Procurement Purchase Prediction

Business Use case	To identify if a purchase order would be cancelled or not
Presented by	Madhu

Meta data

85758
Data columns (total 19 columns):
ORDER_ID, ORDER_DATE,
NEED_DATE, ORDER_STATUS,
ORDER_CHANNEL, DELY_QTY,
DELY_DATE, DELIVERY_SITE,
BUYER_ID, BUYER_NAME,
SUPPLIER_ID, SUPPLIER_NAME,
SUPPLIER_COUNTRY, ITEM_ID,
ORDER_QUANTITY,
ORDER_UNIT_PRICE,
ORDER_COST,
ORDER_CURRENCY_CODE
Dtypes: datetime64[ns](3), float64(3),

RangeIndex: 85759 entries, 0 to

Missing Values

DELY_QTY 54590 DELY_DATE 54590

General Observation

1. Target Variable: ORDER_STATUS (Canc/open/closed)

int64(1), object(12)

- Whenever the order is closed delivery quantity and delivery date are available.
- 3. ORDER_ID is a unique identifier

Exploratory Data Analysis

Exploratory Data Analysis-Buyer and Supplier

Top 5 Buyers based on total amount spent: BUYER_NAME

Shannon Jackson 2.730083e+08
Daniel Nichols 2.566291e+08
Michael Callahan 1.964493e+08
Brian Green 1.919278e+08
Scott Bennett 1.911048e+08
Name: ORDER_COST, dtype: float64

Top 5 Suppliers based on total amount received: $SUPPLIER_NAME$

EC Electric 6.470283e+08
Divine Electric LLC 6.173887e+08
Electric Express 6.170383e+08
NW Wind & Solar 6.106914e+08
VECA Electric & Technologies 5.986096e+08

Name: ORDER_COST, dtype: float64

EDA - Feature Engineering

A correlation coefficient of 0.69 indicates a strong positive relationship between ITEM_ID and ORDER_COST. This means that as one variable increases, the other variable tends to increase as well.

```
Chi-square test of independence for DELIVERY_SITE:
Chi2 value: 173.65447662614497
P-value: 0.5358539431319053
Chi-square test of independence for SUPPLIER_COUNTRY:
Chi2 value: 6.677618438268236
P-value: 0.5717804797175376
Chi-square test of independence for ITEM ID:
Chi2 value: 524.7806142430564
P-value: 0.7553159447592004
Chi-square test of independence for ORDER STATUS:
Chi2 value: 171518.0
P-value: 0.0
Chi-square test of independence for ORDER_CHANNEL:
Chi2 value: 4.4797719858775755
P-value: 0.6120390995202432
Chi-square test of independence for BUYER ID:
Chi2 value: 837.4504216664104
P-value: 0.9259634592102286
Chi-square test of independence for SUPPLIER ID:
Chi2 value: 206.37796492029145
P-value: 0.8210821825390068
```

The interpretation of the chi-square test results: (Categorical Variables)

DELIVERY_SITE: Chi2 value: 173.65 P-value: 0.54 The chi-square test suggests that there is no significant association between the delivery site and the order status. The p-value is greater than the significance level of 0.05, indicating that the variables are independent.

SUPPLIER_COUNTRY: Chi2 value: 6.68 P-value: 0.57 The chi-square test suggests that there is no significant association between the supplier country and the order status. The p-value is greater than 0.05, indicating independence between the variables.

ITEM_ID: Chi2 value: 524.78 P-value: 0.76 The chi-square test suggests that there is no significant association between the item ID and the order status. The p-value is greater than 0.05, indicating independence.

ORDER_CHANNEL: Chi2 value: 4.48 P-value: 0.61 The chi-square test suggests that there is no significant association between the order channel and the order status. The p-value is greater than 0.05, indicating independence.

BUYER_ID: Chi2 value: 837.45 P-value: 0.93 The chi-square test suggests that there is no significant association between the buyer ID and the order status. The p-value is greater than 0.05, indicating independence.

SUPPLIER_ID: Chi2 value: 206.38 P-value: 0.82 The chi-square test suggests that there is no significant association between the supplier ID and the order status. The p-value is greater than 0.05, indicating independence.

Model Insights and Analysis

Insignificant Features

'ORDER_ID', 'NEED_DATE', 'DELY_DATE', ORDER_CURRENCY_CODE', 'ORDER_DATE', 'ORDER_UNIT_PRICE', 'ITEM_DESC', 'SUPPLIER_NAME', 'BUYER_NAME', 'DELY_QTY'

- ✓ Experimented Random Forest, XGBoost, Logreg and SVM models.
- ✓ All the models achieves an overall accuracy of 0.81, indicating decent overall performance.
- ✓ However, when considering the performance across individual classes, the model's performance is relatively poor in terms of precision, recall, and F1-score (as indicated by macro-average).
- ✓ The weighted-average scores provide a more representative evaluation, accounting for class imbalance, and show better performance compared to the macro-average scores.
- ✓ Of these Random Forest has a better Macro avg.

Summary

EDA	 ✓ The p-value is greater than the significance level of 0.05, indicating that the variables DELIVERY_SITE, UPPLIER_COUNTRY, ITEM_ID, BUYER_ID, SUPPLIER_ID are independent. ✓ There is positive relationship between ITEM_ID and ORDER_COST
Feature Engineering	 ✓ Lable Encoding is performed for Categorical variables 'ORDER_CHANNEL', 'DELIVERY_SITE', 'BUYER_ID', 'SUPPLIER_COUNTRY', 'ITEM_ID' ✓ Selection Bias - Insufficient data for he class : Cancel; To overcome the same, Oversamlping and downsampling is performed.
Models	 ✓ Removed Buyer name, Seller name and Item description as they can be interpreted using their IDs ✓ Since it is a classification problem with known target variable Supervised learning is performed (insights are explained in the previous slide) ✓ Stratified sampling is performed. ✓ As all the models have given an accuracy of 81%, it is understood that they have learnt similar features. ✓ F1 score of 90 signifies a strong classification performance and indicates that the models are effectively capturing the underlying patterns and relationships in the data. ✓ Have build a binary classification model combining Closed and Open as one class and retained Canc as the other class ✓ XGBoost is a powerful algorithm for handling imbalanced datasets, but the algorithm also has given an accuracy of 81%.
Problem	 ✓ Classification with class imbalance ✓ The class imbalance issue is challenging because the model is struggling to learn patterns from the minority class due to the dominance of the majority class.
Next Steps	 ✓ Explore other algorithms: Consider trying other machine learning algorithms that are suitable for imbalanced datasets, such as neural networks. ✓ Other feature engineering techniques specifically designed for addressing class imbalance, such as SMOTE (Synthetic Minority Oversampling Technique) or ADASYN (Adaptive Synthetic Sampling) can be studied ✓ More feature Engineering to create new features using domain knowledge. ✓ Hyperparameter Tuning like tuning max_depth, learning_rate, n_estimators etc ✓ Experiment ensemble such as bagging or boosting techniques like AdaBoost, CatBoost