HMMA 307 : Modèles linéaires avancés

Lasso vs FoBa

Ophélie Coiffier

https://github.com/opheliecoiffier/LASSOvsFoBa

Université de Montpellier

Table of Contents

Mathematics approach

Examples

Conclusion

Table of Contents

Mathematics approach

The Lasso method
The OMP method
The FoBa algorithm (Lars method)

Examples

Conclusion

Introduction

To measure the quality of prediction, we use linear prediction model :

$$f(x) = \beta^{\mathsf{T}} x$$

With

$$\hat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^d} \sum_{i=1}^n \Phi(\beta^\intercal x_i, y_i) + \lambda g(\beta)$$

The Lasso method

Method uses L_1 regularization. We have

$$\hat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^d} \sum_{i=1}^n \Phi(\beta^{\mathsf{T}} x_i, y_i) + \lambda ||\beta||_1$$

2 issues:

- strong assumptions
- large regularization parameter (λ)

"Orthogonal Match Pursuit": forward greedy algorithm

"Orthogonal Match Pursuit": forward greedy algorithm

 $\mbox{\bf Principle:}$ Add feature at every step to reduce the squared error & Calculate its error

"Orthogonal Match Pursuit": forward greedy algorithm

Principle: Add feature at every step to reduce the squared error

& Calculate its error

Ability: Select relevant features

"Orthogonal Match Pursuit": forward greedy algorithm

Principle: Add feature at every step to reduce the squared error

& Calculate its error

Ability: Select relevant features

Main issue: Never correct mistakes made earlier steps

"Orthogonal Match Pursuit": forward greedy algorithm

Principle : Add feature at every step to reduce the squared error

& Calculate its error

Ability: Select relevant features

Main issue: Never correct mistakes made earlier steps

Solution: Backward greedy algorithm?

"Forward-Backward" greedy algorithm

"Forward-Backward" greedy algorithm

Principle:

1) Use Forward greedy step

"Forward-Backward" greedy algorithm

- 1) Use Forward greedy step
- 2) Until squared error increase is no more than half of the squared error decrease in the earlier forward step

"Forward-Backward" greedy algorithm

- 1) Use Forward greedy step
- 2) Until squared error increase is no more than half of the squared error decrease in the earlier forward step
- 3) Use Backward greedy step & adaptively Backward step

"Forward-Backward" greedy algorithm

- 1) Use Forward greedy step
- 2) Until squared error increase is no more than half of the squared error decrease in the earlier forward step
- 3) Use Backward greedy step & adaptively Backward step
- *) Backward functions:
 - ► Remove any errors caused by earlier forward steps
 - ► Keep reasonable number of basis functions
 - (adaptively Backward) Make sure that we progress

Comparison between Lasso and FoBa

Similarity	Difference
Path-following algorithm	Conditions to find threshold
Large regularization parameter	Bias
Mistakes in earlier step	

Table of Contents

Mathematics approach

Examples

Boston Housing data lonosphere data

Conclusion

Introduction

Loss function used:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2$$

- ▶ Randomly partition into 50 training points and *nb* test points
- Predict variables
- ► Compare MSE for each methods and for each groups

Boston Housing data

Data: 506 census tracts from 1970 census

14 features

Y: housing price

Principle : 50 training points / 456 test points

We repeat $50\ \mathrm{times}\ \mathrm{MSE}\ \mathrm{calculations}\ \mathrm{and}\ \mathrm{compare}\ \mathrm{MSE}\ \mathrm{obtained}$

With a sparsity between 1 and 10.

Boston Housing data

Figure: MSE depending on sparsity for the 3 methods and for the 2 groups.

Ionosphere data

Data: 351 data points

35 features

 \mathbf{Y} : binary value ($\mathbf{Y} \in \{0, 1\}$)

Principle: 50 training points / 301 test points

We repeat $50\ \mathrm{times}\ \mathrm{MSE}\ \mathrm{calculations}$ and compare MSE obtained

With a sparsity between 1 and 10.

Ionosphere data

Figure: MSE depending on sparsity for the 3 methods and for the 2 groups.

Issues

Representation of Lasso

Figure: Lasso path and non-zero coefficients for lonosphere data

▶ Differences between our algorithms and these in the article

Table of Contents

Mathematics approach

Examples

Conclusion

Conclusion

We find these results:

- ► **Test points**: FoBa for *Ionosphere* data & FoBa/OMP for *Boston Housing* data
- Training points : OMP (depending on sparcity for lonosphere data

The article finds:

- ▶ **Test points :** FoBa for small sparsity and for *Boston housing* data & Lasso for *Ionosphere* data
- ► Training points : the mixed algorithm (FoBa)

Finally, we must choose the best algorithm and the best method depending on data, sparsity and mathematics conditions that we can check.

Bibliography

- (BSD License), scikit-learn developers. scikit-learn. https://scikit-learn.org/stable/modules/classes.html/module-sklearn.linear_model. 2020.
- Coiffier, Ophélie. Github LASSOvsFoBa. https://github.com/opheliecoiffier/LASSOvsFoBa. 2020.
- Salmon, Joseph. HMMA 308 Apprentissage statistique. 2019.
- ► Sigillito, Vince. *Ionosphere Data Set*. https://archive.ics.uci.edu/ml/datasets/ionosphere.
- University, Johns Hopkins. Index of /ml/machine-learning-databases/housing. https://archive.ics.uci.edu/ml/machine-learning-databases/housing/.
- Zhang, Tong. Adaptive Forward-Backward Greedy Algorithm for Learning Sparse Representations.

http://tongzhang-ml.org/papers/it11-foba.pdf.