

SEQUENCE LISTING

<110> University of Utah Research Foundation

<120> COMPOSITIONS AND METHODS FOR MODULATING
DHR96

<130> 21101.0053P1

<140> Unassigned
<141> 2005-01-13

<150> 60/536,337
<151> 2004-01-13

<160> 60

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1543
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 1
Met Thr Leu Ser Arg Gly Pro Tyr Ser Glu Leu Asp Lys Met Ser Leu
1 5 10 15
Phe Gln Asp Leu Lys Leu Lys Arg Arg Lys Ile Asp Ser Arg Cys Ser
20 25 30
Ser Asp Gly Glu Ser Ile Ala Asp Thr Ser Thr Ser Pro Asp Leu
35 40 45
Leu Ala Pro Met Ser Pro Lys Leu Cys Asp Ser Gly Ser Ala Gly Ala
50 55 60
Ser Leu Gly Ala Ser Leu Pro Leu Pro Leu Ala Leu Pro Leu Pro Met
65 70 75 80
Ala Leu Pro Leu Pro Met Ser Leu Pro Leu Pro Leu Thr Ala Ala Ser
85 90 95
Ser Ala Val Thr Val Ser Leu Ala Ala Val Val Ala Ala Val Ala Glu
100 105 110
Thr Gly Gly Ala Gly Ala Gly Gly Ala Gly Thr Ala Val Thr Ala Ser
115 120 125
Gly Ala Gly Pro Cys Val Ser Thr Ser Ser Thr Thr Ala Ala Ala Ala
130 135 140
Thr Ser Ser Thr Ser Ser Leu Ser Ser Ser Ser Ser Ser Ser Ser
145 150 155 160
Thr Ser Ser Ser Thr Ser Ser Ala Ser Pro Thr Ala Gly Ala Ser Ser
165 170 175
Thr Ala Thr Cys Pro Ala Ser Ser Ser Ser Ser Gly Asn Gly Ser
180 185 190
Gly Gly Lys Ser Gly Ser Ile Lys Gln Glu His Thr Glu Ile His Ser
195 200 205
Ser Ser Ser Ala Ile Ser Ala Ala Ala Ser Thr Val Met Ser Pro
210 215 220
Pro Pro Ala Glu Ala Thr Arg Ser Ser Pro Ala Thr Pro Glu Gly Gly
225 230 235 240

Gly Pro Ala Gly Asp Gly Ser Gly Ala Thr Gly Gly Gly Asn Thr Ser
 245 250 255
 Gly Gly Ser Thr Ala Gly Val Ala Ile Asn Glu His Gln Asn Asn Gly
 260 265 270
 Asn Gly Ser Gly Gly Ser Ser Arg Ala Ser Pro Asp Ser Leu Glu Glu
 275 280 285
 Lys Pro Ser Thr Thr Thr Gly Arg Pro Thr Leu Thr Pro Thr
 290 295 300
 Asn Gly Val Leu Ser Ser Ala Ser Ala Gly Thr Gly Ile Ser Thr Gly
 305 310 315 320
 Ser Ser Ala Lys Leu Ser Glu Ala Gly Met Ser Val Ile Arg Ser Val
 325 330 335
 Lys Glu Glu Arg Leu Leu Asn Val Ser Ser Lys Met Leu Val Phe His
 340 345 350
 Gln Gln Arg Glu Gln Glu Thr Lys Ala Val Ala Ala Ala Ala Ala
 355 360 365
 Ala Ala Ala Gly His Val Thr Val Leu Val Thr Pro Ser Arg Ile Lys
 370 375 380
 Ser Glu Pro Pro Pro Ala Ser Pro Ser Ser Thr Ser Ser Thr Gln
 385 390 395 400
 Arg Glu Arg Glu Arg Glu Arg Asp Arg Glu Arg Asp Arg Glu Arg Glu
 405 410 415
 Arg Glu Arg Asp Arg Asp Arg Glu Arg Glu Arg Glu Gln Ser Ile Ser
 420 425 430
 Ser Ser Gln Gln His Leu Ser Arg Val Ser Ala Ser Pro Pro Thr Gln
 435 440 445
 Leu Ser His Gly Ser Leu Gly Pro Asn Ile Val Gln Thr His His Leu
 450 455 460
 His Gln Gln Leu Thr Gln Pro Leu Thr Leu Arg Lys Ser Ser Pro Pro
 465 470 475 480
 Thr Glu His Leu Leu Ser Gln Ser Met Gln His Leu Thr Gln Gln Gln
 485 490 495
 Ala Ile His Leu His His Leu Leu Gly Gln Gln Gln Gln Gln Gln
 500 505 510
 Ala Ser His Pro Gln Gln Gln Gln Gln His Ser Pro His Ser
 515 520 525
 Leu Val Arg Val Lys Lys Glu Pro Asn Val Gly Gln Arg His Leu Ser
 530 535 540
 Pro His His Gln Gln Gln Ser Pro Leu Leu Gln His His Gln Gln Gln
 545 550 555 560
 Gln Gln Gln Gln Gln Gln Gln Gln His Leu His Gln Gln Gln Gln
 565 570 575
 Gln Gln Gln His Gln Gln Gln Pro Gln Ala Leu Ala Leu Met His
 580 585 590
 Pro Ala Ser Leu Ala Leu Arg Asn Ser Asn Arg Asp Ala Ala Ile Leu
 595 600 605
 Phe Arg Val Lys Ser Glu Val His Gln Gln Val Ala Ala Gly Leu Pro
 610 615 620
 His Leu Met Gln Ser Ala Gly Gly Ala Ala Ala Ala Ala Ala Ala
 625 630 635 640
 Val Ala Ala Gln Arg Met Val Cys Phe Ser Asn Ala Arg Ile Asn Gly
 645 650 655
 Val Lys Pro Glu Val Ile Gly Gly Pro Leu Gly Asn Leu Arg Pro Val
 660 665 670
 Gly Val Gly Gly Gly Asn Gly Ser Gly Ser Val Gln Cys Pro Ser Pro
 675 680 685
 His Pro Ser Ser Ser Ser Ser Gln Leu Ser Pro Gln Thr Pro
 690 695 700
 Ser Gln Thr Pro Pro Arg Gly Thr Pro Thr Val Ile Met Gly Glu Ser
 705 710 720

Cys Gly Val Arg Thr Met Val Trp Gly Tyr Glu Pro Pro Pro Pro Ser
 725 730 735
 Ala Gly Gln Ser His Gly Gln His Pro Gln Gln Gln Gln Ser Pro
 740 745 750
 His His Pro Gln Gln Gln Gln Gln Gln Gln Gln Ser Gln
 755 760 765
 Gln Gln Gln Gln Gln Gln Ser Leu Gly Gln Gln Gln His
 770 775 780
 Cys Leu Ser Ser Pro Ser Ala Gly Ser Leu Thr Pro Ser Ser Ser
 785 790 795 800
 Gly Gly Ser Val Ser Gly Gly Val Gly Gly Pro Leu Thr Pro
 805 810 815
 Ser Ser Val Ala Pro Gln Asn Asn Glu Glu Ala Ala Gln Leu Leu
 820 825 830
 Ser Leu Gly Gln Thr Arg Ile Gln Asp Met Arg Ser Arg Pro His Pro
 835 840 845
 Phe Arg Thr Pro His Ala Leu Asn Met Glu Arg Leu Trp Ala Gly Asp
 850 855 860
 Tyr Ser Gln Leu Pro Pro Gly Gln Leu Gln Ala Leu Asn Leu Ser Ala
 865 870 875 880
 Gln Gln Gln Trp Gly Ser Ser Asn Ser Thr Gly Leu Gly Gly Val
 885 890 895
 Gly Gly Gly Met Gly Gly Arg Asn Leu Glu Ala Pro His Glu Pro Thr
 900 905 910
 Asp Glu Asp Glu Gln Pro Leu Val Cys Met Ile Cys Glu Asp Lys Ala
 915 920 925
 Thr Gly Leu His Tyr Gly Ile Ile Thr Cys Glu Gly Cys Lys Gly Phe
 930 935 940
 Phe Lys Arg Thr Val Gln Asn Arg Arg Val Tyr Thr Cys Val Ala Asp
 945 950 955 960
 Gly Thr Cys Glu Ile Thr Lys Ala Gln Arg Asn Arg Cys Gln Tyr Cys
 965 970 975
 Arg Phe Lys Lys Cys Ile Glu Gln Gly Met Val Leu Gln Ala Val Arg
 980 985 990
 Glu Asp Arg Met Pro Gly Gly Arg Asn Ser Gly Ala Val Tyr Asn Leu
 995 1000 1005
 Tyr Lys Val Lys Tyr Lys His Lys Lys Thr Asn Gln Lys Gln Gln
 1010 1015 1020
 Gln Gln Ala Ala Gln Gln Gln Gln Gln Ala Ala Ala Gln Gln Gln
 1025 1030 1035 1040
 His Gln Gln Gln Gln His Gln Gln His Gln Gln His Gln Gln Gln
 1045 1050 1055
 Gln Leu His Ser Pro Leu His His His His Gln Gly His Gln Ser
 1060 1065 1070
 His His Ala Gln Gln Gln His His Pro Gln Leu Ser Pro His His Leu
 1075 1080 1085
 Leu Ser Pro Gln Gln Gln Gln Leu Ala Ala Ala Val Ala Ala Ala
 1090 1095 1100
 Gln His Gln Ala
 1105 1110 1115 1120
 Lys Leu Met Gly Gly Val Val Asp Met Lys Pro Met Phe Leu Gly Pro
 1125 1130 1135
 Ala Leu Lys Pro Glu Leu Leu Gln Ala Pro Pro Met His Ser Pro Ala
 1140 1145 1150
 Gln Ala Ser
 1155 1160 1165
 Pro His Leu Ser Leu Ser Ser Pro His Gln Gln Gln Gln Gln Gln
 1170 1175 1180
 Gly Gln His Gln Asn His His Gln Gln Gln Gly Gly Gly Gly Gly
 1185 1190 1195 1200

Ala Gly Gly Gly Ala Gln Leu Pro Pro His Leu Val Asn Gly Thr Ile
 1205 1210 1215
 Leu Lys Thr Ala Leu Thr Asn Pro Ser Glu Ile Val His Leu Arg His
 1220 1225 1230
 Arg Leu Asp Ser Ala Val Ser Ser Ser Lys Asp Arg Gln Ile Ser Tyr
 1235 1240 1245
 Glu His Ala Leu Gly Met Ile Gln Thr Leu Ile Asp Cys Asp Ala Met
 1250 1255 1260
 Glu Asp Ile Ala Thr Leu Pro His Phe Ser Glu Phe Leu Glu Asp Lys
 1265 1270 1275 1280
 Ser Glu Ile Ser Glu Lys Leu Cys Asn Ile Gly Asp Ser Ile Val His
 1285 1290 1295
 Lys Leu Val Ser Trp Thr Lys Lys Leu Pro Phe Tyr Leu Glu Ile Pro
 1300 1305 1310
 Val Glu Ile His Thr Lys Leu Leu Thr Asp Lys Trp His Glu Ile Leu
 1315 1320 1325
 Ile Leu Thr Thr Ala Ala Tyr Gln Ala Leu His Gly Lys Arg Arg Gly
 1330 1335 1340
 Glu Gly Gly Gly Ser Arg His Gly Ser Pro Ala Ser Thr Pro Leu Ser
 1345 1350 1355 1360
 Thr Pro Thr Gly Thr Pro Leu Ser Thr Pro Ile Pro Ser Pro Ala Gln
 1365 1370 1375
 Pro Leu His Lys Asp Asp Pro Glu Phe Val Ser Glu Val Asn Ser His
 1380 1385 1390
 Leu Ser Thr Leu Gln Thr Cys Leu Thr Thr Leu Met Gly Gln Pro Ile
 1395 1400 1405
 Ala Met Glu Gln Leu Lys Leu Asp Val Gly His Met Val Asp Lys Met
 1410 1415 1420
 Thr Gln Ile Thr Ile Met Phe Arg Arg Ile Lys Leu Lys Met Glu Glu
 1425 1430 1435 1440
 Tyr Val Cys Leu Lys Val Tyr Ile Leu Leu Asn Lys Gly Thr Trp Phe
 1445 1450 1455
 Asp Leu Gln Asn Pro Phe Ile Gln Cys Ser Cys Tyr Leu Leu Val Arg
 1460 1465 1470
 Phe Val Asn Pro Ala Glu Val Glu Leu Glu Ser Ile Gln Glu Arg Tyr
 1475 1480 1485
 Val Gln Val Leu Arg Ser Tyr Leu Gln Asn Ser Ser Pro Gln Asn Pro
 1490 1495 1500
 Gln Ala Arg Leu Ser Glu Leu Leu Ser His Ile Pro Glu Ile Gln Ala
 1505 1510 1515 1520
 Ala Ala Ser Leu Leu Glu Ser Lys Met Phe Tyr Val Pro Phe Val
 1525 1530 1535
 Leu Asn Ser Ala Ser Ile Arg
 1540

<210> 2
 <211> 4632
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; note =
 synthetic construct

<400> 2
 atgacactga gccgtggccc gtacagcgag ctgcataaaa tgagccttt tcaagacctc 60
 aaactcaaac ggcgcaaaaat cgattcgcga tgcagcagtg acggcgagtc catagcggac 120
 acgtccacct cgtcgccgga cctgctggcg cccatgtcgc cgaagctctg cgacagcggc 180
 tcggcggggg cgtcgctggg ggcatcgctg cccctgcgc tggccctgcc cctgccaatg 240
 gccctgcccac tgccccatgtc gctgccccctg cccctcacgg cggcatcttc ggcgggtacc 300
 gttcgctgg cagcggcgtg ggcgcgggtg gccgagacgg gtggcgccgg cgcggggagga 360

gctggggacag cagtaaacagg	gtcgggagca ggaccatgcg	tctccacgtc gtctacgacg	420
gcagcggcag ccacatcctc	gacctcctcg ctctcgctt	cctcccttc gtcatacctcc	480
acgtcctcca gcacttctc	cgctctgccc acagctggag	cctccctccac ggccacac	540
cccgccagca gcagcagcag	cagtggaaac ggaagtgggg	gcaaaaagtgg tagcatcaag	600
caggagcac a cggagataca	ctcgctgagc agtgcgattt	cggggccgc cgcctcaac	660
gtgatgtcac cgccgcccc	tgagggcagc agatccagtc	cagccaeGCC cgagggaggc	720
ggaccagctg ggcacggaa	tggagcaacg ggaggcggaa	acacgagcgg cggatcaac	780
gctggagtgg ccattaatga	acaccaaaa aatggcaatg	gcagcggcgg gaggcgtcga	840
gcctctcccg attcgcttga	agagaagccc tctaccacaa	cgaccacagg tcgtcaac	900
ctcacgccc cgaatgggt	gcttcctcc gcctcgggg	gcacggggat ttccacagga	960
agcagcggca agctgagcga	ggctggatag agtgtgatac	ggtoctgtaa ggaggagcgc	1020
ttgtctcaacg tatccagcaa	gatgctggtg ttccatcagc	agcgggagca agagacaaa	1080
gcagtgccgg ctgcagcagc	agcagcagcgc gggggccat	tgacggttct agtgcac	1140
tcgcgcatca aatcgagcc	accggccccc gcttcac	ccttcacatc cagcacacaa	1200
agggaaaggg aacgggaaac	cgatcgagag agggatcgc	aaagggaaacg cgagcgggac	1260
cgggaccggg aacgggaaac	ggaacagtcc atcagcttc	cgcagcagca cctaagtccg	1320
gtctccgcca gtccaccac	tcagctgtcc cacggcagc	tgggacccaa cattgtgcag	1380
acgcaccatc ttacccagca	actcacacag cgcgtcgc	tgcccaagag cagccgc	1440
acagagcacc tgctcagtc	gtccatgc aaatccacac	agcagcggc gatccac	1500
catcacctac ttggccagca	gcagcagcgc caggagcgt	cgcacccca gcaacacag	1560
cagcagcaac actcgccca	ctccctggtg cgggtgaaaa	aggaacggaa tgggtgtcag	1620
cggcacttat cgccgcata	ccaaacaaacag tgcgcact	tgccacttcc ccaacagcag	1680
cagcagcgc aacaacaaca	gcaacagcat ctgcatcagc	aacagcaaca gcagcagcat	1740
caccagcgc agccccaggc	actggccctg atgcatcgg	atgcatcgg cttcccttgc	1800
agoaatcggg atgcggccat	tctgtttcg gtgaagagcg	aagtgcacca gcaggtggcc	1860
gcggggctgc cgcatctgt	gcagtcgcgt ggtggggcag	cgccggccgc cgacgcgc	1920
gtggccgctc agcgaatgg	atgtttcage aatgccagga	tcaatggcgt taagccggag	1980
gtgatggag gaccgcttgg	caacctgcgg cccgtggcg	tcgggtggcg aaacggaagt	2040
ggctccgtgc agtgccttc	gcccgcataa tectccctgt	cgtcatectc gcagctgtcg	2100
ccgcagacgc cttcccaag	gcccggccg ggcacgc	ccgtcataat gggcgagagc	2160
tgcgggggtgc gcaccatgtt	ctggggctac gagcctccgc	caccctcggc gggccagtc	2220
caoggccagc acccgcaaca	gcaacagcagc tgcgcacccacc	accagccgc acaacaacag	2280
cagcagcaac aacagcagtc	gcagcagcaa cagcaacagc	agcagcaaca gtcgctggc	2340
cagcagcgc actgccttc	ctcgccgtcg ggggatcgc	tgacgcctc ctcttcgtcc	2400
ggcgggtggt cggtatctgg	cgggggagtg ggcggaccac	tcacaccctc ctcggtggcg	2460
ccgcagaata acgaggaggc	cgcccaactc ctgcctctcc	tgggacagac acgcacccag	2520
gacatgagat caccggccaca	ccccctccgc acaccgcac	cccttaatat ggagcggctg	2580
tggggggggg actactcga	attgcgcggc ggcgcagtc	aggctctgaa tctcagtgtcc	2640
caacagcgc agtggggcag	cagaactcc acgggttttgc	gtggcgttagg cggcggcatg	2700
ggccggacgc acctggaggc	gcccacacg cgcaccgc	ccgaccgcac aggacaaac gcccgcgtt	2760
tgcgtatgtt gcgaggacaa	ggcaccggcgc ctgcactac	gtcactac gcatcatc ac	2820
tgcacaggct tcttcaagcg	gacgggtcgac aaccgcac	ctgcgagggg tgcgagg	2880
ggcacctgcg agataacca	agcacagcgc aaccgttgc	tctacacctg cgtggcggac	2940
tgcacatcgac agggcatgtt	gctgcagac aaccgttgc	atgcacatgc gggcggtcgc	3000
aacagtggcg cctgttacaa	tttgtacaag gtgaagtaca	gtgaagtaca agaagcacaa	3060
cagaagcgc agcagcaggc	cgcccagcagc cagcagcagc	aggcggcggc gcagcagcag	3120
caccagcaac agcagcagca	tcaacagcac cagcaacatc	gttgcactcg agcaacagca	3180
ccgctccacc atcaccacca	ccagggccac cagtcgcacc	acgcgcagca gcagcacccac	3240
ccacagctgt cggccgcacca	cctgtgtcg cgcagcagc	ccgcagcagc agcaacttgc	3300
gcagcagctg cgcagcacca	acagcaacagc caacaacagc	caacaacagc agcaacagca	3360
aagctgtatgg gccggctgtt	ggacatgaa cccatgttcc	gcagcagcagc ggccatgttc	3420
gagttgtgc aaggcccccc	catgcacagt cggggccac	tttgcacccgc tttaagccg	3480
cagcagcgc aacagcaggc	ctcgccgcac ctctcgat	tttgcacccgc tttaagccg	3540
cagcagcgc agggacacca	ccaaaaccac caccagcaac	tttgcacccgc tttaagccg	3600
gctgggtggag gagctcaact	gcccgcgcac ctgtgtgaac	tttgcacccgc tttaagccg	3660
ctAACCAATC ccagcgagat	tgtacatctg cggccacccgc	tttgcacccgc tttaagccg	3720
tccaaaggacc gacagatctc	gtacgagac gctttaggc	tttgcacccgc tttaagccg	3780
tgcgcacgc tggaggacat	agccacactg cgcacttca	tttgcacccgc tttaagccg	3840
tcggagatta gcgagaaact	gtgcaacatc ggcgatttca	tttgcacccgc tttaagccg	3900
tggacaaaaaa agttgcctt	ctacctggag atcccgggg	tttgcacccgc tttaagccg	3960
acggacaagt ggcacgagat	ccttacatcctg accacggcc	tttgcacccgc tttaagccg	4020

aaggccgcgtg	gcgagggagg	aggcagcagg	catggttcgc	cggcgtcaac	gccactgagc	4080
acgcccactg	gtacggcgtt	gagcacacccg	ataccctcgc	ccgccccagcc	actgcacaag	4140
gacgaccgg	agtgggtcag	cgaggtgaac	tgcacccctga	gcacactgca	aacctgcttg	4200
accacgctaa	tggcccgcc	gatacgatg	gagcagctga	agctggacgt	cgggcacatg	4260
gtggacaaga	tgaccccgat	caccatcatg	ttccggcgaa	tcaagctcaa	gatggaggag	4320
tacgtctgcc	tgaagggtta	catactgcta	aacaaaggt	cgtggttcga	tttgc当地	4380
ccattcatac	agtgtctatg	ttaccttctc	gttcgtttt	taaatccagc	agaagtggaa	4440
ctggagagca	tccaggagcg	gtacgtccag	gtgctgcgt	cctacctgca	aaactcctcg	4500
ccgcagaatc	cgcaggcgag	gctcagtgaa	ctgctctccc	acataccaga	gatccaggt	4560
gcgcgttagcc	tgctgctcga	gagcaagatg	ttctatgtgc	ccttcgtgct	caactcggcg	4620
agcataaggt	ag					4632

<210> 3

<211> 803

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 3

Met	Leu	Leu	Glu	Met	Asp	Gln	Gln	Gln	Ala	Thr	Val	Gln	Phe	Ile	Ser
1				5					10				15		
Ser	Leu	Asn	Ile	Ser	Pro	Phe	Ser	Met	Gln	Leu	Glu	Gln	Gln	Gln	
								20		25		30			
Pro	Ser	Ser	Pro	Ala	Leu	Ala	Ala	Gly	Gly	Asn	Ser	Ser	Asn	Asn	Ala
								35		40		45			
Ala	Ser	Gly	Ser	Asn	Asn	Ser	Ala	Ser	Gly	Asn	Asn	Thr	Ser	Ser	
								50		55		60			
Ser	Ser	Asn	Asp	Asn	Asp	Ala	.His	Val							
								65		70		75		80	
Leu	Thr	Lys	Phe	Glu	His	Glu	Tyr	Asn	Ala	Tyr	Thr	Leu	Gln	Leu	Ala
								85		90		95			
Gly	Gly	Gly	Ser	Gly	Ser	Gly	Asn	Gln	Gln	His	His	Ser	Asn	His	
								100		105		110			
Ser	Asn	His	Gly	Asn	His	His	Gln	Gln							
								115		120		125			
Gln	Gln	Gln	His	Gln	Gln	Gln	Gln	Glu	His	Tyr	Gln	Gln	Gln	Gln	
								130		135		140			
Gln	Gln	Asn	Ile	Ala	Asn	Asn	Ala	Asn	Gln	Phe	Asn	Ser	Ser	Tyr	
								145		150		155		160	
Ser	Tyr	Ile	Tyr	Asn	Phe	Asp	Ser	Gln	Tyr	Ile	Phe	Pro	Thr	Gly	Tyr
								165		170		175			
Gln	Asp	Thr	Thr	Ser	Ser	His	Ser	Gln	Gln	Ser	Gly	Gly	Gly	Gly	
								180		185		190			
Gly	Gly	Gly	Asn	Leu	Leu	Asn	Gly	Ser	Ser	Gly	Gly	Ser	Ser	Ala	
								195		200		205			
Gly	Gly	Gly	Tyr	Met	Leu	Leu	Pro	Gln	Ala	Ala	Ser	Ser	Gly	Asn	
								210		215		220			
Asn	Gly	Asn	Pro	Asn	Ala	Gly	His	Met	Ser	Ser	Gly	Ser	Val	Gly	Asn
								225		230		235		240	
Gly	Ser	Gly	Gly	Ala	Gly	Asn	Gly	Gly	Ala	Gly	Gly	Asn	Ser	Gly	Pro
								245		250		255			
Gly	Asn	Pro	Met	Gly	Gly	Thr	Ser	Ala	Thr	Pro	Gly	His	Gly	Gly	Glu
								260		265		270			
Val	Ile	Asp	Phe	Lys	His	Leu	Phe	Glu	Glu	Leu	Cys	Pro	Val	Cys	Gly
								275		280		285			
Asp	Lys	Val	Ser	Gly	Tyr	His	Tyr	Gly	Leu	Leu	Thr	Cys	Glu	Ser	Cys
								290		295		300			

Lys Gly Phe Phe Lys Arg Thr Val Gln Asn Lys Lys Val Tyr Thr Cys
 305 310 315 320
 Val Ala Glu Arg Ser Cys His Ile Asp Lys Thr Gln Arg Lys Arg Cys
 325 330 335
 Pro Tyr Cys Arg Phe Gln Lys Cys Leu Glu Val Gly Met Lys Leu Glu
 340 345 350
 Ala Val Arg Ala Asp Arg Met Arg Gly Gly Arg Asn Lys Phe Gly Pro
 355 360 365
 Met Tyr Lys Arg Asp Arg Ala Arg Lys Leu Gln Val Met Arg Gln Arg
 370 375 380
 Gln Leu Ala Leu Gln Ala Leu Arg Asn Ser Met Gly Pro Asp Ile Lys
 385 390 395 400
 Pro Thr Pro Ile Ser Pro Gly Tyr Gln Gln Ala Tyr Pro Asn Met Asn
 405 410 415
 Ile Lys Gln Glu Ile Gln Ile Pro Gln Val Ser Ser Leu Thr Gln Ser
 420 425 430
 Pro Asp Ser Ser Pro Ser Pro Ile Ala Ile Ala Leu Gly Gln Val Asn
 435 440 445
 Ala Ser Thr Gly Gly Val Ile Ala Thr Pro Met Asn Ala Gly Thr Gly
 450 455 460
 Gly Ser Gly Gly Gly Leu Asn Gly Pro Ser Ser Val Gly Asn Gly
 465 470 475 480
 Asn Ser Ser Asn Gly Ser Ser Asn Gly Asn Asn Asn Ser Ser Thr Gly
 485 490 495
 Asn Gly Thr Ser Gly Gly Gly Gly Asn Asn Ala Gly Gly Gly Gly
 500 505 510
 Gly Gly Thr Asn Ser Asn Asp Gly Leu His Arg Asn Gly Gly Asn Gly
 515 520 525
 Asn Ser Ser Cys His Glu Ala Gly Ile Gly Ser Leu Gln Asn Thr Ala
 530 535 540
 Asp Ser Lys Leu Cys Phe Asp Ser Gly Thr His Pro Ser Ser Thr Ala
 545 550 555 560
 Asp Ala Leu Ile Glu Pro Leu Arg Val Ser Pro Met Ile Arg Glu Phe
 565 570 575
 Val Gln Ser Ile Asp Asp Arg Glu Trp Gln Thr Gln Leu Phe Ala Leu
 580 585 590
 Leu Gln Lys Gln Thr Tyr Asn Gln Val Glu Val Asp Leu Phe Glu Leu
 595 600 605
 Met Cys Lys Val Leu Asp Gln Asn Leu Phe Ser Gln Val Asp Trp Ala
 610 615 620
 Arg Asn Thr Val Phe Phe Lys Asp Leu Lys Val Asp Asp Gln Met Lys
 625 630 635 640
 Leu Leu Gln His Ser Trp Ser Asp Met Leu Val Leu Asp His Leu His
 645 650 655
 His Arg Ile His Asn Gly Leu Pro Asp Glu Thr Gln Leu Asn Asn Gly
 660 665 670
 Gln Val Phe Asn Leu Met Ser Leu Gly Leu Leu Gly Val Pro Gln Leu
 675 680 685
 Gly Asp Tyr Phe Asn Glu Leu Gln Asn Lys Leu Gln Asp Leu Lys Phe
 690 695 700
 Asp Met Gly Asp Tyr Val Cys Met Lys Phe Leu Ile Leu Leu Asn Pro
 705 710 715 720
 Ser Val Arg Gly Ile Val Asn Arg Lys Thr Val Ser Glu Gly His Asp
 725 730 735
 Asn Val Gln Ala Ala Leu Leu Asp Tyr Thr Leu Thr Cys Tyr Pro Ser
 740 745 750
 Val Asn Asp Lys Phe Arg Gly Leu Val Asn Ile Leu Pro Glu Ile His
 755 760 765
 Ala Met Ala Val Arg Gly Glu Asp His Leu Tyr Thr Lys His Cys Ala
 770 775 780

Gly Ser Ala Pro Thr Gln Thr Leu Leu Met Glu Met Leu His Ala Lys
 785 790 795 800
 Arg Lys Gly

<210> 4
<211> 3269
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 4				
ctacgcaaaa taaaacgtac atgaaatgtt attagaatg gatcagcaac	aggcgaccgt	60		
acagtttata tcgtcgctga atatatcgcc gttcagcatg cagctggagc	agcagcagca	120		
gccctccagt cccgctctgg ccggcgggtgg caacagcagc aacaacgcgg	ccagcggtag	180		
caacaacaac agcgccagcg gcaacaacac cagcagcagc agcaacaaca	acaacaacaa	240		
taacaacgcac aatgatgcac acgttctaac gaaattcggag cacaataca	atgcctacac	300		
gttgcagttg gccggaggcg gtgggagtgg cagcggcaat cagcagcacc	acagcaacca	360		
cagcaaccac ggcaaccacc accagcagca gcagcaacaa cagaacagcg	acgcagcaaca	420		
tcagcagcag cagcaagaac actaccagca gcaacagcaa cagaatatcg	ccaacaatgc	480		
caatcaattc aactcctcgt cctactcgta tatatacaat ttcgattcac	agtatataatt	540		
cccgacaggc taccaggaca ccaccccttc acactcgaa cagagcggag	gaggcggtag	600		
cggcggcggt ggcaacctgc taaacggcag ctccggcgcc agtccgccc	gccccggcta	660		
catgctgctc cccccaggcg ccagctccag tggcaataat ggcaatccga	atgcgggcca	720		
catgtctcc ggtccgtgg gcaatggcag cggaggcgct ggcaatggcg	gagcggggcg	780		
caactccggc cccggcaatc ccatggggcgg tacgagcggc acggcgggac	acggcggcga	840		
ggtgatcgac ttcaagcacc tggatcgagga gctttcccccc gttgtggcg	acaaggtag	900		
gggttaccaac tacggctcgc tcacctcgca gtcctgcaag ggattttca	agcgcacccgt	960		
gcagaacaag aaggcttaca cctcggtggc ggagcggctg tgcacatcg	acaagacga	1020		
gccaaggcgg tgccctact gccgattcca gaagtgcctc gaggtggca	tgaagctaga	1080		
ggctgttcga gcgatagaa tgcgtggtag acgcaacaaa ttccgaccct	tgtacaaacg	1140		
ggatcgccgc cgaaagttgc aagtgtatcg gcagcggcag ttggcgtgc	aagcgctcgc	1200		
caactcgatg ggtccggaca tcaagccaaac gccgatctcg cccggctacc	agcaagcata	1260		
tccaaatatg aacattaagc aggaaattca aatacctcgat gtatccatc	tcacccatc	1320		
tccggactcg tcgcccagcc ccatacgcaat tgcgttggga caggtgaac	cgagcacggg	1380		
cgggtttata gccaacggcca tgaacggccgg cactggggc agtggggggcg	gtggtctgaa	1440		
cgaccacaaat tccgtggca acggcaatag cagcaacggc agcagcaac	gcaacaacaa	1500		
cagcagcagc ggcaacggaa ctgtccggagg aggaggtaggc aataatcg	gccccggagg	1560		
aggaggaacc aattccaaacg atggcctgcg tcgcaacggc ggcaatggca	acagcaggtg	1620		
ccacaggcgt ggaataggat ctctcgagaa cacggccgac tcgaaattgt	gcttcgattc	1680		
tggcacacat ccatcgagca cagccgacgc gctaattcgag ccattaaagag	tctcaccgat	1740		
gattcgtgaa ttgtgcaat ctattcgacg tcggaaatgg cagacgcaac	tgtttgcct	1800		
gctgcagaag caaacctaca accaggtgg agtggatctc ttccgagctga	tgtgcaaagt	1860		
gctcgaccag aatttggct cgcaggataga ctgggcacgg aacaccgtct	tcttcagga	1920		
tctgaaggctc gacgaccaaa tgaagctgt gcagcattcc tggcggaca	tgcttggct	1980		
ggatcacctg catcatcgaa tccataacgg cctggccgac gagacgcaac	tgaacaatgg	2040		
tcagggttca aatctgatga gtctgggtt gttggagtg ccacagctgg	gcgattactt	2100		
caacgagctg cagaacaagc tgcaggacat gaaattcgat atggcgact	atgtctgcatt	2160		
gaaattccta atccgttga atccaagtgt acggggattt gtcaacccgga	agaccgtctc	2220		
cgagggacat gataatgtgc aagccgttt gctggactac accctcacct	gctatccgtc	2280		
agtgaatgac aaattcagag ggctagttaa catcttaccc gaaatccatg	ccatggccgt	2340		
tcgcggcgag gatcacctgt acaccaagca ctgtgcggc agtgcggcca	ccaaacgcgt	2400		
gctcatggag atgctgcacg ccaagcgcaa gggatagagg ccgggagaac	gtgacacgg	2460		
atacttaatc atttatgaaa tggtaataac aaggcgggaa ggccctcg	gcaaccgggt	2520		
catggaaaggc gaacgaagga tacagcagata ttccgttata tgaatatgg	aatgcatcat	2580		
cactactacc accaactatc acacctatac acacacatgc acacatttg	tgattcaatg	2640		
ttaatttata ttacgtttac ggttaggtct agtttacgtt taactaatta	attaatttgt	2700		
cttaatttata ttctgttttt attttagtgc cctgataaaag caattttaaa	acacttgaac	2760		

ctaaacgaga atatgttagta gatgttatggta tttaaattta aatacggcaa ggagaaaacac	2820
acttttttag gcattacaaa acaaaaagaag catgagaaat ttttattttata tataacctata	2880
tgaatacgat acttatggat acaaattctat atatattttt atgtaaaatttgcgtacttt	2940
agcgtcctac atattttttta attagaattt ggttatacta tagttttgaa attagtatcg	3000
ttcccacttg aagatcgatt ctgttatttt tttgcgccaa gtgtcttgca tagtatttgc	3060
gtctaatcta atggcaacaa aaaaaatattt ggaaaatcca tacaaaagaaa atgaaaacaa	3120
agcaaaattta ggtgttcatg gtatgaatgt atgtgtatat tataattgtat atttcatcta	3180
agtgtaaagaa aacaatgcaa acaactacct acaacaagat aatgaagagc aagaaaattat	3240
ataaaattaat aaaggcgtg ttaaaaact	3269

<210> 5

<211> 487

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 5

Met Tyr Thr Gln Arg Met Phe Asp Met Trp Ser Ser Val Thr Ser Lys	
1 5 10 15	
Leu Glu Ala His Ala Asn Asn Leu Gly Gln Ser Asn Val Gln Ser Pro	
20 25 30	
Ala Gly Gln Asn Asn Ser Ser Gly Ser Ile Lys Ala Gln Ile Glu Ile	
35 40 45	
Ile Pro Cys Lys Val Cys Gly Asp Lys Ser Ser Gly Val His Tyr Gly	
50 55 60	
Val Ile Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Ser Gln Ser	
65 70 75 80	
Ser Val Val Asn Tyr Gln Cys Pro Arg Asn Lys Gln Cys Val Val Asp	
85 90 95	
Arg Val Asn Arg Asn Arg Cys Gln Tyr Cys Arg Leu Gln Lys Cys Leu	
100 105 110	
Lys Leu Gly Met Ser Arg Asp Ala Val Lys Phe Gly Arg Met Ser Lys	
115 120 125	
Lys Gln Arg Glu Lys Val Glu Asp Glu Val Arg Phe His Arg Ala Gln	
130 135 140	
Met Arg Ala Gln Ser Asp Ala Ala Pro Asp Ser Ser Val Tyr Asp Thr	
145 150 155 160	
Gln Thr Pro Ser Ser Asp Gln Leu His His Asn Asn Tyr Asn Ser	
165 170 175	
Tyr Ser Gly Gly Tyr Ser Asn Asn Glu Val Gly Tyr Gly Ser Pro Tyr	
180 185 190	
Gly Tyr Ser Ala Ser Val Thr Pro Gln Gln Thr Met Gln Tyr Asp Ile	
195 200 205	
Ser Ala Asp Tyr Val Asp Ser Thr Thr Tyr Glu Pro Arg Ser Thr Ile	
210 215 220	
Ile Asp Pro Glu Phe Ile Ser His Ala Asp Gly Asp Ile Asn Asp Val	
225 230 235 240	
Leu Ile Lys Thr Leu Ala Glu Ala His Ala Asn Thr Asn Thr Lys Leu	
245 250 255	
Glu Ala Val His Asp Met Phe Arg Lys Gln Pro Asp Val Ser Arg Ile	
260 265 270	
Leu Tyr Tyr Lys Asn Leu Gly Gln Glu Glu Leu Trp Leu Asp Cys Ala	
275 280 285	
Glu Lys Leu Thr Gln Met Ile Gln Asn Ile Ile Glu Phe Ala Lys Leu	
290 295 300	
Ile Pro Gly Phe Met Arg Leu Ser Gln Asp Asp Gln Ile Leu Leu Leu	
305 310 315 320	

Lys Thr Gly Ser Phe Glu Leu Ala Ile Val Arg Met Ser Arg Leu Leu
 325 330 335
 Asp Leu Ser Gln Asn Ala Val Leu Tyr Gly Asp Val Met Leu Pro Gln
 340 345 350
 Glu Ala Phe Tyr Thr Ser Asp Ser Glu Glu Met Arg Leu Val Ser Arg
 355 360 365
 Ile Phe Gln Thr Ala Lys Ser Ile Ala Glu Leu Lys Leu Thr Glu Thr
 370 375 380
 Glu Leu Ala Leu Tyr Gln Ser Leu Val Leu Leu Trp Pro Glu Arg Asn
 385 390 395 400
 Gly Val Arg Gly Asn Thr Glu Ile Gln Arg Leu Phe Asn Leu Ser Met
 405 410 415
 Asn Ala Ile Arg Gln Glu Leu Glu Thr Asn His Ala Pro Leu Lys Gly
 420 425 430
 Asp Val Thr Val Leu Asp Thr Leu Leu Asn Asn Ile Pro Asn Phe Arg
 435 440 445
 Asp Ile Ser Ile Leu His Met Glu Ser Leu Ser Lys Phe Lys Leu Gln
 450 455 460
 His Pro Asn Val Val Phe Pro Ala Leu Tyr Lys Glu Leu Phe Ser Ile
 465 470 475 480
 Asp Ser Gln Gln Asp Leu Thr
 485

<210> 6
<211> 4262
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 6

gaattcattc	aactgcaaag	agcagccaaa	ttgcgcatac	gccgcgtatg	gccgtcggtg	60
ttagtccccg	tgttcatcg	cgggtgcac	aactgatacc	aagtgtacat	aactacagct	120
acaattgcaa	ctatttcacc	aatcaacggc	agcggcaaca	acatcagcaa	cagcacccgc	180
aaacgtttga	aacgtcacca	aagcttcgca	tttcccacta	ataatttatgt	atacgcacg	240
tatgtttgac	atgtggagca	gcgtcaactc	gaaactggaa	gcacacgcaa	acaatctcg	300
tcaaaggcaac	gtccaaatcg	cgggggaca	aaacaactcc	agcgggtcca	ttaaagctca	360
aatttagata	attccatgca	aagtctgcgg	cgacaagtc	tccggcgtgc	attacggagt	420
gatcacctgc	gagggtctca	aggattctt	tgcagatcg	cagagctccg	tggtcaacta	480
ccagtgtccg	cgcaacaaggc	aatgtgttgt	ggaccgtgtt	aatcgcaacc	gatgtcaata	540
tttagactg	caaaaagtggc	aaaaactggg	aatgagccgt	gatgctgtaa	agttcggcag	600
gatgtccaag	aagcagcgcg	agaaggtcg	ggacgaggt	cgcttccatc	ggggccagat	660
gcgggcacaa	agcgacgcgg	cacccgatag	ctccgtatac	gacacacaga	cgeccctcgag	720
cacgcaccag	ctgcatcaca	acaattacaa	cagctacagc	ggcggctact	ccaaacaacga	780
ggggggctac	ggcagtccct	acggatactc	ggcctccgt	acgcccacagc	agaccatgca	840
gtacgacatc	tcggcggact	acgtggacag	caccacctac	gagccgcgca	gtacaataat	900
cgatccccaa	tttatttagtc	acgccccatgg	cgatataaac	gatgtgctga	tcaagacgct	960
ggccggaggcg	catgccaaca	caaataccaa	actggaaact	gtgcacgaca	tgttccgaaa	1020
gcagccggat	gtgtcgccg	ttctctacta	caagaatctg	ggccaagagg	aactctggct	1080
ggactgcgcc	gagaagctta	cacaaatgtat	acagaacata	atcgaatttg	ctaagctcat	1140
accgggattc	atgcgcctaa	gtcaggacga	tcaagatatta	ctgtcgaaga	cgggctctt	1200
ttagctggcg	attgttcgca	tgtccagact	gcttgcacatc	tcacagaacg	cgggtctctta	1260
cggcgacgtg	atgctgcccc	aggaggcggt	ctacacatcc	gactcgaaag	agatgcgtct	1320
gggtgtcgcc	atcttccaaa	cggccaagtc	gatagccgaa	ctcaaactga	ctgaaaccga	1380
actggcgctg	tatcagagct	tagtgcgtct	ctggccagaa	cgcaatggag	tgcgtggtaa	1440
tacggaaata	caggggtttt	tcaatctgag	catgaatgcg	atccggcagg	agctggaaac	1500
gaatcatgcg	ccgctcaagg	gcatgtcac	cgtgctggac	acactgctga	acaatataacc	1560
caatttccgc	gatatttcca	tcttcacat	ggaatcgctg	agcaagttca	agctgcagca	1620
cccgaaatgtc	gttttccgg	cgctgtacaa	ggagctgttc	tgcatacatt	cgcagcagga	1680

cctgacataa	caagagcagc	agccgttcct	ggagacgacc	gcggacgatg	ttgccgagga	1740
tgcggctgcc	gccggatgtg	tcctgccgcc	ggggcgcccc	cctgccgggc	agcaaccagc	1800
gctgctcgag	gactgagggc	cgcaggatgt	ggcaacaata	attattttag	taaacactgc	1860
actgcgcatg	cagcagatac	aagaacttta	tcatgattta	agctagcata	caaccaagga	1920
tgtgatcctc	gccaaggact	cactaaaaaa	gaactctatc	tatatacata	tatataattat	1980
atatgacaga	gcggatgacg	caaaggaaag	ggaaaatatt	tcaaaaatat	tgttaactca	2040
gttaagactt	ttgcttcgta	gagaaccgaa	accgaaaccg	attgcatttc	gagcaagggg	2100
catcaaactg	attttcgagg	ttatactata	catatatata	cacaaacaca	cacacacaca	2160
tatataatata	tgtaacttcc	aaactttcat	atcctggccc	gagcagatca	gategtctaa	2220
gtacttaaaa	ccaagcgaaa	ttctctacac	cgcacaaccc	aggaccggta	gaccccaata	2280
attcagttcg	tttagtgtt	acccagaaa	gcccgttcc	gatcccgct	aggttgtt	2340
tgccctacgt	tgtaactaaa	gtatgtgtat	tatataatac	gcaaatgtat	gtataactat	2400
gtcgtatcgg	ttatatgcct	aacaacatta	ttttttgtaa	acaacaaaat	cgaatatctc	2460
ggaaaatgtg	ttcttataat	tatattgatt	aatgcaat	caatataatti	acaatttacc	2520
gttacgtttt	tacattatac	ataagacgca	agagaaggaa	acggaagt	aaggattaga	2580
aagctgaata	agaaaaggct	taaggacgag	ctgagtagca	gtttaagtga	gcgagaaatc	2640
gaatgaatac	cagaaaattt	caagcaagca	cataaaagta	tgcaatattt	tgtttaaaaaa	2700
caacttttta	ttagtttctt	aatataaca	taattacgta	catacacaca	cgttatata	2760
ggcttatata	tatctatata	tatataata	tacatgtat	acaaatcccc	atccgggtcc	2820
aaggttttagt	aaaaataaaag	agaaaataaaa	cgaaaaacaa	aaacattttga	tatgaaatcc	2880
tacgcataat	taacaactt	tatttttct	aagactttaaa	cttaattaaa	atggaaacca	2940
aaacagactg	acggaccgac	cccgacagca	tgccacgccc	tcccccggcc	caccctccac	3000
agatcctggc	agaaatttca	aaggagttt	atacacaaat	cgagaaaaga	aattttcaaa	3060
aaaataatata	aaagacaagc	aaacggcgcac	ttttttgtt	gatacattt	aaaagaat	3120
acaattaaat	atctgactga	ctatacaaag	acgttacaca	cacgcataca	catacacaca	3180
catacacgca	tacacacaca	gcttacgata	cataaaattag	ttaaacttag	agtaaacaaa	3240
caacaacaaa	cacattggat	agtaggtat	aattgggtgt	tcttaaataa	accttaaccc	3300
ctcccccggacc	cccgccccact	tgcttaatac	ccaaacgccc	aaaaagcccc	acatttctac	3360
taaatgaaaaa	gcttaatcaa	aactttttt	aaattattca	agtggaaatt	tcagcaggca	3420
ggcataaaata	ttaattaaca	ttaattatag	caagggaaact	tataaataaa	atgtatacaa	3480
caaaaactaca	aaaattaaat	aaattacatt	ttgcaat	cacaaaaat	aaaacatgtat	3540
tttgc当地	cactaaaaat	ccttccctg	aatccaagca	aaaatattta	cactagctt	3600
catagaactg	ggacgaggac	atgaatattt	caatttgagaa	aaaaatctat	gttaatgtaa	3660
tcgatcgtt	tggacatatt	taagttcgac	atttttgtt	ttacaaaaca	aaaaacaaaa	3720
agaagaaaacc	taaagtactt	tatataata	caaaccat	atacaatata	gagaatacaa	3780
aactagttt	aatttataca	aagcaaggaa	gcagcttca	aactcaaaac	aaaaatatcc	3840
ccgaaaaaaaaa	caacaactt	gtttaaaaact	gcmcataata	aagaaaataa	taaacaat	3900
taatctataa	tataaatttga	agtttaattt	attttgaggcg	tcgacaacaa	gaacataat	3960
gtatctttaa	atgatataat	tattttttt	tttgc当地	agttttttt	aaagggttaca	4020
tttttttaa	ataataacaa	aagatcgca	actcgacaag	gtgtaaaat	agttttttt	4080
aatttttttta	tagcatat	aatgcataaa	tattttttt	cgatatttt	attttataaa	4140
aacaaaacaa	aaacactaaa	gaaaaccgaa	aaaacagaag	tcccatat	aaaatgaaat	4200
aaaatgagca	gaacctataa	actgataagg	gaatttgc当地	tattttttt	aaaaagaaaa	4260
ca						4262

<210> 7
<211> 723
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 7
Met Ser Pro Pro Lys Asn Cys Ala Val Cys Gly Asp Lys Ala Leu Gly
1 5 10 15
Tyr Asn Phe Asn Ala Val Thr Cys Glu Ser Cys Lys Ala Phe Phe Arg
20 25 30
Arg Asn Ala Leu Ala Lys Lys Gln Phe Thr Cys Pro Phe Asn Gln Asn
35 40 45

Cys Asp Ile Thr Val Val Thr Arg Arg Phe Cys Gln Lys Cys Arg Leu
 50 55 60
 Arg Lys Cys Leu Asp Ile Gly Met Lys Ser Glu Asn Ile Met Ser Glu
 65 70 75 80
 Glu Asp Lys Leu Ile Lys Arg Arg Lys Ile Glu Thr Asn Arg Ala Lys
 85 90 95
 Arg Arg Leu Met Glu Asn Gly Thr Asp Ala Cys Asp Ala Asp Gly Gly
 100 105 110
 Glu Glu Arg Asp His Lys Ala Pro Ala Asp Ser Ser Ser Asn Leu
 115 120 125
 Asp His Tyr Ser Gly Ser Gln Asp Ser Gln Ser Cys Gly Ser Ala Asp
 130 135 140
 Ser Gly Ala Asn Gly Cys Ser Gly Arg Gln Ala Ser Ser Pro Gly Thr
 145 150 155 160
 Gln Val Asn Pro Leu Gln Met Thr Ala Glu Lys Ile Val Asp Gln Ile
 165 170 175
 Val Ser Asp Pro Asp Arg Ala Ser Gln Ala Ile Asn Arg Leu Met Arg
 180 185 190
 Thr Gln Lys Glu Ala Ile Ser Val Met Glu Lys Val Ile Ser Ser Gln
 195 200 205
 Lys Asp Ala Leu Arg Leu Val Ser His Leu Ile Asp Tyr Pro Gly Asp
 210 215 220
 Ala Leu Lys Ile Ile Ser Lys Phe Met Asn Ser Pro Phe Asn Ala Leu
 225 230 235 240
 Thr Val Phe Thr Lys Phe Met Ser Ser Pro Thr Asp Gly Val Glu Ile
 245 250 255
 Ile Ser Lys Ile Val Asp Ser Pro Ala Asp Val Val Glu Phe Met Gln
 260 265 270
 Asn Leu Met His Ser Pro Glu Asp Ala Ile Asp Ile Met Asn Lys Phe
 275 280 285
 Met Asn Thr Pro Ala Glu Ala Leu Arg Ile Leu Asn Arg Ile Leu Ser
 290 295 300
 Gly Gly Gly Ala Asn Ala Ala Gln Gln Thr Ala Asp Arg Lys Pro Leu
 305 310 315 320
 Leu Asp Lys Glu Pro Ala Val Lys Pro Ala Ala Pro Ala Glu Arg Ala
 325 330 335
 Asp Thr Val Ile Gln Ser Met Leu Gly Asn Ser Pro Pro Ile Ser Pro
 340 345 350
 His Asp Ala Ala Val Asp Leu Gln Tyr His Ser Pro Gly Val Gly Glu
 355 360 365
 Gln Pro Ser Thr Ser Ser His Pro Leu Pro Tyr Ile Ala Asn Ser
 370 375 380
 Pro Asp Phe Asp Leu Lys Thr Phe Met Gln Thr Asn Tyr Asn Asp Glu
 385 390 395 400
 Pro Ser Leu Asp Ser Asp Phe Ser Ile Asn Ser Ile Glu Ser Val Leu
 405 410 415
 Ser Glu Val Ile Arg Ile Glu Tyr Gln Ala Phe Asn Ser Ile Gln Gln
 420 425 430
 Ala Ala Ser Arg Val Lys Glu Glu Met Ser Tyr Gly Thr Gln Ser Thr
 435 440 445
 Tyr Gly Gly Cys Asn Ser Ala Ala Asn Asn Ser Gln Pro His Leu Gln
 450 455 460
 Gln Pro Ile Cys Ala Pro Ser Thr Gln Gln Leu Asp Arg Glu Leu Asn
 465 470 475 480
 Glu Ala Glu Gln Met Lys Leu Arg Glu Leu Arg Leu Ala Ser Glu Ala
 485 490 495
 Leu Tyr Asp Pro Val Asp Glu Asp Leu Ser Ala Leu Met Met Gly Asp
 500 505 510
 Asp Arg Ile Lys Pro Asp Asp Thr Arg His Asn Pro Lys Leu Leu Gln
 515 520 525

Leu Ile Asn Leu Thr Ala Val Ala Ile Lys Arg Leu Ile Lys Met Ala
 530 535 540
 Lys Lys Ile Thr Ala Phe Arg Asp Met Cys Gln Glu Asp Gln Val Ala
 545 550 555 560
 Leu Leu Lys Gly Gly Cys Thr Glu Met Met Ile Met Arg Ser Val Met
 565 570 575
 Ile Tyr Asp Asp Asp Arg Ala Ala Trp Lys Val Pro His Thr Lys Glu
 580 585 590
 Asn Met Gly Asn Ile Arg Thr Asp Leu Leu Lys Phe Ala Glu Gly Asn
 595 600 605
 Ile Tyr Glu Glu His Gln Lys Phe Ile Thr Thr Phe Asp Glu Lys Trp
 610 615 620
 Arg Met Asp Glu Asn Ile Ile Leu Ile Met Cys Ala Ile Val Leu Phe
 625 630 635 640
 Thr Ser Ala Arg Ser Arg Val Ile His Lys Asp Val Ile Arg Leu Glu
 645 650 655
 Gln Asn Ser Tyr Tyr Tyr Leu Leu Arg Arg Tyr Leu Glu Ser Val Tyr
 660 665 670
 Ser Gly Cys Glu Ala Arg Asn Ala Phe Ile Lys Leu Ile Gln Lys Ile
 675 680 685
 Ser Asp Val Glu Arg Leu Asn Lys Phe Ile Ile Asn Val Tyr Leu Asn
 690 695 700
 Val Asn Pro Ser Gln Val Glu Pro Leu Leu Arg Glu Ile Phe Asp Leu
 705 710 715 720
 Lys Asn His

<210> 8
 <211> 2832
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; note =
 synthetic construct

<400> 8

gttattggga	ttggcctgga	gcactcgac	ggacagtaat	tcataaaaat	atgtggtgat	60
aacgcgact	gccgaatctg	cgtcaattc	gtgcgttga	cgtgggtact	aactgctatg	120
ctgtcgccg	gacagttgtt	ctgatacgc	gagttcctgc	ctcaccacac	acgaccacct	180
ccataaaaac	cagecccccc	ccccagcgcc	tccctccaccg	acagcagctg	ctccaccgca	240
ccaccaggag	aggggcaatt	aaaaaatcaa	tcagagggcc	ctaattgaaa	gctgccaccg	300
tgcggatgtc	gcccggaaag	aactgcgcgg	tgtgcgggga	caaggctctg	ggctacaact	360
tcaatgcgtt	cacctgcgag	agctgcaagg	cgttcttccg	acggaacgcg	ctggccaaga	420
agcagttcac	ctgccccttc	aaccaaaaact	gcgacatcac	tgtggtcaact	cgacgcttct	480
gccagaaatg	ccgcctgcgc	aagtgcctgg	atatcggtat	gaagagtgaa	aacattatgt	540
ccgaggagga	caagctgatc	aaggcgcc	agatcgagac	caaccgggcc	aagcgacgccc	600
tcatggagaa	ccgcacggat	gcgtgcgacg	ccgatggccg	cgaggaaagg	gatcacaag	660
cgccggccga	tagcagcagc	agcaaccttg	accactactc	gggttcacag	gactcgcaga	720
gctgcggctc	ggcggacagc	ggggccaatg	ggtgctccgg	cagacaggcc	agttcgccgg	780
gcacacaggt	caatccgctt	cagatgacgg	ccgagaagat	agtcgaccag	atcgatccg	840
acccggatcg	agcctcgccag	gccatcaacc	ggttgcgcg	cacgcagaaa	gaggctatat	900
cggtgatgga	gaaggtaatc	agctcacaaa	aggacgcctt	aaggctggtg	tcgcatttga	960
tcgactatcc	aggcgacgca	ctcaagatca	tttcaagtt	tatgaactcg	ccctttaacg	1020
cgcgtacagt	attcacaaaa	ttcatgagct	cacccacgga	cgccgttgaa	attatctcaa	1080
agatagttga	ttcgcccccg	gacgtggtgg	agttcatgca	gaacttgcgt	cactcgccag	1140
aggacgccat	cgatataatg	aacaagttca	tgaatacccc	agcggaggccg	ctgcgcattc	1200
ttaaccgaat	cctaagcgcc	ggaggagcga	acgcagccca	gcagacagca	gaccgcaagc	1260
cattgctgga	caaggagccg	gcccgtgaagc	ctgcagcc	agcggagcga	gctgatactg	1320
tcattcaaag	catgctggc	aacagtccgc	caatttcgc	acatgatgt	gccgtggatc	1380
tgcagtacca	ctcgcccggt	gtcggggagc	agcccagtagc	atcgagtagc	caccccttgc	1440

cttacatagc caactcgccg gacttcgatc tgaagacctt catgcagacc aactacaacg	1500
acgagcccag tctggacagt gatTTtagca ttaactcaat cgaatcggtg ctatccgagg	1560
tgatccgcat tgagtaccag gcTTcaata gcataacaaca agggcatcg cgctaaagg	1620
aggagatgtc ctacggact cagtctacgt acggtgatg caattcggct gcaaacaata	1680
gccagccgca cctgcagcaa cccatctgcg ccccatccac ccagcagtt gatcgcgac	1740
taaacgaggc ggagcaaATG aagctgcggg agctgcact ggccagcgg gcttttatg	1800
atcccgtgga cgaggacctc aggcctcga tcatggcga tcatcgatt aagcccgacg	1860
acactcgcca caacccaaag ctattgcagc tcatcaatct gacggcggtg gccatcaagc	1920
ggcttatcaa aatggccaag aagattacag cattccgtga catgtgccag gaggaccagg	1980
tggccctact caaaggTggc tgcacagaaa tcatgataat ggcgtccgtatgatTTacg	2040
acgacgatcg cgccgcctgg aagtacccc ataccaaaga gaacatggc aacatacgca	2100
ctgacctgct caagttgcc gaaggcaata tctacgagga gcacaaaaag ttcatcacaa	2160
cgttgcgaa gaagtggcgc atggacgaga acataatct gatcatgtgt gccattgtcc	2220
tttttacctc ggctcgatcg cgagtgtac acaaagacgt gattagattt gAACAGAAATT	2280
cctactatta tcttctgcga agatatctgg agagtgttta ttctggctgt gaggcgagaa	2340
acgcgttat caagctaatt caaaagattt cagatgttga gcgtctgaac aagttcataa	2400
ttaatgtcta ttGAATGTT aaccatccc aggtggagcc ttgcgtcggt gaaatattcg	2460
attgaaaaaa tcactagaca accgatgcgt gtcgggcatt taatgcctat ttgtatgccc	2520
aatgatgaat ggtcaacaag ctgtatgtt ttgtttttt gatgtctgtt ttatcttgc	2580
gctgtatgt ttagattttt atcgaatgtt attgttagat ttgcataatc tgcatagatt	2640
ttatattttt acatcaaaga gaggatattt aggataccaa gtgcaaagca acacaatcta	2700
tatgatgtt acaccgttta cctagttca aataaaactag acgataatgc aataactaac	2760
tttggaaagcgt gggttctgtt caaaaaggaa aaaagacaaa aaaaataaaac tgacttttgag	2820
aaccagtgtt aa	2832

<210> 9

<211> 704

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 9

Met Met Lys His Pro Gln Asp Leu Ser Val Thr Asp Asp Gln Gln Leu			
1	5	10	15
Met Lys Val Asn Lys Val Glu Lys Met Glu Gln Glu Leu His Asp Pro			
20	25	30	
Glu Ser Glu Ser His Ile Met His Ala Asp Ala Leu Ala Ser Ala Tyr			
35	40	45	
Pro Ala Ala Ser Gln Pro His Ser Pro Ile Gly Leu Ala Leu Ser Pro			
50	55	60	
Asn Gly Gly Gly Leu Gly Leu Ser Asn Ser Ser Asn Gln Ser Ser Glu			
65	70	75	80
Asn Phe Ala Leu Cys Asn Gly Asn Gly Asn Ala Gly Ser Ala Gly Gly			
85	90	95	
Gly Ser Ala Ser Ser Gly Ser Asn Asn Asn Ser Met Phe Ser Pro			
100	105	110	
Asn Asn Asn Leu Ser Gly Ser Gly Ser Gly Thr Asn Ser Ser Gln Gln			
115	120	125	
Gln Leu Gln Gln Gln Gln Gln Gln Ser Pro Thr Val Cys Ala Ile			
130	135	140	
Cys Gly Asp Arg Ala Thr Gly Lys His Tyr Gly Ala Ser Ser Cys Asp			
145	150	155	160
Gly Cys Lys Gly Phe Phe Arg Arg Ser Val Arg Lys Asn His Gln Tyr			
165	170	175	
Thr Cys Arg Phe Ala Arg Asn Cys Val Val Asp Lys Asp Lys Arg Asn			
180	185	190	
Gln Cys Arg Tyr Cys Arg Leu Arg Lys Cys Phe Lys Ala Gly Met Lys			
195	200	205	

Lys Glu Ala Val Gln Asn Glu Arg Asp Arg Ile Ser Cys Arg Arg Thr
 210 215 220
 Ser Asn Asp Asp Pro Asp Pro Gly Asn Gly Leu Ser Val Ile Ser Leu
 225 230 235 240
 Val Lys Ala Glu Asn Glu Ser Arg Gln Ser Lys Ala Gly Ala Ala Met
 245 250 255
 Glu Pro Asn Ile Asn Glu Asp Leu Ser Asn Lys Gln Phe Ala Ser Ile
 260 265 270
 Asn Asp Val Cys Glu Ser Met Lys Gln Gln Leu Leu Thr Leu Val Glu
 275 280 285
 Trp Ala Lys Gln Ile Pro Ala Phe Asn Glu Leu Gln Leu Asp Asp Gln
 290 295 300
 Val Ala Leu Leu Arg Ala His Ala Gly Glu His Leu Leu Leu Gly Leu
 305 310 315 320
 Ser Arg Arg Ser Met His Leu Lys Asp Val Leu Leu Ser Asn Asn
 325 330 335
 Cys Val Ile Thr Arg His Cys Pro Asp Pro Leu Val Ser Pro Asn Leu
 340 345 350
 Asp Ile Ser Arg Ile Gly Ala Arg Ile Ile Asp Glu Leu Val Thr Val
 355 360 365
 Met Lys Asp Val Gly Ile Asp Asp Thr Glu Phe Ala Cys Ile Lys Ala
 370 375 380
 Leu Val Phe Phe Asp Pro Asn Ala Lys Gly Leu Asn Glu Pro His Arg
 385 390 395 400
 Ile Lys Ser Leu Arg His Gln Ile Leu Asn Asn Leu Glu Asp Tyr Ile
 405 410 415
 Ser Asp Arg Gln Tyr Glu Ser Arg Gly Arg Phe Gly Glu Ile Leu Leu
 420 425 430
 Ile Leu Pro Val Leu Gln Ser Ile Thr Trp Gln Met Ile Glu Gln Ile
 435 440 445
 Gln Phe Ala Lys Ile Phe Gly Val Ala His Ile Asp Ser Leu Leu Gln
 450 455 460
 Glu Met Leu Leu Gly Gly Glu Leu Ala Asp Asn Pro Leu Pro Leu Ser
 465 470 475 480
 Pro Pro Asn Gln Ser Asn Asp Tyr Gln Ser Pro Thr His Thr Gly Asn
 485 490 495
 Met Glu Gly Gly Asn Gln Val Asn Ser Ser Leu Asp Ser Leu Ala Thr
 500 505 510
 Ser Gly Gly Pro Gly Ser His Ser Leu Asp Leu Glu Val Gln His Ile
 515 520 525
 Gln Ala Leu Ile Glu Ala Asn Ser Ala Asp Asp Ser Phe Arg Ala Tyr
 530 535 540
 Ala Ala Ser Thr Ala Ala Ala Ala Ala Ala Val Ser Ser Ser Ser
 545 550 555 560
 Ser Ala Pro Ala Ser Val Ala Pro Ala Ser Ile Ser Pro Pro Leu Asn
 565 570 575
 Ser Pro Lys Ser Gln His Gln Gln His Ala Thr His Gln Gln
 580 585 590
 Gln Gln Glu Ser Ser Tyr Leu Asp Met Pro Val Lys His Tyr Asn Gly
 595 600 605
 Ser Arg Ser Gly Pro Leu Pro Thr Gln His Ser Pro Gln Arg Met His
 610 615 620
 Pro Tyr Gln Arg Ala Val Ala Ser Pro Val Glu Val Ser Ser Gly Gly
 625 630 635 640
 Gly Gly Leu Gly Leu Arg Asn Pro Ala Asp Ile Thr Leu Asn Glu Tyr
 645 650 655
 Asn Arg Ser Glu Gly Ser Ser Ala Glu Glu Leu Leu Arg Arg Thr Pro
 660 665 670
 Leu Lys Ile Arg Ala Pro Glu Met Leu Thr Ala Pro Ala Gly Tyr Gly
 675 680 685

Thr Glu Pro Cys Arg Met Thr Leu Lys Gln Glu Pro Glu Thr Gly Tyr
 690 695 700

<210> 10
<211> 3248
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 10		
agttaattc cagtgacgtt ggaagaaaaca actgcaaaag gcaaaaacaa agacaatgtt	60	
tataagctgt atattccgtt ttgattgata taaaatgaata tatgcagtgc gccagttata	120	
caactgcctt gcaaaaagtca ctcattaaat aaaaaacgcc cgagatgaat ttcacagcgg	180	
cggcaacaag tgcaataata gtaaaaaatc aaaagccaaa caacgaaatc tctcccaaaa	240	
aaacgaagaa gcgtgtcgcg gtgcacaaaaaaa gaaaacaaaaa atagaaaaat acacaacaaa	300	
ataatacggg gaaacgttaa ttataacgg ccacaaaatc gcataaagaa atcaacaagt	360	
gtgtgtctgc ctttttttcc atattcgctt tcattcatgc ggtaaactca acaataacaa	420	
ctcaaaaatag caacaacaaac aataacaata tcaacaagag cagcagcagt cgctgataaa	480	
agccctgcag ctAAAACAAAC aacaaaacaaa caaagatagt tagaaaaaac atcgtctggc	540	
catttagctt taattgcgg tcattacttc attactatgtt gattggatct tcccggccca	600	
cttggtaaaa aaaaatggataa atactggta tgaagcatga tgaagcatcc gcaggatctg	660	
agtgtcacgg atgaccagca gttaatgaag gtgaacaagg tggagaagat ggagcaggag	720	
ttgcacgacc ccgaatcgga gagccacata atgcacgcgg atgcacgcgg ctctgcctat	780	
ccggctgcct cgcagccccca cagtcggatc ggcctcgccc tcagccccca tggcggtggg	840	
ctgggactgaa gcaacagtag caaccagagc agcgagaact ttgcgcctg caacggaaac	900	
ggaaatgcgg gcagcgcagg aggccggaaatg gccagcagtgc gcagcaacaa caacaacacg	960	
atgttctcac ccaacaacaa cttgagcgga agccggaaatg ggactaacag cagtcagcag	1020	
caattgcagc agcaacaaca acagcaatca ccgcggatct ggcgcatttg tggagatcgg	1080	
gcgcacggca aacattatgg agcctccagc tgcgacggct gcaaaggatt cttcaggagg	1140	
agtgtcagga aaaatcatca gtacacttgc agatttgcgc gaaactgcgt tttggacaag	1200	
gacaaacggg atcagtgcgg ctactgcgg ctgaggaatg gcttcaaggc gggcatgaag	1260	
aaggaggcgg tgcaaaaacgaa gcccggatcgcc attagctgc gccgcaccc tcattgcac	1320	
ccggatccgg gcaatgggtt gtctgtgatt tccttggta aggccggagaa tgagtgcgt	1380	
cagtgcagg caggcgcgtc catggagcca aacattaacg aggacccctc caacaagcag	1440	
ttcgcgagca tcaacgcgtt ctgcgagtcg atgaagcagc agctgcgtac cctgggtggaa	1500	
tgggctaaggc agattccggc ctttaacgg ctgcagctgg atgaccaggat ggcactgcata	1560	
cgcgcctatg ctggcgagca tttgtcttc ggcctgtctc gtcgttcgt gcaatttgcag	1620	
gatgttctcc tgctgagcaaa caattgtgtg atcacaaggc actgtccaga tcccccttgc	1680	
tcgcgcattt tggacatctc ccggatcgcc gcccgtatca tcgatgaact ggtgcacggc	1740	
atgaaggatg tgggtatcgat tgacactgaa ttgcgttgc tcaaggccct agtcttcttc	1800	
gatccaaatg ccaagggtct taatgaaaccg catcgatca aatcgctacg gcatcagata	1860	
ctcaataatc tcgaggacta catatcgat cggcaataacg agtgcgcgg tcgcgttggc	1920	
gagattctgc tcatcctgcc gttctgcag tctattacat ggcagatgtat cgagcagatc	1980	
cagtttgcac agatcttgg agtggccacat ttgatttcat tactgcagga aatgttgcgt	2040	
ggaggagagt tggccgacaa tcctctgcgg ctatcgccg ccaatcagtc aaatgactac	2100	
cagagtccca cccacacagg caacatggag ggcggtaatc aagttactc ctctctggac	2160	
tcgtctggcca cgtccgggtt tcctggctcg catagtctgg acctggaggt gcagcacatt	2220	
caggctctta tcgaggcgaa cagtcggat gattccttcc gggccctacgc ggcgcacact	2280	
gcagcggcag ccgtgcagc cgtctcgatcc tcctcttcgtt caccggcatc cgttgcgtca	2340	
gcctcgatct tcctccgtt caacagcccc aagtccaaac atcaacatca gcaacatgcg	2400	
acgcattcagc aacaacacgg gagtcctac ttggacatgc ccgtcaagca ctacaatggc	2460	
agtccggatcg gaccgcgtcc aacacacggc acgtccccaga ggatgcattcc ctaccaaaa	2520	
gcagtcgcct cggccgtcga agtgcgcggc gggggccggc gattgggtct ggcgcaccc	2580	
cccgatattt cgtcaacgaa gtacaaccgg agcgagggtt gcaatgcgcg ggagctgcgt	2640	
cgacgaactc cactgaagat ccgggtcccc gagatgttccaa ccgcacccgc tggttatgaa	2700	
acggaaccct gtcgcgtac acttaaacag gagccagaga ctgggttacta gaagaataac	2760	
gaacgggtca atatgcgtt tgcaatagga caccctttaa gcacacaacc catacacata	2820	
caggcccttc tttgtgtac tccccccaccaat gtcgttatata gagatgaaat tgaaatgaa	2880	

aacttactta	attgttatgc	cttgaaccat	tttgatactt	tttatttagtc	ctaagtaggt	2940
attttggaaa	tttgtgctta	attttaatg	ttaacgcag	ttgcaatata	tttttggagt	3000
catatttgc	tcaagaagtt	tattatatac	aattatacta	tatataataca	ccatttagca	3060
tgtactgagt	tttgtggta	tttggttatc	tttatacttgt	tgctggatca	caaaacattc	3120
atataaggcc	atgcaatata	ttgttttagg	ttagggtgtt	gtctagatta	tgctgaaaagt	3180
gtaatatata	tttaatttta	aacaaaagaac	tatTTTata	tgaatatgtt	taatatacaa	3240
actatttc						3248

<210> 11
<211> 556
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 11
 Met Asp Glu Asp Cys Phe Pro Pro Leu Ser Gly Gly Trp Ser Ala Ser
 1 5 10 15
 Pro Pro Ala Pro Ser Gln Leu Gln Gln Leu His Thr Leu Gln Ser Gln
 20 25 30
 Ala Gln Met Ser His Pro Asn Ser Ser Asn Asn Ser Ser Asn Asn Ala
 35 40 45
 Gly Asn Ser His Asn Asn Ser Gly Gly Tyr Asn Tyr His Gly His Phe
 50 55 60
 Asn Ala Ile Asn Ala Ser Ala Asn Leu Ser Pro Ser Ser Ser Ala Ser
 65 70 75 80
 Ser Leu Tyr Glu Tyr Asn Gly Val Ser Ala Ala Asp Asn Phe Tyr Gly
 85 90 95
 Gln Gln Gln Gln Gln Gln Ser Tyr Gln Glu His Asn Tyr Asn
 100 105 110
 Ser His Asn Gly Glu Arg Tyr Ser Leu Pro Thr Phe Pro Thr Ile Ser
 115 120 125
 Glu Leu Ala Ala Ala Thr Ala Ala Val Glu Ala Ala Ala Ala Ala Thr
 130 135 140
 Val Ser Ser Pro Ser Val Gly Gly Pro Pro Pro Val Arg Arg Ala Ser
 145 150 155 160
 Leu Pro Val Gln Arg Thr Val Ser Pro Ala Gly Ser Thr Ala Gln Ser
 165 170 175
 Pro Lys Leu Ala Lys Ile Thr Leu Asn Gln Arg His Ser His Ala His
 180 185 190
 Ala His Ala Leu Gln Leu Asn Ser Ala Pro Asn Ser Ala Ala Ser Ser
 195 200 205
 Pro Ala Ser Ala Asp Leu Gln Ala Gly Arg Leu Leu Gln Ala Pro Ser
 210 215 220
 Gin Leu Cys Ala Val Cys Gly Asp Thr Ala Ala Cys Gln His Tyr Gly
 225 230 235 240
 Val Arg Thr Cys Glu Gly Cys Lys Gly Phe Phe Lys Arg Thr Val Gln
 245 250 255
 Lys Gly Ser Lys Tyr Val Cys Leu Ala Asp Lys Asn Cys Pro Val Asp
 260 265 270
 Lys Arg Arg Arg Asn Arg Cys Gln Phe Cys Arg Phe Gln Lys Cys Leu
 275 280 285
 Val Val Gly Met Val Lys Glu Val Val Arg Thr Asp Ser Leu Lys Gly
 290 295 300
 Arg Arg Gly Arg Leu Pro Ser Lys Pro Lys Ser Pro Gln Glu Ser Pro
 305 310 315 320
 Pro Ser Pro Pro Ile Ser Leu Ile Thr Ala Leu Val Arg Ser His Val
 325 330 335

Asp Thr Thr Pro Asp Pro Ser Cys Leu Asp Tyr Ser His Tyr Glu Glu
 340 345 350
 Gln Ser Met Ser Glu Ala Asp Lys Val Gln Gln Phe Tyr Gln Leu Leu
 355 360 365
 Thr Ser Ser Val Asp Val Ile Lys Gln Phe Ala Glu Lys Ile Pro Gly
 370 375 380
 Tyr Phe Asp Leu Leu Pro Glu Asp Gln Glu Leu Leu Phe Gln Ser Ala
 385 390 395 400
 Ser Leu Glu Leu Phe Val Leu Arg Leu Ala Tyr Arg Ala Arg Ile Asp
 405 410 415
 Asp Thr Lys Leu Ile Phe Cys Asn Gly Thr Val Leu His Arg Thr Gln
 420 425 430
 Cys Leu Arg Ser Phe Gly Glu Trp Leu Asn Asp Ile Met Glu Phe Ser
 435 440 445
 Arg Ser Leu His Asn Leu Glu Ile Asp Ile Ser Ala Phe Ala Cys Leu
 450 455 460
 Cys Ala Leu Thr Leu Ile Thr Glu Arg His Gly Leu Arg Glu Pro Lys
 465 470 475 480
 Lys Val Glu Gln Leu Gln Met Lys Ile Ile Gly Ser Leu Arg Asp His
 485 490 495
 Val Thr Tyr Asn Ala Glu Ala Gln Lys Lys Gln His Tyr Phe Ser Arg
 500 505 510
 Leu Leu Gly Lys Leu Pro Glu Leu Arg Ser Leu Ser Val Gln Gly Leu
 515 520 525
 Gln Arg Ile Phe Tyr Leu Lys Leu Glu Asp Leu Val Pro Ala Pro Ala
 530 535 540
 Leu Ile Glu Asn Met Phe Val Thr Thr Leu Pro Phe
 545 550 555

<210> 12
 <211> 5181
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; note =
 synthetic construct

<400> 12
 ctcggccatt ggagggcccc tgcctgtgg cagcagcttg cccagcttcc aggagaccta 60
 ctcttgaag tacaacagca gcagcgtag cagccccagg caggcgctt cctcctccac 120
 cgcggccccc acgcccactg accaggtgt gaccctcaag atggacgagg actgcttccc 180
 gcctctgtcc ggccgcttgg gtgccagtcc gccccccccc tcccagctcc agcagctgca 240
 cacccctgcag tctcaggccc agatgtcgca tcccaacagc agcaacaaca gcagcaacaa 300
 cgccggcaac agccacaaca acagtgggg ctacaactac cacggccact tcaatgccat 360
 caatgccagc gccaatctgt cgcccgactc ctccggcagt tccctctacg aatataatgg 420
 tgtttccgca gcccacaact tctacggaca acagcaggcg cagcaacagc aaagctatca 480
 gcaacataac tacaactcgc acaatggcgca gcttactcg ctgcccacgt ttcccacgat 540
 ttccggagctg gctcgccca ctgtcgctgt cgaagctcg gccggccca cagtctcc 600
 cccttcgggt ggcggccgc cgccagactc ccggccatcg ctggccgttc agcgaaccgt 660
 ttccggccagg ggctccacgg cgccaggccc caagctggcc aagatcacac tgaaccagcg 720
 gcactcccat gccccatggcc atggccctaca gctcaactcg gcacccaatt cggccggcaag 780
 ttccggccagg agtgcggatc tgcaggcgcc cgctttgtc caggctccgt cgcagctgt 840
 tgcctgttgc ggcgacaccg ccgcctgcca gcattatgg gtgcgaacct gcgagggatg 900
 caagggatcc ttcaagcgga ccgtgcagaa gggctccaag tatgtctgcc tagccgacaa 960
 gaattggcccg gtggacaaga ggcggcccaa ccgttgcacag ttctggccgt tccagaagtg 1020
 cctggctgta ggcatggtca aggaagtggt ggcgcacggac tcgttgaagg gtcggccgg 1080
 gagactggcc tcaaaacccgaa aatcgccccca ggagtcggca ccatcaccac ccatctcg 1140
 gatcacggcc ctgggtcgca gccatgtcgca cacgactccg gatccctcg tccctggacta 1200
 cagccactat gaggagcagt cgatgagcga ggcagataag gtgcacacgt ttaccagct 1260
 gctgaccagc tccgtggacg tgcataagca gttcgccgag aagattcccg gctacttcga 1320

tctcctgccc	gaggatcagg	agctgcttt	ccagagcgca	tcgctggaa	tgttcgtcct	1380
gcccgtggcc	tatcgccca	ggatcgatga	caccaagctg	atcttctgca	acggcacgg	1440
gctccaccgc	acccagtgcc	tgcgctcctt	cggcgagtgg	ctcaacgaca	tcatggagtt	1500
cagccgcage	ctgcacaacc	tggagatcg	catctccgc	ttcgctgc	tctgtgcct	1560
aaccctgtac	acagaacgcc	atggcctcg	ggagccgaag	aagggtggagc	agctccagat	1620
gaagatcatt	ggcagtctgc	gcgaccacgt	cacctacaat	gccgaggccc	agaagaagca	1680
gcactacttc	agccgcctgc	tggcaagct	gccggagctg	aggtccctga	gtgtccaggg	1740
actgcagagg	atcttctacc	tgaagctgga	ggacctgg	cccgcgccag	ctctcatcga	1800
gaacatgttc	gtcaccacat	tgcccttcta	gaggcgatca	tcaagcgtat	catcacaact	1860
tgcttcctta	aactagcccc	taagttatgc	ctccttagat	atacagagaa	aggaccccatt	1920
aggacggacg	caactagctt	tagtagaacc	ctgaaaataaa	taaatctcac	aacagcaaaa	1980
acaaaaccga	accgaacaga	aatgaagcga	atagcagacc	caggccatat	cttttagtgta	2040
gagctaggta	gttagccgga	cagccccggc	tccttcgata	attacggaca	tgcatatttg	2100
agaggggggtt	tccagtgcac	agcctatggc	tctgctgtga	ctcgctagca	ccgcgagctc	2160
caacttggtg	acgttaattt	ttaatttgtt	taatttcaac	tgtccaaacc	ggaatcaacg	2220
gccccggcagc	caatggcaac	actttctatc	ccggacttc	gaagctgttgc	caacattcgg	2280
caactacggac	ggacaaaaca	cgagacagaaa	cagaactcac	tcttgccttc	ttgccttttg	2340
ctaacttcta	gtcaatttgc	tttaggcgaat	caaataaata	aataaaaaaa	ataagggggt	2400
gcagcgttag	tgttatataa	tttctatgcc	agaccccagc	ggttctcttc	aaggaaatcc	2460
cccaatgagt	tgcacaaattt	gggataaaagt	acgataggct	attattctta	tatttctttt	2520
aaaagctcga	agatagatga	gaactgtgt	gaaatccact	atcatatcat	atagttgtta	2580
taagccgtgc	ttggccctaag	ctaagttaga	cccgcataaa	gttgatagcc	caaccaagta	2640
tttcgggttat	ttccttagact	aaggccttaa	tagttatagg	ctaagactat	tctgttcgtat	2700
ttatcaatgc	accaaacagt	gcacaatgag	agtataagta	ccttcttgc	atgattgtgt	2760
ctgacacaga	gagagttgca	cacaagcaca	caaactagcc	gataagttac	taaatacagat	2820
ctaataatcta	atataatataa	tataatataa	tatataataag	tccaagtatt	cgaaatatcca	2880
agaacccttg	cataaccgca	gttcgtacgt	tccaaacgag	aaaagaactt	tatthaatcc	2940
tagaccactc	catctaagtt	ctcaaagaat	cgtatgttg	tcgttggatc	tgtctctcta	3000
tatatgtgt	tgtgttatct	cgatagaaaa	ccctctatg	tgattttgt	atagattggc	3060
attgaactct	atataatttt	atataatatgt	ctataatata	tatacagca	taaatatata	3120
tttttatgtc	taactttgt	atgtttatt	ttatacgtac	cactttctt	tgataaaca	3180
aagtaaaaaaa	ctcgtagat	agcaaataattt	tcaaaaggat	gttacgagga	cttttcaaaag	3240
taccagtctt	tagcgacttt	ccaattaacg	ttcgatataa	cgaaagacag	attttctatg	3300
tgttaaatttgc	aagacttcta	taactataac	taatgtcag	ctaagagca	aaacacaaat	3360
ccacaaatcc	ccaaaggtaa	taacatatct	cttcaagctt	tcgatgtc	ggaacacgta	3420
gaaccgaaac	ccaaatgtta	ctaaatccat	ttaaataatcg	gcaagccggg	ggcgtcggcg	3480
tggtaatac	gttctcatta	cctatacataat	tttagatagat	cattattaaa	ttattgtaca	3540
tgttagcacat	gaaatgttcg	acaactagat	tttgtaccat	cttaaaagaag	'aacctaggcc	3600
aagctaaact	aagtataaac	tatgtatctgc	atgcggctga	gctgtagct	tgagaaatat	3660
acctgcgtgg	atctaagtga	aatgggacac	tttgaattt	gatatgaaac	gttctaaacg	3720
cgacgtacta	actctcccaa	ctcgaaactc	taccaattaa	gagaaaattcc	cagaaaaatgt	3780
gtcaggattt	caaagcgtcc	catctcaatt	gaacccaccc	aatcaacaaa	tacaaatcct	3840
agggaaatgg	agaggttcag	caaccataga	gcaatatttc	ataagaaaac	gcaccttaaa	3900
ttaccggaaa	acatagat	acctgtatctt	gtaacgttt	ggagcgat	taagccagga	3960
ttaaaacagga	acagtttagt	gaccaaatac	gttcgaaacg	agatgtatga	taggttcggg	4020
ttcgaaccc	taaacgcgt	gccattttag	ccgttacac	attggatatc	aaccatgcac	4080
atgaatatga	atataatata	aatattata	gagatataatc	tagtataagg	aacctacttt	4140
gtacctacac	gacatggaaa	catcaaacc	acatgcata	ttacacacat	atattttgaa	4200
tagagcgacg	acttttacaa	gttgcgtaca	aagctatagc	tatagttgc	tatggccatc	4260
ccagagcgag	catatacata	tattttgggt	tattttctt	ttgttaattt	ataaaatgcat	4320
acatatttat	tgtactacgt	gaatgtcaag	tgtggattca	tatttttgag	atacagctac	4380
aaaacgaaac	aaaagaaaaat	aaaacaaaac	agaagagtaa	acgtgaaatt	tttcgatgaa	4440
acaattttaa	atgagaactt	ttaatatttg	ctttaaaagg	atatacatat	acacactaac	4500
atacatatata	attttactat	gtacggata	gaattaaatcg	agatgcagcg	cataaaagctt	4560
tatacaacaa	attgaaaaagc	aacagaagaa	attggcaca	atttaaattt	tatagcataa	4620
tttagacgtcc	ttcgcaagat	aatgttattc	gtaataagag	cgtcaatcg	tacatcgccc	4680
gctatttccc	actacacccc	caaccacaca	atagataacc	taagctatgt	atgtacattt	4740
gctatgtata	tccagccac	ttatgcgcct	actactagaa	atgcagaaaag	cagaaaagaga	4800
ggtgaaaccc	atagacgcta	tcacaaatgt	ctatctgata	gacatcggt	ctaccaatgc	4860
tatattgc	gttgcgtat	ttactctt	ttgatcg	catttaccag	ttaagaaccc	4920
aaatcatata	agtgttatga	tggagaact	ataacttgca	attcaattaa	ctctgcaata	4980

cgataacaag caaaggcaat catttcattt cgatttaatc tttaattata tatacttaaa	5040
cgatgttaagc cccaaaacaaa cgtttttct atatctgtct tttgagcaaa ttagttatc	5100
gcggaaaccaa accgtatcca cataaaatgtt tacaaaacaa atcgatattt ttcattgggt	5160
tggaaaataat acataaaaca a	5181

<210> 13
<211> 278
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400>. 13
Met Ser Asn Phe Ser Ala Cys Ala Val Cys Gly Asp Gln Ser Ser Gly
1 5 10 15
Lys His Tyr Gly Val Ser Cys Cys Asp Gly Cys Ser Cys Phe Phe Lys
20 25 30
Arg Ser Val Arg Arg Gly Ser Ser Tyr Ala Cys Ile Ala Leu Val Gly
35 40 45
Asn Cys Val Val Asp Lys Ala Arg Arg Asn Trp Cys Pro Ser Cys Arg
50 55 60
Phe Gln Arg Cys Leu Ala Val Gly Met Asn Ala Ala Ala Val Gln Glu
65 70 75 80
Glu Arg Gly Pro Arg Asn Gln Gln Val Ala Leu Tyr Arg Thr Gly Arg
85 90 95
Arg Gln Ala Pro Pro Ser Gln Ala Ala Pro Ser Pro Thr Pro His Ser
100 105 110
Gln Ala Leu His Phe Gln Ile Leu Ala Gln Ile Leu Val Thr Cys Leu
115 120 125
Arg Gln Ala Lys Ala Asn Glu Gln Phe Ala Leu Leu Asp Arg Cys Gln
130 135 140
Gln Asp Ala Ile Phe Gln Val Val Trp Ser Glu Ile Phe Val Leu Arg
145 150 155 160
Ala Ser His Trp Ser Leu Asp Ile Ser Ala Met Ile Asp Gly Cys Gly
165 170 175
Asp Glu Gln Leu Lys Arg Leu Ile Cys Glu Ala His Gln Leu Arg Ala
180 185 190
Asp Val Leu Glu Leu Asn Phe Met Glu Ser Leu Ile Leu Cys Arg Lys
195 200 205
Glu Leu Ala Ile Asn Ala Glu Tyr Ala Val Ile Leu Gly Ser His Ser
210 215 220
Lys Ala Ala Leu Ile Ser Leu Ala Arg Tyr Thr Leu Gln Gln Ser Asn
225 230 235 240
Tyr Leu Arg Phe Gly Gln Leu Leu Leu Gly Leu Arg Gln Leu Cys Leu
245 250 255
Arg Arg Phe Asp Cys Ala Leu Ser Cys Met Phe Arg Ser Val Val Arg
260 265 270
Asp Ile Leu Lys Thr Leu
275

<210> 14
<211> 837
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =

synthetic construct

<400> 14

atgtcgaact	tcagtgccctg	cgcagtgtgc	ggcgatcaga	gctccggaa	gcactacggc	60
gtgtcctgct	gcgatgggtg	ctcctgctt	ttcaagcgga	gcgtcggcg	cgggagcagc	120
tacgcctgca	tcgctcttgt	cgggaactgt	gtggtggaca	aggcgcccg	gaactgggt	180
ccctcctgcc	gcttccagcg	atgcctggcc	gtgggaatga	acgctgctgc	ggttcaggag	240
gagcgccgtc	cgcgcaacca	gcaggtggct	ctctaccgca	ctggccggag	acaagctccg	300
ccatctcagg	cggcgccatc	cccgacgccc	cactccagg	cgctgcactt	ccagatcc	360
gcccagatcc	ttgtcacgtg	cctgcgccc	gcpaaggcca	acgagcagtt	cgctctgtt	420
gatcgctgcc	aacaagacgc	catcttcag	gtggtgttga	gcgagatctt	cgtcctgcga	480
gcgtccccact	ggtctcttgg	catcagcgcc	atgatcgacg	gctgcggcga	tgagcagctc	540
aaacggctca	tttgcgaggc	ccaccagcta	agggccgacg	tccttgaact	caactttatg	600
gagtccttaa	tcctgtgcag	aaaagaattt	gccatcaatg	cggagtatgc	cgttatcctg	660
ggaagccact	ctaaagccgc	cctgatctcc	ttagccgct	acaccctgca	gcaatccaac	720
tacctgcgggt	tcggacaact	gctcccttgg	ctgaggcagc	tgtgcctgag	gcgcttcgac	780
tgcgcgctt	cttgcgtatgtt	tcgcagcgtg	gtcagggaca	tctaaaaaac	actttag	837

<210> 15

<211> 281

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 15

Met	Gly	Met	Arg	Arg	Glu	Ala	Val	Gln	Arg	Gly	Arg	Val	Pro	Pro	Thr
1															15
Gln	Pro	Gly	Leu	Ala	Gly	Met	His	Gly	Gln	Tyr	Gln	Ile	Ala	Asn	Gly
															30
Asp	Pro	Met	Gly	Ile	Ala	Gly	Phe	Asn	Gly	His	Ser	Tyr	Leu	Ser	Ser
															45
Tyr	Ile	Ser	Leu	Leu	Leu	Arg	Ala	Glu	Pro	Tyr	Pro	Thr	Ser	Arg	Tyr
															50
															55
															60
Gly	Gln	Cys	Met	Gln	Pro	Asn	Asn	Ile	Met	Gly	Ile	Asp	Asn	Ile	Cys
															80
Glu	Leu	Ala	Ala	Arg	Leu	Leu	Phe	Ser	Ala	Val	Glu	Trp	Ala	Lys	Asn
															95
Ile	Pro	Phe	Pro	Glu	Leu	Gln	Val	Thr	Asp	Gln	Val	Ala	Leu	Leu	
															100
															105
															110
Arg	Leu	Val	Trp	Ser	Glu	Leu	Phe	Val	Leu	Asn	Ala	Ser	Gln	Cys	Ser
															115
															120
															125
Met	Pro	Leu	His	Val	Ala	Pro	Leu	Leu	Ala	Ala	Gly	Leu	His	Ala	
															130
															135
															140
Ser	Pro	Met	Ala	Ala	Asp	Arg	Val	Val	Ala	Phe	Met	Asp	His	Ile	Arg
															145
															150
															155
															160
Ile	Phe	Gln	Gln	Val	Glu	Lys	Leu	Lys	Ala	Leu	His	Val	Asp	Ser	
															165
															170
															175
Ala	Glu	Tyr	Ser	Cys	Leu	Lys	Ala	Ile	Val	Leu	Phe	Thr	Thr	Asp	Ala
															180
															185
															190
Cys	Gly	Leu	Ser	Asp	Val	Thr	His	Ile	Glu	Ser	Leu	Gln	Glu	Lys	Ser
															195
															200
															205
Gln	Cys	Ala	Leu	Glu	Glu	Tyr	Cys	Arg	Thr	Gln	Tyr	Pro	Asn	Gln	Pro
															210
															215
															220
Thr	Arg	Phe	Gly	Lys	Leu	Leu	Leu	Arg	Leu	Pro	Ser	Leu	Arg	Thr	Val
															225
															230
															235
															240
Ser	Ser	Gln	Val	Ile	Glu	Gln	Leu	Phe	Phe	Val	Arg	Leu	Val	Gly	Lys
															245
															250
															255

Thr Pro Ile Glu Thr Leu Ile Arg Asp Met Leu Leu Ser Gly Asn Ser
 260 265 270
 Phe Ser Trp Pro Tyr Leu Pro Ser Met
 275 280

<210> 16
<211> 2866
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 16

ctaaattgtt	gaaaaatggatt	tcccccact	cctttcagaa	ttcaagaata	60
aatattgtt	aaatattgtt	aaatgttgc	atcgatca	atctttcttc	120
aaggcgctgg	tgcgacgtt	tcttaacttac	tcttgcgcg	gcagcagaaa	180
gatccaacacc	atcgcaatca	atgtcaatat	tgtcgatgt	agaagtgcct	240
atgagacgcg	aagctgttca	acgtggacgc	gtaccacca	ctcagccccg	300
atgcatgggc	agtaccagat	tgccaacggg	gatcccattt	gcattggccgg	360
cactcgtacc	tcagtttcta	catctcgctc	ctgctgcggg	cggaaccgtt	420
cgatatatggcc	agtgcatgtca	accacaacaac	attatggca	tcgacaaat	480
gcccggccac	tgcttttctc	ggcggtcgag	tggggccaaga	acataccctt	540
ctgcagggtt	ccgaccagg	ggccctgttc	cggctcgct	ggtcagagct	600
aacgcgcagcc	agtgtccat	ggccgtccat	gtggcgccac	tgctggccgc	660
catgcctccc	cgatggccgc	cgatcggtgt	gtggccttca	tggaccacat	720
caggagcagg	tggagaagct	gaaggcgctg	catgtcgact	ccggggagta	780
aaggcgatcg	tgcttttca	caccgtatgc	tgccggctgt	ccgatgtgac	840
tccctgtcaag	agaagtgcgt	gtgcgccttc	gaggaatact	gcgggaccca	900
cagccccacga	gattcggcaa	gctgtttctc	agactgcac	cgctgcgaac	960
caagtcaattt	agcaatttgtt	ttttgtgcgt	ctagtcgaa	aaacgcctt	1020
atacgcgata	tgctgtcgag	cgcaacagt	ttctcttgc	cctatctgc	1080
cacacgtgt	ggcgccaaatt	gacaacaact	tgatcatcg	ccgcagctgt	1140
acgctcaaca	tcaattccgg	cgaggcgcc	atcggcatcg	gcggcgcccc	1200
ggccgggtggcg	gttagtggagg	cggtggcgga	gtcggttgat	gtggcagcca	1260
gctgccagtc	atgaccagct	cgccaaatgtt	gctgtcatgc	agcaacatata	1320
ggcagcagca	gcagcagcat	cagcggttgc	cacaacggta	acaacggcag	1380
atttgcata	agcagatcaa	caactacggc	aacaacagca	acaacaatgt	1440
atgagtgcag	gcagttttt	cggtgggtcc	aacaacagca	tccacagtag	1500
aataccgatt	atatgaccac	gccagccacc	gcttatgcga	caccagcgac	1560
tccacgggtt	acaccacaac	gatgtgtct	aattactgcg	atggccacc	1620
gcgcgtgtt	cagtcaatgc	aaatcaatgc	ctgcagcaac	atcaccagcg	1680
gcggggcagca	gcaacagcag	cagcaacaac	agcagcagca	acagcaacgg	1740
atgccttcct	catcctcg	tggctactg	tcatctgcct	catcgacccc	1800
gcaactgcga	ctgcaattgc	aacagcaaca	gcaactgcag	cagaacacgc	1860
caacagcaac	aatcgccg	aaatttaatc	gatatcagcg	aaggctctt	1920
gtcaagtagt	gtattttt	atgcatctag	aaatgggtt	ataaaaccaac	1980
ccccggcccg	ccccaccac	taccacaaaa	accataaaac	cccaaaaaaa	2040
aaaatgtaaa	aaaaaaaaat	tggaggatga	gcgcgcgtt	gcttaattga	2100
atttgcata	tttgcgtt	tttgcgtat	aactcctcg	aaaattcaag	2160
ggccacccca	gctgtgagca	aaaccaatct	cagctgacat	atccaagaga	2220
tgaaggcccc	aaaaaaatgt	agaaggcgcc	aaaaaaacgt	ctttacat	2280
aatattttaa	tggcactgtt	tttacttta	tttttagacca	caaacacttg	2340
tgaaaaaata	agaattgtgg	aaagagaaaa	atccccctta	acactttcaa	2400
ataaaagatag	ttaaaatatt	tatataatgt	atgttagcata	tacacgtata	2460
atgaatataat	aaacgaaact	ctactcccg	tggtttgcag	aaatatacca	2520
gctatgttta	cttgatgtgt	ggcaattttt	atgtgtgtt	tagcaatttt	2580
taagtaaaat	ttaaaatttt	taaacattcg	attctcgact	ggttttctc	2640
tctcaaagat	gcttctgtat	ggaaaggccg	aattgttcaa	atacgaatgc	2700

gaattttta tttagtaacc attacgagta aaaacacaaa atgttcagtg caagttcag	2760
ttcttaaacg atttttcgta aagcttaagc attatcttat ttatgtgtat agagtatgaa	2820
aagtttcta tattttgtaa taataaaaat ttgcgttat aatgaa	2866

<210> 17
<211> 452
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 17
Met Gln Ser Ser Glu Gly Ser Pro Asp Met Met Asp Gln Lys Tyr Asn
1 5 10 15
Ser Val Arg Leu Ser Pro Ala Ala Ser Ser Arg Ile Leu Tyr His Val
20 25 30
Pro Cys Lys Val Cys Arg Asp His Ser Ser Gly Lys His Tyr Gly Ile
35 40 45
Tyr Ala Cys Asp Gly Cys Ala Gly Phe Phe Lys Arg Ser Ile Arg Arg
50 55 60
Ser Arg Gln Tyr Val Cys Lys Ser Gln Lys Gln Gly Leu Cys Val Val
65 70 75 80
Asp Lys Thr His Arg Asn Gln Cys Arg Ala Cys Arg Leu Arg Lys Cys
85 90 95
Phe Glu Val Gly Met Asn Lys Asp Ala Val Gln His Glu Arg Gly Pro
100 105 110
Arg Asn Ser Thr Leu Arg Arg His Met Ala Met Tyr Lys Asp Ala Met
115 120 125
Met Gly Ala Gly Glu Met Pro Gln Ile Pro Ala Glu Ile Leu Met Asn
130 135 140
Thr Ala Ala Leu Thr Gly Phe Pro Gly Val Pro Met Pro Met Pro Gly
145 150 155 160
Leu Pro Gln Arg Ala Gly His His Pro Ala His Met Ala Ala Phe Gln
165 170 175
Pro Pro Pro Ser Ala Ala Ala Val Leu Asp Leu Ser Val Pro Arg Val
180 185 190
Pro His His Pro Val His Gln Gly His His Gly Phe Phe Ser Pro Thr
195 200 205
Ala Ala Tyr Met Asn Ala Leu Ala Thr Arg Ala Leu Pro Pro Thr Pro
210 215 220
Pro Leu Met Ala Ala Glu His Ile Lys Glu Thr Ala Ala Glu His Leu
225 230 235 240
Phe Lys Asn Val Asn Trp Ile Lys Ser Val Arg Ala Phe Thr Glu Leu
245 250 255
Pro Met Pro Asp Gln Leu Leu Leu Glu Glu Ser Trp Lys Glu Phe
260 265 270
Phe Ile Leu Ala Met Ala Gln Tyr Leu Met Pro Met Asn Phe Ala Gln
275 280 285
Leu Leu Phe Val Tyr Glu Ser Glu Asn Ala Asn Arg Glu Ile Met Gly
290 295 300
Met Val Thr Arg Glu Val His Ala Phe Gln Glu Val Leu Asn Gln Leu
305 310 315 320
Cys His Leu Asn Ile Asp Ser Thr Glu Tyr Glu Cys Leu Arg Ala Ile
325 330 335
Ser Leu Phe Arg Lys Ser Pro Pro Ser Ala Ser Ser Thr Glu Asp Leu
340 345 350
Ala Asn Ser Ser Ile Leu Thr Gly Ser Gly Ser Pro Asn Ser Ser Ala
355 360 365

Ser Ala Glu Ser Arg Gly Leu Leu Glu Ser Gly Lys Val Ala Ala Met
 370 375 380
 His Asn Asp Ala Arg Ser Ala Leu His Asn Tyr Ile Gln Arg Thr His
 385 390 395 400
 Pro Ser Gln Pro Met Arg Phe Gln Thr Leu Leu Gly Val Val Gln Leu
 405 410 415
 Met His Lys Val Ser Ser Phe Thr Ile Glu Glu Leu Phe Phe Arg Lys
 420 425 430
 Thr Ile Gly Asp Ile Thr Ile Val Arg Leu Ile Ser Asp Met Tyr Ser
 435 440 445
 Gln Arg Lys Ile
 450

<210> 18
 <211> 1885
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; note =
 synthetic construct

<400> 18

gagtccacat	cgaggataacc	aaggatataat	cgaatatatac	acacaatccg	caataccgc	60
gtcccacccaa	accgttaaaaa	caaaaatcca	aaacgactca	aagatacaccc	agtgc当地	120
gaaattcaat	tttgtcaagc	gtttctacaa	aaatcgccaa	aattacgccc	cacatcgta	180
tgcagtcgtc	ggagggttca	ccagacatga	tggatcagaa	atacaacagc	gtgc当地	240
cggcagcggc	atcgagtcgc	atttotatacc	atgtgc当地	caaagtctgc	agagatcaca	300
gctccggcaa	gcattacggc	atctacgcct	gtgatggctg	cgc当地	ttcaagagga	360
gcattcggag	atccccggcag	tatgtgtgca	agtc当地	gcaggactc	tgtgtggtgg	420
acaagacgea	caggaaccaa	tgttagggctt	gccgacttag	gaagtgc当地	gaggc当地	480
tgaacaagga	tgcagtcag	cacccgggg	gaccgc当地	ctccactctg	cgtc当地	540
tggccatgt	caaggatgcc	atgtatggcg	ccggc当地	gccacaata	ccc当地	600
ttctgtatgaa	cacggctgccc	ttgaccggct	ttcctggagt	accgatgccc	atgc当地	660
tgc当地	ggctggcat	cacccggctc	acatggctc	cttccagccg	ccaccatcg	720
ctgcccgtgt	cttggactta	tccgtccac	gagtgcccc	tcacccgg	caccaaggac	780
accacggttt	cttctcgccc	accggccct	acatgaatgc	cctggccact	cgggccc当地	840
cccccaactcc	tccgctgtatg	gcagctgagc	acatcaagga	aaccgc当地	gaacacccat	900
tcaagaacgt	caactggatc	aagagcgtac	gggc当地	cgaactgccc	atgc当地	960
agctgctcct	gctggaggag	tccttgcagg	agttcttcat	cctggccatg	gccc当地	1020
taatgc当地	gaatttgc	cagctgtgt	tcgtctacga	gtccg当地	gccaacc当地	1080
agatcatggg	catggtgacc	cgc当地	acgc当地	ggagggtgctg	aaccaactgt	1140
gc当地	cattgacagc	accgactacg	atgtgtctg	ggctatttgc	cttccgt	1200
agtc当地	gtc当地	atccggagg	atccggagg	cagctcaatc	ctgacaggaa	1260
gccc当地	gaactctcg	gcctctgt	aatccgggg	tcttctggag	tccgg当地	1320
tggccg当地	gcacaacgt	gccc当地	cgctgc当地	ctacatccag	aggacc当地	1380
cctcgcc	catgc当地	cagacgctc	tggc当地	gcagctgatg	cacaaggct	1440
caagcttac	catcgaggag	ctgttcttcc	gaaagaccat	cggc当地	accattgtgc	1500
gctctatctc	cgacatgtac	agtc当地	agatctgaaa	agatctgatg	gcctagacta	1560
atcgccgac	tgc当地	ttccaagtg	tgggactgt	gataatctcg	gaagaagcgc	1620
tttggacaat	actcgatc	tgggactgt	gat	ttcgatc	atccaggat	1680
aatacgtaca	caacactc	cttaatacct	tacctaaaca	gaactc当地	taatcttgc	1740
taaagtctct	cagaccatcc	agatgtgtt	caaattgc	tc当地	ttcaactttg	1800
cctgttaat	acgtcaatcg	tagttttaaa	cactttagt	ttaagc当地	attattagct	1860
ttaggatttgc	aaaaataat	tattc				1885

<210> 19
 <211> 691
 <212> PRT
 <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct.

<400> 19

Met	Gly	Thr	Ala	Gly	Asp	Arg	Leu	Leu	Asp	Ile	Pro	Cys	Lys	Val	Cys
1					5				10				15		
Gly	Asp	Arg	Ser	Ser	Gly	Lys	His	Tyr	Gly	Ile	Tyr	Ser	Cys	Asp	Gly
					20				25				30		
Cys	Ser	Gly	Phe	Phe	Lys	Arg	Ser	Ile	His	Arg	Asn	Arg	Ile	Tyr	Thr
					35				40				45		
Cys	Lys	Ala	Thr	Gly	Asp	Leu	Lys	Gly	Arg	Cys	Pro	Val	Asp	Lys	Thr
					50				55				60		
His	Arg	Asn	Gln	Cys	Arg	Ala	Cys	Arg	Leu	Ala	Lys	Cys	Phe	Gln	Ser
					65				70				75		80
Ala	Met	Asn	Lys	Asp	Ala	Val	Gln	His	Glu	Arg	Gly	Pro	Arg	Lys	Pro
					85				90				95		
Lys	Leu	His	Pro	Gln	Leu	His	His	His	His	Ala	Ala	Ala	Ala		
					100				105				110		
Ala	Ala	Ala	Ala	His	Ala	Ala	Ala	Ala	His	His	His	His	His	His	
					115				120				125		
His	His	His	Ala	His	Ala	Ala	Ala	Ala	His	Ala	Ala	Ala	Ala		
					130				135				140		
Ala	Ala	Ala	Ser	Gly	Leu	His	His	His	His	Ala	Met	Pro	Val	Ser	
					145				150				155		160
Leu	Val	Thr	Asn	Val	Ser	Ala	Ser	Phe	Asn	Tyr	Thr	Gln	His	Ile	Ser
					165				170				175		
Thr	His	Pro	Pro	Ala	Pro	Ala	Ala	Pro	Pro	Ser	Gly	Phe	His	Leu	Thr
					180				185				190		
Ala	Ser	Gly	Ala	Gln	Gln	Gly	Pro	Ala	Pro	Pro	Ala	Gly	His	Leu	His
					195				200				205		
His	Gly	Gly	Ala	Gly	His	Gln	His	Ala	Thr	Ala	Phe	His	His	Pro	Gly
					210				215				220		
His	Gly	His	Ala	Leu	Pro	Ala	Pro	His	Gly	Gly	Val	Val	Ser	Asn	Pro
					225				230				235		240
Gly	Gly	Asn	Ser	Ser	Ala	Ile	Ser	Gly	Ser	Gly	Pro	Gly	Ser	Thr	Leu
					245				250				255		
Pro	Phe	Pro	Ser	His	Leu	Leu	His	His	Asn	Leu	Ile	Ala	Glu	Ala	Ala
					260				265				270		
Ser	Lys	Leu	Pro	Gly	Ile	Thr	Ala	Thr	Ala	Val	Ala	Ala	Val	Val	Ser
					275				280				285		
Ser	Thr	Ser	Thr	Pro	Tyr	Ala	Ser	Ala	Ala	Gln	Thr	Ser	Ser	Pro	Ser
					290				295				300		
Ser	Asn	Asn	His	Asn	Tyr	Ser	Ser	Pro	Ser	Pro	Ser	Asn	Ser	Ile	Gln
					305				310				315		320
Ser	Ile	Ser	Ser	Ile	Gly	Ser	Arg	Ser	Gly	Gly	Gly	Glu	Gly	Leu	
					325				330				335		
Ser	Leu	Gly	Ser	Glu	Ser	Pro	Arg	Val	Asn	Val	Glu	Thr	Glu	Thr	Pro
					340				345				350		
Ser	Pro	Ser	Asn	Ser	Pro	Pro	Leu	Ser	Ala	Gly	Ser	Ile	Ser	Pro	Ala
					355				360				365		
Pro	Thr	Leu	Thr	Thr	Ser	Ser	Gly	Ser	Pro	Gln	His	Arg	Gln	Met	Ser
					370				375				380		
Arg	His	Ser	Leu	Ser	Glu	Ala	Thr	Thr	Pro	Pro	Ser	His	Ala	Ser	Leu
					385				390				395		400
Met	Ile	Cys	Ala	Ser	Asn										
					405				410				415		
Asn	Gly	Glu	His	Lys	Gln	Ser	Ser	Tyr	Thr	Ser	Gly	Ser	Pro	Thr	Pro
					420				425				430		
Thr	Thr	Pro	Thr	Pro	Pro	Pro	Pro	Arg	Ser	Gly	Val	Gly	Ser	Thr	Cys
					435				440				445		

Asn Thr Ala Ser Ser Ser Gly Phe Leu Glu Leu Leu Ser Pro
 450 455 460
 Asp Lys Cys Gln Glu Leu Ile Gln Tyr Gln Val Gln His Asn Thr Leu
 465 470 475 480
 Leu Phe Pro Gln Gln Leu Leu Asp Ser Arg Leu Leu Ser Trp Glu Met
 485 490 495
 Leu Gln Glu Thr Thr Ala Arg Leu Leu Phe Met Ala Val Arg Trp Val
 500 505 510
 Lys Cys Leu Met Pro Phe Gln Thr Leu Ser Lys Asn Asp Gln His Leu
 515 520 525
 Leu Leu Gln Glu Ser Trp Lys Glu Leu Phe Leu Asn Leu Ala Gln
 530 535 540
 Trp Thr Ile Pro Leu Asp Leu Thr Pro Ile Leu Glu Ser Pro Leu Ile
 545 550 555 560
 Arg Glu Arg Val Leu Gln Asp Glu Ala Thr Gln Thr Glu Met Lys Thr
 565 570 575
 Ile Gln Glu Ile Leu Cys Arg Phe Arg Gln Ile Thr Pro Asp Gly Ser
 580 585 590
 Glu Val Gly Cys Met Lys Ala Ile Ala Leu Phe Ala Pro Glu Thr Ala
 595 600 605
 Gly Leu Cys Asp Val Gln Pro Val Glu Met Leu Gln Asp Gln Ala Gln
 610 615 620
 Cys Ile Leu Ser Asp His Val Arg Leu Arg Tyr Pro Arg Gln Ala Thr
 625 630 635 640
 Arg Phe Gly Arg Leu Leu Leu Leu Pro Ser Leu Arg Thr Ile Arg
 645 650 655
 Ala Ala Thr Ile Glu Ala Leu Phe Phe Lys Glu Thr Ile Gly Asn Val
 660 665 670
 Pro Ile Ala Arg Leu Leu Arg Asp Met Tyr Thr Met Glu Pro Ala Gln
 675 680 685
 Val Asp Lys
 690

<210> 20

<211> 3043

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 20

gtcagcccg	gcatccgca	tttgcgtccg	cagcagggtt	ccgatttcag	aactctgatt	60
ccagccgg	cgaatcgct	cggcatctga	acatttgaaa	ataatctaaa	attgcaagtg	120
actttgtc	acccgttacac	taaaattgtt	aacaaatcgc	catatattct	gaatttaaat	180
ttaaaagtgc	cagtgcgaa	tataaatcag	agcaaactgg	atacgtttagg	gttcaaatac	240
ttccatcaac	ggaaaatggg	cacagcgggc	gatgcctgt	tggacattcc	ctgcaaggtg	300
tgtggcgatc	gcagctccgg	caagcaactat	ggaatctaca	gctgcgatgg	ctgctccggt	360
ttttcaagc	ggagcattca	tcgcaatccg	atttacacct	gttaaggccac	cgccgatctc	420
aagggtcgct	gtccgggtga	caagaccat	cggaatcagt	gtcgcgcctg	tcgcctggcc	480
aagtgc	tcccgccat	gaacaaggat	gctgtgcagc	acgagcgcgg	tccttagggaa	540
cccaagttgc	acccgcaact	gcatcatcat	catcatcatg	ctgctcccg	cgccgctgca	600
gcgcattatc	cagcagccgc	ccatcaccat	caccatcacc	accaccacgc	ccacgcagcg	660
gcccccattc	atgcggcagt	ggctgcagcg	gctgcctccg	ggctgcatca	ccaccaccac	720
gccatcccc	tctcgcttgt	gaccaatgtc	tcggcctcgt	tcaactatac	gcagcacatc	780
tccacgcatc	cgccctgc	ggcggcgcca	cccagtggct	ttcacctgac	ggccagtggc	840
gcccaggcagg	gaccagtc	accagctggc	cacctgcacc	atggtggagc	cgagcatcag	900
cacccacgg	ccttccacca	tccgggacat	ggacacgcgc	tgcctgcccc	acatggcggc	960
gtcgtagca	atcccgccgg	caactcgagc	gcaatctccg	gcagcggtcc	cggctccacg	1020
ctggcccttcc	cctcgcaccc	gctgcaccac	aatctgatag	cgaggcgccg	cagcaagctg	1080

cggggcatca	ctgccacagc	cgttgcggcg	gtggtgtcct	ccactagcac	gccctacgcc	1140
tccaggcccc	agacgtgtc	gcctagtagc	aacaaccaca	actactcctc	gccctcgccc	1200
agcaactcca	tccagtcatt	ctcgagcatt	ggatcgcgca	gcccgtgggg	cgaggagggc	1260
ctcagcctgg	gcagcgagag	tccgcgcgtc	aatgtggaaa	cggagacacc	ttcgcgcata	1320
aactcgccgc	cccttagtgc	tggtagcatt	tcgcccagcgc	ccacggttgc	cacctcgctg	1380
ggatcgccgc	agcaccggca	gatgtcgcg	cacagcctca	gtgaggcaac	cacgcccggcc	1440
agccacgcct	ctctcatgtat	ttgcgcage	aacaataaca	ataacaacaa	taataataac	1500
aataatggag	agcacaagca	gtcgagctac	acatccggat	caccgacacc	cacaacggcc	1560
acgcggccac	cgccgcgttc	tgggttaggt	tccacctgca	acacggccag	cagctccagc	1620
ggcttcctgg	agctgtgtc	cagtccggac	aagtgcagg	agctcatcca	gtaccagggt	1680
cagcacaaca	cgctgtctt	ccgcacacag	ctgttggact	cgcggctgt	ctcctgggag	1740
atgctgcagg	agacgacggc	gcgactgctc	ttcatggcg	tgcgctgggt	caagtgcctc	1800
atgccttcc	agacgtctc	caagaacgc	cagcatttc	tgctccagga	atcctggaaag	1860
gagctcttcc	tgctcaaccc	cgcacatgg	actataccgc	tggatctaac	gcccataactg	1920
gaataccgc	tcatccgcga	acgggtgctg	caggacgagg	ccacacaaac	ggagatgaag	1980
acgatccagg	agatcctctg	ccgcttccgc	cagatcacac	ccgacggcag	cgaggtggc	2040
tgcacatgg	ccatcgccct	gttcgcaccc	gaaaaccggc	gcctgtgcga	cgtgcagccg	2100
gtggagatgt	tgcaggatca	ggcgactgtc	atcctctccg	accatgtgcg	actgcgcata	2160
cctcgccaaag	caacccgcctt	cgccaggctg	ctgctcttc	tgcctctgc	gcccacccatc	2220
cggjcgccca	ccatcgaggg	gctgttcttc	aaggagacca	tcggcaatgt	gcccattgt	2280
cgaactgtgc	gcgacatgt	caccatggaa	ccggcacagg	tggacaatgt	aaccggccac	2340
gcatgacagt	cggaaatggaa	tccaaatcg	ttcccttagca	cctaagcgcc	acccatcggt	2400
cgtcgatcata	tgcgaactt	tttttattcc	aatgcaccc	gaatcttatt	cagattca	2460
gcggcaggag	gcgggtccaaa	tgtggggcg	aagctgcaga	tgctatgggt	cgcaggacgc	2520
catgtatgg	aggcgatgt	actaaccgcg	ctccctccatt	ggcgatgcag	tccgcgatga	2580
tggcgactc	ccacacccac	accgcgtaccc	acaccttgc	ttatcgccgg	aatgcgtcg	2640
gagtcctc	actttcgctt	cgtttctaa	catttgatc	cttattttat	ttcatcttt	2700
tccacggatt	tttcgttttgc	actgcctggg	ccggactctt	tatttatctt	tcattcgacg	2760
ttttgtcg	gttttttcaa	aaattccca	tgttatttca	acctggcaag	gacctcgccag	2820
tcccatcccc	gcgccttac	ttacaaatca	cttcccatcc	cacatccagc	aattccgtgg	2880
tttgaattct	ttcggtcatt	gactacgaaa	taccctttaa	tcagacaaaat	aaagaatatt	2940
agttgtatt	ctttttctg	caatccagct	ctaaaaacggg	tttcttaatc	gaaatcgata	3000
aatgtaaaaa	ttatacatat	ccttaccaa	cattgttgc	cta		3043

<210> 21

<211> 532

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 21

Met	Ala	Thr	Gly	Arg	Ser	Leu	Leu	Phe	Arg	Val	Pro	Trp	Tyr	Val	Cys
1						5				10				15	
Leu	Cys	Val	Cys	Ala	Glu	Ser	Ala	Glu	Pro	Gly	Val	Tyr	Trp	Arg	Leu
							20			25			30		
Arg	Leu	Arg	Leu	Gly	Leu	Pro	Thr	Leu	Ala	Gly	Pro	His	Thr	Asn	Thr
							35			40			45		
Leu	Thr	Leu	Thr	Ala	Arg	Thr	Ser	Ser	Cys	Arg	Ser	Ile	Lys	Lys	Glu
							50		55			60			
Arg	Ile	Lys	Ala	Ser	Gln	Gln	Ala	Asn	Ala	Pro	Pro	Glu	Leu	Pro	Leu
							65		70			75			80
Lys	Val	Ser	Val	Asp	Val	Asn	Ile	Ile	Ile	Ala	Ala	His	Ser	Gln	Arg
							85		90			95			
Arg	Arg	Ile	Gly	Leu	Val	Arg	Phe	His	Gln	Arg	Glu	Ser	Glu	Asp	Arg
							100		105			110			
Pro	Leu	Ala	Val	Ala	Ser	Pro	Arg	Leu	Gln	Ile	Asn	Met	Glu	Pro	Thr
							115		120			125			

Ala Met Asn Pro Lys Lys Leu His Ser Pro Gln Arg His Cys Tyr Thr
 130 135 140
 Pro Pro Pro Ala Pro Met His Gly Gln Ala Pro Pro Pro Thr Ser Thr
 145 150 155 160
 Gly Val Ala Pro Pro Thr Gln Pro Pro Pro His Pro Ala Ala Pro
 165 170 175
 Asn Val Pro Asn Gly Arg Leu Leu Ser Trp Asn His Ser Ala Ala Ala
 180 185 190
 Ala Ala Ala Ala Ala Ala Gln Ala Ala Ala Asn Ser Met Asn His
 195 200 205
 Ser Ser Ala Ala Glu Gly Ser Ser Met Thr Arg Ile Lys Gly Gln Asn
 210 215 220
 Leu Gly Leu Ile Cys Val Val Cys Gly Asp Thr Ser Ser Gly Lys His
 225 230 235 240
 Tyr Gly Ile Leu Ala Cys Asn Gly Cys Ser Gly Phe Phe Lys Arg Ser
 245 250 255
 Val Arg Arg Lys Leu Ile Tyr Arg Cys Gln Ala Gly Thr Gly Arg Cys
 260 265 270
 Val Val Asp Lys Ala His Arg Asn Gln Cys Gln Ala Cys Arg Leu Lys
 275 280 285
 Lys Cys Leu Gln Met Gly Met Asn Lys Asp Asp Asp Ser Ile Asp Val
 290 295 300
 Thr Asn Asp Asn Glu Glu Pro His Ala Val Ser Arg Ser Asp Ser Ser
 305 310 315 320
 Phe Ile Met Pro Gln Phe Met Ser Pro Asn Leu Tyr Thr His Gln His
 325 330 335
 Glu Thr Val Tyr Glu Thr Ser Ala Arg Leu Leu Phe Met Ala Val Lys
 340 345 350
 Trp Ala Lys Asn Leu Pro Ser Phe Ala Arg Leu Ser Phe Arg Asp Gln
 355 360 365
 Val Ile Leu Leu Glu Glu Ser Trp Ser Glu Leu Phe Leu Leu Asn Ala
 370 375 380
 Ile Gln Trp Cys Ile Pro Leu Asp Pro Thr Gly Cys Ala Leu Phe Ser
 385 390 395 400
 Val Ala Glu His Cys Asn Asn Leu Glu Asn Asn Ala Asn Gly Asp Thr
 405 410 415
 Cys Ile Thr Lys Glu Glu Leu Ala Ala Asp Val Arg Thr Leu His Glu
 420 425 430
 Ile Phe Cys Lys Tyr Lys Ala Val Leu Val Asp Pro Ala Glu Phe Ala
 435 440 445
 Cys Leu Lys Ala Ile Val Leu Phe Arg Pro Glu Thr Arg Gly Leu Lys
 450 455 460
 Asp Pro Ala Gln Ile Glu Asn Leu Gln Asp Gln Ala His His Thr Lys
 465 470 475 480
 Thr Gln Phe Thr Ala Gln Ile Ala Arg Phe Gly Arg Leu Leu Leu Met
 485 490 495
 Leu Pro Leu Leu Arg Met Ile Ser Ser His Lys Ile Glu Ser Ile Tyr
 500 505 510
 Phe Gln Arg Thr Ile Gly Asn Thr Pro Met Glu Lys Val Leu Cys Asp
 515 520 525
 Met Tyr Lys Asn
 530

<210> 22

<211> 1599

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 22

atggcgaccg	ggcgttctct	gctttcga	gtgccttgg	atgtgtgctt	gtgtgtgtgc	60
gcagagacg	cagaggccgg	tgttattgg	agattgcgt	tgccgcttgg	cttacccaca	120
ctcgcaggc	cgcacaccaa	cacactaaca	ctaacagcga	ggacaagctc	ctgccgcagc	180
atcaagaagg	aacgaatcaa	agcaagccaa	caagcaaatg	cgcaccaga	gttgcacta	240
aaagtctccg	ttgacgttaa	catcatcatc	gcccacact	cgcagcgcgg	tcggatcgga	300
ttggttcgg	ttcatcagcg	ggaatcagag	gaccgtccac	ttggcgtcgc	ctctccacga	360
ttgcaaatta	atatggagcc	tactgcgtg	aaccggaaaa	aactccacag	tccgcagcgg	420
cattgctaca	ctccggcc	ggcgcgcgt	cacggacagg	cgcctccacc	tacatcaacg	480
ggcgtggccc	cgcacaca	gccaccgccc	cctcatcccg	ccggcccaaa	cgtgccccat	540
ggtcgattgc	tgagctgaa	tcacagtgc	gtgcgcgt	ctgcggcggc	ggcagccaa	600
gcccagcca	actccatgaa	ccactcgtcg	gcccggagg	gttcatcgat	gaccggatt	660
aagggtcaga	acctgggcct	catctgcgtg	gtgtgcgcg	acaccagctc	gggaaagcac	720
tacggaatcc	tagctgcaa	tggctctcc	ggattctca	aacgcagcgt	gcccggaaaa	780
ctcatttatc	gtgcgcggc	gggaaacggg	cgctgtgtgg	tggacaatgc	tcateggaaat	840
caatgccagg	cctgcaggct	caagaatgc	cttcaaatgg	gaatgaacaa	ggacgacgac	900
tccatagatg	taaccacga	caacgaggag	ccgcacatgc	tcagcagatc	ggattcgagt	960
ttcattatgc	cgcagttcat	gtgcgcctat	ctgtacaccc	atcaacacga	aacagtttac	1020
gagacaagtg	ccggcgtct	cttcatggcc	gtcaagtggg	ccaagaacct	gcccagctt	1080
gcaagacttt	ccttcggga	tcaggttaatt	ttgctggagg	agtcctggc	ggagctgttc	1140
ctgctgaacg	caatccaatg	gtgcattccc	ctggatccca	ccggctgcgc	cctcttctcg	1200
gtggccggagc	actgcaataa	tctagagaac	aatgcctaattg	gcaacacttg	cataacaaag	1260
gaggagctgg	ccgcggatgt	gcgaaacgctc	cacgagatct	tctgcaataa	caaggcgggtg	1320
ctgggtggacc	ccgctgaatt	cgctgcctc	aaggcgatag	ttctcttccg	gccggaaacg	1380
cgcggactta	aagatccggc	gcagatagag	aatcttcagg	atcaggcgca	ccacacaaag	1440
acgcagttca	ccgcccagat	agccagattc	ggacgactcc	ttctcatgtc	gccgttgcgt	1500
cgcacatgatca	gctcccacaa	gattgagtcc	atctatttc	agcgcactat	tggaaacacg	1560
cccatggaaa	aggtgctctg	tgacatgtat	aagaactag			1599

<210> 23

<211> 484

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 23

Met	Ser	Asp	Gly	Val	Ser	Ile	Ler	His	Ile	Lys	Gln	Glu	Val	Asp	Thr
1				5					10						15
Pro	Ser	Ala	Ser	Cys	Phe	Ser	Pro	Ser	Ser	Lys	Ser	Thr	Ala	Thr	Gln
				20				25							30
Ser	Gly	Thr	Asn	Gly	Leu	Lys	Ser	Ser	Pro	Ser	Val	Ser	Pro	Glu	Arg
				35				40							45
Gln	Leu	Cys	Ser	Ser	Thr	Thr	Ser	Leu	Ser	Cys	Asp	Leu	His	Asn	Val
				50				55							60
Ser	Leu	Ser	Asn	Asp	Gly	Asp	Ser	Leu	Lys	Gly	Ser	Gly	Thr	Ser	Gly
				65				70							80
Gly	Asn	Gly	Gly	Gly	Gly	Gly	Gly	Thr	Ser	Gly	Gly	Asn	Ala	Thr	
				85				90							95
Asn	Ala	Ser	Ala	Gly	Ala	Gly	Ser	Gly	Ser	Val	Arg	Asp	Glu	Leu	Arg
				100				105							110
Arg	Leu	Cys	Leu	Val	Cys	Gly	Asp	Val	Ala	Ser	Gly	Phe	His	Tyr	Gly
				115				120							125
Val	Ala	Ser	Cys	Glu	Ala	Cys	Lys	Ala	Phe	Phe	Lys	Arg	Thr	Ile	Gln
				130				135							140
Gly	Asn	Ile	Glu	Tyr	Thr	Cys	Pro	Ala	Asn	Asn	Glu	Cys	Glu	Ile	Asn
				145				150							160

Lys Arg Arg Arg Lys Ala Cys Gln Ala Cys Arg Phe Gln Lys Cys Leu
 165 170 175
 Leu Met Gly Met Leu Lys Glu Gly Val Arg Leu Asp Arg Val Arg Gly
 180 185 190
 Gly Arg Gln Lys Tyr Arg Arg Asn Pro Val Ser Asn Ser Tyr Gln Thr
 195 200 205
 Met Gln Leu Leu Tyr Gln Ser Asn Thr Thr Ser Leu Cys Asp Val Lys
 210 215 220
 Ile Leu Glu Val Leu Asn Ser Tyr Glu Pro Asp Ala Leu Ser Val Gln
 225 230 235 240
 Thr Pro Pro Pro Gln Val His Thr Thr Ser Ile Thr Asn Asp Glu Ala
 245 250 255
 Ser Ser Ser Ser Gly Ser Ile Lys Leu Glu Ser Ser Val Val Thr Pro
 260 265 270
 Asn Gly Thr Cys Ile Phe Gln Asn Asn Asn Asn Asp Pro Asn Glu
 275 280 285
 Ile Leu Ser Val Leu Ser Asp Ile Tyr Asp Lys Glu Leu Val Ser Val
 290 295 300
 Ile Gly Trp Ala Lys Gln Ile Pro Gly Phe Ile Asp Leu Pro Leu Asn
 305 310 315 320
 Asp Gln Met Lys Leu Leu Gln Val Ser Trp Ala Glu Ile Leu Thr Leu
 325 330 335
 Gln Leu Thr Phe Arg Ser Leu Pro Phe Asn Gly Lys Leu Cys Phe Ala
 340 345 350
 Thr Asp Val Trp Met Asp Glu His Leu Ala Lys Glu Cys Gly Tyr Thr
 355 360 365
 Glu Phe Tyr Tyr His Cys Val Gln Ile Ala Gln Arg Met Glu Arg Ile
 370 375 380
 Ser Pro Arg Arg Glu Glu Tyr Tyr Leu Leu Lys Ala Leu Leu Leu Ala
 385 390 395 400
 Asn Cys Asp Ile Leu Leu Asp Asp Gln Ser Ser Leu Arg Ala Phe Arg
 405 410 415
 Asp Thr Ile Leu Asn Ser Leu Asn Asp Val Val Tyr Leu Leu Arg His
 420 425 430
 Ser Ser Ala Val Ser His Gln Gln Leu Leu Leu Leu Leu Pro Ser
 435 440 445
 Leu Arg Gln Ala Asp Asp Ile Leu Arg Arg Phe Trp Arg Gly Ile Ala
 450 455 460
 Arg Asp Glu Val Ile Thr Met Lys Lys Leu Phe Leu Glu Met Leu Glu
 465 470 475 480
 Pro Leu Ala Arg

<210> 24
<211> 2529
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 24
ccctgggtcag gtctgggtca ccaaaaaaga aaataaaaatt acatttcaat ctttccaataa
tgcaaaatatac tgacacgaaaa ccagcgagaa cagcatgctc acaataaaga gcccccaaac 60
aatgtgactc gtatccgcgc agagtgcacgt ttctgtgcctt gcccggagtgc caaatccaaa 120
tcccaatcca ggcgcacaaa atcgatgcag atgtccagta cattctcata gaaagtgc当地
ctgaataaacc gatggtcgccc aaaaagccacg atgtccagta ataatgcacca gtaataaac 180
aatttatgact cgagcatcga aaaaatgctga ggaacgaaata cataagcaat aacaagaagg 240
tgctcaactc ggacccaaaac aagttactaca tgctaaccgt cgaggaggcc gatatgtatt 300
gacgttgtta cagtggagct gattacacaa aagatcctca gaacgatttt atccaaggca 360
 420
 480

cgaacatgtc	cgacggcgtc	agcatcttgc	acatcaaaaca	ggaggtggac	actccatcg	540
cgtccgtctt	tagtcccagc	tccaagtca	cggccacgca	gagtgccaca	aacggcctga	600
aatctcgcc	ctcggttgc	ccgaaaaggc	agctctgcag	ctcgacgacc	tctctatcct	660
gcatgttgc	caatgtatcc	ttaagcaatg	atggcgatag	tctgaaaagga	agtggtacaa	720
gtggcggcaa	tggcggagga	ggaggtggtg	gtacgagtgg	tggaaaatgcg	accaatgcga	780
gtgccggagc	tggatcgaaa	tccgtcagg	acagagctcc	ccgattgtgt	ttggtttg	840
gcatgttgc	cagtggattc	cactatggtg	tggcgagtt	tgaggcttgc	aaagcgttct	900
ttaaacgcac	catccaaggc	aacatcgagt	acacgtgtcc	ggcgaacaac	gagtgtgaga	960
ttaacaagcg	gagacgcaag	gcctgccaag	cgtgtcgctt	ccagaaaatgt	ctactaatgg	1020
gcatgttca	ggaggggtgt	cgcttggatc	gagttcggt	aggacggcag	aagtaccgaa	1080
ggaatctgt	atcaaactt	taccagacta	tgcagctgt	ataccaatcc	aacaccacct	1140
cgctgtcg	tgtcaagata	ctggaggtgc	tcaattcata	tgagccggat	gccttgagcg	1200
tccaaacgcc	gcccgcgca	gtccacacga	ctagcataac	taatgtatgag	gcctcattcct	1260
cctccggcag	cataaaactg	gagttccagcg	ttgttacgc	caatggact	tgcatatcc	1320
aaaacaacaa	caacaatgat	cccaatgaga	tactaagcgt	ccttagtgtat	atttacgaca	1380
aggaatttgtt	cagcgtcatt	ggctgggca	agcagatacc	tggcgttata	gatctgcccc	1440
ttaacgacca	gatgaagctt	ctccaggtgt	cgtgggcaga	gatcctgacg	ctccagctga	1500
cctccggc	cctaccgttc	aatggcaagt	tatgttgc	cacggatgtc	tggatggatg	1560
aacatttggc	caaggagtgc	ggttacacgg	agttctacta	ccactgcgtc	cagatcgac	1620
agcgtatgg	aagaatctcg	ccacaaagg	aggagttacta	cttgcgtttaa	gcgcgttgc	1680
tggccaaactg	cgacattctg	ctggatgtc	agagttccct	gcgcgcattt	cgtgatacga	1740
ttcttaattc	tctaaacat	gtgttctact	tgctgcgtca	ttcgtcggcc	gtgtcgcatc	1800
agcaacaatt	gctgttttgc	ctgccttcgc	tgccgcaggc	ggatgatatc	ctgcgaagat	1860
tttggcgtgg	aattgcacgc	gatgaagtca	ttaccatgaa	gaaactgttc	ctcgagatgc	1920
tcgagccgct	ggccaggta	aaaggattat	gcgggcggcc	aaactagttt	atctagctga	1980
taagcaaaagg	tgcaaaatata	gtcttagta	tatatggatg	tataactagag	tagattaagc	2040
gtaggataa	ccatgtatata	aaatagtaaa	atacttgc	ggtaagat	gttcgcagaa	2100
aaaatctctt	ttaatggact	accaactaca	gcaactggaa	aaccctactt	atcttctaga	2160
atcgggggtgt	gcttacactg	gtttaaaggcg	catatagtg	ttatgtgtct	aaagttgtga	2220
gtcacagatc	ttcaataatt	tgttcaattc	tcactgggtt	tgatatatgt	atatgcgc	2280
accttctgtat	gtaacgtatg	aatttgggg	cactttaaa	atacgatagt	ggttctacaa	2340
tacaatggat	tatactgttt	ctaagtgtca	tgtaaccagg	tgattctgt	tctatgtgt	2400
acacatgcgg	tcaaaaagaat	agcaatgtcg	tccgtgaata	ataaaccgtt	tgtaactgtt	2460
gtttccatac	tccctaaat	ctgtatttctt	tggggatttt	ctttcctaa	acaaattcaa	2520
	attagttt					2529

<210> 25

<211> 601

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 25

Met	Asp	Gly	Val	Lys	Val	Glu	Thr	Phe	Ile	Lys	Ser	Glu	Glu	Asn	Arg
1					5				10					15	
Ala	Met	Pro	Leu	Ile	Gly	Gly	Gly	Ser	Ala	Ser	Gly	Gly	Thr	Pro	Leu
									20					25	
Pro	Gly	Gly	Gly	Val	Gly	Met	Gly	Ala	Gly	Ala	Ser	Ala	Thr	Leu	Ser
									35					40	
Val	Glu	Leu	Cys	Leu	Val	Cys	Gly	Asp	Arg	Ala	Ser	Gly	Arg	His	Tyr
									50					55	
Gly	Ala	Ile	Ser	Cys	Glu	Gly	Cys	Lys	Gly	Phe	Phe	Lys	Arg	Ser	Ile
									65					70	
Arg	Lys	Gln	Leu	Gly	Tyr	Gln	Cys	Arg	Gly	Ala	Met	Asn	Cys	Glu	Val
									85					90	
Thr	Lys	His	His	Arg	Asn	Arg	Cys	Gln	Phe	Cys	Arg	Leu	Gln	Lys	Cys
									100					105	
														110	

Leu Ala Ser Gly Met Arg Ser Asp Ser Val Gln His Glu Arg Lys Pro
 115 120 125
 Ile Val Asp Arg Lys Glu Gly Ile Ile Ala Ala Ala Gly Ser Ser Ser
 130 135 140
 Thr Ser Gly Gly Gly Asn Gly Ser Ser Thr Tyr Leu Ser Gly Lys Ser
 145 150 155 160
 Gly Tyr Gln Gln Gly Arg Gly Lys Gly His Ser Val Lys Ala Glu Ser
 165 170 175
 Ala Ala Thr Pro Pro Val His Ser Ala Pro Ala Thr Ala Phe Asn Leu
 180 185 190
 Asn Glu Asn Ile Phe Pro Met Gly Leu Asn Phe Ala Glu Leu Thr Gln
 195 200 205
 Thr Leu Met Phe Ala Thr Gln Gln Gln Gln Gln Gln Gln His
 210 215 220
 Gln Gln Ser Gly Ser Tyr Ser Pro Asp Ile Pro Lys Ala Asp Pro Glu
 225 230 235 240
 Asp Asp Glu Asp Asp Ser Met Asp Asn Ser Ser Thr Leu Cys Leu Gln
 245 250 255
 Leu Leu Ala Asn Ser Ala Ser Asn Asn Ser Gln His Leu Asn Phe
 260 265 270
 Asn Ala Gly Glu Val Pro Thr Ala Leu Pro Thr Thr Ser Thr Met Gly
 275 280 285
 Leu Ile Gln Ser Ser Leu Asp Met Arg Val Ile His Lys Gly Leu Gln
 290 295 300
 Ile Leu Gln Pro Ile Gln Asn Gln Leu Glu Arg Asn Gly Asn Leu Ser
 305 310 315 320
 Val Lys Pro Glu Cys Asp Ser Glu Ala Glu Asp Ser Gly Thr Glu Asp
 325 330 335
 Ala Val Asp Ala Glu Leu Glu His Met Glu Leu Asp Phe Glu Cys Gly
 340 345 350
 Gly Asn Arg Ser Gly Gly Ser Asp Phe Ala Ile Asn Glu Ala Val Phe
 355 360 365
 Glu Gln Asp Leu Leu Thr Asp Val Gln Cys Ala Phe His Val Gln Pro
 370 375 380
 Pro Thr Leu Val His Ser Tyr Leu Asn Ile His Tyr Val Cys Glu Thr
 385 390 395 400
 Gly Ser Arg Ile Ile Phe Leu Thr Ile His Thr Leu Arg Lys Val Pro
 405 410 415
 Val Phe Glu Gln Leu Glu Ala His Thr Gln Val Lys Leu Leu Arg Gly
 420 425 430
 Val Trp Pro Ala Leu Met Ala Ile Ala Leu Ala Gln Cys Gln Gly Gln
 435 440 445
 Leu Ser Val Pro Thr Ile Ile Gly Gln Phe Ile Gln Ser Thr Arg Gln
 450 455 460
 Leu Ala Asp Ile Asp Lys Ile Glu Pro Leu Lys Ile Ser Lys Met Ala
 465 470 475 480
 Asn Leu Thr Arg Thr Leu His Asp Phe Val Gln Glu Leu Gln Ser Leu
 485 490 495
 Asp Val Thr Asp Met Glu Phe Gly Leu Leu Arg Leu Ile Leu Leu Phe
 500 505 510
 Asn Pro Thr Leu Leu Gln Gln Arg Lys Glu Arg Ser Leu Arg Gly Tyr
 515 520 525
 Val Arg Arg Val Gln Leu Tyr Ala Leu Ser Ser Leu Arg Arg Gln Gly
 530 535 540
 Gly Ile Gly Gly Gly Glu Glu Arg Phe Asn Val Leu Val Ala Arg Leu
 545 550 555 560
 Leu Pro Leu Ser Ser Leu Asp Ala Glu Ala Met Glu Glu Leu Phe Phe
 565 570 575
 Ala Asn Leu Val Gly Gln Met Gln Met Asp Ala Leu Ile Pro Phe Ile
 580 585 590

Leu Met Thr Ser Asn Thr Ser Gly Leu
 595 600

<210> 26
 <211> 2288
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; note =
 synthetic construct

<400> 26		
atggaaacaa ggagattta ttgcgttaga aaaggttcaa aataggcaca aagtgcctga	60	
aatatatcgta actgaccgga agtaacataa ctttaaccaa gtgcctcgaa aaatagatgt	120	
ttttaaaaaggc tcaagaatgg tgataacaga cgtccaataa gaatttcaa agagccaaat	180	
gtttgggttt cagttatata tacagccgac gactatttt tagccgcctg ctgtggcgac	240	
aatggacggc gttaagggtt agacgttcat caaaagcgaa gaaaaccgag cgatgccctt	300	
gatcgaggaa ggcagtgcct caggcggcac tcctctgcca ggaggcggcg tggaaatggg	360	
agcggagca tccgcaacgt tgagcgttga gctgtgttg gtgtgcgggg accgcgcctc	420	
cggccggcac tacggagcca taagctgcga aggctgcga ggattcttca agcgctcgat	480	
cogaagcag ctgggctacc agtgcgcgg ggctatgaac tgcgagggtca ccaagcacca	540	
cagaatcggt tgccagttct gtcgactaca gaagtgcctg gccagcggca tgcgaagtga	600	
tttgtgcag cacgagagga aaccgattgt ggacaggaag gagggatca tcgctgctgc	660	
cggtagctca tccacttctg gcggcggtaa tggctcgccc acctacctat cggcaagtc	720	
cggctatcag cagggggctg gcaagggca cagtgtaaag gccgaatccg cggccacgccc	780	
tccagtgcac agcgcgcac caacggcctt caatttgaat gagaatataat tcccgatggg	840	
tttgaatttc gcagaactaa cgcagacatt gatgttcgtc acccaacacgc agcagcaaca	900	
acagcaacag catcaacaga gtggtagcta ttcgcccagat attccgaagg cagatccccg	960	
ggatgacgag gacgactcaa tggacaacag cagcacgtg tgcttcgtc tgctcgccaa	1020	
cagcgcacgc aacaacaact cgacgacact gaactttaat gctggggaaag taccaccgc	1080	
tctgcctacc acctcgacaa tgggcttat tcagagtctg ctggacatgc gggtcatcca	1140	
caagggactg cagatccgtc agcccatcca aaaccaactg gagcggaaatg gtaatctgag	1200	
tgtgaagccc gagtgcgatt cagaggcggg ggacagttgc accgaggatg ccgtagacgc	1260	
ggagctggag cacatggaaac tagacttttga tgccgggtggg aacccaagcg gtggaaagcga	1320	
ttttgtatc aatggggcgg tctttgaaca ggtatcccttcc accgatgtgc agtgtgcctt	1380	
tcatgtgcaa cccggcactt tggccactc gtatttaattatttgc tggtgtgagac	1440	
gggctcgca atcatttttc tcaccatcca tacccttcga aagggtccag tttcgaaca	1500	
attggaaagcc catacacagg tggaaactcttcc gagaggatg tggccagcat taatggctat	1560	
agcttggcg cagtgtcagg gtcagtttc ggtgcccacc attatcgggc agtttattca	1620	
aagcaactcgc cagctagcgg atatcgataa gatcgaaaccg ttgaagatct cgaagatggc	1680	
aaatctcacc aggacccctgc acgactttgt ccaggagtc cagtcactgg atgttactga	1740	
tatggagttt ggcttgcgtc gtctgatctt gctcttcaat ccaacgcctt tgccagcgc	1800	
caaggagcgg tcgttgcgg gctacgtccg cagagtccaa ctctacgcgc tgcgttgc	1860	
gagaaggcag ggtggcatcg gccggcggcga ggagcgcctt aatgttctgg tggctcgcc	1920	
tctccgcctc agcgccttgg acgcacggc catggaggag ctgttcttcg ccaacttgg	1980	
ggggcagatg cagatggatg ctcttattcc gttcatactg atgaccagca acaccagtgg	2040	
actgttaggcg gaatttgagaa gaacaggcgc caagcagatt cgctagactg cccaaaagca	2100	
agactgaaga tggaccaagt gccggcaata catgtacaa ctggcaaat cccattaatt	2160	
atatatttaa tatataacaat atatagttta ggataacaata ttctaacata aaaccatggg	2220	
tttattgttg ttcacagata aaatggaaatc gatttcccaa taaaagcgaat tatgtttttaa	2280	
aacagaat	2288	

<210> 27
 <211> 508
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; note =
 synthetic construct

<400> 27

Met Asp Asn Cys Asp Gln Asp Ala Ser Phe Arg Leu Ser His Ile Lys
 1 5 10 15
 Glu Glu Val Lys Pro Asp Ile Ser Gln Leu Asn Asp Ser Asn Asn Ser
 20 25 30
 Ser Phe Ser Pro Lys Ala Glu Ser Pro Val Pro Phe Met Gln Ala Met
 35 40 45
 Ser Met Val His Val Leu Pro Gly Ser Asn Ser Ala Ser Ser Asn Asn
 50 55 60
 Asn Ser Ala Gly Asp Ala Gln Met Ala Gln Ala Pro Asn Ser Ala Gly
 65 70 75 80
 Gly Ser Ala Ala Ala Val Gln Gln Tyr Pro Pro Asn His Pro
 85 90 95
 Leu Ser Gly Ser Lys His Leu Cys Ser Ile Cys Gly Asp Arg Ala Ser
 100 105 110
 Gly Lys His Tyr Gly Val Tyr Ser Cys Glu Gly Cys Lys Gly Phe Phe
 115 120 125
 Lys Arg Thr Val Arg Lys Asp Leu Thr Tyr Ala Cys Arg Glu Asn Arg
 130 135 140
 Asn Cys Ile Ile Asp Lys Arg Gln Arg Asn Arg Cys Gln Tyr Cys Arg
 145 150 155 160
 Tyr Gln Lys Cys Leu Thr Cys Gly Met Lys Arg Glu Ala Val Gln Glu
 165 170 175
 Glu Arg Gln Arg Gly Ala Arg Asn Ala Ala Gly Arg Leu Ser Ala Ser
 180 185 190
 Gly Gly Gly Ser Ser Gly Pro Gly Ser Val Gly Gly Ser Ser Ser Gln
 195 200 205
 Gly Gly Gly Gly Gly Val Ser Gly Gly Met Gly Ser Gly Asn
 210 215 220
 Gly Ser Asp Asp Phe Met Thr Asn Ser Val Ser Arg Asp Phe Ser Ile
 225 230 235 240
 Glu Arg Ile Ile Glu Ala Glu Gln Arg Ala Glu Thr Gln Cys Gly Asp
 245 250 255
 Arg Ala Leu Thr Phe Leu Arg Val Gly Pro Tyr Ser Thr Val Gln Pro
 260 265 270
 Asp Tyr Lys Gly Ala Val Ser Ala Leu Cys Gln Val Val Asn Lys Gln
 275 280 285
 Leu Phe Gln Met Val Glu Tyr Ala Arg Met Met Pro His Phe Ala Gln
 290 295 300
 Val Pro Leu Asp Asp Gln Val Ile Leu Leu Lys Ala Ala Trp Ile Glu
 305 310 315 320
 Leu Leu Ile Ala Asn Val Ala Trp Cys Ser Ile Val Ser Leu Asp Asp
 325 330 335
 Gly Gly Ala Gly Gly Gly Gly Leu Gly His Asp Gly Ser Phe
 340 345 350
 Glu Arg Arg Ser Pro Gly Leu Gln Pro Gln Leu Phe Leu Asn Gln
 355 360 365
 Ser Phe Ser Tyr His Arg Asn Ser Ala Ile Lys Ala Gly Val Ser Ala
 370 375 380
 Ile Phe Asp Arg Ile Leu Ser Glu Leu Ser Val Lys Met Lys Arg Leu
 385 390 395 400
 Asn Leu Asp Arg Arg Glu Leu Ser Cys Leu Lys Ala Ile Ile Leu Tyr
 405 410 415
 Asn Pro Asp Ile Arg Gly Ile Lys Ser Arg Ala Glu Ile Glu Met Cys
 420 425 430
 Arg Glu Lys Val Tyr Ala Cys Leu Asp Glu His Cys Arg Leu Glu His
 435 440 445
 Pro Gly Asp Asp Gly Arg Phe Ala Gln Leu Leu Arg Leu Pro Ala
 450 455 460

Leu Arg Ser Ile Ser Leu Lys Cys Gln Asp His Leu Phe Leu Phe Arg
 465 470 475 480
 Ile Thr Ser Asp Arg Pro Leu Glu Glu Leu Phe Leu Glu Gln Leu Glu
 485 490 495
 Ala Pro Pro Pro Gly Leu Ala Met Lys Leu Glu
 500 505

<210> 28
<211> 2488
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 28
aaaaatgtcg acgcgaaaaa aggtatttat tcattagtca gaaagtctgg catttttg
ttgttggtaa aaagcgaat tggggagg cgagcgaata aagtgcgctg ctccatcgcc 60
tcaagattat gttaatgcag caacgacccc accaacaacg aaactgcaac ctgctccact 120
tggcccaacg gaccaatagc ggacggacgg acacgggtggc gttggcaaaag tgaaacccca 180
acagagaggc gaaagcggc caagacacac cacatcacaca cgaagagaac gagcaagaag 240
aaaccggtag gcgaggaggcg cgctgcccc agttccctca atatacccg caccacatca 300
caagcccagg atggacact ggcgaccagg cgccagctt cggctgagcc acatcaagga 360
ggaggtcaag cccggacatct cgcgactgaa cgacagcaac aacagcagct ttccggccaa 420
ggccgagagt cccgtgcct tcatgcggc catgtccatg gtccacgtgc tgccgggttc 480
caactccgccc agctccaaca acaacagcgc tggagatgcc caaaatggcgc aggccccc 540
ttccgctgga ggctctggc cccgtgcagt ccagcagcag tatccgccta accatccgct 600
gagccgagc aagcacctt gctctattt cggggatcg gccagtggca agcactacgg 660
cgtgtacagc tggagggtct gcaagggttt cttaaacgc acagtgcgc aggatctcac 720
atacgcttc agggagaacc gcaactgcata gatacacaag cgccagagga accgctgcca 780
gtactgcgc taccagaagt gcctaacctg cggcatgaag cgcaagcgg tccaggagga 840
gcgtcaacgc ggcccgcga atgcggcggg taggctcagc gccagcggag gcccggatcg 900
cggtccaggt tggtaggcg gatccagtc tcaaggcggg ggaggaggag gcccggttc 960
tggccgaatg ggcagcggca acggttctga tgacttcatg accaatagcg tggccaggga 1020
tttctcgatc gagcgcatac tagaggccga gcagcggcgc gagacccat gcccggatcg 1080
tgcactgacg ttccctgcgc ttggcccta ttccacagtc cagccggact acaagggtgc 1140
cgtgtccggcc ctgtgcacaa tggtaaccaa acagctttc cagatggctg aatacgcgc 1200
catgatgccc cactttgccc aggtgccgt ggacgaccag gtgattctgc tggccggcc 1260
ttggatcgag ctgctcatcg cgaacgtggc ctggtgccgc atcgttcgc tggatgacgg 1320
cgggtccggc ggccggggcg gtggacttagg ccacgatggc tccttgccgc gacgatcacc 1380
gggccttcag cccacgcgc tggccctcaa ccagacgttc tcgttccatc gcaacagtc 1440
gatcaaagcc ggtgtgtcg ccatttcgc cccatattt tcggagctga gtgtaaagat 1500
gaagccgctg aatctcgacc gacgcggatc gtcctgcgtt aaggccatca tactgtacaa 1560
ccggacata cggggatca agacccggc ggagatcgag atgtccgcg agaagggtga 1620
cggttcctgc gacgagact gccccttggc acatccggc gacgatggac gctttgogca 1680
actgtgcgtc cgtctccggc ctttgcgatc gatcgcctt aagtgcgcagg atcaccctgtt 1740
cctttccgc attaccagcg accggccgt ggaggagtc ttttcgcgc agctggaggc 1800
ggccggccca cccggccctgg cgatgaaact ggatggatgtt cccgactcta aagtctcccc 1860
cggttcctcat cggaaaaatg ttcatgttgcattttc ttgcatttc tcctctctat 1920
cccttatacc ctacaaaagc ccccttaat tacgcacaaat gtgtatgtaa ttgtttat 1980
ttttttattt acctaataattt attatttta ttgatataga aaatgtttc cttaaatgtaa 2040
agattagcct cctcgacgtt tatgtcccg taaaacaaaa acaaacaacaa tccaaaactt 2100
gaaaagaaca caaaacacgc acgagaaaaat gcacacaacg aaagtaaaag taaaagttaa 2160
actaaagcta aacgagtaaa gatattaaaa taacggttaa aattaatgc tagttatgtat 2220
ctacagacgt atgtaaacat acaaattcag cataaaatata tatgtcgc ggcgcataatc 2280
tgcgggtctg gccccgttctt aaatcaatttgc taattacttt ttaacataaa ttacccaaa 2340
acgttatcaa ttagatgcga gataaaaaa tcaccgacga aaaccaacaa aatataatcta 2400
tgtataaaaaa atataaactg cataacaa 2460
2488

<210> 29
<211> 906
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 29
Met Gly Glu Glu Leu Pro Ile Leu Lys Gly Ile Leu Lys Gly Asn Val
1 5 10 15
Asn Tyr His Asn Ala Pro Val Arg Phe Gly Arg Val Pro Lys Arg Glu
20 25 30
Lys Ala Arg Ile Leu Ala Ala Met Gln Gln Ser Thr Gln Asn Arg Gly
35 40 45
Gln Gln Arg Ala Leu Ala Thr Glu Leu Asp Asp Gln Pro Arg Leu Leu
50 55 60
Ala Ala Val Leu Arg Ala His Leu Glu Thr Cys Glu Phe Thr Lys Glu
65 70 75 80
Lys Val Ser Ala Met Arg Gln Arg Ala Arg Asp Cys Pro Ser Tyr Ser
85 90 95
Met Pro Thr Leu Leu Ala Cys Pro Leu Asn Pro Ala Pro Glu Leu Gln
100 105 110
Ser Glu Gln Glu Phe Ser Gln Arg Phe Ala His Val Ile Arg Gly Val
115 120 125
Ile Asp Phe Ala Gly Met Ile Pro Gly Phe Gln Leu Leu Thr Gln Asp
130 135 140
Asp Lys Phe Thr Leu Leu Lys Ala Gly Leu Phe Asp Ala Leu Phe Val
145 150 155 160
Arg Leu Ile Cys Met Phe Asp Ser Ser Ile Asn Ser Ile Ile Cys Leu
165 170 175
Asn Gly Gln Val Met Arg Arg Asp Ala Ile Gln Asn Gly Ala Asn Ala
180 185 190
Arg Phe Leu Val Asp Ser Thr Phe Asn Phe Ala Glu Arg Met Asn Ser
195 200 205
Met Asn Leu Thr Asp Ala Glu Ile Gly Leu Phe Cys Ala Ile Val Leu
210 215 220
Ile Thr Pro Asp Arg Pro Gly Leu Arg Asn Leu Glu Leu Ile Glu Lys
225 230 235 240
Met Tyr Ser Arg Leu Lys Gly Cys Leu Gln Tyr Ile Val Ala Gln Asn
245 250 255
Arg Pro Asp Gln Pro Glu Phe Leu Ala Lys Leu Leu Glu Thr Met Pro
260 265 270
Asp Leu Arg Thr Leu Ser Thr Leu His Thr Glu Lys Leu Val Val Phe
275 280 285
Arg Thr Glu His Lys Glu Leu Leu Arg Gln Gln Met Trp Ser Met Glu
290 295 300
Asp Gly Asn Asn Ser Asp Gly Gln Gln Asn Lys Ser Pro Ser Gly Ser
305 310 315 320
Trp Ala Asp Ala Met Asp Val Glu Ala Ala Lys Ser Pro Leu Gly Ser
325 330 335
Val Ser Ser Thr Glu Ser Ala Asp Leu Asp Tyr Gly Ser Pro Ser Ser
340 345 350
Ser Gln Pro Gln Gly Val Ser Leu Pro Ser Pro Pro Gln Gln Gln Pro
355 360 365
Ser Ala Leu Ala Ser Ser Ala Pro Leu Leu Ala Ala Thr Leu Ser Gly
370 375 380
Gly Cys Pro Leu Arg Asn Arg Ala Asn Ser Gly Ser Ser Gly Asp Ser
385 390 395 400

Gly Ala Ala Glu Met Asp Ile Val Gly Ser His Ala His Leu Thr Gln
 405 410 415
 Asn Gly Leu Thr Ile Thr Pro Ile Val Arg His Gln Gln Gln Gln
 420 425 430
 Gln Gln Gln Ile Gly Ile Leu Asn Asn Ala His Ser Arg Asn Leu
 435 440 445
 Asn Gly Gly His Ala Met Cys Gln Gln Gln Gln His Pro Gln Leu
 450 455 460
 His His His Leu Thr Ala Gly Ala Ala Arg Tyr Arg Lys Leu Asp Ser
 465 470 475 480
 Pro Thr Asp Ser Gly Ile Glu Ser Gly Asn Glu Lys Asn Glu Cys Lys
 485 490 495
 Ala Val Ser Ser Gly Gly Ser Ser Cys Ser Ser Pro Arg Ser Ser
 500 505 510
 Val Asp Asp Ala Leu Asp Cys Ser Asp Ala Ala Asn His Asn Gln
 515 520 525
 Val Val Gln His Pro Gln Leu Ser Val Val Ser Val Ser Pro Val Arg
 530 535 540
 Ser Pro Gln Pro Ser Thr Ser Ser His Leu Lys Arg Gln Ile Val Glu
 545 550 555 560
 Asp Met Pro Val Leu Lys Arg Val Leu Gln Ala Pro Pro Leu Tyr Asp
 565 570 575
 Thr Asn Ser Leu Met Asp Glu Ala Tyr Lys Pro His Lys Lys Phe Arg
 580 585 590
 Ala Leu Arg His Arg Glu Phe Glu Thr Ala Glu Ala Asp Ala Ser Ser
 595 600 605
 Ser Thr Ser Gly Ser Asn Ser Leu Ser Ala Gly Ser Pro Arg Gln Ser
 610 615 620
 Pro Val Pro Asn Ser Val Ala Thr Pro Pro Pro Ser Ala Ala Ser Ala
 625 630 635 640
 Ala Ala Gly Asn Pro Ala Gln Ser Gln Leu His Met His Leu Thr Arg
 645 650 655
 Ser Ser Pro Lys Ala Ser Met Ala Ser Ser His Ser Val Leu Ala Lys
 660 665 670
 Ser Leu Met Ala Glu Pro Arg Met Thr Pro Glu Gln Met Lys Arg Ser
 675 680 685
 Asp Ile Ile Gln Asn Tyr Leu Lys Arg Glu Asn Ser Thr Ala Ala Ser
 690 695 700
 Ser Thr Thr Asn Gly Val Gly Asn Arg Ser Pro Ser Ser Ser Thr
 705 710 715 720
 Pro Pro Pro Ser Ala Val Gln Asn Gln Gln Arg Trp Gly Ser Ser Ser
 725 730 735
 Val Ile Thr Thr Cys Gln Gln Arg Gln Gln Ser Val Ser Pro His
 740 745 750
 Ser Asn Gly Ser
 755 760 765
 Ser Ser Ser Ser Thr Ser Ser Asn Cys Ser Ser Ser Ser Ala Ser Ser
 770 775 780
 Cys Gln Tyr Phe Gln Ser Pro His Ser Thr Ser Asn Gly Thr Ser Ala
 785 790 795 800
 Pro Ala Ser Ser Ser Ser Gly Ser Asn Ser Ala Thr Pro Leu Leu Glu
 805 810 815
 Leu Gln Val Asp Ile Ala Asp Ser Ala Gln Pro Leu Asn Leu Ser Lys
 820 825 830
 Lys Ser Pro Thr Pro Pro Pro Ser Lys Leu His Ala Leu Val Ala Ala
 835 840 845
 Ala Asn Ala Val Gln Arg Tyr Pro Thr Leu Ser Ala Asp Val Thr Val
 850 855 860
 Thr Ala Ser Asn Gly Gly Pro Pro Ser Ala Ala Ala Ser Pro Ala Pro
 865 870 875 880

Ser Ser Ser Pro Pro Ala Ser Val Gly Ser Pro Asn Pro Gly Leu Ser
 885 890 895
 Ala Ala Val His Lys Val Met Leu Glu Ala
 900 905

<210> 30
<211> 3750
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 30		
agtccaccgtc gcagtcgcag cagttgagggt	tcgctctccct cgatttcggg caaatccgat	60
accatatagc acagcgtaacc gcactctggg	tatattcgta acgcgccttg gcttttacag	120
tttagtcgcgt tcgagacctt gtcgagtttt	gtcatgttag ccagcgatcc gcgggatccg	180
aaataagcca agaatcacaa cgcgagtgcg	gcagttgcca gcagtaacta caccatatt	240
tatattaatt aaaataaatt aaatgaaaca	acatgctgat taatgccaat gaatgttaaa	300
tgcaattgtt aatgtgaaga aaagtcgacc	aagtctcccc aaaacaacac ttattcaac	360
tccactacac actcgccctt ctgattacg	cgcggaaaaaaa aaaacaaaaaa ttaaaaatta	420
aacccaaacca acaactaatt tattgctaa	atattccaaa aattcaatca atgtgaaaag	480
caagcaaaca aagttccctc cacaacaaaaa	cagcagttaa ttaaaaatc taaccgagat	540
aaagtgc当地 gaagataaca agtttctcaa	gcaaaatccc atatgtaccc ggttaccaac	600
caaaaagctg tgggtgtgcc aaaaacccgaa	gaggaattt ccaaaaatat ttaatgagca	660
agctcaactg agtgggtgat gtgcggggcc	aggggaaaagt gaccaagtca agatatttg	720
tcaaattcgaa cacagaaaaac aaaaaatgg	gcaagaact cccgatattt aagggcatac	780
ttaaaggcaa cgtcaactat cacaatgcgc	ctgtcggtt tggacgcgtg cccgaagcgcg	840
aaaaggcgcg tattctggcg gcoatgcaac	gagacacccaa gaatgcggc cagcagcgag	900
cctctggccac cggactggat gaccagccac	gcctcctcgc cgcgtgtgc cgcggccacc	960
tcgagacctg tgagttcacc aaggagaagg	tctcgccgat ggcgcggcgg ggcggggatt	1020
gccccctcta ctccatgccc acacttctgg	cctgtccgct gaaccccgcc cctgaactgc	1080
aatcgagca ggagtctcg caggtttcg	cccacgtaat tcgccccgtg atcgacttt	1140
ccggcatgat tccgggttc cagctgctca	cccaggacga taagttcacg ctcctgaagg	1200
cgggactctt cgacgcctg tttgtgcgc	tgtatctgcat gtttgcactg tcgataaact	1260
caatcatctg tctaaatggc caggtgatgc	gacgggatgc gatccagaac ggagccaatg	1320
cccgcttcct ggtggactcc accttcaatt	ctcgccgagcg catgaactcg atgaacctga	1380
cagatgccga gataggcctg ttctgccc	tcgttctgat tacgcggat cgcggccgtt	1440
tgcgcaacctt ggagctgatc gagaagatgt	actcgcgact caagggtctgc ctgcagtaca	1500
tttgtccccca gaataggccc gatcagcccg	agttccctggc caagttgtcg gagacgtatgc	1560
ccgatctgcg caccctgagc accctgcaca	ccgagaaaact ggtgtttt cgcaccggagc	1620
acaaggagct gctgcgccag cagatgtggt	ccatggagga cggcaacaac agcgatggcc	1680
acgagaacaa gtcgcctcg ggcagctggg	cgatggccat ggacgtggag cggccaaga	1740
gtccgcttgg ctcggatcg agactgatgt	ccggccgact ggactacggc agtccgagca	1800
gttcgcagcc acaggcgctg tctctgcct	ccgcgcctca gcaacagccc tcggctctgg	1860
ccagctcgcc tccctctgtg gggccaccc	tctccggagg atgtcccctg cgcaaccggg	1920
ccaaattccgg ctccagcggt gactccggag	cagctgagat ggatatcggt ggctcgacag	1980
cacatctcac ccagaacggg ctgacaatca	cgccgattgt gcgacaccag cagcagcaac	2040
aacagcagca gcagatcgga atactcaata	ccgcacttgc aatgggggac	2100
acgcgatgtg ccagcaacag cagcagcacc	cacaactgca ccaccacttg acagccggag	2160
ctgccccgtca cagaaagctt gattgcccc	cgattccggg cattgagtc ggcaacgaga	2220
agaacgagtg caaggcggtg agttcccccc	gaagttccctc gtgcctccagt ccgcgttcca	2280
gtgtggatga tgcgcgtggc tgcaatcgat	ccgcccggccaa tcacaatcg gtggtcagc	2340
atccgcagct gagggtgttgc tccgtgtcac	cagttcgctc gcccagccc tccaccagca	2400
gcatctgaa gcgacagatt gtggaggata	tgcccgtgtc gaagcgctg ctgcaggctc	2460
cccctctgtt cgtatccaac tcgctgatgg	acgaggccctt caagccgcac aagaaattcc	2520
ggccctcgcc gcatcgccag ttccgagaccg	ccgaggccga tgccagcagt tccacttccg	2580
gtcgaaacag cctgagtgcc ggcagtcgc	gacagagtcc agtcccgaac agtgtggcca	2640
cgccccggcc atcggccggcc agcggcccg	caggtaatcc cgcccagcgc cagctgcaca	2700
tgcacccgtac ccgcagcagc cccaaggcc	ccatggccag ctcgcactcg gtgcgtggcca	2760

agtctctcat	ggccgagccg	cgcacatgcacgc	ccgagcagat	gaagcgccgc	gatattatcc	2820
aaaactactt	gaagcgccgag	aacagcacag	cagccagcag	caccaccaat	ggcgtggca	2880
acccgactcc	cagcagcagc	tccacaccgc	cgccatccgc	ggtcagaat	cagcagcggt	2940
ggggcagcag	ctcggtgatc	accaccacct	gccagcagcg	ccagcagtcc	gtgtcgccgc	3000
acagcaacgg	ttccagctcc	agttcgagct	ctagctccag	ctccagttcg	tcatcctct	3060
ccacatcctc	caactgcagc	tccagctcg	ccagcagctg	ccagtttc	cagtcgcccgc	3120
actccaccag	caacggcacc	agtgcacccg	cgagctccag	ttcgggatcg	aacagcgcca	3180
cgccccctgct	ggaactgcag	gtggacattg	ctgactccgc	gcagcctctc	aatttgatcca	3240
agaaaatcgcc	cacgcccggc	cccagcaagc	tgcaagctct	ggtgccgc	gccaatgcgg	3300
ttcaaaggta	tcccacattt	tccggccacg	tcacagtgc	agcctccaaat	ggcggtccctc	3360
cgtccggccgc	ggcgagttccg	gcgcccagca	gcagtcgc	ggcgagttgtg	ggctccccca	3420
atccgggcct	gagcgcgcgc	gtgcacaagg	taatgttgc	ggcgtaagag	cgggaggagg	3480
tagtgtt	tacgcggaga	agtgggagag	acagagactg	ggagtggcag	ttcagcgaag	3540
cagaaggcag	gatcaactgg	agcggcggga	gttgaattaa	attatttac	catttaattt	3600
agacgtgtac	aaagtttga	agcaaaaacca	acatgcatgc	aattttaaac	taatattttaa	3660
agcaacaaca	aacaaaacaa	ctacaagtt	ttaattttaa	aaacaaacaa	acaaacaaac	3720
aacaaaaaac	ccaagcttga	atggattttac				3750

<210> 31

<211> 392

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 31

Met	His	Pro	Ser	His	Leu	Gln	His	Leu	Leu	Gln						
1				5				10					15			
Gln	Gln	Gln	Gln	Gln	Gln	His	Gln	Pro	Gln	Leu	Gln	Gln	His	His	Gln	
								20		25			30			
Leu	Gln	Gln	Gln	Pro	His	Val	Ser	Gly	Val	Arg	Val	Lys	Thr	Pro	Ser	
					35			40			45					
Thr	Pro	Gln	Thr	Pro	Gln	Met	Cys	Ser	Ile	Ala	Ser	Ser	Pro	Ser	Glu	
					50		55			60						
Leu	Gly	Gly	Cys	Asn	Ser	Ala	Asn									
				65		70		75					80			
Ser	Ser	Ser	Gly	Asn	Ala	Ser	Gly	Gly	Ser	Gly	Val	Ser	Val	Gly	Val	
					85		90						95			
Val	Val	Val	Gly	Gly	His	Gln	Gln	Leu	Val	Gly	Gly	Ser	Met	Val	Gly	
					100		105			110						
Met	Ala	Gly	Met	Gly	Thr	Asp	Ala	His	Gln	Val	Gly	Met	Cys	His	Asp	
					115		120			125						
Gly	Leu	Ala	Gly	Thr	Ala	Asn	Glu	Leu	Thr	Val	Tyr	Asp	Val	Ile	Met	
					130		135			140						
Cys	Val	Ser	Gln	Ala	His	Arg	Leu	Asn	Cys	Ser	Tyr	Thr	Glu	Glu	Leu	
					145		150			155			160			
Thr	Arg	Glu	Leu	Met	Arg	Arg	Pro	Val	Thr	Val	Pro	Gln	Asn	Gly	Ile	
					165		170			175						
Ala	Ser	Thr	Val	Ala	Glu	Ser	Leu	Glu	Phe	Gln	Lys	Ile	Trp	Leu	Trp	
					180		185			190						
Gln	Gln	Phe	Ser	Ala	Arg	Val	Thr	Pro	Gly	Val	Gln	Arg	Ile	Val	Glu	
					195		200			205						
Phe	Ala	Lys	Arg	Val	Pro	Gly	Phe	Cys	Asp	Phe	Thr	Gln	Asp	Asp	Gln	
					210		215			220						
Leu	Ile	Leu	Ile	Lys	Leu	Gly	Phe	Phe	Glu	Val	Trp	Leu	Thr	His	Val	
					225		230			235			240			
Ala	Arg	Leu	Ile	Asn	Glu	Ala	Thr	Leu	Leu	Asp	Asp	Gly	Ala	Tyr		
					245		250			255						

```
<210> 32
<211> 3341
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400>	32	60				
aagcattaac	gaaagaactg	cgcacaaaagt	aggaggca	taattacata	tgtacatggc	120
tggaaaggc	cttaactaaa	cttagcaaac	taataaatag	aaaaaaggaa	atattggca	180
aatattatag	tattgggaat	attaggttac	ttatatcaa	aaattaatgt	ctatttata	240
cacttattct	tagacttaat	gttaacttat	cgtacttatt	atgattgtt	ttcaagatt	300
accagaacct	gatagatttg	tctagctttt	gaaatcgat	agcattttct	ttaaaggact	360
ttgccatatg	ctaaagccta	acttctttt	tcaattcgc	cacagctgac	aaaagcgaag	420
aaaatttggaa	agaccgtgaa	tccttttggaa	acgcctctc	cggattctc	attaagtgc	480
aaagatataa	catcgccagag	atccccata	aaaatgtga	tcagggcccc	tcgcagggt	540
ccaacgtcga	tttccgcagg	caggacgtg	atgaagatga	tggatgccc	tctcaccgt	600
tcgatcgagg	caacatggat	gtataccaaa	tagactgg	ggaacaggca	caatccgct	660
ccaaactgct	ggtcgaaaacc	tgtgtgaagc	actcgcttc	ggagcagcag	cagctccaag	720
ttaagcagga	ggacctcatc	aaggattca	ctcgggacga	ggaggaacag	ccaagcgaag	780
aggaggcgg	ggaagaggac	aacgaagagg	acgaggaaga	agaaggcgaa	gaagaagagg	840
aggacgagga	cgaggaagcc	ctgctgccc	tagtcaattt	taatgcaaat	tcaagacttt	900
atttgcattt	cttgacaca	ccggaggact	cgtccaccca	aggggcctac	agtgaggcc	960
atacgatgg	atccgagcag	gaagaggaga	agcaaaacaca	gcagcatcag	cagcagaagc	1020
agcatcaccg	ggattttggag	gattgcctaa	gtgccattga	agctgatcca	ttcaggttgt	1080
tgcattgcga	cgacttctat	agaacatcag	ccctagcaga	gagtgttgca	gccagtctaa	1140
gcccacagca	gcagcagcaa	cgccagcaca	cccaccagca	acaacagcaa	cagcagcagc	1200
agcagcaaca	ccctggacag	cagcaacatc	agtcactg	cacgctgagc	aatggtgag	1260
gtgcttgt	caccatcagc	agtgtgcattc	agtcgggtcc	ggccagcaac	cacaacacca	1320
gcagcagctc	ccccctctcc	agcgccgccc	actcttcg	ggacagcggc	tgctcgtegg	1380
cctccctctc	cgatcttcg	cgatccctcg	gatecttc	tgcatctcc	tcctcgtecg	1440
cggtcagcag	caccatcagc	agcgccgca	gcagaacaa	cagcgtgtc	aaccccgag	1500
caacatctc	atctgttgcg	catctgaaaca	aagagcaaca	gcagcagcca	ctggcgacga	1560
cacagctca	acagcagcag	cagcaccagc	agcagtgc	acacccgcag	cagcagaat	1620
cfffftgcct	agcagacagc	agcagcagca	acggcagcag	caacaacaac	aacggtgtct	1680
cctcgaaatc	atttgcggcc	tgcaaagtct	gtggcgacaa	ggcatcgga	taccactatg	1740
gtgtacaccc	ctgcgagggt	tgcaaggat	tcttcgtcg	cagtatccag	aagcaaatacg	1800
aataatcgct	tttgcgggac	ggcaagtgc	tggtcatcag	actgaaccgc	aatcgctgc	1860
agtactgcgg	cttcaagaaa	tgcccttcg	ctggcatgag	ccgcgattcc	gtacgatgt	1920
ctcgccgttcc	caagcgttcc	cgtgagctga	acggagcggc	cgccctctcc	geogccgctg	

gagctccctgc	ctccctcaat	gtggatgact	ctaccaggcag	cacactgcac	ccgagtcacc	1980
tacagcgacga	gcagcaacag	catctactac	agcagcaaca	gcagcagcaa	catcagccac	2040
agctgcagca	acaccaccaa	ctgcaacagc	agccgcatgt	aagcggcgta	cgtgtgaaga	2100
ccccgagtagc	tccacaaaacg	ccacaaaatgt	gttcgatcgc	ctccctcgcca	tccgagactgg	2160
gcgggttgc当地	tagtgccaaat	aacaataaca	ataataacaa	caacagttagc	agcggtaatg	2220
ccagcgggtgg	cagcggcggt	agcgtcggcg	tttttgttgt	gggcggacac	cagcaactgg	2280
tggggaggcag	catgggtggga	atggcggca	tggcacggg	tgcccaccag	gtgggcatgt	2340
gtcacgacgg	cttggcggga	acggcaaaacg	agctgaccgt	ctacgatgtc	atcatgtcg	2400
tgtcgcaggc	gcaccgcctc	aactgctct	acacggagga	actgaccaga	gagctcatgc	2460
gtcgccccgt	gacgggtgcca	aaaaatggga	ttgccagcac	agtggccgag	agtctggagt	2520
tccagaagat	ctggctgtgg	caacagttct	cggccagggt	gacgcctggc	gttcagcgg	2580
tttgtggagtt	tgcgaaaacgc	gtacctggct	tctgtgattt	cacccaagat	gaccagctta	2640
tactaataaa	gctgggcttc	ttcgaggctt	ggtgaccca	tgtggcccg	ttgatcaatg	2700
aggcgacatt	gacactggac	gatgggtgct	acctgacgcg	ccagcagtt	gagatactct	2760
acgatttcga	ctttgtcaac	gccttgcgtg	actttgccaa	cacgctgaaac	gcctacgggc	2820
tgagtgacac	cgaaatcgg	ctcttctcg	ccatggtgct	gcttcctcg	gatcgagctg	2880
gactcagcga	gcccgggtt	atccggcagg	ccagggaa	gttggccgag	gctgtcgccg	2940
tacagatcct	gggttcgcgg	gcaggatccc	cacaggcgt	gcagctgtat	ccggcgctgg	3000
aagccaagat	accccgagctg	agatcctgg	ggggcaagca	cttcctcacac	ctagactggc	3060
taclggatgaa	ctggaccaag	ctgcgcctgc	cgcccccttt	cgccgagatc	ttcgacatcc	3120
cgaaggctga	cgatgagctg	taggatgtgg	agccaaacccc	gcttggatcag	ggccgtgcaa	3180
agcaaaccgc	aacaagaaca	gaatatttcta	ccacttgttag	gcttaagcaa	cgtactata	3240
gatcgaaatg	ggagggccgc	agatcagata	cacgtctact	cagcattacc	ggagagatag	3300
tccactaagc	ctatatgcat	actactatac	tagcagtgtt	a		3341

<210> 33
<211> 878

<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note = synthetic construct

<400> 33

Met	Lys	Arg	Arg	Trp	Ser	Asn	Asn	Gly	Gly	Phe	Met	Arg	Leu	Pro	Glu
1				5					10					15	
Glu	Ser	Ser	Ser	Glu	Val	Thr	Ser	Ser	Ser	Asn	Gly	Leu	Val	Leu	Pro
					20				25					30	
Ser	Gly	Val	Asn	Met	Ser	Pro	Ser	Ser	Leu	Asp	Ser	His	Asp	Tyr	Cys
					35			40				45			
Asp	Gln	Asp	Leu	Trp	Leu	Cys	Gly	Asn	Glu	Ser	Gly	Ser	Phe	Gly	Gly
					50			55				60			
Ser	Asn	Gly	His	Gly	Leu	Ser	Gln	Gln	Gln	Ser	Val	Ile	Thr	Leu	
					65			70			75			80	
Ala	Met	His	Gly	Cys	Ser	Ser	Thr	Leu	Pro	Ala	Gln	Thr	Thr	Ile	Ile
					85				90				95		
Pro	Ile	Asn	Gly	Asn	Ala	Asn	Gly	Asn	Gly	Gly	Ser	Thr	Asn	Gly	Gln
					100				105				110		
Tyr	Val	Pro	Gly	Ala	Thr	Asn	Leu	Gly	Ala	Leu	Ala	Asn	Gly	Met	Leu
					115				120				125		
Asn	Gly	Gly	Phe	Asn	Gly	Met	Gln	Gln	Gln	Ile	Gln	Asn	Gly	His	Gly
					130			135				140			
Leu	Ile	Asn	Ser	Thr	Thr	Pro	Ser	Thr	Pro	Thr	Thr	Pro	Leu	His	Leu
					145			150			155			160	
Gln	Gln	Asn	Leu	Gly	Gly	Ala	Gly	Gly	Gly	Ile	Gly	Gly	Met	Gly	
					165				170				175		
Ile	Leu	His	His	Ala	Asn	Gly	Thr	Pro	Asn	Gly	Leu	Ile	Gly	Val	Val
					180				185			190			
Gly	Gly	Gly	Gly	Val	Gly	Leu	Gly	Val	Gly	Gly	Gly	Gly	Val	Gly	
					195			200				205			

Gly Leu Gly Met Gln His Thr Pro Arg Ser Asp Ser Val Asn Ser Ile
 210 215 220
 Ser Ser Gly Arg Asp Asp Leu Ser Pro Ser Ser Ser Leu Asn Gly Tyr
 225 230 235 240
 Ser Ala Asn Glu Ser Cys Asp Ala Lys Lys Ser Lys Lys Gly Pro Ala
 245 250 255
 Pro Arg Val Gln Glu Glu Leu Cys Leu Val Cys Gly Asp Arg Ala Ser
 260 265 270
 Gly Tyr His Tyr Asn Ala Leu Thr Cys Glu Gly Cys Lys Gly Phe Phe
 275 280 285
 Arg Arg Ser Val Thr Lys Ser Ala Val Tyr Cys Cys Lys Phe Gly Arg
 290 295 300
 Ala Cys Glu Met Asp Met Tyr Met Arg Arg Lys Cys Gln Glu Cys Arg
 305 310 315 320
 Leu Lys Lys Cys Leu Ala Val Gly Met Arg Pro Glu Cys Val Val Pro
 325 330 335
 Glu Asn Gln Cys Ala Met Lys Arg Arg Glu Lys Lys Ala Gln Lys Glu
 340 345 350
 Lys Asp Lys Met Thr Thr Ser Pro Ser Ser Gln His Gly Gly Asn Gly
 355 360 365
 Ser Leu Ala Ser Gly Gly Gln Asp Phe Val Lys Lys Glu Ile Leu
 370 375 380
 Asp Leu Met Thr Cys Glu Pro Pro Gln His Ala Thr Ile Pro Leu Leu
 385 390 395 400
 Pro Asp Glu Ile Leu Ala Lys Cys Gln Ala Arg Asn Ile Pro Ser Leu
 405 410 415
 Thr Tyr Asn Gln Leu Ala Val Ile Tyr Lys Leu Ile Trp Tyr Gln Asp
 420 425 430
 Gly Tyr Glu Gln Pro Ser Glu Glu Asp Leu Arg Arg Ile Met Ser Gln
 435 440 445
 Pro Asp Glu Asn Glu Ser Gln Thr Asp Val Ser Phe Arg His Ile Thr
 450 455 460
 Glu Ile Thr Ile Leu Thr Val Gln Leu Ile Val Glu Phe Ala Lys Gly
 465 470 475 480
 Leu Pro Ala Phe Thr Lys Ile Pro Gln Glu Asp Gln Ile Thr Leu Leu
 485 490 495
 Lys Ala Cys Ser Ser Glu Val Met Met Leu Arg Met Ala Arg Arg Tyr
 500 505 510
 Asp His Ser Ser Asp Ser Ile Phe Phe Ala Asn Asn Arg Ser Tyr Thr
 515 520 525
 Arg Asp Ser Tyr Lys Met Ala Gly Met Ala Asp Asn Ile Glu Asp Leu
 530 535 540
 Leu His Phe Cys Arg Gln Met Phe Ser Met Lys Val Asp Asn Val Glu
 545 550 555 560
 Tyr Ala Leu Leu Thr Ala Ile Val Ile Phe Ser Asp Arg Pro Gly Leu
 565 570 575
 Glu Lys Ala Gln Leu Val Glu Ala Ile Gln Ser Tyr Tyr Ile Asp Thr
 580 585 590
 Leu Arg Ile Tyr Ile Leu Asn Arg His Cys Gly Asp Ser Met Ser Leu
 595 600 605
 Val Phe Tyr Ala Lys Leu Leu Ser Ile Leu Thr Glu Leu Arg Thr Leu
 610 615 620
 Gly Asn Gln Asn Ala Glu Met Cys Phe Ser Leu Lys Leu Lys Asn Arg
 625 630 635 640
 Lys Leu Pro Lys Phe Leu Glu Glu Ile Trp Asp Val His Ala Ile Pro
 645 650 655
 Pro Ser Val Gln Ser His Leu Gln Ile Thr Gln Glu Glu Asn Glu Arg
 660 665 670
 Leu Glu Arg Ala Glu Arg Met Arg Ala Ser Val Gly Gly Ala Ile Thr
 675 680 685

Ala Gly Ile Asp Cys Asp Ser Ala Ser Thr Ser Ala Ala Ala Ala Ala
 690 695 700
 Ala Gln His Gln Pro Gln Pro Gln Pro Gln Pro Ser Ser Leu
 705 710 715 720
 Thr Gln Asn Asp Ser Gln His Gln Thr Gln Pro Gln Leu Gln Pro Gln
 725 730 735
 Leu Pro Pro Gln Leu Gln Gly Gln Leu Gln Pro Gln Leu Gln Pro Gln
 740 745 750
 Leu Gln Thr Gln Leu Gln Pro Gln Ile Gln Pro Gln Pro Gln Leu Leu
 755 760 765
 Pro Val Ser Ala Pro Val Pro Ala Ser Val Thr Ala Pro Gly Ser Leu
 770 775 780
 Ser Ala Val Ser Thr Ser Ser Glu Tyr Met Gly Gly Ser Ala Ala Ile
 785 790 795 800
 Gly Pro Ile Thr Pro Ala Thr Thr Ser Ser Ile Thr Ala Ala Val Thr
 805 810 815
 Ala Ser Ser Thr Thr Ser Ala Val Pro Met Gly Asn Gly Val Gly Val
 820 825 830
 Gly Val Gly Val Gly Gly Asn Val Ser Met Tyr Ala Asn Ala Gln Thr
 835 840 845
 Ala Met Ala Leu Met Gly Val Ala Leu His Ser His Gln Glu Gln Leu
 850 855 860
 Ile Gly Gly Val Ala Val Lys Ser Glu His Ser Thr Thr Ala
 865 870 875

<210> 34
 <211> 5586
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; note =
 synthetic construct

<400> 34
 tagtattttt ttggactttg ttgttaacgg ttgttcgctc gcacgtacga agcccgatcg 60
 cgttcgtcaa aaaacaagat acaaaaataca gcacacacaa ttgaaaacga caacctaaca 120
 gtacggtttc ccaaaggcacc ttacatttca aaaccggaaaa ccccccaaaat gttgtAACCA 180
 aataatgttt aaatcacata tacacctaca tatattttatg aaaaattgtt agacaaatcc 240
 caaaataatac cagttccccc aacaaccgca acaaaacacaa gtgcattca tcggcaaaaa 300
 ttaatataaa gtgcAAatgc attgttagctg aaactcaaac aatagtaaaa atacatacat 360
 aagtgggtgaa gaagcaaaag gaaatagttc taaaataac gcaaATCGAG agcatatatt 420
 catatttgtt cagatattat atggcggctg catagtgcAA actgcggctg aggaaataca 480
 ggggtatcgA aatgttaataa ggaacaacacg aagccagaac tcgaaatcaa acatcagcaa 540
 cgtgacacac agacataaga cggccgtcta gtcgtggct gtggAACGCT agctccgctt 600
 tgccaggAGC cggagacttt ttccgcattc acaatattac atatgtatcat atatcgaaga 660
 tagtgcgcgA gtgagtggagg gatttgtcc gttggatccc atcccccttac atatatataa 720
 aggttagtggaa aagattttac tcaacattcc aataatgtct ttgtcaactg gaatacctt 780
 tggtaataa cgcagtggc ccatggatac ttgtggatta gttagcagaac tggcgcacta 840
 tattcgacgca tatgtctga ttgtttcccg cactaaatga gcaggggattt gggcgaaaaat 900
 gtatTTTgaa cgcaaaacaag tgcgcaaaaaa aatactagtc caccacgaaa ctgcacaaaa 960
 cacccGCCAGA agcgagcaga acctcgggcc gcacgaccga gcttcgtaaa gcaacagagg 1020
 atcttaccag gagatagtc ttctccacat agaccaactg ccagggacaa gctccttgc 1080
 cccagccgac gctaagtggaa cggaaaaacgg ccacaaaacg gcgactatcg gctgccagag 1140
 gatgaaggcgg cgctggctcg acaacggcgg cttcatgcgc ctacccggagg agtcgtccctc 1200
 ggaggtcactg tcctcctcg acgggctcg cttgcctcg ggggtgaaca tgcgcctc 1260
 gtcgctggac tgcacgact attgcgatca ggaccttgg ctctcggca acgagtccgg 1320
 ttctttggc ggctccaacg gccatggcct aagtcaagcag cagcagagcg tcatcacgct 1380
 ggcacatgcac gggtgctcca gcactctgccc cgcgcagaca accatcattc cgatcaacgg 1440
 caacgcgaat gggaaatggag gctccaccaa tggccaatat gtgcgggtg ccactaatct 1500
 gggagcgttg gccaacggga tgctcaat gggcttcaat ggaatgcagc aacagattca 1560

gaatggccac	ggcctcatca	actccacaac	gccctaacs	ccgaccaccc	cgctccaccc	1620
tcagcagaac	ctgggggcg	cggcgccgg	cggtatcgg	ggaatggta	ttcttcacca	1680
cgcgaatggc	accccaaatg	gccttatacg	agttgtggg	ggccgcggcg	gagtaggtct	1740
tggagtaggc	ggaggccgag	tggaggcct	ggaatgcag	cacacacccc	gaagcgattc	1800
ggtaattct	atatcttcag	gtcgcgatga	tctctcgct	tcgagcagct	tgaacggata	1860
ctcggcgaac	gaaagctcg	atgcgaagaa	gagcaagaag	ggacctgcgc	cacgggtgca	1920
agaggagctg	tgcctgttt	gccccgacag	ggcctccggc	taccactaca	acgcctcac	1980
ctgtgagggc	tgcaagggt	tcttcgacg	cagcgttacg	aagagcgcg	tctactgtcg	2040
caagttcggg	cgcgcctcg	aatggacat	gtacatgagg	cgaaagtgtc	aggagtcccg	2100
cctgaaaaag	tgcctgccc	tgggtatgcg	gcccgaatgc	gtcgccccgg	agaaccaatg	2160
tgcgtatgaag	cggcgcaaa	agaaggccca	gaaggagaag	gacaaaatga	ccacttcgccc	2220
gagctctcag	catggccgca	atggcagctt	ggcctctgg	ggccgccaag	actttgttaa	2280
gaaggagatt	cttgaccta	tgacatgcg	gcccgcggc	catgcccacta	ttccgcctact	2340
acctgatgaa	atattggca	agtgtcaagc	gcccataata	ccttccttaa	cgtacaatca	2400
gttggccgtt	atatacaagt	taatttggta	ccaggatggc	tatgagcgc	catctgaaga	2460
ggatctcagg	cgtataatga	gtaaaccgg	tgagaacgg	agccaaacgg	acgtcagctt	2520
tcggcatata	accgagataa	ccataactcac	ggtccagttg	atttttgg	ttgctaaagg	2580
tctaccagcg	tttacaaaaga	taccccagga	ggaccaggatc	acgttactaa	aggcctgctc	2640
gtcggaggtg	atgatgtgc	gtatggcagc	acgctatgac	cacagctcg	actcaatatt	2700
cttcgcgaat	aatagatcat	atacgggg	ttcttacaaa	atggccggaa	tggctgataa	2760
cattgaagac	ctgctgcatt	tctggcgc	aatgttctcg	atgaaggtgg	acaacgtcga	2820
atacgcgctt	ctcaactgcca	tttgtatctt	ctcggaccgg	ccgggcctgg	agaaggccca	2880
actagtcgaa	gcgatccaga	gctactacat	cgacacgcta	cgcattata	tactcaaccc	2940
ccactgcggc	gactcaatga	gcctcgtctt	ctacgcaaaag	ctgctctcg	tcctcaccga	3000
gctgcgtacg	ctgggcaacc	agaacgcga	gatgttcc	tcactaaagc	tcaaaaaaccc	3060
caaactgc	aaatttcctcg	aggagatctg	ggacgttcat	ccatcccgc	catcggttcca	3120
gtcgcacctt	cagattaccc	aggaggagaa	cgagcgtctc	gagcgggctg	agcgtatgcg	3180
ggcatcggtt	ggggggcgc	ttaccggcgg	cattgattgc	gactctgcct	ccacttcggc	3240
ggcggcagcc	gcggcccg	atcagcctca	gcctcagccc	cagcccaac	cctccctcc	3300
gaccgcagaac	gattcccg	accagacaca	gcccgcgta	caacctcagc	taccacctca	3360
gctgcaaggt	caactgcaac	cccgactcca	accacagctt	cagacgcac	tccagccaca	3420
gattcaacca	cagccacagc	ttcccccgt	ctccgcctcc	gtggccgcct	ccgttaaccgc	3480
acccgttcc	ttgtccggg	tcagtagcag	cagcgaatac	atggccggaa	gtgcggccat	3540
aggaccatc	acgcccgg	ccaccagg	tatcacggct	gcccgttacc	ctagctccac	3600
cacatcagcg	gtaccatgg	gcaacgggt	tggagtccgt	gttgggggtgg	gccccaaacgt	3660
cagcatgtat	gcaacgc	agacggcgat	ggccttgc	gttgcatttgc	tgcatcgc	3720
ccaagagcag	tttatccggg	gatggccgtt	taatgcgg	cactcgac	ctgcatacg	3780
ggcgcagagt	cagtc	ccacatca	ccacaacatc	gacgttctgc	tggagtagaa	3840
agcgcagctg	aacccacaca	gacatagggg	aatggggaa	ttctctcc	gagatgtcg	3900
gccgaactaa	atagaaaaaa	gtgataattt	aatggacaa	cgtaaaatgc	agttatttt	3960
tcttaagcct	gcaaatatta	cctattattc	atacaaatta	acatataata	cagcctatta	4020
acaattacgc	taaagctt	ttgaaaaagg	ttcaacaaca	attggacaaa	cgcgttgagg	4080
aaccgggaga	aaatttaaga	aaaaaaaac	cattgaaaat	tatgaaaattt	agtatacatt	4140
ttttttgggt	ggatgtatgt	cgcatacgac	tcacgatcaa	ttctcgaatt	ttgttaacta	4200
aatttgcct	ccaaactgca	tgcggaaacag	atcagaaaag	agaacagaca	gtagggcg	4260
aacagaggga	agagagaaga	gaataaagat	tgtttatatt	taaaaaatat	ataaaataat	4320
aatttactaac	tctaaacgt	atgaaagca	ctgtataata	tctaaactata	actataaaatt	4380
cgtactgtat	ggaagtgaga	aaatctgtt	aatgaaacaa	aaataatgt	aataacatta	4440
tcatccacca	taattaaaat	catttacat	aattaaaaac	aaaacacttt	taaaacacgc	4500
aaaacttgg	ctgat	aaatattttt	taatcataaa	gaaaggcaac	ctgaaaaaaaa	4560
tattacaaa	acaaataaca	acatattttt	ttatgacacc	cttataatgtt	ttcaaaaacga	4620
gaattttat	tcttagat	ttataattt	atccaaaaat	attagccagc	aaaaacctt	4680
attattggca	ttgttttt	tagatgttt	aaaaaaaact	ttgatattga	aactaaacaa	4740
aggataat	aatgaaatgt	atggaggtct	tactcaaaa	ccaaaagg	tcaaaaaggta	4800
ttaaattaaa	aatataatct	aatttcgag	tcaagaaaca	ctttttgg	gaaaaatagtt	4860
ttcaatctact	ttgat	aaaaatattt	taataat	atgcatac	aaaaagactt	4920
caatataat	ttttaaaatt	tacattgata	attcgaaatt	tgaataagaa	tcacatccat	4980
ctaatttggc	taaataaaaa	tttttatgaa	agccacacaa	aaaacgtc	aatttgat	5040
cttggcaat	ttttatgtt	tacaaaat	atgcaattt	ttttcaaaat	aattttattt	5100
agattgtatt	agtttcat	tgcttggg	tgtacattt	aaataaattt	tactttaaat	5160
tgtggcc	tttttaactt	aaatcaaatt	tattctaatt	ttagtaaaaa	aaaatgtgtt	5220

taaaaattgaa	aataagaaca	ctgtaaaata	ttaataaaaa	attaaagttt	aaagtgattc	5280
tttttattatg	taaaaagaag	acaaaaaaaata	tcttacgtag	ctttctactt	gaatttgtca	5340
attttttact	tttactacta	atcctaattt	aatataatt	tacacacacg	cctacacatc	5400
cagccacata	tttttaattt	taagtcaacc	taatttataa	atatgaattt	gtataatgac	5460
gaactaaaaat	tagcatgaca	tcatggacat	acttgaaat	aactctatca	aacgagctaa	5520
atgcattgaa	gaagaaaatt	cttggtaat	atagtctgca	cttcgacaaa	cgaaaatcag	5580
tgaatt						5586

<210> 35
<211> 808
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 35
 Met Pro Asn Met Ser Ser Ile Lys Ala Glu Gln Gln Ser Gly Pro Leu
 1 5 10 15
 Gly Gly Ser Ser Gly Tyr Gln Val Pro Val Asn Met Cys Thr Thr Thr
 20 25 30
 Val Ala Asn Thr Thr Thr Thr Leu Gly Ser Ser Ala Gly Gly Ala Thr
 35 40 45
 Gly Ser Arg His Asn Val Ser Val Thr Asn Ile Lys Cys Glu Leu Asp
 50 55 60
 Glu Leu Pro Ser Pro Asn Gly Asn Met Val Pro Val Ile Ala Asn Tyr
 65 70 75 80
 Val His Gly Ser Leu Arg Ile Pro Leu Ser Gly His Ser Asn His Arg
 85 90 95
 Glu Ser Asp Ser Glu Glu Glu Leu Ala Ser Ile Glu Asn Leu Lys Val
 100 105 110
 Arg Arg Arg Thr Ala Ala Asp Lys Asn Gly Pro Arg Pro Met Ser Trp
 115 120 125
 Glu Gly Glu Leu Ser Asp Thr Glu Val Asn Gly Gly Glu Glu Leu Met
 130 135 140
 Glu Met Glu Pro Thr Ile Lys Ser Glu Val Val Pro Ala Val Ala Pro
 145 150 155 160
 Pro Gln Pro Val Cys Ala Leu Gln Pro Ile Lys Thr Glu Leu Glu Asn
 165 170 175
 Ile Ala Gly Glu Met Gln Ile Gln Glu Lys Cys Tyr Pro Gln Ser Asn
 180 185 190
 Thr Gln His His Ala Ala Thr Lys Leu Lys Val Ala Pro Thr Gln Ser
 195 200 205
 Asp Pro Ile Asn Leu Lys Phe Glu Pro Pro Leu Gly Asp Asn Ser Pro
 210 215 220
 Leu Leu Ala Ala Arg Ser Lys Ser Ser Ser Gly Gly His Leu Pro Leu
 225 230 235 240
 Pro Thr Asn Pro Ser Pro Asp Ser Ala Ile His Ser Val Tyr Thr His
 245 250 255
 Ser Ser Pro Ser Gln Ser Pro Leu Thr Ser Arg His Ala Pro Tyr Thr
 260 265 270
 Pro Ser Leu Ser Arg Asn Asn Ser Asp Ala Ser His Ser Ser Cys Tyr
 275 280 285
 Ser Tyr Ser Ser Glu Phe Ser Pro Thr His Ser Pro Ile Gln Ala Arg
 290 295 300
 His Ala Pro Pro Ala Gly Thr Leu Tyr Gly Asn His His Gly Ile Tyr
 305 310 315 320

Arg Gln Met Lys Val Glu Ala Ser Ser Thr Val Pro Ser Ser Gly Gln
 325 330 335
 Glu Ala Gln Asn Leu Ser Met Asp Ser Ala Ser Ser Asn Leu Asp Thr
 340 345 350
 Val Gly Leu Gly Ser Ser His Pro Ala Ser Pro Ala Gly Ile Ser Arg
 355 360 365
 Gln Gln Leu Ile Asn Ser Pro Cys Pro Ile Cys Gly Asp Lys Ile Ser
 370 375 380
 Gly Phe His Tyr Gly Ile Phe Ser Cys Glu Ser Cys Lys Gly Phe Phe
 385 390 395 400
 Lys Arg Thr Val Gln Asn Arg Lys Asn Tyr Val Cys Val Arg Gly Gly
 405 410 415
 Pro Cys Gln Val Ser Ile Ser Thr Arg Lys Lys Cys Pro Ala Cys Arg
 420 425 430
 Phe Glu Lys Cys Leu Gln Lys Gly Met Lys Leu Glu Ala Ile Arg Glu
 435 440 445
 Asp Arg Thr Arg Gly Gly Arg Ser Thr Tyr Gln Cys Ser Tyr Thr Leu
 450 455 460
 Pro Asn Ser Met Leu Ser Pro Leu Leu Ser Pro Asp Gln Ala Ala Ala
 465 470 475 480
 Ala Ala Ala Ala Ala Val Ala Ser Gln Gln Gln Pro His Gln Arg
 485 490 495
 Leu His Gln Leu Asn Gly Phe Gly Gly Val Pro Ile Pro Cys Ser Thr
 500 505 510
 Ser Leu Pro Ala Ser Pro Ser Leu Ala Gly Thr Ser Val Lys Ser Glu
 515 520 525
 Glu Met Ala Glu Thr Gly Lys Gln Ser Leu Arg Thr Gly Ser Val Pro
 530 535 540
 Pro Leu Leu Gln Glu Ile Met Asp Val Glu His Leu Trp Gln Tyr Thr
 545 550 555 560
 Asp Ala Glu Leu Ala Arg Ile Asp Gln Pro Leu Ser Ala Phe Ala Ser
 565 570 575
 Gly Ser Ser Ser Ser Ser Ser Gly Thr Ser Ser Gly Ala His
 580 585 590
 Ala Gln Leu Thr Asn Pro Leu Leu Ala Ser Ala Gly Leu Ser Ser Asn
 595 600 605
 Gly Glu Asn Ala Asn Pro Asp Leu Ile Ala His Leu Cys Asn Val Ala
 610 615 620
 Asp His Arg Leu Tyr Lys Ile Val Lys Trp Cys Lys Ser Leu Pro Leu
 625 630 635 640
 Phe Lys Asn Ile Ser Ile Asp Asp Gln Ile Cys Leu Leu Ile Asn Ser
 645 650 655
 Trp Cys Glu Leu Leu Phe Ser Cys Cys Phe Arg Ser Ile Asp Thr
 660 665 670
 Pro Gly Glu Ile Lys Met Ser Gln Gly Arg Lys Ile Thr Leu Ser Gln
 675 680 685
 Ala Lys Ser Asn Gly Leu Gln Thr Cys Ile Glu Arg Met Leu Asn Leu
 690 695 700
 Thr Asp His Leu Arg Arg Leu Arg Val Asp Arg Tyr Glu Tyr Val Ala
 705 710 715 720
 Met Lys Val Ile Val Leu Leu Gln Ser Asp Thr Thr Glu Leu Gln Glu
 725 730 735
 Ala Val Lys Val Arg Glu Cys Gln Glu Lys Ala Leu Gln Ser Leu Gln
 740 745 750
 Ala Tyr Thr Leu Ala His Tyr Pro Asp Thr Pro Ser Lys Phe Gly Glu
 755 760 765
 Leu Leu Leu Arg Ile Pro Asp Leu Gln Arg Thr Cys Gln Leu Gly Lys
 770 775 780
 Glu Met Leu Thr Ile Lys Thr Arg Asp Gly Ala Asp Phe Asn Leu Leu
 785 790 795 800

Met Glu Leu Leu Arg Gly Glu His
805

<210> 36
<211> 4841
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 36	
actaacaaaa caaacattt gctacttcgt cgcaaggcgaa	60
cgcttagagcg gttgtggaaat cggattcggag cgaaaacac	120
aagagtggta gcgcctacag tggcatatgt agttaaatcc	180
atatttgcg tgcaataatt tcctcgattt gcatcaagtgc	240
tgcacaagaa atgttatacg cataatgtgc acgcaaattt	300
gtgactagaa tgtgagtcga acaaaacggag taaaacgtga	360
taacaaatct tatcaacacaca gcaacggaaa tacattaaa	420
gacaatttggaa atacttttag ttattttaa atgttttaca	480
cgacacccctt caaacttttta caaatttgcac aactggaaa	540
aaatataaga aatcgctact gaaacaagat gccaacatg	600
gcaaaagcggt cctcttggag gaagtagcgg ctatcaagta	660
cacagtgcgc aatacgcacca ccactttggg aagctccggc	720
gcacaacgcgc tccgtgacaa acatcaagtgc gcaactagac	780
caacatggtg cgggttatccg caaactacgt tcacggtagc	840
acattcaaat catagggagt ccgatttgcga ggaggagctg	900
ggttccggcga aggacggcgaa cggacaaaaa tggtcctcgt	960
gctgagcgat actgggggtca acggggggcga agagctgtat	1020
gagtgggggtg gtccctgtcg ttgcacccccca acaacccgtc	1080
aacagagcta gagaacatttgcgat gcaaggatccaa	1140
caacacacaa catcacgcgc ccacaaaaatttgcgttccgt	1200
caatctcaag ttcaacccgc ctctgggaga caatttctcg	1260
gtccagcagt ggaggccacc taccactgcc aacgaatccc	1320
ttccgtctac acgcacagct cccctcgca gtcgcctcg	1380
cactccgtct ctgagccgca acaacagcga cgcctcgac	1440
ctccgaattt cttccacac actcgcccat tcaagcgctg	1500
gctctatggc aaccaccatg gtatttaccg ccagatgaag	1560
gccgtccagt gggcaggagg cgcagaacctt ggtatggac	1620
tacagtggc tttagatctt cgcaccccgatctccggc	1680
gatcaactcg ccctggccca tctgggtga caagatcagc	1740
ctccctgcgag ttttgcagg gcttcttcaa ggcacccgtg	1800
gtgcgtcggt ggtggaccat gtcaggtcag catttccacg	1860
ccgcttcgag aagtgtctgc agaaggaaat gaaactagaaa	1920
ccgtggcgcc cgctccacat accagtgcctc ctacacgcgt	1980
gctgtttagt cctgtatcaag cggcagcagc tgccggcgca	2040
gcagccgcac cagcgactac atcaactaaa tggatttggaa	2100
tacttctttt ccagccaggcc ctatgttggc aggaacttgc	2160
ggagacgggc aagcaaaaggc tccgaacggg aagcgatcca	2220
ggatgttagag catctgtggc agtacaccgc tgcaagatcg	2280
gtccgcattt gcctctggca gtcgttcgtc gtcgtcatcg	2340
ccatgcacaa ctcaccaatc cactactggc tagtgcgttgc	2400
tgcccaatctt gatcttacgc ctatctctg caacgtggcgt	2460
cgtcaaatgg tgcaagatgc tgccgtttt taagaacatt	2520
cttgcgtcatt aactcggtt gcgagctgtt gctttctcc	2580
tactccttggaa gagattaaaaa tgcacaagg caggaagata	2640
aaatggcttg cagacttgc ttgaacggat gtcacaccta	2700
gacagagttt caggaacggg taaaggtgcg cgagtgtcag	2760
gcaagcttac accctggcgcc attatcctga cacgcccattt	2820
gcaagcttac accctggcgcc attatcctga cacgcccattt	2880

acgcattcct	gatttgccgc	gaacgtgcc	gcttggcaag	gagatgtta	cgtatcaagac	2940
tcgcgtatgg	gctgatttca	atttgcta	ggagctttt	cgccggagagc	attgacaatt	3000
gataactaag	acggaaatct	tttaccattt	gcaaaaacaa	tttacatat	tttagtattag	3060
atatatata	tctatagata	agatccttac	tgtaagtct	aaaaacatgt	gcctaaaaac	3120
caaaggccac	atagcagtca	catcaggccc	actggtcgag	attaaatcca	agagcaagat	3180
tgccaaattt	ttacaccat	atataat	atatgagcc	tgtgcagggc	ctcagatcgc	3240
tgttgttgc	ggctaaagtt	tca	aagttat	tgat	tttgcattt	3300
atttgactt	tgtatagtgt	aaactaaagc	acacatggaa	aatgaaaaga	ctaaacaaat	3360
ttat	tttaaag	attacttta	ctattataga	aaaagggaa	aaataaaaaaa	3420
gagaagaaaa	tttagttaca	acaggttagcg	acat	tttat	at	3480
attcaatgt	ttttaat	aaagccaaac	ccgat	tttgc	ttggaaaga	3540
tttttgat	ctatatattc	atcactagaa	gac	gaatgaa	tgtatccat	3600
tgttagcgtt	agtttttagt	caatttcaca	cat	gtctaca	tacatgaa	3660
tatgtttgca	aactattata	aagcaaaaga	ccactcgaa	tcgccc	catcac	3720
aagactattc	cagttatgct	gtttgtgc	taaaaaacca	caactacgt	catcaataaa	3780
atgtataatt	tttttatttgg	gttttagatt	tgtat	taact	tcttcctt	3840
attatttata	ttactaattt	tatgaatatt	gtgt	taacact	gactt	3900
tcctgcaaca	ggat	aaaa	cac	ctgaa	ata	3960
cttatggcct	agatagttt	atatgtt	tg	catatgt	tgc	4020
tagtaccat	acaaatttcc	gtcccaccag	aaaatcaca	cgcaata	aaa	4080
tactaagctc	gtatctcaa	agaaagatta	aaagacaat	tgatgaa	tag	4140
ccggaaagtcc	aagagattt	gctgaaagta	tcgaca	aaatt	ttc	4200
tattgtgcta	acactctcag	tttggaaatc	at	tttctgtt	aaacttct	4260
tctccat	tttgcattt	tacaattt	ttctt	taatt	ttc	4320
atgaaacatg	aggatctcag	ttcatatt	tcgtgtt	ctgcgt	ccgcttctgt	4380
ccgttaatgt	aaaccataa	tataat	att	gtt	ttt	4440
gctataataa	atttcaata	atttata	gtt	actgt	taagacc	4500
atatttatt	tactaagca	agcacacgca	aacaattt	aatgtt	tat	4560
caaactcatt	tttataatt	ctttat	acaca	aaat	ccctctaggc	4620
gcattgttta	aatagttaa	gaaaataat	aaacc	ccat	cgcaat	4680
agttttcctt	gcgtgtgat	tttgc	ctacgt	ac	att	4740
aaaactcaat	tttgc	tttta	aataaattt	ata	ttcaaca	4800
aattgtcaat	gcaat	ttttt	gtataaaaa	tg	gaaaaat	4841

<210> 37

<211> 7555

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 37

ggggccccccc	tcgagggtcg	cggtatcgat	aagcttgc	gtggcggaga	agggttatcc	60
gtgattaaga	aagagcc	cgatgaga	cagccac	cacatgac	cggtgcgtcc	120
gtacacaaga	tggcact	ggtgcgtt	cgagacc	ttgagga	cctccagttc	180
gtccccccaca	tgaccgc	tttgaagc	caggcgt	cgcacc	ctttgtgt	240
aaccagg	acagg	tttgcatt	gcctctc	tcaacgt	tttccagtt	300
gcac	gttacgat	attgcatt	cacgac	acttg	cttgaat	360
aatctgtct	atgat	atcc	ggacc	acat	ccgg	420
catccaaat	accat	atgat	ggagg	tact	ggc	480
tttaagcaga	tgaacgg	cat	tact	gggatt	ggac	540
ttttcgtgc	gcattccgg	tg	cagg	tttgc	tttgc	600
ggcacta	at	atcatt	tg	ggat	tttgc	660
ctaaataat	ttgtc	atttca	ac	tat	tttgc	720
cacc	tgcttca	acc	aga	agg	tttgc	780
ggacaac	tttttgc	tttttgc	tttttgc	tttttgc	tttttgc	840
gaccat	tttttgc	tttttgc	tttttgc	tttttgc	tttttgc	900
cggaac	tttttgc	tttttgc	tttttgc	tttttgc	tttttgc	960
ctatgtt	tttgc	tttttgc	tttttgc	tttttgc	tttttgc	1020

catgccatag	aggaatgtcc	agaagagcac	gtaggtgcaa	aggccgcccc	tgaactgatt	1080
ggtcagcaga	tttctgcggt	taatgaaaaaa	cttgcgcac	tgggtccccg	atttcacgag	1140
caccagaatc	cagagcacga	acacggacag	gaagttagaaa	aggaatccca	gcgttacact	1200
caggcccata	atacctgcga	atttgtggga	cattaactaa	gttggttcac	catcaattgg	1260
agccaattac	ccgcagcgca	gcccggatgt	gcagccatcg	atgtgcgaca	gtattccacg	1320
gcccggatgt	tgttccggat	ggcccccctcg	ctgtaggcga	ttatttcgcc	agtcttggac	1380
tgctgtgtct	tcactcgatt	cattttatcc	aattaaattc	tactttattt	tctagcaaaa	1440
atatttcttag	gctgtgaact	tcgattgtgt	gcccattgt	ttatcgattt	gtgcccataa	1500
ctatgcactg	taaaaattca	ctagcggtt	ttgcaggata	aatagtttt	gtaaaatttc	1560
cgagataaaac	ttgacgagct	gtttaatgtt	aaataatgaa	gtttaataca	atatcaaata	1620
tatttgctga	agtgtatatt	tattctcacc	gctctgtgt	tcgatggctc	acaattgcgt	1680
ttgccattcg	ccccggcagc	tagattgtt	ttatgggtat	tggctggag	cactcggacg	1740
gacagtaatt	cattaaaata	tgttgtata	acgcgagctg	ccgaatctgc	gtgcaattcg	1800
tgcgttgcac	gtgggtacta	actgttatgc	tgtcgccgg	acagttgttc	tgatacgcag	1860
agttcctgcc	tcaccacaca	cgaccacctc	cattaaaacc	agccacccccc	cccagccct	1920
cctccaccga	cagcagctgc	tccaccgcac	caccaggaga	ggggcaatta	aaaaatcaat	1980
cagagggccc	atcaacttgct	tgttaaccgccc	gaagaactgc	gcgggtgtcg	gggacaaggc	2040
tctgggtctac	aacttcaatg	cggtcacctg	cgagagctgc	aaggcggtct	tccgacggaa	2100
cgcgtggcc	aagaagcagt	tcacctgccc	cttcaaccaa	aactgcgaca	tcactgtgtt	2160
cactcgacgc	ttctgcccaga	'aatgcccct	gwgcaagtgc	ctggatatacg	ggatgaagag	2220
tgaaaacatt	atgtccgagg	aggacaagct	gatcaagcg	cgcaagatcg	agaccaaccg	2280
ggccaagcga	cgcctcatgg	agaacggcac	ggatgcgtgc	gacgcccgtg	gccccggagga	2340
aagggtatcac	aaagcgccgg	cggatagcag	cagcagcaac	cttgaccact	actcggggtc	2400
acaggactcg	cagagctcg	gctcggcgg	cagcggggcc	aatgggtgt	ccggcagaca	2460
ggccagttcg	ccgggcacac	aggtcaatcc	gcttcagatg	acggccgaga	agatagtcga	2520
ccagatcgta	tccgaccgg	atcgagcctc	gcaggccatc	aaccgggtga	tgcgcacgca	2580
gaaagaggct	atatcggtga	tggagaaggt	aatcagctca	aaaaggacg	ccttaaggct	2640
ggtgtcgcata	ttgatcgtact	atccagggtt	gtgcagacaa	gatttcatcg	tttagcctta	2700
tccgctcacc	tatgaacgac	ttgatcttt	acaggcgacg	cactcaagat	catttcaaaag	2760
tttatgaact	cgcctttaa	cgcgtgcaca	ggtagagtt	ttaaaatttg	tggttttaaa	2820
cttaatttca	cattcttgt	taatttataat	acgcgatatt	cacccaaattc	atgagctcac	2880
ccacggacgg	cggtggaaatt	atctdaaaaga	tagttgatcc	gcccgggac	gtgggtggagt	2940
tcatgcagaa	cttgatgcac	tgcggcagg	acgcccattcga	tataatgaac	aagttcatga	3000
ataccccagc	ggaggcgctg	cgcattteta	acgcatttct	aaggccgg	ggagcgaacg	3060
cagccccagca	gacagcagac	cgcaagccat	tgctggacaa	ggagccggcg	gtgaaggctg	3120
cagcggccagc	ggagcgagct	gatactgtca	ttcaaaagcgt	gctggcaac	agtcccca	3180
tttcgcccaca	tgtatgtcgc	gtggatctgc	agtaccactc	gccccgtgtc	ggggagcagc	3240
ccagtacatc	gagtagccac	cccttgcctt	acatagccaa	ctcggccgac	ttcgatctga	3300
agacccatcat	gcagaccaac	tacaacgcg	agcccagttc	ggacagtgtat	tttagcattt	3360
actcaatcga	atcggtgtca	tccgaggtga	tccgcattga	gtaccaggcc	ttcaatagca	3420
tacaacaagc	ggcatcgccg	gtaaaggagg	agatgtccca	cgccactcag	tctacgtacg	3480
gtggatgca	ttcggctgca	aacaatagcc	acgcgcaccc	gcagcaaccc	atctgcgcc	3540
catccaccca	gcagttggat	cgcgagctaa	acgaggcgga	gcaaatgaag	ctgcgggagc	3600
tgcgacttgc	cagcgaggct	ctttatgatc	ccgtggacga	ggacccctcgc	gccctgtatga	3660
tggggcgatga	tcgcatttaag	gtaaacccgct	agggataaca	gggtataaac	agtccacggt	3720
attagcttat	aggtctttt	acatttatacg	ctccaaacacc	acggcttatac	taatcagagt	3780
gtggagactg	cgatataatgt	acacacggca	cctggcactt	tttagccatt	cggtgattca	3840
gtggctct	cgatgttggc	ccacggggccg	tatcttcgtc	agccagtttc	tgggttccca	3900
gcaatgtcg	ccttaccaaata	gtaaacacac	ttttatgtt	ggtggtctaa	agtttttgat	3960
ttcccaagag	ctttggtgcg	gtaaaagaaa	attgtatcgaa	ccagataagc	tattttcccc	4020
cagagggtta	aagaatttga	agtcatgcga	ctgggtctag	ttaagatatt	tgattacgaa	4080
aattggccct	taattaagac	cctaaacgtg	acaaatcc	attctatata	cttcttgatg	4140
agtatttaaa	caaataatggc	tatttcgga	acaaatcggt	cactcattta	tatcttttagc	4200
tttatcttta	ttttttaaga	tgtgtccaca	cotttgatcg	acctcttagt	ccccggaga	4260
aatgatttgg	aattatccaa	taatgattca	tcacttccac	gaatttgtt	cccatattaatc	4320
gagccaccct	agctttcatg	caatcagaac	gtctggctg	ccaagaagga	gcagacagcg	4380
gctttatcag	cctctggggc	tgccaaattgt	gacactatca	accattatca	agagtaccag	4440
caggcgctca	tgagtctcca	gccagccgtc	gatttgggg	tttattgtcg	cttagactgt	4500
ttaccgattt	tgcctcatcg	caattagcac	atttcagtat	tgttaattgg	aaaaaacgat	4560
acaattttga	cgaaatataat	ggagcagcca	ggtgttgggc	gctatgataa	gcagtgtcc	4620
gccattcgat	tgagtcaccc	tccagggaga	agccttacg	attatggcga	taataatggc	4680

cacccaaagag	aacatgggc	acatacgcac	tgacacctg	cgttc	aaggtaat	4740
ctacgaggag	cacccaaaagt	tcatcacaa	gttgcac	gag	aggcaat	4800
cataatcctg	atcatgtgt	ccattgtc	tttac	tcg	tggacgagaa	4860
caaagacgtg	attagattgg	aacagg	taagcact	ataccata	gcagtattac	4920
taacttctt	tcattcgata	gaattcc	tattatctt	tg	tgacgagata	4980
gttattctg	gctgtgaggc	gagaac	tttatcaag	taatcc	tctggagagt	5040
gtggagcg	tgaacaagtt	cataatta	gtctat	atgtt	aatttcgat	5100
gagcccttgc	tgcgtaaaat	atcgat	aaaaatca	aca	atcccagg	5160
gcatttaatg	cctatgttga	tgccc	taatgttca	aca	acaaccga	5220
ttgtttagt	ctgtttatc	ttgtcg	taatgtttaga	ttt	tgcgtgtcg	5280
tagatttgca	tatactgc	agatttata	tttctacatc	aa	tttgcgat	5340
accaagtgc	aagcaacaca	atctata	aatgtacacc	ttt	acaagctgt	5400
actagacgt	aatgcataaa	ctaactt	agcgtgg	ctgt	tttgttgttgc	5460
acaaaaaaaaa	taaactgact	ttgagaac	gtggtaataa	aa	atgtctcg	5520
actcgaatga	atttgc	ctccagg	aattac	aa	atgtgattgt	5580
atccaaaata	attaatcc	gaaagt	caca	aa	aaagagagca	5640
taagatgtt	ggaaaccaac	gagagat	tttgcgt	ttt	tatttaggat	5700
cacagcaacc	gcgcattgtgt	ccccgc	tttgcgt	ttt	tttgcgat	5760
cogcagccag	cgtatgtgtc	cgcat	tttgcgt	ttt	tttgcgtat	5820
atgttagtaa	tataatagct	cgagct	tttgcgt	ttt	tttgcgtat	5880
attccaattt	ttatccgg	cactcg	tttgcgt	ttt	tttgcgtat	5940
atccttggcc	cattgcagaa	actcat	tttgcgt	ttt	tttgcgtat	6000
cttcacacgc	agattac	cggtt	tttgcgt	ttt	tttgcgtat	6060
gccatctgca	aaagagttt	gat	tttgcgt	ttt	tttgcgtat	6120
ctcacctgt	cattgtt	tttgcgt	tttgcgt	ttt	tttgcgtat	6180
cttgcgt	tttgcgt	tttgcgt	tttgcgt	ttt	tttgcgtat	6240
cgagccctt	gtgttagc	tttgcgt	tttgcgt	ttt	tttgcgtat	6300
aaaagctt	ctgaacaact	tttgcgt	tttgcgt	ttt	tttgcgtat	6360
ggaaactt	atctatctca	tttgcgt	tttgcgt	ttt	tttgcgtat	6420
cgctagtaaa	cccttatca	tttgcgt	tttgcgt	ttt	tttgcgtat	6480
ataat	taaca	tttgcgt	tttgcgt	ttt	tttgcgtat	6540
tttgcgt	tttgcgt	tttgcgt	tttgcgt	ttt	tttgcgtat	6600
gtacgagtcc	aacttaac	tttgcgt	tttgcgt	ttt	tttgcgtat	6660
tataataat	gtgttagc	tttgcgt	tttgcgt	ttt	tttgcgtat	6720
gataaaagc	tttgat	tttgcgt	tttgcgt	ttt	tttgcgtat	6780
gtccacgaac	tttgcgt	tttgcgt	tttgcgt	ttt	tttgcgtat	6840
ggcctca	ttttcttca	tttgcgt	tttgcgt	ttt	tttgcgtat	6900
caacaat	tcac	tttgcgt	tttgcgt	ttt	tttgcgtat	6960
ttcagcat	tag	tttgcgt	tttgcgt	ttt	tttgcgtat	7020
gcttgattcc	aacgg	tttgcgt	tttgcgt	ttt	tttgcgtat	7080
accaatc	cga	tttgcgt	tttgcgt	ttt	tttgcgtat	7140
catgctc	agc	tttgcgt	tttgcgt	ttt	tttgcgtat	7200
cagtattt	cg	tttgcgt	tttgcgt	ttt	tttgcgtat	7260
gattgtt	agc	tttgcgt	tttgcgt	ttt	tttgcgtat	7320
aactaataa	agg	tttgcgt	tttgcgt	ttt	tttgcgtat	7380
caaactgat	ctcaac	tttgcgt	tttgcgt	ttt	tttgcgtat	7440
cgcaaagct	aaataaa	tttgcgt	tttgcgt	ttt	tttgcgtat	7500
actctt	tgg	tttgcgt	tttgcgt	ttt	tttgcgtat	7555

<210> 38
<211> 545
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 38

gaagcaagcc tctagaaaaga tgaagctact gtcttctatc	gaacaaggcat gcgatatttg	60
ccgacttaaa aagctcaagt tcgcgtggc ggcgagaaaa	ggatcacaa agcgccggcg	120
gatagcagca gcagcaacct tgaccactac tcggcagaaaa	gaggctatat cggtgatgg	180
gaaggtatac agctcacaaa aggacgcctt aacagaggac	gccatcgata taatgaacaa	240
gttcatgaat accccagctc gcccgggtgc ggggagcagc	ccagtagcatt ctacgtacgg	300
tggatgcaat ctgaagttca tcacaacgtt tgacgagaag	tggcgcatgg acgagaacat	360
aatcctgtatc atgtgtgcca ttgtccttta atgtctattt	aatgttaac ccatcccagg	420
tggagccctt gctgcgtgaa atattcgatc aaagagagca	tattnaggat accaagtgc	480
aagcaacaca atctataaga cgataatgca ataactaact	tggaagcgtg ggttctgtgc	540
aaacc		545

<210> 39

<211> 1119

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 39

tggcgaatgg gacgcgcctt gtagcggcgc attaagcg	gcgggtgtgg tggttacgc	60
cacgtgacc gctacacttg ttägggtat ggttcttaat	acaacctatt aatttccct	120
cgtaaaaat aaggttatca agtgagaaaat caccatgagt	gacgactaac cggcgcagga	180
acactgccag cgcatcaaca atatttcac ctgaatcagg	atatgctcc catacaatcg	240
atagattgtc gcaccttgcatt gcccgcacaga tcttcttgc	atccctttt tctgcgcgtt	300
ggcgataagt cgtgtcttgg tagtgagcga ggaagcgaa	gagcgcctga tgcgtat	360
tctccttacg catctgtgcg gtatccaca ccgcaggagg	ctgcatgtgt cagagg	420
caccgtcato accgaaacgc gcgaggcagc tgcggcgat	aaacgagaga ggatgctcac	480
gatacgggtt actgatgtg aaacggaaac cgaagaccat	tcatgttgc gctcagaaga	540
ttccgaatac cgcaagcgct, cactgtcttgcgtatcg	tatcccaacta ccgagatatc	600
cgcaccaacg cgccagcccg actcggtat	ggcgcgcatt gcccggacag aacttaatgg	660
gcccgcataac agcgcgat	tttgcgttgc caatgcgacc agatcgctt acaggcttcg	720
acgcgcctt gttctaccat cgacaccacc acgcttacc	acgcggggaaa cggctctgata	780
agagacaccg gaaggagatg ggcgcacaca gtcgccttag	aaataaaaacc ttgaccacta	840
ctcggggta caggactcgc agagctgcgg ctgcggcggac	agcggggcca atgggtgtc	900
cgccaccta aggctgtgt cgcatatcca ggcgacgc	tcaagatcat	960
tccaaagttt agctgcgtat tcttaaccga atcctaagcg	gcccggggc	1020
cagctacata gccaactcgc cggacttcga tctgaagacc	ttcaagcaac ccatctgcgc	1080
cccatccacc cagcattccg tgacaaaacta tatccggat		1119

<210> 40

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 40

gagagatgtg cttcgttaaa gcatcaaccc		30
----------------------------------	--	----

<210> 41

<211> 44

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 41
ggactagtag atctagagga ttctacaaat gtccagtgtc tccc 44

<210> 42
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 42
ccattattat cgccataatac gtaaaagg 27

<210> 43
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 43
attaccctgt tatcccttagc gggttacctt aatgcgatca tcgccc 46

<210> 44
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 44
ggaaagcttt tcctgctgat caataatacc 30

<210> 45
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 45
tgggccatc acttgcttgt aaccggcaa gaactgcgcg g 41

<210> 46
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 46
cgctaggat aacagggtaa taacagtcca cggatttagc ctatagg 47

<210> 47
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 47
cgattatggc gataataatg gccaaagaga acatggcaa catacgc 47

<210> 48
<211> 26
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note =
synthetic construct

<400> 48
gaagcaagcc tctagaaaaga tgaagc 26

<210> 49
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 49
cgtgccgttc tccatcgata cagtcactg tcttgacc 39

<210> 50
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 50
gcctggatag tcgatcaaat gcg 23

<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note =
synthetic construct

<400> 51
atggagaacg gcacggatgc 20

<210> 52
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note = synthetic construct

<400> 52
tacattctag agaccaacta caacgacgag cccagtctgg 40

<210> 53
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note = synthetic construct

<400> 53
cattcatccg gacattaatt atgaacttgt tcagacgctc c 41

<210> 54
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note = synthetic construct

<400> 54
gggcatcaac tccggaatta aatccccgac acgcacg 39

<210> 55
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note = synthetic construct

<400> 55
gttcacgac gtttgaaacc cagaaatcga gtcgccccgg gg 42

<210> 56
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; note = synthetic construct

<400> 56

cacgaattcc aaactgtctc acgacgtttt gaaccc 36

<210> 57

<211> 44

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note = synthetic construct

<400> 57
gagagcttagc atgccggcta gatctcgaga tcggccggcc tagg 44

<210> 58

<211> 30 ..

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note = synthetic construct

<400> 58
gaactgcagc tcgagagcta gcatgccggc 30

<210> 59

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note = synthetic construct

<400> 59
ggagatatac atatggctag catgactggg gg 32

<210> 60

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence; note = synthetic construct

<400> 60
tgctcgaaagc ttgcgagaag ataatacgatg g 31