

پردازش تکاملی

استراتژیهای تکاملی

دانشگاه صنعتی مالک اشتر

مجتمع دانشگاهی فن آوری اطلاعات و امنیت

زمستان ۱۳۹۲

كزآموزش اكترويو

كزآموزش اكتروية

شرح مختصری از استراتژیهای تکاملی

- توسعه: آلمان در دهه ۱۹۷۰
- نام های اولیه: ریچنبرگ، چوئفل
- به طور خاص بکارگیری می شود در:
 - بهینه سازی عددی
 - ویژگی های خاص
 - C سریع
- بهینه ساز مناسب برای بهینه سازی مقدار واقعی
 - نسبتا مناسب برای تئوری بزرگ
 - مخصوص برای:
- o خودسازگاز self-adaptation با تغییر پارامترهای استاندارد

مرز آموزش اکتروین

استراتژی های تکاملی

- استراتژی های تکاملی به صورت گروهی توسط بینرت، ریچنبرگ و اسچوئفل توسعه داده شده است که فعالیتهای اولیه در این زمینه را از دهه ۱۹۶۰ در دانشگاه فنی برلین انجام داده اند.
- پایان نامه دیپلم اسچوئفل: مکانیسم جهش گسسته. جهش توزیع شده نرمال با امید صفر و واریانس داده شده. (۱+۱) انتخاب
 - قانون موفقیت ۱/۵ ریچنبرگ
- ے یک استراتژی تکاملی چند عضو یا استراتژی تکاملی $(\mu+1)$ با $\mu>1$ توسط ریچنبرگ به منظور معرفی مفهوم جمعیت و استراتژی تکاملی (μ,λ) بوسیله اسچوئفل طراحی گردیدند.
 - استراتژی تکاملی (μ, λ) در تحقیقات مربوط به استراتژی های تکاملی جدید است -

جدول خلاصه فني استراتژي تكاملي

بردارهای مقدار واقعی	نمایش
گسسته یا میانجی	بازتركيب
آشفتگی گوس	جهش
یکنواخت تصادفی	انتخاب والدين
(μ,λ) or $(\mu+\lambda)$	انتخاب بازمانده
خود انطباق با مقادیر قدم های جهش	ویژگی بارز

مثال ابتدایی

- $f: R^n \to R$ فعالیت: مینیمم سازی •
- الگوریتم: استراتژی تکاملی دو عضو با استفاده از
 - بردارهای از R^n مستقیما به عنوان کروموزوم \circ
 - جمعیت با اندازه ۱
 - هر جهش تنها یک فرزند تولید می نماید
 - انتخاب حريصانه

مرز آموزش اکترویو

مثال ابتدایی: شبه دستورالعمل

- t=0 قرار بده:
- $\mathbf{x}^t = \langle \mathbf{x}_1^t, \dots, \mathbf{x}_n^t \rangle$ نقطه ابتدایی را ایجاد کن:
 - تكرار كن تا حد مطلوب
- $i=1,\dots,n$ را از یک توزیع نرمال انتخاب کن برای همه Z_i
 - $y_i^t = x_i^t + z_i \quad \bullet$
 - IF $f(x^t) < f(y^t)$ THEN $x^{t+1} = x^t$
 - ELSE $x^{t+1} = y^t$
 - FI -
 - Set t = t+1
 - OD •

كزآموزش اكترويي

مثال ابتدایی: مکانیسم جهش

- مقادیر z از توزیع نرمال $N(\xi,\sigma)$ انتخاب می گردد.
 - ٥ مقدار ميانگين ځ برابر صفر قرارداده مي شود
- σ واریانس σ به عنوان مقدار سایز گام جهش قرار داده می شود.
- واریانس σ در بازه (۱/۵ قانون موفقیت) تغییر می کند.
- این قانون مقدار σ را بعد از هر k بار تکرار ریست می کند توسط:

if
$$p_s > 1/5$$
 $\sigma = \sigma / c$ \circ

if
$$p_s < 1/5 \sigma = \sigma \cdot c \circ$$

if
$$p_s = 1/5$$
 $\sigma = \sigma$ \circ

$$0.8 \leq c \leq 1$$
 که در آن، p_{s} درصد موفقیت جهش و

شكل توزيع نرمال

یک مثال تاریخی دیگر: آزمایش نازل جت

فعالیت: بهینه سازی شکل نازل جت

رویکرد: جهش های تصادفی شکل+ انتخاب

شكل اوليه

شکل نهایی

ادامه مثال

نازل جت

مشهورترین آزمایش نازل جت

مرز آموزی

عملگرهای ژنتیک: جهش (2)

المزيم وزش

نهایش

- کروموزم ها متشکل از سه بخش هستند:
 - X_1, \dots, X_n متغیرهای هدف: \circ
 - پارامترهای استراتژی
 - $\sigma_1,\ldots,\sigma_{n_\sigma}$: سایز گام جهش \circ
 - $\alpha_1,\ldots,\,\alpha_{n_{lpha}}$ زاویه های دوران: \circ
 - تمامی مولفه ها همواره حضور ندارند
- $\langle x1,...,xn, \sigma1,...,\sigma n, \alpha 1,..., \alpha k \rangle$ سایز کامل:
 - k = n(n-1)/2 (no. of i,j pairs)که در آن

جهش

- ٔ مکانیسم اصلی: تغییر مقادیر با افزودن اختلالات تصادفی که از توزیع نرمال گرفته شده است
 - $x'_i = x_i + N(0,\sigma)$
 - ایده اصلی:
 - است $\langle x_1,...,x_n,\sigma \rangle$ است $\sigma \circ$
 - همچنین به σ' تغییر می کند σ
- بنابراین: سایز گام جهش σ با راه حل X پوشش داده می شود

مرز آموزش اکتروی

تغيير دادن اوليه ٥

- $\langle x, \sigma \rangle \rightarrow \langle x', \sigma' \rangle$ خالص تغییر جهش:
 - ترتیب مهم است:
 - $\sigma \rightarrow \sigma'$ ابتدا \circ
 - $x \rightarrow x' = x + N(0,\sigma')$ سپس o
 - پایه: $\langle x', \sigma' \rangle$ جدید دوبار سنجش می شود $\langle x', \sigma' \rangle$
 - ابتدایی: x' خوب است اگر f(x') خوب باشد \circ
- نانویه: σ' خوب است اگر x' ایجاد شده خوب باشد σ'
- با معكوش كردن ترتيب جهش روابط بالا عمل نمى كند

مرز آموزش اکتروی

جهش نهونه 1:

جهش ناهمبسته با یک ٥

- $\langle x_1,...,x_n,\sigma \rangle$ کروموزوم: •
- $\sigma' = \sigma \cdot \exp(\tau \cdot N(0,1)) \quad \bullet$
 - $x'_{i} = x_{i} + \sigma' \cdot N(0,1) \quad \bullet$
- $au \propto 1/~\mathrm{n}^{1\!/\!_2}$ به طور خاص «نرخ یادگیری» •
- و ما یک قاعدہ مرزی $\sigma' < \epsilon 0 \Rightarrow \sigma' = \epsilon 0$ داریم •

جهش های با احتمال یکسان

دایره: جهش ها دارای شانس یکشان برای ایجاد شدن می باشند.

كزية موزش اكترو

جهش نهونه 2: جهش ناهمبسته با n σ'S جهش

$$\langle x_1,...,x_n, \sigma_1,..., \sigma_n \rangle$$
 کروموزوم های \bullet

$$\sigma'_{i} = \sigma_{i} \cdot \exp(\tau' \cdot N(0,1) + \tau \cdot N_{i}(0,1)) \quad \bullet$$

$$x'_{i} = x_{i} + \sigma'_{i} \cdot N_{i} (0,1)$$
 •

• دو پارامتر نرخ یادگیری

τ' - نرخ کلی یادگیری

τ – نرخ یادگیری هماهنگ

 $\tau' \propto 1/(2 \text{ n})^{\frac{1}{2}}$ and $\tau \propto 1/(2 \text{ n}^{\frac{1}{2}})^{\frac{1}{2}}$ •

And σ_i ' $< \varepsilon_0 \Rightarrow \sigma_i$ ' $= \varepsilon_0$

جهش های با احتمال یکسان

بیضی: جهش ها دارای شانس یکشان برای ایجاد شدن می باشند.

كزية موزش اكترو

جهش نهونه 3:

جهش های همبسته

- $\langle x_1,...,x_n, \sigma_1,..., \sigma_n, \alpha_1,..., \alpha_k \rangle$ کروموزوم های
 - $k = n \cdot (n-1)/2$ که در آن
 - و واریانس ماتریس ${
 m C}$ به صورت زیر تعریف می شود:

$$c_{ij} = \sigma_i^2 -$$

- اگر $\, {
 m i}_{
 m ij} = 0 \,$
- اگر $c_{ij}=\frac{1}{2}\cdot(\sigma_{i}^{2}-\sigma_{j}^{2})\cdot an(2\;lpha_{ij})$ اگر او ز

مرزة موزش اكترويو

ادامه جهش های همبسته

مكانيسم جهش به صورت زير است:

The mutation mechanism is then:

$$\sigma'_{i} = \sigma_{i} \cdot \exp(\tau' \cdot N(0,1) + \tau \cdot N_{i}(0,1)) \quad \bullet$$

$$\alpha'_{j} = \alpha_{j} + \beta \cdot N (0,1) \quad \bullet$$

$$x' = x + N(0,C')$$

از بردار
$$\langle ext{ } ext{ }$$

است
$$lpha$$
 ماتریس کواریانس c بعد از جهش مقادیر c

$$\tau' \propto 1/(2 \text{ n})^{\frac{1}{2}}$$
 and $\tau \propto 1/(2 \text{ n}^{\frac{1}{2}})^{\frac{1}{2}}$ and $\beta \approx 5^{\circ}$

$$\sigma_i' < \varepsilon_0 \Rightarrow \sigma_i' = \varepsilon_0$$
 and

$$|\alpha'_{j}| > \pi \Rightarrow \alpha'_{j} = \alpha'_{j} - 2 \pi \operatorname{sign}(\alpha'_{j})$$

جهش های با احتمال یکسان

بیضی: جهش ها دارای شانس یکشان برای ایجاد شدن می باشند.

باز ترکیب

- ایجاد یک فرزند
- اقدامات به ازاء هر متغیر/ موقعیت به ازاء هر کدام
 - ميانگين مقادير والدين يا
 - انتخاب یک مقدار والدین
 - از دو یا چندین والدین بوسیله هر کدام:
- با استفاده از دو والدین انتخاب شده برای ایجاد یک فرزند
 - انتخاب دو والدین برای هر موقیعت جدید

نامهای بار ترکیبها

	دو والدين ثابت	دو والدین انتخاب شده برای هر i
$z_i = (x_i + y_i)/2$	واسط محلی	واسط عمومی
z _i is x _i or y _i به صورت تصادفی انتخاب می شود	گسسته محلی	گسسته عمومی

كزيا موزش اكترو

انتخاب والدين

- والدین به صورت توزیع تصادفی یکنواخت انتخاب می شوند، هر زمان که اپراتور به یک یا بیشتر از آنها احتیاج داشته باشد.
- بنابراین: انتخاب والدین استراتژی تکاملی بایاس نشده است. هر فرد از احتمال یکسانی برای انتخاب شدن برخوردار است.
 - والدین استراتژی تکاملی به معنای اعضاء یک جامعه است (جمعتی که اعضاء آن با واریانس یکشان انتخاب می شوند.)

الزيموزش ا

انتخاب بازمانده

- بکارگیری می شود زمانی که λ فرزند از μ والدین بوسیله جهش و بازترکیب
- به صورت غیر احتمالی موجودات بد را از بین می برد
 - پایه انتخاب می تواند موارد زیر باشد:
 - (μ, λ) مجموعه فرزند ها فقط : انتخاب
 - $(\mu + \lambda)$ مجموعه والدین و فرزند ها : انتخاب

كزتاموزش اكترويي

ادامه انتخاب بازمانده

- انتخاب $(\mu + \lambda)$ یک استراتژی مطلوب است
 - انتخاب (μ,λ) می تواند صرف نظر شود
- اغلب انتخاب (μ,λ) برای موارد زیر ترجیح داده می شود:
 - بهتر برای بدست آوردن بهینه محلی
 - بهتر برای درک حرکت بهینه
- استفاده به همراه استراتژی مقادیر نامناسب σ می تواند در $\langle x,\sigma \rangle$ به مدت زیادی باقی بماند اگر میزبانی x کاملا مناس باشد.
- $\lambda \approx 7 \cdot \mu$ فشار انتخابی در استراتژی تکاملی خیلی زیاد باشد (μ

كزتاموزش اكترويو

تشريح خودانطباقي

- دادن تناسب متغیر منعطف
- چشم انداز (مکان بهینه در هر ۲۰۰ زایش تغییر می کند)
 - استراتزی تکاملی خودانطباق قادر است:
 - مقدار بهینه را رصد کند
 - سایز گام جهش را بعد از هر تغییر تطبیق دهد.

مرز آموزش الله

ادامه تشريح خودانطباقي

كزتاموزش اكترويو

نیازمندی های خودانطباقی

- برای اجرای استراتژی های مختلف $\mu>1$
 - برای زاد و ولد اضافی $\lambda > \mu$ •
 - $\lambda \approx 7 \cdot \mu$ انتخاب بیش از اندازه •
- σ 's برای رها شدن از عدم سازگازی (μ,λ) انتخاب
- ترکیب پارامترهای استراتژی بوسیله ترکیب مجدد آنها صورت می گیرد.

مثال کاربردی تابع آکلی

• تابع آکلی (در اینجا 30 = n)

$$f(x) = -20 \cdot \exp\left(-0.2\sqrt{\frac{1}{n}} \cdot \sum_{i=1}^{n} x_i^2\right) - \exp\left(\frac{1}{n} \sum_{i=1}^{n} \cos(2\pi x_i)\right) + 20 + e$$

- استراتزی تکاملی
 - معرفی
- $-30 < x_i < 30$ (coincidence of 30's!)
 - سایز گام ۳۰
 - (30,200) انتخاب
 - پایان: بعد از ۲۰۰۰۰۰ ارزیابی تناسب
- (خیلی خوب) $7.48 \cdot 10^{-8}$ (خیلی خوب) نتایج: میانگین بهترین راه حل

