

InterLab FCC Measurement/Technical Report on

WLAN transceiver SS11-J01

Report Reference: ODE_MJP_TSBCP_1007_FCCd

Test Laboratory:

7 layers AG Borsigstrasse 11 40880 Ratingen Germany

email: info@7Layers.de

Note

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the testing laboratory.

Table of Contents

0	Su	mmary	3
	0.1 0.2	Technical Report Summary Measurement Summary	3 4
1	Ad	ministrative Data	6
	1.1 1.2 1.3 1.4	Testing Laboratory Project Data Applicant Data Manufacturer Data	6 6 6
2	Te	st object Data	7
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	General EUT Description EUT Main components Ancillary Equipment Auxiliary Equipment EUT Setups Operating Modes Product labelling	7 8 8 8 9 9
3	Te	st Results	10
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	Conducted emissions (AC power line) Occupied bandwidth Peak power output Spurious RF conducted emissions Spurious radiated emissions Band edge compliance Power density	10 12 14 16 18 24 27
4	Te	st Equipment	29
5	Ph	oto Report	37
6	Se	tup Drawings	39
7	An	nex measurement plots	40
	7.1 7.2 7.3 7.4 7.5 7.6	AC Mains conducted Occupied bandwidth Peak power output Band edge compliance conducted and Spurious RF conducted emissions Band edge compliance radiated operating mode 3 Radiated emissions (f < 30 MHz) Power density	40 41 47 53 65 67

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-09 Edition) and 15 (10-1-09 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C - Intentional Radiators

Ş	15.201	Fauipment	authorization	requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz

Note:

The tests were selected and performed with reference to the FCC measurement guide line "Measurement of Digital Transmission Systems Operating under Section 15.247 March 23, 2005"

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC Part 15, Subp	oart C	§ 15.207	
Conducted emission	ns (AC power line)		_
The measurement v	was performed accord	ing to ANSI C63.4	2003
OP-Mode	Setup	Port	Final Result
op-mode 4	Setup_c01	AC Port (power line)	passed
FCC Part 15, Subp		§ 15.247 (a) (1)	
Occupied bandwidth			10 1 00
	was performed accord	•	10-1-09
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_b01	Temp.ant.connector	passed
op-mode 1g	Setup_b01	Temp.ant.connector	passed
op-mode 2b	Setup_b01	Temp.ant.connector	passed
op-mode 2g	Setup_b01	Temp.ant.connector	passed
op-mode 3b	Setup_b01	Temp.ant.connector	passed
op-mode 3g	Setup_b01	Temp.ant.connector	passed
FCC Part 15, Subp	oart C	§ 15.247 (b) (3)	_
Peak power output			
The measurement v	was performed accord	ing to FCC § 15.31	10-1-09
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_b01	Temp.ant.connector	passed
op-mode 1g	Setup_b01	Temp.ant.connector	passed
op-mode 2b	Setup_b01	Temp.ant.connector	passed
op-mode 2g	Setup_b01	Temp.ant.connector	passed
op-mode 3b	Setup_b01	Temp.ant.connector	passed
op-mode 3g	Setup_b01	Temp.ant.connector	passed
FCC Part 15, Subp		§ 15.247 (d)	
Spurious RF conduc			
	was performed accord	_	10-1-09
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_b01	Temp.ant.connector	passed
op-mode 1g	Setup_b01	Temp.ant.connector	passed
op-mode 2b	Setup_b01	Temp.ant.connector	passed
op-mode 2g	Setup_b01	Temp.ant.connector	passed
op-mode 3b	Setup_b01	Temp.ant.connector	passed
op-mode 3g	Setup_b01	Temp.ant.connector	passed
FCC Part 15, Subp		§ 15.247 (d), § 15.3	85 (b), § 15.209
Spurious radiated e			
	was performed accord	S	2003
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_a01	Enclosure	passed
op-mode 2b	Setup_a01	Enclosure	passed
op-mode 3b	Setup_a01	Enclosure	passed
op-mode 1b	Setup_a01	Enclosure	passed
op-mode 2b	Setup_a01	Enclosure	passed
op-mode 3b	Setup_a01	Enclosure	passed

FCC Part 15, Su	bpart C	§ 15.247 (d)	
Band edge compl			
The measuremen	t was performed acc	cording to FCC § 15.31 /	10-1-09 / 2003
ANSI C63.4			
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_b01	Temp.ant.connector	passed
op-mode 1g	Setup_b01	Temp.ant.connector	passed
op-mode 3b	Setup_b01	Temp.ant.connector	passed
op-mode 3g	Setup_b01	Temp.ant.connector	passed
op-mode 3b	Setup_a01	Enclosure	passed
op-mode 3g	Setup_a01	Enclosure	passed
1085 10 75 .77			
FCC Part 15, Su	bpart C	§ 15.247 (e)	
Power density	3/		
The measuremen	t was performed acc	cording to FCC § 15.31	10-1-09
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_b01	Temp.ant.connector	passed
op-mode 1g	Setup_b01	Temp.ant.connector	passed
op-mode 2b	Setup_b01	Temp.ant.connector	passed
op-mode 2g	Setup_b01	Temp.ant.connector	passed
op-mode 3b	Setup_b01	Temp.ant.connector	passed
op-mode 3g	Setup_b01	Temp.ant.connector	passed

This report replaces the report referenced by: ODE_MJP_TSBCP_1007_FCCc.

layers

7 layers AG, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

Responsible for Accreditation Scope:

Responsible

1 Administrative Data

1.1 Testing Laboratory

y	
Company Name:	7 Layers AG
Address	Borsigstr. 11 40880 Ratingen Germany
This facility has been fully described in a under the registration number 96716.	report submitted to the FCC and accepted
The test facility is also accredited by the - Deutscher Akkreditierungs Rat	following accreditation organisation: DAR- Registration no. DGA-PL-192/99-02
Responsible for Accreditation Scope:	DiplIng. Bernhard Retka DiplIng. Robert Machulec DiplIng. Thomas Hoell DiplIng. Andreas Petz
Report Template Version:	2010-07-27
1.2 Project Data	
Responsible for testing and report:	DiplIng. Andreas Petz
Date of Test(s): Date of Report:	2010-07-01 to 2010-08-04 2010-08-04
1.3 Applicant Data	
Company Name:	Toshiba Corporation, Mobile Communications Co.
Address:	1-1, Asahigaoka 3-Chome Hino-Shi, Tokyo, 191-8555
Contact Person:	Japan Mr. Takao Kamei
1.4 Manufacturer Data	
Company Name:	please see applicant data
Address:	
Contact Person:	

2 Test object Data

2.1 General EUT Description

Equipment under Test: WLAN transceiver

Type Designation: SS11-J01

Kind of Device: Mobile Phone with integrated WLAN Transceiver

(optional)

Voltage Type: AC / DC (of AC/DC converter) /

DC (internal battery)

Voltage level: 120 V / 3.7 V

General product description:

The WLAN (Wireless Local Area Network) Transceiver is operating in the 2.4 GHz ISM band at carrier frequencies 2412.0 – 2462.0 MHz and uses the Direct Sequence Spread Spectrum (DSSS) Modulation.

The EUT supports the modes 802.11b (max. 11 Mbps) and 802.11g (max. 54 Mbps).

Specific product description for the EUT:

The EUT is a mobile phone which uses WLAN technology to be connected to an access point for the purpose of data transfer.

The EUT provides the following ports:

Ports

Temp antenna connector
Enclosure
Micro-USB port
DC Power Supply (by Desktop Station)

The main components of the EUT are listed and described in Chapter 2.2.

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A	WLAN	SS11-J01	STSGV0010	001	5009 1907	2010-06-29
(Code:	transceiver		42 09		0961	
Y2001s04)	in mobile					
	phone					
Remark: EUT	A is equipped w	ith an integral a	ntenna (gain =	4.2 dBi).		
EUT B	WLAN	SS11-J01	STSGV0010	001	5009 1907	2010-06-29
(Code:	transceiver		53 88		0961	
Y2001t04)	in mobile					
	phone					
Remark: EUT	B is equipped w	ith a temporary	antenna conne	ctor.		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status	FCC ID
AE 1 (Code: Y2001- AC01)	AC/DC converter	see photo at chapter 5	see photo at chapter 5	0203PQA	-	-

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status	FCC ID
_	_	_	_	_	_	_

2.5 EUT Setups

This chapter describes the combination of EUTs and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
Setup_a01	EUT A	setup for radiated measurements
Setup_b01	EUT B	setup for conducted measurements
Setup_c01	EUT A + AE1	setup for test conducted emissions (AC power line)

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1b	TX-mode, the EUT transmits on the lowest	Worst case data rate
	channel (2412 MHz)	1 Mbps for conducted measurement
op-mode 1g	TX-mode, the EUT transmits on the lowest	Worst case data rate
	channel (2412 MHz)	6 Mbps for conducted measurement
op-mode 2b	TX-mode, the EUT transmits on the mid	Worst case data rate
	channel (2437 MHz)	1 Mbps for conducted measurement
op-mode 2g	TX-mode, the EUT transmits on the mid	Worst case data rate
	channel (2437 MHz)	6 Mbps for conducted measurement
op-mode 3b	TX-mode, the EUT transmits on the	Worst case data rate
	highest channel (2462 MHz)	1 Mbps for conducted measurement
op-mode 3g	TX-mode, the EUT transmits on the	Worst case data rate
	highest channel (2462 MHz)	6 Mbps for conducted measurement
op-mode 4	WLAN "standby", EUT powered	WLAN module is powered and active;
		BT module is powered and active;
		GSM link in 1900 band at TCH661 at max.
		power

2.7 Product labelling

2.7.1 FCC ID label

Please refer to the documentation of the applicant.

2.7.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Conducted emissions (AC power line)

Standard FCC Part 15, 10-1-09 Subpart C

The test was performed according to: ANSI C 63.4, 2003

3.1.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from $50\mu\text{H}$ || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software ES-K1 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT. EMI receiver settings:

- Detector: Peak - Maxhold

- Frequency range: 150 kHz - 30 MHz

Frequency steps: 5 kHzIF–Bandwidth: 9 kHz

- Measuring time / Frequency step: 20 ms

- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:

Detector: Quasi-PeakIF - Bandwidth: 9 kHz

- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.207

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

3.1.3 Test Protocol

Temperature: 27 °C Air Pressure: 1014 hPa Humidity: 41 %

Op. ModeSetupPortop-mode 4Setup_c01Enclosure

Power line	Frequency MHz	Measured value dBµV	Delta to limit dBµV	Remarks
1	-	_	_	_

Remark: No final measurement was performed because no frequencies (peaks) were found within the offset for acceptance analysis during the preliminary scan. Please see annex for the measurement plot.

3.1.4 Test result: RF Power Output

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 4	passed

3.2 Occupied bandwidth

Standard FCC Part 15, 10-1-09 Subpart C

The test was performed according to: FCC §15.31

3.2.1 Test Description

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (widest) occupied bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz

- Span: 30 MHz

3.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

3.2.3 Test Protocol

Temperature: 22-23 °C

Air Pressure: 1003-1008 hPa

Humidity: 34-35 %

Op. Mode	Setup	Port
op-mode 1b	Setup_b01	Temp.ant.connector

6 dB bandwidth MHz	Remarks
12.156	-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 1g	Setup_b01	Temp.ant.connector

6 dB bandwidth	Remarks
	1.50
MHz	
16 416	_

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port	
op-mode 2b	Setup_b01	Temp.ant.connector	
6 dB bandwidth		Remarks	
MHz			
12.156		_	

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2g	Setup_b01	Temp.ant.connector
	• —	·
6 dB bandwidth		Remarks
MHz		
16.416		

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port	
op-mode 3b	Setup_b01	Temp.ant.connector	
6 dB bandwidth MHz		Remarks	
12.636		-	

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3g	Setup_b01	Temp.ant.connector
6 dB bandwidth		Remarks
MHz		
16.416		<u>-</u>

Remark: Please see annex for the measurement plot.

3.2.4 Test result: Occupied bandwidth

result. Occupied balluwidth		
Op. Mode	Result	
op-mode 1b	passed	
op-mode 1g	passed	
op-mode 2b	passed	
op-mode 2g	passed	
op-mode 3b	passed	
op-mode 3g	passed	
	Op. Mode op-mode 1b op-mode 1g op-mode 2b op-mode 2g op-mode 3b	

3.3 Peak power output

Standard FCC Part 15, 10-1-09 Subpart C

The test was performed according to: FCC §15.31

3.3.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the output power measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) output power.

The EUT was connected to the spectrum analyser via a short coax cable with a known loss.

3.3.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW)

==> Maximum Output power conducted: 30 dBm

3.3.3 Test Protocol

Temperature: 22 °C Air Pressure: 1007 hPa Humidity: 43 %

Op. Mode	Setup	Port
op-mode 1b	Setup b01	Temp.ant.connector

Output power conducted / dBm	Remarks
17.1	The EIRP including antenna gain (4.2 dBi) is 21.3 dBm

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 1g	Setup_b01	Temp.ant.connector

	Output power conducted / dBm	Remarks
ſ	22.9	The EIRP including antenna gain (4.2 dBi) is 27.1 dBm

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port	
op-mode 2b	Setup_b01	Temp.ant.connector	

Output power conducted / dBm	Remarks	
17.3	The EIRP including antenna gain (4.2 dBi) is 21.5 dBm	

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port	
op-mode 2g	Setup b01	Temp.ant.connector	

Output power conducted / dBm	Remarks
22.7	The EIRP including antenna gain (4.2 dBi) is 26.9 dBm

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3b	Setup_b01	Temp.ant.connector

Output power conducted / dBm	Remarks
17.9	The EIRP including antenna gain (4.2 dBi) is 22.1 dBm

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3g	Setup_b01	Temp.ant.connector

Output power conducted / dBm	Remarks
23.4	The EIRP including antenna gain (4.2 dBi) is 27.6 dBm

Remark: Please see annex for the measurement plot.

3.3.4 Test result: Peak power output

FCC Part 15, Subpart C

Op. Mode	Result
op-mode 1b	passed
op-mode 1g	passed
op-mode 2b	passed
op-mode 2g	passed
op-mode 3b	passed
op-mode 3g	passed

3.4 Spurious RF conducted emissions

Standard FCC Part 15, 10-1-09 Subpart C

The test was performed according to: FCC §15.31

3.4.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the spurious emissions measurements.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak-Maxhold

Frequency range: 30 – 25000 MHz
Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz

- Sweep Time: 330 s

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 3.6). This value is used to calculate the 20 dBc limit.

3.4.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

3.4.3 Test Protocol

Temperature: 22-23 °C

Air Pressure: 1003-1008 hPa

Humidity: 33-35 %

Op. Mode	Setup	Port
op-mode 1b	Setup_b01	Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
6935	-37.8	1.5	-18.5	19.3

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 1g	Setup_b01	Temp.ant.connector

Frequency	Corrected measurement value dBm	Reference value	Limit	Delta to limit
MHz		dBm	dBm	dB
6585	-37.9	-1.9	-21.9	16.0

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2b	Setup_b01	Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
6885	-37.9	1.0	-19.0	18.9

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2g	Setup_b01	Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
6936	-38.0	-1.8	-21.8	16.2

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3b	Setup_b01	Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
6885	-37.8	2.1	-17.9	19.9

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3g	Setup_b01	Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
6886	-37.6	-1.0	-21.0	16.6

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

3.4.4 Test result: Spurious RF conducted emissions

FCC Part 15, Subpart C Op. Mode Result op-mode 1b passed op-mode 1g passed passed op-mode 2b op-mode 2g passed op-mode 3b passed op-mode 3g

passed

3.5 Spurious radiated emissions

Standard FCC Part 15, 10-1-09 Subpart C

The test was performed according to: ANSI C 63.4, 2003

3.5.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was set up on a non-conductive table 1.0×2.0 m in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S.

1. Measurement up to 30 MHz

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was set up on a non-conductive table in the anechoic chamber.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. The Loop antenna HFH2-Z2 is used.

Step 1: pre-measurement

- Anechoic chamber

Antenna distance: 10 mDetector: Peak-Maxhold

- Frequency range: 0.009 - 0.15 and 0.15 - 30 MHz

Frequency steps: 0.1 kHz and 5 kHzIF-Bandwidth: 0.2 kHz and 10 kHz

- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side

- Antenna distance: according to the Standard

- Detector: Quasi-Peak

- Frequency range: 0.009 - 30 MHz

- Frequency steps: measurement at frequencies detected in step 1

- IF-Bandwidth: 200 Hz - 10 kHz

- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Detector: Peak-Maxhold

- Frequency range: 30 – 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 μs

- Turntable angle range: -180 to 180°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: -180 to 180°

- Turntable step size: 45°

Height variation range: 1 – 4 m
Height variation step size: 0.5 m
Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5 m

Step 3: final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will be slowly varied by $+/-22.5^{\circ}$ around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/-25 cm around the antenna height determined. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: -22.5° to + 22.5° around the determined value

- Height variation range: -0.25 m to + 0.2 5m around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18-25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only. EMI receiver settings:

Detector: Peak, AverageIF Bandwidth = 1 MHz

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

For mode b or g the test is performed as worst-case-check in order to verify that emissions have a comparable level as found at the other data rate. Typically, the measurement for this mode is performed in the frequency range 1 to 8 GHz but it depends on the emissions found during the test for the other data rate. Please refer to the results for the used frequency range.

3.5.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit(dBµV/m @10m)
0.009 - 0.49	2400/F(kHz)	300	Limit (dBµV/m)+30dB
0.49 - 1.705	24000/F(kHz)	30	Limit (dBµV/m)+10dB
1.705 - 30	30	30	Limit (dBµV/m)+10dB

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limit (dBµV/m)
30 - 88	100	3	40.0
88 - 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

3.5.3 Test Protocol

Temperature: 27-31 °C

Air Pressure: 1008-1015 hPa

Humidity: 38–41 %

3.5.3.1 Measurement up to 30 MHz

Op. Mode	Setup	Port
op-mode 2b	Setup_a01	Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV/m			Limit dBµV/	Limit dBµV/	Limit dBµV/	Delta to limit	Delta to limit
1					m	m	m	dB	dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
0°	-	-	-	-	-	-	-	-	-
90°	-	_	_	_	-	-	_	-	_

Remark: No (further) spurious emissions in the range 20 dB below the limit found therefore step 2 was not performed. The found peak at 99.2 kHz is emission from loop antenna power supply.

3.5.3.2 Measurement above 30 MHz

Op. Mode	Setup	Port	
op-mode 1b	Setup_a01	Enclosure	

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB	
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	2375	-	53.1	42.4	-	74.0	54.0	20.9	11.6
Vertical + horizontal	2385	-	53.0	44.9	-	74.0	54.0	21.0	9.1

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 2b	Setup_a01	Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB	
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	-	-	-	-	-	-	-	-	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port	
op-mode 3b	Setup a01	Enclosure	

Polari- sation	Frequency MHz	Corrected value dBµV/m			Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	2488	-	51.0	40.9	-	74.0	54.0	23.0	13.1

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 1g	Setup_a01	Enclosure

Polari- sation	Frequency MHz	Cor	Corrected value dBµV/m			Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	2390	-	58.9	42.9	-	74.0	54.0	15.1	11.1

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 8 GHz because no significant spurious emissions were found outside this frequency range in op-mode 1b.

Op. Mode	Setup	Port
op-mode 2g	Setup_a01	Enclosure

Polari- sation	Frequency MHz	Cor	Corrected value dBµV/m			Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	-	=	-	-	-	-	-	-	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 8 GHz because no significant spurious emissions were found outside this frequency range in op-mode 2b.

Op. Mode	Setup	Port
op-mode 3g	Setup_a01	Enclosure

Polari- sation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB	
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	2380	-	52.6	40.1	-	74.0	54.0	21.4	13.9
Vertical + horizontal	2484	-	53.8	41.1	-	74.0	54.0	20.2	12.9

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 8 GHz because no significant spurious emissions were found outside this frequency range in op-mode 3b.

3.5.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart C

Op. Mode	Result
op-mode 1b	passed
op-mode 2b	passed
op-mode 3b	passed
op-mode 1g	passed
op-mode 2g	passed
op-mode 3g	passed

3.6 Band edge compliance

Standard FCC Part 15, 10-1-09 Subpart C

The test was performed according to: ANSI C 63.4, 2003 FCC §15.31

3.6.1 Test Description

The procedure to show compliance with the band edge requirement is divided into two measurements: 1. Show compliance of the lower band edge by a conducted measurement and 2. show compliance of the higher band edge by a radiated measurement.

For the first measurement the EUT is set to transmit on the lowest channel (2412 MHz). The lower band edge is 2400 MHz.

Analyzer settings:

- Detector: Peak

- RBW= 100 kHz

- VBW= 300 kHz

For the second measurement the EUT is set to transmit on the highest channel (2462 MHz). The higher band edge is 2483.5 MHz.

Analyzer settings for conducted measurement:

- Detector: Peak

- RBW= 100 kHz

- VBW= 300 kHz

EMI receiver settings for radiated measurement:

- Detector: Peak, Average

- IF Bandwidth = 1 MHz

3.6.2 Test Requirements / Limits

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

. . .

Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the measurement of the **lower band edge** the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

For the measurement of the **higher band edge** the limit is "specified in Section 15.209(a)".

3.6.3 Test Protocol

3.6.3.1 Lower band edge

Temperature: 22-23 °C

Air Pressure: 1003-1008 hPa

Humidity: 33-35 %

Op. Mode Setup Port

op-mode 1b Setup_b01 Temp.ant.connector

Frequency	Measured value	Reference value	Limit	Delta to limit
MHz	dBm	dBm	dBm	dB
2400.00	-39.9	1.5	-18.5	

Remark: Please see annex for the measurement plot.

Op. Mode Setup Port

op-mode 1g Setup_b01 Temp.ant.connector

Frequency	Measured value	Reference value	Limit	Delta to limit
MHz	dBm	dBm	dBm	dB
2400.00	-29.5	-1.9	-21.9	

Remark: Please see annex for the measurement plot.

3.6.3.2 Higher band edge

Conducted measurement

Temperature: 22-23 °C

Air Pressure: 1003-1008 hPa

Humidity: 33-35 %

Op. Mode Setup Port

op-mode 3b Setup_b01 Temp ant.connector

Frequency	Measured value	Reference value	Limit	Delta to limit
MHz	dBm	dBm	dBm	dB
2483.50	-46.2	2.1	-17.9	

Remark: Please see annex for the measurement plot.

Op. Mode Setup Port

op-mode 3g Setup_b01 Temp ant.connector

Frequency	Measured value	Reference value	Limit	Delta to limit
MHz	dBm	dBm	dBm	dB
2483.50	-44.1	-1.0	-21.0	23.1

Remark: Please see annex for the measurement plot.

Radiated measurement

Temperature: 27 °C Air Pressure: 1015 hPa Humidity: 41 %

Op. Mode Setup Port

op-mode 3b Setup_a01 Enclosure

Frequency MHz	Polarisation	Corrected value dBµV/m		Limit Peak	Limit AV	Delta to Peak	Delta to AV limit
		Peak	AV	dBµV/m	dBμV/m	limit/dB	dB
2483.50	Vertical + horizontal	49.6	38.8	74.0	54.0	24.4	15.2

Remark: Please see annex for the measurement plot.

Op. Mode Setup Port

op-mode 3g Setup_a01 Enclosure

Frequency MHz	Polarisation		ed value V/m	Limit Peak	Limit AV	Delta to Peak	Delta to AV limit
		Peak	AV	dBµV/m	dBµV/m	limit/dB	dB
2483.50	Vertical + horizontal	53.8	41.1	74.0	54.0	20.2	12.9

Remark: Please see annex for the measurement plot.

3.6.4 Test result: Band edge compliance

FCC Part 15, Subpart C

Op. Mode	Result
op-mode 1b	passed
op-mode 1g	passed
op-mode 3 b	passed
op-mode 3 g	passed

3.7 Power density

Standard FCC Part 15, 10-1-09 Subpart C

The test was performed according to: FCC §15.31

3.7.1 Test Description

The EUT was connected to a spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

Detector: PeakSpan: 30 MHz

Resolution Bandwidth (RBW): 3 kHzVideo Bandwidth (VBW): 10 kHz

- Sweep Time: 120 s

3.7.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

3.7.3 Test Protocol

Temperature: 23 °C Air Pressure: 1004 hPa Humidity: 40 %

Op. Mode	Setup	Port	
op-mode 1b	Setup b01	Temp.ant.connector	

Power density dBm/3 kHz	Remarks
-12.5	-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 1g	Setup b01	Temp.ant.connector

Power density dBm/3 kHz	Remarks
-14.1	<u>-</u>

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port	
op-mode 2b	Setup_b01	Temp.ant.connector	

Power density dBm/3 kHz	Remarks
-12.5	•

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port	
op-mode 2a	Setup b01	Temp.ant.connector	

Power density dBm/3 kHz	Remarks
-14.5	-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port	
op-mode 3b	Setup b01	Temp.ant.connector	

Power density dBm/3 kHz	Remarks
-11.9	-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3g	Setup b01	Temp.ant.connector

Power density dBm/3 kHz	Remarks
-13.1	-

Remark: Please see annex for the measurement plot.

3.7.4 Test result: Power density

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1b	passed
	op-mode 1g	passed
	op-mode 2b	passed
	op-mode 2g	passed
	op-mode 3b	passed
	on-mode 3a	nassed

4 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:Lab 2Manufacturer:Frankonia

Description: Anechoic Chamber for radiated testing

Type: 10.58x6.38x6

 IC renewal
 2009/01/21
 2011/01/20

 FCC renewal
 2009/01/07
 2011/01/06

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6 Calibration Details	none	Frankonia Last Execution Next Exec.
	FCC listing 96716 3m Part15/18 ANSI C64.3 NSA		2009/01/07 2011/01/06 2009/01/21 2011/01/20
Controller Innco 2000	CO 2000	CO2000/328/124 406/L	70 Innco innovative constructions GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Auxiliary Equipment for Conducted emissions

Lab ID: Lab 1

Manufacturer: Rohde & Schwarz GmbH & Co.KG
Description: EMI Conducted Auxiliary Equipment

Single Devices for Auxiliary Equipment for Conducted emissions

Single Device Name	Туре	Serial Number	Manufacturer
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber&Suhner
Coupling-Decoupling- Network	CDN ENY41	100002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2008/03/06 2011/03/05
Two -Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz GmbH & Co. KG
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	DKD calibration		2008/10/13 2011/10/12

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: Lab 2

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AS 620 P		HD GmbH
Biconical dipole	VUBA 9117 Calibration Details	9117108	Schwarzbeck Last Execution Next Exec.
	Standard Calibration		2008/10/27 2013/10/26
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32-5P	849785	Miteq
	Path Calibration		2010/05/10 2010/11/09
Broadband Amplifier 1GHz-4GHz	AFS4-01000400-1Q-10P-4	-	Miteq
	Path Calibration		2010/05/10 2010/11/09
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35-5P	896037	Miteq
	Path Calibration		2010/05/10 2010/11/09
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01 2	1 - Kabel Kusch
	Path Calibration		2010/05/10 2010/11/09
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02	2 - Rosenberger Micro-Coax
	Path Calibration		2010/05/10 2010/11/09
Double -ridged horn	HF 906	357357/001	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2009/04/16 2012/04/15
Double -ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2009/04/28 2012/04/27
Dreheinheit	DE 325		HD GmbH
High Pass Filter	4HC1600/12750-1.5-KK Path Calibration	9942011	Trilithic 2010/05/10 2010/11/09
High Pass Filter	5HC2700/12750-1.5-KK Path Calibration	9942012	Trilithic 2010/05/10 2010/11/09
High Pass Filter	5HC3500/12750-1.2-KK Path Calibration	200035008	Trilithic 2010/05/10 2010/11/09
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2009/05/27 2012/05/26
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	DKD calibration		2008/10/07 2011/10/06
Pyramidal Horn Antenna 26,5 GHz	3160-09	00083069	EMCO Elektronik GmbH
Pyramidal Horn Antenna 40 GHz	3160-10	00086675	EMCO Elektronik GmbH

Test Equipment Auxiliary Test Equipment

Lab ID: Lab 2

Manufacturer: see single devices

Description: Single Devices for various Test Equipment

Type: various Serial Number: none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer	
AC Power Source	Chroma 6404	64040001304	Chroma ATE INC.	
Broadband Power Divide N (Aux)	er1506A / 93459	LM390	Weinschel Associates	
Broadband Power Divide SMA	erWA1515	A855	Weinschel Associates	
Digital Multimeter 01 (Multimeter)	Voltcraft M-3860M	IJ096055	Conrad Electronics	
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.	
(Multimeter)	Standard calibration		2009/10/07 2011/10/06	
Digital Oscilloscope [SA2] (Aux)	TDS 784C	B021311	Tektronix GmbH	
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis	
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis	
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH	
Notch Filter Ultra Stable (Aux)	e WRCA800/960-6EEK	24	Wainwright	
Spectrum Analyser	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG	
	Calibration Details		Last Execution Next Exec.	
	DKD calibration		2008/10/06 2011/10/05	
Vector Signal Generator	r SMIQ B3	832492/061		

Test Equipment Digital Signalling Devices

Lab 1D: Lab 1, Lab 2

Description: Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

Single Device Name	Туре	Serial Number	Manufacturer
Bluetooth Signalling Unit	t CBT	100589	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2008/08/14 2011/08/13
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2008/10/07 2010/10/06
Digital Radio Test Set	6103E	2359	Racal Instruments, Ltd.
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz GmbH & Co. KG
oonmandanon roote	Calibration Details		Last Execution Next Exec.
	Standard calibration		2009/02/16 2012/02/15
	HW/SW Status		Date of Start Date of End
	Software: K21 4v21, K22 4v21, K23 4v21, K24 K43 4v21, K53 4v21, K56 4v22, K57 K59 4v22, K61 4v22, K62 4v22, K63 K65 4v22, K66 4v22, K67 4v22, K68 Firmware: µP1 8v50 02.05.06	4v22, K58 4v22, 4v22, K64 4v22,	
Universal Radio	CMU 200	837983/052	Rohde & Schwarz GmbH & Co.
Communication Tester			
	Calibration Details		KG Last Execution Next Exec.
	Calibration Details Standard calibration		
			Last Execution Next Exec.
	Standard calibration	MCIA, U65V02 4v11, K27 4v10,	Last Execution Next Exec. 2008/12/01 2011/11/30
	Standard calibration HW/SW Status HW options: B11, B21V14, B21-2, B41, B52V14, B B54V14, B56V14, B68 3v04, B95, PCN SW options: Κ21 4v11, Κ22 4v11, Κ23 4v11, Κ24 Κ28 4v10, Κ42 4v11, Κ43 4v11, Κ53 Κ66 4v10, K68 4v10, Firmware: μP1 8v40 01.12.05	MCIA, U65V02 4v11, K27 4v10,	Last Execution Next Exec. 2008/12/01 2011/11/30 Date of Start Date of End
Vector Signal Generator	Standard calibration HW/SW Status HW options: B11, B21V14, B21-2, B41, B52V14, B B54V14, B56V14, B68 3v04, B95, PCN SW options: K21 4v11, K22 4v11, K23 4v11, K24 4v11, K24 4v11, K24 4v11, K43 4v11, K53 4v10, K66 4v10, K68 4v10, Firmware: µP1 8v40 01.12.05 SW: K62, K69	MCIA, U65V02 4v11, K27 4v10,	Last Execution Next Exec. 2008/12/01 2011/11/30 Date of Start Date of End 2007/01/02 2008/11/03 Rohde & Schwarz GmbH & Co.
Vector Signal Generator	Standard calibration HW/SW Status HW options: B11, B21V14, B21-2, B41, B52V14, B B54V14, B56V14, B68 3v04, B95, PCN SW options: K21 4v11, K22 4v11, K23 4v11, K24 4v11, K24 4v11, K24 4v11, K43 4v11, K53 4v10, K66 4v10, K68 4v10, Firmware: µP1 8v40 01.12.05 SW: K62, K69	MCIA, U65V02 4v11, K27 4v10, 4v10, K65 4v10,	Last Execution Next Exec. 2008/12/01 2011/11/30 Date of Start Date of End 2007/01/02 2008/11/03

Test Equipment Emission measurement devices

Lab ID: Lab 1, Lab 2

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer
Personal Computer	Dell	30304832059	Dell
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2007/12/05 2010/12/04
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG
	Standard Calibration		2009/12/03 2011/12/02

Test Equipment Multimeter 12

Lab ID:Lab 3, Lab 4Description:Ex-Tech 520Serial Number:05157876

Single Devices for Multimeter 12

Single Device Name	Туре	Serial Number	Manufacturer	
Digital Multimeter 12 (Multimeter)	EX520	05157876	Extech Instruments Corp.	
,	Standard calibration		2009/10/07	2010/10/06
	Standard calibration		2009/10/07	2011/10/06

Test Equipment Regulatory Bluetooth RF Test Solution

Lab ID: Lab 3

Description: Regulatory Bluetooth RF Tests

Type: Bluetooth RF

Serial Number: 001

Single Devices for Regulatory Bluetooth RF Test Solution

Single Device Name	Туре	Serial Number	Manufacturer	
ADU 200 Relay Box 7	Relay Box	A04380	Ontrak Control Systems Inc.	
Bluetooth Signalling Unit	t 1153.9000.35	100302	Rohde & Schwarz GmbH & Co.KG	
	Calibration Details		Last Execution Next Exec.	
	Standard Calibration		2009/08/06 2010/08/05	
	Standard Calibration		2010/06/23 2011/06/22	
Power Meter NRVD	857.8008.02 Standard Calibration	832025/059	2010/06/21 2011/06/20	
	Staridard Calibration		2010/06/21 2011/06/20	
Power Sensor NRV Z1 A	828.3018.03	832279/013		
	Standard Calibration		2010/06/22 2011/06/21	
Power Supply	NGSM 32/10	2725		
Rubidium Frequency Normal MFS	828.3018.03	002	Datum GmbH	
	Standard Calibration		2010/07/05 2011/07/04	
Signal Analyser FSIQ26	1119.6001.26	832695/007	Rohde & Schwarz GmbH & Co.KG	
	Standard Calibration		2009/06/24 2011/06/23	
Signal Generator	SMP03	833680/003	Rohde & Schwarz GmbH & Co.KG	
	Standard Calibration		2009/06/23 2012/06/22	
Vector Signal Generator SMIQ03B B	1125.5555.03	832870/017		
	Standard Calibration		2010/06/23 2013/06/20	

Test Equipment Shielded Room 02

Lab ID:Lab 1Manufacturer:Frankonia

Description: Shielded Room for conducted testing

Type: 12 qm Serial Number: none

Test Equipment Shielded Room 07

Lab ID: Lab 3, Lab 4

Description: Shielded Room 4m x 6m

Test Equipment T/H Logger 04

Lab ID:Lab 3, Lab 4Description:Lufft Opus10Serial Number:7481

Single Devices for T/H Logger 04

Single Device Name	Туре	Serial Number	Manufacturer
ThermoHygro DataloggerOpus10 THI (8152.00) 04 (Environ)		7481	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2009/01/23 2011/01/22

Test Equipment Temperature Chamber 01

Lab 1D: Lab 3, Lab 4

Manufacturer: see single devices

Description: Temperature Chamber KWP 120/70

Type: Weiss

Serial Number: see single devices

Single Devices for Temperature Chamber 01

Single Device Name	Туре	Serial Number	Manufacturer	
Temperature Chamber Weiss 01	KWP 120/70	59226012190010	Weiss Umwelttechnik GmbH	
	Specific calibration		2010/03/16 2011/03/15	

Test Equipment WLAN RF Test Solution

Lab ID: Lab 4
Manufacturer: 7 layers AG

Description: Regulatory WLAN RF Tests

Type: WLAN RF Serial Number: 001

Single Devices for WLAN RF Test Solution

Single Device Name	Туре	Serial Number	Manufacturer	
Arbitrary Waveform Generator	TGA12101	284482		
Power Meter NRVD	857.8008.02 Standard Calibration	832025/059	2010/06/21	2011/06/20
Power Sensor NRV Z1 A	828.3018.03	832279/013		
	Standard Calibration		2010/06/22	2011/06/21
Power Supply	NGSM 32/10	2725		
Rubidium Frequency Normal MFS	828.3018.03	002	Datum GmbH	
	Standard Calibration		2010/07/05	2011/07/04
Signal Analyser FSIQ26	1119.6001.26	832695/007	Rohde & Schwa Co.KG	arz GmbH &
	Standard Calibration		2009/06/24	2011/06/23
Signal Generator	SMP03	833680/003	Rohde & Schwa	arz GmbH &
	Standard Calibration		2009/06/23	2012/06/22
TOCT Switching Unit	Switching Unit	030106	7 layers, Inc.	
Vector Signal Generator SMIQ03B B	1125.5555.03	832870/017		
JMIQOJD D	Standard Calibration		2010/06/23	2013/06/20

5 Photo Report

Detailed photos of the OUT and test setups are declared as confidential.

Photo 1: Type Label of AC/DC converter

Photo 2: Connector side of AC/DC converter

6 Setup Drawings

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber:

Measurements below 1 GHz: Semi-anechoic, conducting ground plane. Measurements above 1 GHz: Fully-anechoic, absorbers on all surfaces

7 Annex measurement plots

7.1 AC Mains conducted

Op. Mode

op-mode 4

Start Stop Step Detector Meas. IF Transducer Frequency Frequency Width Time Bandw.

150.0 kHz 30.0 MHz 5.0 kHz MaxPeak 20.0 ms 9 kHz ESH3-Z5 Average

7.2 Occupied bandwidth

7.2.1 Occupied bandwidth operating mode 1

Op. Mode

op-mode 1b

Title: 6dB Bandwidth

Comment A: CH B: 2412 MHz; 6dB bandwidth (kHz):12156

Date: 14.JUL.2010 15:48:37

op-mode 1g

Title: 6dB Bandwidth

Comment A: CH B: 2412 MHz; 6dB bandwidth (kHz):16416

Date: 15.JUL.2010 10:10:46

7.2.2 Occupied bandwidth operating mode 2

Op. Mode

op-mode 2b

Title: 6dB Bandwidth

Comment A: CH M: 2437 MHz; 6dB bandwidth (kHz):12156

Date: 14.JUL.2010 15:51:55

op-mode 2g

Title: 6dB Bandwidth

Comment A: CH M: 2437 MHz; 6dB bandwidth (kHz):16416

Date: 15.JUL.2010 10:08:25

7.2.3 Occupied bandwidth operating mode 3

Op. Mode

op-mode 3b

Title: 6dB Bandwidth

Comment A: CH T: 2462 MHz; 6dB bandwidth (kHz):12636

Date: 14.JUL.2010 15:54:29

op-mode 3g

Title: 6dB Bandwidth

Comment A: CH T: 2462 MHz; 6dB bandwidth (kHz):16416

Date: 15.JUL.2010 10:05:06

7.3 Peak power output

7.3.1 Peak power output operating mode 1

Op. Mode

op-mode 1b

Date: 3.AUG.2010 11:27:02

op-mode 1g

Date: 3.AUG.2010 11:25:39

7.3.2 Peak power output operating mode 2

Op. Mode

op-mode 2b

Date: 3.AUG.2010 11:29:23

op-mode 2g

Date: 3.AUG.2010 11:30:50

7.3.3 Peak power output operating mode 3

Op. Mode

op-mode 3b

Date: 3.AUG.2010 12:34:24

op-mode 3g

Date: 3.AUG.2010 12:33:13

7.4 Band edge compliance conducted and Spurious RF conducted emissions

7.4.1 Band edge compliance conducted operating mode 1

Op. Mode

op-mode 1b

Title: Band Edge Compliance

Comment A: CH B: 2412 MHz

Date: 14.JUL.2010 14:47:20

(determination of reference value for spurious emissions measurement)

op-mode 1g

Title: Band Edge Compliance Comment A: CH B: 2412 MHz
Date: 15.JUL.2010 09:22:39

(determination of reference value for spurious emissions measurement)

7.4.2 Spurious RF conducted emission operating mode 1

Op. Mode

op-mode 1b

Title: spurious emissions
Comment A: CH B: 2412 MHz
Date: 14.JUL.2010 14:58:58

(spurious emissions measurement)

op-mode 1g

Title: spurious emissions
Comment A: CH B: 2412 MHz
Date: 15.JUL.2010 09:34:17

(spurious emissions measurement)

7.4.3 Spurious RF conducted emission operating mode 2

Op. Mode

op-mode 2b

Title: Band Edge Compliance

Comment A: CH M: 2437 MHz

Date: 14.JUL.2010 14:34:05

(determination of reference value for spurious emissions measurement)

op-mode 2b

Title: spurious emissions
Comment A: CH M: 2437 MHz
Date: 14.JUL.2010 14:45:44

(spurious emissions measurement)

op-mode 2g

Title: Band Edge Compliance Comment A: CH M: 2437 MHz

Date: 15.JUL.2010 09:37:11

(determination of reference value for spurious emissions measurement)

op-mode 2g

Title: spurious emissions
Comment A: CH M: 2437 MHz
Date: 15.JUL.2010 09:48:50

(spurious emissions measurement)

7.4.4 Band edge compliance conducted operating mode 3

Op. Mode

op-mode 3b

Title: Band Edge Compliance

Comment A: CH T: 2462 MHz

Date: 14.JUL.2010 14:20:54

(determination of reference value for spurious emissions measurement)

op-mode 3g

Title: Band Edge Compliance Comment A: CH T: 2462 MHz
Date: 15.JUL.2010 09:51:06

(determination of reference value for spurious emissions measurement)

7.4.5 Spurious RF conducted emission operating mode 3

Op. Mode

op-mode 3b

Title: spurious emissions
Comment A: CH T: 2462 MHz
Date: 15.JUL.2010 10:02:45

(spurious emissions measurement)

op-mode 3g

Title: spurious emissions
Comment A: CH T: 2462 MHz
Date: 14.SEP.2005 00:18:21

(spurious emissions measurement)

7.5 Band edge compliance radiated operating mode 3

Op. Mode higher band edge op-mode 3b TX on 2462 MHz

Op. Mode higher band edge

op-mode 3g TX on 2462 MHz

7.6 Radiated emissions (f < 30 MHz)

Op. Mode

op-mode 2b

Antenna position 90° EUT position front side

Antenna position 90° EUT position right side

Antenna position 0° EUT position front side

Antenna position 0° EUT position right side

7.7 Power density

Op. Mode

op-mode 1b

Date: 4.AUG.2010 10:29:25

op-mode 1g

Date: 4.AUG.2010 11:23:24

op-mode 2b

Date: 4.AUG.2010 11:29:34

op-mode 2g

Date: 4.AUG.2010 11:16:25

op-mode 3b

Date: 4.AUG.2010 11:05:59

op-mode 3g

Date: 4.AUG.2010 11:12:08