b. To factor the matrix $\begin{bmatrix} 1 & -8 \\ -.5 & 5 \end{bmatrix}$ into the product of transfer matrices, as in equation (6), look for R_1 and R_2 in Figure 4 to satisfy

$$\begin{bmatrix} 1 & -R_1 \\ -1/R_2 & 1 + R_1/R_2 \end{bmatrix} = \begin{bmatrix} 1 & -8 \\ -.5 & 5 \end{bmatrix}$$

From the (1, 2)-entries, $R_1 = 8$ ohms, and from the (2, 1)-entries, $1/R_2 = .5$ ohm and $R_2 = 1/.5 = 2$ ohms. With these values, the network in Figure 4 has the desired transfer matrix.

A network transfer matrix summarizes the input—output behavior (the design specifications) of the network without reference to the interior circuits. To physically build a network with specified properties, an engineer first determines if such a network can be constructed (or *realized*). Then the engineer tries to factor the transfer matrix into matrices corresponding to smaller circuits that perhaps are already manufactured and ready for assembly. In the common case of alternating current, the entries in the transfer matrix are usually rational complex-valued functions. (See Exercises 21 and 22 in Section 2.4.) A standard problem is to find a *minimal realization* that uses the smallest number of electrical components.

Practice Problem

Find an LU factorization of
$$A = \begin{bmatrix} 2 & -4 & -2 & 3 \\ 6 & -9 & -5 & 8 \\ 2 & -7 & -3 & 9 \\ 4 & -2 & -2 & -1 \\ -6 & 3 & 3 & 4 \end{bmatrix}$$
. [*Note:* It will turn out that A

has only three pivot columns, so the method of Example 2 will produce only the first three columns of L. The remaining two columns of L come from I_5 .]

2.5 Exercises

In Exercises 1–6, solve the equation $A\mathbf{x} = \mathbf{b}$ by using the LU factorization given for A. In Exercises 1 and 2, also solve $A\mathbf{x} = \mathbf{b}$ by ordinary row reduction.

1.
$$A = \begin{bmatrix} 3 & -7 & -2 \\ -3 & 5 & 1 \\ 6 & -4 & 0 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} -7 \\ 5 \\ 2 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -5 & 1 \end{bmatrix} \begin{bmatrix} 3 & -7 & -2 \\ 0 & -2 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$

2.
$$A = \begin{bmatrix} 4 & 3 & -5 \\ -4 & -5 & 7 \\ 8 & 6 & -8 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 2 \\ -4 \\ 6 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 & -5 \\ 0 & -2 & 2 \\ 0 & 0 & 2 \end{bmatrix}$$

3.
$$A = \begin{bmatrix} 2 & -1 & 2 \\ -6 & 0 & -2 \\ 8 & -1 & 5 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 4 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 2 \\ 0 & -3 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

4.
$$A = \begin{bmatrix} 2 & -2 & 4 \\ 1 & -3 & 1 \\ 3 & 7 & 5 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ -5 \\ 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 3/2 & -5 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 4 \\ 0 & -2 & -1 \\ 0 & 0 & -6 \end{bmatrix}$$

5.
$$A = \begin{bmatrix} 1 & -2 & -4 & -3 \\ 2 & -7 & -7 & -6 \\ -1 & 2 & 6 & 4 \\ -4 & -1 & 9 & 8 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 7 \\ 0 \\ 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -4 & 3 & -5 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & -4 & -3 \\ 0 & -3 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

6.
$$A = \begin{bmatrix} 1 & 3 & 4 & 0 \\ -3 & -6 & -7 & 2 \\ 3 & 3 & 0 & -4 \\ -5 & -3 & 2 & 9 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ 3 & -2 & 1 & 0 \\ -5 & 4 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 4 & 0 \\ 0 & 3 & 5 & 2 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Find an LU factorization of the matrices in Exercises 7-16 (with L unit lower triangular). Note that MATLAB will usually produce a permuted LU factorization because it uses partial pivoting for numerical accuracy.

7.
$$\begin{bmatrix} 2 & 5 \\ -3 & -4 \end{bmatrix}$$
8.
$$\begin{bmatrix} 6 & 9 \\ 4 & 5 \end{bmatrix}$$
9.
$$\begin{bmatrix} 3 & -1 & 2 \\ -3 & -2 & 10 \\ 9 & -5 & 6 \end{bmatrix}$$
10.
$$\begin{bmatrix} -5 & 3 & 4 \\ 10 & -8 & -9 \\ 15 & 1 & 2 \end{bmatrix}$$
11.
$$\begin{bmatrix} 3 & -6 & 3 \\ 6 & -7 & 2 \\ -1 & 7 & 0 \end{bmatrix}$$
12.
$$\begin{bmatrix} 2 & -4 & 2 \\ 1 & 5 & -4 \\ -6 & -2 & 4 \end{bmatrix}$$
13.
$$\begin{bmatrix} 1 & 3 & -5 & -3 \\ -1 & -5 & 8 & 4 \\ 4 & 2 & -5 & -7 \\ -2 & -4 & 7 & 5 \end{bmatrix}$$
14.
$$\begin{bmatrix} 1 & 4 & -1 & 5 \\ 3 & 7 & -2 & 9 \\ -2 & -3 & 1 & -4 \\ -1 & 6 & -1 & 7 \end{bmatrix}$$
15.
$$\begin{bmatrix} 2 & -4 & 4 & -2 \\ 6 & -9 & 7 & -3 \\ -1 & -4 & 8 & 0 \end{bmatrix}$$
16.
$$\begin{bmatrix} 2 & -6 & 6 \\ -4 & 5 & -7 \\ 3 & 5 & -1 \\ -6 & 4 & -8 \\ 8 & -3 & 9 \end{bmatrix}$$

- 17. When A is invertible, MATLAB finds A^{-1} by factoring A =LU (where L may be permuted lower triangular), inverting L and U, and then computing $U^{-1}L^{-1}$. Use this method to compute the inverse of A in Exercise 2. (Apply the algorithm of Section 2.2 to L and to U.)
- **18.** Find A^{-1} as in Exercise 17, using A from Exercise 3.
- 19. Let A be a lower triangular $n \times n$ matrix with nonzero entries on the diagonal. Show that A is invertible and A^{-1} is lower triangular. [Hint: Explain why A can be changed into I using only row replacements and scaling. (Where are the pivots?) Also, explain why the row operations that reduce A to I change I into a lower triangular matrix.]
- **20.** Let A = LU be an LU factorization. Explain why A can be row reduced to U using only replacement operations. (This fact is the converse of what was proved in the text.)
- 21. Suppose A = BC, where B is invertible. Show that any sequence of row operations that reduces B to I also reduces Ato C. The converse is not true, since the zero matrix may be factored as 0 = B(0).

Exercises 22-26 provide a glimpse of some widely used matrix factorizations, some of which are discussed later in the text.

- 22. (Reduced LU Factorization) With A as in the Practice Problem, find a 5×3 matrix B and a 3×4 matrix C such that A = BC. Generalize this idea to the case where A is $m \times n$, A = LU, and U has only three nonzero rows.
- 23. (Rank Factorization) Suppose an $m \times n$ matrix A admits a factorization A = CD where C is $m \times 4$ and D is $4 \times n$.
 - a. Show that A is the sum of four outer products. (See Section 2.4.)
 - b. Let m = 400 and n = 100. Explain why a computer programmer might prefer to store the data from A in the form of two matrices C and D.
- **24.** (QR Factorization) Suppose A = QR, where Q and R are $n \times n$, R is invertible and upper triangular, and Q has the property that $Q^T Q = I$. Show that for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has a unique solution. What computations with Q and R will produce the solution?
- **25.** (Singular Value Decomposition) Suppose $A = UDV^T$, where U and V are $n \times n$ matrices with the property that $U^T U = I$ and $V^T V = I$, and where D is a diagonal matrix with positive numbers $\sigma_1, \ldots, \sigma_n$ on the diagonal. Show that A is invertible, and find a formula for A^{-1} .
- **26.** (Spectral Factorization) Suppose a 3×3 matrix A admits a factorization as $A = PDP^{-1}$, where P is some invertible 3×3 matrix and D is the diagonal matrix

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/3 \end{bmatrix}$$

Show that this factorization is useful when computing high powers of A. Find fairly simple formulas for A^2 , A^3 , and A^k (k a positive integer), using P and the entries in D.

- 27. Design two different ladder networks that each output 9 volts and 4 amps when the input is 12 volts and 6 amps.
- 28. Show that if three shunt circuits (with resistances R_1 , R_2 , R_3) are connected in series, the resulting network has the same transfer matrix as a single shunt circuit. Find a formula for the resistance in that circuit.
- 29. a. Compute the transfer matrix of the network in the figure.
 - b. Let $A = \begin{bmatrix} 4/3 & -12 \\ -1/4 & 3 \end{bmatrix}$. Design a ladder network whose transfer matrix is A by finding a suitable matrix factorization of A.

- 30. Find a different factorization of the A in Exercise 29, and thereby design a different ladder network whose transfer matrix is A.
- 131. The solution to the steady-state heat flow problem for the plate in the figure is approximated by the solution to the **132**. The band matrix A shown below can be used to estimate the equation $A\mathbf{x} = \mathbf{b}$, where $\mathbf{b} = (5, 15, 0, 10, 0, 10, 20, 30)$ and

$$A = \begin{bmatrix} 4 & -1 & -1 \\ -1 & 4 & 0 & -1 \\ -1 & 0 & 4 & -1 & -1 \\ & -1 & -1 & 4 & 0 & -1 \\ & & -1 & 0 & 4 & -1 & -1 \\ & & & & -1 & -1 & 4 & 0 & -1 \\ & & & & & -1 & -1 & 4 \end{bmatrix}$$

(Refer to Exercise 43 of Section 1.1.) The missing entries in A are zeros. The nonzero entries of A lie within a band along the main diagonal. Such band matrices occur in a variety of applications and often are extremely large (with thousands of rows and columns but relatively narrow bands).

- a. Use the method of Example 2 to construct an LU factorization of A, and note that both factors are band matrices (with two nonzero diagonals below or above the main diagonal). Compute LU-A to check your work.
- b. Use the LU factorization to solve $A\mathbf{x} = \mathbf{b}$.

- c. Obtain A^{-1} and note that A^{-1} is a dense matrix with no band structure. When A is large, L and U can be stored in much less space than A^{-1} . This fact is another reason for preferring the LU factorization of A to A^{-1} itself.
- unsteady conduction of heat in a rod when the temperatures at points p_1, \ldots, p_5 on the rod change with time.²

The constant C in the matrix depends on the physical nature of the rod, the distance Δx between the points on the rod, and the length of time Δt between successive temperature measurements. Suppose that for k = 0, 1, 2, ..., a vector \mathbf{t}_k in \mathbb{R}^5 lists the temperatures at time $k\Delta t$. If the two ends of the rod are maintained at 0°, then the temperature vectors satisfy the equation $A\mathbf{t}_{k+1} = \mathbf{t}_k (k = 0, 1, ...)$, where

$$A = \begin{bmatrix} (1+2C) & -C & & & & & & \\ -C & (1+2C) & -C & & & & \\ & -C & (1+2C) & -C & & & \\ & & -C & (1+2C) & -C & \\ & & & -C & (1+2C) \end{bmatrix}$$

- a. Find the LU factorization of A when C = 1. A matrix such as A with three nonzero diagonals is called a tridiagonal matrix. The L and U factors are bidiagonal matrices.
- b. Suppose C = 1 and $\mathbf{t}_0 = (10, 12, 12, 12, 10)$. Use the LU factorization of A to find the temperature distributions $\mathbf{t}_{1}, \mathbf{t}_{2}, \mathbf{t}_{3}, \text{ and } \mathbf{t}_{4}.$

Solution to Practice Problem

$$A = \begin{bmatrix} 2 & -4 & -2 & 3 \\ 6 & -9 & -5 & 8 \\ 2 & -7 & -3 & 9 \\ 4 & -2 & -2 & -1 \\ -6 & 3 & 3 & 4 \end{bmatrix} \sim \begin{bmatrix} 2 & -4 & -2 & 3 \\ 0 & 3 & 1 & -1 \\ 0 & -3 & -1 & 6 \\ 0 & 6 & 2 & -7 \\ 0 & -9 & -3 & 13 \end{bmatrix}$$
$$\sim \begin{bmatrix} 2 & -4 & -2 & 3 \\ 0 & 3 & 1 & -1 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 10 \end{bmatrix} \sim \begin{bmatrix} 2 & -4 & -2 & 3 \\ 0 & 3 & 1 & -1 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow U$$

Divide the entries in each highlighted column by the pivot at the top. The resulting columns form the first three columns in the lower half of L. This suffices to make row reduction of L to I correspond to reduction of A to U. Use the last two columns of I_5

² See Biswa N. Datta, Numerical Linear Algebra and Applications (Pacific Grove, CA: Brooks/Cole, 1994), pp. 200-201.

Practice Problem

Suppose an economy has two sectors: goods and services. One unit of output from goods requires inputs of .2 unit from goods and .5 unit from services. One unit of output from services requires inputs of .4 unit from goods and .3 unit from services. There is a final demand of 20 units of goods and 30 units of services. Set up the Leontief input-output model for this situation.

2.6 Exercises

Exercises 1-4 refer to an economy that is divided into three sectors-manufacturing, agriculture, and services. For each unit of output, manufacturing requires .10 unit from other companies in that sector, .30 unit from agriculture, and .30 unit from services. For each unit of output, agriculture uses .20 unit of its own output, .60 unit from manufacturing, and .10 unit from services. For each unit of output, the services sector consumes .10 unit from services, .60 unit from manufacturing, but no agricultural products.

- 1. Construct the consumption matrix for this economy, and determine what intermediate demands are created if agriculture plans to produce 100 units.
- 2. Determine the production levels needed to satisfy a final demand of 18 units for agriculture, with no final demand for the other sectors. (Do not compute an inverse matrix.)
- 3. Determine the production levels needed to satisfy a final demand of 18 units for manufacturing, with no final demand for the other sectors. (Do not compute an inverse matrix.)

- 4. Determine the production levels needed to satisfy a final demand of 18 units for manufacturing, 18 units for agriculture, and 0 units for services.
- 5. Consider the production model $\mathbf{x} = C\mathbf{x} + \mathbf{d}$ for an economy with two sectors, where

$$C = \begin{bmatrix} .0 & .5 \\ .6 & .2 \end{bmatrix}, \qquad \mathbf{d} = \begin{bmatrix} 50 \\ 30 \end{bmatrix}$$

Use an inverse matrix to determine the production level necessary to satisfy the final demand.

- **6.** Repeat Exercise 5 with $C = \begin{bmatrix} .1 & .6 \\ .5 & .2 \end{bmatrix}$, and $\mathbf{d} = \begin{bmatrix} .18 \\ .11 \end{bmatrix}$.
- 7. Let C and d be as in Exercise 5.
 - a. Determine the production level necessary to satisfy a final demand for 1 unit of output from sector 1.

- b. Use an inverse matrix to determine the production level necessary to satisfy a final demand of $\begin{bmatrix} 51\\30 \end{bmatrix}$
- c. Use the fact that $\begin{bmatrix} 51 \\ 30 \end{bmatrix} = \begin{bmatrix} 50 \\ 30 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ to explain how and why the answers to parts (a) and (b) and to Exercise 5 are related.
- **8.** Let C be an $n \times n$ consumption matrix whose column sums are less than 1. Let x be the production vector that satisfies a final demand \mathbf{d} , and let $\Delta \mathbf{x}$ be a production vector that satisfies a different final demand $\Delta \mathbf{d}$.
 - a. Show that if the final demand changes from \mathbf{d} to $\mathbf{d} + \Delta \mathbf{d}$, then the new production level must be $x + \Delta x$. Thus Δx gives the amounts by which production must change in order to accommodate the *change* $\Delta \mathbf{d}$ in demand.
 - b. Let $\Delta \mathbf{d}$ be the vector in \mathbb{R}^n with 1 as the first entry and 0's elsewhere. Explain why the corresponding production Δx is the first column of $(I-C)^{-1}$. This shows that the first column of $(I - C)^{-1}$ gives the amounts the various sectors must produce to satisfy an increase of 1 unit in the final demand for output from sector 1.
- 9. Solve the Leontief production equation for an economy with three sectors, given that

$$C = \begin{bmatrix} .2 & .2 & .0 \\ .3 & .1 & .3 \\ .1 & .0 & .2 \end{bmatrix}$$
 and $\mathbf{d} = \begin{bmatrix} 40 \\ 60 \\ 80 \end{bmatrix}$

- 10. The consumption matrix C for the U.S. economy in 1972 has the property that every entry in the matrix $(I-C)^{-1}$ is nonzero (and positive).1 What does that say about the effect of raising the demand for the output of just one sector of the economy?
- 11. The Leontief production equation, $\mathbf{x} = C\mathbf{x} + \mathbf{d}$, is usually accompanied by a dual price equation,

$$\mathbf{p} = C^T \mathbf{p} + \mathbf{v}$$

where p is a price vector whose entries list the price per unit entries list the value added per unit of output. (Value added includes wages, profit, depreciation, etc.) An important fact in economics is that the gross domestic product (GDP) can be expressed in two ways:

 $\{\text{gross domestic product}\} = \mathbf{p}^T \mathbf{d} = \mathbf{v}^T \mathbf{x}$

Verify the second equality. [Hint: Compute $\mathbf{p}^T \mathbf{x}$ in two ways.]

- 12. Let C be a consumption matrix such that $C^m \to 0$ as $m \to \infty$, and for m = 1, 2, ..., let $D_m = I + C + \cdots +$ C^m . Find a difference equation that relates D_m and D_{m+1} and thereby obtain an iterative procedure for computing formula (8) for $(I - C)^{-1}$.
- \blacksquare 13. The consumption matrix C below is based on input-output data for the U.S. economy in 1958, with data for 81 sectors grouped into 7 larger sectors: (1) nonmetal household and personal products, (2) final metal products (such as motor vehicles), (3) basic metal products and mining, (4) basic nonmetal products and agriculture, (5) energy, (6) services, and (7) entertainment and miscellaneous products.2 Find the production levels needed to satisfy the final demand ${\bf d}$. (Units are in millions of dollars.)

$$\mathbf{d} = \begin{bmatrix} 74,000\\ 56,000\\ 10,500\\ 25,000\\ 17,500\\ 196,000\\ 5,000 \end{bmatrix}$$

- 11. The demand vector in Exercise 13 is reasonable for 1958 data, but Leontief's discussion of the economy in the reference cited there used a demand vector closer to 1964 data: $\mathbf{d} = (99640, 75548, 14444, 33501, 23527, 263985, 6526)$ Find the production levels needed to satisfy this demand.
- for each sector's output, and v is a value added vector whose 115. Use equation (6) to solve the problem in Exercise 13. and for $k = 1, 2, \ldots$, compute Set $\mathbf{x}^{(0)} = \mathbf{d}$, $\mathbf{x}^{(k)} = \mathbf{d} + C \mathbf{x}^{(k-1)}$. How many steps are needed to obtain the answer in Exercise 13 to four significant figures?

¹ Wassily W. Leontief, "The World Economy of the Year 2000," Scientific American, September 1980, pp. 206-231.

² Wassily W. Leontief, "The Structure of the U.S. Economy," Scientific American, April 1965, pp. 30-32.

have 4 × 4 matrix operations and graphics algorithms embedded in their microchips and circuitry. Such boards can perform the billions of matrix multiplications per second needed for realistic color animation in 3D gaming programs.²

Further Reading

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes, Computer Graphics: Principles and Practice, 3rd ed. (Boston, MA: Addison-Wesley, 2002), Chapters 5 and 6.

Practice Problem

Rotation of a figure about a point \mathbf{p} in \mathbb{R}^2 is accomplished by first translating the figure by $-\mathbf{p}$, rotating about the origin, and then translating back by \mathbf{p} . See Figure 7. Construct the 3×3 matrix that rotates points -30° about the point (-2, 6), using homogeneous coordinates.

FIGURE 7 Rotation of figure about point p.

2.7 Exercises

- 1. What 3×3 matrix will have the same effect on homogeneous coordinates for \mathbb{R}^2 that the shear matrix A has in Example 2?
- 2. Use matrix multiplication to find the image of the triangle under the transformawith data matrix D =tion that reflects points through the y-axis. Sketch both the original triangle and its image.

In Exercises 3-8, find the 3×3 matrices that produce the described composite 2D transformations, using homogeneous coordinates.

- 3. Translate by (3, 1), and then rotate 45° about the origin.
- **4.** Translate by (-3,4) and then scale the x-coordinate by .7 and the y-coordinated by 1.3.
- 5. Reflect points through the x-axis, and then rotate 30° about the origin.

- **6.** Rotate points 30° , and then reflect through the x-axis.
- 7. Rotate points through 60° about the point (6, 8).
- **8.** Rotate points through 45° about the point (3, 7).
- 9. A 2×200 data matrix D contains the coordinates of 200 points. Compute the number of multiplications required to transform these points using two arbitrary 2×2 matrices A and B. Consider the two possibilities A(BD) and (AB) D. Discuss the implications of your results for computer graphics calculations.
- 10. Consider the following geometric 2D transformations: D, a dilation (in which x-coordinates and y-coordinates are scaled by the same factor); R, a rotation; and T, a translation. Does D commute with R? That is, is $D(R(\mathbf{x})) = R(D(\mathbf{x}))$ for all x in \mathbb{R}^2 ? Does D commute with T? Does R commute

² See Jan Ozer, "High-Performance Graphics Boards," PC Magazine 19, September 1, 2000, pp. 187–200. Also, "The Ultimate Upgrade Guide: Moving On Up," PC Magazine 21, January 29, 2002, pp. 82-91.

11. A rotation on a computer screen is sometimes implemented as the product of two shear-and-scale transformations, which can speed up calculations that determine how a graphic image actually appears in terms of screen pixels. (The screen consists of rows and columns of small dots, called *pixels*.) The first transformation A_1 shears vertically and then compresses each column of pixels; the second transformation A_2 shears horizontally and then stretches each row of pixels. Let

$$A_{1} = \begin{bmatrix} 1 & 0 & 0\\ \sin \varphi & \cos \varphi & 0\\ 0 & 0 & 1 \end{bmatrix},$$

$$A_2 = \begin{bmatrix} \sec \varphi & -\tan \varphi & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Show that the composition of the two transformations is a rotation in \mathbb{R}^2 .

12. A rotation in \mathbb{R}^2 usually requires four multiplications. Compute the product below, and show that the matrix for a rotation can be factored into three shear transformations (each of which requires only one multiplication).

$$\begin{bmatrix} 1 & -\tan\varphi/2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ \sin\varphi & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & -\tan\varphi/2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- 13. The usual transformations on homogeneous coordinates for 2D computer graphics involve 3×3 matrices of the form $\begin{bmatrix} A & \mathbf{p} \\ \mathbf{0}^T & 1 \end{bmatrix}$ where A is a 2×2 matrix and \mathbf{p} is in \mathbb{R}^2 . Show that such a transformation amounts to a linear transformation on \mathbb{R}^2 followed by a translation. [*Hint:* Find an appropriate matrix factorization involving partitioned matrices.]
- **14.** Show that the transformation in Exercise 7 is equivalent to a rotation about the origin followed by a translation by **p**. Find **p**.
- **15.** What vector in \mathbb{R}^3 has homogeneous coordinates $\left(\frac{1}{4}, -\frac{1}{12}, \frac{1}{18}, \frac{1}{36}\right)$?
- **16.** Are (1, -2, 3, 4) and (10, -20, 30, 40) homogeneous coordinates for the same point in \mathbb{R}^3 ? Why or why not?
- 17. Give the 4×4 matrix that rotates points in \mathbb{R}^3 about the *x*-axis through an angle of 60° . (See the figure.)

- **18.** Give the 4×4 matrix that rotates points in \mathbb{R}^3 about the z-axis through an angle of -30° , and then translates by $\mathbf{p} = (5, -2, 1)$.
- 19. Let S be the triangle with vertices (4.2, 1.2, 4), (6, 4, 2), (2, 2, 6). Find the image of S under the perspective projection with center of projection at (0, 0, 10).
- **20.** Let S be the triangle with vertices (9, 3, -5), (12, 8, 2), (1.8, 2.7, 1). Find the image of S under the perspective projection with center of projection at (0, 0, 10).

Exercises 21 and 22 concern the way in which color is specified for display in computer graphics. A color on a computer screen is encoded by three numbers (R, G, B) that list the amount of energy an electron gun must transmit to red, green, and blue phosphor dots on the computer screen. (A fourth number specifies the luminance or intensity of the color.)

121. The actual color a viewer sees on a screen is influenced by the specific type and amount of phosphors on the screen. So each computer screen manufacturer must convert between the (R, G, B) data and an international CIE standard for color, which uses three primary colors, called X, Y, and Z. A typical conversion for short-persistence phosphors is

$$\begin{bmatrix} .61 & .29 & .150 \\ .35 & .59 & .063 \\ .04 & .12 & .787 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

A computer program will send a stream of color information to the screen, using standard CIE data (X, Y, Z). Find the equation that converts these data to the (R, G, B) data needed for the screen's electron gun.

11 22. The signal broadcast by commercial television describes each color by a vector (Y, I, Q). If the screen is black and white, only the Y-coordinate is used. (This gives a better monochrome picture than using CIE data for colors.) The correspondence between YIQ and a "standard" RGB color is given by

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} .299 & .587 & .114 \\ .596 & -.275 & -.321 \\ .212 & -.528 & .311 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

(A screen manufacturer would change the matrix entries to work for its *RGB* screens.) Find the equation that converts the *YIQ* data transmitted by the television station to the *RGB* data needed for the television screen.

2.8 Exercises

Exercises 1-4 display sets in \mathbb{R}^2 . Assume the sets include the bounding lines. In each case, give a specific reason why the set H is not a subspace of \mathbb{R}^2 . (For instance, find two vectors in H whose sum is *not* in H, or find a vector in H with a scalar multiple that is not in H. Draw a picture.)

3.

5. Let $\mathbf{v}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, and $\mathbf{w} = \begin{bmatrix} 8 \\ 2 \\ -9 \end{bmatrix}$. Determine if w is in the subspace of \mathbb{R}^3 generated by \mathbf{v}_1 and \mathbf{v}_2 .

6. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ 4 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 4 \\ -7 \\ 9 \\ 7 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 5 \\ -8 \\ 6 \\ 5 \end{bmatrix}$, and $\mathbf{u} = \begin{bmatrix} -4 \\ -4 \end{bmatrix}$

$$\begin{bmatrix} -4 \\ 10 \\ -7 \\ -5 \end{bmatrix}.$$
 Determine if **u** is in the subspace of \mathbb{R}^4 generated by $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

7. Let
$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ -8 \\ 6 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -3 \\ 8 \\ -7 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -4 \\ 6 \\ -7 \end{bmatrix}$, $\mathbf{p} = \begin{bmatrix} 6 \\ -10 \\ 11 \end{bmatrix}$, and $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$.

- a. How many vectors are in $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?
- b. How many vectors are in Col A?
- c. Is **p** in Col A? Why or why not?

8. Let
$$\mathbf{v}_1 = \begin{bmatrix} -3 \\ 0 \\ 6 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -2 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0 \\ -6 \\ 3 \end{bmatrix}$, and $\mathbf{p} = \begin{bmatrix} 1 \\ 14 \\ -9 \end{bmatrix}$. Determine if \mathbf{p} is in Col A, where $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$.

- 9. With A and p as in Exercise 7, determine if p is in Nul A.
- 10. With $\mathbf{u} = (-2, 3, 1)$ and A as in Exercise 8, determine if \mathbf{u} is in Nul A.

In Exercises 11 and 12, give integers p and q such that Nul A is a subspace of \mathbb{R}^p and Col A is a subspace of \mathbb{R}^q .

11.
$$A = \begin{bmatrix} 3 & 2 & 1 & -5 \\ -9 & -4 & 1 & 7 \\ 9 & 2 & -5 & 1 \end{bmatrix}$$

12.
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 7 \\ -5 & -1 & 0 \\ 2 & 7 & 11 \end{bmatrix}$$

- 13. For A as in Exercise 11, find a nonzero vector in Nul A and a nonzero vector in Col A.
- 14. For A as in Exercise 12, find a nonzero vector in Nul A and a nonzero vector in Col A.

Determine which sets in Exercises 15–20 are bases for \mathbb{R}^2 or \mathbb{R}^3 . Justify each answer.

15.
$$\begin{bmatrix} 5 \\ -2 \end{bmatrix}, \begin{bmatrix} 10 \\ -3 \end{bmatrix}$$

16.
$$\begin{bmatrix} -4 \\ 6 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ -3 \end{bmatrix}$

17.
$$\begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 5 \\ -7 \\ 4 \end{bmatrix}, \begin{bmatrix} 6 \\ 3 \\ 5 \end{bmatrix}$$
 18.
$$\begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$$

18.
$$\begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} -5 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 7 \\ 0 \\ -5 \end{bmatrix}$$

$$19. \quad \begin{bmatrix} 3 \\ -8 \\ 1 \end{bmatrix}, \begin{bmatrix} 6 \\ 2 \\ -5 \end{bmatrix}$$

20.
$$\begin{bmatrix} 1 \\ -6 \\ -7 \end{bmatrix}, \begin{bmatrix} 3 \\ -4 \\ 7 \end{bmatrix}, \begin{bmatrix} -2 \\ 7 \\ 5 \end{bmatrix}, \begin{bmatrix} 0 \\ 8 \\ 9 \end{bmatrix}$$

In Exercises 21-30, mark each statement Ture or False (T/F). Justify each answer.

- **21.** (T/F) A subspace of \mathbb{R}^n is any set H such that (i) the zero vector is in H, (ii) \mathbf{u} , \mathbf{v} , and $\mathbf{u} + \mathbf{v}$ are in H, and (iii) c is a scalar and $c\mathbf{u}$ is in H.
- 22. (T/F) A subset H of \mathbb{R}^n is a subspace if the zero vector is in H.
- 23. (T/F) If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in \mathbb{R}^n , then Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is the same as the column space of the matrix $[\mathbf{v}_1 \ldots \mathbf{v}_p]$.
- **24.** (T/F) Given vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ in \mathbb{R}^n , the set of all linear combinations of these vectors is a subspace of \mathbb{R}^n .
- 25. (T/F) The set of all solutions of a system of m homogeneous equations in n unknowns is a subspace of \mathbb{R}^m .
- **26.** (T/F) The null space of an $m \times n$ matrix is a subspace of \mathbb{R}^n .
- 27. (T/F) The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^n .
- 28. (T/F) The column space of a matrix A is the set of solutions of $A\mathbf{x} = \mathbf{b}$.
- 29. (T/F) Row operations do not affect linear dependence relations among the columns of a matrix.
- 30. (T/F) If B is an echelon form of a matrix A, then the pivot columns of B form a basis for Col A.

Exercises 31-34 display a matrix A and an echelon form of A. Find a basis for Col A and a basis for Nul A.

31.
$$A = \begin{bmatrix} 4 & 5 & 9 & -2 \\ 6 & 5 & 1 & 12 \\ 3 & 4 & 8 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 6 & -5 \\ 0 & 1 & 5 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

32.
$$A = \begin{bmatrix} -3 & 9 & -2 & -7 \\ 2 & -6 & 4 & 8 \\ 3 & -9 & -2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 6 & 9 \\ 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

33.
$$A = \begin{bmatrix} 1 & 4 & 8 & -3 & -7 \\ -1 & 2 & 7 & 3 & 4 \\ -2 & 2 & 9 & 5 & 5 \\ 3 & 6 & 9 & -5 & -2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 4 & 8 & 0 & 5 \\ 0 & 2 & 5 & 0 & -1 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

34.
$$A = \begin{bmatrix} 3 & -1 & 7 & 3 & 9 \\ -2 & 2 & -2 & 7 & 5 \\ -5 & 9 & 3 & 3 & 4 \\ -2 & 6 & 6 & 3 & 7 \end{bmatrix}$$
$$\sim \begin{bmatrix} 3 & -1 & 7 & 0 & 6 \\ 0 & 2 & 4 & 0 & 3 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- **35.** Construct a nonzero 3×3 matrix A and a nonzero vector **b** such that b is in Col A, but b is not the same as any one of the columns of A.
- **36.** Construct a nonzero 3×3 matrix A and a vector **b** such that **b** is *not* in Col A.
- 37. Construct a nonzero 3×3 matrix A and a nonzero vector **b** such that **b** is in Nul A.
- **38.** Suppose the columns of a matrix $A = [\mathbf{a}_1 \ \cdots \ \mathbf{a}_p]$ are linearly independent. Explain why $\{a_1, \ldots, a_p\}$ is a basis for Col A.

In Exercises 39-44, respond as comprehensively as possible, and justify your answer.

- **39.** Suppose F is a 5×5 matrix whose column space is not equal to \mathbb{R}^5 . What can you say about Nul F?
- **40.** If R is a 6×6 matrix and Nul R is not the zero subspace, what can you say about Col R?
- **41.** If Q is a 4×4 matrix and Col $Q = \mathbb{R}^4$, what can you say about solutions of equations of the form $Q\mathbf{x} = \mathbf{b}$ for \mathbf{b} in \mathbb{R}^4 ?
- **42.** If P is a 5×5 matrix and Nul P is the zero subspace, what can you say about solutions of equations of the form $P \mathbf{x} = \mathbf{b}$ for **b** in \mathbb{R}^5 ?
- **43.** What can you say about Nul B when B is a 5×4 matrix with linearly independent columns?
- **44.** What can you say about the shape of an $m \times n$ matrix A when the columns of A form a basis for \mathbb{R}^m ?

In Exercises 45 and 46, construct bases for the column space and the null space of the given matrix A. Justify your work.

1145.
$$A = \begin{bmatrix} 3 & -5 & 0 & -1 & 3 \\ -7 & 9 & -4 & 9 & -11 \\ -5 & 7 & -2 & 5 & -7 \\ 3 & -7 & -3 & 4 & 0 \end{bmatrix}$$
1146. $A = \begin{bmatrix} 5 & 2 & 0 & -8 & -8 \\ 4 & 1 & 2 & -8 & -9 \\ 5 & 1 & 3 & 5 & 19 \\ -8 & -5 & 6 & 8 & 5 \end{bmatrix}$

1146.
$$A = \begin{bmatrix} 5 & 2 & 0 & -8 & -8 \\ 4 & 1 & 2 & -8 & -9 \\ 5 & 1 & 3 & 5 & 19 \\ -8 & -5 & 6 & 8 & 5 \end{bmatrix}$$

STUDY GUIDE offers an expanded Invertible Matrix Theorem Table.

then dim Nul A = 0, by the Rank Theorem, and so Nul $A = \{0\}$. Thus $(p) \Rightarrow (q)$. Also, statement (q) implies that the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution, which is statement (d). Since statements (d) and (g) are already known to be equivalent to the statement that A is invertible, the proof is complete.

Numerical Notes

Many algorithms discussed in this text are useful for understanding concepts and making simple computations by hand. However, the algorithms are often unsuitable for large-scale problems in real life.

Rank determination is a good example. It would seem easy to reduce a matrix to echelon form and count the pivots. But unless exact arithmetic is performed on a matrix whose entries are specified exactly, row operations can change the apparent rank of a matrix. For instance, if the value of x in the matrix $\begin{bmatrix} 5 & 7 \\ 5 & x \end{bmatrix}$ is not stored exactly as 7 in a computer, then the rank may be 1 or 2, depending on whether the computer treats x - 7 as zero.

In practical applications, the effective rank of a matrix A is often determined from the singular value decomposition of A, to be discussed in Section 7.4.

Practice Problems

1. Determine the dimension of the subspace H of \mathbb{R}^3 spanned by the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 . (First, find a basis for H.)

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ -8 \\ 6 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 3 \\ -7 \\ -1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -1 \\ 6 \\ -7 \end{bmatrix}$$

2. Consider the basis

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ .2 \end{bmatrix}, \begin{bmatrix} .2 \\ 1 \end{bmatrix} \right\}$$

for
$$\mathbb{R}^2$$
. If $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, what is \mathbf{x} ?

3. Could \mathbb{R}^3 possibly contain a four-dimensional subspace? Explain.

2.9 Exercises

In Exercises 1 and 2, find the vector \mathbf{x} determined by the given coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ and the given basis \mathcal{B} . Illustrate your answer with a figure, as in the solution of Practice Problem 2.

1.
$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \end{bmatrix} \right\}, [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

2.
$$\mathcal{B} = \left\{ \begin{bmatrix} -2\\1 \end{bmatrix}, \begin{bmatrix} 3\\1 \end{bmatrix} \right\}, [\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -1\\3 \end{bmatrix}$$

In Exercises 3–6, the vector \mathbf{x} is in a subspace H with a basis $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$. Find the \mathcal{B} -coordinate vector of \mathbf{x} .

3.
$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -2 \\ 7 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} -3 \\ 7 \end{bmatrix}$$

4.
$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -4 \\ 7 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} -8 \\ 9 \end{bmatrix}$$

5.
$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ 5 \\ -3 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -3 \\ -7 \\ 5 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 4 \\ 10 \\ -7 \end{bmatrix}$$

6.
$$\mathbf{b}_1 = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -6 \\ 7 \\ 8 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix}$$

7. Let $\mathbf{b}_1 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 7 \\ -2 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$, and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$. Use the figure to estimate $[\mathbf{w}]_{\mathcal{B}}$ and $[\mathbf{x}]_{\mathcal{B}}$. Confirm your estimate of $[\mathbf{x}]_{\mathcal{B}}$ by using it and $\{\mathbf{b}_1, \mathbf{b}_2\}$ to compute \mathbf{x} .

8. Let $\mathbf{b}_1 = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\mathbf{x} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, $\mathbf{z} = \begin{bmatrix} -1 \\ -2.5 \end{bmatrix}$, and $\mathbf{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$. Use the figure to estimate $[\mathbf{x}]_{\mathcal{B}}$, $[\mathbf{y}]_{\mathcal{B}}$, and $[\mathbf{z}]_{\mathcal{B}}$. Confirm your estimates of $[\mathbf{y}]_{\mathcal{B}}$ and $[\mathbf{z}]_{\mathcal{B}}$ by using them and $\{\mathbf{b}_1, \mathbf{b}_2\}$ to compute \mathbf{y} and \mathbf{z} .

Exercises 9-12 display a matrix A and an echelon form of A. Find bases for $\operatorname{Col} A$ and $\operatorname{Nul} A$, and then state the dimensions of these subspaces.

$$\mathbf{9.} \ \ A = \begin{bmatrix} 1 & -3 & 2 & -4 \\ -3 & 9 & -1 & 5 \\ 2 & -6 & 4 & -3 \\ -4 & 12 & 2 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & 2 & -4 \\ 0 & 0 & 5 & -7 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

10.
$$A = \begin{bmatrix} 1 & -2 & 9 & 5 & 4 \\ 1 & -1 & 6 & 5 & -3 \\ -2 & 0 & -6 & 1 & -2 \\ 4 & 1 & 9 & 1 & -9 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & -2 & 9 & 5 & 4 \\ 0 & 1 & -3 & 0 & -7 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

11.
$$A = \begin{bmatrix} 1 & 2 & -5 & 0 & -1 \\ 2 & 5 & -8 & 4 & 3 \\ -3 & -9 & 9 & -7 & -2 \\ 3 & 10 & -7 & 11 & 7 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & -5 & 0 & -1 \\ 0 & 1 & 2 & 4 & 5 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

12.
$$A = \begin{bmatrix} 1 & 2 & -4 & 3 & 3 \\ 5 & 10 & -9 & -7 & 8 \\ 4 & 8 & -9 & -2 & 7 \\ -2 & -4 & 5 & 0 & -6 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & -4 & 3 & 3 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

In Exercises 13 and 14, find a basis for the subspace spanned by the given vectors. What is the dimension of the subspace?

13.
$$\begin{bmatrix} 1 \\ -3 \\ 2 \\ -4 \end{bmatrix}, \begin{bmatrix} -3 \\ 9 \\ -6 \\ 12 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 4 \\ 2 \end{bmatrix}, \begin{bmatrix} -4 \\ 5 \\ -3 \\ 7 \end{bmatrix}$$

14.
$$\begin{bmatrix} 1 \\ -1 \\ -2 \\ 5 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ -1 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ -6 \\ 8 \end{bmatrix}, \begin{bmatrix} -1 \\ 4 \\ -7 \\ 7 \end{bmatrix}, \begin{bmatrix} 3 \\ -8 \\ 9 \\ -5 \end{bmatrix}$$

- **15.** Suppose a 5×8 matrix A has five pivot columns. Is $\operatorname{Col} A = \mathbb{R}^5$? Is $\operatorname{Nul} A = \mathbb{R}^3$? Explain your answers.
- **16.** Suppose a 5×8 matrix A has two pivot columns. Is $\operatorname{Col} A = \mathbb{R}^2$? What is the dimension of Nul A? Explain your answers.

In Exercises 17–26, mark each statement True or False (T/F). Justify each answer. Here A is an $m \times n$ matrix.

- 17. (T/F) If $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a basis for a subspace H and if $\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$, then c_1, \dots, c_p are the coordinates of \mathbf{x} relative to the basis \mathcal{B} .
- **18.** (T/F) If \mathcal{B} is a basis for a subspace H, then each vector in H can be written in only one way as a linear combination of the vectors in \mathcal{B} .
- 19. (T/F) Each line in \mathbb{R}^n is a one-dimensional subspace of \mathbb{R}^n .
- **20.** (T/F) If $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is a basis for a subspace H of \mathbb{R}^n , then the correspondence $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$ makes H look and act the same as \mathbb{R}^p .
- **21. (T/F)** The dimension of Col A is the number of pivot columns of A.
- 22. (T/F) The dimension of Nul A is the number of variables in the equation $A\mathbf{x} = \mathbf{0}$.

- **23.** (T/F) The dimensions of Col A and Nul A add up to the number of columns of A.
- **24.** (T/F) The dimension of the column space of A is rank A.
- **25.** (T/F) If a set of p vectors spans a p-dimensional subspace H of \mathbb{R}^n , then these vectors form a basis for H.
- **26.** (T/F) If H is a p-dimensional subspace of \mathbb{R}^n , then a linearly independent set of p vectors in H is a basis for H.

In Exercises 27-32, justify each answer or construction.

- 27. If the subspace of all solutions of $A\mathbf{x} = \mathbf{0}$ has a basis consisting of three vectors and if A is a 5×7 matrix, what is the rank of A?
- **28.** What is the rank of a 3 × 7 matrix whose null space is three-dimensional?
- **29.** If the rank of a 7×6 matrix A is 4, what is the dimension of the solution space of $A\mathbf{x} = \mathbf{0}$?
- **30.** Show that a set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_5\}$ in \mathbb{R}^n is linearly dependent when dim Span $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_5\} = 4$.
- **31.** If possible, construct a 3×4 matrix A such that dim Nul A = 2 and dim Col A = 2.
- **32.** Construct a 4×3 matrix with rank 1.
- **33.** Let A be an $n \times p$ matrix whose column space is p-dimensional. Explain why the columns of A must be linearly independent.
- **34.** Suppose columns 1, 3, 5, and 6 of a matrix A are linearly independent (but are not necessarily pivot columns) and the

- rank of *A* is 4. Explain why the four columns mentioned must be a basis for the column space of *A*.
- **35.** Suppose vectors $\mathbf{b}_1, \dots, \mathbf{b}_p$ span a subspace W, and let $\{\mathbf{a}_1, \dots, \mathbf{a}_q\}$ be any set in W containing more than p vectors. Fill in the details of the following argument to show that $\{\mathbf{a}_1, \dots, \mathbf{a}_q\}$ must be linearly dependent. First, let $B = [\mathbf{b}_1 \cdots \mathbf{b}_p]$ and $A = [\mathbf{a}_1 \cdots \mathbf{a}_q]$.
 - a. Explain why for each vector \mathbf{a}_j , there exists a vector \mathbf{c}_j in \mathbb{R}^p such that $\mathbf{a}_i = B\mathbf{c}_i$.
 - b. Let $C = [\mathbf{c}_1 \cdots \mathbf{c}_q]$. Explain why there is a nonzero vector \mathbf{u} such that $C\mathbf{u} = \mathbf{0}$.
 - c. Use B and C to show that $A\mathbf{u} = \mathbf{0}$. This shows that the columns of A are linearly dependent.
- **36.** Use Exercise 35 to show that if \mathcal{A} and \mathcal{B} are bases for a subspace W of \mathbb{R}^n , then \mathcal{A} cannot contain more vectors than \mathcal{B} , and, conversely, \mathcal{B} cannot contain more vectors than \mathcal{A} .
- **137.** Let $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$. Show that \mathbf{x} is in H, and find the \mathcal{B} -coordinate vector of \mathbf{x} , when

$$\mathbf{v}_{1} = \begin{bmatrix} 12 \\ -4 \\ 9 \\ 5 \end{bmatrix}, \mathbf{v}_{2} = \begin{bmatrix} 15 \\ -7 \\ 12 \\ 8 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 19 \\ -11 \\ 16 \\ 12 \end{bmatrix}$$

138. Let $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Show that \mathcal{B} is a basis for H and \mathbf{x} is in H, and find the \mathcal{B} -coordinate vector of \mathbf{x} , when

$$\mathbf{v}_1 = \begin{bmatrix} -5\\4\\-3\\2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 7\\-5\\3\\-3 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} -8\\6\\-4\\3 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} -7\\8\\-9\\1 \end{bmatrix}$$

STUDY GUIDE

offers additional resources for mastering the concepts of dimension and rank.

Solutions to Practice Problems

1. Construct $A = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \mathbf{v}_3]$ so that the subspace spanned by $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is the column space of A. A basis for this space is provided by the pivot columns of A.

$$A = \begin{bmatrix} 2 & 3 & -1 \\ -8 & -7 & 6 \\ 6 & -1 & -7 \end{bmatrix} \sim \begin{bmatrix} 2 & 3 & -1 \\ 0 & 5 & 2 \\ 0 & -10 & -4 \end{bmatrix} \sim \begin{bmatrix} 2 & 3 & -1 \\ 0 & 5 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

The first two columns of A are pivot columns and form a basis for H. Thus $\dim H = 2$.

2. If $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, then \mathbf{x} is formed from a linear combination of the basis vectors using weights 3 and 2:

$$\mathbf{x} = 3\mathbf{b}_1 + 2\mathbf{b}_2 = 3 \begin{bmatrix} 1 \\ .2 \end{bmatrix} + 2 \begin{bmatrix} .2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3.4 \\ 2.6 \end{bmatrix}$$

The basis $\{\mathbf{b}_1, \mathbf{b}_2\}$ determines a *coordinate system* for \mathbb{R}^2 , illustrated by the grid in the figure. Note how \mathbf{x} is 3 units in the \mathbf{b}_1 -direction and 2 units in the \mathbf{b}_2 -direction.