Trying to estimate web behaviors after GDPR regulation

01

Framing the project

What are Peugeot's needs? What solution can we offer? What is the overall approach?

04

Modelling and selecting

How to predict web behaviors? What different models can we build and what could be the best one?

02

Segmenting our data

What different patterns can we find among the web sessions? How to mathematically capture them?

05

Recommending final solution

How can Peugeot use the global predictive solution to drive business value?

03

Building our test data

How to construct the closest dataset from the incoming reality and understand how reliable our predictive solution can be?

Framing the project

Problem Statement

Our Goal

Tracking online data is more difficult

With the GDPR regulations evolving since May 2018, the usage of cookies to track online data has become more difficult.

Data loss in tracked traffic is growing

Since more and more users either refuse all or do not give preferences, the non tracked traffic on the website has become more important.

Understanding web visitors' behaviors is harder

Peugeot will lose a large volume of web visitors information, making it harder to understand their online behaviors

Extract historical patterns

Using historical user sessions with tracking consent, the goal is to capture session patterns on a daily level

Estimate overall user behaviors

By modelling daily captured patterns, the objective is to estimate overall user behaviors on a given day

4 target KPIs to quantify user behaviors

Specific metrics have been selected to mathematically quantify daily user behaviors on Peugeot's website:

Qualified sessions

% of sessions during which the user did not bounce

Started configurations

% of sessions during which the user started a vehicle configuration but did not finish it

Sessions with vehicle

% of sessions during which at least one vehicle was seen by the user

Engaged configurations

% of sessions during which the user started a vehicle configuration and finished it

Our data

User sessions with tracking consent until 08/08/2020, described by **more than 40 attributes** (number of hits on product pages, number of product added to the cart, which vehicle pages the user consulted...)

Historical sessions are **split into training and test sessions**

Training Set

Test Set

Training sessions: to learn session patterns and thus to model the overall user behaviors

Test sessions: to simulate the tracked data loss and evaluate the target KPIs predictions

Period: 558 days

from 01/01/2019 until 11/07/2020

Period: 28 days

from 12/07/2020 until 08/08/2020

Pipeline

MODEL

OUTPUT

KPIs estimations for that day

Segmenting our data

Clustering the sessions

From a session to a daily level

Initial database

About 25 KPI's describing each sessions (hits, date, medium...)

Data Preparation (encrypting...)

KNN & Minibatch clustering

(maximization of inter-cluster distance)

		Low/	Low/	Low/	Medium/	Medium/	High/
Date	Bouncer	VEH foc	Browser	Curious	Browser	Curious	ActiveU
23/02/2019	69152	20342	2369	6624	20790	1626	5058
24/10/2019	80423	24144	3340	7340	52168	3624	5657
15/05/2019	75021	26089	83534	6416	27445	2042	5806
19/05/2020	87302	22474	1933	7954	13285	2428	6954
21/12/2019	69753	18876	2357	10292	30646	1877	4505

Final test and training databases qualify each day by the "types" of sessions that occured at this date

Daily level database

Activity Key Insight Bouncer Lowest activity Bounce VFH focused No time to waste Browser Not sure what I'm looking for Curious Check everything quickly Low VEH focused Know what I want Medium Browser Not sure what I'm looking for High Avid Users Want to know everything

of sessions (see right)

7 'types'

Grouping by day

Segmenting the days - Approach

From sessions definitions to days definitions

Model building

Test of 3 clustering algorithms' performances for 2 to 10 clusters:

- K-Nearest Neighbors
- -Birch algorithm
- -Agglomerative clustering algorithm

Technical testing

Filtering the best algorithms with 2 measures of internal and external dispersion within/between clusters (one based on days, the other based on clusters)

Interpretability

Selecting the final algorithm on 3 interpretability criteria:

- -The number of cluster
- -The size of each cluster
- -The interpretability of each cluster

of clusters: 5

clustering

Result of a trade-off between performance and interpretability

Model: Agglomerative

Results

Agglomerative clustering Davies Boulding score (left) and Silhouette score (right)

To Minimize To Maximize →

Day-cluster presentation: overview

Our five clusters:

- 1. Active days
- 2. Pop-in days
- 3. Research days
- 4. Advanced interactions days
- 5. Configurations days

Key insights on their distribution:

Pop-in Days

The highest variance

The highest rate of bouncers

The **largest number of sessions with at least one vehicule** seen during the day: probably due to online advertising campaigns

Active & Research days

The **longest time** on the website Quite consistent (**low variance**)

Interactions & Configurations days

The **greatest interaction** with the website:

The largest number of configurations started and engaged

The largest number of product details seen

Day-cluster details

1. Active Days:

Majority of sessions of curious, browsers and avid users: 54.6% of sessions from 'Curious' 4% of sessions from 'Avid Users'

2. **Pop-In Days:**

Majority of sessions oriented toward vehicules: 39.5% of the sessions from 'VEH focussed'

Figure 1, Scatter plot:
The advanced interactive
days and the configuration
days have a better ratio of
engaged session/ time
spent on site than other
clusters

3. Research Days:

27% of sessions from 'Browsers' Lots of 'VEH focussed'

4. Advanced Interaction Days:

Few time spent on the website Lots of 'VEH focussed' and 'Curious' with few but targeted interactions

5. **Configuration Days**:

Mainly VEH focussed engaging with the brand Lowest number 'Curious' with low interactions

Preparing test data - Approach

1. SAMPLING TEST DAYS

Shifting from session-level to day level on test data: we simulate the tracked data loss due to new cookie consent banner, by keeping a sample of the test session in a given day

2.DESCRIBING THEM WITH SESSION-CLUSTER MIX

Calculating session-cluster repartition: we describe them by their session-cluster mix as we did for the training days

3. BUILDING DAY-CLUSTER CLASSIFIERS

Constructing day-cluster predictive models using the training days: we evaluate different multi-class classifiers to best predict on which day-cluster a given day can fall in

4. SELECTING BEST MODEL & DEPLOYING IT

Keeping the most accurate day-cluster classifier: we keep the best predictive model and deploy it on the sampled test days to predict their day-cluster

Sampling test days and describing them

		Days	Cluster Number
	1.	Day 1	3
	2.	Day 1	3
	3	Day 1	2
	10.	Day 1	1
	11.	Day 2	2
	12.	Day 2	4
	13.		

	Days	Session Cluster1	Session Cluster2	 Session Cluster5
y, se	Day 1	30%	15%	 25%
>	Day 2	23%	40%	 12%
l				
	Day 28	13%	50%	 10%

Day Cluster
???
???
???

Dataset: Test sessions

Result: 70% Samples Repartition

Goal: Predict Day Cluster using training days with their day-cluster

BUILDING

Constructing day-cluster classifiers using 2 methods by learning the classification rule from the training days, described by their session-cluster repartition

2 different methods:

Instance-based with **K-Nearest neighbors**

Tree-based with a single **decision tree**

DEPLOYING

Deploying selected day-cluster classifier on the sampled test day to predict their cluster

Predicting day-cluster on sampled test days

SELECTING

cting the rameters

Checking accuracy metrics, and selecting the best method with optimal hyperparameters

Selected classifier: K-Nearest neighbors with K = 2

Modelling and Selecting

Introduction and extrapolation techniques

We have now:

- The sampled test days, where we have tracked only 70% of the sessions, representing the kind of tracking per days we might have after new GDPR implementation.
- The cluster these sampled test days belong to and the k most similar days from them we can find in our training set (ie. the days for which we could track all the sessions)
- The 4 target KPIs we want to predict for each of these similar days

Model performance evaluation & selection

Defining how to measure the distance from one given day to its k-nearest days within its cluster

Computing predictions on KPI's for the three pre-selected extrapolation methods

Comparing the performance of each method for each KPI by computing 2 types of error rates.

1

2

3

4

5

4 distances tested (different mathematical implications):

- Braycurtis
- Euclidean
- Correlation
- Canberra

Defining the k number of nearest days we use for the extrapolation.

Between 5 and 100.

3 preselected models:

- -Average
- -Ponderated average
- -Linear regression

Comparing the prediction based on each sampled days VS the true value of the same entire days

- 1. Mean Squared Error (MSE):
- average variance between prediction and true value → **More consistent**
- 2. Mean Absolute Percentage Error

(MAPE): average percentage of difference from the true value in the sample → **More interpretable**

Model comparison: example

Model A

Distance methodology: **Euclidean distance**

K-Nearest days: **5 days**

Extrapolation methodology: **Test of the 3 methods**

Model B

Distance methodology: Canberra distance

K Nearest days: 5 days

Extrapolation methodology: **Test of the 3 methods**

- → The **Canberra distance** seems to **perform better** in average
- → We can see that it improves a lot the performance of the linear regression model

Final step and results

Best hyperparameters:

Distance methodology: Canberra

distance

K-Nearest days: 100 days

Extrapolation methodology: **linear**

regression for the 4 KPI's

Final MAPE error rates for each KPI's:

Bounce rate: 7.4%
Session with vehicule: 2.9%
Configuration started: 3.7%
Configuration engaged: 3.4%

Impact of increasing K on performance: a consequent error reduction

Recommending final solution

Adopting a 6-step approach

Predicting some specific insights on the users' activity of Peugeot's website after the new version of GDPR implementation in 2021, while we were no longer able to track the activity on the website from users who refused cookies tracking.

4 KPI's to predict

The **bounce rate** for the day

The rate of sessions with **at least one vehicle seen** for the day

The rate of vehicle **configuration started** during the day

The rate of vehicle **configuration engaged** during the day.

Cluster the days of the training sessions

2 Sampled days from test sessions

3 Predict their day-cluster

Find their nearest training days using the clustering

Extrapolate their KPI's with those nearest days

Opting for a robust model with linear regression

Model selected:

Distance: Canberra

K-nearest days chosen: **100 nearest days** Extrapolation method: **linear regression**

Error rate for each KPI's:

Bounce Rate:

>1 vehicule consulted: **2.9%** Configuration started: **3.7%** Configuration engaged: **3.4%**

How can we use it? Example with August 08th, 2020

КРІ	True Value	Predicted Value	Error rate
Bounce Rate	35.4%	37.9%	2.5%
>1 vehicule consulted	49.8%	45.8%	3.0%
Configuration started	7.9%	7.5%	0.4%
Configuration engaged	5.3%	5.4%	0.1%

The predictions are quite accurate.

We can see that the error rate on the configuration started is quite higher than expected for the percentage of session with at least one vehicule consulted, but it is normal as long as the percentage error indicated above are averages.

A methodology to be tuned

Tuning hyperparameters

To extrapolate the KPIs, only empirical and simple methods were tried

Other regression techniques with more complexity could be tried (tree-based methods, support vector machines..)

Getting the features' importance

2 hyperparameters in our modelling approach:

K: number of nearest days to select **Distance function**: method to compute how far a day is from another

Possible to find **optimal K** with **iterative approach**, and try other distance computation methods using probabilities

Trying other extrapolation methods

More than 40 variables were used to describe a session. Some must have more importance across all algorithms used in the methodology, than other features.

Different techniques could be used to extract the modelling power of each feature, and get more transparency.

