Examen, 29 avril 2009

Durée 3 heures. Documents interdits, calculettes autorisées.

Dans les estimations de complexité, on utilisera la notation \tilde{O} pour ne pas avoir à tenir compte des facteurs logarithmiques ou des constantes. On rappelle qu'une opération $(+, \times, \text{ division})$ euclidienne ou pgcd) sur deux polynômes de degré $\leq n$ dans K[X] utilise $\widetilde{O}(n)$ opérations élémentaires dans le corps K. Une opération sur deux entiers de valeur absolue $\leq 2^n$ utilise $\widetilde{O}(n)$ opérations élémentaires sur des chiffres. Dans les deux cas, on dira « en temps $\widetilde{O}(n)$ » au lieu de « en utilisant $\widetilde{O}(n)$ opérations élémentaires ».

Exercice 1 – Soient p un nombre premier et a un entier vérifiant 0 < a < p.

- 1) Montrer comment calculer l'inverse de a modulo p en utilisant l'identité $a^{p-1} \equiv 1 \pmod{p}$.
- 2) Rédiger l'algorithme correspondant. On fera bien sûr appel à l'exponentiation binaire.
- 3) Estimer, en fonction de p, la complexité algébrique (nombre d'opérations dans \mathbb{F}_p), puis la complexité binaire de cet algorithme.
- 4) Rappeler comment se servir de l'algorithme d'Euclide étendu pour résoudre le même problème d'inversion, puis comparer les complexités binaires des deux procédés.

Exercice 2 – Soit N > 1 un entier dont on désire montrer qu'il est premier.

- 1) Soit $p \mid N-1$ un nombre premier et $e=v_p(N-1)$ la plus grande puissance de p divisant N-1. On suppose qu'il existe $a \in \mathbb{Z}$ vérifiant
 - $a^{N-1} \equiv 1 \pmod{N}$, • $\operatorname{pgcd} (a^{(N-1)/p} - 1, N) = 1$.

On va montrer que tout diviseur d de N vérifie $d \equiv 1 \pmod{p^e}$.

- a) Montrer qu'il suffit de démontrer l'assertion pour tout diviseur d premier.
- b) On suppose donc $d \mid N$ premier et on note o l'ordre de a dans $(\mathbb{Z}/d\mathbb{Z})^*$. Montrer que $o \mid N-1$, mais que $o \nmid (N-1)/p$.
 - c) En déduire que $p^e \mid o$ et conclure.
- 2) On suppose que N-1=FU, où $F\geqslant \sqrt{N}$ est un facteur dont tous les diviseurs premiers sont connus tel que (F,U)=1, et que pour chaque $p\mid F$, on connaît a(p) vérifiant les propriétés du 1). Soit d>1 un diviseur de N.
 - a) Montrer que $d \equiv 1 \pmod{F}$. [Utiliser le 1) et penser au Lemme Chinois.]
 - b) En déduire que $d > \sqrt{N}$, puis que N est premier.
- 3) On suppose N premier, et on fixe $p \mid N-1$. Tirant a uniformément au hasard dans [1, N], quelle est la probabilité de trouver un a(p) vérifiant la propriété ci-dessus?

1

Problème

On note « $a \mod b$ » le reste de la division euclidienne de a par b.

- 1) Soit $P \in K[X]$ non constant, et $\mathcal{L} = [x_0, \dots, x_{n-1}] \in K^n$ une liste d'éléments de K.
 - a) Écrire une procédure MAPLE qui teste si $P(x_i) \neq 0$ pour tout $0 \leq i < n$.
 - b) Majorer la complexité de cette procédure, en fonction de $\deg P$ et n.
- **2)** Soit N > 0 un entier et $\mathcal{L} = [x_0, \dots, x_{n-1}] \in \mathbb{Z}^n$ une liste de n entiers > 1.
 - a) Écrire une procédure MAPLE qui teste si N n'est divisible par aucun $x \in \mathcal{L}$.
- b) Expliquer pourquoi on peut supposer que les éléments de \mathcal{L} sont inférieurs à N. Sous cette hypothèse, majorer la complexité de cette procédure, en fonction de $\log N$ et n.
- 3) Expliquer en quoi les deux questions précédentes résolvent essentiellement le même problème.
- 4) On se concentre désormais sur le cas $N \in \mathbb{Z}$, $\mathcal{L} \in \mathbb{Z}^n$, plus facile à décrire, et on s'intéresse plus généralement à l'ensemble des $N \mod \mathcal{L}[i]$. On suppose dans toute la suite que $\#\mathcal{L} = n = 2^k$ est une puissance de 2.
- a) Montrer que l'hypothèse $n=2^k$ est inoffensive : on peut toujours se ramener à cette situation.
 - b) Pour $0 \leqslant i \leqslant k$ et $0 \leqslant j < 2^{k-i}$, on pose $M_{i,j} = \prod_{0 \leqslant \ell < 2^i} \mathcal{L}[j2^i + \ell]$.

Si k = 3, dessiner l'arbre binaire naturel dont les noeuds sont les $M_{i,j}$ et tel que chaque noeud contienne le produit de ses deux fils.

- c) Montrer que l'ensemble des $M_{i,j}$ se calculent en temps $\widetilde{O}(\log \mathcal{L})$, où la taille totale « $\log \mathcal{L}$ » de la liste \mathcal{L} est définie par $\log \mathcal{L} := \sum_{i \leq n} \log \mathcal{L}[i]$.
 - d) Écrire une procédure MAPLE calculant tous les $M_{i,j}$.
- 5) On suppose que les $M_{i,j}$ sont précalculés, stockés sur un arbre ¹ organisé de telle sorte que l'on puisse détacher le sous-arbre gauche ou droit de la racine, respectivement associés à la première ou deuxième moitié de \mathcal{L} , en temps négligeable. On considère l'algorithme suivant

Entrées: Un arbre des $M_{i,j}$ associé à une liste $\mathcal{L} \in \mathbb{Z}^n$, $n = 2^k$; un entier N > 0, $\log N < \log \mathcal{L}$. **Sorties:** La liste des $N \mod \mathcal{L}[i]$, $0 \le i < n$.

- 1: Si n = 1, retourner $N \mod \mathcal{L}[0]$.
- 2: Soit $r_0 \leftarrow N \mod M_{k-1,0}$. Calculer récursivement les $r_0 \mod \mathcal{L}[i]$, $0 \le i < n/2$.
- 3: Soit $r_1 \leftarrow N \mod M_{k-1,1}$. Calculer récursivement les $r_1 \mod \mathcal{L}[i]$, $n/2 \leq i < n$.
- 4: Renvoyer la concaténation des résultats.
- a) Détailler le passage « Calculer récursivement...». Avec quelles entrées rappelle-t-on la fonction ?
 - b) Montrer que l'algorithme est correct et calcule les $N \mod \mathcal{L}[i]$ en temps $O(\log \mathcal{L})$.
- 6) On admet les deux faits suivants:
 - Le crible d'Ératosthène calcule $\mathcal{L} := \{ p \leqslant x \colon p \text{ premier} \}$ en temps $\widetilde{O}(x)$,
 - On a $\log \mathcal{L} = \sum_{v \leq x} \log p \sim x$ quand $x \to \infty$ (théorème des nombres premiers).
 - a) Comment trouver tous les facteurs premiers de N inférieurs à $\log N$ en temps $O(\log N)$?
 - b) Comparer avec la méthode na \ddot{i} ve de division successive par les éléments de \mathcal{L} .
- c) Utilisant la méthode récursive, à quel coût détecte-t-on tous les facteurs premiers de N (dans le cas le pire, que l'on explicitera)?

¹On n'explicitera pas l'implantation de cet arbre; la représentation standard d'un arbre binaire parfait par un tableau unidimensionnel convient.