MLM Nested Simulation Project (Spring 2020)

- 1. You will generate simulated data for a single school with 100 classrooms, each of which has 200 students.
 - a. Outcome for student i in classroom j: Y_{ij} .

 - b. There is a single predictor, $X_{ij} \sim U(0,1)$ (uniform on [0,1]). c. There is a classroom random effect, $\eta_j \sim N(0,\sigma_\eta^2)$, where $\sigma_\eta^2 = 2$.
 - d. Subject level error, $\varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^2)$, where $\sigma_{\varepsilon}^2 = 2$.
 - e. set.seed(2042001) once at the beginning of your code.
 - f. Generate the random quantities in this order to ensure the same solution for everyone: $X, \eta_i, \varepsilon_{ij}$
 - g. The outcome has the following form (DGP, given the modeling parameters above):

$$Y_{ij} = 0 + 1X_{ij} + \eta_j + \varepsilon_{ij}; \quad \eta_j \sim N(0, \sigma_\eta^2), \varepsilon_{ij} \sim N(0, \sigma_\varepsilon^2), \text{ indep.}$$

- h. Generate a single simulated dataset (you will need an "classid" variable to track classrooms; you can optionally assign a "studentid")
 - i. **Important**: construct classid such that classrooms appear consecutively within the dataframe. As per: rep(1:J,each=n j)
- 2. Fit the model corresponding to the DGP on your simulated data.
 - a. Report coefficient estimate for slope on X.
 - b. Does a 95% confidence band for this coefficient estimate cover the "truth" that you used to generate the data?
- 3. Next, we simulate missing data in several ways. This is the first:
 - a. Make a copy of the data, then modify the copy following these instructions:
 - b. Generate $Z_{ij} \sim \text{Bernoulli}(p)$, with p = 0.5.
 - c. Set Y to NA when $Z_{ij} == 1$. This should look a lot like "MCAR" missingness.
 - d. Refit the model on the new data and report the coefficient estimate for slope on X. Look at the other parameter estimates as well.
 - e. Do you see any real change in the β_X estimate?
 - i. Does a 95% confidence band for this coefficient estimate cover the "truth" that you used to generate the data?
 - f. What is the total sample N size used in the model fit?
- 4. Missing Data II: Make another copy of the *original* data, then modify the copy as follows:
 - a. Generate $Z_{ij} \sim \text{Bernoulli}(X_{ij})$, with X_{ij} your predictor generated previously.
 - b. Set Y to NA when $Z_{ij} == 1$. This should look a lot like "MAR" missingness.
 - c. Refit the model on the new data and report the coefficient estimate for slope on X. Look at the other parameter estimates as well.
 - d. Do you see any real change in the β_X estimate?
 - i. Does a 95% confidence band for this coefficient estimate cover the "truth" that you used to generate the data?
 - e. What is the total sample N size used in the model fit?
- 5. Missing Data III: Make another copy of the *original* data, then modify the copy as follows:
 - a. First, define the expit function: expit <- function(x) $\exp(x)/(1+\exp(x))$
 - b. Generate $Z_{ij} \sim \text{Bernoulli}(expit(Y_{ij}))$, with Y_{ij} your outcome generated previously.
 - c. Set Y to NA when $Z_{ij} = 1$. This should look like a violation of "MAR" missingness (missingness depends on outcome and cannot be simply predicted with the predictor set -Y should be correlated with X, though, so it might not be too bad a violation).
 - d. Refit the model on the new data and report the coefficient estimate for slope on X. Look at the other parameter estimates as well.
 - e. Do you see any real change in the β_X estimate?
 - i. Does a 95% confidence band for this coefficient estimate cover the "truth" that you used to generate the data?
 - f. What is the total sample N size used in the model fit?