

EXERCICE D'ORAL

ELECTROCINETIQUE

-EXERCICE 1.1-

• ENONCE :

« Stabilisation de courant »

 $E_{\rm l}$ représente la f.e.m d'une batterie qui décroît linéairement de la valeur 6V à 5V en 24 heures.

On donne: $E_2 = 2V$; $R_2 = 0, 2\Omega$; $R = 50\Omega$

On choisit la résistance $R_{\rm l}$ de façon que la fermeture de l'interrupteur K (à t=0) ne provoque aucun courant dans $R_{\rm 2}$.

- 1) Après avoir calculé la résistance R_1 , exprimer en fonction du temps t (exprimé en jours), les intensités $i_1(t)$ et $i_2(t)$.
- 2) Déterminer la diminution relative de l'intensité i(t) qui traverse la résistance R , en 1 jour
 - ♦ si K est ouvert
 - ♦ si K est fermé

En déduire le rôle du générateur de f.e.m E_2 .

EXERCICE D' ORAL

ELECTROCINETIQUE

CORRIGE :

«Stabilisation de courant »

1) Loi des nœuds : $i = i_1 + i_2$ (1)

<u>Loi des mailles</u>: $E_1 = R_1 i_1 + Ri$ (2); $E_2 = R_2 i_2 + Ri$ (3)

• En injectant (1) dans (3), il vient : $E_2 = R_2 i_2 + R i_1 + R i_2 \implies i_2 = \frac{E_2}{R + R_2} - \frac{R}{R + R_2} i_1$

 \Rightarrow en remplaçant i_{2} dans (2), on obtient :

 $\left| i_1 = \frac{(R+R_2)E_1 - RE_2}{(R_1 + R_2)R + R_1R_2} \right|$ et $\left| i_2 = \frac{(R+R_1)E_2 - RE_1}{(R_1 + R_2)R + R_2R_2} \right|$

• On sait que la fermeture de K ne doit pas provoquer l'apparition de courant dans la résistance

 $R_2 \Rightarrow i_2(0) = 0 \Rightarrow \left[R_1 = R \left(\frac{E_1(0)}{E_2} - 1 \right) \right] \qquad \underline{A.N} : \left[R_1 = 50 \times \left(\frac{6}{2} - 1 \right) = 100 \Omega \right]$

 \bullet Par ailleurs, on sait que la diminution de $\it E_{\rm 1}$ est de 1V par jour, d'où :

 $E_1(t) = 6 - t$ (t exprimé en jours) \Rightarrow $i_1(t) = 40.10^{-3} - 9,98.10^{-3} \times t$ et $i_2(t) = 9,94.10^{-3} \times t$

2) <u>K ouvert</u>: $i(t) = \frac{E_1(t)}{R + R_1} = \frac{6 - t}{150}$ \Rightarrow $\begin{cases} t = 0 : i = 40 \text{ mA} \\ t = 1 \text{ jour} : i = 33,3 \text{ mA} \end{cases}$ \Rightarrow $\boxed{\frac{\Delta i}{i} = \frac{40 - 33,3}{40} = 16,7\%}$ $\frac{\text{K ferm\'e}}{i} : i(t) = i_1(t) + i_2(t) = 40.10^{-3} - 3,98.10^{-5} \times t \Rightarrow \begin{cases} t = 0 : i = 40 \text{ mA} \\ t = 1 \text{ jour} : i = 39,96 \text{ mA} \end{cases} \Rightarrow \boxed{\frac{\Delta i}{i} \approx 0,1\%}$

<u>Conclusion</u>: la présence du générateur de tension E_2 a permis de stabiliser le courant i(t)dans la charge à 0,1% près : on parle de « batterie tampon ».