Quiz 1

1.	Gibt es eine nichtleere endliche Sprache $L \neq \{\lambda\}$ über dem Alphabet $\{a, b\}$, di	ie die
	Bedingung $L^2 = L$ erfüllt?	

O Ja O Nein

2. Sei
$$L_1 = \{\{0\}^*\{1\}^*\}^*$$
 und $L_2 = \{\{0,1\}^3\}^*$. Welche Aussage ist korrekt? $\bigcap L_1 = L_2 \quad \bigcirc L_1 \neq L_2$

3. Seien $L_1,\,L_2$ und L_3 Sprachen über einem Alphabet $\Sigma.$ Dann gilt

$$L_1L_2 \cup L_1L_3 = L_1(L_2 \cup L_3)$$

○ Wahr ○ Falsch

4. Seien $L_1,\,L_2$ und L_3 Sprachen über einem Alphabet $\Sigma.$ Dann gilt

$$L_1L_2 \cap L_1L_3 = L_1(L_2 \cap L_3)$$

○ Wahr ○ Falsch

5. Wir betrachten die Sprache

$$L = \{p, pq, pp, pqp, pqqp\}$$

Gibt es zwei Sprachen $L_1 \neq \{\lambda\}$ und $L_2 \neq \{\lambda\}$ über dem Alphabet $\Sigma = \{p, q\}$, so dass $L = L_1 \cdot L_2$? Falls ja, bestimme L_1 und L_2 . Falls nein, begründe warum solche Sprachen nicht existieren können.

6. Schreibe einen Algorithmus \mathcal{A} (in Pseudocode), welcher folgendes Entscheidungsproblem löst: $(\Sigma_{10}, \{x \in (\Sigma_{10})^* \mid x \text{ ist durch 3 teilbar}\})$

Alternative Darstellung:

Eigabe: $x \in (\Sigma_{10})^*$

Ausgabe: Ja, falls x durch 3 teilbar ist. Nein, sonst.