Data Visualization and Pre-processing Assignment -2

Assignment Date	26 September 2022
Team ID	PNT2022TMID27812
Project Name	Smart Lender-Application Credibility
	Prediction for loan Approval
Student Name	Adnan Ahmed . S
Student Roll Number	311519104005
Maximum Marks	2 Marks

Question-1.Download dataset

Solution:

RowNumb	Customer	Surname	CreditScoi Geograph	Gender	Age	Tenure	Balance		sCrCard IsActiveN	Estimated Ex	ted
1	15634602	Hargrave	619 France	Female	42	2	0	1	1 1	101348.9	1
2	15647311	Hill	608 Spain	Female	41	1	83807.86	1	0 1	112542.6	0
3	15619304	Onio	502 France	Female	42	8	159660.8	3	1 0	113931.6	1
4	15701354	Boni	699 France	Female	39	1	0	2	0 0	93826.63	0
5	15737888	Mitchell	850 Spain	Female	43	2	125510.8	1	1 1	79084.1	0
6	15574012	Chu	645 Spain	Male	44	8	113755.8	2	1 0	149756.7	1
7	15592531	Bartlett	822 France	Male	50	7	0	2	1 1	10062.8	0
8	15656148	Obinna	376 Germany	Female	29	4	115046.7	4	1 0	119346.9	1
9	15792365	He	501 France	Male	44	4	142051.1	2	0 1	74940.5	0
10	15592389	H?	684 France	Male	27	2	134603.9	1	1 1	71725.73	0
11	15767821	Bearce	528 France	Male	31	6	102016.7	2	0 0	80181.12	0
12	15737173	Andrews	497 Spain	Male	24	3	0	2	1 0	76390.01	0
13	15632264	Kay	476 France	Female	34	10	0	2	1 0	26260.98	0
14	15691483	Chin	549 France	Female	25	5	0	2	0 0	190857.8	0
15	15600882	Scott	635 Spain	Female	35	7	0	2	1 1	65951.65	0
16	15643966	Goforth	616 Germany	Male	45	3	143129.4	2	0 1	64327.26	0
17	15737452	Romeo	653 Germany	Male	58	1	132602.9	1	1 0	5097.67	1
18	15788218	Henderso	549 Spain	Female	24	9	0	2	1 1	14406.41	0
19	15661507	Muldrow	587 Spain	Male	45	6	0	1	0 0	158684.8	0
20	15568982	Hao	726 France	Female	24	6	0	2	1 1	54724.03	0
21	15577657	McDonald	732 France	Male	41	8	0	2	1 1	170886.2	0
22	15597945	Dellucci	636 Spain	Female	32	8	0	2	1 0	138555.5	0
23	15699309	Gerasimo	510 Spain	Female	38	4	0	1	1 0	118913.5	1
24	15725737	Mosman	669 France	Male	46	3	0	2	0 1	8487.75	0
25	15625047	Yen	846 France	Female	38	5	0	1	1 1	187616.2	0
26	15738191	Maclean	577 France	Male	25	3	0	2	0 1	124508.3	0
27	15736816	Young	756 Germany	Male	36	2	136815.6	1	1 1	170042	0
28	15700772	Nebechi	571 France	Male	44	9	0	2	0 0	38433.35	0
29	15728693	McWillian	574 Germany	Female	43	3	141349.4	1	1 1	100187.4	0
30	15656300	Lucciano	411 France	Male	29	0	59697.17	2	1 1	53483.21	0
31	15589475	Azikiwe	591 Spain	Female	39	3	0	3	1 0	140469.4	1
32	15706552	Odinakac	533 France	Male	36	7	85311.7	1	0 1	156731.9	0
33	15750181	Sanderso	553 Germany	Male	41	9	110112.5	2	0 0	81898.81	0
34	15659428	Maggard	520 Spain	Female	42	6	0	2	1 1	34410.55	0
35	15732963	Clements	722 Spain	Female	29	9	0	2	1 1	142033.1	0
36	15794171	Lombardo	475 France	Female	45	0	134264	1	1 0	27822.99	1
37	15788448	Watson	490 Spain	Male	31	3	145260.2	1	0 1	114066.8	0
38	15729599	Lorenzo	804 Spain	Male	33	7	76548.6	1	0 1	98453.45	0
39	15717426	Armstron	850 France	Male	36	7	0	1	1 1	40812.9	0
40	15585768	Cameron	582 Germany	Male	41	6	70349.48	2	0 1	178074	0

Question-2.Load the dataset

Solution:

import numpy as np
import pandas as pd
import seaborn as sns
importmatplotlib.pyplot as plt
import sklearn
data = pd.read_csv(r'Churn_Modelling.csv')
df.head

< bound	method	NDFrame.	nead o	f Row	Number Cu	stomer:	Id :	Surname	CreditScore	Geography	Gender	Ag
3		1 156	34602	Hargrave	6	19	France	Female	42			
1		2 156	47311	Hill	6	98	Spain	Female	41			
2		3 156:	19304	Onio	5	02 1	France	Female	42			
3		4 1576	31354	Boni								
4		5 157	37888	Mitchell	8	50	Spain	Female	43			
				• • •	87.	• •	1707.5		* * *			
9995	99	96 156	36229	Obijiaku	7	71	France	Male	39			
9996	99	97 1556		Johnstone				Male				
9997	99	98 1558	34532	Liu				Female				
9998	99		32355	Sabbatini	7	72 G	ermany	Male	42			
9999	100	00 156	28319	Walker				Female				
9	Tenure	Balance	e Num	OfProducts	HasCrCard	IsAc	tiveMer	mber \				
Э	2	0.00	3	1	1			1				
1	1	83807.8	5	1	0			1				
2	8	159660.80	3	3	1			0				
3	1	0.00	3	2	0			0				
4		125510.8		1	1			1				
:::-		1.0		***	5.50			22.5				
9995	5			2	1			0				
9996	10	57369.63		1	1			1				
				1	0			1				
		75075.33		2	1			0				
9999	4	130142.7	9	1	1			0				
		edSalary										
Э		01348.88		1								
1		12542.58		0								
2		13931.57		1								
3		93826.63		0								
4		79084.10		0								
		96270.64		0								
9996	1	01699.77		0								
9997		42085.58		1								
9998		92888.52		1								
9999		38190.78		9								

Question-3.Perform Below Visualizations.

3.1 Univariate Analysis

Solution:

sns.displot(data['CreditScore'])

sns.histplot(data['CreditScore'])

sns.boxplot(x = data['CreditScore'])

sns.distplot(data['Age'])

sns.histplot(data['Age'])

sns.boxplot(data['Age'])

3.2 Bivariate Analysis

Solution:

```
plt.figure(figsize=(7,7))
sns.lineplot(data = data, x = 'Tenure', y = 'CreditScore')
```


plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'EstimatedSalary')

plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'Tenure')

plt.figure(figsize=(10,10))
sns.lineplot(data['Age'], data['EstimatedSalary'])

plt.figure(figsize=(17,17))

sns.barplot(data['Age'], data['EstimatedSalary'])

sns.scatterplot(data = data, x = 'CreditScore', y = 'Age')

3.3 Multivariate Analysis

Solution:

sns.scatterplot(data = data, x = 'CreditScore', y = 'Balance', hue = 'Gender')

sns.scatterplot(data['Tenure'], data['CreditScore'], hue = data['Gender'])

sns.scatterplot(data['Age'], data['Balance'], hue = data['Gender'])

sns.pairplot(data)

Question-4. Perform descriptive statistics on the dataset.

Solution:

data.mean(numeric_only = True)

5.000500e+03					
1.569094e+07					
6.505288e+02					
3.892180e+01					
5.012800e+00					
7.648589e+04					
1.530200e+00					
7.055000e-01					
5.151000e-01					
1.000902e+05					
2.037000e-01					

data.median(numeric_only = True)

```
5.000500e+03
1.569074e+07
RowNumber
CustomerId
CreditScore
                3.700000e+01
Age
Tenure
                 5.000000e+00
Balance
                 9.719854e+04
NumOfProducts
                1.000000e+00
                1.000000e+00
HasCrCard
IsActiveMember
                 1.000000e+00
EstimatedSalary 1.001939e+05
                  0.000000e+00
Exited
dtype: float64
```

data['CreditScore'].mode()

0 850

dtype: int64

data['EstimatedSalary'].mode()

0 24924.92 dtype: float64

data['HasCrCard'].unique()

array([1, 0])

data['Tenure'].unique()

array([2, 1, 8, 7, 4, 6, 3, 10, 5, 9, 0])

data.std(numeric_only=True)

2886.895680 RowNumber 71936.186123 CustomerId 96.653299 CreditScore 10.487806 Age Tenure 2.892174 Balance 62397.405202 0.581654 NumOfProducts HasCrCard 0.455840 IsActiveMember 0.499797 EstimatedSalary 57510.492818 Exited 0.402769 dtype: float64

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

data['Tenure'].value_counts()

- 2 1048
- 1 1035
- 7 1028
- 8 1025
- 5 1012
- 3 1009
- 4 989
- 9 984
- 6 967
- 10 490 0 413

Name: Tenure, dtype: int64

Question-5. Handle the Missing values.

Solution:

data.isnull().any()

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False
EstimatedSalary	False
Exited	False
dtype: bool	

dtype: bool

data.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

Question-6.Find the outliers and replace the outliers

Solution:

 $sns.boxplot(data['CreditScore']) \#Outlier\ detection\ -\ box\ plot$

fig, ax = plt.subplots(figsize = (5,3)) #Outlier detection - Scatter plot ax.scatter(data['Balance'], data['Exited'])

x-axis label
ax.set_xlabel('Balance')

y-axis label
ax.set_ylabel('Exited')
plt.show()

sns.boxplot(x=data['Balance'])

from scipy import stats #Outlier detection - zscore zscore = np.abs(stats.zscore(data['CreditScore'])) print(zscore)

print('No. of Outliers : ', np.shape(np.where(zscore>3)))

```
0 0.332952

1 0.447540

2 1.551761

3 0.500422

4 2.073415

...

9995 1.250458

9996 1.405920

9997 0.604594

9998 1.260876

9999 1.469219

Name: CreditScore, Length: 10000, dtype: float64

No. of Outliers : (1, 0)
```

q = data.quantile([0.75,0.25])

q

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0.75	7500.25	15753233.75	2238.25	718.0	1.0	1.0	44.0	7.0	127644.24	2.0	1.0	1.0	149388.2475	0.0
0.25	2500.75	15628528.25	773.75	584.0	0.0	0.0	32.0	3.0	0.00	1.0	0.0	0.0	51002.1100	0.0

iqr = q.iloc[0] - q.iloc[1] iqr

RowNumber	4999.5000	
CustomerId	124705.5000	
Surname	1464.5000	
CreditScore	134.0000	
Geography	1.0000	
Gender	1.0000	
Age	12.0000	
Tenure	4.0000	
Balance	127644.2400	
NumOfProducts	1.0000	
HasCrCard	1.0000	
IsActiveMember	1.0000	
EstimatedSalary	98386.1375	
Exited	0.0000	
dtype: float64		

```
u = q.iloc[0] + (1.5*iqr)
RowNumber 1.499950e+04
CustomerId 1.594029e+07
Surname 4.435000e+03
CreditScore 9.190000e+02
Geography 2.500000e+00
Age 6.200000e+01
Tenure 1.300000e+01
Balance 3.191106e+05
NumOfProducts 3.500000e+00
HasCrCard 2.500000e+00
IsActiveMember 2.500000e+00
EstimatedSalary 2.969675e+05
EstimatedSalary 2.969675e+05
Exited 0.000000e+00
dtype: float64
I = q.iloc[1] - (1.5*iqr)
 RowNumber -4.998500e+03
CustomerId 1.544147e+07
Surname -1.423000e+03
 CreditScore 3.830000e+02
Geography -1.500000e+00
Gender -1.500000e+00
             1.400000e+01
-3.000000e+00
-1.914664e+05
 Age
 Tenure
 Balance
 -1.500000e-01
IsActiveMember -1 50000
Estimat:
 NumOfProducts -5.000000e-01
 EstimatedSalary -9.657710e+04
                           0.000000e+00
 Exited
 dtype: float64
Q1 = data['EstimatedSalary'].quantile(0.25) #Outlier detection - IQR
Q3 = data['EstimatedSalary'].quantile(0.75)
iqr = Q3 - Q1
print(iqr)
upper=Q3 + 1.5 * iqr
lower=Q1 - 1.5 * iqr
count = np.size(np.where(data['EstimatedSalary'] >upper))
count = count + np.size(np.where(data['EstimatedSalary'] <lower))</pre>
print('No. of outliers : ', count)
98386.1375
No. of outliers: 0
data['CreditScore'] = np.where(np.logical_or(data['CreditScore']>900, data['CreditScore']<383), 65
0, data['CreditScore'])
sns.boxplot(data['CreditScore'])
```



```
upper = data.Age.mean() + (3 * data.Age.std()) #Outlier detection - 3 sigma
lower = data.Age.mean() - (3 * data.Age.std())
columns = data[ ( data['Age'] > upper ) | ( data['Age'] < lower ) ]
print('Upper range : ', upper)
print('Lower range : ', lower)
print('No. of Outliers : ', len(columns))

Upper range : 70.38521935511383
Lower range : 7.458380644886169
No. of Outliers : 133</pre>
```

columns = ['EstimatedSalary', 'Age', 'Balance', 'NumOfProducts', 'Tenure', 'CreditScore'] #After outlier removal

```
Q1 = data[i].quantile(0.25)
Q3 = data[i].quantile(0.75)
iqr = Q3 - Q1
upper=Q3 + 1.5 * iqr
lower=Q1 - 1.5 * iqr
count = np.size(np.where(data[i] > upper))
count = count + np.size(np.where(data[i] < lower))
print('No. of outliers in ', i, ':', count)
No. of outliers in EstimatedSalary : 0
No. of outliers in Age : 0
No. of outliers in Balance : 0
No. of outliers in NumOfProducts : 0
No. of outliers in Tenure : 0
No. of outliers in CreditScore : 0
```

for i in columns:

Question-7. Check for Categorical columns and perform encoding

Solution:

from sklearn.preprocessing import LabelEncoder, OneHotEncoder le = LabelEncoder()
oneh = OneHotEncoder()
data['Surname'] = le.fit_transform(data['Surname'])
data['Gender'] = le.fit_transform(data['Gender'])
data['Geography'] = le.fit_transform(data['Geography'])
data.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10	0

Question-8. Split the data into dependent and independent variables split the data in X and Y

Solution:

x # independent values (inputs)

x = data.iloc[:, 0:13]

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10
	550	9555	738	57%		100	275	199	838	25	750	m	253
9995	9996	15606229	1999	771	0	1	39	5	0.00	2	1	0	96270.64
9996	9997	15569892	1336	516	0	1	35	10	57369.61	1	1	1	101699.77
9997	9998	15584532	1570	709	0	0	36	7	0.00	1	0	1	42085.58
9998	9999	15682355	2345	772	1	1	42	3	75075.31	2	1	0	92888.52
9999	10000	15628319	2751	792	0	0	28	4	130142.79	1	1	0	38190.78

10000 rows x 13 columns

```
y # dependent values (output)
y = data['Exited']
 0
         1
 1
         0
 2
         1
 3
         0
 4
        0
        . .
 9995 0
 9996
       0
 9997
         1
 9998
       1
 9999
         0
 Name: Exited, Length: 10000, dtype: int64
```

Question-9. Scale the independent variables

Solution:

```
from sklearn.preprocessing import StandardScaler, MinMaxScaler
sc = StandardScaler()
x_scaled = sc.fit_transform(x)
x_scaled
```

```
array([[-1.73187761, -0.78321342, -0.46418322, ..., 0.64609167, 0.97024255, 0.02188649],
[-1.7315312, -0.60653412, -0.3909112, ..., -1.54776799, 0.97024255, 0.21653375],
[-1.73118479, -0.99588476, 0.62898807, ..., 0.64609167, -1.03067011, 0.2406869],
...,
[1.73118479, -1.47928179, 0.07353887, ..., -1.54776799, 0.97024255, -1.00864308],
[1.7315312, -0.11935577, 0.98943914, ..., 0.64609167, -1.03067011, -0.12523071],
[1.73187761, -0.87055909, 1.4692527, ..., 0.64609167, -1.03067011, -1.07636976]])
```

Question-10. Split x and y into Training and Testing

Solution:

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.3, random_state = 0)
```

x_train

```
array([[ 0.92889885, -0.79703192, -1.47580983, ..., 0.64609167, 0.97024255, -0.77021814],
[ 1.39655257, 0.71431365, -1.58808148, ..., 0.64609167, -1.03067011, -1.39576675],
[ -0.4532777, 0.96344969, -0.24082173, ..., -1.54776799, 0.97024255, -1.49965629],
...,
[ -0.60119484, -1.62052514, -0.36136603, ..., 0.64609167, -1.03067011, 1.41441489],
[ 1.67853045, -0.37403866, 0.72589622, ..., 0.64609167, 0.97024255, 0.84614739],
[ -0.78548505, -1.36411841, 1.3829808, ..., 0.64609167, -1.03067011, 0.32630495]])
```

x_train.shape

(7000, 13)

x_test

```
array([[ 1.52229946, -1.04525042, 1.39834429, ..., 0.64609167, 0.97024255, 1.61304597],
[-1.42080128, -0.50381294, -0.78208925, ..., 0.64609167, -1.03067011, 0.49753166],
[-0.90118604, -0.7932923, 0.41271742, ..., 0.64609167, 0.97024255, -0.4235611 ],
...,
[ 1.49216178, -0.14646448, 0.6868966, ..., 0.64609167, 0.97024255, 1.17045451],
[ 1.1758893, -1.29228727, -1.38481071, ..., 0.64609167, 0.97024255, -0.50846777],
[ 0.08088677, -1.38538833, 1.11707427, ..., 0.64609167, 0.97024255, -1.15342685]])
```

x_test.shape

(3000, 13)

y_train

```
1
7681
9031 0
3691 0
202
     1
5625 0
     • •
9225
    0
4859
     0
3264
    0
9845 0
2732
Name: Exited, Length: 7000, dtype: int64
```

y_test

```
9394
    0
898
     1
2398
5906
      0
2343
     0
4004
      0
7375
     0
9307
     0
8394
     0
5233
      1
```

Name: Exited, Length: 3000, dtype: int64