Analyzing the Correlation Between Air Quality (PM2.5 and NO2) Data and Public Health Outcomes (Asthma) in New York City

By: Marzieh Rasti

Data Science Capstone Project

The Problem

Relationship between air quality and respiratory problems, specifically asthma-related hospital visits, in New York City.

Research Questions:

- How are NO2 and PM2.5 levels correlated with the number of hospital visits due to asthma?
- How do pollutants levels vary across different GeoTypes in New York City?
- Can we develop a predictive model to forecast the number of asthma-related hospital visits based on NO2 and PM2.5 levels?

Stakeholders

Data

TimePeriod	GeoType	GeoID	GeoRank	Geography		Estimated annual rate per 10,000		Number					
2020	CD	101	6	Financial District (CD1)		16.6*		7*					
2020	CD	102	6	Greenwich Village and Soho (CD2)	:	3.2*			1*				
2020	CD	103	6	Lower East Side and Chinatown (C	73.0		47						
2020	CD	104	6	Clinton and Chelsea (CD4)	TimePeriod	GeoType	GeoID	GeoRank	Geography		10th percentile mcg/m3	90th percentile mcg/m3	Mean mcg/m3
2020	CD	105	6	Midtown (CD5)	Annual Average 202	2 CD	101	6	Financial District	t (CD1)	6.7	7.8	7.2
2020	CD	106	6	Stuyvesant Town and Turtle Bay ((Annual Average 202	2 CD	102	6	Greenwich Villag	ge and Soho (CD2)	7.6	9.3	8.4
2020	CD	100	0	Stuyvesant Town and Turtle Bay (C	Annual Average 202	2 CD	103	6	Lower East Side	and Chinatown (CD3)	6.1	8.6	7.2
2020	CD	107	6	Upper West Side (CD7)	Annual Average 202	2 CD	104	6	Clinton and Che	Isea (CD4)	6.7	9.0	7.8
2020	CD	108	6	Upper East Side (CD8)	Annual Average 202	2 CD	105	6	Midtown (CD5)		8.2	9.7	9.1
2020	CD	109	6	Morningside Heights and Hamilton	Annual Average 202	2 CD	106	6	Stuyvesant Town	n and Turtle Bay (CD6)	6.7	8.5	7.5
2020	CD	110	6	Central Harlem (CD10)	Annual Average 202	2 CD	107	6	Upper West Side	e (CD7)	5.9	6.3	6.1
					Annual Average 202	2 CD	108	6	Upper East Side	(CD8)	6.1	6.8	6.4
2020	CD	111	6	East Harlem (CD11)	Annual Average 202	2 CD	109	6	Morningside Hei	ights and Hamilton Heights (CD9)	6.1	6.4	6.2
2020	CD	112	6	Washington Heights and Inwood ((Annual Average 202	2 CD	110	6	Central Harlem ((CD10)	6.1	6.4	6.2
2020	CD	201	6	Mott Haven and Melrose (CD1)	Annual Average 202	2 CD	111	6	East Harlem (CD	911)	6.0	6.3	6.2
2020	CD	202	6	Hunts Point and Longwood (CD2)	Annual Average 202	2 CD	112	6	Washington Heig	ghts and Inwood (CD12)	6.1	6.6	6.3
2020	CD	202	C Manipula and Out (200)	Marriagnia and Cratana (CDS)	Annual Average 202	2 CD	201	6	Mott Haven and	Melrose (CD1)	5.8	6.5	6.1
2020	CD	203	6	Morrisania and Crotona (CD3)	Annual Average 202	2 CD	202	6	Hunts Point and	Longwood (CD2)	6.3	6.8	6.5
2020	CD	204	6	Highbridge and Concourse (CD4)	Annual Average 202	2 CD	203	6	Morrisania and 0	Crotona (CD3)	6.2	6.4	6.3
					Annual Average 202	2 CD	204	6	Highbridge and	Concourse (CD4)	5.8	6.3	6.0

Data Source: https://a816-dohbesp.nyc.gov/IndicatorPublic/data-explorer/air-quality/?id=2023#display=summary

Data Collection Areas(New York City Boroughs)

Data Wrangling

Original dataset had 2,037,616 rows and 18 columns

- Drop columns that were based on an unclear measuring method
- To ensure consistency, the yearly records chosen and discarded the seasonal data
- The dataset does not have any null values
- Drop some geographical columns did not contain any useful information
- Target Value: <u>Number of Adult Asthma</u>

Exploratory Data Analysis

Pairwise relationships in the dataset

Correlation between different features in the dataset

Geographical Distribution of Pollutants Levels&Asthma

Geographical Distribution of Mean NO2 Levels in NYC Boroughs

Geographical Distribution of Mean PM 2.5 Levels in NYC Boroughs

Figure 5: Geographical Distribution of the Number of Asthma-related Hospital Visits in NYC Boroughs

Machine Learning Modeling

Type: Supervised Learning

- 1. Multiple Linear Regression
- 2. Ridge Regression (Regularized Linear Regression)
- 3. Gradient Boosting Machines
- 4. Random Forest
- 5. Support Vector Regression Model(SVR)

Comparison Models

Comparison and Model Selection

Model	R2	MAE	MSE
Linear Regression	0.910860	1820.996477	1.005953e+07
Ridge Regression	0.899823	1906.950252	1.130502e+07
Gradient Boosting	0.963038	1142.768278	4.171197e+06
Random Forest	0.960578	1145.995271	4.448820e+06
SVR	-0.115649	4208.299780	1.259013e+08

SVR model is the **worst**, **Random Forest** and **Gradient Boosting** are the **best** models

Feature importances for Selected Models

Applying Grid search CV for hyperparameter Tuning

Table 1: Results of the performance metrics for two machine learning models

Model	Best Score	Test Score	R2
Random Forest	0.945868	0.954561	0.954561
Gradient Boosting	0.950065	0.944047	0.944047

Differences between the actual and predicted values

Future Overseeing

- Further explore and engineer features that could improve model performance, such as incorporating additional air quality metrics or socioeconomic factors.
- Collect more data, especially from air pollutants, different time periods or additional geographical areas, to improve model generalization.
- Explore advanced algorithms such as XGBoost, LightGBM, or neural networks to potentially capture complex relationships within the data.
- Investigating the temporal dynamics of air quality and asthma exacerbations by incorporating time-series analysis could reveal seasonal or temporal trends that are not captured by static models. This could help in understanding how different times of the year or specific weather conditions affect asthma incidence.
- Conducting more detailed geospatial analysis using advanced GIS tools could help in identifying specific areas within the city that are more prone to poor air quality and higher asthma rates. This could inform targeted interventions and policy decisions.

Thank You!