Exercise 4.18: A function $f: L_1 \to L_2$ where L_1 and L_2 are lattices is distributive when $\forall x, y \in L_1: f(x) \sqcup f(y) = f(x \sqcup y)$.

- (a) Show that every distributive function is also monotone.
- (b) Show that not every monotone function is also distributive.

证明:

(a) Show that every distributive function is also monotone:

设∀x, y∈L₁,当 x ⊆ y 时,由练习 4.2 结论得知,当 x ⊔ y 存在,有 x ⊔ y = y。因为 f: L₁ → L₂ 为 distributive 函数,故 f(x) □ f(y) = f(x □ y) = f(y),再由练习 4.2 结论得 f(x) □ f(y)。所以设 ∀x, y∈L₁: x ⊆ y ⇒ f(x) □ f(y),故该函数为 monotone,条件 a 成立。

(b) Show that not every monotone function is also distributive:

假设 $f: L_1 \to L_2$ 为单调函数,则取 $\forall x, y \in L_1: x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$ 。

- (1) 若 f(x) \Box f(y)存在,则 f(x) \Box f(y) = f(y),为使得 f(x) \Box $f(y) = f(y) = f(x \ \Box$ y), 还须 $x \ \Box$ y 存在!
- (2) 若 x \sqcup y 存在,则 $f(x \sqcup y) = f(y)$,为使得 $f(x) \sqcup f(y) = f(y) = f(x \sqcup y)$, 还须 $f(x) \sqcup f(y)$ 存在!