Blatt 01: Reguläre Sprachen

A1.1: Sprachen von regulären Ausdrücken (1P)

regex: $a\ +\ a\ (a\ +\ b)^*\ a$ \$ welche Sprache?

Antwort:

Das Wort "a" (Teil vor dem +) oder Wärter beginnend mit "a", endend mit "a" und dazwischen beliebig viele oder keine "a" oder "b" { a } oder { a (a oder b oder nichts)* a}

A1.2: Bezeichner in Programmiersprachen (3P)

Bezeichneraufbau:

- Variablennamen beginnen mit **V**(global) oder **v**(lokal)
- Funktions- und Methodenparameter mit p, KLassenparameter (Definition von Vererbung) mit P
- Weitere müssen mit (a-z, A-Z) beginnen
- folgen dürfen Buchstaben, Ziffern und Untersreich
- dürfen nicht mit Unterstrich enden
- müssen mindestens zwei Zeichen haben

regulärer Ausdruck + 2 Beispiele

Antwort:

 $L=(V+v+P+p+a-z+A-Z)(a-z+A-Z+0-9+_)^*(a-z+A-Z+0-9)$

Beispiele:

Bezeichner	Teil	Teil des regex
Vcount1	V	\$(V+v+P+p+a-z+A-Z)\$
	count	\$(a-z+A-Z+0-9+_)^*\$
	1	\$(a-z+A-Z+0-9)\$
p_name_3	р	\$(V+v+P+p+a-z+A-Z)\$
	name	\$(a-z+A-Z+0-9+_)^*\$
	3	\$(a-z+A-Z+0-9)\$

DFA + 2 Beispiele

Beispiele:

• Vcount1 = start -> q0 --"V"--> q1 --"o"--> q2 --"unt2"--> q2 -> ende

reguläre Grammatik + 2 beispiele

A1.3: Gleitkommazahlen in Programmiersprachen (2P)

Aufbau Gleitkommazahlen in Python und Java.

Antwort:

Java:

- optionales Vorzeichen
- mind. eine Ziffer vor dem Dezimalpunkt
- optionaler Dezimalteil (Punkt + Nachkommastelle)
- optionaler Exponentialteil (opt. Vorzeichen, Ziffern)

Python: float

- optionales Vorzeichen
- mind. eine Ziffer vor dem Dezimalpunkt
- optionaler Dezimalteil (Punkt + Nachkommastelle)

Regex, DFA, Grammatik

Java

- Regex: \$[-,+]?[0-9]^+(.[0-9])?((e+E)[+-][0-9]^)?\$
- Beispiele:

((e+E)([+,-])?[0-9]^*)?	
+	

(kein Exponent)

hier muss bei q0-q1 das plus noch mitgegeben werden

- Beispiele:
- 3.1415 : start --> q0 --"3"--> q2 --"."--> q3 --"1415"--> q4 --> ende
- • -12.34e+5: start --> q0 --"-"--> q1 --"1"--> q2 --"2"--> q2 --"."--> q3 --"34"--> q4 --"e"--> q5 --"+"--> q6 --"5"--> q7 --> ende
- Grammatik

 $N = \{S, A, B, C, D, E, F\}$

T = {{+,-}: vorzeichen, {0-9}: zahl, ".": punkt, {e, E}: expo}

S = S

 $\mathsf{P} = \{$

- S -> (vorzeichen) A | A
- A -> (zahl) B
- B -> (zahl) B | (punkt) C | (expo) D | ε
- C -> (zahl) C | (expo) D | ε
- D -> (vorzeichen) E | E
- E -> (zahl) F
- F -> (zahl) F | ε

} (Produktionen)

Beispiel

3.1415

S --> A --> 3 B --> 3 . C --> 3 . 1 C --> 3 . 14 C --> 3 . 141 C --> 3 . 1415 C --> 3 . 1415 ε

-12.34e+5

Python

- Regex: \$-?[0-9]^+(.[0-9]*)?\$
- Beispiele:

Zahl	Teil	Teil des regex
-12.34	-	-?
12	[0-9]^+	
.34	(.[0-9]^+)?	
3.1415	3	[0-9]^+
.1415	(.[0-9]^+)?	

DFA

- Beispiele:
- • -12.34: start --> q0 --"-"--> q1 --"1"--> q2 --"2"--> q2 --"."--> q3 --"34"--> q4 --> ende
- Grammatik
- T = {{-}: vorzeichen, {0-9}: zahl, ".": punkt}
- • P = {
- S -> (vorzeichen) A | A

} (Produktionen)

Beispiel

- 3.1415
- 0 S --> A --> 3 B --> 3 . C --> 3 . 1 C --> 3 . 14 C --> 3 . 141 C --> 3 . 1415 C --> 3 . 1415 ϵ
- -12.34

A1.4: Mailadressen? (1P)

Warum $(a-z)^+\theta(a-z).(a-z)$ ungeeignet für emails?

- erlaubt keine großbuchstaben
- keine zahlen
- nur ein kleiner buchstabe nach @ und nach .
- keine sonderzeichen erlaubt
- -> zu wenig möglichkeiten, eine sole email wirds nicht geben

a + b + c + c + 1 ist besser, aber immer noch nicht richtig. Warum?

• Weil weiterhin keine Großbuchstaben akzeptiert werden

- c ist doppelt
- theoretisch erlauben wir damit a, b, c, "...", z, also nicht das alphabet

Verbessert

 $((a-z, A-Z)^{, [0-9]^{+})^{+}@(a-z)^{.}(a-z)^{*}$

weiterhin nicht optimal, da keine sonderzeichen, könnte mit zahlen beginnen, etc

A1.5: Der zweitletzte Buchstabe (1P)

\$\Sigma = \lbrace 1,2,3 \rbrace\$, wort[länge-2] === wort[1]

A1.6: Sprache einer regulären Grammatik (2P)

 $S \rightarrow a A$

 $A \rightarrow dB \mid bA \mid cA$

 $\mathsf{B} \to \mathsf{a} \, \mathsf{C} \, | \, \mathsf{b} \, \mathsf{C} \, | \, \mathsf{c} \, \mathsf{A}$

 $\mathsf{C} \to \epsilon$

- wörter beginnen mit a
- haben mindestens 2 zeichen
- bestehen aus {a,b,c,d}

