Supporting Information Open Source Photoreactor

Philip Lampkin, Blaise J. Thompson, and Samuel H. Gellman*

Department of Chemistry, University of Wisconsin–Madison 1101 University Ave., Madison, Wisconsin 53706

^{*}Corresponding Author email: gellman@chem.wisc.edu

Contents

1	Introduction			
2	Electronics			S4
	2.1	Analog		S4
	2.2	Digital		S6
		2.2.1	Driver	S6
		2.2.2	Controller	S8
3	Mechanical Construction			S9
	3.1	Base .		S9
		3.1.1	LED and Heatsink	S9
		3.1.2	Fan	S9
4	Effic	асу		S10

1 Introduction

- 2 Electronics
- 2.1 Analog

blaise.thompson@wisc.edu Blaise Thompson Gellman Group Department of Chemistry

University of Wisconsin-Madison

Sheet: / File: driver.sch

Title: Analog Photoreactor Driver

Size: USLetter Date: 2021-01-29 Rev: 1.0.0 KiCad E.D.A. kicad 5.1.8+dfsg1-1+b1 ld: 1/1

2.2 Digital

TODO: document I2C connection choice. Consistent with Adafruit, Sparkfun, Seeed...

2.2.1 **Driver**

plampkin@wisc.edu Philip Lampkin Gellman Group Department of Chemistry University of Wisconsin-Madison Sheet: / File: driver.sch Title: Digital Photoreactor Driver

Size: USLetter Date: 2021-01-22 Rev: 1.0.0 KiCad E.D.A. kicad 5.1.9+dfsg1-1 ld: 1/1

2.2.2 Controller

Figure S1: Two of the innermost holes on the extruded heatsink must be 4-40 tapped.

3 Mechanical Construction

0.5" standoff: RAF 4505-440-AL

3.1 Base

3.1.1 LED and Heatsink

TODO: LED PCB part number

TODO: heatsink part number

Tap the heatsink. We used thread-forming tap: OSG 1400105300.

TODO: heatsink compoud

Install with wires facing towards printed hole

Use 4-40 1/4".

3.1.2 Fan

TODO: fan part number

Noctua NF-A12x15 PWM

pins: blue: PWM (5 V) yellow: +12 V black: ground

Use 4-40 3/4" into captured nuts

4 Efficacy