Ill-conditioning means 'nearly singular'

Using any subordinate matrix norm

Assignment Project Fix am Help
$$\frac{-\kappa_{\rho}(A)}{\kappa_{\rho}(A)} = \min \frac{\|\mathbf{A}\|_{\rho}}{\|\mathbf{A}\|_{\rho}}$$
 where $\mathbf{A} + \Delta \mathbf{A}$ is singular

if $\kappa(A)$ is large, **A** is close to a singular matrix

Example

Numerical Methods & Scientific Computing: lecture notes Linear Systems

Error analysis

The determinant does not help

Note: det A is NOT a good measure of how close to singular a matrix is.

It gives false negatives Assignment Project Exam Help

Example

https://powcoder.com

Add WeChat powcoder

and false positives

Example

—Error analysis

Geometric interpretation

An ill-conditioned saignment Projecto Example Phat are almost parallel

wouldn't have tottpsthepowicodenacomem parallel and hence have no or infinitely many solutions.

Add WeChat powcoder

—Error analysis

In MATLAB

 $\kappa(A)$ is computed single part of the computed of the compute

In MATLAB one can Asaddit We Chat powcoder

- lacksquare condest to estimate $\kappa_1(A)$
- or roond which estimates its reciprocal.

Backwards error and residuals

Suppose all backward error is in **A** not **b**. Then

Assignment Project-Exam Help

so that

where $\mathbf{r} = \mathbf{b} - \mathbf{A}\hat{\mathbf{x}}$ is the left which that power then $\|\mathbf{r}\| \leq \|\Delta\mathbf{A}\| \|\hat{\mathbf{x}}\| \implies \|\Delta\mathbf{A}\| \geq \frac{\|\mathbf{r}\|}{\|\hat{\mathbf{x}}\|}$ so the relative backward error

$$rac{\|\Delta \mathbf{A}\|}{\|\mathbf{A}\|} \geq rac{\|\mathbf{r}\|}{\|\mathbf{A}\| \|\hat{\mathbf{x}}\|} \equiv \eta$$

is measured by the **relative residual** η .

Linear Systems
Error analysis

Hence

■ large relative residuals ⇒ large (normwise) relative backward error

Assignment Project Exam Help

A stable method (small backward error) produces small relative residuals.

https://powcoder.com

the bound can be attained, so that
small relative residuals signal small (normwise) relative backward
error

https://powcoder.com

BUT small residuals do NOT \implies small errors in \mathbf{x} (it depends on the size of the condition number of \mathbf{A})

Backward error analysis: triangular systems

Under standard model for Floating point arithmetic:

$\mathsf{Theorem}$

If the n × n triangulightent Project Exam Help

is solved by substitution, the computed solution \hat{x} satisfies $Add\ WeChat\ powcoder$

$$(\mathbf{T} + \Delta \mathbf{T})\hat{\mathbf{x}} = \mathbf{b}$$

where (componentwise bound)

$$|\Delta T_{ij}| \leq \gamma_n |T_{ij}| \approx nu |T_{ij}| \text{ since } \gamma_n \equiv \frac{nu}{1-nu} \approx nu$$

i.e. it solves a system with a nearby matrix (and the correct \mathbf{b} !).

Error analysis

Solving triangular systems by forward/backsubstitution is backward stable

In general, composeintwise etability, since for any monotone norm

$$| \underset{\mid \Delta}{\text{https://powcoder.com}} | \underset{\mid J}{\text{https://powcoder.com}} | \underset{\mid J}{\text{https://powcoder.com}} | \mathbf{T} | |$$

Add WeChat powcoder

Solving triangular systems by forward/backsubstitution is normwise backward stable

which is the usual usage of the term **backward stable**.

⇒ final stages of solving a linear system are **no problem**; any problems must arise in the factorization stage!

Gauss elimination: any pivoting strategy

Theorem

If the $n \times n$ system Assignment Project Exam Help

is solved by Gauss elimination, the wondered countion x satisfies

where (componentwise again)

$$|\Delta A_{ij}| \leq \gamma_{3n} \sum_{k} |\hat{L}_{ik}| |\hat{U}_{kj}|$$

which is **not what we're after**. Want a bound for $\Delta \mathbf{A}$ involving $|\mathbf{A}|$.

Gauss elimination with partial pivoting (GEPP)

The problem with Gauss elimination is that $\sum_{k} |\hat{L}_{ik}| |\hat{U}_{kj}|$ can be much bigger than $|A_{ij}| = |\sum_{k} \hat{L}_{ik} \hat{U}_{kj}|$ i.e. **A** must have been produced from **L**, **U** using lots of cancellation.

Partial pivoting ensures that //powcoder.com

Add WeChat powcoder

but what can we say about $|\hat{U}_{kj}|$? To progress, go to a normwise analysis:

$$\|\Delta \mathbf{A}\| \leq \gamma_{3n} \|\hat{\mathbf{L}}\| \|\hat{\mathbf{U}}\|$$

for a monotone norm.

Error analysis

The growth factor

Definition

The growth factosigning ent Paroject Exam Help

https://pow/eoderAdom

Using the definition Add We Chat powcoder

$$\|\Delta \mathbf{A}\| \leq n^2 \gamma_{3n} \rho \|\mathbf{A}\|$$

normwise backward error is determined by the growth factor.

Error analysis

Without pivoting...

there is no bound to the growth factor. Exam Help

Example https://powcoder.com

The matrix $\begin{bmatrix} \delta & 1 \\ 1 & 1 \end{bmatrix}$ for δ which can be arbitrarily large.

even for 2×2 system!

For Gauss elimination with partial pivoting

- There are matrices that he project Exam themp GEPP is not backward stable.
- These matrices approximatrices, ρ is very modest in size e.g < 10
- For random matracede. Weathers potwcorderents drawn from a standard normal distribution, $\rho \sim n^{1/2}$

Hence experts say that, for practical purposes, GEPP is (normwise) backward stable — the default direct method for solving general dense linear systems.

Error analysis

SUMMARY

- I Gauss elimination without protingcie Extanciment stable.
- GEPP is, for practical purposes, (normwise) backward stable.
- 3 Cholesky factoriations is (powwied the count stable
- There are other factorizations (QR) that are (normwise) backward stable for general matrices but more expensive than GEPP
- 5 A backward stable method produces small (relative) residuals.
- This does not imply small (forward) errors if $\kappa(\mathbf{A}) >> 1$ i.e your problem is ill-conditioned.

What if **A** is ill-conditioned?

Assignment Project Exam Help

Remedy:

- $\begin{array}{c} \text{https://powcoder.com} \\ \text{1} \text{ do you really need } \mathbf{x} \text{ or just } f(\mathbf{x}) \text{ or } \mathbf{r}? \end{array}$
- 2 do the problem another way Charles do der
- 3 live with the reduced accuracy

Linear Systems
Error analysis

Assignment Project Exam Help

End of Week 7

https://powcoder.com

Add WeChat powcoder