2017

(Old Syllabus)

COMPUTER SCIENCE AND ENGINEERING

Paper - CSEB - 506

(Cryptography)

Full Marks - 70

The figures in the margin indicate full marks

Candidates are required to give their answers in their own words as far as practicable

Answer Question No. 1, 2 and any four from the rest

1. Answer any five questions:

2×5

- (a) Find all multiplicative pairs in Z₁₁.
- (b) Distinguish between Z_n and Z_n^* .
- (c) For the following equation, find an integer that satisfies the equation. $7x \equiv 4 \pmod{5}$
 - (d) Define Galois Field.
 - (e) Find the value of $\phi(32)$, Where ϕ denotes Euler's totient function.
 - (f) Verify that the number 17 is a prime through square root test.
 - (g) Find the order of all elements in $G = \langle Z_{10}^*, X \rangle$.
 - (h) What do you mean by "Avalanche effect"?
 - 2. Answer any five questions:

4×5

- (a) Write an algorithm for testing primality of a number using Miller-Rabin test.
- (b) State extended Euclidean algorithm and use it to find the GCD of (84,320).
 - (c) What is Key wrapping? How is it useful?
- (d) State the second criterion for a cryptographic hash function and associate the concerned birthday problem.

[Turn Over]

- (e) Find the results of 21²⁴ mod 8 using Fast exponentiation method.
- (f) Discuss the advantage(s) of using counter algorithmic mode compared to CBC.
- (g) Discuss the Lamport's Hash algorithm for authentication and state the uniqueness of the said algorithm.
- (h) Why do you think the mixing transformation (Mix Columns) is not needed in DES; but is needed in AES?
- 3. (a) Use the extended Euclidean algorithm to find the inverse of $(x^4 + x^3 + 1)$ in GF (2⁵) using the modulus $(x^5 + x^2 + 1)$.
- (b) Prove that the difficulty of an alternative collision attack is proportional to $2^{n/2}$.
- 4. State the properties of a standard public-key cryptography algorithm.

 Describe RSA and show that these properties hold in context of RSA.

 3+7
- 5. Comment on the Key management issue for secret key cryptography.

 Describe the role of Key Distribution Centre for Key management. Is it helps for authentication? Justify your answer.

 2+4+4
- 6. Discuss the principle behind proposing a product cipher by Shannon. Show how these principles are implemented in DES.

 3+7
 - 7. (a) Discuss "Chosen cipher text attack" with an example.
 - (b) Write an algorithm for decryption in Knapsack cryptosystem.
 - (c) What do you mean by "Digital signature"? 4+4+2
- 8. (a) Write a short note on "Analysis of Diffie-Hellman" key exchange algorithm.
 - (b) Describe the sub-key generation algorithm in AES. 5+5