CPEN 400Q Lecture 15 Quantum phase estimation; order finding

Monday 4 March 2024

Announcements

- Quiz 6 today
- Technical assignment 3 available later this week
- Midterm checkpoint due Wednesday; meetings on Thurs/Fri

Last time

We implemented the quantum Fourier transform using a *polynomial* number of gates:

Image credit: Xanadu Quantum Codebook node F.3

Last time

We started learning about the quantum phase estimation subroutine which estimates the eigenvalues of unitary matrices.

Last time

We walked through an example using T.

Learning outcomes

- Outline the steps of the quantum phase estimation (QPE) subroutine
- Use QPE to implement the order finding algorithm
- Implement Shor's algorithm in PennyLane

Quantum phase estimation

est-register
$$\begin{cases} 0 \\ 0 \\ 0 \end{cases}$$
 H :
$$\begin{cases} 0 \\ H \end{cases}$$

$$\begin{cases} 0 \\$$

Use phase kickback

$$=\frac{1}{\sqrt{2}}\left(10\right)+\frac{1}{\sqrt{2}}\left(e^{2\pi i\theta k}\right)^{2^{t-1}}\left(1\right)\left(1\right)+\frac{1}{\sqrt{2}}\left(e^{2\pi i\theta k}\right)^{2^{t-1}}\left(1\right)\left(1\right)$$

$$=\frac{1}{\sqrt{2}}\left(10\right)+\left(e^{2\pi i\theta k}\right)^{2^{t-1}}\left(1\right)\otimes\left(1\right)\otimes\left(1\right)$$

Exercise:

What is happening in the exponent?
$$\left(e^{2\pi i\theta_{\mathbf{k}}}\right)^{2^{t-1}} = e^{2\pi i \cdot \frac{\theta_{\mathbf{k}t}}{2}}
 = e^{2\pi i \cdot \frac{\theta_{\mathbf{k}t}}{2}}
 = e^{2\pi i \cdot 0.\theta_{\mathbf{k}t}}$$

Check second-last qubit (ignore the others)

Again check the exponent...

Can show in the same way for the last qubit (ignore others)

After step 2, we have the state

$$\begin{split} \frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i 0.\theta_{k_t}}|1\rangle) \cdots \frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i 0.\theta_{k_2} \cdots \theta_{k_t}}|1\rangle) \frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i 0.\theta_{k_1} \cdots \theta_{k_t}}|1\rangle) |k\rangle \\ \text{Should look familiar!} &= \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right) \left| \begin{array}{c} \mathbf{k} \\ \mathbf{k} \end{array} \right\rangle \right) |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right) \left| \begin{array}{c} \mathbf{k} \\ \mathbf{k} \end{array} \right\rangle \right) |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right) |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT} \left| \begin{array}{c} \theta_{\mathbf{k}} \end{array} \right\rangle |k\rangle \\ = \left(\text{QFT}$$

Reminder: where are we going?

Suppose we have a function

over the integers modulo N.

If there exists $r \in \mathbb{Z}$ s.t.

$$f(x+r) = f(x) \forall x$$

f(x) is periodic with period r.

Suppose

$$f(x) = \alpha^x \mod N$$
 $\alpha \in \mathbb{Z}$

The order of a is the smallest m such that

$$f(m) = a^m \mod N \equiv 1 \mod N$$

Note that this is also the period:

$$f(x+m) = \alpha^{x+m} \mod N = \alpha^x \alpha^m \mod N$$

= $\alpha^x \mod N$

$$f(m) = a^m \mod N \equiv 1 \mod N$$

Exercise: find the order of a = 5 for N = 7.

$$m=6$$
 $5^6 = 15625 \% 7 = 1$

$$f_{N_1}a$$
 $(m) = a^m = 1 \mod N$ Short Monday:

Define a unitary operation that performs

$$U_{N,\alpha} | k \rangle = | ak \mod N \rangle$$
 Wed:
 $k=2$ a=3 N=7 => $U_{N,\alpha} | 2 \rangle = | 6 \mod 7 \rangle$

If m is the order of a, and we apply $U_{N,a}$ m times, $U_{N,A} = 100$

$$U_{N,\alpha}^{m}|k\rangle = |\alpha^{m}|k \mod N\rangle = |k\rangle$$

So m is also the order of $U_{N,a}$! We can find it efficiently using a quantum computer.

This Wed:

short

Let U be an operator and $|\phi\rangle$ any state. How do we find the minimum r such that

QPE does the trick if we set things up in a clever way:

Consider the state

If we apply U to this:

Now consider the state

If we apply ${\it U}$ to this:

This generalizes to $|\Psi_s\rangle$

It has eigenvalue

Idea: if we can create *any* one of these $|\Psi_s\rangle$, we could run QPE and get an estimate for s/r, and then recover r.

Problem: to construct any $|\Psi_s\rangle$, we would need to know r in advance!

Solution: construct the uniform superposition of all of them.

But what does this equal?

The superposition of all $|\Psi_s\rangle$ is just our original state $|\phi\rangle$!

$$|\psi\rangle = \frac{1}{\sqrt{r}} \left(\frac{1}{\sqrt{r}} + \frac{1}{\sqrt{r}} \right) \right) \right) \right)}$$

$$= \frac{1}{\sqrt{r}} \left(\frac{1}{\sqrt{r}} + \frac{1}{\sqrt{r}} \left(\frac{1}{\sqrt{r}} + \frac{1}{\sqrt{r}} + \frac{1}{\sqrt{r}} \left(\frac{1}{\sqrt{r}} + \frac{1}{\sqrt{r}} + \frac{1}{\sqrt{r}} \right) \right) \right)$$

$$= \frac{1}{\sqrt{r}} \left(\frac{1}{\sqrt{r}} + \frac{1}{\sqrt{$$

If we run QPE, the output will be s/r for one of these states.

Shor's algorithm

Overview

Shor's algorithm is used to factor some number N into

where p and q are prime.

A quantum computer runs order finding, and the result is used to obtain p and q.

The rest of the algorithm is classical.

Non-trivial square roots

Idea: find a *non-trivial square root* of N, i.e., some $x \neq \pm 1$ s.t.

If we find such an x, then we know

This means that

for some integer k.

Non-trivial square roots

lf

then x-1 is a multiple of one of p or q, and x+1 is a multiple of the other. If

we can compute the values of p and q by finding their gcd with N:

But... how do we find such an x?

Non-trivial square roots and factoring

It's actually okay to find any *even* power of x for which this holds:

We can use order finding to find such an r, and it is an even number, then we can find an x and factor N.

Shor's algorithm

Is this really efficient?

GCD: polynomial w/Euclid's algorithm

Modular exponentiation: can use exponentiation by squaring, other methods to reduce number of operations and memory required

Is this really efficient?

Quantum part: let $L = \lceil \log_2 N \rceil$.

QFT: polynomial in number of qubits $O(L^2)$

Controlled-U gates: implemented using something called *modular* exponentiation in $O(L^3)$ gates.

Next time

Content:

■ Hands-on with quantum key distribution

Action items:

1. Midterm checkpoint submission

Recommended reading:

- Codebook modules F, P, and S
- Nielsen & Chuang 5.3, Appendix A.5