Revision for Automata session

Course: Mathematical Modeling

Duration:... mins

Exam Code: 2212

Choose the best answer for each multiple-choice question and fill in the blank needed.

Question 1. Let's consider $\Sigma = \{a, b, c\}$ and $L = \{a, abb, bba, ba, c\}$. Which string belongs to L^* ?

- (A) abaaacbb
- (B) aaabbbbba
- (C) aabacabba
- (D) babacbbbaaa

Question 2. Let's consider $\Sigma = \{a, b, c\}$ and $L = \{a, aab, bbc, ba\}$. Which string does not belong to L^4 ?

- (A) aababbc
- (B) baaaaab
- (C) abaaabba
- (D) abbcaab

Questions from 3–9, consider the language L determined by finite automata on $\{a, b\}$ as follows.

Question 3. Choose the correct statement.

- (A) This automata is a NFA since it is not deterministic
- (B) This automata is not a DFA since the number of states is not finite.
- This automata is not optimized.
- (\mathbf{D}) Any language L could be represented by this automata.

Question 4. Which string is valid?

(A) aabb

- \bigcirc abbbbbab

Question 5. Which string is not valid?

BổI HCMUT-CNCP

- (A) ababab
- (B) aabbbaabbab
- (C) aabbbbaaa
- bbbbbababa

Question 6. Which string is not in L^2 ?

- (A) aababbab
- (C) aabbbbaaa
- (D) abbbb

Question 7. Which regular expression Z corresponds to the considering finite automata?

- (A) $X = a^*b$; $Y = X(a + bb^*a)$; $Z = X(Y(a + b)X)^*$
- (B) $X = a^*b + Ya$; $Y = X(a + bb^*a)$; $Z = (XY(a + b))^*(X + XY)$
- (C) $X = a^*b + (a + bb^*a)a; Y = X(a + bb^*a); Z = (XY(a + b))^*(X + XY)$
- $(D) X = a^*b[(a+bb^*a)a]^*; Y = (a+bb^*a); Z = X(Y(a+b)X)^* + XY((a+b)XY)^*$

Question 8. When using determinisation algorithm to convert NFA into DFA, how many states are there in the new DFA?

- (B) 7 (D) None of the others.

Question 9. How many states are there in the minimized/optimized DFA (which is equivalent to the above NFA)

- None of the others.

- Question 10. Find the correct statement.
 - (A) When occurring an event from a state, the NFA does not determine the next state.
 - (B) NFA has not finite number of states but DFA has a finite number of states.
 - (C) The number of states is always reduced when determinisation from NFA to DFA.
 - (D) NFA does not determine surely the next state in order to simplify the graph.
- Question 11. Are two regular expressions $E_1 = (a+b)^*$ and $E_2 = (aa+ab+ba+bb)^*$ are equivalent? If not, give a counter-example.
 - A) They present the same language

 - C They are not equivalent, the counter-example is a
 - They are not equivalent, the counter-example is aa
- Question 12. Do two regular expression $E_3 = ((a+b)^*(ac)^*)^*$ and $E_4 = (a+aa+ba+b+c)^*$ present the same language? If not, give a counter-example.
 - (A) They present the same language
 - (\mathbf{B}) $E_4 \subseteq E_3$
 - C They are not equivalent, the counter-example is cc.
 - (D) They are not equivalent, the counter-example is aa.
- Question 13. Do the following automata and regular expression $E = ((aa)^* + bb^*a(aa)^*b(ab)^*)^*$ present the same language? If not, give a counter-example.

- (A) They present the same language.
- \bigcirc They are not equivalent, the counter-example is baa.
- They are not equivalent, the counter-example is ε .
- \bigcirc They are not equivalent, the counter-example is bab.
- Question 14. Which the method is used to determine the equivalent property of two given finite automatas (FA)?
 - (A) Compare the number of states between two FAs.
 - (B) Compare transition table of two new FAs that have been minimized from two given FAs.
 - C) Verify all posible cases based on transition table of two FAs.
 - (D) Check through equivalent regular expressions.

Exam Code: 2212

Question 15. Let a finite automata on $\Sigma = \{a, b\}$, Which regular expression Z corresponds to the considering finite automata? a b

- (A) $X = a^*ba^*, Y = b^*ab^*a, Z = X(Y(a+b)X)^* + XY((a+b)XY)^*$
- $(\overline{\mathbf{B}}) \ X = \mathbf{a}^* b a^* b^* a, Y = b^* a, Z = X(Y(ab+b)X)^* + XY((ab+b)XY)^*$
- (C) X=a*b, Y = a*b*ab*a, Z = X(Y(ab+b)X)* + XY((ab+b)XY)*
- $(\overline{\mathbf{D}}) \ X = a^*b, Y = a^* + a^*b^*ab^*a, Z = X(Y(ab+b)X)^* + XY((ab+b)XY)^*$
- $(\mathbf{E}) \ X = a^*ba^*, Y = b^*ab^*a, Z = X(Y(ab+b)X)^* + XY((ab+b)XY)^*$

Question 16. The regular expression of a language $L = \{a^n b^m || (n+m) \text{ is even} \}$ is

- **A** $((aa)^+(bb)^+(a(aa)^+b(bb)^+).$
- (B) $(aa)^*(bb)^* + a(aa)^*b(bb)^*$
- (C) $(aa)^*(bb)^*a(aa)^*b(bb)^*$
- $(aa)^+(bb)^+ + (a(aa)^+b(bb)^+).$

(A) <u>aababba</u>

B bbaaaa

(C) aaaabb

D abaababa

Question 18. Which of the following is a counter-example that shows that the two automata below are not equivalent?

 (\mathbf{A}) abaab

(B) baaab

(C) babb

(D) abbaa

Question 19. Maximum number of states of a DFA converted from an NFA with N states is?

 $(\mathbf{A}) N^2$

 \bigcirc 2^N

 \bigcirc N!

 (\mathbf{D}) N

Question 20. Let S and T be languages over $\Sigma = \{a, b\}$ represented by the regular expressions $(a + b^*)^*$ and $(a + b)^*$ respectively. Which of the following is true?

- (A) $S \subset L$
- (B) S = T
- (C) $T \subset S$
- (\mathbf{D}) $S \cap T$

Question 21. Consider the following deterministic finite state automaton M.

Let S denote the set of seven bit binary strings in which the first, the fourth, and the last bits are 1. The number of strings in S that are accepted by M is

(A) 8

(B) 5

(C) 7

(D) 10

Question 22. Consider the NFA M shown below.

Let the language accepted by M be L. Let L_1 be the language accepted by the NFA M_1 , obtained by changing the accepting state of M to a non-accepting state and by changing the non-accepting state of M to accepting states. Which of the following statements is true?

- **(A)** $L_1 = \{0, 1\}^* \setminus L$
- (\mathbf{B}) $L_1 \subseteq L$
- f C $L_1=L$
- **D** $L_1 = \{0, 1\}^*$

Question 23. The following finite state machine accepts all those binary strings in which the number of 1's and 0's are respectively.

- A divisible by 3 and 2.
- © even and odd.

- **B** odd and even.
- \bigcirc divisible by 2 and 3.

Question 24. Consider the languages $L_1 = \emptyset$ and $L_2 = \{a\}$. Which one of the following represents $L_1L_2^* \cup L_1^*$?

(A) Ø

(B) $\{\varepsilon\}$

- \bigcirc $\{a^*\}$
- $(\mathbf{D}) \{a, \varepsilon\}$

Question 25. What is the complement of the language accepted by the NFA shown below?

 (\mathbf{A}) \emptyset

(D) $\{a, \varepsilon\}$

Question 26. Match following ${\rm NFAs}$ regular correspond the with the expressions they to: $1.\varepsilon + 0(01^*1 + 00)^*01^*$ 2. $\varepsilon + 0(10^*1 + 10)^*1$

 $3.\varepsilon + 0(10^*1 + 00)^*0$

4. $\varepsilon + 0(10^*1 + 10)^*10^*$

Question 27. Reduce the following expression $\varepsilon + 1^*(011)^*(1^*(011)^*)$

(A) $(1+011)^*$

 $(1011)^*$

Question 28. What can be said about a regular language L over $\{a\}$ whose minimal finite state automaton has two states?

(A) $L = \{a^n | n \text{ is odd}\}$

B) $L = \{a^n | n \text{ is even}\}$ C) $L = \{a^n | n \ge 0\}$

(D) Either $L = \{a^n | n \text{ is odd}\}$, or $L = \{a^n | n \text{ is even}\}$

Question 29. How many minimum states are required in a DFA to find whether a given binary string has odd number of 0's or not, there can be any number of 1's.

Question 30. A deterministic finite automation (DFA)D with alphabet $\Sigma = \{a, b\}$ is given below

Which of the following finite state machines is a valid minimal DFA which accepts the same language as \mathbf{D} ?

