HuBERT: Self-Supervised Speech Representation

건국대학교 컴퓨터공학고

김동환

Abstract

문제

음성을 Self-supervised 방식으로 학습할때 문제

- 1. 같은 입력 발화에 여러 음성 단위가 포함
- 2. pre-training 단계에서는 입력 소리 단위의 사전의 부재
- 3. 소리 단위는 명백한 부분 없이 가변 길이를 가짐

해결

Facebook AI의 Hidden-Unit BERT (HuBERT) 모델

offliine clustering를 이용하여 target labels 생성

Introduction

HuBERT

연구 개요

특정 시점의 X 입력이 들어왔을때, Masked 영역을 알맞게 clustering 하는 것

Introduction

HuBERT

빨간점선: firstiteration 회색실선: afterfirstiteration

HuBERT의 아키텍쳐

T 시점의 발화를 X Z=h(X), Z는 clustering 결과 h는 clustering model

$$h(X) = Z = [z_1, \cdots, z_T]$$

고려해야 할 점

어떻게 masking 할 것인가

각 시점 입력의 p%를 택해 l 만큼 마스킹

Loss를 어떻게 측정할 것인가

마스킹 처리 된 부분과 처리되지 않은 부분을 각각 CrossEntropy

$$L_m(f; X, M, Z) = \sum_{t \in M} \log p_f(z_t \mid \tilde{X}, t),$$

고려해야 할 점

$$L = \alpha L_m + (1 - \alpha)L_u$$

teacher	С	PNMI	l	other WER $\alpha = 0.5$	$\alpha = 0.0$
Chenone (supervised top-line)	8976	0.809	10.38	9.16	9.79
K-means on MFCC	50	0.227	18.68	31.07	94.60
	100	0.243	17.86	29.57	96.37
	500	0.276	18.40	33.42	97.66
K-means on BASE-it1-layer6	500	0.637 0.704	11.91	13.47	23.29
K-means on BASE-it2-layer9	500		10.75	11.59	13.79

Loss를 어떻게 측정할 것인가

마스킹 처리 된 부분과 처리되지 않은 부분을 각각 CrossEntropy

$$L_m(f; X, M, Z) = \sum_{t \in M} \log p_f(z_t \mid \tilde{X}, t),$$

모델앙상블

$$L_m(f; X, \{Z^{(k)}\}_k, M) = \sum_{t \in M} \sum_k \log p_f^{(k)}(z_t^{(k)} \mid \tilde{X}, t)$$

teacher	WER
K-means {50,100} K-means {50,100,500}	17.81 17.56
Product K-means-0-100 Product K-means-1-100 Product K-means-2-100 Product K-means-{0,1,2}-100	19.26 17.64 18.46 16.73

Loss를 어떻게 측정할 것인가

마스킹 처리 된 부분과 처리되지 않은 부분을 각각 CrossEntropy

$$L_m(f; X, M, Z) = \sum_{t \in M} \log p_f(z_t \mid \tilde{X}, t),$$

Codeword의 확률분포

HuBERT

$$p_f^{(k)}(c \mid \tilde{X}, t) = \frac{\exp(\sin(A^{(k)}o_t, e_c)/\tau)}{\sum_{c'=1}^{C} \exp(\sin(A^{(k)}o_t, e_{c'})/\tau)}$$

Codeword의 확률분포

입력이주어졌을때 어느 codeword로매핑된확률

비교: Softmax
$$y_k = \frac{exp(a_k)}{\sum_{i=1}^n exp(a_i)}$$

Model	Unlabeled Data	LM	dev-clean	dev-other	test-clean	test-other
		10-min labeled				
DiscreteBERT [51]	LS-960	4-gram	15.7	24.1	16.3	25.2
wav2vec 2.0 BASE [6]	LS-960	4-gram	8.9	15.7	9.1	15.6
wav2vec 2.0 LARGE [6]	LL-60k	4-gram	6.3	9.8	6.6	10.3
wav2vec 2.0 Large 6	LL-60k	Transformer	4.6	7.9	4.8	8.2
HUBERT BASE	LS-960	4-gram	9.1	15.0	9.7	15.3
HUBERT LARGE	LL-60k	4-gram	6.1	9.4	6.6	10.1
HUBERT LARGE	LL-60k	Transformer	4.3	7.0	4.7	7.6
HUBERT X-LARGE	LL-60k	Transformer	4.4	6.1	4.6	6.8
		1-hour labeled				
DeCoAR 2.0 [50]	LS-960	4-gram	-	-	13.8	29.1
DiscreteBERT [51]	LS-960	4-gram	8.5	16.4	9.0	17.6
vav2vec 2.0 BASE [6]	LS-960	4-gram	5.0	10.8	5.5	11.3
wav2vec 2.0 LARGE [6]	LL-60k	Transformer	2.9	5.4	2.9	5.8
HUBERT BASE	LS-960	4-gram	5.6	10.9	6.1	11.3
HUBERT LARGE	LL-60k	Transformer	2.6	4.9	2.9	5.4
HUBERT X-LARGE	LL-60k	Transformer	2.6	4.2	2.8	4.8
		10-hour labeled				
SlimIPL [54]	LS-960	4-gram + Transformer	5.3	7.9	5.5	9.0
DeCoAR 2.0 [50]	LS-960	4-gram	-	-	5.4	13.3
DiscreteBERT [51]	LS-960	4-gram	5.3	13.2	5.9	14.1
wav2vec 2.0 BASE [6]	LS-960	4-gram	3.8	9.1	4.3	9.5
wav2vec 2.0 LARGE [6]	LL-60k	Transformer	2.4	4.8	2.6	4.9
HUBERT BASE	LS-960	4-gram	3.9	9.0	4.3	9.4
HUBERT LARGE	LL-60k	Transformer	2.2	4.3	2.4	4.6
HUBERT X-LARGE	LL-60k	Transformer	2.1	3.6	2.3	4.0
		100-hour labeled				
PL [12]	LL-60k	4-gram + Transformer	3.19	6.14	3.72	7.11
SlimIPL [54]	LS-860	4-gram + Transformer	2.2	4.6	2.7	5.2
Noisy Student [61]	LS-860	LSTM	3.9	8.8	4.2	8.6
DeCoAR 2.0 [50]	LS-960	4-gram	-	-	5.0	12.1
DiscreteBERT [51]	LS-960	4-gram	4.0	10.9	4.5	12.1
vav2vec 2.0 BASE [6]	LS-960	4-gram	2.7	7.9	3.4	8.0
wav2vec 2.0 LARGE [6]	LL-60k	Transformer	1.9	4.0	2.0	4.0
HUBERT BASE	LS-960	4-gram	2.7	7.8	3.4	8.1
HUBERT LARGE	LL-60k	Transformer	1.8	3.7	2.1	3.9
HUBERT X-LARGE	LL-60k	Transformer	1.7	3.0	1.9	3.5

적은 시간으로 작은 WER 보임 SOTA인 wav2vec 2.0, Discrete BERT를 능가

Q) DiscreteBERT와HuBERT는모두 Masking방법으로Pre-training하는데, 성능차이가심한이유?

정보손실을 피하기위해 모델의 입력으로 파형(waveform)사용, 반복적 개선(iterativerefinement)

HuBert

DiscreteBERT

적은 시간으로 작은 WER 보임 SOTA인 wav2vec 2.0, Discrete BERT를 능가

> Q) DiscreteBERT와HuBERT는모두 Masking방법으로Pre-training하는데, 성능차이가심한이유?

정보손실을피하기위해모델의입력으로 파형(waveform)사용, 반복적개선(iterativerefinement)

feature	C	PNMI (mean ± 1h	std) with K-means	Training Size = 100h
MFCC	100 500	$\begin{array}{c} 0.251 \pm 0.001 \\ 0.283 \pm 0.001 \end{array}$	$\begin{array}{c} 0.253 \pm 0.001 \\ 0.285 \pm 0.000 \end{array}$	$\begin{array}{c} 0.253 \pm 0.001 \\ 0.287 \pm 0.001 \end{array}$
BASE-it1-L6	100 500	$\begin{array}{c} 0.563 \pm 0.012 \\ 0.680 \pm 0.005 \end{array}$	$\begin{array}{c} 0.561 \pm 0.012 \\ 0.684 \pm 0.003 \end{array}$	$\begin{array}{c} 0.575 \pm 0.008 \\ 0.686 \pm 0.004 \end{array}$

TABLE IV: Stability of K-means as an unsupervised unit discovery algorithm with respect to different features, numbers of clusters, and training data sizes. PNMI stands for phonenormalized mutual information.

다양한 parameter에서 K-mean clustering의 표준편차가 안정적임

MFCC보다 HuBERT가 압도적인 PNMI Score

PNMI: Phone Normalized Mutual Information

Fig. 2: Quality of the cluster assignments obtained by running k-means clustering on features extracted from each transformer layer of the first and the second iteration BASE HuBERT models.

iteration을 반복할 수 수록 순도가 높아지는 것을 확인할 수 있음

Conclusion

방법

HuBERT는
Masking 처리된 음성 데이터를
받아 K-means clustering 하여
모델 학습

성능

다양한 Finetuning dataset에 대해 SOTA 능가

Clustering 할당 개선

이전 반복의 학습된 표현을 사용 하여 K-means clustering 개선

추후 연구과제

HuBERT의 훈련 절차를 단일 단 계로 개선