Exercice 1 : Anneau des entiers *p*-adiques.

1. $\frac{394}{10} = \frac{197}{5}$ vérifie $5 \land 197 = 1$ puisque 5 est premier et ne divise pas 197. Ainsi, $D\left(\frac{394}{10}\right) = 5$ est divisible par 5, donc $\frac{394}{10} \notin \mathbb{Z}_5$.

On factorise $3240 = 8 \times 405 = 8 \times 5 \times 81 = 2^3 \times 3^4 \times 5$ et $3050 = 10 \times 305 = 10 \times 5 \times 61 = 2 \times 5^2 \times 61$. Ainsi, $\frac{3240}{3050} = \frac{2^2 3^4}{5 \times 61}$. Donc $D\left(\frac{3240}{3050}\right) = 5 \times 61$. Or 7 ne divise pas 5×61 , donc $\frac{3240}{3050} \in \mathbb{Z}_7$.

2. On a l'écriture sous forme irréductible $-1 = \frac{-1}{1}$, et p ne divise pas 1, donc $-1 \in \mathbb{Z}_p$. Soit $(r_1, r_2) \in \mathbb{Z}_p^2$, alors

$$r_1 + r_2 = \frac{N(r_1)}{D(r_1)} + \frac{N(r_2)}{D(r_2)} = \frac{N(r_1)D(r_2) + N(r_2)D(r_1)}{D(r_1)D(r_2)}$$

On en déduit

$$N(r_1 + r_2)D(r_1)D(r_2) = D(r_1 + r_2)(N(r_1)D(r_2) + N(r_2)D(r_1))$$

Ainsi, $D(r_1 + r_2)$ divise $N(r_1 + r_2)D(r_1)D(r_2)$. Or $D(r_1 + r_2) \wedge N(r_1 + r_2) = 1$. D'après le lemme de Gauss, $D(r_1 + r_2)$ divise $D(r_1)D(r_2)$. Or p ne divise ni $D(r_1)$, ni $D(r_2)$, donc p ne divise pas $D(r_1 + r_2)$. Par conséquent, $r_1 + r_2 \in \mathbb{Z}_p$. Enfin,

$$r_1 r_2 = \frac{N(r_1)N(r_2)}{D(r_1)D(r_2)}$$

Par le même argument, $D(r_1r_2)$ divise $D(r_1)D(r_2)$, donc p ne divise pas $D(r_1r_2)$, ce qui entraîne $r_1r_2 \in \mathbb{Z}_p$. D'après la caractérisation des sous-anneaux, \mathbb{Z}_p est un sous-anneau de $(\mathbb{Q},+,\times)$.

- 3. Supposons que $r \notin \mathbb{Z}_p$. Alors D(r) est divisible par p. Ainsi, N(r) n'est pas divisible par p puisque $N(r) \land D(r) = 1$. De plus, $N(r) \ne 0$ puisque $r \ne 0$. On en déduit que $\frac{1}{r} = \frac{D(r)}{N(r)}$ est l'écriture sous forme irréductible (au signe près) de $\frac{1}{r}$ et que $D\left(\frac{1}{r}\right) = N(r)$ n'est pas divisible par p. Ainsi, $\frac{1}{r} \in \mathbb{Z}_p$.
- 4. Soit $r \in \mathbb{Z}_p$ inversible dans \mathbb{Z}_p . On a alors $1/r \in \mathbb{Z}_p$. Alors D(1/r) = N(r) est premier à p. Réciproquement, soit $r \in \mathbb{Z}_p$ tel que $N(r) \land p = 1$, alors D(1/r) = N(r) n'est pas divisible par p. En conclusion,

$$\mathbb{Z}_p^{\times} = \{ r \in \mathbb{Z}_p | N(r) \notin p\mathbb{Z} \}$$

5. Supposons que $A \neq \mathbb{Z}_p$ et démontrons que $\mathbb{Z}_p = \mathbb{Q}$. Comme $\mathbb{Z}_p \subset A$, on dispose de $r \in A \setminus \mathbb{Z}_p$. Ce rationnel vérifie D(r) divisible par p, donc la valuation p-adique de D(r), notée $v_p(D(r))$, est supériere ou égale à 1. En factorisant D(r), on dispose de $n \in \mathbb{N}^*$ tel que $D(r) = p^{v_p(D(r))}n$ tel que $n \land p = 1$. On écrit alors

$$\frac{1}{p} = np^{\nu_p(D(r))-1}r$$

Comme $\nu_p(D(r)) \geq 1$, $np^{\nu_p(D(r))-1} \in \mathbb{Z}$, donc $np^{\nu_p(D(r))-1}r \in A$ puisque A est un anneau. Ainsi, $1/p \in A$. Mais alors soit $s \in \mathbb{Q}$, on factorise D(s) sous la forme $p^\beta m$ avec $\beta \in \mathbb{N}$ et $m \land p = 1$. Cela entraı̂ne $s = \frac{1}{p^\beta} \frac{N(s)}{m}$. Comme m divise D(s) et $D(s) \land N(s) = 1$, a fortiori, $m \land N(s) = 1$. C'est donc une écriture irréductible de N(s)/m. Comme $p \land m = 1$, $N(s)/m \in \mathbb{Z}_p \subset A$. D'autre part, on a montré $1/p \in A$, donc $1/p^\beta$ puisque A est un anneau. Conclusion, $s \in A$. On en déduit $\mathbb{Q} \subset A$, donc $\mathbb{Q} = A$.

6. On écrit $r = \frac{N(r)}{D(r)}$. Alors $N(r) \neq 0$, donc on factorise $N(r) = p^{\alpha} n$ avec $\alpha \in \mathbb{N}$ et $n \wedge p = 1$. De même, on factorise $D(r) = p^{\beta} m$ avec $\beta \in \mathbb{N}$ et $m \wedge p = 1$. Alors $r = p^{\alpha - \beta} \frac{n}{m}$. Mais alors $\alpha - \beta$ est un entier relatif et $\frac{m}{n} \in \mathbb{Z}_p^{\times}$ d'après la question 4. On ainsi démontré l'existence. Passons à l'unicité. Soit $(u', n') \in (\mathbb{Z}_p^{\times} \times \mathbb{Z})$ tel que $r = p^n u = p^{n'} u'$. Alors $p^{n-n'} = u^{-1} u' \in \mathbb{Z}_p^{\times}$. D'après la question 4, le numérateur et le dénominateur de $p^{n-n'}$ sont non divisibles par p, donc $n - n' \geq 0$ et $n - n' \leq 0$, donc n = n'. On en déduit alors u = u' par intégrité de \mathbb{Z} .

7. Soit r_1, r_2 deux rationnels. D'après la question précédente, il existe des inversibles u_1, u_2 de \mathbb{Z}_p tels que

$$r_1 = u_1 p^{\beta_p(r_1)}$$
 $r_2 = u_2 p^{\beta_p(r_2)}$

On en déduit $r_1r_2 = u_1u_2p^{\beta_p(r_1)+\beta_p(r_2)}$. Comme \mathbb{Z}_p^{\times} est un groupe, u_1u_2 est inversible dans \mathbb{Z}_p . D'autre part, $\beta_p(r_1)+\beta_p(r_2)\in\mathbb{Z}$. D'après l'unicité précédemment prouvée, $\beta_p(r_1)+\beta_p(r_2)=\beta_p(r_1r_2)$.

Avec les mêmes notations, $r_1 + r_2 = u_1 p^{\beta_p(r_1)} + u_2 p^{\beta_p(r_2)} = p^{\min(\beta_p(r_1),\beta_p(r_2))} q$ avec q dans \mathbb{Q}^* tel que $\beta_p(q) \geq 0$. On en déduit $r_1 + r_2 = p^{\min(\beta_p(r_1),\beta_p(r_2))} u_q p^{\beta_p(q)}$. Ainsi, $\beta_p(r_1 + r_2) \geq \min(\beta_p(r_1),\beta_p(r_2))$.

- 8. Soit $r \in \mathbb{Q}$ tel que $\beta_p(r) \geq 0$. Alors $r = up^{\beta_p(r)} = \frac{N(u)p^{\beta_p(r)}}{D(u)}$. On remarque que $p^{\beta_p(r)} \in \mathbb{Z}$. Comme $D(u) \wedge p = 1$ et $D(u) \wedge N(u) = 1$, $D(u) \wedge N(u)p^{\beta_p(r)} = 1$, donc $D(r) = N(u)p^{\beta_p(r)}$ et D(r) = D(u), donc $D(r) \wedge p = 1$ et $r \in \mathbb{Z}_p$. Réciproquement, soit $r \in \mathbb{Z}_p$. Si r = 0, $\beta_p(r) = +\infty \geq 0$. Sinon, on écrit r = N(r)/D(r). Alors d'après ce qui précède $\beta_p(r) = \beta_p(N(r)) \beta_p(D(r))$. Or $\beta_p(D(r)) = 0$ puisque p ne divise pas D(r). Par conséquent, $\beta_p(r) = \beta_p(N(r)) \geq 0$.
- 9. Soit $n \in \mathbb{Z}$, $n = \frac{n}{1}$, donc D(n) = 1 est premier avec tous les entiers naturels premiers, donc $n \in \bigcap_{p \in \mathcal{P}} \mathbb{Z}_p$. Réciproquement, soit $r \in \bigcap_{p \in \mathcal{P}} \mathbb{Z}_p$. Alors D(r) n'est divisible par aucun entier premier, donc D(r) = 1, mais alors $r = N(r) \in \mathbb{Z}$.

Exercice 2 : Quelques matrices à coefficients dans \mathbb{Z} .

1. Le calcul est direct

$$AB = \frac{1}{3} \begin{pmatrix} 4 - 1 & -2 + 2 \\ 2 - 2 & -1 + 4 \end{pmatrix} = I_2$$

$$BA = \frac{1}{3} \begin{pmatrix} 4-1 & 2-2 \\ -2+2 & -1+4 \end{pmatrix} = I_2$$

Si une telle matrice C existe, elle appartient à $\mathcal{M}_2(\mathbb{R})$, donc est un inverse de A dans $\mathcal{M}_2(\mathbb{R})$. Par unicité de l'inverse C=B. Or les coefficients de B ne sont pas dans \mathbb{Z} . C'est donc absurde. La matrice A ne possède pas d'inverse dans $\mathcal{M}_2(\mathbb{Z})$.

2. Soit $A_1 = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$ et $A_2 = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}$. Alors

$$A_1 A_2 = \begin{pmatrix} a_1 a_2 + b_1 c_2 & a_1 b_2 + b_1 d_2 \\ c_1 a_2 + d_1 c_2 & c_1 b_2 + d_1 d_2 \end{pmatrix}$$

On en déduit

 $\delta(A_1A_2) = (a_1a_2 + b_1c_2)(c_1b_2 + d_1d_2) - (c_1a_2 + d_1c_2)(a_1b_2 + b_1d_2) = a_1a_2d_1d_2 + b_1c_2c_1b_2 - c_1a_2b_1d_2 - d_1c_2a_1b_2$ D'autre part,

$$\delta(A_1)\delta(A_2) = (a_1d_1 - b_1c_1)(a_2d_2 - b_2c_2) = a_1d_1a_2d_2 - b_1c_1a_2d_2 - a_1d_1b_2c_2 + b_1c_1b_2c_2$$

D'où l'égalité.

- 3. On commence par remarquer que $\delta(I_2)=1$. D'après ce qui précède, $\delta(A)\delta(B)=1$. Or $\delta(A)$ et $\delta(B)$ sont des entiers relatifs. Par conséquent, $\delta(A)=\pm 1$.
- 4. Commençons par le cas $\delta(A) = 1$. On note $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. On pose alors $B = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. Le produit s'écrit alors

$$AB = \begin{pmatrix} ad - bc & -ab + ab \\ cd - dc & c(-b) + ad \end{pmatrix} = \delta(A)I_2 = I_2$$

On vérifie que $BA = I_2$ par un produit matriciel très similaire. Enfin B bien à coefficients dans \mathbb{Z} . Si $\delta(A) = -1$, on propose l'opposé de la matrice B précédente.

5. Effectuons la réduction classique. On dispose de $(a',b') \in \mathbb{Z}^2$ tel que a=da',b=db' et $a' \wedge b'=1$. De plus, le théorème de Bezout nous fournit un couple $(u,v) \in \mathbb{Z}^2$ tel que a'u+b'v=1. On pose alors $M=\begin{pmatrix} u & v \\ -b' & a' \end{pmatrix}$. Elle est bien à coefficients dans \mathbb{Z} et $\delta(M)=ua'+b'v=1$. De plus,

$$M\begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} ua + bv \\ -b'a + ab' \end{pmatrix} = \begin{pmatrix} d(a'u + b'v) \\ d(-b'a' + a'b') \end{pmatrix} = \begin{pmatrix} d \\ 0 \end{pmatrix}.$$

Exercice 3: Fonctions fortement convexes.

1. L'application $t \mapsto x + t(y - x)$ est polynomiale donc de classe C^1 . On en déduit par composition que $\varphi_{x,y}$ est de classe C^1 . De plus,

$$\forall t \in [0,1], \varphi'_{x,y}(t) = (y-x)f'(x+t(y-x))$$

2. Soit $(x,y) \in I^2$. On suppose dans un premier temps $x \le y$. Comme f est convexe et dérivable, f' est croissante. Soit alors $(t,t') \in [0,1]^2$ tel que $t \le t'$. On en déduit $x+t(y-x) \le x+t'(y-x)$ puisque $y-x \ge 0$. Par croissance de f', on a alors $f'(x+t(y-x)) \le f'(x+t'(y-x))$, puis $(y-x)f'(x+t(y-x)) \le (y-x)f'(x+t'(y-x))$ toujours puisque $y-x \ge 0$. D'après la question précédente, $\varphi'_{x,y}(t) \le \varphi'_{x,y}(t')$. Ainsi, $\varphi'_{x,y}$ est croissante, donc $\varphi_{x,y}$ est convexe.

Dans un second temps, on suppose que $x \ge y$. La même démarche que précédemment entraîne $x + t(y - x) \ge x + t'(y - x)$ car $y - x \le 0$, puis $(y - x)f'(x + t(y - x)) \le (y - x)f'(x + t'(y - x))$ par croissance de f' et d'après le signe négatif de y - x. Ainsi, $\varphi'_{x,y}$ est croissante, donc $\varphi_{x,y}$ est convxe.

3. Soit $(x,y) \in I^2$. D'après la question précédente, $\varphi_{x,y}$ est convexe. Comme $\varphi_{x,y}$ est dérivable, le graphe de $\varphi_{x,y}$ est au-dessus de ses tangentes, en particulier au-dessus de sa tangente en 0. Cela entraı̂ne $\forall t \in [0,1], \varphi_{x,y}(t) \geq \varphi'_{x,y}(0)(t-0) + \varphi_{x,y}(0)$. Pour t=1, on obtient $\varphi_{x,y}(1) \geq \varphi'_{x,y}(0) + \varphi_{x,y}(0)$, soit encore

$$f(y) \ge (y - x)f'(x) + f(x)$$

i.e

$$f(y) - f(x) \ge f'(x)(y - x)$$

4. Soit $(x, y) \in I^2$ tel que $x \le y$. D'après l'hypothèse de l'énoncé, on dispose des deux inégalités

$$f(y) - f(x) \ge f'(x)(y - x)$$
 et $f(x) - f(y) \ge f'(y)(x - y)$

En sommant ces deux inégalités, on obtient

$$0 \ge (f'(x) - f'(y))(y - x)$$

Si x = y, f'(x) = f'(y). Si x < y, l'inégalité précédente fournit $f'(x) \le f'(y)$. Ainsi, f' est croissante, donc f est convexe.

5. Soit $(x, y) \in I^2, \lambda \in [0, 1]^2$. Alors

$$((1 - \lambda)x + \lambda y)^{2} - (1 - \lambda)x^{2} - \lambda y^{2} = (1 - \lambda)^{2}x^{2} - (1 - \lambda)y^{2} + 2\lambda(1 - \lambda)xy + \lambda^{2}y^{2} - \lambda y^{2}$$
$$= -\lambda(1 - \lambda)x^{2} + 2\lambda(1 - \lambda)xy - \lambda(1 - \lambda)y^{2}$$
$$= -\lambda(1 - \lambda)(x - y)^{2}$$

En notant $g: x \mapsto f(x) - \frac{\alpha}{2}x^2$, on en déduit que

$$(1-\lambda)g(x) + \lambda g(y) - g((1-\lambda)x + \lambda y) = (1-\lambda)f(x) + \lambda f(y) - f((1-\lambda)x + \lambda y) - \frac{\alpha}{2}\lambda(1-\lambda)(x-y)^2$$

Ainsi, la convexité de g équivaut à $l'\alpha$ -convexité de f.

6. (a) Soit $(x,y) \in I^2$, $t \in [0,1]$. D'après la définition de l' α -convexité, on a

$$f((1-t)x+ty) \le (1-t)f(x) + tf(y) - \frac{\alpha}{2}t(1-t)(x-y)^2$$

Or $\alpha t(1-t)(x-y)^2 \ge 0$, donc $f((1-t)x+ty) \le (1-t)f(x)+tf(y)$. Ainsi, f est convexe.

D'après la question 5, la fonction $g: z \mapsto f(z) - \frac{\alpha}{2}z^2$ est convexe. Comme elle est de classe C^1 , sa dérivée est croissante, i.e

$$(x-y)(g'(x)-g'(y)) \ge 0$$

soit encore

$$(x-y)(f'(x)-f'(y))-(x-y)\alpha(x-y) \ge 0$$

i.e

$$(x-y)(f'(x)-f'(y)) \ge \alpha(x-y)^2$$

(b) Comme précédemment, g est convexe, donc au-dessus de ses tangentes. Soit $(x, y) \in I^2$. Alors, comme g est au-dessus de sa tangente en x.

$$g(y) \ge g'(x)(y-x) + g(x)$$

On en déduit

$$f(y) - \alpha \frac{y^2}{2} \ge (f'(x) - \alpha x)(y - x) + f(x) - \alpha \frac{x^2}{2}$$

soit encore

$$f(y) - f(x) \ge f'(x)(y - x) + \frac{\alpha}{2}(y - x)^2$$

(c) Soit $x \in \mathbb{R}$. L'inégalité précédente fournit

$$f(x) \ge f(0) + f'(0)x + \frac{\alpha}{2}x^2$$

Or $f(0) + f'(0)x + \frac{\alpha}{2}x^2 \xrightarrow[x \to +\infty]{} +\infty$ puisque $\alpha > 0$. On en déduit par théorème de comparaison, $f(x) \xrightarrow[x \to +\infty]{} +\infty$. On obtient les mêmes limites en $-\infty$ et le même théorème de comparaison entraı̂ne $\lim_{x \to -\infty} f(x) = +\infty$.

7. Si f est de classe C^2 , alors g est de classe C^2 . On a alors les équivalences

$$f \quad \alpha$$
 - convexe \iff g convexe \iff $g'' \ge 0 \iff$ $f'' - \alpha \ge 0 \iff$ $f'' \ge \alpha$

- 8. (a) f est polynomiale donc deux fois dérivable. De plus, $\forall x \in \mathbb{R}, f''(x) = 12x^2 2a$. Par conséquent, f'' est de signe constant positif ssi $a \le 0$. D'après la caractérisation des fonctions convexes deux fois dérivables, f est convexe ssi $a \le 0$.
 - (b) Remarquons d'après ce qui précède que f'' admet un minimum en 0 qui vaut -2a. On a alors les équivalences

$$f$$
 fortement convexe $\iff \exists \alpha > 0, f\alpha - \text{convexe} \iff \exists \alpha > 0, f'' \ge \alpha \iff \exists \alpha > 0, -2a \ge \alpha \iff a < 0$

- 9. (a) D'après la question 6.c), f tend vers $+\infty$ en $+\infty$ et $-\infty$. Par conséquent, on dispose de réels A et B tels que $\forall x \leq A, f(x) \geq f(0) + 1$ et $\forall x \geq B, f(x) \geq f(0) + 1$. Comme f(0) < f(0) + 1, nécessairement A < 0 < B. Mais alors f étant continue sur le segment réel [A, B], elle y atteint son minimum m en un point x^* de [A, B]. Celui vérifie $\forall x \in [A, B], m \leq f(x)$. A fortiori, $m \leq f(0)$. Mais alors $\forall x \leq A, f(x) \geq f(0) + 1 \geq f(0) \geq m$ et $\forall x \geq f(0) + 1 \geq f(0) \geq m$. Donc f(0) = f(0) est un minimum global de f(0) = f(0) et f(0) = f(0) et f(0) = f(0) et f(0) = f(0) est un minimum global de f(0) = f(0) et f(0) = f(0)
 - (b) Soit x^* et y^* deux éléments de \mathcal{E} . Comme le minimum global est unique, $f(x^*) = f(y^*)$. Soit $t \in [0,1]$. Comme f est fortement convexe, elle est convexe. On en déduit par inégalité de convexité

$$f((1-t)x^* + ty^*) \le (1-t)f(x^*) + tf(y^*) = f(x^*)$$

Donc f atteint également un minimum global en $(1-t)x^* + ty^*$, et ce, pour tout réel t dans [0,1], donc en tout point du segment réel d'extrémités x^* et y^* . Ainsi, $\mathcal E$ est un convexe de $\mathbb R$ (i.e un intervalle).

(c) Soit x^* et y^* deux éléments de \mathcal{E} . Montrons que $x^* = y^*$. Comme I est ouvert et que f est de classe C^1 , $f'(x^*) = 0$ et $f'(y^*) = 0$. En utilisant le résultat de la question 6.a), on en déduit $\alpha(x^* - y^*)^2 \le 0$, donc $(x^* - y^*)^2 \le 0$ puisque $\alpha > 0$. Ainsi, $x^* - y^* = 0$ par double inégalité, donc $x^* = y^*$. Conclusion, \mathcal{E} est réduit à un point.

10. (a) On applique le résultat de la question 6.a aux réels 0 et 1, ce qui donne

$$\alpha(1-0)^2 \le (1-0)(f'(1)-f'(0)) = f'(1)-f'(0) \le |f'(1)-f'(0)| \le M|1-0| = M$$

soit encore $\alpha \leq M$.

(b) Soit $k \in \mathbb{N}$. Comme f est dérivable sur \mathbb{R} et atteint un minimum local en x^* , intérieur à \mathbb{R} , $f'(x^*) = 0$. On écrit

$$x_{k+1} - x^* = x_k - x^* - \lambda_k (f'(x_k) - f'(x^*))$$

On en déduit

$$(x_{k+1} - x^*)^2 = (x_k - x^*)^2 - 2\lambda_k(x_k - x^*)(f'(x_k) - f'(x^*)) + \lambda_k^2(f'(x_k) - f'(x^*))^2$$

En utilisant la question 6.a), on obtient la minoration $(x_k-x^*)(f'(x_k)-f'(x^*)) \geq \alpha(x_k-x^*)^2$. Comme $\lambda_k \geq 0$, on en déduit la majoration $-2\lambda_k(x_k-x^*)(f'(x_k)-f'(x^*)) \leq -2\lambda_k\alpha(x_k-x^*)^2$. D'autre part, comme f' est M-Lipschitzienne, $(f'(x_k)-f'(x^*))^2 \leq M^2(x_k-x^*)^2$. On en déduit la majoration finale

$$(x_{k+1} - x^*)^2 = (x_k - x^*)^2 - 2\lambda_k \alpha (x_k - x^*)^2 + \lambda_k^2 M^2 (x_k - x^*)^2 \le (M^2 \lambda_k^2 - 2\alpha \lambda_k + 1)(x_k - x^*)^2$$

(c) Comme $M \ge \alpha > 0$, M > 0. Soit $t \in \mathbb{R}^+$. On a les équivalences

$$\Psi(t) \le 1 \iff M^2 t^2 \le 2\alpha t \iff M^2 t \le 2\alpha \iff t \le 2\alpha/M^2$$

(Si t=0, l'inégalité est trivialement réalisée). On pose alors a=0 et $b=2\alpha/M^2$, ce qui satisfait la propriété attendue.

(d) En étudiant rapidement Ψ , on constate que Ψ est strictement décroissante sur [0,b/2], strictement croissante sur [b/2,0]. Elle atteint son minimum en b/2 qui vaut $1-\alpha^2/M^2$ qui est positif d'après 10.a. Par conséquent, en posant $\beta = \sqrt{\max(\Psi(a'), \Psi(b'))}$, on a $\beta \in [0,1[$ par les variations précitées. De plus, $\forall t \in [a',b'], \Psi(t) \leq \beta^2$. D'après la question 10.b), on a alors

$$\forall k \in \mathbb{N}, (x_{k+1} - x^*)^2 \le \Psi(\lambda_k)(x_k - x^*)^2 \le \beta^2(x_k - x^*)^2$$

ce qui donne par croissance de la racine carrée,

$$\forall k \in \mathbb{N}, |x_{k+1} - x^*| \leq \beta |x_k - x^*|$$

Mais alors, une récurrence rapide entraîne

$$\forall k \in \mathbb{N} | x_k - x^* |, \leq \beta^k | x_0 - x^* |$$

Comme $\beta \in [0,1[,\beta^k \xrightarrow[k \to +\infty]{} 0.$ On en déduit par théorème d'encadrement, la convergence de la suite $(x_k)_{k \in \mathbb{N}}$ vers x^* .

(e) Soit $k \in \mathbb{N}^*$. On exploite l'égalité des accroissements finis, on dispose de c compris entre x_k et x^* tel que $f(x_k) - f(x^*) = f'(c)(x_k - x^*) = (f'(c) - f'(x^*))(x_k - x^*)$. On en déduit après passage à la valeur absolue

$$0 \le |f(x_k) - f(x^*)| \le |f'(c) - f'(x^*)| |x_k - x^*|$$

Comme f' est M-Lipschitzienne, cela entraîne

$$0 \le |f(x_k) - f(x^*)| \le M|c - x^*||x_k - x^*|$$

Comme c est compris entre x_k et x^* , $|c-x^*| \le |x_k-x^*|$. De plus, f est minimale en x^* , donc $f(x_k) \ge f(x^*)$. On en déduit finalement

$$0 \le f(x_k) - f(x^*) \le M(x_k - x^*)^2$$