Introduction to time series and stationarity

ARIMA MODELS IN PYTHON

James Fulton
Climate informatics researcher

Course content

You will learn

- Structure of ARIMA models
- How to fit ARIMA model
- How to optimize the model
- How to make forecasts
- How to calculate uncertainty in predictions

Loading and plotting

```
import pandas as pd
import matplotlib as plt

df = pd.read_csv('time_series.csv', index_col='date', parse_dates=True)
```

```
date values
2019-03-11 5.734193
2019-03-12 6.288708
2019-03-13 5.205788
2019-03-14 3.176578
```

Trend

```
fig, ax = plt.subplots()
df.plot(ax=ax)
plt.show()
```


Seasonality

Cyclicality

White noise

White noise series has uncorrelated values

- Heads, heads, tails, heads, tails, ...
- 0.1, -0.3, 0.8, 0.4, -0.5, 0.9, ...

Stationarity

Stationary

• Trend stationary: Trend is zero

Not stationary

Stationarity

Stationary

- Trend stationary: Trend is zero
- Variance is constant

Not stationary

Stationarity

Stationary

- Trend stationary: Trend is zero
- Variance is constant
- Autocorrelation is constant

Not stationary

Train-test split

```
# Train data - all data up to the end of 2018
df_train = df.loc[:'2018']

# Test data - all data from 2019 onwards
df_test = df.loc['2019':]
```

The augmented Dicky-Fuller test

- Tests for trend non-stationarity
- Null hypothesis is time series is non-stationary

Applying the adfuller test

from statsmodels.tsa.stattools import adfuller

results = adfuller(df['close'])

Interpreting the test result

print(results)

```
(-1.34, 0.60, 23, 1235, {'1%': -3.435, '5%': -2.863, '10%': -2.568}, 10782.87)
```

- Oth element is test statistic (-1.34)
 - More negative means more likely to be stationary
- 1st element is p-value: (0.60)
 - \circ If p-value is small o reject null hypothesis. Reject non-stationary.
- 4th element is the critical test statistics

¹ https://www.statsmodels.org/dev/generated/statsmodels.tsa.stattools.adfuller.html

The value of plotting

Making a time series stationary

Taking the difference

Difference: $\Delta y_t = y_t - y_{t-1}$

Taking the difference

```
df_stationary = df.diff().dropna()
```

```
city_population

date

1970-03-31 -0.116156

1970-09-30 0.050850

1971-03-31 -0.153261

1971-09-30 0.108389

1972-03-31 -0.029569
```


Taking the difference

Other transforms

Examples of other transforms

- Take the log
 - o np.log(df)
- Take the square root
 - o np.sqrt(df)
- Take the proportional change
 - o df.shift(1)/df

Intro to AR, MA and ARMA models

ARIMA MODELS IN PYTHON

James Fulton
Climate informatics researcher

AR models

Autoregressive (AR) model

AR(1) model:

$$y_t = a_1 y_{t-1} + \epsilon_t$$

AR models

Autoregressive (AR) model

AR(1) model:

$$y_t = a_1 y_{t-1} + \epsilon_t$$

AR(2) model:

$$y_t = a_1 y_{t-1} + a_2 y_{t-2} + \epsilon_t$$

AR(p) model:

$$y_t = a_1 y_{t-1} + a_2 y_{t-2} + ... + a_p y_{t-p} + \epsilon_t$$

MA models

Moving average (MA) model

MA(1) model:

$$y_t = m_1 \epsilon_{t-1} + \epsilon_t$$

MA(2) model:

$$y_t = m_1 \epsilon_{t-1} + m_2 \epsilon_{t-2} + \epsilon_t$$

MA(q) model:

$$y_t = m_1\epsilon_{t-1} + m_2\epsilon_{t-2} + ... + m_q\epsilon_{t-q} + \epsilon_t$$

Fitting the model and fit summary

```
model = ARIMA(timeseries, order=(2,0,1))
results = model.fit()

print(results.summary())
```


ARMA models

Autoregressive moving-average (ARMA) model

• ARMA = AR + MA

ARMA(1,1) model:

$$y_t = a_1 y_{t-1} + m_1 \epsilon_{t-1} + \epsilon_t$$

ARMA(p, q)

- p is order of AR part
- q is order of MA part

Fit summary

			Results			
Dep. Variable				Observations		1000
Model:		ARMA(2,	1) Lo <u>c</u>	j Likelihood		148.580
Date:	TI	hu, 25 Apr 20	22 AIC	:		-287.159
Time:		22:57:	00 BIC			-262.621
Sample:			0 HQI	C		-277.833
Covariance Typ			opg			
	coef	std err	z	P> z	[0.025	0.975]
const	-0.0017	0.012	 -0.147	0.883	-0.025	0.021
ar.L1.y	0.5253	0.054	9.807	0.000	0.420	0.630
ar.L2.y	-0.2909	0.042	-6.850	0.000	-0.374	-0.208
ma.L1.y	0.3679	0.052	7.100	0.000	0.266	0.469

Introduction to ARMAX models

- Exogenous ARMA
- Use external variables as well as time series
- ARMAX = ARMA + linear regression

ARMAX example

Fitting ARMAX

```
# Instantiate the model
model = ARIMA(df['productivity'], order=(2,0,1), exog=df['hours_sleep'])
# Fit the model
results = model.fit()
```


ARMAX summary

========	:=======	:======:	=======	========	:======:	=======
	coef	std err	Z	P> z	[0.025	0.975]
const	-0.1936	0.092	-2.098	0.041	-0.375	-0.013
x1	0.1131	0.013	8.602	0.000	0.087	0.139
ar.L1.y	0.1917	0.252	0.760	0.450	-0.302	0.686
ar.L2.y	-0.3740	0.121	-3.079	0.003	-0.612	-0.136
ma.L1.y	-0.0740	0.259	-0.286	0.776	-0.581	0.433

Predicting the next value

Take an AR(1) model

$$y_t = a_1 y_{t-1} + \epsilon_t$$

Predict next value

$$y_t = 0.6 \times 10 + \epsilon_t$$

$$y_t = 6.0 + \epsilon_t$$

Uncertainty on prediction

$$5.0 < y_t < 7.0$$

Making one-step-ahead predictions

```
# Make predictions for last 25 values
results = model.fit()
# Make in-sample prediction
forecast = results.get_prediction(start=-25)
# forecast mean
mean_forecast = forecast.predicted_mean
```

Predicted mean is a pandas series

```
      2013-10-28
      1.519368

      2013-10-29
      1.351082

      2013-10-30
      1.218016
```

Confidence intervals

```
# Get confidence intervals of forecasts
confidence_intervals = forecast.conf_int()
```

Confidence interval method returns pandas DataFrame

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		lower y	upper y
2013-09-30 -5.232837 0.766300 2013-10-01 -5.305814 1.282935	2013-09-28	-4.720471	-0.815384
2013-10-01 -5.305814 1.282935	2013-09-29	-5.069875	0.112505
	2013-09-30	-5.232837	0.766300
2013-10-02 -5.326956 1.703974	2013-10-01	-5.305814	1.282935
	2013-10-02	-5.326956	1.703974

Plotting predictions

```
plt.figure()
# Plot prediction
plt.plot(dates,
         mean_forecast.values,
         color='red',
         label='forecast')
# Shade uncertainty area
plt.fill_between(dates, lower_limits, upper_limits, color='pink')
plt.show()
```

Plotting predictions

Making dynamic predictions

```
results = model.fit()
forecast = results.get_prediction(start=-25, dynamic=True)

# forecast mean
mean_forecast = forecast.predicted_mean

# Get confidence intervals of forecasts
confidence_intervals = forecast.conf_int()
```


Dynamic predictions

Forecasting out of sample

```
forecast = results.get_forecast(steps=20)

# forecast mean
mean_forecast = forecast.predicted_mean

# Get confidence intervals of forecasts
confidence_intervals = forecast.conf_int()
```


Forecasting out of sample

forecast = results.get_forecast(steps=20)

Introduction to ARIMA models

ARIMA MODELS IN PYTHON

James Fulton
Climate informatics researcher

The ARIMA model

- Take the difference
- Fit ARMA model
- Integrate forecast

Can we avoid doing so much work?

Yes!

ARIMA - Autoregressive Integrated Moving Average

Using the ARIMA model

```
from statsmodels.tsa.arima.model import ARIMA
model = ARIMA(df, order=(p,d,q))
```

- p number of autoregressive lags
- d order of differencing
- q number of moving average lags

$$\mathsf{ARIMA}(p,0,q) = \mathsf{ARMA}(p,q)$$

Picking the difference order

```
adf = adfuller(df.iloc[:,0])
print('ADF Statistic:', adf[0])
print('p-value:', adf[1])

ADF Statistic: -2.674
p-value: 0.0784
```

```
adf = adfuller(df.diff().dropna().iloc[:,0])
print('ADF Statistic:', adf[0])
print('p-value:', adf[1])
```

```
ADF Statistic: -4.978
p-value: 2.44e-05
```

Using the ARIMA model

```
# Create model
model = ARIMA(df, order=(2,1,1))
# Fit model
model.fit()
# Make forecast
mean_forecast = results.get_forecast(steps=10).predicted_mean
```


Using the ARIMA model

```
# Make forecast
mean_forecast = results.get_forecast(steps=steps).predicted_mean
```


