Lista 2 - Cálculo Infinitesimal II

Semestre 2016/2 - Prof. Ricardo M. S. Rosa

22 de novembro de 2016

Obs: Sejam claros nas suas repostas e façam as devidas justificativas. Boa sorte!

1º Questão: Encontre as derivadas parciais da função

$$f(x,y) = \frac{x+y}{1+x^2y^2}$$

e argumente que f é diferenciável em todo $(x,y) \in \mathbb{R}^2$.

2ª Questão: Considere a função

$$f(x,y) = \begin{cases} \frac{x^4y}{x^4 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{cases}$$

que é uma extensão da função $\varphi(y/x^2)x$, para $\varphi(s) = s/(1+s^2)$. Mostre que f é contínua em todos os pontos $(x,y) \in \mathbb{R}^2$, tem todas as derivadas direcionais nulas no ponto (x,y) = (0,0), mas a função não é diferenciável em (x,y) = (0,0).

3ª Questão: Considere a função

$$f(x,y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0), \end{cases}$$

que é uma extensão da função $\varphi(y/x)x^2$, para $\varphi(s)=s(1-s^2)/(1+s^2)$. Mostre que f é contínua em todos os pontos $(x,y)\in\mathbb{R}^2$, verifique a continuidade das derivadas parciais de primeira ordem de f e mostre que as derivadas parciais de segunda ordem estão bem definidas, mas que $f_{xy}(0,0)\neq f_{yx}(0,0)$.

4º. Questão: Seja f = f(x,y) uma função duas vezes continuamente diferenciável no plano. Mostre que $g(r,\theta) = f(r\cos\theta,r\sin\theta)$ é, também, uma função duas vezes continuamente diferenciável e encontre as derivadas parciais $g_r, g_\theta, g_{rr}, g_{\theta\theta}$ e $g_{r\theta}$ em função de r, θ e das derivadas parciais de f. Mostre, ainda, que

$$f_{xx} + f_{yy} = g_{rr} + \frac{1}{r^2}g_{\theta\theta} + \frac{1}{r}g_r.$$

Esta é a representação do operador Laplaciano em coordenadas polares.

5º Questão: Considere uma função f = f(x, y) cujo vetor gradiente em um determinado ponto (x_0, y_0) é $\nabla f(x_0, y_0) = (2, 1)$. Qual o valor da derivada direcional na direção do vetor gradiente? E em quais direções a derivada direcional tem valor igual a 1?

6ª Questão: Considere uma função f = f(x,y) homogênea de grau p > 0, i.e. $f(tx,ty) = t^n f(x,y)$, para todo t > 0 e todo (x,y) em que a função está definida,

sendo que, se ela está definida em um determinado ponto (x, y), então ela está necessariamente definida também na semireta (tx, ty), t > 0. Mostre que

$$nf(x,y) = x \frac{\partial f(x,y)}{\partial x} + y \frac{f(x,y)}{\partial y},$$

para todo (x, y) no domínio de definição de f.

7º. Questão: Determine uma equação do plano tangente à superfície $z = 2x^2 - y^2$ no ponto (2,3,1).

8º Questão: Seja $f: \mathbb{R}^2 \to \mathbb{R}$ uma função continuamente diferenciável infinitas vezes. Fixe $(x,y) \neq (0,0)$ e defina $g: \mathbb{R} \to \mathbb{R}$ por

$$g(t) = f(tx, ty), \quad \forall t \in \mathbb{R}.$$

Mostre, por indução, que

$$\frac{\mathrm{d}^n g}{\mathrm{d}t^n}(t) = \sum_{j=0}^n \frac{n!}{j!(n-j)!} \frac{\partial^n f(tx, ty)}{\partial_x^{n-j} \partial_y^j} x^{n-j} y^j.$$

9º Questão: Considere a família de regiões da forma

$$Q_{abc} = [0, a] \times [0, b] \times [0, c] = \{(x, y, z); \ 0 \le x \le a, \ 0 \le y \le b, \ 0 \le z \le c\},\$$

onde a,b,c>0. Dado V>0, ache a,b,c tais que o volume de Q_{abc} é igual a V e a área da superfície de Q_{abc} é a menor possível.

10º Questão: Considere a superfície S dada pela equação xyz = 1, com x, y, z > 0, Mostre que o volume da região delimitada pelos planos xy, xz e yz e pelo plano tangente à superfície S em um ponto arbitrário de S independe da escolha do ponto.

11º Questão: Em um certo fenômeno, queremos determinar uma relação entre duas quantidades escalares x e y. Por algum motivo teórico, acreditamos que o fenômeno deva ser regido, ou bem aproximado, por uma lei da forma y = af(x) + bg(x), para duas funções continuamente diferenciáveis f e g determinadas a priori e para parâmetros reais a e b a serem determinados. Podemos usar o método de mínimos quadrados para encontrar a e b. Através de um experimento, obtemos, para uma sequência de pontos $x_i \in \mathbb{R}$, $i = 1, \ldots, n$, $n \in \mathbb{N}$, valores correspondentes y_i , $i = 1, \ldots, n$. Mostre que o ponto de mínimo $(a, b) \in \mathbb{R}^2$ do erro quadrático $E(a, b) = \sum_{i=1}^n (af(x_i) + bg(x_i) - y_i)^2$ deve ser solução de uma equação linear em a e b. Obtenha, ainda, condições em f e g para que esse ponto de mínimo a, b exista independente da combinação de valores $\{(x_i, y_i)\}_{i=1, \ldots, n}$, $n \in \mathbb{N}$.

12º Questão: Considere a função $\Phi(x, y, z) = xy + xz + yz$.

- (1) Mostre que o único ponto crítico de Φ é (0,0,0).
- (2) Mostre que (0,0,0) não é ponto de máximo nem de mínimo.
- (3) Dado um ponto qualquer (x_0, y_0, z_0) fora da origem e pertencente ao conjunto de nível zero de Φ , use o Teorema da Função Implícita para deduzir que esse conjunto é, localmente, uma superfície e mostre que $(y_0 + z_0)x + (x_0 + y_0)y + (x_0 + y_0)z = 0$ é uma equação para o plano tangente à essa superfície nesse ponto.

13º Questão: Seja $\mathbf{P}_0 = (x_0, y_0, z_0)$ um ponto na interseção das superfícies z=f(x,y) e z=g(x,y), onde f=f(x,y) e g=g(x,y) são duas funções continuamente diferenciáveis definidas em um domínio comum. Usando o Teorema da Função Implícita, ache uma condição que garanta que essa interseção é, localmente, uma curva suave e mostre que o vetor $\mathbf{v} = (g_y - f_y, g_x - f_x, f_x g_y - f_y g_x)$ é tangente a essa curva no ponto \mathbf{P}_0 (onde, na definição de \mathbf{v} , as derivadas parciais estão calculadas no ponto (x_0, y_0)).

14º Questão: No que se segue, $\mathbf{0} = (0,0,0)$ é o vetor nulo em \mathbb{R}^3 . Uma matriz $Q \in \mathbb{R}^{3\times 3}$ é chamada de ortogonal quando é invertível, com inversa $Q^{-1} = Q^{tr}$. Uma função escalar $V: \mathbb{R}^3 \setminus \{\mathbf{0}\} \to \mathbb{R}$ é dita invariante por rotações quando $V(\mathbf{Q}\mathbf{x}) = V(\mathbf{x})$, para todo $\mathbf{x} \in \mathbb{R}^3 \setminus \{\mathbf{0}\}$ e todo $\mathbf{Q} \in \mathbb{R}^{3\times 3}$ ortogonal. Uma função escalar $V: \mathbb{R}^3 \setminus \{\mathbf{0}\} \to \mathbb{R}$ é dita radial quando é da forma $V(\mathbf{x}) = \varphi(\|\mathbf{x}\|)$, $\forall \mathbf{x} \in \mathbb{R}^3 \setminus \{\mathbf{0}\}$, para alguma função escalar $\varphi : \mathbb{R} \setminus \{0\} \to \mathbb{R}$. Um campo de vetores $\mathbf{F} : \mathbb{R}^3 \setminus \{\mathbf{0}\} \to \mathbb{R}^3$ é dito invariante por rotações quando $\mathbf{F}(Q\mathbf{x}) = Q\mathbf{F}(\mathbf{x})$, para todo $\mathbf{x} \in \mathbb{R}^3 \setminus \{\mathbf{0}\}$ e todo $Q \in \mathbb{R}^{3 \times 3}$ ortogonal. Um campo de vetores $F : \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}^3$ é dito radial quando $\mathbf{F}(\mathbf{x}) = \psi(\|\mathbf{x}\|)\mathbf{x}, \ \forall \mathbf{x} \in \mathbb{R}^3 \setminus \{\mathbf{0}\}, \text{ para alguma função } \psi : \mathbb{R} \setminus \{0\} \to \mathbb{R}.$ Prove as seguintes afirmativas:

- (1) $V: \mathbb{R}^3 \setminus \{\mathbf{0}\} \to \mathbb{R}$ é invariante por rotações se, e somente se, é radial. (2) Se $\mathbf{F}: \mathbb{R}^3 \setminus \{\mathbf{0}\} \to \mathbb{R}^3$ é radial, então é \mathbf{F} é invariante por rotações, mas a recíproca pode não ser verdadeira.
- (3) Se $V: \mathbb{R}^3 \setminus \{\mathbf{0}\} \to \mathbb{R}$ é uma função escalar continuamente diferenciável e invariante por rotações, então $\mathbf{F}(\mathbf{x}) = -\nabla V(\mathbf{x}), \ \forall \mathbf{x} \in \mathbb{R}^3 \setminus \{\mathbf{0}\}, \ \text{\'e} \ \text{um campo}$ de vetores invariante por rotações.
- (4) Se $\mathbf{F}: \mathbb{R}^3 \setminus \{\mathbf{0}\} \to \mathbb{R}^3$ é um campo de vetores contínuo e radial, então existe $V: \mathbb{R}^3 \setminus \{\mathbf{0}\} \to \mathbb{R}$ continuamente diferenciável tal que $\mathbf{F}(\mathbf{x}) = -\nabla V(\mathbf{x})$, para todo $\mathbf{x} \in \mathbb{R}^3 \setminus \{\mathbf{0}\}.$