

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO

Dpto. de Ing. en Sistemas Computacionales

Academia de Sistemas Digitales

Práctica de Laboratorio No. 0 – Cuadro de alarmas.

Objetivo: Diseñar, construir y probar un circuito digital capaz de elegir 1 de 2 entradas, compararla con un valor de referencia y mostrar en un display si es mayor, igual ó bien menor que dicha referencia mediante un lenguaje de descripción de hardware (HDL) en un PLD 22V10.

Material y Equipo:

Mesa de instrumentación del laboratorio de sistemas digitales

Fuente de 5V

- 1 Gal22v10
- 1 DIP switch de 8
- 1 DIP switch de 4
- 12 Resistencias de 1KΩ
- 7 Resistencias de 330Ω
- 1 Display de Ánodo común

Procedimiento.

Antes de asistir al laboratorio:

1.- Realizar el programa en HDL del diseño de la ilustración 1. La asignación de pines la deben de hacer de acuerdo a la disponibilidad que se muestra en la hoja de especificaciones de la GAL.

PLD 22V10

Ilustración 1 Diagrama a bloques del diseño a realizar

En la ilustración 1 se muestra el diseño completo del cuadro de alarmas donde interviene un circuito multiplexor, un comparador y un decodificador. El comparador tiene tres salidas que se activan de acuerdo a la condición detectada, el valor que toma cada salida se muestra en la tabla 1.

Condición	CONDICION(2)	CONDICION(1)	CONDICION(0)
Sensor > Referencia	0	0	1
Sensor = Referencia	0	1	0
Sensor < Referencia	1	0	0

Tabla 1 Salidas del comparador

Los símbolos a desplegar en el display son el de igual (=), mayor (>) y menor (<), los cuales se dibujarán como se muestra en la ilustración 2.

Ilustración 2 Símbolos de comparación

Puesto que estamos usando un display de ánodo común los códigos para estos símbolos se muestran en la tabla 2.

Símbolo	Α	В	С	D	Е	F	G
>	0	0	0	0	1	1	1
<	0	1	1	0	0	0	1
=	0	1	1	0	1	1	1

Tabla 2 Códigos de los símbolos de comparación

Las señales del diseño pueden distribuirse de acuerdo a la ilustración 3.

not used * 1	24 * not used
a(2) = 2	23 * not used
a(1) = 3	22 * not used
a(0) = 4	21 = display(6)
b(2) = 5	20 = display(5)
b(1) = 6	19 = display(4)
b(0) = 7	18 = display(3)
ref(2) = 8	17 = display(2)
ref(1) = 9	16 = display(1)
ref(0) = 10	15 = display(0)
sel = 11	14 * not used
not used * 12	13 * not used

Ilustración 3 Distribución de señales en el PLD 22V10

- 2.- Simular el diseño en Galaxy ó Xilinx.
- 3.- Una vez simulado el sistema construir el circuito apropiado para probarlo en el laboratorio.

En el laboratorio:

- 1.- Programar la GAL usando el programador disponible del laboratorio2.- Verificar el correcto funcionamiento del sistema.

^{*} Reportar observaciones y conclusiones parciales de forma obligatoria.