MATH 560, Homework 10

Colin Roberts
November 16, 2017

Solutions

Problem 1. (§6.7 Problem 5. (c)) Find an explicit formula for the following.

 $T^{\dagger}(a+bx+cx^2)$, where T is the linear transformation given by $T: P_2(\mathbb{R}) \to P_1(\mathbb{R})$, where T(f(x)) = f''(x), and the inner product is $\langle g, h \rangle = \int_{-1}^1 g(t)h(t)dt$.

:

Proof. From the previous homework we have for the matrix $A = [T]_{\beta}$ with the basis $\beta = \left\{\sqrt{\frac{1}{2}}, \sqrt{\frac{3}{2}}x, \sqrt{\frac{5}{8}}(3x^2 - 1)\right\}$,

$$U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$V = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}.$$

From this we have that

$$\Sigma^{\dagger} = \begin{bmatrix} 0 & 0 \\ 0 & 1/2 \\ 0 & 0 \end{bmatrix}.$$

Then A^{\dagger} is given by

$$A^{\dagger} = V \Sigma^{\dagger} U^{*}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1/2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 1/2 \\ 0 & 1/2 \end{bmatrix}.$$

Problem 2. (§6.7 Problem 6. (c)) Use the results of Exercise 3 to find the pseudoinverse of the following matrix:

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}.$$

:

Proof. We find

$$A^*A = \begin{bmatrix} 2 & 1 & 1 & 2 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 2 & 1 & 1 & 2 \end{bmatrix}.$$

This matrix has eigenvalues $\lambda_1 = 5$, $\lambda_2 = 1$, $\lambda_3 = \lambda_4 = 0$, with corresponding eigenvectors $v_1 = (2, 1, 1, 2)$, $v_2 = (0, -1, 1, 0)$, $v_3 = (-1, 0, 0, 1)$, $v_4 = (-1, 1, 1, 0)$. This gives us

$$V = \begin{bmatrix} 2 & 0 & -1 & -1 \\ 1 & -1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \end{bmatrix}.$$

Next we find

$$A^*A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix},$$

which has eigenvalues $\lambda_1 = 5$ and $\lambda_2 = 1$ with corresponding eigenvectors $u_1 = (1,1)$ and $u_2 = (-1,1)$. This gives

$$U = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

It follows that

$$\Sigma = \begin{bmatrix} \sqrt{5} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix},$$

$$\Sigma^{\dagger} = \begin{bmatrix} 1/\sqrt{5} & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Now

$$\begin{split} A^\dagger &= V \Sigma^\dagger U^* \\ &= \begin{bmatrix} -1 + 2/\sqrt{5} & -1 - 2/\sqrt{5} \\ 1/\sqrt{5} & -1/\sqrt{5} \\ 1/\sqrt{5} & -1/\sqrt{5} \\ 1 + 2/\sqrt{5} & 1 - 2/sqrt5 \end{bmatrix}. \end{split}$$

Problem 3. (§6.7 Problem 9. (a)) Let V and W be finite-dimensional inner product spaces over \mathbb{F} , and suppose that $\{v_1, v_2, \ldots, v_n\}$ and $\{u_1, u_2, \ldots, u_m\}$ are orthonormal bases for V and W, respectively. Let $T: V \to W$ be a linear transformation of rank r, and suppose that $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$ are such that

$$T(v_i) = \begin{cases} \sigma_i u_i & 1 \le i \le r \\ 0 & r < i. \end{cases}$$

Prove that $\{u_1, u_2, ..., u_m\}$ is a set of eigenvectors of TT^* with corresponding eigenvalues $\lambda_1, \lambda_2, ..., \lambda_m$, where

$$\lambda_i = \begin{cases} \sigma_i^2 & 1 \le i \le r \\ 0 & r < i. \end{cases}$$

:

Proof. Choose any basis β and denote $A = [T]_{\beta}$. Then we have $A = [U\Sigma V^*]_{\beta}$ via the SVD. It follows that

$$AA^* = [(U\Sigma V^*)(V\Sigma^* U^*)]_{\beta}$$
$$= [U\Sigma \Sigma^* U^*]_{\beta}.$$

Let $[\Sigma \Sigma^*]_{\beta} = D$ with D diagonal with entries $\sigma_i^2 = \lambda_i$ for the ith diagonal element. Now notice that we have

 $(AA^*)[U]_{\beta} = D[U]_{\beta}$ since U is unitary, and D is diagonal $\Longrightarrow (AA^*)[u_i]_{\beta} = \lambda_i[u_i]_{\beta}$ by taking the ith columns of $[U]_{\beta}$ to be $[u_i]_{\beta}$.

Hence we have that $TT^*(u_i) = \lambda u_i$.

Problem 4. (\$6.7 **Problem 13.**) Prove that if *A* is a positive semidefinite matrix, then the singular values of *A* are the same as the eigenvalues of *A*.

•

Proof. Since *A* is positive definite we can write $A = BB^*$. Now $B = U\Sigma V^*$ via the SVD. By the previous problem, we then have

$$BB^* = U\Sigma\Sigma^*U^*.$$

We then have that $A = U\Sigma^2 U^{-1}$ by above as a singular value decomposition for A with singular values σ_i^2 . This is also an eigenvalue decomposition with eigenvalues σ_i^2 .

Problem 5. (§6.7 Problem 14.) Prove that if *A* is a positive definite matrix and $A = U\Sigma V^*$ is a singular value decomposition of *A*, then U = V.

:

Proof. If *A* is positive definite then *A* is also positive semidefinite. By the previous problem we found the singular values of *A* are the same as the eigenvalues of *A*. It follows that the singular value decomposition $A = U\Sigma V^*$ is equivalent to $A = PDP^{-1}$ which means that $\Sigma = D$ and hence $V^* = P^{-1} = U^{-1}$. Specifically we have that V = U.

Problem 6. (§6.7 Problem 15.) Let A be a square matrix with a polar decomposition A = WP.

- (a) Prove that *A* is normal if and only if $WP^2 = P^2W$.
- (b) Use (a) to prove that A is normal if and only if WP = PW.

:

Proof.

(a) First note that $P^2 = V\Sigma^2V^*$, $P^*P = V\Sigma^*\Sigma V^*$ and $PP^* = V\Sigma\Sigma^*V^*$. But we have that $\Sigma^2 = \Sigma^*\Sigma = \Sigma\Sigma^*$. Thus $P^2 = P^*P = PP^*$. Then

$$AA^* = A^*A$$

$$\iff WPP^*W^* = P^*P$$

$$\iff WP^2 = P^2W.$$

Hence we have that *A* is normal if and only if $WP^2 = P^2W$.

(b) Using (a) we have

$$P^{2} = WP^{2}W* = (WPW^{*})^{2}$$

$$\iff P = WPW^{*}$$

$$\iff PW = WP.$$

Problem 7. (§6.7 Problem 21.) Let V and W be finite-dimensional inner product spaces, and let $T: V \to W$ be linear. Prove the following results.

- (a) $TT^{\dagger}T = T$.
- (b) $T^{\dagger}TT^{\dagger} = T^{\dagger}$.
- (c) Both $T^{\dagger}T$ and TT^{\dagger} are self-adjoint.

:

Proof. For each part we will let $A = [T]_{\beta}$ for some basis β and let $A = U\Sigma V^*$ by SVD.

(a) We have

$$AA^{\dagger}A = (U\Sigma V^*)(V\Sigma^{\dagger}U^*)(U\Sigma V^*)$$
$$= U\Sigma \Sigma^{\dagger}\Sigma V^*$$
$$= U\Sigma V^* = A.$$

(b) We have

$$A^{\dagger}AA^{\dagger} = (V\Sigma^{\dagger}U^{*})(U\Sigma V^{*})(V\Sigma^{\dagger}U^{*})$$
$$= V\Sigma^{\dagger}\Sigma\Sigma^{\dagger}U^{*}$$
$$= V\Sigma^{\dagger}U^{*} = A^{\dagger}$$

(c) We have

$$(A^{\dagger}A)^* = (V\Sigma^{\dagger}\Sigma V^*)^* = (VV^*)^* = A^{\dagger}A$$
 and $(AA^{\dagger})^* = (U\Sigma\Sigma U^*)^* = (UU^*) = AA^{\dagger}.$

So both are self adjoint.