Efficient machine learning for causal effects

Paul Zivich

University of North Carolina at Chapel Hill

March 15, 2021

Outline

- Motivating problem
- Identification
 - Assumptions
- Stimation
 - High-dimensional data
 - Solutions to the problem
 - Model misspecification
 - Machine learning
 - Cross-fitting
- Simulations
- Implementation
- Conclusion

Quick Note on Efficiency

Efficiency refers to statistical efficiency of an estimator

Low mean squared error

Cross-fitting procedures are not computationally efficient

Notation

 Y_i : observed outcome of interest for individual i

 X_i : observed exposure or treatment of interest

 $Y_i(x)$: potential outcome under exposure set to x

 Z_i : covariate(s)

Motivating Problem

Our collaborators want us to help them address what the difference in the risk of atherosclerotic cardiovascular disease (Y) had been if everyone was given statins (x=1) compared to if no one was given statins (x=0)?

$$\psi = E[Y(x=1)] - E[Y(x=0)]$$

They are planning on collecting some observational (non-investigator randomized) data to address this.

Identification

Identifiability Assumptions

Need to determine under what assumptions the average causal effect is *identifiable*

One set of identifiability assumptions

- Causal consistency
- Conditional exchangeability
- Positivity

Causal Consistency

An assumption regarding the potential outcomes observed

• We are able to observe at least one for some individuals

For X can write as

$$Y_i = Y_i(x)$$
 if $x = X_i$

or as the treatment-variation irrelevance analog

$$Y_i = Y_i(x, b)$$
 for all $b \in B$

where b could be versions of statins (e.g., 10mg vs 100mg)

Conditional Exchangeability

Synonyms

- No unmeasured confounding
- Potential outcomes of ASCVD are conditionally independent of statin use
- No unmeasured common causes of statins and ASCVD

Requires substantive knowledge outside of the data

- Directed Acyclic Graph
- Single-World Intervention Graph

Positivity

Conditional exchangeability requires that the probability for all values of statins to be non-zero in all strata of the confounders

if
$$Pr(Z = z) > 0$$
 then $Pr(X = x | Z = z) > 0$

Positivity violations

- Some individuals never have access to statins
- Example: statins for children under 18 without inherited hypercholesterolemia

Estimation

Motivating Problem

After discussion with our collaborators, the following covariates are determined to be confounders:

- Age
- Low-density lipoprotein (LDL)
- American Heart Association's ASCVD risk scores
- Diabetes

Model-free Causal Inference

When Z is low-dimensional

- No model is required
- Directly apply the non-parametric g-formula
- Unlikely in practice

Our Z includes continuous covariates (LDL, ASCVD risk scores)

• Model-free is not an option

High-Dimensional Data

High-dimensional data

- Continuous Z or more strata of z than n
 - LDL can range from less than 100 to more than 190
- Sparse data in comparison to data dimension

How can we make progress?

- Categorize
 - \bullet E.g., LDL as $<\!\!140$, 140-159, 160-189, 190+
- Model

Categorize

Model

Model is an a priori restriction on the distribution of the data

- Parametric model restricts to a parametric distribution
- Not necessary for identification
- Adds information not in the data

Two processes can choose to model (nuisance models)

- exposure-model: $Pr(X|Z;\alpha) = \pi(Z;\alpha)$
- outcome-model: $Pr(Y|X=x,Z;\beta)=m_x(Z;\beta)$

No Model Misspecification

Addition of information via a model is not free

- Requires the addition of assumption on model specification
- ullet True density is within model's (\mathcal{M}) class of densities
- exposure-model: $\Pr(X|Z) \in \mathcal{M}_{\alpha}$
- outcome-model: $Pr(Y|X,Z) \in \mathcal{M}_{\beta}$

Implications

Suggests use of flexible models

Doubly Robust Estimators

Clever combination of $\pi(Z; \alpha)$ and $m_x(Z; \beta)$

- Consistent as long as one model is correct
- Two chances for parametric model

Common doubly-robust estimators

- Augmented inverse probability weighting
- Targeted maximum likelihood estimation

Machine Learning

Data-adaptive estimators (machine learning)

- Less restrictive than parametric modeling
 - Capture wider class of densities
- May be more reasonable to believe flexible enough model
 - Or that model is sufficiently close

Machine Learning

Problems in Application

- Convergence
- Complexity

Convergence

Remainder term goes to zero as function of n

- Not computational complexity issue
 - NOT when software says 'did not converge'
 - Inherent feature of the estimators
- How fast standard error of estimators decreases with n
- For inference, root-n $(n^{-1/2})$ is desirable
 - Parametric models meet this criteria
 - Data-adaptive likely don't
- Slower than $n^{-1/2}$ may result in invalid inference
 - Estimated variance is too small
 - Implies greater certainty than true

Convergence

Convergence and AIPW

AIPW can allow for slower convergence

- Under the assumption that both models are correct
 - Second-order bias is a product of the approximation errors
 - Only need at least $n^{-1/4}$ for both models
- Wider range of models can be validly used with AIPW
 - Comes at cost of double-robustness
 - Becomes more akin to double-susceptible
 - Maybe okay if we use flexible models?

Complexity

Restrictions on the complexity of a model

- Allows borrowing of information across observations
- Restricted to Donsker class

Why restricting to Donsker is inappropriate

- Machine learning
 - Dimension allowed to increase with n
 - Exist in highly complex spaces

Cross-fitting

Approach to relax Donsker class restriction

- Estimate model in one split and predict in other split
- Since from different sample
 - Avoid the Donsker class restriction

Synonyms

- Sample splitting
- Double machine learning
- Cross-validated

Single Cross-fit

Single Cross-fit

Removes own-observation bias

- Best data-adaptive estimator memorizes the data
 - Highly predictive for the data
 - Poor out-of-sample performance
- Cross-fit prevents correlation between estimator and data
 - Without need for Donsker class

Double Cross-fit

Double Cross-fit

Removes own-observation bias & non-linearity

- Cross-fit prevents correlation between estimator and data
 - Without need for Donsker class
- Further de-couples data and estimators
 - Compared to single cross-fit

Looking Back...

Simulations

Data Generation

Average Causal Effect of Statins on ASCVD

- Age, low-density lipoprotein, ASCVD risk scores, diabetes
- 2000 reps with n = 3000

Metrics

- Bias
- 95% Confidence interval coverage

Approaches

ACE estimators

- AIPW
- TMLE
- Double Cross-fit (DC-)AIPW
- DC-TMLE

Nuisance model estimators

- Correct parametric model
- Main-effect parametric model
- Machine learning

Simulation Results

Simulation Results

Simulation Results

Implementation

Partition versus Split

Split

- Observations grouped into non-overlapping, equal-sized groups
- Let s indicate the number of splits for a data set
 - s = 2 randomly splits observations into two groups

Partition

- A particular division of splits
- E.g., IDs 1,2,4 are in split 1 and IDs 3,5,6 are in split 2

Algorithm Pseudo-Code

Repeat for p different partitions

- Partition data into s non-overlapping splits
- ② For each s:
 - Estimate $\hat{\pi}^s(Z_i^s)$
 - Estimate $\hat{m}_{x}^{s}(Z_{i}^{s})$
- For each s:
 - Predict $\hat{\pi}^{\bar{s}}(Z_i^s)$
 - Predict $\hat{m}_{x}^{\bar{s}}(Z_{i}^{s})$
 - Generate \hat{Y}_i^*
 - Estimate ψ^s
 - Estimate $Var(\psi^s)$
- **4** Estimate ψ^p as mean of $\hat{\psi}^s$
- **5** Estimate $Var(\psi^p)$ as mean of $\widehat{Var}(\hat{\psi}^s)$

Summarize all partitions with

$$\hat{\psi} = \mathsf{median}(\hat{\psi}^p); \quad \widehat{Var}(\hat{\psi})$$

Step 1: Partition Data into Splits

Step 2: Estimate Nuisance Models

Step 3: Estimate ψ^s

Step 3: Estimate ψ^s

Augmented Inverse Probability Weighting

$$\widehat{Y}_i^*(x) = \frac{I(X_i = x)Y_i}{\widehat{\pi}(Z_i)} + \frac{\widehat{m}_x(Z_i)(\widehat{\pi}(Z_i) - I(X_i = x))}{\widehat{\pi}(Z_i)}$$

Then calculate

$$\psi^{s} = \frac{1}{n_{s}} \sum_{i \in n_{s}} \widehat{Y}_{i}^{*}(x=1) - \widehat{Y}_{i}^{*}(x=0)$$

Step 4: Estimate ψ^p

Take the mean of all ψ^s

$$\hat{\psi}^p = \frac{1}{s} \sum_{i=1}^s \hat{\psi}^s$$

Step 5: Estimate $Var(\psi^p)$

Take the mean of all $Var(\psi^s)$

$$\widehat{Var}(\hat{\psi}^p) = \frac{1}{s} \sum_{i=1}^s \widehat{Var}(\hat{\psi}^s)$$

Repeat for p different partitions

Repeat previous steps for p times

Summarize all different partitions used via

$$\hat{\psi} = \mathsf{median}(\hat{\psi}^p)$$

$$\widehat{\mathit{Var}}(\hat{\psi}) = \mathsf{median}\left(\widehat{\mathit{Var}}(\hat{\psi}^{p}) + (\hat{\psi} - \hat{\psi}^{p})^{2}\right)$$

Median rather than mean since more stable to outliers

Why p Partitions?

Multiple splits

- Does not matter asymptotically
- \bullet For moderate n, $\hat{\psi}^p$ depends on the chosen split
 - Increases statistical efficiency
 - Decreases computational efficiency

Recommendations for Practical Application

- Flexible library of learners
 - k-fold super-learner
 - Variety of models
 - Flexible regression, tree-based, gradient, etc.
 - Explore multiple tuning parameters
- 2 Doubly-robust estimator
- Cross-fitting
- Include transformations in data

Software

Python

- zEpid
 - https://github.com/pzivich/zEpid
 - v0.9.0+ Supports single and double cross-fit
 - Support for both AIPW and TMLE
- https://github.com/pzivich/publications-code

R

- https://github.com/yqzhong7/AIPW
- https://github.com/pzivich/publications-code

Conclusions

Conclusions

Machine learning is a useful tool for nuisance model specification

- Allow for flexible models
- Less concern over misspecification relative to parametric models
 - Captures wider set of densities
- Best benefit in my opinion
 - Allows us to devote time to other biases

> Epidemiology. 2021 Feb 2. doi: 10.1097/EDE.00000000001332. Online ahead of print.

Machine learning for causal inference: on the use of cross-fit estimators

Paul N Zivich 1, Alexander Breskin

Affiliations + expand

PMID: 33591058 DOI: 10.1097/EDE.000000000001332

Further Reading

Doubly-robust estimators generally

- Daniel, Double Robustness, In: Statistics Reference Online Wiley 2014
- Robins & Ritov, Towards a Curse of Dimensionality Appropriate (CODA)
 Asymptotic Theory for Semi-Parametric Models, Statistics in Medicine 1997
- Kennedy, Semiparametric theory and empirical processes in causal inference. In: Statistical Causal Inferences and their Applications in Public Health Research Spring 2016 p141-167

Augmented inverse probability weighting

- Funk et al., Doubly Robust Estimation of Causal Effects. American Journal of Epidemiology 2011, 173:7 p761-767
- Keil et al., Resolving an Apparent Paradox in Doubly Robust Estimators.
 American Journal of Epidemiology 2018, 187:4 p891-892
- Bang & Robins, Doubly Robust Estimation in Missing Data and Causal Inference Models. *Biometrics* 2005, 61:4 p962-973

Targeted maximum likelihood estimation

 Schuler & Rose, Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies. American Journal of Epidemiology 2017, 185:1 p65-67

Further Reading

Machine Learning and Super learner

- Bi et al., What is Machine Learning? A Primer for the Epidemiologist.
 American Journal of Epidemiology Oct 2019, 188:12 p2222-2239
- Rose, Mortality Risk Score Prediction in an Elderly Population Using Machine Learning. American Journal of Epidemiology 2013, 177:5 p443-452
- Naimi & Balzer, Stacked Generalization: an Introduction to Super Learning. European Journal of Epidemiology 2018, 33:5 p459-464
- Keil & Edwards, You Are Smarter Than You Think: (Super) Machine Learning in Context. European Journal of Epidemiology 2018, 33:5 p437-440

Sample-splitting for machine learning

- Díaz, Machine learning in the estimation of causal effects: targeted minimum loss-based estimation and double/debiased machine learning, *Biostatistics* April 2020, 21:2 p353–358
- Chernozhukov et al., Double/debiased machine learning for treatment and structural parameters, The Econometrics Journal 2018 21, C1–C68
- Zheng & van der Laan, Cross-validated targeted minimum-loss-based estimation. In: Targeted Learning Springer 2011 p459–474
- Newey & Robins, Cross-Fitting and Fast Remainder Rates for Semiparametric Estimation, arXiv:1801.09138

Machine learning for causal inference

 Naimi et al., Challenges in Obtaining Valid Causal Effect Estimates with Machine Learning Algorithms. arXiv:1711.07137

Acknowledgments

pzivich

PNZ is supported by NICHD T32-HD091058

