

IoT Engineering (iot)

06. Januar 2025

thomas. amberg@fhnw.ch

Assessment

Vorname:	Punkte:	:/90,	Note:
Name:	Frei las	sen für Korr	ektur.
Klasse: 5ibb1			
Hilfsmittel:			
- Ein A4 Blatt handgeschriebene Noti	zen.		
- Lösen Sie die Aufgaben direkt auf d	en Prüfungsblättern.		
- Zusatzblätter, falls nötig, mit Ihrem	Namen und Frage-Nr. auf j	edem Blatt.	
Nicht erlaubt:			
- Unterlagen (Slides, Bücher,).			
- Computer (Laptop, Smartphone,)	J .		
- Kommunikation (mit Personen, KI,).		
Bewertung:			
- Multiple Response: \Box <i>Ja</i> oder \Box <i>No</i>	ein ankreuzen, +1/-1 Punkt _J	pro richtige/	falsche Antwort,
beide nicht ankreuzen ergibt +0 Pur	nkte; Total pro Frage gibt es	nie weniger	als 0 Punkte.
- Offene Fragen: Bewertet wird Korre	ktheit, Vollständigkeit und	Kürze der An	itwort.
Antworten Sie in ganzen Sätzen, das	s ist oft klarer als nur einzeli	ne Stichwort	e .
Fragen zur Prüfung:			

- Während der Prüfung werden vom Dozent keine Fragen zur Prüfung beantwortet.

- Ist etwas unklar, machen Sie eine Annahme und notieren Sie diese auf der Prüfung.

Internet of Things

1) Beschreiben Sie	die folgenden drei Anwendungsgebiete von IoT Technologi	e. Punkte: _ / 6
Antwort hier eintr	agen, pro Anwendungsgebiet einen kurzen Satz formulier	en:
Connected Prod	ucts	
Citizen Sensin	g	
Industrial IoT	•••	
2) Welche dieser A	ussagen zu Connectivity-Optionen sind korrekt?	Punkte: _ / 4
Zutreffendes ankre	euzen:	
□ Ja □ Nein	Bluetooth Connectivity ist ideal für landwirtschaftliche	Anwendungen.
□ Ja □ Nein	Eine Option mit mehr Reichweite braucht immer auch n	nehr Strom.
□ Ja □ Nein	LoRaWAN Datenfunk hat mehr Bandbreite als Wi-Fi Co	nnectivity.
□ Ja □ Nein	Der Setup-Zeitpunkt ist je nach Connectivity Option ver	schieden.
Mikrocontro	ller	
3) Nennen Sie drei	wesentliche Eigenschaften von Mikrocontrollern (MCUs).	Punkte: _ / 6
Antwort hier eintr	agen, pro Eigenschaft einen kurzen Satz formulieren:	

4) Gegeben den folgenden Code: Wie sieht die State-Machine des Geräts aus? Punkte: _ / 6

```
01 ... // ignore includes, define statements
02
03 int state = 0; ... // additional variables, etc.
04 \text{ int t0} = 0; // \min
05 int dt = 0; // min
06
07 void setup() { ... }
98
09 void loop() {
     int value = analogRead(rotarySensorPin);
10
     int reset = digitalRead(resetButtonPin);
11
     int start = digitalRead(startButtonPin);
12
     if (state == 0 && start == LOW) {
13
       dt = map(value, 0, 1024, 0, 60);
14
     } else if (state == 0 && start == HIGH) {
15
16
       t0 = millis() / 60000;
       state = 1; // started
17
     } else if (state == 1) {
18
       long t = (millis() / 60000) - t0; // min
19
       if (t >= dt) {
20
         digitalWrite(buzzerPin, HIGH);
21
         state = 2; // expired
22
       }
23
24
     } else if (state == 2 && reset == HIGH) {
       digitalWrite(buzzerPin, LOW);
25
       state = 0; // initial
26
27
     }
28 }
```

Zeichnen Sie die State-Machine, mit Übergängen der Form [S1]—condition|action—>[S2].

IoT Plattformen

Devices mit je <i>m</i> Se	rvomotoren, Input ist je e	ine Position <i>pos</i> in Grad (0-1	180). Punkte: /
		Werte, die sich ändern, z.B.	
Vergleichen Sie d	liese Ansätze, einen Web-	Server mit TLS zu verifiziere	en. Punkte: _ /
e einen wesentlich	en Vorteil und Nachteil p	ro Ansatz, als kurzen Satz fo	ormulieren:
Ansatz	Vorteil	Nachteil	
'ertifikat			
erifizieren			
verifizieren 			

Internet Protokolle

7) Welche dieser A	ussagen zu Internet Protokollen sind korrekt?	Punkte: _ / 4
Zutreffendes ankr	euzen:	
□ Ja □ Nein	Basic Authentication ist sicher, weil mit Base64 verschli	isselt wird.
□ Ja □ Nein	Sowohl HTTP als auch MQTT nutzen TCP als Transport	protokoll.
□ Ja □ Nein	UDP basiert auf dem IP Protokoll und nutzt es für Adres	ssierung.
\Box Ja \Box Nein		ersetzt.
8) Wie (Mechanisı	nus & zwei Beispiele) gibt ein Web Service Fehler zurück?	Punkte: _ / 4
Antwort hier eintr	ragen, als kurzen Satz formulieren.	
Bluetooth Lo	ow Energy (BLE)	
9) Welche dieser A	aussagen zu Bluetooth Low Energy (BLE) sind korrekt?	Punkte: _ / 4
Zutreffendes ankr	euzen:	
□ Ja □ Nein	Die typische Reichweite eines BLE-Senders ist ein paar	hundert Meter.
□ Ja □ Nein	Beide, das Central und das Peripheral, senden bei Read	Funksignale.
□ Ja □ Nein	Ein einzelnes BLE-Characteristic kann mehrere Services	s enthalten.
□ Ja □ Nein	Jedes BLE-Gerät wird durch seine 16/128-bit UUID ide	ntifiziert

10) Gegeben diesen GATT Service, um einen langsamen Servo zu steuern (mittels Ziel-Winkel in Grad oder Rad) und die jeweils aktuelle Servoposition auszulesen, ergänzen Sie die Rollen, Operationen und UUIDs im untenstehenden Sequenzdiagramm.

Punkte: _ / 6

```
0x8001 ServoService 0x8002 UnitCharacteristic [W] // -> byte 0x00 for deg, 0x01 for rad 0x8003 TargetPositionCharacteristic [W] // -> 0x???? = 0-180 or 0-\pi 0x8004 ActualPositionCharacteristic [N] // <- 0x???? = 0-180 or 0-\pi
```

Ergänzen Sie Rollen (Central, Peripheral), Operationen (Read, Write, Notify), und UUIDs:

Lokale IoT Gateways

11) Welche dieser Aussagen zu lokalen IoT Gateways sind korrekt?		Punkte: _ / 4
Zutreffendes ankr	euzen:	
□ Ja □ Nein	Oft übersetzen lokale IoT Gateways Adressen bzw. IDs v	on Devices.
□ Ja □ Nein	Lokale IoT Gateways senden Steuerkommandos ans Clo	ud Backend.
□ Ja □ Nein	Für BLE nehmen lokale IoT Gateways oft die Peripheral	Rolle ein.
□ .Ia □ Nein	Mehrere lokale IoT Gateways können dasselhe Backend	nutzen

Messaging Protokolle

12) Gegeben die folgende MQTT Topic Hierarchie eines Gebäudeleitsystems: Punkte: $_/$ 6

```
building
  /room
  /ROOM_ID
  /smoke-sensor "ok|alert"
  /sprinkler-actuator "on|off"
  /door
  /DOOR_ID
  /door-actuator "hold|release"
```

Welche Anfragen (PUB, SUB*) macht ein MQTT Client, der bei Rauch alle Brandschutztüren eines Raums freigibt (d.h. offenstehende Türen gehen zu), und die dortigen Sprinkler startet?

*Nutzen Sie Wildcards der Form "a/+/c", um mehrere Topics (oder hier IDs) zu matchen.

Long Range Connectivity

13) Wieso ist LoRaWAN besser zum Datensammeln geeignet als zum Steuern?	Punkte: _ / 4

14) Nennen Sie je zwei wesentliche Argumente für diese LoRaWAN Use-Cases. Punkte: _ / 6 Komplettieren Sie jeweils den Satz mit einer kurzen Begründung (keine Wiederholungen): LoRaWAN ist geeignet für Citizen Sensing, weil ... LoRaWAN ist geeignet für Industrie-Areale, weil ... LoRaWAN ist geeignet für Gebäude-Automation, weil ... Dashboards und Apps 15) Welche dieser Aussagen zu Glue Code (a.k.a. Adapter) sind korrekt? Punkte: _ / 4 Zutreffendes ankreuzen: \square Ja | \square Nein Glue Code transportiert oft Daten zwischen zwei IoT Plattformen. □ Ja | □ Nein Glue Code ist oft gleichzeitig ein Client von zwei Cloud Backends. \square Ja | \square Nein Glue Code wird jeweils in zwei Teile geteilt, ein Teil pro Backend. □ Ja | □ Nein Glue Code kann woanders laufen als die integrierten Backends. 16) Wieso kann eine App wie Cayenne ein Sensor-Dashboard dynamisch kreieren? P.kte: _ / 4

Regelbasierte Integration

17) Welche dieser	Aussagen zu regelbasierter Integration sind korrekt? Punkte: _ / 4	1
Zutreffendes ankr	euzen:	
□ Ja □ Nein	Ein HTTP Webhook Aufruf sendet Messwerte zu einer Datenquelle.	
□ Ja □ Nein	Die IFTTT Plattform integriert IoT Produkte über deren Backends.	
□ Ja □ Nein	Die NodeRED Software erlaubt IoT Integration auf dem Gateway.	
□ Ja □ Nein	Sowohl IFTTT als auch NodeRED haben Consumer als Zielgruppe.	
Sprachsteue	rung	
18) Welche dieser	Aussagen zu Sprachassistenten wie Amazon Alexa sind korrekt? P.kte: _ / △	4
Zutreffendes ankr	euzen:	
□ Ja □ Nein	Eine Sprach-App (Skill) wird über einen spezifischen Namen aktiviert.	
\square Ja \square Nein	Aus einer Äusserung (Utterance) wird eine Absicht (Intent) erkannt.	
□ Ja □ Nein	Die Spracherkennung erfolgt mit Machine-Learning direkt im Gerät.	
\square Ja \square Nein	Ein Slot ist ein Platzhalter für ein Weckwort (Wake-Word), z.B. Alexa.	
Edge-Comp	ıting	
19) Welche dieser	Aussagen zu Edge-Computing sind korrekt? Punkte: _ / A	4
Zutreffendes ankr	euzen:	
□ Ja □ Nein	Edge-Computing macht weltweite IoT Deployments einfacher.	
□ Ja □ Nein	Edge-Computing verschiebt lokale Logik ins Cloud-Backend.	
□ Ja □ Nein	Edge-Computing ermöglicht zeitnahe Entscheidungen vor Ort.	
□ Ja □ Nein	Edge-Computing reduziert die Menge der übertragenen Daten.	

Zusatzblatt zu Aufgabe Nr	_ von (Name)