Module 8.8: Adding Noise to the outputs

Other forms of regularization

- L_2 regularization
- Dataset augmentation
- Parameter Sharing and tying
- Adding Noise to the inputs
- Adding Noise to the outputs
- Early stopping
- Ensemble methods
- Dropout

	0	0	1	0	0	0	0	0	0	0	Hard targets
--	---	---	---	---	---	---	---	---	---	---	--------------

)	0	1	0	0	0	0	0	0	0	Hard targets
--	---	---	---	---	---	---	---	---	---	---	--------------

 $\text{minimize}: \sum_{i=0}^{9} p_i \log q_i$

0	0	1	0	0	0	0	0	0	0	Hard targets
---	---	---	---	---	---	---	---	---	---	--------------

 $\text{minimize}: \sum_{i=0}^{9} p_i \log q_i$

true distribution : $p = \{0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0\}$

0	0	1	0	0	0	0	0	0	0	Hard targets
---	---	---	---	---	---	---	---	---	---	--------------

 $\text{minimize}: \sum_{i=0}^{9} p_i \log q_i$

true distribution : $p = \{0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0\}$

estimated distribution : q

0	0	1	0	0	0	0	0	0	0	Hard targets

$$minimize: \sum_{i=0}^{9} p_i \log q_i$$

true distribution : $p = \{0, 0, 1, 0, 0, 0, 0, 0, 0, 0\}$

estimated distribution : q

Intuition

• Do not trust the true labels, they may be noisy

0	0	1	0	0	0	0	0	0	0	Hard targets
---	---	---	---	---	---	---	---	---	---	--------------

$$minimize: \sum_{i=0}^{9} p_i \log q_i$$

true distribution : $p = \{0, 0, 1, 0, 0, 0, 0, 0, 0, 0\}$

estimated distribution : q

Intuition

- Do not trust the true labels, they may be noisy
- Instead, use soft targets

$\frac{\varepsilon}{9}$	$\frac{\varepsilon}{9}$	$1-\varepsilon$	$\frac{\varepsilon}{9}$	Soft targets						
-------------------------	-------------------------	-----------------	-------------------------	-------------------------	-------------------------	-------------------------	-------------------------	-------------------------	-------------------------	--------------

 $\varepsilon = \mathrm{small}$ positive constant

$\frac{\varepsilon}{9}$ $\frac{\varepsilon}{9}$ $1-\varepsilon$	$\frac{\varepsilon}{9}$	$\frac{\varepsilon}{9}$ $\frac{\varepsilon}{9}$	$\frac{\varepsilon}{9}$	$\frac{\varepsilon}{9}$	$\frac{\varepsilon}{9}$	$\frac{\varepsilon}{9}$	
---	-------------------------	---	-------------------------	-------------------------	-------------------------	-------------------------	--

 $\varepsilon = \mathrm{small}$ positive constant

$$\text{minimize}: \sum_{i=0}^{9} p_i \log q_i$$

$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $

 $\varepsilon = \text{small positive constant}$

$$\text{minimize}: \sum_{i=0}^{9} p_i \log q_i$$

true distribution + noise :
$$p = \left\{ \frac{\varepsilon}{9}, \frac{\varepsilon}{9}, 1 - \varepsilon, \frac{\varepsilon}{9}, \dots \right\}$$

$\frac{\varepsilon}{9}$ $\frac{\varepsilon}{9}$ $1-$	ε $\frac{\varepsilon}{9}$ $\frac{\varepsilon}{9}$	$\frac{\varepsilon}{9}$ $\frac{\varepsilon}{9}$	$\frac{\varepsilon}{9}$	$\frac{\varepsilon}{9}$	$\frac{\varepsilon}{9}$	
--	---	---	-------------------------	-------------------------	-------------------------	--

 $\varepsilon = \text{small positive constant}$

$$\text{minimize}: \sum_{i=0}^{9} p_i \log q_i$$

true distribution + noise :
$$p = \left\{ \frac{\varepsilon}{9}, \frac{\varepsilon}{9}, 1 - \varepsilon, \frac{\varepsilon}{9}, \dots \right\}$$

estimated distribution : q