Intelligence artificielle

Agents logiques

Elise Bonzon elise.bonzon@u-paris.fr

LIPADE - Université de Paris http://www.math-info.univ-paris5.fr/~bonzon/

Motivations

- Agents fondés sur les connaissances
 - Représentation des connaissances
 - Processus de raisonnement

Motivations

- Agents fondés sur les connaissances
 - Représentation des connaissances
 - Processus de raisonnement
- ⇒ Tirer parti de connaissances grâce à une capacité à combiner et recombiner des informations pour les adapter à une multitude de fins.
 - → Mathématicien démontre un théorème
 - → Astronome calcule la durée de vie de la Terre

Motivations

- Agents fondés sur les connaissances
 - Représentation des connaissances
 - Processus de raisonnement
- ⇒ Tirer parti de connaissances grâce à une capacité à combiner et recombiner des informations pour les adapter à une multitude de fins.
 - -> Mathématicien démontre un théorème
 - → Astronome calcule la durée de vie de la Terre
- ⇒ Environnements partiellement observables : combiner connaissances générales et percepts reçus pour inférer des aspects cachés de l'état courant.
 - → Médecin ausculte un patient
 - → Compréhension du langage naturel :
 - "John a vu le diamant à travers le carreau et l'a convoité"
 - "John a lancé un caillou à travers le carreau et l'a cassé"
 - Connaissances de sens commun

Agents logiques

- 1. Agents fondés sur les connaissances
- 2. Le monde du Wumpus
- 3. Principe généraux de la logique
- 4. Logique propositionnelle
- 5. Conclusion

Agents fondés sur les

connaissances

Base de connaissances (BC)

- Base de connaissances : ensemble d'énoncés exprimés dans un langage formel
- Les agents logiques peuvent être vus :
 - au niveau des connaissances : ce qu'ils savent, quelle que soit l'implémentation
 - au niveau des implémentations : structures de données dans la base de connaissances, et les algorithmes qui les manipulent
- Approche déclarative pour construire la base de connaissances
 - Tell : ce qu'ils doivent savoir
 - Ask: demander ce qu'ils doivent faire. La réponse doit résulter de la base de connaissances

Agent basé sur les connaissances

Un agent basé sur les connaissances doit être capable de :

- Représenter les états, les actions
- Incorporer de nouvelles perceptions
- Mettre à jour sa représentation interne du monde
- Déduire les propriétés cachées du monde
- Déduire les actions appropriées

Exemple simple d'un agent basé sur les connaissances

```
Programme agent basé sur les connaissances fonction KB-Agent(percept) retourne action variables statiques : KB, base de connaissances t, compteur initialisé à 0, indique le temps  \text{Tell}(KB, \text{Make-percept-sentence}(percept, t))  action \leftarrow \text{Ask}(KB, \text{Make-action-query}(t))  \text{Tell}(KB, \text{Make-action-sentence}(action, t))  t \leftarrow t+1 retourner action
```

Le monde du Wumpus

Le monde du Wumpus

Environnement

- Agent commence en case [1,1]
- Cases adjacentes au Wumpus sentent mauvais
- Brise dans les cases adjacentes aux puits
- Lueur dans la cases contenant de l'or
- Tirer tue le Wumpus s'il est en face
- On ne peut tirer qu'une fois
- S'il est tué, le Wumpus crie
- Choc si l'agent se heurte à un mur
- Saisir l'or si même case que l'agent
- Capteurs : odeur, brise, lueur, choc, cri
- Percepts: liste de 5 symboles
 Ex: [odeur, brise, rien, rien, rien]
- Actions: tourne gauche, tourne droite, avance, attrape, tire

Mesure de performance :

• or : +1000;

• mort : -1000;

action : -1;

• utiliser la flèche : -10

Caractérisation du monde du Wumpus

- Totalement observable Non. Perception locale uniquement
- Déterministe Oui
- Épisodique Non. Séquentiel au niveau des actions
- Statique Oui. Le Wumpus et les puits ne bougent pas
- Discret Oui
- Mono-agent Oui. Le Wumpus est une caractéristique de la nature

Principe généraux de la logique

Principe généraux de la logique

- Logique : langage formel permettant de représenter des informations à partir desquelles on peut tirer des conclusions
- La syntaxe désigne les phrases (ou énoncés) bien formées dans le langage
- La sémantique désigne la signification, le sens de ces phrases
- Par exemple, dans le langage arithmétique :
 - x + y = 4 est une phrase syntaxiquement correcte
 - x4y+= n'en est pas une
 - 2 + 3 = 4 est une phrase syntaxiquement correcte mais sémantiquement incorrecte
 - x + y = 4 est vraie ssi x et y sont des nombres, et que leur somme fait 4
 - x + y = 4 est vraie dans un monde où x = 1 et y = 3
 - x + y = 4 est fausse dans un monde où x = 2 et y = 1

Relation de conséquences

- Relation de conséquences : un énoncé découle logiquement d'un autre énoncé : $\alpha \models \beta$
- $\alpha \models \beta$ est vraie si et seulement si β est vraie dans tous mondes où α est vraie
 - Si α est vraie, β doit être vraie
 - Par exemple, $(x + y = 4) \models (x + y \le 4)$
- Base de connaissances = ensemble d'énoncés. Une BC a un énoncé pour conséquence : $BC \models \alpha$
- La relation de conséquences est une relation entre des énoncés (la syntaxe) basée sur la sémantique

Les modèles

- Les logiciens pensent en terme de modèles, qui sont des mondes structurés dans lesquels la vérité ou la fausseté de chaque énoncé peut être évaluée
- m est un modèle de l'énoncé α si α est vraie dans m
- $M(\alpha)$ est l'ensemble de tous les modèles de α
- $BC \models \alpha$ si et seulement si $M(BC) \subseteq M(\alpha)$

Relation de conséquences dans le monde du Wumpus

- Situation après avoir effectué
 - Rien en [1,1]
 - Droite
 - Brise en [2,1]
- Considérer les modèles possible pour la base de connaissances en ne considérant que les puits
- $2^3 = 8$ modèles possibles

ullet BC = règles du monde Wumpus + observations

- $\bullet \ \ \mathsf{BC} = \mathsf{r\`egles} \ \mathsf{du} \ \mathsf{monde} \ \mathsf{Wumpus} + \mathsf{observations}$
- $\alpha_1 =$ "[1,2] est sans puits"

- BC = règles du monde Wumpus + observations
- $\alpha_1 =$ "[1,2] est sans puits"
- $BC \models \alpha_1$, prouvé par vérification des modèles (*model checking*)

- $\bullet \ \ \mathsf{BC} = \mathsf{r\`egles} \ \mathsf{du} \ \mathsf{monde} \ \mathsf{Wumpus} + \mathsf{observations}$
- $\alpha_2 =$ "[2,2] est sans puits"
- $BC \not\models \alpha_2$

Inférence logique

- $KB \vdash_i \alpha$: l'énoncé α est dérivé de KB par la procédure i
- Validité (soundness) : i est valide si, lorsque $KB \vdash_i \alpha$ est vrai, alors $KB \models \alpha$ est également vrai
- Complétude (completness) : i est complète si, lorsque $KB \models \alpha$ est vrai, alors $KB \vdash_i \alpha$ est également vrai
- Une procédure valide et complète permet de répondre à toute question dont la réponse peut être déduite de la base de connaissances

Logique propositionnelle

Logique propositionnelle

Syntaxe

Logique propositionnelle - syntaxe

- Les atomes :
 - Constantes logiques ⊤ (vrai) et ⊥ (faux)
 - **Symbole propositionnel** : proposition qui peut être vraie ou fausse *a, b, c...*
- Les connecteurs logiques :
 - ¬ (négation)
 - ∧ (et)
 - ∨ (ou)
 - ⇒ (implication)
 - ⇔ (équivalence)
- Un atome (précédé ou non de ¬) est appelé un littéral
- Les formules bien formées (wffs)

Logique propositionnelle - syntaxe

Formule bien formée

- Tout atome est une wff
- Si E_1 et E_2 sont des wffs, alors
 - $\neg E_1$ est une wff (négation)
 - $E_1 \wedge E_2$ est une wff (conjonction)
 - $E_1 \vee E_2$ est une wff (disjonction)
 - $E_1 \Rightarrow E_2$ est une wff (implication)
 - $E_1 \Leftrightarrow E_2$ est une wff (équivalence)
- Ordre de priorité des opérateurs : $\neg > \land > \lor > \Rightarrow, \Leftrightarrow$

Base de connaissances du monde du Wumpus (simplifié)

- ullet $P_{i,j}$ vrai s'il y a un puits en [i,j]
- ullet $B_{i,j}$ vrai s'il y a une brise en [i,j]
- Base de connaissances :
 - $R_1 : \neg P_{1,1}$
 - Brise ssi puits dans une case adjacente :

$$\textit{R}_2:\textit{B}_{1,1}\Leftrightarrow \left(\textit{P}_{1,2}\vee\textit{P}_{2,1}\right)$$

$$\textit{R}_{3}:\textit{B}_{2,1}\Leftrightarrow\left(\textit{P}_{1,1}\vee\textit{P}_{2,2}\vee\textit{P}_{3,1}\right)$$

- $R_4 : \neg B_{1,1}$
- $R_5: B_{2,1}$
- BC : $R_1 \wedge R_2 \wedge R_3 \wedge R_4 \wedge R_5$

Logique propositionnelle

Sémantique

- Un modèle : une valeur de vérité (*vrai* ou *faux*) pour chaque symbole propositionnel
 - 3 symboles propositionnels $P_{1,1}$, $P_{2,2}$ et $P_{3,1}$
 - $\bullet \ m_1 = \{P_{1,1} = \textit{Faux}, \ P_{2,2} = \textit{Faux}, \ P_{3,1} = \textit{Vrai}\}$

- Un modèle : une valeur de vérité (vrai ou faux) pour chaque symbole propositionnel
 - 3 symboles propositionnels $P_{1,1}$, $P_{2,2}$ et $P_{3,1}$
 - $m_1 = \{P_{1,1} = Faux, P_{2,2} = Faux, P_{3,1} = Vrai\}$
- n symboles propositionnels = 2^n modèles possibles

- Un modèle : une valeur de vérité (vrai ou faux) pour chaque symbole propositionnel
 - 3 symboles propositionnels $P_{1,1}$, $P_{2,2}$ et $P_{3,1}$
 - $m_1 = \{P_{1,1} = Faux, P_{2,2} = Faux, P_{3,1} = Vrai\}$
- n symboles propositionnels = 2^n modèles possibles
- Attention!
 - Un modèle m est une affectation de valeurs de vérité à chaque symbole propositionnel
 - m est un modèle de α si α est vrai dans m

Règles pour évaluer un énoncé en fonction d'un modèle m :

Règles pour évaluer un énoncé en fonction d'un modèle m :

 $\neg E$ est vrai ssi E est faux

Règles pour évaluer un énoncé en fonction d'un modèle m:

```
eg E est vrai ssi E est faux E_1 \wedge E_2 est vrai ssi E_1 est vrai et E_2 est vrai
```

Règles pour évaluer un énoncé en fonction d'un modèle m :

```
eg E est vrai ssi E est faux E_1 \wedge E_2 est vrai ssi E_1 est vrai et E_2 est vrai E_1 \vee E_2 est vrai ssi E_1 est vrai ou E_2 est vrai
```

Règles pour évaluer un énoncé en fonction d'un modèle \emph{m} :

```
egin{array}{lll}
\hline \neg E & \text{est vrai ssi} & E & \text{est faux} \\
\hline E_1 \land E_2 & \text{est vrai ssi} & E_1 & \text{est vrai } \mathbf{et} & E_2 & \text{est vrai} \\
\hline E_1 \lor E_2 & \text{est vrai ssi} & E_1 & \text{est vrai } \mathbf{ou} & E_2 & \text{est vrai} \\
\hline E_1 \Rightarrow E_2 & \text{est vrai ssi} & E_1 & \text{est faux } \mathbf{ou} & E_2 & \text{est vrai} \\
\hline \end{array}
```

Règles pour évaluer un énoncé en fonction d'un modèle \emph{m} :

```
egin{array}{lll}
\hline \neg E & \text{est vrai ssi} & E & \text{est faux} \\
\hline E_1 \land E_2 & \text{est vrai ssi} & E_1 & \text{est vrai } \mathbf{et} & E_2 & \text{est vrai} \\
\hline E_1 \lor E_2 & \text{est vrai ssi} & E_1 & \text{est vrai } \mathbf{ou} & E_2 & \text{est vrai} \\
\hline E_1 \Rightarrow E_2 & \text{est vrai ssi} & E_1 & \text{est faux } \mathbf{ou} & E_2 & \text{est vrai} \\
\hline E_1 \Rightarrow E_2 & \text{est faux ssi} & E_1 & \text{est vrai } \mathbf{et} & E_2 & \text{est faux} \\
\hline \end{array}
```

Règles pour évaluer un énoncé en fonction d'un modèle m:

```
egin{array}{lll}
\hline \neg E & \text{est vrai ssi} & E & \text{est faux} \\
\hline E_1 \land E_2 & \text{est vrai ssi} & E_1 & \text{est vrai } \mathbf{et} & E_2 & \text{est vrai} \\
\hline E_1 \lor E_2 & \text{est vrai ssi} & E_1 & \text{est vrai } \mathbf{ou} & E_2 & \text{est vrai} \\
\hline E_1 \Rightarrow E_2 & \text{est vrai ssi} & E_1 & \text{est faux } \mathbf{ou} & E_2 & \text{est vrai} \\
\hline E_1 \Rightarrow E_2 & \text{est faux ssi} & E_1 & \text{est vrai } \mathbf{et} & E_2 & \text{est faux} \\
\hline E_1 \Leftrightarrow E_2 & \text{est vrai ssi} & E_1 \Rightarrow E_2 & \text{est vrai } \mathbf{et} & E_2 \Rightarrow E_1 & \text{est vrai} \\
\hline E_1 \Leftrightarrow E_2 & \text{est vrai ssi} & E_1 \Rightarrow E_2 & \text{est vrai } \mathbf{et} & E_2 \Rightarrow E_1 & \text{est vrai} \\
\hline E_1 \Leftrightarrow E_2 & \text{est vrai ssi} & E_1 \Rightarrow E_2 & \text{est vrai } \mathbf{et} & E_2 \Rightarrow E_1 & \text{est vrai} \\
\hline E_1 \Leftrightarrow E_2 & \text{est vrai ssi} & E_1 \Rightarrow E_2 & \text{est vrai } \mathbf{et} & E_2 \Rightarrow E_1 & \text{est vrai} \\
\hline E_1 \Leftrightarrow E_2 & \text{est vrai ssi} & E_1 \Rightarrow E_2 & \text{est vrai } \mathbf{et} & E_2 \Rightarrow E_1 & \text{est vrai} \\
\hline E_1 \Leftrightarrow E_2 & \text{est vrai ssi} & E_1 \Rightarrow E_2 & \text{est vrai } \mathbf{et} & E_2 \Rightarrow E_1 & \text{est vrai} \\
\hline E_1 \Leftrightarrow E_2 & \text{est vrai ssi} & E_1 \Rightarrow E_2 & \text{est vrai } \mathbf{et} & E_2 \Rightarrow E_1 & \text{est vrai} \\
\hline E_1 \Leftrightarrow E_2 & \text{est vrai ssi} & E_1 \Leftrightarrow E_2 & \text{est vrai } \mathbf{et} & E_2 \Rightarrow E_1 & \text{est vrai} \\
\hline E_1 \Leftrightarrow E_2 & \text{est vrai } \mathbf{et} & E_2 \Rightarrow E_1 & \text{est vrai} \\
\hline E_1 \Leftrightarrow E_2 & \text{est vrai } \mathbf{et} & E_2 \Rightarrow E_1 & \text{est vrai} \\
\hline E_1 \Leftrightarrow E_2 & \text{est vrai } \mathbf{et} & E_2 \Rightarrow E_1 & \text{est vrai} \\
\hline E_1 \Leftrightarrow E_2 & \text{est vrai } \mathbf{et} & E_2 \Rightarrow E_1 & \text{est vrai} \\
\hline E_1 \Leftrightarrow E_2 \Leftrightarrow E_1 & \text{est vrai} & E_2 \Leftrightarrow E_2 & \text{est vrai} \\
\hline E_1 \Leftrightarrow E_2 \Leftrightarrow E_1 \Leftrightarrow E_2 \Leftrightarrow E_
```

Table de vérité des connecteurs logiques

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
vrai	vrai	faux	vrai	vrai	vrai	vrai
vrai	faux	faux	faux	vrai	faux	faux
faux	vrai	vrai	faux	vrai	vrai	faux
faux	faux	vrai	faux	faux	vrai	vrai

Table de vérité des connecteurs logiques

Р	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
vrai	vrai	faux	vrai	vrai	vrai	vrai
vrai	faux	faux	faux	vrai	faux	faux
faux	vrai	vrai	faux	vrai	vrai	faux
faux	faux	vrai	faux	faux	vrai	vrai

- La valeur de vérité d'une wff est calculée récursivement en utilisant la table de vérité ci-dessus
- Une wff peut avoir différentes valeurs de vérité dans différentes interprétations (différents modèles)

Base de connaissances du monde du Wumpus (simplifié)

• 7 symboles propositionnels : $2^7 = 128$ modèles possibles

B _{1,1}	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	P _{2,2}	$P_{3,1}$	R_1	R_2	R ₃	R_4	R_5	ВС
faux	faux	faux	faux	faux	faux	faux	vrai	vrai	vrai	vrai	faux	faux
faux	faux	faux	faux	faux	faux	vrai	vrai	vrai	faux	vrai	faux	faux
:	:	:	:	:	:	:	:	:	:	:	:	:
faux	vrai	faux	faux	faux	faux	faux	vrai	vrai	faux	vrai	vrai	faux
faux	vrai	faux	faux	faux	faux	vrai	vrai	vrai	vrai	vrai	vrai	<u>vrai</u>
faux	vrai	faux	faux	faux	vrai	faux	vrai	vrai	vrai	vrai	vrai	<u>vrai</u>
faux	vrai	faux	faux	faux	vrai	vrai	vrai	vrai	vrai	vrai	vrai	<u>vrai</u>
faux	vrai	faux	faux	vrai	faux	faux	vrai	faux	faux	vrai	vrai	faux
:	:	:	:	:	:	:	:	:	:	:	:	:
vrai	vrai	vrai	vrai	vrai	vrai	vrai	faux	vrai	vrai	faux	vrai	faux

Logique propositionnelle

Inférence par énumération

Inférence par énumération

Énumération en profondeur d'abord de tous les modèles

```
fonction TT-Entails(KB, \alpha) retourne vrai ou faux
     variables statiques : KB, base de connaissances
                             \alpha, requête, énoncé propositionnel
     symboles \leftarrow liste de symboles propositionnels dans KB et \alpha
     retourner TT-Check-All(KB, \alpha, symboles, [])
fonction TT-Check-All(KB, \alpha, symboles, modele) retourne vrai ou faux
     si Empty?(symboles) alors
          si PL-True?(KB, modele) alors retourner PL-True?(\alpha, modele)
         sinon retourner vrai
     sinon faire
          P \leftarrow \mathsf{First}(\mathit{symboles}); \mathit{reste} \leftarrow \mathsf{Rest}(\mathit{symboles})
         retourner TT-Check-All(KB, \alpha, reste, Extend(P, vrai, modele))
                     et TT-Check-All(KB, \alpha, reste, Extend(P, faux, modele))
```

Inférence par énumération

- Algorithme valide et complet
- Pour *n* symboles :
 - complexité temporelle en $O(2^n)$
 - ullet complexité spatiale en O(n)

Logique propositionnelle

Équivalence, validité, satisfiabilité

Équivalence logique

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

Équivalence logique

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$$
 commutativité de \wedge

Équivalence logique

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$$
 commutativité de \wedge
 $(\alpha \vee \beta) \equiv (\beta \vee \alpha)$ commutativité de \vee

Équivalence logique

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$\begin{array}{ccc} (\alpha \wedge \beta) & \equiv & (\beta \wedge \alpha) \text{ commutativit\'e de } \wedge \\ (\alpha \vee \beta) & \equiv & (\beta \vee \alpha) \text{ commutativit\'e de } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) & \equiv & (\alpha \wedge (\beta \wedge \gamma)) \text{ associativit\'e de } \wedge \end{array}$$

Équivalence logique

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$\begin{array}{cccc} (\alpha \wedge \beta) & \equiv & (\beta \wedge \alpha) \text{ commutativit\'e de } \wedge \\ (\alpha \vee \beta) & \equiv & (\beta \vee \alpha) \text{ commutativit\'e de } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) & \equiv & (\alpha \wedge (\beta \wedge \gamma)) \text{ associativit\'e de } \wedge \\ ((\alpha \vee \beta) \vee \gamma) & \equiv & (\alpha \vee (\beta \vee \gamma)) \text{ associativit\'e de } \vee \end{array}$$

Équivalence logique

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$\begin{array}{cccc} (\alpha \wedge \beta) & \equiv & (\beta \wedge \alpha) \text{ commutativit\'e de } \wedge \\ & (\alpha \vee \beta) & \equiv & (\beta \vee \alpha) \text{ commutativit\'e de } \vee \\ & ((\alpha \wedge \beta) \wedge \gamma) & \equiv & (\alpha \wedge (\beta \wedge \gamma)) \text{ associativit\'e de } \wedge \\ & ((\alpha \vee \beta) \vee \gamma) & \equiv & (\alpha \vee (\beta \vee \gamma)) \text{ associativit\'e de } \vee \\ & \neg (\neg \alpha) & \equiv & \alpha \text{ \'elimination de la double n\'egation} \end{array}$$

Équivalence logique

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$\begin{array}{cccc} (\alpha \wedge \beta) & \equiv & (\beta \wedge \alpha) \text{ commutativit\'e de } \wedge \\ (\alpha \vee \beta) & \equiv & (\beta \vee \alpha) \text{ commutativit\'e de } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) & \equiv & (\alpha \wedge (\beta \wedge \gamma)) \text{ associativit\'e de } \wedge \\ ((\alpha \vee \beta) \vee \gamma) & \equiv & (\alpha \vee (\beta \vee \gamma)) \text{ associativit\'e de } \vee \\ \neg (\neg \alpha) & \equiv & \alpha \text{ \'elimination de la double n\'egation} \\ (\alpha \Rightarrow \beta) & \equiv & (\neg \beta \Rightarrow \neg \alpha) \text{ contraposition} \end{array}$$

Équivalence logique

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

Équivalence logique

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$(\alpha \Leftrightarrow \beta) \ \equiv \ ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \text{ élimination de l'équivalence}$$

Équivalence logique

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$$
 élimination de l'équivalence $\neg(\alpha \land \beta) \equiv (\neg\alpha \lor \neg\beta)$ De Morgan

Équivalence logique

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$$
 élimination de l'équivalence $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ De Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ De Morgan

Équivalence logique

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$\begin{array}{lll} (\alpha \Leftrightarrow \beta) & \equiv & ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \text{ \'elimination de l'\'equivalence} \\ \neg (\alpha \wedge \beta) & \equiv & (\neg \alpha \vee \neg \beta) \text{ De Morgan} \\ \neg (\alpha \vee \beta) & \equiv & (\neg \alpha \wedge \neg \beta) \text{ De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) & \equiv & ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \text{ distributivit\'e de } \wedge \text{ par rapport \`a} \vee (\alpha \wedge \beta) \wedge (\alpha \wedge \gamma) \end{array}$$

Équivalence logique

$$\alpha \equiv \beta \Leftrightarrow \alpha \models \beta \text{ et } \beta \models \alpha$$

$$\begin{array}{lll} (\alpha \Leftrightarrow \beta) & \equiv & ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \text{ \'elimination de l'\'equivalence} \\ \neg (\alpha \wedge \beta) & \equiv & (\neg \alpha \vee \neg \beta) \text{ De Morgan} \\ \neg (\alpha \vee \beta) & \equiv & (\neg \alpha \wedge \neg \beta) \text{ De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) & \equiv & ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \text{ distributivit\'e de } \wedge \text{ par rapport \`a} \vee \\ (\alpha \vee (\beta \wedge \gamma)) & \equiv & ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \text{ distributivit\'e de } \vee \text{ par rapport \`a} \wedge \\ \end{array}$$

- Un énoncé est valide s'il est vrai dans tous les modèles. On dit aussi tautologie
 - Exemples : \top ; $A \lor \neg A$; $A \Rightarrow A$; $(A \land (A \Rightarrow B)) \Rightarrow B$

- Un énoncé est valide s'il est vrai dans tous les modèles. On dit aussi tautologie
 - Exemples : \top ; $A \lor \neg A$; $A \Rightarrow A$; $(A \land (A \Rightarrow B)) \Rightarrow B$

$$\mathit{KB} \models \alpha$$
 si et seulement si $(\mathit{KB} \Rightarrow \alpha)$ est valide

- Un énoncé est valide s'il est vrai dans tous les modèles. On dit aussi tautologie
 - Exemples : \top ; $A \lor \neg A$; $A \Rightarrow A$; $(A \land (A \Rightarrow B)) \Rightarrow B$

$$KB \models \alpha$$
 si et seulement si $(KB \Rightarrow \alpha)$ est valide

- Un énoncé est satisfiable s'il est vrai dans certains modèles
 - Exemples : $A \lor B$; C

- Un énoncé est valide s'il est vrai dans tous les modèles. On dit aussi tautologie
 - Exemples : \top ; $A \lor \neg A$; $A \Rightarrow A$; $(A \land (A \Rightarrow B)) \Rightarrow B$

$$KB \models \alpha$$
 si et seulement si $(KB \Rightarrow \alpha)$ est valide

- Un énoncé est satisfiable s'il est vrai dans certains modèles
 - Exemples : $A \lor B$; C
- Un énoncé est insatisfiable s'il n'est vrai dans aucun modèle
 - Exemple : $A \land \neg A$

- Un énoncé est valide s'il est vrai dans tous les modèles. On dit aussi tautologie
 - Exemples : \top ; $A \lor \neg A$; $A \Rightarrow A$; $(A \land (A \Rightarrow B)) \Rightarrow B$

Théorème de la déduction

$$\mathit{KB} \models \alpha$$
 si et seulement si $(\mathit{KB} \Rightarrow \alpha)$ est valide

- Un énoncé est satisfiable s'il est vrai dans certains modèles
 - Exemples : $A \lor B$; C
- Un énoncé est insatisfiable s'il n'est vrai dans aucun modèle
 - Exemple : $A \land \neg A$

$$KB \models \alpha$$
 si et seulement si $(KB \land \neg \alpha)$ est insatisfiable

Conclusion

Conclusion

- Les agents logiques appliquent l'inférence sur une base de connaissances pour déduire de nouvelles informations et prendre une décision
- Concepts basiques de la logique
 - Syntaxe : structure formelle des énoncés
 - Sémantique : vérité de chaque énoncé dans un modèle
 - Conséquence : vérité nécessaire d'un énoncé par rapport à un autre
 - Inférence : dérivation de nouveaux énoncés à partir d'anciens
 - Validité : l'inférence ne dérive que des énoncés qui sont des conséquences
 - Complétude : l'inférence dérive tous les énoncés qui sont des conséquences