Cypher and SQL, HW3

Farnoosh Koleini 2023-02-19

1.Neo4j schema design and data load

1.1 Schema design (20 pts)

Draw the database schema for the graph database, using http://www.apcjones.com/arrows (http://www.apcjones.com/arrows). Include a screenshot of it.

To create the schema for this dataset, first of all we can create a really general schema includes all main nodes and their relationship, then we can create the whole schema with all the details, nodes, and relationships. I uploaded the pdf file for the general schema called arrow schema (detail) in the zip file. Also, I uploaded the screenshot of the general schema, please find them.

2/19/23, 3:17 PM arrows-3.svg

file:///Users/koleinif20/Downloads/arrows-3.svg

1/1

1.2 Data load (30 pts)

CREAT all the nodes

CREATE (n1:Student {Student_ID:1,First_Name:'Ana',Middle_Name:'Maria',Last_Name:'Doe'}) CREATE (n2:Student{Student_ID:2,First_Name:'Peter',Middle_Name:'John',Last_Name:'Ung'}) CREATE (n3:Student {Student_ID:3,First_Name:'John',Middle_Name:',Last_Name:'Doe'}) CREATE (n4:Student {Student_ID:4,First_Name:'Stine',Middle_Name:',Last_Name:'Berre'}) CREATE (n5:Student

{Student_ID:5,First_Name:'John',Middle_Name:'',Last_Name:'Travolta'}) CREATE (n6:Course {Course_Number:1,Course_Name:'Databases'}) CREATE (n7:Course {Course_Number:2,Course_Name: 'Programming'}) CREATE (n8:Project {Project_Number:34,Project_Name:'eCommerce database'}) CREATE (n9:Project {Project_Number:24,Project_Name:'eCommerce website'}) CREATE (n10:Project {Project_Number:26,Project_Name:'Reporting'}) CREATE (n11:Project {Project_Number:13,Project_Name: 'User interface'}) CREATE (n12:Room {Room_ID:1,Room_Name:'Pascal'}) CREATE (n13:Room {Room_ID:3,Room_Name:'Alpha'}) CREATE (n14:Room {Room_ID:4,Room_Name:'Beta'}) CREATE (n15:Room {Room_ID:2,Room_Name:'Seminar C'})

CREATE all the relationships

```
MATCH (a:Student{Student_ID: 1}), (b:Course {Course_Number: 1}) CREATE (a)-[:Enrolled_IN]->(b)
MATCH (c:Student{Student_ID: 2}), (d:Course {Course_Number: 1}) CREATE (c)-[:Enrolled_IN]->(d)
MATCH (e:Student{Student_ID: 4}), (f:Course {Course_Number: 1}) CREATE (e)-[:Enrolled_IN]->(f)
MATCH (f:Student{Student_ID: 3}), (g:Course {Course_Number: 2}) CREATE (f)-[:Enrolled_IN]->(g)
MATCH (h:Student{Student_ID: 1}), (i:Project{Project_Number: 34}) CREATE (h)-[: Works on {Hours:'1'}]->(i)
MATCH (j:Student{Student_ID: 2}), (k:Project{Project_Number: 34}) CREATE (j)-[: Works on {Hours:'3'}]->(k)
MATCH (I:Student{Student_ID: 3}), (m:Project{Project_Number: 34}) CREATE (I)-[: Works on {Hours:'1'}]->(m)
MATCH (n:Student{Student_ID: 1}), (o:Project{Project_Number: 24}) CREATE (n)-[: Works on {Hours:'2'}]->(o)
MATCH (p:Student | Student | D: 2}), (q:Project | Project | Number: 24}) CREATE (p)-[: Works on {Hours: '4'}]->(q)
MATCH (r:Student{Student_ID: 3}), (t:Project{Project_Number: 24}) CREATE (r)-[: Works on {Hours:'2'}]->(t)
MATCH (s:Student{Student_ID: 2}), (w:Project{Project_Number: 26}) CREATE (s)-[: Works On {Hours:'1'}]->(w)
MATCH (u1:Student{Student_ID: 3}), (w1:Project{Project_Number: 26}) CREATE (u1)-[: Works on {Hours:'3'}]-
>(w1)
MATCH (v:Student{Student_ID: 2}), (x:Project{Project_Number: 13}) CREATE (v)-[: Works On {Hours: '3'}]->(x)
MATCH (y:Course{Course_Number: 1}), (z:Room{Room_ID: 1}) CREATE (y)-[: Takes Place In ]->(z)
MATCH (y1:Course{Course Number: 1}), (z1:Room{Room ID: 3}) CREATE (y1)-[: Takes Place In ]->(z1)
MATCH (y2:Course{Course_Number: 1}), (z2:Room{Room_ID: 4}) CREATE (y2)-[: Takes Place In ]->(z2)
MATCH (y3:Course{Course Number: 2}), (z3:Room{Room ID: 2}) CREATE (y3)-[: Takes Place In ]->(z3)
```


Data analysis (60 pts: 5 pts each per SQL query, 5 pts each per Cypher query)

Write the SQL queries and the Cypher queries to answer the following questions.

a. In which rooms does the course with Course number 1 takes place? Retrieve the course name and the names of the rooms in which the course takes place.

SQL query

SELECT c.Course_Name, r.Room_Name FROM Courses c INNER JOIN Rooms r ON c.Room_ID = r.Room_ID WHERE c.Course_Number = 1;

cypher query

MATCH (c:Course {Course_Number: 1})-[:Takes_Place_In]->(r:Room) RETURN c.Course_Name AS Course_Name, r.Room_Name AS Room_Name

b. How many hours and in which projects does student with Student ID 1 works on? Retrieve the first

name of the student, the project the student works on, and the corresponding num- ber of hours worked on the project.

SQL query

SELECT s.First_Name, p.Project_Name, w.Hours FROM Student s JOIN Works_On w ON s. Student_ID = w. Student_ID JOIN Project p ON w.Project_Number = p.Project_Number WHERE s. Student_ID = 1;

cypher query

MATCH (s:Student)-[w:Works_On]->(p:Project) WHERE s. Student_ID = 1 RETURN s.First_Name, p.Project_Name, w.Hours

c. Which students and how many hours do they work on the project with Project number 24? Retrieve the project name, the last name of the student, and the corresponding number of hours worked on the project.

SQL query

SELECT p.Project_Name, s.Last_Name, w.Hours FROM Project p JOIN Works_On w ON p.Project_Number = w.Project_Number JOIN Student s ON w.Student_ID = s.Student_ID WHERE p.Project_Number = 24;

cypher query

MATCH (s:Student)-[w:Works_On]->(p:Project {Project_Number: 24}) RETURN p.Project_Name, s.Last_Name, w.Hours

Or

MATCH (s:Student)-[w:Works_On]->(p:Project) WHERE p.Project_Number = 24 RETURN p.Project_Name, s.Last_Name, w.Hours

d. Which students work in which projects and how many hours? Retrieve the last name of the students, the name of the projects they work on, and the corresponding number of hours. Order the results by the last name of the students. Limit the results to four.

SQL query

SELECT s.last_name, p.project_name, w.hours FROM works_on w JOIN student s ON s.student_id = w.student_id JOIN project p ON p.project_number = w.project_number ORDER BY s.last_name LIMIT 4;

cypher query

MATCH (s:Student)-[w:Works_On]->(p:Project) WHERE w.Hours IS NOT NULL RETURN s.Last_Name, p.Project_Name, w.Hours LIMIT 4

e) Whichstudentsworkonmorethantwoprojectsandonhowmanyprojectsexactly? Retrieve the last name of the students and the corresponding number of projects. Order the results by the number of projects.

SQL query

SELECT students.Last_Name, COUNT() AS num_projects FROM works_on INNER JOIN students ON works_on.Student_ID = students.Student_ID GROUP BY works_on.Student_ID, students.Last_Name HAVING COUNT() > 2 ORDER BY num_projects;

cypher query

MATCH (s:Student)-[w:Works_On]->(p:Project) WITH s, COUNT(p) as num_projects WHERE num_projects > 2 RETURN s.Last_Name as Last_Name, num_projects ORDER BY num_projects

f. Which students have the same last name and work on the same projects? Retrieve the first name of the students and the name of projects they share.

SQL query

SELECT s1.first_name, s2.first_name, p.project_name FROM works_on w1 JOIN works_on w2 ON w1.project_number = w2.project_number AND w1.student_id < w2.student_id JOIN student s1 ON s1.student_id = w1.student_id JOIN student s2 ON s2.student_id = w2.student_id AND s1.last_name = s2.last_name JOIN project p ON p.project_number = w1.project_number ORDER BY s1.last_name, s2.last_name, p.project_name;

cypher query

MATCH (s1:Student)-[w1:Works_On]->(p:Project)<-[w2:Works_On]-(s2:Student) WHERE s1.Last_Name = s2.Last_Name AND w1.Hours = w2.Hours RETURN s1.First_Name, p.Project_Name

