RESUMEN

Resumen de fórmulas de 3° parcial

• Carrera: Ingeniería Electromecánica.

• Cátedra: Estabilidad.

• Docentes: Ing. Osvaldo Fatala / Ing. Walter Longhi.

1 Nomenclatura

• δ Desplazamiento.

- L Longitud.
- \bullet ϵ Deformación unitaria.
- σ Tensión normal.
- P Esfuerzo axial.
- E Módulo de elasticidad longitudinal.
- G Módulo de elasticidad transversal.
- K Módulo de elasticidad volumétrico.
- Ω Área de la sección transversal.
- τ Tensión tangencial.
- γ Deformación angular.
- ϕ Coef. de estricción lateral.
- μ Coef. de Poisson.
- ϵ_v Deformación especifica.
- ϵ_L Alargamiento específico en dirección de la fuerza.
- ϵ_t Deformación especifica transversal.
- v Coef. de seguridad.
- Δ_L Incremento de L
- α Coef. de dilatación lineal.
- Δ_T Cambio de temperatura.
- θ Ángulo especifico.
- WP Módulo resistente polar.
- R y r Radio (R \geq r), R_{max} Radio máximo.

2 Resistencia de Materiales

- ullet $\epsilon = \delta / L$
- $\sigma=\mathrm{E}$. ϵ
- $P = \sigma / \Omega$
- De las primeras tres sale: $\frac{P}{\Omega} = \frac{E.\delta}{L}$
- $\bullet \ \sigma_{mx} \le \frac{\sigma_L}{v} = \sigma_{adm}$
- $au = G.\gamma$ \rightarrow en aceros comunes $au = \sigma.0.57$
- $\bullet \ \mathbf{v} = \frac{Maxima.carga.estructural}{Carga.real*Carga.admisible} \ (\mathbf{plasticos})$
- $\bullet \ \epsilon_L = \frac{\Delta_L}{L} \qquad \epsilon_t = \frac{\Delta_\Omega}{\Omega}$
- $\mu = \frac{-\epsilon_t}{\epsilon_L}$ $m = \frac{1}{\mu}$
- Deformación térmica $\Delta_L = \alpha.L.\Delta_T$
- Chaveta: $Q = \tau . \Omega$ $MT = P/\omega$ Q = MT/r
- En costuras: $T_{adm}=$ largo del cordón * o.7 * alto del cordón * $\tau_{adm} \to T_{adm} \ge P$

Energía

- W = U + k $k \rightarrow 0$
- $U = \frac{1}{2} .P.\delta$
- $u = \frac{U}{volumen} = \frac{1}{2}.\sigma.\epsilon$

Dimensionamiento:

- $\Omega \ge \frac{P}{\sigma_{adm}}$
- $\Omega \ge \frac{P.L}{E.\delta_{adm}}$

Verificación:

- $\sigma_{adm} \ge \frac{P}{\Omega}$
- $\delta_{adm} \ge \frac{P.L}{E.\Omega}$

RESUMEN

ESTABILIDAD

3 Estado tensional

•
$$\sigma_x \to \epsilon_x = \sigma_x/E$$

•
$$\sigma_y \to \epsilon_x' = -\mu \cdot \epsilon_y = -\mu * \sigma_y / E$$

•
$$\sigma_z \to \epsilon_x' = -\mu \cdot \epsilon_z = -\mu * \sigma_z / E$$

•
$$\epsilon_x = 1/E * [\sigma_x - \mu * (\sigma_y + \sigma_z)]$$

•
$$\epsilon_y = 1/E * [\sigma_y - \mu * (\sigma_x + \sigma_z)]$$

•
$$\epsilon_z = 1/E * [\sigma_z - \mu * (\sigma_x + \sigma_y)]$$

•
$$\gamma_{xy} = \tau_{xy}/G$$
 $\gamma_{yz} = \tau_{yz}/G$ $\gamma_{xz} = \tau_{xz}/G$

•
$$G = \frac{E}{2*(1+\mu)}$$

Estado doble

•
$$\sigma_{\alpha} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cdot \cos(2\alpha) - \tau_{xy} \cdot \sin(2\alpha)$$

•
$$\tau_{\alpha} = \frac{\sigma_x - \sigma_y}{2} \cdot \sin(2\alpha) + \tau_{xy} \cdot \cos(2\alpha)$$

Valores máximos y mínimos:

•
$$\sigma_{max|min} = \frac{\sigma_x + \sigma_y}{2} \pm \frac{1}{2} \sqrt{(\sigma_x - \sigma_y)^2 + 4.\tau_{xy}^2}$$

•
$$\tan(2.\alpha_{\sigma}) = \frac{-2.\tau_{xy}}{\sigma_x - \sigma_y}$$

•
$$\tau_{max|min} = \pm \frac{1}{2} \sqrt{(\sigma_x - \sigma_y)^2 + 4.\tau_{xy}^2}$$

•
$$\tan(2.\alpha_{\tau}) = \frac{\sigma_x - \sigma_y}{2.\tau_{xy}}$$

$$\bullet \ \sigma_{\tau_{max|min}} = \frac{\sigma_x + \sigma_y}{2}$$

4 Momento torsor

$$\bullet \ \theta = \frac{MT}{G.I_p} = \gamma/r$$

•
$$\tau = \frac{MT}{I_p} . r \rightarrow \tau_{max} = \frac{MT}{I_p} . R_{max} = \frac{MT}{WP}$$
 $\tau_{max} \leq \tau_{adm}$

•
$$\phi = \int \theta * dL = \int \frac{MT.dL}{G.I_p} \rightarrow \text{si todo es cte} \rightarrow \phi = \theta.L = \frac{MT.L}{G.I_p}$$

3