14-15 NOVEMBER 2022 PARIS

ACM Recsys Challenge 2022 – Fashion Recommendations

Team NVIDIA Third Place Solution Gilberto Titericz (Giba)

Organizers

LOGICN

kaggle

LVMH

SEPHORA

LOUIS VUITTON

Dior

Christian Dior

CELINE

GIVENCHY

BVLGARI

MoëtHennessy

TIFFANY&C

About me

14-15 NOVEMBER 2022

Giba

RAPIDS at NVIDIA Curitiba, State of Paraná, Brazil Joined 10 years ago - last seen in the past day

Followers 11075 Following 31

Competitions Grandmaster

Competitions (248)

Datasets (20)

O in https://rapids.ai/

Discussion (998) Code (1.160)

Followers (11.075) Notifications Account

Edit Public Profile

PARIS

Recsys Challenge 2022

Timeline***

When?	What?
7 March, 2022	Start RecSys Challenge Release dataset
14 March, 2022	Submission System Open Leaderboard live
14 June, 2022	End RecSys Challenge
21 June, 2022	Final Leaderboard & Winners EasyChair open for submissions
28 June, 2022	Code Upload Upload code of the final predictions
14 July, 2022	Paper Submission Due
1 August, 2022	Paper Acceptance Notifications
14 August, 2022	Camera-Ready Papers

RecSys Challenge 2022

About	Participation	Timeline	Program	Organization	RecSys 2022	

About-too

The RecSys Challenge 2022 is organized by Nick Landia (Dressipi), Bruce Ferwerda (Jönköping University, Sweden), Saikishore Kalloori (ETH Zürich, Switzerland), and Abhishek Srivastava (IIM Visakhapatnam, India).

Dressipi*top

Dressipi are the fashion-Al experts, providing product and outfit recommendations to leading global retailers.

Our recommendations enable retailers to create new product discovery experiences that are personalized and inspiring and can be used at all steps of the shopper journey.

Our algorithms enable retailers to make better buying and merchandising decisions by more accurately forecasting product demand and size ratios.

Our focus is to provide the world's best apparel recommendations and predictions. We do this by taking a domain specific approach across the data we collect and create, how we structure that data and the models we build. Everything we do is optimized to handle the nuances of fashion.

We work with brands across the US, UK, Europe, and Australia and outperform every competitor when A/B tested.

Nvidia Team

Benedikt Schifferer

DL Engineer

Chris Deotte
Sr. Data Scientist

Gabriel Moreira Sr. Research Scientist

Gilberto Titericz Sr. Data Scientist

Jiwei Liu Sr. Data Scientist

Kazuki Onodera Sr. Data Scientist

Ronay Ak Sr. Data Scientist

Sara Rabhi Research Scientist

Recommender Systems

Personalization Engine of Online Services

4.3B Watch Videos Online

3.7B Shop Online

4.3B Active Users

4.7B Internet Users

"Already, 35 percent of what consumers purchase on Amazon and 75 percent of what they watch on Netflix come from product recommendations based on such algorithms."

Source: McKinsey

Session-based Recommendation Task

Users behaviour for different sessions might be very distinct

Session #1 - Looking for TVs

15 days later...

Photo by Taras Shypka on Unsplash

Session #2 - Browsing smartphones

Session Flow

Fig 1: Example Session and Purchase Data

Data Split

^{*} Not allowed to fit models using test data.

Competition Dataset

Train set:

- Number of sessions: 1,000,000
- Date range: Jan-2020 to May-2021 (514 days)
- Number of items: 23,496
- Average item views per section: 4.74

Test set leaderboard:

- Number of sessions: 50,000
- Date range: Jun-2021 (30 days)
- Number of items: 5,647 (65 new items not in trainset)
- Average item views per section: 4.52

Test set final leaderboard:

- Number of sessions: 50,000
- Date range: Jun-2021 (30 days)
- Number of items: 5,648 (67 new items not in trainset)
- Average item views per section: 4.58

Data Cleaning

Data Cleaning

Trainset

Clean Data

Data Cleaning

Train set:

1 train.loc[train.session_id == 18].reset_index(drop=True)

	session_id	item_id	date	purchase_item_id	purchase_date
0	18	4026	2020-08-26 19:15:47.232	24911	2020-08-26 19:20:32.049
1	18	2507	2020-08-26 19:16:31.211	24911	2020-08-26 19:20:32.049
2	18	18316	2020-08-26 19:18:30.833	24911	2020-08-26 19:20:32.049

INPUT DATA

LABEL

Session Length Histogram

Test set

• Random cut sessions from 0 to 50%

Item Description:

• All item descriptions are anonymized

tem_id	feature_category_id	feature_value_id
2	56	365
2	62	801
2	68	351
2	33	802
2	72	75
2	29	123
2	16	38
2	50	76
2	61	462
2	53	6
2	7	394
2	69	885
2	47	123

Evaluation Metric

Mean Reciprocal Rank @100 (MRR@100)

$$ext{MRR} = rac{1}{|Q|} \sum_{i=1}^{|Q|} rac{1}{ ext{rank}_i}$$

https://en.wikipedia.org/wiki/Mean_reciprocal_rank

Ground Truth	Prediction	Rank	Reciprocal Rank
shirt	pants, socks, shirt	3	1/3 = 0.333
pants	pants pants, shirt, skirt		1/1 = 1.000

$$MRR@3 = (1 + 0.333)/2 \sim 0.67$$

Data Augmentation

- (e) randomly truncate the viewed items and use the last viewed item as the target
- (f) swap the last viewed item with the 2nd last viewed item.

- (g) shuffle the last viewed N items.
- (h) combine multiple augmentations. e.g. truncate than swap (c) + (b)

Validation Strategy:

^{*} validation set X is random truncated 50% of items to match the test set distribution.

SOLUTION

3-stage pipeline of ensembling and stacking

- Last month of training data as local validation set
- Random 50% truncation of validation sessions
- Full re-training for submission

- 17 single models
- Optimize performance and diversity
- 6 models groups

- 3 stacking models
- Stage-1 candidates and in-session features as inputs
- Weighted average as final recommendation score

1. Time Weighted Conditional Popularity Model (Baseline):

- Only two features: 'item_id' and 'timestamp'.
- Uses data augmentation in trainset.

Algorithm:

- Calculate co-occurrence popularity of purchased **item_id** given previous viewed **item_ids**.
- Weight by time decay. Last viewed item_id gives more weight.
- For each item in the session, retrieve a list of top 100 most co-occurring items. Combine all top 100 for all items in the session and apply a time decay factor before sorting by popularity.

2. Session based Nearest Neighbors:

- Only two features: 'item_id' and 'timestamp'.
- Uses data augmentation in trainset.
- SkNN and VSTAN algorithms: Retrieve a list o similar sessions.
 - Fit on 4 periods of trainset: last 120 days, last 90 days, last 60 days, last 30 days.
 - Ensemble predictions scores for the 4 fits.

- Uses data augmentation in trainset.
- Convert the task to binary classification.
- Use 200 candidates item for each session.

	Build Features	Train set	Validation set	Test set
For validation and tuning.	Jan-2020 to Mar-2021	Apr-2021	May-2021	Jun-2021
			Train set	Test set
For submitting to leaderboard.	Jan-2020 to Apr	-2021	May-2021	Jun-2021

3. Gradient Boosting Decision Trees:

• Train set with ~80k sessions x 200 candidates = 16M rows.

Binary Dataset

Session_id	Candidate number	Target Item_id	Binary Target	Other features (F.E.)
1	1	8	0	xxx
1	2	10	1	xxx
1	3	55	0	xxx
1				xxx
1	200	43	0	xxx

Features Based in Candidate Item:

- Purchase count of last N days.
- View Count of last N days
- Min, mean, max and std of purchase count of item pairs by day in last N days.
- Min, mean, max and std of view count of item pairs by day in last N days.
- Number of unique session containing the item.
- Purchase and view counts based in item properties at different time windows.

3. Gradient Boosting Decision Trees:

- XGBoost: using binary classification objective.
- LightGBM: using lambda rank objective.
- Hyperparameters tuned based in validation set metrics.

4. MultiLayer Perceptron (MLP):

4. MultiLayer Perceptron (MLP):

- Trained on two tasks:
 - Predict final purchased item
 - Predict next item viewed or purchased.
- Multi task loss: Predict target item and target item features
- Bagging 6 times (run with different seeds)
- Stepwise learning rate decay

5. Transformers:

- Transformers4Rec library
- XLNet architecture
- Training using event_type flag boost score by +0.003

6. Recursive Neural Networks (RNN):

Predicted probabilities of purchased item

6. Recursive Neural Networks (RNN):

Predicted probabilities of purchased item

6. Recursive Neural Networks (RNN):

- Uses unidirecional GRU.
- Weighted Sum GRU embeddings.
- RNN are good for short sequences.
- Achieved best MRR@100 leaderboard metric over all single models: 0.2044

Post Processing:

Filter out from the list of predictions any item previously viewed.
 (Boost +0.001 the metric)

Post Processing:

Filter out from the list of predictions any item previously viewed.
 (Boost +0.001 the metric)

Single Models Scores:

MRR Score (Local CV)

Model	MRR@100
Conditional Popularity	0.164
VSTAN	0.174
Transformer4 Rec	0.185
LightGBM	0.187
MLP	0.194
RNN	0.204

Stacking Ensemble

Levels 2 and 3

Ensembling Strategy

	Stage 2 - Optimization algorithm	Stage 2 - LightGBM	Stage 2 - XGBoost	Stage 3 - Weighted Average
Cross-validation strategy	No CV	25 random CV splits based on session-id (85%-15%)	3 seeds of temporal 4-fold splits	No CV
Objective function	Original MRR@100	Lambda Rank	Binary Cross-Entropy	Original MRR + Conservative constraint
Item candidates filtering strategy	Use all candidates from Stage1	Item-ids in at least two Stage1 models	Item-ids in at least two Stage1 models	-

Models Ensemble Scores

	Stage 2			Stage 3
	Optimized Weighted Average	XGBoost	LightGBM	Weighted Average
Public LB	0.2073	0.2074	0.2076	0.2082
Final LB	-	-	-	0.2086

QUESTIONS?

kaggle LVMH

ıllı kaggle days

SEPHORA

LOUIS VUITTON

Dior

Christian Dior MoëtHennessy

CELINE

THANKS FOR **ATTENDING!**

www.linkedin.com/in/giba1 https://twitter.com/giba1

Blog: https://medium.com/nvidia-merlin/building-a-diverse-models-ensemble-for-fashion-session-based-recommendation-for-recsys2022-2419d2182c4c

Paper: https://github.com/NVIDIA-Merlin/competitions/blob/main/RecSys2022 Challenge

