Dr Simon D'Alfonso

INFO 90002 Database Systems & Information Modelling

Week 01
Introduction to Databases and SQL/MySQL

Context: software and data

- Computer systems consist of software (algorithms) working to process data.
- You will learn about creating software and algorithms in other subjects.
- This subject is about data.

Introduction to databases

Unstructured data

	А	В	С	D	Е
1	My Holiday Budget>				
2					
3	Flights	\$10,000.00			
4	Accommodation	\$5,000.00	<- can this	be reduce	d?
5	Food	\$1,000.00			
6					
7		\$16,000.00	TOTAL		
8					
9					
10					
11					

- handwritten notes
- printed books
- spreadsheets etc

80 NATURAL SELECTION. CHAP. IV.

CHAPTER IV.

NATURAL SELECTION.

Natural Selection—its power compared with man's selection—its power on characters of trifling importance—its power at all ages and on both sexes—Sexual Selection—On the generality of intercrosses between individuals of the same species—Circumstances favourable and unfavourable to Natural Selection, namely, intercrossing, isolation, number of individuals—Slow action—Extinction caused by Natural Selection—Divergence of Character, related to the diversity of inhabitants of any small area, and to naturalisation—Action of Natural Selection, through Divergence of Character and Extinction, on the descendants from a common parent—Explains the Grouping of all organic beings.

How will the struggle for existence, discussed too briefly in the last chapter, act in regard to variation? Can the principle of selection, which we have seen is so potent in the hands of man, apply in nature? I think we shall see that it can act most effectually. Let it be borne in mind in what an endless number of strange peculiarities our domestic productions, and, in a lesser degree, those under nature, vary; and how strong the hereditary tendency is. Under domestication, it may be truly said that the whole organisation becomes in some degree plastic. Let it be borne in mind how infinitely complex and close-fitting are the mutual relations of all organic beings to each other and to their physical conditions of life. Can it, then, be thought improbable, seeing that variations useful to man have undoubtedly occurred, that other variations useful in some way to each being in the great and complex battle of life, should sometimes occur in the course of thousands of generations? If such do occur, can we doubt (remem-

- Each row represents an instance of a set of entities
- Entities might be people, things, events, transactions...
- You can extract useful knowledge via simple, repetitive processes
- A natural fit for business and scientific data.

Tables computed que

() in Y

Table of rows -> Deck of cards

1890 US census

https://www.census.gov/history/www/innovations/technology/the_hollerith_tabulator.html

Tape and Disc

EMP_RECORD	EMP_ID	EMP_REGION	EMP_DEPT	EMP_HIRE_D	Е	E	EMP	EMP_SALARY	EMP_NAME	EMP_SKIL
68	3715	4	153	09061987	9	6	1987	14000000	IRENE HIRSH	041085
62	39412	1	650	03119590	3	11	9590	167000000	ANN FAHEY	031099
56	1939	2	265	09281988	9	28	1988	21300000	EMILY WILM	021077
50	3502	2	165	07041985	7	4	1985	19500000	CATHEZINE	011015
44	4435	2	117	05141989	5	14	1989	17000000	AGNES KING	00
68	1673	3	138	07021985	7	2	1985	16800000	MARTIN XU	041033
62	4181	3	161	02031988	2	3	1988	15900000	JOHN DURN	030045
56	1443	1	265	12028900	12	2	8900	6000000	PAT DUNN	021055
50	3607	3	127	08072000	8	7	2000	18300000	ANDREA HIN	011014
44	1775	3	288	02051989	2	5	1989	2700000	PETER JONES	00
68	1209	2	165	05121986	5	12	1986	17300000	DIDRA WILK	041065

http://www.computerhistory.org/timeline/memory-storage/

http://groups.engin.umd.umich.edu/CIS/course.des/cis400/cobol/cobol.html

```
DATA DIVISION.
FILE SECTION.
FD StudentFile.
01 StudentRec.
      EndOfStudentFile VALUE HIGH-VALUES.
                         PIC 9(7).
      StudentId
      StudentName.
       03 Surname
                         PIC X(8).
       03 Initials
                         PIC XX.
      DateOfBirth.
                         PIC 9(4).
       03 YOBirth
       03 MOBirth
                         PIC 9(2).
       03 DOBirth
                         PIC 9(2).
     CourseCode
                         PIC X(4).
      Gender
                         PIC X.
```


Problems with flat-files:

- data access routines must be programmed in detail
- each program must include full detail of data structure
- multiple users cannot simultaneously access data
- multiple copies of data not centrally managed

Relational Databases

the first relational databases from Oracle and IBM appear around 1980

others appear later

Relational Databases

entity-relationship diagrams, client-server architecture, SQL language

SELECT address FROM Customer WHERE Country = 'USA';

Client-Server ... in industry

Server computer

... in teaching and development

MySQL Server MySQL Workbench

Labs

Your PC

Let's design a database ...

"What is unique about ICT ... In no other discipline is there such an emphasis on developing artefacts (e.g., computer and information systems) which are so abstract and complex and where modelling tools and methods are essential. The systems that ICT professionals deal with cannot be seen or handled in the same simple and direct manner as products of other applied disciplines ... " from the Australian Computer Society CBOK

Let's design a database ...

User

Username	Password	Address	Profile
Anne	pass 1234	1 Anne st	hi I am Anne
Bill	petsname	2 Bill st	this is Bill's profile
Christine	mystreet	3 Christine st	hi everyone this is Christine!!!
David	childsname	4 David st	David's profile data

Post

Id	Text	WhenPosted	Username
1	Here's what I had for lunch	2015-01-24 20:09:02	Bill
2	What's everyone doing tonight?	2015-01-24 20:09:02	Anne
3	check out this great CAT VIDEOZ!!!	2015-01-24 20:09:02	David
4	now look what I had for dinner	2015-01-24 20:09:02	Bill
5	I love Game of Thrones	2015-01-24 20:09:02	Anne
6	I am posting a lot today	2015-01-24 20:09:02	Anne

Comment

Id	PostId	Text	WhenPosted	Username
1	3	ha ha great video!!	2015-01-24 14:01:33	Christine
2	2	going to the movies	2015-01-24 14:01:33	Bill
3	2	oh that sound nice!	2015-01-24 14:01:33	Anne

Let's design a database ...

Username	Password	Address	Profile
Anne	pass 1234	1 Anne st	hi I am Anne
Bill	petsname	2 Bill st	this is Bill's profile
Christine	mystreet	3 Christine st	hi everyone this is Christine!!!
David	childsname	4 David st	David's profile data

Id	Text	WhenPosted	Username
1	Here's what I had for lunch	2015-01-24 20:09:02	Bill
2	What's everyone doing tonight?	2015-01-24 20:09:02	Anne
3	check out this great CAT VIDEOZ!!!	2015-01-24 20:09:02	David
4	now look what I had for dinner	2015-01-24 20:09:02	Bill
5	I love Game of Thrones	2015-01-24 20:09:02	Anne
6	I am posting a lot today	2015-01-24 20:09:02	Anne

Id	PostId	Text	WhenPosted	Username
1	3	ha ha great video!!	2015-01-24 14:01:33	Christine
2	2	going to the movies	2015-01-24 14:01:33	Bill
3	2	oh that sound nice!	2015-01-24 14:01:33	Anne

Relational notation:

User(<u>username</u>, password, address, profile)
Post(<u>id</u>, text, whenposted, *username*)
Comment(<u>id</u>, *postid*, text, whenposted)

Entity-Relationship diagram:

Maintaining structure of database

What commands do we need to manipulate the *structure* of our tables?

Working with tables is like working with files – there are 4 things you can do:

CREATE a table

DROP (i.e. delete) a table

ALTER a table (e.g. add a column)

RENAME a table

Maintaining contents of database

What commands do we need to manipulate the *contents* of our tables?

User

Username	Password	Address	Profile
Anne	pass 1234	1 Anne st	hi I am Anne
Bill	petsname	2 Bill st	this is Bill's profile
Christine	mystreet	3 Christine st	hi everyone this is Christine!!!
David	childsname	4 David st	David's profile data

You simply need to be able to: SELECT, or read, data from the table INSERT new rows into the table DELETE existing rows from the table UPDATE existing rows in the table

Maintaining users' access to database

What commands do we need to control *users*' access to our tables?

(users = I.T. staff here)

Hostname:	info90002db.eng.unimelb.edu.au Port: 3306				
Username:	joebloggs				
Password:	Store in Vault	Clear			
Default Schema:					

There are 4 things you can do:

CREATE a user

DROP a user

GRANT a user access rights to a table

REVOKE those rights

Database lifecycle

- Design the database
 - data modelling, E-R diagrams
- Implement the database
 - data definition language DDL
- Data access / programming
 - data manipulation language DML
- Database administration
 - data control language DCL

- Create
- Drop
- Alter
- •Rename
 - Select
 - Insert
 - Update
 - Delete
 - Grant
 - Revoke

Data Modelling

- •What are the entities that need to be tracked?
- What attributes will be recorded about each entity?
- What are the relationships between entities?
- What are the cardinalities of relationships?

You will be given requirements such as:

"We have many users.
Users may enter posts into the system.
Each post is entered by exactly one user.
Users can comment on posts.
A post can be commented on many times."

Noun-verb analysis

- An investment bank has a number of branches. Within each branch a number of departments operate and are structured in a hierarchical manner. The bank employs around 3000 staff who are assigned to work in the various departments across the branches. There are essentially three types of special employees where extra details required by the system. There are dealers who carry out investments who have limits imposed upon them for how much they can spend. There are IT compliance managers who's Basel2 role is required to be stored and there are HR managers that need have their assessment number recorded (along with other details not specified here).
- We need a database to record staff details including which department and branch they are assigned...
- Coming up in the 3rd hour

- MySQL server and client
- installing MySQL
- creating an E-R diagram
- connecting to a server
- creating tables
- inserting/updating/deleting data
- reading data from tables

MySQL = client + server

... or ...

Your PC

MySQL server and client

- what you can do with the client alone:
 - create E-R diagrams
- what you can do when connected to a server
 - create a working database
 - convert E-R diagram to a database
 - insert/update/delete/read data
- where servers might be
 - localhost (software running on your PC)
 - network (software running on a server host)

- It may be useful to install the free MySQL Server and Workbench software on your own computer. Version 8.
- Download the appropriate installer from http://dev.mysql.com/downloads/mysql/
- (free 'Community' version vs pay-for 'Enterprise' version)
- Mac users may get better results from MAMP
 - https://www.mamp.info/en/downloads/
- Web developers may prefer (or already have) XAMPP or Bitnami WAMP
 - https://www.apachefriends.org/download.html
 - https://bitnami.com/stack/wamp
- Start the installation and proceed through several steps. (Some are illustrated in the following pages.)

MySQL Workbench user interface

creating an E-R diagram

1

2

3

-34-

menu settings

Object notation

Relationship notation

connecting to a server

- create (store locally) one or two connections to servers
 - to the University database server
 - to your localhost (the server on your PC, if you installed MySQL)
 - (use the + sign to add a new connection)
 - click on the connection to connect to that server

- run these SQL statements one at a time
- to run a statement, place cursor on it and hit Ctrl-Enter

MELBOURNE inserting/updating/deleting data

- run these SQL statements one at a time
- to run a statement, place cursor on it and hit Ctrl-Enter

```
MySQL Workbench
  Edit View Query Database Server Tools Scripting Help
🗀 🖫 | 💅 😿 👰 🔘 | 😘 | 📀 🔕 🎉 | Don't Limit
                          - | 🏡 | 🥩 🔍 👖 🖃
 5 · SELECT * FROM test1;
 6. INSERT INTO test1 VALUES (1, 'my first row');
 7 · INSERT INTO test1 VALUES (2, 'my second row');
 8 • SELECT * FROM test1;
 9 · UPDATE test1 SET column2 = 'my second row, changed' WHERE column1 = 2;
10 · SELECT * FROM test1:
11 • DELETE FROM test1 WHERE column1 = 2;
12 · SELECT * FROM test1;
13
                   Export: Wrap Cell Content: IA
column1 column2
      mv first row
```


reading data from tables

MELBOURNE clean up / more information

if you like, clean up what we did this lesson with these commands ->

For a comprehensive overview of MySQL Workbench features, read the manual at

https://dev.mysql.com/doc/workbench/en/wb-intro.html or watch the official tutorial video.

(Note that the video shows an older version of Workbench: the home screen looks different.)

https://youtu.be/X_umYKqKaF0