当知识图谱遇见个性化推荐

张富峥 微软亚洲研究院 社会计算组 研究员

https://www.microsoft.com/en-us/research/people/fuzzhang/fuzzhang@microsoft.com

个性化推荐的广泛应用

个性化推荐的任务

Top-K 推荐

шш

шш

你还可能喜欢...

协同过滤

矩阵分解

$$L = || \mathbf{R} - \mathbf{P}^{T} \mathbf{Q} ||_{2}^{2} + || \mathbf{P} ||_{2}^{2} + || \mathbf{Q} ||_{2}^{2}$$

- □ 仅使用评分信息 / 交互信息
- □ 无法解决稀疏性和冷启动问题

评分的稀疏性

冷启动问题 (新用户/物品)

协同过滤+辅助信息

□ 在推荐系统中融合以下辅助信息:

社交网络

用户/物品属性

Alice
Female
California

• • •

iPhone X2017
5.8 inch
\$999

• •

图片/文字 等内容信息

A great blend of handheld comfort and a big, gorgeous OLED screen. Rear telephoto camera outshoots the 8 Plus in low light, and the front camera snaps impressive portrait selfies. Face ID generally works fine

上下文

购买 → 时间: 20点10分

定位:北京 购物车内还有:...

知识图谱

知识图谱(knowledge graph)是一种语义网络,其结点代表实体(entity)或者概念(concept),边代表实体/概念之间的各种语义关系(relation)

- □ 由三元组(h, r, t)组成,其中 h和t代表一条关系的头结点和 尾节点,r代表关系
- □ 例如: 陈凯歌 ^{导演} 霸王别姬

□ 知识图谱为推荐系统提供了物品之间丰富的语义关系

知识图谱与推荐系统

引入知识图谱可以让推荐结果更具有:

- □ 精确性 (precision)
 - □ 知识图谱为物品引入了更多的语义关系
 - □ 知识图谱可以深层次地发现用户兴趣

知识图谱与推荐系统

引入知识图谱可以让推荐结果更具有:

- ■多样性 (diversity)
 - □ 知识图谱提供了不同的关系连接种类
 - □ 有利于推荐结果的发散,避免推荐结果越来越局限于单一类型

知识图谱与推荐系统

引入知识图谱可以让推荐结果更具有:

- □可解释性 (explanation ability)
 - □ 知识图谱可以连接用户的兴趣历史和推荐结果
 - □ 提高用户对推荐结果的满意度和接受度,增强用户对推荐系统的信任

阿飞正传, 因为它们有相同的主演; 末代皇帝, 因为它们有相同的<mark>题材;</mark> 搜索, 因为它们有相同的导演;

• • • • • •

相关工作

LibFM (TIST 12)

- □ 优点:
 - □ 通用的基于特征的推荐方法
 - □ 模拟特征间的交互行为
- □ 缺点:
 - □ 并非专门针对知识图谱设计
 - □ 无法引入关系 (relation) 特征

PER (WSDM 14) MetaGraph (KDD 17)

- □ 优点:
 - □ 构造物品间的metapath/metagraph
 - □ 对知识图谱的使用更简洁直观
- □ 缺点:
 - □ 需要手动设计metapath/metagraph, 实践中难以达到最优
 - □ 在实体不属于同一个领域的场景中(如新闻推荐)无法应用

meta path 1: movie -> actor -> movie meta path 2: movie -> director -> movie

知识图谱特征学习

知识图谱特征学习(Knowledge Graph Embedding)为知识图谱中的每个实体和关系学习得到一个低维向量,同时保持图中原有的结构或语义信息

基于距离的翻译模型

- 使用基于距离的评分函数评估三元组的概率
- □ 将尾节点视为头结点和关系翻译得到的结果
- □ TransE, TransH, TransR等

知识图谱特征学习

知识图谱特征学习(Knowledge Graph Embedding)为知识图谱中的每个实体和关系学习得到一个低维向量,同时保持图中原有的结构或语义信息

基于语义的匹配模型

- 使用基于相似度的评分函数评估三元组的概率
- □ 将实体和关系映射到隐含语义空间进行相似度度量
- □ SME, NTN, MLP, NAM等

结合知识图谱特征学习的推荐系统

知识图谱特征学习可以:

- □ 降低知识图谱的高维性和异构性
- □增强知识图谱应用的灵活性
- □减轻特征工程的工作量
- □ 减少由于引入知识图谱带来的额外计算负担

知识图谱特征学习在推荐系统中的应用步骤:

Deep Knowledge-aware Network (DKN)

- □ 新闻标题和正文中存在大量的实体
- □ 实体间的语义关系可以有效地扩展用户兴趣
- □ 实体间的语义关系难以被传统方法(话题模型、词向量方法)发掘

Deep Knowledge-aware Network (DKN)

- □ 实体连接 (entity linking)
- □ 知识图谱构建 (knowledge graph construction)
- □ 知识图谱特征学习 (knowledge graph embedding)
- □ 得到实体特征 (entity embedding)

Trump praises Las Vegas medical team

Apple CEO Tim Cook: iPhone 8 and Apple Watch Series 3 are sold out in some places

EU Spain: Juncker does not want Catalonian independence

Entity linking

Donald Trump: Donald Trump is the 45th president ... Las Vegas: Las Vegas is the 28th-most populated city ... **Apple Inc.:** Apple Inc. is an American multinational ... **CEO:** A chief executive officer is the position of the ... **Tim Cook:** Timothy Cook is an American business ... iPhone 8: iPhone 8 is smartphone designed, ...

> Knowledge graph construction

Donald Trump: (0.32, 0.48)

Entity

Las Vegas: (0.71, -0.49) Apple Inc.: (-0.48, -0.41)

CEO: (-0.57, 0.06)

Tim Cook: (-0.61, -0.59) iPhone 8: (-0.46, -0.75)

Knowledge graph embedding

Deep Knowledge-aware Network (DKN)

第一步:提取知识图谱特征

- 额外使用一个实体的上下文实体 特征(contextual entity embeddings)对该实体进行更 准确地刻画
- □ 上下文实体为该实体的一度邻居 节点

$$context(e) = \{e_i \mid (e, r, e_i) \in \mathcal{G} \text{ or } (e_i, r, e) \in \mathcal{G}\}$$

$$\overline{\mathbf{e}} = \frac{1}{|context(e)|} \sum_{e_i \in context(e)} \mathbf{e}_i$$

Deep Knowledge-aware Network (DKN)

第二步:构建推荐模型

Deep Knowledge-aware Network (DKN)

第二步:构建推荐模型

- □ 基于CNN的文本特征提取
- □ 词向量、实体向量、实体上下文向量的 多通道融合

news title
$$t = [w_1, w_2, ..., w_n]$$

word embeddings $\mathbf{w}_{1:n} = [\mathbf{w}_1 \ \mathbf{w}_2 \ ... \ \mathbf{w}_n]$

transformed entity embeddings

$$q(\mathbf{e}_{1:n}) = [q(\mathbf{e}_1) \ q(\mathbf{e}_2) \ ... \ q(\mathbf{e}_n)]$$

transformed context embeddings

$$g(\overline{\mathbf{e}}_{1:n}) = [g(\overline{\mathbf{e}}_1) \ g(\overline{\mathbf{e}}_2) \ \dots \ g(\overline{\mathbf{e}}_n)]$$

$$\mathbf{W} = \left[\left[\mathbf{w}_1 \, g(\mathbf{e}_1) \, g(\overline{\mathbf{e}}_1) \right] \left[\mathbf{w}_2 \, g(\mathbf{e}_2) \, \overline{g}(\mathbf{e}_2) \right] \dots \left[\mathbf{e}_n \, g(\mathbf{e}_n) \, g(\overline{\mathbf{e}}_n) \right] \right] \in \mathbb{R}^{d \times n \times 3}$$

$$c_i^h = f(\mathbf{h} * \mathbf{W}_{i:i+l-1} + b) \qquad \tilde{c}^h = \max\{c_1^h, c_2^h, \dots, c_{n-l+1}^h\}$$

$$\mathbf{e}(t) = \left[\tilde{c}^{h_1} \, \tilde{c}^{h_2} \dots \, \tilde{c}^{h_m} \right]$$

Deep Knowledge-aware Network (DKN)

第二步:构建推荐模型

- □ 基于注意力机制的用户历史兴趣融合
- □ 判断用户对当前新闻的兴趣时,用户历史 中不同的行为记录的重要性有所不同
- □ 注意力网络(attention net)可以给用户 历史的记录分配不同的权值

$$s_{t_k^i, t_j} = \operatorname{softmax} \left(\mathcal{H} \left(\mathbf{e}(t_k^i), \mathbf{e}(t_j) \right) \right) = \frac{\exp \left(\mathcal{H} \left(\mathbf{e}(t_k^i), \mathbf{e}(t_j) \right) \right)}{\sum_{k=1}^{N_i} \exp \left(\mathcal{H} \left(\mathbf{e}(t_k^i), \mathbf{e}(t_j) \right) \right)}$$

$$\mathbf{e}(i) = \sum_{k=1}^{N_i} s_{t_k^i, t_j} \mathbf{e}(t_k^i)$$

Deep Knowledge-aware Network (DKN)

性能对比

Models*	F1	AUC	<i>p</i> -value**
DKN	68.9 ± 1.5	65.9 ± 1.2	_
LibFM	$61.8 \pm 2.1 (-10.3\%)$	59.7 ± 1.8 (-9.4%)	$< 10^{-3}$
LibFM(-)	61.1 ± 1.9 (-11.3%)	58.9 ± 1.7 (-10.6%)	$< 10^{-3}$
KPCNN	$67.0 \pm 1.6 (-2.8\%)$	$64.2 \pm 1.4 (-2.6\%)$	0.098
KPCNN(-)	$65.8 \pm 1.4 (-4.5\%)$	$63.1 \pm 1.5 (-4.2\%)$	0.036
DSSM	66.7 ± 1.8 (-3.2%)	$63.6 \pm 2.0 \ (-3.5\%)$	0.063
DSSM(-)	66.1 ± 1.6 (-4.1%)	$63.2 \pm 1.8 (\text{-}4.1\%)$	0.045
DeepWide	66.0 ±1.2 (-4.2%)	$63.3 \pm 1.5 (-3.9\%)$	0.039
DeepWide(-)	$63.7 \pm 0.9 (-7.5\%)$	61.5 ± 1.1 (-6.7%)	0.004
DeepFM	63.8 ± 1.5 (-7.4%)	$61.2 \pm 2.3 (-7.1\%)$	0.014
DeepFM(-)	$64.0 \pm 1.9 (-7.1\%)$	61.1 ± 1.8 (-7.3%)	0.007
YouTubeNet	$65.5 \pm 1.2 (-4.9\%)$	$63.0 \pm 1.4 (-4.4\%)$	0.025
YouTubeNet(-)	$65.1 \pm 0.7 (-5.5\%)$	$62.1 \pm 1.3 (-5.8\%)$	0.011
DMF	57.2 ± 1.2 (-17.0%)	$55.3 \pm 1.0 (-16.1\%)$	$< 10^{-3}$

^{* &}quot;(-)" denotes "without input of entity embeddings".

^{**} p-value is the probability of no significant difference with DKN on AUC by t-test.

Deep Knowledge-aware Network (DKN)

	No.	Date	News title	Entities	Label	Category
training	1	12/25/2016	Elon Musk teases huge upgrades for Tesla's supercharger network	Elon Musk; Tesla Inc.	1	Cars
	2	03/25/2017	Elon Musk offers Tesla Model 3 sneak peek	Elon Musk; Tesla Model 3	1	Cars
	3	12/14/2016	Google fumbles while Tesla sprints toward a driverless future	Google Inc.; Tesla Inc.	1	Cars
	4	12/15/2016	Trump pledges aid to Silicon Valley during tech meeting	Donald Trump; Silicon Valley	1	Politics
	5	03/26/2017	Donald Trump is a big reason why the GOP kept the Montana House seat	Donald Trump; GOP; Montana	1	Politics
	6	05/03/2017	North Korea threat: Kim could use nuclear weapons as "blackmail"	North Korea; Kim Jong-un	1	Politics
	7	12/22/2016	Microsoft sells out of unlocked Lumia 950 and Lumia 950 XL in the US	Microsoft; Lumia; United States	1	Other
	8	12/08/2017	6.5 magnitude earthquake recorded off the coast of California	earthquake; California	1	Other
test	1	07/08/2017	Tesla makes its first Model 3	Tesla Inc; Tesla Model 3	1	Cars
	2	08/13/2017	General Motors is ramping up its self-driving car: Ford should be nervous	General Motors; Ford Inc.	1	Cars
	3	06/21/2017	Jeh Johnson testifies on Russian interference in 2016 election	Jeh Johnson; Russian	1	Politics
	4	07/16/2017	"Game of Thrones" season 7 premiere: how you can watch	Game of Thrones	0	Other

Predicted click prob. 0.87 0.55 0.29 0.23

(a) without knowledge graph

(b) with knowledge graph

Collaborative Knowledge base Embedding (CKE)

推荐系统中存在的知识图谱相关信息:

- □ 结构化知识(structural knowledge)
 - □ 导演、类别等
- 图片知识(visual knowledge)
 - □ 海报、剧照等
- □文本知识(textual knowledge)
 - □电影描述、影评等

Collaborative Knowledge base Embedding (CKE)

基于协同过滤和知识 图谱特征学习的推荐 系统

Collaborative Knowledge base Embedding (CKE)

结构化知识学习: TransR

- 1. For each entity v, draw $\mathbf{v} \sim \mathcal{N}(\mathbf{0}, \lambda_v^{-1} \mathbf{I})$.
- 2. For each relation r, draw $\mathbf{r} \sim \mathcal{N}(\mathbf{0}, \lambda_r^{-1}\mathbf{I})$ and $\mathbf{M}_r \sim \mathcal{N}(\mathbf{0}, \lambda_M^{-1}\mathbf{I})$, respectively.
- 3. For each quadruple $(v_h, r, v_t, v_{t'}) \in \mathcal{S}$, draw from the probability $\sigma(f_r(v_h, v_t) f_r(v_h, v_{t'}))$, where \mathcal{S} is the set of quadruples satisfying that (v_h, r, v_t) is a correct triple and $(v_h, r, v_{t'})$ is an incorrect triple. $\sigma(x) := \frac{1}{1+e^{-x}}$ is the logistic sigmoid function.

$$\mathbf{v}_h^r = \mathbf{v}_h \mathbf{M}_r, \qquad \mathbf{v}_t^r = \mathbf{v}_t \mathbf{M}_r$$
 $f_r(v_h, v_t) = ||\mathbf{v}_h^r + \mathbf{r} - \mathbf{v}_t^r||_2^2$

Collaborative Knowledge base Embedding (CKE)

文本知识学习:去噪自编码器

- 1. For weight parameter \mathbf{W}_l , draw $\mathbf{W}_l \sim \mathcal{N}(\mathbf{0}, \lambda_W^{-1} \mathbf{I})$.
- 2. For bias parameter, draw $\mathbf{b}_l \sim \mathcal{N}(\mathbf{0}, \lambda_b^{-1} \mathbf{I})$.
- 3. For the output of the layer, draw $\mathbf{X}_l \sim \mathcal{N}(\sigma(\mathbf{X}_{l-1}\mathbf{W}_l + \mathbf{b}_l), \lambda_X^{-1}\mathbf{I})$

Collaborative Knowledge base Embedding (CKE)

图片知识学习:卷积-反卷积自编码器

- 1. For weight parameter, draw $\mathbf{Q}_l \sim \mathcal{N}(\mathbf{0}, \lambda_Q^{-1}\mathbf{I})$.
- 2. For bias parameter, draw $\mathbf{c}_l \sim \mathcal{N}(\mathbf{0}, \lambda_c^{-1}\mathbf{I})$.
- 3. For the output of the layer,
 - (a) If layer l is a fully connected layer: $\operatorname{draw} \mathbf{Z}_{l} \sim \mathcal{N}(\sigma(\mathbf{Z}_{l-1}\mathbf{Q}_{l} + \mathbf{c}_{l}), \lambda_{Z}^{-1}\mathbf{I}),$
 - (b) Else: draw $\mathbf{Z}_l \sim \mathcal{N}(\sigma(\mathbf{Z}_{l-1} * \mathbf{Q}_l + \mathbf{c}_l), \lambda_z^{-1} \mathbf{I})$.

Collaborative Knowledge base Embedding (CKE)

推荐系统和知识图谱特征的联合学习:

4. For each item j, draw a latent item offset vector $\eta_j \sim \mathcal{N}(\mathbf{0}, \lambda_I^{-1}\mathbf{I})$, and then set the item latent vector as:

$$\mathbf{e}_j = \boldsymbol{\eta}_j + \mathbf{v}_j + \mathbf{X}_{\frac{L_t}{2},j*} + \mathbf{Z}_{\frac{L_v}{2},j*}.$$

- 5. For each user i, draw a user latent vector as $\mathbf{u}_i \sim \mathcal{N}(\mathbf{0}, \lambda_U^{-1} \mathbf{I})$.
- 6. For each triple $(i, j, j') \in \mathcal{D}$, draw from the probability $\sigma(\mathbf{u}_i^T \mathbf{e}_j \mathbf{u}_i^T \mathbf{e}_{j'})$.

$$\mathcal{L} = \sum_{(i,j,j') \in \mathcal{D}} \ln \sigma(\mathbf{u}_{i}^{T} \mathbf{e}_{j} - \mathbf{u}_{i}^{T} \mathbf{e}_{j'}) - \frac{\lambda_{X}}{2} \sum_{l} ||\sigma(\mathbf{X}_{l-1} \mathbf{W}_{l} + \mathbf{b}_{l}) - \mathbf{X}_{l}||_{2}^{2}$$

$$+ \sum_{(v_{h}, r, v_{t}, v_{t'}) \in \mathcal{S}} \ln \sigma(||\mathbf{v}_{h} \mathbf{M}_{r} + \mathbf{r} - \mathbf{v}_{t} \mathbf{M}_{r}||_{2}^{2} - ||\mathbf{v}_{h} \mathbf{M}_{r} + \mathbf{r} - \mathbf{v}_{t'} \mathbf{M}_{r}||_{2}^{2})$$

$$- \frac{\lambda_{Z}}{2} \sum_{l \notin \{\frac{L_{v}}{2}, \frac{L_{v}}{2} + 1\}} ||\sigma(\mathbf{Z}_{l-1} * \mathbf{Q}_{l} + \mathbf{c}_{l}) - \mathbf{Z}_{l}||_{2}^{2} - \frac{\lambda_{U}}{2} \sum_{i} ||\mathbf{u}_{i}||_{2}^{2}$$

$$- \frac{\lambda_{Z}}{2} \sum_{l \in \{\frac{L_{v}}{2}, \frac{L_{v}}{2} + 1\}} ||\sigma(\mathbf{Z}_{l-1} \mathbf{Q}_{l} + \mathbf{c}_{l}) - \mathbf{Z}_{l}||_{2}^{2} - \frac{\lambda_{v}}{2} \sum_{v} ||\mathbf{v}||_{2}^{2}$$

$$- \frac{1}{2} \sum_{l} (\lambda_{W} ||\mathbf{W}_{l}||_{2}^{2} + \lambda_{b} ||\mathbf{b}_{l}||_{2}^{2}) - \frac{1}{2} \sum_{l} (\lambda_{Q} ||\mathbf{Q}_{l}||_{2}^{2} + \lambda_{c} ||\mathbf{c}_{l}||_{2}^{2})$$

$$- \frac{\lambda_{I}}{2} \sum_{j} ||\mathbf{e}_{j} - \mathbf{v}_{j} - \mathbf{X}_{\frac{L_{t}}{2}, j *} - \mathbf{Z}_{\frac{L_{v}}{2}, j *} ||_{2}^{2}$$

$$- \frac{\lambda_{r}}{2} \sum_{r} ||\mathbf{r}||_{2}^{2} - \frac{\lambda_{M}}{2} \sum_{r} ||\mathbf{M}_{r}||_{2}^{2}$$

Collaborative Knowledge base Embedding (CKE)

性能对比

Recall@K

MAP@K

(a) MovieLens-1M

(b) IntentBooks

(a) MovieLens-1M

(b) IntentBooks

Ripple Network

先前工作的不足:

- □DKN, CKE等使用知识图谱特征学习作为关键步骤
 - □ 实体向量存在于隐含语义空间中, 缺乏直观性
 - □ 现有的KGE方法更适合于连接预测等任务而非推荐
- □ MetaPath,MetaGraph等使用自定义路径来衡量实体间相似度
 - □ 需要手动设计metapath/metagraph,实践中难以达到最优
 - □ 在实体不属于同一个领域的场景中(如新闻推荐)无法应用

Ripple Network

- □ Ripple Network模拟用户兴趣在知识图谱上的传播过程
 - □ 用户兴趣以其历史记录为中心, 在知识图谱上向外逐层扩散
 - □ 用户兴趣在扩散过程中逐渐衰减

Ripple Network

$$\min \mathcal{L} = -\log \left(p(\mathbf{Y}|\Theta, \mathcal{G}) \cdot p(\mathcal{G}|\Theta) \cdot p(\Theta) \right)$$

$$= \sum_{(u,v)\in\mathbf{Y}} -\left(y_{uv} \log \sigma(\mathbf{u}^{\mathsf{T}}\mathbf{v}) + (1 - y_{uv}) \log \left(1 - \sigma(\mathbf{u}^{\mathsf{T}}\mathbf{v}) \right) \right)$$

$$+ \frac{\lambda_2}{2} \sum_{r \in \mathcal{R}} \|\mathbf{I}_r - \mathbf{E}^{\mathsf{T}} \mathbf{R} \mathbf{E}\|_2^2 + \frac{\lambda_1}{2} \left(\|\mathbf{V}\|_2^2 + \|\mathbf{E}\|_2^2 + \sum_{r \in \mathcal{R}} \|\mathbf{R}\|_2^2 \right)$$

Ripple Network

性能对比

CTR预测

Model	MovieLens-1M		Book-Crossing		Bing-News	
Model	AUC	ACC	AUC	ACC	AUC	ACC
Ripple*	0.913	0.835	0.840	0.775	0.778	0.732
CKE	0.796	0.739	0.634	0.606	0.660	0.617
SHINE	0.778	0.732	0.668	0.636	0.614	0.587
DKN	0.655	0.589	0.621	0.598	0.761	0.704
PER	0.901	0.826	0.814	0.735	-	-
LibFM	0.892	0.812	0.763	0.705	0.744	0.688
DeepWide	0.903	0.822	0.806	0.731	0.754	0.695

^{*} Statistically significant improvements by t-test.

Ripple Network

知识图谱用户兴趣传播的可视化

Click history:

- 1. Family of Navy SEAL Trainee Who Died During Pool Exercise Plans to Take Legal Action
- 2. North Korea Vows to Strengthen Nuclear Weapons
- 3. North Korea Threatens 'Toughest Counteraction' After U.S. Moves Navy Ships
- 4. Consumer Reports Pulls Recommendation for Microsoft Surface Laptops

Candidate news: Trump Announces Gunman Dead, Credits 'Heroic Actions' of Police

Multi-task learning for Knowledge graph enhanced Recommendation (MKR)

- □推荐系统中的物品和知识图谱中的实体存在重合
- □将推荐系统和KGE视为两个任务,采用多任务学习的框架
 - □ 两者的可用信息可以互补
 - □ KGE任务可以帮助推荐系统摆脱局部极小值
 - □ KGE任务可以防止推荐系统过拟合
 - □ KGE任务可以提高推荐系统的泛化能力

Multi-task learning for Knowledge graph enhanced Recommendation (MKR)

cross-feature-sharing unit 结构

MKR算法框架

Multi-task learning for Knowledge graph enhanced Recommendation (MKR)

Algorithm 1 Multi-Task Learning for MKR

```
Input: Interaction matrix \mathbf{Y}, knowledge graph \mathcal{G}
Output: Prediction function \mathcal{F}(u, v | \Theta, \mathbf{Y}, \mathcal{G})
```

- 1: Initialize all parameters
- 2: **for** number of training iteration **do**

// recommendation task

- 3: **for** t steps **do**
- 4: Sample minibatch of true and false interactions from **Y**;
- 5: Update parameters of \mathcal{F} by SGD on Eq. (3)-(6), (9);
- 6: end for

// knowledge graph embedding task

- 7: Sample minibatch of true and false triples from \mathcal{G} ;
- 8: Update parameters of \mathcal{F} by SGD on Eq. (7)-(9);
- 9: **end for**

Multi-task learning for Knowledge graph enhanced Recommendation (MKR)

性能对比

未来展望

- □知识图谱和时序模型的结合
 - □ 时序推荐(sequential recommendation)
 - □ 基于会话的推荐(session-based recommendation)
- □ 知识图谱与基于强化学习的推荐系统的结合
- □ 知识图谱与其它辅助信息在推荐系统中的有效结合
 - 社交网络 (social network)
 - 用户属性 (user attribute)
 - 物品属性 (item attribute)
 - □ 上下文信息 (context)

