(54) COLOR COMPENSATING AND OPERATING DEVICE

(11) 57-131172 (A)

(43) 13.8.1982 (19) JP

(21) Appl. No. 55-179423

(22) 17.12.1980

(71) MATSUSHITA GIKEN K.K. (72) YOSHIMITSU SUGANO(4)

(51) Int. Cl². H04N1/46,G06F15/347,G06F15/353

PURPOSE: To easily obtain a desirable color compensating output, by converting a non-linear characteristic to a polynominal expression for making a color separation input signal a variable, and providing a means for giving a compensating coefficient value of each term as a parameter, in addition to a function value of its each term.

CONSTITUTION; (c), (m) and (y) inputs 201 which have been A/D-converted are provided to an address input line of function term generators 202, and function values of secondary non-linear terms such as (c), (m), etc. which have been separated and stored in advance are read out. A multiplexer 203 leads selectively in order inputs of 10 terms such as a primary term, a secondary term, etc. to an output line 210 in accordance with a timing control signal 207, against one group of inputs. On the other hand, compensating coefficients are set in advance to an RAM 204 through a data line 208, and a function value and a compensating coefficient of each term are fetched in order by time series from each multiplexer 203 and the RAM 204 in accordance with a control signal 207. Subsequently, the matrix operation is executed by time series by use of a cumulative multiplier 205, and compensated outputs 209 of c0, m0 and y0 are obtained. In this way, a desirable color compensating output is obtained easily at a high speed.

9日本国特許庁(JP)

⑪特許出頭公告

 $\Psi 2 - 30226$

報(B2) 公

Solnt. Cl. 5

验別配号

庁内整理番号

20公公告 平成2年(1990)7月5日

H 04 N 1/48 G 03 F 3/08

6940-5C 7036-2H

発明の数 1 (全4頁)

❷発明の名称	色補整演算装置。		
		55-179423	開 昭57−131172 ❷昭57(1982)8月13日
@発 明 者 :	常、野 後、光	神奈川県川崎市多摩区東三田 式会社内	
@発 明 者	津田 幸文	式会社内	3丁目10番1号 松下技研株
免明者。	音 田 邦 夫	式会社内	3 丁目10番1号 松下技研体
@発明.者 ℃	小专宏障	神奈川県川崎市多摩区東三田 式会社内	3 丁目10番1号 松下技研株
@発 明 者	中、、	神奈川県川崎市多摩区東三田 式会社内	3丁目10番1号 松下技研朱
勿出 頭 人	松下技研株式会社	神奈川県川崎市多摩区東三田	3丁目10番1号
四代 理 人 審 査 官	弁理士 中尾 敏男 田 辺 寿 二	外1名	
8多考文献.	·特開 昭55—142345(J	P, A) 特開 昭51-9492	1 (JP, A)

の特許請求の範囲

1 カラー原画を走査して得た色分解信号に色修 処理を施こす色補整演算装置において、色分解 、号をディジタル数値に変換するアナログ・ディ ジタル変換器と、この変換器の色信号数値を組合 わせてこれを変数とする多項の補正関数を各項毎 に発生する関数発生器と、補整関数の係数を配憶 する書換え可能な係数メモリと、前配関数発生器 の出力と前配係数とを各項毎に乗算し結果を累積 する演算手段とを具備し、非線形項を含む色補整 10 処理を行うことを特徴とする色補整演算装置。

...本発明は、カラーの中間調をもつた、いわゆる 自然色の画像を記録するカラーフアクシミリ、カ は、カラーディスプレイ等の表示装置における色 補整演算装置に関する。

・松字・カラーフアクシミリやカラースキャナで

は、主として線形項のアナログ演算器で色修正マ スキング処理を行なつているものが多い。しか し、たとえばカラーフアクシミリの記録部にイン クジェットを用い減法混色による色再生を行なう 5 場合を例にとると、三原色色素の不要吸収特性、 相加即不執、比例則不執、記録紙とインクの印字 特性等の要素が相互に関連するので、単純な線形 マスキングでは十分な色補整を行なうことができ ないという欠点があつた。

これに対し特開昭49-106714号公報には、非線 形特性を含むより厳密な色修正を行う手段が記載 されている。これによれば、赤 (R)、緑(G)、脊 四の三色分解信号を入力として、望ましいカラー 印刷物を得るためのシアンに、マゼンタ (M)、 ラーイングジェットプリンク等の記録装置また 15 イエロー (Y) のインク量を、(R、G、B) の ある組合せに対応する色修正済の (C、M、Y) 信号があらかじめ記憶されているテーブルメモリ を選択することにより決定する。この方法は自由

な色補整曲線を導入できること及びデイジタル技 術により精度を向上できる等の利点があり、前配 **線形のアナログ演算方式に比べると確かに進んだ** 方法である。しかしこの方法の難点は、(R、G、 B) の全ての組合せに対して (C、M、Y) の全 5 ての結果を記憶する必要があるため、装置の構成 が複雑になり高価になる点にあり、特開昭49ー 106714号公報及びその後続である特開昭52--12001号公報、同52-24701号公報、同52-37101 号公報等には、記憶量の節約手段、補正量を可変 10 で行われる多項のマトリクス演算式の一例であ 要素と固定要素に分けて演算を効率化する手段な との改良策が記載されている。しかしながら、こ れら各手段を加味しても実際の回路装置として実 現することには依然として煩雑さがあり、経済性 に問題がある。

本発明は非線形項を含む色補整処理を効果的か つ柔軟に行うためのさらに改良された演算手段を 提供するものである。本発明によれば、非線形特 性を色分解入力信号を変数とする多項式で近似 し、多項式の各項を関数として発生する手段とこ 20 れとは別個に各項毎の補整係数値をパラメータと して与える手段とを具備することにより、望まし い色補正出力を容易にかつ高速度で得ることがで きる。以下にインクジェット配録を例にとり本発 明の具体的な実施例について説明する。

第1図は、インクジェット式カラーフアクシミ リ装置のプロック図を示すもので、カラースキャ ナのドラム101に取り付けられたカラー原稿1 02の各絵素は、光顔103から照射される光を 反射し、レンズ系104を経て色分解系105に 30 より赤 (R)、緑(G)、青四の3色成分に分解され た光電変換信号となる。色分解系105の出力は 対数変換部 1 0.6 でシアンに、マゼンタ (M)、 イエロー (Y) の減法混色における濃度3原色信 号に変換され、A/D変換器 107でデイジタル 35 化されて記録信号線108へ出力される。109 は色補整演算器を示し、補正に必要な係数がデー タ粮110より設定される。ここで色補整された C、M、Yのカラー画像信号は111は、遅延回 路112を通り、D/A変換器113でD/A変 40 換されアナログ信号に再生される。次にキャリア 信号発生器 1 1 4 で発生された搬送波 1 1 6 は前 記アナログ信号により変調器115で振幅変調さ れて、インクジェットヘッドのピエゾ励振波形と

なり駆動回路117の出力線118を経てインク ジェットヘッド119に印加される。 インクジエ ットヘッド119から吐出された3色のインク は、ドラム121に取付けられた記録紙120上 で重なり、一連の走査を経てカラー画像が再生さ れる。以上の構成は色補整演算器 109を除いて 極く一般的なものである。

次に第1図における本発明の色補整演算器10 9の具体的な構成例を第2図に示す。次式は本器

$$\begin{pmatrix} C_o \\ m_o \end{pmatrix} = \begin{pmatrix} a_{11} \end{pmatrix} \begin{bmatrix} c \\ m \end{bmatrix}$$

$$y \\ cm \\ my$$

$$yc$$

$$c^2 \\ m^2 \\ y^2 \\ K$$

ここで(c、m、y)は色補整演算器へのシア ン、マゼンタ、イエローの溴度信号入力、(cs. me、ye) は補整後の対応する出力信号を表わし (au) は補整係数マトリクスである。 本例では i 25 = 1~3、j = 1~10であり、具体的な補整数値 の一例を表1に示す。

		表	1 • • • • • • • • • • • • • • • • • • •	
ſ	N	1	2	3
	1	0,33850	-0.08350	-0.00060
Ī	2 .	-0.03580	0,36578	-0.19116
	. 3	. 0,00370	-0.03451	0.38391
	· · · 4	- 0.01339	0.03097	0.01862
	5	0.00716	0.01799	··· 0.01513
Ì	. 6	-0.00280	0.00281	.—0 . 03300
•	7	-0.07834	-0.00094	0,00350
	. 8	-0.00181	-0.09925	0.02150
	9	-0.00644	-0.00267	-0.06317
	10	0.00268	0.00123	0.00864

第2図において (c、m、y) 入力201はデ

イジタルで与えられ関数項発生器202に接続さ

れる。関数項発生器202はたとえばPROM(プ ログラマブルリードオンリーメモリ) あるいは RAM(ランダムアクセスメモリ) で構成され、 入力 (c、m、y) はこれらメモリのアドレス入 5 力線に加えられて、関数項発生器202にあらか じめ項別に分解し記憶されているcm、my、yc、 c'、m'、y'等の二次の非線形項の関数値を読み 出す。203はマルチプレクサであり、一組の入 力(c、m、y)に対して一次項c、m、y、二 次項cm、my、yc、c、m³、y³および定数項kの 今計10項の入力を制御信号207に従つて選択的 一順次出力線210へ導く。一方、袖整係数 、山)、は書込みデータ線208を介して書き換え 可能なRAM 2 0・4 へあらかじめ設定しておく。*15* 以上の各項関敦値と補整係数は、タイミング制御 回路206の制御信号207に従つて各々マルチ プレクサ203及びRAM204より時系列で 期々に取り出され、デイジタル型乗算器および加 ス演算が時系列で行われ、c、m。yoの補整済出 力209を得る。本発明は、以上の構成に示され るごとく、色補整演算を多項の補正関数を各項別 に発生する関数発生器と、その補整係数を設定し ところに特徴がある。第2図における累積型乗算 器205は比較的高価な素子であるが、本例のよ うに各項の演算を時系列で行えば各色について各 | 個で実現でき経済的となる。ただし時系列の場" を狙いたい場合には逆に演算速度が遅くなるの で、これを各項毎に置けばよい。第2図の実施例・ において (c、m、y) 入力を各8ピット (256 レベル) とし、最終出力 (co、mo、yo) として7

ピットの精度を保証する具体的な演算回路を構成 35

した結果、約3点で一回の計算が可能であった。 これは一般のカラー画像再生記録装置に適用して

リアルタイム処理を行うに十分な速度である。

なお本実施例では多項式を二次形式としたが、 これに高次項を追加してさらに複雑な補整曲線を 近似できることは言うまでもない。 また各関数項 として前式の他に、逆数項、対数項、指数関数項 など目的に応じてより近似度の良い形式を選ぶこ とも容易である。.

以上のような構成は最近のデイジタル集積回路 素子を利用すれば簡単かつ経済的に実現でき、従 10 来のアナログ方式に比較して高い精度が保証され る」とくに本発明では、補整関数項の内容と補整 係数を要求される最適条件に合わせて柔軟に変更 することができ、色分解入力系からカラー記録技 置に至る過程に含まれる種々の非線形な歪を包括 的に修正することが可能であり、かつリアルタイ ムで処理できる即時性をもつので、極めて汎用性 に営んでいる。

図面の簡単な説明

第1図は本発明をインクジェット式カラーフア 算器から成る累積乗算器 205で前式のマトリク 20 クシミリ装置に適用した実施例を示すプロソク 図、第2図は本発明の一実施例における色補整演 算装置の構成例を示す結線図である。

101, 121 ---- ドラム、102 ---- カラー 画像の反射原稿、103 -----光源、104 -----レ ておくメモリとに分けてマトリクス演算を行なう 25 ンズ系、105・・・・・3色分解および光電変換部、 106 ······对数変換部、107 ······A/D変換 部、109 ----- 色補整演算器、112 ------遅延回 路、113------- D/A交换部、114------ 搬送波 発生器、115 ----- 振幅変調回路、117 -----イ には逆に演算速度が遅くなるので、より高速化 30 ンクジエットヘッド駆動回路、119……オン・ デマンド型インクジェントヘッド、120……記 録紙、202 ······補整関数発生用PROM(または ·スタテイツクRAM)、203……マルチプレク サ、204 *:--・・補整係数記憶用RAM、205 ··· ・・・・累積型デイジタル乗算器、206…・・タイミン

第1図

第2図

202はメモリ