Long-read sequence analysis

Sequencing technologies

Question 4

What is a long read?

- Short read: 50-300 bp, often paired-end (Illumina sequencing)
- Long read: > 1kb, up to 20 Mb:
 - single molecule sequencing or
 - 3rd generation sequencing

Image from: G. Silva (2016)

Illumina sequencing

- Sequencing-by-synthesis: 2nd generation sequencing
- Massive throughput: up to 500x109 bases/run
- Most used platform today

illumına®

Illumina sequencing

- 50 300 bp
- Paired-end (or single-end)

paired-end

Question 5

Illumina - limitations

- Maximum read length: 300 bp
- How to reconstruct:
 - Repeats?
 - Isoforms?
 - Structural variation?
 - Haplotypes?
 - Genomes?
- Why not longer read lengths with Illumina?

Long reads (3rd generation)

- Crux: maximizing signal from a singlemolecule base read-out
- Single molecule, so no out-of-phase signal
- Two frequently used platforms:
 - PacBio SMRT sequencing
 - Oxford Nanopore Technology

Question 6

Oxford Nanopore technology

Based on changes in electrical current

 Well-known for its scalability and portability

4 bp read at a time

• Up to ~95-99% accuracy

Errors can be biased

ONT scalability

1 small flow cell: 1 x 2.8 Gb

1 medium flow cell: 1 x 50 Gb

5 medium flow cells: 5 x 50 Gb

24-48 big flow cells: 48 x 290 Gb

Flongle

MinION

GridION

PromethION

ONT library prep

- Standard kit:
 - >1 μ g HMW DNA
 - Shearing + size selection is optional
 - Multiplexing requires PCR step

PacBio sequencing

- Polymerase bound to ZMW bottom
- Circular molecules
- Single read out ~90% accuracy
- HiFi: single molecule sequenced multiple times

Image from: Rhoads A, Au KF. Genomics Proteomics Bioinformatics 2015;13:278–89

Image from: https://doi.org/10.5281/zenodo.4636860

PacBio Sequel IIe

- Up to 8M CLR reads/SMRT cell
- 5M HiFi reads/SMRT cell
- start with $>5 \mu g$ HMW DNA
- Requires shearing + size selection
- Multiplexing requires
 PCR

Pacbio Revio

- Up to 25M CLR reads/SMRT cell
- ~15M HiFi reads/SMRT cell

	ONT	PacBio
Read accuracy	~90-95%	~90% (>99% HiFi)
Read length	up to 2 Mb	up to 30-40 kb (HiFi) up to 200 kb (CLR)
RNA base modifications	Yes (m6A) ¹	No
DNA base modifications	Yes (m5C, m6A) ²	Yes (m5C, m6A, hm5C) ³
Throughput (BIF)	~500M reads/run ⁴	~13M HiFi reads/run ~25M CLR reads/run

- 1. Liu, H., et al (2019). Accurate detection of m6A RNA modifications in native RNA sequences. *Nature Communications*, 10(1), 1-9
- 2. Liu, Q., et al (2019). Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. *Nature Communications*, 10(1).
- 3. Flusberg, B. A., et al (2010). Direct detection of DNA methylation during single-molecule, real-time sequencing. *Nature Methods*, 7(6), 461–465
- 4. 48 flow cells on a PromethIon

Question 7&8