A est l'intersection de dout demi espaces $d(x_1,x_2)$, x_1+2x_2 , x_0 et $d(x_1,x_2)$, $-x_1+x_2$, x_0 , $delimités respectivement par la dissite <math>D_1: x_1+2x_2=0$ et $D_2: -x_1+x_2=0$

 D_1 : $x_1 + 2x_2 = 0$: droite passant par le point (0,0), de vecteur normal $n_1 = (1,2)$ et de vecteur directeur e $i_1 = (-2,1)$ $D_2: -x_1 + x_2 = 0$: droite passant par le point (0,0), de vecteur normal $n_2 = (-1,1)$ et de vecteur directeur e $i_2 = (-1,-1)$ en vecteur normal n étant toujours oriente dans la direction du deni espace positif, f1 est donc l'intersection des deni espaces à l'opposés de n_1 et n_2 (puisque définis comme (0,0) deu les deux cas)

Dans ce cas, A =

charger le second membre (3) par (3) ne charge ni les vecteurs directeurs 10, 11, 11, 11, 11, 12 des discher D1 et D2, mais jeute leur solution particulière

$$D_1: x_1 + 2x_2 = 3$$
 passe per le point $(1,1)$

$$D_2: -x_1+x_2=2$$
 passe par C_2 point (0.2)

Exercice: ecriture paremetrique d'en sous espace affire

Soit (D) la droite de \mathbb{R}^2 de vecteur directeur u = (1, -1) et passant par a = (3, 2) $= (D) = a + 1/\lambda u, \lambda \in \mathbb{R}^2$ c'est l'essemble des vecteurs d'origine a et colinéaires à u $= d + \lambda u, \lambda \in \mathbb{R}^2$ $= d (2, 3) + \lambda (1, -1), \lambda \in \mathbb{R}^2$ $= d (2 + \lambda, 3 - \lambda), \lambda \in \mathbb{R}^2$ eaiture paramétrique de (D)

Soit (P) le plan de 123 contenant les points a = (1,0,0), b = (0,2,1) et c = (-1,0,1) b = (0,2,1) et c = (-1,0,1)

$$\begin{aligned} (P) &= a + d \cdot A_{1} \cdot ab + A_{2} \cdot ac_{1} \cdot (A_{1}, A_{2}) \in \mathbb{R}^{2} \\ &= d \cdot a + A_{1} \cdot ab + A_{2} \cdot ac_{1} \cdot (A_{1}, A_{2}) \in \mathbb{R}^{2} \\ &= d \cdot (1, 0, 0) + A_{1} \cdot (-1, 2, 1) + A_{2} \cdot (-2, 0, 1) , (A_{1}, A_{2}) \in \mathbb{R}^{2} \\ &= d \cdot (1 - A_{1} - 2A_{2}, 2A_{1}, A_{1} + A_{2}) \cdot (A_{1}, A_{2}) \in \mathbb{R}^{2} \\ &= d \cdot (1 - A_{1} - 2A_{2}, 2A_{1}, A_{1} + A_{2}) \cdot (A_{1}, A_{2}) \in \mathbb{R}^{2} \\ \end{aligned}$$
 existence parametrique de (P)

Exercice: écriture implicite d'un sous espace affine

Soit (D) la droite de \mathbb{R}^2 de vecteur normal n=(2,1) et passait par a=(1,-2) (D) est l'eventre des vecteurs $x=(x_1,x_2)\in\mathbb{R}^2$ d'origine a et orthogonaux à $n=(x_1,x_2)\in\mathbb{R}^2$ d'origine a et orthogonaux à $n=(x_1,x_2)\in\mathbb{R}^2$ ($x=(x_1,x_2)\in\mathbb{R}^2$) ($x=(x_1,x_2)\in\mathbb{R}^2$)

Avec $x - a = (x_1 - 1, x_2 + 2)$ et n = (2,1), donc $(x - a)^T n = 2(x_1 - 1) + (x_2 + 2) = 2x_1 - 2 + x_2 + 2 = 2x_1 + x_2$ Donc $(D) = \int x = (x_1, x_2) \in \mathbb{R}^2$, $2x_1 + x_2 = 0$ earthure implicite de (D)

Soit (P) le plan de 173 contenant les points a = (1,0,0), b = (0,2,1) et c = (-1,0,1)

Set $n = (n_1, n_2, n_3) \in \mathbb{R}^3$ un vecteur normal au plan (P): n est donc orthogonal au vecteur ab = (-1, 2, 1) et

au vecteur ac = (-2,0,1) : < n, ab > = 0 et < n, ac > = 0

En prenant (par exemple) $n_1 = 2$, on a done $n_2 = -1$ et $n_3 = 4$, d'où $\underline{n} = (2, -1, 4)$ est en vecteur normal à(P). Ne reste plus qu'à définir (P) comme l'enemble des points $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ d'origene a (mais ça pourrait aussi être d'origene b ou c) et orthogonaux à n:

(P) = $\int x \in \mathbb{R}^3 |\langle x - \alpha, n \rangle = (x - \alpha)^T n = 0$

fluer $(x-a) = (x_1-1, x_2, x_3)$ et n = (2, -1, 4) done $(x-a)^{T}n = 2(x_1-1) - x_2 + 4x_3 = 2x_1 - x_2 + 4x_3 - 2$ Done $(P) = \int_{\mathbb{R}^3} x = (x_1, x_2, x_3) \in \mathbb{R}^3$, $2x_1 - x_2 + 4x_3 - 2 = 0$ existence implicate de (P)

Exercia: d'une écuture implicite vers une écuture perametrique

Soit (P) le plan de 1R3 donné par l'écriture implicite $x_1 + x_2 + x_3 = 2$ (donc de verteur normal n = (1,1,1))

Pour déterminer une écriture parametrique de (P), il suffet de déterminer trois points $a,b,c\in(P)$ à partir de l'écriture emplicite

 \rightarrow per exemple a = (2,0,0), b = (0,2,0) et c = (0,0,2)

IP suffit essuite d'éaire (P) = $a + d \lambda_1 ab + \lambda_2 ac$, $(\lambda_1, \lambda_2) \in \mathbb{R}^2$ avec ab = (-2, 2, 0) et ac = (-2, 0, 2) (of exercice "éaiture peramétrique d'un sous espece affine")

the final (P) = d (2-22, 22, 22, 22, 22), (d, 2) exitere parametrique de (P)

Soit (D) la droite de 1R3 décite comme l'intersedien de deux plans P₁: $x_1 + x_2 - 2x_3 = 1$ et P₂: $3x_1 - 2x_2 + x_3 = 0$ (P₁) a comme vecteur normal $n_1 = (1,1,-2)$ et (P₂) a comme vecteur normal $n_2 = (3,-2,1)$

 $_{-0}$ $n_{\underline{1}}$ et $n_{\underline{2}}$ Sont tous les deux orthogonaux à la droite (0): Si $_{\underline{1}}$ = $(\underline{1},\underline{1},\underline{1},\underline{2},\underline{1},\underline{3})$ est en vecteur directeur de (0), alors $<\underline{1},\underline{1},\underline{1}$ = 0 et $<\underline{1},\underline{1},\underline{2}$ = 0

In prenant eig=5, on a donc ie, = 3 et eig= $\frac{1}{2}$ is $\frac{1}{2}$ es $\frac{1}{2}$ in vecteur directeur de (D)

Ne roite plus qu'à déterminer une solution praticulière: $a = (a_1, a_2, a_3) \in (D) \iff a \in (P_1)$ et $a \in (P_2)$

Donc a doit verifier:
$$\begin{cases} a_1 + a_2 - 2a_3 = 1 \\ 3a_1 - 2a_2 + a_3 = 0 \end{cases} \iff \begin{cases} \exists a_1 - 3a_2 = 1 \\ 5a_1 - 3a_3 = 2 \end{cases} \iff \begin{cases} a_2 = \frac{1}{3}(\exists a_1 - 1) \\ a_3 = \frac{1}{3}(5a_1 - 2) \end{cases}$$