Analisis Galat dan Deret Taylor

Heri Purnawan

Program Studi Teknik Elektro Fakultas Sains dan Teknologi (FST) Universitas Islam Lamongan (UNISLA)

September 13, 2024 Email: heripurnawan@unisla.ac.id

Figure 1: Penerjun payung

Gaya-gaya yang bekerja pada penerjun payung (Gambar 1). F_D adalah gaya ke bawah akibat gravitasi. F_U adalah gaya ke atas akibat hambatan udara.

Model matematika dari fenomena seperti Gambar 1 dapat diturunkan dari Hukum 2 Newton, yaitu

$$F = ma \rightarrow a = \frac{F}{m} \tag{1}$$

dimana, F adalah gaya (N), a adalah percepatan gravitasi (m/s^2) , m adalah massa yang merupakan parameter sistem (kg).

00000

Karena $a = \frac{dv}{dt}$, maka Pers. (1) dapat ton karena gravitasi dirumuskan sebaditluskan sebagai

$$\frac{dv}{dt} = \frac{F}{m} \tag{2}$$

dimana, v adalah kecepatan (m/s) dan t adalah waktu (s). Gaya total pada Gambar 1 terdiri dari dua gaya yang berlawanan: gaya gravitasi ke bawah F_D dan gaya hambatan udara ke atas F_U :

$$F = F_D + F_U \tag{3}$$

Diasumsikan bahwa gaya ke bawah adalah positif, sedangkan gaya ke atas adalah negatif, dengan hukum 2 Newgai

$$F_D = mg (4)$$

dimana, q adalah percepatan gravitasi $(\approx 9.81 \ m/s^2).$

Hambatan udara diasumsikan berbanding lurus dengan kecepatan¹, yaitu

$$F_U = -cv (5)$$

dimana, c adalah koefisien hambat (kg/s). Oleh karena itu, Pers. (2), dituliskan menjadi

$$\frac{dv}{dt} = g - \frac{c}{m}v\tag{6}$$

 $^{^1}$ Faktanya, hubungan tersebut sebenarnya nonlinier dan mungkin lebih baik dinyatakan dengan $F_U=-cv^2$.

Jika penerjun payung awalnya diam (v(0)=0), solusi Pers. (6) dinyatakan oleh 2

$$v(t) = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right) \tag{7}$$

dimana, c dan m adalah parameter.

Contoh 1. Solusi analitik penerjun payung

Seorang penerjun payung bermassa $68.1~{\rm kg}$ melompat keluar dari balon udara yang diam. Gunakan Pers. (7) untuk menghitung kecepatan sebelum parasut dibuka ($c=12.5~{\rm kg/s}$).

Solution: Subs. nilai c dan m, menghasilkan

$$v(t) = \frac{9.81(68.1)}{12.5} \left(1 - e^{-(12.5/68.1)t} \right) = 53.44 \left(1 - e^{-0.18355t} \right)$$
 (8)

yang dapat digunakan untuk menghitung kecepatan pada saat t.

²PD linier:
$$y' + P(x)y = r(x) \rightarrow y = \frac{\int r(x)e^{\int P(x) \ dx} dx}{e^{\int P(x) \ dx}}$$

Perubahan kecepatan terhadap waktu dapat diaproksimasi menggunakan

$$\frac{dv}{dt} \cong \frac{\Delta v}{\Delta t} = \frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i} \tag{9}$$

Substitusi Pers. (9) ke Pers. (6), menghasilkan

$$\frac{v(t_{i+1}) - v(t_i)}{t_{i+1} - t_i} = g - \frac{c}{m}v(t_i)$$

atau disederhanakan menjadi

$$v(t_{i+1}) = v(t_i) + \left[g - \frac{c}{m}v(t_i)\right](t_{i+1} - t_i)$$
(10)

Pendekatan ini biasa disebut sebagai metode Euler³

Contoh 2. Solusi numerik penerjun payung

Lakukan perhitungan yang sama seperti pada Contoh 1, tetapi gunakan Pers. (10) untuk menghitung kecepatan. Gunakan $\Delta t = 2$ s dalam perhitungan.

³Lebih lanjut dibahas di bagian solusi numerik PDB

Solusi: Untuk $t_i=0$, kecepatan penerjun payung adalah nol, $v(t_i)=0$. Pers. (10) digunakan untuk menghitung kecepatan penerjun payung saat $t_{i+1}=2$ s, sehingga

$$v(t_{i+1}) = 0 + \left[9.81 - \frac{12.5}{68.1}(0)\right] 2 = 19.62 \text{ m/s}$$

Untuk interval selanjutnya (dari t=2 sampai t=4 s), menghasilkan

$$v(t_{i+1}) = 19.62 + \left[9.81 - \frac{12.5}{68.1}(19.62)\right] 2 = 32.04 \text{ m/s}$$

Perbandingan hasil analitik dan numerik.

t, s	v, m/s
0	0.00
2	16.42
4	27.80
6	35.68
∞	53.44

$$\begin{array}{c|cccc} t, \, s & v, \, m/s \\ \hline 0 & 0.00 \\ 2 & 19.62 \\ 4 & 32.04 \\ 6 & 39.90 \\ \cdots & \cdots \\ \hline \infty & \cdots \\ \end{array}$$

Table 1: Solusi analitik

Table 2: Solusi numerik

Galat (error)

Beberapa faktor yang menyebabkan munculnya galat diantaranya:

Galat bawaan

Galat dari nilai data. Galat tersebut bisa terjadi karena kesalahan dalam menyalin data, salah membaca skala, atau kesalahan karena kurangnya pengetahuan mengenai hukum-hukum fisik dari data yang diukur.

Galat pembulatan

Galat yang terjadi karena tidak diperhitungkannya beberapa angka terakhir dari suatu bilangan.

Galat pemotongan

Galat yang terjadi karena tidak dilakukan hitungan sesuai dengan prosedur matematika yang benar.

Pembulatan dan Pemotongan

Didefinisikan bilangan desimal yang dinormalisasi sebagai berikut:

$$y = \pm 0.d_1d_2 \cdots d_rd_{r+1} \cdots d_k \times 10^n$$
, $1 \le d_1 \le 9$, dan $0 \le d_i \le 9, \forall i = 2, \dots, k$

Bilangan dengan bentuk ini disebut bilangan desimal k-digit.

- ◀ Pembulatan
 - I Jika $d_{r+1} \geq 5$, maka $\delta_r = d_r + 1$. Oleh karena itu,

$$y_r = \pm 0.d_1 d_2 \cdots \delta_r \times 10^n$$

2 Jika $d_{r+1} < 5$, maka $\delta_r = d_r$. Oleh karena itu,

$$y_r = \pm 0.d_1d_2\cdots\delta_r \times 10^n$$

◆ Pemotongan

Jika dikehendaki r-digit desimal, maka dengan memotong digit $d_{r+1}d_{r+2}\cdots$ dst, menghasilkan

$$y_c = \pm 0.d_1d_2\cdots d_r \times 10^n$$

Pembulatan dan Pemotongan

Contoh 3

Tentukan bentuk desimal dari π , dengan

- (a) pembulatan 5-digit. (Kunci: $\pi = 3.1416$)
- (b) pemotongan 5-digit. (Kunci: $\pi = 3.1415$)

Solusi: Bentuk tak hingga desimal dari bilangan irasional π adalah $\pi = 3.14159265...$ Jika dituliskan dalam bentuk desimal yang dinormalisasi, maka

$$\pi = 0.314159265... \times 10^{1}$$

(a) karena digit keenam dari ekspansi desimal dari π adalah 9, jadi pembulatan 5-digit dari π adalah

$$\pi = 0.31416 \times 10^1 = 3.1416$$

(b) pemotongan 5-digit dari π adalah

$$\pi = 0.31415 \times 10^1 = 3.1415$$

Perhitungan galat

Galat mutlak dan relatif

Jika x^{*} adalah nilai pendekatan untuk nilai sebenarnya, yaitu x, maka **galat mutlak** didefinisikan sebagai

$$\epsilon_a = |x - x^*|,\tag{11}$$

sedangkan galat relatif didefinisikan sebagai

$$\epsilon_r = \frac{|x - x^*|}{|x|}, \quad x \neq 0 \tag{12}$$

Contoh 4

- **1** Jika $x = 0.3000 \times 10^{-3}$ and $x^* = 0.3100 \times 10^{-3}$, maka galat mutlak adalah 0.1×10^{-4} dan galat relatif adalah 0.3333×10^{-1} .
- ☑ Jika $x=0.3000\times 10^4$ and $x^*=0.3100\times 10^4$, maka galat mutlak adalah 0.1×10^3 dan galat relatif adalah 0.3333×10^{-1} .

Pendekatan dengan Deret Taylor

Teorema Taylor

Andaikan $f \in C^n[a,b]$, bahwa $f^{(n+1)}$ ada pada [a,b], dan $x_0 \in [a,b]$. Untuk $\forall x \in [a,b]$ terdapat bilangan $\xi(x)$ antara x_0 dan x dengan

Deret Taylor

$$f(x) = P_n(x) + R_n(x)$$

dengan

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$
$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$$

dan

$$R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{n+1}$$

Dalam hal ini, $P_n(x)$ disebut **polinomial Taylor ke**-n untuk f disekitar x_0 dan $R_n(x)$ disebut **suku sisa** (atau **galat pemotongan**).

Pendekatan dengan Deret Taylor

- **■** Jika $P_n(x)$ dengan $n \to \infty$ disebut **deret Taylor** untuk f disekitar x_0 .
- **◄** Jika $x_0 = 0$, maka sering disebut dengan **deret Maclaurin**.

Contoh 5

Motivasi

Diberikan $f(x) = \cos x \, dan \, x_0 = 0$. Tentukan

- (a) polinomial Taylor kedua untuk f disekitar x_0 , dan
- (b) polinomial Taylor ketiga untuk f disekitar x_0 .

Solusi: Karena $f \in C^{\infty}(\mathbb{R})^4$, maka teorema Taylor dapat diaplikasikan $\forall n \geq 0$. Diperoleh,

$$f'(x) = -\sin x$$
, $f''(x) = -\cos x$, $f'''(x) = \sin x$, dan $f^{(4)}(x) = \cos x$

sehingga

$$f(0) = 1$$
, $f'(0) = 0$, $f''(x) = -1$, dan $f'''(0) = 0$

semua turunan f kontinu pada $\mathbb R$

Solusi Contoh 5 (lanjutan)

(a) Untuk n=2 dan $x_0=0$, diperoleh

$$\cos x = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(\xi(x))}{3!}x^3$$
$$= 1 - \frac{1}{2}x^2 + \frac{1}{6}x^3\sin\xi(x)$$

dengan $\xi(x)$ suatu bilangan (umumnya tidak diketahui) antara 0 dan x.

(b) Karena f'''(0) = 0, maka

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 \cos \xi(x)$$

Polinomial yang diperoleh tetap sama, namun pendekatannya memiliki jaminan akurasi yang jauh lebih baik ketika \boldsymbol{x} berada pada interval tertentu.

Contoh 6

Dari Contoh 3, jika x = 0.01, tentukan nilai $\cos 0.01$ dengan

- (a) $P_2(0.01)$ dan temukan batas atas untuk galatnya, dengan formula $|f(0.01) P_2(0.01)|$.
- (b) $P_3(0.01)$ dan temukan batas atas untuk galatnya, dengan formula $|f(0.01)-P_3(0.01)|.$

Solusi: Dari Contoh 5, $P_2(x) = 1 - \frac{1}{2}x^2$

(a) $P_2(0.01) = 1 - \frac{1}{2}(0.01)^2 = 0.99995$ $|f(0.01) - P_2(0.01)| = \left|\frac{1}{6}(0.01)^3 \sin \xi(0.01)\right| = 0.1\bar{6} \times 10^{-6} |\sin \xi(0.01)|$

dimana, $\bar{6}$ menandakan digit tersebut berulang. Karena nilai \sin terletak pada interval [-1,1], maka

$$0.1\bar{6} \times 10^{-6} |\sin \xi(0.01)| \le 0.1\bar{6} \times 10^{-6}$$

Jadi, $|f(0.01) - P_2(0.01)| \le 0.1\bar{6} \times 10^{-6}$

Solusi Contoh 6(b) (lanjutan)

(b)
$$P_3(0.01) = 1 - \frac{1}{2}(0.01)^2 = 0.99995$$
 $|f(0.01) - P_3(0.01)| = \left|\frac{1}{24}(0.01)^4 \cos \xi(0.01)\right| \approx 4.2 \times 10^{-10} \left|\cos \xi(0.01)\right|$ Karena $\left|\cos \xi(0.01)\right| \le 1$, maka $4.2 \times 10^{-10} \left|\cos \xi(0.01)\right| \le 4.2 \times 10^{-10}$

Jadi,
$$|f(0.01) - P_3(0.01)| \le 4.2 \times 10^{-10}$$

Contoh 7

Dengan polinomial Taylor, hitung $\int_0^{0.1} \cos x \ dx$ menggunakan $\int_0^{0.1} P_3(x) \ dx$ dan hitung batas atas galatnya, selanjutnya bandingkan dengan galat mutlak.

Solusi:

$$\int_0^{0.1} \cos x \, dx \approx \int_0^{0.1} P_3(x) \, dx = \int_0^{0.1} \left(1 - \frac{1}{2} x^2 \right) \, dx = \left[x - \frac{1}{6} x^3 \right]_0^{0.1}$$
$$= (0.1) - \frac{1}{6} (0.1)^3 = 0.0998\overline{3}$$

Solusi Contoh 7 (lanjutan)

Batas atas galat dapat ditentukan oleh integral dari suku sisa Taylor dan fakta bahwa $|\cos \xi(0.01)| \leq 1$ untuk semua nilai x.

$$\frac{1}{24} \left| \int_0^{0.1} x^4 \cos \xi(x) \, dx \right| = \frac{1}{24} \int_0^{0.1} x^4 \left| \cos \xi(x) \right| \, dx$$
$$\leq \frac{1}{24} \int_0^{0.1} x^4 \, dx = \frac{(0.1)^5}{120} = 8.\overline{3} \times 10^{-8}$$

Nilai sebenarnya adalah

$$\int_{0}^{0.1} \cos x \ dx = \sin x \Big]_{0}^{0.1} = \sin 0.1 \approx 0.099833416647,$$

sehingga galat mutlak dari pendekatan ini adalah

$$\epsilon_a = |0.099833416647 - 0.099833333333| \approx 8.3314 \times 10^{-8}$$

dimana nilai tersebut berada dalam batas galat.

Tingkat Konvergensi

Definisi

Andaikan $\{\beta_n\} \to 0$ dan $\{x_n\} \to x^*$. Jika $\exists c>0$ dan sebuah bilangan N>0 sedemikian hingga

$$|x_n - x^*| \le c |\beta_n|, \quad \forall n \ge N,$$

maka $\{x_n\}$ konvergen ke x^* dengan tingkat konvergensi $O\left(\beta_n\right)$, dan dituliskan $x_n=x^*+O\left(\beta_n\right)$.

Contoh 8

Bandingkan tingkat konvergensi dari $\{x_n\}$ dan $\{y_n\}$, dengan

$$x_n = \frac{n+1}{n^2}$$
, dan $y_n = \frac{n+3}{n^3}$

Solusi

Catatan bahwa

$$\lim_{n \to \infty} x_n = 0 \quad \text{dan} \quad \lim_{n \to \infty} y_n = 0$$

Diberikan $\alpha_n=\frac{1}{n}$ dan $\beta_n=\frac{1}{n^2}$, maka

$$|x_n - 0| = \frac{n+1}{n^2} \le \frac{n+n}{n^2} = \frac{2}{n} = 2\alpha_n,$$

$$|y_n - 0| = \frac{n+3}{n^3} \le \frac{n+3n}{n^3} = \frac{4}{n^2} = 4\beta_n.$$

Sehingga,

$$x_n = 0 + O\left(\frac{1}{n}\right)$$
 dan $y_n = 0 + O\left(\frac{1}{n^2}\right)$

Hasil ini menunjukkan bahwa $\{y_n\}$ konvergen ke 0 lebih cepat dari pada $\{x_n\}$.