辛南印轮大学

地理科学 学院 2019 -2020 学年(二)学期期末考试试卷 《线性代数》试卷(A卷)

			"-~ 1-	- 1 4/2//	W 4 C	\. <u>.</u>	• /			
专业	年级		_ 班级		姓名		学号			
题号 一	=	三	四	五	六	七	八	九	+	总分
得分										
一、选择题(号内, 多选、;										₽母写在抗
1. 若矩阵 <i>A</i> =	$\begin{pmatrix} a & 1 \\ b & 1 \end{pmatrix}$	可逆,	则 <i>a,b</i> i	满足条件	牛()	0	-1		
(A) $a = b$		- P		((C)	$a \neq b$)	(D)	<i>a</i> , <i>b</i> ≠	1
2. 设 A, B 均为	方阵,	下面说	法正确	的是()					
发 若 AB	= 0,贝	A = 0	或 <i>B</i> =	0;		(B) 者	± AB =	0,则	A =0	或 B = 0
(C) 若 AB =	= <i>AC</i> 且	$A \neq 0$,	则 B =	C;		(D)若	AB = 1	<i>AC</i> 且	$A \models 0$,则 $B=C$
3. 设 $A = (\alpha, \beta)$	(eta,γ) 为	三阶方	阵,其中	$ approx \alpha, \beta, $	γ 是列[句量. 记	$e_1=(1,$	$(0,0)^{T}$,	则 Ae_1	= (
(A) \alpha	(B	β		(C) γ		(D) A			7
4. 设方阵 A, B	B, C 满足	ABC	=E , $=$	其中 E ;	为 <i>n</i> 阶	单位阵,	则必有	Ī (
(A) ACB	= <i>E</i>	(B)	CBA =	E	(C) E	BAC = A	E	(D	BCA	1 = E
 设向量β能 	由向量	组 $lpha_{\scriptscriptstyle 1}$,…	α_m	性表示	,但不	能由向	量组(I	$(\alpha_1, \cdots \alpha_n)$	$\cdot, \alpha_{\scriptscriptstyle m-1}$	线性表示,
记向量组((II) : α_1	$,\cdots,lpha_{_{m}}$	β ,	则下列	说法正确	确的是	()		A
(A) 向量α	" 不能自	日向量组	(1)线	性表示	但能	加向量组	图(H)参		₹;	112
(B) 向量 $lpha$	" 不能自	自向量组	L(I)线	性表示	也不能	能由向量	量组(II)) 线性表	录示;	

(C) 向量 α_m 能由向量组(I)线性表示,但不能由向量组(II)线性表示;

(D) 向量 α_m 能由向量组(I)线性表示,也能由向量组(II)线性表示.

6. 设 η_1,η_2,η_3 是4元非齐次线性方程组Ax=b的三个互不相同的解,且R(A)=3,若

$$\eta_1 + \eta_2 = (1,1,1,1)^T$$
, $\eta_2 + \eta_3 = (2,3,4,5)^T$,则该方程组的通解为(

(A)
$$x = k \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, k \in \mathbb{R}$$

(A)
$$x = k \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}, k \in \mathbb{R}$$
 (B) $x = k \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \end{pmatrix}, k \in \mathbb{R}$

$$(C) \quad x = k \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}, k \in \mathbb{R}$$

(D)
$$x = k \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}, k \in R$$

(C)
$$x = k \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \\ \frac$$

(A)
$$1-a-a^2-a^3-a^4-a^5$$

(B)
$$1+a+a^2+a^3+a^4+a^5$$

(C)
$$1-a+a^2-a^3+a^4-a^5$$

$$(1 + (D) 1 + a - a^2 + a^3 - a^4 + a^5)$$

8. 下列矩阵是正交矩阵的是(

(A)
$$\begin{pmatrix} 1 & -\frac{1}{2} & \frac{1}{3} \\ -\frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & -1 \end{pmatrix}$$

(B)
$$\begin{pmatrix} -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} & 0 & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \end{pmatrix}$$

(C)
$$\begin{pmatrix} \frac{1}{9} & -\frac{8}{9} & -\frac{4}{9} \\ -\frac{8}{9} & \frac{1}{9} & -\frac{4}{9} \\ -\frac{4}{9} & -\frac{4}{9} & \frac{7}{9} \end{pmatrix}$$
 (D)
$$\begin{pmatrix} 0 & \frac{4}{3\sqrt{2}} & \frac{1}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} & -\frac{2}{3} \end{pmatrix}$$

(D)
$$\begin{pmatrix} 0 & \frac{4}{3\sqrt{2}} & \frac{1}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & \frac{1}{3\sqrt{2}} & -\frac{2}{3} \end{pmatrix}$$

- 9. 设1,2,-2是方阵 A 的特征值,则行列式 $|A^2-2A+2E|$ 等于(
 - (A) 14
- (B) 17
- (C) -17
- (D) 20

(共4页,第2页)

- 10. 设A是 $m \times n$ 矩阵,B是 $n \times m$ 矩阵, $\Xi m > n$,则 (
 - AB 的列向量组线性无关;
- (B) AB 的行向量组线性相关;
- (C) BA 的列向量组线性无关;
- (D) BA 的行向量组线性相关

二、填空题(本题总分30分,每小题3分)

1. 设行列式
$$D = \begin{bmatrix} 2 & 1 & -5 & 1 \\ 1 & -3 & 0 & -6 \\ 3 & =2 & -1 & 3 \\ 1 & 4 & -7 & 6 \end{bmatrix}$$
, M_{ij} 表示元素 a_{ij} 的余子式,则

$$\begin{cases} ax_1 + bx_2 + bx_3 + \dots + bx_{n-1} + bx_n = 0 \\ bx_1 + ax_2 + bx_3 + \dots + bx_{n-1} + bx_n = 0 \\ bx_1 + bx_2 + ax_3 + \dots + bx_{n-1} + bx_n = 0 \\ \dots \\ bx_1 + bx_2 + bx_3 + \dots + bx_{n-1} + ax_n = 0 \end{cases}$$

有非零解,其中 $a \neq b, n \geq 2$,则a,b满足关系

- 3. 若二阶方阵 A 的特征多项式为 $f(\lambda) = \lambda^2 10\lambda + 21$,则 A^{-1} 的特征多项式 为___
- 4. 设B为 $m \times k$ 矩阵,C为 $k \times s$ 矩阵,若BC = 0时一定有C = 0,则B应满足条 件___
- 5. 已知 α_1, α_2 为 2 维列向量,矩阵 $A = (2\alpha_1 + \alpha_2, \alpha_1 \alpha_2)$, $B = (\alpha_1, \alpha_2)$. 若行列式 |A| = 6, $|M| |B| = _$
- 6. 设A是n阶方阵,B是m阶方阵,且 $|A| \neq 0$, $|B| \neq 0$,记 $\begin{vmatrix} A & O \\ O & B \end{vmatrix} = c$, $\begin{vmatrix} O & A \\ B & O \end{vmatrix} = d$,

则 c : d = _

(共4页,第3页)

- 10. 已知向量 $\alpha_1 = (2k, k-1, 0, 3)^T$ 与 $\alpha_2 = (5, -3, k, k-1)^T$ 正交,则k =_____.
- 三、 (10 分) 已知矩阵 $A=\begin{pmatrix}1&1&0\\0&1&1\\0&0&-1\end{pmatrix}$,且 $A^2-AB=E$,其中 E 为三阶单位矩阵,求

矩阵 B.

四、(10分)求下面齐次线性方程组的一个基础解系.

$$\begin{cases} x_1 - x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - 3x_4 = 0 \\ x_1 - x_2 - 2x_3 + 3x_4 = 0 \end{cases}$$

五、(10 分) 求向量组 $\alpha_1 = (1,-1,2,4)^T$, $\alpha_2 = (0,3,1,2)^T$, $\alpha_3 = (3,0,7,14)^T$, $\alpha_4 = (1,-1,2,0)^T$, $\alpha_5 = (2,1,5,6)^T$ 的一个最大无关组,并求出组中其余向量被该最大无关组线性表示的表达式.

六、(10分)

求矩阵
$$A = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{bmatrix}$$
的特征值和相应的特征向量.

七、(10 分) 设 α, β, γ 线性无关,证明 $\alpha + \beta, \beta + \gamma, \gamma + \alpha$ 也线性无关。