TD Intégrales curvilignes

Exercice 1

Soit
$$\omega$$
 la forme différentielle $\omega = Pdx + Qdy$ avec $P = \frac{x^2 - y^2 + 2xy}{\left(x^2 + y^2\right)^2}$ et $Q = \frac{-x^2 + y^2 + 2xy}{\left(x^2 + y^2\right)^2}$.

Est-elle fermée ? sur quel domaine ? Est-elle exacte ? si c'est le cas, en trouver une primitive.

En étudiant l'intégrale de ω sur le segment [AB] avec A = (1,-1) et B = (1,1), calculer $\int_{-1}^{1} \frac{t^2-1}{(t^2+1)^2} dt$.

Exercice 2

Soit
$$\omega$$
 la forme différentielle $\omega = Pdx + Qdy$ avec $P = \frac{-y}{x^2 + y^2}$ et $Q = \frac{x}{x^2 + y^2}$.

Est-elle fermée ? sur quel domaine ?

Est-elle exacte ? si c'est le cas, en trouver une primitive.

Soit *K* le domaine compris entre le carré *ABCD* et le cercle de rayon *R*.

Soit ABCDA le contour orienté du carré et γ le cercle de rayon R.

Montrer à l'aide de la formule de Green-Riemann que $\int_{ABCDA} \omega = \int_{\gamma} \omega$

Vérifier en calculant ces deux intégrales curvilignes

Exercice 3

Calculer $\oint_{\Gamma} y^2 dx + x^2 dy$ dans les cas suivants :

a/ Γ est la courbe d'équation $x^2 + y^2$ - a y = 0 (a > 0)

b/ Γ est la courbe d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > 0, b > 0)

c/ Γ est la courbe d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{2x}{a} - \frac{2y}{b} = 0$ (a > 0, b > 0)

Exercice 4

Calculer
$$\oint_C \frac{(x-y) dx + (x+y) dy}{x^2 + y^2}$$

où C est le carré ABCD avec A = (1, 1), B = (-1, 1), C = (-1, -1), D = (1, -1).

Exercice 5

En utilisant la formule de Green-Riemann, calculer l'aire et la position du centre de gravité de la surface limitée par la cardioïde d'équation polaire $\rho = 1 + \cos \theta$, $\theta \in [-\pi, +\pi]$

Exercice 6

Calculer $\int_{\mathcal{C}} \vec{V} \ d\vec{M}$ (circulation du champ de vecteurs V le long de la courbe γ) dans les cas suivants :

a /
$$V(x, y, z) = \left(\frac{x - y}{x^2 + y^2}, \frac{x + y}{x^2 + y^2}, z\right)$$
,

 γ = une spire d'hélice circulaire de rayon 1, d'axe Oz, entre les points (1,0,0) et $(1,0,2\pi\lambda)$

b /
$$V(x, y, z) = \left(\frac{x}{x^2 + y^2 + z^2}, \frac{y}{x^2 + y^2 + z^2}, \frac{z}{x^2 + y^2 + z^2}\right)$$

 $\gamma = \text{la courbe } x = \cos(2t)\sin(t), y = \sin(2t)\sin(t), z = \cos(t), t \in [0..\pi]$

$$c / V(x, y, z) = (x y, y z, x z), \gamma = \text{le triangle } ABC, \text{ avec } A = (0, 1, 0), B = (1, 0, 1), C = (0, -1, 0)$$

d /
$$V(x, y, z) = (x y, y z, x z)$$
, $\gamma = \text{la courbe } x = \sin(t), y = \cos(t), z = 1 - \cos^2(t), t \in [0..\pi]$