调洪演算程序

百丈崖水库为例: 一、已知条件:

1、洪水过程线:

时段	洪水流量
1	0.25
2	42.04
3	72. 58
4	78. 41
5	79. 16
6	<mark>89. 69</mark>
7	72. 52
8	55. 84
9	32. 97
10	15. 62
11	10. 93
12	18. 05
13	28. 92
14	44. 27
15	50. 16
16	49. 82
17	70. 55
18	75. 35
19	73. 23
20	63. 61
21	45. 74
22	31. 45
23	26. 00
24	25. 06
25	20. 93
26	31. 55
27	36. 41
28	35. 17
29	40.71
30	43. 24
31	35. 49
32	26. 21
33	24. 40
34	25. 69
35	21. 61
36	19. 52
37	22. 82

38	20.90
39	17. 13
40	16. 07
41	20. 39
42	20. 28
43	17. 02
44	18. 31
45	15. 82
46	16. 48
47	15. 31
48	16. 38
49	10.77
50	2.90
51	0.71
52	0.31
53	0.25
54	0.25
55	0. 25

2、水位库容泄量关系

百丈崖水库水位库容泄量关系表

1.12.	FR (= 3)	MILE (3 /)
水位 (m)	库容(万 m³)	泄量 (m³/s)
343	0	
349	20	
352	42	
355	72	
357	95	
359	121	
361	151	
363	183	
365	217	
367	255	
369	295	
371	338	
371. 4	345	0
372	362	15. 3
372. 5	376	41.1
373	390	76. 7
373. 5	405	118. 2
374	423	166. 5

水位 (m)	库容(万 m³)	泄量 (m³/s)
374. 5	438	221. 3
375	455	280. 4
375. 5	469	344. 2

3、水库当前水位: 365.0m

二、调洪计算

水库洪水调节计算采用水库水量平衡方程和库容、泄量曲线联解,逐时段演 算推求水库蓄量、泄量变化过程。

$$\frac{1}{2}(Q_1+Q_2)\ \Delta t - \frac{1}{2}(q_1+q_2)\Delta t = V_2 - V_1$$
 V=f (q)

式中: Q_1 、 q_1 ——时段初入库、出库流量, m^3/s ; Q_2 、 q_2 ——时段末入库、出库流量, m^3/s ;

 V_1 、 V_2 ——时段初、末水库蓄水量,万 m^3 ;

 Δt ——计算时段,万秒。

1、先计算水库未溢洪、泄量为0时的水位库容

如果库容小于兴利水位对应的库容,则泄量为 0,经计算在第 7 个时段时,水库库容大于兴利水位对应的库容 345 万 m3,因此溢洪发生在 6-7 时段之间,近似认为 6 时段开始溢洪,6 时段泄量为 q1=0,用试算法计算 7 时段的泄量 q2、水位 h、库容 v2。

2、计算水库溢洪时泄量、水位、库容 水库水量平衡方程可变化为:

 $V_2/\triangle t + q_2/2 = V_1/\triangle t + (Q_1 + Q_2)/2 - q_1/2$

上式中 $V_1/\triangle t+$ $(Q_1+Q_2)/2-q_1/2$ 为已知量,为常数 C。假定 $q_2=q_1$,则 $V_2=V_1$ 。

算出变量 $X=V_2/\triangle t+q_2/2$,步长 L=C-X,如果(C-X)>0, $q_2=q_2+L$;如果(C-X)<0, $q_2=q_2-L$ 。由 q2 查 V2,重新计算 X。如果(C-X)的绝对值小于 0.001,则 q_2 、 V_2 值求出,否则 L=L/2,重复以上计算,逐次逼近,便可求出未知量。求

出 V2 后查出相应水位。

程序编制中,先编制由水位计算库容、由库容计算水位、由泄量计算库容、由已知 Q1、Q2、 Δt 、V1、q1 计算 q2、h、v2 子程序。

主程序逐时段计算 q2、h、v2,完成所有时段计算后,再计算最大泄量。

洪水过程线计算结果表

1771	(六)人住线 I 异			
1	洪水流量	泄量		库容(万
时段	(m3/s)	(m3/s)	水位 (m)	m3)
1	0.3	0	365	217
2	42.0	0	365. 42	225
3	72. 6	0	366.47	245
4	78. 4	0	367.94	272
5	79. 2	0	369.3	301
6	89. 7	0	371.4	345
7	72. 5	28.5	372.26	369
8	55. 8	47.6	372.59	379
9	33	45.6	372.56	378
10	15. 6	34. 1	372.36	372
11	10.9	23.7	372.16	367
12	18. 1	19.1	372.07	364
13	28. 9	21.3	372.12	365
14	44. 3	28.9	372.26	369
15	50. 2	38	372.44	374
16	49.8	44.7	372.55	377
17	70. 5	54.4	372.69	381
18	75. 3	66.1	372.85	386
19	73. 2	71.2	372.92	388
20	63. 6	69.5	372.9	387
21	45. 7	60.2	372.77	383
22	31. 5	46.6	372.58	378
23	26	36.6	372.41	374
24	25. 1	31.1	372.31	371
25	20. 9	27.1	372. 23	368
26	31.6	26.6	372.22	368
27	36. 4	30. 3	372.29	370
28	35. 2	33	372.34	372
	1			

29	40. 7	35.5	372.39	373
30	43. 2	38.7	372.45	375
31	35. 5	39	372.46	375
32	26. 2	35	372.38	373
33	24. 4	30.2	372.29	370
34	25. 7	27.6	372.24	369
35	21.6	25.6	372.2	368
36	19. 5	23. 1	372.15	366
37	22.8	22.1	372.13	366
38	20.9	22	372.13	366
39	17. 1	20.5	372.1	365
40	16. 1	18.6	372.06	364
41	20.4	18.4	372.06	364
42	20. 3	19.4	372.08	364
43	17	19	372.07	364
44	18. 3	18.3	372.06	364
45	15.8	17.7	372.05	363
46	16. 5	16.9	372.03	363
47	15. 3	16.4	372.02	363
48	16. 4	16.1	372.02	362
49	10.8	15. 1	371.99	362
50	2.9	12.8	371.9	359
51	0.7	9.7	371.78	356
52	0.3	7. 1	371.68	353
53	0.3	5. 2	371.61	351
54	0.2	3.8	371.55	349
55	0.2	2.8	371.51	348

3、最大泄量、最高水位、最大库容计算如果出现 Q1>q1,并且 q2>Q2 时,出现最大泄量。

Q=max (q1, q2)

由 Q 查算时段数,计算分段时间,计算 Q 对应的 q,如果 Q-q 绝对值小于 0.01,则完成计算,否则,Q=q,重复以上计算,直至满足 Q-q 绝对值小于 0.01。由 q 内插水位、库容,即最高水位、最大库容。