MATH 611 FINAL

HIDENORI SHINOHARA

Exercise. (Problem 1(a)) We will use the 1-skeletons in Figure 1 to calculate the fun-

FIGURE 1. Problem 1(a)

damental group of S. The fundamental group of the left side with a 2-cell attached is $\langle a_1, b_1, \cdots, a_g, b_g, c \mid [a_1, b_1] \cdots [a_g, b_g] c \rangle$, and the right side is $\langle gf, f^{-1}h \mid gfh^{-1}f \rangle$. By Van Kampen, the fundamental group of S is

$$\langle a_1, b_1, \cdots, a_q, b_q, c, gf, f^{-1}h \mid [a_1, b_1] \cdots [a_q, b_q]c, gfh^{-1}f, c(gh)^{-1} \rangle$$

where $c(gh)^{-1}$ corresponds to $i_{\alpha\beta}(c)i_{\beta\alpha}(c)^{-1}$ because we identify c with gh. Let $\alpha=gf,\beta=f^{-1}h$. Then

$$\langle a_1, b_1, \cdots, a_g, b_g, c, gf, f^{-1}h \mid [a_1, b_1] \cdots [a_g, b_g]c, gfh^{-1}f, c(gh)^{-1} \rangle$$

$$\cong \langle a_1, b_1, \cdots, a_g, b_g, c, \alpha, \beta \mid [a_1, b_1] \cdots [a_g, b_g]c, \alpha\beta^{-1}, c(\alpha\beta)^{-1} \rangle$$

$$\cong \langle a_1, b_1, \cdots, a_g, b_g, c, \alpha \mid [a_1, b_1] \cdots [a_g, b_g]c, c\alpha^{-2} \rangle$$

$$\cong \langle a_1, b_1, \cdots, a_g, b_g, \alpha \mid [a_1, b_1] \cdots [a_g, b_g]\alpha^2 \rangle.$$

Exercise. (Problem 1(b)) Let $A = \Sigma_g \setminus D^2$ and B be a Mobius strip M with some neighborhood from Σ_g such that $\operatorname{Int}(A) \cup \operatorname{Int}(B) = S$ as in Figure 2. Then A is homotopy equivalent to the wedge sum of 2g S^1 's. Moreover, B is homotopy equivalent to S^1 and so is $A \cap B$. We will consider the Mayer-Vietoris sequence formed by $A, B \subset X$.

We will start with the sequence $H_n(A) \oplus H_n(B) \to H_n(A \cup B) \to H_{n-1}(A \cap B)$ where $n-1 \geq 2$. Then $H_n(A) = H_n(B) = H_{n-1}(A \cap B) = 0$ for $n \geq 3$. By exactness, $H_n(A \cup B) = 0$ when $n \geq 3$.

1

FIGURE 2. M_g with the Mobius band

We will consider the following exact sequence:

$$\tilde{H}_2(A \cap B) \to \tilde{H}_2(A) \oplus \tilde{H}_2(B) \to \tilde{H}_2(X) \xrightarrow{\alpha}$$

 $\tilde{H}_1(A \cap B) \xrightarrow{\beta} \tilde{H}_1(A) \oplus \tilde{H}_1(B) \xrightarrow{\gamma} \tilde{H}_1(X) \to$
 $\tilde{H}_0(A \cap B).$

Then $\tilde{H}_2(A) = \tilde{H}_2(B) = \tilde{H}_0(A \cap B) = 0$. Thus the above sequence can be simplified to $0 \to \tilde{H}_2(X) \xrightarrow{\alpha} \tilde{H}_1(A \cap B) \xrightarrow{\beta} \tilde{H}_1(A) \oplus \tilde{H}_1(B) \xrightarrow{\gamma} \tilde{H}_1(X) \to 0.$

Since the sequence is exact, α must be injective and γ must be surjective. We will examine β to calculate the homology groups. Since $A \cap B$ is homotopy equivalent to S^1 , $H_1(A \cap B) = \mathbb{Z}$. By Corollary 2.25, $\tilde{H}_1(A) = \mathbb{Z}^{2g}$. Finally, $\tilde{H}_1(B) = \mathbb{Z}$. Let $a_1, b_1, \dots, a_g, b_g$ denote generators of \mathbb{Z}^{2g} and let a denote a generator of $\tilde{H}_1(B)$. A generator of $\tilde{H}_1(A \cap B)$ goes around the intersection once, which is homotopy equivalent to $a_1 + b_1 - a_1 - b_1 + \cdots = 0$ inside A. A generator of $H_1(A \cap B)$ goes around the Mobius strip twice inside B. Therefore, β sends a generator of $H_1(A \cap B)$ to (0, 2a).

Since $\operatorname{Im}(\alpha) = \ker(\beta) = 0$ and α is injective, $\tilde{H}_2(A \cup B) = 0$. Since γ is surjective and $\operatorname{Im}(\beta) = \ker(\gamma), \ \tilde{H}_1(A \cup B) = \mathbb{Z}^{2g} \oplus \mathbb{Z}/\langle (0,2) \rangle = \mathbb{Z}^{2g} \oplus (\mathbb{Z}/2\mathbb{Z}).$ Since $H_n = \tilde{H}_n$ when $n \geq 2$ and X is path connected, we have

$$H_n(X) = \begin{cases} 0 & (n \ge 2) \\ \mathbb{Z}^{2g} \oplus (\mathbb{Z}/2\mathbb{Z}) & (n = 1) \\ \mathbb{Z} & (n = 0). \end{cases}$$

Exercise. (Problem 1(c)) We will use Theorem 2.44 and the remark on P.147 [Hatcher]. $\mathcal{X}(S) = 1 - 2q$ based on the calculation from Part (b). Therefore, $\mathcal{X}(S)$ is odd.

- $\mathcal{X}(S^2) = 1 0 + 1 = 2$ because $H_0(S^2) = H_2(S^2) = \mathbb{Z}$. This is even, so S cannot be homeomorphic to S^2 .
- As mentioned on P.147 [Hatcher], the Euler characteristic of a closed orientable surface is even. Since $\mathcal{X}(S)$ is odd, S cannot be homeomorphic to a closed orientable surface.

Therefore, S must be homeomorphic to N_k for some k. $\mathcal{X}(N_k) = 2 - k$, so $2 - k = 1 - 2g \implies k = 1 + 2g$. Thus, S is homeomorphic to N_{1+2g} .

Exercise. (Problem 2(a)) Figure 3 shows that $K_{3,3}$ is homotopy equivalent to $S^1 \vee S^1 \vee S^1 \vee S^2 \vee S^3 \vee$

FIGURE 3. $K_{3,3}$

 S^1 . Thus the Van Kampen theorem implies that the fundamental group is the free group generated by 4 elements $\langle a, b, c, d \rangle$ where each generator corresponds to each S_1 .

Exercise. (Problem 2(b)) From Figure 3, it is clear that attaching four 2-cells, each killing one of a, b, c, d, will give a simply connected space. We claim that 4 is the smallest number.

When we attach 2-cells to the graph, the fundamental graph of the resulting space is $\langle a, b, c, d \rangle / \langle r_1, r_2, \cdots \rangle$ where each r_i is the relation given by a product of a, b, c, d corresponding to how the boundary of the *i*th 2-cell was attached. Therefore, it suffices to show that $\langle a, b, c, d \rangle / \langle r_1, r_2, r_3 \rangle \neq 0$ for any r_1, r_2, r_3 . On the contrary, suppose that there exist r_1, r_2, r_3 such that the quotient group is 0.

If $\langle a, b, c, d \rangle / \langle r_1, r_2, r_3 \rangle = 0$, then $\langle a, b, c, d \rangle = \langle r_1, r_2, r_3 \rangle$. We will consider the surjective group homomorphism $\phi : \langle a, b, c, d \rangle \to \mathbb{Z}^4$ defined by $a \mapsto (1, 0, 0, 0), b \mapsto (0, 1, 0, 0), \cdots, d \mapsto (0, 0, 0, 1)$. Each r_1, r_2, r_3 is a product of a, b, c, d, so $\phi(r_i) = (d_{i,1}, d_{i,2}, d_{i,3}, d_{i,4})$ for some $d_{i,j} \in \mathbb{Z}$. $\{(1, 0, 0, 0), \cdots, (0, 0, 0, 1)\}$ is a basis of \mathbb{R}^4 , and each element in $\{(1, 0, 0, 0), \cdots, (0, 0, 0, 1)\}$ can be expressed as an integer linear combination of $(d_{i,1}, \cdots, d_{i,4})$. However, this implies $\{\phi(r_1), \phi(r_2), \phi(r_3)\}$ spans \mathbb{R}^4 . This is clearly a contradiction, so we need at least four 2-cells.

Exercise. (Problem 3) Figure 4 shows what X looks like. (It does not include all the faces

FIGURE 4. Problem 3

in order to avoid cluttering the figure.) X clearly deformation retracts to a point. Let $x \in X$. From Exercise 2.1.16(a) [a homework problem from Hatcher], $H_0(X, X \setminus \{x\}) = 0$ regardless of where x is.

For any $n \geq 1$, the exact sequence $\tilde{H}_n(X) \to \tilde{H}_n(X, X \setminus \{x\}) \to \tilde{H}_{n-1}(X \setminus \{x\}) \to \tilde{H}_{n-1}(X)$ shows that $\tilde{H}_n(X, X \setminus \{x\}) \cong \tilde{H}_{n-1}(X \setminus \{x\})$ because $\tilde{H}_n(X) = \tilde{H}_{n-1}(X) = 0$. We will calculate $\tilde{H}_n(X, X \setminus \{x\}) = \tilde{H}_{n-1}(X \setminus \{x\})$ for each $n \geq 1$. There are five cases:

- (1) Suppose $x = v_i$ for some i. Then $X \setminus \{x\}$ deformation retracts to a point, so $\tilde{H}_n(X, X \setminus \{x\}) = \tilde{H}_{n-1}(X \setminus \{x\}) = \tilde{H}_{n-1}(\cdot) = 0$ for all $n \ge 1$.
- (2) Suppose $x \in \text{Int}([v_i, v_j])$ for some $i \neq j$. In other words, x lies in the edge $v_i v_j$, and $x \neq v_i$ and $x \neq v_j$. This case is exactly the same as above because $X \setminus \{x\}$ deformation retracts to a point,
- (3) Suppose x is on one of the faces. In other words, $v \in \text{Int}([v, v_i, v_j])$ for some $i \neq j$. The space is homotopy equivalent to S^1 , so $\tilde{H}_n(X, X \setminus \{x\}) = \tilde{H}_{n-1}(S^1)$. Therefore, $\tilde{H}_n(X, X \setminus \{x\}) = \mathbb{Z}$ when n = 2 and 0 otherwise.

- (4) Suppose x = v. Then the space is homotopy equivalent to the 1-skeleton of the 3-simplex. In other words, $X \setminus \{x\}$ deformation retracts to a space consisting of 6 edges $[v_i, v_j]$ with $i \neq j$. Using a similar argument as Problem 2(a), we can see that it is homotopy equivalent to $S^1 \vee S^1 \vee S^1$. By Corollary 2.25, $\tilde{H}_n(X, X \setminus \{x\}) = \mathbb{Z}^3$ when n = 2 and 0 otherwise.
- (5) Suppose x is on one of the edges from v. In other words, $x \in \text{Int}([v, v_i])$ for some i. Without loss of generality, i = 2. Then the 3 faces shown in Figure 4 deformation retract to the edges $[v, v_i], [v_2, v_i]$ for each i = 1, 3, 4. Using a similar argument as Problem 2(a), we can see that it is homotopy equivalent to $S^1 \vee S^1$. By Corollary 2.25, $\tilde{H}_n(X, X \setminus \{x\}) = \mathbb{Z}^2$ when n = 2 and 0 otherwise.

Exercise. (Problem 4) As mentioned in Example 2.42 [Hatcher], $\mathbb{R}\mathbf{P}^n$ has a CW structure with one cell e^k in each dimensino $k \leq n$, and the attaching map for e^k is the 2-sheeted covering projection $\phi: S^{k-1} \to \mathbb{R}\mathbf{P}^{k-1}$. X can be constructed by constructing $\mathbb{R}\mathbf{P}^n$ as above and attaching an extra e^n in the same manner that we attach the first e^n . Thus the cellular chain complex for X is

- If n is even, $0 \to \mathbb{Z}^2 \xrightarrow{\alpha} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \cdots \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \to 0$.
- If n is odd, $0 \to \mathbb{Z}^2 \xrightarrow{\beta} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \cdots \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \to 0$.

It is clear that d_k is the same as the one in the textbook for k < n. α is a map that sends $(a,b) \to 2a + 2b$ where each a,b corresponds to each of the two e^n 's and each a,b gets multiplied by 2 for the same reason the d_n in Example 2.42 is multiplication by 2. Similarly, β is a map that sends $(a,b) \to 0$ where each a,b gets sent to 0 and 0+0=0. From this, it follows that

$$H_n(X) = \begin{cases} \mathbb{Z}^2 & \text{for } k = n = \text{odd,} \\ \mathbb{Z} & \text{for } k = n = \text{even or } k = 0, \\ \mathbb{Z}_2 & \text{for } k \text{ odd, } 0 < k < n, \\ 0 & \text{otherwise.} \end{cases}$$

Exercise. (Problem 5(a)) Let $X = S^1 \times S^2$ and $Y = S^1 \vee S^2 \vee S^3$.

$$\pi_1(S^1 \times S^2) = \pi_1(S^1) \times \pi_1(S^2)$$
 (Proposition 1.12)

$$= \mathbb{Z} \times 0$$

$$= \mathbb{Z}.$$

$$\pi_1(S^1 \vee S^2 \vee S^3) = \pi_1(S^1) * \pi_1(S^2) * \pi_1(S^3)$$
 (Van Kampen)

$$= \mathbb{Z} * 0 * 0$$

$$= \mathbb{Z}.$$

X and Y are both path connected, so $H_0(X) = H_0(Y) = \mathbb{Z}$.

We will consider two subspaces of X such that the union of the interiors equals X. Identify each point of $X = S^1 \times S^2$ by a pair of coordinates $(\theta, (x, y, z))$ where θ is the angle in S^1 and (x, y, z) satisfies $x^2 + y^2 + z^2 = 1$. Let $A = \{(\theta, (x, y, z)) \mid -\epsilon \leq \theta \leq \pi + \epsilon\}, B = \{(\theta, (x, y, z)) \mid \pi - \epsilon \leq \theta \leq 2\pi + \epsilon\}$ where $\epsilon > 0$ is a small number. Then both A and B deformation retract to a space homeomorphic to S^2 . $A \cap B$ consists of two path components, each of which deformation retracts to a space homeomorphic to S^2 . The homology groups of

 $A \cap B$ are relatively easy to calculate because $H_n(A \cap B) = H_n(S^2 \coprod S^2) = H_n(S^2) \oplus H_n(S^2)$ by Proposition 2.6 for any n. Moreover, it is clear that $Int(A) \cup Int(B) = X$. We will consider the Mayer-Vietoris sequence formed by $A, B \subset X$.

First, we will consider the sequence $H_n(A) \oplus H_n(B) \to H_n(X) \to H_{n-1}(A \cap B)$ for each $n \geq 4$. $H_n(A) = H_n(B) = H_{n-1}(A \cap B) = 0$ for $n \geq 4$. By the exactness, $H_n(X) = 0$ for all $n \geq 4$. Next, we will consider the following sequence:

$$\tilde{H}_{3}(A \cap B) \to \tilde{H}_{3}(A) \oplus \tilde{H}_{3}(B) \to \tilde{H}_{3}(X) \xrightarrow{\alpha}$$

$$\tilde{H}_{2}(A \cap B) \xrightarrow{\beta} \tilde{H}_{2}(A) \oplus \tilde{H}_{2}(B) \xrightarrow{\gamma} \tilde{H}_{2}(X) \to$$

$$\tilde{H}_{1}(A \cap B) \to \tilde{H}_{1}(A) \oplus \tilde{H}_{1}(B) \to \tilde{H}_{1}(X) \to$$

$$\tilde{H}_{0}(A \cap B) \to \tilde{H}_{0}(A) \oplus \tilde{H}_{0}(B).$$

 $\tilde{H}_3(A \cap B) = \tilde{H}_3(A) = \tilde{H}_3(B) = \tilde{H}_1(A \cap B) = \tilde{H}_1(A) = \tilde{H}_1(B) = \tilde{H}_0(A) = \tilde{H}_0(B) = 0$, and $\tilde{H}_0(A \cap B) = \mathbb{Z}$ because $A \cap B$ consists of two path components. By replacing the exact sequence with those values and splitting the sequence into two for readability, we obtain the following sequences:

$$0 \to \tilde{H}_3(X) \xrightarrow{\alpha} \tilde{H}_2(A \cap B) \xrightarrow{\beta} \tilde{H}_2(A) \oplus \tilde{H}_2(B) \xrightarrow{\gamma} \tilde{H}_2(X) \to 0,$$
$$0 \to \tilde{H}_1(X) \to \mathbb{Z} \to 0.$$

By the exactness, we can conclude that $\tilde{H}_1(X) \cong \mathbb{Z}$. We will examine the homomorphism β to understand the sequence. $\tilde{H}_2(A \cap B) = \langle [a], [b] \mid [[a], [b]] \rangle$ where each a, b lives in $A \cap B$ and a lives in one of the path components of $A \cap B$ and b lives in the other. Moreover, [a] = [b] in $\tilde{H}_2(A)$ and $\tilde{H}_2(B)$. ([a] may be -[b], but we can simply change the orientation of [b] in that case.) Then $\beta(c_1[a] + c_2[b]) = ((c_1 + c_2)[a], (c_1 + c_2)[a])$. This gives us that $\mathrm{Im}(\alpha) = \ker(\beta) = \{c[a] - c[b] \mid c \in \mathbb{Z}\} = \mathbb{Z}$. By the exactness, α is injective, so $\tilde{H}_3(X) = \mathbb{Z}$. Moreover, $\ker(\gamma) = \mathrm{Im}(\beta) = \{(c[a], c[a]) \mid c \in \mathbb{Z}\}$. By the exactness, γ is surjective, so $\tilde{H}_2(X) = (\tilde{H}_2(A) \oplus \tilde{H}_2(B)) / \mathrm{Im}(\beta) = \langle [a] \rangle \oplus \langle [a] \rangle / \langle ([a], [a]) \rangle = \mathbb{Z}$. Since reduced homology groups and homology groups are identical when $n \geq 1$, we have

$$H_n(X) = \begin{cases} \mathbb{Z} & (n = 0, 1, 2, 3) \\ 0 & (n \ge 4). \end{cases}$$

By Corollary 2.25, $\tilde{H}_n(S^1 \vee S^2 \vee S^3) = \tilde{H}_n(S^1) \otimes \tilde{H}_n(S^2) \otimes \tilde{H}_n(S^3)$. Therefore,

$$\tilde{H}_n(Y) = \begin{cases} \mathbb{Z} & (n = 1, 2, 3) \\ 0 & (n = 0, n \ge 4). \end{cases}$$

For $n \geq 1$, $\tilde{H}_n(Y) = H_n(Y)$, so $H_0(Y) = H_1(Y) = H_2(Y) = H_3(Y) = \mathbb{Z}$ and $H_n(Y) = 0$ for all $n \geq 4$.

Exercise. (Problem 5(b)) We claim that the universal cover is $\mathbb{R} \times S^2$. $p(\theta, (x, y, z)) = ((\cos \theta, \sin \theta), (x, y, z))$ is a covering map. Moreover, $\pi_1(\mathbb{R} \times S^2) = \pi_1(\mathbb{R}) \times \pi_1(S^2) = 0 \times 0 = 0$, so $\mathbb{R} \times S^2$ is simply connected. Therefore, $\mathbb{R} \times S^2$ is indeed a universal cover of X.

 $\mathbb{R} \times S^2$ is homeomorphic to $(0,1) \times S^2$. This space deformation retracts to S^2 because $(0,1) \times S^2$ is homeomorphic to an open ball with its center removed. Thus their homology groups are $H_2(\tilde{X}) = H_0(\tilde{X}) = \mathbb{Z}$ and $H_n(\tilde{X}) = 0$ for all other n.

Exercise. (Problem 5(c)) We claim that the universal covering space is the real line with $S^2 \vee$

FIGURE 5. Problem 5(c)

 S^3 attached to each of its integral points (Figure 5). Since S^2 and S^3 are both contractible, the wedge sum must be contractible. Attaching contractible spaces to each integral point of \mathbb{R} , which itself is contractible, gives a contractible space. The covering map p can be defined in an obvious way. Every point on \mathbb{R} can be mapped to S^1 by $\theta \mapsto (\cos(\theta), \sin(\theta))$, and each copy of $S^2 \vee S^3$ can be mapped identically to $S^2 \vee S^3$. The i in Figure 5 is the obvious inclusion map, and \tilde{i} sends S^3 into the copy of $S^2 \vee S^3$ that is attached to 0 on \mathbb{R} . (It does not matter which copy, but it is necessary to specify which.) Then the diagram clearly commutes.

By the Mayer-Vietoris sequence, we have an exact sequence $H_3((S^1 \vee S^2) \cap S^3) \to H_3(S^1 \vee S^2) \oplus H_3(S^3) \xrightarrow{\psi} H_3(S^1 \vee S^2 \vee S^3) \to H_2((S^1 \vee S^2) \cap S^3)$. (To be precise, we need $S^1 \vee S^2$ with a small neighborhood and S^3 with a small neighborhood, such that the union of the interiors is $S^1 \vee S^2 \vee S^3$ and the intersection deformation retracts onto a point.) Then $H_n((S^1 \vee S^2) \cap S^3) = 0$ for n = 2, 3. Therefore, ψ is an isomorphism. $H_3(S^1 \vee S^2) = 0$ by the Mayer-Vietoris sequence $0 = H_3(S^1) \oplus H_3(S^2) \to H_3(S^1 \vee S^2) \to H_3(S^1 \cap S^2) = 0$ where $S^1, S^2 \subset S^1 \vee S^2$ are technically S^1 and S^2 with a small neighborhood. Therefore, instead of ψ , we can consider the map $\psi': H_3(S^3) \to H_3(S^1 \vee S^2 \vee S^3)$ defined by $\psi'(x) = \psi(0, x)$. By construction of the Mayer-Vietoris sequence, ψ' is induced by the inclusion map i. Since

homology is a covariant functor, p^* and \tilde{i}^* , which are induced by p and \tilde{i} , must commute with $\psi' = i^*$. In other words, $i^* = \psi' = p^* \circ \tilde{i}^*$. Since i^* is an isomorphism, \tilde{i}^* must be injective. This implies $H_3(\tilde{Y})$ contains an isomorphic copy of $H_3(S^3) = \mathbb{Z}$.

We calculated in Part (b) that $H_3(\tilde{X}) = 0$. Therefore, $H_3(\tilde{X}) \neq H_3(\tilde{Y})$.

Exercise. (Problem 6) By Proposition 1.32, Theorem 1.38 and Proposition 1.39, it suffices to find a subgroup of $\pi_1(\Sigma_a)$ whose index is 3 and check whether it is normal.

Let g = 0. Then $\pi_1(\Sigma_g) = 0$. There does not exist an index-3 subgroup. Therefore, there exists no non-normal, connected, 3-sheeted cover.

Let g = 1. Then Σ_g is a torus, so the fundamental group of Σ_g is $\langle a, b \mid [a, b] \rangle$. Since it is abelian, all the subgroups are normal. Therefore, there exists no non-normal, connected, 3-sheeted cover.

Let $g \geq 2$. Then $\pi_1(\Sigma_g) = \langle a_1, b_1, a_2, b_2, \cdots, a_g, b_g \mid [a_1, b_1] \cdots [a_g, b_g] \rangle$. Consider the homomorphism $\phi : \pi_1(\Sigma_g) \to S_3$ such that

- $a_1 \mapsto (123)$.
- \bullet $a_2 \mapsto (12)$.
- $a_i \mapsto (1)$ for all $i \geq 3$ and $b_i \mapsto (1)$ for all i.

This is indeed a homomorphism because

$$\phi([a_1, b_1] \cdots [a_g, b_g]) = \phi([a_1, b_1])\phi([a_2, b_2])$$

$$= (123)(123)^{-1}(12)(12)^{-1}$$

$$= (1).$$

Moreover, ϕ is surjective. Let H be the subgroup generated by $a_1^3, a_2, \dots, a_g, b_1, \dots, b_g$. Thus H is an index-3 subgroup of $\pi_1(\Sigma_g)$. Then there are three distinct cosets, H, a_1H, a_1^2H . $\phi(H) = \langle (12) \rangle$ because $\phi(a_1^3) = (123)^3 = (1)$. Suppose H is normal. Then $a_1b_1a_1^{-1} \in H$. This implies $\phi(a_1b_1a_1^{-1}) \in \phi(H) = \langle (12) \rangle$, but $\phi(a_1)\phi(b_1)\phi(a_1)^{-1} = (123)(12)(132) = (23) \notin \langle (12) \rangle$. This is a contradiction, so H cannot be normal. We found a non-normal index-3 subgroup of $\pi_1(\Sigma_g)$, so there exists a non-normal, connected, 3-sheeted cover.