REAL TIME RIVER WATER QUALITY MONITORING AND CONTROL SYSTEM

Category: INTERNET OF THINGS

A PROJECT REPORT Submitted by

Renugha.S.S - 711119104047 Sabarivasan.P - 711119104050 Ragul Gandhi.M - 711119104046

Santhosh.R - 711119104053

JANSONS INSTITUTE OF TECHNOLOGY

Approved by AICTE and Affiliated to Anna University, Chennai. Coimbatore, Tamilnadu - 641659

In fulfillment of project in IBM-NALAYATHIRAN 2022

Team Id: PNT2022TMID42599

PROJECT GUIDES

Industry Mentor: Bharadwaj

Faculty Mentor: Praveena.A

Contents

Sno.	Topics	Page no
1	INTRODUCTION	4
	1.1 Project Overview	4
	1.2Purpose	4
2	LITERATURE SURVEY	5
	2.1 Existing problem	5
	2.2 References	5
	2.3 Problem Statement Definition	13
3	IDEATION & PROPOSED SOLUTION	15
	3.1 Empathy Map Canvas	15
	3.2 Ideation & Brainstorming	16
	3.3 Proposed Solution	17
	3.4 Problem Solution fit	22
4	REQUIREMENT ANALYSIS	23
	4.1 Functional requirement	23
	4.2 Non-Functional requirements	23
5	PROJECT DESIGN	25
	5.1 Data Flow Diagrams	25
	5.2 Solution & Technical Architecture	26
	5.3 User Stories	28
6	PROJECT PLANNING & SCHEDULING	30
	6.1 Sprint Planning & Estimation	30
	6.2 Sprint Delivery Schedule	32

	6.3 Reports from JIRA	32
	CODING & SOLUTIONING (Explain the features added in the	
7	project along with code)	33
	7.1 Feature 1	33
	7.2 Feature 2	35
8	TESTING	38
	8.1 Test Cases	38
	8.2 User Acceptance Testing	38
9	RESULTS	39
	9.1 Performance Metrics	39
10	ADVANTAGES & DISADVANTAGES	41
11	CONCLUSION	42
12	FUTURE SCOPE	43
13	APPENDIX	44
	13.1 Source Code	44
	13.2 GitHub & Project Demo Link	47

CHAPTER 1 INTRODUCTION

1.1 Project Overview

Nowadays water i.e., drinking water gets polluted due to various factors. There are many means of drinking water. One among them is Groundwater. We people use borewells for consuming the ground water. But is it safe to drink as such from the ground or using any sort of filtration? It may contain harmful toxins and not fit for drinking as such, it may lead to many diseases. Before using the groundwater, monitoring the quality of the water is the better solution. Using IoT we get to know whether it is consumable or not. We can also alert the user through Alert Message through the Mobile Application when the water reaches the threshold point. This project is aimed to monitor the quality of the borewell water for the use of household and drinking. Aims to check the pH, salinity, chlorine level in the borewell water. The user can switch ON and OFF whenever he/she wants it. And the past month data collected from the sensors are stored and can viewed any time.

1.2 Purpose

Current water quality monitoring system is a manual system with a monotonous process and is very time-consuming. It is sensor-based water quality monitoring system. The main components of Wireless Sensor Network (WSN) include a microcontroller for processing the system, communication system for inter and intra node communication and several sensors. Real-time data access can be done by using remote monitoring and Internet of Things (IoT) technology. In this project, we have used IBM Watson IoT platform as our core platform for our project.

CHAPTER 2 LITERATURE SURVEY

2.1 EXISTING PROBLEM

The current developments in the field of sensor networks are critical for environmental

applications. Internet of Things (IoT) allows connections among various devices with

the ability to exchange and gather data. IoT also extends its capability to environmental

issues in addition to automation industry by using industry 4.0. As water is one of the

basic needs of human survival, it is required to incorporate some mechanism to monitor

water quality from time to time. Around 40% of deaths are caused due to contaminated

water in the world. Hence, there is a necessity to ensure supply of purified drinking

water for the people both in cities and villages. Water Quality Monitoring (WQM) is a

cost-effective and efficient system designed to monitor drinking water quality which

makes use of Internet of Things (IoT) technology.

2.2 REFERENCES

TITLE: The Water Quality Online Monitoring System Based on Wireless Sensor Network

YEAR: 2020

AUTHORS: Qiuchan BAI, Jiahao Wu, Chunxia JIN,

DESCRIPTION: Due to the poor real-time performance of water quality monitoring,

secondary pollution, high cost and other issues, this paper proposes to use wireless

sensor network technology to design a water quality monitoring system. The system

has strong real-time, online monitoring functions, and acquires multiple parameter data

that affect water quality, timely and accurately monitor water quality information,

5

prevent water environmental pollution, reduce the impact of water pollution, and meet

the requirements of efficient and intelligent water quality.\",

TITLE: Design of Water Quality Monitoring System

YEAR: 2020

AUTHORS: Chenwei Feng, Jiangnan Yuan, Yu Sun, Junming You,

DESCRIPTION: With the rapid development of social economy, excessive discharge of

industrial sewage leads to water pollution, and it also affects the quality of domestic

water. Therefore, it is necessary to monitor the water quality. A practical and convenient

water quality monitoring system is designed in this paper, which is based on the MCU

(Micro-programmed Control Unit) and Bluetooth technology. This design takes the

Arduino development board based on ATMega328P chip as the core, and uses sensors

to collect pH, turbidity, conductivity and water temperature. The measured data is sent

to the smart phone via Bluetooth, and abnormal parameters are prompted. The test

results show that the system can obtain the water quality parameters in time and

accurately, and the overall operation of the system is stable, which is suitable for many

occasions of water quality monitoring.

TITLE: Design of Monitoring System for Rural Drinking Water Source Based on WSN

YEAR: 2017

AUTHORS: Zexin Lin, Weixing Wang, Huili Yin, Sheng Jiang, Guohui Jiao, Jieping Yu,

DESCRIPTION: In order to solve the existing traditional rural drinking water monitoring

in a lot of manpower, material resources, real-time, this paper introduces a WSN based

on the rural drinking water source monitoring system design, the system consists of five

parts: water quality monitoring, soil monitoring node node, node, routing node and

6

gateway server. Water quality monitoring node, soil monitoring nodes send the collected data to the gateway node through the wireless module sent directly, or through the routing gateway node to the gateway node, each node of the data collection, unified by the GPRS module to upload server. The system can periodically detect the water quality and the important indicators of the soil in the rural water sources, and combine the water pollution with the soil non-point source pollution to realize on-line monitoring and provide guidance for pollution control. Network test shows that the designed system can realize data acquisition and remote transmission, stability, range of dissolved oxygen system for 1.09%~1.86% acquisition error, pH error is in the range of 0.64%~1.68%, Cu concentration in the range of error is 1.98%~2.22%, Cu concentration in the range of error is 1.58%~ 2.01%.

TITLE: Water quality monitoring system based on Internet of Things

YEAR: 2020

AUTHORS: Chengcheng Zhang, Jian Wu, Jiancheng Liu,

DESCRIPTION: Aiming at the problems of the current water quality detection system, a new type of real-time online water quality monitoring system solution based on the Internet of Things is proposed. This solution integrates the design of STM32 singlechip microcomputer, sensors, WiFi wireless transmission and remote water quality management. The system uses sensors to monitor water quality turbidity, pH value, temperature and other parameters, and uploads the data to the management center through wireless communication. According to the analysis results, the water environment quality was measured, and water quality problems were pre-warned to prevent further spread of pollution, improve the scientificity and efficiency of water quality monitoring and management, and provide relevant departments with response

strategies and management measures. This system has good real-time performance

and strong practicability, and can be promoted and used in the future to promote the

development of water environment monitoring.

TITLE: Application of NB-IoT Technology in City Open Water Monitoring

YEAR: 2020

AUTHORS: He Sui, Guangming Zheng, Jingxian Zhou, Hui Li, Zhaojun Gu,

DESCRIPTION: Water quality monitoring is an important way to monitor the

environment, control pollution and protect water resources, and its research has great

practical significance for environmental protection. Aiming at the disadvantages of

existing water quality monitoring methods such as high node power consumption and

small coverage, this paper proposes an online water quality monitoring system scheme

using NB-IOT protocol communication. The prototype system shows that the system

can meet the water quality monitoring needs of Bolong Lake.

TITLE: The Unmanned Autonomous Cruise Ship for Water Quality Monitoring and

Sampling

YEAR: 2017

AUTHORS: Jia Shuo, Zhang Yonghui, Ran Wen, Tong Kebin,

DESCRIPTION: Regular manual sampling and fixed node on-line detection are main

methods of water quality monitoring in waters at present. Sampling nodes are subject

to great restrictions. This paper presents an autonomous cruise unmanned ship for

water quality monitoring and sampling, which can be achieved in the waters of any

designated location for water quality sampling, achieves the real-time on-line monitoring

of the whole water environment by means of the combination of dynamic nodes and

8

static monitoring nodes. This paper introduces the control unit system, the ground station control unit system and the water quality sampling and the monitoring unit system of the unmanned ship and carries out the actual test. The unmanned ship designed in this paper has successfully achieved autonomous cruise, designated water quality sampling and dynamic online real-time water quality monitoring, which provides a new means for water quality monitoring in waters.

TITLE: Automation system for monitoring the quality of water sources to maintain their sustainability using microcontroller

YEAR: 2022

AUTHORS: Ahmed Aziz Atiast, Khansaa Dheyaa Aljafaar,

DESCRIPTION: Pollution of the water environment is the greatest hazard these days, especially in the conditions that the plant is going through, including the decline of rain, and desertification. This paper presents a proposed system to maintain water quality so that it is suitable for human use and reduce water waste by an employee the Arduino microcontroller, and sensors to design an automation system of water pollution monitoring, the design of the system involves the development of the process of monitoring physiochemical parameters of the water environment affected by the dumping of industrial waste in rivers, The parameters such as pH, temperature, turbidity and dissolved oxygen are used to detect the number of impurities that comes out of the industry. The measured values collected using the PH sensor, temperature sensor, turbidity sensor, and Ultrasonic sensor are processed by the Arduino microcontroller, and an alert message will be sent through the GSM, When there is a deviation of water quality parameters from the pre-defined set of standard values, the proposed system aids in preventing harmful pollutants entering the water resources and also ensure the

availability of safe drinking water to everyone, reducing the causes of river pollution through continuous monitoring and informing users of the impact of water on pollutants for intervention and removal of these pollutants, and thus water resources have been preserved as essential sources for the continuation of human life.

REFERENCE BOOKS AND LINKS:

- Qiuchan BAI, Jiahao Wu, Chunxia JIN, 'The Water Quality Online Monitoring System
 Based on Wireless Sensor Network', 2020 13th International Symposium on
 Computational Intelligence and Design (ISCID)
- Chenwei Feng, Jiangnan Yuan, Yu Sun, Junming You, 'Design of Water Quality Monitoring System', 2020 International Conference on Artificial Intelligence and Computer Engineering (ICAICE)
- Zexin Lin,Weixing Wang,Huili Yin,Sheng Jiang,Guohui Jiao,Jieping Yu,'Design of Monitoring System for Rural Drinking Water Source Based on WSN',2017 International Conference on Computer Network, Electronic and Automation (ICCNEA)
- Chengcheng Zhang, Jian Wu, Jiancheng Liu, Water quality monitoring system based on Internet of Things', 2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME)
- He Sui,Guangming Zheng,Jingxian Zhou,Hui Li,Zhaojun Gu,'Application of NB-IoT Technology in City Open Water Monitoring',2020 6th International Symposium on System and Software Reliability (ISSSR)
- Jia Shuo,Zhang Yonghui,Ran Wen,Tong Kebin,'The Unmanned Autonomous Cruise Ship for Water Quality Monitoring and Sampling',2017 International Conference on Computer Systems, Electronics and Control (ICCSEC)

- Ahmed Aziz Atiast,Khansaa Dheyaa Aljafaar,'Automation system for monitoring the quality of water sources to maintain their sustainability using microcontroller',2022 International Conference on Electrical, Computer and Energy Technologies (ICECET)
- Zhu-lin Hao,Yuan-yuan Zhang,Min-quan Feng,'Water quality assessment based on BP network and its application',2011 International Symposium on Water Resource and Environmental Protection
- Xiaoyi Wang,Jun Dai,Zaiwen Liu,Xiaoping Zhao,Suoqi Dong,Zhiyao Zhao,Miao Zhang,'The lake water bloom intelligent prediction method and water quality remote monitoring system',2010 Sixth International Conference on Natural Computation
- Heyi Wang,Yi Gao,Zhaoan Xu,Weidong Xu,'An recurrent neural network application
 to forecasting the quality of water diversion in the water source of Lake
 Taihu',2011 International Conference on Remote Sensing, Environment and
 Transportation Engineering
- Kamalanathan Shanmugam, Muhammad Ehsan Rana, Daniel Tan Zi Xuen, Sharveen Aruljodey, 'Water Quality Monitoring System: A Smart City Application With IoT Innovation', 2021 14th International Conference on Developments in eSystems Engineering (DeSE)
- Jinbao Wan,Lin Chen,Xinyi Lan,Xijun Lai,'Effects of the water level change of Poyang Lake on characteristics of water quality',2011 International Conference on Remote Sensing, Environment and Transportation Engineering
- Sheng-Tao Chen,Shih-Sung Lin,Chien-Wu Lan,Tai-I Chou,'Design and development of a LoRa based Water Quality Monitoring System',2021 International Symposium

- on Intelligent Signal Processing and Communication Systems (ISPACS)
- Liming Zhang, Haowen Yan, 'Implementation of a GIS-based water quality standards syntaxis and basin water quality prediction system', 2012 International Symposium on Geomatics for Integrated Water Resource Management
- YanBing Wang,Fang Lv,Design of water quality monitoring system based on NB-IoT technolog',2022 3rd International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering and Applications (CVIDL & ICCEA)
- Shihu Shu,Suiqing Liu,Xuefeng Wang,Liang Yu,Shihu Shu,Dong Zhang,Mingqun Meng,'Determination and applications of water age in distribution system',2010
 International Conference on Mechanic Automation and Control Engineering
- Jianwei Tao,Zili Zhang,Wenxian Yu,'Monitoring Taihu water quality by using high resolution satellite image',2011 19th International Conference on Geoinformatics
- Sheikameer Batcha. S,Pushpalatha. N,Kasthuri. M,Rokith. K,Subathra. D,Ragul.
 S,'Monitoring System For Water Quality Using Solar Powered IoT',2022 8th
 International Conference on Smart Structures and Systems (ICSSS)
- Chen Kai,Zhu Weiwei,Dou Lu,'Research on Mobile Water Quality Monitoring System Based on Underwater Bionic Robot Fish Platform',2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications(AEECA)
- Jamie Quinn, Tanjila Kabir, Maham Altaf, Liam Sawyer, Yi Wang, Mahbuboor Choudhury, Juneseok Lee, 'H2O: Smart Drinking Water Quality Monitoring System', 2022 IEEE International Conference on Imaging Systems and Techniques (IST)

Manish Kumar Jha,Rajni Kumari Sah,M. S. Rashmitha,Rupam Sinha,B. Sujatha,K.
 V. Suma, Smart Water Monitoring System for Real-Time Water Quality and Usage Monitoring, 2018 International Conference on Inventive Research in Computing Applications (ICIRCA).

2.3 Problem Statement Definition

There are many means of drinking water. One among them is Groundwater. But is it safe to drink as such from the ground or using any sort of filtration? It may contain harmful toxins and not fit for drinking as such, it may lead to many diseases. Before using the groundwater, monitoring the quality of the water is the better solution. Using IoT we get to know whether it is consumable or not. We can also alert the user through Alert Message through the Mobile Application when the water reaches the threshold point. This project is aimed to monitor the quality of the borewell water for the use of household and drinking. Aims to check the pH, salinity, chlorine level in the borewell water.

Customer Problem Statement Template:

Reference link:

https://miro.com/app/board/uXjVPIVONoQ=/?moveToWidget=3458764537403559126 &cot=10

Problem	l am	I'm trying to	But	Because	Which
Stateme	(Customer)				makes
nt (PS)					me feel
PS-1	Land owner	get ground	the	of the	sick
		water	groundwater	contaminat	
			is not pure	ed	
			and up to the	groundwater	
			quality		
PS-2	Farmer	Water the	The water is	of the less	unhealt
		crops.	not having	or more	hy
		(Groundwate	proper	nutrients	
		r)	nutrients		

IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

Reference

Link:https://app.mural.co/t/jansonsinstituteoftechnology4907/m/jansonsinstituteoftechnology4907/1663995478539/c25f801a8830f64aca427b8cae022e6efc69596e?sender =u8ae0c1599014533bb2e95539

3.2 Ideation & Brainstorming

Reference Link:

https://app.mural.co/t/jansonsinstituteoftechnology4907/m/jansonsinstituteoftechnology4907/

<u>1667291493071/79a003d9d510bb8568c2a96dd381703ca09a8785?sender=u2c4a92</u> <u>4bc47b96 ea2ce80112</u>

3.3 Proposed Solution

S.No.	Parameter	Description	
1.	Problem Statement (Problem	Due to the fast growing urbanization supply of	
	to be solved)	safe drinking water is a challenge for the every	
		city authority. Water can be polluted any time.	
		In India most of the people use simple water	
		purifier that is not enough to get surety of pure	
		water. Sometimes the water has dangerous	
		particles or chemical mixed and general	
		purpose water purifier cannot purify that So an	
		automatic real-time monitoring system is	
		required to monitor the health of the water	
		reserved in our water tank of the society or	
		apartment. So it can warn us automatically if	
		there is any problem with the reserved water.	
		And we can check the quality of the water	
		anytime and from anywhere.	

2.	Idea / Solution description	The need for effective and efficient monitoring,
		evaluation and control of water quality in
		residential area has become more demanding
		in this era of urbanization, pollution and
		population growth. Ensuring safe water supply
		of drinking water is big challenge for modern
		civilization. Traditional methods that rely on
		collecting water samples, testing and analyses
		in water laboratories are not only costly but
		also lack capability for real-time data capture,
		analyses and fast dissemination of information
		to relevant stakeholders for making timely and
		informed decisions.
3.	Novelty / Uniqueness	Monitoring of real time quality of Water from
		reserve tank of house and colony makes use of
		PH, turbidity and temperature sensor with
		Raspberry Pi and existing Cloud system for
		data analytics. The system can monitor water
		quality automatically, triggers alarms
		immediately to prevent any health hazards and
		it is low in cost and does not require people on
		duty. So, the system is likely to be more
		economical, convenient and fast. The system
		has good flexibility.

4. Social Impact / Customer
Satisfaction

Water purification is the process of removal of undesirable chemicals. biological contaminants, suspended solids and gases from water. Direct consumption of tap water or debased water causes cholera, dysentery, typhoid, diarrhea and polio. The presence of pollutants in the water causes diseases like arsenicosis due to arsenic and fluorides components in the water. In most parts of India, tap water is not potable hence there is a need for smart water quality monitoring and purification systems. This system will notify the user regarding the purity of the water on some explicit water parameters and helps user to drink polluted free water.

5.	Business Model (Revenue	In our proposed method, an assembled Arduino
	Model)	microcontroller is used as the core controller of
		the system. Once the code is uploaded to the
		microcontroller, no PC system, keyboard
		command, monitor is required to operate the
		system. The system functions automatically
		and independently according to the code
		uploaded to the microcontroller. In this system,
		three sensors are used to measure the
		essential water parameters. Essential water
		parameters needed to be monitored by the
		average users are water pH level, water
		turbidity (cloudiness) and water temperature
		which is a measurement of the amount of the
		water in a container.
6.	Scalability of the Solution	Real-time monitoring of water quality by using
		IOT integrated Big Data Analytics will
		immensely help people to become conscious
		against using contaminated water as well as to
		stop polluting the water. The research is
		conducted focusing on monitoring river water
		quality in real-time. Therefore, IOT integrated
		big data analytics is appeared to be a better
		solution as reliability, scalability, speed, and
L	I .	1

	persistence can be provided.

3.4 Problem Solution fit

1.CUSTOMER SEGMENT(S)

• Here the customers are the people in the need of ground water.

• Farmers who plant crops in the fields.

6. CUSTOMER CONSTRAINTS CC

Costly equipment

possible

• Timely alerts are not

5. AVAILABLE SOLUTIONS AS

- People get the quality of water either for domestic or commercial (factory/farming)
- User get to know the current water quality.

2. JOBS-TO-BE-DONE /PROBLEMS

Remembrance of water quality measure by sensors.

- Message sent on regarding water quality to the closest persons.
- Alert the patient about the low water quality

9. PROBLEM ROOT CAUSE

- Purifiers cannot monitor the water all the time.
- Elder people(self-reliant) who needs care to be taken.
- Water might have more nutrients at high level this leads unhealthy crops.

7. BEHAVIOUR

- The customer can use 'help' option in the application to get the problem solved.
- The user can use user guide available in the 'about' section for reference.

REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENTS

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Gmail Registration by phone number
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP
FR-3	User Login (Web)	Login with registered mail id and password
FR-4	User Login (mobile app)	Login with registered mobile number and password
FR-5	User's water quality Information	In the app, enter your water quality details with date. Then set the time in the app.

4.2 NON FUNCTIONAL REQUIREMENTS

Following are the non functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR- 1	Usability	The system should be user-friendly for the users. It is used to remaind the water quality level. It alerts the users through app.

NFR- 2	Security	The login information should not be accessed by any other users than the respective. The data of the users should be kept confidential.
NFR-	Reliability	Reminds on correct time
3		The user data should be updated and examined after
		certain period of time
NFR-	Performance	The water quality level will be delivered accurately to
4		the given time.
		It works without any connection interruption
NFR-	Availability	The system should be monitored 24X7 for the alert
5		of water quality.
		It can be used by any registered users from any place.
NFR-	Scalability	It is easily adaptable
6		The device is compatible and portable
		The application can handle any number of
		registration.

PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution and Technical Architecture:

- Feed the data received from the Sensor unit which are placed in the river sides.
- The collected data will be displayed on the Web page of the user.
- Then the collected details are sent to the database, where the collected data and the predefined data are checked and monitored. If any data exceeds the predefined data then the control signal will be sent to the Admin.
- The collected data will be stored in the IBM cloud storage.
- Laterthe data will be controlled by the admin via Web UI

Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	Web UI, Mobile App	Node – Red,
			Kubernetes,
			MIT mobile app
			inventor
2.	Application Logic-1	Generate random data	Python
3.	Application Logic-2	Generate random sensor data	IBM Watson
			IOT Platform
4.	Cloud Database	Cloud Database Database	IBM DB2, IBM
		Service on Cloud IBM	Cloudant etc.

5.	External API-1	Send SMS to customer	Fast SMS API
6.	External API-2	Send data to web	IBM cloudant
			service API.
7.	Infrastructure (Server /	Application Deployment on	IBM Cloud
	Cloud)	Local System / Cloud	platforms and
		Local Server Configuration:	services
		Cloud Server Configuration :	

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source	Node red for web app	json
	Frameworks	development	
2.	Security	Use of a login page with a	Authentication
	Implementations	user's unique username and	token,
		password on a web interface	passwords for
		optimised for mobile devices	secure access
3.	Scalable Architecture	Optimised for mobile devices	Node-Red Web
		and computers with	UI
		adjustable screen sizes	
4.	Availability	Accessible to users through	Node-Red Web
		both a web UI and a mobile	U and MIT app
		арр	inventor (Mob
			App)
5.	Performance	Give precise results and a	Node –
		prompt warning in the event	Red(Web UI),
		of water contamination	MIT App
			inventor
			(Mobile App

5.3 USER STORIES

User Type	Functional Requireme nt	User Sto ry Num ber	User Story / Task	Acceptance criteria	Priori ty	Rele ase
Custom er (Senior citizen)	Ground water quality for domestic use	USN- 1	As a user, I want to use good quality of water. And I need to know the quality of the water I'm consuming.	I want to take medicine on time.	Medi um	Sprin t-1,2
Custom er (Mental ly idled patient)	Ground water quality for drinking purpose	USN- 2	As a user, I should maintain good health by consuming good quality of water in time. I need to monitor the quality of the water	My patient needs to take medicin es at proper time.	High	Sprin t-3

er (Disabl ed person)	Ground water nutrient check for farming	USN- 3	As a user, I need to check my quality of water that is given to plants. Need to intimate me when the water exceeds the threshold. And also I need to check the previous readings of the sensors.	I need to take medicines at accurate time by notification.	High	Sprin t-4
--------------------------------	---	-----------	--	--	------	--------------

PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING & ESTIMATION

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priori ty	Team Members
Sprint- 4 mob app	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	2	High	Renugha SS Sabarivasan P Santhosh R Ragul Gandhi M
Sprint- 4		USN-2	As a user, I will receive confirmation email once I have registered for the application	1	High	Renugha SS Sabarivasan P Santhosh R Ragul Gandhi M
Sprint- 2		USN-3	As a user, I can register for the application through App and Web App	2	Low	Renugha SS Sabarivasan P Santhosh R Ragul Gandhi M

Sprint-4		USN-4	As a user, I can register for the application through Gmail	2	Medi um	Renugha SS Sabarivasan P Santhosh R Ragul Gandhi M
Sprint-	Login	USN-5	As a user, I can log into the application by entering email & password	1	High	Renugha SS Sabarivasan P Santhosh R Ragul Gandhi M

6.2 SPRINT DELIVERY SCHEDULE

Sprint	Total	Durati	Sprint	Sprint End	Story Points	Sprint
	Story	on	Start	Date	Completed (as	Release
	Points		Date	(Planned)	on Planned End	Date
					Date)	(Actual)

Sprint-1 cloud and watson creation	20	1 Day	01 Nov 2022	02 Nov 2022	20	02 Nov 2022
Sprint-2 node red web ui creation	20	2 Days	03Nov 2022	05 Nov 2022	20	06 Nov 2022
Sprint-3 publish data to cloud	20	2 Days	08 Nov 2022	10 Nov 2022	20	15 Nov 2022
Sprint-4 mob app creation and integration of data	20	2 Days	15 Nov 2022	17 Nov 2022	20	20 Nov 2022

6.3 REPORTS FROM JIRA

CHAPTER 7

CODING & SOLUTIONING

7.1 **FEATURE 1**

IBM WATSON IOT PLATFORM

The very first process in this project section is to develop the IBM IoT Platform. This IoT platform is the core formula for all the connection process. As the only way of connecting several applications is the basic work of the cloud platform. The process of signing in to the cloud process is the large process which carries verfication segments too. After creating the Cloud Profile, lets move to device creation part.

Device Creation

Device Type: Temperature_sensor

Device Id: Temp12

With following details, we have created a device and the code for this device carries the requirements which satisfies the project specification. We used temperature, humidity and the pH value in the code. temperature - 0 to 100 humidity - 0 to 100 ph value - 0 to 14

NODE-RED SERVICE

Here we can create the Web user interface and the Web Application by designing the circuit. Our Node-Red Circuit designs are as follows.

The first step is to install the IBM IoT block from the node-red service and we have set three functions namely, temp,turb, pH, humid, nitro. These 5 functions process temperature, humidity and the pH value, Turbidity and Nitrate contents as simulation. And the functions are connected to the msg.payload button.

After this, we set two buttons on the Switch board, Motor ON and Motor OFF.

Now for connecting to the web we use the "http" extension. And also, for connection to the Application we use MIT app application with get option function in Node-Red. The Node-Red website is copied and added "/control" to review the output.

Node-Red Circuit Design

MIT APP INVENTOR

This phase is the most priority requirement of our project. Using an application

helps users to monitor in easy way. MIT App inventor helps to desgin our application. We have created a Screen for our App.

Code block for MIT app

7.2 **FEATURE 2**

Python code to publish the data

```
def myCommandCallback(cmd):
    print("Command received: %s" % cmd.data['command'])
    control=cmd.data['command']
    if control=="MotorON":
        print("Motor is ON")
    if control=="MotorOFF":
```

```
print("Motor is OFF")
while True:
  temp=random.randint(0,50)
  ph=random.randint(0,14)
  turb=random.randint(0,300)
  humid=random.randint(0,70)
  nitro=random.randint(0,10)
  data = {'temp': temp, 'ph' : ph, 'turb': turb, 'humid': humid, 'nitro': nitro }
  def myOnPublishCallback():
    print ("Temperature = %s" % temp, "PH Level = %s C" % ph, "Turbidity = %s C" %
turb,"Humidity = %s" % humid,"Nitrate = %s" % nitro
success=deviceCli.publishEvent("IoTSensor", "json", data,
qos=0,on_publish=myOnPublishCallback
if not success:
   print("Not connected to lotf")
  time.sleep(10)
deviceCli.commandCallback = myCommandCallback
deviceCli.disconnect()
```

```
PM AD ADDROS ORDINO Window Help

Python 17.3 [10.7.73.cefeededil], Noz 22 2019, 22:22:05] [MEC v.1916 64 bit [AMD64]] on vin32

Type "help", "reception". "recept
```

TESTING

8.1 TEST CASES

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	9	0	0	9
Client Application	5	0	1	4
Security	2	0	0	2
Exception Reporting	3	0	0	3
Final Report Output	7	0	0	7

8.2 USER ACCEPTANCE TESTING

Resolution	Severity 1	Severity 2	Severity 3	Total
By Design	4	2	5	11
External	6	4	3	13
UI	2	5	2	9
Fixed	3	2	7	12
Totals	15	13	17	45

CHAPTER 9

RESULTS

9.1 Performance Metrics

The performance and the working of the code is ver quick and the results appears in quick succession. Our code is linked with the most used IBM Watson IoT Platform which works with much perfection. This cloud platform is very secure to use and configure easily. Asthe code is simulated within seconds the result appears. We have done lot of works using this IoT platform which is very simple and good user friendly platform. Below we display our connected IoT platform which delivers the results as the code is run.

UI for the MIT mob app

Node-Red Page Web User Interface

CHAPTER 10 ADVANTAGES & DISADVANTAGES

ADVANTAGES

Water quality standards also protect iconic, locally grown products such as wild rice and walleye. Protecting human health — Some pollutants pose risks to human health. Water quality standards protect human health and avoid the costs related to medical care, productivity loss, and even loss of life. This helps us to understand how the levels of nutrients, dissolved oxygen, temperature, salinity and phytoplankton change over time and how best to manage these conditions. Water quality is critical to environmental and ecosystem health. By monitoring water quality, researchers, scientists, and regulators can understand the impact of human activities, seasonal fluctuations, and weather events. Water quality data helps inform sustainable decision making and comprehensive regulatory policy.

DISADVANTAGE

It is difficult to collect the water samples from all the area of the water body. The cost of analysis is very high. The lab testing and analysis takes some time and hence the lab results does not reflect real time water quality measurement due to delay in measurement. Relationship and capacity challenges in water quality monitoring are discussed based on a rational approach to decision-making. Such an approach considers the costs and benefits of individuals and organisations in decision-making with regard to water quality monitoring. Both benefits and costs can be material (i.e. increase or decrease of financial resources) and immaterial (e.g. loss or gain of time, reputation).

CONCLUSION

The proposed system is created with the use of different sensors, nodemcu as controller and Cloud for storing the data from Controller and sending the command to raspberry PI for measuring water quality and water level. The generated data can be viewed using web interface all over the city. The advantage of the system is to provide the adequate water supply with good quality water to each house, industry, and others. The proposed model can be implemented as a part of the smart city.

FUTURE SCOPE

Environmental water quality monitoring aims to provide the data required for safeguarding the environment against adverse biological effects from multiple chemical contamination arising from anthropogenic diffuse emissions and point sources. Current monitoring approaches tend to emphasize either targeted exposure or effect detection. Here, we argue that irrespective of the specific purpose, assessment of monitoring results would bene t substantially from obtaining and linking information on the occurrence of both chemicals and potentially adverse biological effects. As of now, water quality monitoring is just a wave of seeds. The development of this process must take advance at a quick rate. In the future, there will be a reduction in pollution as water quality monitoring grows.

APPENDIX SOURCE CODE

CODE

Python to Publish data

import requests

import json

import ibmiotf.application

import ibmiotf.device

import time

import random

import sys

#Provide your IBM Watson Device Credentials

organization = "c285f8"

deviceType = "Temperature_sensor"

deviceId = "Temp12"

authMethod = "token"

```
authToken = "Temp0123"
# Initialize GPIO
def myCommandCallback(cmd):
  print("Command received: %s" % cmd.data['command'])
  control=cmd.data['command']
  if control=="MotorON":
    print("Motor is ON")
  if control=="MotorOFF":
    print("Motor is OFF")
try:
  deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-method":
authMethod, "auth-token": authToken}
  deviceCli = ibmiotf.device.Client(deviceOptions)
#.....
except Exception as e:
  print("Caught exception connecting device: %s" % str(e))
```

```
sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event of
type
deviceCli.connect()
while True:
#Get Sensor Data from DHT11
  temp=random.randint(0,50)
  ph=random.randint(0,14)
  turb=random.randint(0,300)
  humid=random.randint(0,70)
  nitro=random.randint(0,10)
  data = {'temp': temp, 'ph' : ph, 'turb': turb, 'humid': humid, 'nitro': nitro }
#print data
  def myOnPublishCallback():
    print ("Temperature = %s" % temp, "PH Level = %s C" % ph, "Turbidity = %s C" %
turb,"Humidity = %s" % humid,"Nitrate = %s" % nitro )
  success=deviceCli.publishEvent("IoTSensor", "json", data,
```

```
qos=0,on_publish=myOnPublishCallback)
if not success:
  print("Not connected to lotf")
  time.sleep(10)

deviceCli.commandCallback = myCommandCallback
# Disconnect the device and application from the cloud
deviceCli.disconnect()
```

13.2 Github and project link

Github: https://github.com/IBM-EPBL/IBM-Project-21549-1659783795

Demo link: https://www.youtube.com/embed/-FTdYF--dRE