Hands-on Machine Learning

Tutorial-1

Contents

- Working with real data
- Univariate linear regression
 - Get the data
 - Discover & visualize the data
 - Train a model
- Multivariate Linear Regression
- Linear Regression using Normal Equation
- Linear Regression using Gradient Descent

Working with real data

- Task: Build a model of housing price in California to predict the median housing price in any district
- Data: California census data

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households
0	-122.23	37.88	41.0	880.0	129.0	322.0	126.0
1	-122.22	37.86	21.0	7099.0	1106.0	2401.0	1138.0
2	-122.24	37.85	52.0	1467.0	190.0	496.0	177.0
3	-122.25	37.85	52.0	1274.0	235.0	558.0	219.0
4	-122.25	37.85	52.0	1627.0	280.0	565.0	259.0

median_income	median_house_value	ocean_proximity
8.3252	452600.0	NEAR BAY
8.3014	358500.0	NEAR BAY
7.2574	352100.0	NEAR BAY
5.6431	341300.0	NEAR BAY
3.8462	342200.0	NEAR BAY

Overall Pipeline

- Get the data
- Discover and visualize the data to gain insights
- Prepare the data for machine learning algorithms
- Select and train a model
- Fine tune your model

Look at the big picture

- Frame the problem
 - Supervised or unsupervised learning
 - Classification or regression
- Select a perforance measure: how much error the system makes in its prediction
- Check the assumptions :whether to get the actual price or just categories(cheap, medium, expensive)

RMSE (X, h) =
$$\sqrt{\frac{1}{m} \sum_{i=1}^{m} (h(\mathbf{x}^{(i)}) - y^{(i)})^2}$$

MAE
$$(X, h) = \frac{1}{m} \sum_{i=1}^{m} |h(x^{(i)}) - y^{(i)}|$$

Univariate Linear Regression

- Load the data with a single feature variable and a predictor variable
- Create a test set
- Look at the data structure
- Visualize the data
- Look for correlations
- Data cleaning
- Train a regression model

Multivariate Linear Regression

- Load the data with a multiple feature variable and a predictor variable
- Create a test set
- Look at the data structure
- Visualize the data
- Look for correlations
- Data cleaning
- Train a regression model

Linear Regression using Normal Equation

MSE
$$(X, h_{\theta}) = \frac{1}{m} \sum_{i=1}^{m} (\theta^{T} \cdot \mathbf{x}^{(i)} - y^{(i)})^{2}$$

Normal Equation: $\theta = (X^T X)^{-1} X^T \vec{y}$

Linear regression using Gradient Descent

MSE
$$(X, h_{\theta}) = \frac{1}{m} \sum_{i=1}^{m} (\theta^{T} \cdot \mathbf{x}^{(i)} - y^{(i)})^{2}$$

$$\nabla_{\theta} \text{ MSE}(\theta) = \begin{pmatrix} \frac{\partial}{\partial \theta_{0}} \text{ MSE}(\theta) \\ \frac{\partial}{\partial \theta_{1}} \text{ MSE}(\theta) \\ \vdots \\ \frac{\partial}{\partial \theta_{n}} \text{ MSE}(\theta) \end{pmatrix} = \frac{2}{m} \mathbf{X}^{T} \cdot (\mathbf{X} \cdot \theta - \mathbf{y})$$

$$\theta^{(\text{next step})} = \theta - \eta \nabla_{\theta} \text{MSE}(\theta)$$

Installation

- Python, jupyter, matplotlib, numpy, pandas, scipy, sklearn
- Prefer Anaconda virtual environment and jupyter notebook to work, you can use other suitable installation as per your comfort.

Reference

- Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn and TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems"
- https://github.com/ageron/handson-ml
- https://github.com/harihari1989/LinearRegression
- http://www.ozzieliu.com/tutorials/Linear-Regression-Gradient-Descenting.
 html