Week02 proof

Reading

- Secton1.8
- section 5.1
- section 5.2

direct proof and indirect proof

If a proof leads from the premises of a theorem to the conclusion, then it is a direct proof, otherwise, it is an indirect proof.

A **direct proof** shows that a conditional statement p ! q is true by showing that

if p is true, then q must also be true

exercise

'If n is an odd integer, then n2 is odd'.

proof:

Suppose n is an odd integer. Then there exists an integer k such that n = 2k + 1. $n2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$. Since $2(k^2 + 2k)$ is an integer, n2 is odd.

Proof by Contraposition (indirect proof)

$$if \ p
ightarrow q \ then \
onumber
onumber$$

exercise

Prove that **if n is an integer and 3n + 2 is odd, then n is odd.**

proof:

p: 3n+2 is odd;

q:nisodd

it is the same meaning that:

if n is even then proof 3n+2 is even

let n=2k, 3n+2=6k+2=2(3k+1)

because 3k+1 is integer

6k+2 is even

Q.E.D.

Proof by Contradiction (indirect proof)

Because the statement

$$r \wedge \neg r$$

is a contradiction whenever r is a proposition, we can prove that p is true if we can show that

$$eg p o (r \wedge
eg r)$$

is true for some proposition r.

Exercise

Prove that

$$\sqrt{2}$$
 is irrational

Proof.

Suppose $\sqrt{2}$ is rational. Then there exist integers p and q with $q \neq 0$ such that $\sqrt{2} = p/q$ and p and q do not have any common factor. Thus, $2 = p^2/q^2$. $p^2 = 2q^2$. Thus, p^2 is even. Since if n is odd, then n^2 is odd (proved in previous slides), p is even. Hence there exists an integer k such that p = 2k. Then $p^2 = (2k)^2 = 2q^2$. $q^2 = 2k^2$. Thus q^2 is even, hence q is even. Thus, p and q are both even, which contradicts the fact that p and q do not have any common factor. \square

Proof of Equivalence

To prove a theorem that is a biconditional statement or a bi-implication, that is, a statement of the form

 $p \leftrightarrow q$

we show that

 $p \rightarrow q$

and

q o p

are both true.

so:

This shows that if the *n* conditional statements $p_1 \rightarrow p_2$, $p_2 \rightarrow p_3$,..., $p_n \rightarrow p_1$ can be shown to be true, then the propositions p_1 , p_2 ,..., p_n are all equivalent.

$$[p_1 \leftrightarrow p_2 \leftrightarrow ... \leftrightarrow p_n] \leftrightarrow [(p_1 \rightarrow p_2) \land (p_2 \rightarrow p_3) \land ... \land (p_n \rightarrow p_1)].$$

Counterexamples

To show that a statement of the form $\forall x P(x)$ is false, we need only find a counterexample, that is, an example x for which P(x) is false.

exercise

Show that the statement 'Every positive integer is the sum of the squares of two integers' is false

proof:

3 is not include

Proof by Cases

- Sometimes we cannot prove a theorem using a single argument that holds for all possible cases.
- Need to consider different cases separately.
- Rationale: To prove a conditional statement of the form

$$(p_1 \lor p_2 \lor ... \lor p_n) \rightarrow q$$

the tautology

$$[(p_1 \lor p_2 \lor ... \lor p_n) \to q] \leftrightarrow [(p_1 \to q) \land (p_2 \to q) \land ... \land (p_n \to q)]$$

can be used as a rule of inference.

exercise

Prove that if *n* is an integer, then $n^2 \ge n$.

Proof.

Let us prove by cases.

- If n = 0, then $0^2 \ge 0$.
- If $n \ge 1$, we multiply both sides of the inequality $n \ge 1$ by the positive integer n, then we have $n^2 \ge n$.
- If $n \le -1$, $n^2 \ge n$ holds, since $n^2 \ge 0$.

Thus, in each case, $n^2 \ge n$.

Mathematical Induction (数学归纳法)

Basis Step: We show that the statement holds for the positive integer 1 (i.e. P(1) is true).

Inductive Step We show that if the statement holds for a positive integer then it must also hold for the next larger integer (i.e. for all positive integers k, if P(k) is true, then P(k + 1) is true).

$$P(1)$$

$$\forall k (P(k) \rightarrow P(k+1))$$

$$\therefore \forall n P(n)$$

Strong Induction

Basis Step We verify that the proposition P(1) is true. Inductive Step We show that the conditional statement $[P(1) \land P(2) \land ... \land P(k)] \rightarrow P(k+1)$ is true for all positive integers k.