parth.pandey13103347@gmail.com 10 C

June 14, 2020

0.1 Task-C: Regression outlier effect.

Objective: Visualization best fit linear regression line for different scenarios

0.1.1 Imports

```
[12]: # you should not import any other packages
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
import numpy as np
from sklearn.linear_model import SGDRegressor
```

0.1.2 Data Creation Functions

```
[13]: import numpy as np
      import scipy as sp
      import scipy.optimize
      def angles_in_ellipse(num,a,b):
          assert(num > 0)
          assert(a < b)
          angles = 2 * np.pi * np.arange(num) / num
          if a != b:
              e = (1.0 - a ** 2.0 / b ** 2.0) ** 0.5
              tot_size = sp.special.ellipeinc(2.0 * np.pi, e)
              arc_size = tot_size / num
              arcs = np.arange(num) * arc_size
              res = sp.optimize.root(
                  lambda x: (sp.special.ellipeinc(x, e) - arcs), angles)
              angles = res.x
          return angles
```

```
[14]: a = 2
b = 9
n = 50

phi = angles_in_ellipse(n, a, b)
```

```
e = (1.0 - a ** 2.0 / b ** 2.0) ** 0.5
arcs = sp.special.ellipeinc(phi, e)

fig = plt.figure()
ax = fig.gca()
ax.axes.set_aspect('equal')
ax.scatter(b * np.sin(phi), a * np.cos(phi))
plt.show()
```


0.1.3 Generating Data

```
[15]: x_train= b * np.sin(phi)
y_train= a * np.cos(phi)
```

0.1.4 Steps to achieve Objective

0.1.5 Observation on checking the documentation of loss functions of Linear Models.

- On checking out the https://scikit-learn.org/stable/modules/linear_model.html

 It was brought into light that the regression implementation with regularization is called ridge regression
- "This classifier is sometimes referred to as a Least Squares Support Vector Machines with a linear kernel."

Here the documentation says that Linear SVM is pretty similar to the current implementation.

0.1.6 Formula Used in the Self Implementation of Linear Regression

Linear Regression Loss Function Used

• Loss Function $\min_{w} \|X.w - y\|_2^2 + \alpha \|w\|_2^2$

• Gradient for w

$$\delta L/\delta w_{w_{old}} = 2*X*((w.X)+b-y)+2\alpha w$$

• Gradient for b $\delta L/\delta b_{bold} = 2*((w.X)+b-y)$

Defining Functions for the above formula

```
[16]: # Weight Intialization
      def init_weights(x_train):
          w = np.zeros_like(x_train)
          b = 0
          return w,b
      # gradient function
      # Loss = Square Loss
      def gradient_dw(x, y, w, b, param):
          return 2 * x * (np.dot(w,x) + b - y) + 2 * param * w
      def gradient_db(x, y, w, b, param):
          return 2 * (np.dot(w,x) + b - y)
      def loss(y_true,y_pred):
          return np.sum((y_true- y_pred)**2)
      def draw_line(coef,intercept, mi, ma, ax):
          # for the separating hyper plane ax+by+c=0, the weights are [a, b] and the
       \rightarrow intercept is c
          # to draw the hyper plane we are creating two points
          # 1. ((b*min-c)/a, min) i.e ax+by+c=0 ==> ax = (-by-c) ==> x = (-by-c)/a_{\sqcup}
       \rightarrowhere in place of y we are keeping the minimum value of y
          # 2. ((b*max-c)/a, max) i.e ax+by+c=0 ==> ax = (-by-c) ==> x = (-by-c)/a
       \rightarrowhere in place of y we are keeping the maximum value of y
          points=np.array([(mi, (coef*mi + intercept)),(ma, (coef*ma + intercept))])
          ax.plot(points[:,0], points[:,1])
```

Defining train function

```
[18]: def train(x_train, y_train, epochs, param, eta):
    w,b = init_weights(x_train[0])
    epoch_loss = 0
    for epoch in range(1,epochs+1):
        for x, y in zip(x_train, y_train):
            w = w - (eta * gradient_dw(x,y,w,b,param))
            b = b - (eta * gradient_db(x,y,w,b,param))
        y_pred = []
    for x in x_train:
        y_pred.append(np.dot(w,x) + b)
    old_loss = epoch_loss
```

```
epoch_loss = loss(y_train, y_pred)
if epoch_loss==old_loss:
    break
return w,b
```

0.1.7 Linear Regression Implementation

Training with Original Data

```
[19]: # training on original data
_, ax = plt.subplots(1,1,figsize=(10,10))
w, b = train(x_train, y_train, 1000, 0.0001, 0.001)
ax.scatter(x_train, y_train)
draw_line(w,b,np.min(x_train),np.max(x_train),ax)
ax.set_title('Training without Outliers')
```

[19]: Text(0.5, 1.0, 'Training without Outliers')

Training with outliers

```
[20]: outliers = [(0,2),(21, 13), (-23, -15), (22,14), (23, 14)] hyperparams = [0.0001, 1, 100]
```


0.1.8 Observations

- Single addition of outlier changed the angle of the hyperplane drastically
- Applying high regularization penalty did not have much benefit
- Linear Regression is sensitive to outliers.