CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

September 14, 2022

Today

Homework 01

• To finish by 4h25

```
* Exercise 1 (score = 10)
```

Construct the truth table for the following statement forms:

- 1. false \/ p
- 2. True /\ p

```
* Exercise 2 (score = 30)
```

Write truth tables for the following statement forms.

- 1. $p \rightarrow q$
- 2. ~p \/ q
- 3. q -> p
- 4. ~q \/ p
- $5. \sim q \rightarrow \sim p$
- $6. \sim p \rightarrow \sim q$

* Exercise 3 (score = 15)

Among the six statement forms in Exercise 2, find at least five pairs that are equivalent? For example, if you believe statement forms 1 and 2 in Exercise 2 are equivalent, you have found a pair (1, 2).

Exe	rcise (2 1.	2.	3.	4.	5.	6.
P	9	P→Q	~P V 2	Q → P	~ % V P	~ 9 → ~P	NP → ~9
Т	Т	Т	T	+	T	Т	T
T	F	F	F	T	Т	F	T
F	Т	Т	T	F	F	Т	F
F	F	Т	Т	Т	T	7	Т

Exercise 3

- 1, 2, 5 are equivalent
- 3, 4, 6 are equivalent

* Exercise 4. (score = 20)

Make a truth table for the prroposition $\sim P$ Λ (Q \rightarrow P). What can you conclude about P and Q if you know the statement is true?

Р	Q	~P	Q->P	~P∆(Q->P)
Т	Т	F	Т	F
Т	F	F	Т	F
F	Т	Т	F	F
F	F	Т	Т	Т

If the whole statement is true, then P is false and Q is false.

* Exercise 5. (score = 15)

For each statement form below, use truth tables to determine if it is a tautology, contradiction, or neither.

- 1. (~p\/q)\/(p/\~q)
- 2. (p/\~q)\(~p\/q) 3. (p/\q)\/(~p\/(p/\~q))

5.

Р	Q	~PVQ	P∧~Q	(~P∨Q) ∨(P∧~Q)
Т	Т	Т	F	Т
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	F	Т

 $(\sim P \vee Q) \vee (P \wedge \sim Q)$ is a tautology.

Р	Q	P∧~Q	~PVQ	(P∧~Q) ∧(~P∨Q)
Т	Т	F	Т	F
Т	F	Т	F	F
F	Т	F	Т	F
F	F	F	Т	F

 $(P \land \neg Q) \land (\neg P \lor Q)$ is a contradiction.

Р	Q	P∧Q	P∧~Q	~PV(P^~Q)	(P∆Q)V(~PV(P∆~Q))
Т	Т	Т	F	F	Т
Т	F	F	Т	Т	Т
F	т	F	F	Т	Т
F	F	F	F	Т	Т

 $(P \land Q) \lor (\neg P \lor (P \land \neg Q))$ is a tautology.

* Exercise 6. (score = 10)

Check if the two statement forms below are logically equivalent using a truth table

6.

Р	Q	R	PVQ	(PVQ)- >R	P->R	Q->R	(P->R)\\ (Q->R)
Т	Т	Т	Т	I	Т	Т	I
Т	Т	F	Т	E	F	F	E
Т	F	Т	Т	I	Т	Т	T
Т	F	F	Т	E	F	Т	E
F	Т	Т	Т		Т	Т	I
F	Т	F	Т	E	Т	F	E
F	F	Т	F	I	Т	Т	I
F	F	F	F	I	Т	Т	I

They are logically equivalent.