Vorige lessen: chemoorganotrofen

Vorige lessen: chemoorganotrofen

ademhaling:

Exogene elektronen acceptor (zuurstof of een ander molekuul)

gisting:

Endogene elektronen acceptor (meestal een organisch molekuul) geen ETK

transportation of redultie van substract

Hoeveel ATP wordt er (netto) gevormd tijdens de fermentatie van glucose naar lactaat of ethanol?

=> 2 ATP

Fermentatie

Micro-organismen die fermenteren hebben wel een ATPase/ATP-synthase complex.

Waarom?

Ze hebben geen terminale elektronenacceptor voor ademhaling.

Dan is dat toch zinloos?

ATP synthase

Kan ook omgekeerd:

H⁺ naar buiten (hydrolyse van ATP naar ADP)

Opbouw pmf

Kan gebruikt worden voor andere processen

Chemolithotrofen

Chemolithotrofen

Net als chemoorganotrofen aerobe en anaerobe ademhaling (maar geen fermentatie).

Een chemolitrotroof oxideert H₂S tot S⁰.

Wat zou onder standaardcondities een

goede elektronacceptor zijn?

A. SO_4^{2-}

B. H₂

C. Fe²⁺

D. SO_3^{2-}

Een chemolitrotroof oxideert H₂S tot S⁰.

Wat zou onder standaardcondities een

goede elektronacceptor zijn?

- A. SO_4^{2-}
- B. H₂
- C. Fe²⁺
- D. SO₃²-
 - → Elektronen gaan 'van rechts naar links'
 - \rightarrow Wanneer de elektronen van boven naar beneden gaan is de Δ G0'<0)

Voorbeeld chemolithotroof

Ralstonia eutropha

Figuur begrijpen

Chemolithotrofen zijn vaak autotroof

 $CO_2 \rightarrow organische moleculen (b.v. glucose)$

CO₂ wordt hierbij gereduceerd (neemt elektronen op)

Nodig: 'reducing power'

Voorbeeld chemolithotroof

Ralstonia eutropha

Reduceert NAD+ tot NADH (nodig voor autotrofe groei)

Fototrofen

Voorbeeld fototroof

Fotosynthese

'reducing power' nodig voor het produceren van celmateriaal.

16e: figuur 14.5

Katabole diversiteit

Opdracht – katabole diversiteit

Leg, in je eigen woorden, het verschil uit tussen:

- a. chemotrofen en fototrofen
- b. chemoorganotrofen en chemolithotrofen
- c. autotrofen en heterotrofen
- d. aerobe en anaerobe ademhaling
- e. anaerobe ademhaling en fermentatie
- f. substraatniveau fosforylatie en oxidatieve fosforylatie

Energy conservation

In de voorafgaande slides werd er op drie manieren ATP gevormd:

Substraat-niveau fosforylatie

Oxidatieve fosforylatie

Fotofosforylatie

Wat is het verschil?

Substraatniveau fosforylatie

P_i-groep wordt direct van een substraat molecuul gekoppeld aan ADP (m.b.v enzymen)

Vindt plaats tijdens de glycolyse en de citroenzuurcyclus

Oxidatieve fosforylatie

Elektronentransportketen \rightarrow proton motive force \rightarrow ATP synthese

Fotofosforylatie

ATP synthese

Bij fermentatie alleen substraatniveau fosforylatie.

Bij alle andere mechanismen van energie conservering wordt (ook) gebruik gemaakt van een proton (of sodium) motive force.

Nota bene

Fototrofen en chemolitotrofen zijn vaak autotroof. Alleen ATP productie is dan niet voldoende. Ook 'reducing power' nodig voor het produceren van celmateriaal.

Stelling

"een reactie met $\Delta G^{o'} > 0$ kan niet spontaan verlopen"

Is dit waar of niet waar?

Voorbeeld: syntropie

In de modder van sloten, meren, moerassen en zuiveringsinstallaties komen twee bacteriën voor:

Bacterie 1 zet ethanol om in acetaat (azijnzuur) en H₂:

$$2CH_3CH_2OH + 2H_2O \rightarrow 2CH_3COO^- + 4H_2 + 2H^+$$

$$\Delta G^{0'}$$
 = +19 kJ/mol

Bacterie 2 zet H₂ en CO₂ om in CH₄ en H₂O:

$$4H_2 + CO_2 \rightarrow CH_4 + 2H_2O$$

$$\Delta G^{0'} = -131 \text{ kJ/mol}$$

 $\Delta G^{0'} > 0$ waarom kan bacterie 1 overleven?

Syntropie

Bacterie 1 oxideert ethanol tot acetaat (azijnzuur) en H₂:

$$2CH_3CH_2OH + 2H_2O \rightarrow 2CH_3COO^- + 4H_2 + 2H^+$$

$$\Delta G^{o'} = +19 \text{ kJ/mol}$$

Wat is ΔG ? (neem voor eenvoud de machten niet mee)

Als
$$CH_3CH_2OH : CH_3COOH + 2H_2$$
 is **1:1**

En als
$$CH_3CH_2OH : CH_3COOH + 2H_2$$
 is **100000 : 1**

$$\Delta G = \Delta G^{0'} + RT \ln \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b}$$

R = gasconstante: 8,31 J/mol/K T = temperatuur in K (298 K) ~ 25°C

Syntropie

Bacterie 1 oxideert ethanol (CH₃CH₂OH) tot acetaat (azijnzuur, CH₃COOH) en H₂:

 $CH_3CH_2OH \rightarrow CH_3COOH + 2H_2$

 ΔG° ' = +19 kJ/mol

Wat is Δ G? (neem voor eenvoud de machten niet mee)

$$\Delta G = \Delta G^{0'} + RT \ln \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b}$$

R = gasconstante: 8,31 J/mol/K

T = temperatuur in K (298 K) ~ 25°C

Als CH₃CH₂OH : CH₃COOH + 2H₂

 $\Delta G = 19000 + 8.29 * 298 \ln 1$

 $\Delta G = 19000 + 0 = 19000 J = +19 kJ$

1:1

En als CH₃CH₂OH : CH₃COOH + 2H₂

100000:1

Conclusie?

 $\Delta G = 19000 + 8.29 * 298 \ln 0.00001$

 $\Delta G = 19000 - 28442 = -9442 J = -9.4 kJ$

Conclusie?

Voor bacterie 1 wordt de $\Delta G < 0$, terwijl de $\Delta G^{o'} > 0$ is!

Bacterie 1 kan alleen leven als de H₂ concentratie erg laag is; de geproduceerde H₂ moet onmiddellijk worden weggevangen (door bacterie 2).

Bacterie 2 kan prima zonder bacterie 1 leven, zolang er maar H₂ aanwezig is. Bacterie 2 zorgt voor het ontstaan van een heel lage H₂ concentratie.

Dit wordt syntropie genoemd

Dus...

de ΔG bepaalt of een reactie kan verlopen, niet de ΔG° !!!

maar wanneer je de concentraties niet weet, geeft ΔG°' vaak wel een goede schatting van de situatie