Last Time

- Internet Application Security and Privacy
 - Link-layer security: WEP, WPA, WPA2

This time

[Stinson, Shmatikov-Boneh]

- Internet Application Security and Privacy
 - Network-layer security: VPN, IPSec
 - Transport-layer security and privacy: TLS / SSL

WEP access control

- Adversary can inject a new message F onto a WEP-protected network
 - All he needs is a single plaintext/ciphertext pair
 - This gives him a value of v and the corresponding keystream RC4(v,k)
 - Then $C' = \langle F, c(F) \rangle$ XOR RC4(v,k), and he transmits v,C'.
 - C' is in fact a correct encryption of F, so the message must be accepted.
- Just replace F with the plaintext that adversary get from the access point for authentication

Network-layer security

- Suppose every link in our network had strong link-layer security
- Why would this not be enough?
- We need security across networks
 - Ideally, end-to-end
- At the network layer, this is usually accomplished with a Virtual Private Network (VPN)

Virtual Private Networks

- Connect two (or more) networks that are physically isolated, and make them appear to be a single network
 - Alternately: connect a single remote host (often a laptop) to one network
- Virtual Private Network is a type of private network that uses public telecommunication, such as the Internet, instead of leased lines to communicate.
- Goal: adversary between the networks should not be able to read or modify the traffic flowing across the VPN

Four Critical Functions

- Authentication validates that the data was sent from the sender.
- Access control limiting unauthorized users from accessing the network.
- Confidentiality_- preventing the data to be read or copied as the data is being transported.
- Data Integrity ensuring that the data has not been altered

Setting up a VPN

- One host on each side is the VPN gateway
 - Could be the firewall itself, or could be in DMZ
 - In the laptop scenario, it will of course be the laptop itself on its side
- Traffic destined for the "other side" is sent to the local VPN gateway
 - **DMZ (DeMilitarized Zone): is a physical or logical subnetwork that contains and exposes an organization's external-facing services to a larger untrusted network.

Setting up a VPN

- The local VPN gateway uses cryptography (encryption and integrity techniques) to send the traffic to the remote VPN gateway
 - Often by tunnelling
- The remote gateway decrypts the messages and sends them on to their appropriate destinations

Tunnelling

- Tunnelling is the sending of messages of one protocol inside (that is, as the payload of) messages of another protocol, out of their usual protocol nesting sequence
 - So TCP-over-IP is not tunnelling, since you're supposed to send TCP (a transport protocol) over IP (a network protocol; one layer down in the stack)
 - But IP-over-TCP is tunnelling (going up the stack instead of down), as are IP-over-IP (same place in the stack)

IPSec

- One standard way to set up a VPN is by using IPSec
- Many corporate VPNs use this (open) protocol
- Two modes:
 - Transport mode
 - Tunnel mode

IPSec

- Transport mode
 - Useful for connecting a single laptop to a home network
 - Only the contents of the original IP packet are encrypted and authenticated
- Tunnel mode
 - Useful for connecting two networks
 - The contents and the header of the original IP packet are encrypted and authenticated; result is placed inside a new IP packet destined for the remote VPN gateway

Four Protocols used in VPN

- In addition to IPSec, there are a number of other standard ways to set up a VPN
- PPTP -- Point-to-Point Tunneling Protocol
 - Microsoft's PPTP was an older protocol
 - It had about as many design flaws as WEP
 - Most users now migrating to IPSec
- L2TP -- Layer 2 Tunneling Protocol
- SOCKS is not used as much as the ones above

Transport-layer security and privacy

- Network-layer security mechanisms arrange to send individual IP packets securely from one network to another
- Transport-layer security mechanisms transform arbitrary TCP connections to add security
 - And similarly for "privacy" instead of "security"
- The main transport-layer security mechanism:
 - TLS (formerly known as SSL)
- The main transport-layer privacy mechanism
 - Tor

TLS / SSL

- In the mid-1990s, Netscape invented a protocol called Secure Sockets Layer (SSL) meant for protecting HTTP (web) connections
 - The protocol, however, was general, and could be used to protect any TCP-based connection
 - HTTP + SSL = HTTPS
- Historical note: there was a competing protocol called S-HTTP. But Netscape and Microsoft both chose HTTPS, so that's the protocol everyone else followed

TLS / SSL

 SSL went through a few revisions, and was eventually standardized into the protocol known as TLS (Transport Layer Security)

TLS at a high level

- Client connects to server, indicates it wants to speak TLS, and which cipher suites it knows
- Server sends its certificate to client, which contains:
 - Its host name
 - Its public key
 - Some other administrative information
 - A signature from a Certificate Authority
- Server also chooses which cipher suite to use
- Client sends symmetric encryption key K, encrypted with server's public key
- Communication now proceeds using K and the chosen ciphersuite

Privacy Enhancing Technologies

- So far, we've only used encryption to protect the contents of messages
- But there are other things we might want to protect as well!
- We may want to protect the metadata
 - Who is sending the message to whom?
 - If you're seen sending encrypted message to Human Rights Watch, bad things may happen
- We may want to hide the existence of the message
 - If you're seen sending encrypted messages at all, bad things may happen

Tor

- Tor is another successful privacy enhancing technology that works at the transport layer
 - Hundreds of thousands of users
- Normally, any TCP connection you make on the Internet automatically reveals your IP address
 - Why?
- Tor allows you to make TCP connections without revealing your IP address
- It's most commonly used for HTTP (web) connections

Recap

- Internet Application Security and Privacy
 - Network-layer security: VPN, IPSec
 - Transport-layer security and privacy: TLS / SSL

Next time

- Internet Application Security and Privacy
 - Transport-layer security and privacy: Tor
 - Application-layer security and privacy: SSH, remailers, PGP/gpg, OTR