

CLIP Is Strong Enough to Fight Back: Test-time Counterattacks towards Zero-shot Adversarial Robustness of CLIP

pape

paper & code!

Songlong Xing¹

Zhengyu Zhao²

¹University of Trento, Italy

²Xi'an Jiaotong University, China

Motivation

1. CLIP is vulnerable to adversarial perturbations

2. State-of-the-art methods employ finetuning or prompt tuning with adversarial images.

(Figure borrowed from TeCoA [1])

Limitations are apparent:

- Expensive training
- Overfitting to adversarial samples
- Significant loss of clean performance

What if we discard training and counter adversary at test time?

Preliminary Experiment

Perturbations that maximize downstream loss cause 'false robustness'.

ImageNet

(Check out Appendix for theoretical explanation)

Methodology

Leverage the vision encoder to counterattack adversarial images to mitigate 'false robustness'.

$$\delta_{ttc} = \arg \max_{\delta} \|f_{\theta}(x + \delta) - f_{\theta}(x)\|$$

$$s. t. \|\delta\|_{\infty} \le \varepsilon_{ttc}$$

Algorithm

Nicu Sebe¹

1. τ describes representational variation induced by random noise:

$$\tau = \frac{\|f_{\theta}(x+n) - f_{\theta}(x)\|}{f_{\theta}(x)}$$

2. Counterattack test image x depending on τ at the initial step ($\tau < \tau_{thres}$):

$$\delta_{ttc}^i = \prod \left(\delta_{ttc}^{i-1} + \alpha \nabla_{\delta} \| f_{\theta}(x + \delta_{ttc}^{i-1}) - f_{\theta}(x) \| \right)$$

3. Weight and sum δ^i_{ttc} across N steps:

$$\delta_{ttc} = \sum_{i=0}^{N} w_i \bullet \delta_{ttc}^i$$

Algorithm 1 τ -thresholded weighted counterattacks.

Require: Test image x, pre-trained CLIP vision encoder f_{θ} , counterattack budget ϵ_{ttc} , stepsize α , number of steps N, user-defined parameters τ_{thres} and β .

16: end procedure

Results

(%)		CLIP	TeCoA [1]	FARE [2]	RN	TTC (ours)	(w.r.t. CLIP)
ImageNet	Rob.	1.15	18.89	14.00	1.77	38.41	+37.26
	Acc.	59.69	34.89	48.79	59.34	49.39	-10.30
CIFAR10	Rob.	0.74	33.61	19.65	2.01	28.75	+28.01
	Acc.	85.12	64.61	74.44	81.18	81.18	-3.94
Caltech256	Rob.	8.47	43.19	38.79	11.33	60.11	+51.64
Callectization	Acc.	81.72	61.14	73.32	81.25	79.66	-2.06
Cars	Rob.	0.02	8.76	6.75	0.16	33.01	+32.99
Cars	Acc.	52.02	20.91	38.68	52.14	48.16	-3.86
Avg. 16	Rob.	2.70	26.54	20.00	3.86	39.17	+36.47
datasets	Acc.	61.51	40.25	51.02	61.61	59.75	-1.76

Tab.1 PGD-10 attacks ($\varepsilon_a = 1/255$). Find full table in the paper.

	(%)	C10	IN	Cal256	Cars	Rob.	$\overline{\mathbf{Acc}}$
	TeCoA	33.61	18.89	43.19	8.76	26.54	40.25
	TeCoA + TTC	34.68	23.14	48.49	12.09	29.02	39.85
	Δ	1.07 ↑	4.25 ↑	5.30 ↑	3.33 ↑	2.48 ↑	-0.40 ↓
	FARE	19.65	14.00	38.79	6.85	20.00	51.02
	FARE + TTC	35.55	30.52	59.20	20.46	33.89	49.91
	Δ	15.90 ↑	16.52 ↑	20.41 ↑	13.61 ↑	13.89 ↑	-1.11 ↓

Tab.2 Applying TTC on finetuned models further improves robustness.

Conclusion & Discussion

- 1. CLIP can leverage f_{θ} to counterattack
- 2. First method to defend CLIP at test time

Limitataions to be addressed:

- limited robustness gains on finetuned models
- Incurs compute expense at test time
- May be circumvented by adaptive attacks

Reference

- [1] Mao et al. Understanding zero-shot adversarial robustness for large-scale models. In ICLR, 2023.
- [2] Schlarmann et al. Robust CLIP: Unsupervised adversarial fine-tuning of vision embeddings for robust large vision-language models. In ICML, 2024.