

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NASIONALE SENIOR SERTIFIKAAT

GRAAD 12

WISKUNDE V1

FEBRUARIE/MAART 2013

MEMORANDUM

PUNTE: 150

Hierdie memorandum bestaan uit 19 bladsye.

1.1.1	$(x^2-9)(2x+1)=0$	
	(x-3)(x+3)(2x+1)=0	$\checkmark (x-3)(x+3)$ $\checkmark \pm 3$ $\checkmark -\frac{1}{2}$
	$x = \pm 3$ of $x = -\frac{1}{2}$	1
	$x = \pm 3$ or $x = 2$	$\sqrt{-\frac{2}{2}}$
	OF	(3)
	$(x^2-9)(2x+1)=0$	✓ -3 ✓3
	$(x^{2} - 9)(2x + 1) = 0$ $x = \pm 3 \text{of} x = -\frac{1}{2}$	
	$x = \pm 3$ of $x = -\frac{1}{2}$	$\sqrt{-\frac{1}{2}}$
1.1.2	$x^2 + x - 13 = 0$	(3)
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$=\frac{-1\pm\sqrt{1-4(1)(-13)}}{2}$	✓ subs in formule
	_	$\sqrt{53}$
	$=\frac{-1\pm\sqrt{53}}{2}$	7 433
	x = 3.14 of $x = -4.14$	✓antwoord
		✓antwoord
1.1.3	$2 \cdot 3^x = 81 - 3^x$	(4)
1.1.5	$2 \cdot 3^{x} = 81 - 3$ $2 \cdot 3^{x} + 3^{x} = 81$	$\checkmark 2 \cdot 3^x + 3^x = 81$
	$3^{x}(2+1)=81$	\checkmark 3 ^x as gemeenskaplike faktor
	$3^{x} = 27$	✓ vereenvoudiging
	$3^x = 3^3$	✓ antwoord
	x = 3	(4)
	OF	
	$2.3^{x} = 81 - 3^{x}$	$\checkmark 2 \cdot 3^x + 3^x = 81$
	$2.3^{x} = 81 - 3^{x}$ $2.3^{x} + 3^{x} = 81$	\checkmark 3 ^x as gemeenskaplike faktor
	$3^{x}(2+1) = 81$	$\checkmark 3^{x+1} = 3^4$
	$3^{x+1} = 3^4$	
	x+1=4	✓antwoord (4)
	x = 3	

1.1.4		✓ verandering van teken ✓ beide kritieke waardes ✓ korrekte ongelykheidsteken (3)
	OF $(x+1)(4-x) > 0$ $- 0 + 0 $	✓ metode ✓ beide kritieke waardes ✓ korrekte ongelykheidsteken (3)
1.0.1	-1 < x < 4	
1.2.1	$2^x + 2^{x+2} = -5y + 20$	
	$2^{x}(1+2^{2}) = -5y + 20$	✓ 2^x gemeenskaplike faktor
	$2^{x} = \frac{-5y + 20}{5}$	✓antwoord
	OF	(2)
	$2^x = -y + 4$	
1.2.2	As $y = -4$,	
	$2^x + 2^{x+2} = -5y + 20$	
	$2^{x} + 2^{x+2} = 40$	
	$2^{x}(1+2^{2})=40$	
	$2^x = 8$	✓substitusie
	$2^x = 2^3$	✓antwoord
	x = 3	(2)
1.2.3	-y+4>0	$\checkmark - y + 4 > 0$
	y< 4 Grootste heelgetalwaarde van y is 3	$\checkmark y = 3$
	$2^x = -3 + 4$	· y = 3
	$\begin{vmatrix} 2^x & 1 \end{vmatrix}$	
	x = 0	$\checkmark x = 0 \tag{3}$
		[21]

2.1.1	32. 1	. 1
	$r = -\frac{32}{64} = -\frac{1}{2}$	$\checkmark -\frac{1}{2}$
		✓substitusie
	$p = 256 \left(-\frac{1}{2}\right)$	✓antwoord
	p = -128	(3)
	OF	
	OF	
	p _ 64	
	$\frac{p}{256} = \frac{64}{p}$	$\checkmark \frac{p}{256} = \frac{64}{p}$
	$p^2 = 16384$	
	$p = \pm 128$	$\checkmark p = \pm 128$
	p = -128	✓antwoord (3)
	OF	$\checkmark \frac{p}{256} = \frac{-32}{64}$
	p = -32	
	$\frac{p}{256} = \frac{-32}{64}$	✓ vereenvoudiging ✓ antwoord
	64p = 8192	(3)
	p = -128	
	OF	
	1 64	$\sqrt{\frac{1}{r}} = \frac{64}{-32} = -2$
	$\frac{1}{r} = \frac{64}{-32} = -2$	
	$p = -2 \times 64$	✓ vereenvoudiging ✓ antwoord
	p = -128	(3)
2.1.2	$S_n = \frac{a[1-r^n]}{1-r}$	✓ formule
	1 = I	✓ substitusie
	$S_8 = \frac{256 \left[1 - \left(-\frac{1}{2} \right)^8 \right]}{1 + \frac{1}{2}}$	
	$S_8 = \frac{200 \left[1 (2)\right]}{1}$	
	$\frac{1}{1+\frac{1}{-}}$	✓antwoord
	_	(3)
	$=\frac{512}{3}\left(\frac{255}{256}\right)$	(3)
	= 170	
	OF	

Kopiereg voorbehou

	NSS – Memorandum	
	$S_n = \frac{a[1-r^n]}{1-r}$	✓ formule
	$S_8 = \frac{2^8 \left[1 - \left(-\frac{1}{2} \right)^8 \right]}{1 + \frac{1}{2}}$	✓substitusie
	$= \frac{2^9}{3} \left(\frac{255}{2^8} \right)$ = 170	✓antwoord (3)
2.1.3	-1 < <i>r</i> < 1	✓antwoord
	OF	(1)
	Die gemeenskaplike verhouding is $-\frac{1}{2}$ wat tussen -1 en 1 is.	✓antwoord (1)
	OF $-1 < -\frac{1}{2} < 1$	✓antwoord (1)
2.1.4	$S_{\infty} = \frac{a}{1 - r}$	✓formule
	$=\frac{256}{1-\left(-\frac{1}{2}\right)}$	✓substitusie
	$= \frac{512}{3}$ = 170,67	✓antwoord (3)

2.2.1	16	✓antwoord
		(1)
2.2.2	$T_n = -8 + 6(n-1)$	✓ substitusie in vergelyking
	148 = 6n - 14	$\checkmark T_n = 148$
	6n = 162	✓antwoord (3)
	n = 27	
2.2.3	n	
2.2.3	$S_n = \frac{n}{2} [2a + (n-1)d]$	$n \left[2(-9) \cdot (-1)(c) \right]$
	$n_{\Gamma_{\alpha}}(x) = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum$	$\sqrt[4]{\frac{n}{2}}[2(-8)+(n-1)(6)]$
	$\frac{n}{2}[2(-8)+(n-1)(6)] > 10140$	$\checkmark 3n^2 - 11n > 10140$
	$3n^2 - 11n > 10140$	
	$3n^2 - 11n - 10140 > 0$	
	(3n+169)(n-60)>0	√faktore
	Indien $n = 60$, $S_n = 10 140$	$\checkmark n = 60$
	Kleinste $n = 61$	✓antwoord
	Remste n = 01	(5)
2.3	$\sum_{k=1}^{30} (3k+5)$	
	K=1	$\checkmark n = 30$
	a = 8 $n = 30$ $d = 3$	55
	$\sum_{k=0}^{30} (3k+5) = \frac{30}{2} [2(8) + 29(3)]$	✓ substitusie in korrekte
	$ \sum_{k=1}^{\infty} (3k+3)^k 2^{\lfloor 2(0)+2(3)\rfloor} $	formule
	= 15(103)	✓ antwoord
	= 1545	(3) [22]
L	1	

Wiskunde/V1 7 DBE/Feb.–Mrt. 2013

VRAAG3

	OF	(4)
	$T_n = 6n^2 - 12n + 9$	$\checkmark b = -12 \tag{4}$
	$3 = 6(1)^{2} + b(1) + 9$ $b = -12$	✓metode
	$T_n = an^2 + bn + 9$	√ c = 9
	$T_0 = c = 9$	$\checkmark a = 6$
	a = 6	
	2a = 12	
	OF	
	$T_n = 6n^2 - 12n + 9$	(4)
	$b = -12 \qquad c = 9$	$\checkmark b = -12$ $\checkmark c = 9$
	2a = 12 $3a + b = 6$ $a + b + c = 3a = 6$ $18 + b = 6$ $6 - 12 + c = 3$	√metode
	2a - 12 $2a + b - 6$ $a + b + c - 2$	$\checkmark a = 6$
	12 12	
	6 18 30	
3.2.2	3 9 27 57	
	$T_n = 3.3^{n-1}$	✓antwoord (1)
	OF	
3.2.1	$T_n = 3^n$	✓antwoord (1)
	eksponensieel en derde mag is.	gekombineerd) (2)
	is. Vusi het uitgewerk dat die ry 'n kombinasie van	eksponensieel) Vusi(eksponensieel en derde mag gekombineerd)
	OF Jakob het uitgewerk dat die ry meetkundig of eksponensieel	✓ Jakob (meetkundig/
	Vusi sien dit as 'n ry met 'n konstante tweede verskil.	(2)
	Jakob vermenigvuldig elke term met 3 om die volgende term te kry.	✓ Jakob (vermenigvuldig elke term met 3) ✓ Vusi(konstante tweede verskil)
	OF	
	Vusi het die ry as kwadraties uitgewerk.	✓ Vusi(kwadraties) (2)
3.1	Jakob het uitgewerk dat die ry meetkundig of eksponensieel is.	✓ Jakob (meetkundig/ eksponensieel)

Kopiereg voorbehou

 NSS	Memorandum	
1 () ()	3 = 6 + b + c $9 = 24 + 2b + c$ $6 = 18 + b$ $b = -12$	$\checkmark a = 6$ ✓ metode
$T_n = 6n^2 - 12n + 9$ \mathbf{OF}	c = 9	$\checkmark b = -12$ $\checkmark c = 9$ (4)
$T_{n} = 3^{n} + k(n-1)(n-2)(n-3)$ $57 = 3^{4} + k(3)(2)(1)$ $6k = -24$ $k = -4$ $T_{n} = 3^{n} - 4(n-1)(n-2)(n-3)$		✓✓ $T_n = 3^n + k(n-1)(n-2)(n-3)$ ✓ substitusie ✓ antwoord (4) [7]

4.1	$\mathbf{R} \ \mathbf{OF} \ (-\infty; \infty)$	✓antwoord (1)
4.2	y = 0	$\checkmark y = 0$
1.0		(1)
4.3	$x = \left(\frac{1}{3}\right)^{y}$	$\checkmark x = \left(\frac{1}{3}\right)^{y}$ $\checkmark y = \log_{\frac{1}{3}} x$
	$y = \log_{\frac{1}{3}} x$	$\checkmark y = \log_{\frac{1}{3}} x$
	OF	(2)
	$x = \left(\frac{1}{3}\right)^y$	$\checkmark x = \left(\frac{1}{3}\right)^y$
	$x = 3^{-y}$	
	$-y = \log_3 x$	$\checkmark y = -\log_3 x$
	$y = -\log_3 x$	(2)
4.4	Ţy	√vorm
		✓ afsnit by (1;0) ✓ enige ander korrekte punt
		omge ander noneme pom
		(2)
		(3)
	(3;-1)	
	→ ·	
4.5	x = -2	$\checkmark \checkmark x = -2$
4.6		(2)
4.6	$LK = [f(x)]^2 - [f(-x)]^2$	
	$= \left[\left(\frac{1}{3} \right)^x \right]^2 - \left[\left(\frac{1}{3} \right)^{-x} \right]^2$	$\left[\left(1 \right)^{x} \right]^{2} \left[\left(1 \right)^{-x} \right]$
		$\left \checkmark \left[\left(\frac{1}{3} \right)^x \right]^2 - \left[\left(\frac{1}{3} \right)^{-x} \right] \right $
	$=3^{-2x}-3^{2x}$	
	RK = f(2x) - f(-2x)	$\checkmark 3^{-2x} - 3^{2x}$
	$= \left(\frac{1}{3}\right)^{2x} - \left(\frac{1}{3}\right)^{-2x}$	$\checkmark \left(\frac{1}{3}\right)^{2x} - \left(\frac{1}{3}\right)^{-2x}$
	$=3^{-2x}-3^{2x}$	$\left[\begin{array}{ccc} \left(\frac{1}{3}\right) & -\left(\frac{1}{3}\right) \end{array}\right]$
	$\therefore LK = RK$	(3)
	$[f(x)]^{2} - [f(-x)]^{2} = f(2x) - f(-2x)$	[12]

		į Ψ		
5.1	$g(x) = \frac{a}{x-2} + 6$			
	$0 = \frac{a}{2,5-2} + 6$		✓ vervang B(2,5; 0)	
	0 = 2a + 6 $a = -3$		$\checkmark a = -3 \tag{4}$	4)
	$g(x) = \frac{-3}{x-2} + 6$			
5.2	$x_f = 2 - \frac{1}{2}$			
	$x_f = \frac{3}{2}$ $y_f = 6 + 6$ $y_f = 12$			
	$y_f = 6 + 6$			
	$y_f = 12$ $F\left(\frac{3}{2}; 12\right)$		✓x-koördinaat ✓y-koördinaat	
	(2)		[0	2) 6]

$$NSS-Memorandum\\$$

$$f(x) = ax^2 + bx + c$$
$$g(x) = -2x + 8$$

	,	· ·
6.1	0 = -2x + 8	$\checkmark y = 0$
	2x = 8	
	x = 4	$\checkmark x = 4$
	T(4;0)	(2)
6.2	Deur simmetrie, $P(-2; 0)$	
	f(x) = a(x+2)(x-4)	f(x) = a(x+2)(x-4)
	18 = a(1+2)(1-4)	✓ vervang S(1; 18)
	a = -2	
	f(x) = -2(x+2)(x-4)	$\checkmark a = -2$
	$=-2(x^2-2x-8)$	
	/	✓ vermenigvuldig korrek en kry
	$=-2x^2+4x+16$	$-2x^2 + 4x + 16$
	OF	(4)
	$f(x) = a(x-1)^2 + 18$	$f(x) = a(x-1)^2 + 18$
	$0 = a(4-1)^2 + 18$	✓ vervang T(4;0)
	, ,	
	a = -2	$\checkmark a = -2$
	$f(x) = -2(x-1)^2 + 18$	
	$=-2(x^2-2x+1)+18$	
	$=-2x^2+4x+16$	✓ vermenigvuldig korrek en kry
	- 2x 7x 10	$-2x^2 + 4x + 16$
		(4)

NSS – Memorandum

	NSS – Memorandum	1	
6.3	$-2x + 8 = -2x^2 + 4x + 16$	$\checkmark -2x + 8 = -2x^2 + 4x + 16$	
	$2x^2 - 6x - 8 = 0$	$\checkmark 2x^2 - 6x - 8 = 0$	
	$x^2 - 3x - 4 = 0$		
	(x-4)(x+1)=0	$\checkmark x = -1$	
	x = 4 or $x = -1$	v x - 1	
	by R is $y = -2(-1) + 8 = 10$	$\checkmark y = 10$	
	dus R(-1; 10)		(4)
6.4.1	$-1 \le x \le 4$	$\checkmark -1 \le x$	
		$\checkmark x \le 4$	
			(2)
6.4.2	$-2x^2 + 4x - 2 < 0$	(2 2 4 2 40 40	
	$-2x^2 + 4x - 2 + 18 < 18$	$\checkmark -2x^2 + 4x - 2 + 18 < 18$	
	$-2x^2 + 4x + 16 < 18$	$\sqrt{-2x^2+4x+16} < 18$	
	f(x) < 18	$\checkmark f(x) < 18$	
	$(-\infty;1)\cup(1;\infty)$	\checkmark $(-\infty;1) \cup (1;\infty)$	
			(4)
	OF		
	$-2x^2 + 4x - 2 < 0$	$\sqrt{-2x^2+4x-2+18} < 18$	
	$-2x^2 + 4x - 2 + 18 < 18$	$\sqrt{-2x^2+4x+16} < 18$	
	$-2x^2 + 4x + 16 < 18$	$\sqrt{f(x)} < 18$	
	f(x) < 18	$\checkmark x \in \mathbf{R} \; ; \; x \neq 1$	
	$x \in \mathbf{R}$; $x \neq 1$,	(4)
			[16]

7.1	$F = P(1+i)^n$	√formule
	$=4000000(1+0.06)^3$	✓substitusie
		✓antwoord
	= R4 764 064	(3)
7.2.1	$30000 \left[1 - \left(1 + \frac{0.06}{1.000} \right)^{-n} \right]$	✓ formule
	$4000000 = \frac{30000 \left[1 - \left(1 + \frac{0,06}{12} \right)^{-n} \right]}{\frac{0,06}{12}}$	$\checkmark i = \frac{0.06}{12}$
	12	✓ substitusie in korrekte formule
	$\frac{4000000 \times \left(\frac{0,06}{12}\right)}{30000} = 1 - \left(1 + \frac{0,06}{12}\right)^{-n}$	$\checkmark \frac{1}{3} = \left(1 + \frac{0,06}{12}\right)^{-n}$
	$1 (0.06)^{-n}$	✓korrekte gebruik van logs
	$\frac{1}{3} = \left(1 + \frac{0,06}{12}\right)^{-n}$	✓antwoord van 220 onttrekkings
	$\log_{\left(1+\frac{0.06}{12}\right)}\frac{1}{3} = -n$	(6)
	n = 220,27	
	Sy sal dus 220 onttrekkings van R30 000 maak.	
	OF	
	$4000000 = \frac{30000 \left[1 - \left(1 + \frac{0.06}{12}\right)^{-n}\right]}{0.06}$	✓ formule $ \checkmark i = \frac{0.06}{12} $
	12	✓ substitusie in korrekte formule

$$\frac{4000000 \times \left(\frac{0,00}{12}\right)}{30000} = 1 - \left(1 + \frac{0,06}{12}\right)^{-n}$$
$$\frac{1}{3} = \left(1 + \frac{0,06}{12}\right)^{-n}$$
$$\log \frac{1}{3} = -n\log\left(1 + \frac{0,06}{12}\right)$$

Sy sal dus 220 onttrekkings van R30 000 maak.

n = 220,27

✓korrekte gebruik van logs
✓antwoord van 220 onttrekkings
(6)

7.2.2 $4000000 = \frac{20000 \left[1 - \left(1 + \frac{0.06}{12}\right)^{-n}\right]}{\frac{0.06}{12}}$

$$0 = \left(1 + \frac{0,06}{12}\right)^{-n}$$

Sy kan soveel onttrekkings maak as wat sy wil.

$$4000000 = \frac{20000 \left[1 - \left(1 + \frac{0,06}{12} \right)^{-n} \right]}{\frac{0,06}{12}}$$

$$\checkmark 0 = \left(1 + \frac{0.06}{12}\right)^{-n}$$

✓ gevolgtrekking

(3) **[12]**

VRAAG8

$$\left(1 + \frac{0.08}{12}\right)^{12} = \left(1 + \frac{r}{2}\right)^{2}$$

$$\frac{r}{2} = 0.040672622$$

$$r = 8.13452446\%$$

$$r = 8.13\%$$

$$\left(1 + \frac{0.08}{12}\right)^{12}$$

$$\left(1 + \frac{i}{2}\right)^{2}$$

$$\checkmark \text{antwoord}$$
[3]

9.1
$$f(x) = 2x^{3}$$

$$f(x+h) = 2(x+h)^{3}$$

$$= 2(x^{3} + 3x^{2}h + 3xh^{2} + h^{3})$$

$$= 2x^{3} + 6x^{2}h + 6xh^{2} + 2h^{2}$$

$$f(x+h) - f(x) = 2x^{3} + 6x^{2}h + 6xh^{2} + 2h^{2}$$

$$= 6x^{2}h + 6xh^{2} + 2h^{3}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{2}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{2}}{h}$$

$$= \lim_{k \to 0} \frac{h(6x^{2} + 6xh + 2h^{2})}{h}$$

$$= \lim_{k \to 0} (6x^{2} + 6xh + 2h^{2})$$

$$f'(x) = 6x^{2}$$

OF
$$f'(x) = \lim_{k \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{k \to 0} \frac{2(x+h)^{3} - 2x^{3}}{h}$$

$$= \lim_{k \to 0} \frac{2(x+h)^{3} - 2x^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \lim_{k \to 0} \frac{6x^{2}h + 6xh^{2} + 2h^{3}}{h}$$

$$= \frac{2\sqrt{x}h^{2}h + 3x^{2}h + 3xh^{2}h + 3xh^{2}h + 3xh^{2}h +$$

	NSS – Wellor	andum
9.3	f'(-1) = -7 $f'(x) = 2ax + b$ $-7 = -2a + b$	√ f'(x) = 2ax + b ✓ substitusie van $x = -1$ $ √ -7 = -2a + b$
	f(-1) = -7(-1) + 3 = 10 ∴ $a - b + 5 = 10$	$\checkmark f(-1) = 10$
	a-b=5[1] -2a+b=-7[2] -a=-2[1]+[2]	
	a = 2 $b = -3$	$ \sqrt[4]{a} = 2 $ $ \sqrt[4]{b} = -3 $ (6) [15]

Wiskunde/V1

$$f(x) = -x^3 - x^2 + x + 10$$

10.1	(0;10)	✓ (0;10)
		(1)
10.2	$0 = -x^3 - x^2 + x + 10$	
	$0 = -(x-2)(x^2 + 3x + 5)$	$\checkmark (x-2)$ $\checkmark (x^2 + 3x + 5)$
	$x-2=0$ of $x^2+3x+5=0$	$(x^2 + 3x + 5)$
	x = 2	
	$x = \frac{-3 \pm \sqrt{3^2 - 4(1)(5)}}{2(1)}$	$\checkmark x = \frac{-3 \pm \sqrt{-11}}{2}$
	$x = {2(1)}$	$\checkmark x = {2}$
	$=\frac{-3\pm\sqrt{-11}}{2}$	
	=	✓ geen oplossing
	wat geen oplossing het nie	(4)
	Dus is die enigste x-afsnit van $f(2;0)$	
10.3	$f'(x) = -3x^2 - 2x + 1$	$\begin{pmatrix} \checkmark \\ c!() & 2^2 & 2 & 4 \end{pmatrix}$
	$0 = -3x^2 - 2x + 1$	$f'(x) = -3x^2 - 2x + 1$
	0 = (3x - 1)(x + 1)	$\checkmark f'(x) = 0$
	$x = \frac{1}{3}$ of $x = -1$	√faktore
	J	✓ x-waardes
	$y = -\left(\frac{1}{3}\right)^3 - \left(\frac{1}{3}\right)^2 + \left(\frac{1}{3}\right) + 10$ of $y = -(-1)^3 - (-1)^2 + (-1) + 10$	
	$=\frac{275}{27}$ = 9	(1 5)
	27	$\checkmark \left(\frac{1}{3}; 10\frac{5}{27}\right)$
	$\left(\frac{1}{3};10\frac{5}{27}\right) \tag{-1;9}$	✓ (-1;9)
	$(3^{\circ} 27)$	
10.4	, †*	(6)
10.4	1	
	(0,33; 10,19) Draaipunt	
	100	
	(-1; 9) Draaipunt	√vorm
		✓afsnitte
		✓ draaipunte
	2 *	(3)
		[14]

11.1	Lengte van die houer = $3x$	✓ lengte van houer = $3x$	
	$Volume = l \times b \times h$		
	$9 = 3x \cdot x \cdot h$	$\checkmark 9 = 3x \cdot x \cdot h$	
	$9 = 3x^2h$	3	
	. 3	$\checkmark h = \frac{3}{r^2}$	
	$h = \frac{3}{x^2}$	X	(3)
			(-)
11.2	$C = (2(3xh) + 2xh) \times 50 + (2 \times 3x^{2}) \times 100$	$\checkmark (2(3xh) + 2xh) \times 50$	
	8 (3), 50, 600, 2	$\checkmark (2 \times 3x^2) \times 100$	
	$=8x\left(\frac{3}{x^2}\right)\times 50 + 600x^2$	✓ substitusie van $h = \frac{3}{r^2}$	
	$= \frac{1200}{1200} + 600x^2$	\checkmark substitusie van $h = \frac{1}{x^2}$	
	$=\frac{1}{x}+600x^2$		(3)
	OF	V(19.)50	
	$C = (h \times 8x) \times 50 + (2 \times 3x^2) \times 100$	$\checkmark (h \times 8x) \times 50$ $\checkmark (2 \times 3x^2) \times 100$	
	$=8x\left(\frac{3}{x^2}\right) \times 50 + 600x^2$	_	
	$= 8x\left(\frac{1}{x^2}\right) \times 30 + 600x$	✓ substitusie van $h = \frac{3}{x^2}$	
	$= \frac{1200}{1200} + 600x^2$	X	(3)
			(3)
11.3	$C = 1200x^{-1} + 600x^2$	$\checkmark \frac{dC}{dx} = -1200x^{-2} + 1200x$	
	$\frac{dC}{dx} = -1200x^{-2} + 1200x$		
	$\frac{dx}{dx} = 1200x + 1200x$	$\sqrt{\frac{dC}{dx}} = 0$	
	$0 = -1200x^{-2} + 1200x$	$\checkmark dx$	
	$1200x^3 = 1200$	3 1	
	$x^3 = 1$	$\checkmark x^3 = 1$ $\checkmark x = 1$	
	x = 1	$\lambda = 1$	
	Dus is die breedte van die houer 1 meter.		(4)
			[10]

NSS – Memorandum

VRAAG 12

12.1	↑ y	✓✓ gebied ABIJ gearseer
		grand and grand grand
	A B C	(2)
	30 A B C	LET WEL:
	45	Indien gebied BCEFGI gearseer
	40	is: gee EEN punt
	35 1	
	39	Indien enige ander gebied gearseer is: gee 0 punte
	25	gearseer is. gee o punte
	10	
	H G F x	
12.2	$x \le 40$	✓ <i>x</i> ≤ 40
	$x + y \le 60$	$\checkmark x + y \le 60$
	$y \ge 0$	$\checkmark y \ge 0$
		(3)
12.3	x = 25	✓antwoord
12.4	At I(25; 10), $P = 4(25) + 10 = 110$	(1) $\checkmark x = 25$
12.1	Maksimum waarde van P is 110	$\checkmark x = 25$ $\checkmark y = 10$
	asx = 25 eny = 10	✓ substitusie
		✓ maksimum waarde van
		<i>P</i> is 110
12.5	C = hx + y	(4)
12.3	C = kx + y	$\checkmark y = -kx + C$
	y = -kx + C	$\checkmark k > 1$
	-k < -1	(2)
	k > 1	LET WEL:
		Slegs antwoord: gee TWEE punte
		[12]

TOTAAL: 150