华中农业大学本科课程期末考试试卷 A 卷答案

考试课程: 概率论与数理统计 学年学期: 考试日期:

一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在 】内。答案错选或未选者,该题不得分。每小题 2 分,共 10 分。)

- 1. 设随机变量 X 的概率密度 $p(x) = \begin{cases} 2e^{-2x}, x > 0 \\ 0, x \in \mathbb{Z} \end{cases}$,则 Y = 2X 的分布密度为 【(a)】 ____.
 - (a) $\begin{cases} e^{-y}, y > 0 \\ 0, \sharp \dot{\Xi} \end{cases}$; (b) $\begin{cases} 2e^{-2y}, y > 0 \\ 0, \sharp \dot{\Xi} \end{cases}$; (c) $\begin{cases} 4e^{-4y}, y > 0 \\ 0, \sharp \dot{\Xi} \end{cases}$; (d) $\begin{cases} e^{-4y}, y > 0 \\ 0, \sharp \dot{\Xi} \end{cases}$.
- 2. 设随机变量序列 x₁, x₂,..., x_n...相互独立,并且都服从参数为 1 的指数分布,则

- (a) N(1,n)
- (b) N(1,1/n) (c) N(n,1/n)
- (d) N(n, n)
- 3. 设总体 X 服从正态分布 $N(\mu, \sigma^2)$, 其中 μ 未知, σ^2 已知, X_1, X_2, X_3 是总体 X 的
 - 一个简单随机样本,则下列表达式中不是统计量的是 【(d)】
 - (a) $X_1 + X_2 + X_3$; (b) $\min(X_1, X_2, X_3)$; (c) $\sum_{i=1}^{3} \frac{X_i^2}{\sigma^2}$; (d) $X + 2\mu$.

4. 在假设检验问题中,检验水平 α 意义是 (a) .

- (a) 原假设 H₀成立, 经检验被拒绝的概率;
- (b) 原假设 Ho成立,经检验不能拒绝的概率;
- (c) 原假设 H₀ 不成立, 经检验被拒绝的概率;
- (d) 原假设 H₀ 不成立, 经检验不能拒绝的概率.
- 5. 在线性回归分析中,以下命题中,错误的是__ ___【(d)】

 - (a) SSR 越大, SSE 越小; (b) SSE 越小, 回归效果越好;
 - (c) |r| 越大,回归效果越好; (d) |r| 越小, SSR 越大.

二、填空题(将答案写在该题横线上。答案错选或未选者,该题不得分。每小题 2 分,共 10分。)

1. 设 A,B 为两个事件, P(A)=0.5, P(B)=0.6, P(B/A)=0.8, 则 P(¬ B)= 0.2.

2. 数理统计的目的是通过样本推断 总体 .
3.设 $X \sim F(n,n)$,则 $P\{X \ge 1\}$ $P\{X \le 1\}$. (选 <,>, 或=中的一个)
4. 在单因素方差分析中,试验因素 A 的 r 个水平的样本总容量为 n ,则当原假设 H_0 成立时
SSA/σ^2 服从 $x^2(r-1)$ 分布,MSA/MSE 服从 $F(r-1, n-r)$ 分布.
5. 在线性回归模型 $y = \beta_0 + \beta_1 x + \varepsilon$ 中,如果 b_0 为 β_0 的最小二乘估计,则 $\mathrm{Eb}_0 = \underline{\beta_0}$.
三、(10分,要求写清步骤及结果)在某城市中,下雨的天数占一半,天气预报有 2/3 准确.
如果预报下雨,王明同学就一定带雨伞. $\mathbf{\mathcal{U}}$ A={天下雨},B={预报有雨},C={王明带雨伞}.
(1)问:事件 $\overline{A} \cap \overline{B} \cap C$, $\overline{A} \cap B \cap C$ 的含义时什么,哪个是不可能事件?
(2) 求他带雨伞而没有下雨的概率.
A $P(A) = 0.5$, $P(B/A) = 2/3$, $P(B/\overline{A}) = 1/3$, $P(C/B) = 1$, $P(C/\overline{B}) = 0$;
(3 分)
(1) A ∩ B ∩ C 指天没有下雨,但预报有雨,王明带伞;
$\overline{A} \cap \overline{B} \cap C$ 指天没有下雨,但预报无雨,王明带伞;这是不可能事件.············(4 分)
$(2)P\{他带雨伞而没有下雨\}=P(\overline{A}\cap C)=P(\overline{A}\cap B\cap C)+P(\overline{A}\cap \overline{B}\cap C)=0.5\times1/3\times1+0=1/6.$
(3 分)
四、(10分, 要求写清步骤及结果)一个复杂的系统,由 n 个相互独立的部件所组成,
每个部件的可靠性为 0.9, 且必须至少有 80%的部件工作才能使整个系统工作,
问: n 至少为多少才能使系统以 0.95 的概率工作?
(附: Φ(1.64)=0.95, Φ(1.96)=0.975, 其中Φ(x)是标准正态分布函数。)
解。 设 X 表示 n 个相互独立的部件正常工作的个数,则 $X \sim B(n, 0.9)$,
EX=0.9n, DX=0.09n(3 分)
由中心极限定理知: $\frac{X-0.9n}{\sqrt{0.01n}} \sim N(0,1)$
则: $P\{n \ge X \ge 0.8n\} = P\left\{\frac{n - 0.9n}{\sqrt{0.6m}} \ge \frac{X - 0.9n}{\sqrt{0.6m}} \ge \frac{0.8n - 0.9n}{\sqrt{0.6m}} \ge \frac{0.9n}{\sqrt{0.6m}} \ge \frac{0.9n}{0.$

关注华中农大课程资料共享 获取更多试卷资料

$$= P \left\{ \frac{\sqrt{n}}{3} \ge \frac{X - 0.9n}{\sqrt{0.01n}} \ge -\frac{\sqrt{n}}{3} \right\} = 0.95 \qquad \dots (2 \text{ } \text{ } \text{)}$$

五、(12分,要求写清步骤及结果) 设总体 X 服从($\mathbf{0}$, $\mathbf{0}$)上的均匀分布,取容量为 6 的样本观测值为: 1.3,0.6,1.7,2.2,0.3,1.1,求: 总体参数 $\mathbf{0}$ 的矩估计以及极大似然估计值.

解. 由 EX=
$$\theta/2$$
,得矩估计: $\hat{\theta} = 2\bar{x} = 2.4$ (6分)

极大似然估计为:
$$\hat{\theta} = \max\{x_i, i = 1,...,6\} = 2.2$$
(6分)

- 六、(15 分,要求写清步骤及结果)两个小麦品种从播种到抽穗所需天数的观测值如下表,试:
 - (1) 用两个正态总体方差作假设检验的方法检验两品种的观测值的方差有没有显著的差异?
 - (2) 用两个正态总体均值作假设检验的方法检验两品种的观测值的均值有没有显著的差异?

$$(\alpha = 0.05)$$
. $(\beta \% : F_{0.975}(9, 9) = 4.03, t_{0.975}(18) = 2.101)$

											行和
品种 1	101	100	99	99	98	100	98	99	99	99	992
品种 2	100	98	100	99	98	99	98	98	99	100	989

解:两个小麦品种从播种到抽穗所需天数分别是X=Y,

$$X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_1^2)$$
,且两者独立.

(1) 先作方差的检验: $H_0: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 \neq \sigma_2^2$.

检验统计量 $F = S_X^{*2}/S_Y^{*2}$, 当 H_0 为真时, 因为 $F \sim F(n-1, m-1)$,

所以拒绝域是: $f \leq F_{0.5\alpha}(n-1,m-1)$ 或 $f \geq F_{1-0.5\alpha}(n-1,m-1)$,(5分)

计算: f = 0.844 / 0.767 = 1.100, $F_{0.975}(9,9) = 4.03$, $F_{0.025}(9,9) = 1/4.03 = 0.248$,

没有落入拒绝域,认为 $\sigma_1^2 = \sigma_2^2$.

(2) 再检验均值: 因为 (1) 中已经检验了 $\sigma_1^2 = \sigma_2^2$,但未知方差值。

$$H_0: \mu_1 = \mu_2, \quad H_1: \mu_1 \neq \mu_2$$
,

当 H_0 为真时,

因为 $T \sim t(n+m-2)$, 所以拒绝域是: $|t| \geq t_{1-0.5\alpha}(n+m-2)$

计算得: t = 0.747, 而 $t_{0.975}(18) = 2.101$, 没有落入拒绝域,

从而有理由认为两品种的观测值没有显著性的差异.

-----(4分)

七、(15分, 要求写清步骤及结果) 测定4种种植密度下金皇后玉米的千粒重(单位: g)如下:

种植密度	千粒重	T_{i} .	$\sum_{j} x_{ij}^{2}$
1	247,258,256,251	1012	256110
2	238,244,246,236	964	232392
3	214,227,221,218	880	193690
4	210,204,200,210	824	169816

- 1. 试问不同的处理方法是否有显著差异?
- 2. 请列出方差分析表.

3. 哪种处理方法最好? (附:
$$\alpha = 0.01$$
, $F_{0.99}(3,12) = 5.95$)

解: $(1)H_0$:各个总体的 μ_i 相同.

计算
$$T_i = \sum_i x_{ij} (j=1 \pm n_i)$$
、 \bar{x}_i 、 $T = \sum_i T_i$ ($i=1 \pm r$)及 \bar{x} ...并列表;

$$C = \frac{T^2}{n} = 3680^2 / 16 = 846400$$
, $SST = 852008 - 846400 = 5608$,

$$SSA = \sum_{i} \frac{T_{i\bullet}^{2}}{n_{i}} - C = \frac{1012^{2} + 964^{2} + 880^{2} + 824^{2}}{4} - 846400 = 5304,$$

$$SSE = SST - SSA = 304$$
; $r - 1 = 3$, $n - r = 12$.

 $F_{0.99}(3,12)=5.95$, $F>F_{0.99}(3,12)$.故四种种植密度下该玉米的千粒重有显著差异.

(2) 列表:(5分)

	方差来源	平方和	自由度	均方和	F值	显著性	_
	因素 A	5304	3	1768	69.80	* *	'
	误差	304	12	25.33			
	总和	5608	15				
(3)	$\hat{y}_{i} = \frac{1}{r} = 25\%$	$\hat{\mu}_{0} = \bar{r}$	=241. û ₂	$= \bar{r} = 220.$	$\hat{\mu}_{\star} = \overline{r}_{\star} =$	$\hat{y} = 206$. $\hat{y} = \frac{1}{2}$	=230

八、 $(18 \, \text{分})$,要求写清步骤及结果) 小麦基本苗数 x 及有效穗数 Y (单位:万) 的 5 组观察数据如下:

						平均值
基本苗数 x _i	15.0	25.8	30.0	36.6	44.4	30.36
有效穗数 y _i	39.4	41.9	41.0	43.1	49.2	42.92

(1) 试求线性回归方程;(2)对线性回归方程显著性检验;(3)若 x_0 =26, 求: Y_0 的 0.95 预测区间.

(附:
$$\mathbf{t}_{_{0.\,975}}(5-2)$$
 = 3. 182, $\mathbf{r}_{_{0.\,05}}(5-2)$ = 0. 8783 , $\mathbf{F}_{_{0.\,95}}($ 1 ,5 $-2)$ $=$ 10. 1)

(提示: 预测公式
$$t = (y_0 - \hat{y_0}) / \sqrt{\frac{SSE}{n-2} \bullet [1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{l_{xx}}}] \sim t(n-2)$$
)

解: (1) 建模: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$. $i = 1, \dots, n$. ···············(1分)

$$\bar{x} = 30.36$$
, $\bar{y} = 42.92$; $I_{xx} = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 = 492.912$,

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \frac{l_{xy}}{l_{xx}} = 0.302, \quad \hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1} \overline{x} = 33.76. \quad \cdots (3 \text{ })$$

得经验回归方程: $\hat{y} = 33.76 + 0.302x$(2分)

(2) 对 $H_0: \beta_1 = 0 \leftrightarrow H_1: \beta_1 \neq 0$ 的检验, $\alpha = 0.05$. (任选一种方法都可以) 方 法 1: F 检验法(或方差分析法)

$$SSR = \hat{\beta}_1^2 1_{xx} = 44.956; \quad SSE = 1_{yy} - \hat{\beta}_1^2 1_{xx} = 11.6325; \quad MSE = SSE/(5-2) = 3.87;$$

确定拒绝域: $F_{0.95}(5-2)=10.1$, $W_1=\{F>F_{0.95}(5-2)=10.1\}$, 而 F=SSR/MSE=11.6. 从而 W_1 发生,故拒绝 $H_0: \beta_1=0$,接受 $H_1: \beta_1\neq 0$,即认为有线性相关性,

或经验回归方程: $\hat{y} = 33.76 + 0.302x$ 合理.

方法 2: 相关系数法
$$|\mathbf{r}| = \frac{\sum\limits_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2 \sum\limits_{i=1}^{n} (y_i - \overline{y})^2}} = \frac{|\mathbf{l}_{xy}|}{\sqrt{\mathbf{l}_{xx}\mathbf{l}_{yy}}} = 0.8904,$$

确定拒绝域 $W_1 = \{|\mathbf{r}| > \mathbf{r}_{0.95}(5-2) = 0.8783\}$,从而 W_1 发生,故拒绝 $\mathbf{H}_0: \beta_1 = 0$,接受 $\mathbf{H}_1: \beta_1 \neq 0$,

即认为有线性相关性,或经验回归方程: $\hat{y} = 33.76 + 0.302x$ 合理.

方法3: t 检验法.

$$t = \stackrel{\wedge}{\beta_{l}} / \sqrt{MSE/l_{xx}} \ = \ 0.303 \, / \, \sqrt{3.877 \, / \, 492.912} = 3.405$$

确定拒绝域 $W_1 = \{|\boldsymbol{t}| > \boldsymbol{t}_{0.975} \, (5-2) = 3.182\}$,从而 W_1 发生,故拒绝 $\boldsymbol{H}_0 : \boldsymbol{\beta}_1 = 0$,

接受 $\mathbf{H}_1: \mathbf{\beta}_1 \neq 0$,即认为有线性相关性,或经验回归方程: $\hat{\mathbf{y}} = 33.76 + 0.302\mathbf{x}$ 合理.

(3) (1)当 x_0 =26时, Y_0 的点估计为 \hat{y}_0 点估计 \hat{y}_0 =33.76+0.302×26=41.6047,……(2分)

$$\Delta = t_{0.975} \sqrt{\left[1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}\right] MSE} = 3.182 \sqrt{\left[1 + \frac{1}{5} + \frac{(26 - 30.36)^2}{492.912}\right] \times 3.877} = 6.973,$$

从而预测区间为: (41.6047-6.973, 41.6047+6.973)=(34.63,48.58).

