Obere und untere Schranken, Supremumsaxiom

Def Sei $M \subset \mathbb{R}$. Die Menge M heißt nach oben bzw. nach unten beschränkt, falls ein $C \in \mathbb{R}$ bzw. $D \in \mathbb{R}$ existiert mit

$$x \le C \quad \forall x \in M$$
 bzw. $x \ge D \quad \forall x \in M$.

M heißt beschränkt, falls sie sowohl nach oben als auch nach unten beschränkt ist. Die Zahlen C und D nennt man obere bzw. untere Schranken.

Def Sei $M \subset \mathbb{R}$. Eine Zahl $C \in \mathbb{R}$ heißt Supremum von M, falls C die kleinste obere Schranke ist, d.h.

- 1) $x \le C \quad \forall x \in M$
- 2) Zu jedem $\varepsilon > 0$ existiert ein $x \in M$ mit $x > C \varepsilon$.

Def Sei $M \subset \mathbb{R}$. Eine Zahl $D \in \mathbb{R}$ heißt *Infimum* von M, falls D die größte untere Schranke ist, d.h.

- 1) $x \ge D \quad \forall x \in M$
- 2) Zu jedem $\varepsilon > 0$ existiert ein $x \in M$ mit $x < D + \varepsilon$.

Man schreibt sup M = C, inf M = D.

Ist C Supremum von M und $C \in M$, so heißt C Maximum von M. Ist D Infimum von M und $D \in M$, so heißt D Minimum von M.

Supremumsaxiom Jede nichtleere, nach oben beschränkte Teilmenge von \mathbb{R} hat ein Supremum.

Satz 1.11 (Archimedisches Prinzip)

Für jede reelle Zahl x existiert eine natürliche Zahl n mit n > x.

Satz 1.12 (Satz des Eudoxos)

Für jedes reelle $\varepsilon > 0$ existiert eine natürliche Zahl n mit $\frac{1}{n} < \varepsilon$.