

Prof. Bernd Finkbeiner, Ph.D. Jana Hofmann, M.Sc. Reactive Systems Group

Programmierung 1 (WS 2020/21) Zusatztutorium 4 (Lösungsvorschläge) Induktion

Hinweis: Diese Aufgaben wurden von den Tutoren für das Zusatztutorium erstellt. Sie sind für die Klausur weder relevant noch irrelevant. im markiert potentiell schwerere Aufgaben.

Natürliche Induktion

Aufgabe Z4.1 (Induktive Korrektheitsbeweise)

Zeigen Sie für die folgenden Prozeduren jeweils mittels Induktion, dass p die Funktion f berechnet, also dass $\forall z \in Dom \ f: p \ z = f \ z$ gilt.

(a)
$$p: \mathbb{N}^2 \to \mathbb{N}$$
$$p(0,y) = y$$
$$p(x,y) = 1 + p(x-1,y) \quad \text{für } x > 0$$
$$f = \lambda(x,y) \in \mathbb{N}^2. \ x + y$$

(b)
$$\begin{aligned} p: \mathbb{N} \times \mathbb{Z} &\to \mathbb{Z} \\ p& (0,y) = 0 \\ p& (x,y) = y + p& (x-1,y) & \text{für } x > 0 \\ f &= \lambda(x,y) \in \mathbb{N} \times \mathbb{Z}. & x \cdot y \end{aligned}$$

(c)
$$p: \mathbb{N}^2 \to \mathbb{N}$$
$$p(0,y) = y$$
$$p(x,y) = p(x-1,y+1) \quad \text{für } x > 0$$
$$f = \lambda(x,y) \in \mathbb{N}^2. \ x + y$$

(d)
$$p: \mathbb{Z}^2 \to \mathbb{N}$$

$$p(x,y) = \text{if } x = y \text{ then } x$$

$$\text{else if } x = 0 \text{ then } p(x,y-1)$$

$$\text{else if } y = 0 \text{ then } p(x-1,y)$$

$$\text{else } p(x-1,y-1)$$

$$f = \lambda(x,y) \in \mathbb{N}^2 \text{. if } x = y \text{ then } x \text{ else } 0$$

Lösungsvorschlag Z4.1

(a) Sei $y \in \mathbb{N}$.

Behauptung: $\forall x \in \mathbb{N}: \ p(x,y) = x + y$

Beweis: Durch Induktion über $x \in \mathbb{N}$. Wir unterscheiden zwei Fälle.

• Sei x = 0. Dann gilt:

$$p(x,y) = p(0,y)$$
 $x = 0$
 $= y$ Definition p
 $= 0 + y$ Arithmetik
 $= x + y$ $x = 0$

- Sei x > 0. Induktionsannahme : $\forall y \in \mathbb{N} : \forall m < x : p(m, y) = m + y$

Dann gilt:

$$p(x,y) = 1 + p(x-1,y)$$
 Definition p
= $1 + ((x-1) + y)$ Induktion für $x-1$
= $x + y$ Assoziativität, Kommutativität

(b) Sei $y \in \mathbb{Z}$.

Behauptung: $\forall x \in \mathbb{N}: \ p(x,y) = x \cdot y$

Beweis: Durch Induktion über $x \in \mathbb{N}$. Wir unterscheiden zwei Fälle.

• Sei x = 0. Dann gilt:

$$\begin{array}{ll} p\;(x,y) = p\;(0,y) & x = 0 \\ = 0 & \text{Definition } p \\ = 0 \cdot y & \text{Arithmetik} \\ = x \cdot y & x = 0 \end{array}$$

• Sei x > 0. Induktionsannahme : $\forall y \in \mathbb{N} : \forall m < n : p(m, y) = m \cdot y$ Dann gilt:

$$p(x,y) = y + p(x-1,y)$$
 Definition p

$$= y + ((x-1) \cdot y)$$
 Induktion für $x-1$

$$= y + (x \cdot y - y)$$
 Distributivität
$$= x \cdot y$$
 Assoziativität, Kommutativität

(c) An dieser Stelle ist es wichtig, in der Behauptung über y zu quantifizieren, da die Induktionshypothese für beliebige $y \in \mathbb{N}$ anwendbar sein muss.

Behauptung: $\forall x \in \mathbb{N} : \forall y \in \mathbb{N} : p(x,y) = x + y$

Beweis: Durch Induktion über $x \in \mathbb{N}$. Wir unterscheiden zwei Fälle.

• Sei x = 0. Dann gilt:

$$p(x,y) = p(0,y)$$
 $x = 0$
 $= y$ Definition p
 $= 0 + y$ Arithmetik
 $= x + y$ $x = 0$

• Sei x > 0. Induktionsannahme : $\forall y \in \mathbb{N} : \forall m < x : p(m, y) = m + y$ Dann gilt:

$$\begin{array}{ll} p\left(x,y\right) = p\left(x-1,y+1\right) & \text{Definition } p \\ &= (x-1) + (y+1) & \text{Induktion für } x-1 \\ &= x+y & \text{Assoziativität, Kommutativität} \end{array}$$

(d) Es gilt $Dom p = \mathbb{N}^2$.

Behauptung: $\forall (x,y) \in \mathbb{N}^2$: p(x,y) = if x = y then x else 0

Beweis: Durch Induktion über $x+y\in\mathbb{N}$. Wir unterscheiden zwei Fälle.

• Sei x + y = 0, also x = 0 und y = 0. Dann gilt:

$$\begin{array}{lll} p\left(x,y\right) = & p\left(0,0\right) & x = 0 \land y = 0 \\ & = & \text{if } 0 = 0 \text{ then } 0 \\ & = & \text{lse if } 0 = 0 \text{ then } p\left(0,0-1\right) \\ & = & \text{lse if } 0 = 0 \text{ then } p\left(0-1,0\right) \\ & = & \text{lse } p\left(0-1,0-1\right) & \text{Definition } p \\ & = & 0 & \text{Vereinfachen} \\ & = & \text{if } 0 = 0 \text{ then } 0 \text{ else } 0 & \text{Semantik von } if \\ & = & \text{if } x = y \text{ then } x \text{ else } 0 & x = 0 \land y = 0 \end{array}$$

- Sei x + y > 0. Man unterscheide drei weitere Fälle:
 - Sei x = 0 und y > 0.

$$\begin{array}{lll} p\left(x,y\right) = & p\left(0,y\right) & x = 0 \\ & = & \text{if } 0 = y \text{ then } 0 \\ & = & \text{lse if } 0 = 0 \text{ then } p\left(0,y-1\right) \\ & = & \text{lse if } y = 0 \text{ then } p\left(0-1,y\right) \\ & = & \text{lse } p\left(0-1,y-1\right) & \text{Definition } p \\ & = & p\left(0,y-1\right) & \text{Vereinfachen (wegen } y \neq 0) \\ & = & \text{if } 0 = y-1 \text{ then } 0 \text{ else } 0 & \text{Induktion für } (x+y)-1 \\ & = & 0 & \text{Vereinfachen: Da Konsequenz und Alternative } 0 \\ & = & \text{if } 0 = y \text{ then } 0 \text{ else } 0 & \text{Da Konsequenz und Alternative } 0 \\ & = & \text{if } x = y \text{ then } 0 \text{ else } 0 & x = 0 \end{array}$$

- Sei y = 0 und x > 0.

$$\begin{array}{lll} p\left(x,y\right) = & p\left(x,0\right) & x = 0 \\ & = & \text{if } x = 0 \text{ then } x \\ & = & \text{lse if } x = 0 \text{ then } p\left(x,0-1\right) \\ & = & \text{lse if } 0 = 0 \text{ then } p\left(x-1,0\right) \\ & = & \text{lse } p\left(x-1,0-1\right) & \text{Definition } p \\ & = & p\left(x-1,0\right) & \text{Vereinfachen (wegen } x \neq 0) \\ & = & \text{if } x-1 = 0 \text{ then } x-1 \text{ else } 0 & \text{Induktion für } (x-1+y) = (x+y)-1 \\ & = & 0 & \text{Vereinfachen: Semantik von } if \\ & = & \text{if } x = 0 \text{ then } x \text{ else } 0 & \text{Semantik von } if \\ & = & \text{if } x = y \text{ then } 0 \text{ else } 0 & y = 0 \end{array}$$

- Sei x>0 und y>0. Man unterscheide zwei weitere Fälle:
 - * Sei x = y.

$$p\left(x,y\right)=\text{if }x=y\text{ then }x$$
 else if $x=0$ then $p\left(x,y-1\right)$ else if $y=0$ then $p\left(x-1,y\right)$ Definition p
$$=x$$
 Vereinfachen
$$=\text{if }x=y\text{ then }x\text{ else }0$$
 Wegen $x=y+$ Semantik von if

* Sei $x \neq y$.

$$p\left(x,y\right)=\text{if }x=y\text{ then }x$$

$$\text{else if }x=0\text{ then }p\left(x,y-1\right)$$

$$\text{else if }y=0\text{ then }p\left(x-1,y\right)$$

$$\text{else }p\left(x-1,y-1\right)$$

$$\text{Definition }p$$

$$=p\left(x-1,y-1\right)$$

$$\text{Vereinfachen (wegen }y\neq0,\,x\neq0\text{ und }x\neq y)$$

$$=\text{if }x-1=y-1\text{ then }x-1\text{ else }0$$

$$\text{Induktion für }(x-1)+(y-1)=(x+y)-2$$

$$=0$$

$$\text{Aus }x\neq y\text{ folgt }x-1\neq y-1\text{ und Semantik von }if$$

$$=\text{if }x=y\text{ then }x\text{ else }0$$

$$\text{Wegen }x\neq y\text{ und Semantik von }if$$

Aufgabe Z4.2 (faciter)

Beweisen Sie, dass für die Schrittfunktion $f = \lambda(k, x)$. $(k + 1, k \cdot x)$ gilt:

(a)
$$\forall n \in \mathbb{N} : f(n+1, n!) = (n+2, (n+1)!)$$

(b)
$$\forall n \in \mathbb{N} : (n+1, n!) = f^n(1, 1)$$

Lösungsvorschlag Z4.2

(a) Beweis. Sei $n \in \mathbb{N}$, dann gilt

$$f(n+1, n!) = ((n+1) + 1, (n+1) \cdot n!)$$
 Definition f
= $(n+2, (n+1)!)$ Definition !

- (b) Beweis. Beweis durch Induktion über $n \in \mathbb{N}$.
 - Sei n = 0. Dann

$$f^{n}(1,1) = f^{0}(1,1)$$
 $n = 0$
= $(1,1)$ Definition Iteration
= $(0+1,0!)$ Arithmetik

• Sei n > 0. Induktionsannahme : $\forall m < n : (m+1, m!) = f^m(1, 1)$ Dann ist

$$f^{n}(1,1) = f(f^{n-1}(1,1))$$
 Definition Iteration

$$= f((n-1)+1,(n-1)!)$$
 Induktion für $n-1$

$$= f(n,(n-1)!)$$
 Arithmetik

$$= (n+1,n\cdot(n-1)!)$$
 Definition f

$$= (n+1,n!)$$
 Arithmetik

Strukturelle Induktion

Aufgabe Z4.3 (foldl auf zwei Listen)

Seien X, Y Mengen und f eine Funktion $X \times Y \to Y$. Beweisen Sie durch strukturelle Induktion über xs, dass gilt:

$$\forall xs \in \mathcal{L}(X) : \forall ys \in \mathcal{L}(X) : \forall y \in Y : foldl(f, y, xs @ ys) = foldl(f, foldl(f, y, xs), ys)$$

4 / 13

Beweis. durch Induktion über $xs \in \mathcal{L}(X)$. Fallunterscheidung.

• Fall xs = nil:

$$foldl (f, y, nil @ ys) = foldl (f, y, ys)$$
 Definition von @
$$= foldl (f, foldl (f, y, nil), ys)$$
 Definition von $foldl$

• Fall xs = x :: xr:

Induktionsannahme: $\forall ys \in \mathcal{L}(X) : \forall xr : foldl(f, y, xr @ ys) = foldl(f, foldl(f, y, xr), ys)$

$$foldl (f, y, xs @ ys) = foldl (f, y, (x :: xr) @ ys) & xs = x :: xr \\ = foldl (f, f (x, y), xr @ ys) & Definition von foldl \\ = foldl (f, foldl (f, f (x, y), xr), ys) & Induktion für xr \\ = foldl (f, foldl (f, y, x :: xr), ys) & Definition von foldl \\ = foldl (f, foldl (f, y, xs), ys) & xs = x :: xr$$

Aufgabe Z4.4 (Beträge)

Beweisen Sie die Aussage |xs @ [z]| = |xs| + 1.

Lösungsvorschlag Z4.4

Beweis durch Induktion über $xs \in \mathcal{L}(X)$. Fallunterscheidung.

(a) Sei xs = nil:

$$\begin{aligned} |\mathit{nil} @ [z]| &= |z :: \mathit{nil}| & \text{Definition} :: \\ &= |[z]| & \text{Definition} @ \\ &= 1 + |\mathit{nil}| & \text{Definition} \mathit{length} \\ &= |\mathit{nil}| + 1 & \text{Kommutativität} + \end{aligned}$$

(b) Sei xs = x :: xr:

$$\begin{aligned} |(x::xr) @ [z]| &= |x::(xr) @ [z]| & \text{Definition } @ \\ &= 1 + |(xr) @ [z]| & \text{Definition } length \\ &= 1 + |(xr)| + 1 & \text{Induktion für } xr \\ &= |x::xr| + 1 & \text{Definition } length \end{aligned}$$

Aufgabe Z4.5 (Alles über Listen)

Beweisen Sie mit struktureller Induktion, dass für alle Listen $xs, ys \in \mathcal{L}(X)$ gilt:

- (a) xs @ nil = xs
- (b) rev(xs @ ys) = rev ys @ rev xs
- (c) rev(rev xs) = xs

Hinweis: Die Verwendung von Aussagen aus vorherigen Aufgabenteilen kann nützlich sein, außerdem kann Proposition 10.5 an einer Stelle weiter helfen.

(a) Beweis. Wir zeigen

$$\forall xs \in \mathcal{L}(X) : xs @ nil = xs$$

durch strukturelle Induktion über $xs \in \mathcal{L}(X)$. Wir unterscheiden zwei Fälle:

• Fall xs = nil:

$$xs @ nil = nil @ nil$$
 $xs = nil$ Definition @ $= xs$ $xs = nil$

• Fall xs = x :: xr:

Induktionsannahme: xr @ nil = xr

$$xs @ nil = (x :: xr) @ nil$$
 $xs = x :: xr$

$$= x :: (xr @ nil)$$
 Definition @
$$= x :: xr$$
 Induktion für xr

$$= xs$$
 $xs = x :: xr$

(b) Beweis. Wir zeigen

$$\forall xs \in \mathcal{L}\left(X\right): \forall ys \in \mathcal{L}\left(X\right): rev\; (xs @ ys) = rev\; ys @ rev\; xs$$

durch strukturelle Induktion über $xs \in \mathcal{L}(X)$. Wir unterscheiden zwei Fälle:

• Fall xs = nil. Sei $ys \in \mathcal{L}(X)$:

• Fall xs = x :: xr, sei $ys \in \mathcal{L}(X)$:

Induktionsannahme: $\forall ys' \in \mathcal{L}(X)$: rev(xr @ ys') = rev ys' @ rev xr

$$rev (xs @ ys) = rev ((x :: xr) @ ys) \qquad xs = x :: xr$$

$$= rev (x :: (xr @ ys)) \qquad \text{Definition } @$$

$$= rev (xr @ ys) @ [x] \qquad \text{Definition } rev$$

$$= (rev ys @ rev xr) @ [x] \qquad \text{Induktion für } ys' = ys$$

$$= rev ys @ (rev xr @ [x]) \qquad \text{Proposition } 10.5$$

$$= rev ys @ rev (x :: xr) \qquad \text{Definition } rev$$

$$= rev ys @ rev xs \qquad xs = x :: xr$$

(c) Beweis. Wir zeigen

$$\forall xs \in \mathcal{L}(X) : rev(rev xs) = xs$$

durch strukturelle Induktion über $xs \in \mathcal{L}(X)$. Wir unterscheiden zwei Fälle:

• Fall xs = nil:

$$rev (rev \ xs) = rev (rev \ nil)$$
 $xs = nil$ Definition rev $= nil$ Definition rev $= xs$ $xs = nil$

• Fall xs = x :: xr:

Induktionsannahme: rev(rev xr) = xr

rev (rev xs	$)=rev\left(rev\left(x::xr\right) \right)$	xs = x :: xr
	= rev (rev xr @ [x])	Definition rev
	= rev[x] @ rev(rev xr)	Aufgabe (b)
	= rev[x] @ xr	Induktion für xr
	= rev (x :: nil) @ xr	Definition $[\cdot]$
	$= (rev \ nil \ @ \ [x]) \ @ \ xr$	Definition rev
	$= (nil \circledcirc [x]) \circledcirc xr$	Definition rev
	= [x] @ xr	Definition @
	=(x::nil)@xr	Definition $[\cdot]$
	=x::(nil@xr)	Definition @
	=x::xr	Definition @
	=xs	xs = x :: xr

Aufgabe Z4.6 (Binomialbäume)

Ein Binomialbaum $B_k \in \mathcal{B}$ der Ordnung k ist ein geordneter Baum und rekursiv wie folgt definiert:

- B_0 ist der Baum mit einem Knoten: $B_0 = []$.
- B_k besteht aus zwei Kopien von B_{k-1} . Die Wurzel der einen Kopie wird das linkeste Kind der Wurzel der anderen Kopie: $B_k = [B_{k-1}, B_1', \dots, B_n']$ wenn $B_{k-1} = [B_1', \dots, B_n']$.

Graphische Darstellung der Binomialbäume $B_0,\,B_1,\,B_2$ und B_3

Seien die Prozeduren s, b, d wie in Kapitel 10.5 des Buches gegeben. Es sei außerdem die Prozedur $a: \mathcal{B} \to \mathbb{N}$ mit $a[t_1, \ldots, t_n] = n$ gegeben.

Beweisen Sie:

- (a) $s(B_k) = 2^k$.
- (b) $d(B_k) = k$.
- (c) $a(B_k) = k$.

- (a) Beweis von $\forall k \in \mathbb{N} : s (B_k) = 2^k$ durch Induktion über $k \in \mathbb{N}$. Fallunterscheidung.
 - Sei k = 0.

$$s\ (B_0)=s\ [\]$$
 Definition B_0
 $=$ if $n=0$ then 1 else 1 Definition s
 $=$ 1 Definition if, $n=0$
 $=$ 2⁰ Arithmetik

• Sei k = 1.

$$s (B_1) = s [B_0]$$
 Definition B_1
 $= \text{if } n = 0 \text{ then } 1 \text{ else } 1 + s (B_0)$ Definition s
 $= 1 + s (B_0)$ Definition if, $n = 1$
 $= 1 + 2^0$ $s (B_0) = 2^0$, s. o.
 $= 2^1$ Arithmetik

• Sei k > 1.

Induktionsannahme: $s(B_{\ell}) = 2^{\ell}$ gelte für alle $\ell < k$.

$$s \ (B_k) = s \ [B_{k-1}, B_1', \dots, B_n'] \qquad \qquad \text{Definition } B_k$$

$$= \text{if } n+1 = 0 \text{ then } 1 \text{ else } 1+s \ (B_{k-1})+s \ (B_1')+\dots+s \ (B_n') \qquad \qquad \text{Definition } s$$

$$= 1+s \ (B_{k-1})+s \ (B_1')+\dots+s \ (B_n') \qquad \qquad \text{Definition if, } n+1 \neq 0$$

$$= s \ (B_{k-1})+1+s \ (B_1')+\dots+s \ (B_n') \qquad \qquad \text{Assoziativität Addition}$$

$$= s \ (B_{k-1})+\text{if } n=0 \text{ then } 1 \text{ else } 1+s \ (B_1')+\dots+s \ (B_n') \qquad \qquad \text{Definition if, } n \geq 1$$

$$= s \ (B_{k-1})+s \ (B_{k-1}) \qquad \qquad \text{Definition } s$$

$$= 2^{k-1}+2^{k-1} \qquad \qquad \text{Induktion für } k-1$$

$$= 2^k \qquad \qquad \text{Arithmetik}$$

- (b) Beweis von $\forall k \in \mathbb{N} : d(B_k) = k$ durch Induktion über $k \in \mathbb{N}$. Fallunterscheidung.
 - Sei k = 0.

$$d(B_0) = d[]$$
 Definition B_1
= if $n = 0$ then 0 else $1 + \max\{\}$ Definition d
= 0 Definition if, $n = 0$

• Sei k = 1.

$$\begin{array}{ll} d\left(B_{1}\right)=d\left[B_{0}\right] & \text{Definition } B_{1} \\ = \text{if } n=0 \text{ then } 0 \text{ else } 1+\max\left\{d(B_{0})\right\} & \text{Definition } d \\ = 1+\max\left\{d(B_{0})\right\} & \text{Definition if, } n=1 \\ = 1+\max\left\{0\right\} & d\left(B_{0}\right)=0, \text{ s. o.} \\ = 1+0 & \text{Definition max} \\ = 0 & \text{Arithmetik} \end{array}$$

• Sei k > 1.

Induktionsannahme: $s(B_{\ell}) = \ell$ gelte für alle $\ell < k$.

$$d\left(B_{k}\right) = d\left[B_{k-1}, B'_{1}, \ldots, B'_{n}\right] \qquad \text{Definition } B_{k}$$

$$= \text{if } n+1 = 0 \text{ then } 0 \text{ else } 1+\max\left\{d\left(B_{k-1}\right), d\left(B'_{1}\right), \ldots, d\left(B'_{n}\right)\right\} \qquad \text{Definition } d$$

$$= 1+\max\left\{d\left(B_{k-1}\right), d\left(B'_{1}\right), \ldots, d\left(B'_{n}\right)\right\} \qquad \text{Definition if, } n+1 \neq 0$$

$$= 1+\max\left\{d\left(B_{k-1}\right), \max\left\{d\left(B'_{1}\right), \ldots, d\left(B'_{n}\right)\right\}\right\} \qquad \text{Definition max}$$

$$= \max\left\{1+d\left(B_{k-1}\right), 1+\max\left\{d\left(B'_{1}\right), \ldots, d\left(B'_{n}\right)\right\}\right\} \qquad \text{Definition if, } n \geq 1$$

$$= \max\left\{1+d\left(B_{k-1}\right), \text{if } n=0 \text{ then } 0 \text{ else } 1+\max\left\{d\left(B'_{1}\right), \ldots, d\left(B'_{n}\right)\right\}\right\} \qquad \text{Definition } d$$

$$= 1+d\left(B_{k-1}\right) \qquad \text{Definition max}$$

$$= 1+(k-1) \qquad \text{Definition max}$$

$$= 1+(k-1) \qquad \text{Induktion für } k-1$$

$$= k \qquad \text{Arithmetik}$$

- (c) Beweis von $\forall k \in \mathbb{N} : a(B_k) = k$ durch Induktion über $k \in \mathbb{N}$. Fallunterscheidung.
 - Sei k = 0.

$$a(B_0) = a[]$$
 Definition B_0
= 0 Definition a

• Sei k > 0.

Induktionsannahme: $a(B_{\ell}) = \ell$ gelte für alle $\ell < k$.

$$a (B_k) = a [B_{k-1}, B'_1, \dots, B'_n]$$
 Definition B_k

$$= |[B_{k-1}, B'_1, \dots, B'_n]|$$
 Definition a

$$= 1 + |[B'_1, \dots, B'_n]|$$
 Definition $|\cdot|$

$$= 1 + a [B'_1, \dots, B'_n]$$
 Definition a

$$= 1 + a (B_{k-1})$$
 Definition B_k

$$= 1 + (k-1)$$
 Induktion für $k-1$

$$= k$$
 Arithmetik

Aufgabe Z4.7 (Binäre Bäume)

Ein binärer Baum ist ein Baum, bei dem jeder innere Knoten genau zwei Nachfolger hat. Wir definieren dafür die Menge $\mathcal{M} \subseteq \mathscr{T}$ der binären Bäume über zwei Regeln:

- 1. $[] \in \mathcal{M}$
- 2. $[t_1, t_2] \in \mathcal{M}$ falls $t_1, t_2 \in \mathcal{M}$
- (a) Beweisen Sie: $\forall t \in \mathcal{M} : b \ t < 2^{d \ t}$.
- (b) Beweisen Sie: $\forall t \in \mathcal{M} : s \ t < 2^{d \ t+1} 1$.

Lösungsvorschlag Z4.7

(a) Beweis. Wir zeigen nun die Aussage

$$\forall t \in \mathcal{M} : b \ t \le 2^{d \ t}$$

durch strukturelle Induktion über $t \in \mathcal{M}$. Wir unterscheiden zwei Fälle:

• Fall t = [].

Dann gilt:

$$\begin{array}{ll} b \; [] = 1 & \text{Definition von } b \\ = 2^0 & \text{Definition Potenz} \\ = 2^{d \; []} & \text{Definition von } d \end{array}$$

• Fall $t = [t_1, t_2] \text{ mit } t_1, t_2 \in \mathcal{M}$.

Induktionsannahme: $\forall t' \in \{t_1, t_2\} : b \ t' \le 2^{d \ t'}$

Da $t = [t_1, t_2]$ wissen wir, dass d t > 0 sein muss. Außerdem folgt aus der Definition von d und max, dass $d t_1 \le d t - 1$ und $d t_2 \le d t - 1$.

Damit gilt:

$$\begin{array}{lll} b \; t = b \; t_1 + b \; t_2 & \text{Definition von } b \\ & \leq 2^{d \; t_1} + b \; t_2 & \text{Induktion für } t' = t_1 \\ & \leq 2^{d \; t_1} + 2^{d \; t_2} & \text{Induktion für } t' = t_2 \\ & \leq 2^{d \; t-1} + 2^{d \; t_2} & d \; t_1 \leq d \; t - 1 \\ & \leq 2^{d \; t-1} + 2^{d \; t-1} & d \; t_2 \leq d \; t - 1 \\ & = 2 \cdot 2^{d \; t-1} & \text{Arithmetik} \\ & = 2^{d \; t} & \text{Definition Potenz} \end{array}$$

(b) Beweis. Wir zeigen die Aussage

$$\forall t \in \mathcal{M} : s \ t < 2^{d \ t+1} - 1$$

durch strukturelle Induktion über $t \in \mathcal{M}$. Wir unterscheiden zwei Fälle:

• Sei t = [].

Dann gilt:

$$s \ [] = 1$$
 Definition von s

$$= 2^{1} - 1$$
 Arithmetik
$$= 2^{d \ []+1} - 1$$
 Definition von d

• Sei $t = [t_1, t_2]$ mit $t_1, t_2 \in \mathcal{M}$.

Induktionsannahme: $\forall t' \in \{t_1, t_2\} : s \ t' \le 2^{d \ t' + 1} - 1$

Da $t = [t_1, t_2]$ wissen wir, dass d t > 0 sein muss. Außerdem folgt aus der Definition von d und max, dass $d t_1 \le d t - 1$ und $d t_2 \le d t - 1$.

Damit gilt:

$$\begin{array}{lll} s \ t = 1 + s \ t_1 + s \ t_2 & \text{Definition von } s \\ & \leq 1 + (2^{d \ t_1 + 1} - 1) + s \ t_2 & \text{Induktion für } t' = t_1 \\ & \leq 1 + (2^{d \ t_1 + 1} - 1) + (2^{d \ t_2 + 1} - 1) & \text{Induktion für } t' = t_2 \\ & \leq 1 + (2^{(d \ t - 1) + 1} - 1) + (2^{d \ t_2 + 1} - 1) & \text{da } d \ t_1 \leq d \ t - 1 \ \text{und } a \leq b \Rightarrow 2^a \leq 2^b \\ & \leq 1 + (2^{(d \ t - 1) + 1} - 1) + (2^{(d \ t - 1) + 1} - 1) & \text{Arithmetik} \\ & = 1 + 2 \cdot (2^{(d \ t - 1) + 1} - 2 & \text{Arithmetik} \\ & = 2 \cdot 2^{d \ t} - 1 & \text{Arithmetik} \\ & = 2 \cdot 2^{d \ t} - 1 & \text{Definition Potenz} \end{array}$$

Verstärkung

Aufgabe Z4.8 (powi)

Beweisen Sie, dass folgende Aussage gilt: $powi(x, n, 1) = x^n$. powi ist dabei wie folgt definiert:

$$\begin{aligned} powi : \mathbb{N} \times \mathbb{N} \times \mathbb{N} &\to \mathbb{N} \\ powi(x,0,a) &= a \\ powi(x,n,a) &= powi(x,n-1,a\cdot x) \end{aligned}$$

Lösungsvorschlag Z4.8

Wir verstärken die Aussage folgendermaßen:

 $\forall a. \ powi(x, n, a) = x^n \cdot a$

Beweis. Durch Induktion über n. Sei $a \in \mathbb{N}$ beliebig.

• Fall n = 0:

$$powi(x, 0, a) = a$$
 Def. $powi$
= $x^0 \cdot a$

• Fall n > 0:

Induktionsannahme: $\forall a, x \in \mathbb{N} : \forall m < n : powi(x, m, a) = x^m \cdot a$

$$\begin{aligned} powi(x,n,a) &= powi(x,n-1,a\cdot x) & \text{Def. } powi \\ &= x^{n-1}\cdot (a\cdot x) & \text{Induktion für } n \\ &= x^n\cdot a & \end{aligned}$$

Die zu zeigende Aussage folgt dann mit a=1.

Aufgabe Z4.9 (Der kleine Gauß)

Sei die Prozedur iterdn wie folgt gegeben:

$$iterdn: \mathbb{N} \times \mathbb{N} \times X \times (\mathbb{N} \times X \to X) \to X$$

 $iterdn(n, m, s, f) = if n < m \text{ then } s \text{ else } iterdn(n - 1, m, f(n, s), f)$

Weiterhin sei $f = \lambda(a, b) \in \mathbb{N} \times \mathbb{N}$. a + b.

Zeigen Sie mittels Induktion die folgende Aussage. Überlegen Sie sich zuvor, ob Sie die Induktionshypothese verstärken müssen: $\forall n \in \mathbb{N}$. $iterdn(n, 1, 0, f) = \sum_{i=1}^{n} i$

Lösungsvorschlag Z4.9

Wir verstärken die Aussage:

Behauptung:
$$\forall n \in \mathbb{N} : \forall a \in \mathbb{N} : iterdn(n, 1, a, f) = a + \sum_{i=1}^{n} i \text{ mit } f = \lambda(a, b) \in \mathbb{N} \times \mathbb{N}.a + b$$

Beweis. Durch Induktion über $n \in \mathbb{N}$. Fallunterscheidung:

• Sei n = 0 und $a \in \mathbb{N}$. Dann gilt:

$$iterdn(n,1,a,f) = iterdn(0,1,a,f) & n = 0 \\ = a & \text{Def. von } iterdn \\ = a + \sum_{i=1}^{0} & \text{Def. von } \sum \\ = a + \sum_{i=1}^{n} & n = 0$$

• Sei n>0 und $a\in\mathbb{N}$. Induktionsannahme: Für alle m< n gilt $\forall a\in\mathbb{N}: iterdn(m,1,a,f)=a+\sum_{i=1}^m i$ mit $f=\lambda(a,b)\in\mathbb{N}\times\mathbb{N}.a+b$. Dann gilt:

$$\begin{split} iterdn(n,1,a,f) &= iterdn(n-1,1,f(n,a),f) & \text{Def. von } iterdn \\ &= f(n,a) + \sum_{i=1}^{n-1} i & \text{Induktion für } m=n-1 \\ &= n+a+\sum_{i=1}^{n-1} i & \text{Def. von } f \\ &= a+\sum_{i=1}^{n} i & \text{Def. von } \sum \end{split}$$

Aufgabe Z4.10 (Länge endrekursiv)

Gegeben sei die Prozedur $L': \mathcal{L}(X) \times \mathbb{N} \to \mathbb{N}$

$$L'([], n) = n$$

 $L'(x :: A, n) = L'(A, n + 1)$

Beweisen Sie L'(A, 0) = |A|.

Lösungsvorschlag Z4.10

Wir verstärken die Aussage zu $\forall n.\ L'(A,n)=|A|+n.$ Die eigentliche Aussage folgt dann sofort mit n=0.

Beweis. Durch Induktion über $xs \in \mathcal{L}(X)$. Sei $n \in \mathbb{N}$ beliebig.

• Fall xs = nil:

$$L'(xs,n) = L'(nil,n)$$
 $xs = nil$
 $= n$ Def. L'
 $= 0 + n$
 $= |nil| + n$ Def. $|\cdot|$

• Fall xs = x :: A:

Induktionsannahme: $\forall n : L'(A, n) = |A| + n$.

$$L'(xs,n) = L'(x::A,n) \qquad xs = x::A$$

$$= L'(A,n+1) \qquad \text{Def. } L'$$

$$= |A| + (n+1) \qquad \text{Induktion für } A$$

$$= 1 + |A| + n$$

$$= |x::A| + n \qquad \text{Def. } |\cdot|$$

Aufgabe Z4.11 (Strukturelle Verstärkung)

In Kapitel 4.4 haben Sie gelernt, dass Listen mit foldl reversiert werden können. Jetzt können Sie die Korrektheit dieses Vorgehens beweisen.

Sei X eine Menge und sei f die Funktion $\lambda(x, xs) \in X \times \mathcal{L}(X)$. x :: xs. Für die Korrektheit der Reversion mit foldl muss die Gültigkeit der Aussage $\forall xs \in \mathcal{L}(X) : rev \ xs = foldl \ (f, nil, xs)$ gezeigt werden.

Suchen Sie eine geeignete Verstärkung dieser Korrektheitsaussage und beweisen Sie die Gültigkeit der Verstärkung durch strukturelle Induktion über xs.

Unsere Verstärkung lautet:

$$\forall xs \in \mathcal{L}(X) : \forall ys \in \mathcal{L}(X) : (rev \ xs) @ ys = foldl(f, ys, xs)$$

Beweis. Beweis durch strukturelle Induktion über $xs \in \mathcal{L}(X)$.

Wir unterscheiden zwei Fälle.

• Sei xs = nil. Dann gilt für ein beliebiges $ys \in \mathcal{L}(X)$:

$$foldl (f, ys, xs) = ys$$
 Definition von $foldl$
= $xs @ ys$ Definition von @
= $rev xs @ ys$ Definition von rev

• Sei xs = x :: xr und $ys \in \mathcal{L}(X)$ beliebig. Induktionsannahme : $(rev \ xs) @ ys = foldl \ (f, ys, xs)$

$$foldl (f, ys, xs) = foldl (f, f (x, ys), xr)$$
 Definition von $foldl$

$$= foldl (f, x :: ys, xr)$$
 Definition von f

$$= rev xr @ (x :: ys)$$
 Induktion für xr und $x :: ys$

$$= rev xr @ (x :: (nil @ ys))$$
 Definition von @
$$= rev xr @ ((x :: nil) @ ys)$$
 Definition von @
$$= rev xr @ ([x] @ ys)$$
 Definition von ::
$$= (rev xr @ [x]) @ ys$$
 Proposition 10.5: Assoziativität von @
$$= (rev xs) @ ys$$
 Definition von rev