Paralelización del algoritmo Progressive Hedging para la resolución de problemas estocásticos

Grao en Ingeniería Informática Universidad de Santiago de Compostela

Autor: Cristofer Canosa Domínguez

Director: Juan Carlos Pichel Campos

2 de septiembre de 2018

Tabla de contenidos

- Introducción
 - Programación Estocástica
 - Pyomo
 - Objetivos
- 2 Gestión del proyecto
 - Alcance y entregables
 - Planificación temporal
- Análisis
 - Algoritmo Progressive Hedging
 - Herramientas
- 4 Diseño
- Implementación
- O Pruebas
- Conclusiones

• Problemas de optimización

- Problemas de optimización
- Existe un nivel de incertidumbre

- Problemas de optimización
- Existe un nivel de incertidumbre
- Generan múltiples escenarios

Figura: Árbol de escenarios en un problema estocástico

Ejemplos de aplicación

- TFM: "Problemas de rutas de vehículos"
- Modelo de optimización de la oferta de generación eléctrica para compañías eléctricas que participan en el mercado eléctrico liberalizado MIBEL.
- "Progressive Hedging aplicado a coordinación hidrotérmica"

Pyomo

- Formulación y solución de modelos de optimización
- Uso de solucionadores de terceros (CPLEX, GLPK)
- Sandia National Laboratories y University of California
- Python

Objetivos

- Estudiar y analizar el funcionamiento del algoritmo *Progressive Hedging* en PySP.
- Análisis de las diferentes alternativas de paralelización disponibles que mejor se adapten al problema. Se tendrán en cuenta tecnologías Big Data (Apache Spark) o modelos tradicionales de paralelización.
- Oiseño e implementación del nuevo módulo e integración con Pyomo.
- Análisis y evaluación del rendimiento.

Alcance

- Adaptar el módulo de programación estocástica (PySP) a una nueva implementación paralela.
- Nueva implementación más escalable que permita abordar problemas de mayor tamaño.
- Realizar un análisis de rendimiento.

Entregables

- Código de Pyomo actualizado con el módulo de ejecución de PH paralelo.
- Estudio de rendimiento.
- Memoria de realización del proyecto.
- Otra documentación asociada a la realización del proyecto.

Casos de uso

Figura: Casos de uso

• Límite temporal estricto

- Límite temporal estricto
- Poco peso de la fase de implementación

- Límite temporal estricto
- Poco peso de la fase de implementación
- Mayor énfasis en análisis y documentación

- Límite temporal estricto
- Poco peso de la fase de implementación
- Mayor énfasis en análisis y documentación
- Metodología en cascada

Cronograma

Figura: Línea base

Adaptación de la planificación

Figura: Primer retraso

Adaptación de la planificación

Figura: Línea base prototipos

Cronograma final

Figura: Línea base final

Algoritmo Progressive Hedging Herramientas

Progressive Hedging

Implementación en Pyomo

Algoritmo Progressive Hedging Herramientas

Spark

MPI

Diseño

Proceso

Funcionamiento

Implementación

Recursos

Resultados

Lecciones aprendidas

Trabajo futuro

Conclusiones