

Formuefordeling og sykefravær

Kandidatnummer 28 og 35

Handelshøgskolen ved UiT

Juni 2025

For ord

Vi vil takke vår veileder Espen Sirnes for strålende veiledning og flotte samtaler på kontoret.

Innholdsfortegnelse

Innholds for tegnelse

1	Innl	edning		7
		1.0.1	Bakgrunn	7
		1.0.2	Problemstilling	8
		1.0.3	Oppsett	8
2	Teo	ri		8
	2.1	Begrep	osdefinisjoner	9
		2.1.1	Formue (bruttofinanskapital)	9
		2.1.2	Sykefravær	9
		2.1.3	Jobbkrav	10
		2.1.4	Jobbressurser	10
		2.1.5	Motivasjon	10
	2.2	Job De	emands-Resources (JD-R modellen)	11
		2.2.1	Formue i JD-R	12
	2.3	Tidlige	ere forskning	13
		2.3.1	Mikronivå: JD-R-studier i helse- og omsorgssektoren	13
		2.3.2	Mikronivå: formue-helse-koblinger	13
		2.3.3	Mikronivå: JD-R-studier i Norge	14
		2.3.4	Makronivå: Ulikhet i samfunnet	14
	2.4	Model	loppsett	15
		2.4.1	Hypoteseliste	16
3	Data	a		16
	3.1	Dataki	lde og utvalg	17
	3.2	Variab	ler	17
		3.2.1	Avhengig og uavhengig hovedvariabel	18
		3.2.2	Latente variabler	19
		3.2.3	Kontrollvariabler	20
	3.3	Deskri	ptiv statistikk	21
		3.3.1	Figurer	24

Innholdsfortegnelse

4	Met	ode		30
	4.1	Structu	ural Equation Model (SEM)	30
		4.1.1	Ligning til modellen	30
		4.1.2	Forklaring av alle deler i modellen	31
		4.1.3	Beskrivning av metode	31
		4.1.4	SEM-spesifikasjoner	32
		4.1.5	Estimator	32
		4.1.6	Hypoteser	33
5	Ana	lyse og	resultater	35
		5.0.1	Tolkning av resultater	35
		5.0.2	Resultat for vår hovedmodell	37
	5.1	Resulta	at knyttet til modell 1	37
		5.1.1	Prediksjon av log-transformert sykefravær i modell 1	37
		5.1.2	Prediksjon av motivasjon	38
		5.1.3	Redegjørelse for effekt av kontrollvariabler i modell 1	38
	5.2	Resulta	at knyttet til modell 2	39
	5.3	Resulta	at knyttet til modell 2	41
		5.3.1	Prediksjon av log-transformert sykefravær i modell 2	41
		5.3.2	Prediksjon av motivasjon	42
		5.3.3	Redegjørelse for effekt av kontrollvariabler i modell 2	42
	5.4	Samme	enligning av modell 1 og modell 2	43
	5.5	Model	tilpasning	43
		5.5.1	Oppsummering av hypotesestøtte	44
		5.5.2	Redegjørelse for svakheter i modellen/data	44
6	Disk	cusjon		46
	6.1	Oppsu	mmering av funn og problemstilling	46
		6.1.1	Teori og tidligere forskning	46
		6.1.2	Styrker og svakheter ved analysen	48
		6.1.3	Diskusjon av implikasjoner for policy gitt svakheter	49
		6.1.4	Framtidig forskning:	49
7	Kon	klusjon	l	51
		7.0.1	Tabell for 2023 sykefraværet	54

Figurliste 5

Figurliste

1	JD-R-modellen	11
2	Utvidet JD–R-modell med formue som moderator, indikatorer og motivasjonsløp	15
3	Sykefravær i 2022	24
4	Sykefravær i 2022 logtransformert med +0.01	25
5	Histogram og tetthetskurve for alder	25
6	Aldersgruppefordeling	26
7	Fordeling av bruttofinanskapital	26
8	Invertert kumulativ fordeling av bruttofinanskapital	27
9	Fordeling av utdanningsgrupper fordelt på kjønn	27
10	Boksplott av sykefravær etter formuegruppe	28
11	Boksplott av sykefravær etter utdanningsnivå	29
12	Fordeling av arbeidsrelaterte variabler	29
Tabe	elliste	
1	Deskriptiv statistikk for hovedvariabler (N = 6103)	
1 2	Deskriptiv statistikk for hovedvariabler (N = 6103)	
	•	
2	Deskriptiv statistikk etter formuegruppe	23
2 3	Deskriptiv statistikk etter formuegruppe	232323
2 3 4	Deskriptiv statistikk etter formuegruppe	232323
2 3 4 5	Deskriptiv statistikk etter formuegruppe	232323
2 3 4 5	Deskriptiv statistikk etter formuegruppe	23232331
2 3 4 5 6	Deskriptiv statistikk etter formuegruppe	23232331
2 3 4 5 6	Deskriptiv statistikk etter formuegruppe	2323233137
2 3 4 5 6	Deskriptiv statistikk etter formuegruppe	23 23 23 31 37
2 3 4 5 6	Deskriptiv statistikk etter formuegruppe	23 23 23 31 37
2 3 4 5 6	Deskriptiv statistikk etter formuegruppe	23 23 31 37 40 44

Sammendrag

Denne bacheloroppgaven undersøker hvordan individuelle økonomiske ressurser (målt som brutto-finanskapital) påvirker sykefravær blant yrkesaktive i Norge, med utgangspunkt i Job Demands–Resources (JD-R)-modellen. Vi benytter data fra Statistisk sentralbyrås levekårsundersøkelse om arbeidsmiljø 2022 (N = 6103), hvor formuevariabelen er transformert til en tilnærmet normalfordelt Z-skår (Formue_qnorm). Jobbkrav og jobbressurser modelleres som latente variabler basert på flere spørsmål om arbeidsmengde, arbeidstempo, selvbestemmelse og innflytelse. Motivasjon måles med en selvrapportert fempunkts skala. Sykefravær beregnes som forholdet mellom antall sykefraværsdagsverk og avtalte dagsverk, log-transformert for å håndtere høyreskjevhet.

Analysen gjennomføres ved Structural Equation Model (SEM) med WLSMV-estimator, først på hele utvalget (Modell 1) og deretter kun på de som faktisk har hatt sykefravær (Modell 2). I Modell 1 finner vi at høyere jobbkrav øker sykefravær, mens jobbressurser og formue reduserer det. Jobbressurser styrker også motivasjonen, som igjen fører til lavere sykefravær. Formue har derimot ingen direkte effekt på motivasjon, men reduserer sykefravær direkte. I Modell 2 svekkes effektene av jobbkrav og -ressurser, mens formue fortsatt har en signifikant negativ sammenheng med sykefravær. Motivasjon reduserer sykefravær i begge modeller.

Resultatene støtter teorien om at økonomisk trygghet fungerer som en buffer mot helse- og fraværsproblemer, mens jobbressurser fremmer motivasjon og reduserer fravær. Tverrsnittsdesign, selvrapportering og en stor andel nullverdier i sykefravær begrenser imidlertid muligheten for kausale tolkninger. Fremtidig forskning bør utforske ikke-lineære formueeffekter, modererende samspill mellom formue og arbeidsbelastning, samt mer detaljerte målinger av både formue og motivasjon.

1 Innledning

Denne bacheloroppgaven undersøker sammenhengen mellom sosioøkonomiske forhold og sykefravær, med et spesielt fokus på hvordan endringer i formuefordeling kan påvirke arbeidstakeres helse og fravær fra jobben. Vi benytter en Job Demands-Resources (JD-R)-modell som teoretisk rammeverk, og analyserer data fra Levekårsundersøkelsen om arbeidsmiljø.

1.0.1 Bakgrunn

I årene etter finanskrisen har vi observert en økende formueulikhet i mange vestlige land, inkludert Norge. (Zucman, 2019) Denne trenden kan forsterkes av, eller knyttes til, mekanismer beskrevet av Gatsby-kurven¹ og har blitt enda sterkere etter pandemien. Spesielt i boligmarkedet, hvor vi ser at lønnsveksten ikke har holdt tritt med prisøkningen på eiendeler. Dette har gjort det relativt vanskeligere for unge og de med lavere inntekter å opparbeide seg formue, for eksempel gjennom boligkjøp.

Formue fungerer som en buffer mot levekårsproblemer Normann (2009), og det å ta hensyn til formue gir et bedre syn på hvor økonomisk utsatt personer er enn kun inntektsmål Hattrem (n.d.). Personer med større formue kan lettere tåle midlertidig inntektsbortfall, mens mangel på formue øker risikoen for stress og helseproblemer når lønn blir eneste sikkerhet.

Vi forventer dermed at formuenivået til arbeidstakere har en effekt på spesielt motivasjon og helse, og dermed påvirker sykefraværet. Når det blir stadig vanskeligere å oppnå økonomisk trygghet og en akseptabel levestandard, kan det føre til økt stress, redusert jobbmotivasjon, og i verste fall dårligere helse og økt fravær. Hypotesene våre er basert på Job Demands-Resources (JD-R-modellen), som antyder at jobbkrav og jobbressurser påvirker sykefravær. Vi vil undersøke den direkte effekten av formue på sykefravær og motivasjon, i tillegg til JD-R-modellens kjernekomponenter. Hovedsakelig vil vi se på hvordan formue påvirker sykefravær, og der forventer vi at høyere formue gir lavere sykefravær.

Hvordan disse endringene påvirker arbeidstakeres helse og fravær er viktig for å kunne iverksette tiltak som kan motvirke negative konsekvenser av økende formueulikhet. Dette er spesielt viktig i en tid hvor vi ser en økende polarisering i samfunnet, og hvor det er viktig å sikre at alle har like muligheter til å oppnå økonomisk trygghet og god helse, uavhengig av formue og inntekt.

¹Gatsby-kurven viser en sammenheng mellom økonomisk ulikhet og redusert sosial mobilitet. Durlauf et al. (2022)

1.0.2 Problemstilling

Problemstillingen for oppgaven: Forklarer nivået på formue sykefraværet i Norge?. Vi vil undersøke om forskjellige formuegrupper har ulikt sykefravær, og om det er en sammenheng mellom formue og sykefravær. Vi vil også se på om det er andre faktorer som påvirker sykefraværet, og om disse faktorene kan forklare eventuelle sammenhenger mellom formue og sykefravær. Vi vil danne oss flere hypoteser basert på teori og tidligere forskning, og teste disse ved hjelp av en Structural Equation Model (SEM), hvor vi kontrollerer for andre relevante faktorer, som for eksempel alder, kjønn, utdanning.

Tidligere forskning har funnet at sosioøkonomiske forhold, som inntekt og utdanning, har en effekt på helse og sykefravær. Jaeggi et al. (2021) testet dette på et lite samfunn av innfødte i Tsimane i Bolivia, hvor de fant at økt formue hadde en positiv effekt på helse, mens større ulikhet ledet til respirasjonssykdom som førte til økt dødelighet.

I teorien starter vi med å gå gjennom begrepsavklaringer, hvor vi vil definere formue, sykefravær og andre relevante begreper. Deretter vil vi gå dypere inn i tidligere forskning på temaet, og se på tidligere funn, og hvilke mekanismer som kan forklare sammenhengen mellom formue og sykefravær.

1.0.3 Oppsett

Oppgaven er delt inn i følgende kapitler: I kapittel 2 vil vi gi en teoretisk bakgrunn for oppgaven, og gjøre rede for tidligere forskning på temaet. I kapittel 3 vil vi forklare metode og datagrunnlag, i kapittel 4 gjennomføres analysen og i kapittel 5 vil vi presentere resultatene fra analysen. Avslutningsvis i kapittel 6 vil vi diskutere resultatene, konkludere og gi anbefalinger for videre forskning.

2 Teori

I dette kapittelet vil vi gi en teoretisk bakgrunn for oppgaven, og gjøre rede for tidligere forskning på temaet. Vi vil først definere begrepene kortfattet, og deretter presentere teori og empiri som er relevant for oppgaven. Vi vil spesielt fokusere på JD-R-modellen, som er et mye brukt rammeverk for å forstå sammenhengen mellom arbeidsmiljø og helse.

2.1 Begrepsdefinisjoner

2.1.1 Formue (bruttofinanskapital)

Formue er et begrep som refererer til den totale verdien av eiendeler og investeringer som en person eller husholdning eier. Dette inkluderer kontanter, eiendom, aksjer, obligasjoner og andre finansielle eiendeler. Formue kan også referere til nettoformue, som er forskjellen mellom eiendeler og gjeld.

I studien vår vil vi bruke variabelen bruttofinanskapital² som en proxy for formue. Bruttofinanskapital omfatter bankinnskudd, andeler i aksje-,obligasjons- og pengefond, aksjer og obligasjons- og pengemarkedsfond, formue i aksjesparekonto, obligasjoner, aksjer og andre verdipapirer. (SSB, 2017) Som beskrevet i Normann (2009) fungerer formue som en buffer mot levekårsproblemer, og det er denne bufferen vi antar er sentral for hvordan arbeidstakere håndterer jobbrelaterte utfordringer. Vi vil undersøke hvordan formue direkte påvirker motivasjon og sykefravær.

2.1.2 Sykefravær

Sykefravær³ refererer til perioden en ansatt er borte fra jobb på grunn av sykdom eller skade dokumentert med egenmelding eller legemelding, i henhold til norske lover og avtaler. (SSB,2025)

I vår analyse vil vi bruke en selvberegnet sykefraværsprosent som avhengig variabel for 2022. Levekårsundersøkelsen inneholder ferdig aggregerte variabler for fravær, men for å ta sikre at målingen vår reflekterer fravær i forhold til den enkeltes avtalte arbeidsmengde så velger vi å lage dette målet selv. Vi benytter sykefraværsdagsverk i 2022 og avtalte dageverk, uten feriekorrigering fra datasettet. Sykefraværsprosenten (SF_i) for individ i defineres dermed som:

$$SF_i = \frac{\text{Antall sykefraværsdager}}{\text{Antall avtalte dagsverk}}$$

Dette gir oss et persontilpasset mål på sykefravær som tar høyde for individuelle arbeidsavtaler.

²Definisjon for bruttofinanskapital fra SSB

³Definisjon for sykefravær fra SSB.

2.1.3 Jobbkrav

Jobbkrav refererer til de kravene og utfordringene som ansatte må gjøre i jobben. Mer spesifikt, så refereres det til de fysiske, psykologiske, sosiale og organisatoriske kravene som stilles til ansatte i løpet av arbeidsdagen, og som derfor assosieres med fysiologiske eller psykologiske kostnader.(Schaufeli & Bakker, 2004)

Jobbkrav kan være både fysiske og psykiske, og kan inkludere krav som arbeidsmengde, tidsfrister, ansvar, og emosjonelle krav. Jobbkrav kan føre til stress og utbrenthet, og kan påvirke jobbengasjement og trivsel negativt.

I vår analyse vil vi gjøre jobbkrav om til en latent⁴ variabel som består av flere observerbare variabler. I denne variabelen vil vi inkludere variabler som måler arbeidsmengde, arbeidstempo og hvor mye ekstra arbeid som kreves i jobb.

2.1.4 Jobbressurser

Jobbressurser refererer til de fysiske og psykologiske, sosiale eller organisatoriske aspektene ved jobben som bidrar til å redusere jobbkrav og de assosierte psykologiske og fysiologiske kostnadene. Jobbressurser kan også bidra til å oppnå arbeidsmål, fremme personlig vekst og utvikling, og øke jobbengasjement og trivsel. Jobbressurser kan være både interne og eksterne, og kan inkludere faktorer som støtte fra kolleger og ledelse, muligheter for utvikling og læring, autonomi i arbeidet, og fleksibilitet i arbeidsoppgaver. (Schaufeli & Bakker, 2004)

Vi vil bruke jobbressurser som en latent variabel som består av følgende observerbare variabler:, grad av selvbestemmelse i oppgaver og arbeid som skal gjøres, grad av selvbestemmelse i hvordan arbeidet utføres, grad av arbeidstempo og grad av påvirkning på beslutninger i arbeidet.

2.1.5 Motivasjon

Motivasjon⁵ refererer til de indre og ytre faktorene som igangsetter og styrer atferd hos mennesker og dyr. Motivasjon kan være både indre (for eksempel personlig interesse eller glede ved å utføre

⁴En latent variabel er et underliggende, uobserverbart konstrukt som ikke kan måles direkte, men som modelleres gjennom flere målbare indikatorer. I SEM tolkes for eksempel «motivasjon», «jobbkrav» og «jobbressurser» som latente variabler: Vi antar at variasjonen i et sett av indikatorer reflekterer den samme underliggende faktoren.

⁵Per definisjon av SNL.

oppgaven) og ytre (for eksempel belønninger eller anerkjennelse fra andre). Motivasjon kan derfor påvirke jobbengasjement, trivsel og sykefravær.

I vår analyse har vi en variabel som måler individets selvrapporterte opplevde motivasjon og engasjement i jobben sin. Vi vil teste hvordan jobbressurser og formue direkte påvirker denne motivasjonen, og hvordan motivasjonen i sin tur påvirker sykefraværet.

2.2 Job Demands-Resources (JD-R modellen)

Job Demands-Resources-modellen ble først beskrevet av Demerouti et al. (2001) som et rammeverk for å forstå hvordan arbeidsmiljøet påvirker helse og trivsel. Modellen skiller mellom to typer faktorer: jobbkrav (job demands) og jobbressurser (job resources). Jobbkrav refererer til kravene og utfordringene som ansatte møter i jobben, mens jobbressurser refererer til de ressursene og støtten som ansatte har tilgjengelig for å håndtere disse kravene. Modellen antyder at en balanse mellom jobbkrav og jobbressurser er viktig for å opprettholde helse og trivsel på arbeidsplassen. Høyere jobbkrav kan føre til stress og utbrenthet, mens høyere jobbressurser kan føre til økt motivasjon og trivsel.

Vi velger JD-R modellen fordi den gir et godt rammeverk for å forstå hvordan jobbrelaterte faktorer påvirker utfall som sykefravær. Vi antar også at formuenivået i betydelig grad påvirker hvordan individer opplever og responderer på sin arbeidssituasjon.

I Figur 1 ser vi en presentasjon av JD-R-modellen. Jobbkravene og jobbressursene påvirker sykefraværet gjennom motivasjon. Vi antyder at jobbkravene har en negativ effekt på motivasjon, mens jobbressursene blir å ha en positiv effekt på motivasjon. Og dermed antar vi at sykefraværet også påvirkes av motivasjonen, hvor høyere motivasjon vil føre til lavere sykefravær.

Figur 1: JD-R-modellen

Schaufeli & Bakker (2004) testet i en SEM-analyse hvordan jobbkrav og jobbressurser forklarer utbrenthet og jobbengasjement. Studien viste at utbrenthet og jobbengasjement var negativt korrelert, og at jobbkravene hadde en positiv effekt på utbrenthet, mens jobbressursene hadde en signifikant

positiv effekt på jobbengasjement. Dette kan understøtte at høye krav skaper stress og fravær, mens ressurser fremmer engasjement og opplevelse av mestring. Denne studien fokuserer på hvordan utbrenthet har en medierende effekt på forholdet mellom jobbkrav og helseproblemer, og engasjement medierer forholdet til jobbressurser og intensjon om å slutte i arbeid. Studien deres inkluderte kun respondenter fordelt på fire forskjellige arbeidsplasser og yrker, og vi vil da videre fokusere på hvordan jobbkrav og jobbressurser påvirker sykefravær gjennom motivasjon, og hvordan formue kan moderere disse effektene for arbeidstakere i hele Norge.

2.2.1 Formue i JD-R

Vi mener at økonomiske ressurser som formue, kan bidra til å forklare sykefraværet og vil derfor inkludere formue som en direkte prediktor for både motivasjon og sykefravær i vår modell.

Hobfoll (1989) definerer ressurser som noe som kan hjelpe individer med å håndtere krav, og som kan fungere som en buffer mot stress (Conservation of Resources (COR)-teori). Formue kan ses som en slik økonomisk ressurs som gir en buffer som kan redusere sårbarheten for både jobbrelatert og generelt stress. Personer med høy formue kan ha større valgfrihet og tåle perioder med høy belastning eller økonomisk usikkerhet bedre, uten at det nødvendigvis går like hardt utover helse eller jobbmotivasjon. Motsatt vil personer med lav eller negativ formue ofte være mer økonomisk avhengige av inntekten fra arbeid, og kan derfor være mer sårbare for stressfaktorer.

Formue kan også ha betydning for fremtidsperspektiv og indre motivasjon. Personer med lav formue kan oppleve mindre kontroll over egen livssituasjon og lavere forventninger til fremtidig økonomisk trygghet, noe som potensielt svekker arbeidsglede og motivasjon. Det er også mulig at sammenhengen mellom formue og utfall som motivasjon eller sykefravær ikke er lineær; effekten av økt formue kan være sterkere for de med lav formue og avta med økende formuenivå (en bueformet effekt).

Selv om vår SEM-modell tester direkte lineære sammenhenger for formue, er det teoretisk interessant å vurdere formue som en faktor som kan påvirke hvordan individer opplever og håndterer jobbkrav og jobbressurser. Denne mer komplekse rollen som moderator, hvor formue endrer styrken på sammenhengen mellom arbeidsmiljøfaktorer og utfall, er ikke direkte testet med interaksjonsledd i vår analyse, men tanken om at formue kan dempe negative effekter av jobbkrav og forsterke positive effekter av jobbressurser, er relevant. Üngüren et al. (2021) fant for eksempel at økonomisk velvære⁶

⁶Økonomisk velvære kan defineres som en tilstand der en person fullt ut kan møte nåværende og løpende økonomiske forpliktelser, kan føle seg trygg på sin økonomiske fremtid, og er i stand til å ta valg som gjør det mulig å nyte livet. Financial Protection Bureau) (2015)

fungerte som en moderator som reduserte den negative effekten av jobbusikkerhet på utbrenthet.

Ved å inkludere formue som en direkte prediktor i vår JD-R-inspirerte modell, forsøker vi å fange noe av den direkte effekten av økonomisk trygghet. I et samfunn med økende økonomisk ulikhet er det viktig å forstå hvordan dette påvirker arbeidstakere og deres helse.

2.3 Tidligere forskning

Tidligere empirisk forskning har over tid vist positive forhold mellom forskjellige Job Demands-Resources-faktorer og årsaker som kan føre til sykefravær.

2.3.1 Mikronivå: JD-R-studier i helse- og omsorgssektoren

Vander Elst et al. (2016) brukte en JD-R-modell hvor de utførte en SEM-analyse på Belgisk hjemmepleiepersonell. Jobbkrav og jobbressurser ble modellert som prediktorer. Studien viste at jobbkravene var positivt assosiert med utbrenthet, mens jobbressursene var positivt assosiert med jobbengasjement. Denne studien viser også at JDR-mekanismer holder i andre sammenhenger hvor arbeidstakere er under emosjonelt press og skiftarbeid, noe som impliserer at JDR-modellen er robust på tvers av sektorer og bransjer.

2.3.2 Mikronivå: formue-helse-koblinger

Jaeggi et al. (2021) undersøkte effekten av ulikhet i formue i et småskala samfunn av innfødte i Tsimane i Bolivia med 871 observasjoner, n=871. I studien testet de relativ husholdningrikdom og ulikhet i formue mot forskjellige psykologiske variabler og helseutfall som depresjon, BMI, blodtrykk og sykelighet.

Studien viste til en kobling mellom formueulikhet hvor de med lavere formue hadde større sannsynlighet for å få høyere blodtrykk og luftveissykdommer som kunne lede til dødsfall. De fant også at de med høyere formue hadde lavere sannsynlighet for å få depresjon og høyere BMI. Dette indikerer at ulikhet i formue kan moderere stress og helserisiko på individnivå og vi antar da at dette kan være overførbart til Norge, og at formue kan moderere effekten av jobbkrav og jobbressurser på sykefravær.

2.3 Tidligere forskning

14

2.3.3 Mikronivå: JD-R-studier i Norge

Langseth-Eide & Vittersø (2021) bygger videre på tidligere forskning ved JD-R-modellen. De argumenterer for at JD-R-modellen ved tidligere forskning har hatt fokus på organisasjonsnivået, og at det er viktig å se på hvordan JD-R-modellen kan brukes bedre på jobbressurser, jobbengasjement og helserelaterte utfall. De gjorde en paneldata studie på fast ansatte i Norge med to års tidsforsinkelse med 1533 ansatte første tidsperiode, n=1533 og 1503 ansatte, n=1503 neste tidsperiode.

Over lengre tid fant de at jobbressurser hadde en positiv effekt på jobbengasjement, og at jobbengasjement var negativt assosiert med sykefravær. Dette impliserer at høyere jobbressurser kan føre til høyere jobbengasjement, som igjen kan føre til lavere sykefravær i Norge, og derfor vil vi bygge videre på denne studien ved å inkludere formue som en moderator i JD-R-modellen.

2.3.4 Makronivå: Ulikhet i samfunnet

JD-R-modellen operer primært på individnivå, men en makroøkonomisk studie om inntektsulikhet har vist at økonomisk ulikhet i en befolkning korrelerer med høyere sykefravær og dårligere helse. Pickett & Wilkinson (2015) undersøkte sammenhengen mellom inntektsulikhet og helse i 34 OECD-land, og fant at høyere inntektsulikhet var assosiert med høyere sykefravær og dårligere helseutfall. Studien viste også at inntektsulikhet hadde en negativ effekt på livskvalitet og trivsel, og at dette kunne føre til økt sykefravær. Det kan antas at inntektsulikhet forsterker psykososialt stress ved lav formue, derfor vil vi undersøke hvordan formue påvirker sykefravær i Norge, og hvordan formue kan moderere effekten av jobbkrav og jobbressurser på sykefravær.

Mekanismene som følger på mikronivå er da:

Høyere jobbkrav \rightarrow Økt utbrenthet \rightarrow Høyere sykefravær

Høyere jobbressurser \rightarrow Økt jobbengasjement \rightarrow Lavere sykefravær

Hvor formue fungerer som en moderator ved å påvirke stress til individer før jobbkravene utløser negative effekter på helse.

2.4 Modelloppsett 15

På makronivå vil samfunnsmessig ulikhet forme de jobbkrav og ressurser som virksomheter og arbeidstakere får, og dermed styrke JDR-mekanismer, også på tvers av sektorer og bransjer. Dermed får vi et teoretisk og empirisk grunnlag for vår undersøkelse av at:

Formue \rightarrow Jobbkrav og jobbressurser \rightarrow Sykefravær i Norge

2.4 Modelloppsett

Modellen vi blir å bruke blir da som følger:

Figur 2: Utvidet JD–R-modell med formue som moderator, indikatorer og motivasjonsløp.

I modellen vår (Figur 2) har vi inkludert formue som en moderator som påvirker både jobbkrav og jobbressurser. Dette betyr at formue kan endre hvordan jobbkrav og jobbressurser påvirker sykefraværet. Vi har også separate motivasjonsløp for jobbkrav og jobbressurser, som gjør at vi kan se hvordan motivasjon påvirkes av begge disse faktorene. Vi antar at formuen blir å fungere som en stress-avlastning eller buffer mot jobbkravene og forsterke effekten av jobbressurser, og fungere som en psykologisk trygghet. Dette kan føre til at personer med høyere formue opplever lavere sykefravær, mens de med lavere formue kan oppleve høyere sykefravær på grunn av økt stress og lavere tilgang til ressurser.

2.4.1 Hypoteseliste

Med dette rammeverket formulerer vi følgende hypoteser:

H1: Høyere jobbkrav gir høyere sykefravær (Direkte effekt $JK \to SF$)

H2: Høyere jobbressurser gir lavere sykefravær (Direkte effekt $JR \to SF$)

H3: Høyere formuenivå gir lavere sykefravær (Primært via økt motivasjon $FN \to M \to SF$ men også direkte effekt $FN \to SF$)

H4: Jobbressurser og formue øker motivasjon (Direkte effekter $JR \to M$ og $FN \to M$)

For en grundig gjennomgang av hypotesene og hvordan de er relatert til JD-R-modellen, se kapittel 4.1.6.

3 Data

I dette kapitlet går vi gjennom datagrunnlaget for oppgaven. Vi vil først forklare hvordan dataene er fremskaffet for å så forklare variablene. Vi vil også gi en innledende oversikt over dataene, inkludert deskriptiv statistikk for alle variablene i analysen.

I problemstillingen *forklarer nivået på formue sykefraværet i Norge?* så velger vi å bruke en Structural Equation Model fordi denne kan bedre vise oss hvordan formue påvirker sykefraværet, inkludert eventuelle indirekte sammenhenger via motivasjon, mellom variablene vi velger å bruke. Dette gjør analysen mer kompleks, men vi kan bedre peke på hvilke effekter som er positive eller negative på selve sykefraværet.

Dataen vi bruker er hentet fra Statistisk sentralbyrå (SSB) sin levekårsundersøkelse om arbeidsmiljø, som ble gjennomført i 2022. Vedlagt følger et bilde av kodeboken:

Codebook

Datafile

Levekårsundersøkelsen om arbeidsmiljø 2022, hovedfil

NSD3201

doi:10.18712/NSD-NSD3201-V2

Documents

Bye, L.S. og M.L. With. (2023) Levekårsundersøkelsen om arbeidsmiljø 2022,
 Dokumentasjonsnotat, Notat 2023/57, Statistisk sentralbyrå

Statistisk sentralbyrå har gjennomført levekårsundersøkelser siden 1973. Levekårsundersøkelsen kartlegger arbeidsmiljøforhold blant sysselsatte i Norge, og tar opp temaer som forhold på arbeidsplassen, fysisk, ergonomisk og psykososialt arbeidsmiljø, yrkesrelaterte helseplager og sykefravær og krav og muligheter for selvbestemmelse på jobb.

3.1 Datakilde og utvalg

Undersøkelsen er basert på et landsrepresentativt utvalg på 35 345 sysselsatte personer i alderen 18-66 til undersøkelsen i 2022. Utvalget er tilfeldig trukket fra folkeregisteret, og dataene er samlet inn gjennom telefonintervjuer og selvadministrert webskjema fra august 2022 til april 2023.

Den totale svarprosenten for undersøkelsen var på 51 prosent, og dataene er vektet for å være representativt for den norske befolkningen i alderen 18-66 for å korrigere for noen av skjevhetene i forbindelse med frafall.

3.2 Variabler

Vi kommer til å bruke flere variabler fra levekårsundersøkelsen for å analysere sammenhengen mellom formue og sykefravær. Vi vil bruke både avhengige og uavhengige variabler, latente variabler, samt kontrollvariabler for å kontrollere for andre faktorer som kan påvirke sykefraværet.

3.2 Variabler 18

3.2.1 Avhengig og uavhengig hovedvariabel

Sykefravær:

Datasettet inneholder en ferdig variabel for sykefraværsprosent (sfpros_uten_feriekorr_2022, sf-pros_uten_feriekorr_2023), men vi velger å beregne denne selv siden de med 0 fravær står som NA, også for å kunne ta høyde for avtalt arbeidstid.

Vi benytter variablene sfdagsvj_2022 (sykefraværsdagsverk) og mdagsv_2022 (avtalte dagsverk) fra Levekårsundersøkelsen. Sykefraværsraten (SF_i) for individ i beregnes som:

$$SF_i = \begin{cases} 0, & \text{hvis mdagsv_2022}_i > 0 \text{ og sfdagsvj_2022}_i = 0 \\ \frac{\text{sfdagsvj_2022}_i}{\text{mdagsv_2022}_i}, & \text{hvis mdagsv_2022}_i > 0 \text{ og sfdagsvj_2022}_i > 0 \\ \text{NA}, & \text{hvis mdagsv_2022}_i \leq 0 \end{cases}$$

Dette gjør at individer med avtalte dagsverk, men uten legemeldt sykefraværsdager, får verdien 0 i stedet for NA slik det gjøres i den ferdigberegnede variabelen sfpros_uten_feriekorr_2022.

Vi har fjernet alle som har over 14 dager sammenhengende sykefravær, for å unngå å inkludere langtidssykemeldte som kan ha andre årsaker til fravær enn de vi ønsker å undersøke. Dette gjør at vi får et mer representativt bilde av korttidsfravær og dets sammenheng med formue.

Formue:

Bruttofinanskapital i alt vil være vår hoveduavhengige variabel, og vi vil bruke bruttofinanskapital i alt som mål på formue. Denne variabelen inneholder verdien av alle finansielle eiendeler som respondenten eier, inkludert kontanter, aksjer, obligasjoner og andre investeringer og har en maks verdi på 2 500 000.

Formuefordelingen er veldig høyreskjev med mange individer med lav formue og få med svært høy formue. Denne skjevheten med mange observasjoner i den nedre enden av formuefordelingen og få i den øvre enden, kan skape problemer for analysen vår. Gjennomsnitt vil være sterkt påvirket av de få ytre ekstreme verdiene og vi kan se at variansen ikke er konstant.

Vi kan ikke forvente lineære sammenhenger over hele skalaen så for å håndtere denne skjevheten og representere formue på en skala som bedre viser den relative formuen til individer, så transformerer 3.2 Variabler

vi formuevariabelen. Vi bruker en invertert kumulativ fordeling⁷ (ved bruk av qnorm i R) for å nor-

malisere formuefordelingen. Vi gjør dette med samme begrunnelse som Gugushvili & Wiborg (2025)

hvor det gjøres for å kunne sammenligne den relative formuen til individer i stedet for den absolutte

formuen.

Resultatet er en variabel der hver individets formuesverdi er erstattet med en Z-skåre som reflekterer

deres relative posisjon i formuefordelingen, men på en skala som er tilnærmet normalfordelt, som

vist i Figur 8. En verdi på 0 på Formue quorm indikerer en formue nær medianen (eller gjennom-

snittet, siden fordelingen nå er relativt symmetrisk). En verdi på -1 indikerer en formue omtrent ett

standardavvik under medianen, og +1 ett standardavvik over.

Denne metoden rangerer alle de observerte formueverdiene for å konvertere dem til Z-skårer fra en

standard normalfordeling. Dette gjør at variabelen er mindre sensitiv for ekstreme verdier, og at vi

kan bruke formue som en kontinuerlig variabel i analysen.

Vi definerer lav formue som de mer enn et standardavvik under gjennomsnittet, middels formue som

de innenfor ett standardavik, og høy formue som de mer enn ett standardavvik over gjennomsnittet.

En av våre hypoteser er at formue påvirker individets sensitivitet for inntektsendringer. Altså indi-

videts konsumnnivå eller etterspurt fritid endrer seg ulikt basert på om de har mye formue eller ikke.

Dette kan være fordi individet har mer buffer til å tåle endringer i inntekt, og dermed kan individet

være mer villig til å ta seg fri fra jobb. Motsatt vil individer med lav formue være mer sårbare for

inntektsendringer, og kan derfor være mindre tilbøyelige til å være borte fra jobb, selv ved sykdom,

for å opprettholde sin inntekt. Dette kan bety at de med høyere formue har bedre forutsetninger for

å opprettholde god helse som ved en mindre belastende jobbsituasjon, noe som kan føre til lavere

sykefravær, mens de med lavere formue opplever mer stress knyttet til økonomi, som kan gi høyere

sykefravær.

3.2.2 Latente variabler

Jobbkrav:

⁷Invertert kumulativ fordeling er en metode for å transformere en variabel slik at den følger en normalfordeling, og

19

brukes ofte for å håndtere skjevheter i data.

3.2 Variabler 20

Jobbkrav er en latent variabel som vi måler med tre indikatorer: For mye arbeid (QPS15_ny), Høyt arbeidstempo (QPS14_ny) og Ekstra arbeid (Sp47f). Disse indikatorene er basert på spørsmål i Levekårsundersøkelsen som måler hvor mye arbeid respondenten opplever at de har, hvor høyt tempo de opplever på jobben, og om de ofte må gjøre ekstra arbeid utenom det som er avtalt. Disse indikatorene vil gi oss en indikasjon på hvor høye jobbkravene er for individet.

Jobbressurser:

Jobbressurser er en latent variabel som vi måler med fire indikatorer: Grad av selvbestemmelse over oppgaver (Sp56a2), Grad av selvbestemmelse over arbeid som skal gjøres (Sp56b2), Grad av påvirkning på beslutninger i arbeidet (QPS53) og til hvilken grad man kan bestemme eget arbeidstempo (QPS47). Disse indikatorene er basert på spørsmål i Levekårsundersøkelsen som måler hvor mye støtte og ressurser respondenten opplever at de har på jobben, og hvor mye kontroll de har over eget arbeid. Disse indikatorene vil gi oss en indikasjon på hvor gode jobbressursene er for individet.

3.2.3 Kontrollvariabler

Alder:

Alder til respondenten ved utgangen av 2022. Denne kontrollvariabelen gjør vi ordinal ettersom vi fordeler alderen til respondenten i aldersgrupper. Vi vil bruke aldersgruppene 18-29, 30-54 og 55-66 år. Da kan vi påpeke hvis det er forskjeller i sykefravær mellom de forskjellige aldersgruppene fra unge til eldre personer.

Kjønn:

Kjønn til respondenten. Denne kontrollvariabelen er en dummyvariabel, hvor 0 er kvinne og referansekategorien 1 er menn. Da vil vi i analysen direkte se effekten av å være kvinne på sykefraværet.

Utdanning:

Utdanningsnivået til respondenten er en ordinal variabel, og vi vil bruke utdanningsgruppene grunnskole eller mindre, videregående skole, Universitet/Høgskole og forskernivå. Denne variabelen inkluderes for å justere for mulige utdanningsrelaterte forskjeller i sykefravær.

Motivasjon:

For variabelen motivasjon bruker vi selvrapportert motivasjon på jobb (M) som en ordinal variabel, og vi vil bruke denne variabelen for å kontrollere for eventuelle forskjeller i sykefraværet basert på hvor motivert respondenten er på jobben sin. Variabelen er basert på en skala med 5 nivåer (1=svært sjelden/aldri motivert til 5=veldig ofte motivert).

Barn:

Har barn under 5 år i husholdningen som er en kategorisk variabel. Vi vil bruke denne variabelen for å kontrollere for eventuelle forskjeller i sykefraværet basert på om respondenten har barn under 5 år.

Stillingsprosent (SP_i) :

Antall timer en person arbeider er en sentral faktor som kan påvirke både eksponering for jobbkrav og jobbressurser og forekomsten av sykefravær. Studien til Langseth-Eide (2019) om "workaholism" og jobbengasjement innenfor JD-R-modellen, viser at et høyt timeantall på jobb ikke er et ensartet fenomen. Både ansatte som er "workaholics" (med potensielt negative helsekonsekvenser) og de som er høyt jobbengasjerte (ofte med positive helseeffekter) kan rapportere å jobbe mer enn forventet. Dette indikerer at årsakene til, og konsekvensene av, mange arbeidstimer kan variere betydelig.

For å ta høyde for denne kompleksiteten og kontrollere for variasjon i arbeidsomfang, inkluderer vi respondentens avtalte stillingsprosent (arb_stillingspst) som en kontrollvariabel. Denne variabelen reflekterer den formelle arbeidsmengden. Ved å inkludere stillingsprosent (SP_i) i modellen, kan vi forsøke å se effekten for en ulik "eksponeringstid".

3.3 Deskriptiv statistikk

I dette avsnittet vil vi gi en oversikt over deskriptiv statistikk for alle variablene i analysen. Vi vil presentere gjennomsnitt, standardavvik og minimums- og maksimumsverdier for alle variablene, samt korrelasjonsmatrisen for de uavhengige variablene.

I Tabell 1 presenteres deskriptiv statistikk for alle variablene i analysen. Vi ser at sykefraværet i 2022 har et gjennomsnitt på 1.70 prosent (0.0170), med en minsteverdi på 0 prosent og maksimalverdi på 48.08 prosent. Alder ligger på et gjennomsnitt på 43.33 år, med en minsteverdi på 18 år og maksimalverdi på 66, som stemmer med alderen til respondentene i datasettet. Utdanningsnivået har et gjennomsnitt på 4.65, som tilsvarer videregående skole, med en minimumsverdi på 2 (grunnskole eller mindre) og en maksimumsverdi på 8 (doktorgrad).

Av de opprinnelig 17971 inviterte respondentene i datasettet så fullførte 6 103 svarene til alle de relevante variablene etter at vi fjernet de som var langtidssykemeldt over 2 uker. Den endelige andelen av de inviterte blir da $\frac{6103}{17971}=33.9\%$. Dette kan føre til skjevheter i dataene, og kan bli en svakhet ved analysen når vi tolker resultatene. Siden det er vanskelig for oss å vite om det er systematiske forskjeller mellom de som svarte og de som ikke svarte, så kan vi ikke si noe sikkert om hvor representativt utvalget er for den norske befolkningen.

Variabel	Min	1. Q	Median	Mean	3. Q	Max	N
Sykefravær 2022	0.0000	0.0000	0.0000	0.0170	0.0193	0.4808	6103
Alder	18	33	45	43.33	54	66	6103
Utdanning	2	4	4	4.65	6	8	6103
Tilfredshet	1	4	4	4.19	5	5	6103
Motivasjon	1	4	4	4.03	5	5	6103
Barn	0	0	0	0.14	0	1	6103
Selvbestemmelse (oppgaver)	1	2	3	3.03	4	5	6103
Selvbestemmelse (arbeidsinnhold)	1	3	4	3.73	4	5	6103
Grad arbeidstempo	1	3	4	3.37	4	5	6103
Påvirkningsgrad	1	3	3	3.47	4	5	6103
For mye arbeid	1	3	4	3.95	5	5	6103
Høyt arbeidstempo	1	4	4	4.13	5	5	6103
Ekstra arbeid	1	1	2	2.63	4	5	6103
Stillingsprosent	0	100	100	90.66	100	120	6103

Tabell 1: Deskriptiv statistikk for hovedvariabler (N = 6103)

I Tabell 2 ser vi at sykefraværet i 2022 har et gjennomsnitt på 2 prosent (0.02) for de med lav formue, 2 prosent (0.02) for de med middels formue og 1 prosent (0.01) for de med høy formue. Dette antyder at de med høyere formue har litt lavere sykefravær, selv om forskjellene er relativt små.

Alderen øker noe med formuegruppe: gjennomsnittsalderen er 40.44 år i lav formue, 42.43 år i middels formue og 49.96 år i høy formue. Når motivasjon måles på skalaen 1–5, er gjennomsnittsskårene 3.98 i lav formue, 4.02 i middels formue og 4.15 i høy formue.

Forskjellene i motivasjon er små, men systematisk: personer med høy formue rapporterer noe høyere motivasjon enn de med lav formue, tilfredshet følger også omtrent samme mønster (4.14 mot 4.17 og 4.29). Samtidig ser vi at de med høyest formue også har den høyeste gjennomsnittsalderen, noe som indikerer en kobling mellom alder og formue (eldre personer har gjerne opparbeidet mer formue).

	Lav formue (n = 883)		Middels	Formue (n = 4255)	Høy formue (n = 965)	
Variabel	M	SD	M	SD	M	SD
Alder	40.44	12.61	42.43	12.41	49.96	10.24
Motivasjon	3.98	0.98	4.02	0.90	4.15	0.83
Tilfredshet	4.14	0.88	4.17	0.85	4.29	0.76
Sykefravær 2022	0.02	0.05	0.02	0.04	0.01	0.03

Tabell 2: Deskriptiv statistikk etter formuegruppe

I Tabell 3 presenteres deskriptiv statistikk for sykefravær etter kjønn. Vi ser at sykefraværet i 2022 har et gjennomsnitt på 1 prosent for menn og 2 prosent for kvinner, kvinner har da dobbelt så høyt sykefravær enn menn. Dette kan skyldes at kvinner i større grad enn menn jobber i yrker med høyere sykefravær, eller at kvinner er mer tilbøyelige til å rapportere sykefravær enn menn. Det kan også være andre faktorer som påvirker sykefraværet, som for eksempel alder, utdanning og arbeidsforhold. Vi ser også at vi har en bra fordeling av kvinner og menn i utvalget, der 47.9 prosent av respondentene er kvinner og 52.1 prosent er menn.

Kjønn	N	%	Gj.snitt sykefravær	SD
Mann	3177	52.1	1% (0.01)	4 (0.04)
Kvinne	2926	47.9	2% (0.02)	4 (0.04)

Tabell 3: Deskriptiv statistikk for sykefravær etter kjønn (N = 6103)

I Tabell 4 presenteres deskriptiv statistikk for sykefravær etter utdanningsnivå. Vi ser at sykefraværet i 2022 har et gjennomsnitt på 2 prosent for de med grunnskole eller mindre, 2 prosent for de med videregående skole og 1 prosent for de med universitet/høgskole. Dette tyder på at sykefraværet er høyere for de med lavere utdanning, og at det kan være en liten sammenheng mellom utdanningsnivå og sykefravær.

Utdanningsnivå	N	%	Gj.snitt sykefravær	SD
Grunnskole eller mindre	816	13.3	2% (0.02)	4 (0.04)
Videregående	2941	48.2	2% (0.02)	4(0.04)
Universitet/Høgskole	2346	38.5	1% (0.01)	4 (0.04)

Tabell 4: Deskriptiv statistikk for sykefravær i 2022 etter utdanningsnivå (N = 6103).

3.3.1 Figurer

I Figur 3 presenteres histogram og tetthetskurve for sykefraværet i 2022. Vi ser at sykefraværet er veldig høyreskjevt, med en høyere andel av respondentene som har lavt sykefravær enn de som har høyt sykefravær både på menn og kvinner. Vi vet fra Tabell 3 at gjennomsnittet er på 3 prosent for menn mens det er på 6 prosent for kvinner, noe som gjenspeiles i grafen. Det er vanskelig å se, men det er også noen uteliggere hvor flere respondenter har mer enn 40 prosent sykefravær på både menn og kvinner, noe som fører til halen som strekker seg mot høyre i histogrammet.

Figur 3: Sykefravær i 2022

I 2022 var det n=4081 som hadde 0% sykefravær, dette gjør at vår fordeling er tydelig høyreskjev. I Figur 4 er sykefraværet logtransformert med +0.01, noe som fører til å glatte ut fordelingen og gjøre den mer normalfordelt. Dette er en vanlig teknikk for å håndtere høyreskjeve fordelinger, og det gjør at vi kan gjøre analysen vår mer robust mot skjevheter. Men selv om vi har logtransformert sykefraværet, så er det fortsatt mange som har lavt sykefravær, noe som kan påvirke resultatene våre.

Figur 4: Sykefravær i 2022 logtransformert med +0.01

Når vi ser på aldersfordelingen i Figur 5 så ser vi at den er jevn og symmetrisk fordelt blant respondentene. Som nevnt tidligere så er spennet på alderene til respondentene i undersøkelsen mellom 18 til 66 år. Medianalderen kan man se i den blå stiplede linjen som er på 44 år for menn og 45 år for kvinner.

Figur 5: Histogram og tetthetskurve for alder

For analysen så har vi fordelt alder inn i tre breddeintervaller på 18-29, 30-55 og 55-66 år. I Figur 6 presenteres et barplot av aldersgruppene. Vi har flest respondenter i aldersgruppen 30-54 år med totalt 59.6 prosent som vi bruker som referansegruppe.

Figur 6: Aldersgruppefordeling

I Figur 7 presenteres histogram og tetthetskurve for bruttofinanskapitalen. Som man kan se er formuefordelingen høyreskjev både for menn og kvinner, med en høyere andel av respondentene som har lav formue enn de som har høy formue noe som kan svekke analysen.

Figur 7: Fordeling av bruttofinanskapital

For å korrigere for denne skjevheten i formuefordelingen må vi gjøre en invertering av den kumulative fordelingen av bruttofinanskapitalen. Som man kan se i Figur 8 så er den inverterte kumulative fordelingen av bruttofinanskapitalen mer normalfordelt, noe som gjør at vi kan bruke den i analysen vår.

0.6
0.4
0.2
0.0
0.6
0.4
0.2
0.0
0.4
0.2
0.0
Evinner
0.0
Formue (Bruttofinanskapital)

Figur 8: Invertert kumulativ fordeling av bruttofinanskapital

Når vi ser på fordelingen av utdanningsgrupper fordelt på kjønn i Figur 9 så ser vi at det er flest menn i utdanningsgruppen videregående skole med 53.7 prosent, mens kvinner har noe lavere med 42.3 prosent. Mer kvinner enn menn har universitetsutdannings eller høyskole med 46.7 prosent mot 30.8 prosent for menn. Menn har også lavest utdanningsnivå med 15.5 prosent i utdanningsgruppen grunnskole eller mindre, mens kvinner har 11 prosent i den samme utdanningsgruppen. Menn har lavere utdanningsnivå enn kvinner, og kvinner er mer tilbøyelige til å ta høyere utdanning.

Figur 9: Fordeling av utdanningsgrupper fordelt på kjønn

I Figur 10 presenteres et boksplott av sykefravær etter formuegrupper som er definert etter standardavvik fra gjennomsnittet. Vi har tre formuegrupper: lav formue (under 1 standardavvik under gjennomsnittet), middels formue (mellom 1 standardavvik under og over gjennomsnittet) og høy formue (over 1 standardavvik over gjennomsnittet).

Vi kan se at det er en liten trend i sykefraværet etter formuegruppe, der de med høy formue har lavest sykefravær, mens de med lav formue har høyest sykefravær. Dette er i tråd med hypotesen vår om at formue kan påvirke sykefraværet.

Medianen vises i den sorte streken i midten av boksen, og den viser at sykefraværet med små marginer går ned fra lav formue, til middels formue og til høy formue. Bunnen og toppen til boksene viser oss henholdsvis første og tredje kvartil, og de stiplede linjene viser oss minimum og maksimum sykefravær. Det er også noen uteliggere som er vist med små prikker, og de viser at det er noen respondenter som har rapportert sykefravær på over 40 prosent. Dette kan være at de har vært sykemeldt i en lengre periode. I bakgrunnen av figuren man man se alle observasjonene spredt utover for en bedre oversikt siden det er mange observasjonene som går over hverandre i boksen. Dette er gjort med en funksjon som sprer ut observasjonene litt for å få en bedre oversikt over dem.

I analysen bruker vi ikke formuegruppene, men figuren inkluderes for å få en bedre oversikt over hvordan sykefraværet fordeler seg etter formue.

Figur 10: Boksplott av sykefravær etter formuegruppe

I Figur 11 presenteres et boksplott av sykefravær etter utdanningsnivå. Vi ser at sykefraværet er relativt jevnt mellom utdanningsnivåene, og som tidligere vet vi at gjennomsnittlig sykefravær er lavere for høyt utdannede og litt høyere for de med lavere utdanning.

Figur 11: Boksplott av sykefravær etter utdanningsnivå

I Figur 12 presenteres fordelingen av de arbeidsrelaterte variablene som inngår i de latente variablene jobbkrav og jobbressurser samt motivasjon. Vi ser at det er en høy andel som rapporterer at de har for mye arbeid, og at de jobber i et høyt tempo. Det er også en høy andel som rapporterer at de jobber ekstra, og selvbestemmelse i oppgaver og grad av arbeidstempo er ganske normalfordelt. Motivasjon har de fleste respondenter selvrapportert at de har høyt av i arbeidet.

Figur 12: Fordeling av arbeidsrelaterte variabler

4 Metode

4.1 Structural Equation Model (SEM)

Vår analyse benytter en Structural Equation Model (SEM). Formue inngår som en direkte forklaringsvariabel for både motivasjon og sykefravær. Motivasjon modelleres som en medierende variabel, hvor jobbressurser og formue kan påvirke motivasjonen, som igjen kan påvirke sykefraværet. Jobbrav antas å ha en direkte effekt på sykefravær.

Dette modellvalget bygger på JD-R-rammeverket. Ved å bruke en SEM-modell kan vi teste de postulerte direkte og indirekte sammenhengene.

4.1.1 Ligning til modellen

Modellen består av to ligninger: en for motivasjon (M_i) og en for sykefravær (SF_i) .

4.1.1.1 Ligning for motivasjon M_i

Motivasjonen (M_i) antas å påvirkes av jobbressurser, formuenivå og kontrollvariablene X_{ik} .

$$M_i = \alpha_0 + \alpha_1 J R_i + \alpha_2 F N_i + \sum_k \alpha_{3k} X_{ik} + \epsilon_{Mi}$$
 (1)

Hvor α_0 er konstantleddet, α_1 er effekten for jobbressurser, α_2 er effekten av formue, og α_{3k} er effektene av kontrollvariablene. ϵ_{Mi} er feilleddet for motivasjonsmodellen.

4.1.1.2 Hovedmodell for sykefravær SF_i

Sykefraværet antas å påvirkes direkte av jobbkrav (JK_i) , jobbressurser (JR_i) , formue (FN_i) og motivasjon (M_i) , samt kontrollvariablene X_{ij} .

$$SF_i = \beta_0 + \beta_1 J K_i + \beta_2 J R_i + \beta_3 F N_i + \beta_4 M_i + \Sigma_j \gamma_j X_{ij} + \epsilon_{1i}$$
 (2)

Hvor β_0 er konstantleddet, β_1 er effekten av jobbkrav, β_2 er effekten av jobbressurser, β_3 er effekten av formue, og β_4 er effekten av motivasjon. γ_j er effekten av kontrollvariablene X_{ij} som alder, stillingsprosent, kjønn og utdanning. Dette vil si at for eksempel koeffisienten γ_{SP} som del av $\sum_j \gamma_j X_{ij}$ vil vise den direkte sammenhengen mellom stillingsprosent og sykefravær kontrollert for de andre variablene. ϵ_{SFi} er feilleddet for sykefraværmodellen.

4.1.2 Forklaring av alle deler i modellen

Symbol	Forklaring
$\overline{SF_i}$	Log-transformert sykefraværsprosent for individ i
JK_i	Latent variabel for individ i (høyere = mer krav)
JR_i	Latent variabel for individ i (høyere = mer støtte/autonomi)
FN_i	Normalisert formue (basert på q norm-transformasjon) for individ \boldsymbol{i}
M_i	Observert motivasjonsscore for individ i
X_{ik}/X_{ij}	Kontrollvariabler (for eks, alder, kjønn, utdanning, stillingsprosent),
α_0, β_0	Konstantledd
$\alpha_1,\alpha_2,\beta_1,\beta_2,\beta_3,\beta_4$	Strukturelle koeffisienter som estimerer styrken på sammenhengene
α_{3k}, γ_j	Koeffisienter for kontrollvariablene
$\epsilon_{Mi}, \epsilon_{SFi}$	Feilledd for de endogene variablene motivasjon og sykefravær
	Tabell 5: Oversikt over variabler i modellen

4.1.3 Beskrivning av metode

Vår medierende variabel Motivasjon (M_i) i Ligning 1 er modellert som en funksjon av jobbressurser (JR_i) og formue (FN_i) , samt kontrollvariabler. Her forventer vi at $\alpha_1>0$ i tråd med JD-R modellen og Langseth-Eide & Vittersø (2021) hvor jobbressurser bygger engasjement og motivasjon. Vi forventer også at $\alpha_2>0$ som betyr at høyere formue vil føre til høyere motivasjon. Dette bygger på antagelsen om at økonomisk trygghet reduserer stress og frigjør mental kapasitet. Det bygger også på at på at utsikter til økonomisk fremgang, eller fraværet av en følelse av at det ikke er mulig å bli økonomisk trygg som kan oppstå ved stor ulikhet Gesiarz et al. (2020), og at du dermed kan styrke den indre motivasjonen for arbeidet.

4.1.4 SEM-spesifikasjoner

Vi kjører to separate SEM-spesifikasjoner for å teste robustheten av våre resultater. Den første inkluderer alle observasjoner i utvalget, der sykefravær log-transformeres som log(sykefravær + 0.01) for å håndtere nullverdier og skjevhet. Den andre modellen inkluderer kun respondenter med registrert sykefravær, og benytter log(sykefravær +0.01). Dette er for å undersøke om estimatene endres vesentlig når null-gruppen utgår.

I appendix vil det være inkludert to tabeller der det er testet på dataen for 2023 for å videre undersøke om det er noen endringer i estimatene når vi bruker data fra 2023.

4.1.4.1 Endring av variabler

De ordinale variablene har en skala fra 1-5, hvor 1 ofte er en form for "oftest" eller "veldig fornøyd", og 5 er "aldri" eller "veldig misfornøyd".

Vi snur om på skalaen til de negative variablene fordi skalaen til variabler som hvor fornøyd vil si at 1 er ofte veldig fornøyd, og 5 tilsier veldig misfornøyd, mens på foreks for mye å gjøre, så vil 1 tilsi daglig og 5 tilsi aldri. Som vi ser i Delkapittel 3.2.3 så vil det være enklere å tolke resultatene når vi har en skala som er lik for alle variablene.

4.1.5 Estimator

Siden flere av våre observerte variabler er ordinale, og fordi vi ikke kan anta multivariat normalfordeling for alle variablene i modellen (se foreks den markerte skjevheten for sykefravær i Figur 3 og
fordelingen av de ordinale indikatorene i Figur 12), er estimatorer som sannsynlighets maksimering
ikke godt egnet. MLE forutsetter kontinuerlige og multivariat normalfordelte data, og brudd på disse
antakelsene kan føre til upålitelige standardfeil og teststatistikker (Finney & DiStefano, 2006).

Gitt disse egenskapene ved våre data, har vi valgt å bruke WLSMV-estimatoren (Weighted Least Squares Mean and Variance adjusted) i vår SEM-analyse. WLSMV er en robust estimator som er spesielt utviklet for modeller som inkluderer kategoriske eller ordinale observerte variabler Muthén (1984). Den håndterer slike variabler ved å estimere en matrise av polykoriske⁸ eller polyseriale⁹

⁸Polykoriske korrelasjon beregner sammenhengen mellom to ordinale variabler ved å anta at hver av dem bunner i en latent, kontinuerlig fordeling

⁹Polyserial korrelasjon brukes når en variabel er ordinal og den andre er kontinuerlig. Det antas at den ordinale variabelen stammer fra en latent kontinuerlig skala, delt opp i kategorier av terskler.

korrelasjoner som input for analysen, sammen med terskelverdier for de ordinale variablene. Disse tersklene representerer de punktene på en underliggende kontinuerlig skala hvor skillet mellom de observerte kategoriene går.

WLSMV estimatoren fungerer ved å minimere en veid sum av kvadrerte avvik mellom de observerte og estimerte kovariansmatrisen. Betegnelsen MV (Mean and Variance adjusted) i WLSMV indikerer at kji-kvadrat teststørrelsen og standardfeilene er justert for å bedre håndtere avvik fra antakelsen om multivariat normalfordeling. Justeringen gjøres ved bruk av en diagonal vektmatrise som består av variansene til de estimerte korrelasjonene og tersklene.

I lavaan pakken har vi spesifisert parameteriseringen "Theta" som modellerer feilvariansene til de latente responsvariablene som er under de observerte ordinale variablene, og residualvariansene til de observerte kontinuerlige variablene.

Variabelen for formue er transformert ved en invertert kumulativ normalfordeling (Formue_qnorm) for å håndtere dens skjevhet og for å representere relativ formue. Sykefravær er log-transformert (log(sykefravær+0.01)) i hovedmodellen (Modell 1) for å stabilisere variansen og håndtere nullverdier. En alternativ modell (Modell 2) benytter log(sykefravær + 0.01) på et subsett av data som ekskluderer individer med null dager sykefravær for å teste robustheten til funnene.

4.1.6 Hypoteser

4.1.6.1 Hypotese 1(H1): $\beta_1 > 0$ Høyere jobbkrav gir høyere sykefravær

Dette er en grunnleggende antagelse i JD-R-modellen (Schaufeli & Bakker, 2004; Vander Elst et al., 2016). Høye krav (fysiske, psykiske, emosjonelle) tærer på individets ressurser og kan føre til utbrenthet og helseplager, som igjen øker sannsynligheten for sykefravær.

4.1.6.2 Hypotese 2(H2): $\beta_2 < 0$ Høyere jobbressurser gir lavere sykefravær

Jobbressurser (støtte, autonomi, tilbakemelding) fungerer som beskyttende faktorer. De hjelper ansatte med å håndtere krav, oppnå mål og fremmer personlig vekst, noe som fører til høyere engasjement og bedre helse, og dermed lavere fravær (Langseth-Eide & Vittersø, 2021).

4.1.6.3 Hypotese 3(H3): $\beta_3 < 0$ Høyere formuenivå gir lavere sykefravær

Vi forventer en direkte, gunstig effekt av formue på sykefravær. Formue fungerer som en "buffer" mot levekårsproblemer (Hattrem, n.d.; Normann, 2009) og gir økonomisk trygghet. Dette kan redusere generelt stressnivå og forbedre helsen, slik funn fra Jaeggi et al. (2021) indikerer (høyere formue -> lavere blodtrykk, færre luftveissykdommer). Økonomisk trygghet kan også gi bedre tilgang til helsetjenester og en større evne til å håndtere helseutfordringer uten å måtte ty til langvarig fravær.

4.1.6.4 Hypotese 4(H4): Formue øker motivasjon $\alpha_2 > 0$

Vi forventer en indirekte vei der formue påvirker sykefravær gjennom motivasjon. Som nevnt Delkapittel 2.2.1, forventer vi at høyere formue øker motivasjonen $\alpha_2 > 0$ som ved å redusere finansiell usikkerhet, og gode fremtidsutsikter. Videre forventer vi at høyere motivasjon/engasjement reduserer sykefraværet, slik Langseth-Eide & Vittersø (2021) fant.

5 Analyse og resultater

I dette kapittelet presenter vi resultatene fra SEM-analysen. Analysen er utført med lavaan-pakken i R, basert på den teoretiske modellen og metodebeskrivelsen i henholdsvis kapittel 2 og 4. Formålet er å undersøke sammenhengen mellom formue, jobbkrav, jobbressurser, motivasjon og sykefravær. Vi benytter en Weighted Least Squares Mean and Variance adjusted (WLSMV) estimator. Denne estimatoren er valgt fordi flere av våre sentrale indikatorvariabler (som måler jobbkrav, jobbressurser og motivasjon) er ordinale, og fordi vi ikke kan anta normalfordeling for alle variablene som vist i Figur 12, spesielt ikke for sykefravær som vist i Figur 4.

Resultatene presenteres i to modeller: Modell 1 inkluderer alle respondenter hvor sykefravær er log-transformert (logsyk = $log(sykefravr_2022+0.01)$), mens Modell 2 kun inkluderer respondenter med registrert sykefravær og benytter samme log-transformasjon (logsyk_u0 = $log(sykefravr_2022+0.01)$). Dette gjøres for å kunne sjekke om resultatene er robuste når vi ekskluderer individer med null sykefravær. Vi presenterer også resultater for 2023 i appendix for å undersøke om det er noen endringer i estimatene når vi bruker data fra 2023.

5.0.1 Tolkning av resultater

Tolkning av resultat-tabellene

Resultatene fra SEM-analysene presenteres i tabellform

Avhengig variabel: Viser hvilken endogen variabel i modellen som predikeres i den aktuelle delen av tabellen (enten Motivasjon eller logsyk/logsyk u0).

Prediktor: Navnet på den uavhengige variabelen (observert eller latent) eller kontrollvariabelen som predikerer den avhengige variabelen. Bokstavkombinasjonene i parentes (f.eks. α_1 , β_1) refererer til parameterbenevnelsene brukt i våre ligningsspesifikasjoner i kapittel 4 og i lavaan-koden.

Estimat: Dette er den ustandardiserte regresjonskoeffisienten. Den viser endringen i den avhengige variabelen for en enhets endring i prediktorvariabelen, kontrollert for alle andre variabler i ligningen. For eksempel, hvis logsyk er avhengig variabel og Formue_qnorm er prediktor, viser estimatet hvor mye logsyk endres når Formue_qnorm øker med én enhet (som tilsvarer ett standardavvik i den normaliserte formuesfordelingen).

Std.Err: Standardfeilen til estimatet. Dette er et mål på usikkerheten i estimatet; mindre standardfeil indikerer større presisjon.

z-verdi: Teststørrelsen for koeffisienten, beregnet som $\frac{\text{Estimat}}{\text{Std.Err}}$. Den brukes til å vurdere om koeffisienten er signifikant forskjellig fra null.

p-verdi: Sannsynligheten for å observere en z-verdi som er minst like ekstrem som den beregnede, gitt at nullhypotesen (om at den sanne koeffisienten er null) er sann. Vi benevner p-verdier som signifikante hvis de er mindre enn 0.05, og svært signifikante hvis de er mindre enn 0.001.

Std.all: Den fullstendig standardiserte koeffisienten. Denne koeffisienten indikerer hvor mange standardavvik den avhengige variabelen endres med når den uavhengige variabelen endres med ett standardavvik, kontrollert for andre variabler. Dette gjør det lettere å sammenligne styrken på effekter mellom ulike prediktorer som er målt på forskjellige skalaer.

5.0.2 Resultat for vår hovedmodell

Tabell 6: Resultater fra strukturmodellen (Modell 1) for prediksjon av motivasjon og sykefravær (logsyk).

Avhengig variabel	Prediktor	Estimat	Std.Err	z-verdi	p-verdi	Std.all
Prediktorer for mo	otivasjon					
	$\texttt{Latent_JR}(\alpha_1)$	0.479	0.019	25.304	< 0.001	0.430
	$\texttt{Formue_qnorm}(\alpha_2)$	0.008	0.017	0.479	0.632	0.007
	$ald_ung(c1)$	-0.363	0.045	-8.098	< 0.001	-0.121
	ald_elder(c2)	0.253	0.041	6.192	< 0.001	0.093
	Kvinne (c3)	0.013	0.033	0.406	0.685	0.006
	Utd_grunnskole(c4)	0.016	0.047	0.346	0.730	0.005
	Utd_universitet(c5)	-0.016	0.035	-0.462	0.644	-0.007
	Barn (c6)	0.017	0.046	0.379	0.704	0.005
	<pre>arb_stillingspst(c7)</pre>	0.004	0.001	6.134	< 0.001	0.087
Prediktorer for syl	kefravær (logsyk)					
	Latent_JK (β_1)	0.042	0.020	2.071	0.038	0.035
	$\texttt{Latent_JR}(\beta_2^{})$	-0.087	0.013	-6.887	< 0.001	-0.108
	Formue_qnorm (eta_3)	-0.104	0.012	-9.015	< 0.001	-0.123
	Motivasjon (eta_4)	-0.033	0.011	-2.951	0.003	-0.046
	$ exttt{ald_ung}\left(\gamma_1 ight)$	0.010	0.029	0.344	0.731	0.005
	$\mathtt{ald_elder}\left(\gamma_{2} ight)$	0.005	0.026	0.191	0.848	0.003
	Kvinne γ_3	0.216	0.022	9.674	< 0.001	0.130
	${\tt Utd_grunnskole} \ \gamma_4$	0.037	0.030	1.230	0.219	0.015
	${\tt Utd_universitet} \ \gamma_5$	-0.113	0.024	-4.709	< 0.001	-0.066
	Barn γ_6	0.042	0.030	1.411	0.158	0.018
	${\tt arb_stillingspst}\gamma_7$	0.002	0.000	3.356	0.001	0.045

Estimat er ustandardisert koeffisient. Std.Err er standardfeil. Std.all er fullstendig standardisert koeffisient. Referansekategorier: Alder (30–54 år), Utdanning (videregående). Formue_qnorm er normalisert formue. arb_stillingspst er stillingsprosent. logsyk er log(sykefravær + 0.01).

5.1 Resultat knyttet til modell 1

5.1.1 Prediksjon av log-transformert sykefravær i modell 1.

5.1.1.1 Hypotese 1 Jobbkrav Latent JK ightarrow Sykefravær $eta_1 > 0$

Vi finner en positiv og statistisk signifikant sammenheng mellom **Jobbkrav** (Latent_JK) og logsyk (Estimat = 0.042, Std.all = 0.035, p = 0.038). Dette gir støtte til H1. Økte jobbkrav er assosiert med en økning i log-transformert sykefravær. Effekten er relativt liten, men signifikant, som indikerer at høyere opplevde krav i jobben er forbundet med høyere sykefravær.

5.1.1.2 Hypotese 2 Latent JR ightarrow Sykefravær $eta_2 < 0$

Det er en negativ og statistisk signifikant sammenheng mellom Jobbressurser (Latent_JR) og logsyk (Estimat = -0.087, Std.all = -0.108, p < 0.001). Dette gir i utgangspunktet sterk støtte til H2. Økt tilgang på jobbressurser er assosiert med en reduksjon i log-transformert sykefravær.

5.1.1.3 Hypotese 3 Formue \rightarrow Sykefravær $\beta_3 < 0$

Formue (Formue_qnorm) viser en negativ og statistisk signifikant sammenheng med logsyk (Estimat = -0.104, Std.all = -0.123, p < 0.001). Dette gir sterk støtte til H3. En økning på et standardavvik i den normaliserte formueskalaen har en reduksjon på 0.104 i log-transformert sykefravær, selv når vi kontrollerer for jobbkrav, jobbressurser og motivasjon.

5.1.2 Prediksjon av motivasjon

5.1.2.1 Hypotese 4

Som vist i øvre del av Tabell 6, er Jobbressurser (Latent_JR) en sterk og positiv prediktor for Motivasjon (Estimat = 0.479, Std.all = 0.430, p < 0.001). Dette er i tråd med JD-R-modellen, som postulerer at ressurser i jobben fremmer en motiverende prosess. Formue (Formue_qnorm) viser derimot ingen signifikant direkte sammenheng med Motivasjon (Estimat = 0.008, p = 0.632). Vår antakelse om at formue direkte påvirker motivasjon får dermed ikke støtte i denne modellen.

5.1.3 Redegjørelse for effekt av kontrollvariabler i modell 1.

5.1.3.1 Sykefravær

Kvinner har signifikant høyere sykefravær enn menn (Estimat = 0.216, Std.all = 0.130, p<0.001).

Universitetsutdanning er assosiert med signifikant lavere sykefravær (Estimat = -0.113, Std.all = -0.066, p<0.001) sammenlignet med de med videregående utdanning. Grunnskoleutdanning viser ingen signifikant forskjell fra videregående.

Høyere stillingsprosent gir signifikant resultat på høyere sykefravær (Estimat = 0.002, Std.all = 0.045, p=0.001). Resultatet her tilsier at å har stilling over gjennomsnittet er knyttet til noe høyere fravær.

Aldersgruppene viser ingen signifikant forskjell i sykefravær fra referansegruppen (30-54 år), og heller ikke om de har barn under 5 år viser noe signifikant effekt.

5.1.3.2 Motivasjon

Unge arbeidstakere (ald_ung, 18-29 år) rapporterer signifikant lavere motivasjon (Estimat = -0.363, Std.all = -0.121, p<0.001) enn referansegruppen (30-54 år).

Eldre arbeidstakere (ald_elder, 55-66 år) rapporterer signifikant høyere motivasjon (Estimat = 0.253, Std.all = 0.093, p<0.001) enn referansegruppen.

Høyere stillingsprosent (arb_stillingspst) er også assosiert med signifikant høyere sykefravær (Estimat = 0.004, Std.all = 0.087, p<0.001).

Kjønn, utdanningsnivå og om individet har barn under 5 år viser ingen signifikant sammenheng med motivasjon i denne modellen.

5.2 Resultat knyttet til modell 2

Siden sykefraværet er så høyreskjevt selv når det er log-transformert i Figur 3, kan det gi oss p-verdier som er for lave, og dermed kan det være at vi overestimerer effekten av prediktorene.

Hvis vi ekskluderer de uten legemeldt sykefravær og log-transformerer sykefraværet uten å legge til 0.01, slik at det er tilnærmet normalfordelt, så kan vi se om dette endrer resultatene. Dette er gjort i modell 2, og vi ser at det er store endringer i resultatene.

Tabell 7: SEM-resultater (Modell 2): Prediksjon av motivasjon og sykefravær (logsyk_u0), estimert kun på de med sykefravær $< 0 \ (N=2021)$.

Avhengig variabel	Prediktor	Estimat	Std.Err	z-verdi	p-verdi	Std.all
Prediktorer for Mo	tivasjon					
	$\texttt{Latent_JR}\left(\alpha_1\right)$	0.548	0.038	14.610	< 0.001	0.431
	$\texttt{Formue_qnorm}(\alpha_2)$	0.022	0.030	0.742	0.458	0.018
	$ald_ung(c1)$	-0.463	0.075	-6.206	< 0.001	-0.161
	ald_elder(c2)	0.183	0.073	2.524	0.012	0.065
	Kvinne (c3)	0.132	0.058	2.291	0.022	0.057
	${\tt Utd_grunnskole}({\tt c4})$	0.052	0.076	0.685	0.493	0.016
	Utd_universitet(c5)	-0.146	0.064	-2.273	0.023	-0.061
	Barn (c6)	0.068	0.078	0.873	0.383	0.021
	arb_stillingspst(c7)	0.001	0.001	1.079	0.281	0.027
Prediktorer for lo	$gsyk_u0$					
	Latent_JK (β_1)	0.027	0.024	1.151	0.250	0.034
	$\texttt{Latent_JR}\left(\beta_2^{-}\right)$	-0.030	0.022	-1.347	0.178	-0.039
	Formue_qnorm (β_3)	-0.075	0.018	-4.304	< 0.001	-0.102
	Motivasjon (eta_4)	-0.040	0.017	-2.389	0.017	-0.067
	$ exttt{ald_ung}\left(\gamma_1 ight)$	-0.078	0.042	-1.859	0.063	-0.045
	$\mathtt{ald_elder}\left(\gamma_2 ight)$	0.124	0.040	3.092	0.002	0.073
	Kvinne γ_3	0.056	0.032	1.725	0.085	0.040
	Utd_grunnskole γ_4	-0.001	0.044	-0.016	0.987	-0.000
	${\tt Utd_universitet} \ \gamma_5$	-0.044	0.035	-1.231	0.218	-0.030
	Barn γ_6	0.035	0.042	0.837	0.403	0.018
	$\verb arb_stillingspst \gamma_7$	-0.002	0.001	-2.363	0.018	-0.051

Merk: Alle estimeringer er gjort på subutvalget av respondenter med sykefravær < 0 (N = 2021). Estimat = ustandardisert koeffisient; Std.Err = robust standardfeil; z-verdi = z-teststatistikk; p-verdi = sannsynlighet for z-verdien; Std.all = fullstendig standardisert koeffisient. Referansekategorier: Alder (30–54 år), Utdanning (videregående). arb_stlln er arbeidsstillingsprosent

5.3 Resultat knyttet til modell 2

Det er langt mye færre signifikante resultater i modell 2 enn i modell 1, og det er også en del endringer i retning på effektene. Dette kan indikere at de som ikke har sykefravær har en annen sammenheng mellom jobbkrav, jobbressurser, formue og sykefravær enn de som har sykefravær, eller at p-verdiene i modell 1 er for lave på grunn av skjevheten i sykefraværsdataene. Vi vil derfor tolke resultatene med forsiktighet, og vi vil også diskutere svakhetene i modellen og dataene i kapittel 6.

5.3.1 Prediksjon av log-transformert sykefravær i modell 2.

5.3.1.1 Hypotese 1 Jobbkrav Latent JK ightarrow Sykefravær $eta_1 > 0$

Effekten er ikke signifikant (Estimat = 0.027, Std.all = 0.034, p = 0.250). Dette indikerer at jobbkrav ikke har en signifikant direkte effekt på sykefravær blandt de som hadde mer enn 0 dager sykefravær i 2022. Støtten for H1 svekkes og vi kan ikke med sikkerhet si at høyere jobbkrav er assosiert med høyere sykefravær i denne undergruppen av respondenter.

5.3.1.2 Hypotese 2 Latent JR ightarrow Sykefravær $eta_2 < 0$

Effekten er negativ men ikke signifikant (Estimat = -0.030, Std.all = -0.039, p = 0.178). Dette indikerer at jobbressurser ikke har en signifikant direkte effekt på sykefravær blant de som hadde mer enn 0 dager sykefravær i 2022. Støtten for H2 svekkes også.

5.3.1.3 Hypotese 3 Formue \rightarrow Sykefravær $\beta_3 < 0$

Formue (Formue_qnorm) har en signifikant negativ effekt på sykefravær (Estimat = -0.075, Std.all = -0.102, p < 0.001). Dette styrker H3. En økning på et standardavvik i den normaliserte formueskalaen er assosiert med en reduksjon i log-transformert sykefravær, selv når vi kun ser på de som har sykefravær. Dette indikerer at formue fortsatt fungerer som en buffer mot sykefravær i denne undergruppen av respondenter.

5.3.2 Prediksjon av motivasjon

5.3.2.1 Hypotese 4

Motivasjon er fortsatt negativt og signifikant assosiert med sykefravær (Estimat = -0.040, Std.all = -0.067, p = 0.017). Dette styrker H4.

Formue ser ikke ut til å ha noe signifikant direkte effekt på motivasjon i denne modellen (Estimat = 0.022, p = 0.458).

5.3.3 Redegjørelse for effekt av kontrollvariabler i modell 2.

5.3.3.1 Sykefravær

Eldre arbeidstakere (ald_elder, 55-66 år) rapporterer signifikant høyere sykefravær (Estimat = 0.124, Std.all = 0.073, p = 0.002) enn referansegruppen (30-54 år). Dette var ikke fanget opp i modell 1.

Stillingsprosenten snur retning og blir negativt assosiert med sykefravær (Estimat = -0.002, Std.all = -0.051, p = 0.018). Dette indikerer at høyere stillingsprosent er assosiert med lavere sykefravær i denne undergruppen av respondenter. Dette kan tilsi at av de som har sykefravær så er det de med lavere stillingsprosent som har høyere sykefravær, mens de med høyere stillingsprosent har lavere sykefravær. Effektstørrelsen i begge retninger er imidlertid liten.

Kjønn er ikke lengere signifikant assosiert med sykefravær (Estimat = 0.056, Std.all = 0.040, p = 0.085), noe som kan indikere at forskjellene i sykefravær mellom kjønnene er mindre når vi kun ser på de med sykefravær og at det er skjevheten i sykefraværsdataene som har gjort at det så ut til å være en signifikant forskjell i modell 1.

Utdanningsnivå viser ingen signifikant effekt på sykefravær i denne modellen.

5.3.3.2 Motivasjon

Laten variabelen Jobbressurser (Latent_JR) er fortsatt en sterk og positiv prediktor for Motivasjon (Estimat = 0.548, Std.all = 0.431, p < 0.001). Dette styrker funnet i modell 1 og gir fortsatt støtte til JD-R-modellen.

Formue har ingen signifikant effekt på Motivasjon.

I modell 2 blir har nå kjønn en signifikant positiv effekt på motivasjon (Estimat = 0.132, Std.all = 0.057, p = 0.022). Dette indikerer at kvinner rapporterer høyere motivasjon enn menn, og utdanningsnivået universitetsutdanning er fortsatt assosiert med lavere motivasjon (Estimat = -0.146, Std.all = -0.061, p = 0.023) sammenlignet med de med videregående utdanning.

Stillingsprosent er ikke lenger signifikant assosiert med motivasjon (Estimat = 0.001, Std.all = 0.027, p = 0.281).

5.4 Sammenligning av modell 1 og modell 2

Modell 1 inkluderer alle respondenter, mens modell 2 kun inkluderer de med registrert sykefravær. Dette kan påvirke resultatene, spesielt for sykefravær, da modell 1 kan ha skjevheter på grunn av nullverdier i sykefravær. Modell 2 gir en mer presis vurdering av sammenhengene blant de som faktisk har sykefravær. Det er en del motsetninger i resultatene mellom modell 1 og modell 2 noe som svekker troverdigheten til hypotesene.

Hovedforskjellen er at effektene til jobbkrav og jobbressurser på sykefravær mister sin signifikans i modell 2, noe som kan indikere at disse sammenhengene er mindre robuste eller muligens ikke lineære. Dette kan skyldes at de som har sykefravær har en annen dynamikk enn de som ikke har det, eller at skjevheten i sykefraværsdataene i modell 1 har påvirket resultatene.

Formue og motivasjon beholder derimot en signifikant negativ effekt på sykefravær i begge modeller, noe som styrker hypotesen om at formue fungerer som en buffer mot sykefravær.

5.5 Modeltilpasning

For begge modeller er χ^2 -verdien signifikant som indikerer en signifikant forskjell mellom observert og estimert kovariansmatrise. Men siden χ^2 -testen er sensitiv for store utvalg så kan dette fremdeles godkjennes.

Comparative Fit Index (CFI) og Tucker-Lewis Index (TLI) er begge over 0.90, noe indikerer god tilpasning for begge modeller. Root Mean Square Error of Approximation (RMSEA) støtter modell tilpasning med verdier under 0.06 for begge modeller, og P-verdien for RMSEA er signifikant for modell 2 som støtter tilpasningen til modell 2. Standardized Root Mean Square Residual (SRMR) er under 0.08 for begge modeller, noe som også indikerer god tilpasning.

Tabell 8: Sammenligning av Fit-Indekser for Modell 1 og Modell 2

Fit Indeks	Modell 1 (N=6103)	Modell 2 (N=2021)
Chi-kvadrat (Skalert test)	1470.660	432.960
Frihetsgrader (df)	80	80
P-verdi (Chi-kvadrat)	< 0.001	< 0.001
CFI (Skalert)	0.932	0.941
TLI (Skalert)	0.969	0.973
RMSEA (Skalert)	0.053	0.047
RMSEA 90% KI	[0.051, 0.056]	[0.042, 0.051]
P-verdi (RMSEA ≤ 0.050)	0.010	0.889
SRMR	0.035	0.040

Merk: KI = Konfidensintervall.

Vi fjernet variablene "Raad3a_ny"(Hvor ofte for du tilbakemeldinger fra nærmeste sjef?), "QPS78_ny"(Blir dine arbeidsresultater verdsatt av din nærmeste sjef?), "QPS72_ny", "QPS73_ny" som var for støtte fra nærmeste sjef og kollegaer. Disse hadde faktorladninger under 0.4 men var signifikante i noen av modellene. Men de små effektene gjorde modeltilpasningen disproportionalt dårligere.

5.5.1 Oppsummering av hypotesestøtte

Hypotese 1 (Jobbkrav → Sykefravær) fikk støtte i modell 1, men ikke i modell 2.

Hypotese 2 (Jobbressurser \rightarrow Sykefravær) fikk støtte i modell 1, men ikke i modell 2.

Hypotese 3 (Formue → Sykefravær) fikk sterk støtte i begge modeller.

Hypotese 4 (Jobbressurser → Motivasjon) fikk støtte i begge modeller

Vi kan ikke konkludere med at formue har en direkte effekt på motivasjon. Implisitt fra motivasjonseffekten på sykefravær kan vi anta at motivasjon er assosiert med lavere sykefravær.

5.5.2 Redegjørelse for svakheter i modellen/data

Til å starte med så er denne typen modell i grensepunktet på vår forståelse og dette fører til at det må tilføyes usikkerhet til tolkningen av resultatene. Spesielt gjelder dette for forståelsen av modelltilpasning, estimatorjusteringer og tolkning av latente sammenhenger i strukturelle ligningsmodeller med kategoriske data. Selv om analysen bygger på anerkjent metode og teori, er SEM med latente variabler

og robuste estimatorer som WLSMV et metodisk nivå som ligger i ytterkanten av hva vi på bachelor nivå kan tolke. Resultatene diskuteres derfor med forsiktighet, og vi legger vekt på overordnede mønstre fremfor detaljerte tolkninger.

Dataene er også selvrapporterte og kan være utsatt for skjevheter som sosial ønskverdighet, der respondenter kan overdrive eller underdrive sine svar for å fremstå bedre. Dette kan påvirke både jobbkrav, jobbressurser, motivasjon og sykefravær.

Dataen er også Tverrsnittsdata, noe som begrenser vår evne til å trekke kausale konklusjoner. Selv om vi har kontrollert for flere variabler, kan det fortsatt være uobserverte faktorer som påvirker både formue og sykefravær.

Vi bruker legemeldt sykefravær. Egenmeldt fravær er ikke inkludert på samme detaljnivå, noe som kan gi et ufullstendig bilde av det totale fraværet. Fjerningen av de med >14 dagers sammenhengende fravær fokuserer analysen på kortere fraværstilfeller.

Utvalget i modell 2 er betydelig mindre enn i modell 1, noe som kan påvirke generaliserbarheten av resultatene.

Vår proxy for formue var basert på bruttofinanskapital, og vi har ikke tatt hensyn til formen for formue (f.eks. bolig, aksjer, gjeld). Dette kan påvirke hvordan formue faktisk påvirker sykefravær og motivasjon. En mer detaljert analyse av formueskomponenter kunne gitt en bedre forståelse av denne sammenhengen. Ved å transformere formue til en normalfordelt variabel har vi også mistet noe informasjon om den faktiske formuesfordelingen, og vi har antatt at effekten av formue er lineær. Dette kan være en forenkling av virkeligheten, da effekten av formue på sykefravær kan være ikke-lineær eller bueformet, som diskutert i teoridelen.

6 Diskusjon

Dette kapitlet drøfter resultatene fra analysen i lys av problemstillingen: Forklarer nivået på formue sykefraværet i Norge?. Vi vil oppsummere hovedfunnene, diskutere dem i forhold til tidligere forskning og teori, belyse oppavens styrker og svakheter, og til slutt foreslå veier for fremtidig forskning.

6.1 Oppsummering av funn og problemstilling

Vår analyse, basert på Levekårsundersøkelsen indikerer at formue har en statistisk signifikant og negativ sammenheng med log-transformert sykefravær. Dette funnet gjelder både når vi analyserer hele utvalget i Modell 1, og når vi begrenser analysen til kun de som har registrert sykefravær i modell 2. Dette gir støtte til vår primære hypotese om at høyere formuenivå er assosiert med lavere sykefravær. Den standardiserte effekten av formue var blandt de sterkeste i begge modeller på Std.all -0.123 i modell 1, og -0.102 i modell 2.

Modellens kjernekomponenter viste blandede resultater. I modell 1 fant vi støtte for at høyere jobbkrav var assosiert med høyere sykefravær, og at høyere jobbressurser var assosiert med lavere sykefravær. Dette var grunnhypotesene H1 og H2 og de mistet sin statistiske signifikans i modell 2. Det kan tyde på at sammenhengene er mer komplekse enn det vi har modellert, eller at de er påvirket av skjevheten i sykefraværsdataene i modell 1. Det kan også bety at jobbkrav og jobbressurser hjelper med å skape den mengden nullverdier i sykefravær som vi ser i dataene.

Jobbressurser hadde en sterk og positiv effekt på motivasjon, noe som gir støtte til H4. Dette er i tråd med JD-R-modellen. Formue hadde derimot ingen signifikant direkte effekt på motivasjon i noen av modellene. Siden motivasjon hadde en signifikant negativ effekt på sykefraværet i begge modellene så støtter dette den medierende effekten av motivasjon på sykefravær. Men ikke igjennom formue til motivasjon til sykefravær.

6.1.1 Teori og tidligere forskning

Funnene knyttet til formue samsvarer godt med teorier som Conservation of Resources (COR)-teorien Hobfoll (1989), som postulerer at ressurser (inkludert finansielle) fungerer som en buffer mot stress og bidrar til velvære. Våre resultater støtter også tidligere empiriske studier som Jaeggi et al. (2021), som fant en kobling mellom formue og bedre helseutfall, og Normann (2009) og Hattrem (n.d.) som

viser til formues rolle som en buffer mot levekårsproblemer. Den observerte negative sammenhengen mellom formue og sykefravær kan reflektere at økonomisk trygghet reduserer generelt stress, gir bedre tilgang til helsefremmende ressurser, og kanskje øker individets evne til å håndtere helseutfordringer uten at det resulterer i fravær fra jobb.

At jobbressurser konsekvent øker motivasjon er helt i tråd med JD-R-modellens antakelser og funn som hos Schaufeli & Bakker (2004) og Langseth-Eide & Vittersø (2021). Den svekkede direkte effekten av jobbressurser og jobbkrav på sykefravær i Modell 2 (kun de med fravær) er mer overraskende. Det kan antyde at når fravær først inntreffer, er det andre faktorer enn de målte arbeidsmiljøaspektene som i større grad bestemmer omfanget, eller at de med null fravær representerer en distinkt gruppe der disse faktorene spiller en annen rolle.

Den manglende direkte effekten av formue på motivasjon var ikke som forventet i henhold til vår hypotese (H4 delvis). Mens økonomisk trygghet kan redusere stress, oversettes dette ikke nødvendigvis direkte til økt arbeidsmotivasjon slik vi har målt det. Det er mulig at formue påvirker andre aspekter ved jobbopplevelsen, eller at motivasjon er mer drevet av selve jobbinnholdet og de direkte jobbressursene, slik JD-R-modellen primært antyder. Studier som Gesiarz et al. (2020) peker på at opplevd ulikhet kan redusere motivasjon for de med færre ressurser, men vår modell testet ikke ulikhet direkte, kun individuelt formuenivå.

Det er også relevant å trekke inn bredere samfunnsmessige forhold. Som nevnt i teoridelen, kan økende formueulikhet Zucman (2019) og redusert sosial mobilitet (Gatsby-kurven, Durlauf et al. (2022)) skape et bakteppe der formue får en stadig viktigere rolle for individets generelle livssituasjon og helse. Våre funn på mikronivå, som viser en sammenheng mellom individuell formue og sykefravær, kan sees i lys av disse makrotrendene. Lavere formue kan bety økt sårbarhet i et samfunn preget av høy boligprisvekst og der lønnsvekst ikke holder tritt for alle grupper.

Videre kan formue indirekte påvirke sykefravær gjennom mekanismer vi ikke fullt ut har kartlagt. For eksempel, kan tilgang til "career role models" og dermed karrierevalg og utdanningsnivå være påvirket av sosioøkonomisk bakgrunn. Dette kan lede til at individer med lavere formue oftere ender i jobber med høyere krav og færre ressurser, noe som igjen øker risikoen for sykefravær. Vår modell kontrollerer for utdanning, men fanger ikke opp hele denne komplekse årsakskjeden.

Formue kan også påvirke konsummuligheter og økonomisk atferd. Individer med lav formue kan føle seg tvunget til å jobbe mer, eller å gå på jobb selv når de er syke, for å opprettholde et visst konsumnivå eller dekke faste utgifter, noe som potensielt kan forverre helsen og føre til lengre fravær

senere. Dette er en nyanse vår studie ikke direkte måler, men som kan bidra til å forklare hvorfor lav formue er assosiert med høyere sykefravær.

6.1.2 Styrker og svakheter ved analysen

En klar styrke ved studien er bruken av et stort, landsrepresentativt datasett (Levekårsundersøkelsen om arbeidsmiljø), som øker generaliserbarheten av funnene til den norske arbeidstakerbefolkningen. Bruken av SEM-modellering med latente variabler for jobbkrav og jobbressurser er også en styrke, da det tillater en mer nyansert måling av disse komplekse konstruktene og reduserer målefeil sammenlignet med bruk av enkle, observerte variabler. Transformasjonen av formuevariabelen (Formue_qnorm) bidro til å håndtere skjevhet og fokusere på relativ formue.

Imidlertid har studien også flere svakheter. For det første, som påpekt under "Redegjørelse for svakheter i modellen/data", ligger kompleksiteten i SEM-analysen med kategoriske data og WLSMV-estimator i ytterkanten av vår metodiske kompetanse på bachelornivå. Dette medfører en viss usikkerhet i tolkningen av modelltilpasningsmål og enkelte resultater.

Sykefraværsdataene er selvrapporterte og måler kun legemeldt fravær, ikke egenmeldt. Videre er sykefraværsvariabelen svært høyreskjev, selv etter log-transformasjon. Dette utfordrer antakelsene for mange statistiske metoder. Selv om WLSMV-estimatoren er robust for brudd på normalfordeling for endogene kontinuerlige variabler når man har kategoriske indikatorer, kan den ekstreme skjevheten og den store andelen nullverdier i logsyk (Modell 1) fortsatt påvirke resultatene. Forskjellene mellom Modell 1 og Modell 2 illustrerer denne sensitiviteten.

Videre er studien tverrsnittsbasert, noe som gjør det umulig å trekke bastante konklusjoner om årsakssammenhenger. Selv om vår teoretiske modell postulerer at formue og arbeidsmiljø påvirker sykefravær, kan det også være omvendte eller gjensidige sammenhenger (f.eks. kan langvarig sykdom påvirke formue negativt).

Målingen av motivasjon er basert på ett enkelt spørsmål, noe som kan begrense validiteten og reliabiliteten til dette konstruktet. En mer omfattende skala for motivasjon kunne gitt et rikere bilde. Fjerningen av variabler knyttet til støtte fra sjef/kollegaer og verdsettelse av arbeidsresultater for å forbedre modelltilpasningen kan også ha ført til at viktige aspekter ved jobbressurser er utelatt.

Utvalgsstørrelsen reduseres betydelig i Modell 2 (fra N=6103 til N=2021), noe som reduserer den statistiske styrken og kan gjøre resultatene mindre stabile. Det er også viktig å merke seg at frafallet

i den opprinnelige Levekårsundersøkelsen var betydelig, og selv om dataene er vektet, kan det fortsatt være systematiske skjevheter mellom de som deltok og de som ikke gjorde det. Vår ytterligere filtrering av data (f.eks. fjerning av langtidssykemeldte over 14 dager og respondenter med manglende verdier på sentrale variabler) reduserte utvalget ytterligere til n=6103, noe som kan påvirke representativiteten.

6.1.3 Diskusjon av implikasjoner for policy gitt svakheter

Til tross for svakhetene, gir studien noen viktige indikasjoner. Det mest robuste funnet er den negative sammenhengen mellom formue og sykefravær. Dette antyder at tiltak som bidrar til å redusere økonomisk sårbarhet og bygge formue for bredere lag av befolkningen, potensielt kan ha positive effekter på folkehelsen og redusere sykefraværet. Dette kan inkludere politikk for økt boligtilgjengelighet, bedre spareordninger, eller tiltak som motvirker økende gjeldsbelastning. I et samfunnsperspektiv understreker funnene betydningen av å følge med på formuesfordelingen og dens konsekvens

6.1.4 Framtidig forskning:

6.1.4.1 Interaksjon mellom stillingsprosent og formue:

Vi har ikke testet hvordan formue eventuelt endrer effekten av arbeidstimer (representert ved stillingsprosent) på sykefravær. JD-R-modellen understreker at jobbkrav kan gå negativt ut på helsen. Det er imidlertid uklart om en økonomisk buffer i form av høyere formue kan dempe den negative effekten av høy arbeidsbelastning. Fremtidige studier burde vurdere et eksplisitt interaksjonsledd mellom stillingsprosent og formue for å undersøke om den potensielt positive sammenhengen mellom stillingsprosent og sykefravær blir svakere eller endrer retning ved økende formuesnivå.

6.1.4.2 Ikke-lineære sammenhenger og modereringseffekter:

Som diskutert i teoridelen (Delkapittel 2.2.1), kan effekten av formue på sykefravær være ikke-lineær. Fremtidige studier bør utforske potensielle ikke-lineære modereringseffekter av formue på sammenhengen mellom jobbkrav og sykefravær. Dette kan innebære å teste interaksjonsledd som tillater effekten av jobbkrav å variere på en mer kompleks måte med formuesnivået, for eksempel ved å sammenligne effekter på tvers av mer detaljerte formueskategorier.

6.1.4.3 Avtagende grensenytte av jobbressurser for de med høy formue:

Jobbressurser antas å fungere beskyttende, men effekten kan tenkes å avta med økende formue. De med lav formue kan få relativt større utbytte av ekstra støtte og autonomi. Dette kan testes mer inngående med interaksjonsledd eller ved å undersøke effekter separat for ulike formuessegmenter.

6.1.4.4 Ulike dimensjoner av formue:

Vi har benyttet bruttofinanskapital. Det er sannsynlig at ulike typer formue (f.eks. nettoformue, boligformue vs. finansformue, arvet vs. opparbeidet) kan ha ulik psykologisk betydning og dermed ulik effekt på opplevd trygghet og handlingsrom. Fremtidige studier bør utforske og sammenligne ulike formuemål.

6.1.4.5 Samfunnsmessig ulikhet og motivasjon:

Utover individuelt formuenivå, kan den generelle opplevelsen av økonomisk ulikhet i samfunnet påvirke motivasjon og helse. Studier som og analyser fra for eksempel Brookings Institution peker på at store mulighetsgap kan redusere viljen til å investere i egen fremtid for de med færre ressurser. Fremtidig forskning kunne utforske hvordan makronivåindikatorer på ulikhet interagerer med individuelle faktorer for å påvirke sykefravær.

7 Konklusjon

Denne studien viser at formue har en signifikant og negativ sammenheng med sykefravær i Norge: Høyere relativ formue er assosiert med lavere log-transformert sykefraværsrate, både i fullstendig utvalg (Modell 1) og blant de som faktisk har vært sykmeldt (Modell 2). Dette funnet støtter antagelsen om at formue fungerer som en økonomisk buffer som reduserer stress og bidrar til bedre helse, uavhengig av jobbkrav og -ressurser. Jobbressurser fremmer motivasjon og bidrar til lavere sykefravær i Modell 1, men taper noe av sin direkte effekt når analysen begrenses til de som har vært sykmeldt. Jobbkrav har en svak, men signifikant positiv effekt på sykefravær i det fulle utvalget, mens denne effekten ikke lenger er signifikant i utvalget med kun sykmeldte.

Motivasjon styrkes av jobbressurser, men påvirkes ikke direkte av formue, og høy motivasjon er tilknyttet lavere sykefravær. Kontrollvariabler som kjønn, alder, utdanning og stillingsprosent viser forventede sammenhenger: Kvinner og de med lavere utdanning har høyere fravær, mens høy stillingsprosent knyttes til noe økt fravær i Modell 1 og motsatt i Modell 2. Modelltilpasningen (CFI > 0.93, TLI > 0.96, RMSEA < 0.06) indikerer god overensstemmelse med dataene, men tolkningen av resultater må gjøres med forsiktighet på grunn av tverrsnittsdesign, selvrapporterte data og stor andel nullverdier i sykefravær.

Sammenfattende gir analysen solid støtte for at individuell formue bidrar til lavere sykefravær, og begrenser delvis støtte til JD–R-modellens forutsigelser om jobbkrav og -ressurser. Fremtidig forskning bør undersøke ikke-lineære effekter av formue, interaksjoner mellom formue og arbeidsbelastning, samt mer detaljerte målinger av motivasjon og formueskomponenter for å klargjøre de underliggende mekanismene.

Referanser

- Demerouti, E., Bakker, A. B., Nachreiner, F. & Schaufeli, W. B. (2001). The job demands-resources model of burnout. *Journal of Applied Psychology*, 86(3), 499.
- Durlauf, S. N., Kourtellos, A. & Tan, C. M. (2022). The great gatsby curve. *Annual Review of Economics*, 14. https://doi.org/10.1146/annurev-economics-082321-122703
- Financial Protection Bureau), C. (Consumer. (2015). *Financial well-being: The goal of financial education*. https://www.consumerfinance.gov/. https://files.consumerfinance.gov/f/201501_cfpb_report_financial-well-being.pdf
- Finney, S. J. & DiStefano, C. (2006). Non-normal and categorical data in structural equation modeling. Structural Equation Modeling: A Second Course, 10(6), 269–314.
- Gesiarz, F., De Neve, J.-E. & Sharot, T. (2020). The motivational cost of inequality: Opportunity gaps reduce the willingness to work. *Plos One*, *15*(9), e0237914.
- Gugushvili, A. & Wiborg, Ø. N. (2025). Wealth and mortality among late-middle-aged individuals in norway: A nationwide register-based retrospective study. *The Lancet Regional Health–Europe*, 48.
- Hattrem, A. (n.d.). *Hvor mange er fattige i norge?* SSB. Retrieved May 23, 2025, from https://www.ssb.no/inntekt-og-forbruk/inntekt-og-formue/artikler/hvor-mange-er-fattige-i-norge
- Hobfoll, S. E. (1989). Conservation of resources: A new attempt at conceptualizing stress. *American Psychologist*, 44(3), 513.
- Jaeggi, A. V., Blackwell, A. D., Von Rueden, C., Trumble, B. C., Stieglitz, J., Garcia, A. R., Kraft, T. S., Beheim, B. A., Hooper, P. L., Kaplan, H., et al. (2021). Do wealth and inequality associate with health in a small-scale subsistence society? *Elife*, 10, e59437.
- Langseth-Eide, B. (2019). It's been a hard day's night and i've been working like a dog: Workaholism and work engagement in the JD-r model. *Frontiers in Psychology*, *10*, 1444.
- Langseth-Eide, B. & Vittersø, J. (2021). Ticket to ride: A longitudinal journey to health and work-attendance in the jd-r model. *International Journal of Environmental Research and Public Health*, 18(8), 4327.
- Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. *Psychometrika*, 49(1), 115–132.
- Normann, T. M. (2009). *Inntektsfattig eller levekårsfattig?* ssb.no. https://www.ssb.no/sosiale-forhold-og-kriminalitet/artikler-og-publikasjoner/inntektsfattig-eller-levekaarsfattig
- Pickett, K. E. & Wilkinson, R. G. (2015). Income inequality and health: A causal review. Social

- Science & Medicine, 128, 316–326.
- Rosseel, Y. (2012). Lavaan: An r package for structural equation modeling. *Journal of Statistical Software*, 48(2), 1–36. https://doi.org/10.18637/jss.v048.i02
- Schaufeli, W. B. & Bakker, A. B. (2004). Job demands, job resources, and their relationship with burnout and engagement: A multi-sample study. *Journal of Organizational Behavior: The International Journal of Industrial, Occupational and Organizational Psychology and Behavior*, 25(3), 293–315.
- SSB. (2017). *Beregnet bruttofinanskapital*. https://www.ssb.no/a/metadata/conceptvariable/vardok/3449/nb
- Üngüren, E., Tekin, Ö. A., Avsallı, H. & Kaçmaz, Y. Y. (2021). The moderator role of financial well-being on the effect of job insecurity and the COVID-19 anxiety on burnout: A research on hotel-sector employees in crisis. *Sustainability*, *13*, 9031. https://doi.org/10.3390/su13169031
- Vander Elst, T., Cavents, C., Daneels, K., Johannik, K., Baillien, E., Van den Broeck, A. & Godderis, L. (2016). Job demands—resources predicting burnout and work engagement among belgian home health care nurses: A cross-sectional study. *Nursing Outlook*, 64(6), 542–556.
- Zucman, G. (2019). Global wealth inequality. Annual Review of Economics, 11(1), 109–138.

Vedlegg

QMD-filen finnes på github siden her.

Appendiks

7.0.1 Tabell for 2023 sykefraværet

Tabell 9: SEM-resultater (Modell 3): Prediksjon av motivasjon og sykefravær (logsyk_2023), estimert på utvalg (N = 6103).

Avhengig variabel	Prediktor	Estimat	Std.Err	z-verdi	p-verdi	Std.all
Prediktorer for Mo	tivasjon					
	$\texttt{Latent_JR}\left(lpha_1 ight)$	0.480	0.019	25.302	< 0.001	0.430
	Form_qnrm (α_2)	0.008	0.017	0.479	0.632	0.007
	ald_ung(c1)	-0.363	0.045	-8.098	< 0.001	-0.121
	ald_elder(c2)	0.253	0.041	6.192	< 0.001	0.093
	Kvinne (c3)	0.013	0.033	0.406	0.685	0.006
	Utd_grnns (c4)	0.016	0.047	0.346	0.730	0.005
	Utd_nvrst(c5)	-0.016	0.035	-0.462	0.644	-0.007
	Barn (c6)	0.017	0.046	0.379	0.704	0.005
	arb_stlln(c7)	0.004	0.001	6.134	< 0.001	0.087
Prediktorer for lo	gsyk_2023					
-	Latent_JK (β_1)	0.108	0.027	3.946	< 0.001	0.065
	Latent_JR (β_2)	-0.090	0.018	-5.033	< 0.001	-0.081
	Form_qnrm (β_3)	-0.146	0.015	-9.526	< 0.001	-0.125
	Motivasjon (β_4)	-0.051	0.016	-3.158	0.002	-0.051
	$ald_{ung}(\gamma_1)$	-0.098	0.043	-2.251	0.024	-0.033
	$\mathtt{ald_elder}\left(\gamma_2 ight)$	0.074	0.036	2.081	0.037	0.027
	Kvinne γ_3	0.320	0.031	10.304	< 0.001	0.140
	$\texttt{Utd_grnns} \; \gamma_4$	0.144	0.042	3.473	0.001	0.043
	Utd_nvrst γ_5	-0.072	0.033	-2.165	0.030	-0.030
	Barn γ_6	0.109	0.042	2.587	0.010	0.034
	${\tt arb_stlln}\gamma_7$	0.001	0.001	1.332	0.183	0.018

Merk: Estimat = ustandardisert koeffisient; Std.Err = robust standardfeil; Std.all = fullstendig standardisert koeffisient. Referansekategorier: Alder (30–54 år), Utdanning (videregående).

Tabell 10: SEM-resultater (Modell 4): Prediksjon av motivasjon og sykefravær (logsyk_u0_2023), estimert kun på de med sykefravær $< 0 \ (N=2021)$.

Avhengig variabel Prediktor Estimat Std.Err z-verdi p-verdi Prediktorer for Motivasjon Latent_JR (α_1) 0.487 0.031 15.615 < 0.001	Std.all 0.452
· · · · · · · · · · · · · · · · · · ·	0.452
$1.2+on+ IR(\alpha) 0.487 0.031 15.615 < 0.001$	0.452
Latent_Sit(α_1) 0.467 0.051 15.015 $<$ 0.001	
Form_qnrm (α_2) 0.008 0.028 0.281 0.779	0.007
ald_ung(c1) $-0.360 0.075 -4.816 < 0.001$	-0.121
ald_elder(c2) 0.207 0.071 2.915 0.004	0.075
Kvinne (c3) 0.015 0.056 0.271 0.786	0.007
Utd_grnns (c4) 0.006 0.074 0.088 0.930	0.002
Utd_nvrst (c5) -0.062 0.061 -1.001 0.317	-0.026
Barn (c6) 0.032 0.075 0.425 0.671	0.010
$arb_stlln(c7)$ 0.002 0.001 1.520 0.129	0.036
Prediktorer for logsyk_u0_2023	
Latent_JK (β_1) 0.101 0.042 2.384 0.017	0.068
Latent_JR (β_2) -0.036 0.027 -1.322 0.186	-0.038
Form_qnrm (β_3) -0.092 0.024 -3.837 < 0.001	-0.086
Motivasjon (β_4) -0.034 0.025 -1.379 0.168	-0.038
ald_ung (γ_1) -0.176 0.064 -2.736 0.006	-0.067
ald_elder (γ_2) 0.161 0.056 2.881 0.004	0.066
Kvinne γ_3 0.128 0.047 2.717 0.007	0.062
Utd_grnns γ_4 0.070 0.062 1.125 0.261	0.025
Utd_nvrst γ_5	0.001
Barn γ_6 -0.041 0.061 -0.671 0.502	-0.015
$arb_stlln \gamma_7$ -0.001 0.001 -0.709 0.478	-0.016

estimeringer er gjort på subutvalget av respondenter med sykefravær < 0. Estimat = ustandardisert koeffisient; Std.Err = robust standardfeil; z-verdi = z-teststatistikk; p-verdi = sannsynlighet for z-verdien; Std.all = fullstendig standardisert koeffisient. Referansekategorier: Alder (30–54 år), Utdanning (videregående). arb_stlln er arbeidsstillingsprosent

56

Kunstig intelligens

Github Copilot

I løpet av koden så kan det ses mange # kommentarer der det er skrevet for eks "#endrer navnet på x-akse navn". Når vi skriver kode i RStudio så har vi en plugin som heter Github Copilot. Når vi skriver slike kommentarer så kan den foresøke å fullføre kodelinjene mens vi skriver de. Noen ganger klarer den det, men andre ikke. Det er vanskelig å dokumentere hver bruk siden det går veldig fort, men siden vi ikke har fått på plass en slik dokumentasjon så kan all R kode der det er brukt kommentarer antas som at det er brukt Github Copilot. Nærmere info om dette KI verktøyet kan ses på https://github.com/features/copilot

Gemini

ChatGPT

I løpet av skrivingen av denne oppgaven så har vi brukt ChatGPT til å hjelpe oss med tilbakemelding underveis i oppgaven, samt laging av tabeller, noen grafer og tikz figurer. Det finnes en fane som man kan lage prosjekter hvor vi har laget et prosjekt som heter "Bachelorskriving", underveis fant vi ut at det ikke er mulig å dele disse samtalene siden de er private for brukeren. Derfor er det ikke mulig å legge til dette i appendiks. Vedlagt for prosjektet legges det ved en .txt fil som inneholder prompts og en del av output fra KI, men siden samtalen er veldig lang så er det ikke mulig å legge ved alt. Det er også viktig å merke seg at det er brukt ChatGPT 04-mini-high versjon, og at det er muligens brukt en del av de avanserte funksjonene som ikke er tilgjengelig for alle brukere ettersom man har Plus-abonnement.

Det er også vært brukt ChatGPT til oppsettet i Lavaan og til å lage tabellene i latex.

Konklusjon og sammendrag er skrevet av ChatGPT, ettersom dette er noe den er veldig god til å brukes for.

Opprydding av ideer rundt videre forskning

Kategorispørsmål og tabellproblemer

Forklaring av transformasjon av formue

WLSMV estimator

Undersøker om det er grunner til å fjerne 0 verdiene