AD

AD-E402 993

Technical Report ARWEC-TR-03006

STAGED EXPLOSIVE TO MITIGATE COOK-OFF VIOLENCE: PRELIMINARY WORK WITH 2,4-DINITROPHENYL HYDRAZINE

Barry D. Fishburn Robert P. Ho Sanjeev K. Singh

October 2003

20031017 081

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER

Warheads, Energetics & Combat-support Armaments Center

Picatinny, New Jersey

Approved for public release; distribution is unlimited.

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy this report when no longer needed by any method that will prevent disclosure of its contents or reconstruction of the document. Do not return to the originator.

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-01-0188		
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.					
1. REPORT DATE (DD-MM-YYYY) 2. F October 2003	REPORT TYPE		3. DATES COVERED (From – To)		
4. TITLE AND SUBTITLE	de la constante de la constant	5a. C	5a. CONTRACT NUMBER		
Staged Explosive to Mitigate Cook-off Violence: Preliminary Work with 2.4-Dinitrophenyl Hydrazine		Vork 5b. G	5b. GRANT NUMBER		
<u>-</u>		5c. P	ROGRAM ELEMENT NUMBER		
6. AUTHORS			5d. PROJECT NUMBER 6002278		
Barry D. Fishburn, Robert P. Ho, and Sa	njeev K. Singh		ASK NUMBER		
		5f. W	5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AN ARDEC, WECAC	ID ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER		
Energetic and Warheads Division (AMSTA-AR-WEE) Picatinny, New Jersey 07806-5000					
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) ARDEC, WECAC 10. SPONSOR/MONITOR'S ACRONYM(S					
Information Research Center (AMSTA-AR-WEL-TL) Picatinny, NJ 07806-5000		1	11. SPONSOR/MONITOR'S REPORT- NUMBER(S) Technical Report ARWEC-TR-03006		
12. DISTRIBUTION/AVAILABILITY STATEMENT					
Approved for public release; distribution is unlimited.					
13. SUPPLEMENTARY NOTES					
14. ABSTRACT	Name of the Control o				
A potential method to mitigate cook-off violence of heavily confined explosives is to add a minor ingredient that reacts at temperatures below where cook off usually occurs, to burst the confinement and/or interfere with the thermal decomposition chemistry of the explosive so to slow subsequent reactions. This additive would not impact the explosive's performance significantly, but only comes into play during relatively slow thermal heating. The material 2,4-dinitrophenyl hydrazine has shown promise to produce the required mitigation for Composition B explosive in a laboratory confinement that mimics very heavy confinement. The results of this work are presented.					
15. SUBJECT TERMS					
Cook-off mitigation Thermal decomposition of explosives Slow cook-off test 2,4-dinitrophenyl hydrazine					
10.0200		18. NUMBER OF	19a. NAME OF RESPONSIBE PERSON B. Fishburn		
a. REPORT b. ABSTRACT c. THIS PAGE U U U	SAR	PAGES 21	19b. TELEPHONE NUMBER (Include area code) (973) 724-4539		

U

U

CONTENTS

			Page
Intro	oduction		1
Diffe	erential Scanning Calorimetry	e e	2
Testing Program			2
Discussion			
Con	clusion		6
Refe	erences	•	19
Distribution List			
	FIGURES		
1	DSCs of DNPH with RDX		7
2	DSCs of DNPH with TNT		8
3	DSCs of DNPH with TNT		9
4	Spreadsheet: STEX results using DNPH with Comp B		11
5	STEX test mild result using 7% DNPH with Comp B		15
6	STEX test mild result using 7% DNPH with Comp B and no venting		15
7	STEX test violent result using Comp B		16
8	STEX test mild result using TNT		16
9	STEX test violent result using 5% DNPH with Comp B		17

INTRODUCTION

We have been trying to use an energetic additive in a melt cast explosive that reacts at slightly lower temperature than the main explosive ingredients, to burst open any confinement before the main constituents react violently. Our early focus was to mitigate the cook-off violence of Comp B explosive. Through trial and error, some compounds were identified that maintained a separate exotherm from Comp B in differential scanning calorimetry (DSC) and larger scale DSC type tests at about the proper temperature. These were tried in a laboratory slow cook-off fixture holding about 80 g of explosive mixture that was heated at 6°F/hr until reaction [the U.S. Army Armament Research, Development and Engineering Center (ARDEC). Picatinny, New Jersey Scaled Thermal Explosion Experiment [STEX] test]. The fixture was capable of holding 27,600 psi hydrostatically, but was equipped with a small vent hole for these tests except for one trial. The vent was intended to make the bursting more difficult and is expected to mimic leaky, real world confinements. The initial work towards this goal was with adding pentacrythrite tetranitrate (PETN) to TNT (ref. 1). Results were encouraging. Next, the effort was shifted to mitigating Comp B. Pentacrythrite tetra-nitrate was removed from consideration, and a wide-ranging search for other additives was initiated. The criteria were that they react at lower temperature than RDX, but not too low, and demonstrate separate exotherms in DSC and larger, gram size DSC type tests. One energetic additive found by ATK Thiokol Propulsion (ref. 2), under contract, did significantly reduce violence in some initial trials and was subjected to further study in our facility. This was 2,4-Dinitrophenylhydrazine (DNPH).

Table 1 DNPH

CAS registry number	119-26-6
Density	1.659 g/cm³ (S.T.P. RDX 1.902 g/cm³, melted (176°F TNT 1.472 g/cm³)
Melting temperature	381°F (TNT 176°F, RDX ~ 383°F)

Initial safety testing of 4% DNPH with Comp B indicated: ABL impact = 13 (neat Comp B = 21), ABL friction ~ Comp B, ESD ~ Comp B, and vacuum stability 2.221 mL/g. The test material was 4% DNPH dissolved in molten (200°F) Comp B and panned out. This vacuum stability result was of concern. The second set of safety tests on the formulation, done at ARDEC, showed ERL impact 50% point = 54.8 +/- 1.2 cm (Comp B = 35.9 +/- 0.33 cm.), ESD (Picatinny Arsenal method) no reactions in 20 trials at 0.25 J, and ABL friction test, no reactions in 20 trials at 1800 psi. Note: impact sensitivity reversed itself. Vacuum stability showed 6.59 mL gas from 5 g mixture (Comp B gave 0.62 mL for 5.6 g). This was better, at 1.32 mL/g, than in the first set of tests, and passes the requirement in MIL STD 1701B for compatibility. However, the cause of the gases still needed to be determined. Further tests used a 50/50 DNPH/Comp B formulation, intended to amplify any interaction. However, the DNPH was dried at 230°F for 8 hrs and the Comp B was dried at 158°F for 8 hrs before melting the Comp B and adding DNPH. Then the 50/50 formulation mixture was heat conditioned for 216 hrs at up to 212°F (above melting). Neither DSC nor Fourier transform infrared (FTIR) analysis, done at intermediate times and at the final time, indicated any change from the virgin materials. Evidence was strong that they are, in fact, compatible. It is speculated that the gases seen in the original formulation may have been moisture.

Another explosive of interest is PAX/AFX 194. In contrast to Comp B, this explosive just has RDX in an inert binder. There is no TNT in this formulation. The RDX used is somewhat different from that in Comp B, in that it has no HMX impurities. This causes the DSC to display a much cleaner melting endotherm than when HMX is present. But, the main exotherm appears the same between the two types of RDXs. The exotherm is also the same between the two RDXs when they are incorporated in the PAX formulation.

DIFFERENTIAL SCANNING CALORIMETRY

Most DSCs were done with 50/50 physical mixes of DNPH and explosive. Figure 1 shows small interaction between DNPH (Candidate 2) and RDX. This was standard United States RDX. It appears the reaction of DNPH was shifted to lower temperatures when mixed with RDX. Note: exotherms of DNPH and RDX stay distinct. The DSCs of DNPH and TNT (fig. 2) indicate a major change. It seems disturbances where neat DNPH should react are minimized, while the exotherm that apparently corresponds to TNT, shifts to lower a temperature by a large amount. But, this temperature is still significantly higher than that where neat RDX has its exotherm. One would expect that RDX would still dominate cook off in a formulation having both TNT and RDX. Figure 3 shows DSC of Comp B with 4% DNPH in the formulation. Certain temperatures are marked for reference later in the discussion. In contrast to these results, DSC of DNPH and PAX failed to show any noticeable interaction at all. The 7% DNPH/93% PAX formulation looks like the neat DNPH and RDX material plots superposed on one another.

TESTING PROGRAM

A number of STEX tests were completed with DNPH formulated with Comp B and a single test using DNPH with PAX/AFX 194. Inconsistent results were obtained. Sometimes the violence level was surprisingly mild, although sometimes it looks as violent as neat Comp B. We are trying to understand how the mild results occur and see if this can lead to the desired mitigation of cook-off violence.

The STEX test is a 1-in. diameter cylinder, 4 in. long, sealed at each end with massive end plates. This size is similar to the sample size used in the variable confinement cook-off test [sic] [VCCT (ref. 1)]. Down the axis is a probe containing five uniformly spaced thermocouples, with the end thermocouples only 0.100 in. from the end plates. There are two thermocouples on the outside, covered by foil, with band heaters over wrapping the assembly. Larger band heaters over wrap the massive end plates. Heaters are controlled by the two external thermocouples. One centered thermocouple controls the central band heaters and the other, end located thermocouple, controls the heaters on the end plates. It is heated at 6.6°F/hr. The hydrostatic strength (bursting pressure) of this cylinder is similar to that of a typical heavy bursting projectile, which is about 30,000 psi. Results observed for each test are given in the spreadsheet (fig. 4).

Neat Comp B and the DNPH/PAX mixture do not have a low temperature exotherm at 260°F in the STEX test. None of the DSCs indicate any exotherm at this temperature, even the DNPH/Comp B mixture (260°F is indicated by the "126°C" mark in figure 3). However, all STEX tests with DNPH/Comp B have this exotherm and its magnitude depends on the amount of

DNPH. This exotherm occurs only when the mixture has both DNPH and TNT. There is no observable action associated with this exotherm. That is, the usual slow bubbling of liquid from the vent hole that occurs throughout a test does not change character as a result of this exotherm. Whatever it is, it does not seem to produce a noticeable increase in gas output. It is unknown why the exotherm is not observed in DSC results.

DISCUSSION

The results of using DNPH with Comp B are summarized in table 2. Shot to shot variations stand out. As examples of the difference between mild and violent reactions, figures 5 and 6 show two mild results that contrast with violent neat Comp B in figure 7. The object of the trial without vent was to verify that venting is a penalty in this test. Other authors (ref. 4) have noted that leaking led to greater violence. The no vent trial did not produce any fragments at all, but could be considered to be only incrementally better than other mild results, perhaps a random variation. In any event, plugging the vent did not lead to increased violence.

Table 2
Results of STEX tests

Co	mp B	PAX/AFX	194
Number of replications	Violence	Number of replications	Violence
3	Violent (= Comp B)	1	Violent
2	Reduced		•
3	Mild		
1	No explosion (ejected through vent)		

There is no absolute correlation of violence with the percent of DNPH, cook-off temperature (highest temperature recorded on outside of the fixture), highest internal temperature, or position within the fixture where runaway started (taken as the position of the thermocouple that appears to start the ramp to explosion). The debris from a DNPH/Comp B mild reaction more-or-less resembles debris from neat TNT (fig. 7) in the same test, even including the massive black deposits left on fixture parts. But, deposits from DNPH/Comp B tests seem to have a more leathery quality (sort of a thick film coating) than the big, chunky, dry soot like deposits from neat TNT. The two neat TNT trials gave identical debris. The internal temperature recording system was not so good when TNT was tested; however, the external cook-off temperatures were 470°F and 467°F. This is much hotter than any temperature observed when RDX is in the system, as expected. The almost TNT like nature to the mild reactions at relatively low temperatures is a surprise. Unfortunately, results were variable. Figure 8 is also a DNPH/Comp B test, and it is hard to see any difference from neat Comp B.

All the mild reactions left a black to brownish, tar-like residue on the pieces of the fixture. Objects adjacent to the test were sprayed with tar-like deposits. For example, once a nearby (8 in. away) light bulb survived a mild reaction (fig. 4), but had the side facing the fixture coated with a spray of "dried tar." None of the reduced violence results had this type of deposit. They had more of gray soot. The violent reactions left only minimal deposits of dark gray soot. Neat Comp B and the PAX mixture were in this category. We were not equipped to recover explosive

in the blast chamber. However, one test left several big hunks, later burned in place. Generally, we didn't readily find such pieces, and any small crumbs were destroyed during decontamination of the chamber.

The five equally spaced thermocouples are top, upper, center, lower, and bottom. Thermal runaway, as detected by internal thermocouples, typically started in the lower half of the fixture, most often at the lower thermocouple (not the bottom one). But, once it started at the bottom, once at the center, and once at the top thermocouple. There is no obvious relation between where runaway starts and violence level. Since these tests heat up very slowly, there is time for RDX and DNPH to settle from the less dense melted TNT. Sometimes there is evidence of convection inside the fixture as the cook off temperature is approached. That is, a temperature rise at a lower thermocouple is seen, after delay, at the next higher thermocouple, and so on. Always, there are both exotherms and endotherms (temperature change $10 \sim 30^{\circ}\text{F}$) during the period just prior to explosion. Often, cooling is seen on several thermocouples during this time. Mostly, the bottom thermocouple rises monotonically, with, at most, a plateau when others are cooling.

Fast convective movements probably are not distinguishable from the noise in the recording system or are hidden between data points. Once we were able to correlate strong gas venting with thermocouple readings. Unfortunately, this particular test was special, because it had some kind of programming failure for the end plate heaters, causing nonuniform conditions. The top and bottom thermocouples read 307°F, the center and upper thermocouples read 340°F, while the lower thermocouple read 360°F. Then an event occurred where the top thermocouple had a sudden jump to 330°F as the bottom and lower thermocouples dropped from their respective temperatures by about the same amount. Most thermocouples had their jump between data points (less than 0.17 sec.), but the center and upper ones only showed temperature drifting down over 1~1.5 min. During these 1~1.5 min, the top station gradually cooled and the bottom and lower stations gradually heated, bringing the bottom up to the temperature of the others. Accompanying the sudden jump, video shows two strong "puffs" of reddish gas, each bright enough to saturate the video for one frame before dieing out. Each puff event only occupied 3~4 video frames (about 0.8 ms) and there was only one frame between them. Observations returned too normal during the 1~1.5 min of gradual adjustments. There was not much bubbling for a long time before the puffs. The loss of bubbling corresponded to the loss of programmed heat on the end plates that occurred some 550 min before the puffs. Usual bubbling started up again after the puffs and continued until explosion some 63 min later. The temperature of this jetting corresponds to the range 329 ~ 360°F (indicated as the 165 - 182°C region in figure 3). There is a range because not all internal thermocouples report the same temperature and the location of reaction within the fixture cannot be positively identified. The range is the variation between thermocouples at the moment when jetting is observed. There is an exotherm on the DSC of figure 3 in that range. No jetting was seen on other videos, but not every trial had video. One non-video trial had almost identical thermocouple signal at about the same temperature. Very likely this one had jetting also. Its violence was also mild, just like the videoed one. It did not suffer end plate heater malfunction. The very strong endothermic effect with this jetting suggests that the weaker endotherms seen near explosion could be from mild gas generation. Although bubbling of liquid continues through a test, sometimes a crust forms on top of the fixture over the vent hole. Occa-sionally this crust blows away, and afterwards just slow bubbling continues. This could be an occasional surge of gas release associated with small endotherms inside the fixture. Test 8, without vent,

had the smoothest internal data of any test. All stations smoothly ramped up without any crossovers of the data or temperature decreases prior to explosion. The station with highest temperature throughout this test (the lower station) led thermal runaway. Temperature at which runaway occurred were equivalent to where the thermocouple signals show gyrations in vented trials. There was nothing special about the general magnitudes of internal temperatures associated with this particular cook off. But, the external temperature was noticeably lower than nominal. We concluded, the normal heating and cooling gyrations which start about 30 min or so prior to explosion, even with neat Comp B, probably are caused by some combination of convection inside the fixture and spurts of gas venting.

Violence might relate to aging. The 5% sample tested within 2~3 weeks of casting gave no explosion, while its twin tested more than 3 months later was violent. The 7% sample tested within 2~3 weeks of casting gave mild results, while its twin tested 7 months later was violent. Another 7% sample made and tested within 1 month was mild (but this one was also different in that it did not have any vent). Not much study specifically related to aging was accomplished.

CONCLUSION

Using the heating rate employed here, Wardell and Maienschein (ref. 4) report Comp B giving a mild response in 14508 psi confinement and violent response in 29016 psi confinement with their 2-in. version of the Scaled Thermal Explosion Experiment (STEX) test (the original version of the test). They noted violence was a function of heating rate. When they used 1.8°F/hr, detonative reaction occurred once in one trial of the lighter confinement and of two trials in the heavy confinement, one was detonative and one violent. A heavy confinement trial at 3.6°F/hr was violent. All these results were obtained with tightly sealed test fixtures. For reference, in the heavy confinement fixture at 1.8°F/hr, PBXN-109 gave a mild reaction (only three large, slow pieces of the confinement were ejected) in one trial.

In the variable confinement cook-off test [sic] (VCCT) test, Comp B gave one mild and one violent reaction at a rated confinement pressure of only 2350 psi and only violent reactions at higher confinements. The VCCT depends on compression of the confinement to make a seal at the end plates. As the explosive melts, it expands the confinement, which has the effect of removing the compression seal of the end plates. Leaking ensues, characterized by melted explosive running out of the fixture over a long period of time prior to reaction. Reaction gases also follow this leak path. So, these tests are sort of a vented situation, with the amount of venting uncontrolled. This test was heated at 6.6°F/hr.

The U.S. Army Armament Research, Development and Engineering Center (ARDEC) STEX test does not exactly duplicate either of these. We use the higher heating rate and heavy confinement that gave the violent result in reference 1, but the ARDEC test is half scale. We have the same scale as VCCT and venting too, but our confinement is much heavier. So, by comparison, the mild reactions that were obtained with 2,4-Dinitrophenylhydrazine additive show considerable improvement in cook-off violence, and may offer a means to mitigate cook-off violence in heavy walled bursting projectiles. But, the reason for variability in the results must be understood and eliminated first.

Figure 1 DSC's of DNPH with RDX

Figure 2 DSCs of DNPH with TNT

Figure 3
DSCs of DNPH with Comp B

volume		Biotchy, dk. gray flaky deposits on top cover - bottom fairly clean.	Ti & 12 high by External Slight dry grey soot 4-5°F T5 low by lemperature went to cost on top - deaner 4°F About 6°F 347°F. Rutnaway than Comp B. seens to start at 13. Max =349	External Significant tar-like temperaturewent to black deposit on all 363°F. Runaway surfaces seems to start at 175. In the start at 175 in the store of letting in the start surfaces in the saturation of letting. Max = 353	Very light gray dry soot in some places - cleaner than Comp B
		External Biotchy, dk gray temperature went flaky deposits on to 347% to 200 cover - bottom to 347% to 200 cover - bottom T5 even though it is cooler.	External temperature went to a temperature went to a Tayler. Runaway seems to stari at T3. Max =348	External temperaturement to 353°F. Runaway assents to start at T5. Probe showed jump in hearthycooling indicative of jetting. Max = 353	
acturacy comment	TC tracking after melting	T1 - 15 spread across 7ºF band with T5 towest and T2 highest.	11 & T2 high by 4-6'F T5 low by 4'P. About 6'F spread.	TZ high by 1.4°F TS External low by 4°F S33°F PS S33°F PS Probe et in health indicative midicative man and a max = 3 Max = 3	
exprose		But not detonation.	REDUCED	. МІГР	REDUCED
explosion		T5 has steadily VIOLENT remped up for But not 17m, until detonation (max 9383). Only 74 ramps with it and rose 12 to 377. Max T4-377	All stations ramp up to explosion over 15–20 m. T3 eventually shows steeper schoes and reaches highest temperature (380). Maxx 173–381	Only 14 &15 T5 ramps up to MILD drop 5 over 10m. Then T5 rises T4 (only) quickly while T4 follows behind lags.	
340 endotherm		T1 & 17 & T3 T5 has steadil keep cooling ramped up for keep cooling ramped up for until jast before 17m. until explosion. Only T8 has no 933, Only 14 cooling. T4 ramps with it only cools to and rose 12 to only cools to and rose 12 to and rose 12 to stanting up with I4+3.77. Maa Same slope as T5.	None		
340 - 360 range	peak	None	No Peak. T3 joins None Tamp up of T5. Eventually these stations report – 355 22m. prior to explosion.	15 ramps to 382 ramps to 382 ramps up to meet firm. To ramps up to meet T4 then they track over 30m. Others fall behind.	
time interval exotherm 3 until next event	start	T5 ramps up from its 346 plateau with T4 following after 8m. delay.	11872814 stayed steady—356 over 45m. in spite of external ramp. 15 continues exothern #2.	T1=348. T5=338 but with much steeper slope it evertually becomes in other than other than others.	
until next event		0	30m. but internal heating is obvious.		
endotherm		17 & 72 cool over (35m 17 & 74 cool over (35m 17 & 74 cool over 10m Finish 17 -17-2-13-(360) with 174 about 6 degrees higher (-366).	All drop 8-10 over 10m except 15 confinues up.	Dop 20 in less than in the develor data points. Except 11 drops 10 over 10m. The Bottom external stallons have disturbance associated with this event. But center associated with this event. But center associated with this event. But center the problem?	
exotherm 2 310 ~ 330 range	peak minumts = m.	8 - E-F-8	T1=T2=361 T3=T4=351 T5 has no peak. All except T5 peak simultaneously	72=387, 75=348 Duration = 230m.	
310 ~ (start	319–332 T1 & T2 ramp Simultaneous all 364–389 over stations. 110m. T3 & T4 similar with 20 delay in peak. plateaus at 34 for 15m.	312–333 all stations amp over 138m.	322 Gradual ramp.	
time interval until next event			200m.(from seperate endotherm, not from exotherm #1)	435m.	
endotherm		None	297-303 separate endotherm drops 1 along 246m. Duration=15 m.	None	¥
exotherm 1 280 - 270 range temperature in Fahrenheit	peak		278 Duration = 68m. Very weak exotherm.	T5 275 Duration = 90m.	NOISY DATA
280 - 2 temper	start	None	260–270 T5 slightly delayed	4% 265 T5 275 Bourat Bags Durat Behind has 90m. shindler signal.	4%
Test ID		TEST 1: Comp B 12/5/2001	TEST 2: 3% 280–270 DNPH/Comp T5 slightly 12-7-01	TEST 3: 49	TEST 4: 4º 6-7-02 apparently cast in May

Figure 4
STEX results using DNPH with comp B

Black, crusty deposits on outside from vent offerties and over drip path to down, underneath fitture. Resembles usual deposits which accumulate around vent hole. but a more deposits. Deposits on ground underneath. No obvious bottom probe plug leaking, but carnot rule it out.	Significant deposits.	Extensive black, crushy deposits. Tarikie coaling on nearby ightbuth.	Estensive black, crusity & tar-like deposits.
External remperature remperature remperature remperature stations accept 13 responsed manuarements. Significant material secret to Spinificant material secret to the control of the contr	External lemperature reached 347°F. Runaway seen at 11 & 15 simultaneously.	rite at the but at the but is a standard in the second as jetting.	ature went to This The Cookoff ature. Max
T4 hgh by 4°F T5	Good tracking, all External within a band of 3°F temperature acached 34°F temperature Runaway se 7 4 8 75 simulaneous simulaneous	13 & 15 tow by External 6-7°F End cover 16-altern had a partial reaches 357°F at end 16-altern had a partial reaches 357°F at end 16-altern had a partial reaches 357°F at end 16-altern had 10°F at end	T4 high by 10°F Externs others tracked okey, lemper THIS ONE HAD NO 325°F. Wes as I temper emper
NONE Granavay did not damaya the damaya the first or probe. All stations cooled to 0355-368 within firm. Since weternal heasting them condituted up to 410-415, the probe followed after menal probe followed after the initial cooling. No further events occurred:	VIOLENT	MILD AT 7=349. Lenteub did not break.	MILD No fragments.
All except TS stown exponentional ramp with "knee" at 38e. Then go to 556-600 kn less than the first than the f	Only T1 & T2 & T4 have T3 cool 2-3 memped to 379 over 30m. While over 30m. While over 30m. Then T4 ramps confinue to 379 sharply to 389. Max T4#388	T4 jumps up to 347 and stays con 100m, while for 100m, while other standons are steady at 44 – 16 cooler. Max T4=349	
euo.		T1 suddenly jumps up by 17 inches up by 17 inches up by 17 in 0.33 in less than 0.17m. while at other stations except to this values down to this values down these to pin the others 2m. Later. Cougle others 2m. Later. Cougle others 2m. Later. Cougle of strong sourts of orangish gas observed with the temperature drop.	All stations drop 3-5 about 16m. before explosion, then ramp up. T4 rises more quickly.
Jack, but 15 lags Jack, Drration = 150m.	356 ~ 358 except T5 & T4 do not peak.	T4=332. T4 ramps to 380 T1 suddenly T5=271. T8 over 60m, and then jumps up by 17 T2 8 13 do not stays steady for mo 333 in less stown tists steady for mo 333 in less stown to sool de lo 17m, while all other stadios scool de lo 17m scool d	T3 plateaus at 356 All stations drop T4 ramps to after 93m. T4 kind 2-s should file. 388 (bould before 375) in next explosion, then 10m and ramp up. T4 plateaus for rises more 16 m. T3 a 385. quickly.
395, but 15, 388, but 15, 50m.	15=346	14=332, 1 17-28-11 17	0 8 4
CHOOL THE CONTRACT OF THE CONT	None	0	zero - temperature rise smothly accelerates.
T3 were not Ouration= 128m, over less than 0.17m. affected very much.	татр	None	2226
Ouration 129m.	15=332, T2=337 None. Very gradual ramp	334 3 & T4 - N	
T3 were roll affected very much.	T5=332, T2=337	315 – 317 which are copy II & TS which are cod due to end heater failure.	Not distinct. T3=303, others do not show exotherm.
	553m.	945 Sh.	480m.
	seperate endothem at 278 some 50m. later	None	None
Duration = 100m.	278 Duration = 50m.	289 - 276 1	-278 N
	5% 264-268 fed		7% 252-255
8-2-02 apparently cast in July (eract date uncertain)	TEST 6: 5% 11-22-02 cast in July with the sample tested 8-2-02 VIDEO	TEST7: 7% 255-283 TEST7: 7% 255-283 with the 5% samples in July	TEST 8: 7% 2 11-22-02 cest 10-25-02 no vent

Figure 4 (continued)

i	
αeting.	dry, dk. Gray on some pleces.
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Thin, if to soot igh soot
1335°F. Appears T1 went up first - this went up first - this went up first - this went happened before. Ass it is odd that T1 & T5 track each other. Max = 335	External Fernal Fernal Signal Signal Signal Fernal
again.	T3 & T4 were 2°F External high and T4 was 6°F lemperature went to soot on some piecess. 3552°F - a vary high value. T4 seems to lead the vary Max = 353
	VIOLENT
ramp teachers T1 = T5 = 357 T1 = T5 = 357 Vere 80 m. Finally T1 rices sharply above T5 in last 3 m to 395. Next highest was T5=363. Max T1=395.	T1 & T2 start UOLENT up sharply 7m. before explosion but only reach 371. Max Max T3=T4=396
None	None
11 & T5 plateau at None 352 while T2, T3 & T4 don't show much heating right up until explosion.	TS & T4 TS TA = 387. T3 None smoothly ramp jumps sharply up 17 2 to juli 14 & T5 smoothly cool of un before amouthly cool of un before and plateau. T3 splike the difference, difference, and plateaus at 370 for 20m.
	15 & 14 15 = 14 = 381 smoothly ramp jumps stratuly. Up. 11 & 12 to join 14 & 12 smoothly cool in 14 & 12 to join 14 & 12 smoothly cool in 10 to 356 explosion. It is and plateau. It is splits the difference, difference, plateaus at 370 for 20m.
zero	119m.
	All stations just return 119m. to follow externally imposed ramp.
	352
Not Distinct. T1 & T5 start monatonic ramp and = 220, T2 & 13 & T4 stay at slow healing rate.	T1 12 & T3 have 352 an exotherm at 330. T4 & T5 only plateau. T330. T4 & tale exotherm is isolated - stations return to following external ramp afterwards and frewards of IRDX.
521min.	
274 None 116m.	
274 duration – 116m.	
ST 9: 7% 252 1-03 1 with the 8. 2 sample DEO	None st
TEST 9: 7%, 2-21-03 cast with the 8-2-02 sample in July VIDEO	TEST 10: 2 7% 7% 7% 21-03 cast 2-14-03 explosive formulativity was MNX194 NOT

Figure 5
STEX test mild result using 7% DNPH with Comp B

Figure 6 STEX test mild result using 7% DNPH with Comp B and no venting

Figure 7
STEX test violent result using Comp B

Figure 8
STEX test mild result using TNT

Figure 9
STEX test violent result using 5% DNPH with Comp B

REFERENCES

- 1. Fishburn, B.; Reddingius, B.; and Ho, Robert, "Effect of Additive on the Slow Cookoff of TNT," 19th Propulsion Systems Hazards Subcommittee Meeting, Monterey, CA, sponsored by C.P.I.A., John Hopkins University, MD, 13-17 Nov 2000.
- 2. Schaefer, Ruth; Hatch, Robert; Singh, Sanjeev; and Fishburn, Barry, "Two Stage Explosive: Mitigation of Violence in the Slow Cookoff of Comp B using additives with low-temperature decompositions," 2003 Insensitive Munitions & Energetic Materials Technology Symposium, Orlando, Fl., NDIA event #3550, 10-13 March 2003.
- 3. Alexander, Kim; Gibson, Kevin; and Baudler, Bryan, "Development of the Variable Confinement Cookoff Test," IHTR 1840, Naval Surface Warfare Center, Indian Head, MD, 20 Sept. 1996.
- 4. Wardell, J. F. and Maienschein, J. L., "The Scaled Thermal Explosion Experiment," 12th International Detonation Symposium, San Diego, CA, 11-16 August 2002.

DISTRIBUTION LIST

Commander

Armament Research, Development and Engineering Center U.S.Army Tank-automotive and Armaments Command

ATTN: AMSTA-AR-WEL-TL (2)

AMSTA-AR-GCL

AMSTA-AR-WEE-D, B. Fishburn (5)

S. Singh

AMSTA-AR-ASL, R. Ho (2)

B. Williamson

Picatinny, NJ 07806-5000

PM Combat Ammunition Systems ATTN: SFAE-AMO-CAS-MS, M. Serbin Picatinny Arsenal, NJ 07806-5000

Defense Technical Information Center (DTIC)

ATTN: Accessions Division

8725 John J. Kingman Road, Ste 0944

Fort Belvoir, VA 22060-6218

Director

U.S.Army Materiel Systems Analysis Activity

ATTN: AMXSY-EI 392 Hopkins Road

Aberdeen Proving Ground, MD 21005-5066

Commander

Soldier and Biological/Chemical Command

ATTN: AMSSB-CII, Library

Aberdeen Proving Ground, MD 21010-5423

Director

U.S. Army Research Laboratory

ATTN: AMSRL-CI-LP, Technical Library

Bldg. 4600

Aberdeen Proving Ground, MD 21005-5066

Chief

Benet Weapons Laboraory, CCAC

Armament Research, Development and Engineering Center

U.S.Army Tank-automotive and Armaments Command

ATTN: AMSTA-AR-CCB-TL Watervliet, NY 12189-5000

Chemical Propulsion Information Agency 10630 Little Patuxent Parkway, Suite 202

ATTN: Accessions

Columbia, MD 21044-3204

Commander
Naval Air Warfare Center
Weapons Division
1 Administration Circle
ATTN: Code 473C1D, Carolyn Detting
China Lake, CA 93555-6001

Commander Naval Surface Warfare Center ATTN: IHD, K. Burrows 101 Strauss Ave. Indian Head, MD 20640-5035

Commander
Air Force Research Laboratory
ATTN: MNME, S. Struck
Eglin Air Force Base, FL 32542-5910