Uhlík – Carboneum – C

umiestnenie v PSP: 2. perióda, 14. skupina,

- -protónové číslo 6, p² prvok
- významný biogénny prvok, kostra všetkých org. zlúčenín, org. chémia-chémia uhlíka
- -v prírode sa vyskytuje aj ako amorfné formy: koks, sadze, uhlie

-aj ako CO₂, uhličitany CO₃^{-II}, HCO₃⁻...

-je vždy 4-väzbový

Elektrónová konfigurácia: 2s²2p²

excitovaný (vzbudený stav) C* - el.konf.: 2s1 2p3

Alotropické modifikácie uhlíka:

1.GRAFIT = tuha - 6-uholníková štruktúra, v rámci vrstvy kovalentné, pevné väzby, medzi vrstvami slabé Van Der Walsove sily

- štiepateľná, ľahko sa otiera = dá sa písať
- je mäkký, sivočierny, lesklý, vedie el. prúd, výroba ceruziek, mazadlo ložísk, moderátor v jadrových reaktoroch

Grafitové bane: USA, Mexiko, Rusko

- **2.DIAMANT** usporiadanie do tetraédra, v rámci aj medzi vrstvami sú silné kovalentné väzby, nevedie el. prúd, vedie teplo
- extrémne tvrdý, najtvrdší minerál, bezfarebný al. s odleskami farieb, silne láme svetlo, opracovaný diamant = briliant šperkárstvo
- využitie vrtáky hlavice vrtákov (synteticky vyrobené),
- -vznik pri vysokej t a p
- 3.FULERÉNY najznámejší je C₆₀, štruktúra futbalovej lopty, výroba nanočlánkov
- Koks redukčné činidlo využitie pri výrobe Fe vo vysokej peci
- Živočíšne uhlie žalúdočné problémy, princíp ADSORPCIA škodlivín na povrch tablety, filter v plyn.

maskách

Bezkyslíkaté zlúčeniny C:

CS2 - sírouhlík, HCN - kyanovodík, CCl4 - tetrachlórmetán,

karbidy - CaC₂ (karbid vápenatý)

Kyslíkaté zlúčeniny C:

oxidy, uhličitany, hydrogénuhličitany, H₂CO3

CO - bezfarebný plyn bez zápachu, ľahší ako vzduch, málo rozpustný v H₂O, veľmi toxický, krvný jed, C = O

CO + hemoglobín -vzniká karbonylhemoglobín (-karboxyhemoglobín)

Prvá pomoc - na čerstvý vzduch, hasiace prístroje - penové, snehové

CO₂ O=C=O - bezfarebný, nehorľavý, ťažší ako vzduch, rozpustný v H₂O = H₂CO₃, nie je toxický do 10% obj., vo vzduchu 0,03 %

Vznik: pri rozklade, bublinky v minerálkach, dýchanie, podmienka fotosyntézy

a) Vzniká tepelným rozkladom CaCO₃

b) z uhličitanu vápenatého pôsobením HCI

CaCO₃ → CO₂ + CaO - pálené vápno

 $CaCO_3 + HCI \rightarrow CaCl_2 + H_2O + CO_2$

CaO + H₂O → Ca(OH)₂ -hasené vápno

Dôkaz CO₂ vo vydychovanom vzduchu:

Vápenné mlieko – fúkanie cez slamku – slabo mliečny roztok sa zmení na bezfarebný

 $CO_2 + Ca(OH)_2 \rightarrow CaCO_3$

H₂CO₃ - slabá k. uhličitá, slabý kyslý dážď

CaCO₃- vodný kameň, vápenec

CaCO3. MgCO3 =dolomit

MgCO3 = magnezit

Skleníkové plyny:

1. Co₂ 2. H₂O (para)

3. N₂O

4. O₃

5. CH₄

6. freóny (obs. aspoň 2 halogény - 1 musí byť F

- freón 12 = CCl_2F_2

Nachádza sa v:

sacharidoch, tukoch, bielkovinách, rope, zemnom plyne, uhlí, karboxylových zlúčeninách, alkohole, vitamínoch, CO₂, CO, minerálnych vodách, vzduchu, vápenci, sóde, kriede, krasových útvaroch, tvrdosť vody, hemoglobíne/chlorofyle, halogénderivátoch, éteroch, nitrozlúčeninách, amínoch, alkánoch/alkénoch, alkínoch, arénoch, kofeíne, morfíne, mydlách...

Využitie uhlíka:

-pri elektrolýze (uhlíkové elektródy) -v atómových reaktoroch

-výroba ceruziek -mazadlá ložísk

-používa sa ako palivo - fosílne palivá -CO₂

-adsorpcia látok (živočíšne uhlie pri tráviacich ťažkostiach)