EECE1001: BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

(Common to all)

L T P C 2 1 2 4

This course introduces the fundamental principles and building blocks of electrical and electronics engineering. The first three units cover the electric circuit laws, theorems, and principles of electrical machines. The last two units cover semiconductor devices and their applications.

Course Objectives:

- To impart the analysis and design aspects of DC networks in electrical and electronic circuits
- To explain the basic concepts of AC networks used in electrical and electronic circuits.
- To demonstrate the importance and operating principles of electrical machines (transformers, motors and generators)
- To impart the knowledge about the characteristics, working principles and applications of semiconductor diodes, Metal Oxide Semiconductor Field Effect Transistors (MOSFETs).
- To expose to basic concepts and applications of Operational Amplifier and configurations.

Unit I: 7L

DC Circuits: Basic circuit elements and sources, Ohms law, Kirchhoff's laws, series and parallel connection of circuit elements, Node voltage analysis, Mesh current analysis, Superposition, Thevenin's and maximum power transfer theorems.

Learning Outcomes

After completion of this unit the student will be able to

- state Ohms law and Kirchhoff's Laws (L1).
- calculate equivalent resistance of series and parallel connections in a circuit (L1).
- able to calculate voltage and current using voltage and current division methods (L2).
- determine the current, voltage and power in the given electrical circuit (L4).
- apply various theorems to analyze an electric circuit (L3).

Unit II: 8L

AC Circuits: Alternating voltages and currents, AC values, single phase RL, RC, RLC series circuits, power in AC circuits, Power Factor, three phase systems-Star and Delta Connection-Three phase power measurement.

Learning Outcomes:

After completion of this unit, the student will be able to

- describe AC voltages and currents (L1).
- analyze Series RL, RC and RLC circuits (L4).
- Learn calculations of power factor and power measurement (L2)
- Understand star and delta connections in three phase systems (L3).

Unit III: 9L

Electrical Machines: Construction, working principle and application of DC machines, Transformers, single phase and three phase Induction motors, special machines-Stepper motor, Servo motor and BLDC motor.

Learning Outcomes:

After completion of this unit, the student will be able to

- Understand working principle of dc machines (L1).
- demonstrate principle operation of transformer (L3).
- discuss about open and short- circuit tests of transformer (L2).
- explain the working principle of three phase induction motor (L5).
- gain knowledge on applications as special machines, stepper motor (L1).
- Identify and choose servo motor and BLDC motor applications (L2).

Unit IV:

Semiconductor Devices: p-n Junction diode - Basic operating principle, current-voltage characteristics, rectifier circuits (half-wave, full-wave, rectifier with filter capacitor), Zener diode as Voltage Regulator; Metal oxide semiconductor field effect transistor (MOSFET): Operation of NMOS and PMOS FETs, MOSFET as an amplifier and switch.

Learning Outcomes:

After completion of this unit, the student will be able to

- describe the device structure and physical operation of a diode (L1).
- discuss V-I characteristics of diodes (L2).
- explain the use of diode as switch and in electronic circuits (L2).
- describe the construction and operation of n-channel and p-channel MOSFETs (L1).
- explain the use of MOSFET as an amplifier and bidirectional switch(L2).

Unit V: 8L

Operational Amplifiers: The Ideal Op-amp, The Inverting Configuration, The closed loop gain, Effect of Finite open-loop gain, The Noninverting Configuration, The closed loop gain, Characteristics of Non-Inverting Configuration, Difference amplifiers, A Single Op-amp difference amplifier. Adders, subtractors, integrators, differentiators, filter circuits using Opamps (first-order low pass and high pass structures).

Learning Outcomes:

After completion of this unit the student will be able to

- list the characteristics of an ideal Op Amp (L1).
- design the Inverting and Noninverting configurations of Op-Amp(L2).
- construct a single Op-amp difference amplifier (L3).
- List several applications of opamps

Basic Electrical and Electronics Engineering Laboratory

List of Experiments:

- 1. Verification of Kirchhoff's Laws.
- 2. Verification of DC Superposition Theorem.
- 3. Verification of Thevenin's Theorem.
- 4. Verification of Maximum power transfer Theorem.
- 5. Load test on DC generator.
- 6. Load test on single phase transformer.
- 7. Measurement of voltage, current and power factor of single phase RL, RC series circuits.
- 8. Measurement of voltage, current and power factor of single phase RLC series circuit.
- 9. Measurement of power in a three phase circuit.
- 10. Current Voltage Characteristics of a p-n Junction Diode/LED.
- 11. Diode Rectifier Circuits.
- 12. Voltage Regulation with Zener Diodes.
- 13. Design of a MOSTFET amplifier and MOSFET inverter/NOR gate
- 14. Inverting and Non-inverting Amplifier Design with Op-amps.
- 15. Simulation experiments using PSPICE
 - (a) Diode and Transistor Circuit Analysis.
 - (b) MOSFET Amplifier design.
 - (c) Inverting and Noninverting Amplifier Design with Op-amps.

Text Book(s):

- 1. D. P. Kothari, I. J. Nagrath, Basic Electrical and Electronics Engineering, 1/e, McGraw Hill Education (India) Private Limited, 2017.
- 2. B. L. Theraja, Fundamentals of Electrical Engineering and Electronics, 1/e, S. Chand Publishing, New Delhi, 2006.
- 3. Adel S. Sedra and Kenneth C. Smith, Microelectronic Circuits 6/e, Oxford University Press, 2014.

References:

- 1. S.K. Bhattacharya, Basic Electrical and Electronics Engineering, Pearson Education, 2011.
- 2. Dharma Raj Cheruku, B T Krishna, Electronic Devices and Circuits, 2/e, Pearson Education, 2008.
- 3. R. K. Rajput, Basic Electrical and Electronics Engineering, University Science Press, New Delhi, 2012.

Course Outcomes:

After completion of this course, the student will be able to

- predict and analyze the behavior of an electrical circuit (L3).
- analyze the performance quantities such as losses, efficiency and identify applications of DC machines (L4).
- explain the use of transformers in transmission and distribution of electric power and other applications (L2).
- demonstrate the operation and applications of various electronic devices (L2).
- construct Inverting and Noninverting configurations of Op-amp (L3).