* 解答 ([] 内の数字は配点)

設問 (1):	V_0Bl	[2]	設問 (2):	$rac{v_0 B l}{R}$	[2]
設問 (3): <i>I</i> _l	(+)	[3]	設問 (3): <i>I</i> ₁	(工)	[3]
設問 (4): (a)	$d + \Delta d \left(1 - \frac{k}{n} \right)$	[3]	設問 (4): (b)	$\varepsilon_0 \frac{a\Delta x}{d + \Delta d \left(1 - \frac{k}{n}\right)}$	[3]
設問 (4):(c)	$rac{arepsilon_0 a}{\Delta d} \log \left(1 - rac{\Delta d}{d} ight)$	[4]	設問 (5):(d)	$rac{I_2}{2r}$	[2]
設問 (5): (e)	$rac{\mu A}{2r}I_2$	[3]	設問 (5):(f)	$rac{\mu A}{2r}\Delta I_2$	[2]
設問 (5):(g)	$\frac{\mu A N_1}{2r}$	[3]	設問 (6):	0	[2]
設問 (7):	(7)				[3]
	(\mathcal{T}) $I_0\omega L\cos\left(\omega t + \phi\right)$	[2]	設問 (8):(i)	$-\frac{I_0}{\omega}\cos\left(\omega t + \phi\right)$	[3]
設問 (8):(h)				$-\frac{I_0}{\omega}\cos\left(\omega t + \phi\right)$	
設問 (8): (h) 設問 (8): (j)	$I_0\omega L\cos\left(\omega t+\phi ight)$	$\left(\frac{1}{2C}\right)^2 \sin^2 \left(\frac{1}{2C}\right)$			[2]
設問 (8): (h) 設問 (8): (j) 設問 (8): (k)	$I_0 \omega L \cos (\omega t + \phi)$ $I_0 \sqrt{R^2 + (\omega L - \frac{1}{\omega})^2}$	$\left(\frac{1}{\sqrt{C}}\right)^2 \sin \left(\frac{1}{\sqrt{C}}\right)^2 \left[2\right]$	$(\omega t + \phi)$ 設問 (8) : (l)		[2]
設問 (8): (h) 設問 (8): (j) 設問 (8): (k)	$I_0 \omega L \cos{(\omega t + \phi)}$ $I_0 \sqrt{R^2 + (\omega L - \frac{1}{\omega C})}$ $\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2} \stackrel{\text{Total}}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}} \stackrel{\text{Total}}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}}$	$\left(\frac{1}{C}\right)^2\sin\left(\frac{1}{C}\right)^2$ [2]	$(\omega t + \phi)$ 設問 (8) : (l) は一定なので、	$\frac{\omega L - \frac{1}{\omega C}}{R}$	[2]

設問 (9): (答) $\frac{1}{2\pi\sqrt{LC}}$

[4]

*解説

設問 (1): 導体棒は速さ v_0 で運動し、空間に存在する磁束密度が B、導線レール の間隔が l より、求める電位 V_P は、

$$V_P = \mathbf{v_0} \mathbf{B} \mathbf{l}$$

設問 (2): スイッチを入れた直後において、コンデンサは同線と同等である。また、フレミングの左手の法則から、導体棒を流れる電流 I_l は正であり、 導体棒の抵抗値が R_l なので、

$$I_l = \frac{v_0 B l}{R}$$

設問 (3): 誘導起電力は時間によらず一定であるので、直流電流源に置き換えられ、スイッチ S_1 のみを閉じた時の等価回路は以下のようになる。

続き: t=0の時、設問(2)から、抵抗Rには電流が流れないので、

$$I_l = I_1 = \frac{V_p}{R} = \frac{v_0 B l}{R}$$

また、 $t \to \infty$ の時、コンデンサは開放扱いになるので、 $I_1 = 0$ であり、

$$I_l = \frac{V_p}{R + R_l} = \frac{v_0 B l}{R + R_l}$$

電流は滑らかに変動するので、これらの条件を満たすグラフはそれぞれ、 I_l :(\uparrow) I_1 :(\downarrow)

設問 (4): (a) x 座標が Δx 進むごとに $\frac{\Delta d}{n}$ 極板間距離が短くなる。よって $k\Delta x$ では、

$$d + \Delta d - \frac{\Delta d}{n}k = d + \Delta d\left(1 - \frac{k}{n}\right)$$

(b) $C=arepsilonrac{S}{d}$ から、面積 S は $S=a\Delta x$ 、距離 d は、(a) の式、誘電率 arepsilon は、 $arepsilon=arepsilon_0$ より、並列合成を行うと、

$$\sum_{k=1}^{n} \varepsilon_0 \frac{a\Delta x}{d + \Delta d \left(1 - \frac{k}{n}\right)}$$

(c) 区分求積の式から、 $n \to \infty$ として $\sum_{k=1}^n \varepsilon_0 \frac{a\Delta x}{d + \Delta d\left(1 - \frac{k}{n}\right)}$ を積分に変形して合成容量を求めると、

$$\lim_{n \to \infty} \sum_{k=1}^{n} \varepsilon_0 \frac{a}{d + \Delta d \left(1 - \frac{k}{n}\right)} \Delta x = \int_0^1 \varepsilon_0 \frac{a}{d + \Delta d (1 - x)} dx$$

$$= \varepsilon_0 a \left(-\frac{1}{\Delta d}\right) \left[\log\{d + \Delta d (1 - x)\}\right]_0^1$$

$$= \frac{\varepsilon_0 a}{\Delta d} \log\left(1 + \frac{\Delta d}{d}\right).$$

設問(5): (d) 円形 1 巻きコイル内の磁界 H の公式から、

$$H = \frac{I_2}{2r}$$

(e) 磁東 Φ は、磁界 H に透磁率 μ と、面積 A をかけたものであるので、

$$\Phi = \mu H A = \mu A 2r I_2$$

(f) (e) の式から、 $\frac{\mu A}{2r}$ は定数であるので、 I_2 が ΔI_2 変化すると、磁束 Φ は $\Delta \Phi$ 変化し、この関係は次の式で表される。

$$\Delta \Phi = rac{\mu A}{2r} \Delta I_2$$

(g) (f) を両辺 Δt で割ると、

$$\frac{\Delta\Phi}{\Delta t} = \frac{\mu A}{2r} \frac{\Delta I_2}{\Delta t}$$

相互インダクタンスは、コイル 2 に電流を流した時のコイル 1 の磁束変化について考えるので、両辺にコイル 1 の巻き数 N_1 をかけて、

$$N_1 \frac{\Delta \Phi}{\Delta t} = \frac{\mu A N_1}{2r} \frac{\Delta I_2}{\Delta t}$$

これは、ファラデーの電磁誘導の法則の式を表している。したがって、 $\frac{\Delta I_2}{\Delta t}$ の係数が相互インダクタンス M であり、

$$M = \frac{\mu A N_1}{2r}$$

設問(6): スイッチを切って十分時間が経過したとき、コンデンサに蓄えられた 電荷は全て抵抗でのジュール熱に変換される。したがって、

$$Q = \mathbf{0}$$

- 設問 (7): t=0 では、コイルには電流は流れないので $I_2=0$ であり、 $t\to\infty$ では、コイルは導線として振る舞うものの、コイルやコンデンサに蓄えられていたエネルギーは全てジュール熱に変換される。よって、コイルにはエネルギーが蓄えられておらず、 $I_2=0$ である。また、ジュール熱が発生するには、ある時刻において電流が流れる必要があるので、これらの条件を満たす選択肢は、 (\mathbf{r}) のみである。
- 設問 (8): (h) コイルの電圧 V_1 (図の矢印の始点に対する終点の電位が正) は、

$$V_L = L \frac{dI}{dt} = I_0 \omega L \cos{(\omega t + \phi)}$$

(i) コンデンサには $Q = \int_0^t I(t')dt'$ の電荷が蓄えられているので、

$$Q = \int_0^t I_0 \sin(\omega t' + \phi) dt = -\frac{I_0}{\omega} \cos(\omega t + \phi)$$

(j) (i) から、コンデンサの電圧 V_C は、

$$V_C = \frac{Q}{C} = -\frac{I_0}{\omega C} \cos(\omega t + \phi)$$

これらとオームの法則を用いて、求める交流電源の電圧 $V_0 \sin \omega t$ は、

$$\begin{split} V_0 \sin \omega t &= V_R + V_L + V_C \\ &= I_0 R \sin \left(\omega t + \phi\right) + I_0 \omega L \cos \left(\omega t + \phi\right) - \frac{I_0}{\omega C} \cos \left(\omega t + \phi\right) \\ &= I_0 \left\{ R \sin \left(\omega t + \phi\right) + \left(\omega L - \frac{1}{\omega C}\right) \cos \left(\omega t + \phi\right) \right\} \end{split}$$

続き: ここで、電流と電圧の位相差は Φ と定義したので、整合を取るために、 偏角を Φ と置き換えて上式を合成すると、

$$V_0 \sin \omega t = I_0 \sqrt{R^2 + \left(\omega L - rac{1}{\omega C}
ight)^2} \sin \left(\omega t + \phi
ight)$$

(k) (j) から、電流の振幅と電圧の振幅の関係は、 \sin の振動項を無視して、

$$V_0 = I_0 \sqrt{R^2 + \left(\omega L - rac{1}{\omega C}
ight)^2}$$

なお、この式から合成インピーダンスの大きさは、 $\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$ である。

また位相差 ϕ は、位置ベクトル $(R, \omega L - \frac{1}{\omega C})$ と x 軸との成す角であるので、

$$an \phi = rac{\omega L - rac{1}{\omega C}}{R}$$

設問 (9): * 解答参照