1.如下图所示,四棱锥 P-ABCD 中,  $AD \parallel BC$  ,  $\angle ADC = \angle PAB = 90^\circ$  ,  $BC = CD = \frac{1}{2}AD$  , E 为 AD 中点,异面直线 PA 与 CD 所成角为  $90^\circ$  .

- (1) 在平面 PAB 内找一点 M, 使得直线 CM // 平面 PBE, 并说明理由;
- (2) 若二面角P-CD-A的大小为 $45^{\circ}$ ,求直线PA与平面PCE所成角的正弦值.



2. (2022・新高考Ⅱ卷・20)

如图, PO是三棱锥 P-ABC 的高, PA=PB,  $AB \perp AC$ , E 为 PB 的中点.

- (1) 证明: *OE* // 平面 *PAC*;
- (2) 若 $\angle ABO = \angle CBO = 30^{\circ}$ , PO = 3, PA = 5, 求二面角C AE B的正弦值.



3.

如下图所示,四棱锥 P-ABCD 中,底面 ABCD 为菱形, PA 上底面 ABCD ,  $AC=2\sqrt{2}$  , PA=2 , E 是 PC 上的一点, PE=2EC .

- (1) 证明: *PC* 上平面 *BED*;
- (2) 设二面角A-PB-C为90°, 求PD与平面PBC所成角的大小.



4. (2020·新课标 I 卷·理·20·)

如下图所示,已知三棱柱  $ABC - A_iB_iC_i$  的底面是正三角形,侧面  $BB_iC_iC$  是矩形,M、N 分别为 BC、  $B_iC_i$  的中点,P 为 AM 上一点,过  $B_iC_i$  和 P 的平面交 AB 于 E,交 AC 于 F.

- (1) 证明: AA, // MN, 且平面 A, AMN 上平面 EB, C, F;
- (2) 设 O 为  $\triangle A_iB_iC_i$  的中心,若 AO // 平面  $EB_iC_iF$  ,且 AO = AB ,求直线  $B_iE$  与平面  $A_iAMN$  所成角的正弦值.



5.如下图所示,四棱柱  $ABCD - A_iB_iC_iD_i$  中,  $AA_i$  上底面 ABCD ,四边形 ABCD 为梯形,  $AD \parallel BC$  ,且 AD = 2BC ,过  $A_i$  、 C 、 D 三点的平面记为  $\alpha$  ,  $BB_i$  与  $\alpha$  的交点为 Q .

- (1) 证明: Q为BB,的中点;
- (2) 求此四棱柱被平面 $\alpha$ 所分成上下两部分的体积之比;
- (3) 若  $AA_1 = 4$ , CD = 2, 梯形 ABCD 的面积为 6, 求平面  $\alpha$  与底面 ABCD 所成二面角的大小.



6.如下图所示,已知正三棱锥 P-ABC 的侧面是直角三角形,PA=6,顶点 P 在底面 ABC 内的射影为点 D,D 在平面 PAB 内的正投影为点 E,连接 PE 并延长交 AB 于点 G.

- (1) 证明: *G*是 *AB* 的中点;
- (2) 设点 E 在平面 PAC 内的正投影为 F,求二面角 F-BC-P 的余弦值.



- 7.如下图所示,四棱锥 P-ABCD中,平面 PAD 上平面 ABCD, PA=PD ,四边形 ABCD 是正方形.
- (1) 直线 AC 与平面 PBD 是否垂直?若垂直,请证明;若不垂直,请说明理由;
- (2) 若二面角P-CD-B的平面角为 $60^{\circ}$ ,求直线PB与平面PCD所成角的正弦值.



8.如下图所示,在四面体 ABCD中, AD=BD=BC=AC=2,  $AB=\sqrt{2}$ , E、 F 分别为 CD、 AC 的中点,过 EF 的平面与 AB、 BD 交于点 G、 H.

- (1) 证明: *EF || GH*;
- (2) 若四边形 EFGH 为正方形,求直线 AD 与平面 ABC 所成角的正弦值.



9.如下图所示,在三棱台  $ABC-A_iB_iC_i$  中,底面  $\triangle ABC$  是边长为 2 的正三角形,侧面  $ACC_iA_i$  是等腰梯形,且  $A_iC_i=AA_i=1$ ,D 为 $A_iC_i$  的中点.

- (1) 证明: *AC* ⊥ *BD*;
- (2) 记二面角  $A_1 AC B$  的大小为 $\theta$ , 当 $\theta \in \left[\frac{\pi}{3}, \frac{2\pi}{3}\right]$ 时,求直线  $AA_1$  与平面  $BB_1C_1C$  所成角的正弦值的取值范围.

