

IncidentNet

Traffic Incident Detection, Localization and Severity Estimation with Sparse Sensing

Sai Shashank Peddiraju*, Kaustubh Harapanahalli*, Edward Andert, Aviral Shrivastava Arizona State University

presented at

IEEE International Conference of Intelligent Transportation Systems (ITSC) 2024

Motivation for Incident Detection

Traffic Incident Categories

Impact of Traffic Accident

Emergency response under 7-minutes, decreasing fatality rate by 58% [2]

Broader Issues of Traffic Incidents

Commuter's safety

Traffic congestion

Existing Incident Detection Works

Previous Works	Region	Dataset	Sensor Modality	Model	Approach	Limitations
Chen et al. ^[1]	Highway	Macroscopic	Inductive Loop Detectors	XGBoost	Trained on data from upstream and downstream traffic detectors	Requires data from consecutive detectors
Bao et al. ^[2]	Highway	Microscopic	Traffic Cameras	YOLOv3	Detects incidents based on vehicle speed by tracking vehicles in the camera's field of view	Can detect incidents only in field-of-view
Han et al. ^[3]	Urban	Microscopic	GPS probes	Clustering	Detects incidents by matching real-time GPS speed vectors with historical incident patterns	Affected by noise and interference and mandates the installation of a GPS probe in every vehicle
Yang et al. ^[4]	Urban	Macroscopic	Inductive Loop Detectors	Deep Learning	Detects incidents using deep-learning network to detect incidents	Uses Simplistic simulation which does not model real city traffic
Zhu et al. ^[5]	Urban	Macroscopic	Inductive Loop Detectors	Custom CNN	Detects incidents based on constructed a connectivity matrix of sensors	Uses only traffic counts for detecting incidents
IncidentNet	Urban Highways	Microscopic	Traffic Cameras	XGBoost TabNet	Used Tabular ML models to detect incidents from data derived from microscopic traffic data	-

^[1] Chen et al. More robust and better: Automatic traffic incident detection based on XGBoost (ATTCA 2023)

^[2] Bao et al. Research on Highway Traffic Event Detection Method Based on Image Processing (IOP EES 2021)

^[3] Han et al. Traffic incident detection: A trajectory-based approach, (ICDE 2020)

^[4] Yang et al. Traffic Incident Generation And Supervised Learning-Based Detection Via A Microscopic Simulation Platform (ITSC 2023)

Existing Incident Detection Works

Macroscopic dataset

- Features: average traffic flow, count, and density calculated over time.
- Sensors: Inductive Loop Detectors.
- Examples: datasets PEMS Bay, METR-LA, SFO I-880

Time	Averag e Speed	Traffic Count	Average traffic occupancy
5	67.04	48	0.20
10	70	45	0.18
15	71	59	0.15

(continued...) Microscopic dataset

- Features: individual vehicle speed, timestamps, vehicle unique identifiers
- Sensors: Cameras, Bluetooth Sensors, GPS.
- Example datasets: Highway 99-W, NYC taxi data.

Timestamp	Vehicle Identifier	Speed	Lane Number
10:00:23	Purple Sedan	72	3
10:02:11	Blue SUV	40	1
10:07:00	Black Sedan	65	3

Challenges for Accurate Incident Detection

Our Contributions

Lack of microscopic datasets

A generic approach for generating realistic microscopic datasets using real-world captured macroscopic data

Algorithm to detect, locate, and estimate severity of incidents in urban regions

A deep-learning-based algorithm that can detect, localize and estimate severity on microscopic datasets for both urban regions and highways

Our Approach

Workflow of Microscopic Traffic Dataset Generation | Generalized Approach for Traffic Incident Detection, Localization and Severity Estimation

Workflow of Microscopic Traffic Dataset Generation

Traffic Flow Simulation

Traffic Incident Simulation

Dataset Generation from Microscopic Traffic Simulators

Traffic Cameras placed at traffic signals collect Data

Raw Features

Individual Vehicle Identifiers

Vehicle Speed

Intersection ID

Timestamp

Traffic Count

Traffic Occupancy

Labels

Incident Occurrence

Incident Severity

Incident Localization

43 traffic signals are marked as blue dots, indicating potential locations for placing traffic cameras to collect data

Data Pre-processing and Feature Extraction

Timestam p	Vehicle Identifier	Junction Identified	Vehicle Speed	
7:02:10	Red SUV	1	32	T T'
7:04:40	Blue SUV	1	25	Travel Time for junction 1 to 2
7:08:00	Red SUV	2	20	

Model Selection and Architecture

XGBoost Architecture

TabNet Architecture

Model Selection and Architecture (continued...)

Experiments and Results

Our Microscopic Data Matches with Real-World Macroscopic Data

Evaluation Metrics

Two similar distributions will have the same cumulative probability distribution function (CDF) $CDF : F(x) = P(X \le x)$

Null Hypothesis: The two samples come from same continuous distribution

IncidentNet Detects 2x More Incidents with 2.5x Faster Mean-Time-To-Detect while Reducing False

8 sensor placement for incident detection evaluation

Evaluation Metrics

Algorithm	DR	MTTD	FAR	Accuracy	Precision	Recall	F1 Score	AUC-ROC	Specificity
IncidentNet (XG Boost)	96%	94 secs	11%	92%	93%	90%	87%	91%	95%
IncidentNet (TabNet)	98%	197 secs	6%	93%	94%	91%	92%	93%	95%
Zhu et al. (CNN)	51%	471 secs	35%	60%	40%	50%	44%	51%	64%

DR: Detection Rate

MTTD: Mean-Time-To-Detect

FAR: False Alarm Rate

IncidentNet can also Localize and Estimate Severity of Incidents

Evaluation Metrics

Algorithm	Severity	Localization - Top 1	Localization - Top 2	Localization - Top 3
IncidentNet (XGBoost)	77%	68%	75%	80%
IncidentNet (TabNet)	82%	70%	80%	85%

IncidentNet can Accurately Detect, Localize and Estimate Severity with Few (8/43 to 3/43) Sensors

Evaluating IncidentNet up to 8 out of 43 sensors

Evaluation Metrics

IncidentNet can also Accurately Detect Incidents on Highways

Evaluation Metrics

Algorithm	DR	MTTD	FAR
IncidentNet (XGBoost)	98%	45 secs	6.02%
IncidentNet (TabNet)	99%	70 secs	4.17%

Importance of Sensor Placement (Future Direction)

Randomly selected 3 sensor placements out of 12341 possibilities

Evaluation Metrics

Sensor Placement	Accuracy (%)	F1 score (%)	
Placement 1	88.22	86.17	
Placement 2	95.73	94.96	~10%1
Placement 3	97.85	97.46	"

For 3 sensor placement : We have ${}^{43}C_3$ = 12341 combinations!!

Conclusion

Validation

Simulation-based generated traffic data was similar to real-world macroscopic data

Generalization

IncidentNet can detect incidents for landscapes such as for urban regions and highways

Efficiency

IncidentNet can detect more incidents with minimal false alarms while being faster

Insightful

IncidentNet can also localize the incident and estimate its severity.