

Trench Gate Design Six IGBTMOD™ 100 Amperes/600 Volts

Outline Drawing and Circuit Diagram

Dimensions	Inches	Millimeter	
Α	4.78	121.5	
В	2.42 61.5		
С	0.67 17.0		
D	4.33±0.01	110.0±0.25	
Е	3.00	76.2	
F	0.75	19.05	
G	0.60	15.24	
Н	0.15	3.81	
J	2.26	57.5	
K	1.97±0.01 50.0±0		
L	1.07	27.0	

Dimensions	Inches	Millimeters
М	0.15	3.81
N	0.75	19.05
Р	0.15	3.81
Q	3.00	76.2
R	0.60	15.24
S	0.45	1.15
Т	0.04	1.0
U	0.22 Dia.	5.5 Dia.
V	0.12	3.0
W	0.81	20.5
Х	3.72	94.5
Υ	4.62	118.11

Description:

Powerex IGBTMOD™ Modules are designed for use in switching applications. Each module consists of six IGBT Transistors in a three phase bridge configuration, with each transistor having a reverse-connected super-fast recovery free-wheel diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

Enaturos:

1 6	alui es.
	Low Drive Power
	Low V _{CE(sat)}
	Discrete Super-Fast Recovery
	Free-Wheel Diode
	Isolated Baseplate for Easy
	Heat Sinking

Applications:

, .bbaa	
☐ AC Motor Control	
□ UPS	
☐ Battery Powered Suppli	ie

Ordering Information:

Example: Select the complete module number you desire from the table - i.e. CM100TJ-12F is a 600V (V_{CES}), 100 Ampere Six-IGBT IGBTMOD™ Power Module.

Туре	Current Rating Amperes	V _{CES} Volts (x 50)		
CM	100	12		

CM100TJ-12F Trench Gate Design Six IGBTMOD™ 100 Amperes/600 Volts

Absolute Maximum Ratings, T $_{j}$ = 25 $^{\circ}\text{C}$ unless otherwise specified

Ratings	Symbol	CM100TJ-12F	Units
Junction Temperature	T _j	-40 to 150	°C
Storage Temperature	T _{stg}	-40 to 125	°C
Collector-Emitter Voltage (G-E SHORT)	V _{CES}	600	Volts
Gate-Emitter Voltage (C-E SHORT)	V _{GES}	±20	Volts
Collector Current (T _C = 25°C)	Ic	100	Amperes
Peak Collector Current (T _j ≤ 150°C)	I _{CM}	200*	Amperes
Emitter Current (T _C = 25°C)**	Ι _Ε	100	Amperes
Peak Emitter Current**	I _{EM}	200*	Amperes
Maximum Collector Dissipation ($T_j < 150^{\circ}C$) ($T_c = 25^{\circ}C$)	P _c	290	Watts
Mounting Torque, M5 Mounting	_	31	in-lb
Weight	_	300	Grams
Isolation Voltage (Main Terminal to Baseplate, AC 1 min.)	V _{iso}	2500	Volts

Static Electrical Characteristics, T_j = 25 °C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Collector-Cutoff Current	I _{CES}	V _{CE} = V _{CES} , V _{GE} = 0V	_	_	1	mA
Gate Leakage Current	I _{GES}	$V_{GE} = V_{GES}, V_{CE} = 0V$	-	_	20	μΑ
Gate-Emitter Threshold Voltage	V _{GE(th)}	$I_{C} = 10 \text{mA}, V_{CE} = 10 \text{V}$	5	6	7	Volts
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 100A, V _{GE} = 15V, T _j = 25°C	_	1.6	2.2	Volts
		$I_C = 100A$, $V_{GE} = 15V$, $T_j = 125$ °C	-	1.6	-	Volts
Total Gate Charge	Q _G	V _{CC} = 300V, I _C = 100A, V _{GE} = 15V	_	620	_	nC
Emitter-Collector Voltage**	V _{EC}	I _E = 100A, V _{GE} = 0V	_	_	2.6	Volts

^{*} Pulse width and repetition rate should be such that the device junction temperature (T_j) does not exceed $T_{j(max)}$ rating.

^{**} Represents characteristics of the anti-parallel, emitter-to-collector free-wheel diode (FWDi).

CM100TJ-12F Trench Gate Design Six IGBTMOD™ 100 Amperes/600 Volts

Dynamic Electrical Characteristics, T_i = 25 °C unless otherwise specified

Characteristics		Symbol	Test Conditions	Min.	Typ.	Max.	Units
Input Capacita	nce	C _{ies}		-	-	27	nf
Output Capacit	ance	C _{oes}	$V_{CE} = 10V, V_{GE} = 0V$	_	_	1.8	nf
Reverse Transf	er Capacitance	C _{res}	_	-	-	1	nf
Inductive	Turn-on Delay Time	t _{d(on)}	V _{CC} = 300V,	-	_	100	ns
Load	Rise Time	t _r	$I_{C} = 100A,$	_	-	80	ns
Switch	Turn-off Delay Time	t _{d(off)}	$V_{GE1} = V_{GE2} = 15V$,	-	-	300	ns
Times	Fall Time	t _f	$R_G = 6.3\Omega$,	_	-	250	ns
Diode Reverse	Recovery Time**	t _{rr}	Inductive Load	_	_	150	ns
Diode Reverse	Recovery Charge**	Q _{rr}	Switching Operation	_	1.9	-	μС

Thermal and Mechanical Characteristics, T_j = 25 °C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance, Junction to Case	R _{th(j-c)} Q	Per IGBT 1/6 Module, T _C Reference	-	-	0.43	°C/W
		Point per Outline Drawing				
Thermal Resistance, Junction to Case	R _{th(j-c)} D	Per FWDi 1/6 Module, T _C Reference	_	-	0.70	°C/W
		Point per Outline drawing				
Thermal Resistance, Junction to Case	R _{th(j-c)} 'Q	Per IGBT 1/6 Module,	-	0.28	-	°C/W
		T _C Reference Point Under Chip				
Thermal Resistance, Junction to Case	Rth(j-c)'D	Per FWDi 1/6 Module, T _C Reference	-	0.37	-	°C/W
		T _C Reference Point Under Chip				
Contact Thermal Resistance	R _{th(c-f)}	Per Module, Thermal Grease Applied	-	0.13	-	°C/W

^{**} Represents characteristics of the anti-parallel, emitter-to-collector free-wheel diode (FWDi).

CM100TJ-12F Trench Gate Design Six IGBTMOD™ 100 Amperes/600 Volts

