PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-021437

(43) Date of publication of application: 21.01.2000

(51)Int.Cl.

H01M 10/04

H01M 2/04

H01M 2/36

H01M 6/02

(21)Application number: 10-184705 (71)Applicant: SANYO ELECTRIC CO

LTD

(22)Date of filing: 30.06.1998 (72)Inventor: HATANO YOSHIHIKO

YANAGAWA TOSHIRO

HOSOKAWA HIROSHI

MINAMINO HIROSHI

(54) MANUFACTURE OF SEALED BATTERY

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a sealed battery manufacturing method capable of preventing the generation of welding failure, while eliminating the electrolyte adhered before sealing an electrolyte pouring port or a coated oxide film.

SOLUTION: In this manufacturing method, a sealed body 10 is put in an opening part of an outer can, and the periphery thereof is welded to the outer can for seal, and inside of the electrolyte pouring port 11 is filled with the electrolyte. Thereafter, the inside of a stepped part 11a and the periphery 11b of the electrolyte pouring port 11 extended outward from the stepped part 11a is irradiated with a larger beam A so as to evaporate the electrolyte adhered by spattering at the time of pouring the electrolyte, and a irradiation layer 12 for reforming the coating material such as an oxide film coated by the electrolytic atmosphere to the material, which does not adversely affect welding, so as to eliminate the adhesion of the electrolyte. An electrolyte port plug 13 is inserted

into the electrolyte pouring port 11, and a flange part 13a of the electrolyte port plug 13 is fitted in the stepped part 11a, and the laser beam B is irradiated for scanning along a boundary between the flange part 13a and the electrolyte pouring port 11, and the electrolyte port plug 13 and the pouring port 11 are sealed by welding so as to form a welding part 14.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-21437 (P2000-21437A)

(43)公開日 平成12年1月21日(2000.1.21)

(51) Int.Cl.7	識別記号	ΡI		テーマコート*(参考)
H 0 1 M 10/04		H 0 1 M 10/04	Z	5H011
2/04		2/04	Α	5 H O 2 3
2/36	101	2/36	101A	5 H O 2 4
6/02		6/02	Z	5 H O 2 8

審査請求 未請求 請求項の数7 OL (全 7 頁)

(21)出願番号	特顧平 10-184705	(71)出顧人	000001889 三洋電機株式会社
(22)出籍日	平成10年6月30日(1998.6.30)		大阪府守口市京阪本通2丁目5番5号
~~	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(72)発明者	端野 吉彦
			大阪府守口市京阪本通2丁目5番5号 三
			洋電機株式会社内
		(72)発明者	柳川 俊郎
			大阪府守口市京阪本通2丁目5番5号 三 并電機株式会社内
		(74)代理人	
			弁理士 長谷 照一 (外2名)

最終頁に続く

(54) 【発明の名称】 密閉型電池の製造方法

(57)【要約】

【課題】 注液口を封止する前に付着した電解液あるいは被覆された酸化被膜を除去して溶接不良が生じない密 閉型電池の製造方法を提供する。

【解決手段】 外装缶の開口部に封口体10を載置してその周囲を外装缶に溶接して封口した後、注液口11内に電解液を注入する。その後、レーザビームAを注液口11の段部11a内および段部11aより外方に延出する周囲11bに照射して、電解液の注入時に飛散して付着した電解液を蒸発させて除去するとともに、電解液雰囲気により被覆された酸化被膜等の被覆材を溶接に悪影響を与えない物質に改質する照射層12を形成して除去する。ついで、液口栓13を注液口11に挿入して、液口栓13のフランジ部13aを段部11aに嵌合させた後、フランジ部13aと注液口11との境界部に沿ってレーザビームBを照射しながら走査することで、液口栓13と注液口11とを封止溶接して溶接部14を形成する。

1

【特許請求の範囲】

【請求項1】 金属製外装缶の開口に金属製封口体を載 置してこの封口体と前記外装缶との境界部をシーム溶接 して封缶する封口工程と、前記封口体あるいは前記外装 缶に設けられた注液□より電解液を注入する電解液注入 工程と、前記注液口に封止部材を挿入してこの封止部材 と前記注液口との境界部を溶接して封止する溶接工程と を備えた密閉型電池の製造方法であって、

前記溶接工程の前処理として前記注液口の溶接部および その近傍に付着する付着物あるいは前記注液口の溶接部 10 定する方法がある。 近傍に被覆された被覆物を除去する除去工程を備えるよ ろにしたことを特徴とする密閉型電池の製造方法。

【請求項2】 前記除去工程はエネルギービームを照射 する工程であることを特徴とする請求項1に記載の密閉 型電池の製造方法。

【請求項3】 前記エネルギービームはレーザビームで あることを特徴とする請求項2に記載の密閉型電池の製 造方法。

【請求項4】 前記金属製外装缶は有底角筒状の外装缶 であることを特徴とする請求項1から請求項3のいずれ 20 じ込められるという事態を生じる。 かに記載の密閉型電池の製造方法。

【請求項5】 前記注液口に段部を備え、断面形状がT 字状でフランジ部を備えた液口栓を前記注液口に挿入し て前記段部内に前記フランジ部を嵌合させた後、前記段 部と前記フランジ部との境界部を封止溶接するようにし たことを特徴とする請求項1から請求項4のいずれかに 記載の密閉型電池の製造方法。

【請求項6】 前記注液口にゴム栓を載置した後、前記 ゴム栓が収納される凹部を中央部に備えるとともにその 周囲にフランジ部を備えた液口蓋を被せた後、フランジ 30 部の周辺部と注液口の周囲とを封止溶接するようにした ことを特徴とする請求項1から請求項4のいずれかに記 載の密閉型電池の製造方法。

【請求項7】 前記注液口の下部に遮蔽部材を配設し、 レーザビームを注液口の近傍に照射しても、レーザビー ムが注液口内部に入射されることを防止するようにした ことを特徴とする請求項3から請求項6のいずれかに記 載の密閉型電池の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は注液口を溶接で封止 する工程を備えた密閉型電池の製造方法に係り、特に、 有底角筒状の金属製外装缶を用いた角形電池の製造方法 に関する。

[0002]

【従来の技術】一般的に、リチウム一次電池、リチウム 二次電池、ニッケルーカドミウム蓄電池、ニッケルー水 素蓄電池等の角形密閉型電池は、有底角筒状に成形した 金属製外装缶内に、セパレータを介して正極と負極を積 層した発電要素を収納した後、外装缶の開口に封口板を 50 電解液雰囲気によって注液口の溶接部およびその近傍に

溶接し、封口板に設けられた注液口より電解液を注入し

【0003】ところで、上述した注液口を封止する手段 としては、一般的には、溶接プロセスが利用されてお り、例えば、注液口に金属製の液口栓を挿入し、この液 口栓と注液口の周囲壁とを溶接する方法や、あるいは注 液□の上部にゴム製の液□栓を配置するとともに、この 液□栓を覆うように封止板を配置し、封止板と注液□の 周囲壁とを溶接して、ゴム製の液口栓を注液口に密閉固

た後、注液口を封止することにより作製される。

[0004]

【発明が解決しようとする課題】しかしながら、電解液 の注入工程において、図5 (a) に示すように、封口板 20 に設けられた注液口21の段部21a およびその周 囲には電解液22が付着したり、あるいは電解液の飛散 や電解液雰囲気による酸化被膜23等により被覆され る。このため、図5 (b) に示すように、この注液口2 1に金属製の液口栓24を挿入すると、付着した電解液 22および被覆された酸化被膜23が液口栓24内に閉

【0005】付着した電解液22および被覆された酸化 被膜23が液□栓24内に閉じ込められたまま、図5 (c) に示すように、レーザビーム25を照射して溶接 を行うと、図5 (d)に示すように、溶接溶融部26に 多くの気孔やピンホール27が形成され、溶接不良の原 因になるという問題を生じた。また、溶接溶融部26に 溶接不良が生じると、電池使用時に電解液が封口板の上 に溢れ出て、リークの発生の原因になるという問題も生 じる。

[0006]

【課題を解決するための手段およびその作用・効果】そ とで、本発明は上記問題点に鑑みてなされたものであ り、注液口を封止する前に付着した電解液あるいは被覆 された酸化被膜を除去して溶接不良が生じない密閉型電 池の製造方法を提供することにある。

【0007】このため、本発明の密閉型電池の製造方法 にあっては、溶接工程の前処理として注液口の溶接部お よびその近傍に付着する付着物あるいは注液口の溶接部 およびその近傍に被覆された被覆物を除去する除去工程 40 を備えるようにしている。溶接工程の前に注液口の溶接 部およびその近傍に付着する付着物あるいは注液口の溶 接部近傍に被覆された被覆物を除去する除去工程を備え るようにすると、付着した付着物あるいは被覆された被 覆物が液口栓内に閉じ込められることがないため、溶接 不良を生じることはない。

【0008】そして、除去工程においてエネルギービー ム、例えばレーザビームを照射するようにすると、注液 口の溶接部およびその近傍に付着した付着物は照射され たレーザエネルギーにより蒸発して飛散するとともに、

できた表面酸化皮膜(被覆物)はレーザエネルギーによ り除去されるため、溶接溶融部に気孔やピンホールが形 成されることが防止できるようになる。

【0009】また、金属製外装缶の開口部に金属製封口 体を載置してこの封口体と外装缶との境界部をシーム溶 接して封缶する場合は、一般的には有底角筒状の外装缶 を用いるので、金属製外装缶として有底角筒状の外装缶 を用いる場合に本発明を適用すると特に効果的である。 [0010]

【発明の実施の形態】以下に、本発明の密閉型電池の製 10 造方法をリチウムイオン電池に適用した場合の一実施形 態を図に基づいて説明する。なお、図1は外装缶に封口 体を取り付けた状態の外観を示す図である。図2は封口 体に設けられた注液口に液口栓を溶接する工程を示す断 面図である。図3は封口体に設けられた注液口にゴム栓 と液口蓋を載置した後に溶接する変形例の工程を示す断 面図である。図4は液口栓および注液口の変形例を示す 断面図である。

【0011】a. 電極体の作製

天然黒鉛よりなる負極活物質とポリビニリデンフルオラ 20 イト(PVDF)よりなる結着剤等とを、N-メチルビ ロリドンからなる有機溶剤等に溶解したものを混合し て、スラリーあるいはペーストとする。これらのスラリ ーあるいはペーストを、スラリーの場合はダイコータ ー、ドクターブレード等を用いて、ペーストの場合はロ ーラコーティング法等により金属芯体(例えば、銅箔) の両面の全面にわたって均一に塗布して、活物質層を塗 布した負極板を形成する。この後、活物質層を塗布した 負極板を乾燥機中を通過させて、スラリーあるいはペー スト作製に必要であった有機溶剤を除去して乾燥させ る。この乾燥負極板をロールプレス機により圧延して負 極板とする。

【0012】一方、LiCoO」からなる正極活物質 と、アセチレンブラック、グラファイト等の炭素系導電 剤と、ポリビニリデンフルオライト (PVDF) よりな る結着剤等とを、N-メチルピロリドンからなる有機溶 剤等に溶解したものを混合して、スラリーあるいはベー ストとする。なお、スラリーあるいはペースト中にポリ エチレンオキシド、ポリアクリロニトリル、セルロース 等の添加剤を添加してもよい。これらのスラリーあるい 40 はペーストを、スラリーの場合はダイコーター、ドクタ ーブレード等を用いて、ペーストの場合はローラコーテ ィング法等により金属芯体(例えば、アルミニウム箔) の両面に均一に塗布して、活物質層を塗布した正極板を 形成する。との後、活物質層を塗布した正極板を乾燥機 中を通過させて、スラリーあるいはペースト作製に必要 であった有機溶剤を除去して乾燥させる。乾燥後、この 乾燥正極板をロールプレス機により圧延して正極板とす

とを、有機溶媒との反応性が低く、かつ安価なポリオレ フィン系樹脂からなる微多孔膜、好適にはポリエチレン 製微多孔膜を間にして重ね合わせ、図示しない巻き取り 機により卷回する。この後、最外周をテープ止めして渦 巻状電極体とした後、プレス機で角形外装缶に挿入でき るような形に成形して電極体とする。

【0014】b. リチウムイオン電池の作製 ついで、Al-Mn系合金板を深絞り加工により有底筒 状の角形外装缶(例えば、外形寸法が、高さ65mm、 幅34mm、厚み5. 9mm、肉厚0. 5mmのもの) 10 Aの開口部より、上述のようにして作製した電極体 を外装缶10A内に挿入する。なお、この外装缶10A は正極端子を兼ねている。

【0015】電極体を外装缶10A内に挿入した後、電 極体の上部に外装缶10A内に挿入した電極体が移動し ないように保持するスペーサを載置する。この後、外装 缶10Aに溶接された正極集電リード板と正極導電タブ とを溶接するとともに、後述する封口体10の端子孔に 取り付けられた負極端子10Bに固着された負極集電リ ード板と負極導電タブとを溶接する。 ついで、外装缶 1 0Aの開口部に、封口体10を載置した後、封口体10 と外装缶10Aとの境界部に沿ってレーザビームを照射 しながら走査することで、封口体10と外装缶10Aと をシーム溶接して外装缶10Aの開口部を封口する。 【0016】 ここで、封口体10は、外装缶10Aの開 □を封□するために設けるものであって、A 1 - Mn系 合金板を外装缶10Aの開口部の形状に合うように打ち 抜かれており、その中央部に負極端子10 Bを配設し、 負極端子10日の側部に注液口11を配設している。注 30 液口11には段部11aが形成されており、この段部1 1 a 内に後述する液□栓13のフランジ部13 a が嵌合

【0017】そして、外装缶10Aの開口部に封口体1 0を載置してその周囲を外装缶に溶接して封口した後、 注液口11内にエチレンカーボネート(EC)30重量 部とジエチルカーボネート(DEC)70重量部よりな る混合溶媒に電解質塩として1MLiPF。を添加した 電解液を注入する。

するようになる。

【0018】なお、電解液としては、有機溶媒に溶質と してリチウム塩を溶解したイオン伝導体であって、イオ ン伝導率が高く、正・負の各電極に対して化学的、電気 化学的に安定で、使用可能温度範囲が広くかつ安全性が 高く、安価なものを使用する。例えば、有機溶媒として は上記エチレンカーボネート(EC)とジエチルカーボ ネート(DEC)との混合溶媒以外に、プロピレンカー ボネート(PC)、スルフォラン(SL)、テトラハイ ドロフラン (THF)、アプチロラクトン (GBL)、 ジメチルカーボネート (DMC)、エチルメチルカーボ ネート(EMC)、1,2ジメトキシエタン(DME) 【0013】上述のようにして作製した負極板と正極板 50 等あるいはこれらの混合溶媒が好適である。また、溶質 としては電子吸引性の強いリチウム塩を使用し、上記し iPF。以外に例えば、LiBF。、LiClO。、Li AsF₆, LiCF, SO₃, Li (CF, SO₂), N, L i C, F, SO, 等が好適である。

【0019】電解液の注液後、図示しないレーザビーム 照射装置よりレーザビームAを注液口11の段部11a 内および段部11aより外方に延出する周囲11bに照 射して、電解液の注入時に飛散して付着した電解液を蒸 発させて除去するとともに、電解液雰囲気によりできた 表面酸化被膜(被覆物)を照射層12を形成して除去す 10 との境界部に沿ってレーザビームBを照射しながら走査 る。ここで、レーザビームAの照射条件は、例えば、バ ルス幅100ns、平均出力15W、パルス繰り返し数 10,000パルス/秒、レーザ照射径50μmのYA Gレーザではレーザ走査速度100mm/s以下で完全 に除去できる。

【0020】また、パルス幅1msのYAGレーザで は、パワー密度2~15W/cm²でよい。また、レー ザビームAはYAGレーザのみではなく、紫外光のエキ シマレーザを用いれば、例えば、エネルギー密度1.1 J/cm'で1パルス照射すればよい。

【0021】ついで、Al-Mn系合金製で断面形状が T字状でフランジ部13aを備えた液□栓13を注液□ 11に挿入して、フランジ部13aを段部11aに嵌合 させた後、液口栓13と注液口11との境界部に沿って レーザビームBを照射しながら走査することで、液口栓 13と注液口11とを封止溶接して溶接部14を形成す

【0022】上述のように、液口栓13と注液口11と の封止溶接工程の前工程として、レーザビームAを注液 □11の周囲に照射すると、レーザビームAが照射され 30 た照射領域12には溶接不良の原因となる残留物等がな くなるため、この照射領域12内にて封止溶接を行う と、溶接不良率は約0.1%以下に減少した。因みに、 従来例のように、レーザビームAを照射することなく液 口栓13と注液口11とを溶接した場合の溶接不良率は 約20~30%であったことからすると、レーザビーム Aを注液口11の周囲に照射することは極めて効果的で あることが分かる。

【0023】なお、レーザビームAを注液口11の段部 11a内のみに照射しても、段部11aに隣接する領域 40 に電解液が付着している場合、電池搬送時の振動等によ り電解液が再付着する可能性があるため、注液口110 段部llaの周囲に延出する部分llbまでレーザビー **ムAを照射するようにしている。これにより、注液口1** 1の段部11aの周辺に電解液が付着していても、封止 溶接部14までの距離が長くなるため、電解液が再付着 する可能性が極めて低くなる。

【0024】そして、レーザビームAが照射された照射 領域12には封止溶接で溶融する部分以外にもレーザビ ームAが照射された痕跡が残るため、この痕跡を目視等 50 照射された痕跡が残るため、この痕跡を目視等により確

により確認することにより、封止溶接の前処理が行われ た否か、あるいはその位置が正確であるか否かを容易に 確認することができるようになるため、前処理工程の管 理が容易になる。

【0025】変形例

上述した実施形態においては、注液口11に段部11a を設け、断面形状がT字状でフランジ部13aを備えた 液口栓13を注液口11に挿入して、フランジ部13a を段部11aに嵌合させた後、液口栓13と注液口11 することで、液口栓13と注液口11とを封止溶接して 溶接部14を形成する例について説明したが、注液口お よび液□栓に各種の変更を加えることが可能である。

【0026】図3は第1変形例の封口体に設けられた注 液□にゴム栓と液□蓋を載置した後に溶接する工程を示 す断面図である。本変形例の封口体10は、Al-Mn 系合金板を外装缶10Aの開口部の形状に合うように打 ち抜かれており、その中央部に図示しない負極端子を配 設し、この負極端子の側部に注液口15を配設してい 20 る。注液口15には上述した実施形態のように段部は設 けられていない。

【0027】そして、外装缶10Aの開口部に封口体1 0を載置してその周囲を外装缶に溶接して封口した後、 注液口15内に上述した実施形態と同様な電解液を注入 する。電解液の注液後、注液口15の周囲、即ち、後述 する液口蓋17のフランジ部17bが配設される部位よ り若干広い15a~15bまでの範囲に、図示しないレ ーザビーム照射装置よりレーザビームAを照射して、電 解液の注入時に飛散して付着した電解液を蒸発させて除 去するとともに、電解液雰囲気によりできた表面酸化被 膜(被覆物)を照射層16を形成して除去する。 とと で、レーザビームAの照射条件も上述した実施形態と同 様である。

【0028】ついで、注液口15の上部にゴム栓17a を載置した後、A1-Mn系合金製で中央部に凸部17 c (なお、この凸部17c内にゴム栓17aが収納され る)を備えるとともに、その周囲にフランジ部17bを 備えた液口蓋17を被せ、フランジ部17bの周辺部に 沿ってレーザビームを照射しながら走査することで、液 □蓋17を注液□15に封止溶接して溶接部18を形成 する。

【0029】 このように液口蓋17と注液口15との封 止溶接工程の前工程として、レーザビームAを注液口1 5の周囲に照射しても、レーザビームAが照射された照 射領域16には溶接不良の原因となる残留物等がなくな るため、この照射領域16内にて封止溶接を行うと、溶 接不良率は約0.1%以下に減少した。このように封止 溶接しても、レーザビームAが照射された照射領域16 には封止溶接で溶融する部分以外にもレーザビームAが 認することにより、封止溶接の前処理が行われた否か、 あるいはその位置が正確であるか否かを容易に確認する ことができるようになるため、前処理工程の管理が容易 になる。

【0030】図4(a)は上述した実施形態の第2変形 例を示す図である。本第2変形例の液口栓19はA1-Mn系合金を球形に形成しており、上述と同様に封止溶 接の前処理としての注液口の周囲にレーザビームA(図 示せず)を照射した後、球形の液□栓19を注液□に載 る。

【0031】図4(b)は上述した実施形態の第3変形 例を示す図である。本第3変形例においては、注液口の 下部に遮蔽部材10aを配設し、レーザビームA(図示 せず)を注液口の近傍に照射しても、レーザビームAが 注液口内部に入射されることを防止するようにしてい る。このように、レーザビームAが注液口内部に入射さ れることを防止するようにすると、発電要素が損傷する ことが防止できるようになる。そして、発電要素が損傷 することが防止できるようになることから、レーザビー 20 ある。 ムAの走査を正確に行う必要がなくなるので、レーザビ ームAを走査するための制御が容易になる。

【0032】上述したように、本発明においては、封止 溶接工程の前処理として注液口11,15の各溶接部お よびその近傍にレーザビームAを照射して、電解液の注 入時に飛散して付着した電解液を蒸発させて除去すると ともに、電解液雰囲気によりできた表面酸化被膜(被覆 物)を照射層12,16を形成して除去するようにして いるので、付着した電解液あるいは酸化被膜等の被覆材 が液口栓13あるいは液口蓋17内に閉じ込められるこ*30

*とがなくなって溶接不良を生じることはない。このた め、溶接溶融部14あるいは18に気孔やピンホールが 形成されることが防止できるようになる。

【0033】なお、上述した実施形態および変形例にお いては、封口体10に注液口11あるいは15を設ける 例について説明したが、注液口を外装缶に設けるように してもよい。また、上述した実施形態および変形例にお いては、注液口11と液口栓13あるいは注液口15と 液口蓋17とをレーザビームを照射して封止溶接する例 置した後、液口栓19を注液口に封止溶接するようにす 10 について説明したが、これらを抵抗溶接により封止溶接 するようにしてもよい。

【図面の簡単な説明】

【図1】 外装缶に封口体を取り付けた状態の外観を示 す図である。

【図2】 封口体に設けられた注液口に液口栓を溶接す る工程を示す断面図である。

【図3】 封口体に設けられた注液口に液口栓を溶接す る変形例の工程を示す断面図である。

【図4】 液口栓および注液口の変形例を示す断面図で

【図5】 従来例の封口体に設けられた注液口に液口栓 を溶接する工程を示す断面図である。

【符号の説明】

10A…外装缶(正極端子)、10…封口体、11…注 液口、11a…段部、12…照射層、13…液口栓、1 3 a …フランジ部、14…溶接部、15…注液口、16 …照射層、17…液口蓋、17a…ゴム栓、17b…フ ランジ部、17 c…凸部、18…溶接部、19…球形液 口栓、10a…遮蔽部材

[図4]

【図3】

【図1】

【図2】

【図5】

(b)

(c)

(d)

フロントページの続き

(72)発明者 細川 弘

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 南野 弘史

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

Fターム(参考) 5H011 AA17 CC06 DD13 FF02 HH03

HH08

5H023 AA03 BB00 BB03

5H024 AA01 AA12 BB03 BB14 CC02

DD01 DD03 FF11 FF15

5H028 AA01 AA07 BB00 BB01 BB02

BB03 BB05 EE01 EE06