

Преподаватель: Рудаков И.В.

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»
Лабораторная работа № 1
Дисциплина: Моделирование
Тема: «Исследование псевдослучайных последовательностей»
Студент: Барсуков Н.М.
Группа ИУ7-76Б
Оценка (баллы)

Москва.

Рис. 1.

Содержание

1	Аналитический раздел			
	1.1	Цель работы	3	
	1.2	Псевдослучайные числа	3	
	1.3	Способы получения	3	
	1.4	BlumBlumShub	5	
	1.5	Критерий сериальной корреляции	5	
2	2 Эксперементальная часть			
3	Закл	почение	9	
Сп	Список использованных источников			

1 Аналитический раздел

В данном разделе поставлена цель работы и указаны задачи необходимые для выполнения данной. Описаны способы полунчения псевдослучайных чисел. Разобран метод BBS. Выбран критерий случайности

1.1 Цель работы

Реализовать критерий оценки случайности последовательности. Сравнить результаты работы данного критерия на одноразрядных, двухразрядных и трехразрядных последовательностях псевдослучайных целых чисел. Последовательности получать алгоритмическим способом, табличным способом и путём ручного ввода.

Для выполнения выше поставленной цели необходимо выполнить следующие:

- 1) Ответить на вопросы:
 - а) Что такое псевдослучайные числа
 - б) Способы получения
- 2) Выбрать и реализовать алгоритмический метод получения псевдослучайных целых чисел.
- 3) Выбрать и реализовать критерий для оценки случайности

1.2 Псевдослучайные числа

Данные числа называют псевдослучайными послько даже пройдя все статистические испытания на случайность и равномерность распределения остаются полностью детерминированными. То есть, если каждый цикл работы генератора начинается с теми же условиями, то на выходе мы получим одни и те же полседовательности.

1.3 Способы получения

На практике используются 3 основных способа:

- 1) Аппартный
- 2) Табличная схема
- 3) Алгоритмический способ

Каждый из данных способов облдает своими достоинствами и недостатками:

1) Аппаратный

- а) Достоинтсва:
 - Запас чисел неограничен;
 - Расходуется мало операций;
 - Не занимет место в ОП.
- б) Недостатки:
 - Требуется переодическая проверка на случайность;
 - Нельзя воспроизводить последовательность;
 - Используются спец устройства. Надо стабилизировать;

2) Табличный

- а) Достоинтсва:
 - Требуется однократная проверка;
 - Можно воспроизводить последовательность;
- б) Недостатки:
 - Запас чисел ограничен;
 - Занимает место в оперативной памяти и требует время на обращение;

3) Алгоритмический

- а) Достоинтсва:
 - Одна проверка;
 - Многократное воспроизведение;
 - Относительное малое место в $O\Pi$;

- Не использует внешнее устройство;
- б) Недостатки:
 - Запас чисел ограничен ее периодом;
 - Требуются затраты машинного времени;

1.4 BlumBlumShub

Широкое распространение получил алгоритм генерации псевдослучайных чисел, называемый алгоритмом BBS (от фамилий авторов — L. Blum, M. Blum, M. Shub) или генератором с квадратичным остатком. Для целей криптографии этот метод предложен в 1986 году. Он заключается в следующем. Вначале выбираются два больших простых 1 числа р и q. Числа р и q должны быть оба сравнимы с 3 по модулю 4, то есть при делении р и q на 4 должен получаться одинаковый остаток 3. Далее вычисляется число $M = p^*$ q, называемое целым числом Блюма. Затем выбирается другое случайное целое число x, взаимно простое (то есть не имеющее общих делителей, кроме единицы) с M. Вычисляем $x_0 = x^2 mod M$. x_0 называют стартовым числом генератора.

На каждом n-м шаге работы генератора вычисляется $x_{n+1} = x_n^2 mod M$. Результатом n-го шага является один (обычно младший) бит числа x_{n+1} Иногда в качестве результата принимают бит чётности, то есть количество единиц в двоичном представлении элемента.

1.5 Критерий сериальной корреляции

Можно подсчитать следующую статистику:

$$C = \frac{n*(U_0*U_1+U_1*U_2+\ldots+U_{n-2}*U_n-1+U_{n-1}*U_0)-(U_0+U_1+\ldots+U_{n-1})^2}{n*(U_0^2+U_1^2+\ldots+U_{n-1}^2)-(U_0+U_1+\ldots+U_{n-1})^2}$$

Это коэффициенты сериальной корреляции, мера зависимости U_{j+1} от U_j . Коэффициент корреляции всегда лежит между -1 и 1. Когда он равен 0 или очень мал, значит величины U_{j+1} и U_j независимы одна от другой (между ними нет линейной зависимости); если же значение коэффициента корреляции равно +1 или -1, это означает полную линейную зависимость.

2 Эксперементальная часть

В данном разделе расмотрен вывод программы

На изображении 2 отображены результаты работы алгоритма BBS и мера случайности.

```
### TABLE ###
        10-99
                 100-999
   4
           38
                    337
           18
                    801
           46
                    884
           29
                    415
           73
                   820
   2
           88
                   623
                   844
           84
                   454
           75
   1
           99
                    724
                    547
           11
### Мера случайности Табличной ###
0-9: 13%
10-99: 6%
100-999:
```

Рис. 2. Результаты BBS

На изображении 3 отображены табличные значения и мера случайности На изображениях 4 и 5 отображена мера случайности ручного ввода.

```
0-9 | 10-99 | 100-999
  5
         90
                 720
  5
         12
                 827
  0
         53
               215
  3
         44
                875
  1
         30
                387
         88
               665
         31
               859
  3
         10
               578
  2
               311
         51
  7
         86
                 394
### Mepa случайности BSS ###
0-9: 33%
                                #
10-99: 11%
100-999: 11%
```

Рис. 3.

```
### Проверка критерия ###
Введите количество символов: 6
Enter the numbers : 23 75 123 5 32 0
Мера случайности: 20%
```

Рис. 4.

```
### Проверка критерия ###
Введите количество символов: 10
Enter the numbers : 1 2 3 4 5 6 7 8 9 10
Мера случайности: 100%
```

Рис. 5.

3 Заключение

В ходе реализации лабораторной работы, были получены навыки в написания генератора псевдослучайных чисел, а также в оценки критерий случайности последовательности алгоритмическим путём.

Список использованных источников

1. Лекции "Моделирование"

```
2. Основы криптографии // URL: https : //intuit.ru/studies/courses/691/547/lecture/12383?page = 3 (Дата обращения : 04.12.20)
```