TRAVAUX DIRIGÉS: Suites et séries numériques

1 Quelques suites numériques

Exercice 1: suite récurrente (Solution)

Étudier la convergence et donner la limite le cas échéant des suites de terme général suivant (où $x \in \mathbb{R}$ est fixé) :

1.
$$u_n = \sum_{k=1}^n \frac{n}{n^2 + k}$$
. 2. $u_n = \frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor$. 3. $u_n = \sum_{k=1}^n \binom{n}{k}^{-1}$.

Exercice 2: suite récurrente (Solution)

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_0 \in]0;\pi[$$
 et $u_{n+1} = \sin u_n$.

- 1. Montrer par récurrence que pour tout $n \in \mathbb{N}$, $u_n \in]0; \pi[$.
- 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante. En déduire qu'elle converge et donner sa limite.
- 3. Montrer que $u_n \sin(u_n) \underset{n \to +\infty}{\sim} \frac{u_n^3}{6}$ puis que $u_n^2 u_{n+1}^2 \underset{n \to +\infty}{\sim} \frac{u_n^2 u_{n+1}^2}{3}$.
- 4. **Lemme de Cesaro**. Soit $(x_n)_{n\in\mathbb{N}}$ une suite réelle.

Montrer que si $(x_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$ alors $\frac{1}{n}\sum_{k=1}^n x_k \underset{n\to+\infty}{\longrightarrow} \ell$.

5. On pose pour tout $n \in \mathbb{N}^*$, $v_n = \frac{1}{u_{n+1}^2} - \frac{1}{u_n^2}$.

Montrer que la suite $(v_n)_{n \in \mathbb{N}^*}$ converge vers $\frac{1}{3}$ puis que $\lim_{n \to +\infty} n u_{n+1}^2 = 3$.

En déduire un équivalent de u_n lorsque $n \xrightarrow[n \to +\infty]{} +\infty$.

Exercice 3: suite définie implicitement (Solution)

Pour $n \in \mathbb{N}^*$, on considère la fonction $f_n : x \mapsto x^n + x - 1$.

- 1. Montrer que l'équation $f_n(x) = 0$ possède une unique solution $u_n \in]0,1[$.
- 2. Montrer que la suite (u_n) est croissante. En déduire que $(u_n)_{n\in\mathbb{N}^*}$ converge et déterminer sa limite.
- 3. On pose pour $n \in \mathbb{N}^*$, $\alpha_n = 1 u_n$.

Montrer que $n\alpha_n \underset{n\to+\infty}{\sim} -\ln \alpha_n$.

- 4. Montrer qu'il existe un rang à partir duquel $\alpha_n > \frac{1}{n}$. En déduire que $\frac{\ln(-\ln \alpha_n)}{\ln n} \underset{n \to +\infty}{\longrightarrow} 0$.
- 5. Montrer que $\ln \alpha_n \sim -\ln n$.

(Indications: On pourra montrer que $\frac{\ln \alpha_n + \ln n}{-\ln n} \xrightarrow[n \to +\infty]{} 0$).

En déduire que $\alpha_n \sim \frac{\ln n}{n \to +\infty}$.

Exercice 4: Équivalents (Solution)

Déterminer un équivalent simple du terme général :

1.
$$u_n = \left(1 - \frac{1}{\sqrt{n}}\right)^n$$
.
3. $u_n = e - \left(1 + \frac{1}{n}\right)^n$.

2.
$$u_n = \sin\left(\frac{n^2 + n + 1}{n + 1}\pi\right)$$
. 4. $d_n = \sqrt{n + (-1)^n} - \sqrt{n}$.

Exercice 5: développement asymptotique $I_n = u_n + o(1/n^2)$ (Solution)

A l'aide d'une double intégration par parties, déterminer un développement asymptotique à la précision $o\left(\frac{1}{n^2}\right)$ de l'intégrale :

$$I_n = \int_0^1 \frac{x^n}{1+x} dx.$$

2 Nature de certaines séries numériques

Exercice 6: d'Alembert et comparaison (Solution)

Déterminer la nature de la série numérique dont le terme général est :

1.
$$u_n = \frac{n!}{n^n}$$

8.
$$u_n = \sin(e^{-3n})$$

2.
$$u_n = \frac{2^n n!}{n^n}$$

9.
$$u_n = \frac{(n+2)^{\frac{4}{3}}}{(n+1)(n+3)^{\frac{3}{2}}}$$

3.
$$u_n = \frac{4^n n!}{n^n}$$

10.
$$u_n = \frac{4^n - n}{5^n + 3^n}$$

4.
$$u_n = \sin\left(\frac{1}{n}\right) + \ln\left(1 - \frac{1}{n}\right)$$

11.
$$u_n = \frac{\ln n}{n \sqrt{n}}$$

5.
$$u_n = \ln\left(\frac{n^4 + 3n^2 + n}{n^4 + 2n^2 - n + 1}\right)$$

12.
$$u_n = \frac{1}{\sqrt[3]{n^2 - 1}} - \frac{1}{\sqrt[3]{n^2 + 1}}$$

6.
$$u_n = n\sin(\frac{1}{n})$$

13.
$$u_n = \frac{1}{\sqrt{n}\cos^2(n)}$$

7.
$$u_n = \ln\left(1 - \frac{(-1)^n}{n^2}\right)$$

14.
$$u_n = \frac{e^{in}}{n^2 + i}$$

Exercice 7: plus difficile (Solution)

Déterminer la nature de la série numérique dont le terme général est :

1.
$$u_n = \frac{1}{(\ln n)^{\ln n}}$$

4.
$$u_n = \sqrt[n]{n} - \sqrt[n+1]{n}$$

2.
$$u_n = \frac{n^{\ln n}}{(\ln n)^n}$$

5.
$$u_n = \arccos \frac{n}{n+1}$$

$$3. \ u_n = e^{-\sqrt{\ln n}}$$

6.
$$u_n = \frac{1}{n \ln n}$$

Exercice 8: Séries à paramètres (Solution)

Déterminer la nature des séries en fonction de la valeur du paramètre :

$$1. \ u_n = \frac{\ln^2 n}{n^{\alpha}}$$

$$4. \ u_n = \frac{a^n}{n!}$$

$$2. \ u_n = \frac{1}{n^\alpha \ln^3 n}$$

5.
$$u_n = \frac{1}{n^{\alpha}} \sum_{k=1}^{n} n \ln^2 k$$

3. $u_n = \frac{\pi}{2} - \arctan(n^{\alpha})$

6.
$$u_n = \frac{n^n}{a^n n!}, a > 0.$$

Indication:

(Cas
$$a = e$$
 difficile)

$\forall x > 0$, $\arctan \frac{1}{x} + \arctan x = \frac{\pi}{2}$.

Exercice 9: (Solution)

1. On considère la série de terme général $u_n = \sin((2-\sqrt{3})^n\pi)$. Montrer qu'elle est à termes positifs puis étudier sa convergence.

2. On pose
$$A_n=(2-\sqrt{3})^n+(2+\sqrt{3})^n$$
. Montrer que A_n est un entier pair.

3. En déduire la nature de la série de terme général
$$v_n = \sin((2+\sqrt{3})^n\pi)$$
.

Exercice 10: série définie par récurrence (Solution)

On considère une suite $(u_n)_{n\geq 0}$ vérifiant :

$$u_0 \in \mathbb{R} \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \frac{1 + u_n^2}{2}.$$

- 1. Déterminer en fonction de u_0 la limite de u_n quand $n \to +\infty$.
- 2. Dans cette question, on suppose que $u_0 \in]-1;1[$ et on pose pour tout entier $n \in \mathbb{N}, w_n = 1-u_n.$
 - (a) Écrire la relation de récurrence vérifiée par la suite $(w_n)_{n\geqslant 0}$. En déduire que la série $\sum w_n^2$ converge.
 - (b) Déterminer la nature de la série $\sum \ln \left(\frac{w_{n+1}}{w_n} \right)$. En déduire la nature de la série $\sum w_n$.

3 Calcul de sommes

Exercice 11: décomposition en éléments simples (Solution)

- 1. Calculer en justifiant la convergence $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$.
- 2. Calculer en justifiant la convergence $\sum_{n=1}^{+\infty} \frac{1}{n(n+2)}$.
- 3. (a) Montrer qu'il existe $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ tel que pour tout $x \neq -1$:

$$\frac{1}{x^3 + 1} = \frac{\alpha}{x + 1} + \frac{\beta x + \gamma}{x^2 - x + 1}.$$

(b) Montrer que pour tout $n \ge 0$:

$$\sum_{k=0}^{n} \frac{(-1)^k}{3k+1} = \int_0^1 \frac{1}{1+t^3} dt - \int_0^1 \frac{(-t^3)^{n+1}}{1+t^3} dt,$$

puis en déduire la somme de la série $\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1}$.

Exercice 12: série géométrie et dérivée (Solution)

- 1. Calculer pour $x \in \mathbb{R}, \sum_{k=0}^{n} x^{k}$.
- 2. En déduire pour $x \in]-1;1[$, la somme de la série $\sum_{n=1}^{+\infty} nx^{n-1}$.
- 3. En déduire la convergence et la somme de la série $\sum_{n=0}^{+\infty} (n-(-1)^n)3^{-n}$.

Exercice 13: (Solution)

- 1. Vérifier que pour tout $n \geqslant 1$, $\frac{\frac{1}{n} \frac{1}{n+1}}{1 + \frac{1}{n} \frac{1}{n+1}} = \frac{1}{n^2 + n + 1}$.
- 2. En déduire que $\arctan\left(\frac{1}{n^2+n+1}\right)=\arctan\left(\frac{1}{n}\right)-\arctan\left(\frac{1}{n+1}\right)$ pour tout $n\geqslant 1$.
- 3. Montrer la convergence et déterminer la somme de la série $\sum_{n=0}^{+\infty}\arctan\left(\frac{1}{n^2+n+1}\right).$

4 Comparaison série-intégral

Exercice 14: (Solution)

1. Montrer que pour tout $n \in \mathbb{N}^*$,

$$2(\sqrt{n+1}-\sqrt{n}) \leqslant \frac{1}{\sqrt{n}} \leqslant 2(\sqrt{n}-\sqrt{n-1}).$$

- 2. En déduire que la série $\sum \frac{1}{\sqrt{n}}$ diverge (en utilisant le résultat de la question précédente).
- 3. On considère la **suite** de terme général $v_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n \frac{1}{\sqrt{k}}$ pour $n \geqslant 1$.

Étudier la nature de la **suite** $(v_n)_{n\in\mathbb{N}^*}$ et le cas échéant donner sa limite.

Exercice 15: Série de Bertrand (Solution)

Déterminer une condition nécessaire et suffisante sur $(\alpha, \beta) \in \mathbb{R}^2$ pour que la série suivante converge :

$$\sum \frac{1}{n^{\alpha} \ln^{\beta} n}.$$

Exercice 16: Somme d'une série alternée (Solution)

- 1. Convergence de $\sum (-1)^n \frac{\ln n}{n}$. On note $S_n = \sum_{k=1}^n (-1)^k \frac{\ln k}{k}$.
 - (a) Montrer que la série $\sum (-1)^n \frac{\ln n}{n}$ converge.
 - (b) Montrer que la série $\sum (-1)^n \frac{\ln n}{n}$ n'est pas absolument convergente.
- 2. Développement asymptotique de $\sum_{k=1}^{n} \frac{1}{k}$. On note $u_n = \sum_{k=1}^{n} \frac{1}{k} \ln(n)$.
 - (a) Déterminer la nature de la série $\sum (u_{n+1} u_n)$.
 - (b) En déduire qu'il existe $\gamma \in \mathbb{R}$ tel que $\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$.
- 3. On note $S = \sum_{n=2}^{+\infty} (-1)^n \frac{\ln n}{n}$ et pour $n \geqslant 3$,

$$u_n = \sum_{k=1}^n \frac{1}{k} - \ln n; \quad S_n = \sum_{k=2}^n (-1)^k \frac{\ln k}{k}; \quad t_n = \sum_{k=2}^n \frac{\ln k}{k}; \quad a_n = t_n - \frac{\ln^2 n}{2}.$$

(a) Montrer que pour $n \geqslant 3$:

$$\frac{\ln(n+1)}{n+1} \leqslant \int_{n}^{n+1} \frac{\ln t}{t} dt \leqslant \frac{\ln n}{n}.$$

- (b) En déduire que la suite $(a_n)_{n\geqslant 3}$ est décroissante et convergente.
- (c) Montrer que pour tout $n \geqslant 3$:

$$S_{2n} = t_n - t_{2n} + \ln 2 \sum_{k=1}^{n} \frac{1}{k}.$$

En déduire une expression de S_{2n} en fonction de a_n, a_{2n}, u_n .

(d) Calculer et exprimer $\lim_{n\to+\infty} S_{2n}$ en fonction de γ .

En déduire la somme de $\sum_{n=2}^{+\infty} (-1)^k \frac{\ln k}{k}$.

Exercice 17: Équivalent et somme partielle divergente (Solution)

Déterminer un équivalent lorsque $n \to +\infty$ de $\sum_{k=2}^n \frac{\ln k}{k}$.

Exercice 18: Accélération de la convergence (Solution)

1. Justifier que la série $\sum_{k=1}^{+\infty} \frac{1}{k^{\frac{3}{2}}}$ converge et encadrer pour tout $n \in \mathbb{N}$ son reste de rang n comme suit :

$$\frac{2}{\sqrt{n+1}} \leqslant R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\frac{3}{2}}} \leqslant \frac{2}{\sqrt{n}}.$$

2. Écrire un programme Python qui calcule une valeur approchée de

$$S = \sum_{k=1}^{+\infty} \frac{1}{k^{\frac{3}{2}}}$$
 à 10^{-6} près.

- 3. Déterminer un équivalent ρ_n de R_n .
- 4. Accélération de la convergence.

On pose $S'_n = S_n + \rho_n$ où S_n est la somme partielle $S_n = \sum_{k=1}^n \frac{1}{k^{\frac{3}{2}}}$.

Montrer que pour tout $n \geqslant 1$,

$$0 \leqslant S_n' - S \leqslant \frac{1}{n^{\frac{3}{2}}}.$$

5. Écrire une amélioration du programme précédent et comparer les temps de calcul avec le package import time.

5 Séries alternées

Exercice 19: Une série alternée très classique! (Solution)

1. Montrer que
$$\forall (x,n) \in \mathbb{R} \setminus \{-1\} \times \mathbb{N}^*, \ \frac{1}{1+x} = \sum_{k=0}^{n-1} (-x)^k + \frac{(-x)^n}{1+x}.$$

- 2. Montrer que $\lim_{n\to+\infty}\int_0^1 \frac{(-x)^n}{1+x}dx=0$.
- 3. Avec le cours, justifier que la série $\sum \frac{(-1)^n}{n}$ converge. Déduire de la Q1 que $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n} = -\ln(2)$.
- 4. Exprimer le reste $R_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k}$ en fonction de $\int_0^1 \frac{(-x)^n}{1+x} dx$.
- 5. En déduire que la série $\sum R_n$ converge et que $\sum_{n=0}^{+\infty} R_n = -\int_0^1 \frac{1}{(1+x)^2} dx$.

Exercice 20: convergence des séries alternées (Solution)

Soit $\sum (-1)^n \alpha_n$ une série telle que $(\alpha_n)_{n \in \mathbb{N}}$ est **positive**, **décroissante et de limite nulle**. On rappelle qu'une telle série $\sum (-1)^n \alpha_n$ est dite alternée.

On note $(S_n)_{n\in\mathbb{N}}$ la suite des sommes partielles de la série $\sum_{n=0}^{\infty} (-1)^n \alpha_n$.

1. Question de cours.

Montrer que les suites $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes. En déduire que la série $\sum (-1)^n \alpha_n$ est convergente. On note S sa somme.

- 2. Montrer que la suite des restes $R_n=S-S_n$ vérifie $|R_n|\leqslant \alpha_{n+1}$ en distinguant les cas n pair et n impair.
- 3. Avec ce qui précède, montrer que la série $\sum \frac{(-1)^n}{n}$ converge et que $S_n = \sum_{k=1}^n \frac{(-1)^k}{k}$ est une approximation de sa somme à $\frac{1}{n+1}$ près.
- 4. Écrire une fonction python alterne2(n) fournissant une approximation de S à 10^{-n} près.

Dans les exercices suivants, on peut utiliser les résultats de l'Exercice 20

Exercice 21: Applications (Solution)

Déterminer la nature de la série $\sum \frac{(-1)^n}{n^{\alpha}}$ en fonction du paramètre $\alpha \in \mathbb{R}$. En cas de convergence, préciser si elle est absolue.

Exercice 22: Applications (Solution)

1. Déterminer la nature de la série $\sum \ln \left(1 + \frac{(-1)^n}{n^2}\right)$.

2. Déterminer la nature de la série $\sum \ln \left(1 + \frac{(-1)^n}{\sqrt{n}}\right)$.

3. Déterminer la nature de la série $\sum \ln \left(1 + \frac{(-1)^n}{n}\right)$.

4. Déterminer la nature de la série $\sum \ln \left(1 + \frac{(-1)^n}{n^{\alpha}}\right)$ en fonction de $\alpha \in \mathbb{R}$.

En cas de convergence, préciser si elle est absolue.

Exercice 23: Applications (Solution)

- 1. Déterminer la nature de la série $\sum \frac{(-1)^n}{n+(-1)^n}$.
- 2. Déterminer la nature de la série $\sum \frac{(-1)^n}{\sqrt{n} + (-1)^n}$.
- 3. Déterminer la nature de la série $\sum \frac{(-1)^n}{n^{\alpha}+(-1)^n}$ en fonction du paramètre $\alpha\in\mathbb{R}$.
- 4. Déterminer la nature de la série $\sum \frac{(-1)^n}{n^{\alpha} + (-1)^n n^{\beta}}$ en fonction des paramètres $\alpha, \beta \in \mathbb{R}$.

Exercice 24: Sommes de séries alternées (Solution)

1. Étudier la convergence et calculer $\sum_{n=2}^{+\infty} \ln \left(1 + \frac{(-1)^n}{n}\right)$.

Indication: On pourra calculer la limite des sommes partielles de rang impair.

2. Étudier la convergence et calculer $\sum_{n=2}^{+\infty} \frac{(-1)^n}{n+(-1)^n}.$

Indication : On pourra calculer la limite des sommes partielles de rang impair et utiliser le développement asymptotique

$$\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{=} \ln(n) + \gamma + o(1).$$

Exercice 25: (Solution)

- 1. Déterminer la nature de la série de terme général $\sin\left(\frac{n^2}{n+1}\pi\right)$
- 2. Déterminer la nature de la série de terme général $\sin(\pi\sqrt{n^2+1})$.
- 3. Déterminer la nature de la série de terme général $\frac{(-1)^n}{n \ln(n) + (-1)^n}$.

Exercice 26: Convergence de la somme des restes alternés (Solution)

- 1. Justifier que la série $\sum \frac{(-1)^k}{k}$ converge. On pose $R_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k}$.
- 2. Montrer que $R_n + R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)}$.
- 3. Calculer $R_n R_{n+1}$ puis déterminer un équivalent de R_n .
- 4. Déterminer la nature de la série de terme général R_n .

Exercice 27: (Solution)

Recommencer l'exercice précédent avec la série $\sum \frac{(-1)^k}{\sqrt{k}}$.

SOLUTIONS TRAVAUX DIRIGÉS: Suites et séries numériques

Solution Exercice 1.

1. On procède par encadrement. Pour tout $k \in [1, n]$, $\frac{n}{n^2+n} \leqslant \frac{n}{n^2+k} \leqslant \frac{n}{n^2+1}$. Ainsi,

$$\frac{n^2+1}{n^2} \leqslant u_n = \sum_{k=1}^n \frac{n}{n^2+k} \leqslant \frac{n^2}{n^2+1}.$$

Par le théorème des gendarmes, on en déduit

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{n}{n^2 + k} = 1.$$

2. On rappelle que pour tout $y \in \mathbb{R}$, $\lfloor y \rfloor \leqslant y < \lfloor y \rfloor + 1$.

De manière équivalent : $y - 1 < \lfloor y \rfloor \leqslant y$.

Ainsi, pour tout $k \in [1, n]$,

$$kx - 1 < |kx| \le kx$$

donc

$$\frac{1}{n^2} \sum_{k=1}^{n} (kx - 1) < \frac{1}{n^2} \sum_{k=1}^{n} \lfloor kx \rfloor \leqslant \frac{1}{n^2} \sum_{k=1}^{n} kx$$

c'est-à-dire:

$$\frac{1}{n^2} \left(\frac{n(n+1)x}{2} - n \right) < \frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor \leqslant \frac{n(n+1)x}{2}.$$

Par le théorème des gendarmes :

$$\lim_{n \to +\infty} \frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor = \frac{x}{2}.$$

3. Pour tout $k \in [\![1,n]\!], \binom{n}{k} = \frac{n!}{k!(n-k)!} \in \mathbb{N}^*$ donc

$$\sum_{k=0}^{n} \binom{n}{k}^{-1} = \sum_{k=0}^{n} \frac{k!(n-k)!}{n!} = 1 + \frac{1}{n} + \sum_{k=2}^{n-2} \frac{k!(n-k)!}{n!} + \frac{1}{n} + 1$$

$$= 2 + \frac{2}{n} + \sum_{k=2}^{n-2} \frac{k!(n-k)!}{n!} = 2 + \frac{2}{n} + \underbrace{\frac{1}{n(n-1)} \sum_{k=2}^{n-2} \frac{k!(n-k)!}{(n-2)!}}_{\leq (n-3) \times 1}$$

$$\xrightarrow{\qquad \qquad \qquad \qquad } 0.$$

Ainsi,
$$\lim_{n \to +\infty} \sum_{k=0}^{n} \binom{n}{k}^{-1} = 2$$
.

Solution Exercice 2.

1. • Pour tout $x \ge 0$, $\sin(x) \le x$.

En effet la fonction $g: x \mapsto x - \sin(x)$ est dérivable sur \mathbb{R}_+ avec $g'(x) = 1 - \cos(x) \ge 0$.

g est donc croissante sur \mathbb{R}_+ et en particulier pour tout $x \ge 0$:

$$0 = g(0) \leqslant g(x) = x - \sin(x) \Longleftrightarrow \sin(x) \leqslant x.$$

- $u_0 \in]0; \pi[$ et si $0 < u_n < \pi$ alors $0 < \sin(u_n) \le u_n < \pi$ par ce qui précède. On conclut par récurrence.
- 2. L'inégalité $\forall x \geqslant 0, \sin(x) \leqslant x$ implique immédiatement $u_{n+1} = \sin(u_n) \leqslant u_n$. La suite $(u_n)_{n \in \mathbb{N}}$ est décroissante.

Puisque $(u_n)_{n\in\mathbb{N}}$ est minorée par 0, elle converge vers un réel $\ell\in[0;\pi]$.

La continuité de la fonction \sin en ℓ implique

$$\sin(\ell) = \lim_{n \to +\infty} \sin(u_n) = \lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} u_n = \ell.$$

L'étude de la fonction g, à la question 1., montre que g admet un unique 0. Autrement, dit f admet un unique point fixe $\ell = f(\ell) \Longleftrightarrow \ell = 0$.

La suite $(u_n)_{n\in\mathbb{N}}$ converge vers 0.

3. $u_n \underset{n \to +\infty}{\longrightarrow} 0$ donc le développement limité $x - \sin(x) = x - (x - \frac{x^3}{3!} + o(x^3))$ donne :

$$u_n - \sin(u_n) = \frac{u_n^3}{6} + o(u_n^3) \underset{n \to +\infty}{\sim} -\frac{u_n^3}{6}.$$

On obtient alors

$$u_n^2 - u_{n+1}^2 = (u_n - u_{n+1})(u_n + u_{n+1}) \underset{n \to +\infty}{\sim} \frac{u_n^3}{6}(u_n + u_{n+1})$$

$$= \frac{u_n^3}{6}(2u_n) = \frac{u_n^4}{3}$$

D'autre part : $u_{n+1} = \sin(u_n) \underset{n \to +\infty}{\sim} u_n$ donc

$$\frac{u_n^2 u_{n+1}^2}{3} \underset{n \to +\infty}{\sim} \frac{u_n^4}{3}.$$

4. Soit $\varepsilon>0$. Puisque $x_n\underset{n\to+\infty}{\longrightarrow}\ell,$ il existe $N_0\in\mathbb{N}$ tel que

$$\forall n \in \mathbb{N}, (n \geqslant N_0 \Longrightarrow |x_n - \ell| \leqslant \varepsilon).$$

Soit $n > N_0$:

$$\left(\frac{1}{n}\sum_{k=1}^{n}x_{k}\right) - \ell = \frac{1}{n}\sum_{k=1}^{n}(x_{k} - \ell) = \frac{1}{n}\sum_{k=1}^{N_{0}-1}(x_{k} - \ell) + \frac{1}{n}\sum_{k=N_{0}}^{n}(x_{k} - \ell)$$

$$= \frac{K_{0}}{n} + \frac{1}{n}\sum_{k=N_{0}}^{n}(x_{k} - \ell).$$

avec $K_0 = \frac{1}{n} \sum_{k=1}^{N_0 - 1} (x_k - \ell)$ constant.

Ainsi, chaque terme $x_k - \ell$ de la seconde somme étant majoré en valeur absolue par ε car $k \geqslant N_0$, on obtient par l'inégalité triangulaire :

$$\left| \frac{1}{n} \sum_{k=1}^{n} x_k - \ell \right| \leqslant \frac{|K_0|}{n} + \frac{(n - N_0 + 1)\epsilon}{n} \leqslant \frac{|K_0|}{n} + \varepsilon.$$

Soit $N_1\geqslant N_0$ tel que pour tout $n\geqslant N_1$ on ait $\frac{|K_0|}{n}\leqslant \varepsilon.$

Pour tout $n \ge N_1$, on obtient

$$\left| \frac{1}{n} \sum_{k=1}^{n} x_k - \ell \right| \leqslant 2\epsilon.$$

5. On a

$$v_n = \frac{1}{u_{n+1}^2} - \frac{1}{u_n^2} = \frac{u_n^2 - u_{n+1}^2}{u_{n+1}^2 u_n^2} \underset{n \to +\infty}{\sim} \frac{u_n^2 u_{n+1}^2}{3u_n^2 u_{n+1}^2} = \frac{1}{3}.$$

Ainsi, $v_n \xrightarrow[n \to +\infty]{1} \frac{1}{3}$ et par le lemme de Cesaro, on en déduit que

$$\frac{1}{n} \sum_{k=1}^{n} v_k = \frac{1}{n} \left(\frac{1}{u_{n+1}^2} - \frac{1}{u_1^2} \right) \xrightarrow[n \to +\infty]{} \frac{1}{3} \Longrightarrow n u_{n+1}^2 \xrightarrow[n \to +\infty]{} 3.$$

Puisque la suite $(u_n)_{n\in\mathbb{N}}$ converge vers 0 et est positive, on en déduit que

$$nu_{n+1}^2 \underset{n \to +\infty}{\sim} nu_n^2 \underset{n \to +\infty}{\sim} 3 \Longrightarrow u_n \underset{n \to +\infty}{\sim} \sqrt{\frac{3}{n}}.$$

Solution Exercice 3.

1. La fonction f_n est continue sur]0;1[. f_n est strictement croissante car $f'_n(x)=nx^{n-1}+1>0$. La fonction f_n réalise une bijection de]0;1[sur $]f_n(0);f_n(1)[=]-1;1[$. En particulier, il existe un unique réel $u_n\in]0;1[$ tel que $f_n(u_n)=0$.

2. Pour tout $x \in]0; 1[, x^{n+1} \leq x^n$ donc

$$f_{n+1}(x) = x^{n+1} + x - 1 \le x^n + x - 1 = f_n(x).$$

Ainsi, $f_{n+1}(u_n) \leqslant f_n(u_n) = 0$ et $u_{n+1} \in [u_n; 1[$ c'est-à-dire $u_{n+1} \leqslant u_n.$

La suite $(u_n)_{n\in\mathbb{N}}$ est donc croissante et majorée par 1 donc converge vers $\ell\in[u_1;1]=[\frac{1}{2};1].$

Montrons que $\ell = 1$. Sinon $\ell \in]0;1[$ et pour tout $n \in \mathbb{N}^*$, $u_n \leqslant \ell < 1$.

On obtient par croissance de f_n :

$$0 = f_n(u_n) \leqslant f_n(\ell) = \ell^n + \ell - 1 \underset{n \to +\infty}{\longrightarrow} \ell - 1 < 0$$

On a obtenu 0 < 0 d'où la contradiction. Ainsi, $\ell = 1$.

3. On a $f_n(u_n) = u_n^n + u_n - 1 = 0 \iff u_n^n = 1 - u_n$.

Ainsi, pour $n \in \mathbb{N}^*$, $\alpha_n = 1 - u_n = u_n^n = \exp(n \ln u_n) = \exp(n \ln(1 - \alpha_n))$.

Donc $\ln \alpha_n = n \ln(1 - \alpha_n) \sim -n\alpha_n \operatorname{car} \alpha_n \xrightarrow[n \to +\infty]{} 0.$

En conclusion : $n\alpha_n \sim -\ln \alpha_n$.

4. On a montré que $u_n \xrightarrow[n \to +\infty]{} 1^-$ donc $\alpha_n = 1 - u_n \xrightarrow[n \to +\infty]{} 0^+$.

Par conséquent $\ln \alpha_n \underset{n \to +\infty}{\longrightarrow} -\infty$ i.e. $-\ln \alpha_n \underset{n \to +\infty}{\longrightarrow} +\infty$.

Or
$$-\ln \alpha_n \underset{n \to +\infty}{\sim} n\alpha_n$$
 donc $n\alpha_n \underset{n \to +\infty}{\longrightarrow} +\infty$.

Ainsi, à partir d'un certain rang $N_0 \in \mathbb{N}$, $n\alpha_n > 1 \iff \alpha_n > \frac{1}{n}$.

Par conséquent à partir de ce rang $\ln \alpha_n > \ln \frac{1}{n}$:

$$0 < \frac{\ln(-\ln \alpha_n)}{\ln n} \leqslant \frac{\ln(-\ln \frac{1}{n})}{\ln n} = \frac{\ln(\ln n)}{\ln n} \underset{n \to +\infty}{\longrightarrow} 0.$$

5. Montrons que $\ln \alpha_n \underset{n \to +\infty}{\sim} - \ln n$

$$\frac{\ln \alpha_n + \ln n}{-\ln n} = \frac{\ln(n\alpha_n)}{-\ln n} = \frac{\ln\left((n\alpha_n)\left(\frac{-\ln \alpha_n}{-\ln \alpha_n}\right)\right)}{-\ln n}$$
$$= \frac{\ln\left(\frac{n\alpha_n}{-\ln \alpha_n}\right) + \ln\left(-\ln \alpha_n\right)}{-\ln n}$$

Or:
$$-\operatorname{On} \operatorname{a} \frac{n\alpha_n}{-\ln \alpha_n} \underset{n \to +\infty}{\longrightarrow} 1 \operatorname{car} n\alpha_n \underset{n \to +\infty}{\sim} -\ln \alpha.$$

Donc
$$\ln\left(\frac{n\alpha_n}{-\ln\alpha_n}\right) \underset{n\to+\infty}{\longrightarrow} 0$$
 et par suite $\frac{\ln\left(\frac{n\alpha_n}{-\ln\alpha_n}\right)}{-\ln n} \underset{n\to+\infty}{\longrightarrow} 0$.

— On a montré ci-dessus : $\frac{\ln(-\ln \alpha_n)}{-\ln n} \xrightarrow[n \to +\infty]{} 0.$

On en déduit que :

$$\frac{\ln \alpha_n + \ln n}{-\ln n} \underset{n \to +\infty}{\longrightarrow} 0 \text{ mais } \frac{\ln n}{-\ln n} \underset{n \to +\infty}{\longrightarrow} -1 \text{ donc } \frac{\ln \alpha_n}{-\ln n} \underset{n \to +\infty}{\longrightarrow} 1.$$

En conclusion : $-\ln n \underset{n \to +\infty}{\sim} \ln \alpha_n$

Mais on a montré à la question 3. $\ln \alpha_n \sim -n\alpha_n$ donc $-n\alpha_n \sim -\ln n$

Au final : $\alpha_n \sim_{n \to +\infty} \frac{\ln n}{n}$.

Solution Exercice 4.

1. On utilise le développement limité $\ln(1-x) = -x - \frac{x^2}{2} + o(x^2)$:

$$u_n = \left(1 - \frac{1}{\sqrt{n}}\right)^n = \exp\left(n\ln\left(1 - \frac{1}{\sqrt{n}}\right)\right)$$
$$= \exp\left(n\left[-\frac{1}{\sqrt{n}} - \frac{1}{2n} + o\left(\frac{1}{n}\right)\right]\right)$$
$$= \exp\left(-\sqrt{n} - \frac{1}{2} + o\left(1\right)\right).$$

Ainsi,

$$\frac{u_n}{\exp\left(-\sqrt{n} - \frac{1}{2}\right)} = \exp\left(o(1)\right) \underset{n \to +\infty}{\longrightarrow} 1.$$

Conclusion $u_n \underset{n \to +\infty}{\sim} \exp(-\sqrt{n}) e^{-\frac{1}{2}} = \frac{\exp(-\sqrt{n})}{\sqrt{e}}.$

2. On utilise le développement limité $\frac{1}{1+x} = 1 - x + x^2 + o(x^2)$.

$$\begin{split} u_n &= \sin\left(\frac{n^2+n+1}{n+1}\pi\right) = \sin\left(\pi + \frac{n^2}{n+1}\pi\right) = -\sin\left(\frac{n^2}{n+1}\pi\right) \\ &= -\sin\left(\frac{n\pi}{1+\frac{1}{n}}\right) = -\sin\left(n\pi\left[1 - \frac{1}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)\right]\right) \\ &= -\sin\left(n\pi - \pi + \frac{\pi}{n} + o\left(\frac{1}{n}\right)\right) = -\sin\left((n-1)\pi + \frac{\pi}{n} + o\left(\frac{1}{n}\right)\right) \\ &= -(-1)^{n-1}\sin\left(\frac{\pi}{n} + o\left(\frac{1}{n}\right)\right) \underset{n \to +\infty}{\sim} \frac{(-1)^n\pi}{n}. \end{split}$$

3. On utilise les développements limités $\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$ et $\exp(x) = x - \exp(x)$

1 + x + o(x):

$$e - \left(1 + \frac{1}{n}\right)^n = e - \exp\left(n\ln\left(1 + \frac{1}{n}\right)\right)$$

$$= e - \exp\left(n\left[\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)\right]\right)$$

$$= e - \exp\left(1 - \frac{1}{2n} + o\left(\frac{1}{n}\right)\right)$$

$$= e - \exp(1)\exp\left(-\frac{1}{2n} + o\left(\frac{1}{n}\right)\right)$$

$$= e\left[1 - \exp\left(-\frac{1}{2n} + o\left(\frac{1}{n}\right)\right)\right]$$

$$= e\left[1 - \left(1 - \frac{1}{2n} + o\left(\frac{1}{n}\right)\right)\right]$$

$$= \frac{e}{2n} + o\left(\frac{1}{n}\right) \underset{n \to +\infty}{\sim} \frac{e}{2n}.$$

4. On utilise l'équivalent $(1+x)^{\alpha}-1 \sim \alpha x$:

$$d_n = \sqrt{n + (-1)^n} - \sqrt{n}$$

$$= \sqrt{n} \left(\sqrt{1 + \frac{(-1)^n}{n}} - 1 \right)$$

$$\underset{n \to +\infty}{\sim} \frac{(-1)^n \sqrt{n}}{2n} = \frac{(-1)^n}{2\sqrt{n}}$$

Solution Exercice 5. Une première I.P.P.:

$$\begin{cases} u(x) = \frac{1}{1+x} \implies u'(x) = -\frac{1}{(1+x)^2} \\ v'(x) = x^n \implies v(x) = \frac{x^{n+1}}{n+1} \end{cases}$$

$$I_n = \int_0^1 \frac{x^n}{1+x} dx = \frac{1}{2(n+1)} + \frac{1}{n+1} \int_0^1 \frac{x^{n+1}}{(1+x)^2} dx$$

Une seconde I.P.P.:

$$\left\{ \begin{array}{ll} u(x) = \frac{1}{(1+x)^2} & \Longrightarrow & u'(x) = -\frac{2}{(1+x)^3} \\ v'(x) = x^{n+1} & \Longrightarrow & v(x) = \frac{x^{n+2}}{n+2} \end{array} \right.$$

Ainsi,

$$I_{n} = \frac{1}{2(n+1)} + \frac{1}{4(n+1)(n+2)} + \frac{2}{(n+1)(n+2)} \underbrace{\int_{0}^{1} \frac{x^{n+2}}{(1+x)^{3}} dx}_{o(1):(*)}$$

$$= \frac{1}{2(n+1)} + \frac{1}{4(n+1)(n+2)} + o\left(\frac{1}{n^{2}}\right).$$

$$(*): 0 \leq \int_{0}^{1} \frac{x^{n+2}}{1+x} dx \leq \int_{0}^{1} x^{n+2} dx = \frac{1}{n+3} \underset{n \to +\infty}{\longrightarrow} 0$$

Solution Exercice 6.

1. La série $\sum \frac{n!}{n^n}$ est à termes positifs. On utilise la règle de d'Alembert :

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)!}{(n+1)^{n+1}} \frac{n^n}{n!}$$

$$= \frac{(n+1)!}{n!} \frac{n^n}{(n+1)^{n+1}}$$

$$= (n+1) \times \frac{1}{n+1} \times \left(\frac{n}{n+1}\right)^n$$

$$= \left(1 - \frac{1}{n+1}\right)^n = \exp\left(n\ln\left(1 - \frac{1}{n+1}\right)\right).$$

Or puisque $\frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 0$, on a $n \ln \left(1 - \frac{1}{n+1}\right) \underset{n \to +\infty}{\sim} -\frac{n}{n+1} \underset{n \to +\infty}{\longrightarrow} -1$. Ainsi, $\exp \left(n \ln \left(1 - \frac{1}{n+1}\right)\right) \underset{n \to +\infty}{\longrightarrow} e^{-1} = \frac{1}{e} < 1$.

D'après la règle de d'Alembert, la série $\sum \frac{n!}{n^n}$ est convergente.

2. La série $\sum u_n = \frac{2^n n!}{n^n}$ est à termes positifs. On utilise la règle de d'Alembert :

$$\frac{u_{n+1}}{u_n} = \frac{2^{n+1}(n+1)!}{(n+1)^{n+1}} \times \frac{n^n}{2^n n!} = \frac{2(n+1)}{n+1} \left(\frac{n}{n+1}\right)^n$$
$$= 2\left(1 - \frac{1}{n+1}\right)^n \underset{n \to +\infty}{\longrightarrow} 2e^{-1} < 1.$$

D'où la convergence $\sum u_n = \frac{2^n n!}{n^n}$.

3. La série $\sum \frac{4^n n!}{n^n}$ est à termes positifs. On utilise la règle de d'Alembert :

$$\frac{u_{n+1}}{u_n} = \frac{4^{n+1}(n+1)!}{(n+1)^{n+1}} \frac{n^n}{4^n n!} = \frac{4(n+1)}{n+1} \left(\frac{n}{n+1}\right)^n$$
$$= 4\left(1 - \frac{1}{n+1}\right)^n \underset{n \to +\infty}{\longrightarrow} \frac{4}{e} > 1.$$

La série $\sum \frac{4^n n!}{n^n}$ est donc divergente.

4. Le signe des termes de la série $\sum \left(\sin\left(\frac{1}{n}\right) + \ln\left(1 - \frac{1}{n}\right)\right)$ est moins facile à prévoir que dans les questions précédentes.

On détermine un équivalent qui nous fournira le signe et la nature de la série par comparaison.

On a $\sin(x) = x + o(x^2)$ et $\ln(1-x) = -x - \frac{x^2}{2} + o(x^2)$ d'où le développement limité :

$$\sin(x) + \ln\left(1 - \frac{1}{x}\right) \underset{x \to 0}{=} -\frac{x^2}{2} + o(x^2)$$

puis le développement asymptotique car $\frac{1}{n} \underset{n \to +\infty}{\longrightarrow} 0$:

$$\sin\left(\frac{1}{n}\right) + \ln\left(1 - \frac{1}{n}\right) \underset{n \to +\infty}{=} -\frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$$
$$\underset{n \to +\infty}{\sim} -\frac{1}{2n^2} < 0.$$

Ainsi la série $\sum \left(\sin\left(\frac{1}{n}\right) + \ln\left(1 - \frac{1}{n}\right)\right)$ est à termes négatifs, donc de signe constant, à partir d'un certain rang.

Par comparaison à la série de Riemann convergente $\sum \frac{1}{n^2}$, on obtient la convergence de la série $\sum \left(\sin\left(\frac{1}{n}\right) + \ln\left(1 - \frac{1}{n}\right)\right)$.

5. On commence par déterminer un équivalent du terme général de la série $\sum \ln \left(\frac{n^4 + 3n^2 + n}{n^4 + 2n^2 - n + 1} \right).$

Pour cela, on utilise le développement limité $\ln(1+x) = x + o(x)$, qui donne puisque $\varepsilon_n = \frac{3n^2+n}{n^4} \underset{n \to +\infty}{\longrightarrow} 0$:

$$\ln(n^4 + 3n^2 + n) = \ln\left(n^4 \left(1 + \frac{3n^2 + n}{n^4}\right)\right) = \ln(n^4) + \ln\left(1 + \frac{3n^2 + n}{n^4}\right)$$
$$= \ln(n^4) + \ln\left(1 + \varepsilon_n\right) = \lim_{n \to +\infty} \ln(n^4) + \varepsilon_n + o(\varepsilon_n)$$

et puisque $\varepsilon'_n = \frac{2n^2 - n + 1}{n^4} \xrightarrow[n \to +\infty]{} 0$

$$\ln(n^4 + 2n^2 - n + 1) = \ln(n^4) + \ln(1 + \varepsilon_n') = \lim_{n \to +\infty} \ln(n^4) + \varepsilon_n' + o(\varepsilon_n').$$

On en déduit que

$$\begin{split} & \ln \left(\frac{n^4 + 3n^2 + n}{n^4 + 2n^2 - n + 1} \right) = (\ln(n^4) + \varepsilon_n + o(\varepsilon_n)) - (\ln(n^4) + \varepsilon_n' + o(\varepsilon_n')) \\ & = \frac{3n^2 + n}{n^4} - \frac{2n^2 - n + 1}{n^4} + o\left(\frac{3n^2 + n}{n^4}\right) + o\left(\frac{2n^2 - n + 1}{n^4}\right) \\ & = \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) \underset{n \to +\infty}{\sim} \frac{1}{n^2} > 0. \end{split}$$

On en déduit la convergence de la série $\sum \ln \left(\frac{n^4 + 3n^2 + n}{n^4 + 2n^2 - n + 1} \right)$ par comparaison à la série de Riemann convergente $\sum \frac{1}{n^2}$.

- 6. La série $\sum n \sin\left(\frac{1}{n}\right)$ est grossièrement divergente car $n \sin\left(\frac{1}{n}\right) \underset{n \to +\infty}{\sim} 1 \neq 0$.
- 7. La série $\sum \ln \left(1 \frac{(-1)^n}{n^2}\right)$ est absolument convergente par comparaison à la série de Riemann convergente $\sum \frac{1}{n^2}$:

$$\left|\ln\left(1-\frac{(-1)^n}{n^2}\right)\right| \underset{n\to+\infty}{\sim} \frac{1}{n^2}.$$

8. La série $\sum \sin\left(e^{-3n}\right)$ est à termes positifs et puisque $e^{-3n} \underset{n \to +\infty}{\longrightarrow} 0$:

$$\sin(e^{-3n}) \underset{n \to +\infty}{\sim} e^{-3n} = o\left(\frac{1}{n^2}\right),$$

d'où la convergence de la série $\sum \sin(e^{-3n})$.

9. La série $\sum \frac{(n+2)^{\frac{4}{3}}}{(n+1)(n+3)^{\frac{3}{2}}}$ est à termes positifs et :

$$\frac{(n+2)^{\frac{4}{3}}}{(n+1)(n+3)^{\frac{3}{2}}} \sim \frac{n^{\frac{4}{3}}}{n^{1+\frac{3}{2}}} = \frac{1}{n^{\frac{7}{6}}}.$$

D'où la convergence de la série $\sum \frac{(n+2)^{\frac{4}{3}}}{(n+1)(n+3)^{\frac{3}{2}}}$ par comparaison à la série de Riemann $\sum \frac{1}{n^{\frac{7}{6}}}$ convergente car $\frac{7}{6} > 1$.

10. La série $\sum \frac{4^n - n}{5^n + 3^n}$ est à termes positifs et

$$\frac{4^n - n}{5^n + 3^n} \underset{n \to +\infty}{\sim} \left(\frac{4}{5}\right)^n$$

car
$$n = o(4^n)$$
 et $3^n = o(5^n)$.

D'où la convergence de la série $\sum \frac{4^n-n}{5^n+3^n}$ par comparaison à la série géométrique $\sum \left(\frac{4}{5}\right)^n$ qui converge car $\frac{4}{5}\in]-1;1[$.

11. La série $\sum \frac{\ln n}{n\sqrt{n}}$ est à termes positifs et

$$\frac{\ln n}{n\sqrt{n}} = o\left(\frac{1}{n^{1,2}}\right) \operatorname{car} \frac{n^{1,2} \ln(n)}{n\sqrt{n}} = \frac{\ln(n)}{n^{0,3}} \underset{n \to +\infty}{\longrightarrow} 0.$$

Remarques

En fait tout réel $\alpha \in]1;1,5[$ vérifie : $\frac{\ln n}{n\sqrt{n}} = o\left(\frac{1}{n^{\alpha}}\right)$.

On en déduit donc la convergence de la série $\sum \frac{\ln n}{n\sqrt{n}}$ par comparaison à la série de Riemann $\sum \frac{1}{n^{1,2}}$ qui converge car 1,2>1.

12. On commence par déterminer un équivalent du terme général de la série $\sum \frac{1}{\sqrt[3]{n^2-1}} - \frac{1}{\sqrt[3]{n^2+1}} \text{ via un développement asymptotique :}$

$$\frac{1}{\sqrt[3]{n^2 - 1}} - \frac{1}{\sqrt[3]{n^2 + 1}} = (n^2 - 1)^{-\frac{1}{3}} - (n^2 + 1)^{-\frac{1}{3}}$$

$$= n^{-\frac{2}{3}} \left(\left(1 - \frac{1}{n^2} \right)^{-\frac{1}{3}} - \left(1 + \frac{1}{n^2} \right)^{-\frac{1}{3}} \right)$$

$$= n^{-\frac{2}{3}} \left[\left(1 + \frac{1}{3n^2} + o\left(\frac{1}{n^2}\right) \right) - \left(1 - \frac{1}{3n^2} + o\left(\frac{1}{n^2}\right) \right) \right]$$

$$= n^{-\frac{2}{3}} \left(\frac{2}{3n^2} + o\left(\frac{1}{n^2}\right) \right) = \frac{2}{3} \frac{1}{n^{\frac{8}{3}}} + o\left(\frac{1}{n^{\frac{8}{3}}}\right) \underset{n \to +\infty}{\sim} \frac{2}{3} \frac{1}{n^{\frac{8}{3}}} > 0.$$

D'où la convergence de la série $\sum \frac{1}{\sqrt[3]{n^2-1}} - \frac{1}{\sqrt[3]{n^2+1}}$ par comparaison à la série de Riemann $\sum \frac{1}{n^{\frac{8}{3}}}$ qui converge car $\frac{8}{3} > 1$.

13. La série $\sum \frac{1}{\sqrt{n}\cos^2(n)}$ est à termes positifs et

$$\frac{1}{n^{0.75}} \underset{n \to +\infty}{=} o\left(\frac{1}{\sqrt{n}\cos^2(n)}\right) \operatorname{car} 0 \leqslant \frac{\cos^2(n)\sqrt{n}}{n^{0.75}} = \frac{\cos^2(n)}{n^{0.25}} \leqslant \frac{1}{n^{0.25}} \underset{n \to +\infty}{\longrightarrow} 0.$$

D'où la divergence de la série $\sum \frac{1}{\sqrt{n}\cos^2(n)}$ par comparaison à la série de Riemann $\sum \frac{1}{n^{0.75}}$ qui diverge car 0.75 < 1.

14. La série $\sum \frac{e^{in}}{n^2 + i}$ est absolument convergente car :

$$\left| \frac{e^{in}}{n^2 + i} \right| = \frac{1}{\sqrt{n^4 + 1}} \underset{n \to +\infty}{\sim} \frac{1}{n^2},$$

d'où l'absolue convergence de par comparaison à la série de Riemann convergente

Solution Exercice 7.

1. La série $\sum \frac{1}{(\ln n)^{\ln n}}$ est à termes positifs. On transforme l'expression du terme général pour tout $n \ge 2$:

$$\frac{1}{(\ln n)^{\ln n}} = \frac{1}{\exp\left(\ln n \ln(\ln n)\right)} = \frac{1}{(e^{\ln n})^{\ln(\ln n)}} = \frac{1}{n^{\ln(\ln n)}} \underset{n \to +\infty}{=} o\left(\frac{1}{n^2}\right)$$

d'où la convergence par comparaison à la série de Riemann convergente $\sum \frac{1}{n^2}$.

2. La série $\sum \frac{n^{\ln n}}{(\ln n)^n}$ est à termes positifs $(n \ge 2 \text{ pour assurer que le terme général})$ est bien défini).

Pour tout $n \geqslant 2$,

$$n^{2} \frac{n^{\ln n}}{(\ln n)^{n}} = \frac{n^{2+\ln(n)}}{(\ln n)^{n}} = \frac{e^{(2+\ln n)\ln n}}{e^{n\ln(\ln n)}}$$
$$= \exp(2\ln n + \ln^{2} n - n\ln(\ln n)).$$

$$\begin{split} &-\ln(n) \underset{n \to +\infty}{=} o(n) \text{ et } n \underset{n \to +\infty}{=} o(n \ln(\ln n)) \\ &\text{donc } 2 \ln n \underset{n \to +\infty}{=} o(-n \ln(\ln n)). \\ &-- \text{De même } \ln^2 n \underset{n \to +\infty}{=} o(-n \ln(\ln n)). \end{split}$$

On en déduit que $2 \ln n + \ln^2 n - n \ln(\ln n) \sim -n \ln(\ln n) \longrightarrow -\infty$. Par conséquent $n^2 \frac{n^{\ln n}}{(\ln n)^n} \underset{n \to +\infty}{\longrightarrow} 0$ et on en conclut que

$$\frac{n^{\ln n}}{(\ln n)^n} \underset{n \to +\infty}{=} o\left(\frac{1}{n^2}\right).$$

On en déduit la convergence de la série $\sum \frac{n^{\ln n}}{(\ln n)^n}$ par comparaison à la série de Riemann convergente $\sum \frac{1}{n^2}$.

3. La série $\sum e^{-\sqrt{\ln n}}$ est à termes positifs.

Montrons que $\frac{1}{n} = o\left(e^{-\sqrt{\ln n}}\right)$.

Il s'agit donc de démontrer que $\frac{e^{\sqrt{\ln n}}}{n} \xrightarrow[n \to +\infty]{} 0$.

Mais:

$$\frac{e^{\sqrt{\ln n}}}{n} = \frac{e^{\sqrt{\ln n}}}{e^{\ln n}} = e^{\sqrt{\ln n} - \ln n} = e^{\sqrt{\ln n}(1 - \sqrt{\ln n})} \underset{n \to +\infty}{\longrightarrow} 0.$$

La série de Riemann $\sum \frac{1}{n}$ étant divergente, on en déduit que la série $\sum e^{-\sqrt{\ln n}}$ est également divergente.

4. La série $\sum \left(n^{\frac{1}{n}} - n^{\frac{1}{n+1}}\right)$ est à termes positifs car pour tout entier n > 0, et tous réels A > a > 0, on a $n^A > n^a$.

$$\begin{split} \sqrt[n]{n} - \sqrt[n+1]{n} &= e^{\frac{1}{n}\ln n} - e^{\frac{1}{n+1}\ln n} \\ &= \sum_{n \to +\infty} \left(1 + \frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right)\right) - \left(1 + \frac{\ln n}{n+1} + o\left(\frac{\ln n}{n+1}\right)\right) \\ &\stackrel{\sim}{\underset{n \to +\infty}{\sim}} \frac{\ln n}{n(n+1)} \\ &\stackrel{\sim}{\underset{n \to +\infty}{\sim}} \frac{\ln n}{n^2} = o\left(\frac{1}{n^{1,5}}\right). \end{split}$$

5. Notons que $\frac{n}{n+1} \underset{n \to +\infty}{\longrightarrow} 1$ donc $\arccos \frac{n}{n+1} \underset{n \to +\infty}{\longrightarrow} \arccos(1) = 0$ par valeur supérieure, par continuité de la fonction \arccos en 1. La série $\sum \arccos \frac{n}{n+1}$ est donc à termes positifs.

On obtient ainsi.

$$\arccos \frac{n}{n+1} \underset{n \to +\infty}{\sim} \sin(\arccos \frac{n}{n+1}) = \sqrt{1 - \cos^2 \arccos \frac{n}{n+1}}$$
$$= \sqrt{1 - \frac{n^2}{(n+1)^2}}.$$

Par conséquent

$$\arccos \frac{n}{n+1} \underset{n \to +\infty}{\sim} \frac{\sqrt{2n+1}}{n+1} \underset{n \to +\infty}{\sim} \frac{\sqrt{2}}{\sqrt{n}} \underset{n \to +\infty}{=} O\left(\frac{1}{\sqrt{n}}\right).$$

La série $\sum \arccos \frac{n}{n+1}$ diverge par comparaison à la série de Riemann divergente $\sum \frac{1}{\sqrt{n}}$.

6. La fonction $f: x \mapsto \frac{1}{x \ln(x)}$ est positive, continue et décroissante sur $[2; +\infty[$ car dérivable sur cet intervalle avec

$$\forall x \ge 2, f'(x) = -\frac{\ln(x) + 1}{x \ln(x)^2} < 0.$$

La série à termes positifs $\sum \frac{1}{n \ln(n)}$ et l'intégrale $\int_2^{+\infty} \frac{1}{x \ln(x)}$ sont de même nature. Soit $A \geqslant 2$:

$$\int_2^A \frac{1}{x \ln(x)} dx = \int_2^A \frac{\frac{1}{x}}{\ln(x)} = \left[\ln(\ln(x))\right]_2^A = \ln(\ln(A)) - \ln(\ln(2)) \xrightarrow[A \to +\infty]{} +\infty.$$

La série $\sum \frac{1}{n \ln(n)}$ est donc divergente.

Solution Exercice 8.

1. La série $\sum \frac{\ln^2 n}{n^{\alpha}}$ est à termes positifs.

$$-\operatorname{Si}\alpha\leqslant 0,\frac{\ln^2 n}{n^\alpha}\underset{n\to+\infty}{\longrightarrow}+\infty.$$

La série $\sum \frac{\ln^2 n}{n^{\alpha}}$ est grossièrement divergente.

— Si $\alpha \in [0;1]$ on a:

$$\frac{1}{n} \underset{n \to +\infty}{=} o\left(\frac{\ln^2 n}{n^{\alpha}}\right) \operatorname{car} \frac{1}{n^{1-\alpha} \ln^2 n} \underset{n \to +\infty}{\longrightarrow} 0.$$

La série $\sum \frac{\ln^2 n}{n^{\alpha}}$ diverge par comparaison à la série de Riemann divergente

 $\sum_{n=1}^{\infty} \frac{1}{n}$. La série $\sum_{n=1}^{\infty} \frac{\ln^2 n}{n}$ diverge par comparaison à la série de Riemann $\sum_{n=1}^{\infty} \frac{1}{n}$. — Si $\alpha > 1$, il existe $\beta \in]1; \alpha[$ et on a :

$$\frac{\ln^2 n}{n^{\alpha}} \underset{n \to +\infty}{=} o\left(\frac{1}{n^{\beta}}\right) \operatorname{car} \frac{\ln^2 n}{n^{\alpha - \beta}} \underset{n \to +\infty}{\longrightarrow} 0.$$

2. La série $\sum \frac{1}{n^{\alpha} \ln^{3} n}$ est à termes positifs.

— Si
$$\alpha < 0$$
, $\frac{\ln n}{n^{\alpha} \ln^3 n} \xrightarrow[n \to +\infty]{} +\infty$, la série $\sum \frac{1}{n^{\alpha} \ln^3 n}$ est grossièrement divergente.

— Si $\alpha = 0$, $\frac{1}{n} = o\left(\frac{1}{\ln^3 n}\right) \operatorname{car} \frac{\ln^3 n}{n} \underset{n \to +\infty}{\longrightarrow} 0$.

La série $\sum \frac{1}{\ln^3 n}$ est donc divergente.

— Si $\alpha \in]0; 1[$, il existe $\beta \in]\alpha; 1[$ et on a :

$$\frac{1}{n^{\beta}} \underset{n \to +\infty}{=} o\left(\frac{1}{n^{\alpha} \ln^{3} n}\right) \operatorname{car} \frac{\ln^{3} n}{n^{\beta - \alpha}} \underset{n \to +\infty}{\longrightarrow} 0.$$

— Si $\alpha=1$, on compare la série $\sum \frac{1}{n\ln^3 n}$ à l'intégrale $\int_2^{+\infty} \frac{1}{x\ln^3 x} dx$ de la

fonction continue, positive et décroissante $f:[2;+\infty[,x\mapsto \frac{1}{x\ln^3 x}]$

Pour tout A > 2:

$$\int_{2}^{A} \frac{1}{x \ln^{3} x} dx = \int_{2}^{A} \frac{1}{x} \ln^{-3}(x) dx$$

$$= \left[\frac{1}{-3+1} \ln^{-3+1}(x) \right]_{2}^{A}$$

$$= -\frac{1}{2} \left(\frac{1}{\ln(A)^{2}} - \frac{1}{\ln(2)^{2}} \right)$$

$$\xrightarrow{A \to +\infty} \frac{1}{2 \ln(2)^{2}}.$$

La série $\sum \frac{1}{n \ln^3 n}$ et l'intégrale $\int_2^{+\infty} \frac{1}{x \ln^3 x} dx$ convergent.

— Si $\alpha > 1$, il existe $\beta \in]1$; $\alpha[$ et on a :

$$\frac{1}{n^{\alpha} \ln^{3} n} \underset{n \to +\infty}{=} o\left(\frac{1}{n^{\beta}}\right) \operatorname{car} \frac{1}{n^{\alpha-\beta} \ln^{3} n} \underset{n \to +\infty}{\longrightarrow} 0.$$

- 3. si $\alpha \leqslant 0$, la série $\sum \frac{\pi}{2} \arctan(n^{\alpha})$ est grossièrement divergente car $\lim_{n \to +\infty} \left(\frac{\pi}{2} \arctan(n^{\alpha})\right) \neq 0.$
 - On suppose dans la suite $\alpha > 0$.
 - Montons la relation fonctionnelle $\forall x > 0$, $\arctan \frac{1}{x} + \arctan x = \frac{\pi}{2}$:

$$\forall x > 0, -\frac{1}{x^2} \frac{1}{1 + \frac{1}{x^2}} + \frac{1}{1 + x^2} = -\frac{1}{1 + x^2} + \frac{1}{1 + x^2} = 0.$$

Ainsi, la fonction $f: x \mapsto \arctan \frac{1}{x} + \arctan x$ est constante sur \mathbb{R}_+ et $\lim_{t \to \infty} f = \frac{\pi}{2}$, d'où la relation fonctionnelle.

• La série $\sum \left(\frac{\pi}{2} - \arctan(n^{\alpha})\right)$ est donc de terme général

$$\frac{\pi}{2} - \arctan n^{\alpha} = \arctan \frac{1}{n^{\alpha}} \underset{n \to +\infty}{\sim} \frac{1}{n^{\alpha}} > 0.$$

 $\sum \left(\frac{\pi}{2}-\arctan(n^{\alpha})\right) \text{ converge donc si et seulement si }\alpha>1 \text{ par comparaison à la série de Riemann} \sum \frac{1}{n^{\alpha}}.$

4. On démontre que la série $\sum \frac{a^n}{n!}$ converge absolument pour tout $a \in \mathbb{R}$:

$$\frac{|a|^{n+1}}{(n+1)!} \frac{n!}{|a|^n} = \frac{|a|}{n+1} \underset{n \to +\infty}{\longrightarrow} 0 < 1.$$

La règle de d'Alembert permet de conclure.

5. La série $\sum \frac{n^n}{a^n n!}$ est à termes positifs et

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)^{n+1}}{a^{n+1}(n+1)!} \frac{a^n n!}{n^n} = \frac{1}{a} \left(1 + \frac{1}{n} \right)^n \underset{n \to +\infty}{\longrightarrow} \frac{e}{a}.$$

- Si $a>e\Longleftrightarrow \frac{e}{a}<1$, la série $\sum \frac{n^n}{a^n n!}$ converge d'après la règle de d'Alembert.
- Si $a < e \iff \frac{e}{a} > 1$, la série $\sum \frac{n^n}{a^n n!}$ diverge d'après la règle de d'Alembert.
- Il reste à traiter le cas a = e. Dans ce cas

$$\frac{u_{n+1}}{u_n} = \frac{1}{e} \exp\left(n \ln\left(1 + \frac{1}{n}\right)\right)$$

$$= \frac{1}{e} \exp\left(n \left(\frac{1}{n} - \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)\right)\right)$$

$$= \frac{1}{e} \exp\left(1 - \frac{1}{2n} + o\left(\frac{1}{n}\right)\right)$$

$$= \exp\left(-\frac{1}{n} + o\left(\frac{1}{n}\right)\right)$$

$$= 1 - \frac{1}{2n} + o\left(\frac{1}{n}\right).$$

On considère la série de terme général $v_n = \frac{1}{n^{\frac{3}{4}}}$. On a

$$\frac{v_{n+1}}{v_n} = \left(\frac{n+1}{n}\right)^{-\frac{3}{4}} = \left(1 + \frac{1}{n}\right)^{-\frac{3}{4}} = 1 - \frac{3}{4n} + o\left(\frac{1}{n}\right).$$

Les développements asymptotiques de $\frac{u_{n+1}}{u_n}$ et de $\frac{v_{n+1}}{v_n}$ donnent l'existence d'un rang $N\in\mathbb{N}$ à partir duquel :

$$\forall n \geqslant N, \ \frac{v_{n+1}}{v_n} = 1 - \frac{3}{4n} + o\left(\frac{1}{n}\right) \leqslant 1 - \frac{1}{2n} + o\left(\frac{1}{n}\right) = \frac{u_{n+1}}{u_n}.$$

On en déduit ainsi les inégalités suivantes, pour $n\geqslant N+1$:

$$\frac{v_{N+1}}{v_N} \leqslant \frac{u_{N+1}}{u_n} \quad ; \quad \frac{v_{N+2}}{v_{N+1}} \leqslant \frac{u_{N+2}}{u_{N+1}} \quad ; \quad \dots \quad ; \quad \frac{v_n}{v_{n-1}} \leqslant \frac{u_n}{u_{n-1}} :$$

qui donnent par produit :

$$\frac{v_{N+1}}{v_N} \frac{v_{N+2}}{v_{N+1}} \dots \frac{v_n}{v_{n-1}} \leqslant \frac{u_{N+1}}{u_N} \frac{u_{N+2}}{u_{N+1}} \dots \frac{u_n}{u_{n-1}}$$

c'est-à-dire:

$$\frac{v_n}{v_N} \leqslant \frac{u_n}{u_N} \Longleftrightarrow v_n \leqslant \frac{v_N}{u_N} u_n.$$

On en déduit que $v_n = O(u_n)$. La divergence de la série $\sum \frac{1}{n^{\frac{3}{4}}}$ entraı̂ne celle de $\sum u_n$.

6. La série $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}} \sum_{k=1}^{n} n \ln^2(k)$ est à terme général $u_n = \frac{1}{n^{\alpha}} \sum_{k=1}^{n} n \ln^2 k$ positif. Notons que

$$\frac{\ln^2 2}{n^{\alpha - 2}} \leqslant u_n = \frac{1}{n^{\alpha - 1}} \sum_{k=1}^n \ln^2 k \leqslant \frac{\ln^2 n}{n^{\alpha - 2}}.$$

— Si $\alpha - 2 > 1 \Longleftrightarrow \alpha > 3$, il existe $\beta \in]1; \alpha - 2[$ et on a

$$\frac{\ln^2 n}{n^{\alpha - 2}} \underset{n \to +\infty}{=} o\left(\frac{1}{n^{\beta}}\right) \operatorname{car} \frac{\ln^2 n}{n^{\alpha - 2 - \beta}} \underset{n \to +\infty}{\longrightarrow} 0.$$

Par comparaisons, la série de Riemann $\sum \frac{1}{n^{\beta}}$ étant convergente, on en déduit

la convergence des séries $\sum \frac{\ln^2 n}{n^{\alpha-2}}$ et $\sum u_n$.

— Si $\alpha - 2 = 1 \iff \alpha = 3$, on a

$$\frac{\ln^2 n}{n} \leqslant u_n.$$

La fonction $f:x\mapsto \frac{\ln^2 x}{x}$ est décroissante sur $I=[e^2;+\infty[$ car dérivable sur I et

$$\forall x \in I, f'(x) = -\frac{\ln^2 x}{x^2} + 2\frac{\ln x}{x^2} = \frac{1}{x^2}\ln(x)(2 - \ln x) \le 0.$$

Ainsi, f est positive, continue et décroissante sur I. La série $\sum \frac{\ln^2 n}{n}$ et l'intégrale $\int_{e^2}^{+\infty} f(t)dt$ sont de même nature. Soit $A>e^2$:

$$\int_{e^2}^A \frac{\ln^2 t}{t} dt = \left[\frac{1}{3} \ln^3 t \right]_{e^2}^A \xrightarrow{A \to +\infty} +\infty.$$

La série $\sum u_n$ est donc divergente.

— Si $\alpha - 2 < 1 \iff \alpha < 3$, il existe $\beta \in]\alpha - 2$; 1[et on a

$$\frac{1}{n^{\beta}} \underset{n \to +\infty}{=} o\left(\frac{\ln^2 2}{n^{\alpha - 2}}\right) \operatorname{car} \frac{\ln^2 2}{n^{\beta - (\alpha - 2)}} \underset{n \to +\infty}{\longrightarrow} 0.$$

Solution Exercice 9.

1. La série $\sum \sin((2-\sqrt{3})^n\pi)$ est à termes positifs car pour tout $n\in\mathbb{N}, 0<(2-\sqrt{3})^n<1$ donc $0<(2-\sqrt{3})^n\pi<\pi$.

De plus, $(2-\sqrt{3})^n \underset{n\to+\infty}{\longrightarrow} 0$ donc $\sin((2-\sqrt{3})^n\pi) \underset{n\to+\infty}{\sim} (2-\sqrt{3})^n\pi$.

La série géométrique $\sum \sin((2-\sqrt{3})^n\pi)$ étant convergente, on en déduit la convergence de la série $\sum \sin((2-\sqrt{3})^n\pi)$.

2. On développe avec la formule du binôme de Newton en simplifiant les termes de degré impair :

$$A_n = (2 - \sqrt{3})^n + (2 + \sqrt{3})^n = \sum_{k=0}^n \binom{n}{k} (-1)^k \sqrt{3}^k 2^{n-k} + \sum_{k=0}^n \binom{n}{k} \sqrt{3}^k 2^{n-k}$$
$$= 2 \sum_{0 \leqslant 2p \leqslant n} \binom{n}{2p} \sqrt{3}^{2p} 2^{n-2p} = 2 \sum_{0 \leqslant 2p \leqslant n} \binom{n}{2p} 3^p 2^{n-2p} \in 2\mathbb{N}.$$

 A_n est un entier naturel pair; on le note $A_n = 2B_n$.

3. On a $A_n = 2B_n = (2 - \sqrt{3})^n + (2 + \sqrt{3})^n \iff (2 + \sqrt{3})^n = 2B_n - (2 - \sqrt{3})^n$. Ainsi,

$$\sin\left(\left(2+\sqrt{3}\right)^n\pi\right) = \sin\left(2B_n\pi - \left(2-\sqrt{3}\right)^n\pi\right) = -\sin\left(\left(2-\sqrt{3}\right)^n\pi\right)$$

$$\underset{n\to+\infty}{\sim} -(2-\sqrt{3})^n\pi < 0.$$

La série $\sin((2+\sqrt{3})^n\pi)$ est donc de signe constant à partir d'un certain rang : elle converge par comparaison à la série géométrique $\sum (2-\sqrt{3})^n$.

Solution Exercice 10.

1. La suite $(u_n)_{n\in\mathbb{N}}$ est bien définie car pour tout $n\in\mathbb{N}$, $u_{n+1}=f(u_n)$ avec $f(x)=\frac{1+x^2}{2}$ expression polynomiale bien définie sur \mathbb{R} dont l'unique point fixe est x=1. Pour tout $n\in\mathbb{N}$, $u_{n+1}-u_n=\frac{1+u_n^2-2u_n}{2}=\frac{(u_n-1)^2}{2}\geqslant 0$. La suite $(u_n)_{n\geqslant 0}$ est donc croissante.

- Si $u_0>1$ alors pour tout $n\geqslant 0, u_{n+1}\geqslant u_n>1$: la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et non majorée donc divergente vers $+\infty$. En effet, si elle était majorée, elle serait convergente vers $\ell\in\mathbb{R}$ vérifiant par continuité de la fonction $f:\lim_{n\to+\infty}f(\ell)=f(u_n)=\lim_{n\to+\infty}u_{n+1}=\lim_{n\to+\infty}u_n=\ell\Longleftrightarrow\ell=1$. Asburde.
- Si $u_0 < -1$ alors $u_1 = \frac{1+u_0^2}{2} > 1$ et le raisonnement précédent s'applique à la suite $(u_n)_{n\geqslant 1}$: la série diverge vers $+\infty$.
- Si $u_0 \in [-1;1]$ alors puisque pour tout $x \in [-1;1]$, $f(x) = \frac{1+x^2}{2} \in [0;1]$, on obtient que $(u_n)_{n \in \mathbb{N}}$ est croissante et majorée par 1 donc converge vers $\ell = f(\ell) \iff \ell = 1$.
- 2. $w_{n+1}=1-u_{n+1}=1-\frac{1+u_n^2}{2}=1-\frac{1}{2}-\frac{1}{2}(1-w_n)^2=w_n-w_n^2$. La série de terme général w_n^2 est donc télescopique : $\sum (w_n-w_{n+1})$. qui converge car la suite $(w_n)_{n\in\mathbb{N}}$ converge vers $1-\lim u_n=1-1=0$. La somme de $\sum w_n^2$ est égale à w_0 .
- 3. La série $\sum \ln \frac{w_{n+1}}{w_n}$ est télescopique, divergente car la suite $\ln w_n$ diverge vers
 - On a $\ln \frac{w_{n+1}}{w_n} = \ln(1-w_n) \underset{n \to +\infty}{\sim} w_n = 1-u_n \geqslant 0$ donc la série $\sum w_n$ diverge de même que $\sum \ln \frac{w_{n+1}}{w_n}$.

Solution Exercice 11.

1. On note S_n la somme partielle de la série $\sum \frac{1}{n(n+1)}$:

$$S_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right)$$
$$= \sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \frac{1}{k+1}$$
$$= 1 - \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 1.$$

On en déduit la convergence de la série $\sum \frac{1}{n(n+1)}$ et sa somme :

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = 1.$$

2. Pour tout $n \ge 1$,

$$\frac{1}{n(n+2)} = \frac{1}{2}\frac{1}{n} - \frac{1}{2}\frac{1}{n+2} = \frac{1}{2}\left(\frac{1}{n} - \frac{1}{n+1} + \frac{1}{n+1} - \frac{1}{n+2}\right),$$

donc

$$\begin{split} \sum_{k=1}^{n} \frac{1}{k(k+2)} &= \frac{1}{2} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) + \frac{1}{2} \sum_{k=1}^{n} \left(\frac{1}{k+1} - \frac{1}{k+2} \right) \\ &= \frac{1}{2} \left(1 - \frac{1}{n+1} \right) + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{n+2} \right) \\ & \xrightarrow[n \to +\infty]{} \frac{1}{2} + \frac{1}{4} = \frac{3}{4}. \end{split}$$

3. (a) On procède par analyse-synthèse.

Si $(\alpha, \beta, \gamma) \in \mathbb{R}^3$ existe alors pour tout $x \neq -1$:

$$\frac{1}{x^3+1} = \frac{\alpha}{x+1} + \frac{\beta x + \gamma}{x^2 - x + 1} = \frac{\alpha(x^2 - x + 1) + (\beta x + \gamma)(x + 1)}{x^3 + 1}$$

$$\iff \frac{1}{x^3+1} = \frac{x^2(\alpha+\beta) + x(-\alpha+\beta+\gamma) + (\alpha+\gamma)}{x^3 + 1}$$

$$\iff \begin{cases} \alpha + \beta & = 0 \\ -\alpha + \beta + \gamma & = 0 \\ \alpha + \gamma & = 1 \end{cases}$$

$$\iff \begin{cases} \alpha + \beta & = 0 \\ -\alpha + \beta + \gamma & = 0 \\ \alpha + \gamma & = 1 \end{cases}$$

$$\iff \begin{cases} \alpha + \beta & = 0 \\ -\alpha + \beta + \gamma & = 0 \\ \alpha + \gamma & = 1 \end{cases}$$

$$\iff \begin{cases} \alpha = \frac{1}{3} \\ \beta = -\frac{1}{3} \\ \gamma & = \frac{2}{3} \end{cases}$$

La partie synthèse consiste à vérifier que l'on a pour tout $x \neq -1$:

$$\frac{1}{3}\frac{1}{x+1} + \frac{1}{3}\frac{-x+2}{x^2 - x + 1} = \frac{1}{x^3 + 1}.$$

(b) On transforme les sommes partielles de la série $\sum \frac{(-1)^n}{3n+1}$ pour faire apparaître une intégrale :

$$\begin{split} \sum_{k=0}^n \frac{(-1)^k}{3k+1} &= \sum_{k=0}^n (-1)^k \int_0^1 t^{3k} dt = \int_0^1 \sum_{k=0}^n (-t^3)^k dt = \int_0^1 \frac{1-(-t^3)^{n+1}}{1-(-t^3)} dt \\ &= \int_0^1 \frac{1}{1+t^3} dt - \int_0^1 \frac{(-t^3)^{n+1}}{1+t^3} dt. \\ &- \text{ On a } \int_0^1 \frac{(-t^3)^{n+1}}{1+t^3} \underset{n \to +\infty}{\longrightarrow} 0 \text{ ; en effet :} \\ &\left| \int_0^1 \frac{(-t^3)^{n+1}}{1+t^3} \right| \leqslant \int_0^1 t^{3(n+1)} dt = \frac{1}{3n+4} \underset{n \to +\infty}{\longrightarrow} 0. \end{split}$$

— On en déduit que la série $\sum \frac{(-1)^n}{3n+1}$ converge et a pour somme :

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1} = \int_0^1 \frac{1}{1+t^3} dt. = \frac{1}{3} \int_0^1 \frac{1}{1+t} dt + \frac{1}{3} \int_0^1 \frac{-t+2}{t^2-t+1} dt.$$

- D'une part : $\frac{1}{3} \int_{0}^{1} \frac{1}{t+1} dt = \frac{\ln(2)}{3}$.
- D'autre part :

$$\int_{0}^{1} \frac{-t+2}{t^{2}-t+1} dt = -\frac{1}{2} \int_{0}^{1} \frac{2t-4}{t^{2}-t+1} dt$$

$$= -\frac{1}{2} \int_{0}^{1} \frac{2t-1}{t^{2}-t+1} + \frac{3}{2} \int_{0}^{1} \frac{1}{t^{2}-t+1} dt$$

$$= -\frac{1}{2} \left[\ln t^{2} - t + 1 \right]_{0}^{1} + \frac{3}{2} \int_{0}^{1} \frac{1}{(t-\frac{1}{2})^{2} + \frac{3}{4}} dt$$

$$= \frac{3}{2} \frac{4}{3} \int_{0}^{1} \frac{1}{\left(\frac{2}{\sqrt{3}}(t-\frac{1}{2})\right)^{2} + 1} dt$$

$$= \frac{2}{\sqrt{3}} \int_{0}^{\sqrt{3}} \frac{1}{t^{2}-t+1} dt$$

$$= \frac{2}{\sqrt{3}} \int_{0}^{\sqrt{3}} \frac{1}{t^{2}-t+1} dt$$

$$= \frac{2}{\sqrt{3}} \int_{0}^{1} \frac{1}{\left(\frac{2}{\sqrt{3}}(t-\frac{1}{2})\right)^{2} + 1} dt$$

$$= \sqrt{3} \left[\arctan(t) \right]_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} = \sqrt{3} \left(\frac{\pi}{6} - \left(-\frac{\pi}{6} \right) \right)$$

$$= \frac{\sqrt{3}\pi}{3}.$$

Ainsi,
$$\frac{1}{3} \int_0^1 \frac{-t+2}{t^2-t+1} dt = \frac{\sqrt{3}\pi}{9}$$
.
Au final:
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1} = \frac{\sqrt{3}\pi}{9} + \frac{\ln(2)}{3}.$$

Solution Exercice 12.

1. — Si
$$x = 1$$
, $\sum_{k=0}^{n} x^k = n + 1$.

— Si $x \neq 1$, $\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}$.

2. On dérive la relation précédente pour tout $x \in]-1;1[:$

$$\begin{split} \sum_{k=1}^n kx^{k-1} &= \frac{1}{(1-x)^2} - \frac{(n+1)x^n(1-x) - (-1)x^{n+1}}{(1-x)^2} \\ &= \frac{1}{(1-x)^2} - \frac{(n+1)x^n - (n+1)x^{n+1} + x^{n+1}}{(1-x)^2} \\ &= \frac{1}{(1-x)^2} - \frac{(n+1)x^n - nx^{n+1}}{(1-x)^2}. \end{split}$$

Les croissances comparées donnent :

$$(n+1)x^n \xrightarrow[n \to +\infty]{} 0 \text{ et } nx^{n+1} \xrightarrow[n \to +\infty]{} 0 \text{ car } x \in]-1;1[.$$

La série
$$\sum nx^{n-1}$$
 converge et $\sum_{n=1}^{+\infty} nx^{n-1} = \frac{1}{(1-x)^2}$

3. On note S_n la somme partielle $S_n = \sum_{k=0}^n (k - (-1)^k) 3^{-k}$:

$$S_n = \sum_{k=0}^n k \left(\frac{1}{3}\right)^k - \sum_{k=0}^n \left(-\frac{1}{3}\right)^k = \frac{1}{3} \sum_{k=1}^n k \left(\frac{1}{3}\right)^{k-1} - \sum_{k=0}^n \left(-\frac{1}{3}\right)^k$$

$$\underset{n \to +\infty}{\longrightarrow} \frac{1}{3} \frac{1}{\left(1 - \frac{1}{3}\right)^2} - \frac{1}{1 - \left(-\frac{1}{3}\right)} = \frac{1}{3} \frac{9}{4} - \frac{3}{4} = 0.$$

La série $\sum (n-(-1)^n)3^{-n}$ converge et a une somme nulle.

Solution Exercice 13.

- 1. Simple calcul.
- 2. On utilise la formule $\arctan(x) \arctan(y) = \arctan\left(\frac{x-y}{1+xy}\right)$ valable pour tout x,y>0 et qui s'obtient immédiatement à partir de $\tan(a-b) = \frac{\tan(a) \tan(b)}{1+\tan(a)\tan(b)}$ avec $a = \arctan(x)$ et $b = \arctan(y)$.
- 3. Attention au cas où k = 0:

$$\sum_{k=0}^{n} \arctan\left(\frac{1}{k^2 + k + 1}\right) = \arctan(1) + \sum_{k=1}^{n} \arctan\left(\frac{1}{k}\right) - \arctan\left(\frac{1}{k + 1}\right)$$
$$= 2\arctan(1) - \arctan\left(\frac{1}{n + 1}\right) \xrightarrow[n \to +\infty]{} 2\frac{\pi}{4} = \frac{\pi}{2}.$$

Solution Exercice 14.

1. Soit $n \geqslant 2$.

La fonction $t \mapsto \frac{1}{\sqrt{t}}$ est décroissante sur $[1; +\infty[$. Ainsi,

— Pour tout
$$t \in [n-1, n]$$
: $\frac{1}{\sqrt{n}} \leqslant \frac{1}{\sqrt{t}}$.

— Pour tout
$$t \in [n, n+1]$$
: $\frac{1}{\sqrt{t}} \leqslant \frac{1}{\sqrt{n}}$.

En intégrant ces inégalités on obtient

$$\int_{n}^{n+1} \frac{1}{\sqrt{t}} dt \leqslant \int_{n}^{n+1} \frac{1}{\sqrt{n}} dt = \frac{1}{\sqrt{n}} = \int_{n}^{n+1} \frac{1}{\sqrt{n}} dt \leqslant \int_{n-1}^{n} \frac{1}{\sqrt{t}} dt.$$

On en déduit que

$$\left[2\sqrt{t}\right]_{n}^{n+1} \leqslant \frac{1}{\sqrt{n}} \leqslant \left[2\sqrt{t}\right]_{n-1}^{n}$$

c'est-à-dire:

$$2(\sqrt{n+1}-\sqrt{n}) \leqslant \frac{1}{\sqrt{n}} \leqslant 2(\sqrt{n}-\sqrt{n-1})$$

encadrement encore valable pour n = 1.

2. On somme l'inégalité $2(\sqrt{k+1}-\sqrt{k})\leqslant \frac{1}{\sqrt{k}}$ pour tout $k\in [\![1,n]\!]$ et on obtient par télescopie :

$$2\sum_{k=1}^{n}(\sqrt{k+1}-\sqrt{k})\leqslant \sum_{k=1}^{n}\frac{1}{\sqrt{k}} \text{ i.e. } 2(\sqrt{n+1}-1)\leqslant \sum_{k=1}^{n}\frac{1}{\sqrt{k}}.$$

On en déduit par comparaison que $\lim_{n\to+\infty}\sum_{k=1}^n\frac{1}{\sqrt{k}}=+\infty.$

La série $\sum \frac{1}{\sqrt{n}}$ diverge.

3. On somme l'encadrement obtenu à la question 1. pour $k \in [\![1,n]\!]$ avec $n \geqslant 2$. On obtient par télescopie

$$2(\sqrt{n+1}-1) \leqslant \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \leqslant 2(\sqrt{n}-0)$$

puis en divisant par \sqrt{n} :

$$\frac{2(\sqrt{n+1}-1)}{\sqrt{n}} \le \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{k}} \le \frac{2(\sqrt{n}-0)}{\sqrt{n}}.$$

Le théorème des gendarmes permet de conclure que :

$$\lim_{n \to +\infty} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{k}} = 2.$$

Solution Exercice 15. La série $\sum \frac{1}{n^{\alpha} \ln^{\beta} n}$ est à termes positifs $(n \ge 2)$.

— Si $\alpha > 1$, il existe $\gamma \in]1$; $\alpha[$ et on a :

$$\frac{1}{n^{\alpha} \ln^{\beta} n} = o\left(\frac{1}{n^{\gamma}}\right) \operatorname{car} \frac{1}{n^{\alpha-\gamma} \ln^{\beta} n} \xrightarrow[n \to +\infty]{} 0.$$

On en déduit la convergence de la série de Bertrand $\sum \frac{1}{n^{\alpha} \ln^{\beta} n}$ par comparaison à la série de Riemann $\sum \frac{1}{n^{\gamma}}$ qui converge car $\gamma > 1$.

— Si $\alpha < 1$, il existe $\gamma \in]\alpha; 1]$ et on a :

$$\frac{1}{n^{\gamma}} \underset{n \to +\infty}{=} o\left(\frac{1}{n^{\alpha} \ln^{\beta} n}\right) \operatorname{car} \frac{\ln^{\beta} n}{n^{\gamma - \alpha}} \underset{n \to +\infty}{\longrightarrow} 0.$$

On en déduit la divergence de la série de Bertrand $\sum \frac{1}{n^{\alpha} \ln^{\beta} n}$ par comparaison à la série de Riemann $\sum \frac{1}{n^{\gamma}}$ qui diverge car $\gamma < 1$.

— Il reste à traiter le cas $\alpha=1$. La fonction $f:x\mapsto \frac{1}{x\ln^\beta x}$ est dérivable sur $[2;+\infty[$ et

$$\forall x \geqslant 2, f'(x) = -\frac{\ln^{\beta} x + x\beta \frac{1}{x} \ln^{\beta - 1}(x)}{x^2 \ln^{2\beta} x} = -\frac{\ln^{\beta - 1}(x)(\beta + \ln x)}{x^2 \ln^{2\beta} x}.$$

Ainsi, $f'(x) \leq 0$ si $x \geq e^{-\beta}$.

La série $\sum \frac{1}{n \ln^{\beta} n}$ et l'intégrale $\int_a^{+\infty} \frac{1}{t \ln^{\beta} t} dt$ ont la même nature (avec $a \geqslant \max(2, e^{-\beta})$).

• Si $\beta \neq 1$ alors pour tout A > a:

$$\int_{a}^{+\infty} \frac{1}{t \ln^{\beta} t} dt = \left[\frac{1}{-\beta + 1} \ln^{-\beta + 1} t \right]_{a}^{A} \xrightarrow{A \to +\infty} \begin{cases} -\frac{\ln^{-\beta + 1}(a)}{-\beta + 1} & \text{si } \beta > 1 \\ +\infty & \text{si } \beta < 1. \end{cases}$$

— Si $\beta = 1$

$$\int_{a}^{A} \frac{1}{\ln t} dt = [\ln(\ln t)]_{a}^{A} \underset{A \to +\infty}{\longrightarrow} +\infty.$$

On a montré que si $\alpha=1$, la série converge si et seulement si $\beta>1$. Une condition nécessaire et suffisante sur $(\alpha;\beta)\in\mathbb{R}^2$ de convergence de la série de

Bertrand $\sum \frac{1}{n^{\alpha} \ln^{\beta} n}$ est :

$$\alpha > 1$$
 ou $(\alpha = 1 \text{ et } \beta > 1)$

Solution Exercice 16.

1. (a) Notons que la fonction $x\mapsto \frac{\ln x}{x}$ est décroissante sur $[e;+\infty[$ car dérivable sur \mathbb{R}_+^* avec

$$\forall x > 0, f'(x) = \frac{1 - \ln x}{r^2} \operatorname{donc} f'(x) \leqslant 0 \operatorname{si} x \geqslant e.$$

— $(S_{2n})_{n\in\mathbb{N}^*}$ est décroissante

$$S_{2n+2} - S_{2n} = (-1)^{2n+2} \frac{\ln(2n+2)}{2n+2} + (-1)^{2n+1} \frac{\ln(2n+1)}{2n+1}$$
$$= \frac{\ln(2n+2)}{2n+2} - \frac{\ln(2n+1)}{2n+1} \le 0.$$

— $(S_{2n+1})_{n\in\mathbb{N}}$ est croissante

$$S_{2n+3} - S_{2n+1} = (-1)^{2n+3} \frac{\ln(2n+3)}{2n+3} + (-1)^{2n+2} \frac{\ln(2n+2)}{2n+2}$$
$$= -\frac{\ln(2n+3)}{2n+3} + \frac{\ln(2n+2)}{2n+2} \geqslant 0.$$

— Enfin.

$$S_{2n+1} - S_{2n} = (-1)^{2n+1} \frac{\ln(2n+1)}{2n+1} \xrightarrow[n \to +\infty]{} 0$$
 par croissances comparées.

- (b) Les suites $(S_{2n})_{n\in\mathbb{N}^*}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes donc convergent vers une limite commune. On en déduit que la suite des sommes partielles $(S_n)_{n\in\mathbb{N}}$ est convergente : la série $\sum (-1)^n \frac{\ln n}{n}$ est donc convergente.
- (c) La série $\sum (-1)^n \frac{\ln n}{n}$ n'est pas absolument convergente. En effet,

$$\frac{1}{n} \underset{n \to +\infty}{=} o\left(\left| (-1)^n \frac{\ln n}{n} \right| \right) \operatorname{car} \frac{n}{n \ln n} \underset{n \to +\infty}{\longrightarrow} 0.$$

2. (a) On utilise le développement limité $\ln(1-x) = -x - \frac{x^2}{2} + o(x^2)$. On obtient pour tout $n \ge 1$,

$$u_{n+1} - u_n = \frac{1}{n+1} + \ln\left(\frac{n}{n+1}\right) = \frac{1}{n+1} + \ln\left(1 - \frac{1}{n+1}\right)$$
$$= \frac{1}{n+1} - \frac{1}{n+1} - \frac{1}{2(n+1)^2} + o\left(\frac{1}{(n+1)^2}\right)$$
$$\underset{n \to +\infty}{\sim} -\frac{1}{2n^2}.$$

On en déduit que la série $\sum (u_{n+1} - u_n)$ est convergente.

Ainsi les sommes partielles $S_{n-1} = \sum_{k=1}^{n} (u_{k+1} - u_k) = u_n - u_1$ admettent une

limite γ lorsque $n \to +\infty$.

On en déduit que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge; on note γ sa limite :

$$\sum_{k=1}^{n} \frac{1}{k} - \ln(n) \underset{n \to +\infty}{\longrightarrow} \gamma \Longleftrightarrow \sum_{k=1}^{n} \frac{1}{k} - \ln(n) - \gamma \underset{n \to +\infty}{=} o(1)$$

3. (a) La fonction $x \mapsto \frac{\ln x}{x}$ est décroissante sur $[3; +\infty[\subset [e; +\infty[$.

Soit $n \ge 3$. La fonction f est décroissante sur [n; n+1] donc pour tout $t \in$ [n, n+1]:

$$f(n+1) \leqslant f(t) \leqslant f(n)$$
.

En intégrant cet encadrement sur [n; n+1] : on obtient

$$f(n+1) = \int_{n}^{n+1} f(n+1)dt \leqslant \int_{n}^{n+1} f(t)dt \leqslant \int_{n}^{n+1} f(n)dt = f(n)$$

(b) On a montré que pour tout $n \ge 3$:

$$\frac{\ln(n+1)}{n+1} \leqslant \int_{n}^{n+1} \frac{\ln t}{t} dt \leqslant \frac{\ln n}{n}.$$

On en déduit :

$$\frac{\ln(n+1)}{n+1} \leqslant \left[\frac{1}{2}\ln^2 t\right]_n^{n+1} \leqslant \frac{\ln n}{n}$$

$$\iff \frac{\ln(n+1)}{n+1} \leqslant \frac{\ln^2(n+1)}{2} - \frac{\ln^2(n)}{2} \leqslant \frac{\ln n}{n}.$$

• Montrons que la suite $(a_n)_{n\geqslant 3}$ définie par $a_n=\sum_{k=1}^n \frac{\ln k}{k}-\frac{\ln^2 n}{2}$ est décroissante:

$$a_{n+1} - a_n = \frac{\ln(n+1)}{n+1} - \left(\frac{\ln^2(n+1)}{2} - \frac{\ln^2 n}{2}\right) \leqslant 0 \text{ par } (*).$$

• Montrons que la suite $(a_n)_{n \ge 3}$ est minorée. On somme l'inégalité (**) pour $k \in [\![2, n]\!]$:

$$\sum_{k=2}^{n} \left(\frac{\ln^2(k+1)}{2} - \frac{\ln^2(k)}{2} \right) \leqslant \sum_{k=2}^{n} \frac{\ln k}{k} \quad \Longleftrightarrow \frac{\ln^2(n+1)}{2} - \frac{\ln^2(2)}{2} \leqslant \sum_{k=2}^{n} \frac{\ln k}{k}.$$

On obtient

$$-\frac{\ln^2(2)}{2} \leqslant \frac{\ln^2(n+1)}{2} - \frac{\ln^2(n)}{2} - \frac{\ln^2(2)}{2} \leqslant \sum_{k=2}^n \frac{\ln k}{k} - \frac{\ln^2 n}{2} = a_n.$$

Ainsi, la suite $(a_n)_{n\geqslant 3}$ est décroissante et minorée par $-\frac{\ln^2(2)}{2}$ donc converge.

(c)

$$S_{2n} = \sum_{k=2}^{2n} (-1)^k \frac{\ln k}{k} = \sum_{p=1}^n (-1)^{2p} \frac{\ln(2p)}{2p} + \sum_{p=1}^{n-1} (-1)^{2p+1} \frac{\ln(2p+1)}{2p+1}$$

$$= \sum_{p=1}^n \frac{\ln(2p)}{2p} - \sum_{p=1}^{n-1} \frac{\ln(2p+1)}{2p+1}$$

$$= \sum_{p=1}^n \frac{\ln(2p)}{2p} - \left(\sum_{k=2}^{2n} \frac{\ln k}{k} - \sum_{p=1}^n \frac{\ln(2p)}{2p}\right)$$

$$= \sum_{p=1}^n \frac{\ln(2p)}{p} - t_{2n} = \sum_{p=1}^n \frac{\ln(2) + \ln(p)}{p} - t_{2n}$$

$$= \ln(2) \sum_{p=1}^n \frac{1}{p} + \sum_{p=1}^n \frac{\ln(p)}{p} - t_{2n}$$

$$= \ln(2) \sum_{p=1}^n \frac{1}{p} + t_n - t_{2n}$$

Exprimons maintenant
$$S_{2n}$$
 en fonction de
$$-a_n = t_n - \frac{\ln^2 n}{2}$$

$$-a_{2n} = t_{2n} - \frac{\ln^2(2n)}{2} = t_{2n} - \frac{\ln^2(2) + 2\ln(2)\ln(n) + \ln^2 n}{2}$$

$$a_{2n} = t_{2n} - \frac{\ln^2(2)}{2} - \ln(2)\ln(n) - \frac{\ln^2 n}{2}$$

$$-u_n = \sum_{k=2}^n \frac{\ln k}{k} - \ln n.$$

On obtient

$$S_{2n} = \ln(2)(u_n + \ln n) + (a_n + \frac{\ln^2 n}{2}) - (a_{2n} + \ln 2 \ln n + \frac{\ln^2 2}{2} + \frac{\ln^2 n}{2})$$
$$= \ln(2)u_n + a_n - a_{2n} - \frac{\ln^2 2}{2}.$$

(d) • La suite $(a_n)_{n\geqslant 2}$ converge donc $(a_{2n})_{n\geqslant 2}$ converge également, vers la même limite.

• D'autre part,

$$\ln(2)u_n = \lim_{n \to +\infty} \ln 2(\gamma + o(1)) = \ln(2)\gamma + o(1).$$

• On en déduit que

$$\lim_{n \to +\infty} S_{2n} = \ln(2)\gamma - \frac{\ln^2 2}{2}.$$

On rappelle que la série $\sum_{n=0}^{+\infty} (-1)^n \frac{\ln(n)}{n}$ converge donc la suite des sommes partielles $(S_n)_{n\geqslant 2}$ admet la même limite que sa suite extraite $(S_{2n})_{n\geqslant 2}$. Il s'agit également de la somme de la série étudiée

$$\sum_{n=2}^{+\infty} (-1)^n \frac{\ln(n)}{n} = \ln(2)\gamma - \frac{\ln^2 2}{2}.$$

Solution Exercice 17. On utilise une comparaison série-intégrale : la fonction $f: x \mapsto$ $\frac{\ln(x)}{x}$ est décroissante sur $I = [e; +\infty[$ car dérivable sur \mathbb{R}_+^* avec

$$\forall x > 0, f'(x) = \frac{1 - \ln(x)}{x^2} \leqslant 0 \Longleftrightarrow x \geqslant e.$$

Soit $k\geqslant 4$ (de telle sorte que $k-1\geqslant 3>e$). • Pour tout $t\in [k-1;k], \frac{\ln(k)}{k}\leqslant \frac{\ln(t)}{t}$ par décroissance de f sur $[3;+\infty[$ donc :

$$\frac{\ln(k)}{k} = \int_{k-1}^{k} \frac{\ln(k)}{k} dt \leqslant \int_{k-1}^{k} \frac{\ln t}{t} dt$$

• Pour tout $t \in [k; k+1], \frac{\ln(t)}{t} \leqslant \frac{\ln(k)}{k}$ donc

$$\int_{k}^{k+1} \frac{\ln(t)}{t} dt \leqslant \int_{k}^{k+1} \frac{\ln k}{k} dt = \frac{\ln(k)}{k}.$$

On a donc obtenu:

$$\forall k \geqslant 4, \int_{t_0}^{k+1} \frac{\ln t}{t} dt \leqslant \frac{\ln k}{k} \leqslant \int_{t_0}^{k} \frac{\ln t}{t} dt$$

et après intégration :

$$\left[\frac{\ln^2 t}{2}\right]_k^{k+1} \leqslant \frac{\ln k}{k} \leqslant \left[\frac{\ln^2 t}{2}\right]_{k-1}^k$$

qui donne

$$\frac{1}{2}(\ln^2(k+1) - \ln^2 k) \leqslant \frac{\ln k}{k} \leqslant \frac{1}{2}(\ln^2 k - \ln^2(k-1))$$

que l'on somme pour $k \in [4, n]$ avec $n \ge 4$:

$$\frac{1}{2}(\ln^2(n+1) - \ln^2 4) \leqslant \sum_{k=4}^n \frac{\ln k}{k} \leqslant \frac{1}{2}(\ln^2 n - \ln^2 3)$$

puis

$$\frac{\ln^2(n+1)}{2} - \frac{\ln^2 4}{2} + \frac{\ln(3)}{3} + \frac{\ln 2}{2} \leqslant \sum_{k=3}^n \frac{\ln k}{k} \leqslant \frac{\ln^2 n}{2} - \frac{\ln^2 3}{2} + \frac{\ln 3}{3} + \frac{\ln 2}{2}.$$

On obtient
$$\sum_{k=2}^{n} \frac{\ln k}{k} \underset{n \to +\infty}{\sim} \frac{\ln^2 n}{2}$$
.

Solution Exercice 18.

1. La série de Riemann $\sum \frac{1}{l^{\frac{3}{2}}}$ est convergente car $\frac{3}{2} > 1$.

On encadre ses restes en utilisant une comparaison série-intégrale.

La fonction $x \mapsto \frac{1}{2}$ est décroissante sur $[1; +\infty[$.

Soit $k \ge 2$ (de telle sorte que $k-1 \ge 1$), on a par décroissance de la fonction f sur $[1;+\infty]$

$$\int_{k}^{k+1} \frac{1}{t^{\frac{3}{2}}} dt \leqslant \frac{1}{k^{\frac{3}{2}}} \leqslant \int_{k-1}^{k} \frac{1}{t^{\frac{3}{2}}} dt \quad \text{et si } 1 \leqslant n < N :$$

$$\Rightarrow \sum_{k=n+1}^{N} \int_{k}^{k+1} \frac{1}{t^{\frac{3}{2}}} dt \leqslant \sum_{k=n+1}^{N} \frac{1}{k^{\frac{3}{2}}} \leqslant \sum_{k=n+1}^{N} \int_{k-1}^{k} \frac{1}{t^{\frac{3}{2}}} dt$$

$$\Rightarrow \int_{n+1}^{N+1} \frac{1}{t^{\frac{3}{2}}} \leqslant \sum_{k=n+1}^{N} \frac{1}{k^{\frac{3}{2}}} \leqslant \int_{n}^{N} \frac{1}{t^{\frac{3}{2}}} dt$$

$$\Rightarrow \left[\frac{1}{-\frac{3}{2}+1} t^{-\frac{3}{2}+1} \right]_{n+1}^{N+1} \leqslant \sum_{k=n+1}^{N} \frac{1}{k^{\frac{3}{2}}} \leqslant \left[\frac{1}{-\frac{3}{2}+1} t^{-\frac{3}{2}+1} \right]_{n}^{N}$$

$$\Rightarrow -2 \left(\frac{1}{\sqrt{N+1}} - \frac{1}{\sqrt{n+1}} \right) \leqslant \sum_{k=n+1}^{N} \frac{1}{k^{\frac{3}{2}}} \leqslant -2 \left(\frac{1}{\sqrt{N}} - \frac{1}{\sqrt{n}} \right)$$

$$\Rightarrow \sum_{k=n+1}^{N} \frac{1}{k^{\frac{3}{2}}} \leqslant \frac{2}{\sqrt{n}}$$

2. Pour obtenir une approximation de $\sum_{k=1}^{\infty} \frac{1}{k^{\frac{3}{2}}}$ à 10^{-3} près, on calcule la somme partielle $S_n = \sum_{n=0}^{\infty} \frac{1}{k^{\frac{3}{2}}}$ de telle sorte que l'erreur $R_n = S - S_n$ soit inférieure à 10^{-3} . Il suffit que

$$0 \leqslant R_n = S - S_n \leqslant \frac{2}{\sqrt{n}} \leqslant 10^{-3}.$$

On calcule les termes successifs de la somme partielle tant que $\frac{2}{\sqrt{n}} \le 10^{-3}$.

3. L'encadrement obtenu à la question 2., fournit un équivalent ρ_n de R_n :

$$R_n \underset{n \to +\infty}{\sim} \frac{2}{\sqrt{n}} = \rho_n.$$

4. On pose $S'_n = S_n + \rho_n$. Pour tout $n \ge 1$,

$$S'_n - S = S_n + \rho_n - S = -R_n + \rho_n.$$

On utilise alors l'encadrement de la question 1.

$$\frac{2}{\sqrt{n+1}} \leqslant R_n \leqslant \frac{2}{\sqrt{n}} \Longleftrightarrow -\frac{2}{\sqrt{n}} \leqslant -R_n \leqslant -\frac{2}{\sqrt{n+1}}.$$

On obtient:

$$0 \leqslant -R_n + \rho_n \leqslant \frac{2}{\sqrt{n}} - \frac{2}{\sqrt{n+1}} = \frac{2}{\sqrt{n}\sqrt{n+1}}(\sqrt{n+1} - \sqrt{n}) \leqslant \frac{2}{\sqrt{n}\sqrt{n+1}} \frac{1}{2\sqrt{n}}$$

par l'inégalité des accroissements finis appliqué à la fonction $x\mapsto \sqrt{x}$ continue sur [n,n+1], dérivable sur]n,n+1[dont la dérivée $\frac{2}{\sqrt{x}}$ est majorée par $\frac{2}{\sqrt{n}}$. On en conclut que

$$0 \leqslant S'_n - S \leqslant \frac{1}{n\sqrt{n+1}} \leqslant \frac{1}{n^{\frac{3}{2}}}.$$

```
from math import sqrt, exp, log
import time
S=0
n=1
tps=time.time()
while 2/sqrt(n)>10**(-3):
S+=1/n**(3/2)
n+=1
print(time.time()-tps) # 2.5217010974884033

S=0
n=1
tps=time.time()
while 1/(n**(3/2))>10**(-3):
S+=1/n**(3/2)
n+=1
print(time.time()-tps) # 0.0001270771026611328
```

Algorithme 1 : approximation à 10^{-n} près. Le nombre d'itérations nécessaires est le premier entier k tel que

$$\frac{2}{\sqrt{k}} \leqslant 10^{-n} \Longleftrightarrow \sqrt{k} \geqslant 2 \times 10^n \Longleftrightarrow k \geqslant 4 \times 10^{2n} = 4 \exp(2n \ln 10) = 4 \times 100^n.$$

La complexité temporelle de cet algorithme est exponentielle $O(100^n)$.

Algorithme 2 : approximation à 10^{-n} près. Le nombre d'itérations nécessaires est le premier entier k tel que

$$\frac{1}{k^{\frac{3}{2}}} \leqslant 10^{-n} \iff k^{\frac{3}{2}} \geqslant 10^n \iff \frac{3}{2} \ln k \geqslant n \ln 10 \iff k \geqslant \exp\left(\frac{2n}{3} \ln 10\right) = \left(10^{\frac{2}{3}}\right)^n.$$

La complexité de cet algorithme est exponentielle $O(a^n)$ avec $a=10^{\frac{2}{3}}\approx 4,6$ mais néanmoins plus efficace que le premier.

Remarques

Attention cependant, même avec le second algorithme, si n>20,100,1000 le temps d'exécution se compte en minutes, années, siècles!

Solution Exercice 19.

1. Puisque $x \neq -1$, on a $-x \neq 1$ donc

$$\sum_{k=0}^{n-1} (-x)^k = \frac{1 - (-x)^n}{1 - (-x)} = \frac{1}{1+x} - \frac{(-x)^n}{1+x}$$

2. Pour tout $x \in [0;1], \left| \frac{(-x)^n}{1+x} \right| = \frac{|x|^n}{1+x} \leqslant |x|^n = x^n$. On obtient par comparaison :

$$\left| \int_0^1 \frac{(-x)^n}{1+x} \right| \leqslant \int_0^1 x^n dx = \frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 0.$$

Lycée Jules Dumont d'Urville - PT

3. On intègre la relation obtenue à la question 1. :

$$\sum_{k=0}^{n-1} \int_0^1 (-x)^k dx = \int_0^1 \frac{dx}{1+x} - \int_0^1 \frac{(-x)^n}{1+x} dx$$

$$\iff \sum_{k=0}^{n-1} \frac{(-1)^k}{k+1} = \ln(2) - \int_0^1 \frac{(-x)^n}{1+x} dx$$

$$\iff -\sum_{k=0}^{n-1} \frac{(-1)^{k+1}}{k+1} = \ln(2) - \int_0^1 \frac{(-x)^n}{1+x} dx$$

$$\iff -\sum_{k=1}^n \frac{(-1)^k}{k} = \ln(2) - \int_0^1 \frac{(-x)^n}{1+x} dx$$

$$\iff \sum_{k=1}^n \frac{(-1)^k}{k} = -\ln(2) + \int_0^1 \frac{(-x)^n}{1+x} dx.$$

On obtient donc $\sum_{k=0}^{+\infty} \frac{(-1)^k}{k} = -\ln(2) + \lim_{n \to +\infty} \int_0^1 \frac{(-x)^n}{1+x} dx = -\ln(2).$

4. On note $S_n = \sum_{k=0}^{\infty} \frac{(-1)^k}{k}$ et $R_n = S - S_n$ le reste de rang n.

On a montré à la question précédente que

$$\sum_{k=1}^n \frac{(-1)^k}{k} = -\ln(2) + \int_0^1 \frac{(-x)^n}{1+x} dx, \text{ ce qui donne}: S_n = S + \int_0^1 \frac{(-x)^n}{1+x}.$$

Ainsi,
$$R_n = S - S_n = -\int_0^1 \frac{(-x)^n}{1+x} dx$$
.

5. On détermine la limite des sommes partielles $\sum_{k=0}^{n} R_k = -\sum_{k=0}^{n} \int_0^1 \frac{(-x)^n}{1+x} dx$:

$$\sum_{k=0}^{n} R_k = -\int_0^1 \frac{1}{1+x} \left(\sum_{k=0}^{n} (-x)^k \right) dx$$

$$= \int_0^1 \frac{1}{1+x} \left(\frac{1-(-x)^{n+1}}{1-(-x)} \right) dx$$

$$= -\int_0^1 \frac{dx}{(1+x)^2} + \int_0^1 \frac{(-x)^{n+1}}{1+x} dx.$$

On obtient $\sum_{k=0}^{+\infty} R_k = -\int_0^1 \frac{dx}{(1+x)^2} \operatorname{car} \int_0^1 \frac{(-x)^{n+1}}{1+x} dx \xrightarrow[n \to +\infty]{} 0$ d'après la

Solution Exercice 20. Soit $\sum (-1)^n \alpha_n$ une série telle que $(\alpha_n)_{n \in \mathbb{N}}$ est positive, décroissante et de limite nulle.

On note $(S_n)_{n\in\mathbb{N}}$ la suite des sommes partielles de la série $\sum_{n\in\mathbb{N}} (-1)^n \alpha_n$.

- 1. Les suites $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes. En effet,
 - $--- (S_{2n})_{n \in \mathbb{N}}$ est décroissante :

$$S_{2(n+1)} - S_{2n} = S_{2n+2} - S_{2n} = (-1)^{2n+2} \alpha_{2n+2} + (-1)^{2n+1} \alpha_{2n+1}$$
$$= \alpha_{2n+2} - \alpha_{2n+1} \le 0$$

car $(\alpha_n)_{n\in\mathbb{N}}$ est décroissante : $\alpha_{2n+2} \leqslant \alpha_{2n+1}$. $-(S_{2n+1})_{n\in\mathbb{N}}$ est croissante :

$$S_{2(n+1)} - S_{2n+1} = S_{2n+3} - S_{2n+1} = (-1)^{2n+3} \alpha_{2n+3} + (-1)^{2n+2} \alpha_{2n+2}$$
$$= -\alpha_{2n+3} + \alpha_{2n+2} \ge 0$$

—
$$S_{2n+1}-S_{2n}=(-1)^{2n+1}\alpha_{2n+1}=-\alpha_{2n+1}\underset{n\to+\infty}{\longrightarrow}0$$
 par hypothèse.

- 2. Les suites $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes donc convergent vers une même limite. On en déduit que la suite $(S_n)_{n\in\mathbb{N}}$ elle-même est convergente et par conséquent la série $\sum (-1)^n \alpha_n$ converge.
- 3. La suite $(S_{2p})_{p\in\mathbb{N}}$ est décroissante et converge vers S et la suite $(S_{2p+1})_{p\in\mathbb{N}}$ est croissante et converge vers S. Ainsi,

$$\forall p \in \mathbb{N}, S_{2p+1} \leqslant S \leqslant S_{2p} \text{ ou encore } -S_{2p} \leqslant S \leqslant -S_{2p+1}.$$

 1^e cas: n pair. Dans ce cas il existe $p \in \mathbb{N}$ tel que n = 2p.

On obtient dans ce cas:

$$|R_{2p}| = |S - S_{2p}| = S_{2p} - S \le S_{2p} - S_{2p+1} = -(-1)^{2p+1}\alpha_{2p+1} = \alpha_{2p+1}.$$

 1^e cas: n impair. Dans ce cas il existe $p \in \mathbb{N}$ tel que n = 2p + 1.

On obtient dans ce cas:

$$|R_{2p+1}| = |S - S_{2p+1}| = S - S_{2p+1} \le S_{2p+2} - S_{2p+1} = (-1)^{2p+2} \alpha_{2p+2} = \alpha_{2p+2}.$$

On a montré pour n pair et impair que $|R_n| \leq \alpha_{n+1}$.

- 4. La série $\sum \frac{(-1)^n}{n}$ est du type étudié dans les questions précédentes. En effet, la suite $\left(\frac{1}{n}\right)_{n\in\mathbb{N}^*}$ est : — positive,

 - décroissante : $\frac{1}{n+1} \leqslant \frac{1}{n}$ pour tout $n \in \mathbb{N}^*$,
 - de limite nulle : $\frac{1}{n} \xrightarrow[n \to +\infty]{} 0$.

Par conséquent, les résultats des questions précédentes donne la convergence de la série $\frac{(-1)^n}{n}$ et la majoration du reste :

$$|R_n| = |S - S_n| \leqslant \frac{1}{n+1}.$$

Par exemple : S_9 vérifie :

$$|R_9| = |S - S_9| \leqslant \frac{1}{9+1} = \frac{1}{10}.$$

 S_9 est donc une approximation de S avec une erreur $|R_9| = |S - S_9| \leqslant \frac{1}{10} = 0, 1$.

5. Ci-dessous:

```
import math as m
def alterne2(n):
    S=0
    k=1
    while 1/(k+1)>10**(-n):
    S+=(-1)**k/k
    k+=1
    return S,-m.log(2),abs(-m.log(2)-S)
```

Solution Exercice 21.

- Si $\alpha \leqslant 0$ le terme général $\frac{(-1)^n}{n^{\alpha}}$ ne converge pas vers 0: la série $\sum \frac{(-1)^n}{n^{\alpha}}$ est grossièrement divergente.
- Si $\alpha \in]0;1]$, la série $\sum \frac{(-1)^n}{n^{\alpha}}$ est du type $\sum (-1)^n \alpha_n$ avec $\alpha_n = \frac{1}{n^{\alpha}}$ positive, décroissante et de limite nulle. Ainsi, par les résultats de l'Exercice 20, la série $\sum \frac{(-1)^n}{n^{\alpha}}$ converge.

La convergence n'est pas absolue : la série de Riemann $\sum \frac{1}{n^{\alpha}}$ diverge car $\alpha \leq 1$.

— Si $\alpha > 1$, alors $\left| \frac{(-1)^n}{n^{\alpha}} \right| = \frac{1}{n^{\alpha}}$: la série de Riemann $\sum \frac{1}{n^{\alpha}}$ est convergente donc $\sum \frac{(-1)^n}{n^{\alpha}}$ est absolument convergente.

Solution Exercice 22.

1. La série $\sum \ln \left(1 + \frac{(-1)^n}{n^2}\right)$ est absolument convergente par comparaison à la série de Riemann $\frac{1}{n^2}$ convergente :

$$\left| \ln \left(1 + \frac{(-1)^n}{n^2} \right) \right| \underset{n \to +\infty}{\sim} \left| \frac{(-1)^n}{n^2} \right| = \frac{1}{n^2}$$

$$\operatorname{car} \ln(1+u) \underset{u \to 0}{\sim} u \text{ et } \frac{(-1)^n}{n^2} \underset{n \to +\infty}{\longrightarrow} 0.$$

2. La série $\sum \ln \left(1 + \frac{(-1)^n}{\sqrt{n}}\right)$ est divergente.

En effet, $\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$. Ainsi, puisque $\frac{(-1)^n}{\sqrt{n}} \xrightarrow[n \to +\infty]{} 0$,

$$\ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right) \underset{n \to +\infty}{=} \frac{(-1)^n}{\sqrt{n}} - \frac{1}{2}\frac{1}{n} + o\left(\frac{1}{n}\right).$$

- La série $\sum \frac{(-1)^n}{\sqrt{n}}$ est convergente car du type $\sum (-1)^n \alpha_n$ avec pour $n \ge 1$, $\alpha_n = \frac{1}{\sqrt{n}}$ positive, décroissante, de limite nulle. Les résultats de l'Exercice 20 donnent la convergence de cette série alternée.
- La série de terme général, de signe constant, $-\frac{1}{2}\frac{1}{n} + o\left(\frac{1}{n}\right) \underset{n \to +\infty}{\sim} -\frac{1}{2n}$ est divergente.

La série $\sum \ln \left(1 + \frac{(-1)^n}{\sqrt{n}}\right)$ est donc divergente comme somme d'une série convergente et d'une série divergente : sinon, si elle convergeait, la série de terme général $\ln \left(1 + \frac{(-1)^n}{\sqrt{n}}\right) - \frac{(-1)^n}{\sqrt{n}} = -\frac{1}{2}\frac{1}{n} + o\left(\frac{1}{n}\right)$ serait convergente ce qui n'est pas.

Remarques
On a: $\ln\left(1+\frac{(-1)^n}{\sqrt{n}}\right) \underset{n\to+\infty}{\sim} \frac{(-1)^n}{\sqrt{n}}$ mais les séries $\sum \ln\left(1+\frac{(-1)^n}{\sqrt{n}}\right)$ et $\sum \frac{(-1)^n}{\sqrt{n}}$ ne sont pas de même nature. Ce constat vient du fait que les

3. La série $\sum \ln \left(1 + \frac{(-1)^n}{n}\right)$ est convergente.

termes généraux ne sont pas de signes constants.

En effet, $\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$. Ainsi, puisque $\frac{(-1)^n}{n} \xrightarrow[n \to +\infty]{} 0$,

$$\ln\left(1 + \frac{(-1)^n}{n}\right) = \frac{(-1)^n}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) = \frac{(-1)^n}{n} + O\left(\frac{1}{n^2}\right).$$

- Les résultats de l'Exercice 20, donnent la convergence de la série $\sum \frac{(-1)^n}{n}$.
- La série de terme général, de signe constant, $-\frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$ $\underset{n \to +\infty}{\sim}$

 $-\frac{1}{2n^2} \mathop{=}_{n \to +\infty} O\left(\frac{1}{n^2}\right) \text{ converge par comparaison à la série de Riemann} \sum \frac{1}{n^2}.$ Par somme de deux séries convergentes, on en déduit la convergence de la série $\sum \ln \left(1 + \frac{(-1)^n}{n}\right).$

La convergence n'est pas absolue par comparaison à la série de Riemann divergente

$$\left| \ln \left(1 + \frac{(-1)^n}{n} \right) \right| \underset{n \to +\infty}{\sim} \frac{1}{n}.$$

- 4. Si $\alpha \leqslant 0$, le terme général $\ln \left(1 + \frac{(-1)^n}{n^\alpha}\right)$ n'est pas défini pour une infinité de termes de rang impair. Ce cas est écarté
 - Dans la suite $\alpha > 0$. Dans ce cas $\frac{(-1)^n}{n^{\alpha}} \xrightarrow[n \to +\infty]{} 0$ et en utilisant le développement limité $\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$, on obtient :

$$\ln\left(1+\frac{(-1)^n}{n^\alpha}\right) = \underset{n\to+\infty}{=} \frac{(-1)^n}{n^\alpha} - \frac{1}{2n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right).$$

- Les résultats de l'exercice 20 donnent la convergence de la série $\frac{(-1)^n}{n^{\alpha}}$.
- La série de terme général, de signe constant, $-\frac{1}{2n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right) \underset{n \to +\infty}{\sim}$ $-\frac{1}{2n^{2\alpha}}$ converge si et seulement si $2\alpha > 1 \iff \alpha > \frac{1}{2}$.

Ainsi, la série $\sum \ln \left(1 + \frac{(-1)^n}{n^{\alpha}}\right)$ est la somme de :

- deux séries convergentes si α > ½.
 d'une série convergente et d'une série divergente si α ≤ ½.

On en déduit que
$$\sum \ln \left(1+rac{(-1)^n}{n^{lpha}}
ight)$$
 CV si et seulement si $lpha>rac{1}{2}$:

- Si $\alpha > \frac{1}{2}$, $\sum \ln \left(1 + \frac{(-1)^n}{n^{\alpha}}\right)$ CV par somme de deux séries convergentes.
- Si $\alpha \leqslant \frac{1}{2}$, on applique le même raisonnement par l'absurde que précédemment. Si la série $\sum \ln \left(1 + \frac{(-1)^n}{n^{\alpha}}\right)$ convergeait, alors par somme la série de terme général $\sum \ln \left(1 + \frac{(-1)^n}{n^{\alpha}}\right) - \frac{(-1)^n}{n^{\alpha}} = -\frac{1}{2n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right)$ convergerait ce

La convergence est absolue si et seulement si $\alpha>1$ par comparaison à la série de Riemann $\sum \frac{1}{n^{\alpha}}$, convergente si et seulement si $\alpha > 1$:

$$\left| \ln \left(1 + \frac{(-1)^n}{n^{\alpha}} \right) \right| \underset{n \to +\infty}{\sim} \frac{1}{n^{\alpha}}$$

Solution Exercice 23.

1. La série $\sum \frac{(-1)^n}{n+(-1)^n}$ n'est pas du type $(-1)^n \alpha_n$ étudié dans l'Exercice 20 : $\alpha_n = \frac{1}{n + (-1)^n}$ n'est pas décroissante.

On utilise le développement limité, $\frac{1}{1+x} = 1-x+o(x)$ et on obtient puisque $\frac{(-1)^n}{n} \xrightarrow[n \to +\infty]{} 0:$

$$\frac{(-1)^n}{n + (-1)^n} = \frac{(-1)^n}{n} \left(\frac{1}{1 + \frac{(-1)^n}{n}} \right)$$

$$= \frac{(-1)^n}{n} \left(1 - \frac{(-1)^n}{n} + o\left(\frac{1}{n}\right) \right)$$

$$= \frac{(-1)^n}{n} - \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) = \frac{(-1)^n}{n} + O\left(\frac{1}{n^2}\right).$$

La série $\sum \frac{(-1)^n}{n+(-1)^n}$ converge comme somme de deux séries convergentes :

- La série $\sum \frac{(-1)^n}{n}$ est convergente par les résultats de l'Exercice 20.
- La série de terme général, de signe constant, $-\frac{1}{2n^2}+o\left(\frac{1}{n^2}\right) \underset{n\to+\infty}{\sim} -\frac{1}{2n^2}$ converge par comparaison à la série de Riemann convergente $\sum \frac{1}{n^2}$
- 2. La série $\sum \frac{(-1)^n}{\sqrt{n} + (-1)^n}$ est divergente.

On utilise le développement limité : $\frac{1}{1+x} = 1-x+o(x)$ et puisque $\frac{(-1)^n}{\sqrt{n}} \xrightarrow[n \to +\infty]{} 0$, on obtient:

$$\frac{(-1)^n}{\sqrt{n} + (-1)^n} = \frac{(-1)^n}{\sqrt{n}} \left(\frac{1}{1 + \frac{(-1)^n}{\sqrt{n}}} \right)$$

$$\stackrel{=}{\underset{n \to +\infty}{\longrightarrow} +\infty} \frac{(-1)^n}{\sqrt{n}} \left(1 - \frac{(-1)^n}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right) \right)$$

$$\stackrel{=}{\underset{n \to +\infty}{\longrightarrow} +\infty} \frac{(-1)^n}{\sqrt{n}} - \frac{1}{n} + o\left(\frac{1}{n}\right)$$

- 3. Si $\alpha < 0$, le terme général ne converge pas vers 0 et la série est grossièrement
 - Si $\alpha = 0$, le terme général n'est défini pour aucun terme de rang impair. Ce cas est écarté.

— On suppose dans la suite $\alpha>0$. La série $\sum \frac{(-1)^n}{n^\alpha+(-1)^n}$ converge si et seulement si $\alpha>\frac{1}{2}$. En effet, on utilise le développement limité $\frac{1}{1+x} \underset{x\to 0}{=} 1-x+o(x)$ et on obtient, puisque $\frac{(-1)^n}{n^\alpha} \underset{n\to +\infty}{\longrightarrow} 0$ car $\alpha>0$,

$$\frac{(-1)^n}{n^{\alpha} + (-1)^n} = \frac{(-1)^n}{n^{\alpha}} \left(\frac{1}{1 + \frac{(-1)^n}{n^{\alpha}}} \right)$$

$$\stackrel{=}{\underset{n \to +\infty}{\longrightarrow}} \frac{(-1)^n}{n^{\alpha}} \left(1 - \frac{(-1)^n}{n^{\alpha}} + o\left(\frac{1}{n^{\alpha}}\right) \right)$$

$$\stackrel{=}{\underset{n \to +\infty}{\longrightarrow}} \frac{(-1)^n}{n^{\alpha}} - \frac{1}{n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right)$$

- Si $2\alpha > 1 \iff \alpha > \frac{1}{2}$ la série de terme général $\frac{(-1)^n}{n^{\alpha} + (-1)^n}$ converge comme somme de deux séries convergentes :
 - $\sum \frac{(-1)^n}{n^{\alpha}}$ est une série alternée convergente.
 - $\sum \left(-\frac{1}{n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right) \right)$ est une série dont les termes sont de signes constants vérifiant $-\frac{1}{n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right) \underset{n \to +\infty}{\sim} -\frac{1}{n^{2\alpha}}$, et par comparaison à la série de Riemann $\sum \frac{1}{n^{2\alpha}}$ converge car $2\alpha > 1$.
- Si $2\alpha \leqslant 1 \Longleftrightarrow \alpha \leqslant \frac{1}{2}$ la série $\sum \frac{(-1)^n}{n^{\alpha} + (-1)^n}$ est divergente.

En effet, cette série est la somme des séries :

- $\sum \frac{(-1)^n}{n^{\alpha}}$: série alternée convergente.
- $\sum \left(-\frac{1}{n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right)\right)$: série divergente par comparaison à la série de Riemann $\sum \frac{1}{n^{2\alpha}}$ qui diverge car $2\alpha < 1$.

Si la série $\sum \frac{(-1)^n}{n^{\alpha}+(-1)^n}$ convergeait alors la différence $\sum \left(\frac{(-1)^n}{n^{\alpha}+(-1)^n}-\frac{(-1)^n}{n^{\alpha}}\right)$ serait convergente ce qui n'est pas, car de terme général équivalent à $-\frac{1}{n^{2\alpha}}$.

Conclusion : la série $\sum \frac{(-1)^n}{n^{\alpha} + (-1)^n}$ est converge si et seulement si $\alpha > \frac{1}{2}$.

4. — Si $\alpha = \beta$ la série n'est définie en aucun rang impair. On écarte ce cas et on suppose $\alpha \neq \beta$ pour la suite.

— Supposons dans un premier temps $\alpha > \beta$. Pour tout $n \ge 2$,

$$\frac{(-1)^n}{n^{\alpha} + (-1)^n n^{\beta}} = \frac{(-1)^n}{n^{\alpha} (1 + (-1)^n n^{\beta - \alpha})}$$

- Si $\alpha > 1$, la série est absolument convergente.
- Si $\alpha \leq 0$, la série est grossièrement divergente.
- Si $\alpha \in]0;1]$ la série est convergente si et seulement si $\alpha 2\beta > 1$ en suivant les mêmes arguments que dans les question précédentes :

$$\frac{(-1)^n}{n^{\alpha} + (-1)^n n^{\beta}} = \frac{(-1)^n}{n^{\alpha}} \left(\frac{1}{1 + \frac{(-1)^n}{n^{\alpha - \beta}}}\right)$$
$$= \frac{(-1)^n}{n^{\alpha}} - \frac{1}{n^{2\alpha - \beta}} + o\left(\frac{1}{n^{2\alpha - \beta}}\right).$$

La série alternée $\sum \frac{(-1)^n}{n^{\alpha}}$ est convergente car $\alpha>0$. Ainsi, la série $\sum \frac{(-1)^n}{n^{\alpha}+(-1)^n n^{\beta}}$ converge si et seulement si la série de terme général, de signe constant, $-\frac{1}{n^{2\alpha-\beta}}+o\left(\frac{1}{n^{2\alpha-\beta}}\right)$ est convergente. Or $-\frac{1}{n^{2\alpha-\beta}}+o\left(\frac{1}{n^{2\alpha-\beta}}\right) \underset{n\to+\infty}{\sim} -\frac{1}{2n^{2\alpha-\beta}}$ d'où la convergence si et seulement si $2\alpha-\beta>1$.

— Supposons maintenant $\beta > \alpha$. On obtient un équivalent de signe constant :

$$\frac{(-1)^n}{n^{\alpha} + (-1)^n n^{\beta}} \underset{n \to +\infty}{\sim} \frac{1}{n^{\beta}}$$

d'où la convergence (qui est absolue) si et seulement si $\beta > 1$.

Conclusion : la série $\sum \frac{(-1)^n}{n^{\alpha} + (-1)^n n^{\beta}}$ converge si et seulement si

- $\alpha < \beta$ et $\beta > 1$ (la convergence est absolue dans ce cas).
- ou $\alpha > \beta$ et $2\alpha \beta > 1$ (ce qui est automatique si $\alpha > 1$ et la convergence est absolue dans ce cas).

Solution Exercice 24.

1. On utilise le développement limité $\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$.

On obtient, puisque $\frac{(-1)^n}{n} \xrightarrow[n \to +\infty]{} 0$

$$\ln\left(1 + \frac{(-1)^n}{n}\right) \underset{n \to +\infty}{=} \frac{(-1)^n}{n} - \frac{1}{2}\frac{1}{n^2} + o\left(\frac{1}{n^2}\right)$$

d'où la convergence par somme de deux séries convergentes.

Pour déterminer la somme de cette série convergennte, on utilise les sommes partielles de rang impair S_{2n+1} que l'on découpe en deux sommes : l'une suivant les indices paires, l'autre suivant les indices paires. On obtient :

$$S_{2n+1} = \sum_{k=2}^{2n+1} \ln\left(1 + \frac{(-1)^k}{k}\right)$$
$$= \sum_{p=1}^n \left(\ln\left(1 + \frac{1}{2p}\right) + \ln\left(1 - \frac{1}{2p+1}\right)\right)$$
$$= \sum_{p=1}^n \left(\ln\left(\frac{2p+1}{2p}\right) + \ln\left(\frac{2p}{2p+1}\right)\right) = 0$$

Ainsi, la suite $(S_{2n+1})_{n\in\mathbb{N}^*}$ converge vers 0 donc la suite (convergente) $(S_n)_{n\in\mathbb{N}}$ converge vers 0.

La série $\sum \ln \left(1 + \frac{(-1)^n}{n}\right)$ converge donc et a pour somme 0.

2. La série $\sum \frac{(-1)^n}{n+(-1)^n}$ converge par somme de séries convergentes :

$$\frac{(-1)^n}{n + (-1)^n} = \frac{(-1)^n}{n} \left(\frac{1}{1 + \frac{(-1)^n}{n}} \right)$$

$$= \frac{(-1)^n}{n} \left(1 - \frac{(-1)^n}{n} + o\left(\frac{1}{n}\right) \right)$$

$$= \frac{(-1)^n}{n} - \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) = \frac{(-1)^n}{n} + O\left(\frac{1}{n^2}\right).$$

On utilise les sommes partielles de rang impair pour calculer la somme :

$$\begin{split} S_{2n+1} &= \sum_{k=2}^{2n+1} \frac{(-1)^k}{k + (-1)^k} = \sum_{p=1}^n \left(\frac{1}{2p+1} - \frac{1}{2p+1-1} \right) \\ &= \sum_{p=1}^n \left(\frac{1}{2p+1} - \frac{1}{2p+1-1} \right) = -\frac{1}{2} \sum_{p=1}^n \frac{1}{p} + \sum_{p=1}^n \frac{1}{2p+1} \\ &= -\sum_{p=1}^n \frac{1}{2p} + \sum_{k=1}^{2n+1} \frac{1}{k} - 1 - \sum_{p=1}^n \frac{1}{2p} \\ &= -\sum_{p=1}^n \frac{1}{p} + \sum_{k=1}^{2n+1} \frac{1}{k} - 1 \\ &= \sum_{n \to +\infty}^n \frac{1}{p} + \sum_{k=1}^{2n+1} \frac{1}{k} - 1 \\ &= \sum_{n \to +\infty}^n \left(\frac{2n+1}{n} \right) + o(1) \\ &= \sum_{n \to +\infty}^n \ln(2) - 1 \end{split}$$

Solution Exercice 25.

1. Pour tout $n \in \mathbb{N}$.

$$u_n = \sin\left(\frac{n^2}{n+1}\pi\right) = \sin\left(\frac{n^2 - 1 + 1}{n+1}\pi\right)$$

$$= \sin\left(\frac{(n-1)(n+1)}{n+1}\pi + \frac{\pi}{n+1}\right)$$

$$= \sin\left((n-1)\pi + \frac{\pi}{n+1}\right) = (-1)^{n-1}\sin\left(\frac{\pi}{n+1}\right)$$

La suite $\left(\sin\left(\frac{\pi}{n+1}\right)\right)_{n\in\mathbb{N}}$ est positive, décroissante et de limite nulle. Par les résultats de l'Exercice 20 : la série $\sum (-1)^{n-1}\sin\left(\frac{\pi}{n+1}\right)$ converge.

2. Pour tout $n \ge 1$,

$$\sin\left(\pi\sqrt{n^2+1}\right) = \sin\left(\pi n\sqrt{1+\frac{1}{n^2}}\right) = \sin\left(n\pi\left(1+\frac{1}{2n^2}+O\left(\frac{1}{n^4}\right)\right)\right)$$

$$\underset{n\to+\infty}{=} (-1)^n \sin\left(\frac{\pi}{2n}+O\left(\frac{1}{n^3}\right)\right) \underset{n\to+\infty}{=} (-1)^n \left(\frac{\pi}{2n}+O\left(\frac{1}{n^3}\right)\right) + O\left(\frac{1}{n^3}\right)$$

$$\underset{n\to+\infty}{=} (-1)^n \frac{\pi}{2n} + O\left(\frac{1}{n^3}\right)$$

La série $\sum \sin\left(\pi\sqrt{n^2+1}\right)$ est donc convergente comme somme de deux séries convergentes.

3. La série $\sum \frac{(-1)^n}{n \ln(n) + (-1)^n}$ est convergente comme somme de deux séries convergentes :

$$\frac{(-1)^n}{n\ln(n) + (-1)^n} = \frac{(-1)^n}{n\ln(n)} \left(\frac{1}{1 + \frac{(-1)^n}{n\ln(n)}}\right)$$
$$= \frac{(-1)^n}{n\ln(n)} \left(1 - \frac{(-1)^n}{n\ln(n)} + o\left(\frac{1}{n\ln(n)}\right)\right)$$
$$= \frac{(-1)^n}{n\ln(n)} - \frac{1}{n^2\ln(n)} + o\left(\frac{1}{n^2\ln^2(n)}\right).$$

Solution Exercice 26.

1. La série $\sum \frac{(-1)^k}{k}$ est alternée : la suite $(\frac{1}{k})_{k\geqslant 1}$ est positive, décroissante, de limite nulle. La série converge par les résultats de l'Exercice 20.

2. On calcule la somme de deux restes consécutifs :

$$R_n + R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k} + \sum_{k=n+2}^{+\infty} \frac{(-1)^k}{k}$$
$$= \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k} + \sum_{\ell=n+1}^{+\infty} \frac{(-1)^{\ell+1}}{\ell+1}$$
$$= \sum_{k=n+1}^{+\infty} (-1)^k \left(\frac{1}{k} - \frac{1}{k+1}\right)$$
$$= \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)}.$$

3. La différence de deux termes consécutifs donne :

$$R_n - R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k} - \sum_{k=n+2}^{+\infty} \frac{(-1)^k}{k} = \frac{(-1)^{n+1}}{n+1}$$

On fait la somme des égalités obtenues aux deux questions précédentes, on trouve :

$$2R_n = \frac{(-1)^{n+1}}{n+1} + \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)}.$$

Le reste $\sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)}$ de la série alternée $\sum \frac{(-1)^k}{k(k+1)}$ est majoré en valeur absolue par (cf. résultats de l'Exercice 20) :

$$\left| \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)} \right| \le \frac{1}{(n+1)(n+2)}.$$

Ainsi,
$$\sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)} \underset{n \to +\infty}{=} O\left(\frac{1}{n^2}\right) \underset{n \to +\infty}{=} o\left(\frac{1}{n}\right).$$

Par conséquent, $R_n \underset{n \to +\infty}{\sim} \frac{(-1)^{n+1}}{2n}$.

4. La série $\sum R_n$ n'est pas à termes de signe constant, l'équivalent précédent ne permet pas de conclure.

On reprend le développement :

$$R_n = \frac{(-1)^{n+1}}{2(n+1)} + O\left(\frac{1}{n^2}\right).$$

Ainsi, $\sum R_n$ converge pas sommes de séries convergentes.

Solution Exercice 27.

- 1. La série $\sum \frac{(-1)^k}{\sqrt{k}}$ est alternée : la suite $(\frac{1}{\sqrt{k}})_{k\geqslant 1}$ est positive, décroissante, de limite nulle. La série converge par les résultats de l'Exercice 20.
- 2. On calcule la somme de deux restes consécutifs :

$$R_n + R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{\sqrt{k}} + \sum_{k=n+2}^{+\infty} \frac{(-1)^k}{\sqrt{k}}$$

$$= \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{\sqrt{k}} + \sum_{\ell=n+1}^{+\infty} \frac{(-1)^{\ell+1}}{\sqrt{\ell+1}}$$

$$= \sum_{k=n+1}^{+\infty} (-1)^k \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}\right)$$

$$= \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{\sqrt{k(k+1)}(\sqrt{k} + \sqrt{k+1})}.$$

3. La différence de deux termes consécutifs donne :

$$R_n - R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{\sqrt{k}} - \sum_{k=n+2}^{+\infty} \frac{(-1)^k}{\sqrt{k}} = \frac{(-1)^{n+1}}{\sqrt{n+1}}$$

On fait la somme des égalités obtenues aux deux questions précédentes, on trouve :

$$2R_n = \frac{(-1)^{n+1}}{\sqrt{n+1}} + \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{\sqrt{k(k+1)}(\sqrt{k+1} + \sqrt{k})}.$$

Le reste $\sum_{k=n+1}^{+\infty} \frac{(-1)^k}{\sqrt{k(k+1)}(\sqrt{k+1}+\sqrt{k})}$ de cette série alternée est majoré en valeur absolue par (cf. résultats de l'Exercice 20) :

$$\left| \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{\sqrt{k(k+1)}(\sqrt{k}+\sqrt{k+1})} \right| \leqslant \frac{1}{\sqrt{(n+1)(n+2)}(\sqrt{n+1}+\sqrt{n+2})}.$$

Ainsi,
$$\sum_{k=n+1}^{+\infty} \frac{(-1)^k}{\sqrt{k(k+1)}(\sqrt{k}+\sqrt{k+1})} \stackrel{=}{\underset{n\to+\infty}{=}} O\left(\frac{1}{n\sqrt{n}}\right) \stackrel{=}{\underset{n\to+\infty}{=}} o\left(\frac{1}{\sqrt{n}}\right).$$

Par conséquent, $R_n \underset{n \to +\infty}{\sim} \frac{(-1)^{n+1}}{2\sqrt{n+1}}$.

4. La série $\sum R_n$ n'est pas à termes de signe constant, l'équivalent précédent ne permet pas de conclure.

On reprend le développement :

$$R_n \stackrel{=}{\underset{n \to +\infty}{\longrightarrow}} \frac{(-1)^{n+1}}{2\sqrt{n}} + O\left(\frac{1}{n\sqrt{n}}\right).$$

Ainsi, $\sum R_n$ converge pas sommes de séries convergentes.