Lógica CC Licenciatura em Ciências da Computação

Luís Pinto

Departamento de Matemática Universidade do Minho

1º. semestre, 2020/2021

2.3 Sistema Formal de Dedução Natural para o Cálculo Proposicional

Observação 89: O sistema formal de demonstrações que estudaremos nesta secção será notado por DNP e designado por *Dedução Natural Proposicional*.

Observação 90:

O sistema DNP constitui uma certa formalização da noção de demonstração para as fórmulas do Cálculo Proposicional, num estilo conhecido como dedução natural.

As demonstrações permitirão uma abordagem alternativa à relação de consequência semântica (definida à custa do conceito de valoração) e, em particular, permitirão identificar as tautologias com as fórmulas para as quais podem ser construídas demonstrações.

Exemplo 91:

Demonstrações em DNP serão construídas usando um certo conjunto de *regras de inferência*, que codificam raciocínios elementares utilizados habitualmente na elaboração de demonstrações matemáticas.

Um raciocínio elementar que usamos frequentemente na construção de demonstrações é o seguinte: $\frac{\text{de }\varphi}{\text{e }\varphi} \rightarrow \psi$ podemos concluir ψ . Representaremos este raciocínio do seguinte modo:

$$\frac{\varphi \quad \varphi \to \psi}{\psi}$$

Esta regra é habitualmente conhecida por *modus ponens*, embora no formalismo DNP adotemos um nome diferente para esta regra, como veremos adiante.

Outro raciocínio elementar é o seguinte: se assumindo φ por hipótese podemos concluir ψ , então podemos concluir $\varphi \to \psi$.

Utilizemos a notação $\dot{\psi}$ para simbolizar a possibilidade de concluir ψ a partir de φ .

Então, este raciocínio poderá ser representado do seguinte modo:

Neste raciocínio, φ é uma *hipótese temporária* usada para concluir ψ . A notação $\not\!\!\!\!/$ reflete o facto de que a conclusão $\varphi \to \psi$ já *não depende* da hipótese temporária φ .

Notação 92: O conceito de demonstração em DNP será formalizado adiante, através de uma definição indutiva.

As demonstrações corresponderão a certas árvores finitas de fórmulas, onde uma fórmula φ que ocorra como folha poderá estar cancelada, o que será notado por $\not\!\!\!/$ ou por $[\varphi]$.

Na apresentação das regras de inferência de *DNP*, usaremos a notação

para representar uma árvore de fórmulas cuja raiz é ψ e cujas eventuais ocorrências da fórmula φ como folha estão necessariamente canceladas.

Definição 93:

As *regras de inferência* do sistema formal DNP são apresentadas de seguida.

Cada regra origina uma regra na definição indutiva do *conjunto* das derivações (Definição 95).

As regras de inferência recebem derivações (uma ou mais) e produzem uma nova derivação.

Regras de Introdução Regras de Eliminação

Numa regra de inferência, as fórmulas imediatamente acima do *traço de inferência* serão chamadas as *premissas* da regra e a fórmula abaixo do traço de inferência é chamada a *conclusão* da regra de inferência.

Uma aplicação ou instância de uma regra de inferência é uma substituição das fórmulas da regra (meta-variáveis) por fórmulas do CP.

Chamaremos *inferência* a uma aplicação de uma regra de inferência.

Regras de Introdução Regras de Eliminação

$$\begin{array}{ccc} \vdots & \vdots & & & \vdots &$$

$$\frac{\vdots}{\varphi} \stackrel{\vdots}{\neg \varphi} \neg E$$

Regras de Introdução

Regras de Eliminação

$$\begin{array}{cccc} & & & \cancel{\cancel{x}} & & \cancel{\cancel{x}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\varphi \lor \psi & \overset{\circ}{\sigma} & \overset{\circ}{\sigma} & \overset{\circ}{\sigma}}{\sigma} & \lor \mathbf{E} \end{array}$$

$$\begin{array}{ccc}
\cancel{\cancel{\phi}} & \cancel{\cancel{\phi}} \\
\vdots & \vdots \\
\cancel{\psi} & \cancel{\varphi} \\
\cancel{\varphi} \leftrightarrow \cancel{\psi} & \leftrightarrow
\end{array}$$

$$\frac{\vdots}{\varphi}$$
 (\perp)

Exemplo 94: Vejamos dois exemplos de inferências $\wedge_1 E$:

$$\frac{p_1 \wedge p_2}{p_1} \wedge_1 E \qquad \frac{(p_1 \wedge p_2) \wedge (p_1 \to \neg p_3)}{p_1 \wedge p_2} \wedge_1 E \qquad (1)$$

Estas duas inferências podem ser *combinadas* do seguinte modo:

$$\frac{(p_1 \wedge p_2) \wedge (p_1 \to \neg p_3)}{\frac{p_1 \wedge p_2}{p_1} \wedge_1 E} \wedge_1 E$$
(2)

Combinando esta construção com uma inferência \rightarrow *I* podemos obter:

$$\frac{\frac{\left[(p_{1} \wedge p_{2}) \wedge (p_{1} \rightarrow \neg p_{3})\right]}{\frac{p_{1} \wedge p_{2}}{p_{1}} \wedge_{1} E}}{\frac{((p_{1} \wedge p_{2}) \wedge (p_{1} \rightarrow \neg p_{3})) \rightarrow p_{1}}{} \rightarrow I}$$
(3)

As duas inferências em (1), assim como as combinações de inferências em (2) e (3), são exemplos de *derivações* no sistema formal DNP.

Definição 95: O *conjunto* \mathcal{D}^{DNP} *das derivações de* DNP é o menor conjunto X, de árvores finitas de fórmulas, com folhas possivelmente canceladas, tal que:

- a) para todo $\varphi \in \mathcal{F}^{\mathit{CP}}$, a árvore cujo único nodo é φ pertence a X;
- **b)** X é fechado para cada uma das regras de inferência de DNP; por exemplo, X é fechado para as regras $\to E$ e $\to I$ quando as seguintes condições são satisfeitas (respetivamente):

$$\textbf{i)} \quad \overset{D_1}{\varphi} \ \in X \ \textbf{e} \quad \overset{D_2}{\varphi \rightarrow \psi} \ \in X \implies \quad \overset{D_1}{\underbrace{\varphi}} \quad \overset{D_2}{\varphi \rightarrow \psi} \rightarrow E \quad \in X;$$

(onde: ψ denota uma árvore de fórmulas cuja raiz é ψ ; e

todas as eventuais ocorrências de φ como folha).

 $\frac{\varphi}{\varphi \to \psi} \to I$ denota a árvore de fórmulas obtida de D adicionando um novo nodo $\varphi \to \psi$, que passa a ser a nova raiz e tem por único descendente a raiz de D, e cancelando

As derivações de DNP são também chamadas deduções.

No nosso estudo, privilegiaremos a terminologia derivação.

A terminologia *demonstração* será reservada para uma classe especial de derivações (ver Definição 99).

Observação 96:

O conjunto \mathcal{D}^{DNP} das derivações de DNP admite princípios de indução estrutural e de recursão estrutural.

Existe também um conceito natural de subderivação.

Por exemplo, a derivação (3) do Exemplo 94 tem as seguintes quatro subderivações:

$$(p_1 \wedge p_2) \wedge (p_1
ightarrow \neg p_3) \,, \qquad \qquad \frac{(p_1 \wedge p_2) \wedge (p_1
ightarrow \neg p_3)}{p_1 \wedge p_2} \wedge_1 E \,, \ \frac{[(p_1 \wedge p_2) \wedge (p_1
ightarrow \neg p_3)]}{p_1 \wedge p_2} \wedge_1 E \,, \qquad \frac{[(p_1 \wedge p_2) \wedge (p_1
ightarrow \neg p_3)]}{p_1 \wedge p_2} \wedge_1 E \,, \qquad \frac{p_1 \wedge p_2}{p_1} \wedge_1 E \,, \qquad \frac{p_1 \wedge p_2}$$

De facto, estas quatro derivações, lidas como uma sequência, constituem uma sequência de formação da derivação (3).

Exemplo 97: Para quaisquer fórmulas do CP φ , ψ e σ , as construções abaixo são exemplos de derivações de DNP.

1)
$$\frac{\varphi \cancel{\times} \psi^{(1)}}{\varphi} \wedge_{1} E \frac{\frac{\varphi \cancel{\times} \psi^{(1)}}{\psi} \wedge_{2} E}{\frac{\varphi \rightarrow \varphi}{\varphi \rightarrow \sigma} \rightarrow I^{(1)}} \rightarrow E$$

Os números naturais que aparecem a anotar inferências e fórmulas canceladas estabelecem uma correspondência, unívoca, entre as fórmulas canceladas e as regras que permitem efetuar esses cancelamentos.

2)
$$\frac{\cancel{\varphi}^{(2)} \neg \cancel{\varphi}^{(1)}}{\frac{\bot}{\varphi} RAA^{(2)}} \neg E$$

$$\frac{\neg \neg \varphi \rightarrow \varphi}{\neg \neg \varphi \rightarrow \varphi} \rightarrow I^{(1)}$$

3)
$$\frac{\varphi^{(1)}}{\psi \to \varphi} \to I^{(2)}$$
$$\frac{\varphi}{\varphi \to (\psi \to \varphi)} \to I^{(1)}$$

Note-se que em **3)**, a inferência \rightarrow I anotada com (1) é utilizada para cancelar a única ocorrência como folha de φ , enquanto que a inferência \rightarrow I anotada com (2) não é utilizada para efetuar qualquer cancelamento.

Definição 98: Numa derivação *D*:

- a raiz é chamada a conclusão de D;
- as folhas são chamadas as hipóteses de D;
- as folhas canceladas são chamadas as hipóteses canceladas de D;
- as folhas não canceladas são chamadas as hipóteses não canceladas de D.

Definição 99: Seja D uma derivação de DNP e φ uma fórmula do Cálculo Proposcional.

- Diremos que D é uma derivação de φ a partir de um conjunto de fórmulas Γ quando φ é a conclusão de D e o conjunto das hipóteses não canceladas de D é um subconjunto de Γ.
- Diremos que D é uma demonstração de φ quando D é uma derivação de φ a partir do conjunto vazio.

Exemplo 100: Sejam φ , ψ e σ fórmulas.

a) Seja D₁ a seguinte derivação de DNP.

$$\frac{\varphi \xrightarrow{(2)} \varphi \to \psi}{\psi} \to E \qquad \psi \not\to \sigma^{(1)} \\
\frac{\varphi}{\varphi \to \sigma} \to I^{(2)} \\
\frac{\varphi}{(\psi \to \sigma) \to (\varphi \to \sigma)} \to I^{(1)}$$

Então:

- **1** o conjunto de hipóteses de D_1 é $\{\varphi, \varphi \to \psi, \psi \to \sigma\}$;
- **2** o conjunto de hipóteses não canceladas de D_1 é $\{\varphi \to \psi\}$;
- **3** a conclusão de D_1 é $(\psi \to \sigma) \to (\varphi \to \sigma)$;
- 4 D_1 é uma derivação de $(\psi \to \sigma) \to (\varphi \to \sigma)$ a partir de $\{\varphi \to \psi\}$.

b) Seja D_2 a seguinte derivação de DNP.

$$\frac{\varphi \not \wedge \neg \varphi^{(1)}}{\varphi} \wedge_{1} E \quad \frac{\varphi \not \wedge \neg \varphi^{(1)}}{\neg \varphi} \wedge_{2} E$$

$$\frac{\bot}{\neg (\varphi \wedge \neg \varphi)} \neg I^{(1)}$$

Então:

- **1** o conjunto de hipóteses de D_2 é $\{\varphi \land \neg \varphi\}$;
- **2** o conjunto de hipóteses não canceladas de D_2 é vazio;
- 3 a conclusão de D_2 é $\neg(\varphi \land \neg \varphi)$;
- 4 D_2 é uma demonstração de $\neg(\varphi \land \neg \varphi)$.

Definição 101:

Diremos que uma fórmula φ é consequência sintática de um conjunto de fórmulas Γ ou que φ é derivável a partir de Γ (notação: $\Gamma \vdash \varphi$) quando existem derivações em DNP de φ a partir de Γ .

Escreveremos $\Gamma \not\vdash \varphi$ para denotar que φ não é consequência sintática de Γ .

Definição 102:

Uma fórmula φ diz-se um *teorema* de DNP (notação: $\vdash \varphi$) quando existe uma demonstração de φ .

Escreveremos $ot \varphi$ para denotar que φ não é teorema de DNP.

Proposição 103: Para toda a fórmula φ , φ é teorema de DNP se e só se $\emptyset \vdash \varphi$.

Dem.: Imediata a partir das definições.

Exemplo 104: Atendendo ao exemplo anterior:

- 1 $\{\varphi \to \psi\} \vdash (\psi \to \sigma) \to (\varphi \to \sigma)$ (*i.e.*, $(\psi \to \sigma) \to (\varphi \to \sigma)$ é consequência sintática de $\{\varphi \to \psi\}$);
- $(i.e., \neg(\varphi \land \neg \varphi)$ (i.e., $\neg(\varphi \land \neg \varphi)$ é um teorema de DNP).

Definição 105: Um conjunto de fórmulas Γ diz-se sintaticamente inconsistente quando $\Gamma \vdash \bot$ e diz-se sintaticamente consistente no caso contrário (i.e. quando $\Gamma \not\vdash \bot$, ou seja, quando não existem derivações de \bot a partir de Γ).

Exemplo 106:

O conjunto $\Gamma = \{p_0, p_0 \leftrightarrow p_1, p_0 \leftrightarrow \neg p_1\}$ é sintaticamente inconsistente.

Uma derivação de \perp a partir de Γ é:

$$\frac{p_0 \quad p_0 \leftrightarrow p_1}{p_1} \leftrightarrow_1 E \quad \frac{p_0 \quad p_0 \leftrightarrow \neg p_1}{\neg p_1} \neg E} \leftrightarrow_1 E$$

Proposição 107: Seja Γ um conjunto de fórmulas.

As seguintes afirmações são equivalentes:

- a) Γ é sintaticamente inconsistente;
- **b)** para alguma fórmula φ , $\Gamma \vdash \varphi$ e $\Gamma \vdash \neg \varphi$;
- **c)** para toda a fórmula φ , $\Gamma \vdash \varphi$.

Dem.: Por exemplo, é suficiente provar as implicações $a) \Rightarrow b$, $b) \Rightarrow c$) e c) $\Rightarrow a$).

a)⇒b): Admitindo que Γ é sintaticamente inconsistente, existe uma derivação D de \bot a partir de Γ . Assim, fixando uma (qualquer) fórmula φ , tem-se que

$$D_1 = \frac{D}{\varphi} (\bot)$$
 $D_2 = \frac{D}{\neg \varphi} (\bot)$

(as derivações D_1 e D_2 obtidas de D acrescentando, em ambos os casos, uma inferência final (\bot) , com conclusão φ e $\neg \varphi$, respetivamente) são, respetivamente, derivações de (i) φ a partir de Γ (a conclusão de D_1 é φ e as hipóteses não canceladas de D_1 são as mesmas que em D); e de (ii) $\neg \varphi$ a partir de Γ (a conclusão de D_2 é $\neg \varphi$ e as hipóteses não canceladas de D_2 são as mesmas que em D). Por consequinte, $\Gamma \vdash \varphi$ e $\Gamma \vdash \neg \varphi$.

Exercício: prove as outras duas implicações.

Notação 108:

Na representação de consequências sintáticas utilizaremos abreviaturas análogas às utilizadas para representação de consequências semânticas.

Por exemplo, dadas fórmulas $\varphi, \varphi_1, ..., \varphi_n$ e dados conjuntos de fórmulas Γ e Δ , a notação $\Gamma, \Delta, \varphi_1, ..., \varphi_n \vdash \varphi$ abrevia $\Gamma \cup \Delta \cup \{\varphi_1, ..., \varphi_n\} \vdash \varphi$.

Proposição 109: Sejam φ e ψ fórmulas e Γ e Δ conjuntos de fórmulas. Então:

- **a)** se $\varphi \in \Gamma$, então $\Gamma \vdash \varphi$;
- **b)** se $\Gamma \vdash \varphi$ e $\Gamma \subseteq \Delta$, então $\Delta \vdash \varphi$;
- c) se $\Gamma \vdash \varphi$ e $\Delta, \varphi \vdash \psi$, então $\Delta, \Gamma \vdash \psi$;
- **d)** $\Gamma \vdash \varphi \rightarrow \psi$ se e só se $\Gamma, \varphi \vdash \psi$;
- **e)** se $\Gamma \vdash \varphi \rightarrow \psi$ e $\Delta \vdash \varphi$, então $\Gamma, \Delta \vdash \psi$.

Demonstração da Proposição 109:

a) Se $\varphi \in \Gamma$, então $\Gamma \vdash \varphi$.

Dem.:

Suponhamos que $\varphi \in \Gamma$.

Então, a árvore cuja única fórmula é φ é uma derivação cuja conclusão é φ e cujo conjunto de hipóteses não canceladas é $\{\varphi\}$, que é um subconjunto de Γ , pois $\varphi \in \Gamma$.

Assim, encontrámos uma derivação de φ a partir de Γ , pelo que $\Gamma \vdash \varphi$.

b), c) e e): Exercício.

Dem. da Proposição 109 (cont.):

- d) $\Gamma \vdash \varphi \rightarrow \psi$ se e só se $\Gamma, \varphi \vdash \psi$
 - \Rightarrow): Suponhamos que $\Gamma \vdash \varphi \rightarrow \psi$, *i.e.*, suponhamos que existe uma derivação D de $\varphi \rightarrow \psi$ a partir de Γ . Então,

$$D' = \begin{array}{cc} & D \\ \hline \psi & \varphi \to \psi \\ \hline & \psi \end{array} \to E$$

- (D' é a derivação cuja última inferência é $\to E$ e as derivações das premissas são φ e D, respetivamente) é uma derivação de ψ a partir de $\Gamma \cup \{\varphi\}$, pois:
- i) ψ é a conclusão de D'; e
- ii) o conjunto Δ de hipóteses não canceladas de D' é constituído por φ e pelas hipóteses não canceladas de D, que formam um subconjunto de Γ , sendo portanto Δ um subconjunto de $\Gamma \cup \{\varphi\}$.

Dem. da Proposição 109 (cont.):

 \Leftarrow): Suponhamos agora que $\Gamma, \varphi \vdash \psi$, *i.e.*, suponhamos que existe uma derivação D de ψ a partir de $\Gamma \cup \{\varphi\}$. Então. a derivação

$$D' = \frac{\varphi}{\varphi} \stackrel{\text{(1)}}{\psi} \rightarrow I^{\text{(1)}},$$

(D' é a derivação obtida de D acrescentando uma inferência final \to I, que cancela todas as ocorrências de φ como hipótese) é uma derivação de $\varphi \to \psi$ a partir de Γ , pois:

- i) $\varphi \rightarrow \psi$ é a conclusão de D'; e
- ii) o conjunto Δ das hipóteses não canceladas de D' é constituído por todas as hipóteses não canceladas de D (um subconjunto de $\Gamma \cup \{\varphi\}$), exceto φ e, portanto, Δ é um subconjunto de Γ . \square

Teorema 110 (*Correção*): Para todo $\varphi \in \mathcal{F}^{CP}$ e para todo $\Gamma \subseteq \mathcal{F}^{CP}$,

se
$$\Gamma \vdash \varphi$$
, então $\Gamma \models \varphi$.

Dem.:

Suponhamos que $\Gamma \vdash \varphi$, *i.e.*, suponhamos que existe uma derivação D de φ a partir de Γ .

Aplicando o lema que se segue, conclui-se de imediato o resultado pretendido.

Lema: Para todo $D \in \mathcal{D}^{DNP}$, se D é uma derivação de φ a partir de Γ , então $\Gamma \models \varphi$.

Dem. do Teorema da Correção (cont.):

Lema: Para todo $D \in \mathcal{D}^{DNP}$, se D é uma derivação de φ a partir de Γ , então $\Gamma \models \varphi$.

Dem. do Lema: Por indução estrutural em derivações.

a) Suponhamos que D é uma derivação, de φ a partir de Γ , com um único nodo.

Então, o conjunto de hipóteses não canceladas de D é $\{\varphi\}$ e, assim, $\varphi\in\Gamma$.

Donde, pela Proposição 86 (a), $\Gamma \models \varphi$.

Dem. do Teorema da Correção (cont.):

b) Caso D seja uma derivação de φ a partir de Γ da forma

$$\frac{\cancel{\mathcal{M}}}{\cancel{\mathcal{D}}_{1}} \frac{\sigma}{\psi \to \sigma} \to I.$$

Então:

- (i) $\varphi = \psi \rightarrow \sigma$ e
- (ii) D_1 é uma derivação de σ a partir de $\Gamma \cup \{\psi\}$.

Assim, aplicando a hipótese de indução relativa à subderivação D_1 , Γ , $\psi \models \sigma$.

Donde, pela Proposição 86 (d), $\Gamma \models \psi \rightarrow \sigma$.

Dem. do Teorema da Correção (cont.):

c) Caso D seja uma derivação de φ a partir de Γ da forma

$$\frac{D_1}{\sigma} \quad \frac{D_2}{\sigma \to \psi} \to E.$$

Então:

- (i) $\varphi = \psi$;
- (ii) D_1 é uma derivação de σ a partir de Γ; e
- (iii) D_2 é uma derivação de $\sigma \to \psi$ a partir de Γ.

Assim, aplicando as hipóteses de indução relativas às subderivações D_1 e D_2 , segue $\Gamma \models \sigma$ e $\Gamma \models \sigma \rightarrow \psi$, respetivamente.

Daqui, pela Proposição 86 (e), conclui-se $\Gamma \models \psi$.

d) Os restantes casos, correspondentes às outras formas possíveis de *D*, são deixados como exercício.

Observação 111:

O Teorema da Correção constitui uma ferramenta para provar a não derivabilidade de fórmulas a partir de conjuntos de fórmulas.

De facto, do Teorema da Correção segue que

$$\Gamma \not\models \varphi \Longrightarrow \Gamma \not\vdash \varphi,$$

o que significa que, para mostrar que não existem derivações em DNP de uma fórmula φ a partir de um conjunto de fórmulas Γ , basta mostar que φ não é consequência semântica de Γ .

Exemplo 112: Seja $\Gamma = \{ p_1 \lor p_2, p_1 \to p_0 \}$.

- 1 Em DNP não existem derivações de p₀ ∨ p₁ a partir de Γ. Se existisse uma tal derivação, pelo Teorema da Correção, teríamos Γ ⊨ p₀ ∨ p₁, mas esta consequência semântica não é válida (tome-se, por exemplo, a valoração que atribui 1 a p₂ e 0 às restantes variáveis proposicionais).
- 2 De forma análoga, pode mostrar-se que não existem derivações de ⊥ a partir de Γ (exercício) e, então, concluir que Γ é sintaticamente consistente.

Definição 113: Um conjunto de fórmulas Γ diz-se *maximalmente consistente* quando:

- i) Γ é sintaticamente consistente; e
- ii) para todo $\varphi \in \mathcal{F}^{CP}$, $\varphi \in \Gamma$ ou $\neg \varphi \in \Gamma$.

Proposição 114: Sejam $\varphi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$.

Se Γ é maximalmente consistente e $\Gamma \vdash \varphi$, então $\varphi \in \Gamma$.

Dem.:

Tendo em vista uma contradição, suponhamos que $\varphi \notin \Gamma$. Logo, por Γ ser maximalmente consistente, $\neg \varphi \in \Gamma$. Por hipótese, existe uma derivação D de φ a partir de Γ . Assim, podemos construir a seguinte derivação de \bot a partir de Γ

$$\frac{D}{\varphi} \neg \varphi \neg E.$$

e concluir que Γ é sintaticamente inconsistente, uma contradição com a hipótese de Γ ser maximalmente consistente. Logo, por redução ao absurdo, $\varphi \in \Gamma$.

Proposição 115: Se Γ é um conjunto de fórmulas sintaticamente consistente, então existe um conjunto de fórmulas Γ^* tal que: i) $\Gamma \subseteq \Gamma^*$ e ii) Γ^* é maximalmente consistente.

Dem.: Prova-se que \mathcal{F}^{CP} é um conjunto numerável. Seja $\varphi_0, \varphi_1, ..., \varphi_n, ...$ uma enumeração de \mathcal{F}^{CP} . Definimos, para cada $n \in \mathbb{N}_0$, Γ_n como:

$$\begin{array}{ll} \Gamma_0 = & \Gamma; \\ \Gamma_{n+1} = \left\{ \begin{array}{ll} \Gamma_n \cup \{\varphi_n\} & \text{se } \Gamma_n \cup \{\varphi_n\} \text{ \'e sintaticamente consistente} \\ \Gamma_n \cup \{\neg \varphi_n\} & \text{se } \Gamma_n \cup \{\varphi_n\} \text{ \'e sintaticamente inconsistente} \end{array} \right. \end{array}$$

Demonstra-se que $\Gamma^* = \bigcup_{n \in \mathbb{N}_0} \Gamma_n$ satisfaz **i)** e **ii)**, com o auxílio do

seguinte lema:

Lema: Para todo $n \in \mathbb{N}_0$, Γ_n é sintaticamente consistente. Este lema demonstra-se por inducão em \mathbb{N}_0 .

Lógica CC

Proposição 116: Se Γ é um conjunto de fórmulas sintaticamente consistente, então Γ é semanticamente consistente.

Dem.: Suponhamos que Γ é um conjunto sintaticamente consistente. Então, pela proposição anterior existe um conjunto Γ^* , maximalmente consistente, que contém Γ . Seja ν a única valoração tal que,

para todo
$$p \in \mathcal{V}^{CP}, \ v(p) = \left\{ egin{array}{ll} 1 & \textit{se } p \in \Gamma^* \\ 0 & \textit{se } p
otin \Gamma^* \end{array}
ight. .$$

Demonstra-se que:

Lema: $v(\varphi) = 1$ sse $\varphi \in \Gamma^*$, para todo $\varphi \in \mathcal{F}^{CP}$.

Deste lema, uma vez que $\Gamma \subseteq \Gamma^*$ e que $v(\varphi) = 1$, para todo $\varphi \in \Gamma^*$, concluimos que v satisfaz Γ e, assim, Γ é semanticamente consistente.

Dem. Prop. 115 (cont.):

O lema anterior,

$$v(\varphi) = 1$$
 sse $\varphi \in \Gamma^*$, para todo $\varphi \in \mathcal{F}^{CP}$,

é demonstrado por indução estrutural em fórmulas do Cálculo Proposicional.

A sua demonstração evidencia a necessidade das várias regras de inferência do sistema DNP.

Teorema 117 (Equivalência entre consistências sintática e semântica): Seja $\Gamma \subseteq \mathcal{F}^{CP}$. Então: Γ é sintaticamente consistente sse Γ é semanticamente consistente.

Dem.:

- ⇒) Proposição 116.
- ←) Tendo em vista um absurdo, suponhamos que Γ é sintaticamente inconsistente, i.e., Γ ⊢⊥. Então, pelo Teorema da Correção,

Como (por hipótese) Γ é semanticamente consistente, existe uma valoração v que satisfaz Γ .

Daqui, por (*), segue $v(\perp)=1$, o que contradiz a definição de valoração.

Logo, por redução ao absurdo, Γ é sintaticamente consistente.

Observação 118: No resto desta secção, uma vez que consistência semântica de um conjunto de fórmulas é equivalente à sua consistência sintática, simplificaremos a terminologia e referir-nos-emos apenas a *consistência de conjuntos de fórmulas*.

Teorema 119 (Completude): Para todo $\varphi \in \mathcal{F}^{CP}$ e para todo $\Gamma \subset \mathcal{F}^{CP}$,

se
$$\Gamma \models \varphi$$
, então $\Gamma \vdash \varphi$.

Dem.: Provaremos o contrarrecíproco. Suponhamos $\Gamma \not\vdash \varphi$. Então, $\Gamma \cup \{\neg \varphi\}$ é sintaticamente consistente, de outra forma, existiria uma derivação D de \bot a partir de $\Gamma \cup \{\neg \varphi\}$ e, assim,

(onde todas as ocorrências de $\neg \varphi$ como hipótese de D ficam canceladas com a aplicação de RAA) seria uma derivação de φ a partir de Γ , contrariando a suposição $\Gamma \not\vdash \varphi$. Sendo $\Gamma \cup \{\neg \varphi\}$ sintaticamente consistente, segue da Proposição 116 que existe uma valoração v tal que $v \models \Gamma \cup \{\neg \varphi\}$. Assim, $v \models \Gamma$ e $v(\varphi) = 0$, donde $\Gamma \not\models \varphi$.

Teorema 120 (Adequação): Sejam $\varphi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$. Então, $\Gamma \vdash \varphi$ sse $\Gamma \models \varphi$.

Dem.: Imediata, a partir dos teoremas da Correção e da Completude.

Corolário 121: Seja $\varphi \in \mathcal{F}^{\mathit{CP}}$. Então,

 φ é um teorema de DNP sse φ é uma tautologia.

Dem.: Exercício.

Teorema 122 (Compacidade): Seja $\Gamma \subseteq \mathcal{F}^{CP}$. Então, Γ é consistente sse todo o subconjunto finito de Γ é consistente.

Dem.:

- ⇒) Imediata (recorde-se a Proposição 80).
- Tendo em vista um absurdo, suponhamos que Γ é sintaticamente inconsistente.
 - Então, existe uma derivação D de \perp a partir de Γ .
 - Seja Γ' o conjunto das hipóteses não canceladas de D, que, por definição de derivação, é finito.
 - Assim, D é também uma derivação de \bot a partir de Γ' , ou seja, Γ' é sintaticamente inconsistente.
 - Mas, isto contradiz a hipótese inicial, uma vez que Γ' seria um subconjunto de Γ finito e inconsistente.
 - Logo, por redução ao absurdo, Γ é sintaticamente consistente.