吉林大学"大学生创新创业训练计划"项目

学期检查表

项目编号				
项目名称	飞行器全	地形着	陆系统	
项目负责人	=======================================	姜景文		
所在学院	汽车	工程学	完	
指导教师姓名	吴 量	职称	讲师	
填 表 日 期				

吉林大学教务处制表

项目	1 名 称			飞行器全地	也形着陆系	三 统
	项目等级	国家级[1]	校	级一类[] 校	逐级二类[]	
	项目起止时 间		T	年5月18日	2019 年	三5月18日
项目基 本信息	项目负责人	姜景文	联系 方式	13154379665	E-mail	286100139@qq.com
	项目参加人		٥	蒋泽明、赖宣 淇	1、赵培旭	、吕睿
	指导教师	吳量	职称	讲师	联系方 式	15143185852
	划进度安排: -2017.12.23	确立项	目内容	,确定学习研究	^飞 路线,进	行任务分工;
2017. 12. 2	3-2017. 12. 31	进行相	关资料	的查找,学习机	几器人坐板	际变换原理并进行 ROS
		操作系统	统学习	的预备知识储备	f(如 Lin	ux 操作系统的基本操
		作和文	件配置	, Cmake 程序编	译原理,	Vim 文档管理, C++和
		Python	Bash	等编程语言,(Git 分布式	忧版本控制系统项目版
		本管理)			
2018. 1. 1-	2018. 3. 4	学习 RO	S 操作	系统的基本操作	三,编写节,	点和发布订阅消息,并
		进行特	殊模块	学习(如机器/	人模型仿真	Į Gazebo,数据可视化
		Rviz, M	Movitを	几械臂工具包,	视觉处理	工具包),完成 ROS 的
		基本学	习。			
2018. 3. 4-	2018. 7. 1	完成相	机标定	和 KINECT 与 RC	S 的连接	,并使用 KINECT 对地
		面信息	进行采	集形成点云数据	居, 对点云	云数据进行处理和分析
		提取深	度数据	和关键点的坐标	. .	
2018. 7. 1-	2018. 9. 1	完成单个	个机械	臂 URDF 的建模	工作和 Mo	veit!的配置控制和数
		据输出	以及 Ar	duino 与 ROS 的	直接和多	舵机的控制。
2018. 9. 1-	2018. 11. 31	利用 CA	TIA 和	Solidworks 制作	乍腿部模型	型并进行 ANSYS 的仿真
		工作,	并完成	机械臂的加工和	装置组装	Eo
2018. 12. 1	-2019. 3. 1	进行户	外实体	实验,并尝试利	引用 Raspb	erry 进行脱机运行,
		远程控制	制验证值	方真效果并对装	置的不足	进行改进。
2019. 3. 1-	2019. 5. 1	总结研	究成果	,申请专利,准	挂备答辩。	

项目进展情况及取得的阶段性成果:

视觉算法方面:成功标定 Kinect 的 RGB 摄像头和深度摄像头并加载到系统参数中,成功获取正确的点云流,并基于 OcTree 完成关键点的查找和 Moveit 中 OctoMap 的点云交互连接,实现 Raspberry 系统安装和 Kinect 的驱动工作,为最终脱机运行做充分准备。

机械臂控制方面:完成 URDF 的机械臂建模工作,并进行 Moveit 的配置,完成运动规划,编写 Action 成功将各关节数据输出,并编程控制虚拟机械臂,实现实体机械臂和虚拟机械臂的同步。

通信控制方面:通过串口实现 ROS 和 Arduino 的连接,接受 ROS 传送的规划关节角度,并基于 I2C 的通信方式,利用 Arduino 控制舵机控制板实现多舵机驱动,最终校正机械臂舵机,实现内外对应。

机械仿真方面:完成 CATIA 的基本模型建立,利用 ANSYS 完成静力学仿真,验证设计合理性。

负责人签字:

年 月 日

注: 此栏可附页

经费值	中田市	害况:
工火工	メハコー	日 ワム・

铝合金机械臂(含机械结构和伺服电机六块): 369 元

串行总线舵机、USB/TTL 调试版: 100 元

STM32 开发板、2.8 寸液晶屏、STLINK 下载器: 334 元

树莓派: 292.4 元

kinect xbox360: 1000 $\overline{\pi}$

ROS 机器人操作系统: 70 元

ROS 机器人快速编程: 68 元

C++程序设计: 20 元

STM32 开发板小系统板: 16.26 元

W5100 网络扩展版 31.30 元

HC-SR04 模块#MK001 5.19 元

合计: 2306.15 元

存在的问题及拟采取的措施:

1. 问题: 3D 模型通过代码编写过于复杂的问题。

拟采取的措施:通过 SolidWorks 建立模型,并利用插件导出 URDF 文件,直接建立模型,不仅更加精确还可得到相关物理属性,方便进行 Gazebo 的物理仿真。

2. 问题: 多机械臂控制问题。

拟采取的措施: 采取多终端, 多线程的方法, 分别控制, 集成输出。

- 3. 问题: 多组舵机角度数据输出如何区分数据对应关系? 拟采取的措施: 制定通信规则,通过加消息头透明解析的模式来区分对应关系。
- 问题:如果可以脱机运行,各模块电源供应问题?
 拟采取措施:购买锂离子电池和电源模块,协调各模块之间的电压电流,并改造各模块供电方式。

下一阶段工作计划:

时间	工作计划
2018.10.15-2018.10.25	讨论确定最终机械结构方案。
	完成 SolidWorks 的建模和 URDF 文件的导出,
2018.10.25-2018.11.25	修改模型文件并完成 Moveit! 的配置,初步完
	成四个机械臂的控制工作
	编写 Action,尝试多线程模式,同时规划四个
2018.11.25-2018.12.25	机械臂的轨迹,完成舵机角度输出,并控制规
	划顺序,避免冲突。
	制定通信协议,区分数据对应关系,控制机械
2018.12.25-2018.1.25	臂做出正确运动轨迹,并利用 Raspberry-Pi 尝试
	进行脱机运行和远程操控。
	完成机械部分终端和起落架的最终设计,利用
2018.1.25-2018.2.25	Ansys 进行仿真验证设计合理性, 最终进行实体
	加工。
2018.2.25-2018.4.15	整合各模块,完成实体组装,并进行调试。

并提出下阶段工作意见) 指导教师(签字): 年 月 日 学院检查意见: (进展情况、存在问题、改进方向等方面写出具体意见) 组长: 年 月 日 学校检查组意见: ④ 项目进展顺利,通过检查 ()
年 月 日 学院检查意见: (进展情况、存在问题、改进方向等方面写出具体意见) 组长: 年 月 日
年 月 日 学院检查意见: (进展情况、存在问题、改进方向等方面写出具体意见) 组长: 年 月 日 学校检查组意见:
年 月 日 学院检查意见: (进展情况、存在问题、改进方向等方面写出具体意见) 组长: 年 月 日
年 月 日 学院检查意见: (进展情况、存在问题、改进方向等方面写出具体意见) 组长: 年 月 日
学院检查意见: (进展情况、存在问题、改进方向等方面写出具体意见) 组长: 年月日
组长: 年 月 日 学校检查组意见:
学校检查组意见:
】
● 项目进展不利,建议改进 ()
改进意见:
组长:
年 月 日
. 73