Maths Answers

Page 48

Some useful tools I used:

- Desmos: https://www.desmos.com/calculator. graphing tool
- MathPapa Algebra Calculator: https://www.mathpapa.com/algebra-calculator.html. You can put your equation in, and evaluate any value.

Plot this into your graph paper. I used an online tool called desmos.com to plot it.

Question 8

Plot this into your graph paper.

Question 9

General equation of a circle: $(x-a)^2+(y-b)^2=r^2$

We know the center is (1, -3). and the radius is 5.

Substitute the known center, and radius values, into the general equation.

$$(x-1)^2 + (y-(-3))^2 = 5^2$$

Simplify:

$$(x-1)^2 + (y+3)^2 = 25$$

Expand the squared brackets, and simplify:

$$x^{2} - x - x + 1 + y^{2} + 3y + 3y + 9 = 25$$

 $x^{2} - 2x + y^{2} + 6y + 10 = 25$
 $x^{2} + y^{2} - 2x + 6y - 15 = 0$

$$x^{2} + y^{2} + 10x - 2y - 10 = 0$$

 $x^{2} + 10x + y^{2} - 2y - 10 = 0$
 $(x - (-5))^{2} + (y - 1)^{2} = 6^{2}$

Exercise 2.1

Question 1

$$f(1) = 5^x = 5^1 = 5$$

Question 2

Already answered in the book.

Question 3

$$h(4) = 2(2^x) = 2(2^4) = 2(16) = 32$$

Question 4

$$g(2) = -6(3^x) = -6(3^2) = -6(9) = -54$$

Question 5

$$f(4) = -(2^x) = -(2^4) = -(16) = -16$$

Question 6

$$h(2) = 2(5^x) = 2(5^2) = 2(25) = 50$$

Page 51

Х	-3	-2	-1	0	1	2	3
$y_1=3^x$.037	.111	.333	1	3	9	27
$y_2=2(3^x)$.074	.222	.666	2	6	18	54
$y_3=rac{1}{2}(3^x)$.0185	.055	.166	0.5	1.5	4.5	13.5
$y_4=3^x+2$	2.037	2.111	2.333	3	5	11	29
$y_5=3^x-2$	-1.962	-1.88	-1.666	-1	1	7	25

Question 8

x	-3	-2	-1	0	1	2	3
$y_1=(rac{1}{2})^x$	8	4	2	1	0.5	0.25	0.125
$y_2=2(rac{1}{2})^x$	16	8	4	2	1	0.5	0.25
$y_3=rac{1}{2}(rac{1}{2})^x$	4	2	1	0.5	0.25	0.125	0.0625
$y_4=(rac{1}{2})^x+2$	10	6	4	3	2.5	2.25	2.125
$y_5=(rac{1}{2})^x-2$	6	2	0	-1	-1.5	-1.75	-1.875

Question 9

Х	-3	-2	-1	0	1	2	3
$y_1=-4^x$	-0.015625	-0.0625	0.25	-1	-4	-16	-64
$y_2=2(4^x)$	-0.03125	-0.125	-0.5	-2	-8	-32	-128
$y_3=-rac{1}{2}(4^x)$	-0.007813	-0.03125	-0.125	-0.5	-2	-8	-32
$y_4=-4^x+2$	1.984375	1.9375	1.75	1	-2	-14	-62
$y_5=-4^x-2$	-2.015625	-2.0625	-2.25	-3	-6	-18	-66

Question 10

х	-3	-2	-1	0	1	2	3
$y_1=5^{-x}$	125	25	5	1	0.2	0.04	0.008
$y_2 = 2(5^{-x})$	250	50	10	2	0.4	0.08	0.016
$y_3=rac{1}{2}(5^{-x})$	62.5	12.5	2.5	0.5	0.1	0.02	0.004
$y_4 = 5^{-x} + 2$	127	27	7	3	2.2	2.04	2.008
$y_5 = 5^{-x} - 2$	123	23	3	-1	-1.8	-1.96	-1.992

х	-3	-2	-1	0	1	2	3
$y_1=2^{x+1}$	0.25	0.5	1	2	4	8	16
$y_2 = 2(2^{x+1})$	0.5	1	2	4	8	16	32
$y_3=rac{1}{2}(2^{x+1})$	0.125	0.25	0.5	1	2	4	8
$y_4 = 2^{x+1} + 2$	2.25	2.5	3	4	6	10	18
$y_5 = 2^{x+1} - 2$	-1.75	-1.5	-1	0	2	6	14

x	-3	-2	-1	0	1	2	3
$y_1=4^{x-2}$	0.000977	0.003906	0.015625	0.0625	0.25	1	4
$y_2 = 2(4^{x-2})$	0.001953	0.007813	0.03125	0.125	0.5	2	8
$y_3=rac{1}{2}(4^{x-2})$	0.000488	0.001953	0.007813	0.03125	0.125	0.5	2
$y_4 = 4^{x-2} + 2$							
$y_5 = 4^{x-2} - 2$	-1.999023	-1.996094	-1.984375	-1.9375	-1.75	-1	2

Question 13

Question 17

$$3^{3x+5} = 3^{x+4}$$

$$3x + 5 = x + 4$$

$$3x - x = 4 - 5$$

$$2x = -1$$

$$x=-rac{1}{2}$$

Question 18

$$3^{2t} = 3^{4t-6}$$

$$2t = 4t - 6$$

$$2t - 4t = -6$$

$$-2t = -6$$

$$2t = 6$$

$$t = 6/2$$

$$t = 3$$

Question 19

$$7^{5w} = 7^{3w-10}$$

$$5w = 3w - 10$$

$$5w-3w=-10$$

$$2w = -10$$

$$w = -10/2$$

$$w = -5$$

$$9^{t+6} = \frac{1}{9^{t+2}}$$

$$9^{t+6} = 9^{-1(t+2)}$$

$$t + 6 = -1(t + 2)$$

$$t + 6 = -t - 2$$

$$t + t = -2 - 6$$

$$2t = -8$$

$$t = -8/2$$

$$t = -4$$

There is a mistake in the book here. The example from the book is:

$$2^x \cdot 2^3 = 2^5$$

$$2^{3x}=2^5$$

$$3x = 5$$

$$x=rac{5}{3}$$

The second line is wrong, it should be:

$$2^{3+x}=2^5$$

Then...

$$3 + x = 5$$

$$x = 5 - 3$$

$$x = 2$$

The correct answer is 2, not $\frac{5}{3}$

$$5^{2y}\cdot 5^4=5^6$$

$$5^{2y+4} = 5^6$$

$$2y + 4 = 6$$

$$2y = 6 - 4$$

$$2y = 2$$

$$y=2/2$$

$$y = 1$$

$$3^{5c} \cdot 5^{5c} = 15^{9c-4}$$

$$15^{5c} = 15^{9c-4}$$

$$5c = 9c - 4$$

$$5c - 9c = -4$$

$$-4c = -4$$

$$4c = 4$$

$$c = 4/4$$

$$c = 1$$

$$2^{2p} \cdot 7^{2p} = 14^{6p-2}$$

$$14^{2p} = 14^{6p-2}$$

$$2p=6p-2$$

$$2p-6p=-2$$

$$-4p=-2$$

$$4p = 2$$

$$p=2/4$$

$$p = 1/2$$

$$p = 0.5$$

Question 26

There is also a mistake here.

$$9^{x+3} > 9^1$$

The example in the book is that

$$x + 3 > 0$$

This is wrong because it is 9^1 so it should be:

$$x + 3 > 1$$

$$x > 1 - 3$$

$$x > -2$$

Question 27

$$5^x \leq 5^4$$

$$x \leq 4$$

Question 28

$$2^{2m-2} \geq 2^{5m+6}$$

$$2m-2 \geq 5m+6$$

$$2m-5m\geq 6+2$$

$$-3m \ge 8$$

$$m \geq -rac{8}{3}$$

$$7^{2y-3} < 7^{5y+6}$$

$$2y-3<5y+6$$

$$2y - 5y < 6 + 3$$

$$-3y < 9$$

$$y<-rac{9}{3}$$

$$y < -3$$

I think this question is wrong.

$$\left(rac{1}{3}
ight)^{w+4} \geq \left(rac{1}{3}
ight)^{w-5}$$

Sign changes as the coefficient a is less than 1

$$w+4 \leq w-5$$

$$w < w - 5 - 4$$

$$w < w - 9$$

There is no solution for the inequality above, because w-9 is strictly smaller than w. This question is wrong.

Question 31

$$\left(\frac{1}{6}\right)^{t+2} \geq \left(\frac{1}{6}\right)^{5t-4}$$

Sign changes as the coefficient a is less than 1.

$$t + 2 \le 5t - 4$$

$$t-5t \le -4-2$$

$$-4t \leq -6$$

$$4t \leq 6$$

$$t \leq rac{6}{4}$$

$$t \leq rac{3}{2}$$

I only plotted the graph for all these questions, to fill the table you can just use your calculator.

Question 1

Question 2

Page 60

Question 4

Question 6

Question 10

Page 64

Page 66

Piecewise functions, the intersect and reflection points are marked on the graph. If you need to fill in the tables in your workbook, just plug in the x values into your calculator, should be easy.

Exercise 2.3

Question 2

$$(f-g)(x) = (5x+2) - (x-6)$$

$$= 5x - x + 2 - 6$$

$$= 4x - 4$$

If x = -2, then...

$$(f-g)(-2) = 4(-2) - 4$$

= $-8 - 4$
= -12

Question 3

$$(sr)(m) = m \cdot (m+5)$$

= $m^2 + 5m$

If m=-4, then...

$$(sr)(-4) = (-4)^2 + 5(-4)$$

= $16 + (-20)$
= -4

$$\left(\frac{q}{p}\right)(t) = \frac{t+1}{t-1}$$
$$\left(\frac{q}{p}\right)(7) = \frac{7+1}{7-1}$$
$$= \frac{8}{6}$$

$$(g+f)(a) = a + (-2a - 1)$$

$$= -a - 1$$

$$(g+f)(-3) = -(-3) - 1$$

$$= 3 - 1$$

$$= 2$$

Question 6

$$(h-g)(n) = (3n+1) - (-5n-6)$$

= $3n+1+5n+6$
= $8n+7$
 $(h-g)(2) = 8(2) + 7$
= $16+7$
= 23

Question 7

$$(sr)(n) = (n+1) \cdot (2n+1)$$

 $(sr)(-1) = (-1+1) \cdot (2(-1)+1)$
 $= (0) \cdot (-1)$
 $= 0$

$$\left(\frac{q}{p}\right)(b) = \frac{b-8}{b-4}$$
$$\left(\frac{q}{p}\right)(-3) = \frac{-3-8}{-3-4}$$

math_answers.jl — Pluto.jl
$$= \frac{-11}{-7}$$

$$= \frac{11}{7}$$

$$(f+g)(x) = (x+7) + (x+1)$$

 $(f+g)(-2) = (-2+7) + (-2+1)$
 $= 5 + (-1)$
 $= 4$

$$(h-g)(t) = (3t+5) - 2t$$

= $t+5$
 $(h-g)(4) = 4+5$
= 9

Question 11

$$(rs)(w) = (-3w - 1) \cdot (w - 5)$$
 $(rs)(-3) = (-3(-3) - 1) \cdot (-3 - 5)$
 $= (9 - 1) \cdot (-8)$
 $= 8 \times -8$
 $= -64$

Question 12

$$\left(\frac{p}{q}\right)(r) = \frac{r-12}{2r+6}$$

$$\left(\frac{p}{q}\right)(2) = \frac{2-12}{2(2)+6}$$

$$= \frac{-10}{10}$$

$$= -1$$

$$(f \circ g)(x) = (x-1)+2$$
 $(f \circ g)(-2) = (-2-1)+2$
 $= -3+2$
 $= -1$
 $(g \circ f)(x) = (x+2)-1$
 $(g \circ f)(3) = (3+2)-1$
 $= 4$

$$(g \circ h)(w) = (w - 3) - 1$$

$$(g \circ h)(3) = (3 - 3) - 1$$

$$= (0) - 1$$

$$= 0$$

$$(h \circ g)(w) = (w - 1) - 3$$

$$(h \circ g)(-2) = (-2 - 1) - 3$$

$$= -3 - 3$$

$$= -6$$

Example page.

Page 71

Question 15

$$f(x)=x-2$$
 $y=x-2$ $y+2=x$ $x+2=y$

$$f^{-1}(x)=x+2$$

$$g(x)=x+4$$
 $y=x+4$ $y-4=x$ $x-4=y$ $g^{-1}(x)=x-4$

 $(f \circ g)^{-1}(x) = (x-4) + 2$ = x-2

 $(g^{-1}\circ f^{-1})(x)=(x+2)-4 \ =x-2$

$$f(x) = 2x - 3$$
$$y = 2x - 3$$

$$y + 3 = 2x$$

$$\frac{y+3}{2} = x$$

$$rac{x+3}{2}=y$$

$$f^{-1}(x)=\frac{x+3}{2}$$

$$g(x) = x + 2$$

$$y = x + 2$$

$$y-2=x$$

$$x-2=y$$

$$g^{-1}(x)=x-2$$

.

$$f^{-1}(1) = \frac{x+3}{2}$$

$$f^{-1}(1)=\frac{1+3}{2}$$

$$=\frac{4}{2}$$

$$= 2$$

.

$$f^{-1}(2)=\frac{2+3}{2}$$

$$f^{-1}(2) = \frac{5}{2}$$

$$= 2.5$$

Chapter 2 Test

Question 1

$$f(-1) = (2^x)$$
$$= 2^{-1}$$
$$= \frac{1}{2^1}$$
$$= \frac{1}{2}$$

Question 2

$$g(3) = 5^{x}$$
$$= 5^{3}$$
$$= 125$$

Question 3

$$h(3) = (3^x)$$
$$= 3^3$$
$$= 27$$

$$y = 2^{x}$$

$$x y$$

$$-2 0.25$$

$$-1 0.5$$

$$0 1$$

$$1 2$$

$$2 4$$

$$3 8$$

$$4 16$$

$$y = 2^{-x}$$

$$x y$$

$$-1 2$$

$$0 1$$

$$1 0.5$$

$$2 0.25$$

$$3 0.125$$

$$4 0.0625$$

$$5 0.03125$$

$$2^{2x} = 2^{3x-7}$$

$$2x = 3x - 7$$

$$2x - 3x = -7$$

$$-x = -7$$

$$x = 7$$

Question 7

$$3^{6n} = 3^{n+5}$$

$$6n = n + 5$$

$$6n - n = 5$$

$$5n = 5$$

$$n = 1$$

Question 8

$$rac{1}{4^{m-2}}=4^{2m-5}$$

$$4^{-(m-2)} = 4^{2m-5}$$

$$4^{-m+2)} = 4^{2m-5}$$

$$-m+2 = 2m-5$$

$$-m-2m = -5-2$$

$$-3m = -7$$

$$m = \frac{-7}{-3}$$

$$m=rac{7}{3}$$

$$5^x \cdot 5^3 = 5^{-2}$$

$$x + 3 = -2$$

$$x = -2 - 3$$

$$x = -5$$

$$3^{-2x} \cdot 5^{-2x} = 15^{x-6}$$
 $15^{-2x} = 15^{x-6}$
 $-2x = x - 6$
 $-2x - x = -6$
 $-3x = -6$
 $3x = 6$
 $x = \frac{6}{3}$
 $x = 2$

Question 11

$$3^x < 3^2$$
 $x < 2$

Question 12

$$5^{2x-6} \geq 5^{x-10}$$
 $2x-6 \geq x-10$ $2x-x \geq -10+6$ $x \geq -4$

$$(1)^{x+1} < (1)^{2x+3}$$
 $x+1 < 2x+3$ $1-3 < 2x-x$ $-2 < x$ $x > -2$

$$f(x) = \sqrt{x+2}$$
 $\begin{array}{c|cccc} x & y \\ -2 & 0 \\ -1 & 1 \\ 0 & 1.414214 \\ 1 & 1.732051 \\ 2 & 2 \end{array}$

Question 15

This question is exactly the same as the previous, question 14.

Functions for the next questions

$$f(x) = x - 1$$

$$g(x) = x + 5$$

Question 16

$$(f+g)(x) = (x-1) + (x+5)$$

$$(f+g)(1) = (1-1) + (1+5)$$

$$=(0)+(6)$$

$$=6$$

Question 17

$$(f-g)(x) = (x-1) - (x+5)$$

$$(f-g)(-2) = (-2-1) - (-2+5)$$

$$=(-3)-(3)$$

$$= -6$$

Question 18

$$(fg)(x) = (x-1)\cdot(x+5)$$

$$(fg)(-1) = (-1-1) \cdot (-1+5)$$

$$(fg)(-1)=(-2)\cdot(4)$$

$$= -8$$

$$rac{g}{f}(x) = rac{x+5}{x-1}$$

$$\frac{g}{f}(3)=\frac{3+5}{3-1}$$

$$=\frac{8}{2}$$

$$=4$$

Functions for the next questions

$$f(x) = x + 2$$

$$g(x)=2x-1$$

Question 20

$$(f\circ g)(x)=(2x-1)+2$$
 $(f\circ g)(2)=(2(2)-1)+2$ $=4-1+2$ $=5$

Question 21

$$(g \circ f)(x) = 2(x+2) - 1$$

 $(g \circ f)(-1) = 2((-1) + 2) - 1$
 $= 2(1) - 1$
 $= 1$

$$r(x)=x-2$$
 $y=x-2$ $y+2=x$ $x+2=y$ $r^{-1}(x)=x+2$

$$s(x)=x+4$$

$$y = x + 4$$

$$y-4=x$$

$$x-4=y$$

$$s^{-1}(x)=x-4$$

.

$$s^{-1}(2) = 2 - 4$$

= -2

Page 76

Just explanations

Page 77

Question 1

Given

$$x + 2(x - 3) = 24$$

Distributive

$$x + 2x - 6 = 24$$

Simplify

$$3x - 6 = 24$$

Addition

$$3x - 6 + 6 = 24 + 6$$

$$3x = 30$$

Division

$$3x \div 3 = 30 \div 3$$

$$x = 10$$

Given

$$\frac{1}{4}x + 3 = 2$$

Subtraction

$$rac{1}{4}x + 3 - 3 = 2 - 3$$
 $rac{1}{4}x = -1$

Multiplication

$$\frac{1}{4}x(4) = -1(4)$$
$$x = -4$$

Question 3

Given

$$x-5=3(x+2)+1$$

Distributive

$$x - 5 = 3x + 6 + 1$$

Simplify

$$x - 5 = 3x + 7$$

Subtraction

$$x - x - 5 = 3x - x + 7$$

 $-5 = 2x + 7$

Subtraction

$$-5-7 = 2x + 7 - 7$$

 $-12 = 2x$

Division

$$-12 \div 2 = 2x \div 2$$

$$-6 = x$$

$$x = -6$$

Given

$$8x - 6 = 2(x + 2)$$

Distributive

$$8x - 6 = 2x + 4$$

Subtraction

$$8x - 2x - 6 = 2x - 2x + 4$$

$$6x - 6 = 4$$

Addition

$$6x - 6 + 6 = 4 + 6$$

$$6x = 10$$

Division

$$6x \div 6 = 10 \div 6$$

$$x = \frac{10}{6}$$

Simplify

$$x=rac{5}{3}$$

Question 5

Given

$$x+x=\frac{5}{6}$$

Simplify

$$2x=rac{5}{6}$$

Division

$$2x \div 2 = rac{5}{6} \div 2$$
 $x = rac{5}{12}$

Question 6

Given

$$2x - 1 = x + 3$$

Subtraction

$$2x - x - 1 = x - x + 3$$

 $x - 1 = 3$

Addition

$$x - 1 + 1 = 3 + 1$$
$$x = 4$$

Question 7

Already answered in the book.

Question 8

- 1. Given
- 2. Distributive property
- 3. Subtraction property
- 4. Subtraction property
- 5. Division property

Question 9

- 1. Given
- 2. Distributive property
- 3. Addition property
- 4. Division property

Question 10

It is given that 3x - 6 = 5x + 2. By subtraction property, subtract 3x from both sides, resulting in -6 = 2x + 2. By the subtraction property, subtract 2 from both sides, resulting in -8 = 2x. By the division property, divide both sides by 2. The final result is x = -4.

Question 11

It is given that 2(x-1)=3(2x+2). By distributive property, on the left hand side, multiply in the ${\bf 2}$, and on the right hands side multiply in the ${\bf 3}$. Resulting in: 2x-2=6x+6. By the subtraction property, subtract 2x from both sides, resulting in: -2=4x+6. Again by the subtraction property, subtract ${\bf 6}$ from both sides, resulting in -8=4x. Finally by the divison property, divide both sides by ${\bf 4}$, resulting in: x=-2.

Question 12

It is given that 2(x-4)=6. By the distributive property, multiply in 2, on the left hand side, resulting in 2x-8=6. By the addition property, add 8 on both sides, resulting in 2x=14. Finally by the divison property, divide both sides by 2, resulting in: x=7.

Chapter 1 Test

Question 3

The question states the area is 360, but the example shows A=90, which I think is a typo. So if we use 360, the answer is as follows:

$$360 = (4x+4) \cdot 3x$$

$$360 = 12x^2 + 12x$$

Divide everything by 12.

$$30 = x^2 + x$$

Complete the square.

$$x^2 + x - 30 = 0$$

$$(x-5)(x+6)=0$$

For the above equation to be = 0, then x must either be 5, or -6.

Check the discriminant:

$$b^2 - 4ac$$
 $1^2 - 4(1)(-30)$ $1 + 120$ 121

The discriminant is positive, meaning there are two solutions. As shown above, the solutions are x = 5, and x = -6.

Note

If the result of the discriminant equation $a^2 - 4ac$ is positive, then there are two solutions. If it is negative, then there are no solutions, if it is exactly 0 then there is exactly one solution.