Inducción electromagnética

29.1 Demostración del fenómeno de la corriente inducida.

La Ley de Faraday de la inducción establece:

La fem inducida en una espira cerrada es igual al negativo de la tasa de cambio de flujo magnético a través de la espira con respecto al tiempo.

$$\mathcal{E} = -\frac{d\Phi_B}{dt}$$

Dirección de la fem inducida

- 1. Defina una dirección positiva para el vector de area \vec{A} .
- 2. A partir de las direcciones de \vec{A} y \vec{B} , determine el signo del flujo Φ_B y su tasa de cambio $d\Phi_B/dt$.
- 3. Determine el signo de la fem. El contrario al signo de $d\Phi_B/dt$.
- 4. Determine la dirección de la corriente inducida con la ayuda de la mano derecha. Doble los dedos alrededor del vector \vec{A} con el pulgar en dirección de \vec{A} . Si la fem es positiva, está en la misma dirección de los dedos doblados. Si es negativa en dirección opuesta.

Dirección de la fem inducida

29.6 El flujo magnético se hace a) más positivo, b) menos positivo, c) más negativo y d) menos negativo. Por lo tanto, Φ_B es creciente en los incisos a) y d), y decreciente en b) y c). En a) y d), las fem son negativas (opuestas a la dirección de los dedos doblados de la mano derecha cuando el pulgar apunta a lo largo de \vec{A}). En b) y c), las fem son positivas (en la misma dirección que los dedos enrollados).

- El flujo es positivo ($\Phi_R > 0$) ...
- ... y se torna más positivo $(d\Phi_B/dt > 0)$.
- La fem inducida es negativa ($\mathcal{E} < 0$).

- El flujo es negativo ($\Phi_B < 0$) ...
- ... y se torna más negativo $(d\Phi_R/dt < 0)$.
- La fem inducida es positiva ($\mathcal{E} > 0$).

- El flujo es positivo ($\Phi_R > 0$) ...
- ... y se torna menos positivo $(d\Phi_R/dt < 0)$.
- La fem inducida es positiva ($\mathcal{E} > 0$).

- \bullet El flujo es negativo ($\Phi_{B} < 0) \, \dots$
- ... y se torna menos negativo $(d\Phi_B/dt > 0)$.
- La fem inducida es negativa ($\mathcal{E} < 0$).

Ley de Lenz

Fem de movimiento pag 1006

Campos eléctricos inducidos pag 1008