Exersise 20 If $a_n \to a$ and $a_n \to b$ with $b \neq a$, let $\epsilon = \frac{|b-a|}{2} > 0$. By definition there exists N such that for all k > N, $|a_k - a| < \epsilon$. However by triangle inequality, for any k > N we have

$$|b-a| = |b-x_k + x_k - a| \le |b-x_k| + |x_k - a|$$

and so since $|a - x_k| < \frac{|b-a|}{2} > 0$

$$|b-a| - \frac{|b-a|}{2} < |b-a| - |x_k-a| \le |b-x_k|$$

So we have $|b-x_k| > \frac{|b-a|}{2} = \epsilon$ for all k > N. Thus $x_n \not\to b$, which is a contradiction

Exersise 1 Let $x \cdot 1^* = A|A'$, $1^* = B|B'$ and x = C|C'. By definition

$$A = \{bc : b, c \ge 0, b \in B, c \in C \text{ or } a : a < 0, a \in B \cup C\}$$

Let $a \in A$ if a < 0 then $a \in C$ since $x > 1^* > 0^*$ we have $S = \{a \in \mathbb{Q} : a < 0\} \subset B \subset C$ If $a \ge 0$ then a = bc for some $b \in B, c \in C$. By definition of 1^* we know b < 1 and so bc < c and therefore $bc = a \in C$ since $a \in \mathbb{Q}$ and if $a \in \mathbb{Q} - C = C'$ then a < c which contradicts the axiom that elements of C' are greater than elements of C. Therefore we have $A \subseteq C$ For any $c \in C$, if c < 0 we know $c \in B$ and $c \in C$ so $c \in A$.

If $c \geq 0$ we have that since C does not contain an upper bound, there must exist a $c' \in C$ such that c < c' therefore $\frac{c}{c'} \in \mathbb{Q}$ and $c' \in \mathbb{Q}$ and $c' \in \mathbb{Q}$ and we have $c' \frac{c}{c'} = c \in A$. Therefore $C \subseteq A$. Thus we have equality, $C = A \Rightarrow x \cdot 1^* = x$

Exersise 2

a. If a_n is Cauchy then we know that a_n is bounded, so $\forall n, a_n < B$ for some $B \in \mathbb{R}$. For a given $\epsilon > 0$ there is a N > 0 such that j, k > N implies $|a_j - a_k| < \frac{\epsilon}{2B}$. We have that (since $|a_j + a_k| < 2M$)

$$|a_j^2 - a_k^2| = |a_j - a_k||a_j + a_k| < \frac{\epsilon}{2B} 2B$$

And thus $|a_i^2 - a_k^2| < \epsilon$, so a_n^2 is Cauchy

b. If a_n^2 is Cauchy, it is bounded. We have for some $C \in \mathbb{R}$, $C^2 > a_n^2 \ge c^2$. Given $\epsilon > 0$, there is a N such that for any j, k > N we have $|a_i^2 - a_k^2| < 2C\epsilon$. Again we have

$$|a_j^2 - a_k^2| = |a_j - a_k||a_j + a_k| < \frac{\epsilon}{2C}|a_j + a_k|$$

and we have $|a_j + a_k| < 2C$, so

$$|a_j - a_k| < \epsilon$$

Thus a_n is Cauchy

Exersise 3 Base Case:

$$n = 1, 1 + c = 1 + c$$

Inductive Step:

assuming nth case we have

$$(1+c)^{n+1} = (1+c)^n + c(1+c)^n \ge 1 + nc + c(1+c)^n \ge 1 + nc + c = 1 + (n+1)c$$

And thus the n+1 case is true

Exersise 4

- a. Since r > 0 we can write r as r = 1 + c with c > 0. Suppose such an upper bound x existed, then we have $x \le 1 + \lceil (x-1)/c \rceil c$. However as proven in problem 3, if we let $n = \lceil (x-1)/c \rceil + 1$ then $r^n \ge 1 + nc > 1 + (n-1)c = x$
- b. Since r>0, we know $\frac{1}{r^n}>0$. For $\epsilon>0$, we know from part a that there exists N such that $r^N>\frac{1}{\epsilon}$, and for all n>N, $r^n>\frac{1}{\epsilon}$ since $r^{n-N}>1$ and $r^n=r^Nr^{n-N}$. Therefore we have $|r^n|>|\frac{1}{\epsilon}|$, and so $|\frac{1}{r^n}|<\epsilon$. Thus $\frac{1}{r^n}\to 0$

Exersise 5 From the Triangle Ineq:

$$|y| + |x - y| \ge |y + x - y| = |x|$$

So

$$|x - y| \ge |x| - |y|$$

This argument works relabeling x and y, so $|y-x| \ge |y| - |x|$. Depending on which is larger, we know ||x| - |y|| = |x| - |y| or |y| - |x|, either way, we have

$$|x - y| = |y - x| \ge ||x| - |y||$$

Exersise 6 If $x = \lambda y$, we know that $|\langle \lambda y, y \rangle| = |\lambda \langle y, y \rangle| = |\lambda |y|^2 = |x||y|$.

If $|\langle x,y\rangle|=|x||y|$, we can define $Q(t)=\langle x+ty,x+ty\rangle$. By bilinear properties of the inner product we have

$$Q(t) = \langle x + ty, x + ty \rangle = \langle x, x + ty \rangle + \langle ty, x + ty \rangle$$
$$= \langle x, x \rangle + t \langle x, y \rangle + t \langle y, x \rangle + t^2 \langle y, y \rangle$$

By assumtion that $|\langle x, y \rangle| = |x||y|$

$$= |x|^2 + 2t|x||y| + t^2|y|^2$$
$$= (|x| + t|y|)^2$$

Letting $t = -\frac{|x|}{|y|}$ we have

$$Q(-\frac{|x|}{|y|}) = \left(|x| + -\frac{|x|}{|y|}|y|\right)^2 = 0$$

Therefore we have

$$\langle x + -\frac{|x|}{|y|}y, x + -\frac{|x|}{|y|}y \rangle = 0$$

Which is the case if and only if $x - \frac{|x|}{|y|}y = 0 \Rightarrow x = \frac{|x|}{|y|}y$