

ALL LABS

By: Nasir Ali 033-18-0013

Table of Contents

Lab 01: Foundation Statements of SQL	2
Lab 02: Perform Arithmetic Operations & Querying Database Tables	4
Lab 03: SQL Functions	13
Lab 04 : SQL Functions And Regular Expression	19
Lab 05: Working With Joins	21
Lab 06 : Working With Subqueries	26
Lab 07: DDL QUERIS	30
Lab 08: Constraints	35
Lab 09 : DML Queries	37
Lab 10: Stored Routines (Procedures & Functions)	40
Lab 11: Control Structures	44

Lab 01: Foundation Statements of SQL

1. Write a query to display the names (first_name, last_name) using the alias name "First Name", "Last Name".

SELECT first_name as "First Name", last_name as "Last Name" FROM employees;

2. Write a query to get a unique department ID from the employee table.

SELECT DISTINCT department_id FROM employees;

3. Write a query to get all employee details from the employee table order by the first name, descending.

SELECT * FROM employees ORDER BY first name DESC;

mysql> SELECT '	sql> SELECT * FROM employees ORDER BY first_name DESC;										
employee_id	first_name	last_name	email	phone_number	hire_date	job_id	salary	commission_pct	manager_id	department_id	
180 171 206 195 106	Winston William William Vance Valli	Taylor Smith Gietz Jones Pataballa	WTAYLOR WSMITH WGIETZ VJONES VPATABAL	650.507.9876 011.44.1343.629268 51hr5.123.8181 650.501.4876 590.423.4560	1998-01-24 1999-02-23 1994-06-07 1999-03-17 1998-02-05	SH_CLERK SA_REP AC_ACCOUNT SH_CLERK IT PROG	3200.00 7400.00 8300.00 2800.00 4800.00	NULL 0.15 NULL NULL NULL	120 148 205 123 103	50 80 110 50 60	
141 132 190	Trenna TJ Timothy	Rajs Olson Gates	TRAJS TJOLSON TGATES	650.121.8009 650.124.8234 650.505.3876	1998-02-03 1995-10-17 1999-04-10 1998-07-11	ST_CLERK ST_CLERK ST_CLERK	3500.00 2100.00 2900.00	NULL NULL NULL	103 124 121 122	50 50 50	

4. Write a query to get the employee ID, names (first_name, last_name), salary in ascending order of salary.

SELECT employee_id, first_name, last_name, salary FROM employees ORDER BY salary asc;

```
nysql> SELECT employee_id, first_name, last_name, salary FROM employees ORDER BY salary ASC;
 employee_id | first_name
                              last_name
                                            salary
                               Olson
                                               2100.00
         128
                Steven
                                               2200.00
                               Markle
         136
                               Philtanker
                                               2200.00
                Hazel
         127
                              Landry
                                               2400.00
                James
         135
                Κi
                                               2400.00
                              Gee
         119
                Karen
                               Colmenares
                                               2500.00
         131
                James
                               Marlow
                                               2500.00
          140
                Joshua
                               Patel
                                               2500.00
```

5. Write a query to get the total salaries payable to employee.

SELECT SUM(salary) as "Total Salaries Payable" FROM employees;

6. Write a query to get the maximum and minimum salary from the employee's table.

SELECT MAX(salary), MIN(salary) FROM employees;

7. Write a query to get the average salary and number of employees in the employees' table.

SELECT AVG(salary) as "Average Salary", COUNT(*) as "Number of Employees" FROM employees;

8. Write a query to get the number of jobs available in the employee's table.

SELECT COUNT(DISTINCT job id) as "Number of Available Jobs" FROM employees;

9. Write a query to get all first names from the employee's table in the upper case.

SELECT UPPER(first_name) as "First Name" FROM employees;

```
mysql> SELECT UPPER(first_name) as "First Name" FROM employees;
+-----+
| First Name |
+-----+
| STEVEN |
| NEENA |
| LEX |
| ALEXANDER |
```

10. Write a query to select the first 10 records from a table.

SELECT * FROM employees LIMIT 0,10;

mysql> SELECT *	ysql> SELECT * FROM employees LIMIT 0,10;											
employee_id	first_name	last_name	email	phone_number	hire_date	job_id	salary	commission_pct	manager_id	department_id		
100	Steven	King	SKING	515.123.4567	1987-06-17	AD_PRES	24000.00	NULL	NULL	90		
101	Neena	Kochhar	NKOCHHAR	515.123.4568	1989-09-21	AD_VP	17000.00	NULL	100	90		
102	Lex	De Haan	LDEHAAN	515.123.4569	1993-01-13	AD_VP	17000.00	NULL	100	90		
103	Alexander	Hunold	AHUNOLD	590.423.4567	1990-01-03	IT_PROG	9000.00	NULL	102	60		
104	Bruce	Ernst	BERNST	590.423.4568	1991-05-21	IT_PROG	6000.00	NULL	103	60		
105	David	Austin	DAUSTIN	590.423.4569	1997-06-25	IT_PROG	4800.00	NULL	103	60		
106	Valli	Pataballa	VPATABAL	590.423.4560	1998-02-05	IT_PROG	4800.00	NULL	103	60		
107	Diana	Lorentz	DLORENTZ	590.423.5567	1999-02-07	IT_PROG	4200.00	NULL	103	60		
108	Nancy	Greenberg	NGREENBE	515.124.4569	1994-08-17	FI_MGR	12000.00	NULL	101	100		
109	Daniel	Faviet	DFAVIET	515.124.4169	1994-08-16	FI_ACCOUNT	9000.00	NULL	108	100		
+		+	+			+	+					

11. Write a query to select the 3rd & 4th records of the employee's table.

SELECT * FROM employees LIMIT 3,2;

nysql> SELECT * FROM employees LIMIT 3,2;										
employee_id	first_name	last_name	email	phone_number	hire_date	job_id	salary	commission_pct	manager_id	department_id
	Alexander Bruce			590.423.4567 590.423.4568					102 103	60 60

12. Write a query to select 2nd last record of the employee's table.

SELECT * FROM employees ORDER BY employee_id DESC LIMIT 1,1;

ysql> SELECT * FROM employees ORDER BY employee_id DESC LIMIT 1,1;									
employee_id first	_name last_name	email	phone_number	hire_date	job_id	salary	commission_pct	manager_id	department_id
205 Shell	ey Higgins	SHIGGINS	515.123.8080	1994-06-07	AC_MGR	12000.00	NULL	101	110

Lab 02: Perform Arithmetic Operations & Querying Database Tables

1. Write a query to display EMPLOYEE_ID, FIRST_NAME, and SALARY of employees whose SALARY is less than \$3000.

SELECT employee_id, first_name, salary FROM employees WHERE salary<3000;

```
nysql> SELECT employee_id, first_name, salary FROM employees WHERE salary<3000;
 employee_id | first_name | salary
         116
              Shelli
                          2900.00
              Sigal
         117
                           2800.00
         118
              Guy
                           2600.00
         119
               Karen
                            2500.00
         126
               Irene
                            2700.00
         127
               James
                            2400.00
         128
               Steven
                            2200.00
         130
              Mozhe
                            2800.00
         131
               James
                            2500.00
         132
                            2100.00
               TJ
         134
              Michael
                           2900.00
         135
              Κi
                            2400.00
         136
                           2200.00
              Hazel
         139
                           2700.00
               John
         140
                           2500.00
              Joshua
         143
              Randall
                           2600.00
         144
              Peter
                           2500.00
                          2500.00
         182
              Martha
         183
              Girard
                           2800.00
         190
              Timothy
                           2900.00
         191
              Randall
                           2500.00
         195
              Vance
                           2800.00
         198
               Donald
                           2600.00
         199
              Douglas
                          2600.00
```

2. Write a query to display FIRST_NAME, LASTNAME of all employees whose first name starts with letter 'A'.

SELECT * FROM employees WHERE first_name LIKE "a%";

```
mysql> SELECT first_name, last_name FROM employees WHERE first_name LIKE "A%";
 first_name | last_name
 Alexander
              Hunold
 Alexander
              Khoo
 Adam
              Fripp
            Errazuriz
 Alberto
 Allan
              McEwen
 Amit
              Banda
 Alyssa
              Hutton
              Bull
 Alexis
 Anthony
              Cabrio
 Alana
              Walsh
```

3. Write a query to display FIRST_NAME, JOB_ID, DEPARTMENT_ID of employees who are either PU_CLERK or belongs to MANAGER_ID = 114.

SELECT first_name, job_id, department_id FROM employees WHERE job_id="PU_CLERK" OR manager id=114;

```
first_name, job_id, department_id FROM employees WHERE job_id="PU_CLERK" OR manager_id=114;
first_name | job_id
                         | department_id |
              PU CLERK
Alexander
                                       30
              PU_CLERK
PU_CLERK
                                       30
Shelli
Sigal
                                       30
              PU_CLERK
PU_CLERK
                                       30
Guy
Karen
                                       30
```

4. Write a query to display EMPLOYEE_ID, FIRST_NAME, and SALARY of employees whose salaries lies in the range of \$1500 to \$3000.

SELECT employee_id, first_name, salary FROM employees WHERE salary BETWEEN 1500 AND 3000;

ysql> SELECT (employee_id, ·	first_name,	salary I	FROM empl	loyees I	WHERE	salary	BETWEEN	1500 A	ND 3000;
employee_id	first_name	salary								
116	Shelli	2900.00								
117	Sigal	2800.00								
118	Guy	2600.00								
119	Karen	2500.00								
126	Irene	2700.00								
127	James	2400.00								
128	Steven	2200.00								
130	Mozhe	2800.00								
131	James	2500.00								
132	į TJ	2100.00								
134	Michael	2900.00								
135	Ki	2400.00								
136	Hazel	2200.00								
139	John	2700.00								
140	Joshua	2500.00								
143	Randall	2600.00								
144	Peter	2500.00								
182	Martha	2500.00								
183	Girard	2800.00								
187	Anthony	3000.00								
190	Timothy	2900.00								
191	Randall	2500.00								
195	Vance	2800.00								
197	Kevin	3000.00								
198	Donald	2600.00								
199	Douglas	2600.00								

5. Write a query to display EMPLOYEE_ID, FIRST_NAME, and SALARY of employees whose commission is empty.

SELECT employee_id, first_name, salary FROM employees WHERE commission_pct is NULL;

```
mysql> SELECT employee_id, first_name, salary FROM employees WHERE commission_pct is NULL;
 employee_id | first_name | salary
          100
                Steven
                              24000.00
                              17000.00
          101
                Neena
                              17000.00
          102
                Lex
                               9000.00
          103
                Alexander
          104
                               6000.00
                Bruce
```

6. Write a query to display first names of all employees that end with alphabet 'N'.

SELECT first_name FROM employees WHERE first_name LIKE "%N";

```
first_name
 Steven
 John
 Den
 Karen
 Kevin
 Steven
 Jason
 Stephen
 John
 John
 Karen
 Allan
 Harrison
 Ellen
 Jonathon
 Winston
 Jean
 Kevin
 Susan
 Hermann
```

7. Write a query to display FIRST_NAME, JOB_ID, DEPARTMENT_ID of employees who are not PU_CLERK.

SELECT first_name, job_id, department_id FROM employees WHERE job_id<>"PU_CLERK";

ysql> SELECT	first_name, jo	ob_id, department
first_name	job_id	department_id
+	+	+
Steven	AD_PRES	90
Neena	AD_VP	90
Lex	AD_VP	90
Alexander	IT_PROG	60
Bruce	IT_PROG	60
David	IT_PROG	60
Valli	IT_PROG	60
Diana	IT_PROG	60
Nancy	FI_MGR	100
Daniel	FI_ACCOUNT	100
John	FI_ACCOUNT	100
Ismael	FI_ACCOUNT	100
Jose Manuel	FI_ACCOUNT	100
Luis	FI_ACCOUNT	100
Den	PU_MAN	30
Matthew	ST_MAN	50
Adam	ST_MAN	50
Payam	ST_MAN	50

8. Write a query to display EMPLOYEE_ID, FIRST_NAME, and SALARY of those employees who do not have salaries of \$3300, \$3200, \$2200.

SELECT employee_id, first_name, salary FROM employees WHERE salary NOT IN(3300, 3200, 2200);

9. Write a query to display names of those employees whose first name starts with 'A' and ends with 'N'.

SELECT first_name FROM employees WHERE first_name LIKE "A%N";

10. Write a query to display the list of employee names that have letters 'LA' in their names.

SELECT first_name FROM employees WHERE first_name LIKE "%LA%";

11. Write a query to display the EMPLOYEE_ID, FIRST_NAME, and SALARY of employees. In that, the highest paid employee should display first and lowest paid should display last.

SELECT employee_id, first_name, salary FROM employees WHERE salary=(SELECT MAX(salary) FROM employees) OR

salary=(SELECT MIN(salary) FROM employees);

12. Write a query to display FIRST_NAME of employees that have "a" in the second position.

SELECT first_name FROM employees WHERE first_name LIKE "_a%";

```
mysql> SELECT first_name FROM employees WHERE first_name LIKE "_a%";
 first_name
 David
 Valli
 Nancy
 Daniel
 Karen
 Matthew
 Payam
 James
 Laura
 James
 Jason
 Hazel
 Randall
 Karen
 David
 Nanette
 Janette
 Patrick
 Sarath
 Danielle
 Mattea
 David
 Harrison
 Tayler
 Jack
 Martha
 Nandita
 Randall
 Sarah
 Samuel
 Vance
 Pat
```

13. Write a query to display EMPLOYEE_ID, FIRST_NAME, and SALARY of employees whose salaries do not lies in the range of \$1500 to \$3000;

SELECT employee_id, first_name, salary FROM employees WHERE salary NOT BETWEEN 1500 AND 3000;

```
mysql> SELECT employee id, first name, salary FROM employees WHERE
   -> salary NOT BETWEEN 1500 AND 3000;
 employee_id | first_name | salary
                     24000.00
         100 | Steven
         101
              Neena
         102
              Lex
                          17000.00
                           9000.00
         103
              Alexander
                            6000.00
         104
              Bruce
         105
              David
                             4800.00
              Valli
         106
                            4800.00
```

14. Write a query to display FIRST_NAME, LAST_NAME and DEPARTMENT_ID of all employees in departments 30 or 100 in ascending order.

SELECT first_name, last_name, department_id FROM employees WHERE

department_id WHERE department_id IN(30,100) ORDER BY department_id;

mysql> SELECT first_name, last_name, department_id FROM employees WHERE -> department_id IN(30,100) ORDER BY department_id;								
first_name	last_name	department_id						
Den	Raphaely	30						
Alexander	Khoo	30						
Shelli	Baida	30						
Sigal	Tobias	30						
Guy	Himuro	30						
Karen	Colmenares	30						
Nancy	Greenberg	100						
Daniel	Faviet	100						
John	Chen	100						
Ismael	Sciarra	100						
Jose Manuel	Urman	100						
Luis	Popp	100						
+	 	++						

15. Write a query to display FIRST_NAME, LAST_NAME and SALARY for all employees whose salary is not in the range \$10,000 through \$15,000 and are in department 30 or 100.

SELECT first_name, last_name, salary FROM employees WHERE department_id IN(30,100) AND

salary NOT BETWEEN 10000 AND 15000;

```
mysql> SELECT first_name, last_name, salary FROM employees WHERE
   -> department_id IN(30, 100) AND
   -> salary NOT BETWEEN 10000 AND 15000;
 first_name
             | last_name | salary
             Khoo
             Baida
Tobi
 Alexander
                          3100.00
 Shelli
                          2900.00
             | Tobias
| Himuro
 Sigal
                          2800.00
 Guy
                          2600.00
             | Colmenares | 2500.00
 Karen
 Daniel
             Faviet
                           9000.00
 John
                            8200.00
               Chen
 Ismael
               Sciarra
                            7700.00
 Jose Manuel
               Urman
                            7800.00
 Luis
                           6900.00
             Popp
```

16. Write a query to display FIRST_NAME, LAST_NAME and HIRE_DATE for all employees who were hired in 1987.

SELECT first_name, last_name, hire_date FROM employees WHERE

YEAR(hire_date)=1987;

```
mysql> SELECT first_name, last_name, hire_date FROM employees WHERE
-> YEAR(hire_date)=1987;
+------+
| first_name | last_name | hire_date |
+-----+
| Steven | King | 1987-06-17 |
| Jennifer | Whalen | 1987-09-17 |
+------+
```

17. Write a query to display the LAST_NAME of employees whose LAST_NAME have exactly 6 characters.

SELECT last_name FROM employees WHERE LENGTH(last_name)=6;

```
mysql> SELECT last_name FROM employees WHERE LENGTH(last_name)=6;
+------
| last_name |
+------|
| Hunold |
| Austin |
| Faviet |
| Tobias |
| Himuro |
| Landry |
| Markle |
| Bissot
```

18. Write a query to display FIRST_NAME, SALARY and PF (15% of salary) of all employees.

SELECT first_name, salary, 0.15*salary as "PF(15% of salary)" FROM employees;

```
mysql> SELECT first_name, salary, 0.15*salary as "PF(15% of salary)" FROM employees;
 first_name | salary | PF(15% of salary) |
 Steven
            24000.00
                              3600.0000
 Neena
                              2550.0000
            17000.00
 Lex
            17000.00
                              2550.0000
 Alexander
             9000.00
                              1350.0000
 Bruce
              6000.00
                                900.0000
              4800.00
 David
                               720.0000
                                720.0000
              4800.00
 Valli
              4200.00
                                630.0000
 Diana
```

19. Write a query to display FIRST_NAME, SALARY and commission amount (% of salary) of all employees.

SELECT first_name, salary, salary*commission_pct as "commission amount" FROM employees WHERE commission_pct IS NOT NULL;

```
nysql> SELECT first_name, salary, salary*commission_pct as "commission amount" FROM employees
-> WHERE commission_pct IS NOT NULL;
 first name | salary
                         | commission amount
                14000.00
                                    5600.0000
                13500.00
                                    4050.0000
 Karen
 Alberto
                12000.00
                                    3600.0000
 Gerald
              11000.00
                                    3300.0000
 Eleni
               10500.00
                                    2100.0000
                10000.00
 Peter
                                    3000.0000
 David
                9500.00
                                    2375.0000
                 9000.00
                                    2250.0000
 Peter
                                    1600.0000
 Christopher |
                8000.00
 Nanette
                 7500.00
                                    1500.0000
 Oliver
                 7000.00
                                    1050.0000
 Janette
               10000.00
                                    3500.0000
                9500.00
                                    3325.0000
 Patrick
                9000.00
                                    3150.0000
 Allan
                8000.00
 Lindsey
                                    2400.0000
 Louise
                7500.00
                                    2250.0000
 Sarath
                 7000.00
                                    1750.0000
               10500.00
                                    2625.0000
 Clara
 Danielle
                9500.00
                                    1425.0000
 Mattea
                 7200.00
                                     720.0000
 David
                 6800.00
                                     680.0000
 Sundar
                6400.00
                                     640.0000
 Amit
                6200.00
                                     620.0000
                11500.00
                                    2875.0000
 Lisa
               10000.00
                                    2000.0000
 Harrison
 Tayler
                9600.00
                                    1920.0000
 William
                 7400.00
                                    1110.0000
 Elizabeth
                 7300.00
                                    1095.0000
 Sundita
                6100.00
                                     610.0000
 Ellen
                11000.00
                                    3300.0000
 Alyssa
                 8800.00
                                    2200.0000
 Jonathon
                 8600.00
                                    1720.0000
                 8400.00
                                    1680.0000
 Jack
 Kimberely
                 7000.00
                                    1050.0000
 Charles
                 6200.00
                                     620.0000
```

20. Write a query to display FIRST_NAME, SALARY and NET_SALARY after 500 deduction from salary of all employees;

SELECT first_name, salary, salary-500 as "net_salary" FROM employees;

```
mysql> SELECT first_name, salary, salary-500 as "net_salary"    FROM employees;
                         | net_salary
 first name
             salary
                24000.00
                              23500.00
 Steven
 Neena
                17000.00
                              16500.00
                17000.00
                              16500.00
 Lex
                 9000.00
                              8500.00
 Alexander
 Bruce
                 6000.00
                              5500.00
                 4800.00
 David
                               4300.00
 Valli
                 4800.00
                               4300.00
```

Lab 03: SQL Functions

1. Write a query to generate new names of the employees by combining the first 3 characters of the First_Name and last 3 characters of the job.

SELECT CONCAT(LEFT(first_name,3), LOWER(RIGHT(job_id,3))) as new_names FROM employees;

```
mysql> SELECT CONCAT(LEFT(first_name,3), LOWER(RIGHT(job_id,3))) as new_names FROM employees;

+------+
| new_names |

+-----+
| Steres |
| Nee_vp |
| Lex_vp |
| Alerog |
| Brurog |
| Davrog |
| Valrog |
| Diarog |
```

2. Generate new jobs of the employees by changing letter E with A in the existing jobs. SELECT REPLACE(job_id,"E","A") as new_jobs FROM employees;

3. Write a query to Display Names, hire date years in the department.

SELECT first_name, last_name, YEAR(hire_date) FROM employees;

```
mysql> SELECT first name, last name, YEAR(hire date)            FROM employees;
               | last_name
                               | YEAR(hire date)
  first name
  Steven
                 King
                                             1987
 Neena
                 Kochhar
                                             1989
 Lex
                 De Haan
                                             1993
                 Hunold
                                             1990
  Alexander
  Bruce
                 Ernst
                                             1991
```

4. Write a query to display names, hire date of all the employees who were hired before July 30, 1987. Keeping this in mind that hire dates should be displayed in the format

"MONTH DATE, YEAR". Also date in the where clause should be in the format "MONTH DATE, YEAR".

SELECT first_name, last_name, DATE_FORMAT(hire_date,"%M %d, %Y") FROM employees WHERE hire_date<"1987-6-30";

5. Write a query to display the last day of the current month & three months before the current month.

SELECT LAST DATE(CURRENT DATE()), ADDDATE(CURRENT DATE(), INTERVAL -3 MONTH);

6. Write a query to get the a day of the current year

SELECT DAYOFYEAR(CURRENT_DATE());

```
mysql> SELECT DAYOFYEAR(CURRENT_DATE());
+-----+
| DAYOFYEAR(CURRENT_DATE()) |
+-----+
| 277 |
+-----+
```

7. Write a query to get the current date in the following format.

SELECT DATE_FORMAT(CURRENT_DATE(), "%M %d, %Y");

8. Write a query to get the current date in Thursday September 2014 format.

SELECT DATE FORMAT(CURRENT DATE(),"%W %M %Y");

9. Write a query to get the first name and hire date from employees table where hire date between '1987-06-01' and '1987-07-30'.

SELECT first_name, hire_date FROM employees WHERE hire_date BETWEEN "1987-06-01" AND "1987-07-30";

10. Write a query to display the current date in the 05/09/2014 format.

SELECT DATE_FORMAT(CURRENT_DATE(), "%d/%m/%Y");

```
mysql> SELECT DATE_FORMAT(CURRENT_DATE(), "%d/%m/%Y");
+------+
| DATE_FORMAT(CURRENT_DATE(), "%d/%m/%Y") |
+------+
| 06/10/2022 |
```

11. Write a query to get the firstname, lastname who joined in the month of June.

SELECT first_name, last_name FROM employees WHRER MONTH(hire_date)=6;

```
mysql> SELECT first_name, last_name FROM employees WHERE MONTH(hire_date)=6;
 first_name | last_name
 Steven
            King
            Austin
 David
 Jason
            | Mallin
            Sullivan
 Martha
 Julia
              Dellinger
 Kelly
              Chung
 Donald
              OConnell
              Mavris
 Susan
 Hermann
              Baer
 Shelley
              Higgins
 William
              Gietz
```

12. Write a query to append '@iba-suk.edu.pk' to email field.

SELECT CONCAT(email, "@iba-suk.edu.pk") FROM employees;

```
mysql> SELECT CONCAT(email, "@iba-suk.edu.pk") FROM employees;

+------+

| CONCAT(email, "@iba-suk.edu.pk") |

+------+

| SKING@iba-suk.edu.pk

| NKOCHHAR@iba-suk.edu.pk

| LDEHAAN@iba-suk.edu.pk

| AHUNOLD@iba-suk.edu.pk

| BERNST@iba-suk.edu.pk

| DAUSTIN@iba-suk.edu.pk
```

13. Write a query to get the employee id, first name and hire month using MID().

SELECT employee_id, first_name, MID(hire_date,6,2) FROM employees;

```
mysql> SELECT employee_id, first_name, MID(hire_date,6,2) FROM employees;
 employee_id | first_name | MID(hire_date,6,2)
         100 | Steven
                          96
         101
             Neena
                           09
         102
                            01
              Lex
         103
              Alexander
                            01
                            05
         104
              Bruce
```

14. Write a query to extract the last 4 character of phone numbers.

SELECT RIGHT(hire_date, 4) FROM employees;

15. Write a query to get the last word of the street address(from locations able).

SELECT SUBSTRING_INDEX(TRIM(street_address), " ", -1) FROM locations;

```
mysql> SELECT SUBSTRING_INDEX(TRIM(street_address),
                                                       " ", -1) FROM locations;
 SUBSTRING_INDEX(TRIM(street_address), " ", -1)
 Rie
 Testa
 Shinjuku-ku
 Kamiya-cho
 Rd
 Blvd
 St
 Rd
 Ave
 St
 Laogianggen
 (E)
Street
 North
 St
 Park
 Road
 7031
 1360
 Corps-Saints
 921
 837
 9991
```

16. Write a query to get the locations that have minimum street length.(locations tbl).

SELECT street_address FROM locations FROM employees

WHERE LENGTH(TRIM(street_address)) =

(SELECT MIN(LENGTH(street_address)) FROM locations);

17. Write a query to display the first word from those job titles which contains more than one words.

SELECT MID(job_title, 1, INSTR(job_title," ")-1) FROM employees;

```
mysql> SELECT MID(job_title, 1,INSTR(job_title, " ")-1) FROM jobs;
 MID(job_title, 1,INSTR(job_title, " ")-1)
 Public
 Accounting
 Administration
 Administration
 Finance
 Human
 Marketing
 Marketing
 Public
 Purchasing
 Purchasing
 Sales
 Sales
 Shipping
 Stock
 Stock
```

18. Write a query to display the length of first name for employees where last name contain character 'c' after 2nd position.

SELECT LENGTH(first_name) FROM employees WHERE INSTR(last_name,"c")>2;

Lab 04: SQL Functions And Regular Expression

1. Write a query to lists the number of employees in each department.

SELECT department_id, COUNT(*) FROM employees GROUP BY department_id;

2. Write a query to display the department id where at least 5 employees should be in each department.

SELECT department_id FROM employees GROUP BY department_id HAVING count(*) >= 5;

3. Write a query to display all columns of those employees who has first name is unique.

SELECT * FROM employees group by first_name;

4. Write a SQL query to get name of employees containing exactly four characters.

SELECT first_name FROM employees WHERE length(first_name)=4;

5. Write a query to display the list of employee names that have letters 'LA' in their names.

SELECT first_name FROM employees WHERE first_name REGEXP 'LA+';

6. Write a query to display names of those employees whose first name starts with 'A' and ends with 'N'.

SELECT first_name FROM employees WHERE first_name like 'A%n';

7. Write a query to display first names of all employees that end with alphabet 'N'.

SELECT first_name FROM employees WHERE first_name REGEXP 'N\$';

8. Write a query to display FIRST_NAME, LASTNAME of all employees whose first name starts with letter 'A'.

SELECT first_name, last_name FROM employees WHERE first_name REGEXP '^[a]';

9. Write a query to display the number of employees with the same job.

SELECT job_id, COUNT(*) FROM employees GROUP BY job_id;

10. Display the manager number and the salary of the lowest paid employee of that manager. Exclude anyone whose manager is not known. Exclude any groups where the minimum salary is 2000. Sort the output is descending order of the salary.

SELECT phone_number, MIN(salary) FROM employees WHERE manager_id IS NOT NULL GROUP BY manager_id ORDER BY MIN(salary) DESC;

11. Display the total number of employees who have no commission.

SELECT commission_pct,COUNT(*) FROM employees WHERE commission_pct IS NULL;

12.Write a query to display FIRST_NAME, LASTNAME of all employees whose first name small 't'.

SELECT first_name, last_name FROM employees WHERE first_name REGEXP '[t]';

Lab 05: Working With Joins

1. Write a query in SQL to display the first name, last name, department number, and department name for each employee. (Sample tables: employees & departments).

Query: SELECT first_name, last_name, department_id, department_name FROM employees INNER JOIN departments USING (department_id);

	first_name	last_name	department_id	department_name
•	Jennifer	Whalen	10	Administration
	Michael	Hartstein	20	Marketing
	Pat	Fay	20	Marketing
	Den	Raphaely	30	Purchasing
	Alexander	Khoo	30	Purchasing
	Shelli	Baida	30	Purchasing

2. Write a query to find the name (first_name, last_name), job, department ID and name of the department who works in London. (Sample tables: employees, locations & departments)

Query: SELECT CONCAT(first_name, " ", last_name), job_id, department_id, department_name FROM employees INNER JOIN departments USING(department_id) INNER JOIN locations USING(location_id) WHERE city="London";

	CONCAT(first_name, " ", last_name)	job_id	department_id	department_name
•	Susan Mavris	HR_REP	40	Human Resources

3. Write a query to find the employee id, name (last_name) along with their manager_id and name (last_name). (Sample tables: employees)

Query: SELECT e1.employee_id, e1.last_name, e2.employee_id, e2.last_name FROM employees as e1, employees as e2 WHERE e1.manager_id=e2.employee_id;

	employee_id	last_name	employee_id	last_name
•	101	Kochhar	100	King
	102	De Haan	100	King
	103	Hunold	102	De Haan
	104	Ernst	103	Hunold
	105	Austin	103	Hunold

4. Write a query to find the name (first_name, last_name) and hire date of the employees who was hired after 'Jones'. (Sample tables: employees)

SELECT CONCAT(e1.first_name, " ", e1.last_name), e1.hire_date, CONCAT(e2.first_name, " ", e2.last_name), e2.hire_date FROM employees as e1, employees as e2 WHERE e1.hire_date > e2.hire_date AND e2.last_name="Jones";

	CONCAT(e1.first_name, " ", e1.last_name)	hire_date	CONCAT(e2.first_name, " ", e2.last_name)	hire_date
•	Luis Popp	1999-12-07	Vance Jones	1999-03-17
	Karen Colmenares	1999-08-10	Vance Jones	1999-03-17
	Kevin Mourgos	1999-11-16	Vance Jones	1999-03-17
	Steven Markle	2000-03-08	Vance Jones	1999-03-17

5. Write a query to get the department name and number of employees in the department. (Sample tables: employees & departments)

Query: SELECT d.department_name as "Department Name", COUNT(d.department_name) as "Number of Employees" FROM employees as e INNER JOIN departments as d USING(department_id) GROUP BY d.department_name;

	Department Name	Number of Employees
•	Administration	1
	Marketing	2
	Purchasing	6
	Human Resources	1

6. Write a query to display the department ID and name and first name of manager. (Sample tables: employees & departments)

SELECT d.department_id, d.department_name, e.first_name FROM employees as e INNER JOIN departments as d USING(department_id);

	department_id	department_name	first_name
•	10	Administration	Jennifer
	20	Marketing	Michael
	20	Marketing	Pat
	30	Purchasing	Den
	30	Purchasing	Alexander

7. Write a query to display the department name, manager name, and city. (Sample tables: employees , locations & departments)

SELECT department_name, CONCAT(first_name, " ", last_name) as manager_name, city FROM employees as e INNER JOIN departments as d USING(department_id) INNER JOIN locations USING(location_id) GROUP BY city;

	department_name	manager_name	city
•	Executive	Steven King	Seattle
	IT	Alexander Hunold	Southlake
	Shipping	Matthew Weiss	South San Francisco
	Sales	John Russell	Oxford
	Marketing	Michael Hartstein	Toronto

8. Write a query to display the job history that were done by any employee who is currently drawing more than 10000 of salary. (Sample tables: employees & job_history)

SELECT jh.employee_id, jh.start_date, jh.end_date, jh.job_id, jh.department_id FROM employees as e INNER JOIN job_history as jh USING(job_id) WHERE salary > 10000;

	employee_id	start_date	end_date	job_id	department_id
•	101	1993-10-28	1997-03-15	AC_MGR	110
	176	1998-03-24	1998-12-31	SA_REP	80
	176	1998-03-24	1998-12-31	SA_REP	80
	176	1998-03-24	1998-12-31	SA_REP	80
	176	1999-01-01	1999-12-31	SA_MAN	80
	176	1999-01-01	1999-12-31	SA_MAN	80
	176	1999-01-01	1999-12-31	SA_MAN	80
	176	1999-01-01	1999-12-31	SA_MAN	80
	176	1999-01-01	1999-12-31	SA_MAN	80

9. Write a query to display the first name, last name, hire date, salary of the manager for all managers whose experience is more than 15 years. (Sample tables: employees & departments)

SELECT first_name, last_name, hire_date, salary, DATEDIFF(CURRENT_DATE(),hire_date)/365 as emperience FROM employees as e INNER JOIN departments as d ON (d.manager_id=e.employee_id) WHERE DATEDIFF(CURRENT_DATE(), hire_date)/365 > 15;

	first_name	last_name	hire_date	salary	emperience
•	Steven	King	1987-06-17	24000.00	35.4959
	Alexander	Hunold	1990-01-03	9000.00	32.9452
	Nancy	Greenberg	1994-08-17	12000.00	28.3233
	Den	Raphaely	1994-12-07	11000.00	28.0164
	Adam	Fripp	1997-04-10	8200.00	25.6740

10. Write a query in SQL to display the name of the department, average salary and number of employees working in that department who got commission. (Sample tables: employees & departments)

SELECT d.department_name, AVG(e.salary), COUNT(*) as number_of_employees FROM employees as e INNER JOIN departments as d USING(department_id) WHERE commission_pct IS NOT NULL;

	department_name	AVG(e.salary)	number_of_employees
•	Sales	8955.882353	34

11. Write a query in SQL to display the name of the country, city, and the departments which are running there. (Sample tables: countries, locations & departments)

SELECT country_name, city, department_name FROM countries as c INNER JOIN locations as I USING(country_id) INNER JOIN departments USING (location_id);

	country_name	city	department_name
•	United States of America	Seattle	Administration
	Canada	Toronto	Marketing
	United States of America	Seattle	Purchasing
	United Kingdom	London	Human Resources
	United States of America	South San Francisco	Shipping

12. Write a query in SQL to display department name and the full name (first and last name) of the manager. (Sample tables: employees & departments)

SELECT department_name, CONCAT(first_name, " ", last_name) as manger_name FROM employees as e INNER JOIN departments as d ON (e.employee_id=d.manager_id);

	department_name	manger_name
•	Administration	Jennifer Whalen
	Marketing	Michael Hartstein
	Purchasing	Den Raphaely
	Human Resources	Susan Mavris
	Shipping	Adam Fripp
	IT	Alexander Hunold
	Public Relations	Hermann Baer
	Sales	John Russell
	Executive	Steven King
	Finance	Nancy Greenberg
	Accounting	Shelley Higgins

13. Write a query in SQL to display the details of jobs which was done by any of the employees who is presently earning a salary on and above 12000. (Sample tables: employees & job_history)

SELECT jh.employee_id, jh.start_date, jh.end_date, jh.job_id, jh.department_id, e.salary FROM employees as e, job_history as jh WHERE e.job_id=jh.job_id AND e.salary >= 12000;

	employee_id	start_date	end_date	job_id	department_id	salary
•	101	1993-10-28	1997-03-15	AC_MGR	110	12000.00
	176	1999-01-01	1999-12-31	SA_MAN	80	14000.00
	176	1999-01-01	1999-12-31	SA_MAN	80	13500.00
	176	1999-01-01	1999-12-31	SA_MAN	80	12000.00

14. Write a query in SQL to display the full name (first and last name), and salary of those employees who working in any department located in London. (Sample tables: employees, locations & departments)

SELECT CONCAT(first_name, " ", last_name) as full_name, salary FROM employees as e, locations as I, departments as d WHERE e.department_id=d.department_id AND d.location_id=l.location_id AND city="London";

- 15. Write a query to display job title, employee name, and the difference between salary of the employee and minimum salary for the job. (Sample tables: employees & jobs)
- 16. SELECT job_title, CONCAT(first_name, " ", last_name) as employee_name, MIN(salary) as minimum_salary FROM employees as e, jobs as j WHERE e.job_id=j.job_id GROUP BY e.job_id;

	job_title	employee_name	minimum_salary
•	Public Accountant	William Gietz	8300.00
	Accounting Manager	Shelley Higgins	12000.00
	Administration Assistant	Jennifer Whalen	4400.00
	President	Steven King	24000.00
	Administration Vice President	Neena Kochhar	17000.00

17. Write a query to display the job title and average salary of employees. (Sample tables: employees & jobs)

SELECT j.job_title, avg(e.salary) average_salary FROM employees as e, jobs as j WHERE e.job_id=j.job_id GROUP BY j.job_title;

	job_title	average_salary
•	Public Accountant	8300.000000
	Accounting Manager	12000.000000
	Administration Assistant	4400.000000
	President	24000.000000
	Administration Vice President	17000.000000

18. Write a query to find the employee ID, job title, number of days between ending date and starting date for all jobs in department 90 from job history. (Sample tables: jobs & job_history)

SELECT jh.employee_id, j.job_title, DATEDIFF(jh.end_date, jh.start_date) as num_of_days FROM jobs as j, job_history as jh WHERE j.job_id=jh.job_id AND department_id=90;

	employee_id	job_title	num_of_days
•	200	Administration Assistant	2100
	200	Public Accountant	1644

Lab 06: Working With Subqueries

1. Write a query in SQL to display details of those employees who have changed jobs at least once. (Sample tables: employees & job_history)

SELECT * FROM job_history as jh, employees as e WHERE jh.employee_id=e.employee_id AND (SELECT COUNT(*) FROM job_history as j WHERE e.employee_id=j.employee_id)>=2;

	Т	employee_id	start_date	end_date	job_id	department_id	employee_id	first_name	last_name	email	phone_number	hire_date	job_id	salary	commission_pct	manager_id	department_id
•	.	101	1989-09-21	1993-10-27	AC_ACCOUNT	110	101	Neena	Kochhar	NKOCHHAR	515.123.4568	1989-09-21	AD_VP	17000.00	NULL	100	90
		101	1993-10-28	1997-03-15	AC_MGR	110	101	Neena	Kochhar	NKOCHHAR	515.123.4568	1989-09-21	AD_VP	17000.00	NULL	100	90
		176	1998-03-24	1998-12-31	SA_REP	80	176	Jonathon	Taylor	JTAYLOR	011.44.1644.429265	1998-03-24	SA_REP	8600.00	0.20	149	80
		176	1999-01-01	1999-12-31	SA_MAN	80	176	Jonathon	Taylor	JTAYLOR	011.44.1644.429265	1998-03-24	SA_REP	8600.00	0.20	149	80
		200	1987-09-17	1993-06-17	AD_ASST	90	200	Jennifer	Whalen	JWHALEN	515.123.4444	1987-09-17	AD_ASST	4400.00	NULL	101	10
		200	1994-07-01	1998-12-31	AC ACCOUNT	90	200	Jennifer	Whalen	JWHALEN	515, 123, 4444	1987-09-17	AD ASST	4400.00	NULL	101	10

2. Write a query to find the name (first_name, last_name) and the salary of the employees who have a higher salary than the employee whose last_name='Bull'. (Sample tables: employees)

SELECT CONCAT(first_name, " ", last_name) as name, salary FROM employees WHERE salary > (SELECT salary FROM employees WHERE last_name="Bull");

	name	salary
•	Steven King	24000.00
	Neena Kochhar	17000.00
	Lex De Haan	17000.00
	Alexander Hunold	9000.00
	Bruce Ernst	6000.00

3. Write a query to find the name (first_name, last_name) of all employees who works in the IT department. (Sample tables: employees)

SELECT CONCAT(first_name, " ", last_name) as name FROM employees WHERE department_id = (SELECT department id FROM departments WHERE department name="IT");

4. Write a query to find the name (first_name, last_name) of the employees who have a manager and worked in a USA based department. (Sample tables: employees, departments & locations)

SELECT CONCAT(first_name, " ", last_name) as name FROM employees WHERE manager_id = ANY (SELECT d.manager_id FROM departments as d, locations as I WHERE d.location_id=I.location_id AND l.country_id="US");

	name
•	Alexander Khoo
	Shelli Baida
	Sigal Tobias
	Guy Himuro
	Karen Colmenares

5. Write a query to find the name (first_name, last_name) of the employees who are managers. (Sample tables: employees)

SELECT CONCAT(first_name, " ", last_name) as name FROM employees WHERE employee_id = ANY (SELECT DISTINCT manager_id FROM employees);

6. Write a query to find the name (first_name, last_name), and salary of the employees whose salary is greater than the average salary. (Sample tables: employees)

SELECT CONCAT(first_name, " ", last_name) as name, salary FROM employees WHERE salary > ANY (SELECT AVG(salary) FROM employees);

	name	salary
•	Steven King	24000.00
	Neena Kochhar	17000.00
	Lex De Haan	17000.00
	Alexander Hunold	9000.00
	Nancy Greenberg	12000.00

7. Write a query to find the name (first_name, last_name), and salary of the employees whose salary is equal to the minimum salary for their job grade. (Sample tables: employees & jobs)

SELECT CONCAT(first_name, " ", last_name) as name, salary FROM employees as e WHERE salary = (SELECT min_salary FROM jobs as j WHERE e.job_id=j.job_id);

	name	salary
•	Karen Colmenares	2500.00
	Martha Sullivan	2500.00
	Randall Perkins	2500.00

8. Write a query to find the name (first_name, last_name), and salary of the employees who earns more than the average salary and works in any of the IT departments. (Sample tables: employees & departments)

SELECT CONCAT(first_name, " ", last_name) as name, salary FROM employees as e, departments as d WHERE e.department_id=d.department_id AND d.department_name = ANY (SELECT department_name FROM departments WHERE department_name LIKE "%IT%") AND e.salary >

(SELECT AVG(salary) FROM employees as e1,departments d1 WHERE e1.department_id = d1.department_id AND department_name LIKE "%IT%");

	name	salary
•	Alexander Hunold	9000.00
	Bruce Ernst	6000.00

9. Write a query to find the name (first_name, last_name), and salary of the employees who earns more than the earning of Mr. Bell. (Sample tables: employees & departments)

SELECT CONCAT(first_name, " ", last_name) as name, salary FROM employees WHERE salary > (SELECT salary FROM employees WHERE last_name LIKE "%Bell%");

	name	salary
•	Steven King	24000.00
	Neena Kochhar	17000.00
	Lex De Haan	17000.00
	Alexander Hunold	9000.00
	Bruce Ernst	6000.00

10. Write a query to find the name (first_name, last_name), and salary of the employees who earn the same salary as the minimum salary for all departments. (Sample tables: employees & departments)

SELECT CONCAT(first_name, " ", last_name) as name, salary FROM employees WHERE salary = SOME (SELECT MIN(salary) FROM employees);

11. Write a query to find the name (first_name, last_name), and salary of the employees whose salary is greater than the average salary of all departments. (Sample tables: employees)

SELECT CONCAT(first_name, " ", last_name) as name, salary FROM employees WHERE salary > ALL (SELECT AVG(salary) FROM employees GROUP BY department_id);

12. Write a query to find the name (first_name, last_name) and salary of the employees who earn a salary that is higher than the salary of all the Shipping Clerk (JOB_ID = 'SH_CLERK'). Sort the results of the salary of the lowest to highest. (Sample tables: employees)

SELECT CONCAT(first_name, " ", last_name) as name, salary FROM employees WHERE salary > ALL (SELECT salary FROM employees WHERE job_id="SH_CLERK");

	name	salary
•	Steven King	24000.00
	Neena Kochhar	17000.00
	Lex De Haan	17000.00
	Alexander Hunold	9000.00
	Bruce Ernst	6000.00

13. Write a query to find the name (first_name, last_name) of the employees who are not supervisors. (Sample tables: employees)

SELECT CONCAT(first_name, " ", last_name) as name FROM employees as e WHERE e.employee_id NOT IN (SELECT manager_id FROM employees);

name

14. Write a query to display the employee ID, first name, last name, and department names of all employees. (Sample tables: employees & departments)

SELECT employee_id, first_name, last_name, department_name FROM employees as e, departments as d WHERE e.department_id=d.department_id;

	employee_id	first_name	last_name	department_name
•	200	Jennifer	Whalen	Administration
	201	Michael	Hartstein	Marketing
	202	Pat	Fay	Marketing
	114	Den	Raphaely	Purchasing
	115	Alexander	Khoo	Purchasing

15. Write a query to display the employee ID, first name, last name, salary of all employees whose salary is above average for their departments. (Sample tables: employees & departments)

SELECT employee_id, first_name, last_name, salary FROM employees as e1 WHERE e1.salary > (SELECT AVG(salary) FROM employees e2 GROUP BY department_id HAVING e1.department_id = e2.department_id);

	employee_id	first_name	last_name	salary
•	100	Steven	King	24000.00
	103	Alexander	Hunold	9000.00
	104	Bruce	Ernst	6000.00
	108	Nancy	Greenberg	12000.00
	109	Daniel	Faviet	9000.00

Lab 07: DDL QUERIS

1. Create a replica of Employee table with all the records in it.

CREATE TABLE replicated_employees as SELECT * FROM employees;

	employee_id	first_name	last_name	email	phone_number	hire_date	job_id	salary	commission_pct	manager_id	department_id
•	100	Steven	King	SKING	515.123.4567	1987-06-17	AD_PRES	24000.00	HULL	NULL	90
	101	Neena	Kochhar	NKOCHHAR	515.123.4568	1989-09-21	AD_VP	17000.00	NULL	100	90
	102	Lex	De Haan	LDEHAAN	515.123.4569	1993-01-13	AD_VP	17000.00	NULL	100	90
	103	Alexander	Hunold	AHUNOLD	590.423.4567	1990-01-03	IT_PROG	9000.00	NULL	102	60

2. Add a column 'Address' in it.

ALTER TABLE replicated_employees ADD (address VARCHAR(200));

	Field	Type	Null	Key	Default	Extra
•	employee_id	int unsigned	NO		NULL	
	first_name	varchar(20)	YES		NULL	
	last_name	varchar(25)	NO		NULL	
	email	varchar(25)	NO		NULL	
	phone_number	varchar(20)	YES		NULL	
	hire_date	date	NO		NULL	
	job_id	varchar(10)	NO		NULL	
	salary	decimal(8,2)	NO		NULL	
	commission_pct	decimal(2,2)	YES		NULL	
	manager_id	int unsigned	YES		NULL	
	department_id	int unsigned	YES		NULL	
	address	varchar(200)	YES		NULL	

3. Drop column 'Address' from it.

ALTER TABLE replicated_employees DROP address;

	Field	Туре	Null	Key	Default	Extra
•	employee_id	int unsigned	NO		NULL	
	first_name	varchar(20)	YES		NULL	
	last_name	varchar(25)	NO		NULL	
	email	varchar(25)	NO		NULL	
	phone_number	varchar(20)	YES		NULL	
	hire_date	date	NO		NULL	
	job_id	varchar(10)	NO		NULL	
	salary	decimal(8,2)	NO		NULL	
	commission_pct	decimal(2,2)	YES		NULL	
	manager_id	int unsigned	YES		NULL	
	department_id	int unsigned	YES		NULL	

4. Add columns 'House No' character ,'Street No' numeric, 'Area' character ,'City' character in it with the respective data types.

ALTER TABLE replicated_employees ADD(

house_number VARCHAR(15),

```
street_number VARCHAR(15),
area VARCHAR(25),
city VARCHAR(25)
```

);

	Field	Туре	Null	Key	Default	Extra
•	employee_id	int unsigned	NO		NULL	
	first_name	varchar(20)	YES		NULL	
	last_name	varchar(25)	NO		NULL	
	email	varchar(25)	NO		NULL	
	phone_number	varchar(20)	YES		NULL	
	hire_date	date	NO		NULL	
	job_id	varchar(10)	NO		NULL	
	salary	decimal(8,2)	NO		NULL	
	commission_pct	decimal(2,2)	YES		NULL	
	manager_id	int unsigned	YES		NULL	
	department_id	int unsigned	YES		NULL	
	house_number	varchar(15)	YES		NULL	
	street_number	varchar(15)	YES		NULL	
	area	varchar(25)	YES		NULL	
	city	varchar(25)	YES		NULL	

5. Change the data type of 'House No' from character to numeric.

ALTER TABLE replicated_employees MODIFY house_number INT(20);

	Field	Type	Null	Key	Default	Extra
•	employee_id	int unsigned	NO		NULL	
Ĺ	first_name	varchar(20)	YES		NULL	
	last_name	varchar(25)	NO		NULL	
	email	varchar(25)	NO		NULL	
	phone_number	varchar(20)	YES		NULL	
	hire_date	date	NO		NULL	
	job_id	varchar(10)	NO		NULL	
	salary	decimal(8,2)	NO		NULL	
	commission_pct	decimal(2,2)	YES		NULL	
	manager_id	int unsigned	YES		NULL	
	department_id	int unsigned	YES		NULL	
	house_number	int	YES		NULL	
	street_number	varchar(15)	YES		NULL	
	area	varchar(25)	YES		NULL	
	city	varchar(25)	YES		NULL	

6. Create the Data Definitions for each of the relations shown below, using SQL DDL. Assume the following attributes and data types:

CREATE DATABASE iba2;

USE iba2;

CREATE TABLE faculty(

faculty_id INT PRIMARY KEY,

faculty_name VARCHAR(25)

);

	Field	Туре	Null	Key	Default	Extra
•	faculty_id	int	NO	PRI	NULL	
	faculty_name	varchar(50)	YES		NULL	

CREATE TABLE course (

course_id VARCHAR(8) PRIMARY KEY,

course_name VARCHAR(15)

);

	Field	Type	Null	Key	Default	Extra
•	course_id	char(8)	NO	PRI	NULL	
	course_name	char(15)	YES		NULL	

CREATE TABLE class (

class_id VARCHAR(8),

course_id VARCHAR(8),

section_number INT,

semester VARCHAR(10),

FOREIGN KEY(course_id) REFERENCES course(course_id)

);

	Field	Туре	Null	Key	Default	Extra
•	class_id	char(8)	YES		NULL	
	course_id	char(8)	YES	MUL	NULL	
	section_no	int	YES		NULL	
	semester	char(10)	YES		NULL	

7. How would you add an attribute, CLASS, to the STUDENT table?

ALTER TABLE student ADD (class VARCHAR(20));

	Field	Type	Null	Key	Default	Extra
•	std_NO	varchar(8)	NO	PRI	NULL	
	std_Name	varchar(30)	NO		NULL	
	Department	varchar(30)	NO		NULL	
	email	varchar(30)	NO		NULL	
	phone	varchar(30)	YES		NULL	
	project_id	int	YES	MUL	NULL	
	daysToComplete	int	YES		NULL	
	dass	varchar(20)	YES		NULL	

8. Write a SQL statement to rename the table department to dept (with both methods).

One way)

RENAME TABLE department TO dep;

	Tables_in_hr
•	class
	countries
	course
	dep

Second Way

ALTER TABLE dep RENAME TO department;

	Tables_in_hr
•	class
	countries
	course
	department

9. Write a SQL statement to add a column regionId to the table locations.

ALTER TABLE locations ADD (region_id VARCHAR(15));

	Field	Туре	Null	Key	Default	Extra
•	location_id	int unsigned	NO	PRI	NULL	auto_increment
	street_address	varchar(40)	YES		NULL	
	postal_code	varchar(12)	YES		NULL	
	city	varchar(30)	NO		NULL	
	state	varchar(25)	YES		NULL	
	country_id	char(2)	NO	MUL	NULL	
	region_id	varchar(15)	YES		NULL	

10. Write a SQL statement to change the name of the column state_province to state in locations table, keeping the data type and size same.

ALTER TABLE locations CHANGE COLUMN state_province state VARCHAR(25);

	Field	Type	Null	Key	Default	Extra
•	location_id	int unsigned	NO	PRI	NULL	auto_increment
	street_address	varchar(40)	YES		NULL	
	postal_code	varchar(12)	YES		NULL	
	city	varchar(30)	NO		NULL	
	state	varchar(25)	YES		NULL	
	country_id	char(2)	NO	MUL	NULL	
	region_id	varchar(15)	YES		NULL	

Lab 08: Constraints

1. Create a table DEPARTMENT with the following attributes:

```
DEPTNO number, DNAME varchar(10), LOC varchar(10).
```

PRIMARY KEY constraint on DEPTNO.

CREATE TABLE department (

deptno INT,

dname VARCHAR(10),

loc VARCHAR(10),

PRIMARY KEY(deptno)

);

	Field	Type	Null	Key	Default	Extra
•	deptno	int	NO	PRI	NULL	
	dname	varchar(10)	YES		NULL	
	loc	varchar(10)	YES		NULL	

2. Create a table EMPLOYEE with the following attributes:

EMPNO number, ENAME varchar(10), SAL number, DEPTNO number.

Apply FOREIGN KEY constraint on DEPTNO referencing the DEPARTMENT table created in question 1 and PRIMARY KEY constraint on EMPNO and DEPTNO.

CREATE TABLE employee (

empno INT,

ename VARCHAR(10),

salary numeric(10,2),

deptno INT,

FOREIGN KEY(deptno) REFERENCES department(deptno),

PRIMARY KEY(empno, deptno)

);

	Field	Type	Null	Key	Default	Extra
•	empno	int	NO	PRI	NULL	
	ename	varchar(10)	YES		NULL	
	salary	decimal(10,2)	YES		NULL	
	deptno	int	NO	PRI	NULL	

3. ALTER table EMPLOYEE created in question 2 and apply the constraint CHECK on ENAME attribute such that ENAME should always be inserted in capital letters.

ALTER TABLE employee ADD CHECK (UCASE(ename)=TRUE);

	Field	Туре	Null	Key	Default	Extra
•	salary	decimal(10,2)	YES		NULL	
	ename	varchar(10)	YES		NULL	
	empno	int	NO	PRI	NULL	
	deptno	int	NO	PRI	NULL	

4. ALTER table DEPARTMENT created in question 1 and apply constraint on DNAME such that DNAME should not be entered empty.

ALTER TABLE department CHANGE dname dname VARCHAR(10) NOT NULL;

	Field	Туре	Null	Key	Default	Extra
•	deptno	int	NO	PRI	NULL	
	dname	varchar(10)	NO		NULL	
	loc	varchar(10)	YES		NULL	

5. ALTER table EMPLOYEE created in question 2 and apply the constraint on SAL attribute such that no two salaries of the employees should be similar.

ALTER TABLE employee CHANGE salary salary numeric(10,2) UNIQUE;

	Field	Туре	Null	Key	Default	Extra
•	empno	int	NO	PRI	NULL	
	ename	varchar(10)	YES		NULL	
	salary	decimal(10,2)	YES	UNI	NULL	
	deptno	int	NO	PRI	NULL	

6. ALTER table EMPLOYEE created in question 2 and apply the constraint on DEPTNO attribute such that on update, update a child value and on delete set null value to a child.

ALTER TABLE employee ADD FOREIGN KEY(deptno) REFERENCES department(deptno) ON UPDATE CASCADE ON DELETE SET NULL;

Lab 09: DML Queries

1. Write a SQL statement to insert 4 rows in project table and 4 rows in student table below by a single insert statement.

INSERT IGNORE INTO projects

VALUES

- (1, "Al for Marketing", "2019-08-01", "2019-12-31"),
- (2, "ML for Sales", "2019-05-15", "2019-11-20"),
- (3, "CS for IT", "2020-01-01", "2020-05-20"),
- (4, "SQL for input", "2020-06-13", "2020-11-20");

	project_id	name	start_date	end_date
•	1 AI for Marketing		2019-08-01	2019-12-31
	2	ML for Sales	2019-05-15	2019-11-20
	3	CS for IT	2020-01-01	2020-05-20
	4	SQL for input	2020-06-13	2020-11-20
	NULL	NULL	NULL	NULL

INSERT IGNORE INTO student

VALUES

("S100", "Ali Mehmood", "Administration", "ali@iba-suk.edu.pk", "0333-895311", 3), ("S101", "Manisha Kataria", "Computer Science", "manisha@iba-suk.edu.pk", "0345-111333444", 2),

("S102", "Sagar Sanjay", "Engineering", "sagar@iba-suk.edu.pk", "0300-22224454", 2),

("S103", "Sara Shaikh", "IT", "sara@iba-suk.edu.pk", "0300-111110000", 3);

	std_NO	std_Name	Department	email	phone	project_id
•	S100	Ali Mehmood	Administration	ali@iba-suk.edu.pk	0333-895311	3
	S101	Manisha Kataria	Computer Science	manisha@iba-suk.edu.pk	0345-111333444	2
	S102	Sagar Sanjay	Engineering	sagar@iba-suk.edu.pk	0300-22224454	2
	S103	Sara Shaikh	IT	sara@iba-suk.edu.pk	0300-111110000	3

CREATE TABLE IF NOT EXISTS projects_copy SELECT * FROM projects;

	project_id	name	start_date	end_date	
•	1 AI for Marketing		2019-08-01	2019-12-31	
	2	ML for Sales	2019-05-15	2019-11-20	
	3	CS for IT	2020-01-01	2020-05-20	
	4	SQL for input	2020-06-13	2020-11-20	

2. Write a SQL statement to delete all records from projects_copy table.

DELETE FROM projects copy ORDER BY project id DESC LIMIT 5;

project_id	name	start_date	end_date
------------	------	------------	----------

3. Write a SQL statement to insert rows from projects_copy table to projects_copy table.

INSERT IGNORE INTO projects_copy SELECT * FROM projects;

	project_id	name	start_date	end_date
•	1	AI for Marketing	2019-08-01	2019-12-31
	2	ML for Sales	2019-05-15	2019-11-20
	3	CS for IT	2020-01-01	2020-05-20
	4	SQL for input	2020-06-13	2020-11-20

4. Write a SQL statement to update start_date to '2023-02-01' of a project name CS for IT.

UPDATE projects SET start_date = "2023-02-01" WHERE name="CS for IT";

UPDATE projects SET start_date="2023-02-01" WHERE project_id=3;

	project_id	name	start_date	end_date
•	1 AI for Marketing		2019-08-01	2019-12-31
	2	ML for Sales	2019-05-15	2019-11-20
	3	CS for IT	2023-02-01	2020-05-20
	4	SQL for input	2020-06-13	2020-11-20

ALTER TABLE projects ADD cost INT;

ALTER TABLE projects ADD daysToComplete INT;

	project_id	name	start_date	end_date	cost	daysToComplete
•	1	AI for Marketing	2019-08-01	2019-12-31	NULL	NULL
	2	ML for Sales	2019-05-15	2019-11-20	NULL	NULL
	3	CS for IT	2023-02-01	2020-05-20	NULL	NULL
	4	SQL for input	2020-06-13	2020-11-20	NULL	NULL

5. Write a SQL statement to update cost of project to 90000 where cost are null.

UPDATE projects SET cost=90000 WHERE cost IS NULL;

UPDATE projects SET cost=90000 ORDER BY project_id DESC LIMIT 4;

	project_id	name	start_date	end_date	cost	daysToComplete
•	1	AI for Marketing	2019-08-01	2019-12-31	90000	NULL
	2	ML for Sales	2019-05-15	2019-11-20	90000	NULL
	3	CS for IT	2023-02-01	2020-05-20	90000	NULL
	4	SQL for input	2020-06-13	2020-11-20	90000	HULL

6. Write a SQL statement to update daysToComplete column from student by calculating difference from project start_date and end_date.

UPDATE projects SET start_date="2020-01-01" WHERE project_id=3;

UPDATE projects SET daysToComplete=DATEDIFF(end_date,start_date) LIMIT 4;

	project_id	name	start_date	end_date	cost	daysToComplete
•	1	AI for Marketing	2019-08-01	2019-12-31	90000	152
	2	ML for Sales	2019-05-15	2019-11-20	90000	189
	3	CS for IT	2020-01-01	2020-05-20	90000	140
	4	SQL for input	2020-06-13	2020-11-20	90000	160

Lab 10: Stored Routines (Procedures & Functions)

1. Create a stored procedure DISPLAY without parameters. The procedure must display empno, ename and salary of all the employees of DEPTNO = 10.

DELIMITER \$\$

CREATE PROCEDURE DISPLAY()

BEGIN

SELECT employee_id as empno, CONCAT(first_name, " ", last_name) as ename, salary FROM employees WHERE department_id=10;

END\$\$

DELIMITER;

CALL DISPLAY();

	empno	ename	salary
•	200	Jennifer Whalen	4400.00

2. Create a stored procedure DISPLAY2 with parameters. It must take DEPTNO as an input and must return the DNAME and TOTAL SALARY of the input department number.

CREATE PROCEDURE DISPLAY2(IN DEPTNO INT)

BEGIN

SELECT d.department_name as DNAME, SUM(salary) as "TOTAL SALARY" FROM employees as e, departments as d

WHERE e.department_id=d.department_id AND d.department_id=DEPTNO;

END\$\$

DELIMITER;

CALL DISPLAY2(10);

	DNAME	TOTAL SALARY	
•	Administration	4400.00	

3. Create a stored procedure DISPLAY3 with parameters. It must take DEPTNO as an input and must return the DNAME, SMALLEST and HIGHEST SALARIES of the input department number. DISPLAY3 must also display empno, ename, total salary (sal+comm) of all the employees of the input department number.

DELIMITER \$\$

CREATE PROCEDURE DISPLAY3(IN DEPTNO INT)

BEGIN

SELECT d.department_name as DNAME, MIN(e.salary) as "SMALLEST SALARY", MAX(e.salary) as "HIGHEST SALARY"

FROM employees as e, departments as d WHERE e.department_id=d.department_id AND d.department_id=50;

SELECT e.employee_id as empno, CONCAT(first_name, " ", last_name) as ename, salary+(salary*commission_pct) as "Total Salary"

FROM employees as e, departments as d WHERE e.department_id=d.department_id AND d.department_id=90 AND commission_pct IS NOT NULL;

END\$\$

DELIMITER;

CALL DISPLAY3(90);

	DNAME	SMALLI SALAR		HIGHEST SALARY
•	Shipping	2100.00)	8200.00
	empno	ename	Total Salary	

4. Create a stored function MANAGER without input parameters. It must return the total salary of all the managers in the EMP.

DELIMITER \$\$

CREATE FUNCTION MANAGER()

RETURNS NUMERIC(10,2)

DETERMINISTIC

BEGIN

DECLARE total_salary NUMERIC(10,2) DEFAULT 0.0;

SET total_salary = (SELECT SUM(e.salary) as "All Employees Salary" FROM employees as e, departments as d WHERE e.manager_id=d.manager_id);

RETURN (total_salary);

END\$\$

DELIMITER;

SELECT MANAGER();

5. Create a stored function MANAGER2 with parameters. It must take empno as an input and must return its manager name. Write a SELECT statement to display all employees' names and their manager names. Manager names must be displayed using MANAGER2 stored function.

DELIMITER \$\$

CREATE FUNCTION MANAGER3(empno INT)

RETURNS VARCHAR(30)

DETERMINISTIC

BEGIN

RETURN(SELECT CONCAT(e2.first_name, " ", e2.last_name) as manager_name

FROM employees as e1, employees as e2 WHERE e1.manager_id=e2.employee_id AND e1.employee_id=empno);

END\$\$

DROP FUNCTION MANAGER2;

DELIMITER;

SELECT CONCAT(first_name, " ", last_name) as employee_name, MANAGER2(employee_id) FROM employees;

	employee_name	MANAGER2
•	Steven King	HULL
	Neena Kochhar	Steven King
	Lex De Haan	Steven King
	Alexander Hunold	Lex De Haan
	Bruce Ernst	Alexander Hunold

6. Create a stored function MANAGER3 with parameters. It must take MANAGER NAME as an input and must return average salary of its employees..

DELIMITER \$\$

CREATE FUNCTION MANAGER3(manager_name VARCHAR(30))

RETURNS DECIMAL(10,2)

DETERMINISTIC

BEGIN

DECLARE avg_salary DECIMAL(10,2) DEFAULT 0.0;

SET avg_salary = (SELECT AVG(e1.salary) as avg_salary FROM employees as e1, employees as e2

WHERE e1.manager_id=e2.employee_id AND CONCAT(TRIM(e2.first_name), " ", TRIM(e2.last_name)) = "Steven King");

RETURN (avg_salary);

END\$\$

DELIMITER;

SELECT MANAGER3("Steven King");

MANAGER3("Steven King")	
•	11100.00

Lab 11: Control Structures

1. Create a procedure **countEven** that will sum the number from 2 to given particular Number passes through IN parameter using any Loop.

```
DELIMITER $$
CREATE PROCEDURE countEven(IN num INT, IN size INT)
BEGIN
       DECLARE str VARCHAR(255) DEFAULT "";
 DECLARE num copy INT DEFAULT 0;
 SET str = "";
 SET num copy = num;
 loop_label: LOOP
    IF MOD(num_copy,2)=0 THEN SET str = CONCAT(str, num_copy,",");
    ELSEIF num_copy>=size_ THEN LEAVE loop_label;
    END IF;
    SET num_copy = num_copy + 1;
 END LOOP loop_label;
 SELECT str;
END$$
DELIMITER;
CALL countEven(1,10);
     str
2,4,6,8,10,
```

2. Create a procedure **checkCustomer** that will take customerNumber through IN parameter and display Whether the customer exist in customer table or not.

```
CREATE PROCEDURE checkCustomer(IN empNo INT)
```

BEGIN

```
DECLARE status_ VARCHAR(255) DEFAULT "";

DECLARE temp BOOLEAN;

SET temp = (SELECT empNo IN (SELECT employee_id FROM employees));

IF temp=1 THEN SET status_ = "Yes, employee exists In The employees table.";

ELSE SET status_="No, Employee does not exist in the employee table.";
```

```
END IF;
  SELECT status_;
END$$
DELIMITER;
CALL checkCustomer(102);
Yes, employee exists In The employees table.
CALL checkCustomer(1020);
     status_
No, Employee does not exist in the employee ta...
4. Create a procedure EvenOdd that takes number through IN parameter then check and display
whether the given no is Odd or Even.
DELIMITER $$
CREATE PROCEDURE EvenOdd(IN num INT)
BEGIN
       DECLARE status_ VARCHAR(30) DEFAULT "";
  IF mod(num,2)=0 THEN SET status_="It is Even Number";
  ELSE SET status_="It is Odd Number";
  END IF;
  SELECT status_;
END$$
DELIMITER;
CALL EvenOdd(10);
     status_
It is Even Number
CALL EvenOdd(11);
     status_
    It is Odd Number
```

```
5. Create 3 procedures (with LOOP, WHILE, REPEAT UNTIL) to print following output.
      +----+
     output |
     | 1,2,3,4,5, |
--LOOP
DELIMITER $$
CREATE PROCEDURE LoopDemo()
BEGIN
       DECLARE x INT DEFAULT 0;
  DECLARE str VARCHAR(255) DEFAULT "";
  SET x = 1;
  loop_label: LOOP
              IF x>5 THEN LEAVE loop_label;
    END IF;
    SET str = CONCAT(str,x,",");
    SET x = x + 1;
    SELECT str as status_;
  END LOOP loop_label;
END$$
DELIMITER;
CALL LoopDemo();
    status_
1,2,3,4,5,
-- WHILE
DELIMITER $$
CREATE PROCEDURE WhileDemo()
BEGIN
       DECLARE x INT DEFAULT 0;
  DECLARE str VARCHAR(255) DEFAULT "";
  SET x = 1;
  SET str="";
```

WHILE x<=5 DO

```
SET str = CONCAT(str,x,",");
    SET x = x + 1;
  END WHILE;
  SELECT str as status_;
END$$
DELIMITER;
CALL WhileDemo();
    status_
1,2,3,4,5,
-- REPEAT UNTII
DELIMITER $$
CREATE PROCEDURE RepeatUntilDemo()
BEGIN
       DECLARE x INT DEFAULT 0;
  DECLARE str VARCHAR(255) DEFAULT "";
  SET x = 1;
  SET str="";
  REPEAT
               SET str = CONCAT(str,x,",");
    SET x = x + 1;
  UNTIL x>5 END REPEAT;
  SELECT str as status_;
END$$
DELIMITER;
CALL RepeatUntilDemo();
     status_
```

1,2,3,4,5,

```
6. Create 3 procedures (with LOOP, WHILE, REPEAT UNTIL) to print following output.
+----+
output |
+----+
| 5,4,3,2,1, |
+----+
-- LOOP
DROP PROCEDURE IF EXISTS LoopDemo2;
DELIMITER $$
CREATE PROCEDURE LoopDemo2()
BEGIN
       DECLARE x INT DEFAULT 0;
  DECLARE str VARCHAR(255) DEFAULT "";
  SET x = 5;
  SET str="";
  loop_label: LOOP
              IF(x<1) THEN LEAVE loop_label;</pre>
    END IF;
    SET str = CONCAT(str,x,",");
    SET x = x - 1;
  END LOOP loop_label;
  SELECT str as output;
```

END\$\$
DELIMITER;
CALL LoopDemo2();
output
5,4,3,2,1,

-- WHILE DO

DELIMITER \$\$

CREATE PROCEDURE WhileDemo2()

BEGIN

DECLARE x INT DEFAULT 0;

DECLARE str VARCHAR(255) DEFAULT "";

SET x = 5;

SET str="";

WHILE x>=1 DO

SET str = CONCAT(str,x,",");

SET x = x - 1;

END WHILE;

SELECT str as output;

END\$\$

DELIMITER;

CALL WhileDemo2();

-- REPEAT UNTIL DELIMITER \$\$

```
CREATE PROCEDURE RepeatUntilDemo2()
BEGIN
       DECLARE x INT DEFAULT 0;
  DECLARE str VARCHAR(255) DEFAULT "";
  SET x = 5;
  SET str="";
  REPEAT
              SET str = CONCAT(str,x,",");
    SET x = x - 1;
  UNTIL x<1
  END REPEAT;
  SELECT str as output;
END$$
DELIMITER;
CALL RepeatUntilDemo2();
    output
5,4,3,2,1,
7. Create 3 procedures (with LOOP, WHILE, REPEAT UNTIL) to print following output.
+----+
output
+----+
| -5,-4,-3,-2,-1,0, |
+----+
-- LOOP
DELIMITER $$
CREATE PROCEDURE LoopDemo3()
BEGIN
       DECLARE x INT DEFAULT 0;
  DECLARE str VARCHAR(255) DEFAULT "";
  SET x = 5;
  SET str="";
  loop_label:LOOP
              IF x<0 THEN LEAVE loop_label;</pre>
    END IF;
    SET str = CONCAT(str,(-x),",");
    SET x = x - 1;
  END LOOP loop label;
  SELECT str as output;
END$$
DELIMITER;
CALL LoopDemo3();
    output
▶ -5,-4,-3,-2,-1,0,
```

```
DELIMITER $$
CREATE PROCEDURE WhileDemo3()
BEGIN
       DECLARE x INT DEFAULT 0;
  DECLARE str VARCHAR(255) DEFAULT "";
  SET x = 5;
  SET str="";
  WHILE x>=0 DO
              SET str = CONCAT(str,x,",");
              SET x = x - 1;
  END WHILE;
  SELECT str as output;
END$$
DELIMITER;
CALL WhileDemo3();
     output
-5,-4,-3,-2,-1,0,
-- REPEAT UNTIL
DELIMITER $$
CREATE PROCEDURE RepeatUntilDemo3()
BEGIN
       DECLARE x INT DEFAULT 0;
  DECLARE str VARCHAR(255) DEFAULT "";
  SET x = 5;
  SET str="";
  REPEAT
              SET str = CONCAT(str,(-x),",");
    SET x = x - 1;
  UNTIL x<0 END REPEAT;
  SELECT str as output;
END$$
DELIMITER;
CALL RepeatUntilDemo3();
    output
```

-5,-4,-3,-2,-1,0,