CLOUD ARCHITECTURE AND MODEL

1. Technologies for Network-Based Systems

Network-based systems use networking technologies to allow multiple devices to communicate and work together, creating the foundation for distributed systems and cloud computing. Key technologies include:

- Networking Protocols: Protocols like TCP/IP, HTTP,
 HTTPS, and FTP provide the means for data exchange.
- Distributed Systems: Involves multiple interconnected computers sharing resources to solve tasks. Examples include grid computing and peer-to-peer networks.
- Virtualization: A crucial technology allowing multiple virtual machines (VMs) to run on a single physical server.
 VMs isolate applications, making them scalable and efficient for cloud use.
- Load Balancing: Balancing requests across servers to ensure no single machine is overwhelmed, enhancing reliability and performance.

Architecture Diagram

2. System Models for Distributed and Cloud Computing

System models describe the layout, components, and operations of distributed and cloud computing environments:

- Distributed Computing Models: These include clientserver models, peer-to-peer models, and multi-tier architectures, where resources and tasks are distributed across multiple systems.
- Cloud Computing Models: Emphasizes elasticity, resource pooling, and self-service. Services are abstracted from hardware, meaning resources can be scaled up or down depending on user demand.

3. NIST Cloud Computing Reference Architecture

The NIST (National Institute of Standards and Technology)
Cloud Computing Reference Architecture provides a
standardized model to define the roles, responsibilities, and
interactions in cloud environments. It identifies five major
actors:

- 1. Cloud Consumer: Uses cloud services (e.g., IaaS, PaaS, SaaS).
- 2. Cloud Provider: Delivers and manages cloud services.
- 3. Cloud Broker: Intermediary that manages use and performance of services.

- 4. Cloud Auditor: Conducts audits to ensure compliance and performance.
- 5. Cloud Carrier: Provides the connection between consumers and providers.

4. Cloud Models

Cloud computing models define how resources are structured and deployed. They offer a range of services and configurations tailored to user needs.

Characteristics of Cloud Computing

- On-Demand Self-Service: Users can provision resources as needed.
- Broad Network Access: Services accessible from anywhere with an internet connection.

- Resource Pooling: Shared resources dynamically allocated to meet demand.
- Rapid Elasticity: Services can be scaled quickly.
- Measured Service: Resource usage is tracked and billed based on consumption.

Cloud Services Models

- Infrastructure as a Service (laaS): Provides basic infrastructure resources like storage and compute power. Users control operating systems, applications, and network configurations.
 - Example: Amazon EC2, Google Compute Engine.
- 2. Platform as a Service (PaaS): Offers a platform allowing users to develop, run, and manage applications without managing the underlying infrastructure.
 - Example: Google App Engine, Microsoft Azure.
- 3. **Software as a Service (SaaS)**: Delivers software applications over the internet, accessible from any device without installation.
 - Example: Google Workspace, Salesforce.

RESPONSIBILITIES OF A CUSTOMER AND A CLOUD VENDOR

IAAS PAAS SAAS

Deployment	Deployment	Deployment
Data management	Data management	Data management
Network management	Network management	Network management
System management	System management	System management
On-demand scaling	On-demand scaling	On-demand scaling
Hardware maintenance	Hardware maintenance	Hardware maintenance

Public vs Private Cloud

- 1. Public Cloud: Resources are owned and operated by a third-party cloud provider. Accessible by multiple customers, often with shared infrastructure.
 - Advantages: Cost-effective, scalable, flexible.
- 2. Private Cloud: Used exclusively by a single organization, offering enhanced security and control over the infrastructure.
 - Advantages: Greater control, data privacy, and regulatory compliance.

5. Cloud Solutions and Ecosystem

A cloud ecosystem comprises interconnected components, tools, and services supporting a unified cloud environment. Examples include:

- Development Platforms: Tools for application building (e.g., Kubernetes for container orchestration).
- Data Storage and Management: Cloud databases and storage services like Amazon S3, Google Cloud Storage.
- APIs and Integrations: Enable communication and data sharing between cloud applications.

Building a Cloud Infrastructure

Application Deployment

Finalizing the integration of applications into the cloud environment

Analytics Tools

Enhancing data insights and decisionmaking capabilities

Storage Solutions

Establishing a foundation for data storage in the cloud

6. Service Management in Cloud Computing

Cloud **Service Management** involves the processes and policies required to manage cloud services. Key areas include:

 Service Level Agreements (SLAs): Define expectations for service availability, performance, and response times.

- Service Monitoring and Analytics: Track service health, user activity, and resource usage to ensure optimal performance.
- Resource Optimization: Adjusting resources to prevent overuse or underutilization.

Cloud Environment Management Process

7. Computing on Demand

Computing on Demand is a model that allows users to access resources as they need them, paying only for what they use. This model is beneficial for:

- Scalability: Resources are scalable based on real-time demand.
- **Cost-Efficiency**: Users avoid upfront infrastructure investments, paying only for actual usage.
- Flexibility: Resources are available globally, enabling remote teams to access the same infrastructure.

