Spatial filtering

Created by:

Asaf Kamer

Stav Sabag

Table of Contents

```
check 1
Pixel processing on HH and VV:.....4
Median filter 6
bilateral filter 21
```

```
clearvars;
clear all ;
close all ;
clc ;
```

check

Loading satellite images

```
% Specify the filename of the COSAR file
filename = 'IMAGE_HH_SRA_spot_048.cos';

% Call the readCosFile function to read the data and information from the file
[HH_image, info] = readCosFile(filename,1);

% Specify the filename of the COSAR file
filename = 'IMAGE_VV_SRA_spot_048.cos';

% Call the readCosFile function to read the data and information from the file
[VV_image, info] = readCosFile(filename,1);

% Display some basic information about the data and the file
disp(['File ' filename ' contains ' num2str(size(W_image,2)) ' range lines and ' ...
num2str(size(VV_image,3)) ' azimuth lines.'])
```

File IMAGE_VV_SRA_spot_048.cos contains 7808 range lines and 4018 azimuth lines.

```
% Combine the real and imaginary parts of the first image and the second into a single complex
abs HH image = (double(HH image(1,:,:)).^2 + double(HH image(2,:,:)).^2).^0.5;
abs HH image = uint16(squeeze(abs HH image));
% Compute the magnitude of each complex number in the matrix
abs_VV_image = (double(VV_image(1,:,:)).^2 + double(VV_image(2,:,:)).^2).^0.5 ;
abs_VV_image = uint16(squeeze(abs_VV_image));
tle1 = 'Original HH';
tle2 = 'Original VV';
figure;
subplot(1,2,1)
imagesc(abs_HH_image)
colormap("gray");
colorbar;
title(tle1, 'FontSize', 18); xlabel("pixel", "FontSize", 14); ylabel("pixel", "FontSize", 14); set
subplot(1,2,2)
imagesc(abs_VV_image)
colormap("gray");
colorbar;
title(tle2, 'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```


Loading Camera's images

```
% Read the images
haifa = imread('haifa.png');
GREEN_APES = imread('GREEN_APES_2002_ICON.jpg');
% Convert the images to grayscale
haifa_gray = im2gray(haifa(:,:,2));
GREEN_APES_gray = im2gray(GREEN_APES(:,:,2));
% Display the grayscale images
tle1 = 'haifa in grayscale';
tle2 = 'GREEN_APES in grayscale';
figure;
subplot(2,1,1)
imagesc(haifa_gray)
colormap("gray");
colorbar;
title(tle1, 'FontSize', 18); xlabel("pixel", "FontSize", 14); ylabel("pixel", "FontSize", 14); set
subplot(2,1,2)
```

```
imagesc(GREEN_APES_gray)
colormap("gray");
colorbar;
title(tle2,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```


pixel

Pixel processing on HH and VV:

```
% Start the timer
tic;

abs_HH_processed = Logarithmic(abs_HH_image);
abs_VV_processed = Logarithmic(abs_VV_image);
tle1 = 'Processed HH';
tle2 = 'Processed VV';
figure;
imagesc(abs_HH_processed)
colormap("gray");
colorbar;
title(tle1,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(abs_VV_processed)
colormap("gray");
colorbar;
title(tle2,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
elapsed_time = toc;
mins = floor(elapsed_time / 60);
secs = round(mod(elapsed_time, 60));
fprintf('Total elapsed time: %02d:%02d\n', mins, secs);
```

Total elapsed time: 00:01

Median filter 3×3

```
% Start the timer
tic;

fx = 3;
fy = 3;
processed_HH = median(abs_HH_processed,fx,fy);
processed_VV = median(abs_VV_processed,fx,fy);
processed_haifa = median(haifa_gray,fx,fy);
processed_GREEN_APES = median(GREEN_APES_gray,fx,fy);

tle1 = 'processed HH';
tle2 = 'processed VV';
tle3 = 'processed haifa';
tle4 = 'processed GREEN_APES';
figure;
```

```
imagesc(processed_HH)
colormap("gray");
colorbar;
title(tle1,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(processed_VV)
colormap("gray");
colorbar;
title(tle2,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(processed_haifa)
colormap("gray");
colorbar;
title(tle3,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(processed_GREEN_APES)
colormap("gray");
colorbar;
title(tle4,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
elapsed_time = toc;
mins = floor(elapsed_time / 60);
secs = round(mod(elapsed_time, 60));
fprintf('Total elapsed time: %02d:%02d\n', mins, secs);
```

Total elapsed time: 04:59

Std & Mean

```
image_names = {'HH';'VV';'haifa';'GREEN_APES'};
print_image_stats(image_names, abs_HH_processed, abs_VV_processed, haifa_gray, GREEN_APES_gray
```

Image name		Mean original	Std original	Mean processed	Std processed
{'HH'	}	27306	4119.2	27806	2385.8
{ 'VV '	}	26942	4098.9	27442	2361.9
{'haifa'	}	215.24	74.046	215.37	73.842
{'GREEN_APES'}		89.968	67.881	87.89	64.26

Median filter 9×9

```
% Start the timer
tic ;

fx = 9 ;
fy = 9 ;
```

```
processed_HH = median(abs_HH_processed,fx,fy);
processed_VV = median(abs_VV_processed,fx,fy);
processed_haifa = median(haifa_gray,fx,fy);
processed_GREEN_APES = median(GREEN_APES_gray,fx,fy);

figure;
imagesc(processed_HH)
colormap("gray");
colorbar;
title(tle1,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(processed_VV)
colormap("gray");
colorbar;
title(tle2,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(processed_haifa)
colormap("gray");
colorbar;
title(tle3,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(processed_GREEN_APES)
colormap("gray");
colorbar;
title(tle4,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
elapsed_time = toc;
mins = floor(elapsed_time / 60);
secs = round(mod(elapsed_time, 60));
fprintf('Total elapsed time: %02d:%02d\n', mins, secs);
```

Total elapsed time: 06:50

Std & Mean

```
image_names = {'HH';'VV';'haifa';'GREEN_APES'};
print_image_stats(image_names, abs_HH_processed, abs_VV_processed, haifa_gray, GREEN_APES_gray)
```

Image name		Mean original	Std original	Mean processed	Std processed
{'HH'	}	27306	4119.2	27835	1507.1
{'VV'	}	26942	4098.9	27473	1482
{'haifa'	}	215.24	74.046	215.56	73.354
{'GREEN_APES'}		89.968	67.881	90.852	56.481

gaussian filter 3×3

```
% Start the timer
tic ;
fx = 3 ;
```

```
fy = 3;
var_x = sqrt(5);
var_y = sqrt(5);
processed_HH = gaussian_filter(abs_HH_processed, fx, fy, var_x, var_y);
processed_W = gaussian_filter(abs_W_processed, fx, fy, var_x, var_y);
processed_haifa = gaussian_filter(haifa_gray, fx, fy, var_x, var_y);
processed_GREEN_APES = gaussian_filter(GREEN_APES_gray, fx, fy, var_x, var_y);

figure;
imagesc(processed_HH)
colormap("gray");
colorbar;
title(tle1,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(processed_VV)
colormap("gray");
colorbar;
title(tle2,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(processed_haifa)
colormap("gray");
colorbar;
```



```
title(tle3,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```

Unrecognized function or variable 'tle3'.

```
figure ;
imagesc(processed_GREEN_APES)
colormap("gray");
colorbar;
title(tle4,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14);
elapsed_time = toc;
mins = floor(elapsed_time / 60);
secs = round(mod(elapsed_time, 60));
fprintf('Total elapsed time: %02d:%02d\n', mins, secs);
```

Std & Mean

```
image_names = {'HH';'VV';'haifa';'GREEN_APES'};
print_image_stats(image_names, abs_HH_processed, abs_VV_processed, haifa_gray, GREEN_APES_gray
```

Image name		Mean original	Std original	Mean processed	Std processed
{'HH'	}	27306	4119.2	27300	2315.5
{'VV'	}	26942	4098.9	26936	2289.9
{'haifa'	}	215.24	74.046	214.88	73.195
{'GREEN_APES'}		89.968	67.881	89.64	58.19

gaussian filter 9×9

```
% Start the timer
tic;

fx = 9;
fy = 9;
var_x = sqrt(8);
var_y = sqrt(8);
processed_HH = gaussian_filter(abs_HH_processed, fx, fy, var_x, var_y);
processed_V = gaussian_filter(abs_VV_processed, fx, fy, var_x, var_y);
processed_haifa = gaussian_filter(haifa_gray, fx, fy, var_x, var_y);
processed_GREEN_APES = gaussian_filter(GREEN_APES_gray, fx, fy, var_x, var_y);

figure;
imagesc(processed_HH)
colormap("gray");
colorbar;
title(tle1,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(processed_VV)
colormap("gray");
colorbar;
title(tle2,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(processed_haifa)
colormap("gray");
colorbar;
title(tle3,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(processed_GREEN_APES)
colormap("gray");
colorbar;
title(tle4,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
elapsed_time = toc;
mins = floor(elapsed_time / 60);
secs = round(mod(elapsed_time, 60));
fprintf('Total elapsed time: %02d:%02d\n', mins, secs);
```

Total elapsed time: 00:03

Std & Mean

```
image_names = {'HH';'VV';'haifa';'GREEN_APES'};
print_image_stats(image_names, abs_HH_processed, abs_VV_processed, haifa_gray, GREEN_APES_gray
```

Image name	Mean original	Std original ————————————————————————————————————	Mean processed	Std processed
{'HH' }				
{'VV' }	26942	4098.9	26925	1545.3
<pre>{'haifa' } {'GREEN APES'}</pre>	215.24 89.968	74.046 67.881	214.23 89.087	70.442 44.829
(311211_711 23)	03.300	07.001	03.007	111023

bilateral filter 3×3

```
% Start the timer
tic ;
fx = 3 ;
```

```
fy = 3 ;
spatial_var = sqrt(10) ;
radiometric_var = sqrt(12) ;

processed_HH = bilateral_filter(abs_HH_processed, fx, fy, spatial_var, radiometric_var) ;
processed_VV = bilateral_filter(abs_VV_processed, fx, fy, spatial_var, radiometric_var) ;
processed_haifa = bilateral_filter(haifa_gray, fx, fy, spatial_var, radiometric_var) ;
processed_GREEN_APES = bilateral_filter(GREEN_APES_gray, fx, fy, spatial_var, radiometric_var)
figure ;
imagesc(processed_HH)
colormap("gray");
colorbar;
title(tle1,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(processed_VV)
colormap("gray");
colorbar;
title(tle2,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(processed_haifa)
colormap("gray");
colorbar;
title(tle3,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(processed_GREEN_APES)
colormap("gray");
colorbar;
title(tle4,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
elapsed_time = toc;
mins = floor(elapsed_time / 60);
secs = round(mod(elapsed_time, 60));
fprintf('Total elapsed time: %02d:%02d\n', mins, secs);
```

Total elapsed time: 02:48

Std & Mean

```
image_names = {'HH';'VV';'haifa';'GREEN_APES'};
print_image_stats(image_names, abs_HH_processed, abs_VV_processed, haifa_gray, GREEN_APES_gray)
```

Image name		Mean original	Std original	Mean processed	Std processed
{'HH'	}	27306	4119.2	27306	4119.2
('VV '	}	26942	4098.9	26942	4098.9
{'haifa' {'GREEN_APES	} '}	215.24 89.968	74.046 67.881	215.26 89.95	74.046 67.871

bilateral filter 9×9

```
% Start the timer
tic ;
fx = 9 ;
```

```
fy = 9;
spatial_var = sqrt(10);
radiometric_var = sqrt(12);

processed_HH = bilateral_filter(abs_HH_processed, fx, fy, spatial_var, radiometric_var);
processed_W = bilateral_filter(abs_W_processed, fx, fy, spatial_var, radiometric_var);
processed_haifa = bilateral_filter(haifa_gray, fx, fy, spatial_var, radiometric_var);
processed_GREEN_APES = bilateral_filter(GREEN_APES_gray, fx, fy, spatial_var, radiometric_var)
figure;
imagesc(processed_HH)
colormap("gray");
colorbar;
title(tle1,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(processed_VV)
colormap("gray");
colorbar;
title(tle2,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(processed_haifa)
colormap("gray");
colorbar;
title(tle3,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(processed_GREEN_APES)
colormap("gray");
colorbar;
title(tle4,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
elapsed_time = toc;
mins = floor(elapsed_time / 60);
secs = round(mod(elapsed_time, 60));
fprintf('Total elapsed time: %02d:%02d\n', mins, secs);
```

Total elapsed time: 03:31

Std & Mean

```
image_names = {'HH';'VV';'haifa';'GREEN_APES'};
print_image_stats(image_names, abs_HH_processed, abs_VV_processed, haifa_gray, GREEN_APES_gray
```

Image name		Mean original	Std original	Mean processed	Std processed
	}	27306	4119.2	27306	4119.2
{'VV'	}	26942	4098.9	26942	4098.9
{'haifa'	}	215.24	74.046	215.28	74.036
{'GREEN_APES'}		89.968	67.881	89.937	67.862

Edge highlight

```
% Start the timer
tic ;
c = 10 ;
```

```
[processed_haifa,edge_haifa] = edge_highlight(haifa_gray, c);
[processed_GREEN_APES,edge_GREEN_APES] = edge_highlight(GREEN_APES_gray, c);

figure;
imagesc(processed_haifa)
colormap("gray");
colorbar;
title(tle3,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(edge_haifa)
colormap("gray");
colorbar;
title('edge haifa','FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",15);
```



```
figure ;
imagesc(processed_GREEN_APES)
colormap("gray");
colorbar;
title(tle4,'FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",14); set
```



```
figure ;
imagesc(edge_GREEN_APES)
colormap("gray");
colorbar;
title('edge GREEN_APES','FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize");
```

Edge GREEN_APES 250 100 150 150

100

pixel

```
elapsed_time = toc;
mins = floor(elapsed_time / 60);
secs = round(mod(elapsed_time, 60));
fprintf('Total elapsed time: %02d:%02d\n', mins, secs);
```

50

Total elapsed time: 00:01

```
% marking edges
alpha = 30;
edge_haifa(edge_haifa > alpha) = 1;
edge_haifa(edge_haifa < alpha) = 0;
edge_GREEN_APES(edge_GREEN_APES > alpha) = 1;
edge_GREEN_APES(edge_GREEN_APES < alpha) = 0;
figure ;
imagesc(edge_haifa)
colormap("gray");
colorbar;
title('edge haifa','FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize",</pre>
```



```
figure ;
imagesc(edge_GREEN_APES)
colormap("gray");
colorbar;
title('edge GREEN APES','FontSize',18); xlabel("pixel", "FontSize",14); ylabel("pixel", "FontSize");
```


function

Logarithmic Pixel processing

```
function abs_image_processed = Logarithmic(abs_image)
  type = class(abs_image);
  abs_image = double(abs_image);
  c = (double(intmax(type))) ./ (log10(double(intmax(type)) + 1));
  abs_image_processed = c* (log10(abs_image+1));
  if type == 'uint16'
    abs_image_processed = uint16(abs_image_processed);
  elseif type == 'uint8'
    abs_image_processed = uint8(abs_image_processed);
  end
end
```

Median filter

```
function processed_image = median(image,fx,fy)

image_padd = padarray(image, [(fy-1)/2 (fx-1)/2], 0);

processed_image = zeros(size(image), class(image));
```

```
i = 1;
    for row step = 1 : size(image padd,1) - fy + 1
        j = 1;
       for col_step = 1 : size(image_padd,2) - fx + 1
            mask = image_padd(row_step : row_step + fy - 1 ,col_step : col_step + fx - 1) ;
           b = sort(reshape(mask,1,numel(mask)));
           if mod(size(b), 2) == 1
                median = b((length(b)+1)/2);
           else
                first_median = b((length(b))/2);
                second median = b((length(b)+2)/2);
                median = (first_median + second_median) / 2 ;
           end
            processed_image(i,j) = median ;
            j = j + 1;
       end
        i = i + 1;
    end
end
```

gaussian filter

```
function filtered_image = gaussian_filter(image, fx, fy, var_x, var_y)

% Create the Gaussian mask
[X,Y] = meshgrid(-(fx-1)/2:(fx-1)/2, -(fy-1)/2:(fy-1)/2);
gaussian_mask = exp(-(X.^2/(2*var_x^2)+Y.^2/(2*var_y^2)));
gaussian_mask = gaussian_mask / sum(gaussian_mask(:));

% Convolve the image with the Gaussian mask
filtered_image = conv2(double(image), double(gaussian_mask), 'same');

% Convert the output to the same type as the input
filtered_image = cast(filtered_image, class(image));
end
```

bilateral filter

```
function processed_image = bilateral_filter(image, fx, fy, spatial_var, radiometric_var)
```

```
type = class(image);
   % Calculate the padding required for the input image
    image_padd = padarray(image, [(fy-1)/2 (fx-1)/2], 0);
   % Initialize the output image
    processed_image = zeros(size(image), class(image));
    % Create the Gaussian spatial kernel
    [X,Y] = \text{meshgrid}(-(fx-1)/2:(fx-1)/2, -(fy-1)/2:(fy-1)/2);
    spatial_kernel = exp(-0.5*(X.^2 + Y.^2)/(spatial_var^2));
    spatial_kernel = spatial_kernel ./ sum(spatial_kernel(:));
    i = 1;
    for row_step = 1 : size(image_padd,1) - fy + 1
       j = 1;
       for col_step = 1 : size(image_padd,2) - fx + 1
            mask = double(image_padd(row_step : row_step + fy - 1 ,col_step : col_step + fx - 1
            pixel = mask((fy+1)/2, (fx+1)/2);
           % Create the radiometric kernel
            radiometric_kernel = exp(-(abs(mask-pixel).^2/(2*radiometric_var^2)));
           % Calculate the weights for each pixel in the neighborhood
            weights = radiometric_kernel .* spatial_kernel;
           % Normalize the weights
           weights = weights / sum(weights(:));
           % Calculate the filtered pixel value
            processed_image(i,j) = round(sum(mask(:) .* weights(:)));
            j = j + 1;
       end
        i = i + 1;
    end
end
```

Edge highlight

```
function [output_image, edge_image] = edge_highlight(image, c)

% Convert the input image to double type
image1 = double(image);
```

```
% Create a Laplacian filter
laplacian_filter = [0 1 0;1 -4 1; 0 1 0];

% Compute the Laplacian of the input image using the Laplacian filter
laplacian_image = conv2(image1, laplacian_filter, 'same');

% Compute the output image by adding the Laplacian image to the input image
edge_image = c*laplacian_image;
output_image = image1 + edge_image;

% Convert the output image to the same type as the input image
output_image = cast(output_image, class(image));
edge_image = cast(edge_image, class(image));
end
```

print image stats

```
function print image stats(image names, abs HH processed, abs VV processed, haifa gray, GREEN A
    % Calculate mean and std for the original and processed images
    std_original_HH = std(double(abs_HH_processed(:)));
    mean_original_HH = mean(double(abs_HH_processed(:)));
    std original VV = std(double(abs VV processed(:)));
    mean_original_VV = mean(double(abs_VV_processed(:)));
    std_original_haifa = std(double(haifa_gray(:)));
    mean_original_haifa = mean(double(haifa_gray(:)));
    std_original_GREEN_APES = std(double(GREEN_APES_gray(:)));
    mean_original_GREEN_APES = mean(double(GREEN_APES_gray(:)));
    std_processed_HH = std(double(processed_HH(:)));
    mean_processed_HH = mean(double(processed_HH(:)));
    std processed VV = std(double(processed VV(:)));
    mean_processed_VV = mean(double(processed_VV(:)));
    std_processed_haifa = std(double(processed_haifa(:)));
    mean_processed_haifa = mean(double(processed_haifa(:)));
    std_processed_GREEN_APES = std(double(processed_GREEN_APES(:)));
    mean_processed_GREEN_APES = mean(double(processed_GREEN_APES(:)));
   % Create the table
    image_stats_table = table(image_names, ...
        [mean original HH; mean original VV; mean original haifa; mean original GREEN APES], .
        [std_original_HH; std_original_VV; std_original_haifa; std_original_GREEN_APES], ...
        [mean_processed_HH; mean_processed_VV; mean_processed_haifa; mean_processed_GREEN_APES
        [std_processed_HH; std_processed_VV; std_processed_haifa; std_processed_GREEN_APES],
        'VariableNames', {'Image name', 'Mean original', 'Std original', 'Mean processed', 'Std
   % Display the table
```

disp(image_stats_table)
end