∨ MODELO k-NN

import pandas as pd
data=pd.read_csv('/content/diabetes.csv')
data

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedig
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
763	10	101	76	48	180	32.9	
764	2	122	70	27	0	36.8	
765	5	121	72	23	112	26.2	
766	1	126	60	0	0	30.1	
767	1	93	70	31	0	30.4	

768 rows × 9 columns

Next steps: View recommended plots

```
#Renombrando a las columnas
columnas=['preg','glu','pres','skin','test','mass','pedi','age','class']
data=pd.read_csv('diabetes.csv',names=columnas)
data=data.drop(0)
data
```

	preg	glu	pres	skin	test	mass	pedi	age	class	\blacksquare
1	6	148	72	35	0	33.6	0.627	50	1	ıl.
2	1	85	66	29	0	26.6	0.351	31	0	
3	8	183	64	0	0	23.3	0.672	32	1	
4	1	89	66	23	94	28.1	0.167	21	0	
5	0	137	40	35	168	43.1	2.288	33	1	
764	10	101	76	48	180	32.9	0.171	63	0	
765	2	122	70	27	0	36.8	0.34	27	0	
766	5	121	72	23	112	26.2	0.245	30	0	
767	1	126	60	0	0	30.1	0.349	47	1	
768	1	93	70	31	0	30.4	0.315	23	0	

768 rows × 9 columns

Next steps:

```
View recommended plots
```

```
#Tipo de dato y cantidad
print(data.shape)
data.dtypes
```

```
(768, 9)
preg
         object
         object
glu
         object
pres
skin
         object
test
         object
         object
mass
pedi
         object
         object
age
class
         object
dtype: object
```

```
# Cambiamos el tipo de datos con astypes()
v_numericas=['preg','glu','pres','skin','test','mass','pedi','age']
data[v_numericas]=data[v_numericas].astype(float)
```

data.dtypes

preg	float64
glu	float64
pres	float64
skin	float64
test	float64
mass	float64
pedi	float64
age	float64

class object
dtype: object

Hallamos estadísticos descriptivos
from pandas import set_option
set_option('display.width',90) #ancho de pantalla
set_option('display.precision',2)#precision de 2 decimales
print(data.describe())

	preg	glu	pres	skin	test	mass	pedi	age
count	768.00	768.00	768.00	768.00	768.00	768.00	768.00	768.00
mean	3.85	120.89	69.11	20.54	79.80	31.99	0.47	33.24
std	3.37	31.97	19.36	15.95	115.24	7.88	0.33	11.76
min	0.00	0.00	0.00	0.00	0.00	0.00	0.08	21.00
25%	1.00	99.00	62.00	0.00	0.00	27.30	0.24	24.00
50%	3.00	117.00	72.00	23.00	30.50	32.00	0.37	29.00
75%	6.00	140.25	80.00	32.00	127.25	36.60	0.63	41.00
max	17.00	199.00	122.00	99.00	846.00	67.10	2.42	81.00

data.isnull().sum()

0 preg glu 0 pres 0 skin 0 test 0 0 mass pedi 0 0 age 0 class dtype: int64

#Matriz de correlación
correlaciones=data.corr(method='pearson')
print(correlaciones,'\n')

#no hay corelacion muy marcado por ende no se eliminan variables"

```
mass
             glu pres skin
                             test
                                         pedi
                                                age
                                                     class
      preg
preg
      1.00
            0.13
                  0.14 -0.08 -0.07
                                   0.02 - 0.03
                                               0.54
                                                      0.22
glu
      0.13 1.00 0.15
                       0.06 0.33
                                   0.22
                                         0.14 0.26
                                                      0.47
      0.14 0.15 1.00
                       0.21
                              0.09
                                   0.28
                                         0.04 0.24
                                                      0.07
pres
skin
     -0.08
            0.06 0.21
                        1.00
                              0.44
                                   0.39
                                         0.18 -0.11
                                                      0.07
test
     -0.07 0.33 0.09
                        0.44
                              1.00
                                   0.20
                                         0.19 -0.04
                                                      0.13
mass
      0.02 0.22 0.28
                        0.39
                              0.20
                                   1.00
                                         0.14 0.04
                                                      0.29
pedi
     -0.03 0.14 0.04
                        0.18
                             0.19
                                   0.14
                                         1.00 0.03
                                                      0.17
      0.54 0.26 0.24 -0.11 -0.04
                                   0.04
                                         0.03
                                              1.00
                                                      0.24
age
class 0.22 0.47 0.07 0.07 0.13
                                   0.29
                                         0.17 0.24
                                                      1.00
```

#para hallar sesgo
print(data.skew())

preg 0.9 glu 0.17 pres -1.84 skin 0.11 test 2.27 mass -0.43 pedi 1.92 age 1.13 class 0.64 dtype: object

Gráficos de histogramas
import matplotlib.pyplot as plt
data.hist(figsize=(10,10))
plt.show()

import matplotlib.pyplot as plt
data[['preg','glu']].hist(figsize=(15,9))
plt.show()

Gráficos de densidad
data.plot(kind='density',subplots=True,layout=(3,3),sharex=False,figsize=(10,10))
plt.show()

Gráficos de cajas. Visualizar atípicos
data.plot(kind='box',subplots=True,layout=(3,3),sharex=False,figsize=(10,10))
plt.show()

Gráficos de dispersión
from pandas.plotting import scatter_matrix #matriz de dispersion
scatter_matrix(data,figsize=(10,10),color='red',diagonal='kde',marker='+') #kde es gráfico
plt.show()

 \square

/usr/local/lib/python3.10/dist-packages/pandas/plotting/_matplotlib/misc.py:97: UserWater(


```
import numpy as np
import csv
with open('diabetes.csv','r',) as file: #'r'es lectura
    reader=csv.reader(file,delimiter=',')
    cabecera=next(reader)
    data1=list(reader)
    data1=np.array(data1).astype(float)
print(data1.shape)
print(cabecera)
data1

    (768, 9)
    ['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'Diabeter')
```

```
0.627, 50.
array([[ 6. , 148. , 72.
                                                     1.
                                                         ],
        1. , 85. , 66.
                             , ...,
                                     0.351, 31.
                                                     0.
                                                         ],
      [
        8.
             , 183. , 64.
                                     0.672, 32.
                                                     1.
                                                         ],
                                     0.245, 30.
        5.
           , 121. , 72.
                                                     0.
                                                         ],
                    , 60.
                                     0.349,
        1.
             , 126.
                                            47.
                                                     1.
                                                         ],
                   , 70.
        1.
             , 93.
                                     0.315,
                                            23.
                                                     0.
                                                         ]])
```

```
# Mapa de calor
fig=plt.figure(figsize=(10,10))
ax=fig.add_subplot(111)
cax=ax.matshow(correlaciones,vmin=-1,vmax=1)
fig.colorbar(cax)
ticks=np.arange(0,8,1)
ax.set_xticks(ticks)
ax.set_yticks(ticks)
ax.set_yticks(ticks)
ax.set_yticklabels(v_numericas) # dentro de los ejes colocamos los nombres
ax.set_yticklabels(v_numericas)
plt.show()
```



```
# Cantidad de datos por categoría
print(data['class'].value_counts())
sns.countplot(x='class',data=data,palette='hls')
plt.show()
```

class 0 500 1 268

Name: count, dtype: int64

<ipython-input-31-8055a4f3b802>:3: FutureWarning: