PRACTICA DEL CAPITULO 3. SISTEMAS DE ECUACIONES LINEALES

POR LUIS MARIO URREA MURILLO

UNIVERSIDAD COOPERATIVA DE COLOMBIA - POPAYAN FACULTAD DE INGENIERIA DE SISTEMAS POPAYÁN – CAUCA 2010

PRACTICA DEL CAPITULO 3. SISTEMAS DE ECUACIONES LINEALES

POR

LUIS MARIO URREA MURILLO

Presentado al profesor Ing. Esp. Andrés Escallon, en el programa de Análisis Numérico

UNIVERSIDAD COOPERATIVA DE COLOMBIA - POPAYAN

FACULTAD DE INGENIERIA DE SISTEMAS

POPAYÁN – CAUCA

2010

CONTENIDO

1
4
6
8
13

LISTA DE TABLAS Y CUADROS

1.	figura 1.1. Grafica de las rectas (en rojo) $x^2 = 18x^2 + 5$ y (en azul) $x^2 = 13x^2$	+
3desa	arrollada en la aplicación CabriGeometry (Cabri 3D v2)	5
2.	figura 1.1. Grafica de las rectas (en rojo) $x^2 = 18x^2 + 5$ y (en azul) $x^2 = 13x^2 + 5$	- 3
	6	
3.	Tabla 1. Iteraciones de c ₁ , c ₂ y c ₃	10
4.	Tabla 2. Iteraciones de x ₁ . x ₂ v x ₃	16

NOTA: Este trabajo fue desarrollado en MATLAB 7.6 para que funcionen los algoritmos en versiones anteriores tenga en cuenta que podrían no ser compatibles y deberá cambiar la sintaxis de algunas sentencias.

1. SISTEMAS DE ECUACIONES LINEALES: DEMOSTRACIONES Y ALGORITMOS EN MATLAB

1.1. MÉTODO GRAFICO

Utilice el método gráfico para resolver el siguiente sistema de ecuaciones lineales y compruebe su respuesta.

$$2x_1 - 6x_2 = -18$$
$$-x_1 + 8x_2 = 40$$

Solución 1.

Recordemos que: y = mx + b, donde m es la pendiente y b el intercepto

Despejamos x_2

$$x_2 = \frac{1}{3}x_1 + 3$$
 Ec(1)

$$x_2 = \frac{1}{8}x_1 + 5$$
 Ec(2)

Igualamos Ec(1) con Ec(2)

$$\frac{1}{3}x_1 + 3 = \frac{1}{8}x_1 + 5$$

$$(\frac{1}{3} - \frac{1}{8})x_1 = 5 - 3$$

$$(\frac{1}{3} - \frac{1}{8})x_1 = 2$$

$$\frac{5}{24}x_1=2$$

$$x_1 = \frac{2}{(\frac{5}{24})} = 9,6$$

Reemplazamos x_1 en Ec(1)

$$x_2 = \frac{1}{3}(9.6) + 3$$

$$x_2 = 3.2 + 3 = 6.2$$

1.figura 1.1. Grafica de las rectas (en rojo) $x_2 = \frac{1}{8}x_1 + 5$ y (en azul) $x_2 = \frac{1}{3}x_1 + 3$ desarrollada en la aplicación CabriGeometry (Cabri 3D v2)

En MATLAB

Algoritmo:

```
function[]=mgrafico
%Función para solucionar un sistema de dos ecuaciones lineales,
%con las variables desconocidas x1,x2
syms x1 x2
f=input('Digite la primera función f1(x1,x2)=');
g=input('Digite la segunda función f2(x1,x2)=');
ecul=solve(f,x2);
ecu2=solve(g,x2);
x1=[0:1:12];
                   %Rango de x1 para realizar la grafica
ecu1=eval(ecu1);
ecu2=eval(ecu2);
plot(x1,ecu1)
hold on
plot(x1,ecu2,'r')
grid
```

Datos de entrada:

Digite la primera función f1(x1,x2)=2*x1-6*x2+18Digite la segunda función f2(x1,x2)=-1*x1+8*x2-40

Resultados:

2.figura 1.1. Grafica de las rectas (en rojo) $x_2 = \frac{1}{8}x_1 + 5$ y (en azul) $x_2 = \frac{1}{3}x_1 + 3$

1.2. REGLA DE CRAMER

Dado el siguiente sistema de ecuaciones lineales, encuentre los valores de x1, x2, x3 utilizando la regla de Cramer. Compruebe su respuesta.

$$x_1 + x_2 - x_3 = -3$$

 $6x_1 + 2x_2 + 2x_3 = 2$
 $-3x_1 + 4x_2 + x_3 = 1$

Solución 2.

$$\begin{vmatrix} 1 & 1 & -1 & -3 \\ 6 & 2 & 2 & \vdots & 2 \\ -3 & 4 & 1 & 1 \end{vmatrix} = M$$

$$det(M) = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 6 & 2 & 2 & 6 & 2 \\ -3 & 4 & 1 & -3 & 4 \end{vmatrix} = 2 + (-6) + (-24) - 6 - 8 - 6 = -48$$

Reemplazamos x_1 en M por b y resolvemos por Cramer

$$\det(x_1) = \begin{vmatrix} -3 & 1 & -3 & 1 \\ 2 & 2 & 2 & 2 & 2 \\ 1 & 4 & 1 & 1 & 4 \end{vmatrix} = (-6) + 2 + (-8) - (-2) - (-24) - 2 = 12$$
Luego, $x_1 = -\frac{12}{48} = -\frac{1}{4}$

Reemplazamos x_2 en M por b y resolvemos por Cramer

$$\det(x_2) = \begin{vmatrix} 1 & -3 & -1 & 1 & -3 \\ 6 & 2 & 2 & 6 & 2 \\ -3 & 1 & 1 & -3 & 1 \end{vmatrix} = 2 + 18 + (-6) - 6 - 2 - (-18) = 24$$
Luego, $x_2 = -\frac{24}{48} = -\frac{1}{2}$

Reemplazamos x_3 en M por b y resolvemos por Cramer

$$\det(x_3) = \begin{vmatrix} 1 & 1 & 3 & 1 \\ 6 & 2 & 2 & 6 & 2 \\ -3 & 4 & 1 & -3 & 4 \end{vmatrix} = 2 + (-6) + (-72) - 18 - 8 - 6 = -108$$
Luego, $x_3 = \frac{108}{48} = \frac{9}{4}$

En MATLAB

Algoritmo:

```
C(:,i) = B;
x(i)=det(C)/det(A);
disp(x)
end
```

Datos de entrada:

```
Digite la matriz A=[1 1 -1; 6 2 2; -3 4 1]
Digite la matriz B=[-3; 2; 1]
```

Resultados:

$$[-1/4, -1/2, 9/4]$$

1.3. MÉTODO DE GAUSS-SEIDEL

Resuelva el siguiente sistema de ecuaciones lineales utilizando el método de Gauss-Seidel para un valor de tolerancia de 5%.

$$17c_1 - 2c_2 - 3c_3 = 500$$
$$-5c_1 - 5c_2 + 22c_3 = 30$$
$$-5c_1 + 21c_2 - 2c_3 = 200$$

NOTA: si es necesario, organice las ecuaciones para que el método utilizado lleve a la convergencia.

Solución 3.

Por simple inspección, organizamos las ecuaciones para que se cumpla la condición:

$$|a_{11}| \ge |a_{12}| + |a_{13}|$$

$$|a_{22}| \ge |a_{21}| + |a_{23}|$$

$$|a_{33}| \ge |a_{31}| + |a_{32}|$$

$$17c_1 - 2c_2 - 3c_3 = 500 Ec(1)$$

$$-5c_1 + 21c_2 - 2c_3 = 200 Ec(2)$$

$$-5c_1 - 5c_2 + 22c_3 = 30$$
 Ec(3)

También observamos la condición de tolerancia: $\varepsilon_{\scriptscriptstyle S}=0.5$

Luego, despejamos c_1 de la ecuación Ec(1), c_2 de la ecuación Ec(2) y c_3 de la ecuación Ec(3)

$$c_1 = \frac{500 + 2c_2 + 3c_3}{17}$$

$$c_2 = \frac{200 + 5c_1 + 2c_3}{21}$$

$$c_3 = \frac{30 + 5c_1 + 5c_2}{22}$$

Iteración 0: valores iniciales: $c_1 = 0$, $c_2 = 0$, $c_3 = 0$

Iteración 1:

$$c_1 = \frac{500 + 2(0) + 3(0)}{17} = \frac{500}{17} \approx 29,4117$$

$$c_2 = \frac{200 + 5(29,4117) + 2(0)}{21} \approx 16,5266$$

$$c_3 = \frac{30 + 5(29,4117) + 5(16,5266)}{22} \approx 11,8041$$

$$\varepsilon_{a_1} = \frac{29.4117 - 0}{29.4117} \cdot 100 = 100\%$$

$$\varepsilon_{a_2} = \frac{16,5266 - 0}{16,5266} \cdot 100 = 100\%$$

$$\varepsilon_{a_3} = \frac{11,8041 - 0}{11,8041} \cdot 100 = 100\%$$

Iteración 2:

$$c_1 = \frac{500 + 2(16,5266) + 3(11,8041)}{17} \approx 33,4391$$

$$c_2 = \frac{200 + 5(33,4391) + 2(11,8041)}{21} \approx 18,6097$$

$$c_3 = \frac{30 + 5(33,4391) + 5(18,6097)}{22} \approx 13,1929$$

$$\varepsilon_{a_1} = \frac{33,4391 - 29,4117}{33,4391} \cdot 100 = 12,0439\%$$

$$\varepsilon_{a_2} = \frac{18,6097 - 16,5266}{18,6097} \cdot 100 = 11,1936\%$$

$$\varepsilon_{a_3} = \frac{13,1929 - 11,8041}{13,1929} \cdot 100 = 10,5268\%$$

Iteración 3:

$$c_1 = \frac{500 + 2(18,6097) + 3(13,1929)}{17} \approx 33,9293$$

$$c_2 = \frac{200 + 5(33,9293) + 2(13,1929)}{21} \approx 18,8586$$

$$c_3 = \frac{30 + 5 * (33,9293) + 5 * (18,8586)}{22} \approx 13,3608$$

$$\varepsilon_{a_1} = \frac{33,9293 - 33,4391}{33,9293} \cdot 100 = 1,4447\%$$

$$\varepsilon_{a_2} = \frac{18,8586 - 18,6097}{18.8586} \cdot 100 = 1,3198\%$$

$$\varepsilon_{a_3} = \frac{13,3608 - 13,1929}{13,3608} \cdot 100 = 1,2566\%$$

Iteración	c_1	c_2	c_3	$\varepsilon_{a_1}(\%)$	$arepsilon_{a_2}(\%)$	$\varepsilon_{a_3}(\%)$
0	0	0	0			
1	29,4117	16,5266	11,8041	100	100	100
2	33,4391	18,6097	13,1929	12,0439	11,1936	10,5268
3	33,9293	18,8586	13,3608	1,4447	1,3198	1,2566

3. Tabla 1. Iteraciones de c_1 , c_2 y c_3

En MATLAB

Algoritmo:

```
function [ecu] = leerecu
%función que entrega el sistema de tres ecuaciones lineales
%para el método de Gauss Seidel y Jacobi
syms x1 x2 x3
f(1)=input('Digite f(1)=');
                                %ecuación 1
                              %ecuación 2
f(2)=input('Digite f(2)=');
                              %ecuación 3
f(3)=input('Digite f(3)=');
ecu=[f(1);f(2);f(3)];
function [iter,x,ea] = mgaussseidel
%Función para solucionar un sistemas de tres ecuaciones lineales
syms x1 x2 x3
x0=input('Digite f(x0)=');
tol=input('Digite el porcentaje de tolerancia=');
                       %subfunción de las ecuaciones a resolver
ecu=leerecu;
y(1) = solve(ecu(1), x1);
y(2)=solve(ecu(2),x2);
y(3) = solve(ecu(3), x3);
iter=0;
ea=[100 100 100];
x1=x0(1); x2=x0(2); x3=x0(3);
while ((ea(1)>tol)&&(ea(2)>tol)&&(ea(3)>tol))
    x(1)=eval(y(1));
    xlante=x1;
    x1=x(1);
    x(2)=eval(y(2));
    x2ante=x2;
    x2=x(2);
    x(3)=eval(y(3));
    x3ante=x3;
    x3=x(3);
    iter=iter+1;
    ea(1) = abs((x1-x1ante)*100/x1);
    ea(2) = abs((x2-x2ante)*100/x2);
    ea(3) = abs((x3-x3ante)*100/x3);
    disp(iter)
    disp(x1)
    disp(x2)
    disp(x3)
    disp(ea)
end
```

Datos de entrada:

```
Digite f(x0)=[0; 0; 0];

Digite el porcentaje de tolerancia=5

Digite f(1)=17*x1-2*x2-3*x3-500

Digite f(2)=-5*x1+21*x2-2*x3-200

Digite f(3)=-5*x1-5*x2+22*x3-30
```

Resultados:

1

29.4118

16.5266

11.8042

100 100 100

2

33.4392

18.6097

13.1929

12.0440 11.1937 10.5265

3

33.9293

18.8587

13.3609

1.4446 1.3202 1.2572

1.4. MÉTODO DE JACOBI

Utilizando el método de Jacobi resuelva el siguiente sistema de ecuaciones lineales para un valor de tolerancia de 5%.

$$-5x_1 + 12x_3 = 80$$
$$4x_1 - x_2 - x_3 = -2$$
$$6x_1 + 8x_2 = 45$$

NOTA: si es necesario, organice las ecuaciones para que el método utilizado lleve a la convergencia.

Solución 4.

Por simple inspección, organizamos las ecuaciones para que se cumpla la condición:

$$|a_{11}| \ge |a_{12}| + |a_{13}|$$

$$|a_{22}| \ge |a_{21}| + |a_{23}|$$

$$|a_{33}| \ge |a_{31}| + |a_{32}|$$

$$4x_1 - x_2 - x_3 = -2 Ec(1)$$

$$6x_1 + 8x_2 = 45$$
 Ec(2)

$$-5x_1 + 12x_3 = 80 Ec(3)$$

También observamos la condición de tolerancia: $\varepsilon_s = 0.5$

Luego, despejamos x_1 de la ecuación Ec(1)

$$x_1 = \frac{-2 + x_2 + x_3}{4}$$

 x_2 de la ecuación Ec(2)

$$x_2 = \frac{45 - 6x_1}{8}$$

 x_3 de la ecuación Ec(3)

$$x_3 = \frac{80 + 5x_1}{12}$$

Iteración 0: valores iniciales: $x_1 = 0$, $x_2 = 0$, $x_3 = 0$

Iteración 1:

$$x_1 = \frac{-2 + (0) + (0)}{4} = -0.5$$

$$x_2 = \frac{45 - 6(0)}{8} = 5,625$$

$$x_3 = \frac{80 + 5(0)}{12} \approx 6,666$$

$$\varepsilon_{a_1} = \frac{-0.5 - 0}{-0.5} \cdot 100 = 100\%$$

$$\varepsilon_{a_2} = \frac{5,625 - 0}{5,625} \cdot 100 = 100\%$$

$$\varepsilon_{a_3} = \frac{6,666 - 0}{6,666} \cdot 100 = 100\%$$

Iteración 2:

$$x_1 = \frac{-2 + (5,625) + (6,666)}{4} = 2,572$$

$$x_2 = \frac{45 - 6(-0.5)}{8} = 6$$

$$x_3 = \frac{80 + 5(-0.5)}{12} \approx 6.458$$

$$\varepsilon_{a_1} = \frac{2,572 - (-0,5)}{2.572} \cdot 100 = 119,4401\%$$

$$\varepsilon_{a_2} = \frac{6 - 5.625}{6} \cdot 100 = 6.25\%$$

$$\varepsilon_{a_3} = \frac{6,458 - 6,666}{6,458} \cdot 100 = 3,2208\%$$

Iteración 3:

$$x_1 = \frac{-2 + (6) + (6,458)}{4} = 2,614$$

$$x_2 = \frac{45 - 6(2,572)}{8} = 3,696$$

$$x_3 = \frac{80 + 5(2,572)}{12} = 7,738$$

$$\varepsilon_{a_1} = \frac{2,614 - 2,572}{2,614} \cdot 100 = 1,6067\%$$

$$\varepsilon_{a_2} = \frac{3,696 - 6}{3,696} \cdot 100 = 62,3376\%$$

$$\varepsilon_{a_3} = \frac{7,738 - 6,458}{7,738} \cdot 100 = 16,5417\%$$

Iteración 4:

$$x_1 = \frac{-2 + (3,696) + (7,738)}{4} = 2,358$$

$$x_2 = \frac{45 - 6(2,614)}{8} = 3,664$$

$$x_3 = \frac{80 + 5(2,614)}{12} = 7,755$$

$$\varepsilon_{a_1} = \frac{2,358 - 2,614}{2.358} \cdot 100 = 10,856\%$$

$$\varepsilon_{a_2} = \frac{3,664 - 3,696}{3,664} \cdot 100 = 0,873\%$$

$$\varepsilon_{a_3} = \frac{7,755 - 7,738}{7,755} \cdot 100 = 0,219\%$$

Iteración 5:

$$x_1 = \frac{-2 + (3,664) + (7,755)}{4} = 2,354$$

$$x_2 = \frac{45 - 6 * (2,358)}{8} = 3,856$$

$$x_3 = \frac{80 + 5 * (2,358)}{12} = 7,649$$

$$\varepsilon_{a_1} = \frac{2,354 - 2,358}{2,354} \cdot 100 = 0,169\%$$

$$\varepsilon_{a_2} = \frac{3,856 - 3,664}{3,856} \cdot 100 = 4,979\%$$

$$\varepsilon_{a_3} = \frac{7,649 - 7,755}{7,649} \cdot 100 = 1,385\%$$

Iteración	x_1	x_2	<i>x</i> ₃	$\varepsilon_{a_1}(\%)$	$arepsilon_{a_2}(\%)$	$\varepsilon_{a_3}(\%)$
0	0	0	0			
1	-0,5	5,625	6,666	100	100	100
2	2,572	6	6,458	119,4401	6,25	3,2208
3	2,614	3,696	7,738	1,6067	62,3376	16,5417
4	2,358	3,664	7,755	10,856	0,873	0,219
5	2,354	3,856	7,649	0,169	4,979	1,385

4. Tabla 2. Iteraciones de x_1 , x_2 y x_3

En MATLAB

Algoritmo:

```
function [ecu] = leerecu %función que entrega el sistema de tres ecuaciones lineales %para el método de Gauss Seidel y Jacobi syms x1 \times 2 \times 3 f(1)=input('Digite f(1)='); %ecuación 1 f(2)=input('Digite f(2)='); %ecuación 2
```

```
f(3)=input('Digite f(3)='); %ecuación 3
ecu=[f(1);f(2);f(3)];
function [iter,x,ea] = mjacobi
%Función para solucionar un sistema de tres ecuaciones lineales
syms x1 x2 x3
x0=input('Digite f(x0)=');
tol=input('Digite el porcentaje de tolerancia=');
                     %subfunción de las ecuaciones a resolver
ecu=leerecu;
y(1) = solve(ecu(1), x1);
y(2)=solve(ecu(2),x2);
y(3) = solve(ecu(3), x3);
iter=0;
ea=[100 100 100];
x1=x0(1); x2=x0(2); x3=x0(3);
while ((ea(1)>tol)||(ea(2)>tol)||(ea(3)>tol))
    iter=iter+1;
    x(1) = eval(y(1));
    x(2)=eval(y(2));
    x(3) = eval(y(3));
    xlante=x1;
    x1=x(1);
    x2ante=x2;
    x2=x(2);
    x3ante=x3;
    x3=x(3);
    ea(1) = abs((x1-x1ante)*100/x1);
    ea(2) = abs((x2-x2ante)*100/x2);
    ea(3)=abs((x3-x3ante)*100/x3);
    disp(iter)
    disp(x1)
    disp(x2)
    disp(x3)
    disp(ea)
end
Datos de entrada:
Digite f(x0) = [0; 0; 0];
```

```
Digite f(x0)=[0; 0; 0];

Digite el porcentaje de tolerancia=5

Digite f(1)=4*x1-x2-x3+2

Digite f(2)=6*x1+8*x2+0*x3-45

Digite f(3)=-5*x1+0*x2+12*x3-80
```

Resultados:

1

1			7.7387		
-0.5000			1.5936	62.3679	16.5451
5.6250			4		
6.6667	100 100		2.3585		
100 100					
2			3.6641		
			7.7561		
2.5729			10.8576	0.8529	0.2238
6			5		
6.4583	6.2500	3.2258			
119.4332			2.3550		
3			3.8561		
			7.6494		
2.6146			0.1474	4.9806	1.3949
3.6953					