Find the magnitude of the cross product $\vec{a} \times \vec{b}$ of the vectors shown in the figure, where $||\vec{a}|| = 5$ and $||\vec{b}|| = 9$.

+														F
	9	хb	=	àll	ه ا ه	in a	(O)							
			·		•									
			= 4	FS s	ih (l	20)								
						- ,								

Let $\vec{a} = \langle 2, 0, 4 \rangle$, $\vec{b} = \langle -1, 3, 2 \rangle$, and $\vec{c} = \langle 1, 1, 2 \rangle$. (Your instructors prefer angle bracket notation < > for vectors.)

(a) Compute $\vec{a} \times \vec{b}$.

(b) Compute $\vec{a} \cdot (\vec{b} \times \vec{c})$.

(c) Compute $\vec{a} \times (\vec{b} \times \vec{c})$.

(d) Are vectors \overrightarrow{a} and \overrightarrow{b} parallel?

○ Yes

Use the cross product to determine if the three points (1, 3, 4), (-3, 2, 5) and (0, -4, 3) lie on the same line.

- \bigcirc The three points lie on the same line.
- O The three points do not lie on the same line.

$$\vec{Y}_{p_2 + o p_1} = (1,3,4) - (-3,2,5)$$

$$= \langle 4,1,-1 \rangle \times \langle 0,-4,3 \rangle = 0 \qquad 4 | 1|-1 \qquad 0 | -4|3$$

$$\langle 3-4,-(12-0),-16-0 \rangle = 0$$

$$\langle -1,-12,-16 \rangle \neq 0$$
No, the points are not on the same line

Find the area of the parallelogram spanned by the vectors \overrightarrow{u} and \overrightarrow{v} .

$$\vec{u} = (0, 3, -2) \text{ and } \vec{v} = (4, 3, 2)$$

Find the area of the triangle spanned by the vectors \overrightarrow{u} and \overrightarrow{v} .

$$\overrightarrow{u} = \langle -2, -7, 2 \rangle$$
 and $\overrightarrow{v} = \langle -1, -2, -1 \rangle$

Same lesic as above by half it

$$A = \frac{1}{2} | \vec{U} \times \vec{V} | \qquad -2|-7|2$$

$$= \frac{1}{2} | (7+4, -(2+2), 4-7) |$$

$$= \frac{1}{2} | (11, -4, -3) |$$

$$= \frac{1}{2} \sqrt{11^2 + 4^2 + 3^2}$$

(a) Find the angle between the force and the vector from P to Q.

	Ι.
	ľ

(b) Find the magnitude of the applied torque.

Calculate the volume of the parallelepiped determined by the position vectors $\vec{a} = \langle 5, 0, 1 \rangle$, $\vec{b} = \langle -3, 4, 5 \rangle$, and $\vec{c} = \langle 2, 3, 5 \rangle$.

= < -9, -2	8,207·c		
= -8 - 84	+ 100		
= 8 cubic	units		

Compute the area of the parallelogram with vertices A(1, 5), B(4, 4), C(6, 2) and D(3, 3).

	A
	0
Area=bh	
b= IAB I	
P= IAB I	
h = lad sin (e)	
A 1-11-21 ()	
Avea = [AB][AD] sin (0)	
Let $\vec{r}_1 = \vec{AB}$ and $\vec{r}_2 = \vec{AD}$	
F(1) 11 /1D and 12 /10	
ے ا	
r, = (3,-1,0)	
$\vec{r}_1 = \langle 2, -2, 0 \rangle$	
12 - 72, 2,07	
	3 -1 0
Avec = (r, xr2)	2 -2 0
= 140-0,0-0,-6+2>1	
1700,0-0,612/1	
= (<c,0,-4>)</c,0,-4>	

:	-4				

Find all vectors $\vec{v} = \langle a, b, c \rangle$ that solve the given vector equation.

$$\vec{v} \times \hat{i} = 6\hat{j}$$

- $\bigcirc \overrightarrow{v} = \langle a, 6, 0 \rangle$ with $a \in \mathbb{R}$
- O No solution exists.
- $\bigcirc \overrightarrow{v} = \langle 0, 6, 0 \rangle$
- $\bigcirc \stackrel{\rightarrow}{v} = \langle 6, 0, 0 \rangle$

