Asymptotic Distribution of the Ratio Test Statistic

of the Likelihood Ratio Test Statistic Asymptotic Distribution

versus H_1 : $\emptyset \in \Theta - \Theta_0$ for a given subset Θ_0 of Θ . This tests rejects H_1 when the likelihood ratio test statistic, The likelihood ratio test provides a general method for testing H_0 : $\theta \in \Theta_0$ Let X_1, \ldots, X_n be a sample from density $f(x|\theta)$ where $\theta \subset \Theta \subset \mathbb{R}^k$.

$$\lambda_n = \frac{\sup_{\boldsymbol{\theta} \in \Theta_0} \prod_{1}^{n} f(x_j | \boldsymbol{\theta})}{\sup_{\boldsymbol{\theta} \in \Theta} \prod_{1}^{n} f(x_j | \boldsymbol{\theta})} = \frac{L_n(\boldsymbol{\theta}_n^*)}{L_n(\hat{\boldsymbol{\theta}}_n)}$$
(1)

situations occur when Θ_0 is a (k-r)-dimensional subspace of Θ . Writing the components of the vector $\mathbf{\theta} \in \mathbb{R}^k$ as $\mathbf{\theta}^T = (\theta^1, \theta^2, \dots, \theta^k)$, we assume the null hypothesis is of the form facilitated in many important situations by the following theorem. These When the sample size is large, evaluation of a cutoff point can be is too small, where θ_n^* is the MLE over Θ_0 , and $\hat{\theta}_n$ is the MLE over Θ .

$$H_0: \quad \theta^1 = \theta^2 = \dots = \theta^r = 0$$
 (2)

 $g_1(\theta) = \cdots = g_r(\theta) = 0$ for some smooth real-valued functions g_1, \dots, g_r can be put into this form by a reparametrization. The integer r represents where $1 \le r \le k$. More general situations, in which H_0 is of the form H_0 : the number of restrictions under the null hypothesis

> **THEOREM 22** [Wilks (1938)]. Suppose the assumptions of Theorem 18 are satisfied and that H_0 : $\theta^1 = \theta^2 = \cdots = \theta^r = 0$ where $1 \le r \le k$. Suppose that the true value θ_0 satisfies H_0 . Then

$$-2\log\lambda_n \stackrel{\mathcal{L}}{\longrightarrow} \chi_r^2. \tag{}$$

Proof. $-2\log \lambda_n = 2[l_n(\hat{\theta}_n) - l_n(\theta_n^*)]$ where $\hat{\theta}_n = \text{MLE over } \Theta$, and $\theta_n^* = \text{MLE over } \Theta_0$. Expand $l_n(\theta_n^*)$ about $\hat{\theta}_n$:

$$l_n(\boldsymbol{\theta}_n^*) = l_n(\hat{\boldsymbol{\theta}}_n) + l_n(\hat{\boldsymbol{\theta}}_n)(\boldsymbol{\theta}_n^* - \hat{\boldsymbol{\theta}}_n) - n(\boldsymbol{\theta}_n^* - \hat{\boldsymbol{\theta}}_n)^T \mathbf{I}_n(\boldsymbol{\theta}_n^*)(\boldsymbol{\theta}_n^* - \hat{\boldsymbol{\theta}}_n),$$

$$\mathbf{I}_{n}(\boldsymbol{\theta}_{n}^{*}) = -\frac{1}{n} \int_{0}^{1} \int_{0}^{1} v \ddot{l}_{n} (\hat{\boldsymbol{\theta}}_{n} + uv(\boldsymbol{\theta}_{n}^{*} - \hat{\boldsymbol{\theta}}_{n})) du dv \xrightarrow{\text{a.s.}} \frac{1}{2} \mathscr{I}(\boldsymbol{\theta}_{0}),$$

as in the proof of Theorem 18. For sufficiently large n, $l_n(\hat{\theta}_n) = 0$, so

$$-2\log \lambda_n = 2n(\theta_n^* - \hat{\theta}_n)^T \mathbf{I}_n(\theta_n^*)(\theta_n^* - \hat{\theta}_n)$$
$$\sim n(\theta_n^* - \hat{\theta}_n)^T \mathcal{S}(\theta_0)(\theta_n^* - \hat{\theta}_n). \tag{4}$$

If H_0 were simple, say H_0 : $\theta = \theta_0$, then $\theta_n^* = \theta_0$ and we would be finished, because we know $\sqrt{n}(\hat{\theta}_n - \theta_0) \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0, \mathcal{I}(\theta_0)^{-1})$. To find the asymptotic distribution of $\sqrt{n}(\theta_n^* - \hat{\theta}_n)$ in general, expand $I_n(\theta_n^*)$ about $\hat{\theta}_n$:

$$\frac{1}{\sqrt{n}}i_n(\boldsymbol{\theta}_n^*) = \frac{1}{\sqrt{n}}i_n(\hat{\boldsymbol{\theta}}_n) + \frac{1}{n}\int_0^1 i_n(\hat{\boldsymbol{\theta}}_n + v(\boldsymbol{\theta}_n^* - \hat{\boldsymbol{\theta}}_n)) dv\sqrt{n}(\boldsymbol{\theta}_n^* - \hat{\boldsymbol{\theta}}_n)$$

$$\sim -\mathscr{I}(\theta_0)\sqrt{n}\left(\theta_n^* - \hat{\theta}_n\right)$$

$$\sqrt{n} \left(\boldsymbol{\theta}_n^* - \hat{\boldsymbol{\theta}}_n \right) \sim -\mathcal{I}(\boldsymbol{\theta}_0)^{-1} \frac{1}{\sqrt{n}} i_n(\boldsymbol{\theta}_n^*) \tag{5}$$

$$-2\log \lambda_n \sim \frac{1}{\sqrt{n}} i_n(\boldsymbol{\theta}_n^*)^T \mathcal{I}(\boldsymbol{\theta}_0)^{-1} \frac{1}{\sqrt{n}} i_n(\boldsymbol{\theta}_n^*). \tag{6}$$

6

Asymptotic Distribution of the Ratio Test Statistic

so that from Eq. (6)

147

To find the asymptotic distribution of $I_n(\theta_n^*)$, expand about θ_0 .

$$\frac{1}{\sqrt{n}}i_n(\theta_n^*) = \frac{1}{\sqrt{n}}i_n(\theta_0) + \frac{1}{n}\int_0^1 \ddot{l_n}(\theta_0 + \upsilon(\theta_n^* - \theta_0)) d\upsilon\sqrt{n}(\theta_n^* - \theta_0).$$

Partition $\mathcal{S}(\theta_0)$ into four matrices,

$$\mathcal{S}(\boldsymbol{\theta}_0) = \begin{bmatrix} r \times r & r \times (k-r) \\ \mathbf{G}_1 & \mathbf{G}_2 \\ (k-r) \times r & (k-r) \times (k-r) \\ \mathbf{G}_2^T & \mathbf{G}_3 \end{bmatrix},$$

and let

$$\mathbf{H} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{G}_3^{-1} \end{bmatrix}.$$

Note that the last k-r components of $I_n(\theta_n^*)$ are zero, so that $HI_n(\theta_n^*)=0$ and

$$\mathbf{H} \frac{1}{\sqrt{n}} l_n(\boldsymbol{\theta}_0) \sim \mathbf{H} \mathcal{S}(\boldsymbol{\theta}_0) \sqrt{n} \left(\boldsymbol{\theta}_n^* - \boldsymbol{\theta}_0\right) = \sqrt{n} \left(\boldsymbol{\theta}_n^* - \boldsymbol{\theta}_0\right)$$

since the first r components of θ_n^* and θ_0 are zero. Substituting into Eq. (7), we find

$$\frac{1}{\sqrt{n}}i_n(\boldsymbol{\theta}_n^*) \sim \left[\mathbf{I} - \mathscr{S}(\boldsymbol{\theta}_0)\mathbf{H}\right] \frac{1}{\sqrt{n}}i_n(\boldsymbol{\theta}_0).$$

From the Central Limit Theorem,

$$\frac{1}{\sqrt{n}}i_n(\boldsymbol{\theta}_0) = \sqrt{n}\left(\frac{1}{n}i_n(\boldsymbol{\theta}_0)\right) \stackrel{\mathcal{L}}{\to} \mathcal{N}(\boldsymbol{0}, \mathcal{S}(\boldsymbol{\theta}_0)).$$

Hence,

$$\frac{1}{\sqrt{n}}i_n(\theta_n^*) \stackrel{\mathcal{L}}{\to} \big[\mathbf{I} - \mathscr{S}(\theta_0)\mathbf{H}\big]\mathbf{Y}, \quad \text{ where } \mathbf{Y} \in \mathscr{N}(\mathbf{0}, \mathscr{S}(\theta_0)),$$

 $2\log \lambda_n \xrightarrow{\mathcal{L}} Y^T [\mathbf{I} - \mathcal{S}(\boldsymbol{\theta}_0) \mathbf{H}]^T \mathcal{S}(\boldsymbol{\theta}_0)^{-1} [\mathbf{I} - \mathcal{S}(\boldsymbol{\theta}_0) \mathbf{H}] \mathbf{Y}$ $= \mathbf{Y}^T [\mathcal{S}(\boldsymbol{\theta}_0)^{-1} - \mathbf{H}] \mathbf{Y} \quad [\text{because } \mathbf{H} \mathcal{S}(\boldsymbol{\theta}_0) \mathbf{H} = \mathbf{H}]$

(7)

$$=\mathbf{Z}^{T}\!\mathcal{J}\!\left(\boldsymbol{\theta}_{0}\right)^{1/2}\!\left[\boldsymbol{\mathcal{J}}\!\left(\boldsymbol{\theta}_{0}\right)^{-1}-\mathbf{H}\right]\!\boldsymbol{\mathcal{J}}\!\left(\boldsymbol{\theta}_{0}\right)^{1/2}\!\mathbf{Z},$$

where $\mathbf{Z} = \mathcal{J}(\boldsymbol{\theta}_0)^{-1/2}\mathbf{Y} \in \mathcal{N}(\mathbf{0}, \mathbf{I})$. It is easily checked that the matrix $\mathbf{P} = \mathcal{J}(\boldsymbol{\theta}_0)^{1/2}[\mathcal{J}(\boldsymbol{\theta}_0)^{-1} - \mathbf{H}[\mathcal{J}(\boldsymbol{\theta}_0)^{1/2}]$ is a projection and that $\mathrm{rank}(\mathbf{P}) = \mathrm{trace}(\mathbf{P}) = \mathrm{trace}(\mathcal{J}(\boldsymbol{\theta}_0)[\mathcal{J}(\boldsymbol{\theta}_0)^{-1} - \mathbf{H}]) = \mathrm{trace}(\mathbf{I} - \mathcal{J}(\boldsymbol{\theta}_0)\mathbf{H}) = r$. Therefore $-2\log\lambda_n \stackrel{\mathcal{L}}{\Longrightarrow} \mathbf{Z}^T\mathbf{PZ} \in \chi_r^2$, as was to be shown.

Note: The maximum-likelihood estimates that appear in the definition of λ_n may be replaced by any of the efficient estimates, such as those of Sections 18 and 19, without disturbing the asymptotic distribution of $-2 \log \lambda_n$.

EXAMPLE 1. Let $X_1, ..., X_n$ be a sample from $\mathcal{N}(\mu, \sigma^2)$. Find the likelihood ratio test of the hypothesis H_0 : $\mu = 0$, $\sigma = 1$. Here r = 2 and

$$L_n(\mu, \sigma) = \left[\frac{1}{\sqrt{2\pi}\sigma}\right]^n \exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n (X_i - \mu)^2\right\},$$

so that

$$\lambda_n = \frac{L_n(0,1)}{L_n(\bar{X},s)} = \frac{\exp\left\{-\frac{1}{2}\sum_{1}^{n}X_j^2\right\}}{s^{-n}\exp\{-n/2\}},$$

since the maximum-likelihood estimates of (μ, σ) under Θ are $\hat{\mu} = 1$ and $\hat{\sigma}^2 = s^2 = (1/n) \sum_{i=1}^n (X_i - \overline{X})^2$. Hence,

$$-2\log\lambda_n = -n\log s^2 + \sum_{1}^{n} X_j^2 - n \xrightarrow{\mathcal{L}} \chi_2^2$$

when H_0 is true. At the 5% level, we reject H_0 if

$$-2\log \lambda_n > \chi_{2;0.05}^2 = 2\log 20 = 5.99\dots$$

EXAMPLE 2. Let X_1, \ldots, X_c have a multinomial distribution based on n trials, each resulting in one of c outcomes (cells) with respective probabilities p_1, \ldots, p_c , where $p_i > 0$ for all i, and $\sum_{i=1}^{c} p_i = 1$. Thus,

$$L_n(p_1,\ldots,p_c) = \binom{n}{x_1\ldots x_c}\prod_{i=1}^{r} p_i^{x_i}$$

provided X_i are integers ≥ 0 , and $\sum_i^c X_i = n$. Consider testing the hypothesis H_0 : $p_1 = \cdots = p_c = 1/c$. Even though it appears that there are c restrictions, we have r = c - 1 because of the original constraint $\sum_i^c p_i = 1$. The maximum-likelihood estimates of the p_i under Θ are $\hat{p}_i = X_i/n$ for $i = 1, \ldots, c$. Hence,

$$\lambda_n = \frac{\begin{pmatrix} n \\ x_1 \cdots x_c \end{pmatrix} \prod_{i=1}^{c} (1/c)^{x_i}}{\begin{pmatrix} n \\ x_1 \cdots x_c \end{pmatrix} \prod_{i=1}^{c} (x_i/n)^{x_i}} = \prod_{i=1}^{c} \left(\frac{n}{cx_i}\right)^{x_i}$$

ano

$$-2\log \lambda_n = 2\sum_{1}^{c} x_j \log \left(\frac{cx_j}{n}\right) \stackrel{\mathcal{L}}{\to} \chi_{c-1}^2$$

under H_0 . The usual test of H_0 in this situation is of course Pearson's χ^2 .

Power. We may also find an approximation to the power of the likelihood ratio test at an alternative close to the null hypothesis. Suppose that θ is the true value and that θ_0 is the parameter point in H_0 that is closest to θ . Define $\delta = \sqrt{n} (\theta - \theta_0)$. As in the discussion of the power of Pearson's χ^2 test, we take θ to be converging to θ_0 in such a way that δ is fixed. In the proof of Theorem 22, this changes the limiting distribution of $(1/\sqrt{n})i_n(\theta_0)$. It may be found by the expansion,

$$\frac{1}{\sqrt{n}}i_n(\theta_0) = \frac{1}{\sqrt{n}}i_n(\theta) + \frac{1}{n}i_n(\theta)\sqrt{n}(\theta_0 - \theta)$$

$$\stackrel{\mathcal{L}}{\Rightarrow} \mathbf{Y} = \mathcal{N}(\mathbf{0}, \mathcal{S}(\theta_0)) + \mathcal{S}(\theta_0)\delta = \mathcal{N}(\mathcal{S}(\theta_0)\delta, \mathcal{S}(\theta_0)).$$

As before, if we let $\mathbf{Z} = \mathcal{S}(\mathbf{\theta}_0)^{-1/2}\mathbf{Y}$, then $-2\log\lambda_n \xrightarrow{\mathcal{S}} \mathbf{Z}^T\mathbf{P}\mathbf{Z}$, where $\mathbf{P} = \mathcal{S}(\mathbf{\theta}_0)^{1/2}[\mathcal{S}(\mathbf{\theta}_0)^{-1} - \mathbf{H}[\mathcal{S}(\mathbf{\theta}_0)^{1/2}]$ is a projection of rank r, but this time $\mathbf{Z} \in \mathcal{M}(\mathcal{S}(\mathbf{\theta}_0)^{1/2}\mathbf{\delta}, \mathbf{I})$) so that (see Exercise 4),

$$-2\log \lambda_n \stackrel{\mathcal{L}}{\to} \mathbf{Z}^T \mathbf{P} \mathbf{Z} \in \chi_r^2(\varphi),$$

where the noncentrality parameter φ is

$$\varphi = \delta^T \mathcal{J}(\theta_0)^{1/2} \mathbf{P} \mathcal{J}(\theta_0)^{1/2} \delta = \delta^T \mathcal{J}(\theta_0) \left[\mathcal{J}(\theta_0)^{-1} - \mathbf{H} \right] \mathcal{J}(\theta_0) \delta.$$

If we use the form of $\mathcal{S}(\theta)$ in terms of the matrices G_1 , G_2 , and G_3 , the noncentrality parameter φ reduces to the simpler form,

$$\varphi = \delta_r^T (\mathbf{G}_1 - \mathbf{G}_2 \mathbf{G}_3^{-1} \mathbf{G}_2^T) \delta_r,$$

where δ_r is the vector of the first r components of δ . Note the effect of nuisance parameters. If $\theta_{r+1}, \ldots, \theta_k$ were known, the noncentrality parameter would be $\delta_r^T \mathbf{G}_1 \delta_r$.

EXAMPLE 1 (continued). Let us find the approximate power at the alternative $\mu=0.2$, $\sigma=1.2$, when n=50 and the test is conducted at the 5% level. First we compute $\delta^T=\sqrt{n}\,(0.2,0.2)$. To compute φ , recall that Fisher Information for the normal distribution is

$$\mathcal{I}(\mu,\sigma) = \begin{bmatrix} 1/\sigma^2 & 0 \\ 0 & 2/\sigma^2 \end{bmatrix}.$$

In this problem the matrix **H** is empty, so that $\varphi = \delta^T \mathcal{I}(0, 1)\delta = 6$. From the Fix Tables (Table 3) of the power of χ_2^2 , we find a power of approximately $\beta = 0.58$. To get a power of 0.9 at this alternative, we need φ to be about 12.655, so we must increase n to about 106.

Note that in the calculation of the information matrix in φ we used the null hypothesis value, $\sigma=1$, but from the point of view of the asymptotic theory, the true value, $\sigma=1.2$, should serve as well. However, this would give a smaller value of φ , $\varphi=4.167$, and a power of about $\beta=0.43$. The sample size is not yet large enough to smooth out this difference. Perhaps a better approximation to the power would be given using the compromise value, $\sigma=1.1$ ($\beta=0.50$).

EXERCISES

- 1. Let $X_1, ..., X_n$ be a sample from $\mathcal{M}(\mu_x, \sigma_x^2)$ and $Y_1, ..., Y_n$ be an independent sample from $\mathcal{M}(\mu_y, \sigma_y^2)$. Find the likelihood ratio test for testing H_0 : $\mu_x = \mu_y$ and $\sigma_x^2 = \sigma_y^2$ and state its asymptotic distribution.
- 2. Let X_1, \ldots, X_n be a sample from the exponential distribution with density $f(x|\theta) = \theta \exp\{-\theta x\}I$ (x>0) and Y_1, \ldots, Y_n be an independent sample from $f(y|\mu) = \mu \exp\{-\mu y\}I$ (y>0). Find the likelihood ratio test and its asymptotic distribution for testing H_0 : $\mu = 2\theta$.

- \dot{s} For i = 1, ..., k, let $X_{i1}, X_{i2}, ..., X_{in}$ and its asymptotic distribution, for testing H_0 : $\theta_1 = \theta_2 = \cdots = \theta_k$. Poisson distributions, $\mathcal{P}(\theta_i)$, respectively. Find the likelihood ratio test be independent samples from
- then $\mathbf{Z}^T \mathbf{P} \mathbf{Z} \in \chi_r^2(\boldsymbol{\delta}^T \mathbf{P} \boldsymbol{\delta}).$ Show that if $Z \in \mathcal{N}(\delta, I)$ and if P is a symmetric projection of rank r,
- Consider the likelihood ratio test of H_0 : $\mu = 0$ against all alternaparameters are $\mu = 0.1$ and $\sigma = \sigma_0$ for some fixed σ_0 ? approximate distribution of $-2 \log \lambda_n$ if the true values of the with mean μ and unknown standard deviation σ . What is the tives based on a sample of size n = 1000 from a normal distribution
- 9 unknown. What is the approximate distribution of $-2 \log \lambda_n$ if the Suppose instead the distribution is $\mathscr{G}(\alpha, \beta)$ and H_0 : $\alpha = 1$ with β true values of the parameters are $\alpha = 1.1$ and $\beta = \beta_0$? (Note that
- this distribution is independent of β_0 .)
- 6. One-Sided Likelihood Ratio Tests. The likelihood ratio test against distribution-free under the null hypothesis. This may be illustrated in one-sided alternatives is more complex and is no longer asymptotically tions as in Theorem 22, with k = r = 2 and take $\theta_0 = 0$. testing H_0 : $\theta = \theta_0$ when θ is two-dimensional. Make the same assump-
- Let λ_n denote the likelihood ratio test statistic for testing $\theta = 0$ against H_1 : $\theta_1 > 0$, θ_2 unrestricted. Show that under the null hypothesis, $-2\log\lambda_n \xrightarrow{\mathcal{L}} 0.5\chi_1^2 + 0.5\chi_2^2$ (the mixture of a χ_1^2 and a χ_2^2 with probability 0.5 each).
- 9 In testing H_0 : $\theta = 0$ against H_1 : $\theta_1 \ge 0$, $\theta_2 \ge 0$, $\theta \ne 0$, show that $-2\log \lambda_n \stackrel{\mathcal{L}}{\longrightarrow} p\delta_0 + 0.5\chi_1^2 + (0.5 - p)\chi_2^2$ under H_0 , where δ_0 is pends on the correlation of the underlying distribution. matrix is $\mathcal{A}(\theta_0)$. Thus the limiting distribution of $-2\log \lambda_n$ the distribution degenerate at 0, and $p = \arccos(\rho)/2\pi$, where ρ is the correlation coefficient of the variables whose covariance