Sistem Interupsi pada AVR

- Interrupt (interupsi) adalah kejadian yang membuat kita meninggalkan aktifitas normal yg sedang kita jalankan
- Seperti telah disampaikan sebelumnya suatu mikrokontroler pada kondisi normal mengeksekusi instruksi secara berurutan dari atas ke bawah
- Ada kalanya terjadi suatu peristiwa penting yg harus ditanggapi oleh mikrokontroler dengan segera

- Sistem/sub sistem Interupsi pada mikrokontroler digunakan untuk menangani peristiwa tersebut
- Sistem interupsi memungkinkan mikrokontroler merespon peristiwa penting (higher-priority events) yang kapan datangnya tidak diketahui secara pasti, walaupun keberadaannya sudah dapat diketahui sebelumnya

 Ketika suatu interupsi terjadi (peristiwa yg memicu interupsi terjadi), mikrokontroler mengalami perubahan dalam mengeksekusi program, yaitu berpindah/meninggalkan proses yg sedang dikerjakan (setelah instruksi yg sedang dijalankan selesai dikerjakan) menuju sebuah sub rutin(potongan program) yang disebut subrutin layanan interupsi (Interrupt Service Routine/ISR)

- Umumnya setiap jenis interupsi memiliki ISR masingmasing
- Lokasi alamat tempat masing-masing ISR berada disebut Interrupt Vector Address
- Secara prinsip ketika terjadi suatu interupsi tertentu mikrokontroler akan menuju ke Interrupt Vector Address yang bersesuaian
- Segera setelah sebuah ISR selesai dijalankan mikrokotroler melanjutkan mengerjakan proses yg tadi ditinggalkan ketika terjadi interupsi

Table 12-1. Reset and Interrupt Vectors

Vector No.	Program Address ⁽²⁾	Source	Interrupt Definition
1	0x000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset, and Watchdog Reset
2	0x001	INT0	External Interrupt Request 0
3	0x002	INT1	External Interrupt Request 1
4	0x003	TIMER2 COMP	Timer/Counter2 Compare Match
5	0x004	TIMER2 OVF	Timer/Counter2 Overflow
6	0x005	TIMER1 CAPT	Timer/Counter1 Capture Event
7	0x006	TIMER1 COMPA	Timer/Counter1 Compare Match A
8	0x007	TIMER1 COMPB	Timer/Counter1 Compare Match B
9	0x008	TIMER1 OVF	Timer/Counter1 Overflow
10	0x009	TIMER0 OVF	Timer/Counter0 Overflow
11	0x00A	SPI, STC	Serial Transfer Complete
12	0x00B	USART, RXC	USART, Rx Complete
13	0x00C	USART, UDRE	USART Data Register Empty
14	0x00D	USART, TXC	USART, Tx Complete
15	0x00E	ADC	ADC Conversion Complete
16	0x00F	EE_RDY	EEPROM Ready
17	0x010	ANA_COMP	Analog Comparator
18	0x011	TWI	Two-wire Serial Interface
19	0x012	SPM_RDY	Store Program Memory Ready

- Pada ATmega8 terdapat pin external interrupt, yaitu pin yg dapat digunakan untuk memicu interupsi pada mikrokontroler dari suatu peristiwa di luar mikrokontroler
- Ada 2 yaitu:
 - INTO
 - INT1

Register yg berkaitan

Table 14-1. Interrupt 1 Sense Control

ISC11	ISC10	Description
0	0	The low level of INT1 generates an interrupt request.
0	1	Any logical change on INT1 generates an interrupt request.
1	0	The falling edge of INT1 generates an interrupt request.
1	1	The rising edge of INT1 generates an interrupt request.

Table 14-2. Interrupt 0 Sense Control

ISC01	ISC00	Description
0	0	The low level of INT0 generates an interrupt request.
0	1	Any logical change on INTO generates an interrupt request.
1	0	The falling edge of INT0 generates an interrupt request.
1	1	The rising edge of INT0 generates an interrupt request.

Register yg berkaitan

Contoh Pengaturan dengan Codewizard pada

CodevisionAVR

Internal Interrupt

- Internal Interrupt adalah interupsi yg terjadi karena adanya peristiwa tertentu di dalam mikrokontroler itu sendiri
- Umumnya berkaitan dengan subsistem yang ada di dalam mikrokontroler
- Misalnya:timer/counter, sistem komunikasi USART, ADC

Internal Interrupt

Contoh Pengaturan dengan Codewizard pada

CodevisionAVR

Pemanfaatan Interupt

- Pada robot MIROSOT pin Interupt dihubungkan dengan salah satu channel encoder (channel A)
- Ada dua motor maka kedua pin Interupt digunakan
- INTO dengan channel A motor kiri
- INT1 dengan channel A motor kanan

 Encoder adalah suatu sensor yang digunakan untuk menkonversi gerakan(putaran) atau posisi menjadi serangkaian pulsa

 Pulsa terjadi ketika sinar/cahaya dari suatu sumber cahaya melewati piringan dengan pola tertentu

Incremental Encoder

- Membangkitkan pulsa atau increments karena adanya gerakan
- Pulsa yang dihasilkan bisa berupa gelombang kotak maupun sinusoidal
- Incremental Encoder umumnya digunakan pada aplikasi pengaturan kecepatan (buka pengaturan posisi)

Resolusi

 Jumlah pulsa atau increments tiap channel yang dihasilkan setiap satu putaran, biasa disebut Pulses Per Revolution, or PPR

Quadrature:

- Menghasilkan dua gelombang kotak yang biasa disebut A dan B (kadang termasuk komplemen A dan Komplemen B)
- A dan B tergeser sejauh ¼ siklus dengan menggunakan empat output yang ada dapat digunakan untuk memebedakan 4 keadaan pada setiap siklus, sehingga disebut "quadrature"
- Danya offset antara A dan B memungkinkan kita untuk membedakan arah putar, yaitu dengan melihat sinyal mana yang muncul terlebih dahulu.

 Motor yang digunakan yaitu Faulhaber 2224R00 R IE2-512, sudah memiliki encoder

Part Name: DC Motor

Manufacturer: Faulharber series 2224

More info: http://www.faulhaber.com/uploadpk/EN_2224_SR_DFF.pdf

Spesifikasi

Pemanfaatan Interupt

- Pemanfaatan lain interupt pada robot beroda adalah interupsi pada USART (saluran komunikasi serial)
- Tujuannya adalah agar setiap perintah yang dikirimkan oleh host komputer tidak ada yang terlewat

Komunikasi Paralel&Serial

- Komunikasi Paralel:komunikasi yng menggunakan konsep pengiriman data secara paralel(bersamaan), semua bit data pada satu waktu sekaligus
- Komunikasi Serial:komunikasi yng menggunakan konsep pengiriman data secara serial(berurutan), satu demi satu bit secara bergantian
- Menggunakan jalur yg lebih sedikit dibanding komunikasi paralel
- Kecepatan relatif lebih lambat dari komunikasi paralel

Komunikasi serial

- Asynchronous serial transmission (transmisi serial asinkron):transmisi data serial yg tidak membutuhkan jalur clock terpisah dari data (untuk sinkronisasi digunakan data rate, start dan stop bit serta parity bit(jika dibutuhkan))
- Synchronous serial transmission (transmisi serial sinkron): transmisi data serial yg membutuhkan jalur clock terpisah dari data. Isyarat clock ini digunakan untuk sinkronisasi antara trasmiter dan receiver.

Terminologi (istilah yg digunakan)

- Baud rate:laju perubahan data/bit (bit per second)
- Full Duplex:sistem komunikasi yang mampu melakukan operasi pengiriman dan penerimaan data secara bersamaan
- TTL Logic:Transistor-transistor Logic
- CMOS Logic
- RS 232: suatu standard komunikasi serial yang menggunakan tegangan +12V dan -12V pada transmitter, namun penerima/receiver mampu membedakan tegangan +3V and -3V. Beberapa perusahaan membuat transmitters yg bekerja pada +5V and -5V dan menyebutnya "RS-232 compatible."

Terminologi (istilah yg digunakan)

AVR USART

AVR USART

Register yg digunakan

USART	Control a	nd Status	Register	A(UCS)	RA)		
RXC	TXC	UDRE	FE	DOR	PE	U2X	MPCM
7							0
USART	Control a	nd Status	Register	B (UCS	RB)		
RXCIE	TXCIE	UDRIE	RXEN	TXEN	UCSZ2	RXB8	TXB8
7							0
USART (Control a	nd Status	Register	C (UCS	RC)		
URSEL=1	UMSEI	UPM1	UPM0	USBS	UCSZ1	UCSZ0	UCPOL
7							0
USART I UDR(Rea	_	ister - UI)R				
RXB7	RXB6	RXB5	RXB4	RXB3	RXB2	RXB1	RXB0
JDR(Wri	tc)						
TXB7	TXB6	TXB5	TXB4	TXB3	TXB2	TXB1	TXB0
7							0
USART B UBRRH	aud Rate	e Register	rs - UBR	RH and U	BRRL		
URSEL=0				UBRR11	UBRRIG	UBRR9	UBRR8
UBRRL							
UBRR7	JBRR6	UBRR5	UBRR4	UBRR3	UBRR2	UBRR1	UBRR0
7							0

AVR USART

- Pin yang digunakan
 - PD.0 (RXD, receiver, untuk menerima data)
 - PD.1 (TXD, trasmitter, untuk mengirimkan data)
- AVR USART menggunakan logika TTL, yaitu +5 Vdc untuk logika 1, dan 0 Vdc untuk logika 0 (lihat grafik logika TTL di halaman sebelumnya)
- Jika ingin berkomunikasi dengan Komputer menggunakan protokol RS232 harus ditambahkan rangkaian/driver RS 232 (misalnya MAX232 atau rangkaian yg dibuat sendiri)

Pemanfaatan Interupt

Pengaturan yang dilakukan

Referensi

- www.hpinfotech.com
- CodeVisionAVR User manual
- M. Ary Heryanto, Ir. Wisnu Adi P, Pemrograman Bahasa C untuk Mikrokontroler ATmega 8535, Penerbit Andi
- ATMEL, 2003, AVR Technical documentation Series, Atmel