Universidad Nacional de San Agustín de Arequipa Escuela Profesional de Ciencia de la Computación Curso: Computación Gráfica

Práctica 06

MSc. Vicente Machaca Arceda

16 de mayo de 2020

DOCENTE	CARRERA	CURSO
MSc. Vicente Machaca Arceda	Escuela Profesional de Ciencia de la	Computación Gráfica
	Computación	

PRÁCTICA	TEMA	DURACIÓN
06	Image Arithmetic	3 horas

1. Competencias del curso

- Dominar tópicos y algoritmos de computación gráfica.
- Solucionar problemas aplicando algoritmos de computación gráfica.

2. Competencias de la práctica

■ Dominar e implementar el algoritmo de computación gráfica Image Arithmetic.

3. Equipos y materiales

- Python
- Opency
- Matplotlib
- Numpy
- Cuenta en Github

4. Entregables

- Se debe elaborar un informe en Latex donde se responda a cada ejercicio de la Sección 5.
- En el informe se debe agregar un enlace al repositorio Github donde esta el código.
- En el informe se debe agregar el código fuente asi como capturas de pantalla de la ejecución y resultados del mismo.

5. Ejercicios

1. Implemente la adición de imágenes con los elementos de la Figura 1. Se recomiendo hacer un **cast** a la imagen antes del procesamiento para evitar el *overflow* en los pixeles.

Figura 1: Imágenes de muestra.

2. Ahora implemente la adición con imágenes a colores (Figura 2).

Figura 2: Imágenes de muestra.

- 3. Implemente la sustracción de imágenes para segmentar letras. Se le esta brindando una foto del documento y otra de una hoja en blanco para eliminar el reflejo de la luz (Figura 3). Despues de la sustracción aplique thresholding para obtener un resultado similar a la Figura 4. Tiene la liberta de aplicar métodos adicionales para mejorar los resultados, por ejemplo: contrast stretching, histogram equalization, etc.
- 4. Implemente la sustracción de imágenes para detectar el cambio o movimiento de objetos en fotogramas. En la Figura 5, se brindan dos fotogramas consecutivos, implemente la sustracción para obtener una imagen donde se visualize que objetos han cambiado de posición.
- 5. Finalmente, agregue los operadores de adición y sustracción a su software de procesamiento de imágenes.

Figura 3: Fotos de imágenes para segmentar.

Figura 4: Resultado de la segmentación.

Figura 5: Fotogramas de una secuencia de video.