Chapter 4. Classification

Task of Classification: given sample pts with labels
$$(x^{(i)}, Y_1)$$
, $(x^{(i)}, Y_1)$ with $Y_i = \pm 1$, find a hyperplane/hypersurface to classify $x^{(i)}$, $x^{(i)}$ based on the sign of Y_1 , Y_2 .

4.1 Perceptron 4.1.1. Motivation

Credit Approval Example

n: customers

m: features

Applicant information

	age	gender	salary	Yrs of residence	Yrs in job	 	Current debt	y	
\mathbf{X}_1	X ₁₁	X ₂₁	X ₃₁			 	\mathbf{x}_{m_1}	good	\mathbf{y}_1
\mathbf{X}_2	X ₁₂	X ₂₂	X ₃₂			 	X _{m2}	bad	\mathbf{y}_{2}
$\ddot{\mathbf{X}}_{\mathbf{i}}$									$\mathbf{y}_{\mathbf{i}}$
X_n	x _{in}	X _{2n}	x _{3n}			 	x _{mn}	good	$\mathbf{y}_{\mathbf{n}}$

$$\sum_{i=1}^{m} w_i x_i > threshold$$
 Approve credit

$$\sum_{i=1}^{m} w_i x_i < threshold$$
 Deny credit

$$\mathbf{h}(\mathbf{x}) = \operatorname{sign} \left\{ \left[\sum_{i=1}^{m} \mathbf{w}_{i} x_{i} \right] - threshold \right\}$$

Credit score

For convenience: $threshold \longrightarrow w_0x_0$ where $x_0 = 1$ Artificial feature (coordinate)

$$h(x) = sign\left(\sum_{i=0}^{m} w_i x_i\right)$$

4-1.2 Theory

Def:	A	perce	otron	ÍS	cm	algor	thm	-for	
	arwin		bine					the fi	TYM .
						·		V100 /1	
J.	$\gamma(x)$	= 5	ign ($W_1 X_1$	+…+	Wp Xp	† b)		

where wi, --, wp are weights and b

Remark: (1) Without loss of generality, we many assume
$$b=0$$
. Otherwise replace $x=(x_1,\dots,x_p)^T$ by $x=(1,x_1,\dots,x_p)^T$ ond $w=(w_1,\dots,w_p)^T$ by $w=(-b,w_1,w_p)^T$

(2) Criven a unit vector $W \in \mathbb{R}^p$ with $\|W\| = 1$, the set $W \perp \det \{x \in \mathbb{R}^p : x \cdot W = 0\}$

ÌS	the	hyperplane	orthogonal	1	W.
	7.00				

A semple pt
$$x^{(i)}$$
 is below'

while if and only if

 $x^{(i)}$. $w < 0$

(3) We say the perceptron correctly classifies
$$\chi^{(i)}$$
 if $h(\chi^{(i)}) = \text{sign}(W \cdot \chi^{(i)}) = \chi_i$ or equivalently. $\chi_i^{(i)} = \chi_i^{(i)} > 0$

We say the perception misclassifies $x^{(i)}$ if $h(x^{(i)}) = sign(w \cdot x^{(i)}) \neq y_i$,

(4) Not all sample pts can be classified using hyperplanes, e.g.

We say $(x^{(i)}, \chi_1)$, $(x^{(n)}, \chi_n)$ are linearly separable with const 8 > 0 if a unit vector $w^* \in \mathbb{R}^p$ $||w^*|| = ||such|| + ||theat||$