$Bayesian \ \ Calculations: \ Simulation \ of \ Coin \ Flipping$

 $Andy\ Grogan\text{-}Kaylor$

2020-03-04

Contents

- 1 Background 1
- 2 Bayes Rule 1
- 3 This Example 2
- 4 Prior 2
- 5 The Data 2
- 6 Likelihood 3
- 7 Posterior 4
- 8 Credits 5

1 Background

Bayes Theorem allows us to state our *prior* beliefs, to calculate the *likelihood* of our data given those beliefs, and then to update those beliefs with data, thus arriving at a set of *posterior* beliefs. However, Bayesian calculations can be difficult to understand. This document attempts to provide a simple walkthrough of some Bayesian calculations.

2 Bayes Rule

A draft interactive version of these ideas can be found here.

Mathematically Bayes Theorem is as follows:

$$P(H|D) = \frac{P(D|H)P(H)}{P(D)}$$

In words, Bayes Theorem may be written as follows:

$$posterior = \frac{likelihood*prior}{data}$$

Our posterior beliefs are proportional to our prior beliefs, multiplied by the likelihood of those beliefs, given the data.

This Example

In this example, we provide an example of using Bayes Theorem to examine our conclusions about the proportion of heads when a coin is flipped 10 times.

Conventionally, we call this proportion that we are trying to estimate θ .

For the sake of simplicity, this example uses a relatively simple set of prior beliefs about 3 possible values for the proportion θ .

R code in this example is adapted and simplified from Kruschke (2011), p. 70

4 Prior

We set a simple set of prior beliefs, concerning 3 values of θ , the proportion of heads.

```
theta1 <- c(0.25, 0.50, 0.75) # candidate parameter values
ptheta1 <- c(.25, .50, .25) # prior probabilities
ptheta1 <- ptheta1/sum(ptheta1) # normalize</pre>
```

Our values of θ are 0.25, 0.5 and 0.75, with probabilities $P(\theta)$ of 0.25, 0.5 and 0.25.

```
barplot(names.arg = theta1,
       height = ptheta1,
       main = "prior probabilities",
        col = "#FFBB00") # graph
```

myBayesianEstimates <- tibble(theta1, ptheta1)</pre>

pander(myBayesianEstimates) # nice table

theta1	ptheta1	
0.25	0.25	
0.5	0.5	
0.75	0.25	

5 The Data

10 coin flips. 1 Heads. 9 Tails.

likelihood

0.5

0.25

0.75

```
data1 \leftarrow c(1, 0, 0, 0, 0, 0, 0, 0, 0, 0) # the data
data1_factor <- factor(data1,</pre>
                       levels = c(0,1),
                       labels = c("T", "H"))
n_heads <- sum(data1 == 1) # number of heads
n_tails <- sum(data1 == 0) # number of tails
plot(x = seq(1,10), #x from 1 to 10)
     y = rep(1,10), # y = 1
     col = data1_factor, # color by data
     cex = 3, # size
     lwd = 2, # line width
     axes = FALSE,
     main = "10 Coin Tosses",
     xlab = " ",
     ylab = " ")
text(x = seq(1,10), #x from 1 to 10)
                                                                            10 Coin Tosses
     y = rep(1,10), # y = 1
     labels = data1_factor) # label with data1_factor
                                                                       \Theta
```

6 Likelihood

The likelihood is the probability that a given value of θ would produce this number of heads.

```
The probability of multiple independent events A, B, C, etc. is
P(A, B, C, ...) = P(A) * P(B) * P(C) * ....
```

Therefore, in this case, the likelihood is proportional to $[P(heads)]^{\text{number of heads}}$ and multiply this by $[P(tails)]^{\text{number of tails}}$.

Thus:

```
\mathcal{L}(\theta) \propto \theta^{\text{number of heads}} * (1 - \theta)^{\text{number of tails}}
likelihood1 <- theta1^n_heads * (1 - theta1)^n_tails # likelihood
barplot(names.arg = theta1,
          height = likelihood1,
          main = "likelihood",
          col = "#375E97") # graph
```

At this point our estimates include not only a value of θ and $P(\theta)$, but also the likelihood, $\mathcal{L}(\theta)$.

myBayesianEstimates <- tibble(theta1, ptheta1, likelihood1)</pre>

pander(myBayesianEstimates) # nice table

theta1	ptheta1	likelihood1
0.25	0.25	0.01877
0.5	0.5	0.0009766
0.75	0.25	$2.861\mathrm{e}\text{-}06$

γ Posterior

We then calculate the denominator of Bayes theorem:

$$\Sigma[\mathcal{L}(\theta) * P(\theta)]$$

pdata1 <- sum(likelihood1 * ptheta1) # normalize</pre>

We then use Bayes Rule to calculate the posterior:

$$P(H|D) = \frac{P(D|H)P(H)}{P(D)}$$

posterior1 <- likelihood1 * ptheta1 / pdata1 # Bayes Rule</pre>

```
barplot(names.arg = theta1,
        height = posterior1,
        main = "posterior",
        col = "#3F681C") # graph
```

Our estimates now include θ , $P(\theta)$, $\mathcal{L}(\theta)$ and $P(\theta|D)$.

myBayesianEstimates <- tibble(theta1, ptheta1, likelihood1, posterior1)</pre>

pander(myBayesianEstimates) # nice table

theta1	ptheta1	likelihood1	posterior1
0.25	0.25	0.01877	0.9056
0.5	0.5	0.0009766	0.09423
0.75	0.25	$2.861\mathrm{e}\text{-}06$	0.000138

bayesian calculations: simulation of coin flipping 5

8 Credits

Prepared by Andy Grogan-Kaylor agrogan@umich.edu, www.umich.edu/~agrogan.

Questions, comments and corrections are most welcome.