Appendix A

Physical constants and units

A.1 High-energy physics conversion constants and units

Table A.1. High-energy physics conversion constants and units

Quantity	Name	Value
Speed of light	c	299 792 458 m s ⁻¹
Reduced Planck constant	$\hbar \equiv h/2\pi$	$1.054\ 572\ 66(63) \times 10^{-34}\ J\ s =$
		$6.582\ 122\ 0(20) \times 10^{-23}\ MeV\ s$
Conversion constants	$\hbar c$	197.327 053(59) MeV fm
	$(\hbar c)^2$	$0.389\ 379\ 66(23)\ GeV^2\ mbarn$
Units where $\hbar = c = 1$	Mass, energy	$1 \text{ eV} = 1.602 \ 177 \ 33(49) \times 10^{-19} \text{ J}$
		$1 \text{ GeV} = 10^3 \text{ MeV} = 10^6 \text{ keV} = 10^9 \text{ eV}$
		$1 \text{ erg} = 10^{-7} \text{ J}$
		$1 \text{ eV}/c^2 = 1.782 662 70(54) \times 10^{-36} \text{ kg}$
	Length	$1 \text{ GeV}^{-1} = 0.197 \ 327 \ 053 \text{ fm} =$
		$0.197\ 327 \times 10^{-13}\ cm$
		1 in = 0.0254 m $1 Å = 0.1 nm$
	Lifetime	$1 \text{ GeV}^{-1} = 6.582 \ 122.0 \times 10^{-25} \text{ s}$
	Decay rate	$1 \text{ GeV} = (1/6 582 122 0) \times 10^{25} \text{ s}^{-1}$
	Cross-section	$1 \text{ GeV}^{-2} = 0.389\ 379\ 66(23) \times 10^6 \text{ barr}$
		1 barn = 10^{-28} m ² 1 nb = 10^{-9} barn
	Others	$0 ^{\circ}\text{C} = 273.15 ^{\circ}\text{K}$ $1 ^{\circ}\text{G} = 10^{-4} ^{\circ}\text{T}$
		kT at 300 K = $[38.681 \ 49(33)]^{-1}$ eV
		1 atmosphere = $760 \text{ torr} = 101 325 \text{ Pa}$
		1 dyne = 10^{-5} N

A.2 High-energy physical constants

A complete list of physical constants is given in PDG [16]. Among them, we have:

Table A.2. Some high-energy physical constants

Observable	Symbol	Value
Electron mass	m_e	$0.51099906(15)\mathrm{MeV}/c^2$
		$= 9.1093897(54) \times 10^{-31} \text{ kg}$
Muon mass	m_{μ}	$105.658357(5) \text{ MeV}/c^2$
Tau mass	$m_{ au}$	$1777.03^{+30}_{-26} \text{MeV}/c^2$
Proton mass	m_p	938.272 31(28) MeV/ c^2
		$= 1836.152701(37) m_e$
Electron charge	e	$1.602\ 177\ 33(49) \times 10^{-19}\ C$
		$= 4.803\ 206\ 8(15) \times 10^{-10}\ \text{esu}$
Permittivity of free space	ϵ_0	$8.854\ 187\ 817 \times 10^{-12}\ F\ m^{-1}$
Fine structure constant	$\alpha = e^2/4\pi\epsilon_0\hbar c$	$1/137.035\ 999\ 58(52)$ at $q^2 = m_e^2$
	1	$1/128$ at $q^2 = M_Z^2$
Electron anomaly	$a_e \equiv \frac{1}{2}(g_e - 2)$	$115\ 965\ 218\ 84(43) \times 10^{-13}$
Muon anomaly	$a_{\mu} \equiv \frac{1}{2}(g_{\mu} - 2)$	$116592023(151)\times 10^{-11}$
Tau anomaly	$a_{\tau} \equiv \frac{1}{2}(g_{\tau} - 2)$	$0.004 \pm 0.027 \pm 0.023$
Electron radius	$r_e = e^2/4\pi\epsilon_0 m_e c^2$	$2.817 940 92(38) \times 10^{-15} \text{ m}$
Bohr radius ($m_{nucleus} = \infty$)	$a_{\infty} = 4\pi \epsilon_0 \hbar^2 / m_e c^2$	$0.529\ 177\ 249(24) \times 10^{-10}\ m$
	$=r_e\alpha^{-2}$	
Electron Compton wavelength	$\lambda_e/2\pi = \hbar/m_e c$	$3.861\ 593\ 23(35) \times 10^{-13}\ \mathrm{m}$
	$=r_e/\alpha$	
Rydberg energy	$hcR_{\infty} = m_e c^2 \alpha^2 / 2$	13.605 698 1(40) eV
Thomson cross-section	$\sigma_T = 8\pi r_e^2/3$	0.665 246 16(18) barn
Bohr magneton	$\mu_B = e\hbar/2m_e$	$5.788~382~63(52) \times 10^{-11}~\text{MeV}~\text{T}^{-1}$
Nuclear magneton	$\mu_B = e\hbar/2m_P$	$3.152\ 451\ 66(28) \times 10^{-14}\ MeV\ T^{-1}$
Electron cyclotron freq./field	$\omega_{cycl}^e/B = e/m_e$	$1.758\ 819\ 62(53) \times 10^{11}\ rad\ s^{-1}\ T^{-1}$
Fermi coupling constant	$G_F/(\hbar c)^2$	$1.166\ 39(2)\ \times\ 10^{-5}\ GeV^{-2}$
Weak mixing angle	$\sin^2 \theta_W(M_Z) \overline{MS}$	0.2315(4)
W^{\pm} boson mass	M_W	$80.33(15) \text{ GeV}/c^2$
Z^0 boson mass	M_Z	91.187(7) GeV/c^2
Strong coupling constant	$\alpha_s(M_Z)$	0.118(3)

A.3 CKM weak mixing matrix

In the electroweak standard model $SU(2)_L \times U(1)$, where both quarks and leptons left-handed doublets and right-handed singlets, the quark mixing matrix can be represented as:

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} , \qquad (A.1)$$

where from weak decays, the mixing matrix has the value:

$$\begin{pmatrix} 0.9745 - 0.9757 & 0.219 - 0.224 & 0.002 - 0.005 \\ 0.218 - 0.224 & 0.9736 - 0.9750 & 0.036 - 0.046 \\ 0.004 - 0.014 & 0.034 - 0.046 & 0.9989 - 0.9993 \end{pmatrix} \tag{A.2}$$

In the Wolfenstein parametrization:

$$V_{us} \simeq \lambda$$
, $V_{ub} \simeq \lambda^3 A(\rho - i\eta)$
 $V_{cb} \simeq \lambda^2 A$, $V_{td} \simeq \lambda^3 A(1 - \rho - i\eta)$ (A.3)

A.4 Some astrophysical constants

Table A.3. Some astrophysical constants

Observable	Symbol	Value
Newton gravitation constant	G_N	$6.672.59(85) \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$
Astronomical unit	AU	$1.495\ 978\ 706\ 6(2) \times 10^{11}\ m$
Tropical year(equinox to equinox)	yr	31 556 925.2 s
Age of the universe	t_0	15(5) Gyr
Planck mass	$\sqrt{\hbar c/G_N}$	$1.221~047(79) \times 10^{19}~\text{GeV/c}^2$
parsec(1AU/1 arc sec)	pc	$3.085 677 580 7(4) \times 10^{16} m = 3.262 \dots \text{ly}$
light year	ly	$0.306 6 \dots pc = 0.9461 \dots \times 10^{16} m$
Solar mass	M_{\odot}	$1.968 \ 92(25) \times 10^{30} \ \text{kg}$
Solar luminosity	L_{\odot}	$3.846 \times 10^{26} \text{ W}$
Solar equatorial radius	R_{\odot}	$76.96 \times 10^8 \text{ m}$
Earth mass	M_{\oplus}	$5.973 \ 70(76) \times 10^{24} \ \text{kg}$
Earth equatorial radius	R_{\oplus}	$6.378\ 140 \times 10^6\ \mathrm{m}$
Hubble constant	H_0	$100 h_0 \text{ km s}^{-1} \text{Mpc}^{-1} =$
		$h_0 \times (9.778 \ 13 \ \text{Gyr})^{-1}$
Normalized Hubble constant	h_0	$0.5 \le h_0 \le 0.85$
Critical density of the universe	$\rho_c = 3H_0^2 / 8\pi G_N$	$2.775\ 366\ 27 \times 10^{11} h_0^2 M_{\odot} \mathrm{Mpc^{-3}}$
Local halo density	$ ho_{ m halo}$	$(2-13)10^{-25} \text{ g cm}^{-3} \approx$
		$(0.1 - 0.7) \text{ GeV}/c^2 \text{ cm}^{-3}$
Scaled cosmological constant	$\lambda_0 = \Lambda c^2 / 3H_0^2$	$-1 < \lambda_0 < 2$
Scale factor for cosmological	v	
constant	$c^2/3H_0^2$	$2.853 \times 10^{51} h_0^2 \text{ m}^2$