Mazāko kvadrātu metode ir populāra regresijas analīzes metode, kas visbiežāk tiek pielietota, lai veiktu līknes piemeklēsanu dotiem punktiem [1]. Līknes piemeklēšana tiek veikta, minimizējot attālumu kvadrātu summu starp dotajiem punktiem un meklēto līkni.

Dots:

- n mezglu punkti $(n \ge 4)$, apzīmēti ar p_i , sakārtoti matricā \mathbf{P} .
- katram punktam p_i parametrizācijas rezultātā piemeklēta t vērtība, apzīmēta ar s_i .

Vēlamies caur dotajiem punktiem izvilkt tuvāko trešās pakāpes Bezjē līkni B(t), tas ir, atrast tādus līknes kontrolpunktus \mathbf{c}_0 , \mathbf{c}_1 , \mathbf{c}_2 , \mathbf{c}_3 , sakārtotus matricā \mathbf{C} , lai attālumi starp punktiem p_i un līkni, ko raksturo minētie kontrolpunti, būtu pēc iespējas mazākas.

Bezjē līkne ir parametriska, savukārt mezgli tiek uzdoti ar koordinātām. Lai saistītu mezglu punktus ar līkni, tiek izmantotas parametrizācijas metodes. Arī attālumus d_i meklēsim starp katru punktu un tā piemeklēto s_i vērtību.

$$d_i = |(p_i - B(s_i))| = \sqrt{(p_i - B(s_i))^2}$$

Lai izvairītos no kvadrātsaknēm un moduļiem, apskatīsim attālumu kvadrātus d_i^2 .

$$d_i^2 = (p_i - B(s_i))^2$$

Vēlamies atrast tuvāko Bezjē līkni – tādu, kurai attālumu d_i summa ir pēc iespējas mazāka.

$$\sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} (p_i - B(s_i))^2$$

Pārrakstam minēto summu kā funkciju \mathbf{D} , kas atkarīga no Bezjē līknes kontrolpunktiem \mathbf{c}_0 , \mathbf{c}_1 , \mathbf{c}_2 , \mathbf{c}_3 .

$$D(\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3, \mathbf{c}_4) = \sum_{i=1}^n (p_i - B(s_i))^2$$

Izmantojam matricu pierakstu Bezjē līknēm.

$$D(\mathbf{C}) = (\mathbf{P} - \mathbf{SMC})^{*2}$$
$$D(\mathbf{C}) = (\mathbf{P} - \mathbf{SMC})^{T} (\mathbf{P} - \mathbf{SMC})$$

Funkcijai $D(\mathbf{C})$ vēlamies atrast mazāko vērtību, t. i., funkcijas minimumu. Ekstrēma nepieciešamie nosacījumi pieprasa, lai minimuma punktā funkcijas atvasinājums būtu vienāds ar 0.

Varam ievērot, ka matrica ($\mathbf{P} - \mathbf{SMC}$) ir ar dimensijām $n \times 1$, tātad tas ir vektors. Divu vektoru \mathbf{a} un \mathbf{b} skalārais reizinājums $\langle \mathbf{a}, \mathbf{b} \rangle$ uzrakstāms kā matricu reizinājums $\mathbf{a}^T \cdot \mathbf{b}$. Tāpāt $(\mathbf{P} - \mathbf{SMC})^T(\mathbf{P} - \mathbf{SMC})$ ir vektora $(\mathbf{P} - \mathbf{SMC})$ skalārais reizinājums pašam ar sevi.

$$D(\mathbf{C}) = \langle \mathbf{P} - \mathbf{SMC}, \mathbf{P} - \mathbf{SMC} \rangle$$

Turklāt, vektoriem reālo skaitļu laukos darbojas distributīvais un komutatīvais likums.

$$D(\mathbf{C}) = \langle \mathbf{P}, \mathbf{P} \rangle - 2\langle \mathbf{P}, \mathbf{SMC} \rangle + \langle \mathbf{SMC}, \mathbf{SMC} \rangle$$

Šo summu var atvasināt pa saskaitājamiem.

1. $\langle \mathbf{P}, \mathbf{P} \rangle$ atvasinājums:

$$\frac{\partial \langle \mathbf{P}, \mathbf{P} \rangle}{\partial \mathbf{C}} = 0$$
, jo **P** nesatur **C**.

2. $\langle \mathbf{P}, \mathbf{SMC} \rangle$ atvasinājums:

Varam ievērot, ka

$$\langle \mathbf{P}, \mathbf{SMC} \rangle = \mathbf{P}^T \mathbf{SMC} = \langle \mathbf{M}^T \mathbf{S}^T \mathbf{P}, \mathbf{C} \rangle,$$

 $k\bar{a}$ arī vektoriem $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$

$$\frac{\partial \langle \mathbf{y}, \mathbf{x} \rangle}{\partial x_i} = \frac{\partial (y_1 x_1 + y_2 x_2 + \dots + y_i x_i + \dots + y_n x_n)}{\partial x_i} = y_i.$$

Izmantojot ievērotās sakarības, iegūstam:

$$\frac{\partial \langle \mathbf{P}, \mathbf{SMC} \rangle}{\partial c_i} = \frac{\partial \langle \mathbf{M}^T \mathbf{S}^T \mathbf{P}, \mathbf{C} \rangle}{\partial c_i} = \mathbf{M}^T \mathbf{S}_i^T \mathbf{P}.$$

3. (SMC, SMC) atvasinājums:

Varam ievērot, ka

$$\langle \mathbf{SMC}, \mathbf{SMC} \rangle = \mathbf{C}^T \mathbf{M}^T \mathbf{S}^T \mathbf{SMC} = \langle \mathbf{M}^T \mathbf{S}^T \mathbf{SMC}, \mathbf{C} \rangle,$$

kā arī vektoram $\mathbf{x} \in \mathbb{R}^n$ un matricai $\mathbf{A} \subset \mathbb{R}^{n \times n}$

$$\frac{\partial \langle \mathbf{A}\mathbf{x}, \mathbf{x} \rangle}{\partial x_i} = (\mathbf{A}_i + \mathbf{A}_i^T)\mathbf{x}.$$

Pilnais izvedums šajai identitātei atrodams 2.1. pielikumā.

Izmantojam minēto identitāti un veicam ekvivalentus pārveidojumus.

$$\begin{split} \frac{\partial}{\partial \mathbf{c}_i} \langle \mathbf{M}^T \mathbf{S}^T \mathbf{S} \mathbf{M} \mathbf{C}, \mathbf{C} \rangle &= (\mathbf{M}^T \mathbf{S}_i^T \mathbf{S}_i \mathbf{M} + (\mathbf{M}^T \mathbf{S}_i^T \mathbf{S}_i \mathbf{M})^T) \mathbf{C} \\ &= (\mathbf{M}^T \mathbf{S}_i^T \mathbf{S}_i \mathbf{M} + \mathbf{M}^T \mathbf{S}_i^T \mathbf{S}_i \mathbf{M}) \mathbf{C} \\ &= 2 (\mathbf{M}^T \mathbf{S}_i^T \mathbf{S}_i \mathbf{M}) \mathbf{C} \\ &= 2 \mathbf{M}^T \mathbf{S}_i^T \mathbf{S}_i \mathbf{M} \mathbf{C} \end{split}$$

Tātad esam ieguvuši trešā funkcijas saskaitāmā atvasinājumu:

$$\frac{\partial \langle \mathbf{SMC}, \mathbf{SMC} \rangle}{\partial \mathbf{c}_i} = 2\mathbf{M}^T \mathbf{S}_i^T \mathbf{S}_i \mathbf{MC}.$$

Apvienojot saskaitāmo parciālos atvasinājumus, iegūstam

$$\frac{\partial D}{\partial \mathbf{c}_i} = -2\mathbf{M}^T \mathbf{S}_i^T \mathbf{P} + 2\mathbf{M}^T \mathbf{S}_i^T \mathbf{S}_i \mathbf{MC},$$

savukārt apvienojot i-tos locekļus, iegūstam

$$\frac{\partial D}{\partial \mathbf{C}} = -2\mathbf{M}^T \mathbf{S}^T \mathbf{P} + 2\mathbf{M}^T \mathbf{S}^T \mathbf{S} \mathbf{M} \mathbf{C}.$$

Lai atrastu funkcijas $D(\mathbf{C})$ ekstrēmu, pielīdzinām tās atvasinājumu nullei.

$$-2\mathbf{M}^{T}\mathbf{S}^{T}\mathbf{P} + 2\mathbf{M}^{T}\mathbf{S}^{T}\mathbf{S}\mathbf{M}\mathbf{C} = 0$$

$$\mathbf{M}^{T}\mathbf{S}^{T}\mathbf{P} - \mathbf{M}^{T}\mathbf{S}^{T}\mathbf{S}\mathbf{M}\mathbf{C} = 0$$

$$\mathbf{M}^{T}\mathbf{S}^{T}\mathbf{S}\mathbf{M}\mathbf{C} = \mathbf{M}^{T}\mathbf{S}^{T}\mathbf{P}$$

$$\mathbf{C} = (\mathbf{M}^{T}\mathbf{S}^{T}\mathbf{S}\mathbf{M})^{-1}\mathbf{M}^{T}\mathbf{S}^{T}\mathbf{P}$$

M - trīsstūra matrica, kurai uz diagonāles ir četri nenulles elementi $\Rightarrow rank(\mathbf{M}) \geq 4$.

$$rank(\mathbf{M}) \ge 4$$
 $\mathbf{M} \subset \mathbb{R}^{4 \times 4}$
 $\Rightarrow rank(\mathbf{M}) = 4$

Matricai \mathbf{M} ir pilns rangs, tātad tai eksistē inversā matrica, tāpat arī matricai \mathbf{M}^T eksistē inversā matrica. Tātad \mathbf{M} un \mathbf{M}^T var iznest no iekavām.

$$\begin{split} \mathbf{C} &= \mathbf{M}^{-1}(\mathbf{S}^T\mathbf{S})^{-1}(\mathbf{M}^T)^{-1}\mathbf{M}^T\mathbf{S}^T\mathbf{P} \\ \mathbf{C} &= \mathbf{M}^{-1}(\mathbf{S}^T\mathbf{S})^{-1}\mathbf{I}\mathbf{S}^T\mathbf{P} \\ \mathbf{C} &= \mathbf{M}^{-1}(\mathbf{S}^T\mathbf{S})^{-1}\mathbf{S}^T\mathbf{P} \end{split}$$

Esam atraduši kritisko punktu. Varam ievērot, ka funkcijai neeksistē maksimums - ja kontrolpunktus novieto patvaļīgi tālu no dotajiem mezglu punktiem, funkcijas $D(\mathbf{C})$ vērība tiecas uz bezgalību. Secinām, ka atrastais ekstrēms ir minimums.

Tātad, izmantojot mazāko kvadrātu metodi, punktiem ${\bf P}$ tuvāko Bezjē līkni definē kontrolpunkti ${\bf C}$, kas izsakāmi kā

$$\mathbf{C} = \mathbf{M}^{-1} (\mathbf{S}^T \mathbf{S})^{-1} \mathbf{S}^T \mathbf{P}.$$

Izmantotie apzīmējumi:

- \mathbf{A}^T Matricas ${\bf A}$ transponētā matrica.
- \mathbf{A}^{-1} Matricas **A** inversā matrica.
- Matricas \mathbf{A} *i*-tā kolonna.
- $egin{aligned} \mathbf{A}_i \ \mathbf{A}^{\star 2} \end{aligned}$ Matrica ${\bf A}$, kur katrs matricas elements ir kāpināts kvadrātā.

[1] S. Boyd, L. Vandenberghe, Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares.