```
Im [81]:
    import numpy as np
    import pandas as pd
    import random
    import re
    import string
    # from sklearn.datasets import fetch_20moviegroups
    from sklearn.swm import SVC
    from sklearn.model_selection import GridSearchCV
    from sklearn.metrics import accuracy_score
    from nltk.corpus import stopwords
    from nltk.tokenize import word_tokenize
    import warnings
    warnings.filterwarnings('ignore')
    random_seed = 3116
```

1 Naive Bayes

In this part of the assignment, you will be using the processed dataset from previous Lab Question 1. Using the BOW and Tf-Idf representation, implement a Naive-Bayes classifier for the data. Use Laplace smoothing for the implementation. Compare your implementation with the sklearn implementation.

```
In [82]: #importing the training data
         imdb data=pd.read csv('imdb dataset.csv')
         imdb data = imdb data.iloc[:1000, :] # Taking a subset of data due to high computational requirement of this question
In [83]: # Function to split the dataset into train, test and validation sets
         def split dataset(movie vectors, targets, train ratio, validation ratio):
             combined = list(zip(movie vectors, targets))
             random.shuffle(combined)
             train rows = int(len(combined) * train ratio)
             validation rows = int(len(combined) * validation ratio)
             X , y = list(zip(*combined))
             X, y = list(X), list(y)
             X train, X val, X test = X[:train rows], X[train rows:train rows+validation rows], X[train rows+validation rows:]
             y train, y val, y test = y[:train rows], y[train rows:train rows+validation rows], y[train rows+validation rows:]
             return X train, X val, X test, y train, y val, y test
In [84]: # Preprocessing textual data to remove punctuation, stop-words
         # Function to Preprocess the data by removing Stopwords, punctuations and tokenizing the data
         def preprocess(movie string):
             # Extracting the English stopwords and converting it into a set
             english stop words = set(stopwords.words('english'))
             # Making the data into the lower case string and then tokenizing the data into word list
             movie string = word tokenize(movie string.lower())
             # Removing stopwords and punctuations from the word list
             movie string = [word for word in movie string if word not in english stop words and word.isalpha()]
             # Returning the final processed data list
             return movie string
```

```
movie target = imdb data['sentiment']
         # Initializing an empty list to store processed movie items
         processed movie = []
         # Applying Preprocessing step on all the movie items
         # Iterating for each movie items
         for n item in movie items:
             #Applying preprocessing on current movie item
             processed movie.append(preprocess(n item))
In [86]: # bag-of-words feature representation for each text sample
         def update word freq(data, freq dict): # Word freq Dictionary from the Provided data
             # Using list comprehension to update word freq in the dictionary
             freq dict = {word: freq dict.get(word, 0) + 1 for word in data}
             return freq dict
         # Create a Binary vector for a data based on Bag of Word Representation
         def bag of words(data, freq dict):
             #Initializing a vector with zeros having the length equal to total unique words in the corpus
             sent vector = np.zeros(shape=(len(freq dict.keys()),))
             for word in data:
                 if word in freq_dict.keys():
                     sent vector[list(freq dict.keys()).index(word)] = 1
             return sent vector
         features = 1500 # Number of features for processing
         # Creating a dictionary to store all unique words and there count in the entire corpus
         corpus word freq = {}
         for doc in processed movie:
             corpus word freq = update_word_freq(doc, corpus_word_freq)
         corpus word freq = dict(sorted(corpus word freq.items(), key=lambda item: item[1], reverse=True))
         corpus word freq = dict(itertools.islice(corpus word freq.items(), features))
         movie bog vectors = []
         for doc in processed movie:
             # Creating a bag of word representation vector and appending it into the final list
             movie bog vectors.append(bag of words(doc, corpus word freq))
In [87]: # Bag of Word Representation
         movie bog df = pd.DataFrame(movie bog vectors, columns=corpus word freq.keys())
         movie bog df.head()
```

Out[87]:

	make	br	see	even	like	appear	film	go	avoid	minutes	 noises	appropriate	masking	noise	old	israeli	russian	planes	used	us
0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	1.0	1.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
3	1.0	1.0	1.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	1.0	1.0	1.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0

5 rows × 219 columns

In [85]: # Extracting movie and its Target label
movie items = imdb data['review']

```
In [88]: # Function to calculate the Term freq (TF) for a word in a data
         def term freq(data, word):
             return data[word]/sum(data.values())
         # Function to calculate the Inverse data freq (IDF) for a word in the entire Corpus
         def data_freq_inv(total_doc_freq, word, total_datas):
             return np.log(total datas/total doc freq[word] + 1)
         # Function to calculate the TF-IDF of a all the words individually in the entire corpus
         def tf idf(data, total doc freq, total datas):
             data_vector = np.zeros(shape=(len(total_doc_freq.keys()),))
             for word in data.keys():
                 if word in total doc freq.keys():
                     tf idf = term freq(data, word) * data freq inv(total doc freq, word, total datas)
                     data_vector[list(total_doc_freq.keys()).index(word)] = tf_idf
             return data vector
In [89]: # Converting each data in the dataset into a TF-IDF Representation
         movie tfidf vectors = []
         #Iterating for each datas to generate word freq dictionary and adding thidf vectors to movie thidf vectors list
         for doc in processed movie:
             current_doc_dict = update_word_freq(doc, {})
             movie tfidf vectors.append(tf idf(current doc dict, corpus word freq, len(processed movie)))
In [90]: # TF-IDF Representation
         movie tfidf = pd.DataFrame(movie tfidf vectors, columns=corpus word freq.keys())
         movie_tfidf.head()
```

Out[90]:

	make	br	see	even	like	appear	film	go	avoid	minutes	 noises	appropriate	masking	noise	old	israeli	russian	planes	used	us
(0.000000	0.043374	0.000000	0.000000	0.000000	0.0	0.000000	0.046393	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000
-	0.000000	0.079618	0.079618	0.000000	0.000000	0.0	0.000000	0.000000	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000
2	0.000000	0.075482	0.075482	0.075482	0.000000	0.0	0.000000	0.080735	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.089724
;	0.106066	0.116243	0.116243	0.000000	0.124332	0.0	0.124332	0.000000	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000000
4	1 0.054673	0.059919	0.059919	0.000000	0.000000	0.0	0.064089	0.000000	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.071224

5 rows × 219 columns

Naive Bayes Classifier for Text Data

```
In [91]: class NaiveBayes:
             def init (self, feature representation, dataset, target):
                 self.feature representation = feature representation
                 self.dataset = np.array(dataset)
                 self.target = np.array(target)
                 self.unique target = list(set(target))
                 self.accuracy = 0
                 self.combined = np.concatenate((self.dataset, self.target.reshape(-1,1)), axis = 1)
             # Calculate the Probability for a data represented using Bag of Words
             def get prob bog(self, data, target):
                 # Calculating the probability for a class itself
                 prob class = len(self.target[np.where(self.target == target)]) / len(self.target)
                 # Initializing the prior probability for each Word in the data
                 words prior prob = 1
                 # Iterating over each word in the data
                 for i in range(len(data) - 1): # If word exists in the data
                     if data[i] == 1:
                         # Calculating the Prior probability of the word given the class
                         p word num = len(self.combined[np.where((self.combined[:,i] == 1) & (self.combined[:,-1] == target))])
                         p word den = len(self.combined[np.where(self.combined[:,-1] == target)])
                         words prior prob *= (p word num / p word den)
                 return words prior prob * prob class
             # Calculate the Probability for a data represented using TF-IDF
             def get prob tfidf(self, data, target):
                 prob class = len(self.target[np.where(self.target == target)]) / len(self.target)
                 words prior prob = 1
                 for i in range(len(data) - 1):
                     if data[i] == 1:
                         p word num = sum(self.combined[np.where((self.combined[:,i] == 1) & (self.combined[:,-1] == target))])
                         p word den = sum(self.combined[np.where(self.combined[:,-1] == target)])
                         words prior prob *= (p word num / p word den)
                 return words prior prob * prob class
             # Predictions on the dataset provided and calculate the Accuracy
             def predict(self):
                 for index, doc in enumerate(self.combined):
                     tar prob = []
                     # Iterating over all unique target values for calculating there probabilities
                     for tar in self.unique target:
                         # calculating the probabiltiy
                         if self.feature representation == 'bog':
                             tar prob.append(self.get prob bog(doc, tar))
                         elif self.feature representation == 'tfidf':
                             tar prob.append(self.get prob tfidf(doc, tar))
                     tar prob = list(map(lambda x : x / (sum(tar prob) + 1), tar prob)) # Normalizing
                     predicted class = self.unique target[tar prob.index(max(tar prob))]
                     if predicted class == self.target[index]:
                         self.accuracy += 1
                 self.accuracy /= len(self.combined)
             # Score
             def score(self):
                 if self.feature representation == 'bog':
                     feature rep = 'Bag of Words'
                 else:
                     feature rep = 'TF-IDF'
                 return str(feature_rep) + ' is ' + str(np.round(self.accuracy * 100, 2)) + '%'
```

Using Bag of Word Representation

```
In [92]: # Splitting the Dataset with Bag of Word Representation into Train, Validation and Test sets
X_train, X_val, X_test, y_train, y_val, y_test = split_dataset(movie_bog_vectors, movie_target, 0.8, 0.1)

# Creating and Fitting the Naive Bayes model on the training, Validation and Test Sets
NaiveBayes_train = NaiveBayes('bog', X_train, y_train)
NaiveBayes_train.predict()
NaiveBayes_val = NaiveBayes('bog', X_val, y_val)
NaiveBayes_test = NaiveBayes('bog', X_test, y_test)
NaiveBayes_test = NaiveBayes('bog', X_test, y_test)
NaiveBayes_test.predict()

# Calculating and Displaying the Training, Validation and Test Accuracies
print('Training Accuracy: {}'.format(NaiveBayes_train.score()))
print('Validation Accuracy: {}'.format(NaiveBayes_val.score()))
print('Test Accuracy: {}'.format(NaiveBayes_test.score()))
Training Accuracy: Bag of Words is 51.25%
```

Using TF-IDF Representation

Validation Accuracy: Bag of Words is 57.0%

Test Accuracy: Bag of Words is 52.0%

Training Accuracy: TF-IDF is 50.25% Validation Accuracy: TF-IDF is 56.0%

Test Accuracy: TF-IDF is 55.0%

```
In [93]: X_train, X_val, X_test, y_train, y_val, y_test = split_dataset(movie_tfidf_vectors, movie_target, 0.8, 0.1)
# Creating and Fitting the Naive Bayes model on the training, Validation and Test Sets
NaiveBayes_train = NaiveBayes('tfidf', X_train, y_train)
NaiveBayes_train:predict()
NaiveBayes_val = NaiveBayes('tfidf', X_val, y_val)
NaiveBayes_test = NaiveBayes('tfidf', X_test, y_test)
NaiveBayes_test = NaiveBayes('tfidf', X_test, y_test)
NaiveBayes_test.predict()

# Calculating and Displaying the Training, Validation and Test Accuracies
print('Training Accuracy: {}'.format(NaiveBayes_train.score()))
print('Validation Accuracy: {}'.format(NaiveBayes_val.score()))
print('Test Accuracy: {}'.format(NaiveBayes_test.score()))
```

SVM Classifier via Scikit-Learn

Bag of Word Representation

```
In [94]: hyperparameter_grid = {'C' : [0.01,0.02,0.03], 'kernel': ['linear', 'rbf'], 'gamma': ['scale', 'auto']}
X_train, X_val, X_test, y_train, y_val, y_test = split_dataset(movie_bog_vectors, movie_target, 0.8, 0.1)
# Creating and Fitting the SVM model on the training set using Grid Search and different Hyperparameter combination
svm = SVC(random_state=random_seed)
#Creating a Grid Seach object with the SVM model and K-fold Cross validation
grid_model = GridSearchCV(svm, hyperparameter_grid, n_jobs=-1, cv=5, scoring='accuracy', return_train_score=True)
```

```
grid_model.fit(X_train, y_train)

print('Best Hyperparameters for Bag of Word Representation with Grid Search: ', grid_model.best_params_)

print('Validation Accuracy on best Hyperparameters:', np.round(accuracy_score(y_val, grid_model.predict(X_val)) * 100), 2, '%')

print('Test Accuracy on best Hyperparameters: ',np.round(accuracy_score(y_test, grid_model.predict(X_test)) * 100), 2, '%')

Post Hyperparameters for Pag of Word Representation with Grid Search: ('C': 0.02 'gamma': 'ggale' 'kernel': 'linear')
```

Best Hyperparameters for Bag of Word Representation with Grid Search: {'C': 0.02, 'gamma': 'scale', 'kernel': 'linear'} Validation Accuracy on best Hyperparameters: 66.0 2 %
Test Accuracy on best Hyperparameters: 63.0 2 %

TF-IDF Representation

In []:

```
In [95]: X_train, X_val, X_test, y_train, y_val, y_test = split_dataset(movie_tfidf_vectors, movie_target, 0.8, 0.1)

# Creating and Fitting the SVM model on the training set using Grid Search and different Hyperparameter combination

svm = SVC(random_state=random_seed)

grid_model = GridSearchCV(svm, hyperparameter_grid, n_jobs=-1, cv=5, return_train_score=True)

grid_model.fit(X_train, y_train)

print('Best Hyperparameters for TT-IDF Representation with Grid Search: ', grid_model.best_params_)

print('Validation Accuracy on best Hyperparameters: ', np.round(accuracy_score(y_val, grid_model.predict(X_val)) * 100),2, '%')

print('Test Accuracy on best Hyperparameters: ', np.round(accuracy_score(y_test, grid_model.predict(X_test)) * 100),2, '%')

Best Hyperparameters for TT-IDF Representation with Grid Search: {'C': 0.01, 'gamma': 'scale', 'kernel': 'rbf'}

Validation Accuracy on best Hyperparameters: 49.0 2 %

Test Accuracy on best Hyperparameters: 49.0 2 %
```