Examen 2 - Session 1 Mardi 14 janvier 2020 - 2h

Documents et calculatrices interdits, hormis une feuille A4 recto-verso manuscrite.

N.B.: La rédaction sera prise en compte dans la notation. Les exercices sont indépendants et peuvent être traités dans n'importe quel ordre. Il est toutefois préférable de conserver l'ordre proposé (difficulté croissante)

Exercice 1

- 1. (cours) Soit E un espace vectoriel sur \mathbb{R} . Rappeler la définition de $x \to ||x||$ est une norme sur E.
- 2. (Application) $E = \mathbb{R}^n$ Soient a_1, \dots, a_n des réels et $\mathbb{N} : \mathbb{R}^n \to \mathbb{R}$ l'application définie par :

$$\forall x = (x_1, ..., x_n) \in \mathbb{R}^n, \ \ \mathcal{N}(x) = a_1 |x_1| + \dots + a_n |x_n|$$

Montrer que l'application \mathbb{N} définit une norme sur \mathbb{R}^n si et seulement si : $a_i > 0$ pour tout $i \in \{1, \dots, n\}$.

NB : Attention il faut démontrer une équivalence !

Exercice 2

- 1. (Cours)
 - (i) Soit $f \in L^1(\mathbb{R})$. Rappeler la définition de la transformée de Fourier de f, notée \widehat{f} .
 - (ii) Soit $f \in L^1(\mathbb{R})$ telle que sa transformée de Fourier vérifie : $\widehat{f} \in L^1(\mathbb{R})$. Après avoir énoncé le théorème d'inversion de la transformée de Fourier dans ce cadre, exprimer f(x) en fonction de \widehat{f} .
- 2. (Application)
 - (i) <u>Calculer</u> la transformée de Fourier de la fonction $f(x) = \exp(-a|x|)$ (a > 0).
 - (ii) En déduire la transformée de Fourier de la fonction $g(x)=\frac{1}{a^2+x^2}$ puis celle de la fonction $h(x)=\frac{x}{a^2+x^2}$.

Exercice 3

Pour $x \in \mathbb{R}$, on pose :

$$f(x) = \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} e^{itx} dt$$

- 1. Montrer que f est définie sur \mathbb{R} , de classe C^1 , et exprimer sa dérivée.
- 2. En déduire que f est solution de l'équation différentielle suivante :

$$2(x^2 + 1) y'(x) + (x - i) y(x) = 0$$

3. Résoudre cette équation différentielle, et en déduire que

$$f(x) = \sqrt{\pi}(x^2 + 1)^{-1/4} \exp(\frac{i}{2} \arctan x)$$

On rappelle que $\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$

4. Quelle est la transformée de Fourier de la fonction $x \to \frac{e^{-x}}{\sqrt{x}} \chi_{\mathbb{R}_+}$? (justifiez votre réponse). $\chi_{\mathbb{R}_+}$ est la fonction indicatrice de \mathbb{R}_+ valant 1 sur \mathbb{R}_+ et 0 ailleurs.

Exercice 4

1. (Question préliminaire) Soit a > 0. Montrer que la transformée de Fourier de

$$x \to \frac{a^2}{a^2 + 4\pi^2 x^2}$$

est la fonction

$$\nu \to \frac{a}{2}e^{-a|\nu|}$$

2. Soit l'équation différentielle suivante :

$$-\frac{1}{a^2}g'' + g = f$$

- (i) On suppose que les fonctions intervenant dans l'équation différentielle sont toutes intégrables. En déduire une relation entre \hat{q} et \hat{f} .
 - (ii) En déduire que

$$g(x) = \frac{a}{2} \int_{-\infty}^{+\infty} e^{-a|x-t|} f(t) dt$$

Exercice 5 (Espaces vectoriels normés)

Soit E l'ensemble des fonctions de \mathbb{R} dans \mathbb{R} continues et bornées sur \mathbb{R} . Pour $p \in \mathbb{N}$ et $f \in E$ on pose : $N_p(f) = \sup_{t \in \mathbb{R}} |t^p e^{-|t|} f(t)|$.

- 1. Montrer que N_p est une norme sur E.
- 2. Soit $c \in \mathbb{R}^*$ et $P_c : \begin{cases} E \to \mathbb{R} \\ f \to f(c) \end{cases}$. Etudier la continuité de P_c sur (E, N_p) .
- 3. Etudier le cas c=0. On pourra considérer la suite de fonctions $f_n(x)=e^{-n|x|}$.

Exercice 6 (Principe d'incertitude d'Heisenberg - Exercice facultatif)

Soit $f \in \mathcal{S}(\mathbb{R})$, l'espace de Schwartz des fonctions indéfiniment dérivables, à décroissance rapide au sens : $\forall p \in \mathbb{N}, \forall n \in \mathbb{N}, \lim_{x \to \infty} x^p f^{(n)}(x) = 0$.

1. Montrer que

$$\int_{\mathbb{R}} f(x)^2 dx = -2 \int_{\mathbb{R}} x f(x) f'(x) dx.$$

On justifiera les calculs en utilisant les propriétés des fonctions de l'espace de Schwartz.

2. En déduire

$$\int_{\mathbb{R}} f(x)^2 dx \le 4\pi \left(\int_{\mathbb{R}} x^2 f(x)^2 dx \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}} \nu^2 |\hat{f}(\nu)|^2 d\nu \right)^{\frac{1}{2}}$$

3. En utilisant, par exemple, la fonction $f(x) = e^{-\pi x^2}$, montrer que la constante 4π ne peut être améliorée.