

Optimal dynamical stabilization: application to an inverted electromagnetic pendulum

Valentin DUVIVIER M1 Comp Mech <u>Supervisors</u>: Suzie PROTIERE Arnaud LAZARUS

<u>PhD student</u>: Alvaro A. GRANDI

Kapitza's pendulum

Def.: The notion of dynamic stability involves the time required for a system to regain its static stability after a disturbance.

Vertically vibrating pivot

Fast driving frequency

Constant use of energy

Plan

- I. Characterization
 - A. Static stability homogeneity
 - B. Dynamic motion ON/OFF
- II. Dynamic stability Energy optimization
 - A. Floquet theory
 - B. Optimal dynamic stabilization
- III. Conclusion

I. Characterization

A. Static stability

fig. 2: Model inverted pendulum

fig. 3 a: Illustration potential energy inverted pendulum

Stable case - ON

fig. 3 b: Illustration potential energy stabilized inverted pendulum

A. Magnetic field homogeneity

B. Dynamic motion

$$\ddot{\theta} + 2\xi(t)\omega(t)\dot{\theta} + \omega^2(t)\theta = 0 \quad \Longrightarrow \quad \left\{$$

OFF (i = 0 A) :
$$\ddot{\theta} - \omega_0^2 \theta = 0$$

fig. 5 a: Motion collapsing

fig. 5 b: Motion damped vibration

$$\omega_0 \approx 11.1 \ rad.s^{-1} \approx \sqrt{\frac{g}{L}}$$

Framework

fig. 6: Framework homogeneity

- Framework reduction
- Set-up validated

II. Dynamic stability - Energy optimization

ON + OFF motions

Testing parameters

fig. 7: Stability modulation parameters

The more stable

The more Energy

Stability motions

2 0 -2 0 1 2 3 4 5 time [s]

fig. 8 a : Stable motion

Oscillation

fig. 8 b : Oscillation motion

Unstable

fig. 8 c : Unstable motion

Experimental stability

The more Energy

12

Analytical stability - Floquet theory

$$\begin{cases} \ddot{\theta} + 2\xi(i)\omega(i)\dot{\theta} + \omega^2(i)\theta = 0 \\ \ddot{\theta} - \omega_0^2\theta = 0 \end{cases} \Leftarrow$$

$$\{\dot{X}(t)\} = \begin{bmatrix} 0 & 1 \\ -\omega^2(t) & 0 \end{bmatrix} \cdot \{X(t)\}$$

fig. 10 a: Analytical dynamic stability

fig. 10 b : Superposition exp / theory

Equation stability periods

fig. 11: Optimal modulation period

Conclusion

Static stability

Framework reduction

Dynamic stability

Energy optimization

References

[1] B. Chris. Kapitza's pendulum. April 2011.

L. Arnaud G. Alvaro, P. Suzie. Enhancing and controlling parametric instabilities in mechanical systems. Extreme Mechanics Letters, Elsevier, 43, 2021.

A.H. Fatimah. Floquet theory on banach space. Master's thesis, University of groningen, faculty of science, mathematics and applied mathematics, 2013.

B Sun X Zhang. Parametric study on the aerodynamic stability of a long-span suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics, 92:431–439, 2004.

E. Antonin A. Benjamin, N. Filip F. Emmanuel. Floating under a levitating liquid. ESPCI Paris, Sorbonne University.

16