PCA vs LDA

Monika Osiak, Anna Pregowska, Patrycja Szczepaniak, Rafał Szulejko

15 04 2020

Wstęp

Zadaniem było wykonanie analizy porównawczej metody wizualizacji PCA i LDA. Zadanie zostało wykonane na podstawie zbioru danych dotyczącego problemów z kręgosłupem. Zbiór posiada 2 klasy: normal i abnormal.

head(spine)

```
pelvic_incidence pelvic_tilt lumbar_lordosis_angle sacral_slope pelvic_radius
## 1
                         22.552586
                                                  39.60912
                                                                              98.67292
             63.02782
                                                               40.47523
## 2
             39.05695
                         10.060991
                                                  25.01538
                                                               28.99596
                                                                             114.40543
## 3
             68.83202
                         22.218482
                                                  50.09219
                                                               46.61354
                                                                             105.98514
## 4
             69.29701
                         24.652878
                                                  44.31124
                                                               44.64413
                                                                             101.86850
## 5
             49.71286
                          9.652075
                                                  28.31741
                                                               40.06078
                                                                             108.16872
## 6
             40.25020
                         13.921907
                                                  25.12495
                                                               26.32829
                                                                             130.32787
##
     degree_spondylolisthesis pelvic_slope direct_tilt thoracic_slope
## 1
                     -0.254400
                                   0.7445035
                                                  12.5661
                                                                  14.5386
## 2
                      4.564259
                                   0.4151857
                                                  12.8874
                                                                  17.5323
## 3
                     -3.530317
                                  0.4748892
                                                 26.8343
                                                                  17.4861
## 4
                     11.211523
                                   0.3693453
                                                  23.5603
                                                                  12.7074
## 5
                      7.918501
                                   0.5433605
                                                  35.4940
                                                                  15.9546
## 6
                      2.230652
                                   0.7899929
                                                  29.3230
                                                                  12.0036
##
                                                      class
     cervical_tilt sacrum_angle scoliosis_slope
                                                            X
## 1
          15.30468
                      -28.658501
                                          43.5123 Abnormal NA
                      -25.530607
## 2
          16.78486
                                          16.1102 Abnormal NA
## 3
          16.65897
                      -29.031888
                                          19.2221 Abnormal NA
                      -30.470246
## 4
          11.42447
                                          18.8329 Abnormal NA
## 5
           8.87237
                      -16.378376
                                          24.9171 Abnormal NA
## 6
          10.40462
                                           9.6548 Abnormal NA
                       -1.512209
```

PCA

Rozkład PCA dokonywany jest za pomocą metody prcomp.

Następnie obliczamy wariancję w dwóch pierwszych składnikach wiodących.

[1] "Wariancja danych zawarta w pierwszym składniku wiodącym: 0.27%"

[1] "Wariancja danych zawarta w drugim składniku wiodącym: 0.10%"

Prezentacja pozostałych składników wiodących:

Screeplot of the first 10 PCs

Zgodnie z oczekiwaniami, łączna wariancja kolejnych składników zbliża się do jedności.

```
legend=c("Cut-off @ PC6"),
col=c("blue"),
lty=5,
cex=0.6)
```

Cumulative variance plot

Po zredukowaniu danych do dwóch wymiarów otrzymujemy poniższy wykres:

Dane po redukcji rozmiaru do dwóch wymiarów

Ostateczny wynik uzyskujemy po podziale na klasy.

LDA

Rozkład LDA dokonywany jest za pomocą metody 1da.

Dane zostały już wcześniej wczytane. Dlatego zaczynamy od podziału zbioru na treningowy (80%) i testowy (20%).

```
set.seed(123)
training.samples <- spine$class %>%
    createDataPartition(p = 0.8, list = FALSE)

train.data <- spine[training.samples, ]
test.data <- spine[-training.samples, ]</pre>
```

Estymacja parametrów preprocesowania:

```
preproc.param <- train.data %>%
  preProcess(method = c("center", "scale"))
```

Transformacja danych przy użyciu estymowanych parametrów:

```
train.transformed <- preproc.param %>% predict(train.data)
test.transformed <- preproc.param %>% predict(test.data)
```

Dopasowanie modelu:

```
model <- lda(formula=class~., data=train.transformed)
```

Warning in lda.default(x, grouping, ...): variables are collinear

Prezentacja modelu z podziałem na klasy.

plot(model)

Wykonanie predykcji:

```
predictions <- model %>% predict(train.transformed)
```

Wyznaczenie precyzji predykcji modelu:

```
mean(predictions$class==test.transformed$class)
```

[1] 0.6330645

Wizualizacja funkcji dyskryminacji:

```
plot_title <- ''
plot(predictions$x[,1],
        ylab="LD1",
        main=plot_title)
grid(nx=NULL,
        ny=NULL,
        col="lightgray",
        lty="dotted")
text(predictions$x[,1], label="o", col=c(as.numeric(predictions$class)))
abline(v=0, lty="dotted")
abline(h=0, lty="dotted")</pre>
```


Wizualizacja współczynników modelu:

Wspólczynniki

coef

Wnioski

- 1. Podstawową różnicą między omawianymi metodami jest to, że LDA jest metodą nadzorowaną (występuje wstępny podział na klasy), natomiast PCA jest nienadzorowana (nie posiada wstępnego podziału).
- 2. Algorytm PCA opiera się na jednej macierzy kowariancji, natomiat LDA korzysta z macierzy opisujących zmienność wewnątrzgrupową i międzygrupową.
- 3. Wybraliśmy niestety zbiór, który okazał się trudny do skutecznej liniowej eliminacji wymiarów, jednak dla naszego modelu LDA lepiej sklasyfikowało dane.
- 4. LDA zapewnia lepszą separację klas niż PCA. Dzieje się tak dlatego, że PCA skupia się przede wszystkim na śledzeniu wariancji danych, natomiast LDA na wariancjach międzyklasowych.
- 5. LDA wymaga wcześniejszego preprocesowania danych, przez co jest trudniejsze w implementacji.
- 6. Dla metody LDA największy wpływ na klasyfikację miały atrybuty pelvic_radius oraz degree_spondylolisthesis.
- 7. Przypuszczamy, że w większości sytuacji metoda LDA powinna dawać lepsze wyniki, jednakże wszystko zależy od omawianego przypadku i do każdego należy podejść indywidualnie.