Artificial Intelligence Constraint Satisfaction Problems

Recall

• Search problems:

- Find the sequence of actions that leads to the goal.
- Sequence of actions means a path in the search space.
- Paths come with different costs and depths.
- We use "rules of thumb" aka heuristics to guide the search efficiently.

Recall

• Search problems:

- Find the sequence of actions that leads to the goal.
- Sequence of actions means a path in the search space.
- Paths come with different costs and depths.
- We use "rules of thumb" aka heuristics to guide the search efficiently.

• Constraint satisfaction problems:

- A search problem too!
- We care about the goal itself.

• Search problems:

- A state is a black box, implemented as some data structure.
 Recall atomic representation.
- A goal test is a function over the states.

• CSPs problems:

- A state: defined by variables X_i with values from domain D_i . Recall factored representation.
- A goal test is a set of constraints specifying allowable combinations of values for subsets of variables.

Credit: Courtesy Percy Liang

- A constraint satisfaction problem consists of three elements:
 - A set of variables, $X = \{X_1, X_2, \cdots X_n\}$
 - A set of **domains** for each variable: $D = \{D_1, D_2, \cdots D_n\}$
 - A set of constraints C that specify allowable combinations of values.

- A constraint satisfaction problem consists of three elements:
 - A set of variables, $X = \{X_1, X_2, \cdots X_n\}$
 - A set of **domains** for each variable: $D = \{D_1, D_2, \cdots D_n\}$
 - A set of constraints C that specify allowable combinations of values.
- Solving the CSP: finding the assignment(s) that satisfy all constraints.
- Concepts: problem formalization, backtracking search, arc consistency, etc.

- A constraint satisfaction problem consists of three elements:
 - A set of variables, $X = \{X_1, X_2, \cdots X_n\}$
 - A set of **domains** for each variable: $D = \{D_1, D_2, \cdots D_n\}$
 - A set of constraints C that specify allowable combinations of values.
- Solving the CSP: finding the assignment(s) that satisfy all constraints.
- Concepts: problem formalization, backtracking search, arc consistency, etc.
- We call a solution, a consistent assignment.

Variables: $X = \{WA, NT, Q, NSW, V, SA, T\}$

Variables: $X = \{WA, NT, Q, NSW, V, SA, T\}$

Domains: $D_i = \{\text{red, green, blue}\}$

Variables: $X = \{WA, NT, Q, NSW, V, SA, T\}$

Domains: $D_i = \{\text{red, green, blue}\}$

Constraints: adjacent regions must have different colors;

Variables: $X = \{WA, NT, Q, NSW, V, SA, T\}$

Domains: $D_i = \{\text{red, green, blue}\}$

Constraints: adjacent regions must have different colors;

e.g., WA \neq NT or (W A, N T) \in {(red, green), (red, blue), etc..}

Example:

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}

Real-world CSPs

- Assignment problems, e.g., who teaches what class?
- Timetabling problems, e.g., which class is offered when and where?
- Hardware configuration
- Spreadsheets
- Transportation scheduling
- Factory scheduling
- Floor planning
- Notice that many real-world problems involve real-valued variables

Constraint graph

Constraint graph

Binary CSP: each constraint relates at most two variables Constraint graph: nodes are variables, arcs show constraints

Constraint graph

Binary CSP: each constraint relates at most two variables Constraint graph: nodes are variables, arcs show constraints

CSP algorithms: use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Varieties of variables

Discrete variables:

- Finite domains:
 - * assume n variables, d values, then the number of complete assignments is $O(d^n)$.
 - * e.g., map coloring, 8-queens problem
- Infinite domains (integers, strings, etc.):
 - * need to use a constraint language,
 - * e.g., job scheduling. $T_1 + d \leq T_2$.

Continuous variables:

- Common in operations research
- Linear programming problems with linear or non linear equalities

Varieties of constraints

- Unary constraints: involve a single variable e.g., $SA \neq green$
- Binary constraints: involve pairs of variables e.g., $SA \neq WA$
- Global constraints: involve 3 or more variables e.g., Alldiff that specifies that all variables must have different values (e.g., cryptarithmetic puzzles, Sudoku)
- Preferences (soft constraints):
 - Example: red is better than green
 - Often represented by a cost for each variable assignment
 - constrained optimization problems

Example: 8-queen

8-Queen: Place 8 queens on an 8x8 chess board so no queen can attack another one.

Problem formalization:

Example: 8-queen

8-Queen: Place 8 queens on an 8x8 chess board so no queen can attack another one.

Problem formalization 1:

- One variable per queen, Q_1 , Q_2 , ..., Q_8 .
- Each variable could have a value between 1 and 64.
- Solution: $Q_1 = 1$, $Q_2 = 13$, $Q_3 = 24$, ..., $Q_8 = 60$.

Example: 8-queen

8-Queen: Place 8 queens on an 8x8 chess board so no queen can attack another one.

Problem formalization 2:

- One variable per queen, Q_1 , Q_2 , ..., Q_8 .
- Each variable could have a value between 1 and 8 (columns).
- Solution: $Q_1 = 1$, $Q_2 = 7$, $Q_3 = 5$, ..., $Q_8 = 3$.

Brute force?

Should we simply generate and test all configurations?

. . .

Example Cryptarithmetic

$$\begin{array}{ccccc} T & W & O \\ + & T & W & O \\ \hline F & O & U & R \end{array}$$

Example Cryptarithmetic

$$\begin{array}{cccc} T & W & O \\ + & T & W & O \\ \hline F & O & U & R \end{array}$$

Variables: $X = \{F, T, U, W, R, O, C_1, C_2, C_3\}$

Domain: $D = \{0, 1, 2, \dots, 9\}$

Constraints:

- Alldiff(F, T, U, W, R, O)
- $T \neq 0$, $F \neq 0$
- $O + O = R + 10 * C_1$
- $C_1 + W + W = U + 10 * C_2$
- $C_2 + T + T = O + 10 * C_3$
- $C_3 = F$

Solving CSPs

- State-space search algorithms: search!
- CSP Algorithms: Algorithm can do two things:
 - Search: choose a new variable assignment from many possibilities
 - Inference: constraint propagation, use the constraints to spread the word: reduce the number of values for a variable which will reduce the legal values of other variables etc.
- As a preprocessing step, constraint propagation can sometimes solve the problem entirely without search.
- Constraint propagation can be intertwined with search.

Solving CSPs

- BFS: Develop the complete tree
- **DFS**: Fine but time consuming
- BTS: Backtracking search is the basic uninformed search for CSPs. It's a DFS s.t.
 - 1. Assign one variable at a time: assignments are commutative. e.g., (WA=red, NT=green) is same as (NT=green, WA=red)
 - 2. Check constraints on the go: consider values that do not conflict with previous assignments.

Solving CSPs

- **Initial state**: empty assignment {}
- States: are partial assignments
- Successor function: assign a value to an unassigned variable
- Goal test: the current assignment is complete and satisfies all constraints

Improving BTS

Heuristics are back!

1. Which variable should be assigned next?

Improving BTS

Heuristics are back!

- 1. Which variable should be assigned next?
- 2. In what order should its values be tried?

Improving BTS

Heuristics are back!

- 1. Which variable should be assigned next?
- 2. In what order should its values be tried?
- 3. Can we detect inevitable failure early?

Minimum Remaining Values

1. Which variable should be assigned next?

• MRV: Choose the variable with the fewest legal values in its domain

Pick the hardest!

Least constraining value

2. In what order should its values be tried?

• LCV: Given a variable, choose the least constraining value: the one that rules out the fewest values in the remaining variables

Pick the ones that are likely to work!

3. Can we detect inevitable failure early?

Backtracking search

```
function Backtracking_search(csp) returns a solution, or failure
    return \ \mathbf{BACKTRACK}(\{\}, \ \mathrm{csp})
function Backtrack(assignment, csp)
returns a solution, or failure
    if assignment is complete then return assignment
    var = Select_Unassigned-Variables(csp)
    for each value in Order_Domain_Values (var, assignment, csp)
        if value is consistent with assignment then
             add \{var = value\} to assignment
             result = Backtrack(assignment, csp)
             if result \neq failure then return result
             remove \{var = value\} from assignment
    return failure
```

8		9	5		1	7	3	6
2		7		6	3			
1	6		J.					
				9		4		7
	9		3		7		2	
7		6		8				
							6	3
			9	3		5		2
5	3	2	6		4	8		9

All 3x3 boxes, rows, columns, must contain all digits 1..9.

8		9	5		1	7	3	6
2		7		6	3			
1	6		J.					
				9		4		7
I	9		3		7		2	
7		6	1	8				
							6	3
			9	3		5		2
5	3	2	6		4	8		9

Variables: $V = \{A_1, \dots, A_9, B_1, \dots, B_9, \dots, I_1 \dots I_9\}, |V| = 81.$

Domain: $D = \{1, 2, \dots, 9\}$, the filled squares have a single value.

Constraints: 27 constraints

- Alldiff $(A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8, A_9)$
- Alldiff $(A_1, B_1, C_1, D_1, E_1, F_1, G_1, H_1, I_1)$...
- Alldiff $(A_1, A_2, A_3, B_1, B_2, B_3, C_1, C_2, C_3)$

8		9	5		1	7	3	6
2		7		6	3			
1	6		J.J.					
				9		4		7
	9		3		7		2	
7		6	ļ-,	8				
							6	3
			9	3		5		2
5	3	2	6		4	8		9

8		9	5		1	7	3	6
2		7		6	3			
1	6							
				9		4		7
	9		3		7		2	
7		6	1	8				
							6	3
			9	3		5		2
5	3	2	6		4	8		9

- Naked doubles (triples): find two (three) cells in a 3x3 grid that have only the same candidates left, eliminate these two (three) values from all possible assignments in that box.
- Locked pair, Locked triples, etc.

8		9	5		1	7	3	6
2		7		6	3			
1	6							
				9		4		7
	9		3		7		2	
7		6		8				
							6	3
			9	3		5		2
5	3	2	6		4	8		9

8	4	9	5	2	1	7	3	6
2	5	7	8	6	3	9	1	4
1	6	3	7	4	9	2	5	8
3	2	5	1	9	6	4	8	7
4	9	8	3	5	7	6	2	1
7	1	6	4	8	2	3	9	5
9	8	4	2	7	5	1	6	3
6	7	1	9	3	8	5	4	2
5	3	2	6	1	4	8	7	9

Constraint propagation

- Forward checking propagates information from assigned to unassigned variables.
- Observe:

Forward checking does not check interaction between unassigned variables! Here SA and NT! (They both must be blue but can't be blue!).

Constraint propagation

- Forward checking propagates information from assigned to unassigned variables.
- Observe:

- Forward checking does not check interaction between unassigned variables! Here SA and NT! (They both must be blue but can't be blue!).
- Forward checking improves backtracking search but does not look very far in the future, hence does not detect all failures.
- We use constraint propagation, reasoning from constraint to constraint. e.g., arc consistency test.

Types of Consistency

• Node-consistency (unary constraints): A variable X_i is **node-consistent** if all the values of $Domain(X_i)$ satisfy all unary constraints.

Types of Consistency

- Node-consistency (unary constraints): A variable X_i is node-consistent if all the values of $Domain(X_i)$ satisfy all unary constraints.
- Arc-consistency (binary constraints): $X \to Y$ is arc-consistent if and only if every value x of X is consistent with some value y of Y.

Types of Consistency

- Node-consistency (unary constraints): A variable X_i is node-consistent if all the values of $Domain(X_i)$ satisfy all unary constraints.
- Arc-consistency (binary constraints): $X \to Y$ is arc-consistent if and only if every value x of X is consistent with some value y of Y.
- Path-consistency (n-ary constraints): generalizes arcconsistency from binary to multiple constraints.
- Note: It is always possible to transform all n-ary constraints into binary constraints. Often, CSPs solvers are designed to work with binary constraints.

- AC: Simplest form of propagation makes each arc consistent.
- $X \to Y$ is consistent IFF for every value x of X, there is some allowed y.

- AC: Simplest form of propagation makes each arc consistent.
- $X \to Y$ is consistent IFF for every value x of X, there is some allowed y.

- AC: Simplest form of propagation makes each arc consistent.
- $X \to Y$ is consistent IFF for every value x of X, there is some allowed y.

- AC: Simplest form of propagation makes each arc consistent.
- $X \to Y$ is consistent IFF for every value x of X, there is some allowed y.

Algorithm that makes a CSP arc-consistent!

```
function AC-3(csp)
returns False if an inconsistency is found, True otherwise
inputs: csp, a binary CSP with components (X, D, C)
local variables: queue, a queue of arcs, initially all the arcs in csp
while queue is not empty do
    (X_i, X_i) = \text{Remove-First(queue)}
    if Revise(csp, X_i, X_j)then
         if size of D_i = 0 then return False
         for each X_k in X_i. NEIGHBORS – \{X_j\} do
             add (X_k, X_i) to queue
return true
function REVISE(csp, X_i, X_j)
returns True iff we revise the domain of X_i
revised = False
for each x in D_i do
    if no value y in D_i allows (x, y) to satisfy the constraint between X_i and X_i then
         delete x from D_i
         revised = True
return revised
```

Complexity of AC-3

- ullet Let n be the number of variables, and d be the domain size.
- If every node (variable) is connected to the rest of the variables, then we have n*(n-1) arcs (constraints) $\to O(n^2)$
- Each arc can be inserted in the queue d times $\rightarrow O(d)$
- Checking the consistency of an arc costs $\to O(d^2)$.
- Overall complexity is $O(n^2d^3)$.

Backtracking w/ inference

```
function Backtracking_search(csp) returns a solution, or failure
    return \ \mathbf{BACKTRACK}(\{\}, \ \mathrm{csp})
function Backtrack(assignment, csp)
returns a solution, or failure
    if assignment is complete then return assignment
    var = Select_Unassigned-Variables(csp)
    for each value in Order_Domain_Values (var, assignment, csp)
         if value is consistent with assignment then
             add \{var = value\} to assignment
             inferences = Inference(csp, var, value)
             if inferences \neq failure then add inferences to assignment
             result = Backtrack(assignment, csp)
             if result \neq failure then return result
             remove \{var = value\} and inferences from assignment
    return failure
```


- Idea: Leverage the problem structure to make the search more efficient.
- Example: Tasmania is an independent problem.
- Identify the connected component of a graph constraint.
- Work on independent subproblems.

Complexity:

- Let d be the size of the domain and n be the number of variables.
- Time complexity for BTS is $O(d^n)$.
- ullet Suppose we decompose into subproblems, with c variables per subproblem.
- Then we have $\frac{n}{c}$ subproblems.
- c variables per subproblem takes $O(d^c)$.
- The total for all subproblems takes $O(\frac{n}{c}d^c)$ in the worst case.

Example:

- Assume n = 80, d = 2.
- Assume we can decompose into 4 subproblems with c=20.
- Assume processing at 10 million nodes per second.
- Without decomposition of the problem we need:

$$2^{80} = 1.2 \times 10^{24}$$

3.83 million years!

• With decomposition of the problem we need:

$$4 \times 2^{20} = 4.2 \times 10^6$$

0.4 seconds!

- Turning a problem into independent subproblems is not always possible.
- Can we leverage other graph structures?
- Yes, if the graph is tree-structured or nearly tree-structured.
- A graph is a tree if any two variables are connected by only one path.
- Idea: use DAC, Directed Arc Consistency
- A CSP is said to be directed arc-consistent under an ordering X_1, X_2, \ldots, X_n IFF every X_i is arc-consistent with each X_j for j > i.

- First pick a variable to the be the root.
- Do a topological sorting: choose an ordering of the variables s.t. each variable appears after its parent in the tree.
- \bullet For n nodes, we have n-1 edges.
- Make the tree directed arc-consistent takes O(n)
- Each consistency check takes up to $O(d^2)$ (compare d possible values for 2 variables).
- The CSP can be solved in $O(nd^2)$

Nearly tree-structured CSPs

- Assign a variable or a set of variables and prune all the neighbors domains.
- This will turn the constraint graph into a tree :)
- There are other tricks to explore, have fun!

Summary

- CSPs are a special kind of search problems:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help
- Forward checking prevents assignments that guarantee later failure

Summary

- Constraint propagation (e.g., arc consistency) is an important mechanism in CSPs.
- It does additional work to constrain values and detect inconsistencies.
- Tree-structured CSPs can be solved in linear time
- Further exploration: How can local search be used for CSPs?
- The power of CSPs: domain-independent, that is you only need to define the problem and then use a solver that implements CSPs mechanisms.
- Play with CSP solver? Try http://aispace.org/constraint/.

David L. Waltz

David L. Waltz 28 May 1943 – 22 March 2012

CCLS founder and leader 2003-2012

David L. Waltz was a computer scientist who made significant contributions in several areas of artificial intelligence, including constraint satisfaction, case-based reasoning and the application of massively parallel computation to AI problems.

Credit

• Artificial Intelligence, A Modern Approach. Stuart Russell and Peter Norvig. Third Edition. Pearson Education.

http://aima.cs.berkeley.edu/