Procesamiento y Análisis de Imágenes Médicas BI3008

Práctica TRES: Ruido y Filtros

Para las siguientes actividades, genere un script que debe ser nombrado utilizando la siguiente nomenclatura:

Matricula_Práctica_NúmeroDeLaPráctica: EJEMPLO: A01220988_Practica_03.m

Suba la carpeta en formato ZIP a Blackboard con los archivos necesarios para que el programa se ejecute sin error. Si el programa no se ejecuta por falta de archivos, la práctica será revisada hasta el punto donde se generó el error.

NOTA: Toda imagen presente en una Figura de Matlab® debe ir debidamente etiquetada con la descripción del comando/procedimiento utilizado.

1. Actividad UNO

- 1.1. Descargue una imagen en formato JPG (JPEG) con espacio de color en RGB.
- 1.2. Lea/cargue la imagen en Matlab[®].
- 1.3. Aplique dos modificaciones de ruido gaussiano en la imagen en RGB utilizando el comando "imnoise"
 - 1.3.1.Determine el rango y/o parámetros que requiere el comando
 - 1.3.2. Verifique que cada variación en el ruido sea incrementa.
- 1.4. Aplique dos modificaciones de ruido "gaussiano" en la imagen en escala de grises
 - 1.4.1. Determine el rango y/o parámetros que requiere el comando
 - 1.4.2. Verifique que cada variación en el ruido sea incrementa.
- 1.5. Despliegue en una figura de 2 filas y 3 columnas las imágenes generadas considerando el siguiente orden:
 - 1.5.1.Recuerde que debe etiquetar/nombrar dichas imágenes con el procedimiento que le ha realizado

Figura Figura		
Original en RGB	Imagen RGB con ruido gaussiano 1	Imagen RGB con ruido gaussiano 2
Escala de grises	Imagen gris con ruido gaussiano 1	Imagen gris con ruido gaussiano 2

- 1.6. Aplique dos modificaciones de ruido tipo "sal y pimienta" en la imagen en RGB utilizando el comando "imnoise"
 - 1.6.1.Determine el rango y/o parámetros que requiere el comando
 - 1.6.2. Verifique que cada variación en el ruido sea incrementa.
- 1.7. Aplique dos modificaciones de ruido tipo "sal y pimienta" en la imagen en escala de grises
 - 1.7.1. Verifique que cada variación en el ruido sea incrementa.

Autores:

Procesamiento y Análisis de Imágenes Médicas BI3008

- 1.8. Despliegue en una figura de 2 filas y 3 columnas las imágenes generadas considerando el siguiente orden:
 - 1.8.1.Recuerde que debe etiquetar/nombrar dichas imágenes con el procedimiento que le ha realizado

Figura UNO		
Original en RGB	Imagen RGB con ruido sal y pimienta 1	Imagen RGB con ruido sal y pimienta 2
Escala de grises	Imagen gris con ruido sal y pimienta 1	Imagen gris con ruido sal y pimienta 2

- 1.9. Aplique dos modificaciones de ruido tipo "uniforme multiplicativo" en la imagen en RGB utilizando el comando "imnoise"
 - 1.9.1.Determine el rango y/o parámetros que requiere el comando
 - 1.9.2. Verifique que cada variación en el ruido sea incrementa.
- 1.10. Aplique dos modificaciones de ruido tipo "uniforme multiplicativo" en la imagen en escala de grises
 - 1.10.1. Determine el rango y/o parámetros que requiere el comando
 - 1.10.2. Verifique que cada variación en el ruido sea incrementa.
- 1.11. Despliegue en una figura de 2 filas y 3 columnas las imágenes generadas considerando el siguiente orden:
 - 1.11.1. Recuerde que debe etiquetar/nombrar dichas imágenes con el procedimiento que le ha realizado

Figura UNO		
Original en RGB	Imagen RGB con ruido uniforme multiplicativo 1	Imagen RGB con ruido uniforme multiplicativo 2
Escala de grises	Imagen gris con ruido uniforme multiplicativo 1	Imagen gris con ruido uniforme multiplicativo 2

Procesamiento y Análisis de Imágenes Médicas BI3008

2. Actividad DOS

- 2.1. Descargue una imagen en formato JPG (JPEG) con espacio de color en RGB.
- 2.2. Lea/cargue la imagen en Matlab®.
- 2.3. Convierta la imagen en escala de grises
- 2.4. Aplique ruido gaussiano a la imagen original en RGB utilizando el comando "imnoise"
- 2.5. Sobre la imagen con ruido gaussiano aplique:
 - 2.5.1.Filtro de media (utilizando el comando "fspecial")
 - 2.5.2. Filtro de media ponderada (genere la máscara como matriz de números)
 - 2.5.3. Filtro de mediana
- 2.6. Aplique ruido gaussiano a la imagen en escala de grises utilizando el comando "imnoise"
- 2.7. Sobre la imagen en escala de grises con ruido gaussiano aplique:
 - 2.7.1.Filtro de media
 - 2.7.2.Filtro de media ponderada
 - 2.7.3. Filtro de mediana
- 2.8. Aplique ruido tipo sal y pimienta a la imagen original en RGB utilizando el comando "imnoise"
- 2.9. Sobre la imagen en RGB con ruido tipo sal y pimienta aplique:
 - 2.9.1. Filtro de media
 - 2.9.2. Filtro de media ponderada
 - 2.9.3.Filtro de mediana
- 2.10. Aplique ruido tipo sal y pimienta a la imagen en escala de grises utilizando el comando "imnoise"
- 2.11. Sobre la imagen en escala de grises con ruido tipo sal y pimienta aplique:
 - 2.11.1. Filtro de media
 - 2.11.2. Filtro de media ponderada
 - 2.11.3. Filtro de mediana
- 2.12. Aplique ruido uniforme multiplicativo a la imagen original en RGB utilizando el comando "imnoise"
- 2.13. Sobre la imagen en RGB con ruido uniforme multiplicativo aplique:
 - 2.13.1. Filtro de media
 - 2.13.2. Filtro de media ponderada
 - 2.13.3. Filtro de mediana
- 2.14. Aplique ruido uniforme multiplicativo a la imagen en escala de grises utilizando el comando "imnoise"
- 2.15. Sobre la imagen en escala de grises con ruido uniforme multiplicativo aplique:
 - 2.15.1. Filtro de media
 - 2.15.2. Filtro Gaussiano
 - 2.15.3. Filtro de mediana

Procesamiento y Análisis de Imágenes Médicas BI3008

- 2.16. Despliegue en figuras de 2 filas y 2 columnas las imágenes generadas al aplicar los diferentes filtros a cada ruido determinado
 - 2.16.1. Recuerde que debe etiquetar/nombrar dichas imágenes con el procedimiento que le ha realizado

Figura		
Original en escala de grises Filtro de media		
Filtro de media ponderada	Filtro de mediana	

3. Actividad TRES

- 3.1. Descargue una imagen en formato JPG (JPEG) con espacio de color en RGB.
- 3.2. Lea/cargue la imagen en Matlab®
- 3.3. Sobre la imagen original en RGB aplique:
 - 3.3.1. Filtro de sustracción de media
 - **3.3.2.** Filtro laplaciano
 - **3.3.3.** Filtro de menos laplaciano
- 3.4. Convierta la imagen en escala de grises
- 3.5. Sobre la imagen original en escala de grises aplique:
 - 3.5.1. Filtro de sustracción de media
 - **3.5.2.** Filtro laplaciano
 - **3.5.3.** Filtro de menos laplaciano
- 3.6. Despliegue en figuras de 2 filas y 2 columnas las imágenes generadas al aplicar los diferentes filtros en las imágenes como se muestra en las siguientes tablas:
 - 3.6.1.Recuerde que debe etiquetar/nombrar dichas imágenes con el procedimiento que le ha realizado

Figura		
Original en RGB	Filtro de sustracción de	
media		
Filtro laplaciano	Filtro de menos laplaciano	

Figura		
Original en escala de grises Filtro de sustracción o		
media		
Filtro laplaciano	Filtro de menos laplaciano	

Procesamiento y Análisis de Imágenes Médicas BI3008

4. Actividad CUATRO

- 4.1. Descargue una imagen en formato JPG (JPEG) con espacio de color en RGB.
 - 4.1.1.Busque una imagen que tenga líneas verticales y horizontales definidas (como casas o edificios con ventanas, vigas de construcción, rejas, etc)
- 4.2. Lea/cargue la imagen en Matlab®
- 4.3. Sobre la imagen original en RGB aplique
 - 4.3.1. Filtro Direccional Norte
 - 4.3.2.Filtro Direccional Sur
 - 4.3.3.Filtro Direccional Este
 - 4.3.4. Filtro Direccional Oeste
- 4.4. Convierta la imagen en escala de grises
- 4.5. Sobre la imagen original en escala de grises Aplique
 - 4.5.1. Filtro Direccional Norte
 - 4.5.2. Filtro Direccional Sur
 - 4.5.3. Filtro Direccional Este
 - 4.5.4. Filtro Direccional Oeste
- 4.6. Despliegue en una figura de 2 filas y 3 columnas las imágenes generadas considerando el siguiente orden:
 - 4.6.1.Recuerde que debe etiquetar/nombrar dichas imágenes con el procedimiento que le ha realizado

Figura		
Original en RGB	Imagen RGB con filtro	Imagen RGB con filtro
	direccional norte	direccional sur
Imagen RGB con filtro	Imagen RGB con filtro	Suma de todos los filtros
direccional este	direccional oeste	direccionales

Figura Figura		
Original en escala de grises	Imagen en escala de grises con filtro direccional norte	Imagen en escala de grises con filtro direccional sur
Imagen en escala de grises con filtro direccional este	Imagen en escala de grises con filtro direccional oeste	Suma de todos los filtros direccionales

1.1. Sobre la imagen original en RGB aplique

- 1.1.1.Filtro C de Sobel
- 1.1.2.Filtro F de sobel
- 1.1.3. Sume las imágenes resultantes después de aplicar los filtrss C y F
- 1.2. Sobre la imagen original en escala de grises Aplique
 - 1.2.1.Filtro C de Sobel
 - 1.2.2.Filtro F de sobel
 - **1.2.3.** Sume las imágenes resultantes

Autores:

Procesamiento y Análisis de Imágenes Médicas BI3008

- 4.7. Despliegue en figuras de 2 filas y 2 columnas las imágenes generadas al aplicar los diferentes filtros en las imágenes como se muestra en las siguientes tablas:
 - 4.7.1.Recuerde que debe etiquetar/nombrar dichas imágenes con el procedimiento que le ha realizado

Figura		
Original en RGB Filtro C de sobel		
Filtro F de sobel	Suma de los filtros C y F	

Figura		
Original en escala de grises Filtro C de sobel		
Filtro F de sobel	Suma de los filtros C y F	

- 4.8. Utilizando el comando " edge(imagen, 'canny) ", aplique filtro de Canny sobre una imagen en escala de grises
- 4.9. Despliegue en figuras de 1 filas y 2 columnas las imágenes generadas al aplicar los diferentes filtros en las imágenes como se muestra en las siguientes tablas:
 - 4.9.1.Recuerde que debe etiquetar/nombrar dichas imágenes con el procedimiento que le ha realizado

Figura		
Original en RGB Filtro Canny		

- 4.10. Utilizando los kernel's de Prewits, aplique sobre una imagen en escala de grises:
 - 4.10.1. Kernel Horizontal
 - 4.10.2. Kernel vertical
 - 4.10.3. Kernel Diagonal -45°
 - 4.10.4. Kernel Diagonal +45°
 - 4.10.5. Sume las imágenes resultantes de los incisos anteriores
- 4.11. Despliegue en figuras de 1 filas y 2 columnas las imágenes generadas al aplicar los diferentes filtros en las imágenes como se muestra en las siguientes tablas:
 - 4.11.1. Recuerde que debe etiquetar/nombrar dichas imágenes con el procedimiento que le ha realizado

Figura		
Original en escala de grises	Filtro horizontal	Filtro vertical
Filtro diagonal -45°	Filtro diagonal +45°	Suma

Procesamiento y Análisis de Imágenes Médicas BI3008

5. Actividad CINCO

- 5.1. Utilizando ciclos FOR, WHILE Y/O CONDICIONALES implemente el filtro de suavizado conservador
- 5.2. Descargue una imagen en formato JPG (JPEG) con espacio de color en RGB.
- 5.3. Lea/cargue la imagen en Matlab®
- 5.4. Aplique una modificación de ruido tipo "sal y pimienta" en la imagen en RGB utilizando el comando "imnoise"
- 5.5. Aplique el filtro de suavizado conservador implementado
- 5.6. Convierta la imagen en escala de grises
- 5.7. Aplique una modificación de ruido tipo "sal y pimienta" en la imagen en escala de grises utilizando el comando "imnoise"
- 5.8. Aplique el filtro de suavizado conservador implementado
- 5.9. Despliegue en figuras de 2 filas y 2 columnas las imágenes generadas al aplicar los diferentes filtros en las imágenes como se muestra en las siguientes tablas:
 - 5.9.1.Recuerde que debe etiquetar/nombrar dichas imágenes con el procedimiento que le ha realizado

Figura	
Original en RGB con ruido sal	Imagen RGB con el filtro
y pimienta	de suavizado conservador
Original en escala de grises	Imagen en escala de grises
con ruido sal y pimienta	con el filtro de suavizado
	conservador