

TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

DISRUPTIVE ARCHITECTURES: IOT, IOB & GENERATIVE AI

Deep Learning e Redes Neurais Artificiais

Prof. André Tritiack profandre.farias@fiap.com.br

Redes Neurais Artificiais - Histórico

- Em 1943, Warren McCulloch e Water Pitts modelaram o primeiro neurônio;
- Inspirado pelo modelo de McCulloch e Pitts, Frank Rosenblatt irá criar o primeiro neurônio artificial, o Perceptron em 1958
- Em 1960 surge uma variação do Perceptron, o ADALINE, criado por Bernard Widrow e Ted Hoff.
- Perceptrons e rede ADALINE eram feitas através de implementação física, via hardware, isto é, nessa época elas ainda não eram programas de computador.
- Já em 1974, Paul Werbos irá propor um algoritmo de treinamento para as Redes Neurais Artificiais, chamado de Backpropagation

Redes Neurais Artificiais - Histórico

- O backpropagation foi redescoberto e difundido por David Rumelhart a partir de 1986.
- Baseado nos estudos de David Hubel e Torsten Wiesel (1968) sobre a visão de organismos vivos, Kunihiko Fukushima irá proporá a primeira Rede Neural Convolucional chamada de Neocognitron.
- A primeira Rede Neural Recorrente surge em 1997, com os trabalhos de Sepp Hochreiter e Jürgen Schimidhuber;
- A partir dos anos 2000, com muito dinheiro nas empresas de tecnologia do Vale do Silício, as pesquisa em IA e Redes Neurais Artificias sofrem um "boost".
- Hoje, IA e Redes Neurais Artificiais são amplamente aplicadas nas mais variadas áreas do conhecimento e dos negócios.

Perceptron

Warren McCulloch e Walter Pitts (1943)

Frank Rosenblatt (1958)

Perceptron

Atributos de Entrada Pesos sinápticos são os parâmetros do nosso modelo. Eles que serão aprendidos na fase de treinamento.

Função de Ativação

 Existem muitas funções de ativação usadas em redes neurais artificiais. Para problemas de classificação, em geral, usa-se funções sigmoidais e para problemas de regressão usa-se funções ReLU.

Fonte: https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092

Multilayer Perceptron (MLP)

Treinamento em uma RNA

Treinamento em uma RNA

- Na etapa de Feed-Forward, propagamos a entrada da rede, calculando a saída de cada neurônio, indo da primeira camada até a última camada.
- Comparamos a saída obtida \hat{y} com a saída esperada y.
- Computamos o erro a partir de uma função de erro (como o MSE) para todas as entradas calculadas.
- Na etapa de Backpropagation, verificamos qual foi o erro da camada atual e atualizamos os pesos sinápticos da rede para minimizar o erro;

Treinamento em uma RNA

- Para ajustar os pesos da rede precisamos medir o quanto estamos errando.
- Para medir isso podemos usar uma função chamada de função custo ou função erro.
- Nosso objetivo será minimizar o erro da rede, logo desejamos minimizar a função custo.

Exemplo de Função custo:

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$$

 $\hat{y}^{(i)}$ saída i estimada pelo modelo $y^{(i)}$ saída i verdadeira ou esperada

Vantagens das Redes Neurais

Output

Feature Engineering

Machine Learning

Feature extraction + Classification

Input

¹ Towards Data Science

Vantagens das Redes Neurais

 Redes neurais também conseguem "aprender mais" quando recebem mais dados;

