PROGRAMARE LOGICĂ SEMINAR 5 - RESCRIERI -

Exercițiul 1: Determinați r_1 și r_2 astfel încât sistemul de rescriere

$$R = \{ f(g(x)) \to r_1, g(h(y)) \to r_2 \}$$

să fie confluent.

<u>Rezolvare:</u> Observați că o soluție trivială este $r_1 = f(g(x))$ si $r_2 = g(h(y))$. În acest caz, evident R este confluent, dar nu se termină.

O soluție alternativă netrivială și care conduce la un sistem complet este următoarea. Începem prin a calcula perechile critice generate de $f(g(x)) \to r_1$ și $g(h(y)) \to r_2$. Analizăm subtermenii lui f(g(x)) care nu sunt variabile:

- t := g(x). În acest caz c = f(z) și $\theta(x) = h(y)$ este cgu pt g(x) și g(h(y)). Obtinem perechea critică $(\theta(r_1), f(\theta(r_2)))$.
- t := f(g(x)). Observați că în acest caz nu există cgu pentru f(g(x)) și g(h(y)).

Pentru ca R să fie confluent trebuie să alegem r_1 şi r_2 astfel încât $\theta(r_1) \downarrow f(\theta(r_2))$. Luând $r_1 := g(x)$ şi $r_2 = g(y)$, obținem $\theta(g(x)) = g(h(y)) \to g(y)$ şi $f(\theta(g(y))) = f(g(y)) \to g(y)$.

Exercițiul 2: Demonstrați următoarele afirmații sau găsiti un contraexemplu.

- $(a) \stackrel{+}{\longleftrightarrow} = \stackrel{+}{\longrightarrow} \cup (\stackrel{+}{\longrightarrow})^{-1}$
- $(b) \stackrel{+}{\longleftarrow} = (\stackrel{+}{\longrightarrow})^{-1}$

Rezolvare:

(a) Afirmația nu este adevărată. De exemplu, pentru $a_1 \longrightarrow a_2$ avem

$$\stackrel{+}{\longleftrightarrow} = \{(a_1, a_2), (a_2, a_1), (a_1, a_1), (a_2, a_2)\}$$

$$\stackrel{+}{\to} \cup (\stackrel{+}{\to})^{-1} = \{(a_1, a_2), (a_2, a_1)\}$$

(b) Evident, dacă $a \stackrel{+}{\leftarrow} b$, atunci și $b \stackrel{+}{\rightarrow} a$. Invers, dacă $b \stackrel{+}{\rightarrow} a$, atunci evident și $a \stackrel{+}{\leftarrow} b$.

Exercițiul 3: Demonstrați următoarele afirmații sau găsiti un contraexemplu.

- $(a) \stackrel{+}{\longrightarrow} este \ o \ ordine \ parțială \ strictă \Longleftrightarrow \longrightarrow este \ aciclică.$
- $(b) \stackrel{*}{\longrightarrow} este \ o \ ordine \ partial \stackrel{}{a}\Longleftrightarrow \longrightarrow este \ aciclic .$

<u>Teorie:</u> Pentru o relaţie binară \longrightarrow , $\stackrel{+}{\longrightarrow}$ este închiderea tranzitivă, iar $\stackrel{*}{\longrightarrow}$ este închiderea reflexivă şi tranzitivă. O relaţie binară \longrightarrow pe A este o ordine parţială strictă dacă este ireflexivă (pentru orice $x \in A$, nu există $x \longrightarrow x$), tranzitivă şi asimetrică (pentru orice $x, y \in A$, dacă $x \longrightarrow y$, atunci nu există $y \longrightarrow x$).

O relație binară \longrightarrow pe A este o ordine parțială dacă este reflexivă (pentru orice $x \in A$, există $x \longrightarrow x$), tranzitivă și antisimetrică (pentru orice $x, y \in A$, dacă $x \longrightarrow y$ și $y \longrightarrow x$, atunci x = y).

O relație binară \longrightarrow pe A este aciclică dacă nu există $x \in A$ astfel încât $x \stackrel{+}{\longrightarrow} x$.

Rezolvare:

- (a) (" \Rightarrow ") Din ireflexivitatea relației $\xrightarrow{+}$, obținem că \longrightarrow este aciclică. (" \Leftarrow ") Prin definiție, $\xrightarrow{+}$ este tranzitivă. Cum \longrightarrow este aciclică, rezultă că $\xrightarrow{+}$ este ireflexivă. Presupunem prin absurd că $\xrightarrow{+}$ nu este asimetrică, i.e. există $a, b \in A$ astfel încât $a \xrightarrow{+} b$ și $b \xrightarrow{+} a$. Din tranzitivitate obținem $a \xrightarrow{+} a$, ceea ce contrazice aciclicitatea relației \longrightarrow .
- (b) Avem următorul contraexemplu: închiderea reflexivă și tranzitivă a relației $\{a \longrightarrow a \mid a \in \mathbb{N}\}$ este o ordine parțială, dar relația \longrightarrow nu este aciclică.

1

<u>Exercițiul 4:</u> Demonstrați următoarea afirmație sau găsiti un contraexemplu: orice relație binară care se termină este mărqinită.

<u>Teorie</u>: O relație binară \longrightarrow pe A este $m \ arginit \ a$ dacă pentru orice element $a \in A$, lungimile drumurilor din a sunt mărginite.

<u>Rezolvare:</u> Evident o relație mărginită se termină. Afirmația inversă nu este adevărată după cum se poate vedea în următorul contraexemplu. Fie următoarea relație binară pe $\mathbb{N} \cup \{\bot\}$:

$$\{\bot \longrightarrow n \mid n \in \mathbb{N}\} \cup \{n+1 \longrightarrow n \mid n \in \mathbb{N}\}.$$

Cum pentru orice $x \in \mathbb{N} \cup \{\bot\}$, avem $x \stackrel{*}{\longrightarrow} 0$, evident relația se termină. Dar \longrightarrow nu este mărginită deoarece nu avem nicio limită superioară pentru reducerile din \bot , i.e. există reduceri de orice lungime nevidă din \bot (pentru orice $n \in \mathbb{N}$, n > 0, avem o reducere $\bot \stackrel{n}{\longrightarrow} 0$).

Observație: O relație care nu se ramifică la infinit se termină \iff este marginită.