元素分析(%): 実測値: C, 55.88; H, 5.40; N, 14.31。
Cs Hs Cl N, Ot. 0.8 CH, CO C2 H3計算値: C, 56.01; H, 5.33; N, 14.66。

 $[\alpha]$ +127° (C=0. 1, ± 3).

(iv) (e) (iii) 部分からの(+) -N-メチルエフェドリン塩(0.90g, 1.35ミリモル)の水(10mL)中室温懸濁液を、濃塩酸でpH5まで酸性にし、そしてその懸濁液を1時間撹拌した。その固体を濾過によって集め且つ水で洗浄して、(+)-6,7-ジクロロ-5-[3-メトキシメチル-5-(3-ピリジル)-4H-1,2,4-トリアゾールー4ーイル]-2,3(1H,4H)-キノキサリンジオン(0.41g,69%)を白色固体,mp222~224℃として与えた。

<u>元素分析(%)</u>: 実測値: C, 46. 44; H, 3. 18; N, 19. 01。
C₁₇ H₁₇ C₁₈ N₆ O₃. 1. 25H₂ O計算値: C, 46. 22; H, 3. 31; N, 19. 02。

 $[\alpha]^{25} + 212^{\circ} (C=0.1, x/y/-y)$

実施例112

6-クロロ-7-エチル-5-[3-メトキシメチル-5-(3-ビリジル) -4H-1, 2, 4-トリアゾール-4-イル] -2, 3 (1H, 4H) -キノキ サリンジオン

標題化合物を、示された出発物質(製造例113の工程(c)、(d) および(e)、製造例114および製造例115で記載されたのと同様の方法によって

6-クロロ-7-エチル-5-ニトロ-2, 3 (1H, 4H) -キノキサリンジ オン (WO-A-95/12417号を参照されたい) から製造された) から、実施例 1 09の場合と同様の方法によって製造した。それを黄色泡状物として単離した。 <u>元素分析 (%)</u>: 実測値: C, 48.68; H, 4.18; N, 17.60。 C₃ H₁ N₈O₅C1. HC1. H₂O計算値: C, 48.83; H, 4.31; N, 17.98。

m/z (サーモスプレー) 413.0 (MH)。

実施例113

7 - クロロー6 - エチルー5 - [3 - メトキシメチルー5 - (3 - ピリジル) - 4H-1, 2, 4-トリアゾールー4-イル] - 2, 3 (1H, 4H) - キノキサリンジオン

$$\begin{array}{c} \text{CH}_{2}\text{CH}_{1}\\ \text{CH}_{2}\text{CH}_{1}\\ \text{CH}_{2}\text{CH}_{2}\\ \text{CH}_{3}\text{CH}_{4}\\ \text{CH}_{4}\text{CH}_{4}\\ \text{CH}_{5}\text{CH}_{5}\\ \text{CH}_{5}\\ \text{CH}_{5}\text{CH}_{5}\\ \text{CH}_{5}\\ \text{CH}_$$

標題化合物を、示された出発物質(製造例113の工程(c)、(d)および (e)、製造例114および製造例115で配載されたのと同様の方法によって 7-9 ロロー6 ーエチルー5 ーニトロー2 、3(1 H 、4 H) ーキノキサリンジ オン (WO-A-95/12417号を参照されたい)から製造された)から、実施例109の場合と同様の方法によって製造した。それを黄色泡状物として単離した。 元素分析(%): 実測値:C、46.28; H、4.17; N、16.70。 Cn Hn No Co Cl.2HCl.1/3Ho O計算値:C、46.41; H、4.03; N、17.09。

m/z (サーモスプレー) 413.0 (MH)。

実施例114

(-) -6, 7-ジクロロ-5-[3-メトキシメチル-5-(1-オキシドビ リジン-3-イル) -4H-1, 2, 4-トリアゾール-4-イル] -2, 3

(1H, 4H) -キノキサリンジオン

 $3- \rho$ ロペルズキシ安息香酸 (0.85g, 4.93ミリモル)のアセトン (20m1) 中溶液を、(-)-6,7-ジクロロ-5-[3-メトキシメテルー5-(3-ビリジル)-4H-1,2,4-トリアゾールー4-イル]-2,3 (1H,4H)-キノキサリンジオン (実施例111を参照されたい)(1.0g,2.24ミリモル)のアセトン (40m1) 中懸濁液に対して一度に加え、これは固体を全て溶解させた。その反応を室温で40分間撹拌し、その後、白色固体が形成し始めた。その反応混合物を室温で3日間撹拌した。白色固体を適適によって集め、そしてシリカゲル上において溶離剤としてジクロロメタン:メタノール:氷酢酸 (90:10:1容量)を用いるフラッシュクロマトグラフィーによって精製して、適当な画分を一緒にし且つ濃縮した後に標題化合物 (0.16g,17%)を白色固体,mp>310℃として与えた。

実施例115~129

一般式

を有する次の表で示された実施例を、実施例1の場合と同様の方法によって、対 応する2,3ージメトキシキノキサリン誘導体、およびTLCによる出発物質の 宗全な消撃にほぼ対応した反応時間を用いて製造した。

C		Š	Į
11	١	١	ŕ
Ţ	ī	۹	

研和路線 (a) 水 (b) ジェチルエー テル (c) メタノール (d) レージオキサー (d) ロージオキサー (f) ツインフロピル (f) ジインフロピル (g) ジタロロメタン (g) ジャロンタン	q	a
製造例番号	135	136
分析データ: 元素分析 (集製値 (計算値) %) または ⁴ H-NMR (300 MHz, DMS O-d ₆ (特に断らない限り)) またはLRMS (m/2)	C, 46.92; H, 3.04; N, 14.92)	220-223 C ₂₃ H ₆ Cl ₄ N ₆ C, 50.62; H, 3.49; N, 15.29 O ₂ , (C, 50.25; H, 3.48; N, 15.29) HGLH ₂ O
分子式	C ₂₂ H ₁₄ Ct ₂ N ₆ D ₃ . 2HCl. 0.5 H ₂ O	3 C ₂₃ H ₆ Cl ₂ N ₆ O ₃ . HCl.H ₂ O
mp (°C)	226-229	220-223
œ.		0.270
実例号随答	115	91-

q	q	a	q	Ð
137	138	139	140	141
С _{го} н _{ис} С _Б м ₀ о, С, 47.09; H, 3.68; N, 14.07 2HCIH ₂ O (C, 47.72; H, 3.44; N, 14.30)	C, 48.96; H, 4.48; N, 14.88 (C, 48.91; H, 4.64; N, 14.88)	C, 48.42; H, 4.25; N, 15.37 (C, 48.45; H, 4.32; N, 15.41)	C, 39.92; H, 2.65, N, 15.27 (C, 39.91; H, 2.61; N, 15.51)	C, 36.05, H, 2.55; N, 25.73 (C, 36.01; H, 2.56; N, 25.86)
C ₂₃ H ₁₆ Cl ₂ N ₆ O ₃ . 2HCl.H ₂ O	С ₂₃ Н ₂₂ СІ ₂ N ₆ О3. HCI. 1.5 Н ₂ О	C ₂₂ H ₂₀ Cl ₂ N ₆ O ₃ . HCl. 1.2 H ₂ O	C ₁₈ H ₁₁ Cl ₂ F ₃ N ₆ O ₃ . HCI. H ₂ O	C ₁₃ H ₆ N ₆ O ₂ ' Cl ₂ HCI. H ₂ O
254 (分解)	243	248 (分解)	257 (分解)	291-293
			The contraction of the contracti	H Z Z
117	118	119	120	121

۵	ے	Ф	q	q
142	143	144	145	146
290-292 C _{C2} H ₄ N ₆ O ₂ C, 55.65; H, 3.43; N, 16.76 Cl ₇ , H ₂ O	C, 53.11; H, 3.12; N, 16.84 (C, 53.19; H, 3.55; N, 16.92)	C, 45.08; H, 3.81; N, 15.74 (C, 44.75; H, 3.86; N, 16.20)	C, 43.93; H, 3.48; N, 14.23 (C, 43.62; H, 3.49; N, 14.53)	C, 42.05; H, 3.52; N, 15.28 (C, 41.84; H, 3.84; N, 15.41)
C ₂₂ H _{t6} N ₆ O ₂ Cl ₂ . H ₂ O	C ₂₂ H ₁₄ N ₆ O ₂ Cl ₂ 1.75 H ₂ O	C₁eH₁₄Cl₂N₅ O₃. HCI 0.33 ジオキサン 1.1 H₂O	C ₂₁ H ₁₄ N ₆ O ₃ Cl ₂ . 2HCl. 2 H ₂ O	C ₁₉ H ₁₆ N ₆ O ₃ CI ₂ . 2 HCI. 1.4 H ₂ O
290-292	>300	固形泡状物	西形 泊状物	>300
		N O CH3	01,0	N N N N N N N N N N N N N N N N N N N
122	123	124	125	126

q	a続いてb	4G
147	148	148
C ₂₁ H ₄ N _b O ₃ C, 45.99; H, 3.35; N, 14.66 C ₂ , (C, 45.69; H, 3.19; N, 15.05) 0.06 H ₂ O.	231-233 G _{2H} H ₅ N ₂ O ₃ C, 49.00 H, 3.28 N, 19.22 G ₂ (C, 49.33 H, 3.55, N, 9.17) 1.5 H ₂ O	230-232 C ₂₃ H ₄ N ₄ O ₃ C, 63.08; H, 3.40; N, 16.87 C ₂ , 1.5 H ₂ O (C, 82.89; H, 3.67; N, 16.09)
C ₂₁ H ₁₄ N ₆ O ₃ Cl ₂ . 0.6 H ₂ O. 0.06ジオキサン	C ₂₁ H ₁₆ N ₇ O ₃ Cl ₂ . 1.5 H ₂ O	C ₂₃ H ₁₆ N ₆ O ₃ Cl ₂ . 1.5 H ₂ O
固形泡状物	231-233	230-232
N-N 0'10	Cup.	ماره کی ا
127	128	120

実施例130

-4H-1, 2, 4-トリアゾール-4-イル]-2, 3 (1H, 4H)-キノキサリンジオンナトリウム塩

水酸化ナトリウム (1モル水溶液 0.959m1, 0.959ミリモル) を、
(一) −6, 7ージクロロー5ー[3ーメトキシメチルー5ー (3ーピリジル)
ー4H−1, 2, 4ートリアゾールー4ーイル] −2, 3 (1H, 4H) ーキノキサリンジオン (実施例 111を参照されたい) (0.428g, 0.959ミリモル) の水 (10m1) 中懸濁液に対して加え、そしてその混合物を0.5時間撹拌した。得られた溶液を濾過し、そして遮液を凍結乾燥させて、標題化合物 (0.43g,94%)を白色固体、mp260℃ (分解)として与えた。元素分析 (%):実測値:C,42.90;H,2.89;N,17.76。
Cπ Hn Cl₁N₅N a O₅.1.5H₁O計算値:C,42.78;H,3.17;N.17.61。

 $[\alpha]^{25} = -228^{\circ} (C=0.1, H_2O)$

実施例131

(-) -6, 7-ジクロロ-5-[3-メトキシメチル-5-(3-ピリジル)
 -4H-1, 2, 4-トリアゾール-4-イル] -2, 3 (1H, 4H) -キノキサリンジオンナトリウム塩の静脈内用製剤

静脈内注射によって $20 \, \text{mg/ml}$ 用量の活性成分を投与するのに適当な製利を、(一) -6, 7 - ジ - 0

製剤を製造するためには、適当な容器中において塩化ナトリウムを全容量の75%の水中に混合しながら溶解させる。次に、(-)-6,7-ジクロロ-5-[3-メトキシメチル-5-(3-ピリジル)-4H-1,2,4-トリアゾール-4-イル]-2,3(1H,4H)-キノキサリンジオンナトリウム塩,1

5 H: 〇を加え且つ混合することによって溶解させる。次に、その溶液を水で容量まで調製し、そして透明化用0.2 ミクロンフィルターを介して濾過する。その濾液を、最終透明化用フィルターを用いて無菌条件下で減菌10mlガラスアンプル中に充填し、そしてアンブルを密封する。

次の製造例は、前述の実施例で用いられたいくつかの中間体の合成を詳しく説明する。

製造例1

6, 7-ジクロロー2, 3-ジメトキシキノキサリン

ナトリウムメトキシドの溶液(メタノール中25%wt/v, 190mL, 8 80ミリモル)を、2, 3, 6, 7ーテトラクロロキノキサリン(106g, 4 00ミリモル)のメタノール(1400mL)中境絆懸濁液に対して窒素下の室温で滴加した。3日後、ナトリウムメトキシドの溶液(メタノール中25%wt/v, 40mL, 190ミリモル)に続いてテトラヒドロフラン(300mL)を加えた。その反応混合物を還流下で5分間加熱し、冷却し、減圧下で濃縮して少量にし、そして水(500mL)中に注いだ。その沈澱を濾過によって集め且つ水で洗浄して、標題化合物(97g, 95%)を桃色固体、mp144~146℃として与えた。

<u>H-NMR</u> (300MHz, CDC1₁): δ =4.14 (6H, s), 7.8 8 (2H, s).

m/z (サーモスプレー) 259 (MH)。

製造例2

6, 7-ジクロロー2, 3-ジメトキシー5-(4-ピリジル) キノキサリン

$$\begin{array}{c} \text{CI} \\ \text{N} \\ \text{OCH}_1 \\ \text{OCH}_2 \\ \text{OCH}_3 \\ \end{array}$$

(a) リチウムジイソプロビルアミドモノ (テトラヒドロフラン) (シクロへ キサン中1.5M, 6.18mL, 9.26ミリモル) を、6,7-ジクロロー 2、3-ジメトキシキノキサリン(製造例1、2、0g、7、72ミリモル)の 乾燥テトラヒドロフラン (150mL) 中撹拌懸濁液に対して窒素下において-78℃で加えた。-78℃で1時間後、ホウ酸トリメチル(1.47mL,2. 0g、19、3ミリモル) を加えた。その溶液を更に1時間撹拌した後、18時 間放置して室温に達しさせた。水(50mL)を加え、その溶液を2M塩酸水溶 液でpH1まで酸性にし、そしてジクロロメタン (3x150mL) で抽出した 。合わせた有機抽出物を乾燥させ(MgSO₄)目つ減圧下で滯縮した。その残 留物を、シリカゲル上において溶離剤としてジクロロメタン:メタノール(10 0:0~99:1 容量まで変化する) を用いる勾配溶離によるフラッシュクロマ トグラフィーによって精製して、6、7-ジクロロ-2、3-ジメトキシキノキ サリン-5-ホウ酸(0.610g, 26%)を淡褐色固体として与えた。 H-NMR (300MHz, DMSO-d₆): $\delta = 3.97$ (3H, s), 4 . 02 (3H, s), 7.88 (1H, s), 8.50 (2H, s).

(b) 2M炭酸ナトリウム水溶液 (1mL)、エタノール (0.5mL) およびトルエン (10mL) の混合物中の6,7ージクロロー2,3ージメトキシキノキサリンー5ーホウ酸 (0.27g,0.89ミリモル)、4ープロモピリジン (0.14g,0.89ミリモル) およびテトラキス (トリフェニルホスフィン) パラジウム (O) (0.031g,0.026ミリモル) の混合物を、釜業下の遷流下で24時間加熱した。冷却した後、その混合物を水(20mL)とジ

クロロメタン (20mL) とに分配した。相を分離し、そして水性相をジクロロ

メタン (3 x 5 0 m L) で抽出した。合わせた有機抽出物を乾燥させ (MgSO,) 且つ該圧下で濃縮して褐色固体を与え、これを、シリカゲル上においヘキサン: 酢酸エチル (3:1 容量) で溶離するフラッシュクロマトグラフィーによって精製して、標題化合物 (0.113g,38%) をベージュ色固体として与えた。

<u>H-NMR</u> (300MHz, CDC1₁): δ = 3. 80 (3H, s), 4. 1 7 (3H, s), 7. 30 (2H, d, J=5Hz), 7. 97 (1H, s), 8. 73 (2H, d, J=5Hz).

m/z (サーモスプレー) 336 (MH)。

製造例3~5

次の表で示された化合物を、製造例2のb部分の場合と同様の方法によって、 6,7-ジクロロー2,3-ジメトキシキノキサリンー5-ホウ酸、および4-プロモビリジンの代りの適当な複素深式臭化物(R-Br)を用いて製造した。

製造例 番号 3	R	¹ H NMR (300 MHz, CDCl ₃) および m/z δ = 3.77 (3H, s), 4.14 (3H, s), 7.35 (2H, m), 7.80 (1H, m), 7.97 (1H, s), 8.77 (1H, d, J=5Hz). (サーモスプレー) 338 (MH ²)
4		δ = 3.77 (3H, s), 4.15 (3H, s), 7.38 (1H, t, J=3Hz), 8.00 (1H, s), 8.95 (2H, d, J=3Hz). (サーモスプレー) 337 (MH*)
5	x = x	る = 3.89 (3H,s), 4.19 (3H,s), 8.02 (1H,s), 8.83 (2H,s), 9.26 (1H,s), (サーモスプレー) 337 (MH ⁺)

製造例6

6. 7-ジクロロ-2. 3-ジメトキシキノキサリン-5-カルボン酸

リチウムジイソプロピルアミドモノ(テトラヒドロフラン)(シクロへキサン中1.5M, 15.5mL, 23.3ミリモル)を、6,7ージクロロー2,3ージメトキシキノキサリン(製造例1,5.0g,19.3ミリモル)の乾燥テトラヒドロフラン(150mL)中撹拌懸濁液に対して窒素下において一78℃で加えた。その反応混合物をこの温度で1時間撹拌した後、その溶液中に無水工酸化炭素を一78℃で1時間通気した。飽和塩化アンモニウム水溶液(80mL)を加え、そして得られた混合物を室温に達しさせ、2M塩酸水溶液を用いてり出まで酸性にし、そして酢酸エチル(3x50mL)で抽出した。次に、合わせた有機抽出物を1M水酸化ナトリウム水溶液で抽出した。その水溶液を、2M塩酸水溶液を用いてpH1まで酸性にし、そしてジクロロメタン(3x50mL)で抽出した。合わせたジクロロメタン抽出物を乾燥させ(MgSO₁)且つ減圧下で濃縮して、標題化合物(4.0g,68%)を淡褐色固体,mp230~232℃として与えた。

<u>H-NMR</u> (300MHz, DMSO-d_s): δ=3.98 (3H, s), 4
.04 (3H, s), 8.02 (1H, s), 13.85 (1H, br s)。
製造例7

6,7-ジクロロ-2,3-ジメトキシ-5-(N-メチルカルバモイル)キノ キサリン

6、7ージクロロー2、3ージメトキシキノキサリンー5ーカルボン酸(製造例6、0.890g、2.93ミリモル)のジクロロメタン(25mL)中、窒素下室温浴液に対して、乾燥N、Nージメチルホルムアミド(50 u L、47.

2mg、0.64ミリモル)に続いて塩化オキサリル (0.338mL、3.8 ミリモル)を加えた。0.5時間後、その混合物を減圧下で濃縮した。その残留物に対して窒素下の室温で、ジクロロメタン (10mL) に続いてメチルアミン (エタノール中33%w/w溶液、10mL、80.3モル)を加えた。10分後、その混合物を減圧下で蒸発させ、そして残留物をジクロロメタン (20mL) と1 M塩酸水溶液とに分配した。有機抽出物を乾燥させ (MgSOn) 且つ減圧下で蒸発させた。その残留物を、シリカゲル上において溶離剤としてジクロロメタン:メタノール (100:0~99:1容量まで変化する)を用いる勾配溶離によるフラッシュクロマトグラフィーによって精製して固体を与え、これをトルエンから再結晶させて、標題化合物 (0.570g,61%)を白色固体として与えた。

 $\frac{1}{H-NMR}$ (300MHz, CDCl₃): δ = 3. 11 (3H, d, J=3Hz), 4. 10 (3H, s), 4. 05 (3H, s), 5. 87 (1H, brd, J=3Hz), 7. 87 (1H, s)。
m/z (サーモスプレー) 316 (MH)。

製造例8

6,7-ジクロロ-2,3-ジメトキシ-5-(1-メチル-1H-テトラゾール-5-イル)キノキサリン

玉塩化リン (0. 136g, 0. 65ミリモル)を、6, 7ージクロロー2, 3ージメトキシー5ー (Nーメチルカルパモイル) キノキサリン (製造例7, 0. 197g, 0. 62ミリモル) のトルエン (7mL) 中溶液に対して加え、そし

てその混合物を窒素下の還流下において1時間加熱した。その反応を室温まで冷

却し、そしてアジ化トリメチルシリル(123μ L, 0.107g, 0.93「リモル)を加えた。室温で18時間撹拌した後、希アンモニア水溶液(20mL)を加え、そしてその混合物をジクロロメタン(3x50mL)で抽出した。合わせた有機抽出物を乾燥させ($MgSO_4$)且つ減圧下で蒸発させた。その残留物を、シリカゲル上においてジクロロメタンで溶離するフラッシュクロマトグラフィーによって特製して、標類化合物(0.080g, 38%)を白色固体として与えた。

iH-NMR (300MHz, CDC1;): δ =3.84 (3H, s), 3.9 0 (3H, s), 4.14 (3H, s), 8.15 (1H, s)。 m/z (サーモスプレー) 341 (MH;)。

製造例9~17

次の表で示された化合物を、製造例7および8の場合と同様の方法によって、 6,7-ジクロロー2,3-ジメトキシキノキサリンー5-カルボン酸、および メチルアミンの代りの適当な第一アミン(R-NH₁)を用いて製造した。

製造例8からの変更	フラッシュクロマトグラフィー	せず。酢酸エチルで研和。		a a					
'H NMR (300 MHz, CDCls) および m/z	8 = 1.18 (3H, m), 1.50 (1H, m), 1.72 (4H, m). 1.94 (2H, m), 3.68 (3H,s), 4.06 (3H, s), 4.08	(1H,m), 8.32 (1H, s). (サーモスプレー) 409 (MH*)	5 = 3.18 (2H, m), 3.76 (3H, s), 4.16 (3H, s), 4.40 (2H, m), 6.92 (2H, m), 7.10 (3H, m), 8.10 (1H, s). (サーモスプレー) 431 (MH [*])	\$ = 3.64 (3H, s), 3.86 (3H, s), 4.18 (3H, s), 4.84 (1H, d, J=18Hz), 5.10 (1H, d, J=18Hz),	8.12 (1H, s). (サーモスプレー) 399 (MH*)	5 = 1.58 (6H, m), 3.80 (3H, s), 4.18 (3H, s), 4.28 (1H, m), 8.14 (1H, s).	(サーモスプレ→) 369 (MH*)	8 = 1.46 (3H, t, J=10Hz), 3.82 (3H, s), 4.16 (3H, s), 4.20 (2H, m), 8.16 (1H, s).	(サーモスプレ→) 355 (MH*)
R	Ç			too'cu		je	⊢	-CH-CH	,
数邮金	G		10	=		12		13	

14	(S= 3.64 (3H, s), 4.14 (3H, s), 5.26 (1H, d,	
		J=18Hz), 5.44 (1H, d, J=18Hz), 6.84 (2H, m),	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7.12 (3H, m), 8.06 (1H, s).	
	,	(サーモスプレー) 417 (MH*)	
15		8 = 3.14 (3H, s), 3.66 (2H, m), 3.80 (3H, s),	
!	Ç	4.14 (3H, s), 4.24 (1H, m), 4.40 (1H, m), 8.12	
	HOO!	(1H, s).	
		(サーモスプレー) 385 (MH*)	
16		5 = 3.80 (3H, s), 4.12 (3H, s), 7.38 (5H, m),	Spherisorb (商標) S50DS2 カラム
!		8.06 (1H, s).	上で70:30容量の水:メタノールで
		(サーモスプレー) 403 (MH")	容離する逆相分離用高性能液体クロ
			マトグラフィーによって単離された
17		8 = 3.82 (3H, s), 4.16 (3H, s), 4.88 (2H, q,	クロマトグラフィー溶離剤:
	-CH2CF3	J=8Hz), 8.18 (1H, s).	1:1~3:7容量まで変化するヘキサン
		(サーモスプレー) 409 (MH)	:ジクロロメタンを用いる勾配溶盤

製造例18

6,7-ジクロロ-2,3-ジメトキシ-5-(N-アリルカルバモイル)キノキサリン

標題化合物を、製造例7の場合と同様の方法によって、メチルアミンの代りに アリルアミンを用いて製造した。

 1 H-NMR (300MHz, CDCl₃): δ = 4. 10 (3H, s), 4. 1 4 (3H, s), 4. 19 (2H, m), 5. 10 (1H, d, J=10Hz), 5. 38 (1H, dd, J=2, 10Hz), 5. 85 (1H, br s), 6. 00 (1H, m), 7. 88 (1H, s). m/z (4 - 4 - 4 - 5 - $^{$

製造例19

6,7-ジクロロ-2,3-ジメトキシ-5-(1-アリル-1H-テトラゾー ル-5-イル) キノキサリン

標題化合物を、製造例8の場合と同様の方法によって、6, 7ージクロロー2, 3ージメトキシー5ー(Nーメチルカルパモイル) キノキサリンの代りに6, 7ージクロロー2, 3ージメトキシー5ー(Nーアリルカルパモイル) キノキサリンを用いて製造した。

H-NMR (300MHz, CDC1₃): δ =3.80 (3H, s), 4.1 4 (3H, s), 4.80 (2H, m), 5.02 (1H, m), 5.16 (1

H, m), 5. 80 (1H, m), 8. 10 (1H, s). $m/z \ (\forall \neg \forall \exists \exists \forall \nu \neg) \ 367 \ (MH \overset{.}{)} \ .$

製造例20

6, 7-ジクロロ-2, 3-ジメトキシ-5-[1-(3-ヒドロキシプロピル)-1H-テトラゾールー5-イル]キノキサリン

9ーボラビシクロ [3.3.1] ノナン (テトラヒドロフラン中0.5M,9.1mL,4.55ミリモル)を、6,7ージクロロー2,3ージメトキシー5ー (1ーアリルー1Hーテトラゾールー5ーイル)キノキサリン (製造例19,0.67g,1.82ミリモル)の乾燥テトラヒドロフラン (15mL)中撹拌 懸濁液に対して窒素下の室湿で滴加した。その反応混合物を遷流下で18時間加熱し、トリメチルアミンーNーオキシド (1.03g,13.7ミリモル)を、その冷却反応混合物に対して少量ずつ加え、そしてその混合物を遷流下で2時間加熱した後、減圧下で濃縮した。その残留物を、シリカゲル上においてジクロロメタン:メタノール (100:0~99.5:0.5容量まで変化する)を用いる勾配溶離によるフラッシュクロマトグラフィーによって精製して、標題化合物 (0.510g,73%)を白色固体,mp188~189℃として与えた。 H-NMR (300MHz,CDCl₃): $\delta=2.04$ (2H,m),3.60(2H,m),3.82 (3H,s),4.16 (3H,s),4.30 (2H,m),8.12 (1H,s)。m/z (サーモスプレー)769 (MH)。

製造例21

6, 7-ジクロロー2, 3-ジメトキシー5-[1-(2-ヒドロキシエチル) -1H-テトラゾールー5-イル] キノキサリン

水素化ジインプチルアルミニウム(テトラヒドロフラン中1M, 0.7mL, 0.7sリモル)を、6,7ージクロロー2,3ージメトキシー5ー(1ーメトキシカルボニルメチルー1Hーテトラゾールー5ーイル)キノキサリン(製造例11,0.126g,0.32ミリモル)のジクロロメタン(15mL)中撹拌溶液に対して窒素下において一78℃で滴加した。1時間後、その反応混合物を窒温まで暖め、そして水素化ジイソプチルアルミニウム(テトラヒドロフラン中1M,0.7mL,0.7sリモル)を加え、続いて30分後に更に水素化ジイソプチルアルミニウム(テトラヒドロフラン中1M,0.7mL,0.7sリモル)を加えた。更に0.25時間後、飽和塩化アンモニウム溶液(20mL)をその混合物に対して加え、そして水性相をジクロロメタン(2×25mL)で抽出した。合わせた有機抽出物をプライン(50mL)で洗浄し、乾燥させ(MgSO、)、そして減圧下で濃縮した。その残留物を、シリカゲル上においてジクロロメタン:メタノール(99:1容量)で溶離するフラッシュクロマトグラフィーによって精製して、標題化合物(93mg,79%)を白色固体として与えた。

 $\frac{1}{H-NMR}$ (300MHz, CDCl₃): $\delta = 3$. 84 (3H, s), 4. 0 8 (2H, m), 4. 18 (3H, s), 4. 28 (2H, m), 8. 14 (1 H, s),

m/z (サーモスプレー) 371 (MH)。

製造例22

6、7ージクロロー2、3ージメトキシー5ー[4ー(2ーヒドロキシエチル)

-4H-1, 2, 4-トリアゾール-3-イル] キノキサリン

(a) 五塩化リン(0.67g, 3, 22ミリモル)を、6, 7ージクロロー 2、3-ジメトキシ-5- (N-アリルカルバモイル) キノキサリン (製造例1 8. 1. 0g, 2. 93ミリモル)のトルエン(40mL)中撹拌懸濁液に対し て室温で加えた後、還流下で1時間加熱した。冷却した後、ホルミルヒドラジン (0.585g、8.79ミリモル) およびトリエチルアミン (0.592g、 8. 79ミリモル)を加え、そしてその混合物を還流下で1時間加熱した。冷却 した後、その混合物を酢酸エチル(60mL)と10%w/w炭酸カリウム水溶 液(60mL)とに分配した。相を分離し、そして水性相を酢酸エチル(2x4 0mL) で抽出した。合わせた有機抽出物を乾燥させ(MgSO4) 且つ減圧下 で濃縮した。その残留物を、シリカゲル上においてトルエン:酢酸エチル(1: 10~1:1容量まで変化する)を用いる勾配溶離によるフラッシュクロマトグ ラフィーによって精製して、6,7-ジクロロ-2,3-ジメトキシ-5-(4 $- r y \nu - 4 H - 1$, 2, $4 - r y r y - \nu - 3 - 4 \nu$) $+ j + y + y \nu$ (0. 1) 12g, 10%) を白色固体, mp206~208℃として与えた。 H-NMR (300MHz, CDC13): $\delta = 3$, 88 (3H, s), 4. 1 4 (3H, s), 4. 37 (2H, d, J=3Hz), 5. 16 (2H, m), 5. 79 (1H, m), 8. 06 (1H, s), 8. 34 (1H, s).

m/z (サーモスプレー) 366 (MH)。

(b) 6, 7 -ジクロロー2, 3 -ジメトキシー5 - (4 - アリルー4 H - 1 , 2, 4 - トリアゾールー3 - イル) キノキサリン (0. 1 g, 0. 2 7 3 ミリモル) のジクロロメタン (3 m L) 中溶液を- 7 0 ℃まで冷却し、そしてオゾン/酸素流を0. 5 時間通過させた。次に、窒素流を0. 2 5 時間通過させた後、メタノール (3 m L) および水素化ホウ素ナトリウム (0. 0 2 6 g, 0. 6 8 3 ミリモル) を加えた。室温まで加湿した後、その混合物をジクロロメタン (1 0 m L) とブライン (1 0 m L) とに分配した。相を分離し、そして水性相を酢酸エチル (2 x 1 0 m L) で抽出した。合わせた有機抽出物を乾燥させ (M g S O₁) 且つ減圧下で濃縮した。その残留物を、シリカゲル上において酢酸エチル :メタノール (1 0 0 : 0 ~ 9 5 : 5 容量まで変化する) を用いる勾配溶離によるフラッシュクロマトグラフィーによって精製して、標題化合物 (0. 0 4 2 g , 4 0 %) をオフホワイト固体,m p 2 1 2 ~ 2 1 4 ℃として与えた。

H - NMR (3 0 0 M H z , C D C 1₁) : δ = 3. 7 8 (2 H , m) , 3. 8

<u>H-NMR</u> (300MH₂, CDCl₃): δ = 3. 78 (2H, m), 3. 8 7 (3H, s), 3. 92 (2H, m), 4. 18 (3H, s), 8. 07 (1 H, s), 8. 63 (1H, s), m/z (ψ - \pm 27 ν -) 370 (MH^{*}).

製造例23

6,7-ジクロロ-2,3-ジメトキシ-5-(4-メチル-4H-1,2,4 -トリアゾール-3-イル)キノキサリン

標題化合物を、製造例22の工程(a) の場合と同様の方法によって、6,7 ージクロロー2,3ージメトキシー5-(Nーアリルカルパモイル)キノキサリンの代りに6,7ージクロロー2,3ージメトキシー5-(Nーメチルカルパモイル)キノキサリン(製造例7)を用いて製造した。シリカゲル上においてトル エン: 酢酸エチル (1:1~0:1容量まで変化する) を用いる勾配溶離による フラッシュクロマトグラフィーによる精製は、オフホワイト固体を与えた。

<u>H-NMR</u> (300MHz, CDCl₁): δ = 3. 52 (3H, s), 3. 8 (3H, s), 4. 17 (3H), 8. 07 (1H, s), 8. 37 (1H, s),

m/z (サーモスプレー) 340 (MH)。

製造例24

6, 7-ジクロロー2, 3-ジメトキシキノキサリン-5-カルボキサミド

$$\begin{array}{c} \text{O} \\ \text{CI} \\ \text{N} \\ \text{OCH}, \end{array}$$

標題化合物を、製造例7の場合と同様の方法によって、メチルアミンの代りに 気体アンモニアを用いて製造して、淡黄色固体を与えた(処理中にクロマトグラ フィーは必要なかった)。

 1 H-NMR (300MHz, DMSO-d_s) : δ =4.00 (3H, s), 4 .06 (3H, s), 7.80 (1H, br. s), 7.92 (1H, br. s), 8.00 (1H, s)_a

m/z (サーモスプレー) 302 (MH)。

製造例25

6, 7-ジクロロー2, 3-ジメトキシー5 - (2-メチルー2H-1, 2, 4 -トリアゾールー3-イル) キノキサリン (異性体1) および6, 7-ジクロロ -2, 3-ジメトキシー5 - (1-メチルー1H-1, 2, 4-トリアゾールー 3-イル) キノキサリン (異性体2)

 $^{\prime}$ H-NMR (300MHz, CDC1,) : δ = 3. 18 (3H, s), 3. 2 4 (3H, s), 4. 09 (3H, s), 4. 15 (3H, s), 7. 88 (1 H, s), 8. 62 (1H, s). m/z ($^{\prime}$ - $^{\prime}$ -

(b) N^1 , N^1 – ジメチル $-N^2$ – [6, 7-ジクロロー2, 3-ジメトキシキノキサリン-5 – (7-3) – (7

で懸満させ、そして水素化ナトリウム(油中80%w/w分散液,0. 122g,4. 08ミリモル)で処理した。0. 25時間撹拌した後、ヨードメタン(0. 579g,4. 08ミリモル)を加え、そしてその混合物を50℃で6時間加熱した。その混合物を冷却し、濾過し、そして濾液を減圧下で濃縮した。その残留物をジクロロメタン(80mL)とだ分配した。相を分離し、そして水性相をジクロロメタン(2×80mL)で抽出した。合わせた有機抽出物を乾燥させ(MgSO+)且つ減圧下で濃縮した。その残留物を、シリカゲル上においてトルエン:酢酸エチル(4:1~1:1容量まで変化する)を用いる勾配溶離によるフラッシュクロマトグラフィーによって精製して、最初に溶離される生成物として、6,7ージクロロー2,3ージメトキシー5ー(2ーメチルー2Hー1,2,4ートリアゾールー3ーイル)キノキサリン(0. 18g,10%)として暫定的に与えられる異性体1を白色固体,mp208~210℃として与えた。

 $\frac{1}{H-NMR}$ (300MHz, CDC1:) : $\delta = 3.73$ (3H, s), 3.8 9 (3H, s), 4.18 (3H, s), 8.10 (1H, s), 8.13 (1 H. s).

m/z (サーモスプレー) 340 (MH^{*})。

次に溶離される生成物である、6, 7 ージクロロー 2, 3 ージメトキシー5 ー (1 ーメチルー1 H ー 1, 2, 4 ートリアゾールー3 ーイル) キノキサリン(0 . 11 g, 6 %)として暫定的に与えられる異性体 2 は、白色固体, m p 18 4 ~ 18 6 % として得られた。

<u>H-NMR</u> (300MHz, CDCl₁): δ = 3. 90 (3H, s), 4. 0 9 (3H, s), 4. 16 (3H, s), 8. 02 (1H, s), 8. 28 (1 H, s),

m/z (サーモスプレー) 340 (MH)。

製造例26

5-アミノー6、7-ジクロロー2、3-ジメトキシキノキサリン

$$\begin{array}{c} CI \\ \longrightarrow \\ NH_2 \\ \longrightarrow \\ CI \\ \longrightarrow \\ NH_2 \\ \longrightarrow \\ CI \\ \longrightarrow \\ NH_2 \\ \longrightarrow$$

(a) 6, 7-ジクロロー5ーニトロー2, 3 (1 H, 4 H) ーキノキサリンジオン (WO - A - 94/00124号の実施例1, 8 4 g, 0 . 3 4 モル)、塩化チオニル (8 4 0 m L) およびジメチルホルムアミド (0 . 5 m L) の混合物を、還流下で3時間加熱し、冷却し、そして減圧下で濃縮した。酢酸エチル (3 0 0 m L) を加え、そして減圧下の蒸発によって除去した後、この手順を石油エーテル (b p 1 0 0 \sim 1 2 0 \circ 0 で繰返した。固体残留物を石油エーテル (b p 1 0 0 \sim 1 2 0 \circ 0 から再結晶させて、2, 3, 6, 7 - 7 トラクロロー5 - ニトロキノキサリン (7 8 g, 7 3 %) を淡黄色固体として与えた。

 1 H-NMR (300MHz, CDC1₈): δ =8.6 (1H, s).

(b) 塩化スズ (II) 二水和物 (346.3g, 1.54モル)を、2,3,6,7ーテトラクロロー5ーニトロキノキサリン (96.2g,0.31モル)の酢酸エチル (1.8L) 中溶液に対して加えた。その混合物を遷流下で4時間加熱し、冷却し、そして過剰の飽和重炭酸ナトリウム水溶液中に注意深く注いだ。その混合物を、セライト (CELITE) (商標)を介して濾過し、酢酸エチルで充分に洗浄した。濾過ケーキを追加の酢酸エチルで浸軟させ、そしてその固体材料を濾去した。合わせた酢酸エチル相を乾燥させ (MgSO。) 且つ減圧下で濃縮して、5ーアミノー2,3,6,7ーテトラクロロキノキサリン (73.4g,84%) を黄色固体として与えた。

<u>H-NMR</u> (300MHz, CDC1₃) : $\delta = 5$. 45 (2H, br, s),

7. 47 (1H, s).

m/z (サーモスプレー) 385 (MH)。

(別の製造において、この還元工程は、水性酢酸中において鉄やすり屑を用いて 行われた)。

(c) ナトリウムメトキシドの溶液(メタノール中25%w/w, 274mL, 1.28 モル)を、5 ーアミノー2, 3, 6, 7 ーテトラクロロキノキサリン (72.4g, 0.256 モル)の乾燥メタノール (1L)中懸濁液に対して加え、そして得られた混合物を還流下で30分間加熱した。その混合物を冷却し、減圧下で濃縮し、そして残留物を水と酢酸エチルとに分配した(合計8L)。有機抽出物を乾燥させ(MgSO₁)且つ減圧下で濃縮した。程生成物をメタノールで研和した後、ジクロロメタン(2L)中に溶解させ、そして濾過した。その濾液を減圧下で濃縮して、標題化合物を黄色固体(55.0g, 79%)として与えた。

'H-NMR (300MHz, CDC1₁): δ=4. 13 (3H, s), 4. 1 4 (3H, s), 5. 07 (2H, br s), 7. 26 (1H, s)。 m/z (サーモスプレー) 274 (MH)。

製造例27

6, 7-ジクロロ-2, 3-ジメトキシ-5-[3-(3-クロロフェニル) -5-メチル-4H-1, 2, 4-トリアゾール-4-イル] キノキサリン

(a) 塩化アセチル (5. 71mL, 6. 30g, 80. 3ミリモル) を、5

-アミノ-6, 7-ジクロロ-2, 3-ジメトキシキノキサリン(製造例26,

20. 49g, 64. 8ミリモル)のトルエン (500mL) 中で満しく撹拌された懸濁液に対して加え、そして得られた混合物を壊滅下で2時間加熱した。冷却した後、その生成物を濾過によって集め、トルエンで洗浄し、そして吸引によって15時間乾燥させて、5ーアセトアミドー6, 7ージクロロー2, 3ージメトキシキノキサリン (20. 49g, 89%)をベージュ色固体として生成した

<u>H-NMR</u> (300MHz, DMSO-d_{*}): δ = 2. 11 (3H, s), 4. 04 (3H, s), 4. 05 (3H, s), 7. 91 (1H, s), 9. 80 (1H, s).

m/z (サーモスプレー) 316 (MH)。

(b) 5-アセトアミドー6, 7-ジクロロー2, 3-ジメトキシキノキサリン (20.49g, 64.8ミリモル)を、2, 4-ピス (4-メトキシフェニル) -1, 3-ジチアー2, 4-ジホスフェタン-2, 4-ジスルフィド (ローソン試薬) (15.7g, 38.9ミリモル)のトルエン (432m1)中撹拌 懸濁液に対して窒素下の室温で加えた。その混合物を遷流温度まで25分間暖め且つその温度で更に90分間維持した。冷却した後、その混合物を減圧下で濃縮し、そして残留物を、シリカゲル上においてジクロロメタンで溶離するフラッシュクロマトグラフィーによって精製した。6, 7-ジクロロー2, 3-ジメトキシー5-チオアセトアミドキノキサリン (17.54g, 81%)を黄色泡状物として得た。

H-NMR (300MHz, DMSO-d_e): δ = 2. 70 (3H, s), 3. 99 (3H, s), 4. 05 (3H, s), 8. 05 (1H, s), 11. 74 (1H, s),

m/z (サーモスプレー) 332 (MH)。

(c) 6, 7ージクロロー2, 3ージメトキシー5ーチオアセトアミドキノキ サリン (250mg, 0. 753ミリモル)、3ークロロベンズヒドラジド(1 67mg, 0. 978ミリモル)、酸化水銀(II) (163mg, 0. 753ミ リモル)、粉末4Åモレキュラーシーブ(175mg)およびローブタノール(7mL)の混合物を、遷流下で18時間加熱した。冷却した後、その混合物を、 アーボセル (ARBOCEL) (商標) 護過助剤を介して護過し、そしてその残留物をジクロロメタンで洗浄した。 遮液を減圧下で濃縮して緑色固体を与え、これをジクロロメロタン中に溶解させ、2 M塩酸水溶液に続いてプラインで2回洗浄した後、乾燥させ (Mg S O4) 且つ減圧下で濃縮した。その残留物を、シリカゲル上においてジクロロメタン:メタノール (98:2容量) で溶離するフラッシュクロマトグラフィーによって精製して、標題化合物 (120 mg, 35%) を淡黄色固体として与えた。

<u>H-NMR</u> (300MHz, CDC1₃): δ=2. 21 (3H, s), 3. 8 4 (3H, s), 4. 14 (3H, s), 7. 13 (2H, s), 7. 25 (1 H, 不明瞭), 7. 49 (1H, s), 8. 08 (1H, s)。 m/z (サーモスプレー) 450 (MH)。

製造例28~95

次の表で示された化合物を、製造例 2 7 の場合と同様の方法によって、5 - 7 = 1 - 6 + 7 - 3 + 9 +

ヒドラジドの参考文献	τ		,
工程(c)の処理お よびクロマトグラ フィー溶離剤変更	酸洗净柱ず	酸洗净セず	
¹H-NMR (300 MHz, CDCls) またはm/zまたは元素分析(96)	5 = 1.24 (3H, L. J=BH2), 2.46 (1H, dq, J=16, BH2), 2.59 (1H, dq, J=16, BH2), 3.88 (3H, s), 4.16 (3H, s), 7.24 (1H, m), 7.86 (1H, m), 8.09 (1H, s), 8.43 (1H, br. s), 8.51-8.56 (1H, m), m/2 (φ → εχ-γν-λ-431 (MH1),	δ = 1.18 (3H, t, J=8Hz), 2.12 (3H, s), 2.36-2.50 (2H, m), 3.84 (3H, s), 4.18 (3H, s), 8.09 (1H, s). m/z (ザーモスプレー) 368 (MH ⁺).	5 = 1.20 (34), 1.9=812, 2.47 (14), dq, 1= 16, 842), 2.88 (14), dq, J=15, 842), 3.38 (34), s), 3.89 (34), s), 4.10 (34), s), 6.63 (14), d. 3-842), 6.86 (14), J=942), 7.23 (14), m. 7-398 (17), 7-48 (14), d, 1.3-942), 7.94 (14), s), m2 (φ-ε-ε-χ-γ-λ-φ) 460 (MH*).
mp (°C)			
製造 酸塩化物 ヒドラジド mp (°C) 例番 からのR ^A からのR ^B 号	N N	-CH ₃	CH,0
酸塩化物 からのR ^A	CH ₃ CH ₂	СН3СН2-	CH ₃ CF ₂ -
数例号	28	29	30

	,	製造例121	ı	Euc. J. Med. Chem. 1994, 389.
-1	1 .	1	酸洗净吐ず	酸洗净让ず
δ = 1.24 (3H, t, J=8H2), 2.48·2.58 (2H, m), 3.98 (3H, s), 4.13 (3H, s), 7.05 (1H, m), 7.29 (3H, m, 不明難), 7.98 (1H, s), miz (9ε×ブレ-) 460 (MH [†]).	8 = 1.24 (3H, t, J=8Hz), 2.55 (2H, m), 3.89 (3H, s), 4.19 (3H, s), 8.09 (1H, s), 8.11 (1H, s). mz (Φ-πεχ7υ-) 354 (MH [*]).	\$ = 1.24 (3H t, J=8Hz), 2.50 (2H, m), 3.81 (3H, s), 4.17 (3H, s), 4.21 (3H, s), 5.29 (1H, s), 5.44 (1H, s), 7.19 (1H, s), 8.08 (1H, s), miz (σ-ελ7υ-) 433.6 (MH).	δ = 1.18 (3H, t, J=8H2), 1.39 (6H, s), 2.44 (2H, m), 3.38 (2H, q, J=12H2), 3.86 (3H, s), 4.18 (3H, s), 8.15 (1H, s). mZc (θ - ε×2ν - J 410.6 (MH)).	δ = 1.20 (3H, I, J=8Hz), 2.21 (2H, br 0, 2.49 (2H, m), 3.21 (2H, br d), 3.51 (2H, m), 3.83 (3H, s), 4.18 (3H, s), 8.19 (1H, s). m/z (9 − € x √ 1 − √ 452.9 (MH ²).
l .	•	T		
	×	₹ - z - z	Clłącl¹²- 🎷 N(CH₃)²	Z°
CH3CH2-	CH3CH2-	CH3CH2-	CI43CI42-	CH3CH2-
31	32	33	£	35

酸光浄せず。 99:1容量の酢酸エ チル:メタノール	後洗浄せず。 Aust.J. Chem. 99:1容量の酢酸ユ 3 <u>8</u> (10), 1491 チル:メタノール (1985)	酸沈浄せず。 Chem.Absir 103, 104893e 酢酸エチル (1985)	製造例117	陵 冼净せず。
	8 = 2.13 (3H.s), 3.77 (3H. s), 4.11 (3H. 機改 s), 7.07 (1H, m), 7.67 (1H. t, J=8Hz), 7.98 (1H, d, J=5Hz), 8.05 (1H. s), 8.28 (1H. d, J=8Hz), m.7 (Hr. s), 8.28 デル miz (サーモメブレー) 417 (MH ⁺).		\$ = 2.27 (3H. s), 377 (3H. s), 4.14 (3H. s), 7.09 (1H, t, 4=5Hz), 8.05 (1H. s), 8.50 (2H, d, 4=5Hz), m7z (Φ - € χ J - J + 18 (MH*).	5 = 2.23 (34.s), 3.85 (34.s), 4.17 (34.) 酸的 8), 7.25 (14.m), 7.88 (14.m), 8.08 (14.s), 8.43 (14.m), 8.02 m), 29 ーモスフレー 417 (M4.).
		200- 202 (分解)	-	183- 1
\[\]		Z J		2
CH ₃ -	Cl:l3-	CI-l3-	CI-I ₃ -	CH ₃ -
36	37	38	SE SE	40

	関発等はず。
	(3H, s), 4.13 (3H, s), 7.69 (1H, s), 8.08 (3H, s), 4.13 (3H, s), 7.69 (1H, s), (1H, s).
	モスプレ リ 437 (MH*).
,	8=2.20 (3H,s), 3.86 (3H, s), 3.99 聚杂净中学
	(3H, s), 4.12 (3H, s), 5.4 (1H, m), 5.85
	1H, m), 6.65 (1H, m), 8.10 (1H, s).
	m/z (サーモスプレー) 419 (MH*).
1	5=2.16(3H, s), 3.74 (3H, s), 4.08 ヘキサン: 酢酸 J. Am Chem.
	3
	m/z (サーモスブレー) 418 (MH*).
	5=2.27 (3H,s), 2.71 (3H, s), 3.89
	4.15 (3H, s), 8.00 (1H, s), 8.08
	(1H, s).
	m/z (サーモスプレー) 437 (MH*).
	8=2.16(3H, s), 3.75(3H, s), 4.12 酸洗净セず。 J. Am. Chem.
	1H, s), 4.17 (1H, s), 6.91 (1H, t,
	J=4Hz), 7.26 (1H, 不明瞭), 7.42 [1933 (1953).
	(1H, t, J=4Hz), 8.00 (1H, s).
	mfz (サーモスプレー) 430.8 (MH*).

製造例120	J. Am. Chem. Soc., 1953, 1933.	,	-	,
酸光净せず。	酸光净せず。	11	,	1
8 = 2.16 (3H s), 3.76 (3H s), 3.78 (1H d, J=1912), 4.05 (1H d, J=1514), 4.17 (3H, s), 6.96 (1H, m), 7.30 (1H, d, J=9H2), 7.86 (1H, s), 8.06 (1H, s), 8.14 (1H, s), 8.06 (1H, s), m? 4 8.27 \rangle 9.430 (MHT).	5 = 2.17 (3H, s), 3.76 (3H, s), 3.80 (1H, d, J=18H2), 4.01 (1H, d, J=18H2), 4.77 (3H, s), 6.79 (2H, d, J=5H2), 8.05 (1H, s), 8.22 (2H, d, J=16H2) miz (Φ-ε.π7ν-) 431.0 (MH ³).	5 = 2.20 (3H, s), 2.22 (3H, s), 3.80 (3H, s), 4.16 (3H, s), 5.19 (1H, 幅広 s), 8.08 (1H, s), m/z (ヤーモスプレー) 420.0 (MH [*]).	8 = 2.28 (3H, s), 3.03 (3H, s), 3.81 (3H, s), 4.18 (3H, s), 8.18 (1H, s) m/z (# - εχτν -) 437.6 (MH ³).	5 = 2.29 (3H s), 4.00 (3H, s), 4.15 (3H s), 7.09 (1H, t, J=6Hz), 7.25 (2H, m, πyage,), 7.34 (1H, d, J=8Hz), 8.01 (1H, s), miz (Φ - ₹.χ τ ν -) 451.2 (MH ⁺).
ı	1	17		•
2	z 🔍	z To	Z S	
EHO CH	- SIO	Cl-ls-	CH ₃ -	- CH ₃ -
46	47	48	49	20

,	製造例118		製造例119	J. Prak. Chem., 1932, 133
× ,	酸洗净せず。	, ,- (-	酸洗净せず。	酸洗净せず。
δ = 2.23 (3H, s), 2.46 (3H, s), 3.97 (3H, s), 4.17 (3H, s), 6.89 (2H, s), 7.18 (3H, s), 7.99 (1H, s). m/z (Ψ - ₹ χ τ ν -) 429.2 (MH [†]).	8 = 2.22 (3H, s), 2.68 (3H, s), 3.96 (3H, s), 4.15 (3H, s), 6.96 (1H, m), 7.35 (1H, d, J= 8Hz), 8.01 (1H, s), 8.42 (1H, d, J= Hz), m/z (θ-π, π/z) (MH [*]).	5 = 2.26 (5H.5), 3.36 (3H.5), 3.91 (3H.5), 4.11 (3H.5), 6.02 (1H.4 J=8H.5), 6.96 (1H.4, J=5H.5), 7.57 (1H.5), 7.51 (1H.4, J=8H.2), 7.97 (1H.5), 7.57 (1H.4), 4.84 (1H.5), 7.97	5 = 2.21 (3H.s), 2.49 (3H.s), 3.82 (3H.s), 4.16 (3H.s), 7.19 (1H.s), 8.03 (1H.s). m/z (サーモスプレー) 420.0 (MH ⁺).	5 = 2.21 (3H, s), 2.48 (3H, s), 3.83 (3H, s), 4.16 (3H, s), 7.11 (1H, d, J=8Hz), 7.83 (1H, d, J=8Hz), 8.06 (1H, s), 8.17 (1H, s). πfz (θ-εχ7υ-) 431.1 (MH ³).
•	. 1		1	
CII ₅	Z HO	OII,0	CH,	-CH ₃
CH ₃ -	CH ₃ -	CH ₃ -	CH ₃ -	CH ₃ -
51	52	53	54	55

	1 ~			
	Bull_Pharm. Sci_Assiut Univ., 13(2), 145 (1990).	,	製造例123	* .
酢酸エチル	酢酸エチル	ヘキサン: 酢酸エ チル (1:1~1:3~ 0:1容量まで変化) を用いる勾配溶離	ヘキサン:酢酸エ チル (1:3~0:1容 量まで変化する) を用いる勾配溶離	酸洗浄せず。ジク ロロメタン:メタ ノール (100:0~ 99:1容量まで変化) を用いる勾配溶離
高形を泡状物 & = 2.22 (3H, s), 3.65 (3H, s), 3.44 (3H, s), 4.11 (3H, s), 6.82 (2H, m), 7.06 (2H, m), 8.05 (1H, s), m/z (サーモスプレー) 446 (MH¹).	8 = 2.03 (3H, s), 2.20 (3H, s), 3.84 (3H, s), 4.15 (3H, s), 4.17 (3H, s), 5.25 (1H, s), 8.10 (1H, s). π/z (4 – ₹λ.7 μ. –) 434 (MH [*])	5 = 2.23 (3H, s), 3.83 (3H, s), 4.14 (3H, s), 7.50 (4H, m), 8.08 (1H, s). m/z (サーモスブレー) 484.5 (MH [*]),	5 6 000 (341, t, l=8142), 1.58 (241, ヘキサン: 酢酸エm), 2.20 (314, s), 260 (214, t, 5-bt.), 3.60 (314, s), 4.13 (314, s), 8.06 (114, s), 8.06 (11	8 = 2.18 (3H, s), 2.87 (6H, s), 3.84 (3H, s), 4.13 (3H, s), 6.47 (2H, dd, 1=8Hz), 7.22 (2H, dd, 1=8Hz), 8.04 (1H, s), miz (9 − € X ⊤ U −) 459.5 (MH¹).
固形泡状物	油状物	固形泡状物	232-234	油状物
Coch,	CH,	← CF,	122 J	-MCHJ),
-\$-IO	CI-I3-		CI-l3-	CH ₃ -
99	57	99	69	09

製造例124	J.Am. Chem. Soc., 1949, 2444	<u>J. Chem.</u> <u>Soc.</u> , 1928, 31	製造例126	製造例121
酢酸エチル:メタ ノール (2:98容量)	酸沈浄セず。 酢酸エチル:メタ ノール (100:0~ 98:2容量まで変化) を用いる勾配溶離	酸洗浄せず。 酢酸エチル:メタ ノール (100:0~ 98:2容量まで変化) を用いる勾配溶離	酢酸エチル	酢酸工チル
8 = 2.20 (3H, s), 3.80 (3H, s), 3.83 (3H, s), 4.15 (3H, s), 6.94 (1H, s), 7.51 (1H, s), 8.05 (1H, s). m/z (Ψ-€x τ ν -) 420.3 (MH [†]).	8 = 2.22 (3H, s), 3.83 (3H, s), 4.02 (3H, s), 4.17 (3H, s), 6.21 (1H, s), 7.48 (1H, s), 8.10 (1H, s), πν 2 (φ – εχπν – γ 419.8 (MH [†]).	5=2.20 (3H, s), 3.00 (3H, s), 3.80 (3H, s), 4 (5H, s), 7.03 (1H, s), 7.50 (1H, s), 8.05 (1H, s), m2 (4-εχ7υ-) 420.1 (MH [†]).	6 = 2.26 (3H, s), 3.79 (3H, s), 4.17 (3H, s), 8.12 (1H, s), 8.15 (1H, br s), m²z (+ -εχγν –) 407 (MH*).	高形治状物 6 = 2.23 (3H, s), 3.65 (3H, s), 4.15 (3H, s), 4.23 (3H, s), 5.48 (1H, s), 8.10 (1H, s). miz (サーモスフレー) 420.5 (MH').
,	固形泡状物	固形泡状物		固形泡状物
HO-Z	, i	₽. ~ ~	N. N.	CH ₃
CH ₃ -	CH ₃ .	CH ₃ -	CH3	Cl43-
61	62	63	64	65

67 CH ₃ - SO ₂ CH ₃ CH 3, 124 (2H, 3, 1248) CH, 13, 1248 67 CH ₄ - CO ₂ CH ₂ CH ₃ 196-198	777-772 9 = 7.72 (3H, S), 3.9U (3H, S), 酢酸エチル;ヘキ
CH ₃ - CO ₂ CH ₂ CH ₃ 196-198 CH ₃ - CO ₄ CH ₄ CH ₃	_
CH ₃ CO ₂ CH ₂ CH ₃ 196-198 CH ₃ -	/.uo (z.i., u, 0 容量まで変化す H, s).
CH ₃ CO ₂ CH ₂ CH ₃ 196-198 CH ₃ -	-) 528 (MH*). る)を用いる勾配
CH ₃ -	=7Hz), 2.24
CH ₅ -	, s), 4.16
CH ₅ - 加快的 CH ₅ - N 242245 CH ₅ - N 248249	', q, J=7Hz),
○ CH ₃	
CH ₅ - 油状物	-) 412 (MH ⁺).
CH ₃ - CH	=5Hz), 2.19
CH ₃ - CH	l, d, J=14Hz).
CH ₃ - CH	4Hz), 3.91
CH ₅ - CH	', d, 不明瞭),
CH ₃ - CH	i (1H,s).
CH ₃ - CH	–) 426 (MH ⁺).
CH ₃ .	3.81 (3H, s), 赛弃華七十
CH ₁ - CH ₂ - CH ₃ - CH	_
CH ₃ CH ₃ CH ₄	, s), 8.05
246-249	
CH ₃ - N 248-249	-) 420 (MH ⁺).
(1H, s), B (3H, s), 7.35 (1H, s), B.08 (1H, s). (1H, s), B.08 (1H, s). (1H, s), B.08 (1H, s). (1H, s), B.08 (1H, s).	3.78 (3H, s), 酸洗净柱子。
CH, (1H, S), B.OB (1H, S). miz (Ψ − € χ γ Γ −) 421 (MH¹).	_
CH, m/z (サーモスプレー) 421 (MH ⁻).	
	_
	0:1容量まで変化
	を用いる勾配溶離

_	5	272		0 = 2.25 (3H, 5), 3.80 (3H, 5),	一個外班中中。	製油体199
_		70		4.17 (3H, s), 5.26 (2H, br s), .	新御工子デ	1
		z.		8.09 (1H, s).	HFRX-17V	
		N.		m/z (サーモスプレー) 423 (MH*).		
72	CH3-		171-173	5 = 2.21 (3H, s), 3.82 (3H, s),	酸洗净せず。	製造例197
_				4.15 (3H, s), 7.43 (2H s), 8.11	酢酸エチル:メタ	
		2		(10, s).	ノール (1:0~95:	
				7 2021 (-4 / > 4 - 6) 2	5 容量まで変化)	
					を用いる勾配溶離	
┿	SHO			8 = 2.21 (3H, s), 3.82 (3H, s).	酸洗净仕ず。	
_	,			4.17 (3H, s), 6.83 (1H, m).	(ヘキサン: 酢酸エ	
-	-	\ \ \		6.92 (1H, d, J= 4Hz), 7.21 (1H,	≠ 11, (70.30~35.	,
-		Š		d, J=5Hz), 8.12 (1H, s).	7 7 710.00 -20.	
-				m/z (サーモスプレー) 422 (MH*).	75容量まで変化)	
					を用いる勾配溶離	
┢	CH3-		,	8 = 2.23 (3H, s), 3.77 (3H, s),	酸洗净仕ず。	
		Q		4.16 (3H, s), 6.42 (2H, m),	くキャン・発験上	
		Ţ		7.03 (1H, d, J=5Hz), 7.17	F (00.10.10.10.1	
-		/ \		(1H, m), 8.18 (1H, s).	1.50.10~3:1	
		\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-		m/z (サーモスプレー) 432 (MH*).	谷重まで変化する)	
)			を用いる勾配溶離	
+-	CH ₃ -		٠	8 = 2.40 (3H, s), 3.82 (3H, s),	酸洗浄せず。	
-				4.17 (3H, s), 7.22 (2H, d,	ヘキサン: 酢酸エ	
				J=6Hz), 7.30 (2H, d, J=6Hz),	チル (2:3~1:4	,
				8.13 (III, s). m/z (ヰーチュブレー) 450 (MH [†]).	容量まで変化する)	
_			_		夕田いる た配後離	

			,
酸法浄セず。 ヘキサン: 酢酸エ チル (3:7~0:1容 量まで変化する) を用いる勾配溶離	酸法浄せず。 酢酸エチル:メタ ノール (1:0~95: 5 容量まで変化) を用いる気配溶離	酸光浄セず。 酢酸エチル:メタ ノール (1:0~94: 6 容量まで変化) を用いる勾配溶離	機法浄せず。 酢酸エチル:メタ ノール (1:0~95: 5 容重まで変化) を用いる均配落離
b = 223(3H, s), 373(3H, s), 73(3H, s), 73(3H, s), 41(5H, s), 41(5 = 2.14 (6H, s), 3.68 (3H, s), 4.18 (3H, s), B.18 (1H, s). m/z (サーモスプレー) 354 (MH [†]), 5	5 = 2.25 (3H, s), 3.86 (3H, s), 4.15 (3H, s), 8.07 (1H, s), 8.12 酢(H, s), 8.12 ಠ ಠ ಠ ಠ ಠ ಠ ಠ ಠ ಠ ಠ ಠ ಠ ಠ ಠ ಠ ಠ ಠ ಠ ಠ	δ = 1.0 (614 m), 2.14 (314. s), 3.86 酸 (314. s), 4.15 (314. s), 8.09 (114. s), 所2 (4 ーモスプレー) 380 (MH ³).
	ı	-	
—————————————————————————————————————	-CH _s	Ι	Ţ
CH ₃ -	CH ₃ -	CH ₃ -	CH ₃ -
76	77	78	79

1	·	Bull, Pharm. Sci.,Assiut Univ., 13(2), 145 (1990).		,
酸洗净せず。 酢酸エチル:メタ ノール (1:0~97: 3 容量まで変化) を用いる勾配溶離	酸洗浄せず。 ヘキサン: 酢酸 エチル (1:1容量)	ヘキサン: 酢酸エチル (3:1~1:3~0:1 冷量まで変化する) を用いる勾配溶離	ヘキサン:酢酸エチル(3:1~1:3~0:1 容量まで変化する) を用いる勾配溶離	酸洗浄せず。 酢酸エチル:メタ ノール (95:5容量)
b = 2.20 (3H, s), 3.62 (3H, s), 4.10 (3H s), 7.23 (3H, m), 7.35 (2H, m), 8.06 (1H, s), miz (Φ − ₹ χ τ ∪ −;) 416 (MH*).	8 = 1.98 (3H,s), 4.00 (3H, s), 4.15 (3H, s), 8.05 (1H, s), 8.74 (1H,s). m/z (サーモスプレー) 356 (MH*).	5 = 2.05 (314.5), 3.20 (314.5), 3.82 (314.5), 4.15 (614.5), 4.37 (114. d. l=13.14.5), 4.37 (114. d. l=13.14.5), 4.37 (114. d. l=13.14.5), 5.28 (114. s. ⊼¬yyyyy), 8.08 (114. s), m/z (∳1 = ₹¬x¬t¬) 464.4 (MiH¹).	5 = 3.20 (314, 8), 3.95 (314, 8), 4.14 (314, 8), 4.45 (114, d. = 1414), 4.56 (114, d. = 14142), 7.70 (114, m), 7.20- (114, 8), m, 本野麻), 7.95 (114, 8), m/Z (4 - モスプレー) 480.3 (MAI*).	8 = 3.15 (34, 8), 3.70 (34, 8), 3.79 (114, d, J=518P), 4.08 (114, d, J=1518), 4.40 (114, d, J=1218P), 7.86 (114, d, J=1212), 8.00 (114, m), 7.86 (114, d=94P), 8.03 (14, 8), 8.21 (114, d, J=818), miz (\$f=εχγν-) (614 (6141)),
1	1	204- 207	212-214	4
	-6H 注配 1	↑-\\ N-N CH ₃	S O	~
Ols:	CH3-	CH ₃ OCH ₂	CH,OCH2	CH ₃ OCH ₂ :
08	81	. 85	83	84

<u>J. Prakt.</u> Chem., 1932, 133	製造例121	ı	Aust.J. Chem., 38(8), 1257 (1985)	製造例116
酸洗浄せず。	酸洗浄せず。 ジクロロメタン:メ タノール (1:0~98: 2 容量まで変化する) を用いる勾配溶離	敵洗浄せず。 ジクロロメタン:メ タノール (1:0∼98: 2 容量まで変化する) を用いる勾配溶離	酸洗浄せず。 ジクロロメタン:メ タノール (1:0∼99: 1 容量まで変化する) を用いる勾配溶離	酸洗浄せず。 ジクロロメタン:メ タノール (99:1容量)
δ = 2.50 (3H, s), 3.10 (3H, s), 3.84 (3H, s), 4.14 (3H, s), 4.48 (2H, m), 7.40 (1H, m), 7.80 (1H, m	$\delta = 3.06$ (3H, s), 3.78 (3H, s), 4.06 (3H, s), 4.08 (3H, s), 4.40 (2H, m), 5.60 (1H, m), 7.28 (1H, m), 8.22 (1H, s). miz $(\Psi - \Xi \times \mathcal{I}/L -)$ 450 (MH ⁺).	$\delta = 3.16$ (GH, s), 3.82 (3H, s), 4.40 (4H, m), 8.08 (1H, s). m/z $(7 - \xi \times 7 \cup -)$ 414 (MH*).	δ = 2.34 (3H, s), 3.20 (3H, s), 3.78 (3H, s), 4.14 (3H, s), 4.48 (2H, m), 7.70 (1H, s), 8.04 (1H, s), miz ($\theta - \pi \chi \gamma \nu - 1$) 467 (MH).	元素 <u>分析(%)</u> 実測値: C, 49.78; H, 3.60; N, 16.50. C ₂₁ H ₁₆ Cl ₂ N ₆ O ₂ 計算値 C, 49.92; H, 3.59; N, 16.63.
,	ı	ı	ı	197- 198
- CH ₃	10 Z	-CH ₂ OCH ₃ 注配 2	N CH,	() co₁cн₁
-4100°115	-H00H2-	CH3OCH3-	CH,00Hz-	CH-DOCH2-
85	90	87	88	88

			,
後洗浄せず。ジク ロロメラン:メタ ノール (1:0~98: 2 容量まで変化) を用いる勾配溶離	酸洗浄セず。ジクロロメタン:メタノール (1:0~99:1 容量まで変化)を用いる勾配溶離	ジクロロメタン: メタノール (1:0 ~98:2容量まで変 (L) を用いる勾配 熔離	ヘキサン:酢酸エ チル (7:3~3:2容 量まで変化する) を用いる勾配溶離
6 = 2.74 (2H, m), 3.20 (3H, s), 3.72 (2H, m), 3.84 (3H, s), 4.16 (3H, s), 7.20 (1H, m), 7.84 (1H, m), 8.08 (1H, s), 8.4.2 (1H, m), 8.52 (1H, m), miz (9 = ₹x7 L. → 461 (MH)).	5 = 1.98 (2H, m), 2.38 (2H, m), 2.46 (1H, m), 2.52 (1H, m), 3.56 (3H, s), 3.84 (3H, s), 4.16 (3H, s), 7.20 (1H, m), 7.82 (1H, m), 8.06 (1H, s), 8.44 (1H, s), 8.50 (1H, m),	5 = 1.26 (3H, t, J=5Hz), 3.84 (3H, s), 4.15 (3H, s), 4.27 (2H, q, J=5Hz), 8.04 (1H, s), 8.30 (1H, s). miz (q·-εχ√υ,-) 398 (MH [*]).	δ = 1.24 (3H, 1, J=5Hz), 3.80 (3H, s), 4.12 (3H, s), 4.26 (2H, q, J=5Hz), 7.24 (2H, m), 7.35 (1H, m), 7.40 (2H,m), 8.05 miz (θ-εχτν-) 474 (MH*).
	1	1	
Z V	z 🔷	Ξ.	
CH,O(CH,)):	CH ₃ O ₂ C(CH ₂) ₃ -	-созси,сн,	-со ₂ сн ₂ сн,
06	91	92	. 93

験沈浄せず。 ジクロロメタン: メタノール (99:1容量)	ヘキサン: 酢酸 エチル (3:1容量)
8 = 123(3H, t, J=5Hz), 3.80 (3H, s), 4.10 (3H, s), 4.25 (2H, q, J=5Hz), 7.20 (1H, m, 表別版), 7.83 (1H, m), 8.03 (1H, s), 8.54 (1H, m), 8.60 (1H, m) mz (ヤーモスプレー) 475 (MH ⁺).	5 = 3.84 (3H, s), 4.12 (3H, s), 7.28 (6H, m), 7.38 (4H, m), 8.00 (1H, s). m/z (θ - ε χ σ ν ν -) 478 (MH*).
,	
2	
94 -co ₂ ch ₂ ch,	
94	95

<u>注記</u> (1)「ヒドラジド」出発物質としてカルバジン酸エチルを用いて製造された。最後の結晶化は、キシレン中で加熱 することによって行われた。 (2) 生成物は、製造例118からのヒドラジドの反応からの予想外の生成物であった。

6. 7-ジクロロー2, 3-ジメトキシー5- [3-(3-メチルー1, 2, 4-オキサジアゾール-5-イル) -5- (3-ピリジル) -4H-1, 2, 4-

製造例96

トリアゾールー4ーイル] キノキサリン

アセトアミドオキシム (120mg, 1. 62ミリモル) に続いて水薬化ナトリウム (油中80%w/w分散液, 8mg, 0. 27ミリモル) を、6, 7ージクロロー2, 3ージメトキシー5ー [3ーエトキシカルボニルー5ー(3ーピリジル)ー4Hー1, 2, 4ートリアゾールー4ーイル] キノキサリン (製造例94, 250mg, 0. 53ミリモル) の乾燥トルエン (15mL) 中撹拌懸濁液に対して窒素下の室温で加えた。その混合物を還流下で3.5時間加熱し、冷却し、そしてその溶液を酢酸エチルとブラインとに分配した。水性相を酢酸エチル(2×20mL) で抽出し、合わせた有機抽出物を乾燥させ (MgSO。) 且つ減圧下で濃縮した。その残留物を、シリカゲル上においてヘキサン:酢酸エチル(7:3~1:1容量まで変化する)を用いる勾配溶離によるフラッシュクロマトグラフィーによって精製して、標題化合物(210mg, 82%)を白色固体として与えた。

i<u>H-NMR</u> (300MHz, CDCl₁): δ=2. 25 (3H, s), 3. 7 7 (3H, s), 4. 14 (3H, s), 7. 28 (1H, 不明瞭), 7. 93 (1H, m), 8. 10 (1H, s), 8. 58 (2H, m)。 m/z (サーモスプレー) 485 (MH).

製造例97

6, 7-ジクロロ-2, 3-ジメトキシ-5- [5-メチル-3-(3-メチル -1, 2, 4-オキサジアゾール-5-イル) -4H-1, 2, 4-トリアゾー ル-4-イル] キノキサリン

標題化合物を、製造性96の場合と同様の方法によって、6,7-ジクロロー2,3-ジメトキシー5-[3-エトキシカルボニルー5-(3-ピリジル)-4H-1,2,4-トリアゾールー4-イル]キノキサリンの代りに6,7-ジクロロー2,3-ジメトキシー5-(3-エトキシカルボニルー5-メチルー4H-1,2,4-トリアゾールー4-イル)キノキサリン(製造例67)を用いて製造した。シリカゲル上においてジクロロメタン:メタノール(1:0~95:5容量まで変化する)を用いる勾配溶離によるフラッシュクロマトグラフィーによる雑製は、白色固体を与えた。

<u>H-NMR</u> (300MHz, CDCl₁): δ = 2. 26 (3H, s), 2. 3 (3H, s), 3. 79 (3H, s), 4. 20 (3H, s), 8. 15 (1H, s).

m/z (サーモスプレー) 422 (MH^{*})。

製造例98

6, 7-ジクロロ-2, 3-ジメトキシ-5-[3-(3-ピリジル)-4H-1, 2, 4-トリアゾール-4-イル] キノキサリン

1M水酸化ナトリウム水溶液(17.25mL, 17.25ミリモル)を、6 , 7ージクロロー2, 3ージメトキシー5ー[3ーエトキシカルボニルー5ー(3ーピリジル)ー4H-1, 2, 4ートリアゾールー4ーイル]キノキサリン(製造例94,8.2g,17.25ミリモル)の1,4ージオキサン(68mL) および水($50 \, \mathrm{mL}$)中撹拌溶液に対して $10 \, \mathrm{CC}$ 適加した。その溶液を室温まで加温し且つ $20 \, \mathrm{e}$ 間撹拌し、水($50 \, \mathrm{mL}$)で希釈し、氷酢酸で酸性にし、そして酢酸エチル($1 \, \mathrm{x} \, 10 \, \mathrm{0} \, \mathrm{mL}$, $2 \, \mathrm{x} \, 50 \, \mathrm{mL}$)で抽出した。合わせた有機抽出物をブラインで洗浄し、乾燥させ($M \, \mathrm{g} \, \mathrm{SO}_{i}$)且つ減圧下で濃縮した。その残留物を、シリカゲル上においてジクロロメタン:メタノール($1 \, \mathrm{co} \, \mathrm{y} \, \mathrm{s} \, \mathrm{t}$ 容量まで変化する)を用いる勾配溶離によるフラッシュクロマトグラフィーによって精製して、標題化合物($5 \, \mathrm{cm} \, \mathrm{x} \, \mathrm{t} \, \mathrm{t}$ を白色固体, $\mathrm{mp} \, \mathrm{206 \, co} \, \mathrm{207 \, Celt}$ として与えた。

元素分析(%): 実測値: C, 50.49; H, 3.06; N, 20.44。
Cr Hr Cl · N · O · 計算値: C, 50.63; H, 3.00; N, 20.84

製造例99

 $\frac{6}{5}$, $7-\sqrt[3]{2}$ 0 ロロー2, $3-\sqrt[3]{2}$ 1トキシー5 - $\frac{5}{5}$ 1 - $\frac{7}{5}$ 2 ー $\frac{7}{5}$ 2 ル) - $\frac{4}{5}$ 1 + $\frac{7}{5}$ 2 + $\frac{7}{5}$ 3 + \frac

Nープロモスクシンイミド ($58\,\mathrm{mg}$, 0.33ミリモル)を、6, 7ージクロロー2, 3ージメトキシー5ー [3ー(3ーピリジル)ー4Hー1, 2, 4ートリアゾールー4ーイル]キノキサリン (製造例98, $102\,\mathrm{mg}$, 0.25ミリモル)の1, 1, 1ートリクロロエタン ($6\,\mathrm{mL}$)中撹拌懸濁液に対して窒素下の室温で加え、そしてその混合物を還流下で $18\,\mathrm{bfl}$ 加熱した。その混合物を減圧下で濃縮し、そしてその視留物を、シリカゲル上においてヘキサン:酢酸エチル ($7:3\sim1:1$ 容量まで変化する)を用いる勾配搭離によるフラッシュクロマトグラフィーによって精製して、標題化合物 ($87\,\mathrm{mg}$, 71%)を白色固体として与えた。

<u>H-NMR</u> (300MHz, CDCl₃) : δ = 3. 86 (3H, s), 4. 1

6 (3H, s), 7.28 (1H, m, 不明瞭), 7.88 (1H, m), 8.

12 (1H, s), 8. 49 (1H, m), 8. 58 (1H, m)。 m/z (サーモスプレー) 481 (MH)。

製造例100

6, 7-ジクロロ-2, 3-ジメトキシ-5-[3-(1-イミダゾリル)-5 -メチル-4H-1, 2, 4-トリアゾール-4-イル] キノキサリン

(a) 6, 7-ジクロロー2, 3-ジメトキシー5 - (3-プロモー5 - メチルー4Hー1, 2, 4-トリアゾールー4ーイル) キノキサリンを、製造例99の場合と同様の方法によって、6, 7-ジクロロー2, 3-ジメトキシー5 - [3-(3-ビリジル) - 4Hー1, 2, 4-トリアゾールー4ーイル] キノキサリンの代りに6, 7-ジクロロー2, 3-ジメトキシー5 - (3-メチルー4Hー1, 2, 4-トリアゾールー4ーイル) キノキサリン(製造例78, 50 mg, 0. 1478191910 を用いて製造した。それは、淡褐色固体(53 mg, 1819110 として得られた。

<u>H-NMR</u> (300MHz, DMSO-d₃): δ=2.27 (3H, s), 3.91 (3H, s), 4.19 (3H, s), 8.16 (1H, s)。
m/z (サーモスプレー) 419 (MH)。

(b) イミダゾール (78mg, 1. 15ミリモル) および6, 7ージクロロー2, 3ージメトキシー5ー (3ープロモー5ーメチルー4Hー1, 2, 4ートリアゾールー4ーイル) キノキサリン (48mg, 0, 115ミリモル) の混合

物を、100℃で1時間、続いて120℃で3時間加熱した。冷却した後、その

混合物を水(15mL)とジクロロメタン(2×15mL)とに分配した。合わせた有機抽出物を乾燥させ(MgSO4)、濾過し、そして減圧下で濃縮した。 その残留物を、シリカゲル上においてジクロロメタン:メタノール(98:2~95:5容量まで変化する)を用いる勾配溶離によるフラッシュクロマトグラフィーによって精製して、標題化合物(15mg,32%)を褐色固体として与えた。

<u>H-NMR</u> (300MHz, DMSO-d_s): δ = 2. 27 (3H, s), 4. 11 (6H, s), 7. 16 (2H, br s), 7. 79 (1H, br s), 7. 95 (1H, s).

m/z (サーモスプレー) 406 (MH)。

製造例101

6, 7-ジクロロ-2, 3-ジメトキシ-5-[3-ヒドロキシメチル-5-(3-ピリジル)-4H-1, 2, 4-トリアゾール-4-イル]キノキサリン

6, 7-ジクロロー2, 3-ジメトキシー5ー [3-(3-3)] (3ーピリジル) ー4 H ー1, 2, 4ートリアゾールー4ーイル] キノキサリン (製造例98, 1.008g, 2.5ミリモル) およびパラホルムアルデヒド (0.75g, 25ミリモル) の酢酸 (14 m L) 中懸濁液を、密封容器中において125℃で3時間加熱した。 冷却した後、その混合物を滅圧下で濃縮し、そしてその残留物を、シリカゲル上においてジクロロメタン: メタノール (1:0~95:5 容量まで変化する) を用いる勾配溶離によるフラッシュクロマトグラフイーによって精製して、 標題化合物 (0.60g, 56%) を白色固体,mp209~210℃として与えた。

元素分析(%): 実測値: C, 49. 86; H, 3. 31; N, 19. 18。
C₁₈ H₁₆ C l₂ N₈ O₃計算値: C, 49. 90; H, 3. 26; N, 19. 39

製造例102

6, 7-ジクロロ-2, 3-ジメトキシ-5-[3-ヒドロキシメチル-5-(3-ピリジル) -4H-1, 2, 4-トリアゾール-4-イル] キノキサリン

標題化合物を、製造例101の場合と同様の方法によって、6,7-ジクロロー2,3-ジメトキシー5-[3-(3-ビリジル)-4H-1,2,4-トリアゾール-4-イル]キノキサリンの代りに6,7-ジクロロー2,3-ジメトキシー5-(3-メチル-4H-1,2,4-トリアゾール-4-イル)キノキサリン(製造例78)を用いて白色固体として製造した。

 $\frac{1}{H-NMR}$ (300MHz, DMSO-d_s): δ = 2. 20 (3H, s), 3. 89 (3H, s), 4. 18 (3H, s), 4. 54 (2H, s), 8. 11 (1H, s).

m/z (サーモスプレー) 370 (MH)。

製造例103

6, 7 -ジクロロー2, 3 -ジメトキシ-5- [3 -ジメトキシアミノメチル-5- (3 -ピリジル) -4+-1, 2, 4 -トリアゾール-4-イル] キノキサリン

6, 7-ジクロロ-2, 3-ジメトキシ-5-[3-(3-ピリジル)-4H -1, 2, 4-トリアゾール-4-イル]キノキサリン(製造例98, 101m g, 0. 25ミリモル)、パラホルムアルデヒド(15mg, 0. 5ミリモル)

およびジメチルアミン塩酸塩($22\,\mathrm{mg}$, $0.27\,\mathrm{s}$ リモル)の酢酸($5\,\mathrm{mL}$)中混合物を、還流下で5時間加熱した。冷却した後、その混合物を減圧下で濃縮し、水($20\,\mathrm{mL}$)を加え、その溶液を炭酸カリウム水溶液で塩<u>蒸</u>性にし、そして酢酸エチル($3\,\mathrm{x}\,20\,\mathrm{mL}$)で抽出した。合わせた有機抽出物を乾燥させ($M\,\mathrm{g}\,\mathrm{SO}_{i}$)且つ減圧下で濃縮した。その残留物を、シリカゲル上においてジクロロメタン:メタノール($1:0\,\mathrm{v}\,\mathrm{g}\,\mathrm{S}:5$ 容量まで変化する)を用いる勾配溶離によるフラッシュクロマトグラフィーによって精製して、裸題化合物($75\,\mathrm{mg}$, 65%)を白色固体、 $\mathrm{mp}\,\mathrm{1}\,\mathrm{9}\,\mathrm{2}\,\mathrm{v}\,\mathrm{1}\,\mathrm{9}\,\mathrm{4}\,\mathrm{C}$ として与えた。

 $\underline{\text{H-NMR}}$ (300MHz, CDCl₃) · δ = 2. 0 (6H, s), 3. 48 (2H, m), 3. 82 (3H, s), 4. 15 (3H, s), 7. 2 (1H, m), 7. 85 (1H, m), 8. 05 (1H, s), 8. 5 (2H, m)。 m/z (ψ - \pm x τ ν -) 460 (MH).

製造例104

6, 7-ジクロロ-2, 3-ジメトキシ-5-[3-モルホリノメチル-5-(3-ピリジル)-4H-1, 2, 4-トリアゾール-4-イル]キノキサリン

標題化合物を、製造例 1030場合と同様の方法によって、ジメチルアミン塩 酸塩の代りにモルホリン塩酸塩を用いて製造した。それは、白色固体、mp178 ~ 179 $^{\circ}$ として得られた。

 $\frac{H-NMR}{M}$ (300MHz, CDC1₃): $\delta=2$. 10 (4H, m), 3. 1 0 (4H, m), 3. 56 (2H, m), 3. 80 (3H, s), 4. 18 (3 H, s), 7. 21 (1H, m), 7. 80 (1H, m), 8. 05 (1H, s), 8. 55 (2H, m).

m/z (サーモスプレー) 502 (MH)。

製造例105

6, 7-ジクロロ-2, 3-ジメトキシ-5-(3-ヒドロキシメチル-5-フ エニル-4H-1, 2, 4-トリアゾール-4-イル) キノキサリン

水素化ジイソブチルアルミニウム (テトラヒドロフラン中1M, 2.5 mL, 2.5 ミリモル) を、6,7 ジクロロー2,3 ジメトキシー5ー(3-エトキシカルボニルー5ーフェニルー4H-1,2,4-トリアゾールー4ーイル) キノキサリン (製造例93,237mg,0.5ミリモル)のジクロロメタン (10mL) 中溶液に対して窒素下の室温で加えた。1時間後、追加部分の水素化ジイソブチルアルミニウム (テトラヒドロフラン中1M,1mL,1ミリモル)を加え、その混合物を更に1時間撹拌した後、飽和塩化アンモニウム水溶液 (10mL)を加えた。ジクロロメタン (50mL)および水 (50mL)を加え、そしてその混合物をアーボセル (商標)を介して濾過し、その残留物を湿ジクロロメタン:メタノール (9:1 容量,100mL)で洗浄した。有機層を分離し、乾燥させ (MgSO4)、そして被圧下で蒸発させた。その残留物を、シリカゲル上においてヘキサン:酢酸エチル:メタノール (1:1:0~0:1:0~0:95:5容量まで変化する)を用いる勾配溶離によるフラッシュクロマトグラフィーによって精製して、標題化合物 (70mg,79%)をオフホワイト固体として与えた。

 $\frac{1}{11}$ H-NMR (300MHz, CDC1₃): $\delta = 2$. 78 (1H, s), 3. 8 5 (3H, s), 4. 14 (3H, s), 4. 6 (2H, m), 7. 25 (2H

, m), 7. 32(2H, m), 7. 38(1H, m), 8. 08(1H, s)

m/z (サーモスプレー) 432 (MH).

製造例106

6, 7-ジクロロ-2, 3-ジメトキシ-5-(3-ヒドロキシメチル-4H-

1, 2, 4-トリアゾール-4-イル) キノキサリン

標題化合物を、製造例105の場合と同様の方法によって、6,7ージクロロー2,3ージメトキシー5ー(3-エトキシカルボニルー5ーフェニルー4Hー1,2,4ートリアゾールー4ーイル)キノキサリンの代りに6,7ージクロロー2,3ージメトキシー5ー(3-エトキシカルボニルー4H-1,2,4ートリアゾールー4ーイル)キノキサリン(製造例92)を用いてオフホワイト固体として製造した。

 $^{'}$ H-NMR (300MHz, CDCl₁): δ=3. 89 (3H, s), 4. 1 4 (3H, s), 4. 64 (2H, m), 8. 08 (1H, s), 8. 16 (1 H, s).

m/z (サーモスプレー) 356 (MH)。

製造例107

6, 7-ジクロロ-2, 3-ジメトキシ-5-[3-(2-ヒドロキシエチル) -5-メチル-4H-1, 2, 4-トリアゾール-4-イル] キノキサリン

標題化合物を、製造例105の場合と同様の方法によって、6,7ージクロロ
-2,3ージメトキシー5ー(3-エトキシカルボニルー5ーフェニルー4Hー
1,2,4ートリアゾールー4ーイル)キノキサリンの代りに6,7ージクロロ
-2,3ージメトキシー5ー[3-エトキシカルボニルメチルー5ーメチルー4H-1,2,4ートリアゾールー4ーイル]キノキサリン(製造例68)を用い

て製造した。その反応は、ジクロロメタンの代りにトルエン中で行われ、そして 精製は、シリカゲル上においてジクロロメタン:メタノール($1:0\sim95:5$ 容量まで変化する)を用いる勾配溶離によるフラッシュクロマトグラフィーによった。ジイソプロピルエーテルからの結晶化は、オフホワイト固体を与えた。 H-NMR (300MHz, CDC1 $_{1}$): $\delta=2.1$ (3H, s), 2. 5 (2H, m), 3. 5 (2H, m), 3. 9 (3H, s), 4. 18 (3H, s), 8. 1 (1H, s)。 m/z (9^{+-} モスプレー) 3.84 ($M\text{H}^{+}$)。

製造例108

6, 7-ジクロロー2, 3-ジメトキシ-5-ヨードキノキサリン

5-アミノ-6, 7-ジクロロ-2, 3-ジメトキシキノキサリン (製造例 2 6, 38. 12g, 0. 14モル) の0℃アセトン中機械的撹拌溶液に対して、2 M塩酸水溶液 (396 mL, 0. 79モル) を加えた後、1 M亜硝酸ナトリウム水溶液 (208 mL, 0. 28モル) を摘加した。0℃で0. 25時間後、そ

製造例109

6, 7-ジクロロ-2, 3-ジメトキシ-5-(3-ピリジル) キノキサリン

6, 7ージクロロー2, 3ージメトキシー5ーヨードキノキサリン (製造例108, 0.2g, 0.519ミリモル)、3ーピリジルホウ酸 (Rec. Trav. Chim. Pays-Bas., 84, 439(1965)) (0.077g, 0.623ミリモル)、テトラキス (トリフェニルホスフィン) パラジウム (O) (0.03g, 0.026ミリモル) および炭酸カリウム (0.143g, 1.038ミリモル) の1, 4ージオキサン (12mL) および水 (4mL) 中混合物を、遠流下で16時間加熱した。冷却した後、その混合物を減圧下で濃縮し、そして残留物を酢酸エチル (20mL) とは分配した。相を分離し、そして水性相を酢酸エチル (2×40mL) で抽出した。合わせた有機抽出物を乾燥させ (MgSO、)且つ減圧下で濃縮した。その残留物を、シリカゲル上においてジクロロメタン:メタノール (1:0~99:1容量まで変化する)を用いる勾配溶離によるフラッシュクロマトグラフィーによって精製して、標期化合物 (0.051g, 29%

)を黄色固体として与えた。

H-NMR (300MHz, CDCl₁): δ = 3. 84 (3H, s), 4. 1 8 (3H, s), 7. 42 (1H, m), 7. 75 (1H, m), 7. 99 (1 H, s), 8. 63 (2H, m).

m/z (サーモスプレー) 336 (MH)。

製造例110

6, 7-ジクロロ-2, 3-ジメトキシ-5-[5-フェニル-1H-1, 2, 3-トリアゾール-4-イル] キノキサリン

(a) 6, $7-\sqrt[3]{0}$ ロロー2, $3-\sqrt[3]{0}$ トキシー5 $-3-\sqrt[3]{0}$ 十次 (製造例108, 5.0 g, 13 ミリモル)、フェニルアセチレン (3.9 8 g, 39 ミリモル)、塩化ピス (トリフェニルホスフィン)バラジウム (II) (0.9 13 g, 1.3 ミリモル)およびョウ化銅 (I) (0.2 4 8 g, 1.3 ミリモル)のトリエチルアミン (100 mL) 中混合物を、還流下で4時間加熱した。冷却した後、その混合物を減圧下で濃縮し、そして残留物をジクロロメタン (200 mL) とに分配した。相を分離し、そして水性相をジクロロメタン (2 x 100 mL) で抽出した。合わせた有機抽出物を乾燥させ(M g S O_{4})且つ減圧下で濃縮した。その残留物を、シリカゲル上においてヘキサン:ジクロロメタン ($1:0\sim1:1$ 容量まで変化する)を用いる勾配終離によるフラッシュクロマトグラフィーによって精製して、6, $7-\sqrt[3]{0}$ の 7.7%)を黄色個体,m 9 $1.70\sim1$ 7 2 2 C として与えた。

<u>H-NMR</u> (300MHz, CDCl₃): δ = 4. 14 (3H, s), 4. 2 6 (3H, s), 7. 39 (3H, m), 7. 67 (2H, m), 7. 87 (1

H, s).

m/z (サーモスプレー) 359 (MH[†])。

(b) 6, 7-ジクロロ-2, 3-ジメトキシ-5-(2-フェニルエチニル) キノキサリン (2.0g, 5.57ミリモル) およびアジ化トリメチルシリル (20mL) の混合物を、密封容器中において170℃で18時間加熱した。冷却後、水 (20mL) に続いて飽和炭酸水素ナトリウム水溶液 (50mL) を加

え、そしてその混合物を酢酸エチル($3 \times 50 \, \mathrm{mL}$)で抽出した。合わせた有機 抽出物を乾燥させ($M g S O_4$)且つ減圧下で濃縮した。その残留物を、シリカゲル上においてジクロロメタン:メタノール($1:0 \sim 98:2$ 容量まで変化する)を用いる勾配溶離によるフラッシュクロマトグラフィーによって精製して、漂題化合物($1:3 \, \mathrm{g}, 58\%$)を褐色泡状物として与えた。

<u>H-NMR</u> (300MHz, CDCl₁): δ = 3. 67 (3H, s), 4. 1 3 (3H, s), 7. 23 (3H, m), 7. 40 (2H, m), 8. 02 (1 H, s).

m/z (サーモスプレー) 402 (MH)。

製造例111

6, 7-ジクロロ-2, 3-ジメトキシ-5- [2-メチル-5-フェニル-2 H-1, 2, 3-トリアゾール-4-イル] キノキサリン (異性体1)、6, 7 -ジクロロ-2, 3-ジメトキシ-5- [1-メチル-5-フェニル-1H-1 , 2, 3-トリアゾール-4-イル] キノキサリン (異性体2) および6, 7-ジクロロ-2, 3-ジメトキシ-5- [1-メチル-4-フェニル-1H-1, 2, 3-トリアゾール-5-イル] キノキサリン (異性体3)

水素化ナトリウム (油中80%w/w分散液, 0.041g, 1.37ミリモル) を、6.7-ジクロロー2、3-ジメトキシー5-「5-フェニルー1H-

1, 2, 3-トリアゾールー4-イル] キノキサリン(製造例110, 0. 5 g, 1. 24 ミリモル)の乾燥N, N-ジメチルホルムアミド(20 mL)中撹拌溶液に対して窒素下において0℃で加えた。0℃で0. 5 時間後、9 ードメタン (0. 19 4 g, 1. 37 ミリモル)を加えた。その混合物を0 0 で0. 5 時間に続いて空湿で0. 9 時間撹拌した。ブライン(9 0 mL)を加え、そしてその混合物をジクロロメタン(9 x 9 0 mL)で抽出した。合わせた有機抽出物を乾燥させ(9 0 g 9 0 g 9 1 m 9 2 m

<u>H-NMR</u> (300MHz, CDCl₃): δ =3. 67 (3H, s), 4. 1 4 (3H, s), 4. 38 (3H, s), 7. 23 (3H, m). 7. 38 (2 H, m), 8.05 (1H, s).

m/z (サーモスプレー) 416 (MH)。

次に溶離される生成物である、6, 7-ジクロロ-2, 3-ジメトキシ-5- [1-メチル-5-フェニル-1 H-1, 2, 3-トリアゾール-4-イル] キノキサリン(0. 135 g, 26%)として暫定的に与えられる異性体2は、淡黄色固体,m p 18 9 \sim 19 0 $^{\circ}$ として得られた。

m/z (サーモスプレー) 416 (MH)。

 $\frac{1}{H-NMR} (300MHz, CDCl_1) : \delta = 3.84 (3H, s), 4.1$ 1 (3H, s), 4.16 (3H, s), 7.20 (3H, m), 7.33 (2H, m), 7.96 (1H, s).

m/z (サーモスプレー) 416 (MH)。

製造例112

6, 7-ジクロロー2, 3-ジメトキシー5- [5-フェニルー2-(2-(トリフェニルメトキシ) エチル) -2H-1, 2, 3-トリアゾールー4-イル] キノキサリン (異性体1)、6, 7-ジクロロー2, 3-ジメトキシー5- [5-フェニルー1-(2-(トリフェニルメトキシ) エチル) -1H-1, 2, 3-トリアゾールー4-イル] キノキサリン (異性体2) および6, 7-ジクロロー2, 3-ジメトキシー5- [4-フェニルー1-(2-(トリフェニルメトキシ) エチル) -1H-1, 2, 3-トリアゾールー5-イル] キノキサリン (異性体3) 生体3)

標題化合物を、製造例 $1\,1\,0$ 場合と同様の方法によって、ヨードメタンの代りに臭化2- (トリフェニルメトキシ) エチル (Liebigs Ann.,635,3(1960)) を用いて製造し、そしてシリカゲル上においてトルエン:酢酸エチル ($1:0\sim9$

m/z (サーモスプレー) 688 (MH[†])。

s) .

次に溶離される生成物である、6, 7-ジクロロ-2, 3-ジメトキシ-5-

[5-フェニル-1-(2-(トリフェニルメトキシ) エチル) -1H-1, 2 , 3-トリアゾール-4-イル] キノキサリン (0. 104g, 14%) として 暫定的に与えられる異性体2は、白色固体として得られた。

'H-NMR (300MHz, CDCl₃): δ=3. 40 (2H, m), 3. 4 4 (3H, s), 4. 17 (3H, s), 4. 25 (2H, m), 7. 22 (1 8H, m), 7. 39 (2H, m), 8. 02 (1H, s)。 m/z (サーモスプレー) 688 (MH)。

3番目に溶離される生成物である、6, 7-ジクロロー2, 3-ジメトキシー5- [4-フェニルー1- (2-(トリフェニルメトキシ) エチル) -1 H-1, 2, 3- トリアゾール-5-(イル] キノキサリン (0.037g,5%) として暫定的に与えられる異性体3は、オフホワイト固体として得られた。

 $\frac{\text{H-NMR}}{\text{M-NMR}}$ (300MHz, CDCl₃): δ=3. 47 (3H, s), 3. 7 3 (2H, m), 4. 10 (3H, s), 4. 58 (2H, m), 7. 24 (2 0H, m), 7. 94 (1H, s).

m/z (サーモスプレー) 688 (MH)。

製造例113

5-アミノ-6-クロロー2, 3-ジメトキシ-7-メチルキノキサリンおよび 5-アミノ-7-クロロー2, 3-ジメトキシ-6-メチルキノキサリン

$$(e) \qquad CH_{2} \longrightarrow NH_{2} \qquad (a) \qquad CH_{2} \longrightarrow NH_{2} \qquad (b) \qquad CH_{3} \longrightarrow NH_{4} \qquad (c) \qquad CH_{3} \longrightarrow NH_{4} \qquad (c) \qquad (c) \qquad CH_{4} \longrightarrow NH_{4} \qquad (c) \qquad (d) \qquad CH_{4} \longrightarrow NH_{4} \qquad (d) \qquad (d)$$

(a) 1, 2-ジアミノー4-クロロー5-メチルベンゼン塩酸塩(1. 9 0 g, 9. 84ミリモル)、シュウ酸(1. 24 g, 13. 8ミリモル)および4 M塩酸水溶液(49 mL)の混合物を、還流下で4. 5 時間加熱した。冷却した後、その固体沈澱を濾過によって集め、水で充分に洗浄し、そして減圧下において80 $<math>^{\circ}$ 0 で乾燥させて、6-クロロー $^{\circ}$ 7-メチルー $^{\circ}$ 2, $^{\circ}$ 3 $^{\circ}$ 1 H, $^{\circ}$ 4 H) ーキノキサリンジオン($^{\circ}$ 1. $^{\circ}$ 6 8 g, $^{\circ}$ 8 $^{\circ}$ 7 を暗灰色固体, $^{\circ}$ mp>330 $^{\circ}$ 2 として与えた。

元素分析(%): 実測值: C, 51. 58; H, 2. 98; N, 13. 27。
Co Hr Cl No Oo 計算值: C, 51. 32; H, 3. 35; N, 13. 30。

(b) 6-クロロ-7-メチル-2,3 (1H,4H) ーキノキサリンジオン(1.26g,5.98ミリモル)を、室温で激しく撹拌された濃硝酸(10m L,d=1.42) に対して3分間にわたって少量ずつ加えた。次に、得られた 不均一混合物を40℃まで加湿し且つ12時間撹拌した。冷却した後、その黄色混合物を*水(100 mL)中に注ぎ且つ30分間撹拌した。得られた黄色沈澱を濾過によって集め、水で洗浄し、そして吸引によって乾燥させて、6-クロロ-7-メチル-5-ニトロ-2、3(1 H, 4 H) ーキノキサリンジオンおよび7-クロロ-6-メチル-5-ニトロ-2、3(1 H, 4 H) ーキノキサリンジオン オン(1:2 モル比、1.3 5 g, 8 8%)を黄色固体として与えた。

<u>H-NMR</u> (300MHz, CDCl₁): δ = 2. 23 (2H, s), 2. 3 5 (1H, s), 7. 19 (0. 3H, s), 7. 30 (0. 7H, s), 11 . 9-12. 25 (2H, br m)

(c) 上の6-クロロー7-メチルー5-ニトロー2,3 (1H,4H) ーキノキサリンジオンおよび7-クロロー6-メチルー5-ニトロー2,3 (1H,4H) ーキノキサリンジオンの混合物 (1.35g,5.73ミリモル)、塩化チオニル (12.5mL,20.4g,0.172モル)およびジメチルホルムアミド (44μL,42mg,0.573ミリモル)を、遷流下で4時間加熱した。冷却した後、その混合物を、激しく撹拌された氷水 (300mL) に対して注意深く加えた。得られた沈澱を濾過によって集め、水で洗浄し、そして吸引によって軟燥させて、2,3,7-トリクロロー6-メチルー5-ニトロキノキサリンおよび2,3,6-トリクロロー7-メチルー5-ニトロキノキサリンおよび2,3,6-トリクロロー7-メチルー5-ニトロキノキサリンおよび2,3,6-トリクロロー7-メテルー5-ニトロキノキサリンドにおいてヘキサン:ジクロロメタン (9:1~3:1容量まで変化する)を用いる勾配溶離によるフラッシュクロマトグラフィーによって、特性決定のためにかろうじて分離することができ、最初に溶離される異性体として、2,3,7-トリクロロー6-メチルー5-ニトロキノキサリンを白色固体、mp164~165℃として与えた。

<u>元素分析(%)</u>: 実測値: C, 36.76; H, 1.37; N, 14.43。
Co. H₄ Cl₃ N₇ O₂計算値: C, 36.96; H, 1.38; N, 14.37。
次に溶離される異性体2, 3, 6ートリクロロー 7ーメチルー 5ーニトロキノ
キサリンは、淡黄色固体, mp121~122℃として得られた。
元素分析(%): 実測値: C, 39.78; H, 2.02; N, 13.23。

C₃ H₄ C l₃ N₃ O₂. 0. 2 2 ヘキサン計算値: C, 3 9. 8 0; H, 2. 2 9; N, 1 3. 4 9。

(d) 酢酸エチル (8.5 mL) 中の上の2,3,7ートリクロロー6ーメチルー5ーニトロキノキサリンおよび2,3,6ートリクロロー7ーメチルー5ーニトロキノキサリンの混合物 (250 mg,0.855ミリモル) および塩化第ースズ二水和物 (1.35 g,5.98ミリモル) を、窒素下の遷流下において3時間加熱した。冷却した後、その混合物を酢酸エチル (50 mL) で希釈し且つ10%炭酸ナトリウム水溶液 (2 x 25 mL)、ブライン (25 mL) で洗浄し、乾燥させ (Mg SO4)、濾過し、そして減圧下で濃縮して、5ーアミノー2,3,7ートリクロロー6ーメチルキノキサリンおよび5ーアミノー2,3,6ートリクロロー7ーメチルキノキサリンの混合物 (2:1モル比。217 mg,97%)を橙色固体として与えた。

<u>H-NMR</u> (300MHz, CDCl₃): δ=2. 41 (2H, s), 2. 5 5 (1H, s), 5. 03 (1. 3H, br s), 5. 08 (0. 7H, br s), 7. 23 (0. 3H, s), 7. 44 (0. 7H, s)。
m/z (サーモスプレー) 262 (MH)。

(e) ナトリウムメトキシドのメタノール中25% w/w溶液(433 μ L, 1.89ミリモル)を、上の5-アミノー2,3,7-トリクロロー6-メチルキノキサリンおよび5-アミノー2,3,6-トリクロロー7-メチルキノキサリンの混合物(200 mg,0.788モル)の乾燥テトラヒドロフラン(7.9 m L) 中溶液に対して窒素下において0℃で滴加した。その混合物を3時間撹拌し、酢酸エチル(30 m L) で希釈し、水(2 x 10 m L)、プライン(10 m L)で洗浄し、乾燥させ(Mg SO $_i$)、濾過し、そして減圧下で濃縮した。固体残留物を、シリカゲル上においてヘキサン:酢酸エチル(95:5~1:1 容量まで変化する)を用いる勾配溶離によるフラッシュクロマトグラフィーによって特製して、最初に溶離される異性体として、5-アミノー6-クロロー2,3-ジメトキシー7-メチルキノキサリン(48 mg,25%)をオフホワイト固体,mp169~170℃として与えた。

元素分析(%):実測値:C,53.80;H,5.16;N,16.18。

Cn Hn Cl N₂O₂. 0. 15ヘキサン計算値: C, 53. 61; H, 5. 33; N, 15. 76。

次に溶離される異性体5-アミノ-7-クロロ-2, 3-ジメトキシー6-メ チルキノキサリン (85mg, 44%) は、橙色固体, mp181~182℃と して得られた。

<u>元素分析(%)</u>: 実測値: C, 52.55; H, 4.72; N, 16.61。
Cn Hn Cl N, O:.0.05ヘキサン計算値: C, 52.61; H, 4.96; N, 16.29。

製造例114

6-クロロー2, 3-ジメトキシ-7-メチル-5- [5-メトキシメチル-3 - (3-ピリジル) -4H-1, 2, 4-トリアゾール-4-イル] キノキサリン

(a) 塩化メトキシアセチル(2. $16\,\mathrm{mL}$, $2.\,57\,\mathrm{g}$, $23.\,66\,\mathrm{s}$ リモル)を、 $5-\mathrm{ア}$ ミノ $-6-\mathrm{\rho}$ ロロ-2, $3-\mathrm{\ddot{o}}$ メトキシ $-7-\mathrm{\ddot{o}}$ チルキノキサリン(製造例113, $5\,\mathrm{g}$, $19.\,72\,\mathrm{\ddot{s}}$ リモル)およびピリジン($1.\,91\,\mathrm{mL}$, $1.\,89\,\mathrm{g}$, $23.\,66\,\mathrm{\ddot{s}}$ リモル)のジクロロメタン($80\,\mathrm{mL}$)中溶液に対して 0^∞ で加えた。この温度で更に 1時間後、その混合物を2M塩酸水溶液、ブラインで洗浄し、乾燥させ($M\,\mathrm{g}\,\mathrm{S}\,\mathrm{O}$ ・)、そして減圧下で濃縮した。その残留物をジイソプロピルエーテルで研和し且つ調通して、 $6-\mathrm{\rho}$ ロロ-2, $3-\mathrm{\ddot{o}}$ メトキシ $-5-\mathrm{\ddot{o}}$ メトキシアセトアミド $-7-\mathrm{\ddot{o}}$ メチルキノキサリン($6.\,06\,\mathrm{g}$, 9

%)をオフホワイト固体, mp170~171℃として与えた。

<u>H-NMR</u> (300MHz, CDCl₂): δ = 2. 55 (3H, s), 3. 6 (3H, s), 4. 1 (3H, s), 4. 13 (3H, s), 4. 18 (2H, s), 7. 61 (1H, s), 8. 47 (1H, br s).

m/z (ψ — \mp XZV \longrightarrow 326 (MH $^{\circ}$).

(b) 2, 4ービス(4ーメトキシフェニル) -1, 3ージチア-2, 4ージホスフェタン-2, 4ージスルフィド(ローソン試薬) (4.47g, 11.0 6ミリモル)を、テトラヒドロフラン(120m1)中の6ークロロ-2, 3ージメトキシ-5-メトキシアセトアミド-7-メチルキノキサリン(6g, 18.43ミリモル)に対して加え、そしてその混合物を18時間撹拌した後、減圧下で蒸発させた。その残留物を、シリカゲル上においてヘキサン:ジクロロメタン(1:1~1:4~0:1容量まで変化する)を用いる勾配溶離によるフラッシュクロマトグラフィーによって精製して、6ークロロ-2, 3ージメトキシーメトキシチオアセトアミド-7-メチルキノキサリン(5.48g,87%)を黄色泡状物、mp174~176℃として与えた。

(c) $6-\rho$ ロロー2、 $3-\ddot{y}$ メトキシー5-メトキシチオアセトアミドー7-メチルキノキサリン(1.45g, 4.25ミリモル)、ニコチン酸ヒドラジド(1.16g, 8.5ミリモル)、酸化水銀(II)(1.84g, 8.5ミリモル)、粉末4 Åモレキュラーシーブ(1.06g) および $n-\ddot{y}$ タノール(60 mL)の混合物を、還流下で8 時間加熱した。冷却した後、その混合物を、アーボセル(簡標)濾過助剤を介して濾過し、そしてその残留物をジクロロメタンで洗浄した。濾液を滅圧下で濃縮して淡褐色固体を与え、これを酢酸エチルと2 M塩酸水溶液とに分配した。水性層をジクロロメロタン(4×50 mL)で抽出し、合わせたジクロロメタン抽出物を乾燥させ(Mg SO4)且つ減圧下で濃縮した。その残留物をジイソプロビルエーテル/メタノールから結晶化させて固体

(394mg) を与えた。結晶化からの母液を減圧下で蒸発させ、そしてその残留物を、シリカゲル上において酢酸エチルで溶離するフラッシュクロマトグラフィーによって精製して、ジイソプロピルエーテルでの研和後に、追加量の固体(364mg)を与えた。二つの固体を一緒にして、標題化合物(740mg,41%)を淡黄色固体、mp183~184℃として与えた。

| H-NMR (300MHz, CDC1;): δ=2.5 (3H, s), 3.18 (3H, s), 3.8 (3H, s), 4.16 (3H, s), 4.45 (2H, m), 7.58 (1H, m), 7.86 (1H, s), 8.35 (1H, m), 8.45 (1H, m), 8.65 (1H, m)。
m/z (サーモスプレー) 427 (MH)。

製造例115

7-クロロ-2, 3-ジメトキシ-6-メチル-5- [5-メトキシメチル-3-(3-ピリジル) -4 H-1, 2, 4-トリアゾール-4-イル] キノキサリン

標題化合物を、製造例 1140場合と同様の方法によって、5-アミノ-6-クロロ-2, 3-ジメトキシ-7-メチルキノキサリンの代りに5-アミノ-7-クロロ-2, 3-ジメトキシ-6-メチルキノキサリン(製造例 113)を用いて製造した。それは、オフホワイト固体, $mp166\sim168$ $^{\circ}$ として得られた。

<u>H-NMR</u> (300MHz, CDC1₃) : $\delta = 2$. 25 (3H, s), 3. 2

(3H, s), 3. 78 (3H, s), 4. 15 (3H, s), 4. 35 (2H, m), 7. 2 (1H, m), 7. 82 (1H, m), 8. 0 (1H, s), 8. 45 (1H, m), 8. 55 (1H, m)。
m/z (サーモスプレー) 427 (MH)。

製造例116

2-メトキシカルボニルピリジン-5-カルボン酸ヒドラジド

$$\stackrel{\circ}{\underset{\text{ch,o}}{\longrightarrow}} \stackrel{\circ}{\underset{\text{oh}}{\longrightarrow}} \stackrel{\circ}{\underset{\text{ch,o}}{\longrightarrow}} \stackrel{\circ}{\underset{\text{nhnh,e}}{\longrightarrow}} \stackrel{\circ}{\underset{\text{nhnh,e}}{\longrightarrow}} \stackrel{\circ}{\underset{\text{ch,o}}{\longrightarrow}} \stackrel{\circ}{\underset{\text{oh}}{\longrightarrow}} \stackrel{\circ}{\underset{\text{oh}}} \stackrel{$$

2ーメトキシカルボニルビリジンー5ーカルボン酸 (Chem. Abstr., 68, 68840h(1968)) (0.40g, 2.2ミリモル) およびNーエトキシカルボニルー2ーエトキシー1, 2ージヒドロキノリン (0.60g, 2.4ミリモル) のジクロロメタン (10mL) 中混合物を、窒素下の室温で0.75時間撹拌した。次に、ヒドラジン水和物 (0.110mL, 2.2ミリモル) を加え、そして更に5分後、生成された沈澱を濾過によって集め、ジクロロメタンで洗浄し、そして乾燥させて、標題化合物 (0.349g, 81%) を白色面体、mp177~180℃として与えた。

 $\frac{1}{H-NMR}$ (300MHz, DMSO-d*) : δ =4. 90 (3H, s), 5 . 00 (2H, br s), 8. 10 (1H, d, J=10Hz), 8. 27 (1H, dd, J=2 \pm 2 \pm 1 \pm 10. 05 (1H, d, J=2Hz), 1

m/z (サーモスプレー) 196 (MH)。

製造例117

ピリミジン-2-カルボン酸ヒドラジド

ビリミジン-2-カルボン酸エチルエステル (Ann. Chim, 5, 351(1960)) (0.866g, 5.7ミリモル) およびヒドラジン水和物 (0.332mL, 6.

ミリモル)のエタノール($20 \, \mathrm{mL}$)中混合物を、還流下で $3 \, \mathrm{時間加熱した後、減圧下で濃縮した。その残留物をジエチルエーテルで研和し、濾過によって集め、そして酢酸エチルで洗浄して、標題化合物(<math>0.542 \, \mathrm{g}$, $69 \, \mathrm{\%}$)を黄色固体, $\mathrm{mp} \, 17 \, 3 \sim \! 17 \, 5 \, \mathrm{C}$ として与えた。

 $\frac{^{'}H-NMR}{^{'}H-NMR} (300MHz, DMSO-d_{1}) : \delta=4. 20 (2H, br s), 7. 50 (1H, t, J=4Hz), 8. 83 (2H, d, J=4Hz), 9. 93 (1H, br s),$

m/z (サーモスプレー) 139 (MH^{*})。

製造例118~132

次の表で示された化合物を、製造例117の場合と同様の方法によって、ヒドラジン水和物および適当なエチルエステル(RCO $_2$ C $_3$ H $_3$)を用いて製造した

R^B <

製造例番号 1118	R ^W	mp (°C) 98-100	**H-NMAR (300 MHz, DMSO-4 _d) またはm / z または解題分析 6 = 2.46 (3H, 不財際), 4.46 (2H, brs), 7.22 (1H, s), 7.62 (1H, d, J=BHz), 8.46 (1H, m), 9.44 (1H, s), 7.62 (1H, d, J=BHz), 8.46 (1H, m), 9.44	エチルエステルの参考文献
119	D Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	209-212	(サーモスフレー) 16.1.7 (MH ¹). 5 = 2.30 (3H, s), 4.20 (2H, br s), 7.44 (1H, s). 8.56 (1H, s). (サーモスフレー) 140.6 (MH ¹).	
120			8 = 3.39 (2H, s), 4.20 (2H, br s), 7.30 (1H, m), 7.64 (1H, d, J=8Hz), 8.41 (1H,m), 9.18 (1H, br s). (Φ = ₹.χ. J L → 152.0 (MH').	,

121	, GH,	154-155	δ = 4.02 (3H, s), 4.22 (2H, br s), 6.78 (1H, m),	J. Org. Chem., 33,	
	Z-Z =	-	7.40 (1H, s), 9.62 (1H, br s).	. 4451 (1968).	
	\$		(サーモスプレー) 141 (MH*).		
122		265-266	8 = 4,58 (2H, br s), 7.51 (2H, s), 10.07 (1H, br	Ric, Scl., 36(5), 332	_
	Z= Z>		. (s	. (1966).	
	HIN ON TO		(サーモスプレー) 160 (MNH,*).		
123		121-123	8 = 0.90 (3H, t, J=7Hz), 1.59 (2H, m), 2.54 (2H,		_
	N-NH.		q, J=7 Hz), 4.27 (2H, br s), 6.38 (1H, s), 9.10	32(4) 1568 (1984)	
	· }		(1H,s).		_
			(サーモスプレー) 168.7 (MI+*).	3	
124		188-191	5 = 3.83 (3H, s), 4.27 (2H, br s), 7.79 (1H, s),	J. Hel. Chem., 30, 865	,
	ธ์		8.05 (114, s), 9.20 (114, br s) (サーモスプレー)	(1993).	
			141.1 (MH¹)		
126	, CH3	111-113	δ = 3.96 (2H, br s), 4.03 (3H, s), 6.94 (1H, s),	J. Org. Chem., 52,	,
	z (7.01 (1H, s), 8.60 (1H, br s). (サーモスプレー)	3496 (1987).	
	* \ \ \ \ Z		141 (MH ⁺).		

126		266-268	8 = 4.24 (2H, br s), 8.07 (1H, s), 8.04	J. Chem. Soc., Perk.	_
	E		(1H, br s).	Trans. 1, 627 (1982).	
*	<u>*</u>		(サーモスプレナ) 128 (MH [*]).		
127		178-180	8 = 4.34 (2H, br s), 6.68 (1H, s), 7.69 (1H, s),		_
	L NII		9.25 (1H, br s), 13.01(1H, br s). (サーモスプレー)		
	- X		127 (MH*).		
128		170-172	5 = 4.10 (3H, s), 4.56 (2H, br s), 7.97 (1H, s),	Chem, Zeil., 110, 101	_
	, CH,		9.92 (1H, br s).	(1986).	
	z Z z z		(サーモスプレー) 127 (MH*).		
129		-	8 = 4.58 (2H, br.s), 7.40-7.58 (3H,m), 7.79	Eur. J. Med. Chem.,	_
			(2H, d, J=Bl4z), 8.40 (1H,s), 8.92 (1H,s),	22, 383 (1987)	
-			8.99 (1H,s), 10.01 (1H,br.s)		
130	- Z-Z-Z-	290-292	8=4.48 (2H, 幅広 s), 8.39 (114,s),		_
			9.63 (1H, 幅広 s)		
			(thermospray) 145 (MNH ₄ *)		
			AL		,

198-191	100		400 407	CT 24. LL C 40. N. 40. C.2	
188-189	_	\ _	180-187	英選値: C'07.34; H,D.18; N,19.02.	製造例133
Z_/		_ _ _{		C ₁₂ H ₁₁ N ₃ O 計算值: C,67.59; H,5.20;	
2./		:		N,19.71%	
Z_/	1		188-189	実測値: C,58.86; H,4.98; N,27.09.	製造例134
Z_/		-(-(C10H10N,O. 0.1 H2O 計算値:	
		, , ,		C,58.87; H,5.04; N,27.46%	
		1	-		

製造例133

2-フェニルピリジン-5-カルボン酸エチルエステル

(i) 2-ブロモピリジン-5-カルボン酸エチルエステル

2-プロモビリジンー5-カルボン酸 (J. Org. Chem., 12, 456 (1947)) (2.3 2 g, 11.49ミリモル) およびN-エトキシカルボニルー2-エトキシー1, 2-ジヒドロキノリン (3.12 g, 12.64ミリモル) のジクロロメタン (30 m l) 中混合物を、窒素下の室湿で1時間撹拌した。無水エタノール (5 m l) を加え、そしてその混合物を 30分間撹拌した後、減圧下で濃縮した。その残留物をジクロロメタン (40 m l) と10 % w / w 炭酸カリウム水溶液 (40 m l) とに分配した。水性層をジクロロメタン (25 m l) で抽出し、そして合わせた有機層を乾燥させ ($MgSO_4$) 且つ減圧下で濃縮した。シリカゲル上においてジクロロメタンで溶離するフラッシュクロマトグラフィーによる精製は、2-プロモビリジンー5-カルボン酸エチルエステル (2.18 g, 83%)を無色間体として与えた。

元素分析(%):実測値: C, 41.57; H, 3.45; N, 5.98。
CoHoNOBr計算値: C, 41.77; H, 3.50; N, 6.09。

(ii) 2-フェニルピリジン-5-カルボン酸エチルエステル

2 ープロモビリジン - 5 ーカルボン酸エチルエステル ((i) の部分を参照されたい) (1. 855g, 8. 065ミリモル)、フェニルトリメチルスズ (3. 89g, 16. 13ミリモル)、塩化ビス (トリフェニルホスフィン) パラジウム (II) (371mg) および塩化リチウム (1. 03g, 24. 195ミリモル) の乾燥ジメチルホルムアミド (40ml) 中混合物を、窒素下において10

0℃で1.5時間加熱した。冷却後、その混合物を減圧下で濃縮し、そしてその

残留物を、シリカゲル上においてヘキサン: 酢酸エチル (10:1容量) で溶離するフラッシュクロマトグラフィーによって精製して、標題化合物 (0.843g,46%) を白色固体として与えた。

<u>H-NMR</u> (300MHz, CDCl₃): δ =1. 43 (3H, t, J=8Hz), 4. 42 (2H, q, J=8Hz), 7. 49 (3H, m), 7. 80 (1H, m), 8. 07 (2H, m), 8. 36 (1H, m), 9. 29 (1H, m),

m/z (サーモスプレー) 228 (MH)。

製造例134

1-フェニルイミダゾール-4-カルボン酸エチルエステル

(i) <u>1 - (4 - ニトロフェニル) イミダゾール - 4 - カルボン酸エチルエス</u> <u>テル</u>

1 H − イミダゾールー 4 − カルボン酸エチルエステル (J. Het. Chem., 19, 253(1982)) (584 mg, 4.17ミリモル)、4 − フルオロニトロベンゼン (588 mg, 4.17ミリモル) および無水炭酸ナトリウム (487 mg, 4.59ミリモル) の乾燥ジメチルホルムアミド (10 m1) 中混合物を、窒素下において50℃で24時間加熱した。窒温まで冷却した後、その混合物を氷冷水(60 m1) 中に注ぎ、そして得られた固体を濾過によって集め、水で洗浄し、そして

滅圧下において60℃で乾燥させて、1- (4-ニトロフェニル) イミダゾール

11

-4- カルボン酸エチルエステル (980 mg, 90%) をオフホワイト固体, mp198~200℃として与えた。

<u>元素分析(%)</u>: 実測値: C, 55.06; H, 4.21; N, 15.99。 C₂ H₁₁ N₃ O₄計算値: C, 55.17; H, 4.24; N, 16.08。

(ii) 1-(4-アミノフェニル) イミダゾール-4-カルボン酸エチルエス テル

1 ー (4--)トロフェニル) イミダゾールー 4-カルボン酸エチルエステル((i) の部分を参照されたい)($950\,\mathrm{mg}$, $3.64\,\mathrm{s}$ リモル) および塩化スズ (II) ($4.11\,\mathrm{g}$, $18.2\,\mathrm{s}$ リモル) の無水エタノール($30\,\mathrm{m}$ 1) 中混合物を、窒素下の還流下で $30\,\mathrm{d}$ 間加熱した。 室温まで冷却後、その混合物を減圧下で濃縮した後、酢酸エチル($30\,\mathrm{m}$ 1)と飽和炭酸水素ナトリウム溶液($20\,\mathrm{m}$ 1)とに分配した。 水性層を酢酸エチル($30\,\mathrm{m}$ 1)で抽出し、そして合わせた有機層を乾燥させ($Mg\,\mathrm{SO}_4$) 且つ減圧下で濃縮して、1-(4-アミノフェニル) イミダゾールー4-カルボン酸エチルエステル($810\,\mathrm{mg}$, $96\,\mathrm{%}$)を蓄色油状物として与えた。

LH-NMR (300MHz, CDC1;): δ=1. 40 (3H, t, J=7Hz), 2. 86 (2H, 幅広s), 4. 39 (2H, q, J=7Hz), 6. 76 (2H, d, J=9Hz), 7. 18 (2H, d, J=9Hz), 7. 72 (1H, s), 7. 83 (1H, s).

m/z (サーモスプレー) 232 (MH)。

(iii) 1-フェニルイミダゾール-4-カルボン酸エチルエステル

 させ (MgSO*) 且つ減圧下で濃縮した。シリカゲル上においてジクロロメタンで溶離するフラッシュクロマトグラフィーによる精製は、標題化合物 (520 mg、70%)をオフホワイト置体として与えた。

製造例135~149

次の表で示された化合物を、製造例 2 7 の場合と同様の方法によって、5 - 7 = 1 - 6 + 7 - 3 - 4 +

ヒドラジドの参考文献	ı	·
工程(c)の処理お よびクロマトグラ フィー溶離剤変更	康洗净 セブ	酸洗净セ字
mp H-NMR (300 MHz, CDCl,) (°C) または加/zまたは元素分析(96)	5 = 3.50 (3H.s), 4.10 (3H.s), 5.18 (H.d., 4-14Hz), 5.28 (H.d., 1-14Hz), 6.50 (2H.d., 1-10Hz), 6.82 (H.H., 1-8Hz), 7.04 (2H.f., 1-6Hz), 7.20 (H.H., 7.24 (H.m.), 8.80 (H.H.s), 8.52 (2H. br.s), mz (θ - ε. χ. 7U - γ 509 (MH '))	δ = 3.74 (3H,s), 4.06 (3H,s), 4.32 (2H,m), 4.60 (2H,m), 6.82 (2H,m), 7.18 (3H,m), 7.20 (1H,m), 7.86 (1H,m), 8.00 (1H,s), 8.50 (2H,m) miz (∀−€×7√ν−) 523 (MH¹).
mp (°C)		
ヒドラジド からのR ^B		z
酸塩化物 からのR ^A		— cı,ocı,—
自匈裔	135	130

137	-CHOCH,	(- 8	δ = 3.20 (3H,s), 3.82 (3H,s),		9年11月9年
		=	4.	4.16 (3H,s), 4.48 (2H,q,		
			-"5	J=14Hz), 7.38-7.49 (5H,m),		
) }_ }	89	8.08 (1H,s), 8.17 (1H,t,		
		=\]	<u>ي</u>	J=3Hz), 8.37 (1H,s), 8.77		
		•	=	1H,s).		
			E	m/z (サーモスプレー) 523 (MH*)		
138	<	\ \ \	- 8	8 = 0.40-0.65 (2H,m), 0.91-		
		<u></u>		1.16 (3H,m), 1.18-1.31		
	VI CII DCII	_\	2	(2H,m), 1.43-1.76 (4H,m),		
		z	7	2.95-3.08 (2H,m), 3.83		
			<u>ෆ</u>	(3H,s), 4.15 (3H,s), 4.51		
			2	(2H,q, J=15Hz), 7.89 (1H,d,		
			-	J=8Hz), 8.05 (1H,s), 8.50		
_			۳	(1H,s), 8.55 (1H,d, J=3Hz).	_	
			E	m/z (サーモスプレー) 529 (MH*).		

	,	製造例130
ジクロロメタン: メタノール (99:1容量) での溶離	ı	酸洗浄せず 酢酸エチル:メタ ノール (98:2容量) での溶離
- (Nukr, 400 MH-15) 5 = 0.74-0.81 (24 m), 1.30-1.47 (44 m), 1.60-1.78 (24 m), 3.08- 5.20 (21 m), 3.83 (54 k), 4.16 (54 k), 4.48-46.2 (24, 二章 0 二重解 1-31-31+2.281+2, 7.26 (14), 60 k), 7.90 (14 d, 1-61+2), 80 (14 k), 8.57 (14 k), 8.5	5 = 1.66 (2H.s), 3.73 (2H.q. J=H2), 3.82 (3H.s), 4.16 (3H.s), 4.66 (2H.AB. 三頭 J=7Hz, 12Hz), 7.26 (1H.obs), 7.87 (1H.q., 1=81Hz), 8.05 (1H.s), 8.48 (1H.s), 8.66 (1H.g., 1=41Hz), m2 (9—年太7上-5) 516 (M11).	224- 実測値: C, 43.47, H, 3.35; N, 226 28.61 「shrinkoo'C! 0.5 H ₂ O) 計算値: C,43.29; H, 3.15; N, 26.92.
		N N N N N N N N N N N N N N N N N N N
Cuiociio—	-Сн,осн,с.Б.	cit _s
130	140	141

142				(NMR. 400 MHz):	酢酸エチル:	
				δ = 2.59-2.67 (1H,m), 2.82-2.91	11-144	
	~	1		(1H,m), 3.00-3.06 (2H,m), 3.72	(08.9%庫)	
				(3H,s), 4.11 (3H,s), 6.93-6.98	100.00円	
				(ZH,m), 7.02-7.11 (3H,m), 7.17-	最空のご	
	9			7.20 (111,111), 7.19-7.30 (111,111), 0.20 (111,111),		
				8.U3 (TH,S), 8.39-8.42 (TH,M),		
		-		8.44-8.46 (171,111). 77 (** ** ** **) (*) 507 (MH*)		
143		K		δ = 3.66 (3H.s), 3.77 (1H.d.	- /二十一般接	
2	<u></u>			J=15Hz), 4, 10 (3H.s), 4,28 (1H.d.		
		\ =\ =\		J=15Hz), 6,64-6,68 (2H,m), 6.81-	メーノダメ	
	>	<i>*</i>		6.93 (3H,m), 7.18-7.24 (1H,m),	(98:2冷量)	
				7.83-7.89 (1H,m), 7.89 (1H,s),	での溶離	
				8.47-8.52 (1H,m).		
				m/z (サーモスプレー) 493 (MH*)		
144	CIIS, O.		,		酢酸エチル	
	>	,- ==		(2H,m), 3.80 (3H,s), 4.13 (3H,s),	整数ラド	
		_\		4.44 (1H,d, J=12Hz), 4.57 (1H,d,	はなく	
		′		J=12Hz), 7.58 (1H,m), 8.08 (1H,s),		
				8.18 (1H,m), 8.53 (1H,m), 8.69		
				(1H,m).		
				m/z (サーモスプレー) 461 (MH*).		
145	CII,0, X		210-	5 = 3.19 (3H,s), 3.85 (3H,s), 4.12	酢酸エチル	J.Chem.
	>	-	212	(3H,s), 4.47 (1H,d, J=11Hz), 4.56	接後のよ	Soc.
				(1H,d, J=11Hz), 7.56 (1H,m), 7.71		1943, 413
		z		(2H,m), 8.00 (1H,m), 8.07 (1H,s),		
				8.32 (1H,m), 8.78 (1H,m).		
				m/z (サーモスブレー) 497 (MH*).		
_		The same of the sa		The state of the s		-

	J. Chem. Soc., <u>1943,</u> 413	製造例132	製造例131
酢酸エチル: メタノール (99:1容量) での溶離	酢酸エチル での溶離	酢酸エチル での溶離	酢酸エチル での溶離
5 = 1.05 (3+11, 1-991な), 2.79 所能エチル (241-m), 3.41 (241-n), 3.79 (21-n), メタノール 3.87 (314-s), 4.71 (341-s), 7.28 (141-m), 8.10 (141-s), 729 (141-m), 8.10 (141-s), 720 (341-s), 720 高離 miz (4)-モスブレーメイス (441-s), 720 (441-m), 8.10 (411-s), 720 (411-m), 8.10 (411-s), 720 (411-m), 8.10	212- 実測値: C,54.65; H,3.81; N, 16.05. 214 C ₂₃ H ₁₆ N ₆ O ₃ Cl ₂ O.2CH ₃ CO ₂ C ₂ H ₃ , 0.4 H ₂ O 計算值: C, 54.75; H, 3.94; N, 16.09.	229 実制値:C,53.57: H,3.70; N, 18.89. 220 C ₂₃ H ₁₆ N,O ₂ O ₂ D, 25.H ₃ O 計算値:C,53.45; H,3.80; N,18.97	195. \$ = 3.19 (314.8), 3.86 (314.8), 4.14 197 (314.8), 4.44 (114.d., 1–1114.), 4.53 (114.d.), 1–1141., 7.42 (314.m), 7.70 (114.d.), 7.54 (214.m), 8.01 (114.m), 8.08 (114.8), 8.47 (114.m), miz (9.—ex_7.—) \$53 (414.),
	212- 214	219- 220	195- 197
C ₂ H ₃ OCH ₂ CH ₂ -	-44505H5	-MOCH2-	CH ₃ OCH ₂ -
146	147	148	149

製造例150

$$\begin{array}{c|c} \text{CI} & \text{NO}_3 & \text{N} & \text{COCH}_3 & \text{CI} & \text{NN}_4 & \text{N} & \text{COCH}_3 \\ \hline \\ \text{CI} & \text{NO}_3 & \text{CI} & \text{N} & \text{COCH}_3 & \text{CI} & \text{NN}_4 & \text{COCH}_3 \\ \hline \end{array}$$

(a) ナトリウムメトキシドのメタノール中25% w/w溶液 (700 ml, 5.15 モル)を、2,3,6,7ーテトラクロロキノキサリン (175 g,0 6 5 3 モル)のメタノール (1.4 L)中懸濁液に対してその還流温度で加え、そしてその混合物をその還流温度で4時間維持した。その混合物を冷却し、そして水 (2.1 L)を加えた。そのスラリーを濾過し、固体を水 (0.35 L) およびイソプロパノール (0.175 L)で洗浄して、6,7ージクロロー2,3ージメトキシキノキサリン (159 g,94%)をベージュ色固体,mp146~148 ℃として与えた。

<u>H-NMR</u> (300MHz, CDCl₈) : δ =1. 43 (6H, s), 7. 8 3 (1H, s),

(b) 6, 7-ジクロロー2, 3-ジメトキシキノキサリン (25g, 0.0 96モル)を、予めー5℃まで冷却された発煙硝酸 (0.113L) に対して少量ずつ加えた。その溶液を10℃まで暖め且つ撹拌を2時間続けた。次に、その溶液を水/水混合物 (0.5L) 中に注いだ。そのスラリーを濾過し、そして固体を水およびイソプロパノール (0.05L) で洗浄して、6, 7-ジクロロー2, 3-ジメトキシー5-ニトロキノキサリン (27g, 92%)をページュ色固体、mp184~186℃として与えた。

<u>H-NMR</u> (300MHz, CDCl₃): δ =4. 12 (3H, s), 4. 1 7 (3H, s), 7. 98 (1H, s).

(c) 6, 7-ジクロロ-2, 3-ジメトキシ-5-ニトロキノキサリン(2

0g, 0.066モル) および5%w/w炭素上パラジウム(湿潤度50%) (

1. 2g) を、テトラヒドロフラン (0. 12L) および酢酸エチル (0. 12

L) の混合物中に懸濁させた。その混合物を60℃および414kPa (60p

s i) で22時間水素化し、冷却し、ジクロロメタン (0.48L) で希釈し、

そしてセライト (商標) 濾過助剤を介する濾過によって触媒を除去した。その溶

液を、トルエンを徐々に加えながら減圧下で濃縮した。次に、その混合物を濾過し、そして固体をトルエン (20ml) で洗浄して、標題化合物を褐色固体 (1

4. 2g, 78%), mp182~4℃として与えた。

<u>H-NMR</u> (300MHz, CDCl₃): δ =4. 13 (3H, s), 4. 1 4 (3H, s), 5. 07 (2H, br s), 7. 26 (1H, s).

薬理データ

NMDA受容体のグリシン部位に関して選択された実施例の化合物の結合機和性は、本明細書の第25頁で記載された ${\bf I}^3$ H] $-{\bf L}-689,560$ 法を用いて測定された。得られた結果を下記の表で示す。

実施例番号	IC ₅₀ (nM)
5	3
2 0	19
73	4

【手続補正書】

【提出日】1998年9月8日

【補正内容】

請求の範囲を次の通り補正する。

『1. 式

(式中、Rは、3個または4個の窒素へテロ原子を有する5員環へテロアリール 基であって、環炭素または窒素原子によってキノキサリンジオン環に対して結合 している基であるかまたは、1~3個の窒素ヘテロ原子を有する6員環ヘテロア リール基であって、環炭素原子によってキノキサリンジオン環に対して結合して いる基であり、前記基はどちらも、場合によりベンゾ縮合していて且つ場合によ り、ベンゾ縮合部分中を含めて、C₁-C₄アルキル、C₂-C₄アルケニル、C₂ $-C_1 \rightarrow D_1 = D_2 + D_3 = D_4 + D_4 = D_4 + D_5 = D_6 + D_6 = D_6 = D_6 + D_6 = D_6$ ロアルキルオキシ、-COOH、CI-CIアルコキシカルボニル、-CONR R^{1} , $-NR^{3}R^{4}$, $-S^{2}$ (O), $(C_{1}-C_{4}T\nu+\nu)$, $-SO_{2}NR^{3}R^{4}$, TUール、アリールオキシ、アリール(C₁ - C₄)アルコキシおよびhetからそれ ぞれ独立して選択される1個または2個の管機基で管権されていて、前記C:-Caアルキルは、場合により、Co-Coシクロアルキル、ハロ ヒドロキシ、Co $-C_4$ \mathcal{F} \mathcal{F} シ、 $C_3 - C_1$ シクロアルキル($C_1 - C_4$)アルコキシ、-COOH、 $C_1 - C_4$ ア $\nu = 1$ ルキル)、-SO: (アリール)、-SO: NR R 、モルホリノ、アリール、ア リールオキシ、アリール (C₁-C₄) アルコキシまたはhetで置換されていて 、そして前記C2-C4アルケニルは、場合により、アリールで置換されていて; R およびR は、それぞれ独立して、H、フルオロ、クロロ、ブロモ、Ci-C₄アルキルおよびハロ (C₁ - C₄) アルキルから選択され、

R[°] およびR[°] は、それぞれ独立してHおよびC₁ - C₁アルキルから選択される かまたは、一緒になった場合、C₁ - C₁アルキレンであり;

pは0、1または2であり:

Rおよび「het」の定義で用いられる「アリール」は、フェニルまたはナフチルを意味し、それぞれ場合により、 C_1-C_4 アルキル、 C_1-C_4 アルコキシ、ヒドロキシ、ハロ、ハロ(C_1-C_4)アルキルおよび $-NR^3$ R 4 からそれぞれ独立して選択される1個または2個の置換基で置換され;

Rの定義で用いられる「het」は、フリル、チエニル、ピロリル、ピラゾリ ル、イミダゾリル、トリアゾリル、テトラゾリル、オキサゾリル、イソキサゾリ ル、チアゾリル、イソチアゾリル、オキサジアゾリル、チアジアゾリル、ピリジ ニル、ピリダジニル、ピリミジニルまたはピラジニルを意味し、それぞれ、場合 によりベンゾ縮合していて且つ場合により、ベンゾ縮合部分中を含めて、Ciー C4アルキル、C3-C7シクロアルキル、C1-C4アルコキシ、ハロ、ヒドロキ シ、-COOH、C1-C1アルコキシカルボニル、アリルオキシカルボニル、- $CONR^{\dagger}R^{\dagger}$. $-NR^{\dagger}R^{\dagger}$. -S(O), $(C_1-C_4T\nu+\nu)$. $-SO_2NR^{\dagger}$ アルコキシ(Cı ーCı)アルキル、R R NCO(Cı ーCı)アルキル、アリー ル、アリールアルキル、het およびhet (C:-C:) アルキルからそれぞ れ独立して選択される1個または2個の置換基で、および/または「het]が ピリジニル基、ピリダジニル基、ピリミジニル基またはピラジニル基を含む場合 、環窒素へテロ原子上にオキシド置換基で置換されていて:そして「hetlの 定義で用いられる「het 」は、フリル、チエニル、ピロリル、ピラゾリル、 イミダゾリル、トリアゾリル、テトラゾリル、オキサゾリル、イソキサゾリル、 チアゾリル、イソチアゾリル、オキサジアゾリル、チアジアゾリル、ピリジニル . ピリダジニル、ピリミジニルまたはピラジニルを意味し、それぞれ、場合によ り 1 個または 2 個の C, - C, アルキル 置極基で置換される) を有する化合物またはその薬学的に許容しうる塩。

2. Rが、トリアゾリルまたはテトラゾリルであり、それぞれ、C₁ - C₄ア

ルキル、 $C_1 - C_1$ アルケニル、 $C_1 - C_1$ シクロアルキル、ハロ、ヒドロキシ、 $C_1 - C_1$ アルコキシカルボニル、アリールおよびhething される1個または2個の管験基で管検され、前記 $C_1 - C_1$ アルキルは、場合によ

- り、ハロ、ヒドロキシ、 C_1-C_4 アルコキシ、ハロ(C_1-C_4)アルコキシ、 C_3-C_4)シクロアルキル(C_1-C_4)アルコキシ、-COOH、 C_1-C_4 アルコキシカルボニル、 $-NR^3R^4$ 、 $-SO_2$ (アリール)、モルホリノ、アリール、アリールオキシ、アリール(C_1-C_4)アルコキシまたは1e t で置換されていて:或いはビリジニルまたは1e 3 である請求頃 1 に記載の化合物。
- 3. Rが、1, 2, 3-トリアゾールー4ーイル、1, 2, 4ートリアゾールー3ーイル、1, 2, 4ートリアゾールー4ーイルまたはテトラゾールー5ーイルであり、それぞれ、 C_1-C_4 アルキル、 C_2-C_4 アルケニル、 C_3-C_5 ジーロアルキル、ハロ、ヒドロキシ、 C_1-C_4 アルコキシカルボニル、アリールおよび he tからそれぞれ独立して選択される 1 個または 2 個の置換基で置換され、前記 C_1-C_4 アルコキシ、ハロ、ヒドロキシ、 C_1-C_4 アルコキシ、ハロ(C_1-C_4) アルコキシ、 C_3-C_5 ジーロアルキル(C_1-C_4) アルコキシ、ハロ(C_1-C_4) アルコキシカルボニル、 C_1 0 アルコキシ、 C_1 1 アルコキシカルボニル、 C_1 2 アリール、モルホリノ、アリール、アリールオキシ、アリール(C_1-C_4) アルコキシまたは he tで置換されていて;或いはビリジンー2ーイル、ビリジンー3ーイル、ビリジンー4ーイル、ビリミジンー2ーイルまたはビリミジンー5ーイルである請求頃 1 または 2 に記載の化合物。
- 4. R およびR が、それぞれ独立して、Hおよび $C_1 C_4$ アルキルから選択される請求項1~3のいずれか1項に記載の化合物。
- 5. 「アリール」が、メチル、メトキシ、ヒドロキシ、クロロ、トリフルオ ロメチルおよびジメチルアミノからそれぞれ独立して選択される1個または2個 の置換基で場合により置換されたフェニルを意味する請求項1~4のいずれか1 項に記載の化合物。
- 6. 「het」が、チエニル、ピロリル、ピラブリル、イミダブリル、トリ アブリル、チアブリル、イソチアブリル、オキサジアブリル、チアジアブリル、

ビリジニル、ビリダジニル、ピリミジニルまたはビラジニルを意味し、それぞれ、場合によりベング縮合していて且つ場合により、C:-C:アルキル、-COOH、-NR³R⁴ およびフェニルからそれぞれ独立して選択される1個または2個の置換基で、および/または前記ピリジニル基、ピリダジニル基、ピリミジニル

(164)

基またはピラジニル基の環窒素へテロ原子上にオキシド置換基で置換されている 請求項 1~5のいずれか1項に記載の化合物

Rが、1, 2, 3-トリアゾール-4-イル、1, 2, 4-トリアゾー ルー3ーイル、1,2,4ートリアゾールー4ーイルまたはテトラゾールー5ー イルであり、それぞれ、メチル、エチル、プロピル、アリル、シクロプロピル、 シクロヘキシル、プロモ、ヒドロキシ、エトキシカルボニル、2-クロロフェニ ル、3-クロロフェニル、4-クロロフェニル、4-ジメチルアミノフェニル、 2-ヒドロキシフェニル、2-メトキシフェニル、3-メトキシフェニル、4-メトキシフェニル、2-メチルフェニル、フェニル、4-トリフルオロメチルフ エニル、2-アミノ-1、3、4-オキサジアゾール-5-イル、2-カルボキ シピリジン-5-イル、1、5-ジメチル-1H-ピラゾール-3-イル、1H ーイミダゾールー1ーイル、1ーメチルイミダゾールー2ーイル、1ーメチルイ ミダゾールー4ーイル、1ーメチルイミダゾールー5ーイル、3ーメチルイソチ アゾールー4ーイル、4ーメチルー1H-イミダゾールー5ーイル、3ーメチル -1.2.4-オキサジアゾール-5-イル、1-メチル-1H-ピラゾール-4ーイル、5ーメチルー1Hーピラゾールー3ーイル、1ーメチルー1Hーピラ ゾール-5-イル、1-オキシドピリジン-3-イル、2-メチルピリジン-3 ーイル、2-メチルピリジン-5-イル、1-フェニルイミダゾール-4-イル 、5-フェニルピリジン-3-イル、2-フェニルピリジン-5-イル、1-メ チルピロールー2ーイル、4ーメチルー1、2、3ーチアジアゾールー5ーイル 、2-メチルチアゾールー4ーイル、1-メチルー1H-1、2、4-トリアゾ - ル - 5 - イル、3 - (プロプー1 - イル) - 1 H - ピラゾール - 5 - イル、ピラジン-2-イル、1H-ピラゾール-4-イル、ピリダジン-4-イル、ピリ ジンー2ーイル、ピリジンー3ーイル、ピリジンー4ーイル、ピリミジンー2ー イル、チエンー2ーイル、1H-1, 2, 4ートリアゾールー5ーイル、1H-1, 2, 3ートリアゾールー5ーイル、キノリンー3ーイルおよびキノリンー6ーイルからそれぞれ独立して選択される1個または2個の置換基で置換され、前記メチル、エチルまたはプロピルは、場合により、フルオロ、ヒドロキシ、メトキシ、エトキシ、2, 2, 2ートリフルオロエトキシ、シクロヘキシルメトキシ

、シクロペンチルメトキシ、-COOH、メトキシカルボニル、ジメチルアミノ、4-クロロフェニルスルホニル、モルホリノ、フェニル、フェノキシ、ベンジルオキシ、ビリジン-2-イル、ビリジン-3-イルまたはピリジン-4-イルで置換されていて;或いはピリジン-2-イル、ビリジン-3-イルである請求項1~6のいずれか1項に記載の化合物。

8. Rが、

1- (2-ヒドロキシエチル) -5-フェニル-1, 2, 3-トリアゾール-4-イル、

1-(2-ヒドロキシエチル)-4-フェニル-1, 2, 3-トリアゾールー 5-イル、

2- (2-ヒドロキシエチル) -5-フェニル-1, 2, 3-トリアゾール-4-イル、

1-メチル-5-フェニル-1, 2, 3-トリアゾール-4-イル、

1-メチル-4-フェニル-1, 2, 3-トリアゾール-5-イル、

2-メチル-5-フェニル-1, 2, 3-トリアゾール-4-イル、

5-フェニル-1H-1, 2, 3-トリアゾール-4-イル、

1-メチル-1H-1, 2, 4-トリアゾール-3-イル、

4-(2-ヒドロキシエチル)-4 H-1, 2, 4-トリアゾール-3-イル

4-メチル-4H-1, 2, 4-トリアゾール-3-イル、 3-(2-アミノ-1, 3, 4-オキサジアゾール-5-イル) -5-メチル -4H-1, 2, 4-トリアゾール-4-イル、

3-ベンジル-5-(ピリジン-3-イル)-4H-1, 2, 4-トリアゾール-4-イル、

3 ーベンジルオキシメチルー5 - (ピリジンー3 ーイル) -4 H -1 , 2 , 4 - トリアゾールー4 ーイル、

3 - プロモー5 - (ピリジン-3-イル) - 4 H - 1, 2, 4 - トリアゾール - 4 - イル、

3-(3-カルボキシプロプ-1-イル)-5-(ピリジン-3-イル)-4 H-1, 2, 4-トリアゾール-4-イル、

3- (2-カルボキシピリジン-5-イル) -5-メトキシメチル-4H-1
. 2. 4-トリアゾール-4-イル.

3-(2-クロロフェニル) -5-メチル-4H-1, 2, 4-トリアゾール -4-イル、

3- (3-クロロフェニル) -5-メチル-4H-1, 2, 4-トリアゾール -4-イル

3 ーシクロヘキシルメトキシメチルー5 - (ピリジンー3 ーイル) - 4 H - 1 、2、4 - トリアゾールー4 ーイル、

3 - シクロペンチルメトキシメチル-5 - (ピリジン-3 - イル) - 4 H - 1
2 - 4 - トリアゾール - 4 - イル

3 ーシクロプロピルー5 ーメチルー4 H -1, 2, 4 ートリアゾールー4 ーイル、

3,5-ジ (メトキシメチル) -4H-1, 2, 4-トリアゾール-4-イル

3-(N, N-ジメチルアミノメチル)-5-エチル-4H-1, 2, 4-トリアゾール-4- π -イル、

3 − (N, N−ジメチルアミノメチル) −5 − (ピリジン−3−イル) −4 H −1, 2, 4 −トリアゾール−4−イル、

3 - (4 -ジメチルアミノフェニル) -5-メチル-4H-1, 2, 4-トリアゾール-4-4-4 π

3- (1, 5-ジメチル-1H-ピラゾール-3-7ル) -5-メトキシメチル-4H-1, 2, 4-トリアゾール-4-7ル、

[↑]3 - (1, 5-ジメチル-1H-ピラゾール-3-イル) - 5-メチル-4H - 1, 2, 4-トリアゾール-4-イル、

- 3, 5-33+3-4+1, 2, 4-13+3-4+1
- 3, 5-ジフェニル-4H-1, 2, 4-トリアゾール-4-イル、

3-(2-エトキシエチル)-5-(ピリジン-3-イル)-4H-1,2,4-トリアゾール-4-イル、。

3-xトキシメチル $-5-(ピリジン-3-4\pi)-4H-1$, 2, 4-トリアゾール $-4-4\pi$ ル

3-エトキシカルボニル-4H-1, 2, 4-トリアゾール-4-イル、

3-エチルー5-(2-クロロフェニル) -4H-1, 2, 4-トリアゾール -4-イル、

3-xチルー5-(2-xトキシフェニル) -4 H-1, 2, 4 - トリアゾール-4 - イル、

3-x チルー5-(1-x チルピラゾールー5-(1) -4 H-1, 2, 4- トリアゾールー4 -(1) トリアゾールー4

3-エチル-5-メチル-4H-1, 2, 4-トリアゾール-4-イル、

3ーエチルー5ーモルホリノメチルー4H-1, 2, 4ートリアゾールー4ーイル、

3-エチルー5- (ピリジンー3-イル) -4 H-1, 2, 4-トリアゾール

-4-イル、

3-エチル-4H-1, 2, 4-トリアゾール-4-イル、

3ーヒドロキシメテルー5ーメチルー4H-1, 2, 4ートリアゾールー4 ーイル、

3-ヒドロキシメチルー5-フェニルー4H-1, 2, 4-トリアゾールー4ーイル、

3-ヒドロキシメチルー5- (ピリジンー3-イル) -4 H-1, 2, 4-トリアゾールー4-イル、

3-ヒドロキシメチル-4H-1, 2, 4-トリアゾール-4-イル、

3-ヒドロキシ-5-メチル-4H-1, 2, 4-トリアゾール-4-イル、

3-.(1 \mathbf{H} -イミダゾール-1-イル) -5-メチル-4 \mathbf{H} -1, 2, 4-トリアゾール-4-イル、

3-(2-xトキシエチル) $-5-(ピリジン-3-4\pi)-4H-1$, 2, 4-トリアゾール-4-4ーイル、

3-メトキシメチル-5-(1-メチル-1H-ピラゾール-5-イル)-4 H-1, 2, 4-トリアゾール-4-イル、

3-メトキシメチル-5-(2-メチルピリジン-5-イル)-4 H-1, 2

, 4-トリアゾール-4-イル、

3-メトキシメチルー5-(2-メチルチアゾールー4-イル)-4 H-1 ,

2, 4-トリアゾール-4-イル、

3-メトキシメチル-5-(1-オキシドピリジン-3-イル)-4H-1,

2, 4-トリアゾール-4-イル、

3-メトキシメチルー5- (1-フェニルイミダゾール-4-イル) -4H-

2,4ートリアゾールー4ーイル、

3- メトキシメチル-5- (5-フェニルピリジン-3-イル) -4 H-1,

2, 4ートリアゾールー4ーイル、

3-メトキシメチル-5-(2-フェニルピリジン-5-イル)-4 $\mathrm{H}-$ 1,

2, 4-トリアゾール-4-イル、

3-メトキシメチル-5-(ピリジン-3-イル)-4H-1, 2, 4-トリアゾール-4-イル、

3-メトキシメチル-5-(ピリジン-3-イルメチル)-4H-1, 2, 4 -トリアゾール-4-イル、

3-メトキシメチル-5-(キノリン-3-イル)-4H-1, 2, 4-トリアゾール-4-4-イル、

3-メトキシメチル-5-(キノリン-6-イル)-4H-1, 2, 4-トリ

アゾールー4ーイル、

3- (2-メトキシフェニル) -5-メチル-4H-1, 2, 4-トリアゾール-4-イル、

3- (3-メトキシフェニル) -5-メチル-4H-1, 2, 4-トリアゾール-4-イル、

3- (4-xトキシフェニル) -5-メチル-4H-1, 2, 4-トリアゾール-4-イル、

3-メチルー5- (1-メチルイミダゾールー2-イル)-4 H-1, 2, 4 -トリアゾールー4-イル,

3-メチルー5- (1-メチルイミダゾールー4-イル)-4 H-1, 2, 4 -トリアゾールー4-イル,

3-メチルー5- (1-メチルイミダゾールー5-イル)-4 H-1, 2, 4 -トリアゾールー4-イル,

3 - (3-xチルイソチアゾール - 4-4 ル) - 5-xチル - 4 H - 1 , 2 , 4-5 リアゾール - 4-4 ル 、

3-メチルー5-(4-メチルー1H-イミダゾールー5-イル)-4H-1 , 2, 4-トリアゾールー4-イル、 3-メチル-5-(3-メチル-1, 2, 4-オキサジアゾール-5-イル) -4H-1, 2, 4-トリアゾール-4-イル、

3-メチルー5-(2-メチルピリジンー3-イル)-4 H-1, 2, 4-トリアゾールー4-イル、

3-メチルー5- (2-メチルビリジン-5-イル)-4H-1,2,4-トリアゾール-4-イル,

3-メチルー5- (1-メチルピラゾールー5-イル)-4 H-1,2,4-トリアゾールー4

3-メチル-5- (5-メチル-1 H-ピラゾール-3-イル)-4 H-1, 2. 4-トリアゾール-4-イル.

3-メチルー5-(2-メチルフェニル)-4 H-1, 2, 4-トリアゾール-4-イル、

3-メチル-5- (1-メチルピロ-ル-2-イル)-4 H-1, 2, 4-トリアゾ-ル-4 -イル,

3-xチルー5-(4-xチルー1, 2, 3-チアジアゾールー5-イル) -4 H-1, 2, 4-トリアゾールー4-イル、

3-xチルー5-(2-xチルチアゾールー4-4ル) -4 H-1, 2, 4-トリアゾールー4ーイル、

3-メチルー5-(1-メチルー1H-1, 2, 4-トリアゾールー5-イル

) -4H-1, 2, 4-トリアゾール-4-イル、

3-メチル-5-(1-メチル-1H-ピラゾール-4-イル)-4H-1,

2, 4-トリアゾール-4-イル、

3-(3-メチル-1, 2, 4-オキサジアゾール-5-イル) -5-(ピリ ジン-3-イル) -4H-1, 2, 4-トリアゾール-4-イル

3-メチル-5-フェニル-4H-1, 2, 4-トリアゾール-4-イル、

3-メチル-5-(3-[プロプ-1-イル]-1H-ピラゾール-5-イル

) -4H-1, 2, 4-トリアゾール-4-イル、

3-メチル-5-(ピラジン-2-イル)-4H-1, 2, 4-トリアゾール

-4-イル、

3ーメチルー5ー(1Hーピラゾールー4ーイル) -4H-1, 2, 4ートリアゾールー4ーイル、

3-メチル-5- (ピリジン-2-イル) -4 H-1, 2, 4-トリアゾール -4 -イル、

3-メチル-5-(ピリジン-3-イル)-4H-1, 2, 4-トリアゾール -4-イル、

3-メチル-5-(ピリジン-4-イル)-4H-1, 2, 4-トリアゾール -4-イル、

3-メチルー5- (ピリジンー2-イルメチル) -4 H-1, 2, 4-トリア ゾールー4-イル、

3-メチルー5- (ピリジンー3-イルメチル) -4 H-1, 2, 4-トリア ゾールー4-イル、

3-メチルー5- (ピリジンー4-イルメチル) -4 H-1, 2, 4-トリア ゾールー4-イル、

3-メチルー5- (ピリダジンー4-イル) -4 H-1, 2, 4-トリアゾールー4-イル、

3-メチルー5- (ピリミジン-2-イル) -4 H-1, 2, 4-トリアゾール-4-イル、

3-メチル-5-(チエン-2-イル)-4H-1, 2, 4-トリアゾール-4-イル、

3-メチル-4H-1, 2, 4-トリアゾール-4-イル、

3-x + y - 5 - (1H-1, 2, 3-y - y - y - 5 - 4y) - 4H-1, 2, 4-y - y - y - 4 - 4y

3-モルホリノメチル-5-(ピリジン-3-イル)-4H-1,2,4-トリアゾール-4-イル、

3-フェノキシメチル-5- (ピリジン-3-イル) -4H-1, 2, 4-トリアゾール-4-イル

3-(2-フェニルエチル) -5-(ピリジン-3-イル) -4H-1, 2,

4-トリアゾール-4-イル、

3-(ピリジン-3-イル)-5-(2,2,2-トリフルオロエトキシ)メ チル-4H-1,2,4-トリアゾール-4-イル、

3 - (LU J J J J J - 3 - 4 L) - 4 H - 1, 2, 4 - LU J J - LU - 4 - 4 LU

3-メチルー5- (4-トリフルオロメチルフェニル) -4H-1, 2, 4-トリアゾール -4-イル、

1 - アリルテトラゾール- 5 - イル.

1-ベンジルテトラゾール-5-イル、

1-カルボキシメチルテトラゾール-5-イル、

1-シクロヘキシルテトラゾール-5-イル、

1-エチルテトラゾール-5-イル、

1-(2-ヒドロキシエチル)テトラゾール-5-イル、

1-(3-ヒドロキシプロピル)テトラゾール-5-イル、

1-メトキシカルボニルメチルテトラゾール-5-イル、

1-(2-メトキシエチル)テトラゾール-5-イル、

1-メチルテトラゾール-5-イル、

1-(2-フェニルエチル)テトラゾール-5-イル、

1-フェニルテトラゾール-5-イル、

1-(プロプー2-イル)テトラゾール-5-イル、

1-(2, 2, 2-トリフルオロエチル) テトラゾール-5-イル、

ピリジンー2ーイル、

ピリジンー3ーイル、

ピリジンー4ーイル、

ピリミジンー2-イルまたは

ピリミジンー5ーイル

である請求項1~7のいずれか1項に記載の化合物。

- 9. Rが、
- 1-(3-ヒドロキシプロピル)テトラゾール-5-イル、
- 4-メチル-4H-1, 2, 4-トリアゾール-3-イル、
- 1 (2-ヒドロキシエチル) 5-フェニル-1, 2, 3-トリアゾール-4-4-4-1,
- 3 メチル-5 (ピリジン-3 イル) 4 H 1, 2, 4 トリアゾール - 4 - イル、
- 3-メチル-5- (ピリジン-3-イルメチル) -4 H-1, 2, 4-トリア ゾール-4-イル.
- 3-メトキシメチル-5-(ピリジン-3-イル)-4H-1, 2, 4-トリアゾール-4-イル、
- - 3-メトキシメチルー5- (キノリン-6-イル) -4 H-1, 2, 4-トリ

アゾールー4ーイルまたは

3-(1,5-ジメチル-1H-ピラゾール-3-イル)-5-メチル-4H -1,2,4-トリアゾール-4-イル

である請求項1に記載の化合物。

- 10. R およびR が、それぞれ独立して、クロロおよびC: C. アルキルから選択される請求項1~9のいずれか1項に記載の化合物。
- 11. R^1 および R^2 がそれぞれクロロである請求項 $1\sim 100$ いずれか1項に 記載の化合物。
- (ii) $R^{\vec{M}}4 \nu + \nu 4H 1$, 2, $4 \nu + \nu 3 4\nu + 3 4$
 - (iii) Rが1-(2-ヒドロキシエチル)-5-フェニル-1, 2, 3-ト

- リアゾール-4-イルであり、R がクロロであり、そしてR がクロロである;
- (v) Rが3-メチル-5- (ピリジン-3-イルメチル) -4H-1, 2, 4-トリアゾール-4-イルであり、R がクロロであり、そしてR がクロロである:
- (vi) Rが3-メトキシメチル-5- (ピリジン-3-イル) -4H-1, 2 , 4-トリアゾール-4-イルであり、R がクロロであり、そしてR がクロロ である:
- (vii) Rが3- (1, 5-ジメチル-1H-ピラゾール-3-4N) -5-メチル-4H-1, 2, 4-トリアゾール-4-4Nであり、R がクロロであり、そしてR がクロロである;
- (viii) Rが3 メトキシメチルー5 (ビリジン-3 イル) -4H 1, 2, 4 トリアゾールー 4 イルであり、R がクロロであり、そしてR がメチルである:
 - (ix) $R^{*}3-4+5+3+5+5-(29)=3-4+1=1$, 2
- ,4ートリアゾールー4ーイルであり、R がメチルであり、そしてR がクロロである;
- (x) Rが3-メトキシメチル-5- (キノリン-3-イル) -4H-1, 2 , 4-トリアゾール-4-イルであり、R がクロロであり、そしてR がクロロである:宝たは
- (xi) $Rが3-メトキシメチルー5-(キノリンー6-イル) -4H-1, 2, 4-トリアゾールー4ーイルであり、<math>R^{^1}$ がクロロであり、そして $R^{^2}$ がクロロである請求項1に記載の化合物:または
- そのいずれかの個々の立体異性体若しくは薬学的に許容しうる塩。
- 13. R- (-) -6, 7-ジクロロー5-[3-メトキシメチルー5-(3-ビリジル)-4H-1, 2, 4-トリアゾールー4-イル]-2, 3 (1H,
- 4 H) ーキノキサリンジオンまたはその薬学的に許容しうる塩である請求頃1に

記載の化合物。

- 14. R-(-)-6, 7-ジクロロ-5-[3-メトキシメチル-5-(3-ビリジル)-4H-1, 2, 4-トリアゾール-4-イル]-2, 3 (1H,4H)-キノキサリンジオンナトリウム塩である請求項1に記載の化合物。
- 15. 請求項1~14のいずれか1項に記載の式(I)を有する化合物または その薬学的に許容しうる塩を、薬学的に許容しうる希釈剤または担体と一緒に含 む医薬組成物。
- 16. NMDA受容体で拮抗作用を生じることによって疾患を治療するための 薬剤である、請求頃15の組成物。
- 17. 疾患が急性神経変性障害または慢性神経障害である請求項16に記載の 組成物。
- 18. 発作、一過性脳虚血発作、手術時虚血または外傷性頭部損傷の治療用薬 剤である、請求衛16の組成物、

19. 式

(式中、R、R[†]およびR²は、請求項1に記載の式(I)の化合物について定義の通りであり、そしてR^{*}およびR²は、単独の場合かまたは一緒になった場合、酸性または塩基性条件下で加水分解によって開製して請求項1に記載の式(I)を有する化合物を与えることができる1個または複数の基である)を有する化合物。

20. R° および R° が、それぞれ独立して、 $C_1 - C_4$ アルキルおよびベンジルであって、場合により、 $C_1 - C_4$ アルキル、 $C_1 - C_4$ アルコキシ、ハロ、ニトロおよびトリフルオロメチルからそれぞれ独立して選択される $1 \sim 3$ 個の置換差で環置換されたものから選択されるかまたは、一緒になった場合、 $C_1 - C_4$ アルキレン、CH(7x=ル)、CH(4-メトキシフx=ル)またはCH(3, 4-ジメトキシフx=ル)である請求項19に記載の化合物。

21. R、R およびR が請求項1に定義の通りである請求項1に記載の式(I) を有する化合物の製造方法であって、式

(式中、R、R²およびR⁶は、この請求頃で式(I)の化合物について定義の通りであり、そしてR⁶およびR⁶は、単独の場合かまたは一緒になった場合、酸性または塩基性条件下で加水分解によって開裂して式(I)を有する化合物を与えることができる1値または複数の基である)

を有する化合物の酸性または塩基性加水分解を含み、場合により、引続き式(I)の化合物をその薬学的に許容しうる塩へ変換する上記方法。

22. R およびR が、それぞれ独立して、C₁ ー C₄ アルキルおよびペンジルであって、場合により、C₁ ー C₄ アルキル、C₁ ー C₄ アルコキシ、ハロ、ニトロおよびトリフルオロメチルからそれぞれ独立して選択される1~3個の置換基で環管換されたものから選択されるかまたは、一緒になった場合、C₁ ー C₄ アルキ

レン、CH (フェニル)、CH (4-メトキシフェニル) またはCH (3, 4-ジメトキシフェニル) である請求項 2 1 に記載の方法。

23. 反応を、式 (II) を有する化合物の酸性加水分解によって行う請求項 2 1または22に記載の方法。

24. Rが、3個または4個の窒素ヘテロ原子を有する5員環ヘテロアリール基であって、環炭素または窒素原子によってキノキサリンジオン環に対して結合している基であるかまたは、1~3個の窒素ヘテロ原子を有する6員環ヘテロアリール基であって、環炭素原子によってキノキサリンジオン環に対して結合している基であり、前記基はどちらも、場合によりベンゾ縮合していて且つ場合により、ベンゾ縮合部分中を含めて、C₁ーC₄アルキル、C₂ーC₄アルナル、ハロ、ヒドロキシ、C₁ーC₄アルコキシ、C₁ーC₇シクロアルキル、ハロ、ヒドロキシ、C₁ーC₄アルコキシカルボニル、一CONR

R およびR が、それぞれ独立して、H、フルオロ、クロロ、ブロモおよびC --C₄アルキルから選択され:

R およびR が、それぞれ独立してHおよび C_1 $-C_4$ アルキルから選択されるかまたは、一緒になった場合、 C_3 $-C_7$ アルキレンであり:

pが0、1または2であり;

Rおよび「het」の定義で用いられる「アリール」が、フェニルまたはナフチルを意味し、それぞれ場合により、 C_1-C_4 アルキル、 C_1-C_4 アルコキシ、ヒドロキシ、ハロ、ハロ(C_1-C_4)アルキルおよび-NR³ R⁴ からそれぞれ独

立して選択される1個または2個の置換基で置換され;

Rの定義で用いられる「h e t」が、フリル、チエニル、ピロリル、ピラゾリル、イミダゾリル、トリアゾリル、テトラゾリル、オキサゾリル、イソキサゾリル、デアゾリル、イソチアゾリル、オキサジアゾリル、チアジアゾリル、ピリジニル、ピリダジニル、ピリミジニルを意味し、それぞれ、場合により、 C_1-C_4 アルキル、 C_5-C_7 シクロアルキル、 C_1-C_4 アルコキシ、ハロ、ヒドロキシ、-COOH、 C_1-C_4 アルコキシカルボニル、アリルオキシカルボニル、 $-CONR^3R^4$ 、 $-NR^3R^4$ 、-S (O) 。 (C_1-C_4) アルキル、 $-SO_2NR^3R^4$ 、-S (O) 。 (C_1-C_4) アルキル、 $-SO_2NR^3R^4$ 、-S (O) 。 (C_1-C_4) アルキル、 $-SO_2NR^3R^4$ 、-S (O) 。 (O_1-C_4) アルキル、 $-SO_2NR^3R^4$ 、-S (O) 。 (O_1-C_4) アルキル、 $-SO_2NR^3R^4$ 、-S (O) $-SO_2NR^4$ 。 $-SO_$

ルからそれぞれ独立して選択される 1 個または 2 個の置換基で置換されていて;そして「het」の定義で用いられる「het」が、フリル、チエニル、ピロリル、ピラゾリル、イミダゾリル、トリアゾリル、テトラゾリル、オキサゾリル、インキサゾリル、インチアゾリル、オキサジアゾリル、チアジアゾリル、ピリジニル、ピリミジニルまたはピラジニルを意味し、それぞれ、場合により 1 個または 2 個の C_1-C_4 アルキル置換基で置換される請求項 1 に記載の化合物。』

【国際調査報告】

	INTERNATIONAL SEARCH	REPORT	Forty Cornel Appli PCT/EP 97	ication No
A. CLASS IPC 6	FECATION OF SUBJECT MATTER C07D401/04 C07D401/	14 C07D24		31/495
B. Prelos	n International Patent Classification (IPC) or to both national classi SEARCHED OCUMENTATION CLASSIFICATION SYSTEM (Oliver) by classification system (oliver) by classification system (oliver)			
IPC 6	C970			
	tion, scarches other than minimum documentables to the cotout that			earched
Electronic	ista hase consulted during the international search (name of data has	a and, Where yráctica	al, search terms used)	
C. DOCUM	TENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the r	levant passages		Relavant to claim No.
A	EP 0 556 393 A (YAMANOUCHI) 25 At see page 13 - page 24	gust 1993	-	1.15-19
	ther documents are listed in the continuation of box C.	X Putent fumi	ly members are listed	in annex.
'A" docum consid 'E' carlier				emational filing date ith the application but theory underlying the
cetate	deste ernt which may throw doubte on priority claim(s) or it cited to establish the publication date of another in or other special resion (as aproximal) sent referring to an oral disclosure, use, establish or	"Y" document of pa cannot be cons	rticular relevance; the idered to involve an i	aventive step when the
	means ent published prior to the internacional filing date but from the priority date claimed	ments, such con in the art.	nkination being obvious ber of the name paten	our to a person skilled
	actual completion of the interpational march	Date of mailing	of the international s	
	6 May 1997 mailing address of the ISA	Authorized offic	02.06.199	7
	European Pasent O'Sect. P. 8. 5812 Patentiana 2 NL - 2220 HV Rajowijk Tel. (~31-70) 340-200, Te. 31 651 epo al. Face (~31-70) 340-3016		ois, J	

INTERNATIONAL SEARCH PEPORT

remational application No.

	PC17EP 977 00993
Box I Observations where certain claims were found unsearchable (Continuation	of item 1 of first sheet)
This International Search Report has not been established in respect of certain classes under	Article 17(2Xa) for the following reasons:
 XI chaim Name: Execute Only Public to solved matter and required to be searched by this Authority. Remark: Although Claims 20 to 22 are directed to of the human body, the search has been carried or attributed effects of the compounds. 	a method of treatment
 Claims Not: — Contract of the later selected Application test do not enough with because they should be part of the later selected Starth can be carried out, specifically: on must that no meaningful later selected Starth can be carried out, specifically: 	th, the prescribed requirements to such
Cisions Nos: Common day are dependent chines and see not drafted in socordance with the second day are dependent chines and see not drafted in socordance with the second day.	
Box II Observations where unity of invention is lacking (Continuation of item 2 of	first sheet)
1. As all required additional starch fees were though poids by the applicant, this infamental	wind South Baser source All
As all required additional search tees were unity past by the applicant, one internal searchable claims.	angus Pestal Kubar Casers an
As all searchable claims could be searched without effort justifying an additional fee of any additional fee.	e, this Authority did not invite payment
 As call passe of the required additional search fees were simely pairly the applications over only those claims for which fees were paid, questionally above. Next. 	unt, this International Sourch Report
A. No required additional resuch test were timely paid by the applicant. Generations for insectional in the claim; it is covered by claims No	r, this International Search Report is 5.2
	e accompanied by the applicant's protest.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

enfun	sudon on patent femily men	(bers		97/00995
Patent document cited in search report	Publication date	Patent family member(s)	1	Publication date
EP 556393 A	25-08-93	AU 65615 AU 876669 HU 6432 HU 958064 HO 929784 JP 2558451 US 528324	1 A 4 A 7 A 5 B	27-01-95 26-05-92 28-12-93 28-11-95 14-05-92 06-11-96 01-02-94
· ·				

Firm PCT/ISA/2(# (patent family agent) (July 1992)

フロントページの結ぎ

(51) Int. C1. 4	識別記号	FI		
C 0 7 D 403/04	239	CC	7 D 403/04	239
	2 4 1			2 4 1
403/14	207		403/14	207
	231			231
	233			233
	237			237
	239			239
	2 4 1			2 4 1
409/14	2 4 1		409/14	241
413/14	213		413/14	213
	2 4 1			241
417/14	241		417/14	241

(81)指定圏 EP(AT, BE, CH, DE, DK, ES, FI, FR, GS, GR, IE, IT, U, U, MC, NL, PT, SE), OA(BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), UA(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), AU, BG, BR, CA, CN, CZ, HU, IL, IS, JP, KR, LK, LV, MX, NO, NZ, PL, RO, SG, SI, SK, TR, UA, US, UZ, VN, YU

イギリス国 ケント シーティー13・9エ ヌジェイ, サンドウィッチ, ラムズゲー

ト・ロード、ファイザー・セントラル・リ サーチ (72)発明者 フレイ、マイケル・ジョナサン

イギリス国 ケント シーティー13・9エ ヌジェイ, サンドウィッチ, ラムズゲー ト・ロード, ファイザー・セントラル・リ サーチ

(72) 発明者 ゴーチェ,エリザベート・コレット・ルイーズ イギリス国 ケント シーティー13・9エヌジェイ,サンドウィッチ,ラムズゲート・コード,ファイザー・セントラル・リサーチ

(72) 発明者 モーブレイ, チャールズ・エリック イギリス国 ケント シーティー13・9エ ヌジェイ, サンドウィッチ, ラムズゲー ト・ロード, ファイザー・セントラル・リ サーチ (72)発用者 ストピー, アラン イギリス国 ケント シーティー13・9エ ヌジェイ, サンドウィッチ, ラムズゲー ト・ロード, ファイザー・セントラル・リ サーチ