Introduction to yosys

Synthesizer

- Tool used for converting the RTL to netlist
- Yosys is the synthesizer used in this course

Yosys setup

Verify the synthesis

NOTE

The set of Primary inputs / primary outputs will remain same between the RTL design and Synthesized netlist → Same Test bench can be used !!

Logic Synthesis

B

RTL Design

- RTL Design
 - Behavioral representation of the required specification

Digital Logic Circuit

RTL CODE

Synthesis

- RTL to Gate level translation
- The design is converted into gates and the connections are made between the gates
- This is given out as a file called netlist

What is .lib

- · .lib
 - Collection of logical modules.
 - Includes basic logic gates like And, Or , Not, etc...
 - Different flavors of same gate
 - · 2 input And gate
 - Slow
 - Medium
 - Fast
 - 3 input And gate
 - Slow
 - Medium
 - Fast
 - 4 input And gate

.....

Why different flavours of gate

 Combinational delay in logic path determines the maximum speed of operation of digital logic circuit

- So we need cells that work fast to make $T_{\text{\tiny COMBI}}\,\text{small}$

Are faster cells sufficient ?

Tclk >= tpd1 + tcomb + tsu2 th2 <= tpd1 + tcomb

Why we need slow cells?

- To ensure that there are no "HOLD" issues at DFF_B, we need cells that work slowly
- Hence we need cells that work fast to meet the required performance and we need cells that work slow to meet HOLD
- · The collection forms the lib

Faster Cells vs Slower Cells

- Load in Digital Logic circuit → Capacitance
- Faster the charging / discharging of capacitance \rightarrow Lesser the cell delay $\beta = M \text{ Cive } \qquad \qquad \text{In } = \frac{\beta}{2} \left((v_1) V + v_1) \right) \quad \text{with } \gamma \in \mathbb{R}^n, \text{ the conditions}$
 - To charge / discharge the capacitance fast , we need transistors
 capable of sourcing more current → ₩IDE TRANSISTORS
 - Wider transistors -> Low Delay -> More Area and Power as well !!
 - Narrow transistors -> More Delay -> Less Area and Power
 - Faster cells donot come free , they come at penalty of area and power

Selection of Cells

- Need to guide the Synthesizer to select the flavour of cells that is optimum for the implementation of logic circuit
- More use of faster cells
 - Bad circuit interms of Power and Area
 - Hold time violations ??
- More use of slower cells
 - Sluggish circuit , may not meet the performance need
- The guidance offered to the Synthesizer → "Constraints"

Synthesis (Illustration)

The circuit on the right is created from RTL using the gates available in the .Lib and given out as Netlist.