TÍCH PHÂN TRONG MẶT PHẨNG PHỨC

TS. Lê Xuân Đại

Trường Đại học Bách Khoa TP HCM Khoa Khoa học ứng dụng, bộ môn Toán ứng dụng

TP HCM — 2013

Dinh nghĩa

Gọi f(z) = u(x, y) + iv(x, y) là 1 hàm liên tục của z và C là 1 cung tron từng đoạn nối 2 điểm A, B. Khi đó tích phân đường của hàm số f(z)được tính theo công thức

$$\int_{C} f(z)dz = \int_{C} (udx - vdy) + i \int_{C} (vdx + udy)$$

$$\int_{A}^{B} f(z)dz = -\int_{B}^{A} f(z)dz$$

$$\int_A^B [f(z) + g(z)]dz = \int_A^B f(z)dz + \int_A^B g(z)dz.$$

• Nếu D là 1 điểm trên cung AB thì $\int_A^B f(z)dz = \int_A^D f(z)dz + \int_D^B f(z)dz$

Trong trường hợp C được xác định bởi z=z(t)=x(t)+iy(t), với $t\in\mathbb{R}$ thì

$$\int_{A}^{B} f(z)dz = \int_{t_1}^{t_2} f(z(t))z'(t)dt$$

trong đó t_1, t_2 là các giá trị t ứng với điểm A và B.

Ví dụ. Tính tích phân $\int_{0}^{1+i} (x+y)dz$ dọc theo mỗi đường sau:

- Dọc theo trục Oy đến điểm i, rồi theo đường ngang đến 1+i. **ĐS.** $\frac{3}{2}+\frac{i}{2}$
- Doc theo đường y = x. **DS.** 1 + i
- Doc theo parabol $y = x^2$. **DS.** $\frac{5}{6} + \frac{7}{6}i$
- Dọc theo trục Ox đến 1 rồi theo đường thẳng đứng đến 1+i. **ĐS.** $\frac{1}{2}+\frac{3i}{2}$

Tính tích phân $\int_{0}^{1+i} (x^2 + iy) dz$ dọc theo mỗi đường sau:

- ullet Dọc theo trục Oy đến điểm i, rồi theo đường ngang đến 1+i.
- Doc theo đường y = x
- Doc theo parabol $y = x^2$
- Dọc theo trục $O \times$ đến 1 rồi theo đường thẳng đứng đến 1+i.

Tính tích phân $\int \overline{z} dz$ dọc theo mỗi đường sau:

- Dọc theo trục Ox đến điểm 0, rồi dọc theo trục Ov đến i.
- Doc theo đường y = 1 x
- ullet Thẳng đứng đến 1+i rồi theo đường ngang đến *i*.

Tính tích phân $\int_C \frac{dz}{(z-z_0)^{n+1}}$ với C là đường tròn tâm z_0 bán kính r, n là 1 số nguyên, theo chiều dương.

Dinh nghĩa

Miền D được gọi là miền liên thông, nếu như với 2 điểm bất kỳ của D luôn tồn tại ít nhất 1 đường cong đi qua 2 điểm này và nó nằm trong miền D.

Dinh nghĩa

Miền **D** được gọi là miền đơn liên nếu mọi đường cong kín của nó đều nằm gọn trong **D**. Miền liên thông **D** không là miền đơn liên được gọi là miền đa liên.

Nếu D là 1 miền đơn liên mà trên biên C trơn từng đoạn, các hàm $P(x,y), Q(x,y), \frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x}$ liên tục trong và trên biên C của miền D thì

$$\oint_C Pdx + Qdy = \pm \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy.$$

 $D\hat{a}u + khi$ chiều lấy tích phân trên C ngược chiều kim đồng hồ

Nếu
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
 ở mọi điểm của 1 miền đơn liên D thì trong D tích phân $\int\limits_C Pdx + Qdy$ không phụ thuộc vào đường đi, với C là biên của miền D. Nguyên hàm của $\int\limits_C Pdx + Qdy$ là $u(x,y) = \int\limits_{(x_0,y_0)} Pdx + Qdy$ với (x_0,y_0) là điểm mà $P(x,y)$ và $Q(x,y)$ liên tục tại đó.

Nếu D là miền đơn liên có biên C trơn từng đoạn và nếu f(z) giải tích, f'(z) liên tục trong và trên biên của miền D thì $\oint_C f(z)dz = 0$.

Ví dụ

Gọi C là vòng tròn đơn vị |z|=1. Tính

$$\int_C \frac{\sin z}{z^2 + 4} dz.$$

Nếu f(z) giải tích trong và trên biên của 1 miền đa liên D nằm giữa 2 đường kín đơn C_1 và C_2 thì $\int\limits_{C_1} f(z)dz + \int\limits_{C_2} f(z)dz = 0 \text{ với điều kiện } C_1, C_2$ được chạy theo chiều dương đối với bên trong của D. Nếu đổi chiều tích phân trên C_2 ta có

$$\int_{C_1} f(z)dz = \int_{C_2} f(z)dz$$

trong đó C_1 , C_2 cùng chạy theo chiều ngược chiều

Nếu đường kín đơn C_1 có thể biến dạng liên tục (co lại) để trùng với C_2 mà không vượt qua bất cứ điểm nào tại đó f(z) không giải tích thì tích phân đường của hàm giải tích f(z) trên C_1 và C_2 bằng nhau.

Cho hàm
$$f(z) = \frac{1}{z^2 - 2z}$$
 và các đường tròn

- Hỏi I_1 hoặc I_2 có bằng 0 hay không?
- Chứng minh rằng $I_1 = I_2$.
- Hỏi I_2 có bằng I_3 hay không?
- Chứng minh $I = I_1 = I_2$. Từ đó rút ra kết luận.

Bài 1

sin 2*zdz* Cho tích phân $\int_C \frac{\sin 2zdz}{(z^2+1)(z-1)}$ dọc theo các

đường cong C sau:

1.
$$|z| = \frac{1}{2}$$
 2. $|z| = 2$

2.
$$|z| = 2$$

3.
$$|z-1|=2$$

4.
$$|z+1|=1$$

5.
$$|z+1|=\frac{3}{2}$$

3.
$$|z-1| = 2$$
 4. $|z+1| = 1$ Hỏi tích **5.** $|z+1| = \frac{3}{2}$ **6.** $|z-1+i| = \frac{3}{2}$

phân theo đường nào bằng 0. Hỏi tích phân theo đường nào bằng nhau?

Bài 2

Cho tích phân
$$\int\limits_C \frac{e^z dz}{z^2+2z+2}$$
 dọc theo các đường

1.
$$|z-i|=\frac{3}{2}$$
 2. $|z|=2$

cong C sau:
$$3. |z + 1 + i| = \frac{3}{2}$$
 $2. |z| = 2$
cong C sau: $3. |z + 1 + i| = \frac{3}{2}$ $4. |z - 1| = 3$

5.
$$|z-3|=1$$
 6. $|z+1|=\frac{1}{2}$

Hỏi tích phân theo đường nào bằng 0. Hỏi tích phân theo đường nào bằng nhau?

Nếu f(z) giải tích trong 1 miền đơn liên D thì B $\int f(z)dz$ không phụ thuộc vào đường lấy tích A phân từ A đến B trong miền D.

Nếu f(z) giải tích khắp 1 miền đơn liên D thì hàm số $F(z) = \int_{z_0}^z f(z) dz$ là 1 hàm giải tích và có đạo hàm tại mỗi điểm của D là f(z). Khi đó F(z)được gọi là nguyên hàm của f(z)

Định lý

Nếu f(z) giải tích trong miền đơn liên D và đường lấy tích phân nằm trong D, F(z) là 1 nguyên hàm nào đó của f(z) thì $\int f(z)dz = F(z_1) - F(z_0)$.

21 / 1

Ví du

Tính tích phân
$$\int_{0}^{1+i\pi} (z^2 + \cosh 2z) dz.$$

DS.
$$\frac{1}{3} - \pi^2 + \frac{1}{2} \sinh 2 + \frac{i}{3} (3\pi - \pi^3).$$

Bài 1

Tính tích phân

Bài 2

Tính tích phân

$$\int_{0}^{i} ze^{z} dz$$

$$\int_{0}^{1+i\pi} (z \sin z) dz$$

$$\int_{1}^{1} dz$$

Nếu u(x,y) là nghiệm của phương trình Laplace trong 1 miền D thì trong D có 1 hàm giải tích nhận u(x,y) là phần thực. Đó là hàm f(z) = u + iv với

$$v(x,y) = \int_{(x_0,y_0)}^{(x,y)} -u'_y dx + u'_x dy$$

Ví du

Cho
$$u(x, y) = y^3 - 3x^2y + y$$
. Hãy xác định $v(x, y)$ sao cho $f(z) = u + iv$ là hàm giải tích.

Bài 1

Xác định v(x,y), sao cho u+iv là hàm giải tích:

- u = x + y
- u = 2x + 3y
- $u = e^x \cos y$
- $u = e^x \sin y$
- $u = x^2 + y^2$
- $u = \cos x \sinh y$
- $u = \cos x \sin y$
- $u = x^2 + 2y y^2$

Nếu f(z) giải tích trong và trên biên C của 1 miền đơn liên D mà biên C trơn từng đoạn và nếu z_0 là 1 điểm bất kỳ bên trong miền D thì giá trị của $f(z_0)$ được xác định bởi công thức

$$f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz$$

trong đó tích phân được lấy theo chiều dương.

Ví dụ

Tính tích phân
$$\int_C \frac{e^z}{z^2+1} dz$$
 với C là vòng tròn bán

- kính 1 có tâm là
- o z = i
- z = -i

Nếu f(z) giải tích trong và trên biên C của 1 miền đơn liên D, mà biên D trơn từng đoạn thì tại 1 điểm z_0 bất kỳ bên trong miền D, đạo hàm mọi cấp của f(z) tồn tại, giải tích và được xác định bởi công thức

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_C \frac{f(z)dz}{(z-z_0)^{n+1}}$$

Tính tích phân
$$\int_C \frac{e^z}{(z+i)^3} dz$$
 với C là đường tròn $|z|=2$.

Nếu f(z) giải tích trong và trên một vòng tròn C tâm z_0 bán kính r thì

$$|f^{(n)}(z_0)|\leqslant \frac{n!M}{r^n},$$

trong đó M là giá trị cực đại của |f(z)| trên C.

Tính tích phân sau

$$\int_{i\pi}^{1} e^{z} dz$$

•
$$\int_C \frac{z^2+1}{z^2-1}dz$$
 với C là đường tròn $|z-i|=1$

$$\int\limits_C rac{3z^2+7z+1}{z-1}dz$$
 với C là đường tròn $|z+1|=1$

•
$$\int\limits_C rac{\sin 2z}{z^2+4z+5} dz$$
 với C là đường tròn $|z|=1$

Tính tích phân sau

$$\int\limits_{C} rac{z+4}{z^2+2z+5} dz$$
 với C là đường tròn $|z|=1$

•
$$\int_C \frac{z+1}{z^3-2z^2} dz$$
 với C là đường tròn $|z|=1$

Tính tích phân sau

$$\int\limits_C rac{z+1}{z(z-1)^2(z-3)}dz$$
 với C là đường tròn $|z|=2$

$$\int_{C}^{|z|} \frac{\cos z}{(z+1)^2(z-2)} dz \text{ v\'oi } C \text{ là đường tròn}$$

$$|z| = 3$$

THANK YOU FOR ATTENTION