05 RDDs

Resilient Distributed Datasets

Resilient Distributed Datasets (RDD) is a fundamental data structure of Spark. It is an immutable distributed collection of objects. Each dataset in RDD is divided into logical partitions, which may be computed on different nodes of the cluster. RDDs can contain any type of Python, Java, or Scala objects, including user-defined classes.

Formally, an RDD is a read-only, partitioned collection of records. RDDs can be created through deterministic operations on either data on stable storage or other RDDs. RDD is a fault-tolerant collection of elements that can be operated on in parallel.

There are two ways to create RDDs – **parallelizing** an existing collection in your driver program, or **referencing a dataset** in an external storage system, such as a shared file system, HDFS, HBase, or any data source offering a Hadoop Input Format.

Spark makes use of the concept of RDD to achieve faster and efficient MapReduce operations. Let us first discuss how MapReduce operations take place and why they are not so efficient.

Data Sharing is Slow in MapReduce

MapReduce is widely adopted for processing and generating large datasets with a parallel, distributed algorithm on a cluster. It allows users to write parallel computations, using a set of high-level operators, without having to worry about work distribution and fault tolerance.

Unfortunately, in most current frameworks, the only way to reuse data between computations (Ex – between two MapReduce jobs) is to write it to an external stable storage system (Ex – HDFS). Although this framework provides numerous abstractions for accessing a clusters computational resources, users still want more.

Both **Iterative** and **Interactive** applications require faster data sharing across parallel jobs. Data sharing is slow in MapReduce due to **replication**, **serialization**, and **disk IO**. Regarding storage system, most of the Hadoop applications, they spend more than 90% of the time doing HDFS read-write operations.

Iterative Operations on MapReduce

Reuse intermediate results across multiple computations in multi-stage applications. The following illustration explains how the current framework works, while doing the iterative operations on MapReduce. This incurs substantial overheads due to data replication, disk I/O, and serialization, which makes the system slow.

Interactive Operations on MapReduce

User runs ad-hoc queries on the same subset of data. Each query will do the disk I/O on the stable storage, which can dominate application execution time.

The following illustration explains how the current framework works while doing the interactive queries on MapReduce.

Data Sharing using Spark RDD

Data sharing is slow in MapReduce due to **replication**, **serialization**, and **disk IO**. Most of the Hadoop applications, they spend more than 90% of the time doing HDFS read-write operations.

Recognizing this problem, researchers developed a specialized framework called Apache Spark. The key idea of spark is **R**esilient **D**istributed **D**atasets (RDD); it supports in-memory processing computation. This means, it stores the state of memory as an object across the jobs and the object is sharable between

those jobs. Data sharing in memory is 10 to 100 times faster than network and Disk. Let us now try to find out how iterative and interactive operations take place in Spark RDD.

Thomatics Occupations on Grands DDD

Iterative Operations on Spark RDD

The illustration given below shows the iterative operations on Spark RDD. It will store intermediate results in a distributed memory instead of Stable storage (Disk) and make the system faster.

Note – If the Distributed memory (RAM) is not sufficient to store intermediate results (State of the JOB), then it will store those results on the disk.

Interactive Operations on Spark RDD

This illustration shows interactive operations on Spark RDD. If different queries are run on the same set of data repeatedly, this particular data can be kept in memory for better execution times.

By default, each transformed RDD may be recomputed each time you run an action on it. However, you may also **persist** an RDD in memory, in which case Spark will keep the elements around on the cluster

for much faster access, the next time you query it. There is also support for persisting RDDs on disk, or replicated across multiple nodes.