Hierarchical effects of contrast and motion coherence in early visual cortex

Dan Birman, Justin Gardner

Department of Psychology, Stanford University danbirman@stanford.edu

1. Introduction

An existing model of contrast discrimination suggests early visual cortex is sufficient to explain behavioral performance¹.

Can that approach be used to jointly explain motion coherence discrimination?

3. Discrimination task

We collected data on how well participants could discriminate small increments in contrast and motion coherence.

2. Model: neural responses Contrast and motion coherence response functions constrained by behavior (n=21) Signal detection / Weber-Fechner +1 std. dev Behavior: just noticeable differences +1 std. dev. Neural response functions Base stimulus V1 contrast and MT motion coherence response Constrain the functions constrained by fMRI (n=11) fMRI: response timeseries Stimulus strength (%) GLM (convolution) Trial response Hemodynamic response function

5. Response functions 6. Behavior to fMRI Non-linear additive model We fit a neural noise⁵ parameter to scale response models into the fit to behavior same space. Based on previous work¹ we fit this parameter using the functions constrained on V1 and constrast discrimination. Linear + additive Linear + poisson Neural response model variations^{3,4} Additive (constant) Poisson (increasing) Contrast (%) Motion coherence (%) ΔBIC: +8.56 Best fitting model 95% CI [3.97 13.15] Model comparison of behavioral contrast and motion coherence response models to V1 and MT, respectively ΔBIC: +3.44 ΔBIC: +41.00 150 7 95% CI [-7.67 14.55] Linear additive 95% CI [17.01 64.97] Linear poisson Evidence for non-lin additive

Stimulus strength (%)

