Examenul de bacalaureat 2012 Proba E. c) Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Model

3p

1n

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

SUBIECTUL I (30 de puncte) 1. $|\sqrt{3}-5| < 0 \Rightarrow |\sqrt{3}-5| = 5-\sqrt{3}$ 2p $\sqrt{3}-1>0 \Rightarrow \left|\sqrt{3}-1\right|=\sqrt{3}-1$ 2p $a = 4 \in \mathbb{Z}$ 2. $f(1) + f(2) + ... + f(10) = 2 \cdot (1 + 2 + 3 + ... + 10) - 10 =$ 1p 2p $=2\cdot\frac{10\cdot11}{2}-10=$ 2p 1p 1p 2p $x^2 - 4x + 4 = 0$ Finalizare: x = 2 şi y = 32p $3 + 4x \ge 0 \Rightarrow x \in \left[-\frac{3}{4}, +\infty \right]$ 1p 2p 3 + 4x = 25Finalizare: $x = \frac{11}{2}$ este soluție $\vec{w} = \vec{v} + \vec{u} = 2\vec{i} + \vec{j} + \vec{i} - 5\vec{j} = 3\vec{i} - 4\vec{j}$ 2p 3p Coordonatele vectorului \overline{w} sunt (3,-4)2p $AC^2 = BC^2 + AB^2 - 2BC \cdot AB \cdot \cos B$ 1p

	Timened. The	1 p
SUBIECTUL al II-lea (30 de pu		
a)	$\hat{1} + \hat{3} + \hat{5} + \hat{7} = \hat{0}$	5p
b)	$\hat{2}^2 = \hat{4}$	1p
	$\hat{2}^3 = \hat{0}$	1p
	$\hat{2}^4 = \hat{2}^6 = \hat{2}^8 = \hat{2}^{10} = \hat{0}$	2p
	$\hat{2}^{10} + \hat{2}^8 + \hat{2}^6 + \hat{2}^4 + \hat{2}^2 = \hat{4}$	1p
c)	Dacă $x \in \mathbb{Z}_8$ este inversul lui $\hat{7}$, atunci $\hat{7}x = \hat{1}$	2p
	$x = \hat{7}$	3p
d)	$\hat{7}x + \hat{2} = \hat{5} \iff \hat{7}x = \hat{3}$	2p
	$x = \hat{7}^{-1} \cdot \hat{3} = \hat{7} \cdot \hat{3} = \hat{5}$	3 p
e)	$x^2 \in \left\{\hat{0}, \hat{1}, \hat{4}\right\}$	2p
	$\hat{0} + \hat{5} \neq \hat{0}, \ \hat{1} + \hat{5} \neq \hat{0}, \ \hat{4} + \hat{5} \neq \hat{0}$	2p
	Ecuația nu are soluții în mulțimea \mathbb{Z}_8	1p

Probă scrisă la Matematică

Barem de evaluare și de notare

Finalizare: AC = 7

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

$\begin{cases} x + y = \hat{4} \\ x + \hat{2}(x + y) = \hat{1} \end{cases} \Leftrightarrow \begin{cases} x + y = \hat{4} \\ x = \hat{1} \end{cases}$	4p
$\Leftrightarrow \begin{cases} x = \hat{1} \\ y = \hat{3} \end{cases}$	1p

	(y=3)	
SUB		puncte)
a)	$C = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, {}^{t}C = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, C + {}^{t}C = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$	3р
	$\det(C + {}^{t}C) = \begin{vmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{vmatrix} = 4$ $A^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$	2p
b)	$A^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$	3 p
	$A^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = O_{3}$	2p
c)	$(I_3 + A)(I_3 - A + A^2) = I_3 + A^3$	3p
	$I_3 + A^3 = I_3 + O_3 = I_3$	2p
d)	$(I_3 + aA)(I_3 + A + A^2) = I_3 \Leftrightarrow I_3 + A + A^2 + aA + aA^2 + aA^3 = I_3$	2p
	$\Leftrightarrow (a+1)(A+A^2) = O_3$	1p
	$A + A^{2} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 1 & 0 \end{pmatrix} \neq O_{3} \Rightarrow a + 1 = 0 \Rightarrow a = -1$	2p
e)	$C^{-1} = I_3 - A + A^2$	3 p
	$C^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$	2p
f)	$xC + yA^{2} + zI_{3} = A \Leftrightarrow \begin{pmatrix} x & 0 & 0 \\ x & x & 0 \\ x & x & x \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ y & 0 & 0 \end{pmatrix} + \begin{pmatrix} z & 0 & 0 \\ 0 & z & 0 \\ 0 & 0 & z \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$	2p
	$\Leftrightarrow \begin{pmatrix} x+z & 0 & 0 \\ x & x+z & 0 \\ x+y & x & x+z \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \Rightarrow x = 1, y = 0, z = -1$	3р

Probă scrisă la Matematică

Model