§ 2.2. Практическая работа (решение задач)

7.2.1. Найти дифференциал функции

$$y=e^{x^3}.$$

 \bigcirc Так как dy = y'dx, то в данном случае $dy = (e^{x^3})'dx = 3x^2 \cdot e^{x^3}dx$.

Найти дифференциал функции:

7.2.2.
$$y = \arctan \sqrt{x}$$
.

7.2.3.
$$y = (x^3 - x) \operatorname{tg} x$$
.

7.2.4.
$$y = x^2 \ln x$$
.

7.2.5.
$$y = \frac{x-2}{x^2+1}$$
.

7.2.6. Найти приращение и дифференциал функции $y = x^2 - 3x + 1$ в точке $x_0 = 2$, если $\Delta x = 0.1$.

 \bigcirc Сначала найдем приращение Δy в общем виде:

$$\Delta y = y(x + \Delta x) - y(x) =$$

$$= [(x + \Delta x)^2 - 3(x + \Delta x) + 1] - (x^2 - 3x + 1) =$$

$$= x^2 + 2x\Delta x + (\Delta x)^2 - 3x - 3\Delta x + 1 - x^2 + 3x - 1 =$$

$$= 2x\Delta x - 3\Delta x + (\Delta x)^2 = (2x - 3)\Delta x + (\Delta x)^2.$$

Из полученного выражения для приращения Δy видно, что его линейная часть в произвольной точке x_0 равна $(2x_0-3)\Delta x$. Тогда по определению дифференциал данной функции будет равен $dy=(2x-3)\Delta x$, или, в более привычной записи, dy=(2x-3)dx.

Второе слагаемое в полученной записи для Δy , т.е. $(\Delta x)^2$, есть бесконечно малая более высокого порядка, чем первое слагаемое.

Заметим, что можно найти dy и сразу (без вычисления Δy) по формуле dy=y'dx, откуда $dy=(x^2-3x+1)'dx=(2x-3)dx$.

Теперь найдем Δy и dy в точке $x_0=2$, если $\Delta x=0,1$:

$$\Delta y = (2 \cdot 2 - 3) \cdot 0.1 + (0.1)^2 = 0.1 + 0.01 = 0.11, \quad dy = 0.1.$$

Найти приращение и дифференциал функции y = y(x) в общем виде, а также в точке x_0 , если известно Δx :

7.2.7.
$$y = x^3 + 2x$$
, $x_0 = 1$, $\Delta x = 0.01$.

7.2.8.
$$y = x^2 + x - 5, x_0 = 0, \Delta x = 0,5.$$

7.2.9. Вычислить приближенно:

- 1) ln 1,02;
- **2)** $\sqrt{24}$.
- 1) Воспользуемся приближенной формулой

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0)\Delta x.$$

Тогда, подставляя $f(x) = \ln x$, получим

$$\ln(x_0 + \Delta x) \approx \ln x_0 + \frac{1}{x_0} \cdot \Delta x.$$

Полагая здесь $x_0 = 1, \ \Delta x = 0.02, \$ найдем

$$\ln 1,02 \approx \ln 1 + \frac{1}{1} \cdot 0,02 = 0,02.$$

Таким образом, $\ln 1,02 \approx 0,02$.

2) Учитывая, что $f(x) = \sqrt{x}, \ x_0 = 25, \ \Delta x = -1, \$ получим

$$\sqrt{x_0+\Delta x} pprox \sqrt{x_0}+rac{1}{2\sqrt{x_0}}\cdot \Delta x$$
, т. е. $\sqrt{24}pprox \sqrt{25}+rac{1}{2\sqrt{25}}\cdot (-1)=4,9.$

Окончательно $\sqrt{24} \approx 4.9$.

Вычислить приближенно:

7.2.10.
$$\sqrt[3]{26}$$
.

7.2.12.
$$(1,02)^5$$
.

7.2.13. Найти
$$dy$$
, d^2y и d^3y для функции $y = \sqrt[3]{x}$.

О Поскольку

$$dy = y'dx = (\sqrt[3]{x})'dx = \frac{1}{3}x^{-2/3}dx = \frac{dx}{3\sqrt[3]{x^2}},$$

$$d^{2}y = d(dy) = d\left(\frac{dx}{3\sqrt[3]{x^{2}}}\right) = \left(\frac{1}{3\sqrt[3]{x^{2}}}\right)'(dx)^{2} =$$

$$= \frac{1}{3}(x^{-2/3})'dx = -\frac{2}{9}x^{-5/3}dx^{2} = -\frac{2dx^{2}}{9x\sqrt[3]{x^{2}}}.$$

Отсюда

$$d^{3}y = d(d^{2}y) = d\left(-\frac{2}{9}\frac{dx^{2}}{x^{5/3}}\right) = -\frac{2}{9}(x^{-5/3})' dx^{3} =$$

$$= \frac{10}{27}x^{-8/3}dx^{3} = \frac{10dx^{3}}{27x^{2}\sqrt[3]{x^{2}}}.$$

То же самое можно было найти иначе, предварительно отыскав производные y', y'' и y''', а затем воспользоваться формулами: $d^2y = y''dx^2$, $d^3y = y'''dx^3$.

Haumu dy u d^2y :

7.2.14.
$$y = (x^2 + 1)^3$$
.

7.2.15.
$$y = \sin^2 x$$
.

Ответы

7.2.2.
$$dy = \frac{1}{2\sqrt{x(1+x)}} \cdot dx$$
. **7.2.3.** $dy = \left[(3x-1) \cdot \lg x + \frac{x^3-x}{\cos^2 x} \right] dx$.

7.2.4.
$$dy = x(2 \ln x + 1) dx$$
. **7.2.5.** $dy = \frac{-x^2 + 4x + 1}{(x^2 + 1)^2} dx$.

7.2.7.
$$\Delta y = (3x^2+2)\Delta x + (3x+\Delta x)(\Delta x)^2$$
, $\Delta y = 0.050301$ в точке $x_0=1$ и при $\Delta x = 0.01$; $dy = (3x^2+2)\,dx$, $dy = 0.05$ в точке $x_0=1$ и при $\Delta x = 0.01$.

7.2.8.
$$\Delta y = (2x+1)\Delta x + (\Delta x)^2$$
, $\Delta y = 0.75$ в точке $x_0 = 0$ и при $\Delta x = 0.5$; $dy = (2x+1) dx$, $dy = 0.5$ в точке $x_0 = 0$ и при $\Delta x = 0.5$. **7.2.10.** 2.96.

7.2.11. 0,965. **7.2.12.** 1,1. **7.2.14.**
$$dy = 6x(x^2 + 1)^2 dx$$
,

$$d^2y = 6(5x^2 + 1)(x^2 + 1)dx^2$$
. 7.2.15. $dy = \sin 2x dx$, $d^2y = 2\cos 2x dx^2$.