315 490 วิธีการทดลองทางฟิสิกส์ 4(3-3-3) การประมวลผลภาพแบบคิจิตอล

(Digital Image Processing) 6 ชม.

คร. จันทร์เพ็ญ โทมัส ภาควิชาฟิสิกส์ คณะวิทยาศาสตร์ ม. ขอนแก่น

- การประมวลผลภาพ คืออะไร
- นิยามเทอมต่างๆ ที่เกี่ยวข้อง
- Image Enhancement
- Image Restoration
- Image Segmentation

4. การปรับภาพให้ดีขึ้น (Image Improvement) (1)

แบ่งเป็น

- 1. Image Enhancement การปรับภาพเพื่อให้สามารถเห็นความ แตกต่างของรายละเอียดในภาพชัดเจนขึ้น
- 2. Image Restoration การปรับภาพในลักษณะ "กู้ภาพคืน" เพื่อให้สามารถเห็น รายละเอียดในภาพได้ชัดเจนขึ้น เช่น
 - * ปรับภาพที่ blur เนื่องจากวัตถุที่ถูกถ่ายภาพเคลื่อนที่ เลนส์กล้องไม่โฟกัส
 - * ปรับภาพที่บิดเพี้ยนเชิงเรขาคณิตเนื่องจากระบบการถ่ายภาพ สำหรับภาพ 1 ภาพ เพื่อให้ได้เป้าหมายความชัดเจนของ รายละเอียดอาจต้องทำทั้ง restoration & enhancement

4.1 Image Enhancement พื้นฐาน (1)

วิธีการแบ่งเป็น 2 แบบใหญ่ๆ คือ

- Spatial-domain technique ทำในโดเมนภาพ
 - Point operation หรือ pixel-by-pixel
 - Local operation โดยใช้ Mask มา convolute กับภาพ
- frequency-domain technique (frequency-spatial frequency ความถี่ของการเปลี่ยนแปลงในเชิงตำแหน่ง) ทำในโดเมนความถี่ เชิงตำแหน่ง ผ่านการแปลงฟูริเยร์ (Fourier transform)
 - Low pass filtering
 - High pass filtering
 - Band pass filtering, Band stop filtering

4.1.1 Spatial-domain techniques: Point operation

- เป็นการเปลี่ยนความเข้มที่ละจุดภาพ (pixel-by-pixel)
- เป็น gray-level transformation/mapping ในรูป

s = T(r)gray level ใหม่
ของจุดภาพ (x, y) mapping จุดภาพ (x, y) function

• T อาจเป็นฟังก์ชันง่ายๆ หรือมีเทคนิค Histogram equalization

4.1.1 Spatial-domain techniques: Local operation (1)

- Local operation เป็นการนำข้อมูล ของจุดภาพเพื่อนบ้านมาร่วม พิจารณา
- ใช้ mask (บางครั้งเรียก template, window หรือ filters) มา convolute กับภาพ
- mask เล็กสุดคือขนาด 3 × 3

เพื่อนบ้าน ของจุคภาพ

	m-1, n	
m, n-1	m, n	m, n+1
	m+1, n	

4-neighbourhood

			ภ	าพ			
	0	1	n				N-1
0							
1							
m			X				
M-1							
	 (1	n. 1	 — คือจ	_ เคภ	 ∣าพ	(x.	 v)

m-1, n-1	m-1, n	m-1, n
m, n-1	m, n	m, n+1
m-1, n	m+1, n	m-1, n

8-neighbourhood, 3x3 nighbourhood รอบจุค (m, n)

คอนโวลูชัน (convolution) (1)

1D convolution

$$f(x) * g(x) = \int_{-\infty}^{\infty} f(\alpha)g(x - \alpha)d\alpha$$

คอนโวลูชัน (convolution) (2)

2D convolution

$$f(x,y) * g(x,y)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\alpha,\beta)g(x-\alpha,y-\beta)d\alpha d\beta$$

4.1.1 Spatial-domain techniques: Local operation (2) คอนโวลูชัน (convolution)

\mathbf{W}_{1}	W_2	W_3
(x-1, y-1)	(x-1, y)	(x-1, y+1)
W ₄	W ₅	W ₆
(x, y-1)	(x, y)	(x, y+1)
W ₇	W ₈	W ₉
(x+1, y-1)	(x+1, y)	(x+1, y+1)

 mask จะเคลื่อนไปจุดภาพอื่น โดยจุดกลาง mask จะทับกับ จุดภาพที่ต้องการหาค่าใหม่

· เวลาการคำนวณจะเพิ่มตาม ขนาดของ mask

```
g(x,y) = T[f(x,y)]
= W1f(x-1,y-1) + W2f(x-1,y) + W3f(x-1,y)
ค่าระดับเทา
+ W4f(x,y-1) + W5f(x,y) + W6f(x,y+1)
+ W7f(x+1,y-1) + W8f(x+1,y) + W9f(x+1,y+1)
```

4.1.1 Spatial-domain techniques: Local operation (3)

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

ค่า g(x, y) เป็นค่าเฉลี่ยของ จุคภาพ (x, y) และ 8-เพื่อนบ้าน

-1	-1	-1
-1	8	-1
-1	-1	-1

เหมาะใช้กับภาพที่มีความเข้มเท่ากัน แต่ มีจุดที่มีความเข้มต่างออกไปกระจายอยู่

- จุดภาพตามขอบภาพอาจถูกตัด
 ออกเพราะไม่มีจุดภาพเพื่อนบ้าน
 -> ภาพผลลัพธ์ขนาดเล็กลง
- บางกรณีอาจม้วนภาพกลับทั้งทาง
 x และ y เสมือนเป็นภาพแบบ
 periodic -> ภาพผลลัพธ์ขนาดเท่า
 เดิม แต่ค่าที่ขอบภาพจะเพี้ยนบ้าง
- บางครั้งเรียก convolution mask เพราะกระบวนการคล้ายการ convolution
 - ขนาด mask <u>ไม่ต้องเท่ากับ</u>ขนาด ของภาพ

4.1.2 Frequency-domain methods (1)

```
หลักพื้นฐานจาก Convolution theorem

f(x, y) ภาพเริ่มต้น, g(x, y) ภาพผลลัพธ์

h(x, y) - position-invariant operator

(ผลการ operation ขึ้นกับค่า f(x, y) ที่จุดนั้น

เท่านั้น ไม่ขึ้นกับตำแหน่ง)
```

F.T. = Fourier transform, inv F.T. = inverse Fourier transform

```
Convolution => g(x, y) = h(x, y) * f(x, y) ทฤษฎี Convolution => G(u, v) = H(u, v) F(u, v) (F.T. ของ g) (F.T. ของ h)(F.T. ของ f) H(u, v) - 15 211 Transfer function ของกระบวนการ (หรือเรียก filter) => g(x, y) = inv F.T.[H(u, v) F(u, v)] = h(x, y) * f(x, y)
```

4.1.2 Frequency-domain methods (2)

- ถ้า H(u, v) เป็น F.T. ของ Convolution mask h(x, y) ใน spatial-domain method
- => H(u, v) และ h(x, y) **ต้อง**มีขนาดเดียวกัน
 - \therefore mask <u>ขนาดใหญ่เท่า</u>ภาพ f(x, y)
- ในการทำ Fourier Transform ต้องตระหนักถึง Sampling theorem เพื่อลด aliasing effect ซึ่งเป็นผลจาก Sampling rate (= $1/\Delta x$) ต่ำ ไป เมื่อเทียบกับความถี่สูงสุด (w) ในข้อมูล (จาก F.T. ของข้อมูล ซึ่งให้ความถี่ในช่วง [-w, w] กรณีฟังก์ชันต่อเนื่อง)
- ถ้า Δx ใหญ่ไป จะเกิดการซ้อนกันของฟังก์ชันใน frequency domain ดังนั้น ต้องเลือก Δx ให้เหมาะสม

4.1.2 Frequency-domain methods (3)

รูปที่ 4.1 การพัฒนาแนวคิดของการสุ่มข้อมูล (sampling)

4.1.2 Frequency-domain methods (4)

Sampling theorem

อัตราเร็วหรือความถิ่ของการสุ่มข้อมูล (1/ Δx) จะต้องสูงเป็นอย่างน้อย 2 เท่าของความถิ่สูงสุด (w) ในข้อมูล => 1/(2 Δx) \geq w หรือ $\Delta x \leq$ 1/2w

4.2 Point Operation Image Enhancement (1) (Spatial domain)

บางครั้งเรียก gray scale modification, gray scale mapping เป็นการเปลี่ยนค่า gray scale ของจุดภาพแบบจุดต่อจุดโดยใช้ transformation function

$$s = T(r) \tag{1}$$

เมื่อ r, s คือ ค่า gray scale ก่อนและหลังการปรับของจุดภาพ (x, y)

T คือ transformation function หรือ mapping

L คือ จำนวนระดับเทาในภาพ (ระดับเทา k = 0, ..., L-1)

หลักการ เพื่อความสะควกให้ค่า r normalized อยู่ในช่วง [0, 1]

$$0 \le r \le 1$$
 (โดยที่ $r = k/(L-1)$) (2)

คำ / มืดสุด ขาว / สว่างสุด

4.2 Point Operation Image Enhancement (2)

ไเงื่อนไขของ T(r) คือ

- ก) T(r) ต้องเป็นค่าเคี่ยวและเพิ่มขึ้นทางเคียวในช่วง $0 \le r \le 1$
- ข) $0 \le T(r) \le 1 สำหรับ <math>0 \le r \le 1 \implies 0 \le s \le 1$

Inverse transform $\Re T = T^{-1}(s)$

4.2 Point Operation Image Enhancement (3)

การกระจายความเข้มของจุดภาพ, Probability density

และ histogram

การกระจายความเข้มของภาพ โดยคำนวณจากความหนาแน่นของ จุดภาพที่มีระดับเทาเท่ากัน ซึ่งจะให้ density function หรือ probability density function p(r) ของค่าระดับเทา

4.2 Point Operation Image Enhancement (4)

ในกรณีภาพคิจิตอล p(r) จะไม่ต่อเนื่อง นิยมเรียก histogram และหา จากจำนวนจุดภาพที่มีระดับเทา r_k จะได้ normalized histogram หรือ probability-density function เป็น

$$p_{k}(r_{k}) = n_{k}/n \quad \text{โดยที่}$$
 (4)

เมื่อ n_k คือ จำนวนจุดภาพที่มีระดับเทา r_k , n คือ จำนวนจุดภาพทั้งหมด $0 \le r_k \le 1, k = 0$, $1, \ldots, L-1$

f(x, y)				
2	2	4	4	
0	2	4	6	
0	2	4	6	
0	2	4	6	

4.2.1 Global Enhancement (1)

การปรับค่าระดับเทาโดยพิจารณา density function ของทั้งภาพ

4.2.1 Global Enhancement (2)

1. ปรับ brightness & contrast (2)

สมการปรับ brightness & contrast s = T(r) = cr + b

4.2.1 Global Enhancement (3)

2. Histogram equalization (1)
เป็นการปรับ histogram เพื่อให้เห็นรายละเอียดในภาพ
ชัดเจนมีความแตกต่างมากขึ้น โดยทำให้การกระจาย probability
density ครอบคลุมทั้งช่วงระดับเทาประมาณเท่าๆ กัน เหมาะกับ
ภาพที่มีความแตกต่าง แต่มีความสว่างน้อย

หลัง equalization

ปรับ brightness & contrast

4.2.1 Global Enhancement (4)

2. Histogram equalization: หลักการ

4.2.1 Global Enhancement (5)

2. Histogram equalization: หลักการ (ต่อ)

เพื่อคงความหนาแน่นของจุดภาพในช่วงระดับเทาเล็กๆ

$$p_r(r)\Delta r = p_s(s)\Delta s \implies p_s(s) = p_r(r)(\Delta r/\Delta s)$$

$$\Delta r, \Delta s \longrightarrow 0 \qquad p_s(s) = \left[p_r(r) \frac{dr}{ds} \right]_{r=T^{-1}(s)}$$

$$s = T(r) \qquad ds/dr = T'(r) \implies dr/ds = 1/T'(r)$$

$$p_s(s) = \left[p_r(r) \frac{1}{T'(r)} \right]_{r=T^{-1}(s)}$$

กรณี histogram equalization ต้องการให้ density function เท่ากันหมดตลอดช่วงระดับเทา

$$p_s(s) = [p_r(r)/T'(r)] = 1 \implies T'(r) = p_r(r) \implies s = T(r) = \int_0^r p_r(w) dw$$

4.2.1 Global Enhancement (6)

2. Histogram equalization: หลักการ (ต่อ)

ในทางปฏิบัติ

$$p_{r}(r_{k}) = n_{k}/n \; ; \; 0 \le r_{k} \le 1$$
 $k = 0, 1, ..., L-1 \; (L ระดับเทา)$

 $n_k =$ จำนวนจุดภาพที่มีค่า r_k

n = จำนวนจุคภาพทั้งหมด

$$s_k = T(r_k) = \sum_{j=0}^k p_r(r_j) = \sum_{j=0}^k \frac{n_j}{n}$$
 $0 \le r_k \le 1$
 $k = 0, 1, ..., L-1$

Inverse transform
$$r_k = T^{-1}(s_k)$$
 $0 \le s_k \le 1$

4.2.1 Global Enhancement (7)

2. Histogram equalization: หลักการ (ต่อ)

r_{k}	$p_r(r_k)$	S _k	$\mathbf{S}_{\mathbf{k}}$	$p_s(s_k)$
0.00	0.19	0.19	1/7	0.19
0.14	0.25	0.44	3/7	0.25
0.29	0.21	0.65	5/7	0.21
0.43	0.15	0.80	6/7	
0.57	0.09	0.89	6/7	0.24
0.71	0.07	0.96	1	
0.86	0.03	0.99	1	
1.00	0.01	1.00	1	0.11

ตัวอย่างการคำนวณ Histogram equalization (a) Histogram เริ่มต้น

(b) Transformation function (c) Equalized histogram

4.2.1 Global Enhancement (8)

3. Direct Histogram Specification: หลักการ กรณีที่กำหนดลักษณะ histogram เป้าหมาย

วิธีทำ ทำเป็นขั้นตอน เริ่มจากแนวคิดของ histogram equalization

4.2.1 Global Enhancement (9)

3. Direct Histogram Specification: หลักการ (ต่อ)

จาก
$$s = T(r) = \int_{0}^{r} p_r(w) dw$$
 และให้ $v = G(z) = \int_{0}^{z} p_z(w) dw$

$$v = G(z) = \int_{0}^{z} p_{z}(w) dw$$

$$\mathbf{r} = \mathbf{T}^{-1}(\mathbf{s})$$

โดยที่
$$r = T^{-1}(s)$$
 และ $z = G^{-1}(v)$

ต้องการหา transform function ระหว่าง r กับ z

ที่ว่าให้
$$s = v$$
 จะได้ $z = G^{-1}(s) = G^{-1}[T(r)]$

$$z = G^{-1}(s) = G^{-1}[T(r)]$$

(ถ้า $G^{-1}[T(r)] = T(r)$ => Histogram equalization เพราะ z = s)

ในทางปฏิบัติ

จาก
$$p_r(r_k)$$
 หา

จาก
$$p_r(r_k)$$
 หา $T(r_k) = \sum_{j=0}^k p_r(r_j) = s_k$ แล้วหา $z_k = G^{-1}[s_k]$

จาก
$$p_{z}(z_{k})$$
 หา

$$G(z_k) = \sum_{j=0}^{k} p_z(z_j) = v_l$$

แล้วหา
$$z_k = G^{-1}[s_k]$$

4.2.1 Global Enhancement (10)

3. Direct Histogram Specification: หลักการ (ต่อ)

4.2.1 Global Enhancement (11)

3. Direct Histogram Specification: หลักการ (ต่อ)

กรณี histogram equalization

ตัวอย่างการใช้ Histogram specification

(a) ภาพเริ่มต้น (b) ใช้ histogram equalization (c) ใช้ histogram specification
(d) Histograms (จากล่าง (a) – (c))

4.2.2 Local Enhancement (1)

1. Local histogram modification

ในกรณีที่ต้องการรายละเอียดมากขึ้น ผลของจุดภาพที่อยู่ ห่างใกลจากจุดภาพที่พิจารณาจะมีไม่มากนัก ใน local enhancement จะพิจารณา histogram ภายในบริเวณเพื่อนบ้าน รอบจุดภาพที่พิจารณาเช่น n × m แล้วใช้วิธี histogram equalization หรือ histogram specification เฉพาะภายในบริเวณ n × m รอบจุดภาพนั้น และขยับบริเวณไปคิดที่จุดภาพอื่น ดูตัวอย่างจาก Gonzalez ใช้ 7 × 7 neighbourhood

4.2.2 Local Enhancement (2)

1. Local histogram modification (ที่อ)

รูปที่ (a) ภาพเริ่มต้น
(b) ผลของ global
histogram equalization
(c) ผลของ local
histogram equalization
ใช้ 7 x7 neighbourhood
รอบแต่ละจุดภาพ

4.2.2 Local Enhancement (3)

2. Local Enhancement โดยใช้ค่า mean และ variance

ใม่ใช้ histogram แต่พิจารณาค่าความเข้มเฉลี่ยและvariance (σ)
ภายในบริเวณ n × m เพื่อนบ้าน
mean → average brightness, variance → contrast

$$g(x,y) = T[f(x,y)] = A(x,y)[f(x,y) - m(x,y)] + m(x,y)$$

โดยที่ $A(x, y) = kM/\sigma(x,y), 0 < k < 1$

m(x,y) = local mean ของระดับเทา

M = global mean ของ f(x,y)

 $\sigma(x,y) =$ ท่า standard deviation ของ ความเข้มภายใน n×m เพื่อนบ้าน

A(x,y) = local gain factor อาจกำหนด
ช่วง [Amin, Amax]
A, m & σ ขึ้นกับเพื่อนบ้านของจุด (x, y)
A(x,y) แปรผกผันกับ σ ของความเข้ม
=> ขยายบริเวณที่มี contrast ต่ำ

4.2.2 Local Enhancement (4)

2. Local Enhancement โดยใช้ค่า mean และ variance (ต่อ)

รูปที่ (a) ภาพก่อน และ (b) หลังการปรับด้วย local enhancement โดยใช้ mean & variance ในบริเวณ 15 × 15 จุด เพื่อนบ้าน ให้สังเกตรายละเอียดที่รอยต่อระหว่างสองบริเวณ