LINEĀRAS SAKARĪBAS

Definīcija:

Skaitļus a un b sauc par savstarpējiem pirmskaitļiem, ja to lielākais kopīgais dalītājs ir 1 (citiem vārdiem, daļa $\frac{a}{b}$ ir nesaīsināma).

Uzdevums:

Pircējam ir monētas ar vērtību a eirocenti, pārdevējs var izdot atlikumu monētās ar vērtību b eirocenti. Ja a un b abi dalās ar kādu skaitli (piemēram, d=5), tad pircējs nevar samaksāt pārdevējam naudas vērtību, kas nedalās ar šo skaitli (piemēram, 16 eirocentus, ja visas vinu monētu vērtības dalās ar 5).

Ja pircēja un pārdevēja monētu vērtības ir savstarpēji pirmskaitļi (LKD(a,b)=1) — vai šādā gadījumā pircējs var samaksāt pārdevējam jebkuru summu?

Uzdevums:

Atrisināt kongruenču vienādojumus:

- A. $5x \equiv 1 \pmod{11}$ (atrast x, ka $5x \pmod{4}$ at likumu 1, dalot ar 11),
- B. $6x \equiv 2 \pmod{11}$,
- C. $7x \equiv 3 \pmod{11}$,
- D. $5x \equiv 4 \pmod{12}$,
- E. $5x \equiv 11 \pmod{12}$,
- F. $3x \equiv 8 \pmod{12}$,
- G. $3x \equiv 9 \pmod{12}$.

Uzdevums:

Uz kalkulatora ekrāna ir uzrakstīts kaut kāds skaitlis. Naktī ar kalkulatoru sāk darboties rūķītis, kurš katru sekundi pieskaita uz ekrāna redzamajam kādu naturālu skaitli a < 100. Zināms, ka kalkulatora pēdējie divi cipari mainās un pieņem visas vērtības no 00 līdz 99. Cik dažādas a vērtības rūķītis var izvēlēties?

Apgalvojums:

Dots skaitļa sadalījums pirmreizinātājos: $n=p_1^{a_1}p_2^{a_2}\dots p_k^{a_k}$. Skaitlis n ir pilns kvadrāts tad un tikai tad, ja visi a_i ir pāra skaitļi. Skaitlis n ir pilns kubs tad un tikai tad, ja visi a_i dalās ar 3 utt.

Atceramies, ka skaitļa pozitīvo dalītāju skaitu var izteikt ar formulu:

$$d(n) = (a_1 + 1) \cdot (a_2 + 1) \cdot \ldots \cdot (a_k + 1)$$
.

Piemēri:

- Ja skaitlis n ir pilns kvadrāts, tad tā pozitīvo dalītāju skaits d(n) ir nepāra skaitlis. Vai ir arī pretējais apgalvojums ja d(n) ir nepāra skaitlis, tad n ir pilns kvadrāts?
- Ja skaitlis n ir pilns kubs, tad tam var būt $1, 4, 7, 10, 13, \ldots$ pozitīvi dalītāji (t.i. dalītāju skaits d(n) dod atlikumu 1, dalot ar 3). Vai ir arī pretējais apgalvojums: Ja d(n) dod atlikumu 1, dalot ar 3, tad n ir pilns kubs?

Mazā Fermā teorēma:

Dots pirmskaitlis p un kāds skaitlis a, kas nedalās ar p. Tad, reizinot a pašu ar sevi p-1 reizes, iegūstam atlikumu 1, dalot ar p (jeb $a^{p-1} \equiv 1 \pmod p$).

Piemērs:

- Visi skaitli 1⁶, 2⁶, 3⁶, 4⁶, 5⁶, 6⁶ dod vienādu atlikumu 1, dalot ar 7.
- Visi skaitli a^4 beidzas ar ciparu 1 vai 6 (ja vien a nedalās ar 5).

Uzdevums:

Atrast skaitla N atlikumu, dalot ar 7, kur

$$N = 2025^{2025^{2025}}$$
 (pieraksts lasāms kā $2025^{(2025^{2025})}$).

LT.SAV.2018.9 10.1:

Pierādīt, ka jebkurš naturāls skaitlis a ir vienāds ar naturāla skaitļa piektās pakāpes un naturāla skaitļa trešās pakāpes attīecību, t.i. ka $a=b^5:c^3$, kur b un c ir naturāli skaitļi.

Uzdevums:

Uz šaha galdiņa 8×8 novietojās n torņi. Katrs tornis saskaitīja, cik citi torņi ir viņa horizontālē (torņi ieguva skaitus h_1,h_2,\ldots,h_n). Un katrs tornis saskaitīja, cik citi torņi ir viņa vertikālē (torņi ieguva skaitus v_1,v_2,\ldots,v_n). Zināms, ka summas $h_1+h_2+\ldots+h_n$ un $v_1+v_2+\ldots+v_n$ abas vienādas ar 18. Cik pavisam torņu var būt uz šaha galdiņa?

Uzdevums:

Pa šaha galdiņu 8×8 pārvietojas šaha zirdziņš. Vai eksistē tāds maršruts, kas sākas kreisajā apakšējā stūrī (rūtiņā **a1**), apstaigā visas rūtiņas, katrā nonākot tieši vienu reizi, un beidzas blakus kreisajam apakšējam stūrim (rūtiņā **a2**)?

Uzdevums:

Pa šaha galdiņu 8×8 pārvietojas figūriņa "pūķis". Katrā solī šī figūriņa var izdarīt kādu no gājieniem (1,1), (-1,0), (0,-1). Pūķis sāk savu kustību kreisajā apakšējā stūrī (rūtiņā **a1**) Cik daudzās šaha galdiņa rūtiņās šī figūriņa varēs nonākt, veicot tieši 60 gājienus?