Solution to Assignment 1

1.8: We have

$$\lim\inf A_n = \bigcup_n \bigcap_{k \ge n} A_k = \bigcup_n BC = BC$$

and

$$\lim\sup A_n=\bigcap_n\bigcup_{k\geq n}A_k=\bigcap_n(B\cup C)=B\cup C.$$

1.18: Since $\Omega \in \mathcal{F}$, if $A \in \mathcal{F}$ then $A^c = \Omega \setminus A \in \mathcal{F}$. Thus \mathcal{F} is closed under complements. If A and B lie in \mathcal{F} , the by deMorgan's law

$$A \cup B = (A^c B^c)^c = (A^c \setminus B)^c,$$

which lies in \mathcal{F} as \mathcal{F} is closed under complements and differences. Thus \mathcal{F} is closed under unions.

1.24: Clearly $\Omega \in \mathcal{A}$, and \mathcal{A} is closed under complements by the symmetry of the definition. Suppose A and B lie in \mathcal{A} . If $\#A < \infty$ and $\#B < \infty$, then $\$(A \cup B) < \#A + \#B < \infty$ and so $A \cup B \in \mathcal{A}$. If $\#A^c < \infty$, then $\#(A \cup B)^c = \#(A^cB^c) \le \#A^c < \infty$ and so $A \cup B \in \mathcal{A}$. Similarly, if $\#B^c < \infty$ then $A \cup B \in \mathcal{A}$. As one of these cases must hold, \mathcal{A} is closed under finite unions and must be a field. But \mathcal{A} is not closed under countable unions for if $A_n = \{2n\} \in \mathcal{A}, n \ge 1$, then

$$\bigcup_{n} A_n = \{\text{even natural numbers}\} \notin \mathcal{A}.$$

So \mathcal{A} is not a σ -field.

1.34: Let \mathcal{C} be the class of all sets of the given form. Since σ -fields are closed under unions, intersections, and complements, if $B, B' \in \mathcal{B}$ then

$$AB \cup A^c B' \in \sigma(\mathcal{B} \cup \{A\}),$$

and hence $\mathcal{C} \subset \sigma(\mathcal{B} \cup \{A\})$. So the desired result will follow if we show that \mathcal{C} is a σ -field. Since $\Omega = A\Omega \cup A^c\Omega$, we have $\Omega \in \mathcal{C}$. Next, if $B, B' \in \mathcal{B}$, then

$$(AB \cup A^c B')^c = AB^c \cup A^c B'^c \in \mathcal{C}.$$

Thus \mathcal{C} is closed under complements. Finally, if $AB_n \cup A^c B'_n$, $n \geq 1$, are sets in \mathcal{C} , with $B_n, B'_n, n \geq 1$, in \mathcal{B} , then

$$\bigcup_{n} (AB_n \cup A^c B'_n) = (A \cup_n B_n) \cup (A^c \cup_n B'_n),$$

which lies in \mathcal{C} as $\cup_n B_n \in \mathcal{B}$ and $\cup_n B'_n \in \mathcal{B}$. Thus \mathcal{C} is a σ -field.

2.4: By monotonicity, the value P_1 assigns to A must satisfy

$$P_1(A) \le P_1(B) = P(B), \quad \forall B \in \mathcal{B} \text{ with } B \supset A.$$

So the largest possible value for $P_1(A)$ will be

$$\pi^* = \inf_{B \in \mathcal{B}, B \supset A} P(B),$$

the outer measure of A. We will seek an extension with $P_1(A) = \pi^*$. Let A_n , $n \ge 1$, be a sequence of sets in \mathcal{B} with $A_n \supset A$ and $P(A_n) \to \pi^*$, and define

$$\tilde{A} = \bigcap_{n} A_n.$$

Since $\tilde{A} \supset A$ and $\tilde{A} \in \mathcal{B}$, we have $P(\tilde{A}) \geq \pi^*$. By continuity, since $\bigcap_{k=1}^n A_k \uparrow \tilde{A}$,

$$P(A_n) \le P\left(\bigcap_{k=1}^n A_k\right) \to P(\tilde{A}),$$

and so

$$P(\tilde{A}) = \liminf_{n \to \infty} P\left(\bigcap_{k=1}^{n} A_k\right) \le \liminf_{n \to \infty} P(A_n) = \pi^*.$$

Thus $P(\tilde{A}) = \pi^*$. So it seems we can make $P_1(A)$ as large as possible by making A and \tilde{A} equivalent. Specifically, if $B, B' \in \mathcal{B}$, the extension will be given by

$$P_1(AB \cup A^c B') = P(\tilde{A}B) + P(\tilde{A}^c B').$$

To show that P_1 is a probability measure, we first note that if A and $B \in \mathcal{B}$ are disjoint, then $P(\tilde{A}B) = 0$. To see this, note that since $A \subset \tilde{A}B^c$, we have $P(\tilde{A}B^c) \geq \pi^*$, and so

$$\pi^* = P(\tilde{A}) = P(\tilde{A}B) + P(\tilde{A}B^c) \ge P(\tilde{A}B) + \pi^*.$$

Using this, if AB and AB' are disjoint with $B, B' \in \mathcal{B}$, then A and BB' are disjoint, and by the addition law

$$P(\tilde{A}B \cup \tilde{A}B') = P(\tilde{A}B) + P(\tilde{A}B') - P(\tilde{A}BB')$$
$$= P(\tilde{A}B) + P(\tilde{A}B').$$

Iterating this, if AB_k , $1 \le k \le n$, are disjoint, then

$$P\left(\bigcup_{k=1}^{n} \tilde{A}B_{k}\right) = \sum_{k=1}^{n} P(\tilde{A}B_{k}).$$

Using this, we next show that P_1 is σ -additive. Let D_n , $n \geq 1$, be disjoint sets in \mathcal{B}_1 , and write

$$D_n = AB_n \cup A^c B'_n$$
, with $B_n, B'_n \in \mathcal{B}$.

Then

$$D = \bigcup_{n} D_n = (A \cup_n B_n) \cup (A^c \cup_n B'_n),$$

and so

$$P_1(D) = P(\cup_n \tilde{A}B_n) + P(\cup_n \tilde{A}^c B_n').$$

Since $A^cB'_n$, $n \geq 1$, are disjoint and $\tilde{A}^cB'_n \subset A^cB'_n$, the sets $\tilde{A}^cB'_n$, $n \geq 1$ are disjoint, and so

$$P(\cup_n \tilde{A}^c B_n') = \sum_n P(\tilde{A}^c B_n').$$

By continuity and the identity above,

$$P(\cup_n \tilde{A}B_n) = \lim_{n \to \infty} P(\cup_{k=1}^n \tilde{A}B_k) = \lim_{n \to \infty} \sum_{k=1}^n P(\tilde{A}B_k) = \sum_n P(\tilde{A}B_n).$$

So

$$P_1(D) = \sum_{n} [P(\tilde{A}B_n) + P(\tilde{A}^c B_n')] = \sum_{n} P_1(D_n).$$

For the other axioms, from the definition $P_1(B) \geq 0$ for all $B \in \mathcal{B}_1$, and

$$P_1(\Omega) = P(\tilde{A}) + P(\tilde{A}^c) = 1.$$

Thus P_1 is a probability measure on (Ω, \mathcal{B}_1) .

2.8: In the example given in the problem,

$$P_1(\{a,b\}) = P_1(\{d,c\}) = P_1(\{a,c\}) = P_1(\{b,d\})$$

= $P_2(\{a,b\}) = P_2(\{d,c\}) = P_2(\{a,c\}) = P_2(\{b,d\}) = 1/2,$

and so P_1 and P_2 agree on \mathcal{C} . But $\sigma(\mathcal{C}) = 2^{\{a,b,c,d\}}$, and P_1 and P_2 do not agree on $\sigma(\mathcal{C})$, because, for instance, $P_1(\{a\}) \neq P_2(\{a\})$. Note that \mathcal{C} is not a π -system as $\{a,b\}\{a,c\} = \{a\} \notin \mathcal{C}$.

2.11: Using Boole's and D'Morgan's laws,

$$P((\cap_n B_n)^c) = P(\cup_n B_n^c) \le \sum_n P(B_n^2) = 0,$$

and so $P(\cap_n B_n) = 1$.

2.12: If $B \in \mathcal{C}$, then $\mathcal{C}_B = \{B\} \subset \mathcal{C}$ is a countable class with $B \in \sigma(\mathcal{C}_B)$, and so $\mathcal{C} \subset \mathcal{G}$. And $\Omega \in \mathcal{G}$ as $\Omega \in \mathcal{C}_B$ for any \mathcal{C}_B . If $B \in \mathcal{G}$ with $B \in \mathcal{C}_B$ for some countable \mathcal{C}_B , then $B^c \in \mathcal{G}$ because $B^c \in \mathcal{C}_B$. So \mathcal{G} is closed under complements. Finally, let B_n , $n \geq 1$, be sets in \mathcal{G} . Then there exist countable classes $\mathcal{C}_{B_n} \subset \mathcal{C}$, $n \geq 1$, with $B_n \in \sigma(\mathcal{C}_{B_n})$. But then $\mathcal{C}_B \stackrel{\text{def}}{=} \cup_n \mathcal{C}_{B_n} \subset \mathcal{C}$ is a countable class and $B \stackrel{\text{def}}{=} \cup_n B_n \in \sigma(\mathcal{C}_B)$, and so $B \in \mathcal{G}$. Thus \mathcal{G} is a σ -field and must contain $\sigma(\mathcal{C})$. (In fact, $\mathcal{G} = \sigma(\mathcal{C})$ as all of the sets of \mathcal{G} lie in $\sigma(\mathcal{C})$.) The desired result follows.