Definition

Let $g : \mathbb{R} \to \mathbb{R}$, then p is a **fixed point** of g if g(p) = p.

Fixed point

Example (Fixed point and root)

Suppose $\alpha \neq 0$. Show that p is a root of f(x) iff p is a fixed point of $g(x) := x - \alpha f(x)$

Example (Fixed point)

Find the fixed point(s) of $g(x) = x^2 - 2$.

Solution. p is a fixed point of g if $p = g(p) = p^2 - 2$. Solve for p to get p = 2, -1.

Fixed point theorem

Theorem (Fixed point theorem)

- 1. If $g \in C[a, b]$ and $a \le g(x) \le b$ for all $x \in [a, b]$, then g has at least one fixed point in [a, b].
- 2. If, in addition, g' exists in [a, b], and $\exists k < 1$ such that $|g'(x)| \le k < 1$ for all x, then g has a unique fixed point in [a, b].

Fixed point theorem

Proof.

- 1. If g(a) = a or g(b) = b, then done. Otherwise, g(a) > a and g(b) < b. Define f(x) = x g(x), then f(a) = a g(a) < 0, and f(b) = b g(b) > 0. By IVT and f is continuous, $\exists p \in (a,b)$ s.t. f(p) = 0, i.e., p g(p) = 0.
- 2. If $\exists p, q \in [a, b]$ are two distinct fixed points of g, then $\exists \xi \in (p, q)$ s.t.

$$1 = \frac{p-q}{p-q} = \left|\frac{g(p)-g(q)}{p-q}\right| = |g'(\xi)| \le k < 1$$

by MVT. Contradiction.

Example (Application of Fixed Point Theorem) $g(x) = \frac{x^2-1}{3}$ has a unique fixed point in [-1,1].

Proof.

First we need show $g(x) \in [-1,1]$, $\forall x \in [-1,1]$. Find the max and min values of g as $-\frac{1}{3}$ and 0 (Hint: find critical points of g first). So $g(x) \in [-\frac{1}{3},0] \subset [-1,1]$.

Also $|g'(x)| = |\frac{2x}{3}| \le \frac{2}{3} < 1$, $\forall x \in [-1, 1]$, so g has unique fixed point in [-1, 1] by FPT.

Remark: We can solve for this fixed point: $p = g(p) = \frac{p^2 - 1}{3} \Longrightarrow p = \frac{3 - \sqrt{13}}{2}$.

Example (Fixed Point Theorem – Failed Case 1)

 $g(x) = \frac{x^2-1}{3}$ has a unique fixed point in [3,4]. But we can't use FPT to show this.

Remark: Note that there is a unique fixed point in [3,4] $(p=\frac{3+\sqrt{13}}{2})$, but $g(4)=5\notin[3,4]$, and g'(4)=8/3>1 so we cannot apply FPT here.

From this example, we know FPT provides a *sufficient but not necessary* condition.

Example (Fixed Point Theorem – Failed Case 1) $g(x) = \frac{x^2-1}{3}$ has a unique fixed point in [3,4]. But we can't use FPT to show this.

Example (Fixed Point Theorem - Failed Case 2)

We can use FPT to show that $g(x) = 3^{-x}$ must have FP on [0, 1], but we can't use FPT to show if it's unique (even though the FP on [0, 1] is unique in this example).

Solution. $g'(x) = (3^{-x})' = -3^{-x} \ln 3 < 0$, therefore g(x) is strictly decreasing on [0,1]. Also $g(0) = 3^0 = 1$ and $g(1) = 3^{-1}$, so $g(x) \in [0,1]$, $\forall x \in [0,1]$. So a FP exists by FPT.

However, $g'(0) = -\ln 3 \approx -1.098$, so we do not have |g'(x)| < 1 over [0,1]. Hence FPT does not apply.

Nevertheless, the FP must be unique since g strictly decreases and intercepts with y=x line only once.

Example (Fixed Point Theorem – Failed Case 2)

We can use FPT to show that $g(x) = 3^{-x}$ must have FP on [0, 1], but we can't use FPT to show if it's unique (even though the FP on [0, 1] is unique in this example).

We now introduce a method to find a fixed point of a *continuous* function g.

Fixed point iteration:

Start with an initial guess p_0 , recursively define a sequence p_n by

$$p_{n+1}=g(p_n)$$

If $p_n \to p$, then

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g(\lim_{n \to \infty} p_{n-1}) = g(p)$$

i.e., the limit of p_n is a fixed point of g.

Example trajectories of fixed point iteration:

Fixed Point Iteration Algorithm:

- ▶ **Input:** initial p_0 , tolerence ϵ_{tol} , max iteration N_{max} . Set iteration counter N = 1.
- ▶ While $N \leq N_{\text{max}}$, do:
 - 1. Set $p = g(p_0)$ (update p_N to p_{N+1})
 - 2. If $|p p_0| < \epsilon_{\text{tol}}$, then STOP
 - 3. Set $N \leftarrow N + 1$
 - 4. Set $p_0 = p$ (prepare p_N for the next iteration)
- ▶ **Output:** If $N \ge N_{\text{max}}$, print("Max iteration reached."). Return p.

FPI for root-finding

We can also use FPI to find the root of a function f:

- 1. Determine a function g, such that p = g(p) iff f(p) = 0.1
- 2. Apply FPI to g and find FP p.

 $^{{}^{1}}$ We can use \Longrightarrow but we may miss some roots of f.

Example (FPI algorithm for root-finding)

Find a root of $f(x) = x^3 + 4x^2 - 10$ using FPI.

Solution. First notice that

$$x^{3} + 4x^{2} - 10 = 0 \iff 4x^{2} = 10 - x^{3}$$

$$\iff x^{2} = \frac{10 - x^{3}}{4}$$

$$\iff x = \pm \sqrt{\frac{10 - x^{3}}{4}}$$

$$\iff x^{2} = \frac{10 - 4x^{2}}{x}$$

$$\iff \dots$$

Example (FPI algorithm for root-finding)

Find a root of $f(x) = x^3 + 4x^2 - 10$ using FPI.

Solution. So we can define several *g*:

$$g_1(x) = x - (x^3 + 4x^2 - 10)$$

$$g_2(x) = \sqrt{\frac{10}{x} - 4x}$$

$$g_3(x) = \frac{10 - x^3}{4}$$

$$g_4(x) = \sqrt{\frac{10}{4 + x}}$$

$$g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Which g to choose? – All these g have the same FP p. But g_3, g_4, g_5 converge (g_5 fastest) while g_1, g_2 do not.

Convergence of FPI algorithm

Theorem (Convergence of FPI Algorithm)

Suppose $g \in C[a, b]$ s.t. $g(x) \in [a, b]$, $\forall x \in [a, b]$. If $\exists k \in (0, 1)$ s.t. $|g'(x)| \le k$, $\forall x \in (a, b)$, then $\{p_n\}$ generated by FPI algorithm converges to the unique FP of g(x) on [a, b].

Proof.

 $g(x) \in [a, b]$ and $|g'(x)| \le k < 1$, $\forall x \in [a, b] \Longrightarrow \exists !$ FP p on [a, b] by FPT. Moreover, $\exists \xi(p_{n-1})$ between p and p_{n-1} s.t.

$$|p_n-p|=|g(p_{n-1})-g(p)|=|g'(\xi(p_{n-1}))||p_{n-1}-p|\leq k|p_{n-1}-p|$$

Apply this inductively, we get

$$|p_n-p| \le k|p_{n-1}-p| \le k^2|p_{n-2}-p| \le \cdots \le k^n|p_0-p| \to 0$$
 since $k^n \to 0$ as $n \to \infty$.

Convergence rate of FPI algorithm

Corollary (Convergence rate of FPI Algorithm)

With the same conditions as above, we have for all $n \geq 1$

- $|p_n p| \le k^n \max\{p_0 a, b p_0\}$
- $|p_n p| \le \frac{k^n}{1-k} |p_1 p_0|$

Proof.

- 1. $|p_0 p| \le \max\{p_0 a, b p_0\}$. Then apply the proof above.
- 2. Apply the proof above to get $|p_{n+1}-p_n| \leq k^n |p_1-p_0|$. Then

$$|p_m - p_n| \le |p_1 - p_0| \sum_{i=0}^{m-n-1} k^{n+i} = \frac{1 - k^{m-n}}{1 - k} k^n |p_1 - p_0|$$

Let $m \to \infty$ to get the estimate.

Example (FPI algorithm for root-finding)

Find a root of $f(x) = x^3 + 4x^2 - 10$ using FPI algorithm.

Solution. Recall the functions *g* we defined:

$$g_1(x) = x - (x^3 + 4x^2 - 10)$$

$$g_2(x) = \sqrt{\frac{10}{x} - 4x}$$

$$g_3(x) = \frac{10 - x^3}{4}$$

$$g_4(x) = \sqrt{\frac{10}{4 + x}}$$

$$g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Apply the theorem above, check |g'(x)|, and explain why FPI algorithm converges with g_3, g_4, g_5 .

Fixed point iteration for root-finding

To find a good FPI algorithm for root-finding f(p) = 0, find a function g s.t.

- $ightharpoonup g(p) = p \Longrightarrow f(p) = 0$
- g is continuous, differentiable
- $|g'(x)| \le k \in (0,1)$, $\forall x$ with k as small as possible