Introduction to Probability and Stochastic Processes – Exercises

Matthew Lorig *

This version: September 30, 2017

1 Exercises for Chapter 1: Review of Probability

Exercise 1.1. Let \mathcal{F} be a σ -algebra of Ω . Suppose $B \in \mathcal{F}$. Show that $\mathcal{G} := \{A \cap B : A \in \mathcal{F}\}$ is a σ -algebra of B.

Exercise 1.2. Let \mathcal{F} and \mathcal{G} be σ -algebras of Ω . (a) Show that $\mathcal{F} \cap \mathcal{G}$ is a σ -algebra of Ω . (b) Show that $\mathcal{F} \cup \mathcal{G}$ is not necessarily a σ -algebra of Ω .

Exercise 1.3. Describe the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ for the following three experiments: (a) a biased coin is tossed three times; (b) two balls are drawn without replacement from an urn which originally contained two blue and two red balls; (c) a biased coin is tossed repeatedly until a head turns up.

Exercise 1.4. Suppose X is a continuous random variable with distribution F_X . Let g be a strictly increasing continuous function. Define Y = g(X). (a) What if F_Y , the distribution of Y? (b) What is f_Y , the density of Y?

Exercise 1.5. Suppose X is a continuous random variable with distribution F_X . Find F_Y where Y is given by (a) X^2 (b) $\sqrt{|X|}$ (c) $\sin X$ (d) $F_X(X)$.

Exercise 1.6. Suppose X is a continuous random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let f be the density of X under \mathbb{P} and assume f > 0. Let g be the density function of a random variable. Define Z := g(X)/f(X). (a) Show that $Z \equiv d\widetilde{\mathbb{P}}/d\mathbb{P}$ defines a Radon-Nikodym derivative. (b) What is the density of X under $\widetilde{\mathbb{P}}$?

^{*}Department of Applied Mathematics, University of Washington, Seattle, WA, USA. e-mail: mlorig@uw.edu