Machine Learning - Assignment 3 COVID-19 30-day Mortality Prediction from CXR Report

106070038 杜葳葳

- \ Paper Survey

- Transfer Learning from Chest X-Ray Pre-trained Convolutional Neural Network for Learning Mammogram Data (2018)
 - 此篇論文的目標是訓練一個可以用 X 光片判斷是否患有乳癌的模型, 分為三個階段: Pre-Training、Transfer Learning、Comparison
 - Related Work: 此類問題 Deep Learning 的準確性比 SVM 高,若資料 集的資料量不夠,可以使用 Transfer Learning 來精進

■ Method:

- ◆ Pre-Training Phase:使用 CheXNet 為預訓練模型, CheXNet 是一個 121 層的 DenseNet 模型,每層 layer 有四個 dense blocks。此篇論文是使用 Chest-X-Ray 資料集、北京大學實作的 CheXNet 模型
- ◆ Transfer Learning Phase:因為乳房攝影的影像為四個一組,故將模型改為四個平行的輸入通道
- ◆ Comparison Phase: 比較不同數量的 dense blocks、不同 layer 數目、不同 Learning rate、不同 Dropout rate、不同 L2 regularization rate,每次訓練跑 20 個 epochs、比較 Accuracy,用 Adam 優化、Loss function 用 Categorical cross-entropy,Training set: Validation set: Testing set = 60: 20: 20

Blocks	Training		Vali	Running Time	
	Loss	Accuracy	Loss	Accuracy	(20 Epochs)
4	0.3493	96.31 %	0.4380	87.31 %	2h 38m 58s
3	0.3407	97.20 %	0.4408	87.12 %	2h 31m 56s
2	0.3960	91.68 %	0.4324	88.27 %	2h 19m 32s
1	0.4625	85.76 %	0.4588	85.77 %	2h 6m 49s
		Table 2: The result of	of the experiment with lay	ers.	
	Training		Val	Validation	
ayers	Loss	Accuracy	Loss	Accuracy	(20 Epochs
12	0.4013	91.39 %	0.4290	88.46 %	2h 11m 38:
1	0.3262	98.80 %	0.4232	88.65 %	2h 10m 41
10	0.3293	98.47 %	0.4240	88.65 %	2h 6m 6s
	0.3456	97.01 %	0.4250	88.46 %	2h 9m 2s
)			0.4258	88.46 %	2h 6m 56s
3	0.3436	97.12 %			
	0.3436 0.3220	97.12 % 99.22 %	0.4279	88.65 %	2h 6m 7s
3 7 6	0.3220 0.3345	99.22 % 98.02 %	0.4279 0.4107	88.65 % 90.38 %	2h 3m 57s
3	0.3220	99.22 %	0.4279	88.65 %	
3 7 5 5	0.3220 0.3345 0.3314 0.3366	99.22 % 98.02 % 98.34 % 97.76 %	0.4279 0.4107	88.65 % 90.38 % 88.85 % 89.61 %	2h 3m 57: 2h 2m 19: 2h 2m 1s
3 7 6 5 1	0.3220 0.3345 0.3314 0.3366 0.3442	99.22 % 98.02 % 98.34 % 97.76 % 97.16 %	0.4279 0.4107 0.4258	88.65 % 90.38 % 88.85 % 89.61 % 89.62 %	2h 3m 57s 2h 2m 19s 2h 2m 1s 1h 59m 48
3 7 5 5	0.3220 0.3345 0.3314 0.3366	99.22 % 98.02 % 98.34 % 97.76 %	0.4279 0.4107 0.4258 0.4149	88.65 % 90.38 % 88.85 % 89.61 %	2h 3m 57s 2h 2m 19s 2h 2m 1s

■ Conclusion:

- ◆ 僅使用 CheXNet 的前兩個 Dense blocks,最後一個 block 使用 6 層 layers,最佳 Learning rate 為 1e-3
- ◆ Validation accuracy: 90.38%

- Deep-COVID: Predicting COVID-19 From Chest X-Ray Images Using Deep Transfer Learning (2020)
 - 此篇論文的目標是用 X 光影像判斷該病患是否感染 COVID-19 的二元分類問題,使用 end-to-end 的深度學習模型,同樣可分為三個階段: Pre-Training、Transfer Learning、Comparison
 - Method:
 - ◆ Dataset: 5000 Chest X-ray images (2000 training, 3000 testing)

Table 1. Number of images per category in COVID-Xray-5k dataset.

Split	COVID-19	Non-COVID
Training Set	84 (420 after augmentation)	2000
Test Set	100	3000

- ◆ Pre-processing:因為資料不夠多,使用 Data augmentation 來產生更多圖片,包含將照片翻面、旋轉、加上雜訊,產生比原始資料多五倍的照片。使用四種用 ImageNet 預訓練好的卷積神經網路,分別為:ResNet-18、ResNet-50、SqueezeNet、DenseNet-121,再將最終層做小幅的修改,
- ◆ Transfer Learning Phase:僅 fine-tune 最後一層 CNN、使用 Pretrained model 作為特徵提取。
 - ResNet-18、ResNet-50:用 ImageNet 資料集訓練,以 shortcut connection 的方式可以跳過幾層 layer

SqueezeNet:可達到 AlexNet 的準確度、但小於 0.5MB,是個輕量的模型

● DenseNet-121:每一層都將前面所有層的特徵圖譜作為輸入

◆ Comparison Phase:

- 用 Sensitivity、Specificity、ROC curve、Area under the curve、Precision Recall curve、Histogram of the prediction scores
- 由下表可知, SqueezeNet 和 ResNet 的表現最好

Table 6. Comparison of sensitivity and specificity of four state-of-the-art deep neural networks.

eul al lietwolks.						
Model	Sensitivity	Specificity				
ResNet18	98% ± 2.7%	90.7% ± 1.1%				
ResNet50	98% ± 2.7%	$89.6\% \pm 1.1\%$				
SqueezeNet	98% ± 2.7%	$92.9\% \pm 0.9\%$				
Densenet-121	$98\% \pm 2.7\%$	$75.1\% \pm 1.5\%$				

= \ Preprocessing Steps

● 用 shutil 函式庫,讀取每張照片對應到 csv 檔的 output,將 output=0 和 output=1 分別放入兩個資料夾

```
pre_processing.py
    import pandas as pd
    import os
    from os import listdir
    import shutil

    output0_List = os.listdir('./split_data/output_0')
    output1_List = os.listdir('./split_data/output_1')

    for i in range(983):
        filename = output0_List[i]
        pace = "./split_data/output_0/" + str(filename)
        shutil.move(pace, "./data/train/non")

    filename = output0_List[i]
    pace = "./split_data/output_0/" + str(filename)
    shutil.move(pace, "./data/val/non")

for i in range(131):
    filename = output1_List[i]
    pace = "./split_data/output_1/" + str(filename)
    shutil.move(pace, "./data/train/covid")

for i in range(132,164):
    filename = output1_List[i]
    pace = "./split_data/output_1/" + str(filename)
    shutil.move(pace, "./data/val/covid")

shutil.move(pace, "./data/val/covid")
```

三、 Model and Features

● 實驗不同 Pre-trained model

(5 epochs, learning rate = 0.001, train:valid = 4:1, adam optimizer)

arch	ResNet-18	ResNet-34	ResNet-50	SqueezeNet1_0	SqueezeNet1_1
TP	4	9	16	15	6
FN	26	21	14	15	24
FP	23	34	98	44	46
TN	225	214	150	204	202
F1	0.14	0.25	0.22	0.33	0.15
score					

● 實驗是否要 Normalize

arch	No	Yes
TP	15	13
FN	15	17
FP	44	38
TN	204	210
F1 score	0.33	0.32

● 實驗 F1 score average 參數

F1 score	Macro	Micro	Weighted	Binary
TP	15	19	15	16
FN	15	11	15	14
FP	44	45	40	50
TN	204	203	208	198
F1 score	0.33	0.4	0.35	0.33

● 實驗 cnn_learner 的參數 cut

#epochs	-1	1	2	20	None
TP	12	14	8	9	19
FN	18	16	22	21	11
FP	47	43	29	29	45
TN	201	205	220	219	203
F1 score	0.27	0.32	0.24	0.26	0.4

綜合以上,最後使用 **SqueezeNet1_0** 作為 pre-trained model 以下為模型各個 layer 的參數:

Sequential (Input :					64 x 128 x 78 x 78		
	Output Shape	Param #	Trainable	Conv2d ReLU		4224	False
Layer (type)			Trainable				
	64 x 96 x 157 x 157			Conv2d	64 x 128 x 78 x 78	36992	False
Conv2d ReLU		14208	False	ReLU		36992	raise
MaxPool2d				MaxPool2d			
	64 x 16 x 78 x 78				64 x 32 x 39 x 39		
Conv2d ReLU		1552	False	Conv2d ReLU		8224	False
Kelu				Kello			
	64 x 64 x 78 x 78				64 x 128 x 39 x 39		
Conv2d		1088	False	Conv2d		4224	False
ReLU				ReLU			
	64 x 64 x 78 x 78				64 x 128 x 39 x 39		
Conv2d		9280	False	Conv2d		36992	False
ReLU				ReLU			
	64 x 16 x 78 x 78				64 x 48 x 39 x 39		
Conv2d	04 X 10 X /0 X /0	2064	False	Conv2d	04 2 40 2 37 2 37	12336	False
ReLU				ReLU			
					64 x 192 x 39 x 39		
Conv2d	64 x 64 x 78 x 78	1088	False	Conv2d	64 x 192 x 39 x 39	9408	False
ReLU		1000	raise	ReLU		3400	14150
Conv2d	64 x 64 x 78 x 78	9280	False	Conv2d	64 x 192 x 39 x 39	83136	False
Convza ReLU		9280	raise	ReLU		83136	raise
Kello				Nobo			
	64 x 32 x 78 x 78				64 x 48 x 39 x 39		
Conv2d		4128	False	Conv2d		18480	False
ReLU				ReLU			
	64 x 192 x 39 x 39						
Conv2d		9408	False				
ReLU							
	64 x 192 x 39 x 39						
Conv2d	** * *** * ** * * * *	83136	False				
ReLU							
	64 x 64 x 39 x 39						
Conv2d	04 X 04 X 39 X 39	24640	False				
ReLU							
	64 x 256 x 39 x 39						
Conv2d	64 X 256 X 39 X 39	16640	False		64 x 512		
ReLU				Linear	64 X 512	524288	True
				ReLU			
Conv2d	64 x 256 x 39 x 39	147712	False	BatchNormld		1024	True
ReLU		14//12	rand	Dropout			
MaxPool2d					64 x 2		
				Linear		1024	True
Conv2d	64 x 64 x 19 x 19	32832	False				
ReLU		2002		Motel nevere : 20	3 808		
				Total params: 1,26 Total trainable pa			
300034	64 x 256 x 19 x 19	16640	False	Total non-trainable			
Conv2d ReLU		16640	False				
					unction Adam at 0x7fc31		
	64 x 256 x 19 x 19			Loss function: Fla	attenedLoss of CrossEnti	copyLoss()	
Conv2d		147712	False	Model frozen un to	parameter group #2		
ReLU AdaptiveAvgPool2d							
AdaptiveMovgPool2d				Callbacks:			
Flatten				- TrainEvalCallb	oack		
BatchNormld		2048	True	- Recorder - ProgressCallba	ack.		
Dropout				- riogresscaliba			

四、 How to use the model file

右圖為資料夾的結構,data為 training data,在前處理的步驟中,分成 output_0、output_1 兩個資料夾(此兩個資料夾有上傳至 ilms)。

IML_CXR_TEST 為 testing data,

prediction_example.csv 為 output example,

output 檔的檔名為 106070038.csv

Step 1: 傳入 IML_CXR_TEST、output_0、output_1、prediction_example.csv

Step 2: 執行.ipynb 中 Model 1 的部分

Step 3: 得到 output 檔 (106070038.csv)

五、Summary

● 最初有嘗試自己搭建模型(如下圖所示),是使用 ResNet-50 為 pre-trained model,然而效果皆不如預期

```
#### load model
model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
    param.requires_grad = False

# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)

model_conv = model_conv.to(device)
criterion = nn.CrossEntropyLoss()

# Observe that only parameters of final layer are being optimized as
# opoosed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr= args.learning_rate, momentum= args.momentum)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.steplR(optimizer_conv, step_size=7, gamma=0.1)
```

- 於是最後使用 fastai 套件中的函式庫, cnn_learner 這個 function 來建模型,有嘗試不同的參數組合,亦有在 head 的地方自行搭建幾層 layer 再接到 SqueezeNet 上
- 前期花蠻多時間在閱讀論文和實驗不同模型的好壞,但由於受限於在本地端執行時電腦的運算資源有限,和用 colab 的 GPU 加速時有儲存空間的限制,故最終模型的 F1 僅落在 0.4 多左右,仍有進步空間。