Also published as:

US6329708 (B1)

IP2000307029 (A)

Original document

SEMICONDUCTOR DEVICE AND SEMICONDUCTOR MODULE

Patent number:

JP2000307029

Publication date:

2000-11-02

Inventor:

KOMIYAMA MITSURU

Applicant:

OKI ELECTRIC IND CO LTD

Classification:

- international:

H01L23/12; H01L23/52

- european:

Application number: JP19990117442 19990426

Priority number(s):

View INPADOC patent family

Abstract of JP2000307029

PROBLEM TO BE SOLVED: To provide a semiconductor device which can be stacked for use as well as a semiconductor module using the semiconductor device.

SOLUTION: A semiconductor chip 101 where an integrated circuit comprising a plurality of external terminals 104 are formed on a main surface, a conductive layer 110, and a tape 108 having a structure with the conductive layer 110 sandwiched between insulating layers 109 and 113, are provided. The main surface of the semiconductor chip 101 is covered with a passivation film 105. The tape 108 extends from the main surface of the semiconductor chip 101 to the backside, while adhered to the semiconductor chip 101 by main surface side and backside of it. Further, the conductive layer 110 is electrically connected to a plurality of external terminals 104, while exposed through opening 103a and 103b formed at the insulating layer 113 positioned on the main surface and backside of the semiconductor chip 101.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-307029 (P2000 - 307029A)

(43)公開日 平成12年11月2日(2000.11.2)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

HO1L 23/12

23/52

H01L 23/12

L

23/52

C

審査請求 未請求 請求項の数12 OL (全 11 頁)

(21)出願番号

特願平11-117442

(22)出願日

平成11年4月26日(1999.4.26)

(71)出額人 000000295

沖電気工業株式会社

東京都港区虎ノ門1丁目7番12号

(72) 発明者 小宮山 充

東京都港区虎ノ門1丁目7番12号 沖電気

工業株式会社内

(74)代理人 100089093

弁理士 大西 健治

(54) 【発明の名称】 半導体装置および半導体モジュール

(57)【要約】

【目的】 積み重ねて使用することが可能な半導体装置 および、この半導体装置を用いた半導体モジュールを提 供する。

【構成】 主表面に複数の外部端子104を有する集積 回路を形成された半導体チップ101と、導電層110 およびこの導電層110を、絶縁層109、113で挟 む構造からなるテープ108とから構成される。また、 半導体チップ101の主表面は、パッシベーション膜1 05で覆われている。テープ108は、半導体チップ1 01の主表面から裏面まで延在し、かつ半導体チップ1 01の主表面側および裏面側の夫々で半導体チップ10 1と固着されている。さらに、導電層110は、複数の 外部端子104と電気的に接続され、かつ、半導体チッ プ101の主表面および裏面の夫々に位置する絶縁層1 13に形成された開口部103aおよび103bから露 出されている。

100:半導体鼓管

【特許請求の範囲】

【請求項1】 主表面に複数の外部端子を有する集積回路が形成された半導体チップと、

前記半導体チップの前記主表面から前記半導体チップの 裏面まで延在し、かつ前記半導体チップの前記主表面側 及び前記裏面側の夫々で前記半導体チップと固着される テープとを有し、

前記テープは、導電層と、この導電層を挟む絶縁層とからなり、かつ前記導電層と前記複数の外部端子とが電気的に接続され、かつ前記半導体チップの前記主表面及び前記裏面の夫々に位置する前記絶縁層に前記導電層を露出する開口部を夫々に有することを特徴とする半導体装置。

【請求項2】 前記半導体チップは、緩衝膜を介して前記テープと固着されていることを特徴とする請求項1に記載の半導体装置。

【請求項3】 前記導電層と前記複数の外部端子との接 続部が、樹脂で覆われていることを特徴とする請求項1 に記載の半導体装置。

【請求項4】 前記半導体チップの側面および前記裏面が、樹脂で覆われていることを特徴とする請求項1に記載の半導体装置。

【請求項5】 主表面に複数の外部端子を有する集積回路が形成された半導体チップと、前記半導体チップの前記主表面から前記半導体チップの裏面まで延在し、かつ前記半導体チップの前記主表面側及び前記裏面側の夫々で前記半導体チップと固着されるテープとを有し、前記テープは、導電層と、この導電層を挟む絶縁層とからなり、かつ前記導電層と前記複数の外部端子とが電気的に接続され、かつ前記半導体チップの前記主表面及び前記裏面の夫々に位置する前記絶縁層に前記導電層を露出する開口部を夫々に有する第1の半導体装置と、

前記開口部で露出する前記導電層表面と電気的に接続されている第2の半導体装置とを有することを特徴とする 半導体モジュール。

【請求項6】 前記半導体チップは、緩衝膜を介して前記テープと固着されていることを特徴とする請求項5に記載の半導体モジュール。

【請求項7】 前記導電層と前記複数の外部端子との接 続部が、樹脂で覆われていることを特徴とする請求項5 に記載の半導体モジュール。

【請求項8】 前記半導体チップの側面および前記裏面が、樹脂で覆われていることを特徴とする請求項5に記載の半導体モジュール。

【請求項9】 主表面に複数の外部端子を有する集積回路が形成された半導体チップと、前記半導体チップの前記主表面から前記半導体チップの裏面まで延在し、かつ前記半導体チップの前記主表面側及び前記裏面側の夫々で前記半導体チップと固着されるテープとを有し、前記テーブは、導電層と、この導電層を挟む絶縁層とからな

り、かつ前記導電層と前記複数の外部端子とが電気的に 接続され、かつ前記半導体チップの前記主表面及び前記 裏面の夫々に位置する前記絶縁層に前記導電層を露出す る開口部を有する第1の半導体装置と、

前記第1の半導体装置と電気的に接続されているプリント配線基板とを備えたことを特徴とする半導体モジュール。

【請求項10】 前記半導体チップは、緩衝膜を介して前記テープと固着されていることを特徴とする請求項9に記載の半導体モジュール。

【請求項11】 前記導電層と前記複数の外部端子との接続部が、樹脂で覆われていることを特徴とする請求項9に記載の半導体モジュール。

【請求項12】 前記半導体チップの側面および前記裏面が、樹脂で覆われていることを特徴とする請求項9に 記載の半導体モジュール。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は μ BGA(μ Ball Grid Array)型半導体装置に関し、特に、積み重ね可能な μ BGA型半導体装置に関するものである。

[0002]

【従来の技術】図13は従来のμBGA型半導体装置の断面構造図を示す。図13に示すように、従来のμBGA型半導体装置1300は、主表面に複数の外部端子1304を有する集積回路が形成された半導体チップ1301と、導電層1310、およびこの導電層1310を絶縁層1309、および絶縁層1313で挟む構造からなるテープ1308とから構成される。ここで、例えば導電層1310はCu、絶縁層1309はポリイミドやガラスエポキシ、絶縁層1313はソルダーレジストから構成される。

【0003】また、半導体チップ1301の主表面は、パッシベーション膜1305で覆われている。

【0004】さらに、導電層1310は、複数の外部端子1304と電気的に接続され、かつ、絶縁層1313に形成された開口部1303aから露出される。

【0005】さらに、テープ1308は、緩衝膜1307、例えばエラストマーを介して、パッシベーション膜1305上に固着されている。

【0006】そして、導電層1310と外部端子130 4との接続部は、樹脂1302で覆われている。

[0007]

【発明が解決しようとする課題】しかしながら、従来の μ BGA型半導体装置は、外部装置、例えば他の半導体装置と電気的に接続可能な接続部、つまり開口部 1 3 0 3 a から露出する導電層 1 3 1 0 が半導体チップ 1 3 0 1 の主表面のみに形成された構造となっているので、複数 の半導体装置を積み重ねて実装することが困難であった。

【〇〇〇8】本発明は、複数の半導体装置の積み重ね実装を容易にする半導体装置及び半導体モジュールを提供することを目的とする。

[0009]

【課題を解決するための手段】そこで本発明の半導体装置は、 主表面に複数の外部端子を有する集積回路が形成された半導体チップと、半導体チップの主表面から半導体チップの裏面まで延在し、かつ半導体チップの主表面側及び裏面側の夫々で半導体チップと固着されるテープとを有し、テープは、導電層と、この導電層を挟む絶縁層とからなり、かつ導電層と複数の外部端子とが電気的に接続され、かつ半導体チップの主表面及び裏面の夫々に位置する絶縁層に導電層を露出する開口部を夫々に有することを特徴とする。

【〇〇1〇】また、本発明の半導体モジュールは、 主表面に複数の外部端子を有する集積回路が形成された半導体チップと、半導体チップの主表面から半導体チップの裏面まで延在し、かつ半導体チップの主表面側及び裏面側の夫々で半導体チップと固着されるテープとを有し、テープは、導電層と、この導電層を挟む絶縁層とからなり、かつ導電層と複数の外部端子とが電気的に接続され、かつ半導体チップの主表面及び裏面の夫々に位定する絶縁層に導電層を露出する開口部を有する第1の半導体装置と、前記開口部で露出する前記導電層表面と電気的に接続されているパッドを有する第2の半導体装置とを有することを特徴とする。

[0011]

【発明の実施の形態】図1は本発明の第1の実施の形態の半導体装置について説明するための断面図である。以下、図1を用いて本発明の第1の実施の形態の半導体装置について説明する。

【0012】この半導体装置100は、主表面に複数の外部端子104を有する集積回路を形成された半導体チップ101と、導電層110、およびこの導電層110を絶縁層109、および113で挟む構造からなるテープ108とから構成される。ここで、例えば導電層110はCu、絶縁層109はポリイミドやガラスエポキシ、絶縁層113はソルダーレジストなどから構成される。

【0013】また、半導体チップ101の主表面は、パッシベーション膜105で覆われている。

【0014】テープ108は、半導体チップ101の主表面から裏面まで延在し、かつ半導体チップ101の主表面側および裏面側の夫々で半導体チップ101と固着されている。

【0015】さらに、導電層110は、複数の外部端子104と電気的に接続され、かつ、半導体チップ101の主表面および裏面の夫々に位置する絶縁層113に形成された開口部103aおよび103bから露出されている。

【〇〇16】上述した通り、本発明の第1の実施の形態 の半導体装置100では、第1に、半導体装置100の 主表面側に開口部103a、裏面側に開口部103bを 有するので、開口部103aから露出する導電層11 0、もしくは、開口部103bから露出する導電層11 O、もしくは、これら両方と、外部装置、例えば他の半 導体装置と電気的に接続できる。つまり、複数の半導体 装置の積み重ね実装を容易にすることができる。第2 に、開口部 1 O 3 a から露出する導電層 1 1 O 、もしく は、開口部103トから露出する導電層110の一方が 他の半導体装置との接続に用いる場合、他方は半導体装 置100自身の電気的テストに用いることができる。 【〇〇17】本発明の第1の実施の形態の半導体装置に おいて、開口部103aおよび開口部103bから夫々 露出する導電層110は、金属パンプなどを介して、他 の半導体装置などと接続することができる。この場合

おいて、開口部103aおよび開口部103bから天々 露出する導電層110は、金属バンプなどを介して、他 の半導体装置などと接続することができる。この場合 は、絶縁層113にソルダーレジストなどの、溶かした 金属に対して濡れ性が低い絶縁層を用いると、金属バン プを正確に取りつけることができる。

【0018】さらに、テープ108の代わりに、フレキシブルテープを用いてもよい。

【0019】図2は本発明の第2の実施の形態の半導体 装置について説明するための断面図である。以下、図2 を用いて本発明の第2の実施の形態の半導体装置につい て説明する。

【0020】この半導体装置200は、本発明の第1の実施の形態の半導体装置100とほぼ同様の構成のため、詳しい説明は省略する。本実施の形態は、本発明の第1の実施の形態の半導体装置100において、テープ108は、緩衝膜207、例えばエラストマーを介在して半導体チップ101と固着することを特徴とする。

【0021】本発明の第2の実施の形態の半導体装置200は、本発明の第1の実施の形態の半導体装置100と同様の効果を奏することは言うまでもない。さらに、上記のようにテープ108は緩衝膜207を介在して半導体チップ101と固着されている。緩衝膜207は熱収縮率の差により、テープ108が半導体チップ101から剥がれるのを防ぐように働く。したがって、本発明の第1の実施の形態の半導体装置100の構造に比して、よりテープ108と半導体チップ101が、剥がれにくい構造が得られる。

【0022】図3は本発明の第3の実施の形態の半導体 装置について説明するための断面図である。以下、図3 を用いて本発明の第3の実施の形態の半導体装置につい て説明する。

【0023】この半導体装置300は、本発明の第1の 実施の形態の半導体装置100とほぼ同様の構成のため、詳しい説明は省略する。本実施の形態は、本発明の 第1の実施の形態の半導体装置100において、導電層 110と外部端子104との接続部が樹脂302で覆わ れていることを特徴とする。

【〇〇24】本発明の第3の実施の形態の半導体装置3 〇〇は、本発明の第1の実施の形態の半導体装置100 と同様の効果を奏することは言うまでもない。さらに、 上記のように導電層110と外部端子104との接続部 が樹脂302で覆われている。このため、本発明の第1 の実施の形態の半導体装置100の構造に比して、外部 端子104と導電層110が剝がれにくい、堅固な構造 を得ることができる。

【0025】図4は本発明の第4の実施の形態の半導体 装置について説明するための断面図である。以下、図4 を用いて本発明の第4の実施の形態の半導体装置につい て説明する。

[0026] この半導体装置400は、本発明の第1の 実施の形態の半導体装置100とほぼ同様の構成のため、詳しい説明は省略する。本実施の形態は、本発明の 第1の実施の形態の半導体装置100において、導電層 110と外部端子104との接続部を樹脂302が覆い、さらには半導体チップ101の側面および裏面を、 樹脂406が夫々覆うことを特徴とする。

【0027】本発明の第4の実施の形態の半導体装置400は、本発明の第1の実施の形態の半導体装置100と同様の効果を奏することは言うまでもない。さらに、上記のように導電層110と外部端子104との接続部を樹脂302が覆い、さらには半導体チップ101の側面および裏面を、樹脂406が夫々覆っている。このため、本発明の第1の実施の形態の半導体装置100の構造に比して、半導体チップ101の主表面方向からの外力に対してより強い、堅固な構造を得ることができる。

【0028】図5は本発明の第1の実施の形態の半導体モジュールについて説明するための断面図である。以下、図5を用いて本発明の第1の実施の形態の半導体モジュールについて説明する。

【0029】この半導体モジュール500は、第1の半導体装置500a、及び第2の半導体装置500bから構成される。ここで、第2の半導体装置500bは、第1の半導体装置500bの説明は、第1の半導体装置500bの説明は、第1の半導体装置500aの説明により省略する。

【0030】この半導体装置500aは、主表面に複数の外部端子504aを有する集積回路を形成された半導体チップ501aと、導電層510a、およびこの導電層510aを絶縁層509a、513aで挟む構造からなるテープ508aとから構成される。ここで、例えば導電層510aはCu、絶縁層509aはポリイミドやガラスエポキシ、絶縁層513aはソルダーレジストから構成される。

【0031】また、半導体チップ501aの主表面は、パッシベーション膜505aで覆われている。

【0032】テープ508aは、半導体チップ501a

の主表面から裏面まで延在し、かつ半導体チップ501 aの主表面側および裏面側の夫々で半導体チップ501 aと固着されている。

【0033】さらに、導電層510aは、複数の外部端子504aと電気的に接続され、かつ、半導体チップ501aの主表面および裏面の夫々に位置する絶縁層513aに形成された開口部523aおよび533aから露出されている。

【0034】上述したように本発明の第1の実施の形態の半導体モジュール500は、第1の半導体装置500aの開口部533aから露出する導電層510aが、金属パンプ503を介して、第2の半導体装置500bの開口部523bから露出する導電層510bと接続される。このようにして、第1および第2の半導体装置500a、500bからなる半導体モジュール500が得られる。

【0035】本発明の第1の実施の形態の半導体モジュール500は、上述のような構造を有するので、テープを有する半導体装置の積み重ね実装を容易に行うことが可能となり、かつ容易に実装できるため、実装工程が簡易なため、コストを下げることも可能となる。

【0036】図6は本発明の第2の実施の形態の半導体モジュールについて説明するための断面図である。以下、図6を用いて本発明の第2の実施の形態の半導体モジュールについて説明する。

【0037】この半導体モジュール600は、本発明の第1の実施の形態の半導体モジュール500とほぼ同様の構成のため、詳しい説明は省略する。本発明の第2の実施の形態の半導体モジュール600の半導体装置600aおよび600bにおいて、テープ608a、およびテープ608bは、夫々緩衝膜607aおよび607b、例えばエラストマーを介して、半導体チップ601a、及び半導体チップ601bと固着されていることを特徴とする。

【0038】本発明の第2の実施の形態の半導体モジュール600では、本発明の第1の実施の形態の半導体モジュール500と同様の効果を奏することは言うまでもない。さらに、上記のように緩衝膜607aを有するので、これら緩衝膜607a、607bは熱収縮率の差により、半導体チップ601aとテープ608bが夫々剝がれるのを防ぐように働く。したがって、本発明の第1の実施の形態の半導体モジュール500の構造に比して、半導体チップ601aとテープ608a、半導体チップ601bとテープ608b夫々が剝がれにくい構造が得られる。

【0039】図7は本発明の第3の実施の形態の半導体モジュールについて説明するための断面図である。以下、図7を用いて本発明の第3の実施の形態の半導体モジュールについて説明する。

【〇〇4〇】この半導体モジュール7〇〇は、本発明の

第1の実施の形態の半導体モジュール500とほぼ同様の構成のため、詳しい説明は省略する。本発明の第3の実施の形態の半導体モジュール700の半導体装置700aおよび700bにおいて、導電層710aと外部端子704a、導電層710bと外部端子704bの夫々の接続部が、夫々樹脂702aおよび702bで覆われていることを特徴とする。

【0041】本発明の第3の実施の形態の半導体モジュール700は、本発明の第1の実施の形態の半導体モジュール500と同様の効果を奏することは言うまでもない。さらに、上記のように導電層710aと外部端子704a、導電層710bと外部端子704bの夫々の接続部が、夫々樹脂702aおよび702bで覆われている。このため、本発明の第1の実施の形態の半導体モジュール500の構造に比して、導電層710aと外部端子704a、導電層710bと外部端子704aが夫々剥がれにくい、堅固な構造を得ることができる。

【0042】図8は本発明の第4の実施の形態の半導体モジュールについて説明するための断面図である。以下、図8を用いて本発明の第4の実施の形態の半導体モジュールについて説明する。

【0043】この半導体モジュール800は、本発明の第1の実施の形態の半導体モジュール500とほぼ同様の構成のため、詳しい説明は省略する。本発明の第4の実施の形態の半導体モジュール800の半導体装置800aおよび800bにおいて、導電層810aと外部端子804aとの接続部を樹脂802aが覆い、半導体チップ801aの側面および裏面を樹脂806aが覆い、 導電層810bと外部端子804bとの接続部を樹脂802bが覆い、および半導体チップ801bの側面および裏面を樹脂806bが夫々覆うことを特徴とする。

【〇〇44】本発明の第4の実施の形態の半導体モジュール800は、本発明の第1の実施の形態の半導体モジュール500と同様の効果を奏することは言うまでもない。さらに、上記のように導電層810aと外部端子804aとの接続部を樹脂802aが覆い、半導体チップ801aの側面および裏面を樹脂806aが覆い、導電層810bと外部端子804bとの接続部を樹脂802bが覆い、および半導体チップ801bの側面および裏面を樹脂806bが夫々覆っている。このため、本発明の第1の実施の形態の半導体モジュール500の構造に比して、半導体チップ801aおよび801bの主表面方向からの外力に対してより強い、堅固な構造を得ることができる。

【0045】図9は本発明の第5の実施の形態の半導体 モジュールについて説明するための断面図である。以 下、図9を用いて本発明の第5の実施の形態の半導体モ ジュールについて説明する。

【0046】この半導体モジュール900は、半導体装置900aおよびプリント配線基板920から構成され

る。

【0047】この半導体装置900aは、主表面に複数の外部端子904を有する集積回路を形成された半導体チップ901と、導電層910、およびこの導電層910を絶縁層909、913で挟む構造からなるテープ908とから構成される。ここで、例えば導電層910はCu、絶縁層909はポリイミドやガラスエポキシ、絶縁層913はソルダーレジストから構成される。

【0048】また、半導体チップ901の主表面は、パッシベーション膜905で覆われている。

【0049】テープ908は、半導体チップ901の主表面から裏面まで延在し、かつ半導体チップ901の主表面側および裏面側の夫々で半導体チップ901と固着されている。

【0050】さらに、導電層910は、複数の外部端子904と電気的に接続され、かつ、半導体チップ901の主表面および裏面の夫々に位置する絶縁層913に形成された開口部903aおよび903bから露出されている。

【0051】この半導体装置900aの開口部903bで露出する導電層910の表面が、金属バンプ903を用いて、プリント配線基板920上のパッド921と電気的に接続されている。ここで、パッド921は、例えばNi-Auまたは半田から構成されている。

【0052】上述したように本発明の第5の実施の形態の半導体モジュール900は、導電層910を露出する開口部903aが半導体チップ901の主表面側に設けられている。したがって、半導体装置900aとプリント配線基板920との積み重ね実装を容易にする。さらに、実装に用いられなかった半導体装置の開口部903aから露出する導電層910は、半導体装置900aとプリント配線基板920とが接続されているか否かの電気的テストに用いることができる。

【0053】図10は本発明の第6の実施の形態の半導体装置モジュールについて説明するための断面図である。以下、図10を用いて本発明の第6の実施の形態の半導体モジュールについて説明する。

【0054】この半導体モジュール1000は、本発明の第5の実施の形態の半導体モジュール900とほぼ同様の構成のため、詳しい説明は省略する。本発明の第6の実施の形態の半導体モジュール1000の半導体装置1000aにおいて、テープ1008が緩衝膜1007、例えばエラストマーを介して、半導体チップ1001と固着されていることを特徴とする。

【0055】本発明の第6の実施の形態の半導体モジュール1000は、本発明の第5の実施の形態の半導体モジュール900と同様の効果を奏することは言うまでもない。さらに、上記のような緩衝膜1007を有するので、この緩衝膜1007は熱収縮率の差により、テープ1008が半導体チップ1001から剝がれるのを防ぐ

ように働く。したがって、本発明の第5の実施の形態の 半導体モジュール900の構造に比して、よりテープ1008と半導体チップ1001が剥がれにくい構造が得られる。

【0056】図11は本発明の第7の実施の形態の半導体装置モジュールについて説明するための断面図である。以下、図11を用いて本発明の第7の実施の形態の半導体モジュールについて説明する。

【0057】この半導体モジュール1100は、本発明の第5の実施の形態の半導体モジュール900aとほぼ同様の構成のため、詳しい説明は省略する。本発明の第7の実施の形態の半導体モジュール1100の半導体装置1100aにおいて、導電層1110と外部端子1104との接続部が樹脂1102で覆われていることを特徴とする。

【0058】本発明の第7の実施の形態の半導体モジュール1100は、本発明の第5の実施の形態の半導体モジュール900と同様の効果を奏することは言うまでもない。さらに、上記のように導電層1110と外部端子1104との接続部が樹脂1102で覆われている。このため、本発明の第5の実施の形態の半導体モジュール9000構造に比して、外部端子1104と導電層1110が剥がれにくい、堅固な構造を得ることができる。【0059】図12は本発明の第8の実施の形態の半導体装置モジュールについて説明するための断面図である。以下、図12を用いて本発明の第8の実施の形態の半導体モジュールについて説明する。

【0060】この半導体モジュール1200は、本発明の第5の実施の形態の半導体モジュール900とほぼ同様の構成のため、詳しい説明は省略する。本発明の第8の実施の形態の半導体モジュール1200の半導体装置1200aにおいて、導電層1210と外部端子1204との接続部を樹脂1202が覆い、さらには半導体チップ1201の側面および裏面を、樹脂1206が夫々覆うことを特徴とする。

【0061】本発明の第8の実施の形態の半導体モジュール1200は、本発明の第5の実施の形態の半導体モジュール900と同様の効果を奏することは言うまでもない。さらに、上記のように導電層1210と外部端子1204との接続部を樹脂1202が覆い、さらには半導体チップ1201の側面および裏面を、樹脂1206が夫々覆っている。このため、本発明の第5の実施の形態の半導体モジュール900の構造に比して、半導体チップ1201の主表面方向からの外力に対してより強い、堅固な構造を得ることができる。

[0062]

【発明の効果】本発明の半導体モジュールは、第1に、 半導体装置の主表面側に開口部、裏面側に開口部を有す るので、開口部から露出する導電層、もしくは、開口部 から露出する導電層、もしくは、これら両方と、外部装 置、例えば他の半導体装置と電気的に接続できる。つまり、複数の半導体装置の積み重ね実装を容易にすることができる。第2に、開口部から露出する導電層、もしくは、開口部から露出する導電層の一方が他の半導体装置との接続に用いる場合、他方は半導体装置自身の電気的テストに用いることができる。

【0063】また、本発明の半導体モジュールにおいて、第1の半導体装置は、開口部から露出する導電層を介して、第2の半導体装置または、プリント配線基板と接続される。したがって、本発明の半導体モジュールは、複数の半導体装置の積み重ね実装を容易に行うことが可能となり、かつ容易に実装できるため、実装工程が簡易なため、コストを下げることも可能となる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態の半導体装置の構造 を断面図で示すものである。

【図2】本発明の第2の実施の形態の半導体装置の構造 を断面図で示すものである。

【図3】本発明の第3の実施の形態の半導体装置の構造 を断面図で示すものである。

【図4】本発明の第4の実施の形態の半導体装置の構造 を断面図で示すものである。

【図5】本発明の第1の実施の形態の半導体モジュール の構造を断面図で示すものである。

【図6】本発明の第2の実施の形態の半導体モジュールの構造を断面図で示すものである。

【図7】本発明の第3の実施の形態の半導体モジュール の構造を断面図で示すものである。

【図8】本発明の第4の実施の形態の半導体モジュール の構造を断面図で示すものである。

【図9】本発明の第5の実施の形態の半導体モジュール の構造を断面図で示すものである。

【図10】本発明の第6の実施の形態の半導体モジュールの構造を断面図で示すものである。

【図11】本発明の第7の実施の形態の半導体モジュールの構造を断面図で示すものである。

【図12】本発明の第8の実施の形態の半導体モジュールの構造を断面図で示すものである。

【図13】従来のμBGA型半導体装置の構造の断面図を 示すものである。

【符号の説明】

100:半導体装置

101:半導体チップ

103a:開口部

103b: 開口部

104:外部端子

105:パッシベーション膜

108:テープ 109:絶縁層

110:導電層

113: 絶縁層

【図9】

900:半導体モジュール

[図5]

500:半暮体モジュール

[図6]

【図7】

[図8]

【図10】

1000:半導体モジュール

[図11]

1100:半海体モジュール

【図12】

1200:半導体モジュール

[図13]

1300;半導体要置

