Approximate Bayesian Inference

Christos Dimitrakakis

November 28, 2023

Approximate Bayesian inference

The General problem

- Observations D.
- ► Nuisance variables z.
- ightharpoonup Unknown parameter θ .
- Direct calculation of any of these terms can be infeasible:

$$\beta(\theta \mid D) = \frac{P_{\theta}(D)\beta(\theta)}{\sum_{\theta'} P_{\theta'}(D)\beta(\theta')}, \qquad P_{\theta}(D) = \sum_{z} P_{\theta}(D,z).$$

Common methods

- ► Monte Carlo
- Variational Bayes
- Approximate Bayesian Computation (ABC)
- Stochastic Variational Inference

Basic sampling theory

Inversion sampler

$$F(u) = \mathbb{P}(x \ge u) = P(\{\omega : x(\omega) \ge u\})$$
 is the CDF of x .

- ightharpoonup Sample u uniformly in [0,1]
- ► Set $x = F^{-1}(u)$.

Rejection Sampler

- ▶ Input: Threshold ϵ , distribution Q
- ► Repeat:
- \triangleright $\hat{x} \sim Q$.
- \triangleright $u \sim \text{Unif}[0,1]$
- ▶ Until $u \leq P(\hat{x})/\epsilon Q(\hat{x})$.
- ightharpoonup Return \hat{x}

Notes

- Useful for sampling from a known distribution P.
- Indirectly useful from sampling from unknown distributions.

Monte-Carlo sampling

$$\beta(B \mid D) = \frac{\int_B P_{\theta}(D) d\beta(\theta)}{\int_{\Theta} P_{\theta'}(D) \beta(\theta')}$$

We can approximate the integrals by sampling from the prior β :

$$\int_{B} P_{\theta}(D) d\beta(\theta) \approx \frac{1}{N} \sum_{n=1}^{N} \mathbb{I} \left\{ \theta^{(n)} \in B \right\} P_{\theta^{(n)}}(D), \qquad \theta^{(n)} \sim \beta.$$

- Sampling from the prior is inefficient.
- The estimator has high bias and variance.
- So, we can use Markov Chain Monte Carlo. This lets us sample a sequence $\theta^{(n)}$ which converges asymptotically to $\beta(\theta^{(n)}|D)$.

Markov Chain Monte Carlo

MCMC for posterior sampling

▶ Form a Markov chain $P(\theta^{(n+1)} \mid \theta^{(n)}, D)$

MCMC for other latent variables

Form a Markov chain $P(z^{(n+1)} | z^{(n)}, D)$

Metropolis-Hastings

Algorithm (symmetric version)

- ▶ Input: Proposal distribution Q(x|x') = Q(x'|x)
- At time *n*:
- $ightharpoonup \hat{x} \sim Q(x|x^{(n)})$
- w.p. $P(\hat{x})/P(x^{(n)})$, $x^{(n+1)} = \hat{x}$ else $x^{(n+1)} = x^{(n)}$

Application to posterior sampling:

The denominator cancels out, leading to:

$$\frac{\beta(\theta'\mid D)}{\beta(\theta\mid D)} = \frac{P_{\theta'}(D)\beta(\theta')}{P_{\theta}(D)\beta(\theta)}$$

The only question is which proposal to use.

Metropolis-Hastings

Algorithm

- ▶ Input: Proposal distribution Q(x|x') satisfying detailed balance, likelihood P.
- At time *n*:
- $\hat{x}|x^{(n)} \sim Q(x|x^{(n)})$
- ► With probability

$$\frac{P(\hat{x})Q(x^{(n)}|\hat{x})}{P(x^{(n)})Q(\hat{x}|x^{(n)})},$$

$$set x^{(n+1)} = \hat{x}$$

Application to posterior sampling:

The $\mathbb{P}_{\beta}(D)$ term cancels out, leading to:

$$\frac{\beta(\theta'\mid D)Q(\theta\mid \theta')}{\beta(\theta\mid D)Q(\theta'\mid \theta)} = \frac{P_{\theta'}(D)\beta(\theta')Q(\theta\mid \theta')}{P_{\theta}(D)\beta(\theta)Q(\theta'\mid \theta)}$$

M-H Theory

Stationary distribution

The Markov chain defined by the M-H algorithm must have a unique stationary distribution

$$\sigma = \sigma P$$
,

where $oldsymbol{P}$ is the transition kernel of the chain with

$$P_{ij} = \mathbb{P}(x^{(n+1)} = j \mid x^{(n)} = i).$$

In addition, $\lim_{n\to\infty} \mathbf{P}^k = 1\sigma$.

Sufficient conditions

▶ If the transition kernel satisfies detailed balance:

$$P(x'|x)\sigma(x) = P(x|x')\sigma(x')$$

then $\sigma(x)$ is a stationary distribution.

If the Markov chain is ergodic then there is a unique σ .

The Gibbs sampler

This is used when we need to sample over only some variables z_1, \ldots, z_k , given some fixed variables x.

General algorithm

- ▶ Input: Factors $P(z_k \mid z_1, \dots z_{k-1}, z_{k+1}, \dots, z_K, x)$
- ▶ For $n \in [N]$:
- ► For $k \in [K]$: $z_k^{(n)} \sim P(z_k \mid z_1^{(n)}, \dots, z_{k-1}^{(n)}, z_{k+1}^{(n-1)}, \dots, z_K^{(n-1)}, x)$

Application to posterior sampling with latent variables:

Latent variable z, parameter θ .

- Until convergence:
- $ightharpoonup heta^{(n)} \sim P(\theta \mid z^{(n-1)}, x)$
- $ightharpoonup z^{(n)} \sim P(z \mid \theta^{(n)}, x)$

ABC: Approximate Bayesian Computation

When to use

- ▶ When we can sample from $P_{\theta}(D)$.
- ▶ When we cannot calculate $P_{\theta}(D)$.

A metric ρ over datasets

- ightharpoonup
 ho(D,D') is distance between datasets.
- We can use that to define a rejection sampler

ABC Rejection Sampling

- ▶ Input: $\epsilon > 0$.
- ▶ Sample $\theta' \sim \beta(\theta)$
- ▶ Sample $D' \sim P_{\theta'}$.
- ▶ If $\rho(D, D') \le \epsilon$, accept θ'

Theorem

If $\rho(D,D')=\|f(D)-f(D')\|$ and f is a sufficient statistic and $\epsilon=0$ then ABC Rejection Sampling is exact.

Multi-platform

- ► STAN
- ► BUGS

Python

- ► PyMC3
- ► TensorFlow Probability
- PyStan
- Pyro (Torch)