

# School of Electronics and Communication Engineering Research-based Project Synopsis

| Team No: 07 |                                             | Team Name: IMPEDANCE             |            |                   |
|-------------|---------------------------------------------|----------------------------------|------------|-------------------|
| Sl.<br>No   | SRN                                         | Full Name                        | Section    | Student Signature |
| 1           | R23EN060                                    | Joel Jo                          | В          |                   |
| 2           | R23EN042                                    | Darshan T K                      | В          |                   |
| 3           | R23EN059                                    | Imdad Aqueel                     | В          |                   |
| 4           | R23EN083                                    | Manmohan Kumar                   | В          |                   |
|             |                                             | •                                |            | ) Communication   |
| Proje       | ect Category:                               |                                  |            | Communication     |
| •           | Industry-Relev                              | rant/ Industry Problem statement |            | Communication     |
|             | ] Industry-Relev<br>] SIH Problem S         | Statement                        |            | Communication     |
|             | ] Industry-Relev<br>] SIH Problem S         | •                                |            | Communication     |
|             | ] Industry-Relev<br>] SIH Problem S         | Statement                        | Guide Sign |                   |
|             | Industry-Relev SIH Problem S Innovative/Res | Statement                        |            |                   |

#### **Abstract:**

Urban traffic congestion and delays in emergency response are major challenges. This project presents a Smart Traffic Management System using V2X communication, where vehicles, infrastructure, and pedestrians share real-time data. The system dynamically controls traffic signals, prioritizes emergency vehicles, and improves safety. Expected outcomes include reduced congestion, faster emergency clearance, and a framework for smarter urban transportation.

#### **Problem Statement:**

Urban areas face severe traffic congestion, delays in emergency response, and rising road accidents. Traditional traffic light systems operate on fixed timers, failing to adapt to real-time traffic conditions. There is a need for an intelligent traffic management system that dynamically adjusts to vehicle density, prioritizes emergency vehicles, and ensures safer road usage.

### **Methodology:**

- 1. *Data Collection*: Vehicles, pedestrians, and infrastructure exchange information through V2X communication.
- 2. *Traffic Control Algorithm*: Real-time traffic data is processed to optimize traffic signal timings and prioritize emergency vehicles.
- 3. *Simulation/Prototype*: A model intersection is developed to test vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-pedestrian (V2P) communication for dynamic traffic management.
- 4. *Performance Evaluation*: System effectiveness is assessed by comparing congestion levels, waiting times, and response times with conventional systems.

## **Expected Outcomes:**

- 1. Reduced traffic congestion and improved flow efficiency.
- 2. Faster clearance for emergency vehicles.
- 3. Enhanced safety for vehicles and pedestrians.
- 4. Real-time traffic monitoring to support smart city applications.

## **Research Objectives:**

- 1. To design a Smart Traffic Management System that dynamically adjusts traffic signals based on real-time vehicle density.
- 2. To implement Vehicle-to-Everything (V2X) communication between vehicles, infrastructure, pedestrians, and networks.
- 3. To prioritize emergency vehicles for faster response and safer passage.
- 4. To reduce traffic congestion and overall waiting times at intersections.
- 5. To enhance road safety for vehicles and pedestrians by preventing collisions.
- 6. To analyse the effectiveness of V2X-enabled traffic management compared to conventional systems.
- 7. To develop a scalable framework suitable for integration into smart city transportation networks.