Section: Chapter. 5 Diagonalization

5.1 Eigenvalues and Eigenvectors

Def: Let A, B be square matrices. If \exists invertible matrix P such that ______. We say that A is similar (相似) to B. Denoted by $A \sim B$.

Thm: Suppose $A \sim B$, where A, B be square matrices. Then

- (1) tr(A) = tr(B).
- (2) det(A) = det(B).
- (3) rank(A) = rank(B).
- (4) nullity(A) = nullity(B).
- (5) A^T~B^T.【105 中興資料、109 中央資工】
- (6) $A^k \sim B^k$ for any $k \in \mathbb{N}$. 【104.109 中央資工 105 中興資料】
- (7) $cA \sim cB$ for any scalar c.
- (8) $A + cI \sim B + cI$ for some scalar c.
- (9) *f*(*A*)~*f*(*B*) for any polynomial *f*. 【94 彰師資工、105 中興資料】
- (10) $A^{-1} \sim B^{-1}$, where A, B both invertible. 【104.109 中央資工】

Proof:

 $Def \colon T \in \mathcal{L}(V)$ is diagonalizable (可對角化) if \exists some basis β such that $[T]_{\beta} = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$ is diagonal matrix.

Def: Let $T \in \mathcal{L}(V)$ and $v \in V$. $v \neq 0_v$ is an eigenvector (特徵向量) of T if $\exists \lambda \in \mathbb{F}$ such that $T(v) = \lambda v$. λ is called the eigenvalue (特徵值) of T with corresponding to V.

Remark: 上述定義的矩陣版本為 $Av = \lambda v$.

Def: Let $T \in \mathcal{L}(V)$ and $v \neq 0_v$. Then (λ, v) is called an eigenpair (特徵對) of T.

Remark: eigenvalue 可為 0, 但 eigenvector 不可為 0_v .

Remark: 求解A的 eigenvalue 及 eigenvector 可以計算 $N(A - \lambda I_n) = \{0_v\}$.

Proof: λ is an eigenvalue of $T \Leftrightarrow Av = \lambda v \Leftrightarrow Av - \lambda v = 0_v \Leftrightarrow (A - \lambda I_n)v = 0_v \Leftrightarrow \text{Solve}$ $N(A - \lambda I_n)$

Thm: Suppose A and B is similar. Then

- (1) AB and BA have the same eigenvalue.
- (2) A and A^T have the same eigenvalue.
- (3) If A is invertible, then λ^{-1} is an eigenvalue of A^{-1} .
- (4) λ^k is an eigenvalue of A^k for some $k \in \mathbb{N}$.
- (5) Let f is an polynomial, then $f(\lambda)$ is an eigenvalue of f(A).

Proof:

Thm: Let $A \in M_n(\mathbb{F})$. Then $\lambda \in \mathbb{F}$ is an eigenvalue of $A \iff N(A - \lambda I_n) \neq \{0_v\}$

Thm: Let V be a finite dimensional vector space. Then $T \in \mathcal{L}(V)$ is invertible $\iff 0$ is not an eigenvalue of T.

Proof:

Remark: (1) 特徵值相同,也有可能不相似.【97 彰師數學】

e.g.
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
及 $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

(2) 相似矩陣的特徵向量不一定相同.【105 中山通訊、107 台大資工】

e.g.
$$\begin{pmatrix} 3 & 4 \\ 1 & 3 \end{pmatrix}$$
及 $\begin{pmatrix} 4 & 3 \\ 1 & 2 \end{pmatrix}$.

Def: Let $A \in M_n(\mathbb{F})$. Defined $\det(A - xI_n)$ is called the characteristic polynomial (特徵多項式) of A, denoted by $C_A(x) = \det(A - xI_n)$.

Thm: Let $A, B \in M_n(\mathbb{F})$.

- (1) If $A \sim B$, then A and B have the same characteristic polynomial.
- (2) AB and BA have the same characteristic polynomial.

Proof:

Thm: Suppose $\lambda_1, ..., \lambda_n$ be eigenvalues of A. Let

$$C_A(x) = (\lambda_1 - x)(\lambda_2 - x)\cdots(\lambda_n - x) = (-x)^n + (\lambda_1 + \lambda_2 + \cdots + \lambda_n)(-x)^{n-1} + \cdots + (\lambda_1\lambda_2\cdots\lambda_n).$$

- (1) $\det(A) = \lambda_1 \lambda_2 \cdots \lambda_n$.
- (2) $tr(A) = \lambda_1 + \lambda_2 + \dots + \lambda_n$.
- (3) A is invertible if and only if all eigenvalues of A are not zero.

Ex. Find the eigenvalues of
$$A^{25}$$
 for $A = \begin{pmatrix} -1 & -2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{pmatrix}$. 【102 中正資工】

Ex. Let A be a nilpotent matrix. Prove that I + A is invertible.

【93 中央統計、96 政大統計、103 台大數學、103 清大數學、105 台大資工】

Proof:

Ex. Prove that if all eigenvalues of A are positive, then all eigenvalues of $A + A^{-1}$ must ≥ 2 .

【110 台大流行】

Proof:

Ex. Find the trace of $I+A+A^2+\cdots+A^{28}$ for $A=\begin{pmatrix} 4 & 3 \\ 2 & 3 \end{pmatrix}$. 【93 交大應數】

Ex. Find the eigenvectors of $(I+A)^{100}$ given $A = \begin{pmatrix} -4 & -5 \\ 10 & 11 \end{pmatrix}$. 【105 台大資工】

Ex. Find the eigenvalues and eigenvectors of:

$$T: \mathbb{C}^2 \to \mathbb{C}^2, \ T(a_1, a_2) = (a_1 \cos \theta - a_2 \sin \theta, a_1 \sin \theta + a_2 \cos \theta).$$

【89 師大數學、90 交大資料、94 交大電資、96 中正電機、108 台聯電機】

5.2 Diagonalizability

Thm: Let $T \in \mathcal{L}(V)$, where $\dim(V) < \infty$. Let $\lambda_1, \lambda_2, ..., \lambda_k$ be distinct eigenvalues of T. If $v_1, ..., v_k$ are eigenvectors of T such that λ_i corresponding to v_i . Then $\{v_1, ..., v_k\}$ is linearly independent.

Def: Let $T \in \mathcal{L}(V)$ and λ an eigenvalue of T. We called $\mathcal{E}_T(\lambda)$ the eigenspace (固有空間) of T.

Thm: Let V be a n-dimensional vector space and let $T \in \mathcal{L}(V)$. Suppose β is a basis for V, then $[T]_{\beta}$ is diagonal matrix \iff all vectors of β are eigenvectors of T.

Proof:

Thm: Let $A \in M_n(\mathbb{F})$. Let $P \in M_n(\mathbb{F})$ is invertible matrix. Then $P^{-1}AP$ is diagonal matrix \iff all column vectors of P are eigenvectors of A.

Proof:

Thm: Suppose *A* is diagonalizable.

- (1) A^T is diagonalizable.
- (2) A is invertible $\Rightarrow A^{-1}$ is diagonalizable.
- (3) A^k is diagonalizable for $k \in \mathbb{N}$.
- (4) f(A) is diagonaliable.

Proof:

Remark: 方陣是否可對角化與方陣是否可逆不相關.

e.g.
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
可逆但不可對角化; $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 不可逆但可對角化; $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 可逆也可對角化;
$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
可逆但不可對角化.

Def: A polynomial f(t) in $P(\mathbb{F})$ splits over \mathbb{F} (在 \mathbb{F} 上完全分解) if there are scalars $c, a_1, ..., a_n$ in \mathbb{F} such that $f(t) = c(t - a_1)(t - a_2) \cdots (t - a_n)$.

Lem: T is diagonalizable $\Rightarrow C_T(x)$ splits over \mathbb{F} .

Remark: 上述Lemma的反方向是錯誤的, 反例為 $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Def: Let $T \in \mathcal{L}(V)$. Suppose $C_T(x) = (-1)^n (x - \lambda_1)^{m_1} (x - \lambda_2)^{m_2} \cdots (x - \lambda_k)^{m_k}$ for i = 1, 2, ..., k.

- (1) alg-mul(λ_i) =____ is called a algebraic multiplicity (代數重數) of λ_i .
- (2) $geo-mul(\lambda_i) =$ ______ is called a geometric multiplicity (幾何重數) of λ_i .

Thm: Let λ be an eigenvalue of T. Then ______. (幾何重數與代數重數之關係)

Cor: alg-mul(λ_i) = 1 \implies geo-mul(λ_i) = 1

Thm: Let $T \in \mathcal{L}(V)$, where $n = \dim(V)$ such that $C_T(x)$ splits over \mathbb{F} . Let $\lambda_1, \lambda_2, ..., \lambda_k$ be distinct eigenvalues of T. Then

- (1) T is diagonalizable \Leftrightarrow ______ for each i=1,2,...,k. (對角化必要條件)
- (2) If T is diagonalizable and β_i is a basis for $\mathcal{E}_T(\lambda_i)$ for each i, then $\beta = \beta_1 \cup \cdots \cup \beta_k$ is a basis for V. (找基底的方法)

Thm: Let $T \in \mathcal{L}(V)$ and $\dim(V) = n$. Let $\lambda_1, \lambda_2, ..., \lambda_k$ be distinct eigenvalues of T, TFAE

- (1) T is diagonalizable.
- (2) $C_T(x)$ is splits over \mathbb{F} and alg-mul (λ_i) = geo-mul (λ_i) for i = 1, 2, ..., k.
- (3) $V = \mathcal{E}_T(\lambda_1) \cup \mathcal{E}_T(\lambda_2) \cup \cdots \cup \mathcal{E}_T(\lambda_k)$.

Def: If A is not diagonalizable, then A is called the defective (缺陷的).

Ex. Diagonalize $A = \begin{pmatrix} 1 & -3 & 2 \\ 1 & -2 & 1 \\ 2 & -3 & 1 \end{pmatrix}$ to be a diagonak marix D.

【98.99 中正統計、100 中正資工、97.98 成大資工】

$$Ex. \text{ Let } T: P_2(\mathbb{R}) \to P_2(\mathbb{R}) \text{ be defined by } T(a_0 + a_1 x + a_2 x^2) = 2(a_1 - a_2) + (2a_0 + 3a_2)x + 3a_2 x^2.$$

- (1) Let $B = \{1, x, x^2\}$ be a basis for $P_2(\mathbb{R})$. Give the matrix T with respect to B.
- (2) Find the eigenvectors and the associated eigenvalues for T.
- (3) Let C denote the basis of $P_2(\mathbb{R})$ that consists of the eigenvectors for T. Give the matrix of T with respect to C.

【94.98.103 師大資工】

◆ 對角化的應用

一、指數矩陣

Def:
$$e^A = \sum_{i=0}^{\infty} \frac{A^i}{i!} = I + \frac{A}{1!} + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots$$

$$Thm: (1) A \sim B \implies e^A \sim e^B$$
. 【93 交大應數、101 台大數學】

- (2) λ is an eigenvalue of $A \Rightarrow e^{\lambda}$ is an eigenvalue of e^{A} . 【93 成大統計】
- (3) $\det(e^A) = e^{tr(A)}$. 【93 成大統計】
- (4) If A can be diagonalize to D, then $e^A = Pe^DP^{-1}$ is invertible matrix. 【95 彰師統計】 Proof:

Ex. Let $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. Evaluate A^n , where $n \in \mathbb{N}$, e^A , $\sin A$, $A^{\frac{1}{2}}$.

二、遞迴關係式

Ex. The Fibonacci sequence can be recursively defined by $\begin{cases} x_n = x_{n-1} + x_{n-2}, & n \ge 3 \\ x_1 = x_2 = 1 \end{cases}$.

(1) Determine the matrix A that can recursively generate the Fibonacci sequence by

$$\binom{x_n}{x_{n-1}} = A \binom{x_{n-1}}{x_{n-2}}$$
. 【99 交大資工、100 中興電機、100 成大電信】

- (2) Starting with $\binom{x_2}{x_1} = \binom{2}{1}$. Show that $\binom{x_n}{x_{n-1}} = A^{n-2} \binom{1}{1}$.
- (3) Find a matrix P that diagonalizes A.
- (4) Derive an explicit formula for the n-th term of the Fibonacci sequences.

5.4 Invariant Subspaces and the Cayley-Hamilton Theorem

Def: Let $T \in \mathcal{L}(V)$ and $W \leq V$. If $T(W) \subseteq W$, then W is called the T-invariant (T的不動子空間).

Thm: $\{0_V\}$, V, N(T), R(T), $\mathcal{E}_T(\lambda)$ are T-invariant.

Thm: Let $T \in \mathcal{L}(V)$ and $v \neq 0_v$. Then $span\{v\}$ is T-invariant $\Leftrightarrow v$ is an eigenvector of T.

Thm: If $W_1, ..., W_k$ are T-invariant, then

- 1) $W_1 + \cdots + W_k$ is T-invariant. 【99 交大應數】
- 2) $W_1 \cap \cdots \cap W_n$ is T-invariant. 【99 交大應數】

Cor: Let $T \in \mathcal{L}(V)$. Suppose $\lambda_1, ..., \lambda_k$ are eigenvalues of T. Then $\mathcal{E}_T(\lambda_1) \oplus \cdots \oplus \mathcal{E}_T(\lambda_k)$ is T-invariant.

Def: Let $T \in \mathcal{L}(V)$ and $v \in V$. Define

$$\begin{split} \mathcal{Z}(v;T) &= span\{v,T(v),T^2(v),\dots,T^n(v),\dots\} \\ &= span\{a_0v+a_1T(v)+\dots+a_nT^n(v)+\dots|a_i\in\mathbb{F},n\in\mathbb{N}^0\} \\ &= span\{f(T)(v)|f(x)\in P(\mathbb{F})\} \end{split}$$

Z(v;T) is called the T-cyclic subspace (T的循環子空間) generated by v.

Remark: Z(v;T) is the smallest T-invariant subspace containing v.

Lem: (1)
$$\mathcal{Z}(v;T) = \{0_v\} \iff v = 0_v$$
.

(2) $\dim \mathcal{Z}(v;T) = 1 \iff v$ is an eigenvector of T.

Thm: Let $T \in \mathcal{L}(V)$. Let $v \neq 0_v$ and $W = \mathcal{Z}(v; T)$. Let $k = \dim(W)$.

(1) $\beta = \{v, T(v), T^2(v), ..., T^{k-1}(v)\}$ is a basis (此基底為循環基底) for W. 【108 政大應數】

(2) If $a_0v + a_1T(v) + \cdots + a_{k-1}T^{k-1}(v) + T^k(v) = 0_v$, then

$$[T_W]_{\beta} = \begin{pmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{k-1} \end{pmatrix}$$

- ① $[T_W]_\beta$ is called an compansion matrix (友矩陣). 【107 台大資工】
- ② $C_{T_W}(x) = (-1)^k (a_0 + a_1 x + \dots + a_{k-1} x^{k-1} + x^k)$. 【107 台大資工】
- ※ 此定理最重要是在告訴你求解循環子空間的方法,請務必熟記.
- Ex. Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be defined by T(x, y, u, v) = (x + y, y u, x + u, x + v). Let W be the T-cyclic subspace of \mathbb{R}^4 generated by $e_1 = (1,0,0,0)$. Find $tr(T_W)$ and $det(T_W)$.

【100中興應數、88清大應數】

Thm: (Cayley-Hamilton Theorem)

Let $T \in \mathcal{L}(V)$ and $\dim(V) < \infty$. Then $C_T(T) = 0_{V \to V}$.

$$Ex. \ A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}.$$

Sol:
$$C_A(x) = (x-1)^2 \implies C_A(A) = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = 0_{2 \times 2}.$$

- ◆ Cayley-Hamilton Theorem 的應用
- 一、求解反矩陣

Thm: Let $A \in M_n(\mathbb{F})$. Suppose that $C_A(x) = (-1)^n x^n + a_{n-1} x^{n-1} + \dots + a_1 A + a_0 I_n = 0_n$. If A is invertible, then

(1)
$$a_0 = \det(A) \neq 0$$
.

(2)
$$A^{-1} = -\frac{1}{a_0}((-1)^nA^{n-1} + a_{n-1}A^{n-2} + \dots + a_1I_n).$$

【91 成大應數、93 政大應數、93 中正應數、98 中興統計】

Proof:

Ex.
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 and $ad - bc \neq 0$. Find A^{-1} .

二、高次方矩陣對角化問題

Thm: Let $A \in M_n(\mathbb{F})$. Suppose $f(x) \in P(\mathbb{F})$ and $C_A(x) = g(x)$. If f(x) = g(x)q(x) + r(x), where der(r(x)) < deg(g(x)) or r(x) = 0. Then f(A) = r(A).

Proof:

Ex. Let $A = \begin{pmatrix} 14 & 9 \\ -16 & -10 \end{pmatrix}$. Compute A^{100} . 【100 交大應數】

Ex. Evaluate the following matrix by Cayley-Hamilton Theorem.

- (1) $A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$, find A^n . 【92 台大資工、98 清大統計、110 政大應數】
- (2) $A = \begin{pmatrix} 0 & 1 \\ -8 & 6 \end{pmatrix}$, find e^{At} . 【107.109 台聯電機、109 成大資訊聯招】
- (3) $A = \begin{pmatrix} 0 & 4 \\ -1 & 4 \end{pmatrix}$, find A^n .