

Informe de Proyecto – INF-225-2018-1-CC "Buggers Kings" 2018-08-03

Integrantes:

Nombreau Apollidea	Email	ROL USM
Nombres y Apellidos	Elliali	ROL USM
Ignacio Rodrigo Valenzuela	ignacio.valenzuel.14@sansano.usm.cl	201473055-1
Albornoz		
Alex Sebastian Jara	alex.jara.14@sansano.usm.cl	201473027-6
Andrade		
Felipe Antonio Figueroa	felipe.figueroaa@sansano.usm.cl	201573006-7
Arancibia		

Índice

Índice	1
1. Requisitos clave (Actualizado)	1
2. Árbol de Utilidad (Actualizado)	2
3. Modelo de Software	4
4. Trade-offs entre tecnologías	5

1. Requisitos clave (Actualizado)

Tabla 1: Requisitos funcionales (actualizados)

Reg. funcional	Descripción y medición (máximo 2 líneas)
Obtener datos históricos	Poder obtener los datos histórico de las acciones de una empresa por medio de parámetros indicados (ej:fechas).
Elegir opción	Poder elegir entre opción Americana o Europea.
Graficar resultado	Sistema debe mostrar un gráfico que muestre el comportamiento de la acción y su trayectoria en el tiempo.
Cargar csv	Poder cargar archivo csv de forma manual o vía descarga de la página web correspondiente.
Entregar predicción del valor de la acción	El sistema debe entregar un valor predictivo que estime el precio de una acción en el futuro.

Tabla 2: Requisitos extra-funcionales (actualizados)

Req. extra-funcional	Descripción y medición (máximo 2 líneas)
Datos provenientes de	Los datos deben ser obtenidos de el sitio web de Yahoo!
Yahoo! Finances.	Finance.
Sistema on-line y	El software debe poder ser utilizado de manera online y
off-line	offline.
Rapidez de cálculo	El cálculo de la predicción debe durar menos de 10
	segundos.
Responsivo	El producto debe adaptarse a diversos dispositivos.

2. Árbol de Utilidad (Actualizado)

3. Modelo de Software

Tabla 3: Selección de Patrones

Intención	Patrón de Diseño	Razonamiento
Fomentar modularización y facilitar el desarrollo de la aplicación web.	Model-Template- View (MTV)	El modelo MTV, símil al de MVC, ayuda bastante a separar lo que es el cálculo de la predicción y también de donde obtiene los datos, así es más fácil de manejar alejando al usuario de todo el fundamento matemático que hay detrás.

4. Trade-offs entre tecnologías

Decisión	Softgoal	Evaluación	Razonamiento
Usar Python para la	Compatibility	+	Permite una mejor implementación del cálculo en la aplicación web
operatoria matemática.	Performance	-	Respecto al cálculo matemático demuestra una peor eficiencia al ejecutar.
Usar R para la operatoria matemática.	Performance	+	Respecto al cálculo matemático demuestra una mejor eficiencia al ejecutar.
	Compatibility	-	La integración requiere más esfuerzo que utilizar Python.
Crear una versión de escritorio y web	Portability	++	Permite que el usuario pueda obtener los resultados en cualquier momento en caso de no poseer acceso a internet.

Modo offline	Reliability	+	Poder funcionar pese a no haber conexión a internet aumenta la disponibilidad del producto.
	Integrity	-	Los datos pueden quedar desactualizados tras un periodo de tiempo.
Utilizar Django	Reusability	+	Ya que Python facilitaba el cálculo, escoger un framework para el backend como Django que ocupaba el mismo lenguaje sería una implementación más sencilla, además que el patrón MTV que ofrece es lo más adecuado para el problema
Descargar la información	Reliability	++	Disponibilidad de los datos de todas las empresas en modo offline.
de todas las empresas cuando sea posible.	Performance		Almacenar toda esa información es costoso en memoria, y una gran parte siquiera se utilizará. Además de los recursos utilizados en descargarla