Tp n°4 Amplificador Base Común

El amplificador base común tiene ese nombre por que la base del transistor es <u>común tanto a la entrada como a la salida.</u>

Este amplificador se caracteriza por tener:

- Baja impedancia de entrada.
- Alta ganancia de Voltaje.
- La ganancia de corriente es aproximadamente a 1.
- ❖ Alta impedancia de salida.

Tiene aplicaciones útiles en altas frecuencias

- Como amplificadores de radiofrecuencia (RF).
- Como buffer de corriente.
- Amplificador de alta frecuencia.
- Se emplea en configuraciones cascode.
- En etapa amplificadora en circuitos multietapa,

Circuito base común

Partimos con los valores:

Cálculo de los valores

Vcc= 17,4 V

 $\beta = 200$

RE=220 Ώ

RC=2.2 KΩ

RL= 2.2 KΩ

Por criterio de estabilidad del punto Q

$$R_E = rac{10.R_B}{eta} \Longrightarrow rac{R_E}{10} = rac{R_B}{eta} = {f 22}$$

Cálculo de Vbb

$$V_{bb} = rac{V_{CC}.\left(R_E + rac{R_B}{eta}
ight) + V_{be}.\left(R_C - rac{R_B}{eta} + R_C \parallel R_L
ight)}{R_E + R_C + R_C \parallel R_L} = extbf{1,85V}$$

Corriente de colector para MES

$$I_{CQ.MES} = rac{V_{CC} - V_{bb}}{(R_C - rac{R_b}{eta}) + (R_C \parallel R_L)} = extbf{4,74mA}$$

Tensión colector base para MES

$$V_{CBQ.MES} = V_{CC} - V_{bb} - I_{CQ.MES}.\left(R_C - rac{R_B}{eta}
ight) = extbf{5,22V}$$

Cálculo de R1 y R2. Por thevenin tenemos la siguiente ecuación

$$V_{BB} = rac{V_{CC}}{R_1 + R_2}.\,R_1 \qquad \qquad R_B = rac{R_1.\,R_2}{R_1 + R_2} \qquad \qquad R_B = rac{R_E}{10}.\,eta = \mathbf{4400}\Omega$$

$$R_B = rac{R_1.\,R_2}{R_1 + R_2}$$

$$R_B = \frac{R_E}{10}$$
. $\beta = 4400\Omega$

Desarrollando obtenemos R1 y R2

$$R_2=R_B.\,rac{V_{CC}}{V_{BB}}=$$
 41,38 $K\Omega$

$$R_1=rac{R_2}{rac{V_{CC}}{V_{CD}}-1}=\mathbf{4.9}K\Omega$$

Simulación con valores calculado

Simulación con valores calculado

Resistencia	Calculado	Normalizado
RE	220	220
RC	2,2K	2,2K
R1	4,9K	4,7K
R2	41,38K	39K
RL	2,2K	2,2K

Simulación con valores normalizado

VCB=4.8V

ICQ=4.92mA

Horquilla de valores

+10%=5.742V

VCB=5.22V

-10%=4.698V

+10%=5.214mA

ICQ=4.74mA

-10%=4.266mA

Con los valores de las resistencias normalizada, calculamos nuevamente los valores teórico.

Thevenin

$$R_B=rac{R_1\cdot R_2}{R_1+R_2}=\mathbf{4194,}\mathbf{5}\Omega$$

$$V_{BB}=rac{V_{CC}}{R_1+R_2}.\,R_1= extbf{1,87V}$$

mediante la ecuación de la malla de entrada

$$V_{BB}-I_{CQ.MES}.\,rac{R_B}{eta}-V_{EBQ}-I_{CQ.MES}.\,R_E=0$$

$$I_{CQ.MES} = rac{V_{BB} - 0,7V}{R_E + rac{R_B}{eta}} = extbf{4,86mA}$$

Con la ecuación de la malla de salida

$$V_{CC}-I_{CQ.MES}.\,R_C-V_{CBQ.MES}+rac{I_{CQ.MES}}{eta}.\,R_B-V_{BB}=0$$

$$V_{CBQ.MES} = V_{CC} - V_{BB} - I_{CQ.MES}.\left(R_C - rac{R_B}{eta}
ight) = extbf{4,94V}$$

Corriente de base

$$I_{R_1} = rac{V_{R_1}}{R_1} = rac{I_{CQ.MES}.\,R_E + 0,7}{R_1} = extbf{0,376mA}$$

$$I_{R_2}=rac{V_{CC}-V_{R_1}}{R_2}=\mathbf{0,401mA}$$

$$I_{BQ} = I_{R_2} - I_{R_1} = \mathbf{24,7} \mu A$$

Ecuación de la recta de carga CC

$$v_{CBQ} = V_{CC} - V_{BB} - i_C \cdot \left(R_C - rac{R_B}{eta}
ight)$$

$$v_{CBQ} = 15,53 - i_C \cdot (2179,03)$$

Intersección con los ejes

$$i_C=0 \implies v_{CB_{max}}=15,53V$$

$$v_{CB} = 0 \implies i_{C_{max}} = 7,127mA$$

Ecuación de la recta de carga CA

$$v_{CBQ} = V_{CBQ.MES} + I_{CQ.MES}.\left(rac{R_C.R_L}{R_C+R_L}
ight) - i_C\left(rac{R_C.R_L}{R_C+R_L}
ight)$$

$$v_{CBQ}=10,286-i_{C}\left(1100
ight)$$

Intersección con los ejes

$$i_C = 0 \implies v_{CB_{max}} = 10,286V$$

$$v_{CB} = 0 \implies i_{C_{max}} = 9,35mA$$

Circuito híbrido del transistor en base común

Impedancia de entrada

$$h_{ib}=rac{25mV}{I_{CQ}}=5,14\Omega$$

$$Z_i = R_E \parallel h_{ib} = 5,023\Omega$$

Impedancia de salida

$$Z_o\cong R_C=2,2K\Omega$$

Ganancia de corriente

$$egin{align} A_i &= rac{i_L}{i_i} = rac{i_L}{i_e}.rac{i_e}{i_i} \ rac{i_L}{i_e} &= hfb.rac{R_C}{R_C+R_L} \ rac{i_e}{i_i} &= -rac{R_E}{R_E+hib} \ \end{gathered}$$

$$egin{align} A_i &= hfb.\,rac{R_C}{R_C+R_L}.\left(-rac{R_E}{R_E+hib}
ight) \Longrightarrow hfb = -1 \ A_i &= rac{R_C}{R_C+R_L}.\,rac{R_E}{R_E+hib} = \mathbf{0,488A} \ \end{align}$$

Ganancia de tensión

$$A_V=rac{V_L}{V_i}=rac{i_L.\,R_L}{i_i.\,Z_i}$$
 $A_V=A_i.\,rac{R_L}{Z_i}= extbf{213,99}$

Implementación

VE=1,06V

VB=1,71

VC=7,36V

ICQ= VCC-VC / RC =
$$(17.4V - 7.36V) / 2200\Omega = 4.56 \text{ mA}$$

$$IR1 = VB/R1 = 1,71V/4700\Omega = 0,362 \text{ mA}$$

IR2= VCC-VB/R2 =
$$(17,4V-1,71V)/39000\Omega = 0,402 \text{ mA}$$

Tabla de comparación

	Análisis	Medición
VCBQ	4,94V	5,65 V
ICQ	4,86 mA	4,56 mA
IR1	0,376 mA	0,362 mA
IR2	0,401 mA	0,402 mA
IBQ	0,0247 mA	0,038 mA

Pequeña Señal

VL=1Vpp

VS=16 mVpp

VI=7 mVpp

Vo= 1 Vpp

VS=2,1 Vpp

Mediciones en pequeña señal

Entrada

Vi=7 mVpp

Salida

$$A_V=rac{V_L}{V_c}=142,5$$

$$A_V=rac{V_L}{V_i}=142,5 \hspace{1cm} A_i=rac{rac{v_L}{R_L}}{rac{v_s-v_i}{R_s}}=0,50$$

$$Z_i = rac{v_i}{v_s - v_i} = 7,77$$

$$Z_i = rac{v_i}{rac{v_s - v_i}{R_s}} = 7,77\Omega$$
 $Z_o = rac{v_o}{rac{v_s - v_o}{R_s}} = 2000\Omega$

Tabla de comparación

	Análisis	Medición
Av	213,99	143,5
Ai	0,488	0,50
Zi	5,023 Ω	7,77 Ω
Zo	2200 Ω	2000 Ω

Conclusiones