Rachunek prawdopodobieństwa i statystyka

Statystyka opisowa

Prof. UEK dr hab. Paweł Ulman

Program - zarys

- 1. Wprowadzenie w problematykę rachunku prawdopodobieństwa i statystyki
- 2. Parametry rozkładu zmiennej losowej oraz rozkładu empirycznego
- Podstawowe rozkłady zmiennej losowej, zmienna losowa dwuwymiarowa i wielowymiarowa
- 4. Podstawowe pojęcia statystyki matematycznej
- 5. Estymacja
- 6. Weryfikacja hipotez testy statystyczne
- 7. Statystyczne metody analizy dynamiki zjawisk

Termin "statystyka" rozumieć można jako:

- Pozyskiwanie danych (informacji); zbiór (zestawienie) danych,
- Naukę,
- Jako pewną wielkość, charakteryzującą się znanym rozkładem.

Pierwsze badania natury statystycznej – spisy (powszechne)

Sumeria (3-4 tys. lat przed Chrystusem),

Egipt - co najmniej 3 tys. lat przed Ch. razem ze spisem majątków

Izrael - Biblia, księga liczb (Numerii) - 2 spisy mężczyzn: pierwszy -mężczyźni powyżej 20 lat (603550), drugi - mężczyźni od 20 lat życia wzwyż (601730) plus Lewici (23000) w wieku od 1 miesiąca wzwyż.

Chiny (co najmniej od 2238 przed Ch.) - w latach 1368 - 1644 po Ch. cesarzowie z dynastii Ming wprowadzili system spisów co 10 lat.

Rzym (od VI w. przed Ch.) - Cesarz August nakazał 3 razy przeprowadzenie spisu, z czego drugi przeszedł do historii dzięki św. Łukaszowi

Francja (w 786 r. Karol Wielki zarządził spis poddanych powyżej 12 roku życia)

Anglia (Wilhelm Zdobywca zarządza w 1085 r. szczegółowy opis Anglii - Domesday Book)

Spisy ludności w nowożytnym świecie

Szwecja - 1749

Polska - 1777 - spis ludności miast

- 1789 Sejm Czteroletni zarządza I powszechny spis ludności
- pozostałe spisy 1921, 1931, 1950, 1960, 1970, 1978, 1988, 2002, 2011
- mikrospisy (metodą reprezentacyjną: 1974, 1984, 1995).

Stany Zjednoczone Am. Płn. - 1790 (co 10 lat)

Francja (1801, co 5 lat, po wojnie co 7 lat),

Wielka Brytania (1801, co 10 lat)

Norwegia (1815), Holandia (1829), Dania (1840), Belgia (1846) - Adolphe Quetelet - metodolog spisu, który stał się wzorcem dla innych krajów,

Niemcy (1871)

Rosja (1896/1897), ZSRR (1926, 1937, 1939, 1959, 1970, 1979, 1989)

Historia statystyki i rachunku prawdopodobieństwa Statystyka jako nauka

- 1. Badania arytmetyków politycznych:
 - J. Graunt (1620-1674),
 - W. Petty (1623-1687),

wprowadzili rozumienie statystyki jako metody wnioskowania na podstawie danych liczbowych umożliwiającej wykrywanie prawidłowości wśród pozornie chaotycznych zjawisk masowych.

2. badania państwowoznawcze:

nazwa statystyka wywodzi się z łaciny (od słowa *status* oznaczającego stan, miejsce),

G.Achenwall (1719-1772), pierwszy raz użył terminu "statystyka" w piśmie, w znaczeniu zbioru szeroko ujmowanych wiadomości o stanie państwa,

Natural and Political OBSERVATIONS

Mentioned in a following INDEX, and made upon the

Bills of Mortality.

BY

Gapt. 70HN GRAUNT,

Fellow of the Royal Society.

With reference to the Government, Religion, Trade, Growth, Air, Difeases, and the several Changes of the said CITY.

Contentus paucis Leel oribus.

The Fifth Edition, much Enlarged.

LONDON,

lls

be

7,

ef.

Printed by John Marton, Printer to the Koyal Society, at the Sign of the Bell in St. Panl's Church-yard. MDCLXXVI.

Źródło: Wikipedia

Metoda jaką [...] stosuje nie jest jeszcze często w użyciu. Zamiast używać tylko słów porównujących i opisujących oraz argumentów intelektualnych, wybieram kierunek (jako specjalista od arytmetyki politycznej czyniłem to od dawna) na wyrażanie się za pomocą liczb, wag i miar, korzystając tylko z argumentów rozumu lub rozważając tylko te przyczyny, które mają swe podstawy w przyrodzie.

źródło: Wikipedia

William Petty

Historia statystyki i rachunku prawdopodobieństwa Statystyka jako nauka

W ramach nurtu państwowoznawczego wykształcił się tabularyzm jako metoda pojmowania danych liczbowych w formie tabel,

- J.K. Kirgiłow pierwszy opis tabelaryczny Rosji,
- J.P. Anchersen pierwszy opis tabelaryczny Danii.
- 3. dalszy rozwój statystyki jest związany z powstaniem matematycznej teorii rachunku prawdopodobieństwa:
 - B. Pascal (1623-1662),
 - P. Fermat (1601-1665).

Definicje statystyki i rachunku prawdopodobieństwa

Definicje statystyki i rachunku prawdopodobieństwa

Statystyka – nauka traktująca o metodach ilościowych wykorzystywanych w celu poszukiwania prawidłowości w pozornie chaotycznych zjawiskach masowych.

Rachunek prawdopodobieństwa – dział matematyki zajmujący się zdarzeniami losowymi. Rachunek prawdopodobieństwa zajmuje się badaniem abstrakcyjnych pojęć matematycznych stworzonych do opisu zjawisk, które nie są deterministyczne: zmiennych losowych w przypadku pojedynczych zdarzeń oraz procesów stochastycznych w przypadku zdarzeń powtarzających się (w czasie).

Podstawowe pojęcia statystyki

- zbiorowość statystyczna (populacja/masa statystyczna) zbiór dowolnych elementów objęty badaniem statystycznym
- jednostka statystyczna (jednostka badania lub obserwacji) – element składowy badanej zbiorowość
- 3. cecha statystyczna właściwość jednostki statystycznej:
- cecha stała i zmienna;
- cecha jakościowa i ilościowa (mierzalna);
- cecha skokowa (dyskretna) i ciągła.

Podstawowe pojęcia statystyki

4. Badanie statystyczne – zespół czynności zmierzających do określenia prawidłowości w badanej zbiorowości.

Rodzaje:

- ciągłe, cykliczne (okresowe), doraźne;
- pełne, częściowe, szacowanie.

Spis powszechny, rejestracja bieżąca, badanie ankietowe, badanie monograficzne, badanie reprezentacyjne, interpolacja, ekstrapolacja

Podstawowe pojęcia statystyki

Etapy badania statystycznego:

- 1. Przygotowanie: cel, jednostka, przedmiot i metoda badania;
- 2. Obserwacja statystyczna: materiał statystyczny pierwotny i wtórny;
- Kontrola materiału statystycznego: formalna, merytoryczna (logiczna, arytmetyczna). Błędy losowe i systematyczne;
- 4. Przetwarzanie i prezentacja materiału statystycznego: tabele, wykresy, szeregi;
- 5. Analiza statystyczna.

Objaśnienia znaków umownych

```
Kreska (—) — zjawisko nie wystąpiło.
```

Zero (0,0) — zjawisko istniało, jednakże w ilościach mniejszych od liczb, które mogły być wyrażone uwidocznionymi w tablicy znakami cyfrowymi.

Kropka (.) — zupełny brak informacji albo brak informacji wiarygodnych.

Znak x — wypełnienie pozycji, ze względu na układ tablicy, jest niemożliwe lub niecelowe.

"W tym" — oznacza, że nie podaje się wszystkich składników sumy.

Znak # — oznacza, że dane nie mogą być opublikowane ze względu na konieczność zachowania tajemnicy statystycznej w rozumieniu ustawy o statystyce publicznej.

LUDNOŚĆ POPULATION

TABL. I (60). LUDNOŚĆ NA PODSTAWIE SPISÓW POPULATION BASED ON CENSUS DATA

3	Data spisu Census date			Ogólem Total	Mężczyźni <i>Mal</i> es	Kobiety Females	Z liczby ogółem — w % — ludność Of total number — in % — population		Ludność na 1 km² Population							
										w tys. in thous.			miejska urban areas	wiejska rural areas	per 1 km²	
				٧	٧						II III 1938 R. DF 31 III 1938		nia 389 tys. ki thous. km²)	m ²)		
30 IX 1921 9 XII 1931 1938 (stan (as of		dı	niu	. 3)	*	20	27177 32107 34849	15619	14044 16488 17849	27,4	75,4 72,6 70,0	70 83 90	
					٧	٧					YCH (powierz DRDERS (total		a 313 tys. km nous. km²)	2)		
14 II 1946 3 XII 1950 6 XII 1960 8 XII 1970 7 XII 1978 7 XII 1988 20 V 2002										23930 25008 29776 32642 35061 37879 38230	11928 14404 15854 17079 18465	12976 13080 15372 16788 17982 19414	39,0 48,3 52,3 57,5 61,2	68,2 61,0 51,7 47,7 42,5 38,8 38,2	77 80 95 104 112 121	

LUDNOŚĆ WEDŁUG PŁCI I WIEKU W 2007 R. Stan w dniu 30 VI POPULATION BY SEX AND AGE IN 2007

				20	02		
	1988	ogółem total				miasta	wieś
Glówne źródło utrzymania Main source of maintenance	1700	ogółem	total	męż- czyźni males females		urban areas	rural areas
	w tys. in thous.		w odsetkach in			percent	
OGÓŁEM	37879	38230	100,0	100,0	100,0	100,0	100,0
Praca	17218	12355	32,3	36,3	28,5	33,1	31,1
poza rolnictwem	13178	10710	28,0	31,2	25,0	32,6	20,7
w tym w sektorze prywatnym of which in private sector	1132	6325	16,5	20,4	12,9	18,9	12,8
w rolnictwie	4040	1645	4,3	5,1	3,5	0,5	10,4
w tym w sektorze prywatnym of which in private sector	3116	1607	4,2	5,0	3,4	0,5	10,2
Niezarobkowe źródło	6807	10692	28,0	24,4	31,3	27,9	28,0
w tym: of which:			2407.0070				
emerytura	3457	5323	13,9	11,8	15,9	13,9	14,0
renta b	2771	3516	9,2	7,8	10,5	8,8	9,8
zasilek dla bezrobotnych	1-1	611	1,6	2,0	1,2	1,6	1,6
zasiłek pomocy społecznej sociał assistance benefit	59	242	0,6	0,6	0,7	0,7	0,6
Dochody z własności	-	27	1,0	0,1	1,0	0,1	0,0
Na utrzymaniu	13854	14547	38,1	37,6	38,5	36,8	40,
Nieustalone źródło	9-0	609	1,6	1,6	1,6	2,1	0,

a Dane spisów powszechnych. b Łącznie ze świadczeniem rehabilitacyjnym.

a Data of national censuses. b Including rehabilitation benefit.

TABL. 9 (68). RODZINY^o FAMILIES^o

100000000000000000000000000000000000000		1988		2002			9	
Wyszczególnienie	ogólem total	miasta urban areas	wieś rural areas	ogółem total	miasta urban areas	wieś rural areas	Specification	
	w tys. in thous.							
OGÓŁEM	10226	6364	3862	10458	6597	3861	TOTAL	
w tym z dziećmi do 24 lat pozostającymi na utrzymaniu	6210	4012	2198	6079	3794	2285	of which dependent children up to age 24	
Małżeństwa bez dzieci ^b	2329	1418	911	2370	1543	827	Marriages without children ^b	
Małżeństwa z dziećmi ⁶	6323	3874	2449	5860	3511	2349	Marriages with children ^b	
Partnerzy bez dzieci	04/9	0.455	<u> </u>	87	70	17	Cohabiting couples without child- ren	
Partnerzy z dziećmi	. %			111	78	33	Cohabiting couples with children	
Samotne matki z dziećmi	1396	958	438	1798	1241	557	Lone mothers with children	
Samotni ojcowie z dziećmi	178	114	64	232	154	78	Lone fathers with children	

a Dane spisów powszechnych. b W 1988 r. łącznie ze związkami partnerskimi.

a Data of national censuses. b In 1988 including cohabiting couples.

LUDNOŚĆ AKTYWNA ZAWODOWO W WYBRANYCH KRAJACH W 2006 R. ECONOMICALLY ACTIVE POPULATION IN SELECTED COUNTRIES IN 2006

a Dane na podstawie Badania Aktywności Ekonomicznej Ludności (BAEL) opracowane według metodologii Międzynarodowej Organizacji Pracy (MOP). b 2005 r. c Przeciętne w roku. d Bez osób na urlopach wychowawczych. e Dla Danii, Malty, Rumunii i Słowenii bez rybactwa. f Dla Danii bez górnictwa. g Dotyczy pozostałych sekcji PKD (NACE).

a Data based on the Labour Force Surveys (LFS) compiled according to the methodology of International Labour Organization (ILO). b 2005. c Annual averages. d Excluding persons on child-care leave. e For Denmark, Malta, Romania and Slovenia excluding fishing. f For Denmark excluding mining and quarrying. g Concerns remaining NACE sections.

NOMINALNE DOCHODY DO DYSPOZYCJI BRUTTO W SEKTORZE GOSPODARSTW DOMOWYCH[®] NA 1 MIESZKAŃCA WEDŁUG WOJEWÓDZTW W 2005 R. GROSS NOMINAL DISPOSABLE INCOME OF HOUSEHOLDS SECTOR[®] PER CAPITA BY VOIVODSHIP IN 2005

a W podziale według województw nie uwzględniono zmian podanych w nocie na str. 160.

a In division according to voivodships without taking into consideration changes given in note on page 161.

I. WAŻNIEJSZE DANE O SYTUACJI SPOŁECZNO-GOSPODARCZEJ KRAJU (cd.) MAJOR DATA REGARDING THE SOCIO-ECONOMIC SITUATION OF THE COUNTRY (cont.)

Lp.	Wyszczególnienie				1950	1960	1970	1980	1990	1995			
8		ź	,	20		7.21	7 7				0 1	ED	UKACJ
17	Uczniowie w szkołach ^d (stan na pocz nego) w tys.: podstawowych ^e	7.7				zko) -	3303	4875	5342	4265	5287	5104
7 8 9 0	gimnazjach	*	1				4004 9	318 195	303 261	838 402	732 346	815 445	722 683
21	liceach profilowanych technikachgh	•			:		1000	223 223	22 4	475	601	637	828
3	artystycznych ogólnokształcących ⁱ policealnych							x	37.7	67.1	135	108	10,5

TABL. 26 (213). **STAN ZDROWOTNY LASÓW**^a (dok.) FOREST CONDITION^a (cont.)

	Drzew	va — w ods uszko Damaged tre				
Wyszczególnienie	(bez usz- kodzeń) (none)	(uszkodze- nia stabe) (slight)	2 (uszkodze- nia średnie) (moderate)	3 ^b (uszkodze- nia silne) (severe)	Specification	
Drzewa iglaste	24,1	54,7	20,4	0,8	Coniferous trees	
sosna	21,8	57,3	20,2	0,7	þine	
świerk	38,0	40,0	20,4	1,6	spruce	
jodła	33,6	43,2	22,4	0,8	fir	
pozostałe	48,5	28,6	22,6	0,0	others	
Drzewa liściaste	33,2	48,6	17,6	0,6	Broadleaved trees	
dąb	16,5	53,7	29,6	0,2	oak	
buk	53,9	36,1	10,0	0,0	beech	
brzoza	27,6	55,0	16,9	0,5	birch	
pozostałe	41,7	42,7	14,6	1,0	others	

Szereg statystyczny - zbiór wyników obserwacji jednostek pod względem pewnej cechy.

Szereg szczegółowy:

23, 25, 21, 23, 27, 21, 20, 24

20, 21, 21, 23, 23, 24, 25, 27

0, 1, 5, 0, 0, 1, 1, 2, 2, 1, 2, 3, 3, 4, 3, 4, 1, 3, 2, 2

Liczba dzieci	0	1	2	3	4	5
Liczba rodzin	3	5	5	4	2	1

Szereg strukturalny:

Oceny x _i	Liczba studentów studiów zaocznych n _i	Liczba studentów studiów dziennych n _i
2	600	100
3	1200	300
4	900	400
5	300	200
Ogółem	3000	1000

Oceny x _i	Liczba studentów studiów zaocznych n _i	Liczba studentów studiów dziennych n _i
niedostateczny	600	100
dostateczny	1200	300
dobry	900	400
bardzo dobry	300	200
Ogółem	3000	1000

Zużycie energii	2 – 4	4 – 6	6 – 8	8 – 10	10 – 12	12 – 14
Liczba rodzin	6	10	30	40	10	4

Szereg geograficzny:

Kraj	Przeciętna miesięczna pensja brutto (w USD)
Słowenia	935
Chorwacja	620
Polska	380
Czechy	370
Węgry	322
Estonia	305
Litwa	265
Słowacja	250
Łotwa	240
Rumunia	115
Bułgaria	110
Rosja	60

Szereg czasowy:

1.01. danego roku	1950	1951	1952
liczba jednostek chorych	100	120	200

loto	<1950-	<1955-	<1960-	
lata	1955)	1960)	1965)	
liczba				
nowych	80	40	60	
zachorowań				

Skąd się biorą liczby?

Pomiar – proces empiryczny, w którym przyporządkowuje się liczby poszczególnym kategoriom cechy w taki sposób, aby relacje między liczbami odzwierciedlały relacje między kategoriami cechy.

Skale pomiarowe

- 1. Nominalna
- 2. Porządkowa (rangowa)
- 3. Przedziałowa
- 4. Ilorazowa
- 5. Absolutna

Analiza statystyczna

- 1. Badanie struktury zjawisk i procesów
- 2. Badanie zależności zjawisk i procesów
- 3. Badanie dynamiki zjawisk.

Charakterystyki rozkładu jednej cechy

Rozkład empiryczny (cechy) zmiennej – przyporządkowanie kolejnym wartościom lub wariantom (cechy) zmiennej x_i odpowiadających im liczb lub częstości w_i jednostek posiadających daną wartość lub wariant x_i

Charakterystyki rozkładu:

- 1. Miary położenia rozkładu
- 2. Miary zmienności
- 3. Miary asymetrii
- 4. Miary koncentracji

Miary położenia rozkładu:

```
Przecietne:
     średnie:
           arytmetyczna, harmoniczna,
           geometryczna, potęgowa
     przeciętne pozycyjne:
          modalna, mediana
Kwantyle:
     kwartyle, kwintyle, decyle, centyle
```

Średnia arytmetyczna:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\overline{x} = \frac{1}{n} \sum_{i=1}^{k} f_i x_i$ $\overline{x} = \frac{1}{n} \sum_{i=1}^{k} f_i x_i'$

Średnia geometryczna:

$$\bar{i} = n - 1 \sqrt{i_{\frac{2}{1}} \cdot i_{\frac{3}{2}} \cdot i_{\frac{4}{3}} \cdot \cdots \cdot i_{\frac{n}{n-1}}} = n - 1 \sqrt{\frac{y_2}{y_1} \cdot \frac{y_3}{y_2} \cdot \cdots} = n - 1 \sqrt{\frac{y_n}{y_1}}$$

Mediana

$$M_{e} = x_{\frac{n+1}{2}}$$

$$x_{e} + x_{\frac{n}{2} + x_{\frac{n}{2} + 1}};$$

$$M_{e} = x_{me} + \frac{h_{me}}{f_{me}} \left[\frac{n}{2} - \sum_{i=1}^{me-1} f_{i} \right]$$

Modalna

$$M_o = x_m + \frac{f_m - f_{m-1}}{(f_m - f_{m-1}) + (f_m - f_{m+1})}h$$

Kwantyl rzędu p

$$q_p = x_p + \frac{h_p}{f_p} \left[pn - \sum_{i=1}^{q-1} f_i \right]$$

Kwartyl - 3

Kwintyl - 4

Decyl - 9

Centyl - 99

Siatka centylowa

Miary zmienności: bezwzględne i względne

Bezwzględne:

Rozstęp:
$$R = \max_{i} \{x_i\} - \min_{i} \{x_i\}$$
 $R_Q = Q_3 - Q_1$

Odchylenie przeciętne:
$$D = \frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|$$

Wariancja:
$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Odchylenie standardowe:
$$s = \sqrt{s^2}$$

Miary zmienności: bezwzględne i względne

Względne:

Współczynnik zmienności:

$$V_S = \frac{s}{|\overline{x}|} \cdot 100\%$$
 $V_D = \frac{D}{|\overline{x}|} \cdot 100\%$ $V_Q = \frac{Q}{Me}$

gdzie:
$$Q = \frac{Q_3 - Q_1}{2}$$
; Uwaga na moduł w mianowniku.

Asymetria rozkładu

Miary asymetrii:

$$A_S = \frac{\overline{x} - M_o}{S}; \quad A_S = \frac{3(\overline{x} - M_e)}{S};$$

$$A_{S} = \frac{(Q_{3} - M_{e}) - (M_{e} - Q_{1})}{(Q_{3} - Q_{1})}$$

Miary koncentracji:

Kurtoza/Eksces:
$$K = \frac{M_4}{s^4} - 3$$

gdzie:
$$s^4 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^4$$

Współczynnik koncentracji Lorenza – współczynnik Giniego

Zależność statystyczna występuje wówczas, gdy istnieje logiczny związek między dwiema lub więcej cechami w badanej zbiorowości potwierdzony danymi statystycznymi.

Zależność funkcyjna

Zależność stochastyczna

Zależność korelacyjna

Pomiar zależności dla zmiennych mierzonych na słabych skalach – **skala nominalna**

Tablica kontyngencji

Zmienna X		Zmienna Y				CH MO
Kategorie		y ₁	y 2	•••	$\mathbf{y}_{\mathbf{s}}$	suma
	\mathbf{x}_1	n ₁₁	n ₁₂	•••	$\mathbf{n_{1s}}$	n _{1.}
	X ₂	n ₂₁	n ₂₂	•••	n_{2s}	n ₂ .
	•••	•••	•••	•••	•••	•••
	X _k	n _{k1}	n_{k2}	•••	n_{ks}	n _k .
Suma		n _{.1}	n _{.2}	• • •	$\mathbf{n}_{.s}$	n

$$\chi^{2} = \frac{n(ad - bc)^{2}}{(a+b)(a+c)(b+d)(c+d)}$$

$$\varphi = \sqrt{\frac{\chi^2}{n}}$$

$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^s \frac{\left(n_{ij} - \widehat{n}_{ij}\right)^2}{\widehat{n}_{ij}}$$

$$V = \sqrt{\frac{\chi^2}{n \cdot \min(r-1; k-1)}}$$

Przykład

Wykształcenie (X)					
	film	teatr	programy rozrywkowe	programy publicystyczne	Ogółem
Podstawowe	105	10	75	10	200
Średnie	120	60	80	40	300
Wyższe	35	30	15	20	100
Ogółem	260	100	170	70	600

$$\chi^2 = 62,04$$

$$V = 0,2274$$

$$\varphi = 0,3216$$

Skala porządkowa

Współczynnik Spearmana

$$r_s = 1 - \frac{6\sum_{i=1}^n d_i^2}{n(n^2 - 1)}$$

Współczynnik tau Kendalla

$$K_{tq} = \frac{2R}{1/2 * n(n-1)} - 1$$

gdzie:

R – suma not +1 n – liczba ocenianych obiektów

Przykład

Zbadano 5 uczelni ekonomicznych w Polsce ze względu na orientację na studenta oraz selektywność. Wyniki w punktach przedstawia tabela:

	Liczba punktów				
Uczelnia	Orientacja na studenta (X)	Selektywność (Y)			
SGH	84	67			
UEP	66	62			
UEK	76	58			
UEW	61	61			
UEKat	55	48			

Wyznaczyć wartość współczynnika korelacji Spearmana i tau Kendalla

r Spearmana:

W pierwszym kroku nadajemy rangi uczelniom osobno ze względu na jedną i drugą cechę

Później obliczamy różnice między rangami d_i i podnosimy je do kwadratu, następnie sumujemy i podstawiamy do wzoru:

$$r_s = 1 - \frac{6\sum_{i=1}^n d_i^2}{n(n^2 - 1)} = 1 - \frac{6*6}{5(25 - 1)} = 1 - \frac{36}{120} = 0,7$$

Analiza statystyczna – badanie zależności tau-Kendalla

W pierwszym kroku nadajemy rangi uczelniom osobno ze względu na jedną i drugą cechę

```
X: 1; 3; 2; 4; 5
```

Y: 1; 2; 4; 3; 5

Następnie porządkujemy rangi ze względu na jedną z cech

Po tym dla każdej rang cechy Y tworzymy pary z następującymi po niej rangami

```
1 (1;4), (1;2), (1;3), (1;5)
4 (4;2), (4;3), (4;5)
2 (2;3), (2;5)
```

```
3 (3;5)
```

Jeśli poprzednik jest mniejszy od następnika to nadajemy notę 1 (pary oznaczone na zielono) w przeciwnym przypadku notę -1 (dla rang powiązanych mogłoby zaistnieć zero). Zliczamy jedynki; jest ich 8

$$K_{tq} = \frac{2*8}{1/2*5*(5-1)} - 1 = 0,6$$

Skala co najmniej przedziałowa

Kowariancja

$$cov(X,Y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

Współczynnik korelacji liniowej Pearsona

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

Analiza statystyczna – badanie zależności Funkcje regresji

Funkcja regresji – analityczny wyraz przyporządkowania średnich wartości zmiennej objaśnianej (zależnej) konkretnym wartościom zmiennych objaśniających (niezależnych).

I rodzaju – to funkcja, która realizacjom zmiennych objaśniających przypisuje średnie warunkowe zmiennej objaśnianej.

Dla jednej zmiennej objaśniającej:

$$E(Y | X = x_i) = g(x_1)$$

Funkcja regresji II rodzaju –

$$\hat{y} = a_0 + a_1 x + \varepsilon$$

MNK – Metoda Najmniejszych Kwadratów

$$\begin{cases} na_0 + a_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i \\ a_0 \sum_{i=1}^n x_i + a_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i \end{cases} \rightarrow \begin{cases} a_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2} \\ a_0 = \overline{y} - a_1 \overline{x} \end{cases} \rightarrow \begin{cases} a_1 = r \frac{s_y}{s_x} \\ a_0 = \overline{y} - a_1 \overline{x} \end{cases}$$

Funkcja regresji II rodzaju

Funkcja regresji II rodzaju

$$\varphi^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

$$\varphi^2 + R^2 = 1$$

$$S_{\varepsilon} = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Zależność wielu cech

$$R = \begin{bmatrix} 1 & r_{xy} & r_{xz} \\ r_{yx} & 1 & r_{yz} \\ r_{zx} & r_{zy} & 1 \end{bmatrix} \qquad r_{xy.z} = \frac{r_{xy} - r_{xz}r_{yz}}{\sqrt{(1 - r_{xz}^2)(1 - r_{yz}^2)}}$$

$$r_{xy.z} = \frac{r_{xy} - r_{xz}r_{yz}}{\sqrt{1 - r_{xz}^2 - r_{yz}^2}}$$

$$r_{yz.x} = \frac{r_{yz} - r_{yx}r_{zx}}{\sqrt{(1 - r_{yx}^2)(1 - r_{zx}^2)}}$$

$$r_{xz.y} = \frac{r_{xz} - r_{xy}r_{zy}}{\sqrt{(1 - r_{xy}^2)(1 - r_{zy}^2)}}$$

$$R_{y.xz} = \sqrt{\frac{r_{xy}^2 + r_{yz}^2 - 2r_{xy}r_{xz}r_{yz}}{1 - r_{xz}^2}}$$

Zależność wielu cech

$$\hat{y} = a_{y0} + a_{yx}x + a_{yz}z$$

$$\begin{cases} a_{yx} = \frac{r_{yx} - r_{yz} r_{xz}}{1 - r_{xz}^2} \cdot \frac{s_y}{s_x} \\ a_{yz} = \frac{r_{yz} - r_{yx} r_{zx}}{1 - r_{zx}^2} \cdot \frac{s_y}{s_z} \\ a_{yo} = \overline{y} - a_{yx} \overline{x} - a_{yz} \overline{z} \end{cases}$$