Introduction Formalisation du problème Résolution Tests Conclusion

Support Vectors Machines

Jules Pondard - Joseph de Vilmarest

Optimisation Convexe et Combinatoire, M1 ENS

12 Janvier 2017

- Introduction
- Pormalisation du problème
- Résolution
 - Méthode barrière
 - CVX
 - Coordinate Descent Method
- Tests
- Conclusion

- entrée : n points $x_i \in \mathbb{R}^n$, d'étiquettes $y_i \in \{-1,1\}$
- sortie : $w \in \mathbb{R}^n$ tel que le signe de $w^T x_i$ soit l'étiquette de x_i

SVM : cas séparable

SVM : cas séparable

On maximise l'écart entre deux hyperplans parallèles qui s'appuient sur des points de chaque catégorie.

Ainsi on maximise $\frac{1}{\|w\|_2}$ où $w \in \mathbb{R}^n$ avec $y_i(w^Tx_i) \geq 1$ pour $1 \leq i \leq n$.

Cela revient à minimiser $||w||_2$ ou encore $\frac{1}{2}||w||_2^2$ sous les mêmes contraintes.

SVM : cas non séparable (marge souple)

minimiser
$$\frac{1}{2} ||w||_2^2 + C1^T z$$
 sous les contraintes $y_i(w^T x_i) \ge 1 - z_i$ et $z_i \ge 0$ pour $1 \le i \le n$

On minimise

$$f(w,x) = t(\frac{w^Tw}{2} + C1^Tz) - \sum_{i=1}^{m} log(z_i) - \sum_{i=1}^{m} log(y_i(w^Tx_i) - 1 + z_i)$$

Méthode de Newton : $x_{k+1} = x_k - \nabla^2 f^{-1} \nabla f$

Pour le gradient ∇f ,

•
$$\frac{\partial f}{\partial w_i} = tw_i - \sum_{k=1}^m \frac{y_k x_k^i}{y_k (w^T x_k) - 1 + z_k}$$

•
$$\frac{\partial f}{\partial z_i} = tC - \frac{1}{z_i} - \frac{1}{y_i(w^T x_i) - 1 + z_i}$$

Pour la hessienne $\nabla^2 f$,

•
$$\frac{\partial^2 f}{\partial w_i \partial w_j} = t \delta_{i=j} + \sum_{k=1}^m \frac{x_k^i x_k^j}{(y_i (w^T x_i) - 1 + z_i)^2}$$

•
$$\frac{\partial^2 f}{\partial w_i \partial z_j} = \frac{y_j x_j^i}{(y_j (w^T x_j) - 1 + z_j)^2}$$

•
$$\frac{\partial^2 f}{\partial z_i \partial z_j} = \delta_{i=j} \left(\frac{t}{z_i^2} + \frac{1}{(y_i (w^T x_i) - 1 + z_i)^2} \right)$$

CVX est nettement plus rapide quand on augmente la dimension ou le nombre de points.

En effet $\nabla^2 f$ est de taille $(m+n) \times (m+n)$.

Coordinate Descent Method

- Descente de Gradient Stochastique : on minimise selon une donnée à chaque étape.
- Coordinate Descent Method : on minimise selon une direction à chaque étape

On a testé sur différents exemples en 2D.

lci : deux gaussiennes d'espérances $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ et $\begin{pmatrix} 7 \\ 0 \end{pmatrix}$ et de covariances

$$\Sigma_1 = \emph{I}_2$$
 et $\Sigma_2 = \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix}$.

Analyse selon C

Duality gap

Conclusion