KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

LİSANS TEZİ

Seri kompanze edilmiş iletim hatlarında empedans

HASAN ŞEN AHMET FARUK

KOCAELİ 2019

KOCAELİ ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ

BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

BİTİRME PROJESİ

Seri kompanze edilmiş iletim hatlarında empedans

HASAN ŞEN AHMET FARUK

Prof.Dr. Tulin Güneş Danışman, Kocaeli Üniv.	
Doç.Dr. Sevinç Ali OMURCA Jüri Üyesi, Kocaeli Üniv.	
Dr. Öğr. Üyesi Orhan Koç Jüri Üyesi, Kocaeli Üniv.	

Tezin Savunulduğu Tarih: 01.06.2020

ÖNSÖZ VE TEŞEKKÜR

DU 1	tez
çalışması,amacıyla gerçekleştirilmiştir.	
Tez çalışmamda desteğini esirgemeyen, çalışmalarıma yör yüreklendiren danışmanım sonsuz teşel	
Tez çalışmamın tüm aşamalarında bilgi ve destek hocam teşekkür ediyorum.	leriyle katkıda bulunan
Tez çalışmamda gösterdiği anlayış ve destek için teşekkürlerimi sunarım.	sayın
Hayatım boyunca bana güç veren en büyük destekçilerim, ve mutluluklarımı paylaşan sevgili aileme teşekkürlerimi su	•
Mayıs – 2018	Ali EKEN

Bu dokümandaki tüm bilgiler, etik ve akademik kurallar çerçevesinde elde edilip sunulmuştur. Ayrıca yine bu kurallar çerçevesinde kendime ait olmayan ve kendimin üretmediği ve başka kaynaklardan elde edilen bilgiler ve materyaller (text, resim, şekil, tablo vb.) gerekli şekilde referans edilmiş ve dokümanda belirtilmiştir.

Öğrenci No: 190201099 Adı Soyadı: HASAN ŞEN

İmza:....

Öğrenci No: 190201098

Adı Soyadı: AHMET FARUK

İmza:....

İÇİNDEKİLER	
ÖNSÖZ VE TEŞEKKÜR	i
İÇİNDEKİLER	ii
ŞEKİLLER DİZİNİ	iii
TABLOLAR DİZİNİ	iv
SİMGELER VE KISALTMALAR DİZİNİ	v
ÖZET	vii
ABSTRACT	viii
GİRİŞ	
1. SAYISAL KORUMADA TEMEL KAVRAMLAR	3
1.1. Ayrık İşaretlerin Fazörel Gösterimi	3
1.2. Arıza Tipinin Belirlenmesi	6
2. İLETİM HATLARINDA EMPEDANSA DAYALI ARIZA YERİ BULMA	
ALGORİTMALARI	12
2.1. Tek Bara Ölçümlerini Kullanan Arıza Yeri Bulma Algoritmaları	13
2.1.1. Basit reaktans algoritması	13
2.1.2. Takagi algoritması	13
2.1.3. Geliştirilmiş Takagi algoritması	14
2.2. İki Bara Ölçümlerini Kullanan Arıza Yeri Bulma Algoritmaları	14
2.1.1. Basit arıza gerilimi eşitliği algoritması	14
2.1.2. Asimetrik arıza yeri bulma algoritması	15
2.1.3. Negatif bileşenler ile arıza yeri bulma algoritması	16
2.1.4. Simetrik arıza yeri bulma algoritması	17
3. EMPEDANSA DAYALI ARIZA YERİ BULMA ALGORİTMALARININ	
FARKLI TEST SİSTEMLERİNDE UYGULANMASI	20
3.1. Homojen Test Sistemi	20
3.2. Homojen Olmayan Test Sistemi	24
3.3. Homojen Olmayan Test Sistemi (Orta Uzun Hat Modeli - Pi Eşdeğer	
Devresi)	
4. SERİ KAPASİTÖRLÜ İLETİM HATLARINDA ARIZA YERİ TESPİTİ	33
5. SERİ KAPASİTÖRLÜ İLETİM HATLARI İÇİN PERFORMANSA	
DAYALI ARIZA YERİ BULMA ALGORİTMASI	37
5.1. Algoritmanın Temel Arıza Yeri Bulma Algoritmaları İle	
Karşılaştırması	41
5.2. Seri Kapasitörlü İletim Hatlarını Baz Alan Arıza Yeri Bulma	
Algoritmalarının Karşılaştırılması	45
6. SONUÇLAR VE ÖNERİLER	48
KAYNAKLAR	53
EKLER	
KİŞİSEL YAYIN VE ESERLER	
ÖZGEÇMİŞ	69

ŞEKİLLER DİZİNİ

Şekil 1.1.	Yinelenen Fourier ifadesi	5
Şekil 1.2.	Simetrili bileşenlerin gösterimi a) pozitif bileşenler b) negatif	
	bileşenler c) sıfır bileşenler	7
Şekil 1.3.	Şebekenin a) pozitif bileşen devresi b) negatif bileşen devresi c) sıfır	
	bileşen devresi	8
Şekil 1.4.	Arıza öncesi, arıza anı ve arıza sonrası durum	9
Şekil 2.1.	İletim hattında arıza eşdeğer devresi	12
Şekil 3.1.	Homojen test sistemi	20
Şekil 3.2.	Homojen olmayan test sistemi	24
Şekil 3.3.	Homojen olmayan test sistemi(pi modeli)	28
Şekil 5.1.	Seri kapasitörlü iletim hattı	37
Şekil 5.2.	Arıza yerinin S barası ve seri kapasitör arasında olma durumu	38
Şekil 5.3.	Performansa dayalı alınan algoritmanın akış diyagramı	41
Şekil 5.4.	Seri kapasitörlü test sistemi	42
Şekil 5.5.	MOV ve seri kapasitörde ki akım değişimi	

TABLOLAR DİZİNİ

Tablo 1.1.	Arıza tiplerine göre pozitif bileşen empedans eşitlikleri	10
Tablo 3.1.	Homojen test sisteminde farklı uzaklıklardaki çeşitli arıza tipleri	
	için yüzde hata oranları	21
Tablo 3.2.	Homojen test sisteminde farklı arıza dirençlerindeki çeşitli arıza	
	tipleri için yüzde hata oranları	23
Tablo 3.3.	Homojen olmayan test sisteminde farklı uzaklıklardaki çeşitli arıza	
	tipleri için yüzde hata oranları	25
Tablo 3.4.	Homojen olmayan test sisteminde farklı arıza dirençlerindeki çeşitli	
	arıza tipleri için yüzde hata oranları	26
Tablo 3.5.	Homojen olmayan test sisteminde (orta uzun hat modeli - pi	
	eşdeğer devresi) farklı uzaklıklardaki farklı arıza tipleri için yüzde	
	hata oranları	29
Tablo 3.6.	Homojen olmayan pi eşdeğer devreli test sisteminde farklı arıza	
	dirençlerindeki çeşitli arıza tipleri için yüzde hata oranları	30
Tablo 4.1.	Seri kompanzasyonun etkileri ve sonuçları	33
	Seri kompanze edilmiş iletim sistemleri için kullanılan bazı	
	algoritmalar ve özellikleri	34
Tablo 5.1.	Test sistemi parametreleri	
Tablo 5.2.	Test sisteminin simülasyon parametreleri	42
	Test sisteminin farklı uzaklıklardaki çeşitli arıza tipleri için yüzde	
	hata oranları	44
Tablo 5.4.	Test sisteminin farklı arıza dirençlerindeki faz-faz-toprak arıza tipi	
	için yüzde hata oranları	45
Tablo 5.5.	Seri kapasitörü dikkate alan algoritmaların karşılaştırılması	
	Seri kapasitörü dikkate alan algoritmaların genel özellikleri	

SİMGELER VE KISALTMALAR DİZİNİ

 $\alpha_{1,2,3}$: Eğim için alınan açı, (°)

φ : Açı, (°) θ : Açı, (rad)

d : Arıza noktasının referans baraya uzaklığı, (%)

d_{capS}
 Seri kapasitörün S barasına uzaklığı, (%)
 d_{capR}
 Seri kapasitörün R barasına uzaklığı, (%)
 d_S
 Arıza noktasının S barasına uzaklığı, (%)
 d_R
 Arıza noktasının R barasına uzaklığı, (%)

f₀ : İşaretin frekansı, (Hz)
f_S : Örnekleme frekansı, (Hz)
I⁰ : Sıfır bileşen akımı, (A)
I¹ : Pozitif bileşen akımı, (A)
I² : Negatif bilesen akımı, (A)

I_a : a fazı akımı, (A)

I_{ab} : a fazı ve b fazı akımları farkı, (A)

I_b : b fazı akımı, (A)

 I_{bc} : b fazı ve c fazı akımları farkı, (A)

I_c : c fazı akımı, (A)

 I_{ca} : c fazı ve a fazı akımları farkı, (A)

 I_{cap} : Seri kapasitör üzerinden geçen akım, (A)

I_F : Arıza noktasından geçen akım, (A)

I_{FR} : Arıza noktasından geçen akımın R barasından gelen kısmı, (A)
 I_{FS} : Arıza noktasından geçen akımın S barasından gelen kısmı, (A)

I_{once} : Arıza oncesi akım, (A)

 $\begin{array}{lll} I_R & : & R \ barasından çıkan akımı, (A) \\ I_{ref} & : & Alınan referans akım, (A) \\ I_S & : & S \ barasından çıkan akımı, (A) \\ I_{süp} & : & Süperpozisyon akımı, (A) \end{array}$

I_{süp}* : Süperpozisyon akımının eşleniği, (A)

 R_F : Arıza noktası empedansı, (Ω)

X_L : Hat empedansının imajiner bileşeni, (Ω)
 xd'' : Senkron makinenin subtransientreaktansı, (pu)

V⁰ : Sıfır bileşen gerilimi, (V) V¹ : Pozitif bileşen gerilimi, (V) V² : Negatif bileşen gerilimi, (V)

V_a : a fazı gerilimi, (V)

V_{ab} : a fazı ve b fazı gerilimleri farkı, (V)

V_b : b fazı gerilimi, (V)

V_{bc} : b fazı ve c fazı gerilimleri farkı, (V)

V_c : c fazı gerilimi, (V)

V_{ca} : c fazı ve a fazı gerilimleri farkı, (V)

V_{cap} : Kapasitör öncesindeki bağlantı noktasının gerilimi, (V)

V_R : R barası (uzak bara) gerilimi, (V)

V_{ref} : Alınan referans gerilimi, (V)

V_S : S barası (yakın/referans bara) gerilimi, (V)

V_F : Arıza noktası gerilimi, (V)

 Z_{Cap-F} : Seri kapasitör ile arıza noktası arasındaki empedans, (Ω)

 Z_L : Hat empedans, (Ω)

 Z_R : R barasından görülen thevenin empedansı, (Ω) : S barasından görülen thevenin empedansı, (Ω)

Kısaltmalar

AC : AlternativeCurrent (Alternatif Akım)

ANN : ArtificialNeural Networks (Yapay Sinir Ağları)

DDA : DeterministicDifferentialApproach (Deterministik Diferansiyel

Yaklaşım)

FACTS: FlexibleAlternativeCurrentTransmissionSystem (Esnek Alternatif

Akım İletim Sistemi)

IEEE : TheInstitute of ElectricalandElectronicsEngineers (Elektrik ve

Elektronik Mühendisleri Enstitüsü)

Im : İmajiner min : Minimum

MOV : Metal OxideVaristor (Metal Oksit Varistör)PMU : PhasorMeasurementUnit (Fazör Ölçüm Ünitesi)

R : Receiving (Alan)

Re : Reel

S : Sending (Gönderen)

SC : Series Capacitor (Seri Kapasitör)

İLETİM HATLARINDA EMPEDANS TABANLI ARIZA YERİ TESPİTİ İÇİN YENİ BİR YAKLAŞIM

ÖZET

Normal durumda yalıtkan olan bu maddeler ısı, ışık, manyetik etki veya elektriksel gerilim gibi dış etkiler uygulandığında bir miktar değerlik elektronlarını serbest hale geçirerek iletken duruma gelirler. Uygulanan bu dış etki veya etkiler ortadan kaldırıldığında ise yalıtkan duruma geri dönerler. Bu özellik elektronik alanında yoğun olarak kullanılmalarını sağlamıştır.

Anahtar kelimeler: Sesli haberleşme, fiber, Yarı iletken, besin, mikro elektromekanik, veri, haber Hatları, mühendislik, ısı, ışık, manyetik etki.

Yarı iletken üzerine yapılan mekanik işin etkisiyle iletken özelliği kazanabilen, normal şartlar altında yalıtkan olan maddelerdir.

Normal durumda yalıtkan olan bu maddeler ısı, ışık, manyetik etki veya elektriksel gerilim gibi dış etkiler uygulandığında bir miktar değerlik elektronlarını serbest hale geçirerek iletken duruma gelirler. Uygulanan bu dış etki veya etkiler ortadan kaldırıldığında ise yalıtkan duruma geri dönerler. Bu özellik elektronik alanında yoğun olarak kullanılmalarını sağlamıstır.