Hydraulic Power Take-Off

Goals for today

- Discussion of Torque Control
- Present the Hydraulic PTO Simulation Results
- Hydraulic PTO with Different Piston Areas
- Questions on Relative Rotary Motion
- Direct-Drive Design
- Next Steps

Hydraulic Variable Displacement Motor Subsystem

$$\tau = \frac{\dot{V}_{pist}\Delta p}{\omega_m} \qquad \qquad \dot{V}_m = \frac{\tau\omega_m}{\Delta p} = \dot{V}_{pist}, where \qquad \dot{V}_{pist_min} \leq \dot{V}_m \leq \dot{V}_{pist_max}$$

Kelley's Plots

Nak's Plots

Different Piston Areas

Different Piston Areas (cont.)

Constant Motor's Volumetric Flow

Constant Motor's Volumetric Flow (Cont.)

Sam's Hydraulic PTO For OSWEC

He used the following:

•
$$\tau_{hm}(t) = \frac{V_g \Delta p(t) \eta}{2\pi}$$

•
$$\tau_{hm}(t) + \tau_{gen\ aft}(t) = \tau_{com}(t)$$

•
$$\alpha_m(t) = \frac{\tau_{com}(t)}{J_{tot}}$$

•
$$\alpha_m(t) = \frac{\tau_{com}(t)}{J_{tot}}$$

• $\omega_m(t) = \int_0^t \alpha_m(\tau) d\tau$

•
$$\dot{V}_m(t) = \frac{V_g \omega_m(t)}{2\pi\eta}$$

Relative Rotary Motion

Direct-Drive (Sam's Model)

$$\tau = r \times F$$

$$\tau = ||r|| ||F|| \sin \theta$$

I think we should call 'F_toJoint' instead of 'T_gen_out'