Name: Ananya Nigam	Section: A	Semester: 4
SRN: PES1UG20CS044	Roll number: 47	Date: 1.05.2022

LINEAR ALGEBRA PROJECT

GRAYSCALE IMAGE MANIPULATION

Code:

```
♠ ♠ Table 1 Among the Documents ★ MATLAB ★

Editor - C:\Users\anany\OneDrive\Documents\MATLAB\imagemanipulation.m *
   imagemanipulation.m * X coloured_img_manipulation.m X +
             %: To use the matrix operations to manipulate Grayscale images.
             %% Load a grayscale jpg file and represent the data as a matrix:
             % 0 corresponds to black and 255 to white: bitmaps
             ImJPG=imread('aut.jpg'); %loading using imread
             %% checking dimensions of the obtained array ImJPG
             [m,n]=size(ImJPG)
   8
   9
            %type of the array ImJPG by using the command isinteger
  10
            %0=false and 1=true
  11
            isinteger(ImJPG)
  12
  13
            %Finding range of colours in image
  14
  15
             maxImJPG = max(ImJPG);
             minImJPG = min(ImJPG);
  16
  17
             % display the image on the screen
  18
             imshow(ImJPG)
  19
  20
             %% CROP IMG: Select and display a part of the image, paste into a different image
  21
  22
             ImJPG center = ImJPG(700:m-800,500:n-600);
  23
             figure;
  24
  25
  26
             %% ImJPG centre is cropped image matrix
  27
             imshow(ImJPG center)
  28
```

← → Table Transport T

```
Editor - C:\Users\anany\OneDrive\Documents\MATLAB\imagemanipulation.m
 imagemanipulation.m × coloured_img_manipulation.m × +
   30
            %% paste the selected part of the image into another image
             %first creating a zero matrix
   31
   32
             ImJPG_border=uint8(zeros(m,n));
   33
             %paste the preselected matrix ImJPG center into matrix ImJPG border and display the image:
             ImJPG_border(700:m-800,500:n-600)=ImJPG_center;
   35
             figure;
   36
             imshow(ImJPG_border)
   37
   38
   39
             %% Flip the image horizontally/vertically
   40
   41
   42
             %flipping the image vertically:reverses the order of elements in each column of the matrix
   43
             ImJPG vertflip=flip(ImJPG);
   44
             imshow(ImJPG_vertflip)
   45
   46
   47
             ** transposing the image matrix is equivalent to rotating the image 90 degrees counterclockwise and flipping it horizontally.
   48
   49
             ImJPG_transpose=ImJPG';
   50
             figure;
             imshow(ImJPG_transpose)
   51
   52
             %% Horizontal images
   53
             ImJPG_horflip=flip(ImJPG_transpose)';
   54
   55
             imshow(ImJPG_horflip)
   56
```

♠ ➡ ➡ ➡ ☐ ➡ C: ► Users ► anany ► OneDrive ► Documents ► MATLAB ►

_	Users\anany\OneDrive\Documents\MATLAB\imagemanipulation.m	
imagemanipulation.m × coloured_img_manipulation.m × +		
57	%% Rotate the image	
58	%rot90 rotates 90 degrees in counterclockwise direction	
59	<pre>ImJPG90=rot90(ImJPG)</pre>	
60	figure;	
61	imshow(ImJPG90)	
62		
63		
64		
65	%% Color inversion	
66	%Matlab treats the constant 255 as an array of the same size as ImJPG with	all the elements equal to 255.
67	<pre>ImJPG_inv = 255-ImJPG;</pre>	
68	figure;	
69	imshow(ImJPG_inv);	
70		
71	%If out of range values then as array type is uint8,those elements rounded	to zero.
72		
73	<pre>%% darkening: 0 corresponds to black</pre>	
74	<pre>ImJPG_dark=ImJPG-50;</pre>	
75	imshow(ImJPG_dark);	
76		
77	%% lightening: 255 corresponds to white	
78	<pre>ImJPG_light=ImJPG+70;</pre>	
79	<pre>imshow(ImJPG_light);</pre>	
80		
81	<pre>%% A naive conversion to black and white</pre>	
82 🖃	%Making grayer shades black	
83	%Making the shades lighter than medium gray to white	
84	%uint8 to convert to integer format	

CODE FOR COLOURED IMAGE MANIPULATION:

```
♠ ♠ Table Tab
Editor - C:\Users\anany\OneDrive\Documents\MATLAB\coloured_img_manipulation.m
            imagemanipulation.m × coloured_img_manipulation.m × +
                                                  %% Loading the image
                3
                                                   I=imread('car.jpg');
                                                  % Checking dimensions
                4
                                                   [m,n]=size(I)
                                                   imshow(I)
                7
                9
                                                   %% Crop image
            10
                                                   targetSize = [300 600];
           11
                                                   %Create a Rectangle object that specifies the spatial extent of the crop window.
           12
            13
                                                  r = centerCropWindow2d(size(I),targetSize);
                                                  %Crop the image to the spatial extents. Display the cropped region
                                                  J = imcrop(I,r);
           17
                                                  h=[];
                                                 h(1) = subplot(2,2,1);
           18
           19
                                                 h(2) = subplot(2,2,2);
                                                 image(I, 'Parent', h(1));
           20
                                                 image(J,'Parent',h(2));
           21
            23
            24
            25
                                                   %% Flipping image
            26
            27
                                                   I vertflip=flip(I);
```

imshow(I_vertflip)

28

```
♠ ♠ Table 1 Table 1 Table 2 Table
 Editor - C:\Users\anany\OneDrive\Documents\MATLAB\coloured_img_manipulation.m
              imagemanipulation.m × coloured_img_manipulation.m × +
                                                   imshow(I_vertflip)
             28
                                                  h(3) = subplot(2,2,3);
             29
             30
                                                   image(I_vertflip, 'Parent', h(3));
             31
             32
             33
                                                  %% Taking transpose
             34
                                                   I trans=permute(I,[2 1 3])
             35
             36
             37
                                                   imshow(I_trans)
             38
             39
                                                  %% Rotating by 90 degrees
            40
            41
                                                   ImJPG90=rot90(I)
            42
                                                   figure;
            43
                                                   imshow(ImJPG90)
            44
            45
                                                  %% Converting to black and white
            46
                                                   gray = 0.2989 * I(:,:,1) + 0.5870 * I(:,:,2) + 0.1140 * I(:,:,3);
            47
            48
                                                   imshow(gray)
            49
                                                   %% Adjusting contrast image
             50
                                                   RGB2 = imadjust(I,[.2 .3 0; .6 .7 1],[]);
             51
                                                   figure
             52
                                                   imshow(RGB2)
             53
             54
                                                   %% Lightening the image
             55
             56
             57
                                                   ImJPG_light=I+70;
```

imshow(ImJPG light)

58

```
Editor - C:\Users\anany\OneDrive\Documents\MATLAB\coloured_img_manipulation.m
   imagemanipulation.m × coloured_img_manipulation.m × +
            %% Darkening the image
  61
            ImJPG dark=I-100;
            imshow(ImJPG_dark)
  62
  63
   64
   65
            %% Read in original RGB image.
  66
            rgbImage = imread('car.jpg');
            % Extract color channels.
  67
            redChannel = rgbImage(:,:,1); % Red channel
  68
            greenChannel = rgbImage(:,:,2); % Green channel
  69
   70
            blueChannel = rgbImage(:,:,3); % Blue channel
  71
            % Create an all black channel.
  72
            allBlack = zeros(size(rgbImage, 1), size(rgbImage, 2), 'uint8');
            % Create color versions of the individual color channels.
  73
            just_red = cat(3, redChannel, allBlack, allBlack);
  74
  75
            just_green = cat(3, allBlack, greenChannel, allBlack);
  76
            just_blue = cat(3, allBlack, allBlack, blueChannel);
  77
            % Recombine the individual color channels to create the original RGB image again.
  78
            recombinedRGBImage = cat(3, redChannel, greenChannel, blueChannel);
  79
            % Display them all.
  80
            subplot(3, 3, 2);
  81
            imshow(rgbImage);
            fontSize = 20;
  82
            title('Original RGB Image', 'FontSize', fontSize)
  83
            subplot(3, 3, 4);
  84
            imshow(just_red);
  85
            title('Red Channel in Red', 'FontSize', fontSize)
  86
  87
            subplot(3, 3, 5);
  88
            imshow(just_green)
   89
            title('Green Channel in Green', 'FontSize', fontSize)
```

subplot(3 3 6)

```
奪 🕪 🛅 🔚 🎾 📙 ▶ C: ▶ Users ▶ anany ▶ OneDrive ▶ Documents ▶ MATLAB ▶
Editor - C:\Users\anany\OneDrive\Documents\MATLAB\coloured_img_manipulation.m
   76
            just_blue = cat(3, allBlack, allBlack, blueChannel);
  77
            % Recombine the individual color channels to create the original RGB image again.
            recombinedRGBImage = cat(3, redChannel, greenChannel, blueChannel);
   78
   79
            % Display them all.
            subplot(3, 3, 2);
  80
  81
            imshow(rgbImage);
  82
            fontSize = 20;
            title('Original RGB Image', 'FontSize', fontSize)
  83
  84
            subplot(3, 3, 4);
  85
            imshow(just_red);
  86
            title('Red Channel in Red', 'FontSize', fontSize)
            subplot(3, 3, 5);
  87
            imshow(just_green)
  88
            title('Green Channel in Green', 'FontSize', fontSize)
  89
  90
            subplot(3, 3, 6);
  91
            imshow(just_blue);
            title('Blue Channel in Blue', 'FontSize', fontSize)
  92
  93
            subplot(3, 3, 8);
            imshow(recombinedRGBImage);
  94
            title('Recombined to Form Original RGB Image Again', 'FontSize', fontSize)
  95
            % Set up figure properties:
  96
            % Enlarge figure to full screen.
  97
            set(gcf, 'Units', 'Normalized', 'OuterPosition', [0, 0, 1, 1]);
  98
  99
            \mbox{\%} Get rid of tool bar and pulldown menus that are along top of figure.
            % set(gcf, 'Toolbar', 'none', 'Menu', 'none');
  100
            % Give a name to the title bar.
  101
            set(gcf, 'Name', 'After Applying matrix operations', 'NumberTitle', 'Off')
 102
 103
```

MATRIX OPERATIONS & IMAGE MANIPULATIONS !!

NAME: Ananya Nigam

SRN: PES1UG20CS044

Section: A

Roll number: 47

INTRODUCTION

- An image in a computer memory can be stored as a matrix with each element of the matrix representing a pixel of the image and containing a number which corresponds to the color of this pixel.
- If the image is a color image, then each pixel is characterized by three numbers corresponding to the intensities of Red, Green, and Blue (the so-called RGB color system). If the image is a grayscale image, then only one number for the intensity of gray is needed.
- The intensity of each color typically ranges from 0 (black) to 255 (white).
- I have used Matlab to build this project.

LOADING A GRAYSCALE IMAGE AND REPRESENTING IT AS A MATRIX

```
%% Load a grayscale jpg file and represent the data as a matrix:
% 0 corresponds to black and 255 to white: bitmaps
ImJPG=imread('einstein.jpg'); %loading using imread

%% checking dimensions of the obtained array ImJPG
[m,n]=size(ImJPG)

%type of the array ImJPG by using the command isinteger
%0=false and 1=true
isinteger(ImJPG)

%Finding range of colours in image
maxImJPG = max(ImJPG);
minImJPG = min(ImJPG);
% display the image on the screen
imshow(ImJPG)
```


CROPPING IMAGE

```
%% CROP IMG: Select and display a part of the image, paste into a different
image

ImJPG_center = ImJPG(700:m-800,500:n-600);%top and bottom,left,right
figure;
%ImJPG_centre is cropped image matrix
imshow(ImJPG_center)
%paste the selected part of the image into another image
%first creating a zero matrix
ImJPG_border=uint8(zeros(m,n));
%paste the preselected matrix ImJPG center into matrix ImJPG border and display the image:
ImJPG_border(700:m-800,500:n-600)=ImJPG_center;
figure;
imshow(ImJPG_border)
```


 Cropping the image and displaying It with borders

FLIPPING THE IMAGE VERTICALLY

```
%% Flip the image horizontally/vertically
%flipping the image vertically:reverses the order of elements in each column of the matrix
ImJPG_vertflip=flip(ImJPG);
imshow(ImJPG_vertflip)
```


FLIPPING THE IMAGE HORIZONTALLY

Transposing the image matrix is equivalent to rotating the image 90 degrees counterclockwise and flipping it horizontally

```
ImJPG_transpose=ImJPG';
figure;
imshow(ImJPG_transpose)
```


ROTATING THE IMAGE BY 90 DEGREES ANTI CLOCKWISE

%% Rotate the image %rot90 rotates 90 degrees in counterclockwise direction ImJPG90=rot90(ImJPG) figure; imshow(ImJPG90)

COLOR INVERSION

```
%% Color inversion

%Matlab treats the constant 255 as an array of the same size as ImJPG with all the elements equal to 255.
ImJPG_inv = 255-ImJPG;
figure;
imshow(ImJPG_inv);
```


DARKENING THE IMAGE

```
%darkening: 0 corresponds to black
ImJPG_dark=ImJPG-50;
imshow(ImJPG_dark);
```


LIGHTENING THE IMAGE

```
%% lightening: 255 corresponds to white
ImJPG_light=ImJPG+70;
imshow(ImJPG_light);
```


CONVERTING IMAGE TO BLACK AND WHITE

```
%% A naive conversion to black and white
%Making grayer shades black
%Making the shades lighter than medium gray to white
%uint8 to convert to integer format

ImJPG_bw=uint8(255*floor(ImJPG/128));
figure
imshow(ImJPG_bw);
```


INCREASING COLOR CONTRAST

%% Increasing Contrast %we can increase the difference between the colors of the image, fo % scalar multiply the matrix by some constant. % positive constant greater than 1, then the contrast is increased % constant less than 1, then it is decreased ImJPG HighContrast=uint8(1.25*ImJPG);

imshow(ImJPG_HighContrast)

DECREASING COLOUR CONTRAST

ImJPG_LowContrast=uint8(0.25*ImJPG);
imshow(ImJPG_LowContrast)

IMAGE MANIPULATIONS USING MATRIX OPERATIONS ON COLOURED IMAGES

Name: Ananya Nigam

SRN: PES1UG20CS044

Section: A

Roll number: 47

ORIGINAL IMAGE:

CROPPED IMAGE

```
%% Crop image

targetSize = [300 600];
%Create a Rectangle object that specifies the spatial extent of the crop window.

r = centerCropWindow2d(size(I),targetSize);
%Crop the image to the spatial extents. Display the cropped region
J = imcrop(I,r);
imshow(J)
```


VERTICALLY FLIPPED IMAGE

%% Flipping image
I_vertflip=flip(I);
imshow(I_vertflip)

FLIPPING IMAGE HORIZONTALLY

```
I_trans=permute(I,[2 1 3])
imshow(I_trans)
```


ROTATING 90 DEGREES

```
%% Rotating by 90 degrees

ImJPG90=rot90(I)
figure;
imshow(ImJPG90)
```


CONVERTING IMAGE TO BLACK AND WHITE

Using Luminicense formula:

```
%% Converting to black and white gray = 0.2989 * I(:,:,1) + 0.5870 * I(:,:,2) + 0.1140 * I(:,:,3); imshow(gray)
```


SHOWING RGB CHANNELS:

RED CHANNEL

GREEN CHANNEL

Green Channel in Green

BLUE CHANNEL

Blue Channel in Blue

Original RGB Image

Red Channel in Red

Green Channel in Green

Blue Channel in Blue

Recombined to Form Original RGB Image Again

ADJUSTING CONTRAST OF IMAGE

```
%% Adjusting contrast image
RGB2 = imadjust(I,[.2 .3 0; .6 .7 1],[]);
figure
imshow(RGB2)
```


LIGHTENING THE IMAGE

%% Lightening the image

ImJPG_light=I+70; imshow(ImJPG_light)

DARKENING THE IMAGE

%% Darkening the image
ImJPG_dark=I-100;
imshow(ImJPG_dark)

