Introduction

Note: Displacement or velocity observations (e.g., from proximity sensor or vibrometer) can be represented by:

$$y = C^T u$$

where:

$$\mathbf{C^T} = [\mathbf{1}, \mathbf{0}]$$
 or $\mathbf{C^T} = [\mathbf{0}, \mathbf{1}]$

 $\tau = (\mathbf{u}, \mathbf{v}, \mathbf{s}, \theta)$

$$k = const$$

$$c(T) = \exp\left(\frac{T_0}{T} - 1\right)$$
 $\dot{T} = c(T)\dot{x}^2 - \frac{T - T_0}{t_T}$

$$\dot{T} = c(T)\dot{x}^2 - \frac{T - T_0}{t_T}$$

$$\mathbf{v} = T$$
 $\mathbf{s} = egin{bmatrix} T_0 \ t_T \end{bmatrix}$ $heta = k$

$$\mathbf{y} = x$$
 $\mathbf{q} = \max(\dot{x})$

Real World Embedded Model

Introduction

If τ where known in terms of (\mathbf{u}, \mathbf{r}) , the system would be closed. However, it is often the case that the required relationship between τ and (\mathbf{u}, \mathbf{r}) is unknown or does not exist.

