Online HW 2: Proof by Pictures

Bart Snapp and Brad Findell

January 29, 2019

Contents

Set Theory Problems	3
Reminders	3
Measuring by Sight	5
Careful Measurement by Sight	5
Measuring Interior Angles	6
Proof by Picture	8

Set Theory Problems

Extra problems about sets.

Reminders

- Sets are collections of objects such as numbers or points. The objects
 are called *elements* of the set, and the order elements are listed is not
 important.
- The notation $\{7,3\}$ means "The set containing 7 and 3."
- Note that {8} is not the same as the number 8 but rather is a set that contains one element that happens to be a number.
- The set containing zero elements, sometimes call the *empty set* is denoted $\{\}$ or \emptyset .
- The elements of a set can themselves be sets.

Problem 1 Indicate the number of elements in each set:

- (a) The set $\{3, 5, 6, 9, 10\}$ has ? element(s).
- (b) The set $\{\{3,2,7\},\{4,5\},\{2\},\emptyset\}$ has ? element(s).
- (c) The set $\{\{\}\}$ has ? element(s).
- (d) The set {} has ? element(s).
- (e) The set \emptyset has $\boxed{?}$ element(s).
- (f) The set $\{\emptyset\}$ has ? element(s).

Problem 2 Indicate whether each statement is true or false:

- (a) $2 \in \{3, 2, 5\}$. (True/False)
- (b) $2 \subseteq \{3, 2, 5\}$. (True/False)

Author(s): Bart Snapp and Brad Findell

Set Theory Problems

- (c) $\{2\} \in \{3, 2, 5\}$. (True/False)
- (d) $\{2\} \subseteq \{3, 2, 5\}$. (True/False)
- (e) $\emptyset = \{\}$. (True/False)
- (f) $\emptyset = \{\emptyset\}$. (True/False)
- (g) $\{\emptyset\} = \{\{\}\}\$. (True/False)
- (h) $\emptyset \in \{\emptyset\}$. (True/False)
- (i) $\emptyset \subseteq \{\emptyset\}$. (True/False)
- (j) $2 \in \{\{3, 2, 7\}, \{4, 5\}, \{2\}, \emptyset\}$. (True/False)
- (k) $2 \subseteq \{\{3,2,7\}, \{4,5\}, \{2\}, \emptyset\}$. (True/False)
- (l) $\{2\} \in \{\{3,2,7\},\{4,5\},\{2\},\emptyset\}$. (True/False)
- (m) $\{2\} \subseteq \{\{3,2,7\},\{4,5\},\{2\},\emptyset\}$. (True/False)
- (n) $\{\{2\}\} \in \{\{3,2,7\},\{4,5\},\{2\},\emptyset\}$. (True/False)
- (o) $\{\{2\}\}\subseteq \{\{3,2,7\},\{4,5\},\{2\},\emptyset\}$. (True/False)

Problem 3 Explain the difference between the symbols \in and \subseteq .

Problem 4 How is $\{\emptyset\}$ different from \emptyset ?

Measuring by Sight

Short-answer questions involving measuring.

Careful Measurement by Sight

Adjust the figures to fit the given conditions within **eyeball accuracy**. Enter the requested measurements.

Problem 5 Geogebra link: https://tube.geogebra.org/m/gjf28er6 In figure above, when point C is adjusted so that \overline{BC} is perpendicular to \overline{AC} , $AC = \boxed{?}$.

Problem 6 Geogebra link: https://tube.geogebra.org/m/q32gyaud In $\triangle ABC$ above, move point D to make the following measurements. **Enter-1** if it is not possible.

- (a) When \overline{BD} is a median, AD = ?
- (b) When \overline{BD} is a angle bisector, AD = ?
- (c) When \overline{BD} is a perpendicular bisector, $AD = \boxed{?}$.
- (d) When \overline{BD} is a altitude, AD = ?.

Problem 7 Geogebra link: https://tube.geogebra.org/m/a888zyw2 In $\triangle ABC$ above, the height to base \overline{AC} is $\boxed{?}$.

Problem 8 Geogebra link: https://tube.geogebra.org/m/kta9hbuf In $\triangle ABC$ above, the height to base \overline{AC} is $\boxed{?}$.

Author(s): Brad Findell

Measuring Interior Angles

Short-answer questions involving length, angle, and area.

Geogebra link: https://tube.geogebra.org/m/zrapvzpz

Problem 9 Measure the interior angles of quadrilateral ABCD above.

- (a) $m \angle A = \boxed{?}$ degrees.
- (b) $m \angle B = \boxed{?}$ degrees.
- (c) $m \angle C = \boxed{?}$ degrees.
- (d) $m \angle D = ?$ degrees.
- (e) $m \angle A + m \angle B + m \angle C + m \angle D = ?$

Problem 10 Use the measurements from the previous problem to answer the following questions:

- (a) The marked angle should measure [?] degrees.
- (b) $m\angle A + m\angle B + m\angle D = ?$ degrees.
- (c) What do you notice?

Problem 11 In order to reason about the sum of the interior angles, Bart and Brad each triangulated the figure as shown below.

Author(s): Brad Findell

Both Bart and Brad claim that because in a triangle the sum of the interior angles is ? degrees, and this quadrilateral is cut into ? triangles, the angle sum in this quadrilateral should be ? degrees. What is your judgment?

Multiple Choice:

- (a) They are both correct.
- (b) Only Brad is correct.
- (c) Only Bart is correct.
- (d) Neither of them are correct.

Explain your reasoning.

Proof by Picture

Short-answer proofs by pictures.

Problem 12 Explain how the following picture "proves" that the area of a right triangle is half the base times the height.

Problem 13 Suppose you know that the area of a **right** triangle is half the base times the height. Explain how the following picture "proves" that the area of **every** triangle is half the base times the height.

Now suppose that a student, say Geometry Giorgio attempts to solve a similar problem. Again knowing that the area of a right triangle is half the base times the height, he draws the following picture:

Geometry Giorgio states that the diagonal line cuts the rectangle in half, and thus the area of the triangle is half the base times the height. Is this correct

Author(s): Bart Snapp and Brad Findell

reasoning? If so, give a complete explanation. If not, give correct reasoning based on Geometry Giorgio's picture.

Problem 14 Recall that a trapezoid is a quadrilateral with two parallel sides. Consider the following picture:

How does the above picture prove that the area of a trapezoid is

$$area = \frac{h(b_1 + b_2)}{2}$$

where h is the height of the trapezoid and b_1 , b_2 , are the lengths of the parallel sides?

Problem 15 Look at the previous problem. Can you use a similar idea to prove that the area of a parallelogram

is the length of the base times the height?

Problem 16 Explain how the following picture "proves" that the area of a parallelogram is base times height.

Now suppose that a student, say Geometry Giorgio attempts to solve a similar problem. In an attempt to prove the formula for the area of a parallelogram, Geometry Giorgio draws the following picture:

At this point Geometry Giorgio says that he has proved the formula for area of a parallelogram. What do you think of his picture? Give a complete argument based on his picture.