Уменьшение размерности пространства обучаемых параметров в задаче адаптации к домену

Анна Ремизова научный руководитель: к.ф.-м.н. А.В. Грабовой

МФТИ

18/05/2024

Содержание

- 1 Введение
- 2 Предложенный метод
- 3 Вычислительный эксперимент

Мотивация

Уменьшение размерности пространства обучаемых параметров в задаче адаптации к домену упрощает процесс обучения и улучшает вычислительную эффективность. Путем сокращения количества параметров, которые необходимо обновить во время обучения, модель может потенциально быстрее сходиться и затрачивать меньше вычислительных ресурсов. Уменьшение размерности может быть особенно важным в сценариях адаптации к домену, где происходит обучение с большим числом параметров.

Введение

Введение

0000

Метод, рассмотренный в данной работе — низкоранговое разложение (англ. Low Rank Adaptation) [2], который разработан на основе идеи о том, что предварительно обученные языковые модели имеют низкую внутреннюю размерность и могут эффективно обучаться, несмотря на проецирование на меньшее подпространство [1].

Постановка задачи

Для задачи классификации текстов:

$$f_{\theta}: \hat{V} \to [N_c], \tag{1}$$

где f_{θ} —модель трансформер, $\hat{V}\subset V^*$; V — словарь токенов и V^* — его замыкание или множество всех последовательностей над V, $[N_c]$ — множество классов. Таким образом, модель отображает текст из \hat{V} в класс из $[N_c]$.

Постановка задачи

При дообучении модель инициализируется предварительно обученными весами Φ_0 и обновляется до $\Phi_0 + \Delta \Phi$, где $\Delta \Phi$ — набор дообучаемых параметров. При использовании LoRA $\Delta \Phi$ задается набором параметров Θ намного меньшего размера, чем $\Phi_0: \Delta \Phi = \Theta$, где $|\Theta| \ll |\Phi_0|$ и задача минимизации функции потерь имеет вид:

$$\min_{\Theta} \left(-\sum_{X_i \in \hat{V} \subset V^*} \sum_{c_i \in [N_c]} \log \left(P_{\Phi_0 + \Theta} \left(c_i \mid X_i \right) \right) \right) = \\
= \max_{\Theta} \sum_{X_i \in \hat{V} \subset V^*} \sum_{c_i \in [N_c]} \log \left(P_{\Phi_0 + \Theta} \left(c_i \mid X_i \right) \right). \tag{2}$$

LoRA адаптер

В данной работе LoRA применяется к задаче классификации. Структура обновления весов при использовании LoRA адаптера описана в таблице 1,

Fine tuning	LoRA fine tuning
$W_{upd} = W + \Delta W$	$W_{upd} = W + AB$
$\hat{y} = xW_{upd} = x(W + \Delta W)$	$\hat{y} = xW_{upd} = x(W + AB)$
$\hat{y} = xW + x\Delta W$	$\hat{y} = xW + xAB$

Таблица 1: Структура обновления весов при использовании LoRA адаптера

где $W \in \mathbb{R}^{d \times k}$ — предобученные веса, $\Delta W \in \mathbb{R}^{d \times k}$ — матрица обновленных весов. ΔW приближается с помощью метода LoRA произведением $A \cdot B$, где $A \in \mathbb{R}^{d \times r}$, $B \in \mathbb{R}^{r \times k}$ и r — гиперпараметр ранга. Здесь $A \sim \mathcal{N}(0, \sigma^2)$ и $B = [0]_{r \times k}$.

Состоятельность предложенной модели

Сходимость модели трансформер без использования LoRA была доказана в работе [3]. Доказательство приведено для задачи классификации:

Theorem

Будем считать, что:

1) Задана модель с набором параметров Θ^* , генерирующая эмпирическое распределение данных $P_{model}(\cdot, \Theta^*)$, которое аппроксимирует истинное распределение данных P_{true} с минимальным расхождением по KL-дивергенции:

$$\exists \Theta^* : \Theta^* = \underset{\Theta}{\operatorname{arg\,min}} D_{KL}(P_{true} \mid\mid P_{model}(\cdot, \Theta)), \tag{3}$$

Состоятельность предложенной модели

Theorem

- 2) При увеличении размера выборки \hat{V} эмпирическое распределение данных $P_{model}(\cdot,\Theta)$ приближается к истинному распределению, генерирующему данные.
- 3) Функция ошибки $\mathcal{L}(\theta)$ непрерывная, дифференцируемая. Где

$$\mathscr{L}(\Theta) = -\sum_{X_i \in \hat{V} \subset V^*} \sum_{c_i \in [N_c]} \log \left(P_{\Phi_0 + \Delta \Phi(\Theta)} \left(c_i \mid X_i \right) \right). \tag{4}$$

Тогда минимизация функции потерь $\mathcal{L}(\Theta)$ приводит к состоятельной оценке истинного распределения, порождающего данные. Т.е.:

$$\lim_{|\hat{V}| \to \infty} \underset{\Theta}{\arg \min} \mathcal{L}(\Theta) = \Theta^*. \tag{5}$$

О применимости LoRA к задаче классификации

Note

Введение

Для решения задачи классификации с помощью BERT требуется не более чем дополнительный $\operatorname{softmax}$ слой после BERT:

$$p(c \mid \mathbf{x}) = \operatorname{softmax}(W^T \mathbf{x})$$

$$\hat{\mathbf{y}} = \operatorname{softmax}(W^T \mathbf{x}) = \frac{\exp(W^T \mathbf{x})}{\sum_{i=1}^k \exp(W^T \mathbf{x})_i},$$
(6)

где ${f x}$ — это выходной результат последнего слоя BERT, а W матрица весов.

О применимости LoRA к задаче классификации

$\mathsf{Theorem}$

Введение

В рамках задачи классификации, при заданных условиях:

1) Модель семейства BERT с дополнительным слоем

$$\hat{\mathbf{y}} = \operatorname{softmax} \left(W_{upd}^T \mathbf{x} \right) = \frac{\exp \left(W_{upd}^T \mathbf{x} \right)}{\sum_{i=1}^k \exp \left(W_{upd}^T \mathbf{x} \right)_i}, \tag{7}$$

где

$$W_{upd} = W_{(d \times k)} + \Delta W_{(d \times k)}, \tag{8}$$

и x —это выходной результат BERT, W — матрица весов, ΔW — матрица обновленных весов.

О применимости LoRA к задаче классификации

Theorem

2) Данная модель BERT без дополнительного слоя также корректно работает с аппроксимацией

$$\Delta W = A \times B, \\
(d \times k) = (d \times r) \times (r \times k),$$
(9)

3) Выполняется теорема о состоятельности предложенной модели.

Тогда можно утверждать, что при (9) заданная модель BERT с дополнительным слоем гарантирует корректную выходную матрицу.

Данные

Открытый исходный датасет для мультиклассовой классификации текстов, написанных человеком и различными языковыми моделями. Представлено 4 класса: ChatGPT, Davinci, Cohere, Humans. Всего в датасете 47327 текстов с разметкой по классам. Средняя длина текста по всему датасету — 400 слов, средняя длина текстов в зависимости от класса представлена в таблице 3. Средняя длина слова — 5 символов. Вес каждого класса — ,безразмерная величина, показывающая насколько несбалансированна выборка и к каким классам применять большие веса. Статистика по весам классов приведена в таблице 2.

Данные

имя класса	вес, б/р
chatGPT	0.986
cohere	1.043
davinci	0.986
human	0.986

Таблица 2: Вес каждого класса

имя класса	длина текста,
	слова
chatGPT	362
cohere	279
davinci	343
human	607

Таблица 3: Средняя длина текста

Предобученная модель DRoBERTa-base, мультиклассовая классификация.

Введение

После обучения для оценки использовались матрица ошибок и метрики точности, полноты и F1-меры, результаты представлены в таблице 4. Для визуализации ошибки использовалась матрица несоответствий (англ. Confusion matrix), для данного эксперимента результаты приведены в таблице 5.

время обучения: 4041.3188 секунд

имя класса	precision	recall	f1-score
chatGPT	1.000	0.993	0.997
cohere	0.963	0.999	0.981
davinci	0.986	0.996	0.991
human	0.991	0.952	0.971

Таблица 4: Метрики качетва DRoBERTa-base

Предобученная модель DRoBERTa-base, мультиклассовая классификация.

предсказаные метки

Σ		chatGPT	Cohere	Davinci	Human
мет	chatGPT	0.993	0.002	0.0	0.005
<u>e</u>	Cohere	0.0	0.999	0.0	0.001
ТИННЫ	Davinci	0.0	0.001	0.996	0.003
ΪΝ	Human	0.0	0.035	0.013	0.952
Š					

Таблица 5: Confusion matrix, DRoBERTa-base

Введение

Только 0.828% параметров обучаются при использовании LoRA. Предположим, что обучится такая модель гораздо быстрее. Гипотеза подтвердилась экспериментально, что отображено в таблице 6. Матрица несоответсвий для данноого эксперимента представлена в таблице 7.

время обучения: 3210.977 секунд trainable params: 685828, all: 82807304 | trainable%: 0.8282

model	precision	recall	f1-score
chatGPT	0.997	0.786	0.879
cohere	0.667	0.940	0.780
davinci	0.703	0.971	0.816
human	0.717	0.317	0.440

Таблица 6: Метрики качетва DRoBERTa-base & LoRA

Введение

предсказаные метки

истинные метки chatGPT Cohere Davinci Human chatGPT 0.79 0.01 0.08 0.12 Cohere 0.94 0.06 0.0 0.003 Davinci 0.001 0.03 0.98 0.0 0.002 0.43 0.25 0.32 Human

> Таблица 7: Confusion matrix, DRoBERTa-base & LoRA

Три независимые модели DRoBERTa-base & LoRA, бинарная классификация.

ChatGPT vs Human

Эксперимент, представленный здесь, аналогичен предыдущему, но модель решает задачу бинарной классификации. Результаты представлены в таблице 8.

время обучения: 1633.8114 секунд

model	precision	recall	f1-score
chatGPT	1.000	0.891	0.942
human	0.902	1.000	0.950

Таблица 8: Метрики качетва DRoBERTa-base & LoRA, chatGPT vs Human

Три независимые модели DRoBERTa-base & LoRA, бинарная классификация.

Cohere vs Human

Результат эксперимента представлен в таблице 9.

время обучения: 1583.556 секунд

model	precision	recall	f1-score
cohere	0.999	0.837	0.911
human	0.853	0.999	0.920

Таблица 9: Метрики качетва DRoBERTa-base & LoRA, Cohere vs Human

Три независимые модели DRoBERTa-base & LoRA, бинарная классификация.

Davinci vs Human

Результат эксперимента представлен в таблице 10.

время обучения: 1632.395 секунд

model	precision	recall	f1-score
davinci	0.996	0.851	0.918
human	0.870	0.997	0.929

Таблица 10: Метрики качетва DRoBERTa-base & LoRA, Davinci vs Human

Выводы

Если "усреднить" показатели трех моделей эксперимента, то можно заметить улучшение качества по сравнению с метриками качетва DRoBERTa-base & LoRA для мультиклассовой классификации, таблица 11, также показатели сравнимы с показателями метрик до применения LoRA, таблица 12.

model	precision	recall	f1-score
chatGPT	1.000	0.891	0.942
cohere	0.999	0.837	0.911
davinci	0.996	0.851	0.918
human	0.875	0.999	0.933

Таблица 11: Метрики качетва DRoBERTa-base & LoRA, бинарные классификаторы

Выводы

model	precision	recall	f1-score
chatGPT	1.000	0.993	0.997
cohere	0.963	0.999	0.981
davinci	0.986	0.996	0.991
human	0.991	0.952	0.971

Таблица 12: Метрики качетва DRoBERTa-base, мультиклассовая классификация

Показатели precision выросли у всех классов, кроме human, в то время как у этого класса выросла метрика recall. Суммарно, качество классификации выросло, не потеряв во времени обучения, по сравнению с предобученной моделью DRoBERTa-base. И сильно выиграло в качестве у модели DRoBERTa-base & LoRA, но проиграв ей во времени обучения.

Выводы

При решении задачи мультиклассовой классификации предложенная модель BERT & LoRA тратит меньше ресурсов, чем модель без использования LoRA, но метрики качества падают. Однако, при решении тремя одинаковыми независимыми моделями задачи бинарной классификации с последующим усреднением метрики качетва растут, а использование ресурсов — нет. Таким образом, в данной работе теоритически и экспериментально доказана состоятельность и эффективность предложенного метода.

Библиография

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

Minhyeok Lee.

A mathematical investigation of hallucination and creativity in gpt models.

Mathematics, 11(10):2320, 2023.