Analyse Mathématique III

James Campbell Alexander Main

28 décembre 2018

Table des matières

U	n pe	tit mot avant de commencer	V							
Ι	Pr	remier quadrimestre	1							
1	Esp	paces de Banach : exemples	3							
	1.1	Exemples tirés du cours d'Analyse II	3							
	1.2	Espaces de suites ℓ^p	3							
	1.3	Espaces de fonctions continues	8							
	1.4	Espaces d'applications linéaires	8							
2	Esp	paces duaux : exemples	11							
	2.1	Généralités	11							
	2.2	Exemples en dimension finie	11							
	2.3	Exemples en dimension infinie	13							
3	Thé	Théorèmes de Hahn-Banach								
	3.1	Formes analytiques	15							
		3.1.1 Espaces vectoriels sur \mathbb{R}	15							
		3.1.2 Espaces vectoriels sur \mathbb{C}	16							
		3.1.3 Espaces vectoriels normés	17							
		3.1.4 Hahn-Banach et dualité	17							
		3.1.5 Bidualité	19							
	3.2	Formes géométriques	21							
		3.2.1 Hyperplans	21							
		3.2.2 Introduction aux formes géométriques du théorème de Hahn-Banach	22							
		3.2.3 Théorème de Hahn-Banach : Formes géométriques	24							
		3.2.4 Généralisation aux espaces vectoriels complexes	25							
		3.2.5 Applications	27							
4	Thé	éorème de Baire	31							
	4.1	Un petit mot historique	31							
	4.2	Définitions	31							
	4.3	Formulations équivalentes	32							
	4.4	Théorème de Baire	33							
	4.5	Corollaires et applications	35							

\mathbf{A}	A Solutions des exercices					
	A.1	Hahn-Banach (Formes analytiques)	. 39	9		
	A.2	Hahn-Banach (Formes géométriques)	. 39	9		

Un petit mot avant de commencer

Ce document a pour but de créer des notes de cours pour le cours d'Analyse Mathématique III dispensé à l'UMONS afin d'altérer la structure dans un format plus clair que les notes prises au cours.

Parmi les références citées, vous pouvez trouver des exercices à réaliser dans les suivantes : [1].

Remerciements

Merci beaucoup à Damien Galant pour sa relecture du document.

Première partie Premier quadrimestre

Chapitre 1

Espaces de Banach : exemples

Dans ce chapitre nous présentons plusieurs exemples d'espaces de Banach, notamment les espaces ℓ^p de suites et deux exemples d'espaces de fonctions.

La lettre $\mathbb K$ est utilisée pour représenter le corps des nombres réels $\mathbb R$ ou celui des nombres complexes $\mathbb C.$

1.1 Exemples tirés du cours d'Analyse II

Nous avons vu l'année passée que tous les espaces vectoriels de dimension finie étaient complets.

Proposition 1.1. Soit (E, ||.||) un espace vectoriel sur \mathbb{K} de dimension finie. Il s'agit d'un espace de Banach.

Démonstration. (Esquisse de preuve)

Remarque : un point intéressant de la dimension finie est qu'on peut travailler, si on le souhaite, avec sa norme préférée étant donné qu'elles sont toutes équivalentes.

Etant donné une suite de Cauchy, il est évident (via l'inégalité triangulaire) que chaque composante (en se fixant au préalable une base) est de Cauchy et donc converge dans \mathbb{K}

Ceci fournit un candidat limite et la vérification se fait facilement en prenant par exemple la norme $\|.\|_1$.

Les espaces de Hilbert sont un autre type d'espace de Banach que nous avons étudié en analyse II. Ils sont complets par définition.

1.2 Espaces de suites ℓ^p

Définition 1.2. Soit $1 \le p < \infty$ un réel. On appelle ℓ^p (noté aussi $\ell^p(\mathbb{N})$) l'ensemble de suites suivant :

$$\left\{ (x_n)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N}, x_n \in \mathbb{K} \text{ et } \sum_{n=0}^{\infty} |x_n|^p < +\infty \right\}$$

On définit l'application $\|.\|_p:\ell^p\to[0,+\infty[$ par

$$\forall x = (x_n)_{n \in \mathbb{N}} \in \ell^p, ||x||_p = \left(\sum_{n=0}^{\infty} |x_n|^p\right)^{1/p}$$

Il n'est pas clair à première vue que ℓ^p est un espace vectoriel, lorsque p > 1. Efforçons de montrer des résultats permettant une preuve courte de cela, tout en délivrant des résultats simplifiant la démonstration du fait que l'application $\|.\|_p$ définit une norme sur ℓ^p . Nous aurons besoin d'une première inégalité célèbre afin de prouver ce résultat.

Théorème 1.3 (Inégalité de Hölder). Soient $n \ge 1$ un nombre naturel, p, q > 1 deux réels conjugués, c'est-à-dire vérifiant l'égalité :

$$\frac{1}{p} + \frac{1}{q} = 1$$

Pour tous $x=(x_1,\ldots,x_n),y=(y_1,\ldots,y_n)\in\mathbb{K}^n$, l'inégalité suivante est vérifiée :

$$\sum_{k=1}^{n} |x_k \cdot y_k| \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |y_k|^q\right)^{\frac{1}{q}}$$

Démonstration. Prouvons préalablement que pour tous réels a,b>0, l'inégalité suivante est vérifiée :

$$a \cdot b \le \frac{a^p}{p} \cdot \frac{b^q}{q} \tag{1.1}$$

Il est aisé de vérifier, à l'aide de la dérivation, que la fonction $\ln:]0, +\infty[\mapsto \mathbb{R}$ est concave, c'est-à-dire :

$$\forall t \in [0, 1], \forall x, y > 0, \ln(tx + (1 - t)y) \ge t \ln(x) + (1 - t) \ln(y)$$

Puisque p, q > 1, on a :

$$\ln\left(\frac{a^p}{p} + \frac{b^q}{q}\right) \ge \frac{1}{p}\ln(a^p) + \frac{1}{q}\ln(b^q)$$
$$= \ln(a) + \ln(b)$$
$$= \ln(a \cdot b)$$

Etant donné que la fonction exponentielle est croissante, on a bien l'inégalité 1.1.

Soient $x = (x_k)_{1 \le k \le n}, y = (y_k)_{1 \le k \le n} \in \mathbb{K}^n$. Supposons les tous les deux non nuls, puisque dans ce cas, l'inégalité du théorème est claire.

On pose, pour $j \in \{1, \ldots, n\}$:

$$A_j = \frac{|x_j|}{(\sum_{k=1}^n |x_k|^p)^{\frac{1}{p}}} \text{ et } B_j = \frac{|y_j|}{(\sum_{k=1}^n |y_k|^q)^{\frac{1}{q}}}$$

Ces quotients sont bien définis car x et y sont non nuls. Par l'inégalité (1.1), on a que

$$\left(\sum_{j=1}^{n} \frac{|x_{j}|}{\left(\sum_{k=1}^{n} |x_{k}|^{p}\right)^{\frac{1}{p}}} \cdot \frac{|y_{j}|}{\left(\sum_{k=1}^{n} |y_{k}|^{q}\right)^{\frac{1}{q}}}\right) = \sum_{j=1}^{n} A_{j} \cdot B_{j}$$

$$\leq \frac{1}{p} \sum_{j=1}^{n} A_{j}^{p} + \frac{1}{q} \sum_{j=1}^{n} B_{j}^{q}$$

$$= \frac{1}{p} + \frac{1}{q} = 1$$

Ce qui implique le résultat.

Introduisons maintenant une autre inégalité célèbre qui nous permettra de montrer que ℓ^p est un espace vectoriel.

Théorème 1.4 (Inégalité de Minkowski (dimension finie)). Soient $n \geq 1$ un nombre naturel, $p \in [1, +\infty[$ un nombre réel, $x = (x_k)_{1 \leq k \leq n}, y = (y_k)_{1 \leq k \leq n} \in \mathbb{K}^n$.

L'inégalité suivante est vérifiée :

$$||x+y||_p \le ||x||_p + ||y||_p$$

 $D\acute{e}monstration$. Supposons x, y non nuls, sinon le résultat est clair.

Si p=1, il suffit d'itérer l'inégalité triangulaire pour le module afin de prouver l'assertion. Supposons par conséquent que p>1.

Remarque : Cette preuve est fort calculatoire. Elle n'a pas vraiment d'intérêt au niveau des idées.

$$||x+y||_p^p = \sum_{k=1}^n |x_k + y_k|^p$$

$$\leq \sum_{k=1}^n |x_k + y_k|^{p-1} (|x_k| + |y_k|)$$

$$= \sum_{k=1}^n |x_k| |x_k + y_k|^{p-1} + \sum_{k=1}^n |y_k| |x_k + y_k|^{p-1}$$

Soit q le réel conjugué de p. En appliquant l'inégalité de Hölder au dernier terme de l'inégalité précédente, on obtient :

$$||x+y||_{p}^{p} \leq \left(\sum_{k=1}^{n} |x_{k}|^{p}\right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^{n} |x_{k}+y_{k}|^{(p-1)q}\right)^{\frac{1}{q}} + \left(\sum_{k=1}^{n} |y_{k}|^{p}\right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^{n} |x_{k}+y_{k}|^{(p-1)q}\right)^{\frac{1}{q}}$$

$$= \left(\sum_{k=1}^{n} |x_{k}+y_{k}|^{p}\right)^{\frac{1}{q}} (||x||_{p} + ||y||_{p})$$

$$= (||x+y||_{p}^{p})^{\frac{1}{q}} (||x||_{p} + ||y||_{p})$$

Ceci implique l'inégalité nous permettant de conclure :

$$||x||_p + ||y||_p \ge (||x+y||_p^p)^{1-\frac{1}{q}} = ||x+y||_p$$

Le résultat se généralise facilement aux espaces ℓ^p , et nous avons donc en même temps l'argument le plus important de la preuve que ℓ^p est un espace vectoriel, mais également l'inégalité triangulaire pour la norme $\|.\|_p$.

Théorème 1.5 (Inégalité de Minkowski (Généralisation à ℓ^p)). Soient $p \in [1, +\infty[$ un nombre réel, $x = (x_n)_{n \in \mathbb{N}}, y = (y_n)_{n \in \mathbb{N}} \in \ell^p$.

On a:
$$||x + y||_p \le ||x||_p + ||y||_p$$

Démonstration. Etant donné qu'on a le résultat pour toutes les suites de sommes partielles, il suffit de passer à la limite pour conclure. \Box

Exercice 1.1. Rédiger en détail la preuve des affirmations suivantes :

- L'ensemble ℓ^p est un espace vectoriel sur \mathbb{K} .
- L'application $\|.\|_p$ définit bien une norme sur ℓ^p .

Il est légitime de se demander pourquoi parler de ces espaces dans un chapitre réservé aux espaces de Banach. C'est parce qu'il s'agit d'exemples classiques :

Proposition 1.6. Soit p > 1 un nombre réel. L'espace vectoriel normé $(\ell^p, ||.||_p)$ est un espace de Banach.

Exercice 1.2. Effectuer la preuve de la proposition 1.6

Nous n'effectuerons pas la preuve dans cette section, elle est laissée à titre d'exercice. Nous allons toutefois montrer le cas p=1. Les idées mises en oeuvre dans cette preuve sont intéressantes et il est conseillé de les revoir.

Proposition 1.7. L'espace vectoriel normé $(\ell^1, ||.||_1)$ est un espace de Banach.

 $D\'{e}monstration. \text{ Soit } \left(x^{(n)}\right)_{n\in\mathbb{N}} = \left(\left(x_k^{(n)}\right)_k\right)_n^{-1} \text{ une suite de Cauchy dans } (\ell^1,\|.\|_1). \text{ Montrons qu'elle est convergente au sens de la norme } \|.\|_1.$

En traduisant l'hypothèse sur la suite, il est aisé de déduire que pour tout $k \in \mathbb{N}$, la suite $(x_k^{(n)})_n$ est de Cauchy dans \mathbb{K} qui est complet. Soit $x_k \in \mathbb{K}$ la limite de cette suite dans \mathbb{K}

Nous avons ainsi obtenu un candidat limite $x = (x_k)_k$. Nous devons montrer qu'il s'agit bien d'un élément de ℓ^1 et qu'il s'agit de la limite de la suite $(x^{(n)})_n$.

Soit $\varepsilon > 0$. Puisque la suite $(x^{(n)})$ est de Cauchy, il est vrai que :

$$\exists N \ge 0, \forall p, q \ge N, \forall n \ge 0, \sum_{k=0}^{n} |x_k^{(p)} - x_k^{(q)}| \le \varepsilon$$

En faisant tendre $q \to +\infty$, on en déduit que :

$$\exists N \ge 0, \forall p \ge N, \forall n \ge 0, \sum_{k=0}^{n} |x_k^{(p)} - x_k| \le \varepsilon$$

Ce qui permet facilement de conclure que $x^{(n)} \xrightarrow[n \to +\infty]{\|.\|_1} x$

Pour montrer que $x \in \ell^1$, il suffit d'observer l'inégalité suivante, valable pour tous naturels n,N considérés.

$$\sum_{k=0}^{N} |x_k| \le \sum_{k=0}^{N} |x_k - x_k^{(n)}| + \sum_{k=0}^{N} |x_k^{(n)}| \le ||x - x^{(n)}||_1 + ||x^{(n)}||_1$$

Au vu de la convergence que nous venons d'établir, le premier terme du membre de droite converge vers 0. Le second quant à lui est borné par une constante indépendante de n car il s'agit d'un élément d'une suite de Cauchy. Ceci implique que la série définissant $||x||_1$ est bien convergente.

^{1.} On note en indice la "composante" dans ℓ^1 et en exposant l'indice de la suite

Il reste encore un espace lié aux espaces ℓ^p que nous n'avons pas introduit : l'espace des suites ℓ^∞ .

Définition 1.8. L'espace des suites bornées, noté ℓ^{∞} correspond à l'ensemble suivant :

$$\ell^{\infty} = \{ x \in \mathbb{K}^{\mathbb{N}} \mid \sup_{n \in \mathbb{N}} |x_n| < \infty \}$$

Remarque 1.9. Il est utile de remarquer que 1 et ∞ sont conjugués (par exemple pour les espaces duaux, cf. exemples 2.3 et 2.4 de la section 2.2).

Exercice 1.3. Montrer que l'application suivante définit bien une norme sur ℓ^{∞} :

$$\|.\|_{\infty}: \ell^{\infty} \to [0, +\infty[: (x_n)_{n \in \mathbb{N}} \mapsto \sup_{n \in \mathbb{N}} |x_n|]$$

Tout comme ses confrères, il s'agit d'un espace de Banach. Cela fait l'objet du résultat suivant :

Proposition 1.10. L'espace vectoriel $(\ell^{\infty}, \|.\|_{\infty})$ est un espace de Banach.

La preuve est fortement similaire à celle pour l'espace de suites ℓ^1 . Elle sera tout de même explicitée afin de permettre la lecture d'une version adaptée de la preuve ci-dessus.

 $D\acute{e}monstration. \text{ Soit } \left(x^{(n)}\right)_{n\in\mathbb{N}} = \left(\left(x_k^{(n)}\right)_k\right)_n \text{ une suite de Cauchy dans } (\ell^\infty,\|.\|_\infty). \text{ Montrons qu'elle est convergente au sens de la norme } \|.\|_\infty.$

En traduisant l'hypothèse sur la suite, il est aisé de déduire que pour tout $k \in \mathbb{N}$, la suite $(x_k^{(n)})_n$ est de Cauchy dans \mathbb{K} qui est complet. Soit $x_k \in \mathbb{K}$ la limite de cette suite dans \mathbb{K} .

Nous avons ainsi obtenu un candidat limite $x = (x_k)_k$. Nous devons montrer qu'il s'agit bien d'un élément de ℓ^{∞} et qu'il s'agit de la limite de la suite $(x^{(n)})_n$.

Soit $\varepsilon > 0$. Puisque la suite $(x^{(n)})$ est de Cauchy, il est vrai que :

$$\exists N \geq 0, \forall p, q \geq N, \forall k \geq 0, |x_k^{(p)} - x_k^{(q)}| \leq \varepsilon$$

En faisant tendre $q \to +\infty$, on en déduit que :

$$\exists N \ge 0, \forall p \ge N, \forall k \ge 0, |x_k^{(p)} - x_k| \le \varepsilon$$

Ce qui permet facilement de conclure que $x^{(n)} \xrightarrow[n \to +\infty]{\|.\|_{\infty}} x$

Pour montrer que $x \in \ell^{\infty}$, il suffit d'observer l'inégalité suivante, valable pour tous naturels n,k considérés.

$$|x_k| \le |x_k - x_k^{(n)}| + |x_k^{(n)}| \le ||x - x^{(n)}||_{\infty} + ||x^{(n)}||_{\infty}$$

Au vu de la convergence que nous venons d'établir, le premier terme du membre de droite converge vers 0. Le second quant à lui est borné par une constante indépendante de n car il s'agit d'un élément d'une suite de Cauchy. Ceci implique que la suite des $(x_k)_{k\in\mathbb{N}}$ est bornée et donc que $x\in\ell^{\infty}$.

1.3 Espaces de fonctions continues

Un autre exemple d'espace de Banach dont nous avons les outils pour montrer la complétude est l'espace des fonctions continues sur l'intervalle [0,1]. Tout ce qui suit dans cette section peut être généralisé aux fonctions définie sur un intervalle fermé borné quelconque.

Définition 1.11. On note

$$\mathscr{C}[0,1] = \{f: [0,1] \to \mathbb{K} \text{ continue}\}\$$

l'espace vectoriel de fonctions continues sur l'intervalle [0,1]. On le munit de la norme $\|.\|_{\infty}$ définie par :

$$\|.\|_{\infty}:\mathscr{C}[0,1]\rightarrow [0,+\infty[\::f\mapsto \|f\|_{\infty}=\max_{x\in [0,1]}|f(x)|$$

Le maximum apparaissant dans la norme est bien défini, car les fonctions considérées sont continues sur un compact et atteignent donc leurs bornes.

Proposition 1.12. L'espace des fonctions continues sur l'intervalle [0, 1] est complet au sens de la norme $\|.\|_{\infty}$.

Démonstration. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans $\mathscr{C}[0,1]$. En retraduisant cette hypothèse en remplaçant le maximum définissant $\|.\|_{\infty}$ par un quantificateur universel, on obtient la phrase quantifiée suivante :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall p, q \ge N, \forall x \in [0, 1], |f_p(x) - f_q(x)| \le \varepsilon \tag{1.2}$$

On remarque que pour tout $x \in [0,1]$, la suite $(f_n(x))_{n \in \mathbb{N}}$ est de Cauchy dans \mathbb{K} qui est complet. Il existe donc f limite ponctuelle de $(f_n)_{n \in \mathbb{N}}$.

Pour conclure, il suffit de montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge au sens de $\|.\|_{\infty}$ vers f. Cela garantira la continuité de f, car f sera la limite uniforme de la suite.

En faisant $q \to \infty$ dans la phrase quantifiée 1.2, on a le résultat.

1.4 Espaces d'applications linéaires

Soient $(E, \|.\|_E)$ et $(F, \|.\|_F)$ deux espaces vectoriels normés sur \mathbb{K} . Rappelons certaines propriétés et définitions vues l'année passée.

Définition 1.13. On note $\mathcal{L}(E,F)$ l'espace vectoriel des applications linéaires continues de E dans F. Il s'agit d'un espace vectoriel normé, muni de la norme opérateur définie par :

$$\|.\|: \mathcal{L}(E, F) \to [0, +\infty[: T \mapsto \|T\| = \sup_{\substack{x \in E \\ \|x\| < 1}} \|T(x)\|_F$$

On a également vu plusieurs équivalences pour montrer qu'une application linéaire est continue. Rappelons les.

Proposition 1.14. Soit $T: E \to F$ linéaire. Les assertions suivantes sont équivalentes :

- T est continue.
- T est continue en 0.
- T est bornée sur la boule unité de E.
- Il existe une constante C > 0 telle que pour tout $x \in E$, $||T(x)||_F \le C||x||^2$.

Remarquez également qu'il existe plusieurs formulations équivalentes pour la norme opérateur :

Proposition 1.15. Soit $T \in \mathcal{L}(E, F)$. Les égalités suivantes sont satisfaites :

$$||T|| = \sup_{\substack{x \in E \\ ||x||_E = 1}} ||T(x)||_F$$
$$= \sup_{\substack{x \in E \\ ||x||_E < 1}} ||T(x)||_F$$

Il est utile, si vous avez des difficultés avec ces objets, d'essayer de les manipuler en résolvant les exercices :

Exercice 1.4. Prouver les propositions 1.14 et 1.15.

Exercice 1.5 (« Sous-multiplicativité de la norme »). Soit $(G, \|.\|_G)$ un espace vectoriel normé sur \mathbb{K} . Soient $f: E \to F$, $g: F \to G$ des applications linéaires continues. Montrer l'inégalité

$$||g \circ f|| \le ||g|| \cdot ||f||$$

L'espace $\mathcal{L}(E,F)$ n'est pas un espace de Banach en général. Il faut ajouter une hypothèse sur F pour avoir la complétude de cet espace.

Proposition 1.16. Si F est complet, alors $\mathcal{L}(E,F)$ est un espace de Banach.

Remarque : il n'y a pas de condition supplémentaire à imposer à l'espace E. En particulier, le résultat n'exige pas sa complétude.

La réciproque de ce résultat est également vraie, nous l'énoncerons dans un futur chapitre.

Démonstration. Soit $(T_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans $\mathcal{L}(E,F)$, c'est-à-dire :

$$\forall \varepsilon > 0, \exists N \ge 0, \forall p, q \ge N, ||T_p - T_q|| \le \varepsilon$$

Alors, on a l'assertion suivante :

$$\begin{aligned} \forall \varepsilon > 0, \exists N \geq 0, \forall p, q \geq N, \forall x \in E, \\ \|T_p(x) - T_q(x)\| \leq \|T_p - T_q\| \cdot \|x\|_E \leq \varepsilon \cdot \|x\|_E \end{aligned}$$

Cela implique que pour tout $x \in E$, la suite $(T_n(x))_{n \in \mathbb{N}}$ est de Cauchy dans F qui par hypothèse est complet. Soit T(x) limite de cette suite dans F.

Montrons que T est la limite, au sens de la norme opérateur, de la suite $(T_n)_{n\in\mathbb{N}}$.

En reprenant la phrase quantifiée ci-dessus, en considérant $x \in E$ de norme inférieure à 1 et en faisant tendre q vers l'infini, on est assuré de la convergence.

L'application T est bien linéaire car elle est limite simple d'applications linéaires. Elle est bornée sur la boule unité car pour tout naturel n on a l'inégalité :

$$||T|| \le ||T - T_n|| + ||T_n||$$

2. La constante optimale, s'il en existe une, est ||T||.

Chapitre 2

Espaces duaux : exemples

2.1 Généralités

Soit \mathbb{K} un corps, avec $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$. Soit $(E, \|.\|)$ un espace vectoriel sur \mathbb{K} .

Définition 2.1. Le dual de E, noté E^* correspond à $\mathscr{L}(E,\mathbb{K})$ ie. l'ensemble des formes linéaires continues.

Par la proposition 1.16, étant donné que \mathbb{K} est complet, on a que $(E^*, \|.\|)$ est un espace de Banach (la norme considérée est la norme opérateur).

Dans ce chapitre plutôt que de s'attarder sur des propriétés générales des espaces duaux, nous étudierons des exemples et nous identifierons les espaces duaux d'espaces connus à d'autres espaces que nous connaissons.

Remarque : les intuitions sur comment trouver à quel espace s'identifie le dual seront omises.

2.2 Exemples en dimension finie

En dimension finie, il est connu que le dual algébrique est de même dimension que l'espace vectoriel considéré. De plus, comme toutes les applications linéaires définies sur un espace vectoriel de dimension finie sont continues, il suffit de vérifier qu'on a une isométrie entre les espaces considérés pour avoir l'identification.

Exercice 2.1. Soient $(X, d_X), (Y, d_Y)$ deux espaces métriques, $i: X \to Y$ une isométrie, c'est-à-dire « i préserve les distances », c'est-à-dire :

$$\forall x, y \in X, d_X(x, y) = d_Y(i(x), i(y))$$

Montrer que i est injective.

Dans les calculs relatifs à tous les exemples suivants, il n'est jamais montré que l'application considérée est linéaire. Cela est laissé comme exercice.

Exemple 2.2. On a $(\mathbb{R}^2, \|.\|_2)^* \equiv (\mathbb{R}^2, \|.\|_2)$ via l'isométrie :

$$i:(\mathbb{R}^2, \|.\|_2) \to (\mathbb{R}^2, \|.\|_2)^*$$

 $(x_1, x_2) \mapsto i(x_1, x_2) :(\mathbb{R}^2, \|.\|_2) \to \mathbb{R}$
 $(x, y) \mapsto x_1 x + x_2 y$

Il suffit de prouver que i est une isométrie étant donné que l'espace considéré est de dimension finie.

Soit $(x_1, x_2) \in \mathbb{R}^2$. On a (en utilisant l'inégalité de Cauchy-Schwarz) :

$$||i(x_1, x_2)|| = \sup_{x^2 + y^2 \le 1} |x_1 x + x_2 y| \le \sup_{x^2 + y^2 \le 1} |x_1 x| + |x_2 y|$$

$$\le \sup_{x^2 + y^2 \le 1} (x_1^2 + x_2^2)^{1/2} (x^2 + y^2)^{1/2}$$

$$\le (x_1^2 + x_2^2)^{1/2} \sup_{x^2 + y^2 \le 1} (x^2 + y^2)^{1/2} = ||(x_1, x_2)||_2$$

Réciproquement, il suffit de considérer $z=\frac{(x_1,x_2)}{\|(x_1,x_2)\|_2}$; on a $i(x_1,x_2)(z)=\|(x_1,x_2)\|_2$ ce qui fournit l'inégalité nous permettant de conclure.

Exemple 2.3. On a $(\mathbb{R}^2, \|.\|_1)^* \equiv (\mathbb{R}^2, \|.\|_{\infty})$ via l'isométrie :

$$i:(\mathbb{R}^2, \|.\|_{\infty}) \to (\mathbb{R}^2, \|.\|_1)^*$$

 $(x_1, x_2) \mapsto i(x_1, x_2) :(\mathbb{R}^2, \|.\|_1) \to \mathbb{R}$
 $(x, y) \mapsto x_1 x + x_2 y$

Soit $(x_1, x_2) \in \mathbb{R}^2$. On a :

$$\begin{aligned} \|i(x_1, x_2)\| &= \sup_{|x| + |y| \le 1} |x_1 x + x_2 y| \le \sup_{|x| + |y| \le 1} |x_1 x| + |x_2 y| \\ &\le \sup_{|x| + |y| \le 1} \max(|x_1|, |x_2|)(|x| + |y|) \\ &\le \|(x_1, x_2)\|_{\infty} \sup_{|x| + |y| \le 1} (|x| + |y|) = \|(x_1, x_2)\|_{\infty} \end{aligned}$$

Si $\max(|x_1|, |x_2|) = |x_1|$, alors $i(x_1, x_2)$ atteint $\|(x_1, x_2)\|_{\infty}$ en $(\text{sign}(x_1), 0)$ qui est bien un élément de la boule unité de $(\mathbb{R}^2, \|.\|_1)$. L'autre cas est analogue. On peut donc conclure que i est bien une isométrie.

Exemple 2.4. On a $(\mathbb{R}^2, \|.\|_{\infty})^* \equiv (\mathbb{R}^2, \|.\|_1)$ via l'isométrie :

$$i:(\mathbb{R}^2, \|.\|_1) \to (\mathbb{R}^2, \|.\|_{\infty})^*$$

 $(x_1, x_2) \mapsto i(x_1, x_2) :(\mathbb{R}^2, \|.\|_{\infty}) \to \mathbb{R}$
 $(x, y) \mapsto x_1 x + x_2 y$

Soit $(x_1, x_2) \in \mathbb{R}^2$. On a :

Soft
$$(x_1, x_2) \in \mathbb{R}^2$$
. On a:

$$\begin{aligned} \|i(x_1, x_2)\| &= \sup_{\max(|x|, |y|) \le 1} |x_1 x + x_2 y| \le \sup_{\max(|x|, |y|) \le 1} |x_1 x| + |x_2 y| \\ &\le \sup_{\max(|x|, |y|) \le 1} (|x_1| + |x_2|) \max(|x|, |y|) \\ &\le \|(x_1, x_2)\|_1 \sup_{\max(|x|, |y|) \le 1} \max(|x|, |y|) = \|(x_1, x_2)\|_1 \end{aligned}$$

Il est facile de vérifier que $i(x_1, x_2)$ atteint $||(x_1, x_2)||_1$ au point $(\operatorname{sign}(x_1), \operatorname{sign}(x_2))$ de la boule unité de $(\mathbb{R}^2, \|.\|_{\infty})$, ce qui fournit l'autre inégalité désirée.

Exercice 2.2. Soient p>1, q>1 le conjugué de p. Montrer qu'on a que $(\mathbb{R}^2, \|.\|_q)^*\equiv$ $(\mathbb{R}^2, ||.||_p).$

Notez que tous ces exemples peuvent se généraliser en dimension supérieure à 2.

2.3 Exemples en dimension infinie

Contrairement aux exemples de la section précédente, il ne suffit plus de vérifier que l'application considérée est une isométrie car la surjectivité n'est plus garantie par l'injectivité. Les exemples requièrent donc plus de travail.

Introduisons le premier espace sur lequel nous allons nous concentrer, qui est un espace de suites.

Définition 2.5. L'espace c_0 est l'espace des suites dans \mathbb{K} convergeant vers 0. On le munit de la norme $\|.\|_{\infty}$.

Etant donné que toutes les suites convergeantes sont bornées, on a que c_0 est un sous-espace vectoriel de ℓ^{∞} .

Exemple 2.6. On a $(c_0, ||.||_{\infty})^* \equiv (\ell^1, ||.||_1)$ via l'isométrie :

$$i: (\ell^{1}, \|.\|_{1}) \to (c_{0}, \|.\|_{\infty})^{*}$$

$$x = (x_{n})_{n \in \mathbb{N}} \mapsto i(x) : (c_{0}, \|.\|_{\infty}) \to \mathbb{R}$$

$$(y_{n})_{n \in \mathbb{N}} \mapsto \sum_{k=0}^{\infty} x_{k} y_{k}$$

L'application i est une isométrie :

Soit $x = (x_n)_{n \in \mathbb{N}} \in \ell^1$. La fonction i(x) est bien définie car pour tout $y \in c_0$, on a l'inégalité

$$|i(x)(y)| \le \sum_{k=0}^{\infty} |x_k y_k| \le ||y||_{\infty} ||x||_1$$

Cela implique en particulier que $||i(x)|| \le ||x||_1$. Montrons l'inégalité réciproque. Soit, pour tout naturel N, la suite $(y_n^{(N)})_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, y_n^{(N)} = \begin{cases} \operatorname{sign}(x_n) & \text{si } n \leq N \\ 0 & \text{sinon} \end{cases}$$

Alors $(y_n^{(N)})_{n\in\mathbb{N}}$ appartient à la boule unité de c_0 et on a $|i(x)(y^{(N)})| \to ||x||_1$ quand N tend vers l'infini. Ceci implique que $||i(x)|| \ge ||x||_1$, ce qu'on voulait.

L'application i est surjective :

Vérifions la surjectivité de i. Soit $x^* \in (c_0)^*$. On pose $x = (x^*(e_n))_{n \in \mathbb{N}}$ où e_n est la suite de terme général $(\mathbb{1}_{\{n\}}(k))_{k \in \mathbb{N}}$.

Il reste à montrer que $i(x) = x^*$, ce qui se vérifie par un simple calcul (il suffit d'observer les sommes partielles puis de passer à la limite), et que x est bien élément de ℓ^1 .

Pour tout naturel N, on a:

$$\sum_{k=0}^{N} |x_k| = x^*(y^{(N)}) \le ||x^*||$$

Ce qui implique que la série des termes de x est absolument convergente, ce qu'on voulait montrer.

Exemple 2.7. On a $(\ell^1, \|.\|_1)^* \equiv (\ell^\infty, \|.\|_\infty)$ via l'isométrie :

$$i: (\ell^{\infty}, \|.\|_{\infty}) \to (\ell^{1}, \|.\|_{1})^{*}$$

$$x = (x_{n})_{n \in \mathbb{N}} \mapsto i(x) : (\ell^{1}, \|.\|_{1}) \to \mathbb{R}$$

$$(y_{n})_{n \in \mathbb{N}} \mapsto \sum_{k=0}^{\infty} x_{k} y_{k}$$

L'application i est une isométrie :

Soit $x = (x_n)_{n \in \mathbb{N}} \in \ell^{\infty}$. La fonction i(x) est bien définie car pour tout $y \in \ell^1$, on a l'inégalité

$$|i(x)(y)| \le \sum_{k=0}^{\infty} |x_k y_k| \le ||x||_{\infty} ||y||_1$$

Cela implique en particulier que $||i(x)|| \le ||x||_{\infty}$. Montrons l'inégalité réciproque. Soit, pour tout naturel N, la suite $(y_n^{(N)})_{n\in\mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}, y_n^{(N)} = \mathbb{1}_{\{N\}}(n)\operatorname{sign}(x_n)$$

Alors $(y_n^{(N)})_{n\in\mathbb{N}}$ est élément de la boule unité de ℓ^1 et on a $|i(x)(y^{(N)})|=|x_N|$ quel que soit le naturel N considéré. Ceci implique que $||i(x)|| \ge ||x||_{\infty}$, ce qu'on voulait.

L'application i est surjective :

Vérifions la surjectivité de i. Soit $x^* \in (\ell^1)^*$. On pose $x = (x^*(e_n))_{n \in \mathbb{N}}$ où e_n est la suite de terme général $(\mathbb{1}_{\{n\}}(k))_{k \in \mathbb{N}}$.

Il reste à montrer que $i(x) = x^*$, ce qui se vérifie par un simple calcul (il suffit d'observer les sommes partielles puis de passer à la limite), et que x est bien élément de ℓ^{∞} .

Pour tout naturel N, on a:

$$|x_k| = x^*(y^{(N)}) \le ||x^*||$$

Ce qui implique que x est une suite bornée, ce que l'on voulait montrer.

Chapitre 3

Théorèmes de Hahn-Banach

Dates (pour votre culture générale): Hahn (1879-1934), Banach (1892-1945).

Les théorèmes de Hahn-Banach sont des résultats d'analyse fonctionnelle très importants. Ces théorèmes sont vus ici en deux formes : les formes analytiques du théorème assurent qu'une forme linéaire peut être étendue à tout l'espace en préservant certaines contraintes iniatiales ; les formes géométriques quant à elles sont des résultats assurant qu'on peut séparer par des hyperplans deux convexes vérifiant certaines hypothèses dans des espaces vectoriels normés.

3.1 Formes analytiques

3.1.1 Espaces vectoriels sur \mathbb{R}

Théorème 3.1 (Hahn-Banach – Forme analytique (cas réel)). Soient E un espace vectoriel sur \mathbb{R} , G un sous-espace vectoriel de E, $f:G\to\mathbb{R}$ une forme linéaire et $p:E\to\mathbb{R}$ une application vérifiant les hypothèses suivantes :

- $-\forall \lambda > 0, \forall x \in E, p(\lambda x) = \lambda p(x)$ (p est dite positivement homogène)
- $-- \forall x, y \in E, p(x+y) \le p(x) + p(y)$ (p est dite sous-additive)
- $--\forall x \in G, f(x) \leq p(x)$

Alors il existe $g: E \to \mathbb{R}$ forme linéaire étendant f et telle que $\forall x \in E, g(x) \leq p(x)$.

Démonstration. Supposons que $G \neq E$, sinon le résultat est immédiat.

Supposons donc qu'il existe $x_0 \in E \setminus G$. Montrons qu'il est possible d'étendre f à $V = G \oplus \mathbb{R} x_0$ comme annoncé dans le théorème.

On doit montrer qu'il existe un réel $g(x_0)$ tel que pour tout $x=y+tx_0\in V$, $g(x)\leq p(x)$, c'est-à-dire :

$$f(y) + tq(x_0) \leq p(y + tx_0)$$

Analysons les différents cas, selon le signe de t:

Cas 1, t > 0: la condition devient, par positive homogénéité de p et linéarité de f

$$\forall y \in G, g(x_0) \le p\left(\frac{y}{t} + x_0\right) - f\left(\frac{y}{t}\right)$$

Puisque G est un sous-espace vectoriel, on peut réécrire la condition :

$$\forall z \in G, g(x_0) \le p(z + x_0) - f(z)$$

Cas 2, t > 0: la condition devient, par positive homogénéité de p et linéarité de f

$$\forall y \in G, g(x_0) \ge f\left(\frac{-y}{t}\right) - p\left(\frac{-y}{t} - x_0\right)$$

Puisque G est un sous-espace vectoriel, on peut réécrire la condition :

$$\forall w \in G, g(x_0) \le f(w) - p(w - x_0)$$

La question qu'on se posait revient donc à se demander s'il existe un réel satisfaisant les inégalités :

$$\forall w, z \in G, f(w) - p(w - x_0) \le g(x_0) \le p(z + x_0) - f(z)$$

Il suffit de montrer l'assertion:

$$\forall w, z \in G, f(w) - p(w - x_0) \le p(z + x_0) - f(z)$$

Soient $z, w \in G$. On a $f(w+z) \leq p(w+z)$ par hypothèse sur p. Or puisque

$$p(w+z) = p(w-x_0+z+x_0) \le p(w-x_0) + p(z+x_0)$$

par sous-additivité de p, et que f est linéaire, on a l'inégalité.

On peut donc poser, par exemple, $g(x_0) = \inf_{z \in G} p(z + x_0) - f(z)$.

Pour finir la preuve, on utilise le lemme de Zorn, en considérant l'ensemble suivant, avec comme ordre l'inclusion (en considérant qu'une fonction h_1 prolonge une fonction h_2 si et seulement si le graphe de h_1 est inclus à celui de h_2):

$$\mathcal{M} = \{(V, h) \mid G \subseteq V \text{ sev. de } E, h : V \to \mathbb{R} \text{ linéaire, } h \text{ prolongement de } f\}$$

3.1.2 Espaces vectoriels sur \mathbb{C}

Théorème 3.2 (Hahn-Banach – Forme analytique (cas complexe)). Soient E un espace vectoriel sur \mathbb{C} , G un sous-espace vectoriel de E, $f:G\to\mathbb{C}$ une forme linéaire et $p:E\to[0,+\infty[$ une application vérifiant les hypothèses suivantes :

- $-- \forall \lambda \in \mathbb{C}, \forall x \in E, p(\lambda x) = |\lambda| p(x)$
- $--\forall x,y\in E, p(x+y)\leq p(x)+p(y)$ (p est dite sous-additive)
- $-- \forall x \in G, |f(x)| \le p(x)$

Alors il existe $g: E \to \mathbb{C}$ forme linéaire étendant f et telle que $\forall x \in E, |g(x)| \leq p(x)$.

Démonstration. Remarquez que quel que soit l'élément $x \in G$ considéré, on a les égalités suivantes :

$$if(x) = -\operatorname{Im}(f)(x) + i\operatorname{Re}(f)(x)$$

 $f(ix) = \operatorname{Re}(f)(ix) + i\operatorname{Im}(f)(ix)$

Par définition de l'égalité de deux nombres complexes (leurs parties réelles et imaginaires doivent être égales), on en déduit que Re(f)(ix) = -Im(f)(x) et que Im(f)(ix) = Re(f)(x). On peut donc exprimer f uniquement à l'aide de Re(f) de la manière suivante :

$$f(x) = \operatorname{Re}(f)(x) - i\operatorname{Re}(f)(ix)$$

L'application $\text{Re}(f):G\to\mathbb{R}$ est une application \mathbb{R} -linéaire. Par le théorème de Hahn-Banach, cas réel, elle s'étend en une fonction \mathbb{R} -linéaire $h:E\to\mathbb{R}$.

On pose g l'application définie par g(x) = h(x) - ih(ix) pour tout x dans E. Donc h correspond à la partie réelle de g. Il est aisé de vérifier qu'elle est \mathbb{C} -linéaire par calcul.

Il reste à montrer que g vérifie bien $|g| \le p$. Soit $x \in E$. On a :

$$\begin{split} |g(x)| &= e^{-i\arg(g(x))}g(x) \\ &= g(e^{-i\arg(g(x))}x) \qquad (g \text{ lin\'eaire}) \\ &= \operatorname{Re}(g)(e^{-i\arg(g(x))}x) \\ &= h(e^{-i\arg(g(x))}x) \\ &\leq p(e^{-i\arg(g(x))}x) = p(x) \quad (\text{Thm. 3.1}) \end{split}$$

3.1.3 Espaces vectoriels normés

Théorème 3.3 (Théorème de Hahn-Banach – Forme analytique). Soient (E, ||.||) un espace vectoriel normé sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , G un sous-espace vectoriel de E et $f: G \to \mathbb{K}$ linéaire continue.

Alors il existe une fonction $g: E \to \mathbb{K}$ linéaire continue prolongeant f telle que ||f|| = ||g||.

Démonstration. On prend pour fonction $p: E \to [0, +\infty[$ la fonction $x \mapsto ||f|| \cdot ||x||$. Elle vérifie toutes les hypothèses des théorèmes 3.1 et 3.2.

On peut donc prolonger f en une forme linéaire g telle que $|g(x)| \leq p(x)$ quel que soit $x \in E$. En particulier, cela implique que g est continue car bornée sur la boule unité par la norme de f.

Pour conclure il nous reste à montrer l'inégalité réciproque. Or pour tout $x \in G$ dans la boule unité, on a $|f(x)| = |g(x)| \le ||g||$, ce qui fournit l'inégalité désirée.

Remarque 3.4. Remarquez que le théorème n'exige pas la complétude de l'espace vectoriel normé considéré.

3.1.4 Hahn-Banach et dualité

Prouvons plusieurs corollaires des formes analytiques du théorème de Hahn-Banach liés à la dualité. Ils constituent de petits exercices d'application des théorèmes.

On considère un corps K qui est soit celui des réels ou des complexes.

Corollaire 3.5. Soient (E, ||.||) un espace vectoriel normé et $x_0 \in E \setminus \{0\}$. Alors il existe $x^* \in E^*$, tel que $x^*(x_0) = 1$ et $||x^*|| = \frac{1}{||x_0||}$.

Démonstration. Soit $G = \mathbb{K}x_0$. On considère l'application linéaire continue $f : G \to \mathbb{K}$: $tx_0 \mapsto t$ (la continuité est assurée car l'application est définie sur un espace de dimension 1).

Calculons la norme de f:

$$||f|| = \sup_{\substack{t \in \mathbb{K} \\ ||tx_0|| \le 1}} |f(tx_0)| = \sup_{\substack{t \in \mathbb{K} \\ |t| \le \frac{1}{||x_0||}}} |t| = \frac{1}{||x_0||}$$

Pour conclure, il suffit d'utiliser le théorème 3.3.

Corollaire 3.6. Soient (E, ||.||) un espace vectoriel normé et $x_0 \in E \setminus \{0\}$. Alors il existe $x^* \in E^*$, tel que $x^*(x_0) = ||x_0||$ et $||x^*|| = 1$.

Démonstration. Soit y^* fournie par le corollaire 3.5. Il suffit de prendre $x^* = ||x_0||y^*$.

Remarque 3.7. Soit $(E, \|.\|)$ un espace vectoriel normé. Soit $x \in E$.

Quelle que soit la forme considérée $x^* \in E^*$, on a toujours que $|x^*(x)| \le ||x^*|| \cdot ||x||$. Par le corollaire 3.6, on obtient l'égalité

$$||x|| = \max_{\substack{||x^*|| \le 1 \\ x^* \in E^*}} |x^*(x)|$$

Corollaire 3.8. Soient (E, ||.||) un espace vectoriel normé, F un sous-espace vectoriel de E qui n'est pas dense dans E et $x_0 \in (E \setminus adh(F))$.

Il existe $x^* \in E^*$ tel que $F \subseteq \text{Ker}(x^*)$, $x^*(x_0) = 1$ et $||x^*|| = \frac{1}{d}$ où $d = d(x_0, F)$.

Démonstration. Soit $f: F \oplus \mathbb{K}x_0 \to \mathbb{K}: y + tx_0 \mapsto t$. Cette application est linéaire et on a $F \subseteq \mathrm{Ker}(f)$ et $f(x_0) = 1$.

Rappelons que $d \neq 0$ car $x_0 \notin \text{adh}(F)$.

Montrons que f est continue. Soit $y + tx_0 \in F \oplus \mathbb{K}x_0$ tel que $||y + tx_0|| \le 1$. On a, pout $t \ne 0$:

$$||y + tx_0|| = |t| \cdot ||x_0 - \left(-\frac{y}{t}\right)|| \ge d \cdot |t|$$

D'où $|f(y+tx_0)|=|t|\leq \frac{1}{d}$. Ceci montre que f est continue.

En utilisant le théorème 3.3, on peut étendre f en une forme linéaire continue x^* sur E de même norme. Pour achever la preuve de l'assertion, il faut montrer l'inégalité $\|f\| \geq \frac{1}{d}$.

Soit $\varepsilon > 0$. Il existe $y \in F$ tel que $|d - ||y - x_0||| < \varepsilon$ (définition d'infimum). Cela implique $||y - x_0|| \le d + \varepsilon$. On a également l'inégalité

$$||f|| \ge \left| f\left(\frac{y - x_0}{\|y - x_0\|}\right) \right| = \frac{1}{\|y - x_0\|} \ge \frac{1}{d + \varepsilon}$$

On conclut en faisant tendre ε vers 0.

Pour conclure cette section, les deux exercices suivants sont laissés:

Exercice 3.1. Soit $(E, \|.\|)$ un espace vectoriel normé sur \mathbb{K} . Soit F un sous-espace vectoriel de E. Montrer les équivalences suivantes :

- 1. $(x_0 \in \text{adh}(F))$ si et seulement si $(\forall x^* \in E^*, F \subseteq \text{Ker}(x^*) \implies x^*(x_0) = 0)$
- 2. (adh(F) = E) si et seulement si $(\forall x^* \in E^*, F \subseteq Ker(x^*) \implies x^* = 0)$

Il existe une notation pour l'ensemble des formes linéaires s'annulant sur un sousespace vectoriel donné. Il est donc possible de réécrire la question ci-dessus de manière plus concise à l'aide de cette notation.

Définition 3.9. Soit $(E, \|.\|)$ un espace vectoriel normé sur \mathbb{K} . Soit F un sous-espace vectoriel de E. On appelle annulateur de F le sous-espace vectoriel suivant de E^* :

$$F^{\perp} = \{ x^* \in E^* \mid F \subseteq \operatorname{Ker}(x^*) \}$$

3.1.5 Bidualité

Soit $(E, \|.\|)$ un espace vectoriel normé sur \mathbb{K} . Il est possible de considérer les formes linéaires définies sur le dual de E, étant donné qu'il s'agit d'un espace vectoriel normé. On appelle cet espace le bidual de E, et on le note E^{**} .

Définition 3.10 (Injection canonique). On appelle injection canonique l'application

$$i: E \to E^{**}$$

 $x \mapsto i(x)$

où pour tout $x \in E$, i(x) est l'application définie par

$$i(x): E \to \mathbb{K}$$

 $x^* \mapsto i(x)(x^*) = x^*(x)$

Il est simple de vérifier que l'injection canonique est bien définie (c'est-à-dire qu'elle est bien à image dans E^{**}). De plus, l'injection canonique a les propriétés suivantes :

Proposition 3.11. L'injection canonique est linéaire, continue et préserve la norme.

Démonstration. La linéarité est claire, car le dual est un espace d'applications linéaires, ce qui fournit le résultat.

Quant à la préservation des normes, il suffit de constater les égalités suivantes (par le corollaire 3.6) :

$$||i(x)|| = \sup_{\substack{\|x^*\| \le 1 \\ x^* \in E^*}} |x^*(x)| = ||x||$$

Par cet argument, on a ||i|| = 1, ce qui implique que i est continue.

Les espaces qui s'identifient à leur bidual via l'injection canonique sont dits réflexifs. Il existe des espaces qui sont isomorphes à leur bidual, mais pas via l'injection canonique; ces espaces sont appelés espaces de James.

Proposition 3.12. Si E est réflexif, toute forme $x^* \in E^*$ atteint sa norme.

Démonstration. Soit $x^* \in E^*$. Il existe $x^{**} \in E^{**}$ de norme 1 telle que $x^{**}(x^*) = ||x^*||$, par le corollaire 3.6. Par sujectivité de l'injection canonique, il existe $x \in E$ tel que $i(x) = x^{**}$. Il s'ensuit que x^* atteint sa norme en x.

Remarque : la réciproque est également vraie, mais nous n'allons pas nous en préoccuper.

Dans le cas où l'espace n'est pas réflexif, il existe donc des formes linéaires continues n'atteignant pas leur norme. Donnons-en un :

Exemple 3.13. On considère $E = (c_0, ||.||_{\infty})$. Alors son dual E^* s'identifie à ℓ^1 . Soit la suite $x = (\frac{1}{2^n})_{n \in \mathbb{N}}$ qui est bien élément de ℓ^1 . Alors l'application suivante est bien élément de $(c_0)^*$:

$$x^*: c_0 \to \mathbb{K}: (y_n)_{n \in \mathbb{N}} \mapsto \sum_{n=0}^{\infty} x_n y_n$$

Montrons que x^* n'atteint pas sa norme. Soit $y=(y_n)_{n\in\mathbb{N}}$ un élément de la boule unité de c_0 . Par définition, il existe N un naturel tel que pour tout n>N, $|y_n|\leq \frac{1}{2}$. On a :

$$|x^*(y)| \le \sum_{n=0}^{\infty} \frac{|y_n|}{2^n} = \sum_{n=0}^{N} \frac{|y_n|}{2^n} + \sum_{n=N+1}^{\infty} \frac{|y_n|}{2^n} \le \sum_{n=0}^{N} \frac{1}{2^n} + \sum_{n=N+1}^{\infty} \frac{1}{2^{n+1}} \le 2 - \frac{1}{2^{N+1}} < 2$$

Montrons que tous les espaces de Hilbert sont réflexifs. Pour ce faire, rappelons le théorème de représentation de Riesz-Fréchet :

Théorème 3.14 (Théorème de représentation de Riesz-Fréchet). Soit H un espace de Hilbert. Soit x^* élément du dual de H. Il existe un unique élément $x \in H$ tel que pour tout $y \in H$, $x^*(y) = \langle y, x \rangle$.

Exercice 3.2. Soit H un espace de Hilbert. Prouvez que le représentant donné par le théorème pour une forme linéaire continue $x^* \in H^*$ est de même norme que celle-ci.

Remarque : en particulier, tout espace de Hilbert est isométrique à son dual.

Nous sommes maintenant armés pour montrer que tous les espaces de Hilbert sont réflexifs.

Théorème 3.15. Tout espace de Hilbert H est réflexif.

Démonstration. Munissons le bidual d'une structure d'espace de Hilbert. Pour ce faire, faisons d'abord de même pour le dual.

Etant donné deux formes linéaires continues u^*, v^* sur H, il existe u, v deux éléments de H leur correspondant (via le théorème de représentation de Riesz-Fréchet). On pose alors :

$$\langle u^*, v^* \rangle = \langle v, u \rangle$$

Il s'agit bien d'un produit scalaire; il hérite des propriétés du produit scalaire défini sur H, en plus d'engendrer la même distance que la norme opérateur (puisque les représentants sont de même norme que les formes considérées). La complétude de H^* est assurée par la proposition 1.16.

De la même manière, on munit le bidual de H d'un produit scalaire, pour tous u^{**}, v^{**} du bidual, soient u^*, v^* leur représentants du dual, on pose :

$$\langle u^{**}, v^{**} \rangle = \langle u^*, v^* \rangle$$

Soit $y^{**} \in H^{**}$. Montrons qu'il existe un élément de y de H tel que y^{**} est l'image de y par l'injection canonique.

On considère y le représentant de la forme linéaire continue y^* , elle-même représentante de y^{**} . Soient x^* une forme linéaire continue et x son représentant dans H. Alors :

$$i(y)(x^*) = x^*(y) = \langle y, x \rangle$$

et

$$y^{**}(x^*) = \langle x^*, y^* \rangle = \langle y, x \rangle$$

Les deux correspondent ce qui conclut la preuve.

Vous pouvez consulter une autre preuve dans le document [2, p. 49].

3.2 Formes géométriques

3.2.1 Hyperplans

Soit E un espace vectoriel sur \mathbb{K} (le corps des réels ou des complexes).

Définition 3.16. Un sous-espace vectoriel H de E est dit hyperplan vectoriel s'il existe $e \in E$ non nul tel que $E = H \oplus \mathbb{K}e$.

Il existe une formulation équivalente en termes de formes linéaires :

Proposition 3.17. Soit H un sous-espace vectoriel de H. Il s'agit d'un sous-espace vectoriel si et seulement si il existe une forme linéaire f non identiquement nulle dont H est le noyau.

Démonstration. Supposons que H est un hyperplan vectoriel. Alors tout vecteur de E s'écrit de manière unique sous la forme x+te avec $t\in \mathbb{K}$ et $x\in H$. Il suffit de poser f(x+te)=t pour avoir l'affirmation.

Réciproquement supposons que H est le noyau d'une application linéaire f non nulle. Soit $e \in E$ un vecteur n'appartenant pas au noyau de f. Montrons que pour tout x dans E, il existe $\lambda \in \mathbb{K}$ tel que $x - \lambda e \in H$; ceci impliquera $E = H + \mathbb{K}e$. Il suffit de prendre $\lambda = \frac{f(x)}{f(e)}$. On a bien $x - \lambda e \in H$.

Il faut maintenant montrer l'unicité de cette écriture. Soient $a, b \in \mathbb{K}$, $u, v \in H$ tels que x = u + ae = v + be. En appliquant f, on obtient af(e) = bf(e), d'où a = b et u = v.

En plus des hyperplans vectoriels, on définit également les hyperplans dits affins. Il s'agit de translatés d'hyperplans vectoriels.

Définition 3.18. Un sous-ensemble H de E est dit hyperplan affin s'il existe f une forme linéaire sur E, un scalaire α tels que $H = f^{-1}(\{\alpha\})$.

Supposons désormais que $(E, \|.\|)$ est un espace vectoriel normé. On a le résultat suivant, qui lie continuité d'une forme linéaire et si le noyau est fermé ou non.

Proposition 3.19. Soit $f: E \to \mathbb{K}$ une forme linéaire non identiquement nulle. Son noyau est fermé si et seulement si f est continue.

Remarque : l'application nulle est continue et son noyau est fermé. Le cas est écarté de la proposition car il est trivial.

Démonstration. Si l'application est supposée continue, alors son noyau est fermé car il s'agit de l'image réciproque par f du singleton $\{0\}$ qui est fermé.

Réciproquement, supposons son noyau fermé. Étant donné que f est non nulle, il existe x_0 dans le complémentaire du noyau, qui est ouvert (par hypothèse). On peut supposer $f(x_0) = 1$ (en normalisant le vecteur).

Soit r > 0 tel que $B(x_0, r) \subseteq E \setminus \text{Ker}(f)$. On a donc $\forall z \in B(0, 1), f(x_0 + rz) \neq 0$. Par linéarité de f, on obtient $\forall z \in B(0, 1), f(z) \neq r^{-1}$.

Pour conclure, il suffit de montrer que $|f(z)| < r^{-1}$ pour tout élément z de la boule unité de E, une application linéaire étant continue si et seulement si elle est bornée sur la boule unité. Montrons que le cas complémentaire est impossible par l'absurde.

S'il existe un élément z de la boule unité de E tel que $|f(z)| \ge r^{-1}$, alors il existe y dans la boule unité tel que son image par f est réelle positive et $f(y) \ge r^{-1}$ (prendre

 $y=e^{-i\arg(f(z))}z$). En multipliant y par une constante appropriée, on obtient un élément de la boule unité d'image r^{-1} ce qui constitue une contradiction.

3.2.2 Introduction aux formes géométriques du théorème de Hahn-Banach

Tout au long de cette section on considère un espace vectoriel normé $(E, \|.\|)$ sur \mathbb{R} . Le but de cette section est d'introduire les bases nécessaires pour prouver les formes géométriques du théorème de Hahn-Banach. Le théorème affirme qu'étant donnés deux convexes de E vérifiant certaines hypothèses, il est possible de les séparer ces derniers par un hyperplan, comme illustré à la figure 3.1. Plus formellement :

FIGURE 3.1 – Séparation de deux convexes par un hyperplan dans \mathbb{R}^2

Définition 3.20. Soient A, B deux sous-ensembles disjoints de E, $f: E \to \mathbb{R}$ une forme linéaire continue, α un réel et $H = f^{-1}(\{\alpha\})$ un hyperplan affin.

H sépare A et B au sens large si $\forall x \in A, f(x) \leq \alpha$ et $\forall x \in B, f(x) \geq \alpha$.

H sépare A et B au sens strict s'il existe $\varepsilon > 0$ tel que $\forall x \in A, f(x) \leq \alpha - \varepsilon$ et $\forall x \in B, f(x) \geq \alpha + \varepsilon$.

Pour parvenir à nos fins, on introduit une fonction appelée jauge d'un convexe C:

Définition 3.21. Soit $C \subseteq E$ un convexe contenant 0 et ouvert. Pour tout x dans E, on définit la jauge de C en x comme suit :

$$j_C(x) = \inf \left\{ \alpha > 0 \mid x \in \alpha C \right\} = \inf \left\{ \alpha > 0 \mid \alpha^{-1} x \in C \right\}$$

Pour se familiariser avec cette fonction, vous êtes invité à effectuer les exercices suivants :

Exercice 3.3. On considère le convexe $C = \left[\frac{-1}{2}, 2 \right]$ de \mathbb{R} . Effectuez les calculs suivants :

$$j_{C}\left(\frac{1}{2}\right) = \boxed{\qquad} j_{C}\left(-1\right) = \boxed{\qquad}$$

$$j_{C}\left(\frac{-1}{2}\right) = \boxed{\qquad} j_{C}\left(2\right) = \boxed{\qquad}$$

Exercice 3.4. Soit C un ouvert convexe de E contenant 0. Soit x un élément de E. Montrer que quel que soit $\varepsilon > 0$,

$$\frac{1}{j_C(x) + \varepsilon} x \in C$$

Pour prouver les formes géométriques du théorème de Hahn-Banach, nous allons utiliser le résultat suivant.

Proposition 3.22. Soient C un ouvert convexe non vide de E et $x_0 \in E \setminus C$. Alors il existe un hyperplan fermé qui sépare $\{x_0\}$ et C au sens large, c'est-à-dire :

$$\exists x^* \in E^*, \forall x \in C, x^*(x) < x^*(x_0)$$

Prouvons plusieurs propriétés de la jauge d'un convexe qui serviront dans la preuve de la proposition 3.22.

Lemme 3.23. Soit C un ouvert convexe de E contenant 0. Alors :

- 1. $\exists M > 0, \forall x \in E, 0 \le j_C(x) \le M ||x||$.
- 2. $C = \{x \in E \mid j_C(x) < 1\}.$
- 3. La jauge d'un convexe est positivement homogène.
- 4. L'application j_C est sous-additive.

Démonstration. Montrons chaque point un à un.

- 1. Soit r > 0 tel que $B(0,r) \subseteq C$. Posons $M = 2r^{-1}$. Soit $x \in E$ non nul. On vérifie facilement que $r\frac{x}{2\|x\|} \in B(0,r) \subseteq C$, d'où $x \in 2r^{-1}\|x\| \cdot C$, ce qui donne le résultat.
- 2. Soit $x \in C$. Soit r > 0 tel que $B(x,r) \subseteq C$. Alors il existe $\varepsilon > 0$ tel que $(1+\varepsilon)x \in B(x,r)$. D'où $x \in \frac{1}{1+\varepsilon} \cdot C$ ce qui montre la première inclusion. Réciproquement, soit $x \in E$ tel que $j_C(x) < 1$. Il existe donc $1 > \varepsilon > 0$ tel que $x \in \varepsilon \cdot C$. Par convexité de C, le segment joignant 0 à $\frac{1}{\varepsilon}x$ est inclus à C; puisque ce dernier contient x, on a l'inclusion désirée.
- 3. Soient x un élément de E et α un réel strictement positif. Pour tout $\beta > 0$, $\alpha x \in \beta \cdot C$, si et seulement si $x \in \alpha^{-1}\beta C$. D'où $j_C(\alpha x) = \alpha j_C(x)$ en passant à l'infimum sur β .
- 4. Soient x, y deux éléments de E. Soit $\varepsilon > 0$. On a $:\frac{1}{j_C(x)+\varepsilon}x \in C$ et $\frac{1}{j_C(y)+\varepsilon}y \in C$ (cf. exercice résolu 3.4). Par convexité de C, on a pour tout $t \in [0,1]$:

$$t\frac{1}{j_C(x) + \varepsilon}x + (1 - t)\frac{1}{j_C(y) + \varepsilon}y \in C$$

En prenant $t = \frac{j_C(x) + \varepsilon}{j_C(x) + j_C(y) + 2\varepsilon}$, on obtient

$$\frac{x+y}{j_C(x)+j_C(y)+2\varepsilon} \in C$$

Par le point 2 et la positive homogénéité de la jauge d'un convexe, on obtient $j(x+y) < j_C(x) + j_C(y) + 2\varepsilon$. On conclut en prenant $\varepsilon \to 0$.

Nous pouvons donc procéder à la preuve de la proposition 3.22 en utilisant ces propriétés.

Démonstration. Sans perte de généralité, on peut supposer $0 \in C$; si ce n'est pas le cas, on considère $y_0 \in C$ et « on translate », c'est-à-dire on prouve la propriété pour le convexe $C' = C - y_0$ et le point $x'_0 = x_0 - y_0$ et on utilise la linéarité de la forme obtenue pour avoir le résultat.

On pose $G = \mathbb{R}x_0$ et on considère la forme linéaire définie sur G par $\forall t \in \mathbb{R}$, $f(tx_0) = t$. Alors pour tout t réel, on a $f(tx_0) \leq j_C(tx_0)$; si t est négatif, c'est clair, et si t est positif, cela revient à montrer (puisque j_C est positivement homogène) que $1 \leq j_C(x)$, ce qui est vrai car $x \notin C$.

Par la forme analytique du théorème de Hahn-Banach (théorème 3.1), f se prolonge en une forme linéaire g sur E vérifiant $\forall x \in E, g(x) \leq j_C(x)$. De plus, comme il existe une constante M > 0 telle que tout élément x de E vérifie $j_C(x) \leq M||x||$, la continuité de g est assurée sur E.

On considère l'hyperplan $H = g^{-1}(\{1\})$. Montrons qu'il sépare bien C et le singleton x_0 . C'est immédiat car $g(x_0) = 1$ et tout élément y de C est tel que $g(y) \le j_C(y) < 1$. \square

Le corollaire suivant est laissé au lecteur à titre d'exercice. Vous êtes invités à le montrer de plusieurs manières ; en utilisant la proposition précédente ou un des corollaires des formes analytiques.

Exercice 3.5. Montrer que E^* sépare les points de E, c'est-à-dire si x, y sont des éléments de E, il existe x^* une forme linéaire continue sur E telle que $x^*(x) \neq x^*(y)$

En particulier deux éléments de E sont égaux si et seulement si leur image par toute forme linéaire continue coïncide.

3.2.3 Théorème de Hahn-Banach : Formes géométriques

Tout au long de cette section, on considère un espace vectoriel normé $(E, \|.\|)$ sur \mathbb{R} .

Théorème 3.24 (Théorème de Hahn-Banach – Première forme géométrique). Soient A un ouvert convexe non vide de E, B un convexe non vide de E tels que A et B sont disjoints. Alors il existe un hyperplan fermé qui sépare A et B au sens large.

Démonstration. Soit C=A-B. Il s'agit d'un convexe ouvert de E. La convexité se vérifie par calcul et pour montrer que C est ouvert, il suffit de remarquer qu'il s'agit d'une union d'ouverts :

$$C = \bigcup_{b \in B} A - b = \bigcup_{b \in B} \{a - b \mid a \in A\}$$

Étant donné que A et B sont disjoints, $0 \notin C$. Par la proposition 3.22, il existe une forme linéaire continue x^* telle que tout élément x de C a une image strictement négative. Il s'ensuit que pour tout élément a de A, pour tout élément b de B, $x^*(a-b) < 0$.

Puisque B est non vide, $\alpha = \sup_{x \in A} x^*(a)$ est fini. L'hyperplan $(x^*)^{-1}(\alpha)$ sépare A et B au sens large, ce qui conclut la preuve.

Il existe une seconde forme géométrique du théorème de Hahn-Banach.

Théorème 3.25 (Théorème de Hahn-Banach – Deuxième forme géométrique). Soient A un compact convexe non vide de E, B un fermé convexe non vide de E tels que A et B sont disjoints. Alors il existe un hyperplan fermé qui sépare A et B au sens strict.

Introduisons un lemme utile dans la preuve du théorème

Lemme 3.26. Soit $(F, \|.\|)$ un espace vectoriel normé sur \mathbb{K} (où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C}), A, B deux convexes non vides disjoints de F, A compact et B fermé.

Alors il existe $\varepsilon > 0$ tel que $A_{\varepsilon} = A + B(0, \varepsilon)$ et $B_{\varepsilon} = B + B(0, \varepsilon)$ sont disjoints.

Démonstration. Supposons par l'absurde que cela soit faux. Pour tout naturel n non nul, il existe $x_n \in A_{1/n} \cap B_{1/n}$. Alors x_n s'écrit comme $a_n + z_n$ pour certains $a_n \in A$, $z_n \in B(0, 1/n)$ et comme $b_n + w_n$ pour certains $b_n \in B$, $w_n \in B(0, 1/n)$.

Par compacité séquentielle de A, il existe une sous-suite de $(a_n)_{n\in\mathbb{N}}$, notons-la $(a_{n_k})_{k\in\mathbb{N}}$, un élément a dans A tel que $(a_{n_k})_{k\in\mathbb{N}}$ converge vers a. Puisque les suites $(z_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ convergent vers a, on déduit que la sous-suite $(b_{n_k})_{k\in\mathbb{N}}$ de $(b_n)_{n\in\mathbb{N}}$ converge vers a, ce qui implique a dans B (car B est fermé), ce qui contredit A et B disjoints.

Prouvons la seconde forme géométrique du théorème de Hahn-Banach à l'aide du lemme ci-dessus.

Démonstration. Soit $\varepsilon > 0$ tel que A_{ε} et B_{ϵ} (au sens du lemme 3.26) sont disjoints. Puisque ce sont des ensembles ouverts, convexes, non vides et disjoints, il existe x^* forme linéaire continue, α un nombre réel tel que pour tout $a \in A_{\varepsilon}$, $x^*(a) \leq \alpha$ pour tout $b \in B_{\varepsilon}$, $x^*(b) \geq \alpha$. (par la première forme géométrique).

On a pour tout a dans A, $x^*(a) \le \alpha - \varepsilon ||x^*||$ et de manière analogue, pour tout b dans B, $x^*(b) \ge \alpha + \varepsilon ||x^*||$, ce qui conclut la preuve.

3.2.4 Généralisation aux espaces vectoriels complexes

Soit $(E, \|.\|)$ un espace vectoriel normé sur \mathbb{C} . Il est possible de généraliser les formes géométriques du théorème de Hahn-Banach aux espaces vectoriels sur le corps des complexes.

Voici une première généralisation de la première forme géométrique.

Théorème 3.27 (Hahn-Banach – Première forme géométrique, cas complexe). Soient A un ouvert convexe non vide de E, B un convexe non vide de E tels que A et B sont disjoints. Il existe x^* une forme linéaire non nulle sur E et α un nombre réel tels que :

$$A \subseteq \{x \in E \mid \operatorname{Re}(x^*)(x) \le \alpha\} \text{ et } B \subseteq \{x \in E \mid \operatorname{Re}(x^*)(x) \ge \alpha\}$$

Démonstration. Par la première forme géométrique (dans le cas réel), il existe une forme continue f \mathbb{R} -linéaire sur E telle que

$$A \subseteq \{x \in E \mid f(x) \le \alpha\} \text{ et } B \subseteq \{x \in E \mid f(x) \ge \alpha\}$$

On conclut en posant $x^*(x) = f(x) - if(ix)$ pour tous x dans E. La linéarité est à vérifier à titre d'exercice et elle est bien continue car :

$$|x^*(x)| \le |f(x)| + |f(ix)| \le ||f|| ||x|| + ||f|| ||ix|| = 2||f|| ||x||$$

Il est possible d'avoir un résultat similaire en considérant des modules plutôt que les parties réelles de la forme linéaire, au coût d'une hypothèse supplémentaire sur un des ensembles. Introduisons d'abord une définition.

Définition 3.28. Soit A un sous-ensemble de E. A est dit équilibré (ou \mathbb{C} -symétrique) si quel que soit l'élément v de A et le complexe λ de module 1 considérés, le vecteur λv est un élément de A.

Corollaire 3.29. Soient A un ouvert convexe non vide équilibré de E, B un convexe non vide de E tels que A et B sont disjoints. Il existe x^* une forme linéaire non nulle sur E et α un nombre réel tels que :

$$A \subseteq \{x \in E \mid |x^*(x)| \le \alpha\}$$
 et $B \subseteq \{x \in E \mid |x^*(x)| \ge \alpha\}$

Le résultat est le suivant.

 $D\acute{e}monstration$. Soit x^* linéaire continue telle que

$$A \subseteq \{x \in E \mid \operatorname{Re}(x^*)(x) \le \alpha\} \text{ et } B \subseteq \{x \in E \mid \operatorname{Re}(x^*)(x) \ge \alpha\}$$

(donnée par le théorème 3.27). Alors pour tous b dans B, on a : $|x^*(b)| \ge \text{Re}(x^*)(b)\alpha$. Soit $a \in A$. On a (par linéarité de x^* et par \mathbb{C} -symétrie de A) :

$$|x^*(a)| = x^*(e^{-i\arg(x^*(a))}a) = \operatorname{Re}(x^*)(e^{-i\arg(x^*(a))}a) \le \alpha$$

Adaptons la seconde forme géométrique du théorème de Hahn-Banach.

Théorème 3.30 (Hahn-Banach – Deuxième forme géométrique, cas complexe). Soient A un compact convexe non vide de E, B un fermé convexe non vide de E tels que A et B sont disjoints. Il existe x^* une forme linéaire non nulle sur E, α un nombre réel et $\varepsilon > 0$ tels que :

$$A \subseteq \{x \in E \mid \operatorname{Re}(x^*)(x) \le \alpha - \varepsilon\} \text{ et } B \subseteq \{x \in E \mid \operatorname{Re}(x^*)(x) \ge \alpha + \varepsilon\}$$

Démonstration. Par le lemme 3.26, il existe $\varepsilon > 0$ tel que A_{ε} et B_{ε} (en reprenant les notations du lemme) sont disjoints.

Alors par le théorème 3.27, il existe une forme linéaire continue x^* , un réel α tel que :

$$A_{\varepsilon} \subset \{x \in E \mid \operatorname{Re}(x^*)(x) < \alpha\} \text{ et } B_{\varepsilon} \subset \{x \in E \mid \operatorname{Re}(x^*)(x) > \alpha\}$$

Alors pour tout a dans A, pour tout z dans $B(0,\varepsilon)$, $Re(x^*)(a+z) \leq \alpha$.

Soit $a \in A$. Par linéarité de x^* , la dernière affirmation implique que pour tout z dans la boule unité, $\operatorname{Re}(x^*)(a) + \varepsilon \operatorname{Re}(x^*)(z) \leq \alpha$. Puisque l'affirmation est vraie pour tous z dans la boule unité, on peut passer au suprémum sur les z et on obtient l'inégalité $\operatorname{Re}(x^*)(a) + \varepsilon ||x^*|| \leq \alpha$. Avec un calcul similaire, on peut conclure pour B.

Remarque : il est possible d'écrire une version du résultat utilisant des modules plutôt que des parties réelles dans les inégalités à la manière du corollaire 3.29. Vous êtes invités à écrire le résultat et à le montrer à titre d'exercice.

3.2.5 Applications

Nous considérons à nouveau dans cette section un espace vectoriel normé $(E, \|.\|)$ sur le corps des nombres réels. Nous allons présenter plusieurs corollaires des théorèmes de Hahn-Banach.

Commencer par présenter une preuve alternative du corollaire 3.8, qui utilise la forme géométrique du théorème de Hahn-Banach.

Corollaire 3.31. Soit F un sous-espace vectoriel de E tel que F n'est pas dense dans E. Alors il existe une forme linéaire non nulle continue s'annulant sur F.

Démonstration. Un sous-espace vectoriel est un convexe. Soit $x_0 \in E \setminus \text{adh}(F)$. Alors $\{x_0\}$ est un compact convexe de E et adh(F) est un sous-espace vectoriel (donc convexe) fermé ne contenant pas x_0 . Par la deuxième forme géométrique de Hahn-Banach, il existe une forme linéaire x^* , un réel α et $\varepsilon > 0$ tels que $x^*(x_0) \geq \alpha + \varepsilon$ et pour tout $y \in F$, $x^*(y) \leq \alpha - \varepsilon$. En particulier, x^* est majorée sur F par une constante; il est facile de vérifier que x^* s'annule sur F. On en déduit $\alpha \geq 0$ ce qui nous permet de conclure que $x^*(x_0)$ est non nul.

Remarque : ce résultat a déjà été énoncé (cf. corollaire 3.8). Il est répété ici pour donner une preuve différente qui utilise les formes géométriques de Hahn-Banach.

De manière similaire à l'annulateur d'un sous-espace vectoriel, on peut définir un sous-espace vectoriel similaire du dual.

Définition 3.32. Soit N un sous-espace vectoriel de E^* . On définit N_{\perp} comme le sous-ensemble de E défini par :

$$N_{\perp} = \{ x \in E \mid \forall x^* \in N, x^*(x) = 0 \}$$

Il s'agit d'un sous-espace vectoriel fermé de E : cela se peut montrer en écrivant l'ensemble comme l'intersection des noyaux des éléments de N qui sont fermés.

Proposition 3.33. Soit F un sous-espace vectoriel de E. Montrer l'égalité $(F^{\perp})_{\perp} = \operatorname{adh}(F)$.

Démonstration. On a clairement l'inclusion $F \subseteq (F^{\perp})_{\perp}$, ce qui fournit $adh(F) \subseteq (F^{\perp})_{\perp}$. L'inclusion réciproque est fournie par le résultat de l'exercice 3.1 (la solution de l'exercice est donnée en annexe).

Maintenant nous avons tous les outils nécessaires pour démontrer la réciproque de la proposition 1.16.

Théorème 3.34. Soient $(F, \|.\|_F)$, $(G, \|.\|_G)$ deux espaces vectoriels normés sur sur \mathbb{K} (\mathbb{R} ou \mathbb{C}).

 $\mathcal{L}(F,G)$ est un espace de Banach si et seulement si G est un espace de Banach.

Démonstration. Il reste à prouver une implication. Supposons $\mathcal{L}(F,G)$ complet. Soit $(y_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans G.

Fixons un élément x_0 de la sphère unité de F, c'est-à-dire $||x_0||_F = 1$. Par le corollaire 3.6, il existe donc un élément x^* du dual de F de norme 1 et tel que $x^*(x_0) = 1$.

Pour tout naturel n, on définit l'application $f_n : F \to G$ par $f_n(x) = x^*(x)y_n$ quel que soit x dans F; il s'agit bien d'une application linéaire et continue. Montrons que la suite $(f_n)_{n\in\mathbb{N}}$ est une suite de Cauchy. Soient n, m deux naturels, on a :

$$||f_n - f_m|| = \sup_{\substack{x \in F \\ ||x||_F = 1}} ||x^*(x)y_n - x^*(x)y_m||_G = ||y_n - y_m||_G \sup_{\substack{x \in F \\ ||x||_F = 1}} |x^*(x)| = ||y_n - y_m||_G$$

Puisque la suite $(y_n)_{n\in\mathbb{N}}$ est de Cauchy, il est immédiat par l'égalité précédente que la suite $(f_n)_{n\in\mathbb{N}}$ l'est également. Elle converge donc vers une application linéaire et continue f.

La convergence au sens de la norme opérateur impliquant la convergence ponctuelle, on a donc $y_n = f_n(x_0) \xrightarrow[n \to +\infty]{} f(x_0)$, donc la suite $(y_n)_{n \in \mathbb{N}}$ est convergente.

Proposition 3.35. Soient φ , ψ deux formes linéaires sur E non nulles telles que $Ker(\varphi) \subseteq Ker(\psi)$. Alors il existe $\lambda \in \mathbb{R}$ tel que $\psi = \lambda \varphi$

Démonstration. Soit l'application $F: E \to \mathbb{R}^2: x \mapsto (\varphi(x), \psi(x))$. Alors le vecteur (1,0) n'est pas dans l'image de F. Il existe, par la seconde forme géométrique de Hahn-Banach, une forme linéaire et continue séparant l'image de F (convexe fermé) et (1,0) (convexe compact) au sens strict, c'est-à-dire il existe $x^* \in (\mathbb{R}^2)^*$, $\alpha \in \mathbb{R}$ et $\varepsilon > 0$ tels que $x^*((1,0)) \geq \alpha + \varepsilon$ et tout vecteur u de E vérifie $x^*(F(u)) = x^*(\varphi(u), \psi(u)) \leq \alpha - \varepsilon$. Notons $x^*((x,y)) = x_1x + x_2y$, pour tout $(x,y) \in \mathbb{R}^2$.

Puisque $x^* \circ F$ est linéaire et que son image est majorée par une constante, on en déduit qu'elle est nulle, c'est-à-dire $x_1\varphi(u)+x_2\psi(u)=0$, quel que soit u dans E. Cela implique également que $x_1>0$ (puisque $x_1\geq\alpha+\varepsilon>x^*(F(0_E))=0$). On en déduit également $x_2\neq 0$ car en considérant $u\in E\setminus \mathrm{Ker}(\psi)$, on a $x_2\psi(u)=-x_1\varphi(u)\neq 0$. On conclut en posant $\lambda=-x_1/x_2$

Remarque : dans la proposition précédente, la norme sur E n'intervient pas. De plus, nous ne précisons pas de norme sur \mathbb{R}^2 étant donné qu'elles sont toutes équivalentes (donc la continuité ne dépend pas de la norme considérée), d'autant plus que la continuité de x^* n'intervient pas dans l'argument.

Proposition 3.36. Tout hyperplan vectoriel H de E est soit fermé, soit dense.

Démonstration. Soit f la forme linéaire sur E telle que $H = \mathrm{Ker}(f)$. Si f est continue, alors H est fermé. Supposons que f n'est pas continue (c'est-à-dire H n'est pas fermé) et montrons que H est dense.

Par contradiction on suppose que H n'est pas dense dans E. Il existe par le corollaire 3.8 une forme linéaire et continue x^* non nulle s'annulant sur l'adhérence de H. Par la proposition 3.35, puisque $H \subseteq \operatorname{Ker}(x^*)$, x^* et f sont multiples, donc f est continue, ce qui constitue une contradiction.

Proposition 3.37. Soient x^* , $y^* \in E^*$ telles que $||x^*|| = ||y^*|| = 1$ et $\varepsilon > 0$. Supposons que $|x^*(x)| < \varepsilon$ pour tout x dans l'intersection du noyau de y^* et de la boule unité de E. Alors on a $||x^* + y^*|| < 2\varepsilon$ ou $||x^* - y^*|| < 2\varepsilon$

Démonstration. Étape 1 : montrons tout d'abord qu'il existe $z^* \in E^*$ et un réel α tels que $||z^*|| \le \varepsilon$ et $x^* - z^* = \alpha y^*$.

Considérons la restriction de x^* au noyau de y^* : par le théorème 3.3, cette restriction s'étend en une forme linéaire continue z de même norme. Or puisque par hypothèse $|x^*(x)| < \varepsilon$ pour tout $x \in B(0,1) \cap \operatorname{Ker}(y^*)$, on a $||z|| \le \varepsilon$. Par la proposition 3.35, puisque $\operatorname{Ker}(x^*-z^*) \subseteq \operatorname{Ker}(y^*)$, il existe $\alpha \in \mathbb{R}$ tel que $x^*-z^*=\alpha y^*$.

Étape 2 : montrons ensuite que $|1 - |\alpha|| \le \varepsilon$. Soit x un élément de boule unité de E. On a :

$$|z^*(x)| = |x^*(x) - \alpha y^*(x)| \ge |x^*(x)| - |\alpha||y^*(x)| \ge |x^*(x)| - |\alpha||y^*|| = |x^*(x)| - |\alpha|$$

D'où $|x^*(x)| \leq |z^*(x)| + |\alpha| \leq \varepsilon + |\alpha|$. Comme cette inégalité est vraie pour tout élément de la boule unité de E, on peut passer au suprémum et on obtient $1 = ||x^*|| \leq \varepsilon + |\alpha|$, ou encore $1 - |\alpha| \leq \varepsilon$.

On a également :

$$|z^*(x)| = |x^*(x) - \alpha y^*(x)| \ge |\alpha||y^*(x)| - |x^*(x)| \ge |\alpha||y^*(x)| - ||x^*|| = |\alpha||y^*(x)| - 1$$

D'où $|\alpha||y^*(x)| \le 1 + |z^*(x)| \le 1 + \varepsilon$. De manière analogue à ci-dessus, on en déduit $|\alpha| \le 1 + \varepsilon$, c'est-à-dire $|\alpha| - 1 \le \varepsilon$.

Ceci termine l'étape 2.

Étape 3 : conclusion.

Soit $\eta \in \{-1, 1\}$. On a, par l'inégalité trianglaire :

$$||x^* + \eta y^*|| \le ||x^* - \alpha y^*|| + ||\alpha y^* + \eta y^*|| \le \varepsilon + ||\alpha y^* + \eta y^*||$$

Pour conclure il reste à choisir η (ce choix revient à se placer dans un des cas de l'alternative à montrer) tel que $|\alpha + \eta| ||y^*|| = |\alpha + \eta| \le \varepsilon$. Si α est positif, on prend $\eta = -1$, sinon, on choisit $\eta = 1$ et on conclut par l'étape 2.

Chapitre 4

Théorème de Baire

4.1 Un petit mot historique

Cantor (1845-1918) : théorie des ensembles de nombres réels; tout intervalle de \mathbb{R} est non-dénombrable.

Borel (1871-1956) : théorie de la mesure ; tout intervalle de \mathbb{R} est de mesure non nulle ; notion de propriété vraie presque partout : une propriété P est vraie presque partout si elle est vérifiée l'ensemble complet hormis un sous-ensemble de mesure nulle.

Baire (1874-1932) : point de vue topologique; tout intervalle n'est pas n'est pas de première catégorie; une propriété P est dite vraie presque partout au sens de Baire si elle est vérifiée sur tout l'ensemble hormis un sous-ensemble de première catégorie.

4.2 Définitions

Soit (X, \mathcal{T}) un espace topologique (fixé tout au long de cette section).

Définition 4.1. Un sous-ensemble A de X est dit nulle part dense s'il vérifie

$$\operatorname{int}\left(\operatorname{adh}(A)\right) = \emptyset$$

De manière équivalente, A est dit nulle part dense si le complémentaire de son adhérence est dense dans X.

Par exemple, dans \mathbb{R} muni de sa topologie usuelle, l'ensemble vide, les singletons, l'ensemble des nombres naturels et l'ensemble des nombres entiers sont tous nulle part dense.

Proposition 4.2. L'ensemble des parties nulle part denses de X est héréditaire et est stable par union finie et par fermeture.

Remarque 4.3. Montrer qu'un sous-ensemble C de X est dense revient à montrer que adh(C) = X, c'est-à-dire $\forall x \in X, \forall O_x \in \mathcal{T}, x \in O_x \implies O_x \cap C \neq \emptyset$.

Cela revient au même que de montrer que tout ouvert O de X non vide, $O \cap C \neq \emptyset$.

Démonstration. Il est clair que cette classe est stable par fermeture. L'hérédité est facile à démontrer étant donné que le passage à l'intérieur et à l'adhérence préserve les inclusions.

Il reste donc à montrer que cette classe est stable par union finie. Il suffit de le montrer pour deux ensembles (et d'itérer lorsque plus de deux ensembles interviennent)

Soient A, B deux sous-ensembles nulle part denses de X. Alors le complémentaire de l'adhérence de A est dense dans X, c'est-à-dire pour tout ouvert O non vide de \mathcal{T} , $O \cap (X \setminus \text{adh}(A))$ est non vide. De même pour le complémentaire de l'adhérence de B.

On doit montrer que le complémentaire de l'adhérence de $A \cup B$ est dense dans X. L'adhérence de $A \cup B$ correspondant à l'union des adhérences, on doit donc montrer que (en appliquant les lois de De Morgan) :

$$\forall O \in \mathcal{T}, O \neq \emptyset \implies O \cap (X \setminus \operatorname{adh}(A)) \cap (X \setminus \operatorname{adh}(B)) \neq \emptyset$$

Soit O un ouvert de X. Puisque le complémentaire de l'adhérence de A est un ouvert dense, $O \cap (X \setminus \text{adh}(A))$ est un ouvert non vide. Puique le complémentaire de l'adhérence de B est dense, on a le résultat.

Toutefois la classe des ensembles nulle part denses n'est pas stable par union dénombrable. On introduit donc la notion d'ensemble de première catégorie :

Définition 4.4. Un sous-ensemble A de X est dit de première catégorie s'il s'agit d'une union dénombrable de parties nulle part denses.

Par exemple, dans \mathbb{R} muni de sa topologie usuelle, l'ensemble des nombres rationnels est de première catégorie (il s'agit d'une union dénombrable de singletons) mais n'est pas nulle part dense car son adhérence étant \mathbb{R} , l'intérieur de son adhérence est non vide.

En particulier, ceci montre que l'ensemble des parties de première catégorie de X n'est pas stable par fermeture en général, en plus de donner un exemple de sous-ensemble de première catégorie qui n'est pas nulle part dense.

Proposition 4.5. Le sous-ensemble des parties de première catégorie de X est héréditaire et stable par union dénombrable.

 $D\acute{e}monstration.$ L'hérédité est claire. Une union dénombrable d'unions dénombrables d'ensembles nulle part denses étant une union dénombrable d'ensembles nulle part denses, l'autre partie du résultat est claire.

La dernière définition introduite ici est celle de la propriété de Baire.

Définition 4.6 (Propriété de Baire). On dit que X a la propriété de Baire si toute intersection dénombrable d'ouverts denses de X est dense dans X. Dans ce cas on dit que X est un espace de Baire.

4.3 Formulations équivalentes

Soit (X, \mathcal{T}) un espace topologique fixé.

La propriété de Baire peut être exprimée de manière équivalente en termes de fermés :

Proposition 4.7. X a la propriété de Baire si et seulement si toute union dénombrable de fermés d'intérieur vide est d'intérieur vide.

Démonstration. Supposons que X a la propriété de Baire. Soit $(F_n)_{n\in\mathbb{N}}$ une famille de fermés de X d'intérieur vide. Alors la famille $(X\setminus F_n)_{n\in\mathbb{N}}$ est une famille d'ouverts denses

dans X (car l'adhérence du complémentaire d'un ensemble correspond au complémentaire de son intérieur). Par la propriété de Baire,

$$X \setminus \operatorname{int}\left(\bigcup_{n \in \mathbb{N}} F_n\right) = \operatorname{adh}\left(\bigcap_{n \in \mathbb{N}} X \setminus F_n\right) = X$$

En passant au complémentaire, on a la première implication.

L'autre implication se démontre de manière similaire et est donc laissée à titre d'exercice. \Box

On peut également énoncer la propriété de Baire en termes d'ensembles résiduels. Introduisons les :

Définition 4.8. Un sous-ensemble A de X est dit résiduel si son complémentaire est de première catégorie.

Proposition 4.9. X a la propriété de Baire si et seulement si tout ensemble résiduel est dense dans X.

Démonstration. Supposons que X est un espace de Baire. Soit A un ensemble résiduel, c'est-à-dire $X \setminus A = \bigcup_{n \in \mathbb{N}} S_n$ où les S_n sont des sous-ensembles de X nulle part denses. Alors chaque fermeture de S_n est un sous-ensemble de X d'intérieur vide. Par la propriété de Baire,

$$\operatorname{int}(X \setminus A) = \operatorname{int}\left(\bigcup_{n \in \mathbb{N}} S_n\right) = \emptyset$$

En passant au complémentaire, on déduit que l'adhérence de A est X, c'est-à-dire A est dense dans X.

Réciproquement, supposons que tout ensemble résiduel est dense dans X. Soit $(F_n)_{n\in\mathbb{N}}$ une famille de fermés d'intérieur vide. Alors il s'agit d'une famille de sous-ensembles nulle part denses de X, donc le complémentaire de leur union est dense dans X (car il s'agit d'un ensemble résiduel). Ceci implique que l'intérieur de l'union des F_n est vide, ce qu'on voulait montrer.

4.4 Théorème de Baire

Le théorème de Baire affirme que les espaces métriques complets sont des espaces de Baire, ce qui nous fournira des exemples concrets d'espaces de Baire.

Théorème 4.10 (Théorème de Baire). Soit (X, d) un espace métrique. Si X est complet, alors il a la propriété de Baire.

Démonstration. Soit $(O_n)_{n\in\mathbb{N}}$ une famille dénombrable d'ouverts denses dans X. Montrons que tout ouvert de X a une intersection non vide avec $\bigcap_{n\in\mathbb{N}} O_n$. Soit U un ouvert de X.

Puisque O_0 est un ouvert dense dans X, il existe x_0 dans $O_0 \cap U$. Il existe $r_0 \in]0,1]$ tel que $\bar{B}(x_0, r_0) \subseteq O_0 \cap U^1$. De même, puisque O_1 est dense dans X, il existe x_1 dans $O_1 \cap B(x_0, r_0)$, et $r_1 \in]0, 2^{-1}]$ tels que $\bar{B}(x_1, r_1) \subseteq O_1 \cap B(x_0, r_0)$.

^{1.} La notation $\bar{B}(y,r)$ est une notation adoptée ici pour dénoter la boule fermée de centre y et de rayon r. Pour rappel, dans un espace métrique, l'adhérence de la boule ouverte ne correspond pas nécessairement à la boule fermée.

En itérant de la sorte, on construit deux suites $(x_n)_{n\in\mathbb{N}}$ et $(r_n)_{n\in\mathbb{N}}$ telles que $x_n \in O_n \cap B(x_{n-1}, r_{n-1})$, $\bar{B}(x_n, r_n) \subseteq O_n$ et $r_n \in]0, 2^{-n}]$. La suite $(x_n)_{n\in\mathbb{N}}$ ainsi construite est de Cauchy dans un espace métrique complet; elle converge donc vers un élément x de X.

Par la première étape, on a $(x_n)_{n\in\mathbb{N}}\subseteq \bar{B}(x_0,r_0)$ qui est un sous-ensemble de U. Ceci montre que x est élément de U (puisqu'une boule fermée est fermée).

Pour tous naturels n et p, on a par construction $x_{n+p} \in \bar{B}(x_n, r_n)$ et en faisant tendre p vers l'infini, étant donné que $\bar{B}(x_n, r_n)$ est fermée, on en déduit que x est un élément de $\bar{B}(x_n, r_n)$ qui est contenue dans O_n , ce qui prouve que x est bien dans l'intersection des O_n .

Un autre résultat repris comme faisant partie du théorème de Baire concerne la topologie induite.

Théorème 4.11. Soient (X, \mathcal{T}) un espace de Baire et O un ouvert de X. O muni de la topologie induite est également un espace de Baire.

Remarque 4.12 (Rappels). Soit (X, \mathcal{T}) un espace topologique. Rappelons que si B est un sous-ensemble de X, la topologie induite sur B est la topologie \mathcal{T}_B suivante :

$$\mathcal{T}_B = \{ U \cap B \mid U \in \mathcal{T} \}$$

De plus, si on note \mathcal{F} l'ensemble des fermés de X, on a la caractérisation suivante des fermés de la topologie induite :

$$\mathcal{F}_B = \{ F \cap B \mid F \in \mathcal{F} \}$$

En particulier, l'intérieur d'un sous-ensemble A de B au sens de B correspond à l'intersection de son intérieur au sens de X et de B (car on regarde au plus grand ouvert contenu dans A). De même, la fermeture de A au sens de B correspond l'intersection de B et de la fermeture de A au sens de X (car cette fois on on regarde au plus petit fermé contenant A).

Nous rappelons un résultat vu l'année passée qui servira dans la preuve d'un lemme intermédiaire.

Lemme 4.13. Soient (X, \mathcal{T}) un espace topologique, U et V deux ouverts de X. Si U est V sont disjoints, alors l'adhérence de U est disjointe de V.

Démonstration. Supposons qu'il existe x un élement de $adh(U) \cap O$. Alors pour tout voisinage V de x, V intersecte U puisque x est dans l'adhérence de U. Or O est un voisinage de x donc son intersection avec U doit être non vide. Cela constituant une contradiction, que $adh(U) \cap O$ est vide.

Pour prouver le théorème 4.11, on introduit tout d'abord un lemme utile à sa preuve.

Lemme 4.14. Soient (X, \mathcal{T}) un espace de Baire et O un ouvert de X. Un sous-ensemble A nulle part dense de O (au sens de la topologie induite) est nulle part dense dans X (au sens de \mathcal{T}).

Démonstration. Montrer que A est nulle part dense revient à montrer que tout ouvert compris dans l'adhérence de A (au sens de X) est vide. Soit U un ouvert de X tel que U est contenu dans l'adhérence de A. Alors $U \cap O$ est contenu dans $\mathrm{adh}_O(A) = \mathrm{adh}_X(A) \cap O$, d'intérieur vide, ce qui implique que U et O sont disjoints.

Par le lemme 4.13, $U \cap \text{adh}_X(O)$ est également vide, or on a la chaîne d'inclusions suivante : $U \subseteq \text{adh}_X(A) \subseteq \text{adh}_X(O)$; ce qui implique que U est vide.

Nous pouvons donc prouver assez facilement le théorème 4.11 en utilisant le lemme 4.14

Preuve du théorème 4.11. Soit S un sous-ensemble de première catégorie de O. Montrons que $\mathrm{adh}_O(O \setminus S) = O$. Par le lemme 4.14, U est de première catégorie au sens de \mathcal{T} . Donc l'ensemble $X \setminus S$ est dense dans X. On a :

$$\operatorname{adh}_O(O\backslash S) = \operatorname{adh}_X(O\backslash S) \cap O = \operatorname{adh}_X((X\backslash S)\cap O) \cap O \supseteq \operatorname{adh}_X((X\backslash S)) \cap \operatorname{adh}_X(O) \cap O = O$$

L'inclusion réciproque étant toujours vraie, on a l'égalité.

4.5 Corollaires et applications

Cette section présente plusieurs résultats et corollaires découlant de la propriété de Baire.

Proposition 4.15. Soient (X, \mathcal{T}) un espace de Baire et $(F_n)_{n \in \mathbb{N}}$ une famille de fermés d'intérieur vide. L'union des F_n n'est pas X.

Démonstration. L'union étant d'intérieur vide, elle ne peut être X.

Proposition 4.16. Soient (X, \mathcal{T}) un espace de Baire et $(F_n)_{n \in \mathbb{N}}$ une famille de fermés de X. Si l'union des F_n est X, alors il existe n_0 tel que F_{n_0} est d'intérieur non vide.

Démonstration. S'ils étaient tous d'intérieur vide, alors leur union le serait également, et elle ne pourrait pas être X.

On peut raffiner ce résultat :

Proposition 4.17. Soient (X, \mathcal{T}) un espace de Baire et $(F_n)_{n \in \mathbb{N}}$ une famille de fermés de X. Si l'union des F_n est X, alors l'union des intérieurs des F_n est dense dans X

Démonstration. On pose $U = \bigcup_{n \in \mathbb{N}} \operatorname{int} F_n$, qui est ouvert. On pose également, pour tout naturel $n, F'_n = F_n \cap (X \setminus U)$, qui est fermé.

Pour tout naturel n, F'_n est d'intérieur vide ; x est dans l'intérieur de F'_n si et seulement si il est à la fois dans l'intérieur de F_n et de $X \setminus U$, c'est-à-dire il existe un ouvert O_1 (resp. O_2) contenant x inclus dans F_n (resp. $X \setminus U$), ce qui implique que x est dans $O_1 \cap O_2$ qui est inclus dans l'intersection de l'intérieur de F_n et de $E \setminus U$ qui est vide.

Par la propriété de Baire, l'intérieur de l'union des F'_n est vide, c'est-à-dire l'ensemble

$$\bigcup_{n\in\mathbb{N}} (F_n \cap (X\setminus U)) = (X\setminus U) \cap \bigcup_{n\in\mathbb{N}} F_n$$

est d'intérieur vide. C'est-à-dire $X \setminus U$ est d'intérieur vide par hypothèse sur les F_n . Cela montre que U est dense dans X.

Une autre propriété des espaces de Baire est qu'ils ne sont pas de première catégorie.

Proposition 4.18. Soit (X, \mathcal{T}) un espace de Baire. Alors X n'est pas de première catégorie.

Démonstration. Si X était de première catégorie, son complémentaire (le vide) serait dense dans X par la propriété de Baire, ce qui est une contradiction.

Proposition 4.19. Tout intervalle de \mathbb{R} n'est pas de première catégorie.

Démonstration. Supposons par contradiction qu'il existe un intervalle I de première catégorie. Alors son complémentaire est dense dans \mathbb{R} . Or le complémentaire de intervalle a pour adhérence $\mathbb{R} \setminus \operatorname{int}(I) \neq \mathbb{R}$

On introduit deux définitions pour les résultats à venir.

Définition 4.20. Soit (X, \mathcal{T}) un espace topologique. On appelle G_{δ} un sous-ensemble de X qui est une intersection dénombrable d'ouverts et F_{σ} un sous-ensemble de X qui est une union dénombrable de fermés.

Proposition 4.21. Soient (X, \mathcal{T}) un espace de Baire et A un sous-ensemble de X. A est résiduel si et seulement s'il contient un G_{δ} dense.

Démonstration. Supposons A résiduel, c'est-à-dire le complémentaire de A s'écrit comme $\bigcup_{n\in\mathbb{N}} S_n$ pour des sous-ensembles S_n de X qui sont nulle part denses. Puisque $\bigcup_{n\in\mathbb{N}} S_n$ est contenue dans $\bigcup_{n\in\mathbb{N}} \operatorname{adh}(S_n)$ (qui est d'intérieur vide car les S_n sont nulle part denses et X est un espace de Baire), on a que $X\setminus\bigcup_{n\in\mathbb{N}}\operatorname{adh}(S_n)$ est contenu dans A. Il est facile de vérifier qu'il s'agit d'un G_δ dense.

Réciproquement supposons que A contient un G_{δ} dense, c'est-à-dire qu'il existe une famille dénombrable d'ouverts $(O_n)_{n\in\mathbb{N}}$ telle que $\bigcap_{n\in\mathbb{N}}O_n$ est contenue dans A et est dense. Chaque O_n est dense dans X car il contient un sous-ensemble dense dans X. Le complémentaire de A est donc contenu dans le complémentaire du G_{δ} ; il s'agit d'une intersection de fermés d'intérieur vide, donc de première catégorie. Par hérédité (de la propriété « être de première catégorie »), le complémentaire de A est de première catégorie, c'est-à-dire A est résiduel.

Proposition 4.22. Soit $(E, \|.\|)$ un espace de Banach. Toute base algébrique (dite base de Hamel) est soit finie, soit non dénombrable.

Démonstration. Puisque E est complet, il s'agit d'un espace de Baire.

Si la dimension de E est finie, alors on a le résultat. Supposons que la dimension de E est infinie et supposons par l'absurde qu'il existe une base algébrique $(e_n)_{n\in\mathbb{N}}$ dénombrable de E.

On pose pour tout naturel n, $F_n = \langle e_0, \dots, e_n \rangle$ le sous-espace vectoriel engendré par les vecteurs e_0 jusque e_n . Alors il est fermé car tout sous-espace vectoriel de dimension finie est fermé et il est de dimension n+1.

On a $E = \bigcup_{n \in \mathbb{N}} F_n$. Donc par la proposition 4.16, il existe n_0 tel que l'intérieur de F_{n_0} est non vide. Soient $x \in \text{int}(F_{n_0})$, r > 0 tels que $B(x,r) \subseteq F_{n_0}$. Par symétrie, -x est également un élément de F_{n_0} . On en déduit que la boule B(0,r) est contenue dans F_{n_0} . En divisant chaque e_n par une constante appropriée c_n non nulle, on a $c_n e_n$ dans B(0,r) ce qui montre que chaque e_n est dans F_{n_0} , d'où $E \subseteq F_{n_0}$, ce qui contredit que E est de dimension infinie.

Proposition 4.23. L'espace vectoriel normé $(\mathscr{C}[0,1],\|.\|_1)$ n'est pas un espace de Baire

Un corollaire de cette proposition est qu'il ne s'agit pas d'un espace de Banach.

Démonstration. Soit $B_{\infty} = \{ f \in \mathcal{C}[0,1] \mid ||f||_{\infty} \le 1 \}$. Montrons qu'il s'agit d'un fermé au sens de la norme 1.

Soient $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions dans B_{∞} et une fonction $f \in \mathscr{C}[0,1]$ telles que $f_n \xrightarrow{\|\cdot\|_1} f$. Supposons par contradiction que f n'est pas dans B_{∞} , c'est-à-dire $\|f\|_{\infty} > 1$. Il existe $a \in [0,1]$ et $\delta > 0$ tel que $|f(a)| > 1 + \delta$. Par continuité, il existe r > 0 tel que tout x dans l'intervalle $I :=]a - r, a + r[\cap [0,1]$ vérifie $|f(x)| > 1 + \frac{\delta}{2}$. Pour tout naturel n, on a :

$$\int_{0}^{1} |f_{n}(x) - f(x)| dx \ge \int_{I} |f_{n}(x) - f(x)| dx$$

$$\ge \int_{I} (|f_{n}(x)| - |f(x)|) dx$$

$$\ge \int_{I} \left(\left(1 + \frac{\delta}{2} \right) - 1 \right) dx$$

$$\ge \frac{\delta r}{2} > 0$$

Ce qui contredit la convergence de la suite des f_n vers f au sens de la norme 1. Donc $f \in B_{\infty}$, ce qui montre que B_{∞} est fermée au sens de la norme 1.

Supposons par contradiction que $\mathscr{C}[0,1]$ est un espace de Baire. Puisque toute fonction dans $\mathscr{C}[0,1]$ est bornée, on a $\mathscr{C}[0,1] = \bigcup_{n \in \mathbb{N}} nB_{\infty}$. Il existe donc n_0 tel que n_0B_{∞} est d'intérieur non vide. Ceci implique que B_{∞} est d'intérieur non vide. Soient g dans l'intérieur de B_{∞} et r > 0 tel que $B(g,r) \subseteq B_{\infty}$. Puisque B_{∞} est symétrique, on a que $-B(g,r) = B(-g,r) \subseteq B_{\infty}$, et par convexité de la boule B_{∞} , on a

$$B(0,r) \subseteq \frac{1}{2} (B(g,r) + B(-g,r)) \subseteq B_{\infty}$$

Montrons maintenant qu'il existe une constante K telle que toute fonction f continue sur [0,1] vérifie $||f||_{\infty} \leq K||f||_{1}$. Supposons f non nulle, alors $\frac{r \cdot f}{||f||_{1}}$ est élément de B(0,r), donc de B_{∞} , et on a donc $||f||_{\infty} \leq \frac{1}{r}||f||_{1}$.

Toutefois cette dernière affirmation est une contradiction! Il suffit de considérer la fonction $f_n(x) = x^n$ où n est un nombre naturel; on a $||f_n||_{\infty} = 1$ et $||f_n||_1 = \frac{1}{n+1}$. Or l'affirmation qu'on a montré implique que pour tout n naturel, $1 \le \frac{K}{n+1}$.

Théorème 4.24. Les limites ponctuelles de fonctions définies sur un espace de Baire à image dans \mathbb{R} sont continues sur un G_{δ} dense.

 $D\acute{e}monstration$. Plus tard.

Annexe A

Solutions des exercices

Tous les exercices ne seront pas corrigés.

A.1 Hahn-Banach (Formes analytiques)

Solution de l'exercice 3.1

- 1. Supposons que $x_0 \in \text{adh}(F)$. Etant donné que le noyau de toute forme linéaire continue est fermé (le noyau est l'image réciproque du singleton 0 qui est fermé, donc est fermé par continuité), et que le passage à l'adhérence conserve les inclusions, il est aisé de conclure.
 - Réciproquement, supposons que $x_0 \notin \text{adh}(F)$. Par le corollaire 3.8 des formes analytiques de Hahn-Banach, il existe une forme s'annulant sur F et pas en x_0 , ce que l'on voulait montrer.
- 2. Supposons F dense dans E. Soit $x^* \in E^*$ tel que $F \subseteq \operatorname{Ker}(x^*)$. Etant donné que ce noyau est fermé, il contient la fermeture de F qui est E. Ceci implique que x^* est l'application constante nulle.
 - Réciproquement, supposons F non dense dans E. Il suffit de considérer un élément du complémentaire de l'adhérence de F et d'appliquer le résultat 3.8 pour obtenir une forme linéaire dont le noyau contient F mais non identiquement nulle.

A.2 Hahn-Banach (Formes géométriques)

Solution de l'exercice 3.4

On vérifie facilement que si $x \in \alpha C$, alors pour tout $\beta > \alpha$, $x \in \beta C$; avoir que $\alpha^{-1}x \in C$ implique que le segment joignant 0 et ce point est contenu dans C, et $\beta^{-1}x$ est dans le segment car $\beta^{-1} < \alpha^{-1}$.

Par définition de la jauge, $j_C(x) = \inf\{\alpha > 0 \mid x \in \alpha C\}$. Soit $\varepsilon > 0$, alors il existe $\alpha > 0$ tel que $j_C(x) \le \alpha \le j_C(x) + \varepsilon$ et $x \in \alpha C$. Par ce qui précède, on peut conclure.

Bibliographie

- [1] "Théorèmes de Hahn-Banach." http://math.univ-lille1.fr/~fricain/EXOS-M1-ANALYSE-FONCTIONNELLE/feuille5.pdf. Accessed: 2018-12-23.
- [2] B. Maurey, "Analyse fonctionnelle et théorie spectrale." https://webusers.imj-prg.fr/~bernard.maurey/ts012/poly/mths.pdf. Accessed: 2018-12-23.