Marmara Üniversitesi

İstatistik Bölümü

Örnekleme Teorisi (3)

Doç. Dr. Atıf Evren

Sonlu Ana Kütleler İçin Örnek Ortalamasının Dağılımı

Teorem: Eğer X_1, X_2, \cdots, X_n N büyüklüğünde bir ana kütleden sırası ile çekilen birinci gözlem, ikinci gözlem;...; n. gözlem olsun. Bu durumda bu n rastlantı değişkeninin birleşik olasılık fonksiyonu

$$f(\chi_1, \dots, \chi_n) = \frac{1}{N(N-1)\cdots(N-n+1)}$$
, $f(\chi_r)$ marjinal olasılığı da

$$f_{X_r}(x_r) = \frac{1}{N}$$
 $x_r = c_1, c_2, \dots, c_N$ $r = 1, 2, \dots, n$

Burada sonlu $\{c_1, c_2, \cdots, c_N\}$ ana kütlenin beklenen değeri ve varyansı

$$\mu = \sum_{i=1}^{N} c_i \cdot \frac{1}{N}$$
 ve $\sigma^2 = \sum_{i=1}^{N} (c_i - \mu)^2 \cdot \frac{1}{N}$ şeklindedir.

Son olarak X_1, X_2, \dots, X_n değişkenleri içerisinden herhangi ikisinin birleşik marjinal olasılık fonksiyonu da sonlu ana kütlenin herhangi sıralı ikilisi için

$$f_{X_r,X_s}(X_r,X_s) = \frac{1}{N(N-1)}$$
 şeklindedir.

Teorem: X_r ve X_s sonlu $\{c_1, c_2, \dots, c_N\}$ and kütlesinden çekilen n

birimlik bir örneğin r. ve s. rastlantı değişkenleri olsun. Bu durumda

$$Cov(X_r, X_s) = -\frac{\sigma^2}{N-1}$$
 olur.

İspat: Kovaryansın tanım formülüne göre

$$Cov(X_r, X_s) = \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{1}{N(N-1)} (c_i - \mu) (c_j - \mu) \quad i \neq j$$

$$= \frac{1}{N(N-1)} \sum_{i=1}^{N} (C_i - \mu) \left[\sum_{j=1}^{N} (C_j - \mu) \right] \quad i \neq j \quad \text{olur.}$$

i = j durumu söz konusu olamayacağına göre

$$\sum_{j=1}^{N} (c_j - \mu) = \sum_{j=1}^{N} (c_j - \mu) - (c_i - \mu) = -(c_i - \mu)$$

$$Cov(X_r, X_s) = -\frac{1}{N(N-1)} \sum_{i=1}^{N} (c_i - \mu)^2 = -\frac{1}{(N-1)} \sigma^2$$
 bulunmuş olur.

Teorem: Ortalaması ve varyansı μ ve σ^2 olan **N** büyüklüğünde bir ana kütleden çekilen n birimlik bir örneğin ortalaması \overline{X} olsun.

$$E(\overline{X}) = \mu$$
 ve $Var(\overline{X}) = \frac{\sigma^2}{n} \frac{N-n}{N-1}$ olur.

İspat:
$$Var(X_i) = \sigma^2 \text{ ve } Cov(X_i, X_j) = -\frac{\sigma^2}{N-1}$$

değerleri beklenen değerin ve varyansın tanım formüllerinde yerine

konulacak olursa $E(\overline{X}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \mu$ bulunur.

$$Var(\bar{X}) = Var\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}Var\left(\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\left\{\sum_{i=1}^{n}Var(X_{i}) + 2\sum_{i < j}Cov(X_{i}, X_{j})\right\}$$

$$\frac{1}{n^{2}}\left\{\sum_{i=1}^{n}Var(X_{i}) + 2\sum_{i < j}Cov(X_{i}, X_{j})\right\}$$

$$= \frac{1}{n^{2}}\left\{n\sigma^{2} - \frac{2\sigma^{2}}{N-1}\sum_{j=1}^{n}\sum_{i=1}^{j-1}1\right\}$$

$$= \frac{\sigma^{2}}{n^{2}}\left\{n - \frac{2}{N-1}\sum_{j=1}^{n}(j-1)\right\}$$

$$= \frac{\sigma^{2}}{n^{2}}\left\{n - \frac{2}{N-1}\left\{\frac{n(n+1)}{2} - n\right\}\right\}$$

$$=\frac{\sigma^2}{n}\frac{N-n}{N-1}$$

Bu şekilde ispat sağlanmış olur.

Örnek: Ortalaması ve varyansı $\mu = 20$ ve $\sigma^2 = 16$ olan N=100 büyüklüğünde bir ana kütleden çekilen n=25 birimlik bir örneğin ortalaması \overline{X} olsun. \overline{X} 'in beklenen değerini ve varyansını bulunuz.

Cözüm:
$$E(\overline{X}) = \mu = 20;$$

 $Var(\overline{X}) = \frac{\sigma^2}{n} \frac{N-n}{N-1} = \frac{16}{25} \frac{(100-25)}{(100-1)} = \frac{16}{33}$ bulunur.

Teorem: $X_{11}, X_{12}, \cdots, X_{1n_1}$ ve $X_{21}, X_{22}, \cdots, X_{2n_2}$ sırasıyla μ_1 , σ_1^2 ve μ_2 , σ_2^2 beklenen değer ve varyanslarına sahip iki sonsuz ana kütleden çekilmiş n_1 ve n_2 birimden oluşan iki bağımsız örnek olsun. Yine \overline{X}_1 ve \overline{X}_2 bu iki örneğin ortalaması olsun.

$$E(\overline{X}_1 - \overline{X}_2) = \mu_1 - \mu_2 \quad \text{ve}$$

$$Var(\overline{X}_1 - \overline{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \quad \text{olur.}$$

Örnek: $\mu_1 = 25$, $\sigma_1^2 = 16$ ve $\mu_2 = 27$, $\sigma_2^2 = 9$ parametreli iki sonsuz kabul edilen ana kütleden $n_1 = 54$ ve $n_2 = 45$ birimden oluşan iki bağımsız örneğin ortalamaları \overline{X}_1 ve \overline{X}_2 olsun. Merkezi Limit Teoremine göre $P(|\overline{X}_1 - \overline{X}_2| \le 0.5)$ olasılığını hesaplayınız.

Çözüm:

$$E(\overline{X}_1 - \overline{X}_2) = \mu_1 - \mu_2 = -2$$
, $Var(\overline{X}_1 - \overline{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} = \frac{16}{54} + \frac{27}{45}$

$$Var(\bar{X}_1 - \bar{X}_2) = 0.897$$
, $\sigma_{\bar{X}_1 - \bar{X}_2} = \sqrt{0.897} = 0.947$

$$P(|\overline{X}_1 - \overline{X}_2| \le 0.5) = P(-0.5 \le \overline{X}_1 - \overline{X}_2 \le 0.5)$$

$$= P \left(\frac{-0.5 - (-2)}{0.947} \le \frac{\left(\overline{X}_1 - \overline{X}_2\right) - E\left(\overline{X}_1 - \overline{X}_2\right)}{\sigma_{\overline{X}_1 - \overline{X}_2}} \le \frac{0.5 - (-2)}{0.947} \right)$$

$$=P\left(\frac{1,5}{0,947} \le \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(\mu_1 - \mu_2\right)}{\sigma_{\overline{X}_1 - \overline{X}_2}} \le \frac{2,5}{0,947}\right) = P\left(1,58 \le Z \le 2,64\right) = 0,4959 - 0,4429 = 0,053$$

Teorem: $X_{11}, X_{12}, \dots, X_{1n_1}$ ve $X_{21}, X_{22}, \dots, X_{2n_2}$ sırasıyla θ_1 ve θ_2 parametreli Bernoulli dağılımlarına uyan iki sonsuz ana kütleden çekilmiş (ve n_1 ve n_2 birimden oluşan) iki bağımsız örnek olsun. Yine $\hat{\theta}_1$ ve $\hat{\theta}_2$ bu iki örneğin oranları olsun.

$$E(\hat{\theta}_1 - \hat{\theta}_2) = \theta_1 - \theta_2 \text{ ve}$$

$$Var(\hat{\theta}_1 - \hat{\theta}_2) = \frac{\theta_1(1 - \theta_1)}{n_1} + \frac{\theta_2(1 - \theta_2)}{n_2} \text{ olur.}$$

Örnek: $\theta_1 = 0,54$ ve $\theta_2 = 0,49$ parametreli Bernoulli dağılımlarına uyan iki sonsuz ana kütleden çekilen, $n_1 = 100$ ve $n_2 = 64$ birimden oluşan iki bağımsız örneğin oranları $\hat{\theta}_1$ ve $\hat{\theta}_2$ olsun. Merkezi Limit Teoremi'nden yararlanarak $P\{(\hat{\theta}_1 - \hat{\theta}_2) \ge 0\}$ olasılığını hesaplayınız.

Cözüm
$$E(\hat{\theta}_1 - \hat{\theta}_2) = \theta_1 - \theta_2 = 0.05$$
 ve

$$Var(\hat{\theta}_1 - \hat{\theta}_2) = \frac{\theta_1(1 - \theta_1)}{n_1} + \frac{\theta_2(1 - \theta_2)}{n_2}$$
$$Var(\hat{\theta}_1 - \hat{\theta}_2) = \frac{0.54 * 0.46}{100} + \frac{0.49 * 0.51}{64}$$

$$Var(\hat{\theta}_1 - \hat{\theta}_2) \cong 0{,}0064$$

$$\sigma_{\hat{\theta}_1 - \hat{\theta}_2} = \sqrt{0,0064} = 0,08$$

$$P\left\{ \left(\frac{\hat{\theta}_{1} - \hat{\theta}_{2} - E(\hat{\theta}_{1} - \hat{\theta}_{2})}{\sigma_{\hat{\theta}_{1} - \hat{\theta}_{2}}} \right) \ge \frac{0 - 0.05}{0.08} \right\} = P(Z \ge -0.625)$$

 $P(Z \ge -0.625) \cong 0.7357$ bulunmuş olur.

Normallik Varsayımından Türeyen Dağılımlar

1) Ki-Kare Dağılımı

Gama dağılımında $\alpha = \frac{v}{2}$ ve $\lambda = \frac{1}{2}$ denecek olursa istatistikte sıkça kullanılan Ki-Kare (χ^2) dağılımı elde edilecektir. Gama dağılımının olasılık yoğunluk ilgili parametre değerleri yerlerine konacak olursa

$$f(x) = \frac{e^{-x/2}x^{\frac{\nu-2}{2}}}{2^{\frac{\nu}{2}}\Gamma\left(\frac{\nu}{2}\right)} \quad x \ge 0$$

Ki-Kare dağılımının olasılık yoğunluk fonksiyonu elde edilir.

Ki-Kare Dağılımının Beklenen Değeri ve Varyansı

Yine α ve λ parametreli bir gama dağılımında $\alpha = \frac{v}{2}$ ve $\lambda = \frac{1}{2}$ değerleri yerine konacak olursa ki-kare dağılımı için $E(\chi^2) = v$ ve $Var(\chi^2) = 2v$ bulunur.

Burada v; χ^2 dağılımının tek parametresidir ve serbestlik derecesi olarak adlandırılmaktadır.

Teorem: Eğer \overline{X} ve S^2 ortalaması μ ve varyansı σ^2 olan normal bir dağılımdan çekilen n birimlik bir örneğin ortalaması ve varyansı ise

- 1) \overline{X} ve S^2 bağımsızdır.
- 2) $\frac{(n-1)S^2}{\sigma^2}$ rastlantı değişkeni n-1 serbestlik dereceli bir **Ki-kare** dağılımına uyar

Örnek: n=100 birimlik bir örnek normal dağıldığı bilinen bir ana kütleden çekiliyor. S^2 ve σ^2 sırası ile örnek ve ana kütle varyansları olduklarına göre $P(S^2 \le 0,75\sigma^2)$ olasılığını hesaplayınız.

<u>Çözüm:</u>

$$P(S^{2} \le 0,75\sigma^{2}) = P\left(\frac{(n-1)S^{2}}{\sigma^{2}} \le \frac{(100-1).0,75.\sigma^{2}}{\sigma^{2}}\right) = P\left(\frac{(n-1)S^{2}}{\sigma^{2}} \le 74,25\right)$$

Öte yandan $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$ olacağına göre n-1=99 serbestlik dereceli bir Ki-Kare dağılımından (Ms-Excel kullanarak) $P(\chi^2(99) \le 74,25) = 0,03$ bulunmuş olur.

2) Student-t Dağılımı

İstatistik'te önemli bir konumu bulunan olasılık dağılımlarından bir tanesi de bu dağılımı ortaya atan William S. Gosset'in kullandığı takma ad nedeniyle (student) literatüre "Student-t" adı ile girmiş bulunan dağılımdır. Student- t dağılımının olasılık yoğunluk fonksiyonu

$$f(t) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{\pi v}\Gamma\left(\frac{v}{2}\right)} \left(1 + \frac{t^2}{v}\right)^{-\frac{v+1}{2}} - \infty < t < \infty \quad \text{olur. Burada v dağılımın tek parametresidir ve}$$

serbestlik derecesi olarak adlandırılmaktadır.

Student-t Dağılımının Beklenen Değeri ve Varyansı

$$E(T) = 0$$

$$Var(T) = \frac{v}{v-2}; \quad v > 2$$

Teorem: Eğer \overline{X} ve S^2 ortalaması μ ve varyansı σ^2 olan normal bir dağılımdan çekilen n birimlik bir örneğin ortalaması ve varyansı ise $T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$ rastlantı değişkeni n-1 serbestlik dereceli bir \mathbf{t} dağılımına uyar.

Örnek: Normal dağıldığı bilinen bir ana kütleden n=65 birimlik bir

örnek çekiliyor. $S^2=400~$ bulunduğuna göre $P\left\{\left(\overline{X}-\mu\right)\leq 2\right\}~$ olasılığını bulunuz.

Çözüm:

$$\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t_{n-1} \qquad P\left\{\frac{\left(\overline{X} - \mu\right)}{S / \sqrt{n}} \le \frac{2}{20 / \sqrt{65}}\right\} = P\left(t_{n-1} \le 0,806\right)$$

Ms-Excel kullanarak $P(t_{n-1} \le 0.806) = 0.788$ bulunmuş olur.

3) F- Dağılımı

Normal dağılımlardan örnekleme sırasında karşımıza çıkan önemli bir dağılım da Snedecor F dağılımıdır. F dağılımı İki bağımsız gelen χ^2 değişkenlerinin (her biri kendi serbestlik derecesine bölünmüş halde) oranlarının olasılık dağılımı olarak düşünülebilir. F-Dağılımının olasılık yoğunluk fonksiyonu

$$g(f) = \frac{\Gamma\left(\frac{v_1 + v_2}{2}\right)}{\Gamma\left(\frac{v_1}{2}\right)\Gamma\left(\frac{v_2}{2}\right)} \left(\frac{v_1}{v_2}\right)^{\frac{v_1}{2}} f^{\frac{v_1}{2} - 1} \left(1 + \frac{v_1}{v_2}f\right)^{-\frac{1}{2}(v_1 + v_2)}$$

$$f > 0$$

Burada v_1 ve v_2 sırasıyla payın ve paydanın serbestlik derecesi olarak adlandırılmaktadır.

F Dağılımının Beklenen Değeri

$$E(F) = \frac{v_2}{v_2 - 2} \quad v_2 > 2$$

F-Dağılımının Varyansı

$$Var(F) = \frac{2v_2^2(v_1 + v_2 - 2)}{v_1(v_2 - 2)^2(v_2 - 4)} \quad v_2 > 4$$

Teorem: S_1^2 ve S_2^2 varyansları σ_1^2 ve σ_2^2 olan iki normal ana kütleden çekilen n_1 ve n_2 birimlik iki bağımsız örneğin varyansı ise $F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} = \frac{S_1^2\sigma_2^2}{S_2^2\sigma_1^2}$ rastlantı değişkeni $n_1 - 1$ ve $n_2 - 1$ serbestlik dereceli bir F dağılımına uymaktadır.

Örnek: Varyanslarının birbirine eşit olduğu bilinen ve normal dağılan iki ana kütleden $n_1 = 33$ ve $n_2 = 27$ birimlik iki örnek çekiliyor. S_1^2 ve S_2^2 bu örneklerin varyansları olduklarına göre $P(\frac{S_1^2}{S_2^2} \le 0,7)$ olasılığını bulunuz.

Cözüm: $\frac{S_1^2 \sigma_2^2}{S_2^2 \sigma_1^2} \sim F_{n_1^{-1} \cdot n_2^{-1}} \quad \text{ve} \quad \sigma_1^2 = \sigma_2^2 \quad \text{olarak verildiğine göre} \quad \frac{S_1^2}{S_2^2} \sim F_{n_1^{-1} \cdot n_2^{-1}}$ $P(\frac{S_1^2}{S_2^2} \le 0, 7) = P(F_{32,26} \le 0, 7) \quad \text{Ms-Excel'deki} \quad \text{FDAĞ} \quad \text{fonksiyonu} \quad \text{yardım}$

ile

 $P(F_{32,26} \le 0,7) \cong 0,17$ bulunmuş olur.