Al Project Assignment

Part 1: Short Answer Questions

1. Problem Definition

Hypothetical AI Problem: Predicting student dropout rates in online learning platforms.

Objectives:

- Identify students at high risk of dropping out within the next month.
- Recommend personalized interventions to improve engagement.
- Reduce overall dropout rates by 15% within a semester.

Stakeholders:

- University administration (decision-makers for interventions)
- Students (beneficiaries of early support)

Key Performance Indicator (KPI):

Accuracy of dropout prediction model ≥ 85%

2. Data Collection & Preprocessing

Data Sources:

- Learning Management System (LMS) logs (e.g., login frequency, assignment submissions)
- Demographics and academic history (e.g., GPA, prior course performance)

Potential Bias:

• Students with poor internet access may have fewer LMS interactions, causing the model to overestimate dropout risk

Preprocessing Steps:

- 1. Handling Missing Data: Impute missing values using mean/mode or predictive models
- 2. Normalization/Scaling: Standardize features to have zero mean and unit variance
- 3. **Encoding Categorical Variables:** Convert non-numeric features (e.g., gender, major) to one-hot or label encoding

3. Model Development

Chosen Model: Random Forest Classifier

Justification: Robust to overfitting, handles mixed data types, interpretable feature importance

Data Split:

Training: 70%Validation: 15%

• Test: 15%

Hyperparameters to Tune:

- Number of trees (n_estimators): Affects model performance and variance
- Maximum tree depth (max_depth): Prevents overfitting while maintaining accuracy

4. Evaluation & Deployment

Evaluation Metrics:

- F1-score: Balances precision and recall, crucial for imbalanced dropout prediction
- ROC-AUC: Measures model's ability to distinguish between dropout vs. retention

Concept Drift:

- Concept drift occurs when data distributions change over time (e.g., new student behaviors)
- Monitor via continuous model evaluation on new student data; retrain model periodically

Technical Challenge During Deployment:

• Scalability: Handling real-time predictions for thousands of students during peak usage

Part 2: Case Study Application

Scenario: Predicting Patient Readmission Risk Within 30 Days

Problem Scope:

Problem: Reduce unplanned patient readmissions within 30 days of hospital discharge

Objectives:

- Predict 30-day readmission probability per patient
- Support targeted post-discharge interventions
- Reduce readmission costs and improve patient outcomes

Stakeholders:

- · Hospital management and clinicians
- Patients receiving care

Data Strategy

Data Sources:

- Electronic Health Records (EHRs) (diagnoses, medications, vitals)
- Demographic data (age, gender, socioeconomic status)

Ethical Concerns:

- Patient privacy: Data must comply with HIPAA regulations
- Bias: Historical disparities may reflect in model predictions

Preprocessing Pipeline:

- 1. Remove personally identifiable information (PII)
- 2. Handle missing lab results (imputation)
- 3. Feature engineering: compute comorbidity scores, previous admissions count

Model Development

Chosen Model: Gradient Boosted Trees (e.g., XGBoost)

Justification: High accuracy on tabular data; robust to missing values

Hypothetical Confusion Matrix:

	Predicted Yes	Predicted No
Actual Yes	40	10
Actual No	15	85

Precision: 40 / (40+15) = 0.727

Recall: 40 / (40+10) = 0.8

Deployment

Integration Steps:

- 1. Develop API endpoint for model predictions
- 2. Connect API with hospital EHR system
- 3. Implement real-time dashboard for clinicians

Compliance:

- Data encryption in transit and at rest
- Role-based access control for patient data
- HIPAA-compliant logging and auditing

Optimization:

• Use cross-validation and regularization (e.g., L1/L2) to prevent overfitting

Part 3: Critical Thinking

Ethics & Bias

Impact of Bias:

• If model over-predicts risk for certain ethnic groups, patients may undergo unnecessary interventions

Mitigation Strategy:

• Reweigh training data or apply fairness constraints in the model

Trade-offs

Interpretability vs Accuracy:

- Highly accurate models like XGBoost may be less interpretable than logistic regression
- Clinicians may require interpretable explanations for trust

Resource Limitation:

• Limited computational resources may necessitate simpler models (e.g., logistic regression) or smaller ensembles

Part 4: Reflection & Workflow Diagram

Reflection

Most Challenging Part:

• Handling ethical concerns and bias mitigation, due to real-world implications on patient care

Improvements with More Resources:

- Collect larger, more representative datasets
- Implement real-time monitoring and automated bias detection

Workflow Diagram

```
Problem Definition → Data Collection → Data Preprocessing → Model Development

↓

Evaluation → Deployment → Monitoring & Maintenance
```