Metrisches TSP:

- Vollständiger Graph G = (V, E)
- Metr. Abstandsfunktion $d: E \to \mathbb{R}$

 ρ -approximative Algorithmen

z.B. Christofides ($\rho = 1, 5$)

- Lsgen: Tour τ durch ganz V
- **Ziel:** Minimiere $d(\tau)$

- Vollständiger Graph G = (V, E)
- Metr. Abstandsfunktion $d: E \to \mathbb{R}$
- Startpunkt/Depot $s \in V$
- Kapazität Q (polynomiell in Eingabe)
- Bedarfe $(q_v)_{v \in V}, q_v \in \{0, ..., Q\}$
- Lsgen: Route (σ) , die bei s beginn alle Bedarfe erfüllen nie mehr als Q Elemente transportiert
- **Ziel:** Minimiere $d(\sigma)$

Heterogenes k-TSP:

Metr. Abstandsfunktion $d: E \to \mathbb{R}$

• Vollständiger Graph G = (V, E)

- Startpunkt $s \in V$
- k Fahrzeuge mit Geschw. $(2^{\lambda_i})_{i=1}^k$
- **Lsgen:** Touren (τ_i) , die bei s beginnen und gemeinsam ganz V abdecken
- **Ziel:** Minimiere max $\frac{d(\tau_i)}{2\lambda_i}$

Heterogenes k-CVRP:

- Vollständiger Graph G = (V, E)
 - Metr. Abstandsfunktion $d: E \to \mathbb{R}$
 - Startpunkt/Depot $s \in V$
 - einheitliche Kapazität Q
 - Bedarfe $(q_v)_{v \in V}, q_v \in \{0, ..., Q\}$
- k Fahrzeuge mit Geschw. (2^{λ_i}) • Lsgen: Touren (σ_i) , die bei s beginnen, gemeinsam alle Bedarfe erfüllen,
- wobei kein Fahrzeug jemals mehr als Q Elemente transportiert

• **Ziel:** Minimiere max $\frac{d(\sigma_i)}{2^{\lambda_i}}$