(1)					
(M)	Non	Suat.	Temot.		
Gir	+ 12	6	12	30	Loby Iden
Tm	28	4	18	57)	
	40	10	30	80	

a)
$$Q(Sut) = \frac{30}{80}$$
 b) $P(Telm | Sutt.) = \frac{12}{30}$

c)
$$X = poat nanogeninous ch dorti za 3 dny
 $X \sim Po(3)$, $f = P(X=k) = \frac{3k}{k!} e^{-3} pno k = 0, 1,$
 $P(X \ge 2) = 1 - P(X \le 1) = 1 - (P(X=0) + P(X=1)) = 1 - (\frac{3^{\circ}}{0!} e^{-3} \cdot \frac{3^{1}}{1!} e^{-3})$$$

d)
$$X$$
 doba do objednómi svatebního otortu $\int dm_{y}^{2}$
 $X \wedge Exp(\frac{1}{4}) + \frac{1}{4} \cdot f(x) = \frac{1}{4}e^{-\frac{x}{4}}$ a $F(x) = 1 - e^{-\frac{x}{4}}$ pro $x > 0$
 $P(X \le L) = \int_{0}^{2} f(x) dx = \int_{0}^{2} \frac{1}{4}e^{-\frac{x}{4}} dx = \frac{1}{4} \cdot \left[\frac{e^{-\frac{x}{4}}}{e^{-\frac{x}{4}}}\right]_{0}^{2} = \frac{1}{4} - e^{-\frac{2}{4}} - \left(-e^{-0}\right)$
 $= \frac{1 - e^{-\frac{1}{4}}}{e^{-\frac{x}{4}}} = \frac{1}{4}e^{-\frac{x}{4}}$

NEBO
Y pool soot dordi za dva dny ~
$$Po\left(\frac{1}{2}\right)$$
, f $P(Y=1) = \frac{\left(\frac{1}{2}\right)^{1}}{k!} e^{-\frac{1}{2}}$
 $P(Y=1) = 1 - P(Y=0) = 1 - \frac{\left(\frac{1}{2}\right)^{0}}{0!} e^{-\frac{1}{2}} = \frac{1 - e^{-\frac{1}{2}}}{1 - e^{-\frac{1}{2}}}$

e)
$$X$$
 per X non new temet dorthi poted provin swotebnim $X = C$ beam $(\frac{1}{8})$, $\frac{1}{7}$ $P(X=k) = (\frac{7}{3})^k = \frac{1}{7}$ pro $k = 0, 1, ...$ $P(X=3) = \sum_{k=0}^{3} (\frac{7}{8})^k$, $\frac{1}{4} = 1 - (\frac{7}{8})^k$

NETSO Y pood suct durli meai dols/mi objemi
Y - Binam $(4; \frac{1}{8})$, f, $P(7=k) = {i\choose k}{i\choose 2}^k {i\choose 8}^{n-k}$ pro k=0,1,...,9P(Y=1)=1-P(Y=0)=1-(4)(1)(1)(7)=1-(7)

f) X pool temoticular durki mez 6 dort n Binam (6, 3)
$$P(X \le 2) = {\binom{6}{3}} {\binom{3}{8}} {\binom{5}{8}}^6 + {\binom{6}{1}} {\binom{3}{8}}^1 {\binom{5}{8}}^5 + {\binom{6}{2}} {\binom{3}{8}}^2 {\binom{5}{8}}^1$$

9)
$$X_i = 1$$
, pohud $i - p'$ objednom' dord je te'mo hickey $\int_{i}^{i} X_i \cdot alt \left(\frac{3}{8}\right) = \int_{i}^{i} \frac{dX_i = \frac{3}{8}}{1 - \frac{3}{8}}$
 $X_i = 0$, $\frac{1}{2}$ with $\frac{1}{2}$ \frac

$$(x) = P(2 \le -\frac{2}{3}) = \phi(-\frac{2}{3}) = 1 - \phi(\frac{2}{3}) = 1 - 0.747 = 0.253$$

Skenováno pomocí C

X Houstka ledova v néhodní vyhozním mísli Im] XN N(Jh, J?)

flais/ lo [m]

b)
$$f_{1} = \frac{1}{16} \cdot \frac{1}{2} = \frac{1}{16} \cdot \frac{1}{75} = \frac{1}{160} \cdot \frac{1}{160} = \frac{1}{160} = \frac{1}{160} \cdot \frac{1}{160} = \frac{1}$$

c)
$$H_0 \cdot EX = 5$$
 $T = 500$ $T = 500$ $H_0 \cdot EX = 500$ $T = 500$ $H_0 \cdot EX = 500$ $H_0 \cdot E$

(3)	payim typ	zdiny'	gland drev	pasion'	
	ysoky'	60	40	100	200
***	str. ywky	150	200	150	500
	prům / mitter	90	160	50	300
		300	400	300	1000

a)
$$P(X=1) = \frac{350}{1000} = 0.3$$

$$P(Y=1) = \frac{200}{1000} = 0.2$$

$$P(X=2) = \frac{400}{1000} = 0.4$$

$$P(Y=3) = \frac{300}{1000} = 0.3$$

$$P(Y=3) = \frac{300}{1000} = 0.3$$

$$P(Y=3) = \frac{300}{1000} = 0.5$$
Skeriovalio political C

b) Ho prijem a ky domu iseu madineli (d:1%)

$$\mathcal{K} = \frac{(60 - \frac{2\alpha i s x^{3/2}}{1000})^{2} + (\frac{40 - \frac{5\alpha i v a}{1000})^{2}}{1000} + (\frac{160 - \frac{2\alpha i s x^{3/2}}{1000})^{2}}{1000} + (\frac{160 - \frac{2\alpha i s x^{3/2}}{1000})^{2}} + (\frac{160 - \frac{2\alpha i s x^{3/2}}{1000})^{2}}{1000} + (\frac{160 - \frac{2\alpha i s x^{3/2}}{1000})^{2}} + (\frac{160 - \frac{2\alpha i s x^{3/2}}{1000})^{2}}{1000} + (\frac{160 - \frac{2\alpha i s x^{3/2}}{1000})^{2}} + (\frac{160 - \frac{2\alpha i s x^{3/2}}{1000})^{2}}{1000} + (\frac{160 - \frac{2\alpha i s x^{3/2}}{1000})^{2}} + (\frac{160 - \frac{2\alpha i s x^{3/2}}{1000})^{2}}{1000} + (\frac{160 -$$

C) Ho
$$P_{2} = P_{3} = P_{4} = \frac{1}{3}$$
 | lote $P_{1} = pst$, E zolestale program expension $P_{2} = pst$ | $E = pst$ | E

Ustri část:

• $X = Y \text{ (dishrithm') } \text{ json new ish', jesthize } P(X=i,Y=j) = P(X=i) \cdot P(Y=j)$ (rubo treba i $P(X=i,Y=j) = P(X=i) \cdot P(Y=j) + ij \in \mathbb{R}$) $\forall i,j \in \mathbb{R}$

• (i) When i : $X_i Y$ response i = i con $(X_i Y) = 0$ = i parametry motion by f.

Derivatively a solution mong i posh' = i