Лекція 9 АНАЛІТИЧНА ГЕОМЕТРІЯ НА ПЛОЩИНІ. ПРЯМА НА ПЛОЩИНІ.

Рівняння лінії на плошині

Нехай на площині задана декартова система координат Oxy і деяка лінія L. Рівняння з двома змінними

$$F(x,y) = 0 \tag{1}$$

називається **рівнянням** лінії (кривої) L відносно заданої системи координат, якщо його задовольняють координати x і y довільної точки кривої L і не задовольняють координати жодної іншої точки площини.

Отже, лінія L — це множина точок площини, координати яких задовольняють рівняння (1). Говорять також, що рівняння (1) визначає лінію L.

Наприклад, рівняння $x^2 + y^2 - 1 = 0$ визначає на площині коло радіусом 1 з центром у початку координат (рис. 1). Дійсно, точка площини M(x,y) лежить на вказаному колі тоді і тільки тоді, коли її відстань від початку координат – точки O(0,0) – дорівнює одиниці, тобто

ці, тобто
$$\sqrt{(x-0)^2 + (y-0)^2} = 1.$$

Звідси рівняння цього кола має вигляд $x^2 + v^2 = 1$.

Приклад. Написати рівняння лінії на площині, якщо різниця квадратів відстаней від кожної її точки до точок
$$M_1(2;5)$$
 і $M_2(4;1)$ дорівнює 16.

Нехай M(x, y) біжуча точка шуканої лінії. За умовою задачі повинна справджуватися рівність :

$$|M_1 M|^2 - |M_2 M|^2 = 16.$$

Виразимо значення відстаней через координати точок:

$$|M_1M| = \sqrt{(x-2)^2 + (y-5)^2}$$
; $|M_2M| = \sqrt{(x-4)^2 + (y-1)^2}$ і підставимо у рівність :

$$(x-2)^2 + (y-5)^2 - (x-4)^2 - (y-1)^2 = 16$$

Після спрощень рівняння набуде вигляду

$$x-2y-1=0$$
.

Зауважимо, що не кожне рівняння вигляду (1) визначає геометричний образ, який ми звикли називати лінією. Наприклад:

- рівняння $x^2 + y^2 = 0$ визначає єдину точку O(0,0) на площині;
- рівняння $x^2 + y^2 + 1 = 0$ не визначає на площині жодного геометричного образу;
- рівняння x + y |x| |y| = 0 визначає всі точки першої координатної чверті разом з точками додатніх координатних півосей (рис.2)

Puc. 2

Приклад. Встановити яка з точок $M_1(-1;2)$ чи $M_2(2;3)$ лежить на лінії $2x^2 + y^2 - x - 15 = 0$?

Точка лежить на лінії, якщо декартові координати точки задовольняють рівняння лінії. Підставляємо координати точки M_1 (x=-1;y=2) у рівняння лінії:

 $2(-1)^2+(2)^2-(-1)-15=-8\neq 0$. Точка M_1 не лежить на лінії. Підставляємо координати точки M_2 (x=2;y=3) у рівняння лінії: $2(2)^2+(3)^2-(2)-15=0$. Точка M_2 лежить на лінії.

Лінія називається *алгебраїчною лінією n-го порядку*, якщо в її рівянні F(x,y)=0 функція F(x,y) є многочленом n-го степеня відносно двох змінних.

Так загальний вигляд рівняння алгебраїчної лінії першого порядку є таким: Ax + By + C = 0, де $A^2 + B^2 \neq 0$ (тобто коефіцієнти A і B не дорівнюють нулю одночасно).

Аналогічно рівняння лінії другого порядку в загальному випадку має вигляд:

$$a_{1\,1}x^2+a_{1\,2}xy+a_{2\,2}y^2+a_1x+a_2y+a_3=0\,,$$
 де $a_{1\,1}^{\ \ 2}+a_{1\,2}^{\ \ 2}+a_{2\,2}^{\ \ 2}\neq 0\,.$ Наприклад, $x^2-2xy-4=0\,.$

Перетином двох ліній на площині ϵ множина точок, які лежать одночасно на кожній з цих ліній, а тому задовольняють одночасно рівняння першої та другої лінії.

Для того, щоб знайти координати точок перетину ліній, потрібно розв'язати систему відповідних рівнянь.

Приклад. Знайти точки перетину ліній, заданих рівняннями: $x^2 - 2xy - 4 = 0$ та $x^2 - y^2 + 4y - 4 = 0$.

Знайдемо розв'язки системи:

$$\begin{cases} x^{2} - 2xy - 4 = 0, \\ x^{2} - y^{2} + 4y - 4 = 0; \end{cases} \begin{cases} x^{2} - 2xy - 4 = 0, \\ x^{2} - (y - 2)^{2} = 0; \end{cases} \begin{cases} x^{2} - 2xy - 4 = 0, \\ (x - (y - 2))(x + (y - 2)) = 0 \end{cases}$$

$$\begin{cases} x^{2} - 2xy - 4 = 0, \\ (x - (y - 2))(x + (y - 2)) = 0 \end{cases}$$

$$\begin{cases} x^{2} + 4x + 4 = 0, \\ y = x + 2, \\ (x - (y - 2))(x + (y - 2)) = 0 \end{cases}$$

$$\begin{cases} x_{1} = 2, \\ y = x + 2, \\ (x_{2} = -\frac{2}{3}, x_{3} = 2, \\ y = -x + 2. \end{cases}$$

+Отже, ϵ три точки перетину: $M_1(2;4), M_2(-\frac{2}{3};\frac{8}{3}), M_3(2;0)$.

ПРЯМА НА ПЛОЩИНІ

Розглянемо деяку пряму лінію на площині із вибраною на ній декартовою системою координат Oxy і задамось питаннями:

- 1) яким є рівняння такої лінії;
- 2) які дані про пряму потрібно мати для побудови її рівняння?

Відповідь на перше запитання сформулюємо у вигляді твердження:

Якщо на площині зафіксована деяка декартова система координат Oxy, то кожне алгебраїчне рівняння I-го порядку (тобто лінійне рівняння) відносно двох змінних X та Y

$$Ax + By + C = 0, \qquad \left(A^2 + B^2 \neq 0\right)$$

 ϵ рівнянням прямої.

Розглянемо декілька варіантів відповіді на друге запитання.

1. Положення прямої l на площині однозначно визначається вектором $\overline{n}=(A,B)$, перпендикулярним до неї, та точкою $M_o(x_o,y_o)$, що лежить на цій прямій.

Вектор $\overline{n} = (A, B)$, ортогональний (перпендикулярний) до прямої 1, називають *нормальним вектором* цієї прямої (*нормаллю*, або *вектором нормалі*).

ЗАДАЧА 1. Побудувати рівняння прямої, яка проходить через дану точку $M_o(x_o, y_o)$ перпендикулярно до даного вектора $\overline{n} = (A, B)$.

Виберемо довільну точку M(x,y) прямої l , тоді $M_o M = (x-x_o;y-y_o)$. За умовою $\overline{M_o M} \perp \overline{n}$.

Запишемо умову ортогональності векторів \overline{n} і $\overline{M_o M}$:

$$(\overline{n}, \overline{M_o M}) = 0.$$

Оскільки $\overline{M_oM}=(x-x_o;y-y_o)$, а $\overline{n}=(A,B)$, то ця рівність в координатній формі має вигляд:

$$A(x - x_0) + B(y - y_0) = 0. (6)$$

рівняння прямої, яка проходить через точку $M_o(x_o, y_o)$ перпендикулярно до вектора $\overline{n} = (A, B)$.

Якщо розкрити дужки та позначити вираз $-Ax_o-By_o$ через C, то дістанемо *загальне рівняння прямої* :

$$Ax + By + C = 0. (7)$$

Зауважимо, що якщо точка N(x,y) не лежить на прямій, то умова перпендикулярності відповідних векторів \overline{n} і $\overline{M_oN}$ не виконуватиметься, а, отже, координати точки не задовольнятимуть рівняння прямої.

Приклад. Побудувати рівняння прямої, яка є серединним перпендикуляром відрізка AB, якщо A(-3,4), B(5,0).

Нехай C — середина відрізка AB, тоді її координати $C\bigg(\frac{-3+5}{2};\frac{4+0}{2}\bigg)$, тобто C(1;2). З того, що пряма перпендикулярна до відрізка AB випливає, що в якості вектора нормалі можна використати вектор $\overrightarrow{AB} = (8;-4)$ або будь-який колінеарний з ним вектор, наприклад, $\overrightarrow{n} = (2;-1)$. Тоді рівняння шуканої прямої

 $l: \ 2 \cdot (x-1) - 1 \cdot (y-2) = 0$, яке після спрощень матиме вигляд: 2x - y = 0.

2. Положення прямої l на площині можна однозначно визначити, задавши точку $M_o(x_o, y_o)$, через яку проходить ця пряма, та паралельний до неї вектор $\bar{s} = (m, n)$.

Вектор $\overline{s} = (m, n)$, паралельний прямій l, називають *напрямним* вектором цієї прямої.

ЗАДАЧА 2 . Побудувати рівняння прямої , яка проходить через задану точку $M_o(x_o,y_o)$ паралельно до заданого вектора $\overline{s}=(m,n)$.

Виберемо довільну точку M(x,y) прямої l, тоді вектор $M_o M$ має координати $\overline{M_o M} = \left(x - x_o; y - y_o\right)$. За умовою $\overline{M_o M} \parallel \overline{s}$. Записуючи умову колінеарності векторів, дістанемо *канонічне рівняння прямої:*

$$\frac{x-x_0}{m} = \frac{y-y_0}{n} .$$

Числа m і n – це координати напрямного вектора, а x_0, y_0 - координати точки, яка лежить на прямій.

Якщо у канонічному рівнянні прямої коефіцієнт пропорційності

позначити через деякий параметр
$$t$$
: $\dfrac{x-x_0}{m}=\dfrac{y-y_0}{n}=t$, тоді
$$\begin{cases} x-x_0=tm\\ y-y_0=tn \end{cases}$$
 , або
$$\begin{cases} x=tm+x_0\\ y=tn+y_0 \end{cases}$$
 , де $t\in \left(-\infty;+\infty\right)$.

Одержані співвідношення називають параметричним рівнянням прямої.

Приклад. Написати рівняння прямих, які проходять через точку A(-3;1) паралельно (перпендикулярно) до прямої 2y-6x-3=0.

Вектор $\overline{n}=(-6;2)$, нормальний до даної прямої l , ϵ нормальним вектором до прямої l_1 , якщо $l_1 \parallel l$, і напрямним вектором до прямої l_2 , якщо $l_2 \perp l$.

прямої l_1 записуємо, Рівняння використовуючи формулу (3) A = -6; B = 2; $x_0 = -3$; $y_0 = 1$: $l_1: -6(x+3)+2(y-1)=0$ після спрощення 3x - y + 10 = 0. l_2 записуємо, Рівняння їомкап використовуючи формулу (7)

для m = -6; n = 2; $x_0 = -3$; $y_0 = 1$.

Тому $l_2: \frac{x+3}{-6} = \frac{y-1}{2}$, або післ спрощення x+3y=0.

Приклад. Побудувати рівняння середньої лінії трикутника ABC, яка проходить через середини сторін AB та BC, якщо координати вершин трикутника A(-4,7), B(5,0), C(0;-2).

Позначимо K середину відрізка BC , тоді K(2,5;-1) . Середня лінія трикутника як відомо є паралельною до протилежн сторони AC , тому в якості напрямного вектора можна вибрати вектор $\overrightarrow{AC}=(4;-9)$ або довільний вектор, колінеарний з ним. Тоді запишемо канонічне рівняння шуканої середньої лінії: $\frac{x-2,5}{4}=\frac{y+1}{0}$.

Після застосування властивості пропорції $-9 \cdot (x-2,5) = 4 \cdot (y+1)$ отримаємо загальне рівняння шуканої прямої: 9x+4y-18,5=0.

Параметричне рівняння цієї ж прямої буде таким: $\begin{cases} x = 4t + 2.5 \\ y = -9t - 1 \end{cases}.$

3. Положення прямої однозначно визначається кутом нахилу прямої до додатного напряму осі абсцис та деякою точкою, яка лежить на цій прямій.

ЗАДАЧА 3. Побудувати рівняння прямої, яка утворює з додатним напрямком осі абсцис кут α та проходить через точку $M_0(x_0,y_0)$.

На рисунку зображена пряма l , яка утворює з додатним напрямом осі Ox кут lpha , і проходить через точку $M_0(x_0,y_0)$. Як видно з рисунка, прямокутні трикутники MBC та MM_0A є подібні і $\angle MBC = \angle MM_0A = lpha$. З трикутника MM_0A , згідно з означенням

тангенса кута, маємо: $\frac{y-y_0}{x-x_0} = tg\,\alpha$. Тобто для всіх точок прямої l

виконується співвідношення

$$y - y_0 = tg\alpha(x - x_0)$$

або якщо позначити $tg\alpha = k$, то одержимо рівняння вигляду:

$$y - y_0 = k(x - x_0).$$

Запишемо його так: $y=kx+y_0-kx_0$. Покладаючи тепер $b=y_0-kx_0$, дістанемо рівняння

$$y = kx + b$$
,

яке називається рівнянням прямої з кутовим коефіцієнтом.

У останньому рівнянні число k називають *кутовим коефіцієнтом* прямої. Він дорівнює тангенсу кута нахилу прямої до додатнього напряму осі

абсцис. Число b ϵ ординатою точки перетину прямої з віссю Oy (справді, якщо покласти x=0, то y=b).

Приклад. Побудувати рівняння прямої, яка є паралельною до бісектриси І – го координатного кута та проходить через точку A(3;-2).

Згадана бісектриса утворює кут $\frac{\pi}{4}$ з додатним напрямком осі абсцис, а тому і паралельна до шеї шукана пряма утворює той самий кут. Тому рівняння прямої: $y+2=tg\frac{\pi}{4}(x-3)$ або y=x-5.

4. Положення прямої l на площині можна однозначно визначити за домогою двох різних точок, які лежать на цій прямій.

ЗАДАЧА 4. Побудувати рівняння прямої, яка проходить через дві задані точки $M_1(x_1;y_1)$ та $M_2(x_2;y_2)$.

Якщо точка $M\left(x;y\right)$ належить прямій l, то вектори $\overline{M_1M_2} = \left(x_2 - x_1; y_2 - y_1\right)$ та $\overline{M_1M} = \left(x - x_1; y - y_1\right)$ є колінеарними. З умови колінеарності векторів отримуємо канонічне рівняння прямої:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}.$$

Таке рівняння ϵ *рівнянням прямої, яка проходить через дві задані точки.*

Приклад. У рівнобедренному трикутнику ABC задані рівняння 2x-y-5=0 основи AC, рівняння x-y=0 бічної сторони AB та вершина C(4;3). Знайти рівняння бічної сторони BC.

Визначимо координати точки A , як точку перетину прямих AC і AB :

$$\begin{cases} 2x - y - 5 = 0 \\ x - y = 0 \end{cases}$$

звідки A(5;5). Висота BD у рівнобедренному трикутнику ϵ одночасно його медіаною, тому координати точки D знаходимо як середину основи AC:

$$x = \frac{5+4}{2} = 4.5$$
; $y = \frac{5+3}{2} = 4$.

Тому D(4,5;4). Зауважимо, що нормальним вектором до прямої BD ϵ вектор $\overline{n} = A\overline{C} = (-1;-2)$.

Запишемо рівняння прямої BD, використовуючи формулу (3) (при

$$A = -1$$
; $B = -2$; $x_0 = 4.5$; $y_0 = 4$):
$$-1(x-4.5)-2(y-4)=0$$
 also
$$2x+4y-25=0.$$

Визначаємо вершину B як точку перетину прямих AB і BD:

$$\begin{cases} x - y = 0, \\ 2x + 4y - 25 = 0, \end{cases} \Leftrightarrow x = \frac{25}{6}; y = \frac{25}{6}.$$

Отже, координати точки $B\!\!\left(\!\!\!\begin{array}{c} 25 \\ \hline 6 \end{array}\!\!\!\!\right)$. Записуємо рівняння сторони

$$BC$$
 як рівняння прямої, що проходить через дві точки : $\frac{x-4}{\frac{25}{6}-4} = \frac{y-3}{\frac{25}{6}-3}$,

або піся спрощень: 7x - y - 25 = 0.

- 5. Якщо пряма не проходить через початок координат і не є паралельною до жодної з координатних осей, тоді вона обов'язково перетинає координатні осі (відтинає від них відрізки).
- **ЗАДАЧА 5.** Побудувати рівняння прямої, яка відтинає від осей OX та OY відрізки a та b відповідно.

За умовою шукана пряма перетинає вітки осей кординат у точках $\mathrm{M}_{\mathrm{o}}(a,0)$ та $\mathrm{M}_{\mathrm{l}}(0,b)$, тоді для побудови її рівняння застосуємо рівняння прямої, яка проходить через дві задані точки :

$$\frac{x-a}{0-a} = \frac{y-0}{b-0} .$$

Одержане рівняння можна звести до

вигляду: b(x-a) = -ay, звідси bx + ay = ab. Поділимо останню рівність

на
$$ab$$
 , тоді $\frac{x}{a} + \frac{y}{b} = 1$ — p івняння прямої « y відрізках».

6. Якщо пряма не проходить через початок координат, то її положення на площині визначається відстанню ρ від початку координат та кутом α між додатним напрямком осі α 0 і перпентикуляром, опущеним з початку координат на цю пряму.

ЗАДАЧА 6.

Побудувати рівняння п відстань від якої до початку коор дорівнює числу ρ , а кут перпендикуляром, опущеним в пряму з початку координат, і дод напрямком осі OX дорівнює α

Нехай точка R - основа перпендикуляра, опущеного з початку оординат на пряму l . Позначимо ho – довжину цього перпендикуляра, а lpha –

кут, утворений додатним напрямком осі абсцис та вектором \overline{OR} . За таких позначень точка R буде мати координати $(\rho\cos\alpha,\rho\sin\alpha)$. Такими ж будуть координати вектора \overline{OR} . Виберемо тепер довільну точку $\mathit{M}(x,y)$ прямої l. Знайдемо проєкцію вектора \overline{OM} на вектор \overline{OR} :

$$np_{\overline{OR}}\overline{OM} = \rho = \frac{\left(\overline{OR} \cdot \overline{OM}\right)}{\left|\overline{OR}\right|} =$$

$$\frac{x \cdot \rho \cos \alpha + y \rho \sin \alpha}{\rho} = x \cos \alpha + y \sin \alpha.$$

Звідси одержуємо нормальне рівняння прямої : $x\cos\alpha + y\sin\alpha - \rho = 0$.

Щоб одержати із загального рівняння прямої Ax+By+C=0 її нормальне рівняння, треба поділити обидві частини цього рівняння на довжину вектора нормалі $\sqrt{A^2+B^2}$, взяту зі знаком, протилежним до знака вільного члена C:

$$\frac{Ax + By + C}{\pm \sqrt{A^2 + B^2}} = 0$$
 afo
$$\frac{A}{\pm \sqrt{A^2 + B^2}} x + \frac{B}{\pm \sqrt{A^2 + B^2}} y + \frac{C}{\pm \sqrt{A^2 + B^2}} = 0.$$

Число $\mu = \frac{1}{\pm \sqrt{A^2 + B^2}}$ називають *нормуючим множником*. Довжина ρ

перпендикуляра, опущеного на пряму з початку координат дорівнює $\frac{C}{\pm \sqrt{A^2 + B^2}}$, а косинус і синус кута, який утворює цей перпендикуляр з

додатним напрямом осі Ox відповідно дорівнюють величинам $\frac{A}{+\sqrt{A^2+B^2}}, \frac{B}{+\sqrt{A^2+B^2}}.$

Приклад. Побудувати нормальне рівняння прямої x - y + 3 = 0.

Нормуючий множник цієї прямої
$$\mu = \frac{1}{-\sqrt{1^2 + (-1)^2}} = -\frac{1}{\sqrt{2}}$$
 (знак

« - » у нормувальному множнику вибрано через те, що вільний член C=3 у загальному рівнянні є додатним). Помножимо загальне рівняння прямої на нормуючий множник і тим самим одержимо нормальне рівняння прямої:

$$-\frac{1}{\sqrt{2}}x + \frac{1}{\sqrt{2}}y - \frac{3}{\sqrt{2}} = 0$$
. 3 останнього рівняння безпосередньо випливає,

що пряма знаходиться від початку координат на відстані $\rho = \frac{3}{\sqrt{2}}$, а кут,

який утворює її приведений нормальний вектор з додатнім напрямом осі OX ,

дорівнює
$$\frac{3\pi}{4}$$
 (оскільки $\cos \varphi = -\frac{1}{\sqrt{2}}$., a $\sin \varphi = \frac{1}{\sqrt{2}}$).

Взаємне розміщення прямих Кут між двома прямими на площині

Дві прямі на площині можуть перетинатись в одній точці, збігатися одна з одною або бути паралельними.

Якщо дві прямі перетинаються, то при перетині вони утворюють два кути: α і $\pi-\alpha$ (гострий і тупий), або у випадку перпендикулярності кут $\alpha=\frac{\pi}{2}$.

Кутом між прямими називають менший з утворених кутів.

Позначимо кут між прямими l_1 і l_2 через α .

1) Якщо дві прямі l_1 і l_2 задані своїми канонічними рівняннями:

$$l_1$$
: $\frac{x-x_1}{m_1} = \frac{y-y_1}{n_1}$ i l_2 : $\frac{x-x_2}{m_2} = \frac{y-y_2}{n_2}$,

то кут α між прямими l_1 і l_2 збігається з точністю φ між напрямними векторами $\overline{s}_1=(m_1,n_1)$ і $\overline{s}_2=(m_2,n_2)$, якщо φ - гострий, і дорівнює куту $\pi-\varphi$, якщо кут φ - тупий . Таку ситуацію часто описують так: кут α збігається з кутом φ з точністю до доданка π . Тоді кут α між прямими можна визначити за допомогою формули:

$$\cos \alpha = |\cos \varphi| = \frac{|\overline{s_1} \cdot \overline{s_2}|}{|\overline{s_1}| \cdot |\overline{s_2}|} = \frac{|m_1 m_2 + n_1 n_2|}{\sqrt{m_1^2 + n_1^2} \sqrt{m_2^2 + n_2^2}}.$$

2) Якщо дві прямі задані загальними рівняннями l_1 : $A_1x+B_1y+C_1=0$; l_2 : $A_2x+B_2y+C_2=0$, то кут α між прямими l_1 і l_2 обчислюється з точністю до доданка π , як кут між нормальними векторами $\overline{n}_1=\left(A_1,B_1\right)$ і $\overline{n}_2=\left(A_2,B_2\right)$ і визначається за допомогою формули:

$$\cos \alpha = \left|\cos \varphi\right| = \frac{\left|\overline{n}_1 \cdot \overline{n}_2\right|}{\left|\overline{n}_1\right| \cdot \left|\overline{n}_2\right|} = \frac{\left|A_1 A_2 + B_1 B_2\right|}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}}.$$

Звідси умови паралельності та перпендикулярності двох прямих мають вигляд:

$$l_1 \perp l_2 \iff m_1 m_2 + n_1 n_2 = 0$$
 also $A_1 A_2 + B_1 B_2 = 0$;
$$l_1 \parallel l_2 \iff \frac{m_1}{m_2} = \frac{n_1}{n_2} \text{ also } \frac{A_1}{A_2} = \frac{B_1}{B_2}.$$

3) Якщо дві прямі задані рівняннями з кутовими коефіцієнтами: l_1 : $y=k_1x+b_1$ і l_2 : $y=k_2x+b_2$, то кут α між прямими l_1 та l_2 визначається за допомогою формули :

$$tg\alpha = \frac{\left|k_1 - k_2\right|}{1 + k_1 k_2}.$$

Умови паралельності та перпендикулярності прямих можна записати і у такому вигляді:

$$l_1 \parallel l_2 \Leftrightarrow k_1 = k_2; \qquad l_1 \perp l_2 \Leftrightarrow k_1 \cdot k_2 = -1.$$

l \vec{n}

Приклад. Побудувати рівняння прямої, яка проходить через початок координат перпендикулярно до прямої 2x-y+3=0.

 \vec{n} І *спосіб*. Вектор нормалі даної прямої $\vec{n} = (2;-1)$. Для шуканої прямої l він може слугувати напрямним вектором, тому канонічне рівняння буде

таким: $\frac{x-0}{2} = \frac{y-0}{-1}$ або $\frac{x}{2} = \frac{y}{-1}$. Або після перетворень загальне

рівняння прямої l матиме вигляд: x + 2y = 0.

II *спосіб.* Запишемо рівняння заданої прямої у вигляді рівняння з кутовим коефіцієнтом y=2x+3. Її кутовий коефіцієнт k=2, тоді кутовий

коефіцієнт перпендикулярної до неї прямої дорівнює $-\frac{1}{2}$. Тоді шукане

рівняння:
$$y-0=-\frac{1}{2}(x-0)$$
 або загальне рівняння: $x+2y=0$.

Відстань від точки до прямої

Відстань від заданої точки $M_0(x_0,y_0)$ до прямої l , заданої загальним рівнянням Ax+By+C=0 , обчислюється за формулою :

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}.$$

Доведемо цю рівність для випадку, коли точка $\boldsymbol{M}_0(x_0,y_0)$ знаходиться від початку координат далі, ніж пряма l .

Через точку $M_0(x_0, y_0)$ проведемо пряму, паралельну до прямої l . Її загальне рівняння буде $A(x-x_0)+B(y-y_0)=0$

$$A(x-x_0) + B(y-y_0) = 0$$

$$Ax + By - (Ax_0 + By_0) = 0$$
,

$$\pm \frac{A}{\sqrt{A^2 + R^2}} x \pm \frac{B}{\sqrt{A^2 + R^2}} y - \frac{|Ax_0 + By_0|}{\sqrt{A^2 + R^2}} = 0.$$

Звідси видно, що відстань ho_1 від точки O до прямої l_1 : $ho_1 = \frac{\left|Ax_0 + By_0\right|}{\sqrt{A^2 + B^2}}$.

Аналогічно відстань від початку координат до прямої $l: \ \rho = \frac{|C|}{\sqrt{A^2 + B^2}}$. 3

рисунка видно, що шукана відстань прямої d дорівнює різниці відстаней:

$$d = \rho_1 - \rho = \frac{|Ax_0 + By_0|}{\sqrt{A^2 + B^2}} - \frac{|C|}{\sqrt{A^2 + B^2}} = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}.$$

Остання ланка рівностей одержана на основі того, що вирази $Ax_0 + By_0$ та C мають різні знаки.

Приклад. Знайти відстань від точки A(-4,3) до прямої $\frac{x-4}{-1} = \frac{y+5}{3}$.

Запишемо загальне рівняння цієї прямої: 3(x-4)=-1(y+5) або 3x+y-7=0. Тоді шукана відстань дорівнює

$$d = \frac{|3 \cdot (-4) + 1 \cdot 3 - 7|}{\sqrt{3^2 + 1^2}} = \frac{16}{\sqrt{10}}.$$

Приклад. Обчислити площу квадрата, дві сторони якого лежать на прямих 3x-4y-10=0 і 6x-8y+5=0.

Прямі, задані в умові задачі, паралельні, бо коефіцієнти при невідомих у рівняннях цих прямих пропорційні.

Отже, щоб обчислити площу квадрата, треба спочатку знайти відстань між його паралельними сторонами.

Виберемо довільні значення x і y, які задовольняють рівняння 3x-4y-10=0, наприклад, $x=-2;\ y=-4$. Тоді точка M(-2;-4) лежатиме на першій прямій 3x-4y-10=0.

За формулою (12) знайдемо відстань від точки M(-2;-4) до другої прямої 6x-8y+5=0 : $d=\frac{\left|-2\cdot 6-8\cdot (-4)+5\right|}{\sqrt{36+64}}=2,5.$

Ця відстань дорівнює довжині сторони квадрата, тому площа квадрата ($S=d^2$) дорівнює $\,$ 6,25 кв.од.