Year 1 Assessed Problems

Semester 1 Problem Sheet 6

SOLUTIONS TO BE SUBMITTED ON CANVAS

DEADLINE

13th November 2024 @ 17:00hrs

3 Assessed – Limits and Differentiation 1

Problem 3.1 Limits

Determine the following limits, taking square roots to be positive:

(i)
$$\lim_{x\to 0^+} \frac{\sqrt{\sin 2x}}{\sqrt{x}}$$
; (ii) $\lim_{x\to 1} \frac{x^2 - 3x + 2}{x^2 - 4x + 3}$.

The notation 0^+ indicates approaching x=0 from the positive side.

Problem 3.2 Derivatives

Differentiate:

(i)
$$\sin(2x+3)$$
; (ii) $\frac{1}{(3x-1)^2}$; (iii) $\tan\left(\frac{x+1}{2}\right)$.

probstat_ps5

October 31, 2024

1 Introduction to Probability and Statistics

Statistics - Problem Sheet 3

1.1 Question 1

Use linear regression to fit a straight line model $(M(x,\theta) = mx + c)$ to the following data. The noise on the data is known to be drawn from a normal distirbution and the uncertainty on each data point is given.

$$x = [5.52, 3.73, 5.24, 4.20]$$

 $D = [23.6, 18.6, 21.9, 20.9]$

$$\sigma_D = [1.0, 1.2, 2.6, 1.4]$$

Marks will be awarded in the following way:

- i) State the likelihood function you are using (log likelihood is fine) [1 mark]
- ii) Calculate the best-fit estimates, \hat{m} and \hat{c} and show your working [3 marks]
- iii) Calculate the uncertainty on these estimates, $\sigma_{\hat{m}}$ and $\sigma_{\hat{c}}$ [1 mark]
- iv) Estimate the covariance of the best fit parameters, $Cov(\hat{m}, \hat{c})$. [1 mark]
- v) Make a plot (hand drawn or computer generated is fine) of the data, together with the best-fit model [2 marks]
- vi) Make a prediction, including uncertainty in \hat{m} and \hat{c} , on the value of the model at the exact value x=2. (Hint: use the variance formula including accounting for covariance) [2 marks]

[]:

Special Relativity

Assessed problem 3

A pion has rest mass 139.58MeV and a mean-lifetime of 2.5×10^{-8} s whereas a muon has rest mass 105.65MeV and a mean-lifetime of 2.2×10^{-6} s. A pion usually decays into a muon and a neutrino. You may assume that a neutrino is massless and lives forever.

Assuming that the pion is initially at rest, find the velocity of the muon and the mean-distance that the muons travel in the pion rest-frame.

[10]