Real Analysis Qualifying Exam

Spring 2003

Answer any five questions; Credit will be given for the best five questions Show all working; State clearly all theorems that you apply

- 1. Let $(f_n)_{n=1}^{\infty}$ be a sequence of real-valued functions on [0,1] with $||f_n||_1 = 1$. Suppose that for all $\epsilon > 0$, there exists an N such that for $j, k \geq N$, $m(\{x: |f_j(x) f_k(x)| > \epsilon\}) < \epsilon$,
 - (a) Prove that there exists a subsequence $f_{n_j}(x)$ such that for almost every $x \in [0,1]$, $(f_{n_j}(x))_{j=1}^{\infty}$ is a convergent sequence.
 - (b) Is there necessarily a subsequence f_{m_j} that is convergent in $L^1([0,1])$?
- 2. Show that if $f, g \in L^1(\mathbb{R})$, then their convolution f * g defined by

$$f * g(t) = \int_{-\infty}^{\infty} f(s)g(t-s) ds$$

is integrable.

- 3. Let A be a subset of \mathbb{R} such that m(A) > 0 where m denotes Lebesgue measure. Denote by A A the set $\{x y \colon x, y \in A\}$.
 - (a) Prove that there is a bounded interval [a, b] such that $m(A \cap [a, b]) > 3(b a)/4$.
 - (b) Show that if $0 \le \delta \le (b-a)/4$ then $A \cap (A+\delta) \cap [a,b]$ is non-empty.
 - (c) Deduce that $A A \supset [-(b a)/4, (b a)/4]$.
- 4. (a) State Fatou's lemma.
 - (b) Give an example showing that the inequality in Fatou's lemma may be strict.
 - (c) Starting from the monotone convergence theorem, give a proof of Fatou's lemma.

- 5. Consider the space C([0,1]) with the uniform metric $d(f,g) = \max_{t \in [0,1]} |f(t) g(t)|$. You may assume that this space is complete. A continuous function on [0,1] is called Lipschitz with constant A if $|f(x) f(y)| \le A|x y|$ for all $x, y \in [0,1]$. A continuous function is called a Lipschitz function if it is Lipschitz with some constant A.
 - (a) Show that for any $N \in \mathbb{N}$, the set S_N of continuous functions for which there exist rationals q_1 and q_2 such that $|f(q_1) f(q_2)| > N|q_1 q_2|$ is open and dense in the C([0,1]).
 - (b) Deduce that the Lipschitz functions form a meager subset of C[0,1].
- 6. Let $f \in L^1(\mathbb{R})$ satisfy $\int_{-\infty}^{\infty} f(x) dx = 1$ and let $g \in L^{\infty}(\mathbb{R})$ satisfy $\lim_{x \to \infty} g(x) = L$. Prove that

$$\lim_{x \to \infty} \int_{-\infty}^{\infty} f(y)g(x-y) \, dy = L.$$

[Hint: It may be helpful to prove that there is an $A \in \mathbb{R}$ such that $\int_{-\infty}^{A} |f|(x) < \epsilon$.]

7. Let $X = L^2([0,1])$ with the usual norm and let $Y = L^2([0,1])$ with the L^1 norm: $||f - g||_Y = \int_0^1 |f(x) - g(x)| dx$. Let $T: X \to Y$ be the identity map.

Prove that if B denotes the open unit ball in X, then T(B) is not open in Y.

Explain using the above why it follows that Y is not a Banach space.