Binomial logit t simulation Stan implementation

Divan A. Burger, Sean van der Merwe, and Emmanuel Lesaffre 2025-05-16

Table of contents

ntroduction	
Fixed effects Stan model	
Base sample generation	
Posterior simulation	
Evaluation	•
Stan model with random intercept only	
Posterior simulation	
Evaluation	
Adding random slopes	
Evaluation	

Introduction

This document provides introductory information and example code of how one might use Stan to build and fit a Binomial Generalized Linear Mixed Effects Model, but with additional Student-t innovations on the linear predictor.

```
options(scipen = 12)
library(tidyverse)
library(knitr)
```

Fixed effects Stan model

```
library(rstan)
mycores <- max(1,floor(parallel::detectCores(logical = FALSE)*0.8))
options(mc.cores = mycores)
rstan_options(auto_write = TRUE)</pre>
```

The model being used is a variation on the standard binomial regression model, but with a Bayesian implementation using objective priors and a Student-t distribution.

```
// This Stan block defines a binomial t regression model, by Sean van der Merwe, UFS
data {
 int<lower = 1> n_total;
                                           // number of observations in total
 int<lower = 1> m;
                                      // binomial maximum parameter
 int<lower = 0, upper = m> y[n_total];  // observations
 // number of explanatory variables, including interce
// The parameters of the model
parameters {
                                     // error scale parameter
 real<lower = 0> sigma;
                                     // error degrees of freedom
 real<lower = 2> nu;
 vector[n_var] beta;
                                     // coefficients
 vector[n_total] alpha;
                                     // intermediate (nuisance) parameter
model {
 y ~ binomial_logit(m, alpha);
                                     // likelihood
 alpha ~ student_t(nu, X*beta, sigma);
 target += log(nu) - 3*log(nu + 1) - log(sigma); // priors
}
```

Base sample generation

```
rbin_t <- function(n, m, mu, s, nu) {
  t_values <- rt(n, nu)*s + mu
  rbinom(n, m, plogis(t_values))
}
r_bin_t_data <- function(p) {</pre>
```

```
X <- cbind(matrix(1, p$n, 1), rnorm(p$n))
Z <- rnorm(p$n_sbj, 0, p$tau)
sbj <- sample(1:p$n_sbj, p$n, TRUE)
y <- rbin_t(p$n, p$m, X %*% p$beta + Z[sbj], p$s, p$nu)
list(n_total = p$n, m = p$m, y = y, n_var = length(p$beta), X = X, n_sbj = p$n_sbj, sbj = s
}

params <- list(
n = 200,
m = 30,
beta = c(1, 0.5),
s = 1,
nu = 6,
tau = 0,
n_sbj = 1
)
smpl <- r_bin_t_data(params)</pre>
```

Posterior simulation

Evaluation

```
fit1 |> traceplot(pars = c('beta', 'nu', 'sigma'))
```



```
summary(fit1, pars = c('beta', 'nu', 'sigma'))$summary
                                                   2.5%
                                                              25%
                                                                         50%
              mean
                        se mean
                                           sd
beta[1]
         1.0837243 0.0004171409
                                   0.08845227 0.9118969 1.0237860 1.0826017
beta[2]
         0.4146311 0.0003937648
                                   0.08508309 0.2463720 0.3576294 0.4148821
nu
        21.2434332 2.6894982704 420.69732200 2.8279368 4.8078668 7.0211200
         1.0126803 0.0008333114
                                   0.10448535 0.8105439 0.9414000 1.0123514
sigma
               75%
                        97.5%
                                             Rhat
                                  n_eff
beta[1]
         1.1435417
                    1.2576679 44962.71 0.9999565
beta[2]
                    0.5811322 46688.80 0.9999097
         0.4724247
nu
        11.6098155 66.7767855 24467.91 0.9999715
                    1.2167056 15721.58 1.0000329
         1.0836418
sigma
```

Stan model with random intercept only

```
library(rstan)
mycores <- max(1,floor(parallel::detectCores(logical = FALSE)*0.8))
options(mc.cores = mycores)
rstan_options(auto_write = TRUE)</pre>
```

The model being used is a variation on the standard binomial regression model, but with a Bayesian implementation using objective priors and a Student-t distribution.

```
// This Stan block defines a binomial t regression model, by Sean van der Merwe, UFS
data {
                                              // number of observations in total
 int<lower = 1> n_total;
 int<lower = 1> m;
                                        // binomial maximum parameter
 int<lower = 0, upper = m> y[n_total];
                                       // observations
                                    // number of explanatory variables, including interce
 int<lower = 1, upper = n_sbj> sbj[n_total]; // subject membership number
// The parameters of the model
parameters {
 real<lower = 0> sigma;
                                        // error scale parameter
 real<lower = 2> nu;
                                        // error degrees of freedom
 vector[n_var] beta;
                                        // coefficients
 vector[n_total] alpha;
                                        // intermediate (nuisance) parameter
 vector[n_sbj] sbj_int;
                                        // subject intercept
                                        // between subject standard deviation
 real<lower = 0> tau_sbj;
}
transformed parameters {
 vector[n_total] mu;
 mu = X*beta + sbj_int[sbj];
}
model {
                                       // likelihood
 y ~ binomial_logit(m, alpha);
 alpha ~ student_t(nu, mu, sigma);
 sbj_int ~ normal(0, tau_sbj);
 target += log(nu) - 3*log(nu + 1) - log(sigma) - log(tau_sbj); // priors
params <- list(</pre>
 n = 200,
 m = 30,
 beta = c(1, 0.5),
 s = 1,
 nu = 6,
 tau = 0.5,
 n_sbj = 10
smpl <- r_bin_t_data(params)</pre>
```

Posterior simulation

```
fit |> saveRDS("C:/temp/Simulations/bin_t_rint_stan_simulation.rds")
```

Evaluation

```
fit |> traceplot(pars = c('beta', 'nu', 'sigma', 'tau_sbj'))
```



```
summary(fit, pars = c('beta', 'nu', 'sigma', 'tau_sbj'))$summary
```

```
2.5%
                                                            25%
                                         sd
              mean
                        se_mean
beta[1] 1.1563283 0.0033044074
                                 0.25408431 0.6426838 0.9994006 1.1551933
beta[2] 0.4795249 0.0005656486
                                 0.09608752 0.2920067 0.4144875 0.4788924
        20.3874365 4.6968852213 741.15214832 2.2806730 3.5659077 5.0828092
nu
                                 0.13251228 0.8228467 0.9798467 1.0704100
sigma
         1.0727852 0.0014779195
tau sbj 0.7141516 0.0018555174
                                 0.23057496 0.3764993 0.5545284 0.6766158
              75%
                      97.5%
                                n eff
beta[1] 1.3145870 1.6596277 5912.464 1.0008166
beta[2] 0.5443574 0.6677377 28856.293 1.0000394
        8.4196195 53.4823127 24899.742 0.9999957
        1.1633928 1.3368114 8039.161 1.0003988
sigma
tau_sbj 0.8312491 1.2759265 15441.669 1.0000642
```

Adding random slopes

```
// This Stan block defines a binomial t regression model, adapted from
// code generated by the brms package
functions {
 /* compute correlated group-level effects
  * Args:
  * z: matrix of unscaled group-level effects
     SD: vector of standard deviation parameters
    L: cholesky factor correlation matrix
  * Returns:
     matrix of scaled group-level effects
 */
 matrix scale_r_cor(matrix z, vector SD, matrix L) {
   // r is stored in another dimension order than z
   return transpose(diag_pre_multiply(SD, L) * z);
 }
}
data {
  int<lower=1> N; // total number of observations
  int<lower = 1> m; // binomial maximum parameter
  int<lower = 0, upper = m> Y[N]; // response variable
  int<lower=1> K; // number of population-level effects
 matrix[N, K] X; // population-level design matrix
  int<lower=1> Kc; // number of population-level effects after centering
 // data for group-level effects of ID 1
 int<lower=1> N_1; // number of grouping levels
```

```
int<lower=1> M_1; // number of coefficients per level
  array[N] int<lower=1> J_1; // grouping indicator per observation
  // group-level predictor values
  vector[N] Z_1_1;
  vector[N] Z 1 2;
  int<lower=1> NC_1; // number of group-level correlations
transformed data {
  matrix[N, Kc] Xc; // centered version of X without an intercept
  vector[Kc] means_X; // column means of X before centering
  for (i in 2:K) {
    means_X[i - 1] = mean(X[, i]);
    Xc[, i - 1] = X[, i] - means_X[i - 1];
  }
}
parameters {
 vector[Kc] b; // regression coefficients
 real Intercept; // temporary intercept for centered predictors
  real<lower=0> sigma; // dispersion parameter
  vector<lower=0>[M_1] sd_1; // group-level standard deviations
  matrix[M_1, N_1] z_1; // standardized group-level effects
  cholesky_factor_corr[M_1] L_1; // cholesky factor of correlation matrix
  real<lower=1> nu; // degrees of freedom or shape
  vector[N] alpha;
                                     // intermediate (nuisance) parameter
transformed parameters {
  matrix[N_1, M_1] r_1; // actual group-level effects
  // using vectors speeds up indexing in loops
  vector[N_1] r_1_1;
  vector[N_1] r_1_2;
  real lprior = 0; // prior contributions to the log posterior
  // compute actual group-level effects
  r_1 = scale_r_cor(z_1, sd_1, L_1);
  r_1_1 = r_1[, 1];
  r_1_2 = r_1[, 2];
  lprior += student_t_lpdf(Intercept | 3, 23, 5.9);
  lprior += student_t_lpdf(sigma | 3, 0, 5.9)
    -1 * student_t_lccdf(0 | 3, 0, 5.9);
  lprior += gamma_lpdf(nu | 2, 0.1)
    -1 * gamma_lccdf(1 | 2, 0.1);
  lprior += student_t_lpdf(sd_1 | 3, 0, 5.9)
    -2 * student_t_lccdf(0 | 3, 0, 5.9);
```

```
lprior += lkj_corr_cholesky_lpdf(L_1 | 1);
}
model {
 // initialize linear predictor term
 vector[N] mu = rep_vector(0.0, N);
 mu += Intercept + Xc * b;
  for (n in 1:N) {
    // add more terms to the linear predictor
    mu[n] += r_1_1[J_1[n]] * Z_1_1[n] + r_1_2[J_1[n]] * Z_1_2[n];
 Y ~ binomial_logit(m, alpha);
                                          // likelihood
  alpha ~ student_t(nu, mu, sigma);
  target += lprior;
 target += std_normal_lpdf(to_vector(z_1));
generated quantities {
 // actual population-level intercept
 real b_Intercept = Intercept - dot_product(means_X, b);
 // compute group-level correlations
 corr_matrix[M_1] Cor_1 = multiply_lower_tri_self_transpose(L_1);
 vector<lower=-1,upper=1>[NC_1] cor_1;
 // extract upper diagonal of correlation matrix
 for (k in 1:M 1) {
    for (j in 1:(k - 1)) {
      cor_1[choose(k - 1, 2) + j] = Cor_1[j, k];
    }
 }
}
stan_data <- list(N = smpl$n_total, m = smpl$m, Y = smpl$y, K = smpl$n_var,
                  X = smpl$X, Kc = smpl$n_var-1, N_1 = smpl$n_sbj, M_1 = smpl$n_var,
                  J_1 = smpl\$sbj, Z_1_1 = smpl\$X[,1], Z_1_2 = smpl\$X[,2],
                  NC_1 = smpl n_var - 1
fit <- bin_t_model_rslope |> sampling(stan_data,
                                pars = c('alpha', 'mu'), include = FALSE,
```

iter = 16000, chains = mycores)

Evaluation

```
fit |> traceplot(pars = c('b', 'sigma', 'sd_1'))
```


summary(fit, pars = c('b', 'sigma', 'sd_1'))\$summary

```
se_mean
                                      sd
                                                2.5%
                                                           25%
                                                                     50%
             mean
b[1]
        0.5099606 0.0009652586 0.1314722 0.25265999 0.4259583 0.5088327
sigma
        1.1693370 0.0011346330 0.1137405 0.93038802 1.0980840 1.1729207
sd 1[1] 0.8392523 0.0029414558 0.2864831 0.43299844 0.6423364 0.7879782
sd_1[2] 0.2236565 0.0014262953 0.1572308 0.01102975 0.1049054 0.1990957
              75%
                      97.5%
                                n_eff
                                            Rhat
b[1]
        0.5920380 0.7757086 18551.572 0.9999823
        1.2463073 1.3810868 10048.924 1.0002982
sigma
sd_1[1] 0.9791324 1.5317442 9485.785 1.0003488
sd_1[2] 0.3100315 0.5984530 12152.247 1.0001754
```