Power iteration
$$A \in \mathbb{R}^{m \times m}$$
 $v_0 \neq 2$ invalide to preparation $v_1 \neq 1$ invalide to preparation $v_2 \neq 1$ invalide to preparation $v_2 \neq 1$ invalidation $v_3 \neq 1$ invalidation $v_4 \neq 1$ invalidatio

Pre-Lyapunov stability Lyapunov: Asymptotic Stability of vector fields under dot (or dft) (Jacobian) alone orbits Lyapunov functions (control: nonautonomeus) lakeaway: if a "Lyapunov function" exists in a neighborhood, the neighborhood is a "basin of attraction". Orbits entering the basin of attraction are uniformly & asymptotically stable. No systematic way to construct Lyapunov functions

Existence & uniqueness for IVP

(Do Carmo)

$$\frac{dp^{t}(x)}{dt} = v(p^{t}(x), \tau)$$

To is continuous of postal derivate are continuous

$$\frac{\partial v(z,t)}{\partial x_{1}} = v(p^{t}(x), \tau)$$

Then, starting from any $x \in \Gamma$

the solutions of (x) brist and are unique on $D \times \Gamma$.

The pot(x) either reach the boundary of $D \times \Gamma$ or are unbounded of (x) to (x) to (x) the solution of (x) to (x) the solution of (x) to (x) the solution of (x) to (x) then (x) to (x) the solution of (x) to (x) then (x) then (x) to (x) the solution of (x) to (x) then (x) then (x) to (x) then (x) to (x) then (x) the

Existence I uniqueness for IVP

(Do Carmo)

$$\frac{d\rho^{\dagger}(x)}{dt} = v(\rho^{\dagger}(x), t)$$
 \Rightarrow if v is continuous of partial derivative and continuous for all $x \in D$, then, starting from any $x \in D$, the solutions of (x) kint and are unique on $D \times I$.

 \Rightarrow $\phi^{\dagger}(x)$ either reach the boundary of $D \times I$ or are unbounded as $t \Rightarrow \infty$.

Examples (Jokhn-Smith $f(x) = \int_{-1}^{1} dt$

$$\int_{-1}^{1} dt = \int_{2}^{1} t dt$$

$$\int_{-1}^{1} dt = \int_{2}^{1} t dt$$

$$\int_{1}^{1} dt = \int_{2}^{1} t dt$$

for all x & D, t & I. Examples (Joidan-Smith) $\frac{d}{dt}\varphi^{t}(x) = a \frac{\varphi^{t}(x)}{t}$ $\int \frac{d\varphi^{t}(n)}{\varphi^{t}(n)} = 2 \int \frac{dt}{t}$ $\varphi^{t}(x) = ct^{2}$

Then, starting from any
$$z \in D$$
, the solutions of $Q^{\dagger}(x)$ fruit and are unique on $D \times I$.

The solutions of $Q^{\dagger}(x)$ fruit and are unique on $D \times I$.

The polyton of are unbounded as $t \to \infty$.

The polyton of $Q^{\dagger}(x)$ in $Q^{\dagger}(x)$ is $Q^{\dagger}(x)$ and $Q^{\dagger}(x)$ in $Q^{\dagger}(x)$

Lyapunov function - based stability (Qt(x))
"Regular" (Jordan-Smith) $\frac{d\varphi^{t}(x)}{dt} =$ $v(q^{t(x)})$ Continuous

Lyapunov function, $L: \mathcal{N}(x^*) \rightarrow \mathbb{R}^+$ that is positive definite L(x) > 0 and $L(x^*) = 0$ and decreases (skricky) along orbits $\frac{d}{d} \int_{0}^{\infty} q^{t}(x) < 0$ dt $\forall x \in \mathcal{N}(x^*)$. -> If L satisfying above conditions exists, then, of is uniformly stable in a nghbd of xxx f asymptotically converges to xx. basin of attraction N(x*): {x: d(x,x*)< 6} $N_{S}(x^{*}) =$ Uniformly. For every & 70, 3 870 s.t. whenever $x \in N_{\delta}(x^*)$ $d(\varphi^{t}(x), x^{*}) < \varepsilon \text{ for all } t.$ v(x*)=0 Asymptotic converge to x* For evry E 70, 3 8>0,s.t. whenever $x \in N_{\delta}(x^*)$, $\lim_{t \to \infty} d(\varphi^{t}(x), x^{*}) = 0.$

Proof of uniform stability > Existence of reniqueness > L is cont, L 202 dhopt < 0. CE = {x: d(2, x)= E3 CE is compact (Rudin. A continuous for on a compact set is bounded and its supplied are attained). and its supplied are some point y* E Ca s.t. $\inf_{y \in C_{\varepsilon}} \mathcal{L}(y) = \mathcal{L}(y^{*}) = \alpha > 0$ $\mathcal{L}(z^{4}) = 0$ Since L is continuous, 3.8>0s.t. whenever $z \in B_S(z^*)$ $d(\mathcal{L}(x), \mathcal{L}(x^*)) < \alpha$ $\mathcal{L}(x) < d$ $\left(\begin{array}{c} x \\ x \end{array}\right)^{\epsilon} \frac{d \int_{0}^{\epsilon} \varphi^{t}(x)}{dt} < 0$ $\mathcal{L}(x) < \kappa$ $\varphi'(x)$ does not attain C_{ϵ} because dopt(x) < x for all t. For all t, $|\varphi^{t}(u)| \in B_{S}$ and $d(\varphi^t(x), x^*) < \varepsilon$.