

UNIVERSITY OF COLOMBO, SRI LANKA

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

BACHELOR OF COMPUER SCIENCE

Academic Year 2012/2013 - First Year Examination - Semester I - 2013

IS1002 - Computer Systems

TWO (2) HOURS

To be completed by the candidate
Examination Index No:

Important Instructions to candidates:

- 1. The medium of instruction and questions is **English**.
- 2. If a page or a part of this question paper is not printed, please inform the supervisor immediately.
- 3. Note that questions appear on both sides of the paper. If a page is not printed, please inform the supervisor immediately.
- 4. Write your index number in each and every page of the question paper.
- 5. This paper has 4 questions and 14 pages.
- 6. Answer **ALL** questions. All questions carry equal marks (**25** marks).
- Any electronic device capable of storing and retrieving text including electronic dictionaries and mobile phones are not allowed.
- 8. Non-programmable calculators are allowed.

For Examiner's use only			
Question No	Marks		
1			
2			
3			
4			
Total			

1. (a) Convert the number +127.9375 from decimal into 16-bit floating point representation. Assume 10 bits for the mantissa and 5 bits for the exponent.
[7 Marks]
+127.9375 = 1111111.1111
= 1.1111111112
x = 2 -1 = 15 ¢
$1 \times 2 - 1 \times 2 - 1 = 15 + 1 =$
Arshar 1's
(112 M-4)
0101011111111111111
(b) What is the equivalent in decimal number to the 16-bit floating point representation of the
1 10100 111111111. Assume 10 bits for the mantissa and 5 bits for the exponent. [6 Marks]
Educat - Louis
a = 10100 = 20
16215
Autual Rapont = 20-15 = 5
1
450
Aronor is =-1.11111111111111111111111111111111111
Z-11111. [111]
= -63.96875 2

201	00000000000.		[6 Marks]
1 = 2 -1 =	127	••••	
Bajonert	= 131-	127= 4	
· Grown is			••••••
· Grswr 1s	= + 1 1 1 0		••••••
	+1101	. 1 • 1	· · · · · · · · · · · · · · · · · · ·
=	+27.5		• • • • • • • • • • • • • • • • • • • •
=			••••••
		•••••••••••••••••••••••••••••••••••••••	
· · · · · · · · · · · · · · · · · · ·			••••••
Convert the number -43.75 from	n decimal into 32-bit flo	oating point representatio	n.
			[6 Marks]
- 43.75 =	101	0 1] - 1]	
		101111 0	
	\		4.0
=		IOTINA	<u>-</u>
•			
. Robomt	= 127+		
· Robont · Annor i	= 127+	5 ~132	
· Ropont · Annor i	= 127+	5 ~132	

•

- 2. An assembly line has 3 failsafe sensors and one emergency shutdown switch. The line should keep moving unless any of the following conditions arises:
 - If the emergency switch is pressed, the system shuts down.
 - If sensor 1 and sensor 2 are activated at the same time, the system shuts down.
 - If sensor 2 and sensor 3 are activated at the same time, the system shuts down.
 - If sensor 1 and sensor 3 are activated at the same time, the system shuts down.
 - If all three sensors are activated at the same time, the system shuts down.

Assume that *Logic one* is for an activated switch, *logic one* for an activated sensor and output of the circuit should be *logic one* to run the assembly line.

(a) Pro	vide the tr	utn table	for the above	e system.	
E	S ₁	S		(ESSS)	[8 Marks]
0	0	0	0		
0	0	0	1	1	
0	0	1	0	1	
0	O	1	1	0	
0	[Ø	0	l	
0	l	0	1	0	
O	l	.	0	0	
0	l	l		0	
ł	0	0	0	O	
1	0	0	(O	
l	0		0	0	
1	0	1	ľ	0	
1	Ì	O	O	· O	
1	1	0	1	Ø	
1	1]	0	0	
1	1	1	1	O	
	· - · · · · · · · · · · · · · · · · · ·				

(b) Get the simplified Sum of Products (SOP) and Product of Sums (POS) expression that represents the logic function of the above system in (a).

[7 Marks]

Symot wodnets = ESS + ESS + ESS

......

(c) Design the logic circuit for the above **SOP** expression in (b) using only **NAND** gates. Clearly indicate the method and steps.

(d) Design the logic circuit for the above **POS** expression in (b) using only **NOR** gates. Clearly indicate the method and steps.

portorni.	
(i) Arithmetic Logic Unit (ALU)	[2 Marks]
· Carrios out logical and anithmet	i'c o parat
	.
(ii) Registers	[2 Marks]
· Hold data that can be readily by CPU	acused
••••••	•••••
(iii) Program Counter (PC)	[2 Marks]
executivy instruction. Increment and site at the end of a	carrently and by

3. (a) Briefly explain about each of the following components of the CPU. Clearly state the task(s) they

(iv) Instruction Register	r (IR)				[2 Marks]
· Hold	the	Curren	tly_	enecute.	······
· Hold Instru	uti'on		J	S	7
		•••••	•••••		
			•••••		
••••••	•••••	•••••	•••••••	•••••••••••	•••••
(v) Address Bus					[2 Marks]
· Pass	the	addres	s bo	Letch	mewy
· Pass	0	duta	er	instr	n tron
••••••	•••••	••••••	••••••	••••••	*******
	• • • • • • • • • • • • • • • • • • • •		*******		***************************************
(b) Consider the arithmeter evaluate this express	ion in the follo	r = (a * b * cooking three archite	c)/a .Ge	enerate the instruct	
(i) Accumulator Archit	ecture (One O _l	perand).			[2 Marks]
Lond	a	•••••		••••••	
Mult	b		• • • • • • • • • • • • • • • • • • • •	•••••	•••••
Mait	C	***************************************		•••••	
Div	9			•••••	•••••
Store	······································		• • • • • • • • • • • • • • • • • • • •		••••••
				•••••	
				* * * * * * * * * * * * * * * * * * * *	

(ii) Stack Architect	IIro				
(II) Stack Architect	utc.				[2 Marks]
Prob	٦ 9				•••••
Prah		*************		••••••	
Pnoh			• • • • • • • • • • • • • • • • • • • •		•••••
Malt					
Pash		***********			•••••
Mar					***************************************
Div	Z. P.				
Pop	V				••••••
(iii) General Purpos	se Register Arch	nitecture.			
()					[2 Marks]
Lond	R	9			•••••
Lond	R	Ь			••••
Lond	P2	C			*******************
Add	123	R	12		•••••
Add	12,7	R I	次		******************
Div	<u> </u>	123_	2		•••••
7 I	<i>\.</i>	·····;··· ? .··			

(c) Consider a machine with instruction format of the form **opcode** R M where R is a register address and M is a memory address. Instructions are 16 bits long and one of the instruction formats provides 4 bits for the op-code, 4 bits for the register and other 8 bits for the memory address of the operand. Assume that the word size of this machine is 8 bits (byte addressable).

Some of the op-codes of the above (a) processor is given below:

0001 - L R, A

LOAD the register **R** with the content of memory cell **A**

0010 - LI R, I

LOAD the register **R** with the value **I**

0011 - ST R, A	STORE the content of the register R to the memory cell whose address is A
0101 - ADD R0, R1, R2	ADD the numbers in registers R1 and R2 and place the result in register R0
1001 - XOR R0, R1, R2	XOR the bit patterns in R1 and R2 and place the result in R0
1000 - AND R0, R1, R2	AND the bit patterns in R1 and R2 and place the result in R0
1110 - JMP R, A	JUMP t o the instruction located in the memory cell A if the bit pattern in R is equal to the one in R0
1111 - HALT	HALT the execution

Write down the machine code instructions sequence to execute the following program statements.

Assume that **A** and **B** are variables refer the memory addresses **80**, **81** and the initial program counter (PC) as hexadecimal **30**.

[9 Marks]

Li P 21

A=33

Stare R 80

Li R 37

Stare R2

Li R 37

Li R 37

Li R 37

C=B-A

Add R3

Add R3

Add R3

Add R3

Stare R3

B2

Stare R3

B4

types of RAM.		[4 M
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •
	•••••	•••••
	•••••	
•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • •	• • • • • • • • •
Answer the following questions by indicating whether they are true or fa	lse. Mark	your c
with a $\sqrt{.}$. .
		[6 M
		[O I ^a
	True	False
Solid Sate Drives (SSD) use less power compared to Hard Disk Drives		
(HDD).		
In a 2-level cache implementation, L1 cache has more space than L2 cache.		
Both Instructions and data are stored in the cache.		-
Both mistractions and data are stoled in the cache.		
	•	
	o seconds	s (ns) fo
For a Simple cache model, find the Effective Access Time (EAT) in Nanc	nemory a	ccess ti
following situation: cache hit rate is 80%, cache access time is 10 ns and r		
•		
following situation: cache hit rate is 80%, cache access time is 10 ns and r		[5 M
following situation: cache hit rate is 80%, cache access time is 10 ns and r	•••••	_
following situation: cache hit rate is 80% , cache access time is 10 ns and r $10~\mu s$.		
following situation: cache hit rate is 80% , cache access time is 10 ns and r $10~\mu s$.		

	•••
	•••
•••••••••••••••••••••••••••••••••••••••	•••
•••••••••••••••••••••••••••••••••••••••	•••
(d) What is the Low Order Address Bits (LOAB) in hexadecimal of the memory address 0xCAF if the cache has 256 cache lines?	E844
[5 Ma	arks]
	•••
	•••
	•••
······································	•••
	•••

- (e) Consider the diagram below.
- (i) Assume that a particular program refers into the address denoted by 0x10020008 from the cache. What is the value represented by that location?
- (ii) Assume that the CPU wants to write the value 540 into the address denoted by 0x10020004. What would happen, if the cache management uses write-back policy? Explain your answer.

[5 Marks]

	_N-C Tag Field Size	-	Data Width (eg 32 bits)	
0x000	0×10020	1	25	1 158
0x004	0x10020	1	327	1 8 1
800x0	0x10020	0	360	, w
0x00c		ä		5
0x010 0x014 0x018 0x016	Cache Tag Memory	Valid	Cache Data Memory	Cache Memory

*****	• • • • • • • • • • • • • • • • • • • •	*****************		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • •
	••••••		•••••		• • • • • • • • • • • • • • • • • • • •
			•••••		
***************************************		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
••••••			•••••		
	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		• • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		
•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			
••••		• • • • • • • • • • • • • • • • • • • •	•••••	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •
•••••		•••••		• • • • • • • • • • • • • • • • • • • •	•••••
•••••		• • • • • • • • • • • • • • • • • • • •		••••••	
• • • • • • • • • • • • • • • • • • • •			•••••	•••••	
••••			*****	*************************	**********
	*****	*****	******	*****	