Tests non paramétriques

Mohamed LEMDANI

MISO Université de Lille

30 Septembre 2021

Tests de Student

Un seul échantillon : H_0 : { $\mu_1 = \mu_0$ } versus H_1 : { $\mu_1 \neq \mu_0$ }.

Variable de décision :
$$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$$
.

Sous H_0 , $t \sim St_{n-1}$, à condition d'avoir :

- X normalement distribuée
- ou n "grand" (≥ 30).

Deux échantillons : H_0 : $\{\mu_1 = \mu_2\}$ versus H_1 : $\{\mu_1 \neq \mu_2\}$.

Variable de décision :
$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s^2}{n_1} + \frac{s^2}{n_2}}}$$
 ou $t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$.

Sous H_0 , $t \sim St$, à condition d'avoir :

- X normalement distribuée (sur les deux populations),
- ou n₁ et n₂ "grands" (≥ 30).

Problème si petit(s) échantillon(s) et absence de normalité \Longrightarrow alternative d'un test *non* paramétrique Wilcoxon (observé/théorique) ou Mann et Whitney (observé/observé).

Introduction **Test de Mann et Whitney** Test de Wilcoxon Généralités Mise en œuvre

Principe et mise en œuvre

À n'utiliser que si l'on observe une variable quantitative X sur 2 échantillons indépendants et que (pour au moins l'un des deux) on ait :

- n < 30
- et X n'admettant pas une distribution normale.

Comparaison des médianes et non des moyennes (sauf si distribution symétrique).

Mise en œuvre du test de Mann et Whitney:

Exemple 7 : Comparaison des tailles moyennes (cm) de deux espèces de plantes A et B.

Echantillon de A : 21,5; 29,3; 72,4; 24,2; 65,6; 63,0; 24,1; 79,2; 75,1 ($n_1 = 9$).

Echantillon de B: 42,4; 37,2; 25,2; 36,6; 45,1; 29,5 ($n_1 = 6$).

Étape 0 : X : taille de la plante.

Petits échantillons et rejet de la normalité de X pour l'espèce B (test fait au préalable).

 $H_0: \{Me_1 = Me_2\} \text{ versus } H_1: \{Me_1 \neq Me_2\}.$

Mise en œuvre

<u>Étape 1 :</u> Ranger, par ordre croissant, l'ensemble des observations des 2 échantillons (en les distinguant l'un de l'autre) :

21,
$$5_1$$
; 24, 1_2 ; 24, 2_3 ; 25 , 2_4 ; 29, 3_5 ; 29 , 5_6 ; 36 , 6_7 ; 37 , 2_8 ; 42, 4_9 ; 45, 1_{10} ; 63, 0_{11} ; 65, 6_{12} ; 72, 4_{13} ; 75, 1_{14} ; 79, 2_{15}

Étape 2 : Déterminer les rangs. Si nécessaire, calculer le rang moyen.

$$\overline{\text{Étape 3}}$$
: Calcul de la variable de décision U = min $(U_{12}, U_{21}) = 23$.

$$T_1 = \Sigma$$
 rangs de l'échantillon $1 = 1 + 2 + 3 + 5 + 11 + 12 + 13 + 14 + 15 = 76$.

 $T_2 = \Sigma$ rangs de l'échantillon 2 = 4 + 6 + 7 + 8 + 9 + 10 = 44.

$$\begin{aligned} U_{12} &= n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - T_1 = T_2 - \frac{n_2 (n_2 + 1)}{2} \\ U_{21} &= n_1 n_2 + \frac{n_2 (n_2 + 1)}{2} - T_2 = T_1 - \frac{n_1 (n_1 + 1)}{2} \Longrightarrow U_{12} + U_{21} = n_1 n_2 \end{aligned}$$

$$U_{12} = T_2 - \frac{n_2(n_2+1)}{2} = 44 - \frac{6 \times 7}{2} = 23 \Longrightarrow U_{21} = 9 \times 6 - 23 = 31.$$

Introduction Test de Mann et Whitney Test de Wilcoxon Généralités Mise en œuvre

Mise en œuvre (suite)

Interprétation de U_{12} et U_{21} :

 U_{12} : nombre de fois où une observation de l'échantillon 1 précède une observation de l'échantillon 2.

$$U_{12} = 6 + 6 + 6 + 5 + 0 + 0 + 0 + 0 + 0 = 23.$$

Étape 4 : Recherche de la zone de rejet sur la table.

Lecture table \longrightarrow 12 \Longrightarrow Zone de rejet = [0, 12] \Longrightarrow Non-rejet de H₀ au seuil de 5%.

Cas d'un test unilatéral : choisir au préalable entre U_{12} et U_{21} et lecture adaptée sur la table (formules identiques).

Cas de "grandes" valeurs de n_1 **et/ou** n_2 : Utilisation des formules d'approximation et de la table de la loi normale (1.96 si $\alpha = 5\%$ en bilatéral).

Test de Wilcoxon

Exemple 8 : Comparaison des effets de deux traitements A et B sur le niveau de dosage d'une hormone (séries appariées).

 X_A , X_B : dosages (en U) suite à chacun des traitements $\Longrightarrow D = X_B - X_A$ (n = 10).

Taille d'échantillon n "petite" et D peut-être non normalement distribuée.

 $H_0:\{Me_D=0\}\quad versus\quad H_1:\{Me_D>0\}.$

X _A	2,5	4,3	6,6	5,4	3,8	4,2	3,9	4,7	2,9	3,7
X_{B}	3,2	3,8	6,8	5,5	4,0	4,0	4,2	5,3	3,8	3,6
D	0,7	-0,5	0,2	0,1	0,2	-0,2	0,3	0,6	0,9	-0,1

<u>Étape 1</u>: Calcul de D = $X_B - X_A \Longrightarrow$ éliminer (s'il y en a) les différences nulles (nouvelle taille d'échantillon).

Étape 2 : Ranger, par ordre croissant, les valeurs absolues de D

$$-0,1_{1.5};$$
 $0,1_{1.5};$ $-0,2_4;$ $0,2_4;$ $0,2_4;$ $0,3_6;$ $-0,5_7;$ $0,6_8;$ $0,7_9;$ $0,9_{10}$

Calculer si nécessaire le rang moyen.

Test de Wilcoxon (suite)

Étape 3 : Calculer $P = \Sigma$ rangs des différences +.

 $M = \Sigma$ rangs des différences - = 1.5 + 4 + 7 = 12.5.

Remarque : P + M = n(n + 1)/2.

 $\textbf{Test bilat\'eral}: \Longrightarrow T = min(M,P).$

 $\textbf{Test unilatéral}: choisir au \ préalable \ entre \ M \ et \ P \ celui \ qui \ sera \ plus \ petit \ sous \ H_1.$

Sous H_1 , $Me_D > 0 \Longrightarrow$ les différences sont généralement positives \Longrightarrow P "grand" et M "petit" \Longrightarrow T = M = 12.5.

$$-0,1_{1.5}$$
; $0,1_{1.5}$; $-0,2_4$; $0,2_4$; $0,2_4$; $0,3_6$; $-0,5_7$; $0,6_8$; $0,7_9$; $0,9_{10}$

Étape 3 : Recherche de la zone de rejet sur la table.

Lecture table \longrightarrow 10 \Longrightarrow Zone de rejet = [0, 10] \Longrightarrow Non-rejet de H₀ au seuil de 5%.

Cas de n > 20: utilisation des formules d'approximation.