The primary purpose of this section is to introduce basic spatial analysis, visualization, and APIs in R. The secondary purpose is to examine whether state-level policy has an appreciable impact on the composition of farmers' markets in the Southwest. As in a previous section, we'll pull data from data.gov on 7,863 farmers' markets in the United States. Save the file as farmers-mkts.csv in the data sub-directory and plot the locations:

```
library(maps)
data <- read.csv(".../data/farmers-mkts.csv", header = TRUE)
map("state", interior = FALSE)
map("state", boundary = FALSE, col = "gray", add = TRUE)
points(data$x, data$y, cex = 0.2, col = "blue")</pre>
```


Figure 1: US farmers markets

Now consider only the farmers' markets in Colorado, Utah, New Mexico, and Arizona. There are 353 farmers markets in these four states. (One is mislabeled, and is actually in Pennsylvania. Knock this out.)

```
statelist <- c("New Mexico", "Colorado", "Arizona", "Utah")
state.data <- data[data$State %in% statelist, ]
state.data <- state.data[state.data$x < -80,]
dim(state.data)
[1] 353 32</pre>
```

Each column of the state.data frame contains information on a different feature of the market. The last 24 columns are binary variables with entries "Y" or "N", indicating whether the market sells cheese, for example, or accepts credit cards. Is it possible to predict the location of farmers' markets, based purely on these features? If so, then there may be something about state policy that has an observable, immediate impact on the composition of the markets. Clean up the features, assigning a numerical indicator to the "Y" response:

```
X <- state.data[, 8:ncol(state.data)]
X <- apply(X, 2, function(col) { ifelse(col == "Y", 1, 0) })
print(colnames(X)[-(1:13)])

[1] "Honey" "Jams" "Maple" "Meat" "Nursery" "Nuts"
[7] "Plants" "Poultry" "Prepared" "Soap" "Trees" "Wine"</pre>
```

https://explore.data.gov/d/wfna-38ey

Note that all variables in the feature matrix X are binary. There are a variety of standard econometric techniques to deal with multinomial data — but I am unaware of any that don't implicitly (or explicitly) rely on the euclidean metric to identify distances between the observations. This characteristic has a very strange impact on purely binary data, which we will examine in section. For now, though, create a distance matrix between the observations in X using the binary method to measure distance between markets:

```
dist.mat <- dist(X, method = "binary")</pre>
```

The resulting matrix bound to dist.mat contains the distances between markets, computed as the proportion of bits that match among the rows of the feature matrix. This object is then the basis for the hierarchical clustering algorithm in R, which sorts the markets to minimize distance. Build and plot the tree.

```
hclust.res <- hclust(dist.mat)
cl <- cutree(hclust.res, k = 5)
plot(cut(as.dendrogram(hclust.res), h = 0)$upper, leaflab = "none")</pre>
```


Figure 2: **Dendrogram**

The dendrogram is plotted in Figure 2. Cut the tree so that there are five branches. One branch only has three markets, which seem to sell nothing at all — iterative, selective cleaning (biased? maybe.). Throw this branch out and plot the markets again, but only for the four sample states. Figure 3 plots the points by cluster and highlights the cluster identifier that seems to indicate New Mexico (c1 == 2).

```
coords <- state.data[ , c("x", "y")]

assignColor <- function(cl.idx) {
   col.codes <- c("#FF8000", "#0080FF", "#FFBF00", "#FF4000")
   return(col.codes[cl.idx])
}

map("state", interior = FALSE,
        xlim = c(-117, -101), ylim = c(28, 43))

map("state", boundary = FALSE, col="gray", add = TRUE,
        xlim = c(-117, -101), ylim = c(28, 43))

points(coords[["x"]], coords[["y"]], cex = 1, pch = 20, col = assignColor(cl))</pre>
```


Figure 3: Classified markets for the Southwest

It seems clear from these figures that farmers' markets in New Mexico are distinctive from those in neighboring states, somehow. We can force the analysis into a traditional-ish regression discontinuity test. First, calculate the distance of each market to the New Mexico border between Arizona and Colorado. I have plugged in the three points to define segment, the upside-down and backwards L-shaped border.

```
suppressMessages(library(maptools))
```

The expressly local function .segDistance will return the distance between the supplied coordinate to the global line segment. Apply this function to all coordinates. The resulting object dist represents distance to the New Mexico border; and to indicate the side of the border, scale the distance for each market within New Mexico by -1. A distance of zero indicates the border itself. This is beginning to look more and more like the regression discontinuity design, with the discontinuity at zero distance.

```
dist <- apply(coords, 1, FUN = .segDistance)
dist <- dist * ifelse(state.data[["State"]] == "New Mexico", -1, 1)</pre>
```

Now, plot the predicted cluster with respect to distance from border. Figure 4 and indicates a clear discontinuity at the border. Note, however, that the regression discontinuity analysis that we learn is generally for functions, not correspondences.

Figure 4: Discontinuity at the border

The plot in Figure 4 is not hemicontinuous, indicating some discontinuity. All the figures combined offer reasonably strong evidence that the New Mexico border significantly alters the composition of the markets.

Switch gears. Suppose, now, that we want to find the elevation of each of market in the four sample states. For this, we can use the Google Elevation API, which relies on URL requests, like we've seen in previous sections. The following two functions build the URL request for a collection of coordinates.

```
convertCoords <- function(coord.collection) {
   apply(coord.collection, 1, function(x) { paste(x[2], x[1], sep = ",") })
}

getElevation <- function(coord.collection) {
   base.url <- "http://maps.googleapis.com/maps/api/elevation/json?locations="
   params <- "&sensor=false"
   coord.str <- paste(convertCoords(coord.collection), collapse = "|")
   query <- paste(base.url, coord.str, params, sep="")
   gotten <- getURL(query)

   output <- fromJSON(gotten, unexpected.escape = "skip")$results

   .elev <- function(x) {
     return(x[1][["elevation"]])
   }

   res <- as.matrix(lapply(output, .elev))
   return(res)
}</pre>
```

The Google API does not accept URLs that are too long. I am not sure what qualifies as too long, but the 353 farmers' market coordinates throw an error. So, we'll partition the coordinate collection.

```
partition <- function(df, each = 10) {
   s <- seq(ceiling(nrow(df) / each))
   suppressWarnings(res <- split(df, rep(s, each = each)))
   return(res)
}</pre>
```

```
elev.split <- lapply(partition(coords), getElevation)
elevation <- unlist(elev.split)</pre>
```

Applying the getElevation function to each partition will send out multiple requests. The elevation collection contains the elevation for all farmers' markets. This is pretty cool. We don't need to store the elevations on disk. We can rely on Google's data and raster sampling to grab the elevations on demand.

Almost done. The maps in R are decent. But they are static and difficult to explore. Instead, use CartoDB to view and explore the data, uploading directly from R. Adjust the account name and API key accordingly:

```
library(CartoDB)
cartodb("danhammer", api.key = "... paste your (my) api key here ...")
```

You will need to log into the CartoDB console and create a table with the appropriately named columns. I'll show you how to sign up for a free account and set up a table in section. Call this table markets. The following functions will send the coordinates, elevations, and cluster identifiers to the markets table.

Note that we don't need to assign the output to a variable; the side effect is the upload of each row in mkts to the markets CartoDB table. (Again, we'll go over this in section.) Once the data are in CartoDB, we have access to a host of incredible visualization tools. You can even share the map:

Figure 5: cdb.io/ZWfkdw

You can, along with your co-authors, explore the spatial data in an open and collaborative way. The size of the dots, here, indicate the elevation. Colorado markets are at higher elevation than the other three states; but the elevation is similar for markets just on either side of the New Mexico border. Elevation, then, may be a good cofactor to use in the regression discontinuity analysis. Next time.