Random Forest and Unsupervised ML Models

Random Forest Model

Data Subset and Model Setup

We began by reducing the data to a single decade (2010–2019) to keep runtime manageable. A RandomForestClassifier was then instantiated with:

- n estimators = 100
- random_state = 42 (for reproducibility)
- All other parameters set to defaults (i.e., the maximum depth was automatic).

Unlike some approaches that reduce the target y to a single class (e.g., np.argmax()), we kept all 15 target columns in a multi-label format. This naturally leads to a more complex decision tree.

Accuracy and Key Differences

Tree #0

Model Accuracy on the decade data reached 59.1%

Tree #1

The 3 most important stations are Basel, Heathrow, and Maastricht.

Individual Models for the Top 3 Stations

After identifying Basel, Maastricht, and Heathrow as most important, we built separate random forest models using the entire dataset (all years, 1960–2019) for each of these three stations.

1. Basel

- o Accuracy: 100%
- o **Top 3 Features** (in descending importance):
 - 1. Precipitation
 - 2. Temp_max
 - 3. Sunshine

2. Maastricht

- Accuracy: 100%
- Top 3 Features (in descending importance):
 - 1. Precipitation
 - 2. Temp_max
 - 3. Temp_mean

3. Heathrow

- Accuracy: 100%
- Top 3 Features (in descending importance):
 - 1. Temp_max
 - 2. Precipitation
 - 3. Temp_mean

Conclusions

The consistent importance of **precipitation** and **temp_max** (and often **temp_mean**) across these three weather stations suggests that these indicators will play a central role in predicting and adapting to future climate variability. As global temperatures continue to rise, we can expect:

- More frequent and extreme max temperature events (e.g., heatwaves)
- Possible intensification or shifts in precipitation patterns across regions

Given that precipitation and temperature extremes profoundly affect local weather outcomes—floods, droughts, storms, agriculture, etc.—it is vital to maintain robust **climate-tracking systems** focused on

these indicators. Monitoring temperature and precipitation will help both researchers and policymakers anticipate changes and plan for a more variable climate future.

In short, **precipitation** and **temperature** (particularly **temp_max**) stand out as powerful predictors of "pleasant days." This underscores the value of **investing in measurement instruments** and **modeling capabilities** that can pinpoint how these two drivers continue to shape weather outcomes, especially in a warming global climate.

Report Highlights

- **Decade Model**: 59.1% accuracy (multi-label approach with 15 columns).
- **Top 3 Stations**: Basel, Maastricht, Heathrow.
- **Single-Station Models**: 100% accuracy for each; consistent top indicators are precipitation and temperature measures.
- **Future Implications**: Temperature and precipitation measurements are key to anticipating and mitigating climate impacts.