Statistical Inference Course Project

Manu

20/07/2020

1. Instructions

In this project you will investigate the exponential distribution in R and compare it with the Central Limit Theorem.

The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also 1/lambda. Set lambda = 0.2 for all of the simulations. You will investigate the distribution of averages of 40 exponentials. Note that you will need to do a thousand simulations.

1.1 Sample mean compared to theoretical mean

Show the sample mean and compare it to the theoretical mean of the distribution.

The mean of 1000 simulations is the following:

```
sampleMean <- mean(SampleMeanDf$sampleMean)
sampleMean</pre>
```

```
## [1] 4.974239
```

The theoretical mean is the following:

```
theoreticalMean <- 1/lambda
theoreticalMean
```

```
## [1] 5
```

Conclusion: The simulation mean (4.97) is very close to the theoretical mean of 5. The following histogram will demonstrates this:

```
ggplot(SampleMeanDf,
      aes(sampleMean)) +
  geom_histogram(
   alpha=.6,
   position="identity",
   col="green") +
  geom_vline(
   xintercept = theoreticalMean,
   colour = "red",
   show.legend = TRUE) +
  geom_vline(
   xintercept = sampleMean,
   colour = "black",
   show.legend = TRUE)+
  ggtitle ("Histogram of the sample means ")+
  xlab("Sample mean")+
 ylab("Density")
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Histogram of the sample means

1.2 Sample variance compared to theoretical variance

Show how variable the sample is (via variance) and compare it to the theoretical variance of the distribution.

```
sampleVariance <- var(SampleMeanDf$sampleMean)
sampleVariance

## [1] 0.5706551
theoreticalVariance <- (1/lambda)^2 / n
theoreticalVariance
## [1] 0.625</pre>
```

Conclusion The sample and theoretical variances are close.

1.3 Normality of the distribution

Show that the distribution is approximately normal:

```
ggplot(SampleMeanDf,
    aes(x = sampleMean)) +
geom_histogram(
    aes(y=..density..),
    col="black",
    fill="white") +
geom_density(
    alpha = .1,
    fill="red"
) +
ggtitle ("Histogram of the sample means ")+
xlab("Sample mean")+
ylab("Density")
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Histogram of the sample means

Conclusion The central limit theorem states that with a sufficiently large number of random samples taken from the population with replacement, the distribution of sample means will approximate a normal distribution.

The red density layer on the upper histogram demonstrates this. Its gaussian distribution with a bell-shaped curved can be identified.