"Je crois beaucoup en la chance; et je constate que plus je travaille, plus la chance me sourit" (Thomas Jefferson)

Exercice 1 Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ dans $M_2(\mathbb{R})$, calculer $A^2 - \text{Trace}(A)A + \det(A)I_2$. Retrouver que si $\det(A)$ est non nul alors A est inversible et expliciter A^{-1} en fonction de a, b, c, d.

Exercice 2 Soit F sev d'un K-ev E et u, v deux endomorphismes de E. Montrer que si F est stable par u et par v alors il est stable par u + v et par $u \circ v$.

Exercice 3 Soit $(A, B) \in GL_n(\mathbb{K}) \times M_n(\mathbb{K})$. Montrer que si A et B commutent alors A^{-1} et B commutent.

Exercice 4 Soit n entier naturel non nul. Rappeler la dimension de $M_n(\mathbb{K})$ (en donner la base canonique). En déduire que toute matrice admet un polynôme annulateur non nul.

Exercice 5 (un peu d'initiative) Montrer que l'inverse d'une matrice inversible A est un polynôme en A.

Exercice 6 Soit
$$A = \begin{pmatrix} 2 & 0 & -1 \\ 1 & 1 & -1 \\ -1 & 0 & 2 \end{pmatrix}$$

- 1. Déterminer α, β réels tels que $A^2 = \alpha A + \beta I_3$. En déduire un polynôme annulateur pour A.
- 2. Montrer que A est inversible et préciser A^{-1} .
- 3. Calculer pour $n \ge 2$ le reste de la division euclidienne de X^n par P = (X 1)(X 3). En déduire A^n pour $n \ge 2$. On donnera le résultat en fonction de A et I_3 .

Exercice 7 Soit $n \ge 2$ *U* la matrice de $M_n(\mathbb{K})$ dont tous les coefficients valent 1, on note pour a, b réels :

$$M_{a,b} = aI_n + bU$$

- 1. Calculer U^2 , en déduire $M_{a,b}^2$ en fonction de $M_{a,b}$ et I_n .
- 2. Montrer que $F = \{M_{a,b}, (a,b) \in \mathbb{K}^2\}$ est un sev de $M_n(\mathbb{K})$ stable par produit dont on précisera la dimension.
- 3. Préciser les valeurs de a, b pour lesquelles $M_{a,b}$ est inversible.

Exercice 8 Soit $D = diag(x_1, x_2, ..., x_n)$ avec les x_i deux à deux distincts.

- 1. Montrer que $(I_n, D, D^2, ..., D^{n-1})$ est une base du sev $\mathcal{D}_n(\mathbb{K})$ des matrices diagonales de $M_n(\mathbb{K})$.
- 2. Quel est le degré minimal d'un polynôme annulateur non nul de D?

Exercice 9 (matrices en damier) On dit que $M \in M_n(\mathbb{K})$ est en damier si :

$$\forall (i,j) \in \{1,2,...,n\}, i+j \text{ impair } \Longrightarrow m_{i,j} = 0$$

On note \mathcal{A} l'ensemble de ces matrices.

 NB : aucune honte à traiter d'abord l'exercice en petite dimension (n=3,4) pour mieux appréhender la notion.

- 1. Donner des exemples en petite taille.
- 2. Montrer que \mathcal{A} est un sev de $M_n(\mathbb{K})$ dont on donnera une base et la dimension.
- 3. Montrer que \mathcal{A} est stable par produit.
- 4. On rappelle (?) que si A est inversible alors A^{-1} est un polynôme en A. Montrer que si A est en damier et inversible alors A^{-1} est encore en damier.

Exercice 10 Trouver un polynôme annulateur non nul de degré minimal pour $A = \begin{pmatrix} -2 & 2 & -1 \\ -1 & 1 & -1 \\ -1 & 2 & -2 \end{pmatrix}$

Exercice 11 Montrer que si un sev F de E est stable par $u \in GL(E)$ alors il est stable par u^{-1} . Rejustifier le fait que l'inverse d'une matrice en damier inversible est encore en damier.

Exercice 12 Soit u l'application définie pour $P \in \mathbb{R}_2[X]$ par u(P) = P - (X+1)P'

- 1. Montrer que u est un endomorphisme de $\mathbb{R}_2[X]$, écrire sa matrice A dans la base canonique $B=(1,X,X^2)$ de $\mathbb{R}_2[X]$.
- 2. Donner le rang de u, la dimension de $\ker(u)$, une base de $\ker(u)$ et de $\operatorname{Im}(u)$.
- 3. u est-il injectif? Surjectif?
- 4. Justifier rapidement que $B' = (P_1, P_2, P_3)$ avec $P_1 = 1, P_2 = X + 1, P_3 = X^2 + 2X + 1$ est une base de $\mathbb{R}_2[X]$ et écrire la matrice D de u dans B'. Soyez attentifs à la façon d'écrire une matrice d'endomorphisme...

Exercice 13 Soit E un \mathbb{R} -ev de dimension 2 et f un endomorphisme de E vérifiant $f^2 + f + Id_E = 0$.

- 1. Montrer que $f \neq 0$, en déduire l'existence d'un vecteur $x_0 \notin \ker(f)$.
- 2. Montrer que $B = (x_0, f(x_0))$ est une base de E.
- 3. Préciser la matrice de f dans B, la trace et le déterminant de f.

Problème

On dit que $A \in M_n(\mathbb{R})$ est une racine de I_n s'il existe un entier $p \in \mathbb{N}^*$ tel que $A^p = I_n$. Si A est une racine de I_n , on appelle **indice** de A le plus petit entier $p \in \mathbb{N}^*$ vérifiant $A^p = I_n$. Dans la suite on prendra n = 2 pour simplifier les calculs...

- 1. Soit $A \in M_2(\mathbb{R})$ dont tous les coefficients sont strictement positifs. Expliquer rapidement pourquoi les coefficients de A^p sont tous strictement positifs pour tout entier $p \in \mathbb{N}^*$.
- 2. $\begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$ peut-elle être racine de I_2 ?
- 3. Dans toute cette question $A = \begin{pmatrix} 2 & -7 \\ 1 & -3 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
 - (a) Vérifier que A est racine de I_2 d'indice 3. Montrer qu'e B est racine de I_2 et préciser son indice.
 - (b) Calculer ensuite AB. Est-elle racine de I_2 ?
- 4. A quelle condition suffisante simple le produit de deux racines de I_2 l'est-il encore?
- 5. On note pour α réel $A_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$. Montrer par récurrence que $\forall n \in \mathbb{N}, (A_{\alpha})^n = A_{n\alpha}$

En déduire que pour tout entier $p \in \mathbb{N}^*$ il existe une racine de I_2 d'indice p.

- 6. Calculer pour $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ la matrice $A^2 \text{Tr}(A) A + \det(A) I_2$.
- 7. En déduire qu'une matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ de taille 2 différente de $-I_2$ est racine de I_2 d'indice 2 si et seulement si Tr(A) = 0 et $\det(A) = -1$.