Fact: $\forall f \in M_n^*$, \exists operator $\rho \in M_n$ s.t. $f(A) = tr(A\rho)$ $\varphi \in M_n^*$ is called a linear functional of M_n

What property 4 have

(E B [() , ((A)=ty(Ap)

(a) If A 20, $Q(A) = \langle Q|AQI|Q> 20$ $\langle \Rightarrow \forall A \ge 0 \ \forall A \ge 0$

Lemma $tr(\rho A) \ge 0$ for $\forall A \ge 0 \iff \rho \ge 0$ If: (See Homework)

 $P \in M_n^*$ is called a state $\rho \in M_n$ is a classity operator if P = 1 and P = 1 if P = 1 and P = 1

Fact. $D(M_n) \cong S(M_n)$ is a convex set. If $\rho_i \in D(M_n)$, $\sum p_i = 1$, then $\sum \lambda_i \rho_i \in D(M_n)$ A state of a quantum system (conbeequivalently described by one of the following O A state $\varphi : B(C) \rightarrow C$, i.e. $\varphi(I) = 1$ and $\varphi(A) \ge 0$ $fA \ge 0$ 2 A cleasity operator $\rho \in \mathcal{B}(\mathbb{C}^n)$ s.t. $tr(\rho)=1$, $\rho \geq 0$ 3) An ensemble of pure state { Pi, 14; > 9 \ \infty = 1. Pi > 0 | 4; > \infty = 0 (4) A state vector 190 & chxcm for some m 142 positive linear function Examples ① Pure State = Vector state: $|\Psi\rangle \iff \varphi(A) = \langle \varphi|A|\psi\rangle \iff \varphi=|\psi\rangle\langle \varphi|$ donsity (2) A mixed state $\rho = \sum Pi |Pi \rangle \langle Pi|$ $|Pi \rangle |Pi \rangle$ or the normal set 5 P; = (P; 20 Mixed state are convex combination of pure state If Pi=1. Pi=0 & jti => P=(Pi)<Pi) gove state For C^n , $P_i = \frac{1}{n}$, $P = \sum_{i=1}^{n} |P_i| > \langle P_i| = \frac{1}{n} I$, completely mixed like uniform distribution (t, t ... t) B Hat state: P projection. $\rho = \frac{P}{tr(p)} = \frac{1}{k} \sum_{i=1}^{k} |q_i\rangle \langle q_i| \langle [q_i] \rangle \langle$ of Ran(P). k=trcp) EN @ Ensemable of pure seates { Pi, [Pi>} → P= 2 Pi |4i><Pi| e_{-g} , $\lambda(0)\langle 0|+(1-\lambda)(1)\langle 1|=(\lambda_{1-\lambda})$ $\lambda_{1}+\lambda_{2}\langle +|+(1-\lambda)(1-\lambda)(1-\lambda_{2})\langle -|+(1-\lambda)(1-\lambda_{2})(1-\lambda_{2})\rangle$ eg. = 1001+11001=1== 1+1001+1=1-00-1

Postulate 1 = Quantum system \mathbb{C}^n State $\rho = \Sigma P_i | \Psi_i \times \Psi_j| \text{olensity operator}$ $P_i \cdot \Psi_i > 0$ ensemable $P_i \cdot \Psi_i > 0$ ensemable $P_i \cdot \Psi_i > 0$ estate $P_i \cdot \Psi_i > 0$ ensemable $P_i \cdot \Psi_i$

Postu (ate3: Transformation of closed system: Unitary U $\begin{aligned}
|\varphi\rangle \to U|\varphi\rangle \\
|\varphi| \to |\varphi| &\Rightarrow |\varphi| &$

Postmlate 4: Composite System \iff Tensor product space $C^* \otimes C^*$ What type of density operators we can have on $C^* \otimes C^*$?

Joint States .

Denote $H_A = \mathbb{C}^n$ and $H_B = \mathbb{C}^m$, A density operator $P_{AB} \in B(H_A \otimes H_B)$ is called a joint State over composite system AB.

O Product State
Let (C^n) and $G \in D(C^m)$. Then $C^n \in C^n$ Fact: $(A \otimes B) = f(A) f(B)$. b) $(C^n \otimes C^n)$

Example:

Classical analog: Pxy = PxxPx independent distribution

2. Separable State
$$W = \sum_{i} \lambda_{i} \ (\hat{i} \otimes \hat{G}_{i})$$
 $\sum \lambda_{i} = 1 \ \lambda_{i} \geq 0$

Convex combination of product state $P_{i} \in D(H_{A})$. $G_{i} \in D(H_{B})$

Example. a) $P_{i} \otimes G_{i}$ product scate

b) $W = \sum_{i} \lambda_{i} |i| \geq \langle i| \otimes G_{i}$ $G_{i} \in D(H_{B})$ classical-quantum $\sum \lambda_{i} = 1 \lambda_{i} \geq 0$ state

If $[G_{i}, G_{j}] = 0 \ \forall i.j = 0$ Then $\exists a \in D(H_{B}) \in P_{i} \geq \lambda_{i} \mid i \geq \langle q_{A} \mid q_{B} \geq \langle q_{A} \mid q_{B} \rangle \langle q_{A} \mid q_{B} \rangle$

Definition: A joint state PAB is called entangled if it is not separable

Example:
$$|\overline{\mathcal{I}}^{\dagger}\rangle = \frac{|\infty\rangle + |1\rangle}{\sqrt{2}} \in \widehat{\mathcal{C}} \otimes \widehat{\mathcal{C}}^{2}$$

$$density |\overline{\mathcal{I}}^{\dagger}\rangle < \overline{\mathcal{I}}^{\dagger}| = \left(\frac{|\infty\rangle + |1\rangle}{\sqrt{2}}\right) \left(\frac{\langle\infty\rangle + \langle1\rangle}{\sqrt{2}}\right)$$

$$= \frac{1}{2}(|\infty\rangle < |\infty\rangle + |1\rangle < |1\rangle$$

$$0. \text{N.B} \quad |\langle 0\rangle\rangle = |0\rangle\rangle = |1\rangle\rangle$$

$$|\overline{\mathcal{I}}^{\dagger}\rangle < \overline{\mathcal{I}}^{\dagger}| = \left(\frac{1}{2} |0\rangle |\frac{1}{2} |0\rangle |0\rangle\rangle$$

$$|\overline{\mathcal{I}}^{\dagger}\rangle < |0\rangle\rangle = |0\rangle\rangle$$

How to see this is not seperable state

In general,
$$(4) \in \mathbb{C} \otimes \mathbb{C}^m$$
. if $(4) \neq (h_1) \otimes (h_2)$ produce vector then $(4) < (4)$ is an entangled state

Marginal scate / Reduced density

Given a joint state
$$P_{AB} \in BCH_{AB}$$
). It induce a state on A .
 $P_{A} = BCH_{A} \rightarrow C$. $P_{A}(x) = \frac{tr}{AB}(x_{A} \otimes I_{B}) P_{AB}$

$$\begin{array}{ll} (A = Id \otimes tr_B(P_{AB})) \\ \text{More explicitly}, & P_{AB} = \sum \alpha_{ij,kl} \ \text{eij} \otimes \text{ekl} \\ P_{A} = id_{A} \otimes tr_{B} \ (P_{AB}) = \sum \alpha_{ij,kl} \ \text{Id} \ (\text{eij}) \otimes tr_{B} \ (\text{ekl}) \\ = \sum_{k,i,j} \alpha_{ij,kk} \ \text{eij} \end{array}$$

$$W_{B} = 6_{B}$$
2 $W_{AB} = \sum \lambda_{i} |i\rangle \langle i| \otimes 6_{i}$ $W_{A} = \sum \lambda_{i} |i\rangle \langle i|$ $W_{B} = \sum \lambda_{i} |6_{i}|$
3 $\Psi_{AB} = |\Psi\rangle \langle \Psi|$. $|\Psi\rangle = \frac{|\omega\rangle + |1\rangle}{\sqrt{2}}$ $|\Psi\rangle = |\alpha|^{2} |\omega\rangle \langle \omega| + |b|^{2} |\omega\rangle \langle \omega|$

$$|\Psi\rangle = |\alpha|^{2} |\omega\rangle \langle \omega| + |b|^{2} |\omega\rangle \langle \omega| + |\omega\rangle$$

Now: back to our equivalence:

Given
$$[\mathcal{Q}] \in \mathcal{C}^{n} \otimes \mathcal{C}^{m}$$
, $\longrightarrow \mathcal{Q} : \mathcal{B}(\mathcal{C}^{n}) \to \mathcal{C} \longrightarrow \mathcal{C}_{\mathcal{Q}} \in \mathcal{B}(\mathcal{C}^{n})^{n}$
Vector state $\mathcal{Q}(X) = \mathcal{Q}(X) = \mathcal{Q}(X) = \mathcal{C}(\mathcal{C}^{n})^{n}$

How to compute
$$\ell_{\varphi}$$
 from $[\varphi]$?

 $< \Psi[X \otimes I] \Psi > = tr_{AB} (X \otimes I | \Psi > < \Psi |)$
 $= tr_{A} \otimes tr_{B} (X \otimes I | \Psi > < \Psi |)$
 $= tr_{A} (X tr_{B}(\Psi > < \Psi |))$
 $= tr_{A} (X tr_{B}(\Psi A B |)) = tr_{B} (X \ell_{A})$
 $\ell = \ell_{A} = tr_{B} (| \Psi > < \Psi |)$

Can we go back!
$$\rho \in B(\mathbb{C})^n \longrightarrow \text{find } l\rho \in \mathbb{C}^n \otimes \mathbb{C}^m \text{ s.t.}$$

$$\text{density} \qquad tr_B(l\rho > \langle \rho |) = \rho$$

Parification.

Given a mixed state PEDCHA)

- 1 Does there exists a joint state WAB such that WA=P?
- 3 . - a pure joint state $\varphi_{AB} = 1.9 \times 91$ such that $\varphi_{A} = \rho$? Such 1.9> is called a purification of ρ .

① Yes. $W_{AB} = P_A \otimes G_B$ ② Given $P = \sum P_i | Q_i > < Q_i |$ Define $| Q_i > \sum_{AA'} \sum_{i=1}^{n} | Q_i > \otimes | i > < Q_i |$ Then $| Q_i = \sum_{i=1}^{n} | Q_i > < Q_i |$ has reduced density $P_i = \sum_{i=1}^{n} | Q_i > < Q_i |$ $| id_{AB} = | P_{A} \otimes G_{A} |$ $| id_{AB} = | P_{A} \otimes G_{B} |$ $| id_{AB} = | P_{A} \otimes G_{B}$

Theorem (V(mann): Let M_{AC} be any pure fication of f. Then there exists an isometry $V \in L(H_A, H_C)$ such that V(Q) = |Y|.

SII
HA