Problem 1:

If
$$j+k=12$$
, $j*k=j+k=k+j=k*j$
If $j+k>12$, $j*k=j+k-12=k+j-12=k*j$
In either case, $j*k=k*j$.

Problem 2:

(A) There are two kinds of symmetries

エ = [10] R = [0-1] た。= [-1 0] 123 = [0]

(B) Multiplication Table

	I	R	RZ	123	S	SR	S 122	SR3
I								S123
12								Srz
RZ	122	N.	Н	P	S _Z	જુ ડું	S	SR
R^3	Z ³	I	2	122	SR	522	SR3	5
S	S	SR	SRZ	512 ³	Ħ	R	52	123
SR	SR	SZZ	SR3	S	3	H	12	122
Spr	SR2	SPS	V	SR	ر ک	<u>2</u>	Н	2
Sp3	SR3	S	SR	SR2	12	122	R ³	エ

- (C) Machine multiplication is associative, so group is associative
 - · I is identity · Inverse of Ri is RH-i hunse of SRi is RHis Thus it is a group.

The multiplication table is not symmetric, so the group is not Abelian.

Problem 3

- (A) Let e e G be the identity.

 exe = e so e = exe.

 Since the cross product of a vector with itself

 13 5, we get e = 5.
- (B) if geG, Hun e×g=g, so g=ō×g=ō

 Thus g=ō ∀geG. ∴ G= {ō}