Hands-on Activity 4.1: Advanced Data Analytics and Machine Learning

Name: Muyo, Mark Danielle L.

Course and Section: CPE 019 - CPE32S9
Date Performed: February 21, 2024
Date Submitted: February 21, 2024
Instructor: Engr. Roman Richard

PART 1: Do the following objectives: Part 1: Import the Libraries and Data

Part 2: Plot the Data

Part 3: Perform Simple Linear Regression on the SURVIVAL feature column (you can check the internet on how you can perform simple linear regression)

Part 1: Import the Libraries and Data

```
In [1]: import pandas as pd

testFile = "/content/titanic_test.csv"
testFrame = pd.read_csv(testFile)

trainFile = "/content/titanic_train.csv"
trainFrame = pd.read_csv(trainFile)
```

In [2]: testFrame.head()

Out[2]:		PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
	1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
	2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
	3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
	4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S

Out[3]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Er
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	

In [4]: testFrame.describe()

Out[4]:

	PassengerId	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	1100.500000	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.841838	14.181209	0.896760	0.981429	55.907576
min	892.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1204.750000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1309.000000	3.000000	76.000000	8.000000	9.000000	512.329200

In [5]: trainFrame.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Part 2: Plot the Data

Out[5]:

```
In [6]: import numpy as np
import matplotlib.pyplot as plt

In [7]: male_1 = trainFrame[(trainFrame.Sex == 'male')]
    male_2 = testFrame[(testFrame.Sex == 'male')]
    female_1 = trainFrame[(trainFrame.Sex == 'female')]
    female_2 = testFrame[(testFrame.Sex == 'female')]

In [43]: male = pd.concat([male_1, male_2])
    male_mean = male [["Pclass", "Age", "SibSp", "Parch"]].mean(axis=1)
    plt.scatter(male_mean, male["Fare"], color='blue')
    plt.show()
    %matplotlib inline
```


In [45]: female = pd.concat([female_1, female_2])
 female_mean = female [["Pclass", "Age", "SibSp", "Parch"]].mean(axis=1)
 plt.scatter(female_mean, female["Fare"], color='red')
 plt.show()
 %matplotlib inline


```
In [14]:
          print(male mean.isnull().sum())
          print(female_mean.isnull().sum())
          0
In [15]:
          male mean.fillna(male mean.mean(), inplace=True)
          female mean.fillna(female mean.mean(), inplace=True)
In [16]: male.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 843 entries, 0 to 417
          Data columns (total 12 columns):
                              Non-Null Count Dtype
           #
               Column
                PassengerId 843 non-null int64
                              577 non-null float64
           1
                Survived
           2
                              843 non-null
                                                int64
                Pclass
           3
                Name
                            843 non-null object
               Sex 843 non-null object
Age 658 non-null float64
SibSp 843 non-null int64
Parch 843 non-null int64
           4
           5
           6
           7
               Ticket 843 non-null object
Fare 842 non-null float64
Cabin 154 non-null object
           8
           9
           10 Cabin
           11 Embarked
                              843 non-null
                                                object
          dtypes: float64(3), int64(4), object(5)
          memory usage: 85.6+ KB
          female.info()
In [17]:
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 466 entries, 1 to 414
          Data columns (total 12 columns):
           # Column
                              Non-Null Count Dtype
                -----
                              -----
               PassengerId 466 non-null int64
               Survived 314 non-null float64
Pclass 466 non-null int64
Name 466 non-null object
Sex 466 non-null object
                              314 non-null
           1
                                               float64
           2
           3
           4
                        388 non-null float64
466 non-null int64
466 non-null object
           5
                Age
           6
                SibSp
           7
                Parch
           8
               Ticket
           9
                Fare
                              466 non-null
                                                float64
           10 Cabin
                              141 non-null
                                                object
           11 Embarked
                              464 non-null
                                                object
          dtypes: float64(3), int64(4), object(5)
          memory usage: 47.3+ KB
          Part 3: Perform Simple Linear Regression on the SURVIVAL feature column.
```

```
In [21]: from sklearn import linear_model

male_LRM = linear_model.LinearRegression()
male_LRM.fit(male_mean.values.reshape(-1,1), male["Fare"])
```

```
female_LRM = linear_model.LinearRegression()
         female_LRM.fit(female_mean.values.reshape(-1,1), female["Fare"])
Out[21]:
         ▼ LinearRegression
         LinearRegression()
         male predictions = male LRM.predict(male mean.values.reshape(-1, 1))
In [22]:
         female_predictions = female_LRM.predict(female_mean.values.reshape(-1, 1))
         plt.scatter(male_mean, male["Fare"], color='blue')
In [46]:
         plt.plot(male_mean, male_predictions, color='black', linewidth=2)
         plt.show()
         %matplotlib inline
          500
          400
          300
          200
          100
             0
                0.0
                        2.5
                                5.0
                                        7.5
                                               10.0
                                                       12.5
                                                               15.0
                                                                       17.5
                                                                               20.0
         plt.scatter(female mean, female["Fare"], color='red')
In [47]:
         plt.plot(female_mean, female_predictions, color='black', linewidth=2)
         plt.show()
         %matplotlib inline
```


Conclusion

• In this activity, we imported several Python libraries including Pandas, Matplotlib, and Numpy to prepare the data and build models. The Titanic dataset was imported from a CSV file containing information on passengers aboard the Titanic. Key variables included passenger class, age, gender, fare paid, and whether the passenger survived. Initially, the data was explored through visualizations. A scatterplot was created with the mean of Passenger Class, Age, Siblings/Spouses Aboard, and Parent/Children aboard on the x-axis and fare paid on the y-axis. For the linear regression, I also used the mean of several features and gathered the relationship on how many people had survived, and with that inputs, I used it for survival prediction in the Titanic.