BASIC NUMBER THEORY: LECTURE 17

WENHAN DAI

1. ČEBOTAREV DENSITY THEOREM (CONTINUED)

We resume on the last theorem in Lecture 16.

Theorem 1. Let L, M be Galois extensions over K. Then

- (1) $L \subseteq M$ if and only if $S_{M/K} \subseteq S_{L/K}$.
- (2) L = M if and only if $S_{M/K} \doteq S_{L/K}$.

Recall the notation that $\widetilde{S}_{M/K} = \{ \mathfrak{p} \text{ unramified in } M \mid f_{\mathfrak{P}|\mathfrak{p}} = 1 \text{ for at least one } \mathfrak{P} \mid \mathfrak{p} \}$ if M is a finite extension of K. The following Proposition 2 implies Theorem 1.

Proposition 2. Let L, M be finite extensions over K.

- (1) If M is Galois, then $L \subseteq M$ if and only if $S_{M/K} \stackrel{.}{\subseteq} S_{L/K}$;
- (2) If L is Galois, then $L \subseteq M$ if and only if $\widetilde{S}_{M/K} \subseteq S_{L/K}$.

Proof. We first prove (2). Assume $L \subseteq M$. For each $\mathfrak{p} \in \widetilde{S}_{M/K}$, $f_{\mathfrak{P}|\mathfrak{p}} = 1$ for some \mathfrak{P} lying above \mathfrak{p} . Let M/K be Galois. Then all inertia degrees of primes in M above \mathfrak{p} are 1. Hence \mathfrak{p} splits completely. Consider prime ideals $\mathfrak{P} \subseteq \mathcal{O}_N$, $\mathfrak{P}' \subseteq \mathcal{O}_M$, and $\mathfrak{p} \subseteq \mathcal{O}_K$.

Conversely we assume $\widetilde{S}_{M/K} \subseteq S_{L/K}$. Let N be the Galois closure of LM over K.

Choose $\sigma \in \operatorname{Gal}(N/M)$. By Čebotarev density theorem, there are infinitely many primes \mathfrak{p} such that $\left(\frac{N/K}{\mathfrak{p}}\right) = \langle \sigma \rangle$. So

$$\sigma(x) \equiv x^{N(\mathfrak{p})} \bmod \mathfrak{P}, \quad \forall x \in \mathcal{O}_N.$$

Consequently, for all $x \in \mathcal{O}_M$,

$$\sigma(x) \equiv x^{N(\mathfrak{p})} \bmod \mathfrak{P}', \quad 1 \equiv x^{N(\mathfrak{p})-1} \bmod \mathfrak{P}'.$$

It follows that $f_{\mathfrak{P}'|\mathfrak{p}}=1$ and $\mathfrak{p}\in \widetilde{S}_{M/K}$. So $\mathfrak{p}\in S_{L/K}$, and \mathfrak{p} splits completely in L. Therefore,

$$\left(\frac{L/K}{\mathfrak{p}}\right) = \sigma|_L = 1, \quad \langle \sigma \rangle = \left(\frac{N/K}{\mathfrak{p}}\right).$$

We infer that for any $\sigma|_L = 1$, and L is invariant under $\operatorname{Gal}(N/M)$. Hence $L \subseteq M$.

Date: December 22, 2020.

For (1), the "only if" part is obvious. We do the "if" part. Let L' be the Galois closure of L. (So $L \subseteq M$ if and only if $L' \subseteq M$.) We have \mathfrak{p} of K splits completely in L if and only if \mathfrak{p} splits completely in L'. This shows the equality $S_{L/K} = S_{L'/K}$. Since M is Galois, we have $\widetilde{S}_{M/K} = S_{M/K}$ by definition. By (2),

$$\widetilde{S}_{M/K} \stackrel{.}{\subseteq} S_{L'/K} \iff L' \subseteq M \iff L \subseteq M.$$

2. Ring class field and $p = x^2 + ny^2$

We are to construct the ring class field of the order $\mathcal{O} = \mathbb{Z}[\sqrt{-n}]$.

Let K be an imaginary quadratic field. Fix $\mathcal{O} \subseteq \mathcal{O}_K$ an order of conductor f. By the existence theorem of global class field theory, there is a unique abelian extension L/K such that the ramified primes dividing f with $\ker(\Phi_{L/K,f}) = P_{K,\mathbb{Z}}(f)$. Then

$$\operatorname{Gal}(L/K) \simeq I_K(f)/P_{K,\mathbb{Z}}(f) \simeq C(\mathcal{O}).$$

Theorem 3. Let n be a positive integer. Then there exists $f_n \in \mathbb{Z}[x]$ monic and irreducible of degree h(-4n) such that if $p \nmid n$ and $p \nmid \operatorname{disc}(f_n)$, then $p = x^2 + ny^2$ if and only if $\left(\frac{-n}{p}\right) = 1$ and $f_n(x) \equiv 0 \mod p$ has an integer solution.

Moreover, $f_n(x)$ in the main theorem may be taken to be the minimal polynomial of α for which α is a real algebraic integer and $L = K(\alpha)$. By taking

$$\mathcal{O} = \left[1, \frac{D + \sqrt{D}}{2}\right], \quad D = -4n,$$

we have $\mathcal{O} = \mathbb{Z}[\sqrt{-n}]$. One can let $K = \mathbb{Q}(\sqrt{-n})$. Then L is constructed as the ring class field of order $\mathbb{Z}[\sqrt{-n}]$. Conversely, if $f_n(x) \in \mathbb{Z}[x]$ is monic of degree h(-4n), satisfies the condition in Theorem 3, then f_n has to be the minimal polynomial of some positive element of L/K.

Lemma 4. Let L be the ring class field of order O. Then L/\mathbb{Q} is a Galois extension and

$$\operatorname{Gal}(L/\mathbb{Q}) \simeq \operatorname{Gal}(L/K) \rtimes \operatorname{Gal}(K/\mathbb{Q}).$$

Here the semi-direct product relation is given by

$$\forall \sigma \in \operatorname{Gal}(L/K), \quad \tau(\sigma) = \sigma^{-1},$$

where τ is the nontrivial element of $Gal(K/\mathbb{Q})$.

Proof. We claim that for each prime ideal \mathfrak{p} of \mathcal{O}_K with $\mathfrak{P} \mid \mathfrak{p}$ in \mathcal{O}_L above,

$$\tau\left(\frac{L/K}{\mathfrak{p}}\right)\tau^{-1} = \left(\frac{\tau(L)/K}{\tau(\mathfrak{p})}\right).$$

To prove this, we note that $N(\mathfrak{p}) = N(\tau(\mathfrak{p}))$, and

$$\left(\tau\left(\frac{L/K}{\mathfrak{p}}\right)\tau^{-1}\right)(\tau(x)) \equiv \tau(x)^{N(\mathfrak{p})} \bmod \tau(\mathfrak{P}).$$

Hence

$$\tau\left(\frac{L/K}{\mathfrak{p}}\right)\tau^{-1}=\left(\frac{\tau(L)/K}{\tau(\mathfrak{p})}\right)\in\operatorname{Gal}(L/K)\cap\operatorname{Gal}(\tau(L)/K).$$

Granting the claim now, we see the following diagram commutes:

$$\begin{array}{ccc} L & \xrightarrow{\sim} & \tau(L) \\ \uparrow & & \uparrow \\ I_{K,\mathfrak{m}} & \xrightarrow{\sim} & I_{K,\tau(\mathfrak{m})} \end{array}$$

In this diagram, we set the modulus $\mathfrak{m} = (f)$; the top horizontal map is simply $x \mapsto \tau(x)$, and the bottom horizontal map is $[\mathfrak{p}] \mapsto [\tau(\mathfrak{p})]$ induced by τ . We infer that

$$P_{K,\mathbb{Z}}(f) = \tau(P_{K,\mathbb{Z}}(f)) = \tau(\ker(\Phi_{L/K,\mathfrak{m}})) = \ker(\Phi_{\tau(L)/K,\mathfrak{m}}).$$

So

$$\ker(\Phi_{L/K,\mathfrak{m}}) = \ker(\Phi_{\tau(L)/K,\mathfrak{m}}).$$

This proves $L = \tau(L)$, namely L/\mathbb{Q} is Galois. Also,

$$\tau\left(\frac{L/K}{\mathfrak{p}}\right)\tau^{-1} = \left(\frac{L/K}{\tau(\mathfrak{p})}\right) = \left(\frac{L/K}{\mathfrak{p}}\right)^{-1}, \quad \tau(\mathfrak{p})\mathfrak{p} = \overline{\mathfrak{p}}\mathfrak{p} = N(\mathfrak{p}).$$

Theorem 5. Set L the ring class field of $\mathcal{O} = \mathbb{Z}[\sqrt{-n}]$. Let f be the conductor of \mathcal{O} . Then for (p,n)=1, $p=x^2+ny^2$ if and only if p splits completely in L.

Proof. Recall that $P(\mathcal{O}, f) \cong P_{K,\mathbb{Z}}(f)$. We obtain

$$p = x^2 + ny^2 \iff p\mathcal{O} = \mathfrak{p}\overline{\mathfrak{p}}, \ \mathfrak{p} \in P(\mathcal{O}, f)$$
$$\iff p\mathcal{O} = \mathfrak{p}\overline{\mathfrak{p}}, \ \mathfrak{p} \in P_{K, \mathbb{Z}}(f)$$
$$\iff p\mathcal{O} = \mathfrak{p}\overline{\mathfrak{p}}, \ \mathfrak{p} \text{ splits completely in } L.$$

The second last equality is due to the class field theory.

School of Mathematical Sciences, Peking University, 100871, Beijing, China $\it Email\ address:\ {\tt daiwenhan@pku.edu.cn}$