

FIG.1

2/32

FIG.2A

FIG.2C

FIG.2B

FIG.2D

FIG.2E

FIG.3A

FIG.3B

FIG.3C

FIG.3D

2023/10/25 20:25:00

1 2 3

FIG.3E

Ub(μ M): 0 0.1 0.3 1 3 10

FIG.4A

Order of addition:
Ub(μ M): 0 1.2 2.4 [2.4 60]
MeUb(μ M): 0 0 0 [40 40] [40 40]

FIG.4B

FIG.5A

Kinase:	-	+	+	+
Rel A:	+	+	-	+
OA:	+	+	+	-

FIG.5B

bioRxiv preprint doi: <https://doi.org/10.1101/2023.09.04.554520>; this version posted September 4, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/).

Preincubation: no preinc. - Ub + Ub
Time (min.): 0 3 6 10 20 3 6 10 20 3 6 10 20

FIG.6A

FIG. 6B

FIG.7A

FIG. 7B

FIG. 8

FIG.9

FIG.10A

© 2002 Blackwell Publishing Ltd, *Journal of Cell Science*, 115, 1495–1504

FIG.10B

FIG.10C

FIG.10D

FIG. 11A

FIG. 11B

18/32

FIG. 11C

FIG. 11D

FIG.12

FIG.13A

FIG.13B

FIG. 13C

FIG. 13D

FIG. 14A

FIG. 14C

FIG. 14D

FIG.15A

FIG.15B

	CIP	-	-	+	+
	MEKK1 Δ	+	-	+	-

FIG.16A

FIG.16B

FIG. 17

FIG. 18

FIG.19A

FIG.19B

FIG.20

A p50: pep1: [L/I] [Y] [V] [E] [L/I] [E] [R]
B pep2: [L/I] [Q/K] [E] [V] [L/I] [E] [T] [L/I] [L/I] [S]
C pep3: [L/I] [F] [T] [T] [M] [E] [L/I] [M] [R]
D p40: pep4: [T] [Y] [H] [A] [L*] [S] [N] [L*] [P] [K*]

FIG.21

1 ggggtgacgag tggtgtggccga agcaggggga cagcaaggga cgctcaggcg gggaccatgg
61 cggacgcgg ctcggagcgg gctgacgggc gcatacgtaa gatggagggtg gactacagcg
121 ccacgggttga tcagcgccta cccgagtgtg cagaatgtgc caaggaaggaa agacttcaag
181 aagtcatgttga aaccctttc tctctggaaa agcagactcg tactgcttcc gatatggtat
241 cgacatcccc tatcttagtt gcagtagtga agntgtgtca tgaggctaaa gaatgggatt
301 tacttaatta aaaatattat tgcttttgtt caaaaaggcg gagtcaagtt aaaaacaagc
361 tagttgacaa aaaatggatt naacgttgc tgtnacttat tgttt

1 ataccaagag gtaccaggaa gcattgcatt tgggttctca gctgctgcgg gagttgaaaa
61 agatggacga caaagctttt ttgggttgaag tacagctttt agaaaagcaaa acataccatg
121 ccctgagcaa cctggccaaa gcccgagctg ccttaacttc ttctcgaaacc acagcaaatg
181 ccatctactg ccccttaaat tgccaggccac ctggacatg cagtcgggtt ttatccatgc
241 agcagaagag aaggcttgaa actcgactc atacttctat gaggcatttta gggtatgact
301 catcgacagc ccaaggcatc aca

FIG.22

FIG. 23

FIG. 24