1 Datenstrukturen

```
1.1 Segmentbaum
```

```
SegTree baut den Baum auf O(n) query findet Summe über [l,r) O(\log(n)) update ändert einen Wert O(\log(n))
```

```
struct SeaTree {
     using T = ll;
3
     int n:
     vector<T> tree;
     static constexpr T E = 0; // Neutral element for combine
     SegTree(vector<T>& a) : n(sz(a)), tree(2 * n) {
     //SegTree(int size, T val = E) : n(size), tree(2 * n, val) {
       copy(all(a), tree.begin() + n);
       for (int i = n - 1; i > 0; i--) { // remove for range update
         tree[i] = comb(tree[2 * i], tree[2 * i + 1]);
11
     T comb(T a, T b) {return a + b;} // modify this + neutral
     void update(int i, T val) {
14
       tree[i += n] = val; // apply update code
15
       while (i \neq 2) tree[i] = comb(tree[2 * i], tree[2 * i + 1]):
16
17
     T query(int l, int r) {
18
       T resL = E. resR = E:
19
       for (l += n, r += n; l < r; l /= 2, r /= 2) {
20
         if (l&1) resL = comb(resL, tree[l++]):
21
         if (r&1) resR = comb(tree[--r], resR);
22
23
       return comb(resL, resR);
\frac{24}{25}
     // OR: range update + point query, needs commutative comb
26
     void modify(int l, int r, T val) {
27
       for (l += n, r += n; l < r; l /= 2, r /= 2) {
28
         if (l&1) tree[l] = comb(tree[l], val), l++;
29
         if (r&1) --r, tree[r] = comb(tree[r], val);
\frac{30}{31}
     T querv(int i) {
32
       T res = E;
33
       for (i += n; i > 0; i /= 2) res = comb(res, tree[i]);
34
       return res;
35
36 | };
```

1.1.1 Lazy Propagation

Assignment modifications, sum queries

lower_bound erster Index in $[l,r) \ge x$ (erfordert max-combine) $O(\log(n))$

```
struct SegTree {
    using T = ll; using U = ll;
    int n;

static constexpr T E = 0; // Neutral element for combine
    static constexpr U UF = INF; // Unused value by updates
    vector<T> tree;
    int h;
    vector<U> lazy;
    vector<int> k; // size of segments (optional)
```

```
SegTree(const vector<T>& a) : n(sz(a) + 1), tree(2 * n, E),
     //SegTree(int size, T def = E) : n(size + 1), tree(2 * n, def),
11
12
         h(_{-}lg(2 * n)), lazy(n, UF), k(2 * n, 1) {
13
       copy(all(a), tree.begin() + n);
       for (int i = n - 1: i > 0: i - -) {
         k[i] = 2 * k[2 * i]:
15
16
         tree[i] = comb(tree[2 * i], tree[2 * i + 1]);
17
18
     T comb(T a, T b) {return a + b;} // Modify this + E
19
     void apply(int i, U val) { // And this + UF
20
       tree[i] = val * k[i]:
21
       if (i < n) lazy[i] = val; // Don't forget this</pre>
22
23
     void push_down(int i) {
       if (lazy[i] != UF) {
25
         apply(2 * i, lazy[i]);
         apply(2 * i + 1, lazy[i]);
27
         lazv[i] = UF;
28
     }}
     void push(int i) {
30
       for (int s = h; s > 0; s--) push_down(i >> s);
31
32
     void build(int i) {
       while (i /= 2) {
34
         push_down(i):
35
         tree[i] = comb(tree[2 * i], tree[2 * i + 1]);
36
37
     void update(int l, int r, U val) {
38
      l += n. r += n:
39
       int l0 = l, r0 = r;
       push(l0), push(r0 - 1);
41
       for (; l < r; l /= 2, r /= 2) {</pre>
42
         if (l&1) apply(l++, val);
43
         if (r&1) apply(--r, val);
44
45
       build(l0), build(r0 - 1);
46
47
     T query(int l, int r) {
      l += n. r += n:
49
       push(l), push(r - 1):
50
       T resL = E. resR = E:
51
       for (; l < r; l /= 2, r /= 2) {
         if (l&1) resL = comb(resL, tree[l++]);
53
         if (r&1) resR = comb(tree[--r], resR);
54
55
       return comb(resL, resR);
56
57
     // Optional:
     int lower_bound(int l. int r. T x) {
      l += n. r += n:
       push(l), push(r - 1);
61
       int a[64] = {}, lp = 0, rp = 64;
62
       for (; l < r; l /= 2, r /= 2) {
63
         if (l&1) a[lp++] = l++;
         if (r&1) a[--rp] = --r:
```

```
for (int i : a) if (i != 0 && tree[i] >= x) { // Modify this
66
67
         while (i < n) {
68
           push_down(i);
           if (tree[2 * i] >= x) i = 2 * i: // And this
           else i = 2 * i + 1:
70
71
72
         return i - n;
73
74
       return -1;
75
76 | };
```

1.2 Wavelet Tree

WaveletTree baut den Baum auf $O(n \cdot \log(\Sigma))$ kth sort [l,r)[k] $O(\log(\Sigma))$ countSmaller Anzahl elemente in [l,r) kleiner als k $O(\log(\Sigma))$

```
1 struct WaveletTree {
     using it = vector<ll>::iterator;
     WaveletTree *ln = nullptr, *rn = nullptr;
     vector<int> b = {0};
     ll lo, hi;
     WaveletTree(vector<ll> in) : WaveletTree(all(in)) {}
     WaveletTree(it from, it to) : // call above one
       lo(*min_element(from, to)), hi(*max_element(from, to) + 1) {
       ll mid = (lo + hi) / 2;
10
       auto f = [&](ll x) {return x < mid;};</pre>
11
       for (it c = from: c != to: c++) {
12
        b.push_back(b.back() + f(*c));
13
14
       if (lo + 1 >= hi) return;
       it pivot = stable_partition(from, to, f):
       ln = new WaveletTree(from, pivot):
       rn = new WaveletTree(pivot. to):
18
     // kth element in sort[l, r) all 0-indexed
     ll kth(int l, int r, int k) {
       if (k < 0 || l + k >= r) return -1;
       if (lo + 1 >= hi) return lo:
       int inLeft = b[r] - b[l];
24
       if (k < inLeft) return ln->kth(b[l], b[r], k);
       else return rn->kth(l-b[l], r-b[r], k-inLeft);
25
26
     // count elements in[l, r) smaller than k
     int countSmaller(int l, int r, ll k) {
       if (l >= r || k <= lo) return 0;</pre>
       if (hi <= k) return r - l:</pre>
31
       return ln->countSmaller(b[l], b[r], k) +
               rn->countSmaller(l-b[l], r-b[r], k);
32
33
     ~WaveletTree() {delete ln; delete rn;}
35 | };
```

1.3 Fenwick Tree

init

18 }

baut den Baum auf

```
O(\log(n))
   prefix_sum summe von [0,i]
              addiert ein Delta zu einem Element O(\log(n))
   update
   vector<ll> tree:
   void update(int i, ll val) {
     for (i++; i < sz(tree); i += i & -i) tree[i] += val;</pre>
   void init(int n) {
     tree.assign(n + 1.0):
7 }
   11 prefix sum(int i) {
     ll sum = 0:
     for (i++: i > 0: i -= i & -i) sum += tree[i]:
11
     return sum:
12 }
              baut den Baum auf
                                                         O(n \cdot \log(n))
   init
   prefix_sum summe von [0,i]
                                                         O(\log(n))
              addiert ein Delta zu allen Elementen [l,r). l \le r! O(\log(n))
                                                                      vector<ll> add. mul:
   void update(int l. int r. ll val) {
     for (int tl = l + 1: tl < sz(add): tl += tl & -tl)</pre>
       add[tl] += val. mul[tl] -= val * l:
     for (int tr = r + 1; tr < sz(add); tr += tr & -tr)
       add[tr] -= val, mul[tr] += val * r;
7 }
   void init(vector<ll>& v) {
     mul.assign(sz(v) + 1.0):
     add.assign(sz(v) + 1, 0);
11
     for(int i = 0; i < sz(v); i++) update(i, i + 1, v[i]);</pre>
12
   ll prefix_sum(int i) {
    ll res = 0: i++:
     for (int ti = i; ti > 0; ti -= ti & -ti)
16
       res += add[ti] * i + mul[ti];
17
     return res:
```

 $O(n \cdot \log(n))$

1.4 STL-Rope (Implicit Cartesian Tree)

```
#include <ext/rope>
using namespace __gnu_cxx;
rope<int> v; // Wie normaler Container.

4 v.push_back(num); // O(log(n))
rope<int> sub = v.substr(start, length); // O(log(n))
v.erase(start, length); // O(log(n))
v.insert(v.mutable_begin() + offset, sub); // O(log(n))
for(auto it = v.mutable_begin(); it != v.mutable_end(); it++)
```

1.5 (Implicit) Treap (Cartesian Tree)

```
insert fügt wert val an stelle i ein (verschiebt alle Positionen \geq i) O(\log(n)) remove löscht werte [i,i+count) O(\log(n))
```

```
mt19937 rng(0xc4bd5dad);
   struct Treap {
     struct Node {
       ll val;
       int prio, size = 1, l = -1, r = -1;
       Node(ll x) : val(x), prio(rng()) {}
     vector<Node> treap:
     int root = -1:
     int getSize(int v) {
11
        return v < 0 ? 0 : treap[v].size;</pre>
12
13
     void upd(int v) {
14
       if (v < 0) return;</pre>
15
        auto& V = treap[v];
       V.size = 1 + getSize(V.l) + getSize(V.r);
17
       // Update Node Code
18
19
     void push(int v) {
20
       if (v < 0) return;
21
       //auto& V = treap[v]:
22
       //if (V.lazy) {
23
       // Lazy Propagation Code
24
       // if (V.l >= 0) treap[V.l].lazy = true;
       // if (V.r >= 0) treap[V.r].lazy = true;
       // V.lazv = false:
27
       //}
28
<u>-</u>29
     pair<int, int> split(int v, int k) {
30
       if (v < 0) return {-1, -1};</pre>
        auto& V = treap[v];
31
32
        push(v):
33
        if (getSize(V.l) >= k) { // "V.val >= k" for lower_bound(k)
34
         auto [left, right] = split(V.l, k);
35
         V.l = right:
36
         upd(v);
37
         return {left, v}:
38
        } else {
39
         // and only "k"
40
         auto [left, right] = split(V.r, k - getSize(V.l) - 1);
41
         V.r = left;
42
         upd(v):
43
         return {v, right};
44
45
     int merge(int left, int right) {
46
        if (left < 0) return right;</pre>
47
        if (right < 0) return left;</pre>
48
        if (treap[left].prio < treap[right].prio) {</pre>
49
         push(left);
50
         treap[left].r = merge(treap[left].r, right);
51
         upd(left);
         return left:
```

```
} else {
         push(right):
54
55
         treap[right].l = merge(left, treap[right].l);
56
         upd(right);
57
         return right:
58
     void insert(int i, ll val) { // and i = val
60
       auto [left, right] = split(root, i);
61
       treap.emplace_back(val);
62
       left = merge(left, sz(treap) - 1);
63
       root = merge(left, right);
64
65
     void remove(int i, int count = 1) {
       auto [left, t_right] = split(root, i);
66
       auto [middle, right] = split(t_right, count);
67
       root = merge(left, right):
69
70
    // for query use remove and read middle BEFORE remerging
```

1.6 Range Minimum Query

```
init baut Struktur auf O(n \cdot \log(n)) queryIdempotent Index des Minimums in [l,r). l < r! O(1)
• better-Funktion muss idempotent sein!
```

```
♂
   struct SparseTable {
     vector<vector<int>> st:
3
     11 *a:
     int better(int lidx, int ridx) {
       return a[lidx] <= a[ridx] ? lidx : ridx:</pre>
 6
    }
     void init(vector<ll>* vec) {
       int n = sz(*vec):
       a = vec->data():
10
       st.assign(__lg(n) + 1, vector<int>(n));
       iota(all(st[0]), 0):
11
12
       for (int j = 0; (2 << j) <= n; j++) {
13
         for (int i = 0; i + (2 << j) <= n; i++) {
14
           st[j + 1][i] = better(st[j][i], st[j][i + (1 << j)]);
15
     int queryIdempotent(int l, int r) {
       if (r <= l) return -1;
18
       int j = _- \lg(r - l); //31 - builtin_clz(r - l);
19
       return better(st[j][l] , st[j][r - (1 << j)]);</pre>
20
21 };
```

1.7 STL-Bitset

47

48

49

50

51

52

__ 53

54

57

58

59

60

61

62

63

64

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

O(n)

 $O(\log(n))$

 $O(\log(n))$

```
O(\log(n))
              entfernt \{x,y\} Kante
   cut
                                                       O(\log(n))
             berechnet LCA von x und y
   lca
             berechnet que ry auf den Knoten des xy-Pfades O(\log(n))
   query
             erhöht jeden wert auf dem xy-Pfad
   modify
                                                       O(\log(n))
   constexpr ll queryDefault = 0;
   constexpr ll updateDefault = 0;
   ll _modify(ll x, ll y) {
     return x + y;
 5
   ll _query(ll x, ll y) {
     return x + y;
   ll _update(ll delta, int length) {
     if (delta == updateDefault) return updateDefault;
11
     //ll result = delta
12
     //for (int i=1; i<length; i++) result = _query(result, delta);</pre>
13
     return delta * length;
14 }
15
   //generic:
16
   ll joinValueDelta(ll value, ll delta) {
     if (delta == updateDefault) return value;
18
     return _modifv(value. delta):
19
20
   ll joinDeltas(ll delta1, ll delta2) {
21
     if (delta1 == updateDefault) return delta2;
22
     if (delta2 == updateDefault) return delta1;
23
     return _modifv(delta1. delta2):
24
__
25
   struct LCT {
26
     struct Node {
27
       11 nodeValue, subTreeValue, delta;
28
       bool revert:
29
       int id, size;
30
       Node *left, *right, *parent;
31
       Node(int id = 0, int val = queryDefault) :
32
         nodeValue(val), subTreeValue(val), delta(updateDefault),
33
          revert(false), id(id), size(1),
\frac{34}{35}
          left(nullptr), right(nullptr), parent(nullptr) {}
        bool isRoot() {
36
          return !parent || (parent->left != this &&
37
                             parent->right != this);
38
39
        void push() {
40
         if (revert) {
41
            revert = false:
42
           swap(left. right):
43
           if (left) left->revert ^= 1;
44
           if (right) right->revert ^= 1;
45
          nodeValue = joinValueDelta(nodeValue, delta);
```

1.8 Link-Cut-Tree

baut Wald auf

fügt $\{x,y\}$ Kante ein

connected prüft ob zwei Knoten im selben Baum liegen

```
subTreeValue = joinValueDelta(subTreeValue,
                                       _update(delta, size));
         if (left) left->delta = joinDeltas(left->delta, delta);
         if (right) right->delta = joinDeltas(right->delta, delta);
         delta = updateDefault:
       ll getSubtreeValue() {
         return joinValueDelta(subTreeValue, _update(delta, size));
55
       void update() {
         subTreeValue = joinValueDelta(nodeValue, delta);
         size = 1;
         if (left) {
           subTreeValue = _query(subTreeValue,
                                 left->getSubtreeValue());
           size += left->size:
         if (right) {
65
           subTreeValue = _query(subTreeValue,
                                  right->getSubtreeValue()):
           size += right->size;
      }}
     };
     vector<Node> nodes;
     LCT(int n) : nodes(n) {
       for (int i = 0; i < n; i++) nodes[i].id = i;</pre>
    }
     void connect(Node* ch, Node* p, int isLeftChild) {
       if (ch) ch->parent = p;
       if (isLeftChild >= 0) {
         if (isLeftChild) p->left = ch;
         else p->right = ch;
     }}
     void rotate(Node* x) {
       Node* p = x->parent;
       Node* g = p->parent;
       bool isRootP = p->isRoot();
       bool leftChildX = (x == p->left);
       connect(leftChildX ? x->right : x->left, p, leftChildX);
       connect(p, x, !leftChildX):
       connect(x, q, isRootP ? -1 : p == q->left);
       p->update();
     void splav(Node* x) {
       while (!x->isRoot()) {
         Node* p = x->parent;
         Node* q = p->parent;
         if (!p->isRoot()) q->push();
         p->push():
         x->push();
         if (!p->isRoot()) rotate((x == p->left) ==
                                  (p == g->left) ? p : x);
         rotate(x);
       x->push():
```

```
102
        x->update():
103
104
      Node* expose(Node* x) {
105
        Node* last = nullptr;
106
        for (Node* y = x; y; y = y->parent) {
          splay(y);
108
          y->left = last;
109
          last = y;
110
111
        splay(x);
112
        return last;
113
114
      void makeRoot(Node* x) {
115
        expose(x);
116
        x->revert ^= 1;
117
      bool connected(Node* x, Node* y) {
119
        if (x == y) return true;
120
        expose(x):
121
        expose(y);
122
        return x->parent:
123
124
      void link(Node* x, Node* y) {
125
        assert(!connected(x, y)); // not yet connected!
126
        makeRoot(x):
127
        x->parent = y;
128
      void cut(Node* x, Node* y) {
130
        makeRoot(x);
131
        expose(y);
132
        //must be a tree edge!
        assert(!(y->right != x || x->left != nullptr));
134
        y->right->parent = nullptr;
135
        y->right = nullptr;
136
137
      Node* lca(Node* x, Node* y) {
138
        assert(connected(x, y));
139
        expose(x);
140
        return expose(y);
142
      11 querv(Node* from. Node* to) {
143
        makeRoot(from);
144
        expose(to);
145
        if (to) return to->getSubtreeValue();
146
        return quervDefault:
147
148
      void modify(Node* from, Node* to, ll delta) {
149
        makeRoot(from);
        expose(to):
151
        to->delta = joinDeltas(to->delta, delta);
152
153 | };
```

1.9 Lichao

```
vector<ll> xs; // IMPORTANT: Initialize before constructing!
   int findX(int i) {return lower_bound(all(xs), i) - begin(xs);}
   struct Fun { // Default: Linear function. Change as needed.
     ll operator()(int x) {return m*xs[x] + c;}
   // Default: Computes min. Change lines with comment for max.
   struct Lichao {
     static constexpr Fun id = {0, INF}; // {0, -INF}
     int n. cap:
     Lichao(): n(sz(xs)), cap(2 << __lg(n)), seg(2 * cap, id) {}
13
     void _insert(Fun f, int l, int r, int i) {
       while (i < 2 * cap) {
15
         int m = (l+r)/2:
16
         if (m >= n) {r = m: i = 2*i: continue:}
17
         Fun &q = seq[i];
18
         if (f(m) < q(m)) swap(f, q); // >
19
         if (f(l) < g(l)) r = m, i = 2*i; // >
20
         else l = m. i = 2*i+1:
21
22
     void insert(Fun f) {_insert(f, 0, cap, 1);}
23
     void _segmentInsert(Fun f, int l, int r, int a, int b, int i) {
24
       if (l <= a && b <= r) _insert(f, a, b, i);
25
       else if (a < r && l < b) {
26
         int m = (a+b)/2:
27
         _segmentInsert(f, l, r, a, m, 2*i);
28
         _segmentInsert(f, l, r, m, b, 2*i+1);
29
30
     void segmentInsert(Fun f, ll l, ll r) {
31
       _segmentInsert(f, findX(l), findX(r), 0, cap, 1);
32
33
     ll _query(int x) {
34
       ll ans = INF; // -INF
35
       for (int i = x + cap; i > 0; i /= 2) {
36
         ans = min(ans, seg[i](x)); // max
37
38
       return ans;
39
     ll query(ll x) {return _query(findX(x));}
41 | };
```

1.10 Policy Based Data Structures

Wichtig: Verwende p.swap(p2) anstatt swap(p, p2)!

```
#include <ext/pb_ds/priority_queue.hpp>
template<typename T>
using pQueue = __gnu_pbds::priority_queue<T>; //<T, greater<T>>
auto it = pq.push(5);
pq.modify(it, 6);
pq.join(pq2);
// push, join are O(1), pop, modify, erase O(log n) amortized
```

```
[7]
 1 #include <ext/pb_ds/assoc_container.hpp>
 2 using namespace __gnu_pbds;
 3 template<typename T>
 4 using Tree = tree<T, null_type, less<T>, rb_tree_tag,
                     tree_order_statistics_node_update>;
   // T.order_of_key(x): number of elements strictly less than x
 7 // *T.find_by_order(k): k-th element
 8 constexpr uint64_t RNG = ll(2e18 * acos(-1)) | 199: // random odd
9 template<typename T>
10 struct chash {
11
     size_t operator()(T o) const {
       return __builtin_bswap64(hash<T>()(o) * RNG);
13 }};
14 template<typename K, typename V>
15 using hashMap = qp_hash_table<K, V, chash<K>>;
   template<typename T>
17 using hashSet = gp_hash_table<T. null_type. chash<T>>:
```

1.11 Lower/Upper Envelope (Convex Hull Optimization)

Um aus einem lower envelope einen upper envelope zu machen (oder umgekehrt), einfach beim Einfügen der Geraden m und b negieren.

```
1 // Min über Geraden mit MONOTONEN Inserts UND Oueries. Jede neuer
   // Gerade hat kleineres pair(m, c) als alle vorherigen.
 3 struct Line {
     ll m, c;
     ll operator()(ll x) {return m*x+c:}
 7 vector<Line> ls;
 8 | 11 ptr = 0;
   bool bad(Line l1. Line l2. Line l3) {
     return (l3.c-l1.c)*(l1.m-l2.m) < (l2.c-l1.c)*(l1.m-l3.m):
11
   void add(ll m, ll c) { // m fallend, Laufzeit O(1) amortisiert
13
     while (sz(ls) > 1 \& bad(ls.end()[-2], ls.end()[-1], \{m. c\})) {
14
      ls.pop_back():
15
16
     ls.push_back({m, c});
17
     ptr = min(ptr, sz(ls) - 1);
18
   ll query(ll x) { // x >= letztes x, Laufzeit: O(1) amortisiert
20
     ptr = min(ptr, sz(ls) - 1);
     while (ptr + 1 < sz(ls) \&\& ls[ptr + 1](x) < ls[ptr](x)) ptr++;
21
22
     return ls[ptr](x);
23
```

```
struct Line {

mutable ll m, c, p;

bool operator<(const Line& o) const {return m < o.m;}

bool operator<(ll x) const {return p < x;}

};

struct HullDynamic : multiset<Line, less<>> { // max über Geraden

// (for doubles, use INF = 1/.0, div(a,c) = a/c)

ll div(ll a, ll c) {return a / c - ((a ^ c) < 0 && a % c);}

bool isect(iterator x, iterator y) {
```

```
if (v == end()) {x->p = INF: return false:}
11
       if (x->m == v->m) x->p = x->c > v->c ? INF : -INF:
12
       else x -> p = div(y -> c - x -> c, x -> m - y -> m);
13
       return x->p >= y->p;
14
     void add(ll m. ll c) {
       auto x = insert({m, c, 0});
17
       while (isect(x, next(x))) erase(next(x));
18
       if (x != begin()) {
19
         x--:
20
         if (isect(x, next(x))) {
21
           erase(next(x)):
22
           isect(x, next(x));
23
       }}
24
       while (x != begin() && prev(x)->p >= x->p) {
25
26
         isect(x. erase(next(x))):
27
28
    ll query(ll x) {
       auto l = *lower bound(x):
       return l.m * x + l.c:
31
32 | };
```

1.12 Union-Find

init

```
findSet
                          findet den Repräsentanten O(\log(n))
                          vereint 2 Mengen
                                                 O(\log(n))
   unionSets
   m·findSet + n·unionSets Folge von Befehlen
                                                 O(n+m\cdot\alpha(n))
 1 // unions[i] >= 0 => unions[i] = parent
2 // unions[i] < 0 => unions[i] = -size
3 vector<int> unions:
4 void init(int n) { //Initialisieren
    unions.assign(n, -1);
6 }
7 int findSet(int a) { // Pfadkompression
    if (unions[a] < 0) return a;</pre>
     return unions[a] = findSet(unions[a]);
10 }
11 void linkSets(int a, int b) { // Union by size.
    if (unions[b] > unions[a]) swap(a, b);
    unions[b] += unions[a];
    unions[a] = b;
14
15 }
16 void unionSets(int a, int b) { // Diese Funktion aufrufen.
    if (findSet(a) != findSet(b)) linkSets(findSet(a), findSet(b));
18 | }
19 int size(int a) {
20
    return -unions[findSet(a)];
21 | }
```

legt n einzelne Unions an O(n)

1.13 Persistent

berechnet Wert zu Zeitpunkt t

ändert Wert zu Zeitpunkt t

```
reset setzt die Datenstruktur auf Zeitpunkt t O(1)
                                                                     [7]
   template<typename T>
   struct persistent {
     int& time:
     vector<pair<int, T>> data;
     persistent(int& time, T value = {})
       : time(time), data(1, {2*time, value}) {}
       return prev(upper_bound(all(data),pair{2*t+1, T{}}))->second;
10
     int set(T value) {
11
       time++:
12
       data.push_back({2*time, value});
13
14
15 | };
```

 $O(\log(t))$

 $O(\log(t))$

```
template<typename T>
   struct persistentArray {
     int time:
     vector<persistent<T>> data:
     vector<pair<int, int>> mods;
     persistentArray(int n, T value = {})
       : time(0), data(n, {time, value}) {}
     T get(int p, int t) {return data[p].get(t);}
     int set(int p, T value) {
10
       mods.push_back({p, data[p].set(value)});
11
       return mods.back().second:
12
13
     void reset(int t) {
14
       while (!mods.empty() && mods.back().second > t) {
15
         data[mods.back().first].data.pop_back();
16
         mods.pop_back();
17
18
       time = t;
19
20 | };
```

2 Graphen

2.1 Kruskal

berechnet den Minimalen Spannbaum $O(|E| \cdot \log(|E|))$

```
sort(all(edges));
vector<Edge> mst;
ll cost = 0;
for (Edge& e : edges) {
    if (findSet(e.from) != findSet(e.to)) {
        unionSets(e.from, e.to);
        mst.push_back(e);
        cost += e.cost;
}
```

2.2 Minimale Spannbäume

Schnitteigenschaft Für jeden Schnitt C im Graphen gilt: Gibt es eine Kante e, die echt leichter ist als alle anderen Schnittkanten, so gehört diese zu allen minimalen Spannbäumen. (\Rightarrow Die leichteste Kante in einem Schnitt kann in einem minimalen Spannbaum verwendet werden.)

Kreiseigenschaft Für jeden Kreis *K* im Graphen gilt: Die schwerste Kante auf dem Kreis ist nicht Teil des minimalen Spannbaums.

2.3 Heavy-Light Decomposition

get_intervals gibt Zerlegung des Pfades von u nach v $O(\log(|V|))$ **Wichtig:** Intervalle sind halboffen Subbaum unter dem Knoten v ist das Intervall [in[v], out[v]).

```
vector<vector<int>> adj;
   vector<int> sz, in, out, nxt, par;
   int counter:
   void dfs_sz(int v = 0, int from = -1) {
     for (auto& u : adj[v]) if (u != from) {
       dfs_sz(u, v);
       sz[v] += sz[u];
       if (adj[v][0] == from || sz[u] > sz[adj[v][0]]) {
         swap(u, adj[v][0]); //changes adj!
10 }}}
   void dfs_hld(int v = 0, int from = -1) {
12
     par[v] = from;
13
     in[v] = counter++;
14
     for (int u : adj[v]) if (u != from) {
      nxt[u] = (u == adj[v][0]) ? nxt[v] : u;
16
       dfs_hld(u, v);
17
18
     out[v] = counter:
19
20
   void init(int root = 0) {
21
     int n = sz(adi):
     sz.assign(n, 1), nxt.assign(n, root), par.assign(n, -1);
23
     in.resize(n). out.resize(n):
24
     counter = 0:
     dfs sz(root):
26
     dfs_hld(root);
27
   template<typename F>
29
   void for_intervals(int u, int v, F&& f) {
     for (;; v = par[nxt[v]]) {
31
       if (in[v] < in[u]) swap(u, v);
32
       f(\max(\inf[u], \inf[nxt[v]]), \inf[v] + 1);
33
       if (in[nxt[v]] <= in[u]) return;</pre>
34 }}
35 int get_lca(int u, int v) {
     for (;; v = par[nxt[v]]) {
       if (in[v] < in[u]) swap(u, v);</pre>
37
38
       if (in[nxt[v]] <= in[u]) return u;</pre>
39 }}
```

2.4 Lowest Common Ancestor

```
init baut DFS-Baum über g auf O(|V| \cdot \log(|V|)) getLCA findet LCA O(1) getDepth berechnet Distanz zur Wurzel im DFS-Baum O(1)
```

5

```
1 struct LCA {
     vector<ll> depth:
     vector<int> visited. first:
     int idx;
     SparseTable st; //sparse table Seite 2
     void init(vector<vector<int>>& adi. int root) {
       depth.assign(2 * sz(adj), 0);
       visited.assign(2 * sz(adj), -1);
9
       first.assign(sz(adj), 2 * sz(adj));
10
       idx = 0:
11
       dfs(adj, root);
12
       st.init(&depth);
13
     void dfs(vector<vector<int>>& adj, int v, ll d=0) {
15
       visited[idx] = v, depth[idx] = d;
       first[v] = min(idx, first[v]), idx++;
       for (int u : adj[v]) {
         if (first[u] == 2 * sz(adj)) {
19
           dfs(adj, u, d + 1);
20
           visited[idx] = v, depth[idx] = d, idx++;
21
     }}}
22
     int getLCA(int u. int v) {
       if (first[u] > first[v]) swap(u, v);
       return visited[st.queryIdempotent(first[u], first[v] + 1)];
24
25
     ll getDepth(int v) {return depth[first[v]]:}
27 | };
```

2.5 Centroids

find_centroid findet alle Centroids des Baums (maximal 2) O(|V|)

```
♂
   vector<int> s;
   void dfs_sz(int v, int from = -1) {
    s[v] = 1;
    for (int u : adj[v]) if (u != from) {
      dfs_sz(u, v);
      s[v] += s[u]:
7 }}
8 pair<int, int> dfs_cent(int v, int from, int n) {
    for (int u : adj[v]) if (u != from) {
      if (2 * s[u] == n) return {v, u};
     if (2 * s[u] > n) return dfs_cent(u, v, n);
12
13
    return {v, -1};
14 }
15 pair<int, int> find_centroid(int root = 0) {
    s.resize(sz(adj));
    dfs_sz(root);
    return dfs_cent(root, -1, s[root]);
18
19 }
```

2.6 Eulertouren

```
euler berechnet den Kreis O(|V| + |E|)
                                                                    ♂
   vector<vector<pair<int, int>>> adj; // gets destroyed!
   vector<int> cycle;
   void addEdge(int u, int v) {
    adj[u].emplace_back(v, sz(adj[v]));
    adj[v].emplace_back(u, sz(adj[u]) - 1); // remove for directed
   void euler(int v) {
     while (!adj[v].empty()) {
       auto [u, rev] = adj[v].back();
       adj[v].pop_back();
11
       if (u < 0) continue; // remove for directed</pre>
12
       adj[u][rev].first = -1; // remove for directed
13
       euler(u);
14
    cycle.push_back(v); // Zyklus in umgekehrter Reihenfolge.
15
16 | }
```

- Zyklus existiert, wenn jeder Knoten geraden Grad hat (ungerichtet), bei jedem Knoten Ein- und Ausgangsgrad übereinstimmen (gerichtet).
- Pfad existiert, wenn genau {0,2} Knoten ungeraden Grad haben (ungerichtet), bei allen Knoten Ein- und Ausgangsgrad übereinstimmen oder einer eine Ausgangskante mehr hat (Startknoten) und einer eine Eingangskante mehr hat (Endknoten).
- Je nach Aufgabenstellung überprüfen, wie ein unzusammenhängender Graph interpretiert werden sollen.
- Wenn eine bestimmte Sortierung verlangt wird oder Laufzeit vernachlässigbar ist, ist eine Implementierung mit einem vector<set<int>>> adj leichter
- Wichtig: Algorithmus schlägt nicht fehl, falls kein Eulerzyklus existiert. Die Existenz muss separat geprüft werden.

2.7 Baum-Isomorphie

treeLabel berechnet kanonischen Namen für einen Baum $O(|V| \cdot \log(|V|))$

```
vector<vector<int>> adi:
   map<vector<int>, int> known; // dont reset!
   int treeLabel(int v, int from = -1) {
     vector<int> children;
     for (int u : adj[v]) {
       if (u == from) continue;
7
       children.push_back(treeLabel(u, v));
     sort(all(children));
     if (known.find(children) == known.end()) {
11
       known[children] = sz(known);
12
13
     return known[children];
14 | }
```

2.8 Kürzeste Wege

2.8.1 Bellmann-Ford-Algorithmus

bellmanFord kürzeste Pfade oder negative Kreise finden $O(|V| \cdot |E|)$

```
auto bellmannFord(int n, vector<edge>& edges, int start) {
vector<ll> dist(n, INF), prev(n, -1);
dist[start] = 0;
```

```
for (int i = 1; i < n; i++) {
        for (edge& e : edges) {
         if (dist[e.from] != INF &&
              dist[e.from] + e.cost < dist[e.to]) {</pre>
            dist[e.to] = dist[e.from] + e.cost;
            prev[e.to] = e.from;
10
     }}}
11
     for (edge& e : edges) {
12
       if (dist[e.from] != INF &&
13
            dist[e.from] + e.cost < dist[e.to]) {</pre>
14
         // Negativer Kreis gefunden.
15
     }}
16
     return dist; //return prev?
17
```

2.8.2 Algorithmus von DIJKSTRA

dijkstra kürzeste Pfade in Graphen ohne negative Kanten $O(|E| \cdot \log(|V|))$

```
using path = pair<ll. int>: //dist. destination
   auto dijkstra(const vector<vector<path>>& adj, int start) {
     priority_queue<path, vector<path>, greater<path>> pq;
     vector<ll> dist(sz(adj), INF);
     vector<int> prev(sz(adj), -1);
     dist[start] = 0; pq.emplace(0, start);
     while (!pq.empty()) {
       auto [dv, v] = pq.top(); pq.pop();
       if (dv > dist[v]) continue; // WICHTIG!
       for (auto [du, u] : adj[v]) {
11
         ll newDist = dv + du;
12
         if (newDist < dist[u]) {</pre>
13
           dist[u] = newDist;
14
           prev[u] = v;
15
           pq.emplace(dist[u], u);
16
17
     return dist; //return prev;
18 }
```

2.8.3 FLOYD-WARSHALL-Algorithmus

```
floydWarshall kürzeste Pfade oder negative Kreise finden O(|V|^3)
• dist[i][i] = 0, dist[i][j] = edge{j, j}.weight oder INF
```

• i liegt auf einem negativen Kreis ⇔ dist[i][i] < 0.

```
1 | vector<vector<ll>>> dist; // Entfernung zwischen je zwei Punkten☑
   vector<vector<int>> next:
   void floydWarshall() {
     next.assign(sz(dist), vector<int>(sz(dist), -1));
     for (int i = 0; i < sz(dist); i++) {</pre>
       for (int j = 0; j < sz(dist); j++) {</pre>
         if (dist[i][j] < INF) {
            next[i][i] = i;
     }}}
10
     for (int k = 0; k < sz(dist); k++) {
11
       for (int i = 0: i < sz(dist): i++) {</pre>
         for (int j = 0; j < sz(dist); j++) {
12
13
           // only needed if dist can be negative
14
            if (dist[i][k] == INF || dist[k][j] == INF) continue;
15
            if (dist[i][j] > dist[i][k] + dist[k][j]) {
```

2.8.4 Matrix-Algorithmus

Sei d_{ij} die Distanzmatrix von G, dann gibt d^i_{kj} die kürzeste Distanz von i nach j mit maximal k kanten an mit der Verknüpfung: $c_{ij} = a_{ij} \otimes b_{ij} = \min\{a_{ik} \cdot b_{kj}\}$ Sei a_{ij} die Adjazenzmatrix von G (mit $a_{ii} = 1$), dann gibt a^k_{ij} die Anzahl der Wege von i nach j mit Länge genau (maximal) k an mit der Verknüpfung: $c_{ij} = a_{ij} \otimes b_{ij} = \sum a_{ik} \cdot b_{kj}$

2.9 Dynamic Connectivity

Constructor erzeugt Baum (n Knoten, m updates) O(n+m) addEdge fügt Kannte ein,id=delete Zeitpunkt $O\left(\log(n)\right)$ eraseEdge entfernt Kante id $O\left(\log(n)\right)$

```
1 struct connect {
 2
     int n:
     vector<pair<int. int>> edges:
     LCT lct; // min LCT Seite 3, no updates required
     connect(int n, int m) : n(n), edges(m), lct(n+m) {}
     bool connected(int u, int v) {
       return lct.connected(&lct.nodes[u], &lct.nodes[v]);
 8
    }
     void addEdge(int u, int v, int id) {
       lct.nodes[id + n] = LCT::Node(id + n, id);
11
       edges[id] = \{u, v\}:
       if (connected(u, v)) {
12
13
         int old = lct.query(&lct.nodes[u], &lct.nodes[v]);
14
         if (old < id) eraseEdge(old);</pre>
15
16
       if (!connected(u, v)) {
17
         lct.link(&lct.nodes[u], &lct.nodes[id + n]);
18
         lct.link(&lct.nodes[v], &lct.nodes[id + n]);
19
20
     void eraseEdge(ll id) {
21
       if (connected(edges[id].first, edges[id].second) &&
22
         lct.query(&lct.nodes[edges[id].first],
23
                   &lct.nodes[edges[id].second]) == id) {
24
         lct.cut(&lct.nodes[edges[id].first], &lct.nodes[id + n]);
25
         lct.cut(&lct.nodes[edges[id].second], &lct.nodes[id + n]);
26
    }}
27 }:
```

2.10 Erdős-Gallai

Sei $d_1 \geq \cdots \geq d_n$. Es existiert genau dann ein Graph G mit Degreesequence d falls $\sum\limits_{i=1}^n d_i$ gerade ist und für $1 \leq k \leq n$: $\sum\limits_{i=1}^k d_i \leq k \cdot (k-1) + \sum\limits_{i=k+1}^n \min(d_i,k)$ havelHakimi findet Graph $O\left((|V|+|E|)\cdot \log(|V|)\right)$

```
[7]
    vector<vector<int>> havelHakimi(const vector<int>& deg) {
     priority_queue<pair<int, int>> pq;
     for (int i = 0; i < sz(deg); i++) {</pre>
       if (deg[i] > 0) pq.push({deg[i], i});
     vector<vector<int>> adj(sz(deg));
     while (!pq.empty()) {
       auto [degV, v] = pq.top(); pq.pop();
       if (sz(pg) < degV) return {}: //impossible</pre>
10
       vector<pair<int, int>> todo(degV);
11
       for (auto& e : todo) e = pq.top(), pq.pop();
12
       for (auto [degU, u] : todo) {
13
         adi[v].push_back(u):
14
         adj[u].push_back(v);
15
         if (degU > 1) pq.push(\{degU - 1, u\});
16
     }}
17
     return adj;
```

2.11 Strongly Connected Components (TARJAN)

scc berechnet starke Zusammenhangskomponenten O(|V|+|E|)

```
[]
   vector<vector<int>> adi:
   int counter. sccCounter:
   vector<bool> inStack;
   vector<int> low, idx, s; //idx enthält Index der SCC pro Knoten.
   void visit(int v) {
     int old = low[v] = counter++:
     s.push_back(v):
     inStack[v] = true;
     for (auto u : adj[v]) {
       if (low[u] < 0) visit(u);</pre>
11
       if (inStack[u]) low[v] = min(low[v], low[u]);
12
13
     if (old == low[v]) {
14
       sccCounter++:
15
       for (int u = -1; u != v;) {
        u = s.back():
17
         s.pop_back();
18
         inStack[u] = false;
19
         idx[u] = sccCounter - 1;
20 }}}
   void scc() {
     inStack.assign(sz(adj), false);
23
     low.assign(sz(adj), -1);
24
     idx.assign(sz(adj), -1);
     counter = sccCounter = 0:
     for (int i = 0: i < sz(adi): i++) {</pre>
       if (low[i] < 0) visit(i);
28 }}
```

2.12 DFS

Kantentyp (v,w)	dfs[v] < dfs[w]	fin[v] > fin[w]	seen[w]
in-tree	true	true	false
forward	true	true	true
backward	false	false	true
cross	false	true	true

2.13 Artikulationspunkte, Brücken und BCC

find berechnet Artikulationspunkte, Brücken und BCC O(|V|+|E|) Wichtig: isolierte Knoten und Brücken sind keine BCC.

```
[7]
   vector<vector<Edge>> adj;
   vector<int> num:
 3 int counter, rootCount, root:
 4 vector<bool> isArt;
   vector<Edge> bridges, st;
   vector<vector<Edge>> bcc;
   int dfs(int v. int from = -1) {
     int me = num[v] = ++counter. top = me:
     for (Edge& e : adj[v]) {
10
       if (e.id == from) continue;
11
       if (num[e.tol) {
12
         top = min(top, num[e.to]);
13
         if (num[e.to] < me) st.push_back(e):</pre>
14
       } else {
15
         if (v == root) rootCount++;
16
         int si = sz(st):
17
         int up = dfs(e.to, e.id);
         top = min(top, up);
19
         if (up >= me) isArt[v] = true;
20
         if (up > me) bridges.push_back(e);
21
         if (up <= me) st.push_back(e);</pre>
         if (up == me) {
22
23
           bcc.emplace_back(si + all(st));
24
           st.resize(si):
25
     }}}
26
     return top;
27
28
   void find() {
29
     counter = 0:
     num.assign(sz(adj), 0);
31
     isArt.assign(sz(adj), false);
     bridges.clear():
33
     st.clear():
34
     bcc.clear():
35
     for (int v = 0; v < sz(adj); v++) {
       if (!num[v]) {
37
         root = v;
38
         rootCount = 0:
39
         dfs(v):
40
         isArt[v] = rootCount > 1:
41
  }}}
```

2.14 2-SAT

```
1 struct sat2 {
    int n: // + scc variablen
     vector<int> sol:
     sat2(int vars) : n(vars*2), adj(n) {}
     static int var(int i) {return i << 1:} // use this!</pre>
     void addImpl(int a, int b) {
       adi[a].push_back(b);
8
       adj[1^b].push_back(1^a);
     void addEquiv(int a, int b) {addImpl(a, b): addImpl(b, a):}
     void addOr(int a, int b) {addImpl(1^a, b);}
     void addXor(int a. int b) {addOr(a, b): addOr(1^a, 1^b):}
     void addTrue(int a) {addImpl(1^a, a);}
     void addFalse(int a) {addTrue(1^a);}
     void addAnd(int a, int b) {addTrue(a); addTrue(b);}
     void addNand(int a, int b) {addOr(1^a, 1^b);}
     bool solve() {
       scc(); //scc code von oben
19
       sol.assign(n, -1);
       for (int i = 0; i < n; i += 2) {
         if (idx[i] == idx[i + 1]) return false:
         sol[i] = idx[i] < idx[i + 1]:
23
         sol[i + 1] = !sol[i];
24
25
       return true;
26
27 | };
```

2.15 Maximal Cliques

bronKerbosch berechnet alle maximalen Cliquen $O(3^{\frac{\pi}{3}})$ addEdge fügt **ungerichtete** Kante ein O(1)

```
1 using bits = bitset<64>:
2 vector<bits> adj, cliques;
3 | void addEdge(int a, int b) {
    if (a != b) adj[a][b] = adj[b][a] = 1;
6 void bronKerboschRec(bits R, bits P, bits X) {
    if (P.none() && X.none()) {
      cliques.push_back(R);
    } else {
       int q = min(P._Find_first(), X._Find_first());
       bits cands = P & ~adi[g]:
       for (int i = 0; i < sz(adj); i++) if (cands[i]) {</pre>
13
         R[i] = 1;
         bronKerboschRec(R, P & adj[i], X & adj[i]);
15
         R[i] = P[i] = 0;
16
         X[i] = 1:
17 }}}
18 void bronKerbosch() {
    cliques.clear();
    bronKerboschRec({}, {(1ull << sz(adj)) - 1}, {});
21 | }
```

2.16 Cycle Counting

```
findBase berechnet Basis O(|V| \cdot |E|) count zählt Zykel O(2^{|\mathit{base}|})
• jeder Zyklus ist das xor von einträgen in base.
```

constexpr int maxEdges = 128;

using cvcle = bitset<maxEdges>:

```
struct cycles {
     vector<vector<pair<int, int>>> adj;
     vector<bool> seen;
     vector<cycle> paths, base;
     vector<pair<int, int>> edges;
     cycles(int n) : adj(n), seen(n), paths(n) {}
      void addEdge(int u, int v) {
10
        adj[u].push_back({v, sz(edges)});
        adj[v].push_back({u, sz(edges)});
12
        edges.push_back({u, v});
\frac{13}{14}
      void addBase(cycle cur) {
15
        for (cycle o : base) {
16
         o ^= cur:
17
          if (o._Find_first() > cur._Find_first()) cur = o;
18
19
        if (cur.any()) base.push_back(cur);
\frac{20}{21}
      void findBase(int v, int from = -1, cycle cur = {}) {
22
        if (from < 0 && seen[v]) return:</pre>
23
        if (seen[v]) {
24
          addBase(cur ^ paths[v]);
25
        } else {
26
          seen[v] = true:
27
          paths[v] = cur:
28
          for (auto [u, id] : adj[v]) {
29
            if (u == from) continue;
30
            cur[id].flip();
31
            findBase(u, v, cur);
32
            cur[id].flip();
33
34
     }}}
      bool isCycle(cycle cur) {//cycle must be constrcuted from base
35
        if (cur.none()) return false;
36
        init(sz(adj)); // union find Seite 4
37
        for (int i = 0; i < sz(edges); i++) {</pre>
38
         if (cur[i]) {
39
            cur[i] = false;
40
            if (findSet(edges[i].first) ==
41
                findSet(edges[i].second)) break;
42
            unionSets(edges[i].first, edges[i].second);
43
44
        return cur.none();
\frac{45}{46}
      int count() {
47
        for (int i = 0; i < sz(adj); i++) findBase(i);</pre>
        assert(sz(base) < 30);
49
        int res = 0;
        for (int i = 1; i < (1 << sz(base)); i++) {</pre>
          cycle cur;
```

2.17 Wert des maximalen Matchings

```
Fehlerwahrscheinlichkeit: \left(\frac{m}{MOD}\right)^{1}
 1 constexpr int MOD=1'000'000'007, I=10;
   vector<vector<ll>>> adi. mat:
 3 int max_matching() {
     int ans = 0;
     mat.assign(sz(adj), {});
     for (int _ = 0; _ < I; _++) {
        for (int v = 0; v < sz(adj); v++) {</pre>
          mat[v].assign(sz(adj), 0);
9
          for (int u : adj[v]) {
10
            if (u < v) {
11
              mat[v][u] = rand() % (MOD - 1) + 1;
12
              mat[u][v] = MOD - mat[v][u]:
13
       }}}
14
        gauss(sz(adj), MOD); //LGS Seite 17
15
        int rank = 0;
16
        for (auto& row : mat) {
17
         if (*max_element(all(row)) != 0) rank++;
19
       ans = max(ans, rank / 2);
20
21
     return ans;
22 }
```

2.18 Allgemeines maximales Matching

match berechnet algemeines Matching $O(|E| \cdot |V| \cdot \log(|V|))$

```
1 struct GM {
     vector<vector<int>> adj;
     // pairs ist der gematchte knoten oder n
     vector<int> pairs, first, que;
     vector<pair<int, int>> label;
     int head, tail;
     GM(int n) : adj(n), pairs(n + 1, n), first(n + 1, n),
                 que(n), label(n + 1, \{-1, -1\}) {}
     void rematch(int u, int v) {
10
       int t = pairs[u]; pairs[u] = v;
11
       if (pairs[t] != u) return;
12
       if (label[u].second == -1) {
13
         pairs[t] = label[u].first;
14
         rematch(pairs[t], t);
15
         auto [x, y] = label[u];
17
         rematch(x, y);
18
         rematch(v, x);
19
     int findFirst(int v) {
```

```
22
            : first[v] = findFirst(first[v]);
23
     void relabel(int x, int y) {
       int r = findFirst(x);
       int s = findFirst(y);
       if (r == s) return;
       auto h = label[r] = label[s] = {~x, y};
       int join;
       while (true) {
         if (s != sz(adj)) swap(r, s);
         r = findFirst(label[pairs[r]].first);
         if (label[r] == h) {
           join = r;
35
           break;
         } else {
37
           label[r] = h:
38
       for (int v : {first[x], first[y]}) {
         for (; v != join; v = first[label[pairs[v]].first]) {
41
           label[v] = \{x, y\};
42
           first[v] = join;
           que[tail++] = v:
     bool augment(int v) {
       label[v] = {sz(adj), -1};
       first[v] = sz(adj);
       head = tail = 0;
       for (que[tail++] = v; head < tail;) {</pre>
         int x = que[head++];
         for (int y : adj[x]) {
           if (pairs[y] == sz(adj) && y != v) {
52
             pairs[y] = x;
             rematch(x, y);
             return true;
           } else if (label[y].first >= 0) {
57
              relabel(x, y);
58
           } else if (label[pairs[y]].first == -1) {
59
             label[pairs[y]].first = x;
60
             first[pairs[y]] = y;
             que[tail++] = pairs[v];
       }}}
63
       return false:
64
     int match() {
       int matching = head = tail = 0;
       for (int v = 0; v < sz(adj); v++) {</pre>
         if (pairs[v] < sz(adj) || !augment(v)) continue;</pre>
         matching++:
         for (int i = 0; i < tail; i++)</pre>
71
           label[que[i]] = label[pairs[que[i]]] = {-1, -1};
72
         label[sz(adj)] = {-1, -1};
73
74
       return matching;
75
76 | };
```

return label[first[v]].first < 0 ? first[v]</pre>

2.19 Rerooting Template

```
1 using W = ll; // edge weight type
2 vector<vector<pair<int, W>>> adj;
   struct Reroot {
     using T = ll; // dp type
     static constexpr T E = 0; // neutral element
     T takeChild(int v, int c, W w, T x) {} // move child along edge
     static T comb(T x, T y) {}
     T fin(int v, T x) {} // add v to own dp value x
     vector<T> dp;
     T dfs0(int v, int from = -1) {
11
       T \text{ val} = E;
12
       for (auto [u, w] : adj[v]) {
13
         if (u == from) continue:
         val = comb(val, takeChild(v, u, w, dfs0(u, v)));
14
15
16
       return dp[v] = fin(v, val);
17
     void dfs1(int v. int from = -1) {
19
       vector<T> pref = {E};
20
       for (auto [u, w] : adi[v]) {
21
         pref.push_back(takeChild(v, u, w, dp[u]));
22
23
       auto suf = pref:
24
       partial_sum(all(pref), pref.begin(), comb);
25
       exclusive_scan(suf.rbegin(), suf.rend(),
26
                       suf.rbegin(), E, comb);
27
       for (int i = 0; i < sz(adj[v]); i++) {</pre>
28
         auto [u, w] = adi[v][i]:
29
         if (u == from) continue;
         dp[v] = fin(v, comb(pref[i], suf[i + 1]));
31
         dfs1(u, v);
32
33
       dp[v] = fin(v, suf[0]);
34
35
     auto solve() {
36
       dp.assign(sz(adj), E);
37
       dfs0(0);
38
       dfs1(0);
39
       return dp:
40
41 | };
```

2.20 Virtual Trees

```
// needs dfs in- and out- time and lca function
vector<int> in, out;

void virtualTree(vector<int> ind) { // indices of used nodes
sort(all(ind), [&](int x, int y) {return in[x] < in[y];});
for (int i = 1, n = sz(ind); i < n; i++) {
   ind.push_back(lca(ind[i - 1], ind[i]));
}
sort(all(ind), [&](int x, int y) {return in[x] < in[y];});
ind.erase(unique(all(ind)), ind.end());</pre>
```

```
int n = sz(ind);
     vector<vector<int>> tree(n);
12
     vector<int> st = {0};
13
     for (int i = 1; i < n; i++) {
       while (in[ind[i]] >= out[ind[st.back()]]) st.pop_back();
15
       tree[st.back()].push_back(i);
16
       st.push_back(i):
17
     }
     // virtual directed tree with n nodes, original indices in ind
19
     // weights can be calculated, e.g. with binary lifting
20 }
```

2.21 Maximum Cardinatlity Bipartite Matching

kuhn berechnet Matching $O(|V| \cdot \min(ans^2, |E|))$

• die ersten [0..l) Knoten in adj sind die linke Seite des Graphen

```
vector<vector<int>> adi:
   vector<int> pairs; // Der gematchte Knoten oder -1.
 3 vector<bool> visited;
   bool dfs(int v) {
     if (visited[v]) return false:
     visited[v] = true:
     for (int u : adj[v]) if (pairs[u] < 0 || dfs(pairs[u])) {</pre>
       pairs[u] = v; pairs[v] = u; return true;
10
     return false;
11
   int kuhn(int l) { // l = #Knoten links.
13
     pairs.assign(sz(adj), -1);
14
     int ans = 0;
     // Greedy Matching. Optionale Beschleunigung.
     for (int v = 0; v < l; v++) for (int u : adj[v])
16
17
       if (pairs[u] < 0) {pairs[u] = v; pairs[v] = u; ans++; break;}</pre>
18
     for (int v = 0; v < l; v++) if (pairs[v] < 0) {</pre>
19
       visited.assign(l, false);
20
       ans += dfs(v);
21
22
     return ans; // Größe des Matchings.
```

```
hopcroft_karp berechnet Matching O(\sqrt{|V|} \cdot |E|)
```

```
1 vector<vector<int>> adj;
                                                                     ♂
 2 // pairs ist der gematchte Knoten oder -1
 3 vector<int> pairs, dist, ptr;
 4 bool bfs(int l) {
     queue<int> q;
     for(int v = 0; v < l; v++) {</pre>
       if (pairs[v] < 0) {dist[v] = 0; q.push(v);}</pre>
8
        else dist[v] = -1;
9
     }
10
     bool exist = false;
11
     while(!q.empty()) {
12
       int v = q.front(); q.pop();
13
        for (int u : adj[v]) {
         if (pairs[u] < 0) {exist = true; continue;}</pre>
14
15
         if (dist[pairs[u]] < 0) {</pre>
```

```
16
           dist[pairs[u]] = dist[v] + 1;
17
           q.push(pairs[u]);
18
    }}}
19
     return exist;
20 }
21 bool dfs(int v) {
     for (; ptr[v] < sz(adj[v]); ptr[v]++) {</pre>
       int u = adj[v][ptr[v]];
24
       if (pairs[u] < 0 ||
25
          (dist[pairs[u]] > dist[v] && dfs(pairs[u]))) {
         pairs[u] = v; pairs[v] = u;
26
27
         return true:
28
     }}
     return false;
30 }
31 int hoperoft_karp(int l) { // l = #Knoten links
32
     int ans = 0:
     pairs.assign(sz(adj), -1);
     dist.resize(l);
     // Greedy Matching, optionale Beschleunigung,
     for (int v = 0; v < l; v++) for (int u : adj[v])</pre>
      if (pairs[u] < 0) {pairs[u] = v; pairs[v] = u; ans++; break;}</pre>
     while(bfs(l)) {
       ptr.assign(l, 0);
       for(int v = 0; v < l; v++) {</pre>
         if (pairs[v] < 0) ans += dfs(v);</pre>
41
42
    }}
43
    return ans;
```

2.22 Global Mincut

stoer_wagner berechnet globalen Mincut $O(|V||E|+|V|^2 \cdot \log(|E|))$ merge(a,b) merged Knoten b in Knoten a O(|E|)

Tipp: Cut Rekonstruktion mit unionFind für Partitionierung oder vector

bool> für edge id's im cut.

```
♂
1 struct Edge {
    int from, to:
3
    ll cap;
4 };
 5 | vector<vector<Edge>> adj, tmp;
 6 vector<bool> erased:
   void merge(int u, int v) {
    tmp[u].insert(tmp[u].end(), all(tmp[v]));
    tmp[v].clear();
    erased[v] = true;
     for (auto& vec : tmp) {
      for (Edge& e : vec) {
13
         if (e.from == v) e.from = u;
14
         if (e.to == v) e.to = u;
15 | }}}
16 | ll stoer_wagner() {
    ll res = INF;
18
    tmp = adj;
     erased.assign(sz(tmp), false);
     for (int i = 1; i < sz(tmp); i++) {</pre>
```

```
int s = 0:
22
       while (erased[s]) s++;
23
       priority_queue<pair<ll, int>> pq;
24
       pq.push({0, s});
       vector<ll> con(sz(tmp));
26
       ll cur = 0;
27
       vector<pair<ll, int>> state;
28
       while (!pq.empty()) {
29
         int c = pq.top().second;
30
         pq.pop();
31
         if (con[c] < 0) continue; //already seen</pre>
32
         con[c] = -1;
33
         for (auto e : tmp[c]) {
34
           if (con[e.to] >= 0) {//add edge to cut
35
             con[e.to] += e.cap;
36
             pq.push({con[e.to], e.to});
37
             cur += e.cap;
38
           } else if (e.to != c) {//remove edge from cut
39
             cur -= e.cap;
40
         }}
41
         state.push_back({cur, c});
42
43
       int t = state.back().second;
44
       state.pop_back();
45
       if (state.empty()) return 0; //graph is not connected?!
       merge(state.back().second, t);
47
       res = min(res, state.back().first);
48
49
     return res;
50 }
```

2.23 Max-Flow

2.24 Min-Cost-Max-Flow

mincostflow berechnet Fluss $O(|V|^2 \cdot |E|^2)$

```
constexpr ll INF = 1LL << 60; // Größer als der maximale Fluss.☑
   struct MinCostFlow {
3
     struct edge {
       int to:
       11 f, cost;
     vector<edge> edges;
     vector<vector<int>> adj;
     vector<int> pref, con;
     vector<ll> dist;
     const int s, t;
12
     ll maxflow, mincost;
13
     MinCostFlow(int n, int source, int target) :
14
       adj(n), s(source), t(target) {};
15
     void addEdge(int u, int v, ll c, ll cost) {
16
       adj[u].push_back(sz(edges));
17
       edges.push_back({v, c, cost});
18
       adj[v].push_back(sz(edges));
19
       edges.push_back({u, 0, -cost});
\frac{20}{21}
     bool SPFA() {
       pref.assign(sz(adj), -1);
```

```
23
       dist.assign(sz(adj), INF);
24
       vector<bool> inqueue(sz(adj));
25
       queue<int> queue;
26
       dist[s] = 0;
27
       queue.push(s);
28
       pref[s] = s;
29
       inqueue[s] = true;
30
       while (!queue.empty()) {
31
         int cur = queue.front(); queue.pop();
32
         inqueue(cur) = false;
33
         for (int id : adj[cur]) {
34
           int to = edges[id].to;
35
           if (edges[id].f > 0 &&
36
               dist[to] > dist[cur] + edges[id].cost) {
37
              dist[to] = dist[cur] + edges[id].cost;
38
             pref[to] = cur;
39
             con[to] = id;
40
             if (!inqueue[to]) {
41
               inqueue[to] = true;
42
               queue.push(to);
43
44
       return pref[t] != -1;
45
46
     void extend() {
47
       ll w = INF;
48
       for (int u = t; pref[u] != u; u = pref[u])
49
         w = min(w, edges[con[u]].f);
50
       maxflow += w:
51
       mincost += dist[t] * w;
52
       for (int u = t; pref[u] != u; u = pref[u]) {
53
         edges[con[u]].f -= w;
54
         edges[con[u] ^1].f += w;
55
56
     void mincostflow() {
57
       con.assign(sz(adj), 0);
58
       maxflow = mincost = 0;
59
       while (SPFA()) extend();
60
    }
61 };
```

2.24.1 Dinic's Algorithm mit Capacity Scaling

maxFlow doppelt so schnell wie Ford Fulkerson $O(|V|^2 \cdot |E|)$ addEdge fügt eine **gerichtete** Kante ein O(1)

```
1 struct Edge {
2
    int to, rev;
 3
    ll f, c;
4 };
 5 | vector<vector<Edge>> adj;
 6 int s, t;
 7 vector<int> pt, dist;
 8 void addEdge(int u, int v, ll c) {
     adj[u].push_back({v, (int)sz(adj[v]), 0, c});
    adj[v].push_back({u, (int)sz(adj[u]) - 1, 0, 0});
11 }
12 bool bfs(ll lim) {
    dist.assign(sz(adj), -1);
     dist[s] = 0;
     queue<int> q({s});
     while (!q.empty() && dist[t] < 0) {</pre>
      int v = q.front(); q.pop();
       for (Edge& e : adj[v]) {
19
         if (dist[e.to] < 0 && e.c - e.f >= lim) {
20
           dist[e.to] = dist[v] + 1;
21
           q.push(e.to);
22
     }}}
23
     return dist[t] >= 0;
24 }
25 | ll dfs(int v, ll flow) {
     if (v == t || flow == 0) return flow;
     for (; pt[v] < sz(adj[v]); pt[v]++) {</pre>
       Edge& e = adj[v][pt[v]];
       if (dist[e.to] != dist[v] + 1) continue;
       ll cur = dfs(e.to, min(e.c - e.f, flow));
       if (cur > 0) {
31
         e.f += cur;
33
         adj[e.to][e.rev].f -= cur;
34
         return cur:
35
    }}
36
     return 0;
37 }
38 | 11 maxFlow(int source, int target) {
     s = source. t = target:
     11 flow = 0;
     for (ll lim = (1LL << 62); lim >= 1; lim /= 2) {
       while (bfs(lim)) {
         pt.assign(sz(adj), 0);
         ll cur:
45
         do {
           cur = dfs(s, lim);
           flow += cur;
         } while (cur > 0);
49
50
     return flow;
51 | }
```

2.25 Maximum Weight Bipartite Matching

match berechnet Matching $O(|V|^3)$

```
double costs[N_LEFT][N_RIGHT];
   // Es muss l<=r sein! (sonst Endlosschleife)</pre>
   double match(int l, int r) {
     vector<double> lx(l), ly(r);
     //xy is matching from l->r, yx from r->l, or -1
     vector<int> xy(l, -1), yx(r, -1);
     vector<pair<double. int>> slack(r):
     for (int x = 0; x < 1; x++)
       lx[x] = *max_element(costs[x], costs[x] + r);
     for (int root = 0: root < 1: root++) {</pre>
11
       vector<int> aug(r. -1):
12
       vector<bool> s(l):
13
       s[root] = true:
14
       for (int y = 0; y < r; y++) {
15
         slack[v] = {lx[root] + lv[v] - costs[root][v], root};
16
17
       int v = -1:
18
       while (true) {
19
         double delta = INF;
20
         int x = -1:
21
         for (int yy = 0; yy < r; yy++) {
22
           if (aug[yy] < 0 && slack[yy].first < delta) {</pre>
23
              tie(delta, x) = slack[yy];
24
             y = yy;
25
         }}
26
         if (delta > 0) {
27
           for (int x = 0; x < 1; x++) if (s[x]) lx[x] -= delta;
28
           for (int v = 0: v < r: v++) {
29
             if (auq[y] >= 0) ly[y] += delta;
30
              else slack[v].first -= delta;
31
         }}
32
         au\alpha[v] = x:
33
         x = yx[y];
34
         if (x < 0) break;
35
         s[x] = true;
36
         for (int y = 0; y < r; y++) {
37
           if (aug[v] < 0) {</pre>
38
              double alt = lx[x] + ly[y] - costs[x][y];
39
              if (slack[y].first > alt) {
40
               slack[y] = {alt, x};
41
       }}}}
42
       while (y >= 0) {
43
         yx[y] = aug[y];
44
         swap(y, xy[aug[y]]);
45
46
     return accumulate(all(lx), 0.0) +
            accumulate(all(ly), 0.0); // Wert des Matchings
```

3 Geometrie

3.1 Closest Pair

shortestDist kürzester Abstand zwischen Punkten $O(n \cdot \log(n))$

```
1 | ll rec(vector<pt>::iterator a, int l, int r) {
                                                                    []
     if (r - l < 2) return INF:</pre>
     int m = (l + r) / 2;
     ll midx = a[m].real();
     11 ans = min(rec(a, l, m), rec(a, m, r));
     inplace_merge(a+l, a+m, a+r, [](const pt& x, const pt& y) {
       return x.imag() < y.imag();</pre>
     });
     pt tmp[8];
10
     fill(all(tmp), a[l]):
     for (int i = l + 1, next = 0; i < r; i++) {</pre>
11
       if (ll x = a[i].real() - midx: x * x < ans) {
13
         for (pt& p : tmp) ans = min(ans, norm(p - a[i]));
14
         tmp[next++ \& 7] = a[i];
15
      }
16
     }
17
     return ans:
18
19
   ll shortestDist(vector<pt> a) { // sz(pts) > 1
     sort(all(a), [](const pt& x, const pt& v) {
21
       return x.real() < v.real():</pre>
     }):
23
     return rec(a.begin(), 0, sz(a));
24 }
```

3.2 Konvexehülle

convexHull berechnet konvexe Hülle $O(n \cdot \log(n))$

- konvexe Hülle gegen den Uhrzeigersinn sortiert
- nur Eckpunkte enthalten(für alle Punkte = im CCW Test entfernen)
- erster und letzter Punkt sind identisch

```
vector<pt> convexHull(vector<pt> pts){
     sort(all(pts), [](const pt& a, const pt& b){
       return real(a) == real(b) ? imag(a) < imag(b)</pre>
                                 : real(a) < real(b);</pre>
     pts.erase(unique(all(pts)), pts.end());
     int k = 0:
     vector<pt> h(2 * sz(pts));
     auto half = [&](auto begin, auto end, int t) {
10
       for (auto it = begin: it != end: it++) {
11
         while (k > t \&\& cross(h[k-2], h[k-1], *it) <= 0) k--;
12
         h[k++] = *it:
13
     }};
14
     half(all(pts), 1); // Untere Hülle.
15
     half(next(pts.rbegin()), pts.rend(), k); // Obere Hülle.
16
     h.resize(k):
17
     return h:
18 }
```

3.3 Rotating calipers

antipodal Points berechnet antipodale Punkte O(n)

WICHTIG: Punkte müssen gegen den Uhrzeigersinn sortiert sein und konvexes Polygon bilden!

3.4 Formeln - std::complex

```
1 // Komplexe Zahlen als Punkte. Wenn immer möglich complex<ll>
 2 // verwenden. Funktionen wie abs() geben dann aber ll zurück.
3 using pt = complex<double>:
4 constexpr double PIU = acos(-1.0l); // PIL < PI < PIU
5 constexpr double PIL = PIU-2e-19l;
 6 // Winkel zwischen Punkt und x-Achse in [-PI, PI].
7 double angle(pt a) {return arg(a);}
8 // rotiert Punkt im Uhrzeigersinn um den Ursprung.
   pt rotate(pt a, double theta) {return a * polar(1.0, theta);}
10 // Skalarprodukt.
11 auto dot(pt a, pt b) {return real(conj(a) * b);}
12 // abs()^2.(pre c++20)
13 auto norm(pt a) {return dot(a, a);}
14 // Kreuzprodukt, 0, falls kollinear.
15 auto cross(pt a. pt b) {return imag(coni(a) * b);}
16 auto cross(pt p, pt a, pt b) {return cross(a - p, b - p);}
17 // 1 \Rightarrow c links von a->b
18 // 0 => a. b und c kolliniear
19 // -1 => c rechts von a->b
20 int ccw(pt a, pt b, pt c) {
21 auto orien = cross(b - a, c - a);
    return (orien > EPS) - (orien < -EPS);</pre>
23 }
24 // Liegt d in der gleichen Ebene wie a, b, und c?
25 bool isCoplanar(pt a, pt b, pt c, pt d) {
    return abs((b - a) * (c - a) * (d - a)) < EPS;
27 }
28 // charakterisiert winkel zwischen Vektoren u und v
29 pt uniqueAngle(pt u, pt v) {
    pt tmp = v * conj(u);
    11 g = abs(gcd(real(tmp), imag(tmp)));
32
    return tmp / q;
33 | }
```

```
// Liegt p auf der Geraden a-b? 2d und 3d
   bool pointOnLine(pt a, pt b, pt p) {
     return ccw(a, b, p) == 0;
   // Test auf Linienschnitt zwischen a-b und c-d. (nicht identisch)
   bool lineIntersection(pt a, pt b, pt c, pt d) {
     return abs(cross(a - b, c - d)) > EPS:
   // Berechnet den Schnittpunkt der Graden a-b und c-d.
   // die Graden dürfen nicht parallel sein!
   pt lineIntersection2(pt a, pt b, pt c, pt d) {
     double x = cross(b - a, d - c):
13
     double v = cross(c - a, d - c):
14
     return a + y/x*(b - a);
15 }
   // Entfernung von Punkt p zur Geraden durch a-b. 2d und 3d
   double distToLine(pt a, pt b, pt p) {
     return abs(cross(p - a, b - a)) / abs(b - a):
19 }
   // Proiiziert p auf die Gerade a-b
   pt projectToLine(pt a, pt b, pt p) {
    return a + (b - a) * dot(p - a, b - a) / norm(b - a);
23
   // sortiert alle Punkte pts auf einer Linie entsprechend dir
   void sortLine(pt dir. vector<pt>& pts) { // (2d und 3d)
     sort(all(pts), [&](pt a, pt b){
27
       return dot(dir, a) < dot(dir, b);</pre>
28
    }):
29
   // Liegt p auf der Strecke a-b? (nutze < für inberhalb)
   bool pointOnSegment(pt a, pt b, pt p) {
    if (ccw(a, b, p) != 0) return false;
33
     auto dist = norm(a - b);
34
     return norm(a - p) <= dist && norm(b - p) <= dist;</pre>
35 }
   // Entfernung von Punkt p zur Strecke a-b.
   double distToSegment(pt a, pt b, pt p) {
    if (a == b) return abs(p - a);
39
     if (dot(p - a, b - a) \le 0) return abs(p - a);
     if (dot(p - b, b - a) >= 0) return abs(p - b):
41
     return distToLine(a, b, p):
42
   // Test auf Streckenschnitt zwischen a-b und c-d.
   bool segmentIntersection(pt a, pt b, pt c, pt d) {
45
     if (ccw(a, b, c) == 0 \&\& ccw(a, b, d) == 0)
46
       return pointOnSegment(a,b,c) ||
47
              pointOnSegment(a,b,d) ||
48
              pointOnSegment(c,d,a) ||
49
              pointOnSegment(c,d,b);
     return ccw(a, b, c) * ccw(a, b, d) <= 0 &&
51
            ccw(c, d, a) * ccw(c, d, b) <= 0:
52
53 // Berechnet die Schnittpunkte der Strecken a-b und c-d.
54 // Enthält entweder keinen Punkt, den einzigen Schnittpunkt
```

```
55 // oder die Endpunkte der Schnittstrecke.
   vector<pt> segmentIntersection2(pt a, pt b, pt c, pt d) {
     double x = cross(b - a, d - c):
58
     double y = cross(c - a, d - c);
     double z = cross(b - a, a - c):
     if (x < 0) \{x = -x; y = -y; z = -z; \}
     if (v < -EPS \mid | v-x > EPS \mid | z < -EPS \mid | z-x > EPS) return \{\}:
     if (x > EPS) return \{a + y/x*(b - a)\};
63
     vector<pt> result;
      auto insertUnique = [&](pt p) {
65
       for (auto q : result) if (abs(p - q) < EPS) return;</pre>
66
        result.push_back(p):
67
     if (dot(c-a, d-a) < EPS) insertUnique(a);</pre>
     if (dot(c-b, d-b) < EPS) insertUnique(b);</pre>
     if (dot(a-c, b-c) < EPS) insertUnique(c);</pre>
71
     if (dot(a-d, b-d) < EPS) insertUnique(d):</pre>
     return result:
73
   // Kürzeste Entfernung zwischen den Strecken a-b und c-d.
75
   double distBetweenSegments(pt a, pt b, pt c, pt d) {
76
     if (segmentIntersection(a, b, c, d)) return 0.0:
     return min({distToSegment(a, b, c), distToSegment(a, b, d),
78
                   distToSegment(c, d, a), distToSegment(c, d, b)});
79 }
                                                                         []
 1 bool left(pt p) {return real(p) < 0 ||
                            (real(p) == 0 \&\& imag(p) < 0);
   // counter clockwise, starting with "11:59"
   void sortAround(pt p, vector<pt>& ps) {
     sort(all(ps), [&](const pt& a, const pt& b){
       if (left(a - p) != left(b - p))
          return left(a - p) > left(b - p);
        return cross(p, a, b) > 0;
     });
   Generell:
                                                               \beta = 90^{\circ}:
   • \cos(\gamma) = \frac{a^2 + b^2 - c^2}{2}
                                                              • \sin(\alpha) = \frac{a}{r}
   • b = \frac{a}{\sin(\alpha)}\sin(\beta)
                                                               • \cos(\alpha) = \frac{c}{t}
                                                               • tan(\alpha) = \frac{a}{2}
   • \Delta = \frac{bc}{2}\sin(\alpha)
 1 // Mittelpunkt des Dreiecks abc.
                                                                         2 pt centroid(pt a, pt b, pt c) {return (a + b + c) / 3.0;}
 3 // Flächeninhalt eines Dreicks bei bekannten Eckpunkten.
 4 double area(pt a, pt b, pt c) {
     return abs(cross(a, b, c)) / 2.0;
7 // Flächeninhalt eines Dreiecks bei bekannten Seitenlängen.
8 double area(double a, double b, double c) {
     double s = (a + b + c) / 2.0; //unpräzise
10
     return sgrt(s * (s-a) * (s-b) * (s-c));
11 }
12 // Zentrum des größten Kreises im Dreiecke
13 pt inCenter(pt a, pt b, pt c) {
```

```
double x = abs(a-b), y = abs(b-c), z = abs(a-c);
    return (v*a + z*b + x*c) / (x+v+z):
16 }
18 // a. b und c nicht kollinear
19 pt circumCenter(pt a, pt b, pt c) {
    b -= a, c -= a:
    pt d = b * norm(c) - c * norm(b);
    d = {-d.imag(), d.real()};
    return a + d / cross(b, c) / 2.0:
24 3
25 // -1 => p außerhalb Kreis durch a.b.c
26 // 0 => p auf Kreis durch a,b,c
27 // 1 => p im Kreis durch a,b,c
28 int insideOutCenter(pt a, pt b, pt c, pt p) {// braucht lll
    return ccw(a.b.c) * sqn(imaq((c-b)*coni(p-c)*(a-p)*coni(b-a))):
30 }
31 // Sind die Dreiecke al, bl, cl, and a2, b2, c2 ähnlich?
32 // Erste Zeile testet Ähnlichkeit mit gleicher Orientierung.
33 // zweite Zeile testet Ähnlichkeit mit verschiedener Orientierung
34 bool similar(pt al. pt bl. pt cl. pt a2, pt b2, pt c2) {
    return (b2-a2) * (c1-a1) == (b1-a1) * (c2-a2) | |
           (b2-a2) * conj(c1-a1) == conj(b1-a1) * (c2-a2);
36
37 }
```

```
1 // Flächeninhalt eines Polygons (nicht selbstschneidend).
 2 // Punkte gegen den Uhrzeigersinn: positiv, sonst negativ.
 3 double area(const vector<pt>& poly) { //poly[0] == poly.back()
    11 res = 0:
    for (int i = 0; i + 1 < sz(poly); i++)</pre>
      res += cross(poly[i], poly[i + 1]);
    return 0.5 * res:
 8 }
 9 // Anzahl ccw drehungen einer Polyline um einen Punkt
10 // p nicht auf rand und poly[0] == poly.back()
11 // res != 0 or (res & 1) != 0 um inside zu prüfen bei
12 // selbstschneidenden Polygonen (definitions Sache)
13 | 11 windingNumber(pt p, const vector<pt>& poly) {
14
    11 \text{ res} = 0:
     for (int i = 0; i + 1 < sz(poly); i++) {
15
16
       pt a = poly[i], b = poly[i + 1];
17
       if (real(a) > real(b)) swap(a, b):
18
       if (real(a) \le real(p) \&\& real(p) < real(b) \&\&
19
           cross(p, a, b) < 0) {
20
         res += ccw(p, poly[i], poly[i + 1]);
21
     }}
     return res:
23 }
24 // check if point is inside polygon (any polygon)
25 bool inside(pt p, const vector<pt>& poly) {
    bool in = false:
     for (int i = 0: i + 1 < sz(polv): i++) {
       pt a = poly[i], b = poly[i + 1];
       if (pointOnSegment(a, b, p)) return false; // border counts?
       if (real(a) > real(b)) swap(a, b);
```

```
31
       if (real(a) <= real(p) && real(p) < real(b) &&</pre>
32
           cross(p, a, b) < 0) {
33
         in ^= 1:
34
     }}
35
     return in:
36
37
   // convex hull without duplicates, h[0] != h.back()
   // apply comments if border counts as inside
   bool insideConvex(pt p, const vector<pt>& hull) {
     int l = 0, r = sz(hull) - 1;
41
     if (cross(hull[0], hull[r], p) >= 0) return false; // > 0
42
     while (l + 1 < r) {
43
       int m = (l + r) / 2;
44
       if (cross(hull[0], hull[m], p) > 0) l = m; // >= 0
45
       else r = m;
46
47
     return cross(hull[[], hull[r], p) > 0: // >= 0
48
49
   void rotateMin(vector<pt>& hull) {
50
     auto mi = min element(all(hull), [](const pt& a, const pt& b){
51
       return real(a) == real(b) ? imag(a) < imag(b)</pre>
52
                                 : real(a) < real(b):
53
54
     rotate(hull.begin(), mi, hull.end());
55
56
   // convex hulls without duplicates. h[0] != h.back()
57
   vector<pt> minkowski(vector<pt> ps, vector<pt> qs) {
     rotateMin(ps);
59
     rotateMin(qs);
     ps.push_back(ps[0]);
61
     qs.push_back(qs[0]);
     ps.push_back(ps[1]);
63
     qs.push_back(qs[1]);
64
     vector<pt> res;
65
     for (ll i = 0, j = 0; i + 2 < sz(ps) || j + 2 < sz(qs);) {
66
       res.push_back(ps[i] + qs[j]);
67
       auto c = cross(ps[i + 1] - ps[i], qs[j + 1] - qs[j]);
       if(c >= 0) i++:
69
       if(c <= 0) j++;
70
71
     return res;
72
   // convex hulls without duplicates, h[0] != h.back()
   double dist(const vector<pt>& ps, vector<pt> qs) {
75
     for (pt& q : qs) q *= -1;
76
     auto p = minkowski(ps. qs):
77
     p.push_back(p[0]);
78
     double res = INF:
79
     bool intersect = true;
80
     for (ll i = 0; i + 1 < sz(p); i++) {
81
       intersect &= cross(p[i], p[i+1]) >= 0;
82
       res = min(res, distToSegment(p[i], p[i+1], 0));
83
84
     return intersect ? 0 : res;
85 }
86 bool left(pt of, pt p) {return cross(p, of) < 0 ||
```

```
(cross(p, of) == 0 \&\& dot(p, of) > 0);
88 // convex hulls without duplicates, hull[0] == hull.back() and
89 // hull[0] must be a convex point (with angle < pi)
   // returns index of corner where dot(dir, corner) is maximized
91 int extremal(const vector<pt>& hull, pt dir) {
     dir *= pt(0, 1):
93
     int l = 0, r = sz(hull) - 1;
94
      while (l + 1 < r) {
95
        int m = (l + r) / 2;
        pt dm = hull[m+1]-hull[m];
97
        pt dl = hull[l+1]-hull[l];
        if (left(dl. dir) != left(dl. dm)) {
99
         if (left(dl, dm)) l = m;
100
         else r = m;
101
       } else {
102
         if (cross(dir, dm) < 0) l = m;
103
         else r = m:
104
     }}
105
     return r % (sz(hull) - 1);
106 }
107 // convex hulls without duplicates, hull[0] == hull.back() and
   // hull[0] must be a convex point (with angle < pi)
109 // {} if no intersection
110 // {x} if corner is only intersection
111 // {i, j} segments (i,i+1) and (j,j+1) intersected (if only the
    // border is intersected corners i and j are the start and end)
113 vector<int> intersectLine(const vector<pt>& hull, pt a, pt b) {
     int endA = extremal(hull, (a-b) * pt(0, 1));
115
     int endB = extremal(hull, (b-a) * pt(0, 1));
116
     // cross == 0 => line only intersects border
117
     if (cross(hull[endAl, a, b) > 0 ||
118
         cross(hull[endB], a, b) < 0) return {};</pre>
119
     int n = sz(hull) - 1;
120
      vector<int> res;
121
      for (auto _ : {0, 1}) {
122
       int l = endA, r = endB;
123
       if (r < l) r += n;
124
        while (l + 1 < r) {
125
         int m = (l + r) / 2;
126
         if (cross(hull[m % n], a, b) \le 0 \&\&
127
              cross(hull[m % n], a, b) != cross(hull[endB], a, b))
128
            l = m:
129
         else r = m:
130
131
        if (cross(hull[r % n], a, b) == 0) l++;
132
        res.push_back(l % n);
133
        swap(endA, endB);
134
        swap(a, b);
135
136
     if (res[0] == res[1]) res.pop_back();
137
138 }
                                                                   7
 1 // berechnet die Schnittpunkte von zwei Kreisen
```

2 // (Kreise dürfen nicht gleich sein!)

3 vector<pt> circleIntersection(pt c1, double r1,

```
pt c2, double r2) {
5 l
     double d = abs(c1 - c2):
     if (d < abs(r1 - r2) || d > abs(r1 + r2)) return {};
     double a = (r1 * r1 - r2 * r2 + d * d) / (2 * d);
     pt p = (c2 - c1) * a / d + c1:
     if (d == abs(r1 - r2) || d == abs(r1 + r2)) return {p};
     double h = sqrt(r1 * r1 - a * a):
11
     return \{p + pt\{0, 1\} * (c2 - c1) * h / d,
12
             p - pt{0, 1} * (c2 - c1) * h / d};
13 }
14 // berechnet die Schnittpunkte zwischen
   // einem Kreis(Kugel) und einem Strahl (2D und 3D)
   vector<pt> circleRayIntersection(pt center, double r,
17
                                  pt orig, pt dir) {
     vector<pt> result;
19
     double a = norm(dir):
     double b = 2 * dot(dir. orig - center):
     double c = norm(orig - center) - r * r;
     double discr = b * b - 4 * a * c;
23
     if (discr >= 0) {
24
       //t in [0. 1] => schnitt mit Seament [orig. orig + dir]
25
       double t1 = -(b + sqrt(discr)) / (2 * a);
       double t2 = -(b - sqrt(discr)) / (2 * a):
       if (t1 >= 0) result.push_back(t1 * dir + orig);
28
       if (t2 \ge 0 \&\& abs(t1 - t2) \ge EPS) {
29
         result.push_back(t2 * dir + orig);
30
31
    return result:
32 }
```

13

3.5 Formeln - 3D

```
1 // Skalarprodukt
2 auto operator (pt3 a. pt3 b) {
3 return a.x * b.x + a.y*b.y + a.z*b.z;
4 3
5 auto dot(pt3 a, pt3 b) {return a|b;}
 6 // Kreuzprodukt
 7 pt3 operator*(pt3 a, pt3 b) {return {a.y*b.z - a.z*b.y,
                                        a.z*b.x - a.x*b.z,
                                        a.x*b.y - a.y*b.x};}
10 pt3 cross(pt3 a, pt3 b) {return a*b;}
11 // Länge von a
12 double abs(pt3 a) {return sqrt(dot(a, a));}
13 double abs(pt3 a, pt3 b) {return abs(b - a);}
14 // Mixedprodukt
15 auto mixed(pt3 a, pt3 b, pt3 c) {return a*b|c;};
16 // orientierung von p zu der Ebene durch a, b, c
17 // -1 => gegen den Uhrzeigersinn,
18 // \theta \Rightarrow kolliniear.
19 // 1 => im Uhrzeigersinn.
20 int ccw(pt3 a, pt3 b, pt3 c, pt3 p) {
21
    auto orien = mixed(b - a, c - a, p - a):
    return (orien > EPS) - (orien < -EPS);</pre>
23 }
24 // Entfernung von Punkt p zur Ebene a, b, c.
```

```
25 double distToPlane(pt3 a, pt3 b, pt3 c, pt3 p) {
     pt3 n = cross(b - a, c - a):
27
     return abs(dot(n, a - p)) / abs(n);
28 }
   // Liegt p in der Ebene a, b, c?
30 bool pointOnPlane(pt3 a, pt3 b, pt3 c, pt3 p) {
     return ccw(a, b, c, p) == 0;
32 }
   // Schnittpunkt von der Grade a-b und der Ebene c, d, e
   // die Grade darf nicht parallel zu der Ebene sein!
   pt3 linePlaneIntersection(pt3 a, pt3 b, pt3 c, pt3 d, pt3 e) {
    pt3 n = cross(d - c, e - c);
37
     pt3 dir = b - a;
38
     return a + dir * dot(n, c - a) / dot(n, dir);
39
40
   // Abstand zwischen der Grade a-b und c-d
   double lineLineDist(pt3 a, pt3 b, pt3 c, pt3 d) {
    pt3 n = cross(b - a, d - c);
    if (abs(n) < EPS) return distToLine(a, b, c);</pre>
    return abs(dot(a - c, n)) / abs(n);
45 }
```

3.6 Half-plane intersection

```
constexpr ll INF = 0x1FFF'FFFF'FFFF'FFFF; //THIS CODE IS WIP
   bool left(pt p) {return real(p) < 0 ||</pre>
                 (real(p) == 0 \&\& imag(p) < 0):
   struct hp {
     pt from, to;
     hp(pt a, pt b) : from(a), to(b) {}
     hp(pt dummy) : hp(dummy, dummy) {}
     bool dummy() const {return from == to:}
     pt dir() const {return dummy() ? to : to - from;}
10
     bool operator<(const hp& o) const {</pre>
11
       if (left(dir()) != left(o.dir()))
12
          return left(dir()) > left(o.dir());
13
       return cross(dir(), o.dir()) > 0;
14
__
15
     using lll = __int128:
16
     using ptl = complex<lll>:
     ptl mul(lll m, ptl p) const {return m*p;}//ensure 128bit
18
     bool check(const hp& a, const hp& b) const {
19
       if (dummy() || b.dummy()) return false;
20
       if (a.dummy()) {
21
         11 ort = sgn(cross(b.dir(), dir()));
22
         if (ort == 0) return cross(from, to, a.from) < 0;</pre>
23
          return cross(b.dir(), a.dir()) * ort > 0;
24
25
        11 \times = cross(a.dir(), b.dir());
26
       11 y = cross(b.from - a.from, b.dir());
27
       ptl i = mul(x, a,from) + mul(y, a,dir()): //intersect a and b
28
       // check if i is outside/right of this
29
        return imag(conj(mul(sqn(x),dir()))*(i-mul(x,from))) < 0;</pre>
30
31 };
```

```
32 constexpr ll lim = 2e9+7:
   deque<hp> intersect(vector<hp> hps) {
     hps.push_back(hp(pt{lim + 1, -1}));
35
     hps.push_back(hp(pt{lim + 1, 1}));
36
     sort(all(hps));
37
     deque<hp> dq = {hp(pt{-lim} - 1, 1{})};
38
     for (auto x : hps) {
39
       while (sz(dg) > 1 \& x.check(dg.end()[-1], dg.end()[-2]))
40
         dq.pop_back();
       while (sz(dq) > 1 \&\& x.check(dq[0], dq[1]))
41
42
         dq.pop_front();
43
       if (cross(x.dir(), dg.back().dir()) == 0) {
44
         if (dot(x.dir(), dq.back().dir()) < 0) return {};</pre>
45
         if (cross(x.from, x.to, dq.back().from) < 0)</pre>
46
            dq.pop_back():
47
         else continue:
48
49
       dq.push_back(x);
50
51
     while (sz(dq) > 2 \& dq[0].check(dq.end()[-1], dq.end()[-2]))
52
       dq.pop_back():
53
     while (sz(dg) > 2 \& dg.back().check(dg[0], dg[1]))
54
       dq.pop_front();
     if (sz(da) < 3) return {}:
56
     return da:
57 }
```

4 Mathe

4.1 Longest Increasing Subsequence

- lower_bound ⇒ streng monoton
- upper_bound ⇒ monoton

```
7
   vector<int> lis(vector<ll>& a) {
     int n = sz(a), len = 0;
     vector<ll> dp(n, INF), dp_id(n), prev(n);
     for (int i = 0; i < n; i++) {</pre>
       int pos = lower_bound(all(dp), a[i]) - dp.begin();
       dp[pos] = a[i];
       dp_id[pos] = i;
       prev[i] = pos ? dp_id[pos - 1] : -1;
9
       len = max(len, pos + 1);
10
     }
11
     // reconstruction
     vector<int> res(len):
13
     for (int x = dp_id[len-1]; len--; x = prev[x]) {
14
       res[len] = x;
15
     }
16
     return res; // indices of one LIS
17 }
```

4.2 Zykel Erkennung

cycleDetection findet Zyklus von x_0 und Länge in f O(b+l)

```
1 pair<ll, ll> cycleDetection(ll x0, function<ll(ll)> f) {
                                                                 [7
   ll a = x0, b = f(x0), length = 1:
    for (ll power = 1; a != b; b = f(b), length++) {
      if (power == length) {
5
         power *= 2;
         length = 0;
         a = b:
8
    }}
    ll start = 0;
    a = x0: b = x0:
     for (ll i = 0: i < length: i++) b = f(b):
    while (a != b) {
      a = f(a):
14
      b = f(b):
      start++:
16
    return {start, length}:
18 }
```

4.3 Permutationen

kthperm findet k-te Permutation $(k \in [0,n!))$ $O(n \cdot \log(n))$

```
vector<ll> kthperm(ll n, ll k) {
    Tree<ll> t;
    vector<ll> res(n);
    for (ll i = 1; i <= n; k /= i, i++) {
        t.insert(i - 1);
        res[n - i] = k % i;
    }
    for (ll& x : res) {
        auto it = t.find_by_order(x);
        x = *it;
        t.erase(it);
    }
    return res;
}</pre>
```

permIndex bestimmt Index der Permutation $(res \in [0,n!))$ $O(n \cdot \log(n))$

```
1 | ll permIndex(vector<ll> v) {
                                                                2
    Tree<ll> t:
     reverse(all(v)):
    for (ll& x : v) {
5
      t.insert(x);
      x = t.order of kev(x):
6
7 |
    }
    ll res = 0:
    for (int i = sz(v); i > 0; i--) {
      res = res * i + v[i - 1];
11
12
    return res:
13 3
```

4.4 Mod-Exponent und Multiplikation über \mathbb{F}_p

mulMod berechnet $a \cdot b \mod n \ O(\log(b))$

powMod berechnet $a^b \mod n \ O(\log(b))$

• für $a > 10^9$ **__int128** oder modMul benutzten!

4.5 ggT, kgV, erweiterter euklidischer Algorithmus

 $O(\log(a) + \log(b))$

```
1  // a*x + b*y = ggt(a, b)
2  array<ll, 3> extendedEuclid(ll a, ll b) {
3    if (a == 0) return {b, 0, 1};
4    auto [d, x, y] = extendedEuclid(b % a, a);
5    return {d, y - (b / a) * x, x};
6 }
```

4.6 Multiplikatives Inverses von x in $\mathbb{Z}/m\mathbb{Z}$

Falls *m* **prim:** $x^{-1} \equiv x^{m-2} \mod m$

Falls ggT(x,m)=1:

- Erweiterter euklidischer Algorithmus liefert α und β mit $\alpha x + \beta m = 1$.
- Nach Kongruenz gilt $\alpha x + \beta m \equiv \alpha x \equiv 1 \mod m$.
- $x^{-1} :\equiv \alpha \mod m$

Sonst ggT(x,m)>1: Es existiert kein x^{-1} .

Lemma von Bézout Sei (x,y) eine Lösung der diophantischen Gleichung ax+by=d. Dann lassen sich wie folgt alle Lösungen berechnen:

$$\left(x+k\frac{b}{\operatorname{ggT}(a,b)}, y-k\frac{a}{\operatorname{ggT}(a,b)}\right)$$

PELL-Gleichungen Sei $(\overline{x}, \overline{y})$ die Lösung von $x^2 - ny^2 = 1$, die x > 1 minimiert. Sei (\tilde{x}, \tilde{y}) die Lösung von $x^2 - ny^2 = c$, die x > 1 minimiert. Dann lassen sich alle Lösungen von $x^2 - ny^2 = c$ berechnen durch:

```
x_1 := \widetilde{x}, y_1 := \widetilde{y}

x_{k+1} := \overline{x}x_k + n\overline{y}y_k, y_{k+1} := \overline{x}y_k + \overline{y}x_k
```

4.7 Lineare Kongruenz

- Kleinste Lösung x für $ax \equiv b \pmod{m}$.
- Weitere Lösungen unterscheiden sich um $\frac{m}{g}$, es gibt also g Lösungen modulo m.

```
1  ll solveLinearCongruence(ll a, ll b, ll m) {
2     ll g = gcd(a, m);
3     if (b % g != 0) return -1;
4     return ((b / g) * multInv(a / g, m / g)) % (m / g);
5 }
```

4.8 Chinesischer Restsatz

- Extrem anfällig gegen Overflows. Evtl. häufig 128-Bit Integer verwenden.
- Direkte Formel für zwei Kongruenzen $x \equiv a \mod n$, $x \equiv b \mod m$:

```
x \equiv a - y \cdot n \cdot \frac{a - b}{d} \mod \frac{mn}{d} mit d := ggT(n, m) = yn + zm
```

Formel kann auch für nicht teilerfremde Moduli verwendet werden. Sind die Moduli nicht teilerfremd, existiert genau dann eine Lösung, wenn $a \equiv b \mod ggT(m,n)$. In diesem Fall sind keine Faktoren auf der linken Seite erlaubt.

```
1 struct CRT {
                                                                  [7]
     using lll = __int128;
     III M = 1, sol = 0; // Solution unique modulo M
     bool hasSol = true:
     // Adds congruence x = a \pmod{m}
     void add(ll a, ll m) {
       auto [d, s, t] = extendedEuclid(M, m);
       if((a - sol) % d != 0) hasSol = false:
       111 z = M/d * s:
10
      M *= m/d:
       sol = (z % M * (a-sol) % M + sol + M) % M;
11
12
13 };
```

4.9 Primzahltest & Faktorisierung

isPrime prüft ob Zahl prim ist $O(\log(n)^2)$

```
constexpr ll bases32[] = {2, 7, 61};
   constexpr ll bases64[] = {2, 325, 9375, 28178, 450775,
                             9780504. 17952650221:
   bool isPrime(ll n) {
     if (n < 2 || n % 2 == 0) return n == 2;
     II d = n - 1, j = 0;
     while (d \% 2 == 0) d /= 2, j++;
     for (ll a : bases64) {
       if (a % n == 0) continue:
       ll v = powMod(a, d, n); //with mulmod or int128
11
       if (v == 1 || v == n - 1) continue;
12
       for (ll i = 1; i <= j; i++) {
        v = ((lll)v * v) % n:
         if (v == n - 1 || v <= 1) break;</pre>
14
16
      if (v != n - 1) return false;
17
    }
18
     return true;
19
```

rho findet zufälligen Teiler $O(\sqrt[4]{n})$

```
1 using lll = __int128:
2 | ll rho(ll n) { // Findet Faktor < n, nicht unbedingt prim.
    if (n % 2 == 0) return 2;
    11 x = 0, y = 0, prd = 2, i = n/2 + 7;
     auto f = [\&](III c){return (c * c + i) % n;};
     for (ll t = 30; t % 40 || gcd(prd, n) == 1; t++) {
      if (x == y) x = ++i, y = f(x);
      if (ll q = (lll)prd * abs(x-y) % n; q) prd = q;
      x = f(x); y = f(f(y));
10
    return gcd(prd, n);
12 }
   void factor(ll n, map<ll, int>& facts) {
    if (n == 1) return;
    if (isPrime(n)) {facts[n]++; return;}
    ll f = rho(n):
    factor(n / f, facts); factor(f, facts);
18 }
```

4.10 Teiler

countDivisors Zählt Teiler von n $O(\sqrt[3]{n})$

```
1  ll countDivisors(ll n) {
2    ll res = 1;
3    for (ll i = 2; i * i * i <= n; i++) {
4        ll c = 0;
5        while (n % i == 0) {n /= i; c++;}
6        res *= c + 1;
7    }
8    if (isPrime(n)) res *= 2;
9    else if (n > 1) res *= isSquare(n) ? 3 : 4;
10    return res;
11 }
```

4.11 Matrix-Exponent

```
precalc berechnet m^{2^b} vor O(\log(b) \cdot n^3) calc berechnet m^b \cdot O(\log(b) \cdot n^2)

Tipp: wenn v[x]=1 und \theta sonst, dann ist res[y] = m_{y,x}^b.
```

```
vector<mat> pows;
   void precalc(mat m) {
    pows = \{mat(sz(m.m), 1), m\};
    for (int i = 1; i < 60; i++) pows.push_back(pows[i] * pows[i]);</pre>
5 }
6 auto calc(ll b. vector<ll> v) {
    for (ll i = 1; b > 0; i++) {
      if (b & 1) v = pows[i] * v:
9
     b /= 2;
10
   }
11
    return v;
12 | }
```

4.12 Lineare Rekurrenz

BerlekampMassey Berechnet eine lineare Rekurrenz n-ter Ordnung $O(n^2)$ aus den ersten 2n Werte

```
constexpr ll mod = 1'000'000'007;
    vector<ll> BerlekampMassey(const vector<ll>& s) {
     int n = sz(s), L = 0, m = 0;
     vector<ll> C(n), B(n), T:
     C[0] = B[0] = 1;
     11 b = 1:
     for (int i = 0; i < n; i++) {
       ll d = s[i] \% mod;
10
       for (int j = 1; j <= L; j++) {</pre>
11
         d = (d + C[j] * s[i - j]) % mod;
12
13
       if (!d) continue;
14
       T = C:
15
       11 coef = d * powMod(b, mod-2, mod) % mod;
        for (int j = m; j < n; j++) {</pre>
17
         C[i] = (C[i] - coef * B[i - m]) % mod;
18
19
       if (2 * L > i) continue:
20
       L = i + 1 - L:
21
       swap(B, T):
22
       b = d;
23
       m = 0;
24
25
     C.resize(L + 1):
     C.erase(C.begin()):
27
     for (auto\& x : C) x = (mod - x) % mod;
28
     return C:
29 }
```

Sei $f(n) = c_0 f(n-1) + c_1 f(n-2) + \cdots + c_{n-1} f(0)$ eine lineare Rekurrenz. kthTerm Berechnet k-ten Term einer Rekurrenz n-ter Ordnung $O(\log(k) \cdot \text{mul}(n))$ Die Polynom-Multiplikation kann auch mit NTT gemacht werden!

```
constexpr ll mod = 998244353:
   // oder ntt mul Seite 18
   vector<ll> mul(const vector<ll>& a, const vector<ll>& b) {
     vector<ll> c(sz(a) + sz(b) - 1);
     for (int i = 0: i < sz(a): i++) {
       for (int j = 0; j < sz(b); j++) {
7
         c[i+i] += a[i]*b[i] % mod;
     }}
     for (ll& x : c) x %= mod;
10
     return c:
11
12
   ll kthTerm(const vector<ll>& f, const vector<ll>& c, ll k) {
     int n = sz(c):
14
     vector < ll > q(n + 1, 1);
     for (int i = 0; i < n; i++) q[i + 1] = (mod - c[i]) % mod;
     vector < 11 > p = mul(f. a):
     p.resize(n);
18
     p.push_back(0);
     do {
       vector<ll> q2 = q;
```

```
21
       for (int i = 1; i <= n; i += 2) q2[i] = (mod - q2[i]) % mod;</pre>
22
       vector<ll> x = mul(p, q2), y = mul(q, q2);
23
       for (int i = 0; i <= n; i++){</pre>
24
         p[i] = i == n ? 0 : x[2*i + (k&1)];
25
         a[i] = v[2*i]:
26
27
     } while (k /= 2):
28
     return p[0];
29 }
```

Alternativ kann der k-te Term in $O(n^3 \log(k))$ berechnet werden:

```
\begin{pmatrix} c_0 & c_1 & \cdots & \cdots & c_{n-1} \\ 1 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} f(n-1) \\ f(n-2) \\ \vdots \\ f(0) \end{pmatrix} = \begin{pmatrix} f(n-1+k) \\ f(n-2+k) \\ \vdots \\ \vdots \\ f(k) \end{pmatrix}
```

4.13 Diskreter Logarithmus

solve bestimmt Lösung x für $a^x = b \mod m$ $O(\sqrt{m} \cdot \log(m))$

```
1 | II dlog(II a, II b, II m) \{ //a > 0!
     ll bound = sqrtl(m) + 1; //memory usage bound < p</pre>
     vector<pair<ll, ll>> vals(bound);
     for (ll i = 0, e = 1; i < bound; i++, e = (e * a) % m) {
     vals[i] = {e, i}:
     vals.emplace_back(m, 0);
     sort(all(vals));
     11 fact = powMod(a, m - bound - 1, m);
     for (ll i = 0: i < m: i += bound, b = (b * fact) % m) {</pre>
11
       auto it = lower_bound(all(vals), pair<ll, ll>{b, 0});
       if (it->first == b) {
13
         return (i + it->second) % m;
14
     }}
15
     return -1;
16 }
```

4.14 Diskrete Quadratwurzel

sqrtMod bestimmt Lösung x für $x^2 = a \mod p$ $O(\log(p))$ Wichtig: p muss prim sein!

```
ll sgrtMod(ll a, ll p) {// teste mit legendre ob lösung existie
     if (a < 2) return a:
    ll t = 0:
     while (legendre((t*t-4*a) % p, p) >= 0) t = rng() % p;
     11 b = -t, c = -t, d = 1, m = p;
     for (m++; m /= 2; b = (a+a-b*b) % p, a = (a*a) % p) {
      if (m % 2) {
        d = (c-d*b) % p:
        c = (c*a) % p;
      } else {
11
        c = (d*a - c*b) % p;
12
13
    return (d + p) % p;
14 }
```

4.15 Primitivwurzeln

- Primitivwurzel modulo n existiert $\Leftrightarrow n \in \{2, 4, p^{\alpha}, 2 \cdot p^{\alpha} \mid 2$
- es existiert entweder keine oder $\varphi(\varphi(n))$ inkongruente Primitivwurzeln
- Sei *g* Primitivwurzel modulo *n*. Dann gilt: Das kleinste *k*, sodass $g^k \equiv 1 \mod n$, ist $k = \varphi(n)$.

isPrimitive prüft ob g eine Primitivwurzel ist $O(\log(\varphi(n)) \cdot \log(n))$ findPrimitive findet Primitivwurzel (oder -1) $O(|ans| \cdot \log(\varphi(n)) \cdot \log(n))$

```
bool isPrimitive(ll q, ll n, ll phi, map<ll, int>& phiFacts) { 
     if (g == 1) return n == 2;
     if (qcd(q, n) > 1) return false:
     for (auto [f, _] : phiFacts)
     if (powMod(q, phi / f, n) == 1) return false;
     return true:
   bool isPrimitive(ll g, ll n) {
    Il phin = phi(n); //isPrime(n) \Rightarrow phi(n) = n - 1
    map<ll, int> phiFacts;
     factor(phin, phiFacts);
     return isPrimitive(g, n, phin, phiFacts);
13 }
14 | ll findPrimitive(ll n) { //test auf existens geht schneller
    ll phin = phi(n); //isPrime(n) \Rightarrow phi(n) = n - 1
     map<ll, int> phiFacts;
    factor(phin, phiFacts);
    for (ll res = 1; res < n; res++) // oder zufällige Reihenfolge</pre>
      if (isPrimitive(res, n, phin, phiFacts)) return res;
20
    return -1;
21 | }
```

4.16 Diskrete n-te Wurzel

root bestimmt Lösung x für $x^a = b \mod m \ O(\sqrt{m} \cdot \log(m))$

Alle Lösungen haben die Form $g^{c+\frac{i\cdot\phi(n)}{\gcd(a,\phi(n))}}$

```
1
1
2
2
1l root(ll a, ll b, ll m) { // a > 0!
2
1l g = findPrimitive(m);
3
1l c = dlog(powMod(g, a, m), b, m);
return c < 0 ? -1 : powMod(g, c, m);
5
}</pre>
```

4.17 LEGENDRE-Symbol

Sei $p \ge 3$ eine Primzahl, $a \in \mathbb{Z}$:

```
1 ll legendre(ll a, ll p) { // p prim >= 2
2 ll s = powMod(a, p / 2, p);
3 return s < 2 ? s : -1ll;
4 }</pre>
```

4.18 Lineares Sieb und Multiplikative Funktionen

Eine (zahlentheoretische) Funktion f heißt multiplikativ wenn f(1) = 1 und $f(a \cdot b) = f(a) \cdot f(b)$, falls ggT(a,b) = 1.

 \Rightarrow Es ist ausreichend $f(p^k)$ für alle primen p und alle k zu kennen. sieve berechnet Primzahlen und co. O(N)

sieved Wert der entsprechenden multiplikativen Funktion O(1)

naive Wert der entsprechenden multiplikativen Funktion $O(\sqrt{n})$

 $\begin{tabular}{ll} \textbf{Wichtig:} Sieb \ rechts \ ist \ schneller \ f\"ur \ \ is \end{tabular} \ rimes! \\ \end{tabular}$

```
[7]
   constexpr ll N = 10'000'000;
2 | 11 small[N], power[N], sieved[N];
3 vector<ll> primes:
4 //wird aufgerufen mit (p^k, p, k) für prime p und k > 0
5 | 11 mu(11 pk, 11 p, 11 k) {return -(k == 1);}
 6 | ll phi(ll pk, ll p, ll k) {return pk - pk / p;}
7 | ll div(ll pk, ll p, ll k) {return k+1;}
9 | 11 square(11 pk, 11 p, 11 k) {return k % 2 ? pk / p : pk;}
10 | Il squareFree(| pk, | l p, | l k) {return p;}
   void sieve() { // O(N)
    small[1] = power[1] = sieved[1] = 1;
13
    for (ll i = 2; i < N; i++) {</pre>
14
       if (small[i] == 0) {
15
        primes.push_back(i);
16
         for (ll pk = i, k = 1; pk < N; pk *= i, k++) {
17
           small[pk] = i;
18
          power[pk] = pk:
19
           sieved[pk] = mu(pk, i, k); // Aufruf ändern!
20
21
       for (ll j=0; i*primes[j] < N && primes[j] < small[i]; j++) {</pre>
22
        ll k = i * primes[i]:
23
         small[k] = power[k] = primes[j];
24
         sieved[k] = sieved[i] * sieved[primes[j]];
25
26
       if (i * small[i] < N && power[i] != i) {</pre>
27
        ll k = i * small[i];
28
         small[k] = small[i];
29
         power[k] = power[i] * small[i];
30
         sieved[k] = sieved[power[k]] * sieved[k / power[k]];
31 }}}
32
   ll naive(ll n) { // O(sqrt(n))
33
    ll res = 1:
34
     for (ll p = 2; p * p <= n; p++) {</pre>
35
       if (n % p == 0) {
36
        ll pk = 1;
37
        11 k = 0;
         do {
          n /= p;
          pk *= p:
41
          k++;
42
        } while (n % p == 0);
         res *= mu(pk, p, k); // Aufruf ändern!
45
    if (n > 1) res *= mu(n, n, 1);
46
    return res:
```

Möbius-Funktion:

- $\mu(n)$ = +1, falls n quadratfrei ist und gerade viele Primteiler hat
- $\mu(n) = -1$, falls n quadratfrei ist und ungerade viele Primteiler hat
- $\mu(n) = 0$, falls n nicht quadratfrei ist

Eulersche φ -Funktion:

- Zählt die relativ primen Zahlen $\leq n$.
- $p \text{ prim}, k \in \mathbb{N}$: $\varphi(p^k) = p^k p^{k-1}$
- Euler's Theorem: Für $b \ge \varphi(c)$ gilt: $a^b \equiv a^b \bmod \varphi(c) + \varphi(c) \pmod c$. Darüber hinaus gilt: $\gcd(a,c) = 1 \Leftrightarrow a^b \equiv a^b \bmod \varphi(c) \pmod c$. Falls m prim ist, liefert das den kleinen Satz von Fermat: $a^m \equiv a \pmod m$

4.19 Primzahlsieb von Eratosthenes

• Bis 10^8 in unter 64MB Speicher (lange Berechnung) primeSieve berechnet Primzahlen und Anzahl $O\left(N \cdot \log(\log(N))\right)$ isPrime prüft ob Zahl prim ist O(1)

```
constexpr ll N = 100'000'000:
 2 bitset<N / 2> isNotPrime;
   vector<ll> primes = {2};
   bool isPrime(ll x) {
     if (x < 2 \mid | x \% 2 == 0) return x == 2;
     else return !isNotPrime[x / 2]:
   void primeSieve() {
     for (ll i = 3; i < N; i += 2) {// i * i < N reicht für isPrime
10
       if (!isNotPrime[i / 2]) {
11
         primes.push_back(i); // optional
12
         for (ll j = i * i; j < N; j+= 2 * i) {
13
           isNotPrime[i / 2] = 1;
14 }}}
```

4.20 Möbius-Inversion

- Seien $f,g:\mathbb{N}\to\mathbb{N}$ und $g(n):=\sum_{d|n}f(d)$. Dann ist $f(n)=\sum_{d|n}g(d)\mu(\frac{n}{d})$.
- $\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{falls } n=1 \\ 0 & \text{sonst} \end{cases}$

Beispiel Inklusion/Exklusion: Gegeben sein eine Sequenz $A = a_1,...,a_n$ von Zahlen, $1 \le a_i \le N$. Zähle die Anzahl der *coprime subsequences*.

Lösung: Für jedes x, sei cnt[x] die Anzahl der Vielfachen von x in A. Es gibt $2^{[x]}-1$ nicht leere Subsequences in A, die nur Vielfache von x enthalten. Die Anzahl der Subsequences mit ggT=1 ist gegeben durch $\sum_{i=1}^{N} \mu(i) \cdot (2^{cnt[i]}-1)$.

4.21 LGS über \mathbb{F}_p

gauss löst LGS $O(n^3)$

```
void normalLine(int line, ll p) {

void normalLine(int line, ll p) {

ll factor = multInv(mat[line][line], p);

for (ll& x : mat[line]) x = (x * factor) % p;

void takeAll(int n, int line, ll p) {

for (int i = 0; i < n; i++) {

   if (i == line) continue;

   ll diff = mat[i][line];

   for (int j = 0; j < sz(mat[i]); j++) {

      mat[i][j] -= (diff * mat[line][j]) % p;

   mat[i][j] = (mat[i][j] + p) % p;

}}

void qauss(int n, ll mod) {</pre>
```

```
14  vector<br/>
15  for (int i = 0; i < n; i++) {<br/>
16   int j = 0;<br/>
17  while (j < n && (done[j] || mat[j][i] == 0)) j++;<br/>
18  if (j == n) continue;<br/>
19  swap(mat[i], mat[j]);<br/>
20  normalLine(i, mod);<br/>
21  takeAll(n, i, mod);<br/>
22  done[i] = true;<br/>
23 }} // für Eindeutigkeit, Existenz etc. siehe LGS über R Seite 17
```

4.22 LGS über ${\mathbb R}$

gauss löst LGS $O(n^3)$

```
1 void normalLine(int line) {
    double factor = mat[line][line];
    for (double& x : mat[line]) x /= factor:
4 }
5 void takeAll(int n, int line) {
     for (int i = 0: i < n: i++) {
      if (i == line) continue:
       double diff = mat[i][line]:
       for (int j = 0; j < sz(mat[i]); j++) {</pre>
         mat[i][j] -= diff * mat[line][j];
11 | }}}
12 int gauss(int n) {
    vector<bool> done(n, false):
     for (int i = 0; i < n; i++) {</pre>
      int j = i; // Sucht Pivotzeile für bessere Stabilität.
       for (int k = 0; k < n; k++) {
17
        if (!done[k] && abs(mat[k][i]) > abs(mat[i][i])) j = k;
18
19
       swap(mat[i], mat[j]);
       if (abs(mat[i][i]) > EPS) {
         normalLine(i);
22
         takeAll(n, i);
23
         done[i] = true;
24
     for (int i = 0; i < n; i++) { // gauss fertig, prüfe Lösung
       bool allZero = true;
27
       for (int j = i; j < n; j++) allZero &= abs(mat[i][j]) <= EPS;
       if (allZero && abs(mat[i][n]) > EPS) return INCONSISTENT;
       if (allZero && abs(mat[i][n]) <= EPS) return MULTIPLE:</pre>
30
31
    return UNIQUE;
32 | }
```

4.23 Inversionszahl

4.24 Numerisch Extremstelle bestimmen

```
template<typename F>
   ld qss(ld l, ld r, F&& f) {
    ld inv = (sqrt(5.0l) - 1) / 2;
    ld x1 = r - inv*(r-l), x2 = l + inv*(r-l);
     ld f1 = f(x1), f2 = f(x2);
     for (int i = 0; i < 200; i++) {
       if (f1 < f2) { //change to > to find maximum
         r = x2; x2 = x1; f2 = f1;
        x1 = r - inv*(r-1): f1 = f(x1):
10
       } else {
11
        l = x1; x1 = x2; f1 = f2;
12
         x2 = l + inv*(r-l); f2 = f(x2);
13
14
    return l;
15 }
```

4.25 Numerisch Integrieren, Simpsonregel

```
//double f(double x) {return x;}

double simps(double a, double b) {
    return (f(a) + 4.0 * f((a + b) / 2.0) + f(b)) * (b - a) / 6.0;
}

double integrate(double a, double b) {
    double integrate(double a, double b) {
        double m = (a + b) / 2.0;
        double l = simps(a, m), r = simps(m, b), tot = simps(a, b);
        if (abs(l + r - tot) < EPS) return tot;
        return integrate(a, m) + integrate(m, b);
}
```

4.26 Polynome, FFT, NTT & andere Transformationen

Multipliziert Polynome A und B.

- $deg(A \cdot B) = deg(A) + deg(B)$
- Vektoren a und b müssen mindestens Größe deg(A·B)+1 haben. Größe muss eine Zweierpotenz sein.
- Für ganzzahlige Koeffizienten: (ll)round(real(a[i]))
- xor, or und and Transform funktioniert auch mit double oder modulo einer Primzahl p falls p≥ 2^{bits}

```
using cplx = complex<double>;
   void fft(vector<cplx>& a, bool inv = false) {
     int n = sz(a);
     for (int i = 0, j = 1; j < n - 1; ++j) {
       for (int k = n >> 1; k > (i ^= k); k >>= 1);
       if (j < i) swap(a[i], a[j]);</pre>
     static vector<cplx> ws(2, 1);
     for (static int k = 2; k < n; k *= 2) {</pre>
10
       ws.resize(n);
11
       cplx w = polar(1.0, acos(-1.0) / k);
12
       for (int i=k; i<2*k; i++) ws[i] = ws[i/2] * (i % 2 ? w : 1);
13
14
     for (int s = 1; s < n; s *= 2) {
15
       for (int j = 0; j < n; j += 2 * s) {
16
         for (int k = 0; k < s; k++) {
17
           cplx u = a[j + k], t = a[j + s + k];
18
           t *= (inv ? conj(ws[s + k]) : ws[s + k]);
```

```
7
   constexpr ll mod = 998244353, root = 3;
   void ntt(vector<ll>& a, bool inv = false) {
     int n = sz(a);
     auto b = a;
     ll r = inv ? powMod(root, mod - 2, mod) : root;
     for (int s = n / 2; s > 0; s /= 2) {
       11 ws = powMod(r, (mod - 1) / (n / s), mod), w = 1;
       for (int j = 0; j < n / 2; j += s) {
         for (int k = j; k < j + s; k++) {
10
           u = a[j + k], t = a[j + s + k] * w % mod;
11
           b[k] = (u + t) % mod:
12
           b[n/2 + k] = (u - t + mod) \% mod;
13
         }
14
         w = w * ws % mod;
15
16
       swap(a, b);
17
18
     if (inv) {
19
       ll div = powMod(n, mod - 2, mod);
20
       for (auto& x : a) x = x * div % mod;
21 }}
```

```
void bitwiseConv(vector<ll>& a, bool inv = false) {
   int n = sz(a);
   for (int s = 1; s < n; s *= 2) {
      for (int i = 0; i < n; i += 2 * s) {
        for (int j = i; j < i + s; j++) {
            ll& u = a[j], &v = a[j + s];
            tie(u, v) = inv ? pair(v - u, u) : pair(v, u + v); // AND
            //tie(u, v) = pair(u + v, u - v) : pair(u + v, u); // OR
            //tie(u, v) = pair(u + v, u - v); // XOR
            //if (inv) for (ll& x : a) x /= n; // XOR (careful with MOD)
            // }
}</pre>
```

Multiplikation mit 2 transforms statt 3: (nur benutzten wenn nötig!)

```
1 vector<cplx> mul(vector<ll>& a, vector<ll>& b) {
                                                                    int n = 1 \ll (_{--} \lg(sz(a) + sz(b) - 1) + 1);
     vector<cplx> c(all(a)), d(n);
     for (int i = 0; i < sz(b); i++) c[i] = {real(c[i]), b[i]};</pre>
     for (int i = 0; i < n; i++) {</pre>
      int j = (n - i) & (n - 1);
       cplx x = (c[i] + conj(c[j])) / cplx{2, 0}; //fft(a)[i];
10
       cplx y = (c[i] - conj(c[j])) / cplx{0, 2}; //fft(b)[i];
11
       d[i] = x * y;
12
13
     fft(d, true);
14
     return d;
15
```

4.27 Operations on Formal Power Series

```
1 | vector<ll> poly_inv(const vector<ll>& a, int n) {
     vector<ll>q = {powMod(a[0], mod-2, mod)};
     for (int len = 1; len < n; len *= 2){</pre>
3 |
       vector<ll> a2 = a. g2 = g:
       a2.resize(2*len), g2.resize(2*len);
       ntt(q2);
       for (int _ : {0, 1}) {
         ntt(a2):
         for (int i = 0; i < 2*len; i++) a2[i] = a2[i]*q2[i] % mod;</pre>
10
         ntt(a2, true);
11
         for (int i = 0; i < len; i++) a2[i] = 0;</pre>
12
13
       for (int i = len; i < min(n, 2*len); i++) {</pre>
14
         q.push_back((mod - a2[i]) % mod);
15
    }}
16
     return q;
17 }
18 | vector<ll> poly_deriv(vector<ll> a) {
    for (int i = 1; i < sz(a); i++)</pre>
     a[i-1] = a[i] * i % mod;
    a.pop_back();
22
     return a;
23 }
24 | vector<ll> poly_integr(vector<ll> a) {
     static vector<ll> inv = {0, 1};
     for (static int i = 2; i <= sz(a); i++)</pre>
27
       inv.push_back(mod - mod / i * inv[mod % i] % mod);
     a.push_back(0):
     for (int i = sz(a) - 1; i > 0; i--)
      a[i] = a[i-1] * inv[i] % mod;
     a[0] = 0;
32
     return a:
33 }
34 vector<ll> poly_log(vector<ll> a, int n) {
    a = mul(poly_deriv(a), poly_inv(a, n));
    a.resize(n-1);
     return poly_integr(a);
38 }
   vector<ll> poly_exp(vector<ll> a, int n) {
     vector<ll> q = {1};
     for (int len = 1; len < n; len *= 2) {</pre>
       vector<ll> p = poly_log(q, 2*len);
       for (int i = 0; i < 2*len; i++)</pre>
44
         p[i] = (mod - p[i] + (i < sz(a) ? a[i] : 0)) % mod;
45
       vector<ll> q2 = q;
       q2.resize(2*len);
       ntt(p), ntt(q2);
48
       for (int i = 0; i < 2*len; i++) p[i] = p[i] * q2[i] % mod;
50
       for (int i = len; i < min(n, 2*len); i++) q.push_back(p[i]);
51
    }
52
    return q;
53 | }
```

4.28 Kombinatorik

Wilsons Theorem A number *n* is prime if and only if $(n-1)! \equiv -1 \mod n$. (*n* is prime if and only if $(m-1)! \cdot (n-m)! \equiv (-1)^m \mod n$ for all m in $\{1,...,n\}$)

$$(n-1)! \equiv \begin{cases} -1 \mod n, & \text{falls } n \in \mathbb{P} \\ 2 \mod n, & \text{falls } n = 4 \\ 0 \mod n, & \text{sonst} \end{cases}$$

ZECKENDORFS Theorem Jede positive natürliche Zahl kann eindeutig als Summe einer oder mehrerer verschiedener Fibonacci-Zahlen geschrieben werden, sodass keine zwei aufeinanderfolgenden FIBONACCI-Zahlen in der Summe vorkommen. Lösung: Greedy, nimm immer die größte Fibonacci-Zahl, die noch hineinpasst.

Lucas-Theorem Ist p prim, $m = \sum_{i=0}^{k} m_i p^i$, $n = \sum_{i=0}^{k} n_i p^i$ (p-adische Darstellung),

 $\binom{m}{n} \equiv \prod_{i=1}^{k} \binom{m_i}{n_i} \mod p.$

Binomialkoeffizienten Die Anzahl der k-elementigen Teilmengen einer n-elementigen Menge

```
\frac{n!}{k!(n-k)!} = \binom{n}{k} = \binom{n}{k-k} = \frac{n}{k} \binom{n-1}{k-1} = \frac{n-k+1}{k} \binom{n}{k-1} = \frac{k+1}{n-k} \binom{n}{k+1} = \frac{n-k+1}{n-k} \binom{n}{k-1} = \frac{n-k+1}{n-k} \binom{n}{n-1} = \frac{n-k}{n-1} + \frac{n-k}{n-1} = \frac{n-k+1}{n-1} = \frac{n-k}{n-1} + \frac{n-k}{n-1} = \frac{n-k}{n-1} + \frac{n-k}{n-1} = \frac{n-k}{n-1} + \frac{n-k}{n-1} = \frac{n-k}{n-1} = \frac{n-k}{n-1} + \frac{n-k}{n-1} = \frac{n-k}{n-1} + \frac{n-k}{n-1} = \frac{n-k}{n-1} + \frac{n-k}{n-1} = \frac{n-k}{n-1
      \binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n+1}{k+1} - \binom{n}{k+1} = (-1)^k \binom{k-n-1}{k} \approx 2^n \cdot \frac{2}{\sqrt{2\pi n}} \cdot \exp\left(-\frac{2(x-\frac{n}{2})^2}{n}\right)
\sum_{k=0}^{n} \binom{n}{k} = 2^{n} \qquad \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1} \qquad \sum_{i=0}^{n} \binom{n}{i}^{2} = \binom{2n}{n} \qquad \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n}
```

berechnet n! und $n!^{-1}$ vor calc_binom berechnet Binomialkoeffizient O(1)

```
[7]
                                   constexpr ll lim = 10'000'000:
                                 ll fac[lim]. inv[lim]:
                                   void precalc() {
                                                 fac[0] = inv[0] = 1:
                                                 for (int i = 1; i < lim; i++) fac[i] = fac[i-1] * i % mod;</pre>
                                                 inv[lim - 1] = multInv(fac[lim - 1], mod);
                                                 for (int i = \lim_{n \to \infty} -1: i > 0: i - 1) i = \inf_{n \to \infty} i = \inf_{n 
     8
                                   ll calc_binom(ll n, ll k) {
   10
                                               if (n < 0 || n < k || k < 0) return 0;</pre>
11
                                                 return (inv[k] * inv[n-k] % mod) * fac[n] % mod:
 12 }
```

Falls n >= p for $mod = p^k$ berechne fac und inv aber teile p aus i und berechne die häufigkeit von p in n! als $\sum \left\lfloor \frac{n}{v^i} \right\rfloor$

calc binom berechnet Binomialkoeffizient (n < 61) O(k)

```
[7]
  ll calc_binom(ll n, ll k) {
    if (k > n) return 0:
3
    ll r = 1:
    for (ll d = 1; d <= k; d++) {// Reihenfolge => Teilbarkeit
     r *= n--, r /= d;
    }
7
    return r;
```

calc_binom berechnet Binomialkoeffizient modulo Primzahl v O(v-n)

```
ll calc_binom(ll n, ll k, ll p) {
     assert(n < p); //wichtig: sonst falsch!
     if (k > n) return 0;
     11 x = k \% 2 != 0 ? p-1 : 1;
     for (ll c = p-1; c > n; c--) {
      x *= c - k; x %= p;
       x *= multInv(c, p); x %= p;
    }
     return x;
10 }
```

CATALAN-Zahlen

- Die CATALAN-Zahl C_n gibt an:
- ➤ Anzahl der Binärbäume mit *n* nicht unterscheidbaren Knoten.
- ➤ Anzahl der validen Klammerausdrücke mit n Klammerpaaren.
- ➤ Anzahl der korrekten Klammerungen von n+1 Faktoren.
- ➤ Anzahl Möglichkeiten ein konvexes Polygon mit n+2 Ecken zu triangulieren.
- ➤ Anzahl der monotonen Pfade (zwischen gegenüberliegenden Ecken) in einem $n \times n$ -Gitter, die nicht die Diagonale kreuzen.

$$C_0 = 1$$
 $C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k} = \frac{1}{n+1} {2n \choose n} = \frac{4n-2}{n+1} \cdot C_{n-1}$

- Formel 1 erlaubt Berechnung ohne Division in $O(n^2)$
- Formel 2 und 3 erlauben Berechnung in O(n)

CATALAN-Convolution

• Anzahl an Klammerausdrücken mit n+k Klammerpaaren, die mit (k beginnen.

$$C_0^k = 1 \qquad C_n^k = \sum_{\substack{a_0 + a_1 + \dots + a_k = n \\ a_0 + a_1 + \dots + a_k = n}} C_{a_0} C_{a_1} \cdots C_{a_k} = \frac{k+1}{n+k+1} {2n+k \choose n} = \frac{(2n+k-1) \cdot (2n+k)}{n(n+k+1)} \cdot C_{n-1}$$

EULER-Zahlen 1. Ordnung Die Anzahl der Permutationen von $\{1,...,n\}$ mit genau k Anstiegen. Für die n-te Zahl gibt es n mögliche Positionen zum Einfügen. Dabei wird entweder ein Anstieg in zwei gesplitted oder ein Anstieg um n ergänzt.

$$\binom{n}{0} = \binom{n}{n-1} = 1 \quad \binom{n}{k} = (k+1)\binom{n-1}{k} + (n-k)\binom{n-1}{k-1} = \sum_{i=0}^{k} (-1)^{i} \binom{n+1}{i} (k+1-i)^{n-1} = \sum_{i=0}^{k} (-1)^{i} \binom{n+1}{i} (k+1-i)^{n-1}$$

- Formel 1 erlaubt Berechnung ohne Division in $O(n^2)$
- Formel 2 erlaubt Berechnung in $O(n\log(n))$

EULER-Zahlen 2. Ordnung Die Anzahl der Permutationen von $\{1,1,...,n,n\}$ mit genau k Anstiegen.

$$\left\langle \binom{n}{0} \right\rangle = 1 \qquad \left\langle \binom{n}{n} \right\rangle = 0 \qquad \left\langle \binom{n}{k} \right\rangle = (k+1) \left\langle \binom{n-1}{k} \right\rangle + (2n-k-1) \left\langle \binom{n-1}{k-1} \right\rangle$$

• Formel erlaubt Berechnung ohne Division in $O(n^2)$

STIRLING-Zahlen 1. Ordnung Die Anzahl der Permutationen von $\{1,...,n\}$ mit genau k Zyklen. Es gibt zwei Möglichkeiten für die n-te Zahl. Entweder sie bildet einen eigene Zyklus, oder sie kann an jeder Position in jedem Zyklus einsortiert werden.

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1 \qquad \begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ n \end{bmatrix} = 0 \qquad \begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix}$$

• Formel erlaubt berechnung ohne Division in $O(n^2)$

$$\sum_{k=0}^{n} \pm {n \brack k} x^{k} = x(x-1)(x-2)\cdots(x-n+1)$$

• Berechne Polynom mit FFT und benutzte betrag der Koeffizienten $O(n\log(n)^2)$ (nur ungefähr gleich große Polynome zusammen multiplizieren beginnend mit x-k

STIRLING-Zahlen 2. Ordnung Die Anzahl der Möglichkeiten n Elemente in k nichtleere Teilmengen zu zerlegen. Es gibt k Möglichkeiten die n in eine n-1-Partition einzuordnen. Dazu kommt der Fall, dass die n in ihrer eigenen Teilmenge (alleine) steht.

$${n \brace 1} = {n \brace n} = 1 \qquad {n \brace k} = k {n-1 \brace k} + {n-1 \brace k-1} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-i} {k \choose i} i^n$$

- Formel 1 erlaubt Berechnung ohne Division in $O(n^2)$
- Formel 2 erlaubt Berechnung in $O(n\log(n))$

Bell-Zahlen Anzahl der Partitionen von {1,...,n}. Wie Stirling-Zahlen 2. Ordnung ohne Limit durch k.

$$B_1 = 1 B_n = \sum_{k=0}^{n-1} B_k \binom{n-1}{k} = \sum_{k=0}^n \binom{n}{k} B_{p^m + n} \equiv m \cdot B_n + B_{n+1} \mod p$$

Partitions Die Anzahl der Partitionen von *n* in genau *k* positive Summanden. Die Anzahl der Partitionen von n mit Elementen aus 1,...,k.

$$p_0(0)=1$$
 $p_k(n)=0$ für $k > n$ oder $n \le 0$ oder $k \le 0$
 $p_k(n)=p_k(n-k)+p_{k-1}(n-1)$

$$p(n) = \sum_{k=1}^{n} p_k(n) = p_n(2n) = \sum_{k=1}^{\infty} (-1)^{k+1} \left[p\left(n - \frac{k(3k-1)}{2}\right) + p\left(n - \frac{k(3k+1)}{2}\right) \right]$$

- in Formel 3 kann abgebrochen werden wenn k(3k-1) > n.
 Die Anzahl der Partitionen von n in bis zu k positive Summanden ist $\sum_{i=0} p_i(n) = p_k(n+k).$

4.29 The Twelvefold Way (verteile *n* Bälle auf *k* Boxen)

Bälle	identisch	verschieden	identisch	verschieden	
Boxen	identisch	identisch	verschieden	verschieden	
_	$p_k(n+k)$	$\sum_{i=0}^{k} {n \brace i}$	$\binom{n+k-1}{k-1}$	k^n	
Bälle pro	m. (m)	$\{n\}$	(n-1)	$l_1(n)$	
$Box \ge 1$	$p_k(n)$	${n \brace k}$	$\binom{n-1}{k-1}$	$k! \begin{Bmatrix} n \\ k \end{Bmatrix}$	
Bälle pro	[., < 1.]	[., < 1.]	(k)	(k)	
Box ≤1	$[n \le k]$	$[n \le k]$	(n)	$\binom{n!}{n}$	
[Bedingung]: return Bedingung ? 1 : 0;					

4.30 Platonische Körper

Übersicht	F	V	E	dual zu
Tetraeder	4	4	6	Tetraeder
Würfel	6	8	12	Oktaeder
Oktaeder	8	6	12	Würfel
Dodekaeder	12	20	30	Ikosaeder
Ikosaeder	20	12	30	Dodekaeder

Färbungen mit maximal n Farben (bis auf Isomorphie) $(n^6+3n^4+12n^3+8n^2)/24$ |V| vom Oktaeder/|F| vom Würfel |V| vom Würfel/|F| vom Oktaeder $(n^8+17n^4+6n^2)/24$ $(n^{12}+6n^7+3n^6+8n^4+6n^3)/24$ |E| vom Würfel/Oktaeder |V|/|F| vom Tetraeder $(n^4+11n^2)/12$ $(n^6+3n^4+8n^2)/12$ |E| vom Tetraeder $(n^{12}+15n^6+44n^4)/60$ |V| vom Ikosaeder/|F| vom Dodekaeder $(n^{20}+15n^{10}+20n^8+24n^4)/60$ |V| vom Dodekaeder/|F| vom Ikosaeder $(n^{30}+15n^{16}+20n^{10}+24n^6)/60$ |E| vom Dodekaeder/Ikosaeder

Wahrscheinlichkeitstheorie (A,B Ereignisse und X,Y Variablen)					
E(X+Y) = E(X) + E(Y)	$\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[B]}$				
$E(\alpha X) = \alpha E(X)$	$Pr[A \lor B] = Pr[A] + Pr[B] - Pr[A \land B]$				
X,Y unabh. $\Leftrightarrow E(XY) = E(X) \cdot E(Y)$	A,B disj. $\Leftrightarrow \Pr[A \land B] = \Pr[A] \cdot \Pr[B]$				
	(Kandidaten A und B, $k \in \mathbb{N}$)				
$#A > k#B \qquad Pr = \frac{a - kb}{a + b} \#B - \#A$					
$\#A \ge k\#B Pr = \frac{a+1-kb}{a+1} \#A \ge \#I$	$3+k Num = \frac{a-k+1-b}{a-k+1} \binom{a+b-k}{b}$				

4.31 Satz von Sprague-Grundy

Weise jedem Zustand X wie folgt eine Grundy-Zahl g(X) zu:

 $g(X) := \min \{ \mathbb{Z}_0^+ \setminus \{ g(Y) | Y \text{ von } X \text{ aus direkt erreichbar} \} \}$

X ist genau dann gewonnen, wenn g(X) > 0 ist.

Wenn man k Spiele in den Zuständen $X_1,...,X_k$ hat, dann ist die Grundy-Zahl des Gesamtzustandes $g(X_1)\oplus...\oplus g(X_k)$.

4.32 Nim-Spiele

• letzter gewinnt (normal)

2 letzter verliert

Beschreibung	Strategie
$M = [pile_i]$	$SG = \bigoplus_{i=1}^{n} pile_i$
$[x] := \{1,, x\}$	1 Nimm von einem Stapel, sodass $SG 0$ wird.
	Genauso. Außer: Bleiben nur noch Stapel der
	Größe 1, erzeuge ungerade Anzahl solcher Stapel.
$M = \{a^m \mid m \ge 0\}$	a ungerade: $SG_n = n\%2$
III = (ii III = 0)	a gerade:
	$SG_n = 2$, falls $n \equiv a \mod (a+1)$
	$SG_n = n\%(a+1)\%2$, sonst.
$M_{\odot} = \left[\frac{pile_i}{2}\right]$	
l L J	$\bigcirc SG_{2n} - n, SG_{2n+1} - SG_n$ $\bigcirc SG_0 = 0, SG_n = \lceil \log_2 n \rceil + 1$
$M_{2} = \left\{ \left\lceil \frac{pile_{i}}{2} \right\rceil, pile_{i} \right\}$	$0.3G_0 = 0, 3G_n = [\log_2 n] + 1$
M_{\odot} = Teiler von $pile_i$	① $SG_0 = 0$, $SG_n = SG_{@,n} + 1$
M_{\odot} = echte Teiler von $pile_i$	② $ST_1 = 0$, $SG_n = \#$ Nullen am Ende von n_{bin}
$M_{\odot} = [k]$	$SG_{\oplus,n} = n \mod (k+1)$
$M_{\odot} = S$, (S endlich)	● Niederlage bei <i>SG</i> =0
$M_{\mathfrak{S}} = S \cup \{pile_i\}$	❷ Niederlage bei SG=1
	$SG_{\mathfrak{B},n} = SG_{\mathfrak{D},n} + 1$
Für jedes endliche M ist SG ein	nes Stapels irgendwann periodisch.
Moore's Nim:	• Schreibe <i>pile_i</i> binär. Addiere ohne Übertrag zur
Beliebige Zahl von maximal k	Basis $k+1$. Niederlage, falls Ergebnis gleich 0.
Stapeln.	Wenn alle Stapel 1 sind: Niederlage, wenn
	$n \equiv 1 \mod (k+1)$. Sonst wie in 0 .
Staircase Nim:	Niederlage, wenn Nim der ungeraden Spiele
n Stapel in einer Reihe. Belie-	verloren ist:
bige Zahl von Stapel i nach	$\bigoplus_{i=0}^{(n-1)/2} pile_{2i+1} = 0$
Stapel $i-1$.	
Lasker's Nim:	$SG_n = n$, falls $n \equiv 1,2 \mod 4$
Zwei mögliche Züge:	$SG_n = n+1$, falls $n \equiv 3 \mod 4$
1) Nehme beliebige Zahl.	$SG_n = n - 1$, falls $n \equiv 0 \mod 4$
2) Teile Stapel in zwei Stapel	
(ohne Entnahme).	
Kayles' Nim:	Berechne SG_n für kleine n rekursiv.
Zwei mögliche Züge:	$n \in [72,83]$: 4,1,2,8,1,4,7,2,1,8,2,7
1) Nehme beliebige Zahl.	Periode ab $n = 72$ der Länge 12.
2) Teile Stapel in zwei Stapel	
(mit Entnahme).	

4.33 Verschiedenes

4.33 Verschiedenes	
Verschied	lenes
Türme von Hanoi, minimale Schirttzahl:	$T_n = 2^n - 1$
#Regionen zwischen n Geraden	$\frac{n(n+1)}{2} + 1$
#abgeschlossene	$\frac{n^2-3n+2}{2}$
Regionen zwischen n Geraden	-
#markierte, gewurzelte Bäume	n^{n-1}
#markierte, nicht gewurzelte Bäume	n^{n-2}
#Wälder mit k gewurzelten Bäumen	$\frac{k}{n} \binom{n}{k} n^{n-k}$
#Wälder mit k gewurzelten Bäumen mit vorgegebenen Wurzelknoten	$\frac{k}{n}$ n^{n-k}
Derangements	$!n = (n-1)(!(n-1)+!(n-2)) = \left \frac{n!}{e} + \frac{1}{2} \right $
	$\lim_{n \to \infty} \frac{!n}{n!} = \frac{1}{e}$

4.34 Div Sum

divSum berechnet $\sum_{i=0}^{n-1} \left\lfloor \frac{a \cdot i + b}{m} \right\rfloor O(\log(n))$ Wichtig: b darf nicht negativ sein!

```
1 ll divSum(ll n, ll m, ll a, ll b){
2    if (m == 0) return 0;
3    ll ans = a/m * n*(n-1)/2 + b/m * n;
4    a %= m;
5   b %= m;
6   ll y = (a*(n-1)+b) / m;
7   return ans + y * (n-1) - divSum(y, a, m, m-b-1);
8 }
```

4.35 Min Mod

firstVal berechnet den ersten Wert von $0, a, ..., a \cdot i \mod m$, der in [I, r] liegt. Gibt -1 zurück, falls er nicht existiert.

minMod berechnet das Minimum von $(a \cdot i + b) \mod m$ für $i \in [0,n)$ $O(\log(m))$ Wichtig: $0 \le a,b,l,r < m$

```
1 | ll firstVal(ll a, ll m, ll l, ll r) {
     if (l == 0) return 0;
     if (a == 0) return -1;
     if ((l-1)/a < r/a) return (l+a-1) / a*a;</pre>
     ll s = (r+a-1) / a*a:
     ll v = firstVal(m % a, a, s-r, s-l);
     return v < 0 ? -1 : s - v:
   ll minMod(ll n, ll m, ll a, ll b) {
    if (a == 0) return b;
11
     ll g = gcd(m, a);
     11 c = b % g;
12
13
     m /= g;
14
     a /= q;
     b /= g;
     ll ai = multInv(a, m);
17
     ll l = ai*b % m:
18
    ll r = (n-1 + ai*b) % m;
     if (n >= m || l > r) return c;
20
     return a * firstVal(ai, m, l, r) % m * g + c;
21
```

4.36 Reihen

1100 110111011				
$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$	$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$		$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$	
	$\sum_{i=0}^{\infty} c^i = \frac{1}{1-c}$	c <1	$\sum_{i=1}^{\infty} c^i = \frac{c}{1-c}$	c <1
$\sum_{i=0}^{n} i c^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}} c$	≠ 1		$\sum_{i=0}^{\infty} ic^i = \frac{c}{(1-c)^2}$	<i>c</i> <1
$\sum_{i=1}^{n} iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}$			$H_n = \sum_{i=1}^n \frac{1}{i}$	
$\left[\sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} (H_{n+1} -$	$-\frac{1}{m+1}$)		$\sum_{i=1}^{n} H_i = (n+1)H_n -$	n
4.00 147 1 1 7 1 1				

4.37 Wichtige Zahlen

7.0	Wieringe Lamen			
10^{x}	Highly Composite	# Divs	# prime Divs	# Primes
1	6	4	2	4
2	60	12	3	25
3	840	32	4	168
4	7 5 6 0	64	5	1 229
5	83 160	128	6	9 592
6	720 720	240	7	78 498
7	8 6 4 8 6 4 0	448	8	664 579
8	73 513 440	768	8	5 761 455
9	735 134 400	1 344	9	50 847 534
10	6 983 776 800	2304	10	455 052 511
11	97 772 875 200	4 032	10	4 118 054 813
12	963 761 198 400	6720	11	37 607 912 018
13	9316358251200	10752	12	346 065 536 839
14	97 821 761 637 600	17 280	12	3 204 941 750 802
15	866 421 317 361 600	26 880	13	29 844 570 422 669
16	8 086 598 962 041 600	41 472	13	279 238 341 033 925
17	74 801 040 398 884 800	64 512	14	2 623 557 157 654 233
18	897 612 484 786 617 600	103 680	16	24 739 954 287 740 860
			1	

4.38 Recover x and y from y from $x \cdot y^{-1}$

recover findet x und y für $x = x \cdot y^{-1} \mod m \ O(\log(m))$

WICHTIG: x und y müssen kleiner als $\sqrt{m/2}$ sein!

```
1  ll sq(ll x) {return x*x;}
2  array<ll, 2> recover(ll c, ll m) {
3    array<ll, 2> u = {m, 0}, v = {c, 1};
4    while (m <= 2 * sq(v[0])) {
5        ll q = u[0] / v[0];
6        u[0] -= q * v[0];
7        u[1] -= q * v[1];
8        swap(u, v);
9    }
10    if (v[1] <= 0 || 2 * sq(v[1]) >= m) return {-1, -1};
11    return v;
12 }
```

5 Strings

5.1 KNUTH-MORRIS-PRATT-Algorithmus

kmpSearch sucht sub in s O(|s|+|sub|)

```
vector<int> kmpPreprocessing(const string& sub) {
    vector<int> b(sz(sub) + 1);
    b[0] = -1;
     for (int i = 0, j = -1; i < sz(sub);) {
       while (j >= 0 && sub[i] != sub[j]) j = b[j];
     return b;
   vector<int> kmpSearch(const string& s, const string& sub) {
     vector<int> result, pre = kmpPreprocessing(sub);
12
     for (int i = 0, j = 0; i < sz(s);) {
13
       while (j \ge 0 \&\& s[i] != sub[j]) j = pre[j];
14
       i++; j++;
15
       if (j == sz(sub)) {
16
        result.push_back(i - j);
17
        j = pre[j];
18
    }}
19
     return result;
```

5.2 Z-Algorithmus

 z_i := Längstes gemeinsames Präfix von $s_0 \cdots s_{n-1}$ und $s_i \cdots s_{n-1}$ O(n)Suchen: Z-Algorithmus auf P\$S ausführen, Positionen mit z_i =|P| zurückgeben

```
1 vector<int> Z(const string& s) {
2     int n = sz(s);
3     vector<int> z(n);
4     for (int i = 1, x = 0; i < n; i++) {
5         z[i] = max(0, min(z[i - x], x + z[x] - i));
6         white (i + z[i] < n && s[z[i]] == s[i + z[i]]) {
7             x = i, z[i]++;
8     }}
9     return z;
10 }
```

5.3 Rolling Hash

5.4 Pattern Matching mit Wildcards

Gegeben zwei strings A und B,B enthält k wildcards enthält. Sei:

```
\begin{aligned} a_i &= \cos(\alpha_i) + i \sin(\alpha_i) & \text{mit } \alpha_i &= \frac{2\pi A[t]}{\Sigma} \\ b_i &= \cos(\beta_i) + i \sin(\beta_i) & \text{mit } \beta_i &= \begin{cases} \frac{2\pi B[|B| - i - 1]}{\Sigma} & \text{falls } B[|B| - i - 1] \in \Sigma \\ 0 & \text{sonst} \end{cases} \end{aligned}
```

B matcht *A* an stelle *i* wenn $(b \cdot a)[|B|-1+i] = |B|-k$. Benutze FFT um $(b \cdot a)$ zu berechnen.

5.5 Manacher's Algorithm, Longest Palindrome

init transformiert string a O(n) manacher berechnet Längen der Palindrome in longest O(n)

```
vector<int> manacher(const string& t) {
                                                                  //transforms "aa" to ".a.a." to find even length palindromes
     string s(sz(t) * 2 + 1, '.');
     for (int i = 0; i < sz(t); i++) s[2 * i + 1] = t[i];
     int mid = 0, r = 0, n = sz(s);
     vector<int> pal(n);
     for (int i = 1: i < n - 1: i++) {
       if (r > i) pal[i] = min(r - i, pal[2 * mid - i]);
       while (pal[i] < min(i, n - i - 1) \&\&
10
              s[i + pal[i] + 1] == s[i - pal[i] - 1]) {
11
         pal[i]++;
12
13
       if (i + pal[i] > r) mid = i, r = i + pal[i];
14
     //convert lengths to constructed string s (optional)
16
     //for (int i = 0; i < n; i++) pal[i] = 2 * pal[i] + 1;
17
     return pal:
18 }
```

5.6 Longest Common Subsequence

lcss findet längste gemeinsame Sequenz $O(|a| \cdot |b|)$

```
string lcss(const string& a, const string& b) {
     vector<vector<int>> m(sz(a) + 1, vector<int>(sz(b) + 1));
     for (int i = sz(a) - 1; i >= 0; i--) {
       for (int j = sz(b) - 1; j >= 0; j--) {
         if (a[i] == b[j]) m[i][j] = 1 + m[i+1][j+1];
         else m[i][j] = max(m[i+1][j], m[i][j+1]);
     }} // Für die Länge: return m[0][0];
     for (int j = 0, i = 0; j < sz(b) && i < sz(a);) {
       if (a[i] == b[j]) res += a[i++], j++;
11
       else if (m[i][j+1] > m[i+1][j]) j++;
12
       else i++;
13
    }
14
     return res;
15
```

5.7 AHO-CORASICK-Automat

```
sucht patterns im Text O(|Text| + \sum |pattern|)

1. mit addString(pattern, idx) Patterns hinzufügen.

2. rufe buildGraph() auf

3. mit state = go(state, idx) in nächsten Zustand wechseln.

4. erhöhe dabei dp[state]++

5. rufe dfs() auf. In dp[pattern state] stehen die Anzahl der Matches
```

```
constexpr ll ALPHABET_SIZE = 26, OFFSET = 'a';
   struct AhoCorasick {
     struct vert {
       int suffix = 0, ch, cnt = 0;
       array<int, ALPHABET_SIZE> nxt = {};
       vert(int p, int c) : suffix(-p), ch(c) {fill(all(nxt), -1);}
     vector<vert> aho = \{\{0, -1\}\};
     int addString(string &s) {
10
       int v = 0:
11
       for (auto c : s) {
         int idx = c - OFFSET:
         if (aho[v].nxt[idx] == -1) {
14
           aho[v].nxt[idx] = sz(aho);
15
           aho.emplace_back(v, idx);
17
         v = aho[v].nxt[idx];
18
19
       aho[v].cnt++;
20
       return v; // trie node index of pattern (pattern state)
21
     int getSuffix(int v) {
       if (aho[v].suffix < 0) {</pre>
         aho[v].suffix = go(getSuffix(-aho[v].suffix), aho[v].ch);
25
26
       return aho[v].suffix;
27
     int qo(int v, int idx) { // Root is v=0, idx is char - OFFSET
       if (aho[v].nxt[idx] != -1) return aho[v].nxt[idx];
30
       return v == 0 ? 0 : aho[v].nxt[idx] = go(getSuffix(v), idx);
31
32
     vector<vector<int>> adj;
     vector<ll> dp;
     void buildGraph() {
35
       adj.resize(sz(aho));
       dp.assign(sz(aho), 0);
       for (int i = 1; i < sz(aho); i++) {</pre>
38
         adj[getSuffix(i)].push_back(i);
39
     void dfs(int v = 0) { // dp on tree}
41
       for (int u : adj[v]) {
42
         //dp[u] = dp[v] + aho[u].cnt; // pattern count
         dp[v] += dp[u]; // no of matches
45
    }}
46 };
```

5.8 Lyndon und De-Bruijn

- Lyndon-Wort: Ein Wort das lexikographisch kleiner ist als jede seiner Rotationen.
- Jedes Wort kann eindeutig in eine nicht ansteigende Folge von Lyndon-Worten zerlegt werden.
- Für Lyndon-Worte u, v mit u < v gilt, dass uv auch ein Lyndon-Wort ist. next lexikographisch nächstes Lyndon-Wort O(n), Durchschnitt $\Theta(1)$ duval zerleet s in Lyndon-Worte O(n)

minrotation berechnet kleinste Rotation von s O(n)

```
bool next(string& s, int maxLen, char mi = '0', char ma = '1') for (int i = sz(s), j = sz(s); i < maxLen; i++)
s.push_back(s[i % j]);
while(!s.empty() && s.back() == ma) s.pop_back();
if (s.empty()) {
    s = mi;
    return false;
} else {
    s.back()++;
    return true;
}</pre>
```

```
vector<pair<int. int>> duval(const string& s) {
     vector<pair<int, int>> res;
     for (int i = 0; i < sz(s);) {</pre>
       int j = i + 1, k = i;
       for (; j < sz(s) \&\& s[k] <= s[j]; j++) {
         if (s[k] < s[j]) k = i;
7
         else k++:
       for (; i \le k; i += j - k) {
10
         res.push_back(\{i, i + j - k\});
11
12
     return res;
13
   int minrotation(const string& s) {
     auto parts = duval(s+s):
16
     for (auto [l, r] : parts) {
17
       if (r >= sz(s)) return l;
18 | }}
```

- De-Bruijn-Sequenze B(Σ,n): ein Wort das jedes Wort der Länge n genau einmal als substring enthält (und minimal ist). Wobei B(Σ,n) zyklisch betrachtet wird.
- es gibt $\frac{(k!)^{k^{n-1}}}{kn}$ verschiedene $B(\Sigma,n)$
- $B(\Sigma,n)$ hat Länge $|\Sigma|^n$

deBruijn berechnet ein festes $B(\Sigma,n)$ $O(|\Sigma|^n)$

```
string deBruijn(int n, char mi = '0', char ma = '1') {
string res, c(1, mi);

do {
   if (n % sz(c) == 0) res += c;
} while(next(c, n, mi, ma));
return res;
}
```

5.9 Suffix-Array

```
SuffixArray berechnet ein Suffix Array O(|s| \cdot \log^2(|s|)) lcp berechnet Länge des longest common prefix O(\log(|s|)) von s[x] und s[y]
```

```
┌₹
   constexpr int MAX_CHAR = 256:
   struct SuffixArray {
     int n:
     vector<int> SA. LCP:
     vector<vector<int>> P:
     SuffixArray(const string& s) : n(sz(s)), SA(n), LCP(n),
       P(_{--}lg(2 * n - 1) + 1, vector < int > (n)) {
       P[0].assign(all(s));
       iota(all(SA), 0);
10
       sort(all(SA), [&](int a, int b) {return s[a] < s[b];});</pre>
11
        vector<int> x(n):
12
        for (int k = 1, c = 1; c < n; k++, c *= 2) {
13
         iota(all(x), n - c);
14
         for (int ptr = c; int i : SA) if (i >= c) x[ptr++] = i - c;
15
         vector<int> cnt(k == 1 ? MAX_CHAR : n):
16
         for (int i : P[k-1]) cnt[i]++:
         partial_sum(all(cnt), begin(cnt));
17
18
         for (int i : x | views::reverse) SA[--cnt[P[k-1][i]]] = i;
19
         auto p = [&](int i) {return i < n ? P[k-1][i] : -1;};</pre>
20
         for (int i = 1: i < n: i++) {
21
           int a = SA[i-1], b = SA[i];
22
           P[k][b] = P[k][a] + (p(a) != p(b) || p(a+c) != p(b+c));
23
24
       for (int i = 1: i < n: i++) LCP[i] = lcp(SA[i-1], SA[i]):
25
26
     int lcp(int x, int y) {//x & y are text-indices, not SA-indices
27
       if (x == y) return n - x;
28
       int res = 0;
29
        for (int i = sz(P) - 1; i >= 0 \&\& max(x, y) + res < n; i--) {
30
         if (P[i][x + res] == P[i][y + res]) res |= 1 << i;
31
32
       return res;
33
     }
```

5.10 Suffix-Baum

SuffixTree berechnet einen Suffixbaum O(|s|) extend fügt den nächsten Buchstaben aus s ein O(1)

```
struct SuffixTree {
     struct Vert {
       int start, end, suf; //s[start...end) along parent edge
       map<char, int> nxt;
     };
     int needsSuffix, pos, remainder, curVert, curEdge, curLen;
     // Each Vertex gives its children range as [start, end)
     vector<Vert> tree = {Vert{-1, -1, 0, {}}};
10
     SuffixTree(const string& s_) : s(s_) {
11
       needsSuffix = remainder = curVert = curEdge = curLen = 0;
12
       pos = -1;
       for (int i = 0: i < sz(s): i++) extend():
```

```
14
     int newVert(int start, int end) {
16
       tree.push_back({start, end, 0, {}});
17
       return sz(tree) - 1;
18
19
     void addSuffixLink(int vert) {
20
       if (needsSuffix) tree[needsSuffix].suf = vert;
21
       needsSuffix = vert;
22
23
     bool fullImplicitEdge(int vert) {
24
       int len = min(tree[vert].end, pos + 1) - tree[vert].start;
25
       if (curLen >= len) {
26
         curEdge += len;
         curLen -= len;
         curVert = vert:
29
         return true:
       } else {
31
         return false;
32
     void extend() {
34
       pos++:
       needsSuffix = 0;
36
       remainder++;
37
       while (remainder) {
38
         if (curLen == 0) curEdge = pos;
39
         if (!tree[curVert].nxt.count(s[curEdge])) {
           int leaf = newVert(pos, sz(s));
41
           tree[curVert].nxt[s[curEdge]] = leaf;
42
           addSuffixLink(curVert);
43
         } else {
           int nxt = tree[curVert].nxt[s[curEdge]];
45
           if (fullImplicitEdge(nxt)) continue;
46
           if (s[tree[nxt].start + curLen] == s[pos]) {
47
             curLen++;
48
             addSuffixLink(curVert);
49
             break:
50
51
           int split = newVert(tree[nxt].start,
52
                                tree[nxt].start + curLen);
53
            tree[curVert].nxt[s[curEdge]] = split;
54
           int leaf = newVert(pos, sz(s));
55
            tree[split].nxt[s[pos]] = leaf:
56
            tree[nxt].start += curLen:
57
            tree[split].nxt[s[tree[nxt].start]] = nxt;
58
           addSuffixLink(split);
59
60
         remainder--;
61
         if (curVert == 0 && curLen) {
62
           curLen--;
63
           curEdge = pos - remainder + 1;
64
65
           curVert = tree[curVert].suf ? tree[curVert].suf : 0;
66
    }}}
67 };
```

5.11 Suffix-Automaton

- **Ist** *w* **Substring von** *s*? Baue Automaten für *s* und wende ihn auf *w* an. Wenn alle Übergänge vorhanden sind, ist *w* Substring von *s*.
- Ist w Suffix von s? Wie oben und prüfe, ob Endzustand ein Terminal ist.
- Anzahl verschiedener Substrings. Jeder Pfad im Automaten entspricht einem Substring. Für einen Knoten ist die Anzahl der ausgehenden Pfade gleich der Summe über die Anzahlen der Kindknoten plus 1. Der letzte Summand ist der Pfad. der in diesem Knoten endet.
- Wie oft taucht w in s auf? Sei p der Zustand nach Abarbeitung von w. Lösung ist Anzahl der Pfade, die in p starten und in einem Terminal enden. Diese Zahl lässt sich wie oben rekursiv berechnen. Bei jedem Knoten darf nur dann plus 1 gerechnet werden, wenn es ein Terminal ist.

```
constexpr int ALPHABET_SIZE = 26;
   constexpr char OFFSET = 'a';
   struct SuffixAutomaton {
       struct State {
           int len, firstPos, link = -1;
           bool clone = false;
           array<int, ALPHABET_SIZE> nxt; // map if large Alphabet
           State(int l) : len(l), firstPos(l) {fill(all(nxt), -1);}
10
       vector<State> st = {State(0)};
11
       int cur = 0;
12
       SuffixAutomaton(const string& s) {
13
           st.reserve(2 * sz(s));
14
           for (auto c : s) extend(c - OFFSET):
15
16
       void extend(int c) {
17
           int p = cur:
18
           cur = sz(st):
19
           st.emplace_back(st[p].len + 1);
20
           for (; p != -1 && st[p].nxt[c] < 0; p = st[p].link) {</pre>
21
               st[p].nxt[c] = cur;
22
23
           if (p == -1) {
24
               st[curl.link = 0:
25
           } else {
26
               int q = st[p].nxt[c];
27
               if (st[p].len + 1 == st[q].len) {
28
                    st[cur].link = q;
29
30
                    st.emplace_back(st[q]);
31
                    st.back().len = st[p].len + 1;
32
                    st.back().clone = true;
33
                    for (; p !=
                          -1 \&\& st[p].nxt[c] == q; p = st[p].link) {
34
                       st[p].nxt[c] = sz(st) - 1;
35
36
                    st[q].link = st[cur].link = sz(st) - 1;
37
       }}}
38
       vector<int> calculateTerminals() {
39
           vector<int> terminals;
40
           for (int p = cur; p != -1; p = st[p].link) {
41
                terminals.push_back(p);
```

```
43
           return terminals:
44
45
       // Pair with start index (in t) and length of LCS.
46
       pair<int, int> longestCommonSubstring(const string& t) {
47
           int v = 0, l = 0, best = 0, bestp = -1;
48
           for (int i = 0; i < sz(t); i++) {</pre>
               int c = t[i] - OFFSET;
               while (v > 0 \&\& st[v].nxt[c] < 0) {
51
                   v = st[v].link;
52
                   l = st[v].len;
               if (st[v].nxt[c] >= 0) v = st[v].nxt[c]. l++:
55
               if (l > best) best = l, bestp = i;
56
57
           return {bestp - best + 1, best};
58
59 };
```

5.12 Trie

```
1 // Zahlenwerte müssen bei 0 beginnen und zusammenhängend sein.
 2 constexpr int ALPHABET_SIZE = 2;
3 struct node {
     int words. ends:
     arrav<int. ALPHABET_SIZE> nxt:
     node() : words(0), ends(0) {fill(all(nxt), -1);}
   vector<node> trie = {node()};
   int traverse(const vector<int>& word, int x) {
10
     int id = 0:
11
     for (int c : word) {
12
       if (id < 0 || (trie[id].words == 0 && x <= 0)) return -1;</pre>
13
       trie[id].words += x;
14
       if (trie[id].nxt[c] < 0 && x > 0) {
         trie[id].nxt[c] = sz(trie);
16
         trie.emplace_back();
17
18
       id = trie[id].nxt[c];
19
20
     trie[id].words += x;
21
     trie[id].ends += x;
22
     return id:
23
   int insert(const vector<int>& word) {
25
     return traverse(word, 1);
26
27 bool erase(const vector<int>& word) {
     int id = traverse(word, 0);
    if (id < 0 || trie[id].ends <= 0) return false;</pre>
     traverse(word, -1):
31
     return true:
32 }
```

6 Python

6.1 Recursion

```
1 import sys
2 sys.setrecursionlimit(1000_007)
```

6.2 IO

```
1  n, m = map(int, input().split())
2  A = list(map(int, input().split()))
3  print(n, m, *A)
```

7 Sonstiges

7.1 Compiletime

- überprüfen ob Compilezeit Berechnungen erlaubt sind!
- braucht c++14 oder höher!

```
template<int N>
struct Table {
   int data[N];
   constexpr Table() : data {} {
     for (int i = 0; i < N; i++) data[i] = i;
}};
constexpr Table<100'000> precalculated;
```

7.2 Timed

Kann benutzt werden um randomisierte Algorithmen so lange wie möglich laufen zu lassen.

7.3 Overflow-sichere arithmetische Operationen

Gibt zurück, ob es einen Overflow gab. Wenn nicht, enthält c das Ergebnis.

```
Addition ___builtin_saddll_overflow(a, b, &c)
Subtraktion ___builtin_ssubll_overflow(a, b, &c)
Multiplikation ___builtin_smulll_overflow(a, b, &c)
```

7.4 Bit Operations

```
Bit an Position j lesen
                                                   (x \& (1 << j))!= 0
Bit an Position i setzten
                                                   x = (1 << j)
Bit an Position j löschen
                                                   x \&= \sim (1 << j)
Bit an Position j flippen
                                                   x ^= (1 << j)
Anzahl an führenden nullen (x \neq 0)
                                                   __builtin_clzll(x)
Anzahl an schließenden nullen (x \neq 0)
                                                   __builtin_ctzll(x)
Anzahl an 1 bits
                                                   __builtin_popcountll(x)
i-te Zahl eines Graycodes
                                                   i ^ (i >> 1)
```

7.5 Pragmas

```
#pragma GCC optimize("0fast")

#pragma GCC optimize ("unroll-loops")

#pragma GCC target("sse,sse2,sse3,sse4,"

"popcnt,abm,mmx,avx,tune=native")

#pragma GCC target("fpmath=sse,sse2") // no excess precision

#pragma GCC target("fpmath=387") // force excess precision
```

7.6 DP Optimizations

Aufgabe: Partitioniere Array in genau m zusammenhängende Teile mit minimalen Kosten: $dp[i][j] = \min_{k < j} \{dp[i-1][k-1] + C[k][j]\}$. Es sei A[i][j] das minimale optimale k bei der Berechnung von dp[i][j].

Кмитн-Optimization Vorbedingung: $A[i-1][j] \le A[i][j] \le A[i][j+1]$ calc berechnet das DP $O(n^2)$

```
ll calc(int n, int m, const vector<vector<ll>>& C) {
    vector<vector<ll>> dp(m, vector<ll>(n, INF));
     vector<vector<int>> opt(m, vector<int>(n + 1, n - 1));
     for (int i = 0: i < n: i++) dp[0][i] = C[0][i]:
     for (int i = 1: i < m: i++) {
       for (int j = n - 1; j >= 0; --j) {
         opt[i][j] = i == 1 ? 0 : opt[i - 1][j];
         for (int k = opt[i][j]; k <= min(opt[i][j+1], j-1); k++) {</pre>
           if (dp[i][j] <= dp[i - 1][k] + C[k + 1][j]) continue;</pre>
           dp[i][j] = dp[i - 1][k] + C[k + 1][j];
11
           opt[i][j] = k;
12
    }}}
13
    return dp[m - 1][n - 1];
14 }
```

Divide and Conquer Vorbedingung: $A[i][j-1] \le A[i][j]$. calc berechnet das DP $O(m \cdot n \cdot \log(n))$

```
vector<vector<ll>>> dp;
   vector<vector<ll>>> C:
   void rec(int i, int i0, int i1, int m0, int m1) {
    if (i1 < i0) return:
     int jmid = (j0 + j1) / 2;
     dp[i][imid] = INF;
     int bestk = m0:
     for (int k = m0; k < min(jmid, m1 + 1); ++k) {
      if (dp[i - 1][k] + C[k + 1][jmid] < dp[i][jmid]) {</pre>
         dp[i][jmid] = dp[i - 1][k] + C[k + 1][jmid];
11
         bestk = k:
12
     }}
     rec(i, j0, jmid - 1, m0, bestk);
     rec(i, jmid + 1, j1, bestk, m1);
15
   ll calc(int n, int m) {
     dp = vector<vector<ll>>>(m, vector<ll>>(n, INF));
     for (int i = 0; i < n; i++) dp[0][i] = C[0][i];
19
     for (int i = 1: i < m: i++) {
20
      rec(i, 0, n - 1, 0, n - 1);
21
    return dp[m - 1][n - 1];
```

Quadrangle inequality Die Bedingung $\forall a \le b \le c \le d : C[a][d] + C[b][c] \ge C[a][c] + C[b][d]$ ist hinreichend für beide Optimierungen.

Sum over Subsets DP res[mask] = $\sum_{i \subseteq \text{mask}} \text{in}[i]$. Für Summe über Supersets res einmal vorher und einmal nachher reversen.

```
vector<ll> res(in);
for (int i = 1; i < sz(res); i *= 2) {
   for (int mask = 0; mask < sz(res); mask++){
      if (mask & i) {
        res[mask] += res[mask ^ i];
   }}
</pre>
```

7.7 Fast Subset Sum

fastSubsetSum findet maximale subset $sum \le t \ O(n \cdot A)$ Die Laufzeit hängt vom maximalen Wert A in der Menge ab.

```
1 int fastSubsetSum(vector<int> w. int t){
     int a = 0, b = 0:
     while(b < sz(w) && a + w[b] <= t) a += w[b++];
     if(b == sz(w)) return a;
     int m = *max_element(all(w));
     vector<int> dp(2*m, -1), old:
     dp[m+a-t] = b:
     for(int i = b; i < sz(w); i++){</pre>
       old = dp:
10
       for(int j = 0; j < m; j++){
11
         dp[j+w[i]] = max(dp[j+w[i]], old[j]);
12
13
       for(int j = 2*m-1; j > m; j--){
14
         for(int k = max(old[j], 0); k < dp[j]; k++){</pre>
15
           dp[i-w[k]] = max(dp[i-w[k]], k);
16
17
18
     for(a = t; dp[m+a-t] < 0; a--);
20
     return a;
21 }
```

7.8 Parallel Binary Search

```
1 // Q = # of queries, bucket sort is sometimes faster
                                                                   2 vector<int> low(0, -1), high(0, MAX_OPERATIONS);
 3 while (true) {
     vector<pair<int, int>> focus;
     for (int i = 0; i < 0; i++) {
       if (low[i] + 1 < high[i]) {</pre>
         focus.emplace_back((low[i] + high[i]) / 2, i);
     if (focus.empty()) break;
10
     sort(all(focus));
11
     // reset simulation
     for (int step = 0; auto [mid, i] : focus) {
13
      for (: step <= mid: step++) {</pre>
14
        // simulation step
15
16
       if (/* requirement already fulfilled */) high[i] = mid;
       else low[i] = mid:
```

```
18 | }} // answer in low (MAX_OPERATIONS if never ok)
```

7.9 Josephus-Problem

n Personen im Kreis, jeder k-te wird erschossen.

Spezialfall k = 2: Betrachte n Binär. Für $n = 1b_1b_2b_3...b_n$ ist $b_1b_2b_3...b_n$ 1 die Position des letzten Überlebenden. (Rotiere n um eine Stelle nach links)

```
int rotateLeft(int n) { // Der letzte Überlebende, 1-basiert.  
int bits = __lg(n);
    n ^= 1 << bits;
    return 2 * n + 1;
}</pre>
```

Allgemein: Sei F(n,k) die Position des letzten Überlebenden. Nummeriere die Personen mit $0,1,\ldots,n-1$. Nach Erschießen der k-ten Person, hat der Kreis noch Größe n-1 und die Position des Überlebenden ist jetzt F(n-1,k). Also: F(n,k) = (F(n-1,k)+k)%n. Basisfall: F(1,k) = 0.

```
1
// Der letzte Überlebende, 0-basiert.
2 int josephus(int n, int k) {
   if (n == 1) return 0;
   return (josephus(n - 1, k) + k) % n;
}
```

Beachte bei der Ausgabe, dass die Personen im ersten Fall von 1,...,n nummeriert sind, im zweiten Fall von 0,...,n-1!

7.10 Sonstiges

```
1 // Setzt deutsche Tastaturlayout / toggle mit alt + space
2 setxkbmap de
3 setxkbmap de,us -option grp:alt_space_toggle
4 // Set mit eigener Sortierfunktion.
5 | set<point2. decltvpe(comp)> set1(comp):
6 // STL-Debugging, Compiler flags.
7 -D_GLIBCXX_DEBUG
8 #define _GLIBCXX_DEBUG
9 // 128-Bit Integer/Float. Muss zum Einlesen/Ausgeben
10 // in einen int oder long long gecastet werden.
11 __int128, __float128
12 // float mit Decimaldarstellung
13 #include <decimal/decimal>
14 std::decimal::decimal128
15 // 1e18 < INF < Max_Value / 2
16 constexpr ll INF = 0x3FFF'FFFF'FFFF'FFFFIl:
17 // 1e9 < INF < Max_Value / 2
18 constexpr int INF = 0x3FFF'FFFF:
```

7.11 Stress Test

```
for i in {1..1000}; do
    printf "\r$i"

python3 gen.py > input  # generate test with gen.py

/a.out < input > out  # execute ./a.out

/b.out < input > out2  # execute ./b.out

diff out out2 || break
done
```

7.12 Gemischtes

 (Minimum) Flow mit Demand d: Erstelle neue Quelle s' und Senke t' und setzte die folgenden Kapazitäten:

$$c'(s',v) = \sum_{u \in V} d(u,v)$$

$$c'(v,t') = \sum_{u \in V} d(v,u)$$

$$c'(v,t') = \sum_{u \in V} d(v,u)$$

$$c'(t,s) = x$$

Löse Fluss auf G' mit Dinic's Algorithmus, wenn alle Kanten von s' saturiert sind ist der Fluss in G gültig. x beschränkt den Fluss in G (Binary-Search für minflow, ∞ sonst).

- JOHNSONS Reweighting Algorithmus: Initialisiere alle Entfernungen mit d[i]
 0. Berechne mit BELLMANN-FORD kürzeste Entfernungen. Falls es einen negativen Zyklus gibt abrrechen. Sonst ändere die Gewichte von allen Kanten (u,v) im ursprünglichen Graphen zu d[u]+w[u,v]-d[v]. Dann sind alle Kantengewichte nichtnegativ, Dijkstra kann angewendet werden.
- System von Differenzbeschränkungen: Ändere alle Bedingungen in die Form a − b ≤ c. Für jede Bedingung füge eine Kante (b,a) mit Gewicht c ein. Füge Quelle s hinzu, mit Kanten zu allen Knoten mit Gewicht 0. Nutze BELLMANN-FORD, um die kürzesten Pfade von s aus zu finden. d[v] ist mögliche Lösung für v.
- Min-Weight-Vertex-Cover im Bipartiten Graph: Partitioniere in A, B und füge Kanten s → A mit Gewicht w(A) und Kanten B → t mit Gewicht w(B) hinzu. Füge Kanten mit Kapazität ∞ von A nach B hinzu, wo im originalen Graphen Kanten waren. Max-Flow ist die Lösung. Im Residualgraphen:
- ➤ Das Vertex-Cover sind die Knoten inzident zu den Brücken. oder
- ➤ Die Knoten in A, die *nicht* von s erreichbar sind und die Knoten in B, die von erreichbar sind.
- Allgemeiner Graph: Das Komplement eines Vertex-Cover ist ein Independent Set.
 ⇒ Max Weight Independent Set ist Komplement von Min Weight Vertex Cover.
- Bipartiter Graph: Min Vertex Cover (kleinste Menge Knoten, die alle Kanten berühren) = Max Matching. Richte Kanten im Matching von B nach A und sonst von A nach B, makiere alle Knoten die von einem ungematchten Knoten in A erreichbar sind, das Vertex Cover sind die makierten Knoten aus B und die unmakierten Knoten aus A.
- Bipartites Matching mit Gewichten auf linken Knoten: Minimiere Matchinggewicht. Lösung: Sortiere Knoten links aufsteigend nach Gewicht, danach nutze normalen Algorithmus (KUHN, Seite 9)
- Satz von Pick: Sei A der Flächeninhalt eines einfachen Gitterpolygons, I die Anzahl der Gitterpunkte im Inneren und R die Anzahl der Gitterpunkte auf dem Rand. Es gilt: $A = I + \frac{R}{2} 1$
- Lemma von Burnside: Sei G eine endliche Gruppe, die auf der Menge X operiert. Für jedes $g \in G$ sei X^g die Menge der Fixpunkte bei Operation durch g, also $X^g = \{x \in X \mid g \bullet x = x\}$. Dann gilt für die Anzahl der Bahnen [X/G] der Operation:

$$[X/G] = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

• Polya Counting: Sei π eine Permutation der Menge X. Die Elemente von X können mit einer von m Farben gefärbt werden. Die Anzahl der Färbungen, die Fixpunkte von π sind, ist $m^{\#(\pi)}$, wobei $\#(\pi)$ die Anzahl der Zyklen von π ist. Die Anzahl der Färbungen von Objekten einer Menge X mit m Farben unter einer Symmetriegruppe G is gegeben durch:

$$[X/G] = \frac{1}{|G|} \sum_{g \in G} m^{\#(g)}$$

- Verteilung von Primzahlen: Für alle n∈N gilt: Ex existiert eine Primzahl p mit n≤p≤2n.
- Satz von Kirchhoff: Sei G ein zusammenhängender, ungerichteter Graph evtl.

mit Mehrfachkanten. Sei A die Adjazenzmatrix von G. Dabei ist a_{ij} die Anzahl der Kanten zwischen Knoten i und j. Sei B eine Diagonalmatrix, b_{ii} sei der Grad von Knoten i. Definiere R = B - A. Alle Kofaktoren von R sind gleich und die Anzahl der Spannbäume von G.

Entferne letzte Zeile und Spalte und berechne Betrag der Determinante.

• **DILWORTHS-Theorem:** Sei S eine Menge und \leq eine partielle Ordnung (S ist ein Poset). Eine *Kette* ist eine Teilmenge $\{x_1,...,x_n\}$ mit $x_1 \leq ... \leq x_n$. Eine *Partition* ist eine Menge von Ketten, sodass jedes $s \in S$ in genau einer Kette ist. Eine *Antikette* ist eine Menge von Elementen, die paarweise nicht vergleichbar sind.

Es gilt: Die Größe der längsten Antikette gleicht der Größe der kleinsten Partition. ⇒ Weite des Poset.

Berechnung: Maximales Matching in bipartitem Graphen. Dupliziere jedes $s \in S$ in u_s und v_s . Falls $x \le y$, füge Kante $u_x \to v_y$ hinzu. Wenn Matching zu langsam ist, versuche Struktur des Posets auszunutzen und evtl. anders eine maximale Anitkette zu finden.

 TURAN's-Theorem: Die Anzahl an Kanten in einem Graphen mit n Knoten der keine clique der größe x+1 enthält ist:

$$ext(n,K_{x+1}) = \binom{n}{2} - \left[(x - (n \bmod x)) \cdot \left(\left\lfloor \frac{n}{x} \right\rfloor \right) + (n \bmod x) \cdot \left(\left\lceil \frac{n}{x} \right\rceil \right) \right]$$

- **EULER's-Polyedersatz:** In planaren Graphen gilt n-m+f-c=1.
- PYTHAGOREISCHE TRIPEL: Sei m > n > 0, k > 0 und m ≠ n mod 2 dann beschreibt diese Formel alle Pythagoreischen Tripel eindeutig:

$$k \cdot (a=m^2-n^2, b=2mn, c=m^2+n^2)$$

- Centroids of a Tree: Ein Centroid ist ein Knoten, der einen Baum in Komponenten der maximalen Größe ^{|V|}/₂ splitted. Es kann 2 Centroids geben!
- Centroid Decomposition: Wähle zufälligen Knoten und mache DFS. Verschiebe ausgewählten Knoten in Richtung des tiefsten Teilbaums, bis Centroid gefunden. Entferne Knoten, mache rekursiv in Teilbäumen weiter. Laufzeit: O(|V|·log(|V|)).
- Gregorian Calendar: Der Anfangstag des Jahres ist alle 400 Jahre gleich.
- Pivotsuche und Rekursion auf linkem und rechtem Teilarray: Suche gleichzeitig von links und rechts nach Pivot, um Worst Case von $O(n^2)$ zu $O(n\log n)$ zu verbessern.
- Mo's Algorithm: SQRT-Decomposition auf n Intervall Queries [l,r]. Gruppiere Queries in \sqrt{n} Blöcke nach linker Grenze l. Sortiere nach Block und bei gleichem Block nach rechter Grenze r. Beantworte Queries offline durch schrittweise Vergrößern/Verkleinern des aktuellen Intervalls. Laufzeit: $O\left(n\cdot\sqrt{n}\right)$. (Anzahl der Blöcke als Konstante in Code schreiben.)
- SORT Techniques:
 - ➤ Aufteilen in *leichte* (wert $\leq \sqrt{x}$) und *schwere* (höchsten \sqrt{x} viele) Objekte.
 - ➤ Datenstruktur in Blöcke fester Größe (z.b. 256 oder 512) aufteilen.
 - > Datenstruktur nach fester Anzahl Updates komplett neu bauen.
 - ➤ Wenn die Summe über x_i durch X beschränkt ist, dann gibt es nur $\sqrt{2X}$ verschiedene Werte von x_i (z.b. Längen von Strings).
 - ➤ Wenn $w \cdot h$ durch X beschränkt ist, dann ist min $(w,h) < \sqrt{X}$.
- Partition: Gegeben Gewichte w₀+w₁+···+w_k=W, existiert eine Teilmenge mit Gewicht x? Drei gleiche Gewichte w können zu w und 2w kombiniert werden ohne die Lösung zu ändern ⇒ nur 2√W unterschiedliche Gewichte. Mit bitsets daher selbst für 10⁵ lösbar.

7.13 Tipps & Tricks

- Run Time Error:
 - ➤ Stack Overflow? Evtl. rekursive Tiefensuche auf langem Pfad?
 - ➤ Array-Grenzen überprüfen. Indizierung bei 0 oder bei 1 beginnen?
 - ➤ Abbruchbedingung bei Rekursion?
- Evtl. Memory Limit Exceeded? Mit /usr/bin/time -v erhält man den maximalen Speicherverbrauch bei der Ausführung (Maximum resident set size).

- Strings:
 - ➤ Soll "aa" kleiner als "z" sein oder nicht?
 - \blacktriangleright bit 0x20 beeinflusst Groß-/Kleinschreibung.
- Zeilenbasierte Eingabe:
- ➤ getline(cin, str) liest Zeile ein.
- ➤ Wenn vorher cin >> ... benutzt, lese letztes \n mit getline(cin, x).
- Gleitkommazahlen:
 - ➤ NaN? Evtl. ungültige Werte für mathematische Funktionen, z.B. acos(1.000000000000001)?
 - ➤ Falsches Runden bei negativen Zahlen? Abschneiden ≠ Abrunden!
 - ➤ genügend Präzision oder Output in wissenschaftlicher Notation (1e-25)?
 - ➤ Kann -0.000 ausgegeben werden?

• Wrong Answer:

- ➤ Lies Aufgabe erneut. Sorgfältig!
- ➤ Mehrere Testfälle in einer Datei? Probiere gleichen Testcase mehrfach hintereinander.
- Integer Overflow? Teste maximale Eingabegrößen und mache Überschlagsrechnung.
- ➤ Ausgabeformat im 'unmöglich'-Fall überprüfen.
- ➤ Ist das Ergebnis modulo einem Wert?
- ➤ Integer Division rundet zur 0 ≠ abrunden.
- ➤ Eingabegrößen überprüfen. Sonderfälle ausprobieren.
 - -n=0, n=-1, n=1, $n=2^{31}-1$, $n=-2^{31}$
 - n gerade/ungerade
 - Graph ist leer/enthält nur einen Knoten.
 - Liste ist leer/enthält nur ein Element.
 - Graph ist Multigraph (enthält Schleifen/Mehrfachkanten).
 - Sind Kanten gerichtet/ungerichtet?
 - Kolineare Punkte existieren.
- Polygon ist konkav/selbstschneidend.
- ➤ Bei DP/Rekursion: Stimmt Basisfall?
- ➤ Unsicher bei benutzten STL-Funktionen?

8 Template

8.1 C++

```
#include <bits/stdc++.h>
using namespace std;

#define tsolve int t; cin >> t; while(t--) solve

#define all(x) ::begin(x), ::end(x)

#define sz(x) (lll)::size(x)

using ll = long long;
using ld = long double;

void solve() {}

int main() {
    cin.tie(0)->sync_with_stdio(false);
    cout << setprecision(16);
    solve();
}</pre>
```

8.2 Console

9 Tests

Dieser Abschnitt enthält lediglich Dinge die während der Practicesession getestet werden sollten!

9.1 GCC

- sind c++14 Feature vorhanden?
- sind c++17 Feature vorhanden?
- kompiliert dieser Code:

- funktioniert __int128?
- funktionieren Pragmas?
- funktionieren **constexpr** zur Compilezeit (+Zeitlimit)?
- wie groß ist **sizeof(char***)?
- wie groß ist RAND_MAX?
- funktioniert random_device? (und gib es unerschiedliche Ergebnisse?)
- funktioniert clock()?

9.2 Python

• Rekursionslimit?

9.3 Judge

- ist der Checker casesensitive?
- wie werden zusätzliches Whitespacecharacter bei sonst korrektem Output behandelt?
- vergleiche ausführungszeit auf dem judge und lokal (z.b. mit Primzahl Sieb)

```
1 "\r\r\n\t \r\n\r"
```

9.4 Precision

- Mode 0 means no excess precision
- Mode 2 means excess precision (all operations in 80 bit floats)
- Result 0 without excess precision (expected floating point error)
- $\sim 8e^{-17}$ with excess precision (real value)

