(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-207079 (P2002-207079A)

(43)公開日 平成14年7月26日(2002.7.26)

(51) Int.Cl. ⁷		識別記号	FΙ		5	テーマコード(参考)
G 0 1 S	13/74		G01S	13/74		5B058
B 6 5 G	61/00	5 2 6	B 6 5 G	61/00	5 2 6	5 J O 7 O
G 0 6 K	17/00		G06K	17/00	F	
					T.	

審査請求 未請求 請求項の数1 OL (全 7 頁)

(21)出願番号	特願2001-1520(P2001-1520)	(71)出願人	000004260	
			株式会社デンソー	
(22)出顧日	平成13年1月9日(2001.1.9)		愛知県刈谷市昭和町1丁目1番地	
		(72)発明者	菊地 裕二	
			愛知県刈谷市昭和町1丁目1番地 株	式会
			社デンソー内	
		(72)発明者	佐藤 雅彦	
			愛知県刈谷市昭和町1丁目1番地 株	式会
			社デンソー内	
		(74)代理人	100071135	
			弁理士 佐藤 強	

最終頁に続く

(54) 【発明の名称】 物品検出システム

(57)【要約】

【課題】 トラックに積み込まれた多数の荷物の中から 特定の荷物の位置を検出する。

【解決手段】 トラック3に積み込まれる荷物に、識別情報、行き先などを書き込んだIDタグを取り付ける。荷物をトラック3に積み込んだ後、特定の荷物を探し出すには、間欠的に移動するゲート25に送信および受信アンテナを取り付けたアンテナ取付部26を多数設け、そのアンテナ取付部の送信および受信アンテナを順次有効化してIDタグと通信し、識別番号を読み取る。読み取った識別番号が特定荷物の識別番号と同じであった場合、そのとき通信していた送信および受信アンテナの位置から、特定荷物の位置を検出する。

【特許請求の範囲】

【請求項1】 積み置かれる物品に取り付けられ、当該物品の識別情報を書き込んだIDタグと、

前記積まれた多数の物品に対して、前記物品のIDタグ と通信するための電波を、縦方向、横方向および高さ方 向に順次位置を違えて放射するアンテナ装置を備え、I Dタグから前記識別情報を読み出す読取手段と、

前記物品のIDタグと通信した時の前記アンテナ装置の 電波放射位置に基づいて、前記物品の位置を検出する位 置検出手段とを具備してなる物品検出システム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は積まれた多数の物品の中から特定の物品の位置を検出できるようにした物品 検出システムに関する。

[0002]

【発明が解決しようとする課題】例えば、物流の集配業務において、荷物は集配センターに集められ、そこで行き先別に分けられてトラックに積み込まれる。荷物が一旦トラックに積み込まれると、或る特定の荷物を取り出したい時、その荷物の所在を特定できない場合が多く、そのような時には、トラックから荷物を降ろしたりして、一つ一つ確認する必要があった。本発明は上記の事情に鑑みてなされたもので、その目的は、積まれた物品の所在を検出することができる物品検出システムを提供するにある。

[0003]

【課題を解決するための手段】本発明は、積み置かれる物品に取り付けられ、当該物品の識別情報を書き込んだIDタグと、前記積まれた多数の物品に対して、前記物品のIDタグと通信するための電波を、縦方向、横方向および高さ方向に順次位置を違えて放射するアンテナ装置を備え、IDタグから前記識別情報を読み出す読取手段と、前記物品のIDタグと通信した時の前記アンテナ装置の電波放射位置に基づいて、前記物品の位置を検出する位置検出手段とを設けたものである。

【0004】例えば、トラックに積み込まれた多数の荷物の中から、或る特定の荷物を取り出す場合、読取手段のアンテナ装置から縦方向、横方向および高さ方向に順次位置を違えて電波を放射する。アンテナ装置から放射される電波は指向性が高いので、読取手段がIDタグと通信した時の電波の放射位置が分かれば、その電波の放射位置から、物品の位置を大まかに特定できる。従って、取り出したい荷物のIDタグと通信した時の電波の放射位置を求めれば、その位置から荷物の大体の位置が分かるから、全部の荷物を降ろさなくとも、その近辺の荷物を調べれば、探している荷物を見つけることができる。

[0005]

【発明の実施の形態】以下、本発明の第1実施例を荷物

をトラック輸送する場合の集配センターに適用して図1ないし図9を参照しながら説明する。図9は集配センターを示す。同図に示すように、集配センターには、コンベアラインによって構成される複数の仕分けライン1が設けられている。各仕分けライン1は、行き先別に仕分けた荷物(物品)2を移動体としてのトラック3の発着所まで搬送するもので、各仕分けライン1により送られてきた荷物2は、一旦、積載準備場所Eに降ろされる。なお、トラック3の発着所は各仕分けライン1に一対一の関係で設けられている。

【0006】上記荷物2には、図7に示すように、IDタグ4が取り付けられている。このIDタグ4は、図6に示す読取手段としてのリーダライタ5との間で電波により通信できるようになっている。このリーダライタ5はトラック3の発着所毎に設けられている。ここで、IDタグ4およびリーダライタ5の電気的構成を説明する

【0007】まず、図5はIDタグ4の電気的構成を示すもので、電波信号を送受信するための通信手段としてのアンテナ用コイル6と、共振コンデンサ7と、制御用IC8と、平滑部9とを備えている。制御用IC8は、制御手段としてのMPU(マイクロプロセッサユニット)10の他、整流部11、変復調部12、識別情報記憶手段としてのメモリ部13などを構成する半導体素子をワンチップ化したものである。この場合、メモリ部13は、動作プログラマブルなどを記憶したROMと、一時記憶用として消去可能な不揮発性メモリ、例えばEEPROMとを有している。

【0008】そして、IDタグ4のメモリ部13のEEPROMには、図8に示すように、IDタグ4が取り付けられた荷物2の識別番号(識別情報)、送荷先、送荷元、内容物、割れ物、精密機器か否か、荷物2の寸法などの各種情報が記憶されている。

【0009】上記アンテナ用コイル6は、共振コンデンサ7と並列に接続されて共振回路を構成し、外部機器から所定の高周波数の電力用電波信号が送信されてくると、これを受信して整流部11に供給する。整流部11は、平滑部9と共に動作用電源回路を構成するもので、共振回路から送信されてきた電力用電波信号を整流し、平滑部9により平滑化し且つ一定電圧の直流電力(動作用電力)にしてMPU10などに供給する。

【0010】外部機器から送信されてくるデータなどの信号は、電力用電波信号に重畳して送信されるようになっており、その信号は、変復調部12により復調されてMPU10に与えられる。MPU10は、メモリ部13のROMに記憶された動作プログラムに従って動作するもので、変復調部12から入力される信号に応じた処理を実行し、受信したデータをメモリ部13のEEPROMなどに書き込んだり、EEPROMからデータを読み出して変復調部12により変調し、アンテナ用コイル6

から電波信号として送信したりする。

【0011】一方、リーダライタ5は、図6に示すよう に、制御手段としてのMPU14、送信アンテナ15を 有する送信部16、受信アンテナ17を有する受信部1 8、動作プログラムを記憶したROM19、RAM20 などを備えている。このリーダライタ5は、IDタグ2 と通信する場合、まず、キャリア信号を送信部16で変 調して電力用電波信号として送信アンテナ15から送信 し、その後、送信すべきデータをその電力用電波信号に 重畳するように送信部16で変調して送信アンテナ15 から送信する。 I Dタグ2から送信された電波信号につ いては、これを受信アンテナ17で受信し、受信部18 で復調してデータとして弁別する。そして、MPU14 は、受信部18で復調したデータをRAM20に記憶 し、その記憶データは位置検出手段としての制御装置2 1に入力されるようになっている。この制御装置21は パソコンから構成され、LCDなどの表示器22、プリ ンタ23およびキーボードなどの操作部24を備えてい

【0012】さて、集配センターの複数あるトラック発着所には、図3、図4に示すようにほぼ逆U字状のゲート25が設けられている。このゲート25はトラック3がくぐることができるような大きさに構成され、トラック3の前後方向に沿って1ピッチずつ移動できるようになっている。このゲート25には、多数のアンテナ取付部26がゲート25に沿って一列に設けられている。

【0013】前記リーダライタ5の送信アンテナ15お よび受信アンテナ17は同心状のコイルに形成され、上 記ゲート25の各アンテナ取付部26に一組ずつ配置さ れてゲート25と共にアンテナ装置27を構成してい る。リーダライタ5がIDタグ4と通信する場合、各ア ンテナ取付部26のアンテナ15および17はMPU1 4によって制御されるスイッチ要素28により、一組ず つ順番に送信部16および受信部18に接続され、その 接続が一巡するとゲート25が1ピッチ移動して再び各 アンテナ取付部26のアンテナ15および17が一組ず つ順番に送信部16および受信部18に接続される、と いう動作を繰り返すようになっている。従って、電波を 放射する送信アンテナ15とIDタグ4から放射される 電波を受信する受信アンテナ17の位置は、水平面の縦 方向および横方向並びに高さ(鉛直)方向に順次変化す るようになっている。なお、IDタグ4が通信動作を行 う場合は、送信アンテナ15から放射される電波がアン テナコイル6と鎖交して誘導電流が発生する場合であ

【0014】リーダライタ5がIDタグ4から荷物2についての情報を読み取ると、リーダライタ5は、その読み取った情報を制御装置21に送信すると共に、その読み取り時に電波信号の送受信を行ったアンテナ15、17の位置を、アンテナ取付部26の位置で検出して制御

装置21に送信する。また、その時のゲート25の位置は、図示しない位置検出装置により検出されて制御装置21に送信されるようになっている。そして、制御装置21は、荷物2の識別番号と、その荷物2のIDタグ4と通信した時のアンテナ取付部26およびゲート25の位置(アンテナ位置情報)とを図示しない記憶装置に記憶するようになっている。

【0015】制御装置21は、上記のアンテナ位置情報に基づいて、指定された識別番号の荷物2の所在情報を出力する。すなわち、送信アンテナ15から送信される電波は指向性が高いので、その到達範囲はアンテナ取付部26から真っ直ぐ前方の狭い領域に限られる。このため、或る位置に存在する荷物2のIDタグ4は、ゲート25がほぼ真横から真上にかけて位置するようになったときに、各アンテナ取付部26のうち、いずれか一つ或いは複数のアンテナ取付部26の送信アンテナ15から送信されてくる電波に反応して送信動作を行う。従って、リーダライタ5がIDタグ4からの電波を受信した時に送信部16および受信部18に接続されていたアンテナ15および17の位置が分かれば、IDタグ4(荷物2)の位置を特定できるものである。

【0016】制御装置21が表示器22或いはプリンタ23に出力する荷物2の所在情報は、具体的には、図2に示すように、IDタグ4からの電波を受信したアンテナ取付部26の位置を、横(トラック3の幅方向)W、縦(トラック3の前後方向)Lおよび高さHで表示されると共に、トラック3の荷台における荷物2の位置を三次元図形で表示される。

【0017】ちなみに、トラック3の荷台に荷物2を積 込む際、その荷物2の大きさが揃っていれば、縦横に整 列して積込まれるが、不揃いの場合には、無造作に積み 上げられる。このように場合場合によって、IDタグ4 のアンテナ用コイル6の向きが荷物毎に異なるようにな るが、いずれの場合でも、ゲート25からは、ほぼ真横 に高さを違えて、或いは斜め下方に、更にはほぼ真下に 縦方向に位置を違えて電波が放射されるので、ゲート2 5がほぼ真横から真上にかけて位置するようになった荷 物2のIDタグ4は、複数のアンテナ取付部26のうち の少なくとも一つから放射される電波を受信して動作す るようになる。従って、リーダライタ5と送受信したと きの荷物2に取り付けられたIDタグ4は、少なくとも 1か所から放射される電波に反応して通信動作するの で、その電波の放射位置から、縦(L)方向の位置と高 さ、或いは縦方向と横方向の位置を特定できるものであ

【0018】なお、図2はゲート25の高さ方向に並ぶアンテナ取付部26のいずれか、およびゲート25の上部に横方向に並ぶアンテナ取付部26のいずれかの2か所のアンテナ取付部25のアンテナ15、17を介してリーダライタ5と送受信して縦、横、高さの3次元の位

置を特定できた場合を示す。

【0019】次に上記構成の作用を説明する。仕分けライン1によりトラック3の発着所へ送られてきた荷物2は、作業者によって荷物準備場所Eに降ろされ、そして順次、トラック3の荷台に積み込まれる。全部の荷物2を積み込んだ後、例えば、或る荷物2を間違って積み込んだことが分かり、その荷物2をトラック3から降ろさねばならないような場合がある。この場合には、その間違って積み込んだ荷物(以下、特定荷物)2の識別番号を制御装置21に入力し、その識別番号をもったIDタグ4(特定荷物2)の所在を検出させる。

【0020】このIDタグ4の所在を検出する場合の制御装置21の作用を図1のフローチャートをも参照しながら説明する。すなわち、まず、ゲート25を始点位置であるトラック3の例えば荷台の最後部に位置させ(ステップS1)、そして、ゲート25の各アンテナ取付部26のアンテナ15および17を、順次、送信部16および受信部18に接続して、リーダライタ5に通信動作を行わせる(アンテナスキャン;ステップS2)。これにより、各アンテナ取付部26のアンテナ15および17が順次有効化され、そして、有効化された送信アンテナ15が送信部16からの電力用信号およびデータ信号を電波信号として送信する(ステップS2)。

【0021】この送信アンテナ15から放射される電波信号を受信したIDタグ4は、メモリ部13に記憶した荷物2の識別番号を送信する。このIDタグ4が送信した識別番号は受信アンテナ17に受信され、リーダライタ5のMPU14によって制御装置21に送信される。制御装置21は、リーダライタ5から送られてきたIDタグ4の識別番号が特定荷物2の識別番号と一致する場合(ステップS3で「YES」)、そのIDタグ4と通信したときのアンテナ取付部25の位置およびゲート27の位置を図示しない記憶装置に記憶する(ステップS4)

【0022】全てのアンテナ取付部26のアンテナ15 および17が有効化されると、制御装置21は、ゲート27が終点位置である最前部まで移動した位置にあるか否かを判断し(ステップS5)、終点位置にない場合には(ステップS5で「NO」)、ゲート27を前方に1ピッチ移動させる(ステップS6)。以後、前述したステップS2~S6と同様の処理を、ゲート25の終点位置でアンテナスキャンが終了するまで繰り返し実行する。

【0023】そして、制御装置21は、特定荷物2のI Dタグ4と通信したときのアンテナ取付部26の位置に 基づいて特定荷物2の位置を検出し、表示器22に表示 すると共に、プリンタ23によって打ち出す。

【0024】さて、表示器23に表示され、或いはプリントされた用紙から、特定荷物2のおおよその位置が分かるので、作業者はその位置から特定荷物2を見つけ出

し、トラック3の荷台から降ろす。

【0025】図10および図11は本発明の第2および第3実施例のアンテナ装置を示すもので、図10の第2実施例のアンテナ装置28が前記第1実施例のアンテナ装置27と異なるところは、ゲート25にレール29を設け、このレール29にゲート25に沿って移動可能な1個のアンテナ取付部26を設け、そしてアンテナ取付部26を駆動ベルト30によって移動させるようにしたところにある。このアンテナ取付部26の位置は位置検出手段、例えば駆動ベルト30の図示しない駆動モータの回転位置を検出するロータリエンコーダにより検出され、制御装置21に入力されるようになっている。

【0026】このアンテナ装置28では、ゲート25を間欠的に移動させ、ゲート25の各停止位置でアンテナ取付部26をゲート25に沿って移動させながら送信アンテナ15から電波を放射し、受信アンテナ17がIDタグ4からの電波を受信したときのアンテナ取付部26の位置とゲート25の位置とから特定荷物2のIDタグ4の位置を検出するものである。

【0027】図11の第3実施例のアンテナ装置31は、トラック3が収容される大きさのトンネル32を設け、このトンネル32に多数のアンテナ取付部26を整列状態に設けたものである。このアンテナ装置31では、送信部16および受信部18に接続するアンテナ15および17を順に変更(スキャン)し、1Dタグ4からの電波を受信したときのアンテナ取付部26の位置から特定荷物2の1Dタグ4の位置を検出するものである。

【0028】なお、本発明は上記し且つ図面に示す実施例に限定されるものではなく、以下のような拡張或いは変更が可能である。積荷情報は荷物2の識別番号だけであっても良い。ゲート25は固定で、トラック3側が移動するように構成しても良い。荷物の配送に限らず、工場で移動ロボット(移動体)により部品を搬送する場合などに適用しても良い。移動体に積み込まれた物品の位置を検出する場合に限らず、床面に積まれた多数の物品の中から特定の物品を探し出す場合に適用しても良い。積み置かれる物品のすべてにIDタグが取り付けられている必要はない。

【図面の簡単な説明】

【図1】本発明の第1実施例を示すもので、特定荷物を探し出す場合のフローチャート

【図2】特定荷物の位置を表示した図

【図3】(a)はアンテナ装置全体の斜視図、(b)は 部分拡大図

【図4】アンテナ装置の断面図

【図5】 I Dタグの電気的構成を示すブロック図

【図 6 】リーダライタと制御装置の電気的構成を示すブロック図

【図7】荷物の斜視図

【図8】 I Dタグへの書き込み情報を示す概念図

【図9】集配センターの平面図

【図10】本発明の第2実施例を示す図3相当図

【図11】本発明の第3実施例を示す図3相当図【符号の説明】

図中、2は荷物(物品)、3はトラック、4はIDタ グ、5はリーダライタ(読取手段)、21は制御装置 (位置検出手段)、25はゲート、26はアンテナ取付 部、27、28、31はアンテナ装置である。

【図1】

【図7】

【図8】

[図2] [図3]

【図4】 【図5】

【図11】

フロントページの続き

(72)発明者 石橋 伸也 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 F ターム(参考) 5B058 CA17 KA40 YA20 5J070 AC01 AD02 AE20 AF01 AF03 AK15 BC06 BC23 BC36