

AD-A186 025

unclassified ELCUMITY CLASSIFICATION OF THIS PAGE (When Date Entermy)	THE COPY (2
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS HEFORE COMPLETING FORM
AFOSR-TR- 87-1245	J. RECIPIENT'S CATALOG NUMBER
TITLE (anii Subilite)	S. TYPE OF REPORT & PERIOD COVERED
Strong consistency of estimation of number of	Fire
regression variables when the errors are indep-	technical - June 1987
endent and their expectations are not equal to	6. PERFORMING ORG. REPORT NUMBER
each other	87-15
AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(+)
Yuehua Wu	F49620-85-C-0008
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT PROJECT TASK
Center for Multivariate Analysis	10. PROGRAM ELEMENT PROJECT TASK AREA WORK UNIT NUMBERS
University of Pittsburgh, 515 Thackeray Hall	6110-01-
Pittsburgh, PA 15260	2304 A5
CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Air Force Office of Scientific Research	June 1987 [.]
Department of the Air Force	13. HUMBER OF PAGES
Bolling Air Force Base, DC 20332	22
14. MONITORING ACENCY NAME & ADDRESS(II dillerent from Controlling Office)	18. SECURITY CLASS. (of this report)
como-as I	unclassified

Same (1)

DECL ASSIFICATION DOWNGRADING

16. DISTHIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Bluck 20, If different from Report)

IS SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse side if necessary and identity by block number)

Linear model, model selection, regression coefficient, strong consistency

20 ABSTRACT (Continue on reverse side if necessary and identity by block number) Consider the linear regression model $y_i = x_i'\beta + e_i$, i = 1, 2, ..., where $\{x_i\}$ is a sequence of known p-vectors, $\beta' = (\beta_1, ..., \beta_p)$ is an unknown p-vector, known as regression coefficients, $\{e_i^{}\}$ is a sequence of random errors. It is of interest to test the hypothesis H_k : $\beta_{k+1} = ... = \beta_p = 0$, k = 0,1,...,p. We do not assume that the random errors are identically distributed and have zero means, since it is sometimes unrealistic. As a compensation for this relaxation, we assume the errors have a common bounded support [a,,a]. Under certain

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

conditions, we obtain the strongly consistent estimate of the number of k for which $\beta_k \neq 0$ and $\beta_{k+1} = \ldots \beta_p = 0$, by using the information theoretical criterial

STRONG CONSISTENCY OF ESTIMATION OF NUMBER OF REGRESSION VARIABLES WHEN THE ERRORS ARE INDEPENDENT AND THEIR EXPECTATIONS ARE NOT EQUAL TO EACH OTHER*

Yuehua Wu Center for Multivariate Analysis University of Pittsburgh

Center for Multivariate Analysis University of Pittsburgh

STRONG CONSISTENCY OF ESTIMATION OF NUMBER OF REGRESSION VARIABLES WHEN THE ERRORS ARE INDEPENDENT AND THEIR EXPECTATIONS ARE NOT EQUAL TO EACH OTHER*

Yuehua Wu

Center for Multivariate Analysis University of Pittsburgh

June 1987

Technical Report No. 87-15

(NSPECT)

Accesion For

NTIS CRA&I
DFIC TAB
Under meased
Under meased
Unstable Directory

Acceptable Decrease

Directory

Acceptable Directory

Acceptable Directory

Acceptable Directory

Acceptable Directory

Acceptable

A-1

Center for Multivariate Analysis
Fifth Floor, Thackeray Hall
University of Pittsburgh
Pittsburgh, PA 15260

^{*}Research partially supported by the Air Force Office of Scientific Research (AFSC) under contract F49620-85-C-0008. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation heron.

Abstract

Consider, the linear regression model $y_1 = x_1^2 \beta_1 + e_1^2 i = 1, 2, \ldots$, where $\{x_i^2\}$ is a sequence of known p-vectors, $\beta_i^2 = (\beta_1^2, \ldots, \beta_p^2)$ is an unknown p-vector, known as regression coefficients, $\{e_i^2\}$ is a sequence of random errors. It is of interest to test the hypothesis $H_i: \beta_{k+1} = \ldots = \beta_p^2 = 0$, $k = 0, 1, \ldots, p$. We do not assume that the random errors are identically distributed and have zero means, since it is sometimes unrealistic. As a compensation for this relaxation, we assume the errors have a common bounded support $[a_1, a_2]$. Under certain conditions, we obtain the strongly consistent estimate of the number k for which β_k k = 0 and $\beta_{k+1} = \ldots = \beta_p = 0$, by using the information theoretical criteria.

1. Introduction

Consider the linear model

$$y_i = x_i \beta + e_i, i=1,2,...,n,$$
(1)

where x is are experiment points, $\beta = (\beta_1, \dots, \beta_n)$ is the regression coefficient vector to be estimated, and e is are random errors. In the usual linear regression model it is assumed that the random errors have vanishing expectations and common variance. In this case, the famous least square estimation (LSE) method plays an important role in making statistical inference upon the regression coefficient vector β . In the literature, there are a lot of papers concerning with the LSE and many important results are obtained (a part of work refers to [1],[2] and [3]). However the unbiasedness and consistency (even the weak one) of LSE strongly depend on the assumption that the expectations of errors are zero, and this assumption is not realistic sometimes. It is of interest to find a consistent estimates of the regression coefficients when the expectations of errors are not equal to each other. In [4] two methods for finding consistent estimates of the regression coefficient vector β are proposed.

The first method is to use the measure

$$Q_{n}(\beta) = \max_{1 \leq i \leq n} (y_{i} - x_{i}'\beta) - \min_{1 \leq i \leq n} (y_{i} - x_{i}'\beta)$$

The estimator $\hat{\beta}_n$ of β is defined as the vector which minimizes $Q_n(\beta)$. The estimate $\hat{\beta}_n$ is temporarily called MD estimate of β in [4] (the estimate based on the Maximum Difference between residuals)

The second method is to use the measure

$$\bar{Q}_{n}(\beta) = \max_{1 \leq i \leq n} |y_{i} - x_{i}'\beta|$$

Denote by $\overline{\beta}_n$ the value of β which minimizes $\overline{Q}_n(\beta)$. Also, $\overline{\beta}_n$ is temporarily called MA eatimate of β (the estimate based on the Maximum Absolute values of residuals)

Under certain conditions, both $\hat{\beta}_n$ and $\bar{\beta}_n$ are shown to be strongly consistent in [4].

Now let us consider the hypotheses

$$H_k: \beta_{k+1} = \beta_{k+2} = \dots = \beta_p = 0 \text{ and } \beta_k \neq 0$$

 $k = 0,1,\dots,p-1.$

It is of interest to determine the true model H_k by using the model selection criteria. Denote by $\hat{\beta}_{kn}=(\hat{\beta}_{k\,1n},\ldots,\hat{\beta}_{kkn},0,\ldots,0)$ the vector which minimizes $Q_n(\beta)$ under the restriction $\beta_{k+1}=\ldots=\beta_p=0$ and denoted by $\bar{\beta}_{kn}=(\bar{\beta}_{k\,1n},\ldots,\bar{\beta}_{kkn},0,\ldots,0)$ the vector which minimizes $\bar{Q}_n(\beta)$ under the restriction $\beta_{k+1}=\ldots=\beta_p=0$. Write

$$\hat{Q}_k = Q_n(\hat{\beta}_{kn})$$

and

$$\bar{Q}_{k} = \bar{Q}_{n}(\bar{\beta}_{kn})$$

Choose a sequence of constants C_n , satisfying certain conditions which will be specified later, and define

$$\hat{R}_k = \hat{Q}_k + kC_n$$

and

$$\bar{R}_k = \bar{Q}_k + kC_n$$

Choose

$$\hat{k} = ArgMin{\hat{R}_{k}: k \in \{0, ..., p\}}$$

and

$$\bar{k} = ArgMin\{\bar{R}_{k}: k \in \{0, ..., p\}\}$$

where ArgMin denote the index which minimizes the quantities following the symbol ArgMin.

In this paper we shall consider the consistency of \hat{k} and \bar{k} to the true model k_0

2. Consistency of k

In this section, we make the following general assumptions:

Assumption 1. The errors e_i i = 1,2, . . . are independent.

Assumption 2. P{e $_n \in [a_1, a_2]$ } = 0 and there is a positive constant Δ such that for any $\epsilon > 0$ and any n, we have

$$P\{e_{n} \in [a_{1}, a_{1} + \epsilon]\} \geq \Delta \epsilon$$
 and

$$P\{e_n \in [a_2 - \epsilon, a_2]\} \ge \Delta \epsilon.$$

Assumption 3. For any a > 0, there exists a positive constant C such that for any vector $\alpha \neq 0$ it follows that

$$\#\{i \leq n, | \ell(x_i) - \ell(\alpha) | < a\} \geq Cn$$
 for large n, hereafter $\ell(\alpha) = \alpha/|\alpha|$

Assumption 4. There exists a positive constant m such that

$$|x_{i}| > m$$
, for $i = 1, 2, ...$

Now let us estimate $Q_n(\hat{\beta}_n)$. Define

$$E_n^{(1)} = \{i \le n, -x_i^* (\hat{\beta}_n - \beta) > 0\}$$

$$E_n^{(2)} = \{i \le n, x_i^* (\hat{\beta}_n - \beta) > 0\}$$

Split $S_p = \{ x \in \mathbb{R}^p : |x| = 1 \}$ into d disjoint parts $\Sigma_1, \ldots, \Sigma_d$ such that $\forall x, y \in \Sigma_j, x y > 3/4$. Let $\gamma_j \in \Sigma_j, j = 1, \ldots, d$. Define $E_n^j = \{i \le n, \ell(x) \gamma_j > 3/4\}, j = 1, \ldots, d$. By Assumtion 3, there exists $\delta_1 > 0$ such that

$$\#(E_n^j) \ge \delta_1 n, \quad j = 1, 2, ..., d.$$

It is easy to see that $-\mathfrak{L}(\hat{\beta}_n - \beta) \in \Sigma_j$ and $i \in E_n^j$ implies that

$$-x_i \cdot l(\hat{\beta}_n - \beta) > 0$$
, i.e. $i \in E_n^{(1)}$

$$x_i$$
' $\ell(\hat{\beta}_n - \beta) > 0$, i.e. $i \in E_n^{(2)}$

Take r satisfying

$$r_n \to 0$$
 and $nr_n/logn \to \infty$,

we have

$$\begin{split} & P\left(Q_{n}\left(\hat{\beta}_{n}\right) \leq a_{2} - a_{1} - 2r_{n}\right) \\ & \leq P\left(\max_{i \in E_{n}}(1) \cdot e_{i} \leq a_{2} - r_{n}\right) + P\left(\min_{i \in E_{n}}(2) \cdot e_{i} \geq a_{1} + r_{n}\right) \\ & \leq \sum_{j=1}^{d} P\left(\max_{i \in E_{n}}(1) \cdot e_{i} \leq a_{2} - r_{n}, -\ell\left(\hat{\beta}_{n} - \beta\right) \cdot \epsilon \cdot \sum_{j}\right) \\ & + \sum_{j=1}^{d} P\left(\min_{i \in E_{n}}(2) \cdot e_{i} \geq a_{1} + r_{n}, \ell\left(\hat{\beta}_{n} - \beta\right) \cdot \epsilon \cdot \sum_{j}\right) \\ & \leq \sum_{j=1}^{d} P\left(\max_{i \in E_{n}}(2) \cdot e_{i} \leq a_{2} - r_{n}, -\ell\left(\hat{\beta}_{n} - \beta\right) \cdot \epsilon \cdot \sum_{j}\right) \\ & + \sum_{j=1}^{d} P\left(\min_{i \in E_{n}}(2) \cdot e_{i} \geq a_{1} + r_{n}, \ell\left(\hat{\beta}_{n} - \beta\right) \cdot \epsilon \cdot \sum_{j}\right) \\ & \leq \sum_{j=1}^{d} P\left(\min_{i \in E_{n}}(2) \cdot e_{i} \geq a_{1} + r_{n}, \ell\left(\hat{\beta}_{n} - \beta\right) \cdot \epsilon \cdot \sum_{j}\right) \\ & \leq \sum_{j=1}^{d} P\left(\min_{i \in E_{n}}(2) \cdot e_{i} \geq a_{1} + r_{n}\right) \\ & \leq 2d\left(1 - \Delta r_{n}\right) \delta 1^{n} \leq 2de^{-\Delta r_{n}} \delta 1^{n} \leq 2d / n^{2} \end{split}$$

for large n. By Borel-Cantelli Lemma we have

$$Q_{n}(\hat{\beta}_{n}) \geq a_{2} - a_{1} - 2r_{n}, \quad a.s.$$

when n is large enough.

Let k be the index of the true model and let β_0 be the true parameter. Then obviously we have ,for $p \geq k \geq k_0$

$$Q_{n}(\hat{\beta}_{n}) = Q_{n}(\hat{\beta}_{pn}) \leq Q_{n}(\hat{\beta}_{kn})$$

$$\leq Q_{n}(\hat{\beta}_{k_{0}n}) \leq Q_{n}(\beta_{0}) \leq a_{2} - a_{1}$$

Thus

$$0 \le Q_n(\hat{\beta}_{k_0}^n) - Q_n(\hat{\beta}_{k_0}^n) \le 2r_n, \quad p \ge k \ge k_0$$

If we take C_n such that $C_n \rightarrow 0$, $C_n/r_n \rightarrow \infty$, then for $k > k_0$

$$\hat{R}_{k} - \hat{R}_{k_{0}} = (k - k_{0}) C_{n} + Q_{n} (\hat{\beta}_{k_{0}}) - Q_{n} (\hat{\beta}_{k_{0}}^{n}) > 0,$$
(2)

for all large n.

Next, we consider the case of $k < k_0$. Denote

$$\eta = |\beta_{k_0}| > 0$$

and define

$$E_n^+ = \{i \le n, |\ell(x_i) + \ell(\hat{\beta}_{kn} - \beta_0)| < 1/2\}$$

$$E_n^- = \{i \le n, | \ell(x_i) - \ell(\hat{\beta}_{kn} - \beta_0) | < 1/2 \}$$

Split S into b disjoint parts Π_1 , ..., Π_b such that \forall x, y \in Π_i , |x-y| < 1/4. Let $\xi_j \in \Pi_j$, $j=1,\ldots$, b. Define

$$F_n^j = \{i \le n, |\ell(x_i) - \xi_j| < 1/4\}, \quad j = 1, ..., b.$$

By Assumption 3, there exists $\delta_2 > 0$ such that

$$\#(F_n^j) \ge \delta_2^n, \quad j = 1, 2, ..., b.$$

It is easy to see that

$$-l(\hat{\beta}_{kn} - \beta_0) \in \Pi_j \quad \text{and} \quad i \in F_n^j$$

which implies that

$$|\ell(x_i) + \ell(\hat{\beta}_{kn} - \beta_0)| < 1/2, \quad \text{i.e. i } \epsilon E_n^+.$$
 Also,

$$\ell(\hat{\beta}_{kn} - \beta_0) \in \Pi_j$$
 and $i \in F_n^j$,

which implies that

$$|l(x_i) + l(\hat{\beta}_{kn} - \beta_0)| < 1/2$$
, i.e. $i \in E_n$

For i ϵ E_n^+ , we have

$$x_{i}^{\prime}(\hat{\beta}_{kn}^{}-\beta_{0}^{}) = |x_{i}^{}||\hat{\beta}_{kn}^{}-\beta_{0}^{}|\ell(x_{i}^{})|\ell(\hat{\beta}_{kn}^{}-\beta_{0}^{})$$

$$\leq -m\eta (1 - 1/2) = -m\eta/2.$$

Similarly for i ϵ E_n^- , we have

$$x_i'(\hat{\beta}_{kn} - \beta_0) \ge m\pi/2.$$

Hence

$$Q_n(\hat{\beta}_{kn}) \ge \max_{i \in E_n} e_i - \min_{i \in E_n} e_i + m\eta$$

Thus

$$P(Q_n(\hat{\beta}_{kn}) \le a_2 - a_1 + m\eta/2)$$

$$\leq P(\max_{i \in E_n} e_i \leq a_2 - m\eta/4) + P(\min_{i \in E_n} e_i \geq a_1 + m\eta/4)$$

$$\leq \sum_{j=1}^{b} P(\max_{i \in E_{n}} e_{i} \leq a_{2} - m\eta/4, -l(\hat{\beta}_{kn} - \beta_{0}) \in \Pi_{j})$$

+
$$\sum_{j=1}^{b} P(\min_{i \in E_{n}} e_{i} \geq a_{1} + m\eta/4, \ell(\hat{\beta}_{kn} - \beta_{0}) \in \Pi_{j})$$

$$\leq \sum_{j=1}^{b} P(\max_{i \in F_{n}} e_{i} \leq a_{2} - m\eta/4, -\ell(\hat{\beta}_{kn} - \beta_{0}) \in \Pi_{j})$$

$$+ \sum_{j=1}^{b} P(\min_{i \in F_{n}} e_{i} \geq a_{1} + m\eta/4, \, l(\hat{\beta}_{kn} - \beta_{0}) \in \Pi_{j})$$

$$\leq \sum_{j=1}^{b} P(\max_{i \in F_{n}} e_{i} \leq a_{2} - m\eta/4)$$

$$+ \leq \sum_{j=1}^{b} P(\min_{i \in F_{n}} e_{i} \geq a_{1} + m\eta/4)$$

$$\leq 2b(1 - \Delta m\eta/4)^{\delta}2^{n} \leq 2be^{-\Delta m\eta}\delta^{2}2^{n/4} \leq 2b/n^{2}$$

for large n. By Borel-Cantelli Lemma, we have, with probability one,

$$Q_n(\hat{\beta}_n) \ge a_2 - a_1 + m\eta/2$$
, for all large n.

Thus for $k < k_0$, we have

$$\hat{R}_{k} - \hat{R}_{k_{0}} = Q_{n}(\hat{\beta}_{k_{0}}) - Q_{n}(\hat{\beta}_{k_{0}}^{n}) - (k_{0}^{-k})C_{n}$$

$$\geq m\eta/2 - (k_0 - k)C_n > 0,$$
 (3)

for large n, since $C_n \rightarrow 0$.

(2) and (3) imply that \hat{k} is strongly consistent. Summarize the above arguments, we get the following theorem.

Theorem 1. Choose C_n satisfying

(i)
$$C_n \rightarrow 0$$
,

(ii)
$$nC_n/logn \rightarrow \infty$$
.

Suppose the four Assumptions given at the beginning of this section are true, then $\hat{k} \rightarrow k$, a.s.

Proof. Use the arguments given before. We only need to note that for any sequence of C_n satisfying (i) and (ii), we can always choose r_n such that

(i)
$$r/C \rightarrow 0$$
,

(ii)'
$$nr_n/logn \rightarrow \infty$$
.

Q. E. D.

3. Consistency of $\bar{\mathbf{k}}$

In this section, we shall make the following general assumptions:

Assumptiom 1 The error e_i , $i = 1, 2, \ldots$, are independent,

Assumptiom 2. $|a_1| < a_2$, \forall n => P(e_n $\tilde{\epsilon}$ [a₁, a₂]) = 0 there is a positive constant $\tilde{\Delta}$ such that for any ϵ > 0 and for any n, we have

$$P(e_n \in [a_2 - \epsilon, a_2]) \geq \tilde{\Delta}\epsilon$$

Assumptiom 3. Same as Assumptiom 3 in Section 2.

Assumptiom 4. There exists a positive constant m such that

$$|x_{i}| > \overline{m}$$
, for $i = 1, 2, ...$

Now let us estimate $\bar{Q}_{\underline{n}}(\bar{\beta}_{\underline{n}})$. Define

$$E_n = \{i \le n, x_i(\beta - \overline{\beta}_n) > 0\}$$

Split S into \widetilde{d} disjoint parts $\widetilde{\Sigma}_1,\ldots,\widetilde{\Sigma}_{\widetilde{d}}$ such that \forall x, y ε $\widetilde{\Sigma}_j,$ x'y > 3/4. Let $\widetilde{\gamma}_j$ ε $\widetilde{\Sigma}_j,$ $j=1,\ldots,\widetilde{d}$. Define $\widetilde{E}_n^J=\{i\leq n,\ \&(x_j)\widetilde{\gamma}_j>3/4\},\ j=1,\ldots,\widetilde{d}$. By Assumption 3', there exists $\widetilde{\delta}_1>0$ such that

$$\#(\tilde{E}_n^j) \geq \tilde{\delta}_1 n, \quad j = 1, \ldots, \tilde{d}$$

It is easy to see that

$$-\ell\,(\bar{\beta}_n\,-\,\beta)\,\,\,\epsilon\,\,\,\widetilde{\Sigma}_j\quad\text{and}\quad i\,\,\,\epsilon\,\,\,\overline{E}_n^j$$

imply that $x_i^* \ell(\beta - \overline{\beta}_n) > 0$, i. e. i ϵE_n .

Take r satisfying

$$r_n \to 0$$
, $nr_n/logn \to \infty$

We have

$$P(\bar{Q}_{n}(\bar{\beta}_{n}) \leq a_{2} - r_{n}) \leq P(\max_{i \in E_{n}} e_{i} \leq a_{2} - r_{n})$$

$$\leq \sum_{j=1}^{\overline{d}} P(\max_{i \in E_{n}} e_{i} \leq a_{2} - r_{n}, \ell(\beta - \overline{\beta}_{n}) \in \widetilde{\Sigma}_{j})$$

$$\leq \sum_{j=1}^{\infty} P(\max_{i \in \overline{E}_{n}^{j}} e_{i} \leq a_{2} - r_{n}, \ell(\beta - \overline{\beta}_{n}) \in \overline{\Sigma}_{j})$$

$$\leq \sum_{j=1}^{\tilde{d}} P(\max_{i \in \tilde{E}_{n}^{j}} e_{i} \leq a_{2} - r_{n})$$

$$\leq \tilde{d} (1 - \tilde{\Delta}r_n)^{\tilde{\delta}} 1^n \leq \tilde{d} e^{-\tilde{\Delta}r_n}^{\tilde{\delta}} 1^n \leq \tilde{d}/n^2$$

for large n. By Borel-Cantelli Lemma we have

$$\bar{Q}_n(\bar{\beta}_n) \geq a_2 - r_n,$$
 a.s.

when n is large enough.

Let k_0 be the index of the true model and let β_0 be the true parameter. Then obviously we have for $p\geq k\geq k_0$

$$\bar{Q}_n(\bar{\beta}_n) = \bar{Q}_n(\bar{\beta}_{pn}) \leq \bar{Q}_n(\bar{\beta}_{kn})$$

$$\leq \bar{Q}_{n}(\bar{\beta}_{k_{0}n}) \leq \bar{Q}_{n}(\beta_{0}) \leq a_{2}$$

Thus

$$0 \, \leq \, \tilde{\mathbb{Q}}_{n} \, (\bar{\beta}_{k_{n}}^{}) \, - \, \bar{\mathbb{Q}}_{n} \, (\bar{\beta}_{kn}^{}) \, \leq r_{n}^{}, \qquad p \, \geq \, k \, \geq \, k_{0}^{}.$$

If we take C_n such that

$$C_n \rightarrow 0$$
, $C_n/r_n \rightarrow \infty$

then for $k > k_0$

$$\bar{R}_{k} - \bar{R}_{k_{0}} = (k - k_{0}) C_{n} + \bar{Q}_{n} (\bar{\beta}_{k_{0}}) - \bar{Q}_{n} (\bar{\beta}_{k_{0}}) > 0$$
(4)

for all large n.

Next, we consider the case of k < k_{Ω} Denote

$$\tilde{\eta} = |\beta_{k_0}| > 0$$

and define

$$\bar{E}_n = \{i \leq n, \ell(x_i) \mid \ell(\bar{\beta}_{kn} - \beta_0) \leq -1/2\}$$

Split S_p into \tilde{b} disjoint parts $\tilde{\Pi}_1, \ldots, \tilde{\Pi}_{\tilde{b}}^{\sim}$, such that \forall x, y ϵ $\tilde{\Pi}_j$, x'y \geq 1/2. Let $\tilde{\xi}_j$ ϵ $\tilde{\Pi}_j$, j = 1, . . . , \tilde{b} . Define \tilde{F}_n^J as \tilde{F}_n^J = { $i \leq n$, $\ell(x)$ $\tilde{\xi}_j \geq 275/280$ }, j = 1, . . . , \tilde{b} . By Assumption 3, there exists $\tilde{\delta}_2 > 0$ such that

$$\#(\overline{F}_n^j) \geq \tilde{\delta}_2 n, \quad j = 1, \dots, \tilde{b}$$

It is easy to see that $-\ell(\bar{\beta}_{kn}-\beta_0) \in \bar{\Pi}_j$ and $i \in \bar{F}_n^j$ imply that

$$\ell(x_i)^{-1}\ell(\bar{\beta}_{kn} - \beta_0) \leq -1/2$$
, i. e. $i \in \bar{E}_n$

For i ϵ \bar{E}_n , we have

$$|\mathbf{x}_{i}^{+}(\bar{\boldsymbol{\beta}}_{kn}^{-}\boldsymbol{\beta}_{0})| = |\mathbf{x}_{i}^{+}||\bar{\boldsymbol{\beta}}_{kn}^{-}\boldsymbol{\beta}_{0}^{-}||l(\mathbf{x}_{i}^{+})||l(\bar{\boldsymbol{\beta}}_{kn}^{-}\boldsymbol{\beta}_{0}^{-})|| \geq m\pi/2$$

Hence

$$\bar{Q}_{n}(\bar{\beta}_{kn}) \geq \max_{i \in \bar{E}_{n}} + m \bar{\eta}/2$$

Thus

$$P(\bar{Q}_{n}(\bar{\beta}_{kn}) \leq a_{2} + m\bar{\eta}/4)$$

$$\leq P(\max_{i \in \overline{E}_{n}} e_{2} \leq a_{2} - \widetilde{m\eta}/4)$$

$$\leq \sum_{j=1}^{\tilde{b}} P(\max_{i \in \tilde{E}_{n}} e_{i} \leq a_{2} - m\tilde{\eta}/4, -\ell(\tilde{\beta}_{kn} - \beta_{0}) \in \tilde{\Pi}_{j})$$

$$\leq \sum_{j=1}^{b} P(\max_{i \in \overline{F}_{n}^{j}} e_{i} \leq a_{2} - \overline{m} \overline{\eta}/4, -\ell(\overline{\beta}_{kn} - \beta_{0}) \in \overline{\Pi}_{j})$$

$$\leq \sum_{j=1}^{\infty} P(\max_{i \in \overline{F}_{D}^{j}} e_{i} \leq a_{2} - \overline{m} \overline{\eta}/4)$$

$$\leq \tilde{b} (1 - \tilde{\Delta}m\eta/4) \tilde{\delta}_2^n \leq \tilde{b}/n^2$$

for large n. By Borel-Cantelli Lemma, we have with probability one, when n large enough

$$\bar{Q}_{n}(\bar{\beta}_{kn}) \geq a_{2} + m\bar{\eta}/4.$$

Thus for k < k, we have

$$\bar{R}_{k} - \bar{R}_{k_{0}} = \bar{Q}_{n}(\bar{\beta}_{k_{0}}) - \bar{Q}_{n}(\bar{\beta}_{k_{0}}) - (k_{0} - k)C_{n}$$

$$\leq m_{\eta}/4 - (k_{0} - k)C_{n} > 0,$$
(5)

for largh n, since $C_2 \rightarrow 0$.

(4) and (5) proves \bar{k} is consistent. Summarize the above arguments, we get the following theorem.

Theorem 2. Choose C satisfying

(i)
$$C_n \rightarrow 0$$
,

(ii)
$$nC_n/logn \rightarrow \infty$$
.

Suppose the four assumptions given at the beginning of this section are true, then $\bar{k} \to k$, a. s.

Proof. Use the arguments given before, we only need to notice that for any sequence of C_n satisfying (i) and (ii), we can always choose r_n such that

(i)
$$r_n/C_n \rightarrow 0$$

(ii)'
$$nr_n/logn \rightarrow \infty$$

Q.E.D.

4. General Case

In this section we consider the same regression model (1) But the problem we are going to solve is to determine the subset (or the model) $J=\{1\leq j_1<\ldots< j_k\leq p\}$ such that $\beta_j\neq 0$ if and only if $j\in J$. We make the same assumptions as given in previous sections.

Of course, we can use the procedure described in section 2 and 3 to determine the model J as follows: For each permutation π of $\beta=(\beta_1,\ldots,\beta_p)'$, similarly rearranging $(x_1,\ldots,x_p)'$, we get a new model M_{π} . Under this model, using the approach given in section 2 and 3, we obtain estimates $\hat{k}=\hat{k}_{\pi}^2=\min_{\pi}\hat{k}_{\pi}$ and $\hat{k}=\hat{k}_{\pi}^2=\min_{\pi}\hat{k}_{\pi}$ and let $\hat{J}_1=\{\hat{\pi}(1),\ldots,\hat{\pi}(\hat{k})\}$ and $\hat{J}_1=\hat{J}_1=\{\bar{\pi}(1),\ldots,\bar{\pi}(\hat{k})\}$, we can easily prove that, by using Theorem 1 and 2, $\hat{J}_1 \rightarrow J$, a. s. and $\hat{J}_1 \rightarrow J$, a. s.

An alternative method to estimate J is given as follows: Suppose T is a subset of {1, ..., p}. Consider the model T:

$$y_n = x_n(T)'\beta(T) + e_n,$$

where $x_j(T) = (x_j, j \in T)^c$ and $\beta(T) = (\beta_j, j \in T)^c$. Let

$$Q_{n}(T) = \min \left\{ \max_{\beta \in T} (y_{i} - x_{i}(T)'\beta(T)) \right\}$$

and

$$\overline{Q}_{n}(T) = \min_{\beta \in T} \max_{1 \le i \le n} |y_{i} - x_{i}(T)'\beta(T)|.$$

Define

$$\hat{R}_{T} = Q_{n}(T) + \#(T) C_{n}$$

and

$$\bar{R}_{\hat{J}_2} = \bar{Q}(T) + \#(T) c_n$$

Choose \hat{J}_2 such that

$$\hat{R}_{j_2} = \min_{T} \hat{R}_{T}$$

and choose \bar{J}_2 such that

$$\bar{R}_{J_2} = \min_{T} \bar{R}_{T}$$

We can also prove that $\hat{J}_2 \to J$, a. s. and $\hat{J}_2 \to J$, a. s. However, there would be too much computation involved when p is relatively large. In the first case, there are totally p! permutations whileas in the second there are 2^p subsets of $\{1, \ldots, p\}$. In light of this, we propose another approach to estimate J which only involves p+1 quantities to be computed.

Now let

$$\beta(j) = (\beta_1, \ldots, \beta_{j-1}, 0, \beta_{j+1}, \ldots, \beta_p)'$$

and define

$$Q_{n}(j) = \min_{\beta(j)} \{ \max_{1 \le i \le n} (y_{i} - x_{i}^{i}\beta(j)) \}$$

$$- \min_{1 \le i \le n} (y_{i} - x_{i}^{i}\beta(j)) \}$$

and

$$\bar{Q}_{n}(j) = \min_{\beta (j)} \max_{1 \le i \le n} |y_{i} - x_{i}^{i}\beta(j)|.$$

Write

$$\hat{R}(n,j) = Q_n(j) - \hat{Q}_p - C_n$$

and

$$\bar{R}(n,j) = \bar{Q}_n(j) - \bar{Q}_p - C_n.$$

We choose

$$\hat{J}_{n} = \{\hat{j}_{1}, \dots, \hat{j}_{k_{n}}\} = \{j : \hat{R}(n, j) > 0\}$$

and

$$\bar{J}_{n} = \{\bar{j}_{1}, \dots, \bar{j}_{\bar{k}_{n}}\} = \{j: \bar{R}(n,j) > 0\}$$

Then we have the following theorems.

Theorem 3. Under the conditions of theorem 1, we have that

$$\hat{J}_{n} \rightarrow J$$
, a. s.

where model $J = \{i_1, \ldots, i_k\}$ is the true one.

Proof If $j \in J$, by (3) with the replacement that $k_0 = p$ and k = p-1, we have that with probability one, $\widehat{R}(n,j) > 0$ for all large n, i. e., $j \in \widehat{J}_n$. Hence, when n

large enough, \hat{J}_n J. Conversely, if j & J, using the same argument as proving theorem 1, we have

$$\hat{R}(n,j) = Q_n(j) - \hat{Q}_p - C_n$$

$$\leq 0 (\log n/n) - C_n$$
 a. s.

which together with (ii) implies that

$$\hat{R}(n,j) < 0$$
, for large n,

i. e. j $\hat{x} \hat{J}_n$ when n large enough. Therefore $\hat{J}_n = J$ which completes the proof of Theorem 3.

Theorem 4. Under the conditions of theorem 2, we have that

$$\bar{J}_n \rightarrow J$$
, a. s.

where model $J = \{j_1, \ldots, j_k\}$ is the true one.

Proof. If $j \in J$, by (5) with the replacement that $k_0 = p$ and k = p-1, we have that with probability one, $\overline{R}(n,j) > 0$ for all large n, i. e., $j \in \overline{J}$. Hence, when n large enough, $\overline{J}_n = J$. Conversely, if i & J, using the same argument as proving theorem 2, we have

$$\bar{R}(n,j) = \bar{Q}_n(j) - \bar{Q}_p - c_n$$

$$\leq$$
 0(logn/n) - C_n a. s.

which together with (ii) implies that

 $\bar{R}(n,j) < 0$, for large n,

i. e. j $\searrow J_n$ when n large enough. Therefore J_n J which completes the proof of Theorem 4.

REFERENCES

- 1. Drygas, H. (1976). Weak and strong consistency of the lease squares estimators in regression models. Z. Wahrsch. Verw. Gebiete, **34**, 119-127
- 2 Lai, T. L., Robbins, H. and Wei, C. Z. (1979). Stong consistency of least squares estimates in multiple regression II. Journal of Multivariate Analysis, 9, 343-361
- 3. Oberhofer, W (1982). The Consistency of nonlinear regression minimizing the L_1 -norm. Ann. Statist. 10, 316-319
- 4. Wu, Y. (1986). On strong consistent estimates of regression coefficients when the errors are not independently and identically distributed. Tech. Report No. 86-06, Center for Multivariate Analysis, Univ. of Pittsburgh

unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dura Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2 GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
87-15		÷
4. TITLE (and Substitle)		5. TYPE OF REPORT & PENIOD COVERED
Strong consistency of estimatio	n of number of	
regression variables when the errors are independent and their expectations are not equal to		technical - June 1987
		6. PERFORMING ONG, REPORT NUMBER
each other.		87-15 CONTRACT OR GRANT NUMBER(*)
Yuehua Wu		F49620-85-C-0008
		147020 03 0 0000
PERFORMING ORGANIZATION NAME AND ADDE	RESS	10. PROGRAM ELEMENT, PROJECT, TASK
Center for Multivariate Analysis		AREA & WORK UNIT NUMBERS
University of Pittsburgh, 515 Thackeray Hall		
Pittsburgh, PA 15260		
I. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Air Force Office of Scientific Research		June 1987
Department of the Air Force	22	13. NUMBER OF PAGES 22
Bolling Air Force Base, DC 203 4. MONITORING ACENCY NAME & ADDRESS(II dil	JE Terent Iroin Controlling Office)	18. SECURITY CLASS. (of this report)
	•	in the state of th
•		unclassified
•	1	184. DECLASSIFICATION/DOWNGRADING
		JONE DOLE
6. DISTHIBUTION STATEMENT (of this Report)		
·		
7. DISTRIBUTION STATEMENT (of the abstract ont	ered in Bluck 20, Il dillerent from	n Report)
•	•	•
8. SUPPLEMENTARY NOTES		
KEY WORDS (Continue un teveree elde il necesse		
		t atuana consistence
Linear model, model selection, regression coefficient, strong consistency		
Consider the linear regression	y and identify by block number) in model $y_i = x_i'\beta + e$	i , $i = 1, 2,, where \{x_i\} is$
a sequence of known p-vectors,		
as regression coefficients, {e interest to test the hypothesis		
	<u> </u>	
not assume that the random erro		
since it is sometimes unrealist assume the errors have a common		

DD 1 JAN 73 1473

SECUHITY CLASSIFICATION OF THIS PAGE(When Date Entered)

conditions, we obtain the strongly consistent estimate of the number of k for which $\beta_k \neq 0$ and $\beta_{k+1} = \dots \beta_p = 0$, by using the information theoretical criteria

END DATE FILMED DEC.

1987