Question 1:

- Par incorporation has introduced new cut resistant and long-lasting golf ball. They would like to compare the features of the new ball with the current one before entering the market
- Par research depicted some concerns regarding the driving distance of the new ball compared to the current one
- To gain confidence about the driving distance of the new ball they conducted an experiment with sample of 40 old and new golf balls using mechanical hitting machine
- Par hopes to have comparable driving distances between these two samples. The difference between the mean distances of the samples would infer the difference between the two balls
- So, to help Par prove that the driving distances are comparable of the current and the new golf ball below hypothesis is formulated

$$H_0$$
: $\mu_1 - \mu_2 = 0$
 H_a : $\mu_1 - \mu_2 \neq 0$

Let μ_1 = mean sample distance of the current ball

Let μ_2 = mean sample distance of the new ball

• Null Hypothesis (H₀):

To show the mean distances are comparable the difference between them should be equal to zero, hence it is considered as null hypothesis

• Alternative Hypothesis (Ha):

The alternative hypothesis the mean distances are not equal to zero which means they are not comparable

Question 2:

• To compute the p-value, test statistic value and degree of freedom needs to be determined

Test statistics =
$$\frac{\bar{x}_{1} - \bar{x}_{2} - 0}{\sqrt{\frac{s_{1}^{2} + s_{2}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}}$$
Degree of Freedom, df =
$$\frac{(\frac{s_{1}^{2} + \frac{s_{2}^{2}}{n_{2}})^{2}}{(\frac{s_{1}^{2} + \frac{s_{2}^{2}}{n_{2}})^{2}} + (\frac{s_{2}^{2} + \frac{s_{2}^{2}}{n_{2}})^{2}}{(\frac{s_{2}^{2} + \frac{s_{2}^{2}}{n_{2}})^{2}}}$$

Where, \bar{x}_1 : Sample mean of current golf ball

 \overline{x}_2 : Sample mean of new golf ball

s₁: Sample Std Deviation of current golf ball

s₂: Sample Std Deviation of new golf ball

n₁: Sample size of current golf ball

n₂: Sample size of new golf ball

• From the given sample data following values are computed using R function t.test

	Current Golf Ball	New Golf Ball
Mean	270.275	267.5
Standard deviation	8.7529	9.896
Test statistics	1.382	
Degree of freedom	76.852 (≈ 77)	
P-value	0.188	

- According to the above data, p-value is 0.188 which is greater than 0.10
- ullet As the p-value is greater than 0.10 we have insufficient evidence to conclude that H_a is true
- Above statement concludes, it cannot be proved that the driving distances of the current and new golf balls are not comparable
- Recommendation to Par:

It would be safe to recommend that the driving distance of the new golf ball are comparable to those of the current golf ball

Question 3:

- Interval estimate is computed using the sample mean and margin of error (E)
- Since population standard deviation is unknown t-distribution method is used
- For each model:

$$E = t_{\alpha/2} \frac{s}{\sqrt{n}}$$

Interval estimate = $\overline{x} \pm E$

• For difference between the means of two populations:

$$E = t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Interval estimate = $(\overline{x}_1 - \overline{x}_2) \pm E$

- For 95% confidence level, E is computed using α =0.05
- Computed the following values in R using **function t.test**

	Interval Estimate
Current sample	267.47 to 273.07
New sample	264.33 to 270.66
Difference of current and new sample	-1.38 to 6.93

Question 4:

- There is no need for larger sample size and more testing with the golf balls for the following reasons:
 - o In most applications, total sample size $(n_1 + n_2)$ of 20 or more provides very good results. The experiment conducted by Par Inc has sample size 40 + 40 = 80
 - o Larger sample size is recommended if the sample data contains any outliners
 - o From the box plot below for the current and new golf ball samples, there are no outliers

Current Golf Ball sample

New Golf Ball sample

• It can be concluded that the results provided by the sample size of 40 are satisfactory