Curso: Análisis Númerico, Tarea # 3

Instructor: Imelda Trejo Lorenzo

Para entregar el 19 de Febrero 2025, antes de clase.

Libros de clase: Burden, R. L. & Faires, J.D. Numerical Analysis (7th edition). David Kincaid and Ward Cheney, Numerical Analysis of Scientific Computing, 1991.

- 1. (5 puntos) Encuentre una aproximación a $\sqrt[3]{25}$ correcta en 10^{-4} por medio del algoritmo de la bisección. Use una calculadora manual.
- 2. (5 puntos) Use el método de Newton, a mano, para el polinomio

$$p(x) = 4x^2 - 2x^2 + 3,$$

 $con x_0 = -1.$

3. (5 puntos) Demuestra que el método de Newton va a diverger para las siguientes funciones, sin importar el punto real inicial elegido:

$$(a)x^2 + 1$$
 $(b)7x^2 + 3x^2 + \pi$.

- 4. (5 p
ntos) Si el método de Newton es aplicado a $f(x) = x^2 1$ con $x_0 = 10^{10}$ ¿cuántos pasos en el método iterativo se requiren para obtener la raíz con una precisión de 10^{-8} ? Resuelve analíticamente, no experimentalmente.
- 5. (5 puntos) ¿Cuáles de las siguientes series converge cuadráticamente?

$$(a)\frac{1}{n^2}$$
, $(b)\frac{1}{2^{2^n}}$ $(c)\frac{1}{e^n}$

6. (5 puntos) De un método localmente convergente para determinar el punto fijo $\xi=2^{1/3}$ de

$$\Phi(x) = x^3 + x^2 - 2$$

No usar transformación de Aitken.

7. (15 puntos) Sea I un intervalo de R y sea $f:I\to R$ una función continuamente diferenciable. Suponga que f tiene un cero $x_*\in I$. Sea $x_0\in I$. Considere la sucesión:

$$x_{n+1} = f(x_n).$$

- a) (5 puntos) ¿Qué condiciones deben satisfacer f y x_0 para que la sucesión $\{x_n\}$ converja a x_* con orden lineal?
- b) (5 puntos) ¿Qué quiere decir que una sucesión tenga convergencia cuadrática?
- c) (5 puntos) ¿Qué condiciones deben satisfacer f y x_0 para que la sucesión x_n tenga convergencia cuadrática?
- 8. (10 puntos) Sea g(x) una función que tiene valores en los reales, continua y acotada en un intervalo [a,b]. Se dice que g es una contracción en [a,b] si existe una constante L tal que 0 < L < 1 y

$$|g(x) - g(y)| \le L|x - y|, \forall x, y \in [a, b].$$

Muestre que g(x) tiene un único punto fijo \hat{x} en [a,b] y que la iteración $x_{k+1}=g(x_k),\ k=1,2,3,\ldots$ converge a \hat{x} para cualquier valor inicial x_0 en [a,b]. Si además g(x) es diferenciable en [a,b] y $x_k \neq \hat{x},\ k=0,1,2,\ldots$ determine:

$$\lim_{k \to \infty} \frac{|x_{k+1} - \hat{x}|}{|x_k - \hat{x}|}$$

- 9. (15 puntos) Given the scalar equation, f(x) = 0,
 - Describe I) Newtons Method, II) Secant Method for approximating the solution.
 - State sufficient conditions for Newton and Secant to converge. If satisfied, at what rate will each converge?
 - Sketch the proof of convergence for Newton's Method (Hint: use Taylor Theorem).
 - Write Newton's Method as a fixed point iteration. State sufficient conditions for a general fixed point iteration to converge.
 - Apply the criterion for fixed point iteration to Newton's Method and develop an alternate proof for Newton's Method.
- 10. (15 puntos) Aproximar la función de variable real $f(x) = e^x \cos(x) + 1$, $x \in [0, \pi]$, con el polinomio de Taylor de segundo grado p(x), que incuye los puntos f(0), $f(\pi/2)$, $f(\pi)$, i.e., alredeador de los puntos dados. Encontrar la magnitud del mayor error E(x) = f(x) p(x), que se producirá al usar esta aproximación. Resolver la ecuación lineal resultante con la formula de Newton con un error máximo de 0.0001.