Pre-Interview Solutions

Exercise 1. We define the *integer square root* of a non-negative integer n as a non-negative integer r such that

$$r^2 \le n < (r+1)^2$$

```
def iroot(n):
    """

PRECONDITION: n is an integer >= 0

POSTCONDITION: return integer square root of n.

"""

r = 0

while (r+1)**2 <= n:
    r = r + 1

return r</pre>
```

Prove the correctness of the above algorithm.

Proof. Let r_i represent the value of the variable \mathbf{r} at the start of the *i*th iteration of the while loop on line 7. For some non-negative integer *i*, define the loop invariant

$$P(i): r_i$$
 is a non-negative integer and $r_i^2 \leq n$.

Now, we proceed with simple induction to show that for non-negative integers i, at the beginning of the ith loop iteration, then P(i) holds true. At the start of the first iteration, namely i = 1, $r_i = 0$ and $r_i^2 \le n$ so P(1) holds.

Next, suppose that for some i, P(i) is true at the start of the ith iteration. It will be shown that P(i+1) is true at the start of the i+1th iteration. If $(r_i+1)^2 > n$, the loop terminates and there is nothing to prove, so assume that $(r_i+1)^2 \le n$. \mathbf{r} is incremented by 1, so $r_{i+1} = r_i + 1$ and the program arrives at the beginning of the i+1th iteration. Clearly r_{i+1} is a non-negative integer and $r_{i+1}^2 \le n$, so P(i+1) is true. By induction, we can conclude that P(i) holds at the start of the ith iteration, for any non-negative integer i.

To show that the loop terminates, define the loop variant $v = n - (r+1)^2$. v is an integer since n and r are integers, and decreases each loop iteration since r increases. Thus there exists an iteration j where v < 0, that is, $(r+1)^2 > n$, so the loop condition is not met and the loop is terminated.

By the loop invariant, r_j is a non-negative integer such that $r_j^2 \le n$ but also $n < (r_j + 1)^2$, so r_j is the desired integer square root of n, which gets returned in line 9. Therefore the algorithm works as intended and the proof is done.

Exercise 2. Let Σ be an alphabet. The *reversal*, denoted by rev(w) of a string $w = w_1 w_2 \cdots w_l$ is defined by

$$rev(w_1w_2\cdots w_l)=w_l\cdots w_2w_1$$

where $w_i \in \Sigma$. For a language L over Σ , the reversal of the language L is defined by

$$L^{\leftarrow} = \{ \operatorname{rev}(w) : w \in L \}$$

Show using structural induction that if L is regular than so is L^{\leftarrow} .

Proof. We proceed with structural induction over the set of regular languages. If $L = \emptyset$, then $L^{\leftarrow} = \emptyset$ is regular. If $L = \{a\}$, for some $a \in \Sigma$, then $L^{\leftarrow} = \{a\}$ is regular.

Let L, M be regular languages over Σ such that their reversals are also regular. We will prove the following claims:

(a) $(L \cup M)^{\leftarrow} = L^{\leftarrow} \cup M^{\leftarrow}$

Let $w \in (L \cup M)^{\leftarrow}$. Then w = rev(v), where $v \in L \cup M$. It follows that $v \in L$ or $v \in M$ and $w = \text{rev}(v) \in L^{\leftarrow}$ or $w \in M^{\leftarrow}$ so $w \in L^{\leftarrow} \cup M^{\leftarrow}$. Thus we have $(L \cup M)^{\leftarrow} \subseteq L^{\leftarrow} \cup M^{\leftarrow}$. For the reverse inclusion, simply reverse each step above.

(b) $(L+M)^{\leftarrow} = M^{\leftarrow} + L^{\leftarrow}$

Let $w \in (L+M)^{\leftarrow}$. Then $w = \operatorname{rev}(xy)$, where $x \in L$ and $y \in M$. Write $x = x_1 \cdots x_l$ and $y = y_1 \cdots y_m$. Notice that $w = y_m \cdots x_1 x_l \cdots x_1 = \operatorname{rev}(y)\operatorname{rev}(x)$. Since $\operatorname{rev}(x) \in L^{\leftarrow}$ and $\operatorname{rev}(y) \in M^{\leftarrow}$, we have $w \in M^{\leftarrow} + L^{\leftarrow}$. To obtain the reverse inclusion, reverse each step.

(c) $(L^*)^{\leftarrow} = (L^{\leftarrow})^*$

If $w \in (L^*)^{\leftarrow}$, then $w = \operatorname{rev}(v)$ for some $v \in L^*$. We write $v = v_1 \cdots v_l$, where $v_i \in L$, and apply the argument from (b) to get that $w = \operatorname{rev}(v_l) \cdots \operatorname{rev}(v_1)$, so $w \in (L^{\leftarrow})^*$ and therefore $(L^*)^{\leftarrow} \subseteq (L^{\leftarrow})^*$. Once again, reverse the steps above to conclude that $(L^*)^{\leftarrow} = (L^{\leftarrow})^*$.

Finally, since L^{\leftarrow} and M^{\leftarrow} are regular, from the claims above, it follows that $(L \cup M)^{\leftarrow}, (L + M)^{\leftarrow}, (L^*)^{\leftarrow}$ are regular. By the principle of structural induction, the reversal of regular languages are also regular.