A Book of Abstract Algebra (2nd Edition)

Chapter 32, Problem 2EC Problem Show that $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$. Step-by-step solution Step 1 of 2 The objective is to show that $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$. Comment Step 2 of 2	·
Show that $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$. Step-by-step solution Step 1 of 2 The objective is to show that $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]=3$.	Show all steps: ON
Step-by-step solution	
Step 1 of 2 $\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}=3.$ Comment	
The objective is to show that $\left[\mathbb{Q}\left(\sqrt[3]{2}\right);\mathbb{Q}\right]=3$. Comment	
Comment	
Step 2 of 2	
Clearly, $\sqrt[3]{2}$ is the root of $x^3 - 2$.	
Also, x^3-2 is irreducible polynomial of lowest degree 3 over $\mathbb Q$ by Eisenstein $(p=2)$.	
Therefore $, \left[\mathbb{Q}\left(\sqrt[3]{2}\right):\mathbb{Q}\right] = \deg\left(x^3 - 2\right) = 3.$	
Comment	