K-Mean Clustering

K-Means Intuition: Understanding K-Means

What K-Means does for you

Before K-Means

What K-Means does for you

What K-Means does for you

How did it do that?

STEP 1: Choose the number K of clusters

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

STEP 3: Assign each data point to the closest centroid - That forms K clusters

STEP 4: Compute and place the new centroid of each cluster

STEP 5: Reassign each data point to the new closest centroid.

If any reassignment took place, go to STEP 4, otherwise go to FIN.

Your Model is Ready

STEP 1: Choose the number K of clusters: K = 2

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

STEP 2: Select at random K points, the centroids (not necessarily from your dataset)

STEP 3: Assign each data point to the closest centroid - That forms K clusters

STEP 3: Assign each data point to the closest centroid → That forms K clusters

STEP 3: Assign each data point to the closest centroid - That forms K clusters

STEP 4: Compute and place the new centroid of each cluster

STEP 4: Compute and place the new centroid of each cluster

STEP 4: Compute and place the new centroid of each cluster

STEP 4: Compute and place the new centroid of each cluster

STEP 4: Compute and place the new centroid of each cluster

FIN: Your Model Is Ready

FIN: Your Model Is Ready

K-Means Intuition: Choosing the right number of clusters

With in Cluster Sum of Squares

$$WCSS = \sum_{P_i \text{ in Cluster 1}} distance(P_i, C_1)^2 + \sum_{P_i \text{ in Cluster 2}} distance(P_i, C_2)^2 + \sum_{P_i \text{ in Cluster 3}} distance(P_i, C_3)^2$$

$$WCSS = \sum_{P_i \text{ in Cluster 1}} distance(P_i, C_1)^2 + \sum_{P_i \text{ in Cluster 2}} distance(P_i, C_2)^2$$

$$WCSS = \sum_{P_i \text{ in Cluster 1}} distance(P_i, C_1)^2 + \sum_{P_i \text{ in Cluster 2}} distance(P_i, C_2)^2 + \sum_{P_i \text{ in Cluster 3}} distance(P_i, C_3)^2$$

The Elbow Method

The Elbow Method

