DIALOG(R)File 352:Derwent WPI (c) 2001 Derwent Info Ltd. All rts. reserv. **Image available** 011663579 WPI Acc No: 1998-080488/199808 XRPX Acc No: N98-064428 Three layered golf ball - has outer layer with higher hardness than middle layer that encloses inner core Patent Assignee: BRIDGESTONE SPORTS KK (BRID); BRIDGESTONE SPORTS CO LTD (BRID) Inventor: HIGUCHI H; ICHIKAWA Y; YAMAGISHI H Number of Countries: 002 Number of Patents: 002 Patent Family: Patent No Kind Date Applicat No Kind Date Week 19971209 JP 9313643 JP 96207869 A 19960718 199808 B Α US 9625418 US 5830085 19981103 A 19960904 199851 Α US 97821438 Α 19970321 Priority Applications (No Type Date): JP 96104307 A 19960329 Patent Details: Patent No Kind Lan Pg Filing Notes Main IPC JP 9313643 9 A63B-037/00 Α US 5830085 A63B-037/06 Provisional application US 9625418 Abstract (Basic): JP 9313643 A
The ball (1) has a solid inner core (2) enveloped by a middle layer (3). The middle layer is enveloped by an outer layer (4). The core surface hardness is between 75-85 units. The core surface hardness is 5-25 units greater than that of the central core. The hardness of the middle layer is 10 units greater than that of the core surface. The hardness of the outer layer is higher than the

durability.
 Dwg.1/1
Title Terms: THREE; LAYER; GOLF; BALL; OUTER; LAYER; HIGH; HARD; MIDDLE;
LAYER; ENCLOSE; INNER; CORE

ADVANTAGE - Has excellent and improved flight performance and

hardness of the middle layer.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-313643

(43)公開日 平成9年(1997)12月9日

(51) Int.Cl.6

識別記号 庁内整理番号

FΙ

技術表示箇所

A 6 3 B 37/00

A 6 3 B 37/00

С

L

審査請求 未請求 請求項の数7 FD (全 9 頁)

(21)出願番号

特願平8-207869

(22)出願日

平成8年(1996)7月18日

(31)優先権主張番号 特願平8-104307

(32)優先日

平8 (1996) 3月29日

(33)優先権主張国

日本(JP)

(71)出願人 592014104

ブリヂストンスポーツ株式会社

東京都品川区南大井6丁目22番7号

(72)発明者 樋口 博士

埼玉県秩父市大野原20番地 ブリヂストン

スポーツ株式会社内

(72)発明者 山岸 久

埼玉県秩父市大野原20番地 ブリヂストン

スポーツ株式会社内

(72)発明者 市川 八州史

埼玉県秩父市大野原20番地 プリヂストン

スポーツ株式会社内

(74)代理人 弁理士 小島 隆司

(54) 【発明の名称】 スリーピースソリッドゴルフボール

(57)【要約】

【課題】 優れた飛び性能及び耐久性と軟らかい良好な 打感及びコントロール性を有するオールラウンドなゴル フボールを得る。

【解決手段】 ソリッドコアと中間層とカバーとの3層 構造からなるスリーピースソリッドゴルフボールにおい て、JIS-C型硬度計での測定で、コアの中心硬度が 75度以下、コア表面硬度が85度以下であり、コア表 面硬度がコア中心硬度より5~25度高硬度であると共 に、中間層硬度がコア表面硬度より10度未満の範囲で 高く、かつカバー硬度が中間層硬度より高いことを特徴 とするスリーピースソリッドゴルフボール。

【特許請求の範囲】

【請求項1】 ソリッドコアと中間層とカバーとの3層構造からなるスリーピースソリッドゴルフボールにおいて、JIS-C型硬度計での測定で、コアの中心硬度が75度以下、コア表面硬度が85度以下であり、コア表面硬度がコア中心硬度より5~25度高硬度であると共に、中間層硬度がコア表面硬度より10度未満の範囲で高く、かつカバー硬度が中間層硬度より高いことを特徴とするスリーピースソリッドゴルフボール。

【請求項2】 中間層が、アイオノマー樹脂を10~1 1000重量%含む熱可塑性樹脂を主材としてなり、硬度が JIS-C型硬度計での測定で85度以下である請求項1記載のスリーピースソリッドゴルフボール。

【請求項3】 中間層の厚さが0.2~3mm、比重が0.9以上1.2未満である請求項1又は2記載のスリーピースソリッドゴルフボール。

【請求項4】 カバーが、アイオノマー樹脂を10~100重量%含む熱可塑性樹脂を主材としてなり、硬度が JIS-C型硬度計による測定で95度以下である請求 項1乃至3のいずれか1項に記載のスリーピースソリッ 20ドゴルフボール。

【請求項5】 カバーの厚さが0.2~3mm、比重が0.9以上1.2未満である請求項1乃至4のいずれか1項に記載のスリーピースソリッドゴルフボール。

【請求項6】 ソリッドコアがシス-1, 4-ポリプタジエンを主成分とするエラストマーからなり、コアの直径が $34\sim41$ mmである請求項1乃至5のいずれか1項に記載のスリーピースソリッドゴルフボール。

【請求項7】 中間層とカバーとを合わせた全体の厚さが2mm以上である請求項1乃至6のいずれか1項に記 30載のスリーピースソリッドゴルフボール。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ソリッドコアと中間層とカバーとの3層構造からなるスリーピースソリッドゴルフボールに関し、更に詳述すると、コアの硬度分布と、コア、中間層及びカバーを含めたボール全体の硬度分布を適正化することにより、優れた飛び性能及び耐久性と良好な打感及びコントロール性を有し、オールラウンドな性能を有するスリーピースソリッドゴルフボー40なスピン量が必要となる。ルに関する。

[0002]

【従来の技術及び発明が解決しようとする課題】従来より、種々の構造のゴルフボールが市場にでており、中でもゴムを基材とするコアをアイオノマー樹脂等からなるカバーで被覆したツーピースソリッドゴルフボールと、ソリッド又はリキッドセンターに糸ゴムを巻回した糸巻きコアををカバーで被覆した糸巻きゴルフボールとが市場の大半を占めている。

【0003】上記ツーピースソリッドゴルフボールは、

優れた飛び性能及び耐久性を有することから、多くの一般ゴルファーに使用されているが、打感が非常に硬く感じられ、また、打撃時の球離れの速さからコントロール性能に劣るという欠点を有し、このためプロゴルファーや上級者は、ツーピースソリッドゴルフボールよりも糸巻きゴルフボールを使用する人が多い。一方、糸巻きゴルフボールは、フィーリング、コントロール性に優れる反面、飛距離、耐久性の点でツーピースソリッドゴルフボールに劣るという欠点がある。

【0004】このようにツーピースソリッドゴルフボールと糸巻きゴルフボールとは、互いに相反する性能を有しており、プレーヤーは自分の技倆や好みにより使用するゴルフボールを選択しているのが現状である。

【0005】現在、ソリッドゴルフボールにおいて、糸巻きゴルフボールに近いフィーリングを実現するため、軟らかいタイプのツーピースソリッドゴルフボールが種々提案されている。このような軟らかいタイプのツーピースソリッドゴルフボールを得るためには、軟らかいコアを用いることになるが、コアを軟らかくすると、反発性が低下して飛び性能が劣化すると共に、耐久性も著しく低下し、ツーピースソリッドゴルフボールの特徴である優れた飛び性能及び耐久性が得られないばかりである優れた飛び性能及び耐久性が得られないばかりである、実際の使用に耐え難くなってしまう場合もある。即ち、従来のツーピースソリッドゴルフボールは、軟らかさ、反発性、スピン特性及び耐久性の4つの特性のうち、いずれの特性を重視するかで構造が決定され、いずれかの性能を向上させようとすれば他の性能が低下してしまうものである。

【0006】また、当然のことながらコントロール性はドライバー等のウッドやロングアイアンでのフルショット時にも必要とされ、ショートアイアン等でのアプローチショットでのコントロールショットにおけるスピン特性を向上させる目的を重視しすぎる余り、軟らかいカバーを用いると大変形領域であるドライバー等の打撃時にもスピン量が増加しすぎてボールが吹け上りぎみ(上がり過ぎ)となり、飛距離が低下してしまう。一方、スピン量が少なくなり過ぎると、落ち際にボールがドロップし、早期に落下して同様に到達飛距離に不利に働くという問題が生じてしまい、結局ドライバー打撃時にも適度なスピン量が必要となる。

【0007】本発明は、上記事情に鑑みなされたもので、コアの硬度分布を適正化し、更に、コア、中間層、及びカバーを含めたボール全体の硬度分布をも適正化することにより、良好な飛び性能及び耐久性と良好な打感及びコントロール性とを同時に満足し得るゴルフボールを提供することを目的とする。

[0008]

【課題を解決するための手段及び発明の実施の形態】本 発明者らは、上記目的を達成するために鋭意検討を重ね 50 た結果、ソリッドコアと中間層とカバーとの3層構造か らなるスリーピースソリッドゴルフボールにおいて、コ ア表面硬度をコア中心硬度よりも高くしコアの硬度分布 を適正化すると共に、中間層硬度をコア表面硬度より高 く、カバー硬度を中間層硬度より高く構成することによ り、最適の硬度分布を有するゴルフボールが得られ、優 れた飛び性能及び耐久性と良好なコントロール性とを併 せ持ったオールラウンドなソリッドゴルフボールが得ら れることを知見した。

【0009】即ち、ソリッドコアと中間層とカバーとの おいて、JIS-C型硬度計での測定で、コアの中心硬 度を75度以下、コア表面硬度を85度以下とし、コア 表面硬度をコア中心硬度より5~25度高く形成すると 共に、中間層硬度をコア表面硬度より10度未満の範囲 で形成し、かつカバー硬度を中間層硬度より高く形成す ることにより、①最適な硬度分布を有するコアが形成で き、インパクト時のボール変形において、コア中心より 硬く形成されたコア表面によりコアの変形過多を効果的 に防止し、かつ歪みエネルギーを効率良く反発エネルギ ーに置換し得、飛距離が増大すると共に、軟らかいコア 20 中心部により軟らかい良好な打感を得ることができるこ と、しかも、②軟らかく形成したコアをそれよりも硬い 中間層、この中間層よりも更に硬いカバーで順次被覆す ることによりボール全体が最適な硬度分布となり、打撃 時の変形過多によるエネルギーロスを最小限に抑え、効 率的な反発性を有するゴルフボールが得られることを知 見した。また更に、このような硬度分布を有するスリー ピースソリッドゴルフボールにおいて③中間層とカバー とをアイオノマー樹脂を10~100重量%含有する熱 可塑性樹脂を主材として形成することにより、中間層と 30 カバーとを強固に密着させることができ、硬く形成され たカバーと相俟って耐久性を向上させ得ることを知見し たものである。

【0010】本発明者らは、スリーピースソリッドゴル フポールの硬度分布を上記の通り設定することにより上 記①~③の作用効果により、特に、ドライバー等でのフ ルショット時のスピン量が適正化され、飛距離が飛躍的 に増大すると共に、耐久性、打感のいずれにも優れたゴ ルフボールが得られることを見い出し、本発明を完成し たものである。

【0011】従って、本発明は、(1)ソリッドコアと 中間層とカバーとの3層構造からなるスリーピースソリ ッドゴルフポールにおいて、JIS-C型硬度計での測 定で、コアの中心硬度が75度以下、コア表面硬度が8 5度以下であり、コア表面硬度がコア中心硬度より5~ 25度高硬度であると共に、中間層硬度がコア表面硬度 より10度未満の範囲で高く、かつカバー硬度が中間層 硬度より高いことを特徴とするスリーピースソリッドゴ ルフボール、及び、(2)中間層が、アイオノマー樹脂 を10~100重量%含む熱可塑性樹脂を主材としてな 50

り、かつカバーが、アイオノマー樹脂を10~100重 量%含む熱可塑性樹脂を主材としてなる上記スリーピー スソリッドゴルフポールを提供する。

【0012】以下、本発明につき更に詳しく説明する と、本発明のスリーピースソリッドゴルフボール1は、 図1に示すように、硬度分布を適正化したソリッドコア 2と、該コア2の表面より硬い中間層3と、この中間層 3より硬いカバー4とからなるものである。

【0013】本発明のゴルフボール1では、まずソリッ 3 層構造からなるスリーピースソリッドゴルフボールに 10 ドコア 2 の硬度分布を適正化する。即ち、コア 2 の中心 硬度を、JIS-C型硬度計での測定(以下。JIS-C硬度という)で、75度以下、好ましくは50~70 度、より好ましくは51~68度に形成する。また、コ ア2の表面硬度が85度以下、好ましくは60~85 度、更に好ましくは62~83度に形成する。中心硬度 が75度を超え、表面硬度が85度を超えると打感が硬 くなり、本発明の趣旨に反することとなる。一方、コア が軟らかすぎると打撃時の変形が大きくなり、エネルギ ーロスから飛距離、耐久性が低下してしまう。

> 【0014】ここで、コアの表面硬度は中心硬度より5 ~25度、好ましくは7~22度高く形成するものであ る。硬度差が5度未満ではコア表面硬度と中心硬度がほ とんど同じくらいとなり、硬度分布がなくなって平坦と なり、打感が硬く感じられるようになる。一方、25度 を超えるとコア中心硬度が低くなりすぎ、十分な反発性 が得られない。このようにコアの表面と中心の硬度差を 設けた硬度分布とすることにより、インパクト時のボー ル変形において、中心より硬く形成した表面により、コ アの変形過多を効果的に防ぐと共に、歪みエネルギーを 効率的に反発エネルギーに置換できる。また更にコア表 面より軟らかいコア中心部により良好なフィーリングを 得ることができる。

【0015】上記ソリッドコアの硬度分布は、上述した ようにコア表面をコア中心より5~25度の範囲で硬く 形成すれば制限されないが、特に、コア表面から中心に 向かって漸次軟らかくなるように形成することが効率的 なエネルギー伝搬の点から好ましい。

【0016】なお、上記ソリッドコアの直径は34~4 1mm、特に34~39mmであることが好ましく、コ ア全体の硬度、重量、比重等は、特に制限されず本発明 の目的を達成し得る範囲で適宜調整することができる が、通常はコア全体の硬度は100kg荷重負荷時の変 形量で2.3~5.5mm、特に2.5~4.8mm、 重量は25~42g、特に27~41gとすることがで

【0017】本発明においてソリッドコアを形成するた めのコア用組成物としては、特に制限されず、通常ソリ ッドコアの形成に用いられる基材ゴム、架橋剤、共架橋 剤、不活性充填剤等を用いて形成することができる。こ の場合、基材ゴムとしては従来からソリッドゴルフボー

ルに用いられている天然ゴム及び/又は合成ゴムを使用 することができるが、本発明においては、シス構造を少 なくとも40%以上有する1、4-シスーポリプタジエ ンが特に好ましい。この場合、所望により該ポリプタジ エンに天然ゴム、ポリイソプレンゴム、スチレンブタジ エンゴム等を適宜配合してもよい。また、架橋剤として はジクミルパーオキサイドやジー t ープチルパーオキサ イド、1, 1-ビス(t-プチルパーオキシ)3,3, 5-トリメチルシクロヘキサンのような有機過酸化物等 が例示されるが、特に好ましくはジクミルパーオキサイ ドと1、1-ピス(t-プチルパーオキシ)3、3、5 - トリメチルシクロヘキサンのブレンド物である。この 場合、ソリッドコアが上記硬度分布を持つように形成す るには、架橋剤としてジクミルパーオキサイドと1,1 -ビス(t-ブチルパーオキシ)3,3,5-トリメチ ルシクロヘキサンをプレンドして用い、160℃で20 分間加硫する方法等を採用することが好ましく、また、 加硫温度、加硫時間を適宜変化させることによりコア中 心硬度と表面硬度の差を変化させることができる。

【0018】また、共架橋剤としては特に制限されず、 不飽和脂肪酸の金属塩、特に、炭素原子数3~8の不飽 和脂肪酸(例えばアクリル酸、メタクリル酸等)の亜鉛 塩やマグネシウム塩が例示されるが、アクリル酸亜鉛が 特に好適である。なお、架橋剤の配合量は適宜設定さ れ、通常は基材ゴム成分100重量部に対して、7~4 5 重量部程度とされる。更に、不活性充填剤としては酸 化亜鉛、硫酸バリウム、シリカ、炭酸カルシウム及び炭 酸亜鉛等が例示されるが、酸化亜鉛、硫酸バリウムが一 般的であり、その配合量はコアとカバーの比重、ボール の重量規格等に左右され、特に制限されないが、通常は 30 基材ゴム100重量部に対して40重量部以下である。 なお、本発明においては上記架橋剤や酸化亜鉛、硫酸バ リウム等の充填剤の配合割合を適宜調整することによ り、コア全体の硬度及び重量を最適値に調整することが できる。

【0019】上記成分を配合して得られるコア用組成物は通常の混練機、例えばバンバリーミキサーやロール等を用いて混練し、コア用金型で圧縮又は射出成形し、成形体を上述した温度条件で加熱硬化して最適の硬度分布を持つ本発明のソリッドコアを調製することができる。

【0020】コア2を被覆する中間層3は、JIS-C 硬度で85度以下、好ましくは55~85度、より好ましくは63~85度に形成する。この場合、中間層硬度はコア表面硬度より10度未満の範囲で高く形成され、好ましくは1~8度高く形成される。硬度差が10度以上では十分な反発性を得ることができなくなる。このように中間層硬度をコア表面硬度より高く形成することにより、コアの反発性を保持することができる。

【0021】また、中間層の厚さ、比重等は、本発明の 目的を達成し得る範囲で適宜調整することができ、厚さ 50

は $0.2\sim3$ mm、特に $1\sim2.5$ mm、比重は0.9 以上1.2 未満、特に $0.92\sim1.18$ であることが 好ましい。

【0022】上記中間層3は、軟らかく形成したソリッドコアの反発性の低下を補うためのもので、上述した硬度範囲内で、反発性に優れた材質で形成され、具体的にはハイミラン1557、1601、1605、1855、1856、1706(三井・デュポンポリケミカル(株)製)、サーリン8120、7930(デュポン社製)等のアイオノマー樹脂等が好適に用いられる。この場合、中間層がアイオノマー樹脂を10~100重量%、特に30~100重量%含む熱可塑性樹脂を用いることが好ましい。

【0023】また、中間層を構成する上記アイオノマー 樹脂以外の熱可塑性樹脂としては、エチレンー不飽和力 ルポン酸アルキル共重合体の無水マレイン酸変性物(H PRAR201 (三井・デュポンポリケミカル (株) 製)等)、エチレン-不飽和カルボン酸-不飽和カルボ ン酸アルキルエステルの三元共重合体(ニュークレルA 20 N4307、同AN4311 (三井・デュポンポリケミ カル(株)製)等)、ポリエステルエラストマー(ハイ トレル4047(東レ・デュポン社製)等)、ポリアミ ドエラストマー (PEBAX3533 (アトケム社製) 等)、及び結晶性ポリエチレンプロックを有する熱可塑 性エラストマー (ダイナロン6100P、同HSB60 4、同4600P(以上、日本合成ゴム(株)製)等) などが挙げられ、これらの1種或いは2種以上を組合わ せて用いてもよく、その配合量は中間層組成物全体の0 ~90重量%、好ましくは0~70重量%、より好まし くは5~70重量%とすることができる。

【0024】上記熱可塑性樹脂中、結晶性ポリエチレンブロックを有する熱可塑性エラストマーは、その分子構造がE-EB系、E-EB-E系、E-EB-S系(但し、Eはポリエチレン結晶ブロック、EBはエチレンプチレンとからなる比較的ランダムな共重合構造、Sはポリスチレン結晶ブロックを示す)の3タイプがあり、この熱可塑性エラストマーは、ポリブタジエンやスチレン-ブタジエン共重合体を水素添加することにより得ることができる。なお、この中間層には、上記アイオノマー樹脂等を含む熱可塑性樹脂に加えて重量調整剤として酸化亜鉛、硫酸バリウム等の無機充填剤や着色のために二酸化チタン等の添加剤を添加することができる。

【0025】中間層 3 を被覆するカバー 4 は、上記中間層よりも高硬度であることが必要であり、カバー硬度は、JIS-C 硬度で 95 度以下、好ましくは $60\sim9$ 3度、より好ましくは $70\sim92$ 度に形成する。カバーの JIS-C 硬度が 95 度を超えると中間層とカバーとの硬度差が大きくなり、耐久性が低下し、打感も硬くなってしまう場合がある。この場合、カバー硬度は中間層硬度より 15 度未満の範囲、特に $1\sim13$ 度高く形成す

ることが好ましい。硬度差が15度以上では耐久性が低 下し、打感が硬くなってしまう場合がある。

【0026】なお、カバーの厚さ、比重等は、本発明の 目的を達成し得る範囲で適宜調整することができ、厚さ は0. 2~3mm、特に1~2. 5mm、比重は0. 9 以上1.2未満、特に0.92~1.18であることが 好ましい。また、中間層とカバーとを合計した厚さは2 mm以上、特に2.5~5.5mmであることが好まし い。この厚さが2mm未満では打撃耐久性が低下する場 合がある。

【0027】上記カバー組成としては特に制限されず、 ゴルフポールのカバー材として好適な性能を有する公知 の材料で形成することができ、例えばアイオノマー樹 脂、ポリエステルエラストマー、ポリアミドエラストマ ー等を単独で、或いはこれらの樹脂にウレタン系樹脂、 エチレン-酢酸ビニル共重合体等を混合した樹脂混合物 を用いることができるが、特にアイオノマー樹脂が好ま しく、2種以上のアイオノマー樹脂を組合わせて用いる ことができる。この場合、アイオノマー樹脂を10~1 00重量%、特に50~100重量%含む熱可塑性樹脂 20 を主材としてカバーを形成することが好ましい。

【0028】更に、上記カバー組成物には必要に応じて UV吸収剤、酸化防止剤、金属石鹸等の分散助剤などを 添加することもできる。なお、カバーを被覆する方法は 特に制限されず、通常は予め半球状に成形した2枚のカ パーでコアを包み加熱加圧成形するか、カパー用組成物 を射出成形してコアを包みこんでもよい。

【0029】ここで、本発明においては特に制限される ものではないが、上記中間層3及びカバー4を共にアイ オノマー樹脂を10~100重量%含有する熱可塑性樹 脂を主材とする材料で形成することが好ましく、これに より中間層とカバーとをより強固に密着させることがで き、硬く形成されたカパーと相俟って耐久性をより向上 させることができる。この場合、中間層3とカバー4と* *でアイオノマー樹脂の配合割合が異なっていても差し支 えない。

【0030】このようにして得られたゴルフボールは、 常法に従って上記カバー表面にディンプルを成形するこ とができ、また成形した後、その表面に対しバフ研磨、 塗装、スタンプ等の完成作業を行うことができる。

【0031】本発明のスリーピースソリッドゴルフボー ルは、以上の構成を有するが、ポール全体の硬度は10 0kg荷重負荷時の変形量で2.3~4.3mm、特に 10 2.5~4mmであることが好ましく、ポール重量、直 径等のボール性状はゴルフ規則に従い適宜設定すること ができる。

[0032]

【発明の効果】本発明のスリーピースソリッドゴルフボ ールは、良好な飛び性能及び耐久性と軟らかく良好な打 感とを有し、特にドライバー等でのフルショット時のス ピン量が適正化され飛び性能及び打感が向上したもので ある。

[0033]

【実施例】以下、実施例と比較例を示し、本発明を具体 的に説明するが、本発明は下記実施例に制限されるもの ではない。なお、表1、表2のコア、中間層及びカバー の各成分の配合量はすべて重量部である。

【0034】 [実施例、比較例] 表1に示した配合組成 のゴム組成物を混練し、モールド内で表1に示した加硫 条件で加硫成形することによりNo.1~13までのソ リッドコアを作成した。得られたコアにつき、JIS-C硬度、直径を測定し、結果を表3、4に示した。な お、コアのJIS-C硬度はコアを半分に切断し、その 30 中心部の硬度(中心硬度)と、コア表面(球面)硬度 (表面硬度)を測定した(測定値は5点の平均値であ る)。

[0035]

【表 1 】

_	, , , , , , , ,	/ Mar U	<u>_</u> /•	•										
	No.	1	2	3	4	5	6	7	8	9	10	11	12	13
シスー1, ブタジェ		100	100	100	100	100	100	100	100	100	100	100	100	100
アクリル	酸亜鉛	22	17	25	14	33	27	20	13	33	37	33	22	24
酸化	亜 鉛	28.5	33	33.5	28.5	25.5	39.5	32.5	22.5	20.5	17	7	33	28.2
ジクミオキサ		1	1	1	1	1	1	1	1	1	1	1	1	1
*	1	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
I and the same same	温度(℃)	160	160	160	160	160	120	160	160	160	150	180	120	160
加硫条件	時 間 (分)	20	20	20	20	20	80	20	20	20	30	20	80	20

*1:1,1-ビス(tープチルパーオキシ)3,3,5-トリメチルシクロヘキサン(日本油脂(株) 社製、商品名:パーヘキサ3M-40)

【0036】次に、表2に示した中間層及びカバー組成 物を混練し、上記ソリッドコアおよび中間層に射出成形 50 ドゴルフボールを得た。このとき、中間層及びカバーを

により被覆して、表3、4に示したスリーピースソリッ

成形する毎に中間層及びカバーのJIS-C硬度、比重

* [0037]

及び厚さを測定した。その結果を表3、4に併記する。 *

【表2】

中間層又は A B C D E F G H I J K L M N O A 15ラン*2
1557
1601 ハイミラン・2 35
1605 35 30 40 10 10 11 15 15 15 15 15 15 15 15 15 15 15 15
1855
1856 ハイミラン・* 35 1706 ハイミラン・* 35 1707 サーリン・* 50 100 HPR AR201 * 30 ニュークレル・* AN4307 ニュークレル・* AN4311 サーリン・* 32 ハイミラン・* 32 ハイミラン・* 4047
1707 サーリン・で 50 100 50 90 HPR AR201 30 50 100 50 90 ニュークレル・で AN4307 36 20 20 20 20 20 20 20 20 20 20 20 20 20
1707 サーリン・** 50 100 50 90 HPR AR201** 30 = ユークレル** AN4307 = ユークレル** AN4311 サーリン・** 32 ハイミラン・** AN7311 ハイトレル・** 4047
8120 50 100 60 90 HPR AR201** 30 36 AN4307 36 AN4311 20 37 7930 32 32 33 AM7311 32 AM7311 32 AM7311 71トレル ** 4047 100 100 100 100 100 100 100 100 100 10
コークレル*8 AN4307 =ユークレル*6 AN4311 サーリン ** 32 7930 ハイミラン ** 32 AM7311 32 33 ハイトレル ** 4047
AN4307 30 26 37 32 32 37 33 32 37 33 32 37 34 32 33 37 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AN4311 サーリン ** 32 33 33 33 34 34 34 34 34 34 34 34 34 34
7930 32 35 35 37 4 5 7 7 9 30 32 32 33 37 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
AM7311 32 100 4047 100 100 100 100 100 100 100 100 100 10
4047
700 A V2522 *7
サーリン *8 AD8511 35
サーリン ** AD8612 35
ダイナロン * e 6100P 30
二酸化チタン 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
シス-14-ボ リブタジェン ゴム
アクリル酸 40 36
酸 化 亜 鉛 31 32.5
ジクミルパー オキサイド 1 1
*9 0.3 0.3

*2:三井・デュポンポリケミカル社製のアイオノマー 樹脂

*3:米国デュポン社製のアイオノマー樹脂

* 4:三井・デュポンポリケミカル社製のエチレン・ア クリル酸エチル共重合体の無水マレイン酸変性物

*5:三井・デュポンポリケミカル社製のエチレン・メ

タクリル酸・アクリル酸エステルの三元共重合体

*6:東レ・デュポン社製のポリエステルエラストマー *7:アトケム社製のポリアミドエラストマー

*8:日本合成ゴム(株)製のブロックコポリマーポリ

プタジエンの水素添加物E-EB-E系

*9:表1の*1と同様

【0038】得られた各ゴルフボールについて、下記方 法により、ボール硬度、飛び性能、スピン特性、打感、 及び耐久性を評価した。結果を表3、4に併記する。

ボール硬度

した。

飛び性能

ツルー・テンパー (True Temper) 社製の打 撃マシンを用い、クラブはドライバー(#W1)を用い てヘッドスピード45m/sec (HS45) と35m /sec(HS35)でそれぞれ実打した時のスピン、 40 キャリー、トータル距離を測定した。

【0039】なお、使用したクラブとしては、HS45 の場合は「PRO 230TITAN」(プリヂストン スポーツ(株)製)、ロフト11度、シャフトハーモテ ックライト HM50J(HK)、硬度S、バランスD 2、HS35の場合は「ESSERIO」(プリヂスト ンスポーツ (株) 製)、ロフト14度、シャフト硬度R を用いた。

打感

ヘッドスピード45m/sec (HS45) と35m/ 100kg荷重負荷時のボールの変形量 (mm) を測定 50 sec (HS35) のプレーヤー5名により実打しても

12

らい、下記基準で判定した。

〇:軟らかい

△:普通

× : 硬い 耐<u>久性</u> *し、下記基準で判定した。

〇:非常に優れる

△:普通

× : 劣る

[0040]

連続打撃耐久性及びカット耐久性を合わせて総合評価*

【表3】

					奥	施	例]	
	,		1	2	3	4	5	6	7
	種	類	1	2	3	4	5	1	13
	中心硬度(JIS - C)	63	55	63	52	65	63	66
3 7	表面硬度(ЛS – C)	74	70	74	66	80	74	76
	硬度差(ns – c)	11	15	11	14	15	11	10
	外 径	(mm)	36.5	36.1	35.1	37.9	36.5	36.5	36.5
	種	類	A	В	С	ם	E	N	N
	硬 度(JIS – C)	76	75	80	70	84	80	80
中間層	コア表面と (。	JIS – C)	2	5	6	4	4	6	4
	比	單	0.97	0.97	0.97	0.97	0.97	0.97	0.97
	ゲージ	(mm)	1.6	1.6	1.8	1.2	1.6	1.6	1.6
カバー	種	類	С	E	J	K	J	0	0
	硬 皮(ЛS – C)	80	84	86	76	86	86	86
	土	童	0.97	0.97	0.97	0.97	0.97	0.97	0.97
	ゲージ	(mm)	1.5	1.7	2.0	1.2	1.5	1.5	1.5
ボール	外 径	(mm)	42.7	42,7	42.7	42.7	42,7	42.7	42.7
全 体	100kg 硬度	(mm)	3.0	3.4	2.8	3.7	2.6	3.0	2.9
	スピン	(rpm)	2800	2650	2750	2700	2900	2780	2720
# W1	キャリー	(m)	209.0	209.0	210.0	208.5	210.5	209.8	210.0
HS45	トータル	(m)	223.0	223.5	224.5	222.0	224.0	224.0	225.0
	打	感	0	0	0	0	0	0	0
	スピン	(rpm)	4600	4400	4550	4700	4650	4595	4510
# W1	キャリー	(m)	143.0	144.0	143.5	144.0	143.0	143.3	144.5
HS35	トータル	(m)	150.0	153.0	150.0	152.5	152.0	149.9	154.0
	打	感	0	0	0	0	Δ	0	0
耐	久	性	0	0	0	0	0	0	0

[0041]

【表4】

		T	此	(A)				
		1	T 2	Т з	較 4	5	6	7
	種類	6	7	8	9	10	11	12
J 7	中心硬度 (JIS - C)	72	59	50	65	 	+	
	表面硬度 (JIS - C)	74	74	65	80	77	65	67
	硬度差(JIS-C)	2	15	15	15	86 9	80 15	69
	外 径 (mm)	33.7	33.7	33.3	-	 		
		C			38.3	38.7	30.1	35.5
			F	G	ļ. -	В	H	I
中間層	硬 度(JIS-C)	80	64	86	-	75	80	67
	コア表面と (JIS - C)	6	- 10	21		- 11	0	- 2
	比 重	0.97	1.12	1.25		0.97	1.25	1.01
	ゲージ (mm)	2.5	2.5	2.5	_	0.8	4.1	1.8
カバー	種類	J	K	к	L	К	К	М
	硬 度(JIS-C)	86	92	92	92	92	92	71
	比 重	0.97	0.97	0.97	0.97	0.97	0.97	0.97
	ゲージ (mm)	2.0	2.0	2.2	2,2	1,2	2.2	2.0
ポール	外 径 (mm)	42.7	42.7	42.7	42.7	42,7	42.7	42.7
全体	100kg 使度 (mm)	2,1	3.4	2,9	3.0	2.2	2.5	2.9
# W1 HS45	スピン (rpm)	3100	2650	2600	2600	3200	2700	3300
	キャリー (m)	206.0	2070	207.0	206.5	207.0	205.0	205.0
	トータル (m)	219.0	222.0	221.0	220.0	219.5	220.0	2170
	打 感	×	0	0	0	×	Δ	0
# W1	スピン (rpm)	4750	4200	4300	4300	4800	4500	4900
	キャリー (m)	138.0	140.0	139.0	137.0	136.0	134.5	135.0
HS35	トータル (m)	145.0	149.0	148.0	147.0	141.0	141.0	140.0
	打 悠	×	0	Δ	0	×	×	0
耐	久 性	0	×	×	×	Δ	Δ	0

【0042】表3、4の結果から、比較例1、7はコア表面硬度とコア中心硬度との差が小さくコアの硬度分布が適正化されていない上に、比較例7はコア表面が中間層よりも硬いものである。比較例2、5、6はコア表面が中間層より硬くもしくは同じものである。比較例3は中間層がコア表面より硬いものである。比較例4はツーピースソリッドゴルフボールである。更に、比較例5はコアの中心及び表面硬度が硬いものである。これらの要因から比較例1~7のゴルフボールはドライバーでのフルショットで飛距離、打感、耐久性及び適度なスピン量のいずれか又は全部について十分に満足できないか、かなり劣った結果となる。

【0042】表3、4の結果から、比較例1、7はコア 【0043】これに対して、本発明のゴルフボール(実表面硬度とコア中心硬度との差が小さくコアの硬度分布 30 施例 $1\sim7$)は、ドライバーでのフルショットで適度なが適正化されていない上に、比較例7はコア表面が中間 スピン量となり飛距離が増大すると共に、打感及び耐久層よりも硬いものである。比較例2、5、6はコア表面 性のいずれにも優れていることが確認できた。

【図面の簡単な説明】

【図1】本発明のスリーピースソリッドゴルフボールの一実施例を示す概略断面図である。

【符号の説明】

- 1 ゴルフボール
- 2 ソリッドコア
- 3 中間層
- 40 4 カバー

【図1】

