Pretext tasks 4. CPC

1 2	SELF-PREDICTION	INNATE RELATIONSHIP (Context-based)	1. ROTATION	IMAGE
			2. RELATIVE POSITION	
3	CONTRASTIVE LEARNING	INTER-SAMPLE CLASSIFICATION	 Instance Discrimination SimCLR [Contrastive Loss] Theory – Guarantees / Bou 	IMAGE nds
4	CONTRASTIVE LEARNING	INTER-SAMPLE CLASSIFICATION	Contrastive Predictive Coding (CPC), [NCE, InfoNCE Loss]	AUDIO/ SPEECH
5	SELF-PREDICTION	GENERATIVE (VAE)	1. AE – Variational Bayes	IMAGE
			2. VQ-VAE + AR	AUDIO/ SPEECH
6	SELF-PREDICTION	GENERATIVE (AR)	1. AR-LM – GPT	LANGUAGE
			2. Masked-LM – BERT	
7	SELF-PREDICTION	MASKED-GEN (Masked LM for ASR)	 Wav2Vec / 2.0 HuBERT 	AUDIO/ SPEECH

Learning with or without supervision – speech and audio

Next frame prediction

Masked prediction

Speech Waveform Basics

1 Second

Digital Processing of Analog Signals

- A-to-D conversion: bandwidth control, sampling and quantization
- Computational processing: implemented on computers or ASICs with finite-precision arithmetic
 - basic numerical processing: add, subtract, multiply (scaling, amplification, attenuation), mute, ...
 - algorithmic numerical processing: convolution or linear filtering, non-linear filtering (e.g., median filtering), difference equations, DFT, inverse filtering, MAX/MIN, ...
- D-to-A conversion: re-quantification* and filtering (or interpolation) for reconstruction

Discrete-Time Signals

- □ A sequence of numbers
- □ Mathematical representation:

$$X = \{X[n]\}, \quad -\infty < n < \infty$$

 \square Sampled from an analog signal, $x_a(t)$, at time t = nT,

$$X[n] = X_{\alpha}(nT), \quad -\infty < n < \infty$$

 $\Box T$ is called the **sampling period**, and its reciprocal,

 $F_{\rm S} = 1/T$, is called the sampling frequency

$$F_{\rm S} = 8000 \; {\rm Hz} \; \leftrightarrow \; T = 1/8000 = 125 \, \mu {\rm sec}$$

$$F_{\rm S} = 10000 \; {\rm Hz} \; \leftrightarrow \; T = 1/10000 = 100 \, \mu {\rm sec}$$

$$F_{\rm S} = 16000 \; {\rm Hz} \; \leftrightarrow \; T = 1/16000 = 62.5 \, \mu \, {\rm sec}$$

$$F_{\rm S} = 20000 \, \text{Hz} \iff T = 1/20000 = 50 \, \mu \, \text{sec}$$

Speech Waveform Display

Discrete Signals

Discrete-Time (DT) Signals are Sequences

- x[n] denotes the "sequence value at "time" n"
- Sources of sequences:
 - Sampling a continuous-time signal $x[n] = x_c(nT) = x_c(t)|_{t=nT}$
 - Mathematical formulas generative system

e.g.,
$$x[n] = 0.3 \cdot x[n-1] - 1;$$
 $x[0] = 40$

Speech waveform example

THE NEW BRICKS FELL OVER

Speech spectrogram example

She had your dark suit in...

"Wideband" Spectrogram

Spectrogram

- ☐ Speech is a continuous evolution of the vocal tract
- ☐ Spectrogram shows time-frequency evolution
- ☐ Represented as a time-series of short-time spectra

Spectrum Basics

Fourier Series (Calculus required)

Continuous functions are often approximated by linear combinations of sine and cosine functions. For instance, a continuous function might represent a sound wave, an electric signal of some type, or the movement of a vibrating mechanical system.

For simplicity, we consider functions on $0 \le t \le 2\pi$. It turns out that any function in $C[0, 2\pi]$ can be approximated as closely as desired by a function of the form

$$\frac{a_0}{2} + a_1 \cos t + \dots + a_n \cos nt + b_1 \sin t + \dots + b_n \sin nt \tag{4}$$

for a sufficiently large value of n. The function (4) is called a **trigonometric polynomial**. If a_n and b_n are not both zero, the polynomial is said to be of **order** n. The connection between trigonometric polynomials and other functions in $C[0, 2\pi]$ depends on the fact that for any $n \ge 1$, the set

$$\{1, \cos t, \cos 2t, \dots, \cos nt, \sin t, \sin 2t, \dots, \sin nt\}$$
 (5)

is orthogonal with respect to the inner product

$$\langle f, g \rangle = \int_0^{2\pi} f(t)g(t) dt \tag{6}$$

square wave

triangle wave

sawtooth wave

semicircle

Spectrogram

- ☐ Speech is a continuous evolution of the vocal tract
- ☐ Spectrogram shows time-frequency evolution
- ☐ Represented as a time-series of short-time spectra

Auto-regressive Model and Speech Spectrum

Short-time Analysis and Parameterization

MRI of Speech (Prof. Shri Narayanan, USC)

Spectrogram

- ☐ Speech is a continuous evolution of the vocal tract
- ☐ Spectrogram shows time-frequency evolution
- ☐ Represented as a time-series of short-time spectra

Source-Filter Model

- ☐ Features based on speech production model: Source-filter interaction
 - Anatomical structure (vocal tract / glottis) conveyed in speech spectrum

To Quatieri and Rab – Slides 👈

Source-System Model of Speech Production

Linear Prediction based Speech Production Model

LP Analysis: Envelope (Filter) & Excitation (Source)

Spectral slices

Spectral Envelopes

Canonic Vowel Spectra

Short-time Analysis and Parameterization

Feature Space

One feature vector every 10 ms

Feature Space

SPEECH RECOGNITION ALGORITHMS

- ☐ TAKE THIS FEATURE VECTOR SEQUENCE
- ☐ AS INPUT AND DETERMINE "WHAT HAS BEEN SAID"
- □ e.g. SEQUENCE OF PHONES / SEQUENCE OF WORDS etc.

Spectrogram

- ☐ Speech is a continuous evolution of the vocal tract
- ☐ Spectrogram shows time-frequency evolution
- ☐ Represented as a time-series of short-time spectra

TNANK YOU!