由迭代生成数列收敛的条件

程希旺

(淮阴师范学院 数学系, 江苏 淮安 223300)

摘 要:探讨了由初始值 x_1 和递推公式 $x_{n+1} = f(x_n)$, $n \in N^*$ 通过迭代生成的数列 $\{x_n\}$ 的收敛性与函数 f的关系, 为: 若 $\lim x_n = \xi$,则 ξ 必为函数f的不动点。给出了数列 $\{x_n\}$ 收敛的若干充分条件和必要条件。

关键词: 迭代; 数列; 收敛; 条件

中图分类号: 0172

文献标识码·A/

所谓"由迭代生成的数列", 是指在给出数列的第一 \overline{y}_{x_1} 后,用递推公式 $x_{x_n} = f(x_n), n \in \mathbb{N}^+$ 通过迭代生成的数列。 这样的数列在数学和许多应用领域中经常出现。有很强的 理论和实用价值。例如,大量的近似计算方法都是通过迭 代方式来实现的。 [1] 判定由迭代生成的数列的收敛性, 除 了直接利用单调有界定理和Cauchy收敛准则外、还可利用 函数f自身的性质来判定,本文主要利用函数f的性质讨论由 迭代生成数列收敛的条件。

1 预备知识

定义1 [2] 设f为定义在数集D上的函数、 $\xi \in D$ 、若 ξ 是 方程f(x) = x的根,则称 ξ 为函数f的不动点。

定义2 ^[3] 设f为定义在数集D上的函数, $f(D) \subset D$, 若存在常数 $k \in (0,1)$, 使得对一切 $x, y \in D$, $|f(x)-f(y)| \le k$ |x-y| 成立,则称f为D上的一个压缩映射,称常数k为压 缩常数。

2 主要结果

定理1 设数列 $\{x_n\}$ 满足递推关系 $x_{n+1} = f(x_n), n \in \mathbb{N}^+$, 其中f为连续函数。若 $\lim x_n = \xi$,则 ξ 必为函数f的不动点。

证明:由条件、f在点 ξ 连续、即 $\lim f(x)=f(\xi)$ 。根据Heine归结原理, $\lim f(x_n) = f(\xi)$ 。 $a_{x_{n+1}} = f(x_n)$ 的两边取 $n \to +\infty$ 时 的极限,即得 $\xi=f(\xi)$,故 ξ 为函数f的不动点。

注:定理1为由迭代生成数列收敛的一个必要条件。 若函数f没有不动点,则数列{x_n}必定发散。

定理2 设数列 $\{x_n\}$ 满足递推关系 $x_{n+1}=f(x_n), n \in N^+$, 其 中函数f在区间1上单调且有界,同时{x,}的每一项都在区间1 中,则(1)当f在区间I上单调增加时、 $\{x_n\}$ 收敛;(2)当f在区间I上单调减少时, $\{x_n\}$ 的两个子列 $\{x_{2k-1}\}$ 和 $\{x_{2k}\}$ 都收敛。

文章编号: 1371-1351 (2007) 02-0018-02

证明: (1) 当f在区间/上单调增加时、由条件、有 $x_n \in I, n \in \mathbb{N}^+$ 。如有 $x_1 \leq x_2$,用数学归纳法可以证明 $\{x_n\}$ 单调增 加。事实上,若 $x_n \leq x_{n+1}$,则 $x_{n+1} = f(x_n) \leq f(x_{n+1}) = x_{n+2}$ 。 又由于函 数f在区间I上有界, 所以数列 {x_n} 有界。因此, 根据单调 有界定理, 数列 $\{x_n\}$ 收敛。如果 $x_1 \ge x_2$, 类似可以证明 $\{x_n\}$ 单调减少且有界、从而收敛。

(2) 当f在区间/上单调减少时,如有x1≤x1、用数学归 纳法可以证明 $\{x_{2k-1}\}$ 单调增加。事实上,若 $x_{2k-1} \leq x_{2k+1}$,则 x_{2k} = $f(x_{2k-1})$, 可知 $\{x_{2k}\}$ 单调减少。又由于函数f在区间I上有界,所 以数列{x24-1}和{x24}都有界。因此,根据单调有界定理,数列 $\{x_{2k-1}\}$ 和 $\{x_{2k}\}$ 都收敛。如果 $x_1 \ge x_3$,证明完全类似。

注: 定理2中, 当f在区间/上单调减少时, 由迭代生成 的数列 $\{x_n\}$ 可能收敛、也可能发散。但 $\{x_n\}$ 的两个子列 $\{x_{2n-1}\}$ 和 {x2}都收敛。可见、由迭代生成数列的敛散性取决于两个子 列 $\{x_{24-1}\}$ 和 $\{x_{22}\}$ 的极限是否相等。若 $\{x_{24-1}\}$ 和 $\{x_{22}\}$ 的极限相等, 则数列{x_a}必定收敛、否则发散。

定理3 设f是[a,b]上的一个压缩映射,则由任何初始值 $x_1 \in [a,b]$ 和递推公式 $x_{n+1} = f(x_n), n \in N^+$ 生成的数列 $\{x_n\}$ 收敛。

证明:由于f是[a,b]上的压缩映射,故 $f([a,b]) \subset [a,b]$, $\{x_n\}$ 必在[a,b]中,且 \exists 常数 $k \in (0,1)$,使得 $\forall n \in \mathbb{N}^+$, $\forall p \in \mathbb{N}^+$

$$| x_{n} - x_{n+p} | = | f(x_{n-1}) - f(x_{n+p-1}) | \le k | x_{n-1} - x_{n+p-1} |$$

$$\le k^{2} | x_{n-2} - x_{n+p-2} | \le \dots \le k^{n} | x_{0} - x_{p} | \le k^{n} (b-a)$$

可见, $\forall \varepsilon > 0$ (不妨设 $\varepsilon < b - a$), 只要取 $N = \left[\frac{\ln \frac{\varepsilon}{b - a}}{\ln h}\right]$,

 $\forall n \in \mathbb{N}, \forall p \in \mathbb{N}^+,$ 都有 $|x_n - x_{n+p}| < \varepsilon$ 。根据Cauchy收敛准 则、{x_}\收敛。

推论 设f是定义在[a,b]上的可导函数、 $f([a,b]) \subset [a,b]$ 、 若存在常数 $k \in (0,1)$, 使得对一切 $x \in [a,b]$, 成立不等式 $|f'(x)| \leq k$, 则由任何初始值 $x_1 \in [a,b]$ 和递推公式 $x_{n+1} = f(x_n)$, $n \in N^+$ 生成的数列 $\{x_n\}$ 收敛。

收稿日期: 2006-12-15

作者简介:程希旺 (1969-), 男, 江苏淮阴人, 淮阴师范学院数学系讲师, 硕士。

证明: 由Lagrange中值定理, $\forall x \ y \in [a,b]$, 有 $|f(x)-f(y)| = |f'(\xi)| \cdot |x-y| \le k |x-y|,$

 $x < \xi < y$ 或 $y < \xi < x$,于是f是[a,b]上的一个压缩映射。根据定理3,由任何初始值 $x_1 \in [a,b]$ 和递推公式 $x_{n+1} = f(x_n), n \in N$ 生成的数列 $\{x_n\}$ 收敛。

定理3及其推论还可作如下推广:

定理4 设函数f在区间[a,b]上满足Lipschitz条件,即存在常数l>0,对一切x、 $y \in [a,b]$,都有 $|f(x)-f(y)| \le l |x-y|$,常数 α 满足: $0<\alpha<\frac{1}{l}$, $f([a,b]) \subset [\frac{a}{\alpha},\frac{b}{\alpha}]$,则由任何初始值 $x_1 \in [a,b]$ 和递推公式 $x_{n+1}=\alpha f(x_n)$, $n \in N^*$ 生成的数列 $\{x_n\}$ 收敛。

证明: 令 $F(x) = \alpha f(x)$, $x \in [a, b]$, 容易验证 $F([a, b]) \subset [a, b]$, 对一切x, $y \in [a, b]$, 有

 $| F(x)-F(y) | = \alpha | f(x)-f(y) | \le \alpha l | x-y | = k | x-y |$

其中0 < k = al < 1, 所以F是一个压缩映射,根据定理3,即得所要证明的结论。

定理5 设f是定义在[a,b]上的可导函数,若存在常数 M>0,使得对一切 $x\in[a,b]$,成立不等式 $|f'(x)|\leq M$,常数 α 满足: $0<\alpha<\frac{1}{M}$, $f([a,b])\subset [\frac{a}{\alpha},\frac{b}{\alpha}]$,则由任何初始值 $x_1\in[a,b]$ 和递推公式 $x_m:=af(x_n),n\in N$ 生成的数列 $\{x_n\}$ 收敛。

证明: 容易验证(αf) ([a.b]) \subset [a.b], $\mid \alpha f'(\mathbf{x}) \mid \leq \alpha M < 1$, $x \in$ [a.b]。于是,函数 αf 满足定理3推论的条件,定理5得证。

定理6 设函数f在区间[a,b]上满足Lipschitz条件,即存在常数l>0,对一切 $x,y\in[a,b]$,都有 $|f(x)-f(y)|\leq l|x-y|$,常数 α 满足: $0<\alpha<\frac{1}{l}$, $f([a,b])\subset [\frac{1-\alpha l}{\alpha}a,\frac{1-\alpha l}{\alpha}b]$,则由任何初始值 $x_1\in[ab]$ 和递推公式 $x_{n+1}=\alpha[lx_n+f(x_n)]$, $n\in N^*$ 生成的数列 (x_n) 收敛。

证明: 令 $F(x)=\alpha[lx+f(x)], x \in [a,b]$, 容易验证F([a,b]) $\subset [a,b], 对一切x, y \in [a,b], 有$

 $| F(x)-F(y) | = \alpha | [lx+f(x)]-[ly+f(y)] |$ $\leq \alpha [l|x-y|+|f(x)-f(y)|] \leq 2\alpha l|x-y|=k|x-y|$ 其中 $k=2\alpha l$ 。当0< $\alpha < \frac{1}{2!}$ 时,0<k < 1,F是一个压缩映

射。根据定理3,即得所要证明的结论。 当 $\frac{1}{2l} \le \alpha < \frac{1}{l}$ 时, $1 \le k < 2$,F不是压缩映射。但由 $F([a,b]) \subset [a,b]$ 及 $x_1 \in [a,b]$ 知,对一切 $n \in \mathbb{N}^*$, $x_n \in [a,b]$,于是 $\{x_n\}$ 为一有界数列。下面只要证明 $\{x_n\}$ 单调,根据单调有界定理便可得到, $\{x_n\}$ 收敛。事实上,若 $f(x_1) \ge \frac{1-\alpha l}{\alpha} x_1$,则 $x_2 = \alpha [l \ x_1 + f(x_1)] \ge \alpha [l \ x_1 + \frac{1-\alpha l}{\alpha} x_1]$ = x_1 ,而对 $x_1 > 1$,若 $x_{n-1} \le x_n$,便有

 $f(x_{n-1})-f(x_n) \le |f(x_{n-1})-f(x_n)| \le l|x_{n-1}-x_n|=l(x_n-x_{n-1})$ 将带负号的项移到不等式的另一端,然后两边同乘以 a,即得

 $x_n = \alpha \left[l \; x_{n-1} + f \left(x_{n-1} \right) \right] \le \alpha \left[l \; x_n + f \left(x_n \right) \right] = x_{n+1}$ 故 (x_n) 单调递增。同理若 $f(x_1) \le \frac{1-\alpha \; l}{\alpha} x_1$,可证 (x_n) 单调递减。

文 [4] 中的定理为本定理l=1, $\alpha = \frac{1}{2}$ 时的特殊情形。

最后,作为定理3及其推论的应用,给出如下定理。

定理7 设f是定义在[a,b]上的可导函数, $x+f(x) \in [a,b]$, 若存在常数 $k \in (0, 1)$, 使得对一切 $x \in [a, b]$, 成立不等式 $|1+f'(x)| \le k$, 则方程 f(x)=0在 [a,b]上至少有一个根。

证明:令F(x)=x+f(x), $x\in[a,b]$, 容易验证F符合定理3 推论的条件,因此,由初始值 $x_1\in[a,b]$ 和递推公式 $x_{n+1}=F(x_n)$ $=x_n+f(x_n)$, $n\in N^+$ 通过迭代生成的数列 $\{x_n\}$ 收敛。设数列 $\{x_n\}$ 的极限为 $\{x_n\}$ 则由定理1, $\{x_n\}$ 为 $\{x_n\}$ 上的不动点,即 $\{x_n\}$ 的人员,从而, $\{x_n\}$ 人而,方程 $\{x_n\}$ 之中有一个根。

参考文献.

- [1] 徐萃薇.计算方法引论[M].北京:高等教育出版社,1985.
- [2] 刘世伟,李逊.泛函分析概要[M].北京:高等教育出版社,1987.
- [3] 吳良森,毛羽辉,宋国栋,等.數学分析习题精解[M].北京:科学出版 社,2002.
- [4] 席泓,李庆玉.关于两类递推数列的极限[J].贵州教育学院学报, 2001,12(4).

〔责任编辑 王三福〕