www.th-owl.de	Lecture - DSS	DSS-Appendix-A
	Discrete Signals and Systems	15.10.2020
Prof. Dr. Uwe Meier	Appendix A: Mathematical Basics	Page 1

A Mathematical Basics

Greek Symbols
Decimal Factors
Series
Differential Calculus
Integral Calculus
Trigonometry
Complex Calculus
Matrix Calculus
Linear Differential Equations

Greek Symbols

Small	8		Latin
α		Alfa	a
β		Beta	ь
γ		Gamma	g
δ	Δ	Delta	d
3		Epsilon	e
η		Eta	h
в	Θ	Teta	
λ	Λ	Lambda	1
μ		Mü	m
ν		Nü	n
τ		Tau	t
ф	Φ	Fi	f
	Ψ	Psi	
ω	Ω	Omega	0
π	П	Pi	p
ρ		Ro	r
σ	Σ	Sigma	S

www.th-owl.de	Lecture - DSS	DSS-Appendix-A
	Discrete Signals and Systems	15.10.2020
Prof. Dr. Uwe Meier	Appendix A: Mathematical Basics	Page 2

Decimal Factors

Value	Shortcut	Pronunciation
$10^{12}, 10^{15}, 10^{18}$	T, P, E	Tera, Peta, Exa
$10^3, 10^6, 10^9$	k, M, G	Kilo, Mega, Giga
$10^1, 10^2$	da, h	Deka, Hekto
1		
$10^{-1}, 10^{-2}$	d, c	Dezi, Centi
$10^{-3}, 10^{-6}, 10^{-9}$	m, μ, n	Milli, Mikro, Nano
$10^{-12}, 10^{-15}, 10^{-18}$	p, f, a	Piko, Femto, Atto
10^{-2}	%	Percent

Series

Geometric series

$$\sum_{i=0}^{I-1} x^{i} = 1 + x + x^{2} + \dots + x^{I-1} = \frac{x^{I} - 1}{x - 1}$$

$$\sum_{i=0}^{\infty} x^{i} = 1 + x + x^{2} + \dots = \frac{1}{1 - x} \text{ if } |x| < 1$$

Miscellaneous

$$\sum_{i=1}^{I} i = 1 + 2 + 3 + \dots + I = \frac{I \cdot (I - 1)}{2}$$

$$\sum_{i=1}^{\infty} \left(\frac{1}{n}\right)^{2} = \frac{\pi^{2}}{6}$$

$$1 + 2\sum_{n=1}^{N} \cos\left(n \cdot x\right) = \frac{\sin\left(\left(0.5 + N\right)x\right)}{\sin\frac{x}{2}} \quad \text{for } x \neq k \cdot 2\pi \quad (k \in \mathbb{Z})$$

$$\sum_{n=1}^{N-1} \sin\left[\left(2n + 1\right)x\right] = \frac{\left(\sin\left(n \cdot x\right)\right)^{2}}{\sin x} \quad \text{for } x \neq k \cdot \pi \quad (k \in \mathbb{Z})$$

Differential Calculus

Given is a function f(x). Its **derivative** is $f'(x) = \frac{df}{dx}$.

Geometrical interpretation

The derivative f'(x) is the slope or gradient of the function f(x) at the position x.

Important examples

f(x)	f'(x)
X	1
x^2	2x
x^k	$k \cdot x^{k-1}$
$\ln x (x \neq 0)$	$\frac{1}{x}$
e ^x	e^x
e ^{a·x}	$a \cdot e^{a \cdot x}$
$\sin ax$	$a \cdot \cos ax$
cos ax	$-a \cdot \sin ax$

Basic rules

	$f(x) = \operatorname{const} \cdot u(x)$	$f'(x) = \operatorname{const} \cdot u'(x)$
Product rule	$f(x) = u(x) \cdot v(x)$	$f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x)$
Quotient rule	$f(x) = \frac{u(x)}{v(x)}$	$f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v^2(x)}$
Chain rule	f(x) = u(v) with $v(x)$	$f'(x) = \frac{\mathrm{d}u}{\mathrm{d}v} \cdot \frac{\mathrm{d}v}{\mathrm{d}x}$

Integral Calculus

Given is a function g(x). Its derivative is $g'(x) = \frac{dg}{dx} = f(x)$. This can be computed with *differential calculus*. Vice versa a function f(x) is given and a function g(x) with its derivative f(x) shall be determined. This can be computed with *integral calculus*. g(x) is the **antiderivative** of f(x).

Important examples

f(x)	g(x)
1	x
x	$\frac{x^2}{2}$
x^k $(k \neq -1 \text{ ganz; falls } k < 0: x \neq 0)$	$\frac{x^{k+1}}{k+1}$
$\frac{1}{x}$	$ \ln x (x \neq 0) $
e^x	e^x
$e^{a \cdot x}$	$\frac{e^{a \cdot x}}{a}$
sin ax	$-\frac{\cos ax}{a}$
cos ax	$\frac{\sin ax}{a}$

Indefinite integral of the function f(x)

$$\int f(x) \cdot dx = g(x) + \text{const}$$

Definite integral of the function f(x)

$$A = \int_{a}^{b} f(x) \cdot dx = g(x) \Big|_{a}^{b} = g(b) - g(a)$$

A is the area under the curve f(x) between the lower limit a and the upper limit b. The area A in the right picture is $A = A_1 + A_2 + A_3$ with $A_2 < 0$.

www.th-owl.de

Prof. Dr. Uwe Meier

l.de

Lecture - DSS

Discrete Signals and Systems Appendix A: Mathematical Basics

DSS-Appendix-A 15.10.2020 Page 5

Trigonometry

x	sin x	cos x	tan x
0	0	1	0
$30^{\circ} = \pi / 6$	1 / 2 = 0.5	$\sqrt{3} / 2 = 0.866$	0.577
$45^{\circ} = \pi / 4$	$1/\sqrt{2} = 0.707$	$1/\sqrt{2} = 0.707$	1
$60^{\circ} = \pi / 3$	$\sqrt{3} / 2 = 0.866$	1 / 2 = 0.5	1.732
$90^{\circ} = \pi / 2$	1	0	$\rightarrow \infty$

$$\tan x = \sin x / \cos x$$

 $\sin^2 x + \cos^2 x = 1$

$$\sin(x+90^\circ) = \cos x$$
$$\sin(x-90^\circ) = -\cos x$$
$$\cos(x+90^\circ) = -\sin x$$
$$\cos(x-90^\circ) = \sin x$$

$$\sin^2 x = 0.5 \cdot (1 - \cos 2x)$$

$$\cos^2 x = 0.5 \cdot (1 + \cos 2x)$$

$$cos(x \pm y) = cos x cos y \mp sin x sin y$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos x \cdot \cos y = 0.5 \cdot \cos(x - y) + 0.5 \cdot \cos(x + y)$$

$$\sin x \cdot \sin y = 0.5 \cdot \cos(x - y) - 0.5 \cdot \cos(x + y)$$

$$\sin x \cdot \cos y = 0.5 \cdot \sin(x - y) + 0.5 \cdot \sin(x + y)$$

Prof. Dr. Uwe Meier

Complex Calculus

Imaginary unit

$$j^2 = -1$$

Complex number \underline{r} written in the **R** type

$$\underline{r} = a + jb$$

$$a = \text{Re}\{\underline{r}\} = r \cdot \cos \varphi$$
 Real part
 $b = \text{Im}\{\underline{r}\} = r \cdot \sin \varphi$ Imaginary part

$$b = \operatorname{Im}\{\underline{r}\} = r \cdot \sin \varphi$$

Please note: The imaginary part b is a real number. jb is an imaginary number.

Complex number <u>r</u> written in the **P type (Polar type)**

$$\underline{r} = r \cdot e^{j\varphi} = r/\varphi$$

$$r = |\underline{r}| = \sqrt{a^2 + b^2}$$

Amount

$$\varphi = \arctan \frac{b}{a}$$

Angle

$$r / \omega$$

say: r versor φ

а	b	φ
> 0	> 0	0 < φ < 90°
< 0	> 0	90° < φ < 180°
< 0	< 0	$-180^{\circ} < \varphi < -90^{\circ}$
> 0	< 0	-90° < φ < 0°
> 0	0	0
< 0	0	180°
0	> 0	90°
0	< 0	-90°

EULER's equation

$$e^{j\varphi} = \cos \varphi + j \cdot \sin \varphi$$

Prof. Dr. Uwe Meier

DSS-Appendix-A 15.10.2020 Page 7

Sum, difference

$$\underline{r}_1 \pm \underline{r}_2 = (a_1 \pm a_2) + \mathbf{j} \cdot (b_1 \pm b_2)$$

Product, ratio

$$\underline{r}_1 \cdot \underline{r}_2 = r_1 \cdot r_2 \cdot e^{j(\varphi_1 + \varphi_2)} = r_1 \cdot r_2 \cdot / \varphi_1 + \varphi_2$$

$$\frac{\underline{r_1}}{\underline{r_2}} = \frac{r_1}{r_2} \cdot e^{j(\varphi_1 - \varphi_2)} = \frac{r_1}{r_2} \cdot /\underline{\varphi_1 - \varphi_2}$$

Inversion

$$\frac{1}{r} = \frac{1}{r} \cdot e^{-j \cdot \varphi} = \frac{1}{r} \cdot / -\varphi$$

Negative number

$$-\underline{r} = -a - \mathbf{j} \cdot b = r \cdot e^{\mathbf{j} \cdot (\varphi + 180^{\circ})} = r \cdot /\varphi + 180^{\circ}$$

Complex conjugate number

$$\underline{r}^* = a - \mathbf{j} \cdot b = r \cdot e^{-\mathbf{j} \cdot \varphi} = r \cdot / - \varphi$$

Important equations

$$r \cdot r^* = r^2$$

$$r + r^* = 2 \cdot a$$

$$\underline{r} - \underline{r}^* = \mathbf{j} \cdot 2 \cdot b$$

$$\underline{r}^2 = r^2 \cdot e^{j2\varphi} = r^2 \cdot /2\varphi$$

$$\sqrt{\underline{r}} = \begin{cases} \sqrt{r} \cdot / \frac{\varphi/2}{2} \\ \sqrt{r} \cdot / \frac{(\varphi/2) + 180^{\circ}}{2} \end{cases}$$

www.th-owl.de

Prof. Dr. Uwe Meier

Lecture - DSS

Discrete Signals and Systems Appendix A: Mathematical Basics

DSS-Appendix-A 15.10.2020 Page 8

Matrix Calculus

Matrix

$$[a] = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

Sum, difference

$$[a] \pm [b] = \begin{bmatrix} a_{11} \pm b_{11} & a_{12} \pm b_{12} \\ a_{21} \pm b_{21} & a_{22} \pm b_{22} \end{bmatrix}$$

Product of matrix with a factor

$$k \cdot [a] = \begin{bmatrix} k \cdot a_{11} & k \cdot a_{12} \\ k \cdot a_{21} & k \cdot a_{22} \end{bmatrix}$$

Product oft wo matrices

$$[a] \cdot [b] = \begin{bmatrix} a_{11} \cdot b_{11} + a_{12} \cdot b_{21} & a_{11} \cdot b_{12} + a_{12} \cdot b_{22} \\ a_{21} \cdot b_{11} + a_{22} \cdot b_{21} & a_{21} \cdot b_{12} + a_{22} \cdot b_{22} \end{bmatrix}$$

$$[a] \cdot [b] = \begin{bmatrix} a_{11} \cdot b_{11} + a_{12} \cdot b_{21} & a_{11} \cdot b_{12} + a_{12} \cdot b_{22} \\ a_{21} \cdot b_{11} + a_{22} \cdot b_{21} & a_{21} \cdot b_{12} + a_{22} \cdot b_{22} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

Inversion

$$[a]^{-1} = \frac{1}{\det[a]} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$
 mit $\det[a] = a_{11}a_{22} - a_{12}a_{21}$

www.th-owl.de Lecture - DSS DSS-Appendix-A

Discrete Signals and Systems
Prof. Dr. Uwe Meier Appendix A: Mathematical Basics Page 9

Linear Differential Equations

Linear differential equation of order n with constant coefficients

$$A_n \cdot \frac{d^n a(t)}{dt^n} + \dots + A_2 \cdot \frac{d^2 a(t)}{dt^2} + A_1 \cdot \frac{d a(t)}{dt} + A_0 \cdot a(t) = e(t)$$

- e(t) known time dependent input signal
- a(t) unknown time dependent output signal

 $A_0 \dots A_n$ constant coefficients

If e(t) = 0, the differential equation is **homogenous**. Otherwise it is **inhomogenous** with $e(t) \neq 0$.

Total solution

$$a(t) = a_{\rm H}(t) + a_{\rm P}(t)$$

 $a_{\rm H}(t)$ is the **homogeneous solution** for e(t)=0. The homogeneous solution is also called *eigen* solution or in case of an oscillation *eigen oscillation*. A *stable system* requires $a_{\rm H}(t) \to 0$ for $t \to \infty$.

 $a_P(t)$ is the **particular solution** for $e(t) \neq 0$. This is the solution fort the **steady state** regime. A *stable* system requires $a(t) \rightarrow a_P(t)$ for $t \rightarrow \infty$.

The homogenous differential equation is always solved with the following approach:

$$a_{\rm H}(t) = K \cdot e^{\lambda \cdot t}$$

K and λ are cofficients which need to be defined.

1. Computation of λ

 $a_{\rm H}(t)$ is inserted into the homogenous differential equation. One obtains the *characteristic equation*

$$A_n \cdot \lambda^n + \dots A_2 \cdot \lambda^2 + A_1 \cdot \lambda + A_0 = 0.$$

The characteristic equation has n roots $\lambda_1, \lambda_2, \dots \lambda_n$ as solution. Due to linearity superposition of the individual solutions is possible:

$$a_{\rm H}(t) = K_1 \cdot e^{\lambda_1 \cdot t} + K_2 \cdot e^{\lambda_2 \cdot t} + \dots + K_n \cdot e^{\lambda_n \cdot t}$$
.

If two roots are identical, a seperate determination is necessary.

2. Computation of $K_1, K_2, ... K_n$

The coefficients K_1 , K_2 , ... K_n are determined with respect to given constraints for the total solution with $e(t) \neq 0$. I. e. steady constraints for memory elements need to be considered.