TP-TD 4_Modèles linéaires

On considère une fonction de demande,

(1)
$$q_i = \alpha + \beta p_i + \varepsilon_i$$

 $i = 1, \dots, n$
 q_i : demande en bien i ;
 p_i : prix du bien i ;
 $\varepsilon_i \sim N(0, \sigma^2)$

p_i	18	16	17	12	15	15	4	13	11	6	8	10	7	7	7
q_i	3	3	7	6	10	15	16	13	9	15	9	15	12	18	21

- 1. Estimation du modèle par MCO. Interprétation économique et signe plausible des coefficients ;
- 2. Estimation des variances du modèle, σ^2 , $V(\alpha)$ et $V(\beta)$;
- 3. Sous l'hypothèse de normalité, étudiez la significativité des coefficients du modèle. Seuil de signification $\alpha = 5\%$;
- 4. Construire $IC_{\sigma^2}^{(1-\alpha)\%}$;
- 5. Calcul du coefficient de d'ajustement du modèle R^2 . Test de significativité de R^2 . Définir le lien statistique de R^2 avec le test de significativité de la pente β ;
- 6. Estimation de l'élasticité-prix de la demande au point moyen (\bar{q}, \bar{p}) ;
- 7. Test de l'hypothèse d'élasticité-prix unitaire ;
- 8. On suppose qu'un producteur agissant selon le principe de maximisation de profit est affronté à cette demande. Sachant que son coût marginal s'élève à 10 unités, chercher le niveau d'output lorsque le profit est maximum ;
- 9. On se propose d'estimer la fonction de demande inverse,

(2)
$$p_i = a + b q_i + \varepsilon_i \forall i = 1, \dots, n$$

i. Sans faire de calcul, montrer qu'en général on a la relation

(3)
$$\hat{b} \neq \frac{1}{\hat{\beta}}$$
 où \hat{b} estimateur MCO de l'équation(2)

- ii. Montrer, toutefois, que la relation (3) est valable dans le cas particulier où le coefficient d'ajustement $R^2 = 1$;
- iii. Montrer que

(4)
$$R_1^2 = \frac{t_{\hat{\beta}}^2}{t_{\hat{\beta}}^2 + (n-2)}$$

 $R_1^2 coefficient d'ajustement du modèle (1) <math display="block">t_{\hat{\beta}} \ Statistique \ de \ Student - Test \ de \ \beta$

iv. Montrer $t_{\widehat{\beta}} = t_{\widehat{b}}$

Bon travail!