Motivation for Hypotheses Testing

- Business: Will an investment in a mutual fund yield annual returns greater than desired value? (based on past performance of the fund)
- Medical: Is the incidence of diabetes greater among males than females?
- Social: Are women more likely to change mobile service provider than men?
- Engineering: Has the efficiency of the pump (η) decreased from its original value due to aging?

Hypotheses Testing

- The hypotheses is generally converted to a test of the mean or variance parameter of a population (or differences in means or variances of populations)
- A hypothesis a statement or postulate about the parameters of a distribution (or model)
 - Null hypothesis H_0 : The default or *status quo* postulate that we wish to reject if the sample set provides sufficient evidence (eg. $\eta = \eta_0$)
 - Alternative hypothesis H_1 : The alternative postulate that is accepted if the null hypothesis is rejected (eg. $\eta < \eta_0$)

Hypotheses Testing Procedure

- Identify the parameter of interest (mean, variance, proportion) which you wish to test
- Construct the null and alternative hypotheses
- Compute a test statistic which is a function of the sample set of observations
- Derive the distribution of the test statistic under the null hypothesis assumption
- Choose a test criterion (threshold) against which the test statistic is compared to reject/not reject the null hypothesis

Hypotheses Testing Procedure

- No hypotheses test is perfect. There are inherent errors since it is based on observations which are random
- The performance of a hypotheses test depends on
 - Extent of variability in data
 - Number of observations (Sample size)
 - Test statistic (function of observations)
 - Test criterion (threshold)

Two-sided and one-sided tests

Two sided test

$$H_0: \mu = 0$$

 $H_1: \mu \neq 0$

Test statistic standard normal RV z

• Reject H_0 if $z \le -2$ or $z \ge 2$

One sided test

$$H_0: \mu = 0$$

 $H_1: \mu > 0$

Test statistic standard normal RV z

• Reject H_0 if $z \ge 1.5$

Errors in Hypotheses Testing

Two Types of errors (Type I and Type II)

Decision →	H ₀ is not rejected	H ₀ is rejected
Truth ↓		
H ₀ is true	Correct Decision $Pr = I - \alpha$	Type I error $Pr = \alpha$
H _I is true	Type II error Pr = β	Correct Decision $Pr = 1 - \beta$

 Typically the Type 1 error probability α (also called as level of significance of the test) is controlled by choosing the criterion from the distribution of the test statistic under the null hypothesis

42

Errors in Hypotheses Testing

Type I and Type II error probabilities

- Statistical test Power = 1 Type II error probability
- Trade-off: If we decrease Type I error probability, then Type II error probability will increase

43

Test for Mean: Solid Propellant example

For a given application the burning rate of a solid propellant should be 50 cm/s.

- 25 samples of the solid propellant are taken and their burning rate noted. The average burning rate is computed to be 51.3 cm/s. The standard deviation in the burning rate is known to be 2 cm/s
- Null hypothesis : $\mu = 50$ cm/s
- Alternative hypothesis: $\mu \neq 50$ cm/s (lower or higher burning rate propellants are both unsatisfactory) Two sided test
- Test statistic $z = \frac{\bar{x}-50}{2/\sqrt{25}} \sim \mathcal{N}(0,1); z = 3.25$
- Critical value for $\alpha = 0.05$ is ± 1.96
- Decision: Reject null hypothesis

Test for Differences in Means: Training example

Two groups of teachers of similar capabilities are trained by two methods A and B. Is Method B more effective than Method A?

- 10 teachers in each group. Average scores and standard deviation of scores after training are Group 1: $\bar{x}_1 = 70$, $s_1 = 3.3665$ Group 2: $\bar{x}_1 = 74$, $s_1 = 5.3955$
- Null hypothesis : $\mu_1 \mu_2 = 0$
- Alternative hypothesis: $\mu_1 \mu_2 < 0$ one sided test
- Test statistic (assuming unknown but equal variances for two groups)

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_p^2}{N_1} + \frac{s_p^2}{N_2}}} \sim t_{N_1 + N_2 - 2}; \quad S_p = \frac{(N_1 - 1)s_1^2 + (N_2 - 1)s_2^2}{N_1 + N_2 - 2} \quad t = -1.989$$

- Critical value for $\alpha = 0.05$ is -1.73
- Decision: Reject null hypothesis (Method B is better)

Test for Differences in Variances: Process Yields

The variability in yields from two different processes are to be compared to decide whether they are identical or not

- 50 samples for each process taken. Yield variances are found to be $s_1^2 = 2.05$ and $s_2^2 = 7.64$
- Null hypothesis : $\frac{\sigma_1^2}{\sigma_2^2} = 1$
- Alternative hypothesis: $\frac{\sigma_1^2}{\sigma_2^2} \neq 1$ two sided test
- Test statistic (assuming unknown but equal variances for two groups)

$$f = \frac{s_1^2}{s_2^2} \sim F(N_1 - 1, N_2 - 1); f = 0.27$$

- Critical value for $\alpha = 0.025$ is 0.567 and $\alpha = 0.975$ is 1.762
- Decision: Reject null hypothesis (Process 2 has higher variability)

Data Analytics 4

Summary of useful hypotheses tests

Type of test	Characteristic	Example	Application
z-test	Sum of independent normal variables	Test for a mean or comparison between two group means (variance known)	Test coefficients of a regression model
t-test	Ratio of a standard normal variable and chi-square variables with p degrees of freedom	Test for a mean or comparison between two group means (variance unknown)	Test coefficients of a regression model
chi-square test (p degrees of freedom)	Sum of p independent standard normal variables	Test for variance	Test quality of regression model
F-test (p ₁ and p ₂ degrees of freedom)	Ratio of two chi- square variables	Test for comparing variances of two groups	Choose between regression models having different number of parameters

Data Analytics

47