Bayesian Learning

Ben Galili Ariel Shamir Zohar Yakhini

Probabilistic Learning

- Probabilistic Formulation of a classification task
- Bayes rule
- Bayesian Decision Theory
- Minimum error rate classification
- Maximum A-Posteriori & Maximum Likelihood
- Cost considerations
- Statistical dependence and conditional independence
- Naïve Bayes classifiers

Classification

- What do we want classifiers to do?
 - → We want them to classify correctly as much as possible
- How do we measure quality/performance?
 - → we want the errors to be minimized.
 - → To measure this we can often use a probabilistic framework, selecting classifiers that will minimize the probability of error
- In probabilistic learning we will use the training data to infer a probability structure of the data and derive a classifier from there.
- We regard our observations (measurable features in the training data, including the class variable) as random variables, coming from class dependent distributions.

Simple approach: Using only the Prior Probability

- We have two classes A and B
- We know P(A) and P(B)
- How should we classify a new given instance?
- The best classifier:
 - Classify A if P(A)>P(B),
 - Classify B otherwise
- Note this does not use any information we may have about the features x of the observed instance.
- What is the probability of error?

More informed approach:

Use Class Conditional Information from observed features, say height

Assume that we also know P(x|A) and P(x|B) Example: P(height|male) and P(height| female)

Example

Assume x = 163cm, would you say A or B?

© Shamir and Yakhini, IDC

P(H<1.9 | NBA) = 0.15

P(H>1.9 | R) = 0.1

P(H<1.9 | R) = 0.9

Which is more likely

But we really care about

Classification using Likelihood?

- Maybe try the Rule:
 - Classify A if P(x|A)>P(x|B),
 - Classify B otherwise
- Problem?
- What we want is the rule:
 - "Classify A if P(A|x) > P(B|x)"
- Not the same why? prior probabilities also matter.
- In our M/F example we assumed $P(A) \approx P(B)$. But, in some cases, like in the NBA example, even if P(x|A)>P(x|B) it may be the case that $P(A) \ll P(B)$ (that is: the probability of A is very very small in the first place although the specific value x is much more common in A than in B).

© Shamir and Yakhini, IDC

8

MAP: Maximum A-Posteriori

- So we want to assess P(A|x) and P(B|x), that is given x (the observation) we want to know the most probable "true state of nature". Is it A or B?
- Our classifier should be:
 - Classify A if P(A|x)>P(B|x),
 - Classify B otherwise
- However, we do not directly know these 'posterior'
 - probabilities!

• The solution:
$$P(A|x) = \frac{P(x|A)P(A)}{P(x)}$$

Components of the posterior probability formula

Multi-class Bayes/MAP classifiers

We classify an instance with a feature vector \vec{x} into

$$C(\vec{x}) = \underset{i=1..k}{\operatorname{argmax}} \frac{P(\vec{x}|A_i)P(A_i)}{P(\vec{x})}$$

We can drop $P(\vec{x})$ as it is constant with respect to i:

$$C(\vec{x}) = \underset{i=1..k}{\operatorname{argmax}} P(\vec{x}|A_i)P(A_i)$$

The principle of Bayes Classification

- Classification depends both on the class conditional information (the likelihood) and on the prior distribution.
- The binary case:
 - Classify as A if P(x|A)P(A)> P(x|B)P(B)
 - Classify as B otherwise
- Note: P(x) is removed from the denominator on both sides because it is the same.
- What if P(x) = 0 (such as in continuous distributions)?

Minimum Error Rate Classification

- Whenever we observe a value x, what is the probability of error?
 - If we decide B then P(error | x) = P(A | x)
 - If we decide A then P(error | x) = P(B | x)
- The Bayes decision is therefore the one that minimizes the probability of error at the observed \boldsymbol{x}
- Using Bayes decision as our model h
 - $P(error \mid x) = \min[P(B \mid x), P(A \mid x)]$
 - If we really knew the complete probability structure (which we normally don't ...) we could estimate:

$$Error_P(h) = \int P(error \mid x) dP(x)$$

Loss = Cost of Wrong Decision

- Assume, as above, that we have k different classes: A_i , $1 \le i \le k$
- Upon observing x, we need to assign our instance to one of the A_i s (and we apply the Bayes/MAP approach)
- Wrong decisions lead to a loss! Loss may depend on which *j* was misclassified into *i*. We represent this as a cost function:

$$\lambda_{ij} = \text{Cost}(h(x) = A_i \land x \in A_j)$$

For example, a most simple zero-one loss:

$$\lambda_{ij} = \begin{cases} 0 & i = j \\ 1 & i \neq j \end{cases}$$

Minimum Cost of Error Bayes Classification

• Whenever we observe a particular x, what is the expected risk of classifying into A_i , under a general cost function?:

$$R(Choose A_i|x) = \sum_{j \neq i} \lambda_{ij} P(A_j|x)$$

- The <u>Bayes cost based decision</u> will be the one that minimizes this cost of error
- That is in general, having observed x we classify it into

$$\underset{i}{\operatorname{argmin}} \sum_{j \neq i} \lambda_{ij} P(A_j | x)$$

© Shamir and Yakhini, IDC

Bayes MAP Classifiers

Under the zero-one loss function:

$$C(\vec{x}) = \underset{i=1..k}{\operatorname{argmax}} P(A_i|\vec{x}) = \underset{i=1..k}{\operatorname{argmax}} P(\vec{x}|A_i)P(A_i)$$

Under a general cost function:

$$C(\vec{x}) = \underset{i=1..k}{\operatorname{argmin}} \sum_{j \neq i} \lambda_{ij} P(\vec{x}_j | A_j) P(A_j)$$

How To Evaluate the Conditional Probabilities/Densities

- In general how do we estimate distributions?
- We can use the training set to compute a histogram of values for features per class. We can then use the histograms as estimates of the conditional probabilities.
- We can also infer a model, as we discussed last time, using, for example, MLE.
- Note we need to infer class dependent models. Parameters may (should) be different for each class.

Example: Fisher's Iris Data Set

- Fisher's Iris data set is a multivariate data set introduced by Ronald Fisher in his 1936 paper:
 - The use of multiple measurements in taxonomic problems
- Became a typical basic test case for many statistical classification techniques in machine learning

R.A. Fisher
British statistician
and geneticist
1890-1962

Fisher's Iris Data Set

- 50 samples from each of three species of Iris: Iris setosa, Iris virginica and Iris versicolor.
- Four features were measured from each sample: the length and the width of the sepals and petals, in centimeters.

Shamir and Yakhini, IDC 20

The Data in a Scatter Plot

Iris Data (red=setosa,green=versicolor,blue=virginica)

© Shamir and Yakhini, IDC

Evaluating class conditional probabilities/densities in the Fisher Iris Dataset

$$P(\vec{x}|A_i) = ?$$

Option1: use the actual data

P(sepal length = x | Setosa)

= (count of Setosa w sepal length = x)/(total Setosa)

Sampling – information from data only ...

$$P(x|A_i) = 0 ?$$

What if the sepal length of a new instance is 6.1?

Option2: Histograms

A Histogram as Density Estimation (Binning)

- In 1D we have m real values and we divide the real line into k non-overlapping bins: $[c_i-h, c_i+h), i = 1...k$
- There are different approaches for determining *k*

The resulting density estimate will be:

$$p(x) = \frac{\{number\ of\ samples\ in\ the\ bin\ containing\ x\}}{\{total\ number\ of\ samples\}}$$

Option 3: parametric approximation

For example: Normal ...

Normal Distribution: Parameters

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

- Normal/Gauss distributions are determined by two parameters: μ and σ .
- Given m values of a normal variable X, the MLE estimates for the mean and variance of X are:

$$\hat{\mu} = \frac{1}{m} \sum_{k=1}^{m} x_k$$
 ; $\hat{\sigma}^2 = \frac{1}{m} \sum_{k=1}^{m} (x_k - \mu)^2$

Conditional distribution of sepal length

Normal Conditional Distributions using MLE

Back to Fisher's irises

- Assume we measured the sepal length of a specific flower and we get 5.2cm.
 Which of the three species is it?
- Using MAP we are looking for the larger of
 - P(versicolor | sepal length = 5.2)
 - P(virginica | sepal length = 5.2)
 - P(setosa | sepal length = 5.2)
- We now use the Bayes formula to compute these

Using Bayes

- P(versicolor | sepal length = 5.2) =
- = P(sepal length = 5.2 | versicolor) P(versicolor) /P(sepal length = 5.2)
- P(virginica | sepal length = 5.2) =
- = P(sepal length = 5.2 | virginica) P(virginica) /P(sepal length = 5.2)
- P(setosa | sepal length = 5.2) =
- = P(sepal length = 5.2|setosa) P(setosa) /P(sepal length = 5.2)

But since we assumed that the priors are the same

we just use the likelihoods for classification

Compare Class Conditional Probabilities; The Gauss version

Which one is larger?

- 1. P(sepal length = 5.2 | versicolor)
- 2. P(sepal length = 5.2 | virginica)
- 3. P(sepal length = 5.2|setosa)

What is the advantage of this approach over a histogram approach?

How to Measure Classification Performance?

- How do we know if we managed to build a good classifier?
- We can measure the error rate on the training set count the misclassified examples (43/150 = 29%)
- In the Bayes classifier approach we only learned the distributions from the data.
 We may still suffer from overfitting.
 We need to use a "test set", one not used in the learning process.
- Also misclassification represents six types of errors:
 - 1. versicolor classified as virginica
 - 2. versicolor classified as setosa
 - 3. virginica classified as versicolor
 - 4. virginica classified as setosa
 - 5. setosa classified as virginica
 - 6. setosa classified as versicolor

Confusion Matrix

Classified Species

True Species

	versicolor	virginica	setosa
versicolor	31 (20%)	14 (9%)	5 (3%)
virginica	12(8%)	37 (25%)	1 (0.7%)
setosa	11 (7.3%)	0 (0%)	39 (26%)

Wrong classification - error

Correct classification

What can be learned from the matrix?

Cost considerations?

Can we compute the expected cost of the classification?

Multi Dimensional Feature Spaces

- Each instance observed consists of many features
- Assume we have <u>d</u> features and <u>m</u> instances
- That is: our training data consists of m labeled instances of the form

$$\vec{x} = (x_1, x_2, \dots, x_d)$$

- There may be dependencies between the features
- For instance, the width and the length (both sepal and petal) are not totally independent

What are d and m here?

We will now want to estimate the higher dimensional conditional distributions:

$$P(\vec{x}|A_i) = P((x_1, x_2, ..., x_d)|A_i)$$

Multivariate distributions

- a refresher ...

- Rolling two dice is a multivar distribution. Our distribution is defined over the space of all pairs (i,j), $i=1\dots 6$ and $j=1\dots 6$.
- When we assume two independent fair dice then the probability distribution function is uniform over all 36 possible outcomes.
- Can you construct a distribution over all pairs so that the induced distribution for each individual die is fair (uniform) but that over the pairs is not uniform?
- The dbns for the two individual dice are called marginals.
- The same marginals can be coupled into many different joint distributions

The normal density function

Again - density functions for Gaussian r.vs:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

We then say that the r.v X is normally distributed with mean μ and standard deviation σ .

We write $X \sim N(\mu, \sigma)$

A random variable that has a normal distribution with $\mu=0$ and $\sigma=1$ is called Standard Normal.

The density function then becomes:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

The CDF of a standard normal is often called Φ

Multivariate Normal Distributions

A multivariate normal distribution is defined by its (multi D) pdf:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp\left[\frac{-1}{2} (\mathbf{x} - \mathbf{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})\right]$$

where μ represents the mean (vector) and Σ represents the covariance matrix.

- The covariance is always symmetric and positive semidefinite.
- How does the shape vary as a function of the covariance?
- Will be further discussed next week

2D joint Gaussians

So far

$$C(\vec{x}) = \operatorname{argmax}_{i=1...k} \{P(\vec{x}|A_i)P(A_i)\}$$

Need to estimate $P(\vec{x}|A_i)$ and $P(A_i)$

- Estimating Probabilities and Densities:
 - parametric vs. non-parametric or data based
 - For example: Gauss vs Histogram
- Estimating in 1D or in higher dimensions;

Parametric Bayes classification

- We can use a (multidimensional)
 parametric model (e.g Gaussian) that
 is learned for each one of the classes
 separately to assess the likelihoods.
- Important: this approach allows us to classify an instance with feature values that we have not seen in the training. The entire feature space is covered.
- Disadvantages?

Multidimensional classification

- We have a multiclass classification task with k classes $A_1 \dots A_k$
- Each instance $x \in X$ is described by a set of attributes $x = (x_1, x_2, ..., x_d)$ with $x_j \in V_j$ where V_j is the space of possible values attainable by feature j. (These can be $\mathbb R$ or some other infinite space or maybe finite discrete sets)
- Given x and using MAP we classify x into:

$$v_{MAP} = \arg \max_{i} P(A_{i} | (x_{1}, x_{2}, ..., x_{d})) =$$

$$= \arg \max_{i} \frac{P((x_{1}, x_{2}, ..., x_{d}) | A_{i}) P(A_{i})}{P((x_{1}, x_{2}, ..., x_{d}))}$$

$$= \arg \max_{i} P((x_{1}, x_{2}, ..., x_{d}) | A_{i}) P(A_{i})$$

Estimating Gaussian distributions in high dimensions

- Samples drawn from a normal population tend to fall in a single cloud or cluster whose center is determined by the vector of means and shape by the covariance matrix
- The mean can be estimated easily, but estimating the covariance requires us to learn d(d+1)/2 parameters.

<u>Conditional</u> independence

- Is the blood cholesterol level of a person independent of the number of movies watched by that person so far?
- No they are both related to the age of the person.
- But they are conditionally independent given the age.
- Presumably ..., socioeconomic and behavioral factors ignored ...
- Notation: $X \perp Y \mid C$

Conditional Independence - Definition

The features are conditionally independent given the class if $\underline{\text{for all}}$ relevant multidimensional feature values (\vec{x}) AND $\underline{\text{for all}}$ possible classes values (i), we have:

$$P((x_1, x_2,..., x_d) | A_i) = \prod_{j=1...d} P(x_j | A_i)$$

Naïve Bayes – the Conditional Independence Assumption

- Naïve Bayes Classification makes the useful simplifying assumption that feature values are conditionally independent given the class.
- Is this always true?
 Example in the HWA

Naïve Bayes classifiers

Classify an instance with observed properties \vec{x} as

$$\underset{i}{\operatorname{argmax}} P(A_i) P(\vec{x}|A_i) =$$

$$\underset{i}{\operatorname{argmax}} P(A_i) \prod_{j=1}^{d} P(x_j|A_i)$$

Note: the first step in using <u>Naïve Bayes</u> Classifiers is to estimate the conditional distributions for all <u>single features</u> and all classes
We will do a use case example in the HW

Naïve Bayes vs Full Bayes

• Naïve:

$$C(\vec{x}) = \underset{i}{\operatorname{argmax}} P(A_i) \prod_{i=1}^{d} P(x_i|A_i)$$

Learn the conditional marginals from the data.

• Full:

$$C(\vec{x}) =$$

 $\underset{i}{\operatorname{argmax}} P(A_i) P(\vec{x}|A_i)$

Learn from the data in the same way.

Learn the full multivariate conditional from the data.

Example of Naïve vs Full

- Each class is a bivariate Gaussian
- The difference is that the 'A' class has positive cov and the 'B' class has negative COV
- This is the full Bayes point of view

Mean B = [0.5, 0.5], cov B = [[2.5, -2.2], [-2.2, 2]]

The marginals (in all related slides) are extrapolated using kde (Pandas)

Example of Naïve vs Full

- We now use the same marginals but we also assume conditional independence
- Then recreate the data
- This gives us a visualization of the Naïve Bayes point of view

How to estimate probabilities and densities? (for MAP or for other applications)

- Approach 0: sampling, data
- Approach 1: histograms
 - Problem: do we have sufficiently many samples (especially in high dimensions)?
- Approach 2: parametric (e.g. Gaussian)
 - Advantages: robust models, compact storage, interpretation
 - Problem: are there any valid parametric model assumptions?
- Approach 3: Naïve Bayes
 - Resolves the complexity of estimating high dimensional densities
 - Also resolves similar issues for discrete spaces.
 - Problem: based on simplifying assumptions that are not necessarily true (but ... see epilogue of this lecture)

Different Bayes Classifiers

• MAP
$$\Rightarrow$$
 arg max $P(A_i | \mathbf{x}) = \arg \max_i \frac{P(\mathbf{x} | A_i)P(A_i)}{\sum_{j=1}^k P(\mathbf{x} | A_j)P(A_j)}$

- Dropping $P(\mathbf{x}) \Rightarrow \arg \max_{i} \{P(\mathbf{x} \mid \mathbf{A}_{i}) P(\mathbf{A}_{i})\}$
- ML Assuming $P(A_i) = P(A_j) \Rightarrow \arg\max_{i} \{P(\mathbf{x} \mid A_i)\}$
- Using log probability $\Rightarrow \arg \max_{i} \{ \ln P(\mathbf{x} \mid A_{i}) + \ln P(A_{i}) \}$
- Naïve Bayes assuming $P(\vec{\mathbf{x}} \mid \mathbf{A}_i) = \prod_j P(x_j \mid \mathbf{A}_i) \Rightarrow$ $\underset{i}{\operatorname{arg max}} \{P(\mathbf{A}_i) \prod_j P(x_j \mid \mathbf{A}_i)\}$

Summary

- We are interested in minimizing the overall risk in classification, under a probabilistic model set-up.
- The Bayes decision theory approach, under a 0/1 cost model, states that you should choose the action (classification) that minimizes the probability of error.
- This translates to maximizing the posterior probability MAP: $\underset{i}{\operatorname{argmax}} P(A_i | \vec{x})$
- Since we do not know this posterior probability we use Bayes Rule ...
- This generalizes to other cost functions

Summary – cont

- We can use data to estimate class distributions and class conditional feature distributions for all classes
- A Gaussian estimate is often useful
- Estimates of probability densities (MLE) are useful in the context of classification and in other learning contexts
- Multivariate Gaussians and the covariance matrix
- Conditional independence
- Naïve Bayes Classification uses conditional independence assumptions.
- Additional topics (next week):
 - Estimates in finite distributions and Laplace smoothing
 - The effect of the cost function
 - Multivar Gaussians, GMMs, EM

Epilogue on the Naïve assumption

Fisher's Iris Data

Which features are (close to) conditionally independent given the class?

Iris Data (red=setosa,green=versicolor,blue=virginica)

Correct Vs. Practical

 Often the naïve assumption is violated (example: petal width and height):

$$\hat{P}(x_1, x_2 ... x_n \mid A_j) \neq \prod_{i} \hat{P}(x_i \mid A_j)$$

- However, in practice, this estimator works surprisingly well.
- Note that, in actuality, we do not need this assumption to be true.
 We just need the following to be true:

$$\arg \max_{j} \hat{P}(A_{j}) \prod_{i} \hat{P}(x_{i} | A_{j}) = \arg \max_{j} \hat{P}(A_{j}) \hat{P}(x_{1}, ..., x_{n} | A_{j})$$

Naïve Bayes

Full Bayes

A variation on the example from S58

Shifting away the mean of the 'B' class

