1 First pass

At iteration k (crosscheck this),

$$P: \min_{\alpha \in \mathbb{R}} \ \phi(\alpha)$$
 where $\phi(\alpha) = x_k - \alpha \nabla f(x)|_{x=x_k}$

and then

$$\hat{\alpha_k} = \underset{\alpha \in \mathbb{R}}{\operatorname{argmin}} \ \phi(\alpha)$$
$$x_{k+1} = x_k - \hat{\alpha_k} \nabla f(x)|_{x = x_k}$$

How to do line search?

- 1. Start with a bracket.
- 2. How? Go forward and backward.
- 3. Once we have [a,b], we can do golden section or fibonacci section method.
- 4. We have I_1 from [a, b]. We have to pick an ε and then calculate n from it.
- 5. From n, calculate F_n . Write function to calculate p_j and q_j . Write function to select left interval or right interval.
- 6. Details in notes.

2 Second pass

Exact steps of forward and backward:

- 1. Start with α_0 and an h (baby steps, so h should be small value).
- 2. Go to $\alpha_0 + h$, see if $\phi(\alpha_0) > \phi(\alpha_0 + h)$.
- 3. If yes, go to 2h, 4h, 8h, and keep checking same condition.

- 4. If no, then revert backwards using a different GP (or for simplicity use the same GP.)
- 5. As long as the function is decreasing you keep going forward.
- 6. Then as long as the function is decreasing you keep going forward.
- 7. You end up with a small bracket where there should be a minima.

Exact steps of fibonacci method:

$$1. I_n = \frac{I_1}{F_n}$$

2.
$$I_n < \varepsilon$$

3.
$$I_k = I_{k+1} + I_{k+2} = (F_{n-k} + F_{n-k-1})I_n = F_{n-k+1}I_n$$

4.
$$I_{k+2} = I_k - I_{k+1}$$

5. Either
$$x_p^k = x_u^k - I_{k+1}$$
 or $x_q^k = x_l^k + I_{k+1}$

- 6. Last mei $x_p^k = x_q^k$, then use a δ -disturbance.
- 7. For numerical reasons this can happen before, to δ wala ek iteration chalaya jayega.

8. Choose
$$\frac{\delta}{2} < \frac{I_1}{2F_n}$$

- 9. See image for when to choose which interval.
- 10. Due to numerical issues, at some point x_p^k might be $> x_q^k$. In such case, choose x^* to be the mid point of x_l^k and x_u^k .

3 The third idea

Since we are doing quadratic optimization, we can find a closed form solution for α :

$$\phi(\alpha) = x^k - \alpha \nabla f(x^k)$$
 and $f(x) = \frac{1}{2}x^TQx - b^Tx$
$$\hat{\alpha_k} \text{ is the minimizer of } \phi(\alpha)$$
 setting $\phi'(\alpha) = 0$
$$\nabla f(x) = Qx - b$$

$$\phi'(\alpha) = \nabla f \left(x^k - \alpha \nabla f(x^k)\right)^T \nabla f(x^k)$$

let $g = \nabla f(x^k)$ and using x instead of x^k in the following for simpler notation $\Rightarrow (Qx - \alpha Qg - b)^T (Qx - b) = 0$ $\Rightarrow (x^T Q^T - \alpha g^T Q^T - b^T) (Qx - b) = 0$ $\Rightarrow x^T Q^T Qx - x^T Q^T b - \alpha g^T Q^T Qx + \alpha g^T Q^T b - b^T Qx + ||b||^2 = 0$

Note:
$$Q$$
 is symmetric pd and $x^TQ^Tb = b^TQx$ (transpose of as scalar)
$$\Rightarrow x^TQ^2x - 2x^TQb - \alpha g^TQ^2x + \alpha g^TQb + \|b\|^2 = 0$$

$$\Rightarrow \alpha = \frac{x^TQ^2x - 2x^TQb + \|b\|^2}{g^TQ^2x - g^TQb}$$

given that the denominator is not zero (it is a scalar)

The denominator is zero only when either the gradient is zero or Qx = b both of which only happen at the optimum point

(because
$$g^T Q(Qx - b) = 0$$
 only when either $g = 0$ or $Qx - b = 0$)

Note: x here is not a variable, but actually x^k (a fixed value)