網路腦波音樂之 大腦聽覺反應的腦波分析 及動態視覺化呈現

Brainwave Analysis and Dynamic Visualization of Brain Auditory reaction to Internet Brainwave Music

指導老師: 梁勝富 教授

專題生:莊上緣、江柏諺、邱華苓、洪誼臻

C E C ONTENTS

研究動機 02 實驗方法 資料前處理 04 動態視覺化呈現 結論分析 06 未來展望

甚麼情境下會想聽音樂?

運動

01 讀書 03

04 通勤

為何在聽到某些音樂時,會進入特別專注或是放鬆的狀態呢?

網路上相關的腦波音樂

【雙腦同步】放鬆 Theta - 深度睡眠 | 放鬆 | 療 癒 | 冥想 | 創造力 | 集中力 | 提升工作效率 | ...

觀看次數: 3.9萬次 • 3 年前

Emptitation - Meditation, Chakra & Sleep Music

雙腦同步技術,可以令人左右腦達致同一意識狀態,而不需要長期訓練亦能容易達到效果。利用左右聲道播出不同頻率,使左右腦達 ...

- 01 好奇聆聽網路上針對特定腦波頻率的相關音樂, 腦波會如何變化。
- 02 透過將原始腦電數據轉換成可分析資料的過程, 學習腦波訊號的分析流程理論與 實務。
- **103** 藉由觀察、探討與分析受試者聆聽腦波音樂時的腦波反應,從過程中試著發想該 主題在未來的展望性。

實驗步驟

1.利用腦波電極導線連接Neuroscan Amplifer以及受試者腦部

受試者實驗中必須全程閉眼, 以防有眼動雜訊

- 2.將兩耳後分別接到Neuroscan Amplifer的X1以及GND
- 3.取F3、C3、P3、Fz、Cz、Pz、F4、C4、P4這九個channel為我們 提取資料的主要通道
- 4.確保九個通道所探測到之電阻值小於104Ω

Neuroscan Amplifier

5.準備六首音樂: α、β、γ、δ、θ與白噪音, 每一首3-5分鐘

受試時間約30分鐘

- 6.受試者需呈現最放鬆的姿勢避免晃動
- ──目的是為了最大幅度地減少肌動訊號影響腦波的狀況
- 7.隨機播放六首音樂, 受試者並不知道音樂順序。
- ──目的是為了避免受試者因事先知道音樂與其功效而 產生預期心理導致影響腦波活動

1.該epoch的前一秒作為校正基準, 對epoch本身進行校正, 避免數據落差過大。

2.對每個epoch進行FFT(快速傅立葉轉換),該部分程式碼處理如下

```
def do fft(sampling rate, time window, y):
   *x=np.linspace(0,time_window,sampling_rate*time window)
  ■fft y=fft(y) #快速傅立葉變換
   ■N= sampling rate*time window
  →x = np.arange(N) # 頻率個數
   whalf x = x[range(int(N/2))] #取一半區間
   ▼abs y=np.abs(fft y) # 取複數的絕對值,即複數的模(雙邊頻譜)
   *angle y=np.angle(fft y) #取複數的角度
   ●normalization y=abs y/N #歸一化處理(雙邊頻譜)
   ●normalization half y = normalization y[range(int(N/2))] #由於對稱性,只取一半區間(單邊頻譜)
   #five band=[]
   *five band.append(round(sum(normalization half y[0:4])/len(normalization half y[0:4]),3)) #delta band
   *five_band.append(round(sum(normalization half y[4:9])/len(normalization half y[4:9]),3)) #theta band
   *five band.append(round(sum(normalization half y[8:13])/len(normalization half y[8:13]),3)) #alpha band
   *five band.append(round(sum(normalization half y[12:31])/len(normalization half y[12:31]),3)) #beta band
   *five band.append(round(sum(normalization half y[30:51])/len(normalization half y[30:51]),3)) #gamma band
   ### 上方為將FFT轉換後的五個band之能量強度平均
```


VOCE U大圓與小圓分別代表不同的band與channel,藉由能量強度對應顏色以及數據表格來顯示單一受試者(可按鍵切換不同受試者)隨時間變化的腦波能量強度。

人口已已 大圓和小圓之設定同mode1,下方之能量強度動態長條圖可顯示單一受試者之單個channel(可按鍵切換受試者與欲觀察之channel)隨時間變化的腦波能量強度。

人口包含 大圓和小圓之設定同mode1,此模式將受試者分成兩組,可比對不同受試者的同一個band(可按鍵切換不同組受試者以及欲觀察的band)在相同時間之能量變化。

VOCE4 可顯示所有受試者於同一個band(可按鍵切換欲觀察的band)時,聽取不同的腦波音樂與白噪音(本次實驗baseline)之能量強度,目的為觀察腦波音樂是否能引誘出特定腦波。

隨著音樂播放, channel的顏色會因為能量改變而有動態變化

delta band		theta band		alpha band		beta band		gamma band	
F3	5.451	F3	1.661	F3	0.977	F3	0.617	F3	0.438
C3	2.168	C3	1.036	C3	0.621	C3	0.557	C3	0.454
P3	1.64	P3	0.994	P3	0.463	P3	0.478	P3	0.444
Fz	4.446	Fz	1.019	Fz	0.835	Fz	0.62	Fz	0.51
Cz	1.694	Cz	1.078	Cz	0.75	Cz	0.499	Cz	0.485
Pz	1.369	Pz	0.935	Pz	0.485	Pz	0.498	Pz	0.424
F4	1.153	F4	0.727	F4	0.578	F4	0.457	F4	0.405
C4	1.615	C4	0.639	C4	0.525	C4	0.437	C4	0.408
P4	1.296	P4	0.856	P4	0.48	P4	0.438	P4	0.407

左右鍵可以切換

表格顯示不同channel在不同band的能量數值

Spectrum Table

按下空白鍵暫停音樂播放,再按一次則繼續播放,按Q鍵可以直接關閉視窗

受試者1~7號的 資料及平均

RUN

剩餘秒數 ← Remaining time(s): 245s

subject number:1

VOCE U大圓與小圓分別代表不同的band與channel,藉由能量強度對應顏色以及數據表格來顯示單一受試者(可按鍵切換不同受試者)隨時間變化的腦波能量強度。

人口CC 大圓和小圓之設定同mode1,下方之能量強度動態長條圖可顯示單一受試者之單個channel(可按鍵切換受試者與欲觀察之channel)隨時間變化的腦波能量強度。

人口包含 大圓和小圓之設定同mode1,此模式將受試者分成兩組,可比對不同受試者的同一個band(可按鍵切換不同組受試者以及欲觀察的band)在相同時間之能量變化。

VOCE4 可顯示所有受試者於同一個band(可按鍵切換欲觀察的band)時,聽取不同的腦波音樂與白噪音(本次實驗baseline)之能量強度,目的為觀察腦波音樂是否能引誘出特定腦波。

VOCE U大圓與小圓分別代表不同的band與channel,藉由能量強度對應顏色以及數據表格來顯示單一受試者(可按鍵切換不同受試者)隨時間變化的腦波能量強度。

人口已已 大圓和小圓之設定同mode1,下方之能量強度動態長條圖可顯示單一受試者之單個channel(可按鍵切換受試者與欲觀察之channel)隨時間變化的腦波能量強度。

人口包含 大圓和小圓之設定同mode1,此模式將受試者分成兩組,可比對不同受試者的同一個band(可按鍵切換不同組受試者以及欲觀察的band)在相同時間之能量變化。

VOCE4 可顯示所有受試者於同一個band(可按鍵切換欲觀察的band)時,聽取不同的腦波音樂與白噪音(本次實驗baseline)之能量強度,目的為觀察腦波音樂是否能引誘出特定腦波。

VOCE U大圓與小圓分別代表不同的band與channel,藉由能量強度對應顏色以及數據表格來顯示單一受試者(可按鍵切換不同受試者)隨時間變化的腦波能量強度。

人口已已 大圓和小圓之設定同mode1,下方之能量強度動態長條圖可顯示單一受試者之單個channel(可按鍵切換受試者與欲觀察之channel)隨時間變化的腦波能量強度。

人口包含 大圓和小圓之設定同mode1,此模式將受試者分成兩組,可比對不同受試者的同一個band(可按鍵切換不同組受試者以及欲觀察的band)在相同時間之能量變化。

MOCE4 可顯示單一(或所有)受試者於同一個band(可按鍵切換欲觀察的band)時,聽取不同的腦波音樂與白噪音(本次實驗baseline)之能量強度,目的為觀察腦波音樂是否能引誘出特定腦波。

按鍵盤A鍵就可切換成此種能一次性觀察全部受試者的模式 此模式僅能以左右鍵切換欲觀察的band,而按上下鍵則會跳回前一頁顯示單一受試者模式

判斷標準

- 01 分別計算並比較9個channel聽音樂時能量高於聽白噪音的epoch數。
- 02 計算符合條件的channel數,並以channel數5個以上作為依據。

Alpha(epoch數:48)

七位受試者+平均

```
[1. 1. 0. 1. 1. 1. 0. 1.]

[[24. 28. 23. 30. 32. 28. 29. 30. 30.]

[30. 32. 31. 31. 34. 33. 36. 35. 35.]

[20. 12. 24. 17. 21. 20. 26. 30. 31.]

[32. 29. 30. 36. 31. 29. 26. 28. 25.]

[31. 29. 29. 26. 28. 26. 25. 23. 26.]

[19. 23. 28. 20. 25. 28. 28. 25. 28.]

[24. 22. 21. 17. 21. 20. 19. 22. 20.]

[28. 24. 35. 26. 30. 31. 30. 33. 34.]]
```

不同的音樂於不同的band中,能夠被該音樂誘發出比平時更強的腦波之受試者人數比較表

				スローローターマ	
band 音樂名稱	Alpha_band	Beta_band	Delta_band	Gamma_band	Theta_band
Alpha_music	5位	4位	2位	3位	4位
Beta_music	3位	5位	4位	3位	4位
Delta_music	4位	4位	4位	4位	5位
Gamma_music	7位	6位	3位	3位	5位
Theta_music	5位	5位	5位	1位	4位

觀察&結論:

- 1.聽alpha音樂與聽beta音樂均能在對應的band誘發出比平時更強的腦波 (7位中有五位被誘發)
- 2.對比聽單首音樂的五個 band ➡ Alpha音樂與Beta音樂較具有誘發出對應腦波的功效。

不同的音樂於對應的band中,能夠被該音樂誘發出比平時更強的腦波之受試者人數比較表

受試者 音樂名稱	受試者1	受試者2	受試者3	受試者4	受試者5	受試者6	受試者7	受試者平均趨勢
Alpha	~	~		V	~	~	апп	5位/7位
Beta	✓		✓	V	✓	~	MR	5位/7位
Delta	~	~			✓	04/		3位/7位
Gamma	V	7, (4)		✓		1/	V	4位/7位
Theta	~	~		~	V	1		4位/7位

✔: 表示能量大於白噪音 (baseline)

觀察&結論:

- 1.五種腦波音樂皆可誘發出受試者 1之對應腦波, 顯示受試者 1對於腦波音樂較為敏感。
- 2.受試者3與受試者7分別僅在Beta音樂與Gamma音樂有反應,兩人對於腦波音樂較不敏感。
- 3.以平均趨勢來看,除了 Delta音樂之外,其餘四種腦波音樂皆有誘發出對應腦波的趨勢。

實驗心得

- 01 腦波音樂的功效如何?
- 觀察實驗數據
- □ 實際表現
- 02 看見了腦波應用的潛力
- □ 醫療領域
- □ 動態UI的未來應用

導致實驗誤差因素

1 電阻難以降低至可接受值

2 受試者當下疲勞度

3 周圍環境噪音

4 受試者輕微體動訊號干擾

實驗需改進的部分

1 受試者聆聽音樂的時間長度須相同

2 實驗流程較繁瑣,
所以未能取得足夠的數據

搭配技術

生物辨識

2 ML&DL

3

確認腦波實驗在不同受試者之間的可驗證性與可辨識性

以腦波生物辨識作為依據、登入並在虛擬世界進行各項活動

提取腦波特徵值、搭配ML、深度學習或醫學影像來提升辨識與預測的準確率

元宇宙

腦科學研究

實際應用

透過我們開發的動態界面以及生物辨識等技術,深入研究腦波與人體之關聯

以動態介面與生物辨識、醫學影像與 ML結合,進行「腦波健檢」

2 醫療輔助

搭配生物辨識、元宇宙或肌電感測. 實現智慧音樂推薦系統及多人虛擬健身房

智慧運動&生活

感謝聆聽

Thanks for your watching!