DMA 2021 ugeseddel 10

Rasmus Pagh

Litteratur

- CLRS 11.0, 11.1, 11.2, 11.3 (dog ikke 11.3.3), 11.4 (dog ikke Analysis of open-address hashing). Vi bruger i denne uge notation defineret i CLRS sektion 3.2, sektionerne "Floors and Ceilings" samt "Modular arithmetic" (side 54)
- CLRS kapitel 17.0, 17.1, 17.2
- Note: Cuckoo hashing for undergraduates

Mål for ugen

- Kendskab til hashtabeller (chaining, linear probing, cuckoo hashing) og deres egenskaber
- Introduktion til amortiseret analyse

Plan for ugen

- Mandag: Hashtabeller med hægtede lister
- Tirsdag: Open addressing, cuckoo hashing
- Fredag: Introduktion til amortiseret analyse

Opgaver

For opgaver markeret med † kan du finde svar via Absalon, men det er vigtigt at du forsøger at løse opgaven, evt. med hjælp fra din instruktor, inden du kigger dér. NB! Opgaver markeret med "*" er svære, "**" er meget svære, og "***" har du formentlig ikke en chance for at løse.

Mandag

- 1. CLRS 11.1-1 †
- 2. CLRS 11.1-2. † Antag at hvert element i tabellen indeholder et w-bit heltal, dvs. hvert element kommer fra mængden $\{0,\ldots,2^w-1\}$. Vi vil gerne gemme vores bitvektor i en tabel T af størrelse $\lceil m/w \rceil$. Din løsning skal gøre brug af bit-operationer for at tilgå og manipulere indgangene i T. Et overblik over bitoperationer i F# er her.
- 3. CLRS 11.2-2
- 4. CLRS 11.3-1 †
- 5. CLRS 11.3-4

- 6. Lad K være en sekvens af heltals-nøgler gemt i en hashtabel A ved brug af hægtet hashing. Givet A, hvordan kan man finde det maksimale element i K? Hvad er den asymptotiske køretid som funktion af antal nøgler n og størrelsen af hashtabellen m?
- 7. **Multimængder.** * Det er muligt at gemme den samme nøgle flere gange (med forskellig satellit-data i hver kopi) i en hashtabel med hægtede lister. Det gør mængden af nøgler til en multimængde med n nøgler k_1, \ldots, k_n der ikke nødvendigvis er forskellige. Udvid Chained-Hash-Search(T, k) til at returnere $alle\ t(k)$ satellit-data, der er gemt sammen med nøglen k. Vis at den forventede søgetid kan begrænses som $O(1 + \alpha + t(k))$, hvor $\alpha = n/m$ som i CLRS kapitel 11.
- 8. CLRS 11.1-4 **

Tirsdag

- 1. Håndkørsel af linear probing. Indsæt nøglesekvensen 2, 32, 43, 16, 77, 51, 1, 17, 42, 111 i tabel af størrelse 17 vha. linear probing med hashfunktionen $h(k) = k \mod 17$.
- 2. Antag at vi laver sletning i lineær probering uden at markere indgange som slettet (vi fjerner bare elementet hvis vi finder det). Giv en sekvens af ordbogsoperationer, der viser at dette ikke virker korrekt.
- 3. CLRS 11.4-2
- 4. **Sletning i linear probing.** † Slet 111 og 51 fra tabellen produceret i opgaven ovenfor, og bekræft at søgning efter de resterende nøgler stadig virker.
- 5. Håndkørsel af cuckoo hashing. † Indsæt nøglesekvensen 1, 17, 7, 5, 20, 24, 15 i tabel af størrelse 13 ved brug af cuckoo hashing med hashfunktionerne $h_1(k) = k \mod 13$ og $h_2(k) = (2k+1) \mod 13$.
- 6. Simple tabulation hashing. ** En streng x af længde ℓ kan betragtes som en tabel af heltal $x_1, \ldots, x_k \in \{0, \ldots, 255\}$ (hvor tegn nummer i er repræsenteret ved tallet x_i (i for eksempel ASCII formatet). Simple tabulation hashing definerer en hashfunktion på sådanne strenge ved ℓ arrays, T_1, \ldots, T_ℓ , der hver indeholder 256 tal valgt uniformt tilfældigt fra $\{0, \ldots, m-1\}$:

$$h(x) = (T_1[x_1] + T_2[x_2] + \dots + T_k[x_\ell]) \mod m$$

Argumentér for at for to forskellige strenge x og y af længde ℓ er sandsynligheden for at h(x) = h(y) lig med 1/m. Udvid funktionen til at håndtere strenge af længde $h \not o j s t \ell$.

7. Cuckoo hashing fejlsandsynlighed. *** Vis at sandsynligheden for at cuckoo hashing med n nøgler fejler (så nye hashfunktioner er nødvendige) er O(1/n).

Fredag

- 1. CLRS 17.1-1
- 2. CLRS 17.1-2
- 3. CLRS 17.1-3 †
- 4. CLRS 17.2-2 †
- 5. CLRS 17.2-3 † *

¹KU-professor Mikkel Thorup og Mihai Pătrașcu fra MIT viste i 2012 at simple tabulation hashing har meget stærke egenskaber, og det har siden ledt til en række af effektive hashfunktioner med stærke teoretiske garantier.

- 6. Mere amortisering. * Forestil dig at vi har en datastruktur hvor den i'te operation tager f(i) tid (vi vil definere f(i) herunder). Lad os udføre n operationer, som altså totalt koster $f(1) + f(2) + \ldots + f(n)$. For hver af følgende definitioner af f(i), hvad er den amortiserede køretid af en operation?
 - (a) $f(i) = i^2$ hvis i er en potens af 2 og f(i) = 1 ellers.
 - (b) f(i) = i hvis i er ulige og f(i) = 1 ellers.