

Machine Learning

Juan Facorro - Marcos Almonacid

What is ML?

Machine learning is a subfield of artificial intelligence (AI) that deals with the construction and study of systems that can **learn** from data.

Learn

"To generalize is to learn." - Unknown

Introduction - Bias

$$8 = T$$
 $4 = T$
 $2 = T$ $13 = F$ $12 = ?$
 $5 = F$

- To generalize we introduce a bias.
- Occam's Razor.

9 = F

Each method introduces a different bias.

Types of Problems - Classification

Assign a class (or many classes) to an object formed by various attributes.

Examples

- Spam mail
- Identify a digit from a group of pixels
- Assign a subject(s) to a news article

Types of Problems - Regression

Assign a real number to an object.

<u>Examples</u>

- The price of a house
- Predict the stock prices

Types of Problems - Search & Rank

Find and order answers to a problem according to their likelihood.

<u>Examples</u>

- Search engines
- Recommendation systems

Types of Problems - Novelty Detection

Detect outliers which are objects different from the average.

<u>Examples</u>

- Credit card alarms
- Critical systems failure

Types of Problems - Clustering

Form groups of similar objects.

<u>Examples</u>

Consumer segmentation

Types of Problems - Relevant Input

Figure out what attributes are responsible for the solution while solving the problems presented before or others.

Examples

Identify relevant symptoms in medical research.

Basic ML Mechanism

Basic Methods - Decision Trees

- Used in classification.
- Most relevant class on top.
- Done building when leaves are pure classes.

Basic Methods - Decision Trees

Overfitting!

Basic Methods - Perceptron

Results Evaluation - Error Estimation

- Measure with a test data set.
- No test set available, cross-validation.

(Un)Supervised Learning

Supervised

- Trained on labelled examples.
- Attempts to generalise a function or mapping from inputs to outputs.

Unsupervised

- Operate on unlabelled examples, i.e., input where the desired output is unknown.
- The objective is to discover structure in the data.

Steps for Solving ML Problems

- Identify the problem and get expert knowledge.
- Get lots and lots of data!
- Choose one or more adequate methods.
- Train various models with the training set.
- Evaluate them with the validation set.
- Estimate error with the test set.

Coffee Break & Questions

On to the next one...

Ensembles

What is an ensemble?

Ensembles - Categories

Plain

- all experts
- all good individually
- different opinions in some cases

Divisive

- divide and conquer
- useful for big problems
- need a selective function

Ensembles - Success Case

NETFLIX

Netflix Prize

Home

Rules

Leaderboard

Update

Leaderboard

Showing Test Score. Click here to show quiz score

Display top 20 ▼ leaders.

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos				
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11

Ensembles - Bias/Variance Dilemma

High Bias

High Variance

Ensembles - Bias/Variance Dilemma

SOLUTIONS

Reduce Variance when no Bias (Bagging and Random Forest)

Reduce Bias when Stable Predictors (Boosting)

- Simple and effective
- Uses bootstraps and unstable predictors
- Reduces variance averaging predictors

Analogy:

Diagnosis based on multiple doctors' majority vote.

Samples

7, 7, 34, 2, 6, 2

10, 2, 4, 6, 6, 7

7, 34, 4, 6, 4, 7

Combination Rules

For Classification:

Each model votes for a class. The class with more votes is chosen

Combination Rules

For Regression/Ranking:

Simple average of predictions

Ensembles - Random Forest

- Improves Bagging only for decision trees
- Very used. Almost automatic
- Results comparable with current methods

Ensembles - Random Forest

Adds little changes to tree growth

No Bias

Adds Variance (but is fine)

Ensembles - Boosting

Multiple Weak Predictors

Bootstrap

Weight

Ensembles - Boosting

Combination Rules

Takes a vote from each model

Weighted average of votes

Ensembles - Boosting

- constructing D_t :
 - $D_1(i) = 1/m$
 - given D_t and h_t :

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
$$= \frac{D_t(i)}{Z_t} \exp(-\alpha_t y_i h_t(x_i))$$

where $Z_t = \text{normalization constant}$

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$$

- <u>final classifier</u>:
 - $H_{\text{final}}(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right)$

AND THAT'S ALL I HAVE

TO SAY ABOUT THAT.

Support Vector Machines

SVM

Huh... What is it good for?

Classification

Regression

Novelty Detection

SVM

Huh... What is it good for?

- Particle Identification.
- Face Identification.
- Text Categorization.
- Bioinformatics.

SVM - Linear Separators

SVM - Classification Margin

- Examples closest to the hyperplane are support vectors.
- Maximizing the margin is good according to intuition and learning theory.

SVM - Formulation

Lagrangian:

$$L(w, b, \mu) = J(w, b, \xi) + \sum_{t} \alpha_{t} [1 - \xi_{t} - y_{t}(wx_{t} + k)] + \sum_{t} \mu_{t} \xi_{t}$$

$$= -\frac{1}{2} + C \sum_{t=1}^{T} \xi_{t} + \sum_{t} \alpha_{t} [1 - \xi_{t} - y_{t}(wx_{t} + k)] - \sum_{t} \mu_{t} \xi_{t}$$

$$(\alpha_{t} \ge 0 \quad \text{a} \quad \ge 0)$$

• Look for (w, b, ξ) minimal of L

$$\frac{\partial L}{\partial b} = 0 \iff w = \sum_{t} \alpha_{t} y_{t} x_{t}$$

$$\frac{\partial L}{\partial b} = 0 \iff \sum_{t} \alpha_{t} y_{t} = 0$$

$$\frac{\partial L}{\partial \xi} = 0 \iff C - \alpha_{t} - \mu_{t} = 0$$

SVM - Kernels

SVM - Kernels

Project data into a higher dimensional space.

Oooooh, aaaaah.

SVM - Kernels

- High Dim. Space: Dot product == expensive
- Kernels: function that represents the dot product.

Example: instead of
$$\Psi(x) = \left(\begin{array}{c} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{array} \right)$$

use

$$k(x, z) = (xz)^2$$

SVM - Using them

- Choose a kernel.
- Minimize the margin.
- Use the decision function:

$$x \mapsto \operatorname{sign}\left(\sum_{t} \alpha_{t} y_{t} k(x_{t}, x) + b\right)$$

SVM - Summary

- SVMs maximize the margin.
- Projects data into a higher dimensional space.
- Kernels simplify the computation.

No Coffee Break For You

Artificial Neural Networks

Some other time...