

Problem Set 4, Math 54-Lec 3, Linear Algebra, Fall 2017

SEPTEMBER 11TH, 2017

Problem 1. A matrix $A \in M_{n \times n}$, is called upper-triangular if every entry below the diagonal is 0. Entries on and above the diagonal can be any real number. Let A be an upper-triangular $n \times n$ matrix with diagonal entries c_1, c_2, \ldots, c_n . Compute the determinate of A. Justify your answer.

By expanding over first col, the second, etc. we see det A = cidet [c2. *] = cicedet [c3. *] = ... = cice. Cn.

Problem 2. Let $T: \mathbb{R}^4 \to \mathbb{R}$ be a function such that:

$$T\left(egin{bmatrix} a \ b \ c \ d \end{bmatrix}
ight) = \det egin{bmatrix} a & b \ c & d \end{bmatrix}.$$

Determine if T is a linear transformation.

Let
$$\vec{X} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} \in \mathbb{R}^4$$
, the man for k a constant, we have:

$$T(h\dot{x}) = \det \left[ha hb \right] = h^2 u \partial_{-} h^2 b c = h^2 \left(a \partial_{-} b c \right)$$

So The T(hx) = hT(x) for h=2 for example.

Problem Set 4, Math 54-Lec 3, Linear Algebra, Fall 2017

Problem 3. A matrix $Q \in M_{n \times n}$ is called orthogonal if $QQ^T = I_n$, where I_n is the $n \times n$ identity matrix. If Q is orthogonal, what are the possible values of det(Q)? [Hint: take the determinate of both sides of the equality]

$$QQ^{T} = I_{n}$$

$$\Rightarrow \det(QQ^{T}) = \det(I_{n})$$

$$\Rightarrow \det(Q) \det(Q^{T}) = 1$$

$$\Rightarrow \det(Q)^{2} = 1$$

$$\Rightarrow \det(Q) = \pm 1$$

Problem 4. Let $A \in M_{n \times n}$. Show that $det(kA) = k^n det(A)$.

WA is the equivalent of rescaling the rows of A by K. We know rescaling any I row by a factor of K changes determinant by factor of h. Applying this rule A times (for each row)