Messungen mit Hilfe von flüssigem Helium XI Widerstand der reinen Metalle in tiefen Temperaturen Von W. Meissner und B. Voigt

(Mit 13 Figuren)

(Mitteilung aus der Physikalisch-Technischen Reichsanstalt)

 $(Schlu\beta)$

4. Gruppe

Von den Elementen dieser Gruppe wurden alle bis auf Hafnium untersucht.

a) Kohlenstoff (Montierungsart 3)

Kohlenstoff wurde bis jetzt von uns in Gestalt eines Glühlampenkohlefadens und eines Stückes Graphit geprüft. Während der Widerstand des ersteren dauernd ansteigt, hat das untersuchte Graphitstück einen solchen Widerstandsverlauf, daß r nach einem Maximum im Temperaturgebiet zwischen 20° und 90° abs. bei 4,2° abs. wieder nahezu gleich 1 wird, um dann nochmals im Temperaturgebiet des flüssigen Heliums beträchtlich zu steigen. Dieser Widerstandsverlauf entspricht aber bekanntlich nicht dem Verhalten des reinen Graphits, wie aus Arbeiten von D. E. Roberts¹). Kamerlingh Onnes und K. Hof²), Pirani und Fehse³) und Ryschkewitsch⁴) hervorgeht. Messungen an Graphiteinkristallen sind von uns begonnen, konnten aber wegen Schwierigkeiten, die auftraten noch nicht beendet werden.

¹⁾ D. E. Roberts, Ann. d. Phys. (4) 40. S. 453, 1913.

²⁾ H. Kamerlingh u. K. Hof, Comm. Leiden Nr. 142b, 1914.

³⁾ M. Pirani u. W. Fehse, Ztschr. f. Elektrochem. 29. S. 168. 1923.

⁴⁾ E. Ryschkewitsch, Ztschr. f. Elektrochem. 29. S. 474. 1923.

Tabelle	21.	Kohlenstoff
---------	-----	-------------

						
Atom-Nr. Kristallsystem	Metall	6	Kohle 1	6 trig.	Graphit 1	
Herkunft, Veru	ınreinigung	aus C	lühlampe ?	Kahl (Ceyl	baum ?	
Behand	lung		gebrannt	aus herai	einem Stück usgeschnitten	
Läng Dicke	e e	C	52 mm),2 mm φ	3	34 mm ,5×4 mm	
Abstand der Stror Abstand der Span			51,5 mm 43,7 mm		28 mm 22 mm	
He-Dampfdruck mm Hg	Grad abs.		beob.		r _{beob} .	
	273,16		1	1	1	
	88,19				$1,39_{4}$	
	78,30				1.41_{3}	
÷ :	78,23		1,145	1	1 20	
	20,45 20,44	ł	1.163		1,390	
776,3	4,22				1,07,	
774,4	4.22		1,182			
1,9	1,32		1,193	1	_	
1,4	1,27		·—		1,40,	
$R_{\scriptscriptstyle 0}$ in Ω	bei 273,16	I	46,7	ļ	0,196	
	Tabelle	22.	Silicium			
Atom-Nr. Kristallsystem	Metall		14 K.		Si 1	
Herkunft, V	erunreinigung		de Haën 0,5% Fe u. Spuren Ca			
Beha	ındlung		abgeätzt			
	änge icke	7		25 mm × 7 mm		
Abstand der Stromdrähte Abstand der Spannungsdrähte					18 mm 4,7 mm	
He-Dampfdruck mm Hg	Grad ab	s.)*beob.		red.	
	273,16		1			
	88,30		9,554	1		
	77,61		12,2,			
	20,44		65,4			
768,5	4,21		190	ļ		
1,05	1,22		21			
$R_{ m o}$ in	1 32 bei 237,16		1	1.26		

b) Silicium (Montierungsart 8). (Tab. 22)

Untersucht wurde ein Stück geschmolzenes Silicium Si 1 und ein einzelner Kristall Si 2, für den die Meßergebnisse in Tab. 22 nicht mit aufgenommen sind. Der Widerstand von Si 1 steigt bis 4,2° abs. beträchtlich an, fällt dann aber im Temperaturgebiet von 4,2° bis 1,2° abs. ¹) wieder stark ab. Der Siliciumkristall Si 2 dagegen, der in flüssigem Helium einen doppelt so großen Widerstand wie bei 0°C. hatte, zeigte diesen Abfall zwischen 4° und 1° abs. nicht. Einen metallischen, überall positiven Temperaturkoeffizienten, wie ihn H. J. Seemann²) bis herab zur Temperatur der flüssigen Luft feststellte, fanden wir an Siliciumkristallen der Firma de Haën bis jetzt nicht. Doch werden diese Messungen an Einkristallen noch fortgesetzt.

c) Titan (Montierungsart 3)

Von Titan haben wir zwei Proben untersucht, erstens geschmolzenes Titan von der Firma Kahlbaum und zweitens Titan, das Herr Dr. de Boer³), Eindhoven, aus der Gasphase abschied und uns freundlicher Weise zur Verfügung stellte. Ti 1 wurde bis herab zu 1,24° abs. untersucht; es hat bei dieser Temperatur noch einen Widerstand von etwa 0,9 R_0 . Ti 2 jedoch hat bei 1,26° abs. einen Widerstand von nur noch 0,2 R_0 und wird, wie früher³) bereits mitgeteilt, aller Wahrscheinlichkeit nach bei etwa 1,1° abs. supraleitend. Bei 1,13°, der tiefsten erreichten Temperatur, ist R nur noch 0,001 R_0 . An einem andern Ti-Stäbchen wurde kürzlich von dem einen von uns bei einer etwas höheren Temperatur völlige Supraleitfähigkeit festgestellt.

Über die charakteristische Temperatur scheinen bisher keine Angaben vorzuliegen. Aus unseren Messungen ergibt

¹⁾ W. Meissner, Die Naturwissenschaften 17. S. 390. 1929.

²⁾ H. J. Seemann, Phys. Ztschr. 28. S. 765, 1927; 29. S. 94, 1928.

³⁾ A. E. v. Arkel und J. H. de Boer, Ztschr. f. anorg. u. allg. Chem. 148. S. 345. 1925; P. Clausing und G. Moubis, Physica 7. S. 245—250. 1927. Nr. 7.

⁴⁾ W. Meissner, Ztschr. f. Phys. 60. S. 181, 1930.

Tabelle 23. Titan

Atom-Nr. Kristall- system	Metall	22 hex. 7	ľi 1	Ti	nach		
Herku Verunreir		Manio.	va $1^{\circ}/_{\circ}$ Fe; $0,1^{\circ}/_{\circ}$ V; Oxyde, arbide (?)	de Boer aus G Eindh. phas		342, berechnet ns Formel (2a)	
Behand	lung	abgeż	itzt		bere		
Läng	re	13 n	ım	33,5	mm	0, F	
Dick	•	2,5 × 3	mm	2 mr auf dünner V		$\theta = 34$	
Abst. d. St		9,5 r 4,5 r		29 r 23 r	29 mm 23 mm		
He-Dpfdr. mm Hg	Grad abs.	r _{beob.}	$r_{ m red.}$	r _{beob} .	r _{red.}	r _{ber.}	
	273,16	1		1	1	1	
	88,19	-		0,3505	0,178,	0,182	
_	86,02	1,010,		<u> </u>	 `		
	77,87	1,010					
	77,61			0,3180	0,137,	0,137	
	20,46	-	-	0,2180	0,011,	0,001,	
	20,41	1,011,			<u> </u>		
771,6	4,21			0,215	0,0073	0,0000	
760,4	4,20	0,906					
1,7	1,30	_		0,211	0,0023	0,0000	
1,3 1,2	1,26		<u> </u>	0,203	_		
1,2	1,24	0,902		-		-	
0,7	1,17		_	0,154 0,0014	-	_	
0,5	1,13			0,0014			
	0,00	<u> </u>		(0,209 ₂) 1)	<u>i – </u>		
R_0 in Ω b.	273,16	1,694	10^{-2}	3,973 • 1	0-3 2)		

sich der Wert $\theta = 342$. Nach C. Blom berechnet man im Mittel $\theta = 478$.

Als spezifischer elektrischer Widerstand des Titans 2 ergibt sich ohne Berücksichtigung der dünnen Wolframseele etwa der Wert $\varrho_0 = 54 \cdot 10^{-6} \Omega$ cm bei 0° C.

¹⁾ Extrapoliert aus dem Verlauf zwischen 4,2° und 1,3° abs.

²⁾ In der Sonderveröffentlichung [W. Meissner, Ztschr. f. Phys. 60. S. 181. 1930] ist $R_0 = 4.47 \cdot 10^{-3}$ angegeben, weil der Widerstand vor d. Messg. in fl. He neu montiert worden war.

d) Zirkonium (Montierungsart 4)

Auch von Zirkonium standen uns zwei verschiedene Proben zur Verfügung, eine von Herrn Dr. v. Arkel¹), Eindhoven, aus der Gasphase abgeschiedene und ein Draht von der Fa. Osram. Beide Sorten zeigen metallische Leitfähigkeit. Der Restwiderstand von Zr 2 (Osram) beträgt etwa 0,11 R_0 , derjenige des Einkristalles Zr 1 nur 0,04 R_0 . Der Widerstand

onium	ı
	oniun

		Tabe			nium		
Atom-Nr. Kristall- system	Metall	40 hex.	Zr 1	(R		Zr 2	2a)
Herku Verunrein	•	v. Arkel 0	,3 "/ _o Hf, 01 % Zn e nicht unters.	$\theta = 288$, nach Formel (2a)	Osram	?	274, sh Formel (
Behand	lung		-	= 2 ch	i.Vak. 2 1	st. 500° C	= 2 nack
Läng Dicke		etwa 7 5 mm auf Seele etwa 1	νοn W,	θ berechnet na	etwa 6 0,490 auf Pints 0,050 r	nım chfaden,	heta=274, berechnet nach Formel (2a)
Abst. d. St ,, d. Span		61 r 52 n		Ā	58,0 r 51,5 r		
He-Dpfdr. mm Hg	Grad abs.	r _{beob} .	red.	r _{ber.}	$r_{ m beob}$.	red.	"ber.
	273,16 88,19 86,14 83,57 78,42 77,61	0,2380 0,2214 0,1971	1 0,2067 (0,1991) 0,1895 (0,1703) 0,1642	1 0,2107 0,2016 0,1900 0,1677 0,1642	r _{beob.} 1		1 0,2183 0,2091 0,1980 0,1750 0,1715
776,3 767,5 2,3 1,1 0,5	77,59 20,46 20,45 4,22 4,21 1,36 1,23 1,13	0,1970 0,0443 ₆ - 0,0421 - 0,0403 - 0,0388	0,1641 0,0051 ₈ 0,0028 0,0009	0,1641 0,0022 _s 0,0022 _s 0,0000 _o 0,0000 _o	0,1124 0,109 ₀ 0,108 ₉		0,1715 0,0025, 0,0025, 0,0000, 0,0000,
767,5 2,3 1,1	20,46 20,45 4,22 4,21 1,36 1,23 1,13	0,0443 ₆	0,1641 0,0051 ₈ 0,0028 0,0009	$ \begin{vmatrix} 0,1641 \\ 0,0022_3 \\ 0,0022_3 \\ 0,0000_0 \end{vmatrix} $	0,109,	0,0039	0,0025, 0,0025, 0,0000,

¹⁾ A. E. van Arkel und J. H. de Boer, Ztschr. f. anorg. u. allg. Chem. 148. S. 345. 1925; P. Clausing u. G. Moubis, Physica 7. S. 245 bis 250. 1927. Nr. 7.

²⁾ Extrapoliert aus dem Verlauf zwischen 4,22° und 1,36° abs.

von Zr 1 sinkt zwischen 1,36° und 1,13° schneller als zwischen 4,22° und 1,36° abs., was vielleicht als Anfang der Übergangskurve zur Supraleitfähigkeit aufzufassen ist.

Zirkon ist auch in Leiden von de Haas und Voogd¹) untersucht worden, wobei sich im Temperaturgebiet des flüssigen Heliums bis herunter zu 1,3° abs. keine Widerstandsabnahme ergab.

Auch bei Zirkon liegen Angaben über die charakteristische Temperatur bisher nicht vor. Aus unseren Beobachtungen ergibt sich im Mittel $\theta = 281$.

Für den spezifischen elektrischen Widerstand ergibt sich unter Berücksichtigung der bei beiden Zirkonsorten vorhandenen Wolframseelen bei Zr 1 der Wert $\varrho_0=6\cdot 10^{-5}~\Omega$ cm, bei Zr 2 etwa der Wert $\varrho_0=4.9\cdot 10^{-5}~\Omega$ cm bei 0° C. Aus Messungen von P. W. Bridgman²) folgt der Wert $\varrho_0=4.4\cdot 10^{-5}~\Omega$ cm. Clausing u. Moubis (a. a. O.) fanden $\varrho_0=4.1\cdot 10^{-5}~\Omega$ cm.

e) Cer (Montierungsart 3 und 6)

Das untersuchte geschmolzene Cer weist nur einen geringen Widerstandsabfall mit sinkender Temperatur auf. Eine Berechnung von θ ist nicht möglich.

Ψa	he	۱۱۵	25.	Cer
ı a	w.	110	40.	Cer

Atom-Nr. Kristallsystem	Metall	58 hex. dichtestgepackt	Ce 1
Herkunft, Veru	nreinigung	de Haën geschmolzen	Ÿ
Behandlı	ıng	im Glasrohr mit He-Ga	s eingeschlossen
Länge	Dicke	_	3 mm
Abstand d. Strom Abstand d. Spani		6 mm 3 mm	
He-Dampfdruck mm Hg	Grad abs.	r _{beob} .	
769,6 3,3	273,16 86,90 77,77 20,41 4,21 1,43	1 0,842 0,816 0,749 0,686 0,697	
$R_{\scriptscriptstyle 0}$ in Ω b	ei 273,16	1,878 · 10-4	

¹⁾ W. J. de Haas u. J. Voogd, Comm. Leiden Nr. 194c, S. 27, 1928.

²⁾ P. W. Bridgman, Proc. of the Amer. Acad. 63. S. 347. 1928.

f) Thorium (Montierungsart 3)

Es wurde nur ein aus der Gasphase¹) abgeschiedener Einkristall untersucht, der uns von Hrn. Dr. J. H. de Boer, Eindhoven, zur Verfügung gestellt worden war. Über die Supraleitfähigkeit von Thorium wurde schon früher von dem einen²) von uns berichtet. Der Sprungpunkt des untersuchten Thoriummetalles liegt bei etwa 1,4° abs., der Abfall erstreckt sich über das verhältnismäßig breite Temperaturintervall von etwa 0,2°.

Thorium scheint von anderer Seite noch nicht untersucht zu sein. Aus unseren Messungen ergibt sich als charakteristische Temperatur $\theta = 168$.

	Tabel	lle 26. Thori	um	
Atom-Nr. Kristallsystem	Metall	90 K. fz.	Th 1	
Herkunft, Veru	nreinigung	de Boer Eindhoven Ein	akrist. $< 0,1^{\circ}/_{0}$ Fe	heta=168, berechnet
Behandl	ung	_	-	nach
Länge	Dicke	12,5 mm auf dünner V	3 mm ф Volfram-Seele	r'ormel (2 a)
Abstand der Stro Abstand der Spar			nm nm	
He-Dampfdruck mm Hg	Grad abs.	⁷ beob.	r _{red.}	, ber.
	273,16	1	1	1
-	86,15	0,278,	$0,266_{5}$	0,2678
	77,93	0,2454	0,232,	0,232,
	20,44	0,0308	$0,014_{7}$	0,010
769,6	4,21	$1,71 \cdot 10^{-2}$	0,0007	0.000
5,2	1,53	1,57 · 10-2	_ -	
4,2	1,49	$1,36 \cdot 10^{-2}$	_	-
4,1 ₅	1,485	1,21 · 10-2		
2,4 2,0	1,365	$0.23 \cdot 10^{-2}$ $0.00 \cdot 10^{-2}$		-
1,0	$1,33_{5}$ $1,22_{5}$	$<7 \cdot 10^{-5}$	_	
	0,00	(1,64 · 10 - 2) 3)		
$R_{\scriptscriptstyle 0}$ in Ω	bei 273,16	5,627	·10 ⁻⁵	

Tabelle 26. Thorium

A. E. van Arkel u. J. H. de Boer, Ztschr. f. anorg. u. allg. Chem.
 S. 345. 1925.

²⁾ W. Meissner, Ztschr. f. Phys. 61. S. 191. 1930.

³⁾ Extrapoliert aus dem Verlauf zwischen 4,2° und 1,5° abs.

Als Wert für den spezifischen elektrischen Widerstand bei 0° C. ergibt sich etwa $\rho_0 = 13 \cdot 10^{-6} \Omega$ cm.

g) Germanium (Montierungsart 1)

Das untersuchte Germanium, das uns Herr Dr. d'Ans zur Verfügung stellte, hat ein Widerstandsmaximum im Temperaturgebiet der flüssigen Luft. Der Widerstand fällt dann wieder ab, um in Heliumtemperaturen einen konstanten, aber größeren Widerstand als bei 0°C anzunehmen.

Atom-Nr. Metall Ge 1 Kristallsystem K. Diamantgitter 0,05 % Sn d'Ans Herkunft, Verunreinigung geschmolzen 0,01% Pb Auer Behandlung etwa 12,0 mm Länge Regulus Dicke etwa 6×11.5 mm Abstand der Stromdrähte 10,5 mm Abstand der Spannungsdrähte 6,0 mm He-Dampfdruck Grad abs. rred. r beob. mm Hg 273,16 85,68 1,332 1,35₀ 78,00 20,45 1,30, 763,2 1,28 4,20 1,28 1,6 1.31 1,28 1,22 9,59.10-3 R_0 in Ω bei 273,16

Tabelle 27. Germanium

C. C. Bidwell¹) untersuchte an reinem Germanium ebenfalls den Widerstandsverlauf und fand zwischen 273° und 80° abs. bei 157° ein Widerstandsminimum von etwa der Größe 0,8 R_0 . Das Germanium Bidwells scheint etwas reiner als unser Germanium zu sein. Bidwell fand nämlich als spezifischen Widerstand 0,089 Ω cm, wir für unsere Probe etwa 0,054 Ω cm. Ganz reines Germanium mit Diamantgitter wird vielleicht ebenso wie Diamant völlig nichtleitend sein.

¹⁾ C. C. Bidwell, Phys. Rev. [2] 19. S. 447. 1922.

Es sind Versuche in die Wege geleitet, eine andere Modifikation des Germaniums, die dem Graphit bzw. weißem Zinn entsprechen würde, zu gewinnen, was nach Angaben in der Literatur vielleicht gelingen kann.

h) Zinn (Montierungsart 2)

Tab. 28 gibt die früheren Messungen des einen 1) von uns wieder. Der Sprungpunkt liegt bei etwa 445 mm Hg, d. h. 3,71° abs., während er nach den Leidener 2) Messungen bei

Tabelle 28. Zinn

Atom-Nr. Kristallsystem	Metall	50 tetrag. S	n 1	
Herkunft, Veru	ınreinigung	?	?	$\theta = 210$,
Behandl	ung		-	berechnet nach
Läng Dick		57,2 0,7	mm mm ф	Formel (2)
Abstand der Stre Abstand der Span		57,2 51,5		
He-Dampfdruck mm Hg	Grad abs.	r _{beob.}	r _{red.}	rber.
	273,16	1	1	1
	88,23	0,2457	0,2451	0,2476
	84.87	0,2321	0,2315	0,2330
	81,75	0,2191	0,2185	0,2197
	79,97	0,2126	0,2120	0,2120
	20,41	0,01196	0,01122	0,00509
	20,37	0,01139	0,01065	0,00505
762,4	4,20	7,89 10-4	0,39 • 10 - 4	0,091 · 10-4
464,4	3,74	7,57 • 10 - 4	0,07 10-4	$0.05_{\rm s} \cdot 10^{-4}$
458,6	3,73	7,19 · 10 — 4_		
429,0	3,67	0,01 • 10-4		
418,0	3,65	0,00 · 10-4		
400	3,61	<2 •10 ⁻⁸	_	
7,3	1,61	$<2 \cdot 10^{-8}$		ļ
	0,00	(7,50 • 10 - 4) 3)		_
$R_{\scriptscriptstyle 0}$ in Ω l	bei 273,16	0,9)7	

¹⁾ W. Meissner, Phys. Ztschr. 26. S. 689, 1925.

²⁾ W. Tuyn, Diss. Leiden, S. 5. 1924; W. Tuyn u. H. Kamerlingh Onnes, Arch. Néerland (III. A) 10. S. 5. 1926; Comm. Leiden, Nr. 181. 1926; W. Tuyn, Comm. Leiden Nr. 196b, 1929.

³⁾ Extrapoliert aus dem Verlauf zwischen 4,2° und 3,7° abs.

etwa 470 mm Hg, d. h. 3,75° abs., beobachtet wurde. Die Breite des Temperaturintervalles, in dem der Widerstand plötzlich abfällt, erstreckt sich bei den Leidener Messungen über etwa 0,04°, bei den hiesigen Messungen über etwa 0,07°. Beide Unterschiede sind vielleicht auf verschiedene Strombelastung zu schieben.

Aus unseren Messungen folgt als charakteristische Temperatur $\Theta = 210$, während Simon aus der spezifischen Wärme $\Theta = 145$ findet. Nach C. Blom erhält man im Mittel $\Theta = 163$.

i) Blei (Montierungsart 1)

In Tab. 29 sind die früheren Messungen an sehr reinem 1) Blei des einen 2) von uns, sowie Messungen von Meissner und Franz 3) aufgeführt. Das untersuchte Material zeigt den gleichen

Atom-Nr. 82 92, $a_1 = +25 \cdot 10^{-5}$, $+27 \cdot 10^{-8}$, berechnet Pb 1 Pb 2 Metall Kristallsystem K. fz. Herkunft, Kahlb. etwa Schuchardt 0,002% Verunreinigung Mylius Behandlung Spule 50 mm Länge Dicke 0.3 mm0.3 mmH Н Abstand d. Stromdrähte θ ģ d. Spannungsdr. He-Dampfdruck Grad $r_{
m ber.}$ Pbeob. red. beob. $r_{\rm red.}$ mg He abs. 273,16 1 1 1 84,87 0,2756 0,2756 0,2771 0,03011 20,41 0.02963 0,02963 0,02978 0.02917 20,32 0,02917 0,0104 0,0105 0,0104 14,02 7,26 0.00075 0,00075 0,00094 <1.10-9 7,20 4,21 768.2 $< 1 \cdot 10^{-8}$ 0,00 $(0,0000_0)$ $(0,0000_{\circ})$ R_0 in Ω bei 273,16 2,28

Tabelle 29. Blei

¹⁾ F. Mylius, Ztschr. f. anorg. Chem. 74. S. 407. 1912.

²⁾ W. Meissner, Phys. Ztschr. 26. S. 689, 1925.

³⁾ W. Meissner u. H. Franz, Ztschr. f. Phys. 65. S. 30. 1930.

Widerstandsabfall, wie das in Leiden¹) untersuchte. Der Sprungpunkt von Blei wurde nicht bestimmt. Er liegt nach den Leidener Messungen bei 7,26° abs.

Für Blei wurde schon früher von E. Grüneisen²) die charakteristische Temperatur nach Formel (5) berechnet. Er fand unter Benutzung der Konstanten $a_1 = 2,5 \cdot 10^{-4}$ und $a_2 = 2,7 \cdot 10^{-7}$ den Wert $\theta = 92$, der in Tab. 29 übernommen ist. Sim on leitet aus der spezifischen Wärme den Wert $\theta = 88$ ab. Nach C. Blom findet man als Mittelwert $\theta = 96$.

5. Gruppe

Von der fünften Gruppe wurden Vanadium, Tantal, Arsen, Antimon und Wismut untersucht.

a) Vanadium (Montierungsart 3 bzw. 4)

Der Widerstand des untersuchten Vanadiums nimmt von 273° bis herunter zu 20° abs. um nur etwa 5°/ $_{0}$ ab, fällt dann aber sehr stark und beträgt bei 1,25° abs. nur noch 0,429 R_{0} . Dieser starke Widerstandsabfall läßt vermuten, daß Vanadium bei noch weiterer Senkung der Temperatur supraleitend werden wird.

Vanadium scheint von anderer Seite noch nicht untersucht worden zu sein. Ein θ -Wert konnte nicht berechnet werden.

Für den spezifischen elektrischen Widerstand bei 0° C berechnet sich etwa der Wert $\varrho_0 = 17 \cdot 10^{-5} \Omega$ cm.

b) Tantal (Montierungsart 3 und 4)

Tab. 31 enthält die Meßresultate für vier verschiedene Tantalproben. Über die Supraleitfähigkeit von Tantal wurde bereits früher von dem einen³) von uns ausführlich berichtet.

¹⁾ H. Kamerlingh Onnes en W. Tuyn, Comm. Leiden Nr. 160b, 1922; W. Tuyn et H. Kamerlingh Onnes, Comm. Leiden Nr. 181. 1926.

E. Grüneisen, Handbuch-Artikel "Metallische Leitfähigkeit",
 S. 20.

W. Meissner, Phys. Ztschr. 29. S. 897. 1928; Ztschr. f. Phys. 61.
 S. 191. 1930.

Atom-Nr. Kristallsystem	Metall	23 K. rz.	V 1	
Herkunft, Veru	ınreinigung	de Haën geschm.	$0.01^{\text{ o}/_{\text{o}}} \text{ Mn}$ < $0.2^{\text{ o}/_{\text{o}}}$ Fe	
Behand	lung		_	
Läng Dick			,5 mm 2 mm	
Abstand der Stre Abstand der Spa		16 mm 10 mm		
He-Dampfdruck mm Hg	Grad abs.	"beob.		
771 2,4 ₅ 1,2,	273,16 83,57 77,59 20,45 4,21 1,37 1,25	0000	1 ,9683 ,9674 ,9540 ,555 ,511 ,429	
	bei 273,16	1	9 · 10-8	

Tabelle 30. Vanadium

Inzwischen ist von Mc. Lennan¹) und seinen Mitarbeitern die Supraleitfähigkeit von Tantal bestätigt worden.

Als charakteristische Temperatur finden wir bei Ta 1 und Ta 2 im Mittel $\theta=228$. Bei Ta 4 sind die auf ideal reines Material reduzierten τ -Werte erheblich größer als bei Ta 1 und Ta 2. Infolgedessen hat die aus den reduzierten Werten berechnete charakteristische Temperatur bei Ta 4 den beträchtlich kleineren Wert $\theta=143$. Da der Restwiderstand bei Ta 1 und besonders bei Ta 2 kleiner ist als bei Ta 4, wird man den für Ta 1 und Ta 2 berechneten θ -Wert als den richtigen ansehen müssen. Vielleicht ist Ta 4 noch nicht genügend gesintert und hat daher einen anormalen Verlauf der Widerstandskurve.

F. Simon berechnet nach der Lindemannschen Schmelzpunktsformal den Wert $\theta=260$.

¹⁾ J. C. Mc Lennan, L. E. Howlett, J. O. Wilhelm, Transact. of the Roy. Soc. of Canada Serie III. Bd. 23. Sect. III. S. 287, 1929.

Tabelle 31a. Tantal

	was Mittel $\theta = 228$, ans ber.	İ	m 0 mel (2)		red. red. ber.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ta 4	S. u. H. ev. etwas Fe ₂ O ₃	geglüht bei 2800 ° C	58 mm 1,5 mm 0	50,7 mm 45,5 mm	Pbeob. Tr	0,2817 0,2
	٥.	Lampe	ф ш t		red.	1 0,2436 (0,2316) (0,2297) (0,1985) (0,1965) (0,1965) (0,1967) (0,1967) (0,0041)
Ta 2	aus Glühlampe	längere Zeit als Lampe benutzt	58,5 mm 0,05 mm ф	58,5 mm 53 mm	"heab.	0,2511
Ta 1	2.	Lampe benutzt	0,045 mm ¢	nm mm	red.	1 (0,22119) (0,2286) (0,2286) (0,1996) (0,1978) (0,1978) (0,1975) (0,0049) (0,0049)
73 K. rz.	aus Glühlampe	längere Zeit als Lampe benutzt	58,5 mm 0,	58,5 mm 51,4 mm	"beob.	0,2257 0,0399
Metall	nft, iigung	Bun	Dicke	mdrähte nungsdr.	Grad abs.	273,16 88,30 85,19 85,19 77,73 77,73 77,61 20,45
Atom.Nr. Kristallsyst. Metall	Herkunft, Verunreinigung	Behandlung	Länge 1	Abst. d. Stromdrähte "d. Spannungsdr.	He-Dpfdr. mm Hg	

Tabelle 31b. Tantal

He-Dpfdr. mm Hg	Grad abs.	rbeob.	red.		"beob.	"red.	"beob.	red.	red.	"ber.
982,1 982,1 961,5 966,9 921,6 921,6 911,6 859,8 859,8 859,9 761,6	44444444444449 64444444444449 62828	bei Stromdichte 12 A/mm ¹ 1,2 A/mm ² 35,3·10 ⁻³ 35,2·10 ⁻³ 35,0·10 ⁻³ 34,0·10 ⁻³ 7,38·10 ⁻³ 5,08·10 ⁻³ <pre></pre>	000000000000000000000000000000000000000	(6,000)	bei Stromdichte 10 A/mm³[1,2 A/mm³] 9,91.10-\$ 9,96.10-\$ 9,94.10-\$ 9,92.10-\$ 9,39.10-\$ \$9,51.10-\$ 8,51.10-\$ \$9,75.10-\$ 1,0,76.10-\$ 0,19.10-\$ 4.10-\$ 0,19.10-\$	0,0000000000000000000000000000000000000	bei Strom- dichte 1,4 A/mm* 49,8 .10-3 49,8 .10-3 49,8 .10-3 0,155.10-3 0,00.10-3	000000	0,0000,0000	0,0000,0 0,0000,0 0,0000,0 0,0000,0 0,0000,0
	0,0	(0,0352)	1		(0,00991)	1	(0,0498)	1	١	 -
$R_{\rm o}$ in Ω bei 273,16	73,16	3,62			4,11		3,59.10-3		l	1

c) Arsen
(Montierungsart 1)
(Tab. 32)

Das untersuchte Arsen hat im Temperaturgebiet des flüssigen Heliums noch einen merklichen Widerstandsabfall, der sogar bei den tiefsten erreichten Temperaturen etwas grö-Ber zu werden scheint, so daß die Untersuchung in noch tieferen Temperaturen interessant wäre.

Als charakteristische Temperatur finden wir $\theta = 291$. F. Simon berechnet nach der Lindemannschen Schmelzpunktsformel den Wert $\theta = 210$.

d) Antimon (Montierungsart 1) (Tab. 33)

Unter den drei untersuchten Antimonproben ist Sb 3 diejenige, die die

Atom-Nr. Kristallsystem	Metall	33 rhomboedr.	As 1	
Herkunft, Veru	nreinigung	de Haën dopp. subl.	0,01 º/ _o Zn	$\theta = 291,$
Behandl	ung	-	_	berechnet nach
Läng Dick		11 : 0,5 × 4	m m ,5 mm	Formel (2)
Abstand der Stroi Abstand der Span			mm 7 mm	
He-Dampfdruck mm Hg	Grad abs.	r _{beob} .	$r_{ m red.}$	$r_{ m ber.}$
— 273,16		1	1	1
88,16		0,2184	0,2024	0,2092
		0,1825	0,1657	0,1657
	20,45	0,0321,	0,0123,	0,0021,
760	4,2	0,0228	0,0028	0,0000
2,3	1,36	0,0213	0,0012	0,0000
0,5	1,13	0,0211	0,0010	0,0000
_	0,00	(0,0201)		
R_0 in Ω b	ei 273,16	7,734	10-4	

Tabelle 32. Arsen

Fa. Schering-Kahlbaum als besonders reines Material auf Veranlassung der Reichsanstalt für Schmelzpunktsbestimmungen herstellte. Sie ist auch, nach dem Restwiderstande beurteilt, die reinste unter den drei Antimonsorten.

Der Widerstand von Sb 3, der bis zu $1,16^{\circ}$ abs. herunter untersucht worden ist, fällt im Temperaturgebiet des flüssigen Heliums zwischen 4,20 und $1,30^{\circ}$ abs. um $1,4^{\circ}/_{\circ}$, im Temperaturgebiet zwischen 1,30 und $1,16^{\circ}$ abs. aber plötzlich um $6,2^{\circ}/_{\circ}$, so daß auch hier vielleicht eine Andeutung der Sprungkurve zur Supraleitfähigkeit vorliegt.

Wegen seines größeren Restwiderstandes wurde Sb 2 bei der Bestimmung der charakteristischen Temperatur nicht benutzt. Aus den Messungen von Sb 1 und Sb 3 ergibt sich als charakteristische Temperatur $\theta=241$. F. Simon fand aus der spezifischen Wärme $\theta=140$. Nach C. Blom ist im Mittel $\theta=186$.

2) Extrapoliert aus dem Verlauf zwischen 4,2° und 1,3° abs.

1) P. Ewald u. C. Hermann, Ztschr. Krist. 65.

Lauelle oo. Aummon

Atom-Nr. Kristallsystem	Metall	51 sb 1	Ir.1) Sb 1	Sb 2	7	Sp	3		
Herkunft, Verunreinigung	ng	Kahlb.	Ī	de Haën (99,93% Sb)	(98)	Kahib. <0,05% 1929 <0,01%	<0,05% Fe; <0,03% As; <0,01% Pb u. Zn	Mittel aus Sb 1	$\theta = 241$, berechnet
Långe Dic	Dicke	$23,1 \mathrm{mm}\ 2,3 \times 2,7 \mathrm{mm}$	3×2,7 mm	58 mm	2×2 mm	60 mm	2×2 mm	u. Sb 3	nach Formel (2)
Abstand d. Stromdrähte,,, d. Spannungsdr.	drähte ngsdr.	21,7 mm 18,0 mm	mm	56,5 mm 52 mm	mm nm	57 mm 52 mm	m m		
He-Dampfdruck mg He	Grad.	r beob.	red.	"beob.	red.	"beob.	fred.	red.	fber.
774 774 780,4 759,5 11,3 1,4 1,4 0,66	273,16 88,37 88,37 72,452 20,482 20,482 20,483 20,483 20,483 1,190 1,30 1,30 1,30	0,24154 0,20884 0,03725 0,0243 0,0239	0,22845, 0,22315, 0,22315, 0,22315, 0,18952, 0,18952, 0,00061, 0,00061, 0,00062, 0,00020, 0,00020, 0,00020, 0,00020, 0,00020,	0,2887° 0,2838 ₄ 0,0640 ₉ 0,0637 ₈ 0,0637 ₈	(0,25546) (0,24983) (0,21437) (0,21437) (0,21437) (0,21437) (0,21437) (0,21396) (0,00056) (0,00057) (0,00016) (0,00016) (0,00016) (0,00016) (0,00016) (0,00016)	0,2441 0,2041 0,0319 0,01953 0,01954 0,01805	0,2294 (0,2238) (0,2146) (0,1887) (0,1886) (0,1886) (0,00043) (0,00043) (0,00043) (0,00043) (0,00043) (0,00043) (0,00043) (0,00013)	1 0,2289, 0,2234, 0,2144, 0,1891, 0,1890, 0,0005, 0,0005, 0,0001, 0,0001, 0,0001, 0,0001, 0,0001,	0,2358, 0,2294, 0,2294, 0,2294, 0,1889, 0,1889, 0,0000, 0,0000, 0,0000, 0,0000, 0,0000, 0,0000, 0,0000,
	0,00	0,00 (0,0237)		(0,0635 _e)	1	(0,01911) %)			 1
R, in O bei	273,16	3,417.10-3	10-3	7,801.10-3	10-3	5,473.10-8	8-01	1]

Tabelle 34. Wismut

Kristallsystem	Metall	53 rhomboedr	1r. Bi 1	Bi	4	Bi	70	;	$\theta = 62$
rein	Herkunft, Verunreinigung	Hartmann 1919 (1	Hartmann & Braun 1919 (Mylius)	Kablb. (Mylius)	0,000%	Hartmann & Brann	1929 0,00 °/	Mittel aus Bi 1, Bi 4	berechnet
Behandlung						6 200 C im Vak.	im Vak.	und Bi 5	nach
Dicke		53 mm	0,2 mm	59 mm 1,	59 mm 1,5×1,6 mm	58 mm	1 mm ¢		Formel (z)
pann	Abst. d. Strom- u. Spannungsdr.	53 mm	44 mm	57 mm	52 mm	58 mm	53 mm		
	Grad abs.	rbeob.	red.	rbeob.	red.	"beob.	red	red.	rber.
	273,16	-	-	-	-	Г		H	
	88,90	1	(0,3394,)	0,4323	0,3316	1	(0.3306)	0,3339	0,3163
	86,92	0,3582	0,3320,		(0,3254)	1	(0,3253)	0,3276	0,3088
	85,19		(0,3256,)	1	(0,3200)	0,4053,	0,3206	0,3221	0,3024
	77,82		(0,2981,)	0,4028	0,2968	1	(0,3007)	0,2986	0,2748
	22,72	Ì	(0.2980_6)	l	(0,2967)	0,38783	0,3006	0,2985	0,2747
	77,78	0,32553	0,2980	l	(0,2967)	!	(0,3006)	0,2984	0,2747
	20,46	ı	(0,04383)	0,1937	0,0506	1	(0.0570)	0,0505	0,0488
	20,41	i	(0.04361)	1	(0,0504)	0,1743	0,0567	0,0502	0,0486
	20,40	0,08105	0,04357	1	(0,0503)]	(0.0567)	0,0502	0,0486
	4,21	0,04024	0,00109	1	(0,0021)	1	(0,0019)	0,0017	0,0004
	4,21	ı	(0,00109)	i	(0,0021)	0,1264	0,0019	0,0017	0,0004
	4,20	;	(0,00109)	0,1525	0.0021	i	(0,0019)	0,0017	0,0004
_	3,44	1	(0,00079)	-	(0,0017)	0,1260	0,0015	0,0013	0,0005
-	1,39	0,03919	00000]	(0,0007)		(0,000)	-	0000
	1,26		-		(0,000)	0,1252	0,0006	(9000)	0,000
	1,24]	0,1512	9000,0		(0,000)	(0000)	0000
	1,17	0,03920	}	1	(0,0006)	 	(90006)	(0,0006)	0,000
_	0,00	(0,03919)	1	(0,1507)	i	(0,1247)	1	-	
	973 16	1706		1-01 0706	101	000	1		

e) Wismut (Montierungsart 1)

Als reinstes Wismut erwies sich eine Wismutprobe aus einem Materialvorrat von Holborn¹), den er sich von der Fa. Hartmann und Braun im Jahre 1919 beschafft hatte und der von Mylius²) gereinigt wurde.

Für Bi 1 finden wir $\theta = 70.4$, für die weniger reinen Sorten Bi 4 und Bi 5 im Mittel $\theta = 53.9$. Natürlich können diese Unterschiede zum Teil auf Bevorzugung gewisser Kristallrichtungen bei den verschiedenen Proben beruhen.

F. Simon berechnet nach der Lindemannschen Schmelzpunktsformel $\theta = 80$. Nach C. Blom ergibt sich im Mittel der noch größere Wert $\theta = 120$.

6. Gruppe

Von der sechsten Gruppe wurden Chrom, Molybdän, Wolfram, Uran, Selen und Tellur untersucht.

	Tab	elle 35. Chron	n		
Atom-Nr. Kristallsystem	Metall	24 K. rz. Cr 1	C		nach
Herkunft, Veru	ınreinigung	de Haën 0,5°/ _o Fe geschm.		ngen	hnet 1 (2a)
Behand	lung	-	Mc. Le		erec mel
Läng Dick		21 mm 2,5 × 2,5 mm	Niv ar		495, berechnet Formel (2a)
Abstand der Stron Abstand der Spar		19,5 mm 13,1 mm	Will	helm	= 0
He-Dampfdruck mm Hg	Grad abs.	r _{beob} .	r _{beob.}	r _{red.}	r _{ber.}
	273,16 86.14		1	1	1
86,14		0,8561	0,134	0,085	0,085,
- 80,00 - 78,42		0,8507	· —		°
-	20,6	·	$0,053_{8}$	0,000,	0,000
_	$\begin{array}{c c} - & 20,6 \\ - & 20,45 \end{array}$				
_ \ \ 20,45		0,832			\ -
760,4	4,20	0,832 0,83 ₄	0,052	0,000	0,000,
	4,20 2,25	0,834	0,052 ₆ 0,052 ₆	0,000 ₀ 0,000 ₀	0,000,
760,4 2,9	4,20	0,832 0,834 0,83s		0,000 ₀ 0,000 ₀	0,000,

¹⁾ L. Holborn, Ann. d. Phys. 59. S. 145. 1919.

F. Mylius u. E. Groschuff, Ztschr. f. anorg. Chem. 96.
 237. 1916.

Atom-Nr.

1,3

 R_0 in Ω bei

a) Chrom (Montierungsart 3)

In Tab. 35 sind die gemessenen r-Werte wiedergegeben. Das untersuchte Metall hat einen so großen Restwiderstand, daß eine Reduktion auf ideal reines Material und die Berechnung der charakteristischen Temperatur unmöglich ist.

In Tab. 35 sind außerdem die Meßresultate von McLennan¹) und seinen Mitarbeitern an reinerem Chrom mit aufgenommen. Es ergibt sich als charakteristische Temperatur der Wert $\theta = 495$. F. Simon berechnet aus der Lindemannschen Schmelzpunktsformel den Wert $\theta = 445$. Nach C. Blom erhält man $\theta = 411$.

Molybdän

Tabelle 36.

Metall Mo 1 Mo 2 Mo 3 K. rz. Kristallsystem Herkunft, Verunreinigung Mo 1 Holb. Osram Osram 2.5 h 500 ° C 2.5 h 500 ° C Behandlung (i. Vakuum) $60 \, \mathrm{mm}$ 59 mm 60 mm Länge Dicke 0,1 mm ϕ 0,5 mm Φ 0,7 mm ϕ Abstand der Stromdrähte 58,7 mm 57,3 mm 58.0 mm Abstand der Spannungsdrähte 52,0 mm 51,5 mm 51,5 mm He-Dampfdruck Grad abs. rbeob. r_{beob.} rbeob. mm Hg 273,16 1 1 0,1701 86,92 774 86,80 0.20300,1719 77,83 77,78 0.1370 0,2245 20,42 0,1307 0,0826, 0,0448, 20,41 0,1318 0,0847 767,5

 J. C. Mc Lennan, C. D. Niven u. J. O. Wilhelm, Phil. Mag. VI. S. 672. 1928.

0,1335

0,366

1,51 1,28

1,26

0,00

273,16

0.0455

1,371 · 10 - 2

0,0863

 $7.276 \cdot 10^{-3}$

b) Molybdän (Montierungsart 3 bzw. 4)

Alle drei Molybdän-Proben zeigen nach einer Abnahme des Widerstandes zwischen 273° und 20° abs. im Temperaturgebiet des flüssigen Heliums eine Widerstandszunahme. Aus diesem Grunde ist eine Reduktion der Widerstandswerte auf ideal reines Metall und eine Ableitung der charakteristischen Temperatur unmöglich.

F. Simon berechnet nach der Lindemannschen Schmelzpunktsformel den Wert $\theta = 360$ und leitet aus der spezifischen Wärme den Wert¹) $\theta = 379$ ab. Nach C. Blom ergibt sich der Mittelwert $\theta = 363$.

c) Wolfram (Montierungsart 3 bzw. 4)

Von den beiden geprüften Wolframproben ist die eine der von Grüneisen und Goens²) auf elektrisches und ther-

Atom-Nr. Kristall- system	Metall	74 K. rz.	W 1	w	2		nach
Herku Verunreir	nft, nigung	Osraml	ampe ?	van Arkel Gr. u. Goe., 1		Mittel aus	berechnet ormel (2)
Behand	llung	geg	lüht		-	W 1 und	, berechn Formel (2)
Läng Dick		60 r 0,03 r	nm nm ф	etwa 6		W 2	385
Abst. d. So., d. Spa.			mm	59 mm 52 mm			= 0
He-Dpfdr. mm Hg	Grad abs.	r _{beob.} r _{red.}		r _{beob.}	$r_{ m red.}$	r _{red.}	r _{ber.}
_	273,16	1	1	1	1	1	1
_	87,40		(0,1583)	0,1565	0,1560,	0,1572	0,1574
	78,23	0,1478	0,1209	'-	(0,1177,)	0,1193	0,1192
	77,60	· —	(0,1183)		0,1151,	0,1167	0,1167
_	20,44	0,0317	0,0010	0,00108	0,00056	0,0007 _s	0,0009,
774	4,22	0,0307	0,0000	- 	$(0,00002_{5})$	0,00001	0,0000
770	4,21		(0,0000)	0,00054	0,00002	0,0000,	0,0000
1,7	1,31	0,0307	0,0000	0,00053	0,000014	0,0000	0,0000
	0,00	(0,0307)	! -]	(5,16.10-4)		<u> </u>	l —
R_0 in Ω bei	273,16	2,	60	2,450	10-4	1	

Tabelle 37. Wolfram

¹⁾ F. Simon, Phys.-chem. Tabellen von Landolt-Börnstein.

²⁾ E. Grüneisen u. E. Goens, Ztschr. f. Physik 44. S. 615. 1927.

misches Leitvermögen hin untersuchte Einkristall von van Arkel, Eindhoven. Der Einkristall zeigt einen Restwiderstand von $0.00052~R_0$. Supraleitfähigkeit wurde nicht beobachtet.

Aus den reduzierten r-Werten finden wir für die charakteristische Temperatur $\theta = 385$, während F. Simon $\theta = 306$ und in den Tabellen von Landolt-Börnstein den Wert $\theta = 310$, beide aus der spezifischen Wärme abgeleitet, angibt.

d) Uran (Montierungsart 3)

Das von uns untersuchte Uranmetall ist noch recht unrein und hat dementsprechend einen hohen Restwiderstand, so daß man aus den beobachteten Werten die charakteristische Temperatur nicht berechnen kann.

Mc Lennan, Howlett und Wilhelm¹) stand eine etwas reinere Uranprobe zur Verfügung, die sie bis $2,3^{\circ}$ abs. herunter untersuchten. Aber auch der Restwiderstand dieser Probe war noch $0,3\cdot R_0$, so daß man auch aus den Messungen in Toronto kein θ berechnen kann.

Atom-Nr. 92 Metall U 1 K. kz. 2) Kristallsystem $\begin{array}{ll} 1,24\,^{o}/_{o}\ N\,; & 0,2\,^{o}/_{o}\ \mathrm{Si}\,; \\ 0,03\,^{o}/_{o}\ \mathrm{Al}\,; & 0,34\,^{o}/_{o}\ \mathrm{Fe}\,; \\ 0,1\,^{o}/_{o}\ \mathrm{Pb} \end{array}$ Herkunft, Verunreinigung de Haën 32 mm Länge Dicke $4 \times 3.5 \text{ mm}$ Abstand der Stromdrähte 28 mm Abstand der Spannungsdrähte 22 mm He-Dampfdruck Grad rbeob. mm Hg abs. 273,16 86,80 0,7001 77,83 0.6844 20,41 4,20 760.4 1,41 0.5400

Tabelle 38. Uran

 $R_{\scriptscriptstyle 0}$ in Ω bei

6,811 • 10-3

273,16

¹⁾ a. a. O.

²⁾ Mc. Lennan u. Mc. Kay, Trans. Roy. Soc. 24. 1930.

Als Wert für den spezifischen elektrischen Widerstand bei 0° C erhält man etwa $4 \cdot 10^{-4} \Omega$ cm.

e) Selen (Montierungsart 7)

Das von der Fa. de Haën in Stangenform gelieferte Selen wurde pulverisiert, in ein enges, mit vier eingeschmolzenen Platindrähten versehenes Glasrohr eingefüllt, sodann nach den Angaben von Chr. Ries¹) im Vakuum 12 Stunden auf 210° C erhitzt und langsam abgekühlt, worauf das Glasröhrchen abgeschmolzen wurde.

Tabelle 39. Selen

	1 2 0 611	B DO. BEIGH	
Atom-Nr. Kristallsystem	Metall	34 graukristall. Modifik. II, hex.	Se 1
Herkunft, Verunre	einigung	de Haën	0,2°/ ₀ As
Behandlun	g	12 ^b	210°C
Länge Dicke		etwa 8 m 4 m	
Abstand der Stromd Abstand der Spann		5 m 2 m	
He-Dampfdruck mm Hg	Grad abs.	r _{beol}) .
657 1,3	273,16 87,16 77,61 20,34 4,04 1,26	1 ~ 1, ~ 1, ~ 1, ~ 36 ~ 74	2
R_0 in Ω bei	273,16	~2,85.	107

Der Widerstand der so vorbehandelten Selenprobe blieb bis herunter zur Temperatur der flüssigen Luft und des flüssigen Wasserstoffs nahezu konstant, stieg dann aber beträchtlich im Gebiet des flüssigen Heliums.

f) Tellur (Montierungsart 3 bzw. 5)

Die beiden untersuchten Tellurproben zeigen ein Minimum des Widerstandes, das bei Te 2, der reineren der beiden Sorten,

¹⁾ Chr. Ries, "Die elektrischen Eigenschaften und die Bedeutung des Selens für die Elektrotechnik", Berlin-Nikolassee 1908.

ausgeprägter ist als bei Te 1. Auch ist die Widerstandszunahme im Bereich zwischen 4,2° und 1,1° abs. bei Te 2 wesentlich stärker als bei Te 1. Die Leidener Forscher¹) fanden gleichfalls bei der von ihnen untersuchten Tellurprobe, deren Reinheitsgrad vermutlich zwischen dem von Te 1 und Te 2 liegt, ein Widerstandsminimum, das bei etwa 48° abs. lag.

Atom-Nr. Kristallsystem	Metall	52 trig. Te 1	Те 2
Herkunft, Verun	einigung	Kahlb. ?	Marckwaldt 0,3 °/0 Ag 0,01°/0 As
Länge Dicke		49,7 mm 3,0 mm ф	6 mm 1 × 2 mm
Abstand der Stro Abstand der Spa		44,5 mm 36,0 mm	3 mm 3 mm
He-Dampfdruck mm Hg	Grad abs.	r _{beob} .	r _{beob} .
759,5 757,7 213,1 1,4 0,6 0,5	273,16 88,37 88,30 77,75 77,61 20,46 20,42 4,19,5 4,19,5 1,27 1,15 1,13	1 0,845 ₀ 0,829 ₄ 0,854 ₇ 0,914 0,922 0,940	1 0,411 ₇ 0,386 ₆ — 0,3812 — 0,5299 — 0,5468 0,5470
$R_{\scriptscriptstyle 0}$ in Ω bei	273,16	5,15	2,94

Tabelle 40. Tellur

Wahrscheinlich wird ja genügend reines Tellur (bzw. ein Einkristall) im Gegensatz zu den bisher untersuchten Proben eine normale Temperatur-Widerstandskurve besitzen, ähnlich wie dies bei Titan, Zirkon usw. schon festgestellt ist.

¹⁾ H. Kamerlingh Onnes u. Bengt Beckman, Comm. Leiden Nr. 132d. 1912. Bengt Beckman, Comm. Leiden Suppl. Nr. 40. 915.

7. Gruppe

Von der siebenten Gruppe wurden Mangan und Rhenium untersucht.

a) Mangan (Montierungsart 1)

Beide untersuchten Mangansorten sind so unrein, daß eine Bestimmung der charakteristischen Temperatur unmöglich ist.

Atom-Nr. Kristallsystem	[etall	25 K.	Mn 1	Mn 2
Herkunft, Verunrei	nigung	Kahlbaum "nach Goldschmidt"	6% Fe; 0,05% Co; 0,2% Ni; 0,05% Cr; 0,05% V	Simon geschm.
Länge Dicke		1	11 mm × 1,8 mm	20 mm 3×3 mm
Abstand der Strom Abstand d. Spanne		1	10 mm 6 mm	17,5 mm 9,5 mm
He-Dampfdruck mm Hg	Grad abs.		r _{beob.}	r _{beob} .
763,2 760,4 2,9 1,0	273,16 88,90 77,32 20,46 4,20 4,20 1,41 1,22		1),9776),9807 1,0020),976 ₅),958 ₁	1 0,9695 0,9729 1,0082 0,990 — — 0,986
$R_{_{0}}$ in Ω bei	273,16	5,1	61·10 ⁻⁸	6,486 • 10 - 3

Tabelle 41. Mangan

Für Mn 1 beträgt der spezifische elektrische Widerstand bei 0° C etwa 1.5 · 10⁻⁴ Ω cm, für Mn 2 etwa 6 · 10⁻⁴ Ω cm.

b) Rhenium (Montierungsart 3). (Tab. 42)

Der Widerstand der gesinterten Rheniumprobe fällt bis zur Temperatur des flüssigem Wasserstoffs ab und bleibt von dort an bei weiterer Temperatursenkung nahezu konstant.

Aus den auf ideal reines Metall reduzierten r-Werten findet man als charakteristische Temperatur $\theta = 310$.

Atom-Nr. Kristallsysten	Metall	75 hex. dichtest geps	Re 1	
Herkunft, Ver	unreinigung	Noddack (gesintert)		$\theta = 310$ berechnet
Läng Dick			mm 0,83 mm	nach Formel (2a)
Abstand der Stron Abstand der Spar			mm mm	
He-Dampfdruck mm Hg	Grad abs.	r _{beob} .	red.	$r_{ m ber.}$
776,3 2,3	273,16 88,23 78,29 20,45 4,22 1,36	1 0,2849 0,2474 0,110 0,110 0,109 (0,108 ₅)	1 0,197 ₉ 0,155 ₈ 0,001 ₇ 0,001 ₇ 0,000 ₆	1 0,198, 0,155, 0,001, 0,000, 0,000,
R_0 in Ω	bei 273,16	0,1	364	

Tabelle 42. Rhenium

Der spezifische elektrische Widerstand bei 0°C beträgt 18,9 · 10^-6 Ω cm.

8. Gruppe

Von der achten Gruppe wurden die Metalle Eisen, Ruthenium, Kobalt, Rhodium, Iridium, Nickel, Palladium und Platin untersucht.

a) Eisen (Montierungsart 1). (Tab. 43)

Es wurden 11 Eisenproben geprüft. Fe 1, Fe 2 und Fe 2* sind von dem einen²) von uns bereits früher untersuchte Eisensorten, die auch Holborn³) schon bis zur Temperatur der flüssigen Luft herunter prüfte. Fe 3, das von Grüneisen und Goens⁴) auf elektrische und thermische Leitfähigkeit hin

¹⁾ V. W. Goldschmidt, Die Naturwissenschaften 17. S. 134. 1929.

W. Meissner, Phys. Ztschr. 27. S. 725. 1926; Phys. Ztschr. 29.
 S. 897. 1928.

³⁾ L. Holborn, Ann. d. Phys. (4) 49. S. 145. 1919.

⁴⁾ E. Grüneisen u. E. Goens, Ztschr. f. Phys. 44. S. 615. 1927.

untersuchte Elektrolyteisen, ist, nach dem Restwiderstande von nur 0,006 Ro zu urteilen, die reinste Eisenprobe.

Durch Reduktion der beobachteten Widerstandswerte auf ideal reines Metall erhält man bei den 11 Proben keine befriedigende Übereinstimmung. Sie ist sogar nicht einmal bei sonst gleichem, jedoch verschieden vorbehandelten Material vorhanden.

Aus den reduzierten r-Werten berechnet sich im Mittel als charakteristische Temperatur der Wert $\theta = 519$.

E. Grüneisen 1) findet nach Formel (5) unter Berücksichtigung des ganzen Temperaturintervalles zwischen 200 und 873° abs. mit den Konstanten $a_1 = +0,0008$ und $a_3 = +0.0000015$ den Wert $\theta = 470$. F. Simon ermittelt aus den spezifischen Wärmen den Wert $\theta = 390-395$. Nach C. Blom findet man als Mittelwert $\theta = 416$.

b) Ruthenium (Montierungsart 1). (Tab. 44)

Der Widerstand des untersuchten Rutheniums, eines von der Fa. W. C. Heraeus durch Sinterung des gepreßten Metallpulvers hergestellten Stabes, hat zwischen 4,21° und 1,11° abs. einen konstanten Wert. Das steht im Gegensatz zu den Angaben von Mc Lennan, Allen und Wilhelm²), nach denen Ruthenium bei 2,04° abs. supraleitend wird. Der Restwiderstand unseres Rutheniums ist aber nur 0,08 Ro, der des in Toronto geprüften Materials vor dem Sprungpunkt 0,75 R_o, so daß vielleicht die Supraleitfähigkeit der letzteren auf Beimengungen zu schieben ist. Andernfalls wäre daran zu denken, daß ungenügende Sinterung bei unserem reineren Ruthenium die Supraleitfähigkeit verhindert.

Als charakteristische Temperatur finden wir aus unseren Messungen den Wert $\theta = 426$.

F. Simon berechnet nach der Lindemannschen Schmelzpunktsformel $\theta = 350$.

¹⁾ E. Grüneisen, Handbuch, Artikel "Metallische Leitfähigkeit".

²⁾ J. C. Mc Lennan, Nature February 1, 1930; J. Mc Lennan, J. F. Allen u. J. O. Wilhelm, Trans. Roy. Soc. Canada, Serie III. Bd. 23. Sect. III. S. 283, 1929.

Eisen
43a.
elle
[ap

Atom-Nr. Kristalisystem	Metall	26 K. rz.	z. Fe 1	Fe	52	Fe	Fe 2*		Fe :3	Fe	7
Herkunft, Verunreinigung	ft, igung	(Ho)	Holborn) Heraeus	= Fe 2 0, Holb. 0, Kahlb. 0, Nitrat-E. C	0,004% On: 0,004% Cu; 0,0049 Ni u. Co; Spuren C, Si, O ₂	<u>'</u>	Fe2Holb. (wieFe2) Kahlb.	Fe I G	I Gr. u. Goe. Griesheim	Her	Heraeus Elektrol.
Behandlung	Bun	getei	getempert	getempert	1pert	geten	getempert	gete	getempert	gereckt	gereckt gr. Krist.
Länge Dicke		etwa 55 mm 0,2 mm	. 55 mm 0,2 mm ()	59,7 0,3	59,7 mm 0,2 mm 0	60,0 mm 0,2 mm	0,0 mm 0,2 mm Φ	, 1. 88.	33,0 mm 1,0 mm Φ	1,0	58,2 mm 1,0 mm ()
Abst, d. Stromdrahte, d. Spannungsdr.	mdrähte nungsdr.	etwa	56 mm 50 mm	59,7 56,6	59,7 mm 56,6 mm	60,0 56,3	60,0 mm 56,3 mm	8,8	83,0 mm 30,0 mm	58,2 58,4	68,2 mm 68,4 mm
He-Dampf- druck mm Hg	Grad abs.	rbeob.	fred.	beob.	red.	"beob.	red.	"beob.	red.	rbeob.	red.
	88.88.88.65.75.92 88.88.88.75.75.92 88.88.75.75.92 88.87.75.88.81.1	0,1169 0,0019, 	1 (0,1066) (0,0908) (0,0908) (0,0908) (0,0908) (0,0908) (0,0988) (0,0908) (0,00003) (0,00003) (0,00003) (0,00003)	0,1002 0,1002 0,0161 0,0141 0,0141	(0,1022) (0,1022) (0,00353) (0,00353) (0,00353) (0,00353) (0,00353) (0,00353) (0,0000) (0,0000) (0,0000)	0,0112 0,0112 0,0103 0,0103	1 (0,1007) (0,0888) (0,0887) (0,0728) (0,0728) (0,0010 (0,0000) (0,0000) (0,0000) (0,0000)	0,0076, 0,0076, 0,0062, 0,0061,	1 (0,088%) (0,088%) (0,077%) (0,068%) (0,067%) (0,067%) (0,067%) (0,000%) (0,000%)	1 0,0756 0,0089, 0,0081,	1 (0,0900,0) (0,0900,0) (0,0782,0) (0,0872,0) (0,0873,0
1	00,0	0,00 (0,02155)	1	(0,0141)	1	(0,0102)	1	(0,00616)	1	(0,00818)	j
R, in O bel 273,16	273,16	0	0,149	60	0,160	ر ، س إ	0,156	3,48.10-3	10-3	20'9	6,07-10-3

e) Kobalt (Montierungsart 1). (Tab. 45)

Die beiden Kobaltsorten Co $\,2\,$ und Co $\,3\,$ sind nicht so rein, wie das früher von Holborn $^1)\,$ untersuchte Material (Co II

¹⁾ L. Holborn, Ztsch. f. Phys. 8. S. 58. 1922.

Tabelle 43b. Eisen

	6 = 519 be- rechnet	Formel	<u>9</u>		"ber.	000000000000000000000000000000000000000	۱ -
<u> </u>	Mittel aus Fe 1	Fe 10			red.	1 0,1023, 0,0834, 0,0834, 0,0834, 0,0811, 0,0811, 0,0725, 0,0725, 0,0000, 0,0000, 0,0000, 0,0000,	-
01	= Fe VII)	15h Rotg. geätzt	mm ()		red.	1 (0,01115,0) (0,01115,0) (0,01115,0) (0,01115,0) (0,01	8,017.70
Fe 10	S. u. H. 5 × (= elektr.	15h Rot	67,5 mm 0,3 mm	67,5 mm 51,7 mm	Tbeob.	1 	22048
9.9	S. u. H. 5 × elektr.	geätzt	mm 0		red.	(0,1181) (0,1181) (0,1089) (0,0089) (0,00743) (0,00743) (0,0000) (0,0000) (0,0000)	0,176
Fe	ου το π ου Χ	3 № 300°	67,8 mm 0,3 mm	57,8 mm 55,1 mm	rbeob.	4 1	٠ <u>,</u>
Fe 8	S. u. H. 5 × elektr.	3 h 300°	### ###	88	red.	0,1124 (0,0124) (0,0124) (0,0126) (0,0126) (0,0126) (0,0126) (0,0000) (0,0000) (0,0000)	0,123
<u> </u>	ου χ. Χ. Χ. σ.	348	58,7 mm 0,3 mm	58,7 mm 54,4 mm	rbeob.	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- -
2.1	S. u. H. 5 × elektr.	1	58,7 mm 0,3 mm (58,7 mm 54,0 mm	red.	0,1166 (0,1073) (0,0000) (0,0000) (0,0000) (0,0000) (0,0000) (0,0000) (0,0000)	
Fe	sy.×		83.0	58,7	rbeob.	0 0 0 0 0 0 0	0,0733
9.	Beler	300 ₀	58,4 mm 0,1 mm ()	58,4 mm 54,4 mm	red.	1 (0.0896,) (0.0845,) (0.0845,) (0.0891,) (0.0891,) (0.0001,) (0.0000,)	33
F	Kroussler	8 g	58,4 0,1	58,4 54,4	r beob.	1 	0,763
و	ssler		8,6 mm 0,1 mm ()	m m m m	red.	1 (9941a) (9883-1) (9883-1) (9841-1) (983-1) (9692-1) (9693-1) (96	_ _
Fe	Krtussler	1	58,6 mm 0,1 mm	58,6 mm 54,3 mm	"beob.	0,0162,0	0,679
	s & elle	faT	.18V		Grad abs.	29900000000000000000000000000000000000	~ %

von Holborn). Bei Co 2 und Co 3 steigt der Widerstand in den tiefsten Temperaturen wieder an. Das erschwert, ähnlich wie es bei anderen nicht genügend reinen Metallen schon weiter oben angegeben ist, die Reduktion der beobachteten Werte auf ideal reines Material und die Berechnung der R_0 in Ω bei 273,16

0,00

Atom-Nr. Kristallsystem	Metall	44 hex.	Ru 1			
Herkunft, Veru	nreinigung	Heracus	0,08;1% Pb; 0,2% Rh; 0,03% Pt; 0,01% Ir uf Fe nicht untersucht	$\theta = 420$ berechne		
Behandl	ung			nach Formel		
Länge Dicke		2	(2 a)			
Abstand der Stra Abstand d. Spani						
He-Dampfdruck mm Hg	Grad abs.	r _{beob.}	r _{red} .	r _{ber} .		
772,6 3,5	273,16 87,16 77,60 20,36 4,21 1,45	0,2106 0,1754 0,0829 0,0827 0,0827	0,1011 ₅ 0,0002 ₀ 0,0000 0,0000	1 0,1373 ₀ 0,1011 ₅ 0,0007 ₁ 0,0000 0,0000		
0,7	1,17	0,0827	0,0000	0,0000		

Tabelle 44. Ruthenium

charakteristischen Temperatur. Aus den Messungen an Co2 und Co 3 ergibt sich $\theta = 401$. F. Simon berechnet nach der Lindemann schen Schmelzpunktsformel $\theta = 375$. Nach C. Blom findet man im Mittel den Wert $\theta = 402$.

(0.0827)

 $4.199. \cdot 10^{-1}$

d) Rhodium (Montierungsart 1). (Tab. 46)

Rh 2 ist ein schon früher von Grüneisen und Goens') auf elektrische und thermische Leitfähigkeit hin bis zur Temperatur des flüssigen Wasserstoffs herunter untersuchter, ziemlich reiner Draht. Hier sind die Messungen über den elektrischen Widerstand in das Temperaturgebiet des flüssigen Heliums ausgedehnt worden.

Für die charakteristische Temperatur folgt aus unseren r-Werten $\theta = 419$. F. Simon berechnet nach der Lindemannschen Schmelzpunktsformel $\theta = 315$.

¹⁾ E. Grüneisen u. E. Goens, Ztschr. f. Phys. 44. S. 615. 1927.

Tabelle 45. Kobalt

Atom-Nr. Kristall- system	Metall	27 diel hex. gep	ntest Co 2 ackt	C	o 3		- q	
Herkunft, Verunreinigung		Heraeu von A. E. gesinte (Holborn	.Ġ. ?	Trains. 0	$0.05 ^{\rm o}/_{\rm o} { m Cr} \ 0.01 ^{\rm o}/_{\rm o} { m Mn} \ 0.05 ^{\rm o}/_{\rm o} { m Fe}$	Mittel	401, berechnet nach Formel (2)	
Behand	lung		b. 500 °C, Vakuum		molzen akuum		1, ber Form	
Läng Dick			nm φ 6 mm	12,5 2,5	mm mm		$\theta = 40$	
Abst. d. St ,, d. Spar			mm mm		mm mm			
	1 ~ .	1		١ .		I	i	
He Dpfdr. mm Hg	Grad abs.	r _{beob} .	$r_{ m red.}$	r _{beob.}	$r_{ m red.}$	r _{red.}	r _{ber.}	
	abs.		<u> </u>	<u> </u>		<u> </u>		
	abs. 273,16	r _{beob.}	1	1	1	1	7	
	273,16 88,16	1	1 (0,1509)	<u> </u>	1 0,1397	1 0,1453		
	273,16 88,16 86,92		1	1	1	1 0,1453 0,1410	7	
	273,16 88,16	1 0,1829	1 (0,1509) 0,1465	0,1901	1 0,1397 (0,1355)	1 0,1453 0,1410	7 0,1512 0,1460	
	273,16 88,16 86,92 78,30	0,1829 0,1516	1 (0,1509) 0,1465 (0,1158)	0,1901	1 0,1397 (0,1355) 0,1065	1 0,1453 0,1410 0,1112 0,1093	7 0,1512 0,1460 0,1112	
	273,16 88,16 86,92 78,30 77,78 20,45 20,42	1 0,1829	1 (0,1509) 0,1465 (0,1158) 0,1139	0,1901 	1 0,1397 (0,1355) 0,1065 (0,1047) 0.0001 ₁ (0,0000 ₃)	1 0,1453 0,1410 0,1112 0,1093 0,0019 ₈ 0,0019 ₄	7 0,1512 0,1460 0,1112 0,1093 0,0008 ₄ 0,0008 ₄	
mm Hg	273,16 88,16 86,92 78,30 77,78 20,45 20,42 20,41	0,1829 0,1516	1 (0,1509) 0,1465 (0,1158) 0,1139 (0,0038 ₅) 0,0038 ₄	1 0,1901 0,1588 0,0586, 0,0585,	1 0,1397 (0,1355) 0,1065 (0,1047) 0,0001	1 0,1453 0,1410 0,1112 0,1093 0,0019 ₈ 0,0019 ₄ 0 0019 ₉	7 0,1512 0,1460 0,1112 0,1093 0,0008 ₄ 0,0008 ₄	
mm Hg	273,16 88,16 86,92 78,30 77,78 20,45 20,42 20,41 4,22	0,1829 0,1516 0,04628	1 (0,1509) 0,1465 (0,1158) 0,1139 (0,0038 ₅) 0,0038 ₄ (0,0038 ₄)	0,1901 	1 0,1397 (0,1355) 0,1065 (0,1047) 0.0001 ₁ (0,0000 ₃)	1 0,1453 0,1410 0,1112 0,1093 0,0019 ₈ 0,0019 ₉ 0,0000	7 0,1512 0,1460 0,1112 0,1093 0,0008 ₄ 0,0008 ₄ 0,0008 ₄ 0,0008	
mm Hg	273,16 88,16 86,92 78,30 77,78 20,45 20,42 20,41 4,22 4,20	0,1829 0,1516 0,04628 — 0,0426	1 (0,1509) 0,1465 (0,1158) 0,1139 (0,0038 ₅) 0,0038 ₄	1 0,1901 0,1588 0,0586, 0,0585,	1 0,1397 (0,1355) 0,1065 (0,1047) 0.0001 ₁ (0,0000 ₃)	1 0,1453 0,1410 0,1112 0,1093 0,0019 ₈ 0,0019 ₉ 0,0000	7 0,1512 0,1460 0,1112 0,1093 0,0008 ₄ 0,0008 ₄	
mm Hg	273,16 88,16 86,92 78,30 77,78 20,45 20,42 20,41 4,22 4,20 1,51	0,1829 0,1516 0,04628	1 (0,1509) 0,1465 (0,1158) 0,1139 (0,0038 ₅) 0,0038 ₄ (0,0038 ₄)	1 0,1901 	1 0,1397 (0,1355) 0,1065 (0,1047) 0.0001 ₁ (0,0000 ₃)	1 0,1453 0,1410 0,1112 0,1093 0,0019 ₈ 0,0019 ₉ 0,0000	7 0,1512 0,1460 0,1112 0,1093 0,0008 ₄ 0,0008 ₄ 0,0008 ₄ 0,0008	
mm Hg	273,16 88,16 86,92 78,30 77,78 20,45 20,42 20,41 4,22 4,20	0,1829 0,1516 0,04628 — 0,0426	1 (0,1509) 0,1465 (0,1158) 0,1139 (0,0038 ₅) 0,0038 ₄ (0,0038 ₄)	1 0,1901 0,1588 0,0586, 0,0585,	1 0,1397 (0,1355) 0,1065 (0,1047) 0.0001 ₁ (0,0000 ₃)	1 0,1453 0,1410 0,1112 0,1093 0,0019 ₈ 0,0019 ₉ 0,0000	7 0,1512 0,1460 0,1112 0,1093 0,0008 ₄ 0,0008 ₄ 0,0008 ₄ 0,0008	
mm Hg	273,16 88,16 86,92 78,30 77,78 20,45 20,42 20,41 4,22 4,20 1,51 1,36	0,1829 0,1516 0,04628 — 0,0426	1 (0,1509) 0,1465 (0,1158) 0,1139 (0,0038 ₅) 0,0038 ₄ (0,0038 ₄)	1 0,1901 	1 0,1397 (0,1355) 0,1065 (0,1047) 0.0001 ₁ (0,0000 ₃)	1 0,1453 0,1410 0,1112 0,1093 0,0019 ₈ 0,0019 ₉ 0,0000	7 0,1512 0,1460 0,1112 0,1093 0,0008 ₄ 0,0008 ₄ 0,0008 ₄	

e) Iridium (Montierungsart 1). (Tab. 47)

Das untersuchte Iridium stammt aus einem alten, von Heraeus bezogenen Vorrat Holborns 1) und ist etwas reiner als das von Holborn untersuchte Ir 1.

Aus den auf ideal reines Material reduzierten r-Werten finden wir als charakteristische Temperatur $\theta = 316$. E. Grüneisen²) berechnet aus der Temperaturabhängigkeit des Ausdehnungskoeffizienten $\theta=283$ und aus dem Verhältnis des

¹⁾ L. Holborn, Ann. d. Phys. (4) 59. S. 145. 1919.

²⁾ E. Grüneisen, Handbuch, Artikel, Zustand des festen Körpers", S. 44.

Tabelle 46. Rhodium

Atom-Nr. Kristallsystem	etall	45 K. fz.	Rh 2			
Herkunft, Verunreit	nigung	Heraeus Gr. u. Goe.	?			
Behandlung		10min (im Vakuum)	1030° C	$\theta = 419,$ berechnet nach Formel (2a)		
Länge Dicke		etwa 5 1,3 × 1	Tormer (Da)			
Abstand der Strome Abstand d. Spannu		etwa 5 27 1				
He-Dampfdruck mm Hg	Grad abs.	r _{beob.} red.		r _{ber} .		
	273,16	1	1	1		
	87,40	0,1466	$0,1440_{6}$	0,14209		
	77,60	0,1066	0,1039	0,10394		
	20,44	$3,53 \cdot 10^{-3}$	$0.57 \cdot 10^{-3}$	0,77 • 10-3		
774	4,22	3,09 · 10 - 3	$0.13 \cdot 10^{-8}$	$0.00 \cdot 10^{-3}$		
1,8	1,315	3,00.10-3	0,04 · 10-3	0,00.10-3		
	0,00	$(2,96 \cdot 10^{-3})$		<u> </u>		
$\overline{R_{o}}$ in Ω bei	273,16	7,443	·10-4	_		

Tabelle 47. Iridium

Atom-Nr. Kristallsystem	Metall	77 K. fz.	Ir 1			
Herkunft, Ver	ınreinigung	Holborn Heraeus	?	$\theta = 316$		
Behand	lung	2,5 ^h 5	00° C	berechnet nach		
Läng Dick		35,1 0,5 × 0		Formel (2a)		
Abstand der Stron Abstand der Span		35,1 28,8				
He-Dampfdruck mm Hg	Grad abs.	r _{beob} .	red.	r _{ber} .		
<u> </u>	273.16 77,73	1 0,1905	1 0,1500	0,1500		
774 1,6	20,42 4,22 1,29	0,0536 0,0480 0,0478	0,00621 ₇ 0,0003 ₄ 0,0001 ₉	0,00165 ₃ 0,0000 ₁ 0,0000 ₀		
	0,00	(0,0476 ₈)				
R_0 in Ω 1	pei 273,16	6,37 ·	10 ^{-s}	-		

Ausdehnungskoeffizienten zur Atomwärme $\theta = 280$, während F. Sim on nach der Lindemannschen Schmelzpunktsformel $\theta = 260$ findet. Nach C. Blom erhält man im Mittel $\theta = 268$.

f) Nickel (Montierungsart 1)

Tabelle 48 enthält die Messungen des einen 1) von uns an einem Nickeldraht, der, wie der geringe Restwiderstand zeigt, sehr rein ist. Als charakteristische Temperatur erhält man $\theta = 274$. F. Simon berechnet nach der Lindemannschen Schmelzungsformel $\theta = 375$ und aus den spezifischen Wärmen den Wert $\theta = 370$. Nach C. Blom findet man im Mittel $\theta = 402$.

Tabelle 48. Nickel

Atom-Nr. Kristallsystem	Metall	28 K. fz.	Ni 3	
Herkunft, Ver	unreinigung	Holborn	$\theta = 472$	
Behand	lung	in Wasserst	toff geglüht	berechnet nach
Läng Dick		etwa 5 0,5 m	Formel (2)	
Abstand der Stro Abstand der Spar		etwa 55 50		
He-Dampfdruck mm Hg	Grad abs.	r _{beob.}	$r_{ m red.}$	r _{ber} .
$\begin{array}{c cccc} - & 273,16 \\ - & 87,42 \\ - & 78,85 \\ - & 20,40 \\ 769 & 4,21 \\ 2,0 & 1,34 \\ \end{array}$		$ \begin{array}{c} 1\\ 0,1179\\ 0,0919_{8}\\ 6,62_{2}\cdot10^{-3}\\ 5,07_{8}\cdot10^{-3}\\ 5,02_{7}\cdot10^{-3} \end{array} $	1 0,1135 0,0873 ₅ 1,61 ₀ ·10 ⁻³ 0,05 ₈ ·10 ⁻³ 0,00 ₇ ·10 ⁻³	1 0,1184 0,0873 ₅ 0,53 ₁ ·10 ⁻³ 0,00 ₀ ·10 ⁻³ 0,00 ₀ ·10 ⁻³
	0,00	(5,02 ·10 ⁻³)		
$R_{ exttt{o}}$ in Ω b	ei 273,16	1,80•		

g) Palladium (Montierungsart 1)

Von den drei untersuchten Palladiumsorten zeigt Pd 3 im Temperaturgebiet des flüssigen Heliums eine geringe Widerstandszunahme, während Pd 1 eine kleine Widerstands-

¹⁾ W. Meissner, Ztschr. f. Phys. 38. S. 647. 1926.

Tabelle 49. Palladium

ph 3	keine 1) Mittel	DA 1 DA 9 nach			T	red.	reu.	1 1 1 (0,2239) 0,2204	(0,2239) 0,2204 0,2206 0,2171	1 1 1 1 1 1 0,2204 0,22798 0,2206 0,2171 0,2398 0,1773 0,1739	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,2798 0,2204 0,2204 0,22398 0,1739 0,1739 0,1739 0,1739 0,1739 0,1739 0,1739 0,1739 0,0049 0,0049 0,0048)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		10 C	0,5 mm 0 34	50,4 mm 34	red, rbo																			
6 PG	Heraeus 1924	2,5 h 500° C	60,0 mm 0,0	58,7 mm 5	"beob.			0,2220						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							7			
f. DA1	16	2,5" 500° C	27,0 mm 0,6 mm 0	nm 22,4 mm	red.		1	(0,2197)	(0,2197) (0,2165)	0,2197) (0,2165) (0,1739)	(0,2197) (0,2165) (0,1739) (0,1739)	20	~	70	~~ m	~ m	~ ~ ~ ~ ~	70 m ~	70 m N	2 2 2	20 00 00			
all 46 K fr	- -	2,5	27,0 mm	dr. 27,0 mm	3. rbeob.		-	-	-	-111	-1111	1	0,1916	0,1916	0,1916	0,1916	0,0303	0,0303	0,0303	0,0303	0,0303	0,0347	0,0303	0,0247
Syst Moto	runreinigun	llung	Dicke	u. Spanngsd	Grad abs.		273,16	273,16 88,90	273,16 88,90 88,16	273,16 88,90 88,16 78,30	273,16 88,90 88,16 78,30 77,82	273,16 88,90 88,16 78,30 77,82	273.16 88,90 88,16 77,82 77,82 20,46	273,16 88,90 78,16 77,78 20,46	273,16 88,90 78,16 77,73 20,46 20,45	273,16 88,90 88,90 7,73,80 20,46 20,45 4,22	273,16 88,90 88,90 7,73,82 20,45 20,45 4,22 4,22 4,22	273,16 88,90 88,90 7,83,00 20,48 20,45 4,22 4,22 4,22 4,22 4,22 4,22 4,22 4	273,16 88,90 88,90 7,77,73 20,46 20,45 4,22 8,22 8,22 16,03	273 888 888 1688 88,16 20,20 20,45 20,45 20,45 20,45 31,10 31,4 31,4	273 8887 1688 1688 1688 1688 1688 1688 1688	273 8887 1688 1688 1688 168 168 168 168 168 168	273.16 88.90 88.90 88.90 6.00 8.70 8.70 8.70 8.70 8.70 8.70 8.70 8	273,16 88,90 88,90 88,10 77,73 80,16 80,46
Atom-Nr Krist Sust Motel	Herkunft, Verunreinigung	Behandlung	Länge	Abst. d. Strom- u. Spanngsdr.	He-Dampfdruck mm Hg		l	11	111	1111	11111	11111	111111					776,3 7774,7	776,3 774,0 213,1	7774 7744 765,0 213,1	774 774 765,0 213,1 2,3	776,3 774, 774, 775,0 213,1 23,5 2,3 1,4	776,3 774,774 765,0 213,1 3,5 2,3 1,4 0,7	776,3 774, 774, 765,0 213,1 2,3 1,4 0,7

1) mit Elementen der Ordnungszahlen 22 bis 92; event. Verunreinigungen mit Karbiden und Oxyden.

abnahme aufweist und Pd 2 zwischen 4,2° und 1,17° abs. einen konstanten Widerstandswert hat. Pd 2 ist mit seinem niedrigen Restwiderstand von $0.0056 R_0$ die reinste unter den drei Palladiumproben.

Bei Reduktion nach der Matthiessen-Nernstschen Regel erhält man bei den drei Palladiumsorten nicht genau die gleichen r-Werte. Mittelt man die rred.-Werte trotzdem, so ergibt sich als charakteristische Temperatur $\theta = 270$. F. Simon berechnet nach der Lindemannschen Schmelzpunktsformel $\theta = 260$. Nach C. Blom findet man als Mittelwert $\theta = 268$.

h) Platin (Montierungsart 1)

Es wurde dasselbe Platinstäbehen benutzt, das der eine 1) von uns früher bis herunter zu 20° abs. untersucht hatte. Die früheren und die jetzigen Resultate sind in Tabelle 50 zusammengestellt.

Tabelle 50. Platin

Atom-Nr. Kristallsystem	etall	78 K. fz.	Pt 1		
Herkunft, Verunrei	nigung	Hera			
Behandlung		einige Z schwacher	heta=240, berechnet nach Formel (2)		
Länge Dicke		etwa 7 2,0 m			
Abstand der Strom Abstand d. Spannu	_	etwa 7			
He-Dampfdruck mm Hg	Grad abs.	r _{beob.}	$r_{ m red}$.	r _{ber} .	
767 2,2	273,16 91,4 20,40 4,21 1,35	$ \begin{array}{c} 1\\ 0,250\\ 6,07 \cdot 10^{-3}\\ 1,68 \cdot 10^{-3}\\ 1,65 \cdot 10^{-3} \end{array} $ $(1,64 \cdot 10^{-3})$	1 0,248 ₀ 3,61·10 ⁻³ 0,01·10 ⁻³ 0,00·10 ⁻³		
$R_{\scriptscriptstyle 0}$ in Ω bei			<u> </u>		

Für die charakteristische Temperatur ergibt sich aus den Werten für tiefe Temperaturen $\theta = 240$. E. Grüneisen be-

¹⁾ W. Meissner, Ztschr. f. Phys. 38. S. 647. 1926.

rechnet unter Berücksichtigung des ganzen Temperaturbereiches von 4,2 bis 773° abs. nach Formel (5) bei Benutzung der konstanten $a_1 = +0,0003$ und $a_2 = -0,0000004$ den Wert¹) $\theta = 230$, der mit den von ihm aus dem Verlauf der Atomwärme¹) bzw. des thermischen Ausdehnungskoeffizienten²) abgeleiteten Werten genau übereinstimmt, während der von ihm aus dem Verhältnis des Ausdehnungskoeffizienten zur Atomwärme berechnete Wert²) $\theta = 236$ ergibt. F. Simon leitet aus der spezifischen Wärme den Wert $\theta = 220$ bzw. $\theta = 225$ ab. C. Blom findet als mittleren Wert $\theta = 239$.

V. Schlußfolgerungen

Faßt man das Vorhergehende zusammen, so ergibt sich tolgendes Bild:

Supraleitend werden die Metalle Quecksilber, Indium, Thallium, Thorium, Zinn, Blei, Tantal und Titan sowie eventuell Ruthenium, ferner nach neuesten Messungen Niobium.³)

Andeutungen zur Supraleitfähigkeit finden sich bei Rubidium, Zirkon, Vanadium, Arsen und Antimon. Es ist daher notwendig, die reinen Metalle noch unterhalb 1,2° abs. zu untersuchen. Messungen bis herunter zu 0,9° abs. sind in Leiden teilweise schon durchgeführt.

Die aus dem Widerstandsverlauf berechneten charakteristischen Temperaturen sind in Tabelle 51 in das periodische System der Elemente der durch die Quantentheorie begründeten Form eingetragen. Man sieht, daß danach die Werte in jeder Gruppe mit steigender Ordnungszahl sinken, dagegen in jeder Periode, soweit es sich um die a-Gruppen handelt, mit steigender Gruppenzahl steigen, bei den b-Gruppen dagegen im allgemeinen sinken.

Zu betonen ist dabei, daß diese Einordnung eigentlich nur für die regulären Metalle Sinn hat. Bei den nichtregulären läßt sich der Widerstand nach Grüneisen und Goens, sofern man Einkristalle hat, nur durch eine Summe von drei

E. Grüneisen, Handbuch, Artikel "Metallische Leitfähigkeit", S. 21.

²⁾ E. Grüneisen, Handbuch, Artikel "Zustand des festen Körpers", S. 44.

³⁾ W. Meissner u. H. Franz, Ztschr. f. Phys. 63. S. 558. 1930.

일 유 유	l	[1		1			
Gruppe VIII b	He He	Ne Ne	18 Ar	36 Kr	24 X		<u> </u>	
Gruppe VII b		6 E4	C 22	35 Br	53 J	85		e;
Gruppe VI b	1	80	16 S	34 Se	52 Te	84 Po		Tement
Gruppe V b		Z	15 P	$\begin{array}{c} 33 \\ \mathbf{As} \\ \theta = 291 \end{array}$	$\begin{array}{c} 51 \\ \text{Sb} \\ \theta = 241 \end{array}$	83 Bi θ=62		der E
Gruppe IV b		1	ı	32 Ge	$\begin{vmatrix} 50 & 51 \\ Sn & Sb \\ \theta = 210 \end{vmatrix} \theta = 241$	82 Pb θ=92		System
Gruppe III b	1	1	1	31 Ga	$\begin{vmatrix} 49 \\ In \\ \theta = 198 \end{vmatrix}$	$\begin{vmatrix} 81 \\ T1 \\ \theta = 140 \end{vmatrix}$	 	ischen
Gruppe Gruppe Gruppe Gruppe I I V b V b				30 Zn	48 Cd	80 Hg θ=37	1	period
Gruppe I b		l		29 Cu θ=355	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A_{\rm u}^{A_{\rm u}}$ $\theta = 192$		it dem
VIIIa	1			28 Ni θ=472	46 Pd θ=270	$\begin{vmatrix} 77 & 78 \\ \mathbf{Jr} & \mathbf{Pt} \\ \theta = 316 \theta = 240 \end{vmatrix}$		iang m
Gruppe VI				$\begin{vmatrix} 27 \\ C_0 \\ \theta = 401 \end{vmatrix}$	45 Rh θ=419	$\begin{vmatrix} 77 \\ J_{\mathbf{r}} \\ \theta = 316 \end{vmatrix}$!	ımmenl
Gru				$\begin{array}{c c} 26 & 27 \\ Fe & Co \\ \theta = 519 \theta = 401 \end{array}$	$\begin{array}{c} 44 \\ \text{Ru} \\ \theta = 426 \end{array}$	76 Os	 	n Zusa
Gruppe VIIa				25 Mn	43 Ma	75 Re θ=310		uren i
Gruppe VIa	1		1	C. 24	42 Mo	$\begin{vmatrix} 74 \\ W \\ \theta = 385 \end{vmatrix}$	0 26	mperat
Gruppe Va	1			23	41 Nb	$\begin{vmatrix} 73 & 74 \\ \mathbf{Ta} & \mathbf{W} \\ \theta = 228 \theta = 385 \theta \end{vmatrix}$	91 Pa	hen Te
Gruppe IV a	1	ပ	14 S:	22 Ti θ=342	$\begin{vmatrix} 40 \\ \mathbf{Zr} \\ \theta = 288 \end{vmatrix}$	72 Hf	$\begin{array}{c} 90 \\ \text{Th} \\ \theta = 168 \end{array}$	ristisc
Gruppe III a	1	υ B	$\begin{array}{c} 13 \\ A1 \\ \theta = 438 \end{array}$	21 Sc	39 Y	57-71 Seltene Erden	89 Ac	charakteristischen Temperaturen im Zusammenhang mit dem periodischen System der Elemente.
Gruppe Gruppe Gruppe Gruppe Gruppe Gruppe Gruppe Gruppe Ia IIIa IVa Va VIa VII	 	Be Be	12 Mg θ=357	82	$\mathbf{Sr} \\ \theta = 171$	56 Ba θ=133	88 8 8	Die c
Gruppe I a	-H	3 Li θ=376	11 Na θ=233	$\begin{matrix} 19 \\ K \\ \theta = 181 \end{matrix}$	37 Rb θ=85	క్ష చ	82	:
eboi1e9	-	67	က	44	10	ေ	~	

Debye-Funktionen mit verschiedenen θ -Werten darstellen, und man kann von einem mittleren, temperaturunabhängigen θ -Wert bei nichtregulären Einkristallen nicht sprechen. Vielleicht ist aber trotzdem in einiger Annäherung die Darstellung des Widerstandes durch einen einzigen θ -Wert bei den nichtregulären Metallen möglich, sofern man polykristallines Material hat, bei dem keine Achsenrichtung des Kristallsystems irgendwie bevorzugt ist. Dafür scheint etwas die Einordnung, auch der nichtregulären, als polykristallines Material untersuchten Metalle in Tabelle 51 zu sprechen.

Will man einen Überblick über die Temperatur-Widerstandskurve der Metalle im Zusammenhang mit ihren θ -Werten erhalten, so muß man noch folgendes beachten:

In den Formeln (2), (2a) und (5) zur Berechnung der r-Werte steht im Nenner immer der auf 0°C bezogene Widerstandswert. Hierin steckt aber eine Willkür, die sich darin äußert, daß die berechneten r-T-Kurven sich unter Umständen schneiden können, so daß die Reihenfolge der für verschiedene θ -Werte berechneten Kurven bei verschiedenen Temperaturen verschieden ausfallen kann. Dies erkennt man folgendermaßen: Nach der einfachsten Formel (2a) ist bei einer bestimmten Temperatur T für zwei Metalle 1 und 2 das Verhältnis ihrer r-Werte

(7)
$$\frac{r_1}{r_2} = \frac{F\left(\frac{T}{\theta_1}\right)}{F\left(\frac{T}{\theta_2}\right)} : \frac{F\left(\frac{T_0}{\theta_1}\right)}{F\left(\frac{T_0}{\theta_2}\right)} = \frac{1-\psi}{1-\chi}.$$

Ist nun θ_1 nur wenig größer als θ_2 , so kann wegen der mehrfachen Krümmung der Debye-Kurve $\psi \gtrsim \chi$ werden je nach der Stelle, an der $\frac{T}{\theta_1}$ und $\frac{T}{\theta_2}$, sowie $\frac{T_0}{\theta_1}$ und $\frac{T_0}{\theta_2}$ auf der Debye-Kurve liegen.

Von diesem Mangel der Darstellung macht man sich frei, wenn man statt $T_{\rm o}$ für jedes Metall seine charakteristische Temperatur θ einführt. Es werde dementsprechend gesetzt:

(8)
$$\mathbf{r} = \frac{T \cdot F\left(\frac{T}{\theta}\right)}{\theta \cdot F\left(1\right)}.$$

Dann erhält man für das Verhältnis $\frac{\mathfrak{r}_1}{\mathfrak{r}_2}$ bei einer bestimmten Temperatur T für zwei verschiedene Metalle den Ausdruck

(9)
$$\frac{\mathbf{r}_{1}}{\mathbf{r}_{2}} = \frac{F\left(\frac{T}{\theta_{1}}\right)}{F\left(\frac{T}{\theta_{2}}\right)} \cdot \frac{\theta_{2}}{\theta_{1}}.$$

Ist $\theta_1 > \theta_2$, so ist demnach für sämtliche T-Werte $\frac{\mathfrak{r}_1}{\mathfrak{r}_2} < 1$, da sowohl $\frac{F\left(\frac{T}{\theta_1}\right)}{F\left(\frac{T}{\theta_1}\right)}$ als auch $\frac{\theta_2}{\theta_1}$ für alle T-Werte kleiner als 1

ist. Die r-Kurven ordnen sich also unter allen Umständen nach der Reihenfolge ihrer θ -Werte.

Dieser Überlegung entsprechend berechnen wir einerseits aus den nach den Formeln (2), (2a) und (5) ermittelten r-Werten die r-Werte durch Multiplikation mit $\left(\frac{R_o}{R_\theta}\right)_{\rm ber.}$, andererseits bilden wir die $r_{\rm red.}$ -Werte durch Multiplikation der $r_{\rm red.}$ -Werte mit $\left(\frac{R_o}{R_\theta}\right)_{\rm red.}$. Hierbei sind die reduzierten Werte entsprechend dem Früheren die mit Hilfe der Matthiessen-Nernstschen Regel aus den beobachteten Werten für ideal reines Material abgeleiteten Werte. Die so ermittelten $r_{\rm red.}$ - und $r_{\rm ber.}$ -Werte sind für die drei Temperaturen $T=77,74^{\circ}$ abs., 20,4° abs. und 4,2° abs. in Tab. 52 und in den Figg. 11, 12 und 13 eingetragen. Hierbei sind nicht berücksichtigt die Werte für nichtreguläre Einkristalle.

Daß in den Figuren die berechneten Werte nicht genau auf einer glatt verlaufenden Kurve liegen, hat seinen Grund darin, daß bei den verschiedenen Metallen nicht immer dieselbe Formel, sondern teilweise Formel (2a) verwendet wurde.

Man sieht, daß bei 77,74° abs. die reduzierten r-Werte genau in der Reihenfolge der zugehörigen θ -Werte liegen und daß die Abweichungen zwischen den berechneten und reduzierten Werten nur sehr gering sind. Bei 20,4° abs. sind die Abweichungen zwischen den $r_{\rm ber.}$ - und $r_{\rm red.}$ -Werten schon so groß, daß die Reihenfolge der reduzierten r-Werte durchaus

Tabelle 52a

			Laber	16 54a		
Metall	θ	Berechnung von θ nach Formel	$\left(rac{R_0}{R_ heta} ight)_{ m ber.}$	$\left(rac{R_{ m 0}}{R_{ heta}} ight)_{ m red.}$	T' = 77,7	4° abs.
Hg Bi Rb Pb	37 62 85 92	2 2 2 2 5	7,73 ₄ 4,44 ₁ 3,72 ₉ 3,29 ₀	7,87 ₄ 4,34 ₇ 3,74 ₀ 3,30	2,18, 1,21, 0,903, 0,821,	2,19 ₄ 1,29 ₆ 0,905 0,819 ₇
Ba Tl Th Sr K Au In	133 140 168 171 181 192 198	2 a 2 a 2 a 2 a 2 2	2,13 ₂ 2,09 ₄ 1,67 ₆ 1,63 ₆ 1,59 ₆ 1,47 ₁ 1,41 ₁	2,04 2,17 1,77 1,73 1,67 1,55 1,49	0,533 ₃ 0,492 ₃ 0,388 ₁ 0,376 ₅ 0,342 ₂ 0,315 ₁ 0,304 ₆	$\begin{array}{c} 0,510_3 \\ 0,510_4 \\ 0,409_3 \\ 0,398_1 \\ 0,358_0 \\ 0,332_3 \\ 0,321_6 \end{array}$
Sn Ta Na Ag Pt Sb Pd Zr As	210 228 233 239 240 241 270 288 291	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1,33 ₉ 1,21 ₉ 1,20 ₄ 1,16 ₂ 1,15 ₅ 1,14 ₈ 1,01 ₈ 0,943 0,933	1,38 1,25 1,21 1,18 1,15 1,15 1,00 (0,945) 0,935	0,271 ₆ 0,240 ₄ 0,220 ₇ 0,217 ₁ 0,217 ₄ 0,217 ₆ 0,173 ₅ 0,155 ₄ 0,152 ₈	$\begin{array}{c} 0.282_{o} \\ 0.246_{1} \\ 0.224_{8} \\ 0.219_{o} \\ 0.217_{s} \\ 0.217_{4} \\ 0.156_{1} \\ 0.153_{o} \end{array}$
Re Ir Ti Cu Mg Li W	310 316 342 355 357 376 385	2 a 2 a 2 a 2 2 2 2 2	0,868 0,849 0,776 0,739 0,733 0,686 0,674	(0,873) 0,853 (0,777) 0,738 0,743 0,691 0,658	0,133, 0,127, 0,107, 0,0952 0,0941 0,0798 0,0790	0.134 ₀ 0.128 ₀ 0.107 ₃ 0.0866 (0.0954) 0.0804 0.0772
Co Rh Ru Al Ni Cr Fe	401 419 426 438 472 495 519	2 2 a 2 a 2 2 2 2 2 a 2	0,626 0,611 0,599 0,565 0,518 0,494 0,454	0,610 0,614 (0,598) 0,575 0,436 (0,435) 0,367	0,0684 0,0638 0,0609 0,0530 0,0431 0,0379 0,0325	0,0666 0,0642 0,0608 0,0541 0,0366 0,0334 0,0262

 $\theta = \text{charakteristische Temperatur}; \quad R_0 = \text{Widerstand bei 273,16}^{\,0} \text{ abs.}$

nicht mehr den θ -Werten entspricht. Dasselbe gilt für die Werte bei 4° abs. Aber sowohl bei 20° als auch bei 4° abs. liegen die Abweichungen zwischen den reduzierten und berechneten Werten, soweit sie vorhanden sind, meist in der Richtung,

Tabelle 52 b

===									
Metail	T=20,	4º abs.	T=4,	2º abs.	Restwiderstand R bei 0° abs.				
W	r _{ber.}	r _{red.}	r _{ber.}	r _{red} .	R bei 0° C				
Hg	0,492,	0,505,	0,0134	0,0157	0.0000				
Bi	0,215	0,2182	0,00178	0,00739	0,104 ₉ i. M.				
Rb	0,118,	0,2102	0,0002,	0,0063	0,0375				
Pb	0,0988	0,0977	0,0002;	0,00006	0,0000				
I D	0,0000	0,00118		_	0,0000				
Ba	0,0363,	0,0485	0,0006	0,0014	0,0443				
ΤΪ	0,0301,	0,0707	0,0000	0,0035	0,0149				
Th	0,0167 _a	0,026	0,0000	0,0012	0.0164				
Sr	0,0156	0,043,	0,0000	0,0010	0,093,				
K	0,0127	0,0328	0,0000	0,00289	0,0927				
Au	0,01025	0,00888	0,0000	0,00000	0,00029,				
In	0,0092	0,0345	0,0000	0,00202	0,00253				
111	0,0032	0,0345	0,0000	0,00202	0,00200				
Sn	0,0068,	0,0156	0,0000	0,000055	0,00075				
Ta	0,0051	0,0056	0,0000	0,00000	0,0226 i. M.				
Na Na	0,0044	0,0042	0,0000	0,00000	0.00323				
	0,0041,	0,0038	0,0000	0,00004	0,00523				
$_{\mathbf{Pt}}^{\mathbf{Ag}}$		0,00510	0,0000	0,00005	0,00164				
Sb	0,0041 ₇ 0.0041 ₃	0,00510	0,0000	0,0006	0,00104 0,0214 i. M.				
Pd		0,0154	0,0000	0,00002	0,0353 i. M.				
Zr	0,0026	0,0049	0,0000	0,0026	0,0394				
	0,0021		0,0000	0,0026					
As	0,0019	0,0115	0,0000	0,0026	0,0201				
Re	0,0015,	0,0015	0.0000	0,0015	0,1085				
Îr	0,0014	0,00531	0,0000	0,00029	0,0476				
Τi	0,00085	0,0086,	0,0000	0,005,	0,209,				
Ču	0,00086	0,00038	0,0000	0,00001	0,00031 i. M.				
Mg	0.00086	(0,00081)	0,0000	(0,00130)	0,0428 i. M.				
Li	0,00067	0.00104	0,0000	0,00124	0,0058				
w	0.00065	0,00051	0,0000	0,00000	0,0156 i. M.				
**	0,00005	0,00051	0,0000	0,00000	0,0100 1. 141.				
Co	0,00053	0.00118	0,0000	0,0007,	0,0506 i. M.				
Rh	0,00047	0,00035	0,0000	0,0000	0,00296				
Ru	0,00041	0,00017	0,0000	0,0000	0,0827				
Al	0,00036	0,0006	0,0000	0,0000	0,0163 i. M.				
Ni	0,00027	0,00070	0,0000	0,00002,	0.00502				
Cr	0,00021	0,0003	0,0000	0,000,	0,052				
Fe	0,00018	0,00058	0,0000	0,0000	0,032 ₆ 0,0257 i. M.				
re	0,00018	0,00000	, 0,000	0,0000	0,0207 1. 191.				

daß die reduzierten Werte größer als die berechneten sind. Bei der von uns verwendeten Art der Berechnungsweise erfolgt also bei der Mehrzahl der Metalle der Widerstands-

Erklärung zu Fig. 11:

Abhängigkeit des Verhältnisses $rac{R_{77,74^o}}{R_{m{ heta}}}=\mathfrak{r}_{77,74^o}$

von der charakteristischen Temperatur θ für berechnete Werte (Kreise) und reduzierte Werte (Kreuze)

Erklärung zu Fig. 12:

Abhängigkeit des Verhältnisses $\frac{R_{20,4^0}}{R_{\theta}} = r_{20,4^0}$ von der charakteristischen Temperatur θ für berechnete Werte (Kreise) und reduzierte Werte (Kreuze) (die mit einem Fähnchen markierten reduzierten Werte gehören zu den reinsten Metallen mit einem Restwiderstande $\leq 0,007 R_0$)

anstieg in tiefen Temperaturen schneller als der Grüneisenschen Widerstandsformel entspricht, in ganz tiefen Temperaturen also schneller als mit T^4 .

Um festzustellen, ob die Abweichungen zwischen den berechneten und reduzierten Werten etwa darauf zurückzuführen

sind, daß die Reduktion wegen mangelnder Reinheit des Materials nicht genau genug möglich war, sind in Fig. 12 die besonders reinen Metalle durch Fähnchen an den Kreuzen besonders gekennzeichnet. Man sieht aber, daß auch unter diesen solche sind, die stark herausfallen. Durchgängig sind die Abweichungen offenbar um so größer, je kleiner der θ-Wert ist. Dies dürfte damit zusammenhängen, daß der durch die Formel darzustellende Temperaturbereich von 1,2 bis 273° abs., in reduzierten Temperaturen $\frac{T}{\theta}$ ausgedrückt, um so größer wird, je kleiner θ ist, weswegen die Anpassung der berechneten Kurve an die beobachtete Kurve für kleinere θ weniger gut möglich ist, als für große θ . Wir haben auch noch versucht, bei dem sehr reinen Indium eine bessere Übereinstimmung zwischen Berechnung und Beobachtung durch' Wahl eines anderen 0-Wertes herbeizuführen. Doch werden dann, wenn man die Abweichungen bei 20,4° abs. klein macht, die Abweichungen bei höheren Temperaturen prozentual unzulässig groß. Alles in allem muß man aber wohl trotzdem sagen, daß die Grüneisensche Widerstandsformel die für ideal reines Material geltenden Widerstandwerte verhältnismäßig gut wiedergibt.

Bei diesen Schlußfolgerungen sind noch nicht berücksichtigt die folgenden Metalle, die zwar untersucht wurden, aber noch nicht genügenden Reinheitsgrad oder ungenügende Kristallform besaßen: Caesium, Beryllium, Calcium, Bor, Gallium, Graphit, Silicium, Cer, Germanium, Vanadium, Molybdän, Uran. Selen, Tellur und Mangan.

Bei Silicium, Graphit und Bor, vielleicht auch bei Tellur und Selen, sind Messungen an Einkristallen erforderlich, um ein richtiges Bild von dem Verhalten ihres metallischen Widerstandes zu bekommen. Derartige Messungen sind in Angriff genommen.

Unzugänglich waren uns noch metallischer Phosphor, Scandium, Yttrium, Masurium, Hafnium und Osmium, sowie die seltenen Erden mit Ausnahme von Cer.

Der Notgemeinschaft der Deutschen Wissenschaft sind wir für die Unterstützung der vorstehenden Untersuchungen zu großem Dank verpflichtet.

VI, Zusammenfassung

Für den größten Teil der Metalle wird die Abhängigkeit des Widerstandes von der Temperatur zwischen 1,2 und 273° abs., meist nach neuen Messungen, mitgeteilt. beobachteten Widerstandswerten werden die für ideal reine Metalle gültigen, soweit dies möglich ist, abgeleitet. Aus letzteren werden die charakteristischen Temperaturen der Metalle nach der Grüneisenschen Widerstandsformel berechnet. Die dabei erhaltenen Resultate werden diskutiert, wobei sich u. a. ergibt, daß es in theoretischer Hinsicht nicht zweckmäßig ist, die Temperaturabhängigkeit des auf den Wert 1 bei 0°C bezogenen Widerstandes zu betrachten. Es empfiehlt sich vielmehr, die beobachteten Widerstandswerte durch den Widerstand bei der charakteristischen Temperatur statt durch den bei 0° C zu dividieren und die Temperaturabhängigkeit der so erhaltenen r-Werte den Betrachtungen zugrunde zu legen.

(Eingegangen 2. Oktober 1930)