Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής ΠΜΣ «Ερευνητικές Κατευθύνσεις στην Πληροφορική» Παράλληλη και Κατανεμημένη Υπολογιστική Επεξεργασία 2019-20

Εισαγωγή

(Βασικές έννοιες παράλληλου υπολογισμού)

http://mixstef.github.io/courses/pms-parcomp/

Μ.Στεφανιδάκης

Παράλληλη επεξεργασία

- Ταυτόχρονη εκτέλεση διεργασιών
 - Κώδικας που εκτελείται την ίδια στιγμή σε διαφορετικές υπολογιστικές μονάδες (πόρους)
- Γιατί είναι επιθυμητή;
 - Επίλυση υπολογιστικά δύσκολων προβλημάτων
 - Αλλά και απλούστερων προβλημάτων με πολύ μεγάλα σύνολα δεδομένων εισόδου
 - Μοντελοποίηση φυσικών φαινομένων
 - Τεχνητή νοημοσύνη
 - Βιοιατρική
 - κ.λ.π.

Μόνο για υπερυπολογιστές;

High Performance Computing (HPC)

Και στους «καθημερινούς» υπολογιστές μας

- Desktop, laptop, smartphones...
 - Οι επεξεργαστές που περιέχουν διαθέτουν άφθονες πηγές παράλληλης επεξεργασίας
 - Βασίζονται στη συνεχή πρόοδο της τεχνολογίας
 - Ο «νόμος» του Moore η συνεχής συρρίκνωση του τρανζίστορ
 - Και στις αρχιτεκτονικές βελτιώσεις
 - Αποδοτικότερη εκτέλεση υπολογιστικών λειτουργιών

Η αναγκαιότητα της παράλληλης επεξεργασίας

- Το τέλος της «κούρσας των GHz»
 - Στις αρχές της δεκαετίας του 2000
 - Εμπόδια στα οφέλη από την αύξηση της συχνότητας του ρολογιού
 - Υπέρμετρη κατανάλωση ενέργειας αδυναμία απαγωγής θερμότητας
 - Οι αλληλοεξαρτήσεις μεταξύ εντολών τονίζονται μείωση της προσδοκώμενης αύξησης της απόδοσης
 - Το σειριακό πρόγραμμα δεν γίνεται πλέον γρηγορότερο «αυτόματα» με την πάροδο του χρόνου
 - "Free ride is over!"
- Πώς θα χρησιμοποιηθεί η αφθονία τρανζίστορ;
 - Παράλληλη επεξεργασία σε χαμηλότερες συχνότητες

Παρεχόμενη παραλληλία: pipelines

- «Παραλληλισμός σε επίπεδο εντολών» (ILP)
 - Μια βασική τεχνική παράλληλης επεξεργασίας
 - Την ίδια στιγμή εκτελούνται λειτουργίες πολλαπλών εντολών μηχανής
 - Ιδανικά, σε κάθε κύκλο ρολογιού (περίοδος Τ) ολοκληρώνεται μια εντολή

Παρεχόμενη παραλληλία: superscalar CPU

- Εκκίνηση περισσότερων από μια εντολή σε κάθε κύκλο ρολογιού
 - Την εποχή της «κούρσας των GHz»
 - Απαιτούνται πολλαπλά pipelines
 - Η επιλογή γίνεται αυτόματα από την ΚΜΕ που παρακολουθεί τις εντολές σε ορισμένο βάθος χρόνου ("window")
 - Τεχνικές για την αύξηση των εντολών που μπορούν να εκτελεστούν παράλληλα
 - Εκτέλεση εκτός σειράς (out of order execution)
 - Μετονομασίες καταχωρητών (register renaming)
 - Πρόβλεψη διακλαδώσεων (branch prediction)

Παρεχόμενη παραλληλία: vector instructions

- Εντολές με πολύ μεγάλο εύρος δεδομένων
 - Την εποχή της «κούρσας των GHz»
 - Η ίδια λειτουργία σε πολλαπλά δεδομένα (SIMD)
 - Streaming instructions
 - Αρχικά για δεδομένα multimedia

Παρεχόμενη παραλληλία: SMT

Simultaneous Multithreading

- Το ξέρουμε καλύτερα με τον όρο marketing:
 "hyperthreading"
- Παραλληλισμός σε επίπεδο thread (TLP)
- Η «κούρσα των GHz» φτάνει στο τέλος της
- Η ΚΜΕ μοιράζει τις μονάδες εκτέλεσης μεταξύ 2 (ή 4 ή 8..) διεργασιών
 - Κρατώντας ξεχωριστή κατάσταση (καταχωρητές) ανά διεργασία
 - Στο λειτουργικό σύστημα φαίνονται ως ανεξάρτητοι «λογικοί» πυρήνες

Παρεχόμενη παραλληλία: multicore

- Περισσότεροι πυρήνες (cores) στον επεξεργαστή
 - Η «κούρσα των GHz» έχει τελειώσει οριστικά
 - Παραλληλισμός σε επίπεδο thread (TLP)
 - Αυξάνεται η πίεση στη (μία και μοναδική) σύνδεση με τη μνήμη προσθήκη μεγαλύτερης ιεραρχίας κρυφών μνημών επεξεργαστής

Ο ρόλος του λογισμικού

- Το λογισμικό επωμίζεται το βάρος της αποδοτικής χρήσης της προσφερόμενης παραλληλίας
 - Η αποδοτική παράλληλη επεξεργασία βασίζεται στη συνεργασία
 - Λειτουργικού συστήματος
 - Μεταγλωττιστή
 - Αλγορίθμων και Δομών δεδομένων
 - Και του κώδικά μας ⊚
 - Και τη γνώση των χαρακτηριστικών του υλικού (hardware)
 - Εγκαταλείπουμε την αρχή «αποσύνδεσης του προγράμματός μας από το υλικό εκτέλεσης»;
 - Θα χρειαστούμε νέα frameworks που θα κρύβουν τις λεπτομέρειες του παραλληλισμού;

Γνωρίζοντας το σύστημα εκτέλεσης

```
$ cat /proc/cpuinfo
 more /sys/devices/system/cpu/
cpu<i>/cache/index<j>/*
```

Απόδοση παράλληλων προγραμμάτων

Speedup
$$S_P = \frac{\chi \rho \acute{o} vo\varsigma \sigma ειριακής εκτέλεσης}{\chi ρ\acute{o} voς παράλληλης εκτέλεσης}$$

- Επιτάχυνση (speedup) με p επεξεργαστικούς κόμβους
 - Στην καλύτερη περίπτωση $S_p = \mathbf{p}$
 - Μερικές φορές, για ανεξάρτητους λόγους προκύπτει $S_p > \overline{p}$ (superlinear speedup)
 - $\overline{\text{Επίσης: αποδοτικότητα (efficiency) E}_p} = S_p / p$

Παράγοντες περιορισμού του speedup

Speedup
$$S_P = \frac{t_s}{f \times t_s + (1-f)t_s/p} = \frac{1}{f + (1-f)/p}$$

- Κάθε αλγόριθμος περιέχει ένα ποσοστό εργασίας που πρέπει να εκτελεστεί σειριακά (f)
 - Επιβάρυνση παραλληλισμού (overhead)
 - Επικοινωνία και συγχρονισμός επεξεργαστικών κόμβων για την ανταλλαγή δεδομένων
 - $S_p \rightarrow 1/f$ όταν $p \rightarrow \infty$ (νόμος του Amdahl)

Μια πιο αισιόδοξη εικόνα

Speedup
$$S_p = \frac{f + p(1-f)}{f + (1-f)} = f + p(1-f)$$

- Ο «νόμος» του Gustafson
 - Scaled speedup
 - Με περισσότερους επεξεργαστικούς κόμβους, τα δεδομένα εισόδου μπορούν να έχουν μεγαλύτερο μέγεθος
 - Στην περίπτωση αυτή δεν μας περιορίζει το ποσοστό του σειριακού μέρους

- Μπορούμε πάντα να μετατρέψουμε αποδοτικά ένα σειριακό πρόγραμμα στο αντίστοιχο παράλληλο;
 - Αλληλεξαρτήσεις δεδομένων
 - Τα διάφορα στάδια εξαρτώνται από τιμές προηγούμενου υπολογισμού
 - Αναμονή για υπολογισμό εισόδων
 - Προσπέλαση μνήμης
 - Πολλά προγράμματα (και αλγόριθμοι) έχουν απόδοση που εξαρτάται από την επικοινωνία με τη μνήμη
 - Ο χρόνος μεταφοράς δεδομένων επισκιάζει κάθε όφελος παραλληλισμού
 - Ο τρόπος προσπέλασης μνήμης επηρεάζει τον χρόνο μεταφοράς
 - 🔹 (σε επόμενα..)

Βιβλιογραφία

• Michael McCool, James Reinders, and Arch Robison. 2012. Structured Parallel Programming: Patterns for Efficient Computation (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

- Μπορούμε πάντα να μετατρέψουμε αποδοτικά ένα σειριακό πρόγραμμα στο αντίστοιχο παράλληλο;
 - Αλληλεξαρτήσεις δεδομένων
 - Τα διάφορα στάδια εξαρτώνται από τιμές προηγούμενου υπολογισμού
 - Αναμονή για υπολογισμό εισόδων
 - Προσπέλαση μνήμης
 - Πολλά προγράμματα (και αλγόριθμοι) έχουν απόδοση που εξαρτάται από την επικοινωνία με τη μνήμη
 - Ο χρόνος μεταφοράς δεδομένων επισκιάζει κάθε όφελος παραλληλισμού
 - Ο τρόπος προσπέλασης μνήμης επηρεάζει τον χρόνο μεταφοράς
 - 🔹 (σε επόμενα..)

- Μπορούμε πάντα να μετατρέψουμε αποδοτικά ένα σειριακό πρόγραμμα στο αντίστοιχο παράλληλο;
 - Αλληλεξαρτήσεις δεδομένων
 - Τα διάφορα στάδια εξαρτώνται από τιμές προηγούμενου υπολογισμού
 - Αναμονή για υπολογισμό εισόδων
 - Προσπέλαση μνήμης
 - Πολλά προγράμματα (και αλγόριθμοι) έχουν απόδοση που εξαρτάται από την επικοινωνία με τη μνήμη
 - Ο χρόνος μεταφοράς δεδομένων επισκιάζει κάθε όφελος παραλληλισμού
 - Ο τρόπος προσπέλασης μνήμης επηρεάζει τον χρόνο μεταφοράς
 - 🗖 (σε επόμενα..)

- Μπορούμε πάντα να μετατρέψουμε αποδοτικά ένα σειριακό πρόγραμμα στο αντίστοιχο παράλληλο;
 - Αλληλεξαρτήσεις δεδομένων
 - Τα διάφορα στάδια εξαρτώνται από τιμές προηγούμενου υπολογισμού
 - Αναμονή για υπολογισμό εισόδων
 - Προσπέλαση μνήμης
 - Πολλά προγράμματα (και αλγόριθμοι) έχουν απόδοση που εξαρτάται από την επικοινωνία με τη μνήμη
 - Ο χρόνος μεταφοράς δεδομένων επισκιάζει κάθε όφελος παραλληλισμού
 - Ο τρόπος προσπέλασης μνήμης επηρεάζει τον χρόνο μεταφοράς
 - 🗖 (σε επόμενα..)