吳芷瑄 Chih-Hsuan Wu r04246006@ntu.edu.tw

國立台灣大學應用數學科學研究所 Institute of Applied Mathematical Sciences, National Taiwan University

2017.06.28

- 1 Introduction
- 2 Regression by Self-Updating Process
- 3 Strength of the Algorithm
- 4 Convergence
- 5 Real Data
- 6 Discussion and Future Work

- 1 Introduction
 - Robust Regression
 - Clustering by Self-Updating Process
 - Mean-Shift Clustering
- 2 Regression by Self-Updating Process
- 3 Strength of the Algorithm
- 4 Convergence
- 5 Real Data
- 6 Discussion and Future Work

Introduction

Robust Regression

Let $\{x_i \in \mathbb{R}^p\}_{i=1}^n$ be the explanatory variables and $\{y_i \in \mathbb{R}\}_{i=1}^n$ be the responses. Ordinary least squares model and the estimate of coefficients can be written down as

$$y_i = x_i^T \beta + \epsilon_i, \quad i = 1, ..., n$$

$$\hat{\beta} = \arg\min \sum_{i=1}^{n} (y_i - x_i^T \beta)^2.$$

- Minimize residuals in L¹-norm. (Boscovich 1757)
- lacktriangle Minimize $\sum
 ho(r_i)$ for some symmetric function ho with a unique minimum at zero. To keep scale-invariant, the estimation problem becomes to solve $\sum \phi(r_i/\hat{\tau})x_i=0$, where $\phi(u)$ is the derivative of ρ and $\hat{\tau}$ is an estimated scale. (Huber 1973)
- Minimize the median of the squared residuals. (Rousseeuw 1984)

Introduction

Clustering by Self-Updating Process

- A distance-based clustering method: Self-Updating Process (Chen et al. 2007)
 - (i) $x_1^{(0)}, ..., x_N^{(0)} \in \mathbb{R}^p$ are the original positions of data points to be clustered.
 - (ii) At time t + 1, every point is updated to the following new position:

$$x_i^{(t+1)} = \sum_{j=1}^{N} \frac{f_t\left(x_j^{(t)}, x_i^{(t)}\right) x_j^{(t)}}{\sum_{k=1}^{N} f_t\left(x_k^{(t)}, x_i^{(t)}\right)} \tag{1}$$

where f_t is some function that measures the influence between two data points at time t.

- (iii) Repeat (ii) until every data point no longer moves.
- SUP shows advantages in clustering (i) data with noise, (ii) data with a large number of clusters, and (iii) unbalanced data.

Real Data

Introduction

Mean-Shift Clustering

Mean-shift clustering derived from kernel density estimate is another iterative process.

$$y_{j+1} = \sum_{i=1}^{n} \frac{g\left(\|\frac{y_j - x_i}{h}\|^2\right) x_i}{\sum_{i=1}^{n} g\left(\|\frac{y_j - x_i}{h}\|^2\right)}$$

where y_i is the mode estimate in the j-th iteration, and k(x) = -g(x) is the kernel profile. This formulation is called non-blurring mean-shift. If we substitute y_i for x_i , then it becomes blurring type, which can be viewed as a static SUP.

Compare mean-shift with SUP

$$x_i^{(t+1)} = \sum_{j=1}^{N} \frac{f_t\left(x_j^{(t)}, x_i^{(t)}\right) x_j^{(t)}}{\sum_{k=1}^{N} f_t\left(x_k^{(t)}, x_i^{(t)}\right)}$$

Introduction

0

Convergence of Mean-Shift

- Comaniciu, D., and Meer, P. (2002). Misuse an inequality.
- Li, X., Hu, Z., and Wu, F. (2007). Assume finite modes of estimated pdf.
- Ghassabeh, Y. A. (2015). Focus on Gaussian kernel.
- Arias-Castro, E., Mason, D., and Pelletier, B. (2016). Convergence rate

- 1 Introduction
- 2 Regression by Self-Updating Process
 - Algorithm
 - Estimation
 - Effect of Parameters
- 3 Strength of the Algorithm
- 4 Convergence
- 5 Real Data
- 6 Discussion and Future Work

Concept of Our Method

Regression by Self-Updating Process

- Iterative process
- Move data points
- Distance-based
 - lacksquare Blurring: Self-updates w.r.t. updating points and depends on $d(z_i^{(t)}, z_j^{(t)})$
 - lacksquare Non-blurring: Self-updates w.r.t. original points and depends on $d(z_i^{(t)},z_j)$

Illustration of the Algorithm

Regression by Self-Updating Process

Given a data set $\{z_i = (x_i^T, y_i)\}_{i=1}^n$, each $x_i \in \mathbb{R}^p$ consists of the measurements of p independent variables and $y_i \in \mathbb{R}$ is the measurement of the corresponding dependent variable.

Step 1. For each z_i , fit the locally weighted regression with weight $w_i(k) = w(z_k, z_i)$ for z_k to estimate the coefficient $\hat{\beta}_i^{(0)}$ which minimize

$$\sum_{k=1}^{n} w_i(k) (y_k - x_k^T \beta_i)^2.$$

Step 2. Define $z_i^{(1)} = z_i^{[1]} = X \hat{\beta}_i^{(0)}$, the locally fitted value of z_i by step 1.

Step 3. At the t-th iteration, t=2,3,..., compute the estimated coefficients for different types of SUP by fitting locally weighted least squares for each z_i with weight defined as follows: non-blurring: $w_i^{[t]}(k) = w(z_k, z_i^{[t-1]})$ and blurring: $w_i^{(t)}(k) = w(z_k^{(t-1)}, z_i^{(t-1)})$

And their t-th estimated coefficients $\hat{\beta}_i^{[t]}$ and $\hat{\beta}_i^{(t)}$ are defined as follows:

non-blurring: $\hat{\beta_i}^{[t]} = \arg\min \sum_{k=1}^n w_i^{[t]}(k)(y_k - x_k^T \beta_i)^2$, and blurring: $\hat{\beta_i}^{(t)} = \arg\min \sum_{k=1}^n w_i^{(t)}(k)(y_k^{(t)} - x_k^T \beta_i)^2$.

- Step 4. Update $y_i^{[t]}$ and $y_i^{(t)}$ to their locally fitted value $y_i^{[t+1]} = (X\hat{\beta_i}^{[t]})_i$, and $y_i^{(t+1)} = (X\hat{\beta_i}^{(t)})_i$ respectively.
- Step 5. Repeatedly carry out step 3 and 4 for limited times m or until the maximum difference of the updating points is lower than a threshold value.

Blurring

■ Non-blurring

Estimation

Protocol 1

Regression by Self-Updating Process

- I Fit a robust regression on the final data, and find the weight w_i of each point $(x_i^T, y_i^{(m)})$ (or $(x_i^T, y_i^{[m]})$). Collect points of top p percent weight among all points, denoting their index as $I_p = \{i: w_i \geq \text{the (100-p)-th percentile of } \{w_i\}_{i=1}^n\}$
- 2 Fit a linear regression on $\{(x_i^T, y_i^{(m)})\}_{i \in I_p}$ or $\{(x_i^T, y_i^{[m]})\}_{i \in I_p}$.
- Protocol 2
 - 1 This step is the same as step 1 in protocol 1.
 - 2 Fit a linear regression on $\{(x_i^T, y_i)\}_{i \in I_p}$.

•00

$$w(u,v) = \begin{cases} \exp\left[\frac{-d(u,v)}{T}\right] & \text{if } d(u,v) \le r. \\ 0 & \text{if } d(u,v) > r. \end{cases}$$

- lacksquare r is the influence range of the weight function.
- Local structure vs global structure

The Parameter T

000

- Large $T \Rightarrow$ All weights are nearly the same. ⇒ Locally weighted least squares are nearly ordinary least squares
- \blacksquare Small $T\Rightarrow$ Only a few points are concerned.
- Choose T such that w(u,v) is almost zero when d(u,v)=r.

e.g.
$$T = r/5$$
 for $\exp(\frac{-d}{T})$

Regression by Self-Updating Process

The Parameter p

000

■ Small value of *p* results in loss of more points.

Regression by Self-Updating Process

lacktriangle Large p makes the estimation contain some outliers.

- 1 Introduction
- 2 Regression by Self-Updating Process
- 3 Strength of the Algorithm
 - Data with Uniform Noise
 - Data with Heavy-Tailed Noise
 - Multiple Linear Models
- 4 Convergence
- 5 Real Data
- 6 Discussion and Future Work

Data with Uniform Noise

- SUP in clustering shows a strong power in reducing the effect of noise.
- The data set consists of 300 responses $y_i = x_i + \epsilon_i$, where $\epsilon_i, i = 1, ..., 300$ are i.i.d. random variables following standard normal distribution, and 300 points sampled from uniform distribution on $[-10, 10] \times [-10, 10]$ considered as extra uniform noise.

Table: Comparison of different methods

r = 0.3	OLS	robustfit	robust_cut	nonblur1	nonblur2	blur1	blur2
mean	0.4984	0.8047	0.8995	0.9929	0.9513	0.9549	0.9627
std	0.0356	0.1253	0.0664	0.027	0.0293	0.092	0.0691
MSE of slope	0.2529	5.38E-02	1.45E-02	7.78E-04	3.20E-03	1.05E-02	6.20E-03
coverage probability	0		0	0.215	0.225	0.08	0.645
mean length	0.1401		0.0411		0.0637		0.057
time	0.00027	0.00762		2.33511		2.298025	

Data with Heavy-Tailed Noise

The data are sampled from $y_i = x_i + \epsilon_i$, where ϵ_i , i = 1, ..., 300 are i.i.d. random variables following student-t distribution with 3 degrees of freedom.

Table: Heavy-tailed

	OLS	robust	robust_cut	nonblur1	nonblur2	blur1	blur2
mean	0.9995	0.9994	0.9995	0.9995	0.9995	0.9997	0.9993
std	0.0157	0.0114	0.0126	0.0126	0.0126	0.0127	0.0123
MSE of slope	2.47E-04	9.50E-03	1.58E-04	1.60E-04	1.60E-04	1.62E-04	1.52E-04
coverage probability	0.97		0.97	0.975	0.97	0.965	0.97
mean length	0.0652		0.0537	0.0541	0.0538	0.0519	0.0527

Multiple Linear Models

There are 2 linear models considered simultaneously: $y_i=-5+0.3x_i+\epsilon_i$ and $y_{i+100}=0.4x_{i+100}+\delta_i$, where $\epsilon_i,\delta_i,i=1,..,100$ are i.i.d. random variables following standard normal distribution.

Strength of the Algorithm

•0

Figure: Multiple lines

00

Adjust the estimation protocols

- Calculate the Euclidean norm of the estimated parameters for each points.
- Furthermore, assign the points with similar parameters into the same group and continue the estimation protocols.

Figure: Histogram of Euclidean norm of parameters

- 1 Introduction
- 2 Regression by Self-Updating Process
- 3 Strength of the Algorithm
- 4 Convergence
 - Blurring
 - Non-Blurring
- 5 Real Data
- 6 Discussion and Future Wor

Definition

The function f is positive and decreasing with respect to distance(PDD), if

- (i) $0 \le f(u, v) \le 1$, and f(u, v) = 1 if and only if u = v.
- (ii) f(u,v) depends only on $\|u-v\|$, the distance from u to v.
- (iii) f(u,v) is decreasing with respect to ||u-v||.

For example,

$$f_t(x_i^{(t)}, x_j^{(t)}) = \begin{cases} \exp\left[\frac{-d(x_i^{(t)}, x_j^{(t)})}{T(t)}\right] & \text{if } d(x_i^{(t)}, x_j^{(t)}) \le r. \\ 0 & \text{if } d(x_i^{(t)}, x_j^{(t)}) > r. \end{cases}$$

Convergence of SUP Clustering

Theorem (Chen 2015)

Consider a process,

$$x_i^{(t+1)} = \sum_{j=1}^{N} \frac{f\left(x_j^{(t)} - x_i^{(t)}\right) w(x_j^{(t)}) x_j^{(t)}}{\sum_{k=1}^{N} f\left(x_k^{(t)} - x_i^{(t)}\right) w(x_k^{(t)})}$$

If f is PDD and $w(x_i^{(t)}) = w_j$ depends only on j, there exists $\{x_1^*, ..., x_N^*\}$, such that

$$\lim_{t \to \infty} x_i^{(t)} = x_i^* \quad \forall i = 1, ..., N$$

Convergence

Blurring

- Since the concept of regression by blurring SUP is similar to clustering by SUP, we guess that there are similar properties in the case of regression.
- The points seem to converge locally to several lines if the weight function has a compact support.

Conjecture

If the weight function w is a positive and decreasing function with respect to the distance between any two data points, all the data points will converge to a straight line by blurring SUP.

•000000

Non-Blurring

• For non-blurring SUP, the PDD condition on f is not enough for convergence.

Example 1. Consider a data set $\{z_1=(-1,1),z_2=(0,0),z_3=(1,0)\}$ with weight function

$$w(d) = \begin{cases} 1 & \text{if } d \le \sqrt{5} \\ 0 & \text{if } d > \sqrt{5} \end{cases}$$

Now we focus on the third point.

- At the first iteration, the distance between z_3 and z_i , i=1,2 are both less than or equal to $\sqrt{5}$. Therefore, the locally weighted least squares is actually an ordinary least squares on these three points, which causes that $z_3^{[1]} = (1, -t)$ for some t > 0.
- At the second iteration, $z_3^{[2]}$ will move to the weighted regression line of z_2 and z_3 because $||z_1-z_3^{[1]}||$ is greater than $\sqrt{5}$. And this becomes the same situation as beginning.
- We conclude that $z_3^{[2n-1]}=(1,-t)$ and $z_3^{[2n]}=(1,0)$ for all $n\in\mathbb{N}$.

Non-Blurring

Figure: Illustration of example 1

Convergence

0000000

Example 2. Consider a simple data set with only 3 points: $\{(-1, y_1), (0, y_2), (1, y_3)\}$. Standardize the explanatory variable and the response. Therefore, $\sum_{i=1}^{3} y_i = 0$ and $\sum_{i=1}^{3} y_i^2 = 3$. And choose $w(d) = e^{-d^2/T}$ as the weight function in the non-blurring SUP.

Let $F_i(y)$, i = 1, 2, 3 be the function satisfying $y_i^{[t+1]} = F_i(y_i^{[t]})$ for any possible value $y_i^{[t]}$. In this simple case, each $F_i(y)$ can be written down explicitly.

$$F_1(y) = \frac{2u_{21}u_{31}y_2 + 4u_{11}u_{31}y_1 + u_{11}u_{21}y_1 - u_{21}u_{31}y_3}{u_{11}u_{21} + 4u_{11}u_{31} + u_{21}u_{31}}$$

$$F_2(y) = \frac{u_1u_2y_2 - 2u_1u_3y_2 + u_2u_3y_2}{u_{12}u_{22} + 4u_{12}u_{32} + u_{22}u_{32}}$$

$$F_3(y) = \frac{2u_{13}u_{23}y_2 + 4u_{13}u_{33}y_3 + u_{23}u_{33}y_3 - u_{13}u_{23}y_1}{u_{13}u_{23} + 4u_{13}u_{33} + u_{23}u_{33}}$$

where $u_{ij} = u_{ij}(y) = e^{-\frac{1}{T}[(y_i - y)^2 + (x_i - x_j)^2]}$, i, j = 1, 2, 3

Real Data

After tedious calculations, we may obtain

$$F_1'(y) = \frac{2u_{11}u_{21}u_{31}[4u_{31}(2y_1^2 + 5y_1y_3 - y_3^2 + 6) + 3u_{21}(y_1^2 - y_3^2)]}{T(u_{11}u_{21} + 4u_{11}u_{31} + u_{21}u_{31})^2}$$

$$F_2'(y) = \frac{24u_{12}u_{22}u_{32}y_2(y_1u_{32} + y_3u_{12})}{T(u_{12}u_{22} + 4u_{12}u_{32} + u_{22}u_{32})^2}$$

$$F_3'(y) = \frac{2u_{13}u_{23}u_{33}[4u_{13}(2y_3^2 + 5y_3y_1 - y_1^2 + 6) + 3u_{23}(y_3^2 - y_1^2)]}{T(u_{13}u_{23} + 4u_{13}u_{33} + u_{23}u_{33})^2}$$

$$|F_1'(y)| = \left| \frac{2u_{11}u_{21}u_{31}[4u_{31}(2y_1^2 + 5y_1y_3 - y_3^2 + 6) + 3u_{21}(y_1^2 - y_3^2)]}{T(u_{11}u_{21} + 4u_{11}u_{31} + u_{21}u_{31})^2} \right|$$

$$\leq \left| \frac{2[4u_{31}(2y_1^2 + 5y_1y_3 - y_3^2 + 6) + 3u_{21}(y_1^2 - y_3^2)]}{T(u_{21} + 4u_{31})} \right|$$

$$< \left| \frac{2[(2y_1^2 + 5y_1y_3 - y_3^2 + 6) + 3(y_1^2 - y_3^2)]}{T} \right|$$

$$|F_3'(y)| < \left| \frac{2[(2y_3^2 + 5y_3y_1 - y_1^2 + 6) + 3(y_3^2 - y_1^2)]}{T} \right|$$

$$|F_2'(y)| = \left| \frac{24u_{12}u_{22}u_{32}y_2(y_1u_{32} + y_3u_{12})}{T(u_{12}u_{22} + 4u_{12}u_{32} + u_{22}u_{32})^2} \right|$$

$$\leq \left| \frac{24u_{12}u_{22}u_{32}y_2\sqrt{u_{32}^2 + u_{12}^2}\sqrt{y_1^2 + y_3^2}}{T(u_{12}u_{22} + 4u_{12}u_{32} + u_{22}u_{32})^2} \right|$$

$$\leq \left| \frac{3y_2\sqrt{u_{32}^2 + u_{12}^2}\sqrt{y_1^2 + y_3^2}}{2T(u_{12} + u_{32})} \right|$$

$$\leq \left| \frac{3y_2\sqrt{u_{32}^2 + 2u_{32}u_{12} + u_{12}^2}\sqrt{y_1^2 + y_3^2}}{2T(u_{12} + u_{32})} \right|$$

$$\leq \left| \frac{3y_2\sqrt{y_1^2 + y_3^2}}{2T} \right|$$

$$= \left| \frac{3y_2\sqrt{3 - y_2^2}}{2T} \right|$$

Convergence

000000

If we choose T such that

$$T \ge \max \left\{ \frac{3}{2} \left| y_2 \sqrt{3 - y_2^2} \right|, 2 \left| (2y_1^2 + 5y_1 y_3 - y_3^2 + 6) + 3(y_1^2 - y_3^2) \right|, \\ 2 \left| (2y_3^2 + 5y_3 y_1 - y_1^2 + 6) + 3(y_3^2 - y_1^2) \right| \right\},$$

then the iterative process is a contraction mapping. And the non-blurring SUP will converge.

• Consider a trivial situation $y_1 = -y_3$, $y_2 = 0$. Theoretically, the process should converge for any T. Hence, the points will not move in each iteration. Back to the criteria of T, $\frac{3}{2}\left|y_2\sqrt{3-y_2^2}\right|=0$ in this case, but the other 2 values equal to $12-8y_1^2$ could be positive. From this point of view, the condition of T we provide to reach the convergence may be too strict.

- 2 Regression by Self-Updating Proces
- 3 Strength of the Algorithm
- 4 Convergence
- 5 Real Data
- 6 Discussion and Future Work

Baseball Players' Salaries

- This data contains 337 major league baseball players' salaries (measured in thousands of dollars) in the year 1992 and their 16 performance measures from the year 1991.
- From the Bayesian variable selection analysis in Lee et al.(2016), they conclude that RBI is a crucial factor for a baseball player to achieve a high salary.

Figure: SUP on real data

- 1 Introduction
- 2 Regression by Self-Updating Process
- 3 Strength of the Algorithm
- 4 Convergence
- 5 Real Data
- 6 Discussion and Future Work

Discussion and Future Work

- 1 The conjecture about convergence in blurring SUP in regression is left to be solved.
- 2 Deal with non-separable data.
- 3 Data points are not enough.
- 4 Generalize this approach for other statistical models.
- 5 Derive some theoretical properties of the estimate; moreover, give the confidence interval to make inferences.
- 6 Improve the computational speed.

Thank you!

Discussion and Future Work