ALGEBRA Y GEOMETRIA ANALITICA

TEMA 6: CONCEPTOS BÁSICOS DE ALGEBRA LINEAL Prof. Itatí Sosa

Espacios Vectoriales: Definición

Un espacio vectorial sobre un cuerpo $\mathbb K$ consiste en un conjunto $\mathbb V$ (cuyos elementos se denominan "vectores") provisto de dos operaciones, una de ellas interna, que se llamara *suma de vectores* (indicada con x+y, para $x\in \mathbb V,y\in \mathbb V$) y otra externa que es el producto de elementos de $\mathbb K$ por elementos de $\mathbb V$ (indicado a.x para $a\in \mathbb K,x\in \mathbb V$); diremos que $\mathbb V$ es un $\mathbb K$ –espacio vectorial si y solo si se cumplen los siquientes axiomas:

Sean $x, y, z \in \mathbb{V}$, $a, b \in \mathbb{K}$, entonces:

- $V1) \quad x + y \in \mathbb{V}$
- V2) x + (y + z) = (x + y) + z
- V3) x + y = y + x
- V4) Existe un elemento $\theta \in \mathbb{V}/\theta + x = x$
- V5) $\forall x \in \mathbb{V}$, existe un $x' \in \mathbb{V}$ que verifica $x + x' = \theta$
- V6) $a.x \in \mathbb{V}$
- V7) a.(b.x) = (a.b).x
- V8) (a + b).x = a.x + b.x
- V9) a.(x + y) = a.x + a.y
- V10) 1.x = x, con 1 se denota al neutro para el producto en \mathbb{K}
- Decimos, entonces, que $(\mathbb{V},+,\mathbb{K},.)$ es un espacio vectorial

_			- 1		
Εī	Δ	m	n	O.C.	
-			L/I	IU.S	

- ▶ Sea $n \ge 1$ e indicamos con \mathbb{K}^n al conjunto de todas las n-uplas de elementos de \mathbb{K} . Si defimos:
- $$\begin{split} &+: \mathbb{K}^n \times \mathbb{K}^n \to \mathbb{K}^n/(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n) \\ &:: \mathbb{K} \times \mathbb{K}^n \to \mathbb{K}^n/ \quad \alpha. x = \alpha(x_1, \dots, x_n) = (\alpha x_1, \dots, \alpha x_n) \end{split}$$
- $(\mathbb{K}^n, +, \mathbb{K}, .)$ es un espacio vectorial.

Veamos que , para n=1 , $(\mathbb{K},+,\mathbb{K},.)$ es un espacio vectorial.

- Si $\mathbb{K} = \mathbb{R}$, $\mathbb{V} = \mathbb{R}^2$, con
- $+: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2 / \quad (x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$
- $: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2 / \quad \alpha.x = \alpha(x_1, x_2) = (\alpha x_1, \alpha x_2)$
- $(\mathbb{R}^2, +, \mathbb{R}, .)$ es un espacio vectorial.
- \rightarrow Si $\mathbb{K}=\mathbb{R}$, $\mathbb{V}=\mathbb{R}[x],$ con la suma usual entre polinomios y el producto por un número real usual
- $(\mathbb{R}[x], +, \mathbb{R},.)$ es un espacio vectorial.

PROPIEDADES

- 1. El vector θ cuya existencia asegura V3, se denomina **vector nulo.** Este vector *es único*.
- 2. El vector x' de V4 *es único* y se lo llama <u>el</u> vector opuesto de x, y se lo designa con -x.
- 3. Si 0 es el cero de \mathbb{K} , $0.x = \theta$, $\forall x \in \mathbb{V}$.
- 4. Análogamente $a.\theta = \theta, \forall a \in \mathbb{K}$.
- 5. (-1).x = -x.
- 6. Si $a.x = \theta \Leftrightarrow a = 0 \lor x = \theta$.

Si $\mathbb V$ es un espacio vectorial sobre $\mathbb K$, los elementos de $\mathbb K$ se llaman los <u>escalares</u>.

SUBESPACIOS DE UN ESPACIO VECTORIAL

Si $\mathbb V$ es un $\mathbb K$ -espacio vectorial, un subconjunto $\mathbb S \subset \mathbb V$ se llamará un *subespacio de* $\mathbb V$

- S'1) $\mathbb{S} \neq \emptyset$
- S'2) $\mathbb S$ es un espacio vectorial para las operaciones de $\mathbb V$ restringidas a $\mathbb S$.

Ejemplos:

V es un subespacio de V.

El subconjunto $\{\theta\}$ de \mathbb{V} , es un subespacio de \mathbb{V} .

PROPOSICIÓN

Sea \mathbb{V} un \mathbb{K} -espacio vectorial, $\mathbb{S} \subset \mathbb{V}$ un subconjunto de V. Entonces las siguientes afirmaciones son equivalentes:

- a) S es un subespacio de V.
- b) S verifica las condiciones:
 - S1) θ ∈ S
 - S2) $x \in \mathbb{S}, y \in \mathbb{S} \Rightarrow x + y \in \mathbb{S}$
 - S3) $x \in \mathbb{S}, a \in \mathbb{K} \Rightarrow a. x \in \mathbb{S}$.

COMBINACIONES LINEALES DE VECTORES

Si x_1, x_2, \dots, x_n son vectores en el \mathbb{K} -espacio vectorial \mathbb{V} y $a_1, a_2, ..., a_n$ son escalares , el

$$x = \sum_{i=1}^{n} a_i \cdot x_i = a_1 \cdot x_1 + a_2 \cdot x_2 + \dots + a_n \cdot x_n$$

Se llama combinación lineal de los vectores $x_i (1 \le i \le n)$, con coeficientes $a_i (1 \le i \le n)$

Consideremos M un subconjunto no vacío de un K-espacio vectorial V, para cada conjunto finito $\{x_1, x_2, ..., x_p\}$ de elementos de M y cada conjunto finito $\{a_1, a_2, ..., a_p\}$ de escalares formamos la combinación lineal:

$$\sum_{i=1}^{p} a_i.x_i$$

 $\sum_{i=1}^{p} a_i.x_i$ Indicamos con \bar{M} al conjunto de todas esas combinaciones lineales.

Si M es vacío, $\overline{\emptyset} = \{\theta\}$

Propiedad: $M \subset \overline{M}$ y \overline{M} es un subespacio de \mathbb{V} Definición: Si M es un subconjunto de un espacio vectorial $\mathbb V$, el subespacio $\overline M$ se denomina la cápsula lineal de M, o el subespacio generado por M Si S es un subconjunto de V, diremos que un subconjunto $M \subset S$ genera a S (o es un conjunto de generadores de S) si $S = \overline{M}$ DEPENDENCIA E INDEPENDENCIA LINEAL DE VECTORES Sea \mathbb{V} un \mathbb{K} -espacio vectorial y sean x_1, x_2, \dots, x_r vectores de \mathbb{V} ; diremos que el conjunto $\{x_1, x_2, ..., x_r\}$ es linealmente dependiente (o también que los vectores x_1, x_2, \dots, x_r son linealmente dependientes) si existen escalares $a_1, a_2, ..., a_r$ no todos nulos tales que: $\sum_{i=1}^{p} a_i.x_i = \theta$ Ejemplos: El conjunto $\{(1, -2), (-1, 2), (3, 0)\}$ Todo conjunto que tenga como elemento al vector nulo es linealmente dependiente. DEPENDENCIA E INDEPENDENCIA LINEAL **DE VECTORES** Sea $\mathbb V$ un $\mathbb K$ -espacio vectorial y sean x_1, x_2, \dots, x_r vectores de V; diremos que el conjunto $\{x_1, x_2, ..., x_r\}$ es linealmente independiente (o también que los vectores $x_1, x_2, ..., x_r$ son linealmente dependientes) si no son linealmente dependientes, o sea si la única forma de expresar θ como combinación lineal de los x_i es que todos los escalares sean *nulos*, es decir: $\sum_{i=1}^{n} a_i \cdot x_i = \theta \Rightarrow a_1 = \dots = a_r = 0$

Ejemplos: El conjunto {(1,1), (3,0)}

Ob	92	rva	ıci	or	1e	ς.

- \blacktriangleright Si el conjunto $\{x_1,x_2,\dots,x_r\}$ es linealmente independiente entonces los x_l son todos distintos.
- ightarrow Si el conjunto $\{x_1,x_2,\ldots,x_r\}$ es linealmente independiente, cualquier subconjunto también es linealmente independiente.
- ightarrow Si el conjunto $\{x\}$ de un solo vector es linealmente independiente, ello significa que $x \neq \theta$

BASE DE UN ESPACIO VECTORIAL

- > Sea $\mathbb V$ un $\mathbb K$ -espacio vectorial, un conjunto de vectores $M=\{x_1,x_2,\dots,x_n\}$ se dirá una base de $\mathbb V$ si verifica:
 - B1) M genera a \mathbb{V}
 - B2) M es linealmene independiente
- > Ejemplo: Llamando $e_1=(1,0),\ e_2=(0,1),\ {\rm el}$ conjunto $\{e_1,e_2\}$ es la base canónica de \mathbb{R}^2

PROPIEDADES

 $M = \{x_1, x_2, ..., x_n\}$ es una base de V si y solo si todo vector x de V se expresa de forma única como combinación lineal de los vectores de M

$$x = \sum_{i=1}^{n} \alpha_i \cdot x_i \,,$$

los escalares α_i se denominan componentes de x en la base M.

- 2. Si $\{y_1,y_2,\dots,y_m\}$ genera $\mathbb V$ y $\{x_1,x_2,\dots,x_r\}$ es linealmente independiente, entonces $r\leq m$.
- 3. Si $\{y_1,y_2,\dots,y_m\}$ y $\{x_1,x_2,\dots,x_r\}$ son bases de \mathbb{V} , entonces r=m

DIMENSIÓN	DF	UN	ESPACIO	VECTORIAL
DIMENSION	ν_{L}	OIN	LJIACIO	VECTORIAL

- ▶ <u>Definición:</u> Si $\mathbb V$ es un $\mathbb K$ -espacio vectorial, llamaremos dimensión de $\mathbb V$ y lo indicamos $dim_{\mathbb K}(\mathbb V)$ al número de elementos de una base de $\mathbb V$ (o bien $dim(\mathbb V)$ si no hay confusión).
- Si $\mathbb V$ se reduce al subespacio $\overline{\emptyset}$, convendremos que $\dim(\overline{\emptyset})=0$

Observaciones:

- 1. $dim_{\mathbb{K}}(\mathbb{K}^n) = n$.
- 2. Si $dim_{\mathbb{K}}(\mathbb{V})=n$ cualquier conjunto de generadores de \mathbb{V} tiene por lo menos n elementos.
- 3. Si $dim_{\mathbb{K}}(\mathbb{V}) = n$ cualquier conjunto linealmente independiente en \mathbb{V} tiene a lo más n elementos.
- 4. Si $dim_{\mathbb{K}}(\mathbb{V})=n$ y $\{x_1,x_2,\dots,x_n\}$ es un conjunto de vectores de \mathbb{V} , son equivalentes:
 - a) El conjunto $\{x_1, x_2, \dots, x_n\}$ es una base de $\mathbb {V}$.
 - b) El conjunto $\{x_1,x_2,\dots,x_n\}$ es linealmente independiente.
 - c) El conjunto $\{x_1, x_2, ..., x_n\}$ genera a \mathbb{V} .

PRODUCTO INTERNO

Sea $\mathbb V$ un espacio vectorial real, y considérese una aplicación que a cada par de vectores, $x,y\in \mathbb V$ le asigna un número real, que se denotará $x\cdot y$. Se dice que una tal aplicación

 $\mathbb{V} \times \mathbb{V} \to \mathbb{R}$, $(x,y) \to x \cdot y$

es un producto escalar, o un producto interno, si para cualesquiera sean $x,x',y\in\mathbb{V}$ y $\alpha,\alpha'\in\mathbb{R}$ se verifica que:

- 1. $x \cdot y = y \cdot x$
- $(\alpha x + \alpha' x') \cdot y = \alpha x \cdot y + \alpha' x' \cdot y$
- 3. $x \cdot x \ge 0$ para todo $x \cdot x = 0 \Leftrightarrow x = \theta$

Se llama espacio vectorial euclídeo a todo espacio vectorial real dotado de un producto escalar.

		_	
▶ E	jem	nla	•

ightharpoonup En $(\mathbb{R}^n, +, \mathbb{R}, .)$, la función

$$\because \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}/x \cdot y = \sum_{i=1}^n x_i.y_i$$
 es un producto interior, llamado producto interior

usual en \mathbb{R}^n .

Definición: Si V es un espacio vectorial real con producto interior \cdot , llamaremos longitud o norma del vector $x \in \mathbb{V}$ al escalar $||x|| = +\sqrt{x \cdot x}$

ÁNGULO ENTRE DOS VECTORES

Definición: Sean x e y dos vectores no nulos de un espacio vectorial real con producto interior .Ángulo entre los vectores x e y es el número real φ que satisface:

1.
$$0 \le \varphi \le \pi$$

$$2. \quad \cos \varphi = \frac{x \cdot y}{\|x\| \cdot \|y\|}$$

De la relación 2., se deduce la siguiente expresión del producto interior en función del ángulo entre los vectores y las normas de estos.

$$x \cdot y = ||x|| \cdot ||y|| \cos \varphi$$

PRODUCTO VECTORIAL Y MIXTO DE VECTORES **EN EL ESPACIO**

- > Si ♥ es un espacio vectorial con producto interior de dimensión 3, llamaremos producto vectorial en $\ensuremath{\mathbb{V}}$ a la operación asociada a cada par de vectores $x, y \in \mathbb{V}$ el vector $x \times y$, unívocamente determinado por las condiciones:
- $PV1) x \cdot (x \times y) = y \cdot (x \times y) = 0$
- PV2) $||x \times y|| = ||x|| \cdot ||y|| \cdot \operatorname{sen} \varphi \ (\varphi \text{ el ángulo entre } x \in y)$
- ightharpoonup PV3) Si x e y son independientes, la orientación dada por la base $\{x, y, x \times y\}$ es la orientación de \mathbb{V} .

\sim	nс	rn.	\/	\sim	ON	ורכ

- 1. Si x e y son dependientes, es $x \times y = \theta$, pues $\|x \times y\| = 0$, ya que en PV2) será $\|x\| = 0$ o $\|y\| = 0$ o bien $\alpha = 0$ o $\alpha = \pi$.
- 2. De PV2) resulta $\|x \times y\|^2 = \|x\|^2 \cdot \|y\|^2 \cdot (1 \cos^2 \varphi) = \|x\|^2 \cdot \|y\|^2 (x \cdot y)^2$, de modo que $x \times y = \theta$ equivale a x e y son linealmente dependientes.

PRODUCTO MIXTO DE VECTORES:

<u>Definición:</u> El producto mixto de tres vectores es un escalar, que se obtiene haciendo el producto escalar de un vector por el producto vectorial de los otros dos vectores, $u \cdot (v \times w)$. Y cumple que:

 $|u \cdot (v \times w)| = ||u|| \cdot ||v \times w|| \cdot \cos \alpha = ||u|| \cdot ||v|| \cdot ||w|| \cdot \sin \beta \cdot \cos \alpha$

• Consideremos en el espacio vectorial \mathbb{R}^3 y la base canónica $\{e_1,e_2,e_3\}$. Si $x\neq \theta$, indicamos con α_i a la medida del ángulo entre x y e_i . Así:

$$\cos \alpha_i = \frac{x \cdot e_i}{\|x\| \cdot \|e_i\|} = \frac{x_i}{\sqrt{x_1^2 + x_2^2 + x_3^2}}$$

Los coseno: $\cos\alpha_1$, $\cos\alpha_2$ y $\cos\alpha_3$ son los cosenos directores del vector x.

Los ángulos α_1 , α_2 y α_3 son los ángulos directores del vector x.

<u>Propiedad:</u> La suma de los cuadrados de los cosenos directores de un vector de un espacio vectorial real es

