MATH 4431: Introduction to Topology

Frank Qiang Instructor: Asaf Katz

Georgia Institute of Technology Fall 2024

Contents

1	Aug. 20 — Review of Metric Spaces	
	1.1 Metric Spaces	
	1.2 Open Sets	
2	Aug. 22 — Topology, Basis, Continuity	
	2.1 Topological Spaces	
	2.2 Basis for a Topology	
	2.3 Continuous Functions	

Lecture 1

Aug. 20 — Review of Metric Spaces

1.1 Metric Spaces

Recall the definition of a *metric space*:

Definition 1.1. Given a set X, a function $d: X \times X \to \mathbb{R}$ is called a *metric* if

- (i) (strong positivity) $d(x,y) \ge 0$ for all $x,y \in X$, and d(x,y) = 0 if and only if x = y,
- (ii) (symmetry) d(x, y) = d(y, x),
- (iii) and (triangle inequality) $d(x, z) \le d(x, y) + d(y, z)$ for all $x, y, z \in X$.

Example 1.1.1. For any set X, we can define the discrete metric by

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y, \\ 0 & \text{otherwise.} \end{cases}$$

Verify as an exercise that this satisfies the triangle inequality.

Example 1.1.2. The Euclidean metric in \mathbb{R}^n is

$$d(\overline{x}, \overline{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

where $\overline{x} = (x_1, \dots, x_n)$ and $\overline{y} = (y_1, \dots, y_n)$.

1.2 Open Sets

Definition 1.2. The open ball of radius R > 0 around $x_0 \in X$ is

$$B_R(x_0) = \{ y \in X \mid d(x_0, y) < R \}.$$

Given a set $S \subseteq X$, a point x_0 is called an interior point of S if there exists r > 0 such that $B_r(x_0) \subseteq S$. The set S is called *open* if all of its points are interior points.

Proposition 1.1. The open ball $B_R(x)$ is open.

Proof. Fix an arbitrary $y \in B_R(x)$, and observe that it suffices to show that y is an interior point. Take r = R - d(x, y), and first note that r > 0 since d(x, y) < R. Now note that for all $z \in B_r(y)$, we have

$$d(x,z) \le d(x,y) + d(y,z) < d(x,y) + (R - d(x,y)) = R,$$

so that $z \in B_R(x)$. Thus $B_r(y) \subseteq B_R(x)$, and so y is an interior point.

Corollary 1.0.1. $B_R(x) = \bigcup_{y \in B_R(x)} B_{r_y}(y)$, where $r_y = R - d(x, y)$.

Proof. We have $B_{r_y}(y) \subseteq B_R(x)$ for each $y \in B_R(x)$, and so $\bigcup_{y \in B_R(x)} B_{r_y}(y) \subseteq B_R(x)$. For the reverse inclusion simply observe that $y \in B_{r_y}(y) \subseteq \bigcup_{y \in B_R(x)} B_{r_y}(y)$ for each $y \in B_R(x)$.

Proposition 1.2. In a metric space (X, d), the following are true:

- (i) \varnothing , X are open,
- (ii) if $\{S_i\}_{i\in I}$ are open, then $\bigcup_{i\in I} S_i$ is open,
- (iii) and if $\{S_i\}_{i=1}^n$ are open, then $\bigcap_{i=1}^n S_i$ is open.

Proof. (i) The empty set is open vacuously. To see that X is open, simply take R = 1 for any $x \in X$.

- (ii) Fix $x \in \bigcup_{i \in I} S_i$ arbitrary, so there exists $i_0 \in I$ with $x \in S_{i_0}$. Since S_{i_0} is open, x is an interior point and thus there exists r > 0 such that $B_r(x) \subseteq S_{i_0}$. But then $B_r(x) \subseteq S_{i_0} \subseteq \bigcup_{i \in I} S_i$, so x is an interior point of $\bigcup_{i \in I} S_i$ also and thus $\bigcup_{i \in I} S_i$ is open.
- (iii) Now assume $x \in \bigcap_{i=1}^n S_i$. Then for each $1 \le i \le n$, there exists $r_i > 0$ such that $B_{r_i}(x) \subseteq S_i$. Then we can choose

$$r = \min\{r_1, \dots, r_n\} > 0,$$

so that $B_r(x) \subseteq B_{r_i}(x) \subseteq S_i$ for each $1 \le i \le n$. Thus $B_r(x) \subseteq \bigcap_{i=1}^n S_i$ and $\bigcap_{i=1}^n S_i$ is open. \square

Remark. The above argument for the finite intersection property requires that there are only finitely many r_i . Otherwise it may very well be that $r = \inf\{r_i\} = 0$ and the argument fails.

¹Using the argument from the previous proposition.

Lecture 2

Aug. 22 — Topology, Basis, Continuity

2.1 Topological Spaces

Definition 2.1. A topology $\mathcal{T} \subseteq \mathcal{P}(X)$ is a collection of sets such that

- (i) $\varnothing, X \in \mathcal{T}$,
- (ii) for any index set I, if $\{s_i\}_{i\in I}\subseteq \mathcal{T}$, then $\bigcup_{i\in I}s_i\in \mathcal{T}$ (closure under arbitrary union),
- (iii) and if $\{s_i\}_{i=1}^n \subseteq \mathcal{T}$, then $\bigcap_{i=1}^n s_i \in \mathcal{T}$ (closure under finite intersection).

A set with a topology, i.e. a pair (X, \mathcal{T}) , is called a topological space. Elements of \mathcal{T} are called open sets.

Example 2.1.1. The following are examples of topologies on a set X:

- The trivial topology: $\mathcal{T} = \{\emptyset, X\}.$
- The discrete topology: $\mathcal{T} = \mathcal{P}(X)$.
- If (X, d) is a metric space, then $\mathcal{T} = \{\text{collection of metrically open sets}\}\$ is a topology on X.

Remark. Not every topology is induced by a metric. For instance consider the trivial topology on \mathbb{R} .

2.2 Basis for a Topology

Definition 2.2. A collection $\mathcal{B} \subseteq \mathcal{P}(X)$ is called a *basis* if

- (i) $\bigcup_{b\in\mathcal{B}} b = X$, i.e. \mathcal{B} is a covering of X,
- (ii) and if $x \in b_1 \cap b_2$ for any $b_1, b_2 \in B$, then there exists $b_3 \in \mathcal{B}$ such that $x \in b_3$ and $b_3 \subseteq b_1 \cap b_2$.

Theorem 2.1. Given a set X and a basis \mathcal{B} , define

$$\mathcal{T}_{\mathcal{B}} = \left\{ \bigcup_{i \in I} s_i \mid I \text{ is any index set and } \{s_i\}_{i \in I} \subseteq \mathcal{B} \right\}.$$

Then $\mathcal{T}_{\mathcal{B}}$ is a topology on X.

Proof. First observe that $\emptyset, X \in \mathcal{T}_{\mathcal{B}}$: Picking $I = \emptyset$ gives $\bigcup_{i \in I} s_i = \emptyset \in \mathcal{T}_{\mathcal{B}}$ and picking $I = \mathcal{B}$ gives $\bigcup_{b \in \mathcal{B}} b = X \in \mathcal{T}_{\mathcal{B}}$ by the covering property of a basis.

¹Note that the discrete topology is induced by the discrete metric.

Now assume $\{s_i\}_{i\in I}\subseteq \mathcal{T}_{\mathcal{B}}$. For each $i\in I$, we have $s_i\in \mathcal{T}_{\mathcal{B}}$ and so there exists an index set J_i such that $s_i=\bigcup_{j\in J_i}b_j$, where the $b_j\in \mathcal{B}$. Then

$$\bigcup_{i \in I} s_i = \bigcup_{i \in I} \bigcup_{j \in J_i} b_j,$$

which is a union of elements of \mathcal{B} and hence is in $\mathcal{T}_{\mathcal{B}}$.

Finally assume $\{s_i\}_{i=1}^n \subseteq \mathcal{T}_{\mathcal{B}}$. Now as each $s_i \in \mathcal{T}_{\mathcal{B}}$, there exists J_i such that $s_i = \bigcup_{i \in J_i} b_i$. Then

$$\bigcap_{i=1}^{n} s_i = \bigcap_{i=1}^{n} \bigcup_{j \in J_i} b_j.$$

Now assume $x \in \bigcap_{i=1}^n s_i = \bigcap_{i=1}^n \bigcup_{j \in J_i} b_j$. For each $1 \le i \le n$, there exists $j_i \in J_i$ such that $x \in b_{j_i}$. Hence $x \in \bigcap_{i=1}^n b_{j_i}$. Now by induction on the intersection property of a basis, we can find $b_x \in \mathcal{B}$ with

$$x \in b_x \subseteq \bigcap_{i=1}^n b_{j_i}$$

Also observe that

$$\bigcap_{i=1}^{n} b_{j_i} \subseteq \bigcap_{i=1}^{n} \bigcup_{j \in J_i} b_j = \bigcap_{i=1}^{n} s_i$$

by construction, so we may write

$$\bigcap_{i=1}^{n} s_i = \bigcup_{x \in \bigcap_{i=1}^{n} s_i} b_x \in \mathcal{T}_{\mathcal{B}}$$

as a union of elements of \mathcal{B} .

Definition 2.3. A subbasis $\mathcal{B} \subseteq \mathcal{P}(X)$ is a collection of sets such that $\bigcup_{b \in \mathcal{B}} b = X$.

Remark. One may define a basis \mathcal{B} from a subbasis \mathcal{B} by adding all finite intersections of elements of \mathcal{B} . We get the covering property for free and adding the finite intersections gives us the intersection property of a basis.

Example 2.3.1. For \mathbb{R} with the Euclidean metric, the following are bases for the standard topology:

- $\bullet \{B_R(x) \mid x \in \mathbb{R}, R > 0\}.$
- $\{B_R(x) \mid x \in \mathbb{R}, R > 0, R \in \mathbb{Q}\}$. For this use the fact that \mathbb{Q} is dense in \mathbb{R} .

In particular this shows that a basis for a topology is not unique in general.

2.3 Continuous Functions

Definition 2.4. Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be two topological spaces. A function $f: X \to Y$ is called *continuous* if for any $O \in \mathcal{T}_Y$, we have $f^{-1}(O) \in \mathcal{T}_X$, i.e. the preimage of an open set is open.²

Example 2.4.1. Let X be equipped with the trivial topology $\{\emptyset, X\}$ and let \mathbb{R} be equipped with the standard topology. Then the only continuous functions $f: X \to \mathbb{R}$ are the constant functions $f: x \mapsto c$ for fixed $c \in \mathbb{R}$. To see this, observe that

²Recall that $f^{-1}(O) = \{x \in X \mid f(x) \in O\}.$

- $x \mapsto c$ is continuous since any open set in \mathbb{R} either contains c or does not, and so the preimage is either X or \emptyset .
- Suppose $f(x_1) = y_1$ and $f(x_2) = y_2$. Let $\epsilon = |y_1 y_2|$ and observe that $x_1 \in f^{-1}(B_{\epsilon}(y_1))$ while $x_2 \notin f^{-1}(B_{\epsilon}(y_1))$, so $f^{-1}(B_{\epsilon}(y_1))$ is not open in X despite $B_{\epsilon}(y_1)$ being open in \mathbb{R} .

Example 2.4.2. Let X have the discrete topology $\mathcal{T} = \mathcal{P}(X)$ and let \mathbb{R} have the standard topology. Then all functions $X \to \mathbb{R}$ are continuous since any preimage is a subset of X and thus in $\mathcal{P}(X)$.

Remark. In a way, the trivial topology has too few open sets while the discrete topology has too many.

Definition 2.5. Two topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) are topologically equivalent or homeomorphic if there exists a bijection $f: X \to Y$ such that f and f^{-1} are continuous.

Remark. A bijective function f being continuous does not necessarily imply that its inverse f^{-1} is.

Example 2.5.1. Consider $(-\pi/2, \pi/2)$ equipped with the Euclidean metric. This is homeomorphic to \mathbb{R} equipped with the Euclidean metric.³ One homeomorphism is given by $\tan : (-\pi/2, \pi/2) \to \mathbb{R}$.

³Note that $(-\pi/2, \pi/2)$ is bounded while \mathbb{R} is not.