Project: Creditworthiness

Step 1: Business and Data Understanding

A bank needs a model to easely classify new customers that are appling for a loan. Using a data set containing the last two years's customers we can create a model that will predict if a new customer will be creditworthy or not.

Key Decisions:

The bank needs to decide if a new customer is creditworthy or not. This problem could be solved using the data of their customers to create a model for the prediction of the "worthyness" of new clients. We need a Binary model to tell us if a customer is creditworthy or if it is not.

Step 2: Building the Training Set

In the cleanup process I have removed the "Duration-in-current-address" and "Concurrent-Credits" fields because the first one had to many missing values and the second one had only one value for the whole field. I have also replaced null values in the "Age-years" field with the median value of the field (33).

Step 3: Train your Classification Models

Logistic Regression model:

These are the predictors I used and their P-values. I have removed the less significant variables for this model.

· · · · · · · · · · · · · · · · · · ·				- () 1
	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-1.6561796	1.051e+00	-1.5756	0.11513
Account.BalanceSome Balance	-1.6879156	3.150e-01	-5.3583	8.40e-08 ***
PurposeNew car	-1.7384447	6.147e-01	-2.8281	0.00468 **
PurposeOther	-0.5073510	8.093e-01	-0.6269	0.53074
PurposeUsed car	-0.7730537	4.000e-01	-1.9324	0.05331.
Credit.Amount	0.0001849	5.729e-05	3.2277	0.00125 **
Length.of.current.employment4-7 yrs	0.4018327	4.717e-01	0.8520	0.39424
Length.of.current.employment< 1yr	0.7470200	3.786e-01	1.9732	0.04848*
Instalment.per.cent	0.3036306	1.363e-01	2.2269	0.02595 *
GuarantorsYes	0.2197896	4.447e-01	0.4942	0.62116
Most.valuable.available.asset	0.3405007	1.503e-01	2.2659	0.02346 *
Age.years	-0.0149895	1.481e-02	-1.0123	0.3114
Type.of.apartment	-0.2629291	2.907e-01	-0.9045	0.36571
No.of.Credits.at.this.BankMore than 1	0.1905012	2.978e-01	0.6397	0.52238
Foreign.Worker	-0.3032746	6.757e-01	-0.4488	0.65357

The overall accuracy of thi model is 0.72 and this is the confusion matrix of the logistic regression model.

Confusion matrix of LR		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	89	26
Predicted_Non-Creditworthy	16	19

Decision Tree model:

These are the variables used for the Tree.

·	
Model Summary	
Variables actually used in tree construction:	
[1] Account.Balance Age.years	
[3] Credit.Amount Duration.of.Credit.Month	
[5] Instalment.per.cent Length.of.current.employment	
[7] Most.valuable.available.asset No.of.Credits.at.this.Bank	
[9] Payment.Status.of.Previous.Credit Purpose	
[11] Value Savings Stocks	

The overall accuracy for this model is : 0.67 and this is the confusion matrix of the decision tree model.

Confusion matrix of DT		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	83	27
Predicted_Non-Creditworthy	22	18

Random Forest model:

this is the variable importance plot for the Random Forest model, the three most important variables are "credit.Amount", "Age.Years" and "Duration.of.Credit.Month"

Variable Importance Plot

The overall accuracy of this model is: 0.79, and thi is the confusion matrix of the Random Forest model

Confusion matrix of RF		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	101	27
Predicted_Non-Creditworthy	4	18

Boosted model:

This is the Varible Importance Plot for the Boosted model: the three most important variables are "credit.Amount", "Age.Years" and "Duration.of.Credit.Month"

Variable Importance Plot

The overall accuracy of this model is: 0.78. This is the confusion matrix of the Boosted model.

Confusion matrix of BO		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	101	28
Predicted_Non-Creditworthy	4	17

Step 4: Writeup

Answer these questions:

I have chosen the Random Forest model because it's overall accuracy is the highest with a value of 0.79. This model also has the biggest Area Under the Curve: 0.77. The confusion matrix shows that the Random Forest model classifies 101 customers as "Creditworthy" over 105 Creditworthy customers and it classifies 18 customers as "non-Creditworthy" over the total of 45 non-Creditworthy customers.

The accuracy of the classification it is way better for the "Creditworthy" class but even in the other 3 model this accuracy was still pretty low.

The numer of individuals that are classified as "Creditworthy by this model is 416.