CIS 5200: MACHINE LEARNING BINARY CLASSIFICATION AND PERCEPTRON

Surbhi Goel

Content here draws from material by Yingyu Liang (Princeton), Christopher De Sa and Kilian Weinberger (Cornell)

Spring 2023

LOGISTICS - UPCOMING

Homework:

- * HW0 due on Friday, Jan 20, 2023 end of day
- *Go to OHs if you have any clarifications about HW0
- * TAs will help review concepts
- For those on waitlist, email your HW0 to Keshav and Wendi (head TAs)
- *HWI will be out on Monday, Jan 23, 2023

Recitation:

* Sign up link will be posted on Ed this week

LOGISTICS - RECORDING

Recording Policy:

- *Only if you are unwell, or dealing with some extenuating circumstances and have to miss class
- Request video access via an Ed message to Keshav or Wendi
- * Video lecture will be made available to you for a period of I week post the requested date
- * Recordings will be provided as is, not intended to replace lecture

We will run this honor-based, we will not ask any questions unless we notice excessive use

OUTLINE - TODAY

- Review of Supervised Learning
- * Binary Classification
- * Perceptron
 - * History
 - * Algorithm
 - * Proof of convergence
 - * Drawbacks
- * Logistic Regression

SUPERVISED LEARNING - REVIEW

Predict future outcomes based on past outcomes

Labels $y \in \mathcal{Y}$

Classification

Discrete labels

Regression

Continuous labels

Task: Learn predictor $f: \mathcal{X} \to \mathcal{Y}$

SUPERVISED LEARNING - REVIEW

Loss function: What is the right loss function for the task?

Representation: What class of functions should we use for the task?

Optimization: How can we efficiently solve the empirical risk minimization?

Generalization: Will the predictor perform well on unseen data?

SUPERVISED LEARNING - BINARY CLASSIFICATION

Input space: $\mathcal{X} \subseteq \mathbb{R}^d$

Output space: $\mathcal{Y} = \{-1,1\}$ we used $\{0,1\}$ in the last class

Predictor function: $f: \mathcal{X} \to \mathcal{Y}, f \in \mathcal{F}$

Loss function: $\ell(f(x), y) = \begin{cases} 0 & \text{if } f(x) = y \\ 1 & \text{otherwise.} \end{cases}$

Data: $\{(x_1, y_1), ..., (x_m, y_m)\} \subset \mathcal{X} \times \mathcal{Y}$ drawn i.i.d. from distribution \mathcal{D}

CLASSIFICATION - PIPELINE

Training dataset

$$\mathcal{S} = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}\$$

Function class F

Minimize loss on training data

$$\min_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^{m} 1[f(x_i) \neq y_i]$$

average number of mistakes

Prediction function \hat{f}

Evaluation

$$R(\hat{f}) = \Pr_{(x,y) \sim \mathcal{D}} \left[\hat{f}(x) \neq y \right]$$

HYPOTHESIS CLASS - LINEAR CLASSIFIER

Halfspace weight bias Linear Classifier: $\mathscr{F} := \{x \mapsto \operatorname{sign}(w^{\mathsf{T}}x + b) \mid w \in \mathbb{R}^d, b \in \mathbb{R} \}$

Perceptron model of the biological neuron

HYPOTHESIS CLASS - LINEAR CLASSIFIER

extra dimension

Linear Classifier:
$$\mathcal{F} := \{x \mapsto \text{sign}(w^T x) \mid w \in \mathbb{R}^{d+1} \}$$

Map:

$$x \mapsto \begin{bmatrix} x \\ 1 \end{bmatrix}$$
 and $w \mapsto \begin{bmatrix} w \\ b \end{bmatrix}$
extra dimension

$$\implies w^{\mathsf{T}}x + b \mapsto w^{\mathsf{T}}x$$
no bias

WLOG, we can assume no bias!

LINEAR CLASSIFICATION - TRAINING

Training Dataset:
$$S = \{(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)\},\ x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}$$

Empirical Risk Minimization: Find \hat{w} that minimizes

$$\widehat{\text{err}}(w) = \frac{1}{m} \sum_{i=1}^{m} 1 \left[\text{sign}(w^{\mathsf{T}} x_i) \neq y_i \right]$$

How do we solve this minimization problem?

Hard in general, the problem is non-convex!

ASSUMPTION - PERFECT CLASSIFIER

Perfect Classifier: $\exists w_*$ such that $y = \text{sign}(w_*^T x)$ and $||w_*|| = 1$

Data is linearly separable

$$\widehat{\operatorname{err}}(w_*) = \frac{1}{m} \sum_{i=1}^{m} 1 \left[\operatorname{sign}(w_*^{\mathsf{T}} x_i) \neq y_i \right] = 0$$

ALGORITHM - PERCEPTRON

Algorithm 1: Perceptron

```
Initialize w_1 = 0 \in \mathbb{R}^d

for t = 1, 2, ... do

if \exists i \in [m] \ s.t. \ y_i \neq \text{sign} \left(w_t^\top x_i\right) then update w_{t+1} = w_t + y_i x_i

else output w_t
```

end

The New York Times | 958

Electronic 'Brain' Teaches Itself

Lots of hype, expected to recognize people, and eventually gain 'consciousness'

PERCEPTRON - INTUITION

Algorithm 1: Perceptron

```
Initialize w_1 = 0 \in \mathbb{R}^d

for t = 1, 2, ... do

if \exists i \in [m] \ s.t. \ y_i \neq \text{sign} \left(w_t^\top x_i\right) then update w_{t+1} = w_t + y_i x_i

else output w_t

end
```

Suppose at time t, example $x_i \neq 0$ is incorrectly classified

If
$$y_i = 1$$
 then $w_{t+1}^\top x_i = w_t^\top x_i + ||x_i||^2 > w_t^\top x_i$ Towards the positive side

$$\text{If } y_i = -1 \text{ then } w_{t+1}^\mathsf{T} x_i = w_t^\mathsf{T} x_i - \|x_i\|^2 < w_t^\mathsf{T} x_i \quad \text{Towards the negative side}$$

PERCEPTRON - INTUITION

Algorithm 1: Perceptron

```
Initialize w_1 = 0 \in \mathbb{R}^d

for t = 1, 2, ... do

if \exists i \in [m] \ s.t. \ y_i \neq \mathrm{sign} \left( w_t^\top x_i \right) then update w_{t+1} = w_t + y_i x_i

else output w_t

end
```


PERCEPTRON - CONVERGENCE

Setting:

For all $i \in [m]$, $||x_i|| \le 1$

Margin γ is minimum distance of any point from the hyperplane

$$\gamma = \min_{i \in [m]} |w_*^\mathsf{T} x_i|$$

$w_*^{\mathsf{T}} x = 0$

Theorem:

The Perceptron algorithm stops after at most $1/\gamma^2$ rounds, and returns a hyperplane w such that all examples are correctly classified.

Algorithm 1: Perceptron

```
Initialize w_1 = 0 \in \mathbb{R}^d

for t = 1, 2, ... do

if \exists i \in [m] \ s.t. \ y_i \neq \text{sign} \left( w_t^\top x_i \right) then update w_{t+1} = w_t + y_i x_i

else output w_t

end
```

Setting:

For all
$$i \in [m]$$
, $||x_i|| \le 1$, $||w_*|| = 1$
Margin $\gamma = \min_{i \in [m]} ||w_*^T x_i||_{i \in [m]}$

See board/iPad

Theorem:

The Perceptron algorithm stops after at most $1/\gamma^2$ rounds, and returns a hyperplane w such that all examples are correctly classified.

PERCEPTRON - IN ACTION

PERCEPTRON - FAILURES

XOR:

Led to the Al winter till mid 1980s

Minsky and Papert in a 1969 book "Perceptrons" showed that Perceptron fails on XOR problems

Non-linearly separable data: Kernels (later in class)

Separable in a lifted space

Noise:

Hard classifier, cannot model inherent noise

PERCEPTRON - SUMMARY

Input space: $\mathcal{X} \subseteq \mathbb{R}^d$

Output space: $\mathcal{Y} = \{-1,1\}$

Hypothesis Class: $\mathcal{F} := \{x \mapsto \operatorname{sign}(w^{\mathsf{T}}x + b) \mid w \in \mathbb{R}^d, b \in \mathbb{R} \}$

Loss function:
$$\ell(f(x), y) = \begin{cases} 0 & \text{if } f(x) = y \\ 1 & \text{otherwise.} \end{cases}$$

Assumption: Linearly separable data

Guarantee: Zero-error on training data after $1/\gamma^2$ iterations for margin γ

NON-DETERMINISTIC INPUTS

Perceptron used the sign function to assign deterministic labels

But there may be inherent uncertainty in the label

LOGISTIC FUNCTION

$$\frac{\text{sign}(a)}{\text{Step function}} = \begin{cases} +1 & \text{if } a \ge 0, \\ -1 & \text{otherwise.} \end{cases}$$

Step function

(discrete)

Sigmoid function

(continuous)

$$P(y = 1 \mid x) = \operatorname{sigmoid}(w^{\mathsf{T}}x) = \frac{1}{1 + \exp(-w^{\mathsf{T}}x)}$$

$$P(y = -1 | x) = 1 - sigmoid(w^{T}x) = \frac{1}{1 + exp(w^{T}x)}$$

More unsure near the decision boundary

Like perceptron away from the decision boundary

LOGISTIC LOSS

$$P(y = 1 \mid x) = \operatorname{sigmoid}(w^{\mathsf{T}}x) = \frac{1}{1 + \exp(-w^{\mathsf{T}}x)}$$

$$sigmoid(a) = \frac{1}{1 + exp(-a)}$$

$$P(y = -1 | x) = 1 - \text{sigmoid}(w^{T}x) = \frac{1}{1 + \exp(w^{T}x)}$$

$$\mathcal{E}(f(x), y) = \log\left(1 + \exp(-y f(x))\right)$$

Derivation based on probabilistic arguments, will discuss in next class

LOGISTIC REGRESSION - SUMMARY

Predicts probability of label conditioned on input, allows uncertainty

Input space: $\mathcal{X} \subseteq \mathbb{R}^d$

Output space: $\mathcal{Y} = [0,1]$

Hypothesis Class: $\mathcal{F} := \{x \mapsto \operatorname{sigmoid}(w^{\mathsf{T}}x + b) \mid w \in \mathbb{R}^d, b \in \mathbb{R} \}$

Loss function: $\ell(f(x), y) = \log(1 + \exp(-y f(x)))$