Communication in Distributed Systems

11 Blockchain

▲ Dr.-Ing. Michael Rademacher

Blockchain Overview

A major problem with blockchains

This Lecture: No guide for trading strategies of cryptocurrencies.

Definition

- A blockchain is a network based on a distributed transaction database for a tamper-proof storage of linear records
- The stored data is protected against unauthorized manipulation by cryptography, decentralization and game theory
- The innovation lies in the clever combination of these research areas and led for the first time to an efficient solution of the Double-Spending-Problem

Definition

- Blockchains make it possible to dispense intermediate instances and significantly reduce trust problems for transactions
- They offer very good protection against manipulation and are therefore highly resistant to censorship
- These properties lead to different possible application
- However, the overhead a blockchain is very high compared to a centralized database. The possible application should be questioned critically

Double-Spending-Problem

Definition:

The possibility to propagate a transaction (digital value transfer) multiple times on a decentralized network.

- Problem: Duplicates can cause a digital token to be transferred more than once
- Solution: Find a chronological consensus in a decentralized way so that no participant can manipulate it selfishly
- Central solution: Classic database (SEPA, Paypal)
- Decentralized solution: Blockchain

The blockchain led for the first time to the solution of the double-spending problem in decentralized systems.

Classification

A Blockchain can be classified under the term Distributed Ledger Technology (DLT).

- A ledger is redundantly managed by different parties using multiple copies
- New transactions are transferred to all copies
- The distribution of copies is a known and solved problem
- The challenge and the goal is to establish a consensus of the copies

A blockchain is an innovative approach to implement a distributed ledger.

Every blockchain is a DLT, but not every DLT is a blockchain.

Classification

Models

Blockchains can be categorized into 3 different models [12]:

- Public
- Private
- Federated

These models differ greatly in their degree of decentralization and the consensus algorithm used.

The term blockchain is highly controversial and debated for private and federated ledgers.

Public Blockchains

- Publicly accessible network
- Transactions are transparent and anonymous/pseudonymous
- Anyone can read, write and validate transactions
- Highest protection against tampering:
 - Cryptography
 - Decentralization
 - Game theory
- No central management
 - Therefore no trust necessary
- Complex consensus building with high computing power
 - Therefore mostly slow and poorly scalable
- Dimensions: Internet

Private Blockchains

- Closed network
- Transactions are private
- Special authorization needed to read, write and validate transactions
- Low protection against tampering:
 - Cryptography
 - Hardly any decentralization
 - No game theory necessary since network participants are all known
- Central management
 - Therefore trust necessary
- Trivial consensus building
 - Therefore mostly fast and easily scalable
- Dimensions: Intranet (private LAN/WAN)

Federated Blockchains

- Hybrid solution
- Semi-public network
- Transactions are mostly transparent
- Special authorization needed to read, write or validate transactions
- Low protection against tampering:
 - Cryptography
 - Low decentralization
 - Low game theory
- Decentralized management by a consortium
 - Therefore trust necessary
- Trivial consensus building by a consortium
 - Therefore mostly fast and easily scalable

Important building blocks of blockchains

Cryptographic hash functions

Usage of cryptographic hash functions in Blockchains:

- Data can be stored in units of blocks
 - Enables the concept of a hashed list
 - Data blocks have fixed chronological order
 - Previous data blocks cannot be manipulated unnoticed
- Consensus mechanism
 - Basis of the so-called Proof of work (PoW) Hashcash Puzzle

Public Key Cryptography

Private Key k:

- Basis for generating a key pair
- Secret, non-public key

 $f_{oneway}(k) = p$

Public Key p:

- Is irreversibly derived from the private Key
- Public, not secret key

Digital signatures

$$f_{sign}(m, k) = sig$$

 $f_{verify}(sig, p)$

- Are supposed to emulate properties of physical signatures
- Three protection goals are fulfilled:
 - 1. Integrity
 - 2. Authenticity
 - 3. Liability
- Are generated by a signature scheme of the sender

Digital signatures

Transaction from owner to owner+1. owwner signs the public key of owner+1

"We define an electronic coin as a chain of digital signatures. Each owner transfers the coin to the next by digitally signing a hash of the previous transaction and the public key of the next owner and adding these to the end of the coin."[11]

Usage of digital signatures in Blockchains:

- Full transaction security
- Transactions are:
 - Not manipulated (integrity)
 - Authorized (authenticity)
 - Not deniable (liability)
- digital ownership through private keys
- no private key, no ownership

From a centralized Bank to a blockchain

Methodology

Methodology for the rest of theses slides: Piece by Piece derivation of a functional Blockchain starting with current online banking.

The methodology is inspired by the following

book [6]:

The author's summary of blockchains [10]:

BRSU Communication Report Nr. 1 ISBN: 978-3-96043-081-0, Digital Object Identifier: 10.18418/978-3-96043-081-0

Technical Fundamentals of Blockchain Systems

Oliver Kattwinkel¹, Michael Rademacher²

Abstract

This work provides a short but technical introduction to the main building blocks of a blockchain. It argues that a blockchain is not a revolutionary technology but rather a clever combination of three fields: cryptography, decentralization and game theory. In addition, it summaries the differences between a public, private and federate blockchain model and the two prominent consensus mechanism Proof-of-Work (POW) and Proof-of-State (POS).

Keywords

Blockchain — Cryptography — Proof-of-Work — Proof-of-Stake

¹ Kleenecode GmbH, Sankt Augustin, Germany

² Department of Computer Science, University of Applied Sciences Bonn-Rhein-Sieg, Sankt Augustin, Germany oliver.kattwinkel@kleenecode.com, michael.rademacher@inf.h-brs.de

01: Bank-protocol

Initial situation: Current online banking

- A bank functions as a central administration
- Digital value transfer of a Fiat currency
- Access through credentials
 - Username and password
 - Digital signatures

Rules for this protocol:

- The bank manages credit balances of all participants in a central credit database
- To transfer credits, participants send signed transactions to the bank
- The bank accepts only valid transactions
- The bank updates balances according to accepted transactions
- All participants request their current credit via the bank

01: Bank-protocol

01: Bank-protocol

Problem:

- By managing all data the bank has great centralized power
- Participants dependent on the security of the bank
- As intermediary, the bank has more rights than any other participant in this system
 - Censorship through rejection of transactions
 - Inflation through generation of new credit
 - Manipulation by changing credit balances

The Five/Nine Hack in the TV Series Mr. Robot [4]. Destroy financial records of the largest bank in the USA.

Solution:

- No bank, no single intermediary, no centralized power
- Who manages the credit of the participants?
- Each participant manages each credit!

02: P2P-protocol

Transiation from a hierarchical bank protocol to a flat P2P-protocol

Rules:

- Each participant manages each credit of all participants in their own credit database
- To transfer credits, participants send signed transactions to all participants
- Each participant accepts only valid transactions
- Each participant updates all balances according to accepted transactions

02: P2P-protocol

02: P2P-protocol

Problem:

- Each participant can manipulate their own database "as they wish"
- Manipulation of other databases through so-called replay attacks
- Replay attack:
 - Attacker can resend received transactions
 - Recipients verify authenticity only by the signature
 - All participants (except the victim) will accept the transaction
- Consensus (all participants agree on state of the database) is not assured

02: P2P-protocol replay attack

Thank you for your attention. Are there any questions left?

Room K331 Rathausallee 10 Technopark Sankt Augustin

michael.rademacher@h-brs.de www.mc-lab.de https://michael-rademacher.net

References

[1] Cost of a 51% attack for different cryptocurrencies | crypto51. https://www.crypto51.app/. (Accessed on 06/14/2021).

[2] Cryptopunks. https://www.larvalabs.com/cryptopunks. (Accessed on 06/14/2021).

- [3] Ethereum (eth) blockchain explorer. https://etherscan.io/. (Accessed on 06/14/2021).
- [4] Mr. robot wikipedia. https://en.wikipedia.org/wiki/Mr._Robot. (Accessed on 06/15/2021).
- (Accessed on 06/15/2021).
 BORCHERS, D.
 Digitaler corona-impfpass: Ibm, ubirch und fünf blockchains | heise online.

https://www.heise.de/news/Digitaler-Corona-Impfpass-IBM-Ubirch-und-fuenf-Blockchains-5076161.html. (Accessed on 06/14/2021).

References II

[6] Bruennler, K.

Blockchain kurz und gut.
O'Reilly, Sebastopol, 2018.

[7] CHEN, R. What is defi? an introduction to decentralized finance - openzeppelin blog. https://blog.openzeppelin.com/what-is-defi/, 2020. (Accessed on 06/14/2021).

[8] Compound Labs, I.

Compound.

https://compound.finance/, 2021. (Accessed on 06/14/2021).

[9] FROELICH, P. 'cryptopunk' nft sells for \$11.8 million at sotheby's.

 $\label{limits} $$ $ $ \frac{1}{\sqrt{2021/06/12/cryptopunk-nft-sells-for-11-8-million-at-sothebys/.} $$ (Accessed on $06/14/2021). $$$

[10] KATTWINKEL, O., AND RADEMACHER, M. Technical fundamentals of blockchain systems. BRSU Communication Report (2020).

References III

[11] NAKAMOTO, S.

Bitcoin: a peer-to-peer electronic cash system, oct. 2008. URL http://www. bitcoin. org/bitcoin. pdf.(cited on pp. 15 and 87) (2017).

[12] Voshmgir, S.

Types of blockchains & dlts (distributed ledger technologies).

 $\label{lem:https://blockchainhub.net/blockchains-and-distributed-ledger-technologies-in-general/. (Accessed on 06/14/2021).$

