NAME: ROLL NO:

CS618: Program Analysis Mid Semester Examination, 2016-17 I

Max Time: 2 Hours Max Marks: 125

NOTE:

• There are total 5 questions on 4 pages

- Write your name and roll number on the question paper and the answer book.
- No explanations will be provided. In case of a doubt, make suitable assumptions and justify.
- Presenting your answers properly is your responsibility. You lose credit if you can not present your ideas clearly, and in proper form. Please DO NOT come back for re-evaluation saying, "What I actually meant was ...".
- Be precise and write clearly. Remember that somebody has to read it to evaluate!
- 1. Consider a flow graph G with a unique entry node ENTRY that dominates all nodes of G. Prove that every node in G except ENTRY has a unique *immediate dominator*. By definition, immediate dominator of a node n is the *closest strict dominator* of n. [10]
 - Every node except ENTRY has at least one strict dominator. Consider a node Z that has more than one strict dominators. Consider two such dominators X and Y. Then, it can be proved that either X dominates Y or Y dominates X (*proof below). Thus, it possible to find *least* element among all strict dominators of Z. This element is the desired immediate dominator.
 - * Consider a cycle free path from ENTRY \to Z. Because both X and Y strictly dominate Z, they must occur on this path. WLOG, assume that X occurs before Y in this path. Thus the path is: Entry \to X \to Y \to Z. We will prove that X must dominate Y.

Assume the contrary (X does not dominate Y). Then, we have a path Entry $\Rightarrow Y$ free of X. But then, Entry $\Rightarrow Y \rightarrow Z$ is a path to Z free of X. But that also contradicts the fact that X dominates Z.

- 2. The original definition of *Dominance Frontier* (df) is: A node m is in df(n) if
 - (a) n dominates a predecessor of m in the flow graph, and
 - (b) n does not strictly dominate m

Dr Dominoz thinks the following modified definition of df(n) is equivalent as far as computation of SSA form is concerned: A node m is in df(n) if

(a) n dominates a predecessor of m in the flow graph, and

Page #2 CS618 Roll No:

- (b) n does not dominate m
- i.e., Dr Dominoz has dropped the term "strictly" from the definition.

You jobs is to either **prove that Dr Dominoz is right** or show that he is **wrong**, **by giving a counter example**. The proof must work for any arbitrary CFG, while the counter example must show an incorrect SSA form being generated for a CFG.

Page #3 CS618 Roll No:

- 3. Consider the following extensions to our 3-address code language:
 - x.lock: "locks" a variable x
 - x.unlock: "unlocks" a variable x
 - x.secureComp does some "secure computation" on x

In this language, a "secure computation" on a variable \mathbf{x} is allowed only when it is locked (\mathbf{x} .lock executed before \mathbf{x} .secureComp, without an intervening \mathbf{x} .unlock). We call such secureComp safe, otherwise it is **unsafe**.

The language obviously contains basic constructs like *assignment* statements, *goto* statements, and conditionals (*if-goto*). Following semantic properties hold:

- All variables are unlocked at the entry
- lock and unlock operations are idempotent (Locking a locked variable is allowed, but it has no effect on the lock-status of the variable. Similarly, unlocking an unlocked variable is also allowed)

Here are couple of sample programs, PROGRAM-1 is valid and PROGRAM-2 is invalid.

```
// PROGRAM-1
                               // PROGRAM-2
                                  c = 5
  c = 5
  n = 0
                                  n = 0
  t = c > 0
                                  t = c > 0
  if t goto L1
                                  if t goto L1
  n.lock
                                    n.lock
                                    c.secureComp // BAD, c not locked
  n.secureComp
  goto L2
                                    c.unlock
                                    goto L2
L1:
                                 L1:
  c.lock
                                    n.lock
  c.secureComp
                                    n.secureComp
  d = e - 5;
                                    d = e - 5;
  c.unlock
                                    c.lock
L2:
                                  L2:
  n.lock
                                    n.secureComp // OK, n locked on
                                                  // all paths
                                    c.secureComp // BAD, c may not
  n.secureComp
                                                  // be locked
  n.unlock
                                    n.unlock
  c.unlock
                                    c.unlock
```

Design an **intraprocedural** data flow analysis framework to mark unsafe secure computations ("secureComp"). In particular,

- (a) Draw the lattice for the framework, and describe it briefly.
- (b) Describe the meet operator (\land) .

Page #4 CS618 Roll No:

- (c) Describe intuitively the meaning of the top and the bottom elements. [5]
- (d) Define the flow functions for statements. You do not need to list all types of statements, but use suitable representatives (for e.g. x op y to represent binary operators). [10]
- (e) Is your framework *Forward* or *Backward*? Justify your answer. Also describe the *BoundaryInfo* (initialization information at the boundary of the flow graph). [2+3]
- (a) Lattice:

(b) meet:

\land	T	int	bool	\perp
Т	Τ	int	bool	上
int	$_{ m int}$	int		上
bool	bool		bool	丄
	上	\perp		上

- (c) \top represents no type inferred yet. \bot represents conflicting types inferred (more than one type for a variable).
- (d) Flow functions. (This is one of the many possible solutions)

i.
$$z = x == y$$
:

$$Out(z) = In(z) \wedge bool$$

 $Out(x) = In(x) \wedge In(y)$
 $Out(y) = In(x) \wedge In(y)$

ii.
$$z = x + y$$
:

$$Out(z) = In(z) \wedge int$$

$$Out(x) = In(x) \wedge int$$

$$Out(y) = In(y) \wedge int$$

iii.
$$z = x \&\& y$$
:

$$Out(z) = In(z) \wedge bool$$

$$Out(x) = In(x) \wedge bool$$

$$Out(y) = In(y) \wedge bool$$

Page #5 CS618 Roll No:

iv. $z = int_constant$:

$$Out(z) = In(z) \wedge int$$

v. $z = bool_constant$:

$$Out(z) = In(z) \wedge bool$$

vi. z = x:

$$Out(z) = In(z) \wedge In(x)$$

 $Out(x) = In(z) \wedge In(x)$

(e) My framework is forward (but yours could be backward, depends on the flow functions!). Out is computed in terms of In.

$$BoundaryInfo = BI$$
, s.t. $BI(x) = \top \forall x$

Page #6 CS618 Roll No:

(a) Draw the dominator tree for the graph. [10]

(b) Calculate the dominance frontier for each block. [15]

(c) Calculate the iterated dominance frontiers for the nodes containing the definitions of x, y and z. Assume that ENTRY node (B1) contains implicit definitions of x, y, z as undef. [3*5 = 15]

(d) Convert the flow graph to minimal SSA form. [10]

Page #7 CS618 Roll No:

Dominator Tree:

	Node	DF
	1	{}
	2	{}
	3	{3,10,13}
	4	{10,11}
	5	{3,9}
	6	{9,10}
Dominance Frontier:	7	{10}
Dominance Prontier.	8	{11}
	9	{13}
	10	{12}
	11	{12}
	12	{11,13,15}
	13	{15}
	14	{11,15}
	15	{}

ENTRY node (1) contains implicit definitions of x, y, z.

Var	Defs	Iterated Dom Frontier of Defs
X	1, 2, 4, 10	{ 10, 11, 12, 13, 15 }
у	1, 3, 7, 11	{ 3, 10, 11, 12, 13, 15 }
Z	1, 5	{ 3, 9, 10, 11, 12, 13, 15 }

Page #8 CS618 Roll No:

Page #9 CS618 Roll No:

5. Consider the following flow graph in SSA form, with one instruction per block:

Page #10 CS618 Roll No:

(a) Draw the SSA edges (def-use chains) for the CFG.

- [5]
- (b) Perform Sparse conditional Constant Propagation for the CFG. Clearly show
 - i. The contents of the worklists (FWL and SWL) at each stage.
 - ii. The SSA edge or the CFG edge being processed
 - iii. The values that are updated during processing.

[20]