Reinforcement Learning IA318 TD Learning

Thomas Bonald

2022 - 2023

Markov decision process

At time t = 0, 1, 2, ..., the agent in **state** s_t takes **action** a_t and:

- ightharpoonup receives **reward** r_t
- ightharpoonup moves to **state** s_{t+1}

The reward and new state are **stochastic** in general. Some states may be **terminal**.

Definition

A Markov decision process (MDP) is defined by:

- ▶ the initial state $p(s_0)$
- ▶ the reward distribution, $p(r_t|s_t, a_t)$
- the transition probabilities, $p(s_{t+1}|s_t, a_t)$

Objective function

Definition

Given the rewards r_0, r_1, r_2, \ldots , we refer to the **gain** as:

$$G = r_0 + \gamma r_1 + \gamma^2 r_2 + \ldots = \sum_{t=0}^{+\infty} \gamma^t r_t$$

The parameter $\gamma \in [0,1]$ is the **discount factor**.

Value function

Consider some policy π .

Definition

The **value** function of π is the expected gain from each state:

$$\forall s, \quad V_{\pi}(s) = \mathrm{E}_{\pi}(G|s_0 = s)$$

Bellman's equation

The value function V_{π} is the unique solution to the **fixed-point** equation:

$$\forall s, \quad V(s) = \mathrm{E}_{\pi}(r_0 + \gamma V(s_1)| \ s_0 = s)$$

Online policy evaluation

How to evaluate the value function V_{π} online, while **interacting** with the environment?

Useful when:

- ➤ The environment is **unknown** (e.g., robot, maze)
- The state space is **too large** (e.g., games)

Data stream

How to estimate the **mean** M of some data stream $x_1, x_2, ...$?

Two options:

1. Store the sum:

$$S \leftarrow S + x_t \quad M \leftarrow \frac{S}{t}$$

2. Update with the difference:

$$M \leftarrow M + \alpha(x_t - M)$$
 $\alpha = \frac{1}{t}$

We use the notation:

$$M \stackrel{\alpha}{\leftarrow} x_t - M$$

Note: α is often set to some (small) value to account for **non-stationarity** (e.g., $\alpha = 0.01$)

Outline

- 1. Monte-Carlo learning
- 2. TD learning

MC learning

Idea: Evaluate the **value function** of some policy π using **complete episodes** s_0, s_1, \ldots, s_T (assuming the presence of terminal states, or some fixed time horizon T)

Gain G_t at time t:

$$G_0 = r_0 + \gamma r_1 + \dots + \gamma^{T-1} r_{T-1}$$

$$G_1 = r_1 + \gamma r_2 + \dots + \gamma^{T-2} r_{T-1}$$

$$\dots$$

$$G_{T-1} = r_{T-1}$$

MC updates

$$\forall t, \quad V(s_t) \stackrel{\alpha}{\leftarrow} G_t - V(s_t)$$

Example

Maze

Maze

MC learning on 10 episodes with time horizon $T=200\,$

Exercise

What is the value function after MC learning over the episodes [Start, A, B, C] and [Start, B, C]?

Outline

- 1. Monte-Carlo learning
- 2. TD learning

TD learning

Idea: Online estimation of the value function of some policy π (no need for complete episodes)

TD updates

$$\forall t, \quad V(s_t) \stackrel{\alpha}{\leftarrow} r_t + \gamma V(s_{t+1}) - V(s_t)$$

cf. Bellman's equation

$$\forall s, \quad V(s) = \mathrm{E}_{\pi}(r_t + \gamma V(s_{t+1})| \ s_t = s)$$

Example

Maze

Maze

TD learning on 10 episodes with time horizon T=200

Exercise

What is the value function after TD learning over the episodes [Start, A, B, C] and [Start, B, C]?

MC learning vs TD learning

MC

- requires **complete** episodes
- requires memory
- has high variance but low bias

TD

- learns continuously
- ▶ is memory-less (cf. Markov property)
- ▶ has low variance but potentially high bias (depending of the initial value of V)

From TD to MC: *n*-step TD

Estimation of the gain at time t after n time steps:

$$G_t^{(1)} = r_t + \gamma V(s_{t+1})$$

$$G_t^{(2)} = r_t + \gamma r_{t+1} + \gamma^2 V(s_{t+2})$$
...
$$G_t^{(n)} = r_t + \gamma r_{t+1} + \ldots + \gamma^n V(s_{t+n})$$

n-step TD

$$\forall t, \quad V(s_t) \stackrel{\alpha}{\leftarrow} G_t^{(n)} - V(s_t)$$

Summary

Key concepts

- MC learning
 Learning from complete episodes
- ► **TD learning**Online learning
- ▶ Both useful for **policy improvement**

Next steps

- Online control by Q-learning
- Opportunistic exploration by Monte-Carlo Tree Search