Maths Formula Sheet 12th STD

LINE AND PLANE

Remember This: Line

- The vector equation of the line passing through $A(\bar{a})$ and parallel to vector \bar{b} is $\bar{r} = \bar{a} + \lambda \bar{b}$
- The vector equation of the line passing through $A(\bar{a})$ and $B(\bar{b})$ is $\bar{r} = \bar{a} + \lambda(\bar{b} \bar{a})$.
- The Cartesian equations of the line passing through $A(x_1, y_1, z_1)$ and having direction ratios a, b, c are $\frac{x x_1}{a} = \frac{y y_1}{b} = \frac{z z_1}{c}$
- The distance of point $P(\overline{\alpha})$ from the line $\overline{r} = \overline{a} + \lambda \overline{b}$ is given by $\sqrt{|\overline{\alpha} \overline{a}|^2 \left[\frac{(\overline{\alpha} \overline{a}) \cdot \overline{b}}{|\overline{b}|}\right]^2}$
- The shortest distance between lines $\overline{r} = \overline{a_1} + \lambda_1 \overline{b_1}$ and $\overline{r} = \overline{a_2} + \lambda_2 \overline{b_2}$ is given by $d = \left| \frac{\left(\overline{a_2} \overline{a_1}\right) \cdot \left(\overline{b_1} \times \overline{b_2}\right)}{\left|\overline{b_1} \times \overline{b_2}\right|} \right|$
- Lines $\overline{r} = \overline{a_1} + \lambda_1 \overline{b_1}$ and $\overline{r} = \overline{a_2} + \lambda_2 \overline{b_2}$ intersect each other if and only if $(\overline{a_2} \overline{a_1}) \cdot (\overline{b_1} \times \overline{b_2}) = 0$
- Lines $\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}$ and $\frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2}$ intersect each other if and

only if
$$\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$

• The distance between parallel lines $r = a_1 + \lambda \bar{b}$ and $r = a_2 + \lambda \bar{b}$ is given by $d = |(\bar{a}_2 - \bar{a}_1) \times \hat{b}|$

Plane

- The vector equation of the plane passing through A(a) and normal to vector n is $r \cdot n = a \cdot n$
- Equation $r \cdot n = a \cdot n$ is called the vector equation of plane in scalar product form.
- If $a \cdot n = d$ then equation $r \cdot n = a \cdot n$ takes the form $r \cdot n = d$
- The equation of the plane passing through A(x_p, y_p, z_p) and normal to the line having direction ratios a,b,c is a(x-x_p) + b(y-y_p) + c(z-z_p) = 0.

Maths Formula Sheet 12th STD

LINE AND PLANE

- The vector equation of the plane passing through point $A(\bar{a})$ and parallel to \bar{b} and \bar{c} is $\bar{r} \cdot (\bar{b} \times \bar{c}) = a \cdot (\bar{b} \times \bar{c})$
- Equation $r = a + \lambda b + \mu c$ is called the vector equation of plane in parametric form.
- The vector equation of the plane passing through non-collinear points $A(\bar{a})$, $B(\bar{b})$ and $C(\bar{c})$ is $(\bar{r} \bar{a}) \cdot (\bar{b} \bar{a}) \times (\bar{c} \bar{a}) = 0$
- Cartesian from of the above equation is $\begin{vmatrix} x x_1 & y y_1 & z z_1 \\ x_2 x_1 & y_2 y_1 & z_2 z_1 \\ x_3 x_1 & y_3 y_1 & z_3 z_1 \end{vmatrix} = 0$
- The equation of the plane at distance p unit from the origin and to which unit vector \hat{n} is normal is $\vec{r} \cdot \hat{n} = p$
- If l, m, n are direction cosines of the normal to a plane which is at distance p unit from the origin then its equation is lx + my + nz = p.
- If N is the foot of the perpendicular drawn from the origin to a plane and ON = p then the coordinates of N are (pl, pm, pn).
- If planes $(r \cdot n_1 d_1) = 0$ and $r \cdot n_2 d_2 = 0$ intersect each other, then for every real value of λ , equation $r \cdot (n_1 + \lambda n_2) (d_1 + \lambda d_2) = 0$ represents a plane passing through the line of their intersection.
- If planes and $a_1x+b_1y+c_1z+d=0$ and $a_2x+b_2y+c_2z+d_2=0$ intersect each other, then for every real value of λ , equation $(a_1x+b_1y+c_1z+d_1)+\lambda$ $(a_2x+b_2y$ $c_2z+d_2)=0$ represents a plane passing through the line of their intersection.
- The angle between the planes $\overline{r} \cdot \overline{n_1} = d_1$ and $\overline{r} \cdot \overline{n_2} = d_2$ is given by $\cos \theta = \frac{|\overline{n_1} \cdot \overline{n_2}|}{|\overline{n_1}||\overline{n_2}|}$
- The acute angle between the line $\bar{r} = \bar{a} + \lambda \bar{b}$ and the plane $\bar{r} \cdot \bar{n} = d$ is given by $\sin \theta = \left| \frac{\bar{b} \cdot \bar{n}}{|\bar{b}_1||\bar{n}|} \right|$
- Lines $r = a_1 + \lambda_1 b_1$ and $r = a_2 + \lambda_2 \overline{b}_2$ are coplanar if and only if $(\overline{a}_2 \overline{a}_1) \cdot (\overline{b}_1 \times \overline{b}_2) = 0$ and the quation of the plane determined by them is $(\overline{r} \overline{a}_1) \cdot (\overline{b}_1 \times \overline{b}_2) = 0$
- Lines $\frac{x x_1}{a_1} = \frac{y y_1}{b_1} = \frac{z z_1}{c_1}$ and $\frac{x x_2}{a_2} = \frac{y y_2}{b_2} = \frac{z z_2}{c_2}$.

are coplanar if and only if $\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$, and the equation of the plane determined

Maths Formula Sheet 12th STD

LINE AND PLANE

by them is
$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0$$

• The distance of the point $A(\vec{a})$ from the plane $\vec{r} \cdot \hat{n} = p$ is given by $|p - |\vec{a} \cdot \hat{n}||$