Байесовское оценивание параметров наблюдений из выборки Бернулли

Опубликовал

sobody

Автор или источник

sobopedia

Предмет

Математическая Статистика (/Subjects/Details?id=5)

Тема

Байесовская статистика (/Topics/Details?id=37)

Раздел

Введение в Байесовскую статистику (/SubTopics/Details?id=131)

Дата публикации

13.06.2019

Дата последней правки

04.06.2020

Последний вносивший правки

sobody

Рейтинг

Условие

Пусть $X=(X_1\dots X_n)$ - выборка из распределения Бернулли $Ber(\theta)$, причем параметр θ является случайной величиной с неизвестным распределением. Найдите апостериорное распределение параметра θ , если априорное распределение является равномерным U(0,1). Укажите реализацию 90%-го байесовского доверительного интервала для θ при x=(1,0,1).

Решение

Для начала запишем выражение для функции правдоподобия:

$$L(heta^*|x) = \prod_{i=1}^n (heta^*)^{x_i} (1- heta^*)^{1-x_i}$$

Теперь выпишем априорную функцию плотности параметра (для $\theta^* \in [0,1]$):

$$P\left(heta= heta^*
ight)=f_{ heta}(heta^*)=1$$

Наконец, посчитаем апостериорную вероятность (для $heta^* \in [0,1]$):

$$egin{aligned} P\left(heta = heta^* | X = x
ight) &= f_{ heta | X = x}(heta^*) \propto L(heta^* | x) P\left(heta = heta^*
ight) = \ &= \prod_{i=1}^n (heta^*)^{x_i} (1- heta^*)^{1-x_i} * 1 = (heta^*)^{\sum\limits_{i=1}^n x_i} (1- heta^*)^{n-\sum\limits_{i=1}^n x_i} \end{aligned}$$

Мы нашли апостериорную вероятность с точностью для константы P(X=x), поэтому рассчитаем её значение:

$$P(X=x) = \int_0^1 (heta^*)^{\sum\limits_{i=1}^n x_i} (1- heta^*)^{n-\sum\limits_{i=1}^n x_i} d heta^* = B\left(\sum_{i=1}^n x_i+1, n-\sum_{i=1}^n x_i+1
ight)$$

Таким образом, получаем следующую функцию плотности апостериорного распределения (для $heta^* \in [0,1]$):

$$f_{ heta|X=x}(heta^*) = rac{(heta^*)^{\sum\limits_{i=1}^{n}x_i}(1- heta^*)^{n-\sum\limits_{i=1}^{n}x_i}}{B\left(\sum\limits_{i=1}^{n}x_i+1,n-\sum\limits_{i=1}^{n}x_i+1
ight)}$$

Полученная функция плотности является функцией плотности бета распределения

$$\mathcal{B}\left(\sum_{i=1}^n x_i+1, n-\sum_{i=1}^n x_i+1
ight)$$
 .

При x=(1,0,1) получаем $(\theta|X=x)\sim\mathcal{B}(3,2)$. Рассчитаем квантили уровня 0.05 и 0.95 для данного распределения: $\mathcal{B}(3,2)^{0.05}\approx 0.25$ и $\mathcal{B}(3,2)^{0.95}\approx 0.9$. В итоге получаем реализацию 90%-го симметричного байесовского доверительного интервала:

Показать решение

Пожалуйста, войдите или зарегистрируйтесь, чтобы оценивать задачи, добавлять их в избранные и совершать некоторые другие, дополнительные действия.

© 2018 - 2022 Sobopedia