Suatu transaksi T memuat suatu itemset X jika X⊆T.
- Setiap itemset X diasosiasikan dengan suatu himpunan transaksi T<sub>X</sub> ={T∈D | T⊇X} yang merupakan himpunan transaksi yang memuat itemset
- Support dari itemset X → supp(X)) : |T<sub>X</sub>|/|D|



#### Contoh

| Transaksi | Α | В | С | D  |
|-----------|---|---|---|----|
| T1        | 1 | 0 | 1 | 14 |
| T2        | 0 | 0 | 6 | 0  |
| Т3        | 1 | 0 | 2 | 4  |
| T4        | 0 | 0 | 4 | 0  |
| T5        | 0 | 0 | 3 | 1  |
| T6        | 0 | 0 | 1 | 13 |
| T7        | 0 | 0 | 8 | 0  |
| Т8        | 4 | 0 | 0 | 7  |
| Т9        | 0 | 1 | 1 | 10 |
| T10       | 0 | 0 | 0 | 18 |

Jumlah transaksi |D| = 10

Kemunculan item A pada transaksi (|Ta|) sebanyak 3 kali yaitu pada T1, T3, T8.

$$Supp(A)=|Ta|/|D|=3/10=0.3.$$

|Tcd| sebanyak 5 kali, yaitu pada T1, T3, T5, T6, T9. Supp(CD)=|Tcd|/|D| = 5/10 = 0.5.

Frequent itemset adalah itemset yang memunyai support >= minimum support yang diberikan oleh user.

| Itemset | Sp  |
|---------|-----|
| А       | 0.3 |
| В       | 0.1 |
| С       | 0.8 |
| D       | 0.7 |
| AB      | 0   |
| AC      | 0.2 |
| AD      | 0.3 |
| BC      | 0.1 |
| BD      | 0.1 |
| CD      | 0.5 |
| ABC     | 0   |
| ABD     | 0   |
| ACD     | 0.2 |
| BCD     | 0.1 |
| ABCD    | 0   |

Jika minsupport diberikan oleh user sebagai threshold adalah 0.2, maka frequent itemset adalah semua itemset yang support-nya >= 0.2, yakni

A, C, D, AC, AD, CD, ACD

Dari frequent itemset bisa dibangun kaidah asosiasi sbb:

$$A \rightarrow C$$
  $C \rightarrow A$   $A \rightarrow D$   
 $D \rightarrow A$   $C \rightarrow D$   $D \rightarrow C$   
 $A,C \rightarrow D$   $A,D \rightarrow C$   $C,D \rightarrow A$ 

$$Conf(A \rightarrow C) = supp(A,C) / supp(A)$$

## Apriori

- Prinsip apriori :
   Subset apapun dari suatu frequent itemset harus frequent
- L3={abc, abd, acd, ace, bcd}
- Penggabungan sendiri : L3\*L \*L3
  - abcd dari abc dan abd
  - acde dari acd dan ace
- Pemangkasan Pemangkasan:
  - acde dibuang sebab ade tidak dalam L3
- C4={abcd}



## Contoh apriori dengan minimum support 50%





## Search space pada apriori





## Search space pada apriori





## Search space pada apriori





| T1 | {roti, selai, mentega} |
|----|------------------------|
| T2 | {roti, mentega}        |
| T3 | {roti, susu, mentega}  |
| T4 | {coklat, roti}         |
| T5 | {coklat, susu}         |

- Suatu supermarkat mempunyai sejumlah transaksi seperti dalam tabel
- Buatlah association rule dari data tersebut dengan cara menghitung support dan confidence
- Pakailah metode apriori dengan minimum support=0.3 dan confidence=0.8



| T1 | {roti, selai, mentega} |
|----|------------------------|
| T2 | {roti, mentega}        |
| T3 | {roti, susu, mentega}  |
| T4 | {coklat, roti}         |
| T5 | {coklat, susu}         |

| Itemset   | Sp  |
|-----------|-----|
| {roti}    | 0.8 |
| {selai}   | 0.2 |
| {mentega} | 0.6 |
| {susu}    | 0.4 |
| {coklat}  | 0.4 |

| Itemset          | Sp  |
|------------------|-----|
| {roti,mentega}   | 0.6 |
| {roti,susu}      | 0.2 |
| {roti,coklat}    | 0.2 |
| {mentega,susu}   | 0.2 |
| {mentega,coklat} | 0   |
| {susu,coklat}    | 0.2 |

Conf(roti $\rightarrow$ mentega) = Supp({roti,mentega})/Supp({roti}) = 0.6 / 0.8 = 0.75  $\rightarrow$  75% Conf(mentega $\rightarrow$ roti) = Supp({mentega,roti})/Supp({mentega}) = 0.6 / 0.6 = 1  $\rightarrow$  100%

# Tugas

| T1 | {roti, selai, mentega}        |
|----|-------------------------------|
| T2 | {roti, mentega}               |
| T3 | {roti, susu, mentega}         |
| T4 | {coklat, roti, susu, mentega} |
| T5 | {coklat, susu}                |

- Suatu supermarkat mempunyai sejumlah transaksi seperti dalam tabel
- Buatlah association rule dari data tersebut dengan cara menghitung support dan confidence
- Pakailah metode apriori dengan minimum support=0.3 dan confidence=0.8