MIPS Reference Data

1	
---	--

CORE INSTRUCTION SET OPCODE							
		FOR-		/ FUNCT			
		MAT	- ((1)	(Hex)		
Add	add	R	R[rd] = R[rs] + R[rt]	` ′	0 / 20 _{hex}		
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}		
Add Imm. Unsigned		Ι	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}		
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0 / 21 _{hex}		
And	and	R	R[rd] = R[rs] & R[rt]		0 / 24 _{hex}		
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	c_{hex}		
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}		
Branch On Not Equal	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}		
Jump	j	J	PC=JumpAddr	(5)	2 _{hex}		
Jump And Link	jal	J	R[31]=PC+4;PC=JumpAddr	(5)	3_{hex}		
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}		
Load Byte Unsigned	lbu	Ι	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	$24_{ m hex}$		
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}		
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	$30_{ m hex}$		
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}		
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	$23_{\rm hex}$		
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}		
Or	or	R	R[rd] = R[rs] R[rt]		0 / 25 _{hex}		
Or Immediate	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	d _{hex}		
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}		
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1		a _{hex}		
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) $? 1: 0$	(2,6)	b _{hex}		
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2b _{hex}		
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$	(-)	0 / 00 _{hex}		
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0 / 02 _{hex}		
			M[R[rs]+SignExtImm](7:0) =				
Store Byte	sb	Ι	R[rt](7:0)	(2)	28 _{hex}		
Store Conditional	sc	Ι	$\begin{aligned} M[R[rs]+SignExtImm] &= R[rt]; \\ R[rt] &= (atomic) ? 1: 0 \end{aligned}$	(2,7)	38 _{hex}		
Store Halfword	sh	Ι	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	$29_{ m hex}$		
Store Word	SW	I	M[R[rs]+SignExtImm] = R[rt]	(2)	$2b_{hex}$		
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}		
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}		
(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{ib^0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic							
BASIC INSTRUCTI	ON EO	RMA	TC				

BASIC INSTRUCTION FORMATS

R	opcode		rs		rt	rd	shamt	funct
	31	6 25	21	20	16	15 11	10 6	5 0
I	opcode		rs		rt		immediate	
	31	6 25	21	20	16	15		0
J	opcode					address		
	31	26 25						0

ARITHMETIC CORE INSTRUCTION SET

			_	/ FMT /FT
		DR-		/ FUNCT
NAME, MNEMONI		AT	OPERATION	(Hex)
Branch On FP True bo			if(FPcond)PC=PC+4+BranchAddr (4)	
Branch On FP False bo	:1f I	FΙ	if(!FPcond)PC=PC+4+BranchAddr(4)	
	iv l	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
	.vu]	R	$Lo=R[rs]/R[rt]; Hi=R[rs]\%R[rt] \qquad (6)$	
	d.s F	R	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	d.d F	R	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double			{F[ft],F[ft+1]}	
FP Compare Single ca	.s* F	R	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare	.d* E	R	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//v
Double			{F[ft],F[ft+1]})?1:0	11/11/ //
			==, <, or <=) (y is 32, 3c, or 3e)	11/10/ /2
	v.s F	·K	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide Double	v.d F	R	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
	1 - E	R	$\{F[ft],F[ft+1]\}$ $F[fd] = F[fs] * F[ft]$	11/10//2
FP Multiply Single mu: FP Multiply			$\{F[fd], F[fd+1]\} = \{F[fs], F[fs+1]\} *$	11/10//2
Double mu	1.d F	R	{F[fd],F[fd+1]} - {F[fs],F[fs+1]} · {F[ft],F[ft+1]}	11/11//2
	b.s F	R	{F[fd]=F[fs] - F[ft]	11/10//1
EP Subtract			$\{F[fd], F[fd+1]\} = \{F[fs], F[fs+1]\}$	
Double	b.d F	R	{F[ft],F[ft+1]}	11/11//1
	rc1	Ι	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP			F[rt]=M[R[rs]+SignExtImm]; (2)	
Double 1d	lc1	I	F[rt+1]=M[R[rs]+SignExtImm+4]	35//
Move From Hi mf	hi l	R	R[rd] = Hi	0 ///10
Move From Lo mf	10 l	R	R[rd] = Lo	0 ///12
Move From Control mf	c0 l	R	R[rd] = CR[rs]	10 /0//0
Multiply mu	ılt l	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0///18
1 -		R	$\{Hi,Lo\} = R[rs] * R[rt] $ (6)	0///19
	ra l	R	$R[rd] = R[rt] \gg shamt$	0//-3
	rc1	Ι		39//
Store FP			M[R[rs]+SignExtImm] = F[rt]; (2)	
Double	lc1	I	M[R[rs]+SignExtImm+4] = F[rt+1]	30//

OPCODE

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

N Hall Cit	AIVI⊏, NUIVIE	BER, USE, CALL CONVE	NIION
NAME	NUMBER	USE	PRESERVED ACROSS A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

OPCOD	ES, BASI	E CONVER	SION,	ASCII	SYMB	OLS		3	
MIPS	(1) MIPS	(2) MIPS		Deci-	Hexa-	ASCII	Deci-	Hexa-	ASCII
opcode	funct	funct	Binary	mal	deci-	Char-	mal	deci-	Char-
(31:26)	(5:0)	(5:0)		mai	mal	acter	IIIai	mal	acter
(1)	sll	$\mathtt{add}.f$	00 0000		0	NUL	64	40	(a)
		sub.f	00 0001		1	SOH	65	41	A
j	srl	mul.f	00 0010		2	STX	66	42	В
jal	sra	div.f	00 0011		3	ETX	67	43	C
beq	sllv	sqrt.f	00 0100		4	EOT	68	44	D E
bne blez	srlv	abs.f	00 010		5	ENQ ACK	69 70	45 46	E F
bgtz	srav	mov.f	00 0110		7	BEL	71	47	G G
addi	jr	neg.f	00 1000		8	BS	72	48	Н
addiu	jalr		00 1000		9	HT	73	49	I
slti	movz		00 100		a	LF	74	49 4a	J
sltiu	movn		00 1010		b	VT	75	4b	K
andi	syscall	round.w.f	00 1100		c	FF	76	4c	L
ori	break	trunc.w.f	00 110		d	CR	77	4d	M
xori		ceil.w.f	00 1110		e	SO	78	4e	N
lui	sync	floor.w.f	00 1111		f	SI	79	4f	Ô
	mfhi		01 0000		10	DLE	80	50	P
(2)	mthi		01 0001		11	DC1	81	51	Q
()	mflo	movz.f	01 0010		12	DC2	82	52	Ř
	mtlo	movn.f	01 0011	1 19	13	DC3	83	53	S
			01 0100) 20	14	DC4	84	54	T
			01 0101	21	15	NAK	85	55	U
			01 0110) 22	16	SYN	86	56	V
			01 0111	23	17	ETB	87	57	W
	mult		01 1000		18	CAN	88	58	X
	multu		01 100		19	EM	89	59	Y
	div		01 1010		1a	SUB	90	5a	Z
	divu		01 101		1b	ESC	91	5b	
			01 1100		1c	FS	92	5c	\
			01 1101		1d	GS	93	5d	j
			01 1110		1e	RS	94	5e	^
			01 1111		1f	US	95	5f	-
1b	add	cvt.s.f	10 0000		20	Space	96	60	
lh	addu	$\operatorname{cvt.d} f$	10 0001		21	!	97	61	a
lwl lw	sub		10 0010		22 23	#	98 99	62 63	b
1bu	subu		10 0011		23	# \$	100	64	d
lhu	or	cvt.w.f	10 0100		25	%	100	65	e
lwr	xor		10 010		26	&	102	66	f
TWI	nor		10 0111		27	,	103	67	g
sb	1101		10 1000		28	(104	68	h
sh			10 1001		29)	105	69	i
swl	slt		10 1010		2a	*	106	6a	i
SW	sltu		10 1011		2b	+	107	6b	k
			10 1100) 44	2c	,	108	6c	1
			10 1101	45	2d	-	109	6d	m
swr			10 1110) 46	2e		110	6e	n
cache			10 1111	47	2f	/	111	6f	O
11	tge	c.f.f	11 0000) 48	30	0	112	70	р
lwc1	tgeu	c.un.f	11 0001		31	1	113	71	q
lwc2	tlt	c.eq.f	11 0010		32	2	114	72	ŕ
pref	tltu	c.ueq.f	11 001		33	3	115	73	S
	teq	c.olt.f	11 0100		34	4	116	74	t
ldc1		c.ult.f	11 0101		35	5	117	75	u
ldc2	tne	c.ole.f	11 0110		36	6	118	76	v
		c.ule.f	11 011	1 55	37	7	119	77	W

c.ngtf(1) opcode(31:26) = 0

swc1

swc2

sdc1

sdc2

(2) opcode(31:26) == 17_{ten} (11_{hex}); if fmt(25:21)== 16_{ten} (10_{hex}) f = s (single); if fmt(25:21)== $17_{\text{ten}} (11_{\text{hex}}) f = d \text{ (double)}$

11 1000

11 1001

11 1010

11 1011

11 1100

11 1101

11 1110 62 3e

11 1111

56 38 57

58

39 9

3a

3b

c.sf.f

c.ngle.

c.seq.f

c.nal.

c.nge.f

c.lt./

c.le.f

120 121

122

123 7b

125 7d 7e 7f

126

127

79

7a

у

DEL

IEEE 754 FLOATING-POINT STANDARD

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Formats:

Exponent

4

Object

IEEE 754 Symbols

Fraction

DATA ALIGNMENT

Double Word								
	Wo	rd		Word				
Halfword Hal		Half	Halfword		Halfword		Halfword	
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

EXCEPTION CODES

Name	Cause of Exception	Number	Name	Cause of Exception
Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
VACI	Address Error Exception	10	DI	Reserved Instruction
Aull	(load or instruction fetch)	10 KI		Exception
VAEC	AdES Address Error Exception (store) 11 CpU		CnII	Coprocessor
AuES			Сро	Unimplemented
IDE	Bus Error on	12	Ov	Arithmetic Overflow
IBE	Instruction Fetch	12	Ov	Exception
DRE	Bus Error on	13	Tr	Trap
DBE	Load or Store	13	11	
Sys	Syscall Exception	15	FPE	Floating Point Exception
	AdEL AdES IBE DBE	AdE Address Error Exception (load or instruction fetch) AdEs Error Exception (store) Address Error Exception (store) Bus Error on Instruction Fetch DBE Bus Error on Load or Store	Int	Int

SIZE PREFIXES (10x for Disk, Communication; 2x for Memory)

	PRE-		PRE-		PRE-		PRE-			
SIZE	FIX	SIZE	FIX	SIZE	FIX	SIZE	FIX			
$10^3, 2^{10}$	Kilo-	$10^{15}, 2^{50}$	Peta-	10-3	milli-	10 ⁻¹⁵	femto-			
$10^6, 2^{20}$	Mega-	10 ¹⁸ , 2 ⁶⁰	Exa-	10-6	micro-	10-18	atto-			
10 ⁹ , 2 ³⁰	Giga-	$10^{21}, 2^{70}$	Zetta-	10-9	nano-	10-21	zepto-			
$10^{12}, 2^{40}$	Tera-	$10^{24}, 2^{80}$	Yotta-	10-12	pico-	10-24	yocto-			
The symbol	for each	prefix is ju	st its first	letter, e	except µ	is used	for micro			