

Towards Practicable Machine Learning Development using AI Engineering Blueprints

SAML 2025 | 01.04.2025 | Nicolas Weeger

A. Stiehl, J. Kistowski, S. Geißelsöder, C. Uhl

Center for Signal Analysis of Complex Systems, University of Applied Sciences Ansbach

Purpose of the Research

- Al gains more relevance for small and medium sized enterprises (SMEs)
- SMEs face organizational and technical bottlenecks in the development of proprietary ML models
- Research objective: Provide a systematic, modular, and referenceable architecture - a set of Al Engineering Blueprints - to guide Al system development across the full lifecycle

"We want to guide organizations through the process of implementing AI in their systems."

Related Work

AI Engineering:

- Existing work
 highlight challenges
 in scaling and
 productionization
 (e.g. Bosch et al.,
 2020)
- Limited application of discussed principles (e.g. Grote and Bogner, 2023)

MLOps:

- Well-researched toolchains and components (e.g. Kreuzberger et al., 2023; Testi et al. 2022)
- Use-case based MLOps architectures and tools (e.g. Najafabadi et al., 2024)

Al Architecture:

- Architecture and design patterns for AI/ML applications (e.g. Sharma and Davuluri, 2019; Take et al., 2021)
- Reference architectures focus on specific use cases (e.g., edge/big data, Pääkkönen and Pakkala, 2020)

Guiding Blueprints Pipeline

HOCHSCHUL

ANSBACH

Business Driver Pipeline

HOCHSCHULE ANSBACH

DataOps Pipeline ۰ Liveldata Monitoring alerts Explorative data **Trigger MLOps** Data monitoring Data sources Source code analysis **Pipeline** (versioned) repository Notification Data cleaning Data **Feature** Cleaned data Data validation preparation engineering sources (versioned) General Flow Code Flow Prepared Feature store data store (versioned) (versioned) Data Flow Features HOCHSCHULE 01.04.2025 Nicolas Weeger **ANSBACH**

MLOps Pipeline

۰

DevOps Pipeline ۰ Model Soruce code for inference CI CD Source code docker repository General **Flow** Model **Flow** Code **Environment Flow Al Pipeline Prediction Monitoring** Live data Data **Flow** Liveldata **Model prediction** HOCHSCHULE 01.04.2025 Nicolas Weeger 8 **ANSBACH**

Design Science Research (DSR)

9

Conclusion

- Blueprints address the challenges of integrating ML models for SMEs
- Combination of reference architectures and -applications, pipelines and tools
- Sufficiently generalized for specific requirements of different types of AI and deployment scenarios

"Make everything as simple as possible, but not simpler" – Albert Einstein

10

References

- J. Bosch, H. H. Olsson, and I. Crnkovic, "Engineering AI Systems: A Research Agenda," in Advances in Systems Analysis, Software Engineering, and High Performance Computing, A. K. Luhach and A. Elçi, Eds. IGI Global, 2021, pp. 1–19.
- M. Grote and J. Bogner, "A Case Study on AI Engineering Practices: Developing an Autonomous Stock Trading System," in 2023 IEEE/ACM 2nd International Conference on AI Engineering Software Engineering for AI (CAIN), 2023, pp. 145–157.
- D. Kreuzberger, N. Kühl, and S. Hirschl, "Machine Learning Operations (MLOps): Overview, Definition, and Architecture," IEEE Access, vol. 11, pp. 31 866–31 879, 2023.
- M. Testi, M. Ballabio, E. Frontoni, G. Iannello, S. Moccia, P. Soda, and G. Vessio, "MLOps: A Taxonomy and a Methodology," IEEE Access, vol. 10, pp. 63 606–63 618, 2022.
- F. A. Najafabadi, J. Bogner, I. Gerostathopoulos, and P. Lago, "An Analysis of MLOps Architectures: A Systematic Mapping Study," in European Conference on Software Architecture, vol. 14889. Springer Nature Switzerland, 2024, pp. 69–85.
- R. Sharma and K. Davuluri, "Design patterns for Machine Learning Applications," in 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC). Erode, India: IEEE, 2019, pp. 818–821.
- M. Take, S. Alpers, C. Becker, C. Schreiber, and A. Oberweis, "Software Design Patterns for AI-Systems," EMISA, pp. 30–35, 2021.
- P. Pääkkönen and D. Pakkala, "Extending reference architecture of big data systems towards machine learning in edge computing environments," Journal of Big Data, vol. 7, no. 1, pp. 1–29, 2020.

Thank you for your attention!

Contact:

Email: nicolas.weeger@hs-ansbach.de

GitHub: NicolasWeeger

LinkedIn:

Questions?

