Jiacheng Yu 250799525

2.1

(a)Show that insertion sort can sort the n/k sublists, each of length k, in $\Theta(nk)$ worth-case time:

Insertion sort takes: ak²=bk+c for some constants a,b,c

For n/k sublists
$$\frac{n}{k}(ak^2 + bk + c) = ank + b + \frac{cn}{k} = \Theta(nk)$$
 (shown)

(b) To merge n sublists of length k:

$$T(n) = \begin{cases} 0 & \text{if } n = 1 \\ 2T(n/2) + nk & \text{if } n = 2^a \text{ for } a > 0 \end{cases}$$

Merging n sublists is to divide them into n/2 lists in two groups merge each of it recursively that takes T(n/2), and then takes $\frac{n}{2}$ k steps to combine them together. Since there are tow arrays, it takes 2T(n/2) + nk in total.

Prove:

BASE: If there is only one list: T(1) 1k lg1 = 0

INDUCTION: Assume that $T(n) = nk \lg n$ is true, so for T(2n):

$$T(2n) = 2T(n) + 2nk = 2(T(n) + nk) = 2(nk lgn + nk)$$

= $2kn(lgn + 1)$
= $2nk(lgn + lg2)$
= $2nk lg(2n)$
(proven)

When $\frac{n}{k}$ lists, substitute into the equation, we have:

$$T(\frac{n}{k}) = \frac{n}{k} k \lg(\frac{n}{k})$$
$$= n \lg(\frac{n}{k})$$

Hence, in worst case time, the complexity of merge the sublists is $\Theta(n \lg n)$

(c) When k is the largest, the running time is the same:

$$\begin{split} \Theta(nk + nlg(n/k)) &= \Theta(n \ lgn) \\ nk + nlg(n/k) &= lgn \\ k + lg(n/k) &= lgn \\ k &= lgn \end{split}$$

If k > lgn, then the complexity will be greater than $\Theta(n lgn)$,

Hence k = lgn is the largest for the modified algorithm has the same running time

as the sandard merge sort.

(d) see question5 part c

3.2

	A	В	О	0	Ω	ω	Θ
a	lg ^k n	n^{ε}	yes	yes	no	no	no
Ъ	n^k	c ⁿ	yes	yes	no	no	no
С	\sqrt{n}	n ^{sin n}	no	no	no	no	no
d	2 ⁿ	2 ^{n/2}	no	no	yes	yes	no
e	n ^{lg c}	c ^{lg n}	yes	no	yes	no	yes
f	lg(n!)	Lg(n ⁿ)	yes	no	yes	no	yes

4.2

Binary Search

(a) By master method, when Time = $\Theta(1)$

$$T(n) = T(n/2) + c$$

$$a = 1$$
, $b = 2$, and $n^{\log_b{a}} = n^{\log_2{1}} = n^0 = 1$, case 2 applied Hence, $T(n) = \Theta(\lg n)$

(b) When Time = $\Theta(N)$

$$T(n) = T(n/2) + cN$$

The complexity is N times the case in (a), so $T(n) = cN \lg n = \Theta(n \lg n)$

(c) T(n) = T(n/2) + cn, by master method

$$a = 1, b = 2, f(n) = cn, \quad n^{\log_b^a} = n^{\log_2^1} = n^0 = 1, case 1 \text{ applied}$$

Hence, $T(n) = \Theta(n)$

Merge sort

(a) By master method,

$$T(n) = 2T(n/2) + cn$$

$$a = 2$$
, $b = 2$, and $n^{\log_b^a} = n^{\log_2 2} = n^1 = n$, case 2 applied
Since $f(n) = \Theta(n)$, $T(n) = \Theta(n \lg n)$

(b) When Time =
$$\Theta$$
 (N), $T(n) = 2T(n/2) + cn + 2N$

The complexity is $\Theta(n^2)$

(c) T(n) = 2T(n/2) + cn + 2n/2, by master method

$$a = 2$$
, $b = 2$, and $n^{\log_b^a} = n^{\log_2 2} = n^1 = n$, case 2 applied
Since $f(n) = \Theta(n)$, $T(n) = \Theta(n \lg n)$

Question 5:

(d) We do not want to run a) on input of size 200,000,000 because it will take too much time to complete compare to b).