Mineração de padrões frequentes

Fabrício J. Barth

fabricio.barth@gmail.com

Setembro de 2016

Objetivos

Os objetivos desta aula são:

- Apresentar e discutir métodos para identificar associações úteis em grandes bases de dados (transacionais) usando medidas estatísticas simples, e;
- Apresentar e discutir todas as etapas necessárias para executar uma análise de market basket.

Sumário

- A ideia geral do market basket analysis.
- Algoritmo Apriori: mineração de itens frequentes.
- Definição de suporte, confiança e *lift*.
- Interpretando as regras.
- Visualização das regras.
- Referências e leituras adicionais.

Resultado esperado de uma *market* basket analysis

 $\{p\~aozinho, p\~ao de queijo\} \rightarrow \{suco de laranja\}$

- A regra acima representa a seguinte informação: se uma pessoa compra pãozinho e pão de queijo então existe uma possibilidade desta pessoa comprar também suco de laranja.
- Os itens indicados ente {} fazem parte de um mesmo itemset.

Cenários de uso

- Algoritmos de regras de associação são geralmente utilizados em problemas de market basket analysis.
 Exemplos de market basket analysis são:
 - * Que produtos devem ser incluídos os excluídos de um estoque a cada mês.
 - * Propaganda cruzada entre produtos.
 - Modificação física ou lógica de produtos dentro de categorias de produtos.
 - Programas promocionais: incentivo de compra de múltiplos produtos.

Além disso, pode-se utilizar algoritmos de regras de associação em outros cenários:

- ★ Busca por padrões de sequência de DNA e proteinas que ocorrem frequentemente em dados sobre câncer.
- ★ Identificação por padrões de compra em transações fraudulentas.
- * Desenvolvimento de sistemas de recomendação.
- ★ Clickstream analysis.

- Regras de associação são utilizadas para procurar por conexões "interessantes" entre um grande número de variáveis.
- Pessoas são capazes de gerar tais insights, mas geralmente é necessário um nível de experiência bem alto no domínio da aplicação e muito tempo pensando sobre o problema.

Algoritmo Apriori: mineração de itens frequentes

Dado:

- \star um conjunto $A = \{a_1, \dots, a_m\}$ de itens,
- \star uma tabela $T=(t_1,\cdots,t_n)$ de transações sobre A,
- * um número β_{min} que $0 < \beta_{min} \le 1$, o suporte mínimo.

Objetivo 1:

* encontrar o conjunto de **itens frequentes**, tais que o **suporte** de cada conjunto de itens é maior ou igual ao β_{min} definido pelo usuário.

Exemplo de transações

	Itens
1	{a,d,e}
2	{b,c,d}
3	{a,c,e}
4	{a,c,d,e}
5	{a,e}
6	{a,c,d}
7	{b,c}
8	{a,c,d,e}
9	{b,c,e}
10	{a,d,e}

0 itens	1 item	2 itens	3 itens
{}: 10	{a}: 7	{a,c}: 4	{a,c,d}: 3
	{b}: 3	{a,d}: 5	{a,c,e}: 3
	{c}: 7	{a,e}: 6	{a,d,e}: 4
	{d}: 6	{b,c}: 3	
	{e}: 7	{c,d}: 4	
		{c,e}: 4	
		{d,e}: 4	

Figure 1: Um banco de dados de transações, com 10 transações, e a enumeração de todos os conjuntos de itens frequentes usando o suporte mínimo = 0.3

Algoritmo Apriori: mineração de itens frequentes

- Objetivo 2:
 - * encontrar o conjunto de regras de associação com confiança maior ou igual que um mínimo definido pelo utilizador.

Suporte e Confiança

- O suporte de um conjunto de itens Z, suporte(Z), representa a porcentagem de transações na base de dados que contêm os itens de Z.
- A confiança de uma regra de associação $A \to B$, $confianca(A \to B)$, é dado por:

$$confianca(A \to B) = \frac{Suporte(A \land B)}{Suporte(A)}$$
 (1)

Exemplos de confiança

- Se suporte({pão, ovos, leite}) = 0.15 e suporte({pão, ovos}) = 0.15 então confianca({pão, ovos} → {leite}) = 1.
- Se suporte($\{p\~ao, ovos\}$) = 0.15 e suporte($\{p\~ao\}$) = 0.6 ent $\~ao$ confianca($\{p\~ao\} \rightarrow \{ovos\}$) = 0.25.

Exemplo de regras geradas

Premises	Conclusion	Support	Confidence V
b	c	0.300	1
e, d	a	0.400	1
e	a	0.600	0.857
a	e	0.600	0.857
d	a	0.500	0.833
a, d	e	0.400	0.800

Figure 2: Regras extraídas com confiança maior que 0.8

Confiança

• Uma confiança alta indica que uma regra $(X \to Y)$ é mais interessante ou mais confiável, baseada no dataset analisado.

• No entanto, o fato de apenas analisar $X \wedge Y$ e X, sem analisar Y pode gerar alguns problemas.

Exemplo

Considere 1.000 transações, onde:

- leite ocorre em 400
- pão ocorre em 900
- manteiga ocorre em 300
- leite e pão ocorrem em 300
- manteiga e leite ocorrem em 300

Sendo assim:

- $confianca(\{leite\} \to \{pao\}) = \frac{0.3}{0.4} = 0.75$
- $confianca(\{leite\} \rightarrow \{manteiga\}) = \frac{0.3}{0.4} = 0.75$
- Pão é algo que ocorre com muita frequência neste dataset.
- Esta informação não é levada em consideração pela $confianca(\{leite\} \rightarrow \{pao\}).$
- Talvez, esta correlação seja apenas uma coincidência.

Lift ou coeficiente de interesse

$$Lift(X \to Y) = \frac{Suporte(X \land Y)}{Suporte(X) \times Suporte(Y)}$$
 (2)

• Lift ou coeficiente de interesse: um valor de lift para uma regra $(A \to B)$ superior a 1 indica que A e B acontecem mais frequentemente juntos do que o esperado, isso significa que a ocorrência de A tem um efeito positivo sobre a ocorrência de B.

Exemplos

•
$$lift(\{leite\} \to \{pao\}) = \frac{0.3}{0.4 \times 0.9} = 0.834$$

•
$$lift(\{leite\} \rightarrow \{manteiga\}) = \frac{0.3}{0.4 \times 0.3} = 2.5$$

Assim, fica claro que a ocorrência de leite tem um efeito positivo sobre a ocorrência da manteiga. Mas isto não se aplica ao leite e pao.

Medida Lift

Dada uma regra de associação $A \to B$, esta medida indica o quanto mais freqüente torna-se B quando ocorre A.

- Se $Lift(A \rightarrow B) = 1$, então A e B são independentes.
- Se $Lift(A \rightarrow B) > 1$, então A e B são positivamente dependentes.
- Se $Lift(A \rightarrow B) < 1$, A e B são negativamente dependentes.

Esta medida varia entre 0 e ∞ e possui interpretação simples: quanto maior o valor de Lift, mais interessante a regra, pois A aumenta B.

Exemplo básico de uso

Exemplo Básico sobre Regras de Associação

Exemplo: Grocery Store

Exemplo usando um dataset de uma Grocery Store

Pontos fortes e fracos

Fortes:

- * É facilmente aplicável em um volume grande de dados transacionais.
- * Resultados no formato de regras é fácil de compreender.
- * É útil na descoberta de padrões implícitos em bases de dados.

• Fracos:

- * Não é muito útil para bases pequenas.
- * Às vezes é difícil separar *insights* de senso comum.
- ★ É fácil gerar conclusões incorretas a partir de padrões aleatórios.

Material de consulta

Capítulo 5 do livro EMC Education Services, editor.
 Data Science and Big Data Analytics: Discovering,
 Analysing, Visualizing and Presenting Data. John
 Wiley & Sons, 2015.

- Fabrício Barth. Mineração de regras de associação em servidores Web com RapidMiner^a.
- Gonçalves. Regras de Associação e suas Medidas de Interesse Objetivas e Subjetivas. INFOCOMP Journal of Computer Science, 2005, 4, 26-35.

^ahttp://fbarth.net.br/materiais/webMining/webUsageMining.pdf

- Data Mining Algorithms in R Apriori Algorithm.
 http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/
 Frequent_Pattern_Mining/The_Apriori_Algorithm.
 Acessado em 13 de junho de 2013.
- RDataMining.com: Association Rules.
 http://www.rdatamining.com/examples/association-rules. Acessado em 13 de junho de 2013.

Próximas etapas

- Exercícios, e;
- Projeto!