```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import sklearn.model_selection, sklearn.linear_model, sklearn.svm, sklearn.metrics
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.svm import SVC
dataset = pd.read_csv('voice.csv')
```

dataset.head()

	meanfreq	sd	median	Q25	Q75	IQR	skew	kurt	sp.ent	sfm
0	0.059781	0.064241	0.032027	0.015071	0.090193	0.075122	12.863462	274.402906	0.893369	0.491918
1	0.066009	0.067310	0.040229	0.019414	0.092666	0.073252	22.423285	634.613855	0.892193	0.513724
2	0.077316	0.083829	0.036718	0.008701	0.131908	0.123207	30.757155	1024.927705	0.846389	0.478905
3	0.151228	0.072111	0.158011	0.096582	0.207955	0.111374	1.232831	4.177296	0.963322	0.727232
4	0.135120	0.079146	0.124656	0.078720	0.206045	0.127325	1.101174	4.333713	0.971955	0.783568

5 rows × 21 columns

dataset.describe()

	meanfreq	sd	median	Q25	Q75	IQR	skew	k
count	3168.000000	3168.000000	3168.000000	3168.000000	3168.000000	3168.000000	3168.000000	3168.000
mean	0.180907	0.057126	0.185621	0.140456	0.224765	0.084309	3.140168	36.568
std	0.029918	0.016652	0.036360	0.048680	0.023639	0.042783	4.240529	134.928
min	0.039363	0.018363	0.010975	0.000229	0.042946	0.014558	0.141735	2.068
25%	0.163662	0.041954	0.169593	0.111087	0.208747	0.042560	1.649569	5.669
50%	0.184838	0.059155	0.190032	0.140286	0.225684	0.094280	2.197101	8.318
75%	0.199146	0.067020	0.210618	0.175939	0.243660	0.114175	2.931694	13.648
max	0.251124	0.115273	0.261224	0.247347	0.273469	0.252225	34.725453	1309.612

dataset.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 3168 entries, 0 to 3167 Data columns (total 21 columns):

Jata	columns (cotar	21 columns):
#	Column	Non-N	Null Count	Dtype
0	meanfreq	3168	non-null	float64
1	sd	3168	non-null	float64
2	median	3168	non-null	float64
3	Q25	3168	non-null	float64
4	Q75	3168	non-null	float64
5	IQR	3168	non-null	float64
6	skew	3168	non-null	float64
7	kurt	3168	non-null	float64
8	sp.ent	3168	non-null	float64
9	sfm	3168	non-null	float64
10	mode	3168	non-null	float64
11	centroid	3168	non-null	float64
12	meanfun	3168	non-null	float64
13	minfun	3168	non-null	float64
14	maxfun	3168	non-null	float64
15	meandom	3168	non-null	float64
16	mindom	3168	non-null	float64
17	maxdom	3168	non-null	float64
18	dfrange	3168	non-null	float64
19	modindx	3168	non-null	float64

```
20 label
                    3168 non-null object
     dtypes: float64(20), object(1)
     memory usage: 519.9+ KB
dataset.isnull().sum()
     meanfreq
                 0
     median
     025
                 0
     Q75
     IQR
                 0
     skew
                 0
     kurt
     sp.ent
     sfm
     mode
     centroid
                 0
     meanfun
     minfun
                 a
     maxfun
                 0
     meandom
     mindom
                 0
     maxdom
                 0
     dfrange
     modindx
     lahel
     dtype: int64
dataset.replace(to_replace="male", value=1, inplace=True)
dataset.replace(to_replace="female", value=0, inplace=True)
dataset.label.unique()
     array([1, 0])
xData=dataset.iloc[:,:-1]
yData=dataset.iloc[:,-1]
xData.shape, yData.shape
     ((3168, 20), (3168,))
TRAINSPLIT = 0.8
xTrain, xTest, yTrain, yTest = sklearn.model_selection.train_test_split(xData, yData, train_size=TRAINSPLIT)
xTrain.shape, yTrain.shape
     ((2534, 20), (2534,))
plt.figure(figsize=(18, 8))
plt.subplot(1, 2, 1)
dataset.label.value_counts().plot(kind="pie",
                                           fontsize=16,
                                           labels=["Male", "Female"],
                                           ylabel="Male vs Female",
                                           autopct='%1.1f%%');
plt.subplot(1, 2, 2)
sns.countplot(x="label",data=dataset, palette="pastel")
plt.show()
₽
```



```
plt.figure(figsize=(12,8))
data = dataset.corr()["label"].sort_values(ascending=False)
indices = data.index
labels = []
corr = []
for i in range(1, len(indices)):
    labels.append(indices[i])
    corr.append(data[i])
sns.barplot(x=corr, y=labels, palette='pastel')
plt.title('Correlation coefficient between different features and Label')
plt.show()
```



```
\label{eq:plt.figure} $$ plt.figure(figsize=(20,8)) $$ sns.histplot(dataset.meanfun, color=sns.color_palette('pastel')[0]) $$ plt.show() $$
```


predRegression = regressionModel.predict(xTest)
predKNN = KNNModel.predict(xTest)
predVals = pd.DataFrame(data={'truth': yTest, 'regression': predRegression, 'knn': predKNN})
plt.figure(figsize=(16, 14))
plt.subplot(3, 3, 1)

sns.heatmap(sklearn.metrics.confusion_matrix(yTest, predRegression), annot=True).set(title='Logistic Regression')
plt.subplot(3, 3, 2)

 $sns.heatmap(sklearn.metrics.confusion_matrix(yTest, predKNN), annot=True).set(title='KNN') \\ plt.subplot(3, 3, 3)$

 $print("Logistic Regression: \n'n", sklearn.metrics.classification_report(yTest, predRegression))$

Logistic Regression:

	precision	recall	f1-score	support
0	0.97	0.79	0.87	324
1	0.81	0.97	0.89	310
accuracy			0.88	634
macro avg	0.89	0.88	0.88	634
weighted avg	0.89	0.88	0.88	634

print("KNN:\n\n", sklearn.metrics.classification_report(yTest, predKNN))

KNN:

	precision	recall	f1-score	support
0	0.76	0.67	0.71	324

1	0.69	0.78	0.73	310
accuracy			0.72	634
macro avg	0.73	0.72	0.72	634
weighted avg	0.73	0.72	0.72	634

predVals.head()

	truth	regression	knn
2599	0	0	0
487	1	1	1
2543	0	0	0
3098	0	0	0
1928	0	1	1

Colah naid products - Cancel contracts here