Nombre de la asignatura: Control inteligente

LGAC: Asignatura básica

Tiempo de dedicación del estudiante a las actividades:

DOC (48) - TIS (20) - TPS (100) - 168 horas totales - 6 Créditos

1. Historia de la asignatura.

Fecha revisión/actualización	Participantes	Observaciones, cambios y justificación.
Marzo de 2017 Instituto Tecnológico de	M.C. José Antonio Hernández Reyes	Primera versión como curso básico del programa de posgrado.
Veracruz	M.C. Carlos Roberto González Escarpeta	

2. Prerrequisitos y correquisitos.

Al trarse de una materia del bloque básico no tiene prerequisitos

3. Objetivo de la asignatura.

Conocer y aplicar los conceptos y herramientas de sistemas de control clásico para el control de servomecanismos.

4. Aportaciones al perfil del graduado.

Analizar, diseñar e implementar algoritmos de control en servomecanismos.

5. Contenido temático.

UNIDAD	TEMA	SUBTEMAS
Introducción	1.1 Introducción	1.1.1 Antecedentes históricos.
a los Sistemas de	1.2 Definiciones.	1.2.1 Control de lazo cerrado y lazo abierto.
Control y	1.3 Modelado a partir de	1.2.2 Ejemplos de sistemas de control.
Modelación Matemática	leyes físicas.	1.2.3 Elementos principales para proyectos de sistemas de control.
		1.3.1 Sistemas lineales.
		1.3.2 Sistemas no lineales.
		1.3.3 Aproximación lineal de sistemas no lineales (linealización).
Función de	2.1 Obtención de	2.1.1 Obtención de funciones de transferencia a partir
transferencia	funciones de	del modelo matemático de sistemas físicos.
y diagramas	transferencia de	del medele matematico de distornacinologo.
de bloques	sistemas físicos	2.2.1. Procedimiento para el trazo de diagramas de bloques
	2.2 Diagramas de bloque en sistemas de lazo cerrado	2.2.2. Reducción de diagramas de bloques mediante el álgebra de bloques
		2.2.3. Reducción de diagramas de bloques a través de gráficos de flujo de señal
Acciones básicas de	3.1 Acciones de control	3.1.1 Acción de dos posiciones (SI-NO).

control y	3.2 Controlador lógico	3.1.2 Acción de control proporcional.
controles automáticos industriales	progamable (PLC)	 3.1.3 Acción de control integral. 3.1.4 Acción de control derivativo. 3.1.5 Acción de control proporcional e integral. 3.1.6 Acción de control proporcional y derivativo. 3.1.7 Acción de control proporcional, derivativo e integral. 3.2.1 Programación y operación del PLC Siemens S7-200
Estabilidad	4.1 Estabilidad absoluta 4.2 Estabilidad relativa	4.1.1 Criterio de Routh-Hurtwitz 4.2.1 Método del lugar de las raíces: Reglas generales para construir los lugares de las raíces.
Aplicación de un proyecto de control	5.1 Control de velocidad de un motor eléctrico. 5.2 Control de un sistema electroneumático.	 5.1.1 Análisis e implementación de diferentes acciones básicas de control para la regulación de velocidad de un motor de CD. 5.1.2 Proyecto de control de un sistema electroneumático con el PLC Siemens S7-200.

6. Metodología de desarrollo del curso.

- Exposición teórica del tema
- Discusión grupal
- Solución de ejercicios
- Realización de prácticas de laboratorio

7. Sugerencias de evaluación.

- Exámenes escritos
- Tareas y prácticas de laboratorio
- Exposición de artículos
- Proyecto final

8. FUENTES DE INFORMACIÓN

- Problemas de Ingeniería de Control utilizando Matlab. Ogata Katsuhiko. Prentice Hall.
- Ingeniería de Control Moderna. Ogata Katsuhiko. Prentice Hall, 1993.
- Sistemas de Control Moderno. Richard Dorf y Robert Bishop. Prentice Hall, 2005.
- Sistemas Automáticos de Control. Benjamín Kuo. Prentice Hall.
- Using Matlab to Analyze and Design Control Systems. Adisson Wesley.
- Manuales de utilización del Matlab.
- Software MATLAB

9. Actividades propuestas

Unidad	Horas	Prácticas
1	4	Implementar el control analógico de un servomecanismo para identificar los elementos principales de un sistema de control.
2	6	Implementar el control analógico de un servomecanismo para identificar la representación de un diagrama de control correspondiente
3	8	Implementar diferentes acciones de control en la regulación de velocidad y control de posición de un motor de CD, así como implementar el control de un sistema electro-neumático con el PLC Siemens S7-200.
4	8	Desarrollar el lugar de las raíces de diferentes servomecanismos para determinar su estabilidad.
5	6	Desarrollar el proyecto del control de un servomecanismo.

10. Nombre y firma de los catedráticos responsables.

M.C. José Antonio Hernández Reyes	
M.C. Carlos Roberto González Escarpeta	