durée : 2h

Exercice 1 (20 points).

Les deux parties suivantes sont indépendantes.

Partie 1 : Une égalité

On souhaite démontrer l'égalité suivante :

$$\cos\frac{\pi}{7} - \cos\frac{2\pi}{7} + \cos\frac{3\pi}{7} = \frac{1}{2}$$

On pose $z = e^{\frac{i\pi}{7}}$.

- 1. Calculer $z^6 z^5 + z^4 z^3 + z^2 z + 1$.
- 2. En déduire que : $z^3 z^2 + z = \frac{1}{1 z^3}$.
- 3. Soit u un complexe de module 1, différent de 1.

Montrer que:

$$\mathcal{R}e(\frac{1}{1-u}) = \frac{1}{2}.$$

4. Conclure.

Partie 2 : Valeurs de $\tan(\frac{\pi}{5}), \tan(\frac{2\pi}{5})$

On pose, pour tout complexe z, $P(z) = \frac{1}{2i}((z+i)^5 - (z-i)^5)$.

On considère l'équation :

$$(E): P(z) = 0$$

- 1. Citer les racines cinquièmes de l'unité dans C.
- 2. Déterminer les quatre solutions de l'équation (E) dans \mathbb{C} . Vérifier qu'elle sont toutes réelles et exprimer chacune d'entre elles en fonction de $\tan(\frac{\pi}{5})$ et $\tan(\frac{2\pi}{5})$.
- 3. Montrer que $\forall z \in \mathbb{C}, \ P(z) = 5z^4 10z^2 + 1$.
- 4. En déduire une autre résolution de (E) d'où une autre écriture des quatre solutions de (E).
- 5. En déduire que $\tan(\frac{\pi}{5}) = \sqrt{5 2\sqrt{5}}$ et $\tan(\frac{2\pi}{5}) = \sqrt{5 + 2\sqrt{5}}$.
- 6. En déduire $\cos(\frac{\pi}{5})$.

On donnera la réponse sous la forme $\sqrt{\frac{\bullet + \bullet \sqrt{\bullet}}{\bullet}}$ où les \bullet désignent des entiers relatifs (pas forcément égaux).

Exercice 2 (11 points).

On pose , pour tout $n \in \mathbb{N}^*, \ \ S_n = \sum_{k=1}^n k^2.$

Le but de l'exercice est de retrouver l'expression de S_n en fonction de n, par deux nouvelles méthodes par rapport à celle vue en cours.

116

On pourra se servir de l'expression de $\sum_{k=1}^{n} k$ établie en cours.

- 1. Première méthode
 - (a) Montrer que pour tout couple $(k,n) \in \mathbb{N}^2$ tel que $3 \le k \le n$, on peut écrire la somme $\binom{k}{2} + \binom{k}{3}$ sous la forme $\binom{\bullet}{\bullet}$.
 - (b) En déduire que, pour tout $n \in \mathbb{N}$ tel que $n \ge 2$: $\sum_{k=2}^{n} \binom{k}{2} = \binom{n+1}{3}$
 - (c) En déduire une expression simple de $\sum_{k=2}^{n} (2\binom{k}{2} + k)$, puis de S_n , pour tout entier n supérieur ou égal à 2.
- 2. Deuxième méthode

Pour tout $n \in \mathbb{N}^*$, calculer la somme double $\sum_{1 \leq i \leq j \leq n} i$, de deux façons différentes et en déduire S_n .

Exercice 3 (9 points).

La question 2) est une application des résultats de la question 1).

1. Question préliminaire :

Soit $\alpha \in \mathbb{R}$ et soit $n \in \mathbb{N}$. On suppose $n \geqslant 3$.

- (a) Calculer les sommes : $\sum_{k=0}^{n-1} e^{i\frac{2k\pi}{n}}$ et $\sum_{k=0}^{n-1} e^{i\frac{4k\pi}{n}}$.
- (b) En déduire les valeurs de $\sum_{k=0}^{n-1} \cos(\frac{2k\pi}{n})$, de $\sum_{k=0}^{n-1} \sin(\frac{2k\pi}{n})$, de $\sum_{k=0}^{n-1} \cos(\frac{4k\pi}{n})$ et enfin de $\sum_{k=0}^{n-1} \sin(\frac{4k\pi}{n})$.
- (c) En déduire la valeur des sommes $\sum_{k=0}^{n-1} \cos(\alpha + \frac{4k\pi}{n})$ et de $\sum_{k=0}^{n-1} \sin(\alpha + \frac{2k\pi}{n})$.

2. Application:

On considère un système électrique polyphasé constitué de n phases et d'un neutre.

Pour tout $k \in \{0, ..., n-1\}$, la k-ième phase est parcourue par un courant alternatif d'intensité $i_k(t)$ et est reliée au neutre avec une différence de potentiel $v_k(t)$ données par :

$$i_k(t) = I\sqrt{2}\sin(\omega t + \frac{2k\pi}{n})$$
 et $v_k(t) = V\sqrt{2}\sin(\omega t + \frac{2k\pi}{n} - \varphi)$.

Les nombres I et V sont les valeurs efficaces de l'intensité et de la tension, ω est la pulsation du système et φ est est le déphasage entre l'intensité et la tension.

- (a) Calculer l'intensité totale du système : $i(t) = \sum_{k=0}^{n-1} i_k(t)$.
- (b) Calculer la puissance totale délivrée par le système : $P(t) = \sum_{k=0}^{n-1} v_k(t) i_k(t)$.