SYNTÉZA KOMBINAČNÝCH LOGICKÝCH OBVODOV

Navrhnite prevodník číslic 0-9 v kóde BCD84-2-1 do kódu BCD 2421. Prevodník realizujte s minimálnym počtom členov NAND a NOR.

Vlastné riešenie overte progr. prostriedkami ESPRESSO a LogiSim (príp. LOG alebo FitBoard).

Úlohy:

- 1) Navrhnite vlastné riešenie skupinovej minimalizácie a odvoďte B-funkcie v tvare MDNF.
- 2) Vytvorte vstupný textový súbor s opisom vstupu pre ESPRESSO.
- 3) Navrhnuté B-funkcie v tvare MDNF overte programom pre ESPRESSO. Pri návrhu B-funkcií klaďte dôraz na skupinovú minimalizáciu funkcií.
- 4) Optimálne riešenie (treba zhodnotiť, ktoré riešenie je lepšie a prečo) vytvorte obvod s členmi NAND (výhradne NAND, t.j. ani žiadne NOT).
- 5) Z Karnaughovej mapy odvoďte B-funkcie v tvare MKNF a vytvorte obvod s členmi NOR (výhradne NOR, t.j. ani žiadne NOT).
- 6) Výslednú schému nakreslite v simulátore LogiSim (príp. LOG alebo FitBoard) a overte simuláciou.
- 7) Riešenie vyhodnoť te (zhodnotenie zadania, postup riešenia, vyjadrenie sa k počtu logických členov, vstupov obvodu, vhodnosti použitie NAND alebo NOR realizácie).

Riešenie

	В	CD8	34-2	2-1	BCD 2421				
#	a	b	c	d	A	В	C	D	
0	0	0	0	0	0	0	0	0	
1	0	1	1	1	0	0	0	1	
2	0	1	1	0	0	0	1	0	
3	0	1	0	1	0	0	1	1	
4	0	1	0	0	1	0	1	0	
5	1	0	1	1	1	0	1	1	
6	1	0	1	0	1	1	0	0	
7	1	0	0	1	1	1	0	1	
8	1	0	0	0	1	1	1	0	
9	1	1	1	1	1	1	1	1	

	c	
d		

	0000	xxxx	xxxx	xxxx
b	1010	0011	0001	0010
	XXXX	XXXX	1111	XXXX
	1110	1101	1011	1100

A,B,C,D

Kaurgnaughove mapy a DNF

a

MDNF:

$$A = (a) + (b.\bar{c}.\bar{d})$$

$$B = (a.b) + (a.\bar{c}) + (a.\bar{d})$$

$$C = (a.\bar{c}.\bar{d}) + (a.c.d) + (b.\bar{c}) + (b.\bar{d})$$

$$D = (d)$$

Vstup pre ESPRESSO:

, steep pro 252 212 55 5 t		
# prevod. z BCD84-2-1 do BCD 2421	0110	0010
.i 4	0101	0011
.0 4	0100	1010
.ilb a b c d	1011	1011
.ob A B C D	1010	1100
.type fr	1001	1101
.p 10	1000	1110
0000 0000	1111	1111
0111 0001	. е	

Výstup z ESPRESSO:

Mnou navrhnuté riešenie je lepšie, pretože celkový obvod má o 1 logický člen a o 7 vstupov menej. V tomto prípade nebolo výhodné použiť skupinovú minimalizáciu.

Prepis na NAND:

$$A = (a) + (b.\bar{c}.\bar{d})$$

$$= \overline{(a) + (b.\bar{c}.\bar{d})}$$

$$= \overline{(\bar{a}).\overline{(b.\bar{c}.\bar{d})}}$$

$$= (a\uparrow)\uparrow (b\uparrow (c\uparrow)\uparrow (d\uparrow))$$

$$B = (a.b) + (a.\bar{c}) + (a.\bar{d})$$

$$= \overline{(a.b) + (a.\bar{c}) + (a.\bar{d})}$$

$$= \overline{(a.b).\overline{(a.\bar{c}).\overline{(a.\bar{d})}}}$$

$$= (a \uparrow b) \uparrow (a \uparrow (c \uparrow)) \uparrow (a \uparrow (d \uparrow))$$

$$\begin{split} C &= \left(a.\,\bar{c}.\,\bar{d}\right) + \, \left(a.\,c.\,d\right) + \left(b.\,\bar{c}\right) + \, \left(b.\,\bar{d}\right) \\ &= \underbrace{\left(a.\,\bar{c}.\,\bar{d}\right) + \, \left(a.\,c.\,d\right) + \left(b.\,\bar{c}\right) + \, \left(b.\,\bar{d}\right)}_{} \\ &= \underbrace{\left(a.\,\bar{c}.\,\bar{d}\right).\,\overline{\left(a.\,c.\,d\right).\,\overline{\left(b.\,\bar{c}\right).\,\overline{\left(b.\,\bar{d}\right)}}_{}}_{} \\ &= \left(a\,\uparrow\,\left(c\,\uparrow\right)\,\uparrow\,\left(d\,\uparrow\right)\right)\,\uparrow\,\left(a\,\uparrow\,c\,\uparrow\,d\right)\,\uparrow\,\left(b\,\uparrow\,\left(c\,\uparrow\right)\right)\,\uparrow\,\left(b\,\uparrow\,\left(d\,\uparrow\right)\right) \end{split}$$

$$D = d$$
 \uparrow - Shefferova operácia (NAND)

Vyjadrenie k počtu logických členov obvodu: 14 Vyjadrenie k počtu vstupov do logických členov obvodu: 34

Kaurgnaughove mapy a KNF

			d	(<u>c</u>				d	(<u>.</u>
		0	X	X	х			0	X	X	X
	b	1	1	0	1		b	0	1	1	0
		X	X	1	х			х	x	1	x
a		1	0	1	0	a	l	0	1	1	0
	l		C						D		

MKNF:

$$A = (a+b).(\bar{b}+c+\bar{d}).(a+\bar{c}+\bar{d}).(\bar{b}+\bar{c}+d)$$

$$B = (a).(b+\bar{c}+\bar{d})$$

$$C = (a+b).(a+\bar{c}+\bar{d}).(\bar{a}+c+\bar{d}).(\bar{a}+\bar{c}+d)$$

$$D = (d)$$

Prepis na NOR:

$$A = (a+b) \cdot (\overline{b}+c+\overline{d}) \cdot (a+\overline{c}+\overline{d}) \cdot (\overline{b}+\overline{c}+d)$$

$$= \overline{(a+b) \cdot (\overline{b}+c+\overline{d}) \cdot (a+\overline{c}+\overline{d}) \cdot (\overline{b}+\overline{c}+d)}$$

$$= \overline{(a+b) + (\overline{b}+c+\overline{d}) + (a+\overline{c}+\overline{d}) + (\overline{b}+\overline{c}+d)}$$

$$= (a \downarrow b) \downarrow ((b \downarrow) \downarrow c \downarrow (d \downarrow)) \downarrow (a \downarrow (c \downarrow) \downarrow (d \downarrow)) \downarrow ((b \downarrow) \downarrow (c \downarrow) \downarrow d)$$

$$B = (a) \cdot (b+\overline{c}+\overline{d})$$

$$= \overline{(a) \cdot (b+\overline{c}+\overline{d})}$$

$$= \overline{(a) \cdot (b+\overline{c}+\overline{d})}$$

$$= \overline{(a)} + \overline{(b+\overline{c}+\overline{d})}$$

$$= (a \downarrow) \downarrow (b \downarrow (c \downarrow) \downarrow (d \downarrow))$$

$$C = (a+b) \cdot (a+\overline{c}+\overline{d}) \cdot (\overline{a}+c+\overline{d}) \cdot (\overline{a}+\overline{c}+d)$$

$$= \overline{(a+b) \cdot (a+\overline{c}+\overline{d}) \cdot (\overline{a}+c+\overline{d}) + (\overline{a}+\overline{c}+d)}}$$

$$= \overline{(a+b) + (a+\overline{c}+\overline{d}) + (\overline{a}+c+\overline{d}) + (\overline{a}+\overline{c}+d)}}$$

$$= (a \downarrow b) \downarrow (a \downarrow (c \downarrow) \downarrow (d \downarrow)) \downarrow ((a \downarrow) \downarrow c \downarrow (d \downarrow)) \downarrow ((a \downarrow) \downarrow (c \downarrow) \downarrow d)$$

$$D = d$$

↓ - Peirceova operácia (NOR)

Vyjadrenie k počtu členov obvodu: 14

Vyjadrenie k počtu vstupov do logických členov obvodu: 38

Schéma:

Zhodnotenie

Úlohou bolo navrhnúť prevodník číslic 0-9 v kóde BCD84-2-1 do kódu BCD 2421.

Ako prvé sme podľa pravdivostných tabuliek kódov vytvorili Kaurgnaughove mapy pre štyri výstupy A,B,C,D. Z máp sme odvodili B-funkcie v tvare MDNF. Programom ESPRESSO sme overili navrhnuté funkcie. Naše riešenie bolo lepšie, pretože celkový obvod má o 1 logický člen a o 7 vstupov menej. Takže v tomto prípade nebolo výhodné použiť skupinovú minimalizáciu. B-funkcie v tvare MDNF sme použitím pravidiel (dvojitá negácia a De Morganovo pravidlo) upravili na Shefferovu normálnu formu.

Podobne sme z máp odvodili B-funkcie v tvare MKNF, ktoré sme upravili na Piercovu normálnu formu. Brali sme do úvahy skupinovú minimalizáciu.

Vytvorili sme schému obvodu výhradne zo Shefferových a potom z Piercových funkcií a obvody sme napojili na rovnaké vstupy. Simuláciou sme overili zhodnosť výstupov.

V tomto prípade je výhodnejšie použiť pri tvorbe obvodu Shefferovu normálnu formu, ktorá má o 4 vstupy do logických členov menej ako Peirceova.