Bayesian Quadrature for Multiple Related Integrals

François-Xavier Briol

University of Warwick (Department of Statistics)
Imperial College London (Department of Mathematics)

PN Conference

Collaborators

Xiaoyue Xi (Warwick)

Mark Girolami (Imperial & ATI)

Bayesian Quadrature

- The goal of numerical integration is to find an approximation of the integral of some function $f: \mathcal{X} \to \mathbb{R}$ ($\mathbb{R}^p, p \in \mathbb{N}$) against some measure Π .
- This is often done use a quadrature/cubature rule:

$$\int_{\mathcal{X}} f(x) d\Pi(x) \approx \sum_{i=1}^{n} w_i f(x_i)$$

 Bayesian Quadrature provides a way of getting good weights. It is based on building a GP interpolant and looking at the push-forward through the integral operator.

Bayesian Quadrature

- The goal of numerical integration is to find an approximation of the integral of some function $f: \mathcal{X} \to \mathbb{R}$ ($\mathbb{R}^p, p \in \mathbb{N}$) against some measure Π .
- This is often done use a quadrature/cubature rule:

$$\int_{\mathcal{X}} f(x) \mathrm{d}\Pi(x) \approx \sum_{i=1}^{n} w_i f(x_i)$$

 Bayesian Quadrature provides a way of getting good weights. It is based on building a GP interpolant and looking at the push-forward through the integral operator.

Bayesian Quadrature

- The goal of numerical integration is to find an approximation of the integral of some function $f: \mathcal{X} \to \mathbb{R}$ ($\mathbb{R}^p, p \in \mathbb{N}$) against some measure Π .
- This is often done use a quadrature/cubature rule:

$$\int_{\mathcal{X}} f(x) d\Pi(x) \approx \sum_{i=1}^{n} w_i f(x_i)$$

 Bayesian Quadrature provides a way of getting good weights. It is based on building a GP interpolant and looking at the push-forward through the integral operator.

What About Multiple Integrals?

- But what if we instead have a sequence of such functions
 f₁, f₂..., f_D?? If we know something about how f₁ relates to f₂
 (etc...) then we might be able to use that information in the design of a numerical integration method.
- It might make more sense to approximate the integral with a quadrature rule of the form:

$$\hat{\Pi}[f_d] = \sum_{d'=1}^{D} \sum_{i=1}^{N} (W_i)_{dd'} f_{d'}(x_{d'i}).$$

What About Multiple Integrals?

- But what if we instead have a sequence of such functions f_1, f_2, \ldots, f_D ? If we know something about how f_1 relates to f_2 (etc...) then we might be able to use that information in the design of a numerical integration method.
- It might make more sense to approximate the integral with a quadrature rule of the form:

$$\hat{\Pi}[f_d] = \sum_{d'=1}^{D} \sum_{i=1}^{N} (\mathbf{W}_i)_{dd'} f_{d'}(x_{d'i}).$$

Bayesian Quadrature for Multiple Related Functions

- We can use the same type of results for Gaussian Processes on the extended space of vector-valued functions $\mathbf{f}: \mathcal{X} \to \mathbb{R}^D$ (rather than $\mathbf{f}: \mathcal{X} \to \mathbb{R}$) where $\mathbf{f}(x) = (f_1(x), \dots, f_D(x))$.
- This approach allow us to directly encode the relation between each function f_i by specifying the kernel K.
- In this case the posterior distribution is a $\mathcal{GP}(m_n, K_n)$ with vector-valued mean $m_n : \mathcal{X} \to \mathbb{R}^D$ and matrix-valued covariance $K_n : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{D \times D}$:

$$m_n(x) = K(x, X)K(X, X)^{-1}f(X)$$

 $K_n(x, x') = K(x, x') - K(x, X)K(X, X)^{-1}K(X, x').$

The overall cost for computing this is $\mathcal{O}(n^3D^3)$.

Bayesian Quadrature for Multiple Related Functions

- We can use the same type of results for Gaussian Processes on the extended space of vector-valued functions $\mathbf{f}: \mathcal{X} \to \mathbb{R}^D$ (rather than $\mathbf{f}: \mathcal{X} \to \mathbb{R}$) where $\mathbf{f}(x) = (f_1(x), \dots, f_D(x))$.
- This approach allow us to directly encode the relation between each function f_i by specifying the kernel K.
- In this case the posterior distribution is a $\mathcal{GP}(m_n, K_n)$ with vector-valued mean $m_n : \mathcal{X} \to \mathbb{R}^D$ and matrix-valued covariance $K_n : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{D \times D}$:

$$m_n(x) = K(x, X)K(X, X)^{-1}f(X)$$

 $K_n(x, x') = K(x, x') - K(x, X)K(X, X)^{-1}K(X, x').$

The overall cost for computing this is $\mathcal{O}(n^3D^3)$.

Bayesian Quadrature for Multiple Related Functions

- We can use the same type of results for Gaussian Processes on the extended space of vector-valued functions $\mathbf{f}: \mathcal{X} \to \mathbb{R}^D$ (rather than $\mathbf{f}: \mathcal{X} \to \mathbb{R}$) where $\mathbf{f}(x) = (f_1(x), \dots, f_D(x))$.
- This approach allow us to directly encode the relation between each function f_i by specifying the kernel K.
- In this case the posterior distribution is a $\mathcal{GP}(\boldsymbol{m}_n, \boldsymbol{K}_n)$ with vector-valued mean $\boldsymbol{m}_n : \mathcal{X} \to \mathbb{R}^D$ and matrix-valued covariance $\boldsymbol{K}_n : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{D \times D}$:

$$m_n(x) = K(x,X)K(X,X)^{-1}f(X)$$

 $K_n(x,x') = K(x,x') - K(x,X)K(X,X)^{-1}K(X,x').$

The overall cost for computing this is $\mathcal{O}(n^3D^3)$.

• Consider multi-output Bayesian Quadrature with a $\mathcal{GP}(\mathbf{0}, \mathbf{K})$ prior on $\mathbf{f} = (f_1, \dots, f_D)^{\top}$. The posterior distribution on $\Pi[\mathbf{f}]$ is a D-dimensional Gaussian with mean and covariance matrix:

$$\mathbb{E}_{N} [\Pi[\mathbf{f}]] = \Pi[\mathbf{K}(\cdot, \mathbf{X})] \mathbf{K}(\mathbf{X}, \mathbf{X})^{-1} \mathbf{f}(\mathbf{X})$$

$$\mathbb{V}_{N} [\Pi[\mathbf{f}]] = \Pi \bar{\Pi} [\mathbf{K}] - \Pi[\mathbf{K}(\cdot, \mathbf{X})] \mathbf{K}(\mathbf{X}, \mathbf{X})^{-1} \bar{\Pi} [\mathbf{K}(\mathbf{X}, \cdot)]$$

• Kernel evaluations are now matrix-valued (i.e. in $\mathbb{R}^{D \times D}$) as opposed to scalar-valued. A simple example is the following separable kernel:

$$K(x,x') = Bk(x,x')$$

B encodes the covariance between function, and k the type of function in each of the components.

• This reduces the cost to $\mathcal{O}(n^3 + D^3)$. We also can show that the convergence rate will be the same as for the uni-output BQ rule based on k (and we can extend the theory to the misspecied setting).

• Consider multi-output Bayesian Quadrature with a $\mathcal{GP}(\mathbf{0}, \mathbf{K})$ prior on $\mathbf{f} = (f_1, \dots, f_D)^{\top}$. The posterior distribution on $\Pi[\mathbf{f}]$ is a D-dimensional Gaussian with mean and covariance matrix:

$$\mathbb{E}_{N} \left[\Pi[\mathbf{f}] \right] = \Pi[\mathbf{K}(\cdot, \mathbf{X})] \mathbf{K}(\mathbf{X}, \mathbf{X})^{-1} \mathbf{f}(\mathbf{X})$$

$$\mathbb{V}_{N} \left[\Pi[\mathbf{f}] \right] = \Pi \bar{\Pi} \left[\mathbf{K} \right] - \Pi[\mathbf{K}(\cdot, \mathbf{X})] \mathbf{K}(\mathbf{X}, \mathbf{X})^{-1} \bar{\Pi} \left[\mathbf{K}(\mathbf{X}, \cdot) \right]$$

• Kernel evaluations are now matrix-valued (i.e. in $\mathbb{R}^{D \times D}$) as opposed to scalar-valued. A simple example is the following separable kernel:

$$K(x,x') = Bk(x,x')$$

B encodes the covariance between function, and k the type of function in each of the components.

• This reduces the cost to $\mathcal{O}(n^3 + D^3)$. We also can show that the convergence rate will be the same as for the uni-output BQ rule based on k (and we can extend the theory to the misspecied setting).

• Consider multi-output Bayesian Quadrature with a $\mathcal{GP}(\mathbf{0}, \mathbf{K})$ prior on $\mathbf{f} = (f_1, \dots, f_D)^{\top}$. The posterior distribution on $\Pi[\mathbf{f}]$ is a D-dimensional Gaussian with mean and covariance matrix:

$$\mathbb{E}_{N} \left[\Pi[\mathbf{f}] \right] = \Pi[\mathbf{K}(\cdot, \mathbf{X})] \mathbf{K}(\mathbf{X}, \mathbf{X})^{-1} \mathbf{f}(\mathbf{X})$$

$$\mathbb{V}_{N} \left[\Pi[\mathbf{f}] \right] = \Pi \bar{\Pi} \left[\mathbf{K} \right] - \Pi[\mathbf{K}(\cdot, \mathbf{X})] \mathbf{K}(\mathbf{X}, \mathbf{X})^{-1} \bar{\Pi} \left[\mathbf{K}(\mathbf{X}, \cdot) \right]$$

• Kernel evaluations are now matrix-valued (i.e. in $\mathbb{R}^{D \times D}$) as opposed to scalar-valued. A simple example is the following separable kernel:

$$K(x,x') = Bk(x,x')$$

B encodes the covariance between function, and k the type of function in each of the components.

• This reduces the cost to $\mathcal{O}(n^3 + D^3)$. We also can show that the convergence rate will be the same as for the uni-output BQ rule based on k (and we can extend the theory to the misspecied setting).

Multi-output BQ for Global Illumination

- We compute integrals for different integrands based on various angles ω_0 (akin to a camera moving).
- We pick a separable kernel K(x, x') = Bk(x, x') where B is chosen to represent the angle between integrands and $k(x, x') = \frac{8}{3} ||x x'||_2$.
- We can prove that the worst-case integration error converges at a rate $\mathcal{O}(n^{-\frac{3}{4}})$ for each integrand. This is the same rate as uni-output BQ (but we usually improve on constants).

Multi-output BQ for the Computer Graphics Example

Short summary: The multi-output Bayesian Quadrature algorithm is an example of how joint-models can lead to significant improvements in performance.

Interesting Question: Can this idea, known as transfer learning in the ML literature, be useful in other areas of probabilistic numerics?

Minor Question: Does anyone know of any other literature on the topic of integrating multiple related functions?

Short summary: The multi-output Bayesian Quadrature algorithm is an example of how joint-models can lead to significant improvements in performance.

Interesting Question: Can this idea, known as transfer learning in the ML literature, be useful in other areas of probabilistic numerics?

Minor Question: Does anyone know of any other literature on the topic of integrating multiple related functions?

Short summary: The multi-output Bayesian Quadrature algorithm is an example of how joint-models can lead to significant improvements in performance.

Interesting Question: Can this idea, known as transfer learning in the ML literature, be useful in other areas of probabilistic numerics?

Minor Question: Does anyone know of any other literature on the topic of integrating multiple related functions?

Short summary: The multi-output Bayesian Quadrature algorithm is an example of how joint-models can lead to significant improvements in performance.

Interesting Question: Can this idea, known as transfer learning in the ML literature, be useful in other areas of probabilistic numerics?

Minor Question: Does anyone know of any other literature on the topic of integrating multiple related functions?