

(12)特許協力条約に基づいて公開された国際出願

(19)世界知的所有権機関
国際事務局

(43)国際公開日
2003年10月9日 (09.10.2003)

PCT

(10)国際公開番号
WO 03/083116 A1

- (51) 国際特許分類: C12N 15/12,
7/00, C12Q 1/70, G01N 33/15, 33/50 県 御殿場市 駒門1丁目135番地 中外製薬株式会
社内 Shizuoka (JP).
- (21) 国際出願番号: PCT/JP03/03975 (74) 代理人: 清水 初志, 外 (SHIMIZU,Hatsushi et al.); 〒
300-0847 茨城県 土浦市 卸町1-1-1 関鉄つくばビル 6階 Ibaraki (JP).
- (22) 国際出願日: 2003年3月28日 (28.03.2003) (81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB,
BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK,
DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,
ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT,
LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO,
NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU,
ZA, ZM, ZW.
- (25) 国際出願の言語: 日本語 (84) 指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ,
SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許
(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB,
GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR),
OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).
- (26) 国際公開の言語: 日本語
- (30) 優先権データ:
特願2002-96038 2002年3月29日 (29.03.2002) JP
- (71) 出願人(米国を除く全ての指定国について): 中
外製薬株式会社 (CHUGAI SEIYAKU KABUSHIKI
KAISHA) [JP/JP]; 〒115-8543 東京都 北区 浮間5丁
目5番1号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人(米国についてのみ): 斎藤 良一
(SAITO,Ryoichi) [JP/JP]; 〒412-8513 静岡県 御殿
場市 駒門1丁目135番地 中外製薬株式会社
内 Shizuoka (JP). 大友 俊彦 (OHTOMO,Toshihiko)
[JP/JP]; 〒412-8513 静岡県 御殿場市 駒門1丁目
135番地 中外製薬株式会社内 Shizuoka (JP). 土屋
政幸 (TSUCHIYA,Masayuki) [JP/JP]; 〒412-8513 静岡

添付公開書類:
— 国際調査報告書

2文字コード及び他の略語については、定期発行される
各PCTガゼットの巻頭に掲載されている「コードと略語
のガイドスノート」を参照。

(54) Title: EMTHOD OF SCREENING TRANSPORTER INHIBITOR

(54) 発明の名称: トランスポーター阻害物質スクリーニング方法

(57) Abstract: It is considered that a method of measuring a transporter activity by using a budding vaculovirus expressing no endogenous transporter on its membrane has a low background and thus enables highly sensitive measurement of the target activity. Using this method, functional changes caused by SNPs in transporters can be measured on substrates over a broader scope. Thus, it is applicable to tailor made therapy programs.

(57) 要約: 膜上に内因性トランスポーターを発現していない出芽バキュロウイルスを用いたトランスポーター活性測定法は、バックグラウンドが低く、目的とする活性を高感度で測定できると考えられた。また、このような方法によりトランスポーターのSNPsによる機能変化をより広範な基質について測定でき、テーラーメイド医療への応用が可能である。

WO 03/083116 A1

- 1 -

明細書

トランスポーター阻害物質スクリーニング方法

技術分野

本発明はトランスポーターをコードする遺伝子を用いて出芽ウイルス膜上にトランスポーターを発現させることを特徴とする、トランスポーター活性を有するトランスポーターを発現させる方法に関する。また、本発明はトランスポーター活性を有するトランスポーターを発現しているウイルス、該ウイルスを用いたトランスポーターの活性測定法、及び、トランスポーターのトランスポート活性を阻害または促進する物質のスクリーニング方法に関する。

背景技術

哺乳動物は、生体外から栄養源を取り込む必要性があり、細胞には多くの輸送タンパク質（トランスポーター）が存在することが知られている。このようなトランスポーターは主として生命維持に必須の物質(アミノ酸や糖等)を細胞内に輸送する働きを有する。生理的環境下では同一基質を輸送するトランスポーターが細胞に複数存在することが多い。このような場合、キネティクス解析(K_m 、 V_{max})などの算出；例えば、Wright E. M., Am. J. Physiol. Renal Physiol. 280: F10-18 (2001)参照)により細胞への取り込みに対するそれぞれのトランスポーターの寄与が推定できる。従って、トランスポーターの輸送基質を同定し、キネティクス解析をすることは、その生理機能ならびに薬物送達の可能性を明らかにする上で極めて重要である。

現在、トランスポーターの機能解析には、(1)生体から単離したトランスポーターを含む初代培養細胞、及び細胞膜小胞(肝細胞、刷子縁膜小胞など)、(2)トランスポーターを含む癌細胞などからライン化された細胞株(Caco-2 細胞など)、

- 2 -

(3) トランスポーターの遺伝子を導入した哺乳類細胞(LLC-PK1 細胞、MDCK 細胞など)やアフリカツメガエル卵母細胞、並びに(4)バキュロウイルス発現系を用いてトランスポーターを発現させた昆虫細胞膜(Sf9 細胞膜など)を材料として用いる方法が挙げられる。中でも、哺乳類細胞やアフリカツメガエル卵母細胞の遺伝子発現系が主に用いられている。しかし、トランスポーター遺伝子を導入した哺乳類細胞やアフリカツメガエル卵母細胞でも内因性トランスポーターに由来する活性が検出され、バックグラウンドが高くなる (Kanai Y. et al., J.Clin.Invest. 93: 397-404 (1994); Kekuda R. et al., J.Biol.Chem. 271: 18657-18661 (1996); Kekuda R. et al., Am.J.Physiol. 272: G1463-1472 (1997); Yabuuchi H. et al., J.Pharmacol.Exp.Ther. 286: 1391-1396 (1998); Hatanaka T. et al., J.Clin.Invest. 107: 1035-1043 (2001))。そのため、トランスポーターの種類によっては、遺伝子を導入していない細胞(親株)と導入した細胞との活性比が2倍程度しかないものも報告される。このように活性比の低い遺伝子導入細胞では、キネティクス解析を行うことは困難である。

また、トランスポーター遺伝子を注入したアフリカツメガエル卵母細胞では電気生理学的手法によりトランスポーター活性を測定できる。Na や H イオンを駆動力にするトランスポーターならびに生理的 pH で電荷を有する基質の場合、基質の輸送により生じる電流を測定することでトランスポーター活性が検出できる。しかし、駆動力がなく、且つ、生理的 pH で電気的に中性な基質では、輸送活性を測定することは困難である。また、トランスポーター活性が認められたが弱い電流しか検出できない場合、キネティクス解析は困難である。また、電気生理学的手法には特殊な機器を使用するため、簡便性に欠ける。

薬物を細胞内へ移送するトランスポーターの活性や基質特異性は薬物の生体利用率(bioavailability)に影響を及ぼすことが報告されている(例えば、Ganapathy, Leibach, Curr.Biol 3: 695-701 (1991); Nakashima et al., Biochem.Pharm. 33: 3345-3352 (1984); Friedman, Amidon, Pharm.Res. 6:1043-1047 (1989);

- 3 -

Okano et al., J. Biol. Chem. 261: 14130-14134 (1986); Muranushi et al., Pharm. Res. 6: 308-312 (1989); Friedman, Amidon, J. Control. Res. 13: 141-146 (1990))。ここ数年、ヒトにおける薬物の体内動態変動要因を明らかにする研究が行われており、薬物代謝酵素と同様に薬物トランスポーターも、薬物の体内における作用に影響を及ぼすことが明らかにされてきた。薬物トランスポーターとしては、p-glycoprotein(Annu. Rev. Biochem. 58: 137 (1989))、multidrug resistance protein(Science 258: 1650 (1992); Cancer Res. 55: 102 (1995))、lung resistance protein (Ann. Oncl. 7: 625 (1996); Int. J. Cancer 73: 1021 (1997))、organic cation transporter(Proc. Natl. Acad. Sci. USA 91: 133 (1994); Molec. Pharmacol. 51: 913 (1997))等が公知である。これらの薬物トランスポーターについても薬物代謝酵素についてと同様に、SNPs 解析が実施されている。近年、機能変化を伴うトランスポーターの SNPs が発見され、個体間変動要因の一つとして注目されている(Ryu S. et al., J. Biol. Chem. 275: 39617-39624 (2000); Tirona R. G. et al., J. Biol. Chem. 276: 35669-35675 (2001))。現在、トランスポーターの SNPs の機能解析は遺伝子を導入した哺乳類細胞を用いるのが主流である。しかし、親株との活性比の低い基質に対しては、SNPs による機能変化を精度良く検出することは困難と推測される。

発明の開示

本発明は、このような状況を鑑みてなされたものであり、その目的は、バックグラウンドの低い、目的とするトランスポーター活性を高感度で測定する方法を提供することである。さらに、本発明はそのような方法を用い、トランスポーターのトランスポーティ活性を阻害または促進する物質をスクリーニングする方法を提供することも目的とする。

本発明者らは、ウイルスは基本的に自己で増殖する必要がないため、生命維持に必要な物質を取り込む生理的意義は存在しないと推測し、ウイルス膜上に内因

- 4 -

性トランスポーターは発現していない(或いは、極めて微量な発現)と考えられる点に着目した。膜上に内因性トランスポーターを発現していない出芽バキュロウイルスを用いたトランスポーター活性測定法は、バックグラウンドが低く、目的とする活性を高感度で測定できると考えられた。また、このような方法によりトランスポーターの SNPs による機能変化をより広範な基質について測定でき、データーメイド医療への応用が可能と考えられる。

即ち、本発明は、

- [1]トランスポーターをコードする遺伝子を含む組換えウイルスを感染させた宿主を培養し、該宿主から放出される出芽ウイルス膜上にトランスポーターを発現させることを特徴とする、トランスポーター活性を有するトランスポーターを発現させる方法、
- [2]ウイルスがバキュロウイルスである[1]記載の方法、
- [3]トランスポーターが非ウイルス由来である[1]または[2]いずれか記載の方
法、
- [4]トランスポーターがペプチドトランスポーターまたは有機アニオントラン
スポーターである[1]～[3]いずれか記載の方法、
- [5]トランスポーターが PepT1、PepT2 又は OATP-C である[4]記載の方法、
- [6]トランスポーター活性を有するトランスポーターを発現しているウイルス、
- [7]トランスポーターが非ウイルス由来である[6]記載のウイルス、
- [8]ウイルスがバキュロウイルスである[7]記載のウイルス、
- [9]ウイルスが出芽ウイルスである[6]～[8]いずれか記載のウイルス、
- [10]トランスポーターがペプチドトランスポーターまたは有機アニオントラン
スポーターである[6]～[9]いずれか記載のウイルス、
- [11]トランスポーターが PepT1、PepT2 又は OATP-C である[10]記載のウイル
ス、
- [12]ウイルス膜上でトランスポーターを発現させることを特徴とする、トラン

- 5 -

- スポーターの活性測定方法、
[13]ウイルスが出芽バキュロウイルスである[12]記載の方法、
[14]トランスポーターがペプチドトランスポーターまたは有機アニオントラン
スポーターである[12]または[13]記載の方法、
[15]トランスポーターが PepT1、PepT2 又は OATP-C である[14]記載の方法、
[16]以下の工程を含むトランスポーターのトランスポート活性を阻害又は促進
する物質のスクリーニング方法、
(a) ウィルス膜上にトランスポーターを発現させる工程、
(b) 該トランスポーターに被験物質を接触させる工程、及び
(c) トランスポート活性を阻害又は促進する物質を選択する工程
[17]ウイルスがバキュロウイルスである[16]記載の方法、
[18]ウイルスが出芽ウイルスである[16]又は[17]記載の方法、
[19]トランスポーターが非ウイルス由来である[16]～[18]いずれか記載の
方法、
[20]トランスポーターがペプチドトランスポーターまたは有機アニオントラン
スポーターである、[16]～[19]いずれか記載の方法、
[21]トランスポーターが PepT1、PepT2 又は OATP-C である、[20]記載の方法、
[22]ウイルスが担体に固定されていることを特徴とする[16]～[21]いずれ
か記載の方法、及び
[23]ウイルスの担体への固定が、ウイルス膜上に発現している膜タンパク質に
対する抗体を介して行われていることを特徴とする[22]記載の方法、
[24]ウイルスの担体への固定が、ウイルス膜上に発現しているタンパク質をビ
オチン化することでビオチン・ストレプトアビジン反応を介して行われる
ことを特徴とする請求項 22 記載の方法、
を提供するものである。
本発明は、トランスポーターをコードする遺伝子を含む組換えウイルスを感染

- 6 -

させた宿主を培養し、該宿主から放出される出芽ウイルス膜上にトランスポーターを発現させることを特徴とする、トランスポーター活性を有するトランスポーターを発現させる方法に関する。ここで、本発明におけるトランスポーターとしては、例えば、ペプチドトランスポーター、アミノ酸トランスポーター、糖トランスポーター等が挙げられる。より詳細には、表1に示されるようなトランスポーターを例示することができる。

- 7 -

表 1

トランスポーター	駆動力／輸送形式	アミノ酸	膜貫通	ncbi	文献
4F2hc	LAT調節因子	529	1	P08195	Proc. Natl. Acad. Sci. U.S.A. 84 (18), 6526-6530 (1987)
AE4	Cl/HCO交換輸送	945	14	AAK16733	Commun. 282 (5), 1103-1109 (2001)
ATB ⁰ /AS CT2	Na/中性アミノ酸共輸送	541	10	Q15758	J. Biol. Chem. 271 (31), 18657-18661 (1996)
ATB ⁰⁺	Na/中性・塩基性アミノ酸共輸送	642	12	AAD49223	J. Biol. Chem. 274 (34), 23740-23745 (1999)
BAT1/b ⁰⁺ AT	促進拡散(アミノ酸)	487	12	P82251	Nat. Genet. 23 (1), 52-57 (1999)
BCRP	ATP/一次性能動輸送	655	6	AAC97367	Proc. Natl. Acad. Sci. U.S.A. 95 (26), 15665-15670 (1998)
BSEP	ATP/一次性能動輸送	1321	12	AAC77455	Nat. Genet. 20 (3), 233-238 (1998)
BTR1	Cl/HCO交換輸送	891	14	AAK16734	Commun. 282 (5), 1103-1109 (2001)
CNT1	Na/ヌクレオシド共輸送	649	13	NP_004204	Am. J. Physiol. 272 (2), C707-C714 (1997)
CNT2	Na/ヌクレオシド共輸送	658	14	O43868	Am. J. Physiol. 273 (6 Pt 2), F1058-F1065 (1997)
CNT3	Na/ヌクレオシド共輸送	691	13	NP_071410	J. Biol. Chem. 276 (4), 2914-2927 (2001)
DRA/CLD	Cl/HCO交換輸送	764		P40879	Proc. Natl. Acad. Sci. U.S.A. 90 (9), 4166-4170 (1993)
EAAC1	Na/酸性アミノ酸共輸送	525	12	NP_004161	Genomics 20 (2), 335-336 (1994)
ENT1	促進拡散(ヌクレオシド)	456	14	NP_004946	Nat. Med. 3 (1), 89-93 (1997)
ENT2	促進拡散(ヌクレオシド)	456	14	AAC39526	Biochem. J. 328 (Pt 3), 739-743 (1997)
FORT	葉酸	591	12	P41440	Commun. 206 (2), 681-687 (1995)
GAT1	Na/GABA共輸送	599	12	NP_003033	FEBS Lett. 269 (1), 181-184 (1990)
GAT3	Na/GABA共輸送	632	12	P48066	Recept. Channels 2 (3), 207-213 (1994)
GLUT1	促進拡散(グルコース)	492	12	NP_006507	Science 229 (4717), 941-945 (1985)

GLUT2	促進拡散(グルコース)	524	12	NP_000331	Proc. Natl. Acad. Sci. U.S.A. 85 (15), 5434-5438 (1988)
GLUT3	促進拡散(グルコース)	496	12	NP_008862	J. Biol. Chem. 263, 15245-15248 (1988)
GLUT4	促進拡散(グルコース)	509	12	NP_001033	J. Biol. Chem. 264 (14), 7776-7779 (1989)
GLVR1/PiT-1	Na/Pi共輸送	679	10	NP_005406	Cell Growth Differ. 1 (3), 119-127 (1990)
GLVR2/PiT-2	Na/Pi共輸送	652	10	NP_006740	J. Virol. 65 (11), 6316-6319 (1991)
LAT1	促進拡散(アミノ酸)	507	12	JG0165	Commun. 255 (2), 283-288 (1999)
LRP	ATP/一次性能動輸送	896		NP_059447	Nat. Med. 1 (6), 578-582 (1995)
MCT1	H/有機アニオニン共輸送	500	12	NP_003042	Genomics 23 (2), 500-503 (1994)
MCT2	H/有機アニオニン共輸送	478	12	O60669	J. Biol. Chem. 273 (44), 28959-28965 (1998)
MCT3	H/有機アニオニン共輸送	465	12	O15427	Biochem. J. 329 (Pt 2), 321-328 (1998)
MCT4	H/有機アニオニン共輸送	487	12	O15374	Biochem. J. 329 (Pt 2), 321-328 (1998)
MCT5	H/有機アニオニン共輸送	505	12	O15375	Biochem. J. 329 (Pt 2), 321-328 (1998)
MCT6	H/有機アニオニン共輸送	523	12	O15403	Biochem. J. 329 (Pt 2), 321-328 (1998)
MDR1	ATP/一次性能動輸送	1279	12	AAB69423	Cell 47 (3), 381-389 (1986)
MDR3	ATP/一次性能動輸送	1279	12	P21439	EMBO J. 6 (11), 3325-3331 (1987)
MRP1	ATP/一次性能動輸送	1531	17	P33527	Science 258 (5088), 1650-1654 (1992)
MRP2	ATP/一次性能動輸送	1545	17	Q92887	Cancer Res. 56 (18), 4124-4129 (1996)
MRP3	ATP/一次性能動輸送	1527	17	NP_003777	Cancer Res. 57 (16), 3537-3547 (1997)
MRP4	ATP/一次性能動輸送	1325	12	NP_005836	Cancer Res. 57 (16), 3537-3547 (1997)
MRP5	ATP/一次性能動輸送	1437	12	O15440	Cancer Res. 57 (16), 3537-3547 (1997)
MRP6	ATP/一次性能動輸送	1503	17	O95255	Cancer Res. 59 (1), 175-182 (1999)

- 9 -

MRP7	ATP/一次性能動輸送	1492	17		Cancer Lett. 162 (2), 181-191 (2001)
NaPi-3B	Na/Pi共輸送	690	8	NP_006415	Commun. 258 (3), 578-582 (1999)
NaSi-1	Na/Si共輸送	595	13	NP_071889	Genomics 70 (3), 354-363 (2000)
NHE1	Na/H交換輸送	815	12	P19634	Cell 56 (2), 271-280 (1989)
NHE2	Na/H交換輸送	812	12	NP_003039	Am. J. Physiol. 40 (2), 383-390 (1999)
NHE3	Na/H交換輸送	834	12	NP_004165	Am. J. Physiol. 269 (1 Pt 1), C198-C206 (1995)
NPT1	Na/Pi共輸送	467	6-8	Q14916	Genomics 18 (2), 355-359 (1993)
NPT2/NaPi-3	Na/Pi共輸送	639	8	NP_003043	Proc. Natl. Acad. Sci. U.S.A. 90, 5979-5983 (1993)
Nramp2/DCT1	H/Fe共輸送	568	12	P49281	Mol. Immunol. 34 (12-13), 839-842 (1997)
NTCP2/A SBT	Na/胆汁酸共輸送	348	7	NP000443	J. Biol. Chem. 270 (45), 27228-27234 (1995)
OAT1	促進拡散(有機アニオン)	550	12	NP_004781	Commun. 255 (2), 508-514 (1999)
OAT2	促進拡散(有機アニオン)	548	12	NP_006663	
OAT3	促進拡散(有機アニオン)	568	12	NP_004781	Commun. 255 (2), 508-514 (1999)
OAT4	促進拡散(有機アニオン)	550	12	AAK68155	J. Biol. Chem. 275 (6), 4507-4512 (2000)
OATP-A	促進拡散(有機アニオン)	670	12	NP_066580	Gastroenterology 109 (4), 1274-1282 (1995)
OATP-B	促進拡散(有機アニオン)	709	12	NP_009187	Commun. 273 (1), 251-260 (2000)
OATP-C	促進拡散(有機アニオン)	691	12	BAA78639	Commun. 273 (1), 251-260 (2000)
OATP-D	促進拡散(有機アニオン)	710	12	BAA89287	Commun. 273 (1), 251-260 (2000)
OATP-E	促進拡散(有機アニオン)	722	12	BAA89288	Commun. 273 (1), 251-260 (2000)
OCT1	促進拡散(有機カチオン)	554	12	NP_003048	Mol. Pharmacol. 51 (6), 913-921 (1997)
OCT2	促進拡散(有機カチオン)	555	12	NP_003049	DNA Cell Biol. 16 (7), 871-881 (1997)

- 10 -

OCT3	促進拡散(有機カチオン)	551	12	NP_035525	Genomics 55 (2), 209-218 (1999)
OCTN1	H/有機カチオン	551	11	NP_003050	FEBS Lett. 419 (1), 107-111 (1997)
OCTN2	Na/有機カチオン共輸送	557	12	O76082	Commun. 246 (3), 589-595 (1998)
PGT	促進拡散(有機アニオン)	643	12	NP_005612	Commun. 221 (2), 454-458 (1996)
rBAT	BAT1調節因子	685	1	AAA81778	J. Biol. Chem. 268 (20), 14842-14849 (1993)
SDCT1/NaDC-1	Na/ジカルボン酸共輸送	592	8	NP_003975	Am. J. Physiol. 270 (4 Pt 2), F642-F648 (1996)
SGLT1	Na/グルコース共輸送	664	14	NP00334	Proc. Natl. Acad. Sci. U.S.A. 86 (15), 5748-5752 (1989)
SGLT2	Na/グルコース共輸送	672	14	NP_003032	Am. J. Physiol. 263 (3 Pt 2), F459-F465 (1992)
SGLT3/S-AAT1	Na/グルコース共輸送	659	14	P31636	J. Biol. Chem. 268 (3), 1509-1512 (1993)
SLC26A6	Cl/HCO交換輸送	738	11	NP_075062	Genomics 70 (1), 102-112 (2000)
SVCT1	Na/ビタミンC共輸送	598	12	NP_005838	Biochim. Biophys. Acta 1461 (1), 1-9 (1999)
UT2	尿素(促進拡散)	397	10	Q15849	FEBS Lett. 386 (2-3), 156-160 (1996)

本発明において、好ましいトランスポーターはペプチドトランスポーターまたは有機アニオントランスポーターであり、特に PepT1、PepT2 又は OATP-C が好ましい。PepT1 および PepT2 の塩基配列、アミノ酸配列は既に知られている（ヒト PepT1 : GenBank XM_007063、J. Biol. Chem. 270(12) : 6456-6463 (1995)；ヒト PepT2 : GenBank NP_066568、XM_002922、Biochim. Biophys. Acta. 1235:461-466 (1995)；マウス PepT1 : GenBank AF205540、Biochim. Biophys. Acta. 1492: 145-154 (2000)；マウス PepT2 : GenBank NM_021301、Biochim. Biophys. Res. Commun. 276: 734-741 (2000)）。また、OATP-C の塩基配列、アミノ酸配列も既に知れらている（表 1 : Commun.273(1),251-260 (2000)）。しかしながら、本発明のトランスポーターは特にこれらのトランスポーターに限定されず、ウイルス

- 11 -

膜上に発現され得るものであればよい。

トランスポーターをコードする遺伝子は、例えば、表1に記載のものについて
は米国バイオテクノロジー情報センター(NCBI)に表記の Accession 番号で登録さ
れており、例えば、それらの配列情報を元に cDNA ライブラリーやゲノムライブ
ラリーをスクリーニングすることにより得ることができる。より具体的には、例
えば、cDNA またはゲノムライブラリーをプローブ(目的のトランスポーターに対
する抗体、若しくは、標的のトランスポーターをコードする塩基配列に対してハ
イブリダイズするオリゴヌクレオチド)を用いてスクリーニングする。スクリー
ニングは例えば、Sambrook らの『Molecular Cloning: A Laboratory Manual』
(New York, Cold Spring Harbor Laboratory Press, 1989) 第 10~12 章に記載の
標準的な手法に従って行うことができる。また、PCR 法(前述の Sambrook ら(198
9)の第 14 章など参照)により目的のトランスポーターをコードする遺伝子を単離
することも可能である。

トランスポーターのウイルス膜上への発現方法としては、例えば、W098/46777
及びLoisel ら(T.P. Loisel et al., Nature Biotech. 15: 1300-1304 (1997))の
出芽バキュロウイルスを用いた膜タンパク質の発現方法を挙げることができる。
より詳細には、トランスポーターをコードする遺伝子を含む昆虫細胞用の組換え
ベクターを作製し、バキュロウイルス DNA と共に Sf9 等の昆虫細胞へ導入する。
すると、組換えベクターにコードされるトランスポーターは、感染細胞が死滅す
る前に感染細胞より細胞外に放出される成熟ウイルス粒子(ビリオン)上に発現さ
れ、トランスポーターを発現する組換えウイルスを得ることができる。

本発明において、出芽ウイルスとは出芽(budding)により感染細胞から放出さ
れるウイルスのことである。一般に細胞膜を被ったウイルスは細胞が破壊されて
いない状態でも当該ウイルスに感染した細胞から発芽し、継続的に放出されるの
に対し、膜を被らないアデノウイルスや、核膜を被ったヘルペスウイルスは細胞
が破壊された時に一斉に放出される。本発明においては、特に出芽ウイルスが好

- 12 -

ましい。また、本発明において組換えウイルスを感染させる宿主は、当業者であれば、用いるウイルスの種類に応じて、ウイルスの増殖を可能ならしめる宿主を適宜選択することができる。例えば、バキュロウイルスを用いる場合、Sf9等の昆虫細胞の使用が考えられる。一般に、バキュロウイルス-昆虫細胞を用いたタンパク質発現系は、哺乳動物細胞と同様に脂肪酸アセチル化及び糖鎖付加等の翻訳と同時または翻訳後の修飾が行われること、並びに、哺乳動物細胞系よりも異種タンパク質の発現レベルが高いこと(Luckow V. A. and Summers M. D., Virol. 167: 56 (1988))から有利な系であると考えられている。

さらに、本発明により、トランスポーター活性を有するトランスポーターを発現しているウイルスが提供される。ここで、ウイルスとしてはバキュロウイルス、ペピローマウイルス、ポリオーマウイルス、SV40(simian virus 40)、アデノウイルス、EBV(Epstein-Bar virus)、レトロウイルス等を挙げることができる。本発明において、特に好ましいウイルスとしては、AcMNPV(Invitrogen)等のバキュロウイルスが挙げられ、また、出芽ウイルスが本発明のウイルスとして好ましい。また、ウイルスにより発現されているトランスポーターは好ましくは非ウイルス由来であり、例えば表1に挙げられるトランスポーターが例示される。中でも、ペプチドトランスポーターまたは有機アニオントランスポーターが好ましく、さらに好適には PepT1、PepT2 及び OATP-C を挙げることができる。

本発明のトランスポーター活性を有するトランスポーターを発現しているウイルスは、例えば、トランスポーターをコードする遺伝子を含む組換えウイルスを感染させた宿主を培養することによって得ることができる。または、上述の WO98/46777 及び Loisel ら(T. P. Loisel et al., Nature Biotech. 15: 1300-1304 (1997))の方法の様に、トランスポーターをコードする組換えベクターをバキュロウイルスと共に昆虫細胞に導入することにより、細胞外へ放出されるバキュロウイルスの膜上にトランスポーターを発現させることもできる。また、Strehlow ら (D. Strehlow et al., Proc. Natl. Acad. Sci. USA. 97: 4209-4214(2000)) の方

- 13 -

法のように、トランスポーターをコードする遺伝子を導入した Moloney ウィルス由来ベクターより作製した組換えウィルスを PA317 等のパッケージング細胞に感染させることにより、細胞外へ放出される Moloney murine leukemia ウィルスの膜上にトランスポーターを発現させることができる。しかしながら、本発明のトランスポーター活性を有するトランスポーターを発現しているウィルスは、この方法により調製されたものに限定されず、トランスポーターがウィルス粒子内、または表面に発現されていれば如何なる方法により作製されたウィルスも包含される。

上述のようにして調製された組換えウィルスは、公知の手法により精製することができる。例えば、増加密度勾配遠心法(augment densitygradient centrifugation) (Albrechtsen et al., J.Virological Methods 28: 245-256 (1990); Hewish et al., J.Virological Methods 7: 223-228 (1983))、サイズ排除(size exclusion)クロマトグラフィー(Hjorth and Mereno-Lopez, J.Virological Methods 5: 151-158 (1982); Crooks et al., J.Chrom. 502: 59-68 (1990); Mento S. J. (Viagene, Inc.) 1994 Williamsburg Bioprocessing Conference)、モノクローナル抗体及びフコース硫酸含有多糖類等を利用したアフィニティーコロマトグラフィー(Najayou et al., J.Virological Methods 32: 67-77 (1991); Diaco et al., J.Gen.Virol. 67: 345-351 (1986); Fowler, J.Virological Methods 1 1: 59-74 (1986); 特再表 97/032010)、DEAE イオン交換クロマトグラフィー(Haruna et al., Virology 13: 264-267 (1961))等がウィルスを精製する方法として知られている。本発明のトランスポーターを発現しているウィルスもこれらに限定されるわけではないが、上述の方法、または、これらの方法を組み合せて精製しても良い。

本発明はまた、ウィルス膜上でトランスポーターを発現させることを特徴とする、トランスポーターの活性測定方法に関する。例えば、出芽バキュロウイルスを用いたトランスポーター活性測定は次のような方法で実施できる。まず、最初

- 14 -

に必要であればトランスポーターによりウイルス内に取り込ませる基質を検出可能なように標識する。例えば、放射性物質、蛍光等による標識が考えられる。次に、トランスポーターを発現している出芽バキュロウイルスと基質を混合し、37°Cで反応させる。一定時間後、反応液をセルロース膜などのフィルター上に移し、ウイルス内に取り込まれた基質取り込まれなかつた基質を吸引濾過法で分離する。あらかじめ氷冷しておいた緩衝液で数回フィルターを洗浄し、フィルターに捕捉されたウイルス中の基質濃度を液体シンチレーションカウンター、蛍光検出器やHPLCなどで定量する。非特異的な取り込みは、トランスポーターを発現していない野生型ウイルスへの基質の取り込みで検出することができる。また、トランスポーターに対する阻害剤を基質と共に存させる、あるいは基質が放射性物質の場合は過剰量の非標識体を共存させて取り込み試験を実施することでも非特異的取り込みを評価できる。また、4°Cで取り込み試験を実施し、非特異的取り込みを評価することもできる。

別の方法としては、トランスポーターを発現している出芽バキュロウイルス溶液を96ウェルプレートなどに添加し、4°Cで一晩放置し、プレートへのコーティングを行う。または、ウイルス膜上に高発現しているgp64タンパク質などの膜タンパク質に対する抗体を96ウェルプレートなどに添加し、4°Cで一晩放置する。その後、トランスポーターを発現している出芽バキュロウイルスをプレートに添加し、抗gp64抗体(Novagen社、Clontech社)などの膜タンパク質に対する抗体を介してウイルスをプレートにコーティングすることもできる。ウイルスをコーティングしたプレートに基質を添加し、反応を開始する。一定時間後、あらかじめ氷冷しておいた緩衝液でプレートを洗浄し、ウイルスに取り込まれなかつた基質を取り除く。ウイルスに取り込まれた基質量を液体シンチレーションカウンター、蛍光検出器やHPLCなどで定量する。プレートへの非特異的吸着が高い場合には、活性測定前にスキムミルクなどでブロッキングを行ってもよい。非特異的な取り込みは、トランスポーターを発現していない野生型ウイルスへの基質の取

- 15 -

り込みで検出することができる。また、トランスポーターに対する阻害剤を基質と共に存させ、あるいは基質が放射性物質の場合は過剰量の非標識体を共存させて取り込み試験を実施することでも非特異的取り込みを評価できる。また、4°Cで取り込み試験を実施し、非特異的取り込みを評価することもできる。

通常、生体材料や培養細胞から調製した細胞膜小胞などはディープフリーザーあるいは液体窒素中で保存するが、出芽バキュロウイルスは4°Cで保存可能であり、特殊な冷凍機器は必要としない。また、細胞培養など煩雑な操作がなく、活性測定に電気生理学的手法のような特殊な機器を必要としないため、発芽バキュロウイルス発現系は簡便なトランスポーター活性測定法である。

本発明のウイルス膜上でトランスポーターを発現させることを含むトランスポーター活性の測定方法は、トランスポーターの活性を阻害または促進する物質の探索にも応用可能である。特に発芽バキュロウイルス発現系を用いる方法は簡便であり、トランスポーター活性を阻害または促進する物質を同定するに当たっても有用である。本方法においては、具体的には、例えば、目的とするトランスポーターを発現させた出芽バキュロウイルスを作製する。そのトランスポーターの放射性基質あるいは蛍光基質と被験物質を混合し、トランスポーター発現ウイルスへ添加する。基質を添加する前に、化合物をあらかじめウイルスにプレロードすることも可能である。被験物質非存在下での輸送活性を100として、被験物質存在下での活性変化を指標にトランスポーター活性を阻害または促進する物質を探索する。被験物質がトランスポーター活性を阻害または促進しているか否かの判定は、公知の方法、例えば、放射性物質(¹⁴Cなど)、蛍光物質等で輸送の対象となる基質(例えば、ペプチドトランスポーターの場合にはペプチド)を標識し、該基質がトランスポーター発現ウイルスに取り込まれた量を測定すること等により行うことができる。

本発明のトランスポーターのトランスポート活性を阻害または促進する物質のスクリーニング方法における被験物質としては、例えば、精製若しくは粗タンパ

- 16 -

ク質(抗体を含む)、遺伝子ライブラリーの発現産物、合成ペプチドのライブラリー、細胞抽出液、細胞培養上清、発酵微生物産生物、海洋生物抽出物、植物抽出物、合成低分子化合物のライブラリー、ペプチド、非ペプチド性化合物、天然化合物等が挙げられるが、これらに制限はない。

ウイルス膜上に発現されたトランスポーターは、例えば、精製したタンパク質の形態、担体に結合させた形態、他のタンパク質との融合タンパク質の形態、または膜画分の形態等で被験物質に接触させることができる。ここでウイルスを固定する担体としては、合成または天然の有機高分子化合物、ガラスビーズ、シリカゲル、アルミナ、活性炭等の無機材料、さらにはこれらの材料に多糖類、合成高分子をコーティングしたもの等を挙げることができる。有機高分子化合物としては、アガロース、セルロース、キチン、キトサン、セファロース、デキストラン等の多糖類、ポリエステル、ポリ塩化ビニル、ポリスチレン、ポリスルfonyl、ポリエーテルスルfonyl、ポリプロピレン、ポリビニルアルコール、ポリアミド、シリコン樹脂、フッ素樹脂、ポリウレタン、ポリアクリルアミド、それらの誘導体を含む多数の化合物を例示することができるが、ウイルスを固定化することができれば特にその組成は制限されるものではないことが理解される。担体の形状にも特に制限はなく、例えば、プレート等の膜状、繊維状、顆粒状、中空糸状、不織布状、多孔形状、ハニカム形状等が挙げられるが、本発明においては、特に市販のプレートへの固定が簡便性の面から好ましい。これらの担体の形状や表面積等を変化させることによって、被験物質との接触面積を制御することができる。ウイルスは、例えば、該ウイルス上に発現している膜タンパク質に対する抗体を介して担体に固定することができる。また、あらかじめビオチン化すればストレプトアビジンやアビジンを介して担体に固定することもできる。

トランスポーター活性の阻害剤または促進剤の探索により、トランスポーターの生理的機能を明らかにできると共に、それらの阻害剤及び促進剤を、トランスポーターの異常に起因する疾患に対する医薬品開発において応用することも考え

られる。

本発明のトランスポーター発現出芽バキュロウイルス又は該ウイルスのトランスポーターを含む膜部分はトランスポーター抗体を作製する際の免疫抗原ならびにスクリーニング抗原として利用可能である。このような抗原の調製は、例えば、バキュロウイルスを用いた WO98/46777 等の記載の方法に準じて行うことができる。

従来、トランスポーターに対する抗体を作成する際には、活性を有するトランスポーターを免疫原とすることは困難であったが、本発明の方法により発現させたトランスポーターはトランスポート活性を有していることが確認されているので、本発明のトランスポーター発現ウイルス又は該ウイルスのトランスポーターを含む膜部分を免疫原として用いれば、活性を有するトランスポーターを免疫原にすることが可能となる。

よって、本発明のトランスポーター発現ウイルス又は該ウイルスのトランスポーターを含む膜部分を免疫原として抗体を作成することは非常に有用である。

従つて、本発明は、トランスポーター発現出芽ウイルス又は該ウイルスのトランスポーターを含む膜部分を免疫抗原とすることを特徴とする抗トランスポーター抗体の作製方法、及び該方法により作製された抗体を提供する。

本発明のトランスポーター抗体の作製は、トランスポーター発現ウイルス又は該ウイルスのトランスポーターを含む膜部分を皮下または腹腔内注射等により非ヒト哺乳動物に複数回投与することにより、当業者に周知の方法で作製することができる。

感作抗原で免疫される哺乳動物としては、特に限定されるものではないが、細胞融合に使用する親細胞との適合性を考慮して選択するのが好ましく、一般的には、げっ歯目、ウサギ目、靈長目の動物が使用される。

げっ歯目の動物としては、例えば、マウス、ラット、ハムスター等が使用される。ウサギ目の動物としては、例えば、ウサギが使用される。靈長目の動物とし

- 18 -

ては、例えば、サルが使用される。サルとしては、狭鼻下目のサル（旧世界ザル）、例えば、カニクイザル、アカゲザル、マントヒヒ、チンパンジー等が使用される。

感作抗原を動物に免疫するには、公知の方法にしたがって行われる。一般的な方法としては、感作抗原を哺乳動物の腹腔内又は皮下に注射する。具体的には、感作抗原を PBS (Phosphate-Buffered Saline) や生理食塩水等で適当量に希釈、懸濁したものに対し、所望により通常のアジュバント、例えば、フロイント完全アジュバントを適量混合し、乳化後、哺乳動物に投与する。さらに、その後、フロイント不完全アジュバントに適量混合した感作抗原を、4~21 日毎に数回投与することが好ましい。また、感作抗原免疫時に適當な担体を使用することができる。このように免疫し、血清中に所望の抗体レベルが上昇するのを常法により確認する。

ここで、本発明のトランスポーターに対するポリクローナル抗体を得るには、血清中の所望の抗体レベルが上昇したことを確認した後、抗原を感作した哺乳動物の血液を取り出す。この血液から公知の方法により血清を分離する。ポリクローナル抗体としては、ポリクローナル抗体を含む血清を使用してもよいし、必要に応じこの血清からポリクローナル抗体を含む画分をさらに単離して、これを使用してもよい。例えば、本発明のトランスポーターをカップリングさせたアフィニティーカラムを用いて、本発明のトランスポーターのみを認識する画分を得て、さらにこの画分をプロテイン A あるいはプロテイン G カラムを利用して精製することにより、免疫グロブリン G あるいは M を調製することができる。

モノクローナル抗体を得るには、上記抗原を感作した哺乳動物の血清中に所望の抗体レベルが上昇するのを確認した後に、哺乳動物から免疫細胞を取り出し、細胞融合に付せばよい。この際、細胞融合に使用される好ましい免疫細胞として、特に脾細胞が挙げられる。前記免疫細胞と融合される他方の親細胞としては、好ましくは哺乳動物のミエローマ細胞、より好ましくは、薬剤による融合細胞選別

- 19 -

のための特性を獲得したミエローマ細胞が挙げられる。

前記免疫細胞とミエローマ細胞の細胞融合は基本的には公知の方法、例えば、ミルステインらの方法(Galfre, G. and Milstein, C., Methods Enzymol. (1981) 73, 3-46)等に準じて行うことができる。

細胞融合により得られたハイブリドーマは、通常の選択培養液、例えば、HAT 培養液（ヒポキサンチン、アミノプテリンおよびチミジンを含む培養液）で培養することにより選択される。当該 HAT 培養液での培養は、目的とするハイブリドーマ以外の細胞（非融合細胞）が死滅するのに十分な時間、通常、数日～数週間継続して行う。次いで、通常の限界希釈法を実施し、目的とする抗体を産生するハイブリドーマのスクリーニングおよびクローニングを行う。

また、ヒト以外の動物に抗原を免疫して上記ハイブリドーマを得る他に、ヒトリンパ球、例えばEB ウィルスに感染したヒトリンパ球を *in vitro* で本発明のトランスポーター発現ウイルス又は該ウイルスのトランスポーターを含む膜部分で感作し、感作リンパ球をヒト由来の永久分裂能を有するミエローマ細胞、例えば U266 と融合させ、トランスポーターへの結合活性を有する所望のヒト抗体を產生するハイブリドーマを得ることもできる（特開昭 63-17688 号公報）。

次いで、得られたハイブリドーマをマウス腹腔内に移植し、同マウスより腹水を回収し、得られたモノクローナル抗体を、例えば、硫酸沈殿、プロテイン A、プロテイン G カラム、DEAE イオン交換クロマトグラフィー、本発明のトランスポーターをカップリングしたアフィニティーカラムなどにより精製することで調製することが可能である。本発明の抗体は、本発明のトランスポーターの精製、検出に用いられる他、本発明のトランスポーターのアゴニストやアンタゴニストの候補になる。また、この抗体を本発明のトランスポーターが関与する疾患の抗体治療へ応用することも考えられる。得られた抗体を人体に投与する目的（抗体治療）で使用する場合には、免疫原性を低下させるため、ヒト抗体やヒト型抗体が好ましい。

- 20 -

例えば、ヒト抗体遺伝子のレパートリーを有するトランスジェニック動物に抗原となるトランスポーター発現ウイルス又は該ウイルスのトランスポーターを含む膜部分を免疫して抗体産生細胞を取得し、これをミエローマ細胞と融合させたハイブリドーマを用いてトランスポーターに対するヒト抗体を取得することができる（国際公開番号 W092-03918、W093-2227、W094-02602、W094-25585、W096-33735 および W096-34096 参照）。

ハイブリドーマを用いて抗体を産生する以外に、抗体を産生する感作リンパ球等の免疫細胞を癌遺伝子（oncogene）により不死化させた細胞を用いてもよい。

このように得られたモノクローナル抗体はまた、遺伝子組換え技術を用いて產生させた組換え型抗体として得ることができる（例えば、Borrebaeck, C. A. K. and Larrick, J. W., THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the United Kingdom by MACMILLAN PUBLISHERS LTD, 1990 参照）。組換え型抗体は、それをコードする DNA をハイブリドーマ又は抗体を産生する感作リンパ球等の免疫細胞からクローニングし、適当なベクターに組み込んで、これを宿主に導入し產生させる。本発明は、この組換え型抗体を包含する。

さらに、本発明の抗体は、本発明のポリペプチドに結合する限り、その抗体断片や抗体修飾物であってよい。例えば、抗体断片としては、Fab、F(ab')₂、Fv 又は H鎖と L鎖の Fv を適当なリンカーで連結させたシングルチェイン Fv (scFv) (Huston, J. S. et al., Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 5879-5883) が挙げられる。具体的には、抗体を酵素、例えば、パパイン、ペプシンで処理し抗体断片を生成させるか、又は、これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、適当な宿主細胞で発現させる（例えば、Co, M. S. et al., J. Immunol. (1994) 152, 2968-2976 ; Better, M. and Horwitz, A. H., Methods Enzymol. (1989) 178, 476-496 ; Pluckthun, A. and Skerra, A., Methods Enzymol. (1989) 178, 497-515 ; Lamoyi, E., Methods Enzymol. (1986) 121, 652-663 ; Rousseaux, J. et al., Methods Enzymol. (198

- 21 -

- 6) 121, 663-669 ; Bird, R. E. and Walker, B. W., Trends Biotechnol. (1991) 9, 132-137 参照)。

抗体修飾物として、ポリエチレングリコール (PEG) 等の各種分子と結合した抗体を使用することもできる。本発明の「抗体」にはこれらの抗体修飾物も含まれる。このような抗体修飾物を得るには、得られた抗体に化学的な修飾を施すことによって得ることができる。これらの方法はこの分野において既に確立されている。

また、本発明の抗体は、公知の技術を使用して非ヒト抗体由来の可変領域とヒト抗体由来の定常領域からなるキメラ抗体又は非ヒト抗体由来の CDR (相補性決定領域) とヒト抗体由来の FR (フレームワーク領域) 及び定常領域からなるヒト型化抗体として得ることができる。

前記のように得られた抗体は、均一にまで精製することができる。本発明で使用される抗体の分離、精製は通常の分離、精製方法を使用すればよい。例えば、アフィニティーコロマトグラフィー等のクロマトグラフィーカラム、フィルター、限外濾過、塩析、透析、SDS ポリアクリルアミドゲル電気泳動、等電点電気泳動等を適宜選択、組み合わせれば、抗体を分離、精製することができる (Antibodies : A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988) が、これらに限定されるものではない。上記で得られた抗体の濃度測定は吸光度の測定又は酵素結合免疫吸着検定法(Enzyme-linked immunosorbent assay ; ELISA)等により行うことができる。

アフィニティーコロマトグラフィーに用いるカラムとしては、プロテインAカラム、プロテインGカラムが挙げられる。例えば、プロテインAを用いたカラムとして、Hyper D, POROS, Sepharose F. F. (Pharmacia) 等が挙げられる。

アフィニティーコロマトグラフィー以外のクロマトグラフィーとしては、例えば、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆相クロマトグラフィー、吸着クロマトグラフィー等が挙げられる (Strategies for

- 22 -

r Protein Purification and Characterization : A Laboratory Course Manual.

Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996)。

これらのクロマトグラフィーは HPLC、FPLC 等の液相クロマトグラフィーを用いて行うことができる。

また、本発明の抗体の抗原結合活性を測定する方法として、例えば、吸光度の測定、酵素結合免疫吸着検定法(Enzyme-linked immunosorbent assay ; ELISA)、EIA (酵素免疫測定法)、RIA (放射免疫測定法) あるいは蛍光抗体法を用いることができる。ELISA を用いる場合、本発明の抗体を固相化したプレートに本発明のトランスポーターを添加し、次いで目的の抗体を含む試料、例えば、抗体産生細胞の培養上清や精製抗体を加える。酵素、例えば、アルカリリフォスファターゼ等で標識した抗体を認識する二次抗体を添加し、プレートをインキュベーションし、次いで洗浄した後、p-ニトロフェニル磷酸などの酵素基質を加えて吸光度を測定することで抗原結合活性を評価することができる。本発明の抗体の活性評価には、BIAcore (Pharmacia 製) を使用することができる。

トランスポーター結合抗体のスクリーニングは出芽バキュロウイルスをコーティングした 96 ウェルプレートを用いて ELISA により行うことができる。ウイルス抗原に対する抗体は野生型ウイルスをスクリーニング抗原とした ELISA で除くことができる。あるいは、ハイブリドーマ培養上清と野生型ウイルスを反応させ、ウイルス抗原に対する抗体をあらかじめ除いた後に、トランスポーター発現ウイルスをスクリーニング抗原とした ELISA を行い、トランスポーターの結合抗体を取得することもできる。結合抗体の中から、機能阻害抗体のスクリーニングも可能である。即ち、目的とするトランスポーターの放射性基質あるいは蛍光基質とハイブリドーマ培養上清など抗体を含む溶液を混合し、トランスポーター発現ウイルスへ添加する。基質を添加する前に、ハイブリドーマ培養上清などの抗体を含む溶液をあらかじめウイルスにプレロードすることも可能である。抗体非存在下での輸送活性を 100 として、抗体存在下での活性低下を指標に機能阻害抗体を

- 23 -

スクリーニングすることができる。トランスポーターに対する結合抗体により、トランスポーターの組織分布を細胞レベルで明らかにできる。また、機能阻害抗体は培養細胞に添加する、あるいは実験動物に投与することでトランスポーターの生理的機能の解明に大きく貢献できる。また、疾患に関連するトランスポーターに対する結合抗体や機能阻害抗体は、医薬品として応用することも考えられる。

本発明は、SNPsなどの多型や変異などによるアミノ酸配列の変化により、トランスポーターの活性がどのように変化するかの評価などにも利用することが可能である。例えば、OATP-Cでは多数のSNPsが存在し、これらのSNPsによりアミノ酸配列が変化していることが報告されている(J. Biol. Chem., 276, (2001))。これらアミノ酸の変化したOATP-Cのそれぞれについて本発明の方法によりトランスポート活性を測定すれば、トランスポート活性に影響を与えるSNPsを同定することや、活性の高いトランスポーターをスクリーニングすることなどを行うことが可能である。

又、トランスポーターのアミノ酸配列を人為的に置換、挿入、欠失、付加などして変異体を作成した後に、該トランスポーターの活性を測定して、活性の高いトランスポーターをスクリーニングすることや、トランスポート活性に影響を与える領域を同定することも可能である。アミノ酸を置換したトランスポーターの調製は当業者によく知られた方法を用いることができ、例えば、部位特異的変異誘発法(Hashimoto-Gotoh, T. et al., Gene, 152, 271-275, (1995)、Zoller, M J, and Smith, M., Methods Enzymol, 100, 468-500, (1983)、Kramer, W et al., Nucleic Acids Res, 12, 9441-9456, (1984)、Kramer, W and Fritz, HJ., Method Enzymol, 154, 350-367, (1987)、Kunkel, TA., Proc Natl Acad Sci US A, 82, 488-492, (1985)、Kunkel, TA., Methods Enzymol, 85, 2763-2766, (1988))などを用いることができる。

さらに、本発明を用いれば、トランスポーターにより輸送される物質を被験物質として、トランスポート活性を測定することにより、トランスポーターにより

- 24 -

輸送されやすい物質、又は輸送されにくい物質をスクリーニングすることも可能である。

本発明はトランスポーター以外のタンパク質においても利用でき、例えば、ナトリウムチャネル、カルシウムチャネル、カリウムチャネル、クロライドチャネル、陽イオンチャネル、陰イオンチャネルなどのイオンチャネル (ion channel) などにおいても同様の活性測定方法、スクリーニング方法などを行うことが可能である。この場合、トランスポーターの代わりにチャネルをウイルス膜上に発現させ、基質としてはチャネルが透過する物質を用いることができる。本発明に用いるチャネルとしては、例えば、表 2 に記載のチャネルを用いることができる。従って、本発明はトランスポーターやイオンチャネルなどのように、物質の輸送または通過が可能なタンパク質（特に、膜上に発現し、基質特異的な輸送または通過が可能なタンパク質）において利用できる。

本発明は上記トランスポーター、イオンチャンネル以外にも、G プロテイン共役型受容体(GPCR : G protein coupled receptor) にも応用することが可能である。

- 2 5 -

表 2

シンボル	名前	配列 ID
ACCN1	amiloride-sensitive cation channel 1, neuronal (degenerin)	NM_001094
ACCN2	amiloride-sensitive cation channel 2, neuronal	NM_001095 NM_020039
ACCN3	amiloride-sensitive cation channel 3, testis	NM_004769 NM_020321 NM_020322
AQP1	aquaporin 1 (channel-forming integral protein, 28kD)	NM_000385
ASIC4	putative acid-sensing ion channel	NM_018674
CACNA1A	calcium channel, voltage-dependent, P/Q type, alpha 1A subunit	NM_000068 NM_023035
CACNA1B	calcium channel, voltage-dependent, L type, alpha 1B subunit	NM_000718
CACNA1C	calcium channel, voltage-dependent, L type, alpha 1C subunit	NM_000719
CACNA1D	calcium channel, voltage-dependent, L type, alpha 1D subunit	NM_000720
CACNA1E	calcium channel, voltage-dependent, alpha 1E subunit	NM_000721
CACNA1F	calcium channel, voltage-dependent, alpha 1F subunit	NM_005183
CACNA1G	calcium channel, voltage-dependent, alpha 1G subunit	NM_018896
CACNA1H	calcium channel, voltage-dependent, alpha 1H subunit	NM_021098
CACNA1I	calcium channel, voltage-dependent, alpha 1I subunit	NM_021096
CACNA1S	calcium channel, voltage-dependent, L type, alpha 1S subunit	NM_000069
CACNA2D	calcium channel, voltage-dependent, alpha 2/delta subunit 1	NM_000722
CACNA2D	calcium channel, voltage-dependent, alpha 2/delta subunit 2	NM_006030
CACNB1	calcium channel, voltage-dependent, beta 1 subunit	NM_000723
CACNB2	calcium channel, voltage-dependent, beta 2 subunit	NM_000724
CACNB3	calcium channel, voltage-dependent, beta 3 subunit	NM_000725
CACNB4	calcium channel, voltage-dependent, beta 4 subunit	NM_000726
CACNG1	calcium channel, voltage-dependent, gamma subunit 1	NM_000727
CACNG2	calcium channel, voltage-dependent, gamma subunit 2	NM_006078
CACNG3	calcium channel, voltage-dependent, gamma subunit 3	NM_006539
CACNG4	calcium channel, voltage-dependent, gamma subunit 4	NM_014405
CACNG5	calcium channel, voltage-dependent, gamma subunit 5	NM_014404
CACNG6	calcium channel, voltage-dependent, gamma subunit 6	NM_031897
CACNG7	calcium channel, voltage-dependent, gamma subunit 7	NM_031896
CACNG8	calcium channel, voltage-dependent, gamma subunit 8	AF288388
CLCA1	chloride channel, calcium activated, family member 1	NM_001285
CLCA2	chloride channel, calcium activated, family member 2	NM_006536
CLCA3	chloride channel, calcium activated, family member 3	NM_004921
CLCA4	chloride channel, calcium activated, family member 4	NM_012128
CLCN1	chloride channel 1 , skeletal muscle (Thomsen disease, autosomal dominant)	NM_000083

- 2 6 -

CLCN2	chloride channel 2	NM_004366
CLCN3	chloride channel 3	NM_001829
CLCN4	chloride channel 4	NM_001830
CLCN5	chloride channel 5 (nephrolithiasis 2, X-linked, Dent disease)	NM_000084
CLCN6	chloride channel 6	NM_001286 NM_021735 NM_021736 NM_021737
CLCN7	chloride channel 7	NM_001287
CLCNKA	chloride channel Ka	NM_004070
CLCNKB	chloride channel Kb	NM_000085
CLIC1	chloride intracellular channel 1	NM_001288 NM_001288
CLIC2	chloride intracellular channel 2	NM_001289
CLIC3	chloride intracellular channel 3	NM_004669
CLIC4	chloride intracellular channel 4	NM_013943
CLIC5	chloride intracellular channel 5	NM_016929
CLIC6	chloride intracellular channel 6	BG184920
CLNS1A	chloride channel, nucleotide-sensitive, 1A	NM_001293
CNGA1	cyclic nucleotide gated channel alpha 1	NM_000087
CNGA3	cyclic nucleotide gated channel alpha 3	NM_001298
CNGB1	cyclic nucleotide gated channel beta 1	NM_001297
CNGB3	cyclic nucleotide gated channel beta 3	NM_019098
DKFZP43	potassium channel modulatory factor	NM_020122
ECAC1	epithelial calcium channel 1	NM_019841
ECAC2	epithelial calcium channel 2	AJ243501 AJ243500
HCN2	hyperpolarization activated cyclic nucleotide-gated potassium channel 2	NM_001194
HCN4	hyperpolarization activated cyclic nucleotide-gated potassium channel 4	NM_005477
HSA24339	voltage-gated sodium channel beta-3 subunit (scn3b gene)	NM_018400
HSA27226	calcium channel, voltage-dependent, alpha 2/delta 3 subunit	NM_018398
KCNA1	potassium voltage-gated channel, shaker-related subfamily, member 1 (episodic ataxia with myokymia)	NM_000217
KCNA10	potassium voltage-gated channel, shaker-related subfamily, member 10	NM_005549
KCNA2	potassium voltage-gated channel, shaker-related subfamily, member 2	NM_004974

- 2 7 -

KCNA3	potassium voltage-gated channel, shaker-related subfamily, member 3	NM_002232
KCNA4	potassium voltage-gated channel, shaker-related subfamily, member 4	NM_002233
KCNA5	potassium voltage-gated channel, shaker-related subfamily, member 5	NM_002234
KCNA6	potassium voltage-gated channel, shaker-related subfamily, member 6	NM_002235
KCNA7	potassium voltage-gated channel, shaker-related subfamily, member 7	NM_031886
KCNAB1	potassium voltage-gated channel, shaker-related subfamily, beta member 1	NM_003471
KCNAB2	potassium voltage-gated channel, shaker-related subfamily, beta member 2	NM_003636
KCNAB3	potassium voltage-gated channel, shaker-related subfamily, beta member 3	NM_004732
KCNB1	potassium voltage-gated channel, Shab-related subfamily, member 1	NM_004975
KCNB2	potassium voltage-gated channel, Shab-related subfamily, member 2	NM_004770
KCNC1	potassium voltage-gated channel, Shaw-related subfamily, member 1	NM_004976
KCNC3	potassium voltage-gated channel, Shaw-related subfamily, member 3	NM_004977
KCNC4	potassium voltage-gated channel, Shaw-related subfamily, member 4	NM_004978
KCND1	potassium voltage-gated channel, Shal-related subfamily, member 1	NM_004979
KCND2	potassium voltage-gated channel, Shal-related subfamily, member 2	NM_012281
KCND3	potassium voltage-gated channel, Shal-related subfamily, member 3	NM_004980
KCNE1	potassium voltage-gated channel, Isk-related family, member 1	NM_000219
KCNE1L	potassium voltage-gated channel, Isk-related family, member 1-like	NM_012282
KCNE2	potassium voltage-gated channel, Isk-related family, member 2	NM_005136
KCNE3	potassium voltage-gated channel, Isk-related family, member 3	NM_005472
KCNF1	potassium voltage-gated channel, subfamily F, member 1	NM_002236

- 2 8 -

KCNG1	potassium voltage-gated channel, subfamily G, member 1	NM_002237
KCNG2	potassium voltage-gated channel, subfamily G, member 2	NM_012283
KCNH1	potassium voltage-gated channel, subfamily H (eag-related), member 1	NM_002238
KCNH2	potassium voltage-gated channel, subfamily H (eag-related), member 2	NM_000238
KCNH3	potassium voltage-gated channel, subfamily H (eag-related), member 3	AB033108
KCNH4	potassium voltage-gated channel, subfamily H (eag-related), member 4	NM_012285
KCNH5	potassium voltage-gated channel, subfamily H (eag-related), member 5	U69185
KCNIP1	Kv channel-interacting protein 1	NM_014592
KCNIP2	Kv channel-interacting protein 2	NM_014591
KCNJ1	potassium inwardly-rectifying channel, subfamily J, member 1	NM_000220
KCNJ10	potassium inwardly-rectifying channel, subfamily J, member 10	NM_002241
KCNJ11	potassium inwardly-rectifying channel, subfamily J, member 11	NM_000525
KCNJ12	potassium inwardly-rectifying channel, subfamily J, member 12	NM_021012
KCNJ13	potassium inwardly-rectifying channel, subfamily J, member 13	AJ007557
KCNJ14	potassium inwardly-rectifying channel, subfamily J, member 14	NM_013348
KCNJ15	potassium inwardly-rectifying channel, subfamily J, member 15	NM_002243
シンボル	名前	配列 ID
KCNJ16	potassium inwardly-rectifying channel, subfamily J, member 16	NM_018658
KCNJ2	potassium inwardly-rectifying channel, subfamily J, member 2	NM_000891
KCNJ3	potassium inwardly-rectifying channel, subfamily J, member 3	NM_002239
KCNJ4	potassium inwardly-rectifying channel, subfamily J, member 4	NM_004981
KCNJ5	potassium inwardly-rectifying channel, subfamily J, member 5	NM_000890
KCNJ6	potassium inwardly-rectifying channel, subfamily J, member 6	NM_002240
KCNJ8	potassium inwardly-rectifying channel, subfamily J, member 8	NM_004982
KCNJ9	potassium inwardly-rectifying channel, subfamily J, member 9	NM_004983
KCNJN1	potassium inwardly-rectifying channel, subfamily J, inhibitor 1	NM_002244
KCNK1	potassium channel, subfamily K, member 1 (TWIK-1)	NM_002245
KCNK10	potassium channel, subfamily K, member 10	NM_021161
KCNK12	potassium channel, subfamily K, member 12	NM_022055
KCNK13	potassium channel, subfamily K, member 13	NM_022054
KCNK2	potassium channel, subfamily K, member 2 (TREK-1)	AF004711
KCNK3	potassium channel, subfamily K, member 3 (TASK-1)	NM_002246
KCNK4	potassium inwardly-rectifying channel, subfamily K, member 4	NM_016611
KCNK5	potassium channel, subfamily K, member 5 (TASK-2)	NM_003740
KCNK6	potassium channel, subfamily K, member 6 (TWIK-2)	NM_004823

- 2 9 -

KCNK7	potassium channel, subfamily K, member 7	NM_005714
KCNK9	potassium channel, subfamily K, member 9 (TASK-3)	NM_016601
KCNMA1	potassium large conductance calcium-activated channel, subfamily M, alpha member 1	NM_002247
KCNMB1	potassium large conductance calcium-activated channel, subfamily M, beta member 1	NM_004137
KCNMB2	potassium large conductance calcium-activated channel, subfamily M, beta member 2	NM_005832
KCNMB3	potassium large conductance calcium-activated channel, subfamily M beta member 3	NM_014407
KCNMB3L	potassium large conductance calcium-activated channel, subfamily M, beta member 3-like	NM_014406
KCNMB4	potassium large conductance calcium-activated channel, subfamily M, beta member 4	NM_014505
KCNN1	potassium intermediate/small conductance calcium-activated channel, subfamily N, member 1	NM_002248
KCNN2	potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2	NM_021614
KCNN3	potassium intermediate/small conductance calcium-activated channel, subfamily N, member 3	NM_002249
KCNN4	potassium intermediate/small conductance calcium-activated channel, subfamily N, member 4	NM_002250
KCNQ1	potassium voltage-gated channel, KQT-like subfamily, member	NM_000218
KCNQ2	potassium voltage-gated channel, KQT-like subfamily, member	NM_004518
KCNQ3	potassium voltage-gated channel, KQT-like subfamily, member	NM_004519
KCNQ4	potassium voltage-gated channel, KQT-like subfamily, member	NM_004700
KCNQ5	potassium voltage-gated channel, KQT-like subfamily, member	NM_019842
KCNS1	potassium voltage-gated channel, delayed-rectifier, subfamily S, member 1	NM_002251
KCNS2	potassium voltage-gated channel, delayed-rectifier, subfamily S, member 2	AB032970
KCNS3	potassium voltage-gated channel, delayed-rectifier, subfamily S, member 3	NM_002252
KIAA0439	homolog of yeast ubiquitin-protein ligase Rsp5; potential epithelial sodium channel regulator	AB007899
KIAA1169	two-pore channel 1, homolog	NM_017901
KV8.1	neuronal potassium channel alpha subunit	NM_014379
LOC64181	two pore potassium channel KT3.3	NM_022358
OTRPC4	vanilloid receptor-related osmotically activated channel; OTRPC4 protein	NM_021625

- 3 0 -

P2RX1	purinergic receptor P2X, ligand-gated ion channel, 1	NM_002558
P2RX2	purinergic receptor P2X, ligand-gated ion channel, 2	NM_012226 NM_016318
P2RX3	purinergic receptor P2X, ligand-gated ion channel, 3	NM_002559
P2RX4	purinergic receptor P2X, ligand-gated ion channel, 4	NM_002560
P2RX5	purinergic receptor P2X, ligand-gated ion channel, 5	NM_002561
P2RX7	purinergic receptor P2X, ligand-gated ion channel, 7	NM_002562
SCN10A	sodium channel, voltage-gated, type X, alpha polypeptide	NM_006514
SCN11A	sodium channel, voltage-gated, type XI, alpha polypeptide	AF188679
SCN12A	sodium channel, voltage-gated, type XII, alpha polypeptide	NM_014139
SCN1A	sodium channel, voltage-gated, type I, alpha polypeptide	AF225985
SCN1B	sodium channel, voltage-gated, type I, beta polypeptide	NM_001037
SCN2A2	sodium channel, voltage-gated, type II, alpha 2 polypeptide	NM_021007
SCN2B	sodium channel, voltage-gated, type II, beta polypeptide	NM_004588
SCN3A	sodium channel, voltage-gated, type III, alpha polypeptide	AF225987
SCN4A	sodium channel, voltage-gated, type IV, alpha polypeptide	NM_000334
SCN5A	sodium channel, voltage-gated, type V, alpha polypeptide (long (electrocardiographic) QT syndrome 3)	NM_000335
SCN6A	sodium channel, voltage-gated, type VI, alpha polypeptide	NM_002976
SCN8A	sodium channel, voltage gated, type VIII, alpha polypeptide	NM_014191
SCN9A	sodium channel, voltage-gated, type IX, alpha polypeptide	NM_002977
SCNN1A	sodium channel, nonvoltage-gated 1 alpha	NM_001038
SCNN1B	sodium channel, nonvoltage-gated 1, beta (Liddle syndrome)	NM_000336
SCNN1D	sodium channel, nonvoltage-gated 1, delta	NM_002978
SCNN1G	sodium channel, nonvoltage-gated 1, gamma	NM_001039
TALK-1	pancreatic 2P domain potassium channel TALK-1	NM_032115
TASK-4	potassium channel TASK-4; potassium channel TALK-2	NM_031460
TRPC1	transient receptor potential channel 1	NM_003304
TRPC2	transient receptor potential channel 2	X89067
TRPC3	transient receptor potential channel 3	NM_003305
TRPC4	transient receptor potential channel 4	NM_016179
TRPC5	transient receptor potential channel 5	NM_012471
TRPC6	transient receptor potential channel 6	NM_004621
TRPC7	transient receptor potential channel 7	NM_003307
VDAC1	voltage-dependent anion channel 1	NM_003374
VDAC1P	voltage-dependent anion channel 1 pseudogene	AJ002428
VDAC2	voltage-dependent anion channel 2	NM_003375
VDAC3	voltage-dependent anion channel 3	NM_005662
trp7	putative capacitative calcium channel	NM_020389

- 31 -

図面の簡単な説明

図1は、PepT1 発現ウイルスにおける PepT1 活性を示す図である。ウイルス膜上の PepT1 活性は、ウイルスの [¹⁴C] グリシルザルコシンの取り込み量として測定した。「野生型」は野生型のウイルスによる取り込み量を示し、「His-PepT1」は N 末端に His-tag を付加した PepT1 発現ウイルスによる取り込み量を示す。

図2は、PepT2 発現ウイルスにおける PepT2 活性を示す図である。ウイルス膜上の PepT2 活性は、ウイルスの [³H] グリシルザルコシンの取り込み量として測定した。「野生型」は野生型のウイルスによる取り込み量を示し、「His-PepT2」は N 末端に His-tag を付加した PepT2 発現ウイルスによる取り込み量を示す。

図3は、OATP-C 発現ウイルスにおける OATP-C 活性を示す図である。ウイルス膜上の OATP-C 活性は、ウイルスの [³H] エストロン硫酸抱合体の取り込み量として測定した。「野生型」は野生型のウイルスによる取り込み量を示し、「OATP-C WT」は野生型 OATP-C 発現ウイルスによる取り込み量を示し、「OATP-C N130D」は N130D 変異体 OATP-C 発現ウイルスによる取り込み量を示し、「OATP-C V174A」は V174A 変異体 OATP-C 発現ウイルスによる取り込み量を示す。なお、いずれの OATP-C も N 末端に His-Tag が付加されている。

図4は、抗ヒト PepT1 モノクローナル抗体の、PepT1 発現ウイルスにおける PepT1 活性の阻害を検出した結果を示す図である。ウイルス膜上の PepT1 活性は、ウイルスの [¹⁴C] グリシルザルコシンの取り込み量として測定した。データは平均±SD (n=3-4) で表示している。

発明を実施するための最良の形態

以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例によりいかなる意味でも限定されるものではない。

[実施例 1]

1. PepT1 発現出芽バキュロウイルスの調製

- 3 2 -

ヒト腎臓ライプラリーから PCR を用いて完全長の PepT1 遺伝子を単離した。完全長のヒト PepT1 遺伝子を pBlueBacHis2A (Invitrogen) に挿入することでトランスファーベクター pBlueBacHis-PepT1 を作製した後、Bac-N-Blue transfection kit (Invitrogen) を用いて Bac-N-Blue DNA と共にトランスファーベクターを Sf9 細胞に導入することでヒト PepT1 発現用組換えウイルスを調製した。即ち、 $4\mu\text{g}$ の pBlueBacHis-PepT1 を Bac-N-Blue DNA に加え、さらに 1mL の Grace's 培地 (GIBCO) $20\mu\text{L}$ の Cell FECTIN 試薬を加え、混和し、室温で 15 分間静置した後、Grace's 培地で 1 回洗浄した 2×10^6 個の Sf9 細胞に滴下した。室温で 4 時間静置した後、さらに 2mL の完全培地 (10% ウシ胎児血清 (Sigma 社製)、100units/mL のペニシリン、及び $100\mu\text{g}/\text{mL}$ ストレプトマイシン (GIBCO-BRL 社製) を含む Grace's 培地) を加え、 27°C で培養した。相同組換えにより作製されたヒト PepT1 発現用組換えウイルスはキット添付の指示書に従い二度の純化を行った後、組換えウイルスのウイルスストックを得た。

ヒト PepT1 を発現する発芽型ウイルスの調製は以下のようにして行った。すなわち、上記により調製した組換えウイルスを MOI=5 となるように 500mL の Sf9 細胞 ($2 \times 10^6/\text{mL}$) に感染させた。 27°C で 3 日間培養した後、培養液を $800 \times g$ で 15 分間遠心分離し、細胞ならびに細胞破碎物を除去した。遠心分離により回収した上清は $45,000 \times g$ で 30 分間遠心した後、沈殿物を PBS に懸濁し、さらに $800 \times g$ で 15 分遠心することで細胞成分を除去した。上清は再度 $45,000 \times g$ で 30 分間遠心した後、沈殿物を PBS に再懸濁したものを作芽型ウイルス画分とした。ウイルスならびに Sf-9 細胞膜上での PepT1 発現は抗 His 抗体を用いたウエスタン解析で確認した。また、タンパク質濃度は DC Protein Assay kit (Bio-Rad) を用い、BSA を標準物として測定した。

2. PepT1 機能解析

[^{14}C]グリシルザルコシンを終濃度 $50\mu\text{M}$ になるように HBSS (pH 6.0) で希釈し、基質溶液とした。ウイルス溶液 $40\mu\text{L}$ ($100\mu\text{g}$ 蛋白) を 37°C で 30 分間プレインキ

- 33 -

ュベートし、あらかじめ 37°Cで加温していた基質溶液を 160 μL 添加し、反応を開始した。1 分後、氷冷していた HBSS (pH7.4) (以下、「反応停止液」と略す) を 1mL 添加して、反応を停止させた。直ちにウイルスを含む反応液を混合セルロース膜フィルターを用いて吸引濾過し、5mL の反応停止液で 2 回洗浄した。膜フィルターを液体シンチレーターバイアルに移し、クリアゾル I を 5mL 添加してフィルターを溶解した。溶解後、液体シンチレーションカウンターでフィルター上の放射能を計測した。ウイルス溶液に基質溶液を添加する前に反応停止液を添加した系についても同様にフィルターへの非特異的吸着を計測し、得られた値を各実験の数値から差し引いた。

N 末端に His-tag を付加した PepT1 発現ウイルスでの PepT1 活性を図 1 に示した。PepT1 を発現していない野生型ウイルスに比べて、約 7 倍の活性比で PepT1 活性を検出することができた。

[実施例 2]

1. PepT2 発現出芽バキュロウイルスの調製

ヒト腎臓ライブラリーから完全長 PepT2 遺伝子を単離した。完全長のヒト PepT2 をコードする遺伝子は、PCR を用いて pBlueBacHis2A (Invitrogen) に組み込むことで完全長の PepT2 トランスファーベクター (pBlueBac) を作製し、ウイルス DNA と共に Sf-9 細胞に導入した。相同組換えにより作製された組換えウイルスを純化した後、組換えウイルス高活性ストックを作製した。ストックウイルスを Sf-9 細胞に感染させ、一定期間培養後にウイルスならびに Sf-9 細胞膜上への PepT2 の発現を行った。ウイルスならびに Sf-9 細胞膜上での PepT2 発現は抗 His 抗体を用いたウエスタン解析で確認した。より詳細には、PepT2 遺伝子を用いた以外は、実施例 1 に記載の方法に従って操作を行った。

2. PepT2 機能解析

[³H] グリシルザルコシンを終濃度 0.8 μM になるように HBSS (pH6.0) で希釈し、

- 34 -

基質溶液とした。ウイルス溶液 40 μL(100 μg 蛋白)を 37°Cで 30 分間プレインキュベートし、予め 37°Cで 加温していた基質溶液を 160 μL 添加し、反応を開始させた。1 分後、反応停止液 1mL を添加して、反応を停止させた。直ちにウイルスを含む反応液を混合セルロース膜フィルターを用いて吸引濾過し、5mL の反応停止液で 2 回洗浄した。膜フィルターを液体シンチレーションバイアルに移し、クリアゾル I を 5mL 添加してフィルターを溶解させた。溶解後、液体シンチレーションカウンターでフィルター上の放射能を計測した。ウイルス溶液に基質溶液を添加する前に反応停止液を添加して同様の操作を行い、フィルターへの非特異的吸着を計測し値を各実験の数値から差し引いた。

N 末端に His-tag を付加した PepT2 発現ウイルスでの PepT2 活性を図 2 に示した。PepT2 を発現していない野生型ウイルスに比べて、約 9 倍の活性比で PepT2 活性を検出することができた。

[実施例 3]

1. OATP-C 発現出芽バキュロウイルスの調製

野生型ヒト OATP-C (OATP-C WT) をコードする cDNA は以下のようにしてクローニングした。すなわち、ヒト成体肝臓由来 cDNA を鑄型とし、以下のプライマーの組み合わせによる PCR により OATP-C WT cDNA を 2 つの断片に分け増幅した。
5'側

OAHC17 プライマー : 5' gat ggt acc aaa ctg agc atc aac aac aaa aac 3'
(配列番号 : 1)

OAHC18 プライマー : 5' gat ggt acc cat cga gaa tca gta gga gtt atc 3'
(配列番号 : 2)

3'側

OAHC21 プライマー : 5' gat ggt acc tac cct ggg atc tct gtt ttc taa 3'
(配列番号 : 3)

- 35 -

OAHCC22 プライマー : 5' gat ggt acc gtt tgg aaa cac aga agc aga agt 3'

(配列番号 : 4)

これらの断片をそれぞれ pT7Blue-T ベクター (Novagen 社) にサブクローニングし、PCR エラーのないクローンを選択した。重なり合う領域に存在する Bgl II サイトで両者を連結した後、両端に存在する Kpn I サイトで切断し、pcDNA3 ベクター (Invitrogen 社) の Kpn I サイトに組み込み、pcDNA3/OATP-C WT を得た。

次に、pcDNA3/OATP-C WT を鋳型とし、GeneEditor™ (Promega 社) を用いた *in vitro* ミュータジエネシスにより、130 番目のアスパラギンがアスパラギン酸に変異した OATP-C N130D ならびに 174 番目のバリンがアラニンに変異した OATP-C V174A をそれぞれコードする cDNA の作製を行った。変異導入用プライマーは以下のものを使用した。

OATP-C N130D 用プライマー : 5' gaa act aat atc gat tca tca gaa aat 3'

(配列番号 : 5)

OATP-C V174A 用プライマー : 5' atg tgg ata tat gcg ttc atg ggt aat 3'

(配列番号 : 6)

変異導入用プライマーとキットに添付されている選択用プライマー（ボトムストランド用）を、共に一本鎖にした鋳型プラスミド DNA とアニールさせ、新たな DNA 鎖を合成した。これを大腸菌に導入し、GeneEditor™ 抗生物質耐性クローンを得た。これらのクローンをシークエンシングすることにより変異が入っているクローン (pcDNA3/OATP-C N130D、および pcDNA3/OATP-C V174A) を選択した。

次に、pcDNA3/OATP-C WT、pcDNA3/OATP-C N130D、および pcDNA3/OATP-C V174 A をそれぞれ鋳型とし、以下のプライマーを用いた PCR を行うことにより、両端に Sal I サイトを付加したそれぞれの cDNA を増幅した。

C45 プライマー : 5' gat gtc gac tta aca atg tgt ttc act 3' (配列番号 : 7)

C58 プライマー : 5' gat gtc gac tat gga cca aaa tca aca t 3' (配列番

- 36 -

号：8)

これらを Sal I により切断し、pBlueBac His2A ベクター (Invitrogen 社) の Sal I サイトに組み込むことにより、N 末端に His-tag が付加された各 OATP-C タンパクをコードするトランスファーベクター (pBlueBac His2A/OATP-C WT、pBlueBac His2A/OATP-C N130D、pBlueBac His2A/OATP-C V174A) を作製した。

Bac-N-Blue トランスフェクションキット (Invitrogen 社) を用いて、これらのベクターをウイルス DNA と共に Sf-9 細胞に導入した。5~8 日後に、培養上清中の組換えウイルスをプラークアッセイにより純化した。その後、ウイルスを増幅し、組換えウイルス高活性ストックを作製した。ストックウイルスを MOI=1 で Sf-9 細胞に感染させ、4 日間後の培養上清から組換えウイルスを回収した。ウイルス膜上での OATP-C 発現は抗 His 抗体を用いたウエスタン解析で確認した。

2. OATP-C 機能解析

[³H]エストロン硫酸抱合体を終濃度 10nM になるように HBSS (pH7.4) で希釈し、基質溶液とした。ウイルス溶液 20 μL (50 μg 蛋白) を 37°C で 30 分間プレインキュベートし、予め 37°C で加温していた基質溶液を 180 μL 添加し、反応を開始させた。1 分後、氷冷していた HBSS (pH7.4) (以下、反応停止液と略す) を 1mL 添加して、反応を停止させた。直ちにウイルスを含む反応液を混合セルロース膜フィルターを用いて吸引濾過し、5mL の反応停止液で 2 回洗浄した。膜フィルターを液体シンチレーターバイアルに移し、クリアゾル I を 5mL 添加してフィルターを溶解させた。溶解後、液体シンチレーションカウンターでフィルター上の放射能を計測した。基質溶液を添加する前に反応停止液を添加して同様の操作を行い、フィルターへの非特異的吸着を計測し、各実験の数値から差し引いた。

N 末端に His-tag を付加した 3 種類の OATP-C 発現ウイルスでの [³H]エストロン硫酸抱合体の取り込み活性を図 3 に示した。OATP-C を発現していない野生型ウイルスに比べて、OATP-C 野生型、N130D、V174A でそれぞれ約 57 倍、41 倍、36 倍の活性比で [³H]エストロン硫酸抱合体の取り込み活性を検出することができ

- 37 -

た。また、野生型ウイルスでの取り込み試験から、ウイルスに由来する内因性OATP-C活性はほとんど検出されなかった。このことから、出芽バキュロウイルス発現系はバックグラウンドが極めて低い評価系であることが明らかとなった。また、OATP-C変異体（N130D、V174A）のウイルス膜上への機能発現が可能であることから、SNPsによる基質特異性の変化も測定でき、テーラーメイド医療への応用が可能である。

[実施例4] PepT1機能阻害抗体の探索

[¹⁴C]グリシルザルコシンを終濃度50 μMになるようにHBSS（pH6.0）で希釈し、基質溶液とした。また、ヒトPepT1の細胞外領域を認識するマウス型モノクローナル抗体を終濃度200 μg/mLになるようにPBSで希釈し、抗体溶液とした。N末端にHis-tagを付加したPepT1発現出芽バキュロウイルス溶液20 μL（50 μg蛋白）と抗体溶液20 μLを混合し、37°Cで1時間プレインキュベートした。予め、37°Cで加温していた基質溶液160 μLをウイルス溶液に添加し、反応を開始させた。1分後、氷冷していたHBSS（pH7.4）（以下、「反応停止液」と略す）を1mL添加し、反応を停止させた。直ちにウイルスを含む反応液を混合セルロース膜フィルターを用いて吸引濾過し、5 mLの反応停止液で2回洗浄した。膜フィルターを液体シンチレーションバイアルに移し、クリアゾルIを5 mL添加してフィルターを溶解させた。溶解後、液体シンチレーションカウンターでフィルター上の放射能を計測した。基質溶液を添加する前に反応停止液を添加して同様の操作を行い、フィルターへの非特異的吸着を計測し、各実験の数値から差し引いた。

抗ヒトPepT1モノクローナル抗体によるPepT1活性阻害を図4に示した。抗体非存在下でのPepT1活性を対照として100で表した。3種類の抗ヒトPepT1モノクローナル抗体の中で、対照に比べてクローン119で約20%、クローン253で約10%のPepT1活性を阻害した。このPepT1活性阻害は統計的（Studentのt検定）に有意であった。以上より、発芽バキュロウイルス発現系は、トランスポーターの活性

- 3 8 -

を阻害あるいは促進する物質の探索に有用である。

産業上の利用の可能性

本発明により提供されるトランスポーター活性を有するトランスポーターを発現しているウイルスを用いることにより、従来よりも低いバックグラウンドでトランスポーターの活性を高感度で測定することができる。従って、本方法を採用することによりトランスポーターの輸送基質の同定、駆動力の同定、及びキネティクス解析等の機能解析を従来と比べ、より簡便に、そして正確に行えると期待される。また、該ウイルスを用いてウイルス膜上に発現されるトランスポーターのトランスポート活性を阻害または促進する物質のスクリーニングを行うことも可能である。トランスポーターは細胞内への薬剤の輸送にも関与していることが報告されていることから、疾患に関連するトランスポーターの活性を阻害または促進する物質は、新しい医薬品の候補となり得る。また、本方法をトランスポーターをコードする遺伝子における SNPs 解析に用いることにより、トランスポーターの SNPs による機能変化をより広範な基質について測定でき、各個体についての薬物への応答を解析できることから、テーラーメイド医療への応用が可能である。

請求の範囲

1. トランスポーターをコードする遺伝子を含む組換えウイルスを感染させた宿主を培養し、該宿主から放出される出芽ウイルス膜上にトランスポーターを発現させることを特徴とする、トランスポーター活性を有するトランスポーターを発現させる方法。
2. ウィルスがバキュロウイルスである請求項1記載の方法。
3. トランスポーターが非ウィルス由来である請求項1または2いずれか記載の方法。
4. トランスポーターがペプチドトランスポーターまたは有機アニオントランスポーターである請求項1～3いずれか記載の方法。
5. トランスポーターがPepT1、PepT2又はOATP-Cである請求項4記載の方
法。
6. トランスポーター活性を有するトランスポーターを発現しているウイルス。
7. トランスポーターが非ウィルス由来である請求項6記載のウイルス。
8. ウィルスがバキュロウイルスである請求項7記載のウイルス。
9. ウィルスが出芽ウイルスである、請求項6～8いずれか記載のウイルス。
10. トランスポーターがペプチドトランスポーターまたは有機アニオントラ
ンスポーターである請求項6～9いずれか記載のウイルス。
11. トランスポーターがPepT1、PepT2又はOATP-Cである請求項10記載
のウイルス。
12. ウィルス膜上でトランスポーターを発現させることを特徴とする、トラ
ンスポーターの活性測定方法。
13. ウィルスが出芽バキュロウイルスである請求項12記載の方法。
14. トランスポーターがペプチドトランスポーターまたは有機アニオントラ
ンスポーターである請求項12または13記載の方法。

- 4 0 -

15. トランスポーターが PepT1、PepT2 又は OATP-C である請求項 14 記載の方法。

16. 以下の工程を含むトランスポーターのトランスポート活性を阻害又は促進する物質のスクリーニング方法。

(a) ウィルス膜上にトランスポーターを発現させる工程、

(b) 該トランスポーターに被験物質を接触させる工程、及び

(c) トランスポート活性を阻害又は促進する物質を選択する工程

17. ウィルスがバキュロウイルスである請求項 16 記載の方法。

18. ウィルスが出芽ウイルスである請求項 16 又は 17 記載の方法。

19. トランスポーターが非ウィルス由来である請求項 16 ~ 18 いずれか記載の方法。

20. トランスポーターがペプチドトランスポーターまたは有機アニオントランスポーターである、請求項 16 ~ 19 いずれか記載の方法。

21. トランスポーターが PepT1、PepT2 又は OATP-C である、請求項 20 記載の方法。

22. ウィルスが担体に固定されていることを特徴とする請求項 16 ~ 21 いずれか記載の方法。

23. ウィルスの担体への固定が、ウィルス膜上に発現している膜タンパク質に対する抗体を介して行われていることを特徴とする請求項 22 記載の方法。

24. ウィルスの担体への固定が、ウィルス膜上に発現しているタンパク質をビオチン化することでビオチン・ストレプトアビジン反応を介して行われることを特徴とする請求項 22 記載の方法。

1 / 4

図 1

2 / 4

図 2

3 / 4

図 3

4 / 4

図 4

1 / 5

SEQUENCE LISTING

<110> CHUGAI SEIYAKU KABUSHIKI KAISHA

<120> Method for Screening of Inhibitors of Transporters

<130> C1-A0206P

<150> JP 2002- 96038

<151> 2002-03-29

<160> 8

<170> PatentIn version 3.1

<210> 1

<211> 33

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 1

gatggtagcca aactgagcat caacaacaaa aac

2 / 5

<210> 2

<211> 33

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 2

gatggtaccc atcgagaatc agtaggagtt atc

33

<210> 3

<211> 33

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 3

gatggtaacct accctgggat ctctgttttc taa

33

<210> 4

3 / 5

<211> 33

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 4

gatggtaaccg tttggaaaca cagaaggcaga agt

33

<210> 5

<211> 27

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 5

gaaaactaata tcgattcatc agaaaaat

27

<210> 6

<211> 27

<212> DNA

4 / 5

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 6

atgtggatat atgcgttcat gggtaat

27

<210> 7

<211> 27

<212> DNA

<213> Artificial

<220>

<223> an artificially synthesized primer sequence

<400> 7

gatgtcgact taacaatgtg tttcact

27

<210> 8

<211> 28

<212> DNA

<213> Artificial

5 / 5

<220>

<223> an artificially synthesized primer sequence

<400> 8

gatgtcgact atggaccaaa atcaacat

28

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/03975

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ C12N15/12, C12N7/00, C12Q1/70, G01N33/15, G01N33/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C12N15/12, C12N7/00, C12Q1/70, G01N33/15, G01N33/50

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI (DIALOG), BIOSIS (DIALOG)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	LOISEL T.P. et al., Recovery of homogeneous and functional beta 2-adrenergic receptors from extracellular baculovirus particles. Nature Biotechnology 1997, Vol.15, No.12, pages 1300 to 1304	1-24
A	WO 98/46777 A1 (Centre national de la recherche scientifique), 22 October, 1998 (22.10.98), & EP 1015618 A1 & FR 2761994 A	1-24
A	MANGOR J.T. et al., A GP64-null baculovirus pseudotyped with vesicular stomatitis virus G protein. J.Virol., 2001, Vol.75, No.6, pages 2544 to 2556	1-24

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A"	document defining the general state of the art which is not considered to be of particular relevance
"E"	earlier document but published on or after the international filing date
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	document referring to an oral disclosure, use, exhibition or other means
"P"	document published prior to the international filing date but later than the priority date claimed
"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&"	document member of the same patent family

Date of the actual completion of the international search 17 April, 2003 (17.04.03)	Date of mailing of the international search report 06 May, 2003 (06.05.03)
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer
Facsimile No.	Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/03975

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	GERGELY S. et al., Characterization of the ATPase Cycle of Human ABCA1: Implications for Its Function as a Regulator Rather Than an Active Transporter, Biochemical and Biophysical Research Communications, 2001, Vol.288, No.5, pages 1258 to 1264	1-24
A	NOE J. et al., Characterization of the mouse bile salt export pump overexpressed in the baculovirus system. Hepatology, 2001, Vol.33, No.5, pages 1223 to 1231	1-24

A. 発明の属する分野の分類（国際特許分類（IPC））

Int.C1' C12N 15/12, C12N 7/00, C12Q 1/70, G01N 33/15, G01N 33/50

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.C1' C12N 15/12, C12N 7/00, C12Q 1/70, G01N 33/15, G01N 33/50

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

WPI(DIALOG), BIOSIS(DIALOG)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	LOISEL T.P. et al, Recovery of homogeneous and functional beta 2-adrenergic receptors from extracellular baculovirus particles. Nature Biotechnology 1997 , Vol. 15, No. 12, p. 1300-1304	1-24
A	WO 98/46777 A1 (Centre national de la recherche scientifique) 1998.10.22 & EP 1015618 A1 & FR 2761994 A	1-24

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
 「O」口頭による開示、使用、展示等に言及する文献
 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
 「&」同一パテントファミリー文献

国際調査を完了した日

17.04.03

国際調査報告の発送日

06.05.03

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

富永 みどり

4 N 9152

電話番号 03-3581-1101 内線 3448

C (続き) . 関連すると認められる文献		関連する 請求の範囲の番号
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	
A	MANGOR J. T. et al, A GP64-null baculovirus pseudotyped with vesicular stomatitis virus G protein. J. Virol. 2001, Vol. 75, No. 6, p. 2544-2556	1-24
A	GERGELY S. et al, Characterization of the ATPase Cycle of Human ABCA1: Implications for Its Function as a Regulator Rather Than an Active Transporter, Biochemical and Biophysical Research Communications 2001, Vol. 288, No. 5, p. 1258-1264	1-24
A	NOE J. et al, Characterization of the mouse bile salt export pump overexpressed in the baculovirus system. Hepatology 2001, Vol. 33, No. 5, p. 1223-1231	1-24

United States Patent [19]

Torigoe

[11] Patent Number: **4,682,885**[45] Date of Patent: **Jul. 28, 1987**

[54] ILLUMINATION APPARATUS

[75] Inventor: Makoto Torigoe, Kawasaki, Japan

[73] Assignee: Canon Kabushiki Kaisha, Tokyo,
Japan

[21] Appl. No.: 913,619

[22] Filed: Sep. 30, 1986

Related U.S. Application Data

[63] Continuation of Ser. No. 729,056, Apr. 30, 1985, abandoned.

[30] Foreign Application Priority Data

May 2, 1984 [JP] Japan 59-87879

[51] Int. Cl.⁴ G03B 27/54[52] U.S. Cl. 355/67; 355/71;
362/268; 350/167; 350/433; 350/523[58] Field of Search 355/53, 67, 71;
350/167, 169, 319, 433, 509, 523; 362/268

[56] References Cited

U.S. PATENT DOCUMENTS

3,724,924 4/1973 Lenfant et al. 350/167
4,294,538 10/1981 Ban 355/514,497,015 1/1985 Konno et al. 350/167 X
4,498,742 2/1985 Uehara 350/523

Primary Examiner—L. T. Hix

Assistant Examiner—D. Rutledge

Attorney, Agent, or Firm—Fitzpatrick, Cella, Harper & Scinto

[57] ABSTRACT

An illumination apparatus for illuminating, with a light beam of arcuate cross-section, a mask having an integrated-circuit pattern to transfer the integrated-circuit pattern onto a semiconductor wafer includes an illumination optical system having a light source, a plurality of cylindrical lenses and a collimator lens to illuminate, in the Kohler illumination manner, a rectangular region on a predetermined plane, a restricting member disposed in the predetermined plane to restrict the light beam incident on the predetermined plane so that a light beam of arcuate cross-section emerges from the predetermined plane, and an optical member for forming an image of the restricting member on the mask. With this arrangement, the pattern of the mask is transferred onto the wafer without any distortion.

12 Claims, 6 Drawing Figures

