Data Management & Analysis Final Project

Replication and Extention for Acemoglu, Naidu, Restrepo and Robinson (2019)

(Name:) Shoya Abe (University ID:) 31B24001 (Name:) Honoka Otani (University ID:) 31B24002

(Submission Due:) 2025/02/06

Contents

	0.1	Setup	
1	Abo	out thi	is Report
	1.1	Projec	et Type
	1.2	Summ	nary of the Paper (Honoka Otani)
		1.2.1	What the problem is
		1.2.2	Why it is important
		1.2.3	How you solve the problem
		1.2.4	What we find
	1.3	Data	(Shoya Abe)
	1.4	Empi	rical Methods (Shoya Abe)
		1.4.1	Event Study (Figure.1)
		1.4.2	Dynamic Liner Panel Model (Table.2)
		1.4.3	Inverse-Propensity-Score Reweighting (Figure.4 and Table.5)
		1.4.4	Instrumental Variable (IV) Method (Table.6)
2	Rep	olicatio	on (
	2.1	Figure	e.1 (Shoya Abe)
		2.1.1	Preprocessing
		2.1.2	Estimation
		2.1.3	Plot
	2.2	Table	1 (Honoka Otani)
		2.2.1	Preprocessing
		2.2.2	Caliculation
		2.2.3	Tabulation

	2.3	Table.	2 (Honoka Otani)	11
		2.3.1	Preprocessing	11
		2.3.2	Estimation	12
		2.3.3	Tabulation	17
	2.4	Figure	2.4	17
		2.4.1	Preprocessing	17
		2.4.2	Plot	19
	2.5	Table.	5	20
		2.5.1	Preprocessing	20
		2.5.2	Estimation	21
		2.5.3	Tabulation	23
	2.6	Table.	6 (Shoya Abe)	23
		2.6.1	Preprocessing	23
		2.6.2	Estimation	24
		2.6.3	Tabulation	27
3	Ext	ention		28
•	3.1		lence Interval by the Bootstrap Method (Shoya Abe)	28
	0.1	3.1.1	Bootstrap Method	28
		3.1.2	Estimation	28
		3.1.3	Plot	20
		0.1.0		2.
1	Ref	erence	\mathbf{s}	30
5	Apr	endix		31
,			f Variables (Shoya Abe)	31
			no Dond Estimation for Table 2 (Chara Aba)	51

0.1 Setup

```
pacman::p_load(
  rmdformats,
  knitr,
  tinytex,
  haven,
  tidyverse,
  kableExtra,
 plm,
  texreg
options(max.print = "75")
opts_chunk$set(
  fig.align = "center",
  echo = TRUE,
  cache = TRUE,
  prompt = FALSE,
  tidy = FALSE,
  comment = NA,
  message = FALSE,
  warning = FALSE
opts knit$set(width = 75)
```

1 About this Report

1.1 Project Type

In this report, we replicate and extend the previous paper. The paper we replicate is Acemoglu, D., Naidu, S., Restrepo, P., & Robinson, J. A. (2019). "Democracy Does Cause Growth." *Journal of Political Economy*, 127(1), 47–100. https://doi.org/10.1086/700936.

We try to replicate Figure 1, Table 1, Table 2, Figure 4, Table 5 and Table 6 in the paper, which are especially critical results in the paper. We also try several extension approaches using the bootstrap method. In appendix, we replicate Arellano Bond Estimation for Table 2 because we failed to replicate due to several limitations.

1.2 Summary of the Paper (Honoka Otani)

1.2.1 What the problem is

The authors attempted to provide a clear answer to the widely divergent topic of opinion on the causal relationship between democracy and economic growth. At the time of writing, there was a widely shared view that democracy has no relation to, or rather a negative effect on, economic growth.

On the other hand, there were empirical studies that showed a positive effect of democracy on economic growth, but they did not adequately address the endogeneity issue between political regimes and economic growth.

This paper points to four main challenges in estimating the causal relationship between democracy and economic growth. First, existing democracy indicators are subject to measurement error and changes in

scores may not accurately reflect actual changes in political regimes. Second, there are institutional, historical and cultural differences between democracies and nondemocracies that also affect economic growth, which may introduce bias in the analysis. Third, democratization tends to occur after a temporary drop in GDP, which can bias estimates if not captured correctly in the model. Fourth, democratization and economic growth may be affected by common external factors, making it difficult to identify causality.

1.2.2 Why it is important

Demonstrating the causal relationship between democracy and economic growth has important implications for both political and economic development strategies. If democracy has a positive effect on economic growth, it provides an incentive to promote democratization across the world. It would also provide important hints to each country seeking to achieve economic growth. By providing empirical evidence, this study contributes to the competing debate on governance and economic growth.

1.2.3 How you solve the problem

To address the problem of measurement error in democracy indicators, the authors introduced a new democracy indicator by integrating several existing measurement methods.

For other endogeneity problems, the authors employed three empirical strategies.

First, a dynamic (linear) panel model is used to control for country fixed effects and autoregressive GDP dynamics. By including lags of GDP per capita, this model accounts for the pre-democratization dip in GDP, ensuring that countries transitioning to democracy are not on a different GDP trend compared to other countries with similar past GDP levels.

Second, they adopted a propensity score reweighting strategy semiparametric treatment effects framework which democratization influences the distribution of potential GDP in all subsequent years. This method models the selection into democracy as a function of observable factors, particularly past GDP, without relying on a fully parametric GDP model. This approach increases flexibility in estimating how democracy influences GDP over time.

Third, they applied an instrumental variables (IV) method, using regional waves of democratization as an instrument for a country's transition to democracy. Since democratizations often occur in regional clusters, this method isolates exogenous variation in democracy that is not directly related to a country's own economic conditions. By leveraging this external source of variation, the IV approach strengthens the identification of the causal effect of democracy on GDP.

As for extension part, in order to visualize the uncertainty of the long-term impact of democratization on economic growth, we estimate the confidence interval of the ATT estimate using the bootstrap method based on the event study in Figure 1.

1.2.4 What we find

The findings of this paper demonstrate that democracy has a significant positive effect on GDP per capita. A country that transitions from nondemocracy to democracy experiences a long-run increase in GDP per capita of approximately 20–25% over the next 25 years. This effect is robust across different three strategies.

Furthermore, the analysis shows that the effect does not depend on a country's initial level of development, however, the effect is stronger in countries with higher levels of secondary education.

The authors also suggest several channels through which democracy promotes economic growth. They showed that democracy increases economic reforms, tax revenue (as a percentage of GDP). And enrollment in primary and secondary education and reduces child mortality rate. They also found the possibility that democracy promotes investment and open trade, and reduces social unrest.

Overall, the findings of this study strongly support the claim that democracy causes economic growth. This effect is primarily driven by democracy's ability to increase investment, improve human capital through education and healthcare, and strengthen governance structures, while also contributing to greater political stability and reduced social unrest. These results challenge the notion that democracy is a hindrance to economic growth and instead emphasize its role in fostering sustainable and inclusive economic growth.

As for extension part, we found that the long-term impact of democratization on economic growth is quite uncertain.

1.3 Data (Shoya Abe)

We use data obtained from the replication files available in the data archive on Professor Daron Acemoglu's homepage. This dataset consists of a large panel of 175 countries from 1960 to 2010. The sample size is 9,384, and the number of variables is 1,177. A list of variables is provided in the appendix.

```
data <- read_dta("data/raw/DDCGdata_final.dta")
summarize_data <- function(data, n = 10) {
  cat("Sample size (number of rows):", nrow(data), "\n")
  cat("Number of variables (columns):", ncol(data), "\n")
}
summarize_data(data)</pre>
```

```
Sample size (number of rows): 9384
Number of variables (columns): 1177
```

1.4 Empirical Methods (Shoya Abe)

We briefly explain the empirical methods we use for our replication. The original paper uses three main empirical strategies, in addition to visualization and descriptive statistics, to estimate the impact of democracy on economic growth. We replicate some of these analyses, and explain the four empirical methods used¹.

1.4.1 Event Study (Figure.1)

First, we conduct the event study. We estimate the average treatment effect on Treated (ATT) using the procedure described below.

Let T_c denote the year in which a given country experienced the democratization event. For any country c and year t, we define the relative year as

$$\tau_{c,t} = t - T_c. \tag{1}$$

Then, taking the outcome y in the year immediately preceding democratization (i.e., when $\tau = -1$) as the baseline, the outcome of interest is defined as

$$gdpDiff_{c,t} = y_{c,t} - y_{c,T_c-1}.$$
(2)

¹We also worked on Arellano Bond estimation in table.2. However, it took an enormous amount of computation time and the results obtained were quite different from the original results. In other words, replication failed. However, in the belief that it is desirable to disclose the entire analysis process and results, we disclose the analysis code and results in the appendix.

Next, we estimate the following regression model using the control group that did not experience democratization:

$$gdpDiff_{c,t} = \sum_{\tau = -15, \ \tau \neq -1}^{30} \beta_{\tau} \mathbf{1} \{ \tau_{c,t} = \tau \} + \epsilon_{c,t}.$$
(3)

The estimated coefficient $\hat{\beta}_{\tau_{c,t}}$ from (3) can be interpreted as the counterfactual outcome for country c in year t in the absence of democratization. Therefore, the average difference between the observed outcome and this counterfactual outcome provides an estimate of the ATT for relative year τ , which is calculated as

$$ATT(\tau) = \frac{1}{N_{\tau}^{\text{treated}}} \sum_{\substack{(c,t) \in \text{treated} \\ \tau_{c,t} = \tau}} \left(\text{gdpDiff}_{c,t} - \hat{\beta}_{\tau} \right). \tag{4}$$

1.4.2 Dynamic Liner Panel Model (Table.2)

Second, we estimate the following dynamic linear panel model.

$$y_{c,t} = \beta D_{c,t} + \gamma_1 y_{c,t-1} + \alpha_c + \delta_t + \epsilon_{ct}, \tag{5}$$

$$y_{c,t} = \beta D_{c,t} + \sum_{j=1}^{2} \gamma_j y_{c,t-j} + \alpha_c + \delta_t + \epsilon_{c,t}, \tag{6}$$

$$y_{c,t} = \beta D_{c,t} + \sum_{j=1}^{4} \gamma_j y_{c,t-j} + \alpha_c + \delta_t + \epsilon_{c,t}, \tag{7}$$

$$y_{c,t} = \beta D_{c,t} + \sum_{j=1}^{8} \gamma_j y_{,ct-j} + \alpha_c + \delta_t + \epsilon_{c,t}, \tag{8}$$

where y_{ct} is the log of GDP per capita in country c at time t and D_{ct} is a dummy variable that takes the value 1 if country c is a democracy at time t and 0 otherwise. α_c is the country fixed effect and δ_t is the year fixed effect.

1.4.3 Inverse-Propensity-Score Reweighting (Figure.4 and Table.5)

Third, we conduct inverse-propensity-score reweighting². First, we estimate the following probit regression model and derive the propensity score p(X) for the transition to democratization.

$$Pr(transition = 1|X) = \Phi\left(\gamma_0 + \sum_{j=1}^4 \gamma_j y_{c,t-j} + \sum_{\tau} \beta_{\tau} \mathbf{1}\{\tau_{c,t} = \tau\}\right). \tag{9}$$

Next, based on the estimated propensity score $\hat{p}(X_i)$, we define the weight w_c for each observation as follows.

$$w_c = \begin{cases} 1, & \text{if } transition_c = 1, \\ \frac{\hat{P}(X_c)}{1 - \hat{P}(X_c)}, & \text{if } transition_c = 0. \end{cases}$$
 (10)

Using this weight, we can estimate ATT as follows.

$$\hat{ATT} = \frac{1}{N_1} \sum_{c:transition_c = 1} Y_i - \frac{\sum_{c:transition_c = 0} w_c Y_c}{\sum_{c:transition_c = 0} w_c},$$
 (11)

where N_1 is the sample size on treatment group. For the standard errors, we use the bootstrap method for estimation. This approach will be explained in the extension part.

²This method is also known as Inverse Probability Weighting (IPW) estimation and is a representative approach in semiparametric estimation.

1.4.4 Instrumental Variable (IV) Method (Table.6)

Fourth, we use the instrumental variable (IV) method in our analysis. The instrumental variable we employ is the regional waves (or reversal) of democratization. We formulate this as follows.

First, let D_{c,t_0} be a dummy variable indicating whether a country was democratic or non-democratic in 1960. Let R_c denote the geographic region to which country c belongs. Then, we define the set of countries that share a similar political history within the same region as $I_c = \{c^* : c^* \neq c, R_{c^*} = R_c, D_{c^*,t_0} = D_{c,t_0}\}$. The instrumental variable used in this analysis is given by:

$$Z_{ct} = \frac{1}{|I_c|} \sum_{c^* \in I_c} D_{c^*t}.$$
 (12)

This variable represents the proportion of countries that have undergone democratization among those with the same political history in the same region, thereby capturing the regional waves (or reversal) of democratization.

Using this instrumental variable, we conduct the following two-stage least squares (2SLS) estimation:

$$y_{ct} = \beta D_{ct} + \sum_{j=1}^{p} \gamma y_{ct-j} + \alpha_c + \delta_t + \epsilon_{ct}, \tag{13}$$

$$D_{ct} = \sum_{j=1}^{q} \pi_j Z_{ct-j} + \sum_{j=1}^{p} \phi_j y_{ct-j} + \theta_c + \mu_t + v_{ct}.$$
(14)

2 Replication

2.1 Figure 1 (Shoya Abe)

2.1.1 Preprocessing

```
#Prepare data
## rename ID column and calculate democracy transitions
data_f1 <- data |>
  rename(id = "_ID") |> # Rename column for consistency
  group_by(id) |>
  arrange(year) |>
   prev_dem = dplyr::lag(dem, 1),
      # Previous year's democracy status
   transition = case_when(
      dem == 1 & prev_dem == 0 ~ 1, # Transition to democracy
      dem == 0 & prev dem == 0 ~ 0, # No transition
      TRUE ~ NA real
   lag1 = dplyr::lag(y, 1), # GDP per capita lag variables
   lag2 = dplyr::lag(y, 2),
   lag3 = dplyr::lag(y, 3),
   lag4 = dplyr::lag(y, 4)
  ) |>
  filter(
    !is.na(lag1) & !is.na(lag2) &
```

```
!is.na(lag3) & !is.na(lag4) # Ensure complete lag data
  ) |>
  ungroup()
# Compute GDP differences for past years
for (t in -15:-2) {
  col_name <- paste0("gdpDiff_m", abs(t))</pre>
  data f1 <- data f1 |>
    group_by(id) |>
    arrange(year) |>
    mutate(!!col_name := dplyr::lag(y, abs(t)) - lag1) |>
    ungroup()
}
# Define GDP differences at t = -1 and t = 0
data_f1 <- data_f1 |>
  mutate(
    gdpDiff_m1 = 0,
    gdpDiff_0 = y - lag1
# Compute GDP differences for future years
for (t in 1:30) {
  col_name <- paste0("gdpDiff_p", t)</pre>
  data_f1 <- data_f1 |>
    group_by(id) |>
    arrange(year) |>
    mutate(!!col_name := dplyr::lead(y, t) - lag1) |>
    ungroup()
}
# Keep only observations relevant to democratization transitions
data_f1 <- data_f1 |>
filter(!is.na(transition))
```

2.1.2 Estimation

```
# Define function to estimate the Average Treatment Effect on the Treated (ATT)
estimateATT <- function(outcome_col) {
   sub_data <- data_f1 |>
      filter(!is.na(.data[[outcome_col]]), !is.na(transition))
   if (nrow(sub_data) == 0) return(NA)
   # Convert year to factor variable for regression
   year_levels <- sort(unique(sub_data$year))
   sub_data <- sub_data |>
      mutate(year_factor = factor(year, levels = year_levels))
# Split data into control and treated groups
control_data <- sub_data |>
   filter(transition == 0)
treated_data <- sub_data |>
   filter(transition == 1)
if (nrow(control_data) < 2 ||</pre>
```

```
length(unique(control_data$year)) < 2) return(NA)</pre>
  # Estimate a linear model for control group
  model_formula <- as.formula(</pre>
    paste(outcome_col, "~ year_factor - 1")
  )
  control_model <- tryCatch(</pre>
    lm(model_formula, data = control_data),
    error = function(e) NULL
  )
  if (is.null(control_model)) return(NA)
  # Predict counterfactual outcomes for the treated group
  predicted_outcomes <- tryCatch(</pre>
    predict(control_model, newdata = treated_data),
    error = function(e) rep(NA, nrow(treated_data))
  # Compute ATT as the difference between observed and predicted values
  treatment_effects <- treated_data[[outcome_col]] - predicted_outcomes</pre>
  mean(treatment_effects, na.rm = TRUE)
}
# Compute ATT estimates for each relative time period
relative_times \leftarrow c(seq(-15, -1), seq(0, 30))
atets <- numeric(length(relative_times))</pre>
for (i in seq_along(relative_times)) {
  t_val <- relative_times[i]</pre>
  if (t_val < 0) {</pre>
    col_name <- paste0("gdpDiff_m", abs(t_val))</pre>
  } else {
    col_name \leftarrow if (t_val == 0) {
      "gdpDiff_0"
    } else {
      paste0("gdpDiff_p", t_val)
    }
  }
  atets[i] <- estimateATT(col_name)</pre>
# Store ATT estimates in a dataframe
results_df <- data.frame(</pre>
  RelativeTime = relative_times,
  ATT = atets
```

2.1.3 Plot

```
# Plot ATT estimates over time
figure_1 <- ggplot(results_df, aes(x = RelativeTime, y = ATT)) +
  geom_line(color = "black") +
  scale_x_continuous(breaks = seq(-15, 30, 5)) +
  labs(
    x = "Years around Democratization",</pre>
```

```
y = "Change in GDP per capita (log points)"
) +
theme_bw()

# Save the figure as a PDF
ggsave(
   "output/figure_1.pdf",
   width = 14,
   height = 8,
   units = "cm"
)
```


Figure 1: The Long-Term Impact of Democratization on Economic Growth

2.2 Table.1 (Honoka Otani)

2.2.1 Preprocessing

```
# Define variable names and labels for summary statistics
var_info <- tibble(
  var = c(
    "gdppercapitaconstant2000us",
    "loginvpc",
    "ltrade2",
    "lp_bl",
    "ls_bl",
    "lgov",
    "mortnew",
    "unrestn",
    "marketref"</pre>
```

```
),
label = c(
    "GDP per capita",
    "Investment share of GDP",
    "Trade share of GDP",
    "Primary-school enrollment rate",
    "Secondary-school enrollment rate",
    "Tax revenue share of GDP",
    "Child mortality per 1,000 births",
    "Unrest rate",
    "Market reforms index (0-100)"
)

# Select variables for summary statistics
data_sub <- data |>
    select(dem, all_of(var_info$var))
```

2.2.2 Caliculation

```
# Compute summary statistics for each variable by democracy status
calc_stats <- function(variable) {</pre>
 non_demo <- data_sub |>
    filter(dem == 0) |>
    pull(.data[[variable]])
 non demo <- non demo[!is.na(non demo)]
  demo <- data_sub |>
    filter(dem == 1) |>
    pull(.data[[variable]])
  demo <- demo[!is.na(demo)]</pre>
  tibble(
    var = variable,
    n_non_demo = length(non_demo),
    mean_non_demo = mean(non_demo),
   sd_non_demo = sd(non_demo),
    n_demo = length(demo),
   mean_demo = mean(demo),
    sd demo = sd(demo)
 )
}
# Generate summary statistics table
summary_table <- map_dfr(var_info$var, calc_stats) |>
 left_join(var_info, by = "var") |>
  select(label, n_non_demo, mean_non_demo, sd_non_demo, n_demo, mean_demo, sd_demo)
```

2.2.3 Tabulation

```
# Convert summary statistics table to LaTeX format
latex_table <- summary_table |>
```

```
kbl(
    caption = "Summary Statistics by Democracy Status",
    format = "latex",
    booktabs = TRUE,
    digits = 2,
    col.names = c("", "N", "Mean", "SD", "N", "Mean", "SD")
) |>
    add_header_above(c(" " = 1, "Nondemocracies" = 3, "Democracies" = 3)) |>
    kable_styling(latex_options = c("HOLD_position", "striped"))

# Save the LaTeX table to a file
save_kable(latex_table, file = "output/table_1.tex")
```

Table 1: Summary Statistics by Democracy Status

	Nondemocracies		Democracies			
	N	Mean	SD	N	Mean	SD
GDP per capita	3376	2074.46	3838.65	3558	8149.97	9334.83
Investment share of GDP	3222	297.18	50.15	3339	309.94	31.84
Trade share of GDP	3175	406.06	67.95	3485	419.29	58.74
Primary-school enrollment rate	817	32.14	19.56	689	38.10	20.05
Secondary-school enrollment rate	817	19.53	17.15	689	34.37	19.72
Tax revenue share of GDP	3122	-201.59	62.93	2564	-168.61	49.82
Child mortality per 1,000 births	4142	77.29	49.64	3615	33.26	32.65
Unrest rate	3739	28.70	45.24	3610	21.91	41.37
Market reforms index (0–100)	3476	21.89	23.26	2829	52.11	24.75

2.3 Table.2 (Honoka Otani)

2.3.1 Preprocessing

```
# Select relevant variables and create lag variables
data_t2 <- data |>
  select(1:30) |>
  group by(country name) |>
  arrange(year) |>
  mutate(
   lag1 = dplyr::lag(y, 1),
   lag2 = dplyr::lag(y, 2),
   lag3 = dplyr::lag(y, 3),
   lag4 = dplyr::lag(y, 4),
   lag5 = dplyr::lag(y, 5),
   lag6 = dplyr::lag(y, 6),
   lag7 = dplyr::lag(y, 7),
   lag8 = dplyr::lag(y, 8)
  ) |>
  ungroup()
```

2.3.2 Estimation

```
# Estimate fixed effects models with different lag specifications
data_m1 <- data_t2 |>
  drop_na(y, dem, lag1) |>
  pdata.frame(index = c("country_name", "year"))
model_1 <- plm(</pre>
 y ~ dem + lag1,
 data = data_m1,
 model = "within",
  effect = "twoways"
data_m2 <- data_t2 |>
  drop_na(y, dem, lag1, lag2) |>
  pdata.frame(index = c("country_name", "year"))
model_2 <- plm(</pre>
  y \sim dem + lag1 + lag2,
  data = data_m2,
 model = "within";
  effect = "twoways"
data_m3 <- data_t2 |>
 drop_na(y, dem, lag1, lag2, lag3, lag4) |>
  pdata.frame(index = c("country_name", "year"))
model_3 <- plm(</pre>
  y ~ dem + lag1 + lag2 + lag3 + lag4,
 data = data m3,
 model = "within",
  effect = "twoways"
data_m4 <- data_t2 |>
  drop_na(
    y, dem, lag1, lag2, lag3, lag4,
    lag5, lag6, lag7, lag8
  ) |>
  pdata.frame(index = c("country_name", "year"))
model_4 <- plm(</pre>
  y ~ dem + lag1 + lag2 + lag3 + lag4 +
    lag5 + lag6 + lag7 + lag8,
 data = data_m4,
 model = "within",
  effect = "twoways"
# Compute long-run effects of democratization
beta_hat_1 <- coef(model_1)["dem"]</pre>
gamma_hat_1 <- coef(model_1)["lag1"]</pre>
long_run_effect_1 <- beta_hat_1 / (1 - sum(gamma_hat_1))</pre>
beta_hat_2 <- coef(model_2)["dem"]</pre>
```

```
gamma_hat_2 <- coef(model_2)[c("lag1", "lag2")]</pre>
long_run_effect_2 <- beta_hat_2 / (1 - sum(gamma_hat_2))</pre>
beta hat 3 <- coef(model 3)["dem"]
gamma_hat_3 <- coef(model_3)[c("lag1", "lag2", "lag3", "lag4")]</pre>
long_run_effect_3 <- beta_hat_3 / (1 - sum(gamma_hat_3))</pre>
beta hat 4 <- coef(model 4)["dem"]
gamma_hat_4 <- coef(model_4)[</pre>
  c("lag1", "lag2", "lag3", "lag4",
    "lag5", "lag6", "lag7", "lag8")
long_run_effect_4 <- beta_hat_4 / (1 - sum(gamma_hat_4))</pre>
lre <- round(</pre>
  c(long_run_effect_1, long_run_effect_2,
    long_run_effect_3, long_run_effect_4),
)
# Compute persistence effects
pers1 <- sum(coef(model_1)[2])</pre>
pers2 <- sum(coef(model_2)[2:3])</pre>
pers3 <- sum(coef(model_3)[2:5])</pre>
pers4 <- sum(coef(model 4)[2:9])</pre>
pers <- round(c(pers1, pers2, pers3, pers4), 3)</pre>
# Compute effect after 25 years for each model
dem_shortrun <- coef(model_1)["dem"]</pre>
lag1_mod1 <- coef(model_1)[2]</pre>
effect1 <- dem_shortrun</pre>
effect2 <- (effect1 * lag1_mod1) + dem_shortrun</pre>
effects_mod1 <- c(effect1, effect2)</pre>
for (i in 3:30) {
  eff <- (effects_mod1[i - 1] * lag1_mod1) + dem_shortrun</pre>
  effects_mod1 <- c(effects_mod1, eff)</pre>
eff_25_1 <- effects_mod1[25]
dem_shortrun <- coef(model_2)["dem"]</pre>
lag1_mod2 <- coef(model_2)[2]</pre>
lag2_mod2 <- coef(model_2)[3]</pre>
effect1 <- dem shortrun
effect2 <- (effect1 * lag1_mod2) + dem_shortrun</pre>
effect3 <- (effect2 * lag1_mod2) +</pre>
  (effect1 * lag2_mod2) + dem_shortrun
effects_mod2 <- c(effect1, effect2, effect3)</pre>
for (i in 4:30) {
  eff <- (effects_mod2[i - 1] * lag1_mod2) +
    (effects_mod2[i - 2] * lag2_mod2) +
    dem_shortrun
  effects_mod2 <- c(effects_mod2, eff)</pre>
```

```
eff_25_2 \leftarrow effects_mod2[25]
dem_shortrun <- coef(model_3)["dem"]</pre>
lag1_mod3 <- coef(model_3)[2]</pre>
lag2_mod3 <- coef(model_3)[3]</pre>
lag3_mod3 <- coef(model_3)[4]</pre>
lag4_mod3 <- coef(model_3)[5]</pre>
effect1 <- dem shortrun
effect2 <- (effect1 * lag1_mod3) + dem_shortrun</pre>
effect3 <- (effect2 * lag1_mod3) +</pre>
  (effect1 * lag2_mod3) + dem_shortrun
effect4 <- (effect3 * lag1_mod3) +</pre>
  (effect2 * lag2_mod3) +
  (effect1 * lag3_mod3) + dem_shortrun
effects_mod3 <- c(effect1, effect2, effect3, effect4)</pre>
for (i in 5:30) {
  eff <- (effects_mod3[i - 1] * lag1_mod3) +</pre>
    (effects_mod3[i - 2] * lag2_mod3) +
    (effects_mod3[i - 3] * lag3_mod3) +
    (effects_mod3[i - 4] * lag4_mod3) +
    dem_shortrun
  effects_mod3 <- c(effects_mod3, eff)</pre>
eff_25_3 <- effects_mod3[25]</pre>
dem_shortrun <- coef(model_4)["dem"]</pre>
lag1 mod4 <- coef(model 4)[2]</pre>
lag2_mod4 <- coef(model_4)[3]</pre>
lag3_mod4 <- coef(model_4)[4]</pre>
lag4_mod4 <- coef(model_4)[5]</pre>
lag5_mod4 <- coef(model_4)[6]</pre>
lag6_mod4 <- coef(model_4)[7]</pre>
lag7_mod4 <- coef(model_4)[8]</pre>
lag8_mod4 <- coef(model_4)[9]</pre>
effect1 <- dem_shortrun</pre>
effect2 <- (effect1 * lag1_mod4) + dem_shortrun</pre>
effect3 <- (effect2 * lag1_mod4) +
  (effect1 * lag2_mod4) + dem_shortrun
effect4 <- (effect3 * lag1_mod4) +
  (effect2 * lag2_mod4) +
  (effect1 * lag3_mod4) + dem_shortrun
effect5 <- (effect4 * lag1_mod4) +
  (effect3 * lag2_mod4) +
  (effect2 * lag3_mod4) +
  (effect1 * lag4_mod4) + dem_shortrun
effect6 <- (effect5 * lag1_mod4) +
  (effect4 * lag2_mod4) +
  (effect3 * lag3_mod4) +
  (effect2 * lag4_mod4) +
  (effect1 * lag5_mod4) + dem_shortrun
effect7 <- (effect6 * lag1_mod4) +
  (effect5 * lag2_mod4) +
  (effect4 * lag3_mod4) +
```

```
(effect3 * lag4_mod4) +
  (effect2 * lag5_mod4) +
  (effect1 * lag6_mod4) + dem_shortrun
effect8 <- (effect7 * lag1_mod4) +
  (effect6 * lag2_mod4) +
  (effect5 * lag3_mod4) +
  (effect4 * lag4_mod4) +
  (effect3 * lag5_mod4) +
  (effect2 * lag6_mod4) +
  (effect1 * lag7_mod4) + dem_shortrun
effects_mod4 <- c(
  effect1, effect2, effect3, effect4,
  effect5, effect6, effect7, effect8
for (i in 9:30) {
  eff <- (effects_mod4[i - 1] * lag1_mod4) +
    (effects_mod4[i - 2] * lag2_mod4) +
    (effects_mod4[i - 3] * lag3_mod4) +
    (effects_mod4[i - 4] * lag4_mod4) +
    (effects_mod4[i - 5] * lag5_mod4) +
    (effects_mod4[i - 6] * lag6_mod4) +
    (effects_mod4[i - 7] * lag7_mod4) +
    (effects_mod4[i - 8] * lag8_mod4) +
    dem_shortrun
  effects_mod4 <- c(effects_mod4, eff)</pre>
eff_25_4 \leftarrow effects_mod4[25]
eff_25 <- round(
 c(eff_25_1, eff_25_2, eff_25_3, eff_25_4),
  3
)
# Compute standard errors for coefficients
se1 <- sqrt(diag(vcov(model_1)))</pre>
se2 <- sqrt(diag(vcov(model_2)))</pre>
se3 <- sqrt(diag(vcov(model_3)))</pre>
se4 <- sqrt(diag(vcov(model_4)))</pre>
# Override coefficients and standard errors for LaTeX table output
override.coef.1 <- c(</pre>
  coef(model_1)["dem"],
  coef(model 1)["lag1"],
 NA, NA, NA, NA, NA, NA
override.se.1 <- c(</pre>
  se1["dem"],
  se1["lag1"],
  NA, NA, NA, NA, NA, NA
override.coef.2 <- c(</pre>
  coef(model_2)["dem"],
```

```
coef(model_2)["lag1"],
  coef(model_2)["lag2"],
  NA, NA, NA, NA, NA
override.se.2 <- c(</pre>
  se2["dem"],
  se2["lag1"],
 se2["lag2"],
 NA, NA, NA, NA, NA
override.coef.3 <- c(</pre>
  coef(model 3)["dem"],
  coef(model_3)["lag1"],
  coef(model_3)["lag2"],
  coef(model_3)["lag3"],
  coef(model_3)["lag4"],
  NA, NA, NA, NA
override.se.3 <- c(</pre>
  se3["dem"],
  se3["lag1"],
  se3["lag2"],
  se3["lag3"],
  se3["lag4"],
 NA, NA, NA, NA
override.coef.4 <- c(</pre>
  coef(model_4)["dem"],
  coef(model_4)["lag1"],
  coef(model_4)["lag2"],
  coef(model_4)["lag3"],
  coef(model_4)["lag4"],
  coef(model_4)["lag5"],
  coef(model_4)["lag6"],
  coef(model_4)["lag7"],
  coef (model_4) ["lag8"]
override.se.4 <- c(
  se4["dem"],
  se4["lag1"],
  se4["lag2"],
  se4["lag3"],
  se4["lag4"],
  se4["lag5"],
  se4["lag6"],
  se4["lag7"],
  se4["lag8"]
```

2.3.3 Tabulation

```
# Generate LaTeX table for regression results
models <- list(model_1, model_2, model_3, model_4)</pre>
texreg(
 models,
 override.coef = list(
   override.coef.1,
   override.coef.2,
   override.coef.3,
   override.coef.4
  ),
  override.se = list(
   override.se.1,
   override.se.2,
   override.se.3,
   override.se.4
  ),
  custom.model.names = c("(1)", "(2)", "(3)", "(4)"),
  custom.coef.names = c(
   "Democracy", "Lag 1", "Lag 2",
   "Lag 3", "Lag 4", "Lag 5",
   "Lag 6", "Lag 7", "Lag 8"
 ),
  custom.gof.rows = list(
   "Persistence" = pers,
   "Long run effect" = lre,
   "Effect after 25 years" = eff_25
 ),
 file = "output/table_2_FE.tex",
  caption = "Effect of Democracy on (Log) GDP per Capita"
```

2.4 Figure.4

2.4.1 Preprocessing

	(1)	(2)	(3)	(4)
Democracy	0.97***	0.65**	0.79***	0.89***
v	(0.24)	(0.23)	(0.23)	(0.24)
Lag 1	0.97***	1.27***	1.24***	1.23***
	(0.00)	(0.01)	(0.01)	(0.01)
Lag 2		-0.30***	-0.21***	-0.21***
		(0.01)	(0.02)	(0.02)
Lag 3			-0.03	-0.02
			(0.02)	(0.02)
Lag 4			-0.04***	-0.04
			(0.01)	(0.02)
Lag 5				-0.02
				(0.02)
Lag 6				0.01
				(0.02)
Lag 7				0.02
				(0.02)
Lag 8				-0.01
				(0.01)
Persistence	0.97	0.97	0.96	0.96
Long run effect	35.59	19.60	21.24	22.01
Effect after 25 years	17.79	13.80	16.90	17.72
\mathbb{R}^2	0.96	0.96	0.96	0.96
$Adj. R^2$	0.96	0.96	0.96	0.96
Num. obs.	6790	6642	6336	5688

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 2: Effect of Democracy on (Log) GDP per Capita

```
filter(parm2 != "") |>
mutate(parm2 = as.numeric(parm2))

# Compute time relative to democratization
data_ipw <- data_ipw |>
mutate(time = parm2 - 16)
```

2.4.2 Plot

Figure 2: Semiparametric Estimation

2.5 Table.5

2.5.1 Preprocessing

```
# Prepare dataset for ATT estimation
data f1 <- data |>
  rename(id = " ID") |>
  group by(id) |>
  arrange(year) |>
  ungroup()
# Compute democratization transition variable
data_f1 <- data_f1 |>
  group_by(id) |>
  arrange(year) |>
  mutate(prev_dem = dplyr::lag(dem, 1)) |>
  ungroup() |>
  mutate(transition = case when(
    dem == 1 & prev_dem == 0 ~ 1,
    dem == 0 & prev_dem == 0 ~ 0,
    TRUE ~ NA_real_
  ))
# Compute lag variables for GDP
data_f1 <- data_f1 |>
  group_by(id) |>
  arrange(year) |>
  mutate(
   lag1 = dplyr::lag(y, 1),
   lag2 = dplyr::lag(y, 2),
   lag3 = dplyr::lag(y, 3),
   lag4 = dplyr::lag(y, 4)
  ) |>
  ungroup() |>
  filter(!is.na(lag1) & !is.na(lag2) & !is.na(lag3) & !is.na(lag4))
# Compute GDP differences for pre-democratization periods
for (t in -15:-2) {
  col_name <- paste0("gdpDiff_m", abs(t))</pre>
  data_f1 <- data_f1 |>
    group_by(id) |>
    arrange(year) |>
    mutate(!!col_name := dplyr::lag(y, abs(t)) - lag1) |>
    ungroup()
}
# Define GDP differences at t = -1 and t = 0
data_f1 <- data_f1 |>
  mutate(gdpDiff_m1 = 0)
data_f1 <- data_f1 |>
  group by(id) |>
  arrange(year) |>
```

```
mutate(gdpDiff_0 = y - lag1) |>
ungroup()

# Compute GDP differences for post-democratization periods
for (t in 1:30) {
    col_name <- pasteO("gdpDiff_p", t)
    data_f1 <- data_f1 |>
        group_by(id) |>
        arrange(year) |>
        mutate(!!col_name := dplyr::lead(y, t) - lag1) |>
        ungroup()
}

# Keep only relevant observations
data_f1 <- data_f1 |> filter(!is.na(transition))
```

2.5.2 Estimation

```
# Compute ATT using inverse probability weighting (IPW)
compute_atet_ipw <- function(outcome_var, data) {</pre>
   # Filter relevant observations
  df <- data |>
   filter(!is.na(!!sym(outcome_var)),
           !is.na(transition),
           !is.na(lag1), !is.na(lag2), !is.na(lag3), !is.na(lag4),
           !is.na(year))
  # Estimate propensity score model
  prop_model <- glm(transition ~ lag1 + lag2 + lag3 + lag4 + factor(year),</pre>
                    data = df, family = binomial(link = "probit"))
  # Compute propensity scores and inverse probability weights
  df <- df |> mutate(ps = predict(prop_model, type = "response"))
  df <- df |> mutate(weight = ifelse(transition == 0, ps/(1 - ps), 1))
  # Extract treated and control group outcomes
  treated outcome <- df |> filter(transition == 1) |> pull(!!sym(outcome var))
  control df <- df |> filter(transition == 0)
  control_outcome <- control_df[[outcome_var]]</pre>
  control_weight <- control_df$weight</pre>
  \# Compute ATT as the weighted mean difference
 att <- mean(treated_outcome) - (sum(control_outcome * control_weight) / sum(control_weight))
 return(att)
# Compute bootstrapped ATT estimates
compute_att_ipw_boot <- function(outcome_var, data, B = 200) {</pre>
  # Compute original ATT estimate
 att_est <- compute_atet_ipw(outcome_var, data)</pre>
  # Initialize bootstrap estimates
 n <- nrow(data)</pre>
 boot_est <- numeric(B)</pre>
  set.seed(123)
  # Bootstrap resampling
 for (b in 1:B) {
```

```
boot_indices <- sample(1:n, size = n, replace = TRUE)</pre>
    boot_data <- data[boot_indices, ]</pre>
    boot_est[b] <- compute_atet_ipw(outcome_var, boot_data)</pre>
  # Compute standard error from bootstrap estimates
  se est <- sd(boot est)
  return(list(att = att_est, se = se_est, boot = boot_est))
# Compute ATT estimates for each relative time period
outcome_vars <- c(</pre>
  paste0("gdpDiff_m", 15:2),
  "gdpDiff_m1",
  "gdpDiff_0",
 paste0("gdpDiff_p", 1:30)
# Store results in a list
att_results <- list()</pre>
for (var in outcome_vars) {
  att_results[[var]] <- compute_att_ipw_boot(var, data_f1, B = 200)
# Aggregate ATT estimates into grouped time periods
group definitions <- list(</pre>
  "-5 to -1" = c("gdpDiff_m5", "gdpDiff_m4", "gdpDiff_m3", "gdpDiff_m2", "gdpDiff_m1"),
  "0 to 4" = c("gdpDiff_0", "gdpDiff_p1", "gdpDiff_p2", "gdpDiff_p3", "gdpDiff_p4"),
  "5 to 9"
           = paste0("gdpDiff_p", 5:9),
  "10 to 14" = paste0("gdpDiff_p", 10:14),
 "15 to 19" = paste0("gdpDiff_p", 15:19),
 "20 to 24" = paste0("gdpDiff_p", 20:24),
 "26 to 30" = paste0("gdpDiff_p", 26:30)
# Compute mean ATT and standard error for each group
group_results <- list()</pre>
for (grp in names(group_definitions)) {
  vars_in_grp <- group_definitions[[grp]]</pre>
  att_vec <- sapply(vars_in_grp, function(x) att_results[[x]]$att)</pre>
  boot_mat <- sapply(vars_in_grp, function(x) att_results[[x]]$boot)</pre>
  grp_boot <- rowMeans(boot_mat)</pre>
  grp_att <- mean(att_vec)</pre>
  grp se <- sd(grp boot)</pre>
  group_results[[grp]] <- list(att = grp_att, se = grp_se)</pre>
# Prepare results for tabulation
group_names <- names(group_results)</pre>
table_values <- sapply(group_names, function(grp) {
  sprintf("%.3f", group_results[[grp]]$att)
})
table_ses <- sapply(group_names, function(grp) {</pre>
  sprintf("(%.3f)", group_results[[grp]]$se)
```

```
})
cell_text <- mapply(function(val, se) {
    pasteO(val, "\n", se)
}, table_values, table_ses, SIMPLIFY = TRUE)

# Convert results to dataframe
results_df <- as.data.frame(t(cell_text))
colnames(results_df) <- group_names

# Rename column for clarity
results_df <- results_df |>
    rename("-5 to -1" = "-5 to -1 (years)") |>
    mutate(years = "ATT on GDP (Log)")

# Arrange columns in proper order
results_df <- results_df |>
    select(years, everything())
```

2.5.3 Tabulation

```
# Convert results dataframe to LaTeX format table
table_latex <- results_df |>
    kable(format = "latex",
        booktabs = TRUE,
        escape = FALSE,
        caption = "Semiparametric Estimates of the Effect
        of Democratizations on GDP per Capita (Log)",
        label = "tab:table_5_ipw",
        digits = 3) |>
    add_header_above(c("Inverse propensity score reweighting" = ncol(results_df))) |>
    kable_styling(latex_options = c("hold_position", "scale_down"))

# Save LaTeX table output to file
writeLines(table_latex, con = "output/table_5_ipw.tex")
```

2.6 Table.6 (Shoya Abe)

2.6.1 Preprocessing

```
# Prepare dataset for IV estimation
data_t6 <- data |>
  group_by(country_name) |> # Group data by country
  arrange(year) |> # Arrange data by year in ascending order
  mutate(
    # Generate lagged variables for GDP up to 8 years
  lag1 = dplyr::lag(y, 1),
  lag2 = dplyr::lag(y, 2),
  lag3 = dplyr::lag(y, 3),
  lag4 = dplyr::lag(y, 4),
```

```
lag5 = dplyr::lag(y, 5),
lag6 = dplyr::lag(y, 6),
lag7 = dplyr::lag(y, 7),
lag8 = dplyr::lag(y, 8)
) |>
ungroup() |> # Remove grouping
pdata.frame(index = c("country_name", "year"))
```

2.6.2 Estimation

```
# Estimate instrumental variables (IV) models
model iv 1 <- plm(
  y ~ dem + plm::lag(y, 1:4) | # Democracy and up to 4 lags of GDP as regressors
    plm::lag(demreg, 1) + plm::lag(y, 1:4),
    # Instrument: lagged democracy variable
  data = data t6,
  effect = "twoways"
model_iv_2 <- plm(</pre>
  y ~ dem + plm::lag(y, 1:4) |
    plm::lag(demreg, 1:4) + plm::lag(y, 1:4),
    # Use additional lags of democracy as instruments
  data = data t6,
  effect = "twoways"
model_iv_3 <- plm(</pre>
  y \sim dem + plm::lag(y, 1:4) + sov1 + sov2 + sov3 + sov4
    # Include Soviet region dummies
    plm::lag(demreg, 1:4) + plm::lag(y, 1:4) +
    sov1 + sov2 + sov3 + sov4,
  data = data t6,
  effect = "twoways"
model_iv_4 <- plm(</pre>
  y \sim dem + plm::lag(y, 1:4) +
    rtrend2 + rtrend3 + rtrend4 + rtrend5 + rtrend6 + rtrend7 |
     # Include regional trends
    plm::lag(demreg, 1:4) + plm::lag(y, 1:4) +
   rtrend2 + rtrend3 + rtrend4 + rtrend5 + rtrend6 + rtrend7,
  data = data t6,
  effect = "twoways",
  model = "within"
)
# Compute long-run effects of democratization
beta hat 1 <- coef(model iv 1)["dem"]
gamma_hat_1 <- coef(model_iv_1)[2:5]</pre>
long_run_effect_1 <- beta_hat_1 / (1 - sum(gamma_hat_1))</pre>
beta_hat_2 <- coef(model_iv_2)["dem"]</pre>
gamma_hat_2 <- coef(model_iv_2)[2:5]</pre>
```

```
long_run_effect_2 <- beta_hat_2 / (1 - sum(gamma_hat_2))</pre>
beta_hat_3 <- coef(model_iv_3)["dem"]</pre>
gamma_hat_3 <- coef(model_iv_3)[2:5]</pre>
long_run_effect_3 <- beta_hat_3 / (1 - sum(gamma_hat_3))</pre>
beta_hat_4 <- coef(model_iv_4)["dem"]</pre>
gamma hat 4 <- coef(model iv 4)[2:5]
long_run_effect_4 <- beta_hat_4 / (1 - sum(gamma_hat_4))</pre>
# Round the results for clarity
lre <- round(</pre>
  c(long_run_effect_1, long_run_effect_2,
    long_run_effect_3, long_run_effect_4),
  3
)
# Compute short-run effects at year 25
sre <- c()</pre>
dem_shortrun <- coef(model_iv_1)["dem"]</pre>
lag1 <- coef(model_iv_1)[2]</pre>
lag2 <- coef(model_iv_1)[3]</pre>
lag3 <- coef(model_iv_1)[4]</pre>
lag4 <- coef(model_iv_1)[5]</pre>
effect1 <- dem shortrun
effect2 <- effect1 * lag1 + dem_shortrun</pre>
effect3 <- effect2 * lag1 + effect1 * lag2 + dem_shortrun</pre>
effect4 <- effect3 * lag1 + effect2 * lag2 +
  effect1 * lag3 + dem_shortrun
effects <- c(effect1, effect2, effect3, effect4)
for (i in 5:30) {
  eff <- effects[i - 1] * lag1 +
    effects[i - 2] * lag2 +
    effects[i - 3] * lag3 +
    effects[i - 4] * lag4 + dem_shortrun
  effects <- c(effects, eff)
# Round short-run effect estimates for clarity
sre <- c(sre, effects[25])</pre>
dem_shortrun <- coef(model_iv_2)["dem"]</pre>
lag1 <- coef(model_iv_2)[2]</pre>
lag2 <- coef(model_iv_2)[3]</pre>
lag3 <- coef(model_iv_2)[4]</pre>
lag4 <- coef(model_iv_2)[5]</pre>
effect1 <- dem_shortrun</pre>
effect2 <- effect1 * lag1 + dem_shortrun</pre>
effect3 <- effect2 * lag1 + effect1 * lag2 + dem_shortrun
effect4 <- effect3 * lag1 + effect2 * lag2 +
  effect1 * lag3 + dem_shortrun
effects <- c(effect1, effect2, effect3, effect4)</pre>
for (i in 5:30) {
```

```
eff <- effects[i - 1] * lag1 +
    effects[i - 2] * lag2 +
    effects[i - 3] * lag3 +
    effects[i - 4] * lag4 + dem_shortrun
  effects <- c(effects, eff)</pre>
sre <- c(sre, effects[25])</pre>
dem_shortrun <- coef(model_iv_3)["dem"]</pre>
lag1 <- coef(model_iv_3)[2]</pre>
lag2 <- coef(model_iv_3)[3]</pre>
lag3 <- coef(model_iv_3)[4]</pre>
lag4 <- coef(model_iv_3)[5]</pre>
effect1 <- dem_shortrun</pre>
effect2 <- effect1 * lag1 + dem_shortrun</pre>
effect3 <- effect2 * lag1 + effect1 * lag2 + dem_shortrun</pre>
effect4 <- effect3 * lag1 + effect2 * lag2 +
  effect1 * lag3 + dem_shortrun
effects <- c(effect1, effect2, effect3, effect4)
for (i in 5:30) {
  eff <- effects[i - 1] * lag1 +
    effects[i - 2] * lag2 +
    effects[i - 3] * lag3 +
    effects[i - 4] * lag4 + dem_shortrun
  effects <- c(effects, eff)</pre>
}
sre <- c(sre, effects[25])</pre>
dem_shortrun <- coef(model_iv_4)["dem"]</pre>
lag1 <- coef(model_iv_4)[2]</pre>
lag2 <- coef(model_iv_4)[3]</pre>
lag3 <- coef(model_iv_4)[4]</pre>
lag4 <- coef(model_iv_4)[5]</pre>
effect1 <- dem_shortrun</pre>
effect2 <- effect1 * lag1 + dem_shortrun</pre>
effect3 <- effect2 * lag1 + effect1 * lag2 + dem_shortrun</pre>
effect4 <- effect3 * lag1 + effect2 * lag2 +
  effect1 * lag3 + dem_shortrun
effects <- c(effect1, effect2, effect3, effect4)</pre>
for (i in 5:30) {
  eff <- effects[i - 1] * lag1 +
    effects[i - 2] * lag2 +
    effects[i - 3] * lag3 +
    effects[i - 4] * lag4 + dem_shortrun
  effects <- c(effects, eff)
sre <- c(sre, effects[25])</pre>
sre <- round(sre, 3)</pre>
# Compute the persistence of GDP
pers1 <- sum(coef(model_iv_1)[2:5])</pre>
pers2 <- sum(coef(model_iv_2)[2:5])</pre>
```

```
pers3 <- sum(coef(model_iv_3)[2:5])
pers4 <- sum(coef(model_iv_4)[2:5])
pers <- round(c(pers1, pers2, pers3, pers4), 3)</pre>
```

2.6.3 Tabulation

```
# Override coefficients for LaTeX table
override.coef.1 <- coef(model_iv_1)["dem", drop = FALSE]</pre>
override.coef.2 <- coef(model_iv_2)["dem", drop = FALSE]</pre>
override.coef.3 <- coef(model_iv_3)["dem", drop = FALSE]</pre>
override.coef.4 <- coef(model_iv_4)["dem", drop = FALSE]</pre>
override.se.1 <- sqrt(diag(vcov(model_iv_1)))["dem"]</pre>
override.se.2 <- sqrt(diag(vcov(model_iv_2)))["dem"]</pre>
override.se.3 <- sqrt(diag(vcov(model_iv_3)))["dem"]</pre>
override.se.4 <- sqrt(diag(vcov(model_iv_4)))["dem"]</pre>
models <- list(model_iv_1, model_iv_2, model_iv_3, model_iv_4)</pre>
# Generate LaTeX table
texreg(
 models,
  override.coef = list(
    override.coef.1,
    override.coef.2,
    override.coef.3,
    override.coef.4
  ),
  override.se = list(
    override.se.1,
    override.se.2,
    override.se.3,
    override.se.4
  ),
  custom.model.names = c(
    "1 Lag", "4 Lags",
    "Soviet Dummies",
    "Regional Trends"
  ),
  custom.coef.map = list(dem = "Democracy"),
  custom.gof.rows = list(
    "Persistence" = pers,
    "Long run effect" = lre,
    "Effect after 25 years" = sre
  ),
  file = "output/table_6_iv.tex",
  caption = "Effect of Democracy on (Log) GDP per Capita",
  include.rsquared = FALSE,
  include.adjrs = FALSE,
  include.fstat = FALSE
```

3 Extention

3.1 Confidence Interval by the Bootstrap Method (Shoya Abe)

In Figure 1 of the original paper, confidence intervals are not presented. We employ the bootstrap method to derive the confidence interval for the estimated ATT. This allows us to visualize the uncertainty associated with the estimated ATT.

3.1.1 Bootstrap Method

We explain the bootstrap method used in our analysis. The bootstrap method is a computational simulation technique that allows us to estimate the distribution of a statistic in a finite sample. The procedure is conducted as follows:

- 1. Randomly draw n observations with replacement from the original sample to generate n bootstrap samples.
- 2. Estimate the ATT for each bootstrap sample.
- 3. Compute the standard error of the ATT estimates obtained from the bootstrap samples.
- 4. Use this standard error to estimate the confidence interval.

Here, we derive the confidence interval using two different methods. The first method assumes that the distribution of the estimated ATT follows a normal distribution and estimates the confidence interval using the 2.5% and 97.5% percentiles. This corresponds to the light blue-shaded interval in Figure 3. The second method estimates the confidence interval using the 2.5% and 97.5% percentiles of the bootstrap distribution. This corresponds to the pink-shaded interval in Figure 3.

3.1.2 Estimation

We estimate the confidence interval by executing the following code. The number of bootstrap replications is 200.

```
# Function to comute ATT estimates for a given bootstrap sample
compute_atets <- function(data_boot) {</pre>
  original_data <- data_f1
   # Store the originial dataset to restore later
  data f1 <<- data boot
   # Teporarily replace the dataset with the bootstrap sample
  out <- numeric(length(relative times))</pre>
  for (i in seq_along(relative_times)) {
    # Loop through each time period relative to democratization
    t_val <- relative_times[i]</pre>
    # Define column names for GDP differences based on the relative time
    if (t val < 0) {
      col_name <- paste0("gdpDiff_m", abs(t_val))</pre>
    } else {
      col_name <- if (t_val == 0) "gdpDiff_0" else paste0("gdpDiff_p", t_val)
    out[i] <- estimateATT(col_name)</pre>
     # Compute ATT for the given time period
```

```
data_f1 <<- original_data # Restore the original dataset</pre>
  out
}
B <- 200
set.seed(123)
# Initialize a matrix to store bootstrap estimates
boot_mat <- matrix(NA, nrow = B, ncol = length(relative_times))</pre>
# Extract unique country IDs for bootstrap resampling
unique_ids <- unique(data_f1$id)
# Perform bootstrap resampling
for (b in seq_len(B)) {# Iterate over B bootstrap samples
  sampled_ids <- sample(unique_ids, size = length(unique_ids), replace = TRUE) # Sample country IDs wit</pre>
  # Create a bootstrap sample by selecting data corresponding to the sampled IDs
  bs_data <- lapply(sampled_ids, function(x) {</pre>
    data_f1[data_f1$id == x, ]
  }) |> bind_rows()
  # Compute ATT estimates for the bootstrap sample
  boot_mat[b, ] <- compute_atets(bs_data)</pre>
}
# Compute standard errors from bootstrap samples
boot_se <- apply(boot_mat, 2, sd, na.rm = TRUE)</pre>
# Compute normal-based confidence intervals (mean \pm 1.96 * standard error)
ci_lower_normal <- atets - 1.96 * boot_se</pre>
ci_upper_normal <- atets + 1.96 * boot_se</pre>
# Compute percentile-based confidence intervals (2.5% and 97.5% quantiles)
ci_lower_perc <- apply(boot_mat, 2, quantile, probs = 0.025, na.rm = TRUE)
ci_upper_perc <- apply(boot_mat, 2, quantile, probs = 0.975, na.rm = TRUE)</pre>
# Create a dataframe containing ATT estimates and confidence intervals
results_with_ci <- data.frame(
  RelativeTime = relative_times,
  ATT = atets,
  ciL_normal = ci_lower_normal,
  ciU_normal = ci_upper_normal,
  ciL_perc = ci_lower_perc,
  ciU_perc = ci_upper_perc
```

3.1.3 Plot

```
# Create a plot showing the ATT estimates with confidence intervals
figure_1_withCI <- ggplot(results_with_ci, aes(x = RelativeTime, y = ATT)) +
  geom_line(color = "black") +
  geom_ribbon(aes(ymin = ciL_perc, ymax = ciU_perc), fill = "pink", alpha = 0.3) +</pre>
```

```
geom_ribbon(aes(ymin = ciL_normal, ymax = ciU_normal), fill = "skyblue", alpha = 0.3) +
scale_x_continuous(breaks = seq(-15, 30, 5)) +
labs(
    x = "Years around Democratization",
    y = "Change in GDP per capita (log points)"
) +
theme_bw()

# Save the plot as a PDF
ggsave("output/figure_1_withCI.pdf",
    figure_1_withCI,
    width = 14,
    height = 8,
    units = "cm")
```


Figure 3: The Long-Term Impact of Democratization on Economic Growth (with the confidence interval)

Figure 1 appears to strongly support the claim that "Democracy does cause growth". However, when we look at Figure 2, which includes confidence intervals, the picture changes completely. While we do not deny that democratization has a positive effect on economic growth, it becomes clear that the long-term effects of democratization on economic growth are highly uncertain. Perhaps the authors chose not to display the confidence intervals, even if unintentionally, in a way that emphasized the claim that "Democracy does cause growth."

4 References

Acemoglu, Daron, Suresh Naidu, Pascual Restrepo, and James A Robinson. 2019. "Democracy Does Cause Growth." *Journal of Political Economy* 127 (1): 47–100. https://doi.org/10.1086/700936.

Hansen, Bruce. 2022. Econometrics. Princeton University Press.

Imai, Kosuke, In Song Kim, and Erik H Wang. 2023. "Matching Methods for Causal Inference with Time-Series Cross-Sectional Data." *American Journal of Political Science* 67 (3): 587–605. https://doi.org/10.1111/ajps.12685.

5 Appendix

5.1 List of Variables (Shoya Abe)

```
# Extract variable labels from the dataset
var_labels <- sapply(data, function(x) attr(x, "label"))

# Create a tibble containing variable names and their labels
list_var <- tibble(
    variable = names(var_labels),
    label = var_labels
)

# Generate a LaTeX-formatted table listing all variables
kable(
    list_var,
    format = "latex",
    booktabs = TRUE,
    longtable = TRUE,
    caption = "List of Variables"
) |>
    kable_styling(latex_options = "repeat_header")
```

Table 5: List of Variables

variable	label
country_name wbcode year gdppercapitaconstant2000us lp_bl	Country name World Bank country code Year (from 1960 to 2010) GDP per capita (constant 2000 US\$, from World Bank) Percentage of population with at most primary (Barro-Lee)
ls_bl lh_bl taxratio region wbcode2	Percentage of population with at most secondary (Barro-Lee) Percentage of population with tertiary education (Barro-Lee) Tax revenue as a share of GDP (from Hendrix) Geographical region Generated numeric country code
demCGV demBMR yeardem yearrev secenr	Democracy measure by CGV Democracy measure by BMR Identifier for a democratization during this year Identifier for a reversal to autocracy during this year Secondary enrollment from World bank
prienr tradewb mortnew ginv rtfpna	Primary enrollment from World Bank Exports plus Imports as a share of GDP from World Bank Child mortality per 1000 births from World Bank Gross investment as a share of GDP TFP at constant national prices (2005=1) from PWT
y dem yy1 yy2	log of GDP per capita in 2000 constant dollars (multiplied by a 100) Democracy measure by ANRR year== 1960.0000 year== 1961.0000

Table 5: List of Variables (continued)

variable	label
уу3	year = 1962.0000
yy4	year = 1963.0000
yy5	year = 1964.0000
yy6	year = 1965.0000
yy7	year = 1966.0000
yy8	year = 1967.0000
yy9	year = 1968.0000
yy10	year = 1969.0000
yy11	year = 1970.0000
yy12	year = 1971.0000
yy13	year = 1972.0000
yy14	year = 1973.0000
yy15	year = 1974.0000
yy16	year = 1975.0000
yy17	year = 1976.0000
yy18	year = 1977.0000
yy19	year = 1978.0000
yy20	year = 1979.0000
yy21	year = 1980.0000
yy22	year = 1981.0000
yy23	year = 1982.0000
yy24	year = 1983.0000
yy25	year = 1984.0000
yy26	year = 1985.0000
yy27	year = 1986.0000
yy28	year = 1987.0000
yy29	year = 1988.0000
yy30	year = 1989.0000
yy31	year = 1990.0000
yy32	year = 1991.0000
уу33	year = 1992.0000
yy34	year = 1993.0000
yy35	year = 1994.0000
yy36	year = 1995.0000
yy37	year = 1996.0000
уу38	year = 1997.0000
yy39	year = 1998.0000
yy40	year = 1999.0000
yy41	year = 2000.0000
yy42	year = 2001.0000
yy43	year = 2002.0000
yy44	year = 2003.0000
yy45	year = 2004.0000
yy46	year = 2005.0000
yy47	year = 2006.0000
yy48	year = 2007.0000

Table 5: List of Variables (continued)

variable	label
yy49 yy50 yy51 InitReg unrest	year== 2008.0000 year== 2009.0000 year== 2010.0000 Democratic status after independence or in 1960 Occurrence of events of unrest (from Banks CNTS)
loginvpc ltfp ltrade2 lprienr lsecenr	log investment (multiplied by 100) log TFP (multiplied by 100) lof of trade (multiplied by 100) lof of primary enrollment (multiplied by 100) log of secondary enrollment (multiplied by 100)
lgov lmort unrestn demFH demPOL	log of taxes to GDP (multiplied by a 100) log of child mortality rate (multiplied by a 100) Likelihood of unrest (0-100 scale) democracy measure based on Freedom House democracy measure based on Polity IV
demPS demPOL_xconst demPOL_parcomp demPOL_exrec demFH_pr	democracy measure by PS dummy for constraints on executive (based on polity) dummy for competitiveness of participation (based on polity) dummy for quality of executive recruitment process (based on Polity) Dummy for political rights (based on Freedom House)
demFH_cl demevent revevent democ rever	Dummy for civil liberties (based on Freedom House) Event of democratization Event of reversal to autocracy Cummulative number of democratizations Cummulative number of reversals
demext regionINITREG demreg tradewbreg unrestreg	Democratic status at beginning of sample Region/Initial regime at start of sample cells Average democracy in the region*initial regime (leaving own country out) Regional trade Regional unrest
yreg rtrend1 rtrend2 rtrend3 rtrend4	Regional GDP per capita Region 1 trend Region 2 trend Region 3 trend Region 4 trend
rtrend5 rtrend6 rtrend7 region60 regionDA	Region 5 trend Region trend 6 region trend 7 Region/Democratic in 1960 cells Region/Always democratic cells
regionREG demreg60 demregDA demregREGIME d60_1	Region/Detailed regime in 1960 cells Average democracy in the region*initial regim (using regime in 1960, jackniffed) Average democracy in the region*initial regim (using always democracy, jackniffe Average democracy in the region*initial regime (detailed regimes, jackniffed) region60==AFR_dem
d60_2	$region60 == AFR_nd$

Table 5: List of Variables (continued)

variable	label
d60_3 d60_4 d60_5 d60_6	region60==EAP_dem region60==EAP_nd region60==ECA_nd region60==INL_dem
d60_7 d60_8 d60_9 d60_10 d60_11	region60==INL_nd region60==LAC_dem region60==LAC_nd region60==MNA_dem region60==MNA_nd
d60_12 d60_13 dDA_1 dDA_2 dDA_3	region60==SAS_dem region60==SAS_nd regionDA==AFR_dem regionDA==AFR_nd regionDA==EAP_dem
dDA_4 dDA_5 dDA_6 dDA_7 dDA_8	regionDA==EAP_nd regionDA==ECA_nd regionDA==INL_dem regionDA==INL_nd regionDA==LAC_dem
dDA_9 dDA_10 dDA_11 dDA_12 dREG_1	regionDA==LAC_nd regionDA==MNA_nd regionDA==SAS_dem regionDA==SAS_nd regionREG==AFRBritishColony
dREG_2 dREG_3 dREG_4 dREG_5 dREG_6	regionREG==AFRCivilDictator regionREG==AFRFrenchColony regionREG==AFRMilitaryDictator regionREG==AFRParlamentaryDemocracy regionREG==AFRRoyalDictator
dREG_7 dREG_8 dREG_9 dREG_10 dREG_11	regionREG==AFRSocialistRegime regionREG==EAPBritishColony regionREG==EAPCivilDictator regionREG==EAPMilitaryDictator regionREG==EAPMixedAndPresidentialDemocracy
dREG_12 dREG_13 dREG_14 dREG_15 dREG_16	regionREG==EAPRoyalDictator regionREG==EAPSocialistRegime regionREG==ECAMilitaryDictator regionREG==ECASocialistRegime regionREG==INLCivilDictator
dREG_17 dREG_18 dREG_19 dREG_20 dREG_21	regionREG==INLFrenchColony regionREG==INLMilitaryDictator regionREG==INLMixedAndPresidentialDemocracy regionREG==INLParlamentaryDemocracy regionREG==LACBritishColony
dREG_22 dREG_23 dREG_24	regionREG==LACFrenchColony regionREG==LACMilitaryDictator regionREG==LACMixedAndPresidentialDemocracy

Table 5: List of Variables (continued)

variable	label
dREG_25	regionREG==LACSocialistRegime
dREG 26	regionREG==MNABritishColony
dREG_27	regionREG==MNACivilDictator
dREG_27 dREG_28	regionREG==MNAFrenchColony
dREG 29	regionREG==MNAMilitaryDictator
dREG 30	regionREG==MNAParlamentaryDemocracy
$dREG_31$	regionREG==MNARoyalDictator
dREG 32	regionREG==SASBritishColony
dREG 33	regionREG==SASMilitaryDictator
dREG_34	regionREG==SASParlamentaryDemocracy
$dREG_35$	${\rm regionREG} {==} {\rm SASRoyalDictator}$
gdp1960	GDP per capita in 1960 from Madisson
${\rm region_initreg_year}$	Region/Initial regime/year cells
$incomequint50s_year$	Income quintiles in 50s/year cells
sov1	Soviets post 89
sov2	Soviets post 90
sov3	Soviets post 91
sov4	Soviets post 92
marketref	Index of market reforms
$egin{array}{c} { m regdum1} \\ { m regdum2} \end{array}$	region_initreg_year==AFR_dem1960 region_initreg_year==AFR_dem1961
regdum3	region_initreg_year==AFR_dem1962
_	
$ \begin{array}{r} \text{regdum4} \\ \text{regdum5} \end{array} $	region_initreg_year==AFR_dem1963 region_initreg_year==AFR_dem1964
regdum6	region_initreg_year==AFR_dem1965
regdum7	region_initreg_year==AFR_dem1966
regdum8	region_initreg_year==AFR_dem1967
regdum9	region_initreg_year==AFR_dem1968
regdum10	region_initreg_year==AFR_dem1969
regdum11	$region_initreg_year == AFR_dem 1970$
regdum12	$region_initreg_year == AFR_dem 1971$
regdum13	$region_initreg_year == AFR_dem 1972$
regdum14	$region_initreg_year == AFR_dem 1973$
regdum15	region_initreg_year==AFR_dem1974
regdum16	region_initreg_year==AFR_dem1975
regdum17 regdum18	region_initreg_year==AFR_dem1976 region initreg year==AFR dem1977
<u> </u>	
regdum19	region_initreg_year==AFR_dem1978
regdum20 regdum21	region_initreg_year==AFR_dem1979 region_initreg_year==AFR_dem1980
regdum21	region_initreg_year==AFR_dem1980 region_initreg_year==AFR_dem1981
regdum23	region initreg year==AFR dem1982
regdum24	region_initreg_year==AFR_dem1983
regdum25	region_initreg_year==AFR_dem1984
regdum26	region_initreg_year==AFR_dem1985
regdum27	region_initreg_year==AFR_dem1986
regdum28	region_initreg_year==AFR_dem1987

Table 5: List of Variables (continued)

variable	label
regdum29	region_initreg_year==AFR_dem1988
regdum30	region_initreg_year==AFR_dem1989
regdum31	region initreg year==AFR dem1990
regdum32	region_initreg_year==AFR_dem1991
regdum33	region_initreg_year==AFR_dem1992
regdum34	region_initreg_year==AFR_dem1993
regdum35	region_initreg_year==AFR_dem1994
regdum36	region_initreg_year==AFR_dem1995
regdum37	region_initreg_year==AFR_dem1996
regdum38	region_initreg_year==AFR_dem1997
regdum39	$region_initreg_year == AFR_dem 1998$
regdum40	region_initreg_year==AFR_dem1999
regdum41	region_initreg_year==AFR_dem2000
regdum42	region_initreg_year==AFR_dem2001
regdum43	region initreg year==AFR dem2002
regdum44	region_initreg_year==AFR_dem2003
regdum45	region_initreg_year==AFR_dem2003 region_initreg_year==AFR_dem2004
regdum46	region_initreg_year==AFR_dem2004 region_initreg_year==AFR_dem2005
regdum47	region_initreg_year==AFR_dem2006
regdum48	region initreg year==AFR dem2007
regdum49	region_initreg_year==AFR_dem2008
regdum50	region_initreg_year==AFR_dem2009
regdum51	region_initreg_year==AFR_dem2010
regdum52	region_initreg_year==AFR_nd1960
regdum53	$region_initreg_year == AFR_nd1961$
regdum54	$region_initreg_year == AFR_nd1962$
regdum55	$region_initreg_year == AFR_nd1963$
regdum56	$region_initreg_year == AFR_nd1964$
regdum57	region_initreg_year==AFR_nd1965
regdum58	$region_initreg_year == AFR_nd1966$
regdum59	$region_initreg_year == AFR_nd1967$
regdum60	$region_initreg_year == AFR_nd1968$
regdum61	$region_initreg_year == AFR_nd1969$
regdum62	$region_initreg_year == AFR_nd1970$
regdum63	$region_initreg_year == AFR_nd1971$
regdum64	$region_initreg_year == AFR_nd1972$
regdum65	region_initreg_year==AFR_nd1973
regdum66	region_initreg_year==AFR_nd1974
regdum67	$region_initreg_year == AFR_nd1975$
regdum68	$region_initreg_year == AFR_nd1976$
regdum69	$region_initreg_year == AFR_nd1977$
regdum70	region initreg year==AFR nd1978
regdum71	region_initreg_year==AFR_nd1979
regdum72	region_initreg_year==AFR_nd1980
regdum73	region_initreg_year==AFR_nd1981
regdum74	region_initreg_year==AFR_nd1982
-0	

Table 5: List of Variables (continued)

variable	label
regdum75	region_initreg_year==AFR_nd1983
regdum76	$region_initreg_year == AFR_nd1984$
regdum77	$region_initreg_year == AFR_nd1985$
regdum78	$region_initreg_year == AFR_nd1986$
regdum79	$region_initreg_year == AFR_nd1987$
regdum80	$region_initreg_year == AFR_nd1988$
regdum81	$region_initreg_year == AFR_nd1989$
regdum82	$region_initreg_year == AFR_nd1990$
regdum83	region_initreg_year==AFR_nd1991
regdum84	$region_initreg_year == AFR_nd1992$
regdum85	$region_initreg_year == AFR_nd1993$
regdum86	$region_initreg_year == AFR_nd1994$
regdum87	region_initreg_year==AFR_nd1995
regdum88	$region_initreg_year == AFR_nd1996$
regdum89	$region_initreg_year == AFR_nd1997$
regdum90	$region_initreg_year == AFR_nd1998$
regdum91	$region_initreg_year == AFR_nd1999$
regdum92	$region_initreg_year == AFR_nd2000$
regdum93	$region_initreg_year == AFR_nd2001$
regdum94	$region_initreg_year == AFR_nd2002$
regdum95	$region_initreg_year == AFR_nd2003$
regdum96	region_initreg_year==AFR_nd2004
regdum97	$region_initreg_year == AFR_nd2005$
regdum98	$region_initreg_year == AFR_nd2006$
regdum99	$region_initreg_year == AFR_nd2007$
regdum100	region_initreg_year==AFR_nd2008
regdum101	region_initreg_year==AFR_nd2009
regdum102	region_initreg_year==AFR_nd2010
regdum103	region_initreg_year==EAP_dem1960
regdum104	region_initreg_year==EAP_dem1961
regdum105	region_initreg_year==EAP_dem1962
regdum106	region_initreg_year==EAP_dem1963
regdum107	region_initreg_year==EAP_dem1964
regdum108	region_initreg_year==EAP_dem1965
regdum109	region_initreg_year==EAP_dem1966
regdum110	region_initreg_year==EAP_dem1967
regdum111	region_initreg_year==EAP_dem1968
regdum112	region_initreg_year==EAP_dem1969
regdum113	region_initreg_year==EAP_dem1970
regdum114	region_initreg_year==EAP_dem1971
regdum115	region_initreg_year==EAP_dem1972
regdum116	region_initreg_year==EAP_dem1973
regdum117	region_initreg_year==EAP_dem1974
regdum118	region_initreg_year==EAP_dem1975
regdum119	$region_initreg_year == EAP_dem 1976$
regdum120	$region_initreg_year == EAP_dem 1977$
regdum121	$region_initreg_year == EAP_dem 1978$

Table 5: List of Variables (continued)

variable	label
regdum122	$region_initreg_year == EAP_dem1979$
regdum123	$region_initreg_year == EAP_dem 1980$
regdum124	$region_initreg_year == EAP_dem 1981$
regdum125	$region_initreg_year == EAP_dem 1982$
regdum126	$region_initreg_year == EAP_dem 1983$
regdum 127	$region_initreg_year == EAP_dem 1984$
regdum128	$region_initreg_year == EAP_dem 1985$
regdum129	$region_initreg_year == EAP_dem1986$
regdum130	region_initreg_year==EAP_dem1987
regdum131	region_initreg_year==EAP_dem1988
regdum132	region_initreg_year==EAP_dem1989
regdum133	$region_initreg_year == EAP_dem 1990$
regdum134	region_initreg_year==EAP_dem1991
regdum135	region_initreg_year==EAP_dem1992
regdum136	region_initreg_year==EAP_dem1993
regdum137	region_initreg_year==EAP_dem1994
regdum138	region_initreg_year==EAP_dem1995
regdum139	$region_initreg_year == EAP_dem1996$
regdum140	region_initreg_year==EAP_dem1997
regdum141	region_initreg_year==EAP_dem1998
regdum142	region_initreg_year==EAP_dem1999
regdum143	region_initreg_year==EAP_dem2000
regdum144	region_initreg_year==EAP_dem2001
regdum145	region_initreg_year==EAP_dem2002
regdum146	region_initreg_year==EAP_dem2003
regdum147	region_initreg_year==EAP_dem2004
regdum148	region_initreg_year==EAP_dem2005
regdum149	$region_initreg_year == EAP_dem 2006$
regdum150	$region_initreg_year == EAP_dem 2007$
regdum151	$region_initreg_year == EAP_dem2008$
regdum152	$region_initreg_year == EAP_dem 2009$
regdum 153	$region_initreg_year == EAP_dem2010$
regdum154	$region_initreg_year == EAP_nd1960$
regdum155	region_initreg_year==EAP_nd1961
regdum156	$region_initreg_year == EAP_nd1962$
regdum157	$region_initreg_year == EAP_nd1963$
regdum158	region_initreg_year==EAP_nd1964
regdum159	$region_initreg_year == EAP_nd1965$
regdum160	region_initreg_year==EAP_nd1966
regdum161	region_initreg_year==EAP_nd1967
regdum162	region_initreg_year==EAP_nd1968
regdum163	region_initreg_year==EAP_nd1969
regdum164	$region_initreg_year == EAP_nd1970$
regdum165	$region_initreg_year == EAP_nd1971$
regdum166	$region_initreg_year == EAP_nd1972$
regdum167	$region_initreg_year == EAP_nd1973$
regdum168	region_initreg_year==EAP_nd1974
~	<u> </u>

Table 5: List of Variables (continued)

variable	label
regdum169	$region_initreg_year == EAP_nd1975$
regdum170	$region_initreg_year == EAP_nd1976$
regdum171	$region_initreg_year == EAP_nd1977$
regdum 172	$region_initreg_year == EAP_nd1978$
regdum173	$region_initreg_year == EAP_nd1979$
regdum174	region_initreg_year==EAP_nd1980
regdum175	region initreg year==EAP nd1981
regdum176	region_initreg_year==EAP_nd1982
regdum177	region_initreg_year==EAP_nd1983
regdum178	region_initreg_year==EAP_nd1984
regdum179	region_initreg_year==EAP_nd1985
regdum180	region_initreg_year==EAP_nd1986
regdum181	region_initreg_year==EAP_nd1987
regdum182	region_initreg_year==EAP_nd1988
regdum183	region_initreg_year==EAP_nd1989
regdum184	region_initreg_year==EAP_nd1990
regdum185	region_initreg_year==EAP_nd1991
regdum186	region_initreg_year==EAP_nd1992
regdum187	region_initreg_year==EAP_nd1993
regdum188	region_initreg_year==EAP_nd1994
regdum189	region_initreg_year==EAP_nd1995
regdum190	region_initreg_year==EAP_nd1996
regdum191	region_initreg_year==EAP_nd1997
regdum192	region_initreg_year==EAP_nd1998
regdum193	region_initreg_year==EAP_nd1999
regdum194	region_initreg_year==EAP_nd2000
regdum195	region_initreg_year==EAP_nd2001
regdum196	region_initreg_year==EAP_nd2002
regdum197	region_initreg_year==EAP_nd2003
regdum198	region_initreg_year==EAP_nd2004
regdum199	region initreg year==EAP nd2005
regdum200	region_initreg_year==EAP_nd2006
regdum201	region_initreg_year==EAP_nd2007
regdum202	region_initreg_year==EAP_nd2008
regdum203	region_initreg_year==EAP_nd2009
regdum204	region_initreg_year==EAP_nd2010
regdum205	region_initreg_year==ECA_nd1960
regdum206	$region_initreg_year == ECA_nd1961$
regdum207	$region_initreg_year == ECA_nd1962$
regdum208	$region_initreg_year == ECA_nd1963$
regdum209	$region_initreg_year == ECA_nd1964$
regdum210	$region_initreg_year == ECA_nd1965$
regdum211	region_initreg_year==ECA_nd1966
regdum212	$region_initreg_year == ECA_nd1967$
regdum213	$region_initreg_year == ECA_nd1968$
regdum214	$region_initreg_year == ECA_nd1969$
5	5 _ 5_

Table 5: List of Variables (continued)

variable	label	
regdum215	$region_initreg_year == ECA_nd1970$	
regdum216	$region_initreg_year == ECA_nd1971$	
regdum217	$region_initreg_year == ECA_nd1972$	
regdum218	$region_initreg_year == ECA_nd1973$	
regdum 219	$region_initreg_year == ECA_nd1974$	
regdum220	$region_initreg_year == ECA_nd1975$	
regdum221	$region_initreg_year == ECA_nd1976$	
regdum222	$region_initreg_year == ECA_nd1977$	
regdum 223	$region_initreg_year == ECA_nd1978$	
regdum 224	$region_initreg_year == ECA_nd1979$	
regdum225	$region_initreg_year == ECA_nd1980$	
regdum226	$region_initreg_year == ECA_nd1981$	
regdum227	$region_initreg_year == ECA_nd1982$	
regdum 228	$region_initreg_year == ECA_nd1983$	
regdum229	$region_initreg_year == ECA_nd1984$	
regdum230	$region_initreg_year == ECA_nd1985$	
regdum231	$region_initreg_year == ECA_nd1986$	
regdum 232	$region_initreg_year == ECA_nd1987$	
regdum 233	$region_initreg_year == ECA_nd1988$	
regdum 234	$region_initreg_year == ECA_nd1989$	
regdum 235	$region_initreg_year == ECA_nd1990$	
regdum 236	$region_initreg_year == ECA_nd1991$	
regdum237	$region_initreg_year == ECA_nd1992$	
regdum238	$region_initreg_year == ECA_nd1993$	
regdum 239	$region_initreg_year == ECA_nd1994$	
regdum240	$region_initreg_year == ECA_nd1995$	
regdum241	$region_initreg_year == ECA_nd1996$	
regdum242	$region_initreg_year == ECA_nd1997$	
regdum243	$region_initreg_year == ECA_nd1998$	
regdum 244	$region_initreg_year == ECA_nd1999$	
regdum245	$region_initreg_year == ECA_nd2000$	
regdum246	$region_initreg_year == ECA_nd2001$	
regdum247	$region_initreg_year == ECA_nd2002$	
regdum248	$region_initreg_year == ECA_nd2003$	
regdum 249	$region_initreg_year == ECA_nd2004$	
regdum 250	$region_initreg_year == ECA_nd2005$	
regdum251	$region_initreg_year == ECA_nd2006$	
regdum 252	$region_initreg_year == ECA_nd2007$	
regdum253	$region_initreg_year == ECA_nd2008$	
regdum 254	$region_initreg_year == ECA_nd2009$	
regdum 255	$region_initreg_year == ECA_nd2010$	
regdum 256	$region_initreg_year == INL_dem 1960$	
regdum257	$region_initreg_year == INL_dem 1961$	
regdum258	$region_initreg_year == INL_dem 1962$	
regdum259	$region_initreg_year == INL_dem 1963$	
regdum 260	$region_initreg_year == INL_dem 1964$	
regdum261	region initreg year==INL dem1965	

Table 5: List of Variables (continued)

variable	label
regdum262	$region_initreg_year == INL_dem 1966$
regdum263	$region_initreg_year == INL_dem 1967$
regdum264	region_initreg_year==INL_dem1968
regdum265	$region_initreg_year == INL_dem 1969$
regdum266	$region_initreg_year == INL_dem 1970$
regdum 267	$region_initreg_year == INL_dem 1971$
regdum268	$region_initreg_year == INL_dem 1972$
regdum269	$region_initreg_year == INL_dem 1973$
regdum270	region_initreg_year==INL_dem1974
regdum271	$region_initreg_year == INL_dem 1975$
regdum272	region_initreg_year==INL_dem1976
regdum273	$region_initreg_year == INL_dem 1977$
regdum274	$region_initreg_year == INL_dem 1978$
regdum275	region_initreg_year==INL_dem1979
regdum276	region_initreg_year==INL_dem1980
regdum277	region_initreg_year==INL_dem1981
regdum278	region_initreg_year==INL_dem1982
regdum279	region_initreg_year==INL_dem1983
regdum280	region_initreg_year==INL_dem1984
regdum281	region_initreg_year==INL_dem1985
regdum282	region_initreg_year==INL_dem1986
regdum283	region initreg year==INL dem1987
regdum284	region_initreg_year==INL_dem1988
regdum285	region_initreg_year==INL_dem1989
regdum286	region_initreg_year==INL_dem1990
regdum287	region_initreg_year==INL_dem1991
regdum288	region_initreg_year==INL_dem1992
regdum289	region_initreg_year==INL_dem1993
regdum290	region_initreg_year==INL_dem1994
regdum291	region initreg year==INL dem1995
regdum292	region_initreg_year==INL_dem1996
regdum293	region_initreg_year==INL_dem1997
regdum294	region_initreg_year==INL_dem1998
regdum295	region_initreg_year==INL_dem1999
regdum296	region_initreg_year==INL_dem2000
regdum297	region_initreg_year==INL_dem2001
regdum298	region_initreg_year==INL_dem2002
regdum299	region_initreg_year==INL_dem2003
regdum300	region_initreg_year==INL_dem2004
regdum301	region_initreg_year==INL_dem2005
regdum302	region_initreg_year==INL_dem2006
regdum303	$region_initreg_year == INL_dem 2007$
regdum304	$region_initreg_year == INL_dem 2008$
regdum305	$region_initreg_year == INL_dem 2009$
regdum306	$region_initreg_year == INL_dem 2010$
regdum307	$region_initreg_year == INL_nd1960$
regdum308	region initreg year==INL nd1961

Table 5: List of Variables (continued)

variable	label
regdum309	$region_initreg_year == INL_nd1962$
regdum310	$region_initreg_year == INL_nd1963$
regdum311	$region_initreg_year == INL_nd1964$
regdum312	$region_initreg_year == INL_nd1965$
regdum313	$region_initreg_year == INL_nd1966$
regdum314	$region_initreg_year == INL_nd1967$
regdum315	$region_initreg_year == INL_nd1968$
regdum316	$region_initreg_year == INL_nd1969$
regdum317	$region_initreg_year == INL_nd1970$
regdum318	$region_initreg_year == INL_nd1971$
regdum319	region_initreg_year==INL_nd1972
regdum 320	$region_initreg_year == INL_nd1973$
regdum 321	$region_initreg_year == INL_nd1974$
regdum 322	$region_initreg_year == INL_nd1975$
regdum323	$region_initreg_year == INL_nd1976$
regdum324	$region_initreg_year == INL_nd1977$
regdum 325	$region_initreg_year == INL_nd1978$
regdum 326	$region_initreg_year == INL_nd1979$
regdum 327	$region_initreg_year == INL_nd1980$
regdum 328	$region_initreg_year == INL_nd1981$
regdum 329	$region_initreg_year == INL_nd1982$
regdum330	$region_initreg_year == INL_nd1983$
regdum331	$region_initreg_year == INL_nd1984$
regdum332	$region_initreg_year == INL_nd1985$
regdum333	$region_initreg_year == INL_nd1986$
regdum 334	$region_initreg_year == INL_nd1987$
regdum335	$region_initreg_year == INL_nd1988$
regdum336	region_initreg_year==INL_nd1989
regdum337	region_initreg_year==INL_nd1990
regdum338	region_initreg_year==INL_nd1991
regdum339	$region_initreg_year == INL_nd1992$
regdum340	region_initreg_year==INL_nd1993
regdum341	region_initreg_year==INL_nd1994
regdum342	region_initreg_year==INL_nd1995
regdum343	region_initreg_year==INL_nd1996
regdum344	region_initreg_year==INL_nd1997
regdum345	region_initreg_year==INL_nd1998
regdum346	region_initreg_year==INL_nd1999
regdum347	region_initreg_year==INL_nd2000
regdum348	region_initreg_year==INL_nd2001
regdum349	$region_initreg_year == INL_nd2002$
regdum350	$region_initreg_year == INL_nd2003$
regdum351	region_initreg_year==INL_nd2004
regdum352	region_initreg_year==INL_nd2005
regdum353	$region_initreg_year == INL_nd2006$
regdum354	$region_initreg_year == INL_nd2007$

Table 5: List of Variables (continued)

variable	label
regdum355	$region_initreg_year == INL_nd2008$
regdum356	$region_initreg_year == INL_nd2009$
regdum357	$region_initreg_year == INL_nd2010$
regdum358	$region_initreg_year == LAC_dem 1960$
regdum359	$region_initreg_year == LAC_dem 1961$
regdum360	$region_initreg_year == LAC_dem1962$
regdum361	$region_initreg_year == LAC_dem 1963$
regdum362	$region_initreg_year == LAC_dem 1964$
regdum363	$region_initreg_year == LAC_dem 1965$
regdum364	$region_initreg_year == LAC_dem 1966$
regdum365	$region_initreg_year == LAC_dem 1967$
regdum366	$region_initreg_year == LAC_dem 1968$
regdum367	$region_initreg_year == LAC_dem 1969$
regdum368	$region_initreg_year == LAC_dem 1970$
regdum 369	$region_initreg_year == LAC_dem 1971$
regdum 370	$region_initreg_year == LAC_dem 1972$
regdum371	$region_initreg_year == LAC_dem 1973$
regdum372	$region_initreg_year == LAC_dem 1974$
regdum373	$region_initreg_year == LAC_dem 1975$
regdum 374	$region_initreg_year == LAC_dem 1976$
regdum 375	$region_initreg_year == LAC_dem 1977$
regdum376	$region_initreg_year == LAC_dem 1978$
regdum377	$region_initreg_year == LAC_dem 1979$
regdum378	$region_initreg_year == LAC_dem 1980$
regdum 379	$region_initreg_year == LAC_dem 1981$
regdum380	$region_initreg_year == LAC_dem 1982$
regdum381	$region_initreg_year == LAC_dem 1983$
regdum382	$region_initreg_year == LAC_dem 1984$
regdum383	$region_initreg_year == LAC_dem 1985$
regdum384	$region_initreg_year == LAC_dem 1986$
regdum385	region_initreg_year==LAC_dem1987
regdum386	region_initreg_year==LAC_dem1988
regdum387	region_initreg_year==LAC_dem1989
regdum388	$region_initreg_year == LAC_dem 1990$
regdum389	region_initreg_year==LAC_dem1991
regdum390	region_initreg_year==LAC_dem1992
regdum391	region_initreg_year==LAC_dem1993
regdum392	region_initreg_year==LAC_dem1994
regdum393	$region_initreg_year == LAC_dem 1995$
regdum394	region_initreg_year==LAC_dem1996
regdum395	region_initreg_year==LAC_dem1997
regdum396	region_initreg_year==LAC_dem1998
regdum397	region_initreg_year==LAC_dem1999
regdum398	$region_initreg_year == LAC_dem 2000$
regdum399	${\rm region_initreg_year}{=}{\rm LAC_dem2001}$
regdum400	$region_initreg_year == LAC_dem 2002$
regdum 401	$region_initreg_year == LAC_dem2003$

Table 5: List of Variables (continued)

variable	label	
regdum402	region_initreg_year==LAC_dem2004	
regdum403	$region_initreg_year == LAC_dem 2005$	
regdum404	$region_initreg_year == LAC_dem 2006$	
regdum405	$region_initreg_year == LAC_dem 2007$	
regdum406	$region_initreg_year == LAC_dem 2008$	
regdum407	$region_initreg_year == LAC_dem2009$	
regdum408	$region_initreg_year == LAC_dem 2010$	
regdum409	$region_initreg_year == LAC_nd1960$	
regdum410	region_initreg_year==LAC_nd1961	
regdum411	region_initreg_year==LAC_nd1962	
regdum412	region_initreg_year==LAC_nd1963	
regdum413	$region_initreg_year == LAC_nd1964$	
regdum414	$region_initreg_year == LAC_nd1965$	
regdum415	region initreg year==LAC nd1966	
regdum416	region initreg year==LAC nd1967	
regdum417	region_initreg_year==LAC_nd1968	
regdum418	region_initreg_year==LAC_nd1969	
regdum419	region_initreg_year==LAC_nd1970	
regdum420	region initreg year==LAC nd1971	
regdum421	region_initreg_year==LAC_nd1972	
regdum422	region initreg year==LAC nd1973	
regdum423	region_initreg_year==LAC_nd1974	
regdum424	region_initreg_year==LAC_nd1975	
regdum425	region_initreg_year==LAC_nd1976	
regdum426	region_initreg_year==LAC_nd1977	
regdum427	region_initreg_year==LAC_nd1978	
regdum428	region_initreg_year==LAC_nd1979	
regdum429	region_initreg_year==LAC_nd1980	
regdum430	region_initreg_year==LAC_nd1981	
regdum431	region initreg year==LAC nd1982	
regdum432	region_initreg_year==LAC_nd1983	
regdum433	region_initreg_year==LAC_nd1984	
regdum434	$region_initreg_year == LAC_nd1985$	
regdum435	region_initreg_year==LAC_nd1986	
regdum436	region_initreg_year==LAC_nd1987	
regdum437	region initreg year==LAC nd1988	
regdum438	region_initreg_year==LAC_nd1989	
regdum439	region_initreg_year==LAC_nd1990	
regdum440	region_initreg_year==LAC_nd1991	
regdum441	region_initreg_year==LAC_nd1992	
regdum442	region_initreg_year==LAC_nd1993	
regdum443	region_initreg_year==LAC_nd1994	
regdum444	region_initreg_year==LAC_nd1995	
regdum445	region_initreg_year==LAC_nd1996	
regdum446	region_initreg_year==LAC_nd1997	
<u> </u>	region_initreg_year==LAC_nd1998	
regdum447		

Table 5: List of Variables (continued)

variable	label
regdum449	$region_initreg_year == LAC_nd2000$
regdum450	$region_initreg_year == LAC_nd2001$
regdum451	$region_initreg_year == LAC_nd2002$
regdum452	$region_initreg_year == LAC_nd2003$
regdum453	$region_initreg_year == LAC_nd2004$
regdum 454	$region_initreg_year == LAC_nd2005$
regdum455	$region_initreg_year == LAC_nd2006$
regdum 456	$region_initreg_year == LAC_nd2007$
regdum 457	$region_initreg_year == LAC_nd2008$
regdum458	$region_initreg_year == LAC_nd2009$
regdum 459	$region_initreg_year == LAC_nd2010$
regdum460	$region_initreg_year == MNA_dem 1960$
regdum461	$region_initreg_year == MNA_dem 1961$
regdum 462	$region_initreg_year == MNA_dem 1962$
regdum463	region_initreg_year==MNA_dem1963
regdum 464	$region_initreg_year == MNA_dem 1964$
regdum 465	$region_initreg_year == MNA_dem 1965$
regdum 466	$region_initreg_year == MNA_dem 1966$
regdum467	$region_initreg_year == MNA_dem 1967$
regdum468	$region_initreg_year == MNA_dem 1968$
regdum469	$region_initreg_year == MNA_dem 1969$
regdum470	$region_initreg_year == MNA_dem 1970$
regdum471	$region_initreg_year == MNA_dem 1971$
regdum472	$region_initreg_year == MNA_dem 1972$
regdum473	region_initreg_year==MNA_dem1973
regdum474	$region_initreg_year == MNA_dem 1974$
regdum475	region_initreg_year==MNA_dem1975
regdum476	region_initreg_year==MNA_dem1976
regdum477	region_initreg_year==MNA_dem1977
regdum478	region_initreg_year==MNA_dem1978
regdum479	$region_initreg_year == MNA_dem 1979$
regdum480	region_initreg_year==MNA_dem1980
regdum481	region_initreg_year==MNA_dem1981
regdum482	region_initreg_year==MNA_dem1982
regdum483	region_initreg_year==MNA_dem1983
regdum 484	$region_initreg_year == MNA_dem 1984$
regdum485	region_initreg_year==MNA_dem1985
regdum486	region_initreg_year==MNA_dem1986
regdum487	region_initreg_year==MNA_dem1987
regdum488	region_initreg_year==MNA_dem1988
regdum489	$region_initreg_year == MNA_dem 1989$
regdum 490	$region_initreg_year == MNA_dem 1990$
regdum491	$region_initreg_year == MNA_dem 1991$
regdum492	region_initreg_year==MNA_dem1992
regdum493	$region_initreg_year == MNA_dem 1993$
regdum494	${\rm region_initreg_year} = = MNA_{\rm dem} 1994$

Table 5: List of Variables (continued)

variable	label
regdum495	${\rm region_initreg_year}{=}{=}{\rm MNA_dem}1995$
regdum496	${\rm region_initreg_year}{=}{\rm MNA_dem}1996$
regdum497	$region_initreg_year == MNA_dem 1997$
regdum498	$region_initreg_year == MNA_dem 1998$
regdum499	$region_initreg_year == MNA_dem 1999$
regdum 500	$region_initreg_year == MNA_dem 2000$
regdum 501	$region_initreg_year == MNA_dem 2001$
regdum 502	$region_initreg_year == MNA_dem 2002$
regdum503	$region_initreg_year == MNA_dem 2003$
regdum504	$region_initreg_year == MNA_dem 2004$
regdum 505	$region_initreg_year == MNA_dem 2005$
regdum506	$region_initreg_year == MNA_dem 2006$
regdum 507	$region_initreg_year == MNA_dem 2007$
regdum508	$region_initreg_year == MNA_dem 2008$
regdum509	$region_initreg_year == MNA_dem 2009$
regdum510	$region_initreg_year == MNA_dem 2010$
regdum511	$region_initreg_year == MNA_nd1960$
regdum512	$region_initreg_year == MNA_nd1961$
regdum513	$region_initreg_year == MNA_nd1962$
regdum514	$region_initreg_year == MNA_nd1963$
regdum515	$region_initreg_year == MNA_nd1964$
regdum516	$region_initreg_year == MNA_nd1965$
regdum517	$region_initreg_year == MNA_nd1966$
regdum518	$region_initreg_year == MNA_nd1967$
regdum519	$region_initreg_year == MNA_nd1968$
regdum 520	$region_initreg_year == MNA_nd1969$
regdum521	$region_initreg_year == MNA_nd1970$
regdum522	$region_initreg_year == MNA_nd1971$
regdum523	region_initreg_year==MNA_nd1972
regdum 524	$region_initreg_year == MNA_nd1973$
regdum525	$region_initreg_year == MNA_nd1974$
regdum526	$region_initreg_year == MNA_nd1975$
regdum527	$region_initreg_year == MNA_nd1976$
regdum528	$region_initreg_year == MNA_nd1977$
regdum 529	$region_initreg_year == MNA_nd1978$
regdum530	$region_initreg_year == MNA_nd1979$
regdum531	$region_initreg_year == MNA_nd1980$
regdum532	$region_initreg_year == MNA_nd1981$
regdum533	$region_initreg_year == MNA_nd1982$
regdum534	$region_initreg_year == MNA_nd1983$
regdum535	$region_initreg_year == MNA_nd1984$
regdum536	region_initreg_year==MNA_nd1985
regdum537	region_initreg_year==MNA_nd1986
regdum538	$region_initreg_year == MNA_nd1987$
regdum539	$region_initreg_year == MNA_nd1988$
regdum540	$region_initreg_year == MNA_nd1989$
regdum541	$region_initreg_year == MNA_nd1990$

Table 5: List of Variables (continued)

variable	label	
regdum542	region_initreg_year==MNA_nd1991	
regdum543	$region_initreg_year == MNA_nd1992$	
regdum544	$region_initreg_year == MNA_nd1993$	
regdum 545	$region_initreg_year == MNA_nd1994$	
regdum546	region_initreg_year==MNA_nd1995	
regdum547	$region_initreg_year == MNA_nd1996$	
regdum548	${\rm region_initreg_year} == MNA_nd1997$	
regdum549	$region_initreg_year == MNA_nd1998$	
regdum550	region_initreg_year==MNA_nd1999	
regdum551	$region_initreg_year == MNA_nd2000$	
regdum552	region_initreg_year==MNA_nd2001	
regdum553	$region_initreg_year == MNA_nd2002$	
regdum554	$region_initreg_year == MNA_nd2003$	
regdum555	region_initreg_year==MNA_nd2004	
regdum556	region_initreg_year==MNA_nd2005	
regdum557	region initreg year==MNA nd2006	
regdum558	region_initreg_year==MNA_nd2007	
regdum559	region_initreg_year==MNA_nd2008	
regdum560	region_initreg_year==MNA_nd2009	
regdum561	region_initreg_year==MNA_nd2010	
regdum562	region_initreg_year==SAS_dem1960	
regdum563	region initreg year==SAS dem1961	
regdum564	region_initreg_year==SAS_dem1962	
regdum565	region_initreg_year==SAS_dem1963	
regdum566	region_initreg_year==SAS_dem1964	
regdum567	region_initreg_year==SAS_dem1965	
regdum568	$region_initreg_year == SAS_dem 1966$	
regdum569	region_initreg_year==SAS_dem1967	
regdum570	region_initreg_year==SAS_dem1968	
regdum571	region_initreg_year==SAS_dem1969	
regdum572	region_initreg_year==SAS_dem1970	
regdum573	$region_initreg_year == SAS_dem 1971$	
regdum574	region_initreg_year==SAS_dem1972	
regdum575	region_initreg_year==SAS_dem1973	
regdum576	region_initreg_year==SAS_dem1974	
regdum577	region_initreg_year==SAS_dem1975	
regdum578	$region_initreg_year == SAS_dem 1976$	
regdum579	region_initreg_year==SAS_dem1977	
regdum580	region_initreg_year==SAS_dem1978	
regdum581	region_initreg_year==SAS_dem1979	
regdum582	region_initreg_year==SAS_dem1980	
regdum583	$region_initreg_year == SAS_dem 1981$	
regdum584	region_initreg_year==SAS_dem1982	
regdum585	region_initreg_year==SAS_dem1983	
regdum586	region_initreg_year==SAS_dem1984	
regdum587	region_initreg_year==SAS_dem1985	
regdum588	$region_initreg_year == SAS_dem 1986$	

Table 5: List of Variables (continued)

variable	label	
regdum589	$region_initreg_year == SAS_dem 1987$	
regdum 590	$region_initreg_year == SAS_dem 1988$	
regdum 591	$region_initreg_year == SAS_dem 1989$	
regdum592	$region_initreg_year == SAS_dem 1990$	
regdum 593	$region_initreg_year == SAS_dem 1991$	
regdum 594	$region_initreg_year == SAS_dem 1992$	
regdum 595	$region_initreg_year == SAS_dem 1993$	
regdum 596	$region_initreg_year == SAS_dem 1994$	
regdum 597	$region_initreg_year == SAS_dem 1995$	
regdum598	$region_initreg_year == SAS_dem 1996$	
regdum599	$region_initreg_year == SAS_dem 1997$	
regdum600	$region_initreg_year == SAS_dem 1998$	
regdum601	$region_initreg_year == SAS_dem 1999$	
regdum602	$region_initreg_year == SAS_dem 2000$	
regdum 603	$region_initreg_year == SAS_dem 2001$	
regdum604	$region_initreg_year == SAS_dem 2002$	
regdum 605	$region_initreg_year == SAS_dem 2003$	
regdum 606	$region_initreg_year == SAS_dem 2004$	
regdum 607	$region_initreg_year == SAS_dem 2005$	
regdum 608	$region_initreg_year == SAS_dem 2006$	
regdum609	$region_initreg_year == SAS_dem 2007$	
regdum 610	$region_initreg_year == SAS_dem 2008$	
regdum 611	$region_initreg_year == SAS_dem 2009$	
regdum 612	$region_initreg_year == SAS_dem 2010$	
regdum613	$region_initreg_year == SAS_nd1960$	
regdum614	region_initreg_year==SAS_nd1961	
regdum 615	$region_initreg_year == SAS_nd1962$	
regdum 616	$region_initreg_year == SAS_nd1963$	
regdum 617	$region_initreg_year == SAS_nd1964$	
regdum 618	$region_initreg_year == SAS_nd1965$	
regdum619	$region_initreg_year == SAS_nd1966$	
regdum 620	$region_initreg_year == SAS_nd1967$	
regdum 621	$region_initreg_year == SAS_nd1968$	
regdum 622	$region_initreg_year == SAS_nd1969$	
regdum623	$region_initreg_year == SAS_nd1970$	
regdum 624	$region_initreg_year == SAS_nd1971$	
regdum 625	$region_initreg_year == SAS_nd1972$	
regdum 626	$region_initreg_year == SAS_nd1973$	
regdum 627	$region_initreg_year == SAS_nd1974$	
regdum 628	$region_initreg_year == SAS_nd1975$	
regdum 629	$region_initreg_year == SAS_nd1976$	
regdum 630	$region_initreg_year == SAS_nd1977$	
regdum631	$region_initreg_year == SAS_nd1978$	
regdum 632	$region_initreg_year == SAS_nd1979$	
regdum 633	$region_initreg_year == SAS_nd1980$	
regdum634	$region_initreg_year == SAS_nd1981$	

Table 5: List of Variables (continued)

variable	label	
regdum635	$region_initreg_year == SAS_nd1982$	
regdum636	$region_initreg_year == SAS_nd1983$	
regdum637	$region_initreg_year == SAS_nd1984$	
regdum638	$region_initreg_year == SAS_nd1985$	
regdum 639	$region_initreg_year == SAS_nd1986$	
regdum640	$region_initreg_year == SAS_nd1987$	
regdum641	$region_initreg_year == SAS_nd1988$	
regdum642	$region_initreg_year == SAS_nd1989$	
regdum643	$region_initreg_year == SAS_nd1990$	
regdum644	$region_initreg_year == SAS_nd1991$	
regdum645	$region_initreg_year == SAS_nd1992$	
regdum646	$region_initreg_year == SAS_nd1993$	
regdum647	$region_initreg_year == SAS_nd1994$	
regdum648	$region_initreg_year == SAS_nd1995$	
regdum649	$region_initreg_year == SAS_nd1996$	
regdum650	$region_initreg_year == SAS_nd1997$	
regdum651	$region_initreg_year == SAS_nd1998$	
regdum652	$region_initreg_year == SAS_nd1999$	
regdum653	$region_initreg_year == SAS_nd2000$	
regdum654	$region_initreg_year == SAS_nd2001$	
regdum655	$region_initreg_year == SAS_nd2002$	
regdum656	$region_initreg_year == SAS_nd2003$	
regdum657	$region_initreg_year == SAS_nd2004$	
regdum658	$region_initreg_year == SAS_nd2005$	
regdum 659	$region_initreg_year == SAS_nd2006$	
regdum660	$region_initreg_year == SAS_nd2007$	
regdum661	$region_initreg_year == SAS_nd2008$	
regdum662	$region_initreg_year == SAS_nd2009$	
regdum 663	$region_initreg_year == SAS_nd2010$	
dFY_1	${\rm regionINITREG}{=}{=}{\rm AFR_dem}$	
dFY_2	$regionINITREG == AFR_nd$	
dFY_3	${\rm regionINITREG} = = {\rm EAP_dem}$	
dFY_4	$regionINITREG == EAP_nd$	
dFY_5	${\rm regionINITREG} == {\rm ECA_nd}$	
dFY_6	$regionINITREG == INL_dem$	
dFY_7	$regionINITREG == INL_nd$	
dFY_8	${\rm regionINITREG}{=}{=}{\rm LAC_dem}$	
dFY_9	$regionINITREG == LAC_nd$	
dFY_10	${\rm regionINITREG}{=}{=}{\rm MNA_dem}$	
dFY_11	$regionINITREG==MNA_nd$	
dFY_12	$regionINITREG = = SAS_dem$	
dFY_13	$regionINITREG==SAS_nd$	
gfa	(sum) gfa	
nfa	(sum) nfa	
totalassets	(sum) totalassets	
totalliabilities	(sum) totalliabilities	
nfagdp	(mean) nfagdp	

Table 5: List of Variables (continued)

variable	label
nfagdpreg incomequint50s_year1	NULL NULL
incomequint50s_year2 quintile50s dquint1 dquint2 dquint3	$\begin{array}{l} \mathrm{NULL} \\ \mathrm{NULL} \\ \mathrm{quintile50s} == 1.0000 \\ \mathrm{quintile50s} == 2.0000 \\ \mathrm{quintile50s} == 3.0000 \end{array}$
dquint4 dquint5 interfull_yy1_quintile1 interfull_yy1_quintile2 interfull_yy1_quintile3	quintile50s== 4.0000 quintile50s== 5.0000 NULL NULL NULL
interfull_yy1_quintile4 interfull_yy1_quintile5 interfull_yy2_quintile1 interfull_yy2_quintile2 interfull_yy2_quintile3	NULL NULL NULL NULL NULL NULL
interfull_yy2_quintile4 interfull_yy2_quintile5 interfull_yy3_quintile1 interfull_yy3_quintile2 interfull_yy3_quintile3	NULL NULL NULL NULL NULL NULL
interfull_yy3_quintile4 interfull_yy3_quintile5 interfull_yy4_quintile1 interfull_yy4_quintile2 interfull_yy4_quintile3	NULL NULL NULL NULL NULL NULL
interfull_yy4_quintile4 interfull_yy4_quintile5 interfull_yy5_quintile1 interfull_yy5_quintile2 interfull_yy5_quintile3	NULL NULL NULL NULL NULL
interfull_yy5_quintile4 interfull_yy5_quintile5 interfull_yy6_quintile1 interfull_yy6_quintile2 interfull_yy6_quintile3	NULL NULL NULL NULL NULL
interfull_yy6_quintile4 interfull_yy6_quintile5 interfull_yy7_quintile1 interfull_yy7_quintile2 interfull_yy7_quintile3	NULL NULL NULL NULL NULL
interfull_yy7_quintile4 interfull_yy7_quintile5 interfull_yy8_quintile1 interfull_yy8_quintile2 interfull_yy8_quintile3	NULL NULL NULL NULL NULL

Table 5: List of Variables (continued)

variable	label
interfull_yy8_quintile4	NULL
$interfull_yy8_quintile5$	NULL
$interfull_yy9_quintile1$	NULL
$interfull_yy9_quintile2$	NULL
interfull_yy9_quintile3	NULL
interfull_yy9_quintile4	NULL
interfull_yy9_quintile5	NULL
interfull yy10 quintile1	NULL
interfull yv10 quintile2	NULL
$interfull_{yy}10_{quintile}3$	NULL
interfull_yy10_quintile4	NULL
interfull_yy10_quintile5	NULL
interfull_yy11_quintile1	NULL
interfull yy11 quintile2	NULL
interfull yy11 quintile3	NULL
interfull_yy11_quintile4	NULL
interfull yy11 quintile5	NULL
interfull_yy12_quintile1	NULL
interfull_yy12_quintile2	NULL
interfull yy12 quintile3	NULL
mteriun_yy12_quintne5	NULL
$interfull_yy12_quintile4$	NULL
$interfull_yy12_quintile5$	NULL
interfull_yy13_quintile1	NULL
interfull_yy13_quintile2	NULL
$interfull_yy13_quintile3$	NULL
interfull_yy13_quintile4	NULL
interfull_yy13_quintile5	NULL
interfull_yy14_quintile1	NULL
interfull_yy14_quintile2	NULL
interfull yy14 quintile3	NULL
interfull yy14 quintile4	NULL
interfull_yy14_quintile5	NULL
interfull_yy15_quintile1	NULL
	NULL
interfull_yy15_quintile2	NULL
interfull_yy15_quintile3	
$interfull_yy15_quintile4$	NULL
$interfull_yy15_quintile5$	NULL
$interfull_yy16_quintile1$	NULL
$interfull_yy16_quintile2$	NULL
$interfull_yy16_quintile3$	NULL
interfull_yy16_quintile4	NULL
interfull_yy16_quintile5	NULL
interfull_yy17_quintile1	NULL
interfull_yy17_quintile2	NULL
interfull_yy17_quintile3	NULL
interfull_yy17_quintile4	NULL
mieriun_yyrr_quiiiille4	NODE

Table 5: List of Variables (continued)

variable	label
interfull_yy17_quintile5	NULL
interfull_yy18_quintile1	NULL
interfull yy18 quintile2	NULL
interfull yy18 quintile3	NULL
· · - ·	
interfull_yy18_quintile4	NULL NULL
interfull_yy18_quintile5 interfull_yy19_quintile1	NULL
interfull yy19 quintile2	NULL
interfull_yy19_quintile3	NULL
* * -	
interfull_yy19_quintile4	NULL
$interfull_yy19_quintile5$	NULL
$interfull_yy20_quintile1$	NULL
$interfull_yy20_quintile2$	NULL
$interfull_yy20_quintile3$	NULL
interfull_yy20_quintile4	NULL
interfull_yy20_quintile5	NULL
interfull_yy21_quintile1	NULL
interfull_yy21_quintile2	NULL
interfull_yy21_quintile3	NULL
interfull_yy21_quintile4	NULL
interfull yy21 quintile5	NULL
interfull yy22 quintile1	NULL
interfull_yy22_quintile2	NULL
interfull yy22 quintile3	NULL
· · - ·	
interfull_yy22_quintile4	NULL
interfull_yy22_quintile5	NULL
interfull_yy23_quintile1	NULL
interfull_yy23_quintile2 interfull_yy23_quintile3	NULL NULL
* * · · ·	
$interfull_yy23_quintile4$	NULL
interfull_yy23_quintile5	NULL
interfull_yy24_quintile1	NULL
interfull_yy24_quintile2	NULL
$interfull_yy24_quintile3$	NULL
$interfull_yy24_quintile4$	NULL
interfull_yy24_quintile5	NULL
interfull_yy25_quintile1	NULL
$interfull_yy25_quintile2$	NULL
$interfull_yy25_quintile3$	NULL
interfull_yy25_quintile4	NULL
interfull_yy25_quintile5	NULL
interfull_yy26_quintile1	NULL
interfull_yy26_quintile2	NULL
interfull_yy26_quintile3	NULL
* * · · ·	
interfull_yy26_quintile4	NULL NULL
interfull_yy26_quintile5	NULL NULL
$interfull_yy27_quintile1$	NULL

Table 5: List of Variables (continued)

interfull_yy27_quintile2 NULL interfull_yy27_quintile3 NULL interfull_yy27_quintile4 NULL interfull_yy27_quintile5 NULL interfull_yy28_quintile1 NULL interfull_yy28_quintile2 NULL interfull_yy28_quintile3 NULL interfull_yy28_quintile4 NULL interfull_yy28_quintile5 NULL interfull_yy28_quintile5 NULL interfull_yy29_quintile1 NULL interfull_yy29_quintile1 NULL interfull_yy29_quintile2 NULL interfull_yy29_quintile3 NULL interfull_yy29_quintile4 NULL interfull_yy29_quintile4 NULL interfull_yy29_quintile4 NULL	
interfull_yy27_quintile3 NULL interfull_yy27_quintile4 NULL interfull_yy28_quintile5 NULL interfull_yy28_quintile1 NULL interfull_yy28_quintile2 NULL interfull_yy28_quintile3 NULL interfull_yy28_quintile4 NULL interfull_yy28_quintile5 NULL interfull_yy29_quintile1 NULL interfull_yy29_quintile1 NULL interfull_yy29_quintile2 NULL interfull_yy29_quintile3 NULL	
interfull_yy27_quintile5 interfull_yy28_quintile1 interfull_yy28_quintile2 interfull_yy28_quintile3 NULL interfull_yy28_quintile4 interfull_yy28_quintile5 interfull_yy28_quintile5 interfull_yy29_quintile1 interfull_yy29_quintile1 interfull_yy29_quintile2 interfull_yy29_quintile3 NULL interfull_yy29_quintile3 NULL	
interfull_yy27_quintile5 interfull_yy28_quintile1 interfull_yy28_quintile2 interfull_yy28_quintile3 NULL interfull_yy28_quintile4 interfull_yy28_quintile5 interfull_yy28_quintile5 interfull_yy29_quintile1 interfull_yy29_quintile1 interfull_yy29_quintile2 interfull_yy29_quintile3 NULL interfull_yy29_quintile3 NULL	
interfull_yy28_quintile1 NULL interfull_yy28_quintile2 NULL interfull_yy28_quintile3 NULL interfull_yy28_quintile4 NULL interfull_yy28_quintile5 NULL interfull_yy29_quintile1 NULL interfull_yy29_quintile2 NULL interfull_yy29_quintile3 NULL	
interfull_yy28_quintile2 NULL interfull_yy28_quintile3 NULL interfull_yy28_quintile4 NULL interfull_yy28_quintile5 NULL interfull_yy29_quintile1 NULL interfull_yy29_quintile2 NULL interfull_yy29_quintile3 NULL	
interfull_yy28_quintile3 NULL interfull_yy28_quintile4 NULL interfull_yy28_quintile5 NULL interfull_yy29_quintile1 NULL interfull_yy29_quintile2 NULL interfull_yy29_quintile3 NULL	
interfull_yy28_quintile5 NULL interfull_yy29_quintile1 NULL interfull_yy29_quintile2 NULL interfull_yy29_quintile3 NULL	
interfull_yy28_quintile5 NULL interfull_yy29_quintile1 NULL interfull_yy29_quintile2 NULL interfull_yy29_quintile3 NULL	
interfull_yy29_quintile1 NULL interfull_yy29_quintile2 NULL interfull_yy29_quintile3 NULL	
interfull_yy29_quintile2 NULL interfull_yy29_quintile3 NULL	
interfull_yy29_quintile3 NULL	
• •	
interial_yy29_quintile4 ivoLL	
interfull yy29 quintile5 NULL	
interfull yy30 quintile1 NULL	
interfull yy30 quintile2 NULL	
interfull_yy30_quintile3 NULL	
interfull_yy30_quintile4 NULL	
interfull_yy30_quintile5 NULL	
interfull_yy31_quintile1 NULL	
interfull_yy31_quintile2 NULL	
interfull yy31 quintile3 NULL	
interfull_yy31_quintile4 NULL	
interfull_yy31_quintile5 NULL	
interfull_yy32_quintile1 NULL	
interfull_yy32_quintile2 NULL	
interfull_yy32_quintile3 NULL	
interfull_yy32_quintile4 NULL	
interfull_yy32_quintile5 NULL	
interfull_yy33_quintile1 NULL	
interfull_yy33_quintile2 NULL	
interfull_yy33_quintile3 NULL	
interfull_yy33_quintile4 NULL	
interfull_yy33_quintile5 NULL	
interfull_yy34_quintile1 NULL	
interfull_yy34_quintile2 NULL	
interfull_yy34_quintile3 NULL	
interfull_yy34_quintile4 NULL	
interfull_yy34_quintile5 NULL	
interfull_yy35_quintile1 NULL	
interfull_yy35_quintile2 NULL	
interfull_yy35_quintile3 NULL	
interfull_yy35_quintile4 NULL	
interfull_yy35_quintile5 NULL	
interfull_yy36_quintile1 NULL	
interfull_yy36_quintile2 NULL	
interfull_yy36_quintile3 NULL	

Table 5: List of Variables (continued)

variable	label
$interfull_yy36_quintile4$	NULL
$interfull_yy36_quintile5$	NULL
$interfull_yy37_quintile1$	NULL
$interfull_yy37_quintile2$	NULL
$interfull_yy37_quintile3$	NULL
interfull_yy37_quintile4	NULL
interfull_yy37_quintile5	NULL
interfull_yy38_quintile1	NULL
interfull yy38 quintile2	NULL
interfull_yy38_quintile3	NULL
interfull_yy38_quintile4	NULL
interfull_yy38_quintile5	NULL
interfull_yy39_quintile1	NULL
interfull_yy39_quintile2	NULL
interfull yy39 quintile3	NULL
interfull_yy39_quintile4	NULL
interfull_yy39_quintile5	NULL
interfull yy40 quintile1	NULL
interfull_yy40_quintile2	NULL
interfull_yy40_quintile3	NULL
mteriun_yy40_quintnes	
$interfull_yy40_quintile4$	NULL
$interfull_yy40_quintile5$	NULL
$interfull_yy41_quintile1$	NULL
$interfull_yy41_quintile2$	NULL
$interfull_yy41_quintile3$	NULL
interfull_yy41_quintile4	NULL
interfull_yy41_quintile5	NULL
interfull_yy42_quintile1	NULL
interfull_yy42_quintile2	NULL
$interfull_yy42_quintile3$	NULL
interfull yy42 quintile4	NULL
interfull_yy42_quintile5	NULL
interfull_yy43_quintile1	NULL
interfull_yy43_quintile2	NULL
interfull_yy43_quintile3	NULL
interfull_yy43_quintile4	NULL
interfull_yy43_quintile5	NULL
interfull yy44 quintile1	NULL
interfull_yy44_quintile2	NULL
interfull_yy44_quintile3	NULL
interfull yy44 quintile4	NULL
interfull yy44 quintile5	NULL
interfull_yy45_quintile1	NULL
interfull_yy45_quintile2	NULL
interfull_yy45_quintile3	NULL
· · · -	
interfull_yy45_quintile4	NULL

Table 5: List of Variables (continued)

variable	label
interfull_yy45_quintile5 interfull_yy46_quintile1 interfull_yy46_quintile2 interfull_yy46_quintile3	NULL NULL NULL NULL
interfull_yy46_quintile4 interfull_yy46_quintile5 interfull_yy47_quintile1 interfull_yy47_quintile2 interfull_yy47_quintile3	NULL NULL NULL NULL NULL
interfull_yy47_quintile4 interfull_yy47_quintile5 interfull_yy48_quintile1 interfull_yy48_quintile2 interfull_yy48_quintile3	NULL NULL NULL NULL NULL
interfull_yy48_quintile4 interfull_yy48_quintile5 interfull_yy49_quintile1 interfull_yy49_quintile2 interfull_yy49_quintile3	NULL NULL NULL NULL NULL
interfull_yy49_quintile4 interfull_yy49_quintile5 interfull_yy50_quintile1 interfull_yy50_quintile2 interfull_yy50_quintile3	NULL NULL NULL NULL NULL
interfull_yy50_quintile4 interfull_yy50_quintile5 interfull_yy51_quintile1 interfull_yy51_quintile2 interfull_yy51_quintile3	NULL NULL NULL NULL NULL
interfull_yy51_quintile4 interfull_yy51_quintile5 country areakm2 cen_lat	NULL NULL Country Name Area in km2 latitude of country centroid
cen_lon elev distcr distc distr	longitude of country centroid mean m above sea level mean distance to coast or river mean distance to coast mean distance to river
tropicar troppop lc100km lcr100km pop95	% land area in geographical tropics %pop ('95) in geographical tropics %area 100km from icefree coast %area 100km from icefree coast or sea-nav. river 1995 pop (from GPWv2)
pdenpavg pop100km pop100cr	typical pop density experienced %pop ('95) 100km from icefree coast %pop ('95) 100km from icefree coast or sea-nav. river

Table 5: List of Variables (continued)

variable	label
cen_c cen_cr	dist centroid to coast(km) dist centroid to coast/riv (km)
polity xrreg xrcomp xropen xconst	NULL NULL NULL NULL NULL
parreg parcomp exrec exconst polcomp	NULL NULL NULL NULL NULL
polity2_aug independent transition interruption interregnum	NULL NULL NULL NULL NULL
pr cl pr_aug cl_aug demt	NULL NULL NULL NULL NULL
polity2 status NAME LON LAT	NULL NULL NAME LON LAT
_ID GDPpercapitaconstantLCUN rgdpl2 rgdpna_full PopulationtotalSPPOPTOTL	NULL GDP per capita (constant LCU) [NY.GDP.PCAP.KN] NULL NULL Population, total [SP.POP.TOTL]
Populationages014oftotal Populationages1564oftota	Population ages 0-14 (% of total) [SP.POP.0014.TO.ZS] Population ages 15-64 (% of total) [SP.POP.1564.TO.ZS]

5.2 Arellano Bond Estimation for Table.2 (Shoya Abe)

```
# Select the first 30 columns of the dataset and prepare panel data
data_t2 <- data |>
    select(1:30) |> # Select relevant columns
group_by(country_name) |>
    arrange(year) |> # Arrange by year in ascending order
mutate(
    lag1 = dplyr::lag(y, 1),
    lag2 = dplyr::lag(y, 2),
```

```
lag3 = dplyr::lag(y, 3),
    lag4 = dplyr::lag(y, 4),
    lag5 = dplyr::lag(y, 5),
    lag6 = dplyr::lag(y, 6),
    lag7 = dplyr::lag(y, 7),
    lag8 = dplyr::lag(y, 8)
  ) |>
  ungroup()
# Prepare panel data structures for different models with varying lags
data_m1 <- data_t2 |>
  drop_na(y, dem, lag1) |>
  pdata.frame(index = c("country_name", "year"))
data_m2 <- data_t2 |>
  drop_na(y, dem, lag1, lag2) |>
  pdata.frame(index = c("country_name", "year"))
data_m3 <- data_t2 |>
  drop_na(y, dem, lag1, lag2, lag3, lag4) |>
  pdata.frame(index = c("country_name", "year"))
data_m4 <- data_t2 |>
  drop_na(
    y, dem, lag1, lag2, lag3, lag4,
    lag5, lag6, lag7, lag8
  ) |>
  pdata.frame(index = c("country name", "year"))
# Maximum lag to be used for instruments
maxlag <- 49
# Estimate Arellano-Bond GMM models with different lag structures
model_1_gmm <- pgmm(</pre>
  y ~ dem + lag(y, 1) |
    lag(y, 2:maxlag) + lag(dem, 1:maxlag),
    # Use higher lags as instruments
  data = data_m1,
  effect = "twoways",
  model = "twosteps",
  transformation = "d"
)
model_2_gmm <- pgmm(</pre>
  y ~ dem + lag(y, 1) + lag(y, 2) | # Include two lags of GDP
    lag(y, 2:maxlag) + lag(dem, 1:maxlag),
  data = data m2,
  effect = "twoways",
  model = "twosteps",
  transformation = "d"
model_3_gmm <- pgmm(</pre>
  y \sim dem + lag(y, 1) + lag(y, 2) +
    lag(y, 3) + lag(y, 4) \mid # Include four lags
    lag(y, 2:maxlag) + lag(dem, 1:maxlag),
```

```
data = data_m3,
  effect = "twoways",
  model = "twosteps",
  transformation = "d"
model_4_gmm <- pgmm(</pre>
  y \sim dem + lag(y, 1) + lag(y, 2) +
    lag(y, 3) + lag(y, 4) +
    lag(y, 5) + lag(y, 6) +
    lag(y, 7) + lag(y, 8) \mid # Include eight lags
    lag(y, 2:maxlag) + lag(dem, 1:maxlag),
  data = data_m4,
  effect = "twoways",
  model = "twosteps",
  transformation = "d"
# Function to compute cumulative effects over a given time horizon
compute_dynamic_effect <- function(dem_coef, lag_coefs, n_periods) {</pre>
  effects <- numeric(n_periods) # Initialize vector to store dynamic effects
  effects[1] <- dem_coef # Initial effect of democratization</pre>
  k <- length(lag_coefs) # Number of lags considered
  if (n_periods > 1) {
    for (i in 2:n_periods) {
      eff <- dem_coef # Start with the direct effect of democracy
      for (j in 1:min(i - 1, k)) {
        eff <- eff + effects[i - j] * lag_coefs[j]</pre>
        # Accumulate effects over time
      effects[i] <- eff
    }
  }
  effects[n_periods]
# Extract estimated coefficients for each model
coef 1 <- coef(model 1 gmm)</pre>
dem_coef_1 <- coef_1["dem"]</pre>
lag1_1 \leftarrow coef_1["lag(y, 1)"]
# Compute long-run and short-run effects for each model
lre1 <- dem_coef_1 / (1 - lag1_1)</pre>
# Compute persistence (sum of lag coefficients)
pers1 <- lag1_1
# Compute the effect after 25 years for each model
eff_25_1 <- compute_dynamic_effect(</pre>
 dem_coef_1, c(lag1_1), 25
coef_2 <- coef(model_2_gmm)</pre>
```

```
dem_coef_2 <- coef_2["dem"]</pre>
lag1_2 \leftarrow coef_2["lag(y, 1)"]
lag2_2 \leftarrow coef_2["lag(y, 2)"]
lre2 <- dem_coef_2 / (1 - (lag1_2 + lag2_2))</pre>
pers2 <- lag1_2 + lag2_2
eff_25_2 <- compute_dynamic_effect(</pre>
  dem_coef_2, c(lag1_2, lag2_2), 25
coef_3 <- coef(model_3_gmm)</pre>
dem_coef_3 <- coef_3["dem"]</pre>
lag1_3 \leftarrow coef_3["lag(y, 1)"]
lag2_3 \leftarrow coef_3["lag(y, 2)"]
lag3_3 \leftarrow coef_3["lag(y, 3)"]
lag4_3 \leftarrow coef_3["lag(y, 4)"]
lre3 <- dem_coef_3 / (1 - (lag1_3 +</pre>
  lag2_3 + lag3_3 + lag4_3))
pers3 <- lag1_3 + lag2_3 + lag3_3 + lag4_3
eff_25_3 <- compute_dynamic_effect(</pre>
  dem_coef_3, c(lag1_3, lag2_3, lag3_3, lag4_3), 25
coef_4 <- coef(model_4_gmm)</pre>
dem_coef_4 <- coef_4["dem"]</pre>
lag1_4 \leftarrow coef_4["lag(y, 1)"]
lag2_4 \leftarrow coef_4["lag(y, 2)"]
lag3_4 \leftarrow coef_4["lag(y, 3)"]
lag4_4 \leftarrow coef_4["lag(y, 4)"]
lag5_4 \leftarrow coef_4["lag(y, 5)"]
lag6_4 \leftarrow coef_4["lag(y, 6)"]
lag7_4 \leftarrow coef_4["lag(y, 7)"]
lag8_4 \leftarrow coef_4["lag(y, 8)"]
lre4 <- dem_coef_4 / (1 - (lag1_4 +</pre>
  lag2_4 + lag3_4 + lag4_4 + lag5_4 +
  lag6_4 + lag7_4 + lag8_4))
pers4 <- lag1_4 + lag2_4 + lag3_4 +
  lag4_4 + lag5_4 + lag6_4 + lag7_4 + lag8_4
eff_25_4 <- compute_dynamic_effect(</pre>
  dem_coef_4,
  c(
    lag1_4, lag2_4, lag3_4, lag4_4,
    lag5_4, lag6_4, lag7_4, lag8_4
  ),
  25
lre <- round(c(lre1, lre2, lre3, lre4), 3)</pre>
pers <- round(c(pers1, pers2, pers3, pers4), 3)</pre>
eff_25 <- round(
  c(eff_25_1, eff_25_2, eff_25_3, eff_25_4),
)
```

```
se1 <- sqrt(diag(vcov(model_1_gmm)))</pre>
se2 <- sqrt(diag(vcov(model_2_gmm)))</pre>
se3 <- sqrt(diag(vcov(model_3_gmm)))</pre>
se4 <- sqrt(diag(vcov(model_4_gmm)))</pre>
override.coef.1 <- c(</pre>
  coef_1["dem"],
  coef_1["lag(y, 1)"],
  rep(NA, 7)
override.se.1 <- c(
  se1["dem"],
  se1["lag(y, 1)"],
  rep(NA, 7)
override.coef.2 <- c(</pre>
  coef_2["dem"],
  coef_2["lag(y, 1)"],
  coef_2["lag(y, 2)"],
  rep(NA, 6)
override.se.2 <- c(
  se2["dem"],
  se2["lag(y, 1)"],
  se2["lag(y, 2)"],
  rep(NA, 6)
override.coef.3 <- c(</pre>
  coef_3["dem"],
  coef_3["lag(y, 1)"],
  coef_3["lag(y, 2)"],
  coef_3["lag(y, 3)"],
  coef_3["lag(y, 4)"],
  rep(NA, 4)
)
override.se.3 <- c(
  se3["dem"],
  se3["lag(y, 1)"],
  se3["lag(y, 2)"],
  se3["lag(y, 3)"],
  se3["lag(y, 4)"],
  rep(NA, 4)
override.coef.4 <- c(
  coef_4["dem"],
  coef_4["lag(y, 1)"],
  coef_4["lag(y, 2)"],
  coef_4["lag(y, 3)"],
  coef_{4}["lag(y, 4)"],
  coef_4["lag(y, 5)"],
  coef_4["lag(y, 6)"],
  coef_4["lag(y, 7)"],
  coef_4["lag(y, 8)"]
```

```
override.se.4 <- c(
  se4["dem"],
  se4["lag(y, 1)"],
  se4["lag(y, 2)"],
  se4["lag(y, 3)"],
  se4["lag(y, 4)"],
  se4["lag(y, 5)"],
  se4["lag(y, 6)"],
  se4["lag(y, 7)"],
  se4["lag(y, 8)"]
)
models <- list(model_1_gmm, model_2_gmm, model_3_gmm, model_4_gmm)</pre>
#Generating LaTex Table
texreg(
  models,
  override.coef = list(
    override.coef.1,
    override.coef.2,
    override.coef.3,
   override.coef.4
  ),
  override.se = list(
    override.se.1,
    override.se.2,
    override.se.3,
   override.se.4
  ),
  custom.model.names = c("(1)", "(2)", "(3)", "(4)"),
  custom.coef.names = c(
    "Democracy", "Lag 1", "Lag 2",
    "Lag 3", "Lag 4", "Lag 5",
    "Lag 6", "Lag 7", "Lag 8"
  custom.gof.rows = list(
    "Persistence" = pers,
    "Long run effect" = lre,
    "Effect after 25 years" = eff_25
  file = "output/table_2_GMM.tex",
  caption = "Effect of Democracy on (Log) GDP per Capita: Arellano-Bond GMM Estimation"
```

Table 3: Semiparametric Estimates of the Effect of Democratizations on GDP per Capita (Log)

Inverse propensity	score reweighting
RelativeTime	ATT
-15	10.073
-14	7.544
-13	7.138
-12	6.335
-11	5.298
-10	5.642
-9	6.710
-8	6.859
-7	6.433
-6	6.409
-5	7.234
-4	5.763
-3	4.649
-2	2.075
-1	0.000
0	-0.639
1	0.266
2	0.593
3	0.856
4	0.688
5	0.304
6	0.474
7	0.597
8 9	0.679
	2.115
10 11	2.577 4.585
12	4.585 6.414
13	6.388
14	7.747
15	9.324
16	7.582
17 18	10.811 12.866
19	12.090
20	13.337
21	18.325
22	19.630
23 24	18.412 18.987
25 26	18.254
26	17.122
27	15.736
$\begin{array}{c} 28 \\ 29 \end{array}$	13.956 16.332
30	15.678

-	1 Lag	4 Lags	Soviet Dummies	Regional Trends
Democracy	0.97	1.15	1.29	1.70*
	(0.61)	(0.61)	(0.67)	(0.78)
Persistence	0.96	0.96	0.96	0.95
Long run effect	26.32	31.52	35.72	36.79
Effect after 25 years	20.84	24.87	27.93	32.05
Num. obs.	6312	6309	6309	6309

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 4: Effect of Democracy on (Log) GDP per Capita

	(1)	(2)	(3)	(4)
Democracy	2.79	2.29	0.05	1.51
	(2.12)	(1.63)	(1.42)	(0.51)
Lag 1	0.96***	0.99***	0.94***	0.93***
	(0.03)	(0.03)	(0.03)	(0.01)
Lag 2	,	-0.02	-0.00	-0.01
		(0.01)	(0.01)	(0.00)
Lag 3		, ,	$0.00^{'}$	$0.00^{'}$
			(0.01)	(0.00)
Lag 4			-0.02^{*}	-0.01
			(0.01)	(0.00)
Lag 5			()	-0.00
0				(0.00)
Lag 6				$0.00^{'}$
0				(0.00)
Lag 7				-0.00
				(0.00)
Lag 8				-0.00
				(0.00)
Persistence	0.96	0.97	0.92	0.91
Long run effect	63.18	74.26	0.65	16.40
Effect after 25 years	42.76	40.77	0.59	15.27
n	175	175	175	175
T	50	49	47	43
Num. obs.	6790	6642	6336	5688
Num. obs. used	6542	6311	5824	4779
Sargan Test: chisq	145.66	147.27	140.10	146.09
Sargan Test: df	2398.00	2297.00	2095.00	1691.00
Sargan Test: p-value	1.00	1.00	1.00	1.00
Wald Test Coefficients: chisq	808.19	984.51	1143.95	2227.71
Wald Test Coefficients: df	2	3	5	9
Wald Test Coefficients: p-value	0.00	0.00	0.00	0.00
Wald Test Time Dummies: chisq	533.24	491.67	497.42	453.37
Wald Test Time Dummies: df	48	46	42	34
Wald Test Time Dummies: p-value	0.00	0.00	0.00	0.00
***- < 0.001. **- < 0.01. *- < 0.05				

^{***}p < 0.001; **p < 0.01; *p < 0.05

Table 6: Effect of Democracy on (Log) GDP per Capita: Arellano–Bond GMM Estimation