平成 29	年 1月 31日(火)5時限施行		学部	学科	年	組	LAK AM UM	
担当者名	数学 IB 担当者全員	学籍番号						
科目名	数学1B	氏 名						-

数学 1B 期末試験

17:19

以下の設問 1から 5 に答えよ、解答は解答用紙の所定の欄に記入すること、

- ② 積分の順序交換により、 $\int_0^1 \left(\int_{y^3}^{2-y^2} \frac{y^2}{x\sqrt{2-x}} dx \right) dy$ の値を求めよ.
- 3 関数 $f(x,y) = e^{\frac{\sqrt{x^2+y^2}}{2}} + e^{\frac{-\sqrt{x^2+y^2}}{2}}$ に対し、

$$\{(x, y, z); z = f(x, y), x^2 + y^2 \le 4\}$$

によって定まる №3 内の曲面の曲面積を求めよ.

- 4 \mathbb{R}^3 内の曲面 $A = \{(x, y, z); z = e^{-x^2 y^2}, x \ge 0, y \ge 0\}$ に対し、以下の問い に答えよ.
- (1) z成分が正となるようなAの単位法線ベクトルnを求めよ.
- (2) ベクトル場 f(x,y,z) = (x,y,z) の A 上の面積分 $\iint_A \mathbf{f} \cdot d\mathbf{S}$ の値を求めよ. ただし、 $\lim_{x\to +\infty}xe^{-x}=0$ となることを用いていも良い.(広義積分であること に注意すること.)
- 5 xy 平面において,(0,0) から $\left(\frac{\pi}{4}, -\frac{\pi}{4}\right)$ にいたる線分を Γ_1 , $\left(\frac{\pi}{4}, -\frac{\pi}{4}\right)$ から $\left(\frac{5\pi}{12}, -\frac{\pi}{12}\right)$ にいたる線分を Γ_2 , $\left(\frac{5\pi}{12}, -\frac{\pi}{12}\right)$ から $\left(\frac{\pi}{6}, \frac{\pi}{6}\right)$ にいたる線分を Γ_3 , さ らに $\left(\frac{\pi}{6}, \frac{\pi}{6}\right)$ から(0,0) にいたる線分を Γ_4 として, $\Gamma = \Gamma_1 + \Gamma_2 + \Gamma_3 + \Gamma_4$ とおく. このとき,線積分

$$\int_{\Gamma} (\sin x + e^x) \sin y \, dx + (\cos x + e^x) \cos y \, dy$$

の値を求めよ.

Sin(x-4) & De sint to 4 + rout siny