Università degli Studi Roma Tre

Corso di Laurea in Matematica, a.a. 2010/2011

AL210 - Algebra 2: Gruppi, Anelli e Campi

Prof. F. Pappalardi

Tutorato 5 - 25 Ottobre 2010

Tutore: Matteo Acclavio

www.matematica3.com

Esercizio 1.

Dire quale dei seguenti gruppi è esprimibile come prodotto diretto o semidiretto di due sottogruppi:

- i) $(\mathbb{Z},+);$ ii) $(\mathbb{Z}_8,+);$
- $iii) (D_4, \circ);$ $iv) (\mathbb{Z}_6, +);$
- $v) (\mathbb{C}, +)$ $vi) (\mathbb{C}^*, \cdot).$

Esercizio 2.

Sia G un gruppo di ordine $o(G) = 2p^2$, con $p \neq 2$ primo. Provare che:

- a) Se H è un sottogruppo normale proprio di G con $o(H) \neq p$, allora G/H è abeliano;
- **b)** Se o(H) = p e G/H è abeliano, allora G/H è ciclico;
- c) Se G' è un gruppo con o(G') = 2p, allora per ogni omomorfismo suriettivo $\varphi: G \longrightarrow G'$, $Ker\varphi$ risulta ciclico;
- d) Nel caso particolare $G = (\mathbb{Z}_{50}, +)$ e $G' = (\mathbb{Z}_{10}, +)$, trovare gli omomorfismi suriettivi da G su G' e determinarne il nucleo.

Esercizio 3.

Sia $G = G_1 \times G_2 \times \cdots \times G_k$, dimostrare che $ord((g_1, \ldots, g_k)) = m.c.m(ord(g_i))$. Derivare che G è ciclico $\Leftrightarrow G_i$ è ciclico $\forall i$ e M.C.D $(|G_i|, |G_j|) = 1 \ \forall i \neq j$. Dimostrare inoltre che $\forall H = H_1 \times \cdots \times H_k$ t.c. $H_i \leq G_i \forall k \Rightarrow H \leq G$

Esercizio 4.

Sia G un gruppo abeliano di ordine dispari, dimostrare che la corrispondenza che manda ogni elemento nel suo quadrato è un automorfismo

Esercizio 5.

Sia $G=\mathbb{Z},\,H=6Z,\,N=4Z$ esibire un isomorfismo tra $\frac{G}{H\cap N}\over H\cap N}$ e $Z_6.$

Esercizio 5.

Dimostrare che A_4 non ha sottogruppi di ordine 6.

Esercizio 6.

Siano (G, +) e (G', +) due gruppi abeliani. Sia Hom(G, G') l'insieme degli omomorfismi da G in G'. Si consideri l'applicazione

$$+: Hom(G, G') \times Hom(G, G') \longrightarrow Hom(G, G')$$

tale che $(\varphi + \psi)(x) := \varphi(x) + \psi(x)$.

- a) Dimostrare che + è effettivamente un'operazione binaria.
- **b)** Dimostrare che (Hom(G, G'), +) è un gruppo abeliano.

Si consideri ora l'applicazione $f: (Hom(Z_n, Z_m), +) \to (Z_m, +)$ definita come $f(\varphi) := \varphi([1]_n)$.

- c) Dimostrare che f è un omomorfismo iniettivo di gruppi.
- d) Trovare l'immagine di f e dire a quale gruppo è isomorfo $Hom(Z_n, Z_m)$.

Sia ora $Aut(\mathbb{Z}_n)$ l'insieme degli automorfismi di \mathbb{Z}_n . Mostrare che:

- e) $(Aut(\mathbb{Z}_n), +) \subseteq (Hom(\mathbb{Z}_n, \mathbb{Z}_n), +)$ non è un sottogruppo
- **f)** $(Aut(\mathbb{Z}_n), \circ)$ è un gruppo
- **g)** $(Aut(\mathbb{Z}_n), \circ)$ è isomorfo a $(U(\mathbb{Z}_n), \cdot)$.
- h) Trovare tutti gli automorfismi di Z_{18}

Si consideri infine il gruppo degli endomorfismi di \mathbb{Z} . Sia $\nu_a : \mathbb{Z} \to \mathbb{Z}$ la moltiplicazione per a, i.e. $\nu_a(x) = ax$.

- i) Dimostrare che per ogni $a \in \mathbb{Z}, \nu_a \in Hom(\mathbb{Z}, \mathbb{Z})$
- j) Applicando il teorema di omomorfismo dire a cosa è isomorfo $Hom(\mathbb{Z},\mathbb{Z})$