

Institut für Mikro- und Nanolelektronische Systeme (IMS) und Institut für Hochfrequenztechnik und Elektronik (IHE)

Matthias Hofherr, Tobias Mahler

Workshop Elektrotechnik und Informationstechnik

Kurs 3: Sensoren

23. Mai 2013

Vorname	Nachname	Matrikel-Nr.	u-Account	E-Mail
Andrej	Rode	1715677	ucdqb	andrej.rode@
				student.kit.edu
Sarangan	Selvalingam	1245345	utbfa	utbfa@student.
				kit.edu
Lukas	Fregien	1245345	utbfa	utbfa@student.
				kit.edu

23. Mai 2013

Inhaltsverzeichnis

I	Abst	tract		
2	Einle	eitung		
3 Aufgabe 1				
	3.1	Aufgabenbeschreibung		
	3.2	Recherche zu Temperatursensoren		
	3.3	Lüfterschaltung		
		3.3.1 Dimensionierung der Messschaltung		
	3.4	Zusammenfassung		
4	Aufę	gabe 2		
	4.1	$\label{eq:aufgaben} Aufgabenbeschreibung $		
	4.2	Recherche zu Lichtschranke $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$		
	4.3	Geschwindigkeitsmessung		
		4.3.1 Problem		
		4.3.2 Lösungsansatz		
		4.3.3 Verifikation		
		4.3.4 Auswertung		
	4.4	Zusammenfassung		
5	Zusa	nmmenfassung		
	5.1	Erster interessanter Punkt		
	5.2	Und noch ein wichtiger Aspekt		
6	Anh	ang		
A	bbil	ldungsverzeichnis		
	1	Spannungsteiler basierte Ansteuerung einer LED		

Tabellenverzeichnis

1 Abstract

Kurze Zusammenfassung der Projektziele, Methoden, Ergebnisse und Diskussion.

2 Einleitung

Überblick über das Thema und Projektorganisation.

3 Aufgabe 1

3.1Aufgabenbeschreibung

Mit der Temperaturmessschaltung soll eine gemessene Spannung zur Steuerung einer zweistufigen Belüftungsanlage (hier simuliert durch zwei LEDs) verwendet werden. Bei einer bestimmten Temperatur soll zunächst der erste Lüfter, bei weiter steigender Temperatur ein zusätzlicher in Betrieb gehen. Hierfür ist es notwendig, sich zuerst über verschiedene Messschaltungen Gedanken zu machen, sowie sich über geeignete temperaturabhängige Bauteile zu informieren.

3.2 Recherche zu Temperatursensoren

Hier stehen Ihre Rechercheergebnisse

3.3 Lüfterschaltung

Dimensionierung der Messschaltung 3.3.1

Für die Dimensionierung der Messschaltung müssen zunächst Überlegungen angestellt werden, unter welchen Randbedingungen die Messschaltung betrieben wird.

Es wird angenommen, dass die Belüftungsanlage zur Belüftung eines Gebäudes oder Raumes verwendet wird. Dadurch ergeben sich Temperaturen von etwa 10°C bis etwa 45°C. Als Extremfall sollen 0°C und 55°C angenommen werden.

Dem Datenblatt des eingesetzten NTCs entnommen kann der NTC im Bereich zwischen 0°C und 55°C 100% der Maximalleistung von $P_{max} = 500$ mW vertragen.

Die Widerstände R_T des NTCs bei verschiedenen Temperaturen T können dem Datenblatt des NTCs entnommen werden.

bei
$$T = 0^{\circ}C$$
: $I_{max1} = \sqrt{\frac{P_{max}}{R_0}}$ $= \sqrt{\frac{500mW}{325k\Omega}} = 3,92mA$ (1)
bei $T = 55^{\circ}C$: $I_{max2} = \sqrt{\frac{P_{max}}{R_{55}}}$ $= \sqrt{\frac{500mW}{3k\Omega}} = 12,9mA$ (2)

bei
$$T = 55^{\circ}C$$
: $I_{max2} = \sqrt{\frac{P_{max}}{R_{55}}} = \sqrt{\frac{500mW}{3k\Omega}} = 12,9mA$ (2)

Um zu überprüfen ob der Widerstand im Spannungsteiler eine Mindestgröße benötigt, wird berechnet welcher Strom durch den NTC bei T=0°C bzw. T=55°C abfällt wenn kein Widerstand verwendet wird.

$$I_0 = \frac{U_0}{R_0} = \frac{10V}{32,5k\Omega} = 0,3mA \tag{3}$$

$$I_{55} = \frac{U_0}{R_{55}} = \frac{10V}{3k\Omega} = 3,3mA \tag{4}$$

• Orientieren Sie sich an der Aufgabenstellung

- Untergliedern Sie problemorientiert in die einzelnen Teilaufgaben, bitte keine chronologische Tätigkeitsbeschreibung.
- Problemdefinition, Lösungsansatz, Verifikation
- Vergessen Sie nicht als Beleg die Grafiken einzubinden

3.4 Zusammenfassung

4 Aufgabe 2

4.1 Aufgabenbeschreibung

..., die Geschwindigkeit des Autos soll gemessen werden

4.2 Recherche zu Lichtschranke

Hier stehen Ihre Rechercheergebnisse

... Eine Lichtschranke besteht aus Licht und arbeitet als Schranke, ...

4.3 Geschwindigkeitsmessung

- Orientieren Sie sich an der Aufgabenstellung
- Untergliedern Sie problemorientiert in die einzelnen Teilaufgaben, bitte keine chronologische Tätigkeitsbeschreibung.
- Problemdefinition, Lösungsansatz, Verifikation
- Vergessen Sie nicht als Beleg die Grafiken einzubinden

4.3.1 Problem

... Zuerst soll die Lichtschranke korrekt angesteuert werden. Die LED soll dabei in einem Arbeitspunkt betrieben werden, der innere Rauchbildung verhindert und die Lichtausbeute auf den Quanteneffekt eines Halbleiters begrenzt. Die chemische Reaktion mit Sauerstoff unter Abgabe von thermischer Energie soll unterbunden werden ...

4.3.2 Lösungsansatz

Die aktuelle Lichtausbeute der LED wird mit Hilfe eines Fluxkompensators gegengeregelt und damit in einem stabilen Arbeitspunkt betrieben (siehe Abbildung 5.397). Der zugehörige Schaltungsentwurf besteht aus einem einfachen Spannunsgteiler mit zusätzlicher Temperaturkompensation ... (siehe Abbildung 1)

4.3.3 Verifikation

Die Schaltung wird mit einer 0 V Quelle betrieben. Messkurven, Foto,...

Abbildung 1: Spannungsteiler basierte Ansteuerung einer LED

4.3.4 Auswertung

Die LED leuchtet!!!!

4.4 Zusammenfassung

5 Zusammenfassung

5.1 Erster interessanter Punkt

5.2 Und noch ein wichtiger Aspekt

Hier werden die zuvor beschriebenen Ergebnisse diskutiert...

6 Anhang

Hier folgen plots, Simulationen etc welche nicht wesentlich sind.

Abbildungsverzeichnis

Tabellenverzeichnis