0. Allgemeines

 $F = \frac{As}{V} = \frac{s}{\Omega}$, $H = \frac{Vs}{A} = \Omega s$ $\beta = g_m \cdot r_{be}$ grundsätzlich: $g_m \gg g_{be} \gg g_{ce}$ $i = C \cdot \frac{du}{dt}$ Eingangsimpedanz Ausgangsimpedanz Emitterschaltung ohne CE: sehr hoch hoch $u = \frac{1}{c} \cdot \int i \, dt$ Emitterschaltung mit CE: hoch hoch $u = L \cdot \frac{di}{dt}$ Kollektorschaltung: hoch niedrig OPV hoch niedrig $i = \frac{1}{t} \cdot \int u \, dt$

1. Emitterschaltung

bei einer T-Erhöhung von 1°C erhöht sich I_C oder I_B um 6,5% \rightarrow Verdoppelung bei $\Delta T = 16$ °C \rightarrow Ziel: Spannung U_{BE} verkleinern wenn T steigt, damit I_C stabil bleibt

Mgl. 1: Spannungsgegenkopplung

 U_{BE} sinkt bei steigendem I_C , da Teil der Ausgangsspannung über R_1 rückgekoppelt wird

Mgl. 2:

T-Abhängigkeit: $\frac{\Delta I_C}{\Delta T \cdot I_C} \approx \frac{6,5\%}{^{\circ}C}$.

 $\overline{1+g_m\cdot R_E}$

 \rightarrow wenn R_E steigt, sinkt T-Abhängigkeit

Reihenfolge Synthese:

- 0. Transistor-Daten sind bekannt1. *I_C* festlegen
- 2. DC Analysis (7):
- 2. DC-Analyse (Ziel: hohes z_{in}):
- a. $R_E > \frac{10}{g_r}$
- b. $R_2 \leq \frac{\frac{g_B}{U_B}}{10 \cdot I_B}$ und $R_1 \leq \frac{Vcc U_B}{11 \cdot I_B}$
- c. $R_C = -\frac{a_{V0}}{g_m}$
- 3. untere Grenzfrequenz wissen+ dominanten C bestimmen

a.
$$C_{k1} > \frac{1}{2\pi \cdot f_{3dB,u} \cdot (R_G + r_{ij})}$$

b.
$$C_{k2} > \frac{1}{2\pi \cdot 0.1 \cdot f_{3dRu} \cdot (R_L + n)}$$

c.
$$C_E > \frac{g_m}{2\pi \cdot \mathbf{0}, \mathbf{1} \cdot f_{3dB,y}}$$

$$T \cdot \mathbf{r}_{L}^{*} = \mathbf{R}_{C} ||\mathbf{r}_{L}|| \mathbf{r}_{ce}$$

$$\mathbf{U}_{B} = V_{DC} \cdot \frac{R_{2}}{R_{1} + R_{2}}, \mathbf{U}_{RE} = U_{B} - 0.7 \text{ V}, \mathbf{I}_{C} \approx I_{E} = \frac{U_{RE}}{R_{E}}, \mathbf{I}_{B} = \frac{I_{C}}{R_{E}}$$

2. AC-Kleinsignalparameter:

$$g_{m} = \frac{I_{C}}{U_{T}}, g_{be} = \frac{I_{B}}{U_{T}} = \frac{1}{r_{be}}, g_{ce} = \frac{I_{C}}{VAF} = \frac{1}{r_{ce}}$$

$C_{k1} > \frac{1}{2\pi \cdot f_{3dB,C_{k1}} \cdot (R_G + r_{in})} C_{k2} > \frac{1}{2\pi \cdot f_{3dB,C_{k2}} \cdot (R_L + r_{in})}$

→ Entweder Eingangs- od. Ausgangshochpass dominant, Verschiebung untere Grenzfrequ. um Faktor 10 nach links

(wenn
$$f_{3dB,C_{k_1}} = f_{3dB,C_{k_2}} \rightarrow \text{HP 2. Ord.} \rightarrow f_{3dB,C_{k_1}} = f_{3dB,C_{k_2}} \approx 0.64 \cdot f_{3dB}$$
)

ohne C_E

 $\mathbf{z}_{in,Tr} = r_{be} + (\beta + 1) \cdot R_E$ (ohne g_{ce} !)

$$\mathbf{z_{in}} = z_{in,Tr} || r_B^*$$

 $\mathbf{z}_{a,Tr} = r_{ce} \cdot \left[1 + \left(R_E || (r_{be} + r_G^*) \right) \cdot \left(g_{ce} + \frac{g_m \cdot r_{be}}{r_{be} + r_G^*} \right) \right]$

$$ightarrow$$
 da $g_{ce} \ll rac{g_m \cdot r_{be}}{r_{be} + r_g^*}$ bzw. $\beta \cdot r_{ce} \gg r_{be} + r_g^*$:

$$\mathbf{z}_{a,Tr} \approx r_{ce} \cdot \left[1 + \left(R_E || (r_{be} + r_G^*) \right) \cdot \left(\frac{\beta}{r_{be} + r_G^*} \right) \right]$$

 \rightarrow da $R_E \ll (r_{be} + r_G^*)$:

$$\mathbf{z}_{a,Tr} \approx r_{ce} \cdot \left[1 + R_E \cdot g_m \cdot \frac{r_{be}}{r_{be} + r_c^*} \right]$$

 \rightarrow da $r_G^* \ll r_{be}$:

$$\mathbf{z}_{a,Tr} \approx r_{ce} \cdot (1 + R_E \cdot g_m)$$

 $\mathbf{z_a} = z_{a,Tr} || R_C \approx R_C$

$$\begin{array}{c} \pmb{a_{V}} = -\frac{\frac{g_{m}}{g_{m}+g_{ce}} \cdot \left(\frac{1}{R_{E}}+g_{m}+g_{be}+g_{ce}\right) - (g_{m}+g_{be})}{\frac{g_{ce}+\frac{1}{r_{L}^{*}}}{g_{m}+g_{ce}} \cdot \left(\frac{1}{R_{E}}+g_{m}+g_{be}+g_{ce}\right) - g_{ce}} \end{array}$$

ightarrow da $g_m\gg g_{be}\gg g_{ce}$: $rac{oldsymbol{a_V}}{rac{g_{ce}+rac{\overline{R_E}}{r_L^*}}{g_m}rac{1}{R_E}+rac{1}{r_L^*}}$

$$\rightarrow$$
 da $\frac{1}{r_L^*} \gg g_{ce}$: $a_V \approx \frac{-g_m \cdot r_L^*}{1 + g_m \cdot R_E}$

ightarrow da $g_m \cdot R_E \gg 1$: $a_V \approx -\frac{r_L^*}{R_E}$

$$f_{3dB,Ck1} = \frac{1}{2\pi \cdot C_{k1} \cdot (R_G + r_{in})}$$

 $f_{3dB,Ck2} = \frac{1}{2\pi \cdot C_{k2} \cdot (R_L + r_0)}$

$\underline{\text{mit } C_{\text{E}}}$ (z_{in} wird kleiner)

$$egin{aligned} \mathbf{z_{in,Tr}} &= r_{be} \ \mathbf{z_{in}} &= z_{in,Tr} || r_B^* \end{aligned}$$

$$\mathbf{z}_{a,Tr} = r_{ce}$$
 $\mathbf{z}_a = z_{a,Tr} || R_C \approx R_C$

$$\begin{aligned} \mathbf{a}_{V} &= -g_{m} \cdot (r_{L}^{*}||r_{ce}) \\ & \rightarrow \text{da } r_{L}^{*} \ll r_{ce} \colon \mathbf{a}_{V} \approx -g_{m} \cdot r_{L}^{*} \end{aligned}$$

(Großsignal:
$$\underline{a}_V = \frac{-g_m \cdot r_L^*}{1 + g_m \cdot (R_E||\frac{1}{j_\omega \cdot C_E})}$$

steigende Frequ.:
$$\underline{a}_V = \frac{-g_m \cdot r_k^*}{1 + g_m \cdot \frac{1}{|\omega \cdot C_E|}}$$

$$f_{3dB,Ck1} = \frac{1}{2\pi \cdot C_{k1} \cdot (R_G + r_{in})}$$

$$f_{3dB,Ck2} = \frac{1}{2\pi \cdot C_{k2} \cdot (R_L + r_a)}$$

$$f_{3dB,C_E} \approx \frac{g_m}{2\pi \cdot C_E}$$

→ höchster Wert ist untere Grenzfrequenz der Schaltung

Amplitudengang zeichnen:

- 1. Gerade im Bandpass einzeichnen
- 2. fallende Gerade 1. Ordnung zw. beiden Grenzfrequ.
- 3. fallende Gerade 2. Ordnung

3. Kollektorschaltung / Endstufe

A-Betrieb: $U_{out} \approx U_{in} - 0.7 V$

$$r_L^* = R_E ||R_L|| r_{ce}$$

$$\begin{aligned} \mathbf{z}_{in,Tr} &= r_{be} + (\beta + 1) \cdot r_L^* \\ \mathbf{z}_{in} &= z_{in,Tr} ||R_1||R_2 \end{aligned}$$

$$a_v = \frac{(g_{be} + g_m) \cdot r_L^*}{1 + (g_{be} + g_m) \cdot r_L^*} \approx \frac{g_m \cdot r_L^*}{1 + g_m \cdot r_L^*} \approx 1$$

$$\mathbf{z}_{a,Tr} = \frac{r_{be} + r_G^*}{\beta + 1} \approx \frac{r_{be} + R_G}{\beta} = \frac{1}{a_m} + \frac{R_G}{\beta}$$

ightarrow evtl. r_G^* inkl. R_1 u. R_2 berücksichtigen

$$\mathbf{z}_{a} = z_{a,Tr} || R_{E} \approx z_{a,Tr}$$

Aussteuerbarkeit

nach oben bis: Vcc - 0.7 V (da $U_{CE} \ge 0.7 V$ sein muss)

nach unten bis: $I_C \cdot (R_E || R_L)$

- \rightarrow Betragsmäßig kleinster Wert zählt \rightarrow Problem: untere Grenze von U_{RF} abhängig
- \rightarrow Option 1: I_C erhöhen \rightarrow Problem: höhere Verluste an R_E
- \rightarrow Option 2: R_E durch hochohmige Stromquelle ersetzen \rightarrow Emitterschaltung od. Stromspiegel

Emitterschaltung + Kollektorschaltung (nötig wenn Last kleiner als z_{a1})

für hohe Spannungsverstärkung (auf Seiten Emittersch.) muss $z_{in2} \gg z_{a1}$

Wirkungsgrad

Leistungsbilanz: $P_{out} + P_V = P_{UB} + P_{in}$ Wirkungsgrad: $\eta = \frac{P_{out}}{P_{UB} + P_{in}} \approx \frac{P_{out}}{P_{UB}}$

Leistung am Verbraucher: $\frac{p_{out}}{2 \cdot R_I} = \frac{v_{out}^2}{2 \cdot R_I}$ Leistung der Stromquelle: $P_I = UB \cdot I$

Leistung Spannungsquellen: $P_{IIB+} = UB \cdot I$ $P_{IIB-} = UB \cdot I$

Stromeinstellung über $R_{E3} = \frac{U_{RE3}}{I_{C2}} = \frac{V_{B3} - 0.7V}{I_{C2}} = \frac{V_{B1} - 0.7V - 0.7V}{I_{C2}}$

 $\overline{P_V = P_{IIB+}} + P_{UB-} + P_{in} - P_I - P_{out}$ Verlustleistung Transistor:

 \rightarrow bei Vernachlässigung P_{in} ergibt sich: $\frac{P_V}{P_V} = UB \cdot I - \frac{\hat{U}_{out}^2}{100}$

 $\rightarrow P_V$ wird maximal bei $U_{out} = 0 \rightarrow P_{V,max} = UB \cdot I \rightarrow \eta = \frac{P_{out}}{P_{UB+} + P_{UB-}} = \frac{\hat{U}_{out}^2}{4 \cdot R_L \cdot UB \cdot I}$

 \rightarrow Stromquelle max. aussteuerbar bis $I = \frac{UB}{RL}$ $\rightarrow \eta = \frac{\hat{U}_{out}^2}{4 \cdot IIB^2}$

→ sehr niedrig!! (typ. bei Klasse-A-Verstärkern max. 25%) → Lösung: Gegentakt-Endstufe

CCM (Continuous Conduction Mode): $I_L(t)$ stets $> 0A \rightarrow I_{L,mittel} > \frac{\Delta I_{L,pp}}{2}$ DCM (lückender Betrieb): $I_L(t)$ wird während T_{off} Null $\rightarrow I_{L.mittel} < \frac{\Delta I_{L.pp}}{2}$

Synchron DC-DC-Wandler: Diode durch MOSFET ersetzen $\rightarrow P_V$ geringer u. damit η besser Effizienzbetrachtung

- je höher f_{CLK} , desto kleiner L und C_{out} möglich (Platzbedarf)
- je höher f_{CLK} , desto kleiner Welligkeiten (wenn L und C_{out} unverändert)
- je höher f_{CLK} , desto größer Verluste (MOSFETs, Diode, ESR_L , ESR_C) $\rightarrow \eta$ sinkt
- für hohen η : kleiner $R_{DS,on}$, kleiner ESR_L , schnelles Durchschalten MOSFET

Gegentakt-Endstufe (Klasse-B-Verstärker) $a_{\rm V} \approx 1$ AC-Analyse nicht geeignet!

 $u_{out} \approx u_{in} \pm 0.7V$ (außer wenn $-0.7 V < u_{in} < +0.7V \rightarrow$ Übernahmeverzerrung)

Voraussetzung: $|UB_{+/-}| \gg U_{RE} (\approx 0.7 \text{ V}) > U_{CE \, sat} (typ. \approx 0.1 \text{ V})$

Aussteuerbarkeit: $\hat{u}_{out,max} = |UB \pm | - |U_{CE,sat}| \approx |UB \pm |$

Großsignal-Eingangswiderstand: $R_{in} \approx R_L \cdot B$ (je für npn u. pnp; bei Übernahme: $R_{in} \rightarrow \infty$)

Großsignal-Ausgangswiderstand: $R_{out} \approx \frac{R_G}{R}$ (je für npn u. pnp; bei Übernahme: $R_{in} \to \infty$)

Leistungsberechnung: nur wenn $U_{in} \gg 0.7 V$ kann Übernahmebereich vernachlässigt werden!

$$= \frac{UB \cdot \hat{U}_{out}}{\pi \cdot R_L} - \frac{\hat{U}_{out}^2}{4 \cdot R_L} \rightarrow \text{maximal bei } U_{out} = \frac{2 \cdot UB}{\pi}$$

$$\Rightarrow P_{V,npn,max} = \frac{UB^2}{\pi^2 \cdot R_L}$$

$$\Rightarrow \eta = \frac{P_{out}}{P_{UB+} + P_{UB-}} = \frac{\pi}{4} \cdot \frac{\hat{U}_{out}}{UB}$$
 (maximaler Wirkungsgrad = $\frac{\pi}{4}$ = 78%)

mögliche Lösung, um Übernahmeverzerrung zu vermeiden: Klasse AB $\rightarrow V_{bias}$ für $U_{RE} = 0.7 \ V$)

7. DC-DC-Wandler

Linear geregelte DC-DC-Wandler

Vorteil: keine Oberwellen im stationären Betr., kaum Störung auf U_{out} , einfache Implement. Nachteil: Differenzspannung als Verlust, nur für kleine Leistungen, schlechter Wirkungsgrad **Getaktete DC-DC-Wandler:** zB OPV als Integrierer mit R_n und Puls als u_{in}

Getaktete DC-DC-Wandler (Step-Down)

 $D = \frac{T_{on}}{T_{CLK}} = \frac{U_{out}}{U_{in}}$ (nur gültig im **nicht-lückenden** Betrieb, da $U_{DS,on}$ u. $U_{F,D}$ vernachlässigbar!)

$$I_{L,mittel} = I_{out} = I_{RL} = \frac{U_{out}}{RL}$$

$$\Delta I_{L,pp} (\leq 2 \cdot I_{L,mittel}!)$$

$$= \frac{U_{in} - U_{out}}{L} \cdot T_{on}$$

(je größer L bzw. f_{CLK} , desto geringer Welligkeit)

(> 0,5 damit L nicht zu groß))

 $\Delta U_{out,pp} = \frac{\Delta I_{L,pp}}{C_{out} \cdot 8 \cdot f \, CLK}$

angenommen. Für den Spulenstrom gilt allgemein: $dI_L/dt = U_L/L$

 $U_i \cong U_{in}$: U_{out} kann aufgrund des Kondensators Cout näherungsweise als konstant angenommen werden → Spannung über der Induktivität $U_L \cong U_{in} - U_{out}$ ist konstant; mit $dt = \Delta t = t_{on} und dI_L = \Delta I_L^+$ folgt: $\Delta I_L^+ \cong (U_{in} - U_{out})/L \cdot T_{on}$

 $U_i \cong -0.7V \approx 0V$: I₁ fließt über die Freilaufdiode $U_L \cong -U_{out}$ ist konstant. mit $dt = \Delta t = t_{off} und dI_L = \Delta I_L^ \Delta I_L^- \cong -U_{out}/L \cdot T_{off}$

(je größer
$$f_{CLK}$$
, desto kleiner muss C_{out} sein)

4. Operationsverstärker

Grundlagen

Vorteile: hochohmiger Eingang u. niederohmiger Ausgang;

als IC; geringer Platzbedarf

Nachteile: Bandbreite begrenzt; hohes Rauschen bei

hohen Frequ.; nicht als Schalter geeignet

Differenzstufe

Voraussetzung:

Q1 u. Q2 sowie RC1 und RC2 ideal identisch

Eingangswiderstand: $z_{in,D} = 2 \cdot r_{be}$

(Herleitung über Knoten C1 u. C2)

 $(da r_i \rightarrow \infty fließt dort kein Strom)$

Eingangswiderstand: $z_{in,C} = r_{be} + (\beta + 1) \cdot 2 \cdot r_i$

Qualität der Gleichtaktsignalunterdrückung: $CMRR[dB] = 20 \cdot \log \left(\frac{A_{VD}}{A_{VD}}\right)$

Mittlere Verstärkerstufe

kleiner Signal-Strom Eingangsstufe ΔI_{C1} in hohe Ausgangsspannung umgesetzt: $\Delta U_2 = a_{V2} \cdot \Delta I_{C1}$ C für interne Frequenzgang-Kompensation (damit g irgendwann < 1 wird), v.a. Einstellung dominanter f_{3dB} der U-Verstärkung \rightarrow garantiert Stabilität bei externer Gegenkopplung

Endstufe

meist Gegentakt-Endstufe; $a_V \approx 1$; sehr kleiner Ausgangswiderstand

Gegenkopplung

im Linear-Bereich: $U_{out} = V_{ud} \cdot U_{ID}$ (da V_{ud} sehr hoch, nur mit Gegenkopplung realisierbar)

OPVs zeigen meistens PT1-Verhalten mit sehr kleiner Eckfrequenz f₁

Transitfrequenz f_T = Frequenz, bei der Verstärkung auf 1 abgefallen

ist

nur allgemein und für nicht-invertierend gültig:

Übertragungsfunktion:

$$H(j\omega) = \frac{\underline{u}_2}{\underline{u}_1} = \frac{\underline{u}_{in} \cdot \underline{V}_f}{\underline{u}_{in} + \underline{u}_{in} \cdot \underline{V}_f \cdot \underline{k}} = \frac{\underline{V}_f}{1 + \underline{V}_f \cdot \underline{k}} = \frac{\underline{V}_f}{1 + \underline{g}} \text{ (mit } V_f = V_{ud})$$

 \rightarrow wenn $\underline{V}_f \gg 1$: $H(j\omega) \approx \frac{1}{\nu}$

Grenzfall: $g = k \cdot V_{ud} = 1$

 $\Rightarrow GBW = V_{ud} \cdot f_1 = \frac{1}{\nu} \cdot f_g = f_T$ (nur bei $k = 1 \Rightarrow f_g = f_T$)

 \rightarrow definiert Betriebsgrenzfrequenz f_a (je nach k unterschiedl) $\rightarrow f_a = |\underline{k}(f_a)| \cdot GBW$

allgemein:

 $(Z_2 \text{ ist Impedanz im Rückkopplungspfad!})$

$\frac{Z_1+Z_2}{Z_1+Z_2}$		
	<u>nicht-invertierend</u>	<u>invertierend</u>
$\underline{a}_v = H(j\omega)$	$\underline{a}_{v}^{+} = + \frac{\underline{V}_{ud}}{1 + \underline{k} \cdot \underline{V}_{ud}}$	$\underline{a}_{v}^{-} = -\frac{\underline{V}_{ud} \cdot (1 - \underline{k})}{1 + \underline{k} \cdot \underline{V}_{ud}}$
Normalbetr. $(f < f_g)$: $\left \underline{g} \right = \left \underline{k} \cdot \underline{V}_{ud} \right \gg 1$	$\underline{a}_{v}^{+} = \frac{1}{\underline{k}} = \frac{\underline{Z}_{1} + \underline{Z}_{2}}{\underline{Z}_{1}}$	$\underline{a}_{v}^{-} = \frac{-(1-\underline{k})}{\underline{k}} = -\frac{\underline{Z}_{2}}{\underline{Z}_{1}}$
Vorwärtsbetr. $(f > f_g)$: $\left \underline{g} \right = \left \underline{k} \cdot \underline{V}_{\iota\iota d} \right \ll 1$	$\underline{a}_{v}^{+} = \underline{V}_{ud}$	$\underline{a}_{v}^{-} = -\underline{V}_{ud} \cdot \left(1 - \underline{k}\right)$
	$= \underline{z}_{id} \cdot (1 + \underline{k} \cdot \underline{V}_{ud}) \to \infty$	$=\underline{Z}_1$
Z_a	$= \left(\underline{Z}_1 + \underline{Z}_2\right) _{\frac{\underline{Z}_{a,OPV}}{1 + \underline{k} \cdot \underline{V}_{ud}}}$	$= \left(\underline{Z}_1 + \underline{Z}_2\right) \frac{\underline{z}_{a,OPV}}{1 + \underline{k} \cdot \underline{V}_{ud}}$

Stabilität: offene Schleifenverstärk. q betrachten \rightarrow bei Phasendrehung $> 180^{\circ} \rightarrow$ Mitkopplung Stabilitätsuntersuchung: Durchtrittsfrequenz f_D (wo g=1) ermitteln, dort muss $\varphi > -180^\circ$ robust stabil = $\varphi_R > 45^\circ$ schneller OPV kann schlecht sein da Gefahr Instabilität durch Phasendrehung

Integrierer

Frequenzbereich: $a_v = -\frac{1}{\cos x}$

Zeitbereich:

$$u_{out}(t) = -\frac{1}{RC} \cdot \int_0^t u_{in}(t) dt + u_{out}(t=0)$$

Integrierer mit Parallelwiderstand

- → anpassen der Integrationszeit, sodass OPV nicht so schnell in Begrenzung geht
- → bei kleinen Frequenzen: invert. Verstärk.

$$\underline{a}_v = -\frac{\frac{R_p}{R}}{1 + j\omega R_p C}$$

 $\underline{a_v} = -\frac{\overline{R}}{1+j\omega R_p C}$ Duty-Cycle: $D = \frac{U_{out,DC}}{a_v \cdot \widehat{u}_{in}}$ Schaltfrequenz muss größer als $f_{3dB} = \frac{1}{2\pi R_n C}$

Ausgangsrippel ΔU_{out} über Integral u. Flächeninhalt berechenbar

für hohe Frequenzen: k=1

ightarrow Tiefpass mit Grenzfrequenz $f_{3dB}=rac{1}{2\cdot \pi\cdot R_P\cdot C}=rac{1}{2\cdot \pi\cdot 20k\Omega\cdot 1nF}=7.96kHz$

U-I-Wandler (invertierend)

Nachteil: Quelle wird mit Laststrom belastet

U-I-Wandler (nicht-invertierend)

Vorteile:

- kleiner Eingangswiderstand → große Bandbreite
- Fotostrom fließt durch $R_F \rightarrow$ hohe Empfindlichkeit

OPV: Schaltungssynthese

- 1. Wenn a_V gegeben, Z_1 u. Z_2 bestimmen (zw. $1k\Omega$ u. $100k\Omega$, um Ruheströme zu minimieren)
- 2. Eingangsimpedanz prüfen (invertierende Schaltung für hohes Z_{in} nicht so gut)
- 3. Bandbreite prüfen (invertierend < nicht-invert., da u_{in} durch Spannungsteiler minimiert)
- 4. Offset-Fehler prüfen = Ruhestromkompensation = gleiches φ an beiden Eingängen: $R_3 = R_1 || R_2 \rightarrow$ sollte möglichst gering sein!

Nicht-lineare OPV-Schaltungen (keine AC-Analyse, da nur Großsignalverhalten relevant)

- → nicht mehr durch lineare ÜFK beschreibbar
- → Variante 1: OPV in linearem Bereich (Gegenkopplung, Prinzip d. virtuellen Masse), Rückkopplung nicht linear (zB Diode)
- → Variante 2: OPV nicht mehr linear, sondern in Begrenzung (Komparator, Schmitt-Trigger)

Nachteil:

OPV bei negativer Halbwelle übersteuert

→ wenig Bandbreite/schlechtes
Zeitverhalten

Aktiver Gleichrichter 2

neg. U_{in} : invertierender U-U mit $a_V = -\frac{R_2}{R_1}$

pos. U_{in} : D2 sperrt $\rightarrow U_{out} = 0V$

Vorteil: mehr Bandbreite, da n. übersteuert

Nachteil: invertierend; 2 Dioden nötig; $z_{in} = R_1$ geringer

Fortsetzung: Nicht-lineare OPV-Schaltungen

Komparator

Vergleich U_{in} mit U_{ref}

wenn $U_{in} > U_{ref} \rightarrow V +$

Problem: falls U_{in} linearen Bereich langsam durchläuft u. verrauscht ist, unplanmäßiges hin- u. herschalten

Schmitt-Trigger

unplanmäßiges hin- u. herschalten wird durch Hysterese vermieden

Achtung! OPV ≠ **Komparator**:

Komp. kennt nur high u. low an Ausgang, keine Frequenzkompensation (C in mittlerer Stufe) für hohe Flankensteilheit, daher nicht mit Gegenkopplung betreibbar!

OPVs sind für Gegenkopplung ausgelegt, bei Betrieb ohne Gegenkopplung langsame Schaltzeiten u. erhöhter Stromverbrauch

5. Filter

Beispiel Tiefpass 2. Ordnung

DB = Durchlassbereich, SB = Sperrbereich

Bessel: flacher Übergang DB zu SB, dafür linearer Phasengang im DB → geringe Phasenverzerrung Butterworth: mäßig steiler Übergang DB zu SB, maximal flacher Amplitudengang im DB, schwach schwingende Sprungantwort (Güte = 0,7)

Tschebyscheff: sehr steiler Übergang DB zu SB, dafür stark schwingende Sprungantwort (Resonanzüberhöhung)

Normalformen

jeder passive RC-Filter 1. Ord. hat Güte = 0,5, ab 2. Ord. < 0,5

Tiefpass 1. Ord.: $\underline{\underline{H}_{TP1}(\omega/f)} = \frac{K_P}{1+j\omega\cdot\tau_1} = \frac{K_P}{1+j\cdot\frac{f}{\epsilon}}$ (mit K_p = Verstärk. bei f = 0Hz, f_c = charakt. Fr.)

TP 2. Ord.: $\frac{\underline{H}_{TP2}(\omega/f) = \frac{K_P}{1 + j\omega \cdot \tau_1 + (j\omega \cdot \tau_2)^2} = \frac{K_P}{1 + \frac{1}{O} \cdot j \cdot \frac{f}{f_c} + \left(j \cdot \frac{f}{f_c}\right)^2}$ (Q beschreibt Reson.überhöh. @ f_c)

 \rightarrow Transformation TP-HP durch Spiegelung Frequenzgang an f_c u. Ersetzen $j\omega$ durch $\frac{1}{j\omega}$ in ÜFK

HP 1. Ord.:
$$\underline{\underline{H}_{HP1}(\omega/f)} = \frac{K_P}{1 + \frac{1}{j\omega \cdot \tau_1}} = \frac{K_P \cdot j\omega \cdot \tau_1}{1 + j\omega \cdot \tau_1} = \frac{K_P}{1 + \frac{1}{j\frac{f}{fc}}} = \frac{K_P \cdot j\frac{f}{fc}}{1 + j\frac{f}{fc}}$$
(mit K_p = Verstärk. bei $f \to \infty$)

HP 2. Ord.:
$$\underline{\underline{H}_{HP2}}(f) = \frac{\kappa_P}{1 + \frac{1}{Q} \frac{f_c}{f_c} + \left(\frac{f_c}{f_c}\right)^2} = \frac{\kappa_P \cdot \left(j \cdot \frac{f}{f_c}\right)^2}{1 + \frac{1}{Q} \cdot j^2 \cdot \frac{f}{f_c} + \left(j \cdot \frac{f}{f_c}\right)^2}$$
 (Q beschreibt Reson.überhöh. @ f_c)

für HP/TP 2. Ordnung gilt:

Überhöhung bei Resonanzfrequenz: $|H_{HP2,TP2}(f_c)| = K_P \cdot Q$

Phase bei Resonanzfrequenz: HP2: +90°, TP2: -90°

Zusammenhang f_{3dB} u. f_c :

TP2:
$$\frac{f_{3dB}}{f_c} = \sqrt{1 + \left(\frac{1}{2 \cdot Q^2} - 1\right)^2 - \left(\frac{1}{2 \cdot Q^2} - 1\right)}$$
 HP2: $\frac{f_{3dB}}{f_c} = \left(\sqrt{1 + \left(\frac{1}{2 \cdot Q^2} - 1\right)^2 - \left(\frac{1}{2 \cdot Q^2}\right)^2}\right)$

Hintergrund: TP2 durch 2x RC-TP in Reihe → Belastung des ersten TP durch zweiten

- $\rightarrow R_2 \gg R_1$ wäre Lösung, Schaltung allerdings schnell sehr hochohmig
- → besser: OPV als Impedanzwandler dazwischen

→ Problem: nur Güte < 0.5 möglich, da keine konj. komplexen Polpaare möglich

TP Multible Feedback (MFB) (= 2. Ordnung)

$$K_{P} = -\frac{R_{2}}{R_{1}}$$

$$Q = \frac{\frac{1}{2\pi \cdot f_{c}}}{C_{1} \cdot (R_{3} + R_{2} - K_{P} \cdot R_{3})}$$

$$f_{c} = \frac{1}{2\pi \cdot \sqrt{R_{3} \cdot R_{2} \cdot C_{1} \cdot C_{2}}}$$

 $K_P = 1$: Sallen-Key besser, da sehr exakt 1 $K_P = 10$: MFB besser, da Güte wenig Toleranz

TP Sallen-Key (= 2. Ordnung)

 $K_P = 1$ (Bild oben)

$$K_p = 1 + \frac{R_4}{R_3}$$
 (Bild unten)

$$Q = \frac{\sqrt{R_1 \cdot R_2 \cdot C_1 \cdot C_2}}{R_1 \cdot (C_2 - (K_P - 1) \cdot C_1) + R_2 \cdot C_2}$$
 (Bild oben: mit $K_P = 1$)
$$f_C = \frac{1}{2\pi \cdot \sqrt{R_1 \cdot R_2 \cdot C_1 \cdot C_2}}$$

$$f_c = \frac{1}{2\pi \cdot \sqrt{R_1 \cdot R_2 \cdot C_1 \cdot C_1}}$$

hohe Frequenzen: C's als Kurzschluss $\rightarrow \frac{U_{out}}{U_{in}} \approx \frac{Z_{a}}{R_{1}}$

→ R und C vertauschen

Aktive Filter höherer Ordnung (Kaskadierung!)

Filter n-ter Ord. wird in konj. komplexe Polpaare aufgeteilt, welche dann mit Sallen-Key od. MFB realisiert werden \rightarrow n/2 Filterstufen nötig Notwendiges GBW: $\frac{GBW}{OBW} > 100 \cdot Q \cdot K_P \cdot f_{C_{Filter}}$

(x100 da Phase früh abfällt)

Aktiver Bandpass-Filter (immer 2./4./6./... Ordnung!)

Kaskadierung von HP u. TP: $\underline{H_{BP}}(f) = \underline{H_{HP}}(f) \cdot \underline{H_{TP}}(f)$

Mittenfrequenz: $f_m(=f_c) = \sqrt{f_{3dB,O} \cdot f_{3dB,U}}$ (geometr. AVG)

Güte: $Q = \frac{f_m}{B} = \frac{f_m}{f_{3dB,0} - f_{3dB,U}}$

einfache Version mit Q < 0,5:

für Q > 0,5 Sallen-Key- od. MFB-Konfiguration nötig:

$$\ddot{\mathsf{UFK}} : \underline{\underline{H}_{BP2}(f)} = \frac{\underline{H_m \cdot \frac{j \cdot f_m}{f_m}}}{1 + \frac{j \cdot f_m}{O} + \left(j \cdot \frac{f}{f_m}\right)^2}$$

$$f_m = \frac{1}{2\pi \cdot \sqrt{(R_1||R_3) \cdot C_1 \cdot R_2 \cdot C_2}}$$

Verstärkung bei f_m : $H_m = -\frac{R_2}{2 \cdot R_1}$

$$Q = \frac{f_m}{R} = f_m \cdot \pi \cdot R_2 \cdot C \quad (\text{mit } C = C_1 = C_2)$$

Aktive Bandsperre \rightarrow Addition: $\underline{H_{BP}}(f) = \underline{H_{HP}}(f) + \underline{H_{TP}}(f)$

Mittenfrequenz: $f_m(=f_c) = \sqrt{f_{3dB,O} \cdot f_{3dB,U}}$ (geometr. AVG)

Güte: $Q = \frac{f_m}{B} = \frac{f_m}{f_{3dB,0} - f_{3dB,U}}$

einfache Version mit Q < 0,2:

..Fortsetzung Aktive Bandsperre

für Q > 0,5 Sallen-Key- od. MFB-Konfiguration nötig

Unterdrückung einzelner Frequenzen → Notch-Filter:

6. Transistor als Schalter

 $I_{C,normal} > I_{C,\ddot{\mathsf{u}}} :!!!$

Sättigungsbereich beginnt wenn $U_{BC} > 0.6V \rightarrow U_{CE,sat} = 0.1V$

Vorteil: Transistor sehr niederohmig, da $U_{CE.on} \approx 0V$

Übersteuerung:

$$\ddot{\mathbf{u}} = \frac{I_{C,normal}}{I_{C,\ddot{\mathbf{u}}}} = \frac{I_{B,normal} \cdot BF}{\frac{UB}{R_L}} = \frac{\frac{U_{on} - 0.7V}{R_B} \cdot BF}{\frac{UB}{R_L}}$$
(2..6)

Synthese: $\ddot{\mathbf{u}} \rightarrow I_{C,\ddot{\mathbf{u}}} \rightarrow I_{B,\ddot{\mathbf{u}}} \rightarrow R_B$ $\rightarrow R_{on} = \frac{U_{CE,on}}{I_{C,on}} = \frac{U_{CE,sat}}{\ddot{\mathbf{u}} \cdot I_{C,\ddot{\mathbf{u}}}}$

Verkürzung Schaltzeit:

- U_{off} negativ statt 0V
- Diode parallel zu R_B (Anode Richtung Basis) (schnelleres Ausräumen v. Überschuss-LT)
- Miller-Effekt: Kondensator über R_R

mit MOSFET

Kleinsignal-ESB/MOSFET-Betriebsarten:

$$R_{DS,on} \approx R_{CH} + R_{DS,etc} = \frac{1}{\beta_n \cdot (U_{GS} - U_{th})} + R_{DS,etc}$$
 $I_{D,on} \approx \frac{UB}{R_L}$
 $U_{DS,on} = R_{DS,on} \cdot I_{D,on}$ $P_{V,on} = P_{V,stat} = I_{D,on}^2 \cdot R_{DS,on}$ $P_{V,off} \approx 0$

Schaltverhalten:

Bereich 1: C_{GS} aufladen (Totzeit – 2,5nC)

Bereich 2: C_{GD} entladen (6,5nC)

Bereich 3: C_{GS} weiter aufladen bis $R_{DS,on}$ minimal (22nC)

Stromquelle: Einschaltzeit $t_{on} = \frac{\Delta Q_G}{I_G} = \frac{22nC}{I_G}$ Spannungsquelle mit R_G : $t_{on} = t_{on,delay} + t_r$ $t_{off} = t_{off,delay} + t_f$

$$E_{on} = 0.5 \cdot U_{DS,off} \cdot I_{D,on} \cdot t_r \qquad E_{off} = 0.5 \cdot U_{DS,off} \cdot I_{D,on} \cdot t_f$$

$$P_{V,dyn} = \frac{E_{on} + E_{off}}{T} \qquad P_{V,stat} = D \cdot I_{D,on}^2 \cdot R_{DS,on} \qquad P_{in} = \frac{U_{in}^+ \cdot Q_G(U_{in}^+)}{T}$$

$$P_{RL} = D \cdot I_{D,on}^2 \cdot R_L \qquad \text{Wirkungsgrad:} \qquad \eta = \frac{P_{RL}}{P_{RL} + P_{V,dyn} + P_{V,stat} + P_{in}}$$

Fazit: P_V prop. zu f; je geringer R_G , desto schneller t_{on}/t_{off} u. desto geringer P_V