Lecture 8: Off-policy Methods with Function Approximation

Friday, December 17, 2021

Reinforcement Learning, Winter Term 2021/22

Joschka Boedecker, Gabriel Kalweit, Jasper Hoffmann

Neurorobotics Lab University of Freiburg

- Recap
- 2 Off-policy Learning with Function Approximation
- 3 Problems of Off-policy Learning with Function Approximation
- 4 Gradient-TD Methods
- Deep Q-learning
- 6 Wrapup

- Recap
- 2 Off-policy Learning with Function Approximation
- 3 Problems of Off-policy Learning with Function Approximation
- 4 Gradient-TD Methods
- Deep Q-learning
- 6 Wrapup

Recap: Function Approximation in Reinforcement Learning

We want to update the weights w.r.t. the *Mean Squared Value Error* of the prediction:

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{1}{2} \alpha \nabla [v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w})]^2$$

$$\leftarrow \mathbf{w} + \alpha [v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})$$

However, we don't have $v_{\pi}(S_t)$.

Recap: Function Approximation in Reinforcement Learning

Gradient MC

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha [\mathbf{G}_t - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})$$

Semi-gradient TD(0)

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha [R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})$$

Why are bootstrapping methods, defined this way, called *semi-gradient methods*? They take into account the effects of changing w w.r.t. the prediction, but not w.r.t. the target!

Recap: Semi-gradient SARSA

Episodic Semi-gradient Sarsa for Estimating $\hat{q} \approx q_*$

```
Input: a differentiable action-value function parameterization \hat{q}: \mathbb{S} \times \mathcal{A} \times \mathbb{R}^d \to \mathbb{R} Algorithm parameters: step size \alpha > 0, small \varepsilon > 0 Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0}) Loop for each episode: S, A \leftarrow initial state and action of episode (e.g., \varepsilon-greedy) Loop for each step of episode: Take action A, observe R, S' If S' is terminal: \mathbf{w} \leftarrow \mathbf{w} + \alpha \big[ R - \hat{q}(S, A, \mathbf{w}) \big] \nabla \hat{q}(S, A, \mathbf{w}) Go to next episode Choose A' as a function of \hat{q}(S', \cdot, \mathbf{w}) (e.g., \varepsilon-greedy) \mathbf{w} \leftarrow \mathbf{w} + \alpha \big[ R + \gamma \hat{q}(S', A', \mathbf{w}) - \hat{q}(S, A, \mathbf{w}) \big] \nabla \hat{q}(S, A, \mathbf{w}) S \leftarrow S' A \leftarrow A'
```

- Recap
- 2 Off-policy Learning with Function Approximation
- 3 Problems of Off-policy Learning with Function Approximation
- 4 Gradient-TD Methods
- Deep Q-learning
- 6 Wrapup

Off-policy Learning

- We want to learn the optimal policy, but we have to account for the problem of maintaining exploration
- We call the (optimal) policy to be learned the target policy π and the policy used to generate behaviour the behaviour policy b
- We say that learning is from data *off* the target policy thus, those methods are referred to as *off-policy learning*
- Today: Off-policy learning methods with function approximation

Semi-gradient Off-policy TD(0)

Replace the update to an array to an update to weight vector \mathbf{w} .

Recap: Importance Sampling Ratio

$$\rho_t = \frac{\pi(A_t|S_t)}{b(A_t|S_t)}$$

Semi-gradient Off-policy TD(0)

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \rho_t \delta_t \nabla \hat{v}(S_t, \mathbf{w})$$

where $\delta_t = R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w})$

- Recap
- 2 Off-policy Learning with Function Approximation
- 3 Problems of Off-policy Learning with Function Approximation
- 4 Gradient-TD Methods
- Deep Q-learning
- 6 Wrapup

Baird's Counterexample

The reward is 0 for all transitions, hence $v_{\pi}(s) = 0$. This could be exactly approximated by $\mathbf{w} = \mathbf{0}$.

Baird's Counterexample

Semi-gradient DP

$$\mathbf{w} \leftarrow \mathbf{w} + \frac{\alpha}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} (\mathbb{E}[R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) | S_t = s] - \hat{v}(s, \mathbf{w})) \nabla \hat{v}(s, \mathbf{w})$$

The Deadly Triad

The combination of

- Function Approximation,
- Bootstrapping and
- Off-policy Learning

is known as the *Deadly Triad*, since it can lead to stability issues and divergence.

- Recap
- 2 Off-policy Learning with Function Approximation
- 3 Problems of Off-policy Learning with Function Approximation
- Gradient-TD Methods
- Deep Q-learning
- 6 Wrapup

To this point, the TD-methods discussed did not leverage the true gradient (they are called semi-gradient methods). Recall the Bellman Equation:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

Bellman Error

$$\bar{\delta}_{\mathbf{w}}(s) = \left(\sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\mathbf{w}}(s')]\right) - v_{\mathbf{w}}(s)$$
$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\mathbf{w}}(S_{t+1}) - v_{\mathbf{w}}(S_{t}) | S_{t} = s, A_{t} \sim \pi]$$

Projected Bellman Error

The Projected Bellman Error is the projection of the Bellman Error back into the representable space:

$$\overline{\mathsf{PBE}} = \|\Pi \bar{\delta}_{\mathbf{w}}\|_{\mu}^2$$

Projection Matrix for linear FA

The projection matrix for linear FA can be represented as an $|\mathcal{S}| \times |\mathcal{S}|$ matrix:

$$\Pi = \mathbf{X}(\mathbf{X}^{\top}\mathbf{D}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{D}$$

$$\begin{split} \overline{\mathsf{PBE}}(\mathbf{w}) &= \|\Pi \bar{\delta}_{\mathbf{w}}\|_{\mu}^{2} \\ &= (\Pi \bar{\delta}_{\mathbf{w}})^{\top} \mathbf{D} \Pi \bar{\delta}_{\mathbf{w}} \\ &= \bar{\delta}_{\mathbf{w}}^{\top} \Pi^{\top} \mathbf{D} \Pi \bar{\delta}_{\mathbf{w}} \\ &= \bar{\delta}_{\mathbf{w}}^{\top} \mathbf{D} \mathbf{X} (\mathbf{X}^{\top} \mathbf{D} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{D} \bar{\delta}_{\mathbf{w}} \\ &= (\mathbf{X}^{\top} \mathbf{D} \bar{\delta}_{\mathbf{w}})^{\top} (\mathbf{X}^{\top} \mathbf{D} \mathbf{X})^{-1} (\mathbf{X}^{\top} \mathbf{D} \bar{\delta}_{\mathbf{w}}) \end{split}$$

The gradient with respect to \mathbf{w} is:

$$\nabla \overline{\mathsf{PBE}}(\mathbf{w}) = 2\nabla [\mathbf{X}^{\top} \mathbf{D} \bar{\delta}_{\mathbf{w}}]^{\top} (\mathbf{X}^{\top} \mathbf{D} \mathbf{X})^{-1} (\mathbf{X}^{\top} \mathbf{D} \bar{\delta}_{\mathbf{w}})$$

Assume μ to be the distribution of state visited under the behaviour policy.

0

$$\mathbf{X}^{\top} \mathbf{D} \bar{\delta}_{\mathbf{w}} = \sum_{s} \mu(s) \mathbf{x}(s) \bar{\delta}_{\mathbf{w}}(s) = \mathbb{E}[\rho_{t} \delta_{t} \mathbf{x}_{t}]$$

2

$$\nabla [\mathbf{X}^{\top} \mathbf{D} \bar{\delta}_{\mathbf{w}}]^{\top} = \mathbb{E}[\rho_{t} \nabla \delta_{t}^{\top} \mathbf{x}_{t}^{\top}]$$

$$= \mathbb{E}[\rho_{t} \nabla (R_{t+1} + \gamma \mathbf{w}^{\top} \mathbf{x}_{t+1} - \mathbf{w}^{\top} \mathbf{x}_{t})^{\top} \mathbf{x}_{t}^{\top}]$$

$$= \mathbb{E}[\rho_{t} (\gamma \mathbf{x}_{t+1} - \mathbf{x}_{t}) \mathbf{x}_{t}^{\top}]$$

3

$$\mathbf{X}^{\top}\mathbf{D}\mathbf{X} = \sum_{s} \mu(s)\mathbf{x}_{s}\mathbf{x}_{s}^{\top} = \mathbb{E}[\mathbf{x}_{t}\mathbf{x}_{t}^{\top}]$$

• We can thus rewrite the gradient as:

$$\nabla \overline{\mathsf{PBE}}(\mathbf{w}) = 2\mathbb{E}[\rho_t(\gamma \mathbf{x}_{t+1} - \mathbf{x}_t) \mathbf{x}_t^\top] \mathbb{E}[\mathbf{x}_t \mathbf{x}_t^\top] \mathbb{E}[\rho_t \delta_t \mathbf{x}_t]$$

- Store the last two factors in d-vector $\mathbf{v} \approx \mathbb{E}[\mathbf{x}_t \mathbf{x}_t^{\top}]^{-1} \mathbb{E}[\rho_t \delta_t \mathbf{x}_t]$ and update via $\mathbf{v} \leftarrow \mathbf{v} + \beta \rho_t (\delta_t \mathbf{v}^{\top} \mathbf{x}_t) \mathbf{x}_t$
- Estimate the first part via sampling
- This method and variants of it are called Gradient-TD methods

- Recap
- 2 Off-policy Learning with Function Approximation
- 3 Problems of Off-policy Learning with Function Approximation
- 4 Gradient-TD Methods
- Deep Q-learning
- 6 Wrapup

Neural Fitted-Q Iteration (NFQ) [Riedmiller 2005]

- Model-free off-policy RL algorithm that works on continuous state and discrete action spaces
- Q-function is represented by a multi-layer perceptron
- One of the first approaches that combined RL with ANNs, predecessor of DQN

Neural Fitted-Q Iteration (NFQ) [Riedmiller 2005]

Algorithm 1 NFQ

for iteration i = 1, ..., N do sample trajectory with ϵ -greedy exploration and add to memory Dinitialize network weights randomly generate pattern set $P = \{(x_j, y_j)|j = 1..|D|\}$ with $x_j = (s_j, a_j) \text{ and } y_j = \begin{cases} r_j & \text{if } s_j \text{ is terminal } \\ r_j + \gamma \max_{a'} Q(s_{j+1}, a', \mathbf{w}_i) & \text{else} \end{cases}$ for iteration k = 1, ..., K do Fit weights according to: $L(\mathbf{w}_i) = \frac{1}{|D|} \sum_{i=1}^{|D|} (y_j - Q(x_j, \mathbf{w}_i))^2$

Deep Q-Networks (DQN)

DQN provides a stable solution to deep RL:

- Use experience replay (as in NFQ)
- Sample minibatches (as opposed to Full Batch in NFQ)
- Freeze target Q-networks (no target networks in NFQ)
- Optional: Clip rewards or normalize network adaptively to sensible range

Deep Q-Networks: Experience Replay

To remove correlations, build data set from agent's own experience

- ullet Take action a_t according to ϵ -greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory D
- Sample random mini-batch of transitions (s, a, r, s') from D
- Optimize MSE between Q-network and Q-learning targets, e.g.

$$L(\mathbf{w}) = \mathbb{E}_{s,a,r,s'\sim D} \left[(r + \gamma \max_{a'} Q(s', a', \mathbf{w}) - Q(s, a, \mathbf{w}))^2 \right]$$

Deep Q-Networks: Target Networks

To avoid oscillations, fix parameters used in Q-learning target

 \bullet Compute Q-learning targets w.r.t. old, fixed parameters \mathbf{w}^-

$$r + \gamma \arg \max_{a'} Q(s', a', \mathbf{w}^-)$$

Optimize MSE between Q-network and Q-learning targets

$$L(\mathbf{w}) = \mathbb{E}_{s,a,r,s' \sim D} \left[(r + \gamma \max_{a'} Q(s', a', \mathbf{w}^-) - Q(s, a, \mathbf{w}))^2 \right]$$

- Periodically update fixed parameters $\mathbf{w}^- \leftarrow \mathbf{w}$
 - \bullet hard update: update target network every N steps
 - slow update: slowly update weights of target network every step by

$$\mathbf{w}^- \leftarrow (1 - \tau)\mathbf{w}^- + \tau\mathbf{w}$$

Deep Q-Networks (DQN)

Algorithm 2 DQN

Initialize replay memory D to capacity N Initialize action-value function Q with random weights for $episode \ i=1,...,M$ do

 $\quad \text{for } t=1,..,T \text{ do}$

select action a_t ϵ -greedily

Store transition (s_t, a_t, s_{t+1}, r_t) in D

Sample minibatch of transitions (s_j,a_j,r_j,s_{j+1}) from ${\sf D}$

Set
$$y_j = \begin{cases} r_j & \text{if } s_{j+1} \text{ is terminal} \\ r_j + \gamma \, \max_{a'} Q(s_{j+1}, a', \mathbf{w}^-) & \text{else} \end{cases}$$

Update the parameters of Q according to:

$$\nabla \mathbf{w}_i L_i(\mathbf{w}_i) = \mathbb{E}_{s,a,s,r \sim D}[(r + \gamma \max_{a'} Q(s', a', \mathbf{w}_i) - Q(s, a, \mathbf{w}_i)) \nabla_{\mathbf{w}_i} Q(s, a, \mathbf{w}_i)]$$

Update target network

Mis is to

Deep Q-Networks: Reinforcement Learning in Atari

Deep Q-Networks: Reinforcement Learning in Atari

- ullet End-to-end learning of values Q(s,a) from pixels s
- ullet Input state s is a stack of raw pixels from the last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step

How much does DQN help?

	Q-Learning	Q-Learning	Q-Learning + Replay	DQN Q-learning + Replay
		+ Target Q		+ Target Q
Breakout	3	10	241	317
Enduro	29	142	831	1006
River Raid	1453	2868	4103	7447
Seaquest	276	1003	831	2894
Space Invaders	302	373	826	1089

- Recap
- 2 Off-policy Learning with Function Approximation
- 3 Problems of Off-policy Learning with Function Approximation
- 4 Gradient-TD Methods
- Deep Q-learning
- **6** Wrapup

Summary by Learning Goals

Having heard this lecture, you can now...

- Explain the difficulties that may arise in off-policy learning with FA
- Apply deep Q-learning and explain why we include replay memory and target networks