Theory of Automata

Pushdown Automata

Dr. Sabina Akhtar

Revision

PDA - the automata for CFLs

- What is?
 - FA to Reg Lang,PDA is to CFL
- PDA == [ε-NFA + "a stack"]
- Why a stack?

Pushdown Automata - Definition

```
• A PDA P := (Q, \sum, \Gamma, \delta, q_0, Z_0, F):

- Q: states of the \epsilon-NFA

- \sum: input alphabet

- \Gamma: stack symbols

- \delta: transition function

- q_0: start state

- Z_0: Initial stack top symbol

- F: Final/accepting states
```

δ: The Transition Function

 $δ: Q x \sum x \Gamma => Q x \Gamma$

δ: The Transition Function

$\delta(q,a,X) = \{(p,Y), ...\}$

- 1. state transition from q to p
- 2. a is the next input symbol
- 3. X is the current stack *top* symbol
- 4. Y is the replacement for X; it is in Γ^* (a string of stack symbols)
 - i. Set $Y = \varepsilon$ for: Pop(X)
 - ii. If Y=X: stack top is unchanged
 - iii. If $Y=Z_1Z_2...Z_k$: X is popped and is replaced by Y in reverse order (i.e., Z_1 will be the new stack top)

i)

ii)

iii)

Y = ?	Action
Υ= ε	Pop(X)
Y=X	Pop(X) Push(X)
$Y=Z_1Z_2Z_k$	Pop(X) Push(Z_k) Push(Z_{k-1})
	Push(Z_2)

 $Push(Z_1)$

PDA as a state diagram

 $\delta(q_i, a, X) = \{(q_j, Y)\}$

Class Activity

- Design a PDA to accept $\{0^n1^n \mid n \ge 1\}$.
- The states:
 - q = start state. We are in state q if we have seen only 0's so far.
 - p = we've seen at least one 1 and may now proceed only if the inputs are 1's.
 - f = final state; accept.

Example: PDA - (2)

- The stack symbols:
 - $-Z_0$ = start symbol. Also marks the bottom of the stack, so we know when we have counted the same number of 1's as 0's.
 - X = marker, used to count the number of 0's seen on the input.

Example: PDA - (3)

• The transitions:

- $-\delta(q, 0, Z_0) = \{(q, XZ_0)\}.$
- $-\delta(q, 0, X) = \{(q, XX)\}$. These two rules cause one X to be pushed onto the stack for each 0 read from the input.
- $-\delta(q, 1, X) = \{(p, \epsilon)\}$. When we see a 1, go to state p and pop one X.
- $-\delta(p, 1, X) = \{(p, \epsilon)\}.$ Pop one X per 1.
- $-\delta(p, \epsilon, Z_0) = \{(f, Z_0)\}$. Accept at bottom.

Solution

Acceptance by...

- PDAs that accept by final state:
 - For a PDA P, the language accepted by P, denoted by L(P) by final state, is:
 - $\{w \mid (q_0, w, Z_0) \mid ---* (q, \varepsilon, A) \}$, s.t., $q \in F$

Checklist:

- input exhausted?
- in a final state?

- PDAs that accept by empty stack:
 - For a PDA P, the language accepted by P, denoted by N(P) by empty stack, is:
 - $\{w \mid (q_0, w, Z_0) \mid ---* (q, \epsilon, \epsilon) \}$, for any $q \in Q$.

Q) Does a PDA that accepts by empty stack
need any final state specified in the design?

Checklist:

- input exhausted?
- is the stack empty?

Class Activity

 Design PDA for the language of balanced paranthesis with acceptance by final state and by empty stack. Given 7 tuple specifications.

Example 2: language of balanced paranthesis

To allow adjacent blocks of nested paranthesis

Example 2: language of balanced paranthesis (another design)

$$\Sigma = \{ (,) \}$$

 $\Gamma = \{Z_0, (\}$
 $Q = \{q_0, q_1\}$

Example: L of balanced parenthesis

PDA that accepts by final state

An equivalent PDA that accepts by empty stack

$$P_{N}$$
: $(,Z_{0})/(Z_{0})$
 $(,(/(($

Class Activity

Design PDA for

$$L = \{0^{n}1^{m}0^{m}1^{n} \mid n, m \ge 1\}$$

Provide formal specifications as well.

Class Activity

Design PDA for

L = {w | w contains equal number of 1's and 0's}

NON DETERMINISTIC PDA

Example

```
Let L_{wwr} = \{ww^R \mid w \text{ is in } (0+1)^*\}

• CFG for L_{wwr}: S==> 0S0 | 1S1 | \epsilon

• PDA for L_{wwr}:

• P := ( Q, \sum, \Gamma, \delta, q_0, Z_0, F )
= ( \{q_0, q_1, q_2\}, \{0,1\}, \{0,1,Z_0\}, \delta, q_0, Z_0, \{q_2\})
```

Initial state of the PDA:

PDA for L_{wwr}

1.
$$\delta(q_0, 0, Z_0) = \{(q_0, 0Z_0)\}$$

2.
$$\delta(q_0, 1, Z_0) = \{(q_0, 1Z_0)\}$$

3.
$$\delta(q_0, 0, 0) = \{(q_0, 00)\}$$

4.
$$\delta(q_0, 0, 1) = \{(q_0, 01)\}$$

5.
$$\delta(q_0, 1, 0) = \{(q_0, 10)\}$$

6.
$$\delta(q_0, 1, 1) = \{(q_0, 11)\}$$

7.
$$\delta(q_0, \epsilon, 0) = \{(q_1, 0)\}$$

8.
$$\delta(q_0, \epsilon, 1) = \{(q_1, 1)\}$$

9.
$$\delta(q_0, \varepsilon, Z_0) = \{(q_1, Z_0)\}$$

10.
$$\delta(q_1, 0, 0) = \{(q_1, \varepsilon)\}$$

11.
$$\delta(q_1, 1, 1) = \{(q_1, \epsilon)\}$$

12.

$$\delta(q_1, \varepsilon, Z_0) = \{(q_2, Z_0)\}$$

Draw the Transition diagram

PDA for L_{wwr}: Transition Diagram

This would be a non-deterministic PDA

PDA's Instantaneous Description (ID)

A PDA has a configuration at any given instance: (q,w,y)

- q current state
- w remainder of the input (i.e., unconsumed part)
- y current stack contents as a string from top to bottom of stack If $\delta(q,a,X)=\{(p,A)\}$ is a transition, then the following are also true:
 - $(q, a, X) | --- (p, \varepsilon, A)$
 - (q, aw, XB) |--- (p,w,AB)
- |--- sign is called a "turnstile notation" and represents one move
- |---* sign represents a sequence of moves

How does the PDA for L_{wwr} work on input "1111"?

PDA for L_{wwr}: Transition Diagram

How will this PDA work on the input: 01100110 Show all the reachable ID's.

Class Activity

Design PDA for

L = {w | w is an odd length palindrome}

Deterministic PDA's

- To be deterministic, there must be at most one choice of move for any state q, input symbol a, and stack symbol X.
- In addition, there must not be a choice between using input ∈ or real input.
- Formally, $\delta(q, a, X)$ and $\delta(q, \in, X)$ cannot both be nonempty.

References

- Book Chapter
- Lectures from Stanford University
 - http://infolab.stanford.edu/~ullman/ialc/spr10/sp r10.html#LECTURE%20NOTES
- Lectures from Washington State University
 - http://www.eecs.wsu.edu/~ananth/CptS317/Lectures/