

FCC Part 15C Test Report FCC ID: 2AGDZRLC-410WS

Product Name:	WiFi IP Camera
Trademark:	replink
Model Name :	RLC-410WS, RLC-411WS
Prepared For :	Reolink Digital Technology Co., Ltd.
Address :	A218, ShiWaiTaoYuan ChuanyiYuan , 1st of PingShan Road , Xili , NanShan , Shenzhen,China
Prepared By :	Shenzhen BCTC Technology Co., Ltd.
Address :	No.101,Yousong Road,Longhua New District, Shenzhen,China
Test Date:	Dec. 16 - Dec. 29, 2015
Date of Report :	Dec. 30, 2015
Report No.:	BCTC-151216585

VERIFICATION OF COMPLIANCE

Report No.: BCTC-151216585

Address Manufacture's Name	ant's name Reolink Digital Technology Co., Ltd. ss				
Product description					
Product name	WiFi IP Camera				
Trademark	replink				
Model Name:	RLC-410WS, RLC-411WS				
Test procedure	FCC Part15.407				
01 1 1	ANSI C63.10-2013				
Standards	KDB789033 D02 General UNII Test Procedures New Rules v01				
equipment under test (E	pove has been tested by BCTC, and the test results show that the UT) is in compliance with the FCC requirements. And it is sted sample identified in the report.				
•	reproduced except in full, without the written approval of BCTC, Itered or revised by BCTC, personal only, and shall be noted in ment				
Test Result	Pass				
Testing Engine	er : Tric Yang				
	(Eric Yang)				
Technical Manager: Sophie Lu					
	(Sophia Lee)				
Authorized Signatory	Conson . 2 huge APPROVED S				

(Carson. Zhang)

TABLE OF CONTENTS

Report No.: BCTC-151216585

Te	est Report Declaration	Page
1.	TEST SUMMARY	
2.	GENERAL PRODUCT INFORMATION	Ę
2	2.1. Product Function	
2	2.2. Description of Device (EUT)	5
	2.3. Test Supporting System	
	2.4. Independent Operation Modes	
	2.5. Test Sites2.6. List of Test and Measurement Instruments	t
3.		
-		
	3.1. Principle of Configuration Selection3.2. Block Diagram of Test Set-up	
	3.3. Test Operation Mode and Test Software	
	3.4. Special Accessories and Auxiliary Equipment	
3	3.5. Countermeasures to Achieve EMC Compliance	8
4.		
	4.1. Conducted Emission Measurement	
4	4.2. Radiated Emission Measurement	
5.		
	5.1. Limits	
	5.2. Test setup	
	5.3. Test Data	
6.		
	6.1. Measurement Procedure	
7.		
	7.1. Limits	
	7.2. Test setup7.3. Test result	
8.		
	8.1. Limits	
	8.2. Test setup	
	8.3. Test data	
9.		
10.	PHOTOGRAPHS OF THE EUT	45

1.TEST SUMMARY

Test Items	Test Requirement	Result
Conducted Emissions	15.207	PASS
Radiated Emissions	15.407(b), 15.209	PASS
26dB bandwidth and 99%dB Bandwidth	15.403(i) 15.407(e)	PASS
Power density	15.407 (a)	PASS
Maximum Peak Output Power	15.407 (a)	PASS
Emissions from out of band	15.407 (b)	PASS
Transmission in case of Absence of Information	15.407(c)	PASS
Frequency Stability	15.407(g)	PASS
Antenna Requirement	15.203	PASS

2.GENERAL PRODUCT INFORMATION

2.1. Product Function

Refer to Technical Construction Form and User Manual.

2.2. Description of Device (EUT)

Product Name:	WiFi IP Camera		
Trade Name:	replink		
Model No.:	RLC-410WS, RLC-411WS		
Model Difference	The product is different for RLC-410WS has B2 cylindrical shell(L*W=9.0*6.5mm), RLC-411WS has B7 cylindrical shell(L*W=16.5*8.1mm).		
	RLC-410WS has 4mm lens, RLC-411WS has HD electric zoom lens.		
Operation Frequency:	5745-5805MHz		
Channel numbers:	See channel list		
Modulation technology: 64QAM, 16QAM, QPSK, BPSK for OFDM			
Data around (IEEE 902 11a):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps,		
Data speed (IEEE 802.11a):	36Mbps, 48Mbps,54Mbps		
Data speed (IEEE 802.11n):	Up to 150Mbps		
Antenna Type:	External antenna		
Antenna gain:	3.0dBi		
Power supply:	DC 12V from adapter		
	Model:CS-1201000		
Adapter:	I/P:AC 100-240V 50/60Hz		
	O/P:DC 12V/1A		

Channel List for 802.11a/n(20)					
Channel Frequency (MHz) Channel Frequency (MHz					
149	5745	161	5805		
153	5765				
157	5785				

2.3. Test Supporting System

None.

2.4. Independent Operation Modes

The basic operation modes are:

These is Digital Transmission system (DTS) and have modulation OFDM, DSSS, DBPSK, DQPSK, CCK, 16QAM, 64QAM. According exploratory test, EUT will have maximum output power in those data rate (802.11a/n: MCS0), so those data rate were used for all test. The equipment enables high-speed access without wires to network assets. This adapter uses the IEEE 802.11 protocol to enable wireless communications between the host and Wireless rooter.

Report No.: BCTC-151216585

802.11a/n(20)

Frequency	Band 4
Low	5745MHz
Middle	5785MHz
High	5805MHz

Note: for conducted emission test, we pretest all mode, the worst mode was 802.11a channel 149. for radiated emissions test, we pretest all mode, the worst mode was 802.11a/n20

The worst mode's data was recording and show in the test report.

2.5. Test Sites

2.5.1. Test Facilities

Lab Qualifications : FCC Registration No.:187086

2.6. List of Test and Measurement Instruments

Conduction test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	1166.5950K0 3-101165-ha	2015.07.06	2016.07.05	1 year
2	LISN	R&S	NSLK81 26	812646 6	2015.08.24	2016.08.23	1 year
3	LISN	R&S	NSLK81 26	812648 7	2015.08.24	2016.08.23	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264417	2015.07.06	2016.07.05	1 year
5	RF cables	R&S	R204	R20X	2015.07.06	2016.07.05	1 year

Radiation test, Band-edge test and 6db bandwith test equipment

Item	Kind of equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Spectrum Analyzer	Agilent	E4407B	MY45108040	2015.07.06	2016.07.05	1 year
2	Test Receiver	R&S	ESPI	101318	2015.07.06	2016.07.05	1 year
3	Bilog Antenna	R&S	VULB 9168	VULB91 68-438	2015.07.06	2016.07.05	1 year
4	50Ω Coaxial Switch	Anritsu	MP59B	6200264416	2015.07.06	2016.07.05	1 year
5	Spectrum Analyzer	ADVANTEST	R3132	150900201	2015.07.06	2016.07.05	1 year
6	Horn Antenna	R&S	HF906	10027	2015.07.06	2016.07.05	1 year
7	Horn Ant	Schwarzbeck	BBHA 9170	9170-181	2015.07.06	2016.07.05	1 year
8	Amplifier	R&S	BBV9743	9743-01 9	2015.12.22	2016.12.21	1 year
9	Loop Antenna	ARA	PLA-1030/B	1029	2015.07.06	2016.07.05	1 year
10	RF cables	R&S	R203	R20X	2015.07.06	2016.07.05	1 year
11	Antenna connector	Florida RFLabs	Lab-Fle	RF 01#	2015.07.06	2016.07.05	1 year
12	Power Metter	ANRITSU	ML2487A	6K00001568	2015.07.06	2016.07.05	1 year
13	Power Sensor (AV)	ANRITSU	ML2491A	030989	2015.07.06	2016.07.05	1 year
14	Signal Analyzer	Agilent	N9010A	MY48030494	2015.07.06	2016.07.05	1 year

3. TEST SET-UP AND OPERATION MODES

3.1. Principle of Configuration Selection

Emission: The equipment under test (EUT) was configured to measure its highest possible radiation level. The test modes were adapted accordingly in reference to the Operating Instructions.

3.2. Block Diagram of Test Set-up

System Diagram of Connections between EUT and Simulators

- 3.3. Test Operation Mode and Test Software None.
- 3.4. Special Accessories and Auxiliary Equipment
- 3.5. Countermeasures to Achieve EMC Compliance
 None.

4. EMISSION TEST RESULTS

4.1. Conducted Emission Measurement

POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

FREQUENCY (MHz)	Class B (dE	Standard	
FREQUENCT (IVIIIZ)	Quasi -peak	Average	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 kHz	

4.1.1. TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.2. DEVIATION FROM TEST STANDARD

No deviation

4.1.3. TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

4.1.4. EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

We pretest all adapter's emission, only the adapter 1's data was worst and the data was recording in the report.

The data only show the worst mode.

If peak level comply with Quasi-Peak limit, then the Quasi-Peak level is deemed to comply with Quasi-Peak limit.

We pretest AC 120V and AC 240V, the worst voltage was AC 120V and the data recording in the report.

4.1.5. TEST RESULTS

EUT:	WiFi IP Camera	Model Name :	RLC-410WS
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Test Mode:	Link Mode

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBu∀	dBuV	dB	Detector	Comment
1		0.5620	33.45	10.12	43.57	56.00	-12.43	QP	
2	*	0.5620	29.05	10.12	39.17	46.00	-6.83	AVG	
3		0.8059	24.80	10.15	34.95	56.00	-21.05	QP	
4		0.8059	15.36	10.15	25.51	46.00	-20.49	AVG	
5		1.2140	24.17	10.17	34.34	56.00	-21.66	QP	
6		1.2140	18.47	10.17	28.64	46.00	-17.36	AVG	
7		2.7139	21.27	10.19	31.46	56.00	-24.54	QP	
8		2.7139	14.54	10.19	24.73	46.00	-21.27	AVG	
9		5.2499	18.19	10.13	28.32	60.00	-31.68	QP	
10		5.2499	10.77	10.13	20.90	50.00	-29.10	AVG	
11		17.9859	15.02	10.16	25.18	60.00	-34.82	QP	
12		17.9859	2.58	10.16	12.74	50.00	-37.26	AVG	

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

Shenzhen BCTC Technology Co., Ltd. Report No.: BCTC-151216585

EUT:	WiFi IP Camera	Model Name :	RLC-410WS
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N
Test Voltage :	AC 120V/60Hz	Test Mode:	Link Mode

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector	Comment	
	0.5620	30.46	10.12	40.58	56.00	-15.42	QP		
*	0.5620	22.40	10.12	32.52	46.00	-13.48	AVG		
	1.1500	20.34	10.17	30.51	56.00	-25.49	QP		
	1.1500	9.17	10.17	19.34	46.00	-26.66	AVG		
	1.6860	17.66	10.18	27.84	56.00	-28.16	QP		
	1.6860	7.89	10.18	18.07	46.00	-27.93	AVG		
	2.7700	16.79	10.19	26.98	56.00	-29.02	QP		
	2.7700	7.11	10.19	17.30	46.00	-28.70	AVG		
	5.3778	16.06	10.13	26.19	60.00	-33.81	QP		
	5.3778	4.60	10.13	14.73	50.00	-35.27	AVG		
	18.3699	16.21	10.16	26.37	60.00	-33.63	QP		
	18.3699	3.45	10.16	13.61	50.00	-36.39	AVG		
		MHz 0.5620 * 0.5620 1.1500 1.1500 1.6860 2.7700 2.7700 5.3778 5.3778 18.3699	Mk. Freq. Level MHz dBuV 0.5620 30.46 * 0.5620 22.40 1.1500 20.34 1.1500 9.17 1.6860 17.66 1.6860 7.89 2.7700 16.79 2.7700 7.11 5.3778 16.06 5.3778 4.60 18.3699 16.21	Mk. Freq. Level Factor MHz dBuV dB 0.5620 30.46 10.12 * 0.5620 22.40 10.12 1.1500 20.34 10.17 1.6860 17.66 10.18 1.6860 7.89 10.18 2.7700 16.79 10.19 2.7700 7.11 10.19 5.3778 16.06 10.13 5.3778 4.60 10.13 18.3699 16.21 10.16	Mk. Freq. Level Factor ment MHz dBuV dB dBuV 0.5620 30.46 10.12 40.58 * 0.5620 22.40 10.12 32.52 1.1500 20.34 10.17 30.51 1.1500 9.17 10.17 19.34 1.6860 17.66 10.18 27.84 1.6860 7.89 10.18 18.07 2.7700 16.79 10.19 26.98 2.7700 7.11 10.19 17.30 5.3778 16.06 10.13 26.19 5.3778 4.60 10.13 14.73 18.3699 16.21 10.16 26.37	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV 0.5620 30.46 10.12 40.58 56.00 * 0.5620 22.40 10.12 32.52 46.00 1.1500 20.34 10.17 30.51 56.00 1.6860 17.66 10.18 27.84 56.00 1.6860 7.89 10.18 18.07 46.00 2.7700 16.79 10.19 26.98 56.00 2.7700 7.11 10.19 17.30 46.00 5.3778 16.06 10.13 26.19 60.00 5.3778 4.60 10.13 14.73 50.00 18.3699 16.21 10.16 26.37 60.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB dBuV dB dBuV dB dB 0B dBuV dB dB	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dBuV dB Detector 0.5620 30.46 10.12 40.58 56.00 -15.42 QP * 0.5620 22.40 10.12 32.52 46.00 -13.48 AVG 1.1500 20.34 10.17 30.51 56.00 -25.49 QP 1.1500 9.17 10.17 19.34 46.00 -26.66 AVG 1.6860 17.66 10.18 27.84 56.00 -28.16 QP 1.6860 7.89 10.18 18.07 46.00 -27.93 AVG 2.7700 16.79 10.19 26.98 56.00 -29.02 QP 2.7700 7.11 10.19 17.30 46.00 -28.70 AVG 5.3778 16.06 10.13 14.73 50.00 -33.81 QP 5.3778 4.60 <	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV dB Detector Comment 0.5620 30.46 10.12 40.58 56.00 -15.42 QP * 0.5620 22.40 10.12 32.52 46.00 -13.48 AVG 1.1500 20.34 10.17 30.51 56.00 -25.49 QP 1.1500 9.17 10.17 19.34 46.00 -26.66 AVG 1.6860 17.66 10.18 27.84 56.00 -28.16 QP 1.6860 7.89 10.18 18.07 46.00 -27.93 AVG 2.7700 16.79 10.19 26.98 56.00 -29.02 QP 2.3778 16.06 10.13 26.19 60.00 -33.81 QP 5.3778 4.60 10.13 14.73 50.00 -35.27 AVG 18.3699 16.21

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

EUT:	WiFi IP Camera	Model Name :	RLC-411WS
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Test Mode:	Link Mode

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBuV	dBu∀	dB	Detector	Comment
1	0.1580	29.81	10.05	39.86	65.56	-25.70	QP	
2	0.1580	15.43	10.05	25.48	55.56	-30.08	AVG	
3	0.1780	27.54	10.06	37.60	64.57	-26.97	QP	
4	0.1780	13.87	10.06	23.93	54.57	-30.64	AVG	
5	0.5620	32.95	10.12	43.07	56.00	-12.93	QP	
6 *	0.5620	28.55	10.12	38.67	46.00	-7.33	AVG	
7	0.8059	21.21	10.15	31.36	56.00	-24.64	QP	
8	0.8059	13.36	10.15	23.51	46.00	-22.49	AVG	
9	1.6860	20.62	10.18	30.80	56.00	-25.20	QP	
10	1.6860	12.82	10.18	23.00	46.00	-23.00	AVG	
11	7.1380	15.53	10.10	25.63	60.00	-34.37	QP	
12	7.1380	7.88	10.10	17.98	50.00	-32.02	AVG	

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

EUT:	WiFi IP Camera	Model Name :	RLC-411WS
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	N
Test Voltage :	AC 120V/60Hz	Test Mode:	Link Mode

No. Mł	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment	
1	0.5620	29.96	10.12	40.08	56.00	-15.92	QP		
2 *	0.5620	21.90	10.12	32.02	46.00	-13.98	AVG		
3	1.1500	19.34	10.17	29.51	56.00	-26.49	QP		
4	1.1500	8.17	10.17	18.34	46.00	-27.66	AVG		
5	2.2300	17.14	10.18	27.32	56.00	-28.68	QP		
6	2.2300	5.01	10.18	15.19	46.00	-30.81	AVG		
7	3.8060	15.76	10.17	25.93	56.00	-30.07	QP		
8	3.8060	4.45	10.17	14.62	46.00	-31.38	AVG		
9	6.4860	13.03	10.09	23.12	60.00	-36.88	QP		
10	6.4860	1.82	10.09	11.91	50.00	-38.09	AVG		
11	25.9980	19.33	10.20	29.53	60.00	-30.47	QP		
12	25.9980	8.36	10.20	18.56	50.00	-31.44	AVG		

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

4.2. Radiated Emission Measurement

4.2.1. Radiated Emission Limits (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class B (dBuV/m) (at 3M)					
TINEQUEINOT (IVII IZ)	PEAK	AVERAGE				
Above 1000	74	54				

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5th harmonic of the highest frequency or 40 GHz, whichever is lower

Shenzhen BCTC Technology Co., Ltd. Report No.: BCTC-151216585

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

4.2.2. TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 1.5 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.
- g. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

Note:

Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case emissions were reported

We pretest AC 120V and AC 240V, the worst voltage was AC 120V and the data recording in the report.

4.2.3. DEVIATION FROM TEST STANDARD

No deviation

4.2.4. TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.5. EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

We pretest all adapter's emission, only the adapter 1's data was worst and the data was recording in the report.
The data only show the worst mode.

Radiated Spurious Emission (Below 30MHz)

EUT:	WiFi IP Camera	Model Name :	RLC-410WS
Temperature :	20 ℃	Relative Humidity:	48%
Pressure:	1010 hPa	Polarization :	
Test Voltage :	DC 12V from adapter		
Test Mode :	TX		

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

Radiated Spurious Emission (Between 30MHz – 1GHz)

EUT:	WiFi IP Camera	Model Name :	RLC-410WS
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	1010 hPa	Polarization :	Horizontal
Test Voltage :	DC 12V from adapter		
Test Mode : (Worst)	Link Mode		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB/m	dBu∀/m	dBuV/m	dB	Detector	cm	degree	Comment
1		55.0274	26.66	-11.13	15.53	40.00	-24.47	QP			
2	*	77.8654	35.61	-17.33	18.28	40.00	-21.72	QP			
3		129.9226	33.81	-14.11	19.70	43.50	-23.80	QP			
4		155.9101	27.16	-12.87	14.29	43.50	-29.21	QP			
5		279.0436	33.85	-13.13	20.72	46.00	-25.28	QP			
6		410.3825	22.84	-9.96	12.88	46.00	-33.12	QP			

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

EUT:	WiFi IP Camera	Model Name :	RLC-410WS
Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	1010 hPa	Polarization :	Vertical
Test Voltage :	DC 12V from adapter		
Test Mode : (Worst)	Link Mode		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		43.2017	37.60	-9.25	28.35	40.00	-11.65	QP			
2	*	52.0251	42.02	-10.63	31.39	40.00	-8.61	QP			
3		77.8654	39.81	-17.33	22.48	40.00	-17.52	QP			
4		103.8055	37.39	-16.16	21.23	43.50	-22.27	QP			
5		129.9226	38.42	-14.11	24.31	43.50	-19.19	QP			
6		155.9101	32.61	-12.87	19.74	43.50	-23.76	QP			

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.
All interfaces was connected, and BT TX mode was link.

EUT: WiFi IP Camera Model Name : RLC-411WS Temperature: 26 ℃ Relative Humidity: 54% Pressure: 1010 hPa Polarization: Horizontal DC 12V from adapter Test Voltage : Test Mode : Link Mode (Worst)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	77.8654	41.07	-17.33	23.74	40.00	-16.26	QP			
2		103.8055	36.89	-16.13	20.76	43.50	-22.74	QP			
3		129.9226	35.87	-14.11	21.76	43.50	-21.74	QP			
4		181.9202	27.15	-14.58	12.57	43.50	-30.93	QP			
5		279.0436	32.81	-13.13	19.68	46.00	-26.32	QP			
6		631.6884	23.67	-5.41	18.26	46.00	-27.74	QP			

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

EUT:	WiFi IP Camera	Model Name :	RLC-411WS
Temperature :	26 ℃	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization :	Vertical
Test Voltage :	DC 12V from adapter		
Test Mode : (Worst)	Link Mode		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	43.2017	34.39	-9.25	25.14	40.00	-14.86	QP			
2		43.9658	33.49	-9.35	24.14	40.00	-15.86	QP			
3		51.8430	34.21	-10.60	23.61	40.00	-16.39	QP			
4		77.8654	35.13	-17.33	17.80	40.00	-22.20	QP			
5		129.9226	36.44	-14.11	22.33	43.50	-21.17	QP			
6		155.9101	32.75	-12.87	19.88	43.50	-23.62	QP			

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.
All interfaces was connected, and BT TX mode was link.

Radiated Spurious Emission (1GHz to 5th harmonics)

802.11a band 4

02.11a bar	10 4	Г	1	-		1		
	Freq.	Receiver Reading	Detector	Polar	Corrected Factor	Emission Level	Limit	Result
	(MHz)	(dBµV)	(PK/QP/Ave)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	
	11490.00	57.19	PK	Н	2.32	59.51	74.00	Pass
Lower	11490.00	48.10	Ave	Н	2.32	50.42	54.00	Pass
Lower Channel	17235.00	58.88	PK	Н	-2.15	56.73	74.00	Pass
5745MHz	17235.00	48.04	Ave	Н	-2.15	45.89	54.00	Pass
	11490.00	56.85	PK	V	2.32	59.17	74.00	Pass
	11490.00	47.93	Ave	V	2.32	50.25	54.00	Pass
	17235.00	59.12	PK	V	-2.15	56.97	74.00	Pass
	17235.00	48.24	Ave	V	-2.15	46.09	54.00	Pass
	11570.00	57.86	PK	Н	2.54	60.40	74.00	Pass
	11570.00	48.34	Ave	Н	2.54	50.88	54.00	Pass
	17355.00	58.48	PK	Н	-1.98	56.50	74.00	Pass
Middle Channel	17355.00	48.82	Ave	Н	-1.98	46.84	54.00	Pass
5785MHz	11570.00	57.79	PK	V	2.54	60.33	74.00	Pass
	11570.00	48.12	Ave	V	2.54	50.66	54.00	Pass
	17355.00	59.37	PK	V	-1.98	57.39	74.00	Pass
	17355.00	47.86	Ave	V	-1.98	45.88	54.00	Pass
	11610.00	58.46	PK	Н	2.68	61.14	74.00	Pass
	11610.00	48.33	Ave	Н	2.68	51.01	54.00	Pass
	17415.00	60.14	PK	Н	-1.27	58.87	74.00	Pass
Upper Channel	17415.00	48.29	Ave	Н	-1.27	47.02	54.00	Pass
5805MHz	11610.00	58.76	PK	V	2.68	61.44	74.00	Pass
	11610.00	49.21	Ave	V	2.68	51.89	54.00	Pass
	17415.00	59.57	PK	V	-1.27	58.30	74.00	Pass
	17415.00	48.54	Ave	V	-1.27	47.27	54.00	Pass

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Emission Level = Meter Reading + Factor

Margin = Emission Level - Limit

Other harmonics emissions are lower than 20dB below the allowable limit.

802.11n20 band 4

302.11n20 k	oand 4							
	Freq.	Receiver Reading	Detector	Polar	Corrected Factor	Emission Level	Limit	Result
	(MHz)	(dBµV)	(PK/QP/Ave)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	
	11490.00	57.31	PK	Н	2.32	59.63	74.00	Pass
Lower	11490.00	48.20	Ave	Н	2.32	50.52	54.00	Pass
Lower Channel	17235.00	59.01	PK	Н	-2.15	56.86	74.00	Pass
5745MHz	17235.00	48.14	Ave	Н	-2.15	45.99	54.00	Pass
	11490.00	56.97	PK	V	2.32	59.29	74.00	Pass
	11490.00	48.03	Ave	V	2.32	50.35	54.00	Pass
	17235.00	59.25	PK	V	-2.15	57.10	74.00	Pass
	17235.00	48.34	Ave	V	-2.15	46.19	54.00	Pass
	11570.00	57.99	PK	Н	2.54	60.53	74.00	Pass
	11570.00	48.44	Ave	Н	2.54	50.98	54.00	Pass
	17355.00	58.61	PK	Н	-1.98	56.63	74.00	Pass
Middle Channel	17355.00	48.92	Ave	Н	-1.98	46.94	54.00	Pass
5785MHz	11570.00	57.92	PK	V	2.54	60.46	74.00	Pass
	11570.00	48.22	Ave	V	2.54	50.76	54.00	Pass
	17355.00	59.50	PK	V	-1.98	57.52	74.00	Pass
	17355.00	47.96	Ave	V	-1.98	45.98	54.00	Pass
	11610.00	58.59	PK	Н	2.68	61.27	74.00	Pass
	11610.00	48.43	Ave	Н	2.68	51.11	54.00	Pass
	17415.00	60.27	PK	Н	-1.27	59.00	74.00	Pass
Upper	17415.00	48.39	Ave	Н	-1.27	47.12	54.00	Pass
Channel 5805MHz	11610.00	58.89	PK	V	2.68	61.57	74.00	Pass
	11610.00	49.31	Ave	V	2.68	51.99	54.00	Pass
	17415.00	59.70	PK	V	-1.27	58.43	74.00	Pass
	17415.00	48.64	Ave	V	-1.27	47.37	54.00	Pass

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission Level = Meter Reading + Factor

Margin = Emission Level - Limit

Other harmonics emissions are lower than 20dB below the allowable limit.

5. BAND EDGE COMPLIANCE TEST

5.1. Limits

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of −17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of −27 dBm/MHz.

5.2. Test setup

Test method: FCC KDB 789033 G)& Parts 15.407(b)(4) & 15.209(a)

Same as Clause 4.2.

5.3. Test Data

Please see data as below:

Note: we pretest horizontal and vertical, the worst was horizontal and show in the report.

Modulation	Test Frequency (MHz)	Max Level (dBµV/m)	EIRP[dBm]	Limit[dBm]	Result
	5745	51.39	-43.81	-27.00	Pass
802.11a	5875	51.61	-43.59	-27.00	Pass
	5805	51.36	-43.84	-27.00	Pass
	5745	51.51	-43.69	-27.00	Pass
802.11n(HT20)	5875	51.36	-43.84	-27.00	Pass
	5805	51.84	-43.36	-27.00	Pass

Remark: 1. According to KDB 789033 D02 section H) d) (iii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows: EIRP[dBm] = $E[dB\mu V/m] - 95.2$

802.11a

802.11n(HT20)

6.26DB AND 99% BANDWIDTH TEST

6.1. Measurement Procedure

The bandwidth at 26 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum power control level, as defined in KDB 789033, at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26 dB bandwidth.

The 26 dB bandwidth is used to determine the conducted power limits.

There is no limit bandwidth for U-NII-1, U-NII-2-A and U-NII-2-C.

The minimum of 6dB Bandwidth measurement is 0.5 MHz for U-NII-3

6dB bandwith

	Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)	Limit (MHz)
	5745	15.744	16.39	>0.5
802.11a	5785	16.206	16.39	>0.5
	5805	15.469	16.40	>0.5
	5745	16.131	17.58	>0.5
802.11n (HT20)	5785	16.213	17.58	>0.5
	5805	16.097	17.59	>0.5

6dB bandwith

Report No.: BCTC-151216585

802.11a 5745MHz

802.11a 5785MHz

802.11a 5805MHz

802.11n(HT20) 5745MHz

802.11n(HT20) 5785MHz

802.11n(HT20) 5805MHz

7. OUTPUT POWER TEST

7.1. Limits

For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.

Report No.: BCTC-151216585

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

7.2. Test setup

- 1. The maximum average conducted output power can be measured using Method PM-G (Measurement using a gated RF average power meter):
- 2. Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.
- a. The Transmitter output (antenna port) was connected to the power meter.
- b. Turn on the EUT and power meter and then record the power value.
- c. Repeat above procedures on all channels needed to be tested.

7.3. Test result

	Frequency (MHz)	Average Output Power(dBm)	Average Output Power(mW)	FCC Limit (dBm)	Result
802.11a	5745	14.75	29.85	30.0	Pass
	5785	14.67	29.31	30.0	Pass
	5805	14.62	28.97	30.0	Pass
	5745	13.08	20.32	30.0	Pass
802.11n (HT20)	5785	13.11	20.46	30.0	Pass
	5805	13.06	20.23	30.0	Pass

8. PEAK POWER SPECTRAL DENSITY TEST

8.1. Limits

In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

In addition, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band.

8.2. Test setup

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01.
- 3. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to Spectrum.
- 4. For U-NII1, U-NII-2A, U-NII-2C Band:

Set RBW=1MHz, VBW=3MHz, where span is enough to capture the entire bandwidth, Sweep time = Auto (601 pts), detector = sample, traces 100 sweeps of video averaging. (SA-2 with the omission of procedure x, the integration with 26dB EBW bandwidth)

For U-NII-3 Band:

Set RBW=300 kHz, VBW=3*RBW, where span is enough to capture the entire bandwidth, Sweep time = Auto, detector = sample, traces 100 sweeps of video averaging. (SA-2 with the omission of procedure x, the integration with 26dB EBW bandwidth)

- 5. User the cursor on spectrum to peak search the highest level of trace
- 6. Record the max. reading and add 10 log(1/duty cycle).

8.3. Test data

Test data as below

	Frequency (MHz)	Reading Level (dBm)	Duty factor (dB)	Duty factor 10 log (1MHz/RBW)	PPSD (dBm)	FCC Limit (dBm)	Result
802.11a	5745	7.17	0.21	5.23	12.61	30.00	Pass
	5785	7.90	0.21	5.23	13.34	30.00	Pass
	5805	9.02	0.21	5.23	14.46	30.00	Pass
802.11n (HT20)	5745	4.33	0.44	5.23	10.00	30.00	Pass
	5785	4.30	0.44	5.23	9.97	30.00	Pass
	5805	5.32	0.44	5.23	10.99	30.00	Pass

Report No.: BCTC-151216585

802.11a 5745MHz

802.11a 5785MHz

802.11a 5805MHz

802.11n(HT20) 5745MHz

echnology Co., Ltd. Report No.: BCTC-151216585

802.11n(HT20) 5805MHz

9. DUTY CYCLE TEST SIGNAL

Pre-analysis Check: While conducting average power measurement, duty cycle of each mode shall be checked to ensure its duty cycle in order to compensate for the loss due to insufficient ratio of duty cycle.

All duty cycle is pre-scanned, and result as obtained below shows only the most representative ones where duty cycle is conducted as the given transmission with given virtual operation that expresses the percentage.

Formula:

Duty Cycle = Ton / (Ton+Toff)

Measurement Procedure:

- 1. Set span = Zero
- 2. RBW = 8MHz
- 3. VBW = 8MHz,
- 4. Detector = Peak

Duty Cycle:

Operation Mode	Duty Cycle	Duty Fator (dB) 10 * log (1/ Duty cycle)		
802.11a	95.35%	0.21		
802.11n(HT20)	90.78%	0.42		

802.11a

802.11n(HT20)

10. FREQUENCY STABILITY

10.1. Limits

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

10.2. Test setup

- 1. The EUT was placed inside temperature chamber and powered and powered by nominal DC voltage.
- 2. Set EUT as normal operation.
- 3. Turn the EUT on and couple its output to spectrum.
- 4. Turn the EUT off and set the chamber to the highest temperature specified.
- 5. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT and measure the operating frequency.
- 6. Repeat step with the temperature chamber set to the lowest temperature.

10.3. Test data

Test data as below

	Test Voltage	Test Temp.	Measured Frequency (MHz)	Spectrum Frequency (MHz)	ΔFrequenc y (MHz)
			5745.000	5745.0342	-0.0342
	4.255V		5785.000	5785.0362	-0.0362
		20°0	5805.000	5805.0342	-0.0342
		-20℃	5745.000	5745.0294	-0.0294
	3.145V		5785.000	5785.0347	-0.0347
			5805.000	5805.0418	-0.0418
	3.7V	25 ℃	5745.000	5745.0347	-0.0347
802.11a			5785.000	5785.0428	-0.0428
			5805.000	5805.0294	-0.0294
	4.255V		5745.000	5745.0614	-0.0614
			5785.000	5785.0418	-0.0418
		50 °C	5805.000	5805.0611	-0.0611
	3.145V	50℃	5745.000	5745.0484	-0.0484
			5785.000	5785.0294	-0.0294
			5805.000	5805.0741	-0.0741

	Test Voltage	Test Temp.	Measured Frequency (MHz)	Spectrum Frequency (MHz)	ΔFrequenc y (MHz)
	4.255V		5745.000	5745.0674	-0.0674
			5785.000	5785.0249	-0.0249
		-20℃	5805.000	5805.0337	-0.0337
		-20 C	5745.000	5745.0427	-0.0427
	3.145V		5785.000	5785.0428	-0.0428
			5805.000	5805.0218	-0.0218
000 44-1170	3.7V	25℃	5745.000	5745.0617	-0.0617
802.11nHT2 0			5785.000	5785.0347	-0.0347
			5805.000	5805.0519	-0.0519
	4.255V		5745.000	5745.0324	-0.0324
			5785.000	5785.0614	-0.0614
		50°C	5805.000	5805.0287	-0.0287
	3.145V	50℃	5745.000	5745.0387	-0.0387
			5785.000	5785.0269	-0.0269
			5805.000	5805.0334	-0.0334

11. PHOTOGRAPHS OF TEST SET-UP

12. PHOTOGRAPHS OF THE EUT

Model:RLC-411WS

* * * * * END OF REPORT * * * * *