Boolos and Jeffrey - HW1

David Maldonado, david.m.maldonado@gmail.com

September 1, 2014

1 A question about \cap

Premise:

The intersection of a finite set S and an enumerable set T is enumerable.

Lemma 1.1. Any finite set is enumerable.

Proof. Let **S** be a finite set with n elements. Let $\mathbf{K} = \{1, 2, \dots, n\}$. Choose an element \mathbf{s} in **S** and assign $f(n) = \mathbf{s}$. Set **S'** to **S** - $\{\mathbf{s}\}$. Choose an element $\mathbf{s'}$ in **S'** and assign $f(n-1) = \mathbf{s'}$. Repeat this procedure until **S** is exhausted. The resulting function $f: \mathbf{K} \to \mathbf{S}$ is an enumeration of **S**.

Theorem 1.1. The intersection of two enumerable sets is enumerable.

Proof. Let $f: \mathbb{N} \to \mathbf{A}$ represent a function that enumerates the first set. Let $g: \mathbb{N} \to \mathbf{B}$ represent a function that enumerates the second set. Let $h: \mathbb{N} \to \mathbf{A} \cap \mathbf{B}$ be a new function defined as follows:

$$h(x) = \begin{cases} f(x) & \text{if } x \in \mathbf{B} \\ undefined & \text{if } x \notin \mathbf{B}. \end{cases}$$

Conclusion:

By **Lemma 1.1** the set **S** is enumerable. By **Theorem 1.1** the intersection of **S** and **T** is enumerable.

2 A slightly harder question about \cap

Premise:

The intersection of an enumerable set of enumerable sets is itself enumerable.

Proof. Let **S** be a enumerable set of enumerable sets. Pick a set **A** from **S**. Let **B** be $\bigcap \mathbf{S} - \mathbf{A}$. By **Theorem 1.1** we can define a function $h : \mathbb{N} \to \mathbf{A} \cap \mathbf{B}$ that enumerates $\bigcap \mathbf{S}$.

3 It takes two...

Premise:

Let **F** be a set of *one to one* functions that both i) have a domain that's a subset of the positive integers, and ii) are *onto* a two element set {a,b}. **F** is enumerable.

Conclusion:

foo

4 Enumerate all the things!

Premise:

The set of all finite sequences of positive integers is enumerable.

Theorem 4.1. foo

Conclusion:

foo