Problem 1.31. Let $B_n = \{a^k \mid k \text{ is a multiple of } n\}$. Show that for each $n \geq 1$, the language B_n is regular.

Proof Idea. $B_1 = \{\epsilon, a, aa, aaa, aaaa, aaaaa, \cdots\}$ and $B_3 = \{\epsilon, aaa, aaaaaaa, aaaaaaaaa, \cdots\}$.

State diagrams of DFAs that recognize B_1 and B_3 .

Proof. The proof is by construction. Construct the DFA $M_n = (Q, \Sigma, \delta, q_0, F)$ to recognize B_n :

- 1. $Q = \{q_1, q_2, q_3, \dots, q_n\}$, where $n \ge 1$.
- 2. $\Sigma = \{a\}$
- 3. $q_0 = q_1$
- 4. $F = \{q_1\}$
- 5. Define $\delta(\mathbf{q}, \mathbf{a})$ so that for any $q \in Q$ and any $a \in \Sigma$:

$$\delta(q, a) = \begin{cases} q_{i+1} & 1 \le i < n \\ q_1 & i = n \end{cases}$$