Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Blok 1: lista M 2 22 października 2020 r.

M2.1. 2 punkty Załóżmy, że $|\alpha_j| \le u$ dla $j=1,2,\ldots,n$ oraz że nu < 0.01. Wykazać, że zachodzi równość

$$\prod_{j=1}^{n} (1 + \alpha_j) = 1 + \eta_n,$$

gdzie

$$|\eta_n| \leqslant 1.01nu$$
.

M2.2. I punkt Zbadać uwarunkowanie zadania obliczania pierwiastka x^- (notacja z wykładu) równania kwadratowego równania

(1)
$$x^2 + 2px + q = 0 (p^2 - q > 0, p, q \neq 0).$$

Wskazówka: Rozpatrzyć funkcję

$$f(p,q) := p - \sqrt{p^2 - q},$$

a następnie zbadać uwarunkowanie zadania obliczania jej wartości. Dla funkcji dwuargumentowej mówimy o dwóch wskaźnikach uwarunkowania obliczania jej wartości; pierwszy uwzględnia zmianę argumentu p, a drugi — argumentu q. Niech δ_p i δ_q oznaczają względne zmiany argumentów p i q. Następnie wystarczy skorzystać ze wzoru Taylora

$$f(p(1+\delta_p), q(1+\delta_q)) \approx f(p,q) + p\delta_p f_p'(p,q) + q\delta_q f_q'(p,q).$$

Przy badaniu błędu względnego otrzymanej wartości funkcji, rozpatrzyć osobno wielkości stojące przy δ_p i δ_q . W ten sposób otrzymamy odpowiednio wskaźniki uwarunkowania ze względu na zmienną p i q:

(2)
$$\operatorname{cond}_{p} = -\frac{1}{\sqrt{1 - q/p^{2}}}, \quad \operatorname{cond}_{q} = -\frac{1 + \sqrt{1 - q/p^{2}}}{2\sqrt{1 - q/p^{2}}}.$$

M2.3. 2 punkty Załóżmy, że x,y są liczbami maszynowymi, tzn. rd(x)=x, rd(y)=y, takimi, że 0< y< x. Wykazać, że jeśli

$$2^{-q} \leqslant 1 - \frac{y}{x} \leqslant 2^{-p}$$

(p i q sa całkowite), to

 $p \leq \text{liczba bitów straconych przy odejmowaniu } x - y \leq q.$

- **M2.4.** I punkt Wartość wielomianu $L(x) := a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ w punkcie x można obliczyć według następującego *schematu Hornera*:
 - Oblicz wielkości pomocnicze w_0, w_1, \ldots, w_n za pomocą wzorów
 - a) $w_n := a_n$.
 - b) $w_k := w_{k+1} \times x + a_k \quad (k = n 1, n 2, \dots, 0).$
 - Wynik: $L(x) = w_0$.

Zakładając, że a_0, a_1, \ldots, a_n oraz x są liczbami zmiennopozycyjnymi wykazać, że schemat Hornera jest algorytmem numerycznie poprawnym.

- **M2.5.** 1 punkt Rozważyć zadanie obliczenia wartości $a + a^2$ dla a > 2. Uwdowodnić, że poniższy algorytm jest numerycznie poprawny.
 - Oblicz
 - a) x := a * a,
 - Wynik: a + x
- **M2.6.** 1 punkt Pole n-kąta foremnego $(n \ge 4)$ wpisanego w okrąg o promieniu 1 wynosi

$$P_n = \frac{1}{2}n\sin\frac{2\pi}{n}.$$

Wartość P_n jest przybliżeniem liczby π – tym lepszym, im większe jest n. Następujący algorytm pozwala oszczędnie obliczać kolejno P_4 , P_8 , P_{16} , . . .:

$$\begin{aligned} s_2 &:= 1, \quad c_2 := 0, \quad P_4 := 2; \\ s_k &:= \sqrt{\frac{1}{2}(1 - c_{k-1})}, \quad c_k := \sqrt{\frac{1}{2}(1 + c_{k-1})}, \quad P_{2^k} := 2^{k-1} \, s_k \qquad (k = 3, 4, \ldots). \end{aligned}$$

- a) Uzasadnić powyższy algorytm.
- b) Stosując wybraną arytmetykę t-cyfrową ($t \ge 128$) obliczyć P_{2^k} dla $k=2,3,\ldots,2t$.
- c) Czy wyniki są zgodne z oczekiwaniami? Jeśli nie, to jakie jest źródło kłopotów? Jak można ich uniknąć?
- **M2.7.** I punkt Zbadać uwarunkowanie zadania obliczania wartości funkcji f, podanej wzorem (a) $f(x) = 1/(x^2 + c)$, gdzie c jest stałą; (b) $f(x) = (1 \cos x)/x^2$ dla $x \neq 0$.