Task-2:

Unemployment Analysis With Python

Unemployment analysis in Python involves collecting and processing labor market data, such as employment rates, job vacancies, and demographic information. This data can be visualized using libraries like Matplotlib or Seaborn to identify trends and patterns. Statistical methods and machine learning models can also be applied to predict future unemployment rates or analyze the impact of various economic factors on joblessness. Ultimately, Python facilitates a comprehensive understanding of unemployment dynamics through data exploration and modeling.

```
In [1]: #Importing required libraries
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    import plotly.express as px
    ## Supress warnings
    import warnings
    warnings.filterwarnings("ignore")

In [2]: data = pd.read_csv("unemployment.csv")
    print("data has been successfully loaded")
    data has been successfully loaded

In [3]: # Checking and cleaning the dataset:
In [4]: data
```

Out[4]:

		Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Region.1	longitude	latitu
	0	Andhra Pradesh	31- 01- 2020	М	5.48	16635535	41.02	South	15.9129	79.7
	1	Andhra Pradesh	29- 02- 2020	М	5.83	16545652	40.90	South	15.9129	79.7
	2	Andhra Pradesh	31- 03- 2020	М	5.79	15881197	39.18	South	15.9129	79.7
	3	Andhra Pradesh	30- 04- 2020	М	20.51	11336911	33.10	South	15.9129	79.7
	4	Andhra Pradesh	31- 05- 2020	М	17.43	12988845	36.46	South	15.9129	79.7
	•••	•••								
	262	West Bengal	30- 06- 2020	М	7.29	30726310	40.39	East	22.9868	87.8
	263	West Bengal	31- 07- 2020	М	6.83	35372506	46.17	East	22.9868	87.8
2	264	West Bengal	31- 08- 2020	М	14.87	33298644	47.48	East	22.9868	87.8
2	265	West Bengal	30- 09- 2020	М	9.35	35707239	47.73	East	22.9868	87.8
2	266	West Bengal	31- 10- 2020	М	9.98	33962549	45.63	East	22.9868	87.8

267 rows × 9 columns

←

In [5]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 267 entries, 0 to 266
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Region	267 non-null	object
1	Date	267 non-null	object
2	Frequency	267 non-null	object
3	Estimated Unemployment Rate (%)	267 non-null	float64
4	Estimated Employed	267 non-null	int64
5	Estimated Labour Participation Rate (%)	267 non-null	float64
6	Region.1	267 non-null	object
7	longitude	267 non-null	float64
8	latitude	267 non-null	float64

 ${\tt dtypes:} \ {\tt float64(4),\ int64(1),\ object(4)}$

memory usage: 18.9+ KB

In [6]: data.tail()

Out[6]:

		Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Region.1	longitude	latituc
2	262	West Bengal	30- 06- 2020	М	7.29	30726310	40.39	East	22.9868	87.8!
	263	West Bengal	31- 07- 2020	М	6.83	35372506	46.17	East	22.9868	87.8!
	264	West Bengal	31- 08- 2020	М	14.87	33298644	47.48	East	22.9868	87.8!
	265	West Bengal	30- 09- 2020	М	9.35	35707239	47.73	East	22.9868	87.8!
	266	West Bengal	31- 10- 2020	М	9.98	33962549	45.63	East	22.9868	87.8!

In [7]: data.shape

Out[7]: (267, 9)

In [8]: data.sample()

Out[8]:

	Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Region.1	longitude	latituc
215	Tamil Nadu	30- 09- 2020	М	5.0	23025845	36.77	South	11.1271	78.65(

In [9]: data.describe()

Out[9]:		Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	longitude	latitude
	count	267.000000	2.670000e+02	267.000000	267.000000	267.000000
	mean	12.236929	1.396211e+07	41.681573	22.826048	80.532425
	std	10.803283	1.336632e+07	7.845419	6.270731	5.831738
	min	0.500000	1.175420e+05	16.770000	10.850500	71.192400
	25%	4.845000	2.838930e+06	37.265000	18.112400	76.085600
	50%	9.650000	9.732417e+06	40.390000	23.610200	79.019300
	75%	16.755000	2.187869e+07	44.055000	27.278400	85.279900
	max	75.850000	5.943376e+07	69.690000	33.778200	92.937600

Let's see if this dataset contains missing values or not:

```
In [10]: print(data.isnull().sum())
         Region
                                                       0
          Date
                                                       0
          Frequency
                                                       0
          Estimated Unemployment Rate (%)
                                                       0
          Estimated Employed
                                                       0
          Estimated Labour Participation Rate (%)
                                                       0
         Region.1
                                                       0
         longitude
                                                       0
         latitude
         dtype: int64
In [11]: data.columns= ["States","Date","Frequency",
           "Estimated Unemployment Rate",
           "Estimated Employed",
           "Estimated Labour Participation Rate",
           "Region", "longitude", "latitude"]
```

Unemployment Rate Analysis: Data Visualization

Indian Unemployment


```
In [13]: plt.figure(figsize=(12, 10))
   plt.title("Indian Unemployment")
   sns.histplot(x="Estimated Unemployment Rate", hue="Region", data=data)
   plt.show()
```



```
In [14]: unemploment = data[["States", "Region", "Estimated Unemployment Rate"]]
    figure = px.sunburst(unemploment, path=["Region", "States"],
    values="Estimated Unemployment Rate",
    width=700, height=700, color_continuous_scale="RdY1Gn",
    title="Unemployment Rate in India")
    figure.show()
```

Unemployment Rate in India

see the number of unique region:

In [15]: data.Region.nunique()
Out[15]: 5

See exact numbers:

In [16]: make_total = data.pivot_table("Estimated Unemployment Rate",index=['Region'],aggfunc=
topstate=make_total.sort_values(by='Estimated Unemployment Rate',ascending=False)[:47
print(topstate)

Estimated Unemployment Rate

Region
North 15.889620
East 13.916000
Northeast 10.950263
South 10.454667
West 8.239000

Calculate which models has highest yearly fluncations:

```
In [17]: maketotal_1 = data.pivot_table(values='Estimated Unemployment Rate',index=['Region'],
    df1 = maketotal_1.reset_index().dropna(subset=['Estimated Unemployment Rate'])
    df2 = df1.loc[df1.groupby('Region')['Estimated Unemployment Rate'].idxmax()]
    for index,row in df2.iterrows():
        print(row['Region'],"Region which",row['Region'],"has the highest yearly fluncation.
        East Region which East has the highest yearly fluncation.
        North Region which North has the highest yearly fluncation.
```

North Region which North has the highest yearly fluncation. Northeast Region which Northeast has the highest yearly fluncation. South Region which South has the highest yearly fluncation. West Region which West has the highest yearly fluncation.

In []: