Kapitel III

Rings and modules

§ 11 Multilinear Algebra

In this section, R will always be a commutative, unitary ring.

Reminder 11.1 (i) An R-module is an abelian group (M, +) together with a scalar multiplication

$$\cdot: R \times M \longrightarrow M$$

with the usual properties of a vector space, i.e. for any $m, n \in M, r, s \in R$ we have

- (1) $r \cdot (s \cdot m) = (rs) \cdot m$
- (2) $(r+s) \cdot m = r \cdot m + s \cdot m$
- (3) $r \cdot (m+n) = r \cdot m + r \cdot n$
- $(4) 1_R \cdot m = m$
- (ii) A map $\phi: M \longrightarrow M'$ of R-modules M, M' is called R-linear or R-module homomorphism, if

$$\phi(r \cdot m + s \cdot n) = r \cdot \phi(m) + s \cdot \phi(n)$$
 for all $r, s \in R, m, n \in M$.

- (iii) A subset $S \subseteq M$ of an R-module is called an R-submodule of M, if S is an R-module.
- (iv) R itself is an R-module, the submodules are the ideals of R.
- (v) If $\phi: M \longrightarrow M'$ is R-linear, then

$$\ker(\phi) = \{ m \in M \mid \phi(m) = 0 \},\$$

$$\operatorname{im}(\phi) = \{ m' \in M' \mid \phi(m) = m' \text{ for some } m \in M \}$$

are R-submodules.

(vi) If $M \subseteq M'$ is a submodule, then the factor group M/M' is an R-module via

$$a \cdot \overline{m} = \overline{a \cdot m}$$
.

(vii) For an R-linear map $\phi: M \longrightarrow M''$, we have

$$\operatorname{im}(\phi) \cong M / \ker(\phi)$$
.

(viii) An R-module M is called *free*, if there exists a subset $X \subseteq M$, such that every $m \in M$ has a unique representation

$$m = \sum_{x \in X} a_x \cdot x$$
, $a_x \in R$, $a_x \neq 0$ only for finitely many $x \in X$.

In this case, X is called the rank of M.

(ix) Not every R-module is free: Indeed let $0 \le I \le R$ be a proper ideal. Then R/I is not free: Let $X \subseteq R$, such that $\overline{X} \subseteq R/I$ generates the R-module R/I. Let $x \in X$ and $a \in I \setminus \{0\}$. Then we have

$$x \cdot \overline{x} = \overline{a \cdot x} = \overline{0} = \overline{0 \cdot x} = 0 \cdot \overline{x},$$

hence we have found two different reapersentations of 0. Thus R/I is not free.

- (x) For any $n \in \mathbb{N}$, $n\mathbb{Z}$ is a free module
- (xi) If $I \leq R$ is not a principle ideal, then I is not a free R-module, since for $x, y \in I$ with $y \notin (x)$ we have xy yx = 0. Again we have a nontrivial representation of 0 and I is not free.

Definition + **proposition 11.2** Let R be a ring, M, M' R-modules.

(i) The set of R-module homomorphisms

$$\operatorname{Hom}_R(M, M') = \{ \phi : M \longrightarrow M' \mid \phi \text{ is } R\text{-linear } \}$$

is again an R-module.

(ii) $M^* = \operatorname{Hom}_R(M, R)$ is called the *dual module* of M.

Let now

$$0 \longrightarrow M' \stackrel{\alpha}{\longrightarrow} M \stackrel{\beta}{\longrightarrow} M'' \longrightarrow 0$$

be a short exact sequence of R-modules M, M', M'', i.e. α is injective and β is surjective.

(iii) Then we have a short exact sequence

(iv) We have s short exact sequence

$$0 \longrightarrow \operatorname{Hom}_R(M'',N) \xrightarrow{\beta^*} \operatorname{Hom}_R(M,N) \xrightarrow{\alpha^*} \operatorname{Hom}_R(M',N)$$
$$\phi \mapsto \phi \circ \beta, \quad \psi \mapsto \psi \circ \alpha$$

- (v) N is called a *projective* module, if β_* is surjective for all short exact sequences as in (iii).
- (vi) N is called an *injective* module, if α^* is surjective for all short exact sequences an in (iv).

proof. (i) This is clear: For all $\phi, \phi_1, \phi_2 \in \operatorname{Hom}_R(M, M')$ and $a \in R$ we have

$$(\phi_1 + \phi_2)(x) = \phi_1(x) + \phi_2(x), \qquad (a \cdot \phi)(x) = a \cdot \phi(x)$$

(iii) α_* is R-linear: For any $\phi_1, \phi_2 \in \operatorname{Hom}_R(N, M')$ and $x \in N$ we have

$$\alpha_*(\phi_1 + \phi_2)(x) \ = \ (\alpha \circ (\phi_1 + \phi_2)) \, (x) \ = \ \alpha \, (\phi_1(x) + \phi_2(x)) \ = \ \alpha \, (\phi_1(x)) + \alpha \, (\phi_2(x))$$

and thus

$$\alpha_*(\phi_1 + \phi_2)(x) = \alpha_*(\phi_1)(x) + \alpha_*(\phi_2)(x) = (\alpha_*(\phi_1) + \alpha_*(\phi_2))(x).$$

Moreover, α_* is injective: Since α is injective we have $\alpha_*(\phi)(x) = \alpha(\phi(x)) = 0$ if and only if $\phi(x) = 0$ for all $x \in N$, thus $\phi = 0$. Now we still have to show $\ker(\beta_*) = \operatorname{im}(\alpha_*)$.

- ' \supseteq ' For $\phi \in \operatorname{Hom}_R(N, M')$ we have $\beta_*(\alpha \circ \phi) = \beta \circ \alpha \circ \phi = 0 \circ \phi = 0$, i.e. $\alpha \circ \phi = \alpha_*(\phi) \in \ker(\beta_*)$.
- ' \subseteq ' Let $\phi: N \longrightarrow M$, $\phi \in \ker(\beta_*)$, i.e. $\beta \circ \phi = 0$. We have to show, that there exists $\phi' \in \operatorname{Hom}_R(N, M')$ such that $\phi = \alpha_*(\phi') = \alpha \circ \phi'$. Let $x \in N$. Then $\phi(x) \in \ker(\beta) = \operatorname{im}(\alpha)$. Then there exists $z \in M'$ such that $\phi(x) = \alpha(z)$ and z is unique, since α is injective. Define $\phi'(x) := z$. Then we have $\alpha \circ \phi' = \phi$. It remains to show that ϕ' is R-linear. We have $\phi'(x_1 + x_2) = z$ and with $\alpha(z) = \phi(x_1 + x_2) = \phi(x_1) + \phi(x_2)$ we again have $\alpha(z) = \phi(z_1) + \phi(z_2)$ for some suitable, but unique $z_1, z_2 \in M'$. Since we have

$$\alpha(z) = \phi(x_1 + x_2) = \phi(x_1) + \phi(x_2) = \alpha(z_1) + \alpha(z_2) = \alpha(z_1 + z_2)$$

and α is injective, we have $z = z_1 + z_2$, thus

$$\phi'(x_1 + x_2) = z = z_1 + z_2 = \phi'(x_1) + \phi'(x_2).$$

Moreover for $a \in R$ we have $\phi'(ax) = w$ with $\alpha(w) = \phi(ax) = a \cdot \phi(x) = a \cdot \alpha(z)$. Thus $\alpha(\phi'(ax)) = \alpha(w) = \phi(ax) = a \cdot \phi(x) = a \cdot \alpha(z) = a \cdot \alpha(\phi'(x)) \stackrel{\alpha \text{ inj.}}{\Longrightarrow} \phi'(ax) = a \cdot \phi'(x)$, which proves the claim.

Remark 11.3 (i) An R-module N is projective if and only if for every surjective R-linear map $\beta: M \longrightarrow M''$ and every R-linear map $\phi: N \longrightarrow M''$ there is an R-linear map

 $\tilde{\phi}: N \longrightarrow M$, such that the diagram below commutes, i.e. $\phi = \beta \circ \tilde{\phi}$.

(ii) Free modules are projective.

Definition 11.4 Let M, M_1, M_2 be R-modules. A map

$$\Phi: M_1 \times M_2 \longrightarrow M$$

is called *bilinear*, if the maps

$$\Phi_{x_0}: M_2 \longrightarrow M, \quad y \mapsto \Phi(x_0, y), \qquad \Phi_{y_0}: M_1 \longrightarrow M, \quad x \mapsto \Phi(x, y_0)$$

are linear for all $x_0 \in M_1$ and $y_0 \in M_2$.

Definition 11.5 Let M_1, M_2 be R-modules. A tensor product of M_1 and M_2 is an R-module T together with a bilinear map

$$\tau: M_1 \times M_2 \longrightarrow T$$
,

such that for every bilinear map $\Phi: M_1 \times M_2 \longrightarrow M$ for any R-module M there is a unique linear map $\phi: T \longrightarrow M$, such that the following diagram becomes commutative.

$$M_1 \times M_2 \xrightarrow{\tau} T$$
 $M = M_1 \times M_2 \xrightarrow{\sigma} T$

Remark 11.6 Let (T, τ) and (T', τ') be tensor products of R-modules M_1 and M_2 . Then there exists a unique isomorphism $h: T \longrightarrow T'$, such that

$$\tau' = h \circ \tau$$
.

proof. Consider

$$M_1 \times M_2 \xrightarrow{\tau} T$$
 T'
 h

Existence and uniqueness of the linear maps g and h come from Definition 11.5. It remains to show, that $h \circ g = \mathrm{id}_{T'}$ and $g \circ h = \mathrm{id}_{T}$.

In order to do this, consider the following diagramm.

$$M_1 \times M_2 \xrightarrow{\tau} T$$

$$T \qquad g \circ h \stackrel{!}{=} \mathrm{id}_T$$

We have $(g \circ h)\tau = g \circ (h \circ \tau) = g \circ \tau' = \tau$. By the uniqueness we get $\mathrm{id}_T = g \circ h$. Analogously we get $\mathrm{id}_{T'} = h \circ g$ which finishes the proof.

Corollary 11.7 The tensor product (T, τ) of R-modules M_1 , M_2 is unique up to isomorphism. The standard notation is

$$T = M_1 \otimes_R M_2, \qquad \tau(x, y) = x \otimes y$$

Example 11.8 Let M_1, M_2 be free R-modules with bases $\{e_i\}_{i \in I}, \{f_j\}_{j \in J}$. Let T be the free R-module with basis $\{g_{ij}\}_{(i,j) \in I \times J}$ and

$$\tau: M_1 \times M_2 \longrightarrow T, \ (e_i, f_j) \mapsto g_{ij} \quad \text{ for all } (i, j) \in I \times J,$$

i.e. for elements in M_1, M_2 we have

$$\tau\left(\sum_{i\in I} a_i e_i, \sum_{j\in J} b_j f_j\right) = \sum_{(i,j)\in I\times J} a_i b_j g_{ij}$$

Then (T,τ) is the tensor product of M_1, M_2 , since: Let $\Phi: M_1 \times M_2 \longrightarrow M$ be bilinear. Define

$$\phi: T \longrightarrow M, \ g_{ij} \mapsto \Phi(e_i, f_j).$$

Obviously ϕ is linear and satisfies $\Phi = \phi \circ \tau$. Now consider a special case and let |I| = n, |J| = m. Identify M_1 via $(e_1, \ldots e_n)$ with R^n and M_2 via $(f_1, \ldots f_m)$ with R^m . Then T is identified with $R^{n \times m}$ via

$$g_{ij} = E_{ij} = \begin{pmatrix} 0 & \dots & 0 & \dots & 0 \\ \vdots & & 1 & & \vdots \\ 0 & \dots & 0 & \dots & 0 \end{pmatrix}$$

where the only nonzero entry is in the *i*-th row and *j*-th column. Then $\tau: \mathbb{R}^n \times \mathbb{R}^m \longrightarrow \mathbb{R}^{n \times m}$ is given by

$$\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \otimes \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} = \begin{pmatrix} a_1b_1 & \dots & a_1b_m \\ \vdots & & \vdots \\ a_nb_1 & \dots & a_nb_m \end{pmatrix} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \cdot \begin{pmatrix} b_1 & \dots & b_m \end{pmatrix},$$

where the last multiplication is the usual multiplication of matricees.

Theorem 11.9 For any two R-modules M_1, M_2 there exists a tensor product $(T, \tau) = (M_1 \otimes_R M_2, \otimes)$.

proof. Let F be the free R-module with basis $M_1 \times M_2$ and Q be the submodule generated by all the elements

$$(x + x', y) - (x, y) - (x', y), \quad (x, y + y') - (x, y) - (x, y'), \quad (ax, y) - a(x, y), \quad (x, ay) - a(x, y)$$

for $a \in R, x, x' \in M_1, y, y' \in M_2$. Define

$$T := F/Q, \qquad \tau : M_1 \times M_2 \longrightarrow T, \ (x,y) \mapsto \overline{(x,y)}.$$

Then by the construction of Q, τ is bilinear. Let now be M a further R-module and $\Phi: M_1 \times M_2 \longrightarrow M$ a bilinear map. Define

$$\tilde{\phi}: F \longrightarrow M, \quad (x,y) \mapsto \Phi(x,y).$$

Clearly $\tilde{\phi}$ is linear. Moreover we have $Q \subseteq \ker(\phi)$, since Φ is bilinear. By the isomorphism theorem, $\tilde{\phi}$ factors to a linear map $\phi: T \longrightarrow M$ satisfying $\phi\left(\overline{(x,y)}\right) = \Phi(x,y)$. The uniqueness of ϕ follows by the fact that T is generated by the $\overline{(x,y)}$ for $x \in M_1, y \in M_2$.

Example 11.10 We want to find out what is

$$\mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/3\mathbb{Z}$$
.

Let $\Phi: \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \longrightarrow A$ bilinear for some \mathbb{Z} -module A. Then we see

$$\Phi(\overline{1},\overline{1}) = \Phi(\overline{3},\overline{1}) = \Phi\left(3 \cdot (\overline{1},\overline{1})\right) = 3 \cdot \Phi(\overline{1},\overline{1}) = \Phi(\overline{1},\overline{3}) = \Phi(\overline{1},\overline{0}) = 0 \cdot \Phi(\overline{1},\overline{1}) = 0$$

Hence $\Phi = 0$, since $(\overline{1}, \overline{1})$ generates $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. Thus $\mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/3\mathbb{Z} = 0$.

Proposition 11.11 For R-modules M, M_1, M_2, M_3 we have the following properties.

- (i) $M \otimes_R R \cong M$.
- (ii) $M_1 \otimes_R M_2 \cong M_2 \otimes_R M_1$.
- (iii) $(M_1 \otimes_R M_2) \otimes_R M_3 \cong M_1 \otimes_R (M_2 \otimes_R M_2)$.
- proof. (i) Let $\tau: M \times R \longrightarrow M$, $(x, a) \mapsto a \cdot x$. Then τ is bilinear. We now can verify the universal property of the tensor product. Let N be an arbitrary R-module and $\Phi: M \times R \longrightarrow N$ be bilinear a bilinear map. Define

$$\phi: M \longrightarrow N, \quad x \mapsto \Phi(x,1)$$

Then ϕ is R-linear: For $x, y \in M, \alpha \in R$ we have

$$\phi(\alpha \cdot x) = \Phi(\alpha \cdot x, 1) = \alpha \cdot \Phi(x, 1) = \alpha \cdot \phi(x),$$

$$\phi(x+y) = \Phi(x+y,1) = \Phi(x,1) + \Phi(y,1) = \phi(x) + \phi(y)$$

and thus

$$\phi\left(\tau(x,a)\right) = \phi(a\cdot x) = a\cdot \Phi(x,1) = \Phi(x,a)$$

(ii) The isomorphism

$$M_1 \times M_2 \xrightarrow{\cong} M_2 \times M_1, \quad (x,y) \mapsto (y,x)$$

induces an isomorphism $M_1 \otimes_R M_2 \cong M_2 \otimes_R M_1$.

(iii) For fixed $z \in M_3$ define

$$\Phi_z: M_1 \times M_2 \longrightarrow M_1 \otimes_R (M_2 \otimes_R M_3), \quad (x,y) \mapsto x \otimes (y \otimes z) = \tau_{1(23)} (\tau_{23}(x,y)).$$

Then Φ_z is bilinear and induces a linear map

$$\phi_z: M_1 \otimes_R M_2 \longrightarrow M_1 \otimes_R (M_2 \otimes_R M_3)$$
.

Define

$$\Psi: (M_1 \otimes_R M_2) \times M_3 \longrightarrow M_1 \otimes_R (M_2 \otimes_R M_3), \quad (x \otimes y, z) \mapsto \phi_z(x \otimes y).$$

 Ψ is bilinear and induces a linear map

$$\psi: (M_1 \otimes_R M_2) \otimes_R M_3 \longrightarrow M_1 \otimes_R (M_2 \otimes_R M_3)$$

Doing this again the other way round we find a linear map

$$\tilde{\psi}: M_1 \otimes_R (M_2 \otimes_R M_3) \longrightarrow (M_1 \otimes_R M_2) \otimes_R M_3$$

By the uniqueness we obtain as in Remark 11.6 that $\psi \circ \tilde{\psi} = \tilde{\psi} \circ \psi = id$, hence the claim follows.

Definition + remark 11.12 Let $M, M_1, ... M_n$ be R-modules.

(i) A map

$$\Phi: M_1 \times \ldots \times M_n = \prod_{i=1}^n M_i \longrightarrow M$$

is called multilinear, if for any $1 \le i \le n$ and all choices of $x_j \in M_j$ for $j \ne i$ the map

$$\Phi_i: M_i \longrightarrow M, \quad x \mapsto \Phi(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n)$$

is linear.

(ii) The map

$$\tau_{M_1,\dots M_n}: \prod_{i=1}^n M_i \longrightarrow \bigotimes_{i=1}^n M_i, \qquad (x_1,\dots,x_n) \mapsto x_1 \otimes \dots \otimes x_n$$

is multilinear.

(iii) For every multilinear map

$$\Phi: \prod_{i=1}^n M_i \longrightarrow M$$

there exists a unique linear map

$$\phi: \bigotimes_{i=1}^n M_i \longrightarrow M$$

such that $\Phi = \phi \circ \tau_{M_1,...M_n}$.

Definition 11.13 Let M, N be R-modules, $\Phi: M^n = \prod_{i=1}^n M \longrightarrow N$ a multilinear map.

(i) Φ is called *symmetric*, if for any $\sigma \in S_n$ we have

$$\Phi(x_1, \dots x_n) = \Phi(x_{\sigma(1)}, \dots x_{\sigma(n)}).$$

(ii) Φ is called alternating, if

$$x_i = x_j$$
 for some $i \neq j \implies \Phi(x_1, \dots x_n) = 0$.

If $char(R) \neq 2$, this is equivalent to

$$\Phi(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n) = -\Phi(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_n).$$

Proposition 11.14 *Let* M *be an* R*-module,* $n \ge 1$.

(i) There exists an R-module $S^n(M)$, called the n-th symmetric power of M and a symmetric multilinear map

$$\sigma_M^n: M^n \longrightarrow S^n(M)$$

such that for all symmetric, multilinear maps $\Phi: M^n \longrightarrow N$ for any R-module N there exists a unique linear map $\phi: S^n(M) \longrightarrow N$ satisfying $\Phi = \phi \circ \sigma_M^n$.

(ii) There exists an R-module $\Lambda^n(M)$, called the n-th exterior power of M and an alternating multilinear map

$$\lambda_M^n: M^n \longrightarrow \Lambda^n(M)$$

such that for all alternating, multilinear maps $\Phi: \Lambda^n(M) \longrightarrow N$ for any R-module N there exists a unique linear map $\phi: \Lambda^n(M) \longrightarrow N$ satisfying $\Phi = \phi \circ \lambda_M^n$.

proof. (i) Let $T^n(M) = M \otimes_R ... \otimes_R M$.

Let now $J_n(M)$ be the submodule of $T^n(M)$ generated by all elements

$$(x_1 \otimes \ldots \otimes x_n) - (x_{\sigma(1)} \otimes \ldots \otimes x_{\sigma(n)}), \quad x_i \in M, \sigma \in S_n$$

Define

$$S^{n}(M) := T^{n}(M) / J_{n}(M), \qquad \sigma_{M}^{n} := \operatorname{proj} \circ \tau_{M,\dots M}$$

Then σ_M^n is multilinear and symmetric by construction. Given a multilinear and symmetric map $\Phi: M^n \longrightarrow N$, define ϕ as follows: Let $\tilde{\phi}: T^n(M) \longrightarrow N$ be the linear map induced by Φ and observe that $J_n(M) \subseteq \ker(\tilde{\phi})$. Hence $\tilde{\phi}$ factors to a linear map

$$\phi: S^n(M) = S^n(M) / J_n(M) \longrightarrow N$$

satisfying $\phi \circ \sigma_M^n = \Phi$.

(ii) Similarly let $I_n(M)$ be the submodule of $T^n(M)$ generated by all the elements

$$x_1 \otimes \ldots \otimes x_n$$
, $x_i \in M$ with $x_i = x_j$ for some $i \neq j$

Analogously we define

$$\Lambda^n(M) := T^n(M) / I_n(M), \qquad \lambda^n_M := \operatorname{proj} \circ \tau_{M,\dots,M}$$

and obtain the required properties.

Proposition 11.15 Let M be a free R-module of rank r and $\{e_1, \ldots, e_r\}$ a basis of M. Then $\Lambda^n(M)$ is a free R-module with basis

$$\mathrm{proj}(e_{i_1} \otimes \ldots \otimes e_{i_n}) =: e_{i_1} \wedge \ldots \wedge e_{i_n}, \qquad 1 \leqslant i_1 < \ldots < i_n \leqslant r$$

In particular, $\Lambda^n(M) = 0$ for n > r and rank $(\Lambda^r(M)) = 1$.

proof. By definition we have $e_{i_1} \wedge ... \wedge e_{i_n} = 0$ if $i_k = i_j$ for some $k \neq j$, hence we have $\Lambda^n(M) = 0$ for n > r, as at least on of the e_k must appear twice.

generating: Clearly the $e_{i_1} \wedge \ldots \wedge e_{i_n}, i_k \in \{1, \ldots, r\}$ generate $\Lambda^n(M)$. We have to show that we can leave out some of them. Obviously $e_{i_{\sigma(1)}} \wedge \ldots \wedge e_{i_{\sigma(n)}}$ is a multiple by ± 1 of $e_{i_1} \wedge \ldots \wedge e_{i_n}$. Thus the $e_{i_1} \wedge \ldots \wedge e_{i_n}$ with $1 \leq i_1 < i_2 < \ldots < i_n \leq r$ generate $\Lambda^n(M)$.

linear independence: Assume

$$\sum_{1 \le i_1 < \dots < i_n \le r} a_{i_1,\dots,i_n} e_{i_1} \wedge \dots \wedge e_{i_n} = 0. \qquad (*)$$

For fixed $j := (j_1, \ldots, j_n), 1 \leq j_1 < \ldots < j_n \leq r$ choose $\sigma_j \in S_r$, such that $\sigma_j(k) = j_k$ for

 $1 \leq k \leq n$. Then we obtain

$$e_{i_1} \wedge \ldots \wedge e_{i_n} \wedge e_{\sigma_j(n+1)} \wedge \ldots \wedge e_{\sigma_j(r)} = \begin{cases} \pm e_1 \wedge \ldots \wedge e_r, & \text{if } i_k = j_k \text{ for all } k \\ 0 & \text{otherwise} \end{cases}$$

By (*) we get

$$0 = \left(\sum_{1 \leq i_1 < \dots i_n \leq r} a_{i_1, \dots, i_n} e_{i_1} \wedge \dots \wedge e_{i_n}\right) \wedge e_{\sigma_j(n+1)} \wedge \dots \wedge e_{\sigma_j(r)} = a_j e_{j_1} \wedge \dots \wedge e_{j_r}$$
 and thus $a_j = 0$.

Example 11.16 Let $M = \mathbb{R}^n$. Then $\Lambda^k(M)$ is the free R-module with basis

$$e_{i_1} \wedge \ldots \wedge e_{i_k}, \quad 1 \leq i_1 < \ldots < i_k \leq n$$

and we have $e_1 \wedge e_2 = -e_2 \wedge e_1$. What is $\Lambda^n(R^n) = \Lambda^n(M)$? And what is λ_k^M ? First we obtain $\Lambda^n(R^n) = (e_1 \wedge \ldots \wedge e_n)R \cong R$. Then

$$M^n = (R^n)^n = R^{n \times n}, \quad (a_1, \dots a_n) = A \in R^{n \times n}, \quad a_i = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{ni} \end{pmatrix} = \sum_{j=1}^n a_{ji} e_j \in R^n = M.$$

For λ_n^M we get

$$\lambda_n^M = \lambda_n^{R^n} = \lambda_n(A) = \lambda_n \left(\sum_{j=1}^n a_{j1} e_j, \dots, \sum_{j=1}^n a_{jn} e_j \right)$$

$$= \sum_{j=1}^n a_{j1} e_j \wedge \dots \wedge \sum_{j=1}^n a_{jn} e_j$$

$$= \sum_{j=1}^n a_{j1} \left(e_1 \wedge \sum_{j=1}^n a_{j2} e_j \wedge \dots \wedge \sum_{j=1}^n a_{jn} e_j \right)$$

$$= \sum_{j=1}^n a_{j1} \cdots \sum_{j=1}^n a_{jn} \left(e_1 \wedge \dots \wedge e_n \right)$$

$$= \sum_{\sigma \in S_n} a_{\sigma(1)1} \cdots a_{\sigma(n)n} \cdot e_1 \wedge \dots \wedge e_n \cdot \operatorname{sgn}(\sigma)$$

$$= \det(A) \cdot e_1 \wedge \dots \wedge e_n,$$

which is well-known tu us.

Definition 11.17 Let M be a R-module. Then we define

$$T(M) := \bigoplus_{n=0}^{\infty} T^n(M), \qquad T^0(M) := R, \ T(M) := M$$

$$S(M) := \bigoplus_{n=0}^{\infty} S^n(M). \qquad S^0(M) := R, \ S(M) := M$$

$$\Lambda(M) := \bigoplus_{n=0}^{\infty} \Lambda^n(M), \qquad \Lambda^0(M) := R, \ \Lambda(M) := M$$

On T(M) define a multiplication

$$: T^{n}(M) \times T^{m}(M) \longrightarrow T^{n+m}(M),$$
$$(x_{1} \otimes \ldots \otimes x_{n}) \cdot (y_{1} \otimes \ldots \otimes y_{m}) \mapsto x_{1} \otimes \ldots \otimes x_{n} \otimes y_{1} \otimes \ldots \otimes y_{m}$$

Similarly do it for S(M) and $\Lambda(M)$. Then we have R-algebra-structures and feel free to define

- (i) the tensor algebra T(M),
- (ii) the symmetric algebra S(M)
- (iii) the exterior algebra $\Lambda(M)$.

Definition 11.18 Let R be an arbitrary ring.

- (i) An R-algebra is a ring R' together with a ring homomorphism $\alpha: R \longrightarrow R'$. In particular R' is an R-module. If α is injective, R'/R is called a ring extension.
- (ii) A homomorphism of R-algebras R', R'' is an R-linear map $\phi: R' \longrightarrow R''$, which is a ring homomorphism.

Example 11.19 (i) $R[X_1, ... X_N]$ is an R-algebra for every $n \in \mathbb{N}$.

(ii) If R' is an R-algebra and $I \leq R'$ an ideal, then R'/I is an R-algebra.

Remark 11.20 Let R' be an R-algebra, F a free R-module. Then $F' := F \otimes_R R'$ is a free R'-module.

proof. Let $\{e_i\}_{i\in I}$ be basis of F. Let us show, that $\{e_1\otimes 1\}_{i\in I}$ is basis of F' as an R-module, where F' is an R' module by

$$b \cdot (x \otimes a) := x \otimes b \cdot a, \qquad a, b \in R, \ x \in F$$

Check the universal property of the free R'-module with basis $\{e_i \otimes 1\}_{i \in I}$ for $F \otimes_R R'$. Let M' be an R-module and $f: \{e_i \otimes 1\}_{i \in I} \longrightarrow M'$ be a map. We have to show: There exists an R'-linear map $\phi: F' \longrightarrow M'$ with $\phi(e_i \otimes 1) = f(e_i \otimes 1)$. Note that the $\{e_i \otimes 1\}$ generate F' as an R'-module, since $e_i \otimes a = a \cdot (e_i \otimes a)$ for $a \in R'$. Let $\tilde{\phi}: F \longrightarrow M'$ be the unique R-linear map satisfying $\tilde{\phi}(e_i) = f(e_i \otimes 1)$. Then define

$$\phi: F \otimes_R R' \longrightarrow M', \quad x \otimes a \mapsto a \cdot \tilde{\phi}(x).$$

Then ϕ is R'-linear an we have

$$\phi(e_i \otimes 1) = 1 \cdot \tilde{\phi}(e_i) = \tilde{\phi}(e_i) = f(e_i \otimes 1),$$

which gives us the desired structure of an R'-module.

Proposition 11.21 Let R be a ring, R', R'' two R-algebras.

(i) $R' \otimes_R R''$ is an R-algebra with multiplication

$$(a_1 \otimes b_1) \cdot (a_2 \otimes b_2) := (a_1 a_2) \otimes (b_1 b_2)$$

(ii) There are R-algebra homomorphisms

$$\sigma': R' \longrightarrow R' \otimes_R R'', \qquad a \mapsto a \otimes 1$$

$$\sigma'': R'' \longrightarrow R'' \otimes_R R'', \qquad b \mapsto 1 \otimes b$$

(iii) For any R-algebra A and R-algebra homomorphisms $\phi': R' \longrightarrow A, \phi'': R'' \longrightarrow A$, there is a unique R-algebra homomorphism

$$\phi: R' \otimes_R R'' \longrightarrow A$$

satisfying $\phi' = \phi \circ \sigma'$ and $\phi'' = \phi \circ \sigma''$, i.e. making the following diagram commutative

proof. Defining

$$\tilde{\phi}: R' \times R'' \longrightarrow A, \qquad (x,y) \mapsto \phi'(x) \cdot \phi''(y)$$

gives us ϕ , which satisfies the required properties.

§ 12 Hilbert's basis theorem

Definition 12.1 Let R be a ring, M and R-module.

(i) M is called *noetherian*, if any ascending chain of submodules $M_0 \subset M_1 \subset ...$ becomes stationary.

(ii) R is called *noetherian*, if R is noetherian as an R-module, i.e. if every ascending chain of ideals becomes stationary.

Example 12.2 (i) Let k be a field. A k-vector space is noetherian if and only if $\dim(V) < \infty$.

- (ii) \mathbb{Z} is noetherian.
- (iii) Principle ideal domains are noetherian.

Proposition 12.3 Let

$$0 \longrightarrow M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \longrightarrow 0$$

be a short exact sequence. Then M is noetherian if and only if M' and M" are noetherian.

- proof. '⇒' Let M be noetherian. Let first $M'_0 \subset M'_1 \subset \ldots$ be an ascending chain of submodules in M'. Then $\alpha(M'_0) \subset \alpha(M'_1) \subset \ldots$ is an ascending chain in M. Since M is noetherian, there exists some $n \in \mathbb{N}$, such that $\alpha(M'_i) = \alpha(M'_n)$ for all $i \geq n$. Since α is injective, we have $M'_i = M'_n$ for $i \geq n$, hence M' is noetherian. Let now $M''_0 \subset M''_1 \subset \ldots$ be an ascending chain of submodules in M''. Then $\beta^{-1}(M_0)'' \subset \beta^{-1}(M''_1) \subset \ldots$ is an ascending chain in M, hence becomes stationary. Since β is surjective, $\beta(\beta^{-1}(M''_i)) = M''_i$ and thus $M''_0 \subset M''_1 \subseteq \ldots$ becomes stationary.
 - '\(\infty\)' Let $M_0 \subset M_1 \subset \ldots$ be an ascending chain in M. Let $M_i' := \alpha^{-1}(M_i) \cong M_i \cap M'$ and $M_i'' := \beta(M_i)$. By assumption, there exists $n \in \mathbb{N}$, such that $M_i' = M_n'$ and $M_i'' = M_n''$ for all $i \geq n$. Then for $i \geq n$ we have

$$0 \longrightarrow M'_n \xrightarrow{\alpha} M_n \xrightarrow{\beta} M''_n \longrightarrow 0 \qquad \text{exact}$$

$$\parallel \qquad \qquad \downarrow^{\gamma} \qquad \qquad \parallel$$

$$0 \longrightarrow M'_i \xrightarrow{\alpha} M_i \xrightarrow{\beta} M''_i \longrightarrow 0 \qquad \text{exact}$$

Where γ is injective as an embedding. It remains to show that γ is surjective. Let $z \in M_i$. Since β is surjective, there exists $x \in M_n$, such that $\beta(x) = \beta(z)$. Then $\beta(\gamma(x) - z) = 0 \Rightarrow \gamma(x) - z = \alpha(y)$ for some $y \in M'_i = M'_n$. Let $\tilde{x} := x - \alpha(y)$. Then

$$\gamma(\tilde{x}) = \gamma(x) - \gamma(\alpha(y)) = \gamma(x) - \gamma(x) + z = z$$

hence γ is surjective, thus bijective and we have $M_i = M_n$ for $i \ge n$.

Corollary 12.4 Let R be a noetherian ring.

- (i) Any free R-module F of finite rank n is noetherian.
- (ii) Any finitely generated R-module M is noetherian.
- proof. (i) Prove this by induction on n.

n = 1 Clear.

n > 1 Let $e_1, \ldots e_n$ be a basis of F and le F' be the submodule generated by $e_1, \ldots e_{n-1}$. Then F' is free of rank n-1, thus noetherian by induction hypothesis. Moreover F/F' is free with generator e_n . Thus we have a short exact sequence

$$0 \longrightarrow F' \longrightarrow F \longrightarrow F/F' \longrightarrow 0$$

with F', F/F' noetherian, hence by 12.2, F is noetherian.

(ii) If M is generated by $x_1, \ldots x_n$, there is a surjective, R-linear map $\phi : F \longrightarrow M$, sending the e_i to x_i , where F is the free R-module with basis $e_1, \ldots e_n$. Again by 12.2, M is noetherian which finishes the proof.

Proposition 12.5 For an R-module M the following statements are equivalent:

- (i) M is noetherian.
- (ii) Any nonempty family of submodules of M has a maximal element with respect to \subseteq .
- (iii) Every submodule of M is finitely generated.
- proof. '(i) \Rightarrow (ii)' Let $\mathcal{M} \neq \emptyset$ be a set of submodules of M. Let $M_0 \in \mathcal{M}$. If M_0 is not maximal, there is $M_1 \in \mathcal{M}$ with $M_0 \subsetneq M_1$. If M_1 is not maximal, there is $M_2 \in \mathcal{M}$ with $M_1 \subsetneq M_2$. Since M is noetherian, we come to a maximal submodule M_n after finitely many step.
- '(ii) \Rightarrow (iii)' Let $N \subseteq M$ be a submodule. Let \mathcal{M} be the set of finitely generated submodules of N. Since $(0) \in \mathcal{M}$, we have $\mathcal{M} \neq \emptyset$ and thus there exists a maximal element $N_0 \in \mathcal{M}$. If $N_0 \neq N$, let $x \in N \setminus N_0$ and $N' := N_0 + (x)$ be the submodule generated by N_0 and x. Then clearly $N' \in \mathcal{M}$, which is a contradiction to the maximality of N_0 . Hence $N_0 = N$ and N is finitely generated.
- '(iii) \Rightarrow (i)' Let $M_0 \subseteq M_1 \subseteq ...$ be an ascending chain of submodules in M. Let $N := \bigcup_{n \in \mathbb{N}_0} M_n$. By assumption, N is finitely generated, say by $x_1, ... x_n$. Then there exists $i_0 \in \mathbb{N}$, such that $x_k \in M_{i_0}$ for all $1 \le k \le n$. Thus we have $M_i = M_{i_0}$ for $i \ge i_0$, i.e. th chain becomes stationary and M is noetherian.

Corollary 12.6 R is noetherian if and only if every ideal $I \leq R$ can be generated by finitely many elements. In particular, every principle ideal domain is noetherian.

proof. Follows from Proposition 12.4.

Theorem 12.7 (Hilbert's basis theorem) If R is noetherian, R[X] is also noetherian.

proof. Let $J \leq R[X]$ be an ideal. Assume that J is not finitely generated. Let f_1 be an element of $J \setminus \{0\}$ of minimal degree. Then $(f_1) \neq J$. Inductively let $J_i := (f_1, \dots f_i)$ and pick $f_{i+1} \in J \setminus J_i$ of minimal degree. Let a_i be the leading coefficient of f_i , i.e. we have

$$f_i = a_i X^{\deg(f_i)} + \sum_{j=1}^{\deg(f_i)-1} b_j X^j$$

The ideal $I \leq R$ generated by the a_i for $i \in \mathbb{N}$, is finitely generated by assumption.

Then we find $n \in \mathbb{N}$ such that $a_{n+1} \in (a_1, \ldots, a_n)$, i.e. we have

$$a_{n+1} = \sum_{i=1}^{n} \lambda_i a_i$$

for suitable $\lambda_i \in R$. Let $d_i := \deg(f_i)$. Note, that $d_{i+1} \ge d_i$ for all $1 \le i \le n$. Let now

$$\rho := \sum_{i=1}^{n} \lambda_i f_i X^{d_{n+1} - d_i}.$$

Then the leading coefficient of ρ is

$$a_{d_{n+1}} = \sum_{i=1}^{n} \lambda_i a_i$$

Hence $\deg(\rho - f_{n+1}) < d_{n+1}, \rho - f_{n+1} \notin J_n$, since $\rho \in J_n$, so f_{n+1} would be in J_n . This contradicts the choice of f_{n+1} . Hence our assumption was false and J is finitely generated and by Corollary 12.5 R[X] is noetherian.

Corollary 12.8 Let R be noetherian. Then

- (i) $R[X_1, ... X_n]$ is noetherian for any $n \in \mathbb{N}$.
- (ii) Any finitely generated R-algebra is noetherian.

§ 13 Integral ring extensions

Definition 13.1 Let R be ring, S an R-algebra.

- (i) If $R \subseteq S$, S/R is called a ring extension.
- (ii) If $R \subseteq S$, $b \in S$ is called *integral over* S, if there exists a monic polynomial $f \in R[X] \setminus \{0\}$ such that f(b) = 0.
- (iii) S/R is called an *integral ring extension*, if every $b \in S$ is integral over R.

Example 13.2 (i) If R = k is a field, then *integral* is equivalent to algebraic.

- (ii) $\sqrt{2}$ is integral over \mathbb{Z} , since $f = X^2 2$ is monic with $f(\sqrt{2}) = 0$.
- (iii) $\frac{1}{2}$ is not integral over \mathbb{Z} .

Assume $\frac{1}{2}$ is integral over \mathbb{Z} . Then there exists some monic $f \in R[X]$, such that $f\left(\frac{1}{2}\right) = 0$, i.e. we have

$$\left(\frac{1}{2}\right)^n + g\left(\frac{1}{2}\right) = 0 \ (*)$$

for some $g \in \mathbb{Z}[X]$. Then $2^{n-1} \cdot g\left(\frac{1}{2}\right) \in \mathbb{Z}$. Multiplying (*) by 2^{n-1} gives us

$$2^{n-1} \cdot \left(\left(\frac{1}{2} \right)^n + g\left(\frac{1}{2} \right) \right) = 0$$

and hence

$$\frac{1}{2} = -2^{n-1} \cdot g\left(\frac{1}{2}\right) \in \mathbb{Z}.$$

Thus $\frac{1}{2}$ is not integral over \mathbb{Z} . More generally, we easily see that any $q \in \mathbb{Q} \setminus \mathbb{Z}$ is not integral over \mathbb{Z} .

Lemma 13.3 Let S/R be a ring extension, $b \in S$. If R[b] is contained in a subring $S' \subseteq S$ which is finitely generated as an R-module, then b is integral over R.

proof. Let s_1, \ldots, s_n be generators of S'. Since $b \cdot s_i \in S$ (we have $b \in R[b] \subseteq S$), we find $a_{ik} \in R$, such that

$$b \cdot s_i = \sum_{k=1}^n a_{ik} s_k \iff 0 = \sum_{k=1}^n (a_i k - \delta_{ik}) s_k.$$
 (*)

Claim (a) Let A be the coefficient matrix of (*). Then det(A) = 0

Since the determinant is a monic polynomial in b of degree n with coefficients in R, b is integral over R. It remains to show the claim.

(a) Let $A^{\#}$ be the adjoint matrix

$$A_{ji}^{\#} = \det(A_{ij} \cdot (-1)^{i+j})$$

where A_{ij} is obtained from A by deleting the i-the row and j-th column. Recall

$$A^{\#}A = \det(A) \cdot E_n.$$

By (*) we have

$$A \cdot \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} = 0,$$

hence we have

$$A^{\#} \cdot A \cdot \begin{pmatrix} s_1 \\ \vdots \\ s_n \end{pmatrix} = 0 \implies \det(A) \cdot s_i = 0 \quad \text{for all } 1 \leqslant i \leqslant n.$$

Since S' is a subring of S, we have $1 \in S'$, hence there exist $\lambda_1, \ldots, \lambda_n \in R$ with

$$1 = \sum_{i=1}^{n} \lambda_i s_i.$$

Finally

$$\det(A) = \det(A) \cdot 1 = \det(A) \cdot \sum_{i=1}^{n} \lambda_i s_i = \sum_{i=1}^{n} \det(A) \cdot \lambda_i \cdot s_i = 0$$

Proposition 13.4 Let S/R be a ring extension. Define

$$\overline{R} := \{b \in S \mid b \text{ is integral over } R\} \supseteq R$$

Then \overline{R} is a subring of S, called the integral closure of R in S.

proof. Let $b_1, b_2 \in \overline{R}$. We have to show, that $b_1 \pm b_2 \in \overline{R}$, $b_1b_2 \in \overline{R}$. Let $R[b_1]$ be the smallest subring of S containing R and b_1 . Then R is finitely generated as an R-module by $1, b_1, b_1^2, \ldots, b_1^{n-1}$, where n denotes the degree of the 'minimal polynomial' of f. Thus $R[b_1, b_2] = (R[b_1])[b_2]$ is also finitely generated as an $R[b_1]$ -module. This implies, that $R[b_1, b_2]$ is also finitely generated as an R-module and by Lemma 13.2, $R[b_1, b_2]/R$ is an integral ring extension. In particular, $b_1 \pm b_2$ and b_1b_2 are integral over R.

Definition 13.5 Let S/R be a ring extension, \overline{R} the integral closure of R in S.

- (i) R is called *integrally closed* in S, if $\overline{R} = R$.
- (ii) Let R be an integral domain. The integral closure of R in Quot(R) is called the *normalization* of R. R is called *normal*, if it agrees with its normalization.

Proposition 13.6 Any factorial domain is normal.

proof. Let R be a domain and $x = \frac{a}{b} \in \text{Quot}(R), a, b \in R, b \neq 0$ relatively prime. Suppose, x is integral over R, i.e. there exist $\alpha_0, \ldots, \alpha_{n-1} \in R$, such that

$$x^{n} + \alpha_{n-1}x^{n-1} + \ldots + \alpha_{1}x + \alpha_{0} = 0$$

Multiplying by b^n gives us

$$a^{n} + \alpha_{n-1}a^{n-1}b + \ldots + \alpha_{1}ab^{n-1} + \alpha_{0}b^{n} = 0$$

and hence

$$a^{n} = b \cdot \underbrace{\left(-\alpha_{n-1}a^{n-1} - \dots - \alpha_{1}ab^{n-2} - \alpha_{0}b^{n-1}\right)}_{\in R} \iff b \mid a^{n}$$

Since a and b are coprime, we have $b \in R^{\times}$. Thus $x = \frac{a}{b} = ab^{-1} \in R$ and R is normal.

Definition 13.7 Let R be a ring.

(i) For a prime ideal $\mathfrak{p} \leqslant R$ we define

 $ht(\mathfrak{p}) := \sup\{n \in \mathbb{N}_0 \mid \text{ there exist prime ideals } \mathfrak{p}_0, \mathfrak{p}_1, \dots, \mathfrak{p}_n, \text{ with } \mathfrak{p}_n = \mathfrak{p} \text{ and } \mathfrak{p}_0 \subsetneq \dots \subsetneq \mathfrak{p}_n\}$ to be the *height* of \mathfrak{p} .

(ii) The Krull-dimension of R is

$$\dim(R) := \dim_{\mathrm{Krull}}(R) = \sup\{ht(\mathfrak{p}) \mid \mathfrak{p} \leqslant R \text{ prime }\}$$

Example 13.8 (i) Since $(0) \subsetneq (X_1) \subsetneq (X_1, X_2) \subsetneq \ldots \subsetneq (X_1, \ldots, X_n)$, we have dim $(k[X_1, \ldots, X_n]) \geqslant n$.

- (ii) $\dim(k) = 0$ for any field k, since (0) is the only prime ideal.
- (iii) $\dim(\mathbb{Z}) = 1$, since $(0) \subsetneq (p)$ is a maximal chain of prime ideals for $p \in \mathbb{P}$.
- (iv) $\dim(R) = 1$ for any principle ideal domain which is not a field: Assume p, q are prime element with $(p) \subseteq (q)$. Then $p = q \cdot a$ for some $a \in R$. Since p is irreducible, we have $a \in R^{\times}$ and hence (p) = (q).
- (v) $\dim(k[X]) = 1$ for any field k:

Theorem 13.9 (Going up theorem) Let S/R be an integral ring extension and

$$\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_n$$

a chain of prime ideals in R. Then there exists a chain of prime ideals

$$\mathfrak{P}_0 \subsetneq \mathfrak{P}_1 \subsetneq \ldots \subsetneq \mathfrak{P}_n$$

in S, such that $\mathfrak{p}_i = \mathfrak{P}_i \cap R$.

proof. Do this by induction on n.

n=0 Let $\mathfrak{p} \triangleleft R$ be a prime ideal. We have to find a prime ideal $\mathfrak{P} \triangleleft S$ with $\mathfrak{P} \cap R = \mathfrak{p}$. Let

$$\mathcal{P} := \{ I \lhd S \text{ ideal } | I \cap R = \mathfrak{p} \}$$

Claim (a) $\mathfrak{p}S \in \mathcal{P}$.

Then \mathcal{P} is nonempty. Zorn's lemma provides us then a maximal element $\mathfrak{m} \in \mathcal{P}$.

Claim (b) $\mathfrak{m} \triangleleft S$ is a prime ideal.

This proves the claim. It remains to show the Claims.

(b) Suppose $b_1, b_2 \in S$ with $b_1b_2 \in \mathfrak{m}$. Assume $b_1, b_2 \in S \setminus \mathfrak{m}$. Then $\mathfrak{m} + (b_i) \notin \mathcal{P}$, hence $(\mathfrak{m} + (b_i)) \supseteq \mathfrak{p}$ for $i \in \{1, 2\}$. \Longrightarrow Thus there exists $p_i \in \mathfrak{m}$, $s_i \in S$ such that $r_i := p_i + b_i s_i \in R \setminus \mathfrak{p}$. Then we have

$$r_1r_2 = (p_1 + b_1s_1)(p_2 + b_2s_2) = \underbrace{p_1p_2 + p_1b_2s_2 + b_1s_1p_2}_{\in \mathfrak{m}} + \underbrace{b_1b_2}_{\in \mathfrak{m} \text{ by ass.}} s_1s_2 \in \mathfrak{m}$$

Clearly $r_1r_2 \in R$, hence $r_1r_2 \in \mathfrak{m} \cap R = \mathfrak{p}$, which is a contradiction, since \mathfrak{p} is prime.

- (a) We have to show $\mathfrak{p}S \cap R = \mathfrak{p}$. We prove both inclusions.
 - '⊇' This is clear by definition.
 - '⊆' Let now

$$b = \sum_{i=0}^{n} p_i t_i, \qquad p_{\epsilon} \mathfrak{p}, \ t_i \in S$$

Since the t_i are integral over R, $R[t_1, \ldots t_n] =: S'$ is finitely generated. Let

 s_1, \ldots, s_m be generators of S' as an R-module. Since $b \in \mathfrak{p}S'$, we have

$$bs_i = \sum_{k=0}^{m} a_{ki} s_k$$

for suitable $a_{ik} \in \mathfrak{p}$. Then as in lemma 13.3 we have $\det(a_{ik} - \delta_{ik}b) = 0$ and thus b is a zero of monic polynomial with coefficients in \mathfrak{p} , i.e. b satisfies an equation

$$b^n + a_{n-1}b^{n-1} + \ldots + a_1b + a_0 = 0$$
 with $a_i \in \mathfrak{p}$,

Write

$$b^n = -\sum_{i=0}^{n-1} a_i b^i \in \mathfrak{p},$$

since $b^i \in \mathfrak{p}$. Since \mathfrak{p} is prime, we must have $b \in \mathfrak{p}$ and hence the required inclusion.

n>1 By induction hypothesis we have a chain

$$\mathfrak{P}_0 \subsetneq \mathfrak{P}_1 \subsetneq \ldots \subsetneq \mathfrak{P}_{n-1}$$

satisfying $\mathfrak{P}_i \cap R = \mathfrak{p}_i$. Moreover we find $\mathfrak{P}_n \triangleleft S$ such that $\mathfrak{P}_n \cap R = \mathfrak{p}_n$. It remains to show $\mathfrak{P}_{n-1} \subsetneq \mathfrak{P}_n$. For $x \in \mathfrak{P}_{n-1}$ we have $x \in R \cap \mathfrak{p}_{n-1}$, i.e. $x \in \mathfrak{p}_{n-1} \subset \mathfrak{p}_n$. Thus $x \in \mathfrak{p}_n \cap R = \mathfrak{P}_n$. Assume now $\mathfrak{P}_{n-1} = \mathfrak{P}_n$. Let $x \in \mathfrak{p}_n$. Then

$$x \in \mathfrak{p}_n \in \mathfrak{p}_n \cap R = \mathfrak{P}_n = \mathfrak{P}_{n-1} = \mathfrak{p}_{n-1} \cap R, \implies x \in \mathfrak{p}_{n-1}$$

and thus $\mathfrak{p}_n \subseteq \mathfrak{p}_{n-1}$, hence $\mathfrak{p}_n = \mathfrak{p}_{n-1}$, a contradiction.

Theorem 13.10 Let S/R be an integral ring extension. Then $\dim(R) = \dim(S)$.

proof. '≤' Follows from Proposition 13.7

 \geqslant Let $\mathfrak{P}_0 \subsetneq \mathfrak{P}_1 \subsetneq \ldots \subsetneq \mathfrak{P}_n$ be chain of prime ideals in S and define $\mathfrak{p}_i := \mathfrak{P}_i \cap R$.

Then \mathfrak{p}_i is prime and we have $\mathfrak{p}_i \subseteq \mathfrak{p}_{i+1}$. It remains to show, that $\mathfrak{p}_i \neq \mathfrak{p}_{i+1}$.

Define $S' := S/\mathfrak{P}_i$ and $R' := R/\mathfrak{p}_i$. Then S'/R' is integral (!).

We have to show that $\overline{\mathfrak{P}}_{i+1} \cap R = \overline{\mathfrak{p}}_{i+1} := \text{image of } \mathfrak{p}_{i+1} \text{ in } S' \text{ is not } (0).$

Let $b \in \mathfrak{P}_{i+1} \setminus \{0\}$. Since b is integral over R', there exist $a_0, \ldots, a_{n-1} \in R$, such that

$$b^{n} + a_{n-1}b^{n-1} + \ldots + a_{1}b + a_{0} = 0$$

Let further n be minimal with this property. Write

$$a_0 = -b \cdot \underbrace{\left(a_1 + a_2b + \dots + a_{n-1}b^{n-2} + b^{n-1}\right)}_{=:c} \in \overline{\mathfrak{P}}_{i+1} \cap R = \overline{\mathfrak{p}}_{i+1}$$

But $c \neq 0$ by the choice of n and $b \neq 0$. Since $R' = R/\mathfrak{p}$ is an integral domain, we have $\overline{0} \neq a_0 \in \overline{\mathfrak{p}}_{i+1}$ and thus $\overline{\mathfrak{p}}_{i+1} \neq (0)$, which proves the claim.

Theorem 13.11 (Noether normalization) Let k be a field. Then every finitely generated k-algebra is an integral extension of a polynomial ring over k[X].

proof. Let $a_1, \ldots a_n$ be generators of A as a k-algebra. Prove the theorem by induction.

- **n=1** If a_1 is transcendental over k, then $A \cong k[X]$. Otherwise $A \cong k[X]/(f)$, where f denotes the minimal polynomial of a_1 over k. Thus A is integral over k.
- n>1 If $a_1, \ldots a_n$ are algebraically independent, $A \cong k[X_1, \ldots X_n]$. Otherwise there exists some polynomial

 $F \in k[X_1, \dots X_n] \setminus \{0\}$ such that $F(a_1, \dots a_n) = 0$.

case 1 Assume we have

$$F = X_n^m + \sum_{i=1}^{m-1} g_i X_n^i$$

with $g_i \in k[X_1, ..., X_n]$. Then $F(a_1, ..., a_n) = 0$, hence a_n is integral over $A' := k[a_1, ..., a_{n-1}]$. By induction hypothesis, A' is integral over some polynomial ring, so is A.

case 2 For the general case write

$$F = \sum_{i=0}^{m} F_i,$$

where F_i is homogenous of degree i, i.e. the sum of the exponents of any monomial in f_i is equal to i. Then replace a_i by $b_i := a_i - \lambda a_n$ (*) with suitable $\lambda_i \in k$, $1 \le i \le n-1$. Then $A \cong k[b_1, \ldots, b_{n-1}, a_n]$. For any monomial $a_1^{d_1} \cdots a_n^{d_n}$ we find

$$a_1^{d_1} \cdots a_n^{d_n} = (b_1 + \lambda_1 a_n)^{d_1} \cdots (b_{n-1} + \lambda_{n-1} a_n)^{d_{n-1}} \cdot a_n^{d_n} = \left(\prod_{i=1}^{n-1} \lambda_i^{d_i}\right) \cdot a_n^{\sum_{i=1}^n d_i} + \mathcal{O}(a_n)$$

where $\mathcal{O}(a_n)$ denotes terms of lower degree in a_n . Then for $d := \sum_{i=1}^n d_i$ we obtain

$$F_d(a_1, \dots a_n) = a_n^d \cdot F_d(\lambda_1, \dots \lambda_{n-1}, 1) + \mathcal{O}(a_n)$$

and thus

$$F(a_1, \dots, a_n) = a_n^m F_m(\lambda_1, \dots, \lambda_{n-1}, 1) + \mathcal{O}(a_n)$$

Choose now $\lambda_1, \ldots, \lambda_{n-1} \in k$, such that $F_m(\lambda_1, \ldots, \lambda_{n-1}, 1) \neq 0$. If k is infinite, this is always possible. In the finite case, go back to (*) and use $b_i := a_i + a_n^{\mu_i}$ instead and repeat the procedure. Then by the first case and induction hypothesis the claim follows.

§ 14 Dedekind domains

Definition 14.1 A noetherian integral domain R of dimension 1 is called a *Dedekind domain*, if every nonzero ideal $I \triangleleft R$ has a unique representation as a product of prime ideals

$$I = \mathfrak{p}_1 \cdots \mathfrak{p}_r$$

Definition + remark 14.2 Let R be a noetherian integral domain, $k := \operatorname{Quot}(R)$ and $(0) \neq I \subseteq k$ an R-module.

- (i) I is called a fractional ideal, if there exists $a \in R \setminus \{0\}$, such that $a \cdot I \subseteq R$.
- (ii) I is a fractional ideal if and only if I is finitely generated as an R-module.
- (iii) For a fractional ideal I let

$$I^{-1} := \{ x \in k | x \cdot I \subseteq R \}$$

Then I^{-1} is a fractional ideal.

- (iv) I is called *invertible*, if $I \cdot I^{-1} = R$, where $I \cdot I^{-1}$ denotes the R-module generated by all products $x \cdot y$ with $x \in I, y \in I^{-1}$.
- proof. (ii) ' \Rightarrow ' If $a \cdot I \subseteq R$, then $a \cdot I$ is an ideal in R. since R is noetherian, $a \cdot I$ is finitely generated, say by x_1, \ldots, x_n . Then I is generated by $\frac{x_1}{a}, \ldots, \frac{x_n}{a}$.
 - '\(\infty\)' Let y_1, \ldots, y_m be generators of I. Write $y_i = \frac{r_i}{a_i}$ with $r_i, a_i \in R \setminus 0$. Define

$$a := \prod_{i=1}^{n} a_i$$

Then for any generator we have $a \cdot y_i = r \cdot a_1 \cdot \dots \cdot a_{i-1} \cdot a_{i+1} \cdot \dots \cdot a_m \in R$, hence $a \cdot I \subseteq R$.

Example 14.3 Every principle ideal $I \neq (0)$ is invertible:

Let $I = (a) \leq R$. Then $I^{-1} = \frac{1}{a}R$, since we have

$$I \cdot I^{-1} = (a) \cdot \frac{1}{a}R = aR \cdot \frac{1}{a}R = R$$

Proposition 14.4 Let R be a Dedekind domain. Then every nonzero ideal $I \leq R$ is invertible. proof. Let $(0) \neq I \lhd R$ be a proper ideal. Then by assumption we can write

$$I = \mathfrak{p}_1 \cdot \cdot \cdot \cdot \mathfrak{p}_r$$

with prime ideal $\mathfrak{p}_i \lhd R$.

If each \mathfrak{p}_i is invertible, then we have

$$I \cdot \mathfrak{p}_r^{-1} \cdot \cdot \cdot \mathfrak{p}_1^{-1} = R,$$

hence I is invertible. Thus we may assume that $I = \mathfrak{p}$ is prime. Let $a \in \mathfrak{p} \setminus \{0\}$ and write

$$(a) = \mathfrak{p}_1 \cdot \cdot \cdot \mathfrak{p}_m$$

with prime ideals $\mathfrak{p}_i \triangleleft R$. Then $(a) \subseteq \mathfrak{p}$, i.e. $\mathfrak{p}_i \subseteq \mathfrak{p}$ for some $1 \leqslant i \leqslant m$, say i = 1. Since the ideals were proper and $\dim(R) = 1$, we have $\mathfrak{p}_1 = \mathfrak{p}$ and $\mathfrak{p}^{-1} = \mathfrak{p}_1^{-1} = \frac{1}{a} \cdot \mathfrak{p}_2 \cdot \cdot \cdot \mathfrak{p}_m$, since $\mathfrak{p}_1\mathfrak{p}_1^{-1} = \frac{1}{a}(a) = (1) = R$.

Corollary 14.5 The fractional ideals in a Dedekind domain R form a group.

proof. Let $(0) \neq I \subseteq k = \operatorname{Quot}(R)$ be a fractional ideal. Choose $a \in R$ such that $a \cdot I \subseteq R$. By Proposition 14.3, $a \cdot I$ is invertible, i.e. there exists a fractional ideal I', such that

$$(a \cdot I) \cdot I' = R \implies I \cdot (a \cdot I') = R$$

where R is neutral element of the group.

Proposition 14.6 Every Dedekind domain R is normal.

proof. Let $x \in k := \text{Quot}(R)$ be integral over R, i.e. we can write

$$x^{n} + a_{n-1}X^{n-1} + \dots + a_{1}x + a_{0} = 0, \qquad a_{i} \in R$$

By the proof of Proposition 13.3, R[x] is a finitely generated R-module, hence R[x] is a fractional ideal by Remark 14.2. Further by Corollary 14.4 R[x] is invertible, i.e. we can find $I \leq k$, such that $I \cdot R[x] = R$.

On the other hand R[x] is a ring, i.e. $R[x] \cdot R[x] = R[x]$. Multiplying the equation by I gives us $x \in R$. In particular we have

$$R = I \cdot R[x] = I \cdot (R[x] \cdot R[x]) = (I \cdot R[x]) \cdot R[x] = R \cdot R[x] = R[x],$$

which implies the claim.

Proposition 14.7 Let R be noetherian integral domain of dimension 1. Then R is a Dedekind domain if and only if R is normal.

proof. \Rightarrow This is Proposition 14.5

'⇐' We claim

claim (a) For every prime ideal $(0) \neq \mathfrak{p} \triangleleft R$ the localization $R_{\mathfrak{p}}$ is a discrete valuation ring.

claim (b) Every nonzero ideal in R is invertible.

Then let $(0) \neq I \neq R$ be an ideal in R. Then $I \subseteq \mathfrak{m}_0$ for a maximal ideal $\mathfrak{m}_0 \triangleleft R$. By claim (b), \mathfrak{m}_0 is invertble. Define $I_1 := \mathfrak{m}_0^{-1} \cdot I$. Then $I_1 \subseteq \mathfrak{m}_0^{-1} \cdot \mathfrak{m}_0 = R$ is an ideal. If $I_1 = R$, then

 $I = \mathfrak{m}_0$. Otherwise let \mathfrak{m}_1 be a maximal ideal containing I_1 and define $I_2 := \mathfrak{m}_1^{-1} \cdot I_1 \leqslant R$. If $I_1 = I$, then $\mathfrak{m}_0^{-1} \cdot I = I \stackrel{\text{invert.}}{\Longrightarrow} \mathfrak{m}_0^{-1} = R$, which is a contradiction.

By this way we obtain a chain of ideals

$$I \subsetneq I_1 \subsetneq I_2 \subsetneq \ldots \subsetneq I_n$$

Since R is noetherian, there exists $n \in \mathbb{N}$; such that $I_n = R$. Then

$$R = I_n = \mathfrak{m}_{n-1}^{-1} \cdot I_{n-1} = \mathfrak{m}_{n-1}^{-1} \cdot \mathfrak{m}_{n-1}^{-1} \cdot I_{n-2} = \mathfrak{m}_{n-1}^{-1} \cdot \dots \mathfrak{m}_0^{-1} \cdot I$$

Thus

$$I = \mathfrak{m}_0 \cdot \mathfrak{m}_1 \cdot \cdot \cdot \mathfrak{m}_{n-2} \cdot \mathfrak{m}_{n-1}$$

with maximal, thus prime ideals \mathfrak{m}_i . Hence R is a Dedekind domain. It remains to show the claims.

- (b) Let $(0) \neq I \leq R$ be an ideal. We have to show $I \cdot I^{-1} = R$ for $I^{-1} = \{x \in k \mid x \cdot I \subseteq R\}$.
 - '⊇' Assume $I \cdot I^{-1} \neq R$. Then there exists a maximal ideal $\mathfrak{m} \lhd R$ such that $I \cdot I^{-1} \subseteq \mathfrak{m}$. By claim (a), $R_{\mathfrak{m}}$ is a principal ideal domain, thus $I \cdot R_{\mathfrak{m}}$ is generated by one element, say $\frac{a}{s}$ for some $a \in I, s \in R \setminus \mathfrak{m}$. Let now b_1, \ldots, b_n be generators of I as an ideal in R. Then

$$\frac{b_i}{1} = \frac{a}{s} \cdot \frac{r_i}{s_i}, \quad r_i \in R, s_i \in R \backslash \mathfrak{m}, \text{ for } 1 \leqslant i \leqslant n$$

Define $t := s \cdot s_1 \cdot \cdot \cdot s_n \in R \backslash \mathfrak{m}$.

We have $\frac{t}{a} \in I^{-1}$, since

$$\frac{t}{a} \cdot b_i = \frac{t}{a} \cdot \frac{a}{s} \cdot \frac{r_i}{s_i} = r_i \cdot s_1 \cdot \dots \cdot s_{i-1} \cdot s_{i+1} \cdot \dots \cdot s_n \in R$$

for $1 \leq i \leq n$. But then

$$t = \frac{t}{a} \cdot a \in I^{-1} \cdot I \subseteq \mathfrak{m} \quad \not =$$

- (a) We will only give a proof sketch. The strategy is as follows:
 - (i) Ot suffices to show, that $\mathfrak{m} := \mathfrak{p}R_{\mathfrak{p}}$ is a principal ideal.
 - (ii) Show that $\mathfrak{m}^n \neq \mathfrak{m}$.
 - (iii) Show that m is invertible.

Then pick $t \in \mathfrak{m}^2 \setminus \mathfrak{m}$ and obtain $t \cdot \mathfrak{m}^{-1} = R_{\mathfrak{m}}$. This is true, since otherwise, as \mathfrak{m} is the only maximal ideal in $R_{\mathfrak{p}}$, we would have $t \cdot \mathfrak{m}^{-1} \subseteq \mathfrak{m}$ and thus $t \in \mathfrak{m}^2$, which implies $\mathfrak{m} = \mathfrak{m}^2$. Then we have

$$(t) = t \cdot R = t \cdot (\mathfrak{m} \cdot \mathfrak{m}^{-1}) = R_{\mathfrak{p}} \cdot \mathfrak{m} = \mathfrak{m},$$

which will gives us the claim.

Theorem 14.8 Let R be a Dedekind domain, L/k a finite separable field extension of k := Quot(R) and S the integral closure of R in L. Then S is a Dedekind domain.

proof. We will show all the required properties of a Dedekind domain. integral domain. This is clear.

dimension 1. We know that S/R is integral and Proposition 13.7 gives us $\dim(S) = 1$.

normal. If $x \in L$ is integral over S, x is integral over R, thus $x \in S$.

noetherian. This is the only hard work in the proof. Let N := [L : k]. Since L/k is separable, there exists $\alpha \in L$ such that $L = k(\alpha)$. Moreover we have $|\operatorname{Hom}_k(L, \overline{k})| = n$, say $\operatorname{Hom}_k(L, \overline{k}) = \{\operatorname{id} = \sigma_1, \ldots \sigma_n\}$.

claim (a) α can be chosen in S.

Then let

$$D := \begin{pmatrix} 1 & \alpha & \dots & \alpha^{n-1} \\ 1 & \sigma_2(\alpha) & \dots & \sigma_2(\alpha^{n-1}) \\ \vdots & \vdots & & \vdots \\ 1 & \sigma_n(\alpha) & \dots & \sigma_n(\alpha^{n-1}) \end{pmatrix} = \left(\sigma_i(\alpha^j)\right)_{(i,j)\in\{1,\dots,n\}\times\{0,\dots,n-1\}}$$

and $d := (\det(D))^2$. $d := d_{L/k}(\alpha)$ is called the discriminant of L/k with respect to α .

claim (b) We have

- (i) $d \neq 0$
- (ii) S is contained in the R-module generated by $\frac{1}{d}, \frac{\alpha}{d}, \dots, \frac{\alpha^{n-1}}{d}$.

Then S is submodule of a finitely generated R-module, and since R is noetherian, S is noetherian as an R-module, thus also as an S-module. This proves *noetherian*. Now prove the claims.

(a) Let $\tilde{\alpha} \in L$ be a primitive element, i.e. $L = k(\tilde{\alpha})$. Let

$$f = X^n - \sum_{i=0}^{n-1} c_i X^i$$

be the minimal polynomial of $\tilde{\alpha}$ over k. Writr $c_i = \frac{a_i}{b_i}$ for suitable $a_i, b_i \in R, b_i \neq 0$. Now define

$$b := \prod_{i=0}^{n-1} b_i, \qquad \alpha := b \cdot \tilde{\alpha}.$$

Since we have

$$\alpha^n = b^n \tilde{\alpha}^n = b^n \cdot \sum_{i=0}^{n-1} c_i \tilde{\alpha}^i = \sum_{i=0}^{n-1} c_i \cdot \frac{\alpha^i}{b^i} b^n$$

we obtain

$$\alpha^n = b^n \cdot \tilde{\alpha}^n = \sum_{i=0}^{n-1} c_i ? \alpha^i, \quad c_i' = c_i \cdot b^{n-i} \in R.$$

Thus α is integral over R, i.e. $\alpha \in S$. We easily see $k(\alpha) = k(\tilde{\alpha})$, hence the claim is proved.

(b) (i) We have

$$d = (\det(D))^2 = \prod_{1 \le i < j \le n} (\sigma_i(\alpha) - \sigma_j(\alpha))^2 \ne 0,$$

since otherwise we would have $\sigma_i(\alpha) = \sigma_i(\alpha)$, i.e. $\sigma_i = \sigma_i$, which is not possible.

(ii) Let $\beta \in S$. Write

$$\beta = \sum_{i=0}^{n-1} c_{i+1} \alpha^i, \quad c_i \in k.$$

We have to show: $c_i \in \frac{1}{d}R$ for all $1 \le i \le n$. Therefore we need claim (c) There is a matrix $A \in R^{n \times n}$ and $b \in R^n$, such that

$$A \cdot \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = b$$
 and $\det(A) = d$.

Then by Cramer's rule and Claim (c) we have

$$c_i = \frac{\det(A_i)}{\det(A)} = \frac{\det(A_i)}{d} \in \frac{1}{d} \in R$$

where A_i is obtained by replacing the *i*-th column of A by b. This proves claim (b).

(c) Recall that

$$tr_{L/k}: L \longrightarrow k, \quad \beta \mapsto \sum_{i=1}^{n} \sigma_i(\beta)$$

is a k-linear map. For β as above we find for $1 \leqslant i \leqslant n$

$$(*) \ tr_{L/k}(\underbrace{\alpha^{i-1}\beta}) = \sum_{j=1}^{n} tr_{L/k}(\alpha^{i-1}\alpha^{j-1}c_j) = \sum_{j=1}^{n} tr_{L/k}(\alpha^{i-1}\alpha^{j-1})c_j \in k \cap S = R$$

where the last equality holds since R is normal and by Proposition 14.5. Let now

$$A = (a_{ij})_{(i,i) \in \{1,\dots,n\} \times \{1,\dots,n\}}, \quad a_{ij} = tr_{L/k}(\alpha^{i-1}, \alpha^{j-1})$$

and

$$b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}, \quad b_i = Tr_{L/k}(\alpha^{i-1}\beta).$$

Then by (*) we have

$$A \cdot \begin{pmatrix} c_1 \\ \dots \\ c_n \end{pmatrix} = b,$$

i.e. the first part of the claim. Moreover we have $D^TD = (\tilde{a}_{ij})$, where

$$\tilde{a}_{ij} = \sum_{k=1}^{n} \sigma_k(\alpha^{i-1}) \sigma_k(\alpha^{j-1}) = \sum_{k=1}^{n} \sigma_k(\alpha^{i-1}\alpha^{j-1}) = tr_{L/k}(\alpha^{i-1}, \alpha^{j-1}) = a_{ij}.$$

Hence $D^TD=A$ and by $\det(D)=\det(D^T)$ we have

$$\det(D)^2 = \det(D \cdot D) = \det(D \cdot D^T) = \det(A) = d.$$

We have now shown that S is an integral domain, of dimension 1, noetherian and normal. By Proposition 14.6 the theorem is proved.