Type-based deadlock analysis of linear communications

Luca Padovani

(with contributions from Tzu-Chun Chen, Luca Novara, Andrea Tosatto)

Dipartimento di Informatica – Università di Torino – Italy

IMT Lucca – 19 marzo 2015

Summary

What we want to achieve

- static analysis for deadlock detection
- the problem is **undecidable** in general

How we want to do it

types

What we need

- a language of communicating processes
- a type system

Outline

- **1** The linear π -calculus
- 2 Types for deadlock freedom
- 3 From the π -calculus to a programming language
- 4 References

Outline

- **1** The linear π -calculus
- 2 Types for deadlock freedom
- 3 From the π -calculus to a programming language
- 4 References

Syntax of the π -calculus

0	idle process
u?x.P	input
*u?x.P	persistent input
u!v.P	output
PIQ	parallel composition
new a in P	channel creation

*succ?(x, c).c!(x + 1)

$$*succ?(x, c).c!(x + 1)$$

 $succ!(3, a) \mid a?x \cdots$

$$*succ?(x, c).c!(x + 1)$$

new a in $(succ!(3, a) | a?x \cdots)$

$$*succ?(x, c).c!(x + 1)$$

new
$$a$$
 in $(succ!(3, a) | a?x \cdots)$

```
new b in (succ!(4, b) | b?y \cdots)
```

Encoding the recursive Fibonacci function

```
*fibo?(n, r).
 if n \leq 1 then
   r!n
 else {
   new a in
   new b in {
     fibo!(n - 1, a) \mid
     fibo!(n-2, b)
     a?x.b?y.r!(x + y)
```

$$*succ?(x, c).c!(x + 1)$$

new
$$a$$
 in $(succ!(3, a) \mid a?x \cdots)$

- succ: 0, 1, 2, . . . communications
- a: 1 communication

$$*succ?(x, c).c!(x + 1)$$

new
$$a$$
 in $(succ!(3, a) \mid a?x \cdots)$

- $[int]_{c: 0, 1, 2, ...}$ communications
 - a: 1 communication

$$*succ?(x, c).c!(x + 1)$$

new
$$a$$
 in $(succ!(3, a) \mid a?x \cdots)$

- $[int]_{c: 0, 1, 2, ...}$ communications
 - a: 1 communication

$$*succ?(x, c).c!(x + 1)$$

new
$$a$$
 in $(succ!(3, a) \mid a?x \cdots)$

- $[int]_{c}$: 0, 1, 2, ... communications
 - a: 1 communication

$$*succ?(x, c).c!(x + 1)$$

new
$$a$$
 in $(succ!(3, a) \mid a?x\cdots)$

⁰[int] succ: 0, 1, 2, ... communications

 $^{0,1}[int \times ^{0,1}[int]]$

$$*succ?(x, c).c!(x + 1)$$

new
$$a$$
 in $(succ!(3, a) \mid a?x \cdots)$

• succ: 0, 1, 2, ... communications $\times^{0,1}[\text{int}]]$ communication

Channel types are useful for...

- catching communication errors in programs
 - like sending a **string** instead of an **integer**

- improving the efficiency of programs
 - a linear channel can be deallocated right after usage

- **a** deducing desirable properties of programs
 - communications on linear channels are deterministic
 - a linear channel is a promise of communication

How far can we go with linear channels?

What if we need to communicate more than once?

- We could use unlimited channels. . .
- ... or continuations! (i.e. more linear channels)

```
new s in eq!(s).
s!3.
s!4.
s?res
```

```
new s0 in eq!(s0).
new s1 in s0!(3,s1).
new s2 in s1!(4,s2).
s2?res
```

all si are linear

How far can we go with linear channels?

What if we need to communicate **more than once**?

- We could use unlimited channels. . .
- ... or **continuations**! (i.e. *more linear channels*)

```
new s in eq!(s).

s!3.

new s0 in eq!(s0).

new s1 in s0!(3,s1).

s!4.

new s2 in s1!(4,s2).

s?res

s2?res
```

all si are linear

How far can we go with linear channels?

What if we need to communicate **more than once**?

- We could use unlimited channels. . .
- ... or **continuations**! (i.e. *more linear channels*)

```
new s in eq!(s).

s!3.

new s0 in eq!(s0).

new s1 in s0!(3,s1).

s!4.

new s2 in s1!(4,s2).

s?res

s2?res
```

all si are linear

Example: persistent forwarder

```
*link?(x,y). -- x and y are linear channels x?(v,x'). -- x' is a continuation new c in y!(v,c). -- c is a continuation link!(x',c)
```


Types of x and y...

Example: persistent forwarder

```
*link?(x,y). -- x and y are linear channels
x?(v,x'). -- x' is a continuation
new c in y!(v,c). -- c is a continuation
link!(x',c)
```


Types of x and y...

$$\mathbf{x}$$
 : t where $t = {}^{1,0}[\mathbf{int} \times t]$ \mathbf{y} : s where $s = {}^{0,1}[\mathbf{int} \times t]$

Example: the Fibonacci stream network

Outline

- **1** The linear π -calculus
- 2 Types for deadlock freedom
- 3 From the π -calculus to a programming language
- 4 References

A suspicious mismatch

We said...

• a linear channel is a promise of communication

A suspicious mismatch

We said...

• a linear channel is a promise of communication

But...

Theorem (Kobayashi, Pierce, Turner, 1999)

Each linear channel of a well-typed process is used at most once

new a in new b in (a?x.b!x | b?x.a!3)

new a in new b in (a?x.b!x | b?x.a!3)

new a in new b in (a?x.b!x | b?x.a!3)

```
^{1,1}[int]
```

new a in new b in (a?x.b!x | b?x.a!3)

15 / 34

```
  ^{0,1}[int]  new a in new b in (a?x.b!x \mid b?x.a!3)   ^{0,1}[int].nt]
```

int]
 une process is well-typed, a and b are linear
 no communication happens

Different processes, same typing

```
a: {}^{1,1}[int], b: {}^{1,1}[int] \vdash a?x.b!x \mid a!3.b?x
```

Different processes, same typing

$$a: {}^{1,1}[int], b: {}^{1,1}[int] \vdash a?x.b!x \mid a!3.b?x$$

a?x.b!x | b?x.a!3

Different processes, same typing

$$a: {}^{1,1}[int], b: {}^{1,1}[int] \vdash a?x.b!x \mid a!3.b?x$$

$$a: {}^{1,1}[int], b: {}^{1,1}[int] \vdash a?x.b!x \mid b?x.a!3$$

types do not carry any information regarding usage order

Types for deadlock analysis

1 assign each linear channel a level $\in \mathbb{Z}$

$$\kappa_1, \kappa_2[t]^h$$

make sure that channels are used in strict order

a?x.b!x | b?x.a!3

Types for deadlock analysis

1 assign each linear channel a level $\in \mathbb{Z}$

$$\kappa_1, \kappa_2[t]^h$$

2 make sure that channels are used in strict order

a?x.b!x | b?x.a!3

Types for deadlock analysis

1 assign each linear channel a level $\in \mathbb{Z}$

$$\kappa_1, \kappa_2[t]^h$$

 m $oldsymbol{2}$ make sure that channels are used in strict order

a?x.b!x | b?x.a!3

Types for deadlock analysis

1 assign each linear channel a level $\in \mathbb{Z}$

$$\kappa_1, \kappa_2[t]^h$$

2 make sure that channels are used in $\frac{0.1[int]^m}{r}$

$$a?x.b!x | b?x^{1,0}[int]^m$$

 $[int]^n$

$$\frac{\Gamma, x: t \vdash P}{\Gamma, u: {}^{1,0}[t]^h \vdash u?x.P}$$

$$\frac{\Gamma, x: t \vdash P \qquad h < |\Gamma|}{\Gamma, u: {}^{1,0}[t]^h \vdash u?x.P}$$

smaller than y channel in *P*

$$\frac{\Gamma, x : t \vdash P \qquad h < |\Gamma|}{\Gamma, u : {}^{1,0}[t]^h \vdash u?x.P}$$

$$\frac{\Gamma_1 \vdash e : t \qquad \Gamma_2 \vdash P}{\Gamma_1, \, \Gamma_2, \, u : {}^{0,1}[t]^h \vdash u ! \, e.P}$$

$$\frac{\Gamma, x: t \vdash P \qquad h < |\Gamma|}{\Gamma, u: {}^{1,0}[t]^h \vdash u?x.P}$$

smaller than by channel in
$$e$$
 $\vdash e: t$ $\Gamma_2 \vdash P$ $h < |t|$ and $h < |\Gamma_2|$ $\Gamma_1, \Gamma_2, u: {}^{0,1}[t]^h \vdash u! e.P$

Properties

Definition (deadlock freedom)

P is deadlock free if $P \rightarrow^* Q \rightarrow$ implies that in Q there are no pending communications on linear channels

Theorem

If $\Gamma \vdash P$, then P is deadlock free

Sketch.

By contradiction. Suppose $P \to^* Q \to$ and there is a pending communication on a linear channel in Q.

Then one shows that there is a set of channels with strictly decreasing levels. This contraidcts the fact that Q is *finite* and contains finitely many channels.

 $a: {}^{1,1}[\mathbb{N}]^0$, $b: {}^{1,1}[\mathbb{N}]^1 \vdash a?x.b!x \mid a!3.b?x$

$$a: {}^{1,0}[\mathbb{N}]^0$$
, $b: {}^{0,1}[\mathbb{N}]^1 \vdash a?x.b!x$

 $a: {}^{1,1}[\mathbb{N}]^0$, $b: {}^{1,1}[\mathbb{N}]^1 \vdash a?x.b!x \mid a!3.b?x$

$$\frac{b: {}^{0,1}[\mathbb{N}]^1, x: t \vdash b!x \quad 0 < 1}{a: {}^{1,0}[\mathbb{N}]^0, b: {}^{0,1}[\mathbb{N}]^1 \vdash a?x.b!x}$$

 $a: {}^{1,1}[\mathbb{N}]^0$, $b: {}^{1,1}[\mathbb{N}]^1 \vdash a?x.b!x \mid a!3.b?x$

$$\frac{b: {}^{0,1}[\mathbb{N}]^{1}, x: t \vdash b!x \quad 0 < 1}{a: {}^{1,0}[\mathbb{N}]^{0}, b: {}^{0,1}[\mathbb{N}]^{1} \vdash a?x.b!x} \qquad \overline{a: {}^{0,1}[\mathbb{N}]^{0}, b: {}^{1,0}[\mathbb{N}]^{1} \vdash a!3.b?x}$$

$$a: {}^{1,1}[\mathbb{N}]^{0}, b: {}^{1,1}[\mathbb{N}]^{1} \vdash a?x.b!x \mid a!3.b?x$$

$$\frac{b: {}^{0,1}[\mathbb{N}]^1, x: t \vdash b! x \quad 0 < 1}{a: {}^{1,0}[\mathbb{N}]^0, b: {}^{0,1}[\mathbb{N}]^1 \vdash a? x. b! x} \qquad \frac{b: {}^{1,0}[\mathbb{N}]^1 \vdash b? x \quad 0 < 1}{a: {}^{0,1}[\mathbb{N}]^0, b: {}^{1,0}[\mathbb{N}]^1 \vdash a! 3. b? x}$$
$$a: {}^{1,1}[\mathbb{N}]^0, b: {}^{1,1}[\mathbb{N}]^1 \vdash a? x. b! x \mid a! 3. b? x}$$

$$\frac{b: {}^{0,1}[\mathbb{N}]^1, x: t \vdash b! x \quad 0 < 1}{a: {}^{1,0}[\mathbb{N}]^0, b: {}^{0,1}[\mathbb{N}]^1 \vdash a? x. b! x} \qquad \frac{b: {}^{1,0}[\mathbb{N}]^1 \vdash b? x \quad 0 < 1}{a: {}^{0,1}[\mathbb{N}]^0, b: {}^{1,0}[\mathbb{N}]^1 \vdash a! 3. b? x}$$

$$a: {}^{1,1}[\mathbb{N}]^0, b: {}^{1,1}[\mathbb{N}]^1 \vdash a? x. b! x \mid a! 3. b? x$$

$$\frac{b: {}^{0,1}[\mathbb{N}]^{1}, x: t \vdash b!x \quad 0 < 1}{a: {}^{1,0}[\mathbb{N}]^{0}, b: {}^{0,1}[\mathbb{N}]^{1} \vdash a?x.b!x}$$

$$a: {}^{1,1}[\mathbb{N}]^{0}, b: {}^{1,1}[\mathbb{N}]^{1} \vdash a?x.b!x \mid b?x.a!3$$

$$\frac{b: {}^{0,1}[\mathbb{N}]^1, x: t \vdash b! x \quad 0 < 1}{a: {}^{1,0}[\mathbb{N}]^0, b: {}^{0,1}[\mathbb{N}]^1 \vdash a? x. b! x} \qquad \frac{b: {}^{1,0}[\mathbb{N}]^1 \vdash b? x \quad 0 < 1}{a: {}^{0,1}[\mathbb{N}]^0, b: {}^{1,0}[\mathbb{N}]^1 \vdash a! 3. b? x}$$

$$a: {}^{1,1}[\mathbb{N}]^0, b: {}^{1,1}[\mathbb{N}]^1 \vdash a? x. b! x \mid a! 3. b? x$$

$$\frac{b: {}^{0,1}[\mathbb{N}]^1, x: t \vdash b! x \quad 0 < 1}{a: {}^{1,0}[\mathbb{N}]^0, b: {}^{0,1}[\mathbb{N}]^1 \vdash a? x. b! x} \qquad \overline{a: {}^{0,1}[\mathbb{N}]^0, b: {}^{1,0}[\mathbb{N}]^1 \vdash b? x. a! 3}$$
$$a: {}^{1,1}[\mathbb{N}]^0, b: {}^{1,1}[\mathbb{N}]^1 \vdash a? x. b! x \mid b? x. a! 3}$$

$$\frac{b: {}^{0,1}[\mathbb{N}]^1, x: t \vdash b! x \quad 0 < 1}{a: {}^{1,0}[\mathbb{N}]^0, b: {}^{0,1}[\mathbb{N}]^1 \vdash a? x. b! x} \qquad \frac{b: {}^{1,0}[\mathbb{N}]^1 \vdash b? x \quad 0 < 1}{a: {}^{0,1}[\mathbb{N}]^0, b: {}^{1,0}[\mathbb{N}]^1 \vdash a! 3. b? x}$$

$$a: {}^{1,1}[\mathbb{N}]^0, b: {}^{1,1}[\mathbb{N}]^1 \vdash a? x. b! x \mid a! 3. b? x$$

$$\frac{b: {}^{0,1}[\mathbb{N}]^1, x: t \vdash b!x \quad 0 < 1}{a: {}^{1,0}[\mathbb{N}]^0, b: {}^{0,1}[\mathbb{N}]^1 \vdash a?x.b!x}$$

$$\frac{a: {}^{0,1}[\mathbb{N}]^0 \vdash a!3}{a: {}^{0,1}[\mathbb{N}]^0, b: {}^{1,0}[\mathbb{N}]^1 \vdash b?x.a!3}$$

$$a: {}^{1,1}[\mathbb{N}]^0$$
, $b: {}^{1,1}[\mathbb{N}]^1 \vdash a?x.b!x \mid b?x.a!3$

$$\frac{b: {}^{0,1}[\mathbb{N}]^1, x: t \vdash b! x \quad 0 < 1}{a: {}^{1,0}[\mathbb{N}]^0, b: {}^{0,1}[\mathbb{N}]^1 \vdash a? x. b! x} \qquad \frac{b: {}^{1,0}[\mathbb{N}]^1 \vdash b? x \quad 0 < 1}{a: {}^{0,1}[\mathbb{N}]^0, b: {}^{1,0}[\mathbb{N}]^1 \vdash a! 3. b? x}$$

$$a: {}^{1,1}[\mathbb{N}]^0, b: {}^{1,1}[\mathbb{N}]^1 \vdash a? x. b! x \mid a! 3. b? x$$

$$\frac{b: {}^{0,1}[\mathbb{N}]^1, x: t \vdash b! x \quad 0 < 1}{a: {}^{1,0}[\mathbb{N}]^0, b: {}^{0,1}[\mathbb{N}]^1 \vdash a?x.b! x} \qquad \frac{a: {}^{0,1}[\mathbb{N}]^0 \vdash a! 3 \quad 1 \not< 0}{a: {}^{0,1}[\mathbb{N}]^0, b: {}^{1,0}[\mathbb{N}]^1 \vdash b?x.a! 3}$$

$$a: {}^{1,1}[\mathbb{N}]^0, b: {}^{1,1}[\mathbb{N}]^1 \vdash a?x.b! x \mid b?x.a! 3}$$

More deadlocks

new a in a?x.a!x

new a in a!a

```
*link?(x ,y ).

x ?(z,a). -- x blocks y and a

new b in y !(z,b). -- y blocks a and b

link!(a ,b)
```

```
*link?(x^0,y^1).

x^0?(z,a). -- x blocks y and a

new b in y^1!(z,b). -- y blocks a and b

link!(a,b)
```

```
*link?(x^0,y^1).

x^0?(z,a^2). -- x blocks y and a

new b in y^1!(z,b). -- y blocks a and b

link!(a^2,b)
```

```
*link?(x^0,y^1).

x^0?(z,a^2). -- x blocks y and a

new b^3 in y^1!(z,b^3). -- y blocks a and b

link!(a^2,b^3)
```

```
*link?(x^0,y^1).

x^0?(z,a^2). -- x blocks y and a

new b^3 in y^1!(z,b^3). -- y blocks a and b

link!(a^2,b^3)
```

Problem

- the levels of a and b don't match those of x and y
- type error

```
*link?(x^0,y^1).

x^0?(z,a^2). -- x blocks y and a

new b^3 in y^1!(z,b^3). -- y blocks a and b

link!(a^2,b^3)
```

Problem

- the levels of a and b don't match those of x and y
- type error

Solution

- the mismatch is OK as long as it is a translation
- allow level polymorphism

▶ Problem statement

Given an untyped process P, find Γ , if there is one, such that $\Gamma \vdash P$

- facility for the programmer
- inference tool of program's properties
 - linearity analysis
 - deadlock analysis
 - possibly more...

Theorem

Problem statement

Given an untyped process P, find Γ , if there is one, such that $\Gamma \vdash P$

- facility for the programmer
- inference tool of program's properties
 - linearity analysis
 - deadlock analysis
 - possibly more...

Theorem

Problem statement

Given an untyped process P, find Γ , if there is one, such that $\Gamma \vdash P$

- facility for the programmer
- inference tool of program's properties
 - linearity analysis
 - deadlock analysis
 - possibly more...

Theorem

▶ Problem statement

Given an untyped process P, find Γ , if there is one, such that $\Gamma \vdash P$

- facility for the programmer
- inference tool of program's properties
 - linearity analysis
 - deadlock analysis
 - possibly more...

Theorem

```
*link?(x ,y ).

x ?(z,a). --

new b in y !(z,b). --

link!(a ,b) --
```

- perform linearity analysis
- put integer variables in place of (unknown) levels
- 3 compute constraints on levels
- 4 use ILP solver

```
*link?(x^{n}, y^{m}).

x^{n}?(z, a^{h}). --

new b^{k} in y^{m}!(z, b^{k}). --

link!(a^{h}, b^{k}) --
```

- perform linearity analysis
- put integer variables in place of (unknown) levels
- 3 compute constraints on levels
- 4 use ILP solver

```
*link?(x^{n}, y^{m}).

x^{n}?(z, a^{h}). -- n < m \land n < h

new b^{k} in y^{m}!(z, b^{k}). --

link!(a^{h}, b^{k}) --
```

- perform linearity analysis
- put integer variables in place of (unknown) levels
- 3 compute constraints on levels
- 4 use ILP solver

- perform linearity analysis
- 2 put integer variables in place of (unknown) levels
- 3 compute constraints on levels
- 4 use ILP solver

- perform linearity analysis
- 2 put integer variables in place of (unknown) levels
- 3 compute constraints on levels
- 4 use ILP solver

- perform linearity analysis
- 2 put integer variables in place of (unknown) levels
- 3 compute constraints on levels
- 4 use ILP solver

Outline

- **1** The linear π -calculus
- 2 Types for deadlock freedom
- 3 From the π -calculus to a programming language
- 4 References

Problem: programs have structure

$$\frac{\Gamma, x: t \vdash P \qquad n < |\Gamma|}{\Gamma, a: {}^{1,0}[t]^n \vdash a?x.P}$$

Problem: programs have structure

$$\frac{\Gamma, x: t \vdash P \qquad n < |\Gamma|}{\Gamma, a: {}^{1,0}[t]^n \vdash a?x.P}$$

send a (recv b) | send b (recv a)

- call-by-value λ -calculus
- open, send, recv, fork
- linear channels

send a (recv b) | send b (recv a)

- call-by-value λ -calculus
- open 0,1[:-+1n cv, fork
- linear cha mois

send a (recv b) | send b (recv a)

- call-by-value λ -calculus
- open, send, recv, fork
- linear channels

send a (recv b) | send b (recv a)

Ingredients

- call-by-value $^{1,0}[int]^m \rightarrow int$
 - open, sena, recv, lork
 - linear channels

 $\mathtt{int} o \mathtt{unit}$

send a (recv b) | send b (recv a)

- call-by-value λ -calculus
- open, send, recv, fork
- linear channels

More on arrow types

$$f \equiv \lambda x. (\text{send } a^m x; \text{ send } b^n x)$$

Which type for *f*?

$$f: \overset{<}{\text{int}} \xrightarrow{m} \text{unit}$$

 $f: \mathbf{int} \to^n \mathbf{unit}$

More on arrow types

```
f \equiv \lambda x. (\text{send } a^m \ x; \text{ send } b^n \ x) Which type for f? f: \text{int} \to^m \text{unit} \qquad \qquad f: \text{int} \to^n \text{unit}
```

(f 3); recv b | recv a

More on arrow types

$$f \equiv \lambda x. (\text{send } a^m x; \text{ send } b^n x)$$

Which type for *f*?

```
f: int \rightarrow^m unit

f: int \rightarrow^n unit
```

$$\frac{\Gamma, x: t \vdash e: s \& \sigma}{\Gamma \vdash \lambda x. e: t \rightarrow^{|\Gamma|, \sigma} s \& \bot}$$

 $\vdash \lambda x.x$: int $\rightarrow^{\top,\perp}$ int

$$\frac{\Gamma, x: t \vdash e: s \& \sigma}{\Gamma \vdash \lambda x.e: t \rightarrow^{|\Gamma|, \sigma} s \& \bot}$$

$$\vdash \lambda x.x$$
 : int $\to^{\top,\perp}$ int $a: {}^{0,1}[int]^n \vdash \lambda x.(x,a)$: int $\to^{n,\perp}$ int $\times {}^{0,1}[int]^n$

$$\frac{\Gamma, x: t \vdash e: s \& \sigma}{\Gamma \vdash \lambda x. e: t \rightarrow^{|\Gamma|, \sigma} s \& \bot}$$

```
 \vdash \lambda x.x \qquad : \operatorname{int} \to^{\top,\perp} \operatorname{int} 
 a: {}^{0,1}[\operatorname{int}]^n \vdash \lambda x.(x,a) \qquad : \operatorname{int} \to^{n,\perp} \operatorname{int} \times {}^{0,1}[\operatorname{int}]^n 
 \vdash \lambda x.(\operatorname{send} x 3) \qquad : {}^{0,1}[\operatorname{int}]^n \to^{\top,n} \operatorname{unit}
```

$$\frac{\Gamma, x: t \vdash e: s \& \sigma}{\Gamma \vdash \lambda x. e: t \rightarrow^{|\Gamma|, \sigma} s \& \bot}$$

```
 \vdash \lambda x.x \qquad : \operatorname{int} \to^{\top,\perp} \operatorname{int} 
 a: {}^{0,1}[\operatorname{int}]^n \vdash \lambda x.(x,a) \qquad : \operatorname{int} \to^{n,\perp} \operatorname{int} \times {}^{0,1}[\operatorname{int}]^n 
 \vdash \lambda x.(\operatorname{send} x 3) \qquad : {}^{0,1}[\operatorname{int}]^n \to^{\top,n} \operatorname{unit} 
 a: {}^{1,0}[\operatorname{int}]^n \vdash \lambda x.(\operatorname{recv} a+x) \qquad : \operatorname{int} \to^{n,n} \operatorname{int}
```

$$\frac{\Gamma_1 \vdash e_1 : t \to^{\sigma, \rho} s \& \tau_1 \qquad \Gamma_2 \vdash e_2 : t \& \tau_2 \qquad \tau_1 < |\Gamma_2| \qquad \tau_2 < \sigma}{\Gamma_1 + \Gamma_2 \vdash e_1 e_2 : s \& \rho \lor \tau_1 \lor \tau_2}$$

$$\frac{\Gamma_1 \vdash e_1 : t \to^{\sigma, \rho} s \& \tau_1 \qquad \Gamma_2 \vdash e_2 : t \& \tau_2 \qquad \tau_1 < |\Gamma_2| \qquad \tau_2 < \sigma}{\Gamma_1 + \Gamma_2 \vdash e_1 e_2 : s \& \rho \lor \tau_1 \lor \tau_2}$$

$$\vdash$$
 ($\lambda x.x$) 3

$$\frac{\Gamma_1 \vdash e_1 : t \to^{\sigma, \rho} s \& \tau_1 \qquad \Gamma_2 \vdash e_2 : t \& \tau_2 \qquad \tau_1 < |\Gamma_2| \qquad \tau_2 < \sigma}{\Gamma_1 + \Gamma_2 \vdash e_1 e_2 : s \& \rho \lor \tau_1 \lor \tau_2}$$

$$\vdash (\lambda x.x) \ 3$$
$$a: {}^{1,0}[t]^n \vdash (\lambda x.x) \ (\text{recv } a)$$

$$\frac{\Gamma_1 \vdash e_1 : t \to^{\sigma, \rho} s \& \tau_1 \qquad \Gamma_2 \vdash e_2 : t \& \tau_2 \qquad \tau_1 < |\Gamma_2| \qquad \tau_2 < \sigma}{\Gamma_1 + \Gamma_2 \vdash e_1 e_2 : s \& \rho \lor \tau_1 \lor \tau_2}$$

$$\vdash (\lambda x.x) \ 3$$

$$a: {}^{1,0}[t]^n \vdash (\lambda x.x) \text{ (recv } a)$$

$$a: {}^{1,0}[t]^n \vdash (\lambda x.(x,a)) \text{ (recv } a)$$

$$\frac{\Gamma_1 \vdash e_1 : t \to^{\sigma, \rho} s \& \tau_1 \qquad \Gamma_2 \vdash e_2 : t \& \tau_2 \qquad \tau_1 < |\Gamma_2| \qquad \tau_2 < \sigma}{\Gamma_1 + \Gamma_2 \vdash e_1 e_2 : s \& \rho \lor \tau_1 \lor \tau_2}$$

$$\vdash (\lambda x.x) \ 3$$

$$a: {}^{1,0}[t]^n \vdash (\lambda x.x) \text{ (recv a)}$$

$$a: {}^{1,0}[t]^n \vdash (\lambda x.(x,a)) \text{ (recv a)}$$

$$a: {}^{1,0}[t \to t]^0, b: {}^{1,0}[t]^1 \vdash \text{ (recv a) (recv b)}$$

Outline

- 1 The linear π -calculus
- 2 Types for deadlock freedom
- 3 From the π -calculus to a programming language
- 4 References

Essential bibliography

Linear π -calculus

Mobayashi, Pierce, Turner, **Linearity and the Pi Calculus** (TOPLAS 1999)

Deadlock freedom for the π -calculus

Mobayashi, A Type System for Lock-Free Processes (I&C 2002)

Type and effect systems

Amtoft, Nielson, Nielson, **Type and Effect Systems: Behaviours for Concurrency** (Imperial College Press 1999)

Paperware and software

- Padovani, **Deadlock and Lock Freedom in the Linear** π -**Calculus** (LICS 2014)
- Padovani, Type Reconstruction for the Linear π -Calculus with Composite and Equi-Recursive Types (FoSSaCS 2014)
- Padovani, Chen, Tosatto, **Type Reconstruction Algorithms for Deadlock-Free and Lock-Free Linear** π -**Calculi** (submitted)
- Padovani and Novara, **Types and Effects for Deadlock-Free Higher-Order Programs** (submitted)
- Padovani and Tosatto, **Hypha**(available at http://di.unito.it/hypha)

Slides, papers, links on my home page