## ELEMENTOS DE FUNCIONES COMPLEJAS

## Recuperatorio del Primer Parcial

19 de Noviembre de 2010

## Parte Teórica

- .1. Probar la desigualdad triangular  $|z + w| \le |z| + |w|$ .
- 2. Sea f(z) = u(x, y) + iv(x, y), donde z = x + iy está en un dominio D, y sea  $z_o = x_o + iy_o \in D$ .
  - (a) Enunciar condiciones necesarias para la existencia de  $f'(z_0)$ .
  - (b) Enunciar condiciones suficientes para la existencia de  $f'(z_0)$ .
  - (c) Deducir la forma polar de las ecuaciones de Cauchy-Riemann y escribir  $f'(z_0)$  en coordenadas polares.
  - (d) Probar que si f es derivable en  $z_o$  entonces f es continua en  $z_o$ .

## Parte Práctica

- 1. Considere la función  $f(z) = e^{e^z}$ , donde z = x + iy.
  - (a) Calcular Re(f(z)), Im(f(z)) y |f(z)|.
  - (b) Encuentre todas las soluciones de la ecuación f(z) = 1.
  - (c) ¿Cual es la mayor región del plano donde f es derivable?
  - 2. (a) Demuestre que el conjunto de valores posibles de  $\log((8i)^{1/3})$  es idéntico al conjunto de valores de  $\frac{1}{3}\log(8i)$ . ¿Vale en general que  $\frac{1}{p}\log z = \log(z^{1/p})$  para todo p entero?, ¿Como debe interpretarse esta última igualdad?
    - (b) Encontrar todas las soluciones de la ecuación:  $\cosh(z) = i$ .
  - 3. Encuentre la mayor región del plano donde la siguiente función es derivable,

$$f(z) = \frac{Log(z+4)}{z^2 + i}.$$





GURI LaBisagra

