Całkowanie numeryczne

Niech f będzie funkcją określoną na przedziale [a, b]. Oznaczmy przez I(f) całkę oznaczoną Riemanna tej funkcji na [a, b]:

$$I(f) = \int_{a}^{b} f(x)dx$$

Będziemy przybliżać wartości takich całek za pomocą sum:

$$S(f) = \sum_{i=0}^{n} A_i f(x_i),$$

gdzie $x_i \in [a, b]$ i A_i są pewnymi współczynnikami. Wzory tego typu nazywamy kwadraturami.

Jednym ze sposobów wyznaczenia przybliżonej wartości całki z danej funkcji jest zastąpienie tej funkcji przez jej wielomian interpolacyjny. Zauważmy, że jeśli $L_n(x) = \sum_{i=0}^n f(x_i)l_i(x)$ jest wielomianem interpolacyjnym funkcji f opartym na węzłach $x_0, x_1, \ldots, x_n \in [a, b]$, to:

$$\int_{a}^{b} L_{n}(x)dx = \int_{a}^{b} \sum_{i=0}^{n} f(x_{i})l_{i}(x)dx = \sum_{i=0}^{n} f(x_{i}) \int_{a}^{b} l_{i}(x)dx.$$

Zatem otrzymujemy kwadraturę postaci $S(f) = \sum_{i=0}^{n} A_i f(x_i)$, gdzie $A_i = \int_a^b l_i(x)$. Jeżeli założymy, że węzły x_i są równoodległe (tzn. $x_i = a + ih$, $h = \frac{b-a}{n}$), to z prostych przekształceń wynika, że $A_i = h \int_0^n \prod_{j=0, j \neq i}^n \frac{t-j}{i-j} dt$ oraz $A_i = A_{n-i}$ dla $i = 0, 1, \ldots, n$. Kwadratury, które wtedy otrzymujemy nazywamy kwadraturami Newtona-Cotesa. Przykładowe kwadratury Newtona-Cotesa:

- wzór trapezów: $S_T(f) = \frac{b-a}{2}(f(a) + f(b))$. Dla funkcji $f \in C^2[a, b]$ błąd w tym przypadku szacujemy przez $R_T(f) = I(f) S_T(f) = -\frac{(b-a)^3}{12}f''(\xi)$ dla pewnego $\xi \in (a, b)$.
- wzór parabol/Simpsona: $S_S(f) = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$. Dla funkcji $f \in C^4[a,b]$ błąd tego wzoru szacujemy przez $R_S(f) = I(f) S_S(f) = -\frac{1}{90} \left(\frac{b-a}{2}\right)^5 f^{(4)}(\xi)$ dla pewnego $\xi \in (a,b)$.

W celu zmniejszenia błędu w całkowaniu numerycznym będziemy stosować tzw. złożone kwadratury Newtona-Cotesa. Powstają one przez podział przedziału [a,b] na N równych części i zastosowanie na każdym z podprzedziałów wzoru na kwadraturę Newtona-Cotesa niskiego rzędu. Przykładowo:

- złożony wzór trapezów: $S_{ZT}(f) = \frac{b-a}{2N} \left(f(a) + f(b) + 2 \sum_{i=1}^{N-1} f(a+ih) \right)$, gdzie $h = \frac{b-a}{N}$ (błąd przybliżenia dla funkcji $f \in C^2[a,b]$: $-\frac{h^2}{12}(b-a)f''(\xi)$).
- złożony wzór Simpsona: $S_{ZS}(f) = \frac{h}{6} \left(f(a) + 2 \sum_{i=1}^{N-1} f(a+ih) + 4 \sum_{i=0}^{N-1} f(a+ih+\frac{h}{2}) + f(b) \right)$, gdzie $h = \frac{b-a}{N}$ (błąd przybliżenia dla funkcji $f \in C^4[a,b]$: $-\left(\frac{h}{2}\right)^4 \frac{(b-a)}{180} f^{(4)}(\xi)$).

Zadania

- 1. Znajdź wartości powyższych całek używając funkcji inttrapdla dwóch, trzech i 5 węzłów
 - (a) $\int_0^4 \frac{x}{x^2+12} dx$,
 - (b) $\int_0^{\frac{\pi}{2}} x^2 \sin x dx$,
 - (c) $\int_1^3 2^{x^2 3x + 1} dx$,

Oszacuj błąd otrzymanych przybliżeń.

- 2. (3 pkt) Napisz funkcję Simpson, która dla danej funkcji f oraz liczb a, b będacych krańcami pewnego przedziału i liczby naturalnej N wylicza przybliżoną wartość całki $\int_a^b f(x)dx$ stosując złożoną kwadraturę Simpsona i podział przedziału [a,b] na N równych części.
- 3. (2 pkt) Oblicz wartości poniższych całek, używając złożonych wzorów trapezów i Simpsona dla $N \in \{2,3,\ldots,10\}$. Oblicz błędy względne otrzymanych przybliżeń. Dla każdej z tych całek narysuj na jednym wykresie błędy otrzymane w wyniku stosowania obu tych wzorów w zależności od N. Zastosuj skalę logarytmiczną dla tych wartości. Dodaj tytuł i legendę do wykresów.
 - (a) $\int_2^5 \frac{\ln \ln x}{x} dx,$
 - (b) $\int_0^1 \frac{1}{1+x^2} dx$.

Rozwiązywanie równań nieliniowych

Załóżmy, że mamy dane równanie nieliniowe f(x) = 0, gdzie f jest pewną funkcją rzeczywista. Aby znaleźć przybliżone rozwiazanie tego równania możemy wykorzystać jedna z przedstawionych poniżej metod iteracyjnych.

Metoda bisekcji

Załóżmy, że f jest funkcją ciągłą w przedziale [a,b] oraz f(a)f(b) < 0. Wtedy na pewno przedział ten zawiera miejsce zerowe tej funkcji, tzn. f(c) = 0 dla pewnego $c \in [a, b]$. Aby znaleźć miejsce zerowe funkcji f możemy posłużyć się następującym algorytmem:

```
y_0 = a, z_0 = b,
dla k = 0, 1, 2, ...
x_k = \frac{y_k + z_k}{2},
jeżeli f(x_k)f(y_k) < 0, to y_{k+1} = y_k, z_{k+1} = x_k,
jeżeli f(x_k)f(z_k) < 0, to y_{k+1} = x_k, z_{k+1} = z_k.
```

Algorytm kończymy, gdy uzyskamy wystarczająco dobre przybliżenie miejsca zerowego funkcji f.

Metoda Newtona

Załóżmy, że funkcja f jest różniczkowalna. Wtedy miejsca zerowego funkcji f możemy szukać stosując następujący algorytm:

dla
$$k = 0, 1, 2, ...$$

 $x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$

gdzie punkt x_0 może być dowolny. Geometrycznie odpowiada to szukaniu miejsca zerowego stycznej do wykresu funkcji f w punkcie x_k . Dlatego metodę Newtona nazywamy też metoda stycznych.

Ciąg punktów otrzymanych przy użyciu tej metody nie zawsze musi być zbieżny do miejsca zerowego funkcji f. Mamy jednak następujące twierdzenie:

Twierdzenie 1. Niech r będzie zerem pojedynczym funkcji f i niech f będzie dwukrotnie różniczkowalna w sposób ciągły. Wtedy istnieje takie otoczenie D punktu r, że jeśli $x_0 \in D$, to ciąg x_0, x_1, x_2, \ldots jest zbieżny do punktu r.

Metoda siecznych

Dla danej funkcji f wybierzmy takie punkty x_0 i x_1 , że $f(x_0) \neq f(x_1)$. Następnie konstuujemy ciąg x_0, x_1, x_2, \ldots korzystając ze wzoru: $x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k)$.

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} f(x_k).$$

Geometrycznie odpowiada to znalezieniu zera siecznej poprowadzonej przez punkty $(x_{k-1}, f(x_{k-1}))$ oraz $(x_k, f(x_k))$.

Kryteria stopu

Przy decyzji o tym, ile kroków danej metody wykonać możemy zastosować jedno z następujących kryteriów:

• k > M dla pewnej ustalonej liczby M,

- $|f(x_k)| < \delta$ dla ustalonej wartości δ ,
- $|x_k x_{k+1}| < \varepsilon$ dla pewnej ustalonej wartości ε .

Zadania

- 1. (3 pkt) Napisz funkcję bisekcja, która dla danych punktów a, b, funkcji f i parametrów związanych z kryteriami stopu M, δ, ε znajduje przybliżenie zera tej funkcji w przedziale [a, b] metodą bisekcji.
- 2. (3 pkt) Napisz funkcję styczne, która dla danego punktu x_0 , funkcji f i parametrów związanych z kryteriami stopu M, δ, ε znajduje przybliżenie zera tej funkcji metodą Newtona.
- 3. (3 pkt) Napisz funkcję sieczne, która dla danych punktów x_0, x_1 , funkcji f i parametrów związanych z kryteriami stopu M, δ, ε znajduje przybliżenie zera tej funkcji metodą siecznych.
- 4. (2 pkt) Znajdź przybliżoną wartość $\sqrt[4]{4}$ stosując metody bisekcji, stycznych i siecznych z dokładnością $\varepsilon \in \{2^{-5}, 2^{-6}, \dots, 2^{-15}\}$. Porównaj szybkość zbieżności (liczbę iteracji) potrzebnych do uzyskania zadowalającego przybliżenia w zależności od ε . Przedstaw wyniki na wykresie. Do wykresu dodaj tytuł i legendę.