INF721

2023/2

Aprendizado em Redes Neurais Profundas

A7: Backpropagation

Logística

Avisos

▶ Teste T2: Multilayer Perceptron na próxima aula!

Última aula

- Problemas linearmente não-separáveis
- Multilayer Perceptron (MLP)
- Forward Pass
- ▶ Funções de ativação

Plano de Aula

- Grafo computacional
- Backpropagation
 - Gradiente da Regressão Logística
 - Gradiente da MLP

Grafo Computacional

Um grafo dirigido que descreve as expressões matemáticas de uma RNA passo a passo:

- Vértices representam operações
- Arestas representam entrada e saída

$$J(a, b, c) = 3(a + bc)$$

$$u = bc$$

$$v = a + u$$

$$J = 3V$$

$$u = bc$$

Grafo Computacional e RNAs

Grafos computacionais nos ajudam a calcular o gradiente de uma função de perda com relação aos pesos de uma RNA

Regressão Logística

$$z = \mathbf{w} \cdot \mathbf{x} + b$$

$$\hat{y} = h(\mathbf{x}) = \frac{1}{1 + e^{-z}}$$

$$L(\hat{y}, y) = -y \log \hat{y} + (1 - y) \log (1 - \hat{y})$$

Regra da Cadeia!

Retropropagação (Backprop)

Calcular as derivadas parciais da função de perda com relação aos pesos $W^{[l]}$ e $\mathbf{b}^{[l]}$ para todas as camadas l de trás pra frente com a regra da cadeia.

MLP (1 camada escondidada)

$$\mathbf{z}^{[1]} = W^{[1]}\mathbf{x} + \mathbf{b}^{[1]}$$
 $z^{[2]} = W^{[2]}\mathbf{a}^{[1]} + b^{[2]}$
 $\mathbf{a}^{[1]} = g(\mathbf{z}^{[1]})$ $\hat{y} = \sigma(z^{[2]})$

$$L(\hat{y}, y) = -y \log \hat{y} + (1 - y) \log (1 - \hat{y})$$

Backward Pass

MLP (1 camada)

$$Z^{[1]} = W^{[1]}X + \mathbf{b}^{[1]}$$
 $A^{[1]} = \sigma(Z^{[1]})$
 $Z^{[2]} = W^{[2]}\mathbf{a}^{[1]} + \mathbf{b}^{[2]}$
 $\hat{Y} = \sigma(Z^{[2]})$

Função de Perda

$$L(h) = -\frac{1}{n} \sum_{i=1}^{n} (y_i \log \hat{y}_i + (1 - y_i) \log (1 - \hat{y}_i))$$

Gradiente

$$A^{[1]} = \sigma(Z^{[1]})$$

$$Z^{[2]} = W^{[2]} \mathbf{a}^{[1]} + \mathbf{b}^{[2]}$$

$$\hat{Y} = \sigma(Z^{[2]})$$

$$dW^{[2]} = \frac{1}{n} dZ^{[2]} \cdot A^{[1]^T}$$

$$db^{[2]} = \frac{1}{n} \sum_{i=1}^{n} dZ^{[2]}$$

$$dZ^{[1]} = W^{[2]^T} \cdot dZ^{[2]} \times \frac{dg}{dz^{[1]}} \cdot Z^{[1]}$$

$$dW^{[1]} = \frac{1}{n} dZ^{[1]} \cdot X^T$$

$$db^{[1]} = \frac{1}{n} \sum_{i=1}^{n} dZ^{[1]}_{[:,i]}$$

Inicialização de pesos na MLP

Em RNAs com pelo menos 1 camada escondidada (MLPs), temos que inicializar os pesos com valores aleatórios próximos de zero.

Se inicializarmos com zeros, os neurônios da camada escondida serão iguais!

$$W^{[1]} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad b^{[1]} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$W^{[2]} = [0 \quad 0]$$

$$\downarrow a_1^{(i)} = a_2^{(i)} \longrightarrow dZ_1^{[1]} = dZ_2^{[1]}$$

$$dW = \begin{bmatrix} u & u \\ u & u \end{bmatrix}$$

Ns regiões próximas de zero o gradiente é maior!

Redes Neurais Artificiais Profundas

Regressão Logística

RNA de 1 camada (raza)

1 camada oculta

RNA de 2 camadas (raza)

2 camadas ocultas

RNA de 3 camadas (raza)

5 camadas ocultas

RNA de 6 camadas (profunda)

Redes Neurais Artificiais Profundas

RNA de $oldsymbol{L}$ camadas

Para um exemplo x:

$$\mathbf{z}^{[1]} = W^{[1]}\mathbf{x} + \mathbf{b}^{[1]}$$

$$\mathbf{a}^{[1]} = g(\mathbf{z}^{[1]})$$

$$\mathbf{z}^{[2]} = W^{[2]}\mathbf{a}^{[1]} + \mathbf{b}^{[2]}$$

$$\mathbf{a}^{[2]} = g(\mathbf{z}^{[2]})$$

$$\dots$$

$$\mathbf{z}^{[L]} = W^{[L]}\mathbf{a}^{[L-1]} + b^{[L]}$$

$$\hat{y} = \sigma(\mathbf{z}^{[L]})$$

Regra geral:

$$\mathbf{z}^{[l]} = W^{[l]}\mathbf{a}^{[l-i]} + \mathbf{b}^{[l]}$$
$$\mathbf{a}^{[l]} = g(\mathbf{z}^{[l]})$$

Vetorizado

$$Z^{[l]} = W^{[l]}A^{[l-1]} + \mathbf{b}^{[l]}$$

$$A^{[l]} = g(Z^{[l]})$$

$$A^{[0]} = X$$

$$A^{[L]} = \hat{Y}$$

Funções de ativação na camada de saída

Logística (sigmoide)

Classificação Binária

Linear

Regressão

Classificação Multiclasse

Função de ativação softmax para classificação multiclasse

Hipótese

$$Z^{[1]} = W^{[1]}X + \mathbf{b}^{[1]}$$
 $A^{[1]} = g(Z^{[1]})$
 $Z^{[2]} = W^{[2]}\mathbf{a}^{[1]} + \mathbf{b}^{[2]}$
 $\hat{Y} = softmax(Z^{[2]})$

Softmax

$$g(z) = \frac{e^z}{\sum_{j=i}^C e_i^z}$$

Próxima aula

A7: MLP em Numpy

Aula prática sobre implementação de redes neurais profundas com Numpy.

