Acids and Bases

Dr. Md. Mahbub Alam Department of Chemistry BUET, Dhaka-1000

The contents of this presentation is prepared to provide a brief idea about the topics, details will be discussed in the classes.

Contents have been collected from multiple textbooks and internet.

Arrhenius Concept of Acids and Bases

- The earliest acid-base definition, which classifies these substances in terms of their behavior in water.
- An acid is a substance with H in its formula that dissociates to yield H_3O^+ ; Example: HCl, H_2SO_4 etc.
- A base is a substance with OH in its formula that dissociates to yield OH⁻. Example: NaOH, $Ca(OH)_2$ etc.
- When an acid reacts with a base, they undergo neutralization:

$$H^+(aq) + OH^-(aq) \rightarrow H_2O(1)$$

Lewis Concept of Acids and Bases

- A Lewis base is any species that donates an electron pair to form a bond.
- A Lewis acid is any species that accepts an electron pair to form a bond.

- The Lewis definition views an acid-base reaction as the donation and acceptance of an electron pair to form a covalent bond.
- A Lewis base must have a lone pair of electrons to donate.

Electron-Deficient Molecules as Lewis Acids

- B and Al often form electron-deficient molecules, and these atoms have an unoccupied p orbital that can accept a pair of electrons.
- BF_3 accepts an electron pair from ammonia to form a covalent bond.

Brønsted-Lowry Concept of Acids and Bases

- An acid is a proton donor, any species that donates an H+ ion.
- An acid must contain H in its formula.
- A base is a proton acceptor, any species that accepts an H+ ion.
- An acid-base reaction is a proton-transfer process.
- A Brønsted acid is a proton donor and a Brønsted base is a proton acceptor.

$$\mathrm{NH_3}(aq) + \mathrm{H_2O}(l) \Longrightarrow \mathrm{NH_4^+}(aq) + \mathrm{OH^-}(aq)$$
 base acid conjugate conjugate base

Conjugate Acid-Base Pairs

NH₃ accepts an H⁺ to form NH₄⁺.

H₂S + NH₃ \longrightarrow HS⁻ + NH₄⁺

H₂S donates an H⁺ to form HS⁻.

- H_2S and HS^- are a conjugate acid-base pair. HS^- is the conjugate base of the acid H_2S .
- NH_3 and NH_4^+ are a conjugate acid-base pair. NH_4^+ is the conjugate acid of the base NH_3 .
- A Brønsted-Lowry acid-base reaction occurs when an acid and a base react to form their conjugate base and conjugate acid, respectively.

Strong and Weak Acids

A strong acid dissociates completely into ions in water:

$$HA(g \ or \ l) + H_2O(l) \rightarrow H_3O+(aq) + A-(aq)$$

- A dilute solution of a strong acid contains no HA molecules.
- A weak acid dissociates slightly to form ions in water:

$$HA(aq) + H2O(1) \rightarrow H_3O+(aq) + A-(aq)$$

■ In a dilute solution of a weak acid, most HA molecules are undissociated.

$$K_c = \frac{[H_3O^+][A^-]}{[HA][H_2O]}$$
 has a very **small** value.

Strong and Weak Acids

Strong acid: $HA(g \text{ or } I) + H_2O(I) \rightarrow H_3O^+(aq) + A^-(aq)$

There are no HA molecules in solution.

Weak acid: $HA(aq) + H_2O(1) \implies H_3O^+(aq) + A^-(aq)$

Most HA molecules are undissociated.

Strong and Weak Acids

Acid			Conjugate Base	
Acid strength increases	Weak acids Strong acids	HClO ₄ (perchloric acid) HI (hydroiodic acid) HBr (hydrobromic acid) HCl (hydrochloric acid) HCl (hydrochloric acid) H ₂ SO ₄ (sulfuric acid) HNO ₃ (nitric acid) H ₃ O ⁺ (hydronium ion) HSO ₄ (hydrogen sulfate ion) HF (hydrofluoric acid) HNO ₂ (nitrous acid) HCOOH (formic acid) CH ₃ COOH (acetic acid) NH ₄ (ammonium ion) HCN (hydrocyanic acid) H ₂ O (water)	ClO ₄ (perchlorate ion) I (iodide ion) Br (bromide ion) Cl (chloride ion) HSO ₄ (hydrogen sulfate ion) NO ₃ (nitrate ion) H ₂ O (water) SO ₄ (sulfate ion) F (fluoride ion) NO ₂ (nitrite ion) HCOO (formate ion) CH ₃ COO (acetate ion) NH ₃ (ammonia) CN (cyanide ion) OH (hydroxide ion)	Base strength increases
		NH ₃ (ammonia)	NH ₂ (amide ion)	

Acid-Base Properties of Water

- Water can act either as an acid or as a base donating or accepting proton.
- This is also sometimes called the autoionization or self ionization of water.

The Ion Product of Water

$$2H_2O(I) \implies H_3O^+(aq) + OH^-(aq)$$

 $H_2O(I) \implies H^+(aq) + OH^-(aq)$

$$K_c = \frac{[H_3O^+][OH^-]}{[H_2O]^2}$$
 $Or, K_c = \frac{[H^+][OH^-]}{[H_2O]^2}$ $Or, K_c [H_2O]^2 = [H^+][OH^-]$

■ Because only a very small fraction of water molecules are ionized, the concentration of water, $[H_2O]$, remains virtually unchanged. Then we can replace K_c $[H_2O]^2$ by K_w (the ion-product constant)

$$K_w = [H^+][OH^-]$$

The Ion Product of Water

■ In pure water at $25^{\circ}C$, the concentrations of H⁺ and OH⁻ ions are equal and found to be $[H^{+}] = 1.0 \times 10^{-7} \text{ M}$ and $[OH^{-}] = 1.0 \times 10^{-7} \text{ M}$.

$$K_w = [H^+][OH^-] = (1.0 \times 10^{-7}) (1.0 \times 10^{-7}) = 1.0 \times 10^{-14}$$
 $[H^+][OH^-] = 1.0 \times 10^{-14}$
Taking negative logarithm in both sides,
 $-\log [H^+] - \log [OH^-] = -\log (1.0 \times 10^{-14})$
or, pH + pOH = 14

pH - A Measure of Acidity

$$pH = -log[H^{\dagger}]$$

Solution type	At 25°C			
neutral	[H ⁺] = [OH ⁻]	$[H^+] = 1 \times 10^{-7}$	pH = 7	
acidic	[H ⁺] > [OH ⁻]	$[H^+] > 1 \times 10^{-7}$	pH < 7	
basic	[H ⁺] < [OH ⁻]	$[H^+] < 1 \times 10^{-7}$	pH > 7	

pH - A Measure of Acidity

pH Meter

 $pH = -log[H^{\dagger}]$

pH paper

The pHs of Some Common Fluids

Sample	pH Value
Gastric juice in	1.0-2.0
the stomach	
Lemon juice	2.4
Vinegar	3.0
Grapefruit juice	3.2
Orange juice	3.5
Urine	4.8 - 7.5
Water exposed	5.5
to air*	
Saliva	6.4–6.9
Milk	6.5
Pure water	7.0
Blood	7.35–7.45
Tears	7.4
Milk of	10.6
magnesia	
Household	11.5
ammonia	

Weak Acids and Acid Ionization Constants

$$HA (aq) + H_2O (I) \implies H_3O^+ (aq) + A^- (aq)$$
 $HA (aq) \implies H_3O^+ (aq) + A^- (aq)$

$$K_a = \frac{[H^+][A^-]}{[HA]}$$

 K_a is the acid ionization constant.

Another measure of the strength of an acid is its percent of ionization.

$$percent \ ionization = \frac{ionized \ acid \ concentration \ at \ equilibrium}{initial \ concentration \ of \ acid} \times \ 100\%$$

percent ionization =
$$\frac{[H^+]}{[HA]_0} \times 100\%$$

Initial concentration of acid

Buffer Solution

- A buffer solution has the ability to resist changes in pH upon the addition of small amounts of either acid or base.
- A buffer solution must contain -
 - ✓ A weak acid or a weak base and
 - √ The salt of the weak acid or weak base
- Two types -
 - ✓ Acid buffers CH₃COOH + CH₃COONa
 - √ Basic buffers NH₄OH + NH₄CI

How Does a Buffer Solution Work?

Thank You