Disparity Map Computation: Global-Style

Presentation by Scott Grauer-Gray

Stereo Overview

- Given a reference image and matching (test) image
- Goal is to find the disparity between each pixel in the reference image and the corresponding pixel in the matching (test) image
- Disparity is inversely proportional to depth
 - Objects with greater disparity --> closer to "cameras"/ "eyes" (or wherever the image is from)
 - Objects with smaller disparity --> farther from "cameras" / "eyes" (or wherever the image is from)

Calculating the Disparity Map

- Many algorithms/papers published on topic
- Overview and evaluation of algorithms: A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms
 - Current evaluation at http://vision.middlebury.edu/stereo/

Stereo Assumptions

Surface assumptions

- Surfaces in image are Lambertian...appearance does not vary with viewpoint
- Surfaces are piece-wise smooth; disparity of a single surface does not randomly "jump" around

Camera calibration/epipolar geometry

Pair of rectified images given as input

Calculating Disparity Maps

- Most stereo correspondence algorithms use all or some of following steps
 - Matching cost computation
 - Cost (support) aggregation
 - Disparity computation/optimization
 - Disparity refinement

Matching Cost Computation

- Matching Cost Computation cost of matching point (x1, y1) in reference image to point (x2, y2) in test image
 - In SSD algorithm, matching cost = squared difference of intensity values of pixels at disparity d
 - Other matching costs: sum of absolute difference (SAD), normalized cross-correlation (NCC), Birchfield-Tomasi

Cost (support) aggregation

- Cost (support) aggregation summing the costs of matching pixels in a given region (possibly using weights)
 - In SSD algorithm, aggregation is performed by averaging together matching costs for each pixel within a window at each given disparity using a box filter
 - Aggregation can be performed using a Gaussian/ binomial filter to provide greater weight to pixels near center of window

Disparity Computation/optimization

- Retrieves calculated disparity at each pixel in reference image, method varies by algorithm
 - In SSD algorithm, uses "winner-take-all" method
 - Inspects aggregated cost associated with each disparity via window centered around pixel
 - Disparity with the smallest aggregated cost is selected
 - Step can be performed "in parallel" for every pixel in the reference image

Disparity Refinement

- Disparity estimates generally in discretized space (such as integer pixel values)
- Some algorithm have refinement step to compute subpixel disparities after initial computations
- Methods include iterative gradient descent and fitting a curve to matching costs at discrete disparity levels
- Alternative is starting with more disparity levels

Stereo Algorithms

- Most stereo algorithms can be placed one of two categories
 - Local disparity computation dependent on intensity values within finite window in reference and matching (test) image; smoothness assumption is implicit with aggregating support
 - Global stereo matching problem converted to global function; goal to optimize this global function that (likely) combines matching cost and smoothness cost terms (and possibly others...); smoothness assumption encoded explicitly

Local Stereo

- Example: SSD using fixed windows
- One problem: setting correct size of window
 - Small window: may not be enough intensity variation; signal to noise ratio low
 - Large window: may cover region with multiple disparities
 - Paper by Kanade referenced in previous lecture goes into more detail about this...
- Another problem: what about texture-less regions? Aggregated matching cost near 0 for multiple disparities

Global Stereo

- Goal is to retrieve disparity map that optimizes a global function
 - Global function can vary across different global algorithms/implementations
 - Matching cost of corresponding pixels in ref/test images given disparity often encoded into function
 - Function often contains a "smoothness cost" explicitly encodes the "piecewise smooth" assumption
 - Smoothness cost compares computed disparities of neighboring pixels in disparity map (greater difference in disparity -> greater smoothness cost)

- Global method: formulate stereo matching problem as a Markov network
 - Markov network Probabilistic graph model
 - Undirected graph of n nodes with pairwise potentials (given by compatibility function...)
 - State of each node i represented as x_i
 - Given some "evidence" Y
 - Joint compatibility function: φ(x_s, Y)
 - Output can be considered "evidence" for x_s given Y; greater if x_s is more likely
 - Compatibility function: ψ(x_s, x_t)
 - Encodes "pairwise potential"/compatibility between neighboring nodes x_s, x_t; small if node pair not "compatible"

- Goal: retrieve "most likely" set of nodes { x_1, x_2, ..., x_n} given the evidence Y and the compatibility between neighboring nodes
 - Joint probability distribution function of n nodes:

• P(x_1, x_2, ..., x_n | Y) =
$$\prod \phi(x_s, Y) \prod \psi(x_s, x_t)$$

All nodes s All "neighboring" nodes s, t

Target: retrieve set of nodes that maximizes joint probability distribution

- Target: turn stereo matching problem into Markov random field problem
 - **Given**: stereo set of images
 - Color/intensity values of pixels in stereo images can be viewed as the "evidence"
 - Current goal: Find the disparity map that maximizes P(disparity map | stereo set)
 - No obvious solution...
 - However, you do have some idea of P(stereo set | disparity map) and P(disparity map)
 - How can you use this information?

- Bayes rule: P(X | Y) = (P(Y | X) * P(X)) / P(Y)
 - Using Bayes rule...
 - P(disparity map | stereo set) = (P(stereo set | disparity map) * P(disparity map)) / (P(stereo set))
 - Given stereo set --> P(stereo set) can be set to 1.0f
 - Now, P(disparity map | stereo set) = P(stereo set | disparity map) * P(disparity map)
 - New Goal: retrieve disparity map that maximizes
 P(stereo set | disparity map) * P(disparity map)
 - One of these terms can be viewed as encoding the "matching" cost/probability with the other one encoding smoothness of the disparity map...
 - Which one is which?

- Target: retrieve P(stereo set | disparity map)
 - Probability represents total matching cost across all pixels in a stereo set given the disparity map
 - Greater total matching cost --> lower P(stereo set | disparity map)
 - If matching cost of every pixel is 0 given the current disparity map, then P(stereo set | disparity map) = 1
 - matching costs of pixels increase -> P(stereo set | disparity map) decreases
 - If matching cost of any pixel is infinity --> assume
 P(stereo set | disparity map) = 0
 - Can use property to rule out certain disparity maps

P(stereo set | disparity map) =

```
\Pi (e^((-1) * matching cost of s given d_s in disp. map)) All pixels s in disparity map
```

- Value of P(stereo set | disparity map) is between 0-1 inclusive
- If matching cost of all pixels is 0, P(stereo set | disparity map) =
 1 since e^0 = 1
- If matching cost of any pixel is infinity P(stereo set | disparity map) = 0 since e^(-infinity) = 0
- As matching costs of pixel(s) increase, P(stereo set | disparity map) decreases

- Target: retrieve P(disparity map)
 - Represents total smoothness cost of disparity map
 - Smoothness cost and P(disparity map) are inversely related (why...remember goal is to minimize smoothness cost)
 - Assume that pixels near each other have the same disparity --> smoothness cost increases when this condition is violated
 - Case where all pixels have same disparity -> total smoothness cost is 0 -> P(disparity map) = 1
 - Smoothness cost approaches infinity -> P(disparity map) approaches 0

- How to compute smoothness cost?
 - One method: use function that takes disparities of neighboring pixels in disparity map (generally 4connected neighbors used)
 - If neighboring pixels have same disparity -> cost is 0
 - Cost increases as change in disparity (between neighboring pixels) increases
 - What to do about discontinuities?
 - May want to account for them in some manner
 - Could truncate smoothness cost at some point...prevent large jumps in disparity from being over-penalized
 - Could use segmentation (in pre-processing) to encode discontinuities and set smoothness cost to 0 where discontinuities expected...(this goes beyond basic stereo)

P(disparity map) =

 Π (e^((-1) * smoothness cost between s and t given d_s and d_t)) All 4-connected neighboring pixels s, t in disparity map

- If smoothness cost of all sets of neighboring pixels is 0, P(disparity map) = 1
- If smoothness cost of any set of neighboring pixels is infinity --> P(disparity map) = 0
- Note that stereo image set has nothing to do with this probability
 - Disparity of all pixels in disparity map = constant c -->
 P(disparity map) = 1 (regardless of stereo set...)

- Original goal: maximize P(disparity map | stereo set)
 - Used Bayes to set P(disparity map | stereo set) =
 P(stereo set | disparity map) * P(disparity map)
 - Using new info...
 - P(disparity map | stereo set) =

```
\Pi (e^((-1) * matching cost of s given d_s in disp. map and stereo set)) * All pixels s in disparity map
```

```
\Pi (e^((-1) * smoothness cost between s and t given d_s and d_t)) All 4-connected neighboring pixels s, t in disparity map
```

Models for matching cost

Same as local window: SAD, SSD, NCC, Birchfield-Tomasi
 use corresponding pixels in ref/test images for given disparity to compute cost

Models for smoothness cost

- Linear model commonly used: analogous to SAD for matching cost
 - Smoothness cost between neighboring pixels on disparity
 map = absolute difference in disparity
 - Linear model often truncates disparity difference at a given value to allow for discontinuities without too large of a penalty
 - Other models: Potts model, quadratic model

- Retrieving P(stereo set | disparity map) and P(disparity map) in "toy" stereo sets
 - See next few slides...
 - Assume that SAD model used for matching cost computation
 - Assume linear model in smoothness cost computation
- What would be the "simplest" possible stereo set?

- Toy stereo set #1:
 - Two all "black" images given as stereo set
 - What will be the P(stereo set | disparity map) when all disparities are 0?
 - What will be P(disparity map) when all disparities are 0?
 - What is P(disparity map | stereo set) when disparities = 0?
 - Will P(stereo set | disparity map) change if disparity map changes?

- Toy Stereo Set #2:
 - Two identical images given as stereo set (Tsukuba reference image, as an example)
 - What will be the P(stereo set | disparity map) when all disparities are 0?
 - What will be P(disparity map) when all disparities are 0?
 - Will P(stereo set | disparity map) change if disparity map changes?
 - What happens when all disparities = 1 in disparity map?

- Toy Stereo set #3: Grayscale stereo set with textured "background" and black object "foreground"
 - Disparity of textured "background" is 0
 - Disparity of "black" object is 5
 - Given ground truth disparity map...

Ref Image

Ground truth disparity map

- What will be the P(stereo set | disparity map) when all disparities are 0?
- What will P(stereo set | disparity map) when all disparities correspond to ground truth?
- What will be P(disparity map) when all disparities are 0?
- What will be P(disparity map) when all disparities correspond to ground truth?

- Back to the Markov Random Field...
 - Markov network undirected graph of n nodes with pairwise potentials
 - State of each node i -> x_i
 - Given "evidence" Y
 - Joint probability distribution function of nodes:

• P(x_1, x_2, ..., x_n | Y) =
$$\prod \phi(x_s, Y) \prod \psi(x_s, x_t)$$

All nodes s All "neighboring" nodes s, t

- Stereo...
 - Find disparity map to maximize P(disparity map | stereo set) where P(disparity map | stereo set) =

```
\Pi (e^((-1) * matching cost of s given d_s in disp. map)) * All pixels s in disparity map
```

 Π (e^((-1) * smoothness cost between s and t given d_s and d_t)) All 4-connected neighboring pixels s, t in disparity map

• MRF...

- Find set of n nodes with states x_1, x_2, ..., x_n needed to maximize $P(x_1, x_2, ..., x_n | Y) = \prod \phi(x_s, Y) \prod \psi(x_s, x_t)$ - Y = local "evidence"

All nodes s All "neighboring" nodes s, t

- Maximizing P(disparity map | stereo set): equivalent to maximizing P(x_1, x_2, ..., x_n | Y) in Markov network
 - Set of states x_1, x_2, ..., x_n in Markov network --> set of pixels in disparity map, each with a disparity value (assigned disparity value = "state")
 - "Evidence" Y in Markov network --> given stereo set of images
- (A) mission accomplished: stereo problem turned into Markov network problem
 - Specifically, the stereo problem has been "reduced to" retrieving the maximum a posteriori (MAP) estimation in the Markov network

- Retrieving the MAP estimation in the Markov network
 - NP-complete problem; often infeasible to solve using "brute force"
 - Each pixel ("node") in disparity map can take any value in disparity space ("state")
 - Methods used to estimate solution in reasonable amount of time
 - Graph cuts
 - Belief propagation

Belief Propagation

- Iterative inference algorithm that can be used on Markov network problems
 - Works by sending messages through the network for a number of iterations
 - Eventually, the message values at each node will converge and then the message values are used to retrieve the estimated state of the node
- Retrieves optimal solution in graphs without loops
- Called loopy belief propagation in graphs with loops (such as graph resulting from stereo problem)
 - No guarantee of optimal solution, but generally gives a good approximation

Belief Propagation

- Can be used to retrieve the MAP estimation in the Markov network
 - Each node computes messages to send to fourconnected neighbors
 - Each message can be viewed as a vector containing a value for each possible disparity
 - Messages are computed at each pixel (in each iteration) and then passed to four-connected neighbors
 - Messages computed using data cost and message values from neighbors (computed in previous iteration)
 - Higher message value --> higher probability of corresponding disparity

Belief Propagation: Message Computation

Messages initially initialized to 1

 Message from pixel s to neighbor t in iteration i+1 corresponding to disparity d_x computed via:

Computational running time for each message at each pixel: O(D^2), where D is the size of the disparity space

Message values will converge after "enough" iterations

→ Once message values converge, message values (with joint compatibility function) used to compute estimated disparity at each pixel

Belief Propagation

After all BP iterations complete...

 Compute belief value of each disparity d_x at each pixel s

•
$$b_s(d_x) = \phi(d_x, Y) * \prod_{\substack{\text{All neighbors k} \\ \text{of s}}} M_ks(d_x)$$

- Disparity value at each pixel in disparity map is set to d_x corresponding to the maximum belief value
- Resulting disparity map is estimation of desired disparity map that maximizes P(disparity map | stereo set) from the original problem via the MRF formulation and the MAP estimation
- We are done! (or are we...)

Belief Propagation: Analysis

Results for Tsukuba stereo set:

Reference image:

Ground truth:

Result using window-based matching:

Result using Belief propagation:

Running time of Belief Propagation

- Algorithm runs for I iterations
- D values in disparity space
- Images in stereo set are of size N * M
- Total Running time (sequential):
 - Computation of data costs: O(N*M*D)
 - Computation of computing/passing message values in each iteration (naive): O(N*M*D^2)
 - Computation of calculated disparity values: O(N*M*D)
 - Total running time = O(N*M*D) + I * O(N*M*D^2) * O(N*M*D) = O(N*M*I*D^2)
 - Running time if computations performed on all pixels in parallel?

Storage requirements of Belief Propagation

- Initially: need to store the 2 N*M images in stereo set:
 O(2*N*M) (not needed after data costs computed)
- Matching cost stored for every pixel at each disparity: O(N*M*D)
- Four message vectors of size D stored for every pixel: O(4*N*M*D)
- Total storage requirement: O(5*N*M*D)

Advantages of Belief Propagation

- Resulting disparity map is close to minimization of data and smoothness costs
 - Resulting disparity map relatively accurate in practice
 - Generally better results than local methods such as SSD (even if adaptive windows are used)
- Can be extended to incorporate occlusion, segmentation, and other info to further improve the results
 - The #2 and #3 stereo algorithms according to the Middlebury benchmark are based on belief propagation

Current Middlebury benchmark stereo results

Drawbacks of Belief Propagation

- Requires many iterations for message values to converge and retrieve an accurate disparity estimate
- High storage requirements

Drawbacks of Belief Propagation

- Felzenwalb (2004) presents methods to account for these drawbacks
 - Hierarchical scheme to reduce number of iterations
 longer-range interactions between pixels in fewer iterations course levels
 - Checkerboard scheme for message passing
 - Only half of the pixels must compute message values in each iteration
 - Allows BP iterations to be performed in place; cuts storage requirements

Other Global Methods

- Belief propagation's primary "competitor" is graph cut
 - Either can be used to minimize total data and smoothness costs in global function
 - Tappan (2003) compared the two algorithms using identical parameters
 - Disparity maps retrieved using graph cut had slightly lower energy, but results similar in relation to ground truth
 - Belief propagation appears more popular based on Middlebury benchmark evaluation