1 16: Primitives

16 Primitives

I - Définition et propriétés

Définition 1

Soit I un intervalle de \mathbb{R} et f une fonction définie sur I. Une primitive de f sur I est une fonction F dérivable sur I telle que pour tout $x \in I$, F'(x) = f(x).

Exemple 2

Soit $f(x) = 2\cos x \sin x \operatorname{sur} \mathbb{R}$.

Alors, les fonctions suivantes sont des primitives de f sur \mathbb{R} :

$$- F(x) = \frac{1}{2}\sin^2 x$$

$$- F(x) = -\frac{1}{2}\cos^2 x$$

$$- F(x) = -\frac{1}{2}\cos(2x)$$

$$- F(x) = \frac{1}{2}\sin^2 x + 5$$

Propriété 3 P1 : Toute fonction continue sur un intervalle *I* admet une primitive sur *I*.

P2 : Si F est une primitive sur un intervalle I d'une fonction f, alors pour tout réel k, F+k est aussi une primitive de f sur I.

P3 : Pour tout couple réel (x_0, y_0) , il existe une unique primitive F de f sur I telle que $F(x_0) = y_0$.

Remarque 4

Deux primitives d'une même fonction sur un intervalle diffèrent d'une constante.

2 16: Primitives

II - Détermination d'une primitive

Primitives usuelles

Fonction <i>f</i>	${\bf Primitive}F$	Intervalle I	Commentaire
a	ax	\mathbb{R}	$a \in \mathbb{R}$
x^n	$\frac{1}{n+1}x^{n+1}$	\mathbb{R}	$n \in \mathbb{N}$
$\frac{1}{x^2}$	$-\frac{1}{x}$	$\mathbb{R} \setminus \{0\}$	
$\frac{1}{x^n}$	$-\frac{1}{(n-1)x^{n-1}}$	ℝ ~ {0}	$n \in \mathbb{N} \setminus \{0, 1\}$
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$]0,+∞[
$\cos x$	$\sin x$	\mathbb{R}	
sin x	$-\cos x$	\mathbb{R}	

Formes de primitives

Propriété 5

Si F et G sont deux primitives respectives de f et g sur un intervalle I:

- F + G est une primitive de f + g sur I;
- λF est une primitive de λf sur I, pour tout réel λ ;
- Si f est dérivable sur I et g dérivable sur f(I), alors une primitive de $(g' \circ f) \cdot f'$ est $g \circ f$.

Propriété 6

Soit u une fonction dérivable sur un intervalle I telle que u' soit continue sur I:

Fonction <i>f</i>	Primitive F	Commentaire
$u'u^n$	$\frac{1}{n+1}u^{n+1}$	$n \in \mathbb{N}$
u'/u^n	$-\frac{1}{n-1}u^{1-n}$	$n \in \mathbb{N}^*, n \neq 1$
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$	
$\cos(ax)$	$\frac{1}{a}\sin(ax)$	$a \neq 0$
sin(ax)	$-\frac{1}{a}\cos(ax)$	$a \neq 0$
$\sin^n x \cos x$	$\frac{1}{n+1}\sin^{n+1}x$	$n \in \mathbb{N}$
$\cos^n x \sin x$	$-\frac{1}{n+1}\cos^{n+1}x$	$n \in \mathbb{N}$

3 16: Primitives

Exemple 7 —
$$f_1(x) = \sin^2 x + x^3$$
, une primitive : $F_1(x) = -\frac{1}{2}\cos^2 x + \frac{1}{4}x^4$
— $f_2(x) = x(3x^2 - 1)^3$, une primitive : $F_2(x) = \frac{1}{24}(3x^2 - 1)^4$
— $f_3(x) = \frac{x}{(x^2 + 1)^2}$, une primitive : $F_3(x) = -\frac{1}{x^2 + 1}$