Counterexamples in Calculus

Aryaman Maithani TA of D1-T5

Semester: Autumn 2019 Latest update: October 10, 2019

1. A bounded sequence need not be convergent.

Example: $a_n := (-1)^n$.

2. A continuous function need not have the intermediate value property.

Example: $f:(0,1)\cup(2,3)\to\mathbb{R}$ given by f(x):=x.

3. The inverse of a differentiable function need not be continuous.

Example: $f : [0,1] \cup (2,3] \to [0,2]$ given by

$$f(x) := \begin{cases} x & x \in [0, 1] \\ x - 1 & x \in (2, 3] \end{cases}$$

Corollaries: The inverse of a continuous function need not be continuous. The inverse of a differentiable function need not be differentiable.

- 4. A function defined on an interval with the intermediate value property need not be continuous *anywhere*. **Example:** Conway Base 13 function.
- 5. A Riemann integrable function may have infinitely many discontinuities. **Example:** Thomae's functions.
- 6. A differentiable function with derivative zero everywhere need not be constant.

Example: $f:(0,1)\cup(2,3)\to\mathbb{R}$ defined as

$$f(x) := \begin{cases} 1 & x \in (0,1) \\ 2 & x \in (2,3) \end{cases}$$

- 7. A differentiable function with strictly negative derivative everywhere need not be monotonically decreasing. **Example:** $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ defined as $f(x) := x^{-1}$.
- 8. Let $f:[0,1] \to \mathbb{R}$ be a bounded function. f need not be integrable on [0,1]. **Example:** Take f to be the Dirichlet function defined as

$$f(x) := \left\{ \begin{array}{ll} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{array} \right.$$

9. Integrability of |f| does not imply integrability of f.

Example: $f:[-1,1]\to\mathbb{R}$ defined as

$$f(x) := \left\{ \begin{array}{cc} 1 & x \in \mathbb{Q} \\ -1 & x \notin \mathbb{Q} \end{array} \right.$$

10. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function such that $f_{xy}(0,0)$ and $f_{yx}(0,0)$ exist. It is not necessary that they are equal.

Example: Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined as

$$f(x,y) := \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

1

11. Suppose $f:\mathbb{R}^2\to\mathbb{R}$ is a function such that all directional derivatives of f exist at (0,0). It is not necessary that the function is continuous at (0,0).

Example: Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined as

$$f(x,y) := \begin{cases} \frac{x^3y}{x^6 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

The above function also satisfies $(\mathbf{D}_{\mathbf{u}}f)(x_0,y_0) = (\nabla f)(x_0,y_0) \cdot \mathbf{u}$ for every unit vector $\mathbf{u} \in \mathbb{R}^2$.

- 12. Let (x_0, y_0) be an interior point of a subset D of \mathbb{R}^2 , and let $f: D \to \mathbb{R}$. Suppose the following conditions
 - (a) Both partial derivatives $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ exist.
 - (b) The directional derivative $(\mathbf{D}_{\mathbf{u}}f)(x_0, y_0)$ exists for every unit vector $\mathbf{u} \in \mathbb{R}^2$.
 - (c) $(\mathbf{D}_{\mathbf{u}}f)(x_0, y_0) = (\nabla f)(x_0, y_0) \cdot \mathbf{u}$ for every unit vector $\mathbf{u} \in \mathbb{R}^2$.
 - (d) f is continuous at (x_0, y_0) .

It is not necessary that f is different iable at (x_0, y_0) .

Example: Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined as

$$f(x,y) := \begin{cases} \frac{x^3y}{x^4 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

- 13. Let $D \subset \mathbb{R}^2$. It is not necessary that ∂D is of content zero or that it is "one dimensional." **Example:** Let $D = (\mathbb{Q} \cap [0,1])^2$. Then, $\partial D = [0,1]^2$.
- 14. Let $R = [a, b] \times [c, d]$ be a closed and bounded rectangle in \mathbb{R}^2 . Suppose that $f : R \to \mathbb{R}$ is a function such that the iterated integrals $\int_a^b \left(\int_c^d f(x,y) dy \right) dx$ and $\int_c^d \left(\int_a^b f(x,y) dx \right) dy$ both exist.

It is not necessary that they are equal.

Example: Let a = c = -1 and b = d = 1 and let $f : R \to \mathbb{R}$ be defined as

$$f(x,y) := \begin{cases} \frac{2xy(x^2 - y^2)}{(x^2 + y^2)^3} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

15. Let $R = [a, b] \times [c, d]$ be a closed and bounded rectangle in \mathbb{R}^2 . Suppose that $f : R \to \mathbb{R}$ is a function such that the iterated integrals $\int_a^b \left(\int_c^d f(x,y) dy \right) dx$ and $\int_c^d \left(\int_a^b f(x,y) dx \right) dy$ both exist and are equal.

It is not necessary that f is Riemann integrable on R.

Example: Let a = c = -1 and b = d = 1 and let $f: R \to \mathbb{R}$ be defined as

$$f(x,y) := \begin{cases} \frac{2xy}{(x^2 + y^2)^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

16. Let $R = [a, b] \times [c, d]$ be a closed and bounded rectangle in \mathbb{R}^2 . Suppose that $f : R \to \mathbb{R}$ is a function such that f is Riemann integrable on R. It is not necessary that both the iterated integrals exist.

Example: Let a=c=0 and b=d=1. Define $f:R\to\mathbb{R}$ as

$$f(x,y) := \left\{ \begin{array}{ll} n^{-1} & \text{if } (x,y) \in \mathbb{Q}^2 \text{ and } x = m/n \text{ such that } (m,n) \text{ in simplest form} \\ 0 & (x,y) \notin \mathbb{Q}^2 \end{array} \right.$$

(Note that 0/1 is the simplest form for 0.

Then, f is integrable on R. (May be tough to show but it's true.)

However, if you fix $x_0 \in \mathbb{Q} \cap [0,1]$, then $f(x_0,y)$ is not Riemann integrable (as a function of y) on [0,1]. It can be seen easily that it behaves like the Dirichlet function mentioned in point 8.

Thus, the iterated integral $\int_0^1 \left(\int_0^1 f(x,y) dy \right) dx$ does not exist. Note the other iterated integral, however, does exist.

17. Let $R = [a, b] \times [c, d]$ be a closed and bounded rectangle in \mathbb{R}^2 . Suppose $f : R \to \mathbb{R}$ is a function such that one of the iterated integrals exists. It is not necessary that the other does too. Example: Example 16.