Lecture 15 f = arguin L(f)

Lloss Can generally fit penelized wethods senalizations penalize: $\hat{f} = \underset{f}{\operatorname{argmin}} L(f) + \lambda J(f)$ ridge: $\beta \Rightarrow f$ ridge: $\beta = arguin L(\beta) + \lambda \|\beta\|_{2}^{2}$ complexity $\beta = arguin L(\beta) + \lambda \|\beta\|_{2}$ $\beta = arguin L(\beta) + \lambda \|\beta\|_{2}$ $\beta = arguin L(\beta) + \lambda \|\beta\|_{2}$ Can do this w/ other wethods too.

E.S. Logistic Regression

Yn X= Zn indep Bern (pp (Xn)) PB(Xn) = (1+lxp(-XnB))

Unsupervised Learning Supervised Problem: have both input X and on output Y Want to predict Y from X. P(YIX) Unsuperised. only have X Want to summarize important patterns in X 1) dimensionality reduction. represent data using fewer vars P covariates >> 9 covariates ger high density subspaces Autering: group my date into similar "clusters" cluster 1 , Toluster 2

fird some godinile Subspace to summarize dat 9-din'l projection fird coords in G-dint matrices Whe the PX9 intx of basis elements proj. mtx onto cof(w) is Pw = W(WTW)WT so that if XERP then XPw is the coord (in RP) of proj. pt.

If W has ortho-normal cols then $W^{T}W = I$ so $P_{W} = WW^{T} (PXP)$ $\chi P_{W} = \chi WW$ 50 coords in of proj. in W basis
ors. basis PCA wants to calc positions of pts in the lower dimil suspect. IX NXP is data mtx, W is PXq basis mtx they Z = XW NXP PXS NXG mtx of data in lower-dink coords If Zi is the ith col of Z Xj // gth col of X Z: = X W: = X, W: + X, W: + + X, Wiz + --+ X, Wip Tinear combin of XjS weight by W weight specified by W

PCA: Find LCs of Xjs to
- Find LCs of Xis to
(1) max var. of resulting Zis
Subject to
2) Zis are uncorrelated (no redundancy) (2) Wi to be unit vectors
(2) Zis are un correlated
(no redundancy)
(b) Wi to be unit vectors