

IDENTIFYING INSUFFICIENT DATA COVERAGE FOR ORDINAL CONTINUOUS-VALUED ATTRIBUTES

Abolfazl Asudeh, Nima Shahbazi

Zhongjun Jin, H. V. Jagadish

MOTIVATION

MOTIVATION

(Unlucky): Not Predictable

COVERAGE

- We may not trust the outcome, if the query point is an outlier.
- The query point **q** is covered by training data, if
 - there are at least **k** (training) points in neighborhood

$$Cov_{\rho,k}(q,\mathcal{D}) = \begin{cases} true & \text{if } |\{t \in \mathcal{D} \mid \Delta(t,q) \leq \rho\}| \geq k \\ false & \text{otherwise} \end{cases}$$

• w/o loss of generality, we use ℓ_2 norm for the distance function

UNCOVERED REGION

- The collection of all uncovered points any query point in this region is uncovered
- Given a dataset D with d attributes (features) $x_1 \dots x_d$, a distance function $\Delta: R^d \times R^d \to R$, a vicinity value ρ , and a threshold value k, the uncovered region U is the set of points (value combinations) that are not covered by D. Formally:

$$U = \{q \in [0,1]^d \mid Cov(q,D) = false\}$$

UNCOVERED REGION EXAMPLE

PROBLEM FORMULATION

- Problem 1 (Uncovered Region Discovery): Given a dataset **D**, identify the uncovered region
 - Dataset Annotation: shows potential deficiencies in the (training) data set.
- Problem 2 (Uncovered Query Answering): Given the uncovered region, identify if a query point **q** is uncovered.

100 points in 2-d space (k=2, ρ =0.10)

UNCOVERED REGION EXAMPLE

(REVIEW): VORONOI DIAGRAMS

 Partition of a plane with n points into cells, such that all points in each cell have the same nearest point.

(REVIEW): K-VORONOI DIAGRAMS

- Extend the notion of Voronoi diagrams from nearest neighbor to k-nearest neighbor
- O(k(n-k)) cells
- Construction [D. T. Lee et al.]:
 - Time: $O(k^2 n \log(n))$
 - Space: $O(k^2(n-k))$
- Query time:
 - $O(\log n)$

100 points in 2-d space (k=2, ρ =0.10)

CONNECTION TO K-VORONOI DIAGRAMS

- Uncovered Region Discovery :
 - Construct the k-Voronoi diagram
 - For every Voronoi cell V(S):
 - Add the region outside the intersection $\cap O_t \ \forall \ t \in S$ to the uncovered region
- Uncovered Query Answering:
 - Find the cell **V(S)** that **q** belongs to
 - return **uncovered** iff $\exists t \in S \text{ s.t. } \Delta(q, t) > \rho$

COVERAGE IN MD

where $d \ge 2$

EXTENDING 2D CASE TO MD

• Theoretically: Yes, but...

• Practically: No, due to the curse of dimensionality

HTTP://SCIENTIFICMARKETER.COM

COPYRIGHT @ NICHOLAS J RADCLIFFE 2007. ALL RIGHTS RESERVED.
* WITH APOLOGIES TO MR SPOCK & STAR TREK.

LEARN THE UNCOVERED REGION (APPROXIMATELY)

- High-level idea:
 - Construct an ϵ -net by sampling "enough" query points:
 - A sample point is labeled as +1 if uncovered, -1 otherwise
 - Learn the uncovered region boundary using the ϵ -net
- Negative result (A theoretical upper-bound on the complexity of uncovered region)
 - In Rd, the VC-dimension of the uncovered region is bounded by

$$O((d+1)n^{\left|\frac{d}{2}\right|}k^{\left[\frac{d}{2}+1\right]})$$

LEARN THE UNCOVERED REGION (APPROXIMATELY)

Practical Resolution:

- Observation: The boundary complexity depends on the number of arcs constructing it which can be significantly less than the upper-bound
- **High-level idea**: Apply an **exponential search** on the number of samples, until the result forms an ϵ -net

• Uncovered Query Answering:

Pass the query point q to the learned classifier.

PROOF OF CONCEPT: CLASSIFICATION

• **Goal**: Determine whether a query point belongs to the body of a cat image or background

• Experiment:

- Removing the samples from the highlighted rectangle to make it uncovered
- Overall F1 vs. Uncovered region's F1
- False-Negatives in Red
- Decision boundary in uncovered region
- Effect of gradually adding points to the patch

PROOF OF CONCEPT 2: REGRESSION

• Goal: Predict Altitude of a query point based on (Longitude, Latitude)

• Experiment:

- RN dataset: (Longitude, Latitude, Altitude)
- Removing samples from a cell in the range
 10<Longitude<10.6 and 57.1<Latitude<57.6 with highly
 fluctuating Altitudes to make it uncovered
- Overall prediction error vs. Uncovered region's prediction error
- Effect of gradually adding points to the patch

PERFORMANCE EVALUATION

THANK YOU

 Abolfazl Asudeh, <u>asudeh@uic.edu</u>, <u>www.cs.uic.edu/~asudeh/</u>

- Nima Shahbazi, nshahb3@uic.edu
- Zhongjun Jin, <u>markjin@umich.edu</u>, <u>https://markjin1990.github.io/</u>
- H. V. Jagadish, jag@umich.edu, web.eecs.umich.edu/~jag/