Controlli Automatici - T

Progetto Tipologia b - Traccia 2 Controllo satellite in orbita intorno alla Terra

Il progetto riguarda il controllo di un satellite in orbita attorno alla Terra.

Descrizione del problema

$$m\ddot{\rho} = m\rho\omega^2 - \frac{mk_GM}{\rho^2} - \beta_1\dot{\rho} + \tau' \tag{1a}$$

$$\dot{\omega} = -\frac{2\omega\dot{\rho}}{\rho} - \frac{\beta_2\omega}{m} + \frac{\tau}{m\rho},\tag{1b}$$

in cui la variabile $\rho(t)$ indica la distanza del satellite rispetto al centro della Terra e $\omega(t)$ indica la velocità angolare del satellite rispetto alla Terra, come riassunto in Figura 1. Le variabili d'ingresso F(t) e $\tau(t)$ indicano, rispettivamente, la forza radiale e quella tangenziale fornita dai motori del satellite. Il parametro $k_G = 6.67 \cdot 10^{-11}$ rappresenta la costante di gravitazione universale, il parametro $M = 5.98 \cdot 10^{24}$ rappresenta la massa della Terra, mentre il parametro $m \in \mathbb{R}$ indica la massa del satellite. Infine, i parametri $\beta_1, \beta_2 \in \mathbb{R}$ rappresentano dei coefficienti d'attrito.

Figura 1: Schema illustrativo della dinamica del satellite.

Si supponga che per la variabile d'ingresso F(t) sia già stato progettato un primo controllore, avente la forma

$$F = mk \left(\frac{k_G M}{\rho^2} - \rho \omega^2\right),\tag{2}$$

con $k \in \mathbb{R}$ parametro riportato in tabella. La legge di controllo (2), applicata a (1), riduce le equazioni del sistema a

$$m\ddot{\rho} = -\beta_1 \dot{\rho} + m(k-1) \left(\frac{k_G M}{\rho^2} - \rho \omega^2 \right)$$
 (3a)

$$\dot{\omega} = -\frac{2\omega\dot{\rho}}{\rho} - \frac{\beta_2\omega}{m} + \frac{\tau}{m\rho},\tag{3b}$$

con $\tau(t)$ ingresso libero. Infine, si supponga di poter misurare la velocità angolare $\omega(t)$.

Punto 1

Si riporti il sistema (3) nella forma di stato

$$\dot{x} = f(x, u) \tag{4a}$$

$$y = h(x, u). (4b)$$

In particolare, si dettagli la variabile di stato, la variabile d'ingresso, la variabile d'uscita e la forma delle funzioni f e h. A partire dal valore di equilibrio ρ_e (fornito in tabella), si trovi l'intera coppia di equilibrio (x_e, u_e) e si linearizzi il sistema non lineare (4) nell'equilibrio, così da ottenere un sistema linearizzato del tipo

$$\delta \dot{x} = A\delta x + B\delta u \tag{5a}$$

$$\delta y = C\delta x + D\delta u,\tag{5b}$$

con opportune matrici $A, B, C \in D$.

Figura 2: Schema di controllo.

Punto 2

Si calcoli la funzione di trasferimento da δu a δy , ovvero la funzione G(s) tale che $\delta Y(s) = G(s)\delta U(s)$.

Punto 3

Si progetti un regolatore (fisicamente realizzabile) considerando le seguenti specifiche:

- 1) Errore a regime nullo con riferimento a gradino.
- 2) Per garantire una certa robustezza del sistema si deve avere un margine di fase $M_f \geq 40^{\circ}$.
- 3) Il sistema può accettare una sovraelongazione percentuale al massimo dell'1% : $S\% \le 1\%$.
- 4) Il tempo di assestamento all' $\epsilon\% = 5\%$ deve essere inferiore al valore fissato: $T_{a,\epsilon} = 0.15s$.
- 5) Il disturbo sull'uscita d(t), con una banda limitata nel range di pulsazioni [0,0.08], deve essere abbattutto di almeno 45 dB.
- 6) Il rumore di misura n(t), con una banda limitata nel range di pulsazioni $[5 \cdot 10^4, 7.5 \cdot 10^7]$, deve essere abbattutto di almeno 85 dB.

Punto 4

Testare il sistema di controllo sul sistema linearizzato con $w(t)=8\cdot 10^{-5}\cdot 1(t),\ d(t)=\sum_{k=1}^4 3\cdot 10^{-5}\cdot \sin(0.02kt)$ e $n(t)=\sum_{k=1}^4 2\cdot 10^{-4}\sin(5\cdot 10^4kt).$

Punto 5

Testare il sistema di controllo sul modello non lineare (ed in presenza di d(t) ed n(t)).

Punti opzionali

- Sviluppare (in Matlab) un'interfaccia grafica di animazione in cui si mostri la dinamica del satellite in orbita intorno alla Terra.
- Supponendo un riferimento $w(t) \equiv 0$, esplorare il range di condizioni iniziali dello stato del sistema non lineare (nell'intorno del punto di equilibrio) tali per cui l'uscita del sistema in anello chiuso converga a $h(x_e, u_e)$.

• Esplorare il range di ampiezza di riferimenti a gradino tali per cui il controllore rimane efficace sul sistema non lineare.

β_1	0.3
<u>'</u>	
β_2	0.1
$\mid m \mid$	1
k	1.5
$ ho_e$	$3 \cdot 10^7$

Tabella 1: Parametri progetto.