PANDIT DEENDAYAL PETROLEUM UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY END SEMESTER EXAMINATION SEPTEMBER 2018

B. Tech Computer Engineering

Semester V

Course Name: Theory of Computation Course Code: 18CP 302 Max. Marks: 50

1.	a	Design a DFA for the language $L=\{w w \in (a,b)^*, n_a(w) \mod 3=0 \text{ and } n_b(w) \mod 3=0\}$	(4)
	b	State Kleene's theorem. Convert the following NFA to a DFA and informally describe the language it accepts.	(6)
	С	Prove that language $L=\{ww^R \mid w \in (a,b)^*\}$ is not regular using pumping lemma.	(5)
2.	a	 (i) Write regular expression for strings not containing 110 as substring. Also draw its NFA and DFA. (ii) For the two regular expressions given below, (a) find two strings corresponding to r₂ but not to r₁ and (b) find three strings corresponding to both r1 and r2. r₁ = a* + b* r₂ = ab* + ba* + b*a + (a*b)* 	(10)
	b	Draw a PDA for the following language. $L = \{0^n 1^m n \le m \le 2n\}$	(5)
	С	Given an example for a language for which PDA is not possible to design. Show that the grammar $G: E \rightarrow E + E + E + E + E + E + E + E + E +$	(5)
3.		State and prove pumping lemma for context free languages. Whether the language L is a context- free? Justify your answer with counter examples. $L = \{a^i b^j c^k 0 \le i \le j \le k\}$	(12)
		Given the following grammar G with production rules $S \rightarrow ASB \mid \epsilon$; $A \rightarrow aAS \mid a$; $B \rightarrow SbS \mid A \mid bb$; Can you apply CYK algorithm on G to test the membership of the string w=aabb in $L(G)$? Justify your answer mentioning the necessary changes that you make in G. Show the complete steps in testing the membership.	(8)