Discrete Logarithm (DL) Cryptography - CS 411 & CS 507

Erkay Savaş & Atıl Utku Ay

Faculty of Engineering and Natural Sciences
Sabanci University

November 20, 2023

Group

- An algebraic structure consisting of
 - a set together with one operation
 - A set of axioms should hold
 - closure, associativity, identity and invertibility.
- Example:
 - The set of integers $\ensuremath{\mathbb{Z}}$ which consists of the numbers
 - $-\ldots,-4,-3,-2,-1,0,1,2,3,4,\ldots$
 - Operation is addition, "+".
 - Prove that axioms hold
 - Set of numbers $\mathbb{Z}_p^* = \{1, 2, \dots, p-1\}$
 - Operation is the modular multiplication (with prime p)
- \bullet The number of elements in a finite group is the order of the group; e.g., $|\mathbb{Z}_p^*| = p-1$

Primitive (Roots) Elements

- Consider powers of $3 \mod 7$: $3^1 \equiv 3$, $3^2 \equiv 2$, $3^3 \equiv 6$, $3^4 \equiv 4$, $3^5 \equiv 5$, $3^6 \equiv 1$
- Powers of 3 generate all nonzero elements of the congruence class mod 7.
- Such elements are called <u>primitive elements</u> or multiplicative generators in the congruence class.
- If p is a prime, there are $\phi(p-1)$ primitive elements $\operatorname{mod} p$.
- Let g be a primitive element for the prime p. Then if n is an integer, then $g^n \equiv 1 \bmod p$ if and only if $n \equiv 0 \bmod p 1$.

Subgroup

- \bullet A subset $\mathbb H$ of a group $\mathbb G$ can form a subgroup under the same operation
- Lagrange Theorem: The order of a subgroup divides the order of the group
- \bullet Example: $\mathbb{Z}_p^* = \{1, 2, \dots, 10\}$, where $|\mathbb{Z}_{11}^*| = 10$
 - $\bullet \ \mathbb{H} = \{1, 3, 4, 5, 9\}$ is a subgroup of \mathbb{Z}_{11}^*

$\times \mod 11$	1	3	4	5	9
1	1	3	4	5	9
3	3	9	1	4	5
4	4	1	5	9	3
5	5	4	9	3	1
9	9	5	3	1	4

Cryptosystems Based on DL

- DL is the underlying hard problem for
 - Diffie-Hellman key exchange
 - DSA (Digital signature algorithm)
 - ElGamal encryption/digital signature algorithm
 - Elliptic curve cryptosystems
- DL is defined over finite groups

Discrete Logarithm Problem

 \bullet Let p be a prime and α and β be nonzero integers in \mathbb{Z}_p and suppose

$$\beta = \alpha^x \bmod p.$$

- The problem of finding x is called the discrete logarithm problem.
- We can denote it as

$$x = \log_{\alpha} \beta$$

- Often, α is a primitive root $\operatorname{mod} p$
- Reminder: \mathbb{Z}_p is a finite field $0, 1, \ldots, p-1$
- Reminder 2: \mathbb{Z}_p^* is a cyclic finite group $1, \ldots, p-1$

Example: Discrete log

- Example:
 - Let p=11, $\alpha=2$, and $\beta=9$.
 - By exhaustive search,

	i	0	1	2	3	4	5	6	7	8	9	10
ĺ	$oldsymbol{lpha}^i$	1	2	4	8	5	10	9	7	3	6	1

- $\log_2 9 \mod 10 = 6$.
- The discrete log behaves in many ways like the usual logarithm.
- For instance, if α is primitive root of $\operatorname{mod} p$, then $\log_{\alpha}(\beta_1\beta_2) \equiv \log_{\alpha}(\beta_1) + \log_{\alpha}(\beta_2) \ \operatorname{mod}(p-1)$

Computing Discrete log

- When p is small, it is easy to compute discrete logarithms by exhaustive search.
- ullet However, it is a hard problem to solve for primes p with more than 200 digits.
- It is as hard as the integer factorization problem.
- One-way function.
 - It is easy to compute modular exponentiation
 - But, it is hard to compute the inverse operation of the modular exponentiation, i.e. discrete log.

Computing Discrete Log

- α is usually a primitive root of mod p.
- $\alpha^{p-1} \equiv 1 \mod p$. This implies that $\alpha^{m_1} \equiv \alpha^{m_2} \mod p \Leftrightarrow ?$
- Assume that

$$\beta = \alpha^x \bmod p, \qquad 0 \le x \le p - 1$$

- It is difficult to find x.
- However, it is easy to find out if x is even or odd. $\alpha^{p-1} \equiv 1 \bmod p \to (\alpha^{(p-1)/2})^2 \equiv 1 \bmod p$ $\alpha^{(p-1)/2} \equiv \pm 1 \bmod p.$

Computing Discrete Log

ullet But, we know p-1 is the smallest integer which yields +1, thus

$$\alpha^{(p-1)/2} \equiv -1 \bmod p$$
. recall α is primitive

- Starting with $\beta = \alpha^x \mod p$, raise both sides to the (p-1)/2 power to obtain $\beta^{(p-1)/2} = \alpha^{x(p-1)/2} \mod p \equiv (-1)^x \mod p$.
- Therefore, if $\beta^{(p-1)/2} \equiv 1 \bmod p$, then x is even; otherwise x is odd.

Discrete Log Algorithms

- Shanks's algorithm (baby-step giant-step) :
 - DL in \mathbb{Z}_n^* : $(p)^{1/2}$ steps.
 - Minimum security requirement: $(p-1) > 2^{224}$
- Pohlig-Hellman algorithm:
 - $|\mathbb{Z}_p^*| = p_1 p_2 p_3 \dots p_j$
 - complexity: $O((p_j)^{1/2})$
 - Minimum security requirement: $(p-1) > 2^{224}$
- Index-calculus method:
 - Applies only to \mathbb{Z}_p and $GF(p^k)$
 - complexity:

$$O(e^{(1+O(1)\sqrt{\ln(p)\ln(\ln(p))})})$$

- Minimum security requirement in $\mathbb{Z}_p^*:(p-1)>2^{2048}$

Diffie-Hellman Key Exchange

- Proposed in 1976 by Diffie-Hellman
- Used in many protocols
- Can use DL problem on any finite group
- Protocol:
 - Setup phase:
 - lacktriangle Find a large prime p
 - ② Find a primitive element α in \mathbb{Z}_p^* or in a subgroup of \mathbb{Z}_p^* .

Diffie-Hellman Key Exchange

Alice

- Picks a random s_A $2 \le s_A < p-1$
- **2** Computes $p_A = \alpha^{s_A} \mod p$
- \odot Sends p_A to Bob
- Computes k_{BA} $k_{BA} = (p_B)^{s_A} \mod p$ $k_{BA} = (\alpha^{s_B})^{s_A} \mod p$

Bob

- **2** Computes $p_B = \alpha^{s_B} \mod p$
- \odot Sends p_B to Alice
- Computes k_{AB} $k_{AB} = (p_A)^{s_B} \mod p$ $k_{AB} = (\alpha^{s_A})^{s_B} \mod p$

Session key : $k = k_{BA} = k_{AB} = \alpha^{s_A s_B} \mod p$

Security of Diffie-Hellman

- What an adversary observes are
 - p, α , p_A , p_B
 - he needs to know either s_A or s_B
- Problem 1: given p, α , p_A find s_A
 - $-s_A = \log_{\alpha} p_A$
 - discrete logarithm problem
- Problem 2: given p, α , p_B find s_B
 - $s_B = \log_{\alpha} p_B$
 - discrete logarithm problem

Formalism

- "Computational Diffie-Hellman Problem"
 - p is prime and α is a generator in \mathbb{Z}_p^*
 - given $\alpha^x \mod p$ and $\alpha^y \mod p$
 - find $\alpha^{xy} \mod p$
- Decision Diffie-Hellman Problem
 - p is prime and α is a generator in \mathbb{Z}_p^*
 - given $\alpha^x \mod p$ and $\alpha^y \mod p$, distinguishing between
 - $\bullet \ (\alpha,\alpha^x,\alpha^y,\alpha^{xy}) \ \text{and} \ (\alpha,\alpha^x,\alpha^y,\alpha^z) \\$

The ElGamal PKC

- Based on the difficulty of discrete logarithm, invented by Taher ElGamal in 1985.
- ullet Alice wants to send a message m to Bob.
- Bob uses a large prime p and a primitive root α .
 - Assume m is an integer 0 < m < p.
- Bob also picks a secret integer b and computes $-\beta = \alpha^b \mod p$.
- $\{p, \alpha\}$ are public parameters
- $\{\beta\}$ is Bob's public key.
- {b} is his private key

The ElGamal PKC: Protocol

Alice

Bob

Chooses a secret integer k at random

Computes $r = \alpha^k \mod p$ Computes $t = \beta^k \times m \mod p$

Sends (r,t) to Bob.

Computes $t \times r^{-b} \mod p = m$

This works since

$$t \times r^{-b} \equiv \beta^k \times m \times (\alpha^k)^{-b} \equiv \alpha^{kb} \times m \times \alpha^{-kb}$$

Security of ElGamal PKC

- b must be kept secret.
- k is a random integer,
 - $-\beta^k$ is also a random nonzero integer mod p.
 - Therefore, $t = \beta^k \times m \bmod p$ is the message m multiplied by a random integer.
 - -t is also a random integer
- If Eve knows k,
 - she can calculate $t \times \beta^{-k} \mod p = m$.
 - k must be secret
- Knowing r does not help by itself.

Security of ElGamal PKC

- ullet A different random k must be used for each message m.
 - Assume Alice uses the same k for two different messages m_1 and m_2 ,
 - the corresponding ciphertexts are (r, t_1) and (r, t_2) .
 - If Eve finds out the plaintext m_1 (i.e., known plaintext attack), she can also determine m_2 as follows
 - $-t_1/m_1 \equiv \beta^k \equiv t_2/m_2 \mod p \rightarrow m_2 \equiv (t_2m_1)/t_1$

Efficient Implementation of ElGamal

- We have two primes
 - p: large (2048 bit); q: relatively smaller (224 bit)
 - q|(p-1)
- G_q : a subgroup of \mathbb{Z}_p^*
 - g is a generator of G_q .
- Example
 - -q=5, p=31
 - -g=2
 - $-2^0 \mod 31 = 1$, $2^1 \mod 31 = 2$,
 - $2^2 \mod 31 = 4$, $2^3 \mod 31 = 8$,
 - $2^4 \mod 31 = 16$, $2^5 \mod 31 = 1$
 - $G_5 = \{1, 2, 4, 8, 16\}$

Key Generation Algorithm

- $\bullet \ \ \text{Generate a random} \ q \ \text{such that} \ 2^{223} < q < 2^{224}$
- ② Choose a random integer k such that $2^{1823} \le k < 2^{1824}$
- $p \leftarrow kq + 1$
- ullet If p is not prime then go to Step 2
- $\textbf{ § Choose a random element } \alpha \in \mathbb{Z}_p^*$

Efficient Implementation of ElGamal

- Key generation
 - s: private key 1 < s < q 1
 - h: public key $h = g^s \mod p$
- Encryption
 - k random key 1 < k < q 1
 - $-r = g^k \bmod p$
 - $-t = h^k m \mod p$
 - -(r,t): ciphertext
- Decryption
 - $-tr^{-s} \bmod p$