Exercícios de Física Geral I: Soluções

Ano lectivo 2016/2017, semestre ímpar

1 Série de exercícios No. 1

1.1 Dimensões e unidades

1. $c = 2.997 \times 10^5 \text{ nm/ps}$

2.
$$\rho = 2.70 \times 10^3 \text{ kg/m}^3$$

3.
$$[G] = \frac{L^3}{MT^2}$$
; unidades SI: $\frac{\text{m}^3}{\text{kg s}^2} = \frac{\text{N m}^2}{\text{kg}^2}$

4. (a)
$$C_1$$
: m, C_2 : m/s, (b) C_1 : m/s², (c) C_1 : s⁻¹

5. Dimensões (unidades SI): (a)
$$V: L$$
 (m), $X: LT^{-1}$ (m/s), $Y: LT^{-2}$ (m/s²), $W: L$ (m), $Z: 1$ (1), (b) $X: L$ (m), $Y: T^{-1}$ (s⁻¹)

6.
$$[Y] = ML^{-1}T^{-2}$$
,
unidades SI: kg/(m s²)=N/m²

1.2 Vetores

$$1. \ \mathbf{D} = -4\hat{\mathbf{i}} - 2\hat{\mathbf{k}}$$

3.
$$p = 1$$

4. Não são perpendiculares entre si.

5.
$$\frac{1}{3}\hat{\imath} - \frac{2}{15}\hat{\jmath} + \frac{14}{15}\hat{k}$$

6.
$$R = \sqrt{(A_x + B_x)^2 + (A_y + B_y)^2 + (A_z + B_z)^2}$$

 $\sqrt{A^2 + B^2 + 2\mathbf{A} \cdot \mathbf{B}} = \sqrt{A^2 + B^2 + 2AB\cos\theta}$

7.
$$\mathbf{A}_{||} = -\frac{1}{6}\hat{\imath} + \frac{1}{6}\hat{\jmath} - \frac{1}{3}\hat{k}, \, \mathbf{A}_{\perp} = \frac{13}{6}\hat{\imath} + \frac{5}{6}\hat{\jmath} - \frac{2}{3}\hat{k}$$

1.3 Cálculo de erros

1.
$$x = 40 \pm 3 \text{ m}$$

2.
$$v = 18.6 \pm 0.7 \text{ m/s}$$

2 Série de exercícios fenómenos ondulatórios

2.1 Movimento oscilatório

1. (a) 1.50 Hz, (b) 0.667 s, (c) 4.0 m, (d)
$$\pi$$
 rad, (e) 2.83 m

2. (a) 0.4 m/s, (b) 1.6 m/s², (c) 0.32 m/s, (d)
$$-0.96~\rm{m/s^2},$$
 (e) 0.232 s

4.
$$1.00 \times 10^{-3} \text{ s}^{-1}$$

$$5. \ 0.641 \ \mathrm{Hz} \ \mathrm{ou} \ 1.310 \ \mathrm{Hz}$$

2.2 Ondas

1.

$$y(x,t) = \frac{6.00}{(x - 4.50t)^2 + 3.00}$$

2. 0.319 m

3. (a) 0.25 m, (b) 40 s⁻¹, (c) 0.30 m⁻¹, (d) 20.9 m, (e) 133.3 m/s, (f) para a direita (sentido x positivo)

4. (a) -1.51 m/s, (b) 0, (c) 16.0 m, (d) 0.5 s, (e) 32.0 m/s

5. 631 N

6. (a) 62.5 m/s, (b) 7.85 m, (c) 7.96 Hz, (d) 21.1 W

7. (a) 163 N, (b) 660 Hz

8. (a) 475 Hz, (b) 430 Hz

3 Série de exercícios da ótica

3.1 Ótica geométrica

1. (a) 4.74×10^{14} Hz, (b) 422 nm, (c) 2.00×10^8 m/s

 $2.22.5^{\circ}$

3. 62.5°

4. 2.00 m

5. (a) 45.0 cm, (b) -90.0 cm, (c) -6.0 cm

6. 20.0 cm

7. (a) 20.0 cm em frente da lente, (b) 12.5 cm em frente da lente, (c) 6.67 cm em frente da lente, (d) 8.33 cm em frente da lente.

8. 8.0 cm

3.2 Ótica ondulatória

1. 632 nm

2. 2.10 m

3. (a) 0.109 nm, (b) 4

4 Série de exercícios da termodinâmica

- 1. 3.27 cm
- 2. 4.28 atm
- 3. 16.3°C
- 4. (a) $-4P_iV_i$ (b) $T = (P_i/nRV_i)V^2$
- 5. (a) 0.0410 m^3 (b) +5.480 kJ (c) -5.480 kJ
- 6. (a) um fator de 0.118 (b) um fator de 2.35 (c) 0 (d) 135.1 J (e) 135.1 J
- 7. (a) $2.00 \times 10^{-163} \to 0$ átomos
 - (b) 2.70×10^{20} átomos
- 8. (a) 67.2% (b) 58.8 kW

5 Série de exercícios da física moderna

5.1 Relatividade

- 1. $v = 0.866c = 2.60 \times 10^8 \text{ m/s}$
- 2. $v = 0.866c = 2.60 \times 10^8 \text{ m/s}$
- 3. 5 s
- 4. (a) $v = \frac{2\sqrt{2}}{3}c = 0.943c = 2.83 \times 10^8 \text{ m/s}$ (b) O resultado seria o mesmo

- 5. (a) 938.3 MeV, (b) 3.00 GeV, (c) 2.07 GeV
- 6. $4.28 \times 10^9 \text{ kg}$

5.2 Física quântica

- 1. (a) 1.38 eV, (b) $3.34 \times 10^{14} \text{ Hz}$
- 2. (a) 4.89×10^{-4} nm, (b) 268.3 keV, (c) 31.7 keV
- 3. 0.218 nm
- 4. (a) 0.196, (b) 0.609

5.3 Física atómica

- 1. (a) 5, (b) não, (c) não
- 2. (a) 0.968 eV, (b) 1.28 μ m, (c) 2.34 × 10¹⁴ Hz
- 3. (a) 0.476 nm (b) 0.997 nm
- 4. (a) $E_n = -54.4/n^2 \text{ eV}, \quad n = 1, 2, 3, \dots$ (b) 54.4 eV

5.4 Física nuclear

- 1. (a) 4.8 fm
 - (b) $4.7 \times 10^{-43} \text{ m}^3$
 - (c) 2.3 × 10¹⁷ kg/m³
- 2. $1.16 \times 10^3 \text{ s}$
- 3. 9.47×10^9 núcleos
- $4. \ 0.401\%$