Билет 11

Последовательное и параллельное соединение проводников. Работа и мощность электрического тока. Закон Джоуля-Ленца.

Проводники могут соединяться последовательно и параллельно.

Соединения проводников		
Последовательное	Сила тока во всех проводниках одинакова $I = I_1 = I_2$. Общее напряжение равно сумме напряжений на проводниках. $U = U_1 + U_2$ $I \ R = I \ R_1 + I \ R_2$ $R = R_1 + R_2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Параллельное	Общая сила тока равна сумме сил тока проводников $I = I_1 + I_2$. Напряжения на проводниках равны между собой $U = U_1 = U_2$. $I = \frac{U}{R} = \frac{U}{R_1} + \frac{U}{R_2}$ $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$	$\begin{array}{c} I_1 \\ R_1 \\ R_2 \\ U \end{array}$

Работа электрического тока

Работа тока — работа, совершаемая электрическим полем при упорядоченном движении заряженных частиц в проводнике.

Пусть за промежуток времени Δt через поперечное сечение проводника проходит заряд Δq . Тогда электрическое поле совершает работу $A = \Delta q U$, где U - напряжение на концах проводника.

Подставим $I = \frac{\Delta q}{\Delta t}$: $A = I \ U \ \Delta t$ - работа тока на участке цепи равна произведению силы тока, напряжения на этом участке и времени, в течение которого совершалась работа.

Преобразуем формулу работы: $A = I R^2 \Delta t = \frac{U^2}{R} \Delta t$. Данная формула работы является универсальной, т. к. для ее вывода использовался лишь закон сохранения энергии.

Мощность тока

Мощность электрического тока — работа, совершаемая электрическим полем за единицу времени. Рассмотрим проводник с электрическим сопротивлением R , в котором за время Δt протекает постоянный электрический ток I . Тогда $A\!=\!qU\!=\!IU$ $\Delta t\!=\!I^2R$ $\Delta t\!=\!\frac{U^2\Delta t}{R}$.

Отсюда мощность P электрического тока равна: $P = \frac{A}{\Delta t} = IU = I^2 R = \frac{U^2}{R}$.

Единица мощности — ватт $1Bm = \frac{1 \cancel{\square} \pi c}{1 c} = 1 A \cdot 1 B$.

Закон Джоуля-Ленца

Если на участке цепи не совершается механическая работа и не происходит химических реакций, то происходит нагревание проводника за счет ускорения электронов действием электрического поля, которые передают энергию ионам кристаллической решетки. В результате энергия хаотического движения ионов около положений равновесия возрастает, а следовательно температура повышается.

Закон Джоуля-Ленца — количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока.