	Physikalisches Pra		
Name 1:		Datum:	
Name 2:		Platz Nr:	
21	Energieverteilung im Spektrum		
Das Prisma	steht auf Minimalablenkung der gelben Hg	-Linie.	
Lage der gel	ben Hg-Linie γ_0 =		

1. Kontrolle der Eichkurve $\lambda = f(\gamma)$

Farbe	γ	γ ₀ -γ	λ	λ/nm	$\log_{10}(\lambda/\mu m)$
gelb				578,0	
grün				546,0	
infrarot 1				1014,0	
infrarot 2				1367,0	

2. Energieverteilung einer Wolframbandlampe

 λ kann mit dem angegebenen Polynom direkt aus γ – γ bestimmt werden, oder nach grafischer Bestimmung von log λ . Die Benutzung eines Tabellenkalkulationsprogramms ist sehr empfehlenswert!

	1. Messung V _e =						
γ	γ ₀ γ	log λ	λ	log dλ/dγ	dλ/dγ	I	CE

2. Messung $V_e =$							
γ	γ ₀ γ	log λ	λ	log dλ/dγ	dλ/dγ	I	CE

3. Messung $V_e =$							
γ	γ ₀ γ	log λ	λ	$\log d\lambda/d\gamma $	dλ/dγ	I	CE

3. Wiensches Verschiebungsgesetz

	V _e	λ_{max}	T _{abs}
1. Messung			
2. Messung			
3. Messung			

