

the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. 2017. p. 135-144.

- Moleculas
- CiteSeer
- Cora

- Moleculas
- CiteSeer
- Cora

- Moleculas
- CiteSeer
- Cora

What are **heterogeneous** graph?

An heterogeneous graph is a graph in witch nodes and edges have differents types.

For instance:

Metapath For instance: L.B. Affiliation p1 AAA MIT L.A. p2 www S.G FBK рЗ **ECML** P.G 10

Metapath For instance: L.B. Affiliation p1 AAA Author MIT L.A. p2 www S.G FBK рЗ **ECML** P.G 11

For instance:

Belongs to

For instance:

Conference

Belongs to

Collaborate

For instance:

Belongs to

Collaborate

✓ Write

For instance:

/ Belongs to

Collaborate

/ Write

Cite

For instance:

Affiliation

Author

Paper

Conference

Belongs to

Collaborate

✓ Write

Cite

/ Accepted to

O1 Metapath Def:

A **meta path** in a heterogeneous graphs, is a path following a specific meta path scheme P.

Def:

A **meta path** in a heterogeneous graphs, is a path following a specific meta path scheme P.

Def:

A **meta path scheme** P is defined as a path that is denoted in the form of :

$$V_1 \to^{r_1} V_2 \to^{r_2} V_3 \to^{r_3} V_4 \to^{r_4} \dots V_{l-1} \to^{r_{l-1}} V_l$$

Wherein

$$R = R_1 \cdot R_2 \cdot R_3 \cdot \dots R_{l-1}$$

Defines the composite relations between nodes types $\,V_1\,$ and $\,V_l\,$

20

Def:

Given an heterogeneous network G = (V,E,T) and a meta path scheme P.

Def:

Given an heterogeneous network G = (V,E,T) and a meta path scheme P.

The transition probability at step i is defined as follow:

$$p(v^{i+1}|v_t^i,\mathcal{P}) = \begin{cases} \frac{1}{|N_{t+1}(v_t^i)|} & (v^{i+1},v_t^i) \in E, \phi(v^{i+1}) = t+1\\ 0 & (v^{i+1},v_t^i) \in E, \phi(v^{i+1}) \neq t+1\\ 0 & (v^{i+1},v_t^i) \notin E \end{cases}$$

DONG, Yuxiao; CHAWLA, Nitesh V.; SWAMI, Ananthram. metapath2vec: Scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. 2017. p. 135-144.

Def:

Node at time i +1

Given an heterogeneous network G = (V,E,T) and a meta path scheme P.

Def:

Node at time i +1

of type t

Given an heterogeneous network G = (V,E,T) and a meta path scheme P.

Def:

Node at time i +1

of type t

Given an heterogeneous network G = (V,E,T) and a meta path scheme P.

Def:

Node at time i +1

of type t

Function that compute the Given an heterogeneous network G = (V,E,T) and a meta path scheme P. **type of a node**

Metapath2vec

Given a specific Scheme P

- Given a specific Scheme P
- Extract random meta path from the input graph

03 The model

Metapath2vec

- Given a specific Scheme P
- Extract random meta path from the input graph
- Use the skip-gram model

03 The model

Metapath2vec

- Given a specific Scheme P
- Extract random meta path from the input graph
- Use the skip-gram model

35

03 The model

Metapath2vec

DONG, Yuxiao; CHAWLA, Nitesh V.; SWAMI, Ananthram. metapath2vec: Scalable representation learning for heterogeneous networks. In: *Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining*. 2017. p. 135-144.

Metapath2vec

Metapath2vec

Metapath2vec

Metapath2vec

Metapath2vec

Metapath2vec++

Metapath2vec++

Metapath2vec++

In the case of a4, there are 4 output layers, each of them with different size

DONG, Yuxiao; CHAWLA, Nitesh V.; SWAMI, Ananthram. metapath2vec: Scalable representation learning for heterogeneous networks. In: Proceedings of 45 the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. 2017. p. 135-144.

Metapath2vec++

Metapath2vec++

Metapath2vec++

Metapath2vec++

49

Metapath2vec++

03 The model Metapath2vec++

51

Metapath2vec++

Training

CLASS MetaPath2Vec (edge_index_dict, embedding_dim, metapath, walk_length, context_size, walks_per_node=1, num_negative_samples=1, num_nodes_dict=None, sparse=False) [source]

04 Training

```
0,
                       1,
                                2, ...
('author',
 'wrote',
 'paper'): tensor([[
                   45988, 124807, ...
('paper',
'published in',
'venue'): tensor([[
           2190,
                    2190,
                             2190, ...
('venue',
 'published',
'paper'): tensor([[
       [2203069, 2203070, 2203071, ...
```

{('paper',
 'written by',
 'author'): tensor([[

CLASS MetaPath2Vec (edge_index_dict, embedding_dim, metapath, walk_length, context_size, walks_per_node=1, num_negative_samples=1, num_nodes_dict=None, sparse=False) [source]

CLASS MetaPath2Vec (edge_index_dict, embedding_dim, metapath, walk_length, context_size, walks_per_node=1, num_negative_samples=1, num_nodes_dict=None, sparse=False) [source]

05 Load a pre trained model

Jupyter notebook

