# Computergrafik 2014 Oliver Vornberger

Vorlesung vom 17.06.2014

Kapitel 18: Beleuchtung

## Ausgangslage

am Ende der Viewing Pipeline liegt vor:



## Beleuchtungmodelle

- lokal:
   Objekt, Lichtquellen, Augenpunkt
- global:
   Objekt, Lichtquellen, Augenpunkt,
   alle anderen Objekte

# Triangulierung

konvexe Polygone triangulieren



# Triangulierung

konkave Polygone triangulieren



# **Ziel** zeilenweises Rastern



## Einfärbung/Beleuchtung

zur Berechung der Farbe eines Pixels geht ein:

- Materialeigenschaften des Objekts
- Augenpunkt des Betrachters
- Normalenvektor des Objekts
- Positionierung der Lichtquellen
- Art der Lichtquellen



## Lichtquellen

- Umgebungslicht
- gerichtetes Licht
- Punktlicht
- Strahler

ambient light

directed light

point light

spot light

# Umgebungslicht

- keine Position
- keine Richtung
- Intensität Ia

#### Gerichtetes Licht

- keine Position
- Lichtrichtung L<sub>g</sub>
- Intensität I<sub>g</sub>



#### z.B. Sonnenlicht

#### Punktlicht

- Position P
- keine bevorzugte Richtung
- Anfangs-Intensität I<sub>0</sub>
- Intensität nimmt mit Entfernung ab

$$I(r) = \frac{I_0}{C_1 + C_2 \cdot r}$$

$$r \ge 0$$
 Abstand zur Lichtquelle

$$C_2 \geq 0$$
 Abschwächungskoeffzient

$$C_1 \geq 1$$
 (verhindert zu kleinen Nenner)

#### Strahler

- Position P
- Lichtrichtung L
- Intensität I<sub>0</sub>
- Abschwächungskoeffizienten C<sub>1</sub>, C<sub>2</sub>
- [Abstrahlwinkel α]
- Konzentrationsexponent c
  - $\Rightarrow$  Intensität bei Richtung r =  $\cos(r, L)^c$



# Intensität im Lichtkegel



## Gesamtbeleuchtung pro Pixel

- ambientes Licht
- diffus reflektiertes gerichtetes Licht
- spekular reflektiertes gerichtetes Licht

$$\overline{C} = \overline{C_a} + \sum_{i=1}^{n} \overline{C_{d_i}} + \sum_{i=1}^{n} \overline{C_{s_i}}$$

n Zahl der Lichtquellen

 $\overline{C_a}$  ambienter Anteil  $\overline{C_{d_i}}$  diffuser Anteil von Lichtquelle i  $\overline{C_{s_i}}$  spekularer Anteil von Lichtquelle i pro Farbe einzeln berechnen !

## Oberflächeneigenschaften

 $k_a$  ambienter Reflexionskoeefizient  $k_d$  diffuser Reflexionskoeffizient

 $k_s$  spekularer Reflexionskoeffizient

 $\overline{O_d}$  diffuse Objektfarbe

 $\overline{O_s}$  spekulare Objektfarbe

 $O_e$  spekularer Exponent

#### ambiente Reflexion

Grundhelligkeit eines Objekts

$$\overline{C_a} = k_a \cdot I_a \cdot \overline{O_d}$$

 $k_a$  ambienter Reflexionskoeffizient

 $I_a$  Intensität des ambienten Lichts

 $\overline{O_d}$  diffuse Objektfarbe

#### diffuse Reflexion

vom Objekt diffus reflektiertes Licht, d.h. überall gleichmäßig sichtbar

$$\overline{C_d} = k_d \cdot I_e \cdot \overline{O_d} \cdot \cos(L, N)$$

 $k_d$  diffuser Reflexionskoeffizient

 $I_e$  Intensität des einfallenden Lichts

 $\overline{O_d}$  diffuse Objektfarbe



#### spekulare Reflexion

vom Objekt gespiegeltes Licht, nur in bestimmter Richtung sichtbar

$$\overline{C_s} = k_s \cdot I_e \cdot \overline{O_s} \cdot \cos(R, A)^{O_e}$$

 $k_s$  spekularer Reflexionskoeffizient

 $I_{e}$  Intensität des einfallenden Lichts

 $\overline{O_s}$  spekulare Objektfarbe

 $O_e$  spekularer Exponent, regelt Streukegel



## Intensität im Streukegel



## Materialeigenschaften

nicht mehr abstrahlen als empfangen:

$$0 \le k_a, k_d, k_s \le 1$$

$$k_a + k_d + k_s \le 1$$

kontrastarm

$$k_a \gg k_d, k_s$$

matt

$$k_d \gg k_s$$

spiegeInd

$$k_s > k_d$$

## Schattierungsalgorithmen

 Flat Shading: pro Dreieck eine Farbe

 Gouraud Shading: Interpolation der Farbwerte

 Phong Shading: Interpolation der Normalen



# Normalen angleichen



## Flat Shading

- Eckpunkte im WC beleuchten
- Mittelwert f
   ür alle Pixel



## Gouraud Shading

Doppelte Interpolation

$$\overline{C_1} = \overline{C_A} \frac{y - y_C}{y_A - y_C} + \overline{C_C} \frac{y_A - y_C}{y_A - y_C}$$



# Gouraud Shading



#### Flat versus Gouraud



## Phong Shading

#### pro Scanline:

• interpoliere Anfangsnormale

• interpoliere Endnormale

#### pro Pixel:

- interpoliere Normale
- berechne Farbwert



## Gouraud versus Phong

Farbwerte interpolieren



Normalen interpolieren Farbwerte ausrechnen



#### Flat versus Gouraud versus Phong



#### Schatten



von der Lichtquelle nicht sichtbare Pixel

## Berechnung von Schatten

geeignet: Hidden-Surface-Removal-Algorithmen

- Phase 1: rendere Bild aus Position der Lichtquelle L in einen Schattentiefenpuffer s\_tiefe[][]
- Phase 2: rendere Bild aus Position des Betrachters mit modifiziertem Tiefenpuffer-Algorithmus:

falls Pixel P (x,y,z) sichtbar, transformiere P in den Koordinatenraum von Phase 1 zu P'(x',y',z').

Falls z' < s\_tiefe[x',y'] dann P im Schatten von L ⇒ P ohne L beleuchten

Falls z' >= s\_tiefe[x',y'] dann P nicht im Schatten von L ⇒ P mit L beleuchten

# Berechnung von Schatten



#### Kernschatten & Halbschatten



#### Computergrafikpraktikum

- 11. 29. August
- Ganztägig
- Modellieren mit Blender
- Rendern mit Open GL
- Szenen erstellen mit Unity3D
- Programmierung + Vortrag + Dokumentation ergibt 6 ECTS Credits