

GCP-5차수

- I 인공지능 기초
- Ⅲ Vertex Al AutoML 소개

인공지능(Artificial Intelligence)의 정의

Artificial

• 인공의, 인조의, 거짓된, 가식의

Intelligence

• 지능, 지성, 기밀, 정보; 정보요원

❖ 지능

인식, 추리, 학습 따위의 능력 새로운 사물이나 현상의 의미를 이해하고 처리하는 방법을 알아내는 지적활동 능력 (= 사고력, 관찰력, 상상력, 기억력)

❖ 지성

새로운 상황에 부딪쳤을 때에 맹목적이거나 본능적 방법에 의하지 아니하고, **지적인 사고에 근거**하여, 그 **상황에 적응하고, 과제를 해결**하는 성질

[그림 1] 인공지능 / 머신러닝 / 딥러닝의 관계

I 인공지능 기초

머신러닝이란?

- 머신러닝(Machine Learning)은 컴퓨터가 명시적으로 프로그래밍되지 않아도 데이터로부터 학습하고 예측 또는 결정을 내릴 수 있도록 하는 인공지능 연구의 한 분야 => 인간의 학습 능력을 컴퓨터로 실현시키기 위한 연구
- 컴퓨터가 데이터 속에서 다양한 것들을 학습하고 예측할 수 있도록 하는 인공지능의 한 형태
- 다양한 알고리즘을 통해 데이터 속 패턴을 찾아내고 이를 바탕으로 모델을 생성함

[그림 2] 의사결정나무

[그림 3] 선형회귀분석

[그림 4] 인공신경망 알고리즘

인공지능 기초

머신러닝의 학습 방법

1. 지도학습

- 지도학습은 입력과 정답(레이블)이 있는 데이터를 이용해 학습하는 방식
- 입력값과 결과값을 함께 주고 학습을 시키는 방법으로, 과거의 데이터를 기반으로 미래의 이벤트를 예측할 때 유용함
- 예: 스팸 분류기, 질병 진단

2. 비지도 학습

- 비지도학습은 정답(레이블)이 없는 데이터를 기반으로 학습하는 방식
- 데이터를 탐색하여 내부 구조와 유사한 속성들을 파악하여 분류하기 때문에 분류 기준들의 속성을 파악하는 데 효과적
- 예: 고객 군집화, 특징 추출

3. 강화학습

- 강화학습은 에이전트가 환경과 상호작용하면서 보상을 최대화하는 방향으로 학습하는 방식
- 주요 개념: 상태(State), 행동(Action), 보상(Reward), 정책(Policy)
- 게임, 네비게이션 등에서 활용되며 일정 시간 내에 예상되는 보상을 극대화시킬 수 있는 동작을 선택할 수 있도록 학습함
- 예: 게임 AI, 로봇 제어, 자율주행 시스템 등

[그림 5] 지도학습

[그림 6] 비지도학습

[그림 7] 강화학습

딥러닝(Deep Learning) 이란?

- 머신러닝에 속하는 한 분야로, 인공 신경망(Artificial Neural Network)의 층을 연속적으로 깊게 쌓아 올려 데이터를 학습하는 방식 ANN 은닉층 레이어 두 개 이상 => 심층 신경망(Deep Neural Network, DNN) => 축약하여 딥러닝(Deep Learing)
- 머신러닝의 학습 방법(지도학습, 비지도학습, 강화학습) 모두 적용 가능
- 대표적인 예로 딥 페이크, 이미지나 영상 복원, LLM, 자율주행 자동차 등이 있음

인공신경망의 시작

- 1943년, 워렌 맥컬럭(Warren McCulloch)과 월터 피트(Walter Pitss) 인간 두뇌에 대한 최초의 논리적 모델 제안 '켜고 끄는 기능이 있는 신경'을 그물망 형태로 연결하면 사람의 뇌처럼 동작할 수 있다는 가능성을 주장
- 1957년, 프랭크 로젠블럿(Frank Rosenblatt)이 최초의 신경망 모델 '퍼셉트론(Perceptron)' 발표
- 퍼셉트론은 인공 신경망의 구성요소로 뉴런의 자극 전달 구조를 모방함

[그림 10] 신경세포 구조와 퍼셉트론 알고리즘

[그림 11] 퍼셉트론 알고리즘 구현 코드

인공신경망(Artificial Neural Network, ANN)

- 입력층 : 입력 데이터의 특성을 입력받는 층 (입력값은 실수값임)
- 은닉층: 입력층에서 전달받은 특성들을 가지고 계산한 뒤에 다음 층으로 전달, 실질적인 학습이 이루어지는 층, 학습시에 가중치와 편향 값을 업데이트함
- 출력층 : 은닉층에서 예측한 정답을 출력하는 층

[그림 12] 은닉층이 하나인 인공신경망

[그림 13] 신경망과 퍼셉트론 관계도

딥러닝에서의 블랙박스 문제란?

- 과학, 기술 공학 등의 분야에서의 블랙박스 = 내부 작업의 어떤 이해 없이 입력과 결과의 측면을 볼 수 있는 시스템
- 블랙박스 문제를 해결하는 설명 가능한 인공지능(eXplainable Artificial Intelligence, XAI)라는 개념 등장

[그림 14] 공학 분야의 블랙박스

딥러닝에서의 블랙박스 문제가 나타나는 이유는?

• 블랙박스 문제는 딥러닝 모델의 히든 레이어를 분석하는 것이 너무 어렵기 때문에 발생

[그림 15] 얼굴 인식에 활용된 레이어구조 (Bakshi, 2017)

딥러닝 모델에 대한 가장 단순한 이해

- 인공신경망은 복잡한 구조를 가지고 있지만, 사용자 입장에서는 입력과 출력이 중요한 함수로 치환하여 생각할 수 있음
- 마찬가지로 추상화 시킨 그림 17의 수식으로 보면 원하는 출력값을 얻기 위해 수식(인공신경망)의 가중치(w)와 편향(b) 값을 변경해야 함을 알 수 있음
- 원하는 출력값이 나오도록 수식(인공신경망)을 학습 시키는 것이 중요

[그림 16] 인공신경망과 함수(Function) 비교

[그림 17] 이해를 돕기 위한 수식 형태로의 표현

딥러닝 워크플로우

• 딥러닝 모델의 학습부터 시작하여 실제 서비스에 배포하기까지의 흐름

데이터 수집

데이터 전처리

모델 학습

모델 평가

배포 및 예측

• 모델을 학습 및 테스트에 필요한 데이터 수집

• 수집한 데이터를 모델 학습 에 용이하도록 가공

- 데이터셋으로 모델 학습
- 역전파 알고리즘

• 학습된 모델의 성능 평가

 학습 완료된 모델 배포

종류

- 텍스트
- 이미지
- 음성
- 영성

전처리 기법

- 데이터 라벨링
- 결측값, 중복값, 노이즈 제거
- 데이터 속성 조합 등의 변환
- 데이터 증강

평가기법

- Accuracy(정확도)
- Precision(정밀도)
- Recall(재현율)
- F1-score

13 | hugh

교육 서비스

모델 평가 방법

• Accuracy(정확도)

- 분류 모델을 평가하기에 가장 단순한 지표
- 불균형한 클래스를 가진 데이터셋을 평가하기는 어렵다는 단점이 있음

• Precision(정밀도)

- 분류 모델이 Positive 판정하는 것, 실제로 Positive인 샘플의 비율
- Positive로 검출된 결과가 얼마나 정확한지 나타냄
- 동어 : PPV(Positive Predictive Value)

• Recall(재현율)

- 실제 Positive 샘플 중 분류 모델이 Positive로 판정한 비율
- 분류 모델이 실제 Positive 클래스를 얼마나 빠지지 않고 잘 잡아내는지 나타냄
- 동어: TPR(Ture Positive Rate, 양성률), Sensitivity(민감도)

[그림 18] Accuracy 수식

Precision		Actual		
	$\frac{TP}{TP + FP}$		Positive	Negative
- ti	Predicted	Positive	TP	FP
	Predicted	Negative	FN	TN

[그림 19] Precision 수식

Recall $\frac{TP}{TP + FN}$		Actual		
		Positive	Negative	TP
Predicted	Positive	TP	FP	$Recall = \frac{TF}{TP + FN}$
riedicted	Negative	FN	TN	

모델평가 방법(Precision-Recall의 관계)

F1-score

- Precision과 Recall의 조화평균으로 정의됨
- F1-score는 0과 1사이 값이며, 1에 가까울수록 분류 성능이 좋음을 나타냄

Precision-Recall Curve

- Precision과 Recall은 trade-off 관계임
- 분류 모델의 decision threshold를 통해 trade-off 관계를 조절
- decision threshold란 분류 모델의 결과인 0~1사이의 값을 positive 또는 negative로 결정하는 경계임
- Precision-recall curve 위의 한 점은 특정 threshold에 해당하는 Precision과 Recall 값을 의미함

ROC(receiver operating characteristic) Curve

- threshold에 따른(=Recall)과 FPR(=Fall-out)을 나타낸 그래프
- 대각선을 기준으로 좌상단으로 붙어있는 ROC curve 일수록 좋은 분류 성능을 나타냄

$$F1\text{-score} = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

[그림 21] F1-score 수식

[그림 22] Precision-Recall Curve 그래프

[그림 23] ROC Curve 그래프

Vertex Al

- 머신러닝 모델과 AI 애플리케이션을 교육하고 대규모로 배포하기 위해 구글 클라우드에서 만든 중앙 집중식 플랫폼
- AI 응용 프로그램에서 사용할 대규모 언어 모델(LLM)을 사용자 지정 가능
- 머신러닝 워크플로를 간소화하고 데이터 세트 생애 주기를 단순화 시킬 수 있도록 데이터 관리, 모델 배포 등에 도움을 줌
- 데이터 엔지니어링, 데이터 과학, ML 엔지니어링 워크플로를 결합함

Custom ML Platform

Fast track ML model development & deployment with managed data science tools, workflows, & infra

Model Garden

Jump-start ML projects with access to a variety of pre-built models including APIs & foundation models

[그림 24] Vertex AI 주요 서비스

Generative Al Studio

Accelerate production Gen Al with easy to use & low-code tooling for tuning & deploying large models

Vertex AI는 모델 학습 및 배포를 위한 여러 옵션을 제공

- AutoML을 사용하면 코드를 작성하거나 데이터 분할을 준비하지 않고도 테이블 형식, 이미지, 텍스트 또는 동영상 데이터를 학습시킬 수 있음
- 이러한 모델은 온라인 예측을 위해 배포되거나 일괄 예측을 위해 직접 쿼리 될 수 있음

Custom ML Platform	Model Garden	Generative Al Studio	
Fast track ML model development & deployment	Jump-start ML projects with access to a variety of	Accelerate production Gen Al with easy to use & low-code	
with managed data science tools, workflows, & infra	pre-built models including APIs & foundation models	tooling for tuning & deploying large models	

[그림 24] Vertex AI 주요 서비스

Custeom ML Platform

- 커스텀 학습을 사용하면 선호하는 ML 프레임워크 사용, 자체 학습 코드 작성, 초매개변수 조정 옵션 선택 등 학습 프로세스를 완벽하게 제어할 수 있음
- 커스텀 학습 모델을 Model Registry로 가져와 사전 빌드 된 또는 커스텀 컨테이너를 사용하여 온라인 예측을 위한 엔드포인트에 배포할 수 있음
- 또는 일괄 예측을 위해 직접 쿼리 할 수 있음

Model Garden

- Model Garden을 사용하면 Vertex AI를 검색, 테스트, 맞춤 설정, 배포하고 오픈소스 모델과 애셋을 선택할 수 있음

Generative Al Studio

- 생성형 AI는 여러 모달(텍스트, 코드, 이미지, 음성)에 대한 Google의 대규모 생성형 AI 모델에 대한 액세스를 제공함
- 필요에 맞게 Google의 LLM을 조정한 후 AI 기반 애플리케이션에서 사용하도록 배포할 수 있음

Vertex AI 구성

[그림 25] Vertex AI 주요 서비스 구조

Vertex AI의 end-to-end MLOps

• "Data Scientists"와 "ML Engineer"가 전체 개발 수명 주기 동안 ML 프로젝트를 효율적이고 책임감 있게 관리, 모니터링, 관리 및 설명할 수 있도록함

[그림 26] ML Ops 절차

AutoML 이란?

- AutoML (Automated Machine Learning) ML 전문지식 없이 모델 생성 가능
- 파이프라인 자동화: 전처리 \rightarrow 학습 \rightarrow 튜닝 \rightarrow 평가

Vertex Al AutoML 주요 기능

- 데이터 업로드만으로 모델 학습 가능
- 예측 성능 최적화를 위한 하이퍼 파라미터 자동 탐색
- 학습된 모델을 엔드포인트에 즉시 배포 가능
- UI 또는 API를 통한 접근 가능

Task 유형	지원기능	
이미지 분류	• 정적 이미지 분석	
객체 감지	• 이미지 내 객체 위치 식별	
텍스트 분류	• 뉴스/리뷰 분류 등	
텍스트 감정 분석	• 긍/부정 등 분석	
표 형식 예측	• 구조화된 데이터 학습	

[표 1] Vertex Al AutoML 지원 타입

Vertex AI의 AutoML

최소한의 기술적 노력으로 모델을 만들고 학습할 수 있어 개발에 투자하기에 앞서 AutoML을 사용하여 빠르게 모델 프로토타입을 제작 및 새로운 데이터 세트 확인 가능

	AutoML	커스텀 학습
필요한 데이터 과학 전문 지식	• 아니요	• 학습 애플리케이션을 개발하고 특성 추출과 같은 일부 데이터 준비 작업을 수행함
프로그래밍 능력 필요	• AutoML에서는 코딩이 필요하지 않음	• 학습 애플리케이션을 개발하는 데 필요함
학습 모델 소요 시간	상대적으로 적게 걸림필요한 데이터 준비가 적고 개발이 필요하지 않음	• 상대적으로 많이 걸림. 필요한 데이터 준비가 많고 학습 애플리케이션 개발도 필요함
머신러닝 목표 한도	• AutoML의 사전 정의된 목표 중 하나를 목표로 삼아야 함	• 아니요
초매개변수 조정으로 모델 성능을 수동으로 최적화할 수 있음	 아니요 AutoML은 일부 자동화된 초매개변수 조정을 수행하지만 사용되는 값을 수정할 수는 없음 	• 각 학습 실행 중에 실험 및 비교를 위해 모델을 조정할 수 있음
학습 환경의 측면을 제어할 수 있음	• 제한적으로 가능. 이미지 및 테이블 형식 데이터 세트의 경우 학습시킬 노드 시간 및 학습 조기 중단 허용 여부를 지정할 수 있음	• 예. Compute Engine 머신 유형, 디스크 크기, 머신러닝 프레임워크, 노드 수와 같은 환경의 측면을 지정할 수 있음
데이터 크기 제한	AutoML은 관리형 데이터 세트를 사용며, 데이터 크기 제한은 데이터 세트 유형에 따라 다름 이미지 학습 데이터 준비 터이블 형식 학습 데이터 준비 동영상 교육 준비	 관리되지 않는 데이터 세트의 경우에는 데이터 크기 제한이 없음 관리형 데이터 세트에는 Vertex AI에서 생성되고 호스팅되는 관리형 데이터 세트 객체와 동일한 한도가 적용되며 AutoML 모델을 학습시키는 데 사용됨

[丑 2] AutoML vs CustomML