Overfitting and Model Selection

Outline

- Overfitting
- ❖ Bias-variance decomposition
- Generalization theory and structural risk minimization
- The battle against overfitting

What Is a Good Model?

Bias-variance Decomposition

Regression $Y = f^*(X) + \epsilon$ $\epsilon \sim \mathcal{N}(0, \sigma^2)$ **True Risk** $R(f) = \mathbb{E}[(f(X) - Y)^2] = \mathbb{E}[(f(X) - \mathbb{E}[f(X)])^2] + \mathbb{E}[(\mathbb{E}[f(X)] - f^*(X))^2] + \sigma^2$ Variance **Bias** Bayes error $= R(f^*)$ True risk (Mean Square Error) Variance **Bias** Complexity of F

Four Pillars

- Consistency (guarantee generalization)
 - Under what conditions will a model be consistent?
- Model convergence speed (a measure for generalization)
 - How does generalization capacity improve when sample size L grows?
- Generalization capacity control
 - How to control in an efficient way model generalization starting with the only given information we have: our sample data?
- A strategy for good learning algorithms
 - Is there a strategy that guarantees, measures and controls our learning model generalization capacity?

Consistent Training?

Vapnik Main Theorem

- Q: Under which conditions will a learning model be consistent?
- ❖ A : A model will be consistent if and only if the function h that defines the model comes from a family of functions H with finite VC dimension d.

* A finite VC dimension d not only guarantees a generalization capacity (consistency), but to pick h in a family H with finite VC dimension d is the only way to build a model that generalizes.

Model Convergence Speed (Generalization Capacity)

- ❖ Q: What is the nature of model error difference between learning data (sample) and test data, for a sample of finite size m?
- ❖ A: This difference is no greater than a limit that only depends on the ratio between VC dimension d of model functions family H, and sample size m, i.e., d/m.
- * This statement is a new theorem that belongs to Kolmogorov-Smirnov way for results, i.e., theorems that do not depend on data's underlying probability law.

Model Convergence Speed

How To Control Model Generalization Capacity

Risk Expectation = <u>Empirical Risk + Confidence Interval</u>

- To minimize empirical risk alone will not always give a good generalization capacity; one will want to minimize the sum of empirical risk and confidence interval
- What is important is not the numerical value of the Vapnik limit, most often too large to be of any practical use, it is the fact that this limit is a non decreasing function of model family function "richness"

Structural Risk Minimization

- Which hypothesis space should we choose?
- Bias / variance tradeoff

SRM: choose H to minimize bound on true error!

$$\varepsilon(h) \le \hat{\varepsilon}(h) + O\left(\sqrt{\frac{d}{m}log\frac{m}{d} - \frac{1}{m}log\delta}\right)$$

SRM Strategy (1)

* With probability 1 - δ

$$\varepsilon(h) \le \hat{\varepsilon}(h) + O\left(\sqrt{\frac{d}{m}log\frac{m}{d} - \frac{1}{m}log\delta}\right)$$

- When m/d is small (d too large), second term of equation becomes large
- * SRM basic idea for strategy is to minimize simultaneously both terms standing on the right of above majoring equation for ε(h)
- To do this, one has to make d a controlled parameter

SRM Strategy (2)

❖ Let us consider a sequence H₁ < H₂ < ... < Hn of model family functions, with respective growing VC dimensions

$$d_1 < d_2 < ... < d_n$$

❖ For each family H_i of our sequence, the inequality

$$\varepsilon(h) \leq \hat{\varepsilon}(h) + O\left(\sqrt{\frac{d}{m}log\frac{m}{d} - \frac{1}{m}log\delta}\right) \quad \text{ is valid}$$

- That is, for each subset, we must be able either to compute d, or to get a bound on d itself.
- SRM then consists of finding that subset of functions which minimizes the bound on the actual risk.

SRM Strategy (3)

SRM: find i such that expected risk $\varepsilon(h)$ becomes minimum, for a specific d*=d_i, relating to a specific family H_i of our sequence; build model using h from H_i

Putting SRM Into Action: Linear Models Case (1)

- There are many SRM-based strategies to build models:
- In the case of linear models

$$y = w^T x + b,$$

one wants to make ||w|| a controlled parameter: let us call H_C the linear model function family satisfying the constraint:

Vapnik Major theorem:

When C decreases, d(H_C) decreases

Putting SRM Into Action: Linear Models Case (2)

- ❖ To control ||w||, one can envision two routes to model:
 - Regularization / Ridge Regression, i.e. min. over w and b

$$RG(w,b) = S\{(y^{(i)} - \langle w|x^{(i)} \rangle - b)^2 | i = 1,...,L\} + \lambda ||w||^2$$

 Support Vector Machines (SVM), i.e. solve directly an optimization problem (classif. SVM, separable data)

```
Minimize ||w||^2,
with (y^{(i)} = +/-1)
and y^{(i)}(\langle w|x^{(i)} \rangle + b) >= 1 for all i=1,...,L
```

Regularized Regression

* Recall linear regression: $y = X^T \theta + \varepsilon$

$$\begin{array}{ll} \theta^* &= \underset{\theta}{argmin}(y - X^T\theta)^T(y - X^T\theta) \\ \\ &= \underset{\theta}{argmin} \, ||y - X^T\theta||^2 \end{array}$$

- Regularized LR:
 - L2-regularized LR:

$$\theta^* = \underset{\theta}{argmin} ||y - X^T \theta||^2 + \lambda ||\theta||$$

• L1-regularized LR:

$$\theta^* = \underset{\theta}{\operatorname{argmin}} ||y - X^T \theta||^2 + \lambda |\theta|$$

Bias-Variance Tradeoff

- \star λ is a "regularization" terms, the smaller the λ , is more complex the model (why?)
 - Simple (highly regularized) models have low variance but high bias.
 - Complex models have low bias but high variance.
- You are inspecting an empirical average over 100 training set.
- The actual E_D can not be computed

Bias²+Variance VS Regularizer

- ❖ Bias²+variance predicts (shape of) test error quite well.
- * However, bias and variance cannot be computed since it relies on knowing the true distribution of x and t (and hence h(x) = E[t|x]).

The Battle Against Overfitting

Model Selection

- Suppose we are trying to select among several different models for a learning problem.
- Examples:
 - 1. polynomial regression $h(x;\theta) = g(\theta_0 + \theta_1 x + \theta_2 x^{(2)} + ... + \theta_k x^{(k)})$
 - Model selection: we wish to automatically and objectively decide if k should be, say, 0, 1, ..., or 10.
 - 2. locally weighted regression
 - Model selection: we want to automatically choose the bandwidth parameter T.
 - 3. mixture models and hidden Markov model
 - Model selection: we want to decide the number of hidden states.

❖ The Problem:

• Given model family F = { $M_1, M_2, ..., M_I$ }, find Mi \in F s.t. $M_i = \mathop{argmax}_{M \in F} J(D, M)$

1. Cross Validation

- * We are given training data D and test D_{test} , and we would like to fit this data with a model $p_i(x;\theta)$ from the family F (e.g., LR), which is indexed by i and parameterized by θ .
- Hold-out cross-validation/simple cross validation

K-fold cross-validation

Held-out Data

- Set aside a fraction α (say 10%-20%) of the training data
- This part becomes our held-out data
 Other names: validation/development data

- Remember: Held-out data is NOT the test data
- Train each model using the remaining training data
- Evaluate error on the held-out data
- Choose the model with the smallest held-out error
- Problems:
 - Wastes training data, so typically used when we have plenty of training data
 - Held-out data may not be good if there was an unfortunate split → repeated random subsampling

K-fold Cross Validation

- Create K equal sized partitions of the training data
- Each partition has N/K examples
- ❖ Train using K 1 partitions, validate on the remaining partition
- Repeat the same K times, each with a different validation partition

- * Finally, choose the model with smallest average validation error
- Usually K is chosen as 10 or 5

Leave-One-Out (LOO) Cross-Validation

- Special case of K-fold CV when K = N (number of training examples)
- Each partition is now an example
- ❖ Train using N 1 examples, validate on the remaining example
- Repeat the same N times, each with a different validation example

- Finally, choose the model with smallest average validation error
- Can be expensive for large N. Typically used when N is small

Example:

❖ When K = N, the algorithm is known as Leave-One-Out-Cros's-Validation (LOOCV)

MSELOOCV(M₂)=0.962

Practical Issues for CV

- \star How to decide the values for K and α (held-out ratio)
 - Commonly used K = 10 and α = 0.1
 - When data sets are small relative to the number of models that are being evaluated, we need to decrease α and increase K
 - K needs to be large for the variance to be small enough, but this makes it time-consuming

Bias-variance trade-off

- Small α usually lead to low bias. In principle, LOOCV provides an almost unbiased estimate of the generalization ability of a classifier, especially when the number of the available training samples is severely limited; but it can also have high variance.
- Large α can reduce variance, but will lead to under-use of data, and causing high bias.
- ❖ One important point is that the test data D_{test} is never used in CV, because doing so would result in overly (indeed dishonest) optimistic accuracy rates during the testing phase.

2. Regularization

- Maximum-likelihood estimates are not always the best (Jam'es and Stein showed a counter example in the early 60's)
- Alternative: we "regularize" the likelihood objective (also known as penalized likelihood, shrinkage, smoothing, etc.), by adding to it a penalty term:

$$\hat{\theta}_{shrinkage} = \underset{\theta}{argmin}[l(\theta;D) + \lambda ||\theta||]$$

where $\lambda > 0$ and $||\theta||$ might be the L₁ or L₂ norm.

- The choice of norm has an effect
 - Using the L₂ norm pulls directly towards the origin.
 - While using the L₁ norm pulls towards the coordinate axes, i.e. it tries to set some of the coordinates to 0.
 - This second approach can be useful in a feature-selection setting.

Recall Bayesian and Frequentist

Frequentist interpretation of probability

- Probabilities are objective properties of the real world, and refer to limiting relative frequencies (e.g., number of times I have observed heads). Hence one cannot write P(Katrina could have been prevented|D), since the event will never repeat.
- Parameters of models are *fixed*, *unknown constants*. Hence one cannot write $P(\theta|D)$ since θ does not have a probability distribution. Instead one can only write $P(D|\theta)$.
- One computes point estimates of parameters using various estimators, $\theta^* = f(D)$, which are designed to have various desirable qualities when averaged over future data D (assumed to be drawn from the "true" distribution).

Bayesian interpretation of probability

- Probability describes degrees of belief, not limiting frequencies.
- Parameters of models are *hidden variables*, so one can compute $P(\theta|D)$ or $P(f(\theta)|D)$ for some function f.
- One estimates parameters by computing $p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$ P $(\theta|D)$ using Bayes rule:

Bayesians vs. Frequentists

You are no good when sample is small

You give a different answer for different priors

Bayesian Interpretation of Regularization

- Regularized Linear Regression
 - Recall that using squared error as the cost function results in the LMS estimate
 - And assume iid data and Gaussian noise, LMS is equivalent to MLE of θ

$$l(\theta) = nlog \frac{1}{\sqrt{2\pi}\sigma} - \frac{1}{\sigma^2} \frac{1}{2} \sum_{i=1}^{n} (y^{(i)} - \theta^T x^{(i)})^2$$

• Now assume that vector θ follows a normal prior with 0-mean and a diagonal covariance matrix

$$\theta \sim N(0, T^2)$$

• What is the posterior distribution of θ ?

$$\begin{split} p(\theta|D) & \propto \ p(D,\theta) \\ & = \ p(D|\theta)p(\theta) = \left(2\pi\sigma^2\right)^{-n/2} exp \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^n (y^{(i)} - \theta^T x^{(i)})^2 \right\} \times Cexp \left\{ -\frac{\theta^T \theta}{2\tau^2} \right\} \end{split}$$

Bayesian Interpretation of Regularization, cont.

* The posterior distribution of θ

$$p(\theta|D) \propto exp \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^n (y^{(i)} - \theta^T x^{(i)})^2 \right\} \times exp \left\{ -\frac{\theta^T \theta}{2\tau^2} \right\}$$

This leads to a new objective

$$I_{MAP}(\theta; D) = -\frac{1}{2\sigma^2} \frac{1}{2} \sum_{i=1}^{n} (y^{(i)} - \theta^T x^{(i)})^2 - \frac{1}{\tau^2} \frac{1}{2} \sum_{k=1}^{K} \theta_k^2$$

$$= l(\theta; D) + \lambda ||\theta||$$

- This is L₂ regularized LR! a MAP estimation of θ
- What about L₁ regularized LR!
- * How to choose λ
 - cross-validation!

3. Feature Selection

- Imagine that you have a supervised learning problem where the number of features d is very large (perhaps d >> #samples), but you suspect that there is only a small number of features that are "relevant" to the learning task.
- VC-theory can tell you that this scenario is likely to lead to high generalization error — the learned model will potentially overfit unless the training set is fairly large.
- Selecting a useful subset from all the features

Why Feature Selection

- Some algorithms scale (computationally) poorly with increased dimension
- Irrelevant features can confuse some algorithms
- Redundant features adversely affect regularization
- Removal of features can increase (relative) margin (and generalization)
- * Reduces data set and resulting model size

Note: Feature Selection is different from Feature Extraction
The latter transforms original features to get a small set of new
features

More on feature extraction when we cover Dimensionality Reduction

Feature Selection Schemes

- ❖ Given n features, there are 2ⁿ possible feature subsets (why?)
- ❖ Thus feature selection can be posed as a model selection problem over 2ⁿ possible models.
- ❖ For large values of n, it's usually too expensive to explicitly enumerate over and compare all 2ⁿ models. Some heuristic search procedure is used to find a good feature subset.
- Three general approaches:
 - Filter: i.e., direct feature ranking, but taking no consideration of the subsequent learning algorithm
 - add (from empty set) or remove (from the full set) features one by one based on S(i)
 - cheap, but is subject to local optimality and may be unrobust under different classifiers
 - Wrapper: determine the (inclusion or removal of) features based on performance under the learning algorithms to be used. See next slide
 - Simultaneous learning and feature selection
 - E.x. L₁ regularized LR, Bayesian feature selection (will not cover in this class), etc.

How to Score Features

- How do you know which features can be pruned?
 - Given labeled data, we can compute some simple score S(i) that measures
 how informative each feature xi is about the class labels y.
 - Ranking criteria:
 - Mutual Information: score each feature by its mutual information with respect to the class labels

$$MI(x_i, y) = \sum_{x_i \in \{0,1\}} \sum_{y \in \{0,1\}} p(x_i, y) log \frac{p(x_i, y)}{p(x_i)p(y)}$$

Feature Ranking

Bayes error of each gene

Predictive power of the genes

Information gain for each genes with respect to the given partition

 KL of each removal gene w.r.t. to its MB

Wrapper Method

- Two types: Forward Search and Backward Search
- Forward Search
 - Start with no features
 - Greedily include the most relevant feature
 - Stop when selected the desired number of features
- Backward Search
 - Start with all the features
 - Greedily remove the least relevant feature
 - Stop when selected the desired number of features
- Inclusion/Removal criteria uses cross-validation

Wrapper Method

Forward Search

- Let F = {}
- While not selected desired number of features
- For each unused feature f:
- Estimate model's error on feature set F∪f (using cross-validation)
- Add f with lowest error to F

Backward Search

- Let F = {all features}
- While not reduced to desired number of features
- For each feature f ∈ F:
- Estimate model's error on feature set F\f (using cross-validation)
- Remove f with lowest error from F

Case Study [Xing et al, 2001]

* The case:

- 7130 genes from a microarray dataset
- 72 samples
- 47 type I Leukemias (called ALL) and 25 type II Leukemias (called AML)

❖ Three classifier:

- kNN
- Gaussian classifier
- Logistic regression

Regularization VS. Feature Selection

Explicit feature selection often outperform regularization

4. Information Criterion

- Suppose we are trying to select among several different models for a learning problem.
- The problem:
 - Given model family F = { $M_1, M_2, ..., M_l$ }, find $M_i \in F$ s.t. $M_i = \mathop{argmax}_{M \in F} J(D, M)$
- ❖ We can design J that not only reflect the predictive loss, but also the amount of information M_k can hold

Model Selection via Information Criteria

- ❖ Let f(x) denote the truth, the underlying distribution of the data
- \star Let g(x, θ) denote the model family we are evaluating
 - f(x) does not necessarily reside in the model family
 - $\theta_{ML}(y)$ denote the MLE of model parameter from data y
- Among early attempts to move beyond Fisher's Maximum Likelihood framework, Akaike proposed the following information criterion:

$$E_y[D(f||g(x|\theta_{ML}(y))]$$

which is, of course, intractable (because f(x) is unknown)

AIC and **BIC**

Akaike Information Criteria (AIC)

$$AIC = 2k - 2 \log(L)$$

Bayesian Information Criteria (BIC)

$$BIC = k \log(N) - 2 \log(L)$$

k: # of model parameters

L: maximum value of the model likelihood function

- Applicable for probabilistic models (when likelihood is defined)
- AIC/BIC penalize model complexity
 - .. as measured by the number of model parameters
 - BIC penalizes the number of parameters more than AIC
- Model with the lowest AIC/BIC will be chosen
- Can be used even for model selection in unsupervised learning

5. Bayesian Model Averaging

❖ Recall the Bayesian Theory: (e.g., for data D and model M)

$$P(M|D) = P(D|M)P(M)/P(D)$$

- the posterior equals to the likelihood times the prior, up to a constant.
- ❖ Assume that P(M) is uniform and notice that P(D) is constant, we have the following criteria:

$$P(D|M) = \int_{\theta} P(D|\theta, M) P(\theta|M) d\theta$$

* A few steps of approximations give you this:

$$P(D|M) \approx log \ P(D|\hat{\theta}_{ML}) - \frac{k}{2}log \ N$$

where N is the number of data points in D.

Summary

- Structural risk minimization
- Bias-variance decomposition
- The battle against overfitting:
 - Cross validation
 - Regularization
 - Feature selection
 - Model selection Occam's razor
 - Model averaging
 - The Bayesian-frequentist debate
 - Bayesian learning (weight models by their posterior probabilities)