Large Sample ML-based Methods II

Feng-Chang Lin

Department of Biostatistics University of North Carolina at Chapel Hill

flin@bios.unc.edu

Generalized Likelihood Ratio Test

- To test the hypothesis $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_1$, where θ is a vector (multivariate).
- Let $\Theta = \Theta_0 \cup \Theta_1$.
- A generalized likelihood ratio test (GLRT) is defined by

$$\lambda(x) = \frac{\sup_{\theta \in \Theta_0} L(\theta)}{\sup_{\theta \in \Theta} L(\theta)}.$$

- When $n \to \infty$, $-2 \log \lambda(x) \to_d \chi_r^2$, where $r = df(\Theta) df(\Theta_0)$.
- Here, df(Θ) means the degree of freedom under parameter space
 Θ, which is the number parameters needed to be estimated.

Lin (UNC-CH) Bios 661/673 April 25, 2019 2 / 14

Multinomial Distribution

- Let (X_1, \ldots, X_k) follow multinomial (n, p_1, \ldots, p_k) .
- To test $H_0: p_i = p_{i0}, i = 1, ..., k$, versus $H_1: H_0$ is not true.
- Show that the GLRT statistic is

$$\lambda(x) = n^n \prod_{i=1}^k \left(\frac{\rho_{i0}}{x_i}\right)^{x_i}.$$

- $\Theta_0 = \{(p_1, \ldots, p_k) | p_i = p_{i0}, i = 1, \ldots, k\}.$
- $\Theta = \{(p_1, \ldots, p_k) | 0 \le p_i \le 1, i = 1, \ldots, k\}.$
- The pdf of the multinomial distribution is

$$f(x_1,\ldots,x_k|p)=\frac{n!}{x_1!\cdots x_k!}p_1^{x_1}\cdots p_k^{x_k},$$

where $\sum_{i=1}^{k} p_{i} = 1$ and $\sum_{i=1}^{k} x_{i} = n$.

Multinomial Distribution (cont'd)

- Under overall space Θ , $\hat{p}_i = x_i/n$.
- The GLRT statistic is

$$\lambda(x) = \frac{L(\Theta_0)}{L(\hat{\Theta})} = \frac{\prod_{i=1}^k \rho_{i0}^{x_i}}{\prod_{i=1}^k (\frac{x_i}{n})^{x_i}} = n^n \prod_{i=1}^k \left(\frac{\rho_{i0}}{x_i}\right)^{x_i}.$$

• Since $df(\Theta) = k - 1$ and $df(\Theta_0) = 0$, when $n \to \infty$,

$$-2 \log \lambda(x) \rightarrow_d \chi^2_{k-1}$$
.

• One can show that, under null hypothesis H_0 ,

$$-2\log\lambda(x)\approx\sum_{i=1}^k\frac{(x_i-np_{i0})^2}{np_{i0}}.$$

Proof

 To prove the likelihood ratio test is asymptotically equivalent to the chi-square test, we re-write

$$-2\log\lambda(x) = -2\sum_{i=1}^k x_i \left\{\log p_{i0} - \log\left(\frac{x_i}{n}\right)\right\}.$$

• Using Taylor expansion on $\log p_{i0}$ around x_i/n , one has

$$\log p_{i0} = \log \left(\frac{x_i}{n}\right) + \frac{1}{x_i/n} \left(p_{i0} - \frac{x_i}{n}\right) - \frac{1}{2\xi^2} \left(p_{i0} - \frac{x_i}{n}\right)^2,$$

where $x_i/n < \xi < p_{i0}$.

Lin (UNC-CH) Bios 661/673 April 25, 2019 5 / 14

Proof (cont'd)

Bringing the expansion back to the formula, one has

$$-2\log \lambda(x) = \sum_{i=1}^{k} (-2)x_i \left\{ \frac{1}{x_i/n} \left(p_{i0} - \frac{x_i}{n} \right) - \frac{1}{2\xi^2} \left(p_{i0} - \frac{x_i}{n} \right)^2 \right\}$$
$$= \sum_{i=1}^{k} \frac{x_i}{\xi^2} \left(p_{i0} - \frac{x_i}{n} \right)^2 = \sum_{i=1}^{k} \frac{x_i(x_i - np_{i0})^2}{n^2 \xi^2}.$$

• Since $x_i/n \to_p p_{i0}$ and $\xi \to_p p_{i0}$ under the null hypothesis, we have

$$-2\log\lambda(x)\approx\sum_{i=1}^k\frac{(x_i-np_{i0})^2}{np_{i0}}.$$

6/14

Lin (UNC-CH) Bios 661/673 April 25, 2019

Example 1: Goodness-of-fit Test

- $H_0: p_i = p_{i0}(\theta), i = 1, ..., k$, where $\theta = (\theta_1, ..., \theta_r)$, versus $H_1: H_0$ is not true.
- The GLRT statistic is

$$\lambda(x) = n^n \prod_{i=1}^k \left(\frac{p_{i0}(\hat{\theta})}{x_i} \right)^{x_i}.$$

- $\Theta_0 = \{(\theta_1, \ldots, \theta_r) | p_i = p_{i0}(\theta), i = 1, \ldots, k\}.$
- $\Theta = \{(p_1, \ldots, p_k) | 0 \le p_i \le 1, i = 1, \ldots, k\}.$
- Since $df(\Theta) = k 1$ and $df(\Theta_0) = r$, we know

$$-2\log \lambda(x) \approx \sum_{i=1}^{k} \frac{(x_{i} - np_{i0}(\hat{\theta}))^{2}}{np_{i0}(\hat{\theta})} \to_{d} \chi_{k-1-r}^{2},$$

when $n \to \infty$.

Poisson Distribution

- The number of automobile accidents occurring per day in a particular city is believed to follow Poisson distribution.
- A sample of 80 days during the year gives the data shown as follows.

Number of accidents	0	1	2	3	4
Observed frequency	34	25	11	7	3

• Does the data support the belief that the number of accidents per day has a Poisson distribution averaging one accident per day, i.e. $\theta = 1$?

8/14

Poisson Distribution (cont'd)

Number of accidence	0	1	2	3	4
Observed frequency	34	25	11	7	3
$oldsymbol{ ho_{i0}}(heta)$	$oldsymbol{e}^{- heta}$	$ heta oldsymbol{e}^{- heta}$	$\theta^2 e^{-\theta}/2$	$\theta^3 e^{-\theta}/6$	rem.
$p_{i0}(1)$	0.368	0.368	0.184	0.061	0.019
Expected frequency	29.4	29.4	14.7	4.9	1.52

The chi-square statistic, combining the last two columns, is

$$Q = \sum_{i=0}^{3} \frac{(x_i - np_{i0}(\hat{\theta}))^2}{np_{i0}(\hat{\theta})} = 4.3 < \chi^2_{3,0.05} = 7.81,$$

where x_i is the observed frequency.

• What if the distribution is with any arbitrary mean?

Lin (UNC-CH) Bios 661/673 April 25, 2019 9 / 14

Example 2: Hardy-Weinberg Equilibrium

Punnett square is a 2 × 2 contingency table

Females

		$A(\theta)$	$a(1-\theta)$	
Males	$A(\theta)$	$n_{11}(\pi_{11})$	$n_{12}(\pi_{12})$	<i>n</i> ₁ .
Maics	$a(1-\theta)$	$n_{21}(\pi_{21})$	$n_{22}(\pi_{22})$	<i>n</i> ₂ .
		n. ₁	n. ₂	n

- Null hypothesis H_0 : $\pi_{11} = \theta^2$, $\pi_{12} = \pi_{21} = \theta(1 \theta)$, $\pi_{22} = (1 \theta)^2$.
- The GLRT is

$$Q = \frac{(n_{11} - n\hat{\pi}_{11})^2}{n\hat{\pi}_{11}} + \frac{(n_{12} + n_{21} - 2n\hat{\pi}_{12})^2}{2n\hat{\pi}_{12}} + \frac{(n_{22} - n\hat{\pi}_{22})^2}{n\hat{\pi}_{22}},$$

where $\hat{\pi}_{11} = \hat{\theta}^2$, $\hat{\pi}_{21} = \hat{\theta}(1 - \hat{\theta})$, and $\hat{\pi}_{22} = (1 - \hat{\theta})^2$.

◆ロト ◆回 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

10 / 14

Lin (UNC-CH) Bios 661/673 April 25, 2019

Example 3: McNemar Test

- Responses of subjects are collected before and after an intervention.
- The 2 × 2 contingency table is formatted as

- Null hypothesis H_0 : $p_{11} + p_{12} = p_{11} + p_{21}$, i.e., $p_{12} = p_{21}$
- Show that the GLRT is

$$Q = \frac{(O_{12} - O_{21})^2}{O_{12} + O_{21}} \sim \chi_1^2,$$

which is the test statistic of McNemar Test.

Derivation of McNemar Test

- $\Theta_0 = \{(p_{11}, p_{12}, p_{21}, p_{22}) | p_{12} = p_{21}, \sum_{i=1}^2 \sum_{j=1}^2 p_{ij} = 1\}.$
- $\bullet \ \Theta = \{(p_{11}, p_{12}, p_{21}, p_{22}) | \sum_{i=1}^{2} \sum_{j=1}^{2} p_{ij} = 1, 0 \le p_{ij} \le 1, i, j = 1, 2\}.$
- Under Θ_0 , $\hat{p}_{110} = O_{11}/n$, $\hat{p}_{120} = \hat{p}_{210} = (O_{12} + O_{21})/(2n)$, and $\hat{p}_{220} = O_{22}/n$.
- The GLRT is

$$\begin{split} Q &= \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(O_{ij} - n\hat{\rho}_{ij0})^{2}}{n\hat{\rho}_{ij0}} \\ &= \frac{\left\{\frac{1}{2}(O_{12} + O_{21}) - O_{12}\right\}^{2}}{\frac{1}{2}(O_{12} + O_{21})} + \frac{\left\{\frac{1}{2}(O_{12} + O_{21}) - O_{21}\right\}^{2}}{\frac{1}{2}(O_{12} + O_{21})} \\ &= \frac{(O_{12} - O_{21})^{2}}{O_{12} + O_{21}} \sim \chi_{1}^{2}. \end{split}$$

Lin (UNC-CH) Bios 661/673 April 25, 2019 12 / 14

Nursing Home Trial

- Feeding problems are common in advanced dementia.
- The decision aids (intervention) is to reduce the expectation of benefit from tube feeding.
- The same question was asked before and after intervention.

	Prev	%	Post	%
Complete nutrition Survival Less/no choking	76 31 10	60.3 24.6 7.9	100 11 12	79.4 8.7 9.5
Total	126		126	

13 / 14

Nursing Home Trial

• Taking survival in advantages of tube feeding for example:

	Post no	Post yes	Prev total
Prev no	92	3	95
Prev yes	23	8	31 (24.6%)
Post total	115	11 (8.7%)	126

• McNemar test: $Q = \frac{(3-23)^2}{3+23} = 15.38 > \chi^2_{1,0.05} = 3.84$.

April 25, 2019

14 / 14

Lin (UNC-CH) Bios 661/673