

Use of Vector- and Transition-based Strategies is Modulated by Knowledge of the Environment in Human Spatial Planning

Denis C. L. Lan, Laurence T. Hunt*, Christopher Summerfield* Department of Experimental Psychology, University of Oxford

(* Contributed equally as senior authors)

Introduction

Two ideas about how cognitive maps are used for planning:

- How do we combine the two strategies?
 - Knowing more states allow more accurate (transitionbased) navigation, but implausible to know all
 - Idea: Use vector-based strategies to head in general goal direction, fine-tune using transition-based strategies at well-learnt states

Task Design

- Question: does use of strategy depend on knowledge of states?
- Participants performed an online experiment in which they navigated through an 8x8 grid of 'objects'
- 4 blocks x 6 trials, each trial consists of 2 phases:
 - 1. Learning Phase: manipulate knowledge of states

- Click on blue squares to reveal 'landmarks'
 - 16 clicks total
 - 2, 4, 8, or 16 landmarks
- Click on yellow square to reveal 'goal'
- 2. Navigation Phase: assess use of navigation strategies

- Navigate to goal in two ways
 - 'Vector' click arrow to move one step in direction
 - 'Transition' click object to move to that state

Both movement methods allow movement only to adjacent states (i.e, they are equivalent but allow dissociation of strategies)

Human Behaviour

Participants use 'transitions' more at welllearnt 'landmarks'

Participants perform best at an intermediate number of landmarks

> Trade-off between familiarity and environmental coverage

Computational Model

- **MLP** trained with dropout to predict x/y-coordinates of landmarks
 - Training iterations kept the same for all numbers of landmarks
- Agent chooses actions based on coordinates and uncertainty (estimated via dropout)

more at 'landmarks'

Model without confidence-weighting does not use transitions at landmarks

Model performs best at intermediate

Model with more hidden units does not exhibit U-shaped pattern

Conclusions

- Participants use transition-based strategies near well-learnt 'landmarks'
 - Likely use transition-based strategies more when confidence is high
- Participants perform best at intermediate number of landmarks
- Likely due to memory constraints
- Paradigm for understanding use of transition- vs-vector-based strategies

Summerfield Lab Posters