MOSFET Conceptos Básicos

Profesor: Ing. Johan Carvajal Godínez

Introducción

- FET = Field Effect Transistor
 - Unipolar = solo un tipo de portador de carga
 - Controlado por voltaje

Introducción

MOSFET = Metal-Oxide FET = IG FET

Estructura del MOSFET

MOSFET consta de 4 terminales

- •Gate = compuerta
- •Drain = drenaje
- Source= fuente
- •Body o substrate = sustrato o cuerpo

Parámetros de construcción

- •L = largo del canal
- •W =ancho del dispositivo
- •Tox = grosor de la capa de Si02

Modo de operación

- Cuando Vgs = 0
 - Dos diodos en serie
 - \square RDS = 10¹² Ohmios

Creación de un canal de conducción

Cuando se aplica un Vgs > 0 V

Formación de corriente de drenaje

V_{DS} pequeño

FIGURE 4.3 An NMOS transistor with $v_{CS} > V_c$ and with a small v_{DS} applied. The device acts as a resistance whose value is determined by v_{CS} . Specifically, the channel conductance is proportional to $v_{CS} - V_c$ and thus i_D is proportional to $(v_{CS} - V_c)v_{DS}$. Note that the depletion region is not shown (for simplicity).

(VGS-VT) = voltaje efectivo de conducción

V_{DS} esta en el orden de mV

La Resistencia del MOSFET es lineal y proporcional al voltaje efectivo de conducción

RDS = F(VGS)

Formación de corriente de drenaje

V_{DS} incrementado

La caída de V_{DS} se da a lo largo del canal creando una l_{DS} que no es uniforme y un canal deformado

Si V_{DS} aumenta hasta alcanzar el voltaje efectivo de conducción del MOSFET → Saturación del canal

$$VDS = (VGS - VT) = VD$$
sat

FIGURE 4.5 Operation of the enhancement NMOS transistor as v_{DS} is increased. The induced channel acquires a tapered shape, and its resistance increases as v_{DS} is increased. Here, v_{GS} is kept constant at a value $> V_{\mu}$.

Deformación del canal conforme aumenta VDS-

Corriente de drenaje en función de los parámetros de polarización

FIGURE 4.6 The drain current t_D versus the drain-to-source voltage v_{DS} for an enhancement-type NMOS transistor operated with $v_{GS} > V_r$.

Derivación de la corriente de drenaje en función del voltaje de drenaje-fuente

Región infinitesimal de la compuerta

Para análisis se considera operando en la región de Triodo → VDS< (VGS - VT)

$$C_{ax} = \frac{\varepsilon_{ax}}{t_{ax}}$$

where ε_{ox} is the permittivity of the silicon oxide,

$$\varepsilon_{vx} = 3.9 \varepsilon_0 = 3.9 \times 8.854 \times 10^{-12} = 3.45 \times 10^{-11} \text{ F/m}$$

Derivación de la corriente de drenaje en función del voltaje de drenaje-fuente

$$dq = -C_{ox}(W dx)[v_{GS} - v(x) - V_t] \qquad (dQ = C*dV)$$

$$\frac{dx}{dt} = -\mu_n E(x) = \mu_n \frac{dv(x)}{dx}$$

Velocidad de la corriente de drenaje

$$i = \frac{dq}{dt}$$
$$= \frac{dq}{dx}\frac{dx}{dt}$$

$$i = -\mu_n C_{ox} W[v_{GS} - v(x) - V_t] \frac{dv(x)}{dx}$$

$$\int_{0}^{L} i_{D} dx = \int_{0}^{v_{DS}} \mu_{n} C_{ox} W[v_{GS} - V_{t} - v(x)] dv(x)$$

$$i_{D} = (\mu_{n} C_{ox}) \left(\frac{W}{L}\right) \left[(v_{GS} - V_{t}) v_{DS} - \frac{1}{2} v_{DS}^{2} \right]$$

$$i_D = k_n' \frac{W}{L} \left[(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$
 (Triode region)

$$i_D = \frac{1}{2} k_n' \frac{W}{L} (v_{GS} - V_t)^2$$
 (Saturation region)

Variantes del MOSFET

FIGURE 4.5 Operation of the enhancement NMOS transistor a acquires a tapered shape, and its resistance increases as v_{DS} is in value > V_{ν} .

CMOS -

PMOS tiene el mismo principio de funcionamiento que NMOS solo que VGS, VDS y VT son negativos

FIGURE 4.9 Cross-section of a CMOS integrated circuit. Note that the PMOS transistor is formed in a separate n-type region, known as an n well. Another arrangement is also possible in which an n-type body is used and the n device is formed in a p well. Not shown are the connections made to the p-type body and to the n well; the latter functions as the body terminal for the p-channel device.

Representación del dispositivo

FIGURE 4.10 (a) Circuit symbol for the *n*-channel enhancement-type MOSFET. (b) Modified circuit symbol with an arrowhead on the source terminal to distinguish it from the drain and to indicate device polarity (i.e., *n* channel). (c) Simplified circuit symbol to be used when the source is connected to the body or when the effect of the body on device operation is unimportant.

Zonas de operación del MOSFET

Zonas de operación del MOSFET

$$k_n' = \mu_n C_{ox}$$

ID vrs VGS

Efecto de la Temperatura en el MOSFET

- Con el incremento de la temperatura l
 l
 baja
 - □ Vt → aumenta (2mV x 1Celcius de incremento)
 - □ K'n → disminuye (* efecto dominante)

Modulación del largo de canal

Idealmente no cuando VDS alcanza VDSsat; ID se vuelve independiente de VDS

En la practica esto no ocurre así: la longitud del canal se modifica creando una nueva longitud L'

Efecto en la corriente de Drain

$$i_{D} = \frac{1}{2}k'_{n}\frac{W}{L - \Delta L}(v_{GS} - V_{t})^{2}$$

$$= \frac{1}{2}k'_{n}\frac{W}{L}\frac{1}{1 - (\Delta L/L)}(v_{GS} - V_{t})^{2}$$

$$\stackrel{\cong}{=} \frac{1}{2}k'_{n}\frac{W}{L}\left(1 + \frac{\Delta L}{L}\right)(v_{GS} - V_{t})^{2}$$

$$\Delta L = \lambda'v_{DS} \qquad \lambda = \frac{\lambda'}{L}$$

$$i_{D} = \frac{1}{2}k'_{n}\frac{W}{L}\left(1 + \frac{\lambda'}{L}v_{DS}\right)(v_{GS} - V_{t})^{2}$$

Efecto de la Modulación del Longitud del canal en la característica ID-VDS

Circuito equivalente incluyendo efecto de modulación de la longitud del canal

ID sin tomar en cuanta Modulación de la longitud de Canal

Efecto del Sustrato en un MOSFET

Zonas de operación del MOSFET

$$k_n' = \mu_n C_{ox}$$

Relaciones adicionales

NMOS Transistor

Symbol:

Overdrive voltage:

$$v_{OV} = v_{GS} - V_t$$
$$v_{GS} = V_t + v_{OV}$$

Operation in the triode region:

- Conditions:
 - (1) $v_{GS} \ge V_t \iff v_{OV} \ge 0$
 - $(2) \ v_{GD} \ge V_t \quad \Longleftrightarrow \quad v_{DS} \le v_{GS} V_t \quad \Longleftrightarrow \quad v_{DS} \le v_{OV}$
- *i-v* Characteristics:

$$G \circ - i_D = \mu_n C_{ox} \frac{W}{L} \left[(v_{GS} - V_t) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$

For $v_{DS} \ll 2(v_{GS} - V_t) \Leftrightarrow v_{DS} \ll 2v_{OV}$

$$r_{DS} = \frac{v_{DS}}{i_D} = 1 / \left[\mu_n C_{ox} \frac{W}{L} (v_{GS} - V_t) \right]$$

Operation in the saturation region:

- **Conditions:**
 - (1) $v_{GS} \ge V_t \iff v_{OV} \ge 0$
 - (2) $v_{GD} \le V_t \iff v_{DS} \ge v_{GS} V_t \iff v_{DS} \ge v_{OV}$
- i-v Characteristics:

$$i_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (v_{GS} - V_t)^2 (1 + \lambda v_{DS})$$

Análisis de MOSFET en CD

 Se desestima el efecto de la modulación del largo del canal

Características del Diseño

$$I_D = 0.4 \text{ mA}$$

 $V_D = +0.5 \text{ V}.$

$$V_D = +0.5 \text{ V}.$$

Datos que provee el problema

$$V_t = 0.7 \text{ V}, \ \mu_n C_{ox} = 100 \ \mu\text{A/V}^2, \ L = 1 \ \mu\text{m}, \text{ and } W = 32 \ \mu\text{m}.$$

Dimensionar RD y RS para cumplir características de operación dadas

Análisis del Circuito

$$R_S = \frac{V_S - V_{SS}}{I_D}$$
 $R_S = \frac{-1.2 - (-2.5)}{0.4} = 3.25 \text{ k}\Omega$

$$R_D = \frac{V_{DD} - V_D}{I_D}$$

= $\frac{2.5 - 0.5}{0.4} = 5 \text{ k}\Omega$

$$v_{GD} \le V_t$$
 MOSFET operando en región de saturación

$$I_D = \frac{1}{2}\mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t)^2$$

$$VGS = VG - VS$$

$$VGS = 0 - VS = -VS$$

$$V_{GS} = V_t + V_{OV} = 0.7 + 0.5 = 1.2 \text{ V}$$

$$V_{DD} = +3 \text{ V}$$

$$I_D \bigvee R$$

$$V_D$$

$$V_t = 0.6 \text{ V}, \ \mu_n C_{ox} = 200 \ \mu\text{A/V}^2.$$

 $L = 0.8 \ \mu\text{m}, \text{ and } W = 4 \ \mu\text{m}.$

Calcule R y VD para ID =80 uA

A- Identifique los valores conocidos

B- Ubique el punto de operación del Transistor

C- Utilice las relaciones I-V del MOSFET para calcular los parámetros pedidos

A- Valores conocidos

$$VGD = 0$$

$$VGS = VDS$$

$$ID = 80 uA$$

$$v_{GD} \leq V_t \quad \frac{\text{MOSFET operando en}}{\text{región de saturación}}$$
 $0 < 0.6$
$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_t)^2$$

$$V_{GS} = V_t + V_{OV} :$$

$$V_{OV} = \sqrt{\frac{2I_D}{\mu_n C_{ox}(W/L)}}$$

$$R = \frac{V_{DD} - V_D}{I_D}$$

$$= \frac{3-1}{0.080} = 25 \text{ k}\Omega$$

Calcule los valores de los componentes para obtener VD = 0.1

Calcule el valor de la resistencia para el dispositivo en este punto de operación

$$\begin{array}{c} k_n'(W/L) = 1 \text{ mA/V}^2. \\ \underline{\text{Datos del Circuito}} \\ \underline{\text{VGS = 5V}} \\ \underline{\text{VDS = 0.1 V}} \end{array}$$

Ubicación del punto de operación del transistor

$$v_{GD} \ge V_{I}$$
 VGD = VGS - VDS = 4.9 V

4.9 V >1 V → Región de triodo

Calculo de los parámetros del circuito

$$I_{D} = k'_{n} \frac{W}{L} \Big[(V_{GS} - V_{t}) V_{DS} - \frac{1}{2} V_{DS}^{2} \Big]$$

$$I_{D} = 1 \times \Big[(5 - 1) \times 0.1 - \frac{1}{2} \times 0.01 \Big]$$

$$= 0.395 \text{ mA}$$

$$R_{D} = \frac{V_{DD} - V_{D}}{I_{D}}$$

$$= \frac{5 - 0.1}{0.395} = 12.4 \text{ k}\Omega$$

$$r_{DS} = \frac{V_{DS}}{I_{D}}$$

$$= \frac{0.1}{0.395} = 253 \Omega$$

$$V_{tn} = -V_{tp} = 1 \text{ V}.$$

 $k'_n(W_n/L_n) = k'_n(W_p/L_p) = 1 \text{ mA/V}^2$

Encuentre IDN IDP y Vo?

A- Valores deducibles del circuito

$$|V_{DG}| = 0$$