Mokhtara Official Highschool . (313)

<u>Classe</u>: Grade 12 (GS) <u>Exam -1-</u> <u>Date</u> : 21 /3 /2022.

Subject: Maths

Prof.: Mohammad Ghor. /40 **Duration** : 4h.

Exercise 1: (5pts).

Answer by True or **false**, justify your answer:

- 1. The equation (E): ln(x+3) + ln(x+2) = ln(x+11) is verified for x = 1.
- 2. z, z' and p are non zero complex numbers. If $z' \times \overline{z} = z$ and $p = \frac{1}{3} i(\frac{2\sqrt{2}}{3})$, then |z'| = |p|.
- 3. $\lim_{x \to 0^+} (\frac{1}{x \ln x x}) = +\infty$.
- 4. If g is a continuous function over the interval [-2; 5] such that g(-2) = 3 and g(5) = -2 then the equation g(x) = -1 admits a unique root over [-2; 5].
- 5. $\int \frac{x^2 x + 5}{x 1} dx = \frac{x^2}{2} + 5 \ln|x 1| + C$. (where C: is a constant value).
- 6. If $z_1 + z_2 + z_3 = 0$ and $z_1 + z_2 = \frac{1}{8}(1+i)^4 \frac{1}{2}i^9$, then $z = (z_3)^3 = \frac{1}{4} + \frac{i}{4}$
- 7. If $u(x) = e^{-x} \times (\ln(1+e^x))$, then $u'(x) = e^{-x} \times [\frac{e^x}{e^x+1} \ln(1+e^x)]$.

Exercise 2 : (3pts).

Choose the correct answer with justification.

- 1. For all real numbers x > 0, $ln(x + x^2) =$
 - a) $\ln x + \ln(x + 1)$; b) $\ln(x^2) + \ln x$.
- 2. The real number $e^{-3\ln(\frac{1}{2})}$ is equal to
 - a) $\frac{-1}{8}$; b) 8

3. $\lim_{x \to +\infty} (x^2 - \ln x) = \dots$ a) $+\infty$ b) $-\infty$.

- 4. If A ,B and C are three points of respective affixes z_A , z_B et z_C such that : $z_A - z_B = 4i(z_C - z_A)$ then :.....
 - a)ABC is right isosceles at A ; b) (AB) and (AC) are perpendicular
- 5. Given $f(x) = \ln(-x)$, x < 0. f'(x) = ...

 - a) $\frac{-1}{r}$; b) $\frac{1}{r}$.
- 6. If E $(\sqrt{3} i)$, F $(\sqrt{3} + i)$ and G(2i), then OEFG is a
 - a) Square
- ; b) Rhombus.

Exercise 3: $(5\frac{1}{2} \text{ pts})$.

Consider the complex plane of a direct orthonormal system $(O; \overrightarrow{u}, \overrightarrow{v})$.

Designate by A the point of affix $z_A=1$, and the circle (C) of center A and radius 1.

- A) Consider the points F, B and E of respective affixes 2, $(1+e^{i\frac{\pi}{3}})$ et $(1+(z_B)^2)$
 - 1. a) Prove that the point B belongs to (C).
 - b) Determine the measure in radians of the oriented angle $(\overrightarrow{AF}; \overrightarrow{AB})$. Place the point B
 - 2. a) Find the exponential form of $(z_B z_A)$ and of $(z_E z_A)$.
 - b) Deduce that the points A, B and E are collinear and place the point E.
- B) M(z) and M'(z') are points in the complex plane such that : $z' = 1 + z^2$.
 - 1. For every $z \neq 0$ and $z \neq 1$, find a geometric interpretation of the argument of the complex number $\frac{z'-1}{z-1}$.
 - 2. Deduce that if $\frac{z^2}{z-1}$ is real, then A, M and M' are collinear.
 - 3. Suppose that z = x + iy and z' = x' + iy' where x, y, x' and y' are real numbers.
 - a) Express x' and y' in terms of x and y.
 - b) Find the set of points M such that z' is real.
 - c) In the case where z' = 4 4i, write z in algebraic form.

- d) In this part, suppose z = 2 + i:
 - i) Find the exponential form of z'.
 - ii) Find the values of the natural number $\, n \,$ such that $(z')^n \,$ is real .
 - iii) Prove that M' moves on a circle (C') to be determined. .

Exercise 4: (4pts).

A) Given
$$E = \int_0^1 \frac{2x}{(x+1)(x+2)} dx$$
 and $F = \int_1^2 (x+1) lnx dx$.

1. Without using the calculator.

a) Show that
$$\frac{2x}{(x+1)(x+2)} = \frac{-2}{x+1} + \frac{4}{x+2}$$

b) Calculate E

c) Show that
$$\int (x+1) \ln x \, dx = \left(\frac{x^2}{2} + x\right) \ln x - \frac{x^2}{4} - x + C$$

b) Verify that :
$$F = 4\ln 2 - \frac{7}{4}$$
.

2. Deduce that
$$2E + 3F - 8\ln 3 = -\frac{21}{4}$$
.

B) Let f be a function defined by :
$$f(x) = \int_2^{2x+5} t^3 e^{4t+3} dt$$
.

- 1. Determine f'(x).
- 2. Solve the equation f'(x) = 0.

Exercise 5: (6pts).

Consider a triangle OAB right isosceles such that OA = OB and $(\overrightarrow{OA}, \overrightarrow{OB}) = \frac{\pi}{2}[2\pi]$ I, J, and K are respectively the midpoints of the segments [AB], [OB], and [OA] respectively. Let **r** be the rotation of center I and angle $\frac{\pi}{2}$ and by **t** the translation of vector $\frac{1}{2} \overrightarrow{AB}$. Let $\mathbf{f} = \mathbf{r} \circ \mathbf{t}$ and $\mathbf{g} = \mathbf{t} \circ \mathbf{r}$

- 1) a) Determine f (K), f(J), and f (A).
 - b) Precise the nature and characteristic elements of f.

- 2) a) Determine g (J), and g (O).
 - b) Precise the nature and characteristic elements of g.
- 3) Let $h = g \circ f^{-1}$
 - a) Determine h(O) and find the nature of h.
 - b) M being any point in the plane, Let $M_1 = f(M)$ and $M_2 = g(M)$. Show that the vector $\overrightarrow{M_1M_2}$ is equal to a fixed vector.
- 4) Consider the complex orthonormal system $(O, \overrightarrow{OA}, \overrightarrow{OB})$. Find the complex forms of \mathbf{r} , \mathbf{t} , \mathbf{f} , and \mathbf{g} .

Exercise 6: (16½pts).

- A) Consider the function f defined over IR by : $f(x) = e^x + 2e^{-x}$.
 - Designate by (C) its representative curve in an orthonormal system (O; \overrightarrow{i} , \overrightarrow{j}).

1 unit = 2 cm.

- 1. Determine f'(x).
- 2. Calculate: $\lim_{x \to +\infty} f(x)$, $\lim_{x \to -\infty} f(x)$ et $f(\frac{1}{2} \ln 2)$.
- 3. Draw the table of variations of f.
- 4. Trace (C).
- 5. Calculer the area of the domain limited by (C), (x'x), (y'y) and the straight line x = 2.
- B) Consider the function g defined over IR by : $g(x) = \ln(f(x))$. Designate by (C') its representative curve in an orthonormal system (O; i, j).
 - 1. a) Verify that : $e^x + 2e^{-x} = e^x (1 + \frac{2}{e^{2x}})$.
 - b) Prove that for every $x \in IR$, $g(x) = x + \ln(1 + 2e^{-2x})$.
 - c) Calculate : $\lim_{x \to +\infty} g(x)$..
 - d) Prove that $(d_1): y = x$ is an asymptote to (C') at $+\infty$.

- e) Study the relative position of (C') and (d_1) .
- 2. a) Prove that for every $x \in IR$, $g(x) = -x + \ln(2 + e^{2x})$.
 - b) Calculate : $\lim_{x \to -\infty} g(x)$..
 - c) Prove that (d_2) : y = -x + ln2 is nan asymptote to (C') at $-\infty$.
 - d) Study the relative position of (C') and (d_2) .
- 3. a) Calculate g'(x).
 - b) Prove that $g(\ln(\sqrt{2})) = \frac{3}{2}\ln 2$.
 - c) Draw the table of variations of g.
- 4. Trace (C'), (d_1) and (d_2) .
- C) Let F be the function defined over] 0; $+\infty$ [by : $F(x) = x \cdot (\ln x)^2 2x \ln x + 2x + 1$.
 - 1. Prove that F(x) is a primitive (antiderivative) of $(\ln x)^2$.
 - 2. Deduce : $\int \left[\frac{1 2e^{-2x}}{1 + 2e^{-2x}} + 2(\ln x)^2 \right] dx$.
 - 3. Solve the equation : F(x) = 1 + x.

Good Work