TECHNICAL DATA SPECIFICATION FOR TECHNOLOGY CHALLENGE 9 SAFE & DURABLE BOAT FENDER TECHNOLOGY

No	Parameters	Value
1	Additional Technical	The fender system should able to resist minimal energy under the
	Requirements	following condition:
		 Single member impact: 50kJ/meter (material); or
		 110kJ/meter with boat landing structural members (mild
		steel) combined
		 The fender system shall have coefficient of friction below 0.2 for
		all direction of impact.
		 For any design with fender installed in front the boat landing, the
		total extending length (the centreline of boat landing's tubular to
		outer edge of fender) shall be less than 400mm, to allow safe
		personnel boat transfer with swing rope.
		 Increase of overall wave load to boat landing structure to be less
		than 10% with proposed fender system.
		Increase of overall weight of boat landing structure to be less than
		10% with proposed fender system.
		The fendering system shall be remained intact after impact
		especially the connection
		In the event fender system damage or deteriorated, it shall not be
		pose hazard to offshore personnel transfer operation. This
		features shall be taken into design consideration.
		The movement fendering system shall not cause damage to boat
		landing coating system.
		The design shall allow for flexibility in term of sectional
		replacement in the event of damage
2	Design Life &	10 years
	Warranty	 5 years warranty covers connection, fender material and its
		fitting accessories
3	Cost Effective	 Proposed fender system cost should be competitive.
4	Pilot	The scope of pilot deployment is to install the proposed fender
		system to one existing boat landing with no rub strip

		Performance monitoring for pilot installation is 1 year
		• For the pilot, the selected solution provider shall bear all
		materials, engineering, testing, manufacturing, and onshore
		logistic, installation supervision costs incurred for the
		deployment.
		PETRONAS to provide offshore logistic support from
		demarcation point to/from offshore facility and construction
		resources for installation.
		 Pilot installation tentatively by Q4 2020.
5	Attachment 1	Typical boat landing structural framing diagram with and without
		rub strip

PETRONAS TECHNOLOGY CHALLENGE 9: "SAFE & DURABLE BOAT FENDER TECHNOLOGY"

Attachment 1

Open

DIAGRAM #1: BOAT LANDING WITHOUT RUBSTRIPS (3D MODEL) -1/3

Front View

Side View

DIAGRAM #1: BOAT LANDING WITHOUT RUBSTRIPS (3D MODEL) - 2/3

Elevation View

DIAGRAM #1: BOAT LANDING WITHOUT RUBSTRIPS (3D MODEL) - 3/3

DIAGRAM #2: BOAT LANDING WITH RUBSTRIPS (3D MODEL) -1/3

Front View

Side View

DIAGRAM #2: BOAT LANDING WITH RUBSTRIPS (3D MODEL) - 2/3

Plan View

Elevation View

DIAGRAM #2: BOAT LANDING WITH RUBSTRIPS (3D MODEL) - 3/3

