TREE ANALYSIS: CU BOULDER (BUFFALIZATION DATA VISUALIZATION CHALLENGE)

1. Data Cleaning Process

The dataset provided for this challenge contained information on **777 trees** located in **CU-Boulder's historic campus**. To ensure accuracy and reliability in analysis, the following data cleaning steps were performed:

1.1 Handling Missing Values

- Conducted a thorough assessment of missing values in key fields such as Canopy Spread, Height, and Species.
- Applied **mean imputation** for numerical fields where missing values were minimal to maintain dataset integrity.
- Removed records containing critical missing data that could not be reasonably inferred, ensuring high-quality insights.

1.2 Removing Duplicates

- Performed a duplicate check based on Species, Height, Canopy Spread, and Location Coordinates to identify redundant records.
- Eliminated duplicate entries to maintain data accuracy and prevent skewed analysis.

1.3 Outlier Detection & Removal

- Applied the z-score method to detect anomalies in Height and Canopy Spread values.
- Conducted manual verification to distinguish between actual extreme values and data entry errors.
- Removed incorrect outliers while preserving biologically valid data points for accurate analysis.

A refined dataset, free from inconsistencies, was finalized and saved as **cleaned_trees_dataset.csv** for further analysis.

2. Calculated Fields

To enrich the dataset and derive meaningful insights, several calculated fields were introduced. These fields provide deeper understanding into tree structure, growth dynamics, and environmental impact.

2.1 Canopy Area

- Formula: π × (Canopy Spread / 2)²
- Measures the total ground area covered by a tree's canopy, aiding in understanding its environmental footprint.

2.2 Canopy Volume

- Formula: (2/3) × π × (Canopy Spread / 2)³
- Provides an estimate of the total airspace occupied by a tree's canopy, assuming a semi-spherical shape.

2.3 Canopy Density

- Formula: Canopy Volume / Canopy Area
- Determines the compactness of the tree's canopy, offering insight into foliage density.

2.4 Canopy Height Ratio

- Formula: Canopy Spread / Height
- Assesses the proportional relationship between a tree's canopy width and its overall height.

2.5 Height Canopy Ratio

- Formula: Height / Canopy Spread
- Evaluates how tall a tree stands in relation to the spread of its canopy.

2.6 Bio Mass

- Formula: Height × Canopy Spread
- Provides an approximation of a tree's total biomass, contributing to ecological impact assessments.

2.7 Carbon Absorbed

- Formula: Bio Mass × 0.5
- Estimates the amount of carbon a tree absorbs, assuming 50% of biomass consists of carbon.

2.8 Slenderness Index

- Formula: Height / sqrt(Canopy Spread)
- Identifies trees with potential structural instability by measuring their height-to-canopy ratio.

2.9 Growth Stage Classification

Formula:

IF [Height] <= 20 THEN "Sapling" ELSEIF [Height] <= 35 THEN "Maturing" ELSEIF [Height] <= 47 THEN "Mature" ELSE "Ancient" END

 Trees are categorized into Sapling, Maturing, Mature, and Ancient, offering insights into growth distribution across campus.

3. Storytelling & Insights

The trees on CU Boulder's campus play a crucial role beyond aesthetics, contributing significantly to **carbon sequestration**, **environmental sustainability**, **and ecological diversity**. This dashboard presents a **data-driven narrative** that highlights:

Canopy Coverage & Carbon Sequestration

- Trees with **expansive canopies** contribute significantly to **carbon absorption**, reducing environmental impact.
- The **Canopy Coverage Map** illustrates tree density across campus, highlighting areas of concentrated foliage.

Growth Stages & Structural Insights

- The **Growth Classification Chart** reveals that a substantial proportion of trees fall within the *Maturing and Mature* categories, supporting long-term environmental benefits.
- The **Slenderness Index Analysis** identifies trees with potential structural vulnerabilities, assisting in proactive maintenance efforts.

Tree Diversity & Distribution

- The **Tree Distribution Map** visually represents the spread of different species across campus, emphasizing biodiversity.
- The Top N Analysis showcases trees with exceptional canopy height ratios and superior carbon absorption rates, underscoring their ecological significance.

By integrating **scientific analysis with compelling visuals**, this dashboard effectively conveys the environmental importance of CU Boulder's trees while fostering a deeper appreciation for urban forestry.

4. Conclusion

This analysis provides a **holistic understanding of CU Boulder's trees**, highlighting their ecological value, structural attributes, and carbon sequestration potential. The cleaned dataset and calculated fields facilitated an in-depth exploration of tree-related metrics, while the dashboard offers an engaging visual narrative of these findings.

This project stands at the **intersection of data science**, **sustainability**, **and storytelling**, shedding light on the often-overlooked impact of campus trees in a manner that is both informative and visually compelling.

Author: Trinay Gangisetty

Buffalization Data Visualization Challenge 2025