1 Optional Sampling Theorem

Intuition:

Math/data:

Setup for OST. Let $(X_n, n \ge 0)$ be a sub-MG. To conclude $\mathbb{E}X_0 \le \mathbb{E}X_T$, what *extra* assumptions do we need?

Know: Sufficient $T \le t_0 < \infty$ a.s. So, sufficient that

$$\mathbb{E}|X_T - X_{T \wedge n}| \to 0 \tag{1.1}$$

Theorem 1.1 (Optional Sampling Theorem (OST)). If

(a)
$$\mathbb{E}|X_n|1_{T>n} \to 0$$
 as $n \to \infty$

(b)
$$\mathbb{E}|X_T| < \infty$$

then $\mathbb{E}X_0 \leq a\mathbb{E}X_T$.

Proof. See Durrett.

Theorem 1.2 (Useful version of OST). *Suppose* (X_n) *is a sub-MG, T a stopping time,* $\mathbb{E}T < \infty$. *Write* $\Delta_{n=X_n-X_{n-1}}$. *If* $\exists b > 0$ *such that*

$$\mathbb{E}[|\Delta_n| \mid \mathcal{F}_{n-1}] \le b \quad on \{n \le T\}$$
 (1.2)

then $\mathbb{E}X_0 \leq \mathbb{E}X_T$.

Proof. Note $X_T = X_0 + \sum_{n=1}^T \Delta_n$, and $|X_T| \leq Y$ hence $|X_{T \wedge n}| \leq Y$. Consider

$$Y = |X_0| + \sum_{n=1}^{T} |\Delta_n| \tag{1.3}$$

$$\mathbb{E}Y = \mathbb{E}|X_0| + \sum_{n=1}^{T} |\Delta_n| \tag{1.4}$$

$$\mathbb{E}[|\Delta_n|1_{T\geq n}\mid \mathcal{F}_{n-1}] = 1_{T\geq n}\mathbb{E}[|\Delta_n|\mid \mathcal{F}_n] \leq b1_{T\geq n}$$
(1.5)

$$\mathbb{E}[|\Delta_n|1_{T>n}] = \mathbb{E}\mathbb{E}[|\Delta_n|1_{T>n} \mid \mathcal{F}_{n-1}] \le bP(T \ge n)$$
(1.6)

$$\mathbb{E}Y \le \mathbb{E}_0 + \sum_{n=1}^{\infty} bP(T \ge n) = \mathbb{E}X_0 + b\mathbb{E}T < \infty$$
 (1.7)

Recall $\mathbb{E}|W| < \infty$ and $P(A_n) \to 0 \implies \mathbb{E}(W1_{A_n}) \to 0$, so taking W = Y and $A_n = \{T > n\}$ shows (a).

$$\mathbb{E}|X_T| \leq \mathbb{E}Y < \infty \text{ shows (b)}.$$

2 Equalities from inequalities using martingales

Principle: Given a MG proof of exact formula, one can often get equality conclusions out of inequality assumptions.

Corollary 2.1 (Inequality version of Wald identity). *Suppose* (ξ_i) *independent,* $\mu_1 \leq \mathbb{E}\xi_i \leq \mu_2$, and $\sup_i \mathbb{E}|\xi_i| < \infty$.

Let $S_n = \sum_{i=1}^n \xi_i$. Then for any stopping time T where $\mathbb{E}T < \infty$

$$\mu_1 \mathbb{E} T \le \mathbb{E} S_T \le \mu_2 \mathbb{E} T \tag{2.1}$$

Proof. Apply theorem 1.2 to $X_n = S_n - n\mu_1$ (i.e. $\Delta_n = \xi_n - \mu_1$).

$$\mathbb{E}[\Delta_n \mid \mathcal{F}_{n-1}] = \mathbb{E}S_n - \mu_1 \ge 0 \implies (X_n) \text{ is a sub-MG}$$
 (2.2)

$$\mathbb{E}[|\Delta_n| \mid \mathcal{F}_{n-1}] = \mathbb{E}|\Delta_n| \le \mathbb{E}|S_n| + |\mu_1| \le b$$
 by hypothesis (2.3)

Wald: if (ξ_i) i.i.d.

$$\mathbb{E}S_t = (\mathbb{E}\xi) \cdot (\mathbb{E}T) \tag{2.4}$$

Theorem
$$\implies \mathbb{E}X_0 \le \mathbb{E}X_T$$
 (2.5)

$$\implies 0 \le \mathbb{E}S_t - \mu_1 \mathbb{E}T \tag{2.6}$$

$$\implies \mathbb{E}S_t \ge \mu_1 \mathbb{E}T \tag{2.7}$$

Lemma 2.2. Take (ξ_i) i.i.d., $S_n = \sum_{i=1}^n \xi_i$. Fix a > 0 and $b > \mathbb{E}\xi$. Suppose $\exists \theta > 0$ such that $\mathbb{E} \exp(\theta \xi) = \mathbb{E}^{\theta b}$. Then

$$P(S_n \ge a + nb \text{ for some } n \ge 0) \le e^{-\theta a}$$
 (2.8)

Proof. Set $\hat{\xi}_i = \xi_i - b$, so $\hat{S}_n = S_n - nb$.

 $\mathbb{E} \exp(\theta \hat{\xi}) = 1$ by definition, so $(\exp(\theta \hat{S}_n), n \ge 0)$ is a MG.

Apply L^1 maximal inequality

$$P(\sup_{n} \exp(\theta \hat{S}_{n}) \ge \lambda) \le \lambda^{-1}$$
(2.9)

Set
$$\lambda = e^{\theta a} \implies P(\sup_n \hat{S}_n \ge a) \le e^{-\theta a}$$

Lemma 2.3. Suppose (ξ_i) i.i.d., $S_n = \sum_{i=1}^n \xi_i$, $\exists \theta > 0$ such that moment generating function $\phi(\theta) = \mathbb{E} \exp(\theta \xi) = 1$, T is a stopping time with $\mathbb{E}T < \infty$, and $\forall n : S_n \leq B$ on $\{n < T\}$. Then $\mathbb{E} \exp(\theta S_T) = 1$.

Proof. $X_n := \exp(\theta S_n)$ is a MG. Need to check eq. (1.2) from theorem 1.2.

$$\Delta_n = X_n - X_{n-1} = X_{n-1}(\exp(\theta S_n) - 1)$$
 (2.10)

$$|\Delta_n| \le X_{n-1} |\exp(\theta \xi_n) - 1| \tag{2.11}$$

$$\mathbb{E}[|\Delta_n| \mid \mathcal{F}_{n-1}] \le X_{n-1} \mathbb{E}|\exp(\theta \xi) - 1|$$
(2.12)

as $\{n \le T\} = \{n - 1 < T\}$ we have

$$S_{n-1} \le B \tag{2.13}$$

$$X_{n-1} \le e^{\theta B} \tag{2.14}$$

This verifies theorem 1.2 so apply MG version to conclude $\mathbb{E}X_0 = \mathbb{E}X_T$. TODO: Follow up

2.1 Boundary crossing inequalities

Setting:

- (ξ_i) i.id.
- $S_n = \sum_{i=1}^n \xi_i$
- $|\xi_i| \leq L$
- $\mathbb{E}\xi < 0$
- $P(\xi > 0) > 0$

Fix a < 0 < b, consider $T = \min\{n : S_n \ge b \text{ or } S_n \le a\}$

Exercise 2.4. Check $\mathbb{E}T < \infty$

Let
$$P(\underbrace{S_T \geq b}) = x$$
, so $P(\underbrace{S_t \leq a}) = 1 - x$.
 $\iff S_T \leq b - L$ $\iff S_T \geq a + L$
Consider $\phi(\theta) = \mathbb{E} \exp(\theta \xi) < \infty$, $\phi(a) = 1$, $\phi'(0) = \mathbb{E} \xi < 0$, $\phi(\theta) \to \infty$ as $\theta \to \infty$.
 $\implies \exists \theta > 0 : \phi(\theta) = 1$.

Apply Lemma $\implies \mathbb{E} \exp(\theta S_T) = 1$.

$$xe^{\theta b} + (1-x)e^{\theta(a-L)} \le 1 \le xe^{\theta(b+L)} + (1-x)e^{\theta a}$$
(2.15)

Rearranging

$$\frac{1 - e^{\theta a}}{e^{\theta(b+L)} - e^{\theta a}} \le x \le \frac{1 - e^{\theta(a-L)}}{e^{\theta b} - e^{\theta(a-L)}} \tag{2.16}$$

Special case for simple random walk:

$$P(\xi = 1) = p < \frac{1}{2} \tag{2.17}$$

$$P(\xi = -1) = q = 1 - p \tag{2.18}$$

$$a < 0 < b \in \mathbb{Z} \tag{2.19}$$

Here, the upper bound is an equality so

$$x = \frac{1 - e^{\theta a}}{e^{\theta b} - e^{\theta a}} \tag{2.20}$$

 $\phi(\theta) = pe^{\theta} + qe^{-\theta} = 1$, so solving yields $e^{\theta} = q/p$ and

$$x = \frac{1 - (q/p)^a}{(q/p)^b - (q/p)^a}$$
 (2.21)

which is the undergraduate result from directly solving simple random walk.