LPMS Lecture 14 Case study

Julian Hall

School of Mathematics University of Edinburgh jajhall@ed.ac.uk

17 March 2020

EPower

Introduction

- EPower provides electricity for a small country
- Four power generation sources

Gas

Coal

Nuclear

Wind

- Can also supply power from abroad via the interconnect
- Must match demand
- Objective is to maximize profit

EPower needs your advice on how to reduce its environmental impact

EPower: Generation and emissions

Power and energy

- Power output measured in Megawatts (MW)
- Energy is power output for a period of time
 - Equal to "power" × "time"
 - Measured in Megawatt hours (MWh)

Power source parameters

Power sources characterized by

- Max power output (MW)
- Running cost (£/MWh)
- Increase cost (£/MW)

Emissions

- Burning gas produces CO₂
- Burning coal produces CO₂ and sulphur
- Emissions of CO₂ and sulphur are limited

EPower: Demand

 Average demand varies through the day

Times: [1 2 3 4 5 6]

PeriodLength: [6 2 8 4 2 2]

Demand:

[12000 18000 20000 22000 20000 18000]

 Power output in each period must equal the demand

EPower: Wind power variability

- Wind power output varies with the weather
- Generation schedule must be adaptable
- Maximum generation capacity 22000 MW

EPower: Interconnect

- Power line linking neighbouring networks
- Used to buy and sell power
- Not linked to any fuel type
- For EPower this is modelled as a power source of up to 20000 MW

EPower: Data

Power generation

	Gas	Coal	Nuclear	Wind	Interconnect
Max output (MW)	6000	6000	5000	22000	20000
Running cost $(£/MWh)$	40	30	50	2	100
Increase cost $(£/MW)$	80	60	10^{10}	1	50

Electricity price: £35/MWh

Emissions

	Units	/MWh	(Units)
	Gas	Coal	Daily limit
Sulphur	0.0	0.4	30000
CO_2	0.8	1.2	200000

Decisions

In each time period

- The power output for each source
- Increase in power output for each source

Case study: Consultancy

LPMS consulting

- Develop a "base case" model which replicates current decision-making Builds confidence with the client
 - Demonstrates understanding of status quo
 - Generates faith in future recommendations
- ② Use the model to advise on strategic decisions in a given set of scenarios Gives the client what was asked for
- Identify a few further specific ideas for the client to consider Shows we do more than the minimum
- Suggest what further consulting might consider Hope to get a further fee!

EPower: Case study

Base case

Use ${\tt EPower0.dat}$ to find the operation schedule for a constant maximum wind power output of

- 0 MW (calm day)
- 22000 MW (very windy day)

Investigation

Use EPower.dat to find the operation schedule for an average maximum wind power output and assess

- Effect of building a pump storage hydro-power scheme
- Effect of not using nuclear power

EPower: Pumped-storage hydro

- For EPower, natural flow into reservoir yields power output of 400 MW
- Collect natural flow to release at higher power output during peak demand
- Increase scope for hydro power by pumping water up at times of low demand

EPower: Pumped-storage hydro

Data

• Running cost: £5/MWh

• Increase cost: £5/MWh

Maximum reserve: 25000 MWh

Natural inflow: 400 MW

Pumping efficiency: 80%

Decisions

- In each time period:
 - The pumping power demand
 - The hydro power output
- The energy stored in the reservoir at the end of each time period

Modelling

- Treat energy stored in the reservoir as an inventory problem
 - Energy input comes from natural inflow and (efficient) pump power over time
 - Energy output comes from hydro power output over time
 - Energy stored must not exceed reserve
- Add pumping power demand to customer demand so pumping power is generated

EPower: Investigation data

- Data file EPower.dat has values for pump storage hydro-power scheme
 - When necessary, "switch off" the pump storage hydro-power scheme by setting

```
MaxOutput("Hydro") := 0
NaturalHydroInflow := 0
```

and redefining the hydro-power model

- \bullet Cost of building pump storage hydro-power scheme is accounted for by a daily charge of $\pounds 1$ million
- For your wind power output, see EPowerScenarios.pdf on Learn
 - Add your value to EPower.dat and submit this file

Consultancy: My experience

I have done consultancy work for companies writing software for

- Animal feed formulation
- Chemical engineering
- Petroleum engineering
- Power and water engineering

Some of these relationships have lasted over 20 years

Consultancy: Golden rules

As a consultant, tell the customer them something that

- They know
 - Establish your credibility
- They wanted to know
 - Answer the question that was asked
- They didn't ask to know
 - Shows that you do more than the minimum
- They might want to know
 - Tempts them to re-employ you

Case study deliverables

- Report: Cover page plus max 4 pages
- Model:
 - One Mosel file
 - One data file including your wind scenario

Marks	For
25	Results
25	Mosel skills
25	Report content
15	Report-writing skills
10	Bonus

Bonus is for observations/conclusions/recommendations and unprompted investigations

Case study deliverables: Report contents

- Introduce the aspect of the company to be investigated
 - Place the investigation in context
 - Don't include large tables of data: refer to an appendix if necessary
 - Don't include equations
- State the "base case" results clearly
 - Use tables and charts sparingly
 - Shows that you start from a point well-understood
- Consider the points to be investigated systematically
 - Use tables and charts sparingly
 - Don't just give results, but also interpretation and analysis
- Think what else you could investigate with your model
- Offer general observations, conclusions and recommendations

Case study deliverables: Report presentation

- Aim to produce a neat and tidy document
 - Right-left justified text
 - Quote values to a sensible number of significant figures
 - Make tables and charts a sensible size
- Don't spend hours beautifying your document
 - Can raise suspicions
 - There are no marks for fancy graphics
- Something of you should come across

Case study deliverables: Model

- Write the model to be readable by a Mosel user
- Ensure that the base case can be solved using EPower.dat
- Not necessary for the model to generate all the results in your report without modification
 - But, give some indication how to use it to investigate different aspects of the case study
- Submit one data file including your wind scenario
- Use good Mosel style

Summary: http://www.maths.ed.ac.uk/hall/Xpress/Consultancy.html