60/116,448

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL	APPLICATION PUBLISI	HED I	JN:	DER THE PATENT COOPERATION	TREATY (PCT)
(51) International Patent	Classification 6:		(1	1) International Publication Number:	WO 99/43696
C07H 21/04, C07 15/63, C12Q 1/68	K 14/705, C12N 15/09,	A1	(4	3) International Publication Date: 2. Sep	ptember 1999 (02.09.99)
(21) International Applica	tion Number: PCT/US	99/038	26	(81) Designated States: AL, AM, AT, AU, BY, CA, CH, CN, CU, CZ, DE, DI	
(22) International Filing I	Date: 22 February 1999 (22.02.9	9)	GE, GH, GM, HR, HU, ID, IL, IN KR, KZ, LC, LK, LR, LS, LT, L	N, IS, JP, KE, KG, KP, U, LV, MD, MG, MK,
(30) Priority Data: 60/076,687 60/095,836	25 February 1998 (25.02.98)	-	ZĮ	MN, MW, MX, NO, NZ, PL, PT, SI, SK, SL, TJ, TM, TR, TT, UA, ARIPO patent (GH, GM, KE, LS, NE)	UG, UZ, VN, YU, ZW, MW, SD, SZ, UG, ZW),

US

(71) Applicant: AXYS PHARMACEUTICALS, INC. [US/US]; 180 Kimball Way, South San Francisco, CA 94080 (US).

19 January 1999 (19.01.99)

- (72) Inventors: MILLER, Andrew, P.; 2131 Old Stone Mill Drive, Cranbury, NJ 08512 (US). CURRAN, Mark, Edward; 685 Poinsettia Park North, Encinitas, CA 92024 (US). HU, Ping; 3980 Via Holgura, San Diego, CA 92130 (US). RUTTER, Marc; 4559 Campus Avenue #1, San Diego, CA 92116 (US). WANG, Jian-Ying; 7478 Park Village Road, San Diego, CA 92129 (US).
- (74) Agent: SHERWOOD, Pamela, J.; Bozicevic, Field & Francis LLP, Suite 200, 285 Hamilton Avenue, Palo Alto, CA 94301 (US).

European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: HUMAN POTASSIUM CHANNEL GENES

(57) Abstract

Methods for isolating K+Hnov genes are provided. The K+Hnov nucleic acid compositions find use in identifying homologous or related proteins and the DNA sequences encoding such proteins; in producing compositions that modulate the expression or function of the protein; and in studying associated physiological pathways. In addition, modulation of the gene activity in vivo is used for prophylactic and therapeutic purposes, such as identification of cell type based on expression, and the like.

DOCID: <1/O__9943696A1_I_>

Sp. 1-12 (17)

FOR THE PURPOSES OF INFORMATION ONLY

The property of the state of th

with the control of the second of the second

大朝的大海 人名克克克尔 化二氯二氯二酚 大麻 化铁 人名 网络亚洲 电二十分码

and the second of the contract Carrier and the Company of the Company of the Artificial State of the Company of

one with the transfer of the got west to expect the way to the action of the first terms.

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT .	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan -	GB -	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana.	MG ·	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guines	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR .	Turkey
BG .	Bulgaria	· HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	· IL	Israel	MR	Mauritania	. UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	: MX	Mexico :	UZ	Uzbekictan
CF ·	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL.	Netherlands	YU	Yugoslavia
CH .	Switzerland	KG	Ky-gyzatan	NO	Norway	zw "	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon	5.45%	Republic of Korea	PL	Poland	* : . *	7
CN	China	KR	Republic of Korea	PT	Portugal		
CU .	Cuba .	KZ	Kazakatan	RO	Romania	i . '	
cz 🧐	Czech Republic	LC ·	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK :	Denmark	LK	Sri Lenke	SE	Sweden		1 1 ±
EE	Estonia	LR	Liberia	SG	Singapore		

HUMAN POTASSIUM CHANNEL GENES

INTRODUCTION

Background

5

10

15

20

25

30

lon channels are multi-subunit, membrane bound proteins critical for maintenance of cellular homeostasis in nearly all cell types. Channels are involved in a myriad of processes including modulation of action potentials, regulation of cardiac myocyte excitability, heart rate, vascular tone, neuronal signaling, activation and proliferation of T-cells, and insulin secretion from pancreatic islet cells. In humans, ion channels comprise extended gene families with hundreds, or perhaps thousands, of both closely related and highly divergent family members. The majority of known channels regulate the passage of sodium (Na*), chloride (Cl*), calcium (Ca**) and potassium (K*) ions across the cellular membrane.

Given their importance in maintaining normal cellular physiology, it is not surprising that ion channels have been shown to play a role in heritable human disease. Indeed, ion channel defects are involved in predisposition to epilepsy, cardiac arrhythmia (long QT syndrome), hypertension (Bartter's syndrome), cystic fibrosis, (defects in the CFTR chloride channel), several skeletal muscle disorders (hyperkalemic periodic paralysis, paramyotonia congenita, episodic ataxia) and congenital neural deafness (Jervell-Lange-Nielson syndrome), amongst others.

The potassium channel gene family is believed to be the largest and most diverse ion channel family. K* channels have critical roles in multiple cell types andpathways, and are the focus of significant investigation. Four human conditions, episodic ataxia with myokymia, long QT syndrome, epilepsy and Bartter's syndrome have been shown to be caused by defective K* ion channels. As the K* channel family is very diverse, and given that these proteins are critical components of virtually all cells, it is likely that abnormal K* channels will be involved in the etiology of additional renal, cardiovascular and central nervous system disorders of interest to the medical and pharmaceutical community.

The K* channel superfamily can be broadly classified into groups, based upon the number of transmembrane domain (TMD) segments in the mature

protein. The minK (IsK) gene contains a single TMD, and although not a channel by itself, minK associates with different K* channel subunits, such as KvLQT1 and HERG to modify the activity of these channels. The inward rectifying K+ channels (GIRK, IRK, CIR, ROMK) contain 2 TMD domains and a highly conserved pore domain. Twik-1 is a member of the newly emerging 4TMD K* channel subset. Twik-like channels (leak channels) are involved in maintaining the steady-state K* potentials across membranes and therefore the resting potential of the cell near the equilibrium potential for potassium (Duprat et al. (1997) EMBO J 16(17):5464-5471). These proteins are particularly intriguing targets for therapeutic regulation. The 6TMD, or Shaker-like channels, presently comprise the largest subset of known K* channels. The slopoke (slo) related channels, or Ca** regulated channels apparently have either 10 TMD, or 6 TMD with 4 additional hydrophobic domains.

.5

15

20

25

30

2943696A1_l_s

Four transmembrane domain, tandem pore domain K+ channels (4T/2P channels) represent a new family of potassium selective ion channels involved in the control of background membrane conductances. In mammals, five channels fitting the 4T/2P architecture have been described: TWIK, TREK, TASK-1, TASK-2 and TRAAK. The 4T/2P channels all have distinct characteristics, but are all thought to be involved in maintaining the steady-state K* potentials across membranes and therefore the resting potential of the cell near the equilibrium potential for potassium (Duprat et al. (1997) EMBO J 16(17):5464-5471). These proteins are particularly intriguing targets for therapeutic regulation. Within this group, TWIK-1, TREK-1 and TASK-1 and TASK-2 are widely distributed in many different tissues, while TRAAK is present exclusively in brain, spinal cord and retina. The 4T/2P channels have different physiologic properties; TREK-1 channels, are outwardly rectifying (Fink et al. (1996) EMBO J 15(24):6854-62), while TWIK-1 channels, are inwardly rectifying (Lesage et al. (1996) EMBO J 15(5):1004-11. TASK channels are regulated by changes in PH while TRAAK channels are stimulated by arachidonic acid (Reyes et al. (1998) JBC 273(47):30863-30869).

The degree of sequence homology between different K* channel genes is substantial. At the amino acid level, there is about 40% similarity between

different human genes, with distinct regions having higher homology, specifically the pore domain. It has been estimated that the K+ channel gene family contains approximately 10²-10³ individual genes. Despite the large number of potential genes, an analysis of public sequence databases and the scientific literature demonstrates that only a small number, approximately 20-30, have been identified. This analysis suggests that many of these important genes remain to be identified.

Potassium channels are involved in multiple different processes and are important regulators of homeostasis in nearly all cell types. Their relevance to basic cellular physiology and role in many human diseases suggests that pharmacological agents could be designed to specific channel subtypes and these compounds then applied to a large market (Bulman, D.E. (1997) Hum Mol Genet 6:1679-1685; Ackerman, M.J. and Clapham D.E. (1997) NEJM 336:1575-1586, Curran, M.E. (1998) Current Opinion in Biotechnology 9:565-572). The variety of therapeutic agents that modulate K+ channel activity reflects the diversity of physiological roles and importance of K+ channels in cellular function. A difficulty encountered in therapeutic use of therapeutic agents that modify K+ channel activity is that the presently available compounds tend to be non-specific and elicit both positive and negative responses, thereby reducing clinical efficacy. To facilitate development of specific compounds it is desirable to have further characterize novel K+ channels for use in *in vitro* and *in vivo* assays.

Relevant Literature

5

10

15

20

25

30

2436**36A1_I_**>

A large body of literature exists in the general area of potassium channels. A review of the literature may be found in the series of books, "The Ion Channel Factsbook", volumes 1-4, by Edward C. Conley and William J. Brammar, Academic Press. An overview is provided of: extracellular ligand-gated ion channels (ISBN: 0121844501), intracellular ligand-gated channels (ISBN: 012184451X), Inward rectifier and intercellular channels (ISBN: 0121844528), and voltage gated channels (ISBN: 0121844536). Hille, B. (1992) "Ionic Channels of Excitable Membranes", 2nd Ed. Sunderland MA:Sinauer Associates, also reviews potassium channels.

Jan and Jan (1997) Annu. Rev. Neurosci. 20:91-123 review cloned potassium channels from eukaryotes and prokaryotes. Ackerman and Clapham (1997) N. Engl. J. Med. 336:1575-1586 discuss the basic science of ion channels in connection with clinical disease. Bulman (1997) Hum. Mol. Genet. 6:1679-1685 describe some phenotypic variation in ion channel disorders.

Stephan et al. (1994) Neurology 44:1915-1920 describe a pedigree segregating a myotonia with muscular hypertrophy and hyperirritability as an autosomal dominant trait (rippling muscle disease, Ricker et al. (1989) Arch. Neurol. 46405-408). Electromyography demonstrated that mechanical stimulation provoked electrically silent contractions. The responsible gene was localized to the distal end of the long arm of chromosome 1, in a 12-cM region near D1S235.

Type II pseudohypoaldosteronism is the designation used for a syndrome of chronic mineralocorticoid-resistant hyperkalemia with hypertension. The primary abnormality in type II PHA is thought to be a specific defect of the renal secretory mechanism for potassium, which limits the kaliuretic response to, but not the sodium and chloride reabsorptive effect of, mineralocorticoid. By analysis of linkage in families with autosomal dominant transmission, Mansfield *et al.* (1997) Nature Genet. 16:202-205 demonstrated locus heterogeneity of the trait, with linkage of the PHA2 gene to 1q31-q42 and 17p11-q21.

Sequences of four transmembrane, two pore potassium channels have been previously described. Reyes et al. (1998) J Biol Chem 273(47):30863-30869 discloses a pH sensitive channel. As with the related TASK-1 and TRAAK channels, the outward rectification is lost at high external K+ concentration. The TRAAK channel is described by Fink et al. (1998) EMBO J 17(12):3297-308. A cardiac two-pore channel is described in Kim et al. (1998) Circ Res 82(4):513-8. An open rectifier potassium channel with two pore domains in tandem and having a postsynaptic density protein binding sequence at the C terminal was cloned by Leonoudakis et al. (1998) J Neurosci 18(3):868-77.

The electrophysiological properties of Task channels are of interest, (Duprat et al. (1997) EMBO J 16:5464-71). TASK currents are K+-selective, instantaneous and non-inactivating. They show an outward rectification when external [K+] is low, which is not observed for high [K+]out, suggesting a lack of

20

intrinsic voltage sensitivity. The absence of activation and inactivation kinetics as well as voltage independence are characteristic of conductances referred to as leak or background conductances. TASK is very sensitive to variations of extracellular pH in a narrow physiological range, a property probably essential for its physiological function, and suggests that small pH variations may serve a communication role in the nervous system.

SUMMARY OF THE INVENTION

Isolated nucleotide compositions and sequences are provided for K+Hnov genes. The K+Hnov nucleic acid compositions find use in identifying homologous or related genes; in producing compositions that modulate the expression or function of its encoded proteins; for gene therapy; mapping functional regions of the proteins; and in studying associated physiological pathways. In addition, modulation of the gene activity *in vivo* is used for prophylactic and therapeutic purposes, such as treatment of potassium channel defects, identification of cell type based on expression, and the like.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

Nucleic acid compositions encoding *K+Hnov* polypeptides are provided. They are used in identifying homologous or related genes; in producing compositions that modulate the expression or function of the encoded proteins; for gene therapy; mapping functional regions of the proteins; and in studying associated physiological pathways. The *K+Hnov* gene products are members of the potassium channel gene family, and have high degrees of homology to known potassium channels. The encoded polypeptides may be alpha subunits, which form the functional channel, or accessory subunits that act to modulate the channel activity.

CHARACTERIZATION OF K+HNOV

,只称:"只要我们就说,我们有一种谁会养的"也知识。

The sequence data predict that the provided K+Hnov genes encode potassium channels. Table 1 summarizes the DNA sequences, corresponding SEQ ID NOs, chromosomal locations, and polymorphisms. The provided

5

10

15

20

PCT/US99/03826 WO 99/43696

sequences may encode a predicted K*channel, e.g. voltage gated, inward rectifier, etc.; or a modulatory subunit.

Electrophysiologic characterization of ion channels is an important part of understanding channel function. Full length ion channel cDNAs may be combined with proper vectors to form expression constructs of each individual channel. Functional analyses of expressed channels can be performed in heterologous systems, or by expression in mammalian cell lines. For expression analyses in heterologous systems such as Xenopus oocytes, synthetic mRNA is made through in vitro transcription of each channel construct. mRNA is then injected, singly or in combination with interacting channel subunit mRNAs, into prepared oocytes and the cells allowed to express the channel for several days. Oocytes expressing the channel of interest are then analyzed by whole cell voltage clamp and patch clamp techniques.

To determine the properties of each channel when expressed in 15 mammalian cells expression vectors specific to this type of analyses may be constructed and the resultant construct used to transform the target cells (for example human embryonic kidney (HEK) cells). Both stable and transiently expressing lines may be studied using whole cell voltage clamp and patch clamp techniques. Data obtained from EP studies includes, but is not limited to: current profiles elicited by depolarization and hyperpolarization, current-voltage (I-V) relationships, voltage dependence of activation, biophysical kinetics of channel activation, deactivation, and inactivation, reversal potential, ion selectivity, gating properties and sensitivity to channel antagonists and agonists.

Heterologous or mammalian cell lines expressing the novel channels can be used to characterize small molecules and drugs which interact with the channel. The same experiments can be used to assay for novel compounds which interact with the expressed channels.

In many cases the functional ion channel formed by K+Hnov polypeptides will be heteromultimers. Heteromultimers are known to form between different voltage gated, outward rectifying potassium channel α subunits, generally comprising four subunits, and frequently associated with auxiliary, β subunits. Typically such α subunits share a six-transmembrane domain structure (S1-S6),

5

200

. 10

20

25

with one highly positively charged domain (S4) and a pore region situated between S5 and S6. Examples of such subunits are K+Hnov4, K+Hnov9, and K+Hnov12. Channels are also formed by mutimerization of subunits of the two transmembrane and one pore architecture. It is predicted that two subunits of K+Hnov49 or K+Hnov59 will be required to form a functional channel.

Heteromultimers of greatest interest are those that form between subunits expressed in the same tissues, and are a combination of subunits from the same species. In addition, the formation of multimers between the subject polypeptides and subunits that form functional channels are of particular interest. The resulting channel may have decreased or increased conductance relative to a homomultimer, and may be altered in response to beta subunits or other modulatory molecules.

Known voltage gated K+ channel α subunits include Kv1.1-1.8 (Gutman et al. (1993) Sem. Neurosci. 5:101-106); Kv2.1-2.2; Kv3.1-3.4; Kv4.1-4.3; Kv5.1; Kv6.1; Kv7.1; Kv8.1; Kv9.1-9.2. The subunits capable of forming ion inducing channels include all of those in the Kv1 through Kv4; and Kv7 families. The Kv5.1, Kv6.1, Kv8.1 and Kv9.1-9.2 subunits may be electrically silent, but functional in modifying the properties in heteromultimers.

A CONTRACTOR OF THE SAME AND TH

grander ja var grander grander og det er er kligtet i vægtet er 🖒 met i vilk i var er i skriver i kligtet.

gorgina tengan mengenakan mengenakan dianah beranda pendagai beranda dan beranda beranda beranda beranda berand

to provide a company of the second to the second provided and the second provided the

grande in the second of the

,更大的"_{这是}大","这一些老人,我是我们的女子,我们就不是一个好。"

The company of the co

The property of the property of the second property of the

and the second second second second second second

padmilia a legal by the entry of woman for Colore

Commission of the process of the process of the commission of the

nga ditto para para para porto della compania di la compania di la compania di la compania di la compania di l

and the grant of the control of the control of

TABLE 1

	ard rectifying	channel						K+ channel	hannel	hannel				3		
ATP-sensitive inward rectifying		Voltage gated K+ channel				:		Delayed rectifying K+ channel	Voltage gated K+ channel	Voltage gated K+ channel		. :	modulatory subunit			modulatory subunit
	2q37	unknown			:			2p23	8q23	Xp21			13q14	3.4		18q12
	Alternative poly(A) tail: 1236, 2395	A312C	T335C	A377G	T344C	A401G	CA410-411GG (Ala/Thr)		Alternative poly(A) tail: 2304	C321T (Pro/Leu)	A375G (Glu/Gly)	C407T (Leu/Phe)	Alternative poly(A) tail: 1427	A689G (Gly/Arg)		1365A (IIe/Asn)
	SEQ ID NO:2	SEQ ID NO:4						SEQ ID NO:6	SEQ ID NO:8	SEQ ID NO:10			SEQ ID NO:12		11 OIL OIL OIL	SEC ID NO. 14
	SEQ ID NO:1	SEQ ID NO:3			: : : : : : : : : : : : : : : : : : : :	· · · · · · · · · · · · · · · · · · ·		SEQ ID NO:5	SEQ ID NO:7	SEQ ID NO:9	-		SEQ ID NO:11		SEO ID NO:13	SEG 10 140. 13
	K+Hnov1	K+Hnov4						K+Hnov6	K+Hnov9	K+Mnov12			K+Hnov15		K+Hnov27	17.1.111012.1

OMS וב כבי פעד

K+Hnov 11	SEQ ID NO:17	SEQ ID NO:18	N/A	N/A	Human ortholog of murine gene, 6
			,		transmembrane dominas, voltage
					gated, delayed rectifier K+ channel
K+Hnov 14	SEQ ID NO:19	SEQ ID NO:20	C3168T	12q14	6 transmembrane domain, voltage
K+Hnov28	SEQ ID NO:21-24	SEQ ID NO.25	4 alternative 5' splices	3q29	Modulatory subunit
K+Hnov42	SEQ ID NO:26	SEQ ID NO:27	G1162A, T1460A, T2496A	8q11	Homology to K+ channel protein of C. elegans
K+Hnov44	SEQ ID NO:28-29	SEQ ID NO.30	NA	22p13	beta-subunit.
K'Hnov49	SEQ ID NO:80	SEG ID NO:81	(ATCT), repeats in the 3' UTR sequence, starting at position 2166	1941	4T2P channel, linked to the disease loci for rippling muscle disease 1 (RMD1), and type II pseudohypopaldosteronism
K'Hnov59	SEQ ID NO:82	SEQ ID NO:83	WA .	chr19	4T2P channel

K+HNOV NUCLEIC ACID COMPOSITIONS

As used herein, the term "K+Hnov" is generically used to refer to any one of the provided genetic sequences listed in Table 1. Where a specific K+Hnov sequence is intended, the numerical designation, e.g. K49 or K59, will be added. Nucleic acids encoding K+Hnov potassium channels may be cDNA or genomic DNA or a fragment thereof. The term "K+Hnov gene" shall be intended to mean the open reading frame encoding any of the provided K+Hnov polypeptides, introns, as well as adjacent 5' and 3' non-coding nucleotide sequences involved in the regulation of expression, up to about 20 kb beyond the coding region, but possibly further in either direction. The gene may be introduced into an appropriate vector for extrachromosomal maintenance or for integration into a host genome.

. 5

10

15

20

25

30

The term "cDNA" as used herein is intended to include all nucleic acids that share the arrangement of sequence elements found in native mature mRNA species, where sequence elements are exons and 3' and 5' non-coding regions. Normally mRNA species have contiguous exons, with the intervening introns, when present, removed by nuclear RNA splicing, to create a continuous open reading frame encoding a K+Hnov protein.

A genomic sequence of interest comprises the nucleic acid present between the initiation codon and the stop codon, as defined in the listed sequences, including all of the introns that are normally present in a native chromosome. It may further include the 3' and 5' untranslated regions found in the mature mRNA. It may further include specific transcriptional and translational regulatory sequences, such as promoters, enhancers, etc., including about 1 kb, but possibly more, of flanking genomic DNA at either the 5' or 3' end of the transcribed region. The genomic DNA may be isolated as a fragment of 100 kbp or smaller; and substantially free of flanking chromosomal sequence. The genomic DNA flanking the coding region, either 3' or 5', or internal regulatory sequences as sometimes found in introns, contains sequences required for proper tissue and stage specific expression.

The sequence of the 5' flanking region may be utilized for promoter elements, including enhancer binding sites, that provide for developmental regulation in tissues where *K+Hnov* genes are expressed. The tissue specific expression is useful for determining the pattern of expression, and for providing promoters that mimic the native pattern of expression. Naturally occurring polymorphisms in the promoter regions are useful for determining natural variations in expression, particularly those that may be associated with disease.

Alternatively, mutations may be introduced into the promoter regions to determine the effect of altering expression in experimentally defined systems. Methods for the identification of specific DNA motifs involved in the binding of transcriptional factors are known in the art, e.g. sequence similarity to known binding motifs, gel retardation studies, etc. For examples, see Blackwell et al. (1995) Mol Med 1: 194-205; Mortlock et al. (1996) Genome Res. 5: 327-33; and Joulin and Richard-Foy (1995) Eur J Biochem 232: 620-626.

The regulatory sequences may be used to identify *cis* acting sequences required for transcriptional or translational regulation of *K+Hnov* expression, especially in different tissues or stages of development, and to identify *cis* acting sequences and *trans* acting factors that regulate or mediate *K+Hnov* expression. Such transcription or translational control regions may be operably linked to a *K+Hnov* gene in order to promote expression of wild type or altered *K+Hnov* or other profeins of interest in cultured cells, or in embryonic, fetal or adult tissues, and for gene therapy.

The nucleic acid compositions of the subject invention may encode all or a part of the subject polypeptides. Double or single stranded fragments may be obtained of the DNA sequence by chemically synthesizing oligonucleotides in accordance with conventional methods, by restriction enzyme digestion, by PCR amplification, etc. For the most part, DNA fragments will be of at least 15 nt, usually at least 18 nt or 25 nt, and may be at least about 50 nt. Such small DNA fragments are useful as primers for PCR, hybridization screening probes, etc. Larger DNA fragments, i.e. greater than 100 nt are useful for production of the encoded polypeptide. For use in amplification reactions, such as PCR, a pair of

10

15

20

25

primers will be used. The exact composition of the primer sequences is not critical to the invention, but for most applications the primers will hybridize to the subject sequence under stringent conditions, as known in the art. It is preferable to choose a pair of primers that will generate an amplification product of at least about 50 nt, preferably at least about 100 nt. Algorithms for the selection of primer sequences are generally known, and are available in commercial software packages. Amplification primers hybridize to complementary strands of DNA, and will prime towards each other.

The K+Hnov genes are isolated and obtained in substantial purity, generally as other than an intact chromosome. Usually, the DNA will be obtained substantially free of other nucleic acid sequences that do not include a K+Hnov sequence or fragment thereof, generally being at least about 50%, usually at least about 90% pure and are typically "recombinant", i.e. flanked by one or more nucleotides with which it is not normally associated on a naturally occurring chromosome.

The DNA may also be used to identify expression of the gene in a biological specimen. The manner in which one probes cells for the presence of particular nucleotide sequences, as genomic DNA or RNA, is well established in the literature and does not require elaboration here. DNA or mRNA is isolated from a cell sample. The mRNA may be amplified by RT-PCR, using reverse transcriptase to form a complementary DNA strand, followed by polymerase chain reaction amplification using primers specific for the subject DNA sequences. Alternatively, the mRNA sample is separated by gel electrophoresis, transferred to a suitable support, e.g. nitrocellulose, nylon, etc., and then probed with a fragment of the subject DNA as a probe. Other techniques, such as oligonucleotide ligation assays, in situ hybridizations, and hybridization to DNA probes arrayed on a solid chip may also find use. Detection of mRNA hybridizing to the subject sequence is indicative of K+Hnov gene expression in the sample.

The sequence of a K+Hnov gene, including flanking promoter regions and cooling regions, may be mutated in various ways known in the art to generate targeted changes in promoter strength, sequence of the encoded protein, etc.

. 1

5

15

The DNA sequence or protein product of such a mutation will usually be substantially similar to the sequences provided herein, i.e. will differ by at least one nucleotide or amino acid, respectively, and may differ by at least two but not more than about ten nucleotides or amino acids. The sequence changes may be substitutions, insertions or deletions. Deletions may further include larger changes, such as deletions of a domain or exon. Other modifications of interest include epitope tagging, e.g. with the FLAG system, HA, etc. For studies of subcellular localization, fusion proteins with green fluorescent proteins (GFP) may be used.

Techniques for *in vitro* mutagenesis of cloned genes are known. Examples of protocols for site specific mutagenesis may be found in Gustin *et al.*, *Biotechniques* 14:22 (1993); Barany, *Gene* 37:111-23 (1985); Colicelli *et al.*, *Mol Gen Genet* 199:537-9 (1985); and Prentki *et al.*, *Gene* 29:303-13 (1984). Methods for site specific mutagenesis can be found in Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*, CSH Press 1989, pp. 15.3-15.108; Weiner *et al.*, *Gene* 126:35-41 (1993); Sayers *et al.*, *Biotechniques* 13:592-6 (1992); Jones and Winistorfer, *Biotechniques* 12:528-30 (1992); Barton *et al.*, *Nucleic Acids Res* 18:7349-55 (1990); Marotti and Tomich, *Gene Anal Tech* 6:67-70 (1989); and Zhu, *Anal Biochem* 177:120-4 (1989). Such mutated genes may be used to study structure-function relationships of *K+Hnov*, or to alter properties of the protein that affect its function or regulation.

Homologs and orthologs of K+Hnov genes are identified by any of a number of methods. A fragment of the provided cDNA may be used as a hybridization probe against a cDNA library from the target organism of interest, where low stringency conditions are used. The probe may be a large fragment, or one or more short degenerate primers. Nucleic acids having sequence similarity are detected by hybridization under low stringency conditions, for example, at 50°C and 6XSSC (0.9 M sodium chloride/0.09 M sodium citrate) and remain bound when subjected to washing at 55°C in 1XSSC (0.15 M sodium chloride/0.015 M sodium citrate). Sequence identity may be determined by hybridization under stringent conditions, for example, at 50°C or higher and

5

10

15

20

25

1,3,

0.1XSSC (15 mM sodium chloride/01.5 mM sodium citrate). Nucleic acids having a region of substantial identity to the provided K+Hnov sequences, e.g. allelic variants, genetically altered versions of the gene, etc., bind to the provided K+Hnov sequences under stringent hybridization conditions. By using probes, particularly labeled probes of DNA sequences, one can isolate homologous or related genes. The source of homologous genes may be any species, e.g. primate species, particularly human; rodents, such as rats and mice, canines, felines, bovines, ovinas, equines, yeast, nematodes, etc.

Between mammalian species, e.g. human and mouse, homologs have 10 substantial sequence similarity, i.e. at least 75% sequence identity between nucleotide sequences, in some cases 80 or 90% sequence identity, and may be as high as 95% sequence identity between closely related species. Sequence similarity is calculated based on a reference sequence, which may be a subset of a larger sequence, such as a conserved motif, coding region, flanking region, etc. 15 A reference sequence will usually be at least about 18 nt long, more usually at least about 30 nt long, and may extend to the complete sequence that is being compared. Algorithms for sequence analysis are known in the art, such as BLAST, described in Altschul et al. (1990), J. Mol. Biol. 215:403-10. In general, variants of the invention have a sequence identity greater than at least about 65%, preferably at least about 75%, more preferably at least about 85%, and may be greater than at least about 90% or more as determined by the Smith-Waterman homology search algorithm as implemented in MPSRCH program (Oxford Molecular). Exemplary search parameters for use with the MPSRCH program in order to identify sequences of a desired sequence identity are as follows: gap open penalty: 12; and gap extension penalty: 1. 25

K+HNOV POLYPEPTIDES

The subject nucleic acid sequences may be employed for producing all or portions of K+Hnov polypeptides. For expression, an expression cassette may be employed. The expression vector will provide a transcriptional and translational initiation region, which may be inducible or constitutive, where the coding region

is operably linked under the transcriptional control of the transcriptional initiation region, and a transcriptional and translational termination region. These control regions may be native to a K+Hnov gene; or may be derived from exogenous sources.

5

10

15

20

25

BEASE OCIDE AND TENSES HILLS

The peptide may be expressed in prokaryotes or eukaryotes in accordance with conventional ways, depending upon the purpose for expression. For large scale production of the protein, a unicellular organism, such as *E. coli, B. subtilis, S. cerevisiae*, insect cells in combination with baculovirus vectors, or cells of a higher organism such as vertebrates, particularly mammals, e.g. COS 7 cells, may be used as the expression host cells. In some situations, it is desirable to express the *K+Hnov* gene in eukaryotic cells, where the *K+Hnov* protein will benefit from native folding and post-translational modifications. Small peptides can also be synthesized in the laboratory. Peptides that are subsets of the complete *K+Hnov* sequence may be used to identify and investigate parts of the protein important for function, or to raise antibodies directed against these regions.

Fragments of interest include the transmembrane and pore domains, the signal sequences, regions of interaction between subunits, etc. Such domains will usually include at least about 20 amino acids of the provided sequence, more usually at least about 50 amino acids, and may include 100 amino acids or more, up to the complete domain. Binding contacts may be comprised of non-contiguous sequences, which are brought into proximity by the tertiary structure of the protein. The sequence of such fragments may be modified through manipulation of the coding sequence, as described above. Truncations may be performed at the carboxy or amino terminus of the fragment, e.g. to determine the minimum sequence required for biological activity.

With the availability of the protein or fragments thereof in large amounts, by employing an expression host, the protein may be isolated and purified in accordance with conventional ways. A lysate may be prepared of the expression host and the lysate purified using HPLC, exclusion chromatography, gel electrophoresis, affinity chromatography, or other purification technique. The

purified protein will generally be at least about 80% pure, preferably at least about 90% pure, and may be up to and including 100% pure. Pure is intended to mean free of other proteins, as well as cellular debris.

The expressed K+Hnov polypeptides are useful for the production of antibodies, where short fragments provide for antibodies specific for the particular polypeptide, and larger fragments or the entire protein allow for the production of antibodies over the surface of the polypeptide. Antibodies may be raised to the wild-type or variant forms of K+Hnov. Antibodies may be raised to isolated peptides corresponding to specific domains, e.g. the pore domain and the transmembrane domain, or to the native protein.

10

15

20

25

Antibodies are prepared in accordance with conventional ways, where the expressed polypeptide or protein is used as an immunogen, by itself or conjugated to known immunogenic carriers, e.g. KLH, pre-S HBsAg, other viral or eukaryotic proteins, or the like. Various adjuvants may be employed, with a series of injections, as appropriate. For monoclonal antibodies, after one or more booster injections, the spleen is isolated, the lymphocytes immortalized by cell fusion, and then screened for high affinity antibody binding. The immortalized cells, i.e. hybridomas, producing the desired antibodies may then be expanded. For further description, see Monoclonal Antibodies: A Laboratory Manual, Harlow and Lane eds., Cold Spring Harbor Laboratories, Cold Spring Harbor, New York, 1988. If desired, the mRNA encoding the heavy and light chains may be isolated and mutagenized by cloning in E. coli, and the heavy and light chains mixed to further enhance the affinity of the antibody. Alternatives to in vivo immunization as a method of raising antibodies include binding to phage "display" libraries, usually in conjunction with in vitro affinity maturation.

K+HNOV GENOTYPING

The subject nucleic acid and/or polypeptide compositions may be used to genotyping and other analysis for the presence of polymorphisms in the sequence, or variation in the expression of the subject genes. Genotyping may be performed to determine whether a particular polymorphisms is associated with

a disease state or genetic predisposition to a disease state, particularly diseases associated with defects in excitatory properties of cells, e.g. cardiac, muscle, renal and neural cells. Disease of interest include rippling muscle disease, and type II psuedohypoaldosteronism.

Clinical disorders associated with K+ channel defects include long-QT syndrome; a congenital disorder affecting 1 in 10,000-15,000. Affected individuals have a prolonged QT interval in the electrocardiogram due to a delayed repolarization of the ventricle. Genetic linkage analyses identified two loci for long QT syndrome, LQT1, in 11p15.5 and LQT2, in 7q35-36. Positional cloning techniques identified the novel K+ channel KvLQT1 on chromosome 11 while candidate gene analysis identified causative mutations in the HERG K+ channel for LQT2.

The weaver mouse exhibits several abnormal neurological symptoms, including severe ataxia, loss of granule cell neurons in the cerebellum and dopaminergic cells in the substantia nigra, as well as seizures and male infertility. A G-protein-coupled K+ channel having a mutation in the conserved pore domain has been determined to cause the disease. The pancreatic-islet \(\mathcal{G}\)-cell ATP-sensitive K+ channel (KATP) is composed of two subunits, the sulfonylurea receptor (SUR) and the inward rectifier K+ channel Kir6.2. Mutations in both SUR and Kir6.2 have been identified in patients with persistent hyperinsulinemic hypoglycemia of infancy, which is caused by unregulated secretion of insulin.

Genotyping may also be performed for pharmacogenetic analysis to assess the association between an individual's genotype and that individual's ability to react to a therapeutic agent. Differences in target sensitivity can lead to toxicity or therapeutic failure. Relationships between polymorphisms in channel expression or specificity can be used to optimize therapeutic dose administration.

Genetic polymorphisms are identified in the K+Hnov gene (examples are listed in table 1), e.g. the repeat variation in the 3' UTR of K49. Nucleic acids comprising the polymorphic sequences are used to screen patients for altered reactivity and adverse side effects in response to drugs that act on K+ channels.

5

10

15

20

K+Hnov genotyping is performed by DNA or RNA sequence and/or hybridization analysis of any convenient sample from a patient, e.g. biopsy material, blood sample, scrapings from cheek, etc. A nucleic acid sample from an individual is analyzed for the presence of polymorphisms in K+Hnov. particularly those that affect the activity, responsiveness or expression of K+Hnov. Specific sequences of interest include any polymorphism that leads to changes in basal expression in one or more tissues, to changes in the modulation of K+Hnov expression, or alterations in K+Hnov specificity and/or activity.

PCT/US99/03826

The effect of a polymorphism in K+Hnov gene sequence on the response to a particular agent may be determined by in vitro or in vivo assays. Such assays may include monitoring during clinical trials, testing on genetically defined cell lines, etc. The response of an individual to the agent can then be predicted by determining the K+Hnov genotype with respect to the polymorphism. Where there is a differential distribution of a polymorphism by racial background, 15 guidelines for drug administration can be generally tailored to a particular ethnic group.

Biochemical studies may be performed to determine whether a sequence polymorphism in a K+Hnov coding region or control regions is associated with disease, for example the association of K+Hnov 9 with idiopathic generalized epilepsy. Disease associated polymorphisms may include deletion or truncation of the gene, mutations that after expression level, that affect the electrical activity of the channel, etc.

A number of methods are available for analyzing nucleic acids for the presence of a specific sequence. Where large amounts of DNA are available, genomic DNA is used directly. Alternatively, the region of interest is cloned into a suitable vector and grown in sufficient quantity for analysis. The nucleic acid may be amplified by conventional techniques, such as the polymerase chain reaction (PCR), to provide sufficient amounts for analysis. The use of the polymerase chain reaction is described in Saiki et al. (1985) Science 239:487, and a review of current techniques may be found in Sambrook et al. Molecular Cloning: A Laboratory Manual, CSH Press 1989, pp.14.2-14.33. Amplification may be used

5

. 10

20

-25

30 .

P 125

to determine whether a polymorphism is present, by using a primer that is specific for the polymorphism. Alternatively, various methods are known in the art that utilize oligonucleotide ligation as a means of detecting polymorphisms, for examples see Riley et al. (1990) N.A.R. 18:2887-2890; and Delahunty et al. (1996) Am. J. Hum. Genet.58:1239-1246.

A detectable label may be included in an amplification reaction. Suitable labels include fluorochromes, e.g. fluorescein isothiocyanate (FITC), rhodamine, Texas Red, phycoerythrin, allophycocyanin, 6-carboxyfluorescein (6-FAM), 2',7'-dimethoxy-4',5'- dichloro-6-carboxyfluorescein (JOE), 6-carboxy-X-rhodamine (ROX), 6-carboxy-2',4',7',4,7- hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM) or N,N,N',N'-tetramethyl-6- carboxyrhodamine (TAMRA), radioactive labels, e.g. 32P, 35S, 3H; etc., The label may be a two stage system, where the amplified DNA is conjugated to biotin, haptens, etc. having a high affinity binding partner, e.g. avidin, specific antibodies, etc., where the binding partner is conjugated to a detectable label. The label may be conjugated to one or both of the primers. Alternatively, the pool of nucleotides used in the amplification is labeled, so as to incorporate the label into the amplification product.

The sample nucleic acid, e.g. amplified or cloned fragment, is analyzed by one of a number of methods known in the art. The nucleic acid may be sequenced by dideoxy or other methods. Hybridization with the variant sequence may also be used to determine its presence, by Southern blots, dot blots, etc. The hybridization pattern of a control and variant sequence to an array of oligonucleotide probes immobilised on a solid support, as described in U.S. 5,445,934, or in WO95/35505, may also be used as a means of detecting the presence of variant sequences. Single strand conformational polymorphism (SSCP) analysis, denaturing gradient gel electrophoresis (DGGE), mismatch cleavage detection, and heteroduplex analysis in gel matrices are used to detect conformational changes created by DNA sequence variation as alterations in electrophoretic mobility. Alternatively, where a polymorphism creates or destroys a recognition site for a restriction endonuclease (restriction fragment length polymorphism, RFLP), the sample is digested with that endonuclease, and the

5

10

15

20

products size fractionated to determine whether the fragment was digested. Fractionation is performed by gel or capillary electrophoresis, particularly acrylamide or agarose gels.

In one embodiment of the invention, an array of oligonucleotides are provided, where discrete positions on the array are complementary to one or more of the provided sequences, e.g. oligonucleotides of at least 12 nt, frequently 20 nt, or larger, and including the sequence flanking a polymorphic position in a K*Hnov sequence; coding sequences for different K*Hnov channels, panels of ion channels comprising one or more of the provided K* channels; etc. Such an array may comprise a series of oligonucleotides, each of which can specifically hybridize to a different polymorphism. For examples of arrays, see Hacia et al. (1996) Nature Genetics 14:441-447; Lockhart et al. (1996) Nature Biotechnol. 14:1675-1680; and De Risi et al. (1996) Nature Genetics 14:457-460.

Screening for polymorphisms in K+Hnov may be based on the functional or antigenic characteristics of the protein. Protein truncation assays are useful in detecting deletions that may affect the biological activity of the protein. Various immunoassays designed to detect polymorphisms in K+Hnov proteins may be used in screening. Where many diverse genetic mutations lead to a particular disease phenotype, functional protein assays have proven to be effective screening tools. The activity of the encoded K+Hnov protein as a potassium channel may be determined by comparison with the wild-type protein.

Antibodies specific for a K+Hnov may be used in staining or in immunoassays. Samples, as used herein, include biological fluids such as semen, blood, cerebrospinal fluid, tears, saliva, lymph, dialysis fluid and the like; organ or tissue culture derived fluids; and fluids extracted from physiological tissues. Also included in the term are derivatives and fractions of such fluids. The cells may be dissociated, in the case of solid tissues, or tissue sections may be analyzed. Alternatively a lysate of the cells may be prepared.

Diagnosis may be performed by a number of methods to determine the absence or presence or altered amounts of normal or abnormal K+Hnov polypeptides in patient cells. For example, detection may utilize staining of cells

5

· 10 1

15

20

25

or histological sections, performed in accordance with conventional methods. The antibodies of interest are added to the cell sample, and incubated for a period of time sufficient to allow binding to the epitope, usually at least about 10 minutes. The antibody may be labeled with radioisotopes, enzymes, fluorescers, chemiluminescers, or other labels for direct detection. Alternatively, a second stage antibody or reagent is used to amplify the signal. Such reagents are well known in the art. For example, the primary antibody may be conjugated to biotin, with horseradish peroxidase-conjugated avidin added as a second stage reagent. Alternatively, the secondary antibody conjugated to a flourescent compound, e.g. flourescein, rhodamine, Texas red, etc. Final detection uses a substrate that undergoes a color change in the presence of the peroxidase. The absence or presence of antibody binding may be determined by various methods, including flow cytometry of dissociated cells, microscopy, radiography, scintillation counting, etc.

15

20

25

30

10

5

MODULATION OF GENE EXPRESSION

The K+Hnov genes, gene fragments, or the encoded protein or protein fragments are useful in gene therapy to treat disorders associated with K+Hnov defects. Expression vectors may be used to introduce the K+Hnov gene into a cell. Such vectors generally have convenient restriction sites located near the promoter sequence to provide for the insertion of nucleic acid sequences. Transcription cassettes may be prepared comprising a transcription initiation region, the target gene or fragment thereof, and a transcriptional termination region. The transcription cassettes may be introduced into a variety of vectors, e.g. plasmid; retrovirus, e.g. lentivirus; adenovirus; and the like, where the vectors are able to transiently or stably be maintained in the cells, usually for a period of at least about several days to several weeks.

The gene or K+Hnov protein may be introduced into tissues or host cells by any number of routes, including viral infection, microinjection, or fusion of vesicles. Jet injection may also be used for intramuscular administration, as

described by Furth et al. (1992) Anal Biochem 205:365-368. The DNA may be coated onto gold microparticles, and delivered intradermally by a particle bombardment device, or "gene gun" as described in the literature (see, for example, Tang et al. (1992) Nature 356:152-154), where gold microprojectiles are coated with the K+Hnov or DNA, then bombarded into skin ceils.

Antisense molecules can be used to down-regulate expression of K+Hnov in cells. The anti-sense reagent may be antisense oligonuclectides (ODN), particularly synthetic ODN having chemical modifications from native nucleic acids, or nucleic acid constructs that express such anti-sense molecules as RNA. The antisense sequence is complementary to the mRNA of the targeted gene, and inhibits expression of the targeted gene products. Antisense molecules inhibit gene expression through various mechanisms, e.g. by reducing the amount of mRNA available for translation, through activation of RNAse H, or steric hindrance. One or a combination of antisense molecules may be administered, where a combination may comprise multiple different sequences.

Antisense molecules may be produced by expression of all or a part of the target gene sequence in an appropriate vector, where the transcriptional initiation is oriented such that an antisense strand is produced as an RNA molecule. Alternatively, the antisense molecule is a synthetic oligonucleotide. Antisense oligonucleotides will generally be at least about 7, usually at least about 12, more usually at least about 20 nucleotides in length, and not more than about 500, usually not more than about 50, more usually not more than about 35 nucleotides in length, where the length is governed by efficiency of inhibition, specificity, including absence of cross-reactivity, and the like. It has been found that short oligonucleotides, of from 7 to 8 bases in length, can be strong and selective inhibitors of gene expression (see Wagner et al. (1996) Nature Biotechnology 14:840-844).

A specific region or regions of the endogenous sense strand mRNA sequence is chosen to be complemented by the antisense sequence. Selection of a specific sequence for the oligonucleotide may use an empirical method, where several candidate sequences are assayed for inhibition of expression of

5

10

15

20

25

the target gene in an in vitro or animal model. A combination of sequences may also be used, where several regions of the rnRNA sequence are selected for antisense complementation.

Antisense oligonucleotides may be chemically synthesized by methods known in the art (see Wagner et al. (1993) supra. and Milligan et al., supra.) Preferred oligonucleotides are chemically modified from the native phosphodiester structure, in order to increase their intracellular stability and binding affinity. A number of such modifications have been described in the literature, which alter the chemistry of the backbone, sugars or heterocyclic 10 bases.

Among useful changes in the backbone chemistry are phosphorothioates; phosphorodithioates, where both of the non-bridging oxygens are substituted with sulfur; phosphoroamidites; alkyl phosphotriesters and boranophosphates. Achiral phosphate derivatives include 3'-O'-5'-S-phosphorothioate, 3'-S-5'-Ophosphorothicate, 3'-CH2-5'-O-phosphonate and 3'-NH-5'-O-phosphoroamidate. Peptide nucleic acids replace the entire ribose phosphodiester backbone with a peptide linkage. Sugar modifications are also used to enhance stability and -affinity. The α -anomer of deoxyribose may be used, where the base is inverted with respect to the natural β-anomer. The 2'-OH of the ribose sugar may be altered to form 2'-O-methyl or 2'-O-allyl sugars, which provides resistance to degradation without comprising affinity. Modification of the heterocyclic bases must maintain proper base pairing. Some useful substitutions include deoxyuridine for deoxythymidine; 5-methyl-2'-deoxycytidine and 5-bromo-2'deoxycytidine for deoxycytidine. 5- propynyl-2'-deoxyuridine and 5-propynyl-2'-25 deoxycytidine have been shown to increase affinity and biological activity when substituted for deoxythymidine and deoxycytidine, respectively.

As an alternative to anti-sense inhibitors, catalytic nucleic acid compounds, e.g. ribozymes, anti-sense conjugates, etc. may be used to inhibit gene expression. Ribozymes may be synthesized in vitro and administered to the 20 patient, or may be encoded on an expression vector, from which the ribozyme is synthesized in the targeted cell (for example, see International patent application

5

15

WO 9523225, and Beigelman et al. (1995) Nucl. Acids Res 23:4434-42). Examples of oligonucleotides with catalytic activity are described in WO 9506764. Conjugates of anti-sense ODN with a metal complex, e.g. terpyridylCu(II), capable of mediating mRNA hydrolysis are described in Bashkin et al. (1995) Appl 5 Biochem Biotechnol 54:43-56.

GENETICALLY ALTERED CELL OR ANIMAL MODELS FOR K+HNOV FUNCTION

The subject nucleic acids can be used to generate transgenic animals or site specific gene modifications in cell lines. Transgenic animals may be made through homologous recombination, where the normal K+Hnov locus is altered. Alternatively, a nucleic acid construct is randomly integrated into the genome. Vectors for stable integration include plasmids, retroviruses and other animal viruses, YACs, and the like.

The modified cells or animals are useful in the study of K+Hnov function and regulation. For example, a series of small deletions and/or substitutions may be made in the K+Hnov gene to determine the role of different transmembrane domains in forming multimeric structures, ion channels, etc. Of interest are the use of K+Hnov to construct transgenic animal models for epilepsy and other neurological defects, where expression of K+Hnov is specifically reduced or absent. Specific constructs of interest include anti-sense K+Hnov, which will block K+Hnov expression, expression of dominant negative K+Hnov mutations, etc. One may also provide for expression of the K+Hnov gene or variants thereof in cells or tissues where it is not normally expressed or at abnormal times of development.

DNA constructs for homologous recombination will comprise at least a portion of the K+Hnov gene with the desired genetic modification, and will include regions of homology to the target locus. DNA constructs for random integration need not include regions of homology to mediate recombination. Conveniently, markers for positive and negative selection are included. Methods for generating cells having targeted gene modifications through homologous recombination are

10

15

20

25

known in the art. For various techniques for transfecting mammalian cells, see Keown et al. (1990) Methods in Enzymology 185:527-537.

For embryonic stem (ES) cells, an ES cell line may be employed, or embryonic cells may be obtained freshly from a host, e.g. mouse, rat, guinea pig, etc. Such cells are grown on an appropriate fibroblast-feeder layer or grown in the presence of leukemia inhibiting factor (LIF). When ES or embryonic cells have been transformed, they may be used to produce transgenic animals. After transformation, the cells are plated onto a feeder layer in an appropriate medium. Cells containing the construct may be detected by employing a selective medium. After sufficient time for colonies to grow, they are picked and analyzed for the occurrence of homologous recombination or integration of the construct. Those colonies that are positive may then be used for embryo manipulation and blastocyst injection. Blastocysts are obtained from 4 to 6 week old superovulated females. The ES cells are trypsinized, and the modified cells are injected into the blastocoel of the blastocyst. After injection, the blastocysts are returned to each uterine horn of pseudopregnant females. Females are then allowed to go to term and the resulting offspring screened for the construct. By providing for a different phenotype of the blastocyst and the genetically modified cells, chimeric progeny can be readily detected.

15

20

25

9NSDOC D: - 1 __ 13396A1_I_>

The chimeric animals are screened for the presence of the modified gene and males and females having the modification are mated to produce homozygous progeny. If the gene alterations cause lethality at some point in development, tissues or organs can be maintained as allogeneic or congenic grafts or transplants, or in *in vitro* culture. The transgenic animals may be any non-human mammal, such as laboratory animals, domestic animals, etc. The transgenic animals may be used in functional studies, drug screening, etc., e.g. to determine the effect of a candidate drug on Ras or related gene activation, oncogenesis, etc.

The second of the second of the second of the second of

TESTING OF K+HNOV FUNCTION and RESPONSES

Potassium channels such as K+Hnov polypeptides are involved in multiple biologically important processes. Pharmacological agents designed to affect only specific channel subtypes are of particular interest. Presently available compounds tend to be non-specific and elicit both positive and negative responses, thereby reducing clinical efficacy.

5

10

20

25

30

<WO

C143696A1!_>

The subject polypeptides may be used in *in vitro* and *in vivo* models to test the specificity of novel compounds, and of analogs and derivatives of compounds known to act on potassium channels. Numerous pharmacological agents have profound affects on K+ channel activity. As examples, Sotalol (BETAPACE) is a class III antiarrhythmic drug that prolongs cardiac action potentials by inhibiting delayed rectifier K+ channels. Sulfonylurea drugs, such as Glipizide (GLUCOTROL) and Tolazamide (TOLAMIDE) function as antidiabetic drugs by blocking ATP-sensitive K+ channels present in pancreatic islet cells, thereby regulating insulin secretion. Diazoxide (HYPERSTAT IV) is an antihypertensive drug that activates ATP-sensitive K+ channels, resulting in the relaxation of vascular smooth muscle. There are several other examples of drugs that have antidiabetic, antihypertensive, or antiarrhythmic activities. A number of drugs that activate K+ channels that have been proposed as coronary vasodilators for the treatment of both vasospastic and chronic stable angina.

The availability of multiple K+ channel subunits allows *in vitro* reconstruction of functional channels, which may comprise different alpha and beta subunits. The individual components may be modified by sequence deletion, substitution, *etc.* to determine the functional role of specific domains.

Drug screening may be performed using an *in vitro* model, a genetically altered cell or animal, or purified K+Hnov protein, either as monomers, homomultimers or hetermultimers. One can identify ligands or substrates that bind to, modulate or mimic the action of K+Hnov. Drug screening identifies agents that provide a replacement for K+Hnov function in abnormal cells. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including

monitoring cellular excitation and conductance, labeled *in vitro* protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, and the like. The purified protein may also be used for determination of three-dimensional crystal structure, which can be used for modeling intermolecular interactions.

The term "agent" as used herein describes any molecule, e.g. protein or pharmaceutical, with the capability of altering or mimicking the physiological function of K+Hnov polypeptide. Generally a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e. at zero concentration or below the level of detection.

Candidate agents encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of more than 50 and less than about 2,500 daltons. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof.

Candidate agents are obtained from a wide variety of sources including libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides and oligopeptides. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced. Additionally, natural or synthetically produced libraries and compounds are readily modified through conventional chemical, physical and biochemical means, and may be used to produce combinatorial libraries. Known

10

15

20

pharmacological agents may be subjected to directed or random chemical modifications, such as acylation, alkylation, esterification, amidification, etc. to produce structural analogs.

Where the screening assay is a binding assay, one or more of the molecules may be joined to a label, where the label can directly or indirectly provide a detectable signal. Various labels include radioisotopes, fluorescers, chemiluminescers, enzymes, specific binding molecules, particles, e.g. magnetic particles, and the like. Specific binding molecules include pairs, such as biotin and streptavidin, digoxin and antidigoxin etc. For the specific binding members, the complementary member would normally be labeled with a molecule that provides for detection, in accordance with known procedures.

5

1.

15

20

25

30

9943696A1 ! >

באפרממיר -WO _

A variety of other reagents may be included in the screening assay. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc that are used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Reagents that improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc. may be used. The mixture of components are added in any order that provides for the requisite binding. Incubations are performed at any suitable temperature, typically between 4 and 40°C. Incubation periods are selected for optimum activity, but may also be optimized to facilitate rapid high-throughput screening. Typically between 0.1 and 1 hours will be sufficient.

The compounds having the desired pharmacological activity may be administered in a physiologically acceptable carrier to a host in a variety of ways, orally, topically, parenterally e.g. subcutaneously, intraperitoneally, by viral infection, intravascularly, etc. Depending upon the manner of introduction, the compounds may be formulated in a variety of ways. The concentration of therapeutically active compound in the formulation may vary from about 0.1-100 wt.%. The pharmaceutical compositions can be prepared in various forms, such as granules, tablets, pills, suppositories, capsules, suspensions, salves, lotions and the like. Pharmaceutical grade organic or inorganic carriers and/or diluents suitable for oral and topical use can be used to make up

compositions containing the therapeutically-active compounds. Diluents known to the art include aqueous media, vegetable and animal oils and fats. Stabilizing agents, wetting and emulsifying agents, salts for varying the osmotic pressure or buffers for securing an adequate pH value, and skin penetration enhancers can be used as auxiliary agents.

It is to be understood that this invention is not limited to the particular methodology, protocols, cell lines, animal species or genera, and reagents described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

As used herein the singular forms "a", "and", and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a cell" includes a plurality of such cells and reference to "the cell" includes reference to one or more cells and equivalents thereof known to those skilled in the art, and so forth. All technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs unless clearly indicated otherwise.

It must be noted that as used herein and in the appended claims, the singular forms "a", "and", and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a complex" includes a plurality of such complexes and reference to "the formulation" includes reference to one or more formulations and equivalents thereof known to those skilled in the art, and so forth.

All publications mentioned herein are incorporated herein by reference for the purpose of describing and disclosing, for example, the methods and methodologies that are described in the publications which might be used in connection with the presently described invention. The publications discussed above and throughout the text are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an

20

. 25

admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention.

EXPERIMENTAL

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the subject invention, and are not intended to limit the scope of what is regarded as the invention. Efforts have been made to ensure accuracy with respect to the numbers used (e.g. amounts, temperature, concentrations, etc.) but some experimental errors and deviations should be allowed for. Unless otherwise indicated, parts are parts by weight, molecular weight is average molecular weight, temperature is in degrees centigrade; and pressure is at or near atmospheric.

Methods

5

10

15

20

Two different types of sequence searches were performed. The first centered on the most highly conserved region of the K+ channel family, the pore domain. The pore is composed of 15-17 amino acids and can be divided into subfamilies based on the number of transmembrane segments present in the channel. Eleven variant peptide sequences corresponding to the pore domain were used in TBLASTN searches against the EST division of Genbank. Significant matches were identified, and classified into 2 categories: identical to known human K+ channels and related to known K+ channels. The pore sequences are shown in Table 2.

TABLE

11.

32 DID: kWC___1313698# . _5

/t.

SEQ ID NO	Genbank #	
49	L02751 \	TGGTGGGCTGTGGTGACCATGACAACTGTGGGCTATGGGGACATG
50	M60451	TGGTGGGCAGTGGTCACCATGACCACTGTGGGCTACGGGGGACATG
51	L02752	TGGTGGGCAGTCGTCCATGACAACTGTAGGCTATGGAGACATG
52	M55515	TGGTGGGCAGTGGTAACCATGACAACAGTGGGTTACGGCGATATG
53	211585	TGGTGGGCTGTGGTCACCATGACGACCCTGGGCTATGGAGACATG
54	U40990	TGGTGGGGGTGGTCACAGTCACCATCGGCTATGGGGACAAG
55	126643	TGGTGGCCAGTGGTCACCATGACCACGGTTGGCTATGGGGACATG
56	M96747	TGGTGGGCCGTGGTCACCATGACGACCCTGGGCTATGGAGACATG
57	M64676	TGGTGGGCTGTGGTCACCATGACGACACTGGGCTACGGAGACATG
58	M55514	TGGTGGGCTGTGGTGACCATGACAACTGTGGGCTATGGGGACATG
58	X83582	TTCCTGTTCTCCATTGAGACCGAAACAACCATTGGGTATGGCTTCCG
99	578684	TTTTTATTCTCAATAGAGACAGAACCACCATTGGTTATGGCTACCG
19	U22413	TTCCTCTTCTCCATTGAGACCCAGACCATAGGCTATGGTTTCAG
62	U24056	TTCCTGTTCTCGGTGGAGGCGCAGACCATCGGCTATGGGTTCCG
63	U52155	TTCCTCTTCTCCCTTGAATCCCAAACCACCATTGGCTATGGCTTCCG
2	D87281	TITCICITITICCCTGGAATCCCAGACAACCATTGGCTATGGAGTCCG
	D50582	TTCCTTTTCTCCATTGAGGTCCAAGTGACTATTGGCTTTGGGGGGCG
88	D50315	TTTCTCTTCTCCATTGAAGTTCAAGTTACCATTGGGTTTGGAGGGAG
67	U04270	GCGCTCTACTTCACCTTCAGCAGCCTCACCAGTGTGGGCTTCGGCAAC

green in die gebeure in Zoon van in die selfe die gebeure selfe geboorde

in the second

The unique pore peptides sequences are shown in Table 3.

TABLE 3

IADLE 3
Amino acid Sequence
WWAVVSMTTVGYGDM
WWAVVTMTTLGYGDM
WWGVVTVTTIGYGDK
WWAVVTMTTVGYGDM
FLFSIEVQVTIGFGG
FLFSLESQTTIGYGV
FLFSIETETTIGYGY
FLFSIETQTTIGYGF
FLFSVETQTTIGYGF
FLFSLESQTTIGYGF
FLFSIETETTIGYGF
ALYFTFSSLTSVGFGN

The second set of experiments was based on a complex, reiterative process.

Annotated protein and DNA sequences were obtained from GenBank for all known K+ channels from all species. The TBLASTN and BLASTN programs were used to identify homologous ESTs, which were then analyzed using the BLASTX and BLASTN algorithms to identify ESTs which were related to K+ channels yet not identical to any known human K+ channel gene.

Novel human K+ channels were defined as those that had clear homology to known K+ channels from any species and were not present as identities or near identities to any human-derived sequences in any division of Genbank.

Isolation of full length cDNA sequence. EST clones were picked from the IMAGE consortium cDNA library and end-sequenced with vector primers. Gap closure was achieved either by primer walking or transposon sequencing. GeneTrapper (Life

Technologies) was used to isolate larger cDNA clones according to the provided protocol. RACE was used to extend the sequences as necessary using standard protocols.

Sequences were assembled in Sequencher (Gene Codes). The presence of open reading frames was assessed as well as potential start codons. Potential polymorphisms were detected as sequence variants between multiple independent clones. Sequence homologies were detected using the BLAST algorithms.

The completed gene sequences and predicted amino acid sequences are provided as SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21-24, 26 and 28-29. Polymorphisms, chromosome locations and family assignments are shown in Table 1.

ESTs that had top human hits with >95% identity over 100 amino acids were discarded. This was based upon the inventors' experience that these sequences were usually identical to the starting probe sequences, with the differences due to sequence error. The remaining BLASTN and BLASTX outputs for each EST were examined manually, i.e., ESTs were removed from the analysis if the inventors determined that the variation from the known related probe sequence was a result of poor database sequence. Poor database sequence was usually identified as a number of 'N' nucleotides in the database sequence for a BLASTN search and as a base deletion or insertion in the database sequence, resulting in a peptide frameshift, for a BLASTX output. ESTs for which the highest scoring match was to non-related sequences were also discarded at this stage. The EST sequences that correspond to each clone are shown in Table 4.

Table 4 January 1997 St. A. A. A. A.

Genbank Accession#			Trace : "	IMAGE Plate Coordinates	Read 5'/3'
N39619	K+Hnov2	277113	yy51h05.s1	611p10	3'
N46767	K+Hnov2	277113	yy51h05.r1	611p10	5'
R19352	K+Hnov11	33144	yg24f12.r1	155024	5'
R44628	K+Hnov11	33144	yg24f12.s1	155024	3'

5

10

15

R35526	K+Hnov14	37299	yg64e08.r1	165015	5'
R73353	K+Hnov14	157854	yl10e04.r1	7, 251g07 (3) (4) (4)	5'
AA397616	K+Hnov14	728558	zt79c08.r1	1787j15	5'
AA286692	K+Hnov28	700757	zs48h03.r1	1715d6	5'
AA150494	K+Hnov42	491748	zl08e07.s1	1170013	3'
AA156697	K+Hnov42	491748	zl08e07.r1	1170013	5'
AA191752	K+Hnov42	626699	zp82d06.r1	1522i12	5'
AA216446	K+Hnov42	626699	zp82d06.s1	1522f12	3'
AA430591	K+Hnov42	773611	zw51f10.r1	1904020	5'
AA236930	K+Hnov44	683888	zs01a05.s1	1671e9	3'
AA236968 `	K+Hnov44	683888	zs01a05.r1	1671e9	5'

EXAMPLE 2: CHROMOSOMAL LOCALIZATION

Two primers were designed in the 3'-untranslated regions of each gene sequence to amplify a product across the Stanford G3 radiation hybrid map, or the Whitehead GB4 panel. The PCR data were submitted for automatic two-point analysis. Mapping data were correlated with cytoband information and comparisons with the OMIM human gene map data base were made. The following primers were made:

K+Hnov1 on GB4 (SEQ ID NO:31) F: 5' TATCCACATCAATGGACAAGC 3' (SEQ ID NO:32) R: 5' TGCATAACTGGCTGGGTGTA 3' Results: 1.71 cR from D2S331, Cytogenetic location of 2g37

K+Hnov2 on G3
15 F: 5' GTCAGGTGACCGAGTTCA 3'
R: 5' GCTCCATCTCCAGATTCTTC 3'
Results: 0.0 cR from SHGC-1320, Cytogenetic location of 11q12

K+Hnov6 on GB4

20 (SEQ ID NO:33) F: 5' TGACATCACTGGATGAACTTGA 3'
(SEQ ID NO:34) R: 5' TGCCTGCAAAGTTTGAACAT 3'
Results: 5.23 cR from WI-5509, Cytogenetic location of 2p23

salah salah kabupat dan kabupatan berbagai dan berbagai dan berbagai berbagai dan berbagai berbagai dan berbagai

K+Hnov9 on GB4
25 (SEQ ID NO:35) F: 5' TGACATCACTGGATGAACTTGA 3' (SEQ ID NO:36) R: 5' TGCCTGCAAAGTTTGAACAT 3'

Results: 1.21 cR from AFM200VC7, Cytogenetic location of 8q23

K+Hnov11 on GB4

(SEQ ID NO:37) F: 5' ACCTGGTGGTATGGAAGCAT 3'

5 (SEQ ID NO:38) R: 5' TTTCTCCTGGCCTCTACCC 3'

Results: 2.43 cR from WI-6756, Cytogenetic location of 8q23

K+Hnov12 on G3

(SEQ ID NO:39) F: 5' TCCCTCTTGGGTGACCTTC 3'

(SEQ ID NO:40) R: 5' ATCTTTGTCAGCCACCAGCT 3' 10

Results: 7.45 cR from SHGC-32925, Cytogenetic location of Xp21

K+Hnov14 on GB4

(SEQ ID NO:41) F: 5' AGGTGTGCTGCCATCTGCTGTTCG3'

15 (SEQ ID NO:42) R: 5' AGCCTATCCTCTGAGAGTCAGG

Results:

7.69 cR from WI-7107, Cytogenetic location of 12q14

K+Hnov28 on GB4

(SEQ ID NO:43) F: 5' AAGCAGAGTACTCATGATGCC 3'

20 (SEQ ID NO:44) R: 5' TCTGGTAGACAGTACAGTGG 3'

Results: 35.38 cR from WI-9695, Cytogenetic location of 3q29

K+Hnov42 on G3

(SEQ ID NO:45) F: 5' CATTTGGCTGGTCCAAGATG 3' Common Common

(SEQ ID NO:46) R: 5' AGTCATTGGTAGGGAGGTAC 3' 25

Results: 7.45 cR from SHGC-32925, Cytogenetic location of Xp21

K+Hnov44 on G3

(SEQ ID NO:47) F: 5' CATGCTTCTACAGTCCAGCC 3'

30 (SEQ ID NO:48) R: 5' GGTCCTCAGTTGCAGAAATC 3'

where the second contract of the second cont

Results: 7.45 cR from SHGC-32925, Cytogenetic location of Xp21

Map positions for K+Hnov15 and K+Hnov27 were obtained from public databases. K+Hnov2 and K+Hnov4 have not been mapped.

35

40

EXAMPLE 3: EXPRESSION ANALYSIS

RT-PCR was utilized to characterize the expression pattern of the novel ion channels. This approach used RNA from 30 different tissues to generate first strand cDNA. Total RNA was purchased (Clontech, Invitrogen) and used to synthesize first strand cDNA using M-MLV reverse transcriptase and the supplied buffer (Gibco-BRL). The 20 µl reaction contained 5 µg total RNA, 100 ng of random primers, 10 mM DTT.

5

10

15

0.5 mM each dNTP, and an RNAse inhibitor (Gibco-BRL). Identical reactions were set up without reverse transcriptase to control for DNA contamination in the RNA samples. The synthesis reaction proceeded for 1 hour at 37°C followed by 10 minutes at 95°C. These cDNAs, along with control cDNA synthesis reactions without reverse transcriptase, were diluted 1.5 and 2 μl of each sample were arrayed into 96-well trays, dried, and resuspended in PCR buffer prior to PCR amplification. The cDNAs were tested with primers with defined expression patterns to verify the presence of amplifiable cDNA from each tissue. Gene-specific primers were used to amplify the cDNAs in 20 μl PCR reactions with standard conditions, 2.5 mM MgCl₂, Taq Gold, and an appropriate annealing temperature.

This approach provides for relatively high-throughput analysis of gene expression in a large set of tissues in a cost-efficient manner and provides qualitative analysis of gene expression only. Modifications can be employed, such as the use of internal control primers, limited cycling parameters, and dilution series to convert this to a quantitative experiment.

Table 3

	_	_	_	_	_	_	_	_	_	_	_	_	_
Literus	٠	•	·	•		•	٠	٠	٠	•	٠		١
Trachea	٠			•	•	•	\cdot	٠	٠	٠	•		•
Thymus	•	٠		•	•	7	$\overline{\cdot}$	•	1	•	•	1	•
Testis	•	•		•	•	\exists	-	•	•	•		7	7
Stomach		-	-	-			7		•	٠	1	+	
Spleen	•	-			-	┪		1	-	•		┪	\dashv
Smail	•			-	4		_	┵	4	-	Ĭ	\dashv	-
Intestine Skin		•	•	•	4	-	-	5.,	1	•	-	4	-
Skeletal				-	-	_		•	4	•	4		_
Muscle 🚉 👢	٠	*	٠	٠	_	_		•		•	•	4	•
Salivary Gland	٠	\Box	٠	٠	<u>•</u>	٠	•	•	1	٠	٠		٠
Rectum		٠		٠	·		\cdot	•	ا	٠			٠
Prostate	٠	•	•	•		٠		٠	٠	٠	•		•
Placenta	•	•	·	•	•	٠	•	٠	٠	٠	٠		٠
Pancreas 377 7	٠	•	•	٠	•	•		٠	٠	٠	٠		•
Mammary Gland	•	•	•	٠	•	•	•	٠	•	٠	٠		•
Lung	•	•	•	•		٠	•	٠	٠	+	•		•
Liver	•	•	•	•		•	•	•	-	•	•		•
Kidne.	•	•	-	•	\vdash			•		•			•
HeLa Co		Ľ		·	_	•	•	•	•	_		Н	•
Heart :	H	Ļ				Ž			_	_	_		
Fetal Late	ŀ	•	Ŀ	•	•	•	٠	•	•	•	•		•
	•	•	Ŀ	·	٠	•	•	•	•	•	•		٠
Fetal Er :	Ŀ	Ŀ	٠	٠	\cdot	٠	٠	٠	٠	٠	•		•
Esopran	٠	Ŀ	L	•			\cdot	٠		*	٠		٠
Cej.cn	٠	٠	٠	٠	$oxed{\cdot}$	$\lfloor \cdot floor$		·	•	•	٠		٠
Cervik .	·	٠					•	•		•			•
Cerebo um	+	•	٠	٠	•	•	•	٠	+	•	•	П	•
Brain	•	•	٠	٠	•	•	•	.	•	•	•	П	•
Blaccer	•	•		•		•	•	•	•	•	•	П	•
»Àdrenat	-	╁		-				•	•	•		۲	
Gland Adipose	ŀ	-	\vdash	+	+	H	-	-	-	-			-
Anchor name	Ė	F	\vdash	\vdash	150			Ė			ŀ		É
	_	2	-	9	æ	Ę	7	=	15	27	8	Ş	Ŧ
	K. Hnov1	K+Hnov2	K+Hnov4	+Hnov6	.Hnov9	K+Hnov1	K+Hnov12	+Hnov14	+Hnov15	K+Hnov27	K+Hnov28	K+Hnov42	K+Hnov44
	ş	\$	<u>₹</u>	3	¥	¥	¥	혹	¥	ż	¥	¥	¥

A *+* indicates expression in the tissue, a *-* indicates no expression, and blank square indicates no data for that sample.

81 1445 FE

K+Hnov49 on Whitehead GB4 RH mapping panel:

Primer 1 (SEQ ID NO:5): 5' - CATAGCCATAGGTGAGGACT - 3'

Primer 2: (SEQ ID N:6) 5" - GAGAGGAAAACAGTCTGGGC - 3"

5 Results: Cytogenetic location 1q41, 4.6cR from framework marker D1S217

K+Hnov59 on Whitehead GB4 RH mapping panel

Primer 1 (SEQ ID NO:7): 5' - GGACATCGAACTAAGACCTG - 3'

Primer 2 (SEQ ID NO:8): 5' - TCCCATGCCATTCAGATCTG - 3'

10 Results: Cytogenetic location 19q13.2, 8.34cr from framework marker D19S425

EXPRESSION ANALYSIS OF K+HNOV49

A probe was created from a fragment corresponding to nucleotides 50 to 1284 of SEQ ID NO:83 (K+Hnov49) and purified DNA fragment was labeled with [³²P]dCTP (Amersham) by the random primer method. Adult human Multiple Tissue Northern (MTM™) Blots (Clontech) were hybridized with the [³²P]-labeled fragment in ExpressHyb™ solution (Clontech) for four hours, washed to a final stringency of 0.1xSSC, 0.1% SDS at 65°C and subjected to autoradiography for 24 hours.

Analysis revealed that K+Hnov49 is expressed as an approximately 4.2kb mRNA. Expression levels of K+Hnov49 are high in brain and liver and low in kidney tissues. No mRNA was detectable on these Northern blots for heart, skeletal muscle, colon, thymus, spleen, small intestine, placenta, lung or peripheral blood leukocytes indicating either a very low level of expression or that it is not expressed in these tissues. Expression analysis was also carried out by RT-PCR across an extended series of tissues. The results of these analyses are shown in Table 4. Primer pairs used for amplification of K+Hnov49 and 59 are the same as those used for RH mapping as indicated above.

15

20

and the second of the second o

化聚化物 医自然性现象 斯特尔 茅門

e in the second of

WHAT IS CLAIMED IS:

this grade who be a local

and the second second second

2

The first of the second of the second

- 1. An isolated nucleic acid encoding a mammalian K+Hnov protein.
- 2. An isolated nucleic acid according to Claim 1, wherein said K+Hnov protein has the amino acid sequence of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 27, 30, 81 or 83.
- 3. An isolated nucleic acid according to Claim 1, wherein said K+Hnov protein has an amino acid sequence that is substantially identical to the amino acid sequence of SEQ ID NO:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 27, 30, 81 or 83.
- 4. An isolated nucleic acid according to Claim 1 wherein the nucleotide sequence of said nucleic acid is SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 22, 23, 24, 26, 28, 29, 80 or 82.
 - 5. An isolated nucleic acid that hybridizes under stringent conditions to a nucleic acid sequence of claim 4.
 - 6. An expression cassette comprising a transcriptional initiation region functional in an expression host, a nucleic acid having a sequence of the isolated nucleic acid according to Claim 1 under the transcriptional regulation of said transcriptional initiation region, and a transcriptional termination region functional in said expression host.

25

7. A cell comprising an expression cassette according to Claim 6 as part of an extrachromosomal element or integrated into the genome of a host cell as a result of introduction of said expression cassette into said host cell, and the cellular progeny of said host cell.

8. A method for producing mammalian K+Hnov protein, said method comprising:

growing a cell according to Claim 7, whereby said mammalian K+Hnov protein is expressed; and

isolating said K+Hnov protein free of other proteins.

- 9. A purified polypeptide composition comprising at least 50 weight % of the protein present as a K+Hnov protein or a fragment thereof.
- 10. A monoclonal antibody binding specifically to a K+Hnov protein.
 - 11. A non-human transgenic animal model for K+Hnov gene function wherein said transgenic animal comprises an introduced alteration in a K+Hnov gene.

15

5

- 12. The animal model of claim 11, wherein said animal is heterozygous for said introduced alteration.
- 13. The animal model of claim 12, wherein said animal is homozygous20 for said introduced alteration.
 - 14. The animal model of claim 12, wherein said introduced alteration is a knockout of endogenous K+Hnov gene expression.

The state of the s

A PART OF THE WORLD BEET OF STREET OF STREET

. :

Commence of the Commence of th

z/t

Control of the second

SEQUENCE LISTING

<110> Miller, Andrew Curran, Mark Buckler, Alan <120> Novel Human Potassium Channels <130> SEQ-15PCT <150> 60/076,687 <151> 1998-02-25 <150> 60/095,836 <151> 1998-08-07 <150> 60/116,448 <151> 1999-01-19 <170> FastSEQ for Windows Version 3.0 210> 1 <211> 2932 <212> DNA <220> <221> CDS <222> (103)...(1180) <223> K+Hnov1 attaaaatta tetgateaaa aaggeagaet etgtaaattt eettaagaee taeettggea 60 taaaggetga eecageaaaa gaactgagaa atacageetg ag atg gae age agt 114 Met Asp Ser Ser **1** 1 aat tgc aaa gtt att gct cct ctc cta agt caa aga tac cgg agg atg 162 Asn Cys Lys Val Ile Ala Pro Leu Leu Ser Gln Arg Tyr Arg Arg Met 15 gtc acc aag gat ggc cac agc aca ctt caa atg gat ggc gct caa aga 210 Val Thr Lys Asp Gly His Ser Thr Leu Gln Met Asp Gly Ala Gln Arg 25 ggt ctt gca tat ctt cga gat gct tgg gga atc cta atg gac atg cgc 258 Gly Leu Ala Tyr Leu Arg Asp Ala Trp Gly Ile Leu Met Asp Met Arg 45 tgg cgt tgg atg atg ttg gtc ttt tct gct tct ttt gtt gtc cac tgg 306 Trp Arg Trp Met Met Leu Val Phe Ser Ala Ser Phe Val Val His Trp 60 (65 ctt ytc ttt gca gtg ctc tgg tat gtt ctg gct gag atg aat ggt gat Leu Val Phe Ala Val Leu Trp Tyr Val Leu Ala Glu Met Asn Gly Asp 75 80

ctg Leu 85	gaa Glu	cta Leu	gat Asp	cat His	gat Asp 90	gcc Ala	cca Pro	cct Pro	gaa Glu	aac Asn 95	cac	act Thr	atc Ile	tgt Cys	gtc Val 100	402
aag Lys	tat Tyr	atc Ile	acc Thr	agt Ser 105	ttc Phe	aca Thr	gct Ala	gca Ala	ttc Phe 110	tcc Ser	ttc Phe	tcc Ser	ctg Leu	gag Glu 115	aca Thr	450
caa Gln	ctc Leu	aca Thr	att Ile 120	ggt Gly	tat Tyr	ggt Gly	acc Thr	atg Met 125	ttc Phe	ccc Pro	agt Ser	Gly	gac Asp .130	tgt Cys	cca Pro	498
agt Ser	gca Ala	atc Ile 135	gcc Ala	tta Leu	ctt Leu	gcc Ala	ata Ile 140	caa Gln	atg Met	ctc Leu	cta Leu	ggc Gly 145	ctc Leu	atg Met	cta Leu	546
gag Glu	gct Ala 150	ttt Phe	atc Ile	aca Thr	ggt Gly	gct Ala 155	ttt Phe	gtg Val	gcg Ala	Lys	att Ile 160	gcc Ala	cgg Arg	cca Pro	aaa Lys	594
Asn 165	Arg	Ala	Phe	Ser	Ile 170	Arg	Phe	Thr	Asp	Thr 175	Ala	Val	gta Val	Ala	His 180	642
atg Met	gat Asp	ggc	aaa Lys	cct Pro 185	aat Asn	ctt Leu	atc Ile	ttc Phe	caa	gtg	gcc	aac	acc Thr	cga Arg 195	cct Pro	690
Ser	Pro	Leu	Thr 200	Ser	Val	Arg	Val	Ser 205	Ala	Val	Leu	Tyr	cag Gln 210	gaa Glu	Arg	738
gaa Glu	aat Asn	ggc Gly 215	aaa Lys	ctc Leu	tac Tyr	cag Gln	acc Thr 220	agt Ser	gtg Val	gat Asp	ttc Phe	cac His 225	ctt Leu	gat Asp	Gly	786
Ile	Ser 230	Ser	Asp	Glu	Cys	Pro 235	Phe	Phe	Ile	Phe	Pro 240	Leu	Thr.	Tyr.	tat Tyr	834
cac His 245	tcc Ser	Ile	aca Thr	cca Pro	ser 250	agt Ser	cct Pro	ctg Leu	gct Ala	act Thr 255	Leu	ctc Leu	cag Gln	cat His	gaa Glu 260	882
aat Asn	Pro	tct Ser	His	ttt Phe 265	gaa Glu	tta Leu	gtt Val	gta Val	ttc Phe 270	ctt Leu	tca Ser	gca Ala	atg Met	cag Gln 275	gag Glu	930
ggc	act Thr	gga Gly	gaa Glu 280	ata Ile	tgc Cys	caa Gln	agg Arg	agg Arg 285	aca Thr	tcc Ser	tac Tyr	cta Leu	ecg Pro 290	tct Ser	gaa Glu	978
atc Ile	atg Met	tta Leu 295	His	cac His	tgt Cys	ttt Phe	gca Ala 300	tct Ser	Leu.	Leu.	acc Thr	Arg		tcc Ser	aaa Lys	1026
ggt Gly	gaa Glu 310	tat Tyr	caa Gln	Ile	aag Lys	atg Met 315	gag Glu	aat Asn	ttt Phe	qaA	aag Lys 320	act Thr		cct Pro	Glu	1074
ttt	cca	act	cct	ctg	gtt	tct	aaa	agc	cca	aac	agg	act	gac	ctg	gat	1122

```
Phe Pro Thr Pro Leu Val Ser Lys Ser Pro Asn Arg Thr Asp Leu Asp
          330
                                        335 340
 atc cac atc aat gga caa agc att gac aat ttt cag atc tct gaa aca
                                                                   1170
 Ile His Ile Asn Gly Gln Ser Ile Asp Asn Phe Gln Ile Ser Glu Thr
                345
                                    350
 gga ctg aca g aataagactt atccattttt taatgtatta aatacaccca
                                                                   1220
 Gly Leu Thr
 gecagitatg cagetactit tietttactg tateteatgt titettitt caatgetaat
                                                                   1280
 tatagetete tacateaegg taateatgee tatgeetaca taagaatgge tgagetaaca
                                                                   1340
 atacacatto tggaaacata acactotaca ttacaaagtt tgttacctgo tgaaatcaat
                                                                   1400
 gtaactcaac ttgacagaca cttatacaga aatgttgctg gtgaatttat aagaatgtgg
                                                                   1460
 tatgatacta gtaatgaagg caaaatggac agtgaagttt aacacaactg aactctaaga
                                                                   1520
 aaatcaacca ttaatctctc attttcatct gcaaattgaa gcaacagttt agtttcaaac
                                                                   1580
 ctageteect gggtggaatg acgaetteac tataettagt gaatateett taagagetgg
                                                                   1640
 gattttttttc@aagacaacaa agatcattca tttggttctt tatactatga aacttgagta
                                                                   1700
 agtattacct ccttaatttt taacaactaa gaacaaaaat taacgagaaa aacaacaaag
                                                                   1760
 tacagattta tacataaacc taaaagcatt tgaacatgac acccgaacac atacatatat
                                                                   1820
 gttcacttat ttgtggcaga aggtgatcag ataagctcca gcccaaatgg aacctgtggg
                                                                   1880
 1940
 tcaaacggtg attcatctaa atgacttcta gcaacctaag taaaaacatt cccctcctat
                                                                   2000
 gtatgattea tttgatcata@taaaacatca tgatggctct aattcataaa tacaaaaata
                                                                   2060
 tatttaagto tttatagata taaagottta ottagatata aottgagtga gtagggaaaa
                                                                   2120
 aaatctacag tagataaagc aaaagataat taggcaacaa agcattttca aactcaaatt
                                                                   2180
 cctgtttcca acttcaaata gttttttcta taaacacaaa atcagtgttt attcaccagt
 aggaggttgg actagatgaa ctctattatt tctttctaaa tctaatagtc tataaaaatt
                                                                   2300
 atgitteete tgittitat titatetatg ctaaaatgag cccttteeet tatgiceagt
                                                                   2360
 ttaagatgat catttgcatg attttcattt caataaaaaa aagagaaact gtccttaaaa
                                                                   2420
caaaacaaaa accaaaaaag tcaccctatc aggtttcaaa cagatttgtg gctgttcttt
                                                                   2480
 totgaaattt coottattca ggtttotgtg ggaaaaatga aagattaaco ttocccactg
                                                                   2540
 gtgatgacct aggcaggaat catctcttga aataaatact agctgagtaa aggcaagcag
                                                                   2600
 gtgtgaagag cagggctcag cagcaagtca catttttcta ctatttgacc aaaaggaaaa
                                                                   2660
 gaaaataaag aagaactctg gagtggtcta agactgataa tagcagaaga atatcaagaa
                                                                   2720
 cacagaaact taattattgt gaacttttgc tgtttgaaaa tcttagacat tcattcttaa
                                                                   2780
 gtagaaatca gaccaacaga ttttcccaac ccaagactat tgtaacacat aaagacagca
                                                                   2840
 agaattefta tttetataat aaattaacaa gatteaceta aeetttgaaa ataaagtagt
                                                                   2900
 attgaagact taaaaaaaaa aa aaaaaaaaaa aa
                                                                   2932
       <210> 2
       <211> 359
       <212> PRT
      <213> H. sapiens
  <400> 2
 Met Asp Ser Ser Asn Cys Lys Val Ile Ala Pro Leu Ser Gln Arg
                                    10
 Tyr Arg Arg Mat Val Thr Lys Asp Gly His Ser Thr Leu Gln Met Asp
           20
 Gly Ala Gln Arg Gly Leu Ala Tyr Leu Arg Asp Ala Trp Gly Ile Leu
                            40
                                               45
 Met Asp Met Arg Trp Arg Trp Met Met Leu Val Phe Ser Ala Ser Phe
                        55
 Val Val His Trp Leu Val Phe Ala Val Leu Trp Tyr Val Leu Ala Glu
                    70
 Met Asn Gly Asp Leu Glu Leu Asp His Asp Ala Pro Pro Glu Asn His
               85
                                90
 Thr Ile Cys Val Lys Tyr Ile Thr Ser Phe Thr Ala Ala Phe Ser Phe
                               105
```

```
Ser Leu Glu Thr Gln Leu Thr Ile Gly Tyr Gly Thr Met Phe Pro Ser
                        120
 Gly Asp Cys Pro Ser Ala Ile Ala Leu Leu Ala Ile Gln Met Leu Leu
                    135
                               1.40
 Gly Leu Met Leu Glu Ala Phe Ile Thr Gly Ala Phe Val Ala Lys Ile
           150
                                 155
 Ala Arg Pro Lys Asn Arg Ala Phe Ser Ile Arg Phe Thr Asp Thr Ala
              165
                              170 ..
 Val Val Ala His Met Asp Gly Lys Pro Asn Leu Ile Phe Gin Val Ala
           180
                           185
 Asn Thr Arg Pro Ser Pro Leu Thr Ser Val Arg Val Ser Ala Val Leu
        195
                      200
 Tyr Gln Glu Arg Glu Asn Gly Lys Leu Tyr Gln Thr Ser Val Asp Phe
                    215 220
 His Leu Asp Gly Ile Ser Ser Asp Glu Cys Pro Phe Phe Ile Phe Pro
                 230 235 240
 Leu Thr Tyr Tyr His Ser Ile Thr Pro Ser Ser Pro Leu Ala Thr Leu
              245 250 255
 Leu Gln His Glu Asn Pro Ser His Phe Glu Leu Val Val Phe Leu Ser
           260 265 270 270 270
 Ala Met Gln Glu Gly Thr Gly Glu Ile Cys Gln Arg Arg Thr Ser Tyr
            280 285
 Leu Pro Ser Glu Ile Met Leu His His Cys Phe Ala Ser Leu Leu Thr
                    .295
 Arg Gly Ser Lys Gly Glu Tyr Gln Ile Lys Met Glu Asn Phe Asp Lys 305 310 315
 Thr Val Pro Glu Phe Pro Thr Pro Leu Val Ser Lys Ser Pro Asn Arg
             325
                            330
 Thr Asp Leu Asp Ile His Ile Asn Gly Gln Ser Ile Asp Asn Phe Gln
        340 345 345 350 350
Ile Ser Glu Thr Gly Leu Thr
                          355
<210> 3
<211> 1927
     <211> 1927
<212> DNA
<213> H. sapiens
     <213> H. sapiens
     <220>
     <221> CDS
      <222> (105)...(1908)
      <223> K+Hnov4
      <400> 3
 ggagccccgc agegettett atgatcaget eggtgtgtgt etectectac egegggegea
                                                          60
 agteggggaa caageeteeg tecaaaacat gtetgaagga ggag atg gee aag gge
                                                         116
                                        Met Ala Lys Gly
 gag gcg tcg gag aag atc atc atc aac gtg ggc ggc acg cga cat gag.
                                                         164
 Glu Ala Ser Glu Lys Ile Ile Ile Asn Val Gly Gly Thr Arg His Glu
 acc tac ege age acc etg ege acc eta eeg gga acc ege ete gee tgg
                                                         212
 Thr Tyr Arg Ser Thr Leu Arg Thr Leu Pro Gly Thr Arg Leu Ala Trp
              .25 .30 .35
 ctg gcc gac ccc gac ggc ggg ggc cgg ccc gag acc gat ggc ggc ggt
                                                         260
 Leu Ala Asp Pro Asp Gly Gly Gly Arg Pro Glu Thr Asp Gly Gly Gly
                           45 50
```

BNSDOCID: <WO__ 99~3696 \1_I_>

gtg Val	ggt Gly	agc Ser 55	agc Ser	ggc Gly	agc Ser	agc Ser	ggc Gly 60	ggc Gly	ggg	ggc	tgc Cys	gag Glu 65	ttc Phe	ttc Phe	ttc Phe	308
gac Asp	agg Arg 70	cac	ccg Pro	ggc	gtc Val	ttc Phe 75	gcc Ala	tac Tyr	gtg Val	ctc	aac Asn 80	tac Tyr	tac Tyr	cgc Arg	acc Thr	356
ggc Gly 85	aag Lys	ctg Leu	cac His	tgc Cys	ccc Pro 90	gca Ala	gac Asp	gtg Val	tgc Cys	ggg Gly 95	ccg Pro	ctc Leu	ttc Phe	gag Glu	gag Glu 100	404
Glu	ren	Ala	Phe	Trp 105	Gly	acc Ile	Asp	Glu	Thr 110	Asp	Val	Glu	Pro	Cys 115	Суз	452
Trp	Met	rnr	120	Arg	Gln	cac His	Arg	Asp 125	Ala	Glu	Glu	Ala	Leu 130	Asp	Ile	500
Pne	GIU	135	Pro	Asp	Leu	att Ile	Gly 140	Gly	Asp	Pro	Gly	Asp 145	Asp	Glu	Asp	548
Leu	150	Aia	Lys	Arg	Leu	ggc Gly 155	Ile	Glu	Asp	Ala	Ala 160	Gly	Leu	Gly	Gly	596
165	Asp	GIA	Lys	Ser	Gly 170	cgc Arg	Trp	Arg	Arg	Leu 175	Gln	Pro	Arg	Met	Trp 180	644
Ala	Leu	Phe	Glu	185	Pro	tac Tyr	Ser	Ser	Arg 190	Ala	Ala	Arg	Phe	Ile 195	Ala	692
Pne	Ala	Ser	200	Phe	Phe	atc Ile	Leu	Val 205	Ser	Ile	Thr	Thr	Phe 210	Cys	Leu	740
G1u	Thr	His 215	Glu	Ala	Phe		Ile 220	Val	Lys	Asn	Lys	Thr 225	Glu	Pro .	Val	788
Ile	Asn 230	Gly	Thr	Ser	Val	gtt Val 235	Leu	Gln	Tyr	Glu	Ile 240	Glu	Thr	qeA	Pro	836
Ala 245	Leu	Thr	Tyr	Val	Glu 250	gga Gly	Val	Cys	Val	Val 255	Trp	Phe	Thr	Phe	Glu 260	884
Phe	Leu	Val	Arg	11e 265	Val	ttt Phe	Ser	Pro	Asn 270	Lys	Leu	Glu	Phe	Ile 275	Lys	932
Asn	Leu	Leu	Asn 280	Ile	Ile		Phe	Val 285	Ala	Ile	Leu	Pro	Phe 290	Tyr	Leu	980
gag	gtġ	gga	ctc	agt	999	ctg	tca	tcc	aaa	gct	gct	aaa	gat	gtg	ctt	1028

Glu	Val	Gly 295	Leu	Ser	Gly	Leu	Ser 300	Ser	Lys :	Ala	Ala	Lys 305	Asp	Val	Leu	
ggc	ttc Phe 310	ctc Leu	agg Arg	gtg Val	gta Val	agg Arg 315	ttt Phe	gtg Val	agg Arg	atc Ile	ctg Leu 320	aga Arg	att Ile	ttc Phe	aag Lys	1076
ctc Leu 325	Thr	cgc Arg	cat His	ttt Phe	gta Val 330	ggt Gly	ctg Leu	agg Arg	gtg Val	ctt Leu 335	gga Gly	cat His	act Thr	ctt Leu :	cga Arg 340	1124
gct Ala	agt Ser	act Thr	aat Asn	gaa Glu 345	ttt Phe	ttg Leu	ctg Leu	ctg Leu	ata Ile 350	att Ile	ttc Phe	ctg Leu	gct Ala	cta Leu 355	gga Gly	1172
gtt Val	ttg Leu	ata Ile	ttt Phe 360	gct Ala	acc Thr	atg Met	atc Ile	tac Tyr 365	tat Tyr	gcc Ala	gag Glu	aga Arg	gtg Val 370	gga Gly	gct Ala	1220
caa Gln	cct Pro	aac Asn 375	gac Asp	cct Pro	tca Ser	gct Ala	agt Ser 380	gag Glu	cac His	aca Thr	cag Gln	ttc Phe 385	Lys	aac Asn	att Ile	1268
ccc Pro	att Ile 390	gly ggg	tic Phe	tgg Trp	tgg Trp	gct Ala 395	gta Val	gtg Val	acc Thr	atg Met	act Thr 400	acc Thr	ctg Leu	ggt Gly	tat Tyr	1316
999 Gly 405	gat Asp	atg Met	tac Tyr	ccc Pro	caa Gln 410	aca Thr	tgg Trp	tca Ser	ggc Gly	atg Met 415	ctg Leu	gtg Val	gga Gly	gcc Ala	ctg Leu 420	1364 5
tgt Cys	gct Ala	ctg Leu	gct Ala	gga Gly 425	gtg Val	ctg Leu	aca Thr	ata Ile	gcc Ala 430	atg Met	cca Pro	gtg Val	cct Pro	gtc Val 435	att Ile	1412
gtc Val	aat Asn	aat Asn	ttt Phe 440	gga Gly	atg Met	tac Tyr	tac Tyr	tcc Ser 445	ttg Leu	gca Ala	atg Met	gca Ala	aag Lys 450	cag Gln	aaa Lys	1460
ctt Leu	ccá Pro	agg Arg 455	aaa Lys	aga Arg	aag Lys	aag Lys	cac His 460	atc Ile	cct Pro	cct Pro	gct Ala	cct Pro 465	cag Gln	gca Ala	agc Ser	1508
Ser	cct Pro 470	act Thr	ttt Phe	tgc Cys	aag Lys	aca Thr 475	gaa Glu	tta Leu	Asn	atg Met	gcc Ala 480	tgc Cys	aat Asn	agt Ser	aca Thr	1556
			,						1.7							
cag Gln 485	agt Ser	gac Asp	aca Thr	tgt Cys	ctg Leu 490	ggc	aaa Lys	gac Asp	aat	cga Arg 495	ctt	ctg Leu	gaa Glu	cat His	aac Asn 500	1604
Gln 485 aga	Ser	Asp	Thr	Cys	Leu	Gly gac	Lys	Asp agt	aat Asn aca	Arg 495 gga	ctt Leu agt	Leu	Glu	His cca	Asn 500 cta Leu	1604
Gln 485 aga Arg	ser tca ser	Asp gtg Val cca	Thr tta Leu gaa	tca Ser 505	Leu 490 ggt	gac Asp	Lys gac Asp	agt Ser	aat Asn aca Thr 510	Arg 495 gga Gly tct	ctt Leu agt Ser	Leu gag Glu acc	Glu ccg Pro	cca Pro 515	Asn 500 cta Leu	

535				4	
535	•	540		545	
tgt gct tct	gat gga gg	g atc agg aaa	gga tat gaa	aaa too oga	agc 1796
Cys Ala Ser 550	Asp Gly Gl	/ Ile Arg Lys 555	Gly Tyr Glu	Lys Ser Arg	y Ser
			560		
tta aac aac Leu Asn Asn	ata gcg ggg	tig gca ggo	aat gct ctg / Asn Ala Leu	agg ctc tct	cca 1844
565	570) Leu Ala Gi	7 ASH ATA Leu 575	Arg Leu Sez	580
gta aca tca	ccc tac aa		i_ :_ :		
Val Thr Ser	Pro Tyr Asi	Ser Pro Cys	cct ctg agg Pro Leu Arg	Arg Ser Arg	itct 1892 Ser
*	585	1	590	599	
ccc atc cca	tot ato t	gtaaaccaa ac	cctcgtg		1927
Pro Ile Pro	Ser Ile				
•	000	•			
-210-					
<210> <211>					
<212>					
<213>	H. sapiens				
<400>	7				
met Ala Lys	Gly Glu Ala	Ser Glu Lys	Ile Ile Ile 10	Asn Val Gly	Gly
Thr Arg His	Glu Thr Tyr	Arg Ser Thr	Leu Arg Thr	Leu Pro Gly	Thr
	20	25	Gly Gly Gly	30	
~ 35*		40		4.5	
Asp GIY GIY	Gly Val Gly	Ser Ser Gly 55	Ser Ser Gly	Gly Gly Gly	Cys
Glu Phe Phe	Phe Asp Arg		Val Phe Ala	Tyr Val Leu	Asn
65 Tyr Tyr Arg	70 Thr Glv Lvs	Leu His Cvs	75 Pro Ala Asp	Val Cue Cla	80
•	85	,	90	• 95	-
Leu Phe Glu	Glu Glu Leu 100	Ala Phe Trp 105	Gly Ile Asp	Glu Thr Asp	Val
Glu Pro Cys			Gln His Arg	Asp Ala Glu	Glu
115		120	Leu Ile Gly	125.	
130		135	140		-
Asp Asp Glu 145	Asp Leu Ala	Ala Lys Arg	Leu Gly Ile 155	Glu Asp Ala	
Gly Leu Gly			Gly Arg Trp	Arg Arg Leu	160 Gln
Pro Arg Met	165 Tro Ala Leu	Phe Glu Aco	170 Pro Tyr Ser	175	21-
	180	185		190	
Arg Phe Ile	Ala Phe Ala	Ser Leu Phe 200	Phe Ile Leu		Thr
Thr Phe Cys	Leu Glu Thr		Phe Asn Ile	205 Val Lys Asn	Lys
210		215	220		. N. 171
225	230		Val Val Leu 235	1 1 2 1	240
Glu Thr Asp	Pro Ala Leu	Thr Tyr Val	Glu Gly Val	Cys Val Val	Trp
Phe Thr Phe	245 Glu Phe Leu	Val Arg Ile	250 Val Phe Ser	Pro Asn Lve	Leu
	260	265		270	
Giu Phe Ile 275	Lys Asn Leu	Leu Asn Ile 280	Ile Asp Phe	Val Ala Ile	Leu

285

280

```
Pro Phe Tyr Leu Glu Val Gly Leu Ser Gly Leu Ser Ser Lys Ala Ala
                        295
                                            300
 Lys Asp Val Leu Gly Phe Leu Arg Val Val Arg Phe Val Arg Ile Leu
                    310
                                         315
 Arg Ile Phe Lys Leu Thr Arg His Phe Val Gly Leu Arg Val Leu Gly
                325
                                     330
 His Thr Leu Arg Ala Ser Thr Asn Glu Phe Leu Leu Leu Ile Ile Phe
            340
                                345
Leu Ala Leu Gly Val Leu Ile Phe Ala Thr Met Ile Tyr Tyr Ala Glu
                            360
Arg Val Gly Ala Gln Pro Asn Asp Pro Ser Ala Ser Glu His Thr Gln
                        375
                                            380
Phe Lys Asn Ile Pro Ile Gly Phe Trp Trp Ala Val Val Thr Met Thr
                    390
                                        395
Thr Leu Gly Tyr Gly Asp Met Tyr Pro Gln Thr Trp Ser Gly Met Leu
                405
                                    410
Val Gly Ala Leu Cys Ala Leu Ala Gly Val Leu Thr Ile Ala Met Pro
                                425
                                                    430
Val Pro Val Ile Val Asn Asn Phe Gly Met Tyr Tyr Ser Leu Ala Met
                            440
Ala Lys Gln Lys Leu Pro Arg Lys Arg Lys Lys His Ile Pro Pro Ala
                        455
                                            460
Pro Gln Ala Ser Ser Pro Thr Phe Cys Lys Thr Glu Leu Asn Met Ala
                    470
                                        475
Cys Asn Ser Thr Gln Ser Asp Thr Cys Leu Gly Lys Asp Asn Arg Leu
                485
                                    490
                                          495
Leu Glu His Asn Arg Ser Val Leu Ser Gly Asp Asp Ser Thr Gly Ser
                                505
                                                  510
Glu Pro Pro Leu Ser Pro Pro Glu Arg Leu Pro Ile Arg Arg Ser Ser
                            520
                                                525
Thr Arg Asp Lys Asn Arg Arg Gly Glu Thr Cys Phe Leu Leu Thr Thr
                        535
                                            540.
Gly Asp Tyr Thr Cys Ala Ser Asp Gly Gly Ile Arg Lys Gly Tyr Glu
                   550
                                        555
Lys Ser Arg Ser Leu Asn Asn Ile Ala Gly Leu Ala Gly Asn Ala Leu
                565
                                    570
Arg Leu Ser Pro Val Thr Ser Pro Tyr Asn Ser Pro Cys Pro Leu Arg
                               585
Arg Ser, Arg Ser Pro Ile Pro Ser Ile
      <210> 5 "
      <211> 2293
      <212> DNA
     <213> H. sapiens
   <220>
      <221> CDS
     <222> (330)...(1800)
      <223> K+Hnov6
      <400> 5
gggaagayeg aacccaggge cettgetete gtgcageget gegeeetggg tggggaegge
                                                                      60
gtgaggettg cagegeaggt gagagtgatt ttecagtgat tgetttggee tgtacaacca
                                                                     120
gagaacagga ttcttccctt ctttttggcc accaaatgcc tatgtgcacc acacattcca
                                                                     180
gtgtgctgag aagggcagag cttcttggat gatgatggac gtcccaccgg gcaggatgaa
                                                                     240
ggcagagcgt gtggcatete caceteaagg gtgcagcetg atettectet tetecettge
                                                                     300
cagccagcac tetgeettet gtatecace atg gtg ttt ggt gag ttt tte cat
Met Val Phe Gly Glu Phe Phe His
                                                                     353
```

ε

																,
cgc Arg	Pro 10	gga Gly	caa Gln	gac Asp	gag Glu	gaa Glu 15	ctt Leu	gtc Val	aac Asn	ctg Leu	aat Asn 20	Val	ggg Gly	ggc	ttt Phe	401
		•												3 L S	, ·	
aag Lys 25	cag Gln	tct Ser	gtt Val	Asp	caa Gln 30	agc Ser	acc Thr	ctc Leu	ctg Leu	cgg Arg 35	ttt Phe	cct Pro	cac His	acc	aga Arg 40	449
ctg Leu	Gly 999	aag Lys	ctg Leu	ctt Leu 45	act Thr	tgc Cys	cat His	tct Ser	gaa Glu 50	gag Glu	gcc Ala	att	ctg Leu	gag Glu 55	ctg Leu	497
	•			9				•			. :					
tgt Cys	gat Asp	gat Asp	tac Tyr 60	agt Ser	gtg Val	gcc Ala	gat Asp	aag Lys 65	gaa Glu	tac Tyr	tac Tyr	ttt Phe	gat Asp 70	cgg Arg	aat Asn	545
2										Marian Control	,		e 1		•	
Pro	Ser	Leu 75	Phe	aga Arg	tat Tyr	gtt Val	Leu 80	aat Asn	Phe	tat Tyr	tac Tyr	acg Thr 85	Gly ggg	aag Lys	ctg Leu	593
	· · _ · _	*	-122						•		-	: :	٠,		**	
His	Val 90	Met	Glu	Glu	Leu	Cys 95	Val	ttc Phe	Ser	Phe	tgc Cys 100	Gln	gag Glu	Ile	gag Glu	641
+20	+~~					- 22 -	1									
Lac	cgg	ggc	atc	aac	gag	CEC	TTC	att	gat	tct	tgc	tgc	agc	aat	cgc	689
	Trp	GIY	IIe	Asn	Glu	Leu	Phe	Ile	Asp	Ser	Cys	Cys	Ser	Asn	Arg	
105					110		**			115	;	٠.			120	
المراجع الم	<u> </u>	·		•	-		: •				٠,	5.15	٠.		,	
tac	cag	gaa	cgc	aag	gag	gaa	aac	cac	gag	aag	gac	tgg	gac	cag	aaa	737
Tyr	Gln	Glu	Arg	Lys	Glu	Glu	Asn	His	Glu	Lys	Asp	Trp	Asp	Gln	Lys	
				125			4		130	-		-	_	135		
•						٠.		•		٠						
age	cat	gat	ata	act	*a.c.c	C2.C	+00	tcg	+++	~						705
com	Ude	300	9-9	Com	mb-	gac	200	cog	27	yaa	gag	rcg	- CC	ctg	ככנ	785
Ser	uis	ASP		ser	Thr	Asp	ser	Ser	Pne	Glu	Glu	Ser	Ser	Leu	Phe	•
			140					145			:		150			
												٠.				
gag	aaa	gag	ctg	gag	aag	ttt	gac	aca	ctg	cga	ttt	ggt	cag	ctc	cgg	833
Glu	Lys	Glu	Leu	Glu	Lys	Phe	Asp	Thr	Leu	Arg	Phe	Gly	Gln	Leu	Arg	
	_	155			-		160			_		165				
	•							٠.								
aaσ	aaa	atc	taa	att	aga	ato	gag	aat	cca	aca	T 3.0	+~~	a+a	+00	~~+	881
Lvs	Lvs	Tle	Trn	Tle	Ara	Mer	Glu	Asn	Dro.	772	The	Cura	Tan	C	21-	
- 173	170		TIP	***	AL 9		GIL	ASII	PIO	ALA		СЛя	ren	ser	ALA	
	170				·	175			٠.	<i></i>	180		*			
				19.4	1. 1.	1		٠.					•	**		
aag	CEE	atc	gct	atc	ccc	tcc	ttg	agc	gtg	gtg	ctg	gcc	tcc	atc	gtg	929
Lys	Leu	Ile	Ala	Ile	Ser	Ser	Leu	Ser	Val	Val	Leu	Ala	Ser	Ile	Val	
185	. ,				190			:		195	,				200	
,		. 1	·.								, .	•				
gcc	atg	tgc	gtt	cac	agc	atg	tcg	gag	ttc	cag	aat	gag	qat	qqa	gaa	977
Ala	Met	Сув	Val	His	Ser	Met	Ser	Glu	Phe	Gln	Asn	Glu	Asp	GIV	G] 11	/
				205					210					215		
	· :				٠.						·:		•		_	
ara	cra+	ra+		ata	cta	<i>(</i> -	- · · ·	~+~	~ : ~ : ~ :	-+-		*			-	1005
309	30-	300	Des	3103	Leg	gad	99ª	gtg	gag	atc	aca	cac	att	gcc	rgg	1025
val	Asp	qsa			ren	GIU	GTĀ	Val	GIU	TTE	Ala	Сув			Trp	
	٠.		220	e	. :	٠.		225		•=			230			
					."		•		,				٠.			
ttc	acc	999	gag	ctt	gcc	gtc	cgg	ctg	gct	gcc	gct	cct	tgt	caa	aag	1073
Phe	Thr	Gly	Glu	Leu	Ala	Val	Arg	Leu	Ala	Ala	Ala	Pro	Cys	Gln	Lys	
												245	_		· -	
•	-12	• •			•			•	• •					55.		
aaa	ttc	tgg	aaa	aac	cct	ctg	aac	atc	att	gac	ttt	gtc	tct	att		1121

	Phe 250	Trp	Lys	Asn	Pro	Leu 255	Asn	Ile	Ile	Asp	Phe 260		Ser	Ile	Ile	
ccc Pro 265	Phe	tat Tyr	gcc Ala	acg Thr	ttg Leu 270	gct Ala	gta Val	gac Asp	acc Thr	aag Lys 275	Glu	gaa Glu	gag Glu	agt Ser	gag Glu 280	1169
gat Asp	att Ile	gag Glu	aac Asn	atg Met 285	ggc	aag Lys	gtg Val	gtc Val	cag Gln 290	atc Ile	cta Leu	cgg Arg	ctt Leu	atg Met 295	agg Arg	1217
att	ttc Phe	cga Arg	att Ile 300	cta Leu	aag Lys	ctt Leu	gcc Ala	cgg Arg 305	cac His	tcg Ser	gta Val	gga Gly	ctt Leu 310	cgg	tct Ser	1265
cta Leu	ggt Gly	gcc Ala 315	aca Thr	ctg Leu	aga Arg	cac His	agc Ser 320	tac Tyr	cat His	gaa Glu	gtt Val	999 325	ctt Leu	ctg Leu	ctt Leu	1313
ctc Leu	ttc Phe 330	Leu	tct Ser	gtg Val	ggc	att Ile 335	tcc Ser	att Ile	ttc Phe	tct Ser	gtg Val 340	ctt Leu	atc Ile	tac Tyr	tcc Ser	1361
gtg Val 345	gag Glu	aaa Lys	gat Asp	gac Asp	cac His 350	aca Thr	tcc Ser	agc Ser	ctc Leu	acc Thr 355	agc Ser	atc Ile	ccc Pro	atc Ile	tgc Cys 360	1409
tgg Trp	tgg Trp	tgg Trp	gcc Ala	acc Thr 365	atc Ile	agc Ser	atg Met	aca Thr	act Thr 370	gtg Val	Gly	tat Tyr	gga Gly	gac Asp 375	acc Thr	1457
cac His	ccg Pro	gtc Val	acc Thr 380	ttg Leu	gcg Ala	gga Gly	aag Lys	ctc Leu 385	atc Ile	gcc Ala	agc Ser	aca Thr	ç Ç Ç Ç Ş 3 9 0	atc Ile	atc Ile	1505
tgt Cys	ggc Gly	atc Ile 395	ttg Leu	gtg Val	gtg Val	gcc Ala	ctt Leu 400	ccc Pro	atc Ile	acc Thr	atc Ile	atc Ile 405	ttc Phe	aac Asn	aag Lys	1553
ttt Phe	tcc Ser 410	aag Lys	tac Tyr	tac Tyr	cag Gln	aag Lys 415	caa Gln	aag Lys	gac Asp	att Ile	gat Asp 420	gtg Val	gac Asp	cag Gln	tgc Cys	1601
agt Ser 425	gag Glu	gat Asp	gca Ala	cca Pro	gag Glu 430	aag Lys	tgt Cys	cat His	gag Glu	cta Leu 435	cct Pro	tac Tyr	ttt Phe	aac Asn	att Ile 440	1649
agg Arg	gat Asp	ata Ile	tat Tyr	gca Ala 445	cag Gln	cgg Arg	atg Met	cac His	gcc Ala 450	ttc Phe	att Ile	acc Thr	agt Ser	ctc Leu 455	tct Ser	1697
tct Ser	gta Val	ggc Gly	att Ile 460	gtg Val	gtg Val	agc Ser	gat Asp	cct Pro 465	gac Asp	tcc Ser	aca Thr	gat Asp	gct Ala 470	tca Ser	agc Ser	1745
att Ile	gaa Glu	gac Asp 475	aat Asn	gag Glu	gac Asp	att Ile	tgt Cys 480	aac Asn	acc Thr	acc Thr	tcc Ser	ttg Leu 485	gag Glu	aat Asn	tgc Cys	1793
aca Thr	gca Ala	a aa	tgag	ıcggg	ggt	gttt	gtg	cctg	tttc	tc t	tato		e cc	aaca	ttag	1850

490

gttaacacag ctttataaac ctcagtgggt tcgttaaaat catttaattc tcagggtgta 1910 cctttcagcc atagttggac attcattgct gaattctgaa atgatagaat tgtctttatt 1970 tttctctgtg aggtcaatta aatgccttgt tctgaaattt atttttaca agagagagtt 2030 gtgatagagt ttggaatata agataaatgg tattgggtgg ggtttgtggc tacagcttat 2090 gcatcattct gtgtttgtca tttactcaca ttgagctaac tttaaaattac tgacaagtag 2150 aatcaaaggt gcagctgact gagacgacat gcatgtaaga tccacaaaat gagacaatgc 2210 atgtaaatcc atgctcatgt tctaaacatg gaaactagga gcctaataaa cttcctaatt 2270 cagaaaaaaa aaaaaaaaa aaa

<210> 6

<211> 490

<212> PRT

<213> H. sapiens

<400> 6 Met Val Phe Gly Glu Phe Phe His Arg Pro Gly Gln Asp Glu Glu Leu Val Asn Leu Asn Val Gly Gly Phe Lys Gln Ser Val Asp Gln Ser Thr Leu Leu Arg Phe Pro His Thr Arg Leu Gly Lys Leu Leu Thr Cys His 40 Ser Glu Glu Ala Ile Leu Glu Leu Cys Asp Asp Tyr Ser Val Ala Asp 55 Lys Glu Tyr Tyr Phe Asp Arg Asn Pro Ser Leu Phe Arg Tyr Val Leu 65 70 Asn Phe Tyr Tyr Thr Gly Lys Leu His Val Met Glu Glu Leu Cys Val 85 90 Phe Ser Phe Cys Gln Glu Ile Glu Tyr Trp Gly Ile Asn Glu Leu Phe 100 105 Ile Asp Ser Cys Cys Ser Asn Arg Tyr Gln Glu Arg Lys Glu Glu Asn 120 125 His Glu Lys Asp Trp Asp Gln Lys Ser His Asp Val Ser Thr Asp Ser 135 140 Ser Phe Glu Glu Ser Ser Leu Phe Glu Lys Glu Leu Glu Lys Phe Asp 150 155 Thr Leu Arg Phe Gly Gln Leu Arg Lys Lys Ile Trp Ile Arg Met Glu 165 170 Asn Pro Ala Tyr Cys Leu Ser Ala Lys Leu Ile Ala Ile Ser Ser Leu 185 Ser Val Val Leu Ala Ser Ile Val Ala Met Cys Val His Ser Met Ser 195 200 205 Glu Phe Gln Asn Glu Asp Gly Glu Val Asp Asp Pro Val Leu Glu Gly 215 Val Glu Ile Ala Cys Ile Ala Trp Phe Thr Gly Glu Leu Ala Val Arg 235 230 . Leu Ala Ala Pro Cys Gln Lys Lys Phe Trp Lys Asn Pro Leu Asn 245 250 Ile Ile Asp Phe Val Ser Ile Ile Pro Phe Tyr Ala Thr Leu Ala Val 270 260 265 Asp Thr Lys Glu Glu Glu Ser Glu Asp Ile Glu Asn Met Gly Lys Val 280 285 Val Gln Ile Leu Arg Leu Met Arg Ile Phe Arg Ile Leu Lys Leu Ala 295 300 Arg His Ser Val Gly Leu Arg Ser Leu Gly Ala Thr Leu Arg His Ser 310 315 Tyr His Glu Val Gly Leu Leu Leu Phe Leu Ser Val Gly Ile Ser 330335 325 Ile Phe Ser Val Leu Ile Tyr Ser Val Glu Lys Asp Asp His Thr Ser 340 345

```
Ser Leu Thr Ser Ile Pro Ile Cys Trp Trp Trp Ala Thr Ile Ser Met
                             360
Thr Thr Val Gly Tyr Gly Asp Thr His Pro Val Thr Leu Ala Gly Lys
370
                         375
Leu Ile Ala Ser Thr Cys Ile Ile Cys Gly Ile Leu Val Val Ala Leu
385
                     390
                                      395
Pro Ile Thr Ile Ile Phe Asn Lys Phe Ser Lys Tyr Tyr Gln Lys Gln
                                    410
Lys Asp Ile Asp Val Asp Gln Cys Ser Glu Asp Ala Pro Glu Lys Cys
           420
                                 425
His Glu Leu Pro Tyr Phe Asn Ile Arg Asp Ile Tyr Ala Gln Arg Met
                             440
                                                 445
His Ala Phe Ile Thr Ser Leu Ser Ser Val Gly Ile Val Val Ser Asp
                         455
Pro Asp Ser Thr Asp Ala Ser Ser Ile Glu Asp Asn Glu Asp Ile Cys
                    470
Asn Thr Thr Ser Leu Glu Asn Cys Thr Ala
                                    490
      <210> 7
      <211> 3080
      <212> DNA
     <213> H. sapiens
    <220>
      <221> CDS
      <222> (480)...(1977)
      <223> K+Hnov9
      <400> 7
greteteete treeteetee teegeeceae atetecetee treeteett ceecaaceee
                                                                       60
tecacecace aagtagegag teatteaate tgtacacete etgggetggg aategeaatt
                                                                      120
gcgaagttgg gaggcggggt gacaacgttt gggaagggcc agggcgaccg gcagtgtgca
                                                                      180
cagggactgt gtcgggcttg gacctcacct gatcctctct cttagcgcga cccttcctct
                                                                      240
getecetgte tectettet gecacttgtg egetgettee gegeacteec ggetecetag
                                                                      300
cggcaggagg aggaaggcgc acagcgggtg gagagggtgc gccaaggaga ggtaacccct
                                                                      360
tegggageee ggggaateee ggeegeeace aggggeegtg ceacegeeet egegggaeea
                                                                      420
aagetteegg egtgteecea aetttgtgge geeeteagge egeggegaet gggttagag
                                                                      479
atg cct tee age gge aga geg etg etg gae teg eeg etg gae age gge
                                                                      527
Met Pro Ser Ser Gly Arg Ala Leu Leu Asp Ser Pro Leu Asp Ser Gly
tee etg acc tee etg gae tet agt gte tte tge age gag ggt gaa ggg
                                                                      575
Ser Leu Thr Ser Leu Asp Ser Ser Val Phe Cys Ser Glu Gly Glu Gly
gag ccc ttg gcg ctc ggg gac tgc ttc acg gtc aac gtg ggc ggc agc
                                                                      623
Glu Pro Leu Ala Leu Gly Asp Cys Phe Thr Val Asn Val Gly Gly Ser
ege the gtg ete teg cag cag geg etg tee tge tte eeg cae acg ege
                                                                      671
Arg Phe Val Leu Ser Gln Gln Ala Leu Ser Cys Phe Pro His Thr Arg 50 55 60
ctt ggc aag ctg gcc gtg gtg gct tcc tac cgc cgc ccc ggg gcc
Leu Gly Lys Leu Ala Val Val Val Ala Ser Tyr Arg Arg Pro Gly Ala
                                                                      719
                     70
ctg gcc gcc gtg ccc age cct ctg gag ctt tgc gac gat gcc aac ccc
Leu Ala Ala Val Pro Ser Pro Leu Glu Leu Cys Asp Asp Ala Asn Pro
                                    90
                                                         95
```

150,000

 $(x,y) \leq (\phi_0)$

_																
gtg Val	gac Asp	aac Asn	gag Glu 100	tac Tyr	ttc Phe	ttc Phe	gac Asp	cgc Arg 105	agc Ser	tcg Ser	cag	gcg Ala	ttc Phe 110	cga Arg	tat Tyr	815
gtc Val	ctg Leu	cac His 115	tac Tyr	tac Tyr	cgc Arg	acc Thr	ggc Gly 120	cgc Arg	ctg Leu	cat His	gtc Val	atg Met 125	gag Glu	cag Gln	ctg Leu	863
tgc Cys	gcg Ala 130	ctc Leu	tcc Ser	ttc Phe	ctg Leu	cag Gln 135	gag Glu	atc Ile	cag Gln	tac Tyr	tgg Trp 140	ggc	atc Ile	gat Asp	gag Glu	911
ctc Leu 145	agc Ser	atc Ile	gat Asp	tcc Ser	tgc Cys 150	tgc Cys	agg Arg	gac Asp	aga Arg	tac Tyr 155	ttc Phe	aga Arg	agg Arg	aaa Lys	gag Glu 160	959
ctg Leu	agt Ser	gaa Glu	act Thr	tta Leu 165	gac Asp	ttc Phe	aag Lys	aag Lys	gac Asp 170	aca Thr	gaa Glu	gac Asp	cag Gln	gaa Glu 175	agt Ser	1007
caa Gln	caț His	gag Glu	agt Ser 180	gaa Glu	cag Gln	gac Asp	ttc Phe	tcc Ser 185	caa Gln	gga Gly	cct Pro	tgt Cys	ccc Pro 190	act Thr	gtt Val	1055
cgc Arg	cag Gln	aag Lys 195	ctc. Leu	tgg Trp	aat Asn	atc Ile	ctg Leu 200	gag Glu	aaa Lys	cct Pro	gga Gly	tct Ser 205	tcc Ser	aca Thr	gct Ala	1103
Ala	cgt Arg 210	atc	ttt Phe	Gly	gtċ Val	atc Ile 215	tcc Ser	att Ile	atc Ile	ttc Phe	gtg Val 220	gtg Val	gtg Val	tcc Ser	atc Ile	1151
att Ile 225	aac Asn	atg Met	gcc Ala	ctg Leu	atg Met 230	tca	gct Ala	gag Glu	tta Leu	agc Ser 235	tgg Trp	ctg Leu	gac Asp	ctg Leu	cag Gln 240	1199
ctg Leu	ctg Leu'	gaa Glu	Ile	Leu 245	Glu	Tyr	gtg Val	tgc Cys	att Ile 250	agc Ser	tgg Trp	ttc Phe	acc Thr	999 Gly 255	gag Glu	1247
ttt Phe	gtc Val	ctc Leu	Arg	ttc Phe	ctg Leu	tgt Cys	Val	Arg	Asp	Arg	Cys	Arg	Phe	Leu	aga Arg	1295
Lys	Val	cca Pro 275	aac Asn	atc Ile	ata Ile	gac Asp	ctc Leu 280	ctt Leu	gcc Ala	atc	tta	ccc	ttc	tác	atc Ile	1343
Thr	ctt Leu 290	ctg	gta Val	gag Glu	agc Ser	cta	agt Ser	gjå aaa	agc Ser	Gln	acc Thr 300	Thr	cag Gln	gag Glu	ctg Leu	1391
gag. Glu	aac Asn	gtg Val	Gly. ggg	cgc Ara	att Ile	gte Val	cag Gln	gtg Val	ttg	agg	cta	ctc	agg Arg	gct Ala	ctg Leu 320	1439
ogc Arg	atg. Met	cta Leu	aag Lys	ctg. Leu 325	ggc	aga Arg	cat His	tcc Ser	Thr 330	Gly	tta Leu	cgc Arg	Ser	ctt Leu 335	Gly	1487

atg	aca	atc	acc	cag	tgt	tac	gaa	gaa	gtc	ggc	cta	ctg	ctc	cta	ttt	1535
Met	Thr	Ile	Thr	Gln	Cys	Tyr	Glu	Glu	Val	Gly	Leu	Leu	Leu	Leu	Phe	
			340					345			•		350			
~	•															
cta	tcc	gtg	gga	atc	tct	ata	ttt	tca	act	gta	gaa	tac	ttt	gct	gag	1583
Leu	Ser	Val	Gly	Ile	Ser	Ile	Phe	Ser	Thr	Val	Glu	Tyr	Phe	Ala	Glu	
·		355					360		-			365				
		•														
caa	agc	att	cct	gac	aca	acc	ttc	aca	agt	gtc	cct	tgt	gca	taa	taa	1631
Gln	Ser	Ile	Pro	Asp	Thr	Thr	Phe	Thr	Ser	Val	Pro	Cys	Ala	Tro	Tro	
	370					375					380	•				
	•													•	•	
tgg	gcc	acc	acc	tct	atg	act	act	gtg	gga	tat	ggg	qac	att	aga	cca	1679
Trp	Ala	Thr	Thr	Ser	Met	Thr	Thr	Val	Gly	Tyr	Glv	Asp	rle	Ara	Pro	
385				,	390		•			395				5	400	
	•		•								-				100	
gac	acc	acc	aca	ggc	aaa	atc	gtg	gcc	ttc	atq	tat	ata	tta	t.ca	gga	1727
Asp	Thr	Thr	Thr	Gly	Lys	Ile	Val	Āla	Pha	Met	Cvs	Tle	Len	Ser	G) v	1,2,
				405	-				410	٠.	-,-			415	Cly	
-					• •					•				413	, .	
att	ctt	qtc	ttq	qcc	tta	cct	att	gct	att	att	220	an t		++-	t at	1775
Ile	Leu	Val	Leu	Ala	Leu	Pro	Tle	Ala	Tle	Tile	Age	700	7	Dha	Com	1//5
2	٠.		420					425			<i>79</i> 11	. vob.	430	File	261	
	-			-						•			430		••	
act	tac	tac	ttc	acc	tta	222	ctc	aag	~	~~~						
Ala	Cvs	Tvr	Phe	Thr	T.411	Larg	Len	Lys	Clu	310	get	gtt	aga	cag	cgt	1823
	7,0	435				Lys	440	Lys_		MIG.	ALA		Arg	Gan	Arg	1.8
				•*	•		440	1.5	*			445				
ma a	acc	cta	337	224	a++											
Glu	772	Lau	Tue	Tue	Ton	mb-	aag	aat	ata	gcc	act	gac	tca	tat	atc	1871
GIU	450	пеп	TAR	riAs	reu		гăа	Asn.	TTE	Ala		Asp	Ser	Tyr	Ile	
	450				P .	455					460		•	-		
act	arr	226	++~	363	~a+						- 4					
Sar	Val	Aco	Lou	aya N==	gac 3an	y.c.	Cat	gcc	cgg	agt	atc	atg	gag	atg	ctg	1919
465	Val	və.i.	Den	Arg	ASD	Val.	TYE	Ala			T.ī.e	Met	GIA			
405		:		•	470	•	•	٠.		475		٠.			480	
CCS	cta		~~~	202	~					:						
y z z	Lou	Tues	23	aya N==	gaa	aya	gca	agt	act	agg	agc	agc	a aa	gga	gat	1967
ALG	pen	Lys	GLY		GIU	Arg	ALA .	Ser		Arg	Ser	Ser	Gly		Asp	*
	• . •		· .	485	•		•		490				•	495	***	
											:					
yat Nam	Dho	rgg	ב בכ	tgaa	ttaa	בבב	tcaa	ttt	attt	acaa	aa g	ctat	gtac	a		2017
Asp	PHE	тър	. ^		•				• •	?	: :					
-			٠.		·*: .	**:		,								
a++-									.							
alta	acta	aa a	-yat	aaag	c ag	rgat	9 - 99	att	cctg	tat	tctg	atga	tg a	gtct	cttca	2077
9agt	accg	uc c	acct	caat	c aa	CCCC	rgct	gat	acat	cgc	ttca	tcta	ct a	gaat	atttc	2137
acat	CACC	ca t	aaca	accg	c ac	agtg	ttct	gac	acat	ttg.	agtg	tcca	aa a	tago	caatt	2197
aaca	caac	ca a	acac	aact	g g g	ccaa	tata	aac	atgt	ttg	aatt	gtca	aa t	ataa	aataa	2257
cgtt	actg	ca a	caca	caca	a aa	aagt	taaa	gat	ttta	tgt	atca	ctaa	ca t	taga	agttt	2317
cctg	cacc	ac t	aatt	ttt	a aa	aatg	gaag	gta	aact	acs .	tago	ccag	ag a	aaga	taagt	2377
aaat	actt	aa g	aaca	tatt	g aa	caac	tttg	cta	ttta	aag	atat	tato	ca a	gtac	ataaa	2437
ttac	tccg	tt c	tcta	tcag	t ta	aagc	tatt	gaa	tata	ata	ctta	gctt	ta c	aaga	gaaaa	2497
ccca	tatt	tg a	tggg	caga	g at	tata	tccc	tat	cttc	ttt	ttca	tqta	aa c	cact	ggtca	2557
caaa	tgaa	ct g	atct	ctgt	a tc	ccat	tatt	act	ataa	psp	qtaa	gaat	cc. c	aaaa	ctact	2617
taga	ttgc	ag t	acat	gagt	c ta	caca	aaga	ctt	caac	aat -	tgca	catc	tt c	attc	tecca	2677
actg	agtg	ta g	tatg	tgga	g ca	taaa	acag	cat	attt	ctt	aqta	tttc	at σ	aata	tcaga	2737
tggt	cttt	aa a	tgtc	tctt	t at	ggat	gtat	tgt	tcac	att	atoo	cttt	aa a	ataa	tgaat	2797
atgt	aaaa	gt g	aggt	agtg	a ac	atcc	taaa	ttt	ctac	act	ggaa	ttac	ta a	ataa	tctta	2857
tttc	ataa	at g	ggaa	atat	a to	ttaa	atqa	cat	cact	qqa	tgaa	ctta	aa a	atch	tttac	2917
ttgt	taac	aa a	aaaa	tact	a tg	gaca	gctt	tct	gatt	gtt	agaa	taaa	ta a	caaa	tgttc	2977
aaac	tttg	ca q	gcat	ttta	a ca	ttca	tcat	aac	aaca	caa	ttee	tage	ca t	tota	ttata	3037
	_		-				•					34	•	-3-4		,
								1	14							

7.00.014V.0 3383 11 fgs

. . .

3080

<210> 8 <211> 499 <212> PRT <213> H. sapiens

<400> 8 Met Pro Ser Ser Gly Arg Ala Leu Leu Asp Ser Pro Leu Asp Ser Gly 5 10 Ser Leu Thr Ser Leu Asp Ser Ser Val Phe Cys Ser Glu Gly Glu Gly 25 Glu Pro Leu Ala Leu Gly Asp Cys Phe Thr Val Asn Val Gly Gly Ser 40 Arg Phe Val Leu Ser Gln Gln Ala Leu Ser Cys Phe Pro His Thr Arg 55 60 Leu Gly Lys Leu Ala Val Val Val Ala Ser Tyr Arg Arg Pro Gly Ala 70 75 80 Leu Ala Ala Val Pro Ser Pro Leu Glu Leu Cys Asp Asp Ala Asn Pro 85 90 Val Asp Asn Glu Tyr Phe Phe Asp Arg Ser Ser Gln Ala Phe Arg Tyr 100 105 Val Leu His Tyr Tyr Arg Thr Gly Arg Leu His Val Met Glu Gln Leu Cys Ala Leu Ser Phe Leu Gln Glu Ile Gln Tyr Trp Gly Ile Asp Glu
130
135
140 Leu Ser Ile Asp Ser Cys Cys Arg Asp Arg Tyr Phe Arg Arg Lys Glu 150 155 Leu Ser Glu Thr Leu Asp Phe Lys Lys Asp Thr Glu Asp Gln Glu Ser 165 170 Gln His Glu Ser Glu Gln Asp Phe Ser Gln Gly Pro Cys Pro Thr Val 180 185 190 Arg Gln Lys Leu Trp Asn Ile Leu Glu Lys Pro Gly Ser Ser Thr Ala 200 205 Ala Arg Ile Phe Gly Val Ile Ser Ile Ile Phe Val Val Val Ser Ile 220 ... Ile Asn Met Ala Leu Met Ser Ala Glu Leu Ser Trp Leu Asp Leu Gln 225 , 230 235 Leu Leu Glu Ile Leu Glu Tyr Val Cys Ile Ser Trp Phe Thr Gly Glu 245 250 Phe Val Leu Arg Phe Leu Cys Val Arg Asp Arg Cys Arg Phe Leu Arg 265 270 Lys Val Pro Asn Ile Ile Asp Leu Leu Ala Ile Leu Pro Phe Tyr Ile 280 285 Thr Leu Leu Val Glu Ser Leu Ser Gly Ser Gln Thr Thr Gln Glu Leu 300 295 Glu Asn Val Gly Arg Ile Val Gln Val Leu Arg Leu Leu Arg Ala Leu 310 320 Arg Met Leu Lys Leu Gly Arg His Ser Thr Gly Leu Arg Ser Leu Gly 325 330 Met Thr Ile Thr Gln Cys Tyr Glu Glu Val Gly Leu Leu Leu Leu Phe 340 345 350 Leu Ser Val Gly Ile Ser Ile Phe Ser Thr Val Glu Tyr Phe Ala Glu 355 360 Gln Ser Ile Pro Asp Thr Thr Phe Thr Ser Val Pro Cys Ala Trp Trp 370 375 380
Trp Ala Thr Thr Ser Met Thr Thr Val Gly Tyr Gly Asp Ile Arg Pro 390 395 Asp Thr Thr Thr Gly Lys Ile Val Ala Phe Met Cys Ile Leu Ser Gly 405 410 415

Ile Leu Val Leu Ala Leu Pro Ile Ala Ile Ile Asn Asp Arg Phe Ser

			420					425					430			
		435			Leu		440					445			_	
	450				Leu	455					460	•		_		
465					Asp 470					475					480	
Arg	Leu	Lys	Gly	Arg 485	Glu	Arg	Ala	Ser	Thr		Ser	Seŗ	Gly	Gly	Ąsp	
Asp	Phe	Trp				-			7,00	• • •				422	÷*	
•	٠.					, -				٠,٠		٠	::	: .	٠	
		210>	9 342	4	•	•				·:	. ,	. :				
·	<:	212>	DNA													
	<:	213>	Б.	sapi	ens .	•		•	٠.	••		٠.		•		
	<:	220>						-			, -					
-		221>		7 \	: /0.7/											
				novl	. (219 2	95)						•		***		
*			•										٠			
ctci		100> cca 1	_	ccca	ag ge	ccti	tete	a ato	ccti	caga	acai	ttac	cca .	aacii	cetect	t 60
aggt	tctg	gta a	aatgi	tece	cc ag	gacto	ctto	C CCa	atct	cttt	agt	tette	cati (ccta	at t cct	120
CCC	geet	tot (taga	acac	2C C	cagti	ctcct	t tgt	ttg	ggtg	get	caag	gtg	tctc	caagco	180
ctt	1999	agt g	ggca	cg at	tg go	eg ge	ca gg	gc ct	:g · g	cc a	ca to	ar ci	ta c	ct ti	t act	292
				Me	et Al	la A	La G	Ly Le	eu A	la T	ar T	LD F	eu P	ro Pl	ne Ala	a ,
0.2		•			l.			: 5	5					10		•
cgg	gca	gca	gca	gtg	ggc	tgg	ctg	ccc	ccg	gcc	cag	caa	ccc	ctg	ccc	340
Arg	Ala	Ala 15	Ala	Val	Gly	Trp	Leu 20	Pro	Pro	Ala	Gln		Pro	Leu	Pro	
				-				·				25			•	•
ccg	gca	ccg	999	gtg	aag	gca	tet	cga	gga	gat	grg	gtt	ctg	gtg	gtg	. 388
PIO	30	PIO	GIY	var	Lys	35	ser	Arg	GTA	Asp	Xaa 40	Val	Leu	Val	Val	2
					2					•						
aac Asn	Val	Ser	gga	cgg.	cgc Arg	Phe	gag Glu	act	Tro	aag	aat	acg	ctg	gac	cgc	436
45		:	ij.		50					55			Dea.	vaħ	60	
tac	cca	gac	acc	tta	ctġ	aac.	300	tea	~~~	224	~~		شست			404
Tyr	Pro	Asp	Thr	Leu	Leu	Gly	Ser	Ser	Glu	Lys	Glu	Phe	Phe	Tvr	gat Asp	484
*	٠	.*	•	65					70					75		
gct	gac	tca	ggc	gag	tac	ttc	ttc	gat	cqc	gac	cct	gac.	ato	tte	CGC	532
Ala	Asp	Ser	Gly	Glu	Tyr	Phe	Phe	Asp	Arg	Азр	Pro	Asp	Met	Phe	Arg	
		. :	80				• :	85	:				90		•	
cat	gtg:	ctg	aac	ttc	tac	cga	acg	ggg.	cgg	ctg	cat	tgc	cca	cgg	cag	580
His	Val	Leu	Asn	Phe	Tyr	Arg	Thr	Gly	Arg	Leu	His	Cys	Pro	Arg	Gln	
•	. •	95	•	÷ .			100					105	:.		.*	
gag	tgc	atc.	cag	gcc.	ttc	gac	gaa	gag	ctg	gct	ttc	tac	ggc	ctg	gtt	628
Glu	Cys 110	Ile	Gln	Ala.	Phe	Asp 115.	Glu	Glu	Leu		Phe 120	Tyr	Gly	Leu	Val	
			•							٠:					-	
CCC	gag	cta.	gtc	ggt	gac	tgc	tgc	ctt	gaa	gag	tat	cgg '	gác	cga	aag `	676
rro	GTIT	⊥eu	val	GTA	Asp	cys	Cys	Leu	Glu	Glu	Tyr	Arg	Asp	Arg	Lys	

125					130					135					1.4.0	
aag Lys	gag Glu	aat Asn	gcc Ala	gag Glu 145	cgc Arg	ctg Leu	gca Ala	gag Glu	gat Asp 150	Glu	gag Glu	gca Ala	gag Glu	cag Gln 155	Ala	724
gly aaa	gac Asp	ggc	cca Pro 160	gcc Ala	ctg Leu	cca Pro	gca Ala	ggc Gly 165	agc Ser	tcc Ser	ctg Leu	cgg Arg	cag Gln 170	cgg	ctc Leu	772
tgg Trp	cgg	gcc Ala 175	ttc Phe	gag Glu	aat Asn	cca Pro	cac His 180	acg Thr	agc Ser	acc Thr	gca Ala	gcc Ala 185	ctc Leu	gtt Val	ttc Phe	820
tac Tyr	tat Tyr 190	gtg Val	acc	ggc	ttc Phe	ttc Phe 195	atc Ile	gcc Ala	gtg Val	Ser	gtc Val .200	atc Ile	gcc Ala	aat Asn	gtg Val	868
gtg Val 205	gag Glu	acc Thr	atc Ile	cca Pro	tgc Cys 210	cgc Arg	ggc Gly	tct Ser	gca Ala	cgc Arg 215	agg Arg	tcc Ser	tca Ser	agg Arg	gag Glu 220	916
cag Gln	ccc Pro	tgt Cys	ggc	gaa Glu 225	cgc Arg	ttc Phe	cca Pro	cag Gln	gcc Ala 230	Phe	tt <i>c</i> Phe	tgc Cys	atg Met	gac Asp 235	Thr	964
gcc Ala	tgt Cys	gta Val	ctc Leu 240	ata Ile	ttc Phe	aca Thr	ggt Gly	gaa Glu 245	tac Tyr	ctc Leu	ctg Leu	cgg	ctg Leu 250	ttt Phe	gcc Ala	1012
gcc_ Ala	_ccc Pro	agc Ser 255	cgt Arg	tgc Cys	cgc Arg	ttc Phe	ctg Leu 260	cgg	agt Ser	gtc Val	atg Met	agc Ser 265	ctc Leu	atc Ile	gac	1060
gtg Val	gtg Val 270	gcc Ala	atc Ile	ctg Leu	ccc Pro	tac Tyr 275	tac Tyr	att Ile	gjå aaa	ctt Leu	ttg Leu 280	gtg Val	ccc Pro	aag Lys	aac Asn	1108
gac Asp 285	gat Asp	gtc Val	tct Ser	ggë Gly	gcc Ala 290	ttt Phe	gtc Val	acc Thr	ctg Leu	cgt Arg 295	Val	ttc Phe	egg Arg	gtg Val	ttt Phe 300	1156
cgc Arg	atc Ile	ttc Phe	aag Lys	ttc Phe 305	tcc Ser	agg Arg	cac His	tca Ser	cag Gln 310	ggc Gly	ttg Leu	agg Arg	att Ile	ctg Leu 315	Gly	1204
tac Tyr	aca Thr	ctc Leu	aag Lys 320	agc Ser	tgt Cys	gcc Ala	tct Ser	gag Glu 325	ctg Leu	ggc Gly	ttt Phe	ctc Leu	ctc Leu 330	ttt Phe	tcc Ser	1252
cta Leu	acc Thr	atg Met 335	gcc Ala	atc Ile	atc Ile	atc Ile	ttt Phe 340	gcc Ala	act	gtc Val	atg Met	ttt Phe 345	tat Tyr	gct Ala	gag Glu	1300
aag Lys	ggc 350	aca Thr	aac Asn	aag Lys	acc Thr	aac Asn 355	ttt Phe	aca Thr	agc Ser	atc Ile	cct Pro 360	gcg Ala	gcc Ala	ttc Phe	tgg Trp	1348
tat Tyr 365	acc Thr	att Ile	gtc Val	acc Thr	atg Met 370	acc Thr	acg Thr	ctt Leu	ggc	tac Tyr 375	gga Gly	gac Asp	atg Met	gtg Val	ccc Pro 380	1396

agc Ser	acc Thr	att	gct Ala	ggc Gly 385	aag Lys	att Ile	ttc Phe	Gly	tcc Ser 390	atc Ile	tgc Cys	tca Ser	ctc Leu	agt Ser 395	Gly	1444
Val	Leu	Val	Ile 400	Ala	Leu	Pro	Val	Pro 405	Val	Ile	gtg Val	Ser	Asn 410	Phe	Ser	1492
Arg	Ile	Tyr 415	His	Gln	Asn	Gln	Arg 420	Ala	Asp	Lys	cgc	Arg 425	Ala	Gln	Gln	1540
Lys	Val 430	Arg	Leu	Ala	Arg	11e 435	Arg	Leu	Aļa	Lys	agt Ser 440	Gly	Thr	Thr	Asn	1588
Ala 445	Phe	Leu	Gln	Tyr	Lys 450	Glņ	Asņ	Gly	Gly	Leu 455		Asp	Ser	Gly	Ser 460	1636
Gly	Glu	Glu	Gln	Ala 465	Leu	Сув	Val	Arg	Asn 470	Arg	tct Ser	Ala	Phe	Glu 475	Gln	1684
Gln	His	His	His 480	Leu	Leu	His	Cys	Leu 485	Glu	Lys	er e	Thr	Cys 490	Hiş	Glu	1732
Phe	Thr	Asp 495	Glu	Leu	Thr	Phe	Ser 500	Glu	Ala	Leu	gga Gly	Ala 505	Val	Ser	Pro	1780
ggt Gly	ggc Gly 510	cgc Arg	acc	agc Ser	cgt Arg	agc Ser 515	Thr	tct Ser	gtg Val	tct Ser	ser	cag Gln	cca Pro	gtg Val	gga Gly	1828
Pro 525	Gly	Ser	Leu	Leu	Ser 530	Ser	Cys	Cys	Pro	Arg 535	agg Arg	Ala	Lys	Arg	Arg .540	1876
gcc Ala	Ile	cgc Arg	ctt Leu	gcc Ala 545	aac Asn	tcc Ser	act Thr	gcc Ala	tca Ser 550	gtc Val	agc Ser	cgt Arg	ggc	agc Ser 555	atg Met	1924
cag Gln	gag Glu	ctg Leu	gac Asp 560	atg Met	ctg Leu	gca Ala	gly aaa	ctg Leu 565	cgc Arg	agg Arg	agc Ser	His	gcc Ala 570	cct Pro	cag Gln	1972
Ser	cgc Arg	Ser	agc Ser	ctc Leu	aat Asn	gcc Ala	aag Lys 580	ccc Pro	cat His	Asp	agc Ser	ctt	gac	ctg Leu	aac Asn	2020
tgc Cys	Asp	agc Ser	Arg	gac Asp	Phe	gtg Val 595	gct Ala	gcc Ala	att	Ile	agc Ser 600	atc Ile	cct Pro	acc Thr	cct Pro	2068
cct Pro 605	gcc Ala	aac Asn	acc Thr	cca Pro	gat Asp 610	gag Glu	agc Ser	caa Gln	Pro	tcc Ser 615	tcc Ser	cct Pro	ggc Gly	ggc Gly	ggt Gly 620	2116

ansidulià i ultilatea di

```
ggc agg gee gge age ace ete agg aac tee age etg ggt ace eet tge
Gly Arg Ala Gly Ser Thr Leu Arg Asn Ser Ser Leu Gly Thr Pro Cys
                625
                                    630
                                                        635
                                                        . · · · ·
ctc ttc ccc gag act gtc aag atc tca tcc c tgtgaggggt aggcctgctg
                                                                   2215
Leu Phe Pro Glu Thr Val Lys Ile Ser Ser
            640
attcagaggg teetetteat ttttgggaac teettteeaa agecatattt ttgggaggea
                                                                   2275
gagaggggca ggcttgggca ccccttctgc ccccccact gagaactatg caatggagtt
                                                                   2335
tcatgaaatg gtccacatag tggggaagta gccaggaaat gagaaacttc ctcccacccc
                                                                   2395
agacattttt cctggtggga gctgaagcac tgggcttcca caggcccctg gcctccttgc
                                                                   2455
ectageacae tgggaetgge cecaetetee cagetggaet cetgeatget ceteceettg
                                                                   2515
ggeteteaga tgaaggeaaa getttgatee gaeatetgag etetageeta agaaggagag
ttyagatttc ctcctccctc tggctgggat atggagcttt ggaggttcag agaagagaac
ceteacetet gatetggeet etacgagagg teeteatete catetggeee aacaatteee
agattetgaa gettggaatg caaacacagg etteatggge tgtggeetet geagegaeet
                                                                   2755
gccatcccca ggccttgcct gaggggtcag gctgcctctc ccaacacaca ctcagatagc
                                                                   2815
acaaattota coatocoott cootggotgo tggaaatgga coocgcaaco otgtoototg
                                                                   2875
etgggeecee ageaaactet ageaatagea getgetgeeg tgteattatg caaageetet
                                                                   2935
gaccagettg etgeageatt tacatetgee etaateagag gggecacete taacteetee
                                                                   2995
tectectete tretectetg gttrgegtee treetgggtr gggerggagt erggaergge
                                                                   3055
tgagataaga geetggeaac cageaagage tgggetgtat ttggagatea tgggetgatt
                                                                   3115
ccatgitett gggcaacagi ccagaagcai caggggcicc ggccigggai gittcigaac
                                                                   3175
tttgggagtt ataggagaca ggaggaactt ctcctcctcc tcctccccta caattccttt
                                                                   3235
teacatatte etttettete cetettgggt gaeetteeaa aactetgete teaggetgaa
                                                                   3295
atetggeate ateteaggtt ceetgteece ageaetgtee ceatggaget ggtggetgae
                                                                   3355
3415
aaaaaaaa
                                                                   3424
      <210> 10
      <211> 646
      <212> PRT
      <213> H. sapiens
      <220>
      <221> VARIANT
      <232> (1)...(646)
      <223> Xaa = Any Amino Acid
      <400> 10
Met Ala Ala Gly Leu Ala Thr Trp Leu Pro Phe Ala Arg Ala Ala Ala
                5
                                   10
Val Gly Trp Leu Pro Pro Ala Gln Gln Pro Leu Pro Pro Ala Pro Gly
           20
                               25
Val Lys Ala Ser Arg Gly Asp Xaa Val Leu Val Val Asn Val Ser Gly
                           40
Arg Arg Phe Glu Thr Trp Lys Asn Thr Leu Asp Arg Tyr Pro Asp Thr
                       55
                                         60
Leu Leu Gly Ser Ser Glu Lys Glu Phe Phe Tyr Asp Ala Asp Ser Gly
65
                   70
                                       75
Glu Tyr Phe Phe Asp Arg Asp Pro Asp Met Phe Arg His Val Leu Asn
               85
                                   90
Phe Tyr Arg Thr Gly Arg Leu His Cys Pro Arg Gln Glu Cys Ile Gln
           100
                               105
                                                   110
Ala Phe Asp Glu Glu Leu Ala Phe Tyr Gly Leu Val Pro Glu Leu Val
                           120
                                               125
Gly Asp Cys Cys Leu Glu Glu Tyr Arg Asp Arg Lys Lys Glu Asn Ala
   130
                       135
                                           140
Glu Arg Leu Ala Glu Asp Glu Glu Ala Glu Gln Ala Gly Asp Gly Pro
```

EDC 117

9840

Ala Leu Pro Ala Gly Ser Ser Leu Arg Gln Arg Leu Trp Arg Ala Phe 165 170 17.5 Glu Asn Pro His Thr Ser Thr Ala Ala Leu Val Phe Tyr Tyr Val Thr 180 185 190 Gly Phe Phe Ile Ala Val Ser Val Ile Ala Asn Val Val Glu Thr Ile 200 205 Pro Cys Arg Gly Ser Ala Arg Arg Ser Ser Arg Glu Gln Pro Cys Gly 215 220 Glu Arg Phe Pro Gln Ala Phe Phe Cys Met Asp Thr Ala Cys Val Leu 230 235 Ile Phe Thr Gly Glu Tyr Leu Leu Arg Leu Phe Ala Ala Pro Ser Arg 245 250 Cys Arg Phe Leu Arg Ser Val Met Ser Leu Ile Asp Val Val Ala Ile 260 265 Leu Pro Tyr Tyr Ile Gly Leu Leu Val Pro Lys Asn Asp Asp Val Ser 275 280 Gly Ala Phe Val Thr Leu Arg Val Phe Arg Val Phe Arg Ile Phe Lys 290 295 300 Phe Ser Arg His Ser Gln Gly Leu Arg Ile Leu Gly Tyr Thr Leu Lys 305 310 315 Ser Cys Ala Ser Glu Leu Gly Phe Leu Leu Phe Ser Leu Thr Met Ala 325 330 335

Ile Ile Ile Phe Ala Thr Val Met Phe Tyr Ala Glu Lys Gly Thr Asn
340 345 350 350 Lys Thr Asn Phe Thr Ser Ile Pro Ala Ala Phe Trp Tyr Thr Ile Val 355 360 365 The Met Thr Thr Leu Gly Tyr Gly Asp Met Val Pro Ser Thr Ile Ala 370. Gly Lys Ile Phe Gly Ser Ile Cys Ser Leu Ser Gly Val Leu Val Ile 390 395 400 Ala Leu Pro Val Pro Val Ile Val Ser Asn Phe Ser Arg Ile Tyr His 405 410 Gln Asn Gln Arg Ala Asp Lys Arg Arg Ala Gln Gln Lys Val Arg Leu 420 425 Ala Arg Ile Arg Leu Ala Lys Ser Gly Thr Thr Asn Ala Phe Leu Gln 435 440 445 Tyr Lys Gln Asn Gly Gly Leu Glu Asp Ser Gly Ser Gly Glu Glu Gln 455 460 Ala Leu Cys Val Arg Asn Arg Ser Ala Phe Glu Gln Gln His His 480 470 475 Leu Leu His Cys Leu Glu Lys Thr Thr Cys His Glu Phe Thr Asp Glu 485 490 Leu Thr Phe Ser Glu Ala Leu Gly Ala Val Ser Pro Gly Gly Arg Thr 505 Ser Arg Ser Thr Ser Val Ser Ser Gln Pro Val Gly Pro Gly Ser Leu 520 Leu Ser Ser Cys Cys Pro Arg Arg Ala Lys Arg Arg Ala Ile Arg Leu 530 535 540 Ala Asn Ser Thr Ala Ser Val Ser Arg Gly Ser Met Gln Glu Leu Asp 550 555 Met Leu Ala Gly Leu Arg Arg Ser His Ala Pro Gln Ser Arg Ser Ser 565 570 Leu Asn Ala Lys Pro His Asp Ser Leu Asp Leu Asn Cys Asp Ser Arg 580 585 Asp Phe Val Ala Ala Ile Ile Ser Ile Pro Thr Pro Pro Ala Asn Thr 595 600 Pro Asp Glu Ser Gln Pro Ser Ser Pro Gly Gly Gly Arg Ala Gly 610 ... 615 620 Ser Thr Leu Arg Asn Ser Ser Leu Gly Thr Pro Cys Leu Phe Pro Glu 630 635 640 Thr Val Lys Ile Ser Ser

97-2100 L (WS - 11 41 5)>

645

<210> 11 <211> 1862 <212> DNA <213> H. sapiens <220> <221> CDS <222> (383)...(1157) <223> K+Hnov15 <400> 11 cagctgaatg tggaggcctt taagagaact tccagctcct gtaaaaaccc agaccagagg 60 actactgace aacatttcag getgateete cagacetega agttactete ettactetee 120 tgactcttaa ttacatcaca cctgtgtcga cactctctgg gaaaagactg aagaaataat 180 cttttcaaga agcagaaagc tcctgcatac ataggctgat acgccaccta ctgcaaaacc 240 gagetgacag egeaggegat getgecageg tttccattce atcaccagge tggggetgaa taaaggegtg ettgtgtggt agtgtetett tttaaaaaat etcaaageea agaagaacaa 360 getgaaatag catetteaaa aa atg gag egt aaa ata aac aga aga gaa aaa Met Glu Arg Lys Ile Asn Arg Arg Glu Lys 5 gaa aag gag tat gaa ggg aaa cac aac agc ctg gaa gat act gat caa 460 Glu Lys Glu Tyr Glu Gly Lys His Asn Ser Leu Glu Asp Thr Asp Gln 20 L. 25. L. 25. L. 26. L. 26. L. 27. gga aag aac tgc aaa tcc aca ctg atg acc ctc aac gtt ggt gga tat 508 Gly Lys Asn Cys Lys Ser Thr Leu Met Thr Leu Asn Val Gly Gly Tyr 30 35 tta tac att act caa aaa caa aca ctg acc aag tac cca gac act ttc 556 Leu Tyr Ile Thr Gln Lys Gln Thr Leu Thr Lys Tyr Pro Asp Thr Phe 50 ctt gaa ggt ata gta aat gga aaa atc ctc tgc ccg ttt gat gct gat 604 Leu Glu Gly Ile Val Asn Gly Lys Ile Leu Cys Pro Phe Asp Ala Asp 65 ggt cat tat the ata gad agg gat ggt one one the agg cat gre cta 652 Gly His Tyr Phe Ile Asp Arg Asp Gly Leu Leu Phe Arg His Val Leu aac ttc cta cga aat gga gaa ctt cta ttg ccc gaa ggg ttt cga gaa 700 Asn Phe Leu Arg Asn Gly Glu Leu Leu Pro Glu Gly Phe Arg Glu aat caa ctt ctt gca caa gaa gca gaa ttc ttt cag ctc aag gga ctg 748 Asn Gln Leu Leu Ala Gln Glu Ala Glu Phe Phe Gln Leu Lys Gly Leu 115 gca gag gaa gtg aaa tcc agg tgg gag aaa gaa cag cta aca ccc aga 796 Ala Glu Glu Val Lys Ser Arg Trp Glu Lys Glu Gln Leu Thr Pro Arg 130 gag act act ttc ttg gaa ata aca gat aac cac gat cgt tca caa gga 844 Glu Thr Thr Phe Leu Glu Ile Thr Asp Asn His Asp Arg Ser Gln Gly 145 150 tta aga atc ttc tgt aat gct cct gat ttc ata tca aaa ata aag tct 892 Leu Arg Ile Phe Cys Asn Ala Pro Asp Phe Ile Ser Lys Ile Lys Ser

155	160	165 170	
cgc att gtt ctg gtg	tcc aaa agc agg ctg	gat gga ttt cca gag gag	940
Arg lie Val Leu Val 175	Ser Lys Ser Arg Leu 180	Asp Gly Phe Pro Glu Glu 185	710
ttt tca ata tcg tca Phe Ser Ile Ser Ser 190	aat atc atc caa ttt Asn Ile Ile Gln Phe 195	aaa tac ttc ata aag tct Lys Tyr Phe Ile Lys Ser 200	988
gaa aat ggc act cga Glu Asn Gly Thr Arg 205	ctt gta cta aag gaa Leu Val Leu Lys Glu 210	gac aac acc ttt gtc tgt Asp Asn Thr Phe Val Cys 215	1036
acc ttg gaa act ctt Thr Leu Glu Thr Leu 220	aag ttt gag gct atc Lys Phe Glu Ala Ile 225	atg atg gct tta aag tgt Met Met Ala Leu Lys Cys 230	1084
ggc ttt aga ctg ctg Gly Phe Arg Leu Leu 235	Thr Ser Leu Asp Cys	tcc aaa ggg tca att gtt Ser Lys Gly Ser Ile Val 245 250	1132
cac agc gat gca ctt His Ser Asp Ala Leu	cat ttt atc a agtaat		1177
255		engge sam die en de jeden de en Oarlike terreieren	
acaaaggcaa caagcatg	ca gecageaage tteggaa	aaac cacagcatca aagacatccc	1237
ctaacggtat gtaaattc	ta tegetaaaga teteett	CCt ctggggtgtt cctactgatc	1297 1357
agactettee acetaaaa	tg aaaacagtaa cottota	itat actotaaata aagactgaaa	1417
acaaaaagaa gcatgtac	to ottaagotgt otttoaa	ittc agattgtctt gggtatttgc lagt aaatggtaat aaastattt	1477
aaggggctat taatattt	a aateettite tactate	gca aaatctaca gagaaactga	1537 1597
actggcaaaa ttaactac	ct ggagcaaaac agatgto	rcag atctaactaa aacagagcta	1657
tagtgaaaca aaatgaga	tt gtaagaagac attaaag	cta ttgatttgat ttttccatag	105,
	at teacagtice totottt	Cat attagactta tagctgaatt	1717
caagcaccaa aagcttat	TO TRACES OFFICE	accagactta tagetgaatt	1717 1777
ggtattttgc tgaaaatt	c tagaaaactg cttgátg	aca ataaaaagta aataaaagca	1717 1777 1837
ggtattttgc tgaaaatt	c tagaaaactg cttgátg	aca ataaaaagta aataaaagca	1717 1777
ggtattttgc tgaaaatt ctgctacctt caaaaaaa <210> 12	c tagaaaactg cttgátg	aca ataaaaagta aataaaagca	1717 1777 1837
ctgctacctt caaaaaaa. <210> 12 <211> 256 <212> PRT	cc tagaaaactg cttgátg aa aaaaa	aca ataaaaagta aataaaagca	1717 1777 1837
ggtattttgc tgaaaatt ctgctacctt caaaaaaa <210> 12 <211> 256	cc tagaaaactg cttgátg aa aaaaa	aca ataaaaagta aataaaagca	1717 1777 1837
ctgctacctt caaaaaaa <210> 12 <211> 256 <212> PRT <213> H. sapid	ens	aca ataaaaagta aataaaagca	1717 1777 1837
ggtattttgc tgaaaatt ctgctacctt caaaaaaa <210> 12 <211> 256 <212> PRT <213> H. sapid <400> 12 Met Glu Arg Lys Ile	ens Asn Arg Arg Glu Lys	Glu Lys Glu Tyr Glu Gly	1717 1777 1837
ctgctacctt caaaaaaa <210> 12 <211> 256 <212> PRT <213> H. sapid <400> 12 Met Glu Arg Lys Ile 1 Lys His Asn Ser Leu	ens Asn Arg Arg Glu Lys	aca ataaaaagta aataaaagca	1717 1777 1837
ctgctacctt caaaaaaa <210> 12 <211> 256 <212> PRT <213> H. sapid <400> 12 Met Glu Arg Lys Ile 1 5 Lys His Asn Ser Leu 20 Thr Leu Met Thr Leu	Asn Arg Arg Glu Lys 10 Glu Asp Thr Asp Gln 25 Asn Val Gly Gly Tyr	Glu Lys Glu Tyr Glu Gly 15 Gly Lys Asn Cys Lys Ser 30 Leu Tyr Ile Thr Gln Lys	1717 1777 1837
ctgctacctt caaaaaaa <210> 12 <211> 256 <212> PRT <213> H. sapid <400> 12 Met Glu Arg Lys Ile 1 5 Lys His Asn Ser Leu 20 Thr Leu Met Thr Leu 35 Gln Thr Leu Thr Lys	Asn Arg Arg Glu Lys 10 Glu Asp Thr Asp Gln 25 Asn Val Gly Gly Tyr 40 Tyr Pro Asp Thr Phe	Glu Lys Glu Tyr Glu Gly 15 Gly Lys Asn Cys Lys Ser 30	1717 1777 1837
ctgctacctt caaaaaaa <210> 12 <211> 256 <212> PRT <213> H. sapid <400> 12 Met Glu Arg Lys Ile 1 5 Lys His Asn Ser Leu 20 Thr Leu Met Thr Leu 35 Gln Thr Leu Thr Lys 50 Gly Lys Ile Leu Cys	Asn Arg Arg Glu Lys 10 Glu Asp Thr Asp Gln 25 Asn Val Gly Gly Tyr 40 Tyr Pro Asp Thr Phe 55 Pro Phe Asp Ala Asp	Glu Lys Glu Tyr Glu Gly 15 Gly Lys Asn Cys Lys Ser 30 Leu Tyr Ile Thr Gln Lys 45	1717 1777 1837
ggtattttgc tgaaaatt ctgctacctt caaaaaaa <210> 12 <211> 256 <212> PRT <213> H. sapid <400> 12 Met Glu Arg Lys Ile 1 5 Lys His Asn Ser Leu 20 Thr Leu Met Thr Leu 35 Gln Thr Leu Thr Lys 50 Gly Lys Ile Leu Cys 65	Asn Arg Arg Glu Lys 10 Glu Asp Thr Asp Gln 25 Asn Val Gly Gly Tyr 40 Tyr Pro Asp Thr Phe 55 Pro Phe Asp Ala Asp	Glu Lys Glu Tyr Glu Gly 15 Gly Lys Asn Cys Lys Ser 30 Leu Tyr Ile Thr Gln Lys 45 Leu Glu Gly Ile Val Asn 60 Gly His Tyr Phe Ile Asp 75	1717 1777 1837
ctgctacctt caaaaaaa <210> 12 <211> 256 <212> PRT <213> H. sapid <400> 12 Met Glu Arg Lys Ile 1	Asn Arg Arg Glu Lys 10 Glu Asp Thr Asp Gln 25 Asn Val Gly Gly Tyr 40 Tyr Pro Asp Thr Phe 55 Pro Phe Asp Ala Asp 70 Phe Arg His Val Leu	Glu Lys Glu Tyr Glu Gly 15 Gly Lys Asn Cys Lys Ser 30 Leu Tyr Ile Thr Gln Lys 45 Leu Glu Gly Ile Val Asn 60 Gly His Tyr Phe Ile Asp 75 80 Asn Phe Leu Arg Asn Gly	1717 1777 1837
ctgctacctt caaaaaaa <210> 12 <211> 256 <212> PRT <213> H. sapid <400> 12 Met Glu Arg Lys Ile 1	Asn Arg Arg Glu Lys 10 Glu Asp Thr Asp Gln 25 Asn Val Gly Gly Tyr 40 Tyr Pro Asp Thr Phe 55 Pro Phe Asp Ala Asp 70 Phe Arg His Val Leu 90 Glu Gly Phe Arg Glu	Glu Lys Glu Tyr Glu Gly 15 Gly Lys Asn Cys Lys Ser 30 Leu Tyr Ile Thr Gln Lys 45 Leu Glu Gly Ile Val Asn 60 Gly His Tyr Phe Ile Asp 75 80 Asn Phe Leu Arg Asn Gly 95 Asn Gln Leu Leu Ala Gln	1717 1777 1837
ctgctacctt caaaaaaa <210> 12 <211> 256 <212> PRT <213> H. sapid <400> 12 Met Glu Arg Lys Ile 1	Asn Arg Arg Glu Lys 10 Glu Asp Thr Asp Gln 25 Asn Val Gly Gly Tyr 40 Tyr Pro Asp Thr Phe 55 Pro Phe Asp Ala Asp 70 Phe Arg His Val Leu 90 Glu Gly Phe Arg Glu 105 Gln Leu Lys Gly Leu	Glu Lys Glu Tyr Glu Gly 15 Gly Lys Asn Cys Lys Ser 30 Leu Tyr Ile Thr Gln Lys 45 Leu Glu Gly Ile Val Asn 60 Gly His Tyr Phe Ile Asp 75 80 Asn Phe Leu Arg Asn Gly 95 Asn Gln Leu Leu Ala Gln 110 Ala Glu Glu Val Lys Ser	1717 1777 1837
<pre>ggtattttgc tgaaaatt ctgctacctt caaaaaaa <210> 12</pre>	Asn Arg Arg Glu Lys 10 Glu Asp Thr Asp Gln 25 Asn Val Gly Gly Tyr 40 Tyr Pro Asp Thr Phe 55 Pro Phe Asp Ala Asp 70 Phe Arg His Val Leu 90 Glu Gly Phe Arg Glu 105 Gln Leu Lys Gly Leu	Glu Lys Glu Tyr Glu Gly 15 Gly Lys Asn Cys Lys Ser 30 Leu Tyr Ile Thr Gln Lys 45 Leu Glu Gly Ile Val Asn 60 Gly His Tyr Phe Ile Asp 75 80 Asn Phe Leu Arg Asn Gly 95 Asn Gln Leu Leu Ala Gln	1717 1777 1837

```
Arg Trp Glu Lys Glu Gln Leu Thr Pro Arg Glu Thr Thr Phe Leu Glu
                       135
                                          140
 Ile Thr Asp Asn His Asp Arg Ser Gln Gly Leu Arg Ile Phe Cys Asn
             150
Ala Pro Asp Phe Ile Ser Lys Ile Lys Ser Arg Ile Val Leu Val Ser
               165
                                   170
 Lys Ser Arg Leu Asp Gly Phe Pro Glu Glu Phe Ser Ile Ser Ser Asn
            180
                              185
 Ile Ile Gln Phe Lys Tyr Phe Ile Lys Ser Glu Asn Gly Thr Arg Leu
        195
                           200
Val Leu Lys Glu Asp Asn Thr Phe Val Cys Thr Leu Glu Thr Leu Lys
                       215
                                          220
Phe Glu Ala Ile Met Met Ala Leu Lys Cys Gly Phe Arg Leu Leu Thr
                   230
                                      235
Ser Leu Asp Cys Ser Lys Gly Ser Ile Val His Ser Asp Ala Leu His
               245
                                   250
Phe Ile
                     <210> 13
     ·<211> 1877
     <212> DNA
     <213> H. sapiens
      <220>
      <221> CDS
     <222> (322)...(1090)
      <223> K+Hnov27
      <400> 13
caccacegee eccageegee etegetgggg aacaettaca teeteeccaa agacageeag
                                                                   60
gtcgggcccg acgtgaaatc cgaggctgcg cccaagcgcg ccctgtacga gtctgtgttc
                                                                  120
gggtcggggg aaatctgcgg ccccacttcc cccaaaagac tttgtatccg cccctcggag
cctgtggatg cggtggtggt ggtttccgtg aaacacgacc ccctgcctct tcttccagaa
                                                                  240
gccaatgggc acagaagcac caattctccc acaatagttt cacctgctat tgtttccccc
                                                                  300
acccaggaca greggeecaa t atg tea aga eet etg ate aet aga tee eet
                                                                  351
                       Met Ser Arg Pro Leu Ile Thr Arg Ser Pro
gca tot cca ctg awc aac caa ggc atc cct act cca gca caa ctc aca
                                                                  399
Ala Ser Pro Leu Xaa Asn Gln Gly Ile Pro Thr Pro Ala Gln Leu Thr
aaa too aat geg oot gto cac att gat gtg ggc ggc cac atg tac acc
                                                                  447
Lys Ser Asn Ala Pro Val His Ile Asp Val Gly Gly His Met Tyr Thr
                              35
age age etg gee acc etc acc aaa tac eet gaa tee aga atc gga aga
                                                                  495
Ser Ser Leu Ala Thr Leu Thr Lys Tyr Pro Glu Ser Arg Ile Gly Arg
               50
ctt ttt gat ggt aca gag ccc att gtt ttg gac agt ctc aaa cag cac
                                                                  543
Leu Phe Asp Gly Thr Glu Pro Ile Val Leu Asp Ser Leu Lys Gln His
                       65
tat ttc att gac aga gat gga cag atg ttc aga tat atc ttg aat ttt
                                                                  591
Tyr Phe Ile Asp Arg Asp Gly Gln Met Phe Arg Tyr Ile Leu Asn Phe
                   80
cta cga aca tcc aaa ctc ctc att cct gat gat ttc aag gac tac act
                                                                 639
Leu Arg Thr Ser Lys Leu Leu Ile Pro Asp Asp Phe Lys Asp Tyr Thr
```

95		100	105
ttg tta tat gaa gag Leu Leu Tyr Glu Glu 110	gca aaa tat ttt Ala Lys Tyr Phe 115	cag ctt cag ccc atg Gln Leu Gln Pro Met 120	ttg ttg 687 Leu Leu
gag atg gaa aga tgg Glu Met Glu Arg Trp 125	aag cag gac aga Lys Gln Asp Arg 130	gaa act ggt cga ttt Glu Thr Gly Arg Phe 135	tca agg 735 Ser Arg
Pro Cys Glu Cys Leu 140	Val Val Arg Val 145	gcc cca gac ctc gga Ala Pro Asp Leu Gly 150	Glu Arg
Ile Thr Leu Ser Gly	Asp Lys Ser Leu 160	ata gaa gaa gta ttt Ile Glu Glu Val Phe 165	Pro Glu 170
Ile Gly Asp Val Met 175	Cys Asn Ser Val	• •	His Asp 185
Ser Thr His Val Ile 190	Arg Phe Pro Leu 195	aat ggc tac tgt cac Asn Gly Tyr Cys His 200	Leu Asn
Ser.Val Gin Val Leu 205	Glu Arg Leu Gln 210	caa aga gga ttt gaa Gln Arg Gly Phe Glu 215	Ile Val
ggc tcc tgt ggg gga Gly Ser Cys Gly Gly 220	gga gta gac tcg Gly Val Asp Ser 225	tcc cag ttc agc gaa Ser Gln Phe Ser Glu 230	tac gtc 1023 Tyr Val
ctt cgg cgg gaa ctg Leu Arg Arg Glu Leu 235	agg cgg acg ccc Arg Arg Thr Pro 240	cgt gta ccc tcc gtc Arg Val Pro Ser Val 245	atc cgg 1071 Ile Arg 250
ata aag caa gag cct Ile Lys Gln Glu Pro 255	ctg g actaaatgga Leu	Catatttett atgeaaaa	ag 1120
caaaccaagt cctggacgactgactgattc atatgggacaataaacac atgagtggcatcaataatacaagcc atgagtggcatcaaaaacac cttgaatcaatttaaat gtagtttgatcacttgtt ttaaaactctgtt ttaaaactctgtt caagtctgcaataaactc tgtttaaaccc atgagtcgcaataaactc tgtttaaaaccc atgagtctgcaataaactc tgtttaaaaccc atgagtctgcaataaactc tgtttaaaaccc aataaactc tgtttaaaaccc aatgagtctgcaataaactc tgtttaaaaccc aatgagtctgcaataaactc tgtttaaaaccc aatgagtctgccaataaactc tgtttaaaaccc aatgagtctgccagtt caagtctgccagtt caagtctgccaataaactc tgtttaaaaccc aatgagtctgccaataaactc tgtttaaaaccc aatgagtctgccaataaactc tgtttaaaaccc aatgagtctgccaataaactc tgtttaaaaccc aatgagtctgccaataaactc tgtttaaaaccc aatgagtctgccaataaactc tgtttaaaaccc aatgagtctgccaataaaccc aggacttcaaaccccagtt caagtctgccaataaaccc aatgagtcgccaaggccaggcc	ta aaattgaata aaaaa aaaaaaaaaaaaaaaaaaa		agagaccac 1240 aaatatata 1300 aaggtgaca 1360 tctgacaaa 1420 aacaacagc 1480 aacaaaaca 1540 ctttaggca 1600 tagacatga 1660 atgtgaact 1720 tgttagaat 1780 tattaaata 1840 1877
,		24	'

```
<220>
      <221> VARIANT
     <222> (1)...(256)
     <223> Xaa = Any Amino Acid
     <400> 14
Met Ser Arg Pro Leu Ile Thr Arg Ser Pro Ala Ser Pro Leu Xaa Asn
            ∵ 5
                               10
Gln Gly Ile Pro Thr Pro Ala Gln Leu Thr Lys Ser Asn Ala Pro Val
                            25
His Ile Asp Val Gly Gly His Met Tyr Thr Ser Ser Leu Ala Thr Leu
    35
                       40
Thr Lys Tyr Pro Glu Ser Arg Ile Gly Arg Leu Phe Asp Gly Thr Glu
                    55
Pro Ile Val Leu Asp Ser Leu Lys Gln His Tyr Phe Ile Asp Arg Asp
              70 75
Gly Gln Met Phe Arg Tyr Ile Leu Asn Phe Leu Arg Thr Ser Lys Leu
             85
                              90
                                                95
Leu Ile Pro Asp Asp Phe Lys Asp Tyr Thr Leu Leu Tyr Glu Glu Ala
          100
Lys Tyr Phe Gln Leu Gln Pro Met Leu Glu Met Glu Arg Trp Lys
                       120
Gln Asp Arg Glu Thr Gly Arg Phe Ser Arg Pro Cys Glu Cys Leu Val
                    135
   130
                         140
Val Arg Val Ala Pro Asp Leu Gly Glu Arg Ile Thr Leu Ser Gly Asp
                150
                                  155
Lys Ser Leu Ile Glu Glu Val Phe Pro Glu Ile Gly Asp Val Met Cys
             165.
                               170
                                   175
Asn Ser Val Asn Ala Gly Trp Asn His Asp Ser Thr His Val Ile Arg
                           185
                                            190
Phe Pro Leu Asn Gly Tyr Cys His Leu Asn Ser Val Gln Val Leu Glu
                       200
                                         205
Arg Leu Gln Gln Arg Gly Phe Glu Ile Val Gly Ser Cys Gly Gly
                    215
                                     220
Val Asp Ser Ser Gln Phe Ser Glu Tyr Val Leu Arg Arg Glu Leu Arg
                230
                                 235
Arg Thr Pro Arg Val Pro Ser Val Ile Arg Ile Lys Gln Glu Pro Leu
       _ 245
                     250
    <210> 15
     <211> 923
     <212> DNA
     <213> H. sapiens ...
     <220>
     <221> CDS
    <222> (165)...(756)
<223> K+Hnov2
     <400> 15
gcgtggtggc aggtgcctgt agccccagct acttgggagg ctgaggcagg agaatagctt
                                                           60
gaacceggge ggegaaggtt gagtgageeg agattgeace actgeactee ageetgggeg
                                                           120
acagagegag actecatete aaaaaaaaga gtagttatgg ceae atg gee eea eta
                                                           176
                                         Met Ala Pro Leu
                                          1
                                              ;
teg eca gge gga aag gee tte tge atg gte tat gea gee etg ggg etg
                                                           224
Ser Pro Gly Gly Lys Ala Phe Cys Met Val Tyr Ala Ala Leu Gly Leu
                 10 15 20
cca gcc tcc tta gct ctc gtg gcc acc ctg cgc cat tgc ctg ctt
                                                          272
```

Pro	Ala	Ser	Leu	Ala 25	Leu	Val	Ala	Thr	Leu 30	Arg	His	Cys	Leu	Leu 35	Pro	
gtg Val	ctc Leu	agc Ser	cgc Arg 40	cca Pro	cgt Arg	gcc Ala	tgg Trp	gta Val 45	gcg Ala	gtc Val	cac His	tgg Trp	cag Gln 50	ctg Leu	tca Ser	320
ccg Pro	gcc Ala	agg Arg 55	gct' Ala	gcg Ala	ctg Leu	ctg Leu	cag Gln 60	gca Ala	gtt Val	gca Ala	ctg Leu	gga Gly 65	ctg Leu	ctg Leu	gtg Val	368
gcc Ala	agc Ser 70	agc Ser	ttt Phe	gty Val	ctg Leu	ctg Leu 75	cca Pro	gcģ Ala	ctg Leu	gtg Val	ctg Leu 80	tgg Trp	Gly	ctt Leu	cag Gln	416
ggc Gly 85	Asp	tgc Cys	agc Ser	Leu	ctg Leu 90	Gly	gcc Ala	gtc Val	tac Tyr	ttc Phe 95	tgc Cys	ttc Phe	agc Ser	tcg Ser	ctc Leu 100	464
agc Ser	acc Thr	att Ile	ggc	ctg Leu 105	gag Glu	gac [°] Asp	ttg Leu	Leu	ccc Pro 110	Gly	cgc Arg	gj. ggc	cgc Arg	agc Ser 115	ctg Leu	512
cac His	ccc Pro	gtg Val	att Ile 120	tac Tyr	Cac	ctg Leu	Gly	cag Gln 125	Leu	Ala	ctt Leu	ctt Leu	ggt Gly 130	tac Tyr	ttg Leu	560
Leu	cta Leu	gga Gly 135	ctc Leu	ttg Leu	gcc Ala	atg Met	ctg Leu 140	ctg Leu	gca Ala	gtg Val	gag Glu	acc Thr 145	ttc Phe	tct Ser	gag Glu	608
Leu	Pro 150	Gln	Val	Arg	gcc Ala	Met 155	Gly	Lys	Phe	Phe	Arg 160	Pro	Ser	Gly	Pro	656
gtg Val 165	act Thr	gct Ala	gag Glu	Asp	caa Gln 170	ggt Gly	ggc	atc Ile	Leu	999 Gly 175	cag Gln	gat Asp	gaa Glu	ctg Leu	gct Ala 180	704
ctg Leu	agc Ser	acc Thr	ctg Leu	ccg Pro 185	Pro	gcg Ala	gcc Ala	cca Pro	gct Ala 190	tca Ser	gga Gly	caa Gln	gcc Ala	cct Pro 195	gct Ala	752
tgc Cys	t ga	agcg	ytca <u>g</u>	gtg	Jacco	jagt	tcag	jctco	gt a	aggt	ggcg	ig ca	acctg	agga	ı	806
ggaa ggag	igcag jgcct	ca e	ıggag	tggo	t gg g tt	ggaa aato	igaat ataa	ctg aaa	gaga laaaa	itgģ iaaa	agco aaaa	gege	jtg a	igggt iaaaa	gggcg	923
	<2 <2 <2	112> 113>	197 PRT H. s		ens .		·			1+ - - + - - F _	 	*. :		3	ing and a second se	
					Pro	Gly	Gly	Lys		Phe	Cys	Met	Val		Ala	
				5 Pro	Ala	Ser	Leu	Ala 25	10 Leu	Val-	Ala	Thr	Leu 30	15 Arg	His	
Cys	Leu	Leu	-	Val	Leu	Ser	Arg		Arg	Ala	Trp	Val		Val	His	

0 / 10 /WO__ 6 /436-641_1 >

Try Gin Leu Ser Pro Ala Arg Ala Ala Leu Leu Gin Ala Val Ala Leu 50 5 5 6 60 70 70 70 80 75			35					40					4 =			•	
Gly Leu Leu Val Ala Ser Ser Phe Val Leu Leu Pro Ala Leu Val Leu 65 70 Trp Gly Leu Gln Gly Asp Cys Ser Leu Leu Gly Ala Val Tyr Phe Cys 85 90 Phe Ser Ser Leu Ser Thr Ile Gly Leu Glu Asp Leu Leu Pro Gly Arg 100 105 110 Gly Arg Ser Leu His Pro Val Ile Tyr His Leu Gly Gln Leu Ala Leu 115 Leu Gly Tyr Leu Leu Leu Gly Leu Leu Ala Met Leu Leu Ala Val Glu 130 Thr Phe Ser Glu Leu Pro Gln Val Arg Ala Met Gly Lys Phe Phe Arg 145 Thr Phe Ser Gly Pro Val Thr Ala Glu Asp Gln Gly Gly Ile Leu Gly Gln 165 Asp Glu Leu Ala Leu ser Thr Leu Pro Pro Ala Ala Pro Ala Ser Gly 180 Gln Ala Pro Ala Cys 190 Gln Ala Pro Ala Cys 190 <pre></pre>	Trp	Gln 50	Leu	Ser	Pro	Ala	Arg	Ala	Ala	Leu	Leu		45 Ala	Val	Ala	Leu	
Trp Gly Leu Gln Gly Asp Cys Ser Leu Leu Gly Ala Val Tyr Phe Cys 85 90 Phe Ser Ser Leu Ser Thr Ile Gly Leu Glu Asp Leu Leu Pro Gly Arg 100 115 110 115 120 120 121 120 121 Leu Gly Tyr Leu Leu Leu Gly Leu Leu Ala Met Leu Ala Leu 130 Thr Phe Ser Glu Leu Pro Gln Val Arg Ala Met Gly Lys Phe Phe Arg 145 Pro Ser Gly Pro Val Thr Ala Glu Asp Gln Gly Gly Ile Leu Gly Gln 185 Pro Ser Gly Pro Val Thr Ala Glu Asp Gln Gly Gly Ile Leu Gly Gln 185 Asp Glu Leu Ala Leu Ser Thr Leu Pro Pro Ala Ala Pro Ala Ser Gly 180 Gln Ala Pro Ala Cys 195 Gln Ala Pro Ala Cys 195 <210> 17 <221> 3102 <221> DNA <2213> H. sapiens <222> (274) (1705) <222> (274) (1705) <222> (274) (1705) <222> (274) (1705) <223> K+Hnov11 <400> 17 gcacgcgcaa agcgccaacc ggagaccctg gggtggagct tgtggtaata gaaacatacc caccccaga ctttcctggg aggggacccg ggcgccag taatgggtag ggagaggggg cccccccccagc ctttcctggg aggggacccccc aggacccacc aggaggcccccc aggacccacc ag at ac ac gcc ggc gcccccccccc	Gly 65	Leu	Leu	Val	Ala	Ser	Ser	Phe	Val	Leu	Leu	Pro	Ala				
Phe Ser Ser Leu Ser Thr Ile Gly Leu Glu Asp Leu Leu Pro Gly Arg 100 105 110 1105 110 1105 110 1105 110 110	Trp	Gly	Leu	Gln	Gly			Ser	Leu	Leu	Gly	Ala	Val	Tyr	Phe	80 Cys	
Gly Arg Ser Leu His Pro Val Ile Tyr His Leu Gly Gln Leu Ala Leu 115 120 Leu Gly Tyr Leu Leu Leu Gly Leu Leu Ala Met Leu Leu Ala Val Glu 130 150 150 Thr Phe Ser Glu Leu Pro Gln Val Arg Ala Met Gly Lys Phe Phe Arg 145 150 155 160 Pro Ser Gly Pro Val Thr Ala Glu Asp Gln Gly Gly Ile Leu Gly Gln 165 170 175 Asp Glu Leu Ala Leu Ser Thr Leu Pro Pro Ala Ala Pro Ala Ser Gly 180 180 185 Gln Ala Pro Ala Cys 195 <a< td=""><td>Phe</td><td>Ser</td><td>Ser</td><td>Leu</td><td>Ser</td><td>Thr</td><td>Ile</td><td>Gly</td><td>Leu</td><td>Glu</td><td>Asp</td><td>Leu</td><td>Leu</td><td>Pro</td><td>Gly</td><td>Arg</td><td></td></a<>	Phe	Ser	Ser	Leu	Ser	Thr	Ile	Gly	Leu	Glu	Asp	Leu	Leu	Pro	Gly	Arg	
Leu Gly Tyr Leu Leu Leu Gly Leu Leu Ala Met Leu Leu Ala Val Glu 130 131 135 Thr Phe Ser Glu Leu Pro Gln Val Arg Ala Met Gly Lys Phe Phe Arg 145 150 Pro Ser Gly Pro Val Thr Ala Glu Asp Gln Gly Gly Ile Leu Gly Gln 165 170 Asp Glu Leu Ala Leu Ser Thr Leu Pro Pro Ala Ala Pro Ala Ser Gly 180 180 181 Gln Ala Pro Ala Cys 195 <a blue"="" color:="" href="mailto:specific style=">specific style="color: blue">specific style="color: blue">sp	Gly	Arg	Ser	Leu	His	Pro	Val	Ile	Tyr	His	Leu	Gly	Gln	110 Leu	Ala	Leu	
Thr Phe Ser Glu Leu Pro Gln Val Arg Ala Met Gly Lys Phe Phe Arg 145 150 150 155 160 Pro Ser Gly Pro Val Thr Ala Glu Asp Gln Gly Gly Ile Leu Gly Gln 165 170 175 180 185 190 185 190 Gln Ala Ser Gly 180 185 190 Gln Ala Pro Ala Cys 195 190 185 190 190 195 190 Gln Ala Pro Ala Cys 195 190 190 195 190 190 195 190 190 195 190 195 190 190 190 190 190 190 190 190 190 190	Leu	Gly	Tyr		Leu	Leu	Gly	Leu		Ala	Met		Leu	Ala	Val	Glu	
Pro Ser Gly Pro Val Thr Ala Glu Asp Gln Gly Gly Ile Leu Gly Gln 165 170 175 Asp Glu Leu Ala Leu Ser Thr Leu Pro Pro Ala Ala Pro Ala Ser Gly 180 185 185 190 Gln Ala Pro Ala Cys 190 C210> 17 C211> 31.02 C212> DNA C213> H. sapiens C220> C222> (274)(1705) C223> K+Hnov11 C400> 17 Gcaccgcgaa agcgcccacc gagacccctg gggtggagct tgtgttaata gaaacatacc caccccagc ctttcctggg aggggactag acccctcaaa ctcttgcccc agcccagccc	Thr			Glü	Leu	Pro	Gln	Val	Arg	Ala	Met	140 Gly	Lys	Phe	Phe	Arg	
Asp Glu Leu Ala Leu Ser Thr Leu Pro Pro Ala Ala Pro Ala Ser Gly 180 Gln Ala Pro Ala Cys 195 <210> 17 <211> 3102 <212> DNA <2213> H. sapiens <220> <222> (274)(1705) <223> K+Hnov11 <400> 17 gcacgegeaa agegeccace gagacccctg gggtggagct tgtgttaata gaaacatacc caccccage ctttcctggg aggggactaga accctcaaa ctcttgccca agcccagccc	143					T20					155					160	
Gln Ala Pro Ala Cys 195 (210> 17 (211> 3102 (212> DNA (213> H. sapiens (220> (221> CDS (221> CDS (221> CDS (221> CZ3> K+Hnov11 (400> 17 gcacgegcaa agegcccacc gagacccctg gggtggagct tgtgttaata gaaacatacc caccccagc ctttcctggg aggggatcag accctcaaa ctcttgcccc ageccagccc ttcagcacc aagacccacc aggaagcctg ggeccgcag taatgggtag ggagaggggg ttcagcacccagg gggacaggcg ctctcagcac cgtgttcc tccgcttcca gggtgaggc cccccgcagg gggacaggcg ctctcgcga cgctgttcc tccgcttcca gggtgaggc cccccgcagg gggacaggcg cggcgcctcc agc atg acg gc cag agc ctg tgg Met Thr Gly Gln Ser Leu Trp 1 5 gac gtg tcg gag gct aac gtc gag gac ggg ag atc cgc atc aat gtg Asp Val Ser Glu Ala Asn Val Glu Asp Gly Glu Ile Arg Ile Asn Val 10 15 10 15 10 15 10 10 15 10 10					T02					170					175		
<pre> 210> 17 211> 3102 212> DNA 2213> H. sapiens 220> 221> CDS 222> (274)(1705) 223> K+Hnov11 4400> 17 Gcacgcgcaa agcgcccacc gagacccctg gggtggagct tgtgttaata gaaacatacc cacccccagc ctttcctggg aggggatcag acccctcaaa ctcttgcccc agcccaggcctttcagcacc aagacccacc aggaggctg ggccccacc gagacggggg cccccgcagt aatgggtag ggaggggg cccccgcagg gggaccggc ctctccaga cgctgttccc tccgcttcca ggtgtagcgc cccccgcagg gggaccggc cggcgcctcc agc atg acc ggc cag agc ctg tgg cccccgcgcgg cgcggggcccccag cgcgcgctcc agc atg acc ggc cag agc ctg tgg</pre>				TRO				nea	185	PIO	ALA	AIA	Pro			Gly	
<pre> <210> 17 <211> 3102 <212> DNA <213> H. sapiens <220> <221> CDS <222> (274)(1705) <223> K+Hnov11 <400> 17 gcacgcgcaa agcgcccacc gagacccctg gggtggagct tgtgttaata gaaacatacc cacccccage ctttcctggg aggggatcag acccctcaaa ctcttgccc agccagccc tttccaggaccac aggagcctg ggccgccag taatgggtag ggagagggg ccccccagagcc cttccagaccac aggacccacc agccccagacc tttrcagcacc aggagccgc cccccgcagg ccccccgcgcgg ccccccgcgcgg ccccccgcgcgc cccccgcgcgg cccccc</pre>	GIII	ATA	195	ALA	Cys	. ,											
<pre> <211> 3102</pre>	: •					•							:				
<pre> <212> DNA <213> H. sapiens <220> <221> CDS <222> (274)(1705) <223> K+Hnov11 <400> 17 Gcacgcgcaa agcgccacc gagaccctg gggtggagct tgtgttaata gaaacatacc caccccagc ctttcctggg aggggatcag accctcaaa ctcttgccc agccagccc ttcagcaca cagacccac aggaggcctg ggccgccag taatgggtag ggagaggggg cccccgcgcagg ggcacggcg ctctcgccga cgctgttccc tccgcttcca ggtgtagcgc ccccgcgcagg cgcagggcgccccag cag agc ctg tgg Met Thr Gly Gln Ser Leu Trp 1 5 gac gtg tcg gag gct aac gtc gag gac ggg gag atc cgc atc aat gtg Asp Val Ser Glu Ala Asn Val Glu Asp Gly Glu Ile Arg Ile Asn Val 10 15 20 ggc ggc ttc aag agg agg ctg cgc tcg cac acg ctg ctg cgc Gly Gly Phe Lys Arg Arg Leu Arg Ser His Thr Leu Leu Arg Phe Pro 25 30 35 gag acg cgc ctg ggc cgc ttg ctg ctc tcg cac tcg cgc gag gcc att 40 45 50 55 ctg gag ctc tgc gat gac tac gac gac gtc cag cgg gag ttc tac ttc 40 45 50 70 gac cgc aac cct gag ctc tac cac gac gag gtc ttac tac ttc 40 Glu Leu Cys Asp Asp Tyr Asp Asp Val Gln Arg Glu Phe Tyr Phe 60 65 70 gac cgc aac cct gag ctc ttc ccc tac gtg ctg cat ttc tac tac fac cgc cac cgc gag ccc acc cgc cgc aac cgc cg</pre>		<2	210>	17	•				:								
<pre> <2123 H. sapiens <2213 H. sapiens <2221 CDS <2222 (274) (1705) <2223 K+Hnovl1 <400> 17 gcacgcgcaa agcgcccacc gagacccctg gggtggagct tgtgttaata gaaacatacc caccccagc ctttcctggg agggggatcag acccctcaaa ctcttgcccc agccagccc tttccagg aggaggctg ggccgccag taatgggtag ggagaggggg cccccccacag gcgcaacgccg ctttccaag gcccagccag taatgggtag ggagaggggg ccccccacag gcgcagccgc cttcccaag gcccagcag ccccccacag gcgcagcgc ctcccacag agcccagcag ccccccacag gcgcagcgc cccccgcag gcgcgccca agc atg acc ggc cag agc ctg tgg 2 Met Thr Gly Gln Ser Leu Trp 1 5 gac gtg tcg gag gct aac gtc gag gac ggg gag atc cgc atc aat gtg Asp Val Ser Glu Ala Asn Val Glu Asp Gly Glu Ile Arg Ile Asn Val 10 15 ggc ggc ttc aag agg agg ctg cgc tcg cac acg ctg ctg cgc tcc ccc Gly Gly Phe Lys Arg Arg Leu Arg Ser His Thr Leu Leu Arg Phe Pro 25 30 35 gag acg cgc ctg ggc cgc ttg ctc tcc cac ctg cgc gag gcc att 40 45 50 75 ctg gag ctc tgc gat gac tac gac gac gtc cag cgg gag ttc tac ttc 41 Asc Cgc gag ctc tgc gat gac tac gac gac gtc cag cgg gag ttc tac ttc 42 Gac cgc aac cct gag ctc ttc ccc tac gtc cat ttc tac ttc 43 Gac cgc aac cct gag ctc ttc ccc tac gtc cat ttc tac ttc 44 Gac cgc aac cct gag ctc ttc ccc tac gtc ctc tac cat ttc tac ttc 45 Gac cgc aac cct gag ctc ttc ccc tac gtc ctc tac cat ttc tac ttc 46 Gac cgc aac cct gag ctc ttc ccc tac gtc ctc tac cat ttc tac ttc 47 Gac cgc aac cct gag ctc ttc ccc tac gtc ctc tac cat ttc tac ttc 47 Gac cgc aac cct gag ctc ttc ccc tac gtc ctc ttc tac ttc 48 Gac cgc aac cct gag ctc ttc ccc tac gtc ctc ttc cat ttc tac ttc 49 Gac cgc aac cct gag ctc ttc ccc tac gtc ctc ttc cat ttc tac ttc 40 Gac cgc aac cct gag ctc ttc ccc tac gtc ctc ttc cat ttc tac ttc 40 Gac cgc aac cct gag ctc ttc ccc tac gtc ctc ttc cat ttc tac ttc 40 Gac cgc aac cct gag ctc ttc ccc tac gtc ctc cat ttc tac ttc 40 Gac cgc aac cct gag ctc ttc ccc tac gtc ctc cat ttc tac ttc 40 Gac cgc aac cct gag ctc ttc ccc tac gtc ctc cat ttc tac ttc 40 Gac cgc aac cct gag ctc ttc ccc tac gtc ctc cat ttc cat ttc 40 Gac cgc cac aac cct gag ccc ccc ag</pre>							44,										
<pre></pre>										. ,				. 7	ν.		
<pre> <221> CDS <222> (274)(1705) <223> K+Hnov11 <400> 17 gcacgcgcaa agcgcccacc gagacccctg gggtggagct tgtgttaata gaaacatacc cacccccage ctttcctggg agggggatcag acccctcaaa ctcttgeccc agcccagccc tttcctggg agggggagct ggccgccag taatgggtag ggagaggggg ccccccagcagg gcgcacggc cagtgttccc tccgcttcca ggtgtagcgc ccccgccagg gcgcacggcg ctctcgccga cgctgttccc tccgcttcca ggtgtagcgc ccccgcgcgg cgcggggcgcccc agc atg acc ggc cag agc ctg tgg 2 Met Thr Gly Gln Ser Leu Trp 1 5 gac gtg tcg gag gct aac gtc gag gac ggg gag atc cgc atc aat gtg Asp Val Ser Glu Ala Asn Val Glu Asp Gly Glu Ile Arg Ile Asn Val 10 15 20 ggc ggc ttc aag agg agg ctg cgc tcg cac acg ctg ctg cgc ttc ccc Gly Gly Phe Lys Arg Arg Leu Arg Ser His Thr Leu Leu Arg Phe Pro 25 30 35 gag acg cgc ctg ggc cgc ttg ctg ctc tgc cac tcg cgc gag gcc att 40 45 50 55 ctg gag ctc tgc gat gac tac gac gac gtc cag cgg gag ttc tac ttc Leu Glu Leu Cys Asp Asp Tyr Asp Asp Val Gln Arg Glu Phe Tyr Phe 60 65 70 gac cgc aac cct gag ctc ttc ccc tac gtg ctg cat ttc tat cac acc accccccagc acc ctg ggc ctc ttc ccc tac gtg ctg cat ttc tat cac acc acccccagc ggg gag ctc ttc ccc tac gtg ctg cat ttc tat cac acc accccgcagg gag ctc ttc ccc tac gtg ctg ctg cat ttc tat cac acc accccgcag acc cct gag ctc ttc ccc tac gtg ctg cat ttc tat cac acc accccgcag acc cct gag ctc ttc ccc tac gtg ctg ctg ttc tat ctc accccgcag acc cct gag ctc ttc ccc tac gtg ctg ctg ctg ttc tat ctc accccgcag acc cct gag ctc ttc ccc tac gtg ctg ctg ctg ttc tat ctc accccgcag acc cct gag ctc ttc ccc tac gtg ctg ctg ctg ttc tat ttc tat cac acc accccgcag acccccac acgagagcccc acccct accg gag gat ttc tac ttc acccccccccccccccccccccc acccccccccc</pre>		<2	213>	н. s	apie	ens											
<pre></pre>							_					i.					
<pre> <222> (274)(1705) <223> K+Hnovl1 <400> 17 gcacgcgcaa agcgcccacc gagacccctg gggtggagct tgtgttaata gaaacatacc caccccagc ctttcctggg aggggatcag acccctcaaa ctcttgccca agccagccg ttcacgcagcc aggagcctg ggccgcag taatgggtag ggagaggggg ccccgcaggg ctctcgcag cgctgttccc tccgcttca ggtgtaggccccccgcagg gcgcacgggg ctctcgccag cgctgttccc tccgcttca ggtgtaggccccccgcagg gcgcgcggg cggggcctcc agc atg acc ggc cag agc ctg tgg Met Thr Gly Gln Ser Leu Trp 1 5 gac gtg tcg gag gct aac gtc gag gac ggg gag atc cgc atc aat gtg Asp Val Ser Glu Ala Asn Val Glu Asp Gly Glu Ile Arg Ile Asn Val 10 15 20 ggc ggc ttc aag agg agg ctg cgc tcg cac acg ctg ctg cgc tcc ccc Gly Gly Phe Lys Arg Arg Leu Arg Ser His Thr Leu Leu Arg Phe Pro 25 30 35 gag acg cgc ctg ggc cgc ttg ctg ctc tgc cac tcg cgc gag gcc att Glu Thr Arg Leu Gly Arg Leu Leu Leu Cys His Ser Arg Glu Ala Ile 40 45 50 55 ctg gag ctc tgc gat gac tac gac gac gtc cag cgg gag ttc tac ttc Leu Glu Leu Cys Asp Asp Tyr Asp Asp Val Gln Arg Glu Phe Tyr Phe 60 65 70 gac cgc aac cct gag ctc ttc ccc tac gtg ctg cat ttc tac tac acc 1</pre>	¥																
gacagegeaa agegeceace gagacecetg gggtggaget tgtgttaata gaaacatace cacceccage ctttcctggg aggggateag accectcaaa ctcttgeece ageceagece ttcageacec aagacecace aggaggetg ggecegecag taatgggtag ggagaggggg cecegecagg gegeacege etctegeega egetgtteec teegetteea ggtgtagege eccegegege egeggegetee age atg ace gge cag age ctg tgg Met Thr Gly Gln Ser Leu Trp 1		<2	222>	(274 V.U∽		(170)5)									4 P.	
geacgcgcaa agcgcccacc gagacccctg gggtggagct tgtgttaata gaaacatacc caccccagc ctttcctggg aggggatcag acccctcaaa ctcttgccc agccagccc ttcagcaccc aagacccacc aggaggcctg ggccgccag taatgggtag ggagaggggg ccccgccag gccccgccag ccccgccag gccccgccag ctctcgccga cgctgttecc tccgcttcca ggtgtagcgc ccccgccagcg ccccgcgcgg ccgcggcctcc agc atg acc ggc cag agc ctg tgg Met Thr Gly Gln Ser Leu Trp 1 5 gac gtg tcg gag gct aac gtc gag gac ggg gag atc cgc atc aat gtg Asp Val Ser Glu Ala Asn Val Glu Asp Gly Glu Ile Arg Ile Asn Val 10 15 20 ggc ggc ttc aag agg agg ctg cgc tcg cac acg ctg ctg cgc ttc ccc Gly Gly Phe Lys Arg Arg Leu Arg Ser His Thr Leu Leu Arg Phe Pro 25 30 35 gag acg cgc ctg ggc cgc ttg ctg ctc tgc cac tcg cgc gag gcc att 40 45 50 55 ctg gag ctc tgc gat gac tac gac gac gtc cag cgg gag ttc tac ttc Leu Glu Leu Cys Asp Asp Tyr Asp Asp Val Gln Arg Glu Phe Tyr Phe 60 65 70			.237	K+III	IOAT 1	L											
ttcagcaccc adgacccacc aggagggatcag accectcaaa etettgeece ageccageee tteagcacce aagacccacc aggaggeetg ggeegeeag taatgggtag ggagaggggg eccegeeag gegeaeggeg etetegeega egetgteee teegetteea ggtgtagege eccegeggg egegggeetee age atg ace gge eag age etg tgg 2 Met Thr Gly Gln Ser Leu Trp 1 5 gac gtg teg gag get aac gte gag gac ggg gag ate ege ate aat gtg Asp Val Ser Glu Ala Asn Val Glu Asp Gly Glu Ile Arg Ile Asn Val 10 15 20 gge gge tte aag agg agg etg ege teg eac aeg etg etg ege tte eec 3 gly Gly Phe Lys Arg Arg Leu Arg Ser His Thr Leu Leu Arg Phe Pro 25 30 35 gag acg ege etg gge ege ttg etg etc tge eac teg ege gag gee att 4 glu Thr Arg Leu Gly Arg Leu Leu Cys His Ser Arg Glu Ala Ile 40 45 50 55 etg gag ete tge gat gac tae gac gac gte eag egg gag tte tae tte Leu Glu Leu Cys Asp Asp Tyr Asp Asp Val Gln Arg Glu Phe Tyr Phe 60 65 70 gac ege aac eet gag ete tte eet tge eat tte tat eac ace ege egg aac ege ege eac ege ege aac ege ege aac ege ege aac ege ege aac ege ege ege ege ege ege ege ege ege eg					•								ų,				
ccccgccagg gcgcacggcg ctctcgccga cgctgttccc tccgcttcca ggtgtagcgc ccccgccagg gcgcacggcg ctctcgccga cgctgttccc tccgcttcca ggtgtagcgc ccccgcgcgg cgcgggcgcccc agc atg acc ggc cag agc ctg tgg Met Thr Gly Gln Ser Leu Trp 1 5 gac gtg tcg gag gct aac gtc gag gac ggg gag atc cgc atc aat gtg Asp Val Ser Glu Ala Asn Val Glu Asp Gly Glu Ile Arg Ile Asn Val 10 15 20 ggc ggc ttc aag agg agg ctg cgc tcg cac acg ctg ctg cgc ttc ccc Gly Gly Phe Lys Arg Arg Leu Arg Ser His Thr Leu Leu Arg Phe Pro 25 30 gag acg cgc ctg ggc cgc ttg ctg ctc tgc cac tcg cgc gag gcc att Glu Thr Arg Leu Gly Arg Leu Leu Leu Cys His Ser Arg Glu Ala Ile 40 45 50 ctg gag ctc tgc gat gac tac gac gac gtc cag cgg gag ttc tac ttc Leu Glu Leu Cys Asp Asp Tyr Asp Asp Val Gln Arg Glu Phe Tyr Phe 60 65 70	gcac	gege	aa a	gcgc	ccac	c ga	gaco	cct	999	rtgga	gct	tgtg	jttaa	ta g	gaaa	catacc	60
ceeegeege egegggeege etetegeega egetgtteee teegetteea ggtgtagege Met Thr Gly Gln Ser Leu Trp 1 5 gae gtg teg gag get aac gtc gag gac ggg gag atc ege atc aat gtg Asp Val Ser Glu Ala Asn Val Glu Asp Gly Glu Ile Arg Ile Asn Val 10 15 20 ggc ggc ttc aag agg agg etg ege teg eac acg etg etg ege ttc ecc Gly Gly Phe Lys Arg Arg Leu Arg Ser His Thr Leu Leu Arg Phe Pro 25 30 35 gag acg ege etg ggc ege ttg etg eac teg ege gag gec att 40 45 50 55 etg gag etc teg gat gac tac gac gac gtc eag egg gag ttc tac ttc Leu Glu Leu Cys Asp Asp Tyr Asp Asp Val Gln Arg Glu Phe Tyr Phe 60 65 70	ttca	gcac	cc a	agac	ccac	c ac	ggga	recto	gaco	CCCC	aaa	ctct	tgcc	ecc a	agcc	cagece	120
Met Thr Gly Gln Ser Leu Trp 1 Sac gtg tcg gag gct aac gtc gag gac ggg gag atc cgc atc aat gtg Asp Val Ser Glu Ala Asn Val Glu Asp Gly Glu Ile Arg Ile Asn Val 10 15 10 10 10 15 10 15 10 10		gcca	99 9	legea	cggc	gct	crcg	rccga	e cgc	tqtt	CCC	tcca	rctto	ca c	atai	agege	180 240
gac gtg tcg gag gct aac gtc gag gac ggg gag atc cgc atc aat gtg Asp Val Ser Glu Ala Asn Val Glu Asp Gly Glu Ile Arg Ile Asn Val 10 15 20 ggc ggc ttc aag agg agg ctg cgc tcg cac acg ctg ctg cgc ttc ccc Gly Gly Phe Lys Arg Arg Leu Arg Ser His Thr Leu Leu Arg Phe Pro 25 30 35 gag acg cgc ctg ggc cgc ttg ctg ctc tgc cac tcg cgc gag gcc att 4 Glu Thr Arg Leu Gly Arg Leu Leu Leu Cys His Ser Arg Glu Ala Ile 40 45 56 57 58 58 59 59 50 50 50 50 60 60 60 60 60 65 65	cccc	gcgc	aa c	gcgg	acaa	kc ca	gege	ctc	ago	: atg	acc	ggc	: cag	ago	cto	g tgg	294
gac gtg tcg gag gct aac gtc gag gac ggg gag atc cgc atc aat gtg Asp Val Ser Glu Ala Asn Val Glu Asp Gly Glu Ile Arg Ile Asn Val 10 15 20 ggc ggc ttc aag agg agg ctg cgc tcg cac acg ctg ctg cgc ttc ccc Gly Gly Phe Lys Arg Arg Leu Arg Ser His Thr Leu Leu Arg Phe Pro 25 30 35 gag acg cgc ctg ggc cgc ttg ctg ctc tgc cac tcg cgc gag gcc att Glu Thr Arg Leu Gly Arg Leu Leu Leu Cys His Ser Arg Glu Ala Ile 40 45 50 55 ctg gag ctc tgc gat gac tac gac gac gtc cag cgg gag ttc tac ttc Leu Glu Leu Cys Asp Asp Tyr Asp Asp Val Gln Arg Glu Phe Tyr Phe 60 65 70						:	_				rnr	GIY	, Gin		Let	ı Trp	
ggc ggc ttc aag agg agg ctg cgc tcg cac acg ctg ctg cgc ttc ccc Gly Gly Phe Lys Arg Arg Leu Arg Ser His Thr Leu Leu Arg Phe Pro 25 30 35 gag acg cgc ctg ggc cgc ttg ctg ctc tgc cac tcg cgc gag gcc att Glu Thr Arg Leu Gly Arg Leu Leu Leu Cys His Ser Arg Glu Ala Ile 40 45 50 55 ctg gag ctc tgc gat gac tac gac gac gtc cag cgg gag ttc tac ttc Leu Glu Leu Cys Asp Asp Tyr Asp Asp Val Gln Arg Glu Phe Tyr Phe 60 65 65 66 67 66 67 66 67 66 67 66 67 67 68 68								•									
ggc ggc ttc aag agg agg ctg cgc tcg cac acg ctg ctg cgc ttc ccc Gly Gly Phe Lys Arg Arg Leu Arg Ser His Thr Leu Leu Arg Phe Pro 25 30 35 gag acg cgc ctg ggc cgc ttg ctg ctc tgc cac tcg cgc gag gcc att 4 Glu Thr Arg Leu Gly Arg Leu Leu Leu Cys His Ser Arg Glu Ala Ile 40 45 50 55 ctg gag ctc tgc gat gac tac gac gcg gag gtc cag cgg gag ttc tac ttc 4 Leu Glu Leu Cys Asp Asp Tyr Asp Asp Val Gln Arg Glu Phe Tyr Phe 60 65 65 66 67 66 67 66 67 66 67 66 67 66 67 67 68 68	Asp	Val	Ser	gag Glu	gct Ala	aac Asn	gtc Val	gag Glu	gac Asp	ggg Gly	gag Glu	atc Ile	cgc Arq	atc Ile	aat Asn	gtg Val	342
gag acg cgc ctg ggc cgc ttg ctg ctc tgc cac tcg cgc gag gcc att 30 35 gag acg cgc ctg ggc cgc ttg ctg ctc tgc cac tcg cgc gag gcc att 40 45 50 55 ctg gag ctc tgc gat gac tac gac gac gtc cag cgg gag ttc tac ttc 40 40 45 60 65 65 66 66 67 66 67 66 67 68 68 68			10			٦.		15					20				
gag acg cgc ctg ggc cgc ttg ctg ctc tgc cac tcg cgc gag gcc att 30 35 gag acg cgc ctg ggc cgc ttg ctg ctc tgc cac tcg cgc gag gcc att 40 45 50 55 ctg gag ctc tgc gat gac tac gac gac gtc cag cgg gag ttc tac ttc 40 40 45 60 65 65 66 66 67 66 67 66 67 68 68 68	ggc	ggc	ttc	aag	agġ	agg	ctg	cgc	tcg	cac	acg	ctg	ctg	cgc	ttc	ccc	390
gag acg cgc ctg ggc cgc ttg ctg ctc tgc cac tcg cgc gag gcc att 31u Thr Arg Leu Gly Arg Leu Leu Cys His Ser Arg Glu Ala Ile 40 45 50 55 ctg gag ctc tgc gat gac tac gac gac gtc cag cgg gag ttc tac ttc Leu Glu Leu Cys Asp Asp Tyr Asp Asp Val Gln Arg Glu Phe Tyr Phe 60 65 70 gac cgc aac cct gag ctc ttc ccc tac gtg ctg cat ttc tat cac acc	GIY (GIA	Phe	Lys .	Arg	Arg	Leu	Arg	Ser	His	Thr	Leu	Leu	Arg	Phe	Pro	
and the Arg Leu Gly Arg Leu Leu Cys His Ser Arg Glu Ala Ile 50 55 Ctg gag ctc tgc gat gac tac gac gac gtc cag cgg gag ttc tac ttc Leu Glu Leu Cys Asp Asp Tyr Asp Asp Val Gln Arg Glu Phe Tyr Phe 60 65 70 Gac cgc aac cct gag ctc ttc ccc tac gtg ctg cat ttc tat cac acc			*			:						7			•	•	
25 50 55 Ctg gag ctc tgc gat gac tac gac gac gtc cag cgg gag ttc tac ttc Leu Glu Leu Cys Asp Asp Tyr Asp Asp Val Gln Arg Glu Phe Tyr Phe 60 65 70 gac cgc aac cct gag ctc ttc ccc tac gtg ctg cat ttc tat cac acc	gag a	acg	cgc	ctg	ggc	cgc	ttg	ctg	ctc	tgc	cac	tcg	cgc (gag	gcc	att .	438
ctg gag ctc tgc gat gac tac gac gac gtc cag cgg gag ttc tac ttc Leu Glu Leu Cys Asp Asp Tyr Asp Asp Val Gln Arg Glu Phe Tyr Phe 60 65 70 gac cgc aac cct gag ctc ttc ccc tac gtg ctg cat ttc tat cac acc	JLU	Inr .	arg	Leu (Gly .	Arg	Leu	Leu	Leu	Cys	His	Ser	Arg (Glu	Ala	Ile	
Leu Glu Leu Cys Asp Asp Tyr Asp Asp Val Gln Arg Glu Phe Tyr Phe 60 65 70 gac cgc aac cct gag ctc ttc ccc tac gtg cat ttc tat cac acc			00			45		÷ .			,50∙	•					
60 65 70 Gao ogo aac oot gag oto tto oco tac gtg otg car tto tat cac acc		٠.	_														
gac ege aac eet gag ete tte eec tac gtg etg ear tte tat eac acc	ctg (gag	ctd	tgc g	gat	gac	tac	gac	gac	gtc	caq	caa .	gag	ttc	tac	ttc	486
gac ege aac eet gag ete tte eee tae gtg etg eat tte tat eac acc 5: Asp Arg Asn Pro Glu Leu Phe Pro Tyr Val Leu His Phe Tyr His Thr	ctg (Leu (gag Glu	ctc Leu	tgc (Cys)	gat . Asp .	gac Asp	tac Tyr	gac Asp	gac Asp	gtc Val	cag (Gln)	cgg (gag i	ttc Phe	tac	ttc	486
Asp Arg Asn Pro Glu Leu Phe Pro Tyr Val Leu His Phe Tyr His Thr	ctg (Leu (gag (Glu)	ctc Leu	tgc (Cys)	Asp .	gac Asp	tac Tyr	gac Asp	gac Asp	Val (cag Gln	cgg (gag i	Phe	tac Tyr	ttc	486
	beu (JIU .		cys /	Asp 60	Asp	ryr .	qeA	Asp	Val (Gln :	Arg	Glu 1	Phe	tac Tyr 70	ttc Phe	
75 80 85	gacio	ege a	aac (cct o	esp 60 gag	asp ctc	ttc	Asp	Asp tac	Val (Gln .	Arg (Glu :	Phe	Tyr 70	ttc Phe	486 534

ggc	aag Lys	ctt Leu 90	cac His	gtc Val	atg Met	gct Ala	gag Glu 95	Leu	tgt Cys	gtc Val	ttc Phe	tcc Ser 100	ttc Phe	agc Ser	cag Gln	582
G]\n	ats Ile 105	gag Glu	tac Tyr	tgg Trp	ggc Gly	atc Ile 110	aac Asn	gag Glu	ttc Phe	ttc Phe	att Ile 115	gac Asp	tcc Ser	tgc Cys	tgc Cys	630
agc Ser 120	tac Tyr	agc Ser	tac Tyr	cat His	ggc Gly 125	cgc [.]	aaa Lys	gta Val	gag Glu	ccc Pro 130	gag Glu	cag Gln	gag Glu	aag Lys	tgg Trp 135	678
gac Asp	gag Glu	cag Gln	agt Ser	gac Asp 140	cag Gln	gag Glu	agc Ser	acc Thr	acg Thr 145	tct Ser	tcc Ser	ttc Phe	gat Asp	gag Glu 150	atc Ile	726
ct.t Leu	gcc Ala	ttc Phe	tac Tyr 155	aac Asn	gac Asp	gcc Ala	tcc Ser	aag Lys 160	ttc Phe	gat Asp	Gly	cag Gln	ccc Pro 165	ctc Leu	ggc Gly	774
Asn	ttc Phe	Arg 170	Arg	Gln	Leu	Trp	Leu 175	Ala	Leu	Asp	Asn	Pro 180	Gly	Tyr	Ser	822
Val	ctg Leu 185	Ser	Arg	Val	Phe	Ser 190	Ile	Leu	Ser	Ilę	Leu 195	.Val	Val	Met	Gly	8 7 0
Ser 200	atc Ile	Ile	Thr	Met	Cys 205	Leu	Asn	Ser	Leu	Pro 210	Asp	Phe	Gln	Ile	Pro 215	918
Asp		Gln	Gly	Asn 220	Pro	Gly	Glu	Asp	Pro 225	Arg	Phe	Glu	Ile	Val 230	Glu	966
His	ttt Phe	GIY	11e 235	Ala	Trp	Phe	Thr	Phe 240	Glu	Leu	Val	Ala	Arg 245	Phe	Ala	1014
Val	gcc Ala	250	Asp	Phe	Leu	Lys	Phe 255	Phe	Lys	Asn	Ala	Leu 260	Asn	Leu	Ile	1062
Asp	ctc Leu 265	Met	Ser	Ile	Val	Pro 270	Phe	Tyr	Ile	Thr	Leu 275	Val	Val	Asn.	Leu	1110
Val 280		Glu	Ser	Thr :	Pro 285	Thr	Leu	Ala	Asn	Leu 290	Gly	Arg	Val	Ala	Gln 295	1158
Val	ctg Leu	Arg	Leu	Met 300	Arg	Ile	Phe	Arg	11e 305	Leu	Lys	Leu	Ala	Arg 310	His	1206
Ser	act Thr	Gly	Leu 315	Arg	Ser	Leu	Gly	Ala 320	Thr	Leu	Lys	Tyr	Ser 325	Tyr	Lys	1254
gaa	gta	3 32	ctg	ctc	ttg	ctc	tac	ctc	tcc	gtg	9 99	atť	tcc	atc	ttc	1302

" PNSUO" F NO _ _ C34362641 F 4

F1 17 NOID: 1//0 9943696A1 >

Glu	Val	Gly 330	Leu	Leu	Leu	Leu	Tyr 335	Leu	Ser	Val	Gly	Ile 340	Ser	Ile	Phe	
tcc Ser	gtg Val 345	val	gcc Ala	tac Tyr	acc Thr	att Ile 350	gaa Glu	aag Lys	gag Glu	gag Glu	aac Asn 355	gag Glu	ggc	ctg Leu	9CC Ala	1350
acc Thr 360	atc Ile	cct Pro	gcc Ala	tgc Cys	tgg Trp 365	tgg Trp	tgg Trp	gct Ala	acc Thr	gtc Val 370	agt Ser	atg Met	acc Thr	aca Thr	gtg Val 375	1398
G1 y ggg	tac Tyr	Gly 999	gat Asp	gtg Val 380	gtc Val	cca Pro	Gly aaa	acc Thr	acg Thr 385	gca Ala	gga Gly	aag Lys	ctg Leu	act Thr 390	gcc Ala	1446
tct Ser	gcc Ala	cys Cys	atc Ile 395	ttg Leu	gca Ala	ggc Gly	atc Ile	ctc Leu 400	gtg Val	gtg Val	gtc Val	ctg Leu	ccc Pro 405	atc Ile	acc Thr	1494
ttg Leu	atc 11e	ttc Phe 410	aat Asn	aag Lys	ttc Phe	tcc Ser	cac His 415	ttt Phe	tac Tyr	cgg Arg	cgc Arg	caa Gln 420	aag Lys	caa Gln	ctt Leu	1542
gag Glu	agt Ser 425	ALA	atg Met	ege Arg	agc Ser	tgt Cys 430	gac Asp	ttt Phe	gga Gly	gat Asp	gga Gly 435	atg Met	aag Lys	gag Glu	gtc Val	1590
cct Pro 440	tcg Ser	gtc Val	aat Asn	Leu	agg Arg 445	gac Asp	tat Tyr	tat Tyr	gcc Ala	cat His 450	aaa Lys	gtt Val	aaa Lys	tcc Ser	ctt Leu 455	1638
atg Met	gca Ala	agc Ser	Leu	acg Thr 460	aac Asn	atg Met	agc [.] Ser	Arg	agc Ser 465	tca Ser	cca Pro	agt Ser	gaa Glu	ctc Leu 470	agt Ser	1686
tta Leu	aat Asn	ASD	tcc Ser 475	cta Leu	cgt Arg	t ag	ccgg	gagg	act	tgto	cacc	ctcc	acco	ca		1735
catt	acta	ag c	tacc	+	~ +~											
agga	gtat	ac c	cage	ccct	9.59	~~~	-ggc	aca	gece	agg .	cacc	ttat	gg t	tatg	gtgta	1795
cagt	***	30 C	atco	++++	9 4 9	9994	yaya	Lge	acgg	gat	atgo	accc	ag g	itttc	tttta	1855
atga	aato	25 2	ctcs	~~~	t ay	aggg	-ggt	grg	cccg	aca	ccat	gcct	tt g	cacc	tttcc	1915
tgag	taca	CC C	2022	tast		ttge.	accg	r.gg	gcat	aaa	atgt	tcac	ct t	tttt	ccaga	1975
-202	atac	ta t	ctat	-3 <i></i>	- at		acgt ataa	cca	cegt	gta	cgct	attc	ta g	tgct	tgtgg	2035
caaa	aaar	25 C	Caca	agt c	- y.	cact.		cgt		gag	gttg	tcgt	gt g	agtt	ctgta	2095
gaga	tttt	ac t	caca	atica:	5 CC	y-	ayaa	aug	calic'	udľ act	yagg	ccag	ca a	ggat	atgat	2155
tagt	ttta	gt a	ccaa	aaca	- 34)	agas:	tore	220	tten	ac.	CCCC	atcc.	at t	gctt	tcact agtct	2215
ctaa	gtta	tt t	ttat	aaat	at at	ctat:	agtt	aay	tacc	yca tta	yact cata	cgac	ca a	ryca	agtct catct	2275
ccag	aacy	at y	Laca	cugan	c gc	ccat	ctca	taa	atat	cac	tett	taga	നമ്മ	tatt	actta	2335 2395
gcca	aaca	Lg C	agrg	aaga	c cg	aacti	CCCC	tcc	caaq	aac	agate	atati	ta o	aasa	agggg	2395
	aget	aa a	cage	ccaaa	a cc	ctage	3 9 C9	ctt	aaaq	cca .	agtt.	aata	ca o	acta	acccc	2515
cccg	gucc	ac ag	guca	agcei	c cc	ccgci	CCC	tage	aataa	act	ataa:	agaaa	at o	tatt	tecaa	2575
acya	33	باد دو	gate	caggo	c car	cccga	acca	aact	ttta	cta.	tate	taaq	at a	tfag	catot	2635
	yaaa	La L	LLaL		c aag	gatgi	ttta	qqaq	itaad	aat	cata	ttati	ct t	cctá	aacta	2695
aaaa	yaay	LL Ca	actgi	ctgta	T CC	gtct	cct	gage	at.qaa	aca	ttate	taaai	tt a	ctag	caagg	2755
cage	agec	ca a	cact	cttg	t tg	cctac	ctct	qaaa	ageto	cat	caato	JAGAG	7C C	cttt	tattt	2815
CCaa	gcag	aa Li	LLagi	cage	a caa	accct	get	tcta	aggat	tat -	agtai	tatte	st a	tato	atoct	2875
aaaa	tata	ga co	ztaci	cost	- 900	care	yact **~~	ggaa	acct	-99	tggta	atgga	aa g	catg	tactc	2935
actt	gcat	te e	cacto	cctt	te:	-yy -i	idaa	tos	iccci itaaa	199 ·	atgga	aaaca	ac t	geag	ttctt gaaag	2995
,						-335	-233		9	, -a !	2 47 50	cagg	ga g	aaag	yaaag	3055

agttgtaaaa taaaaaactg ctagttcata aaaaaaaaa aaaaaaa

3102

<210> 18 <211> 477 <212> PRT <213> H. sapiens

<400> 18 Met Thr Gly Gln Ser Leu Trp Asp Val Ser Glu Ala Asn Val Glu Asp 10 Gly Glu Ile Arg Ile Asn Val Gly Gly Phe Lys Arg Arg Leu Arg Ser 20 25 His Thr Leu Leu Arg Phe Pro Glu Thr Arg Leu Gly Arg Leu Leu Leu 35 40 45 Cys His Ser Arg Glu Ala Ile Leu Glu Leu Cys Asp Asp Tyr Asp Asp 55 Val Gln Arg Glu Phe Tyr Phe Asp Arg Asn Pro Glu Leu Phe Pro Tyr 70 Val Leu His Phe Tyr His Thr Gly Lys Leu His Val Met Ala Glu Leu 85 90 Cys Val Phe Ser Phe Ser Gln Glu Ile Glu Tyr Trp Gly Ile Asn Glu 105 Phe Phe Ile Asp Ser Cys Cys Ser Tyr Ser Tyr His Gly Arg Lys Val 120 125 Glu Pro Glu Gln Glu Lys Trp Asp Glu Gln Ser Asp Gln Glu Ser Thr 130 140 Thr Ser Ser Phe Asp Glu Ile Leu Ala Phe Tyr Asn Asp Ala Ser Lys 150 155 Phe Asp Gly Gln Pro Leu Gly Asn Phe Arg Arg Gln Leu Trp Leu Ala 165 170 Leu Asp Asn Pro Gly Tyr Ser Val Leu Ser Arg Val Phe Ser Ile Leu 180 185 Ser Ile Leu Val Val Met Gly Ser Ile Ile Thr Met Cys Leu Asn Ser 195 200 205 Leu Pro Asp Phe Gln Ile Pro Asp Ser Gln Gly Asn Pro Gly Glu Asp 215 Pro Arg Phe Glu Ile Val Glu His Phe Gly Ile Ala Trp Phe Thr Phe 230 235 Glu Leu, Val Ala Arg Phe Ala Val Ala Pro Asp Phe Leu Lys Phe Phe 250 Lys Asn Ala Leu Asn Leu Ile Asp Leu Met Ser Ile Val Pro Phe Tyr 260 265 Ile Thr Leu Val Val Asn Leu Val Val Glu Ser Thr Pro Thr Leu Ala 285 Asn Leu Gly Arg Val Ala Gln Val Leu Arg Leu Met Arg Ile Phe Arg 295 Ile Leu Lys Leu Ala Arg His Ser Thr Cly Leu Arg Ser Leu Gly Ala 305 310 315 320 Thr Leu Lys Tyr Ser Tyr Lys Glu Val Gly Leu Leu Leu Leu Tyr Leu 325 330 335 Ser Val Gly Ile Ser Ile Phe Ser Val Val Ala Tyr Thr Ile Glu Lys 340 345 350 Glu Glu Asn Glu Gly Leu Ala Thr Ile Pro Ala Cys Trp Trp Trp Ala 360 Thr Val Ser Met Thr Thr Val Gly Tyr Gly Asp Val Val Pro Gly Thr 370 375 380 Thr Ala Gly Lys Leu Thr Ala Ser Ala Cys Ile Leu Ala Gly Ile Leu 385 390 395 400 Val Val Val Leu Pro Ile Thr Leu Ile Phe Asn Lys Phe Ser His Phe 405 410 Tyr Arg Arg Gln Lys Gln Leu Glu Ser Ala Met Arg Ser Cys Asp Phe

1 ; 4,

J 2005

```
420
                                                            425
 Gly Asp Gly Met Lys Glu Val Pro Ser Val Asn Leu Arg Asp Tyr Tyr
                                                   440
 Ala His Lys Val Lys Ser Leu Met Ala Ser Leu Thr Asn Met Ser Arg
                                              455
 Ser Ser Pro Ser Glu Leu Ser Leu Asn Asp Ser Leu Arg
                 470
           <210> 19
           <211> 0
           <212> DNA
          <213> H. sapiens
            <220>
      <221> CDS
        <222> (249)...(3495)
            <223> K+Hnov14
            <400> 19
 gggctggtag cagggatttg tgggcgggag gggcgcgagg ggccgcgcgc catgctccgg
                                                                                                                                 60
 geceegaegg egeggaegee eeetegegeg eeageteegg egegaeeeeg gateeeggte
                                                                                                                                 120
 tgcgcattgc cccccgacgg ctgcgctagg agcgcggggc ccggcggggg cggccgagct
                                                                                                                                180
gggcgcctc ccccggcgcg gagtccccgc accccggagg atggggcggg cagccgcggg
                                                                                                                                240
 egectaag atg eeg gee atg egg gge etc etg geg eeg eag aac ace tte
                                                                                                                                290
               Met Pro Ala Met Arg Gly Leu Leu Ala Pro Gln Asn Thr Phe
                        ctg gac acc atc gct acg cgc ttc gac ggc acg cac agt aac ttc gtg
Leu Asp Thr Ile Ala Thr Arg Phe Asp Gly Thr His Ser Asn Phe Val -
                                      20
                                                          25
ctg ggc aac gcc agt ggc ggg gct ctt ccc gtg gtc tac tgc tct gat
                                                                                                                                386
Leu Gly Asn Ala Ser Gly Gly Ala Leu Pro Val Val Tyr Cys Ser Asp
                          35 40 45
ggc ttc tgt gac ctc acg ggc ttc tcc cgg gct gag gtc atg cag cgg
                                                                                                                                434
Gly Phe Cys Asp Leu Thr Gly Phe Ser Arg Ala Glu Val Met Gln Arg
                                55
                                                                                                60
gge tgt gee tgc tee tte ett tat ggg eea gae ace agt gag ete gte
                                                                                                                                482
Gly Cys Ala Cys Ser Phe Leu Tyr Gly Pro Asp Thr Ser Glu Leu Val
                                   70 75
cgc caa cag atc cgc aag gcc ctg gac gag cac aag gag ttc aag gct
                                                                                                                                530
Arg Gln Gln Ile Arg Lys Ala Leu Asp Glu His Lys Glu Phe Lys Ala
                                             85
gag ctg atc ctg tac cgg aag agc ggg ctc ccg ttc tgg tgt ctc ctg
Glu Leu Ile Leu Tyr Arg Lys Ser Gly Leu Pro Phe Trp Cys Leu Leu
                                   100
                                                                    105
gat gtg ata ccc ata aag aat gag aaa ggg gag gtg gct ctc ttc cta
                                                                                                                                626
Asp Val Ile Pro Ile Lys Asn Glu Lys Gly Glu Val Ala Leu Phe Leu
                                                                  120
                                                                                   The state of the s
gte tet cae aag gae ate age gaa ace aag aac ega ggg gge eec gae
                                                                                                                               674
Val Ser His Lys Asp Ile Ser Glu Thr Lys Asn Arg Gly Gly Pro Asp
                      130
                                    135
aga tgg aaa gag aca ggt ggt ggc cgg cgc cga tat ggc cgg gca cga
                                                                                                                               722
Arg Trp Lys Glu Thr Gly Gly Gly Arg Arg Arg Tyr Gly Arg Ala Arg
```

145	150	155	
tee aaa gge tte aat Ser Lys Gly Phe Asr 160	gcc aac cgg cgg Ala Asn Arg Arg 165	cgg agc cgg gcc gtg Arg Ser Arg Ala Val 170	ctc tac 770 Leu Tyr
His Leu Ser Gly His	: Leu Gln Lys Gln 180	ccc aag ggc aag cac Pro Lys Gly Lys His 185	Lys Leu 190
Asn Lys Gly Val Phe	Gly Glu Lys Pro	aac ttg cct gag tac Asn Leu Pro Glu Tyr 200	Lys Val 205
gcc gcc atc cgg aag Ala Ala Ile Arg Lys 210	tcg ccc ttc atc Ser Pro Phe Ile 215	ctg ttg cac tgt ggg Leu Leu His Cys Gly	gca ctg 914 Ala Leu
aga gcc acc tgg gat Arg Ala Thr Trp Asp 225	ggc ttc atc ctg Gly Phe Ile Leu 230	ctc gcc aca ctc tat Leu Ala Thr Leu Tyr 235	gtg gct 962 Val Ala-
gtc act gtg ccc tac Val Thr Val Pro Tyr 240	agc gtg tgt gtg Ser Val Cys Val	agc aca gca cgg gag Ser Thr Ala Arg Glu 250	ccc agt 1010 Pro Ser
gcc gcc cgc ggc ccg Ala Ala Arg Gly Pro 255	ccc age gtc tgt Pro Ser Val Cys 260	gac ctg gcc gtg gag Asp Leu Ala Val Glu 265	gtc ctc 1058 Val Leu 270
ttc atc ctt gac att Phe Ile Leu Asp Ile 275	Val Leu Asn Phe	cgt acc aca ttc gtg Arg Thr Thr Phe Val 280	tcc aag 1106 Ser Lys 285
tcg ggc cag gtg gtg Ser Gly Gln Val Val 290	ttt gcc cca aag Phe Ala Pro Lys 295	tcc att tgc ctc cac Ser Ile Cys Leu His 300	tac gtc 1154 Tyr Val
acc acc tgg ttc ctg Thr Thr Trp Phe Leu 305	ctg gat gtc atc Leu Asp Val Ile 310	gca gcg ctg ccc ttt Ala Ala Leu Pro Phe 315	gac ctg 1202 Asp Leu
Leu His Ala Phe Lys	gtc aac gtg tac Val Asn Val Tyr 325	ttc ggg gcc cat ctg Phe Gly Ala His Leu 330	ctg aag 1250 Leu Lys
acg gtg cgc ctg ctg Thr Val Arg Leu Leu 335	Arg Leu Leu Arg	ctg ctt ccg cgg ctg c Leu Leu Pro Arg Leu 345	gac cgg 1298 Asp Arg 350
tac tcg cag tac agc Tyr Ser Gln Tyr Ser 355	Ala Val Val Leu	aca ctg ctc atg gcc g Thr Leu Leu Met Ala N 360	gtg ttc 1346 Val Phe 365
gcc ctg ctc gcg cac Ala Leu Leu Ala His	Trp Val Ala Cys 375	gtc tgg ttt tac att g Val Trp Phe Tyr Ile (380	ggc cag 1394 Gly Gln
cgg gag atc gag agc	agc gaa tcc gag Ser Glu Ser Glu	ctg cct gag att ggc t Leu Pro Glu Ile Gly 7 395	tgg ctg 1442 Trp Leu
	·	32	

cag Gln	gag Glu 400	ctg Leu	gcc Ala	cgc Arg	cga Arg	ctg Leu 405	gag Glu	act Thr	ccc Pro	tac Tyr	tac Tyr 410	ctg Leu	gtg Val	ggc Gly	cgg Arg	1490
agg Arg 415	cca Pro	gct Ala	gga Gly	Gly 999	aac Asn 420	agc Ser	tcc Ser	ggc	cag Gln	agt Ser 425	gac Asp	aac Asn	tgc Cys	agc Ser	agc Ser 430	1538
agc Ser	agc Ser	gag Glu	gcc Ala	aac Asn 435	GJ À aaa	acg Thr	Gly 833	ctg Leu	gag Glu 440	ctg Leu	ctg Leu	ggc	ggc Gly	ccg Pro 445	tcg Ser	1586
ctg Leu	cgc Arg	agc Ser	gee Ala 450	tac Tyr	atc Ile	acc Thr	tcc Ser	ctc Leu 455	tac Tyr	ttc Phe	gca Ala	ctc Leu	agc Ser 460	agc Ser	ctc Leu	1634
acc Thr	agc Ser	gtg Val 465	ggc Gly	ttc Phe	Gly	aac Asn	gtg Val 470	tcc Ser	ġcc Ala	aac Asn	acg Thr	gac Asp 475	acc Thr	gag Glu	aag Lys	1682
atc Ile	Phe 480	tcc Ser	atc Ile	tgc Cys	acc Thr	atg Met 485	ctc Leu	atc Ile	ggc Gly	gcc Ala	ctg Leu 490	atg Met	cac His	gcg Ala	gtg Val	1730
gtg Val 495	ttt Phe	GJA aaa	aac Asn	gtg Val	acg Thr 500	gcc Ala	atc Ile	atc Ile	cag Gln	cgc Arg 505	atg Met	tac Tyr	gcc Ala	cgc Arg	cgc Arg 510	1778
ttt Phe	ctg Leu	tac Tyr	cac His	agc Ser 515	cgc Arg	acg Thr	ege Arg	gac Asp	cag Gln 520	'cgc Arg	gac Asp	tac Tyr	atc Ile	cgc Arg 525	atc Ile	1826
cac His	egt Arg	atc Ile	ccc Pro 530	aag Lys	ccc Pro	ctc Leu	aag Lys	cag Gln 535	cgc Arg	atg Met	ctg Leu	gag Glu	tac Tyr 540	ttc Phe	cag Gln	1874
gcc Ala	acc Thr	tgg Trp 545	gcg Ala	gtg Val	aac Asn	aat Asn	ggc Gly 550	atc Ile	gac Asp	acc Thr	acc Thr	gag Glu 555	ctg Leu	ctg Leu	cag Gln	1922
agc Ser	ctc Leu 560	cct Pro	gac Asp	gag Glu	ctg Leu	cgc Arg 565	gca Ala	gac Asp	atc Ile	gcc Ala	atg Met 570	cac His	ctg Leu	cac His	aag Lys	1970
gag Glu 575	gtc Val	ctg Leu	cag Gln	ctg Leu	cca Pro 580	ctg Leu	ttt Phe	gag Glu	gcg Ala	gcc Ala 585	agc Ser	cgc Arg	ggc Gly	tgc Cys	ctg Leu 590	2018
cgg	gca Ala	ctg Leu	tct Ser	ctg Leu 595	gcc Ala	ctg Leu	cgg Arg	ccc Pro	gcc Ala 600	ttc Phe	tgc Cys	acg Thr	ccg Pro	ggc Gly 605	Glu	2066
tac Tyr	ctc Leu	atc Ile	cac His 610	caa Gln	ggc Gly	gat Asp	gcc Ala	ctg Leu 615	cag Gln	gcc Ala	ctc Leu	tac Tyr	ttt Phe 620	Val	tgc Cys	2114
tct Ser					! .				. • •	•					1. :	2162

 $\zeta_{i}\zeta^{i}$

g1y ggg	aag Lys 640	Gly	gac Asp	ctg Leu	atc Ile	ggc Gly 645	tgt Cys	gag Glu	ctg Leu	ccc	cgg Arg 650	cgg Arg	gag Glu	cag Gln	gtg Val	2210
gta Val 655	Lys	gcc Ala	aat Asn	gcc Ala	gac Asp 660	gtg Val	aag Lys	Gly aaa	ctg Leu	acg Thr 665	tac Tyr	tgc Cys	gtc Val	ctg Leu	cag Gln 670	2258
tgt Cys	ctg Leu	cag Gln	ctg Leu	gct Ala 675	ggc Gly	ctg Leu	cac His	gac Asp	agc Ser 680	Leu	gcg Ala	ctg Leu	tac Tyr	ccc Pro 685	gag Glu	2306
ttt Phe	gcc Ala	ccg Pro	cgc Arg 690	ttc Phe	agt Ser	ćgt Arg	ggc	ctc Leu 695	cga Arg	Gly	gag Glu	ctc Leu	agc Ser 700	tac Tyr	aac Asn	2354
ctg Leu	ggt Gly	gct Ala 705	GJA aaa	gga Gly	ggc Gly	tct Ser	gca Ala 710	gag Glu	gtg Val	gac Asp	acc Thr	agc Ser 715	tcc Ser	ctg Leu	agc Ser	2402
GIÀ	720	aat Asn	Thr	Leu	Met	Ser 725	Thr	Leu	Glu	Glu	Lys .730	Glu	Thr	Asp	Gly	2450
gag Glu 735	cag Gln	ggc Gly	ccc Pro	acg Thr	gtc Val 740	tcc Ser	cca Pro	gcc Ala	cca Pro	gct Ala 745	gat Asp	gag Glu	ccc	tcc Ser	agc Ser 750	2498
Pro	ctg Leu	ctg Leu	tcc Ser	cct Pro 755	ggc	tgc Cys	acc Thr	tcc Ser	tca Ser 760	tcc Ser	tca Ser	gct Ala	gcc Ala	aag Lys 765	ctg Leu	2546
cta Leu	ser	cca Pro	cgt Arg 770	cga Arg	aca Thr	gca Ala	ccc Pro	cgg Arg 775	cct Pro	cgt Arg	cta Leu	ggt Gly	ggc Gly 780	aga Arg	gly aaa	259 4
agg Arg	Pro	ggc Gly 785	agg Arg	gca Ala	ejà aaa	gct Ala	ttg Leu 790	aag Lys	gct Ala	gag Glu	gct Ala	ggc Gly 795	ccc Pro	tct Ser	gct Ala	2642
ccc Pro	cca Pro 800	cgg Arg	gcc Ala	cta Leu	gag Glu	802 GJA 333	cta Leu	cgg Arg	ctg Leu	ccc Pro	ccc Pro 810	atg Met	cca Pro	tgg Trp	aat Asn	2690
gtg Val 815	ccc Pro	cca Pro	gat Asp	ctg Leu	agc Ser 820	Pro	agg Arg	gta Val	gta Val	gat Asp 825	ggc	att Ile	gaa Glu	gac Asp	830 ggc	2738
tgt Cys	ggc Gly	tcg Ser	gac Asp	cag Gln 835	ccc Pro	aag Lys	ttc Phe	tct Ser	ttc Phe 840	cgc Arg	gtg Val	ggc Gly	cag Gln	tct Ser 845	ggc Gly	2786
ccg Pro	gaa Glu	tgt Cys	agc Ser 850	agc Ser	agc Ser	ccc Pro	tcc Ser	cct Pro 855	gga Gly	cca Pro	gag Glu	agc Ser	ggc Gly 860	ctg Leu	ctc Leu	2834
act Thr	gtt Val	ccc Pro 865	cat His	ggg Gly	ccc Pro	agc Ser	gag Glu 870	Ala	agg Arg	aac Asn	aca Thr	gac Asp 875	aca Thr	ctg Leu	gac Asp	2882
aag																

Lys Leu Arg Gln Ala Val Thr Glu Leu Ser Glu Gln Val Leu Gln Met 880 885 890	
cgg gaa gga ctg cag tca ctt cgc cag gct gtg cag ctt gtc ctg gcg Arg Glu Gly Leu Gln Ser Leu Arg Gln Ala Val Gln Leu Val Leu Ala 895 900 905 910	2978
ccc cac agg gag ggt ccg tgc cct cgg gca tcg gga gag ggg ccg tgc Pro His Arg Glu Gly Pro Cys Pro Arg Ala Ser Gly Glu Gly Pro Cys 915 920 925	3026
cca gcc agc acc tcc ggg ctt ctg cag cct ctg tgt gtg gac act ggg Pro Ala Ser Thr Ser Gly Leu Leu Gln Pro Leu Cys Val Asp Thr Gly 930 935 940	3074
gca tee tee tae tge etg eag eee eea get gge tet gte ttg agt ggg Ala Ser Ser Tyr Cys Leu Gln Pro Pro Ala Gly Ser Val Leu Ser Gly 945 950 955	3122
act tgg ccc cac cct cgt ccg ggg cct cct ccc ctc atg gca ccc cgg Thr Trp Pro His Pro Arg Pro Gly Pro Pro Pro Leu Met Ala Pro Arg 960 965 970	3170
ccc tgg ggt ccc cca gcg tct cag agc tcc ccc tgg cct cga gcc aca Pro Trp Gly Pro Pro Ala Ser Gln Ser Ser Pro Trp Pro Arg Ala Thr 975 980 985 990	3218
get tte tgg ace tee ace tea gae tea gag eee eet gee tea gga gae Ala Phe Trp Thr Ser Thr Ser Asp Ser Glu Pro Pro Ala Ser Gly Asp 995 1000 1005	3266
ctc tgc tct gag ccc agc acc cct gcc tcc cct cct tct gag gaa Leu Cys Ser Glu Pro Ser Thr Pro Ala Ser Pro Pro Pro Ser Glu Glu 1010 1015 1020	3314
ggg gct agg act ggg ccc gca gag cct gtg agc cag gct gag gct acc Gly Ala Arg Thr Gly Pro Ala Glu Pro Val Ser Gln Ala Glu Ala Thr 1035	3362
agc act gga gag ccc cca cca ggg tca ggg ggc ctg gcc ttg ccc tgg Ser Thr Gly Glu Pro Pro Pro Gly Ser Gly Gly Leu Ala Leu Pro Trp 1040 1045 1050	3410
gac ccc cac agc ctg gag atg gtg ctt att ggc tgc cat ggc tct ggc Asp Pro His Ser Leu Glu Met Val Leu Ile Gly Cys His Gly Ser Gly 1065 1070	3458
aca gtc cag tgg acc cag gaa gaa ggc aca ggg gtc t gagtaccagc Thr Val Gln Trp Thr Gln Glu Glu Gly Thr Gly Val 1075 1080	3505
cctagaacte agcgttgcca ggtgtgctgc catctgctgt tcggcccaac ctcagagtga aggcagggtg gcagcctccc cacggactcc atgcggcccg ctggctcagg gcagggagcc tggaagcaaa ggaggacctg gctcctgact ctcagagagg ataggctgga tccctggggcagacctgaggacctgaggacctgaggacctgaggacctgaggacctgaggacctgagacctgagacctccccaaaggaagagacctgcatccccaaagaagaagagacctgcatccccaaacttttt atattaaaaa aaaaaaaaaa	3565 3625 3685 3745 3805 3857

<210> 20 <211> 1082 <212> PRT

<213> H. sapiens

<400> 20 Met Pro Ala Met Arg Gly Leu Leu Ala Pro Gln Asn Thr Phe Leu Asp 10 Thr Ile Ala Thr Arg Phe Asp Gly Thr His Ser Asn Phe Val Leu Gly 25 Asn Ala Ser Gly Gly Ala Leu Pro Val Val Tyr Cys Ser Asp Gly Phe 40 Cys Asp Leu Thr Gly Phe Ser Arg Ala Glu Val Met Gln Arg Gly Cys Ala Cys Ser Phe Leu Tyr Gly Pro Asp Thr Ser Glu Leu Val Arg Gln . 70 75 Gln Ile Arg Lys Ala Leu Asp Glu His Lys Glu Phe Lys Ala Glu Leu 85 90 Ile Leu Tyr Arg Lys Ser Gly Leu Pro Phe Trp Cys Leu Leu Asp Val 100 105 Ile Pro Ile Lys Asn Glu Lys Gly Glu Val Ala Leu Phe Leu Val Ser 120 His Lys Asp Ile Ser Glu Thr Lys Asn Arg Gly Gly Pro Asp Arg Trp 135 140 Lys Glu Thr Gly Gly Gly Arg Arg Tyr Gly Arg Ala Arg Ser Lys 155 150 Gly Phe Asn Ala Asn Arg Arg Arg Ser Arg Ala Val Leu Tyr His Leu 165 170 175 Ser Gly His Leu Gln Lys Gln Pro Lys Gly Lys His Lys Leu Asn Lys 185 Gly Val Phe Gly Glu Lys Pro Asn Leu Pro Glu Tyr Lys Val Ala Ala 195 200 205 Ile Arg Lys Ser Pro Phe Ile Leu Leu His Cys Gly Ala Leu Arg Ala 215 220 Thr Trp Asp Gly Phe Ile Leu Leu Ala Thr Leu Tyr Val Ala Val Thr 225 230 235 Val Pro Tyr Ser Val Cys Val Ser Thr Ala Arg Glu Pro Ser Ala Ala 245 250 Arg Gly Pro Pro Ser Val Cys Asp Leu Ala Val Glu Val Leu Phe Ile 260 265 Leu Asp Ile Val Leu Asn Phe Arg Thr Thr Phe Val Ser Lys Ser Gly **~ 275** · 280 Gln Val Val Phe Ala Pro Lys Ser Ile Cys Leu His Tyr Val Thr Thr 295 300 · Trp Phe Leu Leu Asp Val Ile Ala Ala Leu Pro Phe Asp Leu Leu His 310 315 Ala Phe Lys Val Asn Val Tyr Phe Gly Ala His Leu Leu Lys Thr Val 330 325 335 Arg Leu Leu Arg Leu Leu Pro Arg Leu Asp Arg Tyr Ser ٠. 340 345 350 Gln Tyr Ser Ala Val Val Leu Thr Leu Leu Met Ala Val Phe Ala Leu 360 365 Leu Ala His Trp Val Ala Cys Val Trp Phe Tyr Ile Gly Gln Arg Glu 375 380 Ile Glu Ser Ser Glu Ser Glu Leu Pro Glu Ile Gly Trp Leu Gln Glu 395 395 Leu Ala Arg Arg Leu Glu Thr Pro Tyr Tyr Leu Val Gly Arg Arg Pro 410 Ala Gly Gly Ash Ser Ser Gly Gln Ser Asp Ash Cys Ser Ser Ser Ser 420 425 Glu Ala Asn Gly Thr Gly Leu Glu Leu Gly Gly Pro Ser Leu Arg 435 440 Ser Ala Tyr Ile Thr Ser Leu Tyr Phe Ala Leu Ser Ser Leu Thr Ser

}

Val Gly Phe Gly Asn Val Ser Ala Asn Thr Asp Thr Glu Lys Ile Phe 470 475 Ser Ile Cys Thr Met Leu Ile Gly Ala Leu Met His Ala Val Val Phe 485 490 Gly Asn Val Thr Ala Ile Ile Gln Arg Met Tyr Ala Arg Arg Phe Leu 505 Tyr His Ser Arg Thr Arg Asp Glm Arg Asp Tyr Ile Arg Ile His ary 520 525 Ile Pro Lys Pro Leu Lys Gln Arg Met Leu Glu Tyr Phe Gln Ala Thr 535 540 Trp Ala Val Asn Asn Gly Ile Asp Thr Thr Glu Leu Leu Gln Ser Leu 550 555 Pro Asp Glu Leu Arg Ala Asp Ile Ala Met His Leu His Lys Glu Val 565 570 Leu Gln Leu Pro Leu Phe Glu Ala Ala Ser Arg Gly Cys Leu Arg Ala 580 585 Leu Ser Leu Ala Leu Arg Pro Ala Phe Cys Thr Pro Gly Glu Tyr Leu 600 Ile His Gln Gly Asp Ala Leu Gln Ala Leu Tyr Phe Val Cys Ser Gly 615 620 Ser Met Glu Val Leu Lys Gly Gly Thr Val Leu Ala Ile Leu Gly Lys 630 635 Gly Asp Leu Ile Gly Cys Glu Leu Pro Arg Arg Glu Gln Val Val Lys 645 650 Ala Asn Ala Asp Val Lys Gly Leu Thr Tyr Cys Val Leu Gln Cys Leu 660 665 Gln Leu Ala Gly Leu His Asp Ser Leu Ala Leu Tyr Pro Glu Phe Ala 675 680 Pro Arg Phe Ser Arg Gly Leu Arg Gly Glu Leu Ser Tyr Asn Leu Gly 695 700 Ala Gly Gly Ser Ala Glu Val Asp Thr Ser Ser Leu Ser Gly Asp 710 715 Asn Thr Leu Met Ser Thr Leu Glu Glu Lys Glu Thr Asp Gly Glu Gln 725 730 Gly Pro Thr Val Ser Pro Ala Pro Ala Asp Glu Pro Ser Ser Pro Leu 740 745 Leu Ser Pro Gly Cys Thr Ser Ser Ser Ser Ala Ala Lys Leu Leu Ser 760 Pro Arg Arg Thr Ala Pro Arg Pro Arg Leu Gly Gly Arg Gly Arg Pro 775 780 Gly Arg Ala Gly Ala Leu Lys Ala Glu Ala Gly Pro Ser Ala Pro Pro .790 795 Arg Ala Leu Glu Gly Leu Arg Leu Pro Pro Met Pro Trp Asn Val Pro 805 810 Pro Asp Leu Ser Pro Arg Val Val Asp Gly Ile Glu Asp Gly Cys Gly 820 825 Ser Asp Gln Pro Lys Phe Ser Phe Arg Val Gly Gln Ser Gly Pro Glu 840 845 Cys Ser Ser Ser Pro Ser Pro Gly Pro Glu Ser Gly Leu Leu Thr Val 855860 Pro His Gly Pro Ser Glu Ala Arg Asn Thr Asp Thr Leu Asp Lys Leu 870 875 Arg Gln Ala Val Thr Glu Leu Ser Glu Gln Val Leu Gln Met Arg Glu 885 890 Gly Leu Gln Ser Leu Arg Gln Ala Val Gln Leu Val Leu Ala Pro His 905 Arg Glu Gly Pro Cys Pro Arg Ala Ser Gly Glu Gly Pro Cys Pro Ala 915 920 925 Ser Thr Ser Gly Leu Leu Gln Pro Leu Cys Val Asp Thr Gly Ala Ser . 935 Ser Tyr Cys Leu Gln Pro Pro Ala Gly Ser Val Leu Ser Gly Thr Trp

945	950		955		960
Pro His Pro Arg	Pro Gly 965	Pro Pro Pro	Leu Met Ala 970	Pro Arg Pro	Trp
Gly Pro Pro Ala	Ser Gln	Ser Ser Pro 985	Trp Pro Arg	Ala Thr Ala	Phe
Trp::Thr Ser Thr				Gly Asp Leu	Cys
Ser Glu Pro Ser	Thr Pro	Ala Ser Pro			Ala
Arg Thr Gly Pro	Ala Glu				Thr
1025 Gly Glu Pro Pro	1030 Pro Gly			Pro Trp Asp	104 Pro
His Ser Leu Glu	1045 Met Val	Leu Ile Gly	1050 Cys His Gly	105 Ser Gly Thr	5 Val
106	0	106	5	1070	
Gln Trp Thr Gln	Glu Glu	Gly Thr Gly	Val	•	
1075		1080	• •	•	
			· :		* •
<210>: 21				•	
<211> 180	0	* * * * * * * * * * * * * * * * * * * *			•
<212> DNA				•	
<213> H.	sapiens	* * * * * * * * * * * * * * * * * * * *			
					• •
<220>				er a e e e e	•
<221> CDS		•			
<222> (34	6)(105	7)	i e i	•	
<223> K+H	nov28, sp	lice 1			
			• • • • • • • • • • • • • • • • • • • •		•
<400> 21				- ,	
atttgaatga ctgg	gttact to	ctagacte tt	ectectre ter	taaqtac aqta	tagttc : 60
					cagee
tttctctgaa aato	ttcagt ct	cttagttc ca	gatgggtt ctc	tatggta ggaa	tacage 120
tttctctgaa aato	ttcagt ct	cttagttc ca	gatgggtt ctc	tatggta ggaa	tacagg 120
tttctctgaa aato acatgtagaa ggco	ttcagt ct	cttagttc ca atgetttc tt	gatgggtt ctc cccagat ctt	tatggta ggaa tgccctg tagt	tacagg 120 aggttt 180
tttctctgaa aato acatgtagaa ggcc cagctgagca agga	ttcagt ct ctaggg ga cgagta gt	cttagttc ca atgetttc tt ttttetgg tg	gatgggtt ctc cccagat ctt tttggcct cct	tatggta ggaa tgccctg tagt ctgttgg gtgg	tacagg 120 aggttt 180 aaaaag 240
tttctctgaa aato acatgtagaa ggcc cagctgagca agga actttcttct ctat	ttcagt ct ctaggg ga cgagta gt tttcct ag	cttagttc ca atgetttc tt ttttctgg tg ttatatat gc	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc	tatggta ggaa tgccctg tagt ttgttgg gtgg	tacagg 120 aggttt 180 aaaaag 240 tottga 300
tttctctgaa aato acatgtagaa ggcc cagctgagca agga	ttcagt ct ctaggg ga cgagta gt tttcct ag	cttagttc ca atgetttc tt ttttctgg tg ttatatat gc	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc	tatggta ggaa tgeeetg tagt stgttgg gtgg sgttttt etee ag atg gat a	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357
tttctctgaa aato acatgtagaa ggcc cagctgagca agga actttcttct ctat	ttcagt ct ctaggg ga cgagta gt tttcct ag	cttagttc ca atgetttc tt ttttctgg tg ttatatat gc	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc	tatggta ggaa tgecetg tagt etgttgg gtgg ggttttt etec ag atg gat a Met Asp A	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357
tttctctgaa aato acatgtagaa ggcc cagctgagca agga actttcttct ctat	ttcagt ct ctaggg ga cgagta gt tttcct ag	cttagttc ca atgetttc tt ttttctgg tg ttatatat gc	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc	tatggta ggaa tgeeetg tagt stgttgg gtgg sgttttt etee ag atg gat a	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357
tttctctgaa aato acatgtagaa ggcc cagctgagca agga actttcttct ctat agtttccctg aaac	ttcagt ct ctaggg ga cgagta gt tttcct ag ctgggc tc	cttagttc ca atgettte tt ttttetgg tg ttatatat ge ttgaagae ge	gatgggtt ctc ccccagat ctt tttggcct cct tatcatat gtc atcactgg agc	tatggta ggaa ggcctg tagt stgttgg gtgg ggttttt ctcc ag atg gat a Met Asp A	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly
tttctctgaa aatc acatgtagaa ggcc cagctgagca agga actttcttct ctat agtttccctg aaac	ctagt ct ctaggg ga cgagta gt tttcct ag ctgggc tc	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca	gatgggtt ctc ccccagat ctt tttggcct cct tatcatat gtc atcactgg agc	tatggta ggaa tgecetg tagt tgttgg gtgg tgtttt etce ag atg gat a Met Asp A	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly
tttctctgaa aato acatgtagaa ggcc cagctgagca agga actttcttct ctat agtttccctg aaac	ettcagt ct ctaggg ga cgagta gt tttcct ag ctgggc tc atg atg	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca	gatgggtt ctc ccccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu	tatggta ggaa tgecetg tagt tgttgg gtgg tgtttt etce ag atg gat a Met Asp A	tacagg 120 aggttt 180 aaaaag 240 tettga 300 at gga 357 sn Gly gga 405 Gly
tttctctgaa aato acatgtagaa ggcc cagctgagca agga actttcttct ctat agtttccctg aaac gac tgg ggc tat Asp Trp Gly Tyr	ettcagt ct ctaggg ga cgagta gt tttcct ag ctgggc tc atg atg	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca	gatgggtt ctc ccccagat ctt tttggcct cct tatcatat gtc atcactgg agc	tatggta ggaa tgecetg tagt tgttgg gtgg tgtttt etce ag atg gat a Met Asp A	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly
detection and categories and categor	ettcagt ct ctaggg ga cgagta gt tttcct ag ctgggc tc atg atg Met Met	cttagtte ca atgettte tt ttttetgg tg ttatatat ge ttgaagae ge act gac eca Thr Asp Pro	gatgggtt ctc ccccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15	tatggta ggaa ggcctg tagt tgttgg gtgg ggttttt ctcc ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly gga 405 Gly 20
detection and control of the control	ettcagt ct ctaggg ga cgagta gt tttcct ag ctgggc tc atg atg Met Met 10 acg tct	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca Thr Asp Pro	gatgggtt ctc ccccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt	tatggta ggaa tgecetg tagt tgttgg gtgg tgtttt etce ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly gga 405 Gly 20 tcc 453
detection and categories and categor	ettcagt ct ctaggg ga cgagta gt tttcct ag ctgggc tc atg atg Met Met 10 acg tct	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca Thr Asp Pro	gatgggtt ctc ccccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt Leu Thr Arg	tatggta ggaa ggcctg tagt ggtttt ctcc ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly tac ccg gat	tacagg 120 aggttt 180 aaaaag 240 tettga 300 at gga 357 sn Gly gga 405 Gly 20 tec 453 Ser
detection and control of the control	ettcagt ct ctaggg ga cgagta gt tttcct ag ctgggc tc atg atg Met Met 10 acg tct	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca Thr Asp Pro	gatgggtt ctc ccccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt	tatggta ggaa tgecetg tagt tgttgg gtgg tgtttt etce ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly	tacagg 120 aggttt 180 aaaaag 240 tettga 300 at gga 357 sn Gly gga 405 Gly 20 tec 453 Ser
deatgtagaa ggccagctgagca aggaactttettet etatagtteectg aaacttteectg aaactgg ggc tatag Trp Gly Tyr 5 cac ttg tat aca	atg atg acg tct Thr Ser	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca Thr Asp Pro ctc acc aca Leu Thr Thr	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt Leu Thr Arg	tatggta ggaa ggcctg tagt tgttgg gtgg ggttttt ctcc ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly tac ccg gat Tyr Pro Asp	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly gga 405 Gly 20 tcc 453 Ser
deatgtagaa ggccagctgagca aggaactttcttct ctatagttccctg aaaccagttccctg aaaccagctggggc tatagttccctg aggc tatagttccctgggc aggc tatagttccctgggc aggc tatagttccctgggc aggc tatagtcct aggc aggc	ttcagt ct ctaggg ga cgagta gt tttcct ag ctgggc tc atg atg Met Met 10 acg tct Thr Ser 25 atg ttt	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca Thr Asp Pro ctc acc aca Leu Thr Thr	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt Leu Thr Arg 30 ttc ccc aca	tatggta ggaa tgecetg tagt tgttgg gtgg tgtttt etce ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly tac eeg gat Tyr Pro Asp 35	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly gga 405 Gly 20 tcc 453 Ser cct 501
dataget against agains	atg atg Acg tct Thr Ser 25 Atg ttt	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac eca Thr Asp Pro ctc acc aca Leu Thr Thr ggg ggg gac Gly Gly Asp	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt Leu Thr Arg 30 ttc ccc aca	tatggta ggaa ggcctg tagt ggtttt ctcc ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly tac ccg gat Tyr Pro Asp 35 gct cga gac Ala Arg Asp	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly gga 405 Gly 20 tcc 453 Ser cct 501
deatgtagaa ggccagctgagca aggaactttcttct ctatagttccctg aaaccagttccctg aaaccagctggggc tatagttccctg aggc tatagttccctgggc aggc tatagttccctgggc aggc tatagttccctgggc aggc tatagtcct aggc aggc	atg atg Acg tct Thr Ser 25 Atg ttt	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca Thr Asp Pro ctc acc aca Leu Thr Thr	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt Leu Thr Arg 30 ttc ccc aca	tatggta ggaa tgecetg tagt tgttgg gtgg tgtttt etce ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly tac eeg gat Tyr Pro Asp 35	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly gga 405 Gly 20 tcc 453 Ser cct 501
datagragaa ggccagctgagca aggaactteetet etatagtteectg aaactteetet etatagtteectg aaactteetet ggc ggc tatagtee Trp Gly Tyr 5 cac ttg tat aca His Leu Tyr Thracatg ett gga gct Met Leu Gly Ala	atg atg Met Met Thr Ser 25 atg ttt	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca Thr Asp Pro ctc acc aca Leu Thr Thr ggg ggg gac Gly Gly Asp 45	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt Leu Thr Arg 30 ttc ccc aca Phe Pro Thr	tatggta ggaa ggcctg tagt tgttgg gtgg ggttttt ctcc ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly tac ccg gat Tyr Pro Asp 35 gct cga gac Ala Arg Asp	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly gga 405 Gly 20 tcc 453 Ser cct 501 Pro
datagragaa ggccagctgagca aggaacttcctct ctatagttccctg aaaccagttggggc tatagttccctg aaaccagctggggc tatagttccctg aggc tatagttccctg tatacagtttccctg aaaccagctggggc tatagttccctg tatacagtttccctg aaccacttg tatacagtts Leu Tyr Thracatg ctt gga gct Met Leu Gly Alaaccaa ggc aat taccaa ggc aat taccacaggc aaccactcg	atg atg Met Met Thr Ser 25 atg ttt Met Phe	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca Thr Asp Pro ctc acc aca Leu Thr Thr ggg ggg gac Gly Gly Asp 45 gat cga gat	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt Leu Thr Arg 30 ttc ccc aca Phe Pro Thr	tatggta ggaa ggcctg tagt tgttgg gtgg gttttt ctcc ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly tac ccg gat Tyr Pro Asp 35 gct cga gac Ala Arg Asp 50	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly gga 405 Gly 20 tcc 453 Ser cct 501 Pro
datagragaa ggccagctgagca aggaactttettet etatagtteectg aaacttteetet etatagtteectg aaaccgccag ggc tatagtteectg ggc tatagtee Trp Gly Tyr 5 cac ttg tat aca His Leu Tyr Thr atg ctt gga get Met Leu Gly Ala 40 caa ggc aat tac Gln Gly Asn Tyr	atg atg Met Met Thr Ser 25 atg ttt Met Phe	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca Thr Asp Pro ctc acc aca Leu Thr Thr ggg ggg gac Gly Gly Asp 45 gat cga gat	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt Leu Thr Arg 30 ttc ccc aca Phe Pro Thr	tatggta ggaa ggcctg tagt tgttgg gtgg gttttt ctcc ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly tac ccg gat Tyr Pro Asp 35 gct cga gac Ala Arg Asp 50	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly gga 405 Gly 20 tcc 453 Ser cct 501 Pro
datagragaa ggccagctgagca aggaacttcctct ctatagttccctg aaaccagttggggc tatagttccctg aaaccagctggggc tatagttccctg aggc tatagttccctg tatacagtttccctg aaaccagctggggc tatagttccctg tatacagtttccctg aaccacttg tatacagtts Leu Tyr Thracatg ctt gga gct Met Leu Gly Alaaccaa ggc aat taccaa ggc aat taccacaggc aaccactcg	atg atg Met Met Thr Ser 25 atg ttt Met Phe	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca Thr Asp Pro ctc acc aca Leu Thr Thr ggg ggg gac Gly Gly Asp 45 gat cga gat	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt Leu Thr Arg 30 ttc ccc aca Phe Pro Thr	tatggta ggaa ggcctg tagt tgttgg gtgg gttttt ctcc ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly tac ccg gat Tyr Pro Asp 35 gct cga gac Ala Arg Asp 50	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly gga 405 Gly 20 tcc 453 Ser cct 501 Pro
datagragaa ggccagctgagca aggaacttectet ctatagttecetg aaacttecetg aaaccgccggggggggggggggggggggggggggggg	atg atg Met Met Thr Ser 25 atg ttt Met Phe ttt att Phe Ile	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca Thr Asp Pro ctc acc aca Leu Thr Thr ggg ggg gac Gly Gly Asp 45 gat cga gat Asp Arg Asp 60	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt Leu Thr Arg 30 ttc ccc aca Phe Pro Thr gga cct ctt Gly Pro Leu	tatggta ggaa ggcctg tagt tgttgg gtgg ggttttt ctcc ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly tac ccg gat Tyr Pro Asp 35 gct cga gac Ala Arg Asp 50 ttc cga tat Phe Arg Tyr 65	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly gga 405 Gly 20 tcc 453 Ser cct 501 Pro gtc 549 Val
datagragaa ggccagctgagca aggaacttectet ctatagttecetg aaacttecetg aaaccgccggggggggggggggggggggggggggggg	atg atg Met Met Thr Ser 25 atg ttt Met Phe ttt att Phe Ile	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca Thr Asp Pro ctc acc aca Leu Thr Thr ggg ggg gac Gly Gly Asp 45 gat cga gat Asp Arg Asp 60 tca gaa ttg	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt Leu Thr Arg 30 ttc ccc aca Phe Pro Thr gga cct ctt Gly Pro Leu acc tta ccg	tatggta ggaa ggcctg tagt tgttgg gtgg gttttt ctcc ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly tac ccg gat Tyr Pro Asp 35 gct cga gac Ala Arg Asp 50 ttc cga tat Phe Arg Tyr 65	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly gga 405 Gly 20 tcc 453 Ser cct 501 Pro gtc 549 Val aag 597
datagragaa ggccagctgagca aggaacttectet ctatagttecetg aaacttecetg aaaccgccggggggggggggggggggggggggggggg	atg atg Met Met Thr Ser 25 atg ttt Met Phe ttt att Phe Ile	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca Thr Asp Pro ctc acc aca Leu Thr Thr ggg ggg gac Gly Gly Asp 45 gat cga gat Asp Arg Asp 60 tca gaa ttg	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt Leu Thr Arg 30 ttc ccc aca Phe Pro Thr gga cct ctt Gly Pro Leu acc tta ccg	tatggta ggaa ggcctg tagt tgttgg gtgg gttttt ctcc ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly tac ccg gat Tyr Pro Asp 35 gct cga gac Ala Arg Asp 50 ttc cga tat Phe Arg Tyr 65	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly gga 405 Gly 20 tcc 453 Ser cct 501 Pro gtc 549 Val aag 597
datagragaa ggccagctgagca aggaacttectet ctatagttecetg aaacttecetg aaaccgccggggggggggggggggggggggggggggg	atg atg Met Met Thr Ser 25 atg ttt Met Phe ttt att Phe Ile	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca Thr Asp Pro ctc acc aca Leu Thr Thr ggg ggg gac Gly Gly Asp 45 gat cga gat Asp Arg Asp 60 tca gaa ttg	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt Leu Thr Arg 30 ttc ccc aca Phe Pro Thr gga cct ctt Gly Pro Leu acc tta ccg	tatggta ggaa ggcctg tagt tgttgg gtgg gttttt ctcc ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly tac ccg gat Tyr Pro Asp 35 gct cga gac Ala Arg Asp 50 ttc cga tat Phe Arg Tyr 65	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly gga 405 Gly 20 tcc 453 Ser cct 501 Pro gtc 549 Val aag 597
datagragaa ggccagctgagca aggaactttettet etatagtteectg aaac ggc tatagg ggc tatagg ggc tatagg ggc tatagg tatagg tatagg tatagg tatagg tatagg ggc t	atg atg Met Met Thr Ser 25 atg ttt Met Phe ttt att Phe Ile	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca Thr Asp Pro ctc acc aca Leu Thr Thr ggg ggg gac Gly Gly Asp 45 gat cga gat Asp Arg Asp 60 tca gaa ttg Ser Glu Leu	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt Leu Thr Arg 30 ttc ccc aca Phe Pro Thr gga cct ctt Gly Pro Leu acc tta ccg Thr Leu Pro	tatggta ggaa ggcctg tagt tgttgg gtgg gttttt ctcc ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly tac ccg gat Tyr Pro Asp 35 gct cga gac Ala Arg Asp 50 ttc cga tat Phe Arg Tyr 65	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly gga 405 Gly 20 tcc 453 Ser cct 501 Pro gtc 549 Val aag 597
datagragaa ggccagctgagca aggaactttettet etatagtteectg aaactteectg aaaccgccagctgagca aggaactteectg aaaccgccaggggggggggggggggggggggggggg	atg atg Met Met 10 acg tct Thr Ser 25 atg ttt Met Phe ttt att Phe Ile aga act Arg Thr	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca Thr Asp Pro ctc acc aca Leu Thr Thr ggg ggg gac Gly Gly Asp 45 gat cga gat Asp Arg Asp 60 tca gaa ttg Ser Glu Leu 75	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt Leu Thr Arg 30 ttc ccc aca Phe Pro Thr gga cct ctt Gly Pro Leu acc tta ccg Thr Leu Pro 80	tatggta ggaa ggcctg tagt tgttgg gtgg gttttt ctcc ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly tac ccg gat Tyr Pro Asp 35 gct cga gac Ala Arg Asp 50 ttc cga tat Phe Arg Tyr 65 ttg gat ttt Leu Asp Phe	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly gga 405 Gly 20 tcc 453 Ser cct 501 Pro gtc 549 Val aag 597 Lys
datagragaa ggccagctgagca aggaactttettet etatagtteectg aaactteectg aaaccgccagctgagca aggaactteectg aaaccgccaggggggggggggggggggggggggggg	atg atg Met Met 10 acg tct Thr Ser 25 atg ttt Met Phe ttt att Phe Ile aga act Arg Thr	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca Thr Asp Pro ctc acc aca Leu Thr Thr ggg ggg gac Gly Gly Asp 45 gat cga gat Asp Arg Asp 60 tca gaa ttg Ser Glu Leu 75 aaa gaa gca	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt Leu Thr Arg 30 ttc ccc aca Phe Pro Thr gga cct ctt Gly Pro Leu acc tta ccg Thr Leu Pro 80 gat ttt tac	tatggta ggaa ggcctg tagt tgttgg gtgg gttttt ctcc ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly tac ccg gat Tyr Pro Asp 35 gct cga gac Ala Arg Asp 50 ttc cga tat Phe Arg Tyr 65 ttg gat ttt Leu Asp Phe cag att gag	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly gga 405 Gly 20 tcc 453 Ser cct 501 Pro gtc 549 Val aag 597 Lys ccc 645
datagragaa ggccagctgagca aggaactttettet etatagtteectg aaactteectg aaaccgccagctgagca aggaactteectg aaaccgccaggggggggggggggggggggggggggg	atg atg Met Met 10 acg tct Thr Ser 25 atg ttt Met Phe ttt att Phe Ile aga act Arg Thr	cttagttc ca atgetttc tt ttttetgg tg ttatatat ge ttgaagac ge act gac cca Thr Asp Pro ctc acc aca Leu Thr Thr ggg ggg gac Gly Gly Asp 45 gat cga gat Asp Arg Asp 60 tca gaa ttg Ser Glu Leu 75 aaa gaa gca	gatgggtt ctc cccagat ctt tttggcct cct tatcatat gtc atcactgg agc gtc aca tta Val Thr Leu 15 ttg acg cgt Leu Thr Arg 30 ttc ccc aca Phe Pro Thr gga cct ctt Gly Pro Leu acc tta ccg Thr Leu Pro 80 gat ttt tac	tatggta ggaa ggcctg tagt tgttgg gtgg gttttt ctcc ag atg gat a Met Asp A 1 aat gta ggt Asn Val Gly tac ccg gat Tyr Pro Asp 35 gct cga gac Ala Arg Asp 50 ttc cga tat Phe Arg Tyr 65 ttg gat ttt Leu Asp Phe cag att gag	tacagg 120 aggttt 180 aaaaag 240 tcttga 300 at gga 357 sn Gly gga 405 Gly 20 tcc 453 Ser cct 501 Pro gtc 549 Val aag 597 Lys ccc 645

sappress of a

ttg att cag tgt ctc aat gat cct aag cct ttg tat ccc atg gat act Leu Ile Gln Cys Leu Asn Asp Pro Lys Pro Leu Tyr Pro Met Asp Thr 105 110	693
ttt gaa gaa gtt gtg gag ctg tct agt act cgg aag ctt tct aag tac Phe Glu Glu Val Val Glu Leu Ser Ser Thr Arg Lys Leu Ser Lys Tyr 120 125 130	741
tcc aac cca gtg gct gtc atc ata acg caa cta acc atc acc act aag Ser Asn Pro Val Ala Val Ile Ile Thr Gln Leu Thr Ile Thr Thr Lys 135 140 145	789
gtc cat tcc tta cta gaa ggc atc tca aat tat ttt acc aag tgg aat Val His Ser Leu Leu Glu Gly Ile Ser Asn Tyr Phe Thr Lys Trp Asn 150 160	837
aag cac atg atg gac acc aga gac tgc cag gtt tcc ttt act ttt gga Lys His Met Met Asp Thr Arg Asp Cys Gln Val Ser Phe Thr Phe Gly 170 175 180	885
CCC tgt gat tat cac cag gaa gtt tct ctt agg gtc cac ctg atg gaa Pro Cys Asp Tyr His Gln Glu Val Ser Leu Arg Val His Leu Met Glu 185	933
tac att aca aaa caa ggt ttc acg atc cgc aac acc cgg gtg cat cac Tyr Ile Thr Lys Gln Gly Phe Thr Ile Arg Asn Thr Arg Val His His 200 205 210	981
atg agt gag cgg gcc aat gaa aac aca gtg gag cac aac tgg act ttc Met Ser Glu Arg Ala Asn Glu Asn Thr Val Glu His Asn Trp Thr Phe 215 220 225	1029
tgt agg cta gcc cgg aag aca gac gac t gatctccgac cctgccacag Cys Arg Leu Ala Arg Lys Thr Asp Asp 230 235	1077
gttcctggaa agactctcca ggaaatggaa gatactgatt tttttttta aatcacagtg	1137
tgagatattt tttttctttt aaatagttgt atttatttga aggcagtgag gaccagaagg	1197
aagttttgtg ctttggcaga ctcctccatg ttttgttccc ttccccctga gtatgcatgt	1257
geetgtteag agteteeaga tacettttt ataaaaagaa gtetgaaaat cattatggta	1317
tataatctac ccttaacaga gcttttctta ttacagtgct aaaatgattt ctgataaaat	1377
ggtccctaac tcaactagaa ggctaaaaat acaagaatga aagaataagc agagtactca	1437
tgatgccttt gagaaaaatc aaaacatcat gtagggtgac ctagtttcca aaccaataaa	1497
taagtagtat tgtaatatta aaggaaaact gttccaatca tttaaaagta cttattaagt	1557
actgetett acagetatga caactgette tetetatgea tataaateaa ggaaccaaat	1617
atctgtagcc atggaaatgt ctgactagaa atatttatat tgaattctga atacaaaatg tccctgtggt agaaaactta ctctttatgc ctggtgcagt ataattccca agtgtactgt	1677
ctaccagaaa aaaaaaacaa aactaataaa aaatgaaata tgaaaaaaaa aaaaaaaaaa	1737
aaa	1797 1800
	1000
<210> 22	
<211> 1836	

<210> 22 <211> 1836 <212> DNA <213> H. sapiens <220>

:

<221> CDS <222> (382) ... (1093) <223> K+Hnov28 splice 2

		100>														
gag	gaato	gtt	atga	tttt	gt ga	acta	tttgi	gad	cage	tttt	taat	tatt	agg	tcac	tttaa	a 60
acci	tatag	get	tete	tctt	ct ag	gacca	acato	ggti	999	aaag	gaga	aaag	aga	aaat	gattac	120
- c.tgi	tagag	aa	aaat	ccat	tt ci	cgcag	gtggt	ate	gtta	aagg	ataa	atct	aac	cata	atcaca	180
tta	tect	gt	atgc	ctgg	ct ac	cttg	tgct	g gc	tgta	atgt	gaat	gtt	aac	cccaa	aagact	240
ccti	ttaga	atg	tege	tgaa	ct ag	gttad	ctata	a aaa	agta	attt	cgct	ttc	aaa	ctcc	cacatt	300
tcaa	agaaq	gag	caaa	ectc:	aa ta	acaag	ggcaa	a tti	tgaa	agtt	teed	ctga	aac	ctgg	getett	360
gaag	gacgo	cat	cact	ggag	ca g	atg	gat	aat	gga	gac	tgg	ggc	tat	atg	atg	411
		•					Asp	Asn	Gly	Asp	Trp	Gly	Tyr	Met	Met	
						1				5					10	
:										. ·		٠,	•	. •		
act The	gac	CCA	gtc	aca	tta	aat	gta	ggt	gga	cac	ttg	tat.	aca	acg	tct	459
inr	ASP	Pro	Val		reu	Asn	Val	GIY		His	Leu	Tyr	Thr	Thr	Ser	
				15					20					25		
at a		363													÷	
Tan	mba	aca mb-	ttg	acg	-egr	Cac	ccg	gat	ECC	atg	CEE	gga	gct	atg	ttt	507
Leu	IIII	inr	Leu	inr	Arg	Tyr	Pro		ser	Met	Leu	GIY		Met	Phe	
-			30					35			e t	÷	40			
~~~	~~~		+ = a	daa							i					
999	999	yac.	ttc	Dec	The	31-	cga	gac	CCE.	caa	ggc	aat	tac	ttt.	att	555
GIY	GIY	45	Phe	PIC	1111	Ald		Asp	Pro	Gin	GIY		Tyr	Phe	Ile	
		43					50					. 55				
mat	CCA		gga	cot	-	***		÷	ئى سانىم				i			
Acn	Ara	.yar	Gly	Pro	Ten	Pho	) ra	Tare	Val	Low	aac	Dha	tta	aga	act	603
rsp	60	rsp	Gry	PLO	Deu	65	Arg	TAT	vai	reu	ASI	Pne	Leu	Arg	Thr	
						65					/•		,			
tica	gaa	tta	асс	tta	CCO.	++~	ant.	-++	200		(r + + -	~~+	~+~			
Ser	Glu	Leu	Thr	Len	Pro	T.e.u	Aen	Dhe	Lve	Glu	Dhe	yac Nen	Tou	Tou	cgg	651
75	014	٠ ٠		neu	80	neu	vab	FILE	пуъ	85	PILE	ASP	Leu	reu	90	
	. •										• . •				30	
aaa	gaa	gca	gat	ttt	tac	cag	átt	дад	ccc	tta	art	cad	tert	ctc	aat	699
Lys	Glu	Ala	Asp	Phe	Tyr	Gln	Ile	Glu	Pro	Leu	Ile	Gln	Cvs	Leu	Asn	0,5
•			•	95	_				100				-,-	105		
	·														•	
gat	cct	aag	cct	ttg	tat	ccc	atg	gat	act	ttt	gaa	gaa	att	ata	gag	- 747
Asp	Pro	Lys	Pro	Leu	Tyr	Pro	Met	Asp	Thr	Phe	Glu	Glu	Val	Val	Glu	
-		_	110		-			115					120			
٠.	. /						.7					. •	٠.	٠.		
ctg	tct	agt	act	cgg	aag	ctt	tct	aag	tac	tcc	aac	ccá	gtg	gct	gtc	795
Leu	Ser	Ser	Thr	Arg	Lys	Leu	Ser	Lys	Tyr	Ser	Asn	Pro	Val	Ala	Val	
	•	125					130	•				135	: '			
					٠.,					: '`				•	•	
atc	ața	acg	caa	cta	acc	atc	acc	act.	aag	gte	cat	tcc	tta	cta	gaa	843
Ile	Ile	Thr	Gln	Leu	Thr	Ile	Thr	Thr	Lys	Val	His	Ser	Leu	Leu	Glu	
	140					145					150	•			•	
			~				• •	** * * .		•						
			aat.													891
Gly	Ile	Ser	Asn	Tyr	Phe	Thr	Lys	Trp			Kis'	Met	Met	Asp	Thr	
155		٠,			160		•		•	165			•,	• •	170	
															-	
aga	gac	tgc	cag	gtt	tcc	ttt	act	ttt	gga	CCC	tgt	gat	tat	cac	cag	939
Arg	Asp	Cys	Gln		Ser	Phe	Thr	Phe		Pro	Cys		Tyr		Gln	
				175					180			•		185		
gaa	gtt	tct	ctt	agg	gtc	cac	ctg	atg	gaa	tac	att	aca	aaa	caa	ggt	987
Glu	Val	Ser	Leu	Arg	Val	His	Leu		Glu	Tyr	Ile		-	Gln	Gly	
			190					195					200			
<b></b> -													•		_	
בבכ	acg	atc	cgc	aac	acc	cgg	grg	cat	cac	atg	agt	gag	caa	gcc	aat	1035
rne	Inr	тте	Arg	ASN	Inr	Arg	val	nis	HIE	Met	ser	GIU	Arg	Ala	Asn	

SUBJECT SUBJECT

· ·	205	210	215	
gaa aac Glu Asn 220	aca gtg gag c Thr Val Glu H	ac aac tgg act is Asn Trp Thr 225	ttc tgt agg cta Phe Cys Arg Leu 230	gcc cgg aag 1083 Ala Arg Lys
aca gac Thr Asp 235	gac t gatctcc Asp	gac cctgccacag	gttcctggaa agac	teteca 1133
ctcctcca tacctttt gcttttct ggctaaaa aaaacatc aaggaaaa caactgtt ctgactag	ty tittgitccc tt ataaaaagaa ta ttacagtgct at acaagaatga at gtagggtgac ct gttccaatca tc tttctatgca aa atatttatat gc ctggtgcagt	aggeagtgag gac ttccccctga gta gtctgaaaat cat aaaatgattt ctg aagaataagc aga ctagtttcca aac tttaaaagta ctt tataaatcaa gga tgaattctga ata ataattccca agt	cacagtg tgagatal cagaagg aagtttt cagaagg agtttt cagaagg gcctgtt cataggta tataact dataaaat ggtcccta gtactca tgatgcct caataaa taagtagt attaagt actgcttt accaaat atcctgtag gtactgt ctaccaga	gtg ctttggcaga 1253 cag agtctccaga 1313 cac ccttaacaga 1373 cac tcaactagaa 1433 ctt gagaaaaatc 1493 cat tgtaatatta 1553 ctt acagttatga 1613 gcc atggaaatgt 1673 ggt agaaaactta 1793
<2 <2 <2	aa aaacgaaata 10> 23 11> 1751 12> DNA 13> H. sapiens	tgaaaaaaa aaa	aaaaaaa aaa	1836
<2 <2	20> 21> CDS 22> (297)(; 23> K+Hnov28 s			
ccatgttt ggttgatt aactgttt gtatctga	ggattgaagt gt ttaaatgett ge attteteagt	gtgtgagagg gaa ttgaattgta gat gtcttaaggc tgg	gaaattt getetgea etgaeta aggeagtt aaaaata aatteaea eteteea tgagtget ttgaaga egeateae	ca gtagctggga 120 tt ggcatcatta 180 gg ctgattgact 240
gat aat ( Asp Asn (	gga gac tgg gg Gly Asp Trp Gl 5	tat atg atg y Tyr Met Met 10	act gac cca gtc Thr Asp Pro Val	aca tta aat 347
gta ggt ( Val Gly (	ga cac ttg ta	r Thr Thr Ser	ctc acc aca ttg Leu Thr Thr Leu 30	acg cgt tac 395 Thr Arg Tyr
ccg gat ( Pro Asp (	cc atg ctt gg Ser Met Leu Gl	a gct atg ttt g y Ala Met Phe ( 40	ggg ggg gac ttc Gly Gly Asp Phe 45	ccc aca gct 443 Pro Thr Ala
cga gac ( Arg Asp 1 50	Pro Gln Gly As	t tac ttt att on Tyr Phe Ile i	gat cga gat gga Asp Arg Asp Gly 60	cct ctt ttc 491 Pro Leu Phe 65
cga tat o Arg Tyr \	ytc ctc aac tt Val Leu Asn Ph 70	c tta aga act t e Leu Arg Thr S	cca gaa ttg acc Ser Glu Leu Thr 75	tta ccg ttg 539 Leu Pro Leu 80

•	Asp	Phe	Lys	Glu 85	Phe	Asp	Leu	Leu	Arg 90	Lys	Glu	gca Ala	Asp	Phe 95	Tyr	Gln	587
	att Ile	gag Glu	Pro 100	ttg Leu	att Ile	cag Gln	tgt Cys	ctc Leu 105	aat Asn	gat Asp	cct Pro	aag Lys	Pro	ttg Leu	tat Tyr	ccc Pro	635
	atg Met	gat Asp 115	act Thr	ttt Phe	gaa Glu	gaa Glu	gtt Val 120	gtg Val	gag Glu	ctg Leu	tct Ser	agt Ser 125	act Thr	cgg Arg	aag Lys	ctt Leu	683
	tct Ser 130	aag Lys	tac Tyr	tcc Ser	aac Asn	cca Pro 135	gtg Val	gct Ala	gtc Val	Ile	ata Ile 140	acg Thr	caa Gln	cta Leu	acc Thr	atc Ile 145	731
	acc Thr	act Thr	aag Lys	gtc Val	cat His 150	tee Ser	tta Leu	cta Leu	Glu	ggc Gly 155	atc Ile	tca Ser	aat Asn	tat Tyr	ttt Phe 160	acc Thr	779
	aag Lys	tgg Trp	aat Asn	aag Lys 165	cac His	atg. Met	atg Met	gac Asp	acc Thr 170	aga Arg	gac Asp	tgc Cys	cag Gln	gtt Val 175	tcc Ser	ttt Phe	827
	act Thr	ttt Phe	gga Gly 180	ccc Pro	tgt Cys	gat Asp	tat Tyr	cac His 185	cag Gln	gaa Glu	gtt Val	tct Ser	ctt Leu 190	agg Arg	gtc Val	cac His	875
	ctg Leu	atg Met 195	gaa Glu	tac Tyr	att Ile	aca Thr	aaa Lys 200	caa Gln	ggt Gly	ttc Phe	acg Thr	atc Ile 205	cgc Arg	aac Asn	acc Thr	cgg Arg	923
	gtg Val 210	cat His	cac His	atg Met	Ser	gag Glu 215	Arg	gcc Ala	aat Asn	gaa Glu	aac Asn 220	aca Thr	gtg Val	gag Glu	cac His	aac Asn 225	971 <del>,</del>
-	tgg Trp	act Thr	ttc Phe	Cys	agg Arg 230	cta Leu	gcc Ala	cgg Arg	aag Lys	aca Thr 235	Asp	gac	t ga	tete	cgac	<b>3</b>	1018
	ccts	ccac	ag g	gttcc	tgga	a ag	acto	tcca	gga	aato	ggaa	gata	ctga	tt t	tttt	tttta	1078
																gtgag cctga	1138 1198
	gtat	gcat	gt g	ccto	ittca	g ag	tata	caga	tac	ctt	ttt	ataa	aaac	raa c	tete	jaaaat	1258
	catt	atgg	jta t	ataa	itcta	C CC	ttaa	caga	gct	tttc	ctta	ttac	agto	jet a	aaaat	gattt	1318
	ctga	itaaa	at g	gtco	ctaa	c to	aact	agaa	ggc	taaa	aaat	acaa	gaat	ga a	aagaa	taagc	1378
	agag	Tact	.ca t	gacg	JCCEL	t ga	igaaa	laato	aaa	acat	cat	gtag	igard	ac (	ctagt	ttcca	1438
	ctts	:ddtā itta:	idd D	aagt	agta.	t ac	caat	atta	aag	gaaa	act	gtto	caat	ca t	cttaa	aagta atcaa	1498
	ggaa	ccaa	at a	itete	rtago	c at	ay L	.acya	. Cto	act:	agaa	atat	that	cat t	.ataa .azat	tctga	1558 1618
	atac	aaaa	itg t	ccct	gtqq	t ac	laaaa	ictta	CEC	ttt	itac	ctac	rtaca	igt a	taa:	tccca	1678
	agto	tact	gt	tacc	agaa	a aa	aaaa	acaa	aac	taat	aaa	aaat	gaaa	ita t	gaaa	aaaaa	1738
			aa a		:								-				1751

<210> 24 <211> 1542 <212> DNA <213> H. sapiens 

and sharping and the state

CENTERVOT COM

<221> CDS <222> (88)...(799) <223> K+Hnov28, splice 4

cgg gct	gcat	400> ctc aag	ccgg	 cccg atca	gc c ct g	gcag gagc	cago ag a	c gc	cgcc at a	gccg at g	cgc ga g	attt ac t	cce	tgaa qc t	acctgg	j 6	50
							. ·	let A 1	sp A	sn G	ly A	sp T 5	tb G	ly T	yr Met		
atg Met 10	Inr	gac	cca Pro	gtc Val	aca Thr 15	Leu	aat Asn	gta Val	ggt Gly	gga Gly 20	cac His	ttg Leu	tat Tyr	aca Thr	acg Thr 25	16	12
ser	Leu	Inr	Thr	Leu 30	Thr	Arg	Tyr	ccg Pro	Asp 35	Ser	Met	Leu	Gly	Ala 40	Met	21	.0
Pne	GIŸ	GIĀ	45	hue	Pro	Tḥr	Ala	cga Arg 50	Asp	Pro	Gln	Gly	Asn 55	Tyr	Pne	25	8
TTE	Asp	Arg 60	Asp	GIY	Pro	Leu	Phe 65		Tyr	Val	Leu	Asn 70	Phe	Leu	Arg	30	6
rnr	75	GIU	Leu	Thr	Leu	Pro 80	Leu	gat Asp	Phe	Lys	Glu 85	Phe	Asp	Leu	Leu	35	4
90	гÀз	Giu	Ala	Asp	Phe 95	Tyr	Gln	att Ile	Glu	Pro 100	Leu	Ile	Gln	Cys	Leu 105	40	2
aat Asn	gat Asp	cct Pro	aag Lys	cct Pro 110	ttg Leu	tat Tyr	ccc Pro	atg Met	gat Asp 115	act Thr	ttt Phe	gaa Glu	gaa Glu	gtt Val 120	gtg Val	450	0
gag Glu	ctg Leu	tct Ser	agt Ser 125	act Thr	cgg	aag Lys	ctt Leu	ser 130	aag Lys	tac Tyr	tcc Ser	aac Asn	cca Pro 135	gtg Val	gct Ala	498	8
gtc Val	atc Ile	ata Ile 140	acg Thr	caa Gln	cta Leu	acc Thr	atc Ile 145	acc Thr	act Thr	aag Lys	gtc Val	cat His 150	tcc Ser	tta Leu	cta Leu	546	6
gaa Glu	ggc Gly 155	atc Ile	tca Ser	aat Asn	tat Tyr	ttt Phe 160	acc Thr	aag Lys	tgg Trp	aat Asn	aag Lys 165	cac His	atg Met	atg Met	gac Asp	594	4
acc Thr 170	aga Arg	gac Asp	tgc Cys	cag Gln	gtt Val 175	tcc Ser	ttt Phe	act Thr	ttt Phe	gga Gly 180	ccc Pro	tgt Cys	gat Asp	tat Tyr	cac His 185	642	2
cag Gln	gaa Glu	gtt Val	tct Ser	ctt Leu 190	agg Arg	gtc Val	cac His	ctg Leu	atg Met 195	gaa Glu	tac Tyr	att Ile	aca Thr	aaa Lys 200	caa	690	)
ggt Gly	ttc Phe	acg Thr	atc Ile 205	cgc Arg	aac Asn	acc Thr	cgg Arg	gtg Val 210	cat His	cac His	atg Met	agt Ser	gagʻ Glu 215	cgg Arg	gcc Ala	738	3

```
aat gaa aac aca gtg gag cac aac tgg act ttc tgt agg cta gcc cgg
                                                                                                                                                                                             786
    Asn Glu Asn Thr Val Glu His Asn Trp Thr Phe Cys Arg Leu Ala Arg
                                                                               225
                                                                                                                                    230
    aag aca gac gac t gateteegae eetgeeacag gtteetggaa agacteteea
                                                                                                                                                                                            839
Lys Thr Asp Asp
    ggaaatggaa gatactgatt tttttttta aatcacagtg tgagatattt tttttcttt
                                                                                                                                                                                            899
    aaatagttgt atttatttga aggcagtgag gaccagaagg aagttttgtg ctttggcaga
                                                                                                                                                                                            959
    etectecatg tittgttece treecectga gtatgeatgt geetgtteag agtetecaga
    tacctttttt ataaaaagaa gtctgaaaat cattatggta tataatctac ccttaacaga
    gcttttctta ttacagtgct aaaatgattt ctgataaaat ggtccctaac tcaactagaa
    ggctaaaaat acaagaatga aagaataagc agagtactca tgatgccttt gagaaaaatc
                                                                                                                                                                                          1199
    aaaacatcat gtagggtgac ctagtttcca aaccaataaa taagtagtat tgtaatatta
                                                                                                                                                                                         1259
    aaggaaaact gttccaatca tttaaaagta cttattaagt actgcttttt acagttatga
                                                                                                                                                                                         1319
    caactgtttc tttctatgca tataaatcaa ggaaccaaat atctgtagcc atggaaatgt
                                                                                                                                                                                         1379
    ctgactagaa atatttatat tgaattctga atacaaaatg tccctgtggt agaaaactta
                                                                                                                                                                                         1439
    ctctttatgc ctggtgcagt ataattccca agtgtactgt ctaccagaaa aaaaaaacaa
                                                                                                                                                                                         1499
    aactaataaa aaatgaaata tgaaaaaaaa aaaaaaaaa aaa
                                                                                                                                                                                         1542
                    <210> 25/
                                                                               and the state of t
                    <211> 237 .
                   <212> PRT
                    <213> H. sapiens
                                                                               .....
                    <400> 25
   Met Asp Asn Gly Asp Trp Gly Tyr Met Met Thr Asp Pro Val Thr Leu
                                                                                                 10
```

Asn Val Gly Gly His Leu Tyr Thr Thr Ser Leu Thr Thr Leu Thr Arq . 20 25 Tyr Pro Asp Ser Met Leu Gly Ala Met Phe Gly Gly Asp Phe Pro Thr 40 45 Ala Arg Asp Pro Gln Gly Asn Tyr Phe Ile Asp Arg Asp Gly Pro Leu 55 Phe Arg Tyr Val Leu Asn Phe Leu Arg Thr Ser Glu Leu Thr Leu Pro 70 75 Leu Asp Phe Lys Glu Phe Asp Leu Leu Arg Lys Glu Ala Asp Phe Tyr · 90 Gln Ile Glu Pro Leu Ile Gln Cys Leu Asn Asp Pro Lys Pro Leu Tyr ·. 100 105 Pro Met Asp Thr Phe Glu Glu Val Val Glu Leu Ser Ser Thr Arg Lys 115 125 Leu Ser Lys Tyr Ser Asn Pro Val Ala Val Ile Ile Thr Gln Leu Thr 135 Ile Thr Thr Lys Val His Ser Leu Leu Glu Gly Ile Ser Asn Tyr Phe 150 155 Thr Lys Trp Asn Lys His Met Met Asp Thr Arg Asp Cys Gln Val Ser 170 165 Phe Thr Phe Gly Pro Cys Asp Tyr His Gln Glu Val Ser Leu Arg Val 180 185 190 His Leu Met Glu Tyr Ile Thr Lys Gln Gly Phe Thr Ile Arg Asn Thr 195 200 Arg Val His His Met Ser Glu Arg Ala Asn Glu Asn Thr Val Glu His 220 210 215 Asn Tip Thr Phe Cys Arg Leu Ala Arg Lys Thr Asp Asp 225 230

<210> 26 <211> 3204 in the control of the

 $e_{i}^{\mathrm{test}}(e_{i,j}) = e_{i,j}(e_{i,j})^{-1}$ 

		212>					٠.									
	<	213>	Н.	sapi	ens											
	. <	22Ö>													*. *	
		221>	CDS	· · .	• • •										٠.;	
	<	222>	(18	2)	. (13	49)			•							
	<	223>	K+H	nov4	2	21										
•				•		•	•									
		400>	_													
aat	aaca	acc	regg	grgr	99 9	acag.	agtg	c gt	gcgt	gtgg	tgt	gtcc	cca	aggg	caggaa	60
gat	gaga	gga (	JJ49	cago	ta a	cgag	ataa	c gg	aggg. ctca	aggg ctca	gaa	gggc	999	agga	gaaaaa cagcgc	120
ga	tg a	gg c	उप व	to a	CC C	to t	tc c	tora.	ac o	oc a	gc c	cc a	gcy ac a	9999	cagege ga aag	180
M	et A	rg A	rg V	al T	hr L	eu Pi	he L	eu A	sn G	ly s	er P	ro L	vs A	sn G	ly Lys	229
. :	1				5					10			•		-, -,- 15	
									٠.	,						
gtg	gtt	gct	gta	tat	gga	act	tta	tct	gat	ttg	ctt	tat	gtg	gcc	agc	277
Val	Val	ATG	20	lyr	GIY	inr	Leu		Asp	Leu	Leu	Ser			Ser	
					٠.	- : 1		25	;				, 30			
agt	aaa	ctc	ggc	ata	aaa	gcc	acc	agt	ata	tat	aat	<b>9</b> 99	aaa	aat	gga	325
Ser	Lys	Leu	Gly	Ile	Lys	Ala	Thr	Ser	Val	Tyr	Asn	Gly	Lvs	Glv	Glv	343
		35					40					45				
											•					
crg	att	gat	gat	att	gct	ttg	atc	agg	gat	gat	gat	gtt	ttg	ttt	gtt	373
nea	50	Asp	Asp	TIE	Ala		IIe	Arg	Asp	Asp		Val	Leu	Phe	Val	
	7.0		.*			. 55		. *			60		<i>*</i> * * * * * * * * * * * * * * * * * *	. *		
tgt	gaa	gga	gaġ	ccá	ttt	att	gat	cct	cag	aca	gat	tct	aag	CCT	cct	421
Cys	Glu	Gly	Glu	Pro	Phė	Ile	Asp	Pro	Gln	Thr	Asp	Ser	Lvs	Pro	Pro	701
65					70					75			•		80	
							•									
gag	gga	ttg	tta	gga	Dha	cac	aca	gac	tgg	ctg	aca	tta	aat	gtt	gga	469
GIU	GIY	Deu	neu	85	PILE	nis	Inr	Asp	90	Leu	Thr	Leu	Asn		Gly	
. •						:	•		70					95		
ggg	cgg	tac	ttt	aca	act	aca	cgg	agc	act	tta	gtg	aat	aaa	qaa	cct	517
Gly	Arg	Tyr	Phe	Thr	Thr	Thr	Arg	Ser	Thr	Leu	Val	Asn	Lys	Glu	Pro	
		٠.	100			2 ., .		105		:	1		110			
~~~	aa+	2+~	ج نج	-à-												
Asp	Ser	Met	Len	Ala	Hig	Mar	Dhe	aag	gac	aaa	ggt	gtc Val	tgg	gga	aat	565
		115		ALU		1-16-0	120	Lys	Asp	гуs	GIY	125	Trp	GIY	Asn	
	***		."	- '				. ,								
aag	caa	gat	cát	aga	gga	gct	ttc	tta	att	gac	cga	agt	cct	gag	tac	613
Lys	Gln	Asp	His	Arg	Gly	Ala	Phe	Leu	Ile	Asp	Arg	Ser	Pro	Glu	Tyr	
	130	,		. ,		135	V.			:,	140				•	
	<i>-</i>															
Phe	Glu	Pro	Tle	LLG	Agn	Tare	LEG	cgt	cat	gga	cag	ctc Leu	att	gta	aat	661
145				Deu	150	TYL	Deu	My	птр	155	GIN	ren	TTE	vaı	160	
							• '			4.7.7					100	
gat	ggc	att	aat	tta	ttg	ggt	gtg	tta	gaa	gaa	gca	aga	ttt	ttt	ggt	709
Asp	Gly	Ile	Asn	Leu	Leu	Gly	Val	Leu	Glu	Glu	Āla	Arg	Phe	Phe	Gly	-
	. 7			165					170			٠		175		
até	dec	t da ³	<u>- 4</u> -			a					:					_ = =
Tle	Agn	Ser	Len	Tle	Glu	CaC Wie	CCA	gaa	grg	gca	ata	aag Lys	aat	tct.	caa	757
			180	***	J_ u		TIE!	185	A Q. T	WIE,	TTE	_	190	ser	GIN	
	,		7/5 7							•			100			
cca	ccq	gaq	gat	cat	tca	cca	ata	tcc	caa	aag	gaa	ttt	atc	CC2	EEE	805

Pro Pro Glu Asp 1	His Ser Pro	Ile Ser Arg Lys 200	Glu Phe Val Arg Phe 205	
ttg cta gca act of Leu Leu Ala Thr 1 210	cca acc aag Pro Thr Lys 215	tca gaa ctg cga Ser Glu Leu Arg	tgc cag ggt ttg aac Cys Gln Gly Leu Asn 220	853
ttc agt ggt gct g Phe Ser Gly Ala i 225	gat ctt tct Asp Leu Ser 230	cgt ttg gac ctt Arg Leu Asp Leu 235	cga tac att aac ttc Arg Tyr Ile Asn Phe 240	901
Lys Met Ala Asn 1	tta agc cgc Leu Ser Arg 245	tgt aat ctt gca Cys Asn Leu Ala 250	cat gca aat ctt tgc His Ala Asn Leu Cys 255	949
tgt gca aat ctt g Cys Ala Asn Leu (260	gaa cga gct Glu Arg Ala	gat ctc tct gga Asp Leu Ser Gly 265	tca gtg ctt gac tgt Ser Val Leu Asp Cys 270	997
gcg aat ctc cag g Ala Asn Leu Gln (275	gga gtc aag Gly Val Lys	atg ctc tgt tct Met Leu Cys Ser 280	aat gca gaa gga gca Asn Ala Glu Gly Ala 285	1045
tcc ctg aaa ctg t Ser Leu Lys Leu (290	tgt aat ttt Cys Asn Phe 295	gag gat cct tct Glu Asp Pro Ser	ggt ctt aaa gcc aat Gly Leu Lys Ala Asn 300	1093
tta gaa ggt gct a Leu Glu Gly Ala a 305	aat ctg aaa Asn Leu Lys 310	ggt gtg gat atg Gly Val Asp Met 315	gaa gga agt cag atg Glu Gly Ser Gln Met 320	1141
Thr Gly Ile Asn I	ctg aga gtg Leu Arg Val 325	gct acc tta aaa Ala Thr Leu Lys 330	aat gca aag ttg aag Asn Ala Lys Leu Lys 335	1189
aac tgt aac ctc a Asn Cys Asn Leu 3	aga gga gca Arg Gly Ala	act ctg gca gga Thr Leu Ala Gly 345	act gat tta gag aat Thr Asp Leu Glu Asn 350	1237
tgt gat ctg tct g Cys Asp Leu Ser (ggg tgt gat Gly Cys Asp	ctt caa gaa gcc Leu Gln Glu Ala 360	aac ctg aga ggg tcc Asn Leu Arg Gly Ser 365	1285
aac gtg aag gga g Asn Val Lys Gly 1 370	gct ata ttt Ala Ile Phe 375	gaa gag atg ctg Glu Glu Met Leu	aca cca cta cac atg Thr Pro Leu His Met 380	1333
Ser Gln Ser Val 1	aga t gagaat Arg	, , , , , , , , , , , , , , , , , , ,	gaagatgtaa aagatgaaaa	1389
aaggaaattt taaaaa aaaaaactga ciittt gtagggaaac tagata accaggcata gtatct ggtttgagat gcattt attgaattcc tagatc aaggttgttc aggttt	aaaa cattta tttcc atattc attgc tgcctt tatta tatttg tgagg atttta gcagt atggat tataa atagct	gagg attatgettg tgat ttttaacaga ttga atggggtagg gettt taaataggea lattt atggaaagea attt aaattgttaa ttag tgatgeetee	tctagaagaa ataacactgt ttttgagtgg tgcataaggg aaagcactca tttaatagat ggggtttacc tggttttatg tgatgtggaa ataccatctt caacatatgc aattatattt aactttatga aaacttggaa cctctttaaa tacctgtcac ttcaggttca tttttataat	1449 1509 1569 1629 1689 1749 1809 1869
			tatccagttc ttactgattg	1989

agacagagtg gaaagaaaga catcattgta catcactgtc attccaaagg tacagtgtaa ctctggatgg aggaataact tacctatcac tacaacactt acaaatgaga atttctcaga 2109 atttcattct aggcaagttc cactcaacac cagatcaagc aattctatct atttacacta ttagcctagt tttctcatac agtcatcaca agcataggaa gatacttcaa aaccaaaaaa accaaggtge atcattaata ttcatttaat tcaaatacca aatagtttac atagggccag cttagaaata gatactaaat ccagagctac tgcaatcaaa gcttatatga gtgaatatgg tagagttgcc tgctaaaagg caatgtaata taattgcagc tagaacccta cagtggggaa tgaggaattt taaacacaca tttgattaca gccaccaaaa aaatagacgt aaaaataaag gcatttggct ggtccaagat gtaattttca atcagtcagc acctgtgatt cttttactta tttttttgtg gtttttttt tttaaacaaa ttttagccca attttcttga gtcattctct ctctgcagca gcagaggaag ggcctgtacc tccctaccaa tgacttggtg tccttatttt 2649 ctaccccaag agcagggata ttagctgtgt ccaaatgggt tctgaattct acagactcat 2709 caacatgagg caaggaatca ttgaaaacca cctgtgtctc ctttgggaga atgacatatc 2769 tttagtattt acgtagctta ttcttctata tctacatatg caaagctttc cttaacagta 2829 aagggtacat atgcatagtg ggaggagatc agacctttac aagtgaagga aagcaacttc 2889 agaaatgaat tattttcttt gctttattat ttttaccaag acagagaagt attgtattga 2949 gagataatct attttcataa tcaatatgtg cctaaattat atttaaatca tttcactctg 3009 tactatattt tcaggaatta cagaatgtgg tattcattca cttaaaggta cctctgtaga 3069 aataacctaa aactgcagaa ggatctgaaa gatctaaaca tggtgtgctt agaaactgca 3129 gattttagat ctaatgtata ctgcattaat aaatgatata aagtgtttgt tgaaaaaaaa 3189 aaaaaaaaa aaaaa 3204

<210> 27 <211> 389 <212> PRT <213> H. sapiens

<400> 27

Met Arg Arg Val Thr Leu Phe Leu Asn Gly Ser Pro Lys Asn Gly Lys_ -- 10 Val Val Ala Val Tyr Gly Thr Leu Ser Asp Leu Leu Ser Val Ala Ser 25 Ser Lys Leu Gly Ile Lys Ala Thr Ser Val Tyr Asn Gly Lys Gly Gly 40 Leu Ile Asp Asp Ile Ala Leu Ile Arg Asp Asp Val Leu Phe Val - 60 Cys Glu Gly Glu Pro Phe Ile Asp Pro Gln Thr Asp Ser Lys Pro Pro 70 75 Glu Gly Leu Leu Gly Phe His Thr Asp Trp Leu Thr Leu Asn Val Gly 85 90 ... 95 Gly Arg Tyr Phe Thr Thr Thr Arg Ser Thr Leu Val Asn Lys Glu Pro 105 Asp Ser Met Leu Ala His Met Phe Lys Asp Lys Gly Val Trp Gly Asn 120 125 Lys Gln Asp His Arg Gly Ala Phe Leu Ile Asp Arg Ser Pro Glu Tyr 135 140 Phe Glu Pro Ile Leu Asn Tyr Leu Arg His Gly Gln Leu Ile Val Asn 150 ... , 155 Asp Gly Ile Asn Leu Leu Gly Val Leu Glu Glu Ala Arg Phe Phe Gly 165 170 175 Ile Asp Ser Leu Ile Glu His Leu Glu Val Ala Ile Lys Asn Ser Gln 185 1.90 Pro Pro Glu Asp His Ser Pro Ile Ser Arg Lys Glu Phe Val Arg Phe 200 205 Leu Leu Ala Thr Pro Thr Lys Ser Glu Leu Arg Cys Gln Gly Leu Asn 215 220 Phe Ser Gly Ala Asp Leu Ser Arg Leu Asp Leu Arg Tyr Ile Asn Phe 230 235 Lys Met Ala Asn Leu Ser Arg Cys Asn Leu Ala His Ala Asn Leu Cys 250 245 255 Cys Ala Asn Leu Glu Arg Ala Asp Leu Ser Gly Ser Val Leu Asp Cys

THE SHIP I SHIP I SHIP

```
260
                                                  270
Ala Asn Leu Gln Gly Val Lys Met Leu Cys Ser Asn Ala Glu Gly Ala
                           280
Ser Leu Lys Leu Cys Asn Phe Glu Asp Pro Ser Gly Leu Lys Ala Asn
                       295
                                           300
Leu Glu Gly Ala Asn Leu Lys Gly Val Asp Met Glu Gly Ser Gln Met
305
                                       315
Thr Gly Ile Asn Leu Arg Val Ala Thr Leu Lys Asn Ala Lys Leu Lys
               325
                                   330
Asn Cys Asn Leu Arg Gly Ala Thr Leu Ala Gly Thr Asp Leu Glu Asn
        340
                              345
                                                  3.50
Cys Asp Leu Ser Gly Cys Asp Leu Gln Glu Ala Asn Leu Arg Gly Ser
                     360
Asn Val Lys Gly Ala Ile Phe Glu Glu Met Leu Thr Pro Leu His Met
370 375
Ser Gln Ser Val Arg
3.85
    <210> 28
    <211> 1246
    <212> DNA
     <213> H. sapiens
      <220>
      <221> CDS
      <222> (432)...(1092)
      <223> K+Hnov44, splice 1
      <400> 28
cagaaaacea cgcaggtcct tettgatcat ctagaactga ccgctccgcc ttgccaggag
                                                                   60
tetgeagaac caegtggeta geetgeetga agtteteace tetecaggaa ggegggggg
                                                                   120
ttctaatggc tycagetgey ctgggggety ggggctcccg ctgggactcc acttccgtgg
                                                                   180
atgtctaage tteacettte ttgegeeege aggggeatga eteaggtgaa agggageeat
tttctcagac ccctggcctc atgcagccct tcagcatccc cgtgcaaatc acacttcagg
gcagccggag gcgccagggg aggacagcct ttcctgcctc agggaagaag agagagacag
actacagtga tggagaccca ctagatgtgc acaagaggct gccatccagt gctggagagg
                                                                   420
accgagecgt g atg etg ggg ttt gee atg atg gge tte tea gte eta atg
                                                                   470
            Met Leu Gly Phe Ala Met Met Gly Phe Ser Val Leu Met
tto tto ttg ctc gga aca acc att cta aag cct ttt atg ctc agc att
                                                                   518
Phe Phe Leu Leu Gly Thr Thr Ile Leu Lys Pro Phe Met Leu Ser Ile
                        20
cag aga gaa gaa teg ace tge act gee ate cae aca gat ate atg gae
                                                                   566
Gln Arg Glu Glu Ser Thr Cys Thr Ala Ile His Thr Asp Ile Met Asp
 30
                    35
                                       40
gac tgg ctg gac tgt gcc ttc acc tgt ggt gtg cac tgc cac ggt cag
                                                                   614
Asp Trp Leu Asp Cys Ala Phe Thr Cys Gly Val His Cys His Gly Gln
                50
                                                      60
ggg aag tac ccg tgt ctt cag gtg ttt gtg aac ctc agc cat cca ggt
                                                                  662
Gly Lys Tyr Pro Cys Leu Gln Val Phe Val Asn Leu Ser His Pro Gly
            65
                               70
cag aaa get ete eta eat tat aat gaa gag get gte eag ata aat eee
Gln Lys Ala Leu Leu His Tyr Asn Glu Glu Ala Val Gln Ile Asn Pro
                            85
aag tgc ttt tac aca cct aag tgc cac caa gat aga aat gat ttg ctc
                                                                  758
                                  48
```

Lys Cys Phe Tyr 95	Thr Pro Lys		p Arg Asn Asp Leu Leu 105	
aac agt gct ctg Asn Ser Ala Leu 110	gac ata aaa Asp Ile Lys	gaa tto tto ga Glu Phe Phe As 12	t cac aaa aat gga act p His Lys Asn Gly Thr 0 125	806
Pro Phe Ser Cys	Phe Tyr Ser	Pro Ala Ser Gl 135	a tct gaa gat gtc att n Ser Glu Asp Val Ile 140	854
Leu Ile Lys Lys 145	Tyr Asp Gln	Met Ala Ile Ph 150	c cac tgt tta ttt tgg e His Cys Leu Phe Trp 155	902
Pro Ser Leu Thr 160	Leu Leu Gly	Gly Ala Leu Il	t gtt ggc atg gtg aga e Val Gly Met Val Arg 170	950
Leu Thr Gln His	Leu Ser Leu 180	Leu Cys Glu Ly	a tat agc act gta gtc 's Tyr Ser Thr Val Val 185	998
Arg Asp Glu Val	Gly Gly Lys 195	Val Pro Tyr Il		1046
aaa ctg tgc att Lys Leu Cys Ile	atg agg agg Met Arg Arg 210	agc aaa gga ag Ser Lys Gly Ar 215	a gca gag aaa tct t g Ala Glu Lys Ser 220	1092
cctaattatg cctg tcatgtggga aaaa <210> 29	tctgca aacta aaaaaa aaaaa	ataat gtaaaaggt	t gtgatttetg caactgagga a ataattaaag tatcatattt	1152 1212 1246
cctaattatg cctg tcatgtggga aaaa <210> 29 <211> 111 <212> DNA <213> H.	tetgea aaeta aaaaaa aaaaa 1	ataat gtaaaaggt	t gtgatttetg caactgagga a ataattaaag tatcatattt	1212
cctaattatg cctg tcatgtggga aaaa <210> 29 <211> 111 <212> DNA <213> H. <220> <221> CDS <222> (29	tctgca aacta aaaaaa aaaaa 1 sapiens	ataat gtaaaaggt aaaaa aaaa	t gtgatttotg caactgagga a ataattaaag tatcatattt	1212
cctaattatg cctg tcatgtggga aaaa <210> 29 <211> 111 <212> DNA <213> H. <220> <221> CDS <222> (29 <223> K+H <400> 29 aaaaaccatg actt agataccaaa gaag aggcaggcgg cagg tgccaatgac agcc	tetgea aacta aaaaa aaaaa 1 sapiens 7)(957) nov44, splic gtggca ccaga gaccga gaagg cgtggt gcaca tttect geete	ataat gtaaaaggtaaaaa aaaa aaaa aaaa aaa	t gtgatttetg caactgagga a ataattaaag tatcatattt t tcaatccaag aaagcagaga a ctgtaccatg tectaagetg a gagggetett ttetetecae a gacagactae agtgatggag agaggacega geegtg atg Met 1	1212
cctaattatg cctg tcatgtggga aaaa <210> 29 <211> 111 <212> DNA <213> H. <220> <221> CDS <222> (29 <223> K+H <400> 29 aaaaaccatg actt agataccaaa gaag aggcaggcgg cagg tgccaatgac agcc acccactaga tgtg ctg ggg ttt gcc	tetgea aacta aaaaa aaaaa 1 sapiens 7)(957) nov44, splic gtggca ccaga gaccga gaagg cgtggt gcaca tttect gcete cacaag agget	ataat gtaaaaggtaaaaa aaaa aaaa aaaa aaa	t tcaatccaag aaagcagaga ctgtaccatg tcctaagctg aggggctctt ttctccac agtgatggag g agaggaccga gccgtg atg	1212 1246 60 120 180 240

V1032 6 4

teg	acc Th-	tgc	act	gcc	atc	cac	aca	gat	atc	atg	gac	gac	tgg	ctg	gac	443
261	35	cys	inr	Ala	ite	His	Thr	Asp	IIe	Met	Asp 45	Asp	Trp	Leu	Asp	
0		•	٠		•								•			
tgt	'gcc	とここ	acc	tgt	ggt	gtg	cac	tgc	cac	ggt	cag	aaa	aag	tac	ccg	491
50	AIA	Pile	Inr	Cys	55	Val	HIS	Cys	His	GTA	Gln	Gly	Lys	Tyr		
												•	• •		65	
tgt	ctt	cag	gtg	ttt	gtg	aac	ctc	agc	cat	cca	ggt	cag	aaa	gct	ctc	539
Cys	Leu	Gln	Val	Phe 70	Val	Asn	Leu	Ser		Pro	Gly	Gln	Lys		Leu	
			+ .	70		•			75	- ·			*	. 80		
cta	cat	tat	aat	gaa	gag	gct	gťc	cag	ata	aat	ccc	aaq	tqc	ttt	tac	587
Leu	His	Tyr	Asn	Glu	Glu	Ala	Val	Gln	Ile	Asn	Pro	Lys	Cys	Phe	Tyr	
•	• _	٠.	85			. •		90					95			
aca	cct	aag	tgc	cac	caa	gat	aga	aat	gat	tta	ctc	aac	agt.	act	ota Cta	635
Thr	Pro	Lys	Cys	His	Gln	Asp	Arg	Asn	Asp	Leu	Leu	Asn	Ser	Ala	Leu	033
		100					105	:				110	٠.			
gac	ata	aaa	даа	ttc	ttc	gat	Cac	222	22 +	.,.	205				1-1	603
Asp	Ile	Lys	Glu	Phe	Phe	Asp	His	Lys	Asn	Gly	Thr	Pro	Phe	Ser	Cvs	683
	115					120		-			125					
		5 a +	000				-									
Phe	Tyr	Ser	Pro	Ala	Ser	caa Gln	Ser	Glu	Asp	grc	Tla	CEE	ata	aaa	aag	731
130	-				135					140			, .	Lys	145	
						:				·			:			
Tvr	gac	Gln	Mer	gct Ala	atc	ttc Phe	cac	tgt	tta	ttt	tgg	cct	tca	ctg	act	779
- 7 -	ASP	0111	Mec	150	116	FIIC	птэ	Cys	155	Pne	irp	PTO	ser	160	Thr	
						.,			,							
ctg	cta	ggt	ggt	gcc	ctg	att	gtt	ggc	atg	gtġ	aga	tta	aca	caa	cac	827
reu	Leu	GIY	165	Ala	Leu	Ile	vai	170	met	Val	Arg	Leu	Thr 175	Gln	His	
													1,3			
ctg	tcc	tta	ctg	tgt	gaa	aaa	tat	agc	act	gta	gtc	aga	gat	gag	gta	875
Leu	Ser-	Leu 180	Leu	Cys	Glu	Lys	Tyr 185	Ser	Thr	Val	Val	_	Asp	Glu	Val	
		100					103					190				
`ggt	gga	aaa	gta	cct	tat	ata	gaa	cag	cat	cag	ttc	aaa	ctg	tgc	att	923
Gly		Lys	Val	Pro	Tyr	Ile	Glu	Gln	His,	Gln		Lys	Leu	Cys	Ile	
	195					200					205	٠.,				
atg	agg	agg	agc	aaa	gga	aga	gca	gag	aaa	tct	t aa	qacq	qtqq	ŗ		967
Met	Arg	Arg	Ser	Lys	Gly	Arg	Ala	Glu	Lys	Seŗ						
210			:.	:	215					220						
					t to					cta	caac	tgag	rga c	ctaa	ttatg	1027
cctg	tctg	ca a	acta	ataa	t gt	aaaa	ggta	ata	atta	aag	tato	atat	tt t	cate	tggga	1087
	aaaa									. 7			* 1	. •		1111

<210> 30

<211> 220 <212> PRT <213> H. sapiens

<400> 30

Met Leu Gly Phe Ala Met Met Gly Phe Ser Val Leu Met Phe Phe Leu 1 5 10 15

Leu	Gly	Thr	Thr 20	Ile	Leu	Lys	Pro	Phe 25	Met	Leu	Ser	Ile	Gln 30	Arg	Glu	
Glu	Ser	Thr	-	Thr	Ala	Ile	His		Asp	Ile	Met	Asp		Trp	Leu	
Asp	Cys 50		Phe	Thr	Cys	Gly 55		His	Cys	His	Gly 60		Gly	Lys	Tyr	
Pro 65		Leu	Gln	Val	Phe 70		Asn	Leu	Ser	His 75		Gly	Gln	Lys	Ala 80	
Leu	Leu	His	Tyr	Asn 85	Glu	Glu	Ala	Val	Gln 90	Ile	Asn	Pro	Lys	Суs 95	Phe	
			100		His	•		105					110	Ser		
		115			Phe		120					125	Pro			
	130				Ala	135					140				_	
145					Ala 150					155					160	
				165					170	:				175		
			180		Cys			185					1.90	_		
		195			Pro		200					205		.Leu	Cys	
TIE	210	Arg	Arg	Ser	Lys	G1y 215	Arg	Ala	Glu	Lys	Ser 220	,	•			
	٠.	210>	21									•				
		211>						-	5	1.0			•			
			DNA	د م د	: - 7 -	.						٠.	•			
	<.	213>	AFE	IIIC:	ial S	seque	ence						7			
		220>														
				sensı	18 S	eque	ıces						•			
		100>									• • •					
tato	_			gacaa	aa go	2							ar.			22
		210>												٠.		
		211>														
	<2	212>	DNA													
	<:	213>	Art:	ific:	ial S	Seque	ence									
	<4	400>	32													
tgca			gctgg	ggtgt	a											20
	<2	210>	33													
	<2	211>	22													
	<2	212>	DNA									. ;				
	<2	213>	Art:	ific	ial S	Seque	ence					· ·				
	<4	100>	33					. ,		:		٠.				
tgad	catca	act g	gate	gaact	t ga	a.		•	. , .				,			22
		210>							:		T: . •	٠			٠	
		211>														
		212>														
	<2	213>	Art:	ific:	ial S	Seque	ence					, ,	٠.			
												:	. :			
	<4	100>	34					·		ş. 7 ·			' :			
tgc	etgca	aaa g	gttt	gaaca	at											20

	<210> 35		
	<211> 22		
** * *	<212> DNA		
	<213> Artificial	Sequence	
· · · · · ·			
	<400> 35	•	
tgacat	cact ggatgaactt g	a	
	333 3		22
	<210> 36		
	<211> 20		
•	<212> DNA		
	<213> Artificial	Cimina a	
	(213) AICILICIAL	sequence	
	1400- 35	•	
	<400> 36		
tgeets	scaaa gtttgaacat		20
	.010. 35		
	<210> 37		
•	<211> 20		
	<213> Artificial	Sequence	
	<400> 37	and the state of t	
acctgg	tggt atggaagcat		20
	<210> 38		
	<211> 19		
	<212> DNA		
	<213> Artificial	Sequence	
	<400> 38		
tttctc	ctgg cctctaccc		19
	<210> 39		
	<211> 19		
	<212> DNA		
	<213> Artificial S	Sequence	*-
	⊊400> 39	X	
tccctc	ttgg gtgaccttc	· ·	19
	<210> 40		
	<211> 20		
	<212> DNA		
	<213> Artificial S	Sequence	
	<400> 40		
atcttt	gtca gccaccagct		20
		•	
	<210> 41		
	<211> 24		
	<212> DNA		
	<213> Artificial S		
	<400> 41		
aggtgt	gctg ccatctgctg tt	cg ' ·	24
	<210> 42		
	<211> 24		
	<212> DNA		
	<213> Artificial 9	emiana.	

State of the state

<400> 42		
agcctatcct ctctgagagt cagg	•	24
<210> 43	. *.	
<211> 21	· , · · · · · · ·	
<212> DNA	·	
<213> Artificial Sequence		
	•	
<400> 43		
aagcagagta ctcatgatgc c	•	21
·	•	21
<210> 44		
<211> 20		
<212> DNA		
<213> Artificial Sequence	•	
<400> 44		
tctggtagac agtacagtgg		20
0003300300 0300003033		20
<210> 45		
<211> 20	• • • • •	
<212> DNA		
<213> Artificial Sequence		
and the second sequence		
<400> 45		
catttggctg gtccaagatg		20
		~~
<210> 46		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
· -		
<400> 46		
agtcattggt agggaggtac		20
<210> 47		
<211> 20		
<212> DNA		
<213> Artificial Sequence	*	
	• •	
<400> 47	•	
catgetteta cagtecagee		20
<210> 48	•	
<211> 20		
<212> DNA		
<213> Artificial Sequence	•	
<400> 48	* · ·	
ggtcctcagt tgcagaaatc		20
<210> 49	¥	
<210> 49 <211> 45 <212> DNA	• • • • • • • • • • • • • • • • • • • •	
CLIE DIA		
<213> Artificial Sequence		
<400> 49		
tggtgggctg tggtgaccat gacaactgtg ggctatg	ggg acatg	45
	• • •	
010 50		

<211> 45		
<212> DNA		
<213> Artificial Sequence		
•	• • • • • • • • • • • • • • • • • • • •	
<400> 50		
tggtgggcag tggtcaccat gaccactgtg	gqctacqqqq acatq 4	١5
<210> 51		
<211> 45	•	
<212> DNA		
<213> Artificial Sequence		
·	·	
<400> 51		
tggtgggcag tcgtctccat gacaactgta	ggctatggag acatg 4	5
	· :	
<210> 52		
<211> 45		
<212> DNA	•	
<213> Artificial Sequence	Viii .	
.400. 50		
<400> 52	· ·	
tggtgggcag tggtaaccat gacaacagtg	ggttacggcg atatg 4	5
<210> 53	4.4	
<211> 45	and the second of the second o	
<211> 45 <212> DNA		
<213> Artificial Sequence		
<400> 53		
tggtgggctg tggtcaccat gacgaccctg	GGGT3TGGGG SEED	_
-33-3333 -33-0accae gacgaccccg	ggctatggag acatg	5
<210> 54		
<211> 45		
<212> DNA		
<213> Artificial Sequence		
<400> 54	100	
tggtgggggg tggtcacagt caccaccatc	ggctatgggg acaag 4	5
-		_
<210> 55		
<211> 45	• • •	
<212> DNA		
<213> Artificial Sequence		
<400> 55		
tggtgggcag tggtcaccat gaccacggtt	ggctatgggg acatg 4	5
<210> 56		
<211> 45		
<212> DNA		
<213> Artificial Sequence	to the control of the	
<400> 56	4 · .	
tggtgggccg tggtcaccat gacgaccctg	ggctatggag acatg 49	5
<210> 57		
<211> 45		
<212> DNA		
<213> Artificial Sequence		
44005 57	·	
<400> 57		

tggtgggctg tggtcaccat gacgacactg ggctacggag acatg	45
<210> 58	
<211> 45	
<212> DNA	
<213> Artificial Sequence	•
tally interfer bequeite	
<400> 50	
tggtgggctg tggtgaccat gacaactgtg ggctatgggg acatg	45
<210> 59	
<211> 47	
<212> DNA	
<213> Artificial Sequence	
<400> 59	
ttcctgttct ccattgagac cgaaacaacc attgggtatg gcttcc	g 47
<210> 60	
<210> 60 <211> 47	•
<212> DNA	
<213> Artificial Sequence	
(213) Altificial Sequence	
<400> 60	
tttttattct caatagagac agaaaccacc attggttatg gctacc	
description description agreement actiggitizing getaces	3 47
<210> 61	٠.
<211> 47	
<212> DNA	
<213> Artificial Seguence	
saray arctitotat peddetice	, "
<400> 61	
tteetettet ecattgagae ccagacaace ataggetatg gttteag	47
	•
<210> 62	
<211> 47	
<212> DNA	
<213> Artificial Sequence	
<400> 62	
ttcctgttct cggtggagac gcagacgacc atcggctatg ggttccg	47
	· •
<210> 63	• •
<211> 47	
<212> DNA	•
<213> Artificial Sequence	
<400> 63	t .
ttcctcttct cccttgaatc ccaaaccacc attggctatg gcttcc	
server description conductate actiggetate getteet	47
<210> 64	
<211> 47	
<212> DNA	• • • • • • • • • • • • • • • • • • •
<213> Artificial Sequence	
<400> 64	
tttctctttt ccctggaatc ccagacaacc attggctatg gagtccg	47
<210> 65	
<211> 47	•
-212- DNA	

```
<213> Artificial Sequence
     <400> 65
ttccttttct ccattgaggt ccaagtgact attggctttg gggggcg
                                                                47
     <210> 66
     <211> 47
     <212> DNA
     <213> Artificial Sequence
     <400> 66
tttctcttct ccattgaagt tcaagttacc attgggtttg gagggag
                                                                47
     <210> 67
     <211> 50
     <212> DNA
     <213> Artificial Sequence
     <400> 67
gegetetaet teacetteag cageeteace agtgtggget teggeaacgt
                                                                50
     <210> 68
     <211> 15
     <212> PRT
     <213> Artificial Sequence
                                  ithu sa sin
     <220>
     <223> consensus sequences
    <400> 68
Trp Trp Ala Val Val Ser Met Thr Thr Val Gly Tyr Gly Asp Met
           5 10
                     <210> 69
     <211> 15
     <212> PRT
     <213> Artificial Sequence
     <400> 69
Trp Trp Ala Val Val Thr Met Thr Thr Leu Gly Tyr Gly Asp Met
                             10
     <210> 70
     <211> 15
     <212> PRT
     <213> Artificial Sequence
     <400> 70
Trp Trp Gly Val Val Thr Val Thr Thr Ile Gly Tyr Gly Asp Lys
                               . 1.0
     <210> 71
     <211> 15
     <212> PRT
     <213> Artificial Sequence
Trp Trp Ala Val Val Thr Met Thr Thr Val Gly Tyr Gly Asp Met
               5
                                10
    <210> 72
```

TNCTUCID) 9943696A1 1 >

Control of the contro

```
<211> 15
    <212> PRT
    <213> Artificial Sequence
Phe Leu Phe Ser Ile Glu Val Gln Val Thr Ile Gly Phe Gly Gly
              <210> 73
    <211> 15
    <212> PRT
    <213> Artificial Sequence
   <400> 73
Phe Leu Phe Ser Leu Glu Ser Gln Thr Thr Ile Gly Tyr Gly Val
                           10
   <210> 74
    <211> 15
   <212> PRT
<213> Artificial Sequence
  <400> 74
Phe Leu Phe Ser Ile Glu Thr Glu Thr Thr Ile Gly Tyr Gly Tyr
210> 75
   <211> 15
 <212> PRT
                      the second of the
<213> Artificial Sequence
   <400> 75
Phe Leu Phe Ser Ile Glu Thr Gln Thr Thr Ile Gly Tyr Gly Phe
1 5 10 15
   <210> 76
    <211> 15
    <212> PRT
   <213> Artificial Sequence
 . . <400> 76
Phe Leu Phe Ser Val Glu Thr Gln Thr Thr Ile Gly Tyr Gly Phe
1 5 10
 . <210> 77
 <211> 15
<212> PRT
   <213> Artificial Sequence
   <400> 77
Phe Leu Phe Ser Leu Glu Ser Gln Thr Thr Ile Gly Tyr Gly Phe
1 5 10 10 <210> 78 <211> 15
   <211> 15
   <212> PRT
<213> Artificial Sequence
<400> 78
Phe Leu Phe Ser Ile Glu Thr Glu Thr Thr Ile Gly Tyr Gly Phe
                          10
```

```
<210> 79
      <211> 16
      <212> PRT
      <213> Artificial Sequence
      <400> 79
Ala Leu Tyr Phe Thr Phe Ser Ser Leu Thr Ser Val Gly Phe Gly Asn
      <210> 80
     <211> 2571
      <212> DNA
     <213> H. sapiens
   ~ <220> : "
      <221> CDS
      <222> (110) ... (1285)
      <400> 80
getgeegege etgtageact eceggaactg gaactaggtg ecagaeggte eggaggeggg
                                                                   60
ggccacgtca gcggggccac ccagggctcg cggggtcccg gtgggtgcc atg cgg agg
                                                                  118
                                                   Met Arg Arg
ggc gcg ctt ctg gcg ggc gcc ttg gcc gcg tac gcg tac ctg gtg
                                                                  166
Gly Ala Leu Leu Ala Gly Ala Leu Ala Ala Tyr Ala Ala Tyr Leu Val
                       10
ctg ggc gcg ctg ttg gtg gcg cgg ctg gag ggg ccg cac gaa gcc agg
                                                                  214
Leu Gly Ala Leu Leu Val Ala Arg Leu Glu Gly Pro His Glu Ala Arg
                                       30
ctc cga gcc gag ctg gag acg ctg cgg gcg cag ctg ctt cag cgc agc
                                                                  262
Leu Arg Ala Glu Leu Glu Thr Leu Arg Ala Gln Leu Leu Gln Arg Ser
                40
ccg tgt gtg gct gcc ccc gcc ctg gac gcc ttc gtg gag cga gtg ctg
                                                                 310
Pro Cys Val Ala Ala Pro Ala Leu Asp Ala Phe Val Glu Arg Val Leu
                               60
geg gee gga egg etg ggg egg gte gtg ett get aac get teg ggg tee
                                                                  358
Ala Ala Gly Arg Leu Gly Arg Val Val Leu Ala Asn Ala Ser Gly Ser
gcc aac gcc tcg gac ccc gcc tgg gac ttc gcc tct gct ctc ttc ttc
                                                                  406
Ala Asn Ala Ser Asp Pro Ala Trp Asp Phe Ala Ser Ala Leu Phe Phe
                       90
gcc agc acg ctg atc acc acc gtg ggc tat ggg tac aca acg cca ctg
                                                                  454
Ala Ser Thr Leu Ile Thr Thr Val Gly Tyr Gly Tyr Thr Thr Pro Leu
                       116
    105
act gat geg gge aag gee tte tee ate gee ttt geg ete etg gge gtg
                                                                  502
Thr Asp Ala Gly Lys Ala Phe Ser Ile Ala Phe Ala Leu Leu Gly Val
                                  125
ceg ace ace atg ctg ctg ace gec tea gec eag ege etg tea etg
                                                                  550
Pro Thr Thr Met Leu Leu Leu Thr Ala Ser Ala Gln Arg Leu Ser Leu
        135 140 145
```

1.575(.80-1

ctg Leu	ctg Leu	act Thr 150	cac His	gtg Val	Pro	ctg Leu	tct Ser 155	tgg	ctg Leu	agc Ser	atg Met	cgt Arg 160	Trp	ggc	tgg Trp	598
gac Asp	ccc Pro 165	Arg	cgg Arg	gcg Ala	gcc Ala	tgc Cys 170	tgg Trp	cac His	ttg Leu	gtg Val	gcc Ala 175	ctg Leu	ttg Leu	ej aaa	gtc Val	646
gta Val 180	val	acc Thr	gtc Val	tgc Cys	ttt Phe 185	ctg Leu	gtg Val	ccg Pro	gct Ala	gtg Val 190	atc Ile	ttt Phe	gcc Ala	cac His	ctc Leu 195	694
gag Glu	gag Glu	gcc Ala	tgg Trp	agc Ser 200	ttc 'Phe	ttg Leu	gat Asp	gcc Ala	ttc Phe 205	tac Tyr	ttc Phe	tgc Cys	ttt Phe	atc Ile 210	tct Ser	742
ctg Leu	tcc Ser	acc Thr	atc Ile 215	Gly	ctg Leu	ggc Gly	gac Asp	tac Tyr 220	gtg Val	ccc Pro	ggg	gag Glu	gcc Ala 225	cct Pro	ggc	790
Gin	Pro	tac Tyr 230	cgg Arg	gcc Ala	ctc Leu	Tyr	aag Lys 235	gtg Val	ctg Leu	gtc Val	aca Thr	gtc Val 240	Tyr	ctc Leu	ttc Phe	838
ctg Leu	ggc Gly 245	ctg Leu	gtg Val	gcc Ala	atg Met	gtg Val 250	ctg Leu	gtg Val	ctg Leu	cag Gln	acc Thr 255	Phe	cgc Arg	cac His	gtg Val	886
tcc Ser 260	Asp	ctc Leu	cac His	ggc	ctc Leu 265	acg Thr	gag Glu	ctc Leu	atc Ile	ctg Leu 270	ctg Leu	ccc Pro	cct Pro	ccg Pro	tgc_ Cys 275	934
cct Pro	gcc Ala	agt Ser	ttc Phe	aat Asn 280	gcg Ala	gat Asp	gag Glu	gac Asp	gat Asp 285	cgg Arg	gtg Val	gac Asp	atc Ile	ctg Leu 290	ggc Gly	982
ccc Pro	cag Glŋ	ccg Pro	gag Glu 295	tcg Ser	cac His	cag Gln	caa Gln	ctc Leu 300	tct Ser	gcc Ala	agc Ser	tcc Ser	cac His 305	acc Thr	gac Asp	1030
tac Tyr	gct Ala	tcc Ser 310	atc Ile	ccc Pro	agg Arg	tag *	ctg Leu	999 Gly 315	cag Gln	cct Pro	ctg Leu	cca Pro	ggc Gly 320	ttg Leu	ggt Gly	1078
gtg Val	cct Pro	ggc Gly 325	Leu	gga Gly	ctg Leu	agg Arg	ggt Gly 330	cca Pro	Gly	gac Asp	cag Gln	agc Ser 335	tgg Trp	ctg Leu	tac Tyr	1126
agg Arg	aat Asn 340	gtc Val	cac His	gag Glu	cac His	agc Ser 345	agg Arg	tga *	tct Ser	tga *	Gly	Leu	gcc Ala 350	gtc Val	cac His	1174
cgt Arg	ctc Leu	Ser 355	ttt Phe	Val	tcc Ser	Gln	cat His 360	ctg Leu	gct Ala	Gly ggg	atg Met	tga *	agg Arg 365			1222
ctc Leu	cct Pro	gtc Val 370	ccc Pro	atg Met	tcc Ser	Arg :	gct Ala 375	cca Pro	ctg Leu	ggc Gly	acc Thr	aac Asn 380	ata Ile	acc Thr	ttg Leu	1270
ttc	tct	gtc	ctt	tct	ctca	tcct	ct t	taca	ctgt	g to	tctc	tggc	tct	ctgg	cat	1325

Phe Ser Val Leu Ser 385

tetegetgee tetgtettte cetettgetg tetetgttte teattetett teatgtteeg tetgtgtete teaattaace actegteaac tgetgattet actgggetgt gggeteagae cteattteag geaceagatt ggtegetaea ecetggaeaa gtgaetgeee gtetetgage cttgatttcc tcagctgcca aatgggaaga atagaagaat ttgcccctaa acccctcctg tgtgctggcc ctgtgctaga cagtgctgga gacatagttg ggggtggaga actgccctta tggagcttgc agtccagtga ggtggacaga cctgtcccca gacagtgatg gcccaaaatg gtcaggactt taatggagga ggtgaggtgt tgaaagcaca ggcagagtgg tcagggctga agteggagaa geatagggae taggeecaat eeageetgga aagteaggga ggaetteeta gaggaaggga catcgaacta agacctgaac tatgagaaat aggcaggaag aagttgtacc tgactcattt ttctcaggtg tctccaggga gcaggaccca tggagggacc cctggtgtag 1925 geetgggega tagaetette eteageagee tggeaggeag gaaacagaca taggaececa 1985 geccagatet gaatggeatg ggaggtgetg ceettaacea tgacaceatt gtaagagetg 2045 tecacatttg tatgttgtgc cetggaatca geetggttga getcaaatce caacttagee 2105 acgtctggcc tgtgtccttg ggcagtcaca ctacctctct gattttgttt ccttatctgt 2165 aaaatggtga tcatcataat acaacttcaa aaggatttca ggctgagtgt ggtggctcac 2225 gcctatacac ccagcacttt ggaaggctga ggaaggagga tcgcttgagg ccaggagttt 2285 gagactagee taggeaacae agtgaggeet tateteaaca acaaccacaa aatetaaaaa 2345 ttagctgggt gtggtggtgc atgcctgtga tcctggctac ttcagaggct gaggtggaag 2405 gatcacttga ggccaggagt ttgaggctgc agtgagttat gatggcactg ctgcactcca 2465 gcctgcggga cagagtgaga ccctgtctga aagaaagaga gaaagaaaga aagaaagaga 2525 2571

<210> 81 <211> 388 <212> PRT <213> H. sapiens

•

<400> 81 Met Arg Arg Gly Ala Leu Leu Ala Gly Ala Leu Ala Ala Tyr Ala Ala 10 Tyr Leu Val Leu Gly Ala Leu Leu Val Ala Arg Leu Glu Gly Pro His 20 Glu Ala Arg Leu Arg Ala Glu Leu Glu Thr Leu Arg Ala Gln Leu Leu Gln Arg Ser Pro Cys Val Ala Ala Pro Ala Leu Asp Ala Phe Val Glu Arg Val Leu Ala Ala Gly Arg Leu Gly Arg Val Val Leu Ala Asn Ala 70 Ser Gly Ser Ala Asn Ala Ser Asp Pro Ala Trp Asp Phe Ala Ser Ala 85 90 Leu Phe Phe Ala Ser Thr Leu Ile Thr Thr Val Gly Tyr Gly Tyr Thr 100 105 Thr Pro Leu Thr Asp Ala Gly Lys Ala Phe Ser Ile Ala Phe Ala Leu 115 120 Leu Gly Val Pro Thr Thr Met Leu Leu Leu Thr Ala Ser Ala Gln Arg 135 140

 Leu Ser Leu Leu Leu Thr His Val Pro Leu Ser Trp Leu Ser Met Arg

 145
 150
 155
 160

 Trp Gly Trp Asp Pro Arg Arg Ala Ala Cys Trp His Leu Val Ala Leu
 165
 170
 175

 Leu Gly Val Val Val Thr Val Cys Phe Leu Val Pro Ala Val Ile Phe
 185
 190

 Ala His Leu Glu Glu Ala Trp Ser Phe Leu Asp Ala Phe Tyr Phe Cys
 205

 Phe Ile Ser Leu Ser Thr Ile Gly Leu Gly Asp Tyr Val Pro Gly Glu

210 215 220
Ala Pro Gly Gln Pro Tyr Arg Ala Leu Tyr Lys Val Leu Val Thr Val

225 230 235 Leu Val Thr Val

7	yr	Leu	Phe	Leu	Gly 245	Leu	Val	Ala	Met	Val 250		Val	Leu		Thr 255		
Þ	lrg	His	Val	Ser 260		Leu	His	Gly	Leu 265	Thr	Glu	Leu	Ile	Leu 270	Leu	Pro	
			275					Asn 280					285	Arg	Val	_	
		290	•				295	Ser		,		300					
3	105					310		Pro			315					320	
					325	٠.		Leu		330	•		•		335	_	
				340				His	345					350			
			355					His 360				-	365				
		370			Ser	Arg	Ala 375	Pro	Leu	Gly		Asn 380	Ile	Thr	Leu	Phe	
³	er 85	Val	Leu	ser		•	٠	:		· . · · ·	·. ·						
			210> 211>		à.		ره ج	: :	٠, .		-			٠			
		* <2	212>	DNA	T	en e								•			
			220>		·	-119		٠.						٠			
		<2	221>	CDS		 / 3	19, - 1				•				•		
				(50)) 	(128:	> <i>)</i>										
			4 0 0 -	92				•	100							,	
а	aat		400> tgc (gcago	ct c	ggag	gege	age	ccgt	ctc	tgaa	ıtaaç			g gca	
а	aat				gcago			cgcgc	e ago	ccgt	ctc	tgaa	ıtaaç	Me	et Al	eg gca La Ala	
		geet	tge (ccgt	:	:	r .> ''						-	Me	et Al	a Ala	
c	ct	geet	tgc (ttg	cegt	gat	cct	aaa	tct	gcc	gct	cag	aac	tcc	Me :	et Al	a Ala	
c	ct	geet	tgc (ttg Leu	cegt	gat	cct	aaa		gcc	gct	cag	aac	tcc	Me :	et Al	a Ala	
P	ct	gac Asp 5 /	ttg ttg Leu	ctg Leu	gat Asp	cct Pro	aaa Lys 10	tct Ser	gcc Ala	gct Ala	cag Gln	aac Asn 15	tcc Ser	aaa Lys	ccg Pro	agg Arg	106
P	ct	gac Asp 5 /	ttg Leu ttt	ctg Leu tcc	gat Asp acg	cct Pro	aaa Lys 10	tct Ser	gcc Ala gtg	gct Ala	cag Gln gct	aac Asn 15	tcc Ser	aaa Lys	ccg Pro	agg Arg	
P	ct	gac Asp 5 /	ttg Leu ttt	ctg Leu tcc	gat Asp acg	cct Pro	aaa Lys 10	tct Ser	gcc Ala gtg	gct Ala ctt Leu	cag Gln gct	aac Asn 15	tcc Ser	aaa Lys	ccg Pro	agg Arg	106
o P	ct ro :tc eu 20	gac Asp 5 / tcg Ser	ttg Leu ttt Phe	ctg Leu tcc Ser	gat Asp acg Thr	cct Pro aaa Lys 25	aaa Lys 10 ccc Pro	tct Ser aca Thr	gcc Ala gtg Val	gct Ala ctt Leu	cag Gln gct Ala 30	aac Asn 15 tcc Ser	tcc Ser cgg Arg	aaa Lys gtg Val	ccg Pro gag Glu	agg Arg agt ser 35	106
o P	ct ro :tc eu 20	gac Asp 5 / tcg Ser	ttg Leu ttt Phe	ctg Leu tcc Ser	gat Asp acg Thr aat Asn	cct Pro aaa Lys 25	aaa Lys 10 ccc Pro	tct Ser aca Thr	gcc Ala gtg Val	gct Ala ctt Leu aag Lys	cag Gln gct Ala 30	aac Asn 15 tcc Ser	tcc Ser cgg Arg	aaa Lys gtg Val	ccg Pro gag Glu ata Ile	agg Arg agt ser 35 ttc Phe	10 <i>6</i>
o P	ct ro :tc eu 20	gac Asp 5 / tcg Ser	ttg Leu ttt Phe	ctg Leu tcc Ser	gat Asp acg Thr	cct Pro aaa Lys 25	aaa Lys 10 ccc Pro	tct Ser aca Thr	gcc Ala gtg Val	gct Ala ctt Leu	cag Gln gct Ala 30	aac Asn 15 tcc Ser	tcc Ser cgg Arg	aaa Lys gtg Val	ccg Pro gag Glu	agg Arg agt ser 35 ttc Phe	10 <i>6</i>
o P	ect Pro tcueu 20 accusp	gac Asp 5 / tcg Ser acg Thr	ttgc of ttgc o	ctg Leu tcc Ser att Ile	gat Asp acg Thr aat Asn 40	cct Pro aaa Lys 25 gtt Val	aaa Lys 10 ccc Pro atg Met	tct Ser aca Thr aaa Lys	gcc Ala gtg Val tgg Trp	gct Ala ctt Leu aag Lys 45	cag Gln gct Ala 30 acg Thr	aac Asn 15 tcc Ser gtc Val	tcc Ser cgg Arg tcc Ser	aaa Lys gtg Val acg Thr	ccg Pro gag Glu ata Ile 50	agg Arg agt Ser 35 ttc Phe	10 <i>6</i>
o P	ect Pro tcueu 20 accusp	gac Asp 5 / tcg Ser acg Thr	ttgc of ttgc o	ctg Leu tcc Ser att Ile	gat Asp acg Thr aat Asn 40	cct Pro aaa Lys 25 gtt Val	aaa Lys 10 ccc Pro atg Met	tct Ser aca Thr aaa Lys	gcc Ala gtg Val tgg Trp	gct Ala ctt Leu aag Lys 45	cag Gln gct Ala 30 acg Thr	aac Asn 15 tcc Ser gtc Val	tcc Ser cgg Arg tcc Ser	aaa Lys gtg Val acg Thr	ccg Pro gag Glu ata Ile 50 aaa Lys	agg Arg agt Ser 35 ttc Phe	106 154 202
o P	ect Pro tcueu 20 accusp	gac Asp 5 / tcg Ser acg Thr	ttgc of ttgc o	ctg Leu tcc Ser att Ile	gat Asp acg Thr aat Asn 40	cct Pro aaa Lys 25 gtt Val	aaa Lys 10 ccc Pro atg Met	tct Ser aca Thr aaa Lys	gcc Ala gtg Val tgg Trp	gct Ala ctt Leu aag Lys 45	cag Gln gct Ala 30 acg Thr	aac Asn 15 tcc Ser gtc Val	tcc Ser cgg Arg tcc Ser	aaa Lys gtg Val acg Thr	ccg Pro gag Glu ata Ile 50 aaa Lys	agg Arg agt Ser 35 ttc Phe	106 154 202
C P C L C L C L	ct Pro tc eu 20 ac sp	gac Asp 5 / tcg Ser acg Thr gtg Val	ttgc of ttgc o	ctg Leu tcc Ser att Ile gtc Val 55	gat Asp acg Thr aat Asn 40 ctc Leu	cct Pro aaa Lys 25 gtt Val tat Tyr	aaa Lys 10 ccc Pro atg Met ctg Leu	tct Ser aca Thr aaa Lys atc Ile	gcc Ala gtg Val tgg Trp atc Ile 60	gct Ala ctt Leu aag Lys 45 gga Gly	cag Gln gct Ala 30 acg Thr	aac Asn 15 tcc Ser gtc Val acc Thr	tcc Ser cgg Arg tcc Ser gtg Val	aaa Lys gtg Val acg Thr ttc Phe 65	ccg Pro gag Glu ata Ile 50 aaa Lys	agg Arg agt Ser 35 ttc Phe gca Ala	106 154 202
C P C L C L C L	ct Pro tc eu 20 ac sp	gac Asp 5 / tcg Ser acg Thr gtg Val	ttgc of ttgc of ttt ttt ttt ttt ttt ttt ttt ttt ttt	ctg Leu tcc Ser att Ile gtc Val 55	gat Asp acg Thr aat Asn 40 ctc Leu	cct Pro aaa Lys 25 gtt Val tat Tyr	aaa Lys 10 ccc Pro atg Met ctg Leu	tct Ser aca Thr aaa Lys atc Ile tca Ser	gcc Ala gtg Val tgg Trp atc Ile 60	gct Ala ctt Leu aag Lys 45 gga Gly	cag Gln gct Ala 30 acg Thr	aac Asn 15 tcc Ser gtc Val acc Thr	tcc Ser cgg Arg tcc Ser gtg Val att	aaa Lys gtg Val acg Thr ttc Phe 65	ccg Pro gag Glu ata Ile 50 aaa Lys	agg Arg agt Ser 35 ttc Phe gca Ala	106 154 202 250
C P C L C L C L	ct Pro tc eu 20 ac sp	gac Asp 5 / tcg Ser acg Thr gtg Val	ttgc of ttgc o	ctg Leu tcc Ser att Ile gtc Val 55	gat Asp acg Thr aat Asn 40 ctc Leu	cct Pro aaa Lys 25 gtt Val tat Tyr	aaa Lys 10 ccc Pro atg Met ctg Leu	tct Ser aca Thr aaa Lys atc Ile	gcc Ala gtg Val tgg Trp atc Ile 60	gct Ala ctt Leu aag Lys 45 gga Gly	cag Gln gct Ala 30 acg Thr	aac Asn 15 tcc Ser gtc Val acc Thr	tcc Ser cgg Arg tcc Ser gtg Val	aaa Lys gtg Val acg Thr ttc Phe 65	ccg Pro gag Glu ata Ile 50 aaa Lys	agg Arg agt Ser 35 ttc Phe gca Ala	106 154 202 250
OP OL SA	ect Pro etc 20 pac sp eu eu	gac Asp 5 / tcg Ser acg Thr gtg Val gag Glu caa	ttgc of ttgc o	ctg Leu tcc Ser att Ile gtc Val 55 cct Pro	gat Asp acg Thr aat Asn 40 ctc Leu cat His	cct Pro aaa Lys 25 gtt Val tat Tyr gag Glu	aaa Lys 10 ccc Pro atg Met ctg Leu att Ile	tct Ser aca Thr aaa Lys atc Ile tca Ser 75	gcc Ala gtg Val tgg Trp atc Ile 60 cag Gln	gct Ala ctt Leu aag Lys 45 gga Gly agg Arg	cag Gln gct Ala 30 acg Thr gcc Ala acc	aac Asn 15 tcc Ser gtc Val acc Thr	tcc Ser cgg Arg tcc Ser gtg Val att Ile 80	aaa Lys gtg Val acg Thr ttc Phe 65 gtg Val	ccg Pro gag Glu ata Ile 50 aaa Lys	agg Arg agt Ser 35 ttc Phe gca Ala cag Gln	106 154 202 250
OP OL SA	ect Pro etc 20 pac sp eu eu	gac Asp 5 / tcg Ser acg Thr gtg Val gag Glu caa	ttgc of ttgc o	ctg Leu tcc Ser att Ile gtc Val 55 cct Pro	gat Asp acg Thr aat Asn 40 ctc Leu cat His	cct Pro aaa Lys 25 gtt Val tat Tyr gag Glu	aaa Lys 10 ccc Pro atg Met ctg Leu att Ile	tct Ser aca Thr aaa Lys atc ile tca Ser 75 cat	gcc Ala gtg Val tgg Trp atc Ile 60 cag Gln	gct Ala ctt Leu aag Lys 45 gga Gly agg Arg	cag Gln gct Ala 30 acg Thr gcc Ala acc	aac Asn 15 tcc Ser gtc Val acc Thr	tcc Ser cgg Arg tcc Ser gtg Val att Ile 80 tcg Ser	aaa Lys gtg Val acg Thr ttc Phe 65 gtg Val	ccg Pro gag Glu ata Ile 50 aaa Lys	agg Arg agt Ser 35 ttc Phe gca Ala cag Gln	106 154 202 250
OP OL tl al	ict iccieu 20 iac icg icu icg icu	gac Asp 5 / tcg Ser acg Thr gtg Glu caa Gln 85	ttgc of ttgc o	ctg Leu tcc Ser att Ile gtc Val 55 cct Pro	gat Asp acg Thr aat Asn 40 ctc Leu cat His	cct Pro aaa Lys 25 gtt Val tat Tyr gag Glu tcc Ser	aaa Lys 10 ccc Pro atg Met ctg Leu att Ile caa Gln 90	tct Ser aca Thr aaa Lys atc ile tca Ser 75 cat	gcc Ala gtg Val tgg Trp atc Ile 60 cag Gln tcc Ser	gct Ala ctt Leu aag Lys 45 gga Gly agg Arg	cag Gln gct Ala 30 acg Thr gcc Ala acc Thr	aac Asn 15 tcc Ser gtc Val acc Thr acc Thr	tcc Ser cgg Arg tcc Ser gtg Val att Ile 80 tcg Ser	aaa Lys gtg Val acg Thr ttc Phe 65 gtg Val	ccg Pro gag Glu ata Ile 50 aaa Lys atc Ile	agg Arg agt Ser 35 ttc Phe gca Ala cag Gln	106 154 202 250

100	105	110	115
ccg tta gga aac acc Pro Leu Gly Asn Thr 120	tcc aat caa atc Ser Asn Gln Ile	agt cac tgg gat ttg Ser His Trp Asp Leu 125	gga agt 442 Gly Ser 130
Ser Phe Phe Phe Ala	Gly Thr Val Ile 140	aca acc ata gga ttt Thr Thr Ile Gly Phe 145	Gly Asn
Ile Ser Pro Arg Thr 150	Glu Gly Gly Lys 155	ata ttc tgt atc atc Ile Phe Cys Ile Ile 160	Tyr Ala
Leu Leu Gly Ile Pro 165	Leu Phe Gly Phe 170	ctc ttg gct gga gtt Leu Leu Ala Gly Val 175	Gly Asp
Gln Leu Gly Thr Ile 180	Phe Gly Lys Gly 185	att gcc aaa gtg gaa Ile Ala Lys Val Glu 190	Asp Thr 195
Phe Ile Lys Trp Asn 200	Val Ser Gln Thr	aag att cgc atc atc Lys Ile Arg Ile Ile 205	Ser Thr 210
Ile Ile Phe Ile Leu 215	Phe Gly Cys Val 220	ctc ttt gtg gct ctg Leu Phe Val Ala Leu 225	Pro Ala
Ile Ile Phe Lys His 230	Ile Glu Gly Trp 235	agt gcc ctg gac gcc Ser Ala Leu Asp Ala 240	Ile Tyr
Phe Val Val Ile Thr 245	Leu Thr Thr Ile 250	gga ttt ggt gac tac Gly Phe Gly Asp Tyr 255	Val Ala
Gly Gly Ser Asp Ile 260	Glu Tyr Leu Asp 265	ttc tat aag cct gtc Phe Tyr Lys Pro Val 270	Val Trp 275
ttc tgg atc ctt gta Phe Trp Ile Leu Val 280	Gly Leu Ala Tyr	Phe Ala Ala Val Leu	agc atg 922 Ser Met 290
att gga gat tgg ctc Ile Gly Asp Trp Leu 295	cga gtg ata tct Arg Val Ile Ser 300	aaa aag aca aaa gaa Lys Lys Thr Lys Glu 305	gag gtg 970 Glu Val
gga gag ttc aga gca Gly Glu Phe Arg Ala 310	cac gct gct gag His Ala Ala Glu 315	tgg aca gcc aac gtc Trp Thr Ala Asn Val 320	aca gcc 1018 Thr Ala
gaa ttc aaa gaa acc Glu Phe Lys Glu Thr 325	Arg Arg Arg Leu	agt gtg gag att tat Ser Val Glu Ile Tyr 335	gac aag 1066 Asp Lys
ttc cag cgg gcc acc Phe Gln Arg Ala Thr 340	tcc atc aag cgg Ser Ile Lys Arg 345	aag ctc tcg gca gaa Lys Leu Ser Ala Glu 350	ctg gct 1114 Leu Ala 355
		52	

```
gga aac cac aat cag gag ctg act cct tgt agg agg acc ctg tca gtg
                                                                 1162
Gly Asn His Asn Gln Glu Leu Thr Pro Cys Arg Arg Thr Leu Ser Val
               360
                                   365
aac cac ctg acc agc gag agg gat gtc ttg cct ccc tta ctg aag act
                                                                 1210
Asn His Leu Thr Ser Glu Arg Asp Val Leu Pro Pro Leu Leu Lys Thr
                               380
gag agt atc tat ctg aat ggt ttg acg cca cac tgt gct ggt gaa gag
                                                                 1258
Glu Ser Ile Tyr Leu Asn Gly Leu Thr Pro His Cys Ala Gly Glu Glu
                          395
att gct gtg att gag aac atc aaa tag ccctctctt aaataacctt
                                                                 1305
Ile Ala Val Ile Glu Asn Ile Lys *
   405 ...
                       410
aggicataged ataggigagg activities getetitate actifities gragicatiti
                                                                 1365
ttaaattgtg catgagctca aagggggaac aaaatagata cacccatcat ggtcatctat
                                                                 1425
catcaagaga atttggaatt ctgagccagc actttctttc tgatgatgct tgttgaacgg
                                                                 1485
tccactttct ttgatgagtg gaatgacaag caatgtctga tgcctttttg tgcccagact
                                                                 1545
gttttcctct ctctttccct aatgtgccat aaggcctcag aatgaatgag aattgtttct
                                                                 1605
ggtaacaatg tagctttgag ggatcagttc ttaacttttc agggtctacc taactgagcc
                                                                 1665
tagatatgga ccatttatgg atgacaacaa ttttttttt gtaaatgaca agaaattctt
                                                                 1725
atgcagcett ttacctaaga aattttetgt cagtgcetta tettatgaag aaacagaace
                                                                 1785
tetetageta atgigigit tetecticee igeececace ectaggetea cetetgeagt
                                                                 1845
ettttacccc agttctccca tttgaatacc atacettget ggaaacagtg tgtaaaatga
                                                                 1905
ctgaagtgat gatgcccgaa gatgaaatag atgccaaatt agatggacat tgaagcaaca
                                                                 1965
ctcagcgttg cctagcgtta aaggcactgc agagaaatga ggtgcagagg tggccctct
                                                                 2025
gagtatttat ttgactcagg taccagtggt acatatatac agtgtaatta tgaccaggct
ggtaaaattg gctgctcgca aacaatcccc ttttttcctg gcagtatttg gaatttatca
tttattaata actatacatt tttaaaggca gaagaagaaa atctatctat catctatcta
                                                                 2205
2265
gaagaaaact gttaaaaatg gatattattg gaggggattt aaaacagtgg gtgtgaatta
                                                                 2325
tcattctgat ggaaagaaaa tagcaaaaca atgtgttaca agtatttgct aataaacagt
                                                                 2385
atactgccag cttctaattg ctttttgatg tatgaaaggc ttatataatt ttcttttcgt
                                                                 2445
tgggtgactt ttgccagatg agaggaggtg gcacagtggt gagtgcaggg cacagtccta
                                                                 2505
gccttctgtg ggtatacttt tggagttgtg acttggctgt gagggcagaa gttgaagttg
                                                                 2565
ggatcaétgt gactttgcac atggaaaaat gcagattgca ggcataattc atctctgaca
                                                                 2625
ttagagaaaa agctgttata gcacaattta aattttgaga gtttgctgtg ttttttttc
                                                                 2685
acataaaaga ggctgattat tctttttagt ttaattttat atcctgtaat tctttggatg
                                                                 2745
gttccaagat tcagaaaaaa ttcagtaaat gcaccccgta aattgctacc ctttccttta
                                                                 2805
ttttcatact tagatctgct gtacattgta tatatatata atttttaaaa tgcagaaaga
                                                                 2865
aaataatttc cctaaatata attgcaaact gatttctttt acttttttgt gtctggggt
                                                                 2925
gggagctgta tctgaataag tggcattcag attagggtct tgaaaaataa acccagaatc
                                                                 2985
tttaaaagaa gcaaataaac taatagaege ttattttcca aaatttaaat ttaagetaga
                                                                 3045
aatgtaaata ttcaattaat ttgttaaaag tacttttata aagttaaaaa aaatccaacc
                                                                 3105
aaaattttag aaagtcaggc tettttagaa agaaagetae acceatttee teaaataaet
                                                                 3165
gttccgaaaa tttatatggt ggaatgcgcc atgtataaac tgtgaattgt attgacaaat
3285
aaaaaaaaa aaaaa
                                                                 3300
```

<210> 83

<211> 411

<212> PRT

<213> H. sapiens

<400> 83

Met Ala Ala Pro Asp Leu Leu Asp Pro Lys Ser Ala Ala Gln Asn Ser

1 5 10 15

Lys Pro Arg Leu Ser Phe Ser Thr Lys Pro Thr Val Leu Ala Ser Arg

j 494 jan 400 - 11

```
25
Val Glu Ser Asp Thr Thr Ile Asn Val Met Lys Trp Lys Thr Val Ser
                       40
                                       4.5
Thr Ile Phe Leu Val Val Leu Tyr Leu Ile Ile Gly Ala Thr Val
Phe Lys Ala Leu Glu Gln Pro His Glu Ile Ser Gln Arg Thr Thr Ile
                70
Val Ile Gln Lys Gln Thr Phe Ile Ser Gln His Ser Cys Val Asn Ser
                             90
Thr Glu Leu Asp Glu Leu Ile Gln Gln Ile Val Ala Ala Ile Asn Ala
                         105
Gly Ile Ile Pro Leu Gly Asn Thr Ser Asn Gln Ile Ser His Trp Asp
                      120
Leu Gly Ser Ser Phe Phe Phe Ala Gly Thr Val Ile Thr Thr Ile Gly
                 135
Phe Gly Asn Ile Ser Pro Arg Thr Glu Gly Gly Lys Ile Phe Cys Ile
       150
                               155
Ile Tyr Ala Leu Leu Gly Ile Pro Leu Phe Gly Phe Leu Leu Ala Gly
       165
                   170
Val Gly Asp Gln Leu Gly Thr Ile Phe Gly Lys Gly Ile Ala Lys Val
              190
Glu Asp Thr Phe Ile Lys Trp Asn Val Ser Gln Thr Lys Ile Arg Ile
      195
                 200
Ile Ser Thr Ile Ile Phe Ile Leu Phe Gly Cys Val Leu Phe Val Ala
210 220
Leu Pro Ala Ile Ile Phe Lys His Ile Glu Gly Trp Ser Ala Leu Asp
                230 235 240
Ala Ile Tyr Phe Val Val Ile Thr Leu Thr Thr Ile Gly Phe Gly Asp
245 250 255
Tyr Val Ala Gly Gly Ser Asp Ile Glu Tyr Leu Asp Phe Tyr Lys Pro
260 265 270 Val Val Trp Phe Trp Ile Leu Val Gly Leu Ala Tyr Phe Ala Ala Val
                 280 285
Leu Ser Met Ile Gly Asp Trp Leu Arg Val Ile Ser Lys Lys Thr Lys
                . 295
                                   300
Glu Glu Val Gly Glu Phe Arg Ala His Ala Ala Glu Trp Thr Ala Asn ;
                310 315 320
Val Thr Ala Glu Phe Lys Glu Thr Arg Arg Arg Leu Ser Val Glu Ile
325

Tyr Asp Lys Phe Gln Arg Ala Thr Ser Ile Lys Arg Lys Leu Ser Ala
345
350
    325
                       345 350
Glu Leu Ala Gly Asn His Asn Gln Glu Leu Thr Pro Cys Arg Arg Thr
                             365
     355
                   ,360
Leu Ser Val Asn His Leu Thr Ser Glu Arg Asp Val Leu Pro Pro Leu
 370 380
Leu Lys Thr Glu Ser Ile Tyr Leu Asn Gly Leu Thr Pro His Cys Ala
               390 395
Gly Glu Glu Ile Ala Val Ile Glu Asn Ile Lys
405 410
```

<210> 84

<211> 20

<212> DNA

<213> H. sapiens

<400> 84 catagccata ggtgaggact

<210> 85 <211> 20

<212> DNA

64

BNSDOCID: <WO___9943696A1_I_>

20

7 . 1

7

1 13

. 5

13

	•				
	<213> H. sapiens				
		•		· ** [1].	C. C.
	<400> 85			*	<i>:</i>
	gagaggaaaa cagtctgggc				20
	<210> 86			. 3	211
	<211> 20	*	÷ . •	- 10	
	<212> DNA			, .	
	<213> H. sapiens				
	<400> 86				
	ggacatcgaa ctaagacctg				,
•	ggacacogaa coaagaccog				20
. 0	<210> 87			•	•
• • •	<211> 20	• •			
	<212> DNA				,,
	<213> H. sapiens				
•	<400> 87	* *	* *	•	•
	tcccatgcca ttcagatctg				20
· · · · · · · · · · · · · · · · · · ·		\$ e * *	re in the second	1/1	20
	•				
		4 1 × 3	1 A		
		4.00 - 100 - 400			
	a a seguina de la compansión de la compa	ija v	· 🖫 🐪	the second second	
•					•
•					
	•				
	·				-
				•	
					•
•					•
		•	ing the second of the second o		
	. The second second	,			
	the first of the second		(¥)		
4 - 4 - 4 - 6 - 6 - 5		. •	or en		
	and the second of the second o				
en e			er version with	1	• •
Action 10 Project		•			
	the area of the second		t	14 - 4 - 41	
•		. 0			***
					•
	*** * * * * * * * * * * * * * * * * *				A STEEL
		20 m	• • •		The second section of the second seco
•				. •	
*		ζ(*)	ن ب		1

The state of the second of the

ASSESSED .

BNSDOCID: <WO___9943696A1_I_>

International application No. PCT/US99/03826

<u> </u>			
IPC(6) :	SSIFICATION OF SUBJECT MATTER CO7H 21/04; C07K 14/705; C12N 15/09, 15/63; C1 636/23.1, 24.3; 435/7.2, 69.1, 320.1; 530/350	2Q 1/68	
	o International Patent Classification (IPC) or to both	national classification and IPC	
	DS SEARCHED		
	ocumentation searched (classification system followe	ed by classification symbols)	
		d by classification symbolis;	
U.S. :	636/23.1, 24.3; 435/7.2, 69.1, 320.1; 530/350		
Documentati	ion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched
El-amie de	to have accounted during the international according	Charles and the Name of Assault	
	ata base consulted during the international search (no Extra Sheet.	ame of data base and, where practicable,	, scarch terms used)
C. DOCI	UMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.
X,P	PARTISETI, M. et al. Cloning and Human Inward Rectifying Potassiu Expressed in Small Intestine. FEBS Let 176, see entire document.	um Channel Predominantly	1-9
·		·	
Furthe	or documents are listed in the continuation of Box C	See patent family annex.	
* Spe	eial estageries of cited documents:	"T" Inter document published after the inter	
	useant defining the general state of the art which is not considered to a functional relationship relations	date and not in conflict with the appli the principle or theory underlying the	
	ier document published on or after the internsticual filing date	"X" document of particular relevance; the	
"L" dom	unest which may throw doubts on priority claim(s) or which is to establish the publication date of enother citation or other sial reason (as specified)	occasidered novel or cannot be consider when the document is taken alone "Y" document of particular relevance; the	•
•	unest referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other such being obvious to, a person skilled in th	step when the document is document, such combination
	ument published prior to the international filing date but leter then priority date claimed	*&* document member of the same patent	femily
Date of the a	octual completion of the international search	Date of mailing of the international scale 0 7 JUL 199	
Commission Box PCT	ailing address of the ISA/US or of Patents and Trademarks , D.C. 20231	Authorized Officer NIRMAL S. BASI	For
Facaimile No	o. (703) 305-3230	Telephone No. (703) 308-0196	

International application No. PCT/US99/03826

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, MEDLINE, JAPIO, BIOSIS, SCISEARCH, WPIDS, GENEMBL, NGENSEQ 34, EST, A-GENESEQ 32, PIR 58, SWISS-PROT 35, SPTREMBL 16.
search terms: potassium channel, K+hnov

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be searched, the appropriate additional search fees must be paid.

Group I, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:2, the nucleic acid having the sequence of SEQ ID NO:1, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:2 and K+Hnov protein of SEQ ID NO:2.

Group II, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:4, the nucleic acid having the sequence of SEQ ID NO:3, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:4 and K+Hnov protein of SEQ ID NO:4.

Group III, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:6, the nucleic acid having the sequence of SEQ ID NO:5, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:6 and K+Hnov protein of SEQ ID NO:6.

Group IV, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:8, the nucleic acid having the sequence of SEQ ID NO:7, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:8 and K+Hnov protein of SEQ ID NO:8.

Group V, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:10, the nucleic acid having the sequence of SEQ ID NO:9, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:10 and K+Hnov protein of SEQ ID NO:10.

Group VI, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:12, the nucleic acid having the sequence of SEQ ID NO:11, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:12 and K+Hnov protein of SEQ ID NO:12.

Group VII, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:14, the nucleic acid having the sequence of SEQ ID NO:13, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:14 and K+Hnov protein of SEQ ID NO:14.

Group VIII, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:16, the nucleic acid having the sequence of SEQ ID NO:15, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:16 and K+Hnov protein of SEQ ID NO:16.

Group IX, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:18, the nucleic acid having the sequence of SEQ ID NO:17, nucleic acids hybridizing to said nucleic acids, expression cannot comprising said nucleic acids, cell comprising said expression cannot method for producing K+Hnov protein of SEQ ID NO:18 and K+Hnov protein of SEQ ID NO:18.

Group X, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:20, the nucleic acid having the sequence of SEQ ID NO:19, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:20 and K+Hnov protein of SEQ ID NO:20.

Group XI, claim(s)1-9, draws to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:25, the nucleic acid having the sequence of SEQ ID NO:21-25, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:25 and K+Hnov protein of SEQ ID NO:25.

Group XII, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:27, the aucleic acid having the sequence of SEQ ID NO:26, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing

3Nc.

International application No. PCT/US99/03826

K+Hnov protein of SEQ ID NO:27 and K+Hnov protein of SEQ ID NO:27.

Group XIII, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:30, the nucleic acid having the sequence of SEQ ID NO:28-29, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:30 and K+Hnov protein of SEQ ID NO:30.

Group XIV, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:81, the nucleic acid having the sequence of SEQ ID NO:80, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:81 and K+Hnov protein of SEQ ID NO:81.

Group XV, claim(s)1-9, drawn to nucleic acids encoding K+Hnov protein having the amino acid sequence of SEQ ID NO:83, the nucleic acid having the sequence of SEQ ID NO:82, nucleic acids hybridizing to said nucleic acids, expression cassette comprising said nucleic acids, cell comprising said expression cassette, method for producing K+Hnov protein of SEQ ID NO:83 and K+Hnov protein of SEQ ID NO:83.

Group XVI, claim(s)10, drawn to monoclonal antibody that binds to K+Hnov.

Group XVII, claim(s)11-14, drawn to non-human transgenic animal model for K+Hnov.

The inventions listed as Groups I-XVII do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Group I is directed to nucleic acid (SEQ ID NO:1) encoding the K+Hnov protein of SEQ ID NO:2, nucleic acids hybridizing to raid nucleic acid, expression cassette comprising said nucleic acid, ceil comprising said cassette, method of producing the K+Hnov of SEQ ID NO:2 and the protein of SEQ ID NO:2. The special technical feature is the disclosed nucleic acid of SEQ ID NO:1 encoding the K+Hnov protein of SEQ ID NO:2. The nucleic acids, proteins, antibody and transgenic eximal model of Groups II-XVII do not share the special technical feature of Group I wherein the products of said Groups are structurally and functionally different. As above in Table 1, pages 8-9, the H+Nov proteins of SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 27, 30, 81 and 83 are all structurally and functionally different, the nucleic acids exceeding said proteins having different chromosome positions.

and the second of the second o

Complete and the state of

and the second of the second

ar galantina di

الإراقية والمراج الموادي والراب

Committee and the same

International application No. PCT/US99/03826

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This interv	national report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
ı. 🗀	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.:
ل_ا	because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II C	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
	national Searching Authority found multiple inventions in this international application, as follows:
	case See Extra Sheet.
,	
} .	
ı. 🗀	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 9, SEQ ID NO:1 and 2
Romark o	The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the new next of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*