visualizations

Agenda

- Matplotlib
- Bokeh
- Tableau
- Final Project

Anatomy of a matplotlib plot

Anatomy of a matplotlib plot

```
import numpy as np
import matplotlib.pyplot as plt
x1 = np.linspace(0.0, 5.0)
x2 = np.linspace(0.0, 2.0)
y1 = np.cos(2 * np.pi * x1) * np.exp(-x1)
y2 = np.cos(2 * np.pi * x2)
plt.subplot(2, 1, 1)
plt.plot(x1, y1, 'ko-')
plt.title('A tale of 2 subplots')
plt.ylabel('Damped oscillation')
plt.subplot(2, 1, 2)
plt.plot(x2, y2, 'r.-')
plt.xlabel('time (s)')
plt.ylabel('Undamped')
plt.show()
```

Import libraries

```
import numpy as np
import matplotlib.pyplot as plt
x1 = np.linspace(0.0, 5.0)
x2 = np.linspace(0.0, 2.0)
y1 = np.cos(2 * np.pi * x1) * np.exp(-x1)
y2 = np.cos(2 * np.pi * x2)
plt.subplot(2, 1, 1)
plt.plot(x1, y1, 'ko-')
plt.title('A tale of 2 subplots')
plt.ylabel('Damped oscillation')
plt.subplot(2, 1, 2)
plt.plot(x2, y2, 'r.-')
plt.xlabel('time (s)')
plt.ylabel('Undamped')
plt.show()
```

Anatomy of a matplotlib plot

```
import numpy as np
import matplotlib.pyplot as plt
x1 = np.linspace(0.0, 5.0)
x2 = np.linspace(0.0, 2.0)
y1 = np.cos(2 * np.pi * x1) * np.exp(-x1)
y2 = np.cos(2 * np.pi * x2)
plt.subplot(2, 1, 1)
plt.plot(x1, y1, 'ko-')
plt.title('A tale of 2 subplots')
plt.ylabel('Damped oscillation')
plt.subplot(2, 1, 2)
plt.plot(x2, y2, 'r.-')
plt.xlabel('time (s)')
plt.ylabel('Undamped')
plt.show()
```

Define 2 x-axis ranges in linear space

```
import numpy as np
import matplotlib.pyplot as plt
x1 = np.linspace(0.0, 5.0)
x2 = np.linspace(0.0, 2.0)
y1 = np.cos(2 * np.pi * x1) * np.exp(-x1)
y2 = np.cos(2 * np.pi * x2)
plt.subplot(2, 1, 1)
plt.plot(x1, y1, 'ko-')
plt.title('A tale of 2 subplots')
plt.ylabel('Damped oscillation')
plt.subplot(2, 1, 2)
plt.plot(x2, y2, 'r.-')
plt.xlabel('time (s)')
plt.ylabel('Undamped')
plt.show()
```

Create 2 sinusoidal functions

```
import numpy as np
import matplotlib.pyplot as plt
x1 = np.linspace(0.0, 5.0)
x2 = np.linspace(0.0, 2.0)
y1 = np.cos(2 * np.pi * x1) * np.exp(-x1)
y2 = np.cos(2 * np.pi * x2)
plt.subplot(2, 1, 1)
plt.plot(x1, y1, 'ko-')
plt.title('A tale of 2 subplots')
plt.ylabel('Damped oscillation')
plt.subplot(2, 1, 2)
plt.plot(x2, y2, 'r.-')
plt.xlabel('time (s)')
plt.ylabel('Undamped')
plt.show()
```

Plot subplot #1

```
import numpy as np
import matplotlib.pyplot as plt
x1 = np.linspace(0.0, 5.0)
x2 = np.linspace(0.0, 2.0)
y1 = np.cos(2 * np.pi * x1) * np.exp(-x1)
y2 = np.cos(2 * np.pi * x2)
plt.subplot(2, 1, 1)
plt.plot(x1, y1, 'ko-')
plt.title('A tale of 2 subplots')
plt.ylabel('Damped oscillation')
plt.subplot(2, 1, 2)
plt.plot(x2, y2, 'r.-')
plt.xlabel('time (s)')
plt.ylabel('Undamped')
plt.show()
```

Plot subplot #2

```
import numpy as np
import matplotlib.pyplot as plt
x1 = np.linspace(0.0, 5.0)
x2 = np.linspace(0.0, 2.0)
y1 = np.cos(2 * np.pi * x1) * np.exp(-x1)
y2 = np.cos(2 * np.pi * x2)
plt.subplot(2, 1, 1)
plt.plot(x1, y1, 'ko-')
plt.title('A tale of 2 subplots')
plt.ylabel('Damped oscillation')
plt.subplot(2, 1, 2)
plt.plot(x2, y2, 'r.-')
plt.xlabel('time (s)')
plt.ylabel('Undamped')
plt.show()
```

Finally: show it!

```
import numpy as np
import matplotlib.pyplot as plt
x1 = np.linspace(0.0, 5.0)
x2 = np.linspace(0.0, 2.0)
y1 = np.cos(2 * np.pi * x1) * np.exp(-x1)
y2 = np.cos(2 * np.pi * x2)
plt.subplot(2, 1, 1)
plt.plot(x1, y1, 'ko-')
plt.title('A tale of 2 subplots')
plt.ylabel('Damped oscillation')
plt.subplot(2, 1, 2)
plt.plot(x2, y2, 'r.-')
plt.xlabel('time (s)')
plt.ylabel('Undamped')
plt.show()
```

Anatomy of a matplotlib plot

Agenda

- Matplotlib
- Bokeh
- Tableau
- Final Project

Bokeh: web interactive display

Creates interactive visualization for web presentation.

- In the style of D3.js
- High-performance interactivity over very large or streaming datasets
- Quick creation of plots, dashboards, data apps

Anatomy of a Simple Bokeh App

Anatomy of a Simple Bokeh App

```
import numpy as np
from bokeh.plotting import figure, output_file, show
a = np.arange(10)
b = np.random.randn(10)
output_file("lines.html")
p = figure(title="Bokeh Line", x_axis_label='x', y_axis_label='y')
p.line(a, b, legend="Random Walk", line_width=2)
show(p)
```

Import the libraries

```
import numpy as np
from bokeh.plotting import figure, output_file, show
a = np.arange(10)
b = np.random.randn(10)
output_file("lines.html")
p = figure(title="Bokeh Line", x_axis_label='x', y_axis_label='y')
p.line(a, b, legend="Random Walk", line_width=2)
show(p)
```

Define the x and y ranges

```
import numpy as np
from bokeh.plotting import figure, output_file, show
a = np.arange(10)
b = np.random.randn(10)
output_file("lines.html")
p = figure(title="Bokeh Line", x_axis_label='x', y_axis_label='y')
p.line(a, b, legend="Random Walk", line_width=2)
show(p)
```

Define name of the HTML file

```
import numpy as np
from bokeh.plotting import figure, output_file, show
a = np.arange(10)
b = np.random.randn(10)
output_file("lines.html")
p = figure(title="Bokeh Line", x_axis_label='x', y_axis_label='y')
p.line(a, b, legend="Random Walk", line_width=2)
show(p)
```

Create the actual figure

```
import numpy as np
from bokeh.plotting import figure, output_file, show
a = np.arange(10)
b = np.random.randn(10)
output_file("lines.html")
p = figure(title="Bokeh Line", x_axis_label='x', y_axis_label='y')
p.line(a, b, legend="Random Walk", line_width=2)
show(p)
```

Finally, show it!

```
import numpy as np
from bokeh.plotting import figure, output_file, show
a = np.arange(10)
b = np.random.randn(10)
output_file("lines.html")
p = figure(title="Bokeh Line", x_axis_label='x', y_axis_label='y')
p.line(a, b, legend="Random Walk", line_width=2)
show(p)
```

Anatomy of a Simple Bokeh App

Anatomy of an Interactive Bokeh App

Anatomy of an Interactive Bokeh App

```
x = np.arange(10)
y0 = [i**2 for i in x]
y1 = [10**i for i in x]
y2 = [10**(i**2) \text{ for i in x}]
output file("loglines.html")
p = figure(tools="pan,box zoom,reset,save", y axis type="log",
          y range=[0.001, 10**11], title="Bokeh with log axis",
          x axis label='sections', y axis label='particles')
p.line(x, x, legend="y=x")
p.circle(x, x, legend="y=x", fill color="white", size=8)
p.line(x, y0, legend="y=x^2", line width=3)
p.line(x, y1, legend="y=10^x", line color="red")
p.circle(x, y1, legend="y=10^x",
          fill color="red", line color="red", size=6)
p.line(x, y2, legend="y=10^x^2",
          line color="orange", line dash="4 4")
show (p)
```

Define x-range

```
x = np.arange(10)
y0 = [i**2 for i in x]
y1 = [10**i for i in x]
y2 = [10**(i**2) \text{ for i in x}]
output file("loglines.html")
p = figure(tools="pan,box zoom,reset,save", y axis type="log",
          y range=[0.001, 10**11], title="Bokeh with log axis",
          x axis label='sections', y axis label='particles')
p.line(x, x, legend="y=x")
p.circle(x, x, legend="y=x", fill color="white", size=8)
p.line(x, y0, legend="y=x^2", line width=3)
p.line(x, y1, legend="y=10^x", line color="red")
p.circle(x, y1, legend="y=10^x",
          fill color="red", line color="red", size=6)
p.line(x, y2, legend="y=10^x^2",
          line color="orange", line dash="4 4")
show(p)
```

Define 3 separate functions in terms of x

```
x = np.arange(10)
y0 = [i**2 for i in x]
y1 = [10**i for i in x]
y2 = [10**(i**2) \text{ for i in } x]
output file("loglines.html")
p = figure(tools="pan,box zoom,reset,save", y axis type="log",
          y range=[0.001, 10**11], title="Bokeh with log axis",
          x axis label='sections', y axis label='particles')
p.line(x, x, legend="y=x")
p.circle(x, x, legend="y=x", fill color="white", size=8)
p.line(x, y0, legend="y=x^2", line width=3)
p.line(x, y1, legend="y=10^x", line color="red")
p.circle(x, y1, legend="y=10^x",
          fill color="red", line color="red", size=6)
p.line(x, y2, legend="y=10^x^2",
          line color="orange", line dash="4 4")
show (p)
```

Specify name of output HTML file

```
x = np.arange(10)
y0 = [i**2 for i in x]
y1 = [10**i for i in x]
y2 = [10**(i**2) \text{ for i in x}]
output file("loglines.html")
p = figure(tools="pan,box zoom,reset,save", y axis type="log",
          y range=[0.001, 10**11], title="Bokeh with log axis",
          x axis label='sections', y axis label='particles')
p.line(x, x, legend="y=x")
p.circle(x, x, legend="y=x", fill color="white", size=8)
p.line(x, y0, legend="y=x^2", line width=3)
p.line(x, y1, legend="y=10^x", line color="red")
p.circle(x, y1, legend="y=10^x",
          fill color="red", line color="red", size=6)
p.line(x, y2, legend="y=10^x^2",
          line color="orange", line dash="4 4")
show (p)
```

Specify the exact set of "tools" on graph

```
x = np.arange(10)
y0 = [i**2 \text{ for } i \text{ in } x]
y1 = [10**i for i in x]
y2 = [10**(i**2) \text{ for i in x}]
output file("loglines.html")
p = figure(tools="pan,box zoom,reset,save", y axis type="log",
          y range=[0.001, 10**11], title="Bokeh with log axis",
          x axis label='sections', y axis label='particles')
p.line(x, x, legend="y=x")
p.circle(x, x, legend="y=x", fill color="white", size=8)
p.line(x, y0, legend="y=x^2", line width=3)
p.line(x, y1, legend="y=10^x", line color="red")
p.circle(x, y1, legend="y=10^x",
          fill color="red", line color="red", size=6)
p.line(x, y2, legend="y=10^x^2",
          line color="orange", line dash="4 4")
show (p)
```

Actually creating the 3 separate graphs

```
x = np.arange(10)
y0 = [i**2 \text{ for } i \text{ in } x]
y1 = [10**i for i in x]
y2 = [10**(i**2) \text{ for i in x}]
output file("loglines.html")
p = figure(tools="pan,box zoom,reset,save", y axis type="log",
          y range=[0.001, 10**11], title="Bokeh with log axis",
          x axis label='sections', y axis label='particles')
p.line(x, x, legend="y=x")
p.circle(x, x, legend="y=x", fill color="white", size=8)
p.line(x, y0, legend="y=x^2", line width=3)
p.line(x, y1, legend="y=10^x", line color="red")
p.circle(x, y1, legend="y=10^x",
          fill color="red", line color="red", size=6)
p.line(x, y2, legend="y=10^x^2",
          line color="orange", line dash="4 4")
show(p)
```

Finally, show it!

```
x = np.arange(10)
y0 = [i**2 for i in x]
y1 = [10**i for i in x]
y2 = [10**(i**2) \text{ for i in x}]
output file("loglines.html")
p = figure(tools="pan,box zoom,reset,save", y axis type="log",
          y range=[0.001, 10**11], title="Bokeh with log axis",
          x axis label='sections', y axis label='particles')
p.line(x, x, legend="y=x")
p.circle(x, x, legend="y=x", fill color="white", size=8)
p.line(x, y0, legend="y=x^2", line width=3)
p.line(x, y1, legend="y=10^x", line color="red")
p.circle(x, y1, legend="y=10^x",
          fill color="red", line color="red", size=6)
p.line(x, y2, legend="y=10^x^2",
          line color="orange", line dash="4 4")
show(p)
```

Anatomy of an Interactive Bokeh App

Agenda

- Matplotlib
- Bokeh
- Tableau
- Final Project

Data Ingestion

- Joins: inner, left, right, full
- Extract Transform Load (ETL)
- Field Transformation
- Live / Extract
- Filtering
- Large dataset & role of Tableau

Dimensions & Measures

Dimensions : categorical

• Measures : numerical

Measures

- # Discount
- # Profit
- # Quantity
- # Sales
- # Shipping Cost
- Latitude (generated)
- Longitude (generated)
- # Number of Records
- # Measure Values

Rows & Columns

Marks

Multi-level Analysis

Group Exercise

- Load the "global_superstore.xls" dataset into Tableau
- Answer the following questions:
 - 1. Which region has the highest sales?
 - 2. For (1), which product segment for that region has the highest sales?
 - 3. Regardless of region, which product segment in a given region has the highest sales?
- Take 15 min in your group to decide on extracting an interesting insight from this dataset to present to the class.

Agenda

- Matplotlib
- Bokeh
- Tableau
- Final Project

Your final project : guidelines

- Goal: apply what you have learned in this class to a realistic data science challenge + exercise your creativity + have fun!
- This is meant to be a significant **individual effort** to learn by practicing what you are learning to a real-world data science problem.
- The **writeup** of your final project is in the form of a Jupyter notebook and associated data to be uploaded to the final project assignment in Camino.
- You are to submit your final notebook by September 3 @ 11:59pm.

Your final project: topic selection

- Goal: apply what you have learned in this class to a realistic data science challenge + exercise your creativity + have fun!
- You can choose any "significant" data set via downloadable sites, APIs, or use any of the datasets from the class.
- You need to propose an interesting data insight investigation that you would like to explore, analyze the data, visualize the data, and finally write up your conclusion on what insights you have reached.
- Grading of your final project will be based on the following rubric.

Your final project : grading rubric

Area	Details	Grading %
Topic Selection	Did you create a reasonably interesting data insight hypothesis for your investigation?	10%
Packaging	Did you create a Jupyter project packaging that looks professional and understandable?	10%
Analysis Competence	Does your notebook show competence in using the data science tools we learned in class?	40%
Insight	Does your project show useful or interesting insights from the data analysis you have done?	40%