SSDUT 2022 数据结构期末

一、选择题 (每题 2 分, 共 15 题, 共 30 分)
1. 设 n 是描述问题规模的非负整数,下面程序片段的时间复杂度为()。
int $i=1, s=1;$
while($s \le n$) { $i = i++; s= s+i;$ }
A. $O(n)$ B. $O(2^n)$ C. $O(\log_2 n)$ D. $O(\sqrt{n})$
2. 一个栈的入栈序列是{5.4,3,2,1},则不可能的出栈输出序列是
A. {5,4,3,2,1} B. {4,2,5,3,1} C. {4,3,5,1,2} D. {1,2,3,4,5}
3. 向一个头指针为 h 的带头结点的单向链表的头部插入指针 s 所指的结点时, 应执行
().
A. h->next=s; B. s->next=h;
C. s->next=h; h->next=s D. s->next=h->next; h->next=s;
4. 一棵非空的二叉树,中序遍历与后序遍历正好相反,则该二叉树一定是()。
A. 任意结点无左孩子 B. 任意结点无右孩子
C. 只有一个叶子结点 D. 任意二叉树
5. 若完全二叉树的结点个数为 120, 则第 60 个结点(根结点为第 1 个结点)的度为()。
A. 0 B. 1 C. 2 D. 3
6. 已知一棵二叉树的结点个数为62, 二叉树的最小高度为(只有根结点时, 二叉树的高度
为1000000000000000000000000000000000000
A.8 B. 7 C. 6 D. 5
7. 设有 107 个权值,用这些权值构造一棵哈夫曼树,则该哈夫曼树共有() 个结点。
A. 107 B.108 C. 214 D. 213

8. 对于下列关键字序列,不可能构成某二叉搜索树中一条查找路径的序列是()。
A. 81, 40, 80, 53, 77, 72 B. 32, 94, 81, 37, 40, 45
C. 75, 42, 71, 34, 57, 61 D. 40, 43, 90, 85, 51, 52
9. 将两个分别有 n、m (m <n) td="" 个元素的有序顺序表归并成一个有序顺序表,="" 其最少的比较<=""></n)>
次数是()。
A. m B. m+n-1 C. m+n D. n
10. 设有序表 {21,26,35,40,48,53,72,88,95}, 用二分法查找 53 时, 需要进行的比较次数为
().
A.2 B.3 C.4 D.5
11. 下列关于该平衡二叉树的叙述中,正确的是()。
A. 根结点的度一定为 2 B. 树中最小元素 定无左子树
C. 最后插入的元素一定是叶结点 D. 树中最大元素一定是叶结点
12. 若需在 O(nlogn)的时间内完成对数组的排序,且要求排序是稳定的,则可选择的排序方
法是()。
A. 快速排序 B. 堆排序 C. 归并排序 D. 直接插入排序
13. n 个顶点的连通图用邻接矩阵表示时,该矩阵最多有()) 个元素为 0。
A. $2(n-1)$ B. n^2-2n+2 C. n^2-n D. $(n-1)^2$
14. 下列说法错误有(
(1) 设无向连通图有 n 个顶点,则该无向图的最小生成树中有(n-1)条边。
(2) Kruskal 算法适合构造一个稠密图 G 的最小生成树 。
(3)对于点集V与边集E构造的图G=(V,E)来说,克鲁斯卡尔算法的时间复杂度为O(V log V)
([V]表示项点的个数)。
(4) 关键路径是从带权的无环有向图的源点到汇点的最短路径。
A.1 B.2 C.3 D.4
15. 下列源法正确的是 ()。 (1) 用邻接矩阵表示图进行深度优先遍历时,通常借助栈来实现算法。
(2) 图的广度优先搜索类似于二叉树的先序遍历。
(3) 若从无向图的任意一个顶点出发进行一次深度优先搜索,就可以访问图中的所有结点,
则该图一定是强连通图。

(4) 图的 DFS 生成树的树可能会比 BFS 生成树的树高。

A. (2), (4) B. (2), (3) C. (1), (4) D. (1), (3)

二. 以下为大题

- 1. (10分)已知一棵二叉搜索树中,结点数据值不重复,且任意结点数据值大于其左孩子结点数据值,小于其右孩子结点数据值;已知该二叉搜索树的先序序列是{46,15,8,20,71,55,48,63,79,82};
- (1) 对二叉搜索树执行哪一种遍历可以得到数据的有序序列?
- (2) 这棵二叉搜索树的形状是否唯一?如果唯一画出这棵二叉搜索树,计算查找成功的平均查找长度,并画出删除 71 后二叉搜索树的形状。如果不唯一,画出相应的两棵二叉搜索树。
- 2. (6分)如图所示的森林,写出该森林的先根序列和后根序列,并将此森林转换为相应的二叉树。

- 3. (10 分) 给定 28 个字符组成的电文: BBBB CCFA DDCC EFBC CCFF FCCB EEEC 试为字符 A、B、C、D、E、F 设计哈夫曼 (Huffman) 编码。
- (1) 画出相应的哈夫曼树《规定左孩子结点权值小于右孩子结点权值,且向左分支的编码为"0",向右分支的编码为"1");
- (2) 分别列出 A、B、C、D、E、F的哈夫曼编码:
- (3) 计算该树的带权路径长度 WPL。
- 4. (8分) 设哈希表表长为11,键值集合为{33,35,59,70,83,103,121,98,87},哈 希函数为h(k)=k%11,用线性探测法解决冲突,请画出相应的哈希表;计算在等概率的条件 下查找成功的平均检索长度和查找不成功的平均检索长度。
- 5. (8分) 一组数据为{30, 51, 46, 21, 27, 65, 38, 29}, 按不减序排序。
- (1) 分别给出直接插入排序,直接选择排序、快速排序、二路归并排序第一趟排序结果。
- (2) 写出应用堆排序时初始化得到的最大堆。

- 6. (8分)已知一个无向图如下:
 - (1) 写出从顶点 a 开始进行深度优先遍历得到的深度优先搜索树:
 - (2) 给出按照 Prim 算法从顶点 a 开始求得的最小生成树,并给出加边顺序。

7. (10分)对于下图所示的带权图,利用 Dijkstra 算法求出从源点 A 到其余各项点的最短路 径及其长度,并写出在算法执行过程中,每求得一条最短路径后,当前从源点 A 到其余各项 点的最短路径及其长度的变化情况。

三、(10分)。已知一棵存储整型数据的二叉树采用二叉链表存储,结点及二 叉链表的类型如下,

```
class Node {
 public:
      int data;
      Node* left;
      Node* right; };
class List {
public:
     Node* head:
               };
```

.....

设计一个非递归算法统计该二叉树的度为1的结点个数。

- (1)(2分)简述算法的思想。
- (2)(8分)用 C++或者 C语言给出算法的实现,并给出必要的注释。

(代码中如果使用栈或者队列,可以直接应用)

