BEST AVAILABLE COP

REC'D 3 0 SEP 2004

**WIPO** 

PCT

THE PATENTS ACT, 1970

It is hereby certified that annexed hereto is a true copy of Complete Specification filed on 05.08.2003 of the extract of Patent Application No. 638/CHE/2003 by M/s. MATRIX LABORATORIES LTD., an Indian Company, registered office at 1-1-151/1, IV Floor, Sairam Towers, Alexander Road, Secunderebad-500 003, Andhra pradesh, India.

....In witness thereof

I have hereunto set my hand

Dated this the 24th day of August, 2004 02<sup>nd</sup> day of Bhadrapada, 1926 (Saka)

(M.S.VENKATARAMAN)

ASSISTANT CONTROLLER OF PATENTS & DESIGNS

**FFICE BRANCH** GOVERNMENT OF INDIA Guna Complex, 6th Floor, Annex.II No.443, Anna Salai, Teynampet, Chennai - 600 018.

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

٤٧

#### FORM - 2

#### **THE PATENTS ACT, 1970**

(39 OF 1970)

#### **COMPLETE SPECIFICATION**

(See Section 10)

#### TITLE OF INVENTION

"A novel intermediate of Moxifloxacin therefor and production method of the intermediate"

 Matrix Laboratories Ltd, with its registered office at 1-1-151/1, IV Floor, Sairam Towers, Alexander Road, Secundrabad, 500003, India an Indian Company

The following specification particularly describes the nature of the invention and the manner in which it is to be performed.

#### Field of the Invention: -

The present invention relates to a novel intermediate, (4aS-Cis)-(1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O³,O⁴)bis (acyloxy-O)borate and the process for its preparation

#### Background of the Invention: -

(4aS-Cis)-(1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O³,O⁴)bis (acyloxy-O)borate is an useful intermediate for the preparation of Moxifloxacin Hydrochloride namely (4aS-Cis)-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid hydrochloride has the structure

Moxifloxacin Hydrochloride

Moxifloxacin is a fluoroquinolone broad spectrum antibacterial particularly against gram-positive bacteria significantly better than those of Sparfloxacin and Ciprofloxacin that was disclosed in European patent no's EP 350,733 and EP 550,903. Moxifloxacin has activity against gram-negative and Gram-positive organisms, including Streptococcus pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, particularly against the respiratory disease-causing pathogens like Mycoplasma pneumonia, Mycobacterium tuberculosis, Chlamydia pneumoniae and the activity shown to be unaffected by B-lactamases.

US Patent No 5,157,117 discloses (1-Cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O³,O⁴)bis (acyloxy-O)borate and a process for its preparation by reacting the ethyl 1-cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylate with Boric acid and acetic

anhydride in presence of zinc chloride and conversion to Gatifloxacin hydrochloride.

European Patent No's EP 350,733, EP 550,903 & EP 657,448 discloses preparation of Moxifloxacin by the condensation of 1-Cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-quinoline carboxylic acid or its esters with (S,S) 2,8-Diaza bicyclo[4.3.0]nonane in presence of a base, followed by conversion to hydrochloride.

It is a long felt of the industry to provide high yielding and cost effective process for the preparation of Moxifloxacin hydrochloride

#### Summary of the invention: -

The main object of the invention is to provide a process for the preparation of the novel intermediate (4aS-Cis)-1-cyclopropyl-7- (2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O³,O⁴)bis (acyloxy-O)borate.

Another object of the invention is to provide a novel intermediate (4aS-Cis)-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid- $O^3$ , $O^4$ )bis (acyloxy-O) borate for its use in the preparation for moxifloxacin hydrochloride .

Another object of the invention is to provide fingerprinting of the novel intermediate (4aS-Cis)-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O³,O⁴) bis (acyloxy-O) borate using NMR, IR and x-ray diffraction.

Yet, another object of the invention is to provide a process for the preparation of (1-Cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O³,O⁴)bis (acyloxy-O)borate without using the catalyst and its use for the preparation of (4aS-Cis)-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O³,O⁴)bis (acyloxy-O)borate.

Accordingly, the present invention relates to a method for the preparation of novel intermediate (4aS-Cis)-1-cyclopropyl-7-(2,8-diazabicyclo [4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O³,O⁴)bis (acyloxy-O)borate from the ethyl 1-cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylate. The reaction of ethyl 1-cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylate with boric acid and acetic anhydride without using any catalyst gives (1-Cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O³,O⁴)bis (acyloxy-O)borate which upon condensation in presence of a base(s) with (S,S)-2,8-diazabicyclo[4.3.0]nonane in organic polar solvent results the novel intermediate

(4aS-Cis)-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O<sup>3</sup>,O<sup>4</sup>)bis (acyloxy-O)borate.

The reaction scheme is given below:

#### Stage-I

Ethyl 1- cyclo propyl-6,7-difluoro-1,4-dihydro-8-methoxy-4-oxo-3-quinoline carboxylate.

(1- cyclo propyl-6,7- difluoro-1,4dihydro-8- methoxy-4-oxo-3quinoline carboxylic acid-O<sup>3</sup>,O<sup>4</sup>) Bis ( acetate-O)-borate (Borate complex)

OCOCH<sub>3</sub>

H<sub>3</sub>COCO

#### Stage-II

(1- cyclo propyl-6,7- difluoro-1,4- dihydro-8- methoxy-4-oxo -3-quinoline carboxylic acid-O³,O⁴)Bis ( acetate-O)-borate (Borate complex)

[S,S]-2,8-diazabicyclo-[4.3.0]nonane

(1- cyclo propyl-6, fluoro-7(2,8-Diazabicyclo-nonane) 1,4dihydro-8-methoxy-4-oxo-3 quinoline carboxylic acid-(O³,O⁴) bis (acetate-O)-borate

#### Brief description of the drawings: -

- Fig.1: X-ray diffraction pattern of the (4aS-Cis)-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O<sup>3</sup>,O<sup>4</sup>)bis (acyloxy-O) borate.
- Fig.2: FTIR spectrum of the (4aS-Cis)-1-cyclopropyl-7- (2,8-diazabicyclo [4.3.0] non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O<sup>3</sup>,O<sup>4</sup>)bis (acyloxy-O)borate.
- Fig.3: NMR spectrum of the (4aS-Cis)-1-cyclopropyl-7-(2,8-diazabicyclo [4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O<sup>3</sup>,O<sup>4</sup>)bis (acyloxy-O)borate.

#### Detailed descripion of the Invention: -

The process of the present invention comprises steps as:

- Reaction of Ethyl 1-Cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylate with a mixture of boric acid and acetic anhydride at temperature above 50°C without the use of catalyst
- Separation of (1-Cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O<sup>3</sup>,O<sup>4</sup>)bis (acyloxy-O)borate by cooling to low temperature followed by dilution with water
- Isolation and drying of the (1-Cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O<sup>3</sup>,O<sup>4</sup>)bis (acyloxy-O)borate
- Condensation of (1-Cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O<sup>3</sup>,O<sup>4</sup>)bis (acyloxy-O)borate with (S,S)-2,8-Diazabicyclo[4.3.0]nonane in presence of base(s) in organic polar solvent(s)
- Crystallization of (4aS-Cis)-1-Cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O<sup>3</sup>,O<sup>4</sup>)bis (acyloxy-O)borate
- Isolation and drying of (4aS-Cis)-1-Cyclopropyl-7-(2,8-diazabicyclo [4.3.0] non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O<sup>3</sup>,O<sup>4</sup>)bis (acyloxy-O)borate

The prepared 1-Cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O<sup>3</sup>,O<sup>4</sup>)bis (acyloxy-O)borate is a hydrate. The novel

intermediate (4aS-Cis)-1-Cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O<sup>3</sup>,O<sup>4</sup>)bis (acyloxy-O)borate is anhydrous. These compounds are characterized by chemical analysis, NMR, FTIR and XRD analysis data.

The starting materials Ethyl 1-cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylate and [S,S]-2,8-Diaza bicyclo[4.3.0]nonane are prepared by literature reported methods.

Acetic anhydride is heated to about 70°C, and boric acid is added in lots. The reaction mass is stirred for about 1hr to about 2 hrs at temperatures of about 70°C - about 125°C, preferably at about 110°C to - about 120°C, cooled to temperature of about 60°C - about 100°C, preferably to about 70°C. To this mixture, ethyl(1-cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylate is added, the temperature raised to about 90°C - about 120°C, preferably to about 100°C - about 110°C and mixed for about 1hr to about 5 hrs preferably for about 1 hr. The reaction mass is cooled to temperature below 35°C, preferably to about 0°C - about 20°C, preferably to about 0°C followed by addition of cold water and then mixed for about 1 to about 4 hrs. The product formed is separated by conventional means, washed with water and dried to obtain 1-Cyclopropyl-6, 7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline corboxylic acid-0³,0⁴)bis (acyloxy-0)borate.

(1-Cyclopropyl-6, 7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O³,O⁴)bis (acyloxy-O)borate is suspended in organic polar solvents preferably DMSO, DMF, acetonitrile, ethanol and mixed with [S,S]-2,8-diaza bicyclo[4.3.0]nonane in presence of organic, inorganic base(s) preferably triethyl amine, DBU, diisopropyl ethyl amine, potassium carbonate at temperatures about 20°C - about 120°C, preferably at about 60°C - about 80°C for about 1 hr to 6 hrs. After the completion of reaction the reaction mass is cooled and the novel intermediate (4aS-Cis)-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O³,O⁴)bis (acyloxy-O)borate is separated by removal of solvent under vacuum below 60°C preferably at about 40°C - 45°C followed by addition of the hydrocarbons preferably hexane, heptane, cyclohexane, methyl cyclohexane and mixed for about 2 hrs the product is filtered and dried.

The invention is now illustrated with a few non-limiting examples.

#### **EXAMPLE - I**

#### Stage-1

Acetic anhydride (175 gms) is heated to  $70^{\circ}$ C and boric acid (30 gms) is slowly added lot wise in a temperature range of about  $70^{\circ}$ C to about  $90^{\circ}$ C. The temperature is then raised, maintained under reflux for 1 hr followed by cooling to about  $70^{\circ}$ C. Ethyl 1-cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylate (100 gms) is added under stirring. The temperature is then raised and maintained for 1 hr in the range of about  $100^{\circ}$ C to  $105^{\circ}$ C. The reaction mass is cooled to  $0^{\circ}$ C, chilled water (400 ml) is added slowly followed by cold water (600 ml) at temperature  $0^{\circ}$ C to  $5^{\circ}$ C and maintained for 2 hrs at about  $0^{\circ}$ C to about  $5^{\circ}$ C. The product which is a boron acetate complex is filtered, washed with water (500 ml) and dried at about  $50^{\circ}$ C to about  $60^{\circ}$ C under vacuum to constant weight.

The dry wt is 130.0 gms corresponding to yield of 95.2%

#### Stage - 2:

The boron acetate complex (130 gms) prepared in stage-1 is suspended in acetonitrile (650 ml), and [S,S]-2,8-Diazabicyclo[4.3.0]nonane (47 gms) and triethyl amine (72.9 gms) are added. The temperature is raised to reflux and maintained for 1 hr. at reflux, followed by cooling to about 40°C. The solvent is removed under vacuum at temperature below 40°C, and n-hexane (200 ml) is added. After maintaining the reaction mass for 1 hr at room temperature the product is isolated by filtration followed by washing of the wet cake with n-hexane. The product is dried at about 45°C to about 50°C to constant weight. Dry wt of the novel intermediate is 117.0 gms corresponding to yield of 71.5%.

Elemental analysis: C: 56.42%, H: 5.62%, N: 7.76% and calculated values for the intermediate formula is C<sub>25</sub>H<sub>29</sub>BFN<sub>3</sub>O<sub>8</sub> C: 56.6%, H: 5.47%, N: 7.92%

IR Spectrum (KBr, cm-<sup>1</sup>): 3415, 3332, 2936, 1718, 1630, 1573, 1526, 1445, 1273, 1042, 935, 860, 798, 682

<sup>1</sup>H NMR (200 MHz, CDCl<sub>3</sub>, ppm): 9.00 (1H), 7.82 (1H), 4.12 (4H), 3.57 (3H), 3.43 (4H), 3.07 (2H), 2.75 (2H), 2.4 (1H), 2.1 (6H), 1.84 (2H), 1.6 (1H), 1.31 (2H)

Mass Spectrum (M<sup>+</sup>): 530.3 [M<sup>+</sup>H], 470.2 [M<sup>+</sup> - CH<sub>3</sub>COOH], 428.2 [M<sup>+</sup>-(CH<sub>3</sub>CO)<sub>2</sub>O, 100%], 402.2, 388.2

#### Claims:

#### We claim

- 1. A process for the preparation of a novel intermediate (4aS-Cis)-1-Cyclopropyl-7-(2,8 diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O<sup>3</sup>,O<sup>4</sup>)bis (acyloxy-O)borate comprising:
  - Reaction of ethyl 1-cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylate with a mixture of boric acid and acetic anhydride at temperature above 50°C without the use of catalyst
  - Separation of (1-Cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O<sup>3</sup>,O<sup>4</sup>)bis (acyloxy-O)borate by cooling to low femperature followed by dilution with water
  - Isolation and drying of the (1-cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O<sup>3</sup>,O<sup>4</sup>)bis (acyloxy-O)borate
  - Condensation of (1-Cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline .carboxylic acid-O<sup>3</sup>,O<sup>4</sup>)bis (acyloxy-O)borate with (S,S)-2,8-Diazabicyclo[4.3.0]nonane in presence of base(s) in organic polar solvent(s)
  - Crystallizat of (4aS-Cis)-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O³,O⁴)bis (acyloxy-O)borate
  - Isolation and drying of (4aS-Cis)-1-cyclopropyl-7-(2,8-diazabicyclo [4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O<sup>3</sup>,O<sup>4</sup>)bis (acyloxy-O)borate
- 2. A process as claimed in claim 1, wherein the temperature for the reaction of ethyl 1-cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylate with the mixture of boric acid and acetic anhydride is in the range of about 90°C to about 120°C.
- 3. A process as claimed in claim 1, wherein the organic polar solvents are acetonitrile, DMSO, DMF...
- 4. A process as claimed in claims 1-3, wherein the base(s) used is organic or inorganic bases
- 5. A process as claimed in claims 1 & 4 wherein the organic base(s) is triethyl amine, di isopropyl ethylamine, DBU

- 6. A process as claimed in claims 1 & 5 wherein the inorganic base is potassium carbonate
- A process as claimed in claim 1, wherein the temperature for the condesation reaction is in the range of about 30<sup>o</sup>C to about 100<sup>o</sup>C, preferably from about 60<sup>o</sup>C to about 80<sup>o</sup>C
- 8. A process as claimed in claim 1, wherein the crystallization of (4aS-Cis)-1-Cyclopropyl-7-(2,8-diazabicyclo [4.3.0]non-8-yl)-6-fluoro-8-methoxy -4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O<sup>3</sup>,O<sup>4</sup>)bis (acyloxy-O)borate is carried out by removal of solvent and addition of a second solvent
- 9. A process as claimed in claims 1& 8 wherein the second solvent is selected from hydrocarbons of C-5 to C-7
- 10. A process as claimed in claims 1,8 & 9 wherein the hydrocarbon is alkyl, cycloalkyl or mixtures thereof
- 11. A process as claimed in claims 1,8,9 & 10 wherein the hydrocarbon is n-hexane, n-heptane, cyclohexane, methyl cyclohexane or mixtures thereof
- 12. A process as claimed in claim 1, wherein the intermediate (4aS-Cis)-1-Cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O<sup>3</sup>,O<sup>4</sup>)bis (acyloxy-O)borate is isolated or without isolation processed for the preparation of moxifloxacin or its salts or hydrates

13. The compound (4aS-Cis)-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O³,O⁴)bis(acyloxy-O)-borate

Applicant

Matrix Laboratories Ltd

MATRIX LABORATORIES LTD.

1-1-151/1, Sairam Towers. 4th Floor, Alexander Road, SECUNDERABAD-500 003. The present invention relates to a method for the preparation of novel intermediate (4aS-Cis)-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O³,O⁴)bis (acyloxy-O)borate by the reaction of ethyl 1-cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylate with boric acid and acetic anhydride without using any catalyst gives (1-Cyclopropyl-6,7-difluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O³,O⁴)bis (acyloxy-O)borate which upon condensation in presence of a base(s) with (S,S)-2,8-diazabicyclo[4.3.0]nonane in organic polar solvent results the novel intermediate (4aS-Cis)-1-cyclopropyl-7-(2,8-diazabicyclo[4.3.0]non-8-yl)-6-fluoro-8-methoxy-4-oxo-1,4-dihydro-3-quinoline carboxylic acid-O³,O⁴)bis (acyloxy-O)borate.

# DUPLICATE ES AUG 2003 6 3 8 / CHE

Matrix Laboratories Ltd



MAIRIX LABORATORIES LID. 1-1-151/1. Sairam Towers. 4th Floor, Alexander Road, SECUNDERABAD-500 003.

## E 5 AUG 2003

Matrix Laboratories Ltd



Applicant ( asayang Matrix Laboratories Ltd

4th Floor, Alexander Road, SECUNDERABAD-500 003. 1-1-151/1, Sairam Towers.

Matrix Laboratories Ltd

Applicant (Aalayaho Matrix Laboratories Ltd

IN FRIX LABORATORIES LFD. 1-1-151/1, Sairam Towers.

4th Floor, Alexander Road, SECUNDERABAD-500 003.

**2** 

### This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

#### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

| Defects in the images include but are not limited to the items checked: |  |
|-------------------------------------------------------------------------|--|
| ☐ BLACK BORDERS                                                         |  |
| $\square$ image cut off at top, bottom or sides                         |  |
| ☐ FADED TEXT OR DRAWING                                                 |  |
| ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING                                  |  |
| ☐ SKEWED/SLANTED IMAGES                                                 |  |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                                  |  |
| ☐ GRAY SCALE DOCUMENTS                                                  |  |
| ☐ LINES OR MARKS ON ORIGINAL DOCUMENT                                   |  |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY                 |  |
|                                                                         |  |

#### IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.