الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2015

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

اختبار في مادة: الرياضيات

المدة: 04 سا و30 د

على المترشح أن يختار أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (04 نقاط)

نعتبر في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(O;\vec{u},\vec{v})$ ، النقطتين A و B اللتين المحقتيهما على الترتيب $z_B = 3 + 3i$ و $z_A = 1 - i$ و $z_A = 1 - i$ الترتيب z_A و $z_B = 3 + 3i$ و $z_A = 1 - i$

. على الشكل الأسي z_B ، z_A الأسي (أ (1

ب) n عدد طبیعي ، عین قیم n بحیث یکون العدد $n \left(\frac{z_A}{\sqrt{2}} \right)^n$ حقیقیا.

ج) عدد مركب حيث: $\frac{z}{z_A} = 4e^{i\frac{\pi}{12}}$ ؛ احسب طويلة العدد z وعمدة له ، ثم اكتب z على الشكل الجبري.

د) استنج $\frac{\pi}{12}$ و $\cos\frac{\pi}{12}$

(2) أ) احسب اللحقة z_c للنقطة z_c للنقطة z_c واستنتج طبيعة المثلث z_c الم

. مربع ABDC لاحقة النقطة D مرجع الجملة $\{(A;-1),(B;1),(C;1)\}$ ، ثمّ بيّن أنّ ABDC مربع الثاني: (05 نقاط)

 $C\left(-2;3;7\right)$ ، B(2;0;2)، A(1;2;2) نعتبر النقط $\left(0;\vec{i},\vec{j},\vec{k}\right)$ نعتبر النقط المعلم المتعامد والمتجانس $(x=2+\beta)$

والمستوي α $\begin{cases} x=2+\beta \\ y=-1-3\alpha-\beta \end{cases}$ و وسيطان حقيقيان. $z=-\alpha$

. ا بيّن أنّ النقط A ، B و C تعين مستويا B (1

. با تحقق أنّ الشعاع n(2;1;1) ناظمي للمستوي n(2;1;1) ، ثمّ اكتب معادلة ديكارتية له المستوي

. معادلة ديكارتية للمستوي (9) ، ثمّ بيّن أنّ المستويين (9) و (ABC) متعامدان (2)

 $\begin{cases} x=5+4t \\ y=-4-7t \; ; (t\in\mathbb{R}):$ بین أنّ تقاطع (\mathcal{P}) هو المستقیم (Δ) نو التمثیل الوسیطی: z=-t

. $\{(A;1),(B;1),(C;-1)\}$ مرجح الجملة H مرجح النقطة الن

- ب) احسب المسافة بين النقطة H والمستقيم (Δ) .
- $\cdot((\Delta)$ مجموعة النقط M من الفضاء بحيث: 0=0: $(MA+\overline{MB}-\overline{MC})$ هو شعاع توجيه (4) مجموعة النقط M من الفضاء بحيث: (4)
 - أ) بين أن المجموعة ('9) هي مستو يطلب تعيين عناصره المميزة، ثمّ استنتج معادلة ديكارتية لـه.
 - $\cdot E$ بين أن المستويات الثلاثة (9) (9) (ABC) و (9') نتقاطع في نقطة واحدة E ، ثمّ عين إحداثيات (9)
 - ج) احسب بطريقة ثانية المسافة بين النقطة H والمستقيم (Δ) .

التمرين الثالث: (03.5 نقطة)

- 13 على 13 على
- . $13 \, \mathrm{L} \times 138^{2015} + 2014^{2037} 3$ على $42 \times 138^{2015} + 2014^{2037} 3$ على (ب) استنتج باقي القسمة الإقليدية للعدد
- . $(5n+1)\times 64^n 5^{2n+3} \equiv (5n+6)8^{2n}$ [13]، n عدد طبیعي عدد طبیعي أ) بین أنه من أجل كل عدد طبیعي (13]
- . $(5n+1) \times 64^n 5^{2n+3} \equiv 0$ [13] عيّن مجموعة قيم العدد الطبيعي n حتى يكون $= (5n+1) \times 64^n 5^{2n+3} = 0$

التمرين الرابع: (07.5 نقطة)

- . $h(x) = (x+2)^2 + 2 2\ln(x+2)$: بما يلي $-2;+\infty$ بما يلي المعرّفة على المجال $-2;+\infty$ بما يلي h (I
 - $\lim_{x\to +\infty} h(x)$, $\lim_{x\to -2} h(x)$ (1)
 - ادرس اتجاه تغير الدالة h ، ثم شكل جدول تغيراتها .
 - . h(x) > 0،]-2;+∞[من أجل كل x من أجل كل x من (3
- $f(x) = x + 1 + \frac{2}{x+2} \ln(x+2)$: يلي $-2; +\infty$ الدالة المعرّفة على المجال $-2; +\infty$ الدالة المعرّفة على المجال f(II)
- (1cm) وحدة الطول (C_f) المنحنى الممثل للدالة f في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_i,i,j) وحدة الطول (C_f)
 - $\lim_{x \to +\infty} f(x)$ احسب النتيجة هندسيا ، ثم احسب ا $\lim_{x \to +\infty} f(x)$ احسب (1)
 - $f'(x) = \frac{h(x)}{(x+2)^2} :]-2; +\infty[\text{ lineally } x \text{ and } x \text{ the proof } x \text{ the pr$
 - ب) ادرس اتجاه تغيّر الدالة f على المجال $]\infty+;2-[$ ، ثمّ شكّل جدول تغيّراتها .
 - $\cdot +\infty$ بجوار (C_f) بين أنّ المستقيم (Δ) ذا المعادلة: y=x+1 مقارب مائل للمنحنى (Δ) بجوار (3 . (Δ) ادرس وضعية المنحنى (C_f) بالنسبة إلى المستقيم
 - . اينت أنّ المنحنى (C_f) يقبل نقطة انعطاف A يطلب تعيين إحداثييها (4
 - . (C_f) ارسم المستقيمين المقاربين والمنحنى
 - ج) احسب بالسنتيمتر المربع ، مساحة الحيز المحدد بالمنحنى (C_f) والمستقيمات x = 1 و x = -1 و x = 0 التي معاد لاتها
 - $g(x) = |x+1| + \frac{2}{x+2} |\ln(x+2)|$ بي: $]-2;+\infty[$ بيا المعرّفة على المجال g (III) g (III)
 - $\frac{g(x)-g(-1)}{x+1}$ و $\lim_{x\to -1} \frac{g(x)-g(-1)}{x+1}$ و $\lim_{x\to -1} \frac{g(x)-g(-1)}{x+1}$ و ماذا تستنج بالنسبة إلى $\frac{g(x)}{x+1}$ (1)
 - 2) أعط تفسيرا هندسيا لهذه النتيجة.
 - . ونطلاقا من المنحنى (C_f) ارسم المنحى (C_g) الممثل للدالة g في نفس المعلم السابق (3

الموضوع الثاني

التمرين الأول: (04 نقاط)

B(1;2;-2) ، A(2;3;1) نعتبر النقطتين المعلم المتعامد والمتجانس $O;\vec{i},\vec{j},\vec{k}$) نعتبر النقطتين المعلم المتعامد والمتجانس x=1 . $\begin{cases} x=1\\ y=1-t \ ; (t\in\mathbb{R}) \end{cases}$ و z=3+2t

، اكتب تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل النقطة A و u(1;2;-2) شعاع توجيه له u(1;2;-2) أ) اكتب تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل النقطة (Δ) و (Δ)

2) (\mathcal{P}) المستوي المعيّن بالمستقيمين (D) و (D) و (D) . بيّن أنّ n(2;-2;-1) شعاع ناظمي للمستوي (\mathcal{P}) ، ثمّ استنتج معادلة ديكارتية له .

 \cdot (Δ) الذي يشمل النقطة B ويعامد المستقيم (Ω) الذي يشمل النقطة B ويعامد المستقيم (Δ) . (Δ) عين إحداثيات النقطة E المسقط العمودي للنقطة E على المستقيم (Δ) عين إحداثيات النقطة E المسقط العمودي للنقطة E على المستقيم (Δ)

ج) احسب المسافة بين النقطة B والمستقيم (Δ).

د) احسب مساحة المثلث BEC د)

التمرين الثاني: (05 نقاط)

. $z^2 - 4(\sin\theta)z + 4 = 0...(I)$ المعادلة ذات المجهول z التالية: $z^2 - 4(\sin\theta)z + 4 = 0...(I)$ مجموعة الأعداد المركبة، المعادلة ذات المجهول z التالية: $z^2 - 4(\sin\theta)z + 4 = 0...(I)$

 \overline{z}_1 من أجل $\overline{z}_2 = \theta$ نرمز إلى حلي المعادلة (I) با z_1 و z_2 . اكتب المعادلة (2) على الشكل الأسي \overline{z}_2

(3) نعتبر في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(O; \vec{u}, \vec{v})$ النقط C = B و C = B التي لاحقاتها على c = C = C التي لاحقاتها على المتعامد والمتجانس c = C = C التي لاحقاتها على الترتيب: c = C = C التي لاحقاتها على المتعامد والمتجانس c = C = C التي لاحقاتها على المتعامد والمتجانس c = C التي لاحقاتها على المتعامد والمتعامد والم

 $\cdot ABC$ على الشكل الجبري، ثمّ على الشكل الجبري، ثمّ على الشكل الأسي. واستنتج طبيعة المثلث أ) اكتب العدد المركب $\frac{z_{C}-z_{A}}{z_{B}-z_{A}}$

ب) استنتج أن النقطة C هي صورة النقطة B بالتشابه المباشر S الذي مركزه A ويطلب تعيين نسبته وزاوية له.

ABDC جين لاحقة النقطة D صورة النقطة B بالانسحاب t الذي شعاعه \overline{AC} ، ثمّ حدّد طبيعة الرباعي

 $z = z_B$ مجموعة النقط M ذات اللاحقة z حيث: $z = z_B = z_B$ تخيلي صرف مع $z = z_B$ (4) أ) عين ($z = z_B$

 $z \neq z_B$ حقيقيا مع $\frac{z-z_C}{z-z_B}$ حيث: $\frac{z-z_C}{z-z_B}$ حقيقيا مع $z \neq z_B$

التمرين الثالث: (04 نقاط)

 $u_{n+1} = \sqrt{6u_n + 16}$: n ومن أجل كل عدد طبيعي $u_0 = 0$ المعرفة بحدها الأول $u_0 = 0$ ومن أجل كل عدد طبيعي $u_n = 0$ المستوي المعرفة على المجال $u_n = 0$ بما يلي: $u_n = 0$ بما يلي: $u_n = 0$ المستوي المعرفة على المجال $u_n = 0$ بما يلي: $u_n = 0$ بما يلي: $u_n = 0$ المستوي المعرفة على المجال $u_n = 0$ بما يلي: $u_n = 0$ بما يلي: $u_n = 0$ المستوي المعرفة على المعرفة بالموالية ومتجانس و $u_n = 0$ المستقيم ذو معادلة $u_n = 0$ انظر الشكل في الصفحة الموالية).

$$n$$
 برهن بالتراجع أنه من أجل كل عدد طبيعي n : $0 \le u_n < 8$

$$u_{n+1} - u_n = \frac{(8 - u_n)(u_n + 2)}{\sqrt{6u_n + 16 + u_n}}$$

.
$$0 < 8 - u_{n+1} \le \frac{1}{2} (8 - u_n) : n$$
 عدد طبیعي (1) غدد طبیعي (3) این انه من اجل کل عدد البیعي (4) (3)

.
$$\lim_{n\to +\infty} u_n$$
 من أجل كل عدد طبيعي $n: n \leq 8 \left(\frac{1}{2}\right)^n$: n عدد طبيعي والمستنج بين أنه من أجل كل عدد طبيعي $n = 1$

التمرين الرابع: (07 نقاط)

$$g(x)=(x+2)e^x-2$$
 الدالة المعرّفة على $\mathbb R$ بما يلي: $g(x)=(x+2)e^x-2$

.
$$\lim_{x \to -\infty} g(x)$$
 و $\lim_{x \to +\infty} g(x)$: احسب (1

.
$$g(x)$$
 احسب $g(0)$ ، ثم استنتج إشارة $g(0)$

.
$$f(x) = 2x + 3 - (x + 1)e^x$$
 بما يلي: \mathbb{R} بما يلي: $f(II)$

.
$$(O; \vec{i}, \vec{j})$$
 المنحنى الممثل للدالة f في المستوي المنسوب إلى المعلم المتعامد والمتجانس (C_f)

$$\lim_{x \to -\infty} f(x)$$
 بين أنّ $\lim_{x \to +\infty} f(x) = -\infty$ ، ثم احسب (1)

$$f'(x) = -g(x)$$
 ، $g(x)$ ، $g(x)$ ، $g(x)$ ، $g(x)$ ، $g(x)$ ، $g(x)$

$$-\infty$$
 عند (C_f) خا المعادلة $y = 2x + 3$ عند (Δ) عند المستقيم (Δ) عند (C_f) عند أنّ المستقيم (Δ) عند (Δ)

.
$$-1,56 < \beta < -1,55$$
 و $0,92 < \alpha < 0,93$ و α حيث α عقبل حلين α تقبل حلين α و α حيث β و α عبين أنّ المعادلة α

$$\begin{bmatrix} -\infty ; \frac{3}{2} \end{bmatrix}$$
 ارسم المستقيم (Δ) والمنحنى (C_f) على المجال (Δ) على المجال (Δ)

$$\mathbb{R}$$
 على $x\mapsto (x+1)e^x$ على $x\mapsto xe^x$ على $x\mapsto xe^x$ على $x\mapsto (x+1)e^x$

ب) احسب
$$A$$
 مساحة الحيز المستوي المحدّد بالمنحنى (C_f) والمستقيم (Δ) والمستقيمين اللذين معادلتيهما: $x = \alpha$ (α) على الذين معادلتيهما: α حيث α هي القيمة المعرفة في السؤال (α) أ)).