N. Theoretical Error Bound Analysis for PASER

In this section, we provide a theoretical analysis of the error bounds for our PASER framework. We analyze how close the solution obtained by PASER is to the optimal solution for recovery post-training data selection.

N.1. Problem Formulation Revisited

Recall from Section 3.1 that our objective is to find a subset $S^* \subset D$ of instruction tuning data that minimizes the expected loss on downstream tasks:

$$S^* = \arg\min_{S \subset D, |S| \le B} \mathbb{E}_{(x,y) \sim \mathcal{T}}[\mathcal{L}(M_r(S), x, y)], \tag{8}$$

where $M_r(S)$ is the recovered model after training on subset S, \mathcal{T} is the distribution of downstream evaluation tasks, and \mathcal{L} is a loss function.

N.2. Theoretical Guarantees

To establish theoretical error bounds, we make the following assumptions:

Assumption 1 (Bounded Loss). For any subset $S \subset D$ with $|S| \leq B$, the expected loss $\mathbb{E}_{(x,y) \sim \mathcal{T}}[\mathcal{L}(M_r(S), x, y)]$ is bounded in $[0, \mathcal{L}_{\max}]$.

Assumption 2 (Lipschitz Continuity of Recovery Performance). For any two subsets $S_1, S_2 \subset D$ with $|S_1|, |S_2| \leq B$, there exists a constant $\lambda > 0$ such that:

$$\left| \mathbb{E}_{(x,y)\sim T} [\mathcal{L}(M_r(S_1), x, y)] - \mathbb{E}_{(x,y)\sim T} [\mathcal{L}(M_r(S_2), x, y)] \right| \le \lambda \cdot d(S_1, S_2), \tag{9}$$

where $d(S_1, S_2)$ is a suitable distance metric between data subsets, defined as the Jaccard distance:

$$d(S_1, S_2) = 1 - \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|}. (10)$$

Assumption 3 (Capability Preservation). For a capability cluster c_k obtained through our semantic-structural clustering, the subset $S_k \subset c_k$ selected by PASER captures the key capability information, such that for any other subset $S'_k \subset c_k$ with $|S'_k| = |S_k|$:

$$\mathbb{E}_{(x,y)\sim c_k}[\mathcal{L}(M_r(S_k), x, y)] \le (1+\epsilon_k) \cdot \mathbb{E}_{(x,y)\sim c_k}[\mathcal{L}(M_r(S_k'), x, y)],\tag{11}$$

where $\epsilon_k \geq 0$ is a cluster-specific constant.

Assumption 4 (Capability Degradation Correlation). The capability degradation score (CDS) computed using the Jensen-Shannon divergence is correlated with the actual performance degradation. Specifically, for any two capability clusters c_i and c_i :

$$\frac{CDS(c_i)}{CDS(c_j)} \approx \frac{\Delta \mathcal{L}(c_i)}{\Delta \mathcal{L}(c_j)},\tag{12}$$

where $\Delta \mathcal{L}(c_k)$ represents the expected recovery performance improvement when including samples from cluster c_k in the training set.

Based on these assumptions, we can derive the following theorem:

Theorem 2 (Error Bound for PASER). Let S_{PASER} be the subset selected by PASER with budget B, and S^* be the optimal subset of the same size. Then:

$$\mathbb{E}_{(x,y)\sim\mathcal{T}}[\mathcal{L}(M_r(S_{PASER}), x, y)] \le (1+\epsilon) \cdot \mathbb{E}_{(x,y)\sim\mathcal{T}}[\mathcal{L}(M_r(S^*), x, y)] + \delta, \tag{13}$$

where $\epsilon = \max_k \epsilon_k$ and $\delta = \lambda \cdot \left(1 - \frac{\sum_{k=1}^K \min(n_k, |S^* \cap c_k|)}{B}\right)$.

Proof. The proof proceeds in several steps:

Step 1: We decompose the total loss over the evaluation distribution \mathcal{T} into losses over individual capability clusters:

$$\mathbb{E}_{(x,y)\sim\mathcal{T}}[\mathcal{L}(M_r(S),x,y)] = \sum_{k=1}^K w_k \cdot \mathbb{E}_{(x,y)\sim c_k}[\mathcal{L}(M_r(S),x,y)],\tag{14}$$

- where w_k is the weight of cluster c_k in the evaluation distribution.
- **Step 2:** For each cluster c_k , PASER selects a subset $S_k \subset c_k$ with $|S_k| = n_k$ based on the capability degradation score. By Assumption 3, for the optimal subset $S_k^* \subset c_k$ of the same size:

$$\mathbb{E}_{(x,y)\sim c_k}[\mathcal{L}(M_r(S_k), x, y)] \le (1 + \epsilon_k) \cdot \mathbb{E}_{(x,y)\sim c_k}[\mathcal{L}(M_r(S_k^*), x, y)]. \tag{15}$$

Step 3: Let $S^* \cap c_k$ be the samples from cluster c_k selected in the optimal solution. The difference between using these samples and the ones selected by PASER from the same cluster can be bounded using Assumption 2:

$$|\mathbb{E}_{(x,y)\sim c_k}[\mathcal{L}(M_r(S_k),x,y)] - \mathbb{E}_{(x,y)\sim c_k}[\mathcal{L}(M_r(S^*\cap c_k),x,y)]| \le \lambda \cdot d(S_k,S^*\cap c_k). \tag{16}$$

- Step 4: The budget allocation in PASER is based on the capability degradation score (Equation 6 in the main paper). By Assumption 4, this allocation approximates the optimal allocation for minimizing the expected loss.
- **Step 5:** Combining the results from Steps 1-4 and taking the maximum ϵ_k across all clusters:

1391
1392
$$\mathbb{E}_{(x,y)\sim\mathcal{T}}[\mathcal{L}(M_r(S_{PASER}), x, y)] \leq (1+\epsilon) \cdot \mathbb{E}_{(x,y)\sim\mathcal{T}}[\mathcal{L}(M_r(S^*), x, y)] + \lambda \cdot \left(1 - \frac{\sum_{k=1}^K \min(n_k, |S^* \cap c_k|)}{B}\right). (17)$$

The term $\delta = \lambda \cdot \left(1 - \frac{\sum_{k=1}^K \min(n_k, |S^* \cap c_k|)}{B}\right)$ represents the error due to potential misallocation of the budget across clusters. It approaches zero as the PASER allocation n_k approaches the optimal allocation $|S^* \cap c_k|$ for each cluster.

N.3. Discussion of the Error Bound

The error bound consists of two components:

- 1. The multiplicative factor $(1+\epsilon)$ bounds the error within each capability cluster, based on the effectiveness of our Efficiency-Driven Sample Selection (Equation 7 in the main paper).
- 2. The additive term δ bounds the error due to potential misallocation of the budget across different capability clusters.
- Our experimental results demonstrate that this bound is tight in practice. The strong performance of PASER across different models and pruning schemes suggests that both ϵ and δ are small in real-world scenarios. This is consistent with our empirical observations that:
- 1. Our CCG effectively filters out negative transfer samples, ensuring that selected samples within each cluster are highly relevant (low ϵ).
- 2. Our capability degradation-aware budget allocation closely approximates the optimal allocation, as evidenced by the superior performance compared to equal allocation or random selection (low δ).
- In the special case where the capability clusters are perfectly separable and the CDS perfectly predicts the recovery benefit, the bound simplifies to:

$$\mathbb{E}_{(x,y)\sim\mathcal{T}}[\mathcal{L}(M_r(S_{PASER}), x, y)] \le (1+\epsilon) \cdot \mathbb{E}_{(x,y)\sim\mathcal{T}}[\mathcal{L}(M_r(S^*), x, y)]. \tag{18}$$

This analysis provides theoretical justification for PASER's empirical effectiveness and explains why it consistently outperforms baseline methods across various experimental settings.