Chapter 19 – Pathogenic Gram-Positive Bacteria

NIMESH PATEL| HLSC 2400 OCTOBER 17, 2017

Oral Presentations

- Grading rubric & schedule: Available on Moodle
- Presentation should include the following topics:
 - Background about disease/organism, why this is a public health concern, etiology of a disease, sign and symptoms, management, mode of spread, prevention, surveillance, information about the first case ever diagnosed, any interesting fact about a disease/organism, etc.
- Length: 20 minutes (including 5 minutes of discussion)
- First presentation: October 19

PowerPoint® Lecture
Presentations prepared by
Mindy Miller-Kittrell,
North Carolina State
University

CHAPTER 19

Pathogenic Gram-Positive Bacteria

Alpha-Hemolytic Streptococci: The Viridans Group

- Alpha-hemolysis = partial hemolysis
- Lack group-specific carbohydrates
 - Cannot be grouped by Lancefield system
- Many produce a green pigment when grown on blood media
- Inhabit mouth, pharynx, GI tract, genital tract, and urinary tract
- Opportunistic pathogens
- One cause of dental caries and dental plaques
- Can cause meningitis and endocarditis if it enters the blood

Figure 19.8 Dental caries.

- Streptococcus pneumoniae
 - Cocci that most commonly form pairs
 - Form unpigmented, alpha-hemolytic colonies on blood agar
 - Lacks Lancefield antigens

Figure 19.9 Streptococcus pneumoniae.

- Pathogenesis and Epidemiology
 - Polysaccharide capsule
 - Phosphorylcholine
 - Stimulates cells to phagocytize the bacteria
 - Protein adhesin
 - Mediates binding of cells to epithelial cells of pharynx
 - Secretory IgA protease
 - Destroys IgA
 - Pneumolysin
 - Lyses epithelial cells

- Pathogenesis and Epidemiology
 - Present in the mouths and pharynges of most humans
 - Causes disease when it travels to the lungs
 - Infections occur most often in children and the elderly

- Pneumococcal Diseases
 - Pneumococcal pneumonia
 - Most common disease caused by S. pneumoniae
 - Sinusitis and otitis media
 - Sometimes occur following viral infections
 - Bacteremia and endocarditis
 - S. pneumoniae can enter the blood through lacerations or tissue damage
 - Pneumococcal meningitis
 - Mortality rate higher than other causes of meningitis

- Diagnosis, Treatment, and Prevention
 - Diagnosis
 - Gram stain of sputum smears
 - Confirmed with Quellung reaction
 - Treatment
 - Penicillin
 - Resistant strains have emerged
 - Prevention
 - Vaccine made from purified capsular material

Enterococcus

- Previously classified with group D streptococci
- Reclassified as a separate genus
- All enterococci live in the intestinal tracts of animals

Figure 19.10 Enterococcus faecalis in lung tissue.

Enterococcus

Structure and Physiology

- Form short chains and pairs
- Lack a capsule, can grow at temperature up to 45C
- Two species cause disease in humans:
 - E. faecalis
 - E. faecium

Pathogenesis, Epidemiology, and Diseases

- Found in the human colon
 - Rarely pathogenic at this site
- Can cause disease if introduced into other parts of the body
- Important cause of healthcare-associated infections

Enterococcus

Diagnosis, Treatment, and Prevention

- Diagnosis
 - Enterococcus distinguished from S. pneumoniae by its sensitivity to bile
- Treatment
 - Difficult to treat enterococcal infections
 - Enterococci often resistant to antimicrobials
- Prevention
 - Prevention is difficult in health care setting
 - Patients often have weakened immune systems
 - Good hygiene and aseptic techniques minimize transmission

TABLE 19.2 Characteristics of Pathogenic Streptococci

Lancefield Group	Scientific Name	Hemolytic Pattern	Significant Characteristics	Characteristic Diseases
A	S. pyogenes	Large zone of beta-hemolysis	1- to 2-mm white colonies on blood agar; bacitracin sensitive	Pharyngitis, rheumatic fever, scarlet fever, pyoderma, erysipelas, streptococcal toxic shock syndrome, necrotizing fasciitis, glomerulonephritis
В	S. agalactiae	Small zone of beta-hemolysis	2- to 3-mm buttery colonies on blood agar; bacitracin resistant	Puerperal fever, neonatal bacteremia, meningitis, pneumonia
С	S. equisimilis	Large zone of beta-hemolysis	1- to 2-mm white colonies on blood agar	Pharyngitis, glomerulonephritis
C, F, or G	S. anginosus	Small zone of beta-hemolysis	1- to 2-mm white colonies on blood agar	Purulent abscess
-	S. mutans	Alpha-hemolysis	Viridans group (produce green pigment when grown on blood agar)	Dental caries; rarely bacteremia, meningitis, endocarditis
三	S. pneumoniae	Alpha-hemolysis (aerobic); beta- hemolysis (anaerobic)	Diplococci; capsule required for pathogenicity; bile sensitive	Pneumonia, sinusitis, otitis media, bacteremia, endocarditis, meningitis
D	Enterococcus faecalis, E. faecium	None (gamma-hemolysis)	Diplococci; no capsule; bile insensitive	Urinary tract infections, bacteremia, endocarditis, wound infections

Bacillus

Structure, Physiology, and Pathogenicity

- Facultative anaerobes
- Bacilli that occur singly, in pairs, or in chains
- Form endospores
- Pathogenic strains produce anthrax toxins

Epidemiology

- Humans contract from infected animals
- Transmission occurs via one of three routes:
 - Inhalation of spores
 - Inoculation of spores through break in the skin
 - Ingestion of spores

Figure 19.11 Bacillus anthracis as it appears in tissue.

Bacillus anthracis

Bacillus

Disease

- Bacillus anthracis only causes anthrax
- Three clinical manifestations:
 - Gastrointestinal anthrax
 - Rare in humans
 - Inhalation anthrax
 - Rare in humans
 - Requires inhalation of airborne endospores
 - High mortality rate
 - Cutaneous anthrax
 - Produces ulcer called an eschar
 - Fatal in 20% of untreated patients

Figure 19.12 Cutaneous anthrax.

Anthrax – Bioterrorism Threat

- Bacillus anthracis, the bacteria that causes anthrax, is one of the most likely agents to be used in a biological attack (Tier 1 agent)
 - Anthrax spores are easily found in nature, can be produced in a lab, and can last for a long time in the environment.
 - Anthrax makes a good weapon because it can be released quietly and without anyone knowing. The microscopic spores could be put into powders, sprays, food, and water. Because they are so small, you may not be able to see, smell, or taste them.
 - Anthrax has been used as a weapon before.

Anthrax – Bioterrorism Threat

History

- In 2001, powdered anthrax spores were deliberately put into letters that were mailed through the U.S. postal system.
 - Twenty-two people, including 12 mail handlers, got anthrax, and five of these 22 people died

Source: https://www.cdc.gov/anthrax/bioterrorism/threat.html

Anthrax – Bioterrorism Threat

What Might an Anthrax Attack Look Like?

- In letters and mailed
- In food or water
- Could be released in air from a truck, building, or plane
- Only takes a small amount to infect a large number of people
- Inhalation anthrax is the most serious form and can kill quickly if not treated immideately

What can you do to prepare?

Bacillus

Diagnosis, Treatment, and Prevention

- Diagnosis
 - Large, nonmotile, Gram-positive bacilli in lung or skin samples
- Treatment
 - Many antimicrobials are effective against B. anthracis
- Prevention
 - Control of disease in animals
 - Effective vaccine available
 - Requires multiple doses and boosters

- Anaerobic
 - Cannot use oxygen as terminal electron acceptor
- Endospore-forming bacillus
 - Function
 - Survival, not reproductive (1 bacterium -> 1 spore)
 - Resistance to chemicals, dessication, radiation, freezing, and heat
- Ubiquitous in soil, water, and gastrointestinal tracts of animals and humans
- Endospore-forming bacteria:
 - Bacillus and clostridium

- Pathogenicity
 - Endospores
 - To the secretion by vegetative cells of potent histolytic toxins, enterotoxins, and neurotoxins

- Clostridium perfringens
 - Large, nonmotile bacillus, almost rectangular
 - Clostridium most frequently isolated from clinical specimens
 - Type-A is the most virulent subtype.

Clostridium perfringens

- Pathogenesis, Epidemiology, and Disease
 - Produces toxins that can cause irreversible damage to body
 - Grows in the digestive tracts of animals and humans

Clostridium perfringens

- Diseases
 - Food poisoning (Mild condition)
 - Abdominal cramps and watery diarrhea
 - Gas gangrene
 - Fatal in 40% of cases even with aggressive treatment
 - Trauma introduces endospores into body (bacteria are non-invasive)
 - Endospores germinate and cause necrosis
 - Produces hydrogen and CO₂ as a byproduct of its replication – results in characteristic gas production in tissues
 - Shock, kidney failure, and death may occur in a week

Figure 19.13 Gas gangrene, a life-threatening disease caused by Clostridium perfringens.

Clostridium perfringens

- Diagnosis, Treatment, and Prevention
 - Diagnosis
 - Presence of minimum bacterial load in food or feces
 - Appearance of gas gangrene is usually diagnostic
 - Treatment
 - Food poisoning is self-limited
 - Gas gangrene requires removal of dead tissue and administration of antitoxin and penicillin
 - Prevention
 - Refrigeration of foods can reduce cases of food poisoning
 - Proper cleaning of wounds can prevent gas gangrene

Clostridium difficile

- Motile, anaerobic intestinal bacterium
- Produces two toxins and the enzyme hyaluronidase

Clostridium difficile

- Pathogenesis, Epidemiology, and Disease
 - Common member of the intestinal microbiota
 - Opportunistic pathogen in patients taking broad-spectrum antimicrobial drugs
 - Minor infections result in self-limiting explosive diarrhea
 - Serious cases can cause pseudomembranous colitis
 - Sections of the colon wall slough off, causing massive infection by fecal bacteria
 - Life-threatening condition

Clostridium difficile

- Diagnosis, Treatment, and Prevention
 - Diagnosis
 - Isolation of organism from feces
 - Demonstrate the presence of toxins by immunoassay
 - Treatment
 - Discontinue causative antimicrobial drug to resolve minor infections
 - Serious cases treated with Metronidazole (DOC)
 - Vancomycin if metronidazole-resistant
 - Prevention
 - Proper hygiene to limit nosocomial infections

Clostridium botulinum

- Anaerobic, endospore-forming bacillus
- Common in soil and water
- Botulism results when the endospores germinate and produce botulism toxins

Clostridium botulinum

- Pathogenesis
 - Botulism toxins
 - C. botulinum strains produce seven distinct toxins
 - Among the deadliest known toxins
 - Bind neurons and prevent muscle contractions
 - 7 distinct forms of botulinum toxin, types A–G.
 - Four of these (types A, B, E and rarely F) cause human botulism.
 - Types C, D and E cause illness in other mammals, birds and fish.

- Botulinum toxin
- A single gram of crystalline toxin, evenly dispersed and inhaled, can kill more than one million people
- A major bioweapon threat because of its extreme potency and lethality; its ease of production, transport, and misuse; and the need for prolonged intensive care among affected persons
- As a military or terrorist weapon, botulinum toxin could be disseminated via aerosol or by contamination of water or food supplies, causing widespread casualties
- In the late 1980s, Canada approved use of the toxin to treat strabismus, in 2001 in the removal of facial wrinkles and in 2002, the FDA in the United States followed suit

Figure 19.14 How botulism toxin acts at a neuromuscular junction.

Vesicles with acetylcholine

Botulism toxin

(b) Neuromuscular junction with botulism toxin present

Clostridium botulinum

- Epidemiology and Diseases
 - Botulism is an intoxication with the following manifestations:
 - Foodborne botulism
 - Lightly preserved foods and in inadequately processed, home-canned, home-bottled foods, ready-to-eat foods in low oxygen-packaging.
 - Though spores of *C. botulinum* are heat-resistant, the toxin produced by bacteria growing out of the spores under anaerobic conditions is destroyed by boiling (for example, at internal temperature greater than 85C for 5 minutes or longer).
 - Combinations of low storage temperature and salt contents and/or pH are also used to prevent the growth of the bacteria or the formation of the toxin

Source: http://www.who.int/mediacentre/factsheets/fs270/en/

- Epidemiology and Diseases
 - Foodborne botulism
 - Death can result from asphyxiation
 - Slow recovery from growth of new nerve cell endings
 - Infant botulism
 - Results from the ingestion of endospores
 - Paralysis and death are rare
 - Wound botulism
 - Contamination of a wound by endospores
 - Symptoms similar to foodborne botulism

- Epidemiology and Diseases
 - Botulism is an intoxication with three manifestations:
 - Inhalation botulism
 - Rare, not natural, associated with accidental or international (bioterrorism) events
 - The median lethal dose for humans: 2 nanograms of botulinum toxin per kilogram of bodyweight, which is approximately 3 times greater than in foodborne cases
 - Onset of symptoms: 1–3 days
 - Symptoms: Muscular paralysis and respiratory failure.
 - The patient's clothing must be removed and stored in plastic bags until it can be washed thoroughly with soap and water.
 The patient should shower and be decontaminated immediately.

Source: http://www.who.int/mediacentre/factsheets/fs270/en/

- Diagnosis, Treatment, and Prevention
 - Diagnosis
 - Symptoms are diagnostic
 - Treatment
 - Wash intestinal tract to remove Clostridium
 - Administer neutralizing antibodies against botulism toxin
 - Administer antimicrobial drugs in infant and wound botulism cases
 - Prevention
 - Proper canning of food
 - Infants under 1 year should not consume honey

- Botulinum toxin uses
 - Medical
 - Strabismus
 - Achalasia cardia
 - Cervical dystonia (severe spasms in the neck muscles), muscle spasms in the arms and hands, and severe underarm sweating (hyperhidrosis)
 - Cosmetic
 - Wrinkle-free!

Clostridium tetani

- Motile, obligately anaerobic bacilli with a terminal endospore
- Ubiquitous in soil, dust, and GI tract of animals and humans
- Tetanus results when endospores germinate and produce tetanus toxin

Figure 19.15 Cells of *Clostridium tetani*, with terminal endospores.

Clostridium tetani

- Pathogenesis
 - Tetanospasmin toxin (tetanus toxin)
 - Released by C. tetani cells when they die
 - Potent neurotoxin
 - Causes continuous muscle contractions, which can in severe cases break bones

Figure 19.16a The action of tetanospasmin (tetanus toxin) on a pair of antagonistic muscles.

(a) Normal action of inhibitory neurotransmitter

Figure 19.16b The action of tetanospasmin (tetanus toxin) on a pair of antagonistic muscles.

Clostridium tetani

- Epidemiology and Disease
 - Initial tightening of the jaw and neck muscles
 - Commonly called lockjaw
 - Spasms and contractions can spread to other muscles
 - Unrelenting contraction of the diaphragm can cause death
 - Most cases occur in less-developed countries
 - Due to inadequate medical care and lack of vaccination
 - Recovery requires growth of new neuronal terminals
 - Mortality rate about 50%

Figure 19.17 A patient with tetanus.

Clostridium tetani

- Diagnosis, Treatment, and Prevention
 - Diagnosis
 - Characteristic muscular contraction
 - Treatment
 - Cleansing of wounds to remove endospores
 - Administer immunoglobulin against tetanus toxin
 - Administer antimicrobial drugs
 - Active immunization with tetanus toxoid
 - Prevention
 - Immunization with tetanus toxoid

Listeria

Listeria monocytogenes

- Non-endospore-forming bacillus
- Cold-tolerant
- Found in soil, water, and animals
- Enters body via contaminated food and drink

Listeria

Pathogenesis, Epidemiology, and Disease

- L. monocytogenes is an intracellular pathogen
 - Grows in phagocytes often in the gallbladder
- Listeriolysin O helps Listeria avoid digestion by the host cell
- Virulence directly related to Listeria's ability to live within cells
- Can cause meningitis in certain at-risk groups
- Pregnant women can transmit Listeria to their fetus
 - Cause premature delivery, miscarriage, stillbirth, or meningitis in the newborn

DISEASE IN DEPTH

LISTERIOSIS

ONE WAY LISTERIA AVOIDS HOST'S IMMUNE SYSTEM WHILE INFECTING NEW CELLS

Photomicrograph of Listeria 10 µm

showing blue-stained actin

"tails"

ONE WAY *LISTERIA* AVOIDS HOST'S IMMUNE SYSTEM WHILE INFECTING NEW CELLS

Listeria enters the body, usually through contaminated drink or food.

ONE WAY *LISTERIA* AVOIDS HOST'S IMMUNE SYSTEM WHILE INFECTING NEW CELLS

Disease in Depth 19.2

ONE WAY *LISTERIA* AVOIDS HOST'S IMMUNE SYSTEM WHILE INFECTING NEW CELLS

ONE WAY *LISTERIA* AVOIDS HOST'S IMMUNE SYSTEM WHILE INFECTING NEW CELLS

Disease in Depth 19.2

DISEASE IN DEPTH

LISTERIOSIS

ONE WAY LISTERIA AVOIDS HOST'S IMMUNE SYSTEM WHILE INFECTING NEW CELLS

Photomicrograph of Listeria 10 µm

showing blue-stained actin

"tails"

The tail pushes the bacterium into a pseudopod.

Listeria

Diagnosis, Treatment, and Prevention

- Diagnosis
 - Presence of bacteria in the cerebrospinal fluid of individuals with meningitis
 - Rarely seen in Gram-stained preparations
- Treatment
 - Ampicillin
 - Other antibiotics used for patients allergic to penicillins
- Prevention
 - At-risk individuals should avoid certain foods