CH-3

- CH-3
 - 3-1 Pressure Measurement Devices
 - 3-2 Hydrostatic Forces on Submerged Plane Surfaces
 - Definition
 - 3-3 Fluids in Rigid-Body Motion
 - Acceleration on a Straight Path
 - Rotation in a Cylindrical Container

3-1 Pressure Measurement Devices

$$P_{\rm gage} = P_{\rm abs} - P_{\rm atm}$$

$$P_{
m vac} = P_{
m atm} - P_{
m abs} = -P_{
m gage}$$

3-2 Hydrostatic Forces on Submerged Plane Surfaces

Definition

On a plane surface, the hydrostatic forces form a system of parallel forces, and we often need to determine the *magnitude* of the force and its *points of location*, which is called **the center of the pressure**

$$egin{aligned} F_R &= \int P \mathrm{d}A \ &= P_0 A +
ho g \sin heta \int y \mathrm{d}A \ &y_c &= rac{1}{A} \int y \mathrm{d}A \ &I_{xx,O} &= \int y^2 \mathrm{d}A = I_{xx,C} + y_C^2 A \end{aligned}$$

and we ca get that

$$egin{aligned} F_R &= (P_0 +
ho g y_c \sin heta) A \ y_P F_R &= \int y P \mathrm{d} A \ &= P_0 \int y \mathrm{d} A +
ho g \sin heta \int y^2 \mathrm{d} A \ &= P_0 A y_c +
ho g \sin heta I_{xx,O} \ &= P_0 A y_c +
ho g \sin heta (I_{xx,C} + y_C^2 A) \ y_P &= y_C + rac{I_{xx,C}}{[y_C + P_0/(
ho g \sin heta)] A} \end{aligned}$$

if the atmosphere is ignored

$$A = ab/2, I_{xx, C} = ab^3/36$$
(d) Triangle

 $y_P = y_C + rac{I_{xx,C}}{v_C A}$

 $A = \pi R^2$, $I_{xx, C} = \pi R^4/4$ (b) Circle

$$A = \pi R^2/2$$
, $I_{xx, C} = 0.109757R^4$
(e) Semicircle

$$A = \pi ab/2$$
, $I_{xx, C} = 0.109757ab^3$
(f) Semiellipse

3-3 Fluids in Rigid-Body Motion

Acceleration on a Straight Path

Slope
$$=rac{\mathrm{d}z}{\mathrm{d}x}=-rac{a_x}{g+a_z}=- an heta$$

and the pressure distribution is expressed as

$$P = P_0 - \rho a_x x - \rho (g + a_z) z$$

Rotation in a Cylindrical Container

and the pressure is expressed as

$$P=P_0+rac{
ho\omega^2}{2}r^2-
ho gz$$