Q.4 Random Forest

Random Forest on Abalone dataset

Printing accuracy and best parameter for raw abalone dataset

Best Parameters: {'max_depth': 8, 'n_estimators': 153}

Mean Accuracy: 0.277958055181503

From the heat plot, we can see that the best mean accuracy is achieved with a maximum depth of 8 and 153 trees. from the above colorbar, we can see that if we go on increasing the max depth, which in turn would increase the number of trees which would result the model to overfit and the accuracy will drop. so to get the best parameters, we shall use the parameters that is best suited for the data.

Random Forest on Wine - raw dataset:

Printing accuracy and best parameter for raw wine dataset

Best Parameters: {'max_depth': 10, 'n_estimators': 93}

Mean Accuracy: 0.5163887013679161

From the heat plot, we can see that the best mean accuracy is achieved with a maximum depth of 10 and 93 trees.

Random Forest - Abalone PCA dataset

Best Parameters: {'max_depth': 6, 'n_estimators': 43}

Mean Accuracy: 0.26239606910580754
Random Forest - Wine PCA dataset

Best Parameters: {'max depth': 3, 'n estimators': 73}

Mean Accuracy: 0.4341899686149109
Random Forest - Abalone LDA dataset

Best Parameters: {'max_depth': 7, 'n_estimators': 73}

Mean Accuracy: 0.26933701974042346
Random Forest - Wine LDA dataset

Best Parameters: {'max depth': 6, 'n estimators': 73}

Mean Accuracy: 0.5422585420737845

Conclusion

PCA reduces the dimensionality of the data by creating new features that capture the most important variation in the data. This can help reduce overfitting and improve the generalization performance of the model. However, in this case, we see that the accuracy is lower than the raw data setting, which could indicate that some important information was lost during the PCA transformation.

LDA is a supervised dimensionality reduction technique that can be used to project the data onto a lower-dimensional space that maximizes class separation. This can help improve the accuracy of the model by reducing the amount of noise and irrelevant features in the data. In this case, we see that the accuracy is slightly higher than the raw data setting, indicating that LDA was able to capture important discriminative information for the classification task.