

Indian Institute of Information Technology, Sri City, Chittoor

(An Institute of National Importance under an Act of Parliament)

Computer Communication Networks

Application Layer

Dr. Raja Vara Prasad

Assistant Professor

IIIT Sri City

Application Layer

Network Applications

Network application development -- writing programs that run on

different end systems and communicate with each other over the network

Example:

Web application \rightarrow two distinct programs that communicate with each other:

- the browser program running in the user's host (desktop, laptop, tablet, smartphone, and so on);
- the Web server program running in the Web server host.
- in P2P file-sharing system there is a program in each host that participates in the file-sharing community

Network Applications

- do not need to write software that runs on network core devices, such as routers or link-layer switches
- Network core devices do not function at the application layer
- function at lower layers— specifically at the network layer and below

Figure 2.1 • Communication for a network application takes place between end systems at the application layer

Network Applications

- Applications use the services of network (Transport layer)
- For an application developer, architecture and services of network are fixed
- Architectures of applications:
 - Client-Server architecture
 - Peer-to-Peer (P2P) architecture
- Application developer decides on the architecture and services of transport layer to be used.

Client-Server Architecture

- Server: An end system that serves the requests from various hosts.
- A server is always ON.
- Client: An end system that requests a server for content.
- A client can be either ON-OFF or always ON.
- Example applications using this architecture: web, e-mail, file transfer, etc.

a. Client-server architecture

Peer-to-Peer Architecture

- End systems communicate by a direct connection.
- The end systems are called peers.
- Example applications: skype, internet telephony, torrents, etc
- Advantages:
 - File distribution
 - Self-scalable: can handle growth in traffic
 - Cost effective: no server infrastructure and server bandwidth.
- Challenges in P2P Architecture:
 - ISP friendly: asymmetric data traffic.
 - Security
 - Incentives: Peers should share bandwidth.

b. Peer-to-peer architecture

Processes Communicating

- A process is a program that is running within an end system.
- A client process is a process running on a client and a server process is process running on a server.
- It is the client process and server processes that are actually communicating.
- A process sends and receives messages to and from transport layer through a software interface known as socket.
- A socket is also known as Application Programming Interface (API).

Interface Between the Process: API

Figure 2.3 • Application processes, sockets, and underlying transport protocol

Services of Transport Layer

- Reliable data transfer: Guaranteed data delivery service.
- Throughput
- Timing: for example, it is guaranteed that a packet will be delivered no more than 100 msec later.
- security: end-point authentication, encryption and decryption.

Requirements of Applications

Data Loss	Throughput	Time-Sensitive
No loss	Elastic	No
No loss	Elastic	No
No loss	Elastic (few kbps)	No
Loss-tolerant	Audio: few kbps—1Mbps Video: 10 kbps—5 Mbps	Yes: 100s of msec
Loss-tolerant	Same as above	Yes: few seconds
Loss-tolerant	Few kbps—10 kbps	Yes: 100s of msec
No loss	Elastic	Yes and no
	No loss No loss No loss Loss-tolerant Loss-tolerant	No loss Elastic No loss Elastic No loss Elastic (few kbps) Loss-tolerant Audio: few kbps—1 Mbps Video: 10 kbps—5 Mbps Loss-tolerant Same as above Loss-tolerant Few kbps—10 kbps

Figure 2.4 ◆ Requirements of selected network applications

Transport protocols

- Transmission Control Protocol (TCP)
 - Connection oriented service: handshaking, full-duplex connection
 - Reliable data transfer service: packets get delivered without error and in proper order.
 - Congestion control
- User Datagram Protocol (UDP)
 - Connectionless
 - Unreliable data transfer service.
 - No congestion control

Applications

Application	Application-Layer Protocol	Underlying Transport Protocol
Electronic mail	SMTP [RFC 5321]	TCP
Remote terminal access	Telnet [RFC 854]	TCP
Web	HTTP [RFC 2616]	TCP
File transfer	FTP [RFC 959]	TCP
Streaming multimedia	HTTP (e.g., YouTube)	TCP
Internet telephony	SIP [RFC 3261], RTP [RFC 3550], or proprietary (e.g., Skype)	UDP or TCP