

高速 1T 8051 内核 Flash MCU ,512 bytes SRAM ,16 Kbytes Flash,128 bytes 独立 EEPROM,8路 12位 ADC,7路 10位 PWM,3个定时器,UART,SSI,Check Sum 校验模块

1 总体描述

SC92F8003 是一颗增强型的 1T 8051 内核工业级 Flash 微控制器,指令系统完全兼容传统8051产品系列。

SC92F8003 集成有 16 Kbytes Flash ROM、512 bytes SRAM、128 bytes EEPROM、最多 18 个 GP I/O、16 个 IO 可外部中断、3 个 16 位定时器、8 路 12 位高精度 ADC、7 路 10 位 PWM、内部 1%高精度高频16/8/4/1.33MHz 振荡器和±4%精度低频 128kHz 振荡器、UART、SSI 通信接口等资源。为提高可靠性及简化客户电路,SC92F8003 内部也集成有 4 级可选电压 LVR、2.4V 基准 ADC 参考电压、WDT 等高可靠电路。SC92F8003 具有非常优异的抗干扰性能,非常适合应用于各种物联网控制、大小智能家电和智能家居、充电器、电源、航模、对讲机、无线通讯、游戏机等工业控制和消费应用领域。

2 主要功能

工作电压: 2.4V~5.5V 工作温度: -40~85℃

封装:

SC92F8003Q20R (QFN20) SC92F8003X20U (TSSOP20)

内核: 高速 1T 8051

Flash ROM: 16 Kbytes Flash ROM (MOVC 禁止寻址 0000H~00FFH) 可重复写入1万次

IAP: 可 code option 成 0K、0.5K、1K 或 16K

EEPROM: 独立的 128 bytes, 可重复写入 10 万次, 10 年以上保存寿命

SRAM: 内部 256 bytes+外部 256 bytes 系统时钟(fsys):

- 内建高频 16MHz 振荡器 (f_{HRC})
 - 作为系统时钟源时,f_{SYS} 可通过编程器选择设定为 16/8/4/1.33MHz
 - 频率误差: 跨越 (2.9V~5.5V) 及 (-20 ~ 85°C) 应用环境, 不超过 ±1%
- 内置高频晶体振荡器电路
 - 可外接 2~16MHz 振荡器
 - 作为系统时钟源时,f_{sys} 可通过编程器选择使 用外接晶振 /1 /2 /4 /12 这四种分频中的一种
- IC 系统时钟(fsys)对应的工作电压范围:
 - >12MHz @2.9~5.5V
 - ≤12MHz @2.4~5.5V

内建低频 128kHz LRC 振荡器:

- 可作为 BaseTimer 的时钟源,并唤醒 STOP
- 可作为 WDT 的时钟源
- 频率误差: 跨越 (4.0V ~ 5.5V) 及 (-20 ~ 85℃) 应用 环境, 频率误差不超过 ±4%

低电压复位(LVR):

- 复位电压有 4 级可选:分别是: 4.3V、3.7V、2.9V、 2.3V
- 缺省值为用户烧写 Code Option 所选值

Flash 烧写接口:

● 2线烧写接口

中断 (INT):

- Timer0, Timer1, Timer2, INT0, INT1, INT2,
 ADC, PWM, UART, SSI, Base Timer 共 11 个中 断源
- 外部中断有 3 个中断向量,共 16 个中断口,全部可设上升沿、下降沿、双沿中断
- 两级中断优先级可设

数字外围:

- 最大 18 个双向可独立控制的 I/O 口,可独立设定上 拉电阻
- 全部 IO 具有大灌电流驱动能力(70mA)
- 11 位 WDT,可选时钟分频比
- 3 个标准 80C51 定时器 Timer0、Timer1 和 Timer2
- 7路共用周期、单独可调占空比的 10 位 PWM, 其中 PWM0~5可分为三组输出互补带死区的 PWM波形
- 1 个独立 UART 通信口(可切换 IO 口)
- 1 个 UART/SPI/IIC 三选一通讯口 SSI(可切换 IO 口)

模拟外围:

- 8路 12位±2LSB ADC
 - 内建基准的 2.4V 参考电压
 - ADC 的参考电压有 2 种选择,分别是 V_{DD} 以及 内部 2.4V
 - 内部一路 ADC 可直接测量 V_{DD} 电压
 - 可设 ADC 转换完成中断

省电模式:

- IDLE Mode,可由任何中断唤醒
- STOP Mode,可由 INT0、1、2 和 BaseTimer 唤醒

目录

1 总体描述	1
2 主要功能	1
目录	2
3 管脚定义	6
3.1 管脚配置	6
3.2 管脚定义	7
4 内部方框图	9
5 FLASH ROM 和 SRAM 结构	
5.1 flash rom	10
5.2 Customer Option 区域(用户烧写设置) 5.2.1 Option 相关 SFR 操作说明	
5.3 sram	13
5.3.1 内部 256 bytes SRAM5.3.2 外部 256 bytes SRAM	13 14
6 特殊功能寄存器(SFR)	15
6.1 SFR 映像	15
6.2 SFR 说明	
6.2.1 8051 CPU 内核常用特殊功能寄存器介绍	17
7 电源、复位和时钟	18
7.1 电源电路	18
7.2 上电复位过程	18
7.2.1 复位阶段	
7.2.2 调入信息阶段	
7.2.3 正常操作阶段	18
7.3 复位方式	
7.3.1 外部 RST 复位	
7.3.2 低电压复位 LVR	
7.3.3 上电复位 POR	
7.3.4 看门狗复位 WDT	
7.3.5 复位初始状态	20

7.4 高频系统时钟电路	21
7.5 低频振荡器及低频时钟定时器	24
7.6 STOP 模式和 IDLE 模式	24
7.0 STOP 侯式和 IDLE 侯式	24
8 中央处理单元 CPU 及指令系统	25
8.1 CPU	25
8.2 寻址方式	25
8.2.1 立即寻址	
8.2.2 直接寻址	25
8.2.3 间接寻址	
8.2.4 寄存器寻址	
8.2.5 相对寻址	
8.2.6 变址寻址	
8.2.7 位寻址	2t
9 INTERRUPT 中断	27
9.1 中断源、向量	
9.1 中断源、问重	2 <i>1</i>
9.2 中断结构图	28
9.3 中断优先级	
9.3 中断优先级	29
9.4 中断处理流程	20
9.5 中断相关 SFR 寄存器	29
10 定时器 TIMER0、TIMER1	33
10.1 T0 和 T1 相关特殊功能寄存器	33
10.2 T0 工作模式	Q.F.
10.2 10 工作秩入	
10.3 T1 工作模式	38
11 定时器 TIMER2	39
11.1 T2 相关特殊功能寄存器	39
11.2 T2 工作模式	44
11.2 12 工作模式	41
12 PWM	44
12.1 PWM 结构框图	45
42.2 DIAM 和头 CED 字左照	
12.2 PWM 相关 SFR 寄存器	45
12.3 PWM 通用配置寄存器	46

12.4 PWM 独立模式	
12.4.1 PWM 独立模式框图	48
12.4.2 PWM 独立模式占空比配置	49
12.5 PWM 互补模式	50
12.5.1 PWM 互补模式框图	
12.5.2 PWM 互补模式占空比配置	
12.5.3 PWM 互补模式死区时间配置	
12.5.4 PWM 死区输出波形	52
12.6 PWM 波形及用法	54
13 GP I/O	56
13.1 GPIO 结构图	56
13.2 I/O 端口相关寄存器	57
14 UART0	58
14.1 UART0	
14.2 串口通信的波特率	59
15 SPI/TWI/UART 三选一串行接口 SSI	
15.1 SPI	60
15.1.1 SPI 操作相关寄存器	
15.1.2 信号描述	
15.1.3 工作模式	60
15.1.4 传送形式	02
15.1.5 出错检测	
15.2 TWI	64
	65
15.2.2 工作模式	
15.2.3 操作步骤	
15.3 UART1	
19.3 UARTT	07
16 模数转换 ADC	68
16.1 ADC 相关寄存器	68
16.2 ADC 转换步骤	70
17 EEPROM 及 IAP 操作	71
17.1 EEPROM / IAP 操作相关寄存器	71
17.2 EEPROM / IAP 操作流程	73
17.2.1 128 bytes 独立 EEPROM 操作例程	
17.2.2 16 Kbytes CODE 区域 IAP 操作例程	

18 CHE	CK SUM 校验75
18.1	check sum 校验操作相关寄存器79
19 电气	特性70
19.1	极限参数70
19.2	推荐工作条件70
19.3	直流电气特性70
19.4	交流电气特性7
19.5	ADC 电气特性75
20 订购	信息79
21 封装·	信息80
22 规格	更改记录82

3 管脚定义

3.1 管脚配置

SC92F8003Q20R 管脚配置图 (QFN20)

SC92F8003X20U 管脚配置图 (TSSOP20)

3.2 管脚定义

管脚:	编号	Andre tiller des tiles	管脚	TH W A& J.
TSSOP20	QFN20	管脚名称	类型	功能说明
1	17	P1.4/INT14/T2EX/PWM2A/AIN4	I/O	P1.4: GPIO P1.4
		1/2		INT14: 外部中断 14
				T2EX: 定时器 2 外部捕获信号输入
				PWM2A: PWM2 输出口之一
		4		AIN4: ADC 输入通道 4
2	18	P1.5/INT15/TX0/AIN5	I/O	P1.5: GPIO P1.5 INT15: 外部中断 15
		,		TX0: UART0 TX 之一
				AIN5: ADC 输入通道 5
3	19	D4 C/INT4C/DVO/AINC	I/O	P1.6: GPIO P1.6
3	19	P1.6/INT16/RX0/AIN6	1/0	INT16: 外部中断 16
				RX0: UART0 RX 之一
				AIN6: ADC 输入通道 6
4	20	P1.7/RST	I/O	P1.7: GPIO P1.7
				RST: 外部复位引脚
5	1	P0.0/INT00/OSCI	I/O	P0.0: GPIO P0.0
				INT00: 外部中断 00
				OSCI: 外接晶振输入引脚
6	2	P0.1/INT01/OSCO	I/O	P0.1: GPIO P0.1 INT01: 外部中断 01
				OSCO: 外接晶振输出引脚
	•	Vec	D	接地
7	3	VSS	Power	P2.0: GPIO P2.0
8	4	P2.0/TX0A/tDIO	I/O	P2.0. GPIO P2.0 TX0A: UART0 TX 之一
				tDIO: 烧录和仿真口数据线
9	5	VDD	Dower	电源
			Power	P2.1: GPIO P2.1
10	6	P2.1/INT21/SSRXA/PWM5A	I/O	P2.1: GPIO P2.1 INT21: 外部中断 21
				SSRXA: SSI 通信口的 SSRX 之一:
				SSI通信口中 SPI 的 MISO、UART
				的 RX

Page 7 of 82 V0.2

高速 1T 8051 内核 Flash MCU

PWM5A: PWM5 输出口之一	
INT22: 外部中断 22	
	.
SSTXA: SSI 通信口的 SSTX 2	
SSI通信口中 SPI的 M	/IOSI、UART
的 TX、TWI 的 SDA	
12 8 P2.3/INT23/SSCKA I/O P2.3: GPIO P2.3	
INT23: 外部中断 23	.
SSCKA: SSI 通信口的 SSCK 200 逐行中 SPI 44	
SSI通信口中 SPI 的 S	SCK、TWI的
SCL 12 9 P2 4/INT24/DWM0 I/O P2.4: GPIO P2.4	
13 9 P2.4/INT24/PWM0 I/O P2.4: GPIO P2.4 INT24: 外部中断 24	
N124. 外部中國 24 PWM0: PWM0 输出口	
DO F. CDIO DO F	
14 10 P2.5/INT25/PWM1/AIN0 I/O P2.5: GPIO P2.5 INT25: 外部中断 25	
PWM1: PWM1 输出口	
AINO: ADC 输入通道 0	
DOC. ODIO DOC	
15	
SSCK: SSI 通信口的 SSCK 之	<u>, </u> :
SSI 通信口中 SPI 的 S	
SCL	
PWM2: PWM2 输出口之一	
16 12 P2.7/INT27/SSTX/PWM3 I/O P2.7: GPIO P2.7	
INT27: 外部中断 27	
SSTX: SSI 通信口的 SSTX 之	一:
SSI 通信口中 SPI 的 M	MOSI、UART
的 TX、TWI 的 SDA	
PWM3: PWM3 输出口	
17 13 P1.0/INT10/SSRX/PWM4 I/O P1.0: GPIO P1.0	
INT10: 外部中断 10	
SSRX: SSI 通信口的 SSRX 之	
SSI 通信口中 SPI 的 M	MISO, UART
的 RX	
PWM4: PWM4 输出口	
18	
INT11: 外部中断 11	7
	_
RXOA: GARTO RX 之一 AIN1: ADC 输入通道 1	
TAINT: ADC 棚尺通道 TEK: 烧录和仿真口时钟线	
D4 0 0010 04 0	
19	
T0: 计数器 0 外部输入口	
PWM5: PWM5 输出口之一	
AIN2: ADC 输入通道 2	
D4 2: CDIO D4 2	
20 16 P1.3/INT13/T1/PWM6/AIN3 I/O P1.3: GPIO P1.3 INT13: 外部中断 13	
T1: 计数器 1 外部输入口	
PWM6: PWM6 输出口	
AIN3: ADC 输入通道 3	

4 内部方框图

SC92F8003 BLOCK DIAGRAM

5 FLASH ROM 和 SRAM 结构

SC92F8003的 Flash ROM和 SRAM 结构如下:

Flash ROM和 SRAM 结构图

5.1 FLASH ROM

SC92F8003 有 16 Kbytes 的 Flash ROM, ROM 地址为 0000H~3FFFH。此 16 Kbytes Flash ROM 可反复擦 写 1 万次,可通过 SinOne 提供的专用 ICP 烧写器(SOC Pro52/DPT52/SC LINK)来进行编程及擦除。地址为 0000H~00FFH 地址的 256 bytes 区间 MOVC 指令不可寻址。

EEPROM 为独立于 16 Kbytes ROM 之外的一块区间,其地址为 00H~7FH,可在程序中对其进行单 byte 读 写操作,具体操作方法参考 17 EEPROM 及 IAP 操作。

用户ID区域: 出厂时写入用户ID, 用户只可对其进行读操作, 具体操作方式参考 17 EEPROM 及 IAP 操作。

SC92F8003 的 16 Kbytes Flash ROM 能提供查空 BLANK、编程 PROGRAM、校验 VERIFY 和擦除 ERASE 功能,但不提供读取 READ 的功能。此 Flash ROM 和 EEPROM 通常写入前无需进行擦除操作,直接写入数据即 可实现新数据的覆盖。

SC92F8003 的 Flash ROM 通过 tDIO、tCK、VDD、VSS 来进行编程,具体连接关系如下:

Page 10 of 82 Vn 2

ICP 模式 Flash Writer 编程连接示意图

5.2 CUSTOMER OPTION 区域(用户烧写设置)

SC92F8003 内部有单独的一块 Flash 区域用于保存客户的上电初始值设置,此区域称为 Customer Option 区 域。用户在烧写 IC 时将此部分代码写入 IC 内部,IC 在复位初始化时,就会将此设置调入 SFR 作为初始设置。 Option 相关 SFR 操作说明:

Option 相关 SFR 的读写操作由 OPINX 和 OPREG 两个寄存器进行控制,各 Option SFR 的具体位置由 OPINX 确定,如下表所示:

OPINX 值		OPREG									
	符号	说明	7	6	5	4	3	2	1	0	
83H@FFH	OP_HRCR	高频 RC 震荡频率调节(细调)		OP_HRCR[7:0]						nnnnnnnb	
C1H@FFH	OP_CTM0	Customer Option 寄存器 0	ENWDT	NWDT ENXTL SCLKS[1:0]		DISRST	DISLVR	LVRS	S[1:0]	nnnnnnnb	
C2H@FFH	OP_CTM1	Customer Option 寄存器 1	VREFS	XTLHF			IAPS	S[1:0]	-	-	nnxxnnxxb

OP HRCR (83H@FFH) 系统时钟改变寄存器(读/写)

	7,77	70 7 1 7 1 7 1 7 1	4 14 101 (124)							
位编号	7	6	5	4	3	2	1	0		
符号		OP_HRCR[7:0]								
读/写		读/写								
上电初始值	n	n	n	n	n	n	n	n		

位编号	位符号	说明		
7~0	OP_HRCR[7:0]	内部高频 RC 频率调校 中心值 10000000b 对应 HRC 中心频率, 频率变慢。	数值变大频率加快,	数值变小

OP_CTM0 (C1H@FFH) Customer Option 寄存器 0(读/写)

位编号	7	6	5	4	3	2	1	0		
符号	ENWDT	ENXTL	SCLKS[1:0]		SCLKS[1:0]		DISRST	DISLVR	LVRS	S[1:0]
读/写	读/写	读/写	读/写		读/写	读/写	读	/写		
上电初始值	n	n	r	ו	n	n	r	ו		

Page 11 of 82 V0.2

位编号	位符号	说明					
7	ENWDT	WDT开关					
		0: WDT 无效					
		1:WDT 有效(但 IC 在执行 IAP 过程中 WDT 停止计数)					
6	ENXTL	外部高频晶振选择开关					
		0: 外部高频晶振关闭, P0.0、P0.1 有效;					
		1:外部高频晶振打开, P0.0、P0.1 无效。					
5~4	SCLKS[1:0]	系统时钟频率选择:					
		00: 系统时钟频率为高频振荡器频率除以 1;					
		01: 系统时钟频率为高频振荡器频率除以 2;					
		10: 系统时钟频率为高频振荡器频率除以 4;					
		11: 系统时钟频率为高频振荡器频率除以 12。					
3	DISRST	IO/RST 复位切换控制					
		0: P1.7 当复位脚使用					
		1: P1.7 当正常的 I/O 管脚使用					
2	DISLVR	LVR 使能设置					
		O: LVR 正常使用					
		1: LVR 无效					
1~0	LVRS [1:0]	LVR 电压选择控制					
		11: 4.3V 复位					
		10: 3.7V 复位					
		01: 2.9V 复位					
		00: 2.3V 复位					

OP_CTM1 (C2H@FFH) Customer Option 寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	VREFS	XTLHF	-		IAPS	S[1:0]	-	-
读/写	读/写	读/写		-	读/写	读/写	-	-
上电初始值	n	n	X	Х	n	n	Х	Х

位编号	位符号	说明
7	VREFS	参考电压选择(初始值从 Code Option 调入,用户可修改设置)
		0: 设定 ADC 的 VREF 为 V _{DD}
		1: 设定 ADC 的 VREF 为 内部准确的 2.4V
6	XTLHF	外接晶振控制模式寄存器
		0: 外接晶振振荡频率<12M
		1: 外接晶振振荡频率≥12M
3~2	IAPS[1:0]	IAP 空间范围选择
		00: Code 区域禁止 IAP 操作,仅 EEPROM 区域可作为数据存储使用
		01: 最后 0.5K Code 区域允许 IAP 操作(3E00H ~3FFFH)
		10: 最后 1K Code 区域允许 IAP 操作(3C00H~3FFFH)
		11: 全部 Code 区域允许 IAP 操作(0000H~3FFFH)

5.2.1 OPTION 相关 SFR 操作说明

Option 相关 SFR 的读写操作由 OPINX 和 OPREG 两个寄存器进行控制,各 Option SFR 的具体位置由 OPINX 确定,各 Option SFR 的写入值由 OPREG 确定:

符号	地址	说明		上电初始值
OPINX	FEH	Option 指针	OPINX[7:0]	0000000b
OPREG	FFH	Option 寄存器	OPREG[7:0]	nnnnnnnb

操作 Option 相关 SFR 时 OPINX 寄存器存放相关 OPTION 寄存器的地址,OPREG 寄存器存放对应的值。 例如:要将 OP_HRCR 配置为 0x01,具体操作方法如下:

Page 12 of 82 V0.2

C语言例程:

OPINX = 83H; //将 OP HRCR 的地址写入 OPINX 寄存器

//对 OPREG 寄存器写入 0x01 (待写入 OP HRCR 寄存器的值) OPREG = 0x01:

汇编例程:

;将 OP_HRCR 的地址写入 OPINX 寄存器 MOV OPINX,#83H

MOV OPREG,#01H ;对 OPREG 寄存器写入 0x01 (待写入 OP_HRCR 寄存器的值)

注意:禁止向 OPINX 寄存器写入 Customer Option 区域 SFR 地址之外的数值!否则会造成系统运行异常!

5.3 SRAM

SC92F8003 单片机内部集成了 512 bytes 的 SRAM, 分为内部 RAM 和外部 RAM。内部 RAM 的地址范围为 00H~FFH, 其中高 128 bytes(地址 80H~FFH) 只能间接寻址, 低 128 bytes(地址 00H~7FH) 可直接寻址也可间接

特殊功能寄存器 SFR 的地址也是 80H~FFH。但 SFR 同内部高 128 bytes SRAM 的区别是: SFR 寄存器是直 接寻址,而内部高 128 bytes SRAM 只能是间接寻址。

外部 RAM 的地址为 00H~FFH, 但需通过 MOVX 指令来寻址。

5.3.1 内部 256 BYTES SRAM

内部低 128 bytes SRAM 区可分为三部分: ①工作寄存器组 0~3,地址 00H~1FH,程序状态字寄存器 PSW 中的 RS0、RS1 组合决定了当前使用的工作寄存器,使用工作寄存器组 0~3 可加快运算的速度;②位寻址区 20H~2FH,此区域用户可以用作普通 RAM 也可用作按位寻址 RAM;按位寻址时,位的地址为 00H~7FH,(此地 址按位编地址,不同于通用 SRAM 按字节编地址),程序中可由指令区分; ③用户 RAM 和堆栈区,SC92F8003 复 位过后,8位的堆栈指针指向堆栈区,用户一般会在初始化程序时设置初值,建议设置在 E0H~FFH 的单元区间。

内部 256 bytes RAM 结构图

内部低 128 bytes RAM 结构如下:

SRAM 结构图

5.3.2 外部 256 BYTES SRAM

外部 256 bytes SRAM 支持传统的访问外部 RAM 方法。使用 MOVX A, @Ri 或 MOVX @Ri, A 来访问外部 256 bytes RAM; 也可以用 MOVX A, @DPTR 或 MOVX @DPTR, A 来访问外部 256 bytes RAM。

Page 14 of 82 V0.2

6 特殊功能寄存器(SFR)

6.1 SFR 映像

SC92F8003 系列有一些特殊功能寄存器,我们称为 SFR。这些 SFR 寄存器的地址位于 80H~FFH,有些可以位寻址,有些不能位寻址。能够进行位寻址操作的寄存器的地址末位数都是"0"或"8",这些寄存器在需要改变单个位的数值时非常方便。所有的 SFR 特殊功能寄存器都必须使用直接寻址方式寻址。

SC92F8003 的特殊功能寄存器名称及地址如下表:

3032	F8003 的特例	小奶肥可仔的	有你汉地 址知	1110:						
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F		
F8h	-	-	-	=	CHKSUML	CHKSUMH	OPINX	OPREG		
F0h	В	IAPKEY	IAPADL	IAPADH	IAPADE	IAPDAT	IAPCTL	-		
E8h	-	-	=	=	=	=	=	OPERCON		
E0h	ACC		-	-	-	-	-	-		
D8h	-	-	PWMCON1	PWMDTYB	PWMDTY3	PWMDTY4	PWMDTY5	PWMDTY6		
D0h	PSW	PWMCFG	PWMCON0	PWMPRD	PWMDTYA	PWMDTY0	PWMDTY1	PWMDTY2		
C8h	T2CON	T2MOD	RCAP2L	RCAP2H	TL2	TH2	BTMCON	WDTCON		
C0h	-	-	-	-	-	-	INT2F	INT2R		
B8h	IP	IP1	INT0F	INT0R	INT1F	INT1R	-	-		
B0h	-	-	-	-	*	-	-	-		
A8h	IE	IE1	ADCCFG1	ADCCFG0		ADCCON	ADCVL	ADCVH		
A0h	P2	P2CON	P2PH	-	-	-	-	-		
98h	SCON	SBUF	P0CON	P0PH	-	SSCON0	SSCON1	SSDAT		
90h	P1	P1CON	P1PH		-	SSCON2	-	-		
88h	TCON	TMOD	TL0	TL1	TH0	TH1	TMCON	OTCON		
80h	P0	SP	DPL	DPH	-	-	-	PCON		
	可位寻址		不可位寻址							

说明:

1. SFR 寄存器中空的部分代表没有此寄存器 RAM,不建议用户使用。

Page 15 of 82

6.2 SFR 说明

特殊功能寄存器 SFR 的具体解释说明如下:

符号	地址	字器 SFR 的具体解释 	7	6	5	4	3	2	1	0	上电初始值
P0	80H	P0 口数据寄存器	_	_	_	_	_	_	P01	P00	xxxxxx00b
SP	81H	堆栈指针				SPI	[7:0]	l	101	1 00	00000111b
DPL	82H	DPTR 数据指针低位					_[7:0]				00000000b
DPH	83H	DPTR 数据指针高位					I[7:0]				00000000b
PCON	87H	电源管理控制寄存器	SMOD	_	_	-	-	_	STOP	IDL	0xxxxx00b
TCON	88H	定时器控制寄存器	TF1	TR1	TF0	TR0	IE1	_	IE0	-	00000x0xb
TMOD	89H	定时器工作模式寄存器	-	C/T1	M11	M01		C/T0	M10	M00	x000x000b
TL0	8AH	定时器 0 低 8 位		0,		l .	[7:0]	0,10			00000000b
TL1	8BH	定时器 1 低 8 位					[7:0]				00000000b
TH0	8CH	定时器 0 高 8 位					[7:0]				00000000b
TH1	8DH	定时器 1 高 8 位					[7:0]				00000000b
TMCON	8EH	定时器频率控制寄存器	-	-	_	-	-	T2FD	T1FD	T0FD	xxxxx000b
OTCON	8FH	输出控制寄存器		DD[1:0]	SPO	S[1:0]	-	-	-	-	0000xxxxb
P1	90H	P1 口数据寄存器	P17	P16	P15	P14	P13	P12	P11	P10	00000000b
P1CON	91H	P1 口输入/输出控制寄存器	P1C7	P1C6	P1C5	P1C4	P1C3	P1C2	P1C1	P1C0	00000000b
P1PH	92H	P1 口上拉电阻控制寄存器	P1H7	P1H6	P1H5	P1H4	P1H3	P1H2	P1H1	P1H0	00000000b
SSCON2	95H	SSI 控制寄存器 2				<u> </u>	2[7:0]	l			00000000b
SCON	98H	串口控制寄存器	SM0	SM1	SM2	REN	TB8	RB8	TI	RI	00000000b
SBUF	99H	串口数据缓存寄存器				SBU	F[7:0]	I		I	00000000b
P0CON	9AH	P0 口输入/输出控制寄存器	-	_	-	- /	-	-	P0C1	P0C0	xxxxxx00b
P0PH	9BH	P0 口上拉电阻控制寄存器	-	-	-			-	P0H1	P0H0	xxxxxx00b
SSCON0	9DH	SSI 控制寄存器 0		SSCON0[7:0]					00000000b		
SSCON1	9EH	SSI 控制寄存器 1					N1[7:0]				00000000b
SSDAT	9FH	SSI 数据寄存器		SSD[7:0]					00000000b		
P2	A0H	P2 口数据寄存器	P27	P26	P25	P24	P23	P22	P21	P20	00000000b
P2CON	A1H	P2 口输入/输出控制寄存器	P2C7	P2C6	P2C5	P2C4	P2C3	P2C2	P2C1	P2C0	00000000b
P2PH	A2H	P2 口上拉电阻控制寄存器	P2H7	P2H6	P2H5	P2H4	P2H3	P2H2	P2H1	P2H0	00000000b
ΙΕ	A8H	中断控制寄存器	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0	00000000b
IE1	A9H	中断控制寄存器 1	-		-	-	EINT2	EBTM	EPWM	ESSI	xxxx0000b
ADCCFG1	AAH	ADC 设置寄存器 2	-	-	-	-	LOWSP		ADCCK[2:0]	•	xxxx0000b
ADCCFG0	ABH	ADC 设置寄存器 0	-	EAIN6	EAIN5	EAIN4	EAIN3	EAIN2	EAIN1	EAIN0	x0000000b
ADCCON	ADH	ADC 控制寄存器	ADCEN	ADCS	EOC/ ADCIF			ADCIS[4:0]			00000000b
ADCVL	AEH	ADC 结果寄存器		ADC'	V[3:0]		-	-	-	-	0000xxxxb
ADCVH	AFH	ADC 结果寄存器				ADC\	/[11:4]	•		•	00000000b
IP	B8H	中断优先级控制寄存器	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0	x0000000b
IP1	В9Н	中断优先级控制寄存器 1	-	-	-	-	IPINT2	IPBTM	IPPWM	IPSSI	xxxx0000b
INT0F	BAH	INTO 下降沿中断控制寄存器	-	-	-	-	-	-	INT0F1	INT0F0	xxxxxx00b
INT0R	BBH	INTO 上升沿中断控制寄存器	-	-	-	-	-	-	INT0R1	INT0R0	xxxxxx00b
INT1F	всн	INT1 下降沿中断控制寄存器	-	INT1F6	INT1F5	INT1F4	INT1F3	INT1F2	INT1F1	INT1F0	x0000000b
INT1R	BDH	INT1 上升沿中断控制寄存器	-	INT1R6	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0	x0000000b
INT2F	C6H	INT2 下降沿中断控制寄存器	INT2F7	INT2F6	INT2F5	INT2F4	INT2F3	INT2F2	INT2F1	-	0000000xb
INT2R	C7H	INT2 上升沿中断控制寄存器	INT2R7	INT2R6	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	-	0000000xb
T2CON	C8H	定时器 2 控制寄存器	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	0000000b
T2MOD	C9H	定时器 2 工作模式寄存器	-	-	-	-	-	-	T2OE	DCEN	xxxxxx00b
RCAP2L	CAH	定时器 2 重载/捕捉低 8 位	RCAP2L[7:0]						0000000b		
RCAP2H	СВН	定时器2重载/捕捉高8位	RCAP2H[7:0]					0000000b			
TL2	ССН	定时器2低8位	TL2[7:0]					00000000b			
TH2	CDH	定时器2高8位	TH2[7:0]				00000000b				
BTMCON	CEH	低频定时器控制寄存器	ENBTM	BTMIF	-	-		BTMF	S[3:0]		00xx0000b
WDTCON	CFH	WDT 控制寄存器	-	-	-	CLRWDT	-		WDTCKS[2:0]	xxx0x000b
PSW	D0H	程序状态字寄存器	CY	AC	F0	RS1	RS0	OV	F1	Р	00000000b
	5411	PWM 设置寄存器	_	INV6	INV5	INV4	INV3	INV2	INV1	INV0	x0000000b
PWMCFG	D1H	1 44141 以且可刊 111									
PWMCFG PWMCON0	D1H D2H	PWM 控制寄存器 0	ENPWM	PWMIF		KS[1:0]	PWMOS5	PWMOS2		RD[1:0]	0000000b

PWMDTYA	D4H	PWM 占空比设置寄存器 A	PDT	3[1:0]	PDT2	2[1:0]	PDT ⁻	1[1:0]	PDT	0[1:0]	0000000b
PWMDTY0	D5H	PWM0 占空比设置寄存器		PDT0[9:2]						0000000b	
PWMDTY1	D6H	PWM1 占空比设置寄存器		PDT1[9:2]						0000000b	
PWMDTY2	D7H	PWM2 占空比设置寄存器		PDT2[9:2]						00000000b	
PWMCON1	DAH	PWM 控制寄存器 1	PWMMOD	ENPWM6	ENPWM5	ENPWM4	ENPWM3	ENPWM2	ENPWM1	ENPWM0	00000000b
PWMDTYB	DBH	PWM 占空比设置寄存器 B	-	-	PDT	6[1:0]	PDT	5[1:0]	PDT	4[1:0]	xx000000b
PWMDTY3	DCH	PWM3 占空比设置寄存器/				PDT:	3[9:2]				00000000b
		PWM 死区时间配置寄存器		PDF[3:0] PDR[3:0]							
PWMDTY4	DDH	PWM4 占空比设置寄存器		PDT4[9:2]						00000000b	
PWMDTY5	DEH	PWM5 占空比设置寄存器		PDT5[9:2]						00000000b	
PWMDTY6	DFH	PWM6 占空比设置寄存器		PDT6[9:2]						00000000b	
ACC	E0H	累加器		ACC[7:0]							00000000b
OPERCON	EFH	运算控制寄存器	-	-	-	-	-	-	-	CHKSUMS	xxxxxxx0b
В	F0H	B寄存器				B[7	7:0]				00000000b
IAPKEY	F1H	IAP 保护寄存器				IAPKE	EY[7:0]				00000000b
IAPADL	F2H	IAP 地址低位寄存器				IAPAD	DR[7:0]				00000000b
IAPADH	F3H	IAP 地址高位寄存器	-	-			IAPAD	R[13:8]			xx000000b
IAPADE	F4H	IAP 扩展地址寄存器				IAPAD	ER[7:0]				00000000b
IAPDAT	F5H	IAP 数据寄存器				IAPDA	AT[7:0]				00000000b
IAPCTL	F6H	IAP 控制寄存器	-	-	-	-	PAYTIM	1ES[1:0]	CME	D[1:0]	xxxx0000b
CHKSUML	FCH	Check Sum 结果寄存器低位		CHKSUML[7:0]					00000000b		
CHKSUMH	FDH	Check Sum 结果寄存器高位				CHKSU	IMH[7:0]				00000000b
OPINX	FEH	Option 指针				OPIN	X[7:0]				00000000b
OPREG	FFH	Option 寄存器				OPRE	:G[7:0]				nnnnnnnb

6.2.1 8051 CPU 内核常用特殊功能寄存器介绍

程序计数器 PC

程序计数器 PC 不属于 SFR 寄存器。PC 有 16 位,是用来控制指令执行顺序的寄存器。单片机上电或者复位 后,PC 值为 0000H,也即是说单片机程序从 0000H 地址开始执行程序。

累加器 ACC(E0H)

累加器 ACC 是 8051 内核单片机的最常用的寄存器之一,指令系统中采用 A 作为助记符。常用来存放参加计 算或者逻辑运算的操作数及结果。

B 寄存器(F0H)

B寄存器在乘除法运算中必须与累加器 A 配合使用。乘法指令 MUL A, B 把累加器 A 和寄存器 B 中的 8 位无 符号数相乘,所得的 16 位乘积的低位字节放在 A 中,高位字节放在 B 中。除法指令 DIV A,B 是用 A 除以 B,整 数商放在 A 中, 余数放在 B 中。寄存器 B 还可以作为通用的暂存寄存器使用。

堆栈指针 SP(81H)

堆栈指针是一个8位的专用寄存器,它指示出堆栈顶部在通用RAM中的位置。单片机复位后,SP初始值为 07H, 即堆栈会从 08H 开始向上增加。08H~1FH 为工作寄存器组 1~3。

PSW (D0H) 程序状态字寄存器(读/写)

	位编号	7	6	5	4	3	2	1	0
	符号	CY	AC	F0	RS1	RS0	OV	F1	Р
Ī	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
	上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	CY	标志位
		1: 加法运算最高位有进位,或者减法运算最高位有借位时
		0: 加法运算最高位无进位,或者减法运算最高位无借位时
6	AC	进位辅助标志位(可在 BCD 码加减法运算时方便调整)
		1:加法运算时在 bit3 位有进位,或减法运算在 bit3 位有借位时

Page 17 of 82 Vn 2

		0: 无借位	乙、进位					
5	F0	用户标志值	用户标志位					
4~3	RS1、RS0	工作寄存品	工作寄存器组选择位:					
		RS1	RS0	当前使用的工作寄存器组 0~3				
		0	0	组 0 (00H~07H)				
		0	1	组 1 (08H~0FH)				
		1	0	组 2 (10H~17H)				
		1	1	组 3 (18H~1FH)				
2	OV	溢出标志值	<u> </u>					
1	F1	F1 标志						
		用户自定义标志						
0	Р	奇偶标志位。此标志位为累加器 ACC 中 1 的个数的奇偶值。						
		1: ACC	中 1 的个数	[为奇数				
		0: ACC	中 1 的个数	[为偶数(包括0个)				

数据指针 DPTR (82H、83H)

数据指针 DPTR 是一个 16 位的专用寄存器,由低 8 位 DPL (82H) 和高 8 位 DPH (83H) 组成。DPTR 是以 传统 8051 内核单片机中唯一可以直接进行 16 位操作的寄存器,也可以分别对 DPL 和 DPH 按字节进行操作。

7电源、复位和时钟

7.1 电源电路

SC92F8003 电源核心包括了 BG、LDO、POR、LVR 等电路,可实现在 2.4~5.5V 范围内可靠工作。此外,IC 内建了一个经调校过的精准 2.4V 电压,可用作 ADC 内部参考电压。用户可在 16 模数转换 ADC 查找具体设置内容。

7.2 上电复位过程

SC92F8003 上电后,在客户端软件执行前,会经过以下的过程:

- 复位阶段
- 调入信息阶段
- 正常操作阶段

7.2.1 复位阶段

是指 SC92F8003 会一直处于复位的情况,直到供应给 SC92F8003 的电压高过某一电压,内部才开始有效的 Clock。复位阶段的时间长短和外部电源的上升速度有关,外部电源达到内建 POR 电压后,复位阶段才会完成。

7.2.2 调入信息阶段

在 SC92F8003 内部有一个预热计数器。在复位阶段期间,此预热计数器一直被清为 0,直到电压过了 POR 电压后,内部 RC 振荡器开始起振,该预热计数器开始计数。当内部的预热计数器计数到一定数目后,每隔一定数量个 HRC clock 就会从 Flash ROM 中的 IFB(包含 Code Option)读出一个 byte 数据存放到内部系统寄存器中。直到预热完成后,该复位信号才会结束。

7.2.3 正常操作阶段

结束调入信息阶段后,SC92F8003 开始从 Flash 中读取指令代码即进入正常操作阶段。这时的 LVR 电压值 是用户写入 Code Option 的设置值。

7.3 复位方式

SC92F8003 有 4 种复位方式: ①外部 RST 复位②低电压复位 LVR③上电复位 POR④看门狗 WDT 复位。

Page 18 of 82 V0.2

7.3.1 外部 RST 复位

外部 RST 复位就是从外部 RST 给 SC92F8003 一定宽度的复位脉冲信号,来实现 SC92F8003 的复位。 RST/P1.7 具有复位功能,用户在烧录程序前可以通过烧录上位机软件配置 Customer Option 项来选择将其修 改为非复位脚。

7.3.2 低电压复位 LVR

SC92F8003 内建了一个低电压复位电路。而复位的门限电压有 4 种选择: 4.3V、3.7V、2.9V、2.3V。缺省 值 Default 是用户写入的 Option 值。

OP_CTM0 (C1H@FFH) Customer Option 寄存器 0(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ENWDT	ENXTL	SCLKS[1:0]		DISRST	DISLVR	LVRS[1:0]	
读/写	读/写	读/写	读/写		读/写	读/写	读/	写
上电初始值	n	n	r	1	n	n	n	1

位编号	位符号	说明
2	DISLVR	LVR 使能设置
		O: LVR 正常使用
		1: LVR 无效
1~0	LVRS [1:0]	LVR 电压选择控制
		11: 4.3V 复位
		10: 3.7V 复位
		01: 2.9V 复位
		00: 2.3V 复位

SC92F8003 的复位部分电路结构图如下:

SC92F8003 复位电路图

7.3.3 上电复位 POR

SC92F8003 内部有上电复位电路, 当电源电压 VDD 达到 POR 复位电压时, 系统自动复位。

Page 19 of 82 V0.2

7.3.4 看门狗复位 WDT

SC92F8003 有一个 WDT, 其时钟源为内部的 128kHz 振荡器。用户可以通过编程器的 Code Option 选择是 否开启看门狗复位功能。

OP CTM0 (C1H@FFH) Customer Option 寄存器 0(读/写)

			- - - - - - - - - - - - - -							
位编号	7	6	5 4 3		2	1	0			
符号	ENWDT	ENXTL	SCLKS[1:0]		DISRST	DISLVR	LVRS[1:0]			
读/写	读/写	读/写	读/写		读/写	读/写	读	/写		
上电初始值	n	n	n		n		n	n	ľ	٦

位编号	位符号	说明
7	ENWDT	WDT 开关(此位由系统将用户 Code Option 所设的值调入) 1: WDT 开始工作 0: WDT 关闭

WDTCON (CFH) 看门狗控制寄存器(读/写)

1121011(01	112 1 0 0 1 1 (0 1 1) H 1 3 3 3 7 2 3 1 1 H (Ø) 3)								
位编号	7	6	5	4	3	2	1	0	
符号	-	-	-	CLRWDT	-	V	VDTCKS[2:0)]	
读/写	-	-	-	读/写	-		读/写		
上电初始值	х	х	х	0	X	0	0	0	

位编号	位符号		说明				
4	CLRWDT	WDT 清"0"位(写 1 有效)					
		1:WDT计数器从	0开始计数				
		此位由系统硬件自动	功置 0				
2~0	WDTCKS [2:0]	看门狗时钟选择					
		WDTCKS[2:0]	WDT 溢出时间				
		000	500ms				
		001	250ms				
		010	125ms				
		011	62.5ms				
		100	31.5ms				
		101	15.75ms				
		110	7.88ms				
		111	3.94ms				
7~5,3	-	保留					

7.3.5 复位初始状态

当 SC92F8003 处于复位状态时,多数寄存器会回到其初始状态。看门狗 WDT 处于关闭的状态。程序计数器 PC 初始值为 0000h, 堆栈指针 SP 初始值为 07h。"热启动"的 Reset (如 WDT、LVR 等) 不会影响到 SRAM, SRAM 值始终是复位前的值。SRAM 内容的丢失会发生在电源电压低到 RAM 无法保存为止。

SFR 寄存器的上电复位初始值如下表:

SFR 名称	初始值	SFR 名称	初始值
ACC	0000000b	P2	0000000b
В	0000000b	P2CON	0000000b
PSW	0000000b	P2PH	0000000b
SP	00000111b	SSCON0	0000000b

Page 20 of 82 V0.2

DPL	0000000b	SSCON1	0000000b
DPH	0000000b	SSCON2	0000000b
PCON	0xxxxx00b	SSDAT	0000000b
ADCCFG0	x0000000b	PWMCFG	x0000000b
ADCCFG1	xxxx0000b	PWMCON0	0000000b
ADCCON	0000000b	PWMCON1	0000000b
ADCVH	0000000b	PWMDTYA	0000000b
ADCVL	0000xxxxb	PWMDTYB	xx000000b
BTMCON	00xx0000b	PWMDTY0	0000000b
WDTCON	xxx0x0000b	PWMDTY1	0000000b
IAPADE	0000000b	PWMDTY2	0000000b
IAPADH	xx000000b	PWMDTY3	0000000b
IAPADL	0000000b	PWMDTY4	0000000b
IAPCTL	xxxx0000b	PWMDTY5	0000000b
IAPDAT	0000000b	PWMDTY6	0000000b
IAPKEY	0000000b	PWMPRD	0000000b
IE	0000000b	OPERCON	xxxxxxx0b
IE1	xxxx0000b	RCAP2H	0000000b
INT0R	xxxxxx00b	RCAP2L	0000000b
INT1R	x0000000b	CHKSUML	0000000b
INT2R	000000xb	CHKSUMH	0000000b
INT0F	xxxxxx00b	SBUF	0000000b
INT1F	x0000000b	SCON	0000000b
INT2F	0000000xb	TCON	00000x0xb
IP	x0000000b	TMCON	xxxxx000b
IP1	xxxx0000b	TMOD	x000x000b
OTCON	0000xxxxb	TH0	0000000b
OPINX	0000000b	TL0	0000000b
OPREG	nnnnnnnb	TH1	0000000b
P0	xxxxxxx00b	TL1	0000000b
P0CON	xxxxxxx00b	T2CON	0000000b
P0PH	xxxxxxx00b	T2MOD	xxxxxx00b
P1	0000000b	TH2	0000000b
P1CON	0000000b	TL2	0000000b
P1PH	0000000b	-	-

7.4 高频系统时钟电路

SC92F8003 内建了一个振荡频率可调的高精度 HRC 及一个晶体振荡电路,用户可以选择其中之一作为系统时钟。HRC 出厂时被精确地调校至 16MHz@5V/25℃,用户可以通过编程器的 Code Option 将系统时钟设置为 16/8/4/1.33MHz 使用。调校过程是过滤掉制程上的偏差对精度所造成的影响。此 IRC 受工作的环境温度和工作电压影响会有一定的漂移,对于压漂(2.9V~5.5V)以及(-20℃~85℃)的温漂会在 ±1% 以内。

为了增强系统的可靠性, SC92F8003 内建有一个系统时钟监控电路, 当用户选择系统时钟源为晶体振荡并且晶体振荡电路发生停振时, 系统时钟源将被自动切换到内建的 HRC, 并保持此状态直至下次复位时再重置。

注意: ADC 和 PWM 电路的时钟源固定为 f_{HRC} = 16MHz,不会随着内外系统时钟的切换而改变。

Page 21 of 82

SC92F8003 内部时钟关系

OP CTM0(C1H@FFH) Customer Option 寄存器 0(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ENWDT	ENXTL	SCLKS[1:0]		DISRST	DISLVR	LVRS[1:0]	
读/写	读/写	读/写	读/	读/写		读/写	读	/写
上电初始值	n	n	n	n –		n	ľ	1

位编号	位符号	说明
6	ENXTL	外部高频晶振选择开关
		0:外部高频晶振关闭, P0.0、P0.1 有效;
		1:外部高频晶振打开,P0.0、P0.1 无效。
		注意: ADC 和 PWM 电路的时钟源固定为 f _{HRC} = 16MHz,不会随着内
		外系统时钟的切换而改变。
5~4	SCLKS[1:0]	系统时钟频率选择:
		00: 系统时钟频率为高频振荡器频率除以 1;
		01: 系统时钟频率为高频振荡器频率除以 2;
		10: 系统时钟频率为高频振荡器频率除以 4;
		11: 系统时钟频率为高频振荡器频率除以 12。

OP_CTM1 (C2H@FFH) Customer Option 寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	VREFS	XTLHF	-	-	IAPS	[1:0]	-	-
读/写	读/写	读/写	-	-	读/写	读/写	-	-
上电初始值	n	n	Х	Х	n	n	Х	Х

位编号	位符号	说明		
6	XTLHF	外接晶振控制模式寄存器		
		0: 外接晶振振荡频率<12M		
		1: 外接晶振振荡频率≥12M		

Page 22 of 82 V0.2

SC92F8003 有一个特殊的功能: 用户可修改 SFR 的值实现 IRC 频率在一定范围的调整。

OP_HRCR (83H@FFH) 系统时钟改变寄存器(读/写)

		,						
位编号	7	6	5	4	3	2	1	0
符号		OP_HRCR[7:0]						
读/写		读/写						
上电初始值	n	n	n	n	n	n	n	n

位编号	位符号				
7~0	OP HRCR[7:0]	HRC 频率改变寄存器	9L /1		
		OP_HRCR[7:0]在上电后的值 HRC 确保 HRC 可准确工作在			
			户 Code Option 的选择),此数值的初始值每颗		
		-	可通过修改此寄存器的值实现 HRC 工作频率		
		的改变。			
		初始值为 OP_HRCR[s],	此时 IC 工作在 16/8/4/1.33MHz,OP_HRCR		
		1	RC 频率在原有频率的基础上改变约		
		0.23%@16MHz。			
		OP_HRCR [7:0]和 HRC			
		OP_HRCR [7:0]值	HRC 实际输出频率(16M 为例)		
		OP_HRCR [s]-n	16000*(1-0.23%*n)kHz		
			X		
		OP_HRCR [s]-2	16000*(1-0.23%*2) = 15926.4kHz		
		OP_HRCR [s]-1 16000*(1-0.23%*1) = 15963.2kHz			
		OP_HRCR [s] 16000kHz			
		OP_HRCR [s]+1	16000*(1+0.23%*1) = 16036.8kHz		
		OP_HRCR [s]+2	16000*(1+0.23%*2) = 16073.6kHz		
		OP_HRCR [s]+n	16000*(1+0.23%*n)kHz		
)			
		注意: 1 IC 每次上电后 OP HPCP[7:0]的债都是 HPC 工作在最接近			
		1. IC 每次上电后 OP_HRCR[7:0]的值都是 HRC 工作在最接近 16/8/4/1.33MHz 的 HRC: 用户可借助 EEPROM 在每次上电后修正			
		HRC 的值以让 HRC 工作			
			IC 最高工作频率尽量勿超过 18MHz;		
			图的改变不会影响其它功能。		

Page 23 of 82 V0.2

7.5 低频振荡器及低频时钟定时器

SC92F8003 内建一个频率为 128kHz 的 RC 振荡电路,作为低频时钟定时器 Base Timer 和 WDT 的时钟源。 开启 Base Timer 或使能 WDT 均可启动 128kHz 低频振荡器。

低频时钟定时器 Base Timer 可以把 CPU 从 STOP mode 唤醒,并且产生中断。

BTMCON (CEH) 低频定时器控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ENBTM	BTMIF	-	-		BTMF	S[3:0]	
读/写	读/写	读/写	-	-	读/写			
上电初始值	0	0	Х	Х	0	0	0	0

位编号	位符号	说明			
7	ENBTM	低频 Base Timer 启动控制			
		0: Base Timer 不启动			
		1: Base Timer 启动			
6	BTMIF	Base Timer 中断申请标志			
		当 CPU 接受 Base Timer 的中断后,此标志位会被硬件自动清除。			
3~0	BTMFS [3:0]	低频时钟中断频率选择			
		0000: 每 15.625ms 产生一个中断			
		0001: 每 31.25ms 产生一个中断			
		0010: 每 62.5ms 产生一个中断			
		0011: 每 125ms 产生一个中断			
		0100: 每 0.25 秒产生一个 中断			
		0101: 每 0.5 秒产生一个 中断			
		0110: 每 1.0 秒产生一个 中断			
		0111: 每 2.0 秒产生一个 中断			
		1000: 每 4.0 秒产生一个 中断			
		其它: 保留			
5~4	-	保留			

7.6 STOP 模式和 IDLE 模式

SC92F8003 提供了一个特殊功能寄存器 PCON。配置该寄存器的 bit0 和 bit1 可控制 MCU 进入不同的工作模 式。

对 PCON.1 写入 1,内部的高频系统时钟就会停止,进到 STOP 模式,达到省电功能。在 STOP 模式下,用 户可以通过外部中断 INT0~2 和低频时钟中断及 WDT 把 SC92F8003 唤醒,也可以通过外部复位将 STOP 唤醒。

对 PCON.0 写入 1,程序停止运行,进入 IDLE 模式,但外部设备及时钟继续运行,进入 IDLE 模式前所有 CPU 状态都被保存。IDLE 模式可由任何中断唤醒。

PCON (87H) 电源管理控制寄存器(只写、*不可读 *)

		. 4 14 111 (7 1 4	, , , , ,					
位编号	7	6	5	4	3	2	1	0
符号	SMOD	-	-	-	-	-	STOP	IDL
读/写	只写	-	-	-	-	-	只写	只写
上电初始值	0	х	х	х	х	х	0	0

位编号	位符号	说明
1	STOP	STOP 模式控制 0: 正常操作模式 1: 节能模式, 高频振荡器停止工作, 低频振荡器及 WDT 可根据设定 选择工作与否。
0	IDL	IDLE 模式控制

Page 24 of 82 Vn 2

0: 正常操作模式
1: 节能模式, 程序停止运行, 但外部设备及时钟继续运行, 进入
IDLE 模式前所有 CPU 状态都被保存。

注意:

配置 MCU 进入 STOP 或 IDLE 模式时,对 PCON 寄存器进行配置操作的语句后面要加上 8 个 NOP 指令,不能直接跟其它指令,否则在唤醒后无法正常执行后续的指令!

例如:设置 MCU 进入 STOP 模式:

C语言例程:

#include"intrins.h"

汇编例程:

ORL PCON,#02H ; PCON 的 bit1 STOP 位写 1, 配置 MCU 进入 STOP 模式

NOP ; 至少需要 8 个 NOP

NOP NOP NOP NOP NOP NOP

8 中央处理单元 CPU 及指令系统

8.1 CPU

SC92F8003 所用的 CPU 是一个高速的 1T 标准 8051 内核, 其指令完全兼容传统 8051 内核单片机。

8.2 寻址方式

SC92F8003 的 1T 8051 CPU 指令的寻址方式有: ①立即寻址②直接寻址③间接寻址④寄存器寻址⑤相对寻址⑥变址寻址⑦位寻址

8.2.1 立即寻址

立即寻址也称为立即数,它是在指令操作数中直接给出参加运算的操作数,指令举例如下: MOV A, #50H (这条指令是将立即数 50H 送到累加器 A 中)

8.2.2 直接寻址

在直接寻址方式中,指令操作数域给出的是参加运算操作数的地址。直接寻址方式只能用来表示特殊功能寄存器、内部数据寄存器和位地址空间。其中特殊功能寄存器和位地址空间只能用直接寻址方式访问。举例如下:

ANL 50H, #91H (表示 50H 单元中的数与立即数 91H 相"与",结果存放在 50H 单元中。其中 50H 为直接地址,表示内部数据寄存器 RAM 中的一个单元。)

Page 25 of 82 V0.2

8.2.3 间接寻址

间接寻址采用 R0 或 R1 前添加"@"符号来表示。假设 R1 中的数据是 40H,内部数据存储器 40H 单元的数据 为 55H,则指令为

MOV A, @R1 (把数据 55H 传送至累加器 A)。

8.2.4 寄存器寻址

寄存器寻址时对选定的工作寄存器 R7~R0、累加器 A、通用寄存器 B、地址寄存器和进位 C 中的数进行操作。其中寄存器 R7~R0 由指令码的低 3 位表示,ACC、B、DPTR 及进位位 C 隐含在指令码中。因此,寄存器寻址也包含一种隐含寻址方式。寄存器工作区的选择由程序状态字寄存器 PSW 中的 RS1、RS0 来决定。指令操作数指定的寄存器均指当前工作区的寄存器。

INC R0 是指(R0)+1→R0

8.2.5 相对寻址

相对寻址是将程序计数器 PC 中的当前值与指令第二字节给出的数相加,其结果作为转移指令的转移地址。转移地址也成为转移目的地址,PC 中的当前值成为基地址,指令第二字节给出的数成为偏移量。由于目的地址是相对于 PC 中的基地址而言,所以这种寻址方式成为相对寻址。偏移量为带符号的数,所能表示的范围为+127~-128.这种寻址方式主要用于转移指令。

JC \$+50H

表示若进位位 C 为 0,则程序计数器 PC 中的内容不改变,即不转移。若进位位 C 为 1,则以 PC 中的当前值及基地址,加上偏移量 50H 后所得到的结果作为该转移指令的目的地址。

8.2.6 变址寻址

在变址寻址方式中,指令操作数制定一个存放变址基址的变址寄存器。变址寻址时,偏移量与变址基值相加, 其结果作为操作数的地址。变址寄存器有程序计数器 PC 和地址寄存器 DPTR。

MOVC A. @A+DPTR

表示累加器 A 为偏移量寄存器,其内容与地址寄存器 DPTR 中的内容相加,其结果作为操作数的地址,取出该单元中的数送入累加器 A 中。

8.2.7 位寻址

位寻址是指对一些可进行位操作的内部数据存储器 RAM 和特殊功能寄存器进行位操作时的寻址方式。在进行位操作时,借助于进位位 C 作为位操作累加器,指令操作数直接给出该位的地址,然后根据操作码的性质对该位进行位操作。位地址与字节直接寻址中的字节地址编码方式完全一样,主要由操作指令的性质加以区分,使用时应特别注意。

MOV C, 20H (将地址为 20H 的位操作寄存器值送入进位位 C 中。)

Page 26 of 82 V0.2

9 INTERRUPT 中断

SC92F8003 单片机提供 11 个中断源: Timer0~2, INT0~2, UART, ADC, SSI, PWM, Base Timer。这 11 个中断源分为 2 个中断优先级,并可以单独分别设置为高优先级或者低优先级。三个外部中断可以分别设定其中每个中断源的触发条件为上升、下降或上下沿,每个中断分别有独立的优先级设置位、中断标志、中断向量和使能位,总的使能位 EA 可以实现所有中断的打开或者关闭。

9.1 中断源、向量

SC92F8003的中断源、中断向量、及相关控制位列表如下:

0002.		开源、 中 断世			- NH 1 •	1			
中断源	中断发生 时间	中断标志	中断使能 控制	中断优先权 控制	中断向量	查询优先级	中断号 (C51)	标志清除 方式	能否唤醒 STOP
INT0	外部中断 0 条件符合	IE0	EINT0	IPINT0	0003H	1 (高)	0	H/W Auto	能
Timer0	Timer0 溢 出	TF0	ET0	IPT0	000BH	2	1	H/W Auto	不能
INT1	外部中断 1 条件符合	IE1	EINT1	IPINT1	0013H	3	2	H/W Auto	能
Timer1	Timer1 溢 出	TF1	ET1	IPT1	001BH	4	3	H/W Auto	不能
UART	接收或发送 完成	RI/TI	EUART	IPUART	0023H	5	4	必须用户 清除	不能
Timer2	Timer2 溢 出	TF2	ET2	IPT2	002BH	6	5	必须用户 清除	不能
ADC	ADC 转换 完成	ADCIF	EADC	IPADC	0033H	7	6	必须用户 清除	不能
SSI	接收或发送 完成	SPIF/TWIF	ESSI	IPSPI	003BH	8	7	必须用户 清除	不能
PWM	PWM 溢出	PWMIF	EPWM	IPPWM	0043H	9	8	H/W Auto	不能
BTM	Base timer 溢出	BTMIF	EBTM	IPBTM	004BH	10	9	H/W Auto	能
INT2	外部中断 2 条件符合	- (古公·小···································	EINT2	IPINT2	0053H	11	10	-	能

在 EA=1 及各中断使能控制为 1 的情况下,各中断发生情况如下:

定时器中断: Timer0 和 Timer1 溢出时会产生中断并将中断标志 TF0 和 TF1 置为"1",当单片机执行该定时器中断时,中断标志 TF0 和 TF1 会被硬件自动清"0"。Timer2 溢出时会产生中断并将中断标志 TF2 置为"1",在Timer2 中断发生后,硬件并不会自动清除 TF2 位,此 bit 必须由使用者的软件负责清除。

UART中断: 当 UART接收或发送一帧数据完成时 RI 或 TI 位会被硬件自动置"1",UART中断产生。在 UART中断发生后,硬件并不会自动清除 RI/TI 位,此 bit 必须由使用者的软件负责清除。

ADC 中断: ADC 中断的发生时间为 ADC 转换完成时,其中断标志就是 ADC 转换结束标志 EOC/ADCIF (ADCCON.5)。当使用者设定 ADCS 开始转换后,EOC 会被硬件自动清除为 "0"; 当转换完成后,EOC 会被硬件自动置为 "1"。使用者在 ADC 中断发生之后,进入中断服务程序时,必须用软件去清除它。

SSI 中断: 当 SSI 接收或发送一帧数据完成时 SPIF/TWIF 位会被硬件自动置"1", SSI 中断产生。当单片机执行该 SSI 中断时,中断标志 SPIF/TWIF 必须由使用者的软件负责清除。

PWM 中断: 当 PWM 计数器溢出时(也就是说: 计数器数到超过 PWMPRD 时), PWMIF 位(PWM Interrupt Flag)会被硬件自动置"1", PWM 中断产生。当单片机执行该 PWM 中断时,中断标志 PWMIF 会被硬件自动清"0"。

外部中断 INT0~2: 当外部中断口有中断条件发生时,外部中断就发生了。用户可以根据需要设成上沿、下沿或者双沿中断,可通过设置 SFR (INTxF 和 INTxR)来实现。用户可通过 IP 寄存器来设置每个中断的优先级级别。外部中断 INT0~2 还可以唤醒单片机的 STOP。

Page 27 of 82 V0.2

9.2 中断结构图

SC92F8003的中断结构如下图所示:

SC92F8003 中断结构和向量

9.3 中断优先级

SC92F8003 单片机的中断具有两个中断优先级,这些中断源的请求可编程为高优先级中断或者低优先级中 断,即可实现两级中断服务程序的嵌套。一个正在执行的低优先级中断能被高优先级中断请求所中断,但不能被 另一个同一优先级的中断请求所中断,一直执行到结束,遇到返回指令 RETI,返回主程序后再执行一条指令才能 响应新的中断请求。

也就是说:

- ① 低优先级中断可被高优先级中断请求所中断,反之不能;
- ② 任何一种中断,在响应过程中,不能被同一优先级的中断请求所中断。

中断查询顺序: SC92F8003 单片机的同一优先级中断,如果同时来几个中断,则中断响应的优先顺序同 C51 中的中断查询号相同,即查询号小的会优先响应,查询号大的会慢响应。

9.4 中断处理流程

当一个中断产生并且被 CPU 响应,则主程序运行被中断,将执行下述操作

- ① 当前正在执行的指令执行完;
- ② PC 值被压入堆栈,保护现场;
- ③ 中断向量地址载入程序计数器 PC;
- 4 执行相应的中断服务程序;
- (5) 中断服务程序结束并 RETI:
- (6) 将 PC 值退栈,并返回执行中断前的程序。

在此过程中,系统不会立即执行其它同一优先级的中断,但会保留所发生的中断请求,在当前中断处理结束 后, 转去执行新的中断请求。

9.5 中断相关 SFR 寄存器

IE (A8H) 中断使能寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	EA	中断使能的总控制
		0: 关闭所有的中断
		1: 打开所有的中断
6	EADC	ADC 中断使能控制
		0: 关闭 ADC 中断
		1: 允许 ADC 转换完成时产生中断
5	ET2	Timer2 中断使能控制
		0: 关闭 TIMER2 中断
		1: 允许 TIMER2 中断
4	EUART	UART 中断使能控制
		0: 关闭 UART 中断
		1: 允许 UART 中断
3	ET1	Timer1 中断使能控制
		0: 关闭 TIMER1 中断
		1:允许 TIMER1 中断
2	EINT1	外部中断 1 使能控制
		0: 关闭 INT1 中断
		1: 打开 INT1 中断
1	ET0	Timer0 中断使能控制

Page 29 of 82 Vn 2

		0: 关闭 TIMER0 中断 1: 允许 TIMER0 中断
0	EINT0	外部中断 0 使能控制
		0: 关闭 INT0 中断
		1: 打开 INTO 中断

IP (B8H) 中断优先级寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	0	0	0	0	0	0	0

位编号	位符号	说明
6	IPADC	ADC 中断优先权选择
		0: ADC 中断优先权为低
		1: ADC 中断优先权为高
5	IPT2	Timer2 中断优先权选择
		0: Timer2 中断优先权为低
		1: Timer2 中断优先权为高
4	IPUART	UART中断优先权选择
		0: UART 中断优先权为低
		1: UART 中断优先权为高
3	IPT1	Timer1 中断优先权选择
		0: Timer1 中断优先权为低
		1: Timer1 中断优先权为高
2	IPINT1	INT1 计数器中断优先权选择
		0: INT1 中断优先权为低
		1: INT1 中断优先权为高
1	IPT0	Timer0 中断优先权选择
		0: Timer0 中断优先权为低
		1: Timer0 中断优先权为高
0	IPINT0	INTO 计数器中断优先权选择
		0: INTO 中断优先权为低
		1: INTO 中断优先权为高
7	•	保留

IE1 (A9H) 中断控制寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	EINT2	EBTM	EPWM	ESSI
读/写	-	-	-	-	读/写	读/写	读/写	读/写
上电初始值	Х	Х	Х	Х	0	0	0	0

位编号	位符号	说明
3	EINT2	外部中断 2 使能控制
		0: 关闭 INT2 中断
		1: 打开 INT2 中断
2	EBTM	Base Timer 中断使能控制
		0: 关闭 Base Timer 中断
		1: 允许 Base Timer 中断
1	EPWM	PWM 中断使能控制
		0: 关闭 PWM 中断
		1: 允许 PWM 计数溢出(数到 PWMPRD)时产生中断
0	ESSI	SSI中断使能控制

Page 30 of 82 V0.2

		0: 关闭 SSI 中断 1: 允许 SSI 中断
7~4	-	保留

IP1 (B9H) 中断优先级寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	IPINT2	IPBTM	IPPWM	IPSSI
读/写	-	-	-	-	读/写	读/写	读/写	读/写
上电初始值	Х	Х	Х	Х	0	0	0	0

位编号	位符号	说明
3	IPINT2	INT2 计数器中断优先权选择
		0: INT2 中断优先权为低
		1: INT2 中断优先权为高
2	IPBTM	Base Timer 中断优先权选择
		0: Base Timer 中断优先权为低
		1: Base Timer 中断优先权为高
1	IPPWM	PWM 中断使能选择
		0: PWM 中断优先权为低
		1: PWM 中断优先权为高
0	IPSSI	SSI中断使能选择
		0: SSI 中断优先权为低
		1: SSI 中断优先权为高
7~4	-	保留

TCON (88H) 定时器控制寄存器(读/写)

1 0 0 11 (0 0 11) / 0		14 111 (121 4)						
位编号	7	6	5	4	3	2	1	0
符号	TF1	TR1	TF0	TR0	IE1	-	IE0	-
读/写	读/写	读/写	读/写	读/写	读/写	-	读/写	-
上电初始值	0	0	0	0	0	х	0	х

位编号	位符号	说明
3	IE1	INT1 溢出中断请求标志。INT1 产生溢出,发生中断时,硬件将 IE1 置
		为"1",申请中断,CPU 响应时,硬件清"0"。
1	IE0	INTO 溢出中断请求标志。INTO 产生溢出,发生中断时,硬件将 IEO 置
		为"1",申请中断,CPU 响应时,硬件清"0"。
2,0	-	保留

INTOF (BAH) INTO 下降沿中断控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	-	INT0F1	INT0F0
读/写	-	-	-	-	-	-	读/写	读/写
上电初始值	Х	Х	Х	Х	Х	Х	0	0

位编号	位符号	说明
1~0	INT0Fn (n=0~1)	INTO 下降沿中断控制 0:INTOn 下降沿中断关闭 1:INTOn 下降沿中断使能
7~2	-	保留

Page 31 of 82 V0.2

INTOR (BBH) INTO 上升沿中断控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	-	INT0R1	INT0R0
读/写	-	-	-	-	-	-	读/写	读/写
上电初始值	Х	Х	Х	Х	Х	Х	0	0

位编号	位符号	说明
1~0	INT0Rn	INTO 上升沿中断控制
	(n=0~1)	0:INTOn 上升沿中断关闭
		1: INTOn 上升沿中断使能
7~2	-	保留

INT1F (BCH) INT1 下降沿中断控制寄存器(读/写)

		714-14-4-14						
位编号	7	6	5	4	3	2	1	0
符号	-	INT1F6	INT1F5	INT1F4	INT1F3	INT1F2	INT1F1	INT1F0
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	0	0	0	0	0	0	0

位编号	位符号	说明
6~0	INT1Fn (n=0~6)	INT1 下降沿中断控制 0:INT1n 下降沿中断关闭 1:INT1n 下降沿中断使能
7	-	保留

INT1R (BDH) INT1 上升沿中断控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	INT1R6	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
读/写	-	读/写						
上电初始值	Х	0	0	0	0	0	0	0

位编号	位符号	说明
6~0	INT1Rn (n=0~6)	INT1 上升沿中断控制 0:INT1n 上升沿中断关闭 1:INT1n 上升沿中断使能
7	-	保留

INT2F (C6H) INT2 下降沿中断控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	INT2F7	INT2F6	INT2F5	INT2F4	INT2F3	INT2F2	INT2F1	-
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	-
上电初始值	0	0	0	0	0	0	0	Х

位编号	位符号	说明
7~1	INT2Fn (n=1~7)	INT2 下降沿中断控制 0:INT2n 下降沿中断关闭 1:INT2n 下降沿中断使能
0	-	保留

INT2R (C7H) INT2 上升沿中断控制寄存器(读/写)

 (,		A14	uu (1000 - 14)					
位编号	7	6	5	4	3	2	1	0
符号	INT2R7	INT2R6	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	-
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	-

Page 32 of 82 V0.2

上电初始值	0	0	0	0	0	0	0	Х

位编号	位符号	说明
7~1	INT2Rn (n=1~7)	INT2 上升沿中断控制 0: INT2n 上升沿中断关闭 1: INT2n 上升沿中断使能
0	•	保留

10 定时器 TIMER0、TIMER1

T0 和 T1 是 SC92F8003 单片机内部的两个 16 位定时器/计数器,它们具有计数方式和定时方式两种工作模式。特殊功能寄存器 TMOD 中有一个控制位 C/Tx 来选择 T0 和 T1 是定时器还是计数器。它们本质上都是一个加法计数器,只是计数的来源不同。定时器的来源为系统时钟或者其分频时钟,但计数器的来源为外部管脚的输入脉冲。只有在 TRx=1 的时候,T0 和 T1 才会被打开计数。

计数器模式下,P1.2/T0 和 P1.3/T1 管脚上的每一个脉冲,T0 和 T1 的计数值分别增加 1。

定时器模式下,可通过特殊功能寄存器 TMCON 来选择 TO 和 T1 的计数来源是 fsys/12 或 fsys (fsys 为系统时钟)。

定时器/计数器 T0 有 4 种工作模式, 定时器/计数器 T1 有 3 种工作模式(模式三不存在):

- ① 模式 0: 13 位定时器/计数器模式
- ② 模式 1: 16 位定时器/计数器模式
- ③ 模式 2: 8位自动重载模式
- ④ 模式 3: 两个 8 位定时器/计数器模式。

在上述模式中,T0和T1的模式0、1、2都相同,模式3不同。

10.1 T0 和 T1 相关特殊功能寄存器

符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值
TCON	88H	定时器控制寄存器	TF1	TR1	TF0	TR0	IE1	-	IE0	-	00000x0xb
TMOD	89H	定时器工作模式寄存器		C/T1	M11	M01	-	C/T0	M10	M00	x000x000b
TL0	8AH	定时器0低8位		TL0[7:0]							0000000b
TL1	8BH	定时器 1 低 8 位				TL	1[7:0]				0000000b
TH0	8CH	定时器 0 高 8 位				TH	0[7:0]				0000000b
TH1	8DH	定时器 1 高 8 位		TH1[7:0]						0000000b	
TMCON	8EH	定时器频率控制寄存器	-	-	-	-	-	T2FD	T1FD	T0FD	xxxxx000b

各寄存器的解释说明如下:

TCON (88H) 定时器控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	TF1	TR1	TF0	TR0	IE1	-	IE0	-
读/写	读/写	读/写	读/写	读/写	读/写	-	读/写	-
上电初始值	0	0	0	0	0	Х	0	Х

位编号	位符号	说明
7	TF1	T1 溢出中断请求标志。T1 产生溢出,发生中断时,硬件将 TF1 置为
		"1",申请中断,CPU 响应时,硬件清"0"。
6	TR1	定时器 T1 的运行控制位。此位由软件置 1 和清 0。当 TR1=1 时,允许
		T1 开始计数。TR1=0 时禁止 T1 计数。
5	TF0	T0 溢出中断请求标志。T0 产生溢出,发生中断时,硬件将 TF0 置为
		"1",申请中断,CPU 响应时,硬件清"0"。

Page 33 of 82 V0.2 http://www.socmcu.com

4	TR0	定时器 T0 的运行控制位。此位由软件置位和清 0。当 TR0=1 时,允许
		T0 开始计数。TR0=0 时禁止 T0 计数。

TMOD (89H) 定时器工作模式寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	C/T1	M11	M01	-	C/T0	M10	M00
读/写	-	读/写	读/写	读/写	-	读/写	读/写	读/写
上电初始值	Х	0	0	0	Х	0	0	0
	T1				T0			

位编号	位符号	说明
6	C/T1	TMOD[6]控制定时器 1
		0: 定时器, T1 计数来源于 fsys 分频
		1: 计数器, T1 计数来源于外部管脚 T1/P1.3
5~4	M11,M01	定时器/计数器 1 模式选择
		00: 13 位定时器/计数器, TL1 高 3 位无效
		01: 16 位定时器/计数器,TL1 和 TH1 全
		10: 8位自动重载定时器,溢出时将 TH1 存放的值自动重装入 TL1
		11: 定时器/计数器 1 无效(停止计数)
2	C/T0	TMOD[2]控制定时器 0
		0: 定时器,T0 计数来源于 fsys 分频
		1: 计数器,T0 计数来源于外部管脚 T0/P1.2
1~0	M10,M00	定时器/计数器 0 模式选择
		00: 13 位定时器/计数器, TL0 高 3 位无效
		01: 16 位定时器/计数器,TL0 和 TH0 全
		10: 8位自动重载定时器,溢出时将 THO 存放的值自动重装入 TLO
		11: 定时器 0 此时作为双 8 位定时器/计数器。TLO 作为一个 8 位定时器
		/计数器,通过标准定时器 0 的控制位控制; TH0 仅作为一个 8 位定时
		器,由定时器1的控制位控制。
7,3	-	保留

TMOD 寄存器中 TMOD[0]~TMOD[2]是设置 T0 的工作模式; TMOD[4]~TMOD[6]是设置 T1 的工作模式。 定时器和计数器 Tx 功能由特殊功能寄存器 TMOD 的控制位 C/Tx 来选择,M0x 和 M1x 都是用来选择 Tx 的工 作模式。TRx 作为 T0 和 T1 的开关控制,只有 TRx=1 时 T0 和 T1 才打开。

TMCON (8EH) 定时器频率控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	T2FD	T1FD	T0FD
读/写	-	-	-	-	-	读/写	读/写	读/写
上电初始值	Х	Х	Х	Х	Х	0	0	0

位编号	位符号	说明
1	T1FD	T1 输入频率选择控制
		0: T1 频率源自于 f _{SYS} /12
		1: T1 频率源自于 fsys
0	T0FD	T0 输入频率选择控制
		0: T0 频率源自于 fsys/12
		1: T0 频率源自于 fsys

Page 34 of 82 V0.2

IE (A8H) 中断使能寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	ET2	EUART	ET1	-	ET0	EINT0
读/写	读/写	读/写	读/写	读/写	读/写	-	读/写	读/写
上电初始值	0	0	0	0	0	Х	0	0

位编号	位符号	说明
3	ET1	Timer1 中断使能控制
		0: 关闭 TIMER1 中断
		1: 允许 TIMER1 中断
1	ET0	Timer0 中断使能控制
		0: 关闭 TIMER0 中断
		1: 允许 TIMER0 中断

IP (B8H) 中断优先级寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	х	0	0	0	0	0	0	0

位编号	位符号	说明		
3	IPT1	Timer1 中断优先权		
		0: 设定 Timer 1 的中断优先权是 "低"		
		1: 设定 Timer 1 的中断优先权是 "高"		
1	IPT0	Timer0 中断优先权		
		0: 设定 Timer 0 的中断优先权是 "低"		
		1: 设定 Timer 0 的中断优先权是 "高"		

10.2 T0 工作模式

通过对寄存器 TMOD 中的 M10、M00(TMOD[1]、TMOD[0])的设置,定时器/计数器 0 可实现 4 种不同的工作模式。

工作模式 0:13 位计数器/定时器。

TH0 寄存器存放 13 位计数器/定时器的高 8 位(TH0.7~TH0.0), TL0 存放低 5 位(TL0.4~TL0.0)。TL0 的高三位(TL0.7~TL0.5)是不确定值,读取时应被忽略掉。当 13 位定时器/计数器递增溢出时,系统会将定时器溢出标志TF0 置 1。如果定时器 0 中断被允许,将会产生一个中断。

C/T0 位选择计数器/定时器的时钟输入源。如果 C/T0=1,定时器 0 输入脚 T0(P1.2)的电平从高到低的变化,会使定时器 0 数据寄存器加 1。如果 C/T0=0,选择系统时钟的分频为定时器 0 的时钟源。

当 TR0 置 1 打开定时器 T0。TR0 置 1 并不强行复位定时器,意味着如果 TR0 置 1,定时器寄存器将从上次 TR0 清 0 时的值开始计数。所以,在允许定时器之前,应该设定定时器寄存器的初始值。

当作为定时器应用时,可配置 TOFD 来选择时钟源的分频比例。

V0.2

定时器/计数器工作模式 0: 13 位定时器/计数器

工作模式 1: 16 位计数器/定时器

除了使用 16 位(TL0 的 8 位数据全部有效)计数器/定时器之外,模式 1 和模式 0 的运行方式相同。打开和配置计数器/定时器方式也相同。

定时器/计数器工作模式 0: 16 位定时器/计数器

工作模式 2:8 位自动重载计数器/定时器

在工作模式 2 中,定时器 0 是 8 位自动重载计数器/定时器。TL0 存放计数值,TH0 存放重载值。当在 TL0 中的计数器溢出至 0x00 时,定时器溢出标志 TF0 被置 1,寄存器 TH0 的值被重载入寄存器 TL0 中。如果定时器中断使能,当 TF0 置 1 时将产生一个中断,但在 TH0 中的重载值不会改变。在允许定时器正确计数开始之前,TL0 必须初始化为所需要的值。

除了自动重载功能外,工作模式 2 中的计数器/定时器的使能和配置方式同模式 0 和 1 是相同的。 当作为定时器应用时,可配置寄存器 TMCON.0(T0FD)来选择定时器时钟源被系统时钟 fsys 分频的比例。

定时器/计数器工作模式 2: 自动重载的 8 位定时器/计数器

工作模式 3: 两个 8 位计数器/定时器(仅限于定时器 0)

在工作模式 3 中,定时器 0 用作两个独立的 8 位计数器/定时器,分别由 TL0 和 TH0 控制。TL0 通过定时器 0 的控制位(在 TCON 中)和状态位(在 TMOD 中): TR0、C/T0、TF0 控制。定时器 0 可通过 T0 的 TMOD.2(C/T0) 来选择是定时器模式还是计数器模式。

THO 通过定时器 1 的控制 TCON 来设置相关的控制,但 THO 仅被限定为定时器模式,无法通过 Page 36 of 82 V0.2

TMOD.2(C/T0)来设定为计数器模式。TH0 由定时器控制位 TR1 的控制使能,需设定 TR1=1。当发生溢出及产生中断时,TF1 会置 1,并按 T1 发生中断来进行相应的处理。

在 T0 被设为工作模式 3 时,TH0 定时器占用了 T1 的中断资源及 TCON 中寄存器,T1 的 16 位计数器会停止计数,相当于"TR1=0"。当采用 TH0 定时器工作时,需设置 TR1=1。

Page 37 of 82

10.3 T1 工作模式

通过对寄存器 TMOD 中的 M11、M01(TMOD[5]、TMOD[4])的设置,定时器/计数器 1 可实现 3 种不同的工作 模式。

工作模式 0:13 位计数器/定时器。

TH1 寄存器存放 13 位计数器/定时器的高 8 位(TH1.7~TH1.0); TL1 存放低 5 位(TL1.4~TL1.0)。TL1 的高三 位(TL1.7~TL1.5)是不确定值,读取时应被忽略掉。当 13 位定时器计数器递增溢出时,系统会将定时器溢出标志 TF1 置 1。如果定时器 1 中断被允许,将会产生一个中断。C/T1 位选择计数器/定时器的时钟源。

如果 C/T1=1, 定时器 1输入脚 T1(P1.3)的电平从高到低的变化,会使定时器 1数据寄存器加 1。如果 C/T1=0, 选择系统时钟的分频为定时器 1 的时钟源。

TR1 置 1 打开定时器。TR1 置 1 并不强行复位定时器,意味着如果 TR1 置 1, 定时器寄存器将从上次 TR1 清 0时的值开始计数。所以,在允许定时器之前,应该设定定时器寄存器的初始值。

当作为定时器应用时,可配置 T1FD 来选择时钟源的分频比例。

定时器/计数器工作模式 0: 13 位定时器/计数器

工作模式 1:16 位计数器/定时器

除了使用 16 位(TL1 的 8 位数据全部有效)计数器/定时器之外,模式 1 和模式 0 的运行方式相同。打开和配置 计数器/定时器方式也相同。

定时器/计数器工作模式 0: 16 位定时器/计数器

工作模式 2:8 位自动重载计数器/计数器

在工作模式 2 中, 定时器 1 是 8 位自动重载计数器/定时器。TL1 存放计数值, TH1 存放重载值。当在 TL1 中的计数器溢出至 0x00 时,定时器溢出标志 TF1 被置 1,寄存器 TH1 的值被重载入寄存器 TL1 中。如果定时 器中断使能,当 TF1 置 1 时将产生一个中断,但在 TH1 中的重载值不会改变。在允许定时器正确计数开始之 前,TL1必须初始化为所需要的值。

除了自动重载功能外,工作模式2中的计数器/定时器的使能和配置方式同方式0和1是相同的。

当作为定时器应用时,可配置寄存器 TMCON.4(T1FD)来选择定时器时钟源被系统时钟 fsys 分频的比例。

Page 38 of 82 Vn 2

定时器/计数器工作模式 2: 自动重载的 8 位定时器/计数器

11 定时器 TIMER2

SC92F8003 单片机内部的 Timer2 具有计数方式和定时方式两种工作模式。特殊功能寄存器 T2CON 中有一个控制位 C/T2 来选择 T2 是定时器还是计数器。它们本质上都是一个加法计数器,只是计数的来源不同。定时器的来源为系统时钟或者其分频时钟,但计数器的来源为外部管脚的输入脉冲。TR2 是 T2 在定时器/计数器模式计数的开关控制,只有在 TR2=1 的时候,T2 才会被打开计数。

计数器模式下,T2管脚上的每一个脉冲,T2的计数值分别增加1。

定时器模式下,可通过特殊功能寄存器 TMCON 来选择 T2 的计数来源是 fsys/12 或 fsys。

定时器/计数器 T2 有 4 种工作模式:

- ① 模式 0: 16 位捕获模式
- ② 模式 1: 16 位自动重载定时器模式
- ③ 模式 2: 波特率发生器模式
- ④ 模式 3: 可编程时钟输出模式。

11.1 T2 相关特殊功能寄存器

			- 4 1								
符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值
T2CON	C8H	定时器 2 控制寄存器	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	0000000b
T2MOD	C9H	定时器 2 工作模式寄存器	-	-	-	-	-	-	T2OE	DCEN	xxxxxx00b
RCAP2L	CAH	定时器 2 重载/捕捉低 8 位	RCAP2L[7:0]								00000000b
RCAP2H	СВН	定时器 2 重载/捕捉高 8 位				RCAF	P2H[7:0]				0000000b
TL2	CCH	定时器 2 低 8 位				TL	2[7:0]				0000000b
TH2	CDH	定时器 2 高 8 位		TH2[7:0]				0000000b			
TMCON	8EH	定时器频率控制寄存器	-	-	-	-	-	T2FD	T1FD	T0FD	xxxxx000b

各寄存器的解释说明如下:

T2CON (C8H) 定时器 2 控制寄存器(读/写)

	7 - 7 - 7 -	1 4 4 14 101 (2 1	* /					
位编号	7	6	5	4	3	2	1	0
符号	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	TF2	定时器 2 溢出标志位 0:无溢出(必须由软件清 0) 1:溢出(如果 RCLK = 0 和 TCLK = 0,由硬件设 1)
6	EXF2	T2 引脚外部事件输入(下降沿)被检测到的标志位 0: 无外部事件输入(必须由软件清 0)

Page 39 of 82

1	
	1: 检测到外部输入(如果 EXEN2 = 1,由硬件设 1)
RCLK	UART0 接收时钟控制位
	0: 定时器 1 产生接收波特率
	1: 定时器 2 产生接收波特率
TCLK	UARTO 发送时钟控制位
	0: 定时器 1 产生发送波特率
	1: 定时器 2 产生发送波特率
EXEN2	T2 引脚上的外部事件输入(下降沿)用作重载/捕获触发器允许/禁止控制:
	0: 忽略 T2 引脚上的事件
	1: 当定时器 2 不做为 UART0 时钟(T2EX 始终包括上拉电阻)时,检测
	到 T2 引脚上一个下降沿,产生一个捕获或重载
TR2	定时器 2 开始/停止控制位
	0: 停止定时器 2
	1: 开始定时器 2
C/T2	定时器 2 定时器/计数器方式选定位 2
	0: 定时器方式, T2 引脚用作 I/O 端口
	1: 计数器方式
CP/RL2	捕获/重载方式选定位
	0: 16 位带重载功能的定时器/计数器
	1: 16 位带捕获功能的定时器/计数器, T2EX 为定时器 2 外部捕获信号
	输入口
	TCLK EXEN2 TR2 C/T2

T2MOD (C9H) 定时器 2 工作模式寄存器(读/写)

			(> , , , , , , , , , , , , , , , , , ,					
位编号	7	6	5	4	3	2	1	0
符号	-	-	-		-	-	T2OE	DCEN
读/写	-	-	-	4 - 111	-	-	读/写	读/写
上电初始值	Х	Х	Х	Х	Х	Х	0	0

位编号	位符号	说明
1	T2OE	定时器 2 输出允许位
		0:设置 T2 作为时钟输入或 I/O 端口
		1: 设置 T2 作为时钟输出
0	DCEN	递减计数允许位
		0:禁止定时器 2 作为递增/递减计数器,定时器 2 仅作为递增计数器
		1: 允许定时器 2 作为递增/递减计数器
7~2	-	保留

TMCON (8EH) 定时器频率控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	T2FD	T1FD	T0FD
读/写	-	-	-	-	-	读/写	读/写	读/写
上电初始值	Х	Х	Х	Х	Х	0	0	0

位编号	位符号	说明
2	T2FD	T2 输入频率选择控制
		0: T2 频率源自于 f _{SYS} /12
		1: T2 频率源自于 fsys

IE (A8H) 中断使能寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	ET2	EUART	ET1	-	ET0	EINT0
读/写	读/写	读/写	读/写	读/写	读/写	-	读/写	读/写

Page 40 of 82 V0.2

SC92F8003 高速 1T 8051 内核 Flash MCU

L 出 元 4 1 古	^	<u> </u>	Δ	0	\cap	.,	0	0
上电初始值	U	U	U	U	U	X	U	U

位编号	位符号	说明
5	ET2	Timer2 中断使能控制
		0: 关闭 TIMER2 中断
		1: 允许 TIMER2 中断

IP (B8H) 中断优先级寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	IPADC	IPT2	IPUART	IPT1	IPINT1	IPT0	IPINT0
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	0	0	0	0	0	0	0

位编号	位符号	说明
5	IPT2	Timer2 中断优先权 0: 设定 Timer 2 的中断优先权是 "低" 1: 设定 Timer 2 的中断优先权是 "高"

11.2 T2 工作模式

定时器 2 工作模式与配置方式如下表:

C/T2	T2OE	DCEN	TR2	CP/RL2	RCLK	TCLK	方式		
Х	0	Х	1	1	0	0	0	16 位捕获	
Х	0	0	1	0	0	0	1	16 位自动重载定时器	
Х	0	1	1	0	0	0			
Х	0	Х	1	X	1	Х	2	波特率发生器	
					Х	1			
0	1	Х	1	X	0	0	3	只用于可编程时钟	
					1	Х	3	带波特率发生器的可编程时	
					Х	1		钟输出	
Х	Х	Х	0	Х	Х	Х	Χ	定时器 2 停止,T2EX 通路仍	
								旧允许	
1	1	Х	1	Х	X	Х		不推荐使用	

工作模式 0:16 位捕获

在捕获方式中,T2CON的 EXEN2 位有两个选项。

如果 EXEN2 = 0, 定时器 2 作为 16 位定时器或计数器,如果 ET2 被允许的话,定时器 2 能设置 TF2 溢出产 生一个中断。

如果 EXEN2 = 1, 定时器 2 执行相同操作, 但是在外部输入 T2EX 上的下降沿也能引起在 TH2 和 TL2 中的当 前值分别被捕获到 RCAP2H 和 RCAP2L 中,此外,在 T2EX 上的下降沿也能引起在 T2CON 中的 EXF2 被设 置。如果 ET2 被允许, EXF2 位也像 TF2 一样也产生一个中断。

Page 41 of 82 V0.2

模式 0:16 位捕获

工作模式 1:16 位自动重载定时器

在 16 位自动重载方式下,定時器 2 可以被选为递增计数或递减计数。这个功能通过 T2MOD 中的 DCEN 位 (递减计数允许)选择。系统复位后, DCEN 位复位值为 0, 定时器 2 默认递增计数。当 DCEN 置 1 时, 定时器 2 递 增计数或递减计数取决于 T2EX 引脚上的电平。

当 DCEN = 0,通过在 T2CON 中的 EXEN2 位选择两个选项。

如果 EXEN2 = 0, 定时器 2 递增到 0xFFFFH, 在溢出后置起 TF2 位, 同时定时器自动将用户软件写好的寄 存器 RCAP2H 和 RCAP2L 的 16 位值装入 TH2 和 TL2 寄存器。

如果 EXEN2 = 1, 溢出或在外部输入 T2EX 上的下降沿都能触发一个 16 位重载, 置起 EXF2 位。如果 ET2 被使能,TF2和EXF2位都能产生一个中断。

模式 1: 16 位自动重载 DCEN = 0

设置 DCEN 位允许定时器 2 递增计数或递减计数。当 DCEN = 1 时,T2EX 引脚控制计数的方向,而 EXEN2 控制无效。

T2EX 置 1 可使定时器 2 递增计数。定时器向 0xFFFFH 溢出,然后设置 TF2 位。溢出也能分别引起 RCAP2H 和 RCAP2L 上的 16 位值重载入定时器寄存器。

T2EX 置 0 可使定时器 2 递减计数。当 TH2 和 TL2 的值等于 RCAP2H 和 RCAP2L 的值时,定时器溢出。置 起 TF2 位,同时 0xFFFFH 重载入定时器寄存器。

无论定时器 2 溢出与否, EXF2 位都被用作结果的第 17 位。在此工作方式下, EXF2 不作为中断标志。

Page 42 of 82 Vn 2

模式 1: 16 位自动重载 DCEN = 1

工作模式 2: 波特率发生器

通设置 T2CON 寄存器中的 TCLK 和/或 RCLK 选择定时器 2 作为波特率发生器。接收器和发送器的波特率可以不同。如果定时器 2 作为接收器或发送器,则定时器 1 相应的作为另一种的波特率发生器

设置 T2CON 寄存器中的 TCLK 和/或 RCLK 使定时器 2 进入波特率发生器方式,该方式与自动重载方式相似定时器 2 的溢出会使 RCAP2H 和 RCAP2L 寄存器中的值重载入定时器 2 计数,但不会产生中断

在 UART0 方式 1 和 3 中的波特率由定时器 2 的溢出率根据下列方程式决定:

BaudRate =
$$\frac{fsys}{[RCAP2H,RCAP2L]}$$
; (注意: [RCAP2H,RCAP2L] 必须大于 0x0010)

定时器 2 作为波特率发生器的原理图如下:

模式 2: 波特率发生器

工作模式 3: 可编程时钟输出

在这种方式中,T2(P1.1)可以编程为输出 50%的占空比时钟周期: 当 $C/\overline{T2}=0$; T2OE=1,使能定时器 2 作为时钟发生器

在这种方式中,T2输出占空比为50%的时钟

Colck Out Frequency =
$$\frac{\text{fn2}}{(65536-[\text{RCAP2H,RCAP2L}])\times 4}$$
;

其中, fn2 为定时器 2 时钟频率:

$$fn2 = \frac{fsys}{12}$$
; T2FD = 0

Page 43 of 82 V0.2 http://www.socmcu.com

fn2 = fsys; T2FD = 1

定时器 2 溢出不产生中断, T2 端口作时钟输出。

模式 3: 可编程时钟输出

注意:

- 1. TF2 和 EXF2 都能引起定时器 2 的中断请求,两者有相同的向量地址;
- 2. 当事件发生时或其它任何时间都能由软件设置 TF2 和 EXF2 为 1, 只有软件以及硬件复位才能使之清 0;
- 3. 当 EA = 1 且 ET2 = 1 时,设置 TF2 或 EXF2 为 1 能引起定时器 2 中断;
- 4. 当定时器 2 作为波特率发生器时,写入 TH2/TL2 或 RCAP2H/RCAP2L 会影响波特率的准确性,引起通信出错。

12 PWM

SC92F8003 提供了 7 路共用周期、单独可调占空比的 10 位 PWM 输出: PWM0~6。 SC92F8003 的 PWM 具有的功能为:

- ① 10 位 PWM 精度;
- ② PWMn(n=0~6)周期相同,但占空比可单独设置;
- ③ 输出可设置正反向;
- 4 分为独立模式和互补模式:
 - 1) 独立模式下,PWM0~6 周期相同,但每一路PWM 输出波形的占空比单独可设置;
 - 2) 互补模式下可同时输出三组(PWM0/3、PWM1/4、PWM2/5)互补、带死区的 PWM 波形。
- (5) 提供 1 个 PWM 溢出的中断;
- ⑥ PWM2 输出可通过 PWMCON0[2]切换至 P2.6 或 P1.4;
- (7) PWM5 输出可通过 PWMCON0[3]切换至 P1.2 或 P2.1。

SC92F8003 的 PWM 可支持周期及占空比的调整,寄存器 PWMCON0、PWMCON1 控制 PWMn 相关设置,PWMCFG 设置 PWM 输出波形的极性,PWMPRD 设置 7 路 PWM 的共同的周期,PDTn 分别控制 PWMn 的占空比。

注意: PWM 电路的时钟源固定为 f_{HRC} = 16MHz,不会随着内外系统时钟的切换而改变。

Page 44 of 82 V0.2 http://www.socmcu.com

12.1 PWM 结构框图

SC92F8003 PWM 结构框图

12.2 PWM 相关 SFR 寄存器

符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值
PWMCFG	D1H	PWM 设置寄存器	-	INV6	INV5	INV4	INV3	INV2	INV1	INV0	x0000000b
PWMCON0	D2H	PWM 控制寄存器 0	ENPWM	PWMIF	PWMC	KS[1:0]	PWMOS5	PWMOS2	PWMP	RD[1:0]	0000000b
PWMPRD	D3H	PWM 周期设置寄存器				PWMPI	RD[9:2]				0000000b
PWMDTYA	D4H	PWM 占空比设置寄存器 A	PDT:	3[1:0]	PDT2	2[1:0]	PDT	1[1:0]	PDT	0[1:0]	0000000b
PWMDTY0	D5H	PWM0 占空比设置寄存器		PDT0[9:2]						0000000b	
PWMDTY1	D6H	PWM1 占空比设置寄存器		PDT1[9:2]						0000000b	
PWMDTY2	D7H	PWM2 占空比设置寄存器				PDT2	2[9:2]				0000000b
PWMCON1	DAH	PWM 控制寄存器 1	PWMMOD	ENPWM6	ENPWM5	ENPWM4	ENPWM3	ENPWM2	ENPWM1	ENPWM0	0000000b
PWMDTYB	DBH	PWM 占空比设置寄存器 B	-	-	PDT6	6[1:0]	PDT5[1:0] PDT4[1:0]				xx000000b
PWMDTY3	DCH	PWM3 占空比设置寄存器/				PDT3	3[9:2]				00000000b
		PWM 死区时间配置寄存器		PDF[3:0] PDR[3:0]							
PWMDTY4	DDH	PWM4 占空比设置寄存器		PDT4[9:2]					0000000b		
PWMDTY5	DEH	PWM5 占空比设置寄存器		PDT5[9:2]					0000000b		
PWMDTY6	DFH	PWM6 占空比设置寄存器				PDT6[9:2]					

V0.2 Page 45 of 82

12.3 PWM 通用配置寄存器

SC92F8003 的 PWM 分为独立模式和互补模式,这两种模式共用的寄存器如下:

用户通过配置 PWMCKS[1:0],可选择 4 种 PWM 时钟源。INV0~6 分别用来选择 PWM0~6 输出是否反向。 PWMPRD[9:0] 是七路 PWM 共享的周期设置控制器。 每当 PWM 计数器数到 PWMPRD[9:0]预先设置的值时, 下一个 PWM CLK 到来时该计数器会跳数到 00h, 也就是说 PWM0~6 的周期都是 (PWMPRD[9:0] + 1)*PWM 时 钟。

注意: 为保证正确写入数据,对 PWM 周期寄存器的写操作必须遵循先低 2 位后高 8 位的顺序。

IE1 (A9H) 中断使能寄存器(读/写)

	, D4140 - 4 14 1111 -	(** */						
位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	EINT2	EBTM	EPWM	ESSI
读/写	-	-	-	-	读/写	读/写	读/写	读/写
上电初始值	х	х	х	х	0	0	0	0

位编号	位符号	说明
1	EPWM	PWM 中断使能控制
		0: 关闭 PWM 中断
		1: 允许 PWM 计数器溢出时产生中断

IP1 (B9H) 中断优先级寄存器 1(读/写)

		() ()						
位编号	7	6	5	4	3	2	1	0
符号	-	-	-	- , /	IPINT2	IPBTM	IPPWM	IPSSI
读/写	-	-	-		读/写	读/写	读/写	读/写
上电初始值	Х	Х	Х	Х	0	0	0	0

位编号	位符号	说明
1	IPPWM	PWM 中断优先权选择
		0:设定 PWM 的中断优先级是"低"
		1:设定 PWM 的中断优先级是 "高"

PWMCFG (D1H) PWM 设置寄存器 0(读/写)

	, , , , , ,	_ , ,, ,,,, ,,,	<u>· · , </u>					
位编号	7	6	5	4	3	2	1	0
符号	-	INV6	INV5	INV4	INV3	INV2	INV1	INV0
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	0	0	0	0	0	0	0

位编号	位符号	说明
6~0	INVx (x=0~6)	PWMx 输出反向控制 0: PWMx 的输出不反向 1: PWMx 的输出反向
7	-	保留

PWMCON0 (D2H) PWM 控制寄存器 (读/写)

位编号	7	6	5	4	3	2	1	0
符号	ENPWM	PWMIF	PWMC	KS[1:0]	PWMOS5	PWMOS2	PWMP	RD[1:0]
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读	/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	ENPWM	PWM 模块开关控制(Enable PWM)
		0: PWM 单元停止工作,PWM 计数器清零。 PWMn 仍接到输出口,若

Page 46 of 82 V0.2

		要使用与 PWMn 输出口复用的其它功能,应将 ENPWMn 置 0
		1:允许 Clock 进到 PWM 单元,开始 PWM 的工作
6	PWMIF	PWM 中断请求标志位(PWM Interrupt Flag)
		当 PWM 计数器溢出时(也就是说: 数到超过 PWMPRD 时), 此位会被
		硬件自动设定成 1。如果此时 IE1[1] (EPWM) 也是被设定成 1,
		PWM 的中断产生。
		注意: 七个 PWM 共用周期,溢出时产生 PWM 中断是同一中断向
		里。
5~4	PWMCKS[1:0]	PWM 时钟源选择(PWM ClocK source Selector)
		00: f _{HRC}
		01: f _{HRC} /2
		10: f _{HRC} /8
		11: f _{HRC} /32
		注意: PWM 电路的时钟源固定为 f _{HRC} = 16MHz,不会随着内外系统时
		钟的切换而改变。
3	PWMOS5	PWM5 输出口选择:
		0: PWM5 输出至 P1.2
		1: PWM5 输出至 P2.1
2	PWMOS2	PWM2 输出口选择:
		0: PWM2 输出至 P2.6
		1: PWM2 输出至 P1.4
1~0	PWMPRD[1:0]	PWM0~PWM6共用的周期设置低2位;
		此数值代表 PWM0 ~ PWM6 输出波形的 (周期 - 1); 也就是说 PWM 输
		出的周期值为(PWMPRD[9:0] + 1)* PWM 时钟;

PWMPRD (D3H) PWM 周期设置寄存器(读/写)

		7 7 7 17 111								
位编号	7	6	5	4	3	2	1	0		
符号		PWMPRD[9:2]								
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
上电初始值	0	0	0	0	0	0	0	0		

位编号	位符号	说明					
7~0	PWMPRD[9:2]	PWM0~PWM6共用的周期设置高8位;					
		此数值代表 PWM0~6 输出波形的 (周期 - 1); 也就是说 PWM 输出的周					
		期值为(PWMPRD[9:0] + 1)* PWM 时钟;					

PWMCON1 (DAH) PWM 设置寄存器 0(读/写)

位编号	7	6	5	4	3	2	1	0
符号	PWMMOD	ENPWM6	ENPWM5	ENPWM4	ENPWM3	ENPWM2	ENPWM1	ENPWM0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	PWMMOD	PWM模式设置: 0:独立模式:PWM0~67路PWM的独立设置; 1:互补模式:PWM0/3,PWM1/4,PWM2/5分为三组,同组PWM的输出脉宽相同,分别由PDT0~2[9:0]进行控制,并可通过寄存器PWMDTY3设定死区时间。在互补模式下PWM6的duty仍为独立设置。
6~0	ENPWMx	PWMx 功能开关

Page 47 of 82 V0.2

(x=0~6)	0: PWMx 不输出到 IO
	1: PWMx 输出到 IO
	注意:
	如果 ENPWM 置 1, PWM 模块被打开,但 ENPWMn=0, PWM 输出被
	关闭并作为 GPIO 口。此时 PWM 模块可以作为一个 10 位 Timer 使用,
	此时 EPWM(IE1.1)被置 1,PWM 仍然会产生中断。

12.4 PWM 独立模式

独立模式下(PWMMOD = 0) , PWMDTY0~6、PWMDTYA 和 PWMDTYB 作为 PWM0~6 通道的占空比设置 寄存器。用户配置好 PWM 的输出状态及周期,再通过配置相应 PWM 通道的占空比寄存器即可按固定占空比输出 PWM 波形。

12.4.1 PWM 独立模式框图

SC92F8003 PWM 独立模式框图

Page 48 of 82 V0.2

12.4.2 PWM 独立模式占空比配置

为保证正确写入数据,对 PWM 占空比寄存器的写操作必须遵循先低 2 位后高 8 位的顺序。

PWMDTY0 (D5H) PWM0 占空比设置寄存器(读/写)

位编号	7	6	5	4	3	2	1	0		
符号		PDT0[9:2]								
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
上电初始值	0	0	0	0	0	0	0	0		

PWMDTY1 (D6H) PWM2 占空比设置寄存器(读/写)

位编号	7	6	5	4	3	2	1	0		
符号		PDT1[9:2]								
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
上电初始值	0	0	0	0	0	0	0	0		

PWMDTY2 (D7H) PWM2 占空比设置寄存器(读/写)

位编号	7	6	5	4	3	2	1	0		
符号		PDT2[9:2]								
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
上电初始值	0	0	0	0	0	0	0	0		

PWMDTY3 (DCH) PWM3 占空比设置寄存器(读/写)

位编号	7	6	5	4	3	2	1	0		
符号		PDT3[9:2]								
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
上电初始值	0	0	0	0	0	0	0	0		

PWMDTY4 (DDH) PWM4 占空比设置寄存器(读/写)

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
位编号	7	6	5	4	3	2	1	0				
符号		PDT4[9:2]										
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写				
上电初始值	0	0	0	0	0	0	0	0				

PWMDTY5 (DEH) PWM5 占空比设置寄存器(读/写)

位编号	7	6	5	4	3	2	1	0		
符号		PDT5[9:2]								
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
上电初始值	0	0	0	0	0	0	0	0		

PWMDTY6 (DFH) PWM6 占空比设置寄存器(读/写)

位编号	7	6	5	4	3	2	1	0			
符号		PDT6[9:2]									
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写			
上电初始值	0	0	0	0	0	0	0	0			

位编号	位符号	说明
7~0	PDTx[9:2] (x=0~6)	独立模式: PWMx 占空比长度设置高 8 位; PWMx 的高电平宽度是 (PDTx[9:0])个 PWM 时钟

Page 49 of 82 V0.2

PWMDTYA (D4H) PWM 占空比设置寄存器 A(读/写)

位编号	7	6	5	4	3	2	1	0
符号	PDT	3[1:0]	PDT2	2[1:0]	PDT	1[1:0]	PDT0	[1:0]
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

PWMDTYB (DBH) PWM 占空比设置寄存器 B(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	PDT	6[1:0]	PD	T5[1:0]	PD.	T4[1:0]
读/写	-	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	Х	0	0	0	0	0	0

位编号	位符号	说明
7~0	PDTx [1:0]	PWMx 占空比长度设置低 2 位;
	(x=0~6)	PWMx 的高电平宽度 是 (PDTx[9:0])个 PWM 时钟

12.5 PWM 互补模式

当 SC92F8003 的 PWM 工作在互补模式时,死区控制模块能够防止互补输出的两路 PWM 信号有效时区的互 相交叠,以保证实际应用中 PWM 信号驱动的一对互补功率开关管不会同时导通。

互补模式下(PWMMOD = 1), PWM6 为独立的 PWM 输出,通过 PDT6[9:0]调节占空比: PWM0、PWM3 为 一组,通过 PDT0[9:0]调节占空比; PWM1、PWM4 为一组,通过 PDT1[9:0]调节占空比; PWM2、PWM5 为一 组,通过 PDT2[9:0]调节占空比。

互补模式下寄存器 PWMDTY4~5 无效,寄存器 PWMDTY3 的 bit 位被重新定义为 PWM3/4/5 下降沿死区时间 控制位 PDF[3:0]和 PWM0/1/2 上升沿死区时间控制位 PDR[3:0]。

12.5.1 PWM 互补模式框图

SC92F8003 PWM 互补模式框图

Page 50 of 82 V0.2 http://www.socmcu.com

12.5.2 PWM 互补模式占空比配置

为保证正确写入数据,对 PWM 占空比寄存器的写操作必须遵循先低 2 位后高 8 位的顺序。

PWMDTY0 (D5H) PWM0 占空比设置寄存器(读/写)

- (,		14 101 (151: 47					
位编号	7	6	5	4	3	2	1	0
符号				PDT)[9:2]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

PWMDTY1 (D6H) PWM2 占空比设置寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号				PDT1	[9:2]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

PWMDTY2 (D7H) PWM2 占空比设置寄存器(读/写)

			14 101 (124: 4)					
位编号	7	6	5	4	3	2	1	0
符号				PDT2	2[9:2]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

PWMDTY6 (DFH) PWM6 占空比设置寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号			1	PDT	6[9:2]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	PDT0[9:2]	互补模式:
		PWM0、PWM3 占空比长度设置高 8 位;
		PWM0、PWM3 的高电平宽度是 (PDT0[9:0])个 PWM 时钟
7~0	PDT1[9:2]	互补模式:
		PWM1、PWM4 占空比长度设置高 8 位;
		PWM1、PWM4 的高电平宽度是 (PDT1[9:0])个 PWM 时钟
7~0	PDT2[9:2]	互补模式:
		PWM2、PWM5 占空比长度设置高 8 位;
		PWM2、PWM5 的高电平宽度是 (PDT2[9:0])个 PWM 时钟
7~0	PDT6[9:2]	互补模式:
		PWM6 占空比长度设置高 8 位;
		PWM6 的高电平宽度是 (PDT6[9:0])个 PWM 时钟

PWMDTYA (D4H) PWM 占空比设置寄存器 A(读/写)

位编号	7	6	5	4	3	2	1	0
符号	PDT:	3[1:0]	PDT2	2[1:0]	PDT	1[1:0]	PDT0	[1:0]
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

PWMDTYB (DBH) PWM 占空比设置寄存器 B(读/写)

<u> </u>		, _ , _ , _ ,	(31-4)					
位编号	7	6	5	4	3	2	1	0
符号	-	-	PDT6	6[1:0]	PD	T5[1:0]	PD	T4[1:0]
读/写	-	-	读/写	读/写	读/写	读/写	读/写	读/写

Page 51 of 82 V0.2

SC92F8003 高速 1T 8051 内核 Flash MCU

上电初始值 x x 0 0 0 0 0 0 0

位编号	位符号	说明
7~0	PDT0[1:0]	互补模式:
		PWM0、PWM3 占空比长度设置低 2 位;
		PWM0、PWM3 的高电平宽度是 (PDT0[9:0])个 PWM 时钟
7~0	PDT1[1:0]	互补模式:
		PWM1、PWM4 占空比长度设置低 2 位;
		PWM1、PWM4 的高电平宽度是 (PDT1[9:0])个 PWM 时钟
7~0	PDT2[1:0]	互补模式:
		PWM2、PWM5 占空比长度设置低 2 位;
		PWM2、PWM5 的高电平宽度是 (PDT2[9:0])个 PWM 时钟
7~0	PDT6[1:0]	互补模式:
		PWM6 占空比长度设置低 2 位;
		PWM6 的高电平宽度是 (PDT6[9:0])个 PWM 时钟

12.5.3 PWM 互补模式死区时间配置

PWMDTY3 (DCH) PWM 死区时间配置寄存器(读/写)

- 1				<i>,</i>					
位编号	7	6	5	4	3	2	1	0	
符号		PDF	[3:0]		PDR[3:0]				
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
上电初始值	0	0	0	0	0	0	0	0	

位编号	位符号	说明
14月 フ	177.1.1.1.2	1,01
7~4	PDF[3:0]	互补模式:
, , , ,	. 5. [0.0]	五 川 次八.
		DW/M2/4/5 工购汇展区时间 DDC[2:01 / 6
		PWM3/4/5 下降沿死区时间= PDF[3:0] / f _{HRC}
3~0	PDR[3:0]	互补模式:
3~0	FDI\[3.0]	五个个条八:
		DMMON/O LTNI基区时间 DDDIO.01/f
		PWM0/1/2 上升沿死区时间= PDR[3:0] / f _{HRC}

12.5.4 PWM 死区输出波形

下图是以 PWM0 和 PWM3 在互补模式下的死区时间调整波形图,为了便于区分,PWM3 已反向(INV3=1)。

Page 52 of 82 V0.2

PWM 死区输出波形

12.6 PWM 波形及用法

各 SFR 参数改变对 PWM 波形影响如下所述:

① 占空比变化特性

占空比变化特性图

当 PWMn 输出波形时,若需改变占空比,可通过改变高电平设置寄存器(PDTn)的值实现。但需要注意,更改 PDTn 的值,占空比不会立即改变,而是等待本周期结束,在下个周期发生改变。为保证正确写入数据,对 PWM 周期和 DUTY 寄存器的写操作都必须遵循先低 2 位后高 8 位的顺序。相关波形输出如上图所示。

② 周期变化特性

周期变化特性图

当 PWMn 输出波形时,若需改变周期,可通过改变周期设置寄存器 PWMPRD 的值实现。同改变占空比一样, 更改 PWMPRD 的值,周期不会立即改变,而是等待本周期结束,在下个周期改变,参考上图所示。

③ 周期和占空比的关系

Page 54 of 82 V0.2

周期与占空比关系图

周期和占空比的关系如上图所示。该结果的前提是 PWMn 输出反向控制(INVn)初始为 0,若需得到相反结果,可置 INVn 为 1。

13 GP I/O

SC92F8003 提供了最多 18 个可控制的双向 GPIO 端口,输入输出控制寄存器用来控制各端口的输入输出状态,当端口作为输入时,每个 I/O 端口带有由 PxPHy 控制的内部上拉电阻。此 18 个 IO 同其他功能复用。 注意:未使用及封装未引出的 IO 口均要设置为强推挽输出模式。

13.1 GPIO 结构图

强推挽输出模式

强推挽输出模式下,能够提供持续的大电流驱动:大于 20mA 的输出高,大于 70mA 的输出低。强推挽输出模式的端口结构示意图如下:

强推挽输出模式

带上拉的输入模式

带上拉的输入模式下,输入口上恒定接一个上拉电阻,仅当输入口上电平被拉低时,才会检测到低电平信号。带上拉的输入模式的端口结构示意图如下:

带上拉的输入模式

高阻输入模式(Input only)

高阻输入模式的端口结构示意图如下所示:

高阻输入模式

13.2 I/O 端口相关寄存器

P0CON (9AH) P0 口输入/输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	-	P0C1	P0C0
读/写	-	-	-	-	-	-	读/写	读/写
上电初始值	Х	Х	Х	Х	х	Х	0	0

P0PH (9BH) P0 口上拉电阻控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	-	P0H1	P0H0
读/写	-	-	-	-	-	-	读/写	读/写
上电初始值	х	Х	х	х	х	х	0	0

P1CON (91H) P1 口输入/输出控制寄存器(读/写)

	, , , , , , , , , , , , , , , , , , , ,		* ** *** *** *					
位编号	7	6	5	4	3	2	1	0
符号	P1C7	P1C6	P1C5	P1C4	P1C3	P1C2	P1C1	P1C0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P1PH (92H) P1 口上拉电阻控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P1H7	P1H6	P1H5	P1H4	P1H3	P1H2	P1H1	P1H0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P2CON (A1H) P2 口输入/输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P2C7	P2C6	P2C5	P2C4	P2C3	P2C2	P2C1	P2C0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P2PH (A2H) P2 口上拉电阻控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P2H7	P2H6	P2H5	P2H4	P2H3	P2H2	P2H1	P2H0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	PxCy	Px 口输入输出控制:
	(x=0~2, y=0~7)	0: Pxy 为输入模式(上电初始值)
		1: Pxy 为强推挽输出模式
7~0	PxHy	Px 口上拉电阻设置,仅在 PxCy=0 时有效:
	(x=0~2, y=0~7)	0: Pxy 为高阻输入模式(上电初始值),上拉电阻关闭;
		1: Pxy 上拉电阻打开

P0 (80H) P0 口数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	-	-	P0.1	P0.0
读/写	-	-	-	-	-	-	读/写	读/写
上电初始值	Х	Х	Х	Х	Х	Х	0	0

Page 57 of 82 V0.2 http://www.socmcu.com

P1 (90H) P1 口数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

P2 (A0H) P2 口数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

14 UARTO

SC92F8003支持一个全双工的串行口,可方便用于同其它器件或者设备的连接,例如Wifi模块电路或其它UART通信接口的驱动芯片等。UART0的功能及特性如下:

- 1. 串行通信口可通过 SPOS[1:0]切换至不同引脚;
- 2. 三种通讯模式可选:模式 0、模式 1 和模式 3;
- 3. 可选择定时器 1 或定时器 2 作为波特率发生器;
- 4. 发送和接收完成可产生中断 RI/TI,该中断标志需要软件清除。

14.1 UART0

OTCON (8FH) 输出控制寄存器(读/写)

<u> </u>		1 HH (100 / 1 / 1 / 1			-			
位编号	7	6	5	4	3	2	1	0
符号	SSMC	D[1:0]	SPOS	S[1:0]	-	-	-	-
读/写	读/写	读/写	读/写	读/写	-	-	-	-
上电初始值	0	0	0	0	Х	Х	Х	Х

位编号	位符号	说明
5~4	SPOS[1:0]	串行通信口输出引脚选择
		X0: UART0 与 P1.5、P1.6 共用引脚;
		X1: UART0 与 P1.1、P2.0 共用引脚;

SCON (98H) 串口控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	SM0	SM1	SM2	REN	TB8	RB8	TI	RI
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~6	SM0~1	串行通信模式控制位
		00: 模式 0,8 位半双工同步通信模式,在 RX 引脚上收发串行数据。
		TX 引脚用作发送移位时钟。每帧收发 8 位,低位先接收或发送;
		01:模式 1,10 位全双工异步通信,由 1 个起始位,8 个数据位和 1 个
		停止位组成,通信波特率可变;
		10: 保留;
		11:模式 3,11 位全双工异步通信,由 1 个起始位,8 个数据位,一个
		可编程的第9位和1个停止位组成,通信波特率可变。
5	SM2	串行通信模式控制位 2, 此控制位只对模式 3 有效
		0: 每收到一个完整的数据帧就置位 RI 产生中断请求;
		1: 收到一个完整的数据帧时,只有当 RB8=1 时才会置位 RI 产生中断请

V0.2

		求。
4	REN	接收允许控制位
		0: 不允许接收数据;
		1: 允许接收数据。
3	TB8	只对模式3有效,为发送数据的第9位
2	RB8	只对模式3有效,为接收数据的第9位
1	TI	发送中断标志位
0	RI	接收中断标志位

SBUF (99H) 串口数据缓存寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号				SBUF	[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	SBUF[7:0]	串口数据缓存寄存器
		SBUF 包含两个寄存器:一个发送移位寄存器和一个接收锁存器,写入
		SBUF 的数据将送至发送移位寄存器,并启动发送流程,读 SBUF 将返
		回接收锁存器中的内容。

PCON (87H) 电源控制寄存器(只写、*不可读*)

位编号	7	6	5	4	3	2	1	0
符号	SMOD		-	-	-	-	STOP	IDL
读/写	只写	-	-	7.1	-	-	只写	只写
上电初始值	0	Х	Х	X	Х	Х	0	0

位编号	位符号	说明
7	SMOD	波特率倍率设置位,仅在模式 0 (SM0~1 = 00) 有效:
		0: 串行端口在系统时钟的 1/12 下运行
		1: 串行端口在系统时钟的 1/4 下运行

14.2 串口通信的波特率

方式 0 中,波特率可编程为系统时钟的 1/12 或 1/4,由 SMOD(PCON.7)位决定。当 SMOD 为 0 时,串行端口 在系统时钟的 1/12 下运行。当 SMOD 为 1 时,串行端口在系统时钟的 1/4 下运行。

在方式1和方式3中,波特率可选择来至定时器1或定时器2的溢出率。

分别置 TCLK(T2CON.4)和 RCLK(T2CON.5)位为 1 来选择定时器 2 作为 TX 和 RX 的波特时钟源(详见定时器 章节)。无论 TCLK 还是 RCLK 为逻辑 1,定时器 2 都为波特率发生器方式。如果 TCLK 和 RCLK 为逻辑 0,定时 器 1 作为 Tx 和 Rx 的波特时钟源。

方式 1 和方式 3 波特率公式如下所示,其中[TH1、TL1]是定时器 1 的 16 位计数器寄存器, [RCAP2H、 RCAP2L]是定时器 2 的 16 位重载寄存器。

1. 用定时器 1 作为波特率发生器,定时器 1 必须停止计数,即 TR1=0:

BaudRate =
$$\frac{\text{fsys}}{\text{[TH1,TL1]}}$$
; (注意: [TH1,TL1] 必须大于 0x0010)

2. 用定时器 2 作为波特率发生器:

BaudRate =
$$\frac{f_{Sys}}{|RCAP2H,RCAP2L|}$$
; (注意: [RCAP2H,RCAP2L] 必须大于 0x0010)

Page 59 of 82 Vn 2

15 SPI/TWI/UART 三选一串行接口 SSI

SC92F8003 内部集成了三选一串行接口电路(简称 SSI),可方便 MCU 与不同接口的器件或者设备的连接。 用户可通过配置寄存器 OTCON 的 SSMOD[1:0] 位将 SSI 接口配置为 SPI、TWI 和 UART 中任意一种通信模式。 其特点如下:

- 1. SPI 模式可配置为主模式或从属模式中的一种
- TWI模式通信时只能做从机
- UART 模式可工作在模式 1 (10 位全双工异步通信)和模式 3 (11 位全双工异步通信) 具体配置方式如下:

OTCON (8FH) 输出控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	SSMC	D[1:0]	SPOS	S[1:0]	-	-	-	-
读/写	读/写	读/写	读/写	读/写	-	-	-	-
上电初始值	0	0	0	0	Х	Х	Х	Х

位编号	位符号	说明
7~6	SSMOD[1:0]	SSI 通信模式控制位
		00: SSI 关闭
		01: SSI 设置为 SPI 通信模式;
		10: SSI 设置为 TWI 通信模式;
		11: SSI 设置为 UART 通信模式;
5~4	SPOS[1:0]	串行通信口输出引脚选择
		X0: UART0 与 P1.5、P1.6 共用引脚;
		X1: UART0 与 P1.1、P2.0 共用引脚;
		OX: SSI 与 P1.0、P2.7、P2.6 共用引脚;
		1X: SSI 与 P2.1、P2.2、P2.3 共用引脚;

15.1 SPI

SSMOD[1:0] = 01, 三选一串行接口 SSI 配置为 SPI 接口。串行外部设备接口(简称 SPI)是一种高速串行通信 接口,允许 MCU 与外围设备(包括其它 MCU)进行全双工,同步串行通信。

15.1.1 SPI 操作相关寄存器

SSCON0 (9DH) SPI 控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	SPEN	-	MSTR	CPOL	CPHA	SPR2	SPR1	SPR0
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	Х	0	0	0	0	0	0

位编号	位符号	说明			
7	SPEN	SPI 使能控制			
		0: 关闭 SPI			
		1: 打开 SPI			
5	MSTR	SPI 主从选择			
		0: SPI 为从设备			
		1: SPI 为主设备			
4	CPOL	时钟极性控制位			
		: SCK 在空闲状态下为低电平			
		1: SCK 在空闲状态下为高电平			
3	СРНА	时钟相位控制位			
		0: SCK 周期的第一沿采集数据			
		1: SCK 周期的第二沿采集数据			

Page 60 of 82 V0.2

2-0	SPR[2:0]	SPI 时钟速率选择位
		000: f _{SYS} /4
		001: fsys /8
		010: fsys /16
		011: fsys /32
		100: fsys /64
		101: fsys /128
		110: f _{SYS} /256
		111: fsys /512
6	-	保留

SSCON1 (9EH) SPI 状态寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	SPIF	WCOL	-	-	TXE	DORD	-	TBIE
读/写	读/写	读/写	-	-	读/写	读/写	-	读/写
上电初始值	0	0	Х	Х	0	0	Х	0

位编号	位符号	说明			
7	SPIF	SPI 数据传送标志位			
		0: 由软件清 0			
		1:表明已完成数据传输,由硬件置1			
6	WCOL	写入冲突标志位			
		0: 由软件清 0, 表明已处理写入冲突			
		1: 由硬件置 1, 表明检测到一个冲突			
3	TXE	发送缓存器空标志			
		0: 发送缓存器不空			
		1: 发送缓存器空,必须由软件清零			
2	DORD	传送方向选择位			
		0: MSB 优先发送			
		1: LSB 优先发送			
0	TBIE	发送缓存器中断允许控制位			
		0: 不允许发送中断			
		1:允许发送中断,当 ESPI=1 时,TBIE=1 将产生 SPI 中断			
5~4,1	-	保留			

SSDAT (9FH) SPI 数据寄存器(读/写)

	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, pp (12/1- 4)						
位编号	7	6	5	4	3	2	1	0
符号				SPD	[7:0]			
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明			
7~0	SPD[7:0]	SPI 数据缓存寄存器			
		写入 SSDAT 的数据被放置到发送移位寄存器中。			
		读取 SSDAT 时将获得接收移位寄存器的数据。			

Page 61 of 82 V0.2

15.1.2 信号描述

主输出从输入(MOSI):

该路信号连接主设备和一个从设备。数据通过 MOSI 从主设备串行传送到从设备,主设备输出,从设备输入。

主输入从输出(MISO):

该路信号连接从设备和主设备。数据通过 MISO 从从设备串行传送到主设备,从设备输出,主设备输入。当 SPI 配置为从设备并未被选中,从设备的 MISO 引脚处于高阻状态。

SPI 串行时钟(SCK):

SCK 信号用作控制 MOSI 和 MISO 线上输入输出数据的同步移动。每8时钟周期线上传送一个字节。如果从 设备未被选中, SCK 信号被此从设备忽略。

15.1.3 工作模式

SPI 可配置为主模式或从属模式中的一种。SPI 模块的配置和初始化通过设置 SSCON0 寄存器(SPI 控制寄存 器)和 SSCON1(SPI 状态寄存器)来完成。配置完成后,通过设置 SSCON0, SSCON1, SSDAT(SPI 数据寄存器) 来完成数据传送。

在 SPI 通讯期间,数据同步地被串行的移进移出。串行时钟线(SCK)使两条串行数据线(MOSI 和 MISO)上数 据的移动和采样保持同步。如果从设备没有被选中,则不能参与SPI总线上的活动。

当 SPI 主设备通过 MOSI 线传送数据到从设备时,从设备通过 MISO 线发送数据到主设备作为响应,这就实 现了在同一时钟下数据发送和接收的同步全双工传输。发送移位寄存器和接收移位寄存器使用相同的特殊功能器 地址,对 SPI 数据寄存器 SSDAT 进行写操作将写入发送移位寄存器,对 SSDAT 寄存器进行读操作将获得接收 移位寄存器的数据。

有些设备的SPI接口会引出SS脚(从设备选择引脚,低有效),与SC92F8003的SPI通信时, SPI总线上其 它设备的SS脚的连接方式需根据不同的通信模式进行连接。下表列出了SC92F8003的SPI不同通信模式下,SPI 总线上其它设备SS脚的连接方式:

SC92F8003 SPI	SPI 总线上其它设备	模式	从机的 SS (从设备选择引脚)
主模式	从模式	一主一从	拉低
	4	一主多从	SC92F8003 引出多根 I/O,分别接至从 机的 SS 脚。在数据传送之前,从设备 的 SS 引脚必须被置低
从模式	主模式	一主一从	拉高

主模式

模式启动:

SPI主设备控制 SPI总线上所有数据传送的启动。当 SSCONO 寄存器中的 MSTR 位置 1 时, SPI在主模式 下运行, 只有一个主设备可以启动传送。

发送:

在 SPI 主模式下,写一个字节数据到 SPI 数据寄存器 SSDAT,数据将会写入发送移位缓冲器。如果发送移 位寄存器已经存在一个数据,那么主 SPI 产生一个 WCOL 信号以表明写入太快。但是在发送移位寄存器中 的数据不会受到影响,发送也不会中断。另外如果发送移位寄存器为空,那么主设备立即按照 SCK上的 SPI 时钟频率串行地移出发送移位寄存器中的数据到 MOSI 线上。当传送完毕,SSCON1 寄存器中的 SPIF 位被 置 1。如果 SPI 中断被允许,当 SPIF 位置 1 时,也会产生一个中断。

当主设备通过 MOSI 线传送数据给从设备时,相对应的从设备同时也通过 MISO 线将其发送移位寄存器的内 容传送给主设备的接收移位寄存器,实现全双工操作。因此,SPIF标志位置1即表示传送完成也表示接收数 据完毕。从设备接收的数据按照 MSB 或 LSB 优先的传送方向存入主设备的接收移位寄存器。当一个字节的 数据完全被移入接收寄存器时, 处理器可以通过读 SSDAT 寄存器获得该数据。

从模式

模式启动:

当 SSCON0 寄存器中的 MSTR 位清 0, SPI 在从模式下运行。

发送与接收:

从属模式下,按照主设备控制的 SCK 信号,数据通过 MOSI 引脚移入,MISO 引脚移出。一个位计数器记录

Page 62 of 82 Vn 2 http://www.socmcu.com

SCK 的边沿数,当接收移位寄存器移入 8 位数据(一个字节)同时发送移位寄存器移出 8 位数据(一个字节),SPIF 标志位被置 1。数据可以通过读取 SSDAT 寄存器获得。如果 SPI 中断被允许,当 SPIF 置 1 时,也会产生一个中断。此时接收移位寄存器保持原有数据并且 SPIF 位置 1,这样 SPI 从设备将不会接收任何数据直到 SPIF 清 0。SPI 从设备必须在主设备开始一次新的数据传送之前将要传送的数据写入发送移位寄存器。如果在开始发送之前未写入数据,从设备将传送"0x00"字节给主设备。如果写 SSDAT 操作发生在传送过程中,那么 SPI 从设备的 WCOL 标志位置 1,即如果传送移位寄存器已经含有数据,SPI 从设备的 WCOL 位置 1,表示写 SSDAT 冲突。但是移位寄存器的数据不受影响,传送也不会被中断。

15.1.4 传送形式

通过软件设置 SSCON0 寄存器的 CPOL 位和 CPHA 位,用户可以选择 SPI 时钟极性和相位的四种组合方式。 CPOL 位定义时钟的极性,即空闲时的电平状态,它对 SPI 传输格式影响不大。 CPHA 位定义时钟的相位,即定义允许数据采样移位的时钟边沿。在主从通讯的两个设备中,时钟极性相位的设置应一致。

当 CPHA = 0, SCK 的第一个沿捕获数据,从设备必须在 SCK 的第一个沿之前将数据准备好。

CPHA = 0 数据传输图

当 CPHA = 1, 主设备在 SCK 的第一个沿将数据输出到 MOSI 线上,从设备把 SCK 的第一个沿作为开始发送信号,SCK 的第二沿开始捕获数据,因此用户必须在第一个 SCK 的两个沿内完成写 SSDAT 的操作。这种数据传输形式是一个主设备一个从设备之间通信的首选形式。

15.1.5 出错检测

在发送数据序列期间写入 SSDAT 寄存器会引起写冲突,SSCON1 寄存器中的 WCOL 位置 1。WCOL 位置 1不会引起中断,发送也不会中止。WCOL 位需由软件清 0。

Page 63 of 82 V0.2

15.2 TWI

SSMOD[1:0] = 10, 三选一串行接口 SSI 配置为 TWI 接口。SC92F8003 在 TWI 通信时只能做从机。

SSCON0 (9DH) TWI 控制寄存器(读/写)

	<u>, , , , , , , , , , , , , , , , , , , </u>	14 101 (124: 47						
位编号	7	6	5	4	3	2	1	0
符号	TWEN	TWIF	-	GCA	AA	;	STATE[2:0]	
读/写	读/写	读/写	-	读	读/写	读/写	读/写	读/写
上电初始值	0	0	Х	0	0	0	0	0

位编号	位符号	说明
7	TWEN	TWI 使能控制
		0: 关闭 TWI
		1: 打开 TWI
6	TWIF	TWI中断标志位
		0: 由软件清零
		1: 在下列条件下,中断标志位由硬件置 1
		①第一帧地址匹配成功
		②成功接收或发送8位数据
		③重新启动
		④从机收到停止信号
4	GCA	通用地址响应标志位
		0: 非响应通用地址
		1: 当 GC 置 1,同时通用地址匹配时该位由硬件置 1,并自动清零
3	AA	接收使能位
		0: 不允许接收主机发送的信息
2~0	CTATE(2.01	1: 允许接收主机发送的信息
2~0	STATE[2:0]	状态机状态标志位 000: 此时状态机为空闲状态,等待 TWEN 置 1,检测 TWI 启动信号
		000: 此时状态机为主闲状态,等待 100 至 1, 位侧 1001 后幼信与 1 001: 从机接收第一帧地址和读写位(第 8 位为读写位,1 为读,0 为
		写)
		010: 主机发送数据,从机接收数据状态
		011: 主机接收数据,从机发送数据状态
		100: 在从机发送数据状态中,当主机回 UACK 时跳转到此状态,等待
		从新启动信号或停止信号。
		101: 从机处于接收或发送状态时,当 AA=0 时,此时跳到次状态,等
		待重新启动信号或停止信号。
5	-	保留

SSCON1 (9EH) TWI 地址寄存器(读/写)

	,	14 66 (54. 4)						
位编号	7	6	5	4	3	2	1	0
符号				TWA[6:0]				GC
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明			
7~1	TWA[6:0]	TWI 地址寄存器			
0	GC	「WI 通用地址使能			
		0: 禁止响应通用地址			
		1: 允许响应通用地址			

Page 64 of 82 V0.2 http://www.socmcu.com

SSDAT (9FH) TWI 数据缓存寄存器(读/写)

位编号	7	6	5	4	3	2	1	0		
符号		TWDAT[7:0]								
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
上电初始值	0	0	0	0	0	0	0	0		

位编		位符号	说明
7~	Ò	TWDAT[7:0]	TWI 数据缓存寄存器

15.2.1 信号描述

TWI 时钟信号线 (SCL)

该时钟信号由主机发出,连接到所有的从机。每9个时钟周期传送一个字节数据。前8个周期作数据的传送,最后一个时钟作为接收方应答时钟。

TWI 数据信号线(SDA)

SDA 是双向信号线,空闲时应为高电平,由 SDA 线上的上拉电阻拉高。

15.2.2 工作模式

SC92F8003的 TWI 通信只有从机模式:

● 模式启动:

当 TWI 使能标志位打开(TWEN = 1),同时接收到主机发送的启动信号时,模式启动。

● 非通用地址响应:

从机从空闲模式(STATE[2:0] = 000)进入接收第一帧地址(STATE[2:0] = 001)状态,等待主机的第一帧数据。第一帧数据由主机发送,包括了 7 位地址位和 1 位读写位,TWI 总线上所有从机都会收到主机的第一帧数据。主机发送完第一帧数据后释放 SDA 信号线。若主机所发地址与某一从机自身地址寄存器中的值相同,说明该从机被选中,被选中的从机会判断接总线上的第 8 位,即数据读写位(=1,读命令; =0,写命令),然后占用 SDA 信号线,在 SCL 的第 9 个时钟周期给主机一个低电平的应答信号,之后会释放总线。从机被选中后,会根据读写位的不同而进入不同的状态;

- ① 如果第一帧接收到的读写位是写(0),则从机进入到从机接收状态(STATE[2:0] = 010)等待接收主机 发送的数据。主机每发送 8 位,都要释放总线,等待第 9 个周期从机的应答信号。
 - 1. 如果从机的应答信号是低电平(ACK),主机可以继续发送数据。也可以重新发送启动信号 (start),此时从机从新进入接收第一帧地址(001)状态。也可以发送停止信号,表示本次传输 结束,从机回到空闲状态,等待主机下一次的启动信号。

2. 如果从机应答的是高电平(AA = 0)。表示从机不再接收主机发送的数据,主动结束本次传输。从 机回到空闲状态。

- ② 如果第一帧接收到的读写位是读(1),则从机会占用总线,向主机发送数据。每发送8位数据,从机释放总线,等待主机的应答:
 - 1. 如果主机应答的是低电平,则从机继续发送数据,在发送过程中,如果从机寄存器中的 AA 值被改写为 0,则从机会主动结束传输并释放总线,等待主机的停止信号或重新启动信号(STATEI2:0] =

Page 65 of 82 V0.2 http://www.socmcu.com

101):

 如果主机应答的是高电平,则从机进入接收数据模式(STATE[2:0] = 010),等待主机的停止信号 或重新启动信号

● 通用地址的响应:

GC=1 时,此时通用地址允许使用。从机进入到接收第一帧地址(STATE[2:0] = 001)状态,接收的第一帧数据中的地址位数据为 0x00,此时所有从机响应主机。当第一帧的读写位是写(0),所有从机进入接收数据(STATE[2:0] = 010)状态。主机每发送 8 个数据释放一次 SDA 线,并读取 SDA 线上的状态:

- ① 如果 SDA 为低电平(有从机应答)则主机的通信可以有以下三种方式:
 - 1. 继续发送数据;
 - 2. 重新启动,进入接收第一帧地址(STATE[2:0] = 001)的状态;
 - 3. 发送停止信号,结束本次通讯。
- ② 如果 SDA 为高电平(AA = 0),则 SDA 为空闲状态(STATE[2:0] = 000)。

注意: 当使用通用地址时,主机发送的读写位不能为读(1)状态,否则除发送数据的设备,总线上其它设备均会响应。

15.2.3 操作步骤

三合一串口中 TWI 工的操作步骤如下:

- ① 配置 SSMOD[1:0],选择 TWI 模式;
- ② 配置 SSCON0 TWI 控制寄存器;
- ③ 配置 SSCON1 TWI 地址寄存器;
- ④ 如果从机接收数据,则等待 SSCON0 中的中断标志位 TWIF 置 1。从机每接收到 8 位数据,中断标志位会被 置 1。中断标志位需手动清零;
- ⑤ 如果从机发送数据,则要将待发送的数据写进 TWDAT 中,TWI 会自动将数据发送出去。每发送 8 位,中断标志位 TWIF 就会被置 1。

Page 66 of 82 V0.2

15.3 UART1

SSMOD[1:0] = 11, 三选一串行接口 SSI 配置为 UART 接口。

SSCON0 (9DH) 串口 1 控制寄存器(读/写)

	, , , , , , , , , , , , , , , , , , , 	4 : 4 14 HH (15/2	• /					
位编号	7	6	5	4	3	2	1	0
符号	SM0	-	SM2	REN	TB8	RB8	TI	RI
读/写	读/写	-	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	Х	0	0	0	0	0	0

位编号	位符号	说明
7	SM0	串行通信模式控制位
		0:模式1,10位全双工异步通信,由1个起始位,8个数据位和1个停
		止位组成,通信波特率可变;
		1:模式3,11位全双工异步通信,由1个起始位,8个数据位,一个可
		编程的第9位和1个停止位组成,通信波特率可变;
5	SM2	串行通信模式控制位 2, 此控制位只对模式 3 有效
		0: 每收到一个完整的数据帧就置位 RI 产生中断请求;
		1: 收到一个完整的数据帧时,只有当 RB8=1 时才会置位 RI 产生中断请
		求。
4	REN	接收允许控制位
		0: 不允许接收数据;
		1: 允许接收数据。
3	TB8	只对模式3有效,为发送数据的第9位
2	RB8	只对模式3有效,为接收数据的第9位
1	TI	发送中断标志位
0	RI	接收中断标志位
6	-	保留

SSCON1 (9EH) 串口 1 波特率控制寄存器低位(读/写)

位编号	7	6	5	4	3	2	1	0	
符号		BAUDL [7:0]							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
上电初始值	0	0	0	0	0	0	0	0	

SSCON2(95H) 串口 1 波特率控制寄存器高位(读/写)

位编号	7	6	5	4	3	2	1	0	
符号		BAUDH [7:0]							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
上电初始值	0	0	0	0	0	0	0	0	

位编号	位符号	说明
7~0	BAUD [15:0]	串口波特率控制
		$BaudRate = \frac{fsys}{BAUD1H, BAUD1L}$

SSDAT (9FH) 串口数据缓存寄存器(读/写)

位编号	7	6	5	4	3	2	1	0	
符号		SBUF[7:0]							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
上电初始值	0	0	0	0	0	0	0	0	

Page 67 of 82 V0.2

位编号	位符号	说明
7~0	SBUF[7:0]	串口数据缓存寄存器 SBUF 包含两个寄存器:一个发送移位寄存器和一个接收锁存器,写入 SBUF 的数据将送至发送移位寄存器,并启动发送流程,读 SBUF 将返 回接收锁存器中的内容。

16 模数转换 ADC

SC92F8003 内建一个 12-bit 8 通道的高精度逐次逼近型 ADC ,外部的 7 路 ADC 和 IO 口的其它功能复用。内部的一路可接至 1/4 V_{DD} ,配合内部 2.4V 参考电压用于测量 V_{DD} 电压。

ADC 的参考电压可以有 2 种选择:

- ① VDD 管脚(即直接是内部的 VDD);
- ② 内部 Regulator 输出的参考电压精准的 2.4V(此时 MCU 供电电压 V_{DD} 不可低于 2.9V)。

注意: ADC 电路的时钟源固定为 f_{HRC} = 16MHz,不会随着内外系统时钟的切换而改变。

16.1 ADC 相关寄存器

ADCCON (ADH) ADC 控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ADCEN	ADCS	EOC/ADCIF			ADCIS[4:0]		
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	n

位编号	位符号	说明
7	ADCEN	启动 ADC 的电源
		0: 关闭 ADC 模块电源
		1: 开启 ADC 模块电源
6	ADCS	ADC 开始触发控制(ADC Start)
		对此 bit 写 "1",开始做一次 ADC 的转换,即该位只是 ADC 转换的触发
		信号。此位只可写入1有效。
		注意:对 ADCS 写"1"后,到中断标志 EOC/ADCIF 置起前不要对
		ADCCON 寄存器进行写操作
5	EOC/ADCIF	转换完成/ADC 中断请求标志(End Of Conversion / ADC Interrupt Flag)
		0: 转换尚未完成
		1: ADC 转换完成。需用户软件清除
		ADC 转换完成标志 EOC: 当使用者设定 ADCS 开始转换后,此位会被
		硬件自动清除为 0; 当转换完成后,此位会被硬件自动置为 1;
		ADC 中断请求标志 ADCIF:
		此位同时也当作是 ADC 中断的中断请求标志,如果用户使能 ADC 中
		断, 那么在 ADC 的 中断 发生后,用户必须用软件清除此位。
4~0	ADCIS[4:0]	ADC 输入通道选择(ADC Input Selector)
		00000: 选用 AINO 为 ADC 的输入
		00001: 选用 AIN1 为 ADC 的输入
		00010: 选用 AIN2 为 ADC 的输入
		00011: 选用 AIN3 为 ADC 的输入
		00100: 选用 AIN4 为 ADC 的输入
		00101: 选用 AIN5 为 ADC 的输入
		00110: 选用 AIN6 为 ADC 的输入
		00111~1110: 保留
		11111: ADC 输入为 1/4 VDD,可用于测量电源电压

Page 68 of 82

ADCCFG1 (AAH) ADC 设置寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	-	-	LOWSP	ADCCK[2:0]		
读/写	-	-	-	-	读/写	读/写	读/写	读/写
上电初始值	Х	Х	Х	Х	0	0	0	0

位编号	位符号	说明
3	LOWSP	ADC 采样时钟频率选择(ADC Sampling Clocks Selector)
		0: 设定 ADC 采样时间为 6 个 ADC 采样时钟周期
		1: 设定 ADC 采样时间为 36 个 ADC 采样时钟周期
		LOWSP 控制的是 ADC 的采样时钟频率,ADC 的转换时钟频率由
		ADCCK[2:0]控制,不受 LOWSP 位的影响
		ADC 需经历 6 或 36 个 ADC 采样时钟加上 14 个 ADC 转换时钟的时间才
		能完成从采样到转换的整个过程,因此在实际使用中,ADC 从采样到完
		成转换的总时间计算如下:
		LOWSP=0: T _{ADC1} =(6+14)/f _{ADC} ;
		LOWSP=1: T _{ADC2} =(36+14)/f _{ADC}
2~0	ADCCK[2:0]	ADC 采样时钟频率选择(ADC Sampling Clocks Selector)
		000: 设定 ADC 的时钟 频率 fadc 为 fhrc/32;
		001: 设定 ADC 的时钟 频率 fadc 为 fhrc/24;
		010: 设定 ADC 的时钟 频率 fadc 为 fhrc/16;
		011: 设定 ADC 的时钟 频率 fadc 为 fhrc/12;
		100: 设定 ADC 的时钟 频率 f _{ADC} 为 f _{HRC} /8;
		101: 设定 ADC 的时钟 频率 fadc 为 fhrc/6;
		110: 设定 ADC 的时钟 频率 fadc 为 fhrc/4;
		111: 设定 ADC 的时钟 频率 fadc 为 fhrc/3
		注意: ADC 电路的时钟源固定为 f _{HRC} = 16MHz,不会随着内外系统时
		钟的切换而改变。
7~4	-	保留

ADCCFG0 (ABH) ADC 设置寄存器 0(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	EAIN6	EAIN5	EAIN4	EAIN3	EAIN2	EAIN1	EAIN0
读/写	-	读/写						
上电初始值	Х	0	0	0	0	0	0	0

位编号	位符号	说明
0	EAINx (x=0~6)	ADC 端口设置寄存器 0: 设定 AINx 为 IO 口 1: 设定 AINx 为 ADC 输入,并自动将上拉电阻移除。
7	-	保留

OP_CTM1(C2H@FFH) Customer Option 寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	VREFS	XTLHF	-	-	IAPS	8[1:0]	-	-
读/写	读/写	读/写	-	-	读/写	读/写	-	-
上电初始值	n	n	Х	Х	n	n	Х	Х

位编号	位符号	说明
7	VREFS	参考电压选择(初始值从 Code Option 调入,用户可修改设置) 0: 设定 ADC 的 VREF 为 V _{DD} 1: 设定 ADC 的 VREF 为 内部准确的 2.4V

Page 69 of 82 V0.2

ADCVL (AEH) ADC 转换数值寄存器(低位)(读/写)

位编号	7	6	5	4	3	2	1	0
符号	ADCV[3:0]				-	-	-	-
读/写	读/写	读/写	读/写	读/写	-	-	-	-
上电初始值	0	0	0	0	Х	х	Х	х

ADCVH (AFH) ADC 转换数值寄存器(高位)(读/写)

7120111 (71111)	1100 14 1/CS								
位编号	7	6	5	4	3	2	1	0	
符号		ADCV[11:4]							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
上电初始值	0	0	0	0	0	0	0	0	

位编号	位符号	说明
11~4	ADCV[11:4]	ADC 转换值的高 8 位数值
3~0	ADCV[3:0]	ADC 转换值的低 4 位数值

IE (A8H) 中断使能寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	EA	EADC	ET2	EUART	ET1	EINT1	ET0	EINT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
6	EADC	ADC 中断使能控制
		0: 不允许 EOC/ADCIF 产生中断
		1: 允许 EOC/ADCIF 产生 中断

IP (B8H) 中断优先级寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	IPADC	IPT2	IPART	IPT1	IPINT1	IPT0	IPINT0
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	Х	0	0	0	0	0	0	0

位编号	位符号	说明			
6	IPADC	ADC 中断优先权选择			
		0:设定 ADC 的中断优先级是"低"			
		1: 设定 ADC 的中断优先级是 "高"			

16.2 ADC 转换步骤

用户实际进行 ADC 转换所需要的操作步骤如下:

- (1) 设定 ADC 输入管脚; (设定 AINx 对应的位为 ADC 输入,通常 ADC 管脚会预先固定)
- ② 设定 ADC 参考电压 Vref,设定 ADC 转换所用的频率
- 开启 ADC 模块电源;
- ④ 选择 ADC 输入通道; (设置 ADCIS 位,选择 ADC 输入通道)
- ⑤ 启动 ADCS,转换开始
- ⑥ 等待 EOC/ADCIF=1,如果 ADC 中断使能,则 ADC 中断会产生,用户需要软件清 0 EOC/ADCIF 标志
- ⑦ 从 ADCVH、ADCVL 获得 12 位数据,先高位后低位,一次转换完成
- 8 如不换输入通道,则重复 5~7 的步骤,进行下一次转换

注意:在设定 IE[6](EADC)前,使用者最好用软件先清除 EOC/ADCIF,并且在 ADC 中断服务程序执行完时,也清除该 EOC/ADCIF,以避免不断的产生 ADC 中断。

Page 70 of 82 V0.2 http://www.socmcu.com

17 EEPROM 及 IAP 操作

SC92F8003的 IAP 操作空间范围有两种模式可选:

EEPROM 及 IAP 操作模式如下:

- 1. 128 bytes EEPROM 可以作为数据存储使用;
- 2. IC的Code 区域(范围可选)及128 bytes EEPROM内都可进行In Application Programming(IAP)操作, 主要用作远程程序更新使用。

EEPROM 及 IAP 操作模式选择作为 Code Option 在编程器写入 IC 时选择:

OP_CTM1 (C2H@FFH) Customer Option 寄存器 1(读/写)

位编号	7	6	5	4	3	2	1	0
符号	VREFS	XTLHF	-	-	IAPS[1:0]		-	-
读/写	读/写	读/写	-	-	读/写	读/写	-	-
上电初始值	n	n	Х	х	n	n	х	Х

位编号	位符号	说明
3~2	IAPS[1:0]	IAP 空间范围选择
		00: Code 区域禁止 IAP 操作,仅 EEPROM 区域可作为数据存储使用
		01: 最后 0.5K Code 区域允许 IAP 操作(3E00H ~3FFFH)
		10: 最后 1K Code 区域允许 IAP 操作(3C00H~3FFFH)
		11: 全部 Code 区域允许 IAP 操作(0000H~3FFFH)

17.1 EEPROM / IAP 操作相关寄存器

EEPROM / IAP 操作相关寄存器说明:

符号	地址	说明	7	6	5	4	3	2	1	0	Reset 值
IAPKEY	F1H	IAP 保护寄存器		IAPKEY[7:0]						0000000b	
IAPADL	F2H	IAP 写入地址低位寄存器		IAPADR[7:0]					0000000b		
IAPADH	F3H	IAP写入地址高位寄存器	.	- IAPADR[13:8]						xx000000b	
IAPADE	F4H	IAP写入扩展地址寄存器				IAPAE	DER[7:0]				0000000b
IAPDAT	F5H	IAP 数据寄存器		IAPDAT[7:0]						0000000b	
IAPCTL	F6H	IAP 控制寄存器	-3	-	-	-	PAYT		CME	D[1:0]	xxxx0000b
			1		1		[1:	UJ			

IAPKEY (F1H) IAP 保护寄存器(读/写)

位编号	7	6	5	4	3	2	1	0	
符号		IAPKEY[7:0]							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
上电初始值	0	0	0	0	0	0	0	0	

位编号	位符号	说明					
7~0	IAPKEY[7:0]	打开 EEPROM / IAP 功能及操作时限设置					
		写入一个非零值 n, 代表:					
		① 打开 EEPROM / IAP 功能;					
		② n 个系统时钟后如果接收不到写入命令,则 EEPROM / IAP 功能被					
		重新关闭。					

IAPADL (F2H) IAP 写入地址低位寄存器(读/写)

		22 44 22 · 4 4 4	. (/						
位编号	7	6	5	4	3	2	1	0	
符号		IAPADR[7:0]							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
上电初始值	0	0	0	0	0	0	0	0	

Page 71 of 82 V0.2

位编号	位符号	说明
7~0	IAPADR[7:0]	EEPROM / IAP 写入地址的低 8 位

IAPADH (F3H) IAP 写入地址高位寄存器(读/写)

位编号	7	6	5	4	3	2	1	0	
符号	-	-	IAPADR[13:8]						
读/写	-	-	读/写	读/写	读/写	读/写	读/写	读/写	
上电初始值	х	Х	0	0	0	0	0	0	

位编号	位符号	说明
5~0	IAPADR[13:8]	EEPROM / IAP 写入地址的高 6 位
7~6	-	保留

IAPADE (F4H) IAP 写入扩展地址寄存器(读/写)

位编号	7	6	5	4	3	2	1	0		
符号		IAPADER[7:0]								
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写		
上电初始值	0	0	0	0	0	0	0	0		

位编号	位符号	说明					
7~0	IAPADER[7:0]	IAP 扩展地址:					
		0x00: MOVC 和 IAP 烧写都针对 Code 进行					
		Ox01:针对用户 ID 区域进行读操作,不可进行写操作					
		0x02: MOVC 和写入都针对 EEPROM 进行					
		其它: 保留					

IAPDAT (F5H) IAP 数据寄存器(读/写)

位编号	7	6	5	4	3	2	1	0	
符号		IAPDAT[7:0]							
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	
上电初始值	0	0	0	0	0	0	0	0	

位编号	位符号	说明
7~0	IAPDAT	EEPROM / IAP 写入的数据

IAPCTL (F6H) IAP 控制寄存器

位编号	7	6	5	4	3	2	1	0	
符号	-	-	-	-	PAYTIMES[1:0]		CM	CMD[1:0]	
读/写	-	-	-	-	读/写	读/写	读/写	读/写	
上电初始值	Х	Х	Х	Х	0	0	0	0	

位编号	位符号	说明				
3~2	PAYTIMES[1:0]	EEPROM / IAP 写入操作时,CPU Hold Time 时间长度设定				
		00:设定 CPU HOLD TIME 6mS@16/8/4/1.33MHz				
		01:设定 CPU HOLD TIME 3mS@16/8/4/1.33MHz				
		10:设定 CPU HOLD TIME 1.5mS@16/8/4/1.33MHz				
		11: 保留				
		说明: CPU Hold 的是 PC 指针,其他功能模块继续工作;中断标志会被				
		保存,并在 Hold 结束后进入中断,但多次的中断只能保留最后一次。				
		选择建议: VDD 在 2.7V~5.5V,可选择 10				
		V _{DD} 在 2.4V~5.5V,可选择 01 或者 00				
1~0	CMD[1:0]	EEPROM / IAP 写入操作命令				

Page 72 of 82 V0.2

		10:写入 其它:保留 注意: EEPROM / IAP 写操作的语句后面务必要加上至少 8 个 NOP 指令,以保证 EEPROM / IAP 操作完成后可正常执行后续的指令!
7~4	-	保留

17.2 EEPROM / IAP 操作流程

SC92F8003 的 EEPROM / IAP 的 写入流程如下:

- ① 写入 IAPADE[7:0], 0x00:选择 Code 区,进行 IAP 操作; 0x02:选择 EEPROM 区,进行 EEPROM 读写操作:
- ② 写入 IAPDAT[7:0](准备好 EEPROM / IAP 写入的数据);
- ③ 写入 {IAPADR[13:8], IAPADR[7:0]} (准备好 EEPROM / IAP 操作的目标地址);
- ④ 写入 IAPKEY[7:0] 写入一个非 0 的值 n (打开 EEPROM / IAP 保护,且在 n 个系统时钟内没收到写入命 令 EEPROM / IAP 会被关闭);
- ⑤ 写入 IAPCTL[3:0](设定 CPU Hold 时间,写入 CMD[1:0]为 1、0,CPU Hold 并启动 EEPROM / IAP 写
- ⑥ EEPROM / IAP 写入结束, CPU 继续后续操作;

注意:编程 IC 时,若通过 Code Option 选择了"Code 区域禁止 IAP 操作",则 IAPADE[7:0]=0x00 时(选择 Code 区), IAP 不可操作, 即数据无法写入, 仅可通过 MOVC 指令读取数据。

17.2.1 128 BYTES 独立 EEPROM 操作例程

#include "intrins.h" unsigned char EE_Add; unsigned char EE_Data; unsigned char code * POINT =0x0000;

EEPROM 写操作 C 的 Demo 程序:

//关总中断 EA = 0;

IAPADE = 0X02; //选择 EEPROM 区域

IAPDAT = EE_Data; //送数据到 EEPROM 数据寄存器 //写入 EEPROM 目标地址高位值 IAPADH = 0x00;IAPADL = EE Add;//写入 EEPROM 目标地址低位值

IAPKEY = 0XF0;//此值可根据实际调整;需保证本条指令执行后到对 IAPCTL 赋值前,

//时间间隔需小于 240 (0xf0) 个系统时钟, 否则 IAP 功能关闭;

// 开启中断时要特别注意

//执行 EEPROM 写入操作, 1ms@16/8/4/1.33MHz; IAPCTL = 0X0A;

//等待(至少需要 8 个_nop_()) _nop_();

nop(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_();

nop();

IAPADE = 0X00;//返回 ROM 区域 EA = 1; //开总中断

EEPROM 读操作 C 的 Demo 程序:

EA = 0; //关总中断

IAPADE = 0X02: //选择 EEPROM 区域

Page 73 of 82 http://www.socmcu.com

EE_Data = *(POINT +EE_Add); //读取 IAP_Add 的值到 IAP_Data

IAPADE = 0X00; //返回 ROM 区域, 防止 MOVC 操作到 EEPROM

EA = 1: //开总中断

17.2.2 16 KBYTES CODE 区域 IAP 操作例程

#include "intrins.h"
unsigned int IAP_Add;
unsigned char IAP_Data;
unsigned char code * POINT =0x0000;

IAP 写操作 C 的 Demo 程序:

IAPADE = 0X00; //选择 Code 区域

IAPDAT = IAP_Data; //送数据到 IAP 数据寄存器

IAPADH = (unsigned char)((IAP_Add >> 8)); //写入 IAP 目标地址高位值 IAPADL = (unsigned char)IAP Add; //写入 IAP 目标地址低位值

IAPKEY = 0XF0; //此值可根据实际调整; 需保证本条指令执行后到对 IAPCTL 赋值前,

//时间间隔需小于 240 (0xf0) 个系统时钟, 否则 IAP 功能关闭;

IAPCTL = 0X0A; //执行 IAP 写入操作, 1ms@16/8/4/1.33MHz;

nop(); //等待(至少需要 8 个_nop_())

nop();

nop();

nop();

nop();

nop();

nop();

nop();

IAP 读操作 C 的 Demo 程序:

IAPADE = 0X00; //选择 Code 区域

IAP_Data = *(POINT+IAP_Add); //读取 IAP_Add 的值到 IAP_Data

注意: 16 Kbytes Code 区域内的 IAP 操作有一定的风险,需要用户在软件中做相应的安全处理措施,如果操作不当可能会造成用户程序被改写!除非用户必需此功能(比如用于远程程序更新等),不建议用户使用。

Page 74 of 82

18 CHECK SUM 校验

SC92F8003 内建了 1 个 check sum 模块,可用来实时生成程序代码的 16 位 check sum 值,用户可利用此 check sum 和理论值比较,监测程序区的内容是否正确。

注意: check sum 值是整个程序区的数据累加和,即 0000H~3FFDH 地址单元所有的数据。若地址单元中有用户上次操作后的残留值,会导致 check sum 值与理论值不符。因此,建议用户对整片 code 区域进行擦除或写 0 操作后再烧录代码以保证 check sum 值与理论值一致。

18.1 CHECK SUM 校验操作相关寄存器

CHKSUML (FCH) Check Sum 结果寄存器低位(读/写)

	,		4 HH 144 12 (124)	* /				
位编号	7	6	5	4	3	2	1	0
符号		CHKSUML[7:0]						
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	CHKSUML [7:0]	Check Sum 结果寄存器低位

CHKSUMH (FDH) Check Sum 结果寄存器高位(读/写)

1	., ., .,		_	_ `		_	_		_
	位编号	7	6	5	4	3	2	1	0
	符号		CHKSUMH[7:0]						
	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
	上电初始值	0	0	0	0	0	0	0	0

位编号	位符号	说明
7~0	CHKSUMH [7:0]	Check Sum 结果寄存器高位

OPERCON (EFH) 运算控制寄存器(读/写)

位编号	7	6	5	4	3	2	1	0
符号	-	-	- >	-	-	-	-	CHKSUMS
读/写	-	-	-	-	-	-	-	读/写
上电初始值	х	Х	х	Х	х	Х	Х	0

位编号	位符号	说明
0	CHKSUMS	Check sum 运算开始触发控制(Start)
		对此 bit 写 "1", 开始做一次 Check sum 计算。此位只可写入 1 有效。

Page 75 of 82 V0.2

19 电气特性

19.1 极限参数

符号	参数	最小值	最大值	UNIT
VDD/VSS	直流供电电压	-0.3	5.5	V
Voltage ON any Pin	任一管脚输入/输出电压	-0.3	V _{DD} +0.3	V
TA	工作环境温度	-40	85	℃
T _{STG}	储存温度	-55	125	℃

19.2 推荐工作条件

符号	参数	最小值	最大值	UNIT	系统时钟频率
V_{DD1}	工作电压	2.9	5.5	V	>12MHz
V_{DD2}	工作电压	2.4	5.5	V	≤12MHz
T _A	工作环境温度	-40	85	°C	

19.3 直流电气特性

(V_{DD} = 5V, T_A = +25℃, 除非另有说明)

符号	参数	最小值	典型值	最大值	单位	测试条件
电流	•					
I _{op1}	工作电流	-	7.8	-	mA	f _{SYS} =16MHz
I _{op2}	工作电流	17.1	5.8	-	mA	f _{SYS} =8MHz
I _{op3}	工作电流	-	4.9	-	mA	f _{SYS} =4MHz
I _{op4}	工作电流	-	4.2	-	mA	fsys =1.33MHz
I _{pd1}	待机电流 (Power Down 模式)	-	0.7	1.0	μA	
I _{IDL1}	待机电流 (IDLE 模式)	-	5.4	-	mA	
Івтм	Base Timer 工作电流	-	5.9	-	μA	BTMFS[3:0]= 1000 每 4.0 秒产生一个 中断
lwdт	WDT 电流	-	4.2	5.0	μA	WDTCKS[2:0]= 000 WDT溢出时间 500ms
IO 口特性						•
V _{IH1}	输入高电压	0.7V _{DD}	-	V _{DD} +0.3	V	
V_{IL1}	输入低电压	-0.3	-	0.3V _{DD}	V	
V _{IH2}	输入高电压	0.8V _{DD}	-	V_{DD}	V	施密特触发输入
V _{IL2}	输入低电压	-0.2	-	0.2V _{DD}	V	RST/tCK/SCK
I _{OL1}	输出低电流	-	40	-	mΑ	V _{Pin} =0.4V
I _{OL2}	输出低电流	-	70	-	mA	V _{Pin} =0.8V
I _{OH1}	输出高电流	-	20	-	mΑ	V _{Pin} =4.3V
I _{OH2}	输出高电流	-	10	-	mA	V _{Pin} =4.7V
R _{PH1}	上拉电阻	-	32	-	kΩ	
做为 ADC 参考目	电压的内部基准 2.4V	1	1	1		1

Page 76 of 82 V0.2

SC92F8003 高速 1T 8051 内核 Flash MCU

V _{DD24}	内部基准 2.4V 电压输出	2.38	2.40	2.42	V	T _A =-40~85 °C
-------------------	----------------	------	------	------	---	---------------------------

(V_{DD} = 3.3V, T_A = +25℃, 除非另有说明)

符号	参数	最小值	典型值	最大值	单位	测试条件
电流						
I _{op5}	工作电流	-	5.7	-	mA	f _{SYS} =16MHz
I _{op6}	工作电流	-	4.4	-	mA	fsys =8MHz
I _{op7}	工作电流	-	3.8	-	mA	f _{SYS} =4MHz
I _{op8}	工作电流	-	3.3	-	mA	f _{SYS} =1.33MHz
I _{pd2}	待机电流	-	0.7	1	uA	
	(Power Down 模式)					
I _{IDL2}	待机电流	-	4.0	-	mA	
	(IDLE 模式)					
IO 口特性						
V _{IH3}	输入高电压	$0.7V_{DD}$	-	V _{DD} +0.3	V	
V _{IL3}	输入低电压	-0.3	-	$0.3V_{DD}$	V	
V _{IH4}	输入高电压	0.8V _{DD}	-	V_{DD}	V	施密特触发输入:
V _{IL4}	输入低电压	-0.2	-	0.2V _{DD}	V	RST/tCK/SCK
I _{OL3}	输出低电流	-	30	-	mA	Vpin=0.4V
I _{OL4}	输出低电流	-	51	-	mA	Vpin=0.8V
І онз	输出高电流	-	6	-	mA	Vpin=3.0V
R _{PH2}	上拉电阻	- (/	55	-	kΩ	
做为 ADC 参考电压	的内部基准 2.4V			•		
V _{DD24}	内部基准 2.4V 电压输出	2.38	2.40	2.42	V	T _A =-40~85 °C

19.4 交流电气特性

(V_{DD} = 2.4V ~ 5.5V, T_A = 25℃, 除非另有说明)

符号	参数	最小值	典型值	最大值	单位	测试条件
Tosc ₁	外接高频振荡器起振时间	-	9	-	ms	外接 16MHz 晶
						振
Tosc ₂	外接高频振荡器起振时间	-	17	-	ms	外接 8MHz 晶
						振
Tosc3	外接高频振荡器起振时间	-	33	-	ms	外接 4MHz 晶
						振
T_POR	Power On Reset 时间	-	5	10	ms	
T _{PDW}	Power Down 模式唤醒时	-	1	1.5	ms	
	间					
T _{Reset}	复位脉冲宽度	18	-	-	us	低电平有效
f _{HRC}	RC 振荡稳定性	15.84	16	16.16	MHz	V _{DD} =2.9~5.5V
						T _A =-20~85 °C

Page 77 of 82 V0.2

19.5 ADC 电气特性

(T_A = 25℃,除非另有说明)

符号	参数	最小值	典型值	最大值	单位	测试条件
V _{AD}	供电电压	2.4	5.0	5.5	V	
N _R	精度	-	12	-	bit	GND≤V _{AIN} ≤V _{DD}
V _{AIN}	ADC 输入电压	GND	-	V_{DD}	V	
RAIN	ADC 输入电阻	1	-	-	ΜΩ	V _{IN} =5V
I _{ADC1}	ADC 转换电流 1	-	-	2	mA	ADC 模块打开 V _{DD} =5V
I _{ADC2}	ADC 转换电流 2	-	-	1.8	mA	ADC 模块打开 V _{DD} =3.3V
DNL	微分非线性误差	-	±1	-	LSB	V _{DD} =5V
INL	积分非线性误差	-	±7	-	LSB	VREF=5V
Ez	偏移量误差	-	±6	-	LSB	
E _F	满刻度误差	-	0	-	LSB	
E _{AD}	总绝对误差	-	±7	-	LSB	V _{DD} =5V VREF=5V
T _{ADC1}	ADC 转换时间 1	-	7.5	-	μs	ADC Clock = 2.67MHz ADC 采样周期 = 6
T _{ADC2}	ADC 转换时间 2	-	15	-	μs	ADC Clock = 1.33MHz ADC 采样周期 = 6

20 订购信息

产品编号	封装	包装
SC92F8003Q20R	QFN20	管装
SC92F8003X20U	TSSOP20L	管装

21 封装信息

SC92F8003Q20R

QFN20(3X3)外形尺寸 单位: 毫米

符号	mm(毫米)						
打五	最小	正常	最大				
Α	0.50	0.55	0.60				
A1	0	0.02	0.05				
b	0.15	0.20	0.25				
D	2.90	3.00	3.10				
D1	1.60	1.70	1.80				
е	0.40BSC						
Ne		1.60BSC					
E	2.90	3.00	3.10				
E1	1.60	1.70	1.80				
L	0.25	0.30	0.35				

SC92F8003X20U

TSSOP20L 外形尺寸 单位:毫米

<i>7</i> /4 □.	mm(毫米)						
符号	最小	正常	最大				
Α	-	/ - X	1.200				
A1	0.050		0.150				
A2	0.800	-	1.000				
b	0.190	- I	0.300				
С	0.090	- ·	0.200				
D	6.400	-	6.600				
Е	6.250	-	6.550				
e1	4.300	-	4.500				
е		0.65(BSC)					
L	0.500	-	0.700				
θ	1°	-	7°				
Н		0.25(TYP)					

22 规格更改记录

	记录	日期
V0.2	修改 ADC 电气参数	2018年07月
	更新 BTMFS 的 BIT 位描述	
V0.1	初版	2018年03月

