Improved Convergence for ℓ_∞ and ℓ_1 Regression via Iteratively Reweighted Least Squares

Alina Ene, Adrian Vladu ^a Boston University

^aalphabetic order

Regression Problems

Regression problems are standard in machine learning. In general, they can be phrased as minimizing a vector norm, subject to linear constraints:

$$\min_{\mathbf{A}\mathbf{x}=\mathbf{b}} \|\mathbf{x}\|_p$$

Depending on the choice of norm, obtaining fast algorithms can be

- very easy: for p = 2, the solution is given by a single linear system solve $\mathbf{x} = \mathbf{A}^{\mathsf{T}} (\mathbf{A} \mathbf{A}^{\mathsf{T}})^{\mathsf{T}} \mathbf{A} \mathbf{b}$.
- very hard: when $p \in \{1, \infty\}$, the problem is equivalent to linear programming.

Natural benchmark: ℓ_{∞}/ℓ_1 regression on graphs

- $x \in \mathbb{R}^m$: flow on the graph's edges
- ▶ $\mathbf{b} \in \mathbb{R}^n$: demand that \mathbf{x} is supposed to route
- $lackbox{A} \in \mathbb{R}^{m \times n}$: matrix such that Ax outputs the demand routed by x(think of it as boundary operator)

 ℓ_1 regression \iff minimum cost flow

Currents approaches:

- first-order methods (gradient descent): in general, need at least $\Omega(m^{3/2}/\text{poly}(\epsilon))$, running time strongly depends on matrix structure.
- second-order methods: interior point methods require $O(m^{1/2}\log(1/\epsilon))$ linear system solves, $O(\operatorname{rank}(\mathbf{A})^{1/2}\log(1/\epsilon))$ with a lot of work.
- hybrid method (first order iteration + linear system solve): $\widetilde{O}(m^{1/3}/\epsilon^{11/3})$ linear system solves [1], improved to $\widetilde{O}(m^{1/3}/\epsilon^{8/3})$ [2].

Iteratively Reweighted Least Squares (IRLS) Methods

IRLS is a popular method used in practice, solves a sequence of weighted ℓ_2 minimization problems:

$$\mathbf{x} = \arg\min_{\mathbf{A}\mathbf{x} = \mathbf{b}} \sum r_i x_i^2$$
Update \mathbf{r} repeat

- ► Convergence to optimum is usually heuristic, can get stuck locally for certain starting points.
- ▶ No asymptotic convergence proofs, except for restricted classes of matrices.

Notable exception: "slime mold dynamic", inspired from the evolution of *Physarum polycephalum* in a maze.

- ▶ Can be thought of as ℓ_1 regression on graph.
- ▶ Dynamic given by $\mathbf{r} = 1/\mathbf{x}$ (or damped variations of it).
- ▶ [3] gives a version of the dynamic which converges in $O(n^2\alpha^2/\epsilon^3)$ iterations, where $\alpha = \max_{\mathbf{A}' \text{ square submatrix of } \mathbf{A}} \det(\mathbf{A}')$.

Evolution of *Physarum polycephalum* in a maze.

Our Method

For intuition, we consider regression on graphs. Everything works identically in the general case.

- 1. Weighted least squares step \iff compute electrical flow.
- 2. Updating weights \iff changing electrical resistances.

ℓ_{∞} minimization.

Key idea: increase resistances for edges that are too congested.

- ▶ Start with a guess M on $\|\mathbf{x}^*\|_{\infty}$.
- ▶ Initialize with $\mathbf{r} = \mathbf{1}$.
- Compute electrical flow **x** for resistances **r**.
- Update
- $r_i \leftarrow r_i \cdot \max\{1, (x_i/M)^2\}.$
- Repeat.

minimization. Dual of ℓ_{∞} minimization, can be recovered by applying the same method on the dual problem.

- ▶ M is a guess on $\|\mathbf{x}^*\|_1$.
- ▶ Update rule: $r_i \leftarrow r_i \cdot \min \left\{ 1, \frac{1}{r_i x_i} \cdot \frac{\sum r_i x_i^2}{M} \right\}^2$.

How to find M? Binary search, and check feasibility. (But can avoid this step with some care.)

Theorem

For each $p \in \{1, \infty\}$, there exists an algorithm ℓ_p -MINIMIZATION, which on input $(\mathbf{A}, \mathbf{b}, \epsilon, M)$,

- 1. returns a solution **x** such that $\mathbf{A}\mathbf{x} = \mathbf{b}$ and $\|\mathbf{x}\|_p \leq (1+\epsilon)M$,
- 2. or certifies that $\min_{\mathbf{A}\mathbf{x}=\mathbf{b}} \|\mathbf{x}\|_{p} \geq (1-\epsilon)M$.

Furthermore both algorithms finish in $O\left(\frac{m^{1/3}\log(1/\epsilon)}{\epsilon^{2/3}} + \frac{\log m}{\epsilon^2}\right)$ iterations, each of which can be implemented by solving a weighted léast squares problem of the form $\min_{\mathbf{A}\mathbf{x}=\mathbf{b}} \sum_{i} r_{i} x_{i}^{2}$, where \mathbf{r} is an arbitrary nonnegative vector.

Proof Technique (ℓ_{∞} -Minimization)

Square the objective, and write it as a saddle point problem:

$$\min_{\mathbf{A}\mathbf{x}=\mathbf{b}} \|\mathbf{x}\|_{\infty}^{2} = \min_{\mathbf{A}\mathbf{x}=\mathbf{b}} \max_{\mathbf{r}\in\Delta} \sum_{\mathbf{r}\in\Delta} r_{i}x_{i}^{2} = \max_{\mathbf{r}\in\Delta} \min_{\mathbf{A}\mathbf{x}=\mathbf{b}} \sum_{\mathbf{r}\in\Delta} r_{i}x_{i}^{2} := \max_{\mathbf{r}\in\Delta} \underbrace{\mathcal{E}_{\mathbf{r}}}_{\text{electrical energy}}$$

Aim to increase $\mathcal{E}_{\mathbf{r}}/\|\mathbf{r}\|_1$, by increasing \mathbf{r} such that

$$\frac{\mathcal{E}_{\mathbf{r}'} - \mathcal{E}_{\mathbf{r}}}{\|\mathbf{r}' - \mathbf{r}\|_1} \ge M^2. \tag{1}$$

Key lemma: Lower bound increase in energy, after changing resistances.

$$\mathcal{E}_{\mathbf{r}'} \ge \mathcal{E}_{\mathbf{r}} + \sum_{i} r_i x_i^2 \left(1 - \frac{r_i}{r_i'} \right) . \tag{2}$$

Plugging (2) into (1), we increase resistances such that each element gives the right amount of bang for the buck:

$$\frac{r_i x_i^2 \left(1 - \frac{r_i}{r_i'}\right)}{r_i' - r_i} = x_i^2 \cdot \frac{r_i}{r_i'} \ge M^2.$$

- ▶ If no resistance can be increased, we have a feasible solution.
- ▶ Otherwise, we prove that $||\mathbf{r}||_1$ increases very fast.

Takeaway notes

- ▶ Dominant term has $\epsilon^{-2/3}$ dependence, nonstandard in optimization.
- ► Similar to width-independent positive LP [4]. What else is there?
- ▶ Conjecture: can accelerate to $\tilde{O}(m^{1/3}/\epsilon^{1/3}+1/\epsilon)$; tight, since otherwise it yields faster max flow without looking at graph structure.

References

- P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, and S. Teng, "Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected graphs", in STOC 2011.
- H. H. Chin, A. Madry, G. L. Miller, and R. Peng, "Runtime guarantees for regression problems", in ITCS 2013.
- D. Straszak and N. K. Vishnoi, "IRLS and slime mold: Equivalence and convergence", CoRR abs/1601.02712,
- N. E. Young, "Sequential and parallel algorithms for mixed packing and covering", in FOCS 2001.