COMP 341 Introduction to Artificial Intelligence

Asst. Prof. Barış Akgün Koç University

Expectations

Reality

Joking, Not that Bad

What do you think Al is?

- What do you think the term "Artificial Intelligence" entails?
- What are some of the recent developments you have heard about?
 - Generative Methods!
- What are some of the older developments you recall?
- Caveat Emptor: Al is undergoing a tectonic shift.
 - Need to re-evaluate history
 - Hard to see where we are headed
 - As such, the course may sometimes feel "old" or "too speculative"
- B.C: Before ChatGPT

(Very Brief) History

Al Before Computation

Talos Golem Automatons R.U.R.

1940-1950: During the Birth of Computation

Logical Neuron Model: McCulloch & Pitts 1943

Alan Turing: Turing Test 1950

1950-1960: Birth of Al

Samuel: Playing Checkers 1953 Also first ideas of ML!

Dartmouth Meeting 1956 Coined the term "AI"

Basic Neuron Model Perceptron 1958

1960-1970: Logic vs Connectionism and the First Winter

$$P(X, 2) = P(1, Y) \rightarrow X=1 \& Y=2 \rightarrow P(1, 2)$$

$$P(X, X) = P(Y, 5) \rightarrow X=5 \& Y=5 \rightarrow P(5, 5)$$

$$P(X, Y) = P(2, Z) \rightarrow X=2 \& Y=Z \rightarrow P(2, Z)$$

Robinson: First Resolution Algorithm for Logic 1965

Perceptron Book: Death of connectionism 1969

1970-1990: Logic vs Connectionism and the Second Winter

- Explosion of Academic Papers and Pilot Industrial Applications! (Until 80s)
- Fragility of certainty in logic: Disappointment and the second winter
- Connectionism Rebirth: Backpropagation and advances in multi-layer neural networks (NNs)

Expert Systems: Knowledge + **Logic**

1990-2005: Statistical Approaches and Machine Learning

Probability and Uncertainty

Vapnik: Support Vector Machines 1995 (2nd death of NNs)

Reinforcement Learning

More Complicated NNs

Deepblue 1997

2005-...: Big Data, Better Hardware and Deep Learning

Big Data

Deep RL + Probabilistic Search

Explosion of applications!

Deep Learning

Specialized Hardware and Software

Deep Reinforcement Learning

- We knew that DL would work back in 1980s
- Didn't know how to make it work!
- It turns out the main bottleneck was data and faster/cheaper computation

Generative AI (2014-...)

Creating Images and Text from Input Prompts!

"Foundation Models"

• Suggested exercise: Self-Investigate Foundation Models

NLP and Audio Examples

- Speech Recognition and Understanding
- Text-to-Speech
- Sentiment Detection
- Text Generation
- Speech Generation
- Song Generation
- Extremely Capable Chatbots
- Personal Assistants
- Translation
- ...

Computer Vision

- Object Detection
- Object Tracking
- Sentiment Detection
- Demographics Prediction
- Pose Estimation
- Anomaly Detection
- Image Generation
- Image Editing
- Image Enhancement
- Medical Decision Aids
- ...

Game Playing

Autonomous Driving

Generative Al Examples

Face Generation

GAN PROGRESS ON FACE GENERATION

Source: Goodfellow et al., 2014; Radford et al., 2016; Liu & Tuzel, 2016; Karras et al., 2018; Karras et al., 2019; Goodfellow, 2019; Karras et al., 2020; Al Index, 2021

Text to Image (avocado chair)

Transform or Style Transfer

More impressive examples! (Midjourney, StableDiffusion, ControlNet, ChatGPT4 etc.)

Generative Al Examples

Generate and Debug Code (and other code-like stuff)

More stuff

- Answer questions
- Have meaningful discussions
- Some people use it for therapy!
- The list would go on and on ...

However

- Hallucinations! While sounding extremely confident
- Low resource languages results are worse
- Better than average human but not better than experts! (yet)
- Limited common sense and reasoning
- Needs to be reined in which limits it potential

"Delivery Firm's AI Chatbot Goes Rogue, Curses at Customer and Criticizes Company"

This Person Does not Exist

This is considered old now. Faces are pretty good now but there are still issues with "appendages"

Video

A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, creating a mirror effect of the colorful lights. Many pedestrians walk about.

Note about Al

If you are here to learn ML and DL, you are in the wrong class! See ENGR421 and COMP441

- As we have seen Al is an ever-changing field
- Current trend is ML, especially DL
- Getting back to its decisionmaking roots: RL
- This class will provide a broad overview
- We have multiple fundamental and multiple applied ML courses at Koç!

Yuxi Li, Deep Reinforcement Learning, https://arxiv.org/abs/1810.06339, 2018

Think like a human

Cognitive Science(?)
Neuroscience

Act like a human

Alan Turing
The Turing Test

Thinking rationally

Dating back to Aristotle Logic, Philosophy

Acting rationally

Embodied Cognition (?)
Rational Agent

Think like a human

Too difficult, many unknowns, may not even be the best idea!

Act like a human

Not very well defined, not leading us to building intelligent machine

Correct inferences given facts:

Thinking rationally

Achieving the best outcome:

Acting rationally

VS

At the end of the day what matters is how you act, not how you think

My View: Al is the science of making agents that act rationally

What is rationality?

- Achieving goals
- Only affected by the decisions/actions made
- Defined by an "external" measure
 - Good: Performance, reward etc.
 - Bad: Cost, risk etc.
 - Let's call it utility from now on
- Being rational: Maximize the (expected) utility!
- E.g. (1) clean the kitchen, (2) in short amount of time (3) with minimum noise (4) while using low energy

What is an "Agent"?

- What do you think when you hear the word "agent"?
 - Secret agent (007)
 - Travel agent
 - Chemical agent

• "Something that can act" –generalization of the word "individual" to non-human things

• **Formally:** An autonomous entity that exists in some kind of *environment* and that *perceives* and *acts*.

Rational Agent

 A rational agent selects actions that maximize its (expected) utility

 AI: Mapping percept histories to actions (deciding which action to take)

- Four concepts that dictate how an agent selects rational actions:
 - Utility
 - Environment
 - Actuators/Actions
 - Sensors/Percepts

Example: Pac-Man as an Agent

- Performance/Utility?
- Environment?
- Actuators/Actions?
- Sensors/Percepts?

Making it more realistic:

- What if Pac-Man only had a limited view?
- What if Pac-Man's actions were not deterministic?
- How can we account for ghost behavior?
- What if we had 2 Pac-Man coordinating?
- What if the ghosts were coordinating?
- What if the walls move around as well?

Problem Types

• Fully-observable vs. Partially-observable

Deterministic
 vs. Stochastic

Episodic vs. Sequential

Static
 vs. Dynamic

• Discrete vs. Continuous

• Single-agent vs. Multi-agent