A Universal Law of Robustness via Isoperimetry

Sébastien Bubeck (Microsoft Research Redmond), Mark Sellke (Stanford University). NeurIPS 2021. https://arxiv.org/abs/2105.12806

1 Motivation

- ➤ "Fact" 1: neural networks memorize training data to zero error.
- ➤ "Fact" 2: overparametrized models are better for robustness

What's going on? Are these related? <u>A Model for Memorization</u>

- Finput: $n=d^{O(1)}$ random points $x_1, \dots x_n$ on unit sphere \mathbb{S}^d . Labels $y_i=g(x_i)+Z_i$: signal + centered noise.
- Noise level $\mathbb{E}[Var[y_i | x_i]] = \sigma^2$
- ➤ Partial memorization: fit data much better than the signal:

$$\sum_{i} (f(x_i) - y_i)^2 \le \frac{1}{2} \sum_{i} Z_i^2.$$

 \triangleright Robust classifier: $f: \mathbb{R}^d \to \mathbb{R}$ is O(1)-Lipschitz.

Memorizing with Parametrized Function Classes

- \triangleright If some $f \in \mathcal{F}$ (robustly) memorizes, how large must the function class \mathcal{F} be?
- Measure size by # parameters P. Formally, $w \to f_w \in \mathcal{F}$ for $w \in \mathbb{R}^P$ with $|w| \le poly(d), \quad |f_w(x) f_v(x)| \le poly(d) \cdot |w v|.$
- Captures "true" parameter count for convolutional nets, weight sharing, ...
- P = n parameters suffice to memorize P = n parameters suffice P =
- P = nd parameters suffice to robustly memorize.
 ► Use 1 radial basis function for each of n inputs ⇒ nd parameters.

4 The Law of Robustness

- Conjecture [Bubeck-Li-Nagaraj 20]: $L \ge \sqrt{\frac{nd}{P}}$ for 2-layer neural networks.
- ➤ Theorem [Bubeck-S. 21]: for P -parameter function classes \mathcal{F} , if there exists $f \in \mathcal{F}$ partially memorizing the noisy data, then (w.h.p.):

$$Lip(f) \gg \sigma^2 \sqrt{\frac{nd}{P}}.$$

- \triangleright Input distribution can be mixture of $n^{0.99}$ isoperimetric components.
- \triangleright Tight for any P: project to dimension $\tilde{d} = P/n$, use RBF construction in $\mathbb{R}^{\tilde{d}}$.
- \blacktriangleright Definition: μ is isoperimetric if Lipschitz functions have sub-Gaussian tail on μ .
 - \triangleright Typical when μ is "genuinely high-dimensional". Spheres, Gaussians, ...

(5) Proof for Perfect Memorization with 1 Component + Pure Noise

- ightharpoonup Claim: if labels y_i are IID ± 1 , then robust memorization needs $P \ge nd$.
- ightharpoonup Assume balanced labels: # $y_i = 1$ in $\left[\frac{n}{3}, \frac{2n}{3}\right]$. $\mathbb{P}[false] \le \exp(-n)$.
- \triangleright Fix an $f \in \mathcal{F}$. Isoperimetry implies:

$$\min(\mathbb{P}^{\mu}[f(x) = 1], \mathbb{P}^{\mu}[f(x) = -1]) \le \exp(-\Omega(d)).$$

- $\Rightarrow \mathbb{P}[f \text{ outputs unlikely label on } \geq \frac{n}{3} \text{ of } x_1, \dots, x_n] \leq \exp(-nd).$
- $\Rightarrow \mathbb{P}[f \text{ fits all (or even most) labels}] \leq \exp(-nd).$
- \triangleright Union bound over $f \in \mathcal{F} \Rightarrow |\mathcal{F}| \ge \exp(nd)$.
- \triangleright P parameters ⇒ discretization of \mathcal{F} has size ≈ $\exp(P) \ge \exp(nd)$.
- Mixtures: assume balanced labels in each component.
- Some further results: generalization perspective, construction showing polynomially bounded parameters necessary even for depth 3 networks.