

Low Power, Precision, Auto-Zero Op Amps

Data Sheet AD8538/AD8539

FEATURES

Low offset voltage: 13 μ V maximum Input offset drift: 0.03 μ V/°C

Single-supply operation: 2.7 V to 5.5 V

High gain, CMRR, and PSRR Low input bias current: 25 pA Low supply current: 180 μA

Qualified for automotive applications

APPLICATIONS

Mobile communications
Portable instrumentation
Battery-powered devices
Sensor interfaces
Temperature measurement
Electronic scales

GENERAL DESCRIPTION

The AD8538/AD8539 are very high precision amplifiers featuring extremely low offset voltage, low input bias current, and low power consumption. The supply current is less than 215 μ A maximum per amplifier at 5.0 V. Operation is fully specified from 2.7 V to 5.0 V single supply (± 1.35 V to ± 2.5 V dual supply).

The AD8538/AD8539 operate at very low power making these amplifiers ideal for battery-powered devices and portable equipment.

The AD8538/AD8539 are specified over the extended industrial temperature range (-40° C to $+125^{\circ}$ C). The AD8538 amplifier is available in 5-lead TSOT-23, and 8-lead, narrow body SOIC packages, and the AD8539 amplifier is available in 8-lead, narrow body SOIC and 8-lead MSOP. See the Ordering Guide for the automotive part.

PIN CONFIGURATIONS

Figure 1. 5-Lead TSOT-23 (UJ-5)

Figure 2. 8-Lead SOIC_N (R-8)

Figure 3. 8-Lead SOIC_N (R-8)

Figure 4. 8-Lead MSOP (RM-8)

TABLE OF CONTENTS

Added Table 3, Renumbered Tables Sequentially 5

Features	Absolute Maximum Ratings7
Applications1	Thermal Resistance7
General Description	ESD Caution
Pin Configuration Diagrams	Typical Performance Characteristics8
Revision History	AD8538 Characteristics8
Specifications	AD8539 Characteristics
AD8538 Electrical Specifications	Outline Dimensions
AD8539 Electrical Specifications5	Ordering Guide21
REVISION HISTORY	
2/13—Rev. A to Rev. B	Added Table 4, Renumbered Tables Sequentially6
Changes to Features Section and General Description Section 1 Updated Outline Dimensions	Changes to Thermal Resistance Section
Added AD8539Universal	Changes to Ordering Guide
Changes to Specifications Section	10/05—Revision 0: Initial Version

SPECIFICATIONS

AD8538 ELECTRICAL SPECIFICATIONS

@ V_S = 5.0 V, V_{CM} = 2.5 V, V_O = 2.5 V, T_A = 25°C, unless otherwise specified.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			5	13	μV
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			30	μV
Input Bias Current	I _B			15	25	рА
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$		35	100	pА
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$		0.7	1.0	nA
Input Offset Current	los			20	50	рА
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$			150	рА
Input Voltage Range			0		5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 V \text{ to } 5 V$	115	150		dB
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}, V_{CM} = 0.2 \text{ V to } 4.8 \text{ V}$	100	135		dB
Large Signal Voltage Gain	Avo	$R_L = 10 \text{ k}\Omega$, $V_O = 0.1 \text{ V to } 4.9 \text{ V}$	115	141		dB
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	110	135		dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$		0.03	0.1	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 100 \text{ k}\Omega$ to ground	4.99	4.998		V
		-40° C \leq T _A \leq +125°C, R _L = 100 k Ω to ground	4.98			V
		$R_L = 10 \text{ k}\Omega$ to ground	4.95	4.970		V
		-40° C \leq T _A \leq +125°C, R _L = 10 k Ω to ground	4.94			V
Output Voltage Low	V _{OL}	$R_L = 100 \text{ k}\Omega \text{ to V} +$		1.9	5	mV
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}, R_{L} = 100 \text{ k}\Omega \text{ to V} +$		2.8	7	mV
		$R_L = 10 \text{ k}\Omega \text{ to V} +$		17	20	mV
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}, \text{R}_{\text{L}} = 10 \text{k}\Omega \text{to V} +$		20	30	mV
Short-Circuit Limit	Isc			±25		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 2.7 \text{ V to } 5.0 \text{ V}$	105	125		dB
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	100	125		dB
Supply Current/Amplifier	Isy	$I_0 = 0$		150	180	μΑ
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$		190	215	μΑ
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$		0.4		V/µs
Settling Time 0.01%	ts	$G = \pm 1$, 2 V step, $C_L = 20$ pF, $R_L = 1$ k Ω		10		μs
Overload Recovery Time				0.05		ms
Gain Bandwidth Product	GBP			430		kHz
Phase Margin	Ø _M	$R_L = 10 \text{ k}\Omega$, $R_L = 100 \text{ k}\Omega$, $C_L = 20 \text{ pF}$		65		Degree
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	f = 0.1 Hz to 10 Hz		2.0		μV р-р
Voltage Noise Density	e _n	f = 1 kHz		50		nV/√Hz

@ V_S = 2.7 V, V_{CM} = 1.35 V, V_O = 1.35 V, T_A = 25°C, unless otherwise specified.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			5	13	μV
		-40 °C \leq T _A \leq $+125$ °C			30	μV
Input Bias Current	I _B			15	25	pА
		-40 °C \leq T _A \leq $+85$ °C		35	100	рА
		-40 °C \leq T _A \leq $+125$ °C		0.7	1.0	nA
Input Offset Current	los			20	50	рА
		-40 °C \leq T _A \leq $+125$ °C			150	рА
Input Voltage Range			0		2.7	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 \text{ V to } 2.5 \text{ V}$	110	140		dB
		-40 °C \leq T _A \leq $+125$ °C	100	135		dB
Large Signal Voltage Gain	Avo	$R_L = 10 \text{ k}\Omega$, $V_O = 0.1 \text{ V to } 1.7 \text{ V}$	110	140		dB
		-40 °C \leq T _A \leq $+125$ °C	105	135		dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40°C ≤ T _A ≤ +125°C		0.03	0.1	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 100 \text{ k}\Omega$ to ground	2.68	2.698		V
, , ,		-40° C \leq T _A \leq +125 $^{\circ}$ C, R _L = 100 k Ω to ground	2.68			V
		$R_L = 10 \text{ k}\Omega$ to ground	2.67	2.68		V
		-40° C \leq T _A \leq $+125^{\circ}$ C, R _L = 10 k Ω to ground	2.66			V
Output Voltage Low	V _{OL}	$R_L = 100 \text{ k}\Omega \text{ to V} +$		1.7	5	mV
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}, R_{L} = 100 \text{ k}\Omega \text{ to V} +$		2.4	5	mV
		$R_L = 10 \text{ k}\Omega \text{ to V} +$		14	20	mV
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}, R_{L} = 10 \text{ k}\Omega \text{ to V} +$		20	25	mV
Short-Circuit Limit	I _{sc}	,		±8		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 2.7 \text{ V to } 5.5 \text{ V}$	105	125		dB
		-40 °C \leq T _A \leq $+125$ °C	100	125		dB
Supply Current/Amplifier	I _{SY}	$I_0 = 0$		150	180	μΑ
		-40 °C \leq T _A \leq $+125$ °C		190	215	μΑ
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$		0.35		V/µs
Settling Time 0.01%	ts	$G = \pm 1$, 1 V step, $C_L = 20$ pF, $R_L = 1$ k Ω		5		μs
Overload Recovery Time				0.05		ms
Gain Bandwidth Product	GBP			430		kHz
Phase Margin	Ø _M	$R_L = 10 \text{ k}\Omega$, $R_L = 100 \text{ k}\Omega$, $C_L = 20 \text{ pF}$		65		Degrees
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	f = 0.1 Hz to 10 Hz		2.0		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		50		nV/√Hz

AD8539 ELECTRICAL SPECIFICATIONS

@ V_S = 5.0 V, V_{CM} = 2.5 V, V_O = 2.5 V, T_A = 25°C, unless otherwise specified.

Table 3.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			5	15	μV
		-40 °C \leq T _A \leq $+125$ °C			30	μV
Input Bias Current	I _B			15	60	рА
		$-40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$		35	125	рА
		-40 °C \leq T _A \leq $+125$ °C		0.7	1.0	nA
Input Offset Current	los			20	70	рА
		-40 °C \leq T _A \leq $+125$ °C			400	рА
Input Voltage Range			0		5	V
		-40 °C \leq T _A \leq $+125$ °C	0.2		4.8	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 V \text{ to } 5 V$	115	135		dB
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}, V_{CM} = 0.2 \text{ V to } 4.8 \text{ V}$	100	130		dB
Large Signal Voltage Gain	Avo	$R_L = 10 \text{ k}\Omega$, $V_O = 0.1 \text{ V to } 4.9 \text{ V}$	110	130		dB
		-40 °C \leq T _A \leq $+125$ °C	110	125		dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40 °C \leq T _A \leq $+125$ °C		0.03	0.1	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 100 \text{ k}\Omega$ to ground	4.99	4.994		V
. 5 5		-40° C \leq T _A \leq $+125^{\circ}$ C, R _L = 100 k Ω to ground	4.98			V
		$R_L = 10 \text{ k}\Omega$ to ground	4.95	4.97		V
		-40° C \leq T _A \leq $+125^{\circ}$ C, R _L = 10 k Ω to ground	4.94			V
Output Voltage Low	VoL	$R_L = 100 \text{ k}\Omega \text{ to V} +$		5	7	mV
. 3		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}, R_{L} = 100 \text{ k}\Omega \text{ to V} +$		6	8	mV
		$R_L = 10 \text{ k}\Omega \text{ to V} +$		20	25	mV
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}, \text{R}_{L} = 10 \text{k}\Omega \text{to V} +$		24	30	mV
Short-Circuit Limit	Isc	Í .		±25		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 2.7 \text{ V to } 5.0 \text{ V}$	105	125		dB
,		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	100	125		dB
Supply Current/Amplifier	I _{SY}	$I_0 = 0$		170	210	μΑ
,		-40 °C \leq T _A \leq $+125$ °C			225	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$		0.4		V/µs
Settling Time 0.01%	ts	$G = \pm 1, 2 \text{ V step, } C_L = 20 \text{ pF, } R_L = 1 \text{ k}\Omega$		10		μs
Overload Recovery Time				0.05		ms
Gain Bandwidth Product	GBP			430		kHz
Phase Margin	Ø _M	$R_L = 10 \text{ k}\Omega, R_L = 100 \text{ k}\Omega, C_L = 20 \text{ pF}$		65		Degree
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	f = 0.1 Hz to 10 Hz		1.2		μV р-р
Voltage Noise Density	e _n	f = 1 kHz		52		nV/√Hz

@ V_S = 2.7 V, V_{CM} = 1.35 V, V_O = 1.35 V, T_A = 25°C, unless otherwise specified.

Table 4.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			5	16	μV
		-40 °C $\leq T_A \leq +125$ °C			30	μV
Input Bias Current	I _B			15	25	рА
		-40 °C \leq T _A \leq $+85$ °C		35	125	рА
		-40 °C $\leq T_A \leq +125$ °C		0.7	1.0	nA
Input Offset Current	los			20	50	рА
		-40 °C $\leq T_A \leq +125$ °C			300	рА
Input Voltage Range			0		2.7	V
		-40 °C $\leq T_A \leq +125$ °C	0.2		2.5	
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 \text{ V to } 2.7 \text{ V}$	110	130		dB
		-40 °C $\leq T_A \leq +125$ °C, $V_{CM} = 0.2 \text{ V to } 2.5 \text{ V}$	100	125		dB
Large Signal Voltage Gain	Avo	$R_L = 10 \text{ k}\Omega$, $V_O = 0.1 \text{ V to } 2.6 \text{ V}$	110	130		dB
		-40 °C $\leq T_A \leq +125$ °C	105	125		dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40 °C $\leq T_A \leq +125$ °C		0.03	0.1	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 100 \text{ k}\Omega$ to ground	2.68	2.693		V
		-40° C \leq T _A \leq +125°C, R _L = 100 k Ω to ground	2.68			V
		$R_L = 10 \text{ k}\Omega$ to ground	2.67	2.68		V
		-40 °C \leq T _A \leq $+125$ °C, R _L = $10 \text{ k}\Omega$ to ground	2.66			٧
Output Voltage Low	V _{OL}	$R_L = 100 \text{ k}\Omega \text{ to V} +$		5	7	mV
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}, R_{L} = 100 \text{ k}\Omega \text{ to V} +$		6	8	mV
		$R_L = 10 \text{ k}\Omega \text{ to V} +$		14	20	mV
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$, $R_{L} = 10 \text{ k}\Omega$ to V+		20	25	mV
Short-Circuit Limit	Isc			±8		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 2.7 \text{ V to } 5.5 \text{ V}$	105	125		dB
		-40 °C $\leq T_A \leq +125$ °C	100	125		dB
Supply Current/Amplifier	I _{SY}	$I_0 = 0$			210	μΑ
		-40 °C \leq T _A \leq $+125$ °C			225	μΑ
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$		0.35		V/µs
Settling Time 0.01%	ts	$G = \pm 1$, 1 V step, $C_L = 20$ pF, $R_L = \infty$		8		μs
Overload Recovery Time				0.05		ms
Gain Bandwidth Product	GBP			430		kHz
Phase Margin	Ø _M	$R_L=10~k\Omega,R_L=100~k\Omega,C_L=20~pF$		65		Degrees
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	f = 0.1 Hz to 10 Hz		2.0		μV p-p
Voltage Noise Density	en	f = 1 kHz		55		nV/√Hz

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 5.

Parameter	Rating
Supply Voltage	+6 V
Input Voltage	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$
Differential Input Voltage	±6 V
Output Short-Circuit Duration to GND	Observe derating curve
Storage Temperature Range	−65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C
Operating Temperature Range	−40°C to +125°C
Junction Temperature Range	−65°C to +150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Absolute maximum ratings apply at 25°C, unless otherwise noted.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 6. Thermal Characteristics

Package Type	θ _{JA}	θις	Unit
5-Lead TSOT-23 (UJ-5)	207	61	°C/W
8-Lead SOIC_N (R-8)	125	43	°C/W
8-Lead MSOP (RM-8)	145	45	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device.Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

AD8538 CHARACTERISTICS

AD8538 only, $V_{SY} = 5 \text{ V}$ or $\pm 2.5 \text{ V}$, unless otherwise noted.

Figure 5. AD8538 Input Offset Voltage Distribution

Figure 6. AD8538 Input Offset Voltage Drift Distribution

Figure 7. AD8538 Input Offset Voltage vs. Input Common-Mode Voltage

Figure 8. AD8538 Input Bias Current vs. Temperature

Figure 9. AD8538 Supply Current vs. Supply Voltage

Figure 10. AD8538 Supply Current vs. Temperature

Figure 11. AD8538 Output Saturation Voltage vs. Load Current

Figure 12. AD8538 Output Saturation Voltage vs. Temperature

Figure 13. AD8538 Closed-Loop Gain vs. Frequency

Figure 14. AD8538 Open-Loop Gain and Phase vs. Frequency

Figure 15. AD8538 CMRR vs. Frequency

Figure 16. AD8538 PSRR vs. Frequency

Figure 17. AD8538 Closed-Loop Output Impedance vs. Frequency

Figure 18. AD8538 Small Signal Overshoot vs. Load Capacitance

Figure 19. AD8538 Small Signal Transient Response

Figure 20. AD8538 Large Signal Transient Response

Figure 21. AD8538 Positive Overload Recovery

Figure 22. AD8538 Negative Overload Recovery

Figure 23. AD8538 Voltage Noise Density

Figure 24. AD8538 0.1 Hz to 10 Hz Input Voltage Noise

Figure 25. AD8538 No Phase Reversal

 $V_{SY} = 2.7 \text{ V}$ or $\pm 1.35 \text{ V}$, AD8538 only, unless otherwise noted.

Figure 26. AD8538 Input Offset Voltage Distribution

Figure 27. AD8538 Input Offset Voltage Drift Distribution

Figure 28. AD8538 Input Offset Voltage vs. Input Common-Mode Voltage

Figure 29. AD8538 Output Saturation Voltage vs. Load Current

Figure 30. AD8538 Output Saturation Voltage vs. Temperature

Figure 31. AD8538 Small Signal Overshoot vs. Load Capacitance

Figure 32. AD8538 Large Signal Transient Response

Figure 33. AD8538 Voltage Noise Density

AD8539 CHARACTERISTICS

AD8539 only, $V_s = 5 \text{ V}$ or $\pm 2.5 \text{ V}$, unless otherwise noted.

Figure 34. AD8539 Input Offset Voltage Distribution

Figure 35. AD8539 Input Offset Voltage Drift Distribution

Figure 36. AD8539 Input Offset Voltage vs. Input Common-Mode Voltage

Figure 37. AD8539 Input Bias Current vs. Temperature

Figure 38. AD8539 Supply Current vs. Supply Voltage

Figure 39. AD8539 Supply Current vs. Temperature

Figure 40. AD8539 Output Saturation Voltage vs. Load Current

Figure 41. AD8539 Output Saturation Voltage vs. Temperature

Figure 42. AD8539 Closed-Loop Gain vs. Frequency

Figure 43. AD8539 Open-Loop Gain and Phase vs. Frequency

Figure 44. AD8539 CMRR vs. Frequency

Figure 45. AD8539 PSRR vs. Frequency

Figure 46. AD8539 Closed-Loop Output Impedance vs. Frequency

Figure 47. AD8539 Small Signal Overshoot vs. Load Capacitance

Figure 48. AD8539 Small Signal Transient Response

Figure 49. AD8539 Large Signal Transient Response

Figure 50. AD8539 Positive Overload Recovery

Figure 51. AD8539 Negative Overload Recovery

Figure 52. AD8539 Voltage Noise Density

Figure 53. AD8539 0.1 Hz to 10 Hz Input Voltage Noise

Figure 54. AD8539 No Phase Reversal

Figure 55. AD8539 Channel Separation vs. Frequency

 $V_S = 2.7 \text{ V or } \pm 1.35 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$, AD8539 only, unless otherwise noted.

Figure 56. AD8539 Input Offset Voltage Distribution

Figure 57. AD8539 Input Offset Voltage Drift Distribution

Figure 58. AD8539 Input Offset Voltage vs. Input Common-Mode Voltage

Figure 59. AD8539 Output Saturation Voltage vs. Temperature

Figure 60. AD8539 Small Signal Overshoot vs. Load Capacitance

Figure 61. AD8539 Large Signal Transient Response

Figure 62. AD8539 Voltage Noise Density

Figure 63. AD8539 Channel Separation vs. Frequency

OUTLINE DIMENSIONS

*COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.

Figure 64. 5-Lead Thin Small Outline Transistor Package [TSOT-23] (UJ-5) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 65. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches)

ORDERING GUIDE

ONDENING GOIDE				
Model ^{1, 2}	Temperature Range	Package Description	Package Option	Branding
AD8538AUJZ-R2	−40°C to +125°C	5-Lead TSOT-23	UJ-5	A0C
AD8538AUJZ-REEL	-40°C to +125°C	5-Lead TSOT-23	UJ-5	A0C
AD8538AUJZ-REEL7	-40°C to +125°C	5-Lead TSOT-23	UJ-5	A0C
AD8538WAUJZ-R7	-40°C to +125°C	5-Lead TSOT-23	UJ-5	AOC
AD8538ARZ	−40°C to +125°C	8-Lead SOIC_N	R-8	
AD8538ARZ-REEL	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8538ARZ-REEL7	−40°C to +125°C	8-Lead SOIC_N	R-8	
AD8539ARMZ	−40°C to +125°C	8-Lead MSOP	RM-8	A1S
AD8539ARMZ-REEL	−40°C to +125°C	8-Lead MSOP	RM-8	A1S
AD8539ARZ	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8539ARZ-REEL	−40°C to +125°C	8-Lead SOIC_N	R-8	
AD8539ARZ-REEL7	−40°C to +125°C	8-Lead SOIC_N	R-8	

¹ Z = RoHS Compliant Part.

AUTOMOTIVE PRODUCTS

The AD8538W model is available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that this automotive model may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

 $^{^{2}}$ W = Qualified for Automotive Applications.

NOTES

NOTES

NOTES

