

Data Collection and Preprocessing Phase

Date	20 June 2025
Team ID	SWTID1749791625
Project Title	Smart Lender- Applicant Credibility Prediction for Loan Approval
Maximum Marks	6 Marks

Data Exploration and Preprocessing Report

Dataset variables will be statistically analyzed to identify patterns and outliers. Python will be used for preprocessing tasks such as normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring high-quality input for analysis and modeling, and providing a strong foundation for reliable insights and predictions.

Section	Description		
	Dimension:		
	614rows×13columns.		
	Descriptive Statistics:		
	<pre>Pependents ApplicantIncome CoapplicantIncome LoanAmount \</pre>		
	count 614.000000 614.000000 614.000000 614.000000		
	mean 0.744300 5403.459283 1621.245798 145.752443		
	std 1.009623 6109.041673 2926.248369 84.107233		
	min 0.000000 150.000000 0.000000 9.000000		
	25% 0.000000 2877.500000 0.000000 100.250000 50% 0.000000 3812.500000 1188.500000 128.000000		
	50% 0.000000 3812.500000 1188.500000 128.000000 75% 1.000000 5795.000000 2297.250000 164.750000		
	max 3.000000 81000.000000 41667.000000 700.000000		
	max 3.00000 8100.00000 4100.00000 700.00000		
Data Overview	Loan Amount Term Credit History		
Bata & Ver Vie W	count 614.000000 614.000000		
	mean 342.410423 0.855049		
	std 64.428629 0.352339		
	min 12.000000 0.000000		
	25% 360.000000 1.000000		
	50% 360.000000 1.000000		
	75% 360.000000 1.000000		
	max 480.000000 1.000000		
	Gender Married Education Self_Employed Property_Area Loan_Status		
	count 614 614 614 614 614 614		
	unique 2 2 2 2 3 2		
	top Male Yes Graduate No Semiurban Y		
	freq 502 401 480 532 233 422		
1			

	Handling Categorical Dataset
Data Transformation	[] df['Loan_Status'] = df['Loan_Status'].map({'Y': 1, 'N': 0}) df['Dependents'] = df['Dependents'].replace('3+', 3).astype(int) df = pd.get_dummies(df, columns=['Gender', 'Married', 'Education', 'Self_Employed', 'Property_Area'], drop_first=True)
	Balancing And Scaling
	[] X = df.drop('Loan_Status', axis=1) y = df['Loan_Status']
	<pre>X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42) print("Train Target Distribution:")</pre>
	<pre>print(y_train.value_counts()) print("Test Target Distribution:") print(y_test.value_counts()) scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test)</pre>
	<pre>smote = SMOTE(random_state=42) X_train_smote, y_train_smote = smote.fit_resample(X_train_scaled, y_train) X_train_final, X_val, y_train_final, y_val = train_test_split(X_train_smote, y_train_smote, test_size=0.2, random_state=42</pre>
Feature Engineering	Attached the codes in final submission.
Save Processed Data	<pre>import pickle #Save model and scaler for Flask with open('final_model.pkl', 'wb') as f: pickle.dump(voting_clf, f)</pre>
	<pre>with open('scaler.pkl', 'wb') as f: pickle.dump(scaler, f)</pre>