INFORMATION NETWORK SECURITY

Dr/ Amr Wageeh
Lecture 3

SIMPLIFIED DES

Key Generation:

- S-DES depends on the use of a 10-bit key shared between sender and receiver.
- From this key, two 8-bit
 subkeys are produced
 for use in particular
 stages of the encryption
 and decryption

K2: 01000011

S-DES ENCRYPTION:

Plaintext (P) IP K1 IP-1 Ciphertext (C)

Feistel round 1

Feistel round 2

S-DES ENCRYPTION:

S-DES DECRYPTION:

• The decryption scheme of the S-DES is the same as the encryption scheme but using the subkeys in reverse order.

Data Encryption Standard (DES)

DATA ENCRYPTION STANDARD (DES)

- DES is a block cipher.
 - (Plaintext and Ciphertxt size= 64 bits)
- Master Key of size 64 bits.
- The efficient length of the key is 56 bits.
- Brute force attack will try 2⁵⁶ possible key.
- 16 Round.
- 16 subkeys of length 48 bits.

KEY GENERATION:

- DES depends on the use of a 64-bit key shared between sender and receiver.
- From this key, 16 48-bit subkeys are produced for use in particular stages of the encryption and decryption algorithm.

Round Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Round Number Bits Rotated	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

(a) Input Key

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

(b) Permuted Choice One (PC-1)

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

(c) Permuted Choice Two (PC-2)

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2 40 56
41	52	31	37	47	55	30 39	40
51	45	33	48 42	44	49 36	39	56
14 15 26 41 51 34	53	46	42	50	36	29	32

The opposite figures show the overall Feistel structure of DES and the Feistel function (F function) of DES

(a) Initial Permutation (IP)

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

(b) Inverse Initial Permutation (IP⁻¹)

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

(c) Expansion Permutation (E)

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

S-BOX IN DES:

I/p of S-box = 6 bits

O/p of S-box is 4 bits

If i/p of S1 is: 100001

The o/p will be: $(15)_{10} = (1111)_2$

14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0	15	7								12			5	3	8
4	1 12	14					11						10	5	0
15	12	8	2		9						14				13

	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
1	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
	0 4 15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
		13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
2	3	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
	10	- 65		**	,	-	4.5			12		-			-	
	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
3	13 13	7	0	9	3	15	6	10	2	8	5	14 12	12	11	15 14	1
	13	10	13	0	8	9	8	7	4	15	14	3	11	5	2	12
	- 1	10	13	U	0	9	0		4	D	14	3	11	3	4	14
	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	-
4	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14
	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	-
5		2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	2
	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	1
	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	
6	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	- 1
	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	1
	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	- 1
	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	-
1	13 1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
8	7 2	11	4	1	9	12	14	2	0	6	10	13	15	3	5	1
	75	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

DES DECRYPTION:

• The decryption scheme of the DES is the same as the encryption scheme but using the subkeys in reverse order.

DES VS S-DES

DES	S-DES
DES is a block cipher.	S-DES is a block cipher.
(Plaintext and Ciphertxt size= 64 bits)	(Plaintext and Ciphertxt size= 8 bits)
Efficient Master Key size is 56 bits.	Master Key of size 10 bits.
Brute force attack will try 2^56 possible	Brute force attack will try 2^10 possible
key.	key.
16 Round.	2 Round.
16 subkeys of length 48 bits.	2 subkeys of length 8 bits.

THE AVALANCHE EFFECT

- A desirable property of any encryption algorithm is that a small change in either the plaintext or the key should produce a significant change in the ciphertext.
- A change in one bit of the plaintext or one bit of the key should produce a change in many bits of the ciphertext.
- This is referred to as the avalanche effect.
- If the change were small, this might provide a way to reduce the size of the plaintext or key space to be searched.