Table des matières

Ι	Fon	ctions
	1	Ensembles de nombres
	2	Intervalle
	3	Fonctions
	4	monotonie
	5	Opérations sur les fonctions
	6	Image (direct) d'une fonction composé (composition)
	7	Image réciproque
	8	Application, surjectives, injectives, bijectives
	9	Fonction réciproque
II	Lim	ites
	1	Voisinage et adhérence
	2	Limite finie en un point de \mathbb{R}
	3	Restriction à un sous ensemble
	4	Propriété
	5	Théorème des gendarmes

\mathbf{I}

Fonctions

1 Ensembles de nombres

: Réels \mathbb{R} , Rationnels $\mathbb{Q} = \frac{a}{b}$ avec a et b entiers naturels \mathbb{N} , entiers $\mathbb{Z} = \{-3, -2, ..., 1\}$, nombres complexes \mathbb{C} .

2 Intervalle

: [a, b] avec a, b réels compris dans l'intervale, dit fermé, a < b,]a, b[avec a, b non compris dans l'intervale dit ouvert \to Intervalle bornés $\mathbb{R} =]-\infty; +\infty[\mathbb{R}^* =]-\infty; 0[\cup]0; +\infty[\mathbb{R}^+ = [0; +\infty[\mathbb{R}^- =]-\infty; 0]$

3 Fonctions

Exemple : sinus : sin : \mathbb{R} (domaine de definitions, sources, ensemble de depart) $\to \mathbb{R}$ ou[-1,1] (domaine de valeurs, image, but, ensemble d'arrivee)

Définitions Soit E, F 2 ensemble de R. Une fonction f est procédé pour associer à tout élément de R un unique élément de F Le graph de F "vit" dans $\mathbb{R}^2 = \mathbb{R} * \mathbb{R}$

Définitions : Soit E et F 2 ensembles, on définit leur <u>produit cartesien</u> : comme l'ensemble dont les éléments sont les couples (x, y) avec x "vit" dans E et y dans F. $ExF = \{(x, y), x \in E, y \in F\}$

Définitions : Le graphe de f : $E \to F$ est un sous ensemble de E*F donné par $= \{(x,y), x \in E, y = (x)\}$ $= \{x : \to f(x) = y\}$

Exemples cosinus : $\cos : \mathbb{R} \to [-1, 1]$

3. FONCTIONS

I. FONCTIONS

tangeante tan : $\mathbb{R} \setminus \{\pi/2 + k * \pi, k \text{ appartient a Z}\} \rightarrow]-\infty, +\infty[$

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

$$\mathbb{R} \to \mathbb{R}x \to x^n, n \in \mathbb{N}$$

$$n = 0 : x \to 1$$

$$n = 1 : x \to x$$

$$n = 2 : x \to x^2$$

$$n = 3 : x \to x^3$$

n ¿0 et n pair.

Remarque : les fonctions sont plus étroites. Schéma typique pour

Définitions Soit $f: E \to R$ une fonction, avec E symétrique par rapport à 0.

- f est dite <u>paire</u> si : $\forall x \in E, f(-x) = f(x)$
- f est impaire si : $\forall x \in E, f(x) = -f(-x)$ Remarque : si f est impaire $\rightarrow f(0) = 0$. En effet,

$$f(-0) = f(0) \tag{I.1}$$

$$f(0) = -f(0) \tag{I.2}$$

$$2 * f(0) = 0 (I.3)$$

4. MONOTONIE I. FONCTIONS

Exemple : fonctions paire : cosinus, x^{2p} avec p appartient à N impaires sinus, tangeante, x^{2p+1} avec p appartient à N

4 monotonie

Soit $f: E \to \mathbb{R}$

- f est croissante si a < b, alors $f(a) \le f(b)$ avec $a, b \in \mathbb{R}$
- f est strictement croissante si a < b, alors f(a) < f(b) avec $a, b \in \mathbb{R}$
- f est decroissant si $\forall \{a, b\} \in \mathbb{R}$ avec a < b, alors $f(a) \ge f(b)$
- f est decroissant si $\forall \{a, b\} \in \mathbb{R}$ avec a < b, alors f(a) > f(b)

décroissante sur] $-\infty$, 0[et]0, $+\infty[$ mais pas sur] $-\infty$, $0[\cup]0$, $+\infty[$ par exemple, $-1 \le 1et\frac{1}{-1} \le \frac{1}{1}$

Définition Soit $f: E \to F$ et A un sous ensemble de E. On appelle <u>restriction</u> de f a A, note $f_{|A}$. La fonction $f_{|A}: A \to F$ definie par $f_A(x) = f(x) \forall x \in A$ Soit $f: E \to F$ et E', F' des sous ensembles de R, avec $E \subset E', F \subset F'$. La fonction $g: E' \to F'$ est un <u>prolongement</u> de f si $g_{|E} = F(ie \forall x \in E, g(x) = f(x))$

Exemple logarithme népérien $ln:]0, +\infty[\to \mathbb{R}$ $x \to ln(x)$ ln(a) + ln(b) = ln(a*b) avec $\forall (a,b) \in (R^{*+})^2$

5 Opérations sur les fonctions

Soit $f, g: E \to \mathbb{R}$. On peut définir :

- La fonction somme f + g par $f + g : E \to \mathbb{R}x \to (f + g)(x) = f(x) + g(x)$
- La fonction produit f * g par $f * g : E \to \mathbb{R}x \to (f * g)(x) = f(x)\dot{g}(x)$

6 Image (direct) d'une fonction composé (composition)

Définitions : $f: E \to F$. L'image de f notée im(f) c'est l'ensemble $\{y \in F \text{ tel que il existe } x \in E \text{ tel que } f(x) = y\}$ aussi noté f(E)

Définition $f: E \to F$ et $g: E' \to F'$ Si l'image de $g \subset E$, on peut définir la fonction composé $fog: E' \to F$ $x \mapsto fog(x) = f(g(x))$

7 Image réciproque

Définition $f: E \to F$, et $B \subset F$

L'image réciproque de B par f est l'ensemble $f^{-1}(B) = \{x \in E \text{ tel que } f(x) \in B\}$ $f^{-1}([-1,1]) = [a,b]$

Exemple (de composition)

$$f:E \longrightarrow \mathbb{R}$$

$$x \mapsto \sqrt{x^2 - 4x + 3}$$

composé de fonction f = gou

$$u : \mathbb{R}$$
 $\rightarrow \mathbb{R}$ $x : \mapsto x^2 - 4x + 3$

$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$x \mapsto \sqrt{x}$$

 $\Delta = 16 - 12 = 4$ racine de u : 1 et 3

u(x) > 0 si et seulement si $x \in]-\infty;1] \cup [3;+\infty[$ $E = x \in]-\infty;1] \cup [3;+\infty[$

$$h: \mathbb{R}^* \longrightarrow \mathbb{R}$$

$$x \mapsto ln(x^2)$$

Pour composer $v: \mathbb{R} \to \mathbb{R}^+$ $v: x \mapsto x^2$ ou doit enlever les points où v s'annule, c'est à dire $v^{-1}(\{0\}) = \{0\}$

$$g: \mathbb{R}^{+*} \longrightarrow \mathbb{R}$$

$$x \mapsto 2ln(x)$$

 $ln(x^2) = ln(x*x) = ln(x) + ln(x) = 2ln(x)$ mais ln(a*b) = ln(a) + ln(b) n'est valable que si a et b>0

8 Application, surjectives, injectives, bijectives

Définition $w: E \to F$ $(E, F \in \mathbb{R})$ On dit que w est surjective si w(E) = F De manière équivalente : $(y \in F \text{ tel que il existe } x \in E \text{ avec } w(x) = y) = F$ c'est à dire tout les éléments de F admette un antécédent. c'est à dire $\forall y \in F$, il existe un $x \in E$ tel que w(x) = y

Définition $w: E \to F$ $(E, F \subset R)$ On dit que w est injective si tout élément de F admet au plus un antécédent. c'est à dire que si x et x' des éléments de E qui sont différents, w(x) différent w(x')

Exemple $w(x) = x^2$ n'est pas injectifs car -2 et 2 ont la meme image (4). Exemple :

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$r \longrightarrow r^{z}$$

Cette fonction est surjective car pour tout y de \mathbb{R} , il existe un $x \in \mathbb{R}$ tel que f(x) = y. On a aussi $\forall y \in \mathbb{R}$, cet antécédent est unique.

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \mapsto x^2$$

Cette fonction n'est pas surjective (-1 par exemple n'a pas d'antécédent) et pas injective car y=4 par exemple possède 2 antécédents.

Remarque : Si on considère

$$g: \mathbb{R} \longrightarrow \mathbb{R}^+$$

$$x \longmapsto x^2$$

g est surjective (il y a toujours au minimum un antécédent) mais toujours pas injective Plus généralement, si on considère $f: E \to f(E)$ est toujours surjective.

 $sin: R \to [-1; 1]$ elle est subjective mais pas injective : 0 est compris entre [-1;1] mais possède plusieurs antécédent $(k * \pi \text{ avec } k \in \mathbb{R})$

$$g: \mathbb{R} \longrightarrow \mathbb{R}^+$$

$$x \mapsto e^{2x}$$

Cette fonction n'est pas surjective (antécédent de 0 n'existe pas) mais est injective.

Definition $w: E \to F(E, R \subset \mathbb{R})$ w est dîtes bijective si elle est injective <u>et</u> surjective, c'est à dire tout élément de F admet exactement un antécédent.

9 Fonction réciproque

Si $f: E \to F$ est bijective, pour tout y de F, il existe un unique x dans E tel que f(x) = y On peut donc définir $g: F \to E$ par g(y) = x (tel que f(x) = y) g est la réciproque de f, notée f^{-1}

Exemple

$$f: \mathbb{R} \longrightarrow \mathbb{R}^{*+}$$

$$x \longmapsto exp(x)$$

et g

$$\begin{array}{ccc} g: \mathbb{R}*+ & \rightarrow \mathbb{R} \\ x & \mapsto ln(x) \end{array}$$

Remarque si $g = f^{-1}$ avec $f: E \to F$ et $g: F \to E$ alors

$$\begin{array}{ccc} fog: F & & \rightarrow F \\ x & & \mapsto x \end{array}$$

et $f \circ g = g \circ f$

Démonstration Soit $y \in F$, quelconque, on veut calculer fog(y) Par définition de g comme fonction réciproque de f, g(y) = x tel que f(x) = y donc f(g(y)) = f(x) = y

Proposition $f: E \to F$ une fonction impaire, supposons que $f_{|E \cap \mathbb{R}^+}$ est croissante, Alors $f_{|E \cap \mathbb{R}^-}$ est croissante

Démonstration

$$f_{|E \cap \mathbb{R}^{-}} : E \cap \mathbb{R}^{-} \longrightarrow \mathbb{R}$$

$$x \mapsto f(x)$$

Soit x et x' dans $E \cap \mathbb{R}^-$ tels que $x \leq x'$.

$$f(x) = f(-x)$$
 car f impaire
 $f(x') = -f(-x)$

Comme $x, x' \in E \cap \mathbb{R}^-$, $-x, -x' \in E \cap \mathbb{R}^-$ Comme $x \leq x'$, $-x \geq -x'$ et donc $f(-x) \geq f(-x')$ car f est coissante sur $E \cap \mathbb{R}^+$ Conclusion, $-f(-x) \leq -f(-x')$ et donc $f(x) \leq f(x')$ et donc $f(x) \leq f(x')$. On a prouvé que $f_{|E \cap \mathbb{R}^-}$ est croissante.

Remarque f^{-1} pourrait être la fonction $\frac{1}{f}$ (la fonction f est différent de 0), la fonction réciproque de f (avec f bijective). Pour

$$f: E \to \mathbb{R}, B \subset \mathbb{R}$$

 $f^{-1}(B) = \{x \in E, f(x) \in \mathbb{R}\}$

Toujours définie.

Proposition $f: E \to F$ et $g: F \to G$ si f et g sont bijective, alors gof l'est aussi et $(gof)^{-1} = f^{-1}og^{-1} \ (gof: E \to G)$

Exemple Trouver la fonction réciproque de $f: \mathbb{R} \to]-7, +\infty[, f(x) = e^{3x+2} - 7$ On écrit $y = e^{3x+2} - 7$ et on détermine x en fonction des y.

d'où
$$f^{-1} = \frac{1}{3}(ln(x+7) - 2)$$

Etablie
$$f: E \to \mathbb{R}$$
 et $A \subset E$
 $f(A) = \{g \in \mathbb{R} \text{tel que} x \in A, f(x) = y\}$ $f(A) = im(f_{|A})$

\mathbf{II}

Limites

1 Voisinage et adhérence

Definition si $x \in E$, on dit que E est un voisinage de x si E contient un intervalle ouvert qui contient x. Ceci est équivalent à E voisinage de x si il existe $\delta > 0$ tel que $|x - \delta; x + \delta| \in E$.

Définition Soit $E \subset \mathbb{R}$. Un réel x est <u>adherent</u> à E, si tout voisinage V de x intersecte E, c'est à dire $(V \cap E \neq \emptyset)$

Exemple

- si $x \in E$, x est adhérent à E, car pour tout voisinage V de x, $x \in V \cap E$
- E = [0; 1], 0 est adhérent à E.
- $E = \{1 + \frac{1}{n}; n \in \mathbb{N}^*\} = \{2, \frac{3}{2}, \frac{4}{3}\}$ 1 est adhérent à E car

$$\lim_{n \to +\infty} = 1$$

2 Limite finie en un point de \mathbb{R}

Definition $f: E \to \mathbb{R}; x_0$ un point adhérent de E. On dit que f(x) tend vers l en x_0 ou que f(x) admet l limite l en x_0 si : $\forall \epsilon > 0$, il existe $\delta > 0$, $|x - x_0| < \delta \to |f(x) - l| < \epsilon$

Ceci est équivalent à dire que $\forall \epsilon > 0$, il existe $\delta > 0$ tel que $\forall x \in [x - \delta, x + \delta], f(x) \in [l - \epsilon, l + \epsilon]$ Pour tout voisinage V de l il existe un voisinage de x_0 U tel que si x est dans U, alors f(x) est dans V.

Notation

$$\lim_{x \to x_0} f(x) = l$$

ou

$$f(x) \to_{x \to x_0} l$$

Exemple $f: \mathbb{R}^+ \to \mathbb{R}$ dont le graph est :

$$\lim_{x \to 0} f(x) = 1$$

Soit $\epsilon > 0$, tout $\delta > 0$ convient.

$$f(x) = \begin{cases} 0 & si \quad x \le 0 \\ 1 & si \quad x > 0 \end{cases}$$

f n'admet pas de limite en 0.

3 Restriction à un sous ensemble

 $f: E \to \mathbb{R}, E \subset \mathbb{R}, x_0$ adhérent à A. On dit que f(x) tend vers $l \in \mathbb{R}$ quand x tends vers x_0 dans A.

 $\forall \epsilon > 0$, il existe $\delta > 0, \forall x \in A$, tel que $|x - x_0| < \delta, |f(x) - l| < \epsilon$

Exemple limite à gauche de f en x_0 est

$$\lim_{x \to x_0; x < x_0} f(x)$$

c'est à dire la limite de f(x) quand x tends vers x_0 dans $]-\infty, x_0[$

Exemple limite à droite de f en x_0 est

$$\lim_{x \to x_0; x > x_0} f(x)$$

c'est à dire la limite de f(x) quand x tends vers x_0 dans $]x_0, +\infty[$

Exemple La fonction f de l'exemple [x] admet une limite à droite en 0:

$$\lim_{x \to 0; x > 0} f(x)$$

, f(x)=1 La fonction f de l'exemple [x] admet une limite à gauche en 0 :

$$\lim_{x \to 0; x < 0} f(x)$$

$$, f(x) = 0$$

4. PROPRIÉTÉ II. LIMITES

Remarque On écrit aussi

 $\lim_{x \to x_0} f(x)$

par

 $\lim_{x \to 0; x < 0} f(x)$

et

 $\lim_{x \to 0} f(x)$

par

$$\lim_{x \to x_0; x > 0} f(x)$$

4 Propriété

Unicité Si la limite existe, elle est unique.

démontration par l'absurde : $f: E \to \mathbb{R}, x_0$ adhérent à E. On suppose que la limite en x_0 existe mais qu'elle n'est pas unique. Supposons que

$$\lim_{x \to x_0} f(x) = l_1 \text{et} \lim_{x \to x_0} f(x) = l_2$$

avec $l_1 \neq l_2$

Comme

$$\lim_{x \to x_0} f(x) = l_1$$

, $\forall \epsilon_1 > 0$, il existe $\delta_1, \forall x \in E|x - x_0| < \delta_1$, alors $|f(x) - l_1| < \epsilon_1$ (*) De plus

$$\lim_{x \to x_0} f(x) = l_2$$

, $\forall \epsilon_2 > 0$, il existe $\delta_2, \forall x \in E|x - x_0| < \delta_2$, alors $|f(x) - l_2| < \epsilon_2$ (**)

Choisissons $\epsilon < \frac{l_1+l_2}{2}$, on remarque $]l_1 - \epsilon, l_1 + \epsilon[\cap]l_2 - \epsilon, l_2 + \epsilon[= \emptyset]$ On trouve δ_1 et δ_2 tel que (*) et (**) soient vraies.

On appelle $\delta = min\{d_1, d_2\}, |x_0 - \delta; x_0 + \delta[\subset]x_0 - \delta_1; x_0 + \delta_1[\cap]x_0 - \delta_2; x_0 + \delta_2[\cap]x_0 - \delta_2; x_0 -$

Soit $x \in]x_0 - \delta; x_0 + \delta[$ Par $(*), f(x) \in]l_1 - \epsilon; l_1 + \epsilon[$ et par $(**), f(x) \in]l_2 - \epsilon; l_2 + \epsilon[$ donc $f(x) \in]l_1 - \epsilon, l_1 + \epsilon[\cap]l_2 - \epsilon, l_2 + \epsilon[= \emptyset \text{ Ceci est absurde } (f(x) \neq \emptyset)$

5 Théorème des gendarmes

f, g, h 3 fonctions $E \to \mathbb{R}$, $x \in \mathbb{R}$ adhérent à E.

- (i) Si f, g, h admettent pour limites respective l, m, n en x_0 et si $f(x) \in g(x) \le h(x)$ pour tout x de t, alors $l \le m \le n$
- (ii) Si $f(x) \le g(x) \le h(x)$ sur E et si f et h admettent une limite (identique) l en x_0 , alors g admet en x_0 et

$$\lim_{x \to x_0} g(x) = l$$

Remarque ON remplace les inégalité de (i) par $\forall x \in E, f(x) < g(x) < h(x)$, on obtient $l \leq m \leq n$

Exemple f(x) = |x| et g(x) = 2|x| Sur $E \subset \mathbb{R}^+$, f < g mais

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x)$$

Exemple

$$\lim_{x \to 0} x \sin(\frac{1}{/}x)$$

existe? $(\sin(\frac{1}{x}) \text{ n'a pas de limite en } 0)$

Soit f, g, h
$$\mathbb{R}^* \to \mathbb{R}$$
, $f(x) = -|x|$, $g(x) = x \sin(\frac{1}{x})$, $h(x) = |x|$

On a bien $\forall x \in \mathbb{R}^*, f(x) \leq g(x) \leq h(x)$ car $\forall x \in \mathbb{R}, -1 \leq \sin(x) \leq 1$

Donc par le théorème des gendarmes, Comme

$$\lim_{x \to 0} f(x) = 0 \operatorname{et} \lim_{x \to 0} h(x) = 0$$

g admet 0 comme limite quand x tends vers 0.