```
In [1]: import warnings
         warnings.filterwarnings('ignore')
In [2]: import numpy as np, pandas as pd, matplotlib.pyplot as plt, seaborn as sns
         %matplotlib inline
In [3]: | cars_data = pd.read_csv(r'C:\Users\WNasir\Desktop\datasets\Car_sale_ads.csv')
In [4]: cars_data.shape
Out[4]: (208304, 25)
         Quite enough data for ML standards
In [5]: cars_data.head()
Out[5]:
            Index
                   Price Currency Condition Vehicle_brand Vehicle_model Vehicle_version Vehicle_ga
          0
                0 86200
                             PLN
                                                                  595
                                                                                NaN
                                       New
                                                  Abarth
          1
                1 43500
                             PLN
                                      Used
                                                  Abarth
                                                                Other
                                                                                NaN
                                                                                NaN
         2
                2 44900
                             PLN
                                      Used
                                                  Abarth
                                                                  500
          3
                3 39900
                             PLN
                                      Used
                                                  Abarth
                                                                  500
                                                                                NaN
                  97900
                             PLN
                                       New
                                                  Abarth
                                                                  595
                                                                                NaN
         5 rows × 25 columns
```

In [6]: cars_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 208304 entries, 0 to 208303
Data columns (total 25 columns):

	columns (total 25 columns	•	
#	Column	Non-Null Count	Dtype
0	Index	208304 non-null	 int64
1	Price	208304 non-null	int64
2	Currency	208304 non-null	object
3	Condition	208304 non-null	object
4	Vehicle_brand	208304 non-null	object
5	Vehicle_model	208304 non-null	object
6	Vehicle_version	138082 non-null	object
7	Vehicle_generation	147860 non-null	object
8	Production_year	208304 non-null	int64
9	Mileage_km	207321 non-null	float64
10	Power_HP	207661 non-null	float64
11	Displacement_cm3	206338 non-null	float64
12	Fuel_type	208304 non-null	object
13	CO2_emissions	94047 non-null	float64
14	Drive	193228 non-null	object
15	Transmission	207825 non-null	object
16	Туре	208304 non-null	object
17	Doors_number	206817 non-null	float64
18	Colour	208304 non-null	object
19	Origin_country	118312 non-null	object
20	First_owner	65094 non-null	object
21	First_registration_date	86445 non-null	object
22	Offer_publication_date	208304 non-null	object
23	Offer_location	208304 non-null	object
24	Features	208304 non-null	object
	es: float64(5), int64(3),	object(17)	
Memoi	rv usage: 39.7+ MB		

memory usage: 39.7+ MB

In [7]:	cars_data.isna()	.sum()						
<pre>In [7]: Out[7]:</pre>	Index Price Currency Condition Vehicle_brand Vehicle_model Vehicle_version Vehicle_generation Production_year Mileage_km Power_HP Displacement_cm3 Fuel_type CO2_emissions Drive Transmission Type Doors_number Colour Origin_country First_owner First_registration_date Offer_location Features dtype: int64		0 0 0 0 70222 60444 0 983 643 1966 0 114257 15076 479 0 1487 0 89992 143210 121859 0 0					
ın [8]:	cars_data.descri	.be().I						
Out[8]:		count	mean	std	min	25%	50%	75
	Index	208304.0	104151.500000	6.013233e+04	0.0	52075.75	104151.5	156227.2
		208304.0		8.665967e+04	500.0	17800.00	35700.0	75990.0
	Production_year		2012.098241	6.998414e+00	1915.0	2008.00	2013.0	2017.0
	Mileage_km	207321.0	150276.763960	2.937447e+06	1.0	53000.00	144566.0	206000.0
	Power_HP	207661.0	151.836281	7.768355e+01	1.0	105.00	136.0	172.0
	Displacement_cm3	206338.0	1882.567147	7.296097e+02	400.0	1461.00	1798.0	1997.0
	CO2_emissions	94047.0	319156.381107	7.291396e+07	1.0	120.00	140.0	164.0
	Doors_number	206817.0	4.637138	7.685590e-01	1.0	5.00	5.0	5.0
	4							•

Standard deviations are quite large, mean data is very much skewed

Preprocessing other then numeric features

```
In [9]: | cars data.select dtypes(include='object').nunique()
Out[9]: Currency
                                          2
        Condition
                                          2
        Vehicle brand
                                        108
        Vehicle model
                                       1203
        Vehicle_version
                                      19056
        Vehicle generation
                                        569
        Fuel_type
                                          8
        Drive
                                          5
        Transmission
                                          2
                                          9
        Type
        Colour
                                         14
        Origin_country
                                         37
        First owner
                                          1
        First_registration_date
                                       8441
        Offer_publication_date
                                         41
        Offer location
                                      13635
        Features
                                     177211
        dtype: int64
```

• Take a bird's eye view on unique values

```
In [10]: for label, content in cars data.items():
             if not pd.api.types.is numeric dtype(content):
                 print(label)
                 print(len(pd.unique(content)))
                 print(pd.unique(content))
                 print('*' * 100)
         Currency
         ['PLN' 'EUR']
         *********
         Condition
         2
         ['New' 'Used']
         *********
         Vehicle brand
         108
         ['Abarth' 'Acura' 'Aixam' 'Alfa Romeo' 'Alpine' 'Aston Martin' 'Audi'
          'Austin' 'Autobianchi' 'Baic' 'Bentley' 'BMW' 'Buick' 'Cadillac'
          'Casalini' 'Chatenet' 'Chevrolet' 'Chrysler' 'Citroën' 'Cupra' 'Dacia'
          'Daewoo' 'Daihatsu' 'DFSK' 'DKW' 'Dodge' 'DS Automobiles' 'FAW' 'Ferrar
          'Fiat' 'Ford' 'Gaz' 'GMC' 'Grecav' 'Honda' 'Hummer' 'Hyundai' 'Infiniti'
          'Isuzu' 'Iveco' 'Jaguar' 'Jeep' 'Kia' 'Lada' 'Lamborghini' 'Lancia'
                               Iliana Iliana Int Ilatuat IMANI Illana - auat
```

- As the above cell shows that some features have too many unique values so it is quite impossible to encode them
- Moreover some columns have extra information which make our model more complex

• So a better approach is to drop them before further preprocessing

creates a copy of data

```
In [11]: | new_data = cars_data.copy()
In [12]: cols = ['Index', 'Vehicle_model', 'Vehicle_version', 'Vehicle_generation', 'C
                 'Offer_publication_date', 'Offer_location', 'Features', 'First_owner']
         for i in cols:
             new_data.drop(i, axis=1, inplace=True)
In [13]: new_data.shape
Out[13]: (208304, 14)
In [14]: plt.hist(new_data['Currency'])
         plt.show()
          200000
           175000
           150000
           125000
           100000
            75000
            50000
            25000
                0
                                                                               EUR
                    PLN
```

In [15]: plt.pie(x=new_data['Currency'].value_counts(), labels=pd.unique(new_data['Cur
plt.show()

In [16]: new_data.loc[new_data['Currency'] == 'EUR']

0u	t	[1	6]	:
		-		

	Price	Currency	Condition	Vehicle_brand	Production_year	Mileage_km	Power_HP	D
141	18448	EUR	New	Aixam	2021	1.0	12.0	_
142	17731	EUR	New	Aixam	2021	1.0	12.0	
143	14143	EUR	New	Aixam	2021	1.0	8.0	
144	13426	EUR	New	Aixam	2021	1.0	4.0	
152	9673	EUR	New	Aixam	2021	1.0	8.0	
203703	28500	EUR	Used	Volvo	2017	18000.0	367.0	
208176	18900	EUR	Used	Volvo	2015	115000.0	235.0	
208205	7200	EUR	Used	Volvo	2017	54000.0	120.0	
208232	8900	EUR	Used	Volvo	2016	79000.0	163.0	
208281	12500	EUR	Used	Wartburg	1960	96000.0	38.0	

270 rows × 14 columns

Prices are mentioned in either currency, we can drop those currencies mentioned in Euros or we can convert them into PLNs and converting them is a good approach

```
In [17]: new_data['Price_'] = new_data['Price'] * (new_data['Currency'].apply(lambda x
In [18]: 4.41 * 18448
Out[18]: 81355.68000000001
In [19]:
         new_data['Price_'].loc[new_data['Currency'] == 'EUR']
Out[19]: 141
                     81355.68
         142
                     78193.71
         143
                     62370.63
         144
                     59208.66
         152
                     42657.93
                      . . .
         203703
                   125685.00
         208176
                     83349.00
         208205
                     31752.00
         208232
                     39249.00
         208281
                     55125.00
         Name: Price_, Length: 270, dtype: float64
```

Now drop the previous Price column and Currency column, because now they are useless

```
In [20]: new_data.drop(['Price', 'Currency'], axis=1, inplace=True)
In [21]: new_data.shape
Out[21]: (208304, 13)
```

What cars' brands our data have

```
In [22]: new_data['Vehicle_brand'].unique()
```

In [23]: new_data.head()

\sim			
()	ПΤ	IノスI	
0	uc		

	Condition	Vehicle_brand	Production_year	Mileage_km	Power_HP	Displacement_cm3	Fuel_
0	New	Abarth	2021	1.0	145.0	1400.0	Gas
1	Used	Abarth	1974	59000.0	75.0	1100.0	Gas
2	Used	Abarth	2018	52000.0	180.0	1368.0	Gas
3	Used	Abarth	2012	29000.0	160.0	1368.0	Gas
4	New	Abarth	2021	600.0	165.0	1368.0	Gas
4							•

Vehicle Brands would definately impact our data but it has over one huundred values so an intutive approach is to recreate this column

```
In [24]:
    def model_sorter(brand_name):
        if brand_name in ['Alfa Romeo', 'Aston Martin', 'Autobianchi', 'Infiniti'
            return 'sports cars'
        elif brand_name in ['Audi', 'BMW', 'Buick', 'Cadillac', 'Rolls-Royce' 'Jageturn 'luxury cars'
        elif brand_name in ['GMC', 'Hummer', 'Isuze', 'Jeep', 'MG', 'Skoda']:
            return 'SUVs'
        else:
            return 'others'

new_data['Vehicle_brand'] = new_data['Vehicle_brand'].apply(model_sorter)
```

In [25]: plt.pie(x=new_data['Vehicle_brand'].value_counts(), labels=pd.unique(new_data
plt.show()

creating a new dataframe for ploting

```
In [28]: cols = ['Condition', 'Fuel_type', 'Drive', 'Transmission']
# fig, ax = plt.subplots(nrows=4, ncols=1, figsize=(30, 11))
# ax = ax.ravel()
for col in cols:
    plt.figure(figsize=(12, 4))
    plt.hist(x= plot_df[col], bins=20)
    plt.show()
# sns.boxplot(data=cars_data, x=col, ax=ax[i], estimator = cars_data.mean,
```



```
In [29]: cols = ['Condition', 'Fuel_type', 'Drive', 'Transmission']
    for col in cols:
        plt.figure(figsize=(12, 4))
        plt.pie(x=plot_df[col].value_counts(), labels=pd.unique(plot_df[col]), aur
        plt.show()
```


Now its time to dig deep numerical columns

4

In [30]: new_data.hist(figsize=(12, 8))
plt.show()


```
In [31]: plt.plot(new_data['Price_'])
plt.show()
```



```
In [32]: new_data['Price_'].describe().T
```

```
Out[32]: count 2.083040e+05
mean 6.330202e+04
std 8.874514e+04
min 5.850000e+02
25% 1.780000e+04
50% 3.580000e+04
75% 7.600000e+04
max 6.999000e+06
```

Name: Price_, dtype: float64

```
In [33]: sns.violinplot(data=new_data, x = 'Price_')
plt.show()
```



```
In [34]: plt.boxplot(new_data['Price_'])
plt.show()
```


detecting outliers and removing them

In [39]: new

_				
ſΝ	14.	12	a	
Οι	a c	ט ו	2	

	Condition	Vehicle_brand	Production_year	Mileage_km	Power_HP	Displacement_cm3			
1	Used	others	1974	59000.0	75.0	1100.0			
2	Used	others	2018	52000.0	180.0	1368.0			
3	Used	others	2012	29000.0	160.0	1368.0			
5	Used	others	2016	46060.0	180.0	1368.0			
6	Used	others	2021	2900.0	145.0	1368.0			

208287	Used	others	1964	47109.0	75.0	2400.0			
208293	Used	others	2020	500000000.0	333.0	3333.0			
208297	Used	others	1981	18712.0	55.0	1116.0			
208298	Used	others	1978	6000.0	NaN	750.0			
208299	Used	others	2014	40000.0	173.0	1301.0			
104429	104429 rows × 13 columns								

```
In [40]: plt.boxplot(new['Price_'])
plt.show()
```



```
In [41]: plt.hist(new['Price_'])
plt.show()
```


althouh it is still skewed to the right but way better then previous one. This hist and above mentioned boxplot clearly shows that transformed data is more dispersed

```
In [42]: np.std(new['Price_'])
```

Out[42]: 16451.824159236352

```
In [43]: plt.boxplot(plot_df['Mileage_km'])
plt.show()
```


In [46]: new

Out	[46]	:

	Condition	Vehicle_brand	Production_year	Mileage_km	Power_HP	Displacement_cm3
1	Used	others	1974	59000.0	75.0	1100.0
2	Used	others	2018	52000.0	180.0	1368.0
5	Used	others	2016	46060.0	180.0	1368.0
11	Used	others	2010	179000.0	210.0	1368.0
13	Used	others	2015	117000.0	140.0	1400.0
208281	Used	others	1960	96000.0	38.0	900.0
208283	Used	others	1982	98600.0	100.0	2445.0
208284	Used	others	1983	190000.0	105.0	2445.0
208285	Used	others	1982	83000.0	95.0	2445.0
208287	Used	others	1964	47109.0	75.0	2400.0

71665 rows × 13 columns


```
In [48]: plt.boxplot(plot_df['CO2_emissions'])
plt.show()
```


It is too good to get rid off it

```
In [49]: | new.drop('CO2_emissions', axis=1, inplace=True)
In [50]: new.isna().sum()
Out[50]: Condition
                                 0
         Vehicle brand
                                 0
          Production_year
                                 0
         Mileage_km
                                 0
         Power HP
                               192
         Displacement_cm3
                               269
         Fuel_type
                                 0
         Drive
                               4806
         Transmission
                               147
          Type
                                 0
         Doors_number
                               405
         Price
                                 0
          dtype: int64
```

```
In [51]: new.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 71665 entries, 1 to 208287 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	Condition	71665 non-null	object
1	Vehicle_brand	71665 non-null	object
2	Production_year	71665 non-null	int64
3	Mileage_km	71665 non-null	float64
4	Power_HP	71473 non-null	float64
5	Displacement_cm3	71396 non-null	float64
6	Fuel_type	71665 non-null	object
7	Drive	66859 non-null	object
8	Transmission	71518 non-null	object
9	Туре	71665 non-null	object
10	Doors_number	71260 non-null	float64
11	Price_	71665 non-null	float64
dtyp	es: float64(5), in	t64(1), object(6)

memory usage: 7.1+ MB

```
In [52]: plt.boxplot(plot_df['Power_HP'])
         plt.show()
```


same as CO2_emissions column

now data processing part is almost complete

Getting data ready for model training

```
In [61]: from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder, StandardScale
    from sklearn.compose import ColumnTransformer, TransformedTargetRegressor
    from sklearn.pipeline import make_pipeline
    from sklearn.model_selection import cross_val_score, train_test_split, learning
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.metrics import mean_squared_error, mean_absolute_error, mean_absolute_error, mean_absolute_error
```

seperating columns based on object types

```
In [62]: num_cols = [cname for cname, content in new.items() if pd.api.types.is_numeri
num_cols
```

Out[62]: ['Production_year', 'Mileage_km', 'Displacement_cm3', 'Doors_number', 'Price
_']

Some Object columns have relationship among itselfs so it is good approach to encode them either in HOT or Ordial

```
In [63]: new.select_dtypes(include='object')
```

Out[63]:		Condition	Vehicle_brand	Fuel_type	Drive	Transmission	Туре
	1	Used	others	Gasoline	Front wheels	Manual	coupe
	2	Used	others	Gasoline	NaN	Automatic	small_cars
	5	Used	others	Gasoline	Front wheels	Manual	small_cars
	11	Used	others	Gasoline	Front wheels	Manual	city_cars
	13	Used	others	Gasoline	Front wheels	Manual	city_cars
	208281	Used	others	Gasoline	Front wheels	Manual	sedan
	208283	Used	others	Gasoline	Front wheels	Manual	sedan
	208284	Used	others	Gasoline	Rear wheels	Manual	sedan
	208285	Used	others	Gasoline	NaN	Manual	sedan
	208287	Used	others	Gasoline	Rear wheels	Manual	sedan

71260 rows × 6 columns

```
In [64]: hot_cols = ['Condition', 'Transmission', 'Fuel_type']
ord_cols = ['Vehicle_brand', 'Drive', 'Type']
```

creating pipelines

In [66]: processed_df

Out[66]:

	numProduction_year	numMileage_km	numDisplacement_cm3	numDoors_numb
1	1974.0	59000.0	1100.0	2
2	2018.0	52000.0	1368.0	3
5	2016.0	46060.0	1368.0	3
11	2010.0	179000.0	1368.0	3
13	2015.0	117000.0	1400.0	3
208281	1960.0	96000.0	900.0	4
208283	1982.0	98600.0	2445.0	4
208284	1983.0	190000.0	2445.0	4
208285	1982.0	83000.0	2445.0	4
208287	1964.0	47109.0	2400.0	5

71260 rows × 17 columns

```
In [67]: processed df.isna().sum()
Out[67]: num Production year
                                           0
         num__Mileage_km
                                           0
         num Displacement cm3
                                           0
         num Doors number
                                           0
         num Price
                                           0
         hot Condition Used
                                           0
         hot Transmission Automatic
                                           0
         hot__Transmission_Manual
         hot__Fuel_type_Diesel
                                           0
         hot Fuel type Electric
                                           0
         hot__Fuel_type_Gasoline
                                           0
         hot__Fuel_type_Gasoline + CNG
                                           0
         hot__Fuel_type_Gasoline + LPG
                                           0
         hot__Fuel_type_Hybrid
                                           0
         ord__Vehicle_brand
                                           0
         ord Drive
                                           0
         ord__Type
                                           0
         dtype: int64
         Spliting data into traing and testing
In [68]: X = processed_df.drop('num__Price_', axis=1)
         y = processed_df['num__Price_']
In [69]: X train, X test, y train, y test = train test split(X, y, test size = 0.2, r
```

Traing a model

```
In [72]: predicts = rand model.predict(X test)
In [73]: r2 score(y test, predicts)
Out[73]: 0.7552667911371554
In [74]: mean squared error(y test, predicts, squared=False)
Out[74]: 7811.351359673329
In [75]: rand model.feature importances
Out[75]: array([3.74483103e-01, 1.39934406e-01, 2.31842829e-01, 1.50168829e-02,
                  0.00000000e+00, 3.81681297e-02, 4.07220818e-02, 7.04669158e-03,
                  6.03377080e-05, 1.53673060e-02, 3.99736761e-05, 1.89312334e-03,
                  1.16977770e-03, 4.09336431e-02, 1.75575623e-02, 7.57641521e-02])
In [76]: | corr = new.corr()
          corr
Out[76]:
                            Production_year Mileage_km Displacement_cm3 Doors_number
                                                                                        Price_
             Production_year
                                  1.000000
                                             -0.264078
                                                              -0.369691
                                                                            0.302831
                                                                                      0.352128
                                             1.000000
                Mileage_km
                                  -0.264078
                                                              0.212645
                                                                            0.023999
                                                                                     -0.272404
           Displacement_cm3
                                 -0.369691
                                             0.212645
                                                              1.000000
                                                                            -0.249551
                                                                                      0.253871
              Doors_number
                                  0.302831
                                             0.023999
                                                              -0.249551
                                                                            1.000000
                                                                                      0.005931
                                  0.352128
                                             -0.272404
                                                              0.253871
                                                                            0.005931
                                                                                      1.000000
                     Price_
In [77]: from pandas.plotting import scatter matrix
          scatter_matrix(frame=new, figsize=(20, 8))
          plt.show()
```

now set hyperparameters by using Grid Search, because data is not too large

```
In [78]: from sklearn.model selection import GridSearchCV
In [151]: param = {'n estimators' : [10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
                   'max_depth' : [1, 3, 5],
                   'min_samples_split' : [2, 4, 6, 8],
                   'max_features' : ['auto', 'sqrt', 'log2'],
                    'bootstrap' : [True, False],
          grid_ser = GridSearchCV(estimator=RandomForestRegressor(n_jobs=-1, random_state
          grid ser.fit(X train, y train)
          C:\Users\WNasir\Desktop\sample_project_1\env\Lib\site-packages\sklearn\en
          semble\_forest.py:413: FutureWarning: `max_features='auto'` has been depr
          ecated in 1.1 and will be removed in 1.3. To keep the past behaviour, exp
          licitly set `max features=1.0` or remove this parameter as it is also the
          default value for RandomForestRegressors and ExtraTreesRegressors.
            warn(
          C:\Users\WNasir\Desktop\sample_project_1\env\Lib\site-packages\sklearn\en
          semble\_forest.py:413: FutureWarning: `max_features='auto'` has been depr
          ecated in 1.1 and will be removed in 1.3. To keep the past behaviour, exp
          licitly set `max_features=1.0` or remove this parameter as it is also the
          default value for RandomForestRegressors and ExtraTreesRegressors.
            warn(
          C:\Users\WNasir\Desktop\sample_project_1\env\Lib\site-packages\sklearn\en
          semble\_forest.py:413: FutureWarning: `max_features='auto'` has been depr
          ecated in 1.1 and will be removed in 1.3. To keep the past behaviour, exp
          licitly set `max features=1.0` or remove this parameter as it is also the
          default value for RandomForestRegressors and ExtraTreesRegressors.
          C:\Users\WNasir\Desktop\sample_project_1\env\Lib\site-packages\sklearn\en
In [152]: grid ser.best params
Out[152]: {'bootstrap': True,
            'max_depth': 5,
            'max_features': 'auto',
            'min samples split': 2,
            'n estimators': 80}
 In [79]: ideal = RandomForestRegressor(n estimators=80, max depth=5, max features='aut
                                        n_jobs=-1, random_state=42)
          ideal.fit(X train, y train)
 Out[79]: RandomForestRegressor(max_depth=5, max_features='auto', n_estimators=80,
                                 n_jobs=-1, random_state=42)
          In a Jupyter environment, please rerun this cell to show the HTML representation or
          trust the notebook.
          On GitHub, the HTML representation is unable to render, please try loading this page
```

with nbviewer.org.

```
In [80]: pred = ideal.predict(X test)
         pred
Out[80]: array([51693.75469945, 45765.03236222, 52473.93336489, ...,
                62184.58216824, 36651.4743255 , 23360.52938209])
In [81]: print(r2_score(y_test, pred))
         print(mean squared error(y test, pred))
         print(mean_absolute_error(y_test, pred))
         print(mean_squared_error(y_test, pred, squared=False))
         print(mean absolute percentage error(y test, pred))
         0.6337695849405809
         91309055.56887065
         7346.341313070408
         9555.577197054641
         0.2059394540164137
In [82]: |ideal.feature_importances_
Out[82]: array([5.54582342e-01, 1.70498988e-03, 2.33423078e-01, 1.35928885e-04,
                0.00000000e+00, 4.91469098e-02, 6.17971905e-02, 3.40728464e-05,
                0.00000000e+00, 7.02921665e-03, 0.00000000e+00, 0.00000000e+00,
                0.00000000e+00, 4.06175465e-02, 2.19377242e-03, 4.93349527e-02])
In [83]: def feature_imp(columns, importance):
             df = (pd.DataFrame({'features': columns,
                                 'importance': importance}).sort values("importance", a
             fig, ax = plt.subplots()
             plot = ax.barh(df['features'], df['importance'])
             ax.set_ylabel('features')
             ax.set_xlabel('importance')
             ax.invert yaxis()
```

```
In [84]: feature imp(X train.columns, ideal.feature importances )
                    num__Production_year
                  num__Displacement_cm3
                 hot_Transmission_Manual
                              ord__Type
               hot Transmission Automatic
                       ord__Vehicle_brand
                   hot Fuel type Gasoline
           features
                             ord Drive
                       num__Mileage_km
                     num__Doors_number
                    hot Fuel type Diesel
                     hot__Condition_Used
                    hot__Fuel_type_Electric
             hot__Fuel_type_Gasoline + CNG
             hot_Fuel_type_Gasoline + LPG
                    hot Fuel type Hybrid
                                                       0.2
                                     0.0
                                              0.1
                                                                 0.3
                                                                          0.4
                                                                                   0.5
                                                             importance
In [85]: ideal df = processed df.drop(['ord Drive', 'num Mileage km', 'num Doors nu
In [86]: ideal_df.columns
Out[86]: Index(['num Production year', 'num Displacement cm3', 'num Price ',
                  'hot__Transmission_Automatic', 'hot__Transmission_Manual',
                  'hot__Fuel_type_Diesel', 'hot__Fuel_type_Electric',
                  'hot Fuel type Gasoline', 'hot Fuel type Gasoline + CNG',
                  'hot__Fuel_type_Gasoline + LPG', 'hot__Fuel_type_Hybrid',
                  'ord Vehicle brand', 'ord Type'],
                dtype='object')
In [87]: X, y = ideal_df.drop('num__Price_', axis=1), ideal_df['num__Price_']
In [88]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rand
In [89]: ideal model = RandomForestRegressor(n estimators=80, max depth=5, max feature
                                         n jobs=-1, random state=42)
          ideal_model.fit(X_train, y_train)
Out[89]: RandomForestRegressor(max_depth=5, max_features='auto', n_estimators=80,
                                  n_jobs=-1, random_state=42)
          In a Jupyter environment, please rerun this cell to show the HTML representation or
          trust the notebook.
```

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.


```
In [94]: print('R2_Score is ',r2_score(y_test, pred1))
    print('MSE is ', mean_squared_error(y_test, pred1))
    print('MAE is ', mean_absolute_error(y_test, pred1))
    print('RMSE is ', mean_squared_error(y_test, pred1, squared=False))
    print('MAPE is ', mean_absolute_percentage_error(y_test, pred1))

    R2_Score is 0.6321655559588615
    MSE is 91708974.2140824
    MAE is 7364.086867378742
    RMSE is 9576.480262292738
    MAPE is 0.20623500612535237
```

In []: