Machine Learning & Data Mining

Evaluation of supervised approaches

Kyung-Ah Sohn

Ajou University

Outline

- Performance measure for classification
 - Accuracy
 - Specificity/Sensitivity, Recall/Precision
 - ROC curve
- Model selection
 - Over-fitting
 - Cross validation

MNIST: handwritten digits

Consider Binary classification

'2' or 'not 2'?

Performance measure

- For a test data X, measure of closeness between true label Y_{true} and predicted Y_{pred}
 - Rather than how fast it takes to classify or learn the classifier, scalability, etc.
- Confusion matrix

Binary Classification

1100 test images

Classifier 1

	Predicted '2'	Predicted 'Not 2'
True '2'	70	30
True 'Not 2'	140	860

Classifier 2

)		Predicted '2'	Predicted 'Not 2'
	True '2'	20	80
	True 'Not 2'	50	950

Which classifier is better?

Performance measure

- The class of interest is known as the positive class
- All the others are known as negative
- True Positive (TP): Correctly classified as the class of interest
- False Negative (FN): Incorrectly classified as not the class of interest
- False Positive (FP): Incorrectly classified as the class of interest
- True Negative (TN): Correctly classified as not the class of interest

	Predicted class				
		Class=1	Class=0		
Actual	Class=1	TP	FN		
class	Class=0	FP	TN		

Metrics for Performance Evaluation

	Predicted class				
Actual class		Class=1	Class=0		
	Class=1	А	В		
	Class=0	С	D		

• Widely-used metric:

$$Accuracy = \frac{A+D}{A+B+C+D} = \frac{TP+TN}{TP+TN+FP+FN}$$

Num. correctly classified / total num. of test data

Limitation of Accuracy

- In binary classification
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If a classifier predicts everything to be class 0, accuracy is:
 - Accuracy is misleading because the classifier does not detect any Class 1 example

Sensitivity & Specificity

	Predicted class				
Actual class		Class=1	Class=0		
	Class=1	TP	FN		
	Class=0	FP	TN		

$$Sensitivity = rac{TP}{TP + FN}$$
 True Positive rate

$$Specificity = \frac{TN}{FP + TN} \quad \mbox{True Negative rate}$$

Precision & Recall (in Information Retrieval)

	Predicted class				
Actual class		Class=1	Class=0		
	Class=1	TP	FN		
	Class=0	FP	TN		

$$Precision = rac{TP}{TP + FP}$$
 $Recall = rac{TP}{TP + FN}$ (= Sensitivity) $F - measure = 2 imes rac{Precision imes Recall}{Precision + Recall}$

$$Sensitivity = \frac{TP}{TP + FN} \quad \text{True Positive rate}$$

$$Specificity = \frac{TN}{FP + TN} \quad \text{True Negative rate}$$

- High sensitivity = Few false negatives
- High specificity = Few false positives

Tradeoff

e.g. airport alarm system

Actual class	Predicted class
1	0
0	0
0	0
1	1
1	0
0	0
0	0
0	1

X
0
0
0
X
0
0
X

FN	
TN	
TN	
TP	
FN	
TN	
TN	
FP	

$$Accuracy = \frac{5}{8} = 62.5\%$$

Classification Performances

Confusion matrix

	Predicted class				
		Class=1	Class=0		
Actual class	Class=1	4	1		
	Class=0	2	3		

- Accuracy=
- Misclassification error=1-Accuracy=
- Sensitivity (true positive, recall) =
- Specificity (true negative)=
- Precision =
- F1 measure =

Multi-class Classification: MNIST

- What if you change a threshold?
 - e.g. If BFP > 25, classify as female

ROC (Receiver Operating Characteristic) CUrve

 ROC curve plots (1-specificity) (or FP rate) on the x-axis against sensitivity (or TP rate) on the y-axis

AUC: area under the curve

10.0	21.7	8.9	19.9	23.4	28.9	15.7	21.6	21.5	23.2
M	F	M	F	M	F	M	F	M	F

How to construct an ROC curve

	Instance	Sorted	True Class
+	1	28.9	F
<u></u>	2	23.4	M
+	3	23.2	F
+	4	21.7	F
+	5	21.6	F
+	6	21.5	M
_	7	19.9	F
	8	15.7	M
	9	10	М
	10	8.9	M

TP	FP	TN	FN	Sensitivity	Specificity
1	0	5	4	0.2	1
1	1	4	4	0.2	0.8

How to construct an ROC curve

+	Instance	P(+ A)	True Class	
<u></u>	1	0.95	+	
++	2	0.93	+	
+	3	0.87	-	
+	4	0.85	-	
+	5	0.85	-	
_	6	0.85	+	
	7	0.76	-	
	8	0.53	+	
	9	0.43	-	
	10	0.25	+	

Use classifier that produces
 posterior probability for each test
 instance P(+|A)

Sort the instances according to P(+|
 A) in decreasing order

Apply threshold at each unique value of P(+|A)

- Count TP,FP,TN,FN at each threshold
- Compute TP rate, FP rate

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold	-< k	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
1111 6511610	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
	FPR	1	1	8.0	0.8	0.6	0.4	0.2	0.2	0	0	0

ROC Curve:

ROC curves

• Typically,

AUC (area under the curve)

OVER-FITTING AND CROSS VALIDATION

Over-fitting for training data

Is red boundary is better than blue one?

Over-fitting for training data

underfitting is not as prevalent as overfitting

Why evaluate?

- Multiple algorithms for classification available
- For each algorithm, multiple parameter choices are available
 - e.g. the choice of k in k-nearest neighbors
- To choose the best model, one needs to assess each model's performances

Validation

The problems of over-fitting

- Internal validation: validate your model on your current data set (cross-validation)
- External Validation: Validate your model on a completely new dataset

Holdout (or Test-set) validation

- "waste" half of your data
- often you don't have enough data to spare

Cross-validation

- When to use?
 - To choose the best parameter setting
 - Anytime you want to prove that your model does not over-fit the training data and it will have good prediction in new datasets

Train/Validation/Test set

https://towards datascience.com/train-test-split-and-cross-validation-in-python-80b61 beca4b6

Cross-validation

- Leave-one-out validation
- K-fold cross validation

Leave-One-Out Cross Validation (LOOCV)

LOOCV

- Leave one sample out at a time
- Learn the model on the remaining training data
- Test on the held out data point
- Summarize the performance of each run

LOOCV

- The evaluation result is good, but it is very expensive to compute
 - n runs of the learning algorithm if you have n data points

n x (running time of the algorithm)

K-fold cross validation

- One way to improve the holdout method
- The data set is divided into k subsets, and the holdout method is repeated k times
- Each time, one of the k subsets is used as the test set, and the remaining subsets are used in training

Example: 5-fold CV

K-fold CV

- The average error rates (or accuracy measures) across all k trials is computed.
- It matters less how the data is divided
- Every data point gets to be in a test set exactly once, and gets to be in a training set k-1 times
- Typical choice is 10-fold CV (or 5-fold)

Which kind of Cross Validation?

	Downside	Upside
Test-set	Variance: unreliable estimate of future performance	Cheap
Leave- one-out	Expensive. Has some weird behavior	Doesn't waste data
10-fold	Wastes 10% of the data. 10 times more expensive than test set	Only wastes 10%. Only 10 times more expensive instead of R times.
3-fold	Wastier than 10-fold. Expensivier than test set	Slightly better than test- set
R-fold	Identical to Leave-one-out	

CV-based model selection

- Example: choosing "k" for k-NN
- Step 1: compute 10-fold-CV error for six different model classes

Algorithm	TRAINERR	10-fold-CV-ERR	Choice
K=1			
K=2			
K=3			
K=4			\boxtimes
K=5			
K=6			

• Step 2: Whichever model class gave best CV score: train it with all the data, and that's the predictive model you will use

Cross-validation is useful

- Preventing over-fitting
- Comparing different algorithms
- Choosing the optimal parameters
- For any supervised learning approaches

What you should know

- How to measure performance of supervised approaches
- Why you can't use "training-set-error" to estimate the quality of your learning algorithm on your data.
- Why you can't use "training set error" to choose the learning algorithm
- Holdout (Test-set) cross-validation
- Leave-one-out cross-validation
- k-fold cross-validation