

### Natural Language Processing

第七周自注意力机制

庞彦

yanpang@gzhu.edu.cn

### Overview







Self-attention Mechanism



# Sophisticated Input



• Input is a vector 输入是一个矢量



• Input is a set of vectors输入是一组矢量





### **One-hot Encoding**

apple = [ 1 0 0 0 0 ..... ]

bag = [0 1 0 0 0 .....]

cat =  $[0 \ 0 \ 1 \ 0 \ 0 \dots]$ 

 $dog = [0 \ 0 \ 0 \ 1 \ 0 \dots]$ 

elephant =  $[0 \ 0 \ 0 \ 1 \dots]$ 







frame

400 sample points (16KHz)

39-dim MFCC

80-dim filter bank output



Graph is also a set of vectors (consider each **node** as **a vector**)

图也是一组矢量 Each profile is a vector 每个人都是



Graph is also a set of vectors (consider each **node** as **a vector**)

图也是一组矢量

$$H = [1 \ 0 \ 0 \ 0 \ \dots]$$

$$C = [0 \ 1 \ 0 \ 0 \ 0 \dots]$$

$$O = [0 \ 0 \ 1 \ 0 \ 0 \dots]$$



### What is the output?



• Each vector has a label. 每个矢量含有一个标签。



### What is the output?



• The whole sequence has a label.整个句子含有一个标签。









### What is the output?



Each vector has a label.

focus of this lecture



The whole sequence has a label.



Model decides the number of labels itself.

seq2seq



## Sequence Labeling



Is it possible to consider the context? 需要考虑内容吗? FC can consider the neighbor全连接层可以考虑邻居节点 FC 全连接层 How to consider the whole sequence?如何考虑整个句子? a window covers the whole sequence?窗口 FC FC FC FC window saw saw a

Spring 2023





### Self-attention FC FC FC FC Self-attention FC FC Self-attentio Attention is all you need.

Can be either input or a hidden layer可为输入或隐藏层





Find the relevant vectors in a sequence找到居中最相关的矢量













# $\alpha'_{1,i} = exp(\alpha_{1,i}) / \sum_{i} exp(\alpha_{1,j})$





 $k^1 = W^k a^1$ 

Spring 2023

### 基于注意力系数来提取特征









Find the relevant vectors in a sequence找到居中最相关的矢量

$$\boldsymbol{b^2} = \sum_i \alpha'_{2,i} \boldsymbol{v^i}$$











# Self-attention $\alpha_{1,1} = k^1 q^1 \quad \alpha_{1,2} = k^2$

 $lpha_{1,1}$  $\alpha_{1,2}$  $\alpha_{1,3}$ 



 $k^4$ 

$$\alpha_{1,3} = \mathbf{k}^3$$

$$oldsymbol{q}^1$$

$$\alpha_{1,4} = 1$$

$$q^1$$

$$\alpha_{1,4}$$

4 
$$k^2$$













**—** 

A

 $K^{T}$ 

Parameters to be learned

超参

Q

Attention Matrix 注意力矩阵

0

=

V

A

### Multi-head Self-attention



### 不同的相关性



### Multi-head Self-attention



### Multi-head Self-attention





### Positional Encoding

# Each column represents a positional vector $e^i$ 每列代表不同的位置矢量



- No position information in self-attention. 自注意力机制无位置信息
- Each position has a unique positional vector  $e^i$  每位 需加独特的位置矢量。
- hand-crafted 手动增加





# Many applications ...





**Transformer** 

https://arxiv.org/abs/1706.03762



**BERT** 

https://arxiv.org/abs/1810.04805

### Self-attention for Speech



Speech is a very long vector sequence.语音长度较长 10ms



If input sequence is length L 输入序列长度L

L A'

Attention

Matrix



Truncated Self-attention

截断自注意力

### Self-attention for Image



An **image** can also be considered as a **vector set**.

图像也是矢量集合





### Self-Attention GAN



### **DEtection Transformer (DETR)**



https://arxiv.org/abs/2005.12872

### Self-attention v.s. CNN





CNN: self-attention that can only attends in a receptive field CNN:感受野内部计算

➤ CNN is simplified self-attention. CNN是种简单的自注意力机制

Self-attention: CNN with learnable receptive field Self-attention:可学习感受野的特殊CNN

Self-attention is the complex version of CNN.Self-attention是复杂版本的CNN

### Self-attention v.s. CNN

Self-attention

CNN



https://arxiv.org/abs/1911.03584

### Self-attention v.s. CNN



#### Good for more data



An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

#### Recurrent Neural Network (RNN) Self-attention v.s. RNN FC FC FC RNN **RNN RNN RNN** memory hard to consider nonparallel 难以思考 parallel Self-attention easy to consider 容易思考

Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention

Spring 2023

https://arxiv.org/abs/2006.16236

## Self-attention v.s. Graph





Consider **edge**: only attention to connected nodes



This is one type of **Graph Neural Network (GNN)**.

### To Learn More ...

Long Range Arena: A
Benchmark for Efficient
Transformers

https://arxiv.org/abs/2011.04006

56 Big Bird Transformer Synthesizer LRA Score Performer Linformer Reformer Sinkhorn Linear Transformer 48 Local Attention 46 44 300 350 Speed (examples per sec)



Efficient Transformers: A Survey

https://arxiv.org/abs/2009.06732

Q&A



