Fonctions usuelles

Radicaux

Logarithmes

Exercice 1 [01827] [Correction]

Établir, pour tout $x \ge 0$, l'encadrement

$$x - \frac{1}{2}x^2 \le \ln(1+x) \le x.$$

Exercice 2 [01828] [Correction]

(a) Montrer que, pour tout x > -1

$$\ln(1+x) \le x.$$

(b) En déduire que pour tout $n \in \mathbb{N} \setminus \{0, 1\}$

$$\left(1 + \frac{1}{n}\right)^n \le e \le \left(1 - \frac{1}{n}\right)^{-n}.$$

Exercice 3 [01829] [Correction]

Montrer que pour tout a, b > 0

$$\frac{1}{2}(\ln a + \ln b) \le \ln \frac{a+b}{2}.$$

Exercice 4 [01830] [Correction] Soit $0 < a \le b$. On pose $f : x \mapsto \frac{\ln(1+ax)}{\ln(1+bx)}$ définie sur \mathbb{R}_+^* .

Étudier la monotonie de f et en déduire que $\ln\left(1+\frac{a}{b}\right)\ln\left(1+\frac{b}{a}\right) \leq (\ln 2)^2$.

Exercice 5 [01831] [Correction]

Montrer que le nombre de chiffres dans l'écriture décimale d'un entier n>0 est $|\log_{10} n| + 1.$

Exercice 6 [03626] [Correction] (Lemme de Gibbs)

(a) Justifier

$$\forall x > 0, \ln x \le x - 1.$$

(b) Soient (p_1, \ldots, p_n) et (q_1, \ldots, q_n) des *n*-uplets formés de réels strictement positifs vérifiant

$$\sum_{k=1}^{n} p_k = \sum_{k=1}^{n} q_k = 1.$$

Établir

$$\sum_{i=1}^{n} p_i \ln q_i \le \sum_{i=1}^{n} p_i \ln p_i.$$

Dans quel(s) cas y a-t-il égalité?

Puissances et exponentielles

Exercice 7 [01833] [Correction]

Simplifier a^b pour $a = \exp x^2$ et $b = \frac{1}{x} \ln x^{1/x}$.

Exercice 8 [01834] [Correction]

Parmi les relations suivantes, lesquelles sont exactes :

- (a) $(a^b)^c = a^{bc}$ (c) $a^{2b} = (a^b)^2$ (e) $(a^b)^c = a^{(b^c)}$ (b) $a^b a^c = a^{bc}$ (d) $(ab)^c = a^{c/2} b^{c/2}$ (f) $(a^b)^c = (a^c)^b$?

Exercice 9 [01835] [Correction]

Comparer

$$\lim_{x \to 0^+} x^{(x^x)}$$
 et $\lim_{x \to 0^+} (x^x)^x$.

Exercice 10 [01836] [Correction]

Déterminer les limites suivantes :

(a)
$$\lim_{x\to+\infty} x^{1/x}$$

(b)
$$\lim_{x\to 0} x^{\sqrt{x}}$$

(c)
$$\lim_{x\to 0^+} x^{1/x}$$

Exercice 11 [01837] [Correction]

Résoudre les équations suivantes :

(a)
$$e^x + e^{1-x} = e + 1$$
 (b) $x^{\sqrt{x}} = (\sqrt{x})^x$

(b)
$$x^{\sqrt{x}} = (\sqrt{x})^x$$

(c)
$$2^{2x} - 3^{x-1/2} = 3^{x+1/2} - 2^{2x-1}$$

Exercice 12 [01838] [Correction]

Résoudre les systèmes suivants :

(a)
$$\begin{cases} 8^x = 10y \\ 2^x = 5y \end{cases}$$

(b)
$$\begin{cases} e^x e^{2y} = a \\ 2xy = 1 \end{cases}$$

Exercice 13 [03652] [Correction]

Résoudre le système

$$\begin{cases} a+b+c=0\\ e^a+e^b+e^c=3 \end{cases}$$

d'inconnue $(a, b, c) \in \mathbb{R}^3$

Fonctions trigonométriques

Exercice 14 [01839] [Correction]

Établir que pour tout $x \in \mathbb{R}_+$, on a $\sin x \le x$ et pour tout $x \in \mathbb{R}$, $\cos x \ge 1 - \frac{x^2}{2}$.

Exercice 15 [01840] [Correction]

Développer :

(a)
$$\cos(3a)$$

(b)
$$\tan(a+b+c)$$

Exercice 16 [01841] [Correction]

Calculer $\cos \frac{\pi}{8}$ en observant $2 \times \frac{\pi}{8} = \frac{\pi}{4}$.

Exercice 17 [01842] [Correction]

Simplifier

$$\frac{\cos p - \cos q}{\sin p + \sin q}$$

En déduire la valeur de

$$\tan \frac{\pi}{24}$$
.

Exercice 18 [01845] [Correction]

Pour $a, b \in \mathbb{R}$ tels que $b \neq 0$ [2 π], calculer simultanément

$$\sum_{k=0}^{n} \cos(a+kb) \text{ et } \sum_{k=0}^{n} \sin(a+kb).$$

Exercice 19 [01846] [Correction]

Soit $x \neq 0$ [2 π].

(a) Montrer

$$\sin(x) + \sin(2x) + \dots + \sin(nx) = \frac{\sin\frac{(n+1)x}{2}\sin\frac{nx}{2}}{\sin\frac{x}{2}}$$

en procédant par récurrence sur $n \in \mathbb{N}$.

(b) En exploitant les nombres complexes.

Exercice 20 [01847] [Correction]

Résoudre les équations suivantes d'inconnues $x \in \mathbb{R}$.

(a)
$$\cos(2x - \pi/3) = \sin(x + 3\pi/4)$$

(d)
$$\sin x + \sin 2x + \sin 3x = 0$$

(b)
$$\cos^4 x + \sin^4 x = 1$$

(e)
$$3\cos x - \sqrt{3}\sin x = \sqrt{6}$$

(c)
$$\sin x + \sin 3x = 0$$

(f)
$$2\sin x \cdot \cos x + \sqrt{3}\cos 2x = 0$$

Exercice 21 [01848] [Correction]

Résoudre l'équation

 $\tan x \tan 2x = 1.$

Exercice 22 [02645] [Correction]

Calculer

$$\sum_{k=1}^{4} \cos^2 \frac{k\pi}{9}.$$

Fonctions trigonométriques réciproques

Exercice 23 [01849] [Correction]

Simplifier les expressions suivantes :

- (a) $\cos(2\arccos x)$
- (c) $\sin(2\arccos x)$
- (e) $\sin(2\arctan x)$

- (b) $\cos(2\arcsin x)$
- (d) $\cos(2\arctan x)$
- (f) $\tan(2\arcsin x)$

Exercice 24 [01850] [Correction]

Simplifier la fonction $x \mapsto \arccos(4x^3 - 3x)$ sur son intervalle de définition.

Exercice 25 [01851] [Correction]

Simplifier

$$\arcsin \frac{x}{\sqrt{1+x^2}}$$
.

Exercice 26 [01853] [Correction]

Déterminer $\lim_{x\to 0+} \frac{\arccos(1-x)}{\sqrt{x}}$ à l'aide d'un changement de variable judicieux.

Exercice 27 [01854] [Correction]

Étudier les fonctions suivantes afin de les représenter :

- (a) $f: x \mapsto \arcsin(\sin x) + \arccos(\cos x)$
- (c) $f: x \mapsto \arccos\sqrt{\frac{1+\cos x}{2}}$
- (b) $f: x \mapsto \arcsin(\sin x) + \frac{1}{2}\arccos(\cos 2x)$
- (d) $f: x \mapsto \arctan \sqrt{\frac{1-\cos x}{1+\cos x}}$

Exercice 28 [01855] [Correction]

Simplifier:

- (a) $\arctan \frac{1}{2} + \arctan \frac{1}{5} + \arctan \frac{1}{8}$.
- (b) $\arctan 2 + \arctan 3 + \arctan(2 + \sqrt{3})$
- (c) $\arcsin \frac{4}{5} + \arcsin \frac{5}{13} + \arcsin \frac{16}{65}$.

Exercice 29 [01858] [Correction]

Simplifier $\arctan a + \arctan b$ pour $a, b \ge 0$.

Exercice 30 [01859] [Correction]

Soit $p \in \mathbb{N}$. Calculer

$$\arctan(p+1) - \arctan(p)$$
.

Étudier la limite de la suite (S_n) de terme général

$$S_n = \sum_{p=0}^n \arctan \frac{1}{p^2 + p + 1}.$$

Fonctions hyperboliques

Exercice 31 [01861] [Correction]

Établir que pour tout $x \in \mathbb{R}_+$, on a sh $x \ge x$ et pour tout $x \in \mathbb{R}$, ch $x \ge 1 + \frac{x^2}{2}$.

Exercice 32 [01862] [Correction]

Soit
$$y \in]-\frac{\pi}{2}; \frac{\pi}{2}[$$
. On pose $x = \ln\left(\tan\left(\frac{y}{2} + \frac{\pi}{4}\right)\right)$.

Montrer que th $\frac{x}{2} = \tan \frac{y}{2}$, th $x = \sin y$ et ch $x = \frac{1}{\cos y}$.

Exercice 33 [01864] [Correction]

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, simplifier $P_n(x) = \prod_{k=1}^n \operatorname{ch}\left(\frac{x}{2^k}\right)$ en calculant

$$P_n(x)\operatorname{sh}\left(\frac{x}{2^n}\right)$$
.

Exercice 34 [01865] [Correction]

Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}_+^*$, observer

$$th((n+1)x) - th(nx) = \frac{\operatorname{sh} x}{\operatorname{ch}(nx)\operatorname{ch}((n+1)x)}.$$

Calculer

$$S_n(x) = \sum_{k=0}^{n} \frac{1}{\operatorname{ch}(kx)\operatorname{ch}((k+1)x)}.$$

Exercice 35 [01866] [Correction]

Soient a et α deux réels.

Résoudre le système d'inconnues x et y

$$\begin{cases} \operatorname{ch} x + \operatorname{ch} y = 2a \operatorname{ch} \alpha \\ \operatorname{sh} x + \operatorname{sh} y = 2a \operatorname{sh} \alpha. \end{cases}$$

Exercice 36 [01869] [Correction]

Établir :

$$\forall x \in \mathbb{R}, \left| \arctan(\sinh x) \right| = \arccos\left(\frac{1}{\cosh x}\right).$$

Corrections

Exercice 1 : [énoncé]

L'étude des variations des fonctions $x \mapsto x - \ln(1+x)$ et $x \mapsto \ln(1+x) - x + \frac{1}{2}x^2$ montre que celles-ci sont croissantes sur \mathbb{R}_+ , puisqu'elles s'annulent en 0, on peut conclure.

Exercice 2: [énoncé]

- (a) Posons $f:]-1; +\infty[\to \mathbb{R}$ définie par $f(x) = x \ln(1+x)$. f est dérivable, f(0) = 0 et $f'(x) = \frac{x}{1+x}$. Le tableau de variation de f donne f positive.
- (b) D'une part

 $\left(1 + \frac{1}{n}\right)^n = e^{n\ln(1 + \frac{1}{n})} \le e^{n \times \frac{1}{n}} \le e$

et d'autre part

 $\left(1 - \frac{1}{n}\right)^{-n} = e^{-n\ln(1 - \frac{1}{n})} \ge e$

car

$$\ln\!\left(1 - \frac{1}{n}\right) \le -\frac{1}{n}.$$

Exercice 3: [énoncé]

On a

$$\ln\left(\frac{a+b}{2}\right) - \frac{1}{2}(\ln a + \ln b) = \ln\frac{a+b}{2\sqrt{ab}}$$

or

$$a + b = \sqrt{a^2} + \sqrt{b^2} > 2\sqrt{ab}$$

donc

$$\ln \frac{a+b}{2\sqrt{ab}} \ge 0.$$

Exercice 4: [énoncé]

 $f'(x) = \frac{g(x)}{(1+ax)(1+bx)\ln(1+bx)^2} \text{ avec } g(x) = a(1+bx)\ln(1+bx) - b(1+ax)\ln(1+ax).$ $g(0) = 0 \text{ et } g'(x) = ab\ln\frac{1+bx}{1+ax} \ge 0 \text{ donc } g \text{ est positive et par suite } f \text{ croissante.}$ $\frac{1}{b} \le \frac{1}{a} \text{ donc } f\left(\frac{1}{b}\right) \le f\left(\frac{1}{a}\right) \text{ ce qui donne l'inégalité voulue.}$

Exercice 5: [énoncé]

Notons m le nombre de décimale dans l'écriture de n. On a $10^{m-1} \le n < 10^m$ donc $m-1 \le \log_{10} n < m$ puis $m = \lfloor \log_{10} n \rfloor + 1$.

Exercice 6: [énoncé]

- (a) Une étude de la fonction $x \mapsto \ln x x + 1$ assure l'inégalité écrite. De plus on observe qu'il y a égalité si, et seulement si, x = 1.
- (b) On étudie la différence

$$\sum_{i=1}^{n} p_i \ln q_i - \sum_{i=1}^{n} p_i \ln p_i = \sum_{i=1}^{n} p_i \ln \frac{q_i}{p_i}.$$

Par l'inégalité précédente

$$\sum_{i=1}^{n} p_i \ln q_i - \sum_{i=1}^{n} p_i \ln p_i \le \sum_{i=1}^{n} p_i \left(\frac{q_i}{p_i} - 1 \right) = \sum_{i=1}^{n} (q_i - p_i) = 0.$$

De plus il y a égalité si, et seulement si,

$$\forall 1 \leq i \leq n, p_i = q_i$$

Cette inégalité est fameuse lorsqu'on s'intéresse à l'entropie d'une source d'information...

Exercice 7: [énoncé]

$$(\exp x^2)^{\frac{\ln x^{1/x}}{x}} = x.$$

Exercice 8 : [énoncé]

Exercice 9 : [énoncé]

Quand $x \to 0^+$

$$x^{(x^x)} = \exp(x^x \ln x) = \exp(\exp(x \ln x) \ln x) \to 0$$

et

$$(x^x)^x = \exp(x \ln x^x) = \exp(x^2 \ln x) \to 1.$$

Exercice 10: [énoncé]

- (a) $\lim_{x \to +\infty} x^{1/x} = 1$
- (b) $\lim_{x\to 0} x^{\sqrt{x}} = 1$
- (c) $\lim_{x\to 0^+} x^{1/x} = 0$.

Exercice 11: [énoncé]

- (a) $S = \{0, 1\}$
- (b) $S = \{0, 1, 4\}$
- (c) Obtenir $2^{2x-3} = 3^{x-3/2}$ puis $S = \{3/2\}$.

Exercice 12: [énoncé]

- (a) $x = 1/2, y = \sqrt{2}/5$
- (b) Obtenir un système somme/produit en x et 2y puis le résoudre.

Exercice 13: [énoncé]

Il est clair que le triplet nul est solution de ce système.

Inversement, soit (a, b, c) solution. Posons $x = e^a$, $y = e^b$ de sorte que $e^c = e^{-(a+b)} = 1/xy$.

On a donc x, y > 0 et

$$x + y + \frac{1}{xy} = 3.$$

Pour y > 0 fixé, étudions la fonction $f: x \mapsto x + y + 1/xy$.

Cette fonction est dérivable et admet un minimum strict en $x=1/\sqrt{y}$ valant $g(y)=y+2/\sqrt{y}$.

La fonction g est dérivable et admet un minimum strict en y=1 valant g(1)=3. On en déduit que si $(x,y) \neq (1,1)$ alors f(x,y) > 3 et donc

$$f(x,y) = 3 \implies x = y = 1.$$

On peut alors conclure a = b = c = 0.

Exercice 14: [énoncé]

Posons $f(x) = x - \sin x$ définie sur \mathbb{R}_+ .

f est dérivable, $f' \ge 0$ et f(0) = 0 donc f est positive.

Posons $g(x) = \cos x - 1 + \frac{x^2}{2}$ définie sur \mathbb{R} .

g est deux fois dérivable, $g'' \ge 0$, g'(0) = g(0) = 0 permet de dresser les tableaux de variation et de signe de g' puis de g. On conclut g positive.

Exercice 15: [énoncé]

(a) cos(3a) = cos(2a + a) puis

$$\cos 3a = 4\cos^3 a - 3\cos a.$$

(b) tan(a+b+c) = tan((a+b)+c) puis

$$\tan(a+b+c) = \frac{\tan a + \tan b + \tan c - \tan a \tan b \tan c}{1 - \tan a \tan b - \tan b \tan c - \tan c \tan a}$$

Exercice 16: [énoncé]

On sait $\cos 2a = 2\cos^2 a - 1$ donc

$$2\cos^2\frac{\pi}{8} - 1 = \frac{\sqrt{2}}{2}$$

puis

$$\cos^2\frac{\pi}{8} = \frac{\sqrt{2}+2}{4}$$

et enfin

$$\cos\frac{\pi}{8} = \frac{\sqrt{\sqrt{2}+2}}{2}.$$

Exercice 17: [énoncé]

Par factorisation

$$\frac{\cos p - \cos q}{\sin p + \sin q} = -\frac{\sin\frac{p-q}{2}}{\cos\frac{p-q}{2}} = -\tan\frac{p-q}{2}.$$

Pour $p = \frac{\pi}{4}$ et $q = \frac{\pi}{6}$ on obtient

$$\tan\frac{\pi}{24} = \frac{\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2} + \frac{1}{2}} = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{2} + 1}.$$

Exercice 18 : [énoncé]

En passant aux nombres complexes

$$\sum_{k=0}^{n} \cos(a+kb) + i \sum_{k=0}^{n} \sin(a+kb) = \sum_{k=0}^{n} e^{i(a+kb)}.$$

Par sommation géométrique puis factorisation de l'exponentielle équilibrée

$$\sum_{k=0}^{n} e^{i(a+kb)} = e^{ia} \frac{e^{i(n+1)b} - 1}{e^{ib} - 1} = e^{i(a+nb/2)} \frac{\sin \frac{(n+1)b}{2}}{\sin \frac{b}{2}}.$$

Par suite

$$\sum_{k=0}^{n} \cos(a+kb) = \frac{\sin\frac{(n+1)b}{2}}{\sin\frac{b}{2}} \cos\left(a+\frac{nb}{2}\right)$$

et

$$\sum_{k=0}^{n} \sin(a+kb) = \frac{\sin\frac{(n+1)b}{2}}{\sin\frac{b}{2}} \sin\left(a+\frac{nb}{2}\right).$$

Exercice 19: [énoncé]

(a) L'hérédité de la récurrence s'obtient via :

$$\sin\frac{(n+1)x}{2}\sin\frac{nx}{2} + \sin(n+1)x\sin\frac{x}{2}$$

$$= \sin\frac{(n+1)x}{2}\left(\sin\frac{nx}{2} + 2\cos\frac{(n+1)x}{2}\sin\frac{x}{2}\right)$$

$$\sin\frac{(n+1)x}{2}\sin\frac{(n+2)x}{2}$$

en exploitant

$$\sin p - \sin q = 2\sin\frac{p-q}{2}\cos\frac{p+q}{2}$$

avec

$$p = \frac{(n+2)x}{2} \text{ et } q = \frac{nx}{2}.$$

(b) Par les nombres complexes

$$\sin(x) + \sin(2x) + \dots + \sin(nx) = \operatorname{Im}(\sum_{k=1}^{n} e^{ikx}) = \operatorname{Im}\left(\frac{e^{ix} - e^{i(n+1)x}}{1 - e^{ix}}\right)$$

donc

$$\sin(x) + \sin(2x) + \dots + \sin(nx) = \operatorname{Im}\left(e^{i\frac{(n+1)x}{2}}\frac{\sin\frac{nx}{2}}{\sin\frac{x}{2}}\right) = \sin\frac{(n+1)x}{2}\frac{\sin\frac{nx}{2}}{\sin\frac{x}{2}}.$$

(a) L'équation étudiée équivaut à

$$\cos(2x - \pi/3) = \cos(x + \pi/4).$$

On obtient pour solutions

$$x = \frac{7\pi}{12} [2\pi]$$
 et $x = \frac{\pi}{36} \left[\frac{2\pi}{3} \right]$.

(b) L'équation étudiée équivaut à

$$\cos^4 x + \sin^4 x = (\cos^2 x + \sin^2 x)^2$$

soit encore

$$2\cos^2 x \sin^2 x = 0$$

On obtient pour solutions

$$x = 0 \left[\pi/2 \right].$$

(c) L'équation étudiée équivaut à

$$2\sin 2x\cos x = 0$$
.

On obtient pour solutions

$$x = 0 [\pi/2]$$
.

(d) L'équation étudiée équivaut à

$$2\sin(2x)\left(\cos x + \frac{1}{2}\right) = 0.$$

On obtient pour solutions

$$x = 0 [\pi/2], x = \frac{2\pi}{3} [2\pi] \text{ et } x = -\frac{2\pi}{3} [2\pi].$$

(e) L'équation étudiée équivaut à

$$2\sqrt{3}\left(\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x\right) = \sqrt{6}$$

soit encore

$$\cos\left(x + \frac{\pi}{6}\right) = \cos\frac{\pi}{4}.$$

On obtient pour solutions

$$x = \frac{\pi}{12} [2\pi]$$
 et $x = -\frac{5\pi}{12} [2\pi]$.

(f) L'équation étudiée équivaut à

$$2\left(\frac{1}{2}\sin 2x + \frac{\sqrt{3}}{2}\cos 2x\right) = 0$$

soit encore

$$\sin\left(2x + \frac{\pi}{3}\right) = 0.$$

On obtient pour solutions

$$x = \frac{\pi}{3} [\pi] \text{ et } x = -\frac{\pi}{6} [\pi].$$

Exercice 21 : [énoncé]

Pour $x \neq \frac{\pi}{2} [\pi]$ et $x \neq \frac{\pi}{4} [\frac{\pi}{2}]$, $\tan x \tan 2x = 1 \iff \sin x \sin 2x - \cos x \cos 2x = 1$ $0 \iff \cos 3x = 0 \iff x = \frac{\pi}{6} \left[\frac{\pi}{3} \right].$

Exercice 22 : [énoncé]

En linéarisant et en faisant quelques transformations angulaires de simplification

$$\sum_{k=1}^{4} \cos^2 \frac{k\pi}{9} = \frac{7}{4}.$$

Exercice 23: [énoncé]

- (a) $\cos(2\arccos x) = 2\cos^2(\arccos x) 1 = 2x^2 1$
- (b) $\cos(2\arcsin x) = 1 2\sin^2 \arcsin x = 1 2x^2$.
- (c) $\sin(2\arccos x) = 2x\sqrt{1-x^2}$
- (d) $\cos(2\arctan x) = 2\cos^2\arctan x 1 = \frac{2}{1+x^2} 1 = \frac{1-x^2}{1+x^2}$
- (e) $\sin(2\arctan x) = 2\sin(\arctan x)\cos(\arctan x) = \frac{2x}{1+x^2}$
- (f) $\tan(2\arcsin x) = \frac{2\tan(\arcsin x)}{1-\tan^2(\arcsin x)} = \frac{2x\sqrt{1-x^2}}{1-2x^2}$

Exercice 24: [énoncé]

 $f: x \mapsto \arccos(4x^3 - 3x)$ est définie sur [-1; 1].

Pour $x \in [-1, 1]$, posons $\theta = \arccos x$, on a alors

 $f(x) = \arccos(4\cos^3\theta - 3\cos\theta) = \arccos(\cos 3\theta).$

Si $\theta \in [0; \pi/3]$ i.e. $x \in [1/2; 1]$ alors $f(x) = 3\theta = 3 \arccos x$.

Si $\theta \in [\pi/3; 2\pi/3]$ i.e. $x \in [-1/2; 1/2]$ alors $f(x) = 2\pi - 3\theta = 2\pi - 3\arccos x$.

Si $\theta \in [2\pi/3; \pi]$ i.e. $x \in [-1; -1/2]$ alors $f(x) = 3\theta - 2\pi = 3 \arccos x - 2\pi$.

Exercice 25 : [énoncé]

La fonction $x \mapsto \frac{x}{\sqrt{1+x^2}}$ est dérivable et à valeurs dans]-1;1[donc $x \mapsto \arcsin \frac{x}{\sqrt{1+x^2}}$ est dérivable et

$$\left(\arcsin\frac{x}{\sqrt{1+x^2}}\right)' = \frac{1}{(\sqrt{1+x^2})^3} \frac{1}{\sqrt{1-\frac{x^2}{1+x^2}}} = \frac{1}{1+x^2}.$$

On en déduit

$$\arcsin \frac{x}{\sqrt{1+x^2}} = \arctan x + C.$$

En évaluant en x=0, on obtient C=0.

Exercice 26 : [énoncé] Quand $x \to 0^+$: $\frac{\arccos(1-x)}{\sqrt{x}} = \frac{y}{\sqrt{1-\cos(y)}}$ avec $y = \arccos(1-x) \to 0^+$.

Or $1 - \cos(y) \sim \frac{y^2}{2}$ donc $\frac{\arccos(1-x)}{\sqrt{x}} = \frac{y}{\sqrt{1-\cos(y)}} \to \sqrt{2}$.

Exercice 27: [énoncé]

(a) f est 2π périodique.

Sur $[-\pi/2;0]$: $\arcsin(\sin x) = x$ et $\arccos(\cos x) = -x$ donc f(x) = 0.

Sur $[0; \pi/2]$: $\arcsin(\sin x) = x$ et $\arccos(\cos(x)) = x$ donc f(x) = 2x.

Sur $[\pi/2;\pi]$: $\arcsin(\sin x) = \pi - x$ et $\arccos(\cos x) = x$ donc $f(x) = \pi$.

Sur $[-\pi; -\pi/2]$: $\arcsin(\sin x) = -x - \pi$ et $\arccos(\cos(x)) = -x$ donc $f(x) = -2x - \pi.$

(b) f est 2π périodique.

Sur $[0; \pi/2]$, f(x) = x + x = 2x. Sur $[\pi/2; \pi]$, $f(x) = \pi - x + \pi - x = 2\pi - 2x$. Sur $[-\pi/2; 0]$, f(x) = x - x = 0. Sur $[-\pi; -\pi/2]$, $f(x) = -x - \pi + \pi + x = 0$.

- (c) $f(x) = \arccos \sqrt{\frac{1+\cos x}{2}} = \arccos |\cos(x/2)|$. f est 2π périodique, paire, sur $[0:\pi] \ f(x) = x/2.$
- (d) $f(x) = \arctan \sqrt{\frac{1-\cos x}{1+\cos x}} = \arctan |\tan x/2|$. f est 2π périodique, paire. Sur $[0;\pi[,f(x)=x/2]$. On retrouve la fonction ci-dessus.

Exercice 28 : [énoncé]

(a) Posons $\theta = \arctan \frac{1}{2} + \arctan \frac{1}{5} + \arctan \frac{1}{8}$. On a $0 \le \theta < 3\arctan \frac{1}{\sqrt{3}} = \pi/2$ et $\tan \theta = 1$ donc $\theta = \pi/4$.

- (b) Posons $\theta = \arctan 2 + \arctan 3 + \arctan \left(2 + \sqrt{3}\right)$. On a $3\arctan 1 = \frac{3\pi}{4} \le \theta < \frac{3\pi}{2}$ et $\tan \theta = \frac{1}{\sqrt{3}}$ donc $\theta = \frac{7\pi}{6}$.
- (c) $\cos\left(\arcsin\frac{4}{5} + \arcsin\frac{5}{13}\right) = \frac{3}{5}\frac{12}{13} \frac{4}{5}\frac{5}{13} = \frac{16}{65}$ et $\cos\left(\frac{\pi}{2} \arcsin\frac{16}{65}\right) = \sin\left(\arcsin\frac{16}{65}\right) = \frac{16}{65}$. Or $\arcsin\frac{4}{5} + \arcsin\frac{5}{13} \in [0\,;\frac{\pi}{2}]$ et $\frac{\pi}{2} - \arcsin\frac{16}{65} \in [0\,;\frac{\pi}{2}]$ d'où l'égalité $\arcsin\frac{4}{5} + \arcsin\frac{5}{13} + \arcsin\frac{65}{13} = \frac{\pi}{2}$

Exercice 29 : [énoncé]

On a $\tan(\arctan a + \arctan b) = \frac{a+b}{1-ab}$ donc $\arctan a + \arctan b = \arctan\left(\frac{a+b}{1-ab}\right) [\pi]$.

Si ab = 1 alors $\arctan a + \arctan b = \pi/2$.

Si ab < 1 alors $\arctan a + \arctan b = \arctan \left(\frac{a+b}{1-ab}\right)$.

Si ab > 1 alors $\arctan a + \arctan b = \arctan \left(\frac{a+b}{1-ab}\right) + \pi$.

Exercice 30 : [énoncé]

Posons $\theta = \arctan(p+1) - \arctan(p)$. Comme $0 \le \arctan p \le \arctan(p+1) < \pi/2$ on a $\theta \in [0; \pi/2[$.

De plus $\tan \theta = \frac{1}{p^2 + p + 1}$ donc

$$\theta = \arctan \frac{1}{p^2 + p + 1}.$$

Par télescopage $S_n = \sum_{p=0}^n \arctan \frac{1}{p^2 + p + 1} = \arctan(n+1) \to \pi/2$.

Exercice 31: [énoncé]

Posons $f(x) = \operatorname{sh} x - x$ définie sur \mathbb{R}_+ . f est dérivable, $f' \geq 0$ et f(0) = 0 donc f est positive.

Posons $g(x) = \operatorname{ch} x - 1 - \frac{x^2}{2}$ définie sur \mathbb{R} . g est deux fois dérivable, $g'' \geq 0$, g'(0) = g(0) = 0 permet de dresser les tableaux de variation et de signe de g' puis de g. On conclut g positive.

Exercice 32: [énoncé]

$$\operatorname{ch} x = \frac{\tan(\frac{y}{2} + \frac{\pi}{4}) + \tan^{-1}(\frac{y}{2} + \frac{\pi}{4})}{2} = \frac{\sin^{2}(\frac{y}{2} + \frac{\pi}{4}) + \cos^{2}(\frac{y}{2} + \frac{\pi}{4})}{2\sin(\frac{y}{2} + \frac{\pi}{4})\cos(\frac{y}{2} + \frac{\pi}{4})}$$
$$= \frac{1}{\sin(y + \frac{\pi}{2})} = \frac{1}{\cos y}.$$

Exercice 33: [énoncé]

Si x = 0 alors $P_n(x) = 1$, sinon $P_n(x) \operatorname{sh}\left(\frac{x}{2^n}\right) = \dots = \frac{1}{2^n} \operatorname{sh}(x)$ donc $P_n(x) = \frac{\operatorname{sh}(x)}{2^n \operatorname{sh}(x/2^n)}$.

Exercice 34: [énoncé]

Après quelques calculs

$$th((n+1)x) - th(nx) = \frac{shx}{ch(nx)ch((n+1)x)}$$

Par télescopage

$$S_n(x) = \sum_{k=0}^n \frac{1}{\operatorname{ch}(kx)\operatorname{ch}((k+1)x)} = \frac{\operatorname{th}((n+1)x)}{\operatorname{sh}(x)}.$$

Exercice 35 : [énoncé]

Si a < 1 alors $S = \emptyset$.

Si a = 1 alors $S = \{(\alpha, \alpha)\}.$

Si a > 1 alors en faisant apparaître un système somme produit :

$$S = \left\{ (\ln(a - \sqrt{a^2 - 1}) + \alpha, \ln(a + \sqrt{a^2 - 1}) + \alpha), (\ln(a + \sqrt{a^2 - 1}) + \alpha, \ln(a - \sqrt{a^2 - 1}) + \alpha) \right\}.$$

Exercice 36: [énoncé]

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ définie par $f(x) = \arctan(\sinh x) - \arccos\left(\frac{1}{\cosh x}\right)$.

La fonction f est continue sur \mathbb{R}_+ et dérivable sur $]0; +\infty[$. Pour x > 0,

$$f'(x) = \frac{\operatorname{ch} x}{1 + \operatorname{sh}^2 x} - \frac{\operatorname{sh} x}{\operatorname{ch}^2 x} \frac{\operatorname{ch} x}{\sqrt{\operatorname{ch}^2 x - 1}} = \frac{1}{\operatorname{ch} x} - \frac{\operatorname{sh} x}{\operatorname{ch} x} \frac{1}{\operatorname{sh} x} = 0.$$

Donc f est constante sur $]0; +\infty[$ puis sur \mathbb{R}_+ par continuité. Puisque f(0) = 0, on peut conclure que

$$\forall x \in \mathbb{R}_+, \left| \arctan(\sinh x) \right| = \arccos\left(\frac{1}{\cosh x}\right).$$

Par parité, le résultat se prolonge aussi à $x \in \mathbb{R}_{-}$.