Árvore de Decisão - Decision Tree

Aplicação:

- Regressão
- Classificação com variáveis qualitativas

Vantagens:

- Intuitiva e fácil de entender.
- Grande poder de explicação
- Permite criar regras
- Classificação com variáveis qualitativas

Desvantagens:

- Menor acurácia no caso se regressões
- Pode ficar muito sensível a pequenas variações.
- Solução: Bagging e Random Forest

Objetivo: Construir uma árvore de decisão para classificação de crédito

Variáveis de Classificação	le Classificação Critério	
Credito	baixa probabilide de atraso ou default	bom
Qualidade do Crédito	alta probabilide de atraso ou default	ruim

Variáveis de Decisão	Critério	Categoria
	ValorParcela/RendaLíquida ≤ 5%	Baixo
Comprometimento Razão entre o valor da parcela e a renda líquida	5% ≤ ValorParcela/RendaLíquida < 10%	Médio
nazao entre o valor da parcela e a renda nquida	10% ≤ ValorParcela/RendaLíquida	Alto
	solteiro	solteiro
EstadoCivil Estado civil atual	separado ou divorciado	divorciado
	casado ou união estável	casado
Historico	1 ou mais atrasos superiores a 30 dias	atraso
Histórico de atrasos no pagamento de parcelas	sem histórico de atrasos	pontual
CasaPropria	possui casa própria em seu nome	sim
Possui casa própria	não possui casa própria em seu nome	não

Base de Treinamento

#	Comprometimento	EstadoCivil	Historico	CasaPropria	Credito
1	Alto	solteiro	atraso	sim	ruim
2	Alto	solteiro	atraso	não	ruim
3	Baixo	solteiro	atraso	sim	bom
4	Medio	casado	atraso	sim	bom
5	Medio	divorciado	pontual	sim	bom
6	Medio	divorciado	pontual	não	ruim
7	Baixo	divorciado	pontual	não	bom
8	Alto	casado	atraso	sim	ruim
9	Alto	divorciado	pontual	sim	bom
10	Medio	casado	pontual	sim	bom
11	Alto	casado	pontual	não	bom
12	Baixo	casado	atraso	não	bom
13	Baixo	solteiro	pontual	sim	bom
14	Medio	casado	atraso	não	ruim

Arquivos: R/databases/DecisionTress-CreditScore-data..xlsx

bom	2	3	4
ruim	3	2	0
total	5	5	4

2	3	4
2	1	2
4	4	6

3	6
4	1
7	7

6	3
2	3
8	6

Qual árvore permite faze a classificação do crédito com *menor incerteza*?

A árvore 1: se o *Comprometimento* da renda é *Baixo* é zero a *a incerteza* para classificar o crédito como *bom* é igual a zero.

A incerteza será tanto menor quanto maior a pureza do nó ou do grupo.

No nó *CasaPropria-Não* onde a incerteza é máxima já que 50% do crédito é *bom* ou *ruim*.

Para a classe Comprometimento-Alto podemos construir as seguintes árvores:

Qual árvore permite faze a classificação do crédito com *menor incerteza*?

A árvore 2: conhecido o *Histórico* a incerteza em classificar o crédito como *bom* ou *ruim* é zero.

As classe Atrasado e Pontual são puras de cada classe.

Seguindo o mesmo procedimento obtemos a árvore final:

Critérios de parada:

- 1. Todos os nós das extremidades da árvore (folhas) forem puros
- 2. Não houver mais divisões possíveis, ou seja, fim das variáveis
- 3. Quando a redução das incerteza com novos nós for igual a zero

Decision Tree – Medida de Incerteza

Características de uma medida de incerteza

1. A **incerteza é zero** quando para observada uma variável houver uma única classificação possível.

Ex: Dado Comprometimento: Alto

Historico: Atraso o crédito é ruim

Historico: Pontual o crédito é bom

2. A **incerteza é máxima** quando para uma variável as classes estiverem igualmente distribuídas

Ex: CasaPropria: Não tem o mesmo número de créditos classificados como bom e ruim

3. A incerteza deve ser aditiva e permitir multiplas categorias:

Ex: incerteza (casado, não-casado) dever ser igual a incerteza (casado, solteiro, divorciado)

Decision Tree – Medida de Incerteza: Entropia

Entropia é a medida que utilizaremos para calcular a incerteza a cada nó da árvore

Em cada nó: Proporção da Classe

$$p_i = \frac{\text{Número de Elementos da Classe}}{\text{Número de Elementos do Nó}}$$

Entropia do nó: $ent(p_1, p_2, ..., p_n) = -p_1 \cdot \log p_1 - p_2 \cdot \log p_2 - ... p_n \cdot \log p_n$

1) Comprometimento Alto Medio Baixo bom bom bom bom bom bom ruim bom bom ruim ruim bom ruim ruim

Comprometimento Alto:

$$ent([2,3]) = -(\frac{2}{5}).\log(\frac{2}{5}) - (\frac{3}{5}).\log(\frac{3}{5}) = 0.97$$

Comprometimento Medio:

$$ent([3,2]) = -(\frac{3}{5}).\log(\frac{3}{5}) - (\frac{2}{5}).\log(\frac{2}{5}) = 0.97$$

Comprometimento Baixo:

$$ent([4,0]) = 0$$

Decision Tree – Medida de Incerteza: Entropia

Entropia da árvore = Média Ponderada da Entropia de cada grupo

Comprometimento Alto:

$$ent([2,3]) = -(\frac{2}{5}).\log(\frac{2}{5}) - (\frac{3}{5}).\log(\frac{3}{5}) = 0.97$$

Comprometimento Medio:

$$ent([3,2]) = -(\frac{3}{5}).\log(\frac{3}{5}) - (\frac{2}{5}).\log(\frac{2}{5}) = 0.97$$

Comprometimento Baixo:

$$ent(4,0) = 0$$

Para esta árvore:

$$ent([2,3],[3,2],[4,0]) = \frac{5}{14} \times 0.97 + \frac{5}{14} \times 0.97 + \frac{4}{14} \times 0 = 0.693$$

Para situação inicial sem nenhuma divisão:

$$ent([9,5]) = -(\frac{9}{14}).\log(\frac{9}{14}) - (\frac{5}{14}).\log(\frac{5}{14}) = 0.94$$

Redução da incerteza: ent([9,5]) - ent([2,3],[3,2],[4,0]) = 0.94 - 0.693 = 0.24

3) Historico			
Atraso Pontual			
bom	bom		
bom	bom		
bom	bom		
ruim	ruim		

4) CasaPropria		
Sim	Não	
bom	bom	
bom	bom	
bom	bom	
bom	ruim	
bom	ruim	
bom	ruim	
ruim		
ruim		

bom	2	3	4
ruim	3	2	0
total	5	5	4

Redução da incerteza:

1)
$$ent([9,5]) - ent([2,3],[3,2],[4,0]) = 0.24$$

ent([9,5]) - ent([2,2],[4,2],[3,1]) =
$$0.029$$

3)
$$ent([9,5]) - ent([3,4],[6,1]) = 0.152$$

$$ent([9,5]) - ent([6,2],[3,3]) = 0.048$$

Análise Exploratória de Dados

Melhorar a performance de árvores de decisão:

- Bagging
- Random Forest
 - Evitar árvores correlacionadas