COMPUTER SCIENCE & IT

Lecture No: 06

Miscellaneous Topics

Question Practice

State transition Diagram

State Transition Diagram

- What is state transition diagram?
- · A diagram that represents all the possible transitions of a sequential CKt.

$$0-1-3-2 \longrightarrow Country$$

00-01-10-11

$$Q_1(n+1) = \overline{Q_1(n)}$$

$$Q_o(n+1) = \overline{Q_o}(n)$$

Lets understand it with an example:

Q(n+1)

State transition diagram for above circuit will be: Q(n+1)=A Q(n+1)-52,3

State transition diagram of above circuit will be:

$$A B Q(n) Q(n+1)$$

- O
- O

$$Q(n+1)$$

$$Q(n+1) = A\overline{Q} + \overline{B}Q$$

$$K = B$$

A sequential circuit is as given below:

State transition diagram of above sequential circuit is

$$Q(n)=1$$
, $A=0 \rightarrow Q(n+1)=1$
 $A=1 \rightarrow Q(n+1)=0$

(c)
$$Q=0$$
 $A=1$ $Q=1$ $Q=1$ $A=1$ $Q=1$

(d)
$$A=1$$
 $A=0$ $Q=1$ $A=1$ $A=0$ $Q=1$

A sequential circuit is as given below:

State transition diagram of above circuit will be:

$$Q_1(n+1) = T_1 \oplus Q_1(n) = A \oplus Q_1(n)$$

$$Q_2(n+1) = T_2 \oplus Q_2(n) = \overline{Q}_1(n) \oplus Q_2(n) = Q_1(n) \oplus Q_2(n)$$

$$Q_{1}(n)=1 \qquad A=0 \rightarrow Q_{1}(n+1) \qquad A=0 \qquad A=1 \qquad A=$$

Q2(n+1)=1

$$Q_{1}(n) = 0 \qquad A = 0 \rightarrow Q_{1}(nt1)$$

$$= 0$$

$$Q_{2}(n) = 1$$

$$A = 1 \rightarrow Q_{1}(nt1)$$

$$= 1$$

$$Q_{1}(n) = 0 \qquad Q_{2}(nt1) = 1$$

$$Q_{2}(n) = 1 \qquad Q_{2}(nt1) = 0$$

$$Q_{2}(nt1) = 0$$

$$Q_{2}(nt1) = 0$$

$$Q_{2}(nt1) = 0$$

$$Q_{2}(nt1) = 0$$

Q(n)=1, A=0, Q(n

A sequential circuit is as given below:

State transition diagram of above circuit will be:

The digital logic shown in the figure satisfies the given state diagram when Q_1 is connected to input A of the XOR gate:

Suppose XOR gate is replaced by XNOR gate then which of the option preserves the state diagram :

- (a) Input A is connected to \bar{Q}_2
- (b) Input A is connected to Q_2
- (c) Input A is connected to \bar{Q}_1 and S is complimented.
- (d) Input A is connected to \bar{Q}_1

Parity generator:

$$P_{e}(A,B,C) = A \oplus B \oplus C$$

$$P_{o}(A,B,C) = A \oplus B \oplus C$$

$$= A \oplus B \oplus C$$

Pe
$$(A,B,C,D) = A \oplus B \oplus C \oplus D$$
Po $(A,B,C,D) = \overline{A \oplus B \oplus C \oplus D}$

Parity Checker:

even Parity checker -> Eeven = ABBOCOD. ... (1) Pe RYNV 0> no 1- germ on to erry odd pauty checker E oad =) ABBOCOD--- OPPO 1 - erm SOLLY BU (-0

Topic: 2 Min Summary

> State transition diagram

Parity generator/Checker

Thank you

Soldiers!

