EXPERIMENT-9 Voltage Controlled Oscillator

a. Aim: a. To Design a Voltage Controlled Oscillator.

b. To Verify the functionality of above circuits.

b. Apparatus

Hardware: a. Resistors (1kΩ, 100kΩ, 10kΩ)

b. Capacitors (50nF)

c. LM 741

d. Regulated Power Supply

e. Bread board

f. Transistor (BC107)

g. DSO

c. Theory:

A Voltage-Controlled Oscillator (VCO) is an electronic oscillator whose oscillation frequency is controlled by a voltage input. The frequency of the output signal varies in relation to the amplitude of the input control voltage. VCOs are widely used in signal generators, phase-locked loops (PLL's), and frequency modulation applications.

d. Procedure:

- a. Connect the circuit as per the circuit diagram
- b. Apply input as per the requirements and observe the outputs.
- c. Observe the outputs of VCO using a DSO.
- d. Check the voltage and frequency of the generated waveform(square).

Design:

$$f = \frac{V_{\rm in}}{2\pi RCV_{\rm ref}}$$

e. Simulation Observation:

Fig 1: VCO circuit

Case 1: $V_{in} = 9V$

For input $V_{in} = 9V$, Square wave of frequency 78.1Hz is generated.

Case 2: $V_{in} = 15V$

For input $V_{in} = 15V$, square wave of frequency 128Hz is generated.

Case 2: $V_{in} = 20V$

For input $V_{in} = 20V$, square wave of frequency 169Hz is generated.

CONCLUSION:

From above cases we have observed that as input V_{in} is increases, frequency of square wave is increases.

f. Result:

Hence, we have designed, implemented and verified VCO.