M444 – Complex Analysis

Pierre-Olivier Parisé

University of Hawai'i at Manoa Chapter 2

Section 2.5: The Cauchy-Riemann Equations

Recall the following:

- ① z = (x, y), a point in \mathbb{R}^2 .
- ② f(z) = f(x, y) = u(x, y) + iv(x, y).
- ③ If $\phi = \phi(x, y)$, then

$$\frac{\partial \phi}{\partial x}(x_0, y_0) = \phi_x(x_0, y_0) = \lim_{\Delta x \to 0} \frac{\phi(x_0 + \Delta x, y_0) - \phi(x_0, y_0)}{\Delta x}$$

and

$$\frac{\partial \phi}{\partial y}(x_0, y_0) = \phi_y(x_0, y_0) = \lim_{\Delta y \to 0} \frac{\phi(x_0, y_0 + \Delta y) - \phi(x_0, y_0)}{\Delta y}.$$

Notice that

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \iff f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z_0)}{\Delta z}$$

Set $\Delta z = \Delta x$, for $\Delta x \in \mathbb{R}$. Then

$$f'(z_0) = \lim_{\Delta x \to 0} \frac{f(z_0 + \Delta x) - f(z_0)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x} + i \frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x}$$

$$+ i \lim_{\Delta x \to 0} \frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x}$$

$$= u_x(x_0, y_0) + i v_x(x_0, y_0).$$

Conclusion: $f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0)$.

Set $\Delta z = i\Delta y$, for $\Delta y \in \mathbb{R}$. Then

$$f'(z_0) = \lim_{\Delta y \to 0} \frac{f(z_0 + i\Delta y) - f(z_0)}{i\Delta y}$$

$$= \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{i\Delta y}$$

$$= \lim_{\Delta y \to 0} \frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{i\Delta y} + i \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{i\Delta y}$$

$$= \frac{u_y(x_0, y_0)}{i} + v_y(x_0, y_0)$$

$$= v_y(x_0, y_0) - iu_y(x_0, y_0).$$

Conclusion: $f'(z_0) = v_y(x_0, y_0) - iu_y(x_0, y_0)$.

Conclusion:

$$u_x(x_0, y_0) + iv_x(x_0, y_0) = f'(x_0, y_0) = v_y(x_0, y_0) - iu_y(x_0, y_0).$$

Theorem (Cauchy-Riemann Equations, Necessary conditions)

If f = u + iv is analytic in an open set U, then

- (1) u_x , u_y , v_x , v_y exist.
- (2) $u_x = v_y$ and $u_y = -v_x$ (C-R equations).

Example: $f(z) = \overline{z}$ is not analytic.

Indeed, u(x, y) = x and v(x, y) = -y. But

$$u_x(x,y) = 1 \neq -1 = v_y(x,y).$$

Hence, the C-R equations are not satisfied. So \overline{z} is not analytic.

Theorem (Cauchy-Riemann Equations; Corollary 2.5.2)

Let f = u + iv be a function defined on an open set U. Assume that

- ① u_x , u_y , v_x , v_y exist and are continuous on U.
- ② $u_x = v_y$ and $u_y = -v_x$ on U.

Then f is analytic on U and

$$f'=u_x+iv_x=v_y-iu_y.$$

Example : We have $e^z = e^x \cos y + ie^x \sin y$.

- ① $u_x(x,y) = e^x \cos y$ and $v_y = e^x \cos y$, and so $u_x = v_y$.
- ② $u_y(x,y) = -e^x \sin y$ and $v_x = e^x \sin y$, and so $u_y = -v_x$.

Hence, e^z is analytic on $\mathbb C$ and

$$(e^z)' = u_x + iv_x = e^x \cos y + ie^x \sin y = e^z.$$

Consequences:

- ① $\frac{d}{dz} \operatorname{Log}(z) = \frac{1}{z}$, for $z \in \mathbb{C} \setminus (-\infty, 0]$.
- ② $\frac{d}{dz}z^{\alpha}=\alpha z^{\alpha-1}$, for 1 $z\in\mathbb{C}\setminus(-\infty,0]$. [Reason: $z^{\alpha}=e^{\alpha\log z}$.]
- 3 $\frac{d}{dz}\sin(z) = \cos(z)$ and $\frac{d}{dz}\cos(z) = -\sin(z)$.

Proof of ①.

We have $z = e^{\log z}$. Therefore

$$(z)' = (e^{\operatorname{Log} z})' \Rightarrow 1 = e^{\operatorname{Log} z} (\operatorname{Log} z)' \Rightarrow \frac{1}{e^{\operatorname{Log} z}} = (\operatorname{Log} z)'.$$

Hence $(\text{Log }z)' = \frac{1}{z}$.

1. Also, $\alpha \neq 0$.

A **region** is a set $\Omega \subset \mathbb{C}$ such that

- Ω is open.
- Any two points $z, w \in \Omega$ can be connected by a polygonal curve within the set Ω .

Figure – Examples of connected and disconnected sets

Theorem

If f is analytic on a region Ω and f'(z)=0 for every $z\in\Omega$, then there is a $c\in\mathbb{C}$ such that f(z)=c for any $z\in\Omega$.

Proof.

- ① Fix $w \in \Omega$ and let $z \in \Omega$ with $z \neq w$. Let C be a polygonal curve joining w to z in Ω .
- ② Recall that $f'(z) = u_x + iv_x = v_y iu_y \Rightarrow u_x = u_y = v_x = v_y = 0$.
- (3) Therefore, $\vec{\nabla} u = \vec{0}$ and $\vec{\nabla} v = \vec{0}$.
- 4 From the Fundamental Theorem for line integrals, we get

$$u(z) - u(w) = \int_C \vec{\nabla} u \cdot d\vec{r} = 0 \quad \Rightarrow \quad u(z) = u(w).$$

Similarly, v(z) = v(w).

(5) Hence f(z) = u(w) + iv(w) = f(w), a constant.

Warning!

In the last result, Ω must be a region (open and <u>connected</u>).

Figure – Definition of an analytic function f on $B_1 \cup B_2$

The function f satisfies:

- ① f'(z) = 0 on $\Omega = B_1 \cup B_2$;
- ② But f is not constant on Ω .