I Restitution du cours

- 1- Donner la définition de la convergence simple et énoncer les propriétés (de norme) de la norme de la convergence uniforme.
- 2 Donner la définition de la convergence uniforme et énoncer le théorème d'interversion limite-intégrale pour une suite de fonctions.
- 3 Donner la définition de la convergence uniforme sur tout segment et énoncer le théorème de dérivation de la limite pour une suite de fonctions.

II Questions de cours

- 1 Étudier les modes de convergence de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$, où l'on pose $f_n: x \longmapsto \frac{nx^2+1}{nx+1}$, sur $]0; +\infty[$.
 - 2 Calculer :

$$\lim_{n \to +\infty} \int_0^1 \frac{1}{1 + \exp\left(\frac{x}{n}\right)} \mathrm{d}x$$

3 - Étudier les modes de convergence des suites de fonctions $(f_n)_{n\in\mathbb{N}}$ et $(f'_n)_{n\in\mathbb{N}}$, où l'on pose $f_n: x \longmapsto \sqrt{x+\frac{1}{n}}$.

III Exercices axés sur le calcul

Exercice 1:

Soient $\alpha > 0$ et la suite de fonctions $(f_n)_{n \in \mathbb{N}}$ définie par :

$$\forall n \in \mathbb{N}^*, f_n : x \longmapsto xn^{\alpha}e^{-nx}$$

- 1 Montrer que $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R}^+ vers la fonction nulle.
- 2 Pour quelle(s) valeur(s) de α la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge-t-elle uniformément sur \mathbb{R}^+ ?

Exercice 2:

Pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}$, on pose :

$$f_n(x) = \frac{n^3 x}{n^4 + x^4}$$

- 1 Montrer que $(f_n)_{n\in\mathbb{N}^*}$ converge simplement sur \mathbb{R} vers une fonction à préciser.
- 2 Que dire de $f_n(n)$? Que peut-on en conclure?

3 - Montrer que $(f_n)_{n\in\mathbb{N}^*}$ converge uniformément sur tout intervalle du type [-a;a].

Exercice 3:

Pour tout $n \in \mathbb{N}^*$ et tout $x \in [0; +\infty[$, on pose :

$$f_n(x) = \left(1 + \frac{x}{n}\right)^n$$

- 1 Étudier la convergence simple de la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ sur $[0;+\infty[$.
- 2 Montrer que pour tout $n \in \mathbb{N}^*$ et tout $x \in [0; +\infty[$, on a $0 \le f_n(x) \le e^x$.
- 3 Soit a > 0. Montrer que $(f_n)_{n \in \mathbb{N}^*}$ converge uniformément sur [0; a].
- 4 Calculer $\lim_{n\to+\infty}\int_0^1 \left(1+\frac{x}{n}\right)^n \mathrm{d}x$ de deux manières différentes.
- 5 La suite $(f_n)_{n\in\mathbb{N}}$ converge-t-elle uniformément sur $[0;+\infty[$?

IV Exercices axés sur le raisonnement

Exercice 4:

Soient I un intervalle de \mathbb{R} et $(f_n)_{n\in\mathbb{N}}\in (\mathcal{F}(I,\mathbb{R}))^{\mathbb{N}}$ une suite de fonctions qui converge simplement sur \mathbb{R} vers f.

- 1 Montrer que si les fonctions f_n sont convexes, alors f est convexe.
- 2 Montrer que si les fonctions f_n sont bornées et que la convergence précédente est uniforme, alors f est bornée.

Exercice 5:

Pour tout $n \in \mathbb{N}$ et x > 0, on pose :

$$f_n(x) = \frac{nx^2e^{-nx}}{(1 - e^{-x})^2}$$

- 1 Étudier la convergence simple de $(f_n)_{n\in\mathbb{N}}$ sur $]0;+\infty[$.
- 2 Préciser $\lim_{x\to 0^+} f_n(x)$. En déduire que $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur $]0;+\infty[$.
- 3 Montrer que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur tout segment [a;b] de $]0;+\infty[$.
- 4 Montrer que pour a > 0, la suite $(f_n)_{n \in \mathbb{N}}$ converge uniformément sur $[a; +\infty[$.

V Exercices avec questions ouvertes

Exercice 6:

Soient $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues convergeant uniformément sur \mathbb{R} vers une fonction f et $(x_n)_{n\in\mathbb{N}}$ une suite de réels convergeant vers ℓ .

La suite $(f_n(x_n))_{n\in\mathbb{N}}$ converge-t-elle vers $f(\ell)$?

Exercice 7:

Existe-t-il une suite de polynômes convergeant uniformément sur \mathbb{R} vers exp?

Exercice 8:

Soient $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ deux suites de fonctions convergeant uniformément sur \mathbb{R} . La suite $(f_ng_n)_{n\in\mathbb{N}}$ converge-t-elle uniformément sur \mathbb{R} ?