Royaume du Maroc Ministère de l'Éducation nationale, du Préscolaire et des Sports année scolaire 2021-2022 Professeur : Zakaria Haouzan

Établissement : Lycée SKHOR qualifiant

Devoir Surveillé N°3 Filière 1Bac Sciences Mathématiques Durée 2h00

Chimie 7pts/42min ____

Partie 1 :Titrage conductimétrique(7pts)

Pour déterminer la concentration C_1 de la solution (S1) de sulfate de fer II $(Fe^{2+}_{(aq)} + SO_4^{2-}_{(aq)})$, on dose un volume $V_1 = 25mL$ de la solution(S1) par une solution (S2) de permanganate de potassium $(K^+ + MnO_4^-)$ de concentration $C_2 = 0, 1mol/L$.

Le suivi du titrage par conductimétrie permet de tracer le graphe $\sigma = f(V_B)$ ci-dessous :

Données : - Couples oxydant / réducteur mis en jeu : Fe^{3+}/Fe^{2+} et MnO_4^-/Mn^{2+} .

Fe^{-1}/Fe^{-1} et MnO_4/Mn^{-1} .
1. Faire un schéma légendé du dispositif de titrage
2. Etablir l'équation de la réaction de dosage(1pt)
3. Etablir un tableau d'avancement
4. Déterminer la relation d'équivalence(1pt)
5. Déterminer la concentration C1 de la solution (S1)(1.5pt)
6. On se place maintenant après l'équivalence.
(a) Quel est le réactif limitant?
7. On se place avant l'équivalence.
(a) Quel est le réactif limitant?

Partie 1 :Champ magnétique créé par un courant électrique (13pts)

On considère une bobine de rayon R = 3cm et de longueur L = 60cm composée de N = 900 spires et parcourue par un courant électrique d'intensité I = 300mA comme l'indique la figure (2).

- 1. Donner la définition d'un solénoïde.....(1pt)
- 3. Préciser la nature de chacune des faces du solénoïde et Préciser les pôles de l'aiguille aimantée.(1pt)
- 4. Déterminer le sens et la direction du champ magnétique \vec{B} créé par le solénoïde à l'intérieur. . (1pt)
- 5. Représenter le spectre du champ magnétique créé par le solénoïde......(1pt)
- 6. Sachant que le diamètre du fil enroulé d=3mm, quelle est le nombre de couches enroulées sur le cylindre formant le solénoïde......(1pt)

- 7. On considère deux barreaux aimantés A_1 et A_2 posés sur le même alignement avec un point M comme l'indique la figure (1). Sachant que les intensités des champs magnétiques créés par A1 et A2 au point M sont : $B_1 = 20mT$ et $B_2 = 30mT$.
 - (a) Représenter les vecteurs champ magnétique en utilisant l'échelle suivante 1cm > 10mT. Puis représenter le vecteur champ magnétique globale au point M.....(2pt)
 - (b) Déterminer graphiquement puis par calcul l'intensité du champ magnétique global au point M, puis déterminer l'angle que forme \vec{B} avec le plan horizontal. (On néglige le champ magnétique terrestre.).....(2pt)

- 8. On considère un long conducteur rectiligne par couru par un courant électrique d'intensité I=12A comme l'indique la figure (3):
 - (a) Donner l'expression du champ magnétique créé par le conducteur au point M.....(1pt)
 - (b) Représenter Le vecteur champ magnétique créé par le conducteur au point M.....(1pt)
 - (c) Calculer l'intensité du champ magnétique créé par le conducteur au point M on donne d=2m (1pt)