BIOST540HW3

Bryan Ng, 2427348

2025-05-28

Problme 1

a)

```
## Rows: 1101 Columns: 5
## Delimiter: ","
## chr (1): sex_dv
## dbl (4): pidp, wave, age_dv, scghq1_dv
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
## Linear mixed model fit by REML ['lmerMod']
## Formula: scghq1_dv ~ age_dv * sex + (1 | pidp)
##
     Data: df
##
## REML criterion at convergence: 6549.4
## Scaled residuals:
          1Q Median
## -3.5497 -0.4924 -0.1191 0.3433 4.8971
## Random effects:
## Groups Name
                     Variance Std.Dev.
## pidp (Intercept) 19.05
                            4.364
## Residual
                      16.07
                              4.009
## Number of obs: 1101, groups: pidp, 188
## Fixed effects:
                 Estimate Std. Error t value
##
## (Intercept)
                12.31082 1.75825
                                    7.002
## age_dv
                 -0.03155
                            0.03008 -1.049
## sexFemale
                  0.84137
                            2.25175
                                     0.374
## age_dv:sexFemale 0.01690
                            0.03894
                                    0.434
## Correlation of Fixed Effects:
##
            (Intr) age_dv sexFml
            -0.947
## age_dv
## sexFemale -0.781 0.739
## ag_dv:sxFml 0.732 -0.772 -0.947
```

```
## refitting model(s) with ML (instead of REML)
## Data: df
## Models:
## m.noInt: scghq1_dv ~ age_dv + sex + (1 | pidp)
## m.lmm: scghq1_dv ~ age_dv * sex + (1 | pidp)
                         BIC logLik -2*log(L) Chisq Df Pr(>Chisq)
##
           npar
                   AIC
              5 6549.8 6574.8 -3269.9
                                         6539.8
## m.noInt
              6 6551.6 6581.6 -3269.8
                                         6539.6 0.1864 1
## m.lmm
                                                               0.6659
```

The age×sex interaction estimate is

$$\hat{\beta}_{\text{age}\times\text{sex}} = 0.017 \quad (\text{SE} = 0.039, \ t \approx 0.43),$$

and the likelihood-ratio test comparing models with vs. without this term yields

$$\chi^2(1) = 0.186, p = 0.67.$$

Therefore, we fail to reject the null hypothesis of no interaction: the decline in well-being with age is essentially the same for Males and Females in this sample.

b)

We fitted three GEE models with independence, exchangeable, and AR(1) working correlations and compared them using QIC.

```
##
## Call:
## geeglm(formula = scghq1_dv ~ age_dv * sex, family = gaussian,
##
       data = df, id = pidp, corstr = "independence")
##
##
   Coefficients:
##
                    Estimate
                              Std.err
                                         Wald Pr(>|W|)
## (Intercept)
                   12.673395 1.433761 78.133
                                                 <2e-16 ***
## age dv
                   -0.037437 0.026034 2.068
                                                  0.150
## sexFemale
                    1.311518 2.207334 0.353
                                                  0.552
## age_dv:sexFemale 0.002707 0.037675 0.005
                                                  0.943
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Correlation structure = independence
## Estimated Scale Parameters:
##
##
              Estimate Std.err
## (Intercept)
                    34
                        4.401
## Number of clusters:
                        188 Maximum cluster size: 9
##
## geeglm(formula = scghq1_dv ~ age_dv * sex, family = gaussian,
       data = df, id = pidp, corstr = "exchangeable")
##
##
  Coefficients:
##
```

```
##
                    Estimate Std.err Wald Pr(>|W|)
                             1.4466 72.41
## (Intercept)
                     12.3099
                                             <2e-16 ***
## age dv
                              0.0264
                     -0.0315
                                     1.42
                                               0.23
## sexFemale
                      0.8845
                              2.0736
                                               0.67
                                      0.18
## age_dv:sexFemale
                      0.0160
                             0.0366 0.19
                                               0.66
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Correlation structure = exchangeable
## Estimated Scale Parameters:
##
               Estimate Std.err
##
##
                   34.1
                           4.42
  (Intercept)
##
    Link = identity
##
## Estimated Correlation Parameters:
         Estimate Std.err
##
## alpha
            0.518 0.0644
## Number of clusters:
                         188 Maximum cluster size: 9
##
## Call:
  geeglm(formula = scghq1_dv ~ age_dv * sex, family = gaussian,
##
       data = df, id = pidp, corstr = "ar1")
##
##
   Coefficients:
##
                    Estimate Std.err Wald Pr(>|W|)
                                            1.1e-15 ***
## (Intercept)
                     12.1943 1.5226 64.14
## age_dv
                     -0.0272
                              0.0272 1.00
                                               0.32
## sexFemale
                      0.7383
                              2.0761 0.13
                                               0.72
## age_dv:sexFemale
                      0.0144 0.0364 0.16
                                               0.69
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Correlation structure = ar1
## Estimated Scale Parameters:
##
##
               Estimate Std.err
##
   (Intercept)
                   34.1
                           4.42
##
    Link = identity
##
## Estimated Correlation Parameters:
##
         Estimate Std.err
## alpha
            0.799 0.0388
## Number of clusters:
                         188 Maximum cluster size: 9
```

We observed that all three specifications lead to the same conclusion: a modest, non-significant decline in well-being with age and no evidence of a sex difference in that slope.

c)

Comparing the LMM and GEE results shows that all estimated effects are virtually identical: a modest negative slope for age, a small positive main effect of sex, and a near-zero age×sex interaction; and in none of the models is the age×sex interaction statistically significant.

Problem 2

```
## New names:
## Rows: 2148 Columns: 6
## -- Column specification
                                     ----- Delimiter: "," dbl
## (6): ...1, id, resp, age, smok, aXs
## i Use 'spec()' to retrieve the full column specification for this data. i
## Specify the column types or set 'show_col_types = FALSE' to quiet this message.
## * '' -> '...1'
GLMM assume that conditional independence given the random intercept; random effects \sim N(0, \sigma^2).
## Generalized linear mixed model fit by maximum likelihood (Laplace
     Approximation) [glmerMod]
## Family: binomial (logit)
## Formula: resp ~ age + smok + aXs + (1 | id)
##
      Data: df
##
##
         AIC
                   BIC
                          logLik -2*log(L)
                                            df.resid
##
        1599
                  1628
                            -795
                                      1589
                                                 2143
##
## Scaled residuals:
     Min
              1Q Median
                            3Q
## -1.399 -0.178 -0.159 -0.128 2.602
##
## Random effects:
## Groups Name
                       Variance Std.Dev.
           (Intercept) 5.5
                                2.35
## Number of obs: 2148, groups: id, 537
##
## Fixed effects:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.4017
                            0.2789
                                   -12.20
                                              <2e-16 ***
                -0.2170
                                     -2.50
                                              0.012 *
                            0.0868
## age
                 0.4782
## smok
                            0.2993
                                      1.60
                                              0.110
                 0.1046
                            0.1391
                                      0.75
## aXs
                                              0.452
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Correlation of Fixed Effects:
##
        (Intr) age
                      smok
## age
        0.272
## smok -0.442 -0.193
## aXs -0.146 -0.621 0.280
GEE assume that correct specification of the marginal mean.
##
## Call:
## geeglm(formula = resp ~ age + smok + aXs, family = binomial,
       data = df, id = id, corstr = "exchangeable")
##
```

```
## Coefficients:
##
              Estimate Std.err
                                  Wald Pr(>|W|)
## (Intercept) -1.9005 0.1191 254.69
               -0.1412 0.0582
                                  5.89
                                          0.015 *
## smok
                 0.3138 0.1878
                                  2.79
                                          0.095 .
## aXs
                 0.0708 0.0883
                                  0.64
                                          0.422
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Correlation structure = exchangeable
## Estimated Scale Parameters:
##
               Estimate Std.err
##
                  0.999
                          0.114
## (Intercept)
##
    Link = identity
##
## Estimated Correlation Parameters:
         Estimate Std.err
           0.355
                    0.063
## alpha
## Number of clusters:
                        537 Maximum cluster size: 4
Transition model assume that each outcome depends on the immediate past outcome.
## Generalized linear mixed model fit by maximum likelihood (Laplace
     Approximation) [glmerMod]
## Family: binomial (logit)
## Formula: resp ~ prev_resp + age + smok + aXs + (1 | id)
##
     Data: df2
##
##
         AIC
                   BIC
                          logLik -2*log(L) df.resid
                            -792
##
        1596
                  1630
                                      1584
                                                2142
## Scaled residuals:
              1Q Median
                            3Q
## -1.413 -0.217 -0.191 -0.146 2.868
## Random effects:
## Groups Name
                       Variance Std.Dev.
           (Intercept) 3.46
                               1.86
## Number of obs: 2148, groups: id, 537
##
## Fixed effects:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -3.1337
                            0.2448 -12.80
                                           <2e-16 ***
                            0.2950
                                      2.27
## prev_resp
                 0.6707
                                             0.0230 *
                -0.2636
                            0.0872
                                     -3.02
                                             0.0025 **
## age
## smok
                 0.4127
                            0.2592
                                      1.59
                                             0.1113
                 0.0840
## aXs
                            0.1355
                                      0.62
                                             0.5351
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Correlation of Fixed Effects:
            (Intr) prv_rs age
                                  smok
## prev_resp 0.386
```

```
## age 0.193 -0.248
## smok -0.474 -0.104 -0.193
## aXs -0.185 -0.062 -0.585 0.337
```

In summary, the three approaches give subtly different smoking coefficients because they rest on different conditioning and correlation assumptions: the GLMM estimates a subject-specific effect of $\beta_{\rm smok} = 0.478$ by modeling a normal random intercept; the GEE yields a marginal effect of $\beta_{\rm smok} = 0.314$ using an exchangeable working correlation and robust "sandwich" variances; and the first-order Markov transition model—by also conditioning on the immediately prior outcome plus a random intercept—produces $\beta_{\rm smok} = 0.413$.

The GLMM's subject-specific odds ratio of

$$\exp(\beta_{\rm smok}) = \exp(0.478) \approx 1.61$$

tells you that, for a given individual holding their baseline risk constant, picking up smoking raises their odds of the outcome by 61%—a clear, personalized message to motivate cessation.

At the population level, the GEE's marginal OR of

$$\exp(\beta_{\rm smok}) = \exp(0.314) \approx 1.37$$

means that, on average across everyone, smokers have 37% higher odds, so cutting smoking prevalence by, say, 10% could yield roughly a 13% drop in overall disease odds—insight critical for public-health policy.

And if you're building a longitudinal risk tool that updates at each visit, the first-order Markov transition model's OR of

$$\exp(\beta_{\rm smok}) = \exp(0.413) \approx 1.51$$

indicates that, conditional on someone's last outcome, smoking boosts their next visit's odds by 51%, which helps you dynamically recalibrate risk as history unfolds.

Problem 3

a)

Treatment	Visit	Mean rate (seizures/week)	SD	N
placebo	Baseline (8 wk)	3.85	3.26	28
placebo	Visit 1 (2 wk)	4.68	5.07	28
placebo	Visit 2 (2 wk)	4.39	7.34	28
placebo	Visit 4 (2 wk)	3.98	3.81	28
progabide	Baseline (8 wk)	3.95	3.50	31
progabide	Visit 1 (2 wk)	4.29	9.12	31
progabide	Visit 2 (2 wk)	4.21	5.93	31
progabide	Visit 3 (2 wk)	4.06	6.95	31
progabide	Visit 4 (2 wk)	3.35	5.63	31

Table 1: Seizure rates by treatment arm and visit

```
b)
##
## Call:
## geeglm(formula = seizures ~ tx + age, family = poisson(link = "log"),
       data = df_long, offset = log(weeks), id = id, corstr = "exchangeable")
##
##
   Coefficients:
##
              Estimate Std.err Wald Pr(>|W|)
## (Intercept)
                2.2394 0.4461 25.20 5.2e-07 ***
## txprogabide 0.0292 0.2049 0.02
                                        0.887
               -0.0332 0.0147 5.10
                                        0.024 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Correlation structure = exchangeable
## Estimated Scale Parameters:
##
              Estimate Std.err
##
## (Intercept)
                  19.8
                          8.25
##
    Link = identity
##
## Estimated Correlation Parameters:
        Estimate Std.err
##
## alpha
           0.764 0.0867
## Number of clusters: 59 Maximum cluster size: 5
```

Estimated treatment effect:

```
\hat{\beta}_{\rm txprogabide} = 0.0292, \ {\rm SE} = 0.2049, \ p = 0.887, \quad {\rm IRR} = e^{0.0292} \approx 1.03 \ ({\rm with} \ 95\% \ {\rm CI} \ 0.69 - 1.54).
```

Estimated age effect:

$$\hat{\beta}_{\rm age} = -0.0332, \; {\rm SE} = 0.0147, \; p = 0.024, \quad {\rm IRR} = e^{-0.0332} \approx 0.97 \; ({\rm with} \; 95\% \; {\rm CI} \; 0.94 - 0.996).$$

Estimated working correlation:

$$\hat{\alpha} = 0.764.$$

Under this GEE, we observed that there is no significant treatment effect of progabide on seizure rates, but patient age does modestly reduce seizure incidence.

Appendix: R Code

```
library(lme4)
library(geepack)
library(readr)
library(dplyr)
library(tidyverse)
#Problem 1 a)
df <- read_csv("C:/Users/ncwbr/Desktop/uk_sub.csv")</pre>
df$sex <- relevel(factor(df$sex_dv), ref="Male")</pre>
m.lmm <- lmer(scghq1_dv ~ age_dv * sex + (1 | pidp), data = df)</pre>
summary(m.lmm)
m.noInt <- update(m.lmm, . ~ . - age_dv:sex)</pre>
anova(m.noInt, m.lmm)
#Problem 1 b)
gee.ind <- geeglm(scghq1_dv ~ age_dv * sex,</pre>
                   id = pidp, corstr = "independence",
                   data = df, family = gaussian)
gee.exc <- update(gee.ind, corstr = "exchangeable")</pre>
gee.ar1 <- update(gee.ind, corstr = "ar1")</pre>
summary(gee.ind)
summary(gee.exc)
summary(gee.ar1)
#Problem 2
df <- read_csv("C:/Users/ncwbr/Desktop/sixcity.csv")</pre>
m.glmm <- glmer(resp ~ age + smok + aXs + (1 | id),</pre>
                 data = df, family = binomial)
summary(m.glmm)
m.gee <- geeglm(resp ~ age + smok + aXs,</pre>
                         = id,
                        = df,
                 data
                 family = binomial,
                 corstr = "exchangeable")
summary(m.gee)
df2 <- df %>%
  arrange(id, age) %>%
  group_by(id) %>%
  mutate(prev_resp = lag(resp, default=0)) %>%
  ungroup()
m.trans <- glmer(resp ~ prev_resp + age + smok + aXs + (1 | id),</pre>
```

```
data = df2, family = binomial)
summary(m.trans)
#Problem 3 a)
df <- read_csv("C:/Users/ncwbr/Desktop/Seizure.csv")</pre>
df_long <- df %>%
  pivot_longer(y0:y4, names_to="visit", values_to="seizures") %>%
  mutate(
    weeks
              = if_else(visit=="y0", 8, 2),
              = seizures / weeks,
    rate
    visit_lab = factor(visit,
                        levels=c("y0","y1","y2","y3","y4"),
                        labels=c("Baseline\n(8 \text{ wk})", "Visit 1\n(2 \text{ wk})",
                                  "Visit 2\n(2 \text{ wk})", "Visit 3\n(2 \text{ wk})", "Visit 4\n(2 \text{ wk})"))
  )
summary_tbl <- df_long %>%
  group_by(tx, visit_lab) %>%
  summarize(
    mean_rate = mean(rate),
               = sd(rate),
    sd_rate
                = n(),
               = "drop"
    .groups
knitr::kable(summary_tbl,
              col.names=c("Treatment","Visit","Mean rate\n(seizures/week)","SD","N"),
              digits=2)
             gee_mod <- geeglm(</pre>
  seizures ~ tx + age,
  offset = log(weeks),
        = id,
  data = df_long,
  family = poisson(link="log"),
  corstr = "exchangeable"
)
summary(gee_mod)
```