i

Power of a Square Matrix

• If $A=\operatorname{diag}\left(a_1,a_2,\cdots,a_n\right)$, then $A^k=\operatorname{diag}\left(a_1^k,a_2^k,\cdots,a_n^k\right)$

Proof: Let
$$A = \text{diag}$$
. $(a_1, a_2, a_3) = \begin{pmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{pmatrix}$

$$A^{2} = \begin{pmatrix} a_{1} & 0 & \dots & \dots & 0 \\ 0 & a_{2} & \dots & \dots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \dots & \dots & a_{n} \end{pmatrix} \begin{pmatrix} a_{1} & 0 & \dots & \dots & 0 \\ 0 & a_{2} & \dots & \dots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \dots & \dots & a_{n} \end{pmatrix} = \begin{pmatrix} a_{1}^{2} & 0 & \dots & \dots & 0 \\ 0 & a_{2}^{2} & \dots & \dots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \dots & \dots & a_{n}^{2} \end{pmatrix}$$

$$\Rightarrow A^{k} = \begin{pmatrix} a_{1}^{k} & 0 & \dots & \dots & 0 \\ 0 & a_{2}^{k} & \dots & \dots & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & \dots & a_{n}^{k} \end{pmatrix}$$

• $I^k = I$, where I is identity matrix of order n.