Basics of Machine Learning

Dmitry Ryabokon, github.com/dryabokon

Lesson 17 Benchmarking

Benchmarking

Summary

- ROC Curve
- PR-Curve
- Benchmarking the classifiers

Error types

Error types

-

AUC: area under ROC curve

Example: Naive Bayesian classifier

Example: Naive Bayesian classifier

 $\begin{array}{c}
x \\
k \\
\frac{p(1|x)}{p(2|x)}
\end{array}$

(0,0) (1,0) (2,0) (2,0) (0,1) (0,1) (1,1) (1,1) (1,1) (1,1) (2,1), (0,2) (0,2) (1,2) (2,2)

0.19 1.50 0.25 0.25 0.75 0.75 6.00 6.00 6.00 6.00 1.00 0.19 0.19 1.50 0.25

Example: Naive Bayesian classifier

The task: compare accuracy of two strategies

Precision: TP / (TP+FP)

Recall: TP / (TP+FN)

Accuracy: (TP+TN) /Total

F1-score: 2 x Precision x Recall / (Precision+ Recall)

Recall: 0/3

Recall: 1/3

Recall: 1

Recall: 1

- Regression
- Naive Bayes
- Gaussian
- SVM
- Nearest Neighbors
- Decision Tree
- Random Forest
- AdaBoost
- xgboost
- Neural Net

Gaussian distribution

Non-gaussian distribution

