Homework :- 3

Prithiv Dev Devendran

Readings of Binary Search Tree: -

Binary search Tree	Average	Average	Average	Average
				Height of
Input	Real	User	Sys	Tree
50000 0 0	119ms	70ms	40ms	41
75000 0 0	201ms	140ms	50ms	37
100000 0 0	286ms	170ms	110ms	38
250000 0 0	832ms	530ms	300ms	44
50000 1 0	85380ms	84970ms	280ms	49999
50000 -1 0	76989ms	76590ms	280ms	49999
100000 1 0	208730ms	207872ms	620ms	99999
100000 -1 0	206117ms	205100ms	740ms	99999

Binary search in ascending order

Homework :- 3

Red-Black Tree	Averag e	Averag e	Averag e	Average	Averag e	Averag e	Averga e	Average	Average	Average
Input	Real	User	Sys	Height of Tree	case 1	case2	case 3	Right- rotate	left- rotate	Black height
50000 0 1	126ms	60ms	50ms	18	25583	9716	9716		14609	10
75000 0 1	215ms	140ms	60ms	19	38642	14518	14518	21856	21900	10
100000 0 1	288ms	200ms	80ms	19	51241	19194	19194	28970	28917	11
250000 0 1	810ms	470ms	330ms	21	128338	48533	48533	72980	72662	11
50000 1 0	132ms	70ms	50ms	28	49666	0	0	49971	0	15
50000 -1 0	81ms	20ms	50ms	18	25661	9724	9724	14604	14557	10
100000 1 1	171ms	60ms	100ms	30	99964	0	0	0	99969	16
100000 -1 1	173ms	60ms	100ms	30	99964	0	0	99969	0	16

Red-Black for ascending order

Red-Black for ascending order

Conclusion:-

From the above graph it is clear that a red-black tree is a self-balancing tree, while a binary search tree is not. binary search tree is able to form long chains of nodes that can cause searches to take linear time whereas red black tree takes logarithmic time.

Red Black Tree: best case O(logN), worst case O(logN) Binary Search Tree: best case O(logN), worst case O(N)