BJT: Bipolar Junction Transistor

PRESENTED BY: CALLEN FISHER DATE: 18TH OCTOBER 2018

Previously

- 2
- Kirchhoff's Voltage law
- Kirchhoff's Current law
- Diode: single PN junction
 - Steering diode
 - Zener diode

[1]

Today's Lecture

- Transistor basics!
 - Introduction to transistors
 - Current amplification (active mode)
 - Cutoff and saturation mode
- Basis of all electrical components

Bipolar Junction Transistor (BJT) Basics

- Builds on from the diode model
- Two PN junctions
- Amplifies current
- Two types of BJT transistors
 - o NPN
 - o PNP
- Each layer has a name and a wire connected to it
 - Base
 - Emitter
 - Collector
- Arrow indicates what type of transistor it is

Rules for Amplification

- 1. To turn on the transistor (NPN):
 - $\circ V_B > V_E + V_{SAT}$
 - \circ What is V_{SAT} ?
 - Saturation voltage
- Equations governing the transistor:
 - 1. $I_C = \beta I_B$
 - $I_E = (1 + \beta)I_B$
 - \circ What is β ?
 - \times Also known as h_{FE}
 - x It is the gain of the transistor

NPN Properties

6

Electrical Characteristics (T_a = 25°C unless specified otherwise)

Description	Symbol	Test Condition	Value		Unit	
			Minimum	Maximum	Onit	
Collector Emitter Breakdown Voltage	BV _{CEO}	I _C = 10mA, I _B = 0	30	-		
Collector Base Breakdown Voltage	BV _{CBO}	$I_C = 10\mu A, I_E = 0$	60	-	v	
Emitter Base Breakdown Voltage	V _{EBOf}	$I_E = 10\mu A, I_C = 0$	5	-		
Collector Leakage Current	І _{СВО}	$V_{CB} = 50V, I_{E} = 0$ $V_{CB} = 50V, I_{E} = 0$ $T_{a} = 150^{\circ}C$	-	10 10	nA μA	
Collector Emitter Saturation Voltage	*V _{CE (Sat)}	I _C = 150mA, I _B = 15mA I _C = 500mA, I _B = 50mA	-	0.4 1.6	v	
Base Emitter Saturation Voltage	*V _{BE (Sat)}	I _C = 150mA, I _B = 15mA I _C = 500mA, I _B = 50mA	0.6	1.3 2.6	v	

NPN Properties

7

Electrical Characteristics (T_a = 25°C unless specified otherwise)

Parameter	Symbol	Test Condition	2N:	Unit	
Farameter	Symbol	rest Condition	Minimum	Maximum	
DC Current Gain	h _{FE}	I _C = 0.1mA, V _{CE} = 10V* I _C = 1mA, V _{CE} = 10V I _C = 10mA, V _{CE} = 10V* I _C = 150mA, V _{CE} = 1V* I _C = 150mA, V _{CE} = 1V* I _C = 500mA, V _{CE} = 10V*	35 50 75 50 100 30	300	-
Dynamic Characteristics	•				
Transition Frequency	f _t	I _C = 20mA, V _{CE} = 20V f = 100MHz	250	-	MHz
Output Capacitance	C _{ob}	V _{CB} = 10V, I _E = 0 f = 100kHz	-	8	
Input Capacitance	C _{ib}	V _{EB} = 0.5V, I _C = 0 f = 100kHz	-	30	- pF
Switching Characteristics					
Delay Time	t _d	I _C = 150mA,I _{B1} = 15mA	-	10	
Rise Time	t _r	V _{CC} = 30V, V _{BE (off)} = 0.5V	-	25	ns
Storage Time	t _s	I _C = 150mA, I _{B1} = 15mA	-	225	
Fall Time	t _f	I _{B2} = 15mA, V _{CC} = 30V	-	60	

^{*}Pulse Condition: Pulse Width ≤300µs, Duty Cycle ≤2%.

Common Collector (NPN)

- If: $R_E = 1k$, $V_{CC} = 5V$ (Often R_E is the load)
- According to rule 1:
 - $V_{out} = V_{in} 0.6$
 - Can vary the voltage across the load
- If:
 - \circ $V_{in} = 5V$
 - $V_{out} = V_{in} 0.6$
 - $I_E = \frac{V_{out}}{R_E} = \frac{5 0.6}{1000} = 4.4 mA$
 - $I_E = (1 + \beta)I_B$
 - $I_B = \frac{I_E}{(1+\beta)} = \frac{0.0044}{101} = 43.6 \mu A$
- What if $V_{in} = 3V$?

NPN Properties

9

Electrical Characteristics (T_a = 25°C unless specified otherwise)

Description	Symbol	Test Condition	Value		Unit	
			Minimum	Maximum	Onit	
Collector Emitter Breakdown Voltage	BV _{CEO}	I _C = 10mA, I _B = 0	30	-		
Collector Base Breakdown Voltage	BV _{CBO}	$I_C = 10\mu A, I_E = 0$	60	-	V	
Emitter Base Breakdown Voltage	V _{EBOf}	I _E = 10μA, I _C = 0	5	-		
Collector Leakage Current	І _{СВО}	$V_{CB} = 50V, I_{E} = 0$ $V_{CB} = 50V, I_{E} = 0$ $T_{a} = 150^{\circ}C$	-	10 10	nA μA	
Collector Emitter Saturation Voltage	*V _{CE (Sat)}	I _C = 150mA, I _B = 15mA I _C = 500mA, I _B = 50mA	•	0.4 1.6	v	
Base Emitter Saturation Voltage	*V _{BE (Sat)}	I _C = 150mA, I _B = 15mA I _C = 500mA, I _B = 50mA	0.6	1.3 2.6	·	

Common Emitter (NPN)

- If: $R_1 = 500\Omega$, $R_B = 10K\Omega$, $V_1 = 2V$
- $V_{Forward\ LED} = 1.5V$
- According to rule 1:

$$V_B = V_E + 0.6 = 0.6V$$

$$: I_B = \frac{V_1 - V_B}{R_B} = 14mA$$

- According to governing equations:
 - $I_C = \beta I_B = 100 \times 14 mA = 1.4 A$
- Maximum current due to load:

$$I_{max} \approx \frac{10 - V_{Forward LED}}{R_1} = 17 mA$$

- IMPOSSIBLE!
 - Transistor enters saturation mode!

Common Emitter (NPN)

- If: $R_1 = 500\Omega$, $R_B = 10K\Omega$, $V_1 = 2V$
- $V_{Forward\ LED} = 1.5V$
- $\bullet V_B = 0V$
 - \circ $V_B > V_E + V_{SAT}$
 - Therefore transistor remains off
 - \circ $I_C = 0A$
- Cutoff mode
- Operates as a switch

Summary

1. To turn on the transistor (NPN):

- $\circ V_B > V_E + V_{SAT}$
- \circ What is V_{SAT} ?
 - Saturation voltage
- Equations governing the transistor:
 - 1. $I_C = \beta I_B$
 - $I_E = (1 + \beta)I_B$
 - \circ What is β ?
 - \times Also known as h_{FE}
 - x It is the gain of the transistor

Homework

- We require 30 mA flowing through the LED (forward voltage of 1.5V), $R_1 = 100\Omega$
- Calculate:
 - $\circ V_1$
 - $\circ R_B$
 - $\circ I_B$
 - $\circ I_C$
 - \circ I_E

Coming Next Lecture

Investigate the Q-point:

Investigate the difference between NPN and PNP

References and Further Reading

- [1] http://www.bbc.co.uk/schools/gcsebitesize/design/electronics/calculationsrev1.shtml
- [2] <u>https://circuitdigest.com/article/different-types-of-transistors</u>
- [3] https://www.onsemi.com/pub/Collateral/ PN2222-D.PDF
- [4] https://www.electronics-tutorials.ws/transistor/tran_4.html
- Further reading:
 - Course notes
 - https://learn.sparkfun.com/tutorials/transistors/operation-modes
 - o https://www.electronics-tutorials.ws/transistor/tran_4.html

Any Questions?

16

• Callen Fisher: <u>FSHCAL001@myuct.ac.za</u>

