Running head: LEBA 1

Light Exposure Behavior Assessment (LEBA): Develop of a novel instrument to
 capture light exposure-related behaviours

- Mushfiqul Anwar Siraji¹, Rafael Robert Lazar², & Manuel Spitschan³
- Department of Psychology, Jeffrey Cheah School of Medicine and Health
 Sciences, Monash University, Malaysia
- ² University of Basel

7 Author Note

- Add complete departmental affiliations for each author here. Each new line herein must be indented, like this line.
- ₁₀ Enter author note here.
- The authors made the following contributions. Mushfiqul Anwar Siraji:
- Data Analysis, Writing Original Draft Preparation, Data Visualization; Rafael
- 3 Robert Lazar: Data Analysis, Writing Original Draft Preparation, Data
- ¹⁴ Visualization; Manuel Spitschan: Data Analysis, Writing Original Draft
- 15 Preparation, Data Visualization.
- Correspondence concerning this article should be addressed to Manuel Spitschan, . E-mail:

18 Abstract

One or two sentences providing a **basic introduction** to the field,

20 comprehensible to a scientist in any discipline.

Two to three sentences of **more detailed background**, comprehensible

to scientists in related disciplines.

One sentence clearly stating the **general problem** being addressed by

24 this particular study.

One sentence summarizing the main result (with the words "here we

26 **show**" or their equivalent).

Two or three sentences explaining what the **main result** reveals in direct

comparison to what was thought to be the case previously, or how the main

result adds to previous knowledge.

One or two sentences to put the results into a more **general context**.

Two or three sentences to provide a **broader perspective**, readily

comprehensible to a scientist in any discipline.

Keywords: keywords

Word count: X

33

Light Exposure Behavior Assessment (LEBA): Develop of a novel instrument to capture light exposure-related behaviours

37 Introduction

38 Methods

39 Participants

This line is just a test for pushing in the github repo.

41 Material

40

42 Procedure

Our study had four objectives. First, to develop an instrument to assess individual's light exposure behavior. Second, to conduct an exploratory factor analysis(EFA) to understand the latent structure. Third to gather structural validity evidence for the latent structure obtained in EFA. Lastly, we gathered item information using Item response theory (IRT)(Baker, 2017)

Data Collection. Timeline of data collection, ethical approval, mode of data collection, how consent was recorded.

Item generation and Content Validity: Expert Panel Review. How we developed the 48 items?

2 Analytic Strategies

We used R (version 4.1.0), including several R-packages for our analyses.

Necessary assumptions of EFA, including sample adequacy, normality

assumptions, quality of correlation matrix were assessed. Our data violated

both the univariate and multivariate normality assumptions. Due to these violations and the ordinal nature of our response data we used polychoric 57 correlation matrix (C. Desjardins & Bulut, 2018) for the EFA. We employed 58 principal axis (pa) a factor extraction method with varimax rotation. PA is 59 apparently robust to the normality assumption violations (Watkins, 2020). The 60 obtained latent structure was confirmed by minimum residuals extraction 61 method as well. We used a combination factor indentification method including 62 scree plot(Cattell, 1966), Horn's parallel analysis (Horn, 1965), minimum average partials method(Velicer, 1976), and hull method (Lorenzo-Seva, 64 Timmerman, & Kiers, 2011) to identify factor numbers. Additionally, to identify 65 the simple structure we followed the following guidelines recommended by 66 psychometricians (i) no factors with fewer than three items (ii) no factors with a factor loading <0.3 (iii) no items with cross-loading greater than .3 across factors (Bandalos & Finney, 2018; Child, 2006; Mulaik, 2009; Watkins, 2020)

Results 70

Sampling adequacy was investigated by Kaiser-Meyer-Olkin (KMO) measures of sampling adequacy(Kaiser, 1974). The overall KMO vale for 23 items was 0.63 which was above the cutoff value of .50 indicating a mediocre sample (Hutcheson, 1999).

75

79

71

Table1 summarizes the univariate descriptive statistics for the 48 items. 76 some of the items were skewed with high Kurtosis values. The Shapiro-Wilk test of normality (Shapiro & Wilk, 1965) indicated all the items violated normality assumptions. Multivariate normality assumptions were investigated by Marida's test (Mardia, 1970). Multivariate skew = 583.80 (p < 0.001) and multivariate

kurtosis = 2,749.15 (p <0.001) indicated multivariate normality assumptions violation. Due to these violations and ordinal nature of the response data polychoric correlations over Pearson's correlations was chosen (C. Desjardins & Bulut, 2018). Bartlett's test of sphericity (Bartlett, 1954), χ^2 (1128) = 5042.86, p < .001] indicated the correlations between items are adequate for the EFA. However only 4.96% of the inter-item correlation coefficients were greater than .30 in the obtained matrix. The inter item correlation ranged between .44 to .91. The corrected item-total correlations ranged between .10 to .44.

Scree plot (Fig3) suggested a six-factor solution. Horn's parallel analysis 89 (Horn, 1965), like the Monte Carlo study, draws several sets of random data 90 with the same number of participants as the original data set and compares 91 the mean eigenvalues among the simulated and original data sets to retain 92 optimal factors. This extraction method also supported a five-factor model. In 93 our data set parallel analysis with 500 iterations indicated six-factor solution. 94 However, In MAP method (Velicer, 1976) and Hull method (Lorenzo-Seva, 95 Timmerman, & Kiers, 2011) suggested a five-factor solution. As a result, we 96 tested both five factor and six factor solutions.

The initial five-factor solution with all 48 items showed the presence of 98 cross-loading items (item 42, 16, & 1) and poor factor loading (<.30) items 99 (item 20,3,15, 17, 40, 4, 11, 39, 18, 45, 29, 25, 8, & 46). At first we discarded 100 the items with poor factor loading and ran another EFA on the remaining 34 101 items. This iteration of EFA also appeared as a misfit in terms of poor 102 factor-loading (Item 12, 22, 38, 6) and cross-loading (Items 23, 31, 37, 48). 103 Another two rounds of EFA were conducted with gradually identifying problematic items and discarding them from the model. Finally, a five-factor 105 EFA solution with 23 items was accepted with low RMSR = 0.04, no loading 106 smaller than .30 and no cross-loading greater than .30. The obtained latent 107

construct was also confirmed by using minimum residual extraction method 108 (see the supplementary). Table?? displays the factor loadin (structural 109 coefficients) and commonality of the items. The absolute value of the 110 factor-loading ranged from .47 to .99 indicating strong coefficients. The 111 commonalities ranged between .10 to .99. However, the histogram of the 112 absolute values of non-redundant residual-correlations (Fig4 showed 26.09% 113 correlations greater than the absolute value of .05, indicating under-factoring. 114 (C. D. Desjardins, 2018). Subsequently, we fitted a six-factor solution. However, 115 in the six factor solution a factor emerged with only two salient variable 116 loading thus disqualifying the six-factor solution. 117

Confirmatory Factor Analysis

119 Discussion

118

120	References
121	Aust, F., & Barth, M. (2020). papaja: Prepare reproducible APA journal
122	articles with R Markdown. Retrieved from
123	https://github.com/crsh/papaja
124	Baker, F. B. (2017). The Basics of Item Response Theory Using R (1st ed
125	2017.). Springer.
126	Bandalos, D. L., & Finney, S. J. (2018). Factor analysis: Exploratory and
127	confirmatory. In The reviewer's guide to quantitative methods in the
128	social sciences (pp. 98–122). Routledge.
129	Barth, M. (2021). tinylabels: Lightweight variable labels. Retrieved from
130	https://github.com/mariusbarth/tinylabels
131	Bartlett, M. (1954). A Note on the Multiplying Factors for Various
132	Chi-square Approximations. Journal of the Royal Statistical Society.
133	Series B, Methodological, 16(2), 296–298.
134	Buchanan, E. M., Gillenwaters, A., Scofield, J. E., & Valentine, K. D. (2019)
135	MOTE: Measure of the Effect: Package to assist in effect size
136	calculations and their confidence intervals. Retrieved from
137	http://github.com/doomlab/MOTE
138	Cattell, R. B. (1966). The Scree Test For The Number Of Factors.
139	Multivariate Behavioral Research, 1(2), 245–276.
140	https://doi.org/10.1207/s15327906mbr0102_10
141	Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y.,
142	Borges, B. (2021). Shiny: Web application framework for r. Retrieved
143	from https://CRAN.R-project.org/package=shiny
144	Child D (2006) Essentials of factor analysis (3rd ed.) New York:

145	Continuum.
146	Desjardins, C., & Bulut, O. (2018). Handbook of Educational Measurement and Psychometrics Using R. https://doi.org/10.1201/b20498
147	and r sychometrics osing N. https://doi.org/10.1201/b20496
148	Desjardins, C. D. (2018). Handbook of educational measurement and
149	psychometrics using R (O. Bulut & ProQuest (Firm), Eds.). Boca Raton
150	FL : CRC Press.
151	Dinno, A. (2018). Paran: Horn's test of principal components/factors.
152	Retrieved from https://CRAN.R-project.org/package=paran
153	Epskamp, S. (2019). semPlot: Path diagrams and visual analysis of
154	various SEM packages' output. Retrieved from
155	https://CRAN.R-project.org/package=semPlot
156	Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., &
157	Borsboom, D. (2012). qgraph: Network visualizations of relationships
158	in psychometric data. Journal of Statistical Software, 48(4), 1–18.
159	Henry, L., & Wickham, H. (2020). Purrr: Functional programming tools.
160	Retrieved from https://CRAN.R-project.org/package=purrr
161	Horn, J. L. (1965). A rationale and test for the number of factors in factor
162	analysis. Psychometrika, 30(2), 179–185.
163	https://doi.org/10.1007/BF02289447
164	Hutcheson, G. D. (1999). The multivariate social scientist: Introductory
165	statistics using generalized linear models. London: SAGE.
166	lannone, R. (2016). DiagrammeRsvg: Export DiagrammeR graphviz
167	graphs as SVG. Retrieved from
168	https://CRAN.R-project.org/package=DiagrammeRsvg
169	lannone, R. (2021). DiagrammeR: Graph/network visualization. Retrieved

170	from https://github.com/htm-iannone/Diagrammek
171	Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel, Y.
172	(2021). semTools: Useful tools for structural equation modeling.
173	Retrieved from https://CRAN.R-project.org/package=semTools
174	Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1)
175	31-36. https://doi.org/10.1007/bf02291575
176	Kassambara, A. (2019). Ggcorrplot: Visualization of a correlation matrix
177	using 'ggplot2'. Retrieved from
178	https://CRAN.R-project.org/package=ggcorrplot
179	Lorenzo-Seva, U., Timmerman, M., & Kiers, H. (2011). The Hull Method
180	for Selecting the Number of Common Factors. Multivariate Behaviora
181	Research, 46, 340–364.
182	https://doi.org/10.1080/00273171.2011.564527
183	Makowski, D., Ben-Shachar, M. S., Patil, I., & Lüdecke, D. (2020). Methods
184	and algorithms for correlation analysis in r. Journal of Open Source
185	Software, 5(51), 2306. https://doi.org/10.21105/joss.02306
186	Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with
187	applications. Biometrika, 57(3), 519-530.
188	https://doi.org/10.1093/biomet/57.3.519
189	Mulaik, S. A. (2009). Foundations of Factor Analysis (Vol. 7). London:
190	London: Chapman and Hall/CRC. https://doi.org/10.1201/b15851
191	Müller, K., & Wickham, H. (2021). Tibble: Simple data frames. Retrieved
192	from https://CRAN.R-project.org/package=tibble
193	Navarro-Gonzalez, D., & Lorenzo-Seva, U. (2021). EFA.MRFA:
194	Dimensionality assessment using minimum rank factor analysis.

195	Retrieved from https://CRAN.R-project.org/package=EFA.MRFA
196	Ooms, J. (2021). Rsvg: Render SVG images into PDF, PNG, PostScript, or
197	bitmap arrays. Retrieved from
198	https://CRAN.R-project.org/package=rsvg
199	R Core Team. (2021). R: A language and environment for statistical
200	computing. Vienna, Austria: R Foundation for Statistical Computing.
201	Retrieved from https://www.R-project.org/
202	Revelle, W. (2021). Psych: Procedures for psychological, psychometric,
203	and personality research. Evanston, Illinois: Northwestern University.
204	Retrieved from https://CRAN.R-project.org/package=psych
205	Rosseel, Y. (2012). lavaan: An R package for structural equation
206	modeling. Journal of Statistical Software, 48(2), 1–36. Retrieved from
207	https://www.jstatsoft.org/v48/i02/
208	Ryu, C. (2021). Dlookr: Tools for data diagnosis, exploration,
209	transformation. Retrieved from
210	https://CRAN.R-project.org/package=dlookr
211	Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for
212	normality (complete samples). Biometrika, 52(3-4), 591-611.
213	https://doi.org/10.1093/biomet/52.3-4.591
214	Velicer, W. (1976). Determining the Number of Components from the
215	Matrix of Partial Correlations. Psychometrika, 41, 321–327.
216	https://doi.org/10.1007/BF02293557
217	Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s
218	(Fourth). New York: Springer. Retrieved from
219	https://www.stats.ox.ac.uk/pub/MASS4/

220	watkins, M. (2020). A Step-by-Step Guide to Exploratory Factor Analysis with R and RStudio. https://doi.org/10.4324/9781003120001
222	Wickham, H. (2016). ggplot2: Elegant graphics for data analysis.
223	Springer-Verlag New York. Retrieved from https://ggplot2.tidyverse.org
224	Wickham, H. (2019). Stringr: Simple, consistent wrappers for common
225	string operations. Retrieved from
226	https://CRAN.R-project.org/package=stringr
227	Wickham, H. (2021a). Forcats: Tools for working with categorical
228	variables (factors). Retrieved from
229	https://CRAN.R-project.org/package=forcats
230	Wickham, H. (2021b). Tidyr: Tidy messy data. Retrieved from
231	https://CRAN.R-project.org/package=tidyr
232	Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François,
233	R., Yutani, H. (2019). Welcome to the tidyverse. Journal of Open
234	Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686
235	Wickham, H., & Bryan, J. (2019). Readxl: Read excel files. Retrieved from
236	https://CRAN.R-project.org/package=readxl
237	Wickham, H., François, R., Henry, L., & Müller, K. (2021). Dplyr: A
238	grammar of data manipulation. Retrieved from
239	https://CRAN.R-project.org/package=dplyr
240	Wickham, H., & Hester, J. (2021). Readr: Read rectangular text data.
241	Retrieved from https://CRAN.R-project.org/package=readr
242	Zhu, H. (2021). kableExtra: Construct complex table with 'kable' and
243	pipe syntax. Retrieved from
244	https://CRAN.R-project.org/package=kableExtra

Table 1

Descriptive Statistics

	Mean	SD	Skew	Kurtosis	Shapiro-Wilk Statistics	Item-Total Correlation
ltem1	1.12	0.49	5.02	27.80	0.25*	.16
Item2	2.16	1.19	0.71	-0.54	0.84*	.14
Item3	4.14	0.99	-1.23	1.14	0.79*	.19
Item4	2.87	1.59	0.08	-1.60	0.83*	.19
Item5	1.76	1.23	1.35	0.44	0.66*	.38
Item6	2.73	1.46	0.20	-1.36	0.87*	.33
Item7	3.86	1.67	-0.99	-0.85	0.65*	.23
Item8	3.76	1.14	-0.68	-0.45	0.86*	.00
Item9	3.42	1.83	-0.45	-1.69	0.69*	.33
Item10	2.74	1.04	0.09	-0.74	0.91*	.28
ltem11	2.60	1.25	0.29	-0.86	0.89*	.35
Item12	2.11	1.17	0.77	-0.39	0.83*	.32
Item13	2.94	1.03	-0.12	-0.40	0.91*	.10
Item14	3.62	1.64	-0.68	-1.25	0.74*	.32
Item15	1.64	1.18	1.79	2.02	0.60*	.15
Item16	3.51	1.30	-0.70	-0.59	0.85*	.39
Item17	1.96	0.98	1.02	0.69	0.82*	.05
Item18	2.44	1.31	0.38	-1.14	0.86*	.11
Item19	3.80	1.29	-0.87	-0.42	0.82*	.17
Item20	4.01	1.40	-1.22	0.07	0.70*	.13
Item21	1.33	0.91	3.03	8.43	0.41*	.01
Item22	2.59	1.41	0.27	-1.27	0.86*	.19
Item23	1.31	0.81	2.75	6.92	0.43*	.21

Table 1 continued

	Mean	SD	Skew	Kurtosis	Shapiro-Wilk Statistics	Item-Total Correlation
Item24	1.47	1.18	2.38	4.00	0.43*	.28
Item25	2.56	1.27	0.33	-1.00	0.89*	.11
Item26	1.54	1.25	2.13	2.86	0.46*	.36
Item27	4.30	1.08	-1.79	2.53	0.67*	.22
Item28	2.27	1.39	0.74	-0.81	0.81*	.25
Item29	3.26	1.09	-0.26	-0.45	0.91*	.14
Item30	2.22	1.48	0.71	-1.02	0.76*	.30
Item31	1.05	0.36	7.23	52.98	0.13*	.18
Item32	1.54	1.21	2.07	2.75	0.49*	.31
Item33	1.04	0.33	8.99	85.28	0.10*	.16
Item34	3.36	1.38	-0.48	-1.03	0.87*	.16
Item35	2.26	1.25	0.70	-0.60	0.85*	.19
Item36	2.36	1.22	0.59	-0.62	0.87*	.25
Item37	1.14	0.59	4.79	24.05	0.25*	.16
Item38	2.25	1.27	0.69	-0.64	0.84*	.18
Item39	3.93	1.48	-1.06	-0.44	0.71*	.18
Item40	3.57	1.07	-0.65	-0.17	0.88*	.21
Item41	3.55	1.65	-0.60	-1.34	0.76*	.43
Item42	3.00	1.62	-0.08	-1.61	0.83*	.44
Item43	1.56	1.23	2.00	2.45	0.50*	.32
Item44	2.97	1.20	-0.06	-0.94	0.91*	10
Item45	2.79	1.55	0.19	-1.48	0.85*	.20
Item46	2.14	1.31	0.77	-0.78	0.80*	.26
Item47	2.18	0.90	0.60	0.12	0.86*	.26

Table 1 continued

	Mean	SD	Skew	Kurtosis	Shapiro-Wilk Statistics	Item-Total Correlation
Item48	1.48	1.11	2.18	3.35	0.48*	.24

Note. *p<.001

Table 2

	F1	F2	F3	F4	F5	Communalities
item1	0.06	-0.03	0.01	0.03	0.35	0.13
item2	0.12	-0.10	-0.11	0.69	-0.03	0.51
item5	0.01	0.16	0.09	0.01	0.69	0.52
item7	0.06	-0.09	0.66	-0.01	-0.03	0.45
item10	-0.01	0.82	0.07	0.02	0.02	0.68
item13	-0.06	0.34	-0.03	0.10	0.00	0.13
item14	0.00	0.05	0.89	-0.08	-0.08	0.81
item16	0.10	0.05	0.29	-0.11	0.31	0.21
item19	0.02	-0.06	0.00	0.80	0.03	0.64
item21	-0.05	-0.02	-0.34	0.03	-0.06	0.12
item24	-0.03	0.10	0.10	0.11	0.54	0.33
item26	0.93	0.00	0.13	-0.01	0.13	0.90
item27	-0.01	0.07	0.38	-0.12	0.21	0.21
item28	0.02	0.00	-0.05	0.01	0.31	0.10
item30	0.06	0.01	0.11	-0.04	0.52	0.29
item32	0.80	0.00	0.05	0.13	0.10	0.67
item34	-0.01	-0.14	0.02	0.84	0.12	0.74
item35	-0.04	0.46	0.04	-0.17	0.04	0.25
item36	0.09	0.63	0.10	-0.15	0.11	0.45
item41	0.05	0.07	0.70	0.30	0.14	0.60
item43	0.99	0.00	0.06	0.01	0.03	0.99
item44	-0.03	-0.47	-0.01	0.10	0.01	0.24
item47	0.02	0.82	-0.05	-0.06	0.16	0.70

Figure 1. ABC

Figure 2. Iter-correlation of the items

Figure 3. Factor Identification (A) Parallel analysis (B) Scree Plot, (C) Hull method

Figure 4. Histogram of residulas: five-factor solution