

Programmierung und Deskriptive Statistik

BSc Psychologie WiSe 2024/25

Belinda Fleischmann

(9)	Маве	der	zentralen	Tendenz und	

Datenvariabilität

Maße der zentralen Tendenz
Maße der Datenvariabilität
Programmierübungen und Selbstkontrollfragen

Maße der zentralen Tendenz

Programmierübungen und Selbstkontrollfragen

Maße der Datenvariabilität

Definition (Mittelwert)

 $x=(x_1,...,x_n)$ sei ein Datensatz. Dann heißt

$$\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i \tag{1}$$

der Mittelwert von x.

Bemerkung

- Im Kontext der Inferenzstatistik heißt der Mittelwert Stichprobenmittel.
- Die Inferenzstatistik gibt der Mittelwertsbildung ihren Sinn.

Berechnung des Mittelwerts in R

"Manuelle" Berechnung des Mittelwerts

[1] 18.61

mean() zur Berechnung des Mittelwerts

[1] 18.61

Theorem (Eigenschaften des Mittelwerts)

 $x=(x_1,...,x_n)$ und sei ein Datensatz und \bar{x} sei der Mittelwert von x. Dann gelten

(1) Die Summe der Abweichungen vom Mittelwert ist Null,

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0. {(2)}$$

(2) Die absoluten Summen negativer und positiver Abweichungen vom Mittelwert sind gleich, d.h. wenn $j=1,...,n_j$ die Datenpunktindizes mit $(x_j-\bar{x})<0$ und $k=1,...,n_k$ die Datenpunktindizes mit $(x_k-\bar{x})\geq 0$ bezeichnen, dann gilt mit n_j+n_k

$$|\sum_{j=1}^{n_j}(x_j-\bar{x})|=|\sum_{k=1}^{n_k}(x_k-\bar{x})|. \tag{3}$$

(3) Der Mittelwert der Summe zweier gleich großer Datensätze entspricht der Summe ihrer Mittelwerte, d.h. für einen weiteren Datensatz $y=(y_1,\ldots,y_n)$ mit Mittelwert \bar{y} gilt

$$\overline{x+y} = \bar{x} + \bar{y} \tag{4}$$

(4) Eine linear-affine Transformation eines Datensatz transformiert den Mittelwert des Datensatzes linear-affin, d.h für $a,b\in\mathbb{R}$ gilt

$$\overline{ax + b} = a\bar{x} + b$$

Beweis

(1) Es gilt

$$\sum_{i=1}^n (x_i - \bar{x}) = \sum_{i=1}^n x_i - \sum_{i=1}^n \bar{x}_i = \sum_{i=1}^n x_i - n\bar{x} = \sum_{i=1}^n x_i - \frac{n}{n} \sum_{i=1}^n x_i = \sum_{i=1}^n x_i - \sum_{i=1}^n x_i = 0.$$

(2) Seien $j=1,...,n_j$ die Indizes mit $(x_j-\bar{x})<0$ und $k=1,...,n_k$ die Indizes mit $(x_k-\bar{x})\geq 0$, so dass $n=n_j+n_k$. Dann gilt

$$\begin{split} \sum_{i=1}^n (x_i - \bar{x}) &= 0 \Leftrightarrow \sum_{j=1}^{n_j} (x_j - \bar{x}) + \sum_{k=1}^{n_k} (x_k - \bar{x}) = 0 \Leftrightarrow \sum_{k=1}^{n_k} (x_k - \bar{x}) = -\sum_{j=1}^{n_j} (x_j - \bar{x}) \\ &\Leftrightarrow |\sum_{i=1}^{n_j} (x_j - \bar{x})| = |\sum_{k=1}^{n_k} (x_k - \bar{x})|. \end{split}$$

Beweis

(3) Es gilt

$$\overline{x+y} \coloneqq \frac{1}{n} \sum_{i=1}^n (x_i + y_i) = \frac{1}{n} \sum_{i=1}^n x_i + \frac{1}{n} \sum_{i=1}^n y_i =: \bar{x} + \bar{y}$$

(4) Es gilt

$$\begin{split} \overline{ax+b} &:= \frac{1}{n} \sum_{i=1}^n (ax_i+b) \\ &= \sum_{i=1}^n \left(\frac{1}{n} ax_i + \frac{1}{n} b\right) \\ &= \sum_{i=1}^n \left(\frac{1}{n} ax_i\right) + \sum_{i=1}^n \left(\frac{1}{n} b\right) \\ &= a\frac{1}{n} \sum_{i=1}^n x_i + \frac{1}{n} \sum_{i=1}^n b \\ &= a\bar{x} + b \end{split}$$

Summe der Abweichungen

[1] 5.684342e-14

Beträge der positiven und negativen Abweichungen

```
[1] 71.28
print(abs(s_2))  # Ausgabe des Betrags
```

Γ17 71.28

Summation von Datensätzen

```
<- D$Pre.BDI
                                    # double Vektor der Pre.BDI-Werte
x
x bar <- mean(x)
                                     # Mittelwert der Pre BDT-Werte
y <- D$Post.BDI
                                    # double Vektor der Post.BDI Werte
v_bar <- mean(y)</pre>
                                    # Mittelwert der Post.BDT Werte
z <- x + v
                                     # double Vektor der Summe der Pre und Post Werte
z bar <- mean(z)
                                    # Mittelwert der Summe der Werte
print(z_bar)
                                    # Ausgabe
[1] 31.68
```

Ausgabe

print(xy_bar) [1] 31.68

Linear-affine Transformation

xv bar <- x bar + v bar

```
        x
        <- D$Pre.BDI</th>
        # double Vektor der Pre.BDI Werte

        x_bar
        <- mean(x)</th>
        # Mittelwert der Pre.BDI Werte

        a
        <- 2</th>
        # Multiplikationskonstante

        b
        <- 5</th>
        # Additionskonstante

        y
        <- a*x + b</th>
        # linear-affine Transformation der Pre.BDI Werte

        y_bar
        <- mean(y)</th>
        # Mittelwert der transfomierten Pre.BDI Werte

        print(y_bar)
        # Ausgabe
```

```
[1] 42.22

ax_bar_b <-a*x_bar + b  # Transformation des Mittelwerts

print(ax_bar_b)  # Ausgabe
```

[1] 42.22

Summe der Mittelwerte der Pre- und Post BDT Werte

Definition (Median)

 $x=(x_1,...,x_n)$ sei ein Datensatz und $x_s=(x_{(1)},...,x_{(n)})$ der zugehörige aufsteigend sortierte Datensatz. Dann ist der Median von x definiert als

$$\tilde{x}:=\begin{cases} x_{((n+1)/2)} & \text{falls } n \text{ ungerade} \\ \frac{1}{2}\left(x_{(n/2)}+x_{(n/2+1)}\right) & \text{falls } n \text{ gerade} \end{cases} \tag{5}$$

Bemerkungen

- Der Median ist identisch mit dem 0.5-Quantil.
- Mindestens 50% aller x_i sind kleiner oder gleich \tilde{x}
- Mindestens 50% aller x_i sind größer oder gleich \tilde{x} .
- Anstelle eines Beweises verweisen wir auf untenstehende Abbildungen.

Beispiele

Beispiel für n ungerade

Beispiel für n gerade

$$n := 6 \Rightarrow \left(\frac{6}{2}\right) = (3), \left(\frac{6}{2} + 1\right) = (4) \Rightarrow \tilde{x} := \frac{1}{2} \left(x_{(3)} + x_{(4)}\right)$$

$$x_{(1)} \qquad x_{(2)} \qquad x_{(3)} \qquad x_{(4)} \qquad x_{(5)} \qquad x_{(6)}$$

$$x_{(1)}, x_{(2)}, x_{(3)} < \tilde{x} < x_{(4)}, x_{(5)}, x_{(6)}$$

Berechnung des Medians in R

Manuelle Bestimmung des Medians

[1] 19

Berechnung des Medians mit median()

[1] 19

Der Median ist weniger anfällig für Ausreißer als der Mittelwert

```
<- D$Pre.BDT
                                             # double Vektor der Pre.BDT Werte
x bar <- mean(x)
                                            # Mittelwert der Pre BDT Werte
x tilde <- median(x)
                                            # Median der Pre BDT Werte
print(x_bar)
                                            # Ausgabe
[1] 18.61
print(x_tilde)
                                            # Ausgabe
Γ17 19
  <- x
                                            # neuer Datensatz mit ...
v[1] <- 10000
                                            # ... einem Extremwert
v_bar <- mean(y)</pre>
                                            # Mittelwert des neuen Datensatzes
print(y_bar)
                                             # Ausgabe
[1] 118.44
y_tilde <- median(y)</pre>
                                             # Mittelwert des neuen Datensatzes
print(y_tilde)
                                            # Ausgabe
[1] 19
```

Definition (Modalwert)

 $x:=(x_1,...,x_n)$ mit $x_i\in\mathbb{R}$ sei ein Datensatz, $A:=\{a_1,...,a_k\}$ mit $k\leq n$ seien die im Datensatz vorkommenden verschiedenen Zahlenwerte und $h:A\to\mathbb{N}$ sei die absolute Häufigkeitsverteilung der Zahlwerte von x. Dann ist der $\mathit{Modalwert}$ (oder Modus) von x definiert als

$$\operatorname{argmax}_{a \in A} h(a), \tag{6}$$

also der am häufigsten im Datensatz vorkommende Wert.

Bemerkungen

• Modalwerte sind nur bei Datensätzen mit Datenpunktwiederholungen sinnvoll.

Bestimmung des Modalwertes in R

```
x <- D$Pre.BDI  # double Vektor der Pre.BDI Werte
n <- length(x)  # Anzahl der Datenwerte (100)
H <- as.data.frame(table(x))  # absolute Haeufigkeitsverteilung (dataframe)
names(H) <- c("a", "h")  # Konsistente Benennung
mod <- H$a[which.max(H$h)]  # Modalwert
print(as.numeric(as.vector(mod)))  # Ausgabe als numeric vector, nicht factor
```

Г1] 18

Visuelle Intuition zu Maßen zentraler Tendenz bei Normalverteilung

Visuelle Intuition zu Maßen zentraler Tendenz bei Gleichverteilung

Visuelle Intuition zu Maßen zentraler Tendenz bei bimodalen Verteilungen

Maße der zentralen Tendenz

Programmierübungen und Selbstkontrollfragen

Maße der Datenvariabilität

Spannbreite

Definition (Spannbreite)

 $\boldsymbol{x}=(x_1,...,x_n)$ sei ein Datensatz. Dann ist die Spannbreite von $x_1,...,x_n$ definiert als

$$sb := \max(x_1, ..., x_n) - \min(x_1, ..., x_n).$$
 (7)

Die Spannbreite kann mit range() berechnet werden

```
# Einlesen des Beispieldatensatzes
fpath <- file.path(data_path, "psychotherapie_datensatz.csv")</pre>
        <- read.table(fpath, sep = ",", header = T)
# Manuelle Spannbreitenberechnung
      <- D$Pre.BDI
                                            # double Vektor der Pre-BDI Werte Werte
x \max < - \max(x)
                                            # Maximum der Pre-BDT Werte
x \min < - \min(x)
                                           # Mininum der Pre-RDT Werte
sb <- x max - x min
                                            # Spannbreite
print(sb)
Γ17 9
# Automatische Spannbreitenberechnung
MinMax <- range(x)
                                            # "Automatische" Berechnung von min(x), max(x)
        <- MinMax[2] - MinMax[1]
                                            # Spannbreite
sb
```

```
Γ1] 9
```

print(sb)

Definition (Stichprobenvarianz, empirische Stichprobenvarianz)

 $x=(x_1,...,x_n)$ sei ein Datensatz und \bar{x} das Stichprobenmittel. Die $\it Stichprobenvarianz$ von $\it x$ ist definiert als

$$s^2 := \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \tag{8}$$

und die empirische Stichprobenvarianz von x ist definiert als

$$\tilde{s}^2 := \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2. \tag{9}$$

Bemerkungen

- s^2 ist ein unverzerrter Schätzer von $\mathbb{V}(\xi)$, \tilde{s}^2 ist ein verzerrter Schätzer $\mathbb{V}(\xi)$.
- Für $n \to \infty$ gilt $\frac{1}{n} \approx \frac{1}{n-1}$, \tilde{s}^2 ist ein asymptotisch unverzerrter Schätzer von $\mathbb{V}(\xi)$.
- \tilde{s}^2 ist der ML Schätzer, s^2 ist der ReML Schätzer von σ^2 bei $\xi_1,...,\xi_n \sim N(\mu,\sigma^2)$.
- Es gelten

$$\tilde{s}^2 = \frac{n-1}{n} s^2, s^2 = \frac{n}{n-1} \tilde{s}^2 \text{ und } 0 \le \tilde{s}^2 < s^2.$$
 (10)

Die Sitchprobenvarianz kann mit var() berechnet werden

```
<- D$Pre BDT
                                                     # double Vektor der Pre-BDI Werte Werte
Y
         <- length(x)
                                                     # Anzahl der Werte
         \leftarrow (1 / (n - 1)) * sum((x - mean(x))^2) # Stichprobenvarianz
s2
print(s2)
[1] 3.028182
         <- var(x)
                                                     # "automatische" Stichprobenvarianz
s2
print(s2)
[1] 3.028182
s2_{tilde} \leftarrow (1 / n) * sum((x - mean(x))^2)
                                                     # Empirische Stichprobenvarianz
print(s2 tilde)
[1] 2.9979
```

Γ17 2.9979

print(s2_tilde)

 $s2_tilde \leftarrow ((n - 1) / n) * var(x)$

"automatische" empirische Stichprobenvarianz

Stichprobenvarianz bei linear-affinen Transformationen

Theorem (Stichprobenvarianz bei linear-affinen Transformationen)

 $x=(x_1,...,x_n)$ sei ein Datensatz mit Stichprobenvarianz s_x^2 und $y=(ax_1+b,...,ax_n+b)$ sei der mit $a,b\in\mathbb{R}$ linear-affin transformierte Datensatz mit Stichprobenvarianz s_y^2 . Dann gilt

$$s_y^2 = a^2 s_x^2. (11)$$

Beweis

$$s_{\bar{y}}^2 := \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2 = \frac{1}{n-1} \sum_{i=1}^n (ax_i + b - (a\bar{x} + b))^2$$

$$= \frac{1}{n-1} \sum_{i=1}^n (ax_i + b - a\bar{x} - b)^2$$

$$= \frac{1}{n-1} \sum_{i=1}^n (a(x_i - \bar{x}))^2$$

$$= \frac{1}{n-1} \sum_{i=1}^n a^2 (x_i - \bar{x})^2$$

$$= a^2 \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

$$= a^2 s^2$$

$$= a^2 s^2$$

$$= a^2 s^2$$

Stichprobenvarianz bei linear-affinen Transformationen

Beispiel: Stichprobenvarianz bei linear-affinen Transformationen

```
# Stichprobenvarianz nach Transformation

x <- D$Pre.BDI  # double Vektor der Pre-BDI Werte

s2x <- var(x)  # Stichprobenvarianz von x_1,...,x_n

a <- 2  # Multiplikationskonstante

b <- 5  # Additionskonstante

y <- a * x + b  # y_i <- ax_i + b

s2y <- var(y)  # Stichprobenvarianz y_1,...,y_n

print(s2y)
```

[1] 12.11273

```
# Stichprobenvarianz nach Theorem

s2y <- a^2 * s2x  # Stichprobenvarianz y_1,...,y_n

print(s2y)
```

Γ17 12.11273

Verschiebungssatz zur empirischen Stichprobenvarianz

Theorem (Verschiebungssatz zur empirischen Stichprobenvarianz)

 $x=(x_1,...,x_n)$ sei ein Datensatz, $x^2:=(x_1^2,...,x_n^2)$ sei sein elementweises Quadrat und \bar{x} und $\overline{x^2}$ seien die respektiven Mittelwerte. Dann gilt

$$\tilde{s}^2 = \overline{x^2} - \bar{x}^2 \tag{13}$$

Beweis

$$\begin{split} \vec{s}^2 &:= \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 \\ &= \frac{1}{n} \sum_{i=1}^n \left(x_i^2 - 2x_i \bar{x} + \bar{x}^2 \right) \\ &= \frac{1}{n} \sum_{i=1}^n x_i^2 - 2\bar{x} \frac{1}{n} \sum_{i=1}^n x_i + \frac{1}{n} \sum_{i=1}^n \bar{x}^2 \\ &= \overline{x^2} - 2\bar{x}\bar{x} + \frac{1}{n} n\bar{x}^2 \\ &= \overline{x^2} - 2\bar{x}^2 + \bar{x}^2 \\ &= \overline{x^2} - \bar{x}^2 \end{split}$$
(14)

Beispiel: Verschiebungssatz zur empirischen Stichprobenvarianz

Γ11 2.9979

[1] 2.9979

Γ17 3.028182

Stichprobenstandardabweichung

Definition (Stichprobenstandardabweichung, empirische)

 $x=(x_1,...,x_n)$ sei ein Datensatz. Die $\it Stichprobenstandardabweichung$ von $\it x$ ist definiert als

$$s := \sqrt{s^2} \tag{15}$$

und die empirische Stichprobenstandardabweichung von \boldsymbol{x} ist definiert als

$$\tilde{s} := \sqrt{\tilde{s}^2}.$$
(16)

Bemerkungen

- s ist ein verzerrter Schätzer von $\mathbb{S}(\xi)$.
- s^2 misst Variabilität in quadrierten Einheiten, zum Beispiel Quadratmeter (m^2) .
- s misst Variabilität in unquadrierten Einheiten, zum Beispiel Meter (m).
- Es gilt

$$\tilde{s} = \sqrt{(n-1)/n}s. \tag{17}$$

Berechnung der Stichprobenstandardabweichung in R

Manuelle Berechnung der Stichprobenstandardabweichung

$\label{lem:continuous} \mbox{Die Stichprobenstandardabweichung kann mit $sd()$ berechnet werden.}$

```
x <- D$Pre.BDT
                                                    # double Vektor der Pre-BDI Werte Werte
n <- length(x)
                                                    # Anzahl der Werte
s \leftarrow sqrt((1 / (n - 1)) * sum((x - mean(x))^2)) # Standardabweichung
print(s)
[1] 1.740167
# Automatische Berechnung der Stichprobenstandardabweichung
s \leftarrow sd(x)
                                                     # "automatische" Berechnung
print(s)
[1] 1.740167
# Empirische Standardabweichung
s_tilde <- sqrt((1 / (n)) * sum((x - mean(x))^2)) # empirische Standardabweichung</pre>
print(s_tilde)
[1] 1.731444
s_{tilde} \leftarrow sqrt((n - 1) / n) * sd(x)
                                                     # empirische Standardabweichung
print(s_tilde)
[1] 1.731444
```

Theorem (Stichprobenstandardabweichung bei linear-affinen Transformationen)

 $x=(x_1,...,x_n)$ sei ein Datensatz mit Stichprobenstandardabweichung s_x und $y=(ax_1+b,...,ax_n+b)$ sei der mit $a,b\in\mathbb{R}$ linear-affin transformierte Datensatz mit Stichprobenstandardabweichung s_y . Dann gilt

$$s_y = |a| s_x. (18)$$

Beweis

$$\begin{split} s_y \coloneqq & \left(\frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2\right)^{1/2} = \left(\frac{1}{n-1} \sum_{i=1}^n \left(ax_i + b - (a\bar{x} + b)\right)^2\right)^{1/2} \\ & = \left(\frac{1}{n-1} \sum_{i=1}^n \left(a(x_i - \bar{x})\right)^2\right)^{1/2} \\ & = \left(\frac{1}{n-1} \sum_{i=1}^n a^2 (x_i - \bar{x})^2\right)^{1/2} \\ & = \left(a^2\right)^{1/2} \left(\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2\right)^{1/2} \end{split}$$

Also gilt $s_y=as_x$, wenn $a\geq 0$ und $s_y=-as_x$, wenn a<0. Dies aber entspricht $s_y=|a|s_x$.

Stichprobenstandardabweichung bei linear-affinen Transformationen

Beispiel: Stichprobenstandardabweichung bei linear-affinen Transformationen

```
# a >= 0
x <- D$Pre.BDT
                                         # double Vektor der Pre-BDT Werte Werte
                                         # Stichprobenstandardabweichung von x
s_x \leftarrow sd(x)
a <- 2
                                         # Multiplikationskonstante
b <- 5
                                         # Additionskonstante
v <- a*x + b
                                         # v i = ax i + b
s_y \leftarrow sd(y)
                                         # Stichprobenstandardabweichung von y
print(s_y)
[1] 3.480334
s_y <- a*s_x
                                         # Stichprobenstandardabweichung von v
print(s_y)
[1] 3.480334
# a < 0
x <- D$Pre.BDI
                                         # double Vektor der Pre-BDI Werte Werte
s x \leftarrow sd(x)
                                         # Stichprobenstandardabweichung von x
a <- -3
                                         # Multiplikationskonstante
b <- 10
                                         # Additionskonstante
v <- a*x + b
                                         # y_i = ax_i + b
s_y <- sd(y)
                                         # Stichprobenstandardabweichung von y
print(s_v)
Γ17 5.220502
s_v \leftarrow (-a)*s_x
                                         # Stichprobenstandardabweichung von y
print(s_v)
```

[1] 5.220502

Maße der Datenvariabilität

Programmierübungen und Selbstkontrollfragen

Maße der zentralen Tendenz

Programmierübungen

- 1. Berechne den Mittelwert der Post.BDI Daten.
- 2. Berechne den Median der Post.BDI Daten.
- 3. Berechne den Modalwert des Post.BDI Datensatzes.
- Visualisiere die Häufigkeitsverteilung des Post.BDI Datensatzes und diskutiere die berechneten Werte von Mittelwert, Median und Modalwert vor dem Hintergrund dieser Häufigkeitsverteilung.
- 5. Berechne die Spannbreite der Post.BDI Daten.
- 6. Berechne die Stichprobenvarianz und die empirische Stichprobenvarianz der Post.BDI Daten.
- Berechne die Stichprobenstandardabweichung und die empirische Stichprobenstandardabweichung der Post.BDI Daten.

Selbskontrollfragen

- 1. Gebe die Definition des Mittelwertes eines Datensatzes wieder.
- 2. Gebe das Theorem zu den Eigenschaften des Mittelwerts wieder.
- 3. Gebe die Definition des Median eines Datensatzes wieder.
- 4. Wie verhalten sich Mittelwert und Median in Bezug auf Datenausreißer?
- 5. Gebe die Definition des Modalwertes eines Datensatzes wieder.
- 6. Gebe die Definition der Spannbreite eines Datensatzes wieder.
- 7. Gebe die Definition der Stichprobenvarianz und der empirischen Stichprobenvarianz wieder.
- 8. Gebe das Theorem zur Stichprobenvarianz bei linear-affinen Transformationen wieder.
- 9. Gebe den Verschiebungssatz zur empirischen Stichprobenvarianz wieder.
- Gebe die Definition der Stichprobenstandardabweichung und der empirischen Stichprobenstandardabweichung wieder.
- Gebe das Theorem zur Stichprobenstandardabweichung bei linear-affinen Transformationen wieder.