Welcome, PROGRAMMERS

Let's see **With Space pattern** in detail with an example...

Break down into row & column

		Columns					
		1	2	3	4	5	
Rows	1					1	
	2				1	2	
	3			1	2	3	
	4		1	2	3	4	
	5	1	2	3	4	5	

Analysis the given **pattern** & **Make a Code** $\circ \circ$

1. Initialization of inner loop

- a. Highlight the START & END pillars Initialize
- b. inner loop control variable with a value from a pillar which have same value

```
for () {
    for ( j=1; ; ) {
        printf("%d ", j);
    }
    printf("\n");
}
```


Analysis the given **pattern** & **Make a Code** $\circ \circ$

- 2. Decide condition & increment/decrement of inner loop
 - Mark from START to END and see whether its increasing or decreasing
- b. If one is value then another is always variable

```
for () {
    for ( j=1; j<=i ; j++) {
        printf("%d ", j);
    }
    printf("\n");
}</pre>
```


START

0

END

Analysis the given pattern & Make a Code o o

3. Fill out outer loop

- a. Outer loop always iterates for no. of rows, so we have two possibilities:
 - i. From **1 to 5**
 - ii. From **5 to 1**
- b. Put any of the one value, and iterate a whole loop at least one time for finalize the value

```
for ( i=1; i<=5; i++) {
    for ( j=1; j<=i ; j++) {
        printf("%d ", j);
    }
    printf("\n");
}</pre>
```


OUTPUT 000 for (i=1; i<=5; i++) for (j=1; j<=i ; j++) printf("%d ", j); 123 1234 printf("\n");

Now, Let's see how to **implement an inner loop** for printing **spaces**...

Analysis the given pattern & Make a Code o

4. Implement inner loop for space

- a. Imagine a range from 1 to total no. of rows, here **1 to 5**
- b. Now just **initialize** a loop control variable with either **1** or **5** and make a single iteration to

```
for ( i=1; i<=5; i++) {
    for ( k=5; k>i ; k--)
        printf(" ");
    for ( j=1; j<=i ; j++)
        printf("%d ", j);
    printf("\n");
}</pre>
```

finalize

OUTPUT 0 0 0 for (i=1; i<=5; i++) for $(\underline{k=5};\underline{k>i};k--)$ printf(" "); for (j=1; j<=i ; j++) printf("%d", j);

1 2 3 4

printf("\n");

Let's see **Custom pattern** in detail with an example...

Break down into row & column

		Columns					
		1	2	3	4	5	
Rows	1	*	*	*	*	*	
	2	*				*	
	3	*	*	*	*	*	
	4	*				*	
	5	*				*	

Analysis the given **pattern** & **Make a Code** $\circ \circ$

Here, our typical analysis for row & column is not applicable...

1. Solve it with manually using control structure and looping

		Columns == Inner Loop					
		1	2	3	4	5	
Rows == Outer Loop	1	*	*	*	*	*	
	2	*				*	
	3	*	*	*	*	*	
	4	*				*	
	5	*				*	

