Two Reasons to Model Phenotype Mean and Variance in QTL Mapping

Robert Corty

UNC Chapel Hill

BCB Colloquium January 23, 2017

Overview

Background

Mean QTL Mapping

Variance QTL Mapping

Unsolicited Advice

Acknowledgements

Software: CRAN package vqtl

Slides:

github.com/rcorty/BCB_colloquium

Collaborators:

Lisa Tarantino

Ethan Lange

Leslie Lange

Laura Raffield

Valdar lab:

Will Valdar

Greg Keele

Dan Oreper

Paul Maurizio

Wes Crouse

Yanwei Cai

Background

F2 Intercross Mapping Population

Current Approach to QTL Mapping

Civelek, 2014

Truth:

$$y_i = f(g_i, t_i, e_i, ...)$$

Current Approach to QTL Mapping

Civelek, 2014

Truth:

$$y_i = f(g_i, t_i, e_i, ...)$$

Statistical Model:

$$y_i = m_i + \epsilon_i$$
 $\epsilon_i \sim N(0, \sigma^2)$
with
 $m_i = \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta} + \mathbf{q}_i^{\mathsf{T}} \boldsymbol{\alpha}$

DGLM Model

Constant variance QTL Mapping Model:

$$y_i = m_i + \epsilon_i$$

 $\epsilon_i \sim N(0, \sigma^2)$
with
 $m_i = \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta} + \mathbf{q}_i^{\mathsf{T}} \boldsymbol{\alpha}$

DGLM Model

Constant variance QTL Mapping Model:

$$y_i = m_i + \epsilon_i$$

 $\epsilon_i \sim N(0, \sigma^2)$
with
 $m_i = \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta} + \mathbf{q}_i^{\mathsf{T}} \alpha$

Heterogeneous variance QTL Mapping Model:

$$y_i = m_i + \epsilon_i$$
 $\epsilon_i \sim N(0, \exp(v_i)^2)$
with
 $m_i = \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta} + \mathbf{q}_i^{\mathsf{T}} \boldsymbol{\alpha}$
 $v_i = \mathbf{z}_i^{\mathsf{T}} \boldsymbol{\gamma} + \mathbf{q}_i^{\mathsf{T}} \boldsymbol{\theta}$

Credits

J. R. Statist. Soc. B (1989) 51, No. 1, pp. 47-60

Generalized Linear Models with Varying Dispersion

By GORDON K. SMYTH†

University of California, Santa Barbara, USA

Copyright © 2011 by the Genetics Society of America DOI: 10.1534/genetics.111.127068

Detecting Major Genetic Loci Controlling Phenotypic Variability in Experimental Crosses

Lars Rönnegård*,1 and William Valdar†

*Statistics Unit, Dalarna University, SE-781 70 Borlänge, Sweden and †Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7265

Mean QTL Mapping

Nuisance Variance Heterogeneity

Could some levels of nuisance covariates yield more precise observations than others?

- Technician
- Day
- Apparatus
- Sex of model organism

Up-weight those observations.

Down-weight the (otherwise) high leverage points.

Significance vs. Zero-ness

$$p > 0.05 \implies \beta = 0$$

If we wouldn't trust a result that requires excluding some covariate, we should probably model it.

Implications for study design

Implications for study design

Implications for Power

Heterogeneous variance scenario:

Variance QTL Mapping

GxE

GxE

Liability-Threshold Model

Unsolicited Advice

Unsolicited Advice

- Work for someone you like.
- Do an easy project first.
- Read Falconer.

Gratten 2016, Nature Genetics

Risk of psychiatric illness from advanced paternal age is not predominantly from *de novo* mutations