

System of Linear Equations: Level 3- Tutorial Problems

- 1. Let A be a 5×4 matrix with real entries such that $AX = 0 \Leftrightarrow X = 0$, where X is a 4×1 vector, '0' is the null vector, then Rank(A) is
 - (1) 4
 - (2) 5
 - (3) 2
 - (4) 1
- 2. Let $A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 2 & 3 & \alpha \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 3 \\ \beta \end{bmatrix}$. Then the system AX = b over the real numbers has
 - (1) no solution whenever $\beta \neq 7$
 - (2) an infinite number of solutions whenever $\alpha \neq 2$
 - (3) an infinite number of solutions if $\alpha = 2$
 - (4) a unique solution if $\alpha \neq 2$
- 3. The system of equations x+y+z=1, 2x+3y-z=5, x+2y-kz=4, where $k\in\mathbb{R}$ has an infinite number of solutions for
 - (1) k=0
 - (2) k=1
 - (3) k=2
 - (4) k=3
- 4. The system of equations:
 - 1. $x + 2.x^2 + 3.xy + 0.y = 6$
 - $2. \ x + 1.x^2 + 3.xy + 1.y = 5$
 - 1. $x 1.x^2 + 0.xy + 1.y = 7$
 - (1) has solutions in rational numbers
 - (2) has solutions in real numbers
 - (3) has solutions in complex numbers
 - (4) has no solution
- 5. Let $M = \begin{bmatrix} 2 & 0 & 3 & 2 & 0 & -2 \\ 0 & 1 & 0 & -1 & 3 & 4 \\ 0 & 0 & 1 & 0 & 4 & 4 \\ 1 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}$, $b_1 = \begin{bmatrix} 5 \\ 1 \\ 1 \\ 4 \end{bmatrix}$ and $b_2 = \begin{bmatrix} 5 \\ 1 \\ 3 \\ 3 \end{bmatrix}$. Then which of the following are true?
 - 1. both systems $MX = b_1$ and $MX = b_2$ are inconsistent
 - 2. both systems $MX = b_1$ and $MX = b_2$ are consistent
 - 3. the system $MX = b_1 b_2$ is consistent
 - 4. the system $MX = b_1 b_2$ is inconsistent
- 6. Let $A = \begin{pmatrix} 2 & 0 & 5 \\ 1 & 2 & 3 \\ -1 & 5 & 1 \end{pmatrix}$. The system of linear equations AX = Y has a solution

- (a) only for $Y = \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix}, x \in \mathbb{R}$
- (b) only for $Y = \begin{pmatrix} 0 \\ y \\ 0 \end{pmatrix}, y \in \mathbb{R}$
- (c) only for $Y = \begin{pmatrix} 0 \\ y \\ z \end{pmatrix}, y, z \in \mathbb{R}$
- (d) for all $Y \in \mathbb{R}^3$