Electricity carbon intensity prediction

Predicting how clean or dirty electricity is

Bastian Kubsch

Modified from Olivier Corradi

- predictions about demand and marginal generator to reduce CO2 emissions

Approach to predict marginal CO2 emissions

	t CO2-e / MWh
2019-08-01 03:55:00	0.380340
2019-08-01 03:50:00	0.456409
2019-08-01 03:45:00	0.573436
2019-08-01 03:40:00	0.573436
2019-08-01 03:35:00	0.573436

- marginal generator of South Australian electricity market
- dispatch of marginal generator at a 5 min frequency
- focus: exploration of time-dependent behaviour

Before we start: is clean or dirty energy more expensive?

	t CO2-e / MWh	Price
2019-08-01 03:55:00	0.380340	79.52391
2019-08-01 03:50:00	0.456409	79.17710
2019-08-01 03:45:00	0.573436	85.14416
2019-08-01 03:40:00	0.573436	84.78689
2019-08-01 03:35:00	0.573436	84.78346

Before we start: is clean or dirty energy more expensive?

	t CO2-e / MWh	Price
2019-08-01 03:55:00	0.380340	79.52391
2019-08-01 03:50:00	0.456409	79.17710
2019-08-01 03:45:00	0.573436	85.14416
2019-08-01 03:40:00	0.573436	84.78689
2019-08-01 03:35:00	0.573436	84.78346

Dirty energy has been more expensive!

Let's start: marginal CO2 emissions over time

Complete time period (monthly average)

Let's start: marginal CO2 emissions over time

Complete time period (monthly average)

48h interval

Checking for random time behaviour

- Random walk:

- CO2_{now} = CO2_{5 min} + stochastic error
- CO2_{5 min} = CO2_{10 min} + stochastic error
- etc.

Checking for random time behaviour

- Random walk:

- CO2_{now} = CO2_{5 min} + stochastic error
- CO2_{5 min} = CO2_{10 min} + stochastic error
- etc.

Checking for random time behaviour

- Random walk:

- CO2_{now} = CO2_{5 min} + stochastic error
- CO2_{5 min} = CO2_{10 min} + stochastic error
- etc.

- Our dataset:

not a random walk

hourly

hour of day

Feature engineering: periodicity

Linear time representation

24 columns, i.e. features

Feature engineering: periodicity

Linear time representation

Sine / cosine trafo

Cyclical time representation

hour of day

24 columns, i.e. features

2 columns, i.e. features

Feature engineering: periodicity

Linear time representation

Sine / cosine trafo

Cyclical time representation

hour of day

24 columns, i.e. features

2 columns, i.e. features

Fitting the data: Gradient boosting

- Ensemble learning using base learners, here: decision trees
- sequential minimisation of loss function gradient

Richard Johansson

Fit with seasonal time features

Initial prediction (48h period shown)

$$SMAPE_{train} = 17.67 \%$$
$$SMAPE_{test} = 22.86 \%$$

Some more time feature engineering

	t CO2-e / MWh
2019-08-01 02:20:00	0.573436
2019-08-01 02:25:00	0.380340
2019-08-01 02:30:00	0.570054
2019-08-01 02:35:00	0.570054
2019-08-01 02:40:00	0.573436
2019-08-01 02:45:00	0.573436
2019-08-01 02:50:00	0.459168
2019-08-01 02:55:00	0.000000
2019-08-01 03:00:00	0.456409
2019-08-01 03:05:00	0.573436
2019-08-01 03:10:00	0.573436
2019-08-01 03:15:00	0.573436
2019-08-01 03:20:00	0.573436
2019-08-01 03:25:00	0.000000

Some more time feature engineering

	t CO2-e / MWh
2019-08-01 02:20:00	0.573436
2019-08-01 02:25:00	0.380340
2019-08-01 02:30:00	0.570054
2019-08-01 02:35:00	0.570054
2019-08-01 02:40:00	0.573436
2019-08-01 02:45:00	0.573436
2019-08-01 02:50:00	0.459168
2019-08-01 02:55:00	0.000000
2019-08-01 03:00:00	0.456409
2019-08-01 03:05:00	0.573436
2019-08-01 03:10:00	0.573436
2019-08-01 03:15:00	0.573436
2019-08-01 03:20:00	0.573436
2019-08-01 03:25:00	0.000000

Time features (48h period shown)

SMAPE_{train}: 13.89 SMAPE_{test}: 19.04

Time features (48h period shown)

 $SMAPE_{train}$: 13.89 $SMAPE_{test}$: 19.04

Time features + electricity demand (48h period shown)

 $SMAPE_{train}$: 13.88 $SMAPE_{test}$: 19.13

Time features (48h period shown)

 $SMAPE_{train}$: 13.89 $SMAPE_{test}$: 19.04

Time features + electricity demand (48h period shown)

 $SMAPE_{train}$: 13.88 $SMAPE_{test}$: 19.13

Time features + electricity demand + electricity import (48h period shown)

SMAPE_{train}: 13.87 SMAPE_{test}: 19.30

Time features + electricity demand + electricity import (5h period shown)

Zooming in

Time features +
electricity demand +
electricity import (48h period shown)

 $SMAPE_{train}$: 13.87 $SMAPE_{test}$: 19.30

Time features + electricity demand + electricity import (5h period shown)

Zooming in

Time features +
electricity demand +
electricity import (48h period shown)

SMAPE_{train}: 13.87 SMAPE_{test}: 19.30

Is this a forecast?

Time features + electricity demand + electricity import (5h period shown)

Zooming in

Time features +
electricity demand +
electricity import (48h period shown)

 $SMAPE_{train}$: 13.87 $SMAPE_{test}$: 19.30

Is this a forecast? No!

Time features +
electricity demand +
electricity import
(5h period shown)

.

Zooming in

Feature importances

10 08 06 06 06

12:00

15:00

Time of Day

electricity import (48h period shown)

 $SMAPE_{train}$: 13.87 $SMAPE_{test}$: 19.30

06:00 09:00

Time features + electricity demand +

Conclusions:

- be critical!
- gradient boosting mimics time series trajectory, not forecasting it
- remains unknown if marginal CO2 emissions can be predicted

Conclusions:

- be critical!
- gradient boosting mimics time series trajectory, not forecasting it
- remains unknown if marginal CO2 emissions can be predicted

Outlook:

- tweaking of current model and use of other models
- more features

Name: Bastian Kubsch

Linkedin: https://www.linkedin.com/in/bastian-kubsch-phd-063419158/

Github: https://github.com/bkubsch/marginal-carbon