3.3: Fourier Series for 2L-periodic functions

Consider now a function f(x) which has period 2L. It is straightforward to transform the problem of finding a Fourier series for f(x) on the interval -L < x < L into one on the interval $-\pi < x < \pi$.

It follows that its Fourier series is given by

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi}{L}x\right) + b_n \sin\left(\frac{n\pi}{L}x\right) \right], \qquad (3.6)$$

with coefficients a_0 , a_n , b_n

$$a_0 = \frac{1}{2L} \int_{-L}^{L} f(x) dx$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi}{L}x\right) dx, \quad n = 1, 2, \cdots$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi}{L}x\right) dx, \quad n = 1, 2, \cdots$$

Example 2: Find the Fourier series of the periodic function f(x)

$$f(x) = \begin{cases} 0 & \text{if } -2 < x < -1, \\ k & \text{if } -1 < x < 1, \quad p = 2L = 4, L = 2 \\ 0 & \text{if } 1 < x < 2, \end{cases}$$

Solution:

$$a_{0} = \frac{1}{2L} \int_{-L}^{L} f(x) dx$$

$$= \frac{1}{4} \int_{-2}^{2} f(x) dx$$

$$= \frac{1}{4} \left[\int_{-2}^{-1} 0 dx + \int_{-1}^{1} k dx + \int_{1}^{2} 0 dx \right]$$

$$= \frac{1}{4} [kx]_{-1}^{1}$$

$$= \frac{1}{4} 2k$$

$$= \frac{k}{2}$$

$$a_{n} = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx = \frac{1}{2} \int_{-2}^{2} f(x) \cos\left(\frac{n\pi x}{2}\right) dx$$

$$= \frac{1}{2} \left[\int_{-2}^{-1} 0 dx + \int_{-1}^{1} k \cos\left(\frac{n\pi x}{2}\right) dx + \int_{1}^{2} 0 dx \right]$$

$$= \frac{1}{2} \int_{-1}^{1} k \cos\left(\frac{n\pi}{2}x\right) dx = \frac{1}{2} \left[k \frac{\sin\left(\frac{n\pi x}{x}\right)}{\frac{n\pi}{2}} \right]_{-1}^{1}$$

$$= \frac{k}{n\pi} \left[\sin\left(\frac{n\pi}{2}\right) - \sin\left(\frac{-n\pi}{2}\right) \right]$$

$$= \frac{k}{n\pi} \left[\sin\left(\frac{n\pi}{2}\right) + \sin\left(\frac{n\pi}{2}\right) \right]$$

$$= \frac{2k}{n\pi} \sin\left(\frac{n\pi}{2}\right)$$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx = \frac{1}{2} \int_{-2}^{2} f(x) \sin\left(\frac{n\pi x}{2}\right) dx$$

$$= \frac{1}{2} \left[\int_{-2}^{-1} 0 dx + \int_{-1}^{1} k \sin\left(\frac{n\pi x}{2}\right) dx + \int_{1}^{2} 0 dx \right]$$

$$= \frac{1}{2} \int_{-1}^{1} k \sin\left(\frac{n\pi}{2}x\right) dx = \frac{1}{2} \left[k \frac{-\cos\left(\frac{n\pi x}{2}\right)}{\frac{n\pi}{2}} \right]_{-1}^{1}$$

$$= \frac{k}{n\pi} \left[-\cos\left(\frac{n\pi}{2}\right) + \cos\left(\frac{-n\pi}{2}\right) \right]$$

$$= \frac{k}{n\pi} \left[-\cos\left(\frac{n\pi}{2}\right) + \cos\left(\frac{n\pi}{2}\right) \right]$$

$$= 0$$

Hence the Fourier series of f(x) is

$$f(x) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi}{2}x\right) + b_n \sin\left(\frac{n\pi}{2}x\right) \right]$$
$$= \frac{k}{2} + \sum_{n=1}^{\infty} \left\{ \left[\frac{2k}{n\pi} \sin\left(\frac{n\pi}{2}\right) \right] \cos\left(\frac{n\pi}{2}x\right) \right\}$$

Even and odd 2L-periodic functions

As in (3.4) and (3.5), the Fourier series for an **odd** 2L-periodic function f(x) can be simplified as

$$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{L}x\right), \tag{3.7}$$

where

$$b_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi}{2}x\right) dx.$$

The Fourier series for an **even** 2L-periodic function f(x) can be simplified as

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{L}x\right), \qquad (3.8)$$

where

$$a_0 = \frac{1}{L} \int_0^L f(x) dx, \quad a_n = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi}{L}x\right) dx.$$

3.4: Half-range expansions

How to represent a function f(x) as in the following figure (0) by a Fourier series?

We could extend f(x) as an even function of period 2L as in figure (a), then its Fourier series will be

$$f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{L}x\right)$$

We could also extend f(x) as an odd function of period 2L as in figure (b), then its Fourier series will be

$$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{L}x\right)$$

Both extensions have period 2L. This motivates the name **half-range expansions**: f(x) is given only on half the range, that is, on half the interval of periodicity of length 2L. Let us illustrate this with an example.

Example 3: Find the two half-expansions of the function

$$f(x) = \begin{cases} \frac{2k}{L}x & \text{if } 0 < x < \frac{L}{2}, \\ \frac{2k}{L}(L-x) & \text{if } \frac{L}{2} < x < L. \end{cases}$$

Solution:

(a) Even periodic extension

$$a_{0} = \frac{1}{L} \int_{0}^{L} f(x) dx = \frac{1}{L} \left[\int_{0}^{L/2} \frac{2k}{L} x dx + \int_{L/2}^{L} \frac{2k}{L} (L - x) dx \right]$$

$$= \frac{2k}{L^{2}} \left(\int_{0}^{\frac{L}{2}} f(x) dx + \int_{\frac{L}{2}}^{L} (L - x) dx \right)$$

$$= \frac{2k}{L^{2}} \left(\left[\frac{x^{2}}{2} \right]_{0}^{\frac{L}{2}} + \left[Lx - \frac{x^{2}}{2} \right]_{\frac{L}{2}}^{L} \right)$$

$$= \frac{2k}{L^{2}} \left\{ \left[\frac{L^{2}}{8} \right] + \left[\left(L^{2} - \frac{L^{2}}{2} \right) - \left(\frac{L^{2}}{2} - \frac{L^{2}}{8} \right) \right] \right\} = \frac{k}{2}.$$

$$a_{n} = \frac{2}{L} \int_{0}^{L} f(x) \cos\left(\frac{n\pi}{L}x\right) dx$$

$$= \frac{2}{L} \left[\int_{0}^{\frac{L}{2}} \frac{2kx}{L} \cos\left(\frac{n\pi}{L}x\right) dx + \int_{\frac{L}{2}}^{L} \frac{2k(L-x)}{L} \cos\left(\frac{n\pi}{L}x\right) dx \right]$$

$$= \frac{4k}{L^{2}} \left[\int_{0}^{\frac{L}{2}} x \cos\left(\frac{n\pi}{L}x\right) dx + \int_{\frac{L}{2}}^{L} (L-x) \cos\left(\frac{n\pi}{L}x\right) dx \right]$$
(3.9)

For the first integral we obtain by integration by parts

$$\int_0^{\frac{L}{2}} x \cos\left(\frac{n\pi}{L}x\right) dx = \left[\frac{Lx}{n\pi} \sin\left(\frac{n\pi}{L}x\right)\right]_0^{L/2} - \frac{L}{n\pi} \int_0^{L/2} \sin\left(\frac{n\pi}{L}x\right) dx$$
$$= \frac{L^2}{2n\pi} \sin\frac{n\pi}{2} + \frac{L^2}{n^2\pi^2} \left(\cos\frac{n\pi}{2} - 1\right)$$

Similarly, for the second integral we obtain

$$\int_{\frac{L}{2}}^{L} (L - x) \cos\left(\frac{n\pi}{L}x\right) dx$$

$$= \left[\frac{L}{n\pi}(L - x) \sin\left(\frac{n\pi}{L}x\right)\right]_{L/2}^{L} + \frac{L}{n\pi} \int_{L/2}^{L} \sin\left(\frac{n\pi}{L}x\right) dx$$

$$= \left[0 - \frac{L}{n\pi} \left(L - \frac{L}{2}\right) \sin\frac{n\pi}{2}\right] - \frac{L^2}{n^2\pi^2} \left(\cos(n\pi) - \cos\frac{n\pi}{2}\right)$$

We insert these two results into the formula for a_n (3.9). The sine terms cancel and so does a factor L^2 . This gives

$$a_n = \frac{4k}{n^2\pi^2} \left[2\cos\frac{n\pi}{2} - \cos(n\pi) - 1 \right].$$

Thus

$$a_2 = -\frac{16k}{2^2\pi^2}, \ a_6 = -\frac{16k}{6^2\pi^2}, \ a_{10} = -\frac{16k}{10^2\pi^2}, \cdots$$

and $a_n = 0$ if $n \neq 2, 6, 10, 14, \cdots$. Hence the first half-range expansion of f(x) is

$$f(x) = \frac{k}{2} + \sum_{n=1}^{\infty} \left[\frac{4k}{n^2 \pi^2} \left(2 \cos \frac{n\pi}{2} - 1 - \cos(n\pi) \right) \cos \left(\frac{n\pi}{L} \right) x \right]$$
$$= \frac{k}{2} - \frac{16k}{\pi^2} \left[\frac{1}{2^2} \cos \left(\frac{2\pi}{L} x \right) + \frac{1}{6^2} \cos \left(\frac{6\pi}{L} x \right) + \cdots \right]$$

This Fourier cosine series represents the even periodic extension of the given function f(x) of period 2L.

(b) Odd periodic extension

$$b_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi}{2}x\right) dx$$

$$= \frac{2}{L} \left[\int_0^{\frac{L}{2}} \frac{2kx}{L} \sin\left(\frac{n\pi}{L}x\right) dx + \int_{\frac{L}{2}}^L \frac{2k(L-x)}{L} \sin\left(\frac{n\pi}{L}x\right) dx \right]$$

$$= \frac{4k}{L^2} \left[\int_0^{\frac{L}{2}} x \sin\left(\frac{n\pi}{L}x\right) dx + \int_{\frac{L}{2}}^L (L-x) \sin\left(\frac{n\pi}{L}x\right) dx \right]$$

$$= \frac{8k}{n^2\pi^2} \sin\frac{n\pi}{2}, \quad n = 1, 2, \dots.$$

Hence the other half-range periodic extension of f(x) is

$$f(x) = \sum_{n=1}^{\infty} \left[\frac{8k}{n^2 \pi^2} \sin \frac{n\pi}{2} \right] \sin \left(\frac{n\pi}{L} x \right)$$
$$= \frac{8k}{\pi^2} \left(\frac{1}{1^2} \sin \frac{\pi x}{L} - \frac{1}{3^2} \sin \frac{3\pi x}{L} + \frac{1}{5^2} \sin \frac{5\pi x}{L} - + \cdots \right)$$

3.5: Properties of Fourier series

A Fourier series is an infinite series used to represent function values and therefore we must ask the questions:

- 1. Is it convergent?
- 2. If so, to what does it converge?
- 3. Can we apply differentiation to represent f'(x)?
- 4. Can we apply integration to represent $\int f(x)dx$?

Example 4:

$$f(x) = \begin{cases} 0, & -\pi < x \le 0 \\ 1, & 0 < x \le \pi \end{cases}, f(x + 2\pi) = f(x)$$

The Fourier coefficients are

$$a_0 = 1, \ a_n = 0, \ b_n = \frac{1 - (-1)^n}{n\pi}, \ n = 1, 2, \cdots$$

The Fourier series is therefore

$$f(x) = \frac{1}{2} + \frac{2}{\pi}\sin x + \frac{2}{3\pi}\sin 3x + \frac{2}{5\pi}\sin 5x + \cdots$$

Define

$$S_1 = \frac{1}{2} + \frac{2}{\pi} \sin x$$

$$S_2 = S_1 + \frac{2}{3\pi} \sin 3x$$

$$S_3 = S_2 + \frac{2}{5\pi} \sin 5x \text{ etc}$$

We see from this example that as $n \to \infty$

- 1. At points where f(x) is continuous, say x=a, the sum of the Fourier series is f(a).
- 2. At points where f(x) is discontinuous, say x = b, the sum of the Fourier series is

$$\frac{1}{2}[f(b^+) + f(b^-)]$$

ie mid-way between the two values.

This result is Fourier's theorem.

A Fourier series can be used for integrating functions.

Theorem

If f(x) is piecewise continuous in -L < x < L and periodic with period 2L then the Fourier series can be integrated term by term.

The Fourier series for a smooth function f(x) may be differentiated term by term.

Theorem

The Fourier series for f'(x) can be obtained by differentiating the Fourier series for f(x)

ONLY

if f(x) is continuous for all x.