Testing a Multivariate Model for Wavelet Coefficients

Roland Kwitt¹, Peter Meerwald¹, Andreas Uhl¹, Geert Verdoolaege²

¹Multimedia Signal Processing and Security Lab University of Salzburg, Salzburg, Austria

> ²Department of Applied Physics Ghent University, Ghent, Belgium

presented at ICIP 2011, Brussels, Belgium

Motivation

Our Model: Multivariate Power Exponential (MEP) distribution

- ► Previously used in image retrieval [Verdoolaege et al., 2009] or image watermarking [Kwitt et al., 2009]
- ► Multivariate extension to the Generalized Gaussian distribution (GGD)
- ▶ We miss a reasonable statistical tool to check the Goodness-of-Fit

Research Objective

Check the assumption

$$oldsymbol{X}_{1,\ldots,oldsymbol{X}_{N}}\sim \mathsf{MEP},\quad oldsymbol{X}_{i}\in\mathbb{R}^{n}$$

in terms of hypothesis testing, i.e. "is there any evidence against?"

The MEP belongs to the family of elliptical distributions

Probability Density Function (pdf)

$$p(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}, \beta) = \frac{n\Gamma\left(\frac{n}{2}\right)}{\pi^{n/2}\Gamma\left(1 + \frac{n}{2\beta}\right)2^{1 + \frac{n}{2\beta}}} |\boldsymbol{\Sigma}|^{-1/2}$$

$$\exp\left\{-rac{1}{2}\left[(oldsymbol{x}-oldsymbol{\mu})^Toldsymbol{\Sigma}^{-1}(oldsymbol{x}-oldsymbol{\mu})
ight]^{eta}
ight\},oldsymbol{x}\in\mathbb{R}^n$$

$$\mu \in \mathbb{R}^n$$

Location (assumed $\mathbf{0}$ for wavelet coefficients [Mallat, 1999])

The MEP belongs to the family of elliptical distributions

Probability Density Function (pdf)

$$\begin{split} \rho(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\beta}) &= \frac{n\Gamma\left(\frac{n}{2}\right)}{\pi^{n/2}\Gamma\left(1 + \frac{n}{2\beta}\right)2^{1 + \frac{n}{2\beta}}} |\boldsymbol{\Sigma}|^{-1/2} \\ &\exp \left\{ -\frac{1}{2} \left[(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]^{\beta} \right\}, \mathbf{x} \in \mathbb{R}^n \end{split}$$

$$\Sigma \in \mathbb{M}_d$$

Positive-definite (symmetric) dispersion matrix

The MEP belongs to the family of elliptical distributions

Probability Density Function (pdf)

$$\rho(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\beta}) = \frac{n\Gamma\left(\frac{n}{2}\right)}{\pi^{n/2}\Gamma\left(1 + \frac{n}{2\beta}\right)2^{1 + \frac{n}{2\beta}}} |\boldsymbol{\Sigma}|^{-1/2}$$
$$\exp\left\{-\frac{1}{2}\left[(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right]^{\beta}\right\}, \mathbf{x} \in \mathbb{R}^n$$
$$\underbrace{\boldsymbol{\beta} \in \mathbb{R}_+}_{\text{Cl}}$$

The MEP admits the following stochastic representation ...

Stochastic Representation

$$X \sim RA^T r^{(n)}$$

with

$$\mathbf{\Sigma} = \mathbf{A}^T \mathbf{A}$$

$$\underline{r}^{(n)} \sim \underline{\mathbb{S}^{n-1}}$$

(uniformly distributed on unit-sphere in \mathbb{R}^n)

$$\mathbf{R} \sim F_R, \quad p_R(r;\beta) = \frac{n}{\Gamma\left(1 + \frac{n}{2\beta}\right) 2^{\frac{n}{2\beta}}} r^{n-1} \exp\left\{-\frac{1}{2}r^{2\beta}\right\} \mathbf{1}_{(0,\infty)}(r)$$

The MEP admits the following stochastic representation ...

Stochastic Representation

$$X \sim RA^T r^{(n)}$$

with

$$\mathbf{\Sigma} = \mathbf{A}^T \mathbf{A}$$

$$\underline{r}^{(n)} \sim \mathbb{S}^{n-1}$$

(uniformly distributed on unit-sphere in \mathbb{R}^n)

$$R \sim F_R, \quad p_R(r;\beta) = \frac{n}{\Gamma\left(1+rac{n}{2eta}\right)2^{rac{n}{2eta}}}r^{n-1}\exp\left\{-rac{1}{2}r^{2eta}\right\}\mathbf{1}_{(0,\infty)}(r)$$

The MEP admits the following stochastic representation ...

Stochastic Representation

$$\boldsymbol{X} \sim R \boldsymbol{A}^T \boldsymbol{r}^{(n)}$$

with

$$\Sigma = A^T A$$

$$\underline{r^{(n)}} \sim \mathbb{S}^{n-1}$$

(uniformly distributed on unit-sphere in \mathbb{R}^n)

$$R \sim F_R, \quad p_R(r;\beta) = \frac{n}{\Gamma\left(1+rac{n}{2eta}\right)2^{rac{n}{2eta}}}r^{n-1}\exp\left\{-rac{1}{2}r^{2eta}\right\}\mathbf{1}_{(0,\infty)}(r)$$

Examples (in \mathbb{R}^3)

In all examples: $\Sigma = I$

Elements of the Proposed GoF Test

Covered in this talk

- ► Computation of a suitable Test Statistic
- ► Test strategy (following the work of [Smith and Jain, 1988])
- ► Sampling from the MEP distribution

Not covered in this talk (see paper)

► Parameter estimation (Maximum-Likelihood, Method of Moments, etc.)

The Test Statistic

Our approach is motivated by an idea from the field of Two-Sample Hypothesis Testing [Schilling, 1986]. Given the pooled sample

$$\{\underbrace{\boldsymbol{X}_{1},\ldots,\boldsymbol{X}_{N_{1}}}_{\sim F_{\boldsymbol{X}}},\underbrace{\boldsymbol{Y}_{1},\ldots,\boldsymbol{Y}_{N_{2}}}_{\sim G_{\boldsymbol{Y}}}\}$$

the objective is to test the hypothesis $F_X = G_Y$.

Statistic

Count the number of k-Nearest Neighbor Coincidences [Schilling, 1986]

Test Strategy

Our approach is an extension to the GoF test by [Smith and Jain, 1988] to test for multivariate normality and yields **two variants**:

Monte-Carlo Variant

The p-value is estimated based on a resampling strategy

Normal-Approximation Variant

The *p*-value is estimated based on a normal approximation of our test statistic and a result from [Schilling, 1986]

Test Strategy – Monte-Carlo Variant

p-value Estimate

Given the above testing procedure, the p-value is estimated by

$$\hat{p} = \frac{\#\{T_i > T^*\} + 0.5}{W+1} o \mathsf{Reject} \; \mathcal{H}_0 : \mathbf{X} \sim \mathsf{MEP} \; \mathsf{in} \; \mathsf{case} \quad \hat{\mathbf{p}} < \alpha$$

Test Level α

Test Strategy – Normal-Approximation Variant

Idea

- ightharpoonup Exploit the asymptotic distribution of T^*
- ► We know from [Schilling, 1986] that

$$ilde{\mathcal{T}} := (\mathit{Nk})^{1/2} rac{(\mathit{T}^* - \mu)}{\sigma} \sim \mathcal{N}(0, 1)$$

for $N \to \infty$ under $\mathcal{H}_0 : F_{\boldsymbol{X}} = G_{\boldsymbol{Y}}$.

p-value Estimate

Exploiting the fact that $ilde{\mathcal{T}} \sim \mathcal{N}(0,1)$ allows to estimate the p-value as

$$\hat{p} = \mathbb{P}(T^* \geq T) = 1 - \underbrace{F_T(\tilde{T})}_{\mathsf{Normal\ CDF}} \to \mathsf{Reject}\ \mathcal{H}_0 : \mathbf{X} \sim \mathsf{MEP}\ \mathsf{in\ case}\ \hat{\mathbf{p}} < \alpha$$

Strategy: Exploit the stochastic representation $\mathbf{X} \sim R\mathbf{A}^T \mathbf{r}^{(n)}$

Steps to generate x_1, \ldots, x_N from MEP with β and Σ

1. Decompose Σ into $\mathbf{A}^T \mathbf{A}$ using Cholesky decomposition $\rightarrow \checkmark$

 $^{{}^{}a}P_{u}(a,x)$ denoting the regularized (upper) incomplete Gamma function

Strategy: Exploit the stochastic representation $\mathbf{X} \sim R\mathbf{A}^T \mathbf{r}^{(n)}$

Steps to generate x_1, \ldots, x_N from MEP with β and Σ

- 1. Decompose Σ into $\mathbf{A}^T \mathbf{A}$ using Cholesky decomposition $\rightarrow \checkmark$
- 2. Draw a random sample r_1, \ldots, r_N from F_R as $r_i = F_R^{-1}(u_i, \beta)$ with

$$F_R^{-1}(u;\beta) = 2^{\frac{1}{2\beta}} \left[P_u^{-1} \left(\frac{n}{2\beta}, 1 - u \right) \right]^{\frac{1}{2\beta}}, u \in [0,1] \to \checkmark$$

 $^{{}^{}a}P_{u}(a,x)$ denoting the regularized (upper) incomplete Gamma function

Strategy: Exploit the stochastic representation $\mathbf{X} \sim R\mathbf{A}^T \mathbf{r}^{(n)}$

Steps to generate x_1, \ldots, x_N from MEP with β and Σ

- 1. Decompose Σ into $\mathbf{A}^T \mathbf{A}$ using Cholesky decomposition $\rightarrow \checkmark$
- 2. Draw a random sample r_1, \ldots, r_N from F_R as $r_i = F_R^{-1}(u_i, \beta)$ with

$$F_R^{-1}(u;\beta) = 2^{\frac{1}{2\beta}} \left[P_u^{-1} \left(\frac{n}{2\beta}, 1 - u \right) \right]^{\frac{1}{2\beta}}, u \in [0,1] \to \checkmark$$

3. Draw a sample $r_1^{(n)}, \ldots, r_N^{(n)}$ from uniform distribution on unit-sphere

$$\mathbf{r}_i^{(n)} = (z_1, \dots, z_N)$$
 with $z_i = \frac{y_i}{\sum_i y_i^2}, y_i \sim \mathcal{N}(0, 1) \rightarrow \checkmark$

 $^{{}^{}a}P_{u}(a,x)$ denoting the regularized (upper) incomplete Gamma function

Strategy: Exploit the stochastic representation $\mathbf{X} \sim R\mathbf{A}^T \mathbf{r}^{(n)}$

Steps to generate x_1, \ldots, x_N from MEP with β and Σ

- **1**. Decompose Σ into $\mathbf{A}^T \mathbf{A}$ using Cholesky decomposition $\rightarrow \checkmark$
- 2. Draw a random sample r_1, \ldots, r_N from F_R as $r_i = F_R^{-1}(u_i, \beta)$ with

$$F_R^{-1}(u;\beta) = 2^{\frac{1}{2\beta}} \left[P_u^{-1} \left(\frac{n}{2\beta}, 1 - u \right) \right]^{\frac{1}{2\beta}}, u \in [0,1] \to \checkmark$$

3. Draw a sample $r_1^{(n)}, \ldots, r_N^{(n)}$ from uniform distribution on unit-sphere

$$m{r}_i^{(n)} = (z_1, \dots, z_N) \quad ext{with} \quad z_i = rac{y_i}{\sum_i y_i^2}, y_i \sim \mathcal{N}(0, 1)
ightarrow \checkmark$$

4. Use $\forall i : \mathbf{x}_i = r_i \mathbf{A}^T \mathbf{r}_i^{(n)}$ to generate $\mathbf{x}_1, \dots, \mathbf{x}_N$.

 $^{{}^{}a}P_{u}(a,x)$ denoting the regularized (upper) incomplete Gamma function

Evaluation of the Test Size

Protocol:

- \blacktriangleright Check if the desired significance level α is reached for different N
- ▶ Count the number of times \mathcal{H}_0 : $\mathbf{X} \sim G_{\mathbf{X}}$ is falsely rejected
- ► Take our implementation of the GoF test in [Gomez et al., 1998] as reference

α	N	Estimated $\hat{\alpha}$			
		Gomez et al. [Gomez et al., 1998]	Monte-Carlo	Normal	
0.01	200	0.030	0.002	0.022	
	400	0.028	0.001	0.002	
	800	0.014	0.001	0.018	
0.05	200	0.084	0.022	0.063	
	400	0.118	0.012	0.014	
	800	0.108	0.053	0.069	
0.10	200	0.194	0.044	0.132	
	400	0.212	0.026	0.048	
	800	0.196	0.084	0.152	

Evaluation of the Test Power

Protocol:

► Take a two-component MEP mixture model

$$p(\mathbf{x}, \beta_1, \beta_2, \mathbf{\Sigma}_1, \mathbf{\Sigma}_2) = \sum_{i=1}^2 \pi_i p(\mathbf{x}, \beta_i, \mathbf{\Sigma}_i), \quad \sum_i \pi_i = 1$$

- ▶ Set $\beta_2 = \beta_1 + \epsilon_i, \epsilon_i \in \{0.1, 0.2, \dots, 2.5\}, \Sigma_1 = \Sigma_2 = I$
- ightharpoonup W = 1000 (for Monte-Carlo variant), perform 1000 trials per ϵ_i

GoF Tests on Real-World Data

- Datasets: Three texture databases, one natural image database
- \blacktriangleright Determine \mathcal{H}_0 rejection rates for all coefficients from a 3-level DWT
- ▶ Tests are performed with a significance level of $\alpha = 0.05$
- Rejection rates are averaged over the number of DWT subbands
- ightharpoonup Simulate the test of [Smith and Jain, 1988] by fixing β = 1 (estimate just Σ)

Model	Database				
Model	Stex ¹	Vistex (full)	Outex	UCID	
MEP	25.09	35.13	11.15	56.18	
MVN ² (i.e. $\beta = 1$)	57.13	73.19	39.66	98.97	

¹Salzburg Textures, available at http://www.wavelab.at

²Multivariate Normal

Discussion

Summary of this talk:

- ▶ Proposed a novel GoF test for the MEP distribution
- Our test includes GoF test of [Smith and Jain, 1988] as a special case
- ► Regarding the power study, we just tested against shape alternatives

Not in this talk (see paper):

- ▶ Proposed an implementation of the GoF test sketched in [Gomez et al., 1998]
- Discussion of estimation issues

Outlook:

- Power study for varying Σ
- Study impact of estimation on the size/power results (bias ?)

Source Code

Will be available at http://www.wavelab.at soon after ICIP 2011.

Bibliography I

Gomez, E., Gomez-Villegas, M.-A., and Marin, J. M. (1998).

A multivariate generalization of the power exponential family of distributions. Communications in Statistics – Theory and Methods, 27(3):589–600.

Kwitt, R., Meerwald, P., and Uhl, A. (2009).

Color-image watermarking using multivariate power-exponential distribution.

In *Proceedings of the IEEE International Conference on Image Processing (ICIP '09)*, pages 4245–4248, Cairo, Egypt.

Mallat, S. (1999).

A Wavelet Tour Of Signal Processing.

Academic Press. 2nd edition.

Schilling, M. F. (1986).

Two-sample tests based on nearest neighbors. Journal of the American Statistical Association, 81(395):799–806.

Smith, S. P. and Jain, A. K. (1988).

A test to determine the multivariate normality of a data set.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(5):757–761.

Verdoolaege, G., Rosseel, Y., Lambrechts, M., and Scheunders, P. (2009).

Wavelet-based colour texture retrieval using the Kullback-Leibler divergence between bivariate Generalized Gaussian models.

Generalized Gaussian models.

In Proceedings of the IEEE International Conference on Image Processing (ICIP '09), pages 265 – 268, Cairo, Egypt.