

| Name: |  |
|-------|--|
| Date: |  |

P2 - Test 1
ELECTRICITY
Beginner

GCSE

PHYSICS

AQA - Combined Science



## **Materials**

For this paper you must have:

- Ruler
- Pencil and Rubber
- Scientific calculator, which you are expected to use when appropriate

## Instructions

- Answer all questions
- Answer questions in the space provided
- All working must be shown

## Information

• The marks for the questions are shown in brackets

- 1.
- (a) The graphs, **A**, **B** and **C**, show how the current through a component varies with the potential difference (p.d.) across the component.

Draw a line to link each graph to the correct component. Draw only **three** lines.

# Current p.d.

### Component











(b) Each of the circuits, **J**, **K** and **L**, include two diodes.



In which **one** of the circuits, **J**, **K** or **L**, would the filament lamp be on?

(1) (Total 3 marks)

**2.** A circuit diagram is shown below.



(a) Use a word from the box to label component **X**.

| fuse switch thermistor |
|------------------------|
|------------------------|

(1)

(b) Calculate the total resistance of the two resistors in the circuit.

\_\_\_\_\_

Total resistance =  $\Omega$ 

(1)

(c) The reading on the ammeter is 0.25 A.

The current through the 6  $\Omega$  resistor will be:

bigger than 0.25 A equal to 0.25 A smaller than 0.25 A

Draw a ring around your answer

(1)

(d) The 6 V battery is made by correctly joining several 1.5 V cells in series.

Calculate the number of cells needed to make the battery.

.\_\_\_\_\_

Number of cells = \_\_\_\_\_

(1)

(Total 4 marks)

The diagram shows an electrical circuit.



(a) Complete the two labels on the diagram.

(2)

(b) P and Q are meters.

What is meter **P** measuring?

What is meter **Q** measuring? \_\_\_\_\_

(2)

(Total 4 marks)

(a) The diagram shows a simple circuit. Add an ammeter and a voltmeter to the circuit to show how to measure the current through the fixed resistor and the voltage across it.



- (b) An experiment using a circuit like the one above was set up. The following results were obtained when the resistance of the variable resistor was decreased.
  - (i) Draw a graph of the results below.

| Voltage across fixed resistor in volts | Current in amps |
|----------------------------------------|-----------------|
| 0.50                                   | 0.10            |
| 0.75                                   | 0.15            |
| 1.00                                   | 0.20            |
| 1.25                                   | 0.25            |



(ii) Use the graph to find the voltage when the current is 0.05 A.

# **5**.

The drawing shows three identical cells and two identical lamps joined in a circuit.



(a) Use the correct symbols to draw a circuit diagram for this circuit.

(3)

(b) Each of the cells provides a potential difference (voltage) of 1.5 volts. What is the total potential difference (voltage) provided by all three cells?

\_\_\_\_\_volts

(1)

(c) Complete this sentence by crossing out the **two** lines in the box that are wrong.

The current through lamp 2 will be

smaller than the same as bigger than

the current through lamp 1.

(1)

(Total 5 marks)

(a) Draw lines to join the picture to the correct circuit symbol. The lamp has been done for you.



(b) A family tent is to be fitted with a simple lighting circuit.

6.



The diagram shows the first circuit used.



| (i)       | ) Are the lamps connected in series or in parallel?                               |               |
|-----------|-----------------------------------------------------------------------------------|---------------|
| (ii       | i) This is not a good circuit for using in the tent. Why?                         | (1)           |
| TI        | The diagram shows the second circuit used.                                        | (1)           |
|           | Power supply                                                                      |               |
| (ii       | ii) Give <b>two</b> reasons why this circuit is better than the first circuit.  1 |               |
|           | 2                                                                                 |               |
|           |                                                                                   | (2)<br>marks) |
| 7. Figure | 1 shows the circuit symbol for three different components.  Figure 1              |               |
|           | rigule 1                                                                          |               |
|           | A В С                                                                             |               |
| (a) W     | Which component is a variable resistor?                                           |               |
| Ti        | ick <b>one</b> box.                                                               |               |
|           | A B C                                                                             |               |
|           |                                                                                   | (1)           |

(b) Which component is a thermistor?

Tick one box.

A B C (1)

(c) In which component will the resistance decrease when the temperature increases?

Tick one box.

A B C (1)

(d) In which component will the resistance decrease when the light intensity increases?

Tick one box.

A B C (1)

Figure 2 shows four different arrangements of resistors.

| ) | Two of the arrangements are in series and two are in parallel.       |   |
|---|----------------------------------------------------------------------|---|
|   | Describe the difference between a series and a parallel arrangement. |   |
|   |                                                                      | _ |
|   |                                                                      | _ |
|   |                                                                      | _ |
|   |                                                                      | _ |
|   | Which arrangement has a resistance of 10 $\Omega$ ?                  |   |
|   | Tick <b>one</b> box.                                                 |   |
|   | P                                                                    |   |
|   | Which arrangement has the highest resistance?                        | 1 |
|   | Tick <b>one</b> box.                                                 |   |
|   | P Q R S                                                              |   |
|   |                                                                      |   |

| (h)  | A student connects a         | resistor to a cell for | 60 seconds.                  |                   |            |
|------|------------------------------|------------------------|------------------------------|-------------------|------------|
|      | The current through          | the resistor is 0.97 A |                              |                   |            |
|      | Calculate the charge         | flow.                  |                              |                   |            |
|      | Use the equation:            |                        |                              |                   |            |
|      |                              | charge flow =          | current × time               |                   |            |
|      | Give your answer to          | 2 significant figures. |                              |                   |            |
|      |                              |                        |                              |                   |            |
|      |                              |                        |                              |                   |            |
|      |                              |                        |                              |                   |            |
|      |                              |                        |                              |                   |            |
|      |                              |                        |                              |                   |            |
|      |                              |                        | Charge flow =                |                   | (0)        |
|      |                              |                        |                              | (Total 11 mar     | (3)<br>ks) |
| Most | t electrical appliances      | are connected to the   | mains electricity using thre | e-core cables.    |            |
| (a)  | What is the approxin supply? | nate value of the pote | ntial difference of the UK m | nains electricity |            |
|      | Tick <b>one</b> box.         |                        |                              |                   |            |
|      | 23 V                         |                        |                              |                   |            |
|      | 230 V                        |                        |                              |                   |            |
|      | 300 V                        |                        |                              |                   |            |
|      | 350 V                        |                        |                              |                   |            |
|      |                              |                        |                              |                   | (1)        |

(b) **Figure 1** shows a three-core cable.



Use answers from the box to label the wires and complete Figure 1.

| Earth                   | Negative            | Neutral         |                 |               |
|-------------------------|---------------------|-----------------|-----------------|---------------|
| In the UK the th        | ree wires in a thre | ee-core cable a | re always the s | same colours. |
| Nhy are the wir         | es always the sar   | me colours?     |                 |               |
| Tick <b>one</b> box.    |                     |                 |                 |               |
| Each wire is m company. | ade by a different  |                 |                 |               |
| It is easy to ide       | entify each wire.   |                 |                 |               |
| They are chea           | per to manufactur   | e.              |                 |               |
| -                       | e wire is dangero   |                 | ences.          |               |
| current                 | resistance          | shock           | force           | voltage       |

Page 11 of 21

(2)

results in an electric \_\_\_\_\_

| What is the approxir              | nate frequency of the U   | K mains electr   | icity supply?   |           |
|-----------------------------------|---------------------------|------------------|-----------------|-----------|
| Tick <b>one</b> answer.           |                           |                  |                 |           |
| 50 Hz                             |                           |                  |                 |           |
| 75 Hz                             |                           |                  |                 |           |
| 100 Hz                            |                           |                  |                 |           |
| 150 Hz                            |                           |                  |                 |           |
| Figure 2 shows how National Grid. | power stations transfer   | · electrical pow | er to consumers | using the |
|                                   | Figu                      | re 2             |                 |           |
| Power station Trans               | former A                  |                  | Transformer B   | Consumer  |
| The power station go              | enerates electricity at a | voltage of 25 k  | «V.             |           |
| Transformer <b>A</b> incre        | ases the voltage by a fa  | actor of 16.     |                 |           |
| What is the voltage               | output of transformer A   | ?                |                 |           |
|                                   |                           |                  |                 |           |
|                                   |                           |                  |                 |           |
|                                   | Output                    |                  |                 |           |
|                                   |                           |                  |                 |           |

| (g) | Why is the voltage increased by transf    | former A?                           |              |
|-----|-------------------------------------------|-------------------------------------|--------------|
|     | Tick <b>one</b> box.                      |                                     |              |
|     | To reduce the energy lost due to heating  |                                     |              |
|     | To increase the power                     |                                     |              |
|     | To increase the current                   |                                     |              |
|     |                                           |                                     | (1)          |
| (h) | Why is it important that the voltage is o | decreased by transformer <b>B</b> ? |              |
|     | Tick <b>one</b> box.                      |                                     |              |
|     | Less energy is used by consumers          |                                     |              |
|     | It is safer for consumers                 |                                     |              |
|     | It reduces consumers' electricity bills   |                                     |              |
|     |                                           | (Total 11 ma                        | (1)<br>arks) |
|     |                                           | •                                   | ,            |

- **9.** Components can be connected in electrical circuits in different ways.
  - (a) Draw **one** line from each circuit symbol to the name of the component it represents.



(b) Complete the sentence.

Choose the answer from the box.

| charge           | energy              | potential difference | resistance |
|------------------|---------------------|----------------------|------------|
| Electric current | is the rate of flow | of                   |            |

Figure 1 shows a parallel circuit.

(2)

(1)

| (c) | Calculate the current measured by ammeter $A_2$ .         |   |     |
|-----|-----------------------------------------------------------|---|-----|
|     | Current =                                                 | A | (1) |
| (d) | The circuit is connected for 300 s                        |   | (1) |
|     | The total current in the circuit stays at 0.56 A          |   |     |
|     | Calculate the total charge flow.                          |   |     |
|     | Use the equation:                                         |   |     |
|     | charge flow = current × time                              |   |     |
|     |                                                           |   |     |
|     |                                                           |   |     |
|     |                                                           |   |     |
|     | Charge flow =                                             |   |     |
|     |                                                           |   | (2) |
| (e) | The potential difference supplied by the battery is 4.5 V |   |     |
|     | Calculate the total energy transferred in 300 s           |   |     |
|     | Use the equation:                                         |   |     |
|     | energy transferred = charge flow × potential difference   |   |     |
|     | Use your answer to part (d).                              |   |     |
|     |                                                           |   |     |
|     |                                                           |   |     |
|     |                                                           |   |     |
|     | Energy transferred =                                      | J |     |
|     |                                                           |   | (2) |

(f) Figure 2 shows a series circuit.

Figure 2



Resistor  $\mathbf{R_2}$  breaks.

What happens to the reading on the ammeter?

(g) Figure 3 shows a parallel circuit.

Figure 3



Resistor R<sub>3</sub> breaks.

What happens to the readings on the ammeter?

Ammeter A<sub>1</sub>

Ammeter A<sub>2</sub>

(2)

(1)

**Figure 4** shows how the resistance of a component varies with temperature.





|     | (h)  | What is the name of t       | he componen      | nt?            |                    |                         |
|-----|------|-----------------------------|------------------|----------------|--------------------|-------------------------|
|     |      | Tick <b>one</b> box.        |                  |                |                    |                         |
|     |      | LED                         |                  |                |                    |                         |
|     |      | LDR                         |                  |                |                    |                         |
|     |      | Resistor                    |                  |                |                    |                         |
|     |      | Thermistor                  |                  |                |                    |                         |
|     |      |                             |                  |                |                    | (1)                     |
|     | (i)  | What is the resistance      | of the comp      | onent at a tem | perature of 50 °C? |                         |
|     |      |                             |                  | Resist         | ance =             | Ω                       |
|     |      |                             |                  |                |                    | (1)<br>(Total 13 marks) |
| 10. | Figu | ire 1 shows the informa     | ition label fror | m a hairdryer. |                    |                         |
|     |      |                             |                  | Figure 1       |                    |                         |
|     |      |                             | 50 Hz            | 230 V          | 2100 W             |                         |
|     | (a)  | What is the power of        | the hairdryer?   | <b>&gt;</b>    |                    |                         |
|     |      |                             |                  |                |                    |                         |
|     |      | Tick <b>one</b> box.        |                  |                |                    |                         |
|     |      | Tick <b>one</b> box.  50 Hz |                  |                |                    |                         |
|     |      |                             |                  |                |                    |                         |
|     |      | 50 Hz                       |                  |                |                    |                         |
|     |      | 50 Hz<br>230 V              |                  |                |                    | (1)                     |

| (b) | What is the equation which links current, potential difference and power? |     |
|-----|---------------------------------------------------------------------------|-----|
|     | Tick <b>one</b> box.                                                      |     |
|     | power = potential difference × current                                    |     |
|     | power = $\frac{\text{potential difference}}{\text{current}}$              |     |
|     | power = current potential difference                                      |     |
|     |                                                                           | (1) |
| (c) | The mains electricity supply in the UK is an alternating current (ac).    |     |
|     | What is the frequency of the UK ac supply?                                |     |
| (d) | Some electrical appliances use batteries.                                 | (1) |
|     | What type of current does a battery supply?                               |     |
|     | Tick <b>one</b> box.                                                      |     |
|     | Alternating current (ac) only                                             |     |
|     | Direct current (dc) only                                                  |     |
|     | Both ac and dc                                                            |     |
|     | Not ac or dc                                                              |     |
|     |                                                                           | (1) |

The hairdryer is connected to the mains electricity supply by a plug.

Figure 2 shows the inside of a plug.

Figure 2



(e) Draw **one** line from each wire to the colour of insulation around the wire.

|     | Wire                                                  | Colour of insulation around wire |  |
|-----|-------------------------------------------------------|----------------------------------|--|
|     |                                                       | Blue                             |  |
|     |                                                       |                                  |  |
|     | Live                                                  | Brown                            |  |
|     |                                                       |                                  |  |
|     |                                                       | Green                            |  |
|     |                                                       |                                  |  |
|     | Neutral                                               | White                            |  |
|     |                                                       |                                  |  |
|     |                                                       | Yellow                           |  |
|     |                                                       | (2)                              |  |
| (f) | The insulation around the Earth wire has two colours. |                                  |  |
|     | What are the <b>two</b> colours?                      |                                  |  |
|     | and                                                   | _                                |  |
|     |                                                       | (1)                              |  |

| •                                                                                   |                                 |                |                                                   |
|-------------------------------------------------------------------------------------|---------------------------------|----------------|---------------------------------------------------|
|                                                                                     |                                 |                |                                                   |
|                                                                                     |                                 |                |                                                   |
| igure 3 shows how the Nation                                                        | nal Grid links power stations t | to consumers.  |                                                   |
|                                                                                     | Figure 3                        |                |                                                   |
| Power station generating transfer electricity at a potential difference of 25 000 V |                                 |                | Consumer supplied with mains electricity at 230 V |
| escribe how electrical power i<br>ational Grid.                                     | s transferred from power sta    | tions to consu | mers by the                                       |
|                                                                                     |                                 |                |                                                   |
|                                                                                     |                                 |                |                                                   |
|                                                                                     |                                 |                |                                                   |
|                                                                                     |                                 |                |                                                   |
|                                                                                     |                                 |                |                                                   |