# Stochastic Non-Cooperative Games

#### **Esteban Moro**

J. P. Garrahan and D. Sherrington

Theoretical Physics University of Oxford



Computation Issues in Stochastic Processes
May 2000

## **Outline**

- Introduction
- Bounded Rationality: The Minority Game.
   Results
- Non-rationality: the Thermal Minority Game.
- Numerical Methods
- Conclusions

### Introduction

#### Game

- ullet N players
- ullet s strategies
- Payoff/utility function u.

#### **Game theory**

- Mathematical Theory (John von Neumann, 1944)
- Market design, microeconomy, evolutionary biology, etc.

#### Standard (Equilibrium) theory

| Game Theory         | Statistical Mechanics       |
|---------------------|-----------------------------|
| Nash Equilibrium    | Thermodynamical Equilibrium |
| Replicator dynamics | Model A, Model B, etc.      |

J. Berg and A. Engel, Phys. Rev. Lett 81, 1998

### Agent-based (non-equilibrium) models like:

- The Santa Fe Institute Stock Market Model
   W. B. Arthur et al.
- The **Doyne Farmer Model** J. D. Farmer, 1998
- The **Minority Game** D. Challet and Y.-C. Zhang, 1997

| Game Theory         | Statistical Mechanics       |
|---------------------|-----------------------------|
| Bounded Rationality | Non-equilibrium             |
| Learning, Evolution | Absence of detailed Balance |

#### AIM:

Apply techniques/ideas of statistical physics to Game Theory

# Introduction (II)

Markets are complex systems because:

- 1. Strategies: Each agent plays in the market with a different set of strategies (quenched disorder)
- 2. Non-cooperative behaviour: each agent wants to maximize its own utility function (frustration)

Markets are non-equilibrium problems because:

- 3. Learning process gives non-Markovian effects.
- 4. Non-rational players give stochasticity.

```
Minority Game = 1. + 2. + 3.
Thermal Minority Game = Minority Game + 4.
```

Related problems:

- Spin-glasses (1. + 2.)
- Neural networks (1. + 2. + 3.).

Main goals of agent-based models

- Test rationality
- Understand why/when markets are efficient

# **Bounded Rationality: Minority Game (I)**

Arthur's "El Farol" bar problem '94 Challet and Zhang '97,



- 1. Agents:  $i=1,\ldots,N$  agents able to go to room 0 or room 1 (buy/sell) at each time step.
- 2. External information, I, available to all the agents.
- 3 Strategies:
  - s strategies  $\{R_i^1, R_i^2, \dots, R_i^s\}$
  - Random functions of I,  $R_i^{lpha}:I o\{0,1\}.$
  - In general  $R_i^{\alpha} \neq R_i^{\beta}$ .
  - At each time step each agent chooses one of its strategies to decide which room to go,  $R_i^*$ .
- 4. Non-cooperative.
  - Minority rule: at each time step the winning room is the less crowded.
  - The public information is the sequence of winning rooms.

# **Bounded Rationality: Minority Game (II)**

### 5. **Learning**:

- Agents can only analyze the last m winning groups (brain size m).
- Each agent only chooses one of its strategies to decide which room to go: the **best strategy** i.e. the one with the maximum number of virtual points.
- After each time step, each agent keeps record of its strategies performance: it gives a virtual point to each of its strategies if they have been able to predict the next winning group.
- Last m winning rooms: I(t).
- ullet Action of agent i,  $R_i^*(I(t)) \in \{0,1\}$
- Total action

$$A(t) = \sum_{i=1}^{N} R_i^*(I(t))$$

Minority rule:

$$W(t+1) = \Theta(N/2 - A(t))$$

• Virtual points:

$$P_i^{\alpha}(t+1) = P_i^{\alpha}(t) + \delta_{W(t+1),R_i^{\alpha}(I(t))}$$

Best strategy

$$R_i^* = \{ R_i^{\alpha} | P_i^{\alpha} \ge P_i^{\beta} \ \forall \beta = 1, \dots, s \}$$

• We have  $2^{2^m}$  possible random boolean functions  $R_i^{\alpha}$ .

## **Results**

- 1. Attendance to room 1:  $A(t) = \sum_{i=1}^{N} R_i^*(I(t))$  We get that  $\langle A(t) \rangle = N/2$
- 2. Variance of the attendance,  $\sigma^2=\langle [A(t)-\langle A(t)\rangle]^2\rangle$ . If the agents chose their strategies randomly, then  $\sigma_r^2=N/4$



The relevant parameter is d = D/N where  $D = 2^m$  (the reduced dimension) (scaling)

#### Two phases:

- $d < d_c$  efficient phase. (non-cooperative)
- $d > d_c$  inefficient phase. (cooperative)

The system does not reach full rationality, Nash equilibrium.

# Non-rationality: Thermal Minority Game (I)

A. Cavagna, J. P. Garrahan, I. Giardina and D. Sherrington, Phys. Rev. Lett. **83**, 4429 (1999)

## Mixed strategies

• At each time step, each agent chooses its best strategy according to some probability  $\pi_i^{\alpha}$ .

$$\pi_i^{\alpha} = \exp(-\beta P_i^{\alpha})$$

ullet  $\beta = 1/T$ , where T is a parameter that controls the stochasticity (temperature)

#### Towards cooperation:



# Non-rationality: Thermal Minority Game (II)

J. P. Garrahan, E. Moro and D. Sherrington, Phys. Rev. E (Rapid Comm.) **62**, (2000)

- Only two strategies s = 2.
- $p_i(t) = P_i^1(t) P_i^2(t)$ .
- $\sigma_i(t) = \operatorname{sgn}(p_i(t))$

Diffusion approximation + continuous time

$$d\mathbf{p_i} = -\frac{\delta \mathcal{H}}{\delta \mathbf{s_i}} dt + \sum_{j=1}^{N} M_{ij} \circ dW_j(t)$$

where

$$s_i(t) = \tanh(\beta \sigma_k(t))$$

$$M_{ij} = \sum_{k=1}^{N} J_{ik} J_{jk} [1 - s_k^2(t)]$$

$$\mathcal{H} = \sum_{i=1}^{N} h_i s_i + \frac{1}{2} \sum_{i,j} J_{ij} s_i s_j$$

- Although the system reaches a stationary state in the long run, in general is not in equilibrium (even for T=0!).
- But for some values of d = D/N the stationary state is well described by  $\mathcal{H}$ .
- Thus, the dynamics of learning are not just relaxational.
- But, how is the dynamics in the space of the strategies?
   Neural Networks

### **Numerical Methods**

#### In General

- Equilibrium: Calculating the Nash equilibrium is a hard problem like
  - spin-glass minima.
  - optimization problems.

But in general, there is not a Hamiltonian to minimize (J. Berg and A. Engel).

• **Non-equilibrium**: Agent-based simulations. Simulations by brute force, mainly

#### For the Minority Game

- Standard stochastic algorithms.
- Typical numbers are
  - -N = 500,
  - $m=1,\ldots,10$ , so  $2^{2^m}=4,\ldots,10^{300}$
- But, once we know that the system tends to minimize a function we could improve the algorithms using
  - Simulated annealing
  - Entropic Sampling method
- We have seen that the stochasticity helps the system to cooperate

## **Conclusions**

#### General

- Agent-based models could help to understand some features of real markets.
- And to test ideas like rationality and efficiency.
- Tools and concepts from statistical mechanics could be useful to describe some features of these games.
- We have studied one of these models: the Minority Game
  - We have been able to derive the simplest set of equations for the dynamics using stochastic processes tools.
  - The system is not in equilibrium (not even for T=0), at least not the one described by  $\mathcal{H}$ .
  - We have also check the dependence on the initial conditions, the character of the phase transition, etc.

#### Further work

- Analytical: Is it there any other Lyapunov function  $\mathcal{H}'$ ? The dynamics in terms of the strategies are like parallel artificial neural networks with memory effects.
- **Analytical**: Like in statistical mechanics which are the macroscopic parameters that describe completely the system?  $(\sigma + ?)$ .
- Numerical: Temperature/non-rationality helps agents to cooperate up to some value of T. Could we increase this cooperation by using simulated-annealing techniques?
- **Theoretical**: Apply tools from statistical mechanics (replica trick) to calculate Nash equilibrium in general matrix games.