Chapter-8 कोशिका: जीवन की इकाई

अभ्यास के अन्तर्गत दिए गए प्रश्नोत्तर

प्रश्न 1.

इनमें से कौन-सा सही नहीं है?

- (अ) कोशिका की खोज राबर्ट ब्राउन ने की थी।
- (ब) श्लीडेन व श्वान ने कोशिका सिद्धान्त प्रतिपादित किया था।
- (स) विरचोव के अन्सार कोशिका पूर्व स्थित कोशिका से बनती है।
- (द) एककोशिकीय जीव अपने जीवन के कार्य एक कोशिका के भीतर करते हैं।

उत्तर:

(अ) कोशिका की खोज राबर्ट ब्राउन ने की थी।

प्रश्न 2.

नई कोशिका का निर्माण होता है

- (अ) जीवाणु-किण्वन से।
- (ब) पुरानी कोशिकाओं के पुनरुत्पादन से
- (स) पूर्व स्थित कोशिकाओं से
- (द) अजैविक पदार्थीं से

उत्तर:

(स) पूर्व स्थित कोशिकाओं से।

प्रश्न 3.

निम्न के सही जोड़े बनाइए

- (अ) क्रिस्टी (i) पीठिका में चपटी कलामय थैली
- (ब) कुंडिका (ii) सूत्रकणिका में अन्तर्वलन
- (स) थाइलेकोइड (iii) गॉल्जी उपकरण में बिंब आकार की थैली

उत्तर:

- **(3T)** (ii)
- (**ৰ)** (iii)
- **(स)** (i)

प्रश्न 4.

इनमें से कौन-सा सही है?

- (अ) सभी जीव कोशिकाओं में केन्द्रक मिलता है।
- (ब) दोनों जन्तु व पादप कोशिकाओं में स्पष्ट कोशिका भित्ति होती है।
- (स) प्रोकैरियोटिक की झिल्ली में आवरित अंगक नहीं मिलते हैं।
- (द) कोशिका का निर्माण अजैविक पदार्थीं से नए सिरे से होता है।

उत्तर:

(स) प्रोकैरियोटिक की झिल्ली में आवरित अंगक नहीं मिलते हैं। प्रश्न 5.

प्रोकैरियोटिक कोशिका में क्या मीसोसोम होता है? इसके कार्य का वर्णन करो।

उत्तर:

प्रोकैरियोटिक कोशिका में विशिष्ट झिल्ली नामक एक संरचना मिलती है जो प्लाज्मा झिल्ली में वलनों से बनती है इसे मीसोसोम (mesosome) कहते हैं। इसका मुख्य कार्य श्वसन में सहायता करना है। प्रश्न 6.

कैसे उदासीन विलेय जीवद्रव्य झिल्ली से होकर गति करते हैं? क्या धुवीय अणु उसी प्रकार से इससे होकर गति करते हैं। यदि नहीं तो इनका जीवद्रव्य झिल्ली से होकर परिवहन कैसे होता है? उत्तर:

जीवद्रव्य झिल्ली का महत्त्वपूर्ण कार्य "इससे होकर अणुओं का परिवहन है।" यह झिल्ली वरणात्मक पारगम्य (selectively permeable) होती है। उदासीन विलेय अणु सामान्य या निष्क्रिय परिवहन द्वारा उच्च सान्द्रता से कम सान्त्रता की ओर साधारण विसरण द्वारा झिल्ली से आते-जाते रहते हैं। इसमें ऊर्जा व्यय नहीं होती। ध्रुवीय अणु सामान्य विसरण द्वारा इससे होकर आ-जा नहीं सकते, इन्हें परिवहन हेतु वाहक प्रोटीन्स की आवश्यकता होती है। इन्हें आयने कैरियर (ion carriers) भी कहते हैं। इनका परिवहन सामान्यतया सिक्रय विसरण द्वारा होता है। इसमें ऊर्जा व्यय होती है। ऊर्जा ATP से प्राप्त होती है। ऊर्जा व्यय करके आयन या अणुओं का परिवहन निम्न सान्द्रता से उच्च सान्द्रता की ओर भी हो जाता है।

प्रश्न 7.

दो कोशिकीय अंगकों के नाम बताइए जो द्विककला से घिरे होते हैं। इन दो अंगकों की क्या विशेषताएँ हैं? इनके कार्य लिखिए व रेखांकित चित्र बनाइए।

उत्तर:

माइटोकॉन्ड्रिया (mitochondria) तथा लवक (plastid) द्विकला (double membrane) से घिरे कोशिकांग (cell organelles) हैं। माइटोकॉन्ड्रिया की संरचना माइटोकॉन्ड्रिया को सर्वप्रथम कालीकर (Kallikar, 1880) ने देखा। आल्टमैन (1894) ने इन्हें बायोप्लास्ट कहा। बेण्डा (1897) ने इन्हें माइटोकॉन्ड्रिया कहा। माइटोकॉन्ड्रिया को कॉन्ड्रियोसोम भी कहते हैं। यह शलाका, गोल अथवा

कणिकारूपी होते हैं। इनकी लम्बाई 40µ तक तथा व्यास 3.5 µ तक होता है। प्रोकैरियोटिक कोशिकाओं में इनका अभाव होता है।

परासंरचना (Ultrastructure) :

यह दोहरी पर्त वाली संरचना है। बाहय पर्त चिकनी तथा अन्दर की पर्त में अंगुलियों के समान अन्तर्वलन मिलते हैं जिन्हें क्रिस्टी (cristae) कहते हैं। दोनों पर्यों के मध्य के स्थान को पेरीमाइटोकॉन्ड्रियल स्थान कहते हैं। माइटोकॉन्ड्रिया की गुहा में प्रोटीनयुक्त मैट्रिक्स मिलता है। क्रिस्टी की सतह पर छोटे-छोटे कण मिलते हैं जिन्हें F1 कण अथवा ऑक्सीसोम (oxysomes) कहते हैं। ऑक्सीसोम ऑक्सीकरणीय फॉस्फेटीकरण (श्वसन) की क्रिया में ATP निर्माण में भाग लेते हैं। माइटोकॉन्ड्रिया के क्रिस्टी पर इलेक्ट्रॉन अभिगमन होता है जिसके फलस्वरूप ATP बनते हैं। इसके मैट्रिक्स में D.N.A., राइबोसोम, जल.

लवण, क्रेब्स चक्र सम्बन्धी विकर आदि मिलते हैं।

चित्र-(A) माइटोकॉन्ड्रिया की इलेक्ट्रॉन सूक्ष्मदर्शीय संरचना, (B) अर्द्धाशों में आन्तरिक संरचना तथा (C) एक क्रिस्टी की अति सुक्ष्म संरचना।

रासायनिक संघटन

(Chemical Composition):

इनमें 65-70% प्रोटीन, 25% लिपिड, D.N.A., R.N.A. आदि मिलते हैं। अन्दर की कला में श्वसन तन्त्र शृंखला सम्बन्धी सभी साइटोक्रोम; जैसे—Cyt b, c, a, a 3, क्वीनोन, NAD, FAD, FMN आदि मिलते हैं।

माइटोकॉन्ड्रिया का कार्य

माइटोकॉन्ड्रिया के मैट्रिक्स में क्रेब्स चक्र तथा ऑक्सीसोम (F1 कण) पर श्वसन' श्रृंखला का इलेक्ट्रॉन अभिगमन तन्त्र सम्पन्न होता है, इससे मुक्त ऊर्जा ATP में संचित होती है। ATP समस्त जैविक क्रियाओं के लिए गतिज ऊर्जा प्रदान करता है। माइटोकॉन्ड्रिया को 'कोशिका का ऊर्जा गृह' (Power house of the cell) कहते हैं। माइटोकॉन्ड्रिया में स्वदिवग्णन की क्षमता होती है।

लवक की संरचना

लवक दोहरी झिल्ली से घिरे होते हैं। ये यूकैरियोटिक पादप कोशिकाओं में ही मिलते हैं। ये कवक में नहीं मिलते हैं। हीकेल (1865) ने इसकी खोज की तथा शिम्पर ने इसे प्लास्टिड (Plastid) नाम दिया। लवक तीन प्रकार के होते हैं ल्यूकोप्लास्ट; क्रोमोप्लास्ट तथा क्लोरोप्लास्ट।

1. ल्यूकोप्लास्ट (Leucoplast) :

ये संचयी लवक हैं। वर्णक न होने के कारण ये रंगहीन होते हैं। ये तीन प्रकार के एमाइलोप्लास्ट (मण्ड संचयी); इलियोप्लास्ट (वसा संचयी) तथा प्रोटीनोप्लास्ट (प्रोटीन संचयी) होते हैं।

2. क्रोमोप्लास्ट (Chromoplast) :

ये रंगीन लवक हैं। सामान्यतः फूलों की पंखुड़ियों, फल, रंगीन पत्तियों आदि में होते हैं। भूरे शैवालों में फियोप्लास्ट, लाल शैवालों में रोडोप्लास्ट तथा प्रकाश संश्लेषी जीवाणुओं में क्रोमैटोफोर आदि मिलते हैं।

3. क्लोरोप्लास्ट (Chloroplast) :

हरितलवक अथवा क्लोरोप्लास्ट की खोज शिम्पर (Schimper, 1864) ने की। इनमें क्लोरोफिल (पर्णहरित) मिलता है। ये लवक पौधे के हरे भागों में सामान्यतः पत्तियों में (मीसोफिल, खम्भ ऊतक, क्लोरेनकाइमा) मिलते हैं। ये विभिन्न आकार के होते हैं। हरे शैवाल सामान्यतः हरितलवकं के आकार से पहचाने जाते हैं। उच्च पादप में ये गोल, अण्डाकार, चपटे, दीर्घवृत्ताकार (elliptical) होते हैं। सामान्यतया इनकी लम्बाई 2-5µ तथा चौड़ाई 3-4µ होती है। कोशिका में इनकी संख्या 20-40 तक हो सकती है।

चित्र-क्लोरोप्लास्ट की संरचना।

4. हरितलवक की परासंरचना

(Ultrastructure of Chloroplast):

इनकी संरचना जिटल होती है। यह दो एकक कलाओं की झिल्ली से बना होता है। दोनों कलाओं के मध्य का स्थान पेरीप्लास्टीडियल स्थान कहलाता है। झिल्ली से घिरा रंगहीन मैट्रिक्स स्ट्रोमा (stroma) होता है। मैट्रिक्स में कलातन्त्र से बना ग्रैना (grana) होता है। ग्रैना में प्लेट जैसी रचना का समूह होता है, जो पटलिकाओं से जुड़ी रहती हैं, इन्हें लैमिली कहते हैं। ग्रेना की इकाई को थाइलेकॉइड कहते हैं। ये एक-दूसरे के ऊपर स्थित होते हैं। दो ग्रेना को जोड़ने वाली पटलिका को स्ट्रोमा लैमिली अथवा फ्रेट चैनल कहते हैं। थाइलेकॉइड पर 'क्वान्टासोम (quantasomes) पाए जाते हैं। प्रत्येक क्वान्टासोम पर लगभग 230 पर्णहरित अण् पाए जाते हैं। क्लोरोप्लास्ट का रासायनिक संघटन

5. (Chemical Composition of Chloroplast):

प्रत्येक क्लोरोप्लास्ट में 40-50% प्रोटीन, 23-25% फॉस्फोलिपिड; 3-10% पर्णहरित, 5% R.N.A., 0. 02 -0.01% D.N.A., 1-2% कैरोटीन, विभिन्न विकर, विटामिन तथा धातु; जैसे Mg,Fe, Cu, Mn, Zn आदि मिलते हैं।

चित्र-ग्रैना तथा स्ट्रोमा लैमिली की संरचना।

6. क्लोरोप्लास्ट के कार्य (Functions of

Chloroplast):

क्लोरोप्लास्ट का मुख्य कार्य प्रकाश संश्लेषण है। ग्रैना में प्रकाश संश्लेषण की प्रकाशीय क्रिया तथा स्ट्रोमा में अप्रकाशीय क्रिया होती है। प्रकाशीय क्रिया में जल के अपघटन से ऊर्जा निकलती है तथा अप्रकाशीय अभिक्रिया में CO2, का स्वांगीकरण होता है। भोजन बनाने का चित्र-ग्रेना तथा स्ट्रोमा लैमिली की संरचना। दायित्व होने के कारण इसे कोशिका की किचिन अथवा रसोई कहते हैं।

प्रोकैरियोटिक कोशिका की क्या विशेषताएँ हैं?

उत्तर:

प्रश्न 8.

प्रोकैरियोटिक कोशिका या असीमकेन्द्रकीय कोशिकाएँ ऐसी कोशिकाएँ, जिनमें सत्य केन्द्रक (केन्द्रक-कला सिहत) नहीं पाया जाता तथा केन्द्रक में पाए जाने वाले प्रोटीन एवं न्यूक्लीक अम्ल (D.N.A. तथा R.N.A.) केन्द्रक-कला के अभाव में कोशिकाद्रव्य (cytoplasm) के सम्पर्क में रहते हैं, प्रोकैरियोटिक कोशिकाएँ कहलाती हैं। इनमें एक ही घेरेदार क्रोमोसोम होता है, जिसमें हिस्टोन प्रोटीन नहीं होती। इनमें

राइबोसोम्स 70S प्रकार के होते हैं। इन कोशिकाओं में अनेक कोशिकांग; जैसे-केन्द्रिक, गॉल्जीकाय, माइटोकॉन्ड्रिया, अन्त:प्रद्रव्यी जालिका आदि; नहीं होते हैं। प्रोकैरियोटिक कोशिकाओं में सूत्री विभाजन के लिए घटकों का अभाव होता है। रचना की दृष्टि से इस प्रकार की कोशिकाएँ आदिम मानी गई हैं। जीवाणु कोशिका तथा नीली-हरी शैवालों की कोशिकाएँ प्रोकैरियोटिक कोशिकाओं के उदाहरण हैं।

चित्र-प्रोकैरियोटिक कोशिकाएँ-(A) नीली-हरी शैवाल, (B) जीवाणु कोशिका।

प्रश्न 9.

बहुकोशिकीय जीवों में श्रम विभाजन की व्याख्या कीजिए।

उत्तर:

एककोशिकीय जीवों में समस्त जैविक क्रियाएँ; जैसे—श्वसन, गित (प्रचलन), पोषण, उत्सर्जन, जनन आदि जीव कोशिका द्वारा ही सम्पन्न होती हैं। इनमें इन कार्यों को सम्पन्न करने हेतु सामान्यतया विशिष्ट अंगक नहीं होते। इनमें मान्य कोशिकाविभाजन द्वारा ही जनन प्रक्रिया हो जाती है। कुछ एककोशिकीय जीवों में लैंगिक जनन भी पाया जाता है। सरल बहुकोशिकीय जीवों में; जैसे—स्पंज में विभिन्न जैविक कार्य अलग-अलग प्रकार की कोशिकाओं द्वारा सम्पन्न होते हैं, लेकिन आवश्यकता पड़ने पर कोशिका अन्य कार्य भी सम्पन्न कर सकती है। इनमें कार्य विभाजन या श्रम विभाजन स्थायी नहीं होता। संघ सीलेन्ट्रेटा (Coelenterata) के सदस्यों में कोशिकाएँ विभिन्न जैविक कार्यों के लिए विशिष्टीकृत हो जाती हैं, वे अन्य कार्य सम्पन्न नहीं करतीं। इसे श्रम विभाजन कहते हैं। श्रम विभाजन की परिकल्पना सर्वप्रथम हेनरी मिलने एडवर्ड (H. M. Edward) ने प्रस्तुत की। विभिन्न कार्यों को सम्पन्न करने के लिए कोशिकाएँ उतक तथा उतक तन्त्र का निर्माण करती हैं। समान कार्य करने वाली कोशिकाओं में संरचनात्मक समानता पाई जाती है। इसका तात्पर्य यह है कि कोशिकाओं में कार्यिकी भिन्नन (physiological differentiation) के अनुरूप संरचनात्मक और औतिकीय भिन्नन (structural and histological differentiation) पाया जाता है।

प्रश्न 10.

कोशिका जीवन की मूल इकाई है। संक्षिप्त में वर्णन करें।

उत्तर:

कोशिका शरीर निर्माण की इकाई ही नहीं बल्कि जीवन की कार्यिक इकाई भी है। जीव की सभी क्रियाएँ

कोशिका में हो रहे कार्यों के समन्वय से होती हैं। नई कोशिका पूर्व स्थित कोशिका से बनती है। एक कोशिका से पूर्ण जीव का निर्माण सम्भव है। कोशिका की यह क्षमता टोटीपोटेंसी कहलाती है। प्रत्येक कोशिका में अनेको अंगक होते हैं जो कोशिका द्रव्य में रहते हैं। इनमें हो रहे कार्यों से ही जीव का जीवन चलता है।

प्रश्न 11.

केन्द्रक छिद्र क्या है? इनके कार्य बताइए।

उत्तर:

केन्द्रक छिद्र

केन्द्रक के चारों ओर 10 nm से 50 nm मोटी दोहरी केन्द्रक-कला (nuclear membrane) होती है। दोनों झिल्लियों (कलाओं) के मध्य स्थान को परिकेन्द्रकीय स्थान (perinuclear space) कहते हैं। यह लगभग 100-300 Åचौड़ी होती है। केन्द्रक कला पर अनेक सूक्ष्म छिद्र होते हैं। इन्हें केन्द्रक छिद्र (nuclear pores) कहते हैं। प्रत्येक का व्यास लगभग 400-1000 Å होता है। केन्द्रक-कला का सम्बन्ध कोशिकाद्रव्य में स्थित अन्त:प्रद्रयी जालिका (ER) से होता है।

कार्य :

केन्द्रक में निर्मित विभिन्न प्रकार के R.N.A. अणु विशेषकर m-R.N.A. केन्द्रक कला छिद्रों से होकर कोशिकाद्रव्य में पहुँचते हैं और प्रोटीन संश्लेषण में महत्त्वपूर्ण भूमिका निभाते हैं।

प्रश्न 12.

लयनकाय तथा रसधानी दोनों अन्तः झिल्लीमय संरचनाएँ हैं परन्तु कार्य की दृष्टि से ये अलग होते हैं। इस पर टिप्पणी लिखें।

उत्तर:

लयनकाय (lysosome) एकक कला युक्त थैली है जो गॉल्जी काय से बनती है। इसमें हाइड्रोलिटिक विकर होते हैं; जैसे-लाइपेज, ओप्टिएज आदि जो अम्लीय pH में सक्रिय होते हैं। ये विकर कार्बोहाइड्रेट, प्रोटीन, वसा, न्यूक्लिक अम्ल आदि का पाचन करते हैं। रसधान्ने (vacuole) कोशिकाद्रव्य में उपस्थित थैलीनुमा संरचना है जो एकक कला टोनोप्लास्ट से घिरी रहती है। इसमें जल, उत्सर्जी पदार्थ जो कोशिका के लिए आवश्यक नहीं हैं तथा कोशिका रस मिलता है। पौधों में ये कोशिका आयतन का 90 प्रतिशत घेर लेती है। पौधों में टोनोप्लास्ट आयन तथा अन्य पदार्थों का सान्द्रता विभव के विरुद्ध रसधानियों में आना सुनिश्चित रहता है। अतः रसधानी में सान्द्रता कोशिकाद्रव्य से अधिक रहती है। अमीबा में संकुचनशील रसधानी मिलती है जो उत्सर्जन का कार्य करती है। प्रोटिस्टा के सदस्यों में खाद्य वेक्युओल मिलते हैं जो खाद्य पदार्थों के निगलने के कारण बनते हैं।

प्रश्न 13.

रेखांकित चित्र की सहायता से निम्नलिखित की संरचना का वर्णन कीजिए

- (i) केन्द्रक
- (ii) तारककाय।

उत्तर:

(i) केन्द्रक

सामान्यतः कोशिका का सबसे बड़ा, स्पष्ट तथा महत्त्वपूर्ण कोशिकांग केन्द्रक है। सर्वप्रथम इसकी खोज रॉबर्ट ब्राउन (1831) ने की। यह एक सघन, गोल अथवा अण्डाकार संरचना है। एक कोशिका में इनकी संख्या सामान्यतः एक (एककेन्द्रकीय; uninucleate) होती है। कभी-कभी इनकी संख्या दो (द्विकेन्द्रकी, binucleate) अथवा अनेक (बहुकेन्द्रकी multinucleate) होती है। पादप कोशिका के परिपक्वन के साथ-साथ रिक्तिका के केन्द्र में स्थित होने से यह कोशिका इति (primordial utricle) में एक ओर आ जाता है।

1. संरचना (Structure) :

केन्द्रक के चारों ओर दोहरी केन्द्रक कला (nuclear membrane) मिलती है। यह कला एकक कला (unit membrane) के समान ही लिपोप्रोटीन की बनी होती है। दोनों कलाओं के मध्य परिकेन्द्रीय स्थान (perinuclear space) मिलता है। केन्द्रक कला सतत (continuous) नहीं होती है। इसमें बीच-बीच में छिद्र मिलते हैं। इन्हें केन्द्रकीय छिद्र (nuclear pore) कहते हैं। इनका व्यास लगभग 400 होता है। ये केन्द्रकद्रव्य तथा कोशिकाद्रव्य में सम्बन्ध बनाए रखते हैं। बाहय केन्द्रक कला का सम्बन्ध अन्तर्द्रव्यी जालिका से होता है। बाहरी केन्द्रक कला पर राइबोसोम चिपके रहते हैं (चित्र)।। केन्द्रक कला के अन्दर प्रोटीनयुक्त सघन तरल होता है, जिसे केन्द्रकद्रव्य (nucleoplasm) कहते हैं। केन्द्रकद्रव्य में प्रोटीन तथा फॉस्फोरस की मात्रा अधिक होती है। इसमें न्यूक्लियोप्रोटीन (nucleoprotein) मिलते हैं। केन्द्रकद्रव्य में केन्द्रिक (nucleolus) तथा क्रोमैटिन (chromatin) सूत्र मिलते हैं। केन्द्रिक सामान्यतः एक, परन्तु कभी-कभी अधिक भी हो सकते हैं। केन्द्रिक में r-R.N.A. संश्लेषण होता है, जो राइबोसोम के लिए आवश्यक है। केन्द्रिक कोशिका विभाजन के समय लुप्त हो जाते हैं।

2. क्रोमैटिन सूत्र (Chromatin threads) :

सामान्य अवस्था में जाल के रूप में रहते हैं। इसका कुछ भाग अभिरंजन में गहरा रंग लेता है जिसे हेटरोक्रोमैटिन कहते हैं तथा जो भाग हल्का रंग लेता है, उसे यूक्रोमैटिन (euchromatin) कहते हैं। कोशिका विभाजन के समय ये संघनित होकर गुणसूत्र बनाते हैं।

चित्र-(A) केन्द्रक की संरचना तथा (B) केन्द्रक कला।

केन्द्रक के कार्य

केन्द्रक के प्रमुख कार्य निम्नलिखित हैं

- 1. सम्पूर्ण कोशिका की संरचना, संगठन व कार्यों का नियन्त्रण तथा नियमन करना।
- 2. D.N.A. पर उपस्थित संदेश m-R.N.A. के रूप में कोशिकाद्रव्य में जाते हैं और वहाँ प्रोटीन के रूप में अनुवादित होते हैं।
- 3. प्रोटीन से विभिन्न विकर बनते हैं जो विभिन्न उपापचयी क्रियाओं का नियन्त्रण करते हैं।
- 4. कोशिका विभाजन का उत्तरदायित्व केन्द्रक पर होता है।
- आनुवंशिक पदार्थ D.N.A केन्द्रक में मिलता है। संतित में लक्षण इसी के द्वारा पहुँचते हैं।
- 6. नई संतित में जीन ही लक्षणों को पहुँचाते हैं तथा संगठित स्वरूप प्रदान करते हैं।

(ii) तारककाय

तारककाय प्रायः जन्तु कोशिकाओं में केन्द्रक के समीप पाया जाता है। कुछ शैवाल तथा कवक आदि की पादप कोशिकाओं में भी तारककाय पाया जाता है। तारककार्य में दो सेन्ट्रिओल (centriole) पाए जाते हैं। प्रत्येक सेन्ट्रिओल नौ जोड़े (nine sets) त्रिक तन्तुओं (triplets fibres) से बना होता है। प्रत्येक त्रिक तन्तु में तीन सूक्ष्म नलिकाएँ (microtubules) एक रेखा में स्थित होती हैं। ये त्रिक तन्तु एमॉरफस पदार्थ में धंसे रहते हैं। सेन्ट्रिओल के चारों ओर स्वच्छ कोशिकाद्रव्य का आवरण होता है, इसे सेन्ट्रोस्फीयर (centrosphere) कहते हैं। सेन्ट्रिओल तथा सेन्ट्रोस्फीयर मिलकर तारककाय

(centrosome) कहलाते हैं।

चित्र-सेन्ट्रोसोम (इलेक्ट्रॉन सृक्ष्मदर्शी में)।

तारककाय के कार्य

- 1. यह कोशिका विभाजन के समय त (spindle) का निर्माण करता है। तारककाय विभाजित होकर विपरीत धुवों का निर्माण करता है।
- 2. शुक्राणुओं के निर्माण के समय दोनों सेन्ट्रियोल में से एक शुक्राणु के अक्षीय तन्तु (axial filament) का निर्माण करता है।

प्रश्न 14.

गुणसूत्र बिन्दु क्या है? गुणसूत्र बिन्दु की स्थिति के आधार पर गुणसूत्र का वर्गीकरण किस रूप में होता है? अपने उत्तर को देने हेतु विभिन्न प्रकार के गुणसूत्रों पर गुणसूत्र बिन्दु की स्थिति को दर्शाने हेतु चित्र बनाइए।

उत्तर:

गुणसूत्र बिन्दु

प्रत्येक गुणस्त्र दो अर्द्धगुणस्त्र या क्रोमेटिड्स (chromatids) से बना होता है। क्रोमेटिड्स पर क्रोमोमीयर्स (chromomeres) स्थित होते हैं। गुणस्त्र के दोनों क्रोमेटिड्स गुणस्त्र बिन्दु या सेन्ट्रोमीयर (centromere) द्वारा परस्पर जुड़े होते हैं। गुणस्त्र बिन्दु की स्थिति के आधार पर गुणस्त्रे निम्नलिखित प्रकार के होते हैं

1. अन्तकेन्द्री (Telocentric) :

इसमें गुणसूत्र बिन्दु गुणसूत्र के एक ओर स्थित होता है।

2. अग्र बिन्दु (Acrocentric) :

इसमें गुणसूत्र का एक भाग बहुत छोटा तथा दूसरा भाग बहुत बड़ा होता है। इसमें गुणसूत्र बिन्दु एक सिरे के पास स्थित होता है।

3. उपमध्य केन्द्री (Submetacentric) :

इसमें गुणसूत्र बिन्दु एक किनारे के पास होता है। इसे गुणसूत्र की दोनों भुजाएँ असमान होती हैं।

4. मध्य केन्द्री (Metacentric) :

इसमें गुणसूत्र बिन्दु गुणसूत्र के बीचों-बीच स्थित होता है। इससे गुणसूत्र की दोनों भुजाएँ बराबर लम्बाई

की होती हैं। चित्र-सेन्ट्रोमीयर के आधार पर गुणसूत्रों के प्रकार। जब गुणसूत्र में गुणसूत्र बिन्दु (centromere) नहीं पाया जाता तो गुणसूत्र को एसेन्ट्रिक (acentric) कहते हैं और जब गुणसूत्र बिन्दु की संख्या दो या अधिक होती है तो इसे डाइसेन्ट्रिक (dicentric) या पॉलीसेन्ट्रिक (polycentric) कहते हैं। कुछ गुणसूत्रों में द्वितीयक संकीर्णन (secondary constriction) पाया जाता है। इस प्रकार के गुणसूत्र को सैट गुणसूत्र (sat-chromosome) कहते हैं।

परीक्षोपयोगी प्रश्नोत्तर

बहुविकल्पीय प्रश्न प्रश्न 1.

जीवन का भौतिक आधार है।

- (क) केन्द्रक
- (ख) लिंग गुणसूत्र

(ग) जीवद्रव्य
(되) DNA
उत्तर:
(ग) जीवद्रव्य
प्रश्न 2.
वह कोशिकांग जो रूपान्तरण में मदद करता है, है।
(क) केन्द्रक
(ख) हरितलवक
(ग) राइबोसोम्स
(ঘ) माइटोकॉण्ड्रिया
उत्तर:
(ग) राइबोसोम्स
प्रश्न 3.
राइबोसोम की दोनों सब-इकाइयों के जुड़ने में Mg ⁺⁺ सान्द्रता की आवश्यकता होती है।
(क) 0.001 M
(평) 0.0001 M
(ग) 0.01 M
(घ) 0.1 M
उत्तर:
(घ) 0.1 M
प्रश्न 4.
70 S राइबोसोम के कौन-से दो उपभाग है?
(क) 50 S और 20 S
(ख) 50 S और 30 S
(ग) 50 S और 40 S
(घ) 40 S और 30 S
उत्तर:
(ख) 50 S और 30 S
प्रश्न 5.
80 S राइबोसोम के कौन-से दो उपभाग होते हैं?
(क) 40 S और 40 S
(ख) 50 S और 30 S

- (ग) 60 S और 40 S
- (घ) 70 S और 30 S

उत्तर :

(ग) 60 S और 40 S

प्रश्न 6.

डाइमोर्फिक हरितलवक पत्तियों में पाये जाते हैं।

- (क) मटर में
- (ख) सूर्यमुखी में
- (ग) साइप्रस में
- (घ) चना में

उत्तर:

(ग) साइप्रस में

प्रश्न 7.

यूलोथिक्स में हरितलवक का आकार लेता है।

- (क) मेखला के आकार का
- (ख) कप के आकार का
- (ग) सर्पिलाकार का
- (घ) तारा के आकार का

उत्तर:

(क) मेखला के आकार का

प्रश्न 8.

एण्टीकोडोन्स पाये जाते हैं।

- **(क)** t-RNA में
- (ख) r-RNA में
- **(ग)** m-RNA में
- (घ) इनमें से सभी में

उत्तर :

(क) t-RNA में

प्रश्न 9.

डी॰एन॰ए॰ नहीं होता है।

- (क) क्लोरोप्लास्ट में
- (ख) माइटोकॉण्ड्रिया में

- (ग) न्यूक्लियस में
- (घ) परऑक्सीसोम्स में

उत्तर:

(घ) परऑक्सीसोम्स में

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.

प्रोकैरियोटिक कोशिकाओं के दो उदाहरण दीजिए।

उत्तर:

- 1. एश्केरिशिया कोलाई
- 2. आकबैक्टीरिया

प्रश्न 2.

प्रोकैरियोटिक कोशिका के केन्द्रक की क्या विशेषताएँ होती हैं?

उत्तर :

प्रोकैरियोटिक कोशिका में आरम्भी अवास्तविक केन्द्रक होता है जिसे न्यूक्लियाड कहते हैं। केन्द्रक,कला एवं केन्द्रिका भी अनुपस्थित होती हैं। DNA के धागों के साथ प्रोटीन नहीं जुड़ी होती है।

प्रश्न 3.

प्रोकैरियोटिक तथा यूकैरियोटिक कोशिकाओं के केन्द्रकों में क्या अन्तर होता है?

उत्तर:

प्रोकैरियोटिक कोशिका में विशिष्ट केन्द्रक अनुपस्थित होता है तथा उसके स्थान पर न्यूक्लियाईड या जीनोफोर उपस्थित होता है जबिक यूकैरियोटिक कोशिकाओं में केन्द्रक कला, क्रोमैटिन, केन्द्रक द्रव्य, केन्द्रक मैट्रिक्स व केन्द्रिक युक्त एक विशिष्ट केन्द्रक होता है।

प्रश्न 4.

एक यूकैरियोटिक पादप कोशिका में पाये जाने वाले दो अर्द्ध-स्वायत्त कोशिकांगों के नाम बताइए। या सुकेन्द्रकीय कोशिका में पाये जाने वाले दो अर्द्ध-स्वायत्त कोशिकांगों के नाम लिखिए।

उत्तर:

यूकैरियोटिक पादप कोशिका में पाये जाने वाले माइटोकॉण्डिया (mitochondria) तथा लवक (plastids) अर्द्ध-स्वायत्त कोशिकांग (semi-autonomous cell organelles) हैं।

प्रश्न 5.

तृतीयक कोशिकाभित्ति का पता लगाने वाले वैज्ञानिक का नाम लिखिए।

उत्तर :

साइरिल फिग।

प्रश्न 6.

एण्डोप्लाज्मिक रेटिक्लम के कार्य बताइए।

उत्तर:

- 1. प्रोटीन संश्लेषण के लिए स्थान प्रदान करना।
- 2. ग्लाइकोजन संश्लेषण तथा संचय करना।

प्रश्न 7.

हरितलवक के किस भाग में कार्बन स्वांगीकरण होता है?

उत्तर :

हरितलवक (chloroplast) के स्ट्रोमा (stroma) भाग में।

प्रश्न 8.

पर्णहरित के पाइरोल चक्र से सम्बन्धित तत्त्व का नाम लिखिए।

उत्तर :

Mg (मैग्नीशियम)।

प्रश्न 9.

पादप कोशिका के उस कोशिकांग का नाम लिखिए जो प्रकाश श्वसन के लिए उत्तरदायी है।

उत्तर:

परऑक्सीसोम (peroxisome)।

प्रश्न 10.

किसी एक पौधे का नाम बताइए जिसमें दविआकारिक हरितलवक होते हैं।

उत्तर :

मक्का (C4 पौधे) में द्विआकारिक हरितलवक पाये जाते हैं।

प्रश्न 11.

उस कोशिकांग का नाम बताइए जो प्रोटीन-संश्लेषण से सम्बन्धित है।

उत्तर:

राइबोसोम।

प्रश्न 12.

RNA में कौन-सी शर्करा पाई जाती है?

उत्तर:

RNA में राइबोस (ribose) शर्करा पाई जाती है।

प्रश्न 13.

न्यूक्लियोसोम अभिधारणा किस वैज्ञानिक ने दी?

उत्तर:

वुडकोक (1973) ने क्रोमेटिन की संरचना के अध्ययन के दौरान न्यूक्लियोसोम शब्द का प्रयोग किया, जबकि इसकी संरचना का वर्णन कॉर्नबर्ग (1974) द्वारा किया गया।

लघु उत्तरीय प्रश्न

प्रश्न 1.

निम्नलिखित में अन्तर स्पष्ट कीजिए

- (क) प्रोकैरियोटिक तथा यूकैरियोटिक कोशिका
- (ख) जन्तु कोशिका तथा वनस्पति कोशिका।
- (ग) डी॰एन॰ए॰ तथा आर॰एन॰ए॰

उत्तर:

(ক)

प्रोकैरियोटिक तथा यूकैरियोटिक कोशिकाओं के बीच अन्तर

प्रोकैरियोटिक कोशिका	यूकैरियोटिक कोशिका	
 इनका आकार 0.1-5.0μm होता है। 	 इनका आकार 5-100µm होता है। 	
 कोशिका भित्ति यदि उपस्थित होती है तो म्यूकोपेप्टाइड या पेप्टाइडोग्लाइकेन की बनी होती है। 	 कोशिका भित्ति यदि उपस्थित होती है तो सेतुलोस (cellu- lose) की बनी होती है। पेप्टाइडोग्लाइकेन अनुपस्थित होता है। 	
 एक विशिष्ट केन्द्रक अनुपस्थित होता है, इसके स्थान पर न्यूक्लियाइड या जीनोफोर (nucleoid or genophore) उपस्थित होता है। 	 यूकैरियोटिक कोशिका केन्द्रक कला (nuclear membrane), क्रोमेटिन (chromatin), केन्द्रक द्रव्य (nucleoplasm), केन्द्रक मैट्रिक्स (nuclear matrix) व केन्द्रिक (nucleolus) का बना एक विशिष्ट केन्द्रक (nucleus) रखती है। 	

- न्यूक्लियाइड या DNA स्वतन्त्र रूप से कोशिकाद्रव्य में > DNA केन्द्रक, माइटोकॉण्ड्रिया व लवकों के अन्दर पाया जाता है।
- DNA सामान्यतः वृत्ताकार (circular) होता है।
- DNA हिस्टोन प्रोटीन (histone protein) के बिना किसी संयुग्म वाला होता है।
- DNA की मात्रा कम होती है।
- कुछ कोशिकाओं में प्लाज्मिड (plasmid) पाये जाते हैं।
- कोशिका कला (plasma membrane) अन्तर्वलन (invagenation) मीसोसोम्स (mesosomes) नामक संरचनाएँ बनती हैं।
- कोशिका झिल्ली द्विगुणित उत्पादों को पृथक् करने में प्रयुक्त होती है।
- विभाजन के समय नहीं बनता है।
- कशामिका (flagellum) छोटी (4-5 μm ×12 μm) होती है।
- कशाभिका (flagellum) एक शृंखला वाली होती है।

- DNA सामान्यतः ऐखिक (linear) होता है, किन्तु वृत्ताकार (circular) DNA माइटोकॉण्ड्रिया व लवक्रें के अन्दर होता है।
- DNA हिस्टोन से जुड़ा होता है।
- DNA की मात्रा तुलनात्मक रूप से अधिक होती है।
- प्लाज्मिड (plasmid) प्रायः नहीं पाए जाते हैं।
- मीसोसोम (mesosome) सदृश संरचना सामान्यतः अनुपस्थित होती है।
- कोशिका झिल्ली द्विगुणित उत्पादों को पृथक् करने में प्रयुक्त नहीं होती है।
- •) तर्कु उपकरण (spindle apparatus) कोशिका | •) तर्कु उपकरण (spindle apparatus) कोशिका विभाजन के समय बनता है।
 - कशामिका (flagellum) बड़ी (150- 200 μm ×200 nm) होती है।
 - कशाभिका (flagellum) 11- शृंखलाओं की (9 + 2) होती है।

- जीवद्रव्य भ्रमण अनुपस्थित होता है।
- कोशिकाद्रव्य में विभिन्न कोशिकांग (organelles) अनुपस्थित होते हैं।
- श्वसन की क्रिया मीसोसोम्स (mesosomes) तथा अ श्वसन की क्रिया माइटोकॉण्ड्रिया तथा जीवद्रव्य में जीवद्रव्य में सम्पन्न होती है।
- 🌖 हरितलवक अनुपस्थित होता है परन्तु प्रकाश संश्लेषी 🦫 पादपों में प्रकाश संश्लेषण (photosynthesis) की तन्त्रु के रूप में आन्तरिक झिल्लियाँ पाई जाती हैं।
- सूत्री एवं अर्धसूत्री कोशिका विभाजन नहीं पाया जाता
- राइबोसोम्स (ribosomes) 70S प्रकार के पाये जाते | 凯
- 🔹 लैंगिक जनन (sexual reproduction) प्रायः 🕒 लैंगिक जनन (sexual reproduction) पूर्ण अनुपस्थित होता है परन्तु आनुवंशिक पुनर्योजन (genetic recombination) पाया जाता है।
- इसमें रोम (pili) या झालर (fimbrial) पाये जा > इसमें अनुपस्थित होते हैं। सकते हैं।

- कोशिकाद्रव्य प्रवाह या जीवद्रव्य भ्रमण (cytoplasmic movement or protoplasmic movement) सामान्यतः होता है।
- •) कोशिकाद्रव्य में विभिन्न कोशिकांग (organelles); गॉल्जीकाय, जैसे—माइटोकॉण्ड्रिया, अन्तः प्रद्रव्यी जालिका आदि उपस्थित होते हैं।
- सम्पन्न होती है।
- क्रिया हरितलवक नामक भाग में सम्पन्न होती है।
- कोशिका विभाजन (cell division) सूत्री (mitosis) तथा अर्द्धसूत्री (meiosis) प्रकार का पाया जाता है।
- राइबोसोम्स (ribosomes) 80S, 70S, 55S प्रकार के पाये जाते हैं।
- विकसित प्रकार का पाया जाता है।

(ख)

जन्तु तथा पादप (वनस्पति) कोशिकाओं के बीच अन्तर

जन्तु कोशिका	पादप कोशिका
 कोशिका भित्ति (cell wall) अनुपस्थित होती है। 	 पादप कोशिका दृढ़ कोशिका भित्ति (cell wall) द्वारा घिरी होती है।
 कोशिका भित्ति की अनुपस्थिति के कारण, जन्तु कोशिका का आकार निश्चित नहीं होता है। 	 आकार निश्चित होता है।
 एक ऊतक द्रव्य (tissue fluid) सामान्यतः कोशिकाओं को भिगोता है। 	 ऊतक द्रव्य (tissue fluid) पादपों में नहीं होता है।
 जीवद्रव्य पूरी कोशिका को भर देता है। 	 जीवद्रव्य सामान्यतः परिधीय होता है।
 रिक्तिकाएँ (vacuoles) या तो अनुपस्थित होती हैं या संख्या में कम तथा आकार में छोटी होती हैं। 	 पादप कोशिका में एक बड़ी केन्द्रीय रिक्तिका (central vacuole) होती है।
 केन्द्रक (nucleus) केन्द्र में होता है। 	• केन्द्रक (nucleus) परिधीय कोशिकाद्रव्य में होता है।
 क्रिस्टल अनुपस्थित होते हैं। 	 पादप कोशिकाओं में विभिन्न प्रकार के क्रिस्टल पाये जा सकते हैं।
 संचित भोजन ग्लाइकोजेन (glycogen) होता है। 	🔹 संचित भोजन मण्ड (starch) होता है।
🔹 लवक (plastids) अनुपस्थित होते हैं।	• लवक (plastids) पादप कोशिकाओं में होते हैं।
 गॉल्जी उपकरण सामान्यतः एकल संकर होता है। 	 गॉल्जी उपकरण कई पृथक् इकाइयों जिसे डिक्टियोसोम्स कहते हैं, का बना होता है।
 तारककाय (centrosome) उपस्थित होता है। 	 तारककाय (centrosome) कुछ निम्न श्रेणी के पादपों को छोड़कर सभी में अनुपस्थित होता है।
• ग्लाइऑक्सीसोम (glyoxysome) अनुपस्थित होता है।	 ग्लाइऑक्सीसोम (glyoxysome) कुछ पादप कोशिकाओं में पाया जाता है।
• लाइसोसोम्स (lysosomes) उपस्थित होते हैं।	 लाइसोसोम्स (lysosomes) प्रायः अनुपस्थित होते हैं। इनका कार्य दूसरे घटकों द्वारा ले लिया जाता है।
 जन्तु कोशिका अपने लिए आवश्यक कुछ अमीनो अम्ल, विटामिन व सह एन्जाइमों को बनाने में असमर्थ होती है। 	 पादप कोशिका अपने लिए आवश्यक सभी पदार्थों का संश्लेषण करने में समर्थ होती है।

🔹 कोशिकाद्रव्य विभाजन विदलन (cleavage) द्वारा 🔹 कोशिकाद्रव्य विभाजन सामान्यतः कोशिका प्लेट (cell

plate) विधि द्वारा होता है।

(ग)

होता है।

डी॰एन॰ए॰ तथा आर॰एन॰ए॰ के बीच अन्तर

डी॰एन॰ए॰ (DNA) आरं€एन०ए० (RNA) डीऑक्सीराइबोज (deoxyribose) शर्करा पाई जाती राइबोज (ribose) शर्करा पाई जाती है। ,थाइमीन (thymine) नाइट्रोजन बेस पाया जाता है। थाइमीन के स्थान पर यूरैसिल (uracil) नाइट्रोजन बेस पाया जाता है। अणु दो लम्बे, कुण्डलित तथा एक-दूसरे के पुरक सुत्रों अणु में केवल एक ही सुत्र (helix) होता है। (helices) का बना होता है। यह आनुवंशिक पदार्थ (genetic material) है और यह आनुवंशिक पदार्थ नहीं है (कुछ विषाणुओं को कोशिका में होने वाली सभी क्रियाओं पर छोड़कर) और प्रोटीन संश्लेषण में विशेष योगदान देता आर०एन०ए० के द्वारा नियन्त्रण करता है। यह मुख्य रूप से केन्द्रक के क्रोमैटिन सूत्रों। यह मुख्य रूप से केन्द्रक के केन्द्रकीय द्रव्य, केन्द्रिक (chromatin threads) में ही पाया जाता है। और कोशिकाद्रव्य में पाया जाता है। द्विगुणन (duplication or replication) के द्वारा द्विगुणन का गुण नहीं पाया जाता है। इसका निर्माण अपने समान नये अणु उत्पन्न करता है। डी०एन०ए० अणुओं के द्वारा लिप्यन्तरण (transcription) से होता है। प्रश्न

2.
एक ग्रेनम थायलेकॉयड की संरचना का नामांकित चित्र बनाइए।
उत्तर:

चित्र-थायलेकॉयड की संरचना

प्रश्न 3.

राइबोसोम की संरचना तथा कार्य का वर्णन कीजिए। या राइबोसोम पर संक्षिप्त टिप्पणी लिखिए। उत्तर :

राइबोसोम राइबोसोम कलाविहीन (non-membranous) तथा गोलाकार आकृति के सूक्ष्म कण होते हैं। ये कोशिका में अन्तःप्रद्रव्यी जालिका से चिपके हुए अथवा कोशिकाद्रव्य में स्वतन्त्र रूप में मिलते हैं। ये लगभग समान परिमाण के होते हैं तथा इनमें लगभग 60% राइबोन्यूक्लिक अम्ल (RNA) तथा 40% प्रोटीन्स होते हैं।

चित्र-राइबोस्रोम की सूक्ष्म संरचना— एक 70S राइबोसोम जिसमें दो इकाइयाँ दिखायी गयी हैं

राइबोसोम लगभग 100-150 Å व्यास के दो

प्रकार के होते हैं 70S तथा 80S, इनमें से 70s आकार के राइबोसोम छोटे होते हैं तथा ये जीवाणु कोशिका, माइटोकॉण्ड्या क्लोरोप्लास्ट तथा अन्य प्रोकैरियोटिक कोशिकाओं में तथा 80S राइबोसोम्स सभी यूकैरियोटिक कोशिकाओं में पाये जाते हैं। राइबोसोम्स की संरचना अत्यन्त जटिल होती है। इसकी दो इकाइयाँ होती हैं। एक इकाई छोटी और दूसरी बड़ी होती है। दोनों इकाइयाँ मिलकर एक गरारी की तरह की संरचना बनाती हैं। बड़ी इकाई गुम्बदाकार तथा छोटी इकाई टोपी की तरह होती है। कोशिकाद्रव्य में जब Mg⁺⁺ आयन का सान्द्रण कम हो जाता है तो दोनों इकाइयाँ अलग अलग हो जाती हैं, किन्तु इन आयनों की अधिकता होने पर दो राइबोसोम भी जुड़ जाते हैं। इन जुड़े हुए आकारों को डायमर (dimer) कहते हैं। राइबोसोम का निर्माण केन्द्रिक में होता है तथा वहाँ से केन्द्रक द्रव्य में होकर ये केन्द्रक कला के छिद्रों से निकलकर कोशिकाद्रव्य में आ जाते हैं।

राइबोसोम्स के कार्य

इबोसोम (ribosome), ऐसी विशिष्ट संरचनाएँ हैं जो प्रोटीन संश्लेषण (protein synthesis) के स्थल के रूप में कार्य करती हैं। इनकी संरचना में राइबोसोमल आर॰एन॰ए॰ (ribosomal RNA = r-RNA) होता है। यह अन्य आर॰एन॰ए॰ अणुओं (messenger RNA =m-RNA and transfer RNA= t-RNA) के साथ मिलकर प्रोटीन संश्लेषण की न्तिम कड़ी बनाते हैं। इसी पर विभिन्न एन्जाइम्स आदि की उपस्थिति में प्रोटीन का संश्लेषण होता है।

प्रोटीन के संश्लेषण के लिए कई राइबोसोम्स (ribosomes) मिलकर पॉलिराइबोसोम (polyribosome) श्रृंखला का निर्माण करते हैं जिनमें उपस्थित r-RNA अणु महत्त्वपूर्ण कार्य करते हैं। ये सन्देशवाहक आर॰एन॰ए॰ (messenger RNA = m-RNA के द्वारा) डी॰एन॰ए॰ से प्राप्त सन्देशों के अनुसार अन्तरण आर॰एन॰ए॰ अणुओं (transfer RNA = t-RNA) की सहायता से एक निश्चित तथा विशेष क्रम में अमीनो अम्लों को संगठित (organize) तथा श्रृंखलाबद्ध करते हैं। अपने-अपने कार्यों को सम्पादित करने के लिए विभिन्न RNA अणुओं पर विशेष प्रकार के कोड (code) तथा प्रतिकोड (anticode) स्थित होते हैं। इन्हीं के आधार पर श्रृंखला की विशेषता तथा निश्चित क्रम बना रहता है।

प्रश्न 4. 80 S तथा 70 s राइबोसोम्स में अन्तर बताइए।

उत्तर:

क्र० सं०	लक्षण	808		708	
1.	स्रोत (Source)	यूकैरियोटिक कोशिका		प्रोकैरियोटिक कोशिका	
2.	अवसादन गुणांक (Sedimentation coefficient)	80S		70S	
3.	उपइकाई (Sub-units)	बड़ी उपइकाई	छोटी उपइकाई	बड़ी उपइकाई	छोटी उपइकाई
4.	अवसादन गुणांक (Sedimentation coefficient)	60S	40S	50S	308
5.	RNA का अवसादन गुणांक	28S 5.8S 5S	18S	23S 5S	16S

प्रश्न 5. केन्द्रिका की अतिसूक्ष्म संरचना का नामांकित चित्र बनाइए।

गुणसूत्रों की आकृतिक संरचना तथा उनके कार्यों का उल्लेख चित्रों की सहायता से कीजिए। उत्तर :

कोशिका विभाजन की मध्यावस्था (metaphase) में प्रत्येक गुणसूत्र में लम्बे तथा पूरी लम्बाई में फैले अर्द्ध-गुणसूत्र या क्रोमैटिड (chromatids) पाये जाते हैं। दोनों अर्द्ध गुणसूत्र एक-दूसरे से एक स्थान पर जुड़े रहते हैं जिसे गुणसूत्र बिन्दु (centromere) कहते हैं। गुणसूत्र बिन्दु से गुणसूत्र दो भागों में विभाजित होता है उन्हें गुणसूत्र की भुजा (arm) कहते हैं। कुछ गुणसूत्र में एक लम्बी भुजा में द्वितीय संकीर्णन

(secondary constriction) भी मिलता है। द्वितीय संकीर्णन के बाद क्रोमोसोम का जो सबसे छोटा भाग होता है, उसे सैटेलाइट (satellite) कहते हैं। जिन गुणसूत्रों में सैटेलाइट मिलता है, उन्हें SAT chromosome कहते हैं।

चित्र-गुणसूत्र : (A) विभिन्न भाग, (B) यूक्रोमैटिन तथा हेटरोक्रोमैटिन की स्थिति

गुणसूत्र का वह भाग जो केन्द्रिक से जुड़ा

रहता है उसे केन्द्रिक संघटक (nucleolar organiser) कहते हैं। प्रत्येक गुणसूत्र परसूक्ष्म मोतीनुमा संरचनाएँ (beaded structure) होती हैं, उन्हें क्रोमोमियर्स (chromomeres) कहते हैं। कुछ वैज्ञानिकों के अनुसार ये ही जीन्स तथा जीन्स के समूह हैं जो आनुवंशिक लक्षणों को एक पीढ़ी से दूसरी पीढ़ी में स्थानान्तरित करते हैं।

प्रश्न 7.

क्रोमैटिन पर संक्षिप्त टिप्पणी लिखिए।

उत्तर:

क्रोमैटिन धागे सदृश रचना हैं जो एक-दूसरे के ऊपर फैलकर एक जाल-सदृश रचना बना लेते हैं। जिसे क्रोमैटिन जालिका (chromatin reticulum) कहते हैं, परन्तु यह वास्तविक जाल नहीं होता, क्योंकि प्रत्येक क्रोमैटिन धागे का सिरा अलग होता है। कोशिका विभाजन (cell division) के अवसर पर ये धागे एक-दूसरे से पृथक् हो जाते हैं और सिकुड़कर छोटे व मोटे हो जाते हैं। इन्हें गुणसूत्र (chromosomes) कहते हैं। केन्द्रक का सबसे महत्त्वपूर्ण भाग क्रोमैटिन है। रासायनिक दृष्टि से यह एक न्यूक्लिओप्रोटीन (nucleoprotein) है जो न्यूक्लिक अम्ल और क्षारीय प्रोटीन (base protein) के मिश्रण से बनता है। क्षारीय प्रोटीन विशेष रूप से हिस्टोन (histone) है जो क्षारीय अमीनो अम्ल से बना होता है।

हेटरोक्रोमैटिन तथा यूक्रोमैटिन में क्या अन्तर है?

उत्तर : हेटरोक्रोमैटिन तथा यूक्रोमैटिन में अन्तर

प्रश्न 8.

क्र०सं०	हेटरोक्रोमैटिन	युक्रोमैटिन
1.	 इसमें सक्रिय जीन की कमी होती है। 	 यह सक्रिय जीन रखने वाला साधारण गुणसूत्र
		होता है।
2.	 ट्रान्सक्रिप्शन अनुपस्थित होता है। 	 यह RNA के निर्माण या ट्रान्सक्रिप्शन में भाग
		लेता है।
3.	 ♦ हेटरोक्रोमैटिन मोटा होता है (100Å या 	🔷 यूक्रोमैटिन सँकरा होता है (10-30Å मोटा)।
	ज्यादा)।	
4.	 यह किणकांमय होता है। 	 यह तन्तुमय होता है।
5.	 ये गुणसूत्र का एक भाग दर्शाते हैं। 	 ये गुणसूत्र का बल्क (bulk) बनाते हैं।
6.	 यह गाढ़ा अभिरंजित होता है। 	 इन्टरफेज में हल्का अभिरंजित होता है।
7.	 यह संघिनत होता है। 	 ये विसरित दिखायी देते हैं।
8.	 हेटरोक्रोमैटिन न्यूक्लियोसोम शृंखला की 	 इसकी नाभिकीय शृंखलाएँ बहुत कम कुण्डलित
	सोलेनॉइड प्रकार की कुण्डलियों द्वारा बनते हैं।	होती हैं।
9.	 इसमें इन कारकों का बहुत कम प्रभाव पड़ता है। 	 ये pH, ताप, हॉर्मोन, विषैले पदार्थों आदि में
		परिवर्तन द्वारा प्रभावित होते हैं।
10.	 इसकी उपस्थिति द्वारा विनिमय घटता है। 	 यह सामान्य विनिमय दिखाता है।
11.	 ये S-प्रावस्था के अन्त की ओर देर से द्विगुणित 	 यूक्रोमैटिन कोशिका चक्र की पूर्व S-प्रावस्था में
	होते हैं जो G2 प्रावस्था से ऊपर होती है।	द्विगुणित होते हैं।
The same of the sa	211 C 11 O 2 11 1 1 1 1 1 1 1 1 1 1 1 1 1	

प्रश्न 9. स्थानान्तरण आर.एन.ए. (t-RNA) पर संक्षिप्त टिप्पणी लिखिए। उत्तर :

इसका अणुभार लगभग 25000 डाल्टन होता है। इसमें क्षारक का अनुपात A: U तथा G: C लगभग 1 होता है। यह लगभग 70-75 न्यूक्लिओटाइड की एक श्रृंखला है। इस श्रृंखला का 80% भाग द्विक कुण्डलीय (double helical) हो जाता है। इसके CS' सिरे पर G तथा C3' सिरे पर C-C-A क्षार मिलता है। AUGC के अतिरिक्त और भी क्षारक मिलते हैं, जैसे—5' राइबोसिले यूरेसिल अथवा स्यूडोयूरिडिन (5' ribosyl uracil or pseudouridine Ψ), डाइहाइड्रो यूरिडायलिक अम्ल (dihydro uridylic acid), 5-मिथाइल साइटोसीन (5-methyl cytosine) आदि। इस प्रकार के क्षारक कुल क्षारकों का 10-20% तक होते हैं। t-RNA की संरचना क्लोवर की पत्ती (clover leaf) के समान होती है। इसके चार भुजाएँ (arms), तीन लूप (loop) तथा एक लम्प (lump) होता है।

C3' भुजा को ग्राही भुजा (acceptor arm) कहते हैं। इस पर C-C-A अनुक्रम होता है। इस भुजा पर अमीनो अम्ल जुड़ता है तथा अमीनो एसाइल t-RNA बनता है। T\PC लूप या राइबोसोम बन्ध लूप (ribosomal binding site) में राइबोसोम से जुड़ता है। दूसरा लूप एन्टीकोडोन लूप होता है। इस पर तीन विशिष्ट क्षारक कोड बनते हैं जिससे m-RNA के कोडॉन की पहचान की जाती है। तीसरा लूप DHU लूप होता है। यह अमीनो अम्ल सिंथेटेस को बाँधता है। यह 8-12 क्षारकों का बना होता है। T\PCलूप तथा एन्टीकोडोन लूप के मध्य एक लम्प (lump) मिलता है। t-RNA के क्लोवर लीफ मॉडल को आर॰ होले (R. Holley) ने 1968 में यीस्ट (Yeast) के t-RNA विश्लेषण के समय प्रस्तुत किया। किम (Kim) तथा उनके साथियों ने 1973 में X-किरणों के विवर्तन से यीस्ट के फिनाइल एलानीन t-RNA का 'L' आकार का मॉडल प्रस्तुत किया। यह t-RNA की त्रिविम 'रचना भी कहलाती है।

दीर्घ उत्तरीय प्रश्न

प्रश्न 1.

- (क) पादप कोशिका की संरचना का, जैसा कि इलेक्ट्रॉन सूक्ष्मदर्शी में दिखाई देती है, एक स्वच्छ नामांकित चित्र बनाइए।
- (ख) दो कोशिकांगों के कार्यों का वर्णन कीजिए। या एक यूकैरियोटिक पादप कोशिका की इलेक्ट्रॉन सूक्ष्मदर्शीय संरचना का नामांकित चित्र खींचिए। या निम्नलिखित में से एक कोशिकांग की संरचना तथा कार्य का विस्तृत विवरण दीजिए
- (क) हरितलवक (chloroplast)।
- (ख) माइटोकॉण्डिया (mitochondria)।

या माइटोकॉण्ड्या की संरचना तथा कार्य का वर्णन कीजिए। या हरितलवक की संरचना का सचित्र वर्णन कीजिए। या पादप हरितलवक का एक इलेक्ट्रॉन सूक्ष्मदर्शीय नामांकित चित्र बनाइए। या पौधे के विभिन्न भागों को रंगयुक्त बनाने वाले लवकों का नाम लिखिए तथा उनकी अभिलक्षणिक विशेषताओं का भी उल्लेख कीजिए।

उत्तर:

पादप कोशिका

चित्र-एक प्रारूपिक पादप कोशिका, जैसी वह इलेक्ट्रॉन सूक्ष्मदर्शी में दिखाई देती है-रेखाचित्र (क)

हरितलवक

(अभ्यास के अन्तर्गत दिए गए प्रश्नोत्तर में प्रश्न 7 का उत्तर देखें।)

(ख)

माइटोकॉण्डिया

(अभ्यास के अन्तर्गत दिए गए प्रश्नोत्तर में प्रश्न 7 का उत्तर देखें।)

प्रश्न 2.

निम्नलिखित की संरचना तथा कार्य का वर्णन कीजिए।

- (क) केन्द्रक,
- (ख) प्लाज्मा झिल्ली।

या जीवद्रव्य कला से आप क्या समझते हैं? चित्र की सहायता से इसके कार्यों का उल्लेख कीजिए। उत्तर :

(क) केन्द्रक

अभ्यास के अन्तर्गत दिए गए प्रश्नोत्तर में प्रश्न 13 का उत्तर देखें।

(ख) प्लाज्मा झिल्ली या जीवद्रव्य कला

संरचना (Structure) :

प्लाज्मा झिल्ली या जीवद्रव्य कला (plasmalemma or plasma membrane) कोशिका में उपस्थित अन्य इकाई कलाओं के समान ही होती है। यह रासायनिक संरचना में प्रोटीन्स (proteins) तथा लिपिड्स (lipids) से मिलकर बनती है। इनमें प्रोटीन्स पात्रा में लगभग 60% तथा लिपिड्स लगभग 40% पाये जाते हैं। प्लाज्मा झिल्ली में मध्य में फॉस्फोलिपिड्स (phospholipids) अणुओं की दो पर्ते पाई जाती हैं जिनके दोनों ओर प्रोटीन अणुओं की एक-एक परत पाई जाती है। प्रत्येक प्रोटीन की परत की मोटाई (thickness) 20-25 A तथा दोनों स्तरों के मध्य की लिपिड परत की मोटाई 25-35 A होती है। स्पष्ट है, इकाई कला की संरचना त्रिस्तरीय (trilamellar) होती है तथा इसकी कुल मोटाई लगभग 75-100 मैं होती है। यह 75-100 \$ मोटाई की प्रोटीन-लिपिड-प्रोटीन (protein-lipid-protein = PLP-sandwich) संरचना रॉबर्टसन (Robertson, 1959) ने इकाई कला मत (unit membrane concept) के अन्तर्गत दी। दूसरे वैज्ञानिक जैसे बेन्सन (Benson, 1968) ने इकाई कला को प्रोटीन तथा लिपिड अणुओं के पुंजों के रूप में लगे हुए माना है तथा इन पुंजों (clusters) के बीच-बीच में अनेक चैनलों (channels) का प्रतिपादन किया है। कुछ वैज्ञानिकों जैसे फिनियन (Finean, 1961) के अनुसार इकाई कला के फॉस्फोलिपिड अणुओं के बीच-बीच कॉलेस्टेरॉल (Cholesterol) के अणु भी होते हैं। अध्ययन की अनेक नयी तकनीकों (techniques) के प्रयोग करने से जैव कलाओं (biomembranes) की संरचना के सम्बन्ध में नये-नये तथ्य प्रकट किये गये हैं। इस दिशा में कार्य करने वाले वैज्ञानिकों में कैवेनौ (Kavanau, 1965), बेन्सन (Benson, 1966), कॉर्न (Kom, 1966), लेहनिंगर (Lehninger, 1968), लिन (Lin, 1970) प्रमुख रहे। इन्होंने कई प्रकार के मॉडल दिये। वर्ष 1962 में बेल (Bell, 1962) ने इन कलाओं में कार्बाहाइड्रेट्स की उपस्थिति स्पष्ट की। कार्बाहाइड्रेट्स की मात्रा तथा स्वरूप कोशिका के कार्य आदि पर निर्भर करता है।

जैव कलाओं का तरल मोजेक मॉडल

सिंगर तथा निकोलसन (S.J. Singer and G. Nicholson, 1974) ने विशेष तकनीकों तथा रासायनिक विश्लेषणों के आधार पर जैव कलाओं की संरचना के लिए तरल मोजेक मॉडल प्रस्तुत किया है। इसके अनुसार, प्रोटीन की दो परतों का लिपिड की परत के बाहर होना ही आवश्यक नहीं, बल्कि प्रोटीन परत के अणु दो प्रकार के होते हैं

- 1. परिधीय या बाह्य (extrinsic or peripheral) तथा
- 2. समाकल (intrinsic or integral)।
 समाकल प्रोटीन के अणु लिपिड अणुओं में कुछ दूरी तक धंसे हुए अथवा आर-पार भी हो सकते हैं। इस
 विचारधारा में यह भी बताया गया है कि धंसी हुई समाकल प्रोटीन (intrinsic protein) सरलता सेअलग
 नहीं की जा सकती है जबिक बाह्य प्रोटीन परत को आसानी से अलग कर सकते हैं। इस प्रकार इस
 विचारधारा के अनुसार
 - लिपिड अणु (lipid molecules) तथा समाकल प्रोटीन (intrinsic protein) कलाओं में मोजेक
 व्यवस्था (mosaic arrangement) में होते हैं तथा ।
 - 2. जैव कलायें (biomembranes) अर्द्ध-तरल (quasi-fluid) होती हैं जिससे लिपिड तथा समाकल प्रोटीन-लिपिड के द्विअणु स्तर में गति कर सकते हैं।

प्लाज्मा झिल्ली के कार्य (Functions of plasmalemma) :

प्लाज्मा झिल्ली का प्रमुख कार्य पदार्थों का कोशिका की सतह पर आदान-प्रदान (विनिमय) करना है। यह एक जीवित कला होती है, अतः कोशिका की आवश्यकता तथा संरचना के अनुसार पदार्थों के चयन में विशेष रूप में महत्त्वपूर्ण है।

चित्र-जैव कलाओं की संरचना जैसी सिंगर तथा निकोलसन (Singer and Nicholson, 1974) ने तरल मोजेक मॉडल (fluid mosaic model) के रूप में प्रस्तुत की—रेखाचित्र प्रश्न 3.

डी॰एन॰ए॰ की संरचना एवं इसके महत्त्व का वर्णन कीजिए। या कोशिका में न्यूक्लिक अम्ल कहाँ पाये जाते हैं? डी॰एन॰ए॰ की संरचना को केवल नामांकित चित्रों की सहायता से समझाइए।

उत्तर:

कोशिका में न्यूक्लिक अम्ल अधिकतम मात्रा में केन्द्रक में होते हैं। इनमें DNA प्रमुखतः क्रोमैटिन (गुणसूत्रों) का भाग होता है जबिक RNA केन्द्रिक (न्यूक्लियोलस) में प्रमुखता से पाया जाता है। RNA सम्पूर्ण जीवद्रव्य में विभिन्न प्रकार की संरचनाओं के साथ अथवा स्वतन्त्र रूप में भी पाया जाता है। DNA माइटोकॉण्ड्रिया तथा क्लोरोप्लास्ट्स में भी कुछ मात्रा में मिलता है।

डी॰एन॰ए॰ = डीऑक्सीराइबो न्यूक्लिक अम्ल

एक डी॰एन॰ए॰ (डीऑक्सीराइबो न्यूक्लिक अम्ल) अणु में दो लम्बी शृंखलाओं के बने दो कुण्डल (helixes) होते हैं जो आधारभूत रूप में विशेष इकाइयों जिन्हें न्यूक्लियोटाइड्स (nucleotides) कहा जाता है, से बने होते हैं। इस प्रकार, एक अणु में सहस्रों से लेकर लाखों तक न्यूक्लियोटाइड्स अणु होते हैं। इस प्रकार DNA में दो पॉलिन्यूक्लियोटाइड (polynucleotide) शृंखलाएँ पाई जाती हैं। प्रत्येक शृंखला का प्रत्येक न्यूक्लियोटाइड अणु एक विशिष्ट तथा जटिल संरचना है। यह स्वयं तीन प्रकार के घटकों (components) से मिलकर बना होता है, जिनमें

1. एक पेण्टोज शर्करा (pentose sugar) डीऑक्सीराइबो (deoxyribo) प्रकार की होती है।

- 2. एक फॉस्फेट (phosphate) मूलक तथा ।
- 3. एक नाइट्रोजन क्षारक (nitrogen base) जो दो प्रकार के चार क्षारकों में से एक होता है। ये हैं (क) प्यूरीन (purine) प्रकार के, ऐडीनीन (adenine) व ग्वैनीन (guanine) तथा
- (ख) पिरीमिडीन (pyrimidine) प्रकार के साइटोसीन (cytosine) तथा थाइमीन (thymine) क्षारक। वाटसन एवं क्रिक का DNA मॉडल

वाटसन तथा क्रिक (Watson & Crick) को डी॰एन॰ए॰ की संरचना को समझाने तथा प्रतिरूप तैयार करने के लिए सन् 1962 में नोबेल पुरस्कार मिला था। यद्यपि उन्होंने यह, खोज 1953 ई॰ में कर ली थी। उनके अनुसार केवल चार प्रकार के नाइट्रोजन क्षारकों से चार ही प्रकार के न्यूक्लियोटाइइस अणुओं का निर्माण होता हैं। ये चारों प्रकार के न्यूक्लियोटाइड अणु विशिष्ट क्रमों में जुड़कर एक लम्बी पॉलिन्यूक्लियोटाइड शृंखला (polynucleotide chain) का निर्माण करते हैं। DNA में इस प्रकार की दो शृंखलाएँ पाई जाती हैं। प्रत्येक कुण्डल का स्तम्भ या सूत्र डीऑक्सीराइबो शर्करा तथा फॉस्फेट के द्वारा बना होता है जबिक सीढ़ी के पगदण्डों की तरह की रचना नाइट्रोजन क्षारकों के निश्चित युग्मों (pairs) के जुड़े होने से होती है। दो निकटतम युग्मों की दूरी 3.4A तथा एक कुण्डल जिसकी लम्बाई 34A होती है, में कुल 10 क्षारक युग्म होते हैं। इन युग्मों में प्यूरीन क्षारक ऐडीनीन (adenine) केवल पिरीमिडीन क्षारक थाइमीन (thymine) से तथा ग्वैनीन (guanine) प्रकार का प्यूरीन क्षारक केवल पिरामिडीन प्रकार के साइटोसीन (cytosine) क्षारक के साथ ही जुड़कर पगदण्ड को एक भाग बनाता है। इसमें अन्य किसी भी प्रकार का युग्म सम्भव नहीं है। इस प्रकार, यदि एक शृंखला में T-C-G-A-T-C-G- आदि हैं तो दूसरी शृंखला में T के सामने A, C के सामने G, G के सामने C तथा A के सामने T आदि ही होंगे। इस प्रकार।

पगदण्ड में न्यूक्लियोटाइड के क्षारक हाइड्रोजन बन्धों (bonds) के द्वारा जुड़े होते हैं। इसमें ऐडीनीन, थाइमीन के साथ दो तथा साइटोसीन, ग्वैनीन के साथ तीन बन्धों से बन्धनयुक्त होता है। क्षारकों का निश्चित क्रम डी॰एन॰ए॰ की रासायनिक शब्दावली बनाता है जिससे आनुवंशिक लक्षणों की स्थापना

होती है।

चित्र-डी॰एन॰ए॰ मॉडल। साथ में चित्र में अणु के विभिन्न अवयवों की व्यवस्था—S= पेण्टोज शर्करा, P= फॉस्फेट, A= ऐडीनीन, G= ग्वैनीन, T= थाइमीन, C= साइटोसीन डी॰एन॰ए॰ का महत्त्व

प्रत्यक्ष या अप्रत्यक्ष रूप से सम्पूर्ण कोशिका पर सभी प्रकार का नियन्त्रण डी॰एन॰ए॰ का ही होता है। इस प्रकार के कार्यों को यह आर॰एन॰ए॰ के द्वारा सम्पन्न करता है। यह एक आनुवंशिक पदार्थ है। अतः क्रोमैटिन के रूप में गुणसूत्रों में रहकर जीव के लक्षणों को संतति में ले जाने का कार्य करता है।