Klausur "Robot Vision"

Name	Matrikel-Nummer

Hinweise:

- 1.) Tragen Sie in obige Felder Ihren Namen und Ihre Matrikelnummer ein.
- 2.) Zusätzliche Lösungsblätter versehen Sie bitte mit Namen und Matrikelnummer.

Nehmen Sie zur Bearbeitung einer Aufgabe jeweils ein neues Blatt.

- 3.) Vermerken Sie in den vorgesehenen Lösungsfeldern der Aufgabenblätter, falls ein Zusatzblatt existiert.
- 4.) Zur Bearbeitung stehen **120 Minuten** zur Verfügung.
- 5.) Erlaubte Hilfsmittel:

Bücher, Vorlesungsskript und eigene Aufzeichnungen.

Einfacher Taschenrechner.

Sonst keine weiteren Hilfsmittel (keine Notebooks, Handy's,).

Aufgabe	Punkte	Übersicht zur Bewertung der Aufgaben.
01	10	
02	8	
03	12	
04	7	
05	15	
06	10	
07	8	
Punk	tte ≅ 70	

a) Geben Sie für die 2 hellen Felder das Ergebnis der 3x3-Median-Filterung an.

2	3	4	4
4	5	5	7
4	5	6	7
9	9	6	5

Quellbild

Zielbild

b) Geben Sie für die 2 hellen Felder das Ergebnis des angegebenen Faltungs-Operators an.

2	2	2	2
2	2	2	2
2	2	2	3
2	3	3	3

-1	-1	-1
-1	9	-1
-1	-1	-1

Operator

Quellbild

c) Geben Sie für das helle Feld den <u>Betrag</u> und die <u>Richtung</u> des 3x3-Sobel-Operators an.

2	2	2	3
3	3	3	3
4	3	2	2
5	4	1	0

Quellbild

Zielbild

Faltungsmasken:

-1	0	1
-2	0	2
-1	0	1
\mathbf{G}_{x}		

-1	-2	-1
0	0	0
1	2	1
G _v		

d) Die Bildpunkte des nachfolgenden Bildausschnittes (8-bit-Grauwertbild) werden mit der Konstanten C=3 XOR-verknüpft. Skizzieren Sie das Histogramm des Ergebnisbildausschnitts.

e) Ein Bild wird erst mit der Faltungsmaske A gefaltet und anschließend mit der Maske B.

A	_
1	
2	
4	

	В	
2	1	2

Wie müsste eine 3x3 Faltunggsmaske aussehen, die das gleiche Faltungsergebnis erzielt?

<u>Aufgabe 2</u> (Bildtransformationen)

[8 Punkte]

Gegeben ist die folgende affine Vorwärtstransformation:

$$x_z = 2x_q + y_q + 5$$
$$y_z = x_q + 2y_q$$

Geben Sie die äquivalente Rückwärtstransformation an. Verwenden Sie die Determinantenmethode.

<u>Aufgabe 3</u> (Geraden, Bildmesstechnik)

Gegeben ist ein Bild der Größe 201 x 201.

Im Bild ist eine Gerade **G** abgebildet, welche die Bildränder in den folgenden Punkten schneidet: $\mathbf{P}_{1}=(0, 100)$ und $\mathbf{P}_{2}=(150, 200)$.

[12 Punkte]

- b) Geben Sie die Hessesche Normalform der Gerade G an (r, θ) .
- c) Gegeben ist ein Punkt P=(150, 150) neben der Gerade G. Geben Sie die Hessesche Normalform (r', θ') einer zu G parallelen Gerade an, welche durch den Punkt P verläuft. <u>Hinweis</u>: Welche Gemeinsamkeit haben parallele Geraden in der Hesseschen Normalform?
- d) Wie groß ist der Abstand d des Punktes **P** von der Geraden **G**. Hinweis: Mit dem Ergebnis aus c) sehr einfach bestimmbar.

Gegeben ist folgender Graph:

Finden Sie mit der dyn. Programmierung den Weg von links nach rechts mit der **minimalen** Gewichtssumme.

Zeichnen Sie hierzu in den Hypothesengraphen ein:

- die minimale Gewichtssumme der Einzelknoten
- die Richtung des Rückwegs pro Knoten
- den optimalen Gesamtweg (dick zeichnen).

Nur verwenden, falls Sie sich oben verzeichnet haben:

<u>Aufgabe 5</u> (Bildmesstechnik + Ausgleichsrechnung)

[15 Punkte]

Der Ort einer senkrechten Kante soll möglichst exakt bestimmt werden (subpixelgenau). Hierzu wird das Kantenbild mit dem Sobel-Operator bearbeitet..

Zur Bestimmung des Kantenortes soll die Parabel $g(x) = -x^2 + ax + b$ in das Grauwertprofil der Kante bestmöglich eingepasst werden:

- a) Bestimmen Sie die Parameter a und b der Ausgleichsparabel.
- b) Als Kantenort x wird das Maximum der Ausgleichsparabel verwendet. Bestimmen Sie den Kantenort x?

a) Berechnen Sie die den Schwerpunkt des Bildobjektes mit der Momentenmethode.

$$f(x,y)=2$$

$$f(x,y)=1$$

$$f(x,y)=0$$

b) Berechnen Sie die Parameter μ_{11} und μ_{20} des Bildobjektes.

<u>Aufgabe 7</u> (Houghtransformation)

[8 Punkte]

Gegeben ist das kantengefilterte Bild (z.B. Sobel) eines Quaders (hohe Grauwerte sind schwarz dargestellt). <u>Markieren Sie die Positionen</u> der durch die Würfelkanten hervorgerufenen <u>Maxima</u> im Parameterraum.

