Exercices avec corrigé succinct du chapitre 5

(Remarque: les références ne sont pas gérées dans ce document, par contre les quelques?? qui apparaissent dans ce texte sont bien définis dans la version écran complète du chapitre 5)

Exercice V.1

Soit f une fonction connue aux points d'abscisse t_i $(0 \le i \le n)$, supposées toutes distinctes. Soit l'ensemble \mathcal{P}_n des polynômes de degré inférieur ou égal à n. Tout polynôme p de \mathcal{P}_n peut s'écrire

$$p(t) = a_0 + a_1 t + \dots + a_n t^n.$$

On cherche $p \in \mathcal{P}_n$ tel que $p(t_i) = f(t_i), i = 0,...,n$.

Ecrire les conditions d'interpolation, montrer que le système linéaire obtenu admet une solution unique.

Solution : Le problème s'écrit :

$$\sum_{k=0}^{n} a_k t_i^k = f(t_i), \quad i = 0, \dots, n.$$

C'est donc un système linéaire de n+1 équations à n+1 inconnues. Ce problème a une solution unique puisque la matrice M du système (appelée matrice de Van der Monde) est alors inversible.

$$M = \begin{pmatrix} 1 & t_0 & \dots & t_0^n \\ 1 & t_1 & \dots & t_1^n \\ \dots & \dots & \dots & \dots \\ 1 & t_n & \dots & t_n^n \end{pmatrix}$$

Exercice V.2

On suppose la fonction f connue aux points $\{-1,0,1\}$ où elle prend les valeurs $\{0,1,0\}$ et soit \mathcal{P}_m l'ensemble des polynômes de degré au plus m. Quelle est la valeur minimale de m qui conduit à une technique d'interpolation? Pour quelle valeur de m le polynôme d'interpolation est unique?

Solution : On doit avoir $m \ge 2$ car par trois points non alignés on ne peut faire passer une droite! Pour m = 2, le polynôme d'interpolation s'écrit $p(t) = 1 - t^2$. Remarquons que pour m > 2, il passe un infinité de polynômes par trois points.

Exercice V.3

On considère les points du plan $\{(t_i, z_i), 0 \le i \le n\}$ avec $t_0 < t_1 < \dots < t_n$.

- 1. Écrire l'équation de la droite passant par les points (t_i, z_i) et (t_{i+1}, z_{i+1}) en utilisant la base de Lagrange.
- 2. Écrire l'équation de la ligne brisée qui interpole tous les points.

Solution:

1. La droite passant par les points (t_i, z_i) et (t_{i+1}, z_{i+1}) a pour équation $y = g_i(t)$. g_i s'écrit:

$$g_i(t) = z_i \frac{t - t_{i+1}}{t_i - t_{i+1}} + z_{i+1} \frac{t - t_i}{t_{i+1} - t_i}.$$

2. La ligne brisée a pour équation y = g(t) où q est une fonction définie par morceau:

$$g(t) = \begin{cases} g_0(t) & \text{pour } t \in [t_0, t_1] \\ g_1(t) & \text{pour } t \in [t_1, t_2] \\ \dots \\ g_{n-1}(t) & \text{pour } t \in [t_{n-1}, t_n] \end{cases}$$

On peut remarquer que $g_i(t_{i+1}) = g_{i+1}(t_{i+1}) = z_{i+1}$, la fonction g est une fonction continue sur $[t_0,t_n]$, par contre g n'est pas dérivable aux points $t_1,...,t_{n-1}$, en ces points la courbe présente des points anguleux, les derivées à droite et à gauche existent mais sont différentes.

On verra plus loin les splines cubiques qui sont également définies par morceaux, mais qui ont plus de régularité.

Exercice V.4

Soit n un entier naturel.

- 1. Calculer l'erreur commise en interpolant la fonction $f(t) = t^n$, définie sur l'intervalle [0,1], en les points $t_i = i/n$, $i = 0,1,\ldots,n$, à l'aide du polynôme d'interpolation de Lagrange de degré n. Expliquer le résultat.
- 2. Même question pour la fonction $g(t) = t^{n+1}$.

Solution:

1. Si l'on applique le résultat sur le calcul d'erreur, on trouve

$$e(t) = 0$$

car la dérivée d'ordre n+1 d'un polynôme de degré n est nulle. Ce résultat s'explique car par n+1 points il passe un polynôme et un seul de degré n, c'est donc t^n !

2. Si l'on applique le résultat sur le calcul d'erreur, on trouve

$$e(t) = \frac{1}{(n+1)!}(n+1)!\pi_n(t) = \pi_n(t),$$

car la dérivée d'ordre n+1 d'un polynôme de degré t^{n+1} est (n+1)!.

On aurait pu retrouver ce résultat directement. Si l'on note p le polynôme de degré inférieur ou égal à n tel que $p(t_i) = g(t_i), i = 0,1,...,n$, alors g-p est un polynôme de degré inférieur ou égal à n+1 qui vérifie $(g-p)(t_i) = 0$, donc $e(t) = (g-p)(t) = \alpha(t-t_0)(t-t_1)...(t-t_n)$, or le coefficient de t^{n+1} dans le polynôme g-p est 1, donc $\alpha=1$

Exercice V.5

Montrer que les polynômes

$$1, (t-t_0), (t-t_0)(t-t_1), \ldots, (t-t_0)(t-t_1)\cdots(t-t_{n-1}),$$

forment une base de \mathcal{P}_n , ensemble des polynômes de degré inférieur ou égal à n.

Solution: Les polynômes étant tous de degré distinct, il est facile de montrer qu'ils sont linéairement indépendants. Or \mathcal{P}_n est un espace vectoriel de dimension n+1. Donc toute famille libre de \mathcal{P}_n de n+1 éléments est une base de \mathcal{P}_n .

Exercice V.6

On a $t_0 = 1, t_1 = 2, t_2 = 3, f(t_0) = 1, f(t_1) = 3, f(t_2) = 4.$

Ecrire le polynome p_0 de degré 0 qui interpole f en t_0 .

Ecrire le polynome p_1 de degré 1 qui interpole f en t_0,t_1 .

Ecrire le polynome p_2 de degré 2 qui interpole f en t_0,t_1,t_2 .

Ecrire chacun des polynômes dans la base de Newton.

Solution: On a

$$p_0(t) = f(t_0) = 1.$$

On a $p_1(t) = c_0 + c_1(t - t_0)$, on écrit que $p_1(t_0) = f(t_0), p_1(t_1) = f(t_1)$, on obtient les coefficients $c_0 = 1, c_1 = 2$,

$$p_1(t) = 1 + 2(t-1).$$

On a $p_2(t) = c_0' + c_1'(t - t_0) + c_2'(t - t_0)(t - t_1)$, on écrit que $p_2(t_0) = f(t_0), p_2(t_1) = f(t_1), p_2(t_2) = f(t_2)$, on obtient les coefficients $c_0' = 1, c_1' = 2, c_3' = -\frac{1}{2}$,

$$p_2(t) = 1 + 2(t-1) - \frac{1}{2}(t-1)(t-2).$$

On remarque bien, comme indiqué dans le paragraphe de cours, que les polynômes sont 'emboités' et que pour chaque nouveau polynôme il suffit de calculer un seul coefficient. \Box

Exercice V.7

Soit $\theta \in \mathbb{R}$ donné, soit p_n le polynôme de degré inférieur ou égal à n qui interpole f en $t_0, t_1, ..., t_n$, on veut évaluer l'erreur en θ , c'est à dire $e_n(\theta) = f(\theta) - p_n(\theta)$. Si θ est égal à l'un des t_i , l'erreur est nulle.

Supposons maintenant que $\theta \neq t_i, \forall i = 0,...,n$.

On définit alors le polynôme p par

$$p(t) = p_n(t) + \Pi_n(t) \frac{f(\theta) - p_n(\theta)}{\Pi_n(\theta)}$$

où $\Pi_n(t) = \prod_{i=0}^n (t - t_i).$

- 1. Montrez que p interpole f aux points $\{t_0, t_1, \dots, t_n, \theta\}$. Quel est le degré de p?
- 2. En déduire $p(t) p_n(t)$ en fonction de $f[t_0, t_1, \dots, t_n, t]$.
- 3. En déduire le calcul de l'erreur $e_n(\theta) = f(\theta) p_n(\theta)$.

Solution:

- 1. Par construction de p, il est facile de montrer que $p(t_i) = f(t_i)$ pour i = 0, ..., n et $p(\theta) = f(\theta)$. Le degré de ce polynôme est évidemment égal à n + 1.
- 2. Les propriétés du polynôme de Newton donne :

$$p(t) = p_n(t) + f[t_0, t_1, \dots, t_n, t]\Pi_n(t).$$

3. $e_n(\theta) = f(\theta) - p_n(\theta) = p(\theta) - p_n(\theta) = f[t_0, t_1, \dots, t_n, \theta] \Pi_n(\theta).$

Exercice V.8

Soit la fonction f connue aux trois points d'abscisse t_0 , t_1 et t_2 . On considère le polynôme d'interpolation dans la base de Newton avec les notations du cours. Montrer, par le calcul, que

$$c_2 = f[t_0, t_1, t_2]$$

en utilisant la définition et la symétrie des différences divisées.

Solution : Le polynôme s'écrit

$$p(t) = c_0 + c_1(t - t_0) + c_2(t - t_0)(t - t_1).$$

Or

$$p(t_0) = f(t_0) \Rightarrow c_0 = f[t_0]$$

$$p(t_1) = f(t_1) \Rightarrow c_1 = \frac{f(t_1) - f(t_0)}{t_1 - t_0} = \frac{f(t_0) - f(t_1)}{t_0 - t_1} = f[t_0, t_1]$$

$$p(t_2) = f(t_2) \Rightarrow c_2 = \frac{\frac{f(t_2) - f(t_0)}{t_2 - t_0} - f[t_0, t_1]}{t_2 - t_1} = \frac{f[t_2, t_0] - f[t_0, t_1]}{t_2 - t_1} = f[t_2, t_0, t_1] = f[t_0, t_1, t_2]$$

On a utilisé la symétrie des différences divisées.

Exercice V.9

Calculer les coefficients c_k du polynôme d'interpolation p_3 de l'exemple ??, dans la base de Newton. **Solution :** Pour calculer les coefficients de $p_3(t)$ dans la base de Newton, nous sommes conduits à construire le tableau proposé dans le cours pour n=3, ce qui avec les données de l'exercice nous donne :

	k = 0	k = 1	k = 2	k=3
$t_0 = 0$	$f[t_0] = \frac{1}{2}$			
$t_1 = 1$	$f[t_1] = 1$	$f[t_0, t_1] = \frac{1}{2}$		
$t_2 = 2$	$f[t_2] = 2$	$f[t_1, t_2] = 1$	$f[t_0, t_1, t_2] = \frac{1}{4}$	
$t_3 = 3$	$f[t_3] = -\frac{1}{2}$	$f[t_2, t_3] = -\frac{5}{2}$	$f[t_1, t_2, t_3] = -\frac{7}{4}$	$f[t_0, t_1, t_2, t_3] = -\frac{2}{3}$

On peut donc écrire $p_3(t)$ de la façon suivante:

$$p_3(t) = \frac{1}{2} + \frac{1}{2}t + \frac{1}{4}t(t-1) - \frac{2}{3}t(t-1)(t-2).$$

Exercice V.10

On a calculé à l'aide des différences divisées le polynôme p_n d'interpolation de f aux points $\{t_0, \ldots, t_n\}$. On désire rajouter un point d'interpolation t_{n+1} . Doit-on refaire tout le tableau des différences divisées? Et, si on utilisait la base des polynômes de Lagrange, devrait-on refaire tous les calculs?

Solution: Si vous avez compris les calculs effectués dans le tableau des différences divisées du

paragraphe ??, il suffit d'ajouter une ligne à ce tableau pour ajouter un point d'interpolation. Les coefficients $\{c_0, \ldots, c_n\}$ sont les mêmes que ceux de p_n le dernier coefficient de la dernière ligne donnera c_{n+1} . Si les calculs ont été faits à la main, vous les avez évidemment gardés. Par contre, si vous avez utilisé l'algorithme donné dans le même paragraphe, une colonne se superpose à la précédente, et le tableau complet n'est donc pas gardé en mémoire. Il faut donc penser à stocker le tableau ...

En ce qui concerne la base des polynômes de Lagrange, chacun d'eux est construit à partir de tous les points d'interpolation, ce qui nécessite de recalculer tous ces polynômes lorsque l'on rajoute un point d'interpolation!

Exercice V.11

Calculer le nombre d'opérations arithmétiques nécessaires pour évaluer, en un point t, la valeur de

$$p_n(t) = c_0 + c_1(t - t_0) + c_2(t - t_0)(t - t_1) + \dots + c_n(t - t_0)(t - t_1) \dots (t - t_{n-1}).$$

- 1. Par la méthode 'naturelle', en écrivant l'algorithme
- 2. Par le schéma de Horner.

Solution:

1. L'algorithme "classique" est le suivant :

1: Les données sont : $c_0, \ldots, c_n, t_0, \ldots, t_{n-1}, t$

2: $q = t - t_0$

3: $p = c_0 + c_1 * q$

4: **pour** k = 2 jusqu'à n **faire**

5: $q = q * (t - t_{k-1})$

 $6: \quad p = p + c_k * q$

7: fin pour

Ceci correspond à 2n-1 multiplications, n additions et n soustractions.

2. Le schéma de Horner, dont l'algorithme est donné dans le cours compte n multiplications, n additions et n soustractions.

Exercice V.12

Mettre en évidence expérimentalement, en utilisant un logiciel de calcul (Matlab, Scilab,...) les difficultés de l'interpolation polynomiale de la fonction $1/(1+t^2)$ sur l'intervalle [-5, +5].

Exercice V.13

- 1. Compter le nombre de degrés de liberté à déterminer pour définir complètement une spline cubique.
- 2. Compter le nombre d'équations disponibles pour ce faire. Comparer.

Solution : Sur chacun des n intervalles $[t_i, t_{i+1}], i = 0, ..., n-1, g$ est un polynôme de degré inférieur ou égal à 3, on a donc $g(t) = \alpha_i + \beta_i t + \gamma_i t^2 + \delta_i t^3$, il y a donc 4n inconnues.

On doit avoir

$$g(t_i^+) = g(t_i^-), g'(t_i^+) = g'(t_i^-), g''(t_i^+) = g''(t_i^-), i = 1, ..., n - 1$$

afin que la fonction q soit 2 fois continûment dérivable. On obtient donc 3(n-1) équations.

La fonction g doit interpoler, on doit donc avoir $g(t_i) = y_i, i = 0,...,n$.

On a donc au total 3n - 3 + n + 1 = 4n - 2 équations.

Il manque donc deux équations, c'est pourquoi on impose, par exemple, les conditions supplémentaires :

$$g''(t_0) = g''(t_n) = 0$$