Specifying the Behavior of Expressions

Exercise 3.1

[(value-of
$$<< x>> \rho$$
)] = 10
[(value-of $<< 3>> \rho$)] = 3
[(value-of $<< v>> \rho$)] = 5
[(value-of $<< i>> \rho$)] = 1

Let $\rho = [x=[33], y=[22]]$.

Exercise 3.2

A $val \in ExpVal$ must be that which is in Int+Bool. Then a $val \in ExpVal$ for which $\lceil |val| \rceil \neq val$ is where $val \in Bool$, such as val = true.

Exercise 3.3

We are able to describe the arithmetic operations in terms of subtraction. We cannot do so if we chose addition.

Exercise 3.4

[18]

Exercise 3.5

```
(value-of <<let x=7 in let y=2 in let y= let x=-(x,1) in -(x,y) in -(-(x,8),y)>> \rho_0) skib
```

Exercise 3.6

Exercise 3.7

```
(expval->num (value-of exp2 env)))))
(div-exp (exp1 exp2)
         (let ((val2 (expval->num (value-of exp2 env))))
            (if (= 0 \text{ val2})
                (report-division-by-zero)
                (num-val (/ (expval->num (value-of expl env))
                            val2)))))
Exercise 3.8
(equal?-exp
 (exp1 expression?)
 (exp2 expression?))
(greater?-exp
 (exp1 expression?)
 (exp2 expression?))
(less?-exp
 (exp1 expression?)
 (exp2 expression?))
(equal?-exp (exp1 exp2)
             (bool-val (= (expval->num (value-of exp1 env))
                          (expval->num (value-of exp2 env)))))
(greater?-exp (exp1 exp2)
               (bool-val (> (expval->num (value-of exp1 env))
                             (expval->num (value-of exp2 env)))))
(less?-exp (exp1 exp2)
            (bool-val (< (expval->num (value-of exp1 env))
                         (expval->num (value-of exp2 env)))))
Exercise 3.9
(list-val
 (first expval?)
```

(next expval?))