Colles semaine 7 : Vocabulaire des espaces vectoriels

1 Les espaces vectoriels \mathbb{R}^2 et \mathbb{R}^3

- Algèbre linéaire dans \mathbb{R}^2
 - Représentation des vecteurs dans le plan (interprétation de la colinéarité)
 - Droites vectorielles : présentation par un vecteur directeur (not. $\mathcal{D} = \text{Vect}(\vec{d})$)
 - Équations de droite vectorielle ax + by = 0, et aller-retour : équation \longleftrightarrow vect. dir.
- Algèbre linéaire dans \mathbb{R}^3
 - Droites, plans vect. : présentⁿ par vecteur, couple directeur $(\mathcal{P} = \text{Vect}(\vec{u}, \vec{v}), \mathcal{D} = \text{Vect}(\vec{d}))$
 - Équation de plan vectoriel : ax + by + cz = 0, et aller-retour : $\acute{e}q^n \longleftrightarrow$ couple dir.
 - Intersection de deux plans vectoriels

2 Généralités sur les espaces vectoriels

- ▶ Notion d'espace vectoriel Un ensemble E dont les éléments sont des « vecteurs » $\vec{u} \in E$:
 - il y a un « vecteur nul » $\vec{0}$.
 - on y fait des combinaisons linéaires de $\vec{u}, \vec{v} : \lambda \vec{u} + \mu \vec{v}$ (règles de calcul usuelles).
- Appliquer le vocabulaire sur les exemples au programme :
 - Les espaces cartésiens \mathbb{R}^n (à coordonnées)
- L'espace des applications $\mathcal{F}(D,\mathbb{R})$, où
- Les espaces de matrices $\mathcal{M}_{n,p}(\mathbb{R})$
- $D \subseteq \mathbb{R}$.
- Les espaces de polynômes $\mathbb{R}[X]$, $\mathbb{R}_n[X]$
- ightharpoonup L'espace des suites réelles $\mathbb{R}^{\mathbb{N}}$.
- Combinaisons linéaires de $\mathcal{F} = (\vec{u_1}, \vec{u_2}, ..., \vec{u_p})$:

elles s'écrivent $\vec{v} = \lambda_1 \vec{u_1} + \lambda_2 \vec{u_2} + ... + \lambda_p \vec{u_p} = \sum_{i=1}^p \lambda_i \vec{u_i}$ pour des coefficients $\lambda_1, \lambda_2, ..., \lambda_p \in \mathbb{R}$.

$$(\mathbb{R}^n): \sum_{i=1}^p \lambda_i \vec{u_i} = U\vec{\Lambda}, \text{ où } A = \begin{bmatrix} \uparrow & \uparrow & \ddots & \uparrow \\ \vec{u_1} & \vec{u_2} & \cdots & \vec{u_p} \\ \downarrow & \downarrow & \downarrow \end{bmatrix} \text{ (mat. de la fam. F) et } \vec{\Lambda} = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_p \end{bmatrix} \text{ (vect des coeff.)}.$$

3 Sous-espaces vectoriels

Définition

Un sous-espace vectoriel F d'un espace vectoriel E est un sous-ensemble $F\subseteq E$ qui

- est non-vide et contient le vecteur nul : $\vec{0} \in F$ et qui
- est stable par combinaisons linéaires : $\forall \vec{u}, \vec{v} \in F, \ \forall \lambda, \mu \in \mathbb{R}$, on a $\lambda \vec{u} + \mu \vec{v} \in F$.
- ▶ Sous-espace engendré par une famille \mathcal{F} , (not. Vect(\mathcal{F})): l'ensemble des c.l. de \mathcal{F} .
- ▶ Dans \mathbb{R}^n

Aller-retour entre deux présentations d'un sous-espace vectoriel de \mathbb{R}^n par l'alg. du pivot.

- \star) équations \leadsto base :
 - on échelonne le système d'équations
 - on exprime les inc. principales en termes des inc. secondaires (paramètres)
 - on fait apparaître des vecteurs à droite (éq. tautologique pour les paramètres)
- \star) base \leadsto équations :
 - ightharpoonup on échelonne la matrice augmentée générique de la famille génératrice $\mathcal F$
 - les conditions de compatibilité donnent un système d'équations du sous-espace.