

compound is defined by [the following general formulas] formula I, II, or III:

*B1
Cont*

wherein:

the L groups are [,] equal to or different from each other, wherein each L is selected from the group [comprising:] consisting of cyclopentadienyl, indenyl, tetrahydroindenyl, fluorenyl, octahydrofluorenyl, and [or] benzoindenyl; each R is independently [selected from] hydrogen, linear or branched C₁-C₂₀ alkyl, linear or branched C₃-C₂₀ cycloalkyl, linear or branched C₆-C₂₀ aryl, linear or branched C₃-C₂₀ alkenyl, linear

(b) Cross

or branched C₇-C₂₀ arylalkyl, linear or branched C₇-C₂₀ alkylaryl,
linear or branched C₈-C₂₀ arylalkenyl, [linear or branched,
optionally substituted by 1 to 10 halogen atoms,] or a group
SiR^{II}₃, wherein the C₁-C₂₀ alkyl, the C₃-C₂₀ cycloalkyl, the C₆-C₂₀
aryl, the C₃-C₂₀ alkenyl, the C₇-C₂₀ arylalkyl, the C₇-C₂₀ alkylaryl,
and the C₈-C₂₀ arylalkenyl are optionally substituted with 1 to 10
halogen atoms;

the [each] R^I[,] groups are equal to or different from each other,
wherein each R^I is a divalent aliphatic or aromatic hydrocarbon
group containing from 1 to 20 carbon atoms, optionally containing
from 1 to 5 heteroatoms of groups 14 to 16 of the [periodic table]
Periodic Table of the [elements] Elements, and optionally
containing boron; [preferably it is: C₁-C₂₀ alkylene, C₃-
C₂₀cycloalkylene, C₆-C₂₀ arylene, C₇-C₂₀ alkenyl, C₇-C₂₀ arylalkylene,
or alkylarylene, linear or branched, or a group SiR^{II}₂;]

each R^{II} is independently [selected from] linear or branched C₁-C₂₀
alkyl, linear or branched C₃-C₂₀ cycloalkyl, linear or branched C₆-
C₂₀ aryl, linear or branched C₃-C₂₀ alkenyl, linear or branched C₇-
C₂₀ arylalkyl, linear or branched C₈-C₂₀ arylalkenyl, or linear or
branched C₇-C₂₀ alkylaryl[, linear or branched; preferably R^{II} is
methyl, ethyl or isopropyl];

each Q is independently [selected from] B, C, Si, Ge, or Sn;
M is a lanthanide, an actinide, or a metal of group 3, 4, or 10 of
the Periodic Table[, Lanthanide or Actinide] of the Elements, and
M has a valence;

each X is independently [selected from:] hydrogen, chlorine,
bromine, OR^{II}, NR^{II}₂, C₁-C₂₀ alkyl, or C₆-C₂₀ aryl ;

L' is N or O;

when L is cyclopentadienyl, k is equal to 5[,]; when L is indenyl,
k is equal to 7[,]; when L is fluorenyl or benzoindenyl, k is
equal to 9[,]; when L is tetrahydroindenyl, k is equal to 11; and

when L is octahydrofluorenyl, k is equal to 17;
 z is equal to 0, 1, or 2;
 x is equal to 1, 2, or 3;
 y is equal to 1, 2, or 3;
 $x + y + z$ is equal to the valence of M ;
 m is [an integer which can assume the values] equal to 1, 2, 3 or 4;
 a [and b are integers] is an integer whose value ranges from 0 to $k-1$;
 b is an integer whose value ranges from 0 to $k-1$;
 f is an integer whose value ranges from 1 to k ;
 g is [an integer whose value ranges from] equal to 0 to 1;
 c [and e are] is equal to 0 or 1;
 e is equal to 0 or 1;
 $a + b + c$ is at least 1;
 $a + g + c$ is at least 1;
 d is equal to 0, 1, or 2;
when Q is B_2 then $c + d = 1$;
when Q is C, Si, Ge, or Sn, then $c + d = 2$;
when L' is N, then $g + e = 1$; and
when L' is O, then $g = 0$ and $e = 0$.

*Bl
Cust*

2. (amended once) A heterogeneous [Heterogeneous] catalytic composition according to claim 1 wherein the group $R^I\text{OSiR}^{II}_3$ is [selected from] $\text{CH}_2-\text{CH}_2-\text{OSiMe}_3$, $\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{OSiMe}_3$, $\text{CH}_2-\text{O}-\text{CH}_2-\text{OSiMe}_3$, $\text{O}-\text{CH}_2-\text{CH}_2-\text{OSiMe}_3$, $\text{SiMe}_2-\text{CH}_2-\text{CH}_2-\text{OSiMe}_3$, $\text{SiMe}_2-\text{OSiMe}_3$, or $\text{SiMe}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{OSiMe}_3$.

3. (amended twice) A heterogeneous [Heterogeneous] catalytic composition according to claim 1 wherein M is titanium, zirconium, or hafnium.

C 4. (amended twice) A heterogeneous [Heterogeneous] catalytic
composition according to claim 1 wherein the alumoxane is represented
by [the formulas] a formula:

or

wherein **R** is an alkyl or an aryl group containing from 1 to 20
carbon atoms; **n** ranges from 1 to 40[,]; and **m** ranges from 3 to 40.

B1
C 5. (amended twice) A heterogeneous catalytic [Heterogeneous
catalyst] composition according to claim 1 wherein the inorganic
support is

selected from the group consisting of silica, alumina, silica
alumina, aluminum phosphates, and mixtures thereof.

6. (amended twice) A heterogeneous catalytic [Heterogeneous
catalyst] composition according to claim 1 comprising a transition
metal, wherein [the content in] the transition metal [is
comprised] comprises between 0.01 and 3% by weight of the catalyst
system.

C 7. (amended twice) A heterogeneous catalytic [Heterogeneous
catalyst] composition according to claim 6 wherein the [content in]
transition metal [is comprised] comprises between 0.1 and 1% by
weight of the catalyst system.

C 8. (amended twice) A process [Process] for [the] polymerization
of alpha olefins in a slurry or in a gas phase, [characterized by]
wherein the polymerization is catalyzed by [the use of] the
heterogeneous catalyst composition of claim 1.

Please add the following new claims.

CR126 11. A heterogeneous catalytic ~~system~~ ^{Compos. for} as claimed in Claim 1, wherein each R^I is linear or branched C_1-C_{20} alkylene, linear or branched C_3-C_{20} cycloalkylene, linear or branched C_6-C_{20} arylene, linear or branched C_7-C_{20} alkenyl, linear or branched C_7-C_{20} , linear or branched arylalkylene, linear or branched alkylarylene, or a group $SiR^{II}2$.

B2 11. A heterogeneous catalytic ~~system~~ ^{Compos. for} as claimed in Claim 1, wherein R^{II} is methyl, ethyl, or isopropyl.

C 12. A heterogeneous catalytic ~~system~~ ^{Compos. for} as claimed in Claim 12, wherein R^{II} is methyl, ethyl, or isopropyl.

C 13. A heterogeneous catalytic ~~system~~ ^{Compos. for} as claimed in Claim 2, wherein M is titanium, zirconium, or hafnium.

C 14. A heterogeneous catalytic ~~system~~ ^{Compos. for} as claimed in Claim 13, wherein M is titanium, zirconium, or hafnium.

C 15. A heterogeneous catalytic ~~system~~ ^{Compos. for} as claimed in Claim 2, wherein the alumoxane is represented by a formula:

or

wherein R is an alkyl or an aryl group containing from 1 to 20 carbon atoms; n ranges from 1 to 40; and m ranges from 3 to 40.

C 16. A heterogeneous catalytic ~~system~~ ^{Compos. for} as claimed in Claim 3, wherein the alumoxane is represented by a formula:

$(RA_1O)_n$

or

 $R(R-Al-O)_mAlR_2$,

wherein **R** is an alkyl or an aryl group containing from 1 to 20 carbon atoms; **n** ranges from 1 to 40; and **m** ranges from 3 to 40.

C 17. A heterogeneous catalytic system as claimed in Claim 16,
wherein the alumoxane is represented by a formula:

 $(RA_1O)_n$

or

 $R(R-Al-O)_mAlR_2$,

wherein **R** is an alkyl or an aryl group containing from 1 to 20 carbon atoms; **n** ranges from 1 to 40; and **m** ranges from 3 to 40.

C 18. A heterogeneous catalytic system as claimed in Claim 2,
wherein the inorganic support is selected from the group
consisting of silica, alumina, silica alumina, aluminum
phosphates, and mixtures thereof.

C 19. A heterogeneous catalytic system as claimed in Claim 3,
wherein the inorganic support is selected from the group
consisting of silica, alumina, silica alumina, aluminum
phosphates, and mixtures thereof.

W 21. A process for polymerizing a monomer or a mixture of a monomer and a comonomer, wherein the process comprises:
contacting the heterogeneous catalytic system claimed in Claim 1 with the monomer or the mixture to polymerize the monomer or the mixture.--