

Learning goals

- Feature interactions
- Difference to feature dependencies

- Feature dependencies concern data distribution
- Feature interactions may occur in structure of **both** model or DGP (e.g., functional relationship between X and (X) or X and Y = f(X))
 - \rightsquigarrow Feature dependencies may lead to feature interactions in a model

© - 1/4

- Feature dependencies concern data distribution
- Feature interactions may occur in structure of **both** model or DGP (e.g., functional relationship between X and (X) or X and Y = f(X)) \rightsquigarrow Feature dependencies may lead to feature interactions in a model
- No. of potential interactions increases exponentially with no. of features
 → Difficult to identify interactions, especially when features are dep.

© - 1/4

- Feature dependencies concern data distribution
- Feature interactions may occur in structure of **both** model or DGP (e.g., functional relationship between X and (X) or X and Y = f(X)) \rightsquigarrow Feature dependencies may lead to feature interactions in a model
- No. of potential interactions increases exponentially with no. of features
 Difficult to identify interactions, especially when features are dep.
- Interactions: Feature's effect on the prediction depends on other features \rightarrow Example: () = $x_1x_2 \Rightarrow$ Effect of x_1 on depends on x_2 and vice versa

No interaction

Interactions: x_1 and x_3 ,

 x_1 and x_2

No interactions: x_2 and x_3

© -1/4

FEATURE INTERACTIONS • FRIEDMAN_POPESCU

Definition: A function f() contains an interaction between x_i and x_k if a difference in f()-values due to changes in x_i will also depend on x_k , i.e.:

$$\mathbb{E}\left[\frac{\partial^2 f()}{\partial x_j \partial x_k}\right]^2 > 0$$

 \Rightarrow If x_i and x_k don't interact, f() is sum of 2 functions, each indep. of x_i , x_k :

$$f() = f_{-j}(x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_p) + f_{-k}(x_1, \ldots, x_{k-1}, x_{k+1}, \ldots, x_p)$$

Example: $f() = x_1 + x_2 + x_1 \cdot x_2$ (not separable)

$$\mathbb{E}\left[\tfrac{\partial^2(x_1+x_2+x_1\cdot x_2)}{\partial x_1\partial x_2}\right]^2 = \mathbb{E}\left[\tfrac{\partial(1+x_2)}{\partial x_2}\right]^2 = 1 > 0$$

 \Rightarrow interaction between x_1 and x_2

© - 3/4

Example: $f() = x_1 + x_2 + x_1 \cdot x_2$ (not separable)

$$\mathbb{E}\left[\tfrac{\partial^2(x_1+x_2+x_1\cdot x_2)}{\partial x_1\partial x_2}\right]^2 = \mathbb{E}\left[\tfrac{\partial(1+x_2)}{\partial x_2}\right]^2 = 1 > 0$$

 \Rightarrow interaction between x_1 and x_2

- Effect of x_1 on f() varies with x_2 (and vice versa)
- ⇒ Different slopes

© -3/4

Example of separable function:

$$f() = x_1 + x_2 + \log(x_1 \cdot x_2) = x_1 + x_2 + \log(x_1) + \log(x_2)$$

$$\Rightarrow$$
 $f() = f_1(x_1) + f_2(x_2)$ with $f_1(x_1) = x_1 + \log(x_1)$ and $f_2(x_2) = x_2 + \log(x_2)$

$$\Rightarrow$$
 no interactions due to separability, also $\mathbb{E}\left[\frac{\partial^2 f()}{\partial x_1 \partial x_2}\right]^2 = 0$

© - 4/4

Example of separable function:

$$f() = x_1 + x_2 + \log(x_1 \cdot x_2) = x_1 + x_2 + \log(x_1) + \log(x_2)$$

$$\Rightarrow f() = f_1(x_1) + f_2(x_2)$$
 with $f_1(x_1) = x_1 + \log(x_1)$ and $f_2(x_2) = x_2 + \log(x_2)$

 \Rightarrow no interactions due to separability, also $\mathbb{E}\left[\frac{\partial^2 f()}{\partial x_1 \partial x_2}\right]^2 = 0$

- Effect of x_1 on f() stays the same for different x_2 values (and vice versa)
- ⇒ Parallel lines at different horizontal (blue) or vertical (black) slices

© - 4/4