If $b \neq 0$, then the inequality

$$\frac{\|\Delta x\|}{\|x\|} \le \operatorname{cond}(A) \frac{\|\Delta b\|}{\|b\|}$$

holds and is the best possible. This means that for a given matrix A, there exist some vectors $b \neq 0$ and $\Delta b \neq 0$ for which equality holds.

Proof. We already proved the inequality. Now, because $\| \|$ is a subordinate matrix norm, there exist some vectors $x \neq 0$ and $\Delta b \neq 0$ for which

$$||A^{-1}\Delta b|| = ||A^{-1}|| \, ||\Delta b||$$
 and $||Ax|| = ||A|| \, ||x||$.

Proposition 9.14. Let A be an invertible matrix and let x and $x + \Delta x$ be the solutions of the two systems

$$Ax = b$$
$$(A + \Delta A)(x + \Delta x) = b.$$

If $b \neq 0$, then the inequality

$$\frac{\|\Delta x\|}{\|x + \Delta x\|} \le \operatorname{cond}(A) \frac{\|\Delta A\|}{\|A\|}$$

holds and is the best possible. This means that given a matrix A, there exist a vector $b \neq 0$ and a matrix $\Delta A \neq 0$ for which equality holds. Furthermore, if $\|\Delta A\|$ is small enough (for instance, if $\|\Delta A\| < 1/\|A^{-1}\|$), we have

$$\frac{\|\Delta x\|}{\|x\|} \le \text{cond}(A) \frac{\|\Delta A\|}{\|A\|} (1 + O(\|\Delta A\|));$$

in fact, we have

$$\frac{\|\Delta x\|}{\|x\|} \le \operatorname{cond}(A) \frac{\|\Delta A\|}{\|A\|} \left(\frac{1}{1 - \|A^{-1}\| \|\Delta A\|} \right).$$

Proof. The first inequality has already been proven. To show that equality can be achieved, let w be any vector such that $w \neq 0$ and

$$||A^{-1}w|| = ||A^{-1}|| ||w||,$$

and let $\beta \neq 0$ be any real number. Now the vectors

$$\Delta x = -\beta A^{-1}w$$
$$x + \Delta x = w$$
$$b = (A + \beta I)w$$