Chapitre 2

Couche physique

Plan

- Introduction
- Transmission numérique et codage
- Transmission analogique et modulation
- Cas de figures de transmission
- Déformation des signaux
- Caractéristiques de transmission
- Multiplexage

Introduction

Lisaison physique

- Établit une connexion physique entre deux équipements.
- Modes d'exploitation :
 - simplex
 - half duplex
 - full duplex

Communication simplex

- Unidirectionelle
- Exemple : radio / télévision

Communication half duplex

- Bidirectionelle à l'alternat
- Exemple : voie ferrée

Communication full duplex

- Bidirectionelle
- Exemple : téléphone

Types de transmission

- Parallèle
 - Utilisable sur de courtes distances
 - Problèmes de synchronisation
- Série
 - Synchrone
 - Synchronisation assurée constamment
 - Asynchrone
 - Synchronisation assurée à chaque émission

Transmission asynchrone

- Transmission caractère par caractère
- La synchronisation s'effectue à chaque émission de caractère
- Structure de la transmission asynchrone
 - 1 bit start
 - 7 ou 8 bits de données (en général)
 - 1 bit de parité
 - 1 bit stop

Types de signaux

- numériques
 - réseaux locaux
 - artères à longue distance du RTC
- analogiques
 - desserte locale du RTC

Transmission numérique

Signaux numériques

- Représentation
 - Deux niveaux de tension
 - Impulsion ou non de lumière
- Utilisation d'un codage pour la transmission
 - Maximiser le nombre de changements d'états
 - Diminuer la largeur de bande
 - Transposer celle-ci vers des fréquences élevées

Transmission numérique

- = transmission en bande de base
- Valide sur des distances
 - Courtes (quelque kms) sur un support en cuivre
 - Longue (30 kms) sur un support optique
- Mais le signal peut passer par plusieurs générateurs (répéteurs)

Cas de figures de transmission

Transmission d'un signal

- Quatre situations possibles selon que
 - le signal d'origine est
 - numérique
 - ou analogique
 - et que le transfert s'effectue sous une forme
 - numérique
 - ou analogique

Signal analogique / transfert analogique

- C'est le cas de la transmission du son et de l'image télédiffusés.
- Une technique de modulation est utilisée.

Signal analogique / transfert numérique

- C'est le cas du réseau téléphonique Numéris
- Il s'agit de la « Numérisation » du signal au moyen d'une conversion analogique-numérique en émission et d'une conversion inverse en réception
- Deux opérations sont nécessaires à l'émission :
 - Échantillonnage
 - Quantification/codage

Déformation des signaux

Type de déformations

- Affaiblissement
- Distorsion
- Bruits

Affaiblissement

- Perte de puissance du signal émis
- $A = 10 \log_{10}(P_{\text{source}}/P_{\text{destination}})$
- Exprimé en décibel
- Gain = inverse de l'affaiblissement
- Utilisation d'amplificateurs ou répéteurs pour contrer l'affaiblissement

Distorsion

- Distorsion d'amplitude
 - Augmentation ou diminution de l'amplitude normale du signal
- Distorsion de phase
 - Déphasage intempestif du signal par rapport à la porteuse

Bruits

- Bruits blancs
 - Agitation thermique dans les conducteurs
- Bruits impulsifs
 - Signaux parasites
 - Diaphonie entre voies

Caractéristiques de transmission

Intervalle significatif

- Intervalle significatif (en secondes) T
 - durée pendant laquelle le signal ne varie pas
- Rapidité de modulation R (en bauds)
 - nombre d'intervalles significatifs par seconde

R = 1/T

Valence et débit

- Valence V
 - nombre de niveaux significatifs d'un signal (modulé)
- Vitesse de transmission ou débit binaire D
 - Nombre de bits transmis en une seconde

$$D = R*log_2(V)$$

Bande passante

- Largeur de bande (bandwith)
- C'est l'intervalle de fréquences pour lequel les signaux subissent un affaiblissement inférieur ou égal à 3db.
- Exemples
 - téléphone : de 300 à 3400 hz
 - amplificateur

Critère de Nyquist

• Rapidité de modulation maximale Rmax sur un support dont la largeur de bande est W.

Rmax = 2*W

• Pour le téléphone :

Rmax= 2*3100 = 6200 bauds

Formule de Shannon

- Capacité maximale Cmax d'un support de largeur de bande W
- Cmax = W $\log_2(1+S/N)$ où :
 - S puissance du signal
 - N puissance du bruit
- Pour le téléphone :

```
Cmax= 31000 \text{ b/s si S/N} = 1000 (30 \text{ db})
```

Cmax = 20000 b/s si S/N = 100 (20 db)

Vitesse de propagation

- Fonction de :
 - La nature du support
 - La distance
 - La fréquence du signal
- Transmission radioélectrique par satellite
 - $-300\ 000\ km/s$

Calcul de temps

- Temps de propagation Tp
 - Temps nécessaire à un signal pour parcourir un support d'un point à un autre
- Temps de transmission Tt
 - Délai qui s'écoule entre le début et la fin de la transmission d'un message sur une ligne
- Temps d'acheminement
 - -Ta = Tp + Tt

Multiplexage

Principe

• Partager le même canal de communication.

• Intérêt : point de vue économique.

Types de multiplexage

- Le partage de la ligne à haut débit peut être effectué par une technique de :
 - Multiplexage fréquentiel(FDM : Frequency Division Multiplexing)
 - Multiplexage temporel(TDM : Time Division Multiplexing)

Multiplexage fréquentiel

- La bande passante de la ligne à haut débit est divisée en sous-bandes à l'aide de techniques de modulation et de filtrage.
- Pour limiter les interférences, une bande de garde est nécessaire entre chaque canal.
- Ce type de multiplexage est utilisé :
 - pour la transmission de signaux analogiques,
 - par câble ou voie hertzienne,
 - pour des applications telles que le téléphone, la radio ou la télévision.

Exemple 1/2

• Le groupe primaire du RTC correspond à un multiplexage de 12 voies.

Exemple 2/2

• Le RTC possède une structure hiérarchique donnée par le tableau suivant :

Groupe	Nombre de voies	Bande passante
primaire	12	60-108 khz
secondaire	60 (12*5)	312-552 khz
tertiaire	300 (60*5)	812-2044 khz
quaternaire	900 (300*3)	8616-12338 khz

Multiplexage temporel

- La bande passante de la ligne à haut débit est affectée périodiquement à chaque ligne à bas débit pendant des intervalles de temps (IT) constants.
- Ce type de multiplexage est utilisé :
 - pour la transmission de signaux numériques,
 - En considérant la possibilité de transmettre 1 bit ou 1 caractère par IT.

Signalisation

- Les informations de service sont appelées signalisation. Elles concernent la gestion de la transmission.
- La signalisation concernant un canal peut être placée :
 - avec les données (signalisation dans la bande),
 - sur un canal séparé (signalisation hors bande).

Transmission entre deux ordinateurs

