2

WHAT IS CLAIMED IS:

1	1.	A method of treating and breaking down tight emulsions, comprising:	
2	injecting the emulsion with an oxidizing/reducing agent;		
3	changing the temperature of the emulsion;		
4	allowing interfacial separation of the emulsion;		
5	outputting a saleable product phase, a solid phase and an aqueous phase.		
1	2.	The method of claim 1, further including testing the emulsion prior to the	
2	injection to determine the quantity of the oxidizing/reducing agent, treatment time and		
3	treatment temperature.		
1	3.	The method of claim 2, wherein allowing interfacial separation includes	
2	maintaining the changed temperature of the emulsion for the determined treatment time.		
1	4.	The method of claim 1, wherein the injection and the temperature change cause	
2	a reduction	on in interfacial tension and chain scission.	
1	5.	The method of claim 1, further including injecting a solubilizer into the	
2	emulsion after breakage to enhance the saleable product phase and solid phase.		
1	6.	The method of claim 1, wherein the tight emulsion is slops produced during an	
2	industrial process, the extraction of petroleum/petrochemicals and by-products of the		
3	production	on process treatment.	
1	7.	The method of claim 6, wherein the saleable product phase is oil with enhanced	
2	API gravity and significant reduction in base sediments and water, the solid phase is sand		
3	and/or base sediments, and the aqueous phase is water with significant reductions in		
4	dissolved solids.		
1	8.	The method of claim 1, wherein the oxidizing/reducing agent includes	

hydrophobic chemicals, hydrophilic chemicals or a combination thereof.

1	9. The method of claim 7, further including recycling the solid phase into the		
2	environment.		
1	10. The method of claim 7, wherein the oxidizing/reducing agent is absorbed into		
2	the emulsion and strips the oil molecules off the sand and water, and further wherein the		
3	oxidizing/reducing agent becomes part of the aqueous phase.		
1	11. The method of claim 1, wherein the aqueous phase has a significant reduction in		
2	biological oxygen demand and chemical oxygen demand levels.		
1	12. The method of claim 1, wherein the aqueous phase is further treated using an		
2	oxidizing/reducing agent and a temperature change to convert soluble material to an		
3	insoluble state and precipitate dissolved solids, and then the dissolved solids are extracted,		
4	thereby leaving a residue and a clean effluent.		
1	13. The method of claim 12, wherein the clean effluent is water that complies with		
2	international environmental effluent discharge substance parameters.		
1	14. The method of claim 12, wherein the residue is recycled into the environment		
2	thereby closing the environmental loop.		
1	15. A method of treating an effluent, comprising:		
2	injecting the effluent with an oxidizing/reducing agent;		
3	changing the temperature of the effluent;		
4	converting soluble material to an insoluble state and precipitating the dissolved solids;		
5	removing the dissolved solids from the effluent, thereby leaving a residue and a clean		
6	effluent.		
1	16. The method of claim 15, further including testing the effluent prior to the		
2	injection to determine the quantity of the oxidizing/reducing agent, treatment time and		
3	treatment temperature.		

PCT/IB03/00605 WΩ 03/070350

14

l	17. The method of claim 15, wherein the injection and the temperature change
2	cause a chemical reaction and/or chain scission which promotes removal of the dissolved
3	solids.
	the state of the s

The method of claim 15, wherein the clean effluent is water that complies with 18. 1 international environmental effluent discharge substance parameters. 2

1

2

1

- The method of claim 15, wherein the residue is recycled into the environment 19. thereby closing the environmental loop.
- The method of claim 19, further including using the residue in the construction 20. 2 industry.