อินเวอร์เตอร์ Pure Sine wave และ Modified Sine Wave

อินเวอร์เตอร์เพียวชายด์

อินเวอร์เตอร์โมดิฟาย

ตารางเครื่องใช้ไฟฟ้าที่ใช้ได้กับอินเวอร์เตอร์ Pure Sine wave และ Modified Sine Wave

ตาราง
เทียบนี้
เป็นเพียง
ตารางเทียบ
เครื่องใช้
ไฟฟ้า
บางส่วน
เท่านั้น

เครื่องใช้ Electrical loads	Modified Modified Sine Wave	Pure Sine Pure Sine Wave	เครื่องใช้ Electrical loads	Modified Modified Sine Wave	Pure Sine Pure Sine Wave
Energy-saving lamp	√	√	Microwave oven	√	√
Incandescent	√	√	Iron	√	√
Hair dryer	√	√	Soybean milk machine	✓	✓
Computer	√	√	Shaver	√	√
TV	√	√	Digital products	√	✓
Refrigerator	×	√	Printer	√	✓
Washing machine	×	✓	Project	×	✓
Wall air conditioning	×	✓	LED lamp	×	✓
Vertical air conditioning	×	√	Audio	×	√
Household fan	√	✓	Electric hand drill	×	√
Smart fan	√	√	Hand mill	×	√
Rice cooker	√	√	Water pump	×	√
Induction cooker	×	V	Packer แจียร์ สว่า	√	7

การหาค่าตัวเก็บประจุแบบอนุกรม(1)

2 100uf 100uf 47uf 16V 16V 3 3 50uf คาความจุรวมเท่าใด?

หากค่าความจะเท่ากันให้หารตามจำนวน เช่นในภาพ ค่าความจุ 100uf มีอยู่2ตัว ตั้ง 100หาร2 =50 เพราะฉะนั้นค่าความจุ ตัวที่1และ2 เมื่ออนุกรมกันจะเหลือ50uf ทีนี้จะมาหาค่าความจุรวมที่อนุกรมกัน3ตัว วิธีหามีดังนี้.....

> ตั้ง 50X 47=2350 จากนั้นเปลี่ยนมาบวกครับ ดั้ง 50 +47=97

เมื่อได้แล้วนำมาหารกันครับ ตั้ง 2350หารด้วย 97 จะได้ 2350หาร97= 24

ส่วนอัตราทนแรงดันให้บวกกัน 16+16+16 =48

อัตราทนแรงดันรวมและค่าความจุรวมจะได้ 48V 24uf

การหาค่าความจุในกรณีที่ค่าไม่เท่ากัน มาอนุกรมกันนั้น ต้องหาค่า1คู่ก่อนครับ(คู่ใหนก็ได้)

ตัวเก็บประจุตัวที่ 1ค่าความจุ 100 uf
ตัวเก็บประจุตัวที่ 2 มีค่าความจุ 47uf
ตั้ง 100X47=4700
จากนั้นเปลี่ยนมาบวกกันครับ
100+47=147
เมื่อได้ผลลัพธ์จากการบวก และการคูณแล้ว
ให้นำมาหารกัน ดั้ง 4700หาร147 =31.9
เพราะฉะนั้น C1และ C2 อนุกรมกันได้ค่า 31.9uf
เมื่อได้ค่าความจุ C1C2ที่อนุกรมกันแล้ว
ให้นำมาคูณและบวกกับ C3 ครับ

ตั้ง 31.9X22 = 701.8 จากนั้นเปลี่ยนมาบวกกันครับ ตั้ง 31.9+22=53.9 เมื่อได้แล้วนำผลลัพธ์มาหารกันครับ ตั้ง 708.8หาร 53.9= 13.1uf

วงจรการทำงานของ LED

การต่อวงจร LED

์ ตัวอย่างการคำนวณพื้นฐาน ในที่นี้เราจะให้ LED มีแรงดันตกคร่อม 2V และ มีกระแสไหลผ่านตัวมันได้ 20 mA การคำนวณค่าตัวตำนทานที่มาต่อกับ จะได้ว่า ค่าความตำนทาน = (แรงดันแหล่งจ่าย ? แรงดันตกคร่อมLED) / 0.002 (0.002 คือ 20mA)

ตัวอย่าง

เมื่อแหล่งจ่าย 5 V จะได้ว่า R = (5 - 2) / 0.02 = 150 คือใช้ ด้วด้านทาน 150 โอห์ม เมื่อแหล่งจ่าย 9 V จะได้ว่า R = (9 - 2) / 0.02 = 350 คือใช้ ด้วด้านทาน 350 โอห์ม เมื่อแหล่งจ่าย 12 V จะได้ว่า R = (12 - 2) / 0.02 = 500 คือใช้ ด้วด้านทาน 500 โอห์ม

แหล่งจ่าย	ค่าความต้านทาน (โอห์ม)
3V	100 - 200
5V	150 - 250
9V	350 - 450
12V	500 - 1K

• LED ต่างสี อาจใช้ Forward Voltage ไม่เท่ากัน

ถ้าพูดถึง LED ขนาด 3 หรือ 5 mm ซึ่งสีที่ใช้หลักๆก็จะมี สีแดง เขียว เหลือง น้ำเงิน และ ขาว , LED ทั้ง 5 สีนี้จะใช้ Forward Current เท่าๆกันคือประมาณ 20 mA แต่ มันอาจจะใช้ Forward Voltage ไม่เท่ากันดังตารางนี้

Color	VF Min	Vr Max
Red	1.9 V	2.1 V
Yellow	1.9 V	2.1 V
Green	2.1 V	3.0 V
Blue	3.0 V	3.2 V
White	3.0 V	3.2 V

* ค่าทั้งหมดเป็นค่าโดยประมาณ*

จะเห็นได้ว่า เราสามารถแบ่ง LED ได้เป็น 3 กลุ่ม ตามปริมาณการใช้แรงดันตกคร่อม คือ

กลุ่มที่ 1 ประกอบด้วย LED สีแดง และเหลือง

กลุ่มที่ 2 ประกอบด้วย LED สีเขียว

กลุ่มที่ 3 ประกอบด้วย LED สีน้ำเงิน และสีขาว

ชึ่ง LED ทั้ง 3 กลุ่มนี้ ไม่สามารถนำมาต่อขนานกันได้* เนื่องจากการต่อขนานจะทำให้อุปกรณ์ที่ต่อขนานกันอยู่ ได้รับแรงดันตกคร่อมเท่ากัน ซึ่ง LED ทั้ง 3 กลุ่มใช้แรงดันตกคร่อมไม่เท่ากัน หากนำมาต่อขนานกัน จะทำให้หลอดที่ต้องการใช้แรงดันมากกว่า ได้รับแรงดันไม่เพียงพอ! กลุ่มที่ 1 (สีแดงและเหลือง) อาจต่อขนานกับกลุ่มที่ 2 (สีเขียว) ได้ เนื่องจากมีช่วงแรงดันตกคร่อมซ้ำกันอยู่คือ 2.1 Volts แต่ไม่นิยมต่อขนานกัน เพราะจะทำให้หลอดสีเขียวสว่างไม่เด็มที่ ดังนั้น หากต้องการต่อหลอด LED หลายๆสี แต่ถ้าใช้แค่กลุ่มเดียว ก็สามารถต่อขนานกันได้ แต่ถ้าหากมี LED 2 กลุ่มขึ้นไป ต้องใช้การต่อผสมแทน

รูปการต่ออนุกรม

ในกรณีที่เราต่อ LED หลายตัวแบบอนกรม เราก็สามารถเปลี่ยนแรงดันตกคร่อม เช่น

ถ้าเราต่อกัน 2 ตัว เราก็เปลี่ยนแรงดันต[ิ]กคร่อมเป็น 4V

ถ้าเราต่อกัน 3 ตัว เราก็เปลี่ยนแรงดันตกคร่อมเป็น 6V

ตัวอย่างเมื่อต่อกัน 2 ตัวอนกรม

เมื่อแหล่งจ่าย 5 V จะได้ว่า R = (5 - 4) / 0.02 = 50 คือใช้ ตัวต้านทาน 50 โอห์ม

เมื่อแหล่งจ่าย 9 V จะได้ว่า R = (9 - 4) / 0.02 = 250 คือใช้ ตัวต้านทาน 250 โอห์ม

เมื่อแหล่งจ่าย 12 V จะได้ว่า R = (12 - 4) / 0.02 = 400 คือใช้ ตัวต้านทาน 500 โอห์ม

** การเลือกใช้ ตัวด้านทานนั้นจะจะใช้มากกว่านี้ก็ได้ครับซึ่งจะเป็นผลดีกว่าเพราะ LED จะไม่เสียไวแต่ความสว่างจะน้อยลงไปด้วยเท่านั้นเอง ** ในกรณีถ้าเป็นหลอดชุปเปอร์ไบท์ แรงดันตกคร่อมจะสูงกว่าแบบธรรมดา คือจะอยู่ในช่วง 2.5 ? 3V

ยกตัวอย่างเช่น หากไฟที่จะนำมาต่อมีแรงดัน12V แต่หลอด LED ใช้ไฟเพียง 2V และกินกระแส 20มิลิแอมป์ ตั้ง 12ลบด้วย 2 แล้ว หารด้วย 0.02 (20มิลิแอมป์ คิดเป็นแอมป์ จะได้ 0.02) จะได้ 12-2หารด้วย 0.02= 500 (ใช้R 500โอห์มมาต่อ)

การต่อขนาน LED แบบน<mark>ี้ไม่ถูกต้อง</mark> เพราะแต่ละสีใช้แรงดันไฟเลี้ยงไม่เท่ากัน ต้องใช้ R แยกไฟเลี้ยงของแต่ละหลอดจึงจะถูกต้อง

การต่อ LED หลายสีที่ถูกต้อง ต้องใช้ตัวต้านทานแยก

วิธีหาค่าความต้านทานแบบขนาน

การหาค่าความด้านทาน ในกรณีที่ตัวด้านทานค่าไม่เท่ากัน มาขนานกันดังภาพ วิธีการหาค่ามีดังนี้ 1.จับคู่ตัวด้านทานมา1คู่ก่อน (จับคู่ใหนก่อนก็ได้) แต่ในภาพจะจับคู่R1 กับ R2 โดย R 1 มีค่า 560 โอห์ม R2 มีค่า 470โอห์ม

2.จากนั้นนำค่า R 1 และ R2 มาบวกกัน จะได้ 560+470= 1,030 และจากนั้น ให้นำค่า R1 และ R2 มาคูณกัน จะได้ 560X 470 = 263,200 เมื่อได้ผลลัพธ์แล้ว ตั้ง 263,200 มาหารด้วย 1,030 จะได้ 263,200 หาร 1,030= 255 เพราะฉะนั้น R1ขนานกับ R2 ค่าความด้านทานจะได้ 255 โอห์ม 3.เมื่อได้ค่า R 1และ2 ที่ต่อขนานกันแล้ว นำมา + กับ R3 จะได้ดังนี้ 255+220= 475 จากนั้นให้คูณด้วยครับ จะได้ 255X 220= 56,100เมื่อได้แล้ว ให้ตั้ง 56,100 หารด้วย 475 จะได้ 56,100 หาร 475= 118

เพราะฉะนั้น ตัวต้านทาน R1 R2 R3 ที่ต่อขนานกัน จะได้คำตอบที่ **118 โอห์ม**

ในกรณีที่ตัวต้านทาน มีค่าเท่ากัน ให้หาร2ได้เลยครับ ดังภาพคิดได้ดังนี้..

1.ตัวต่านทาน R1= 500 R3=500 เนื่องจากตัวต้านทานสองตัวนี้มีค่าเท่ากัน

จึงให้นำตัวต้านทานที่ค่าเท่ากันมาหารกันก่อน โดยตัวต้านทานค่า 500โอห์ม มี2ตัว ให้ตั้ง 500หารด้วย 2

จะได้ 250โอห์ม เพราะฉะนั้น R1และ R3 ต่อขนานกัน จะได้ **250โ**อห์ม

2.เมื่อได้ค่าแล้ว ตั้ง 250+ด้วย ค่าของ R2 (R2 มีค่า 420โอห์ม) ก็จะได้ 250+420=670 จากนั้นเปลี่ยนมาคูณ 250X 420=105,000

3.ตั้ง 105,000 หารด้วย 670 =156 โอห์ม เพราะฉะนั้น ค่าความต้านทานที่ต่อขนาดกัน ทั้ง3ตัว จะได้ **156 โอห์ม**

การหาค่ามีดังนี้.. R1 =1,000 R2=200 ตั้ง 1,000+200=1,200 จากนั้นเปลี่ยนมาคูณตั้ง 1,000X 200=200,000 เมื่อได้ค่ามาแล้ว เอาผลลัพธ์ที่คูณกัน มาหารด้วย ผลลัพธ์ที่บวกกัน จะได้ 200,000หาร 1,200= 166 โอห์ม

เพราะฉะนั้น R1 R2 ต่อขนานกันจะได้ค่าความต้านทานที่ **166 โอห์ม**

การหากระแสที่ไหลผ่าน R แต่ละตัวในวงจรขนานมีดังนี้..

ี จากภาพ **แบตเตอรี่ 48V 15Ah** เมื่อจ่ายเข้าวงจรขนานดังรูปด้านล่าง จะมีกระแสไหลในวงจรรวมเท่าใด? วิธีหาคำตอบมีดังนี้ครับ

วิธีดือ <mark>>> เอาค่าแรงดัน มาหารด้วยค่าความต้านทานของ R แต่ละตัวครับ</mark>

R1=10 โอห์ม R2=50 โอห์ม R3=30 โอห์ม R4=20 โอห์ม

ทีนี้เรามาเริ่มหากระแสที่ไหลในตัวต้านทานแต่ละตัวกันครับ

(R1) 48 หาร 10= <u>4.8 Ah</u> (R2) 48 หาร 50= <u>0.96 Ah</u> (R3) 48 หาร 30 = <u>1.6 Ah</u> (R4) 48 หาร 20 = <u>2.4 Ah</u>

คำตอบคือ R1 = 4.8แอมป์ R2= 960มิลลิแอมป์ R3= 1.6แอมป์ R4= 2.4แอมป์ หากอยากทราบว่า กระแสที่ไหลในวงจรรวมทั้งหมดอยู่ที่เท่าใด ก็นำกระแสที่ได้มาบวกกันครับ >> 4.8+0.96+1.6+2.4 = 9.76 Ah

เพราะฉะนั้น กระแสที่ไหลในวงจรที่ต่อขนากันอยู่นี้คือ <u>9.76</u> แอมป์ ครับ

แต่เดี๋ยวก่อนน! <u>"ตอนนี้เรารู้แรงดันที่จ่ายให้กับวงจรแล้ว</u> <u>และกระแสที่ใหลรวมในวงจรเราก็ทราบแล้ว"</u> "และถ้าอยากรู้ว่าค่าความตั้านทานรวมของ R ที่ต่อขนานกันทั้งหมดว่าค่าเท่าไหร่..เราต้องทำยังใง?!!!"

ิตอบ : เอาค่าแรงดัน มาหารด้วยค่ากระแสที่ใหลในวงจรวมครับ วิธีคิดดังนี้.. แรงดัน = 48 กระแส 9.76 Ah >>> ตั้ง 48 หาร 9.76=**4.9**18032786885246 **คำตอบ ด้วด้านทานที่ต่อขนานกันอยู่ นี้ มีค่าความด้านทานรวม 4.9 โอห์ม**

เนื้อหานี้เป็นเพียงบางส่วนของหนังสือของผู้ลงทะเบียนเท่านั้น และกลุ่มที่จัดตั้งขึ้นมา เป็นกลุ่มสำหรับผู้ที่ไม่มีโอกาสศึกษาที่โรงเรียน เนื้อหาหนังสือจึงเป็นคำอธิบายแบบละเอียด

เพื่อให้ผู้ที่เริ่มศึกษาเข้าใจง่าย หากต้องการเข้ากลุ่ม บุคคลทั่วไป **190 บาทครับ** เป็นค่าลงทะเบียนเข้ากลุ่ม มีหนังสือเรียนรู้ให้ที่กลุ่มครับ ส่วนจะมีอะไรเพิ่มเติมหรือมีการแจกอะไรในกลุ่ม VIP ก็เข้าอ่านที่กลุ่มได้เลยครับ ในส่วนนี้ **ปิดรับ สิ้นเดือน**

โอนเงินมาบันชีกรุงศรี 442-142-1739 ชื่อบัญชี Chalongchai <u>หรือพร้อมเพย์ไม่เสียค่าโอน เบอร์ 087-235-1353</u> แต่ถ้าต้องการเป็นเล่ม แบบจัดส่งถึงบ้านแบบเป็นเล่ม 390 บาทครับ พร้อมเข้ากลุ่ม VIP เพราะบางท่านก็ต้องการเป็นเล่ม บางท่านก็ต้องการเป็นไฟล์ เลยต้องแจ้ง 2แบบครับ ต้องการรูปแบบใหนก็โอนตามนั้นครับผม**เปิดจองตลอดครับ** โอนแล้วแจ้งหลักฐานมาที่แชท ขอบคุณครับ หรือแอดมาเป็นเพื่อนผมได้ที่ >> Line ID: Nakaesa.ac.th

ติดตามหรือสอบถามปัญหาต่างๆได้ที่กลุ่ม >>> "วงจรอิเล็กข่างการขายของหรือสินค้าต่างๆได้ที่กลุ่ม >>> "วงจรอิเล็กต้องการเข้ากลุ่ม VIP ส่งคำขอเข้าที่กลุ่ม >>> "หนังสือเรีย

>>> "วงจรอิเล็กทรอนิกส์ (คิดคันดัดแปลง"

>>> "วงจรอิเล็กทรอนิกส์ (ซื้อขายอุปกรณ์)

>>> "หนังสือเรียนอิเล็กทรอนิกส*์* (VIP)"

