

Computer Networks

Wenzhong Li, Chen Tian
Nanjing University

Chapter 2. Link Layer

- Link Layer Service
 - Framing
 - Link access
 - Reliable delivery
 - Error detection and correction
- Local Area Network (LAN)
 - Token Ring
 - Ethernet
- Medium access control (MAC)
- Bridges and Layer-2 switch
- Wireless Networks

Link Layer Service

Direct Links

- Hosts and routers are nodes
- Communication channels that connect adjacent nodes are links
- Different types of links
 - Wired point-to-point links
 - Wired multiple access links (LANs)
 - Wireless links (WiFi)

Data link layer

- layer-2 packet: frame, encapsulates datagram
- Transfers data between adjacent nodes or between nodes on the same local area network

Implement the Link Layer

- In host and router (switch)
- Link layer implemented in "adaptor"
 - i.e. network interface card (NIC)
 - Ethernet card, 802.11 card
- Implements link, physical layer
- Attaches into host's system buses
- Combination of hardware, software, firmware

Link Layer Services

Provides four primary services

Framing

 Encapsulate upper-level data into frame, adding header and trailer

Link access

- Coordinate access for shared multiple access medium
- "MAC" addresses used in frame headers to identify source and destination
- Half-duplex and full-duplex: Whether transmit and receive at the same time

Link Layer Services

- Reliable delivery over the link
 - Seldom used on low bit-error link (e.g. fiber)
 - Wireless links: high error rates
 - Flow control: Pacing between adjacent sending and receiving nodes
- Error detection and correction
 - Handling errors caused by signal attenuation or noise
 - Receiver detects presence of errors
 - Signals sender for retransmission or drops frame

(1) Link Layer Framing

Sending side

- Encapsulates datagram in frame
- Adds error checking bits, flow control, etc.

Receiving side

- Looks for errors, flow control, etc.
- Extracts datagram, passes to upper layer

(2) Link Access

- Two types of "links":
- Point-to-point: dedicated pairwise communication
 - E.g., long-distance fiber link
 - E.g., Point-to-point link b/n Ethernet switch and host
- Broadcast: shared wire or medium
 - Traditional Ethernet (pre ~2000)
 - 802.11 wireless LAN

shared wire (e.g., cabled Ethernet)

shared RF (e.g., 802.11 WiFi)

shared RF (satellite)

humans at a cocktail party (shared air, acoustical)

Multiple Access Control (MAC)

- Context: a shared broadcast channel
 - Must avoid having multiple nodes speaking at once
 - Otherwise, collisions lead to garbled data
- Need distributed algorithm to determine which node can transmit
- Multiple access protocol
 - Distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
 - Communication about channel sharing must use channel itself!
 - No out-of-band channel for coordination

MAC Protocols

Three classes of techniques

- Channel partitioning
 - Divide channel into pieces
 - Allocate piece to node for exclusive use
- Taking turns
 - Nodes take turns, but nodes with more to send can take longer turns
- Random access:
 - Channel not divided, allow collisions
 - "Recover" from collisions
 - More in the Internet style!

(3) Reliable delivery

Flow Control over the link

- Ensuring the sender not overwhelm the receiver
 - Preventing buffer overflow
- Methods
 - Stop and Wait
 - Sliding window

Stop and Wait

- Source: transmits frame
- Destination: receives frame and replies with ACK
- Source: waits for ACK before sending next frame
- Destination can stop flow by not send ACK

Work well for large frames

Sliding Window

- Allow multiple frames to be in transit
- Receiver has buffer (window) sized Win
- Sender can send up to Win frames without ACK
- Each frame is numbered
- ACK includes number of next frame expected
- Sequence number bounded by field of size (k)
 - Frames are numbered modulo 2^k
- Question: how to set k given Win?
- Answer: Win<=2k

Illustration of Sliding Window

Illustration of Sliding Window

Error Handling in Sliding Window

Go Back N

- If error, reply with rejection (NAK)
- The error frame and all future frames need be retransmitted

Selective Reject

- Only rejected error frames need be retransmitted
- Receiver must maintain large enough buffer

(4) Error Detection and Correction

- EDC= Error Detection and Correction bits (redundancy)
- D = Data protected by error checking, may include header fields

Note: error detection not 100% reliable!

Larger EDC field yields better detection and correction

Parity Checking

Single Bit Parity:

Detect single bit errors

Two Dimensional Bit Parity:

Detect and correct single bit errors

Can detect two-bit errors

Cyclic Redundancy Check

- Widely used in hardware-based implementation
- View data bits, D, as a binary number
- Choose r+1 bit pattern (generator or polynomial), G
 - G is called a Key, which is known to both the sender and receiver ahead.
- Since $D * 2^r = a * G \oplus R$, so $D * 2^r \oplus R = a * G$
- Sender: send $D * 2^r \oplus R$, represented by $\langle D, R \rangle$
- Receiver: when received <D,R>
 - If <D, R> exactly divisible by G (modulo 2), no error
 - If divides <D,R> by G has non-zero remainder: error detected!
- Limit: Can detect burst errors less than r+1 bits

Example of CRC

- Since $D * 2^r = a * G \oplus R$, so $D * 2^r \oplus R = a * G$
- Obtain R by:

R = remainder[
$$\frac{D \cdot 2^r}{G}$$
]

- Question:
- D=101110, r=3, G=1001
- R=?

Local Area Network (LAN)

Different Topologies of LAN

Different Types of LANs

- Token Ring
- Ethernet

Wireless LAN

Token Ring

Token Ring

A protocol for LAN, IEEE 802.5

- Developed from IBM's commercial token ring
- Because of IBM's presence, token ring has gained broad acceptance
- Never achieved popularity of Ethernet

Ring Operation

- Each repeater connects to two others via unidirectional transmission links
- Repeater acts as attachment point

- Data transferred bit by bit from one repeater to the next
 - Repeater regenerates and retransmits each bit
 - Repeater performs data insertion, data reception, data removal
- Frame removed by transmitter after one trip round ring

Listen State

- Scan passing bit stream for patterns
 - Address of attached station vs. destination address
 - Token permission to transmit
- Copy incoming bit and send to attached station
 - If destination address matched
 - Whilst forwarding each bit
- Modify bit as it passes
 - e.g. to indicate a packet has been copied (ACK)
 - Or make reservation

Ring Repeater States

Transmit state

- Reclaim frame and pass back to station for checking (ACK)
- May buffer other's frame for retransmission later

Bypass state

Do nothing more than a connector

802.5 MAC Protocol

- Small frame (token) circulates when idle
- Station waits for token
- Changes one bit in token to make it SOF (Start of Frame) for data frame
- Append rest of data frame
- Frame makes round trip and is absorbed by transmitting station
- Station then inserts new token when transmission has finished (leading edge of returning frame arrives)
- Under light loads, some inefficiency
- Under heavy loads, round robin

802.5 Physical Layer

Data Rate (Mbps)	4	16	100	100	1000
Medium	UTP, STP, Fiber	UTP, STP, Fiber	UTP, STP	Fiber	Fiber
Signaling	Differential Manchester	Differential Manchester	MLT-3	4B5B NRZI	8B/10B
Max Frame Len	4,550	18,200	18,200	18,200	18,200
Access Control	TR or DTR	TR or DTR	DTR	DTR	DTR

- Note: 1 Gbit specified in 2001
 - Uses 802.3 physical layer specification

Ethernet

Ethernet

- "Dominant" wired LAN technology:
 - Cheap \$20 for NIC
 - First widely used LAN technology
 - Simpler, cheaper than token LANs and ATM
 - Kept up with speed race: 10 Mbps 10 Gbps

Ethernet: physical topology

- bus: popular through mid 90s
 - all nodes in same collision domain (can collide with each other)
- star: prevails today
 - active switch in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

bus: coaxial cable

Broadcast vs. switched Ethernet

- Invented as a broadcast technology
 - Hosts share channel
 - Each packet received by all attached hosts
 - CSMA/CD for media access control
- Modern Ethernets are "switched"
 - Point-to-point links between switches and between a host and switch
 - No sharing ⇒ no CSMA/CD
 - Uses "self learning" and "spanning tree" algorithms for routing

The evolution of Ethernet

- Changed almost everything except the frame format
 - From the shared media coax cables to dedicated links
 - From 3 Mbit/s to 100 Gbit/s
 - From electrical signaling to optical
- Lesson: the right interface can accommodate many changes
 - Evolve the implementation while maintaining the interface (backward compatibility)

Ethernet: unreliable, connectionless

- Connectionless: no handshaking between sending and receiving NICs
- Unreliable: receiving NIC doesnt send acks or nacks to sending NIC
 - data in dropped frames recovered only if initial sender uses higher layer rdt (e.g., TCP), otherwise dropped data lost

Ethernet Frame Format

Encapsulates IP datagram

- Preamble: 7 bytes for clock synchronization and 1 byte to indicate start of frame
- Addresses: 6 bytes
- Type: 2 bytes, higher-layer protocol (e.g., IP)
- Data payload: max 1500 bytes, min 46 bytes
- CRC: 4 bytes for error detection

Medium Access Control (MAC) Address

MAC address

- Numerical address associated with a network adapter
- Flat name space of 48 bits (e.g., 00-15-C5-49-04-A9 in HEX)
- Unique, hard-coded in the adapter when it is built
- Hierarchical Allocation
 - Blocks: assigned to vendors (e.g., Dell) by the IEEE
 First 24 bits (e.g., 00-15-C5-**-**)
 - Adapter: assigned by the vendor from its block
 - Last 24 bits

Framing frames

- Physical layer puts bits on a link
- But, two hosts connected on the same physical medium need to be able to exchange frames
 - Service provided by the link layer
 - Implemented by the network adaptor
- Framing problem: how does the link layer determine where each frame begins and ends?

Simple approach: Count bytes

Sender includes number of bytes in header

- Receiver extracts this number of bytes of body
- What if the Count field is corrupted?

- L2 will frame the wrong bytes → a framing error
- CRC tells you to discard this frame, but what about the next one?

Desynchronization

- Once framing on a link is desynchronized, it can stay that way
- Need a method to resynchronize

Framing with sentinel bits

- Delineate frame with special "sentinel" bit pattern
 - e.g., $011111110 \Rightarrow \text{start}$, $011111111 \Rightarrow \text{end}$

01111110 Frame contents 01111111

- What if sentinel occurs within frame?
- Solution: bit stuffing
 - Sender always inserts a 0 after five 1s in the frame contents
 - Receiver always removes a 0 appearing after five 1s

When receiver sees five 1s...

01111110

Frame content

01111111

- If next bit 0, remove it; begin counting again
 - Because this must be a stuffed bit; we can't be at beginning/end of frame (those had six or seven 1s)
- If next bit 1 (i.e., we've seen six 1s) then:
 - If following bit is 0, this is start of frame
 - Because the receiver has seen 011111110
 - If following bit is 1, this is end of frame
 - Because the receiver has seen 01111111

Example: sentinel bits

- Original data, including start/end of frame:
- Sender rule: five 1s → insert a 0
 - After bit stuffing at the sender:
 - 011111110011111101011111100111111
- Receiver rule: five 1s and next bit 0 → remove 0

IEEE 802.3

802.3 Physical Layer

- many different Ethernet standards
 - common MAC protocol and frame format
 - different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10G bps
 - different physical layer media: fiber, cable

10base<u>FX</u>

speed

medium

	10base <u>5</u>	10base 2	10base <u>T</u>	10base <u>FX</u>
Medium	Thick coax	Thin coax	Twisted pair	Optical <u>f</u> iber
Max. Segment Length	<u>5</u> 00 m	<u>2</u> 00 m	100 m	2 km
Topology	Bus	Bus	Star	Point-to-point link

Summary

- 链路层服务
- 错误检测: 奇偶校验, CRC的计算
- 流控制: Stop and Wait, Sliding Window
- ■局域网
 - 令牌环
 - ■以太网
 - ■以太网帧格式

Homework

■ 第5章: R8, P2, P3, P5, P6