## Particle spectrograph

## Wave operator and propagator

|                                  | $\sigma_{1}^{\#1}{}_{\alpha\beta}$                                                | $\sigma_{1}^{\#2}{}_{\alpha\beta}$              | ${\mathfrak r}_1^{\#1}$                         | $\sigma_{1^-}^{\#1}{}_{\alpha}$              | $\sigma_{1}^{\#2}{}_{\alpha}$                                   | $\tau_{1}^{\#1}{}_{\alpha}$ | ${\mathfrak l}_1^{\#2}$                                         |
|----------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------|
| $\sigma_{1}^{*1} + \alpha \beta$ | 0                                                                                 | $-\frac{\sqrt{2}}{t_1+k^2t_1}$                  | $-\frac{i\sqrt{2}k}{t_1+k^2t_1}$                | 0                                            | 0                                                               | 0                           | 0                                                               |
| $\sigma_1^{#2} + \alpha \beta$   | $-\frac{\sqrt{2}}{t_1+k^2t_1}$                                                    | $\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$    | $\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$ | 0                                            | 0                                                               | 0                           | 0                                                               |
| $\tau_{1}^{\#1} + \alpha \beta$  | $\tau_{1}^{\#1} + \alpha \beta \left  \frac{i \sqrt{2} k}{t_1 + k^2 t_1} \right $ | $\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$ | $\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$ | 0                                            | 0                                                               | 0                           | 0                                                               |
| $\sigma_{1}^{\#1} +^{\alpha}$    | 0                                                                                 | 0                                               | 0                                               | $\frac{1}{k^2 \left( r_1 + r_5 \right)}$     | $-\frac{1}{\sqrt{2} (k^2 + 2k^4) (r_1 + r_5)}$                  | 0                           | $-\frac{i}{k(1+2k^2)(r_1+r_5)}$                                 |
| $\sigma_{1}^{\#2} +^{lpha}$      | 0                                                                                 | 0                                               | 0                                               | $-\frac{1}{\sqrt{2}\;(k^2+2k^4)\;(r_1+r_5)}$ | $\frac{6k^2(r_1+r_5)+t_1}{2(k+2k^3)^2(r_1+r_5)t_1}$             | 0                           | $\frac{i(6k^2(r_1+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(r_1+r_5)t_1}$  |
| $\tau_1^{\#1} +^{\alpha}$        | 0                                                                                 | 0                                               | 0                                               | 0                                            | 0                                                               | 0                           | 0                                                               |
| $\tau_1^{\#2} + \alpha$          | 0                                                                                 | 0                                               | 0                                               | $\frac{i}{k(1+2k^2)(r_1+r_5)}$               | $-\frac{i(6k^2(r_1+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(r_1+r_5)t_1}$ | 0                           | $\frac{6 k^2 (r_1 + r_5) + t_1}{(1 + 2 k^2)^2 (r_1 + r_5) t_1}$ |

|                                                   |                                          |                                      |                                        | $\omega_{2^{-}}^{\#1}{}_{\alpha\beta_{,}}$ | 0                        | 0                          | $k^2 r_1 + \frac{1}{2}$   |  |
|---------------------------------------------------|------------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------------|--------------------------|----------------------------|---------------------------|--|
|                                                   | $\sigma_{2}^{\#1}{}_{lphaeta}$           | $	au_2^{\#1}{}_{lphaeta}$            | $\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$ | $f_{2}^{\#1}$                              | $\frac{ikt_1}{\sqrt{2}}$ | $k^2 t_1$                  | 0                         |  |
| $\sigma_{2^+}^{\sharp 1}\dagger^{lphaeta}$        | $\frac{2}{(1+2k^2)^2t_1}$                | $-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$ | 0                                      | $\alpha\beta$                              | 2 .                      | $\frac{i k t_1}{\sqrt{2}}$ | 0                         |  |
| $	au_2^{\#1} \dagger^{lphaeta}$                   | $\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$ | $\frac{4k^2}{(1+2k^2)^2t_1}$         | 0                                      | $\omega_2^{\#1}$                           | -αβ                      | $-\alpha\beta$             | $\alpha eta \chi$         |  |
| $\sigma_2^{\sharp 1} \dagger^{\alpha \beta \chi}$ | 0                                        | 0                                    | $\frac{2}{2 k^2 r_1 + t_1}$            |                                            | $\omega_2^{\#1}$ †       | $f_{2}^{\#1}$ †            | $\omega_{2}^{\#1} + ^{c}$ |  |

| Quadratic (free) action $S_{F} == \begin{cases} S_{F} = S_{F} & S_{F} = S$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $4r_1\partial_\kappa\omega^{\theta\alpha\beta}\partial^\kappa\omega_{\alpha\beta\theta} + 4r_1\partial^\beta\omega_{,}{}^{\alpha\lambda}\partial_\lambda\omega_{\alpha\beta}^{\prime} - 16r_1\partial^\beta\omega_{,}{}^{\lambda\alpha}\partial_\lambda\omega_{\alpha\beta}^{\prime} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $6  r_5  \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta}  \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa} - 6  r_5  \partial_\theta \omega_\lambda^{\ \alpha}_{\ \ \alpha}  \partial^\lambda \omega^{\theta \kappa}_{\ \ \ \ }))[t,  \varkappa,  y,  z]  dz  dy  dx  dt$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Source constraints/gauge generators                                  |                |  |  |  |  |
|----------------------------------------------------------------------|----------------|--|--|--|--|
| SO(3) irreps                                                         | Multiplicities |  |  |  |  |
| $\sigma_{0+}^{\#1} == 0$                                             | 1              |  |  |  |  |
| $\tau_{0}^{\#1} == 0$                                                | 1              |  |  |  |  |
| $\tau_{0^{+}}^{\#2} == 0$                                            | 1              |  |  |  |  |
| $\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$           | 3              |  |  |  |  |
| $\tau_{1}^{\#1\alpha} == 0$                                          | 3              |  |  |  |  |
| $\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$ | 3              |  |  |  |  |
| $\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$  | 5              |  |  |  |  |
| Total constraints:                                                   | 17             |  |  |  |  |



| _                                                                      | $\omega_{1}^{\#_{1}}{}_{lphaeta}$  | $\omega_{1}^{*2} \alpha \beta$ | $f_{1}^{*1} + \alpha \beta$ | $\omega_{1}^{\#_{1}}{}_{\alpha}$  | $\omega_1^{\#2}{}_{\alpha}$       | $f_{1}^{\#_{1}}\alpha$ | $f_{1}^{\#2}\alpha$              |
|------------------------------------------------------------------------|------------------------------------|--------------------------------|-----------------------------|-----------------------------------|-----------------------------------|------------------------|----------------------------------|
| $\omega_{1}^{\#1}\dagger^{lphaeta}$                                    | $k^2 (2r_1 + r_5) - \frac{t_1}{2}$ | $-\frac{t_1}{\sqrt{2}}$        | $-\frac{ikt_1}{\sqrt{2}}$   | 0                                 | 0                                 | 0                      | 0                                |
| $\omega_{1}^{\#2}\dagger^{lphaeta}$                                    | $-\frac{t_1}{\sqrt{2}}$            | 0                              | 0                           | 0                                 | 0                                 | 0                      | 0                                |
| $f_{1}^{\#1}\dagger^{\alpha\beta}$                                     | $\frac{ikt_1}{\sqrt{2}}$           | 0                              | 0                           | 0                                 | 0                                 | 0                      | 0                                |
| $\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#1}\dagger^{lpha}$ | 0                                  | 0                              | 0                           | $k^2 (r_1 + r_5) + \frac{t_1}{6}$ | $\frac{t_1}{3\sqrt{2}}$           | 0                      | <u>i kt</u> 1<br>3               |
| $\omega_1^{\#2} \uparrow^{lpha}$                                       | 0                                  | 0                              | 0                           | $\frac{t_1}{3\sqrt{2}}$           | <u>t<sub>1</sub></u><br>3         | 0                      | $\frac{1}{3}\bar{l}\sqrt{2}kt_1$ |
| $f_{1}^{#1} \dagger^{\alpha}$                                          | 0                                  | 0                              | 0                           | 0                                 | 0                                 | 0                      | 0                                |
| $f_1^{\#2} \dagger^{\alpha}$                                           | 0                                  | 0                              | 0                           | $-\frac{1}{3} \bar{l} k t_1$      | $-\frac{1}{3}\bar{l}\sqrt{2}kt_1$ | 0                      | $\frac{2k^2t_1}{3}$              |
|                                                                        |                                    |                                | •                           |                                   |                                   | •                      |                                  |

## Massive and massless spectra





## Unitarity conditions