Convolutional Neural Networks **CS-477 Computer Vision**

Dr. Mohsin Kamal

Associate Professor dr.mohsinkamal@seecs.edu.pk

School of Electrical Engineering and Computer Science (SEECS)

National University of Sciences and Technology (NUST), Pakistan

- 1 Introduction
- 2 Convolutional Neural Network

- 1 Introduction
- 2 Convolutional Neural Network

- A convolutional neural network (CNN) is a type of artificial neural network used primarily for image recognition and processing, due to its ability to recognize patterns in images.
- FNN could not scale up to image and video processing tasks.
- CNN specifically tailored for image and video processing tasks.

Consider learning an image:

Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters

Same pattern appears in different places:

- They can be compressed!
- What about training a lot of such "small" detectors and each detector must "move around".

- 1 Introduction
- 2 Convolutional Neural Network

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

Architecture of CNN

A typical CNN has 4 layers

- Input layer
- Convolution layer
- Pooling layer
- Fully connected layer

Architecture of CNN

Input layer

- Example input a 28 pixel by 28 pixel grayscale image
- Unlike FNN, we do not "flatten" the input to a 1D vector
 - Input is presented to network in 2D as 28 x 28 matrix

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

These are the network parameters to be learned.

0.0			.oui.iou
1	-1	-1	
-1	1	-1	Filter 1
-1	-1	1	

-1	1	-1	
-1	1	-1	Filter
-1	1	-1	

Each filter detects a small pattern (3 x 3).

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

Dot product

3

-1

Filter 1

1	-1	-1
-1	1	-1
-1	-1	1

6 x 6 image

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Filter 1

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

6 x 6 image

1	-1
1	-1
1	-1
	1 1 1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Repeat this for each filter

Convolution in RGB

An RGB image is of the form

Convolution in RGB

0	0	0	0	0	0	-	0	0	0	0	0	0	-		0	0	0	0	0	0					
0	156	155	156	158	158	****	0	167	16	5 16	7 169	169			0	163	162	163	165	165					
0	153	154	157	159	159		0	164	16	16	8 170	170	***		0	160	161	164	166	166	40				
0	149	151	155	158	159		0	160	16:	2 16	6 169	170	100		0	156	158	162	165	166					
0	146	146	149	153	158	***	0	156	15	5 15	9 163	168		1 [0	155	155	158	162	167					
0	145	143	143	148	158		0	155	15	3 15	3 158	168			0	154	152	152	157	167	-				
	-		-	-	-				-	-	-	-	***	1 [-		***						
	Input	-1	nnel	#1 (Red)			Inpu	t Cha	o		Green)			Input		nnel	_	Blue)					
										10	0						0	-	1						
		0	1	-1					1	-1	-1	-					0	1	0						
		0	1	-1					1	-1	-1						0	-1	0						
	Ke	0	1	-1	‡1			K	1	-1	-1					Ke	0	-1	0	‡3			Outp	ut	
	Ke	0	1	-1	‡1			K	1	-1	-1					Ke	0	-1	0	‡3		-25	Outp	ut	
	Ke	0 rnel	1	-1	‡1	+		К	1 erne	-1	-1 -1 annel				+	Ke	0 1 ernel	-1 Char	0 1 nnel #		-25		Outp	ut	Н
	Ke	0 rnel	1 Chan	-1	‡1	+		К	1 erne	-1 0	-1 -1 annel				+	Ke	0 1 ernel	-1 Char	0 1 nnel #		-25		Outp	ut	
	Ke	0 rnel	1 Chan	-1	‡ 1	+		к	1 erne	-1 0	-1 -1 annel				+	Ke	0 1 ernel	-1 Char	0 1 nnel ‡				Outp	ut	***

Convolution vs. Fully Connected NN

Fullyconnected

Convolution vs. Fully Connected NN

Convolution vs. Fully Connected NN

- In convolutional neural networks (CNNs), pooling is a down-sampling operation commonly used to reduce the spatial dimensions of the input volume.
- The most common type of pooling is called max pooling and average pooling.

	1	-1	-1	
	-1	1	-1	Filter
	-1	-1	1	
3	-1		-3	-1
				\times
-3	1		0	-3
2		7	_	
-3	-3		0	1
3	-2		-2	-1
- /	_	1	-)	

(-:	1	_1	_1
-1	1	-1	
-1	1	-1	Filter 2
-1	1	-1	

-1

Why pooling

- Subsampling pixels will not change the object
- We can subsample the pixels to make image smaller
- fewer parameters to characterize the image bird

A CNN compresses a fully connected network in two ways:

- Reducing number of connections
- Shared weights on the edges
- Max pooling further reduces the complexity

6 x 6 image

New image but smaller

2 x 2 image

Each filter is a channel

The whole CNN

The whole CNN

Flattening

CNN in Keras

CNN in Keras

CNN in Keras

cars

faces

Convolutional Deep Belief Networks for Scalable
Unsupervised Learning of Hierarchical Representations
Honglak Lee, Roger Grosse, Rajesh Ranganath,
Andrew Y. Ng

A toy ConvNet: X's and O's

Says whether a picture is of an X or an O

For example

Trickier cases

Deciding is hard

What computers see

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	1	-1	-1	-1
-1	-1	1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	1	-1	-1
-1	-1	-1	1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

What computers see

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	X	-1	-1	-1	-1	X	X	-1
-1	X	X	-1	-1	Χ	X	-1	-1
-1	-1	Χ	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	X	-1	-1
-1	-1	X	Х	-1	-1	Χ	Х	-1
-1	X	X	-1	-1	-1	-1	X	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

Computers are literal

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
			1					
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	1	-1	-1	-1
-1	-1	1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	1	-1	-1
-1	-1	-1	1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	-1	-1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

ConvNets match pieces of the image

Features match pieces of the image

1	-1	-1
-1	1	-1
-1	-1	1

1 -1 -1 -1 1 -1 -1 1

```
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      <td
```

- 1. Line up the feature and the image patch.
- 2. Multiply each image pixel by the corresponding feature pixel.
- 3. Add them up.
- 4. Divide by the total number of pixels in the feature.


```
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      -1
      <td
```


1	1	1

1	1	1
1	1	

1	1	1
1	1	1

1	1	1
1	1	1
1		

1	1	1
1	1	1
1	1	

1	1	1
1	1	1
1	1	1

$$\frac{1+1+1+1+1+1+1+1}{9} = 1$$

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

1	1	-1
1	1	1
-1	1	1

$$\frac{1+1-1+1+1+1-1+1+1}{9} = .55$$

Convolution: Trying every possible match

1 -1 -1 -1 1 -1 -1 -1 1

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

Convolution: Trying every possible match

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

Convolution layer

One image becomes a stack of filtered images

Convolution layer

One image becomes a stack of filtered images

0.77		0.11	0.33	0.55		0.3
	1.00		0.33		0.11	
		1.00	-0.33	0.11		0.5
0.33	0.33	-0.33	0.55	-0.33	0.33	0.3
0.55		0.11	-0.33	1.00		0.1
	0.11		0.33		1.00	
0.33	-0.11	0.55	0.33	0.11	-0.11	0.7
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.3
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.
0.11		0.55	-0.77	0.55		0.1
-0.11	0.33	-0.77	1.00	-0.77	0.33	-0.
0.11		0.55	-0.77	0.55		0.1
	0.55		0.33		0.55	
0.33		0.11	-0.11	0.11		0.3
0.33	-0.11	0.55	0.33	0.11	-0.11	0.3
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.:
0.33	0.33	-0.33	0.55	-0.33	0.33	0.3
	-0.11	1.00	-0.33	0.11	-0.11	0.!
-0.11	1.00	-0.11	0.33	-0.11	0.11	
0.77	-0.11	0.11	0.33	0.55	-0.11	0.3

Pooling: Shrinking the image stack

- 1. Pick a window size (usually 2 or 3).
- 2. Pick a stride (usually 2).
- 3. Walk your window across your filtered images.
- 4. From each window, take the maximum value.

Pooling

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

maximum

Pooling

m	axi	m	U	m

0.77	-0.11	0.11	0.33	0.55	3.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

1.00	0.33	

maxi	mun	7

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

1.00	0.33	0.55					

maximum

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33	
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11	
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55	
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33	
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11	
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11	
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77	

1.00	0.33	0.55	0.33

-0.11 0.33 0.77 -0.11 0.11 0.33 0.55 1.00 -0.11 0.33 -0.11 0.11 -0.11 -0.11 0.11 -0.11 1.09 -0.33 0.11 -0.11 0.55 0.33 -0.33 0.55 -0.33 0.33 0.33 0.33 -0.33 0.55 -0.11 0.11 1.00 -0.11 0.11 -0.11 0.11 -0.11 0.33 -0.11 1.00 -0.11 -0.11 0.55 0.33 0.11 -0.11 0.77 0.33

maximum

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

max pooling

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.11	0.33	-0.77	1.00	-0.77	0.33	-0.11
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.77	-0.11	0.11	0.33	0.55	-0.11	0.33

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77

0.55	0.33	0.55	0.33
0.33	1.00	0.55	0.11
0.55	0.55	0.55	0.11
0.33	0.11	0.11	0.33

0.33	0.55	1.00	0.77
0.55	0.55	1.00	0.33
1.00	1.00	0.11	0.55
0.77	0.33	0.55	0.33

Pooling layer

A stack of images becomes a stack of smaller images.

1.00	0.33	0.55	0.33	
0.33	1.00	0.33	0.55	
0.55	0.33	1.00	0.11	
0.33	0.55	0.11	0.77	
0.55	0.33	0.55	0.33	
0.33	1.00	0.55	0.11	
0.55	0.55	0.55	0.11	
0.33	0.11	0.11	0.33	
0.33	0.55	1.00	0.77	
0.55	0.55	1.00	0.33	

Normalization

Keep the math from breaking by tweaking each of the values just a bit.

Change everything negative to zero.

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.77	0	0.11	0.33	0.55	0	0.33
)	

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.77	0	0.11	0.33	0.55	0	0.33
0	1.00	0	0.33	0	0.11	0
0.11	0	1.00	0	0.11	0	0.55
0.33	0.33	0	0.55	0	0.33	0.33
0.55	0	0.11	0	1.00	0	0.11
0	0.11	0	0.33	0	1.00	0
0.33	0	0.55	0.33	0.11	0	0.77

ReLU layer

A stack of images becomes a stack of images with no negative values.

0.77	0	0.11	0.33	0.55	0	0.33
	1.00	0	0.33		0.11	0
0.11		1.00		0.11		0.55
0.33	0.33		0.55	0	0.33	0.33
0.55		0.11	0	1.00	0	0.11
0	0.11	0	0.33		1.00	0
0.33		0.55	0.33	0.11		0.77
0.33	0	0.11	0	0.11	0	0.33
0.55	0.55	0.11	0.33	0.11	0.55	0.55
0.11	0	0.55	0	0.55	0	0.11
0	0.33	0	1.00	0	0.33	0
0.11	0	0.55	0	0.55	0	0.11
0	0.55	0	0.33	0	0.55	0
0.33	0	0.11	0	0.11	0	0.33
0.33	0	0.55	0.33	0.11	0	0.77
	0.11		0.33		1.00	
0.55		0.11		1.00		0.11
0.33	0.33		0.55	0	0.33	0.33
0.11	0	1.00		0.11		0.55
	1.00	0	0.33		0.11	0
0.77	0	0.11	0.33	0.55		0.33

Layers get stacked

The output of one becomes the input of the next.

Deep stacking

Layers can be repeated several (or many) times.

Fully connected layer Every value gets a vote

Vote depends on how strongly a value predicts X or O

Vote depends on how strongly a value predicts X or O

A list of feature values becomes a list of votes.

These can also be stacked.

Putting it all together

A set of pixels becomes a set of votes.

.51

Learning

Q: Where do all the magic numbers come from?
Features in convolutional layers
Voting weights in fully connected layers
A: Backpropagation

Error = right answer – actual answer

.51

	Right answer	Actual answer	Error
X	1		
O			

	Right answer	Actual answer	Error
X	1	0.92	
O			

	Right answer	Actual answer	Error
X	1	0.92	0.08
O			

.51

	Right answer	Actual answer	Error
X	1	0.92	0.08
О	0	0.51	0.49

	Right answer	Actual answer	Error
X	1	0.92	0.08
O	0	0.51	0.49
		Total	0.57

Gradient descent

For each feature pixel and voting weight, adjust it up and down a bit and see how the error changes.

Gradient descent

For each feature pixel and voting weight, adjust it up and down a bit and see how the error changes.

Hyperparameters (knobs)

Convolution

Number of features

Size of features

Pooling

Window size

Window stride

Fully Connected

Number of neurons

Architecture

How many of each type of layer? In what order?

In a nutshell

ConvNets are great at finding patterns and using them to classify images.

Some ConvNet/DNN toolkits

Caffe (Berkeley Vision and Learning Center)

CNTK (Microsoft)

Deeplearning4j (Skymind)

TensorFlow (Google)

Theano (University of Montreal + broad community)

Torch (Ronan Collobert)

Many others