Wireshark + TCPDUMP + Tshark cheat sheet

cheatsheet-81

ARP Spoofing & Abnormality Detection

arp.opcode

A E							
arp.opcode							
No.	Time	Source	Destination	Protocol	Length Info		
154	41 80.331891	PcsCompu_53:0c:ba	Broadcast	ARP	60 Who has 192.168.10.4? Tell 192.168.10.5		
154	43 81.338537	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
15	57 83.338583	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
15	70 85.341994	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
15	78 87.350791	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
15	83 89.370744	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
159	90 91.423847	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
159	96 93.423440	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
160	00 95.433706	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
16:	11 97.439292	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
16:	15 99.440005	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
16:	19 101.442026	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
16	24 103.450591	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
16	29 105.458216	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
16	34 107.458309	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
164	40 109.468977	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
164	44 111.473990	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
164	49 113.473720	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
16	53 115.485747	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
16	59 117.495519	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
16	63 119.501047	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
16	67 121.507925	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		
16	72 123.518839	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba		

Identifying The Original IP Addresses

```
(arp.opcode) && ((eth.src == 08:00:27:53:0c:ba) || (eth.dst == 08:00:27:53:0c:ba)
```

```
> Frame 1541: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface \Device\NPF_{CCC4B960-1E92-4BD5-BBF3-11E2DFD12FE1}, id 0
> Ethernet II, Src: PcsCompu_53:0c:ba (08:00:27:53:0c:ba), Dst: Broadcast (ff:ff:ff:ff:ff)

Address Resolution Protocol (request)

Hardware type: Ethernet (1)

Protocol type: IPv4 (0x0800)

Hardware size: 6

Protocol size: 4

Opcode: request (1)

Sender MAC address: PcsCompu_53:0c:ba (08:00:27:53:0c:ba)

Sender IP address: 192.168.10.5

Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00)

Target IP address: 192.168.10.4
```

in this case, we might instantly note that the MAC address 08:00:27:53:0c:ba was initially linked to the IP address 192.168.10.5, but this was recently switched to 192.168.10.4. This transition is indicative of a deliberate attempt at ARP spoofing or cache poisoning.

ARP Scanning & Denial-of-Service

arp.opcode

It's possible to detect that indeed ARP requests are being propagated by a single host to all IP addresses in a sequential manner. This pattern is sympto

matic of ARP scanning and is a common feature of widely-used scanners such as Nmap.

Identifying Denial-of-Service

arp.opcode

<u> </u>								
arp	arp.opcode							
No.	Time	Source	Destination	Protocol	Length Info			
	523 2.491863	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.6 is at 08:00:27:53:0c:ba			
	524 2.499813	PcsCompu_53:0c:ba	Unionman_4d:e6:f3	ARP	60 192.168.10.1 is at 08:00:27:53:0c:ba			
	525 2.499843	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.3 is at 08:00:27:53:0c:ba			
	526 2.555962	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba			
	527 2.559771	PcsCompu_53:0c:ba	ASUSTekC_8a:a6:a8	ARP	60 192.168.10.1 is at 08:00:27:53:0c:ba			
	528 2.559795	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.8 is at 08:00:27:53:0c:ba			
	529 2.572048	PcsCompu_53:0c:ba	Micro-St_95:68:2a	ARP	60 192.168.10.1 is at 08:00:27:53:0c:ba			
	530 2.572080	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.7 is at 08:00:27:53:0c:ba			
	531 2.595782	PcsCompu_53:0c:ba	TP-Link_cf:b7:4c	ARP	60 192.168.10.1 is at 08:00:27:53:0c:ba			
	532 2.595817	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.2 is at 08:00:27:53:0c:ba			
	533 2.596021	PcsCompu_53:0c:ba	TP-Link_cf:b7:50	ARP	60 192.168.10.1 is at 08:00:27:53:0c:ba			
	534 2.596046	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.9 is at 08:00:27:53:0c:ba			
	535 2.615821	PcsCompu_53:0c:ba	Vizio_ba:73:d7	ARP	60 192.168.10.1 is at 08:00:27:53:0c:ba			
	536 2.615845	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.10 is at 08:00:27:53:0c:ba			
	537 4.499401	PcsCompu_53:0c:ba	TuyaSmar_37:b9:4f	ARP	60 192.168.10.1 is at 08:00:27:53:0c:ba			
	538 4.499432	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 Gratuitous ARP for 192.168.10.1 (Reply) (duplicate use of 192.168.10.1 detected!)			
	539 4.499439	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 Gratuitous ARP for 192.168.10.1 (Reply) (duplicate use of 192.168.10.1 detected!)			
	540 4.499451	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.6 is at 08:00:27:53:0c:ba			
	541 4.503037	PcsCompu_53:0c:ba	Unionman_4d:e6:f3	ARP	60 192.168.10.1 is at 08:00:27:53:0c:ba			
	542 4.503056	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.3 is at 08:00:27:53:0c:ba			
	543 4.556894	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.4 is at 08:00:27:53:0c:ba			
	544 4.561564	PcsCompu_53:0c:ba	ASUSTekC_8a:a6:a8	ARP	60 192.168.10.1 is at 08:00:27:53:0c:ba			
	545 4.561588	PcsCompu_53:0c:ba	Netgear_e2:d5:c3	ARP	60 192.168.10.8 is at 08:00:27:53:0c:ba			

we may witness the duplicate allocation of 192.168.10.1 to client devices. This indicates that the attacker is attempting to corrupt the ARP cache of these victim devices with the intention of obstructing traffic in both directions.

802.11 Denial of Service (DeAuth)

limit our view to traffic from our AP's BSSID (MAC)

wlan.bssid == xx:xx:xx:xx:xx

```
Destination
     358 52.755310
                     Unionman 4d:e6:f1
                                          Vizio 4f:3d:54
                                                              802.11
                                                                                 395 Probe Response, SN=3538, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
                     Unionman 4d:e6:f1
                                          Vizio 4f:3d:54
                                                                                 395 Probe Response, SN=3539, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
     360 52.792727
                                                              802.11
     362 53.676082
                     Unionman_4d:e6:f1
                                         SichuanA_fd:91:e5
                                                                                 395 Probe Response, SN=3542, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
                                                              802.11
     365 53.811709
                     Unionman_4d:e6:f1
                                         SichuanA fd:91:e5
                                                                                 395 Probe Response, SN=3544, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
     367 59.909951
                     Unionman_4d:e6:f1
                                          SichuanA_fd:91:e5
                                                              802.11
                                                                                 395 Probe Response, SN=3545, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
     369 59.913389
                     Unionman_4d:e6:f1
                                         SichuanA_fd:91:e5
                                                              802.11
                                                                                 395 Probe Response, SN=3546, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
                                                                                 395 Probe Response, SN=3547, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
     371 60.085754
                     Unionman 4d:e6:f1
                                         SichuanA fd:91:e5
                                                              802.11
    372 60.279133
                     Unionman_4d:e6:f1
                                         Vizio_4f:3d:54
                                                              802.11
                                                                                 395 Probe Response, SN=3548, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
     374 62.421343
                     Unionman_4d:e6:f1
                                         IntelCor_af:eb:91
                                                                                 395 Probe Response, SN=3551, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
     376 62.792619
                     Unionman_4d:e6:f1
                                         4a:b1:75:42:6c:24
                                                                                 395 Probe Response, SN=3553, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
                                                              802.11
     378 62.796637
                     Unionman_4d:e6:f1
                                         4a:b1:75:42:6c:24
                                                              802.11
                                                                                 395 Probe Response, SN=3554, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
                                                                                 395 Probe Response, SN=3555, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
     379 62.897804
                     Unionman 4d:e6:f1
                                         4a:b1:75:42:6c:24
                                                              802.11
                     Unionman_4d:e6:f1
                                                                                 395 Probe Response, SN=3556, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
                                         4a:b1:75:42:6c:24
     381 62.901192
                                                              802.11
     383 63.004809
                     Unionman_4d:e6:f1
                                         4a:b1:75:42:6c:24
                                                                                 395 Probe Response, SN=3557, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
                                                                                                                  Flags=....., BI=100, SSID="HTB-Wireless"
     385 63.098665
                     Unionman_4d:e6:f1
                                         SichuanA_fd:91:e5
                                                              802.11
                                                                                 395 Probe Response, SN=3558, FN=0,
     387 63.102113
                     Unionman_4d:e6:f1
                                         SichuanA fd:91:e5
                                                              802.11
                                                                                 395 Probe Response, SN=3559, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
                                                                                 395 Probe Response, SN=3560, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
     389 63.284871
                     Unionman 4d:e6:f1
                                         SichuanA fd:91:e5
                                                              802.11
                     Unionman_4d:e6:f1
                                         SichuanA_fd:91:e5
     390 63.289297
                                                              802.11
                                                                                 395 Probe Response, SN=3561, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
     391 67.746736
                     Unionman_4d:e6:f1
                                          Vizio 4f:3d:54
                                                                                 395 Probe Response, SN=3564, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
     393 67.766608
                     Unionman_4d:e6:f1
                                         Vizio_4f:3d:54
                                                                                 395 Probe Response, SN=3565, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
                                                              802.11
     395 67.788240
                     Unionman_4d:e6:f1
                                         Vizio_4f:3d:54
                                                              802.11
                                                                                 395 Probe Response, SN=3566, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
                                                                                 395 Probe Response, SN=3567, FN=0, Flags=...... BI=100, SSID="HTB-Wireless"
     397 67.808359
                     Unionman 4d:e6:f1
                                          Vizio 4f:3d:54
                                                              802.11
     399 68.808478
                     Unionman_4d:e6:f1
                                         MurataMa_bd:2d:3f
                                                                                 395 Probe Response, SN=3572, FN=0, Flags=....., BI=100, SSID="HTB-Wireless"
```

Suppose we wanted to take a look at the deauthentication frames from our BSSID or an attacker pretending to send these from our BSSID, we could use the following Wireshark filter:

```
(wlan.bssid == xx:xx:xx:xx:xx:xx) and (wlan.fc.type == 00) and
(wlan.fc.type_subtype == 12)
```

Time	Source	Destination	Protocol	Length Info
416 78.561456	Unionman_4d:e6:f1	d2:4e:7e:05:43:3c	802.11	26 Deauthentication, SN=0, FN=0, Flags=
417 78.565783	d2:4e:7e:05:43:3c	Unionman_4d:e6:f1	802.11	26 Deauthentication, SN=1, FN=0, Flags=
418 78.565801	Unionman_4d:e6:f1	d2:4e:7e:05:43:3c	802.11	26 Deauthentication, SN=0, FN=0, Flags=
420 78.566384	d2:4e:7e:05:43:3c	Unionman_4d:e6:f1	802.11	26 Deauthentication, SN=1, FN=0, Flags=
421 78.570171	Unionman_4d:e6:f1	d2:4e:7e:05:43:3c	802.11	26 Deauthentication, SN=2, FN=0, Flags=
422 78.572747	d2:4e:7e:05:43:3c	Unionman_4d:e6:f1	802.11	26 Deauthentication, SN=3, FN=0, Flags=
423 78.572834	Unionman_4d:e6:f1	d2:4e:7e:05:43:3c	802.11	26 Deauthentication, SN=2, FN=0, Flags=
425 78.574455	d2:4e:7e:05:43:3c	Unionman_4d:e6:f1	802.11	26 Deauthentication, SN=3, FN=0, Flags=
426 78.581599	Unionman_4d:e6:f1	d2:4e:7e:05:43:3c	802.11	26 Deauthentication, SN=4, FN=0, Flags=
427 78.583939	d2:4e:7e:05:43:3c	Unionman_4d:e6:f1	802.11	26 Deauthentication, SN=5, FN=0, Flags=
428 78.584316	Unionman_4d:e6:f1	d2:4e:7e:05:43:3c	802.11	26 Deauthentication, SN=4, FN=0, Flags=
430 78.586261	d2:4e:7e:05:43:3c	Unionman_4d:e6:f1	802.11	26 Deauthentication, SN=5, FN=0, Flags=
431 78.589988	Unionman_4d:e6:f1	d2:4e:7e:05:43:3c	802.11	26 Deauthentication, SN=6, FN=0, Flags=
432 78.592997	d2:4e:7e:05:43:3c	Unionman_4d:e6:f1	802.11	26 Deauthentication, SN=7, FN=0, Flags=
433 78.593021	Unionman_4d:e6:f1	d2:4e:7e:05:43:3c	802.11	26 Deauthentication, SN=6, FN=0, Flags=
435 78.594615	d2:4e:7e:05:43:3c	Unionman_4d:e6:f1	802.11	26 Deauthentication, SN=7, FN=0, Flags=
436 78.598612	Unionman_4d:e6:f1	d2:4e:7e:05:43:3c	802.11	26 Deauthentication, SN=8, FN=0, Flags=
437 78.601517	d2:4e:7e:05:43:3c	Unionman_4d:e6:f1	802.11	26 Deauthentication, SN=9, FN=0, Flags=
438 78.601693	Unionman_4d:e6:f1	d2:4e:7e:05:43:3c	802.11	26 Deauthentication, SN=8, FN=0, Flags=
440 78.604700	d2:4e:7e:05:43:3c	Unionman_4d:e6:f1	802.11	26 Deauthentication, SN=9, FN=0, Flags=
441 78.606458	Unionman_4d:e6:f1	d2:4e:7e:05:43:3c	802.11	26 Deauthentication, SN=10, FN=0, Flags=
442 78.609634	d2:4e:7e:05:43:3c	Unionman_4d:e6:f1	802.11	26 Deauthentication, SN=11, FN=0, Flags=
443 78.609673	Unionman 4d:e6:f1	d2:4e:7e:05:43:3c	802.11	26 Deauthentication. SN=10. FN=0. Flags=

Rogue Access Point & Evil-Twin Attacks

(wlan.fc.type == 00) and (wlan.fc.type_subtype == 8)

No RSN

IP Time-to-Live Attacks

Low TTL Value. Example 3

```
Internet Protocol Version 4, Src: 192.168.10.5, Dst: 192.168.10.1
    0100 .... = Version: 4
    .... 0101 = Header Length: 20 bytes (5)

Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
Total Length: 40
Identification: 0x7312 (29458)

000. .... = Flags: 0x0
    ...0 0000 0000 0000 = Fragment Offset: 0

Time to Live: 3

> [Expert Info (Note/Sequence): "Time To Live" only 3]
Protocol: TCP (6)
Header Checksum: 0xaf67 [validation disabled]
[Header checksum status: Unverified]
Source Address: 192.168.10.5
Destination Address: 192.168.10.1
```

Excessive SYN Flags

	<u> </u>						
App	Apply a display filter <ctrl-></ctrl->						
No.	Time	Source	Destination	Protocol	Length Info		
	1 0.000000	192.168.10.1	192.168.10.5	TCP	60 4848 → 58702 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0		
	2 0.000046	192.168.10.5	192.168.10.1	TCP	60 58702 → 5950 [SYN] Seq=0 Win=1024 Len=0 MSS=1460		
	3 0.000069	192.168.10.5	192.168.10.1	TCP	60 58702 → 30000 [SYN] Seq=0 Win=1024 Len=0 MSS=1460		
	4 0.000075	192.168.10.5	192.168.10.1	TCP	60 58702 → 6666 [SYN] Seq=0 Win=1024 Len=0 MSS=1460		
	5 0.000081	192.168.10.5	192.168.10.1	TCP	60 58702 → 42510 [SYN] Seq=0 Win=1024 Len=0 MSS=1460		
	6 0.000088	192.168.10.1	192.168.10.5	TCP	60 5915 → 58702 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0		
	7 0.000088	192.168.10.5	192.168.10.1	TCP	60 58702 → 912 [SYN] Seq=0 Win=1024 Len=0 MSS=1460		
	8 0.000108	192.168.10.5	192.168.10.1	TCP	60 58702 → 500 [SYN] Seq=0 Win=1024 Len=0 MSS=1460		
	9 0.000115	192.168.10.5	192.168.10.1	TCP	60 58702 → 1050 [SYN] Seq=0 Win=1024 Len=0 MSS=1460		
	10 0.000127	192.168.10.5	192.168.10.1	TCP	60 58702 → 1084 [SYN] Seq=0 Win=1024 Len=0 MSS=1460		
	11 0.000136	192.168.10.5	192.168.10.1	TCP	60 58702 → 3370 [SYN] Seq=0 Win=1024 Len=0 MSS=1460		
	12 0.000143	192.168.10.5	192.168.10.1	TCP	60 58702 → 3031 [SYN] Seq=0 Win=1024 Len=0 MSS=1460		
	13 0.000158	192.168.10.5	192.168.10.1	TCP	60 58702 → 1198 [SYN] Seq=0 Win=1024 Len=0 MSS=1460		
	14 0.000168	192.168.10.5	192.168.10.1	TCP	60 58702 → 1007 [SYN] Seq=0 Win=1024 Len=0 MSS=1460		
	15 0.000175	192.168.10.5	192.168.10.1	TCP	60 58702 → 6007 [SYN] Seq=0 Win=1024 Len=0 MSS=1460		
	16 0.000183	192.168.10.5	192.168.10.1	TCP	60 58702 → 50002 [SYN] Seq=0 Win=1024 Len=0 MSS=1460		
	17 0.000184	192.168.10.1	192.168.10.5	TCP	60 1054 → 58702 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0		

- 1. SYN Scans In these scans the behavior will be as we see, however the attacker will preemptively end the handshake with the RST flag.
- 2. SYN Stealth Scans In this case the attacker will attempt to evade detection by only partially completing the TCP handshake.

No Flags

TCP Connection with Null Flags

- 1. If the port is open The system will not respond at all since there is no flags.
- 2. If the port is closed The system will respond with an RST packet.

Too Many ACKs

- 1. If the port is open The affected machine will either not respond, or will respond with an RST packet.
- 2. If the port is closed The affected machine will respond with an RST packet.

Excessive FINs

- 1. If the port is open Our affected machine simply will not respond.
- 2. If the port is closed Our affected machine will respond with an RST packet.

Just too many flags

- 1. If the port is open The affected machine will not respond, or at least it will with an RST packet.
- 2. If the port is closed The affected machine will respond with an RST packet.

TCP Connection Termination

- 1. The attacker will spoof the source address to be the affected machine's
- 2. The attacker will modify the TCP packet to contain the RST flag to terminate the connection
- 3. The attacker will specify the destination port to be the same as one currently in use by one of our machines.

One way we can verify that this is indeed a TCP RST attack is through the physical address of the transmitter of these TCP RST packets. Suppose, the IP address 192.168.10.4 is registered to aa:aa:aa:aa:aa:aa:aa in our network device list, and we notice an entirely different MAC sending these like the following.

```
> Frame 1: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface \Device\NPF_{CCC4B960-1E92-4BD5-BBF3-11E2DFD12FE1}, id 0
> Ethernet II, Src: PcsCompu_53:0c:ba (08:00:27:53:0c:ba), Dst: Netgear_e2:d5:c3 (2c:30:33:e2:d5:c3)
> Internet Protocol Version 4, Src: 192.168.10.4, Dst: 192.168.10.1
> Transmission Control Protocol, Src Port: 2615, Dst Port: 80, Seq: 1, Len: 0
```

TCP Connection Hijacking

The attacker will need to block ACKs from reaching the affected machine in order to continue the hijacking. They do this either through delaying or blocking the ACK packets. As such, this attack is very commonly employed with ARP poisoning, and we might notice the following in our traffic analysis.

```
[TCP Retransmission] 23 \rightarrow 36212 [PSH, ACK] [TCP Retransmission] 23 \rightarrow 36212 [PSH, ACK] [TCP Retransmission] 23 \rightarrow 36212 [PSH, ACK]
```

ICMP Tunneling

icmp

Since ICMP tunneling is primarily done through an attacker adding data into the data field for ICMP, we can find it by looking at the contents of data per request and reply.

Normal Data byets may be 48, abnormal 3000 and more:

```
Internet Control Message Protocol
    Type: 8 (Echo (ping) request)
    Code: 0
    Checksum: 0x4ab7 [correct]
    [Checksum Status: Good]
    Identifier (BE): 0 (0x0000)
    Identifier (LE): 0 (0x0000)
    Sequence Number (BE): 0 (0x0000)
    Sequence Number (LE): 0 (0x0000)
    [Response frame: 66]
    Data (38000 bytes)
    Data: 557365726e616d653a20726f6f743b2050617373776f72643a2050617373776f72643132...
    [Length: 38000]
```

Finding Directory Fuzzing

Come on man you know it

http.request

Analyzing Code 400s and Request Smuggling

http.response.code == 400

GET /login.php?id=1%20HTTP/1.1%0d%0aHost:%20192.168.10.5%0d%0a%0d%0aGET%20/uploads/cmd.php%20HTTP/1.1%0d%0aHost:%20127.0.0.1:8080%0d%0a%0d%0a%0d%0a%0d%0a%0d%0a%0d%0a%20 HTTP/1.1 Host: 192.168.10.5 Upgrade-Insecure-Requests: 1 User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/113.0.5672.93 Safari/537.36 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7 Referer: http://192.168.10.7/

SSL Renegotiation Attacks

In order to find irregularities in handshakes, we can utilize TCP dump and Wireshark as we have done before. In order to filter to only handshake messages we can use this filter in Wireshark.

```
ssl.record.content type == 22
```

The content type 22 specifies handshake messages only

When we are looking for SSL renegotiation attacks, we can look for the following.

- Multiple Client Hellos This is the most obvious sign of an SSL renegotiation attack.
 We will notice multiple client hellos from one client within a short period like above. The attacker repeats this message to trigger renegotiation and hopefully get a lower cipher suite.
- 2. Out of Order Handshake Messages Simply put, sometimes we will see some out of order traffic due to packet loss and others, but in the case of SSL renegotiation some obvious signs would be the server receiving a client hello after completion of the handshake.

An attacker might conduct this attack against us for the following reasons

- 1. Denial of Service SSL renegotiation attacks consume a ton of resources on the server side, and as such it might overwhelm the server and cause it to be unresponsive.
- 2. SSL/TLS Weakness Exploitation The attacker might attempt renegotiation to potentially exploit vulnerabilities with our current implementation of cipher suites.
- 3. Cryptanalysis The attacker might use renegotiation as a part of an overall strategy to analyze our SSL/TLS patterns for other systems.

DNS Enumeration Attempts

notice a significant amount of DNS traffic from one host

We might even notice this traffic concluded with something like ANY:

32 93.113760	192.168.10.5	192.168.10.1	DNS	121 Standard query 0x2e28 ANY 192.168.10.1 OPT
38 103.122114	192.168.10.5	192.168.10.1	DNS	121 Standard query 0x90c9 ANY 192.168.10.1 OPT
45 113.128223	192.168.10.5	192.168.10.1	DNS	121 Standard query 0x9c2a ANY 192.168.10.1 OPT
50 113.209771	192.168.10.1	192.168.10.5	DNS	97 Standard query response 0x2e28 Refused ANY 192.168.10.1

Finding DNS Tunneling

look for TXT record

dns


```
✓ Domain Name System (query)

   Transaction ID: 0x0000
  > Flags: 0x0100 Standard query
   Questions: 1
   Answer RRs: 1
   Authority RRs: 0
   Additional RRs: 0
  > Queries
  Answers
    \checkmark htb.com: type TXT, class IN
        Name: htb.com
        Type: TXT (Text strings) (16)
        Class: IN (0x0001)
        Time to live: 10 (10 seconds)
        Data length: 117
        TXT Length: 116
        [Response In: 12]
```

Traditional Telnet Traffic

Suppose we were to open Wireshark, we might notice some telnet communications originating from Port 23. In this case, we can always inspect this traffic further.

```
tcp.port == 23
```

```
> Frame 6: 128 bytes on wire (1024 bits), 128 bytes captured (1024 bits) on interface \Device\NPF_{CCC4B960-1E92-4BD5-BBF3-11E2DFD12FE1}, id 0
> Ethernet II, Src: PcsCompu_53:0c:ba (08:00:27:53:0c:ba), Dst: Micro-St_95:68:2a (44:8a:5b:95:68:2a)
> Internet Protocol Version 4, Src: 192.168.10.5, Dst: 192.168.10.7
> Transmission Control Protocol, Src Port: 59694, Dst Port: 23, Seq: 9, Ack: 1, Len: 62

**Telnet**

Data: telnet is unencrypted, so we can find things a little easier\r\n
```

IDS / IPS

Run suricate with rules, -I for dir location + -k none for none sig

```
sudo suricata -r /home/htb-student/pcaps/covenant.pcap -l . -k none
```

suricate rules dir

```
ls -la /etc/suricata/rules/
```

To load a cutome rule

```
nano /etc/suricata/suricata.yaml
```

Add rule.local to rule-files

```
sudo tcpreplay -i ens160 /home/htb-student/pcaps/suspicious.pcap
```

Suricata Rule Development Example 1: Detecting PowerShell Empire

```
alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"ET MALWARE Possible
PowerShell Empire Activity Outbound"; flow:established,to_server;
content:"GET"; http_method; content:"/"; http_uri; depth:1;
pcre:"/^(?:login\/process|admin\/get|news)\.php$/RU"; content:"session=";
http_cookie; pcre:"/^(?:[A-Z0-9+/]{4})*(?:[A-Z0-9+/]{2}==|[A-Z0-9+/]{3}=|[A-Z0-9+/]{4})$/CRi"; content:"Mozilla|2f|5.0|20 28|Windows|20|NT|20|6.1";
http_user_agent; http_start; content:".php|20|HTTP|2f|1.1|0d 0a|Cookie|3a
20|session="; fast_pattern; http_header_names; content:!"Referer";
content:!"Cache"; content:!"Accept"; sid:2027512; rev:1;)
```

Suricata Rule Development Example 2: Detecting Covenant

```
alert tcp any any -> $HOME_NET any (msg:"detected by body"; content:"
<title>Hello World!</title>"; detection_filter: track by_src, count 4 ,
seconds 10; priority:1; sid:3000011;)
```

Suricata Rule Development Example 3: Detecting Covenant (Using Analytics)

```
alert tcp $HOME_NET any -> any any (msg:"detected by size and counter";
dsize:312; detection_filter: track by_src, count 3 , seconds 10; priority:1;
sid:3000001;)
```

Suricata Rule Development Example 4: Detecting Sliver

```
alert tcp any any -> any any (msg:"Sliver C2 Implant Detected";
content:"POST";
pcre:"/\/(php|api|upload|actions|rest|v1|oauth2callback|authenticate|oauth2|
```

```
oauth|auth|database|db|namespaces)(.*?)
((login|signin|api|samples|rpc|index|admin|register|sign-up)\.php)\?[a-z_]
{1,2}=[a-z0-9]{1,10}/i"; sid:1000007; rev:1;)
```

Suricata Rule Development Example 5: Detecting Dridex (TLS Encrypted)

```
alert tls $EXTERNAL_NET any -> $HOME_NET any (msg:"ET MALWARE ABUSE.CH SSL Blacklist Malicious SSL certificate detected (Dridex)"; flow:established,from_server; content:"|16|"; content:"|0b|"; within:8; byte_test:3,<,1200,0,relative; content:"|03 02 01 02 02 09 00|"; fast_pattern; content:"|30 09 06 03 55 04 06 13 02|"; distance:0; pcre:"/^[A-Z]{2}/R"; content:"|55 04 07|"; distance:0; content:"|55 04 0a|"; distance:0; pcre:"/^.{2}[A-Z][a-z]{3,}\s(?:[A-Z][a-z]{3,}\s)?(?:[A-Z](?:[A-Za-z]){1,3})\.?[01]/Rs"; content:"|55 04 03|"; distance:0; byte_test:1,>,13,1,relative; content:!"www."; distance:2; within:4; pcre:"/^.{2}(?P<CN>(?:(?:\d?[A-Z]?|[A-Z]?\d?)(?:[a-z]{3,20}|[a-z]{3,6}[0-9_][a-z]{3,6})\.){0,2}?(?:\d?[A-Z]?|[A-Z]?\d?)[a-z]{3,}(?:[0-9_-][a-z]{3,})?\. (?!com|org|net|tv)[a-z]{2,9})[01].*?(?P=CN)[01]/Rs"; content:!"|2a 86 48 86 f7 0d 01 09 01|"; content:!"GoDaddy"; sid:2023476; rev:5;)
```

Suricata Rule Development Example 6: Detecting Sliver (TLS Encrypted)

```
alert tls any any -> any any (msg:"Sliver C2 SSL"; ja3.hash;
content:"473cd7cb9faa642487833865d516e578"; sid:1002; rev:1;)
```

calc the https hash as follow

```
ja3 -a --json /home/htb-student/pcaps/sliverenc.pcap
```

Snort Rule Development Example 1: Detecting Ursnif (Inefficiently)

```
alert tcp any any -> any any (msg:"Possible Ursnif C2 Activity";
flow:established,to_server; content:"/images/", depth 12; content:"_2F";
content:"_2B"; content:"User-Agent|3a 20|Mozilla/4.0 (compatible|3b| MSIE
```

```
8.0|3b| Windows NT"; content:!"Accept"; content:!"Cookie|3a|"; content:!"Referer|3a|"; sid:1000002; rev:1;)
```

Snort Rule Development Example 2: Detecting Cerber

```
alert udp $HOME_NET any -> $EXTERNAL_NET any (msg:"Possible Cerber Check-
in"; dsize:9; content:"hi", depth 2, fast_pattern; pcre:"/^[af0-9]{7}$/R";
detection_filter:track by_src, count 1, seconds 60; sid:2816763; rev:4;)
```

Snort Rule Development Example 3: Detecting Patchwork

```
alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"0ISF TROJAN Targeted
AutoIt FileStealer/Downloader CnC Beacon"; flow:established,to_server;
http_method; content:"POST"; http_uri; content:".php?profile=";
http_client_body; content:"ddager=", depth 7; http_client_body;
content:"&r1=", distance 0; http_header; content:!"Accept"; http_header;
content:!"Referer|3a|"; sid:10000006; rev:1;)
```