Laboratorium Podstaw Fizyki

Nr ćwiczenia 100B

Temat ćwiczenia Podstawowe Pomiary Elektryczne

Wykonawca:	
Imię i Nazwisko	Bartłomiej Brzozowski
Termin zajęć: dzień tygodnia, godzina	Czwartek, 17:05
Data oddania sprawozdania:	09.03.2023

Zatwierdzam wyniki pomiarów.
Data i podpis prowadzącego zajęcia

Adnotacje dotyczące wymaganych poprawek oraz daty otrzymania poprawionego sprawozdania

Spis treści

1. Wprowadzenie	3
1.1 Cele Ćwiczenia	3
1.2 Spis Przyrządów	3
1.3 Schematy Obwodu	3
1.4 Metoda Pomiarowa	4
1.5 Dokumentacja Miernika	4
1.6 Oznaczenia	4
2.Pomiary	5
2.1 Wyniki Pomiarów	5
2.2 Opracowanie Wyników	6
2.3 Przykładowe obliczenia	10
3.Wnioski	11

1. Wprowadzenie

1.1 Cele Ćwiczenia

- Zapoznanie się z podstawowymi pomiarami elektrycznymi.
- Wyznaczenie zależności natężenia prądu płynącego przez opornik, od przyłożonego napięcia.
- Analiza otrzymanych wyników.
- Nauka pisania sprawozdań.

1.2 Spis Przyrządów

- Multimetr M890G (dwie sztuki)
- Zasilacz stabilizowany
- Przewody elektryczne
- Zestaw z opornikami i żarówką wraz z gniazdami montażowymi

1.3 Schematy Obwodu

- Schemat 1
 - \circ Ω omomierz (multimetr M890G)
 - o R opornik

Rysunek 1 - Schemat 1

- Schemat 2
 - \circ A amperomierz (multimetr M890G)
 - ∘ V woltomierz (multimetr M890G)
 - \circ R opornik

Rysunek 2 - Schemat 2

1.4 Metoda Pomiarowa

- Zapoznanie z dostępnym przyrządami.
- Zmontowanie schematu 1 (Rys.1).
- Wykonanie pomiaru bezpośredniego rezystancji.
- Zmontowanie schematu 2 (Rys.2).
- Wykonanie serii pomiarów bezpośrednich napięcia i natężenia, zmieniając napięcie podawane z zasilacza na opornik.
- Zapisanie wyników.

1.5 Dokumentacja Miernika

FUNKCJA	ZAKRES	DOKŁADNOŚĆ	ROZDZIELCZOŚĆ
	200 mV		100 μV
Napięcie stałe	2 V	$\pm 0.5 \% \text{ rdg} + 1 \text{ dgt}$	1 mV
(DC V)	20 V		10 mV
(10 MΩ)	200 V		100 mV
	1000 V	± 0,8 % rdg + 2 dgt	1 V
Napięcie zmienne	2 V		1 mV
(AC V)	20 V	± 0,8 % rdg + 3 dgt	10 mV
(10 MΩ)	200 V		100 mV
(40400Hz)	700 V	± 1,2 % rdg + 3 dgt	1 V
	2 mA		1 μΑ
Prąd stały	20 mA	\pm 0,8 % rdg + 1 dgt	10 μΑ
(DC A)	200 mA	± 1,2 % rdg + 1 dgt	100 μΑ
Max. czas pom. 15 sekund	20 A	± 2,0 % rdg + 5 dgt	10 mA
Prąd zmienny (AC A)	20 mA	± 1,0 % rdg + 3 dgt	10 μΑ
(40400Hz)	200 mA	± 2,0 % rdg + 3 dgt	100 μΑ
Max. czas pom. 15 sekund	20 A	± 3,0 % rdg + 7 dgt	10 mA
	200 Ω	± 0,8 % rdg + 3 dgt	0,1 Ω
	2 kΩ		1 Ω
Rezystancja	20 kΩ	\pm 0,8 % rdg + 1 dgt	10 Ω
	200 kΩ		100 Ω
	2 ΜΩ		1 kΩ
	20 MΩ	± 1,0 % rdg + 2 dgt	10 kΩ
	2000 pF		1 pF
	20 nF		10 pF
Pojemność	200 nF	$\pm 2,5 \% \text{ rdg} + 3 \text{ dgt}$	100 pF
	2 μF		1 nF
	20 μF		10 nF
Częstotliwość	20 kHz	± 1,0 % rdg + 1 dgt	10 Hz
Temperatura	-40 °C − 400 °C	± 0,75 % rdg + 3 dgt	1 °C
	400 °C − 1200 °C	± 1,5 % rdg + 15 dgt	1 °C

Rysunek 3 - Dane Techniczne Multimetru M890G

1.6 Oznaczenia

- R Rezystancja [Ω] (Ohm),
- *U* Napięcie [*V*] (Wolt),
- I Natężenie [mA]. (miliAmper = 10^{-3} · Amper)

2.Pomiary

2.1 Wyniki Pomiarów

Wybrano pudełko z zestawem do przeprowadzenia ćwiczenia. Następnie, zgodnie z instrukcją zbudowano schemat 1 (Rys.1) i przeprowadzono pomiar rezystancji. Poniżej zapisane zostały otrzymane wynik. Opornik został zmierzony jednokrotnie, przy pomocy multimetru M890G. W dalszej kolejności, zbudowano schemat 2(Rys.2). Dalej dokonano pomiaru napięcia i natężenia. Przeprowadzono sześciokrotne mierzenie, przy użyciu amperomierza i woltomierza (multimetry M890G) za każdym razem zmieniając nastaw na zasilaczu. Po czym otrzymane wyniki zapisano w tabeli.

$$R=126,5 [\Omega]$$

Rysunek 4 - Wynik pomiaru oporu

Nr	Nastaw na Zasilaczu [V]	Napięcie <i>U</i> [<i>V</i>]	Natężenie I [mA]
1	3	3,27	25,3
2	4,5	4,74	36,7
3	6	6,31	48,8
4	7,5	7,83	60,7
5	9	9,50	73,6
6	12	12,29	95,5

Rysunek 5 - Wyniki pomiaru napięcia i natężenia

2.2 Opracowanie Wyników

Po dokonaniu analizy wyników, dokonano obliczeń niepewności pomiarowych. Korzystano w nich z wzorów z poniższej grafiki (Rys.6). Po czym zapisano je w poniższych tabelach(Rys.7, Rys.8 i Rys.9). Zgodnie z zasadami zaokrąglano niepewności do dwóch miejsc znaczących w górę. Następnie wpisano je do tabel.

 ΔR , ΔU , ΔI – Niepewności przyrządu pomiarowego, gdzie

$$\Delta R = 0.8\% rdg + 3dgt$$
, zakres 20 Ω ,

$$\Delta U = 0.5\% rdg + 1dgt$$
, zakres 20 V,

$$\Delta I = 1.2\% rdg + 1dgt$$
, zakres 200 mA.

 $u_A(x)$ - Niepewność standardowa (statyczna) typu A, gdzie

$$u_A(x) = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^n (x_i - \bar{x})^2}, \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i.$$

 $u_{\scriptscriptstyle B}(x)$ – Niepewność standardowa (szacowana) typu B, gdzie

$$u_B(x) = \sqrt{\frac{\Delta x^2}{3} + \frac{\Delta_e x^2}{3}},$$

 $\Delta_e x^2$ – niepewność eksperymentatora.

u(x) – Niepewność standardowa całkowita, gdzie

$$u(x) = \sqrt{u_A^2(x) + u_B^2(x)}.$$

 $u_c(x)$ – Niepewność złożona, gdzie

$$u_c(x) = \sqrt{\sum_{j=1}^k \left(\frac{\partial f}{\partial x_j}\right)^2 u^2(x_j)}.$$

$R\left[\Omega\right]$	$u(R)[\Omega]$	$\approx u(R)[\Omega]$
126,5	0,757483553176789	0,76

Rysunek 7 - Niepewność Rezystancji

Nr	<i>U</i> [<i>V</i>]	u(U)[V]	$\approx u(U)[V]$
1	3,27	0,0152131795931466	0,016
2	4,74	0,0194567040716904	0,021
3	6,31	0,0239889036848290	0,025
4	7,83	0,0283767657306701	0,029
5	9,50	0,0331976404784035	0,034
6	12,29	0,0412516767335988	0,042

Rysunek 8 – Niepewności Napięcia

Nr	I[mA]	u(I)[mA]	$\approx u(I) [mA]$
1	25,3	0,233018568644933	0,24
2	36,7	0,312000085470074	0,32
3	48,8	0,395831344556407	0,41
4	60,7	0,478276962996686	0,48
5	73,6	0,567650784667240	0,57
6	95,5	0,719378435410274	0,72

Rysunek 9 - Niepewności Natężenia

Następnie dokonano obliczeń za pomocą regresji liniowej w Excelu, rezystancji i jej niepewności. Wykonano wykres, który zamieszczono na następnej stronie (Rys.12). Wyniki zaprezentowano w następnych tabelach.

а	$\approx a$	u(a)	$\approx u(a)$
0,00777928081449029	0,007779	0,0000120804278549463	0,000013

Rysunek 10- Wyniki regresji liniowej - współczynnik kierunkowy

b	$\approx b$	u(b)	$\approx u(b)$
-0,000203599831450574	-0,000204	0,0000955779449518541	0,000096

Rysunek 11- Wyniki regresji liniowej - wyraz wolny

Rysunek 12 - Wykres zależności między Natężeniem a Napięciem

Rysunek 8 - Punkt z niepewnościami

W dalszej kolejności za pomocą poprzednich tabel wyznaczono wartość oporu i obliczono jego niepewność. Wynik zaprezentowano poniżej.

$$R = 128,546587254868 \, \Omega \approx 128,55 \, \Omega$$

 $u_c(R) = 0,199619709 \, \Omega \approx 0,21 \, \Omega$

Rysunek 14- Rezystancja z metody regresji liniowej

2.3 Przykładowe obliczenia

Przykład obliczeń dla pierwszych wartości zmierzonych.

 $\Delta R, \Delta U, \Delta I$ – Niepewności przyrządu pomiarowego:

$$\Delta R = 0.8\% \cdot 126.5 + 3 \cdot 0.1 = 1.122 \Omega$$

$$\Delta U = 0.5\% \cdot 3.27 + 1 \cdot 0.01 = 0.2635 V$$

$$\Delta I = 1.2\% \cdot 25.3 + 1 \cdot 0.1 = 0.4036 \, mA.$$

 $u_A(x)$ - Niepewność standardowa (statyczna) typu A:

 $u_A(x) = 0$, dla pojedynczych pomiarów.

 $u_B(x)$ – Niepewność standardowa (szacowana) typu B:

Założenia: $\Delta_e x^2 = 0$ – niepewność eksperymentatora.

$$u_B(x) = \sqrt{\frac{\Delta x^2}{3} + \frac{\Delta_e x^2}{3}} = \frac{\Delta x}{\sqrt{3}}.$$

$$u_B(R) = \frac{\Delta R}{\sqrt{3}} = 0,757483553176789 \,\Omega \approx 0,76 \,\Omega,$$

$$u_B(U) = \frac{\Delta U}{\sqrt{3}} = 0,0152131795931466 \,\mathrm{V} \approx 0,016 \,\mathrm{V},$$

 $u_B(I) = \frac{\Delta I}{\sqrt{3}} = 0.233018568644933 \text{ mA} \approx 0.24 \text{ mA}.$

u(x) – Niepewność standardowa całkowita:

Z tego, że $u_A(x) = 0$, dla pojedynczych pomiarów, wzór prezentuję się następująco:

$$u(x) = \sqrt{u_A^2(x) + u_B^2(x)} = u_B(x).$$

$$u(R) = u_B(R),$$

$$u(U) = u_B(U),$$

$$u(I) = u_B(I).$$

 $u_c(x)$ – Niepewność złożona, dla obliczeń rezystancji z metody regresji liniowej:

$$u_c(x) = \sqrt{\sum_{j=1}^k \left(\frac{\partial f}{\partial x_j}\right)^2 u^2(x_j)},$$

$$I = aU \Rightarrow a = \frac{I}{U} \Rightarrow R = \frac{U}{I} \Rightarrow R = \frac{1}{a},$$

$$u_c(R) = \sqrt{\left(\frac{\partial R}{\partial a}\right)^2 u^2(a)} = \sqrt{\left(\frac{-1}{a^2}\right)^2 u^2(a)} = 0,199619709 \ \Omega \approx 0,21 \ \Omega.$$

3. Wnioski

Analizując wyniki pomiarów rezystancji bezpośredniej (Rys.7) i pośredniej (Rys.14), możemy dojść do wniosku, że metoda pomiarów pośrednich jest równie dobrą metodą, jak metoda pomiarów bezpośrednich, ponieważ oba wyniki oporu są bardzo do siebie zbliżone.

$R_1[\Omega]$ – pomiar bezpośredni	$R_2\left[\Omega\right]$ – pomiar pośredni
$R_1 = 126,50 (76)$	$R_2 = 128,55 (21)$

Rysunek 16 - Porównanie wyników pomiaru rezystancji

Co dalej nasuwa nam kolejny wniosek, którym jest zależność między natężeniem prądu płynącego przez opornik, od przyłożonego napięcia, którą możemy zapisać w następujący sposób (Rys.16):

$$I = aU$$
.

Rysunek 17 - Zależność między natężeniem, a napięciem

Co po ciągu implikacji prowadzi nas do:

$$I = aU \Rightarrow a = \frac{I}{U} \Rightarrow R = \frac{U}{I} \Rightarrow R = \frac{1}{a}$$
.

Rysunek 18- Rezystancja, a współczynnik kierunkowy z metody regresji liniowej

Co dalej po przekształceniach i złożeniu Tych wzorów daje nam:

$$I = aU \Rightarrow \frac{I}{a} = U$$
,
 $RI = U$.

Rysunek 19 - Prawo Ohma

Otrzymując Prawo Ohma jesteśmy w stanie dowiedzieć się, że współczynnik kierunkowy z metody regresji liniowej jest tak zwaną kondunktancją (Odwrotnością rezystancji, miarą podatności na przepływ prądu elektrycznego).

Ponadto odwołując się do bliskości wyników pomiarów pośredniego i bezpośredniego rezystancji, możemy założyć wysoką poprawności pomiarów natężenia i napięcia metodą bezpośrednią, natomiast ich niepewność brała się z niepewności sprzętu pomiarowego.

Nr	$U\left[V\right]$	I[mA]
1	3,270(16)	25,30(24)
2	4,740(21)	36,70(32)
3	6,310(25)	48,80(41)
4	7,830(29)	60,70(48)
5	9,500(34)	73,60(57)
6	12,290(42)	95,50(72)

Rysunek 20 – Końcowe Wyniki