CASO PRÁCTICO II Gestión y planificación

Optimización no lineal

José Ignacio Escribano

Móstoles, 8 de diciembre de 2015

Índice de figuras

Índice de tablas

Índice

Ín	dice de figuras	b
Ín	dice de tablas	c
1.	Introducción	1
	Resolución de las cuestiones de evaluación2.1. Cuestión 12.2. Cuestión 2	
3.	Conclusiones	1

1. Introducción

2. Resolución de las cuestiones de evaluación

A continuación resolveremos las cuestiones de evaluación planteadas.

2.1. Cuestión 1

Una vez definido las funciones de coste y los límites de producción de energía, el problema de optimización queda de la siguiente manera:

$$\begin{aligned} & \text{m"0131n0.0578082} \log(x_1^{100}) + 0.0016517x_2^2 + 0.0412916x_3 \\ & x_1 + x_2 + x_3 - 1000 = 0 \\ & 1 \leq x_1 \leq 700 \\ & 0 \leq x_2 \leq 500 \\ & 0 \leq x_3 \leq 500 \end{aligned}$$

2.2. Cuestión 2

Modificando de forma adecuada los valores de E1, E2, E3 y del vector ub, y resolviendo con Scilab tenemos que la solución del problema es la siguiente:

```
El coste óptimo del GW/hora (en miles de euros) es:
50.000033

Los MW/hora a producir por el primer calentador son:
699.99988

Los MW/hora a producir por el segundo calentador son:
12.499822

Los MW/hora a producir por el tercer calentador son:
287.5003
```

2.3. Cuestión 3

A tenor de los resultados devueltos por Scilab, tenemos que que el coste del GW/hora es de 50 000 euros. Se deben producir 700 MW/hora del primer calentador, 12.5 MW/ho-

ra del segundo y 287.5 del tercer calentador.

3. Conclusiones