Rotational Kinematics

I know how much you **loved** linear kinematics.

We can do the same thing with objects that rotate.

Remember?

Linear Kinematic Equations

$$\Delta s = v \ t + \frac{1}{2} a \ t^2$$

$$v_f = v_i + a t$$

$$2 a \Delta s = v_f^2 - v_i^2$$

New Guys in Town

Rotational Vocabulary

Connection between linear and rotation		
Rotational Motion	Linear Motion	
θ (theta) rad	Δs (delta ess) m	
ω (omega) rad/sec	v (vee) m/s	
α (alpha) rad/sec ²	a (<i>aye</i>) m/s ²	
I (eye) kg • m	m (em) kg	

θ (*Theta*) and how we measure it.

$$r \theta = \Delta s$$

$$\Delta S = C = 2\pi r$$
$$\Rightarrow \theta = 2\pi$$

Conversion:

$$360^{\circ} = 2\pi$$

ω (Omega) - Measure of Speed

$$v = \frac{\Delta s}{\Delta t}$$

Define Speed for rotational systems:

$$\omega = \frac{\Delta \theta}{\Delta t}$$

Common conversion:

$$1 rpm = 2\pi \frac{1}{60 \sec} = 0.105 \ rad/s$$
$$1 \frac{rad}{s} = 9.55 \ rpm$$

AP Physics

α (Alpha) - Angular Acceleration

Define Acceleration for linear systems:

$$a = \frac{\Delta v}{\Delta t} = \frac{v_f - v_i}{\Delta t}$$

Define Acceleration for rotational systems:

$$\alpha = \frac{\Delta \omega}{\Delta t} = \frac{\omega_f - \omega_i}{\Delta t}$$

◆ Example:

A wheel's angular rotation changes from 30rpm to 40rpm in 5 sec. What is the acceleration?

$$\frac{40 \, rpm - 30 \, rpm}{5 \, s} = \frac{10 \, rpm}{5 \, s} = 0.21 / s^2$$

AP Physics

Kinematic Relationships

Routine Expressions

$$\alpha = \frac{\omega_f - \omega_i}{t}$$

$$\theta_f - \theta_i = \Delta \theta = \omega t + \frac{1}{2} \alpha t^2$$

$$\omega_f^2 = \omega_i^2 + 2 \alpha (\theta_f - \theta_i)$$

Examples

An airplane engine starts from rest; and 2 seconds later, it is rotating with an angular speed of 300 rev/min. If the angular acceleration is constant, how many revolutions does the propeller undergo during this time?

$$\frac{300rpm}{2s} = 15.7/s^2 = \alpha$$

$$\frac{(300rpm)^2}{2\alpha} = \Delta\theta = 5 (2\pi) \quad or \quad 5 \text{ rev}$$

AP Physics

Connection to linear values

AP Physics

A 10*in* diameter circular saw blade rotates at a constant angular speed of 1100 rpm. What is the tangential speed of the tip of a saw tooth at the edge of the blade?

$$d = 10in = 0.25m$$

$$r = \frac{d}{2} = 0.13m$$

$$1100 rpm = 115 \frac{(rad)}{s}$$

$$r \omega = 0.13m \ 115 s^{-1} = 15 \frac{m}{s}$$

Rotational and Linear Connection

Connection	between .	linear and	l rotation

Rotational Motion		Linear Motion
θ (theta) rad	$\theta r = \Delta s$	Δs (ex) m
ω (omega) rad/sec	$\omega r = v$	v (vee) m/s
α (alpha) rad/sec ²	$\alpha r = a$	a (<i>aye</i>) m/s ²

Rotational Kinematics

$$\omega = \frac{\theta_f - \theta_i}{t} = \frac{\Delta \theta}{t}$$

$$\alpha = \frac{\omega_f - \omega_i}{t} = \frac{\Delta \omega}{t}$$

$$\theta_f - \theta_i = \Delta \theta = \omega t + \frac{1}{2} \alpha t^2$$

$$\omega_f^2 = \omega_i^2 + 2 \alpha (\theta_f - \theta_i)$$