Aplicaciones Lineales

Tema 5

Estudiar si son aplicaciones lineales

1.-
$$f: \mathbb{R}^3 \to \mathbb{R}^4: f(x_1, x_2, x_3) = (x_3, x_1 + x_2, 0, -x_3)$$

2.-
$$f: R^3 \rightarrow R^2: f(x, y, z) = (x + a, y)$$

3.- f:
$$R^3 \rightarrow M_2(x)$$
: $f(x, y, z) = \begin{pmatrix} ax & by \\ cz & x + y + z \end{pmatrix}$ a,b,c $\in R$

4.- f:
$$P_2(x) \rightarrow P_1(x)$$
: $f(a_2x^2 + a_1x + a_0) = p'(x)$

5.- f:
$$P_3(x) \rightarrow R^4$$
: f($a_3x^3 + a_2x^2 + a_1x + a_0$) = ($a_0, a_1 + 1, a_2, a_3$)

6.- Dado el endomorfismo de R^3 definido por las ecuaciones

$$(y_1, y_2, y_3) = (x_1 + x_2 + x_3, x_1 + x_2 - x_3, x_3)$$

Obtener: a) núcleo e imagen de la aplicación lineal

- b) Clasificar la aplicación lineal
- c) f(V) siendo V= $\{(x_1, x_2, x_3)/x_1 + x_2 + x_3 = 0\}$
- 7.- Calcular núcleo e imagen de la aplicación lineal $f\colon R^4\to R^3$ definida por la expresión $f(x_1,x_2,x_3,x_4)=(x_1+x_2,0,x_1-x_2)$
- 8.- Determinar el ker f e Imf del endomorfismo : $R^3 \rightarrow R^3$ definido por f $(x_1, x_2, x_3) = (x_3, x_1 + x_2, -x_3)$

Calcular
$$f^{-1}(0,0,0)$$
 $f^{-1}(1,2,3)$ $f^{-1}(1,0,-1)$

Obtener la matriz asociada a f en las bases canónicas.

9.- Considerar h: $M_{2x2}(R) \longrightarrow R^4$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 — (a*b-d, c+d, b-2c+d, a-d)

- a) Calcular la matriz asociada a h en las bases canónicas de $M_{2x2}(R)$ y R^4
- b) Determinar h(A) siendo $A = \begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix}$
- c) Calcular h(S) siendo $S=L<\begin{pmatrix}1 & -1\\ 0 & 2\end{pmatrix},\begin{pmatrix}0 & 1\\ 3 & -2\end{pmatrix},\begin{pmatrix}1 & 1\\ 6 & -2\end{pmatrix}>$
- 10.- Dada la aplicación lineal f: R^3 $P_3(t)$

$$(x_1, x_2, x_3)$$
 $(x_1 + x_2) + (x_1 - x_3)t + x_3t^2 + x_2t^3$

Calcular la imagen del vector de R³ cuyas coordenadas en la base

$$B = \{(-1,0,1); (2,1,1); (1,0,2)\} \text{ son } 1, -2, 3$$

11.- Dadas B= $\{u_1, u_2\}$ y B'= $\{v_1, v_2, v_3\}$ bases de U y V respectivamente, si f es una aplicación lineal tal que:

$$f(u_1) = 3v_1 + 6v_2 - 3v_3$$
 $f(u_2) = v_1 + 5v_2 - v_3$

Obtener $M_{B,B'}(f)$. Clasificar f

12.- Si C es la base canónica de \mathbb{R}^3 y C'= {(1,1,0), (1,0,1), (0,-1,2)}

Si f es un endomorfismo cuya matriz asociada respecto a la base canónica es

$$M_{\mathcal{C}}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & -1 \\ -2 & 2 & 3 \end{pmatrix}$$

Calcular la matriz de f en la base C'.

$$C' = \{u_1 = (1,1,0), u_2 = (1,0,1), u_3 = (0,-1,2)\}$$

13.- Sea $f: E_3 \to E_3'$ una aplicación lineal tal que $f(\vec{e}_1) = \vec{u}_1 - \vec{u}_2$, $f(\vec{e}_2) = \vec{u}_2$, $f(\vec{e}_3) = \vec{u}_1$ donde $B = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ y $B' = \{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ son bases de los espacios de partida y llegada.

- a) Hallar la matriz asociada a f en las bases B y B'.
- b) Hallar una base de Ker(f) y otra de Im(f).
- c) Obtener las ecuaciones de f(V) siendo V= $\{(\alpha, \alpha, \alpha + \beta) / \alpha, \beta \in R\}$

14.- Examen final mayo 2023

Dada f: $R^3 \to R^2$ aplicación lineal tal que f(x,y,z)=(2x-y, 2y+z) y g: $R^2 \to R^3$ aplicación lineal tal que g(x,y)=(4x+2y, y, x+y);

Consideramos en R^3 la base $B = \{(1,0,0) \ (1,1,0) \ (1,1,1)\}$

 $y en R^2 la base B' = \{(1,0) (1,1)\},\$

- a) Determinar $M_{CC'}(f)$ y $M_{CC'}(g)$, siendo C y C' respectivamente las bases canónicas de R^3y R^2
- b) Obtener una base de ker f y otra base de Im g. Clasificar las aplicaciones f y g.
- c) Calcular $[f(2,0,-1)_B]_{B'}$ utilizando la matriz $M_{B,B'}(f)$ y comprobar el resultado en las bases canónicas

15.- Dada f: $P_2(x) \longrightarrow P_2(x)$

$$P(x) \longrightarrow 2[p(0) - p''(0)]x + [p''(0) - p'(0) - p(0)]x^2$$

¿Es el subespacio vectorial F=L<1+2x, $1-x^2>$ invariante por f?

16.- Sea f: $P_2(x) \rightarrow P_2(x)$ un endomorfismo tal que

$$f(a + bx + cx^2) = (a + 2b + c) + (\alpha a + b)x + (a + 2b + \alpha c)x^2$$

Encontrar las dimensiones de ker f y de Im f según los distintos valores de α

- 17.- **(Examen 2º Parcial U-tad junio 2020)** Consideramos la aplicación lineal del espacio R³ en R² del que sabemos:
 - -el núcleo del homomorfismo es

Ker
$$f = \{(x,y,z)/x+ay+z=0; ax+y+z=0\}$$

- -f (0,0,a-1) = (0,a-1) y f(1,0,1) = (2,1). a es un número real arbitrario
- a) Obtener dimensiones y bases de Ker f y de Im f según los valores de a
- b) Calcular la matriz de la aplicación lineal en las bases canónicas de R³ y R²;
- c) Para a = 1, hallar, si existen, los vectores que se transforman en el vector (2,1) y en el vector (2,3)
- 18.- Sea f un endomorfismo de R⁴ definido por:

1) ker
$$f = \{(x,y,z,t)/2x+y-z-2t=0; z+2t=0\}$$

2)
$$f(0,0,0,1) = (2,0,0,0)$$
 y $f(1,0,0,0) = (2,0,2,0)$

Resolver las siguientes cuestiones:

- a) Calcular la matriz de f respecto de la base canónica de R⁴
- b) Hallar una base del subespacio f(V) siendo $V \equiv \{(x, y, z, t) / x + y + z + t = 0\}$
- c) Calcular la matriz de f respecto de la base

$$B = \{w_1 = (1,1,0,0), w_2 = (1,-1,0,0), w_3 = (0,0,1,1), w_4 = (0,0,1,-1)\}$$

19.- Dado f endomorfismo de \mathbb{R}^4 tal que

$$f(e_1) = e_1 - e_2$$
 $f(e_3) = e_1$ y ker $f=L < e_1 + e_2$, $e_3 - e_4 > e_3$

Estudiar si se verifica que $R^4 = kerf \oplus Imf$