	Teste de Matemática A						
	2022 / 2023						
Teste N.º 4 Matemática A							
Duração do Teste: 90 minutos							
11.º Ano de Escolaridade							
Nome do aluno:	N.º: Turma:						

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Na figura estão representados, em referencial o.n. Oxy do plano:

a reta r de equação x = 1;

o ponto A pertencente à circunferência e de abcissa igual a $-\frac{2}{5}$;

o ponto B de coordenadas $\left(1,\frac{6}{5}\right)$;

o ângulo de amplitude α , que tem por lado origem o semieixo positivo das abcissas e por lado extremidade a semirreta *OA*;

• o ângulo de amplitude β, que tem por lado origem o semieixo positivo das abcissas e por lado extremidade a semirreta OB.

O valor exato da expressão $tg^2 \alpha - tg^2 \beta$ é:

(A)
$$\frac{564}{25}$$

(B)
$$\frac{381}{100}$$

(C)
$$\frac{614}{25}$$

(D)
$$\frac{318}{100}$$

2. No referencial seguinte estão representados os gráficos das funções f e g, definidas, no intervalo $[0, 2\pi]$, por $f(x) = \cos\left(2x + \frac{\pi}{3}\right)$ e $g(x) = -\cos\left(x - \frac{\pi}{6}\right)$, e os pontos de interseção dos dois gráficos $A, B, C \in D.$

Determine, por métodos exclusivamente analíticos, as abcissas dos pontos de interseção dos dois gráficos.

- **3.** Na figura estão representadas, num referencial o.n. 0xy:
 - a circunferência de equação $x^2 + 2x + y^2 2y = 23$;
 - a reta *t* tangente à circunferência no ponto *A*.

Sabe-se que o ponto A tem coordenadas (2,5).

Determine a inclinação da reta t, em radianos, com aproximação às décimas.

Se, em cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

4. Considere, num referencial o.n. Oxyz, o plano α definido pela condição:

$$4x + 2y - z + 2 = 0$$

Resolva os itens seguintes sem recurso à calculadora, a não ser para efetuar eventuais cálculos numéricos.

4.1. Considere o ponto $P\left(-2,-1,\frac{a}{2}\right)$, sendo a um certo número real.

Sabe-se que a reta OP é estritamente paralela ao plano α , sendo O a origem do referencial. O valor de a é:

(A)
$$-20$$

(B)
$$-4$$

- **4.2.** Seja A o ponto de interseção do plano α com o eixo Ox. Seja B o ponto de interseção do plano α com o eixo Oy. Seja C o ponto pertencente ao semieixo negativo Oz tal que $A\widehat{B}C = \frac{\pi}{3}$. Determine a cota do ponto C.
- 4.3. Determine uma equação da superfície esférica de centro na origem do referencial que é tangente ao plano α . Na resolução deste item, tenha em conta que o raio relativo ao ponto de tangência é perpendicular ao plano α .

5. Seja f a função real de variável real definida, em \mathbb{R} , por $f(x) = \begin{cases} x+1 & \text{se } x \leq 0 \\ x-2 & \text{se } x > 0 \end{cases}$

Seja (u_n) a sucessão de termo geral $u_n = \frac{(-1)^{2n+1}}{-n^3+1}$. O valor de $\lim_{n \to \infty} f(u_n)$ é igual a:

(A) $+\infty$

- **(B)** 1

6. Seja (u_n) a sucessão definida por $u_n = \frac{3n + (-1)^{n+1}}{n}$.

Determine, sem recorrer à calculadora, quantos termos de ordem ímpar da sucessão (u_n) pertencem ao intervalo $\left[\frac{118}{39}, \frac{40}{13}\right]$.

7. Seja f a função real de variável real definida por $f(x) = \frac{2x+1}{x-2}$.

Resolva as seguintes alíneas, recorrendo a processos exclusivamente analíticos.

- **7.1.** Determine para que valores reais de x as ordenadas dos pontos do gráfico de f são superiores às respetivas abcissas.
- **7.2.** Recorrendo à definição de derivada de uma função num ponto, determine f'(1).
- **7.3.** Considere o gráfico da função f, representado num referencial o.n. Oxy, e sejam r e s as assíntotas, respetivamente horizontal e vertical, ao gráfico de f.

Sejam A o ponto de interseção do gráfico de f com o eixo Ox e B o ponto de interseção das retas r e s. Determine o valor exato da área do triângulo [OAB].

8. Seja f a função, de domínio \mathbb{R} , definida por:

$$f(x) = \begin{cases} \frac{(x-2)^2}{x^3 - 8} + \sqrt{5} & \text{se } x > 2\\ \frac{k}{\sqrt{x^2 + 1} - \sqrt{5}} & \text{se } x = 2, & \text{com } k \in \mathbb{R} \end{cases}$$

Resolva os itens seguintes sem recorrer à calculadora.

- **8.1.** Mostre que, independentemente do valor de k, não existe $\lim_{x \to 2} f(x)$.
- **8.2.** Determine, se existirem, o valor de $\lim_{x \to -\infty} f(x)$ e o valor de $\lim_{x \to +\infty} f(x)$.

9. Seja g uma função, de domínio \mathbb{R} , diferenciável em todos os pontos do seu domínio.

Sabe-se que
$$\lim_{x\to 2} \frac{g(x)-g(2)}{x^2-2x} = 5$$
.

Seja t a reta tangente ao gráfico de g em x = 2.

Qual é a equação reduzida de uma reta perpendicular à reta t?

(A)
$$v = 10x - 17$$

(B)
$$y = 5x - 7$$

(C)
$$y = -\frac{1}{10}x + \frac{16}{5}$$

(A)
$$y = 10x - 17$$
 (B) $y = 5x - 7$ **(C)** $y = -\frac{1}{10}x + \frac{16}{5}$ **(D)** $y = -\frac{1}{5}x + \frac{17}{5}$

10. Admita que o número de pessoas com telemóvel, em milhares, num determinado país, entre 1990 e 1999, t anos após o início de 1990, é dado por:

$$N(t) = \frac{1779 + 3437,9t}{1 - 0.1t + 0.004t^2}, \text{ com } t \in [0, 9]$$

- 10.1. Qual é, com aproximação às unidades, a percentagem de aumento do número de pessoas com telemóvel, no primeiro ano, após o início de 1990?
 - **(A)** 24%
- **(B)** 124%
- **(C)** 224%
- **(D)** 324%
- 10.2. Existe um instante a partir do qual, passados três anos, o número de pessoas com telemóvel duplica. Determine, recorrendo à calculadora, esse instante, sabendo-se que existe e é único. Apresente o resultado em anos e dias (com os dias arredondados às unidades). Considere que um ano tem 365 dias.

Na sua resposta:

- apresente uma equação que lhe permita resolver o problema;
- reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a equação e apresente a(s) coordenada(s) do(s) ponto(s) relevante(s) arredondada(s) às milésimas.

FIM

COTAÇÕES

	Item															
	Cotação (em pontos)															
1.	2.	3.	4.1.	4.2.	4.3.	5.	6.	7.1.	7.2.	7.3.	8.1.	8.2.	9.	10.1.	10.2.	TOTAL
10	15	15	10	15	15	10	15	15	10	14	12	12	10	10	12	200