

- (9) BUNDESREPUBLIK DEUTSCHLAND
- Patentschrift DE 3730393 C2

(5) Int. CI.5: B 62 D 1/16 F 16 D 3/06

DEUTSCHES PATENTAMT

Aktenzeichen: Anmeldetag:

P 37 30 393.7-21

10. 9.87

Offenlegungstag:

23. 3.89

Veröffentlichungstag

der Patenterteilung: 13, 1, 94

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

- (73) Patentinhaber: Lemförder Metallwaren AG, 49448 Lemförde, DE
- Bruse, W., Dipl.-Ing., 28357 Bremen

72 Erfinder:

Burmeister, Joachim, Dr.-Ing., 4515 Bad Essen, DE; Noite, Frank, 4500 Osnabrück, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> DE 35 13 340 A1 32 00 676 A1 DE DE-OS 20 51-777 DE-OS 20 17 991 8 97 771 GB

(S) Lenkwelle für Kraftfahrzeuge, bestehend aus axial ineinander verschieblichen Wellenteilen

Beschreibung

Die Erfindung bezieht sich auf eine Lenkwelle für Kraitfahrzeuge, bestehend aus axial ineinander verschieblichen Wellenteilen mit Gattungsmerkmalen nach dem Oberbegriff des Patentanspruches 1.

Die Gattungsmerkmale sind aus der DE 35 13 340 A1 bekannt Bei dieser Ausbildung sind zwischen dem rohrförmigen äußeren Wellenteil und einem ebenfalls rohrförmigen inneren Wellenteil in längsverlaufend ange- 10 ordneten Nuten Kugeln in Reihen nebeneinander angeordnet und durch Verformung der Wellenteile eingepreßt, so daß die Kugeln die beiden Wellenteile radial gegeneinander verspannen. Solche Verbindungen sind entweder schwergängig in der axialen Verschieblichkeit 15 oder erfordern zur Erzielung einer gewissen Leichtgängigkeit der Axialverschiebung beider Wellenteile zueinander und zur Reduzierung des Verschleißes Bearbeitungen der Kugellaufflächen, um absolut ebene und gehärtete Laufflächen für die Kugeln zu erreichen.

Es ist Aufgabe der Erfindung, die drehmomentüberträgende Verbindung der axial ineinander verschieblichen Wellenteile einer Lenkwelle der eingangs definierten Gattung in der Weise weiterzuentwickeln, daß der Ausgleich von Fertigungstoleranzen und die Leichtgängigkeit der Axialverschieblichkeit auch ohne Bearbeitung möglich ist. Dabei soll eine Vereinfachung der Herstellung und somit eine Reduzierung des Kostenaufwandes für die Herstellung erreicht werden.

Gelöst wird diese Aufgabe mit einer Ausbildung, die 30 die Merkmale nach dem Kennzeichen des Patentanspruches 1 aufweist

Durch die Anordnung der Kugeln in gesonderten Laufbahnen aus Blech, welche in die längsverlaufenden setzt sind, entfallen Bearbeitungen der beiden Wellenteile zur Erzielung ebener Laufbahnen für die zwischen den beiden Wellenteilen eingespannten Kugeln.

Außerdem werden durch die Erfindungsmerkmale vor allem hochfrequente Schwingungen kompensiert, wie sie insbesondere bei Fahrzeugen der gehobenen Klasse auftreten, bei denen die Vorderradaufhängungen in einem Fahrwerksschemel gelagert sind, der während der Fahrt ständig schwingende Relativbewegungen zum Fahrzeugaufbau ausführt.

Das innere Wellenteil kann in an sich bekannter Weise aus vollem Werkstoff hergestellt werden. Eventuelle Fertigungstoleranzen und Unebenheiten auf dem Au-Benmantel des inneren Wellenteiles und dem Innenmantel des äußeren Wellenteiles werden durch die radiale 50 ihre Vorspannung, Vorspannung der Blechlaufbahnen ausgeglichen. Die Laufbahnen selbst werden in aller Regel aus einem gehärteten Stahlblech, insbesondere Federstahlblech, gebildet, um einerseits gehärtete Laufflächen für die Kugeln zu erzielen und um andererseits die Laufbahnen für 55 die Erzielung der Vorspannung ganz oder teilweise heranzuziehen. Vorteilhaft ist eine Ausgestaltung der Erfindung, bei der die Laufbahnen im Querschnitt vor dem Einbau eine etwas flachere Krümmung aufweisen als der Querschnitt der Längsnut in dem Wellenteil, in die 60 die Laufbahn eingesetzt werden soll. Beim Zusammenbau der beiden Wellenteile entsteht die Vorspannung für die Laufbahnen dann durch Verformung der Laufbahnen, so daß keine weiteren Mittel erforderlich sind. Ein anderer Weg besteht darin, die Laufbahnen in den 65 Längsnuten der Wellenteile auf Unterlagen aus einem elastischen Werkstoff anzuordnen, zum Beispiel auf Unterlagen aus einem elastischen Kunststoff, Gummi oder

dergleichen.

Laufbahnen im Sinne der Erfindung können die Kugeln lediglich auf einer Seite abstützen, so daß die Kugeln in dem anderen Wellenteil auf dem Material dieses Wellenteiles laufen. Das kann vorteilhaft sein, wenn zum Beispiel das innere Wellenteil aus vollem Material ohnehin einer Oberflächenbearbeitung unterzogen werden muß. Eine Alternative dazu besteht in der Anordnung von Laufbahnen in den korrespondierenden Nuten des äußeren Wellenteiles und des inneren Wellenteiles, so daß die Kugeln lediglich in den eingesetzten Laufbahnen beweglich sind.

Bei einer bevorzugten Ausführungsform der Erfindung sind mehrere Laufbahnen, die in benachbarte Längsnuten des Wellenteiles eingreifen, entweder durch Stege miteinander verbunden oder in einem breiteren Blechstreifen parallel zueinander ausgeformt. Auf diese Weise kann beispielsweise für die Kugeln einer Welle aus axial ineinander verschieblichen Teilen ein die Kugeln haltender Käfig gebildet werden, wodurch unter Umständen die Montage erheblich erleichtert wird. Vor allem an den Enden, aber auch im Bereich zwischen einzelnen Kugeln, lassen sich in der Laufbahn vorspringende Nasen ausbilden, die entweder nur die Endkugeln in einer Reihe oder auch andere Kugeln dazwischen teilweise umschließen und dadurch gegen Herausfallen sichern. Gleichfalls kann eine Sicherung gegen axiales Herausfallen des inneren Wellenteiles aus dem äußeren Wellenteil durch vorspringende Nasen, Abkantungen oder dergleichen der Laufbahn bzw. des Steges zwischen zwei benachbarten Laufbahnen erreicht werden, wobei diese Abkantung, Nase oder dergleichen in eine radial offene Ausnehmung des Wellenteiles eingreift.

Ein besonderer Vorteil der Erfindung ist darin zu se-Nuten des äußeren und des inneren Wellenteiles einge- 35 hen, daß durch den Einbau der Laufbahnen 6 und 7 eine progressive Verdrehkennlinje entsteht, die harte Drehmomentschläge unterbindet, wie es sich noch aus der Beschreibung einiger Ausführungsbeispiele ergibt.

Auf der Zeichnung sind mehrere Ausführungsbeispie-40 le teils schematisch dargestellt, die nachfolgend erläutert werden, um dabei weitere Einzelheiten der Erfindung zu beschreiben. Es zeigt

Fig. 1 eine Seitenansicht einer Welle aus zwei axial ineinander verschieblichen Wellenteilen mit teilweisem Längsschnitt durch eine Kugelreihe zur Übertragung des Drehmoments,

Fig. 2 bis 7 im Maßstab gegenüber Fig. 1 erheblich vergrößerte Querschnitte unterschiedlicher Ausführungsbeispiele für die Gestaltung der Blechbahnen und

Fig. 8 ein Beispiel für die Ausbildung einer Verliersicherung teilweise im Schnitt,

Fig. 9 ein Ausführungsbeispiel für die Erzielung der Vorspannung durch Materialverformung am Beispiel eines außen liegenden Blechstreifens entsprechend Fig. 2 in Vorderansicht und teilweiser Draufsicht und

Fig. 10 eine Endausbildung der Blechbahnen mit Anschlägen als Verliersicherung für die Kugeln im Querschnitt und in teilweiser Draufsicht.

Zur drehmomentübertragenden Verbindung der axial ineinander verschieblichen Wellenteile 1 und 2 sind Kugeln 3 in längsverlaufend angeordneten Nuten 4 auf der Innenseite des rohrförmigen äußeren Wellenteiles 1 und in Nuten 5 am Außenmantel des inneren Wellenteiles 2 aus vollem Werkstoff angeordnet. Die Kugeln 3 in Laufbahnen 6 und 7 aus Blech sind in Längsnuten 4 bzw. 5 eingesetzt. Diese Laufbahnen 6 und 7 sind vorteilhaft aus einem Federstahlbiech hergestellt und entsprechend

gehärtet. Zur Sicherung der axialen Lage dieser Laufbahnen 6 und 7 sind bei dem Ausführungsbeispiel in Fig. 1 ringförmige Endanschläge 8 und 9 vorgesehen, wobei die Anschläge 9 die Kugeln 3 gleichzeitig gegen Herausfallen sichern. Bei dem Ausführungsbeispiel nach den Fig. 2 und 3 wird das Drehmoment durch Kugeln 3 überträgen, welche in vier parallel zueinander ausgerichteten Reihen angeordnet sind. Unter einem Winkel von 40 Grad am Innenumfang des rohrförmigen äußeren Wellenteiles 1 angeordnete Nuten 4 sowie korrespondierende Nuten 5 am Außenmantel des inneren Wellenteiles 2 nehmen die Kugeln auf. Zwischen den Kugeln 3 und der Wandung der Nut im äußeren Wellenteil 1 sind Laufbahnen 6 und zwischen den Kugeln 3 sowie der Wandung der Nut am Außenmantel des inneren Wellenteiles 2 sind Laufbahnen 7 aus Federstahlblech angeordnet Je zwei benachbarte Laufbahnen 6 bzw. 7-sind in einem zusammenhängenden Blechstreifen 10 bzw. 11 ausgeformt Die Vorspannung wird dadurch erzielt, daß die Verbindung zwischen den beiden Lauf- 20 bahnen 6 und 7 in Einbaulage unter Vorspannung steht, zum Beispiel die Blechstreisen zwischen den Laufbahnen 6 und 7 im Querschnitt einen gegenüber dem Kugelradius geringeren Krümmungsradius aufweisen. Diese Ausbildung hat den Vorzug, daß die sich zwischen den 25 Längskanten der Laufbahnen und der Wandung der Längsnut des äußeren bzw. inneren Wellenteiles bildenden Hohlräume 12 und 13 bei der Übertragung eines Drehmomentes überbrückt werden, so daß sich die Längskanten dann an die Wandung der Längsnuten an- 30 legen, wie es in der Fig. 3 im Gegensatz zu der Fig. 2 dargestellt ist Diese Anlage der Längskanten der Laufbahnen erfolgt je nach der Belastungsrichtung 14. Dadurch wird eine progressive Verdrehkennlinie beim Aufbau eines zu übertragenden Drehmoments erreicht, 35 die harte Drehmomentschläge vermeidet.

Das Ausführungsbeispiel 4 zeigt in Abweichung von den Ausführungsbeispielen nach den Fig. 2 und 3 lediglich zwei Reihen aus Kugeln 3, die in innere längsverlaufend angeordnete Nuten 4 des äußeren Wellenteiles 1 bzw. am Außenumfang längsverlaufend angeordnete Nuten 5 des inneren Wellenteiles 2 eingreifen. Bei diesem Ausführungsbeispiel sind Laufbahnen 6 lediglich zwischen den Kugeln 3 und der Wandung der Längsnut 4 am Innenumfang des rohrförmigen äußeren Wellen- 45 teiles 1 angeordnet. Beide Laufbahnen 6 sind in einem gemeinsamen Blechstreifen 10 ausgeformt, der sich etwa mittig zwischen den beiden Laufbahnen 6 mit einer ausgeformten Sicke 15 oder dergleichen gegen die Innenfläche des äußeren Wellenteiles abstützt. Dies er- 50 möglicht eine Montage der beiden Laufbahnen 6 in dem Blechstreifen 10 durch Aufweiten der Krümmung dieses Blechstreifens 10, so daß die Kugeln 3 mit Vorspannung radial nach innen gepreßt werden. Bei dem Ausführungsbeispiel entsprechend Fig. 5 ist eine analoge Aus- 55 bildung auch für Laufbahnen 7 zwischen den Kugeln 3 und der Wandung der Längsnuten 5 im Außenmantel des inneren Wellenteiles 2 vorgesehen. Die beiden Laufbahnen 7 in den Nuten 5 am Außenmantel des inneren Wellenteiles 2 sind ebenfalls in einem gemeinsamen, die 60 Laufbahnen 7 miteinander verbindenden Blechstreifen 11 ausgeformt, wobei das spannungslose Profil dieses Blechstreifens 11 mit den beiden Laufbahnen 7 nach der Montage eine der Vorspannung durch den Blechstreifen 10 entgegenwirkende Vorspannung ergibt. Der Blech- 65 streifen 11 wird also bei der Montage stärker gekrümmt, so daß die Laufbahnen 7 nach dem Einbau eine radial nach außen wirkende Vorspannung aufweisen.

Die Fig. 6 zeigt anstelle der zu den Beispielen in den Fig. 4 und 5 beschriebenen Ausbildung eine andere Art der Vorspannung für die Laufbahn 6, welche bei diesem Beispiel in lediglich einer Längsnut in der Innenfläche des äußeren Wellenteiles 1 eingesetzt ist. Der Blechstreifen 6 stützt sich bei diesem Ausführungsbeispiel auf einer elastischen Unterlage 16 ab, welche aus einem elastischen Kunststoff, Gummi oder dergleichen besteht. Gleichzeitig soll mit diesem Ausführungsbeispiel gezeigt werden, daß es in einfachsten Ausführungsformen auch genügt, lediglich eine Laufbahn vorzusehen, um die durch die Erfindung angestrebte Wirkung zu erzielen. Auch bei diesem Ausführungsbeispiel weist die Laufbahn 6 im Querschnitt einen gegenüber dem Kugelradius geringeren Krümmungsradius auf. In einer weiteren Ausbildung des Ausführungsbeispieles nach der Fig. 6 wird in dem Ausführungsbeispiel nach der Fig. 7 eine Anordnung gezeigt, bei der Kugeln 3 in drei auf dem Umfang gleichmäßig verteilten Reihen in inneren Nuten 4 des äußeren Wellenteiles 1 bzw. äußeren Nuten 5 am Mantel des inneren Wellenteiles 2 angeordnet sind. Laufbahnen sind lediglich zwischen den Kugeln 3 und der Wandung der Längsnuten in dem inneren Wellenteil 2 angeordnet. Die radial nach außen wirkende Vorspannung der Laufbahnen 7 wird auch in diesem Ausführungsbeispiel durch die Anordnung der Lausbahnen mit Unterlagen 16 aus einem elastischen Werkstoff

Der Weg der Kugeln in den Laufbahnen 6 bzw. 7 wird durch auf der Laufbahn angeordnete Laschen 17 oder dergleichen begrenzt, die in den Fig. 2 und 3 mit gestrichelten Linien dargestellt sind Die Laufbahnen 6 bzw. 7 können ihrerseits durch eine Lasche 18, welche in eine Nut des Wellenteiles 2 bzw. auch 1 eingreift, axial gesichert werden, wie es in Fig. 8 beispielsweise dargestellt ist. Die Laschen 17 bzw. 18 sind auch aus der Draufsicht und dem Querschnitt in Fig. 10 erkennbar, die einen Blechstreifen mit zwei darin ausgeformten Laufbahnen für Kugeln benachbarter Kugelreihen zeigt. Eine weitere Art zur Erzielung der auf die Kugeln wirkenden radialen Vorspannung ist in der Fig. 9 dargestellt. Diese Figur zeigt in der oberen Querschnittsdarstellung einen entspannten Blechstreifen 10 mit zwei an dessen Längsrändern ausgeformten Laufbahnen 6, der bei der Montage stärker gekrümmt wird und somit eine radial nach außen gerichtete Spannung ausübt.

Patentansprüche

1. Lenkwelle für Kraftfahrzeuge, bestehend aus axial ineinander verschieblichen Wellenteilen mit einer drehmomentübertragenden Verbindung aus Kugeln, die in Reihen einerseits in inneren Längsnuten des rohrförmigen äußeren Wellenteiles und andererseits in äußeren Längsnuten des inneren Wellenteiles spielfrei eingespannt sind, dadurch gekennzeichnet, daß die Laufbahn (6, 7) der Kugeln (3) wenigstens einer Reihe aus einem in eine Längsnut (4, 5) lose eingesetzten Blech besteht, welches, bezogen auf die Mittellängsachse der Welle, radial unter Vorspannung gesetzt ist.

2. Lenkwelle nach Anspruch 1, dadurch gekennzeichnet, daß die Laufbahn (6, 7) durch einen lose eingelegten Streifen aus gehärtetem Stahlblech (Federstahlblech) gebildet ist

 Lenkwelle nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Laufbahn (6, 7) im Querschnitt vor dem Einbau eine vom Querschnitt der 5

Längsnut (4, 5) im Wellenteil (1, 2) abweichende Krümmung aufweist.

4. Lenkwelle nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß Laufbahnen (6, 7) für die Kugeln (3) nur in den Längsnuten (4, 5) eines der beiden Wellenteile (1, 2) vorgesehen sind.

5. Lenkwelle nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß Laufbahnen (6, 7) für die Kugeln (3) in den Längsnuten (4, 5) beider Wellenteile (1, 2) vorgesehen sind.

6. Lenkwelle nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß mehrere Laufbahnen (6, 7) durch Stege miteinander verbunden sind.

7. Lenkwelle nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß in einem zwischen dem äußeren und dem inneren Wellenteil (1, 2) eingelegten Blechstreifen (10, 11) mehrere Laufbahnen (6, 7) ausgeformt sind.

8. Lenkwelle nach einem der Ansprüche 6 und 7, dadurch gekennzeichnet, daß die miteinander verbundenen Laufbahnen in der Einbaulage gegeneinander vorgespannt sind.

9. Lenkwelle nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Laufbahnen (6, 7) auf Unterlagen (16) aus 25 einem elastischen Werkstoff angeordnet sind.

10. Lenkwelle nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Laufbahnen (6, 7) in den Längsnuten (4, 5) des einen Wellenteils (1, 2) vorspringende Nasen 30 (17) aufweisen, die wenigstens die Endkugeln (3) teilweise umschließen und diese gegen Herausfallen sichern.

11. Lenkwelle nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die 35 Laufbahnen (6, 7) gegen Axialverschiebung gegenüber dem zugehörigen Wellenteil (1, 2) gesichert sind.

Hierzu 2 Seite(n) Zeichnungen

•

55

60

Nummer: Int. Cl.5:

DE 37 30 393 C2 B 62 D 1/16

Veröffentlichungstag: 13. Januar, 1994

FIG. 1

·FIG.2

FIG.3

Nummer: Int. Cl.⁵:

Veröffentlichungstag: 13. Januar 1994

DE 37 30 393 C2 B 62 D 1/16

