Annow's impossibility result Theorem (Arrow 1951) Assume |A|>3, if an ASWF F sotisfies WP and IIA, then it must be dictatorial. For the proof, we need the notions of decisiveness. Defn. Let $F: \mathbb{R}^n \to \mathbb{R}$ be given, $G \subseteq \mathbb{N}$, $G \neq \phi$ (1) G is almost decisive over {a,b} if $[aP_ib, \forall i \in G, \text{ and } bP_ja \forall j \notin G] \Rightarrow [a\hat{F}(R)b]$ We write this with the shorthand $D_{G}(a,b)$: G is almost decisive over {a,b} W.H.t. F (2) G is decisive over {a,b} if $[aP_ib, \forall i \in G] \Rightarrow [a\hat{F}(R)b]$ Shorthand Dg (a, b): G is decisive over {a,b} W.n.t. F Clearly, $D_G(a,b) \Rightarrow D_G(a,b)$ The proof of The theorem proceeds in two parts Part 1: Field expansion lemma if a group is decisive over a pair of alternatives, it is decisive over all pairs of alternatives.

Part 2: Group contraction lemma

if a group is decisive, Then a strict subset of that group is also decisive.

Note that, these two lemmas immediately proves the theorem.

Part 1: Field expansion lemma

Let F satisfy WP and IIA, then $\forall a,b,x,y$, $G \subseteq N$, $G \neq \phi$, $a \neq b$, $x \neq y$ $\overline{D}_G(a,b) \Rightarrow D_G(x,y).$

Remark: under WP and 11A, the two notions of decisiveness are identical.

Proof: Cases to consider

1.
$$\overline{D}_{G}(a,b) \Rightarrow D_{G}(a,y)$$
, i.e., $\chi=a, y\neq a,b$

2.
$$\overline{D}_{G}(a,b) \Rightarrow D_{G}(a,b)$$
, i.e., $a \neq a,b$, $\gamma = b$

3.
$$\overline{D}_{G}(a,b) \Rightarrow D_{G}(a,y)$$
, i.e., $z \neq a,b$, $y \neq a,b$

5.
$$\overline{D}_{G}(a,b) \Rightarrow D_{G}(b,y)$$
, i.e., $z=b$, $y \neq a,b$

6.
$$\overline{D}_{G}(a,b) \Rightarrow D_{G}(a,b)$$

7.
$$\bar{D}_G(a,b) \Rightarrow D_G(b,a)$$

Case 1: $\overline{D}_G(a,b) \Rightarrow D_G(a,y)$, i.e., pick arbitrary $R \in \mathbb{R}^n$ s.t. $a P_i y \forall i \in G$, need to show that $a \hat{F}(R) y$.

Construct R'

ensure $R_i'|_{a,y} = R_i|_{a,y}$, $\forall i \in \mathbb{N}$ $\overline{D}_G(a,b) \Rightarrow a \widehat{F}(R') b$ $WP \text{ over } b, y \Rightarrow b \widehat{F}(R') y$ transitivity $\Rightarrow a \widehat{F}(R') y$ $\Rightarrow a \widehat{F}(R) y$. Hence $D_G(a,y)$

Case 2: $D_{G}(a,b) \Rightarrow D_{G}(a,b)$ Pick arbitrary R s.t. 2 Pib, + i∈G. Need to show 2 F(R)b. R' $\frac{G}{\chi}$ $\frac{N \cdot G}{\chi}$ $\frac{G}{\chi}$ $\frac{N \cdot G}{\chi}$ $\frac{G}{\chi}$ $\frac{F(a,b)}{D_{G}(a,b)} \Rightarrow a \cdot \hat{F}(R') \cdot b$ A WP on $x, a \Rightarrow \chi \cdot \hat{F}(R') \cdot a$ Ensure Rilx, b = Rilx, b \tien. trumitivity $\Rightarrow \chi \hat{F}(R') b \stackrel{||A}{\Rightarrow} \chi \hat{F}(R) b$. Case 3: $\overline{D}_{G}(a,b) \Rightarrow \overline{D}_{G}(a,y)$ [case 1] $\Rightarrow D_G(a,y)$ [definition] $\Rightarrow D_{G}(x,y)$ [case 2] Case 4: $\overline{\mathbb{D}}_{G}(a,b) \Rightarrow \mathbb{D}_{G}(x,b)$ [case 2] $x \neq a,b$ $\Rightarrow \overline{D}_{c}(x,b)$ [definition] $\Rightarrow D_{G}(x,a)$ [case 1] Case 5: $\overline{D}_{G}(a,b) \Rightarrow D_{G}(a,y)$ [case 1] $y \neq a,b$ ⇒ D_G (a,y) [definition] $\Rightarrow D_G(b, y)$ [case 2] Case 6: $\overline{D}_{G}(a,b) \Rightarrow D_{G}(x,b)$ [case 2] $x \neq a,b$ $\Rightarrow \bar{D}_{G}(x,b)$ [definition] $\Rightarrow D_G(a,b)$ [case 2] Case 7: $\overline{D}_{G}(a,b) \Rightarrow D_{G}(b,y)$ [case 5] $y \neq a,b$

 $\Rightarrow \overline{D}_{G}(b,y) [definition]$ $\Rightarrow \overline{D}_{G}(b,a) [case 1]$

Part 2: Group contraction lemma

Let F satisfy WP and IIA. Let $G\subseteq N$, $G\neq \phi$, |G| >,2, be decisive. Then $\exists G'\subset G$, $G'\neq \phi$ which is also decisive.

Proof: If |G|=1, nothing to prove. WLOG assume |G|>2Let G_1 , $G_2=G\setminus G_1$, construct R

Case 1: a F(R) C, now consider G,

a P_i $\subset \forall i \in G_i$, $\subset P_i$ a $\forall i \notin G_i$ Consider all R', where this holds, by IIA a $\hat{F}(R')$ \subset hence $\overline{D}_G(a,c) \stackrel{\text{FEL}}{\Longrightarrow} G_i$ is decisive

Case 2: $\neg (a \hat{f}(R) c) \Rightarrow c f(R) a$ from (1) we get $a \hat{f}(R) b \Rightarrow c \hat{f}(R) b$

Consider G_2 , $c\ P_i\ b\ \forall i\ \in G_2\ , \ \text{and}\ b\ P_i\ c\ \forall\ i\ \notin G_2$ using IIA as before $\overline{D}_{G_2}(b,c)\stackrel{\text{FEL}}{\Rightarrow} G_2$ is decisive

This concludes The proof.