Métodos Numéricos. Grado en Físicas Curso 18/19

Hoja 2. Interpolación y aproximación de funciones

- 2.1 Escribe un programa que calcule el polinomio interpolador de una serie de *n* pares de datos mediante el método de Lagrange.
 - a) Aplíquese a calcular el valor aproximado de f(0.84) a partir de todos los datos de esta tabla (n = 7). Comprueba el resultado en Mathematica.

x_i	$f(x_i)$				
0.000	0.000				
0.5	0.0741841				
1.	0.283933				
1.5	0.571113				
2.	0.794231				
2.5	0.743043				
3.	0.298173				
3.5	-0.311502				

- b) Reconstruye la función con un mallado de 50 puntos (es decir, tomando 50 nodos equiespaciados en el intervalo y calculando la interpolación en cada uno de ellos).
- c) Representa en Mathematica: los nodos originales y la interpolación calculada en todos los nodos del mallado.
- 2.2 Reconstruye la silueta superior de la figura a partir de los datos contenidos en la tabla adjunta (las ascisas no están equiespaciadas y el origen de coordenadas es arbitrario).

		440.383						
$f(x_i)$	2788.36	2695.56	2735.6	2723.96	2682.16	2580.32	2435.42	2328.5
		1453.5						
$f(x_i)$	2176.03	2150.5	2174.03	2270.32	2329.38	2340.39	2314.86	2261.59
x_i	2453.74	2547.44	2595.73					
$f(x_i)$	2150.1	2028.46	1883.23					

- a) Para hacerlo, escribe y utiliza un programa en Fortran que calcule los *splines* cúbicos correspondientes e interpola 50 puntos en el intervalo considerado en la tabla (para comprobar que el programa funciona bien, calcula primero un solo punto).
- b) Dibuja en Mathematica los puntos utilizados en la interpolación junto con la aproximación obtenida en Fortran.
- c) Calcula en Mathematica la función interpoladora (utilizando los comandos apropiados para obtener *splines* en Mathematica) y comprueba que coincide aproximadamente con la obtenida en Fortran.
- d) Adapta el programa desarrollado en el problema 2.1 para hacer una interpolación polinómica con el método de Lagrange de esa tabla de datos y obtener un fichero de 100 puntos con la aproximación. Representa los resultados en Mathematica y coméntalos.