Earlier matrix game examples

u	L	R	Max min
L	-1	1	-1
R	l	-1	-1
in max	1		

$$\overline{v} = 1 > -1 = \underline{v}$$

PSNE doesn't exist

	u	L	C]	R	maxmin
•	T	3	-5	2	-5
	М	1	4]
•	В	6	-3	-5	-5
wi	max	6	4	1	

$$\overline{U} = | = \underline{V}$$
PSNE exists

Define $S_1^* \in \arg\max\min_{S_1 \in S_1, S_2 \in S_2} U(S_1, S_2)$! maximin strategy of 1

 $S_2^* \in \arg\min\max_{S_2 \in S_2} \max_{S_1 \in S_1} u(S_1, S_2) : \min\max_{S_2 \in S_2} strategy of 2$

Theorem: A matrix game u has a PSNE (saddle point) if and only if $\overline{v} = \underline{v} = u\left(S_1^*, S_2^*\right)$, where S_1^* and S_2^* are maxmin and minmax strategies for players | and 2 respectively. In particular, $\left(S_1^*, S_2^*\right)$ is a PSNE.

Proof: (\Rightarrow) i.e., PSNE $\Rightarrow \overline{U} = \underline{U} = u(\Lambda_1^*, \Lambda_2^*)$

Say The PSNE is (A_1^*, A_2^*) , i.e., $U(A_1^*, A_2^*) > U(A_1, A_2^*)$, $\forall A_1 \in S_1$ $\Rightarrow U(A_1^*, A_2^*) > \max_{t_1 \in S_1} U(t_1, A_2^*)$

> min max $U(t_1,t_2)$, since S_2^* is a $t_2 \in S_2$ $t_1 \in S_1$, specific stretegy $= \overline{18}$

Similarly, using the same argument for player 2, we get $9 > u(s_1^*, s_2^*)$, for player 2 wility $u_2 = -u$

But \$ 7.2 [from previous lemma]

Hence, \$\mu(s_1^*, s_2^*) > \bar{\nu} > \nu \langle \langle \nu (s_1^*, s_2^*)

 $\exists u(s_1^*, s_2^*) = \overline{v} = \underline{v}, \text{ also implies that The maxmin for }$ and minmax for 2 are s_1^* and s_2^* resp.

 (\Leftarrow) given $U(S_1^*, S_2^*) = \overline{v} = \underline{v}$, S_1^*, S_2^* are maxmin and minmax = v(say) tresp. for l and 2.

 $U(S_1^*, S_2)$ >, min $U(S_1^*, t_2)$: by defin of min $t_2 \in S_2$

 $\forall A_2 \in S_2$ = max min $U(t_1, t_2)$: since S_1^* is the maxnim $t_1 \in S_1$ $t_2 \in S_2$ Strategy for 1. = v (given)

Similarly show, $u(s_1, s_2^*) \leq v \quad \forall s_1 \in S_1$

but $v = u(s_1^*, s_2^*)$. Substitute and get that (s_1^*, s_2^*) is a PSNE