微积分 A (1)

姚家燕

第 25 讲

在听课过程中,

严禁使用任何电子产品!

第 25 讲

第6章广义 Riemann 积分

§1. 广义 Riemann 积分的概念

定义 1. 设 $a \in \mathbb{R}$, $\omega \in (a, +\infty]$, $f : [a, \omega) \to \mathbb{R}$ 使得 $\forall A \in (a, \omega)$, 函数 f 在 [a, A] 上均为可积. 定义 f 在 $[a, \omega)$ 上的广义积分为

$$\int_{a}^{\omega} f(x) dx = \lim_{A \to \omega^{-}} \int_{a}^{A} f(x) dx.$$

若上述极限收敛, 称广义积分 $\int_a^\omega f(x) \, \mathrm{d}x$ 收敛, 否则称之发散. 广义积分也称为反常积分.

评注

• 通常 $\omega = +\infty$, 或者 $\omega \in \mathbb{R}$ 但函数 f 在 ω 的 邻域内无界, 此时称 ω 为 f 的奇点, 相应的 广义积分被称为无穷限积分或瑕积分.

• $\forall c \in [a, \omega)$, 我们有

$$\int_{a}^{\omega} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{\omega} f(x) dx.$$

故 $\int_a^\omega f(x) \, \mathrm{d}x$ 的敛散性仅与函数 f 在 ω 的 邻域内的性质有关.

• 如果 $\omega \in \mathbb{R}$ 且 $f \in \mathcal{R}[a,\omega]$,则f在 $[a,\omega]$ 的任意闭子区间上均可积,并且

$$\int_{a}^{\omega} f(x) dx = \lim_{A \to \omega^{-}} \int_{a}^{A} f(x) dx.$$

此时正常的定积分与广义积分一致.

• 如果 $b \in \mathbb{R}$, $\omega \in \mathbb{R} \cup \{-\infty\}$ 使得 $\omega < b$, 而且 $f: (\omega, b] \to \mathbb{R}$ 在 $(\omega, b]$ 的任意的闭子区间上 可积, 则我们可以类似地定义广义积分

$$\int_{\omega}^{b} f(x) dx = \lim_{B \to \omega^{+}} \int_{B}^{b} f(x) dx.$$

• 假设 ω_1, ω_2 ($\omega_1 < \omega_2$) 为 f 的奇点, 而函数 f 在 (ω_1, ω_2) 的任意的闭子区间上可积. 固定 $a \in (\omega_1, \omega_2)$, 并定义

$$\int_{\omega_1}^{\omega_2} f(x) \, dx = \int_{\omega_1}^a f(x) \, dx + \int_a^{\omega_2} f(x) \, dx.$$

可证明该定义不依赖点 a 的选择.

• 如果 $a, b \in \mathbb{R}$ (a < b), 而 $\omega \in (a, b)$ 使得 f 在 $[a, b] \setminus \{\omega\}$ 的任意闭子区间上可积, 定义:

$$\int_a^b f(x) dx = \int_a^\omega f(x) dx + \int_\omega^b f(x) dx.$$

• 更一般地, 如果 f 有多个奇点, 此时可将整个 区间分割成若干个小区间使得 f 在每一个 小区间上只有一个奇点且该点为小区间的 端点, 随后在每个小区间上定义广义积分, 随后再将如此定义的广义积分之和定义为 f 在原来那个区间上的广义积分. 有鉴于此, 再通过坐标变换, 我们总可以将问题归结为 研究形如 $\int_a^{\omega} f(x) dx$ 这样的广义积分.

广义积分的性质

由广义积分的定义可知, 广义积分自然继承了正常的定积分的性质, 比如说线性性, 保序性, Newton-Leibniz 公式, 分部积分, 换元法等等.

• Newton-Leibniz 公式:

若
$$f \in \mathcal{C}[a,\omega)$$
 在 $[a,\omega)$ 上有原函数 F , 则
$$\int_a^\omega f(x) \, \mathrm{d}x = F \Big|_a^\omega = F(\omega - 0) - F(a).$$

• 分部积分公式: 若假设下述极限均存在, 则

$$\int_{a}^{\omega} u(x) \, \mathrm{d}v(x) = \lim_{A \to \omega^{-}} \int_{a}^{A} u(x) \, \mathrm{d}v(x)$$

$$= \lim_{A \to \omega^{-}} \left(uv \Big|_{a}^{A} - \int_{a}^{A} v(x) \, \mathrm{d}u(x) \right)$$

$$= uv \Big|_{a}^{\omega} - \int_{a}^{\omega} v(x) \, \mathrm{d}u(x).$$

例 1. 设 $p \in \mathbb{R}$. 若 $p \neq 1$, 则我们有

$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{p}} = \frac{1}{1-p} \cdot \frac{1}{x^{p-1}} \Big|_{1}^{+\infty} = \begin{cases} \frac{1}{p-1}, & \text{ if } p > 1, \\ +\infty, & \text{ if } p < 1. \end{cases}$$
$$\int_{0}^{1} \frac{\mathrm{d}x}{x^{p}} = \frac{1}{1-p} \cdot \frac{1}{x^{p-1}} \Big|_{0}^{1} = \begin{cases} +\infty, & \text{ if } p > 1, \\ \frac{1}{1-p}, & \text{ if } p < 1. \end{cases}$$

若 p=1, 则我们有

$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{x} = \log x \Big|_{1}^{+\infty} = +\infty,$$
$$\int_{0}^{1} \frac{\mathrm{d}x}{x} = \log x \Big|_{0}^{1} = +\infty.$$

例 2. 计算 $\int_0^1 \frac{1}{(x+2)\sqrt{1-x}} dx$.

解:
$$\int_0^1 \frac{1}{(x+2)\sqrt{1-x}} dx \stackrel{t=\sqrt{1-x}}{=} \int_1^0 \frac{1}{(3-t^2)t} d(1-t^2)$$

$$= \int_0^1 \frac{2t}{(3-t^2)t} dt = \frac{1}{\sqrt{3}} \int_0^1 \left(\frac{1}{\sqrt{3}-t} + \frac{1}{\sqrt{3}+t} \right) dt$$

$$= \frac{1}{\sqrt{3}} \log \frac{|\sqrt{3} + t|}{|\sqrt{3} - t|} \Big|_0^1 = \frac{1}{\sqrt{3}} \log \frac{\sqrt{3} + 1}{\sqrt{3} - 1}.$$

例 3. 计算 $\int_1^{+\infty} \frac{\log x}{r^2} dx$.

解:
$$\int_{1}^{+\infty} \frac{\log x}{x^{2}} dx = \int_{1}^{+\infty} \log x d\left(-\frac{1}{x}\right)$$
$$= -\frac{\log x}{x}\Big|_{1}^{+\infty} + \int_{1}^{+\infty} \frac{1}{x^{2}} dx$$
$$= \int_{1}^{+\infty} d\left(-\frac{1}{x}\right) = -\frac{1}{x}\Big|_{1}^{+\infty} = 1.$$

作业题: 第 6.1 节第 193 页第 2 题第 (2), (4),

(5) 小题, 第 3 题第 (2), (3), (5) 小题.

例 4. 计算 $\int_0^{+\infty} \frac{\log x}{(1+x)^3} dx$.

$$\mathbf{\widetilde{H}}: \int \frac{\log x}{(1+x)^3} \, \mathrm{d}x = \int \log x \, \mathrm{d}\left(-\frac{1}{2(1+x)^2}\right)$$

$$= -\frac{\log x}{2(1+x)^2} + \frac{1}{2} \int \frac{\mathrm{d}x}{x(1+x)^2}$$

$$= -\frac{\log x}{2(1+x)^2} + \frac{1}{2} \int \left(\frac{1}{x} - \frac{1}{1+x} - \frac{1}{(1+x)^2}\right) \, \mathrm{d}x$$

$$= -\frac{\log x}{2(1+x)^2} + \frac{1}{2} \left(\log \frac{x}{1+x} + \frac{1}{1+x}\right) + C,$$

其中 C 为任意常数.

由此我们立刻可得

$$\int_0^{+\infty} \frac{\log x}{(1+x)^3} \, \mathrm{d}x = \frac{1}{2} \left(-\frac{\log x}{(1+x)^2} + \log \frac{x}{1+x} + \frac{1}{1+x} \right) \Big|_0^{+\infty}$$

$$= \lim_{x \to +\infty} \frac{1}{2} \left(-\frac{\log x}{(1+x)^2} + \log \frac{x}{1+x} + \frac{1}{1+x} \right)$$

$$-\lim_{x \to 0^+} \frac{1}{2} \left(-\frac{\log x}{(1+x)^2} + \log \frac{x}{1+x} + \frac{1}{1+x} \right)$$

$$= \lim_{x \to 0^+} \frac{1}{2} \left(\frac{\log x}{(1+x)^2} - \log x + \log(1+x) - \frac{1}{1+x} \right)$$

$$= -\lim_{x \to 0^+} \frac{(2+x)x \log x}{2(1+x)^2} - \frac{1}{2} = -\frac{1}{2}.$$

§2. 广义积分收敛性的判定

定理 1. (Cauchy 准则) 假设 $a \in \mathbb{R}$, $\omega \in (a, +\infty]$, $f:[a,\omega) \to \mathbb{R}$ 使得 $\forall A \in (a,\omega)$, f 在 [a,A] 上可积. 那么 $\int_a^\omega f(x) \, \mathrm{d}x$ 为收敛当且仅当 $\forall \varepsilon > 0$, $\exists c \in (a,\omega)$ 使得 $\forall A_1, A_2 \in (c,\omega)$, 均有 $\left| \int_{A_1}^{A_2} f(x) \, \mathrm{d}x \right| < \varepsilon.$

证明: $\forall A \in [a, \omega)$, 定义 $F(A) = \int_a^A f(x) dx$. 则 $\int_a^\omega f(x) dx$ 收敛当且仅当 $\lim_{A \to \omega^-} F(A)$ 存在并且 有限, 再由函数极限 Cauchy 准则可得所要结论.

定义 1. 设 $a \in \mathbb{R}$, $\omega \in \mathbb{R} \cup \{+\infty\}$ 使得 $\omega > a$,

而 $f, g: [a, \omega) \to \mathbb{R}$ 为函数. 若存在 C > 0 以及 $c \in [a, \omega)$ 使得 $\forall x \in [c, \omega)$, 我们均有

$$|f(x)| \leqslant C|g(x)|,$$

则我们将之记作

$$f(x) = O(g(x)) \ (x \to \omega^{-}).$$

定理 2. (比较法则)

设 $f, g: [a, \omega) \to [0, +\infty)$ 在 $[a, \omega)$ 的任意闭子 区间上可积且 f(x) = O(g(x)) $(x \to \omega^{-})$.

- (1) 如果广义积分 $\int_a^\omega g(x) dx$ 收敛, 则广义积分 $\int_a^\omega f(x) dx$ 也收敛.
- (2) 如果广义积分 $\int_a^\omega f(x) dx$ 发散, 则广义积分 $\int_a^\omega g(x) dx$ 也发散.

证明: (1) 由题设知, 存在 C > 0 以及 $c \in [a, \omega)$

使得 $\forall x \in [c, \omega)$, 我们均有 $0 \leqslant f(x) \leqslant Cg(x)$.

 $\forall A \in [c, \omega)$, 我们定义

$$F(A) = \int_{a}^{A} f(x) \, \mathrm{d}x.$$

则 F 单调递增且 $\forall A \in [c, \omega)$, 我们有

$$F(A) \leqslant C \int_{c}^{A} g(x) dx \leqslant C \int_{c}^{\omega} g(x) dx < +\infty.$$

由单调有界定理知极限 $\lim_{A\to\omega^{-}} F(A)$ 存在, 于是 $\int_{a}^{\omega} f(x) dx = \int_{a}^{c} f(x) dx + \lim_{A\to\omega^{-}} F(A)$ 收敛.

(2) 用反证法, 假设广义积分 $\int_a^\omega g(x) dx$ 收敛,则广义积分 $\int_a^\omega f(x) dx$ 收敛. 矛盾! 由此得证.

推论 1. 若函数 $f:[a,\omega)\to [0,+\infty)$ 在 $[a,\omega)$ 的 任意闭子区间上可积,则广义积分 $\int_a^\omega f(x)\,\mathrm{d}x$ 发散当且仅当 $\int_a^\omega f(x)\,\mathrm{d}x=+\infty$. 推论 2. 假设 $f, g: [a, \omega) \to [0, +\infty)$ 在 $[a, \omega)$ 的 任意闭子区间上可积且 $\lim_{x \to \omega} \frac{f(x)}{g(x)} = \alpha \in [0, +\infty]$.

- (1) 如果 $\alpha \in (0, +\infty)$, 则广义积分 $\int_a^{\omega} g(x) dx$ 和广义积分 $\int_a^{\omega} f(x) dx$ 同敛散.
- (2) 如果 $\alpha = 0$ 并且广义积分 $\int_a^{\omega} g(x) dx$ 收敛, 则广义积分 $\int_a^{\omega} f(x) dx$ 收敛.
- (3) 如果 $\alpha = +\infty$ 且广义积分 $\int_a^{\omega} g(x) dx$ 发散,则广义积分 $\int_a^{\omega} f(x) dx$ 发散.

推论 3. 设 $f:[1,+\infty) \to [0,+\infty)$ 在 $[1,+\infty)$ 的 任意闭子区间上可积并且

$$\lim_{x \to +\infty} \frac{f(x)}{\frac{1}{x^p}} = \lim_{x \to +\infty} x^p f(x) = \alpha \in [0, +\infty].$$

- (1) 如果 p > 1 并且 $0 \le \alpha < +\infty$, 则广义积分 $\int_{1}^{+\infty} f(x) dx$ 收敛.
- (2) 如果 $p \le 1$ 并且 $0 < \alpha \le +\infty$, 则广义积分 $\int_{1}^{+\infty} f(x) dx 发散.$

证明: (1) 由题设可知 $f(x) = O(\frac{1}{x^p}) (x \to +\infty)$,

而当 p > 1 时, 广义积分 $\int_{1}^{+\infty} \frac{dx}{x^{p}}$ 收敛, 于是由

比较法则可知广义积分 $\int_1^{+\infty} f(x) dx$ 收敛.

(2) 由题设可知 $\frac{1}{x^p} = O(f(x)) (x \to +\infty)$, 并且

当 $p \le 1$ 时, 广义积分 $\int_1^{+\infty} \frac{dx}{x^p}$ 为发散, 于是由

比较法则可知广义积分 $\int_1^{+\infty} f(x) dx$ 发散.

推论 4. 设 $f:(0,b] \to [0,+\infty)$ 在 (0,b] 的任意 闭子区间上可积并且

$$\lim_{x \to 0^+} \frac{f(x)}{\frac{1}{x^p}} = \lim_{x \to 0^+} x^p f(x) = \alpha.$$

- (1) 如果 p < 1 并且 $0 \le \alpha < +\infty$, 则广义积分 $\int_0^b f(x) dx$ 收敛.
- (2) 如果 $p \ge 1$ 并且 $0 < \alpha \le +\infty$, 则广义积分 $\int_0^b f(x) dx$ 发散.

证明: (1) 由题设可知 $f(x) = O(\frac{1}{x^p})$ $(x \to 0^+)$,

而当 p < 1 时, 广义积分 $\int_0^b \frac{dx}{x^p}$ 为收敛, 于是由 比较法则可知广义积分 $\int_0^b f(x) dx$ 收敛.

(2) 由题设可导出 $\frac{1}{x^p} = O(f(x)) (x \to 0^+)$, 并且

当 $p \ge 1$ 时, 广义积分 $\int_0^b \frac{\mathrm{d}x}{x^p}$ 发散, 从而由比较

法则可知广义积分 $\int_0^b f(x) dx$ 发散.

例 1. 判断 $\int_{1}^{+\infty} \frac{4x}{\sqrt{x+1}} \arctan \frac{1}{x} dx$ 的敛散性.

解: 当 $x \to +\infty$ 时, 我们有

$$\frac{4x}{\sqrt{x+1}} \arctan \frac{1}{x} \sim \frac{4x}{\sqrt{x}} \cdot \frac{1}{x} \sim \frac{4}{\sqrt{x}},$$

又广义积分
$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{\sqrt{x}}$$
 发散, 因此广义积分
$$\int_{1}^{+\infty} \frac{4x}{\sqrt{x+1}} \arctan \frac{1}{x} \, \mathrm{d}x$$

也为发散.

谢谢大家!