Special Matrices and Additional Properties of Matrices

Brian D. Fitzpatrick
[1, §1.4]

DEF. A square matrix A is <u>diagonal</u> if $a_{ij}=0$ for $i \neq j$.

Ex. The matrices

$$\begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \qquad I_n \qquad 0_{n \times n}$$

are diagonal.

Note. We write
$$\mathrm{diag}(\lambda_1,\lambda_2,\dots,\lambda_n)=egin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

THM (Theorem 1.11 in [1]). Let $A=\operatorname{diag}(a_1,\ldots,a_n)$ and $B=\operatorname{diag}(b_1,\ldots,b_n)$. Then

1.
$$A + B = diag(a_1 + b_1, \dots, a_n + b_n)$$

2.
$$AB = diag(a_1b_2, ..., a_nb_n)$$

3.
$$A \in \mathrm{GL}_n(\mathbb{R})$$
 if and only if each $a_i \neq 0$. Furthermore, in this case, $A^{-1} = \mathrm{diag}(1/a_1, \ldots, 1/a_n)$

Def. A square matrix A is

UPPER TRIANGULAR if
$$a_{ij}=0$$
 for $i>j$

LOWER TRIANGULAR if $a_{ij}=0$ for j>i

Ex. We have

$$\begin{bmatrix} 1 & 4 & 2 \\ 0 & 0 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$
pper triangular
$$\begin{bmatrix} 0 & 0 & 0 \\ 2 & 8 & 0 \\ 4 & 9 & 7 \end{bmatrix}$$
lower triangular

Thm (Theorem 1.12 in [1]). Suppose A and B are upper triangular. Then

- 1. A + B is upper triangular.
- 2. AB is upper triangular.
- 3. A is invertible if and only if each diagonal entry is nonzero.

The corresponding theorem holds for lower triangular matrices.

Def. The <u>transpose</u> of a $m \times n$ matrix A is the $n \times m$ matrix A^{\top} whose entries are $[A^{\top}]_{ij} = a_{ji}$.

Ex.
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \implies A^{\top} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

THM (Theorem 1.13 in [1]).

1.
$$(A^{\top})^{\top} = A$$

2.
$$(A+B)^{\top} = A^{\top} + B^{\top}$$

3.
$$(\lambda A)^{\top} = \lambda A^{\top}$$

4.
$$(AB)^{\top} = B^{\top}A^{\top}$$

5.
$$(A^{\top})^{-1} = (A^{-1})^{\top}$$

Proof. To prove that $(AB)^{\top} = B^{\top}A^{\top}$, note that

$$[(AB)^{\top}]_{ij} = [AB]_{ji}$$

$$= \sum_{k=1}^{n} [A]_{jk} [B]_{ki}$$

$$= \sum_{k=1}^{n} [A^{\top}]_{kj} [B^{\top}]_{ik}$$

$$= \sum_{k=1}^{n} [B^{\top}]_{ik} [A^{\top}]_{kj}$$

$$= [B^{\top}A^{\top}]_{ij}$$

Hence $(AB)^{\top} = B^{\top}A^{\top}$.

Def. A matrix A is symmetric if $A^{\top} = A$.

IDEA. rows of A = columns of A^{\top}

DEF. We denote the collection of all $n \times n$ matrices by $\mathrm{Sym}_n(\mathbb{R})$.

Ex. We have

THM (Theorem 1.14 in [1]).

- 1. If A and B are symmetric, then A+B is symmetric.
- 2. If A is symmetric, then λA is symmetric.
- 3. $A^{\mathsf{T}}A$ and AA^{T} is symmetric.
- 4. If A is invertible and symmetric, then A^{-1} is symmetric.

REFERENCES

[1] G.L. Peterson and J.S. Sochacki. <u>Linear Algebra and Differential</u> Equations. Addison-Wesley, 2002.