

Actividad 1 Semáforo LED

Internet de las Cosas

Ingeniería en Desarrollo de Software

TUTOR: Marco Alonso Rodríguez

ALUMNO: Homero Ramirez Hurtado

FECHA: 23 de Junio del 2025

. Introducción.
. Descripción.
. Justificación.
 . Desarrollo. • Armado del Circuito. • Codificación. • Emulación del Circuito. . Conclusión.
. Referencias.

Índice.

Introducción.

Arduino es mucho más que una placa electrónica con componentes: es una puerta de entrada al mundo de la creatividad tecnológica. Nació con la idea de hacer la programación y la electrónica accesibles para todos, desde estudiantes y artistas hasta ingenieros y makers empedernidos. Su encanto radica en su sencillez: puedes conectar sensores, luces, motores o pantallas, escribir unas líneas de código y, de pronto, tu idea empieza a tomar forma en el mundo real.

Lo que hace especial a Arduino no es solo su tecnología, sino su comunidad. Miles de personas comparten proyectos, soluciones y consejos, lo que crea un entorno de aprendizaje colaborativo y estimulante. Gracias a esto, aprender electrónica ya no es una experiencia solitaria o intimidante: es algo divertido, inspirador y, sobre todo, posible.

Además, Arduino tiene un enfoque ético y educativo. Su hardware y software son de código abierto, lo que significa que cualquiera puede estudiarlo, modificarlo y compartirlo. En un mundo cada vez más digital, nos devuelve el poder de entender y construir la tecnología que usamos.

Descripción.

Usar Arduino es como tener una caja de herramientas infinita para convertir ideas en realidad. Uno de sus mayores beneficios es que te permite aprender haciendo: no necesitas ser un experto en electrónica o programación para empezar, solo tener curiosidad y ganas de experimentar. Esa accesibilidad democratiza la tecnología, haciendo que innovar esté al alcance de todos.

Con Arduino puedes desarrollar desde proyectos simples, como encender una luz cuando alguien entra a una habitación, hasta sistemas más complejos como estaciones meteorológicas, robots o dispositivos inteligentes para el hogar. La posibilidad de automatizar tareas cotidianas con tus propias manos da una sensación de autonomía y creatividad difícil de igualar.

Otro gran beneficio es su comunidad global: miles de personas que comparten tutoriales, ideas, errores y soluciones. Siempre hay alguien más que ya enfrentó lo mismo y quiere ayudarte. Además, al ser de código abierto, puedes personalizar todo a tu gusto y aprender de cómo otras personas lo han hecho.

Finalmente, Arduino estimula la lógica, la resolución de problemas y el pensamiento crítico, habilidades clave tanto para lo técnico como para la vida diaria. En resumen, usar Arduino no es solo aprender tecnología, es desarrollar confianza, creatividad y una nueva forma de ver el mundo.

Justificación.

Tinkercad es una plataforma en línea que nos permite simular circuitos eléctricos y programar microcontroladores de forma visual, segura y completamente accesible.

Para ilustrar su funcionalidad, vamos a trabajar con un ejemplo sencillo pero representativo: la emulación de un semáforo LED. Este proyecto nos enseña conceptos clave como la secuencia de tiempos, el manejo de salidas digitales y la lógica de programación básica en un entorno práctico y visual.

¿Por qué usar Tinkercad? Porque nos da la posibilidad de equivocarnos sin consecuencias físicas, de probar, ajustar y volver a empezar cuantas veces queramos. También elimina barreras como el costo de materiales o el acceso a componentes electrónicos.

Además, su interfaz amigable permite que tanto principiantes como personas con experiencia exploren ideas con creatividad. En resumen, Tinkercad es más que un emulador: es un espacio para aprender haciendo, desarrollar habilidades técnicas y descubrir lo mucho que podemos construir con solo una idea y curiosidad.

Desarrollo.

Armado de Circuito.


```
Codificación.
void setup() {
 pinMode(9, OUTPUT);
 pinMode(8, OUTPUT);
 pinMode(7, OUTPUT);
}
void loop() {
 // Encender LED rojo
 digitalWrite(9, HIGH);
 digitalWrite(8, LOW);
 digitalWrite(7, LOW);
 delay(5000); // 5 segundos en rojo
 // Encender LED naranja
 digitalWrite(9, LOW);
 digitalWrite(8, HIGH);
 digitalWrite(7, LOW);
 delay(2000); // 2 segundos en naranja
 // Encender LED verde
 digitalWrite(9, LOW);
 digitalWrite(8, LOW);
 digitalWrite(7, HIGH);
 delay(5000); // 5 segundos en verde
}
```

Emulación del Circuito.

Led Rojo.

Led Naranja.

Led Verde.

Conclusión.

Este proyecto básico de semáforo con Arduino y Tinkercad ha sido una introducción efectiva al mundo de la programación y prototipado electrónico. A través del uso de un circuito sencillo con tres LEDs y un microcontrolador, se ha comprendido el funcionamiento de la estructura setup() y loop() del lenguaje C++ en el entorno de Arduino, así como la lógica secuencial para controlar salidas digitales mediante digitalwrite () y delay().

También se ha aprendido a asignar nombres significativos a los pines mediante const int, lo cual mejora la legibilidad y mantenimiento del código. Por otro lado, Tinkercad facilitó la simulación del circuito, permitiendo visualizar su comportamiento sin necesidad de hardware físico, lo cual es ideal para validar conceptos y detectar errores.

Además de afianzar la lógica de programación, este ejercicio refuerza conocimientos sobre electrónica básica, como la polaridad de los LEDs, el uso de resistencias y la correcta conexión a GND. En conjunto, este tipo de prácticas desarrollan habilidades clave para el diseño de sistemas embebidos, fomentan la creatividad y motivan la exploración de proyectos más complejos, como intersecciones dobles, sensores o botones peatonales. Es un primer paso hacia aplicaciones tecnológicas más avanzadas con Arduino.

Referencias.

Video Tutoría 1.

Copilot.