HOMEWORKS.

HomeWorks RS232 Protocol Guide

A Protocol Guide for the Lutron HomeWorks Processor

HomeWorks Interactive RS-232 Command Set

Technical Specs

Command Format

Device Address Format

Time Format

Date Format

Keypad Button Numbering

Monitor Output Format

- Keypad button press
- Keypad button release
- Keypad button hold
- Keypad button double tap
- Keypad led states
- Dimmer button press
- Dimmer button release
- Dimmer button hold
- Dimmer button double tap
- Dimmer level change
- GRAFIK Eye scene select
- Sivoia scene command change
- Sivoia control button press
- Sivoia control button release
- Sivoia control button hold
- Sivoia control button double tap

Dimmer Commands

Actions

- Fade a system dimmer
- Raise a system dimmer
- Lower a system dimmer
- Stop a dimmer raise/lower
- Flash a system dimmer
- Stop dimmer flashing
- Dimmer button press
- Dimmer button double tap

Requests

• Request dimmer level

GRAFIK Eye Commands

Actions

• Select GRAFIK Eye scene

Requests

Request GRAFIK Eye scene

Keypad Commands

Actions

- Keypad button press
- Keypad button release
- Keypad button hold
- Keypad button double tap
- Keypad enable
- Keypad disable
- Set keypad led state
- Set led states for a whole keypad

- Pulse CCO relay
- Close CCO relay
- Open CCO relay

Requests

- Request keypad enabled/disabled state
- Request keypad led states
- Request last button pressed on a keypad

Sivoia Commands

Actions

Select Sivoia scene command

Requests

Request Sivoia scene command

Time Clock Commands

Actions

- Set system time
- Set system date
- Time clock enable
- Time clock disable

Requests

- Request system time
- Request system time with seconds
- Request system date
- Request time clock state
- Request today's sunrise time
- Request today's sunset time

Scene Saver Mode Commands

Actions

- Begin scene saver mode
- Terminate scene saver mode
- Scene save on a keypad button
- Scene restore on a keypad button

Requests

• Request scene save mode state

Vacation Mode Commands

Actions

- Vacation mode record
- Vacation mode playback
- Vacation mode disable

Requests

Vacation mode state request

Security Mode Commands

Actions

- Security mode begin
- Security mode terminate

Requests

• Security mode state request

Monitoring Output Commands

Actions

- Dimmer level/Sivoia scene monitoring on
- Dimmer level/Sivoia scene monitoring off
- Keypad/dimmer/Sivoia control button monitoring on
- Keypad/dimmer/Sivoia control button monitoring off
- Keypad led monitoring on
- Keypad led monitoring off
- GRAFIK Eye scene monitoring on
- GRAFIK Eye scene monitoring off

System Commands

Actions

- Login to system
- Logout of system
- Turn L232> prompt off
- Turn L232> prompt on
- Set RS-232 port baud rate
- Print system event log
- Set RS-232 port handshaking type

Requests

- Request processor address
- Request RS-232 port baud rate
- Request RS-232 port handshaking type
- Reset RS-232 port parameters to serial driver settings
- Request system processor O/S revisions
- Help

Revision History

back to the top...

Technical Specifications

- HomeWorks Interactive processors require the use of a standard 9-pin DB9 serial cable for communications with external equipment. This cable must be a 9-wire, straight through cable, not a 3-wire cable.
- The available baud rates are 9600, 19200, 38400, 57600, and 115,200 baud. When dip switch #1 on S2 is up the baud rate is 9600 baud, and when it is down the baud rate is set to the user setting according to the SETBAUD command
- The HomeWorks Interactive processors use hardware handshaking for flow control by default. Software handshaking will not work. The hardware handshaking may be disabled using the SETHAND command. If hardware handshaking is disabled, Lutron recommends using a low baud rate to avoid buffer overflow problems.
- Other communication settings include, 8 data bits, 1 stop bit, and no parity bit

HWI Pin Number	HWI Pin Name	Description for HWI Processor	Required for Hardware Handshaking	Required for Simple Communications (hardware handshaking disabled)
1	DCD	Data Carrier Detect (input)		
2	TX	Transmit Data (output)	X	X
3	RX	Receive Data (input)	X	X
4	DSR	Data Set Ready (input)	X	
5	GND	Ground	Х	X
6	DTR	Data Terminal Ready (output)	X	

7	CTS	Clear To Send (input)	X	
8	RTS	Request To Send (output)	X	
9	RI	Ring Indicate (input)		

General Specifications

- The HWI processor connects to the serial port on a laptop using a standard DB-9 serial cable (all pins straight through)
- The default configuration for the HWI processor is to use hardware handshaking, which requires the pin connections as shown in the table above. The SETHAND command can be used to disable hardware handshaking if needed.
- When hardware handshaking is used, communications with the HWI processor will be reliable up to 115200 bps. (Note: Some older laptops cannot communicate reliably at 115200 bps)
- The DTR output from the HWI processor is used by the HWI programming software. It indicates to the software that the
 processor is powered and ready for communications. This line is optional, and the DTR check can be disabled in the HWI
 programming software. Contact Lutron for more information.
- The DSR input to the HWI processor is used to determine if an external device is controlling the handshaking lines. The DSR line must be asserted for the hardware handshaking to work properly. If the DSR line is unasserted while hardware handshaking is enabled, the processor will ignore the CTS input and always transmit characters.
- All communications lines indicated in the Hardware Handshaking column are required when connecting a modem to an HWI processor.

Using Simple 3-Wire Communications

- If hardware handshaking communications lines are not available on the external serial device, it is possible to communicate to the HWI processor using a simple 3-wire interface. The pins required are shown in the table above.
- The hardware handshaking should be disabled on the processor using the SETHAND command.
- In this configuration, the HWI processor will be unable to tell the external equipment to stop sending data, and the external equipment will be unable to tell the HWI processor to stop sending data. This can result in buffer overruns if the communications rates are too high.
- Care must be taken to understand the amount of data being sent to/from the HWI processor using the 3-wire interface. Unnecessary monitoring messages should be disabled on the HWI processor to minimize communications.
- Lutron does not recommend using the simple 3-wire interface to connect to external equipment that may send continuous data at a high data rate, or if your external equipment cannot process a continuous stream of monitoring output from the HWI processor.
- The 3-wire interface cannot be used to connect a modem to an HWI processor.

SETBAUD

Set RS-232 port baud rate

Syntax

SETBAUD, <baud rate>

Processor Responds with one of the following

For this change to take effect, you must cycle the processor power.

For this change to take effect, you must first set dip switch #1 on S2 in the down position and then cycle the processor power.

Parameter	Description	Format
baud rate	new RS-232 port baud rate	you must select one of the following baud rates 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200

Description

When dip switch #1 on S2 is in the up position, the processor RS232 port baud rate is fixed at 9600 baud. When dip switch #1 on S2 is in the down position, the processor RS232 port baud rate will be set to the user setting determined by the SETBAUD command. When the SETBAUD command is issued, the processor power must be cycled for the change to take effect. This will allow laptops that have problems communicating at 115200 baud to use an intermediate baud rate that is faster than 9600 baud in order to minimize download times. Also, with dip switch #1 on S2 set to the up position, the processor can be set to a known baud rate (9600 baud), ensuring reliable communications. This adjustable baud rate also provides greater flexibility when connecting to external A/V equipment.

Example

Set RS-232 port baud rate to 57600 bps

L232> SETBAUD, 57600

For this change to take effect, you must cycle the processor power.

See Also

GETBAUD - Request the RS-232 port baud rate

GETBAUD

Get RS-232 port baud rate

Syntax

GETBAUD, <port address>

Processor responds with the following

RS232 port baud rate on port <port address> is <baud rate>

Parameter	Description	Format
port address (optional)	the port address the request is for	pp:ll:aaa (see RS232 Port Addressing) This parameter is optional. If omitted, the request will default to the port that receives the command
baud rate	the RS-232 port baud rate	the processor will respond with one of the following 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200

Description

Requests the RS-232 port baud rate setting for an RS232 port in the system.

Example

Get RS-232 port baud rate for the port you are connected to

```
L232> GETBAUD
```

RS232 port baud rate on port 01:03:001 is 115200

Example

Get RS-232 port baud rate for link 7 on processor 2

```
L232> GETBAUD, 2:7:1
```

RS232 port baud rate on port 02:07:001 is 115200

See Also

SETBAUD - Set RS-232 port baud rate

Device Address Formatting

- Every physical device in the system (RPM zone, D48 zone, GRAFIK Eye, etc) has a system device address.
- Each device address is separated into 3-5 elements as shown in the tables below
- Device address elements are listed in the order shown, separated by a period, colon, slash, backslash or dash.
- The entire device address may be enclosed in [brackets] if desired.
- All letters and spaces in the address are ignored and may be used to improve readability
- Examples of device address formats for Processor 1, Link 1, Module Interface Address 3, RPM Module
 2, RPM zone 4

[01:01:03:02:04]

1:1:3:2:4

1.1.3.2.4

1/1/3/2/4

[proc 1 : link 1 : mi 3 : module 2 : zone 4]

RPM Dimmer/Switch

Processor	Link	Router (MI)	Module	Output
1-16	1	0-15	1-8	1-4

D48 Dimmer/Switch

Processor	Link	Router (D48)	Bus	Dimmer

1-16	4-6	1-4	1-12	1-4	

H48 Dimmer/Switch

Processor	Link	Router (H48)	Bus	Dimmer
1-16	4-6	1-4	1-6	1-8

RF Dimmer/Switch

Processor	Link	Device Type	Dimmer
1-16	8	1	1-64

RF Keypad

Processor	Link	Device Type	Keypad
1-16	8	2	1-32

RF Repeater

Proces	sor Link	Device T	ype Repeater
1-16	8	3	1-4

Keypad/Sivoia Control/CCO/CCI/TEL-9

Processor	Link	Keypad
1-16	4-6	1-32

RS232 Port

Processor	Link	Port
1-16	3 or 7	1

GRAFIK Eye Main Unit

Processor	Link	GRAFIK Eye
1-16	4-6	1-8

GRAFIK Eye Main Unit Single Zone

Processor	Link	GRAFIK Eye	Output
1-16	4-6	1-8	1-8

SETHAND

Set RS-232 port handshaking type

Syntax

SETHAND, < handshaking>

Processor Responds with one of the following

No handshaking enabled Hardware handshaking enabled

Parameter	Description	Format
handshaking	new RS-232 port handshaking	you must select one of the
	J.	following handshaking types NONE, HW (Hardware)

Description

This command is used to specify the 232 port handshaking method to be used. When set to NONE, the HWI processor will ignore the CTS input, and always transmit data. When set to HW (hardware), the HWI processor will only transmit characters if the CTS input is low.

Example

Set RS-232 port handshaking to NONE

L232> SETHAND, NONE No handshaking enabled

See Also

GETHAND - Request RS-232 port handshaking type

GETHAND

Get RS-232 port handshaking type

Syntax

GETHAND, <port address>

Processor responds with the following

RS232 port handshaking on processor <port address> is <handshaking type>

Parameter	Description	Format
port address (optional)	the port address the request is for	pp:ll:aaa (see RS232 Port Addressing) This parameter is optional. If omitted, the request will default to the processor that receives the command
handshaking type	the RS-232 port handshaking type	The processor will respond with one of the following handshaking types None, Hardware Handshaking

Description

This command is used to request the handshaking method being used on an RS232 port.

Example

Get RS-232 port handshaking for the port you are connected to

L232> GETHAND

RS232 port handshaking on port 01:03:001 is Hardware Handshaking

Example

Get RS-232 port handshaking for link 7 on processor 2

L232> GETHAND, 2:7:1

RS232 port handshaking on port 02:06:001 is None

See Also

SETHAND - Set RS-232 port handshaking type

Command Formatting

- All commands are in ASCII characters.
- Each command is made up of fields, seperated by commas, and terminated with a carriage return
 CR> = \$0D Hex.
- Spaces are ignored, allowing for visual formatting of commands
- Where letters are used, case is ignored
- Some commands allow parameters to be omitted, and a default value will be used. In this case, the
 delimiting commas must still be used
- There is a limit of 255 characters per command.

Time Formatting

- Times are used when entering fade or delay times, and for setting the internal processor clock
- When setting the system time, 24 hour format must be used
- When entering times the following formats may be used:

HH:MM:SS MM:SS SS

HH = Hours

MM = Minutes MM = Minutes

SS = Seconds SS = Seconds SS = Seconds

Examples

4:23 AM = 04:23:00

3:15 PM = 15:15:00

4 sec fade time = 00:00:04 or 00:04 or 4

1 minute delay time = 00:01:00 or 1:00

Date Formatting

- Dates are used when setting the internal processor calendar
- The month and day must have 2 digits, and the year must have 4 digits
- HomeWorks Interactive is year 2000 compliant
- The following formats can be used for entering the date

MM / [DD /	YYYY
MM \ [DD \	YYYY
MM - I	DD -	YYYY

MM = Month DD = Day of month YYYY = Year

Example

January 10, 1999 = 01/10/1999

Keypad Button Numbering

HWI-KP5

HWI-KP10

HWI-KP15

HWI-8SE-IR

HWI-4SE-IR

HWI-2SE

HWI-KP5-DW

HWI-KP-LB6

HWI-KP-LB9

HWI-2B

HWI-CCO

HWI-CCI

HWI-TEL 9

KBP Monitor String

Keypad Button Press Monitor String

Syntax

KBP, <address>, <button number>

Parameter	Description	Format
address	system address of the keypad	[processor : link : address] see device address formatting description
button number	button number that was pressed	1 - 24

Description

The KBP monitor string is output from a processor when a keypad button is pressed

Example

Someone presses button 1 on processor 1, link 4, keypad address 4

KBP, [01:04:04], 1

See Also

KBR Monitor String

KBH Monitor String

KBDT Monitor String

KBMON - Keypad button monitoring on

KBR Monitor String

Keypad Button Release Monitor String

Syntax

KBR, <address>, <button number>

Parameter	Description	Format
address	,	[processor : link : address] see device address formatting description
button number	button number that was released	1 - 24

Description

The KBR monitor string is output from a processor when a keypad button is released

Example

Someone releases button 1 on processor 1, link 4, keypad address 4

KBR, [01:04:04], 1

See Also

KBP Monitor String

KBH Monitor String

KBDT Monitor String

KBMON - Keypad button monitoring on

KBH Monitor String

Keypad Button Hold Monitor String

Syntax

KBH, <address>, <button number>

Parameter	Description	Format
address	system address of the keypad	[processor : link : address] see device address formatting description
button number	button number that was held	1 - 24

Description

The KBH monitor string is output from a processor when a keypad button is held

Example

Someone holds button 1 on processor 1, link 4, keypad address 4

KBH, [01:04:04], 1

See Also

KBP Monitor String

KBR Monitor String

KBDT Monitor String

KBMON - Keypad button monitoring on

KBDT Monitor String

Keypad Button Double Tap Monitor String

Syntax

KBDT, <address>, <button number>

Parameter	Description	Format
address	, ,	[processor : link : address] see device address formatting description
button number	button number that was double tapped	1 - 24

Description

The KBDT monitor string is output from a processor when a keypad button is double tapped

Example

Someone double taps button 1 on processor 1, link 4, keypad address 4

KBDT, [01:04:04], 1

See Also

KBP Monitor String

KBR Monitor String

KBH Monitor String

KBMON - Keypad button monitoring on

KBMON

Keypad/Dimmer/Sivoia Control Button Monitoring On

Syntax KBMON

Processor Responds

Keypad button monitoring enabled

Description

Enables keypad button monitoring on this processor. When any keypad button in the system is pressed, a monitoring message will be output from this processor indicating which processor, link, keypad address and button was activated.

Also enables dimmer button monitoring on this processor. When an H48 or RF dimmer/switch in the system is pressed, a monitoring message will be output from this processor indicating which processor, link, and dimmer was activated.

Also enables Sivoia control button monitoring on this processor. When any keypad button in the system is pressed, a monitoring message will be output from this processor indicating which processor, link, Sivoia control address and button was activated.

Example

Enable keypad/dimmer/Sivoia control button monitoring

L232> KBMON Keypad button monitoring enabled

See Also

KBMOFF - Keypad/Sivoia Control Button Monitoring Off

Keypad Button Press Monitoring Output Format

Keypad Button Release Monitoring Output Format

Keypad Button Hold Monitoring Output Format

Keypad Button Double Tap Monitoring Output Format

Dimmer Button Press Monitoring Output Format

Dimmer Button Release Monitoring Output Format

Dimmer Button Hold Monitoring Output Format

KBMON

Dimmer Button Double Tap Monitoring Output Format Sivoia Control Button Press Monitoring Output Format Sivoia Control Button Release Monitoring Output Format Sivoia Control Button Hold Monitoring Output Format Sivoia Control Button Double Tap Monitoring Output Format

KBMOFF

Keypad/Dimmer/Sivoia Control Button Monitoring Off

Syntax

KBMOFF

Processor Responds

Keypad button monitoring disabled

Description

Disables keypad button monitoring on this processor. When a keypad button in the system is pressed, this processor will not send a monitor output string.

Also disables dimmer button monitoring on this processor. When an H48 or RF dimmer/switch in the system is pressed, this processor will not send a monitor output string.

Also disables Sivoia control monitoring on this processor. When a Sivoia control button in the system is pressed, this processor will not send a monitor output string.

Example

Disable keypad/dimmer/Sivoia control button monitoring

L232> KBMOFF Keypad button monitoring disabled

See Also

KBMON - Keypad/Sivoia Control Button Monitoring On

Keypad Button Press Monitoring Output Format

Keypad Button Release Monitoring Output Format

Keypad Button Hold Monitoring Output Format

Keypad Button Double Tap Monitoring Output Format

Dimmer Button Press Monitoring Output Format

Dimmer Button Release Monitoring Output Format

Dimmer Button Hold Monitoring Output Format

Dimmer Button Double Tap Monitoring Output Format

Sivoia Control Button Press Monitoring Output Format

Sivoia Control Button Release Monitoring Output Format

KBMOFF

Sivoia Control Button Hold Monitoring Output Format Sivoia Control Button Double Tap Monitoring Output Format

DBP Monitor String

Dimmer Button Press Monitor String

Syntax

DBP, <address>, <button number>

Parameter	Description	Format
	system address of the H48 or RF dimmer/switch	see device address formatting description
button number	button number that was pressed	1

Description

The DBP monitor string is output from a processor when the tap switch for an H48 or RF dimmer/switch is pressed. This string is not generated when the tap switch for a D48 dimmer/switch is pressed nor when the raise/lower rocker for any dimmer is pressed.

Example

Someone presses the H48 tap switch on processor 1, link 4, router 1, bus 3, dimmer 2.

```
DBP, [01:04:01:03:02], 1
```

Someone presses the RF tap switch on processor 1, link 8, dimmer 54. (The device type is 1 for all RF dimmers/switches.)

DBP, [01:08:01:54], 1

See Also

DBR Monitor String

DBH Monitor String

DBDT Monitor String

KBMON - Keypad button monitoring on

DBR Monitor String

Dimmer Button Release Monitor String

Syntax

DBR, <address>, <button number>

Parameter	Description	Format
address	system address of the H48 dimmer/switch	see device address formatting description
button number	button number that was released	1

Description

The DBP monitor string is output from a processor when the tap switch for an H48 dimmer/switch is released. This string is not generated when the tap switch for a D48 or RF dimmer/switch is released nor when the raise/lower rocker for any dimmer is released.

Example

Someone releases the H48 tap switch on processor 1, link 4, router 1, bus 3, dimmer 2.

DBP, [01:04:01:03:02], 1

See Also

DBP Monitor String

DBH Monitor String

DBDT Monitor String

KBMON - Keypad button monitoring on

DBH Monitor String

Dimmer Button Hold Monitor String

Syntax

DBH, <address>, <button number>

Parameter	Description	Format
address	system address of the H48 dimmer/switch	see device address formatting description
button number	button number that was held	1

Description

The DBH monitor string is output from a processor when the tap switch for an H48 dimmer/switch is held. This string is not generated when the tap switch for a D48 or RF dimmer/switch is held.

Example

Someone holds the H48 tap switch on processor 1, link 4, router 1, bus 3, dimmer 2.

DBH, [01:04:01:03:02], 1

See Also

DBP Monitor String

DBR Monitor String

DBDT Monitor String

KBMON - Keypad button monitoring on

KBMOFF - Keypad button monitoring off

DBDT Monitor String

Dimmer Button Double Tap Monitor String

Syntax

DBDT, <address>, <button number>

Parameter	Description	Format
	system address of the H48 or RF dimmer/switch	see device address formatting description
button number	button number that was double tapped	1

Description

The DBP monitor string is output from a processor when the tap switch for an H48 dimmer/switch is double tapped. It is output from a processor when the tap switch for an RF dimmer/switch is double tapped only if the dimmer has keypad-like programming. This string is not generated when the tap switch for a D48 dimmer/switch is double tapped.

Example

Someone double taps the H48 tap switch on processor 1, link 4, router 1, bus 3, dimmer 2.

```
DBDT, [01:04:01:03:02], 1
```

Someone double taps the programmed RF tap switch on processor 1, link 8, dimmer 54. (The device type is 1 for all RF dimmers/switches.)

DBDT, [01:08:01:54], 1

See Also

DBP Monitor String

DBR Monitor String

DBH Monitor String

KBMON - Keypad button monitoring on

KBMOFF - Keypad button monitoring off

SVBP Monitor String

Sivoia Control Button Press Monitor String

Syntax

SVBP, <address>, <button number>

Parameter	Description	Format
address	system address of the Sivoia control	[processor : link : address] see device address formatting description
button number	button number that was pressed	1 - 24

Description

The SVBP monitor string is output from a processor when a Sivoia control button is pressed

Example

Someone presses button 1 on processor 1, link 4, Sivoia control address 4

SVBP, [01:04:04], 1

See Also

SVBR Monitor String

SVBH Monitor String

SVBDT Monitor String

SVS Monitor String

KBMON - Keypad/Sivoia control button monitoring on

SVBR Monitor String

Sivoia Control Button Release Monitor String

Syntax

SVBR, <address>, <button number>

Parameter	Description	Format
address	system address of the Sivoia control	[processor : link : address] see device address formatting description
button number	button number that was released	1 - 24

Description

The SVBR monitor string is output from a processor when a Sivoia control button is released.

Example

Someone releases button 1 on processor 1, link 4, Sivoia control address 4

SVBR, [01:04:04], 1

See Also

SVBP Monitor String

SVBH Monitor String

SVBDT Monitor String

SVS Monitor String

KBMON - Keypad/Sivoia control button monitoring on

SVBH Monitor String

Sivoia Control Button Hold Monitor String

Syntax

SVBH, <address>, <button number>

Parameter	Description	Format
address	system address of the Sivoia control	[processor : link : address] see device address formatting description
button number	button number that was held	1 - 24

Description

The SVBH monitor string is output from a processor when a Sivoia control button is held

Example

Someone holds button 1 on processor 1, link 4, Sivoia control address 4

SVBH, [01:04:04], 1

See Also

SVBP Monitor String

SVBR Monitor String

SVBDT Monitor String

SVS Monitor String

KBMON - Keypad/Sivoia control button monitoring on

SVBDT Monitor String

Sivoia Control Button Double Tap Monitor String

Syntax

SVBDT, <address>, <button number>

Parameter	Description	Format
address		[processor : link : address] see device address formatting description
button number	button number that was double tapped	1 - 24

Description

The SVBDT monitor string is output from a processor when a Sivoia control button is double tapped.

Example

Someone double taps button 1 on processor 1, link 4, Sivoia control address 4

SVBDT, [01:04:04], 1

See Also

SVBP Monitor String

SVBR Monitor String

SVBH Monitor String

SVS Monitor String

KBMON - Keypad/Sivoia control button monitoring on

SVS Monitor String

Sivoia Scene Command Monitor Output String

Syntax

SVS, <address>, <scene command>, <status>

Parameter	Description	Format
address	system address of Sivoia control that changed	[processor : link : address] see device address formatting description
scene command	Sivoia scene command	1 = Preset 1 2 = Preset 2 3 = Preset 3 R = Raise L = Lower C = Close o = Open S = Stop
status	current status of the scene command	STOPPED or MOVING

Description

The SVS monitor string is output from a processor when a Sivoia changes scene commands.

Example 1

Someone selects Preset 1 on the Sivoia controlled by processor 1, link 6, Sivoia control address 3.

SVS, [01:06:03], 1, MOVING

When the same Sivoia stops at Preset 1.

SVS, [01:06:03], 1, STOPPED

Example 2

Someone selects the raise command on the Sivoia controlled by processor 1, link 6, Sivoia control address 3.

SVS, [01:06:03], R, MOVING

When the same Sivoia stops raising.

SVS, [01:06:03], S, STOPPED

See Also

SVBP Monitor String

SVBR Monitor String

SVBH Monitor String

SVBDT Monitor String

KBMON - Keypad/Sivoia control button monitoring on

KLS Monitor String

Keypad LED Monitor String

Syntax

KLS, <address>, <led states>

Parameter	Description	Format
address	system address of the keypad	[processor : link : address] see device address formatting description
led states	the current state of the keypad's LEDs	The first digit is LED 1, the last digit is LED 24 0 = Off 1 = On 2 = Flash 1 3 = Flash 2

Description

The KLS monitor string is output from a processor when any led on a keypad changes state

Example

An led on processor 1, link 4, keypad address 10 changes state

See Also

KLMON - Keypad button monitoring on KLMOFF - Keypad button monitoring off

KLMON

Keypad LED Monitoring On

Syntax

KLMON

Processor Responds

Keypad led monitoring enabled

Description

Enables keypad led monitoring on this processor. When any keypad led in the system changes state, a monitoring message will be output from this processor indicating which processor, link, interface, address, and its new led state

Example

Enable keypad led monitoring

L232> KLMON Keypad led monitoring enabled

See Also

KLMOFF - Keypad Led Monitoring Off Keypad Led Monitoring Output Format

KLMOFF

Keypad LED Monitoring Off

Syntax

KLMOFF

Processor Responds

Keypad led monitoring disabled

Description

Disables keypad led monitoring on this processor. When any keypad led in the system changes state, this processor will not send an led monitor output string.

Example

Disable keypad led monitoring

L232> KLMOFF Keypad led monitoring disabled

See Also

KLMON - Keypad Led Monitoring On Keypad Led Monitoring Output Format

DL Monitor Output

Dimmer Level Monitor String

Syntax

DL, <address>, <level>

Parameter	Description	Format
address		[processor : link : interface : module or bus : zone] see device address formatting description
level	new level of the zone	0 - 100 (percent)

Description

The DL monitor string is output from a processor when any zone in the system changes level

Example

Processor 1, link 1, MI address 0, RPM module 2, zone 4 changes level to 50%

DL, [01:01:00:02:04], 50

See Also

DLMON - Dimmer level monitoring on DLMOFF - Dimmer level monitoring off

DLMON

Dimmer Level/Sivoia Scene Monitoring On

Syntax DLMON

Processor Responds

Dimmer level monitoring enabled

Description

Enables dimmer level monitoring on this processor. When any dimmer in the system changes level, a monitoring message will be output from this processor indicating which processor, link, interface and address.

Also enables Sivoia scene selection monitoring on this processor. When any Sivoia MDU in the system changes scene, a monitoring message will be output from this processor indicating which processor, link and Sivoia control address.

Example

Enable dimmer level/Sivoia scene monitoring

L232> DLMON
Dimmer level monitoring enabled

See Also

DLMOFF - Dimmer Level/Sivoia Scene Monitoring Off Dimmer Level Monitoring Output Format Sivoia Scene Monitoring Output Format

DLMOFF

Dimmer Level/Sivoia Scene Monitoring Off

Syntax

DLMOFF

Processor Responds

Dimmer level monitoring disabled

Description

Disables dimmer level monitoring on this processor. When a zone in the system changes levels, this processor will not send a monitor output string.

Also disables Sivoia scene monitoring on this processor. When a Sivoia MDU in the system changes scenes, this processor will not send a monitor output string.

Example

Disable dimmer level/Sivoia scene monitoring

L232> DLMOFF
Dimmer level monitoring disabled

See Also

DLMON - Dimmer Level/Sivoia Scene Monitoring On Dimmer Level Monitoring Output Format Sivoia Scene Monitoring Output Format

GSS Monitor String

GRAFIK Eye Scene Select Monitor Output String

Syntax

GSS, <address>, <scene number>

Parameter	Description	Format
	system address of GRAFIK Eye that changed	[processor : link : address] see device address formatting description
scene number	scene number selected	0 - 16 0 = Off 1 - 16 = scene 1 - scene 16

Description

The GSS monitor string is output from a processor when a GRAFIK Eye changes scenes

Example

Someone selects scene 1 on processor 1, link 4, GRAFIK Eye address 3

GSS, [01:04:03], 1

See Also

GSMON - GRAFIK Eye scene monitoring on GSMOFF - GRAFIK Eye scene monitoring off

GSMON

GRAFIK Eye Scene Monitoring On

Syntax

GSMON

Processor Responds

GRAFIK Eye scene monitoring enabled

Description

Enables GRAFIK Eye scene monitoring on this processor. When any GRAFIK Eye in the system changes scenes, a monitoring message will be output from this processor indicating which processor, link, address and scene.

Example

Enable GRAFIK Eye scene monitoring

L232> GSMON
GRAFIK Eye scene monitoring enabled

See Also

GSMOFF - GRAFIK Eye Scene Monitoring Off GRAFIK Eye Scene Monitoring Output Format

GSMOFF

GRAFIK Eye Scene Monitoring Off

Syntax

GSMOFF

Processor Responds

GRAFIK Eye scene monitoring disabled

Description

Disables GRAFIK Eye scene monitoring on this processor. When any GRAFIK Eye in the system changes scenes, this processor will not send a GRAFIK Eye scene monitoring output string.

Example

Disable GRAFIK Eye scene monitoring

L232> GSMOFF
GRAFIK Eye scene monitoring disabled

See Also

GSMON - GRAFIK Eye Scene Monitoring On GRAFIK Eye Scene Monitoring Output Format

FADEDIM

Fade a dimmer

Syntax

FADEDIM, <intensity>, <fade time>, <delay time>, <address 1>, ..., <address n>

Parameter	Description	Format
intensity	target intensity for specified dimmer	0 - 100 (percent)
fade time	time for dimmers to fade from current intensity to target intensity	HH:MM:SS example: 00:00:05 for 5 seconds see time formatting description if omitted, time defaults to 0 seconds
delay time	time for dimmers to delay before starting to fade	HH:MM:SS example: 00:00:05 for 5 seconds see time formatting description if omitted, time defaults to 0 seconds
address	system address of dimmer to fade	[processor : link : address] maximum of 10 address per command see device address formatting description

Description

Fades one or more system dimmers to a target intensity using a specified fade time and after a specified delay time.

Example

Fade processor 1, link1, MI address 0, RPM module 2, zone 3 and processor 2, link 4, D48 address 1, Vareo Bus 4, Vareo address 1 to 100% with a 1 second fade time and a 2 second delay time

L232> FADEDIM, 100, 1, 2, [1.1.0.2.3], [2.4.1.4.1]

See Also

FLASHDIM - Flash a system dimmer STOPFLASH - Stop flashing a system dimmer RAISEDIM - Raise a system dimmer LOWERDIM - Lower a system dimmer STOPDIM - Stop a dimmer raise/lower

FLASHDIM

Flash a dimmer

Syntax

FLASHDIM, <intensity>, <flash rate>, <address 1>, ..., <address n>

Parameter	Description	Format
intensity	Intensity to flash the dimmers to	0 - 100 (percent)
flash rate	The amount of time the dimmers are on/off	HH:MM:SS example: 00:00:05 for 5 seconds see time formatting description if omitted, flash rate defaults to 2 seconds
address	system address of zones to fade	[processor : link : address] maximum of 10 address per command see device address formatting description

Description

Starts flashing one or more system zones at a specified rate. The dimmer is flashed between the specified intensity and Off.

Example

Start flashing processor 1, link1, MI address 0, RPM module 2, zone 3 once a second

L232> FLASHDIM, 100, 1, [1:1:0:2:3]

See Also

STOPFLASH - Stop flashing a system dimmer

FADEDIM - Fade a system dimmer

RAISEDIM - Raise a system dimmer

LOWERDIM - Lower a system dimmer

STOPDIM - Stop a dimmer raise/lower

STOPFLASH

Stop flashing a dimmer

Syntax

STOPFLASH, <address 1>, ..., <address n>

Parameter	Description	Format
address		[processor : link : address] maximum of 10 address per command see device address formatting description

Description

Stops flashing one or more system zones

Example

Stop flashing processor 1, link1, MI address 0, RPM module 2, zone 3

L232> STOPFLASH, [1:1:0:2:3]

See Also

FLASHDIM - Flash a system dimmer FADEDIM - Fade a system dimmer RAISEDIM - Raise a system dimmer LOWERDIM - Lower a system dimmer STOPDIM - Stop a dimmer raise/lower

RAISEDIM

Raise a dimmer

Syntax

RAISEDIM, <address 1>, ..., <address n>

Parameter	Description	Format
address		[processor : link : address] maximum of 10 address per command see device address formatting description

Description

Starts raising one or more system dimmers

Example

Start raising processor 1, link1, MI address 0, RPM module 2, zone 3

L232> RAISEDIM, [1:1:0:2:3]

See Also

LOWERDIM - Lower a system dimmer

STOPDIM - Stop a dimmer raise/lower

FADEDIM - Fade a system dimmer

FLASHDIM - Flash a system dimmer

STOPFLASH - Stop flashing a system dimmer

LOWERDIM

Lower a dimmer

Syntax

LOWERDIM, <address 1>, ..., <address n>

Parameter	Description	Format
address	system address of zones to fade	[processor : link : address] maximum of 10 address per command see device address formatting description

Description

Starts lowering one or more system dimmers

Example

Start lowering processor 1, link1, MI address 0, RPM module 2, zone 3

L232> LOWERDIM, [1:1:0:2:3]

See Also

RAISEDIM - Raise a system dimmer

STOPDIM - Stop a dimmer raise/lower

FADEDIM - Fade a system dimmer

FLASHDIM - Flash a system dimmer

STOPFLASH - Stop flashing a system dimmer

STOPDIM

Stop a dimmer raise/lower

Syntax

STOPDIM, <address 1>, ..., <address n>

Parameter	Description	Format
address		[processor : link : address] maximum of 10 address per command see device address formatting description

Description

Stops raising/lowering one or more system dimmers

Example

Stop raising/lowering processor 1, link1, MI address 0, RPM module 2, zone 3

L232> STOPDIM, [1:1:0:2:3]

See Also

RAISEDIM - Raise a system dimmer LOWERDIM - Lower a system dimmer FADEDIM - Fade a system dimmer FLASHDIM - Flash a system dimmer STOPFLASH - Stop flashing a system dimmer

DBP

Dimmer Button Press

Syntax

DBP, <address>, <button number>

Parameter	Description	Format
	system address of the H48 or RF dimmer/switch	see device address formatting description
button number	button number to press	1

Description

Simulates the press action of the tap switch for an H48 or RF dimmer/switch. This will affect the local load and activate any keypad-like press programming. This does not simulate a true keypad button press that is followed by an immediate release or a delayed hold and release. This does not simulate the press action of the tap switch for a D48 dimmer/switch. This does not simulate the press action of the raise/lower rocker for any dimmer.

Example

Press H48 tap switch on processor 1, link 4, router 1, bus 3, dimmer 2.

Press RF tap switch on processor 1, link 8, dimmer address 54. (The device type is 1 for all RF dimmers/switches.)

```
L232> DBP, [1:8:1:54], 1
```

See Also

DBDT - Dimmer button double tap

DBDT

Dimmer Button Double Tap

Syntax

DBDT, <address>, <button number>

Parameter	Description	Format
	system address of the H48 or RF dimmer/switch	see device address formatting description
button number	button number to double tap	1

Description

Simulates the double tap action of the tap switch for an H48 or RF dimmer/switch. This will affect the local load and activate any keypad-like double tap programming. This does not simulate a true keypad button double tap that is preceded by a press and release and followed by a second release. This does not simulate the double tap action of the tap switch for a D48 dimmer/switch.

Example

Double tap H48 tap switch on processor 1, link 4, router 1, bus 3, dimmer 2.

```
L232> DBDT, [1:4:1:3:2], 1
```

Double tap RF tap switch on processor 1, link 8, dimmer address 54. (The device type is 1 for all RF dimmers/switches.)

```
L232> DBDT, [1:8:1:54], 1
```

See Also

DBP - Dimmer button press

RDL

Request a Dimmer Level

Syntax

RDL, <address>

Processor responds with

DL, <address>, <level>

Parameter	Description	Format
address		[processor : link : interface : module or bus : zone] see device address formatting description
level	current level of the queried zone	0 - 100 (percent)

Description

Returns the current or target level for any zone in the sysyem

Example

Request the current intensity of processor 1, link 1, MI address 0, RPM module 2, zone 4

```
L232> RDL, [1:1:0:2:4]
DL, [01:01:00:02:04], 50
```

See Also

FRPM - Fade an RPM Dimmer FV - Fade Vareo Dimmer

FRPM

Fade an RPM zone

Syntax

FRPM, <intensity>, <fade time>, <delay time>, <address 1>, ..., <address n>

Parameter	Description	Format
intensity	target intensity for specified zones	0 - 100 (percent)
fade time	time for zones to fade from current intensity to target intensity	HH:MM:SS example: 00:00:05 for 5 seconds see time formatting description if omitted, time defaults to 0 seconds
delay time	time for zones to delay before starting to fade	HH:MM:SS example: 00:00:05 for 5 seconds see time formatting description if omitted, time defaults to 0 seconds
address	system address of zones to fade	[processor : link : address] maximum of 10 address per command see device address formatting description

Description

Fades one or more RPM zones to a target intensity using a specified fade time and after a specified delay time

Example

Fade processor 1, link1, MI address 0, RPM module 2, zone 3 to 100% with a 1 second fade time and a 2 second delay time

L232> FRPM, 100, 00:00:01, 00:00:02, [1:1:0:2:3]

See Also

FV - Fade Vareo Dimmer

FV

Fade a Vareo zone

Syntax

FV, <intensity>, <fade time>, <delay time>, <address 1>, ..., <address n>

Parameter	Description	Format
intensity	target intensity for specified zones	0 - 100 (percent)
fade time	time for zones to fade from current intensity to target intensity	HH:MM:SS example: 00:00:05 for 5 seconds see time formatting description if omitted, time defaults to 0 seconds
delay time	time for zones to delay before starting to fade	HH:MM:SS example: 00:00:05 for 5 seconds see time formatting description if omitted, time defaults to 0 seconds
address	system address of zones to fade	[processor : link : address] maximum of 10 address per command see device address formatting description

Description

Fades one or more Vareo zones to a target intensity using a specified fade time and after a specified delay time

Example

Fade processor 1, link1, D48 dimmer interface address 1, Vareo bus 2, Vareo control 3 to 100% with a 1 second fade time and a 2 second delay time

L232> FV, 100, 00:00:01, 00:00:02, [1:1:1:2:3]

See Also

FRPM - Fade RPM dimmer

GSS

GRAFIK Eye Scene Select

Syntax

GSS, <address>, <scene number>

Parameter	Description	Format
address		[processor : link : address] see device address formatting description
scene number		0 - 16 0 = Off 1 - 16 = scene 1 - scene 16

Description

Selects a scene on any GRAFIK Eye in the system

Example

Select scene 2 on processor 1, link 5, GRAFIK Eye address 1

L232> GSS, [1:5:1], 2

See Also

RGS - Request current GRAFIK Eye scene

RGS

Request a GRAFIK Eye's current scene

Syntax

RGS, <address>

Processor responds with

GSS, <address>, <scene number>

Parameter	Description	Format
address	system address of GRAFIK Eye to query	[processor : link : address] see device address formatting description
scene number	scene number selected on the GRAFIK Eye	0 - 16 0 = Off 1 - 16 = scene 1 - scene 16

Description

Returns the current scene on the specified GRAFIK Eye

Example

Request the current scene for processor 1, link 6, GRAFIK Eye address 4

```
L232> RGS, [1:6:4] GSS, [01:06:04], 2
```

See Also

GSS -Select a GRAFIK Eye scene

KBP

Keypad Button Press

Syntax

KBP, <address>, <button number>

Parameter	Description	Format
address	system address of the keypad	[processor : link : address] see device address formatting description
button number	button number to press	1 - 24

Description

Simulates the press action of a keypad button. This does not simulate a true keypad button press that might include an immediate release.

Example

Press button 1 on processor 1, link 4, keypad address 10

L232> KBP, [1:4:10], 1

See Also

KBR - Keypad button release

KBH - Keypad button hold

KBDT - Keypad button double tap

KBR

Keypad Button Release

Syntax

KBR, <address>, <button number>

Parameter	Description	Format
address	system address of the keypad	[processor : link : address] see device address formatting description
button number	button number to release	1 - 24

Description

Simulates the release action of a keypad button.

Example

Release button 1 on processor 1, link 4, keypad address 10

L232> KBR, [1:4:10], 1

See Also

KBP - Keypad button press

KBH - Keypad button hold

KBDT - Keypad button double tap

KBH

Keypad Button Hold

Syntax

KBH, <address>, <button number>

Parameter	Description	Format
address	system address of the keypad	[processor : link : address] see device address formatting description
button number	button number to hold	1 - 24

Description

Simulates the hold action of a keypad button. This does not simulate a true keypad button hold that will include a preceeding press

Example

Hold button 1 on processor 1, link 4, keypad address 10

L232> KBH, [1:4:10], 1

See Also

KBP - Keypad button press

KBR - Keypad button release

KBDT - Keypad button double tap

KBDT

Keypad Button Double Tap

Syntax

KBDT, <address>, <button number>

Parameter	Description	Format
address	system address of the keypad	[processor : link : address] see device address formatting description
button number	button number to double tap	1 - 24

Description

Simulates the double tap action of a keypad button. This does not simulate a true keypad button double tap that is preceded by a press and release, and followed by a release

Example

Double tap button 1 on processor 1, link 4, keypad address 10

L232> KBDT, [1:4:10], 1

See Also

KBP - Keypad button press

KBR - Keypad button release

KBH - Keypad button hold

KE

Keypad Enable

Syntax

KE, <address>

Parameter	Description	Format
address	,	[processor : link : address] see device address formatting description

Description

Enable a keypad

Example

Enable processor 1, link 6, keypad 21

L232> KE, [1:6:21]

See Also

KD - Keypad disable

RKES -Request keypad enabled state

Keypad Disable

Syntax

KD, <address>

Parameter	Description	Format
address	,	[processor : link : address] see device address formatting description

Description

Disables a keypad

Example

Disable processor 1, link 6, keypad 21

L232> KD, [1:6:21]

See Also

KE - Keypad enable

RKES -Request keypad enabled state

RKES

Request Keypad Enabled State

Syntax

RKES, <address>

Processor responds with

KES, <address>, <state>

Parameter	Description	Format
address		[processor : link : address] see device address formatting description
state	the enabled/disabled state of the keypad	

Description

Queries the system for the enabled/disabled state of a keypad

Example

Query processor 1, link 4, keypad address 10

L232> RKES, [1:4:10] KES, [01:04:10], enabled

See Also

KD - Keypad disable

KE - Keypad enable

SETLED

Set an LED State

Syntax

SETLED, <address>, <led number>, <led state>

Parameter	Description	Format
address	system address of the keypad	[processor : link : address] see device address formatting description
led number	led number on the keypad	1 - 24 The led number is the corresponding button number
led state	state to set the LED to	0 = Off 1 = On 2 = Flash 1 3 = Flash 2

Description

Sets the state of a keypad led. If the designated led is already programmed to indicate the status of something else in the system, this command will have no effect on the led state.

Example

Turn on LED 3 on processor 2, link 5, keypad address 7

L232> SETLED, [2:5:7], 3, 1

See Also

RKLS - Request keypad led states

RKLS

Request a Keypad's LED States

Syntax

RKLS, <address>

Processor Response

KLS, <address>, <led states>

Parameter	Description	Format
address	system address of the keypad	[processor : link : address] see device address formatting description
led states	the current state of the keypad's LEDs	The first digit is LED 1, the last digit is LED 24 0 = Off 1 = On 2 = Flash 1 3 = Flash 2

Description

Queries the system for the state of the LEDs on a specified keypad. 24 led digits will be returned regardlessof the number of physical leds on the keypad.

Example

Query processor 4, link 6, keypad 1

```
L232> RKLS, [4:6:1]
KLS, [04:06:01], 000001000010000010000000
```

See Also

SETLED - Set keypad LED state

SETLEDS

Set the LED States for a Whole Keypad

Syntax

SETLEDS, <address>, <led states>

Parameter	Description	Format
address	system address of the keypad	[processor : link : address] see device address formatting description
led states	states to set some or all the LEDs LED #1 is the left most LED in the string	0 = Off 1 = On 2 = Flash 1 3 = Flash 2 x = Don't change

Description

Sets the states of several keypad leds. If the designated leds are already programmed to indicate the status of something else in the system, this command will have no effect on the led state.

Example

Turn on LED #3 & LED #10 on processor 2, link 5, keypad address 7

L232> SETLEDS, [2:5:7], xx1xxxxxx1

Example

Turn off LED #1 and flash LEDs #11 to #15 on processor 1, link 6, keypad address 4

L232> SETLEDS, [1:6:4], 0xxxxxxxxx22222

See Also

RKLS - Request keypad led states

CCOPULSE

CCO Relay Pulse

Syntax

CCOPULSE, <address>, <relay number>, <pulse time>

Parameter	Description	Format
address	system address of the CCO	[processor : link : address] see device address formatting description
relay number	relay number to pulse	1 - 8
pulse time	pulse duration in 0.5 second increments	1 - 245 1 = 0.5 seconds 2 = 1.0 seconds 3 = 1.5 seconds 245 = 122.5 seconds

Description

Pulses a specific CCO relay for a specified duration.

Example

Pulse relay 3 on processor 2, link 4, CCO address 6, for 2 seconds

L232> CCOPULSE, [2:4:6], 3, 4

See Also

CCOCLOSE - Close a CCO relay CCOOPEN - Open a CCO relay

CCOCLOSE

CCO Relay Close

Syntax

CCOCLOSE, <address>, <relay number>

Parameter	Description	Format
address	1 3	[processor : link : address] see device address formatting description
relay number	relay number to close	1 - 8

Description

Closes a specific CCO relay

Note - The processor does not verify that the given address is ACTUALLY a CCO address. If the address is a normal keypad, the command may temporarily change the state of the leds on that keypad.

Example

Close relay 3 on processor 2, link 4, CCO address 6

L232> CCOCLOSE, [2:4:6], 3

See Also

CCOOPEN - Open a CCO relay CCOPULSE - Pulse a CCO relay

CCOOPEN

CCO Relay Open

Syntax

CCOOPEN, <address>, <relay number>

Parameter	Description	Format
address	1 -	[processor : link : address] see device address formatting description
relay number	relay number to open	1 - 8

Description

Opens a specific CCO relay

Note - The processor does not verify that the given address is ACTUALLY a CCO address. If the address is a normal keypad, the command may temporarily change the state of the leds on that keypad.

Example

Open relay 3 on processor 2, link 4, CCO address 6

L232> CCOOPEN, [2:4:6], 3

See Also

CCOCLOSE - CLOSE a CCO relay CCOPULSE - Pulse a CCO relay

RKLBP

Request Keypad Last Button Press

Syntax

RKLBP, <address>

Processor responds

KLBP, <address>, <button number>

Parameter	Description	Format
address		[processor : link : address] see device address formatting description
button number	the last button pressed on the specified keypad	1-24

Description

Queries the system for the last button pressed on a keypad

Example

Query for the last button pressed on processor 1, link 4, keypad address 10

L232> RKLBP, [1:4:10] KLBP, [01:04:10], 4

SVSS

Sivoia Scene Command Select

Syntax

SVSS, <address>, <scene command>, <delay time>

Parameter	Description	Format
address	system address of Sivoia control	[processor : link : address] see device address formatting description
scene command	Sivoia scene command to select	1 = Preset 1 2 = Preset 2 3 = Preset 3 R or r = Raise L or I = Lower C or c = Close O or o = Open S or s = Stop
delay time	time for Sivoia to delay before activating a scene command	HH:MM:SS example: 00:00:05 for 5 seconds see time formatting description if omitted, time defaults to 0 seconds

Description

Selects a scene command on any Sivoia control in the system.

Example

Select Preset 2 on processor 1, link 6, Sivoia control address 1.

L232> SVSS, [1:6:1], 2

See Also

RSVS - Request current Sivoia scene command

RSVS

Request a Sivoia's Current Scene Command

Syntax

RSVS, <address>

Processor responds with

SVS, <address>, <scene command>, <status>

Parameter	Description	Format
address	system address of Sivoia control to query	[processor : link : address] see device address formatting description
scene command	Sivoia scene command currently selected on the Sivoia	1 = Preset 1 2 = Preset 2 3 = Preset 3 R = Raise L = Lower C = Close o = Open S = Stop
status	current status of the scene command	STOPPED or MOVING

Description

Returns the current scene command and status on the specified Sivoia

Example

Request the current scene command for processor 1, link 6, Sivoia control address 4 Response is stopped at Preset 2

```
L232> RSVS, [1:6:4]
SVS, [01:06:04], 2, STOPPED
```

See Also

SVSS -Select a Sivoia scene command

ST Set Time

Syntax

ST, <time>

Processor Responds

Processor Time: <time>

Parameter	Description	Format
time	,	HH:MM:SS in 24 Hour format see time address formatting description
		the seconds must be specified

Description

Sets the system time. This will update the time on all processors in the system.

Example

Set the time to 2:34 PM

L232> ST, 14:34:00 Processor Time: 14:34

See Also

RST - Request system time

SD - Set system date

RSD - Request system date

RST

Request System Time

Syntax

RST

Processor Responds

Processor Time: <time>

Description

Queries the current system time

Example

Request the system time

L232> RST

Processor Time: 12:00

See Also

ST - Set system time

SD - Set system date

RSD - Request system date

SD Set Date

Syntax

SD, <date>

Processor Responds

Processor Date: <date>

Parameter	Description	Format
date	current date	MM/DD/YYYY
		see date formatting description

Description

Sets the system date. This will update the date on all processors in the system.

Example

Set the date to March 10, 1999

L232> SD, 03/10/1999

Processor Date: Wednesday 03/10/1999

See Also

RSD - Request system date

ST - Set system time

RST - Request system time

RSD

Request System Date

Syntax

RSD

Processor Responds

Processor Date: <day of week> <date>

Description

Queries the current system date

Example

Request the system date

L232> RSD

Processor Date: Wednesday 03/10/1999

See Also

SD - Set system date

ST - Set system time

RST - Request system time

TCE

Timeclock Enable

Syntax

TCE

Processor Responds

TCE: Timeclock Enabled

Description

Enables the system timeclock

Example

Enable the system timeclock

L232> TCE

TCE: Timeclock Enabled

See Also

TCD - Timeclock disable

TCS - Timeclock state

TCD

Timeclock Disable

Syntax

TCD

Processor Responds

TCD: Timeclock Disabled

Description

Disables the system timeclock

Example

Disable the system timeclock

L232> TCD

TCD: Timeclock Disabled

See Also

TCE - Timeclock enable

TCS - Timeclock state

TCS

Timeclock State

Syntax

TCS

Processor Responds with one of the following

TCS: Timeclock Enabled TCS: Timeclock Disabled

Description

Queries the system for the timeclock state

Example

Query the system timeclock state

L232> TCS

TCS: Timeclock Enabled

See Also

TCE - Timeclock enable

TCD - Timeclock disable

RST2

Request System Time with seconds

Syntax

RST2

Processor Responds

Processor Time: <time>

Description

Queries the current system time (including seconds)

Example

Request the system time

L232> RST

Processor Time: 12:00:00

See Also

ST - Set system time

SD - Set system date

RST - Request system time

RSD - Request system date

SUNRISE

Today's sunrise time

Syntax

SUNRISE

Processor Responds with

Today's Sunrise: <time>

Description

Returns the sunrise time for the current day. This can be useful when testing astronomic timeclock events.

Example

Request today's sunrise time

L232> SUNRISE Today's Sunrise: 06:52

See Also

SUNSET - Today's sunset time ST - Set system time

SUNSET

Today's sunset time

Syntax

SUNSET

Processor Responds with

Today's Sunset: <time>

Description

Returns the sunset time for the current day. This can be useful when testing astronomic timeclock events.

Example

Request today's sunset time

L232> SUNSET

Today's Sunset: 06:52

See Also

SUNRISE - Today's sunrise time ST - Set system time

SSB

Scene Saver Mode Begin

Syntax

SSB, <timeout>

Parameter	Description	Format
	number of minutes scene saver mode will be running	CONT = continuous (no timeout) 0 = 1 minute 1-1440

Processor Responds

Scene Saver Mode Begin

Description

Begins scene saver mode with the specified timeout

Example

Begin scene saver mode without a timeout

L232> SSB, CONT Scene Saver Mode Begin

See Also

SST - Scene saver mode terminate

SSS - Request scene saver mode state

KBSS - Keypad button scene save

SST

Scene Saver Mode Terminate

Syntax

SST

Processor Responds

Scene Saver Mode Terminated

Description

Terminates scene saver mode

Example

Terminate scene saver mode

L232> SST
Scene Saver Mode Terminated

See Also

SSB - Scene saver mode begin

SSS - Request scene saver mode state

KBSS - Keypad button scene save

SSS

Scene Saver Mode State

Syntax

SSS

Processor Responds with one of the following

Scene Saver Mode is Running Scene Saver Mode is Stopped

Description

Queries the system for the scene saver mode state

Example

Query the scene saver mode state

L232> SSS Scene Saver Mode is Running

See Also

SSB - Scene saver mode begin

SST - Scene saver mode terminate

KBSS - Keypad button scene save

KBSS

Keypad Button Scene Save

Syntax

KBSS, <address>, <button number>

Parameter	Description	Format
address	, ,	[processor : link : address] see device address formatting description
button number	button number to scene save	1 - 24

Processor Responds

Preset Saved

Description

Scene save the current levels of the preset on the button that has scene saver option checked.

Example

Scene save the preset on button 1 on processor 1, link 6, keypad address 10.

L232> KBSS, [1:6:10], 1 Preset Saved

See Also

SSB - Scene saver mode begin

SST - Scene saver mode terminate

SSS - Request scene saver mode state

KBSR

Keypad Button Scene Restore

Syntax

KBSR, <address>, <button number>

Parameter	Description	Format
address	7.	[processor : link : address] see device address formatting description
button number	button number to scene save	1 - 24

Processor Responds

Preset Restored

Description

Restore the preset on the button that has scene saver option checked back to the levels of the uploaded preset.

Example

Restore the preset on button 1 on processor 1, link 6, keypad address 10.

L232> KBSR, [1:6:10], 1 Preset Restored

See Also

SSB - Scene saver mode begin

SST - Scene saver mode terminate

SSS - Request scene saver mode state

KBSS - Keypad button scene save

VMR

Vacation Mode Record

Syntax

VMR

Processor Responds

Vacation mode recording

Description

Begins recording vacation mode data

Example

Begin vacation mode recording

L232> VMR Vacation mode recording

See Also

VMP - Vacation mode playback

VMD - Vacation mode disable

VMS - Vacation mode state

VMP

Vacation Mode Playback

Syntax

VMP

Processor Responds

Vacation mode playing

Description

Begins playback of vacation mode data

Example

Begin vacation mode playback

L232> VMP Vacation mode playing

See Also

VMR - Vacation mode record

VMD - Vacation mode disable

VMS - Vacation mode state

VMD

Vacation Mode Disable

Syntax

VMD

Processor Responds

Vacation mode disabled

Description

Stops vacation mode recording or playback

Example

Stop vacation mode recording or playback

L232> VMD Vacation mode disabled

See Also

VMP - Vacation mode playback

VMR - Vacation mode record

VMS - Vacation mode state

VMS

Vacation Mode State

Syntax

VMS

Processor Responds with one of the following

Vacation mode recording Vacation mode playing Vacation mode disabled

Description

Queries the system for the vacation mode state

Example

Query the vacation mode state

L232> VMS
Vacation mode recording

See Also

VMR - Vacation mode record

VMP - Vacation mode playback

VMD - Vacation mode disable

SMB

Security Mode Begin

Syntax

SMB

Processor Responds

Security mode begin

Description

Begins security mode

Example

Begin security mode

L232> SMB Security mode begin

See Also

SMT - Security mode terminate

SMS - Security mode state

SMT

Security Mode Terminate

Syntax

SMT

Processor Responds

Security mode terminated

Description

Terminates security mode

Example

Terminate security mode

L232> SMT Security mode terminated

See Also

SMB - Security mode begin

SMS - Security mode status

SMS

Security Mode State

Syntax

SMS

Processor Responds with one of the following

Security mode active Security mode terminated

Description

Queries the system for the security mode state

Example

Query the security mode state

L232> SMS Security mode active

See Also

SMB - Security mode begin SMT - Security mode terminate

LOGIN

Login to the system

Syntax

LOGIN, <password>, <port address>

Processor Responds with one of the following

Processor cessor address> logging in RS232 ports
Processor cessor address> RS232 ports logged in
Logging in RS232 port <port address>
RS232 port <port address> already logged in
Missing or incorrect password. Login denied.

Parameter	Description	Format
password	system password defined in the programming software	maximum 32 characters, case- insensitive, spaces and commas not allowed
port address	the specific port to login.	pp:II:aaa (see RS232 Port Addressing) This parameter is optional. If omitted, the system will perform a systemwide login (all RS232 ports) allowed
processor address	Reply from a processor	1-16

Description

Used to gain access to a system that has not been successfully logged into. The login/logout feature can be used to add a layer of protection against other people gaining access to the system. When logged-out of the system, only two L232 commands are recognized, LOGIN and HELP. This means that database changes and L232 control of the processor cannot be done until after a successful login. This feature is typically used on systems that utilize a modem for remote programming.

Example

Do a systemwide login to a system with password "lutron" and processors 1, 2 and 3 present

L232> LOGIN, lutron Processor 1 logging in RS232 ports Processor 2 RS232 ports logged in Processor 3 logging in RS232 ports

Example

Login port 7 of processor 2 in a system with password "lutron"

L232> LOGIN, lutron, 2:7:1 Logging in RS232 port 02:07:001

See Also

LOGOUT - Logout of the system

LOGOUT

Logout of the system

Syntax

LOGOUT, <port address>

Processor Responds with one of the following

Processor cessor address> logging out RS232 ports
Processor cessor address> IRS232 ports logged out
Logging out RS232 port cessor address>
RS232 port cessor address> logged out

Parameter	Description	Format
port address	the specific port to login.	pp:ll:aaa (see RS232 Port Addressing) This parameter is optional. If omitted, the request will default to the port that receives the command allowed
processor address	Reply from a processor	1-16

Description

Used to logout of the system. The login/logout feature can be used to add a layer of protection against other people gaining access to the system. When logged-out of the system, only two L232 commands are recognized, LOGIN and HELP. This means that database changes and L232 control of the processor cannot be done until after a successful login. This feature is typically used on systems that utilize a modem for remote programming.

Example

Logout of the port connected to

L232> LOGOUT
Logging out RS232 port 01:03:001

Example

Logout of RS232 port 7 on processor 2

L232> LOGOUT, 2:7:1

Logging out RS232 port 02:07:001

Example

Logout all RS232 ports on processor connected to

```
L232> LOGOUT, PROC
Processor 1 logging out RS232 ports
```

Example

Logout all RS232 ports in the system with processors 1, 2 and 3 present

```
L232> LOGOUT, ALL
Processor 1 logging out RS232 ports
Processor 2 logging out RS232 ports
Processor 3 logging out RS232 ports
```

See Also

LOGIN - Login to the system

PROMPTOFF

Turn off the L232> Prompt

Syntax

PROMPTOFF

Description

When the L232> prompt is turned off, a new L232> will not be printed after each command execution. This can be useful when communicating with external A/V systems that would just ignore the prompt.

Example

Turn the L232> prompt off

L232> PROMPTOFF

See Also

PROMPTON - Turn the L232> prompt on

PROMPTON

Turn on the L232> Prompt

Syntax

PROMPTON

Description

Re-enables the L232> prompt. After every command execution, a new L232> prompt will be issued.

Example

Turn the L232> prompt on.

PROMPTON L232>

See Also

PROMPTOFF - Turn the L232> prompt off

EPRINT

Event Log Print

Syntax

EPRINT

Processor Responds by print the log in the following format

entry number><operating system time><event time><event date><operating system task identifier><event description>

Description

This log can be used to determine the date and times of the following types of events:

- Keypad button activity
- Database downloads to the processor
- Timeclock events
- Vacation recording and playback

When the terminal screen is active in the programming tool, all terminal screen activity is logged to a file called cpu.log located in the /log directory under the HomeWorks Interactive directory. To access this file you must exit the programming screen (go to the floorplan for example); this will close the cpu.log file and make it accessible to an editor. You may use notepad or wordpad (if the file is too large for notepad) to view and/or print the file.

Example

Print the event log

```
L232> EPRINT
0723 8022978 01:12:11 04/21/99 EVPP Keypad [01:03:01], Button 01
Pressed
0724 8023040 01:12:11 04/21/99 EVPP Keypad [01:03:01], Button 01
Released
0725 8023369 01:12:12 04/21/99 EVPP Keypad [01:03:00], Button 02
Pressed
0726 8023414 01:12:12 04/21/99 EVPP Keypad [01:03:00], Button 02
Released
```

PROCADDR

Processor Address

Syntax

PROCADDR

Processor Responds with

Processor Addresss: <address>

Parameter	Description	Format
address	the address of the processor that received the command	1 - 16

Description

Returns the address of the processor that received the command

Example

Request the processor address

L232> PROCADDR

Processor Addresss: 01

RESET232

Reset RS-232 port settings

Syntax

RESET232

Processor responds with one of the following

For the new RS-232 port parameters to take effect for this port, you must cycle the processor power.

Description

This command is used to reset all RS-232 port settings to the serial driver settings assigned to that port using the HomeWorks Interactive software. The settings effected are baud rate, handshaking type, number of data bits, parity type, number of stop bits, and the status of HomeWorks monitoring messages.

All ports will immediately switch to the driver settings except the port connected to.

Example

Reset all RS-232 ports settings for all processors.

L232> RESET232

For the new RS-232 port parameters to take effect for this port, you must cycle the processor power.

OSREV

Request O/S revision

Syntax

OSREV

Processor responds with the following for each processor in the system

Processor cessor address> O/S Rev = <O/S Rev>

Parameter	Description	Format
processor address	The processor address	1-16
O/S Rev	Revision number of the currently installed O/S	1-100

Description

Returns the O/S revision for all processors in the system

Example

Request the O/S revisions of a system with 3 processors

L232> OSREV

Processor 01 O/S Rev : 22 Processor 02 O/S Rev : 22 Processor 03 O/S Rev : 22

HELP

L232 Command Help

Syntax

HELP

HELP,<command name>

Description

Typing HELP by itself will print a list of the currently available L232 commands with brief descriptions. To get command specific help, use the HELP,<command name> syntax

Example

Request help for the Keypad Button Press command

L232> HELP, KBP

Keypad button press

Usage: KBP, <address>, <button number>

L232 Help Revision History

v5 5-07-99 OS Rev 18

- Added the following commands to this help document: SMB, SMT, SMS
- Added the keypad button numbering page

v4 4-15-99 OS Rev 18

- Added the following commands FADEDIM, RAISEDIM, LOWERDIM, STOPDIM, FLASHDIM, STOPFLASH, SETHAND
- Made the time formatting more flexible
- Updated HELP command page
- Added the RS-232 specs to the technical specs page
- Converted files for better integration with online help

v3 3-15-99 OS Rev 16

- Fixed a typo in the FV command example
- Added the technical specs section
- Added the following cmds, PROMPTON, PROMPTOFF, PROCADDR
- Fixed incorrect link ranges in the device address section
- Added the following commands, RDL, RKLS, RGS
- Added the following commands, SETBAUD, KBH, RKES, CCOPULSE, CCOCLOSE, CCOOPEN, RKLBP
- Fixed incorrect address designator in RKLS command
- Converted to this HTML document

v2 1-11-99 OS Rev 8

Added SUNRISE and SUNSET commands

v1 1-4-99 OS Rev 7

Initial revision