ODDZIAŁYWANIA SILNE

ODDZIAŁYWANIA SILNE

- Oddziaływania silne odpowiedzialne są za budowę jąder atomowych, oddziaływania jądrowe, oraz wiązanie kwarków w hadrony
- Oddziaływania silne zachodzą poprzez wymianę gluonów, które są odpowiednikiem fotonów w oddziaływaniach elektromagnetycznych
- Ich zasięg jest bardzo mały (do ok. 10^{-15} m)
- W oddziaływaniach silnych odpowiednikiem ładunku elektrycznego jest ładunek kolorowy, który występuje w 3 rodzajach: r, g, b.
- Kwarki mają kolory: r, g, b.
- Antykwarki mają kolory: r̄, ḡ, b̄.
- Kolor jest zawsze zachowany w oddziaływaniach
- Wszystkie obserwowalne cząstki są neutralne kolorowo, więc kolory kwarków wchodzących w skład hadronów muszą mieć kombinacje:

$$r + g + b = 0$$

$$\mathbf{r} + \overline{\mathbf{r}} = 0$$
, $\mathbf{g} + \overline{\mathbf{g}} = 0$, $\mathbf{b} + \overline{\mathbf{b}} = 0$

GLUONY

- Gluon opisuje się jako kombinacja jednego koloru i jednego antykoloru.
 Istnieje 9 takich kombinacji: rr, gg, bb, gr, rg, rb, br, gb, bg.
- Te kombinacje nie są równoznaczne z gluonami. Przede wszystkim gluonów jest 8, a nie 9.
- Oddziaływania silne są opisane przez grupę SU(3) i z niej wynika postać gluonów.

 W grupie SU(3) przejście z jednego stanu do drugiego jest opisane przez macierz transformacji

$$\begin{pmatrix} \mathbf{r'} \\ \mathbf{g'} \\ \mathbf{b'} \end{pmatrix} = \begin{pmatrix} \mathbf{r\overline{r}} & \mathbf{r\overline{g}} & \mathbf{r\overline{b}} \\ \mathbf{g\overline{r}} & \mathbf{g\overline{g}} & \mathbf{g\overline{b}} \\ \mathbf{b\overline{r}} & \mathbf{b\overline{g}} & \mathbf{b\overline{b}} \end{pmatrix} \begin{pmatrix} \mathbf{r} \\ \mathbf{g} \\ \mathbf{b} \end{pmatrix}$$

- Operacje na antykolorach opisywane są przez sprzężenie hermitowskie tej macierzy
- W ogólnym przypadku macierze transformacji są zespolone, czyli mają 18 niezależnych parametrów (są liniową kombinacją 18 macierzy elementarnych)
- Każda macierz elementarna odpowiada jednemu gluonowi
- Ale gluonów nie jest 18

• Macierze transformacji muszą spełniać warunek: $UU^{\dagger}=1$

- Daje nam to 9 równań, więc ilość niezależnych elementów redukuje się do 9.
- Mamy 9 macierzy elementarnych

$$\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\lambda_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda_2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$\lambda_3 = \begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} & \mathbf{0} \end{pmatrix}$$

$$\lambda_4 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \qquad \lambda_5 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \lambda_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}$$

$$\lambda_5 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\lambda_6 = \begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & -i \\ \mathbf{0} & i & \mathbf{0} \end{pmatrix}$$

$$\lambda_7 = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}$$

$$\lambda_7 = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix} \qquad \lambda_8 = \frac{1}{\sqrt{3}} \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & -\mathbf{2} \end{pmatrix} \qquad \lambda_9 = a \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}$$

$$\lambda_9 = a \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}$$

To daje 9 gluonów:

$$(\mathbf{r}\overline{\mathbf{b}} + \mathbf{b}\overline{\mathbf{r}})/\sqrt{2} \qquad (\mathbf{r}\overline{\mathbf{g}} + \mathbf{g}\overline{\mathbf{r}})/\sqrt{2} \qquad (\mathbf{b}\overline{\mathbf{g}} + \mathbf{g}\overline{\mathbf{b}})/\sqrt{2}$$

$$-i(\mathbf{r}\overline{\mathbf{b}} - \mathbf{b}\overline{\mathbf{r}})/\sqrt{2} \qquad -i(\mathbf{r}\overline{\mathbf{g}} + \mathbf{g}\overline{\mathbf{r}})/\sqrt{2} \qquad -i(\mathbf{b}\overline{\mathbf{g}} + \mathbf{g}\overline{\mathbf{b}})/\sqrt{2}$$

$$(\mathbf{r}\overline{\mathbf{r}} - \mathbf{b}\overline{\mathbf{b}})/\sqrt{2} \qquad (\mathbf{r}\overline{\mathbf{r}} + \mathbf{b}\overline{\mathbf{b}} - 2\mathbf{g}\overline{\mathbf{g}})/\sqrt{6} \qquad (\mathbf{r}\overline{\mathbf{r}} + \mathbf{b}\overline{\mathbf{b}} + \mathbf{g}\overline{\mathbf{g}})/\sqrt{3}$$

 To dalej za dużo gluonów, ale macierze grupy SU(3) mają jeszcze 1 warunek:

$$det(U) = 0 \implies tr(U) = 0$$

- Dodatkowy warunek redukuje jeszcze 1 niezależny parametr, czyli zostaje nam 8.
- Żeby ten warunek był spełniony ślady wszystkich macierzy elementarnych muszą być równe 0.

- Widzimy, że ślad macierzy λ_9 nie jest równy 0, więc musimy usunąć te macierz.
- Zostaje nam 8 gluonów:

$$\frac{(\mathbf{r}\mathbf{b} + \mathbf{b}\mathbf{r})/\sqrt{2}}{-i(\mathbf{r}\mathbf{b} - \mathbf{b}\mathbf{r})/\sqrt{2}} \frac{(\mathbf{r}\mathbf{g} + \mathbf{g}\mathbf{r})/\sqrt{2}}{-i(\mathbf{r}\mathbf{g} + \mathbf{g}\mathbf{r})/\sqrt{2}} \frac{(\mathbf{b}\mathbf{g} + \mathbf{g}\mathbf{b})/\sqrt{2}}{-i(\mathbf{b}\mathbf{g} + \mathbf{g}\mathbf{b})/\sqrt{2}}$$

$$\frac{(\mathbf{r}\mathbf{r} - \mathbf{b}\mathbf{b})/\sqrt{2}}{(\mathbf{r}\mathbf{r} + \mathbf{b}\mathbf{b} - 2\mathbf{g}\mathbf{g})/\sqrt{6}}$$

 Jest to przykładowy sposób ich przedstawienia. Można to zrobić też na inne sposoby, np:

rb br rg gr bg gb
$$(r\overline{r} - b\overline{b})/\sqrt{2}$$
 $(r\overline{r} + b\overline{b} - 2g\overline{g})/\sqrt{6}$

- Symetria gluonów jest oparta na tym samym wzorcu co symetria zapachów kwarków w mezonach
- Jeśli zastąpimy: $u \to r$, $d \to g$, $s \to b$, dostaniemy schemat:

9-TY GLUON

- Gluon ($r\overline{r} + b\overline{b} + g\overline{g}$)/ $\sqrt{3}$ byłby neutralny kolorowo, więc nie oddziaływałby z innymi gluonami i można by go było bezpośrednio zaobserwować.
- Miałby nieskończony zasięg, co spowodowałoby, że oddziaływania silne również były by nieograniczone zasięgowo.
- Taki gluon zachowywałby się jak foton.

PRZYKŁADY ODDZIAŁYWAŃ SILNYCH

CZĄSTKI POWSTAJĄCE W ODDZIAŁYWANIACH SILNYCH

- Mezony (qq) np. K⁺ (us)
- Bariony (qqq) np. p (uud)
- Tetrakwark ($q\bar{q}q\bar{q}$) np. Z(4430) ($c\bar{c}d\bar{u}$)
- Pentakwark ($q\bar{q}qqq$) np. P(4380)⁺ (uudc \bar{c})
- Hexakwark (qqqqqq, qqqqqq)
 np. d*(2380) (uuuddd)
- Heptakwark (qqqqqqq) nie odkryto takiej cząstki
- Glueball (gg, ggg) np.(\overline{gr} \overline{rg}) np. $f_0(1370)$ (kandydat)
- Stany zmieszane (qqg) np.(q $\overline{\bf q}$ r $\overline{\bf b}$) np. $\pi(1800)$ może być takim stanem zmieszanym

UWIĘZIENIE KOLORU

Elektromagnetyzm:

- Cząstka naładowana elektrycznie wytwarza wokół siebie pole wirtualnych fotonów. Energia tego pola zawiera się w energii cząstki.
- Możemy to pole przedstawić jako linie pola wychodzące z cząstki.
- Natężenie pola jest proporcjonalne do odległości między liniami pola w danej odległości od źródła.
- Jeśli cząstka jest niezwiązana linie pola rozchodzą się do nieskończoności i energia cząstki musi zawierać energie całego tego pola
- Fotony ze sobą nie oddziałują, więc linie pola rozchodzą się niezależnie od siebie (im dalej od źródła tym linie są od siebie bardziej oddalone)

UWIĘZIENIE KOLORU

Oddziaływania silne:

 W oddziaływaniach silnych wszystko jest tak samo, oprócz tego, że gluony ze sobą oddziałują i linie pola nie rozchodzą się niezależnie od siebie.
 Schodzą się one ze sobą w kształt przypominający tubę

- Linie pola są do siebie równoległe i odległość między nimi nie maleje z odległością od źródła, co oznacza, że natężenie pola jest stałe niezależnie od tego jak daleko od źródła się znajdujemy i energia pola rośnie z odległością
- Niezwiązana cząstka z ładunkiem kolorowym musiałaby mieć nieskończoną energię
- Dodatkowym źródłem pola są gluony

UWIĘZIENIE KOLORU

 Jeśli spróbujemy rozdzielić od siebie kwarki energia wiązania będzie rosła liniowo z odległością dopóki nie zostanie przekroczony próg na kreacje pary kwarków. Wtedy jeden z wyprodukowanych kwarków złączy się z jednym z oryginalnych, a drugi wyprodukowany z drugim oryginalnym i w efekcie dostaniemy dwie obojętne kolorowo cząstki.

HADRONIZACJA

- Hadronizacja polega na tym, że kiedy w interakcji zostaną wyprodukowane kwarki (na początku są one niezwiązane (kwazi-swobodne)) to są one obserwowane jako dżety bezkolorowych cząstek. Zjawisko to można podzieli na 5 etapów:
- Wysokoenergetyczny kwark i antykwark są produkowane podczas interakcji.
- Kwarki oddalają się od siebie. Pole kolorowe jest skoncentrowane w "tubie" o gęstości energii równej około $1\frac{\text{GeV}}{\text{fm}}$.
- Kwarki oddalają się dalej i energia zawarta w polu kolorowym jest dostatecznie duża, by wytworzyć koleją parę kwark-antykwark.
- Proces powtarza się z kolejnymi wyprodukowanymi parami kwarków.
- Ostatecznie kwarki mają na tyle małą energię, żeby połączyć się w hadrony.

SILNA STAŁA

- Potencjał oddziaływań silnych ma 2 składowe.
- Pierwsza jest podobna do potencjału w oddziaływaniach elektromagnetycznych.
- Druga pochodzi od samo oddziaływania gluonów.

$$V_{QCD} = -\frac{4}{3}\frac{\alpha_s}{r} + kr$$

• Można obliczyć siłę oddziaływań pomiędzy dwoma kwarkami dla dużych r:

$$F = -\frac{\partial V}{\partial r} = \frac{4}{3} \frac{\alpha_s}{r^2} + k, \qquad k \approx 1 \frac{\text{GeV}}{\text{fm}}$$

$$F \approx \frac{1.6 \cdot 10^{-10}}{10^{-15}} = 160000 \,\mathrm{N}$$

- α_s określa siłę oddziaływań silnych
- α_s nie jest stałą
- Model dobrze opisuje stany związane ciężkich kwarków (c i b)

SILNA STAŁA

 Fluktuacje kwantowe w oddziaływaniach silnych tworzą nie tylko chmurę wirtualnych kwarków, ale też chmurę gluonów:

• Po wysumowaniu po diagramach otrzymujemy wzór na α_s :

$$\alpha_{S}(q^{2}) = \frac{\alpha_{S}(q_{0}^{2})}{1 + B\alpha_{S}(q_{0}^{2}) \ln\left(\frac{q^{2}}{q_{0}^{2}}\right)'} \qquad B = (11N_{c} - 2N_{f}) \cdot 12\pi$$

- N_c liczba kolorów (N_c = 3)
- N_f liczba smaków (N_f = 6)

BIEGNĄCA SILNA STAŁA

- α_s maleje ze wzrostem Q^2 , czyli mamy do czynienia ze zjawiskiem przeciwnym do ekranowania.
- Dla niskich energii (i odpowiadających jej dużych odległości) α_s = 1 i nie można wtedy stosować do obliczeń rachunku perturbacyjnego
- Wraz ze wzrostem energii (i zmniejszaniem się odległości) wartość α_s maleje i przy masie M_Z (masa bozonu Z) osiąga wartość 0.12 i jest na tyle mała, że można stosować rachunek perturbacyjny.

• Definiujemy granicę $\Lambda_{QCD}=332~{
m MeV}$ powyżej której można stosować

rachunek perturbacyjny.

SWOBODNE KWARKI

- Zmniejszanie wartości α_s wraz z energią powoduje, że dla odpowiednio dużych energii i małych dystansów kolor jest coraz słabiej uwięziony (dlatego w procesie hadronizacji możemy traktować dwa powstałe kwarki jako do pewnego stopnia swobodne).
- W normalnych warunkach uwięzienie koloru obowiązuje tylko na odpowiednio dużych dystansach (w praktyce niezbyt dużych). Głęboko wewnątrz hadronów na odległościach $\ll 1 \, \mathrm{fm}$ kwarki i gluony zachowują się jak cząstki swobodne.
- Zmniejszanie wartości α_s oznacza zmniejszanie prawdopodobieństwa na oddziaływanie, w związku z tym samo oddziaływanie gluonów jest coraz słabsze i coraz łatwiej jest odciągać od siebie 2 kwarki, co powoduje, że zachowują się one jak swobodne na coraz większych dystansach.
- W temperaturach powyżej $1.7 \cdot 10^{12} \text{K}$ kwarki mogą istnieć całkowicie swobodnie (ładunek kolorowy nie jest uwięziony). Taki stan nazywamy plazmą kwarkowo-gluonową.

 Możemy zweryfikować istnienie koloru porównując przekroje czynne na produkcję pary mionów i pary kwarków przy anihilacji elektron-pozyton

$$R_{\mu} = \frac{\sigma(e^{+}e^{-} \rightarrow q\bar{q})}{\sigma(e^{+}e^{-} \rightarrow \mu^{+}\mu^{-})}$$

- Jeśli pominiemy masy, to stany końcowe różnią się tylko ładunkiem elektrycznym
- Przekrój czynny na produkcję pary mionów obliczamy ze wzoru:

$$\sigma(e^+e^- \to \mu^+\mu^-) = \frac{4\pi\alpha^2}{3s}$$

 Przekrój czynny na produkcje jednego kwarka (bez koloru) obliczamy ze wzoru:

$$\sigma(e^+e^- \to q\bar{q}) = \frac{4\pi\alpha^2}{3s}Q_q^2$$

 Poprzedni wzór jest przekrojem czynnym na produkcje konkretnego kwarka np.u. Żeby dostać przekrój czynny na produkcje dowolnego kwarka trzeba wysumować kwadraty ładunków wszystkich kwarków:

•
$$\sigma(e^+e^- \to q\bar{q}) = \frac{4\pi\alpha^2}{3s} \sum_i Q_i^2$$

 Kiedy uwzględnimy, że każdy kwark może występować w 3 kolorach przekrój czynny wynosi:

$$\sigma(e^+e^- \to q\bar{q}) = 3 \cdot \frac{4\pi\alpha^2}{3s} \sum_i Q_i^2$$

Dostajemy wartość R:

$$R_{\mu} = 3 \cdot \sum_{i} Q_{i}^{2}$$

 Należy pamiętać, że sumując po kwadratach ładunków bierzemy pod uwagę tylko kwarki dostępne przy danej energii w układzie środka masy.

Energy	Ratio R	
$\sqrt{s}>2m_s\sim$ 1 GeV	$3(\frac{4}{9} + \frac{1}{9} + \frac{1}{9})$	= 2
	u,d,s	
$\sqrt{s}>2m_{m c}\sim$ 4 GeV	$3(\frac{4}{9} + \frac{1}{9} + \frac{1}{9} + \frac{4}{9})$	$=3\frac{1}{3}$
	u,d,s,c	
$\sqrt{s}>2m_{b}\sim$ 10 GeV	$3(+\frac{1}{9})$	$=3\frac{2}{3}$
	u,d,s,c, <mark>b</mark>	
$\sqrt{s} > 2m_{t} \sim$ 350 GeV	$3(+\frac{4}{9})$	= 5
	u,d,s,c,b,t	

- Innym sposobem weryfikację istnienia koloru jest pomiar szerokości rozpadu $\pi^0 \to \gamma \gamma$.
- Obliczenia są zgodne z eksperymentem tylko jeśli uwzględnimy 3 kolory.

- Kolejnym dowodem istnienia koloru jest istnienie barionu $\Omega^{-}(sss)$.
- Jest to barion w którym wszystkie spiny kwarków są ustawione do góry.
- Łamie to zakaz Pauliego, gdyż wszystkie 3 kwarki znajdują się w tym samym stanie kwantowym. Dodatkowo funkcja falowa jest symetryczna.
- Chyba, że istnieje dodatkowa liczba kwantowa. Jeśli uwzględnimy istnienie 3 kolorów, to zakaz Pauliego nie jest złamany i funkcja falowa jest antysymetryczna.
- Funkcja falowa koloru to : $\psi_c = (rgb + gbr + brg grb rbg bgr)/\sqrt{6}$

DOWODY NA ISTNIENIE GLUONÓW

- Istnienie gluonów można badać analizując proces anihilacji elektronpozyton, a następnie kreacji pary kwark-antykwark.
- Tak samo jak elektron mógł emitować foton, to kwark może emitować gluon.

Powstały gluon, podobnie jak kwarki będzie tworzył dżet w procesie hadronizacji.

 Z rozkładu kątowego dżetów możemy wywnioskować, że gluon ma spin równy 1.

DOWODY NA ISTNIENIE GLUONÓW

Możemy oczywiście obserwować więcej niż 3 dżety. Możliwe są też procesy:

POMIAR α_s

ullet α_s można zmierzyć badając procesy z większą ilością pęków hadronowych

$$rac{\sigma(e^+e^-
ightarrow qar{q}g)}{\sigma(e^+e^-
ightarrow qar{q})} \propto lpha_S$$

 Emisja gluonu przez kwark tworzy na schemacie dodatkowy węzeł oddziaływań silnych, więc prawdopodobieństwo takiego stanu będzie dodatkowo proporcjonalne do stałej oddziaływań silnych

POMIAR α_s

PODSUMOWANIE

- Oddziaływania silne są widoczne tylko na małych dystansach.
- Teoria oddziaływań silnych jest podobna do elektromagnetycznych, ale:
 - posiada 3 rodzaje ładunku (kolory)
 - posiada 8 bozonów pośredniczących, które mają ładunek silny (kolor) i oddziałują ze sobą
- Wszystkie obserwowalne cząstki są neutralne kolorowo.
- Gluony mogą tworzyć cząstki.
- Kwarki i gluony obserwujemy w detektorze jako dżety bezkolorowych cząstek.
- Przy niskich energiach stała silna ma wartość 1 i nie można stosować rachunku perturbacyjnego, ale wraz ze wzrostem energii wartość stałej maleje i użycie rachunku perturbacyjnego staje się możliwe.
- Istnienia koloru i gluonów można dowieść między innymi badając przekroje czynne na kreacje par po anihilacji elektron-pozyton.

KONIEC