Analysis III: Maßtheorie und Integralrechnung mehrerer Variablen

14. Oktober 2019

Inhaltsverzeichnis

1	Maßtheorie	2
	1.1 Maßproblem und Paradoxien	2

1 Maßtheorie

1.1 Maßproblem und Paradoxien

14.10.2019

Maßtheorie ist die Theorie des Volumens. Motivierende Beispiele sind:

- i) Volumina von Teilmengen des euklidischen Raums
- ii) Wahrscheinlichkeiten (= "Volumina von Ereignissen")

Wir konzentrieren uns im Rest des Abschnitts auf \mathbb{R}^d . Wir wollen leistungsfähigen Volumenbegriff haben, die Volumina von möglich vielen Teilmengen flexibel messen. Unser erster "naiver" Ansatz wäre, dass wir Volumenmessung für *alle* Teilmengen verlangen, also eine Funktion

$$vol: \mathcal{P}(\mathbb{R}^d) \longrightarrow [0.\infty] \tag{1}$$

Unsere grundlegende Forderung ist die Additivität von Volumina bei Zerlegungen, also

(i) (endliche) Additivität: Sind $M_1, ..., M_n \subset \mathbb{R}^d$ paarweise disjunkt, so gilt

$$vol(M_1 \cup ... \cup M_n) = vol(M_1) + ... + vol(M_n)$$
(2)

Volumina als geometrische Größen sollten durch die metrische Struktur (Längenmessung) bestimmt sein, also invariant unter Symmetrien der metrischen Struktur:

(ii) **Bewegungsinvarianz**: Für jede Bewegung $\phi: \mathbb{R}^d \longrightarrow \mathbb{R}^d$ und jede Teilmenge $A \subset \mathbb{R}^d$ gilt

$$vol(\phi(A)) = vol(A) \tag{3}$$

(iii) Normierung: $vol([0,1]^d) = 1$.

Verstärke Forderung (i): (Borel, Lebesgue)

(i') σ -Additivität:¹ Für Folgen $(M_n)_{n\in\mathbb{N}}$ paarweise disjunkt Teilmengen $M_n\subset\mathbb{R}^d$ gilt:

$$\operatorname{vol}\left(\bigcup_{n\in\mathbb{N}} M_n\right) = \sum_{n\in\mathbb{N}} \underbrace{\operatorname{vol}(M_n)}_{\in[0,\infty]} \quad ^2 \tag{4}$$

→ flexibilisiert Volumenmessung entscheidend (können komplizierte Figuren durch einfach Figuren approximieren)

Cantons Mengenlehre → Existenz von "naiver" Volumenfunktion wurde hinterfragt:

Maßproblem (naiv) Existiert eine Volumenfunktion vol : $\mathcal{P}(\mathbb{R}^d) \longrightarrow [0, \infty]$ mit (i') + (ii) + (iii)?

Satz (Vitali, 1905). Nein, das Maßproblem ist unlösbar.

Beweis. Auswahlaxiom \leadsto Existenz "verrückter" (d.h. geometrisch unvorstellbarer) Teilmengen des \mathbb{R}^d . Hier existiert $M \subset \mathbb{R}^d$ Vertretersystem für Nebenklassen von \mathbb{Q}^d (Untergruppe) in \mathbb{R}^{d3} . Die Nebenklassen $a + \mathbb{Q}^d$ für $a \in \mathbb{R}^d$ partitionieren⁴ \mathbb{R}^d (überabzählbar viele). Für alle $a, b \in \mathbb{R}^d$ besteht Dichotomie:

 $^{^{1}\}sigma$: abzählbar, unendlich oft.

²Wegen des Umordnungssatzes spielt die Reihenfolge der Summanden keine Rolle.

 $^{{}^{3}\}mathbb{R}^{d}/\mathbb{Q}^{d}$ Menge von Nebenklassen (Quotient abelscher Gruppen)

⁴D.h. zerlegen disjunkt

- i) entweder $a + \mathbb{Q}^d = b + \mathbb{Q}^d$ (nämlich wenn $a b \in \mathbb{Q}^d$),
- ii) oder $(a + \mathbb{Q}^d) \cap (b + \mathbb{Q}^d) = \emptyset$ (nämlich wenn $a b \notin \mathbb{Q}^d$).

D.h. für alle $a \in \mathbb{R}^d$ besteht $M \cap (a + \mathbb{Q}^d)$ aus genau einem Element. Daraus folgt, die Translate q + M (abzählbar viele) für $q \in \mathbb{Q}^d$ partitionieren \mathbb{R}^d . Aus der σ -Additivität von Volumen folgt

$$\underbrace{\operatorname{vol}(\mathbb{R}^d)}_{>0} = \sum_{q \in \mathbb{Q}^d} \underbrace{\operatorname{vol}(q+M)}_{\text{Bew Inv}_{\text{vol}(M)}}$$
(5)

und somit also vol(M) > 0.

Jetzt wähle M spezieller, nämlich beschränkt, z.B. für $O \subset \mathbb{R}^d$ offen können wir M so wählen, dass $M \subset O$, weil $a + \mathbb{Q}^d$ dicht in \mathbb{R}^d , also $(a + \mathbb{Q}^d) \cap O \neq \emptyset$. Z.B. wähle $M \subset (0, \frac{1}{2})^d$, so enthält $[0, 1]^d$ abzählbar unendlich viele paarweise disjunkte Translate q + M, nämlich für alle $q \in \mathbb{Q}^d \cap (0, \frac{1}{2})^d$ gilt

$$V := \bigcup_{q \in (0, \frac{1}{2})^d \cap \mathbb{Q}^d} (q + M) \subset [0, 1]^d \tag{6}$$

weil $\operatorname{vol}(V) + \underbrace{\operatorname{vol}([0,1]^d - V)}_{\geq 0} = \underbrace{\operatorname{vol}([0,1]^d)}_{=1}$. Daraus folgt $\operatorname{vol}(V) \leq 1 < \infty$ und

$$\operatorname{vol}(V) = \sum_{q \in (0, \frac{1}{2})^d \cap \mathbb{Q}^d} \underbrace{\operatorname{vol}(q+M)}_{=\operatorname{vol}(M)} \tag{7}$$

Somit muss gelten vol(M) = 0.

Noch dramatischer: In dim ≥ 3 kann man je zwei Teilmengen (unter sehr allgemeinen Annahmen) aus demselben (abzählbaren, oft sogar endlichen) "Bausatz" zusammensetzen

Satz (Banach-Tarski, 1924). Seien $A, B \subset \mathbb{R}^d$ Teilmengen mit nichtleerem Inneren.

- (i) Sei $d \geq 3$ und seien A, B beschränkt. Dann existieren endlich viele Teilmengen $M_k \subset \mathbb{R}^d$ und Bewegungen ϕ_k des \mathbb{R}^d , so dass disjunkte Zerlegungen $A = \bigsqcup_k M_k$ und $B = \bigsqcup_k \phi(M_k)$ bestehen.
- (ii) Jetzt $d \geq 1$ beliebig und A, B nicht notwendig beschränkt. Dann existieren abzählbar viele Teilmengen $M_k \subset \mathbb{R}^d$ und Bewegungen ϕ_k , sodass disjunkte Zerlegungen $A = \bigsqcup_k M_k$ und $B = \bigsqcup_k \phi(M_k)$ bestehen.

Der Beweis verwendet Gruppentheorie, Struktur von orthogonalen Gruppen $\mathcal{O}(d)^5$.

Das naive Inhaltsproblem⁶ ist lösbar in $d \leq 2$, aber nicht eindeutig, nicht lösbar in d > 3.⁷ Dies führt zu:

Maßproblem (post-paradox): Man definiere eine Volumenfunktion vol: $\mathcal{F} \longrightarrow [0,\infty]$ mit Eigenschaften (i')+(ii)+(iii) auf einer möglich großen und flexiblen Familie $\mathcal{F} \subset \mathcal{P}(\mathbb{R}^d)$, die die geometrisch wichtigen Teilmengen umfasst und abgeschlossen ist unter grundlegenden mengentheoretischen Operationen (Vereinigung, Schnitt, Differenz und Komplement).

17.10.2019

 $^{^{5}}$ nicht mehr auflösbar für d > 3

⁶eine Volumenfunktion mit Eigenschaften (i), (ii) und (iii)

⁷Banach 1923, Hausdorff 1914