线性代数

Thursday 12^{th} December, 2024

目录

1	行列式(方阵)	3
2	旋转矩阵	3
3	运算律 3.1 数幂 (方阵) 3.2 内积 3.2.1 柯西-施瓦茨不等式	4
	行(列)矩阵(向量) 4.1 范数(模长) 4.2 内积(点乘) 4.3 外积(叉乘) 转置	5 5
		5
	逆(方阵)	5
7	伴随(方阵)	6
8	分块矩阵	6
9	初等变换(等价) 9.1 初等变换求逆矩阵	6 7
10	秩	7
11	线性方程组 11.1 增广矩阵 11.2 克拉默法则 11.3 秩和解的关系	8
12	正交矩阵(方阵) 12.1 范德蒙德行列式	8
13	迹(方阵)	9
14	特征(方阵)	9
15	相似(方阵)	10
16	相似对角化(方阵)	10
17	对称矩阵(方阵) 17.1 * 谱分解定理	11 11

18 合同(方阵)	11
19 二次型(方阵、对称矩阵)	12
19.1 标准型(对角矩阵)	12
19.2 二次型转标准型(合同对角化)	12
19.2.1 正交变换法	12
19.2.2 拉格朗日配方法	
19.2.3 初等变换法	
19.3 规范型	13
20 正定二次型(方阵)	14
21 向量组	14
21.1 线性相关	14
21.2 格拉姆-施密特正交单位化	14

1 行列式(方阵)

Definition 1.0.1. 余子式: M_{ij} 代数余子式: $A_{ij} = (-1)^{i+j} M_{ij}$

$$\det A = \det A^{T}$$

$$\det kA = k^{n} \det A$$

$$\det AB = \det A \det B$$

$$\det A = \sum_{i} a_{ij} A_{ij} = \sum_{j} (-1)^{i+j} a_{ij} M_{ij}$$

$$\begin{vmatrix} a_{11} & \cdots & a_{1,j-1} & a_{1j} & a_{1,j+1} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{i-1,1} & \cdots & a_{i-1,j-1} & a_{i-1,j} & a_{i-1,j+1} & \cdots & a_{i-1,n} \\ a_{i,1} & \cdots & a_{i,j-1} & a_{ij} & a_{i,j+1} & \cdots & a_{i,n} \\ a_{i+1,1} & \cdots & a_{i+1,j-1} & a_{i+1,j} & a_{i+1,j+1} & \cdots & a_{i+1,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n,j-1} & a_{nj} & a_{n,j+1} & \cdots & a_{nn} \end{vmatrix}$$

2 旋转矩阵

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

3 运算律

加法交换律 A+B=B+A

加法结合律 (A+B)+C=A+(B+C)

减法 A-B=A+(-B)

数乘

$$(kl) A = k (lA) = l (kA)$$
$$(k+l) A = kA + lA$$
$$k (A+B) = kA + kB$$

零元 A + O = A

幺元 AE = EA = A

外积

$$C_{m,p} = A_{m,n} B_{n,p}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1p} \\ c_{21} & c_{22} & \cdots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mp} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix}$$

3.1 数幂(方阵)

$$A^{0} = E$$

$$A^{k} = AA^{k-1}$$

$$A^{k}A^{l} = A^{k+l}$$

$$(A^{k})^{l} = A^{kl}$$

3.2 内积

Definition 3.2.1.

$$A \cdot B = \sum_{i} \sum_{j} a_{ij} b_{ij}$$

交換律 $A \cdot B = B \cdot A$

数乘 $(\lambda A) \cdot B = \lambda (A \cdot B)$

分配律
$$(A+B)\cdot C = A\cdot C + B\cdot C$$

3.2.1 柯西-施瓦茨不等式

(积和方 ≤ 方和积)

$$(A \cdot B)^2 \le (A \cdot A)(B \cdot B)$$

4 行(列)矩阵(向量)

4.1 范数(模长)

$$\|oldsymbol{v}\| = \sqrt{oldsymbol{v}\cdotoldsymbol{v}}$$

4.2 内积(点乘)

$$egin{aligned} oldsymbol{v} \cdot oldsymbol{w} &= \sum_i v_i w_i (v_i w_i)$$
 向量各元素)
$$&= \| oldsymbol{v} \| \| oldsymbol{w} \| \cos \langle oldsymbol{v}, oldsymbol{w}
angle \ &= egin{cases} oldsymbol{v}^T oldsymbol{w} &= oldsymbol{w}^T oldsymbol{v} & oldsymbol{w}
angle oldsymbol{p} \end{pmatrix} \ &= egin{cases} oldsymbol{v}^T oldsymbol{w} &= oldsymbol{w}^T oldsymbol{v} & oldsymbol{w}
angle oldsymbol{p} \end{pmatrix} \ &= egin{cases} oldsymbol{v}^T oldsymbol{w} &= oldsymbol{w}^T oldsymbol{v} & oldsymbol{w}
angle \ & oldsymbol{v} &= oldsymbol{w} oldsymbol{v} & oldsymbol{w} \end{array}$$

4.3 外积(叉乘)

$$egin{aligned} oldsymbol{v} imes oldsymbol{w} & oldsymbol{v} imes oldsymbol{w} & oldsymbol{v}_z \ oldsymbol{v}_z \ oldsymbol{v} & oldsymbol{w}_z \ oldsymbol{w}_z \ oldsymbol{w} & oldsymbol{v}_z \ oldsymbol{w}_z \ oldsymbol{w}_z \ oldsymbol{w}_z \ oldsymbol{w}_z \ oldsymbol{w}_z \ oldsymbol{w}_z \ oldsymbol{v}_z \ oldsymbol{w}_z \ oldsymbol{v}_z \ oldsymbol{w}_z \$$

5 转置

Definition 5.0.1.

$$(A^T)^T = A$$
$$(A+B)^T = A^T + B^T$$
$$(kA)^T = kA^T$$
$$(AB)^T = B^T A^T$$
$$(A^k)^T = (A^T)^k$$

6 逆(方阵)

Definition 6.0.1 (经过矩阵 A 变换,变换后的线性空间可以通过 A^{-1} 变换回原线性空间).

$$AA^{-1} = A^{-1}A = E$$

$$(A^{-1})^{-1} = A$$
$$(kA)^{-1} = \frac{1}{k}A^{-1}$$
$$(AB)^{-1} = B^{-1}A^{-1}$$
$$\exists A^{-1} \Longrightarrow \exists (A^{T})^{-1}$$
$$(A^{T})^{-1} = (A^{-1})^{T}$$
$$\det A^{-1} = \frac{1}{\det A}$$

若矩阵 A 变换压缩了维度,则无法通过逆矩阵变换回来:

$$\exists A^{-1} \iff r(A_n) = n \iff \det A \neq 0$$

7 伴随(方阵)

$$A^* = \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{bmatrix}$$
$$AA^* = A^*A = (\det A) E$$
$$(kA)^* = k^{n-1}A^*$$
$$\det A \neq 0 \implies A^* = (\det A) A^{-1}$$
$$(A^*)^{-1} = (A^{-1})^*$$
$$\det A^* = (\det A)^{n-1}$$

8 分块矩阵

运算与普通矩阵相同

9 初等变换(等价)

Definition 9.0.1. 行: r_i , 列: c_i

- 1. 对换两行 (列): $r_i \leftrightarrow r_i$
- 2. k 乘某行 (列): kr_i 或 $r_i \times k (k \neq 0)$
- 3. 加某行(列) k 倍: $r_i + kr_j$

反身性 $A \cong A$

对称性 $A \cong B \Longrightarrow B \cong A$

传递性 $A \cong B, B \cong C \Longrightarrow A \cong C$

$$A \cong B \implies r(A) = r(B)$$

若对 A 初等行/列变换,可先对 E 作,即可得到 P/Q

$$PA = (PE) A, AQ = A (EQ)$$

初等变换不改变秩,故P、Q 必然满秩/可逆

$$A \xrightarrow{r} B \iff PA = B$$

 $A \xrightarrow{c} B \iff AQ = B$
 $A \to B \iff PAQ = B$

9.1 初等变换求逆矩阵

$$\begin{bmatrix} A & E \end{bmatrix} \xrightarrow{r} \begin{bmatrix} E & A^{-1} \end{bmatrix}$$
$$\begin{bmatrix} A \\ E \end{bmatrix} \xrightarrow{c} \begin{bmatrix} E \\ A^{-1} \end{bmatrix}$$

10 秩

Definition 10.0.1 (经过矩阵 A 变换,变换后的线性空间的维度是 r(A)).

$$r\begin{bmatrix} | & | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | & | \end{bmatrix} = \operatorname{span} \left[v_1, v_2, \cdots, v_n \right]$$

$$A \cong B \implies r(A) = r(B)$$

$$\max \left\{ r(A), r(B) \right\} \leqslant r(A, B) \leqslant r(A) + r(B)$$

$$r(A + B) \leqslant r(A) + r(B)$$

$$r(AB) \leqslant \min \left\{ r(A), r(B) \right\}$$

$$\exists P^{-1}, Q^{-1} \implies r(A) = r(PAQ)$$

$$A_{m,n}B_{n,s} = O \implies r(A_{m,n}) + r(B_{n,s}) \leqslant n$$

$$\begin{cases} r(A) = n & \implies r(A^*) = n \\ r(A) = n - 1 & \implies r(A^*) = 1 \\ r(A) \leqslant n - 1 & \implies r(A^*) = 0 \end{cases}$$

满秩 (方阵): $r(A_n) = n$ 奇异矩阵: 不满秩的方阵 非奇异矩阵: 满秩方阵

11 线性方程组

$$Aoldsymbol{x} = egin{bmatrix} igg| & igg| & igg| & igg| & igg| \ oldsymbol{lpha}_1 & oldsymbol{lpha}_2 & \cdots & oldsymbol{lpha}_n \ igg| & igg| & igg| \end{bmatrix} oldsymbol{x} = oldsymbol{eta}$$

11.1 增广矩阵

$$ar{A} = [A|oldsymbol{eta}] = \left[egin{array}{c|cccc} & & & & & & \\ \hline oldsymbol{lpha}_1 & oldsymbol{lpha}_2 & \cdots & oldsymbol{lpha}_n & oldsymbol{eta} \\ \hline & & & & & \\ \hline \end{array} \right]$$

11.2 克拉默法则

11.3 秩和解的关系

- n 未知数数量 (即 A 的列数)
- r 系数矩阵 A 的秩 (即 r(A), 显然 $r \leq n$)
- η 线性方程组特解(齐次方程组中恒为0)
- ξ_i 线性方程组基础解系

线性方程组通解形式 (共 n-r) 个基础解系):

$$oldsymbol{x} = oldsymbol{\eta} + \sum_{i=1}^{n-r} k_i oldsymbol{\xi}_i$$

- 当 $r+1=r(\bar{A})$ 时,表示无解。否则有解情况:
- 当 r < n 时,表示有无穷解
- $\exists r = n \text{ th}$, 表示只有唯一解(即特解)

注: 齐次方程组中, $\boldsymbol{\beta}$ 恒为 $\boldsymbol{0}$; 则显然 $r\left(\bar{A}\right)=r\left(A\right)\left(=r\right)\leqslant n$ 。故齐次方程组最少只会有 $\boldsymbol{0}$ 解(特解),不会无解。

12 正交矩阵(方阵)

Definition 12.0.1 (矩阵行(列)向量组两两正交,且都为单位向量).

$$AA^T = E$$

$$A^{-1} = A^{T} \iff AA^{T} = A^{T}A = E$$
$$\det A = \pm 1$$
$$AA^{T} = E$$
$$BB^{T} = E$$
$$\iff (AB) (AB)^{T} = E$$

12.1 范德蒙德行列式

$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le j < i \le n} (x_i - x_j)$$

13 迹(方阵)

$$tr A = \sum_{i} a_{ii}$$

14 特征(方阵)

Definition 14.0.1. 特征多项式:

$$f(\lambda) = \det(A - \lambda E)$$

特征值 λ (特征多项式为 0 的根,包括重根,共 n 个)

$$f(\lambda) = 0$$

特征向量 p (1 $\leq \lambda$ 对应线性无关 p 数 $\leq \lambda$ 重数)

$$(A - \lambda E) p = 0$$

$$\operatorname{tr} A = \sum_{i} \lambda_{i}$$

$$\operatorname{det} A = \prod_{i} \lambda_{i}$$

$$\lambda \mathbb{B} A \text{的特征值} \implies \frac{1}{\lambda} \mathbb{B} A^{-1} \text{的特征值}$$

$$\implies \frac{\det A}{\lambda} \mathbb{B} A^{*} \text{的特征值}$$

$$\implies \sum_{i=0}^{m} a_{i} \lambda^{i} \mathbb{B} \sum_{i=0}^{m} a_{i} A^{i} \text{的特征值}$$

$$f(\lambda) = (-1)^{n} \lambda^{n} + (-1)^{n-1} \operatorname{tr} A \cdot \lambda^{n-1} + \dots + \det A$$

$$\stackrel{n=2}{=} \lambda^{2} - \operatorname{tr} A \cdot \lambda + \det A$$

15 相似(方阵)

Definition 15.0.1.

$$P^{-1}AP = B \iff A \sim B$$

反身性 $A \sim A$

对称性 $A \sim B \implies B \sim A$

传递性 $A \sim B, B \sim C \implies A \sim C$

$$A \sim B \implies A \cong B \implies r(A) = r(B) \implies A^{-1} \sim B^{-1}$$
(如果都可逆)
$$\implies \det(A - \lambda_A E) = \det(B - \lambda_B E) \implies \begin{cases} \lambda_A = \lambda_B \\ \operatorname{tr} A = \operatorname{tr} B \end{cases}$$

$$\implies \det A = \det B$$

16 相似对角化(方阵)

Definition 16.0.1.

 $A_n \sim \Lambda$

 $r:\lambda$ 重数

 $n-r(A-\lambda E):\lambda$ 对应线性无关 p 数

$$A \sim \Lambda \iff n - r (A - \lambda E) = r$$
 \iff 全体线性无关 \mathbf{p} 数 = n

$$\iff P^{-1}AP = \Lambda \begin{cases} \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} \\ P = \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \cdots & \mathbf{p}_n \end{bmatrix}$$

17 对称矩阵(方阵)

Definition 17.0.1. 对称矩阵:

$$A = A^T$$

反对称矩阵:

$$A = -A^T$$

实数范围内(即 A 为实矩阵):

$$egin{aligned} A &= A^T \ A oldsymbol{p}_1 &= \lambda_1 oldsymbol{p}_1 \ A oldsymbol{p}_2 &= \lambda_2 oldsymbol{p}_2 \ \lambda_1 &
eq \lambda_2 \end{aligned} egin{aligned} \implies oldsymbol{p}_1 \cdot oldsymbol{p}_2 &= 0 \end{aligned}$$

实对称矩阵必可相似对角化,且

实对称矩阵 $A \Longrightarrow \exists$ 正交矩阵 $P, P^{-1}AP = P^{T}AP = \Lambda$

17.1 * 谱分解定理

A 为实对称矩阵, e_i 为 λ_i 对应单位特征向量

$$A = \sum \lambda_i \boldsymbol{e}_i \boldsymbol{e}_i^T$$

18 合同(方阵)

Definition 18.0.1.

$$B = C^T A C, \exists C^{-1} \iff A \simeq B$$

反身性 $A \simeq A$

对称性 $A \simeq B \Longrightarrow B \simeq A$

传递性 $A \simeq B, B \simeq C \Longrightarrow A \simeq C$

$$A \simeq B \iff A, B$$
的特征值中,正、负、零的个数相同
$$\Longrightarrow A \cong B \implies r(A) = r(B) \implies A^T \simeq B^T$$

$$\Longrightarrow A, B$$
对称性相同(都对称或非对称)

19 二次型(方阵、对称矩阵)

Definition 19.0.1.

$$f = \sum_{i,j=1}^{n} a_{ij} x_i x_j (a_{ij} = a_{ji}) = \boldsymbol{x}^T A \boldsymbol{x}$$

19.1 标准型(对角矩阵)

$$f = \sum_{i}^{n} a_{ii} x_i^2$$

19.2 二次型转标准型(合同对角化)

二次型 $f_A \simeq$ 标准型 g_Λ

19.2.1 正交变换法

本法不要求 A 为对称矩阵; C 可逆, P 正交, q 系数为特征值

- 1. 令 $\det(A \lambda E) = 0$,解得 n 个特征值 $\{\lambda_n\}$
- 2. \diamondsuit $(A \lambda_i E) \mathbf{p} = \mathbf{0}$,解得线性无关特征向量组 $\{\mathbf{p}_n\}$
- 3. 用正交特征向量组构建矩阵 $C = \begin{bmatrix} \boldsymbol{p}_1 & \boldsymbol{p}_2 & \cdots & \boldsymbol{p}_n \end{bmatrix}$
- 4. $\mathbf{x} = C\mathbf{y}$ 即可将 f 化为标准型 g

构造正交矩阵(对称矩阵可以选择正交化)

- 1. 对 $\{p_n\}$ 使用格拉姆-施密特正交单位化 (21.2),解得正交单位特征向量组 $\{e_n\}$
- 2. 用正交单位特征向量组构建正交矩阵 $P = \begin{bmatrix} e_1 & e_2 & \cdots & e_n \end{bmatrix}$

19.2.2 拉格朗日配方法

C 可逆,g 系数不一定为特征值

1. 先配 x_1 , 再依次往后配; 配完的变量后面不能再出现

2. 若只有交叉项,没有平方项,则令
$$\begin{cases} x_1 = y_1 + y_2 \\ x_2 = y_1 - y_2 \\ x_3 = y_3 \end{cases}$$
 ,替换后按 y 配方 :
$$x_n = y_n$$

3. 配完后得:
$$f = k_1 \left(\sum_{i=1}^n k_{1i} x_i\right)^2 + k_2 \left(\sum_{i=2}^n k_{2i} x_i\right)^2 + \dots + k_n \left(k_{n1} x_n\right)^2$$
 可替换每一个平方项为一个 要量 z ,即: $z = Kx$:
$$\begin{cases} z_1 = \sum_{i=1}^n k_{1i} x_i \\ z_2 = \sum_{i=2}^n k_{2i} x_i \\ \vdots \\ z_n = k_{n1} x_n \end{cases}$$
 则原二次型已转为标准型 $g = k_1 z_1^2 + k_2 z_2^2 + \dots + k_n z_n^2$ 证
$$\vdots$$

$$z_n = k_{n1} x_n$$
 4. 作倒代换得 $x = Cz$:
$$\begin{cases} x_1 = \sum_{i=1}^n c_{1i} z_i \\ x_2 = \sum_{i=2}^n c_{2i} z_i \\ \vdots \\ x_n = c_{n1} z_n \end{cases}$$
 此处 $C = K^{-1}$ 即为 f 变为标准型 g 的变换矩阵
$$\vdots$$

19.2.3 初等变换法

C 可逆,g 系数不一定为特征值

$$\begin{bmatrix} A \\ E \end{bmatrix}$$
 对整体初等列变换 $\begin{bmatrix} \Lambda \\ C \end{bmatrix}$

对应行变换

将 a 列与 b 列交换 将 a 行与 b 行交换

将 a 列乘以 k 将 a 行乘以 k

将 a 列加到 b 列 将 a 行列加到 b 行

19.3 规范型

Definition 19.3.1 (只有对角元素且元素只包含 1、-1 和 0 的二次型,称为规范型).

$$f = \sum_{i=1}^{p} y_i^2 - \sum_{i=p+1}^{r(A)} y_i^2$$

实二次型矩阵
$$A\simeq \begin{bmatrix} E_p & & & \\ & -E_{r(A)-p} & & \\ & & O \end{bmatrix}$$

其中 p 为 A 正特征值个数(正惯性指数)(重根按重数展开算),即 r(A)-p 为负特征值个数(负惯性指数)

20 正定二次型(方阵)

Definition 20.0.1 (只有正数特征值的二次型).

$$A$$
正定 \iff A 特征值全为正
$$\iff$$
 A 正惯性指数 = n
$$\iff$$
 A 各阶顺序主子式 > 0
$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1i} \\ a_{21} & a_{22} & \cdots & a_{2i} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{ii} \end{vmatrix}_{1 \leqslant i \leqslant n} > 0$$

 $\implies \det A > 0$

 $A_n \simeq E_n \iff A$ 为正定矩阵(正定二次型)

21 向量组

21.1 线性相关

Definition 21.1.1.

$$egin{aligned} \sum_i a_i oldsymbol{v}_i &= oldsymbol{o} \ \prod_i a_i
eq 0 \end{aligned} \iff oldsymbol{v}_i$$
线性相关 $egin{aligned} oldsymbol{v}_1 & oldsymbol{v}_2 & \cdots & oldsymbol{v}_n \ oldsymbol{o} & oldsymbol{o} \end{aligned} = 0 \iff oldsymbol{v}_i$ 线性相关

21.2 格拉姆-施密特正交单位化

有线性无关组:

$$\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_r$$

则有正交向量组:

$$egin{aligned} oldsymbol{w}_1 &= oldsymbol{v}_1 \ oldsymbol{w}_2 &= oldsymbol{v}_2 - rac{oldsymbol{w}_1 \cdot oldsymbol{v}_2}{oldsymbol{w}_1 \cdot oldsymbol{w}_1} oldsymbol{w}_1 \ &dots \ oldsymbol{w}_r &= oldsymbol{v}_r - \sum_{i=1}^{r-1} rac{oldsymbol{w}_i \cdot oldsymbol{v}_r}{oldsymbol{w}_i \cdot oldsymbol{w}_i} oldsymbol{w}_i \end{aligned}$$

正交单位向量组:

$$oldsymbol{e}_i = oldsymbol{w}_i^0$$