Statistics 5350/7110 Forecasting

Lecture 21 Building SARIMA Models

Professor Robert Stine

Preliminaries

- Questions?
- Assignments
 - Assignment 5 posted
 - Due next Thursday
- Quick review
 - Building SARIMA models
 - Adding explanatory factors
 - Calendar variables

Lecture_20.Rmd & Lecture_21.Rmd (today)

Text, Chapter 5

Today's Topics

- Building SARIMA models
 - Identifying a model
 - Incorporating exogenous factors
- Examples
 - Housing construction
 - Sales in furniture stores (data from Assignment)

New Housing Construction

Housing Time Series

- New housing construction
 - Thousands of units, privately owned
 - Clearly seasonal with non-stationary trends

FRED HOUSTNSA

Housing Time Series

Housing Starts

- New housing construction
 - Thousands of units, privately owned
 - Zoom in on recent trend to examine seasonality
 - Is seasonal pattern stable?

FRED HOUSTNSA

Housing Starts

- Seasonal stability
 - Overlay deviations from annual mean

Housing Starts

- Seasonal stability
 - Overlay deviations from annual mean

Housing Starts

- Recognize nature of changes
 - Different seasonality
 - Collapse of construction during 2008-2009
- Focus on period since housing bubble burst...
 - Use data of 10 years, 2010-2019
 - Objective: Predict 2 years out
- Revised focus reveals...
 - · Softening pattern prior to Covid
 - Magnitude of seasonal variation prompts question:

Should we be modeling on log scale?

Housing: To Log or Not To Log?

- Substantive thinking
 - Will eventually difference data for stationarity
 - Differences of logs nicely interpretable as percentage change
- Data analysis
 - Examine relationship of mean to variance
 - Would like these to be "separable"

Conclude?

Housing: Differences

- Sequence plots
 - Log counts
 - Differenced log counts
- Patterns worth noticing in the differences?
 - Particularly with regard to seasonality

Housing: Model Identification

- ACF and PACF
 - Differenced log housing starts
- Weaker patterns
 - Magnitudes of the autocorrelations are smaller than in other examples
- Model
 - Initial choices?
- Anything else
 - What else should we be thinking about before ARIMA modeling?

Build non-stochastic features such as length of month, dates available for construction.

- Initial model
 - p=0, d=1, q=1, P=1, D=0, Q=0
 - Includes monthly calendar features (days in month, weekdays in month)

Coefficients:

Estimate SE t.value p.value ma1 -0.5801 0.0986 -5.8829 0.0000 sar1 0.7063 0.0733 9.6384 0.0000 n_weekdays 0.0043 0.0098 0.4393 0.6613 n_days 0.0382 0.0242 1.5798 0.1169

sigma^2 estimated as 0.009408587 on 115 degrees

AIC = -1.671128 AICc = -1.668179 BIC = -1.554

- Revised model
 - p=0,d=1,q=1, P=**4**, D=0, Q=0, S=12
- Increase P gradually and check fit each time
- Continue to include monthly calendar features

Coefficients: SE t.value p.value Estimate -0.5944 0.0782 -7.6025 0.0000 ma1 0.2062 0.0971 2.1241 0.0359 sar1 0.1275 0.0862 1.4795 0.1418 sar2 1.7742 0.0788 sar3 0.1747 0.0985 4.1269 sar4 0.4095 0.0992 0.0001 n_weekdays 0.0087 0.0068 1.2845 0.2016 n_days 0.0331 0.0298 1.1114 0.2688 sigma^2 estimated as 0.006228125 on 112 degrees AIC = -1.906268 AICc = -1.897789 BIC = -1.719

- Switch to seasonal moving average
 - Lots of AR suggests maybe better with MA
 - p=0,d=1,q=1, P=1, D=0, Q=1, S=12
 - Includes monthly calendar features... still not significant
 - Nice fit, but coefficients are "special"

Coefficients:

	Estimate	SE	t.value	p.value
ma1	-0.5929	0.0773	-7.6739	0.0000
sar1	0.9998	0.0009	1086.7900	0.0000
sma1	-0.9706	0.0718	-13.5270	0.0000
n_weekdays	0.0088	0.0073	1.2157	0.2266
n_days	0.0380	0.0298	1.2774	0.2040

sigma^2 estimated as 0.005666564 on 114 degrees

AIC = -1.935206 AICc = -1.930744 BIC = -1.7956

- Final model
 - p=0, d=1, q=1, P=4, D=0, Q=0, S=12
 - Removes monthly calendar features (one at a time, never significant)
 - Similar error variance to other models, simpler form
 - Residuals ≈ Normal, residual ACF mostly small

Coefficients:							
	Estimate	SE	t.value	p.value			
ma1	-0.6041	0.0775	-7.7967	0.0000			
sar1	0.2237	0.0955	2.3415	0.0210			
sar2	0.1265	0.0867	1.4590	0.1473			
sar3	0.1543	0.0989	1.5594	0.1217			
sar4	0.4136	0.0969	4.2670	0.0000			
constant	0.0071	0.0131	0.5438	0.5876			
sigma^2	estimated	as 0.00	06397382	on 113 degree	5		
					í		
AIC = -1	.896211 A	AICc = -	-1.889909	9 BIC = -1.73	2		

Housing: SARIMA Forecasts

- Forecast two years out
 - Predicts growth in subsequent years
 - Obviously miss Covid drop (which wasn't so big for housing)

Housing: SARIMA Forecasts

- Forecast two years out
 - Add two years of actual data
 - Anticipate recovery in 2021 after Covid... Luck?

How do you think a regression model with trend would fare in this example?

Regression Model

Regression Trend Models

• What would you use?

Regression Trend Model

- Quadratic regression model
 - AR(1) for residuals
 - Many seasonal coefficients are similar (April-July)
 - Claims better fit than SARIMA (0.0054 vs 0.0064)

	Estimate	SE	t.value	p.value
ar1	0.4016	0.0873	4.6025	0.0000
intercept	4.3540	0.0284	153.3129	0.0000
trend	0.0731	0.0049	14.9807	0.0000
trend2	-0.0098	0.0015	-6.5622	0.0000
monthFeb	-0.0056	0.0278	-0.2016	0.8406
monthMar	0.1887	0.0329	5.7274	0.0000
monthApr	0.2936	0.0348	8.4408	0.0000
monthMay	0.2950	0.0355	8.3088	0.0000
monthJun	0.3050	0.0358	8.5257	0.0000
monthJul	0.2931	0.0359	8.1734	0.0000
monthAug	0.2477	0.0358	6.9167	0.0000
monthSep	0.2530	0.0356	7.1099	0.0000
monthOct	0.2205	0.0349	6.3081	0.0000
monthNo∨	0.1044	0.0333	3.1372	0.0022
monthDec	-0.0112	0.0286	-0.3921	0.6958

```
sigma^2 estimated as 0.005452987 on 105 degree

AIC = -2.105582 AICc = -2.06712 BIC = -1.733
```


Housing: Regression Forecasts

- Forecast two years out
 - Compare to actual data
 - Forecasts are too low... Quadratic trend doesn't continue

Furniture Sales

Are housing starts a leading indicator of subsequent sales?

Furniture Sales and Housing Starts

- Leading indicator?
 - Does the volume of housing starts anticipate later sales at furniture stores?
 - How long does it take to build and then sell a home?

Cross-Correlations

- Cross-correlation, levels
 - Modest correlation ≈ 0.20 using starts and sales
 - Practical leading indicator leads by about 14 months (Is 2 months reasonable?)

Cross-Correlations

- Cross-correlation, differences
 - Stronger (though still weak) correlation ≈ 0.30 using differences of starts and sales
 - Practical leading indicator leads by about 14 months (Is 2 months reasonable?)

Cross-Correlations

- Cross-correlation, differences
 - Stronger (though still weak) correlation ≈ 0.30 using differences of starts and sales
 - Practical leading indicator leads by about 14 months (Is 2 months reasonable?)
- Zoom in on correlation at 14 months
 - What's going on?

What's next?

- Different approach to understanding time series ... Periodicity
 - Different way to approach stationary processes
 - Novel diagnostic method
 - More directed to science than for modern economics