# Ejercicios tema 2

Juan Andrés Peraira Pérez 13 de abril de 2018

Ejercicio 1: Utiliza los datos "iris" que corresponden a mediciones (en centímetros) de 4 variables: largo y ancho de los pétalos y sépalos; para 50 flores de 3 especies distintas de plantas Iris setosa, versicolor, y virginica.

Queremos responder a las siguientes preguntas:

¿Cuántos datos (o casos) tenemos para cada especie? y ¿qué porcentaje representan del total de casos? Realice los gráficos pertinentes para cada tipo de variable (cualitativa vs. cuantitativa).

```
datos<-iris #-- cargamos los datos
head(datos)
##
    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1
              5.1
                          3.5
                                       1.4
                                                    0.2 setosa
## 2
              4.9
                          3.0
                                       1.4
                                                    0.2 setosa
## 3
              4.7
                          3.2
                                                    0.2 setosa
                                       1.3
## 4
              4.6
                          3.1
                                       1.5
                                                    0.2 setosa
                                       1.4
## 5
              5.0
                          3.6
                                                    0.2 setosa
## 6
              5.4
                          3.9
                                       1.7
                                                    0.4 setosa
attach(datos) #-- activamos las variables
table(Species)
## Species
##
       setosa versicolor virginica
##
                      50
#-- Podemos observar que tenemos 50 casos para cada especie
table(Species)/length(Species)
## Species
##
       setosa versicolor virginica
   0.3333333 0.3333333
                          0.3333333
```

El porcentaje es de un 33,33% por especie con respecto al total de datos. Comenzaremos con los Gráficos para las variables cuantitativas, en primer lugar se realizaran los diagramas de cajas y bigotes









A continuación se presentan los histrogramas para cada variable por especie.

# Histograma longitud del Sépalo



# Histograma Ancho del Sépalo



# Histograma Longitud del Pétalo







los gráficos para las variables cualitativas, que en este caso, se trata de la especie

¿Cuál es la media clásica y robusta del ancho del sépalo para cada especie?. Realice diagrama de cajas.

```
#-- Media clásica del ancho del sépalo para cada especie.
media_ancho_sepalo<-aggregate(Sepal.Width~Species, datos, mean)
media_ancho_sepalo
```

```
## Species Sepal.Width
## 1 setosa 3.428
## 2 versicolor 2.770
## 3 virginica 2.974
```

#-- Media robusta del ancho del sépalo para cad especie.

#### library(WRS2)

media\_robusta\_ancho\_sepalo<-aggregate(Sepal.Width~Species, datos, mest)
media\_robusta\_ancho\_sepalo</pre>

```
## Species Sepal.Width
## 1 setosa 3.418994
## 2 versicolor 2.782828
## 3 virginica 2.962500
```

¿Qué correlaciones existen entre las distintas medidas tomadas a cada planta? Realice un gráfico bidimensional para observarlo.

# Ejercicio 2: Utiliza los datos "Davis" (paquete "car") para calcular el IMC como se indicó en el tema 2 (IMC=Peso/Estatura^2). Realia:

Gráfico de barras y de sectores para las categorías del IMC por sexo.

```
#-- cargamos los datos
library(car)
datos<-Davis
head(datos)
##
     sex weight height reput repht
## 1
      М
             77
                   182
                          77
## 2
      F
             58
                   161
                          51
                                159
## 3
      F
             53
                   161
                          54
                                158
## 4
      M
             68
                   177
                          70
                                175
      F
             59
                           59
## 5
                   157
                                155
## 6
             76
                   170
                                165
attach(datos) #-- Activamos las variables
#-- Creamos la función
imc=function(w,h){w/(h/100)^2}
#-- Calculamos el imc para los datos
datos_imc<-imc(datos$weight,datos$height)</pre>
# creamos las categorías de IMC
imcc_datos=cut(datos_imc, breaks=c(0, 15, 18.5, 25, 30))
#-- Creamos la tabla
imcfrec=table(imcc_datos)
cbind(imcfrec)
##
             imcfrec
## (0,15]
                   0
                  18
## (15,18.5]
## (18.5,25]
                 143
## (25,30]
                  35
#-- agregamos las etiquetas
levels(imcc_datos)=c("infrapeso","delgada","normal","sobrepeso","obesidad")
#-- Creamos el data frame
datos_davis<-data.frame(datos, IMC=datos_imc, IMCc=imcc_datos)</pre>
# eliminamos los errores
datos_davis<-datos_davis[!is.na(datos_davis$IMCc),]</pre>
head(datos_davis)
##
     sex weight height repwt repht
                                         IMC
                                                   IMCc
## 1
                   182
      Μ
             77
                          77
                               180 23.24598
                                                normal
## 2
       F
             58
                   161
                           51
                               159 22.37568
                                                normal
      F
             53
                   161
                          54
                               158 20.44674
## 3
                                                normal
                          70
## 4
      Μ
             68
                   177
                               175 21.70513
                                                normal
       F
             59
                          59
## 5
                   157
                               155 23.93606
                                                normal
## 6
       М
             76
                   170
                          76
                                165 26.29758 sobrepeso
library(ggplot2)
library(gridExtra)
ggplot(datos_davis,aes(x=factor(sex),fill=factor(IMCc))) +
  geom_bar(stat = "count", position="dodge")+
  labs(title = "Gráfico de IMC por Sexo") +
```

```
labs(fill = "IMC") +
labs(aes(x="Sexo",y="Personas"))
```

#### Gráfico de IMC por Sexo



#### **Gráfico Hombres**



```
#-- Gráfico para las mujeres

datos_mujeres<-subset(datos_davis,datos_davis$sex=="F")
grafico_tarta<-pie(table(datos_mujeres$IMCc))</pre>
```



Gráficos de cajas e histogramas para la variable IMC numérica, también por sexo. ¿Existe algún outlier?, ¿cuáles?.

Interpreta los resultados.

Ejercicio 2: Utiliza los datos "Arthritis" (paquete "vcd") sobre un ensayo clínico de doble ciego que investiga un nuevo tratamiento para la artritis reumatoide. Tenemos información de 84 observaciones de 5 variables: la identificación del paciente (ID), el tratamiento (Treatment: Placebo, Treated), el sexo (Sex: Female, Male), la edad (Age) y la mejoría (Improved: None, Some, Marked). Obtener las tablas de frecuencias y medidas de asociación entre estas variables. Interpreta los resultados.

```
#-- Cargamos el paquete
library(vcd)
datos<-Arthritis
attach(datos) #-- Activamos las variables

#-- Las tablas de frecuencia se realizarán por variable.
#-- Tabla de frecuencias de la variable Tratamiento
table(Treatment)

## Treatment
## Placebo Treated
## 43 41</pre>
```

```
\#-- Tabla de frecuencias de la variable Sexo
table(Sex)
## Sex
## Female
         Male
## 59
          25
#-- Tabla de frecuencias de la variable Edad
table(Age)
## Age
## 23 27 29 30 31 32 33 37 41 44 45 46 48 49 50 51 52 53 54 55 56 57 58 59 60
## 2 1 1 3 1 3 1 3 2 2 1 2 3 1 1 2 1 2 3 3 1 5 3 8 1
## 61 62 63 64 65 66 67 68 69 70 74
## 2 4 4 3 1 4 1 3 3 2 1
#-- Tabla de frecuencias de la variable Improved
table(Improved)
## Improved
## None Some Marked
##
    42
         14 28
```