Numerical Analysis FMN011

Carmen Arévalo
Lund University
carmen@maths.lth.se

The Fourier Transform

Complex numbers

•
$$z = a + bi$$
 with $i = \sqrt{-1}$

- $\bullet |a+bi| = \sqrt{a^2 + b^2}$
- Conjugate: $\bar{z} = a bi$
- Euler formula: $e^{i\theta} = \cos\theta + i\sin\theta$
- $\bullet \ \mbox{All } z = e^{i\theta} \mbox{ lie on the complex unit circle}$
- Polar representation: $a+bi=re^{i\theta}$, where $r=\sqrt{a^2+b^2}$ and $\theta=\arctan b/a$

Roots of unity

A complex number z is an nth root of unity if $z^n = 1$

An *n*-th root of unity is primitive if $z^k \neq 1$ for $k = 1, 2, 3, \ldots, n-1$.

Examples:

• -1 is a primitive second root of unity and a nonprimitive 4-th root of unity

• $\omega_n = e^{-i2\pi/n}$ is a primitive nth root of unity.

Properties of primitives roots of unity

Let ω denote the nth root of unity, $\omega = e^{-i2\pi/n}$, n > 1.

- For $1 \le k \le n-1$, $1 + \omega^k + \omega^{2k} + \omega^{3k} + \dots + \omega^{(n-1)k} = 0$
- $1+\omega^n+\omega^{2n}+\omega^{3n}+\cdots+\omega^{(n-1)n}=n$ $\omega^{-1}=\omega^{n-1}$ If n is even, $\omega^{n/2}=-1$

Fourier matrix

The DFT of
$$x = [x_0, \dots, x_{n-1}]^T$$
 is

$$\begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{pmatrix} = \frac{1}{\sqrt{n}} \begin{pmatrix} \omega^0 & \omega^0 & \omega^0 & \cdots & \omega^0 \\ \omega^0 & \omega^1 & \omega^2 & \cdots & \omega^{n-1} \\ \omega^0 & \omega^2 & \omega^4 & \cdots & \omega^{2(n-1)} \\ \omega^0 & \omega^3 & \omega^6 & \cdots & \omega^{3(n-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ \omega^0 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^2} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \end{pmatrix}$$

where $\omega = e^{-i2\pi/n}$.

Discrete Fourier Transform

$$y_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \omega^{jk}$$

If
$$p(t) = x_0 + x_1 t + \dots + x_{n-1} t^{n-1}$$
,

$$\begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{pmatrix} = \frac{1}{\sqrt{n}} \begin{pmatrix} p(\omega^0) \\ p(\omega^1) \\ \vdots \\ p(\omega^{n-1}) \end{pmatrix}$$

Inverse Fourier matrix

It is possible to calculate the inverse of the Fourier matrix,

$$F_n^{-1} = \frac{1}{\sqrt{n}} \begin{pmatrix} \omega^0 & \omega^0 & \omega^0 & \cdots & \omega^0 \\ \omega^0 & \omega^{-1} & \omega^{-2} & \cdots & \omega^{-(n-1)} \\ \omega^0 & \omega^{-2} & \omega^{-4} & \cdots & \omega^{-2(n-1)} \\ \omega^0 & \omega^{-3} & \omega^{-6} & \cdots & \omega^{-3(n-1)} \\ \vdots & \vdots & \vdots & \vdots \\ \omega^0 & \omega^{-(n-1)} & \omega^{-2(n-1)} & \cdots & \omega^{-(n-1)^2} \end{pmatrix}$$

If $z = re^{-i\theta}$, its complex conjugate is $\bar{z} = re^{i\theta}$.

Notice that

$$F_n^{-1} = \bar{F}_n$$

Unitary matrices

The magnitude of a complex number is

$$||z|| = \sqrt{\bar{z}^T z}$$

A complex matrix F is unitary if

$$F^{-1} = \bar{F}^T$$

$$||Fv||_2 = \sqrt{\bar{v}^T \bar{F}^T F v} = \sqrt{v^T v} = ||v||_2.$$

Note that the Fourier matrix and its inverse are unitary matrices.

If A is a (real) orthogonal matrix, then it is unitary.

Operation count and the DFT in MATLAB

Applying the DFT to a vector of dimension n requires one square root, one division, one matrix-vector multiplication and one multiplication of a vector by a scalar.

The number of arithmetic operations is

$$2 + n(2n - 1) + n = 2n^2 + 2$$

Applying the iDFT requires the same number of operations.

In MATLAB:

 $F_n(x)$ is computed by the command fft(x)/sqrt(n). $F_n^{-1}(x)$ is computed by the command ifft(x)*sqrt(n).

The DFT of a real vector

If all the entries of x are real,

$$y_0 = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \omega^0 = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \in \mathbb{R}$$

Note that for $k = 1, \ldots, n - 1$,

$$\omega^{n-k} = e^{-i2\pi(n-k)/n} = e^{i2\pi k/n} = \overline{\omega^k}$$

$$y_{n-k} = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \omega^{j(n-k)}$$

$$= \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j (\overline{\omega^k})^j$$

$$= \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} \overline{x_j \omega^{jk}} = \overline{y_k}$$

The DFT of a real vector if n is even

$$F_{10} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \\ x_8 \\ x_9 \end{pmatrix} = \begin{pmatrix} a_0 \\ a_1 + ib_1 \\ a_2 + ib_2 \\ a_3 + ib_3 \\ a_4 + ib_4 \\ a_5 \\ a_4 - ib_4 \\ a_3 - ib_3 \\ a_2 - ib_2 \\ a_1 - ib_1 \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{\frac{n}{2} - 2} \\ y_{\frac{n}{2} - 1} \\ y_{\frac{n}{2} - 1} \\ \overline{y_{\frac{n}{2} - 2}} \\ \vdots \\ y_{\frac{n}{2} - 2} \\ \overline{y_{\frac{n}{2} - 1}} \\ \overline{y_{\frac{n}{2} - 2}} \\ \vdots \\ \overline{y_{\frac{n}{2} - 1}} \\ \overline{y_{\frac{n}{2} - 2}} \\ \vdots \\ \overline{y_{\frac{n}{2} - 2}} \\$$

The Fast Fourier Transform

The Cooley and Tukey algorithm (FFT) reduces the complexity of the DFT from $\mathcal{O}(n^2)$ to $\mathcal{O}(n \log n)$.

Recall that

$$y_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \omega^{jk}, \quad k = 0, 1, \dots, n-1$$

and let's concentrate on the computation of

$$z_k = \sum_{j=0}^{n-1} x_j \omega^{jk}$$

Computation of z_k when $n=2^N$

$$z_{k} = \sum_{j=0}^{n/2-1} x_{j}\omega^{jk} + \sum_{j=n/2}^{n-1} x_{j}\omega^{jk}$$

$$= \sum_{j=0}^{n/2-1} x_{j}\omega^{jk} + \sum_{j=0}^{n/2-1} x_{j+n/2}\omega^{(j+n/2)k}$$

$$= \sum_{j=0}^{n/2-1} (x_{j} + \underbrace{\omega^{kn/2}}_{=(-1)^{k}} x_{j+n/2})\omega^{jk}$$

For k = 0, 1, ..., n - 1, there is a plus sign when k is even and a negative sign when k is odd.

Transformation into two half-length vectors

$$z_{2k} = \sum_{j=0}^{n/2-1} (\underbrace{x_j + x_{j+n/2}}_{g_j}) \omega^{2jk}$$

$$z_{2k+1} = \sum_{j=0}^{n/2-1} \underbrace{(x_j - x_{j+n/2})}_{h_j} \omega^{2jk}$$

for $k = 0, 1, \dots, n/2 - 1$.

We have two transforms of length $n/2=2^{N-1}$ instead of one of length $n=\ensuremath{^{"}}^N.$

Butterfly network

If $n=2^N$, the FFT can be completed in $n(2\log_2 n - 1) + 3$ arithmetic operations.

Complexity when n is not a power of 2

Fast Inverse Fourier Transform

As the inverse Fourier matrix is the complex conjugate matrix,

$$F_n^{-1} = \bar{F}_n,$$

to carry out the inverse Fourier transform of (complex) vector y:

- 1. Conjugate: $y \rightarrow \bar{y}$
- 2. Apply the FFT: $\bar{y} \to F_n \bar{y}$
- 3. Conjugate: $F_n \bar{y} \to \overline{F_n \bar{y}} = \bar{F}_n y = F_n^{-1} y$

DFT interpolation

Suppose we have measured data at n evenly spaced points on [c,d].

Interpolation with DFT

Suppose $y = F_n x \Rightarrow x = F_n^{-1} y$.

$$x_j = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} y_k (\omega^{-k})^j = \sum_{k=0}^{n-1} y_k \frac{e^{\frac{i2\pi k(t_j - c)}{d - c}}}{\sqrt{n}}$$

The y_j are the coefficients of the (complex) trigonometric polynomial interpolating (t_j, x_j) .

The Fourier transform F_n transforms data $\{x_j\}$ into interpolating coefficients $\{y_j\}$.

DFT interpolation theorem

Given $x_0, x_1, \ldots, x_{n-1}$, we think of the points x_j as occurring at evenly spaced points on [c, d], $t_j = c + j(d-c)/n$, $j = 0, 1, \ldots, n-1$. Then

$$Q(t) = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} F_n x_k e^{i2\pi k(t-c)/(d-c)}$$

satisfies $Q(t_j) = x_j$ for $j = 0, \dots, n-1$.

If the x_j are real and $F_n x_j = a_j + ib_j$, then $P(t_j) = x_j$ for

$$P(t) = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \left(a_k \cos \frac{2\pi k(t-c)}{d-c} - b_k \sin \frac{2\pi k(t-c)}{d-c} \right)$$

Order n trigonometric function

Applying some trigonometric formulas we can show that for even n, $t_j = c + j(d-c)/n$ for $j = 0, \ldots, n-1$ and $F_n x = a + ib$,

$$P_n(t) = \frac{a_0}{\sqrt{n}} + \frac{2}{\sqrt{n}} \sum_{k=1}^{n/2-1} \left(a_k \cos \frac{2\pi k(t-c)}{d-c} - b_k \sin \frac{2\pi k(t-c)}{d-c} \right) + \frac{a_{n/2}}{\sqrt{n}} \cos \frac{n\pi(t-c)}{d-c}$$

satisfies $P_n(t_j) = x_j, j = 0, \dots, n-1$.

Expansion of n data points to p > n points

We can rewrite $P_n(t)$ as a p order function:

$$P_{p}(t) = \frac{\sqrt{\frac{p}{n}}a_{0}}{\sqrt{p}} + \frac{2}{\sqrt{p}} \sum_{k=1}^{p/2-1} \left(\sqrt{\frac{p}{n}}a_{k}\cos\frac{2\pi k(t-c)}{d-c}\right) - \sqrt{\frac{p}{n}}b_{k}\sin\frac{2\pi k(t-c)}{d-c}\right) + \frac{\sqrt{\frac{p}{n}}a_{n/2}}{\sqrt{p}}\cos\frac{n\pi(t-c)}{d-c}$$

where $a_k = b_k = 0$ for $k = n/2 + 1, \ldots, p/2$.

To produce p points lying on the curve $P_n(t)$ we must multiply the F_nx_k by $\sqrt{p/n}$ and invert the DFT.

Evaluation of trigonometric functions

To plot the interpolating trigonometric function, we can invert the expanded DFT. The steps are the following:

- 1. Calculate the DFT of the evenly spaced data points: $x \to F_n x$
- 2. Multiply by $\sqrt{p/n}$: $F_n x \to \sqrt{p/n} F_n x$
- 3. Expand the n points to p points: add zeros in positions n/2+1 to p-n/2
- 4. Invert: $\sqrt{p/n}F_nx \to F_p^{-1}\sqrt{p/n}F_nx$.

Example

With n = 8 and p = 10:

In MATLAB

We use the commands fft and ifft to compute

$$F_n = \frac{1}{\sqrt{n}} \cdot \text{fft}$$
 and $F_p^{-1} = \sqrt{p} \cdot \text{ifft}$

so the evaluation corresponds to:

$$F_p^{-1}\sqrt{\frac{p}{n}}F_nx = \sqrt{p} \cdot \operatorname{ifft}\sqrt{\frac{p}{n}}\frac{1}{\sqrt{n}} \cdot \operatorname{fft} = \frac{p}{n} \cdot \operatorname{ifft}_{[p]} \cdot \operatorname{fft}_{[n]}$$

Example of FFT in MATLAB

```
>> x=[-2.2 -2.8 -6.1 -3.9 0 1.1 -0.6 -1.1];
>> y=fft(x)'/sqrt(8)
y =
    -5.5154
    -1.0528 - 3.6195i
    1.5910 + 1.1667i
    -0.5028 + 0.2695i
    -0.7778
    -0.5028 - 0.2695i
    1.5910 - 1.1667i
    -1.0528 + 3.6195i
```

$$y = a + bi = F_n x$$

 a_k and b_k are the coefficients of the interpolating trigonometric polynomial.

Applying formula

$$P(t) = \frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} \left(a_k \cos \frac{2\pi k(t-c)}{d-c} - b_k \sin \frac{2\pi k(t-c)}{d-c} \right)$$

with n = 8, c = 0, d = 1, we get

$$F(t) = -1.95 - 0.7445\cos 2\pi t - 2.5594\sin 2\pi t + 1.125\cos 4\pi t$$
$$+0.825\sin 4\pi t - 0.3555\cos 6\pi t + 0.1906\sin 6\pi t - 0.2750\cos 8\pi t$$

Fourier interpolation in MATLAB

```
%Interpolate n data points on [c,d] with trig function P(t)
% and plot interpolant at p (>= n) evenly spaced points.
"Input: interval [c,d], data points x,
% even number of data points n, even number p>=n
%Output: data points of interpolant xp
function xp=dftinterp(inter,x,n,p)
c=inter(1);d=inter(2);
t=c+(d-c)*(0:n-1)/n; % n evenly-spaced time points
tp=c+(d-c)*(0:p-1)/p; % p evenly-spaced time points
y=fft(x);
                       % apply DFT
yp=zeros(p,1);
                  % yp will hold coefficients for ifft
yp(1:n/2+1)=y(1:n/2+1); % move n frequencies from n to p
yp(p-n/2+2:p)=y(n/2+2:n); % same for upper tier
xp=real(ifft(yp))*(p/n); % invert fft to recover data
plot(t,x,'o',tp,xp)
                    % plot data points and interpolant
```