LAB 3 – PATTERN & ASSOCIATION MINING #1

DATA MINING SPRING 2014 | ANDERS HARTZEN (ANDERSHH@ITU.DK) & JENS ANDERSSON GRØN (JANG@ITU.DK)

BEFORE TODAY'S LAB – A QUESTION

How did it go implementing ID3 and kNN from last week?

TODAY'S LAB

Patterns!

PATTERN & ASSOCIATION MINING #1

- Today you will be searching for frequent patterns in some simple transactional data.
- You will implement the apriori algorithm to accomplish this.
 - Page 248-254 (chapter 6.2.1-6.2.2) in the book.
- A simple code structure is provided to help you get started.

CODE PROVIDED

- Two classes
 - Apriori
 - ItemSet
- The ItemSet class is used to encapsulate information of sets of transaction items constructed during the algorithm.
- The Apriori class is where you should implement the algorithm.
 - Methods
 - Main
 - apriori
 - generateFrequentItemSets
 - joinSets
 - generateFrequentItemSetsLevel I
 - countSupport
- Code provided makes use of the HashTable java data structure, which is used to store <Key, Value> pairs. Values can then be retrieved based on their key. Is in this instance used to store <ItemSet, Integer> pairs, where the integer is used to store the support value for the item set.

PLAN OF ATTACK

- First take a look at the code provided.
- Then start working on your apriori implementation
 - Suggested order of implementation of methods in the Apriori class:
 - countSupport
 - joinSets
 - generateFrequentItemSetsLevel I
 - generateFrequentItemSets
 - apriori
 - main

THE DATA

- The transactional data is simple and is only made up of integers
- See it as different records of sales, where each number is an item with id=1, id=2 and so on.
- The data set is provided in the code as the TRANSACTIONS two-dimensional integer array in the Apriori class.

Dataset (each line is a transaction)

- **I**, 2, 3, 4, 5
- **I**, 3, 5
- **2**, 3, 5
- **I**,5
- **I**, 3, 4
- **2**, 3, 5
- **2**, 3, 5
- **3**, 4, 5
- **4**, 5
- **2**
- **2**, 3
- **2**, 3, 4
- **3**, 4, 5

THANK YOU FOR LISTENING!