MATH3322 Matrix Computation Homework 6

Due date: 17 May, Monday

- 1. Let $A \in \mathbb{R}^{n \times n}$ be nonsingular and symmetric. We can generalize the inverse power iteration for finding r unit eigenvectors of A corresponding to the r smallest eigenvalues in magnitude. Write out the algorithm, and explain why it works.
- 2. To accelerate the convergence of QR algorithm, we can also consider a *shifted* version of QR algorithm

Choose
$$\boldsymbol{A}^{(0)} = (\boldsymbol{Q}^{(0)})^T \boldsymbol{A} \boldsymbol{Q}^{(0)}$$
 with orthogonal $\boldsymbol{Q}^{(0)} \in \mathbb{R}^{n \times n}$ for $k = 1, 2, \ldots$,
Choose a shift μ_k

Compute QR decompostion $\mathbf{A}^{(k-1)} - \mu_k \mathbf{I} = \mathbf{Q}^{(k)} \mathbf{R}^{(k)}$

$$\boldsymbol{A}^{(k)} = \boldsymbol{R}^{(k)} \boldsymbol{Q}^{(k)} + \mu_k \boldsymbol{I}$$

end

With a proper choice of μ_k , the above algorithm will converge super fast. Prove that $A^{(k)}$ is similar to A

3. Find the best rank-1 approximation in $\|\cdot\|_F$ of the matrix

$$\boldsymbol{A} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 2 & 0 \\ 0 & 1 \end{bmatrix}$$

by the following steps.

- (a) Compute eigenvalues λ_1, λ_2 with $\lambda_1 \geq \lambda_2$ and the corresponding eigenvectors $\boldsymbol{v}_1, \boldsymbol{v}_2$ of the matrix $\boldsymbol{A}^T \boldsymbol{A}$.
- (b) Define $\sigma_i = \sqrt{\lambda_i}$ for i = 1, 2. Compute u_i by $Av_i = \sigma_i u_i$ for i = 1, 2.
- (c) Compute $A_1 = \sigma_1 u_1 v_1^T$. This is the best rank-1 approximation to A in $\|\cdot\|_F$.
- 4. Let $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ be a full rank matrix with SVD $A = U\Sigma V^T$. Compute SVDs of the following matrices in terms of U, V, and Σ :
 - (a) $({\bf A}^T {\bf A})^{-1}$
 - (b) $(A^T A)^{-1} A^T$
 - (c) $A(A^TA)^{-1}$
 - (d) $\boldsymbol{A}(\boldsymbol{A}^T\boldsymbol{A})^{-1}\boldsymbol{A}^T$

5. Let $A \in \mathbb{R}^{m \times n}$ with $m \ge n$ be full rank and $A = U\Sigma V^T$ be its SVD. We use it to solve the least squares problem (called linear regression in statistics)

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_2^2. \tag{1}$$

- (a) Show that the solution of the least squares problem (1) is given by $x = V \Sigma^{-1} U^T b$. (Hint: You may use the normal equation $A^T A x = A^T b$.)
- (b) When \boldsymbol{A} is very close to rank-deficient, the solution of (1) is not stable. Instead, we solve the following $Ridge\ Regression$

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}\|_2^2 + \lambda \|\boldsymbol{x}\|_2^2, \tag{2}$$

where $\lambda > 0$ is a parameter. Use SVD of \boldsymbol{A} to give the solution to the ridge regression (2). (*Hint: Convert* (2) it to a least squares problem.)