# Measuring Market Power

## Critiques of the Production Approach

- 1. Data/Measurement
- 2. Mispecified Model
- 3. Econometrics/Identification
- 4. Conceptual

#### Data/Measurement: Traina (2018)

The Compustat data used by DeLoecker, Eckout, and Unger (2020) is not ideal.

One issue is the ad hoc determination of *marginal costs* from accounting data.

 $\mathsf{OPEX} = \mathsf{COGS} + \mathsf{SGA}.$  If we include marketing and management expenses...



# Traina (2018), Why?

Why do these estiamtes differ so much?

Recall the markups equation

$$\mu_{it} = \theta_{it}^{V} \frac{P_{it}^{Q} Q_{it}}{P_{it}^{V} V_{it}}$$

Omitting a variable, in this case SGA, will bias  $\theta$ . No trend effect.

But(!!) the share of COGS, is declining (and share of SGA increasing) over time.



# Traina (2018) Thoughts

What is SGA? Is it important?

Remember, all the rise in markups from DLEU was from the largest 10% if firms. Is SGA somehow especially important for them?

Could estiamte a PF with COGS, SGA separately and allow COGS and SGA elasticities to cary over time...

# Data/Measurement

Benkard, Lee, Yurukoglu

DLEU strongly suggest that concentration is casuing markups to rise.

Studies using Compustat or Census data group firms/plants together by production codes at the national level.

This is typically a terrible grouping from a product market / antitrust point of view. Examples:

- NAICS325620: after-shave, deoderant, mouthwash, sunscreen, hair dye.
- NAICS336120: heavy trucks, buses, garbage trucks, fire engines, motor homes.
- Cable TV is national not local.

# **BLY Findings**

Figure 1: Median HHI over time, by market definition



#### **Econometrics**



# Mispecification: Raval (2021)

Recall the markups equation from cost minimization

$$\mu_{it} = heta_{it}^V rac{P_{it}^Q Q_{it}}{P_{it}^V V_{it}}$$

This should hold for any variable input, V. Does it?

Table I Datasets

| Dataset   | Unit of Observation | Time Period | No. Establishments | No. Industries Used |
|-----------|---------------------|-------------|--------------------|---------------------|
| Chile     | Manufacturing Plant | 1979-1996   | 5,000 / year       | 16                  |
| Colombia  | Manufacturing Plant | 1978 - 1991 | 7,000 / year       | 21                  |
| India     | Manufacturing Plant | 1998-2014   | 30,000 / year      | 23                  |
| Indonesia | Manufacturing Firm  | 1991-2000   | 14,000 / year      | 22                  |
| Retailer  | Retail Store        | 3 years     | Thousands / year   | 1                   |

#### Raval Findings

#### Short answer: markups differ based on different variable inputs.



Table II 90/50 Ratio of Markup Estimates

|           | Labor   |                  | Materials |         | Composite Input |         |
|-----------|---------|------------------|-----------|---------|-----------------|---------|
| Dataset   | CD      | $_{\mathrm{TL}}$ | CD        | TL      | CD              | TĹ      |
| Chile     | 2.67    | 2.03             | 1.53      | 1.39    | 1.17            | 1.17    |
|           | (0.013) | (0.008)          | (0.003)   | (0.004) | (0.001)         | (0.001) |
| Colombia  | 2.88    | 1.82             | 1.82      | 1.43    | 1.16            | 1.17    |
|           | (0.016) | (0.005)          | (0.008)   | (0.004) | (0.001)         | (0.001) |
| India     | 4.04    | 2.95             | 1.38      | 1.29    | 1.14            | 1.14    |
|           | (0.013) | (0.007)          | (0.001)   | (0.001) | (0.000)         | (0.000) |
| Indonesia | 4.06    | 3.12             | 1.66      | 1.46    | 1.15            | 1.16    |
|           | (0.025) | (0.019)          | (0.004)   | (0.003) | (0.001)         | (0.001) |
| Retailer  | 1.23    | 1.30             | 1.02      | 1.03    | 1.02            | 1.02    |
|           | (0.002) | (0.004)          | (0.000)   | (0.000) | (0.000)         | (0.000) |

 $\label{Note:CD} \textbf{Note:} \quad \textbf{CD is Cobb-Douglas and TL translog.} \quad \textbf{Estimates use all establishments and years.} \quad \textbf{Standard errors are based on 20 bootstrap simulations.} \quad \textbf{For India, these estimates ignore the sample weights.} \quad \textbf{Standard errors are based on 20 bootstrap simulations.} \quad \textbf{For India, these estimates ignore the sample weights.} \quad \textbf{Standard errors are based on 20 bootstrap simulations.} \quad \textbf{For India, these estimates ignore the sample weights.} \quad \textbf{Standard errors are based on 20 bootstrap simulations.} \quad \textbf{For India, these estimates ignore the sample weights.} \quad \textbf{Standard errors are based on 20 bootstrap simulations.} \quad \textbf{For India, these estimates ignore the sample weights.} \quad \textbf{Standard errors are based on 20 bootstrap simulations.} \quad \textbf{For India, these estimates ignore the sample weights.} \quad \textbf{Standard errors are based on 20 bootstrap simulations.} \quad \textbf{For India, these estimates ignore the sample weights.} \quad \textbf{Standard errors are based on 20 bootstrap simulations.} \quad \textbf{For India, these estimates ignore the sample weights.} \quad \textbf{Standard error erro$ 

#### Raval: Correlations and Trends





# Bond, Hashemi, Kaplan, Zoch (2020, JME)

"Some Unpleasant Markup Arithmetic"

The markup equation (again)...

$$\mu_{it} = \theta_{it}^{V} \frac{P_{it}^{Q} Q_{it}}{P_{it}^{V} V_{it}}$$

This is the ratio of the **output elasticity** to the labor share of **revenue**.

But (!!), many studies use revenue instead of output to estimate "production functions."

#### The Uncomfortable Arithmetic

Inverse demand curve: P(Q)

Revenue: R(Q) = P(Q)Q

Elasticity of revenue wrt V

$$\varepsilon_{R,V} = (1 + \varepsilon_{P,Q})\varepsilon_{Q,V}$$

follows from the chain rule applied to the revenue function.

#### The Uncomfortable Arithmetic, cont.

Cost minimization of the firm implies

$$s_{R,V} = \frac{C'(Q)}{P} \varepsilon_{Q,V}$$

And the firms FOC for profit max (MC=MR) implies

$$\frac{C'(Q)}{P} = 1 + \varepsilon_{P,Q}$$

People typically estimate the markup using the revenue elasticity, but

$$\mu := rac{arepsilon_{ extit{R,V}}}{arsigma_{ extit{R,V}}} = 1.$$

Oops...

#### Additional points from the Arithmetic paper

- If *V* is partially fixed, then the markup will reflect both the true markup and the shadow cost of adjustment.
- If V is partially used to "influence demand" (e.g.  $D = F_D(V_{1D}, V_{2D}, ...)$ ), then markups are biased downward.

#### Conceptual Issues

The regression underlying the ratio estimator

$$\bar{q}_{it} = -p_{it} + \beta_{\nu}(p_{it}^{\nu} + \bar{\nu}_{it}) + \beta_{k}(r_{it} + \bar{k}_{it}) + \omega_{it} + \varepsilon_{it}$$

DLEU use HHI to instrument for price...

This is reminiscent of the Structure-Conduct-Performance literature of the 1960/70s.

The IO literature moved away from running equations like this a long time ago.

But the questions are still very important.

- Is market power rising?
- Does concentration have anything to do with it?

## Demsetz (1973)

Classic discussion of competition and monopoly profits. Where do profits come from?

- 1. successful entrepenuership, superior technology;
- 2. collusion / entry barriers.

It is important to distinguish these when designing public policy.