

General sol (GS)

(Complementary function) (Perticular Integral) His egio, X = O then; G.S > C.F. # Operators: $\frac{1}{2}d = D$: $\frac{dy}{dx} = Dy$ $\frac{d^2y}{dx^2} = D$: $\frac{d^2y}{dx^2} = D^2y$ $\frac{d^n}{dx^n} = D^n - \frac{d^n}{dx^n} = D^n y$ Auxillary equation: - Write the differential eq in terms of D Eg: dy - 6 dy + 11 dy - 6y = 0 => Dy-6 Dy +11 Dy-6y=0 In D-form] => $y(\vec{D}-6\vec{D}+11\vec{D}-6)=0$ -. D3-6 D2+11D-6 = 0 [Solve this cubic equi] D=1,2,3 [Real & Distinct]

Type 3 (I maginary & Distinct) Suppose D= 2+5i Here, x=2 & B=5 $g = \left[c_1 \cos(\beta x) + c_2 \sin(\beta x) \right] e^{\alpha x}$ $y = e^{2\pi} \left[c_1 \cos 5x + c_2 \sin 5x \right]$ Type 4 [Imaginary & Repeated] 4 nots Suppose 2 D = 5 ± 6 i , 5 ± 6 i Here, $\alpha = 5$ & $\beta = 6$ = (c, + c, x) cos(βx) + (c, + c,x) sin(βx) .exx $y = e^{3x} \left(c_1 + c_2 x \cos(\beta x) + (c_3 + c_3 x) \sin(\beta x) \right)$ Q1 d3y - 6d2y + 1(dy - 6y = 0) SJ: Auxillary eq: $(D^3 - 6D^2 + 11D - 6)y = 0$ => $D^3 - 6D^2 + 11D - 6 = 0$... D = 1, 2, 3: . Its of Type I : . y = c,e^{mx} + c, xe^{mx} + c, e^{mx} + c, e^m $\int_{2}^{3} \int_{3}^{3} \frac{d^{2}y}{dx^{2}} + \int_{3}^{3} \frac{d^{2}y}{dx^{$ Sd: Auxillary eq: $(b^3-5b^2+8b-4)g=0$ = 0 i, 9th of Type 2 : y = c₁e^{m/x} + (c₂ + c₃x) e^{m/x} = c₁e^x + (c₂ + c₃x) e^x

classmate Date Page

93. (P+2D+5) g=8 dy+2dy+5y=0

Sol: Auxillary Function: (D+2D+5)y=0=> D+2D+5=0 ... $D=-1\pm2i$ Here, X=-1, $\beta=2$

There, $x = \pm y$ $= 2^{xx} \left[\frac{1}{3} \cos \beta x + \frac{1}{3} \sin \beta x \right]$ $= 2^{x} \left[\frac{1}{3} \cos \beta x + \frac{1}{3} \sin \beta x \right]$

 $\int_{0}^{4} \frac{d^{3}y}{dx^{3}} + y = 0$

Sd:- Auxillary Function: $(D^3 + 1)y = 0$ $\Rightarrow D^3 + 1 = 0 \qquad D = -1, 1 \pm \sqrt{3}$ (Segree 3 + reducte in calculate in calculate) 2 2 (X = 1/2)

of Type 3

- y = C, exx + exx (C2 cos Bx + C3 disin Bx)

 $= c_1 e^{x} + e^{x} \left[c_2 \cos 3x + c_3 \sin 3x \right]$

93. D = 1±13i, 1±13in

SIN: Here, $\alpha = 1$, $\beta = \sqrt{3}$

 $\frac{3t}{y} = e^{\alpha x} \left[(c_1 + c_2 x) \cos \beta x + (c_3 + c_4 x) \sin \beta x \right]$ $= e^{x} \left[(c_1 + c_2 x) \cos \beta x + (c_3 + c_4 x) \sin \beta x \right]$