A Deep Gaussian Process based model for Multi-Objective optimization

A. Hebbal ^{1,2}, L. Brevault ¹, M.Balesdent ¹ E-G. Talbi², N. Melab²

¹ONERA - The French Aerospace Lab ²Université de Lille, CNRS/CRIStAL, Inria Lille

The 13th International Conference on Multiple Objective Programming and Goal Programming. 2019

Table of Contents

Introduction

Review on Bayesian Optimization

Multi-objective Bayesian optimization framework Definitions Multi-task Gaussian Processes

Multi-objective model with Deep Gaussian Processes

Deep Gaussian Processes MO-DGP model Specifications of the MO-DGP model

Experimentations

dtlz1a Kursawe 3D Kursawe 10D

Conclusions

- Black box and computationally expensive functions,

Multi-disciplinary optimization of an aerospace vehicle

- Black box and computationally expensive functions,

Gradient based optimization approaches

Classic evolutionary algorithms

Bayesian Optimization

- Correlated objectives.

Maximize The payload value.

Multi-Objective Bayesian Optimization (MO-BO) [Emmerich et al., 2006]

Design of Experiment depending on the dimension and the nature of the problem

Unfeasible points

MO-BO framework

Multi-Objective Bayesian Optimization (MO-BO) [Emmerich et al., 2006]

Feasible points Non dominated points 1.2 1.0 SLOW 0.8 0.6 0.4 0.0 0.2 0.4 0.6 0.8 1.0 -Thrust

Calls the expensive black-box functions

Multi-Objective Bayesian Optimization (MO-BO) [Emmerich et al., 2006]

Multi-Objective Bayesian Optimization (MO-BO) [Emmerich et al., 2006]

Multi-Objective Bayesian Optimization (MO-BO) [Emmerich et al., 2006]

Gaussian process [Rasmussen, 2004]

A Gaussian Process is used to describe a distribution over function. It is a collection of infinite random variables, any finite number of which have a joint Gaussian distribution. It is defined by its mean function and covariance function (Kernel): $f(.) \sim \mathcal{GP}(\mu(.), k^{\Theta}(.))$

Gaussian process [Rasmussen, 2004]

A Gaussian Process is used to describe a distribution over function. It is a collection of infinite random variables, any finite number of which have a joint Gaussian distribution. It is defined by its mean function and covariance function (Kernel): $f(.) \sim \mathcal{GP}(\mu(.), k^{\Theta}(.))$

Automatic Relevance Determination (ARD) squared exponential kernel:

$$K^{\Theta}(\mathbf{x}, \mathbf{x'}) = \sigma^2 \exp\left(-\sum_{i=1}^{D} \theta_i . |x_i - x_i'|^2\right)$$

Gaussian process [Rasmussen, 2004]

A Gaussian Process is used to describe a distribution over function. It is a collection of infinite random variables, any finite number of which have a joint Gaussian distribution. It is defined by its mean function and covariance function (Kernel): $f(.) \sim \mathcal{GP}(\mu(.), k^{\Theta}(.))$

Automatic Relevance Determination (ARD) squared exponential kernel :

$$\mathcal{K}^{\Theta}(\mathbf{x}, \mathbf{x'}) = \sigma^2 \exp\left(-\sum_{i=1}^{D} \frac{\boldsymbol{\theta}_i}{|x_i - x_i'|^2}\right)$$

Maximize w.r.t Θ : $p(\mathbf{y}|\mathcal{X}) = \mathcal{N}(\mathbf{y}|0, \mathbf{K}_{MM}^{\Theta}\mathbf{I})$

Gaussian process [Rasmussen, 2004]

A Gaussian Process is used to describe a distribution over function. It is a collection of infinite random variables, any finite number of which have a joint Gaussian distribution. It is defined by its mean function and covariance function (Kernel): $f(.) \sim \mathcal{GP}(\mu(.), k^{\Theta}(.))$

Posterior Gaussian Process

Infill Criteria

Hypervolume indicator

The hypervolume indicator expresses the hypervolume of the objective space dominated by the approximated Pareto set.

$$\mathcal{H}_{\mathcal{Y}_{\mathcal{N}}} = \left\{ \mathbf{y} \in \mathbb{B}; \exists i \in \{1, \dots, \mathcal{N}\}, \mathbf{y}^{(i)} \prec \mathbf{y}
ight\}$$

Hypervolume improvement

[Emmerich et al., 2006] The hypervolume improvement is the

improvement of the hypervolume by adding a candidate to the data set

$$I_N(\mathbf{x}^{(N+1)}) = |H_{\mathcal{Y}_{N+1}}| - |H_{\mathcal{Y}_N}|$$

Expected Hypervolume improvement [Emmerich et al., 2006]

The expected hypervolume improvement is the mathematical expected improvement of the hypervolume by adding a candidate to the sample

$$\begin{aligned} \textit{EHVI}_{N}(\mathbf{x}) &= \mathbb{E}(|H_{\mathcal{Y}_{N+1}}| - |H_{\mathcal{Y}_{N}}|) \\ &= \int_{\mathbb{B} \setminus H_{\mathcal{Y}_{N}}} \mathbb{P}(\mathbf{y}^{*(N+1)} \prec p) \mathrm{d}p \end{aligned}$$

$$\begin{split} & \text{with } \mathbf{y}^{*(N+1)} = [{y_1^*}^{(N+1)}, {y_2^*}^{(N+1)}] \\ & \text{and } {y_1^*}^{(N+1)} \sim \mathcal{N}\left(\hat{y}_1^{*(N+1)}, \hat{\mathbf{s}}_1^{*(N+1)}\right) \text{ and } {y_2^*}^{(N+1)} \sim \mathcal{N}\left(\hat{y}_2^{*(N+1)}, \hat{\mathbf{s}}_2^{*(N+1)}\right) \end{split}$$

Multi-task GPs

- Classic MO-BO approaches use an independent GP for each objective \rightarrow assumption of independency between the objectives.
- Multi-task GPs [Shah and Ghahramani, 2016]: exhibit correlation between functions by introducing a coregionalization matrix K^{coreg} :

$$Cov(f_i(\mathbf{x}), f_j(\mathbf{x}')) = K_{ij}^{coreg} k(\mathbf{x}, \mathbf{x}')$$

Each function is marginally identically distributed up to a scaling factor.

Deep Gaussian Processes [Damianou and Lawrence, 2013]

DGPs are a class of surrogate models based on the structure of neural networks, where each layer is a GP. They consider that the statistical relationship between the inputs and the response is expressed by a functional composition of GPs:

$$y = f_L(\mathbf{f}_{L-1}(\dots \mathbf{f}_1(\mathbf{f}_0(\mathbf{x}) + \epsilon_0) + \epsilon_1) \dots) + \epsilon_{L-1}) + \epsilon_L$$

$$\begin{split} \mathbf{f}_0 \sim \mathcal{GP}(\mathbf{0}, K_{\mathcal{X}\mathcal{X}}) + \epsilon_0 & \quad \mathbf{f}_1 \sim \mathcal{GP}(\mathbf{0}, K_{\mathbf{h}_1\mathbf{h}_1}) + \epsilon_1 & \quad f_L \sim \mathcal{GP}(\mathbf{0}, K_{\mathbf{h}_L\mathbf{h}_L}) + \epsilon_L \\ & \\ \mathcal{X} & \quad \mathbf{h}_1 & \quad \mathbf{h}_2 & \quad \cdots & \quad \mathbf{h}_L & \\ \end{split}$$

Deep Gaussian Processes

- χ A deterministic observed variable
- A distribution with Non-observed instantiations h,
- A distribution with observed instantiations

Deep Gaussian Processes

GP approximation of a non-stationary 1-D function. The GP model can not capture the stability of the region $\left[0.4,1\right]$ and continues to oscillate

DGP approximation of a non-stationary 1-D function. The DGP model appropriately capture the two regions with different smoothness

MO-DGP model

MO-DGP model

The MO-DGP model is a DGP network where each layer represents an objective. Moreover, a connection is made between the first and the last layer, creating a loop DGP. Propagating through the loop allows to take into account the different correlations between the objectives.

Specifications of the MO-DGP model

MO-DGP model

The MO-DGP model is a DGP network where each layer represents an objective. Moreover, a connection is made between the first and the last layer, creating a loop DGP. Propagating through the loop allows to take into account the different correlations between the objectives.

A multi-objective covariance function

$$k_{l}^{\rho}(\mathbf{x}, \mathbf{x}')k_{l}^{f}\left(f_{i}^{*}(\mathbf{x}), f_{i+1}^{*}(\mathbf{x}')\right) + k_{l}^{\gamma}(\mathbf{x}, \mathbf{x}')$$

Specifications of the MO-DGP model

MO-DGP model

The MO-DGP model is a DGP network where each layer represents an objective. Moreover, a connection is made between the first and the last layer, creating a loop DGP. Propagating through the loop allows to take into account the different correlations between the objectives.

The evidence lower bound

The evidence lower bound is derived using the sparse variational approximation of a GP inference [Salimbeni and Deisenroth, 2017] :

$$P\left(\mathbf{y}^{1},\ldots,\mathbf{y}^{M}|\mathcal{X}\right)\geq \textit{ELBO}$$

with

$$\begin{split} \textit{ELBO} = & \sum\nolimits_{t=1}^{M} \sum\nolimits_{i=1}^{N} \mathbb{E}_{q(t_t^{(i)}, t)} \left[\log p(y^{(i), t} | f_t^{(i), t}) \right] \\ & - \sum\nolimits_{l=1}^{M} \textit{KL} \left[q(\mathbf{u}_l) || p(\mathbf{u}_l; Z_{l-1}) \right] \end{split}$$

Specifications of the MO-DGP model

MO-DGP model

The MO-DGP model is a DGP network where each layer represents an objective. Moreover, a connection is made between the first and the last layer, creating a loop DGP. Propagating through the loop allows to take into account the different correlations between the objectives.

Optimization of the ELBO

An optimization loop is considered :

- An optimization step with the ordinary gradient with respect to the deterministic parameters,
 - An optimization step with the natural gradient with respect to the variational distributions.

specifications of the MO-DGP model

MO-DGP model

The MO-DGP model is a DGP network where each layer represents an objective. Moreover, a connection is made between the first and the last layer, creating a loop DGP. Propagating through the loop allows to take into account the different correlations between the objectives.

Complexity

The computational complexity of the model is :

 $\mathcal{O}(SMNK^2)$

where : S is the number of samples used for the evaluation of the ELBO.

M is the number of objectives,

N is the number of training inputs.

K is the number of inducing inputs.

dtlz1a [Deb, 2001] is defined for $\mathbf{x} \in [0, 1]^6$:

with
$$g(\mathbf{x}) = 100 \left[5 + \sum_{i=2}^{6} (x_i - 0.5)^2 + \cos(2\pi(x_i - 0.5)) \right]$$

- Initial DoE: 30 initial points using a Latin Hypercube sampling,
- Added points: 60.
- EHVI criterion optimized with a parallel differential evolution algorithm.

Analytic multi-objective problem

dtlz1a [Deb, 2001] is defined for $x \in [0, 1]^6$:

$$\begin{array}{lll} \text{Min} & f_1(\mathbf{x}) & = -0.5x_1 \left(1 + g(\mathbf{x})\right) \\ \text{Min} & f_2(\mathbf{x}) & = -0.5(1 - x_1) \left(1 + g(\mathbf{x})\right) \\ \text{with} & g(\mathbf{x}) & = 100 \left[5 + \sum_{i=2}^{6} (x_i - 0.5)^2 + \cos\left(2\pi(x_i - 0.5)\right)\right] \end{array}$$

- Initial DoE: 30 initial points using a Latin Hypercube sampling,
- Added points: 60,
- EHVI criterion optimized with a parallel differential evolution algorithm.

Approximated Pareto Fronts

dtlz1a [Deb, 2001] is defined for $x \in [0, 1]^6$: Min $f_1(\mathbf{x}) = -0.5x_1(1+g(\mathbf{x}))$ $f_2(\mathbf{x}) = -0.5(1 - x_1)(1 + g(\mathbf{x}))$ $g(\mathbf{x}) = 100 \left[5 + \sum_{i=2}^{6} (x_i - 0.5)^2 + \cos(2\pi(x_i - 0.5)) \right]$ Min

- Initial DoE: 30 initial points using a Latin Hypercube sampling,
- Added points: 60.
- EHVI criterion optimized with a parallel differential evolution algorithm.

Approximated Pareto Fronts

Hypervolume evolution according to the added points

Analytic multi-objective problem

Hypervolume evolution according to the number of added points

- Initial DoE: 15 initial points using a Latin Hypercube sampling,
- Added points: 20.
- EHVI criterion optimized with a parallel differential evolution algorithm.

Kursawe [Kursawe, 1990] is defined for $x \in [-5, 5]^3$:

$$\begin{array}{lll} \text{Min} & f_1(\mathbf{x}) & = \sum_{i=1}^{2} \left[-10 \exp\left(-0.5 \sqrt{x_i - 2 + x_{i+1}^2}\right) \right] \\ \text{Min} & f_2(\mathbf{x}) & = \sum_{i=1}^{3} \left[|x_i|^{0.8} + 5 \sin(x_i^3) \right] \end{array}$$

- Initial DoE: 15 initial points using a Latin Hypercube sampling,
- Added points: 20.
- EHVI criterion optimized with a parallel differential evolution algorithm.

Exact Pareto Front

Kursawe [Kursawe, 1990] is defined for $\mathbf{x} \in [-5, 5]^3$:

- Initial DoE: 15 initial points using a Latin Hypercube sampling,
- Added points: 20,
- EHVI criterion optimized with a parallel differential evolution algorithm.

Exact Pareto Front

Solutions of the different MO-BO approaches.

Hypervolume evolution according to the number of added points

Kursawe 10D is defined for $\mathbf{x} \in [-5, 5]^10$:

$$\begin{array}{lll} \text{Min} & f_1(\mathbf{x}) & = \sum_{i=1}^9 \left[-10 \exp\left(-0.5 \sqrt{x_i - 2 + x_{i+1}^2}\right) \right] \\ \text{Min} & f_2(\mathbf{x}) & = \sum_{i=1}^{101} \left[|x_i|^{0.8} + 5 \sin(x_i^3) \right] \end{array}$$

- Initial DoE: 50 initial points using a Latin Hypercube sampling,
- Added points: 85.
- EHVI criterion optimized with a parallel differential evolution algorithm.

Kursawe 10D is defined for $x \in [-5, 5]^10$:

- Initial DoE: 50 initial points using a Latin Hypercube sampling,
- Added points: 85.
- EHVI criterion optimized with a parallel differential evolution algorithm.

Exact Pareto Front

Kursawe 10D is defined for $\mathbf{x} \in [-5, 5]^1\mathbf{0}$:

- Initial DoE: 50 initial points using a Latin Hypercube sampling,
- Added points: 85,
- EHVI criterion optimized with a parallel differential evolution algorithm.

Exact Pareto Front

Solutions of the different MO-BO approaches.

Hypervolume evolution according to the added points

Summary

Comparison of the average hypervolume obtained by different approaches and for the same number of evaluations .

Algorithms	dtlz1a (90 eval)	Kursawe 3D (35 eval)	Kursawe 10D (140 eval)
MO-DGP	0.3791	0.2976	0.6084
MO-Coreg	0.3659	0.19429	0.3846
MO-GP	0.3621	0.13361	0.30764

Comparison of the hypervolume standard deviation obtained by different approaches

and for the same number of evaluations:

Algorithms	dtlz1a (90 eval)	Kursawe 3D (35 eval)	Kursawe 10D (140 eval)
MO-DGP	0.00407	0.05213	0.01127
MO-Coreg	0.00983	0.05041	0.04088
MO-GP	0.02197	0.06034	0.03268

- Proposition of a Deep Gaussian Process multi-objective model, taking into account the correlations between objectives,
- Experimentations on analytical functions confirm the efficiency of the proposed model compared to coregionalization GP approach and independent GPs.
- ▶ MO-DGP is a more efficient model but the complexity to train the model is more important that regular GPs. Hence, it is more interesting for computationally expensive problems.

- Proposition of a Deep Gaussian Process multi-objective model, taking into account the correlations between objectives.
- Experimentations on analytical functions confirm the efficiency of the proposed model compared to coregionalization GP approach and independent GPs.
- MO-DGP is a more efficient model but the complexity to train the model is more important that regular GPs. Hence, it is more interesting for computationally expensive problems.

Future works:

- Derivation of an EHVI taking into account the correlations exhibited by the MO-DGP model.
- Application of the model to problems with over three objectives
- Application to a real multi-objective aerospace problem

- Proposition of a Deep Gaussian Process multi-objective model, taking into account the correlations between objectives,
- Experimentations on analytical functions confirm the efficiency of the proposed model compared to coregionalization GP approach and independent GPs.
- MO-DGP is a more efficient model but the complexity to train the model is more important that regular GPs. Hence, it is more interesting for computationally expensive problems.

Future works:

- Derivation of an EHVI taking into account the correlations exhibited by the
- Application of the model to problems with over three objectives,

- Proposition of a Deep Gaussian Process multi-objective model, taking into account the correlations between objectives,
- Experimentations on analytical functions confirm the efficiency of the proposed model compared to coregionalization GP approach and independent GPs.
- MO-DGP is a more efficient model but the complexity to train the model is more important that regular GPs. Hence, it is more interesting for computationally expensive problems.

Future works:

- Derivation of an EHVI taking into account the correlations exhibited by the
- Application to a real multi-objective aerospace problem

Thank you for your attention !

Bibliography I

Damianou, A. and Lawrence, N. (2013).

Deep gaussian processes.

In Artificial Intelligence and Statistics, pages 207-215.

Deb, K. (2001).

Multi-objective optimization using evolutionary algorithms, volume 16. John Wiley & Sons.

Emmerich, M. T., Giannakoglou, K. C., and Naujoks, B. (2006).

Single-and multiobjective evolutionary optimization assisted by gaussian random field metamodels. IEEE Transactions on Evolutionary Computation, 10(4):421-439.

Hebbal, A., Brevault, L., Balesdent, M., Taibi, E.-G., and Melab, N. (2018).

Efficient global optimization using deep gaussian processes.

In 2018 IEEE Congress on Evolutionary Computation (CEC), pages 1-8. IEEE.

Kursawe, F. (1990).

A variant of evolution strategies for vector optimization.

In International Conference on Parallel Problem Solving from Nature, pages 193-197. Springer.

Rasmussen, C. E. (2004).

Gaussian processes in machine learning.

In Advanced lectures on machine learning, pages 63-71. Springer,

Salimbeni, H. and Deisenroth, M. (2017).

Doubly stochastic variational inference for deep gaussian processes.

arXiv preprint arXiv:1705.08933.

Bibliography II

Shah, A. and Ghahramani, Z. (2016).

Pareto frontier learning with expensive correlated objectives.

In International Conference on Machine Learning, pages 1919–1927.

