كنترل غيرخطى

دانشگاه صنعتی امیرکبیر، دانشکده مهندسی برق زمستان ۱۴۰۳

دكتر شفيعي

لیاپانوف پیوسته و گسسته

عرفان عموزادخلیلی، علی رفیعی

سیستمهای غیرمتغیر با زمان (Autonomous)

$$x(t+1) = f(x(t))$$

 $f: D \to \mathbb{R}^n \quad (D \subset \mathbb{R}^n)$ f: locally Lipschitz $x = 0 \to equilibrium point$

پایدار (Stable) → پایدار مجانبی (Asymptotically) → پایدار مجانبی جامع (Stable)

ا نا پایدار (Unstable)

• تعریف پایداری مانند حالت پیوسته است.

دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)

نقطهٔ تعادل

سیستمهای غیرمتغیر با زمان تعاریف پایداری

stable if, for each $\epsilon > 0$, there is $\delta = \delta(\epsilon)$ such that

تعریف پایدار:

$$||x(0)|| < \delta \Rightarrow ||x(t)|| < \epsilon, \ \forall t \ge 0$$

if it is not stable

تعریف ناپایدار:

if it is stable and δ can be chosen such that

$$||x(0)|| < \delta \Rightarrow \lim_{t \to \infty} x(t) = 0$$

تعریف پایدار مجانبی:

if it is stable and for every initial conditions:

تعریف پایدار مجانبی جامع:

$$\lim_{t \to \infty} x(t) = 0$$

سیستمهای غیرمتغیر با زمان قضیهٔ لیاپانوف

Theorem 1.2 (Existence of a Lyapunov function implies stability) Let x = 0 be an equilibrium point for the autonomous system

$$x(t+1) = f(x(t))$$

where $f: D \to \mathbb{R}^n$ is locally Lipschitz in $D \subset \mathbb{R}^n$ and $0 \in D$. Suppose there exists a function $V: D \to \mathbb{R}$ which is continuous and such that

$$V(0) = 0 \text{ and } V(x) > 0, \ \forall x \in D - \{0\}$$
 (3)

$$V(f(x)) - V(x) \le 0, \ \forall x \in D$$

Then x = 0 is stable. Moreover if

$$V(f(x)) - V(x) < 0, \ \forall x \in D - \{0\}$$
 (5)

then x = 0 is asymptotically stable.

سیستمهای غیرمتغیر با زمان پایداری جامع

Theorem 1.4 (Global asymptotic stability from Lyapunov) Let x = 0 be an equilibrium point for the autonomous system

$$x(t+1) = f(x(t))$$

where $f: D \to \mathbb{R}^n$ is locally Lipschitz in $D \subset \mathbb{R}^n$ and $0 \in D$. Let $V: \mathbb{R}^n \to \mathbb{R}$ be a continuous function such that

$$V(0) = 0 \text{ and } V(x) > 0, \ \forall x \in D - \{0\}$$
 (6)

$$||x|| \to \infty \Rightarrow V(x) \to \infty$$

$$V(f(x)) - V(x) \le 0, \ \forall x \in D$$
 (8)

then x = 0 is globally asymptotically stable.

سیستمهای غیرمتغیر با زمان قضیهٔ نایایداری

Theorem 1.5 (Instability condition from Lyapunov) Let x = 0 be an equilibrium point for the autonomous system

$$x(t+1) = f(x(t))$$

where $f: D \to \mathbb{R}^n$ is locally Lipschitz in $D \subset \mathbb{R}^n$ and $0 \in D$. Let $V: D \to \mathbb{R}$ be a continuous function such that V(0) = 0 and $V(x_0) > 0$ for some x_0 with arbitrary small $||x_0||$. Let r > 0 be such that $B_r \subset D$ and $U = \{x \in B_r | V(x) > 0\}$, and suppose that V(f(x)) - V(x) > 0 for all $x \in U$. Then x = 0 is unstable.

سیستمهای غیرمتغیر با زمان اصل تغییرناپذیری (Invariance Principle)

Theorem 2.4 (LaSalle's theorem) Let $\Omega \subset D$ be a compact set that is positively invariant with respect to the autonomous system

$$x(t+1) = f(x(t))$$

where $f: D \to \mathbb{R}^n$ is locally Lipschitz in $D \subset \mathbb{R}^n$ and $0 \in D$. Let $V: D \to \mathbb{R}$ be a continuous function such that $V(f(x)) - V(x) \leq 0$ in Ω . Let E be the set of all points in Ω where V(f(x)) - V(x) = 0, and let M be the largest invariant set in E. Then every solution starting in Ω approaches M as $t \to \infty$.

سیستمهای غیرمتغیر با زمان نتایج اصل تغییرناپذیری (Invariance Principle)

Corollary 2.5 Let x = 0 be an equilibrium point for the autonomous system

$$x(t+1) = f(x(t))$$

where $f: D \to \mathbb{R}^n$ is locally Lipschitz in $D \subset \mathbb{R}^n$ and $0 \in D$. Let $V: D \to \mathbb{R}$ be a continuous positive definite function on a domain $D, x \in D$, such that $V(f(x)) - V(x) \leq 0$ in D. Let $S = \{x \in D | V(f(x)) - V(x) = 0\}$ and suppose that no solution can stay identically in S other than the trivial solution $x(t) \equiv 0$. Then the origin is asymptotically stable.

Corollary 2.6 Let x = 0 be an equilibrium point for the autonomous system

$$x(t+1) = f(x(t))$$

where $f: D \to \mathbb{R}^n$ is locally Lipschitz in $D \subset \mathbb{R}^n$ and $0 \in D$. Let $V: \mathbb{R}^n \to \mathbb{R}$ be a continuous, positive definite, radially unbounded function, such that $V(f(x)) - V(x) \leq 0$, $\forall x \in \mathbb{R}^n$. Let $S = \{x \in \mathbb{R}^n | V(f(x)) - V(x) = 0\}$ and suppose that no solution can stay identically in S other than the trivial solution $x(t) \equiv 0$. Then the origin is **globally** asymptotically stable.

سیستمهای غیرمتغیر با زمان مقایسهٔ LaSalle و Lyapunov

Lyapunov Stability Theorem	LaSalle's Invariance Principle
V positive definite on B_r	V continuously differentiable on Ω
\dot{V} negative definite on B_r	\dot{V} negative semidefinite on Ω
Equilibrium point	Equilibrium set
-	Gives estimate of the region of attraction
Aleksandr Lyapunov - 1892	Nikolay Krasovsky – 1959 Joseph LaSalle - 1960

(Common Mistake) اشتباه رایج

- باید به جزئیات شروط لیاپانوف و لاسال دقت شود؛ در لیاپانوف ناحیهٔ مورد بررسی دیسک B_r است و در لاسال ناحیهٔ مورد بررسی ناحیهٔ Ω است که positively Invariant
 - در هر ناحیهٔ دلخواه اگر V>0 و V>0 لزوماً آن ناحیه، ناحیهٔ پایدار نیست!
 - مثال: سیستم زیر را در نظر بگیرید.

$$\begin{cases} \dot{x_1} = x_2 \\ \dot{x_2} = -x_1 + \frac{1}{3}x_1^3 - x_2 \end{cases}$$

ناحیهٔ D را به صورت زیر تعریف می کنیم.

$$D = \left\{ x \in \mathbb{R}^2 \mid -\sqrt{3} < x_1 < \sqrt{3} \right\}$$

$$V(x) = \frac{3}{4}x_1^2 - \frac{1}{12}x_1^4 + \frac{1}{2}x_1x_2 + \frac{1}{2}x_2^2 > 0 \qquad \forall x \in D$$

$$\dot{V}(x) = -\frac{1}{2}x_1^2 \left(1 - \frac{1}{3}x_1^2\right) - \frac{1}{2}x_2^2 < 0 \qquad \forall x \in D$$

اشتباه رایج

سیستمهای غیرمتغیر با زمان یک مثال

$$x_1(t+1) = x_1^2(t) + x_2^2(t)$$

$$x_2(t+1) = x_1(t)x_2(t)$$

$$V(x(t)) = x_1^2(t) + x_2^2(t)$$

$$\to V(f(x)) - V(x(t))$$

$$= (x_1^2(t) + x_2^2(t))^2 + (x_1(t)x_2(t))^2 - x_1^2(t) - x_2^2(t)$$

$$\Delta V = x_1^4(t) + x_2^4(t) + 3x_1^2(t)x_2^2(t) - x_1^2(t) - x_2^2(t)$$

کدهای MATLAB در لینک GitHub موجود است.

سیستمهای خطی غیرمتغیر با زمان پایداری بر اساس مقادیر ویژه

$$x(t+1) = A x(t)$$
 Solution $x(t) = A^t x(0)$

 $A \in \mathbb{R}^{n \times n}$

Theorem 3.1 The equilibrium point x = 0 of the linear time-invariant system

$$x(t+1) = Ax(t), A \in \mathbb{R}^{n \times n}$$

is stable if and only if all the eigenvalues of A satisfy $|\lambda_i| \leq 1$ and the algebraic and geometric multiplicity of the eigenvalues with absolute value 1 coincide. The equilibrium point x = 0 is globally asymptotically stable if and only if all the eigenvalues of A are such that $|\lambda_i| < 1$.

سیستمهای خطی غیرمتغیر با زمان بررسی کاندید لیاپانوف

$$V(x) = x^T P x$$
 P : متقارن مثبت معین $V(f(x)) - V(x) = (Ax)^T P (Ax) - x^T P x = x^T A^T P A x - x^T P x$ $\Rightarrow (A^T \otimes A^T - I) Vec(P) = -Vec(Q)$

Theorem 3.2 (Lyapunov for linear time invariant systems) A matrix A is Schur if and only if, for any positive definite matrix Q there exists a positive definite symmetric matrix P that satisfies (11). Moreover if A is Schur, then P is the unique solution of (11).

سیستمهای خطی غیرمتغیر با زمان مثال عددی

$$A = \begin{bmatrix} 0.3 & -0.4 \\ 0.4 & 0.3 \end{bmatrix}$$

$$\lambda_{1,2} = \pm 0.5j \rightarrow \left| \lambda_{1,2} \right| < 1$$

كدهاى MATLAB در لينك GitHub موجود است.

$$\begin{bmatrix} 0.3 & 0.4 \\ -0.4 & 0.3 \end{bmatrix} \begin{bmatrix} p_1 & p_2 \\ p_2 & p_3 \end{bmatrix} \begin{bmatrix} 0.3 & -0.4 \\ 0.4 & 0.3 \end{bmatrix} - \begin{bmatrix} p_1 & p_2 \\ p_2 & p_3 \end{bmatrix} = - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} p_1 & p_2 \\ p_2 & p_3 \end{bmatrix} = \begin{bmatrix} \frac{4}{3} & 0 \\ 0 & \frac{4}{3} \end{bmatrix} : P.D.$$

$$(A^T \otimes A^T - I)Vec(P) = -Vec(Q)$$

$$\rightarrow Vec(P) = \begin{bmatrix} \frac{1}{3} \\ 0 \\ 0 \\ \frac{4}{3} \end{bmatrix}$$

سیستمهای خطی غیرمتغیر با زمان خطی سازی

Theorem 3.3 (Linearised asympt stable implies nonlin asympt stable)

Let x = 0 be an equilibrium point for the nonlinear autonomous system

$$x(t+1) = f(x(t))$$

where $f: D \to \mathbb{R}^n$ is locally Lipschitz in $D \subset \mathbb{R}^n$ and $0 \in D$. Let $A = \frac{\partial f_i}{\partial x}(x)\Big|_{x=0}$. Then the origin is asymptotically stable if $|\lambda_i| < 1$ for all the eigenvalues of A. Instead, if there exists at least an eigenvalue such that $|\lambda_i| > 1$, then the origin is unstable.

سیستمهای خطی غیرمتغیر با زمان قضیهٔ یکتایی پاسخ معادله لیاپانوف

Lemma 3.4 B The Lyapunov equation (11) admits a solution if and only if the eigenvalues λ_i of matrix A are such that

$$\lambda_i \lambda_j \neq 1 \text{ for all } i, j = 1, \dots, n$$
 (13)

Moreover given a positive definite matrix Q, the corresponding solution P is positive definite if and only if $|\lambda_i| < 1$ for all i = 1, ..., n.

سیستمهای متغیر با زمان (Nonautonomous)

$$x(t+1) = f(t,x(t))$$

```
f: (T \times D) \to \mathbb{R}^n (D \subset \mathbb{R}^n, T = \{t_0, t_0 + 1, ...\})

f: locally Lipschitz

x = 0 \to equilibrium point

f(t,0) = 0 \quad \forall t \in T
```

→ پایدار (Stable) بایدار (Stable) بایدار مجانبی

→ پایدار یکنواخت (Uniformly Stable) → پایدار مجانبی یکنواخت (Uniformly Asymptotically)

پایدار مجانبی جامع یکنواخت (Globally Uniformly Asymptotically) →

نا پایدار (Unstable)

نقطهٔ تعادل

ً يلي تكنيك تهران]

سیستمهای متغیر با زمان (Nonautonomous) تعاریف پایداری

uniformly asymptotically stable if it is uniformly stable and there is a positive constant c, independent of t_0 , such that $x(t) \to 0$ as $t \to \infty$, for all $||x(t_0)|| < c$ uniformly in t_0 ; that is, for each $\eta > 0$, there is $T = T(\eta) > 0$ such that

$$||x(t)|| < \eta, \ \forall \ t > t_0 + T(\eta), \ \forall ||x(t_0)|| < c$$

سیستمهای متغیر با زمان (Nonautonomous) قضیهٔ لیاپانوف

Theorem 5.4 (Lyapunov function implies stability for nonautonomous)

Let x = 0 be an equilibrium point for the nonautonomous system

$$x(t+1) = f(t, x(t))$$

with $f: (\mathbb{T} \times D) \to \mathbb{R}^n$, $0 \in D \subset \mathbb{R}^n$ locally Lipschitz in x on $\mathbb{T} \times D$. Let $V: \mathbb{T} \times D \to \mathbb{R}$ be a continuous function such that

$$W_1(x) \le V(t, x) \le W_2(x)$$

 $V(t+1, f(t, x)) - V(t, x) \le 0$

for all $t \ge 0$ and for all $x \in D$, where $W_1(x)$ and $W_2(x)$ are continuous positive definite functions on D. Then x = 0 is uniformly stable.

سیستمهای متغیر با زمان (Nonautonomous) قضیهٔ پایداری مجانبی

Theorem 5.5 (Lyapunov function for asymptotically stable nonautonomous systems)

Suppose the assumptions of Theorem 5.4 are satisfied and that it also holds

$$V(t+1, f(x,t)) - V(t,x) \le -W_3(x), \ \forall \ t \ge 0, x \in D$$

where $W_3(x)$ is a continuous positive definite function on D. Then, x = 0 is uniformly asymptotically stable.

سیستمهای خطی متغیر با زمان بررسی معادلهٔ لیاپانوف

$$x(t+1) = A(t) x(t)$$

 $A: n \times n$

• در حالت خطی متغیر با زمان صرفاً با بررسی مقادیر ویژهٔ A(t) نمیتوان نظری داد.

Theorem 5.9 (Lyapunov function for linear time variant syst) Consider the system (18). If there exists a continuous, symmetric, bounded positive definite matrix P(t), $0 < p_1 I \le P(t) \le p_2 I$, $\forall t \ge 0$, which satisfies the equation

$$A(t)^{\top} P(t+1)A(t) - P(t) = -Q(t)$$
(19)

with Q(t) continuous, symmetric, positive definite matrix, $Q(t) \ge q_1 I > 0$, then the equilibrium point x = 0 is globally exponentially stable.

$$x(t+1) = \begin{bmatrix} 0.5 + \frac{1}{t+2} & 0\\ 0 & 0.4 + \frac{1}{t+3} \end{bmatrix} x(t)$$

$$A^{T}(t)P(t+1)A(t) - P(t) = -Q(t)$$

$$P(t) = I: P.D. \rightarrow$$

$$Q(t) = I - A^{T}(t)A(t) = \begin{bmatrix} 1 - \left(0.5 + \frac{1}{t+2}\right)^{2} & 0 \\ 0 & 1 - \left(0.4 + \frac{1}{t+3}\right)^{2} \end{bmatrix} \ge 0$$

$$O(t) = I - A^{T}(t)A(t) = \begin{bmatrix} 1 - \left(0.5 + \frac{1}{t+2}\right)^{2} & 0 \\ 0 & 1 - \left(0.4 + \frac{1}{t+3}\right)^{2} \end{bmatrix}$$

$$O(t) = I - A^{T}(t)A(t) = \begin{bmatrix} 1 - \left(0.5 + \frac{1}{t+2}\right)^{2} & 0 \\ 0 & 1 - \left(0.4 + \frac{1}{t+3}\right)^{2} \end{bmatrix}$$

$$O(t) = I - A^{T}(t)A(t) = \begin{bmatrix} 1 - \left(0.5 + \frac{1}{t+2}\right)^{2} & 0 \\ 0 & 1 - \left(0.4 + \frac{1}{t+3}\right)^{2} \end{bmatrix}$$

$$O(t) = I - A^{T}(t)A(t) = \begin{bmatrix} 1 - \left(0.5 + \frac{1}{t+2}\right)^{2} & 0 \\ 0 & 1 - \left(0.4 + \frac{1}{t+3}\right)^{2} \end{bmatrix}$$

$$O(t) = I - A^{T}(t)A(t) = \begin{bmatrix} 1 - \left(0.5 + \frac{1}{t+2}\right)^{2} & 0 \\ 0 & 1 - \left(0.4 + \frac{1}{t+3}\right)^{2} \end{bmatrix}$$

$$O(t) = I - A^{T}(t)A(t) = \begin{bmatrix} 1 - \left(0.5 + \frac{1}{t+2}\right)^{2} & 0 \\ 0 & 1 - \left(0.4 + \frac{1}{t+3}\right)^{2} \end{bmatrix}$$

$$O(t) = I - A^{T}(t)A(t) = \begin{bmatrix} 1 - \left(0.5 + \frac{1}{t+2}\right)^{2} & 0 \\ 0 & 1 - \left(0.4 + \frac{1}{t+3}\right)^{2} \end{bmatrix}$$

$$O(t) = I - A^{T}(t)A(t) = \begin{bmatrix} 1 - \left(0.5 + \frac{1}{t+2}\right)^{2} & 0 \\ 0 & 1 - \left(0.4 + \frac{1}{t+3}\right)^{2} \end{bmatrix}$$

$$O(t) = I - A^{T}(t)A(t) = \begin{bmatrix} 1 - \left(0.5 + \frac{1}{t+2}\right)^{2} & 0 \\ 0 & 1 - \left(0.4 + \frac{1}{t+3}\right)^{2} \end{bmatrix}$$

$$O(t) = I - A^{T}(t)A(t) = \begin{bmatrix} 1 - \left(0.5 + \frac{1}{t+2}\right)^{2} & 0 \\ 0 & 1 - \left(0.4 + \frac{1}{t+3}\right)^{2} \end{bmatrix}$$

سیستمهای خطی متغیر با زمان پایداری بر اساس ماتریس انتقال حالت

Theorem 5.10 (Condition on the transition matrix to have exp stab)

The equilibrium point x = 0 of the linear time variant system

$$x(t+1) = A(t)x(t)$$

is uniformly asymptotically stable if and only if the state transition matrix satisfies

$$\|\Phi(t,t_0)\| \le ke^{-\lambda(t-t_0)}, \ \forall \ t \ge t_0 \ge 0$$

for some positive constants k and λ .

$$x(t) = \Phi(t, t_0) x(t_0)$$

$$\Phi(t, t_0) = A(t - 1) A(t - 2) \dots A(t_0)$$

سیستمهای خطی متغیر با زمان شرطی خوش دست تر برای ماتریس انتقال حالت

Lemma 5.12 The following statements are equivalent

- (i) System (18) is uniformally asymptotically stable
- (ii) System (18) is globally uniformly asymptotically stable
- (iii) $\|\Phi(t,t_0)\| \to 0$ as $t \to \infty$ uniformly in t_0

سیستمهای خطی متغیر با زمان خطی سازی

Theorem 5.14 (If lin system is exp stable than the nonlin is exp stabl)

Let x = 0 be an equilibrium point for the nonlinear system

$$x(t+1) = f(t,x)$$

where $f: \mathbb{T} \times D \to \mathbb{R}^n$ is locally Lipschitz in x on $\mathbb{T} \times D$, and $D = \{x \in \mathbb{R}^n \mid ||x|| < r\}$. Suppose that the Jacobian matrix $[\frac{\partial f}{\partial x}]$ is bounded and Lipschitz on D, uniformly in t. Let

$$A(t) = \frac{\partial f}{\partial x}(t, x) \bigg|_{x=0}$$

Then the origin is an exponentially stable equilibrium point for the nonlinear system if it is an exponentially stable equilibrium point for the linear system x(t+1) = A(t)x(t).

توجه داریم که در این حالت برای ناپایداری قضیه نداریم.

معادلهٔ لیاپانوف برای سیستم حالت کلی

$$Ex(t+1) = Ax(t)$$

$$V(x(t)) = x^T E^T P E x$$

$$V(x(t+1)) - V(x(t)) = (x(t+1))^T E^T PE(x(t+1)) - x(t)^T E^T PEx(t)$$

$$= (Ex(t+1))^T P(Ex(t+1)) - x(t)^T E^T P Ex(t)$$

$$= (Ax(t))^{T} P(Ax(t)) - x(t)^{T} E^{T} P E x(t)$$

$$= x^T A^T P A x - x^T E^T P E x$$

$$\Rightarrow A^T P A - E^T P E = -Q \quad \Rightarrow (A^T \otimes A^T - E^T \otimes E^T) Vec(P) = -Vec(Q)$$

سیستمهای خطی متغیر با زمان Perturbated قضیهٔ پایداری

$$z(t+1) = (A(t) + E(t))z(t) \quad \forall t \in J$$

فرض کنید سیستم UES x(t+1) = A(t)x(t) باشد.

اگر به ازای هر $t \geq t_0 \in J$ یک ε به اندازهٔ کافی کوچک و $\beta(t_0, \varepsilon)$ یافت شود به طوری که:

$$\sum_{t_0}^{t-1} ||E(t)|| \le \varepsilon(t - t_0) + \beta(t_0, \varepsilon)$$

آنگاه سیستم ES است. (اگر β مستقل از t_0 باشد آنگاه UES است.)

سیستمهای خطی متغیر با زمان Perturbated برخی نتایج قضیه

.
$$J = Z$$
 فرض کنید

$$\lim_{t\to\infty} ||E(t)|| = 0$$
اگر

و_

سیستم غیر Perturbated به صورت UES باشد؛

آنگاه سیستم ES است.

 $\lim_{|t|\to\infty, t\in J} ||E(t)|| = 0$ اگر

آنگاه سیستم UES است

اگر و تنها اگر

سيستم غير UES Perturbated باشد.

سیستمهای خطی متغیر با زمان Perturbated برخی نتایج قضیه

Corollary 3: Assume that the limit $\lim_{\mathbf{t}\to\infty} A(\mathbf{t})$ exists and let $\lim_{\mathbf{t}\to\infty} A(\mathbf{t}) = A_{\infty}$.

- 1) Let $J = \mathbf{Z}^+$. Then the DLTV system (1) is UES if and only if A_{∞} is Schur stable.
- 2) Let $J = \mathbf{Z}$. Then the DLTV system (1) is ES if A_{∞} is Schur stable.
- 3) Let $J = \mathbb{Z}$ and, moreover, $\lim_{\mathbf{t} \to -\infty} A(\mathbf{t}) = A_{\infty}$. Then the DLTV system (1) is UES if and only if A_{∞} is Schur stable.

جمعبندي

Continuous-time	Discrete-time
$\dot{V} \coloneqq \frac{\partial}{\partial x} V(t, x) + \nabla V(t, x) f(t, x)$	$\dot{V} := V\left(t+1, f(x(t))\right) - V(t, x(t))$
$Re\{\lambda_i\} < 0$	$ \lambda_i < 1$
$A^T P + AP = -Q$	$A^T P A - P = -Q$
$\lambda_i + \lambda_j^* \neq 0$	$\lambda_i \lambda_j \neq 1$
$A^{T}(t)P(t) + \dot{P}(t) + P(t)A(t) = -Q(t)$	$A^{T}(t)P(t+1)A(t) - P(t) = -Q(t)$
$\lim_{t \to \infty} \ \Phi(t, t_0)\ = 0$, $\ \Phi(t, t_0)\ \le k \cdot e^{-\lambda(t - t_0)}$	

منابع

- "Lyapunov Theory for Discrete Time Systems", Nicoletta Bof, Ruggero Carli, Luca Schenato
- "Nonlinear Systems Analysis", M. Vidyasagar
- "On Asymptotic Stability of Discrete-Time Linear Time-Varying Systems", Bin Zhou, Tianrui
- "Discretization of Linear Time-Varying Systems", Gagan Deep Meena, S. Janardhanan
- "Nonlinear Systems", Hassan K. Khalil
- "On the Discrete Generalized Lyapunov Equation", Vassilis L. Syrmos, Pradeep Misra, Ravi Aripirala
- https://github.com/ErfanAmKh/eakmatlab/tree/main/nonlinear%20control%20project

