

SEQUENCES

Why

The most important families are those indexed by (subsets of) the natural numbers.

Definition

A *finite sequence* is a family whose index set is a nonzero natural number. In other words, a finite sequence is a function whose domain is a nonzero natural number.

The *length* of a finite sequence is the size of its index set (which is the same as the domain of the sequence, see Set Numbers). A sequence whose codomain is some nonempty A is said to be a *sequence in* A. Another term for a finite sequence, especially when A is some finite set, is a *string*.

We call an invertible sequence of length n in a finite set A of size n an ordering of A. We call the inverse of an ordering a numbering. An ordering associates to a number n and object in A. A numbering associates to the set A a number $n \in \mathbb{N}$

Notation

Since the natural numbers are ordered, we often denote sequences from left to right between parentheses. For example, We denote $a: 4 \to A$ by listing its elements as (a_1, a_2, a_3, a_4) .

Relation to Direct Products

A natural direct product is a product of a sequence of sets. We denote the direct product of a sequence of sets A_1, \ldots, A_n by $\prod_{i=1}^n A_i$. If each A_i is the same set A, then we denote the product $\prod_{i=1}^n A_i$ by A^n . In this case, we call an element (the sequence $a = (a_1, a_2, \ldots, a_n) \in A^n$) an n-tuple or tuple. The set of sequences in a set A is the direct product A^n .

Infinite Sequences

An *infinite sequence* is a family whose index set is **N** (the set of natural numbers without zero). The *nth term* or *coordinate* of a sequence is the result of the *n*th natural number, $n \in \mathbb{N}$.

Notation

Let A be a non-empty set and $a: \mathbb{N} \to A$. Then a is a (infinite) sequence in A. a(n) is the nth term. We also denote a by $(a_n)_n$ and a(n) by a_n . If $\{A_n\}_{n\in\mathbb{N}}$ is an infinite sequence of sets, then we denote the direct product of the sequence by $\prod_{i=1}^{\infty} A_i$.

Natural unions and intersections

We denote the family union of the finite sequence of sets A_1 , ..., A_n by $\bigcup_{i=1}^n A_i$. We denote the family of the infinite sequence of sets $(A_n)_n$ by $\bigcup_{i=1}^{\infty} A_i$. Similarly, we denote the intersections of a finite and infinite sequence of sets $\{A_i\}$ by

¹Future editions may also comment that we are introducing language for the steps of an infinite process.

 $\bigcap_{i=1}^{n} A_i$ and $\bigcap_{i=1}^{\infty} A_i$, respectively.

