Table 5.1 General Solubility Guidelines for Ionic Compounds in Water

Soluble	Exceptions
Ammonium compounds $(\operatorname{NH_4}^+)$	None
Lithium compounds (Li^+)	None
Sodium compounds (Na^+)	None
Potassium compounds (K^+)	None
Nitrates $(N0_3^-)$	None
Perchlorates (CIO ₄ ⁻)	None
Acetates $(CH_3CO_2^-)$	None
Chlorides (Cl ⁻)	
Bromides (Br ⁻)	Ag^+ , Hg_2^{2+} , and Pb^{2+} compounds
$Iodides \; (I^-)$	
Sulfates (SO ₄ ²⁻)	Ba ²⁺ , Hg ₂ ²⁺ , and Pb ²⁺ compounds

© 2017 Pearson Education, Inc.

Table 7.1 Average Bond Dissociation Energies

Bond	Bond Dissociation Energy kcal/mol (kJ/mol)	Bond	Bond Dissociation Energy kcal/mol (kJ/mol)	Bond	Bond Dissociation Energy kcal/mol (kJ/mol)
с—н	99 (413)	N-H	93 (391)	c = c	147 (614)
c-c	83 (347)	N-N	38 (160)	c = c	201 (839)
C-N	73 (305)	N-CI	48 (200)	c=0*	178 (745)
c-o	86 (358)	N-0	48 (201)	0 = 0	119 (498)
$c\!-\!cl$	81 (339)	H-H	103 (432)	N = 0	145 (607)
cl-cl	58 (243)	0—H	112 (467)	$0 \equiv N$	213 (891)
H-CI	102 (427)	0 — CI	49 (203)	N = N	226 (946)

^{*}The C=0 bond dissociation energies in CO_2 are 191 kcal/mol (799 kJ/mol).

$$\Delta G = \Delta H - T \Delta S$$

$$K_{eq} = \frac{\prod_{Products} [I]^i}{\prod_{Reactants} [J]^j}$$

$$\Delta H_{rxn} = \sum_{Broken} Bond\ energy - \sum_{Formed} Bond\ Energy$$

^{© 2017} Pearson Education, Inc.