НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ФАКУЛЬТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

ОСНОВЫ ТЕОРИИ УПРАВЛЕНИЯ

Задание № 3

Анализ устойчивости регуляторов по критерию Найквиста

Студент группы 18205 Нелтанов Баярто Васильевич "25" апреля 2024 г.

Преподаватель Желябовский Дмитрий Сергеевич "25" апреля 2024 г.

Введение

Цель задания: исследовать запас устойчивости ПИ- и ПИД-регуляторов по амплитуде и фазе по годографу Найквиста.

Система x = Wu устойчива, если для любой ненулевой ограниченной функции входа u(t), $|u(t)| \le cu \le \infty$, функция выхода x(t) ограничена: $|x(t)| \le cx \le \infty$, t > 0. Система с нулевой входной функцией $u(t) \equiv 0$ устойчива, если функция выхода с ростом времени стремится к нулю $x(t) \to 0$.

Теорема. (Г. **Найквист**, 1932). Замкнутая система с передаточной функцией W(s) устойчива тогда и только тогда, когда годограф $v(i\omega) = W_1(i\omega)W_2(i\omega)$, $\omega > 0$ (годограф Найквиста) охватывает точку -1 ровно l/2 раз.

Постановка задачи

Пусть a > 0 есть расстояние от нулевой точки комплексной плоскости до точки пересечения годографа с отрезком (-1, 0). Показатель устойчивости **по амплитуде** определяется соотношением $Ka = 20\lg(1/a)$. Считается, что система имеет достаточный запас устойчивости по амплитуде, если Ka > 3.

Запас устойчивости **по фазе** определяется величиной угла $\Delta \phi$ между лучом ($-\infty$, 0) и направлением из нуля на точку пересечения годографа с единичной окружностью. Считается, что система имеет достаточный запас устойчивости по фазе, если $\Delta \phi > 30$ \circ .

Достаточным считается запас устойчивости по фазе не менее 30-60 градусов, а по амплитуде не менее 6-12 дБ.

В задании № 3 **требуется** определить запас устойчивости по фазе и по амплитуде для систем автоматического управления с объектом управления из задания №1 при трех значениях чистого запаздывания с ПИ и ПИД регуляторами. Параметры ПИ- и ПИД-регуляторов получены при выполнении задания №1 оптимальной настройкой по интегральному критерию качества.

Схемы и результаты моделирования

Ниже представлена структурная схема моделирования частотных характеристик с ПИ-регулятором.

В табл.1 представлены результаты исследования запаса устойчивости САР с ПИ-регулятором.

Таблица 1. Результаты исследования запаса устойчивости с ПИ-регулятором

Параметры			Показатели устойчивости	
T	K	T_{H}	Φ	Ka
0	0.6	7.38	65	4.5
1.5	0.45	9	78	4.4
3.0	0.38	11.6	92	4.7

Ниже представлена структурная схема моделирования частотных характеристик с ПИД-регулятором.

Таблица 2. Результаты исследования запаса устойчивости САР с ПИД-регулятором при $T_{\rm Д}\!\!=\!\!0.25T_{\rm H}$.

Параметры			Показатели устойчивости	
T	K	$T_{ m M}$	Φ	Ка
0	0.65	4.8	62	6.1
1.5	0.47	5	59	4.9
3.0	0.38	6.14	67	5.2

Вывод

По полученным данным видно, что по фазе более устойчив ПИ-регулятор, а по амплитуде - ПИД-регулятор.