Santa Claus Rally

Matéo Molinaro, Ryhan Chebrek, Julien Moury, Théo Domingues

Janvier 2025

Introduction

- Les régularités calendaires, comme l'effet du jour de la semaine et l'effet janvier, remettent en question l'efficience des marchés financiers.
- Rallye du Père Noël : Rendements plus élevés au cours des 5 derniers jours de bourse de décembre et des 2 premiers jours de janvier.
- Objectif de l'étude : Examiner l'existence du rallye du Père Noël dans les rendements boursiers américains de 2000 à 2021.

Méthodologie

- Données: Prix quotidiens des actions des indices SP 500 et NASDAQ (2000-2021).
- Définition du Rallye du Père Noël : Les 5 derniers jours de bourse de décembre et les 2 premiers jours de bourse de janvier.
- Tests statistiques :
 - Tests T pour comparer les moyennes.
 - Test de Mann-Whitney U pour une comparaison non paramétrique.
 - Régression OLS pour modéliser les rendements avec une variable binaire.

Analyse des Tests: T-Test et Mann-Whitney U

T-Test :

- Comparaison des moyennes des rendements.
- *H*₀ : Pas de différence entre les moyennes.
- Hypothèses : Normalité et homogénéité des variances.
- Problèmes: Asymétrie, kurtosis, et tailles d'échantillons inégales (154 vs 5382 jours).

• Mann-Whitney U :

- Test non paramétrique pour comparer les distributions.
- *H*₀ : Médianes identiques.
- Avantages : Pas besoin de normalité, robuste aux outliers.
- Problèmes : Sensible aux différences de distribution, déséquilibre des tailles (154 vs 5382 jours).

Analyse de régression OLS

Modèle :

$$R_t = \beta_0 + \beta_1 Santa Clauss Rally + \varepsilon_t$$

- R_t : Rendement journalier en pourcentage.
- SantaClaussRally: Variable binaire (1 pour les jours de rallye, 0 sinon).
- β_1 : Mesure le rendement moyen supplémentaire des jours de rallye.
- Résultats :
 - SP 500 : $\beta_1 = 0,080\%$, p = 0,431 (non significatif).
 - NASDAQ : $\beta_1=0,148\%$, p = 0,253 (non significatif).
- Problèmes avec l'OLS :
 - Déséquilibre important des données (154 jours de rallye contre 5382 jours restants) réduit la précision.
 - Autocorrélation potentielle des rendements journaliers non prise en compte.

Conclusion du papier

- Les jours de rallye du Père Noël présentent des rendements plus élevés, mais ils ne sont pas statistiquement significatifs.
- Les résultats sont cohérents à travers les indices, les sous-périodes(2000-2009 / 2010-2021) et les cycles économiques (expansion, récession)
- Conclusion : Le rallye du Père Noël n'existe pas sur le marché boursier américain (2000-2021).

Tests supplémentaires des hypothèses

- Test de Ljung-Box :
 - Hypothèses :
 - H₀ : Pas d'autocorrélation dans les résidus.
 - *H*₁ : Présence d'autocorrélation.
 - Observations :
 - Identifie la dépendance sérielle dans les rendements.
 - Peut indiquer une inadéquation du modèle.
- Test de Jarque-Bera :
 - Hypothèses :
 - *H*₀ : Les résidus suivent une distribution normale.
 - H₁: Les résidus s'écartent de la normalité.
 - Observations :
 - Vérifie l'asymétrie et la kurtosis.
 - L'hypothèse de normalité est cruciale pour les tests T.
- Test ARCH LM:
 - Hypothèses :
 - H₀ : Absence d'hétéroscédasticité.
 - H₁: Présence d'hétéroscédasticité.
 - Observations :
 - Détecte la volatilité variable dans le temps des résidus.
 - Crucial pour les séries temporelles financières.

Ajustements de White et HAC

- Erreurs standard robustes de White :
 - Ajuste pour l'hétéroscédasticité.
 - Garantit des inférences valides même en présence de variance non constante.
 - Applicable lorsque des effets ARCH sont présents.
- HAC (Newey-West) :
 - Corrige à la fois l'hétéroscédasticité et l'autocorrélation.
 - Essentiel pour les données temporelles avec dépendance sérielle.
 - Fournit des erreurs standard cohérentes.

Extension 1 : Déclinaisons du SCR sur la période de J.Patel et sur d'autres datasets

- Comparaison des périodes courtes et longues du SCR sur les indices US, australien et britannique
- ② Analyse de l'effet de taille dans le SCR sur les marchés US et UK
- Analyse du SCR entre catégories de pays, avec différentes périodes
 - Impact de la modification des timeseries sur 3 datasets
 (J. Patel, Nippani et Yahoo Finance)
- Identification des dates de ruptures de significativité du SCR par balayage

I - Extensions relatives au papier de J. Patel

- Motivation : Proposition de Patel (2021) d'explorer l'existence d'anomalies de marché sur différents ensembles de données et périodes.
- Premier objectif : Tester l'impact d'une modification de la durée du SCR sur les rendements boursiers :
 - Période courte : 5 derniers jours ouvrés de décembre.
 - Période longue : 7 avec les 2 premiers ouvrés de janvier.
- Deuxième objectif : Tester le SCR sur l'effet taille en comparant des indices de capitalisations différentes (Nippani & Shetty (2021)).
- Indices étudiés : S&P500, NASDAQ, FTSE, ASX (2000-2022) pour permettre la comparaison au marché américain.

I - Statistiques descriptives

Indice	Période	Moy.	E-t.	Skew.	Kurt.
S&P500	Longue	0.1063%	1.1228%	0.8781	5.2841
	Courte	0.0852%	0.8711%	1.5881	9.3293
NASDAQ	Longue	0.1806%	1.8983%	2.6584	21.7705
	Courte	0.0738%	1.2423%	2.7691	15.4801
FTSE	Longue	0.2482%	0.9357%	-0.0754	1.2961
	Courte	0.2321%	0.8108%	0.0322	2.2076
ASX	Longue	0.1622%	0.7742%	-0.3351	0.5910
	Courte	0.1786%	0.7190%	-0.3143	0.3518

- Rendements moyens sur 7 jours plus élevés, hormis pour l'Australie.
- Skewness néanmoins plus positif sur 5 jours par rapport à 7.
- *Les rendements du SCR sont systématiquement plus élevés qu'en dehors du SCR, davantage sur 7 jours.

Résultats des tests statistiques

Indice	Période	β_0	β_1	β_1 p-val	MWU p-val
S&P500	Longue	0.02671%	0.07961%	0.353	0.927
	Courte	0.02778%	0.05737%	0.483	0.838
NASDAQ	Longue	0.03274%	0.14784%	0.264	0.829
	Courte	0.03610%	0.03771%	0.740	0.267
FTSE	Longue	0.00203%	0.24613%	0.001**	0.002**
	Courte	0.00434%	0.22776%	0.002**	0.015*
ASX	Longue	0.01694%	0.14522%	0.024*	0.028*
	Courte	0.01778%	0.16086%	0.029*	0.032*

- Aucun des tests du SCR ne rend les indices américains significatifs.
- Présence du rally sur les principaux indices australien et britannique à 5%.
- La significativité s'améliore pour les périodes longues sur chaque indice.
- <u>Conclusion</u>: Influence positive des deux premiers jours de janvier sur le rally. Il sera plus robuste de considérer cette période dans la suite de l'analyse.

II - Statistiques Descriptives

Indice	Période	Moy.	E-t	Skew.	Kurt.
S&P500	SCR	0.1063%	1.1228%	0.8781	5.2841
	Non-SCR	0.0267%	1.2400%	-0.1822	10.9365
S&P400	SCR	0.0943%	1.2074%	0.3973	3.0233
	Non-SCR	0.0417%	1.3928%	-0.3922	9.0670
S&P600	SCR	0.0785%	1.3386%	0.4563	2.0542
	Non-SCR	0.0457%	1.4987%	-0.3136	6.5366
FTSE	SCR	0.2482%	0.9357%	-0.0754	1.2961
	Non-SCR	0.0020%	1.1881%	-0.1530	7.8343
FTMC	SCR	0.3301%	0.7642%	0.8981	4.2969
	Non-SCR	0.0205%	1.0776%	-0.3961	6.7615
FTSC	SCR	0.3074%	0.4422%	0.5798	3.0473
	Non-SCR	0.0106%	0.7763%	-1.1120	16.0519

- Rendements moyens SCR largement dépassant les jours non SCR.
- Amélioration nette du Skewness et du Kurtosis sur le SCR : dispersion plus concentrée et s'écartant vers la droite.

II - Résultats des tests statistiques

Indice	β_0	β_1	β_1 p-val	MWU p-val
S&P500	0.02671%	0.07961%	0.353	0.927
S&P400	0.04172%	0.05261%	0.643	0.877
S&P600	0.04567%	0.03284%	0.788	0.733
FTSE	0.00203%	0.24613%	0.001**	0.002**
FTMC	0.02047%	0.30959%	0.000**	0.000**
FTSC	0.01063%	0.29675%	0.000**	0.000**

Indices	$eta_{ extsf{0}}$	β_1	eta_1 p-val	MWU p-val
S&P600-S&P400	0.00395%	-0.01977%	0.483	0.646
S&P600-S&P500	0.01896%	-0.04677%	0.363	0.441
S&P400-S&P500	0.01501%	-0.0270%	0.47	0.445
FTSC-FTMC	-0.00937%	-0.02315%	0.516	0.490
FTSC-FTSE	0.01014%	0.03833%	0.489	0.509
FTMC-FTSE	0.01821%	0.0637%	0.1	0.101

 <u>Conclusion contrastée</u>: effet significatif du SCR pour nos indices anglais mais l'analyse global du SCR n'est pas systématique et présent à l'effet taille.

III - Analyse du SCR entre catégories de pays et avec différentes périodes (Nippani, Washer & Johnson (2015))

- Motivation : Tester l'impact du SCR dans un contexte international, en tenant compte de la culture dominante et de l'efficience des marchés actions locaux :
 - Pays à majorité chrétienne : États-Unis (3 indices), France, Royaume-Uni, Australie, Canada, Allemagne, Brésil, Mexique.
 - Pays à majorité non chrétienne : Japon, Indonésie, Inde, Hong Kong, Singapour, Corée du Sud, Taïwan, Chine.
- Objectif principal : Détecter l'anomalie liée au SCR de façon généralisée et identifier un éventuel effet comportemental influencé par les fêtes de fin d'année.
- Méthodologie :
 - Trois datasets utilisés :
 - **Dataset J.Patel** : Données sur la période 2000-2022 pour les pays étudiés.
 - Dataset Nippani & Washer (2015) : Données jusqu'en 2014.
 - Dataset complet : Données disponibles jusqu'en 2025, comparées avec celles de 2022.

A - Analyse du dataset J. Patel (2000-2021)

Indice	eta_1 p-val	MWU p-val
NASDAQ	0.264	0.829
S&P 500	0.353	0.927
Russell 2000	0.755	0.657
TSX	0.005**	0.012*
Mexican IPC	0.063	0.053
Bovespa	0.002**	0.001**
FTSE 100	0.001**	0.002**
DAX	0.156	0.143
CAC 40	0.220	0.245
ASX 200	0.024*	0.028*
Score	4/10	4/10

Indice	β_1 p-val	MWU p-val
Nikkei 225	0.229	0.253
HSI	0.193	0.087
SSE	0.035*	0.045*
STI	0.006**	0.001**
BSE SENSEX	0.002**	0.004**
IDX	0.002**	0.003**
TWSE	0.002**	0.005**
KOPSI	0.781	0.741
Score	5/8	5/8

Christian Based :

Score de 4 / 9 rallys significatifs à 5%.

Non-Christian Based :

Score de 5 / 9 rallys significatifs à 5%.

 Score global: 9/18 rallys avec une plus grande proportion de non christian based (62.5%)

B - Analyse du dataset Nippani, Washer & Johnson (départ ajusté - 2014)

Indice	β_1 p-val	MWU p-val
NASDAQ	0.000**	0.000**
S&P 500	0.000**	0.000**
Russell 2000	0.006**	0.006**
TSX	0.000**	0.000**
Mexican IPC	0.038*	0.025*
Bovespa	0.006**	0.001**
FTSE 100	0.000**	0.000**
DAX	0.017*	0.015*
CAC 40	0.001**	0.002**
ASX 200	0.000**	0.001**
Score	10/10	10/10

Indice	β_1 p-val	MWU p-val
Nikkei 225	0.135	0.155
HSI	0.014*	0.012*
SSE	0.044*	0.105
STI	0.000**	0.000**
BSE SENSEX	0.000**	0.000**
IDX	0.001**	0.003**
TWSE	0.005**	0.006**
KOPSI	0.525	0.351
Score	6/8	5/8

Christian Based :

Score de 10/10 rallys significatifs à 5%.

Non-Christian Based:

Score de 5.5/8 rallys significatifs à 5%.

• Score global moyen: 15,5/18 rallys avec une significativité parfaite en christian based.

C - Analyse du dataset Yahoo Finance (départ ajusté - fin 2022 / (2025))

Index	eta_1 p-val	MWU p-val
NASDAQ	0.003**	0.013*
INASDAQ	(0.003**)	(0.013*)
S&P 500	0.000**	0.000**
3&1 300	(0.000**)	(0.000**)
Russell 2000	0.043*	0.062
rtussen 2000	(0.026*)	(0.054)
TSX	0.000**	0.000**
13/((0.000**)	(0.000**)
Mexican IPC	0.044*	0.078
Wexicall II C	(0.114)	(0.023*)
Bovespa	0.002**	0.001**
Вотсара	(0.005**)	(0.000**)
FTSE 100	0.000**	0.000**
1 132 100	(0.000**)	(0.000**)
DAX	0.015*	0.015*
DAX	(0.016*)	(0.011*)
CAC 40	0.006**	0.012*
CAC 40	(0.006**)	(0.011*)
ASX 200	0.000**	0.001**
A3A 200	(0.000**)	(0.001**)
Score 2022	10/10	8/10
Score 2025	9/10	9/10

La de ca	0	NAVA/LL	
Index	eta_1 p-val	MWU p-val	
Nikkei 225	0.031*	0.037*	
WIRKEI 223	(0.027*)	(0.035*)	
HSI	0.012*	0.005**	
пэі	(0.005**)	(0.010*)	
SSE	0.043*	0.065	
33E	(0.064)	(0.052)	
STI	0.000**	0.000**	
311	(0.000**)	(0.000**)	
BSE SENSEX	0.000**	0.000**	
DOE SENSEA	(0.000**)	(0.000**)	
IDX	0.000**	0.000**	
IDA	(0.000**)	(0.000**)	
TWSE	0.007**	0.010*	
IVVSE	(0.010*)	(0.005**)	
KOPSI	0.887	0.921	
KUPSI	(0.967)	(0.844)	
Score 2022	7/8	6/8	
Score 2025	6/8	6/8	

- Score global moyen: 15.5/18 (2022) et 15/18 (2025) rallys significatifs à 5%.
- *Le Japon devient significatif avec 19 ans de données supplémentaires.

Conclusions de l'extension

- Non significativité de l'aspect culturel sur le SCR: Une plus grande significativité est observée pour les pays chrétiens, mais les pays non chrétiens montrent souvent de la significativité.
- Impact des données historiques: La significativité des résultats est davantage influencée par la disponibilité de données historiques passées et suffisantes que par l'inclusion des données récentes, qui influencent surtout la significativité par la performance moyenne observée des rendements.
- Hypothèse du marché efficient : Ces résultats remettent en question l'hypothèse du marché efficient (HME), en particulier sa forme faible.
 L'intégration des informations passées semble renforcer l'anomalie observée, contrairement aux résultats de J. Patel qui s'appuyait sur un échantillon limité.
- Exceptions notables : Des pays comme la Chine, le Brésil, le Royaume-Uni et l'Inde montrent que le SCR reste valide même après l'omission de nombreuses années et journées de rally, selon Nippani et Shetty (2021) sur les marchés post-libéralisation depuis 1979.
- Cas spécifique : La Corée du Sud ne valide jamais cette hypothèse, au contraire, sa significativité s'améliore avec des données récentes.

IV - Date de rupture du SCR et test de Chow

Objectif de l'analyse :

- Identifier les dates de départ d'échantillon à partir desquelles la significativité du coefficient β_1 disparaît dans les régressions OLS.
- Vérifier les changements structurels de significativité via des tests de Chow sur ces dates de rupture.

Méthodologie:

- Utilisation des datasets Yahoo Finance (donnée totale) sur les indices étudiés ((non) christian based).
- ② Balayage année par année et tests OLS sur β_1 jusqu'à dépassement du seuil de significativité (5%).
- Vérification des changements structurels avec le test de Chow et contrôle de la stationnarité via le test ADF.

IV - Résultats et conclusions

Indice	Rupture	(β_1) p-val	Chow p-val	RSS1	RSS2	n _{part1}	n _{part2}
NASDAQ	1979-02-02	0.059	0.153	0.11	2.06	2018	11579
S&P 500	1975-12-18	0.073	0.023*	1.98	1.48	12003	12368
Russell 2000	1989-09-09	0.053	0.613	0.07	1.65	505	8900
TSX	2009-06-20	0.150	0.347	0.75	0.33	7529	3902
Mexican IPC	1991-11-07	Ins. Data	Ins. Data	Ins. Data	Ins. Data	Ins. Data	Ins. Data
Bovespa	2004-04-24	0.097	0.000*	2.2	1.42	2721	5128
FTSE 100	2011-12-27	0.054	0.657	0.91	0.29	7070	3291
DAX	1998-12-27	0.071	0.459	0.42	1.34	2751	6610
CAC 40	1999-02-26	0.084	0.291	0.34	1.25	2241	6610
ASX 200	2010-11-18	0.130	0.525	0.43	0.32	4554	3567
Nikkei 225	1970-01-03	0.060	0.628	0.10	2.29	1224	13532
HSI	2011-12-25	0.051	0.536	1.92	0.53	6179	3206
SSE Composite	1991-12-19	Ins. Data	Ins. Data	Ins. Data	Ins. Data	Ins. Data	Ins. Data
STI	2013-12-20	0.071	0.232	1.04	0.18	6484	2766
BSE SENSEX	2010-06-27	0.054	0.087	1.40	1.00	3206	3574
IDX	2017-03-29	0.084	0.443	1.41	0.17	6592	1881
TWSE	2007-06-29	0.053	0.626	0.63	0.58	2456	4294
KOSPI	1996-12-10	Ins. Data	Ins. Data	Ins. Data	Ins. Data	Ins. Data	Ins. Data

- Indices avec changement structurel significatif: S&P 500: Rupture en 1975.
 Bovespa (Brésil): Rupture en 2004.
- Absence de rupture majeure : La majorité des indices n'ont pas montré de changement significatif.
- Limites: Hétéroscédasticité des résidus et données insuffisantes pour certains indices (e.g., IPC, SSE, KOSPI).

Extension 2 : Ajout de variables explicatives de marché

- **Objectif**: Identifier les variables sous-jacentes influençant les rendements de fin d'année.
- Méthodologie de recherche :
 - Exploration empirique de l'évolution des rendements.
 - Extension des modèles de régression linéaire.
- Univers d'analyse :
 - Régions :
 - États-Unis : S&P500, Nasdaq 100.
 - Europe: STOXX600, CAC40.
 - Période d'analyse : 31/12/1999 01/01/2022.

Exploration Empirique - Indices Américains

Figure: S&P 500

Rendements annuels : excluant les 2 premiers jours de l'année, les 5 derniers jours de l'année, ainsi que les 2 premiers jours de l'année suivante.

Rendements de la période du Santa Claus : 5 derniers + 2 premiers jours de l'année suivante.

Exploration Empirique - Indices Européens

Figure: STOXX 600

Rendements annuels : excluant les 2 premiers jours de l'année, les 5 derniers jours de l'année, ainsi que les 2 premiers jours de l'année suivante.

Rendements de la période du Santa Claus : 5 derniers + 2 premiers jours de l'année suivante.

Hypothèses et Variables Explicatives

- Interprétation : Existance d'une relation entre les rendements de la période du Santa Claus Rally et l'évolution du marché sur l'année
- Hypothèse principale : Effet comportemental lié à l'optimisme des investisseurs, motivé par des anticipations positives pour l'année suivante.
- Variables incluses dans l'analyse économétrique :
 - **1** Volatilité implicite (VIX) : Mesure d'incertitude.
 - Max Drawdown (Max DD): Indicateur de pertes maximales annuelles.
 - Taux de change EUR/USD : Impact comparatif entre les deux régions.

Extension des modèles de régression linéaire : Méthodologie et Modèles.

Modèle 1 :

$$r_t = \beta_0 + \beta_1 D_t + \beta_2 Var_t + \epsilon_t$$

- Contrôler l'impact de cette variable sur les rendements et analyser son effet sur la significativité du Santa Claus Rally.
- Modèle 2 :

$$r_t = \beta_0 + \beta_1 D_t + \beta_2 Var_t D_t + \epsilon_t$$

• Tester l'effet de la variable sur les rendements du Santa Claus Rally.

Tables des résultats US : S&P 500

Variable	β_0	β_1	β_2	β_2	β_2
	(Constante)	(Santa Claus)	(VIX)	(Max DD)	(EUR/USD)
Santa Claus seul	0.0003	0.0008 (0.369)	-	-	-
	(0.0093)				
VIX	0.0006 (0.000)	0.0014 (0.025)	-0.1183 (0.000)	-	-
Max DD	-0.0003 (0.496)	0.0009 (0.279)	-	-0.0028 (0.247)	-
EUR/USD	0.0003 (0.094)	0.0007 (0.428)	-	-	0.1361 (0.001)

Table: Résultats des régressions pour le S&P 500 (1er modèle)

Variable	β_0	β_1	β_1	β_1
	(Constante)	(SCR Dummy	(SCR Dummy	(SCR Dummy
		X VIX)	X Max DD)	X EUR/USD)
SCR Dummy * Maxdd	0.0003 (0.086)	-	-0.0067 (0.050)	-
SCR Dummy * VIX	0.0003 (0.044)	-0.1207 (0.000)	-	-
SCR Dummy * EUR/USD	0.0003 (0.063)	-	-	-0.0906 (0.640)

Table: Résultats des régressions pour le S&P 500 (2nd modèle)

Tables des résultats Europe : Stoxx600

Variable	β_0	β_1	β_2	β_2	β_2
	(Constante)	(Santa Claus)	(VIX)	(Max DD)	(EUR/USD)
Santa Claus seul	0.0001 (0.399)	0.0025 (0.009)	-	-	-
+ VIX	0.0003 (0.018)	0.0031 (0.000)	-0.0703 (0.000)	-	-
+ Max DD	-0.0004 (0.496)	0.0028 (0.006)	-	-0.0024 (0.404)	-
+ EUR/USD	0.0001 (0.410)	0.0026 (0.009)	-	-	0.1918 (0.000)

Table: Résultats des régressions pour le Stoxx600 (1er modèle)

Variable	β_0	β_1	β_1	β_1
	(Constante)	(SCR Dummy	(SCR Dummy	(SCR Dummy
		X VIX)	X Max DD)	X EUR/USD)
SCR Dummy X Max DD	0.0001 (0.483)	-	-0.0155 (0.003)	-
SCR Dummy X VIX	0.0002 (0.165)	-0.0715 (0.000)	-	-
SCR Dummy X EUR/USD	0.0002 (0.217)	-	-	-0.6198 (0.066)

Table: Résultats des régressions pour le Stoxx600 (2nd modèle)

Impact des Variables et Conclusion Comportementale

VIX:

- Augmente la significativité de l'effet Santa Claus.
- Relation négative : Plus l'incertitude (VIX) est élevée, plus l'excédent de rendement est réduit.
- Interprétation : Réduction de l'optimisme en période d'incertitude élevée.

• Max Drawdown :

- Impact limité dans le modèle initial pour les indices américains, mais plus concluant pour les indices européens.
- Relation positive dans le second modèle: Optimisme accru après des points bas marqués.
- Interprétation : Les expériences de marché au cours de l'année influencent l'optimisme en fin d'année.

Taux de change EUR/USD :

- Impact non significatif dans cette analyse.
- Potentiel pour des explorations futures avec des ajustements méthodologiques.

Extension 3 : Santa Claus Rally & December Rally : Approche factorielle internationale

- Constat: La majorité des papiers Santa Claus Rally étudie des indices
- Question/Extension: Analyse du SCR et DR sur des facteurs: MKT, SMB, HML FF, HML Devil et UMD

Données: AQR

• Période: 1998-2023

Plan

- SCR et DR: Analyse de la proportion d'années positives (moyenne tous pays)
- SCR et DR: Analyse de la proportion d'années positives (par pays)
- Significativité et Taille d'échantillon
- Conclusion

1) SCR et DR: Rendements en excès

		Mea	n excess o	laily returi	ı (SCR days	s - non-SC	R days) across	time		
	MKT	country	SMB	country	HML FF	country	HML Devil	country	UMD	country
average	0.24%		0.11%		0.04%		0.08%		-0.07%	
median	0.23%		0.09%		0.03%		0.07%		-0.07%	
min	0.09%	USA	-0.07%	IRL	-0.04%	AUS	-0.04%	JPN	-0.31%	CAN
max	0.50%	GRC	0.33%	CAN	0.19%	ISR	0.19%	NOR	0.09%	
		Me	an excess	daily retu	rn (DR days	s - non-DR	days) across	time		
	MKT	country	SMB	country	HML FF	country	HML Devil	country	UMD	country
average	0.11%		0.01%		0.02%		0.02%		0.02%	
median	0.11%		0.01%		0.02%		0.00%		0.02%	
min	0.02%	JPN	-0.08%	PRT	-0.04%	DNK	-0.02%	DNK	-0.06%	CAN
max	0.16%	DNK	0.09%	CAN	0.09%	HKG	0.08%	HKG	0.10%	JPN

Table 26: Mean excess daily returns across time

- Tous les facteurs affichent un excès de rendement plus élevé pendant le SCR, à l'exception de UMD.
- L'excès de rendement du facteur MKT est deux fois plus élevé que pendant le DR, pour une période quatre fois plus courte.

1) SCR et DR: Analyse de la proportion d'années positives (moyenne tous pays)

Proportion of positive (without significance) SCR years									
	MKT	SMB	HML FF	HMF Devil	UMD				
average	75.59%	71.88%	59.81%	60.07%	40.98%				
median	76.92%	69.23%	57.69%	57.69%	42.31%				
min	61.53%	42.31%	42.31%	34.61%	23.07%				
max	88.46%	96.15%	80.76%	88.41%	61.53%				

Prop	Proportion of positive (without significance) DR years									
	MKT	SMB	HML FF	HMF Devil	UMD					
average	68.96%	57.69%	59.94%	58.09%	57.29%					
median	69.23%	57.69%	57.69%	57.69%	57.69%					
min	53.84%	30.76%	42.31%	42.31%	38.46%					
max	80.76%	80.76%	76.92%	76.92%	73.07%					

1) SCR et DR: Analyse de la proportion d'années positives significatives (moyenne tous pays)

Proportion of positive (significant) SCR years									
MKT SMB HML FF HMF Devil UMD									
average	8.48%	11.27%	3.18%	4.90%	3.05%				
median	7.69%	11.53%	0%	3.84%	3.84%				
min	0.00%	0%	0%	0%	0.00%				
max	23.07%	30.76%	15.38%	15.38%	15.38%				

ı	Proportion of positive (significant) DR years								
	MKT	SMB	HML FF	HMF Devil	UMD				
average	4.24%	3.18%	4.64%	4.64%	4.64%				
median	3.84%	3.84%	3.84%	3.84%	3.84%				
min	0.00%	0.00%	0.00%	0.00%	0.00%				
max	11.53%	11.53%	19.23%	15.38%	19.23%				

2) **SCR** et DR: Analyse de la proportion d'années positives et significatives (par pays)

	To	p and Wo	rst 5 country/regi	ion by pro	portion of positive	SCR yea	rs	
	MKT		SMB		HML FF		UMD	
	country/region		country/region		country/region		country/region	
top 5	NZL	88.46%	CAN	96.15%	USA	80.76%	JPN	61.53%
	Pacific	84.61%	FIN	84.61%	North America	76.92%	Pacific	57.69%
	DNK	84.61%	Global	84.61%	ISR	73.07%	ESP	57.69%
	GBR	84.61%	SWE	84.61%	Global	73.07%	GRC	57.69%
	Global Ex USA	80.76%	NLD	84.61%	NLD	73.07%	SGP	53.84%
worst 5	ISR	61.53%	IRL	42.31%	AUT	42.31%	NOR	23.07%
	IRL	65.38%	PRT	53.84%	CHE	42.31%	BEL	23.07%
	North America	69.23%	ISR	61.53%	SWE	46.15%	North America	26.92%
	USA	69.23%	DNK	61.53%	DNK	50.00%	USA	26.92%
	JPN	69.23%	GBR	61.53%	BEL	50.00%	Global	30.76%

Table 3: Top and Worst 5 country/region by proportion of positive SCR years

	Top an	d Worst 5	country/region by	proportio	on of positive signi	ficant SC	R years	
	MKT		SMB		HML FF		UMD	
	country/region		country/region		country/region		country/region	
top 5	Global Ex USA	23.07%	CAN	30.76%	North America	15.38%	Global Ex USA	15.38%
	NOR	19.23%	Global Ex USA	23.07%	ISR	11.53%	Pacific	11.53%
	GRC	19.23%	FRA	19.23%	HKG	11.53%	ESP	7.69%
	DNK	15.38%	NOR	19.23%	USA	11.53%	FRA	7.69%
	AUS	11.53%	ITA	15.38%	Global	7.69%	AUS	7.69%
worst 5	USA	0.00%	NZL	0.00%	AUS	0.00%	ISR	0.00%
	FIN	0.00%	BEL	3.84%	IRL	0.00%	CAN	0.00%
	BEL	0.00%	DNK	3.84%	AUT	0.00%	HKG	0.00%
	HKG	3.84%	PRT	3.84%	FIN	0.00%	IRL	0.00%
	SWE	3.84%	CHE	7.69%	JPN	0.00%	AUT	0.00%

Table 4: Top and Worst 5 country/region by proportion of positive significant SCR years

2) SCR et **DR**: Analyse de la proportion d'années positives et significatives (par pays)

	Т	op and W	orst 5 country/res	gion by pre	oportion of positiv	re DR year	rs	
	MKT		SMB		HML FF		UMD	
	country/region		country/region		country/region		country/region	
top 5	BEL	80.76%	CAN	80.76%	AUS	76.92%	GRC	76.92%
	AUT	80.76%	SWE	73.07%	USA	76.92%	Pacific	69.23%
	DNK	80.76%	FRA	69.23%	HKG	73.07%	SWE	69.23%
	PRT	80.76%	Global	69.23%	North America	73.07%	JPN	69.23%
	GBR	73.07%	NLD	69.23%	USA	73.07%	GBR	65.38%
worst 5	JPN	53.84%	PRT	30.76%	FIN	42.31%	NOR	38.46%
	Pacific	57.69%	ISR	42.31%	DNK	50.00%	AUT	42.31%
	Global	57.69%	GRC	42.31%	BEL	50.00%	BEL	50.00%
	North America	61.53%	AUT	42.31%	Europe	50.00%	FIN	50.00%
	USA	61.53%	AUS	42.31%	FRA	50.00%	AUS	53.84%

Table 5: Top and Worst 5 country/region by proportion of positive DR years

Top and Worst 5 country/region by proportion of positive significant DR years								
	MKT		SMB		HML FF		UMD	
	country/region		country/region		country/region		country/region	
top 5	ISR	11.53%	Global	11.53%	USA	19.23%	Global Ex USA	19.23%
	Europe	11.53%	ISR	7.69%	North America	15.38%	JPN	11.53%
	AUT	11.53%	North America	7.69%	Global Ex USA	15.38%	ESP	11.53%
	BEL	7.69%	CAN	7.69%	Global	15.38%	Europe	11.53%
	PRT	7.69%	SWE	7.69%	HKG	7.69%	Pacific	7.69%
worst 5	Pacific	0.00%	Pacific	0.00%	ISR	0.00%	ISR	0.00%
	North America	0.00%	BEL	0.00%	CHE	0.00%	BEL	0.00%
	CHE	0.00%	CHE	0.00%	DNK	0.00%	FIN	0.00%
	USA	0.00%	DNK	0.00%	FIN	0.00%	HKG	0.00%
	SWE	0.00%	GBR	0.00%	FRA	0.00%	IRL	0.00%

Table 6: Top and Worst 5 country/region by proportion of positive significant DR years

3) Significativité et Taille d'échantillon

Conclusion (1)

- Proportion (sans significativité) de SCR plus importante que DR pour tous les facteurs (sauf HML FF: -0.13 %). Le facteur MKT présente la plus forte proportion d'années positives (75,59 %), suivi du facteur SMB (71,88 %). Le facteur UMD se classe en dessous de 50 %, avec 40,98 %.
- Le Canada (CAN) se distingue comme le pays ayant la plus forte proportion d'années positives avec 96,15 % pour le facteur SMB ainsi que pour le SCR et le DR. En analysant la proportion significative positive, le Canada affiche la proportion la plus élevée pour le SR avec 30,76 % (toujours pour le facteur SMB), mais Global USA et USA prennent le relais pour le DR, respectivement pour les facteurs UMD et HML FF, avec une proportion commune de 19,23 %.

Conclusion (2)

- Pour SCR, significativité (p-valeurs corrigées) de la proportion diminue en moyenne de 12x selon les facteurs (14,5x DR). Les facteurs MKT et SMB restent en tête (avec SMB en première position) avec une proportion significative positive de respectivement 8,48 % et 11,27 %.
- Pour conclure, le SCR est présent à l'échelle internationale pour certains facteurs (MKT, SMB, HML FF & Devil) et est particulièrement fort dans certains pays comme le Canada (CAN), la Nouvelle-Zélande (NZL), les États-Unis (USA) et l'Amérique du Nord, atteignant près de 97 % pour le facteur SMB (CAN). Malheureusement, lorsque nous évaluons la significativité statistique du SCR, les résultats diminuent fortement. Une explication possible pourrait être la taille d'échantillon disproportionnée entre les jours SCR et les jours restants (97,3 % de l'échantillon). Néanmoins, le Canada (CAN) présente une proportion significative positive de l'effet SCR allant jusqu'à 30,76 % pour le facteur SMB.