MAT-206: Inferencia Estadística Certamen 1. Octubre 6, 2021

Tiempo: 70 minutos

Nombre: _____

Profesor: Felipe Osorio

Ayudantes: Nicolás Alfaro, Fabián Ramírez

1. Considere $X \sim \mathsf{Gama}(\lambda, \beta)$ con densidad

$$f(x; \lambda, \beta) = \frac{\beta^{\lambda}}{\Gamma(\lambda)} x^{\lambda - 1} \exp(-\beta x) I_{(0, \infty)}(x), \qquad \lambda, \beta > 0.$$

Obtenga una estadística suficiente para $\boldsymbol{\theta} = (\lambda, \beta)^{\top}$ y calcule su vector de medias y matriz de covarianza.

- **2.** Sea X_1, \ldots, X_n una muestra aleatoria IID de variables aleatorias con distribución $P \in \mathcal{P}$, donde \mathcal{P} es la familia de distribuciones en \mathbb{R} con densidad $f(\cdot)$. Verifique que la estadística de orden $T(\mathbf{X}) = (X_{(1)}, \ldots, X_{(n)})$ es suficiente para $P \in \mathcal{P}$.
- 3. Sea q función positiva, integrable en el intervalo $(0, +\infty)$. Defina,

$$c(\theta) = \left\{ \int_{\theta}^{\infty} g(x) \, \mathrm{d} \, x \right\}^{-1},$$

y considere

$$p(x;\theta) = \begin{cases} c(\theta)g(x), & x > \theta, \\ 0, & x \le \theta. \end{cases}$$

Sea X_1, \ldots, X_n variables IID desde la densidad $p(x; \theta)$. Muestre que $X_{(1)} = \min\{X_1, \ldots, X_n\}$ es suficiente.

4. Considere x_1, \ldots, x_n una muestra aleatoria desde $\mathsf{EC}_p(\mu, \Sigma; g)$ con Σ matriz conocida. Obtenga la matriz de información de Fisher asociada a μ .