

Machine learning: feature templates

Feature extraction + learning

$$\mathcal{F} = \{ f_{\mathbf{w}}(x) = \operatorname{sign}(\mathbf{w} \cdot \phi(x)) : \mathbf{w} \in \mathbb{R}^d \}$$

- \bullet Feature extraction: choose \mathcal{F} based on domain knowledge
- Learning: choose $f_{\mathbf{w}} \in \mathcal{F}$ based on data

Want \mathcal{F} to contain good predictors but not be too big

Feature extraction with feature names

Example task:

string
$$(x)$$
 \longrightarrow $f_{\mathbf{w}}(x) = \operatorname{sign}(\mathbf{w} \cdot \phi(x))$ \longrightarrow valid email address? (y)

Question: what properties of x might be relevant for predicting y?

Feature extractor: Given x, produce set of (feature name, feature value) pairs

Prediction with feature names

Weight vector $\mathbf{w} \in \mathbb{R}^d$

```
length>10 :-1.2
fracOfAlpha :0.6
contains_@ :3
endsWith_com:2.2
endsWith_org :1.4
```

Feature vector $\phi(x) \in \mathbb{R}^d$

```
length>10 :1
fracOfAlpha :0.85
contains_@ :1
endsWith_com:1
endsWith_org :0
```

Score: weighted combination of features

$$\mathbf{w} \cdot \phi(x) = \sum_{j=1}^{d} w_j \phi(x)_j$$

Example:
$$-1.2(1) + 0.6(0.85) + 3(1) + 2.2(1) + 1.4(0) = 4.51$$

Organization of features?

Which features to include? Need an organizational principle...

Feature templates

Definition: feature template-

A feature template is a group of features all computed in a similar way.

abc@gmail.com

last three characters equals ___

```
endsWith_aaa : 0
endsWith_aab : 0
endsWith_aac : 0
...
endsWith_com : 1
...
endsWith_zzz : 0
```

Define types of pattern to look for, not particular patterns

Feature templates example 1

Input:

abc@gmail.com

Feature template	Example feature	
Last three characters equals	Last three characters equals com	: 1
Length greater than	Length greater than 10	: 1
Fraction of alphanumeric characters	Fraction of alphanumeric characters	: 0.8!

Feature templates example 2

Input:

Latitude: 37.4068176

Longitude: -122.1715122

Feature template

Pixel intensity of image at row ___ and column ___ (___ channel) Pixel intensity of image at row 10 and column 93 (red channel) : 0.8 Latitude is in $[\ ___,\ ___]$ and longitude is in $[\ ___,\ ___]$

Example feature name

Latitude is in [37.4, 37.5] and longitude is in [-122.2, -122.1] : 1

Sparsity in feature vectors

Compact representation:

Two feature vector implementations

Arrays (good for dense features): Dictionaries (good for sparse features):

```
pixelIntensity(0,0): 0.8
pixelIntensity(0,1): 0.6
pixelIntensity(0,2): 0.5
pixelIntensity(1,0): 0.5
pixelIntensity(1,1): 0.8
pixelIntensity(1,2): 0.7
pixelIntensity(2,0): 0.2
pixelIntensity(2,1): 0
pixelIntensity(2,2): 0.1
```

```
fracOfAlpha: 0.85
contains_a : 0
contains_b : 0
contains_c : 0
contains_d : 0
contains_e : 0
...
contains_0 : 1
...
```

```
[0.8, 0.6, 0.5, 0.5, 0.8, 0.7, 0.2, 0, 0.1] {"fracOfAlpha": 0.85, "contains_@": 1}
```

CS221 1

Summary

$$\mathcal{F} = \{ f_{\mathbf{w}}(x) = \operatorname{sign}(\mathbf{w} \cdot \phi(x)) : \mathbf{w} \in \mathbb{R}^d \}$$

Feature template:

abc@gmail.com

last three characters equals ___

```
endsWith_aaa : 0
endsWith_aab : 0
endsWith_aac : 0
...
endsWith_com : 1
...
```

endsWith_zzz : 0

Dictionary implementation:

{"endsWith_com": 1}