Ответы на вопросы к программе.

- 1. Использовали критерий прекращения итераций: $||x^{k+1} x^k|| \le \frac{1 ||C||}{||C||} \varepsilon$. Для оценки погрешности решения и оценки невязки использовали октоэдрическую и кубическую нормы. Так как в критерии остановки используется норма матрицы и норма вектора одновременно, а также для оценки связи невязки и нормы погрешности используется норма матрицы A, то были выбраны такие нормы, которые, применительно к матрице, согласованы с нормой вектора.
- 2. В наших расчетах при прогонке 1-го и 2-го тестовых примеров быстрее всего сходился метод Зейделя и, сответственно, релаксации при $\omega=1$. В методах простой итерации, Зейделя, Релаксации достигнута точность 10^{-3} , в методе Якоби была достигнута точность 10^{-4} . Исследовали 1-ю систему уравнений с $||\cdot||_{\infty}$ нормой и требуемой точностью решения 10^{-3} :

Название метода	погрешность решения	невязка	число итераций
Простой итерации	0.000399567	0.00193487	15
Якоби	5.19879e - 005	0.000595697	17
Зейделя	0.000215504	0.000733303	9
Релаксации	0.000266694	0.00109198	11

Таблица 1

- 3. Так как применительно к нашей программе не имеет значения выбор начального приближения, если не известно хоть что-то о точном решении, то мы решили остановиться на нулевом векторе.
- 4. Норма невязки меньше либо равна нормы матрицы А умноженной на норму погрешности решения т.е.

$$||b - b^*|| \le ||A|| ||x - x^*||.$$

Для данной оценки можно использовать только согласованные нормы. Результаты наших расчетов удовлетворяеют этому условию.

- 5. Правильность работы метода релаксации проверяли, прогоняя симметричную положительно определенную матрицу при значениях $\omega \in (0,2)$, так как при данных значениях и матрице, обладающей описанными выше свойствами, метод должен сходится при любом начальном приближении. Так же при $\omega = 1$ метод релаксации должен быть идентичен с методом Зейделя.
- 6. В нашей работе оптимальным ω в 1-ом и 2-ом тестовых примерах, а также в двух системах нашего варианта является значение $\omega=1$.

^{*} $(\tau = 0.06 \approx \tau_{\text{obs}}; \omega = 0.9)$.