```
# Load necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.tsa.stattools import adfuller
import warnings
# Suppress warnings
#warnings.filterwarnings("ignore")
# Load the data
gdp_data = pd.read_csv('gdp_data.csv')
fdi data = pd.read csv('fdi data.csv')
# Transform the data for visualization
gdp_long = pd.melt(gdp_data, id_vars=['Country'], var_name='Year', value_name='GDP')
fdi_long = pd.melt(fdi_data, id_vars=['Country'], var_name='Year', value_name='FDI')
# Convert Year to numeric
gdp_long['Year'] = gdp_long['Year'].astype(int)
fdi_long['Year'] = fdi_long['Year'].astype(int)
# Merge GDP and FDI data for analysis
merged_data = pd.merge(gdp_long, fdi_long, on=['Country', 'Year'])
# Visualization 1: GDP Growth Trends by Country
plt.figure(figsize=(12, 6))
sns.lineplot(data=gdp_long, x='Year', y='GDP', hue='Country')
plt.title('GDP Trends (2000-2016)')
plt.xlabel('Year')
plt.ylabel('GDP (in Billion $)')
plt.legend(title='Country')
plt.grid(True)
plt.show()
# Visualization 2: FDI Trends by Country
plt.figure(figsize=(12, 6))
sns.lineplot(data=fdi_long, x='Year', y='FDI', hue='Country')
plt.title('FDI Trends (2000-2016)')
plt.xlabel('Year')
plt.ylabel('FDI (in Billion $)')
plt.legend(title='Country')
plt.grid(True)
plt.show()
# Visualization 3: Correlation between GDP and FDI
plt.figure(figsize=(12, 6))
\verb|sns.scatterplot(data=merged_data, x='FDI', y='GDP', hue='Country')| \\
sns.regplot(data=merged_data, x='FDI', y='GDP', scatter=False, color='grey')
plt.title('Correlation between FDI and GDP')
plt.xlabel('FDI (in Billion $)')
plt.ylabel('GDP (in Billion $)')
plt.grid(True)
plt.show()
# Forecasting GDP for India using time series analysis
india_gdp = gdp_long[gdp_long['Country'] == 'India']
india_gdp_ts = india_gdp.set_index('Year')['GDP']
# Fit an ARIMA model
gdp_model = ARIMA(india_gdp_ts, order=(1, 1, 1)).fit()
gdp_forecast = gdp_model.get_forecast(steps=5)
gdp forecast df = gdp forecast.conf int()
gdp_forecast_df['Forecast'] = gdp_forecast.predicted_mean
# Plot forecast
gdp_forecast_df['Forecast'].plot(label='Forecast', color='blue')
plt.fill_between(gdp_forecast_df.index, gdp_forecast_df.iloc[:, 0], gdp_forecast_df.iloc[:, 1], color='lightblue', alpha
plt.title('GDP Forecast for India (Next 5 Years)')
plt.xlabel('Year')
nl+ vlabal/'CDD /in Dillian ()')
```

```
11/13/24, 1:19 AM
```

```
plt.yrauer( GDF (IN BILLION #) )
plt.legend(['Forecast', 'Confidence Interval'])
plt.grid(True)
plt.show()

# Print model summary
print(gdp_model.summary())
```















## SARIMAX Results

| ==========     | ===========      |                   | ======== |
|----------------|------------------|-------------------|----------|
| Dep. Variable: | GDP              | No. Observations: | 17       |
| Model:         | ARIMA(1, 1, 1)   | Log Likelihood    | -97.495  |
| Date:          | Tue, 12 Nov 2024 | AIC               | 200.989  |
| Time:          | 15:00:29         | BIC               | 203.307  |
| Sample:        | 0                | HQIC              | 201.108  |
|                | - 17             |                   |          |

Covariance Type: opg

|        | coef      | std err  | Z        | P> z  | [0.025   | 0.975]   |  |
|--------|-----------|----------|----------|-------|----------|----------|--|
| ar.L1  | 1.0000    | 0.003    | 333.663  | 0.000 | 0.994    | 1.006    |  |
| ma.L1  | -0.9912   | 0.438    | -2.264   | 0.024 | -1.849   | -0.133   |  |
| sigma2 | 9626.6431 | 4.74e-05 | 2.03e+08 | 0.000 | 9626.643 | 9626.643 |  |

| Ljung-Box (L1) (Q):             | 0.18 | Jarque-Bera (JB): | 0.34 |  |  |  |  |  |
|---------------------------------|------|-------------------|------|--|--|--|--|--|
| Prob(Q):                        | 0.67 | Prob(JB):         | 0.85 |  |  |  |  |  |
| Heteroskedasticity (H):         | 2.93 | Skew:             | 0.36 |  |  |  |  |  |
| <pre>Prob(H) (two-sided):</pre> | 0.26 | Kurtosis:         | 2.99 |  |  |  |  |  |

## Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
  [2] Covariance matrix is singular or near-singular, with condition number 8.43e+23. Standard errors may be unstable.