

Iterative sorting algorithms

Paolo Camurati

Dip. Automatica e Informatica

Politecnico di Torino

Insertion sort

- Data: integers in array A
- Array partitioned in 2 sub-arrays
 - Left: sorted
 - Right: unsorted
- An array of just one element is sorted
- Incremental approach
 - At each step we expand the sorted sub-array by inserting one more element (invariance of the sorting property)
- Termination
 - All elements inserted in proper order

i-th step: sorted insertion

I-th step: put in the proper position $x = A_i$

- Scan the sorted subarray (from A_{i-1} to A_0) until we find $A_k > A_i$
- Right shift by one position of the elements from A_k to A_{i-1}
- Insert A_i in k-th position

si ze

C Code

```
void InsertionSort (int A[], int n) {
            int i, j, x;
i star from 1 bcz o is sorted
             for (i=1; i<n; i++) {
               x = A[i]; tmp
                                                   It is also possibile to reason
               j = i - 1;
                                                         in terms of
                                                 I = index of the leftmost element
              while (j>=0 \&\& x<A[j]) {
  insertion
                                                r = index of the rightmost/element
                 A[j+1] = A[j];
  phrase
               A[j+1] = x;
            return;
```


- Analytic analysis
 - Worst case
 - We assume unit cost for all operations

```
for (i=1; i<n; i++) {
    x = A[i];
    j = i - 1;
    while (j>=0 && x<A[j]){
        A[j+1] = A[j];
        j--;
    }
    A[j+1] = x;
}</pre>
```

```
#checks #iterations 1 + (n-1+1) + (n-1) \\ n - 1 \\ n - 1 \\ \sum_{i=1}^{n-1} (i+1) \\ \sum_{i=1}^{n-1} i \\ \sum_{i=1}^{n-1} i \\ n - 1
```


$$\sum_{i=1}^{n-1} (i+1)$$

$$\sum_{i=1}^{n-1} i$$

$$\sum_{i=1}^{n-1} i$$

Recalling that
$$\sum_{i=1}^{n-1} i = \frac{(n-1)n}{2}$$

$$\sum_{i=1}^{n-1} (i+1) = \frac{n(n+1)}{2} - 1$$

$$T(n) =$$

=
$$2n+(n-1)+(n-1)+\sum_{i=1}^{n-1}(i+1)+\sum_{i=1}^{n-1}i+\sum_{i=1}^{n-1}i+(n-1)$$

=
$$2n + 3(n-1) + \frac{n(n+1)}{2} - 1 + 2\frac{(n-1)n}{2}$$

$$= 2n + 3n - 3 + \frac{1}{2}n^2 + \frac{1}{2}n - 1 + n^2 - n$$

$$= \frac{3}{2}n^2 + \frac{9}{2}n - 4 = \Theta(n^2)$$

T(n) grows quadratically

Worst case O(n²) overall

- More intuitive analysis
 - Two nested cycles
 - Outer loop: n-1 executions
 - Inner loop: the worst-case → i executions at the i-th iteration of the outer loop
- Complexity

•
$$T(N) = 1 + 2 + 3 + 4 + \dots + (n-2) + (n-1)$$

•
$$T(N) = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2}$$

T(n) grows quadratically with n

already sorted array

- Best case scenario
 - Inner loop: 1 execution at the i-the iteration of the outer loop
 - Complexity

•
$$T(n) = 1 + 1 + 1 + \dots + 1 = n-1$$

n-1 times

T(n) grows linearly with n

- In place
- Number of exchanges in worst-case
 - O(n²)
- Number of comparisons in worst-case
 - O(n²)
- Stable
 - If the element to insert is a duplicate key, it can't pass over to the left a preceeding occurrence of the same key

Selection sort

- Sort n integers in array A
- Array divided into two sub-arrays
 - Left: sorted, initially empty
 - Right: unsorted, initially it coincides with A
- Incremental approach
 - Iteration i: the minimum of the right sub-array $(A_i ... A_r)$ is assigned to a A[i]; increment i
- Termination: all elements are inserted in the correct location
- Searching for the minimum in the right subarray entails scanning the sub-array

C Code

```
void SelectionSort (int A[], int n) {
    int i, j, min, temp;
    for (i=0; i< n-1; i++) {
    min = i;
temp
      for (j=i+1; j<n; j++) {
                                  sel ect
        if (A[j] < A[min]) {
           min = j;
      temp = A[i];
                           swap
      A[i] = A[min];
      A[min] = temp;
    return;
```


- Analytic analysis
 - Worst case
 - We assume unit cost for all operations

Number of operations

```
#iterations
                                               #checks
for (i=0; i<n-1; i++) {
     min = i;
                                              1 + (n-1+1) + (n-1)
     for (j=i+1; j<n; j++) {
                                                       n-1
        if (A[j] < A[min]) {
                                       \sum_{i=0}^{n-2} (1 + (n - (i+1) + 1) + (n - (i+1))
           min = j;
                                                 \sum_{i=0}^{n-2} (n-(i+1))
                                                 \sum_{i=0}^{n-2} (n-(i+1))
                                                       n-1
     temp = A[i];
                                                       n-1
     A[i] = A[min];
                                                       n-1
     A[min] = temp;
```


Recalling that

$$\sum_{i=0}^{n-2} n = n(n-1)$$

$$\sum_{i=0}^{n-2} i = \frac{(n-2)(n-1)}{2}$$

$$\sum_{i=0}^{n-2} 1 = n-1$$

$$\begin{array}{c} \sum_{i=0}^{n-2} (1+(n-(i+1)+1)+(n-(i+1)) \\ \sum_{i=0}^{n-2} (n-(i+1)) \\ \sum_{i=0}^{n-2} (n-(i+1)) \\ \text{n-1} \\ \text{n-1} \end{array}$$

$$T(n) =$$

$$= 2n + 4(n-1) + 2\sum_{i=0}^{n-2} (n-i) + 2\sum_{i=0}^{n-2} (n-i-1)$$

$$= 6n - 4 + 4 \sum_{i=0}^{n-2} n - 4 \sum_{i=0}^{n-2} i - 2 \sum_{i=0}^{n-2} 1$$

=
$$6n - 4 + 4n(n-1) - 4\frac{(n-2)(n-1)}{2} - 2(n-1)$$

$$= 6n - 4 + 4n^2 - 4n - 2n^2 + 6n - 4 - 2n + 2$$

$$= 2n^2 + 6n - 6 = \Theta(n^2)$$

T(n) grows quadratically

Worst case O(n²) overall

1

Worst-case asymptotic analysis

- More intuitive analysis
 - Two nested loops
 - Outer loop: executed n-1 times
 - Inner loop: at the i-th iteration executed n-i-1 times
 - $T(n) = (n-1) + (n-2) + ... + 1 = O(n^2)$
- Number of exchanges in worst-case O(n)
- Number of comparisons in worst-case O(n²)

Features

- In place
- Not stable
 - A swap of "far away" elements may result in a duplicate key passing over to the left of a preceding instance of the same key

4

Exchange (Bubble) Sort

- Data: integers in array A delimited by left and right indices I and r
- Array divided in 2 sub-arrays
 - Right : sorted, initially empty
 - Left: unsorted, initially it coincides with A
- Elementary operation
 - Compare successive elements of the array A[j] and A[j+1], swap if A[j] > A[j+1]

Exchange (Bubble) Sort

- Incremental approach
 - At iteration i the maximum of the left sub-array $(A_l ... A_{r-i+l})$ is assigned to A[r-i+l]; increment i
 - The sorted right sub-array increases in size by 1 to the left, dually the left sub-array decreases in size by 1
- Termination: all elements are inserted in the correct location
- Possible optimization: flag to record that there have been swaps, early loop exit

Example sorted sorted unsorted unsorted

C Code

```
void BubbleSort (int A[], int n){
  int i, j, temp;
                                       i already sorted element
  for (i=0; i<n-1; i++) {
    for (j=0; j<n-i-1; j++) {
      if (A[j] > A[j+1]) {
        temp = A[j];
        A[j] = A[j+1];
        A[j+1] = temp;
                                   i-l is the number of
                                 already sorted elements
  return;
```


Complexity

- Analytic analysis
 - Worst case
 - We assume unit cost for all operations

opposite order

Complexity

T(n) grows quadratically

$$\begin{array}{c} 1 \,+\, (\mathsf{n}\text{-}1\text{+}1) \,+\, (\mathsf{n}\text{-}1) \\ \sum_{i=0}^{n-2} (1 + (n-i-1+1) + (n-i-1)) \\ \sum_{i=0}^{n-2} (n-i-1) \\ \sum_{i=0}^{n-2} (n-i-1) \\ \sum_{i=0}^{n-2} (n-i-1) \\ \sum_{i=0}^{n-2} (n-i-1) \end{array}$$

$$T(n) = 2n + \sum_{i=0}^{n-2} 1 + \sum_{i=0}^{n-2} (n-i) + 5\sum_{i=0}^{n-2} (n-i-1)$$

$$= 2n + \sum_{i=0}^{n-2} 1 + \sum_{i=0}^{n-2} n - \sum_{i=0}^{n-2} i + 5\sum_{i=0}^{n-2} n - 5\sum_{i=0}^{n-2} i - 5\sum_{i=0}^{n-2} 1$$

$$= 2n + 6\sum_{i=0}^{n-2} n - 6\sum_{i=0}^{n-2} i - 4\sum_{i=0}^{n-2} 1$$

$$= 2n + 6n(n-1) - 6\frac{(n-2)(n-1)}{2} - 4(n-1)$$

$$= 3n^2 + n - 2$$
Worst case

Worst case O(n²) overall

Complexity

- More intuitive analysis
 - Two nested loops
 - Outer loop
 - Executed n-1 times
 - Inner loop
 - At the i-th iteration executed n-1-i times

•
$$T(n) = (n-1) + (n-2) + ... + 2 + 1$$

= $O(n^2)$

Optimized C Code

```
void OptBubbleSort (int A[], int n) {
  int i, j, flag, temp;
  flag = 1;
  for(i=0; i<n-1 && flag==1; i++) {
    flag = 0;
    for (j=0; j<n-i; j++)</pre>
      if (A[j] > A[j+1]) {
                                   only swap something set
        flag = 1;
                                   fl ag=1
        temp = A[j];
        A[j] = A[j+1];
        A[j+1] = temp;
  return;
```


Features

In place

compare with sorted so stable

2,

2,

Stable

 Among several duplicate keys, the rightmost one takes the rightmost position and no other identical key ever moves past it to the right

Shellsort (Shell, 1959)

- Limit of insertion sort
 - Comparison, thus exchange takes place only between adjacent elements
- Rationale of Shellsort

insertion sort

- Compare, thus possibly exchange, elements at distance h
- Defining a decreasing sequence of integers ending with 1

Shellsort (Shell, 1959)

An array formed by non contiguous sequences composed by elements whose distance is h is h-sorted

Example

Sorted non contiguous subsequences with h=4

Shellsort (Shell, 1959)

- For each of the subsequences we apply insertion sort
- The elements of the subsequence are those at distance h from the current one

Sequence h: 13, 4, 1

Step1: h=13

Step 2: h=4

Step 3: h=1

0 0 1 1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

4

Choosing the sequence

- Has an impact on performance
- Knuth's sequence
 - $h = 3 \cdot h + 1 = 141340121...$
- Sequence
 - h = 1 then $4^{i+1} + 3 \cdot 2^i + 1 = 1823772811073$...
- Sedgewick's sequence
 - h = 1, 5, 19, 41, 109, 209, 505, 929, 2161, 3905, ...

C Code

```
void ShellSort(int A[], int n) {
             int i, j, temp, h;
             h=1;
             while (h < n/3)
                                           largest h
               h = 3*h+1;
insertion sortwhile (h >= 1) {
               for (i=h; i<n; i++) {
                 temp = A[i];
                 while (j>=h \&\& temp<A[j-h]) {
                   A[j] = A[j-h];
                   j -=h;
                 A[j] = temp;
                 = h/3;
                                              last step origin sort
                                     move faster than origin
                                                                   35
```


- In place
- Not stable
 - An exchange between "far away" elements may result in a duplicate key that passes over to the left a preceding occurrence of the same key

Example

$$2_1 \ 2_2 \ 2_3 \ 2_4 \ 2_5 \ 0$$

• Step 2: h=1

2₁ 0 2₃ 2₄ 2₅ 2₂

Worst-case asymptotic analysis

Shellsort

- With Knuth's sequence:
 - 1 4 13 40 121 ...
 - It executes less than $O(n^{3/2})$ comparisons
- With the sequence
 - 1 8 23 77 281 1073 ...
 - It executes less than O(n^{4/3}) comparisons
- With Shell's original sequence
 - 1 2 4 8 16 ...
 - It may degenerate to O(n²)

Counting sort

- Sorting based on computation (not on comparison)
 - Find, for each element to sort x, how many elements are less than or equal to x
 - Assigne x directly to its final location
- Features
 - Stable
 - Not in place

•

Data Structures

- 3 arrays
 - Starting array
 - A[0..n-1] of n integers
 - Resulting array
 - B [0..n-1] of n integers
 - Occurrence array
 - C of k integers if data belong to the range [0..k-1]

Algorithm

```
c[i]={0};
```

- Step 1: simple occurrences
 - C[i] = number of elements of A equal to i
- Step 2: multiple occurrences
 - C[i] = number of elements of A <= i
- Step3: ∀ j
 - C[A[j]] = number of elements <= A[j]
- Thus final location of A[j] in B

$$B[C[A[j]]] = A[j]$$

(beware of indices in C, see code!)

Example (n=8, k=6)

Example (n=8, k=6)

Example (n=8, k=6)

#define MAX 100

```
void CountingSort(int A[], int n, int k) {
  int i, C[MAX], B[MAX];
  for (i=0; i<k; i++)
   C[i] = 0;
  for (i=0; i<n; i++)
    C[A[i]]++;
  for (i=1; i<k; i++)
    C[i] += C[i-1];
  for (i=n-1; i>=0; i--) {
    B[C[A[i]]-1] = A[i];
   C[A[i]]--:
  for (i=0; i<n; i++)
   A[i] = B[i];
```


Worst-case asymptotic analysis

- Initialization loop for C: O(k)
- Loop to compute simple occurrences: O(n)
- Loop to compute multiple occurrences: O(k)
- Loop to copy result in B: O(n)
- Loop to copy in A: O(n)T(n) = O(n+k)

Applicability

= k=O(n), thus T(n) = O(n)

waste memory