Homework 2

108B (5403) Machine Learning 王傳鈞 **0416047**

本次作業所使用到的程式碼,都已經上傳到 <u>GitHub</u> 當中,若有需要參考其詳細內容,歡迎點擊連結直接前往網頁瀏覽。例如:「Q1_plot.m」的 MATLAB source code 代表是第一題所使用到的繪圖程式碼,「Q2_a.m」的 MATLAB code 則代表第二題的(a)小題所使用的程式碼,其餘命名方式請依此類推。

第一題

根據題目給定的數據,我們可以依據 posterior probability 由高到低做排序,並且依次計算出某筆數據之下 # of true positive instances (TP)、# of false positive instances (FP)、 # of true negative instances (TN) 、 # of false negative instances (FN)、 false positive rate (FPR)、 true positive rate (TPR) 等各項數值(詳細請見表格一),最後繪製成 FPR -TPR 平面圖即可得到 ROC curve(圖一)。

Rank	Label	TP	FP	TN	FN	FPR	TPR
1	Р	1	0	10	9	0.0	0.1
2	Р	2	0	10	8	0.0	0.2
3	Р	3	0	10	7	0.0	0.3
4	Р	4	0	10	6	0.0	0.4
5	N	4	1	9	6	0.0	0.4
6	Р	5	1	9	5	0.1	0.5
7	Р	6	1	9	4	0.1	0.6
8	N	6	2	8	4	0.1	0.6
9	Р	7	2	8	3	0.2	0.7
10	Ν	7	3	7	3	0.2	0.7
11	Р	8	3	7	2	0.3	0.8
12	N	8	4	6	2	0.3	0.8
13	Р	9	4	6	1	0.4	0.9
14	N	9	5	5	1	0.4	0.9
15	N	9	6	4	1	0.5	0.9
16	N	9	7	3	1	0.6	0.9
17	N	9	8	2	1	0.7	0.9
18	Р	10	8	2	0	0.8	1.0
19	N	10	9	1	0	0.9	1.0
20	N	10	10	0	0	1.0	1.0

Table 1 Ranking Method to Draw ROC curve and Calculate Area Under Curve

Figure 1 ROC curve to Question 1 and Its Area Under Curve

第二題

利用肉眼計算,我們可以很容易得知: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\begin{bmatrix}1 & 0\\ 0 & 1000\end{bmatrix}\mathbf{x}$ 的最小值 發生在 $\mathbf{x}_{\min} = \begin{bmatrix}0\\ 0\end{bmatrix}$ 且 $f(\mathbf{x}_{\min}) = 0$ 。

(a) 利用我撰寫的 MATLAB code「Q2_a.m」,總共經過 9731 次疊代收斂在:

$$\mathbf{x}_{\text{gradient}} \approx \begin{bmatrix} 3.5299 \times 10^{-6} \\ -3.5299 \times 10^{-9} \end{bmatrix} \cdot \mathbf{f}(\mathbf{x}_{\text{gradient}}) \approx 6.2362 \times 10^{-12} \circ$$

以下表格二列出首三輪與尾三輪的詳細 x 疊代數值與變化量:

	x ^{iter}	f(x ^{iter})	$\left\ x^{n+1}-x^{n}\right\ _{2}$				
$\mathbf{x^0}$	$[1000 1]^{T}$	500500	-				
\mathbf{x}^{1}	$[9.9800 \times 10^2 -0.9980]^{\mathrm{T}}$	4.9850×10^5	2.8256				
\mathbf{x}^2	$[9.9601 \times 10^2 0.9960]^{\mathrm{T}}$	4.9651×10^5	2.8200				
x ⁹⁷²⁹	$[3.5440 \times 10^{-6} -3.5440 \times 10^{-9}]^{\mathrm{T}}$	6.2863×10^{-12}	1.0034×10^{-8}				
x^{9730}	$[3.5369 \times 10^{-6} 3.5369 \times 10^{-9}]^{\mathrm{T}}$	6.2612×10^{-12}	1.0014×10^{-8}				
x^{9731}	$[3.5299 \times 10^{-6} -3.5299 \times 10^{-9}]^{\mathrm{T}}$	6.2362×10^{-12}	9.9940×10^{-9}				

Table 2 Detailed Info. about First Three and Last Three Iterations (Gradient Descent)

(b) 利用我撰寫的 MATLAB code「Q2_b.m」,總共經過1次疊代收斂在:

$$\mathbf{x}_{\text{Newton}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \cdot \mathbf{f}(\mathbf{x}_{\text{Newton}}) = \mathbf{0} \circ$$

以下表格三列出全部的詳細 x 疊代數值與變化量:

	x ^{iter}	f(x ^{iter})	d ⁿ
$\mathbf{x^0}$	$[1000 1]^{\mathrm{T}}$	500500	$[-1000 -1]^{\mathrm{T}}$
$\mathbf{x^1}$	$\begin{bmatrix} 0 & 0 \end{bmatrix}^{T}$	0	_

Table 3 Detailed Information about All Iterations (Newton's Method)

經過以上兩種不同的方法,我們可以發現牛頓法收斂的速度驚人地快速, 幾乎是早就知道答案般地,直接從起始點跳到最終結果;相反地,梯度下降法 因為受限於每一次最多只能行走「梯度」長度的下降量,因此要很久才收斂到 理想水準。但是,此例並無法顯示牛頓法的一個缺點:遇到特殊函數,若起始 點選的離最終答案並不接近,則有可能永遠無法收斂。

第四題

- (a) 請參考(b)小題內容。
- (b) 利用我撰寫的 MATLAB code「Q4_b.m」,可以得到:

hypothesis $f(\mathbf{x}) = \sum_{i=1}^{13} \alpha_i y_i \langle \mathbf{x}^i, \mathbf{x} \rangle + \mathbf{b}$,其中

接著,我們用隨機產生的亂數當作測試集資料,並作圖可得以下圖二:

Figure 2 Scatter Plot of Question 4 (b)

上圖當中,較大顆的紅色、藍色點為訓練集資料;較小的淺藍色點為測試集 資料且被 Perceptron algorithm (dual form)認為 positive 且實際上也是 positive 之資料點。

我們可以發現:因為訓練集不是 linearly separable,所以 Perceptron 找出切開平面的水平線只好犧牲一個 positive instance 被歸類成 negative。

(c) 仿造(a)、(b)小題的步驟使用「Q4_c.m」,我們得到以下結果: $\text{hypothesis} \ f(\mathbf{x}) = \sum_{i=1}^8 \alpha_i \, y_i \langle \mathbf{x}^i, \mathbf{x} \rangle + b \, , \\ \text{其中}$

$$\alpha = [5 \ 2 \ 0 \ 0 \ 3 \ 3 \ 0 \ 0]^T$$
 $\mathbf{y} = [1 \ 1 \ 1 \ 1 \ -1 \ -1 \ -1 \ -1]^T$
 $\mathbf{x}^1 = [0.5 \ 0]^T$
 $\mathbf{x}^4 = [0 \ -0.5]^T$
 $\mathbf{x}^5 = [0.5 \ 0.5]^T$
 $\mathbf{x}^8 = [-0.5 \ -0.5]^T$
 $\mathbf{x}^8 = [-0.5 \ -0.5]^T$
 $\mathbf{x}^9 = [-0.5 \ 0]^T$
 $\mathbf{x}^9 = [-0.5 \ 0]^T$

Figure 3 Scatter Plot of Question 4 (c)

- (d) 請參考(e)小題內容。
- (e) 利用我撰寫的 MATLAB code「Q4_e.m」,可以得到:

hypothesis $f(\phi(x)) = \langle w, \phi(x) \rangle + b$,其中

$$\mathbf{w} = [0 \quad -0.3500 \quad 0 \quad -0.3889]^T \quad b \approx 0.1556$$

接著,我們用隨機產生的亂數當作測試集資料,並作圖可得以下圖四:

Figure 4 Scatter Plot of Question 4 (e)

上圖當中,較大顆的紅色、藍色點為訓練集資料;較小的淺藍色點為測試集 資料且被 Perceptron algorithm (primal form)認為 positive 且實際上也是 positive 之資料點。

我們可以發現:應用了映射到高維度的技巧,原本不是 linearly separable 的訓練集,也能被 Perceptron 找出完美的分割面,另測試集資料以合理的方式來分類。