WAS TO SEE THE STATE OF THE SEE STATE OF

ESc201, Lecture 31: (Digital) Examples of Subtraction

Example of Minuend > Subtrahend

An inverter is added to the sign bit to, keep conformity = 1 for negative numbers with the positive and negative number sign bit convention.

Example of Subtrahend > Minuend

It makes sense to use adder as a subtractor as well provided additional circuit required for carrying out 2's complement is simple. (find out later that XOR gate is sufficient)

ESc201, Lecture 31: Digital Binary positive and negative number

Decimal	0	1	2	3	4	5	6	7
Signed Magnitude	0000	0001	0010	0011	0100	0101	0110	0111
Decimal	-0	-1	-2	-3	-4	-5	-6	-7
Signed Magnitude	1000	1001	1010	1011	1100	1101	1110	1111
Decimal		-1	-2	-3	-4	-5	-6	-7
Signed 1's complement		1110	1101	1100	1011	1010	1001	1000
Decimal		-1	-2	-3	-4	-5	-6	-7
Signed 2's complement	·	1111	1110	1101	1100	1011	1010	1001

addition & subtraction

110 S ------1110

111

101 1101 <u>110 +1110</u> L011 1<u>1011</u> Addition of 3-bit & 4-bit binary numbers need to take the Carry of each Half-Adder sum bits to the next higher bit.

Full-Adder Truth Table

C_{out}

S C_{out} O C_{out} S = $\overline{a}.\overline{b}.\overline{c}_{in} + \overline{a}.\overline{b}.\overline{c}_{in}$ 1 C_{out} S = $\overline{a}.\overline{b}.\overline{c}_{in} + \overline{a}.\overline{b}.\overline{c}_{in}$ 1 C_{out} C C_{out} S = $\overline{a}.\overline{b}.\overline{c}_{in} + \overline{a}.\overline{b}.\overline{c}_{in}$ C C_{out} S = $\overline{a}.\overline{b}.\overline{c}_{in} + \overline{a}.\overline{b}.\overline{c}_{in}$ C_{out} S = $\overline{a}.\overline{b}.\overline{c}_{in} + \overline{a}.\overline{b}.\overline{c}_{in}$ C_{out}

Full Adder

For each bit pair

Can also be done with Half - Adder units (Check HA#8)

ESc201, Lecture 31: Digital XOR Implementation

Often there is lot of further optimization that can be done.

Exact as per Algorithm

Repeated use of only One Kind of Gate No reduction in the number of gates required

$$A(\overline{AB}) = \overline{A} + AB \qquad A$$

$$B(\overline{AB}) = \overline{B} + AB \qquad A$$

Only One Kind of Gate, and reduction in the number of gates.

Therefore after XOR add 1 to get 2'compliment.

ESc201, Lecture 31: (Digital) Binary Addition/Subtraction

2's complement of 6 00000110 + 6 11111010₍₀₀₀₀₀₁₁₀₎ is 11111001 1100101.001 00001101 +1300001101 +130110011.01

If both sign bits are same, it's a simple case of addition.

00010011 +19

00000111 No 2's compliment 7 bits + 1 sign bit is required.

00000110 11111010 11110011 1110011 11111001

The sign bit also turns out to be correct, if one rejects the overflow bit.

Implementation: Example of a 8-bit Adder as required for above.

Hence 2's **Compliment** 11111001 has come out as final answer.

For non-integer add/subtract the binary point hass to be aligned 1st, otherwise same. Result is a negative number, hence 2's complement of 7 (00000111) is the result.

S₆ **S**₅ S_4 S_3 S_2 S_6 S_0 Cout FA FΑ FA FΑ FΑ FΑ FΑ FΑ $A_4 B_4$ $A_3 B_3$

ESc201, Lecture 31: (Digital Adder/Subtractor)

Example with 4-bit words

$$B_0 \oplus 0 = B_0.0 + B_0.0 = B_0$$

 $B_0 \oplus 1 = B_0.1 + B_0.1 = B_0$

ESc201, Lecture 31: (Digital) Segement 'a' has to be on

for: 0, 2, 3, 5, 6, 7, 8, and 9.

Dec	Input				Output							
Function	۵	С	В	A	BI	•	Ь	С	d	•	f	g
0	0	0	0	0	1	1	1	1	1	1	1	0
1	0	0	0	1	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	1	0	0	1
4	0	1	0	0	1	0	1	1	0	0	1	1
5	0	1	0	1	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	0	1	1	1	1	1
7	0	1	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	t	0	0	1	1
10	1	0	1	0	1	0	0	0	1	1	0	1
11	1	0	1	1	1	0	0	1	1	0	0	1
12	1	1	0	0	1	0	1	0	0	0	1	1
13	1	1	0	1	1	1	0	0	1	0	1	1
14	1	1	1	0	1	0	0	0	1	1	1	1
15	1	1	1	1	1	0	0	0	0	0	0	0
Bi	×	×	×	×	0	0	0	0	0	0	0	0

7449 BCD to seven segment decoder

0

0

00

01

11

10

output: a
Determine the simplified POS

$$= (\overline{DB}).(\overline{C\overline{A}}).(\overline{\overline{D}\overline{C}\overline{B}A})$$

$$\overline{\circ}$$
 a= $(\overline{D}+\overline{B}).(\overline{C}+A).(\overline{D+C+B+\overline{A}})$

