PREGLED FORMULA IZ FIZIKE MATERIJALA

Relativistička mehanika

Lorentzova transformacija

$$\beta = \frac{v}{c}$$
, $\gamma = \sqrt{1 - \beta^2}$

Transformacija koordinata:

$$x' = \frac{x - vt}{\sqrt{1 - \beta^2}}, y = y', z = z', t' = \frac{t - \frac{v}{c^2}x}{\sqrt{1 - \beta^2}}$$

Slaganje brzina:

$$u'_{x} = \frac{u_{x} - v}{1 - \frac{v}{c^{2}} u_{x}}, \ u'_{y} = \frac{u_{y} \sqrt{1 - \beta^{2}}}{1 - \frac{v}{c^{2}} u_{x}}, \ u'_{z} = \frac{u_{z} \sqrt{1 - \beta^{2}}}{1 - \frac{v}{c^{2}} u_{x}}$$

Kontrakcija duljine: $\Delta x = \Delta x_0 \sqrt{1 - \beta^2}$

Dilatacija vremena: $\Delta t = \frac{\Delta t_0}{\sqrt{1-\beta^2}}$

Energija i količina gibanja

Energija:
$$E = E_k + E_0$$
, $E = \frac{mc^2}{\sqrt{1 - \beta^2}}$

Količina gibanja:
$$p = \frac{mv}{\sqrt{1-\beta^2}}$$

$$E^2 = E_0^2 + p^2 c^2$$

U slučaju kada je $v \ll c$, $E_k \ll mc^2$ i p $\ll mc$ mogu se koristiti nerelativističke relacije.

Valna mehanika

Fazna brzina: $v_f = v\lambda$

Grupna brzina: $v_g = \frac{d\omega}{dk}$

De Broglieve relacije

$$E = hv$$
, $p = \frac{h}{\lambda}$

Veza valne duljine i energije: $\lambda = \frac{hc}{\sqrt{E^2 - E_0^2}}$

Veza valne duljine i brzine: $\lambda = \frac{h}{m_0} \sqrt{\frac{1}{v^2} + \frac{1}{c^2}}$

Grupna brzina: $v_g = \frac{dE}{dn}$

Frekvencija mirovanja: $v_0 = \frac{mc^2}{h}$

$$\frac{\mathbf{v}^{2}}{c^{2}} - \frac{1}{\lambda^{2}} = \frac{\mathbf{v}_{0}^{2}}{c^{2}}$$

De Broglieva jednadžba

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} = \frac{4\pi v_0^2}{c^2} \varphi$$

Klein-Gordonova jednadžba

$$\nabla^2 \varphi - \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2} = \frac{m^2 c^2}{\hbar^2} \varphi$$

Relacije neodređenosti

Neodređenost položaja i impulsa:

$$\Delta x \, \Delta p_x \ge \hbar$$

$$\Delta y \ \Delta p_v \ge \hbar$$

$$\Delta z \, \Delta p_z \ge \hbar$$

Neodređenost energije i vremena:

$$\Delta E \; \Delta t \geq \hbar$$

Neodređenost frekvencije: $\Delta v = \frac{\Delta E}{h}$

Neodređenost količine gibanja: $\Delta p = -h \frac{\Delta \lambda}{\lambda^2}$

Schrödingerova jednadžba

Vremenski zavisna jednadžba:

$$-\frac{\hbar^2}{2m}\nabla^2\psi + U\psi = i\hbar\frac{\partial\psi}{\partial t}$$

Vremenski nezavisna jednadžba:

$$-\frac{\hbar^2}{2m}\nabla^2\psi + U\psi = E\psi$$

Valna funkcija ψ treba zadovoljavati sljedeće uvjete:

- 1. ψ je jednoznačna funkcija;
- 2. ψ je klase C^1 ;
- 3. druge derivacije funkcije ψ su konačne;
- 4. integral $\int \psi^* \psi dV$ je konačan.

Uvjet normiranja:
$$\int_{V} \psi^* \psi dV = 1$$

Granični uvjet:
$$\lim_{\vec{r} \to 0} \psi(\vec{r}, t) = 0$$

Primjene Schrödingerove jedandžbe

Potencijalni skok

Schrödingerova jednadžba za jednodimenzionalni potencijalni skok:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + U\psi = E\psi, \ U(x) = \begin{cases} 0, x < 0 \ (1) \\ U, 0 < x(2) \end{cases}$$

Rješenja:

$$\psi_1(x) = e^{ik_1x} + \frac{k_1 - k_2}{k_1 + k_2} e^{-ik_1x}$$

$$\psi_2(x) = \frac{2k_1}{k_1 + k_2} e^{ik_2 x}$$

$$k_1^2 = \frac{2mE}{\hbar^2}, k_2^2 = \frac{2m(E-U)}{\hbar^2}$$

Koeficijent transmisije:
$$T = \frac{4p_1p_1}{(p_1 + p_2)^2}$$

Koeficijent refleksije: $R = \frac{(p_1 - p_2)^2}{(p_1 + p_2)^2}$

$$p_1 = \sqrt{2mE}$$
, $p_1 = \sqrt{2m(E - U)}$

Potencijalna barijera

Schrödingerova jednadžba za jednodimenzionalnu barijeru:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + U\psi = E\psi, \ U(x) = \begin{cases} 0, x < 0 & (1) \\ U, 0 < x < a(2) \\ 0, a < x & (3) \end{cases}$$

Rješenja Schrödingerove jednadžbe za jednodimenzionalnu debelu barijeru ($e^{-k_2 a} \approx 0$):

$$\psi_1(x) = e^{ik_1x} + \frac{k_1 - ik_2}{k_1 + ik_2}e^{-ik_1x}$$

$$\psi_2(x) = \frac{2k_1}{k_1 + ik_2} e^{-k_2 x}$$

$$\psi_3(x) = -\frac{4in}{(1-in)^2} e^{-k_2 a} e^{ik_3 x}$$

$$k_1^2 = \frac{2mE}{\hbar^2}$$
, $k_2^2 = \frac{2m(U-E)}{\hbar^2}$, $k_3 = k_1$, $n^2 = \frac{k_1^2}{k_2^2}$

Koeficijent transmisije: $T = 16 \frac{E(U-E)}{U^2} e^{-2k_2 a}$

Koeficijent refleksije: R = 1 - T

Koeficijent transmisije za tanku barijeru:

$$T = \left(1 + \frac{U^2}{4E(U - E)} \operatorname{sh}^2(k_2 a)\right)^{-1}$$

WBK - aproksimacija

Za potencijalne barijere proizvoljnog oblika koeficijent transmisije je proporcionalan s $e^{-\gamma}$,

gdje je
$$\gamma = \frac{2}{\hbar} \int_{a}^{b} \sqrt{2m(U(x) - E)} dx$$
.

Potencijalna jama

Jednodimenzionalna jama

Schrödingerova jednadžba:

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\Psi}{\mathrm{d}x^2} = E\Psi, \ x \in \langle 0, a \rangle$$

Rješenje:
$$\psi_n = A \sin\left(\frac{n\pi}{a}x\right), A = \sqrt{\frac{2}{a}}$$

Energija:
$$E_n = n^2 \frac{h^2}{8ma^2}$$

Trodimenzionalna jama

Schrödingerova jednadžba:

$$\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} = -\frac{2mE}{\hbar^2} \Psi$$

$$x \in \langle 0, a_1 \rangle, y \in \langle 0, a_2 \rangle, z \in \langle 0, a_3 \rangle$$

Rješenje Schrödingerove jednadžbe za trodimenzionalnu potencijalnu jamu beskonačnih zidova pretpostavljamo u obliku produkta triju nezavisnih funkcija, $\psi(x, y, z) = X(x)Y(y)Z(z)$. Valna funkcija je:

$$\Psi = A \sin\left(\frac{n_1 \pi}{a_1} x\right) \sin\left(\frac{n_2 \pi}{a_2} x\right) \sin\left(\frac{n_3 \pi}{a_3} x\right)$$

$$A = A_1 A_2 A_3, \ E_{n_1, n_2, n_3} = \frac{h^2}{8m} \left(\frac{n_1^2}{a_1^2} + \frac{n_2^2}{a_2^2} + \frac{n_3^2}{a_3^2} \right)$$

Vodikov atom

Schrödingerova jednadžba za vodikov atom:

$$-\frac{\hbar^2}{2m}\nabla^2\psi - \frac{e^2}{4\pi\epsilon_0 r}\psi = E\psi$$

Schrödingerova jednadžba za vodikov atom u polarnim koordinatama:

$$-\frac{\hbar^{2}}{2m}\left(\frac{1}{r^{2}}\frac{\partial}{\partial r}\left(r^{2}\frac{\partial\psi}{\partial r}\right) + \frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right) + \frac{1}{r^{2}\sin^{2}\theta}\frac{\partial^{2}\psi}{\partial\phi^{2}}\right) - \frac{e^{2}}{4\pi\varepsilon_{0}r}\psi = E\psi$$

Rješenje pretpostavljamo u obliku produkta $\psi(r, \theta, \phi) = R(r) \Theta(\theta) \Phi(\phi)$.

Azimutalna jednadžba

$$\frac{\mathrm{d}^2\Phi}{\mathrm{d}\phi^2} + m^2\Phi = 0$$

Rješenje je oblika $\Phi(\phi) = A_{\phi}e^{im\phi}$.

Polarna jednadžba

$$-\frac{1}{\Theta\sin\theta}\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}\Theta}{\mathrm{d}\theta}\right) + \frac{m^2}{\sin^2\theta} = \ell(\ell+1)$$

Rješenje je oblika $\Theta(\theta) = A_{\theta} P_{\ell}^{m}(\cos \theta)$, gdje je

$$P_n^m(x) = (1 - x^2)^{\frac{m}{2}} \frac{d^m}{dx^m} \left(\frac{1}{n! \, 2^n} \frac{d^n}{dx^n} (x^2 - 1)^n \right)$$

pridruženi Legendreov polinom.

Radijalna jednadžba

$$\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}R}{\mathrm{d}r}\right) + \frac{2mr^2}{\hbar^2}\left(E + \frac{e^2}{4\pi\epsilon_0 r}\right)R = \ell(\ell+1)R$$

Rješenje je oblika
$$R(r) = A_r r^{\ell} e^{-\frac{r}{nr_0}} L_{n+\ell}^{2\ell+1} \left(\frac{2r}{nr_0}\right)$$
,

gdje je
$$L_n^m(x) = \frac{\mathrm{d}^m}{\mathrm{d}x^m} \left(e^x \frac{\mathrm{d}^n}{\mathrm{d}x^n} \left(x^n e^{-x} \right) \right)$$
 pridruženi

Laguerrov polinom.

Valna funkcija

$$\Psi(r,\theta,\phi) = A_r r^{\ell} e^{-\frac{r}{nr_0}} L_{n+\ell}^{2\ell+1} \left(\frac{2r}{nr_0}\right) A_{\theta} P_{\ell}^{m}(\cos\theta) A_{\phi} e^{im\phi}$$

Konstante A_r , A_{θ} , A_{ϕ} odrede se iz uvjeta normiranja.

$$A_r = -\left(\frac{2}{nr_0}\right)^{\ell+1} \sqrt{\frac{2}{nr_0} \frac{(n-\ell-1)!}{2n((n+\ell)!)^3}}$$

$$A_{\theta} = \sqrt{\frac{2\ell+1}{2} \frac{(\ell-|m|)!}{(\ell+|m|)!}}$$

$$A_{\phi} = \sqrt{\frac{1}{2\pi}}$$

Kvantni brojevi

Kvantni brojevi n (glavni kvantni broj), ℓ (orbitalni kvantni broj) i m (magnetski kvantni broj) moraju zadovoljavati sljedeće uvjete:

$$n \in \mathbb{N}$$

$$\ell \in \mathbb{N}_0, 0 \le \ell \le n-1$$

$$m \in \mathbb{Z}, -\ell \leq m \leq \ell$$

Energija:
$$E_n = \frac{1}{n^2} \frac{-me^4}{32\pi^2 \epsilon_o^2 \hbar^2}$$

Orbitalni moment količine gibanja:

$$L = \hbar \sqrt{\ell(\ell+1)}$$

Bohrov polumjer:
$$r_0 = \frac{\hbar^2 4\pi \epsilon_0}{me^2}$$

Harmonički oscilator

Schrödingerova jednadžba harmoničkog titranja:

$$-\frac{\hbar^2}{2m_e}\nabla^2\psi + \frac{1}{2}kr^2\psi = E\psi$$

Schrödingerova jednadžba za jednodimenzionalni

harmonički oscilator:
$$-\frac{\hbar^2}{2m_e}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + \frac{1}{2}kx^2\psi = E\psi$$

Rješenje je oblika
$$\psi = Ae^{-\frac{m\omega}{2\hbar}x^2}H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right)$$
,

gdje je
$$H_n(x) = (-1)^n e^{x^2} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (e^{-x^2})$$
 Hermiteov

polinom i
$$A = 2^n n! \sqrt[4]{\frac{2m}{\hbar} \sqrt{\frac{m\omega}{\hbar}}} x$$
.

Energija:
$$E_n = \hbar\omega \left(n + \frac{1}{2}\right)$$

Kristalna rešetka

Energija

Energija vezanja:
$$U(r) = -\frac{\alpha}{r^n} + \frac{\beta}{r^m}$$

Energija kristalizacije:
$$E = -\alpha \frac{1}{4\pi\epsilon_0} \frac{e^2}{R}$$

Energija sublimacije:
$$E = (\alpha - 1) \frac{e^2}{4\pi \epsilon_0 R}$$

Toplinska svojstva

Toplinski kapacitet elektronskog plina:

$$C_m = R \frac{\pi^2}{2} \frac{T}{T_E}$$

Einsteinov model

Prosječna energija oscilatora:

$$\overline{E} = kT \frac{\hbar \omega / kT}{\exp(\hbar \omega / kT) - 1} + \frac{1}{2}\hbar \omega$$

Unutarnja energija po molu: $U_m = 3N_A \overline{E}$

Toplinski kapacitet

$$C_m = \frac{\mathrm{d}U}{\mathrm{d}T}$$

Visoke temperature ($\hbar\omega \ll kT$):

$$C_m = 3R$$

Niske temperature ($\hbar\omega >> kT$):

$$C_m = 3R \left(\frac{\hbar\omega}{kT}\right)^2 e^{-\frac{\hbar\omega}{kT}}$$

Debyeov model

Unutarnja energija:
$$U_m = \int_0^{\omega_D} \frac{\hbar \omega g(\omega)}{\exp(\hbar \omega/kT) - 1} d\omega$$
,

gdje je
$$g(\omega) = \frac{3V}{2\pi^2 v_0^3} \omega^2$$
, $\frac{3}{v_0^3} = \frac{1}{v_1^3} + \frac{1}{v_2^3} + \frac{1}{v_2^3}$.

Debyeova frekvencija:
$$\omega_D = v_0 \sqrt[3]{6\pi^2 \frac{N}{V}}$$

Debyeova temperatura: $T_D = \frac{\hbar \omega_D}{k}$

Toplinski kapacitet

$$C_m = \frac{\mathrm{d}U}{\mathrm{d}T}$$

Visoke temperature ($\hbar\omega \ll kT$):

$$U = 3NkT$$
, $C_m = 3R$

Niske temeprature ($\hbar\omega \gg kT$):

$$U = \frac{3\pi^4}{5} NkT \left(\frac{T}{T_D}\right)^3, \ C_m = 3R \frac{4\pi^4}{5} \left(\frac{T}{T_D}\right)^3$$

Toplinska vodljivost

Koeficijent toplinske vodljivosti: $\lambda_t = \frac{1}{3} C_m v \ell$

Gustoća toplinskog toka: $q = \lambda_t \frac{dT}{dx}$

Elektroni u kristalnoj rešetci

Funkcije raspodjele

Funkcija gustoće dopuštenih energijskih stanja:

$$S(E) = \frac{8\sqrt{2}\pi m^{\frac{3}{2}}}{h^3}\sqrt{E}$$
, $Z(E) = \frac{8\sqrt{2}\pi m^{\frac{3}{2}}}{h^3}V\sqrt{E}$

Funkcija raspodjele slobodnih elektrona po

energijama:
$$\frac{dn}{dE} = \frac{8\sqrt{2}\pi m^{\frac{3}{2}}}{h^3} \sqrt{E} \frac{1}{1 + \exp\frac{E - E_F}{kT}}$$

Fermijeva energija

Fermijeva energija: $E_F = \frac{h^2}{8m} \left(\frac{3}{\pi}\right)^{\frac{2}{3}} \rho_0^{\frac{2}{3}}$, gdje je

 $\rho_0 = \frac{N}{V}$ gustoća slobodnih elektrona.

Fermijeva temperatura: $E_F = T_F \cdot k$

Brzina na Fermijevoj površini: $v_F = \sqrt{\frac{2E_F}{m}}$

Srednja energija slobodnih elektrona: $\overline{E} = \frac{3}{5}E_F$

Kronig - Penneyev model

Schrödingerova jednadžba:

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2 \Psi}{\mathrm{d}x^2} + U\Psi = E\Psi, \text{ gdje je}$$

$$U = \begin{cases} U_0, & x \in \langle (a+b)n, (a+b)n + a \rangle \\ 0, & \text{inače} \end{cases} \text{ periodičk}$$

potencijal, $a, b \in \mathbb{R}$ i $n \in \mathbb{Z}$

Rješenje je oblika $\psi = e^{ikx} f(x)$, gdje je

$$f(x+a+b) = f(x)$$
 periodička funkcija i $k = \frac{2\pi}{\lambda}$.

Uvjet za postojanje rješenja:

$$\operatorname{ch}(\beta b)\cos(\alpha a) + \frac{\beta^2 - \alpha^2}{2\alpha\beta}\operatorname{sh}(\beta b)\sin(\alpha a) = \cos(k(a+b)),$$

gdje je
$$\alpha = \sqrt{\frac{2mE}{\hbar^2}}$$
, $\beta = \sqrt{\frac{2m(U_0 - E)}{\hbar^2}}$.

Za tanku i visoku barijeru dobivamo:

$$P\frac{\sin(\alpha a)}{\alpha a} + \cos(\alpha a) = \cos(ka)$$
, gdje je

$$P = \frac{m}{\hbar^2} ab U_0$$
 mjera nepropusnosti barijere.

Vrijednost valnog vektora za koju nastupa

prijelaz u višu vrpcu:
$$k = \frac{n\pi}{a}$$

Energija elektrona u energijskoj vrpci:

$$E(k) = E_a + C + 2A\cos(ka)$$

Gibanje elektrona u rešetki

Grupna brzina:
$$v_g = \frac{1}{\hbar} \frac{dE}{dk}$$

Efektivna masa:
$$m^* = \frac{\hbar^2}{\frac{d^2 E}{dk^2}}$$

Ciklotronska rezonancija: $\omega = \frac{eB}{m^*}$

Električna vodljivost

Usmjerena brzina: $v_u = \frac{eE}{m^2} \tau$

Pokretljivost:
$$\mu = \frac{v_u}{E}$$

Specifična vodljivost: $\sigma = \frac{Ne^2}{m^*} \tau$

Specifični otpor:
$$\rho = \frac{1}{\sigma}$$

Srednji slobodni put:
$$\ell = v\tau$$

Poluvodiči

Pokretljivost elektrona:
$$\mu_n = \frac{e\tau_e}{m_n^*}$$

Pokretljivost šupljina:
$$\mu_p = \frac{e \tau_p}{m_p^*}$$

Specifična vodljivost:
$$\sigma = e (\mu_n \cdot n_n + \mu_p \cdot n_p)$$

Intrinsična koncentracija:
$$n_i^2 = N_c N_v \exp \frac{-E_G}{kT}$$
,

gdje je
$$N_c = 2\left(\frac{2\pi m_n^* k}{h^2}\right)^{\frac{3}{2}} T^{\frac{3}{2}}$$
 efektivna gustoća

stanja u vodljivom pojasu, a
$$N_v = 2\left(\frac{2\pi m_p^* k}{h^2}\right)^{\frac{3}{2}} T^{\frac{3}{2}}$$

efektivna gustoća stanja u valentnom pojasu. Supravodljivost

Kritično magnetsko polje:
$$H_k = H_0 \left(1 - \frac{T^2}{T_k^2} \right)$$

Izotopni efekt:
$$T_k \sim \frac{1}{\sqrt{M}}$$

Londonove jednadžbe:

$$\nabla \bar{j} = -\frac{n_s e^2}{m} \bar{B}$$

$$\frac{\mathrm{d}\vec{j}}{\mathrm{d}t} = \frac{n_s e^2}{m} \vec{E}$$

$$\nabla^2 \vec{B} = \frac{1}{\alpha} \vec{B} , \ \alpha = \frac{m}{\mu_0 n_s e^2}$$

Londonva dubina prodiranja: $\lambda_L = \sqrt{\frac{m}{\mu_0 n_s e^2}}$

Statističke raspodjele

Maxwell – Boltzmannova raspodjela

$$f_{MB} = \exp\left(-a - \frac{E}{kT}\right)$$

Fermi – Diracova raspodjela

$$f_{FD} = \frac{1}{1 + \exp\left(\frac{E - E_F}{kT}\right)}$$

Bose - Einsteinova raspodjela

$$f_{BE} = \frac{1}{1 + \exp\left(a + \frac{E}{kT}\right)}$$

Dielektrična svojstva materijala

Električni dipolni moment: $\vec{p} = q\vec{a}$

Gustoća polarizacije:
$$\vec{P} = \lim_{\Delta V \to 0} \frac{\sum_{\Delta V} \vec{p}_i}{\Delta V}$$

Gustoća polarizirane struje:
$$J_P = \frac{\partial \vec{P}}{\partial t}$$

Gustoća polariziranog naboja:
$$\rho_P = -\nabla \vec{P}$$

Vektor električnog pomaka:
$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$$
,

$$\vec{P} = \varepsilon_0 \tilde{\chi}_e \vec{E}$$
 (za izotropne dielektrike je

$$\vec{D} = \varepsilon_0 (1 + \chi_e) \vec{E})$$

Relativna dielektričnost: $1 + \chi_e = \varepsilon_r$

Dielektrici

Elektronska polarizacija

Elektronska polarizacija:
$$P_e = n4\pi\epsilon_0 R^3 E$$

Konstanta elektronske polarizacije:
$$\alpha_e = 4\pi\epsilon_0 R^3$$

Dipolni moment:
$$p = \alpha_e E$$

Orijentacijska polarizacija

Raspodjela dipola:

$$n = n_0 \exp \frac{pE \cos \theta}{kT}$$

Orijentacijska polarizacija:
$$P_{or} = pnL\left(\frac{pE}{kT}\right)$$
, gdje

je
$$L(x) = \operatorname{cth} x - \frac{1}{x}$$
 Langevinova funkcija (za

male vrijednosti x je
$$L(x) = \frac{x}{3} - \frac{x^3}{45} + \dots$$
).

Za normalne vrijednosti temperature i polja je

$$n = \frac{n_0}{4\pi} \left(1 + \frac{pE \cos \theta}{kT} \right)$$
, orijentacijska polarizacija

$$P_{or} = \frac{np^2E}{3kT}$$
 i konstanta orijentacijske polarizacije

$$\alpha_{or} = \frac{p^2}{3kT}.$$

Polarizacija u plinovima

Polarizacija:
$$\vec{P} = n\alpha_a \vec{E}$$

Susceptibilnost:
$$\chi_e = \frac{n\alpha_e}{\epsilon_0}$$

Polarizacija u čvrstim tijelima

Veza lokalnog i vanjskog polja: $\vec{E}_{lokalno} = \vec{E} + \vec{E}_{L}$

Lorentzovo polje:
$$\vec{E}_L = \frac{\vec{P}}{3\varepsilon_0}$$

Polarizacija:
$$\vec{P} = n\alpha_e \vec{E}_{lokalno}$$

Susceptibilnost:
$$\chi_e = \frac{\frac{n\alpha_e}{\epsilon_0}}{1 - \frac{n\alpha_e}{3\epsilon_0}}$$

Clausius - Mossotijeva jednadžba

$$\frac{\varepsilon_r - 1}{\varepsilon_r + 2} = \frac{n\alpha_e}{3\varepsilon_0}$$

Feroelektrici

Curie–Weissov zakon:
$$\varepsilon_r = \frac{3}{\beta(T - T_C)}$$

Magnetska svojstva materijala

Magnetski moment: $\vec{\mu} = \hat{n}iS$

Gustoća magnetiziranja:
$$\bar{M} = \lim_{\Delta V \to 0} \frac{\displaystyle\sum_{\Delta V} \bar{\mu}_i}{\Delta V}$$

Gustoća amperske struje:
$$\vec{J}_a = \nabla \times \vec{M}$$

Vektor jakosti magnetskog polja: $\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$,

 $\vec{M} = \widetilde{\chi}_m \vec{H}$ (za izotropne materijale je

$$\vec{H} = \frac{\vec{B}}{\mu_0 (1 + \chi_m)}$$

Relativna permeabilnost: $1 + \chi_m = \mu_r$

Dijamagnetizam

Larmorova frekencija: $\omega_L = \frac{eB}{2m}$, $\omega = \omega_0 \pm \omega_L$

Konstanta dijamagnetske susceptibilnosti:

$$\chi_m = -\mu_0 \frac{ne^2r^2}{4m}$$
 (staza elektrona okomita na \vec{B})

$$\chi_m = -\mu_0 \frac{ne^2r^2}{6m}$$
 (uračunate sve orijentacije staze

elektrona prema polju \bar{B})

$$\chi_m = -\mu_0 \frac{ne^2}{6m} \sum_{i=1}^{Z} \overline{r_i^2}$$
, gdje je $\overline{r_i^2} = \int_{\tau} \Psi^* r^2 \Psi d\tau$

Paramagnetizam

Magentizacija u materijalu: $M = n\mu L\left(\frac{\mu B}{kT}\right)$, gdje

je L(x) Langevinova funkcija.

Paramagnetska susceptibilnost za $\mu B \ll kT$:

$$\chi_m = \mu_0 \frac{n\mu^2}{3kT}$$

Courieov zakon:
$$\chi_m = \frac{C}{T}$$
, gdje je $C = \frac{n\mu_0\mu^2}{3k}$

Courieova konstanta

Magnetski momenti atoma

Bohrov magneton: $\mu_B = \frac{e\hbar}{2m}$

Orbitalni magnetski moment:

$$\mu_L = \mu_B \sqrt{L(L+1)}$$

Spinski magnetski moment:

$$\mu_S = 2\mu_B \sqrt{S(S+1)}$$

Ukupni kvantni broj spina: $\bar{S} = \sum_{i} \vec{s}_{i}$

Ukupni orbitalni kvantni broj: $\vec{L} = \sum_{i} \vec{\ell}_{i}$

$$\vec{J} = \vec{L} + \vec{S}$$

Ukupni magnetski moment atoma:

$$\mu_J = g\mu_B \sqrt{J(J+1)}$$

Landéov faktor:

$$g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$$

Feromagnetizam

Magnetizacija u materijalu:

$$M = n\mu L \left(\frac{\mu_0 \mu (H + \omega M)}{kT} \right)$$

Maksimalna magentizacija: $M_s = N\mu$

Dipolni magnetski moment (kvantnomehanički

izraz):
$$M = n\mu_B \text{th} \left(\frac{\mu_0 \mu_B H}{kT} \right)$$

Currieova temperatura: $T_C = \frac{\mu \mu_0 \omega M_S}{3k}$

Curie–Weissov zakon: $\chi_m = \frac{\mu_0 N \mu^2}{3k(T - T_C)}$

VAŽNIJE FUNKCIJE I INTEGRALI

Pridruženi Legenderovi polinomi

$$P_0^0(x) = 1$$

$$P_1^0(x) = x$$

$$P_1^1(x) = \sqrt{1-x^2}$$

$$P_2^0(x) = \frac{1}{2}(3x^2 - 1)$$
 $P_2^1(x) = 3x\sqrt{1 - x^2}$ $P_2^2(x) = 3(1 - x^2)$

$$P_2^1(x) = 3x\sqrt{1-x^2}$$

$$P_2^2(x) = 3(1-x^2)$$

$$P_3^0(x) = \frac{1}{2}(5x^3 - 3x)$$

$$P_3^0(x) = \frac{1}{2} (5x^3 - 3x) \qquad P_3^1(x) = \frac{3}{2} (5x^2 - 1)\sqrt{1 - x^2} \qquad P_3^2(x) = 15x(1 - x^2) \qquad P_3^3(x) = 15\sqrt{(1 - x^2)^3}$$

$$P_3^2(x) = 15x(1-x^2)$$

$$P_3^3(x) = 15\sqrt{(1-x^2)^3}$$

Kugline funkcije

$$Y_0^0 = \frac{1}{\sqrt{4\pi}}$$

$$Y_1^0 = \sqrt{\frac{3}{4\pi}}\cos(\theta)$$

$$Y_1^1 = -\sqrt{\frac{3}{8\pi}}\sin(\theta)e^{i\phi}$$

$$Y_{2}^{0} = \sqrt{\frac{5}{4\pi}} \left(\frac{3}{2} \cos^{2}(\theta) - \frac{1}{2} \right)$$

$$Y_{2}^{1} = -\sqrt{\frac{15}{8\pi}} \sin(\theta) \cos(\theta) e^{i\phi}$$

$$Y_{2}^{2} = \frac{1}{4} \sqrt{\frac{15}{2\pi}} \sin^{2}(\theta) e^{2i\phi}$$

$$Y_2^1 = -\sqrt{\frac{15}{8\pi}}\sin(\theta)\cos(\theta)e^{i\phi}$$

$$Y_2^2 = \frac{1}{4} \sqrt{\frac{15}{2\pi}} \sin^2(\theta) e^{2i\phi}$$

$$Y_3^0 = \sqrt{\frac{7}{4\pi}} \left(\frac{5}{2} \cos^2(\theta) - \frac{3}{2} \cos(\theta) \right)$$

$$Y_{3}^{0} = \sqrt{\frac{7}{4\pi}} \left(\frac{5}{2} \cos^{2}(\theta) - \frac{3}{2} \cos(\theta) \right) \qquad Y_{3}^{1} = -\sqrt{\frac{21}{4\pi}} \sin(\theta) \left(5 \cos^{2}(\theta) - 1 \right) e^{i\phi} \qquad Y_{3}^{2} = \frac{1}{4} \sqrt{\frac{105}{2\pi}} \sin^{2}(\theta) \cos(\theta) e^{2i\phi} \qquad Y_{3}^{3} = -\frac{1}{4} \sqrt{\frac{35}{4\pi}} \sin^{3}(\theta) e^{3i\phi} = -\frac{1}{4} \sqrt{\frac{105}{4\pi}} \sin^{2}(\theta) \cos^{2}(\theta) - \frac{1}{4} \sqrt{\frac{105}{4\pi}} \cos^{2}(\theta) - \frac{1}{4} \sqrt{\frac{105}{4\pi}} \sin^{2}(\theta) \cos^{2}(\theta) - \frac{105}{4\pi} \cos^{2}(\theta) - \frac{105}{4\pi} \cos^{2}(\theta) - \frac{105}{4\pi} \cos^{2}(\theta) - \frac{105}{4\pi} \cos^{2}(\theta) - \frac{105}$$

$$Y_3^2 = \frac{1}{4} \sqrt{\frac{105}{2\pi}} \sin^2(\theta) \cos(\theta) e^{2i\phi}$$

$$Y_3^3 = -\frac{1}{4} \sqrt{\frac{35}{4\pi}} \sin^3(\theta) e^{3i\phi}$$

Radijalne funkcije $R_{n\ell}$

$$R_{10} = 2\sqrt{r_0^{-3}}e^{-\frac{r}{r_0}}$$

$$R_{20} = \frac{1}{2\sqrt{2}} \sqrt{r_0^{-3}} \left(2 - \frac{r}{r_0} \right) e^{-\frac{r}{2r_0}} \qquad R_{21} = \frac{1}{2\sqrt{6}} \sqrt{r_0^{-3}} \frac{r}{r_0} e^{-\frac{r}{2r_0}}$$

$$R_{21} = \frac{1}{2\sqrt{6}} \sqrt{r_0^{-3}} \frac{r}{r_0} e^{-\frac{r}{2r_0}}$$

$$R_{30} = \frac{1}{9\sqrt{3}} \sqrt{r_0^{-3}} \left(6 - \frac{4r}{r_0} + \frac{4r^2}{9r_0} \right) e^{-\frac{r}{3r_0}} \quad R_{31} = \frac{1}{9\sqrt{6}} \sqrt{r_0^{-3}} \frac{2r}{3r_0} \left(4 - \frac{2r}{3r_0} \right) e^{-\frac{r}{3r_0}} \quad R_{32} = \frac{1}{9\sqrt{30}} \sqrt{r_0^{-3}} \left(\frac{2r}{3r_0} \right)^2 e^{-\frac{r}{3r_0}} e^{-\frac{r}{3r_0}} = \frac{1}{9\sqrt{30}} \left(\frac{r}{3r_0} \right)^2 e^{-\frac{r}{3r_0}} = \frac{1}{9\sqrt{30}} \sqrt{r_0^{-3}} \left(\frac{2r}{3r_0} \right)^2 e^{-\frac{r}{3r_0}} = \frac{1}{9\sqrt{30}} \sqrt{r_0^{-3}} \left(\frac{2r$$

$$R_{32} = \frac{1}{9\sqrt{30}} \sqrt{r_0^{-3}} \left(\frac{2r}{3r_0}\right)^2 e^{-\frac{r}{3r_0}}$$

Hermiteovi polinomi

Hermitovi polinomi	Normirane valne funkcije harmoničkog oscilatora
$H_0(x) = 1$	$\Psi_0 = \sqrt[4]{\frac{m\omega}{\pi\hbar}} e^{-\frac{x^2 m\omega}{2\hbar}}$
$H_1(x) = 2x$	$\Psi_1 = \sqrt[4]{\frac{8m^3\omega^3}{\pi\hbar^3}xe^{-\frac{x^2}{2}\frac{m\omega}{\hbar}}}$
$H_2(x) = 4x^2 - 2$	$\Psi_2 = \sqrt[4]{\frac{m\omega}{4\pi\hbar}} \left(2x^2 \frac{m\omega}{\hbar} - 1\right) e^{-\frac{x^2 m\omega}{2\hbar}}$

Tablica integrala $I_n = \int_0^\infty x^n e^{-ax^2} dx$

n	Vrijednost integrala	n	Vrijednost integrala
0	$\frac{1}{2} \left(\frac{\pi}{a}\right)^{\frac{1}{2}}$	4	$\frac{3}{8} \left(\frac{\pi}{a^5}\right)^{\frac{1}{2}}$
1	$\frac{1}{2a}$	5	$\frac{1}{a^3}$
2	$\frac{1}{4} \left(\frac{\pi}{a^3} \right)^{\frac{1}{2}}$	2n + 1	$\frac{n!}{2a^{n+1}}$
3	$\frac{1}{2a^2}$	2n	$\frac{1\cdot 3\cdot 5\cdot \ldots\cdot (2n-1)}{2^{n+1}a^n}\left(\frac{\pi}{a}\right)^{\frac{1}{2}}$

FIZIKALNE KONSTANTE

brzina svjetlosti u vakuumu	c	$= 2,99792458 \cdot 10^8 \text{ m/s}$
dielektrična konstanta vakuuma	$\mathbf{\epsilon}_0$	$= 8.854 \cdot 10^{-12} \text{ F/m}$
permeabilnost vakuuma	μ_0	$= 4\pi \cdot 10^{-7} \text{ H/m}$
elementarni električni naboj	e	$= 1,60217733 \cdot 10^{-19} \mathrm{C}$
Planckova konstanta	h	$= 6.6260755 \cdot 10^{-34} \text{ Js}$
	\hbar	$= 1,054573 \cdot 10^{-34} \text{ Js}$
Avogadrov broj	$N_{ m A}$	$= 6.0221367 \cdot 10^{23} \text{ mol}^{-1}$
plinska konstanta	R	$= 8,314510 \text{ Jmol}^{-1}\text{K}^{-1}$
Boltzmannova konstanta	k	$= 1,380658 \cdot 10^{-23} \text{ J/K}$
	k	$= 8.617 \cdot 10^{-11} \text{ MeV/K}$
Loschmidtov broj	$n_{ m L}$	$= 2,68675 \cdot 10^{25} \mathrm{m}^{-3}$
molni obujam idealnog plina	V_o	$= 22,4138 \cdot 10^{-3} \mathrm{m}^{3} \mathrm{mol}^{-1}$
Stefan-Boltzmannova konstanta	σ	$= 5,67051 \cdot 10^{-8} \mathrm{Wm}^{-2} \mathrm{K}^{-4}$
Rydbergova konstanta	R_{∞}	$= 1,0973731534 \cdot 10^7 \mathrm{m}^{-1}$
konstanta fine strukture	α	= 0,00729735308
	α^{-1}	= 137,0359895
Bohrov polumjer	r_0	$= 5,29177249 \cdot 10^{-11} \mathrm{m}$
Bohrov magneton	μ_{B}	$= 9,2740154 \cdot 10^{-24} \mathrm{JT}^{-1}$
nuklearni magneton	μ_{N}	$= 5,0507866 \cdot 10^{-27} \mathrm{JT}^{-1}$
kvant magnetskog toka	ϕ_0	$= 2,06783461 \cdot 10^{-15} \text{ Wb}$
masa mirovanja elektrona	m_{e}	$= 9,1093897 \cdot 10^{-31} \text{ kg}$
	$m_{\rm e}c^2$	= 0.511003 MeV
specifični naboj elektrona	$-\frac{e}{m_e}$	$= 1,75881962 \cdot 10^{11} \mathrm{Ckg}^{-1}$
Comptonova valna duljina elektrona	$\lambda_{C,e}$	$= 2,42631058 \cdot 10^{-12} \mathrm{m}$
klasični polumjer elektrona	$r_{ m e}$	$= 2.81794092 \cdot 10^{-15} \text{ m}$
magnetski moment elektrona	μ_{e}	$= 1,001159652193 \mu_{\rm B}$
masa mirovanja protona	$m_{\rm p}$	$= 1,67265 \cdot 10^{-27} \text{ kg}$
	$m_{\rm p}c^2$	= 938,28 MeV
Comptonova valna duljina protona	$\lambda_{C,p}$	$= 1,32141002 \cdot 10^{-15} \mathrm{m}$
masa mirovanja neutrona	m,	$= 1,67495 \cdot 10^{-27} \text{ kg}$
•	$m_{\rm n}c^2$	= 939,57 MeV
Comptonova valna duljina neutrona	$\lambda_{C,n}$	$= 1,31959110 \cdot 10^{-15} \mathrm{m}$
atomska masena konstanta	$m_{ m u}$	$= 1,6605402 \cdot 10^{-27} \text{ kg}$
	$m_{\rm u}c^2$	= 931,49432 MeV