Aerospace Propulsion

Lecture 15
Airbreathing Propulsion V

Airbreathing Propulsion: Part V

- Combustor Geometry
- Flame Behavior

Combustor Emissions

Combustors

- Purpose and considerations
 - Primary
 - Add energy to compressed air to drive compressor/fan and provide thrust
 - Energy extraction is highly efficient (99%)
 - Secondary
 - Low drop in stagnation pressure (will not discuss)
 - Flight requirements: Ignition, relight, stability, noise, etc.
 - Low emissions of NO_x and soot (last few decades)
 - Low-to-no emissions of CO₂ (last decade)
 - Avoid damage to engine
 - Provide uniform temperature flow to turbine

Combustor Geometry

- Can
 - Fuel+Air mixed in a single "can"
 - Primary geometry for early combustors
 - Advantages
 - Easy to design and scale up and down
 - More power? More cans!
 - Easy maintenance of individual cans
 - Disadvantages
 - Each burner needs separate ignition
 - Large and heavy

Combustor Geometry

- Can-Annular
 - Independent combustion chambers, but shared annulus for dilution air
 - Popular in 1940's and 1950's
 - Advantages
 - More compact than can geometry
 - Disadvantages
 - Similar to can combustors

Combustor Geometry

- Annular
 - Single annular combustor
 - Most modern combustors
 - Advantages
 - Most compact
 - Low pressure losses
 - Only need single igniter
 - Disadvantages
 - Harder to maintain
 - Can't remove a single can

- Ignition
 - Recall that reaction rate is a function of
 - Temperature (always)
 - Pressure (depends on reaction)
 - Reaction timescale estimate

•
$$\tau_r \sim p^{-n} T^{-m} \exp \frac{E_a}{RT}$$

- $n \sim 1.2$
- $m\sim2$
- Ignition is easier:
 - At high preheat temperatures
 - At higher pressures (rich combustion)
- Overall, ignition is not problematic on ground

Spring 2025

- Relight
 - In extreme case, flame can extinguish while in flight
 - Flight conditions are highly unsteady
 - At flight altitude, lower pressure and temperature
 - Relighting is harder at altitude
 - Long chemical time-scale

- Flame stabilization
 - Recall premixed flames propagate at
 - Laminar flame speed $s_L \sim O(0.1-1.0 \text{ m/s})$
 - Turbulent flame speed $s_T \sim s_L * O(1-100)$
 - Flame stability cannot be guaranteed, for example, in channel-like flow
 - Combustors utilize various methods to stabilize flame
 - Swirling flows
 - Radial jets
 - Overall, strong vortices that "break-down" and lead to "reversed-flow"

- Afterburner flame stabilization
 - Fluid is just before nozzle, already moving fast
 - More extreme stabilization necessary
 - Utilize "bluff-bodies" that lead to strong recirculation zones
 - Flow after bluff body is slow
 - Negative velocity component

- Emissions Review: Three rules of pollutants
 - Rule #1: Formation of pollutants is kinetically (chemistry) controlled
 - "Long" residence times are required for pollutant formation
 - Rule #2: Once formed, NO_x is difficult to remove via combustion
 - Avoid forming NO_x as much as possible
 - Rule #3: Once cold, soot is difficult to remove via combustion
 - Try to destroy any formed soot before it reaches cold gases
- Ideal combustor designs
 - Option A: Rich combustion followed by lean combustion
 - Avoid stoichiometric mixtures
 - Option B: Lean premixed combustion

- Rich Burn Quick Quench Lean Burn (RQL) combustor
 - Used by Pratt and Whitney, Rolls Royce since ~ 1996
 - What happened in 1996?
 - ICAO: International Civil Aviation Organization
 - CAEP: Committee on Aviation Environmental Protection
 - CAEP/2 Adopted by EPA in 1997
 - New standards continue to be released
 - CAEP11 released in 2019

DILUTION

FUEL

Combustor Emissions

- Rich Burn Quick Quench Lean Burn (RQL) combustor
 - Primary combustion zone
 - Fuel rich (very stable flame, see slide 7)
 - Forms a lot of soot (very rich)
 - Forms very little NO_x (little oxygen)
 - Quenching

• Rapidly add dilution air (cold) and mix to minimize residence times at high temperature and stoichiometric conditions

- Secondary combustion zone
 - Fuel lean combustion
 - Burn most previously formed soot away (a lot of oxygen)
 - Forms very little NO_x (low temperature)

AIR

From Compressor

To Turbine

Points: Liquid Jet-A Droplets

Colors: Temperature

Blue Lines: Stoichiometric

To Turbine

Points: Liquid Jet-A Droplets

Colors: Soot

Purple Lines: Stoichiometric

- Lean Premixed Pre-vaporized (LPP)
 - Approach taken by GE to meet emissions standards
 - 1995: Double Annular Combustor (DAC)
 - Two burners (pilot and main) both operating lean
 - Pilot zone provides low power and ignites main zone
 - Main zone used for high power
 - 2008: Twin Annular Premixed Swirler (TAPS)
 - Pilot and main zones combined
 - Essentially a single lean burner at both low/high power

Fuel injection

Premixing flame Pilot flame zone

- Lean Premixed Pre-vaporized (LPP)
 - All combustion at lean conditions so low NO_x and soot
 - Advantages
 - Cleaner than RQL for NO_x
 - Disadvantages
 - Lean combustion is less stable (slide 7)
 - Flame may extinguish
 - Lean combustion susceptible to instabilities
 - Fuel must be well vaporized/mixed
 - Un-vaporized liquid droplets cannot burn lean
 - Increases combustor mass and volume

Thrust

- Net-zero carbon emissions by 2050 (US)
- CO₂ emissions are controlled by
 - Flight efficiency
 - What goes into the combustor
- Any carbon-containing fuel will release CO₂
 - · We want this for the heat release
- Options
 - Move away from combustion
 - Use a net-zero carbon fuel
 - Use a non-carbon fuel

Figure 5. Average margin to the ICAO CO_2 standard for jet aircraft in the fleet of U.S. mainline carriers, 2018 to 2038.

*CO*₂ Emissions (2023)

https://www.airbus.com/en/innovation/zero-emission-journey

*CO*₂ Emissions (2024)

https://www.airbus.com/en/innovation/zero-emission-journey

*CO*₂ Emissions (2025)

https://www.airbus.com/en/innovation/energy-transition

- Not covered here, completely different type of propulsion
- Battery energy storage density not high enough for anything beyond short-haul
 - Note airbuses change from "electric" to "hybrid and electric"

- Sustainable aviation fuels (SAF)
 - Designed to be "drop-in" fuels
 - Net-zero carbon emissions
 - Mixture of standard aviation fuel with renewable fuel
 - Agricultural and forestry waste
 - Used fat, oil, grease
 - Municipal waste
- This is "easy"
 - No major combustor changes needed

*CO*₂ Emissions (2024)

https://www.airbus.com/en/innovation/zero-emission-journey

- Hydrogen (H_2)
 - Contains no carbon no CO₂ release
 - Issues with storage, transport, density
 - High energy per mass
 - Low energy per volume
- Ammonia (NH_3)
 - Easier to store and transport
 - Can be converted to hydrogen
- Both <u>must</u> be formed with renewable energy to make any sense

Fuel Type	MJ/kg	MJ/L	\$/MJ
Li Battery	0.3	0.3	0.03
Honey	14	20	0.29
Goose Fat	38	35	0.26
Jet A	44	36	0.018
Natural Gas	45	19	0.005
Hydrogen	117	8.3	0.44

- $(117 \text{ MJ/kg})^*(0.44 \text{ $/MJ}) = 51.48 \text{ $/kg}$
- Hydrogen Earthshot seeks to dramatically reduce this number

Fuel Type	MJ/kg	MJ/L	\$/MJ
Li Battery	0.3	0.3	0.03
Honey	14	20	0.29
Goose Fat	38	35	0.26
Jet A	44	36	0.018
Natural Gas	45	19	0.005
Hydrogen	117	8.3	0.44

1 Dollar

1 Kilogram

1 Decade

https://www.energy.gov/eere/fuelcells/hydrogen-shot

- Airbus has flown using pure H2 combustion in late 2023
 - Blue Condor, 7,000 ft

- SAF mimic AF fuel properties
 - Combustion occurs very similarly
- Hydrogen combustion is very different
 - Shorter chemical timescales
 - Ignition promoted
 - Higher flamespeed
 - √ Relight envelope is increased
 - ✓ Flame extinction less likely
 - × Flame flashback more likely
 - Damages/destroys combustor

