Duale Hochschule Baden-Württemberg

Logik und Algebra

3. Übungsblatt

- 1. Aufgabe: Seien A,B,C,D Mengen.
 - (a) Beweisen Sie: $(A \times C) \cup (B \times D) \subseteq (A \cup B) \times (C \cup D)$.
 - (b) Geben Sie ein Beispiel für $(A \times C) \cup (B \times D) \neq (A \cup B) \times (C \cup D)$ an, und beweisen Sie so durch ein Gegenbeispiel, dass die Gleichheit allgemein nicht gilt.
- 2. Aufgabe: Sei M eine Menge mit $n \in \mathbb{N}_0$ Elementen, also |M| = n. Beweisen Sie, dass $|\mathcal{P}(M)| = 2^n$.
- 3. Aufgabe: Welche Eigenschaften hat folgende Relation R über der Menge $M = \{1, 2, 3, 4, 5\}$?

$$R = \{ (1,3), (2,4), (2,2), (3,1), (4,2), (2,5), (4,5) \}$$

4. Aufgabe: Gegeben sei die Relation R über der Menge $M = \{a, b, c, d, e\}$:

$$R = \{ (a, a), (a, d), (b, b), (b, e), (c, c), (d, a), (d, d), (e, b), (e, e) \}$$

- (a) Zeigen Sie, dass diese Relation eine Äquivalenzrelation ist.
- (b) Zeichnen Sie den durch R dargestellten Graphen der Knoten aus Menge M.
- (c) Bestimmen Sie die Quotientenmenge M/R.
- 5. Aufgabe: Auf der Menge $M=[-2\pi,2\pi]$ ist die Relation \sim definiert durch

$$x \sim y \iff \sin(x) = \sin(y)$$
.

- (a) Zeigen Sie, dass dies eine Äquivalenzrelation ist.
- (b) Welche Elemente sind in der Äquivalenzklasse $[0]_{\sim}$?
- (c) Wie lautet die Quotientenmenge $M/_{\sim}$?

Lösung 2. Übungsblatt

Lösung 1: Die formalisierten Aussagen (mit der Wahl x an erster Stelle von $F(\cdot, \cdot)$ zur sinnvollen Vergleichbarkeit) lauten:

- (a) $\exists y : \neg \exists x : F(x,y) \Leftrightarrow \exists y : \forall x : \neg F(x,y)$
- **(b)** $\neg \forall x : \exists y : \neg F(x,y) \Leftrightarrow \exists x : \neg \exists y : \neg F(x,y) \Leftrightarrow \exists x : \forall y : F(x,y)$
- (c) $\forall y : \forall x : \neg F(x, y)$
- **(d)** $\forall y: \exists x: F(x,y)$
- (e) $\exists x : \neg \exists y : F(x,y) \Leftrightarrow \exists x : \forall y : \neg F(x,y)$
- (f) $\exists x : \exists y : F(x,y)$

Die Aussagen (b), (d) und (f) handeln vom Folgen, (a), (c) und (e) vom Nicht-Folgen. Es gibt folgende Zusammenhänge:

- **(b)** \Rightarrow **(d)** wegen Satz 1.36
- (d)⇒(f) da eine Ausage für alle die Existenz einschließt (AE und EI)
- (c)⇒(a) da eine Aussage für alle die Existenz einschließt (AE und EI)
- (c)⇒(e) da eine Aussage für alle die Existenz einschließt (AE und EI)

Insgesamt lauten die Zusammenhänge also:

$$(b) \Rightarrow (d) \Rightarrow (f)$$
 $(a) \Leftarrow (c) \Rightarrow (e)$

Lösung 2:

(a)

Schritt	Aussage	Begündung
1	$\forall x: \forall y: P(x,y)$	Prämisse
2.1	Es sei t beliebig	Annahme für Al
2.2.1	Es sei s beliebig	Annahme für Al
2.2.2	$\forall y: P(u,y)$, u beliebig	AE 1
2.2.3	P(u,v), v beliebig	AE 2.2.2
2.2	$\forall x: P(x,v) \text{ mit } u = s$	Al 2.2.1 2.2.3
2	$\forall y: \forall x: P(x,y) \text{ mit } v=t$	Al 2.1 2.2

(b)

Schritt	Aussage	Begündung	
1	$\exists x: \exists y: P(x,y)$	Prämisse	
2.1	Sei t so, dass $\exists y: P(t,y)$	Annahme für EE 1	
2.2.1	Sei s so, dass $P(t,s)$	Annahme für EE 2.1	
2.2.2	Mit t gilt $\exists x: P(x,s)$	El 2.2.1	
2.2.3	Mit s gilt $\exists y: \exists x: P(x,y)$	El 2.2.2	
2.2	$\exists y: \exists x: P(x,y)$	EE 2.1 2.2.1 2.2.3	
2	$\exists y: \exists x: P(x,y)$	EE 1 2.1 2.2	

(c)

Schritt	Aussage	Begündung	
1	$\exists x : \forall y : P(x,y)$	Prämisse	
2.1	Sei s beliebig	Annahme für Al	
3.1	Sei t so, dass $\forall y: P(t,y)$	Annahme für EE 1	
3.2.1	P(t,u), u beliebig	AE 3.1	
3.2.2	Mit t gilt $\exists x: P(x,u)$	El 3.2.1	
3.2	$\exists x: P(x,u)$	EE 1 3.1 3.2.2	
3	$\forall y: \exists x: P(x,y) \text{ mit } s=u$	AI 2.1 3.2	

Lösung 3:

Schritt	Aussage	Begründung
1	$(\forall x: P(x)) \to \bot$	Prämisse
2	$(\exists x : (P(x) \to \bot)) \lor ((\exists x : (P(x) \to \bot)) \to \bot)$	TND
3.1	$\exists x: (P(x) \to \bot)$	Annahme für D 2
3.1.1	$\exists x: (P(x) \to \bot)$	3.1
3.2	$(\exists x: (P(x) \to \bot)) \to \bot$	Annahme für D 2
3.2.1	t beliebig, $P(t) \lor (P(t) \to \bot)$	TND
3.2.2.1	P(t)	Annahme für D 3.2.1
3.2.2.1.1	P(t)	3.2.2.1
3.2.2.2	$P(t) \rightarrow \bot$	Annahme für D 3.2.1
3.2.2.2.1	$\exists x: (P(x) \to \bot)$	EI 3.2.2.2
3.2.2.2.2	Т	IE 3.2 3.2.2.1
3.2.2.2.3	P(t)	F 3.2.2.2.2
3.2.2	P(t)	D 3.2.1
3.2.3	$\forall x: P(x)$	Al 3.2.1 3.2.2
3.2.4	<u></u>	IE 1 3.2.3
3.2.5	$\exists x: (P(x) \to \bot)$	F 3.2.4
3	$\exists x: (P(x) \to \bot)$	D 2

Lösung 4:

- (a) Widerlegung durch Gegenbeispiel: Die Aussage ist falsch, da $6 \cdot 41^2 + 36 \cdot 41 + 1 = 11563 = 31 \cdot 373$. \square
- **(b)** Direkter Beweis von $\forall n \in \mathbb{N} : \exists k \in \mathbb{N} : n^2 (n-1)^2 = 2k-1$

Gegeben ist: $n \in \mathbb{N}$

Zu zeigen ist: $\exists k \in \mathbb{N} : n^2 - (n-1)^2 = 2k - 1.$

Nach binomischen Formeln gilt: $n^2 - (n-1)^2 = n^2 - (n^2 - 2n + 1) = 2n - 1$.

Wähle also $k = n \in \mathbb{N}$.

- (c) Direkter Beweis der Aussage 100! hat genau 24 Nullen am Ende:
 - 1. Es entsteht genau dann eine Null am Ende, wenn die Primzahlen 2 und 5 multipliziert werden.
 - 2. In der Zahl 100! gibt es 50 gerade Zahlen, die also den Primfaktor 2 mindestens einmal besitzen.
 - 3. In der Zahl 100! gibt es 20 Zahlen, die durch 5 teilbar sind und 4 Zahlen, die durch $5^2=25$ teilbar sind. Es gibt keine Zahl, die durch 5^3 teilbar ist.

- 4. Damit haben die Faktoren in 100! genau 20+4 Primfaktoren der Form 5 und deutlich mehr Primfaktoren der Form 2.
- 5. Damit können genau 24 Nullen aus den $5 \cdot 2$ -Paaren erzeugt werden.

Lösung 5: Beweis der Äquivalenz $\neg(A \land \neg B) \Leftrightarrow A \to B$

⇒ Visueller Beweis:

Schriftlicher Beweis von $\neg(A \land \neg B) \Rightarrow A \to B$

Gegeben ist: $(A \wedge (B \rightarrow \bot)) \rightarrow \bot$

Zu zeigen ist: $A \rightarrow B$

- 1. Angenommen A gilt, so ist zu zeigen, dass B gilt.
- 2. Aus TND folgt, dass entweder B gilt oder $B \to \bot$ gilt.
- (a) Gilt B, so ist die Aussage gezeigt.
- (b) Gilt $B \to \bot$,
 - i. so gilt $A \wedge (B \to \bot)$.
 - ii. Nach IE gilt nach Prämisse dann \perp .
 - iii. Ex falso quodlibet gilt dann auch B.
- 3. Da für beide Fälle B gezeigt wurde, gilt nach II die Konklusion $A \to B$.

Visueller Beweis:

Schriftlicher Beweis von $A \to B \implies \neg (A \land \neg B)$

Gegeben ist: $A \rightarrow B$

Zu zeigen ist: $(A \wedge (B \rightarrow \bot)) \rightarrow \bot$

- 1. Angenommen es gilt $A \wedge (B \to \bot)$ gilt, so ist daraus \bot zu folgern.
- 2. Gilt $A \wedge (B \to \bot)$ so gilt nach KL und KR A und $B \to \bot$.
- 3. Nach Prämisse und A gilt nach IE daher B.
- 4. Nach $B \to \bot$ und B gilt nach IE daher \bot .
- 5. Damit wurde nach II die Konklusion $(A \land (B \to \bot)) \to \bot$ gezeigt.