The Clean Thesis Style

Ricardo Langner

Clean Thesis Style University

CleanThesis

Department of Clean Thesis Style Institut for Clean Thesis Dev Clean Thesis Group (CTG)

Documentation

The Clean Thesis Style

Ricardo Langner

1. Reviewer Jane Doe

Department of Clean Thesis Style Clean Thesis Style University

2. Reviewer John Doe

Department of Clean Thesis Style Clean Thesis Style University

Supervisors Jane Doe and John Smith

August 26, 2015

Ricardo Langner

The Clean Thesis Style

Documentation, August 26, 2015

Reviewers: Jane Doe and John Doe

Supervisors: Jane Doe and John Smith

Clean Thesis Style University

Clean Thesis Group (CTG)

Institut for Clean Thesis Dev

Department of Clean Thesis Style

Street address

Postal Code and City

Contents

1 Multiple time series forecasting using ensembles of quasi-randomize									
	functional link neural networks								
	1.1	Introdu	uction	1					
	1.2	Descrip	ption of the base models	2					
	1.3	Ensem	bles of RVFL	5					
		1.3.1	Bagging	5					
		1.3.2	Boosting	8					
		1.3.3	Stacking	9					
	1.4	Numer	rical examples	11					
		1.4.1	Descriptive statistics	11					
		1.4.2	Summary of results	15					
	1.5	Appen	dix	19					
		1.5.1	Out-of-sample errors summary	19					
		1.5.2	Correlation of out-of-sample errors	20					
Bi	bliog	raphy		21					

Multiple time series forecasting using ensembles of quasi-randomized functional link

1.1 Introduction

neural networks

The goal of ensemble learning is to combine two or more individual statistical/machine learning models - the base models or base learners - into one, in order to obtain an ensemble model, with an improved out-of-sample error over the base models.

Ensemble learning is widely used in the winning solutions of machine learning competitions. It allows to achieve very good performances indeed, at the expense of being relatively less interpretable than the base learners. As a consequence, choosing to use ensemble models or a base model for solving a given problem, could sometimes be seen as finding a trade-off between the desire for interpretability and the desire for an highly increased performance. That said, some techniques such as variable importance for ensemble of trees, can give a sense of which predictor contributes the most to the perfomance of the model.

In this chapter, we apply three popular ensemble learning methods to multiple time series forecasting: Bootstrap aggregating (cite Efron), known as bagging, Boosting (cite Hothorn et al. (2010), Friedman et al. (2000), Bühlmann and Yu (2003)), and stacked generalization(cite Wolpert 1992), known as stacking. The base learners that we use for bagging and stacking, are the quasi-random vector functional link neural networks introduced in Moudiki et al. (2017). For the boosting algorithm, we use a slightly modified version of the model from Moudiki et al. (2017), in which the regression model parameters are not constrained in a ridge regression fashion (more details in section 1.2).

In the next section, we give an overview of the base learners. Then, we describe how we use these models as the basic components of our bagged/stacked ensembles. To finish, we present some numerical examples of use of these new models for forecasting multiple time series.

1.2 Description of the base models

The base learner is described in lengths in Moudiki et al. (2017). It is a single layer feed forward neural networks (SLFN). We have an output variable $y \in \mathbb{R}^n$, which has to be explained by a set of observed predictors $X^{(j)} \in \mathbb{R}^n$, $j \in \{1, \ldots, p\}$. The RVFL networks that we use to explain y is described for $i \in \{1, \ldots, n\}$ as:

$$y_i = \beta_0 + \sum_{j=1}^p \beta_j X_i^{(j)} + \sum_{l=1}^L \gamma_l g\left(\sum_{j=1}^p W^{(j,l)} X_i^{(j)}\right) + \epsilon_i$$
 (1.1)

Where g is the activation function, L the number of nodes in the hidden layer, $W^{(j,l)}$ are elements of the hidden layer, and the parameters β_j and γ_l are to be learned from the observed data $X^{(j)}$, $j \in \{1, \ldots, p\}$. The ϵ_i 's are the residual differences between the output variable values and the RVFL model.

This type of model can be seen as a one explaining y_i , by finding a compromise between linear and potentially non-linear effects of the original predictors $X^{(j)}$ and transformed predictors

$$\Phi(\mathbf{X})^{(l)} = g\left(\sum_{i=1}^{p} W^{(j,l)} X_i^{(j)}\right)$$

 $\{1,\ldots,L\}$ on the response. In this paper, we use the Rectified Linear Units activation function, known as ReLU

$$q: x \mapsto max(x,0)$$

But other choices of activation functions, such as the sigmoid function $g: x \mapsto \frac{1}{1+exp(-x)}$ or the hyperbolic tangent $g: x \mapsto tanh(x)$ (or others) can be envisaged.

The elements $W^{(j,l)}$ of the hidden layer are taken from a quasi-random (deterministic) sobol sequence on [0,1], which is shifted in such a way that they belong to [-1,1]. In the case of bagged and stacked ensembles, solving for the optimal β_j 's and γ_l 's in the base-learners is done by searching these parameters, in restricted regions where we have:

$$\sum_{j=1}^{p} \beta_j^2 \le u$$

and

$$\sum_{l=1}^{L} \gamma_l^2 \le v$$

for $u, v \in \mathbb{R}^*$. That is, by applying a regularization to these unknown parameters. In the case of boosting, we do not restrict the regression parameters' norms to be inferior to u and v. Instead, we rely on the boosting algorithm described in (cite Hothorn et al. 2010) (details in section 1.3.2), with the base-learners being the unrestricted regression models described by equation (1.1).

If we consider $p \in \mathbb{N}^*$ time series $(X_t^{(j)})_{t \geq 0}, j = 1, \ldots, p$, observed at $n \in \mathbb{N}^*$ discrete dates, we are interested in obtaining simultaneous forecasts of the p time series at time n+h, $h \in \mathbb{N}^*$, by allowing each of the p variables to be influenced by the others. We use k < n lags of each of the observed p time series. So that, the output variables to be explained are:

$$Y^{(j)} = \left(X_n^{(j)}, \dots, X_{k+1}^{(j)}\right)^T \tag{1.2}$$

for $j \in \{1, \dots, p\}$. $X_n^{(j)}$ is the most contemporaneous observed value of the j^{th} time series, and $X_{k+1}^{(j)}$ was observed k dates earlier in time for $(X_t^{(j)})_{t \geq 0}$. These output variables are stored in a matrix:

$$\mathbf{Y} \in \mathbb{R}^{(n-k) \times p}$$

and the predictors are stored in a matrix:

$$\mathbf{X} \in \mathbb{R}^{(n-k)\times(k\times p)}$$

where **X** consists in p blocks of k lags, for each one of the observed p time series.

An additional layer of transformed predictors is added to \mathbf{X} , in order to capture the potentially non-linear interactions between the predictors and the output variable. This also serve as a way to do achieve an automated feature engineering. Adding the transformed predictors to the original ones, leads to a new matrix of predictors with dimensions $(n-k)\times(k\times p+L)$, where L is the number of nodes in the hidden layer.

For example, we have p=2 time series $(X_{t_1}^{(1)},\ldots,X_{t_5}^{(1)})$ and $(X_{t_1}^{(2)},\ldots,X_{t_5}^{(2)})$ observed at n=5 dates, $t_1<\ldots< t_5$, with k=2 lags, and L=3 nodes in the hidden layer. In this case, the response variables are stored in:

$$\mathbf{Y} = \begin{pmatrix} X_{t_5}^{(1)} & X_{t_5}^{(2)} \\ X_{t_4}^{(1)} & X_{t_4}^{(2)} \\ X_{t_3}^{(1)} & X_{t_3}^{(2)} \end{pmatrix}$$

The predictors are stored in:

$$\mathbf{X} = \begin{pmatrix} X_{t_4}^{(1)} & X_{t_3}^{(1)} & X_{t_4}^{(2)} & X_{t_3}^{(2)} \\ X_{t_3}^{(1)} & X_{t_2}^{(1)} & X_{t_3}^{(2)} & X_{t_2}^{(2)} \\ X_{t_2}^{(1)} & X_{t_1}^{(1)} & X_{t_2}^{(2)} & X_{t_1}^{(2)} \end{pmatrix}$$

And the coefficients in the hidden layer are:

$$\mathbf{W} = \begin{pmatrix} W^{(1,1)} & W^{(1,2)} & W^{(1,3)} \\ W^{(2,1)} & W^{(2,2)} & W^{(2,3)} \\ W^{(3,1)} & W^{(3,2)} & W^{(3,3)} \\ W^{(4,1)} & W^{(4,2)} & W^{(4,3)} \end{pmatrix}$$

We let y be the j_0^{th} column (out of p) of the response matrix \mathbf{Y} , and $\Phi(\mathbf{X})$ be the matrix of transformed predictors obtained from \mathbf{X} by the hidden layer. We also denote the set of regression parameters associated with this j_0^{th} time series, as:

$$\beta_m^{(j_0)} =: \beta_m$$

and

$$\gamma_l^{(j_0)} =: \gamma_l$$

for $m \in \{1, ..., k\}$; $l \in \{1, ..., L\}$. Solving for the regression parameters for the j_0^{th} time series, under the constraints

$$\sum_{m=1}^{k \times p} \beta_m^2 \le u$$

and

$$\sum_{l=1}^{L} \gamma_l^2 \le v$$

for $u, v \in \mathbb{R}^*$, leads to minimizing a penalized residual sum of squares:

$$\mathcal{L}(\mathbf{X}; \beta, \gamma) = (y - \mathbf{X}\beta - \Phi(\mathbf{X})\gamma)^{T} (y - \mathbf{X}\beta - \Phi(\mathbf{X})\gamma) + \lambda_{1}\beta^{T}\beta + \lambda_{2}\gamma^{T}\gamma$$

where λ_1 and λ_2 are Lagrange multipliers. Otherwise, without the constraints (in the case of boosting, see section 1.3.2), the problem to be solved is simply a least squares regression problem on the augmented dataset, as described in equation 1.2. By denoting:

$$A = \begin{pmatrix} \mathbf{X}^T \mathbf{X} + \lambda_1 I_{k \times p} & \mathbf{X}^T \Phi(\mathbf{X}) \\ \Phi(\mathbf{X})^T \mathbf{X} & \Phi(\mathbf{X})^T \Phi(\mathbf{X}) + \lambda_2 I_L \end{pmatrix} =: \begin{pmatrix} B & C^T \\ C & D \end{pmatrix}$$

and $S = D - CB^+C^T$. And:

$$A^{+} = \begin{pmatrix} B^{+} + B^{+}C^{T}S^{+}CB^{+} & -B^{+}C^{T}S^{+} \\ -S^{+}CB^{+} & S^{+} \end{pmatrix} =: \begin{pmatrix} A_{1}^{+} & A_{2}^{+} \\ A_{3}^{+} & A_{4}^{+} \end{pmatrix}$$

where S^+ and B^+ are the Moore-Penrose pseudo-inverse of matrices S and B. The whole set of parameters, for all the p observed time series is given by:

$$\left(\begin{array}{c} \hat{\boldsymbol{\beta}} \\ \hat{\boldsymbol{\gamma}} \end{array} \right) := \left(\begin{array}{cc} A_1^+ & A_2^+ \\ A_3^+ & A_4^+ \end{array} \right) \left(\begin{array}{c} \mathbf{X}^T \mathbf{Y} \\ \boldsymbol{\Phi}(\mathbf{X})^T \mathbf{Y} \end{array} \right)$$

1.3 Ensembles of RVFL

As mentioned in the introduction, we will use bagging, boosting, and stacking to construct ensemble models, consisting of the RVFL models from the previous section 1.2. A short description of these techniques will be made in next sections 1.3.1, 1.3.2 and 1.3.3.

1.3.1 Bagging

The Bootstrap (cite Efron) uses multiple random replications of a given data set, to obtain standard errors of model parameters, for example. In the context of ensemble learning, these replications of the original data set are used to produce various predictions of the base models, which are then aggregated - in the case of regression problems, they are averaged, and in the case of classification problems, majority vote could be used - to obtain a single prediction with less out-of-sample variance. This procedure is called bootstrap aggregating or *bagging*.

In order to illustrate the benefits of the bagging procedure, we consider n different base learners, with out-of-sample prediction errors equal to $\epsilon_1, \ldots, \epsilon_n$, and assume that the distribution of these errors are centered around 0:

$$\mathbb{E}\left[\epsilon_i\right] = 0$$

for i = 1, ..., n. In addition, we have:

$$\mathbb{E}\left[\epsilon_i \epsilon_j\right] = \gamma$$

for $i \neq j$; that is, the covariance between the errors is equal to γ . And:

$$Var(\epsilon_i) = \sigma^2$$

for $i=1,\ldots,n$. The out-of-sample mean squared error (MSE) of the aggregated (averaged) model including these n base models is equal to:

$$MSE = \mathbb{E}\left[\left(\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}\right)^{2}\right] = \frac{1}{n^{2}}\mathbb{E}\left[\left(\sum_{i=1}^{n}\epsilon_{i}\right)^{2}\right]$$

$$= \frac{1}{n^{2}}\mathbb{E}\left[\sum_{i=1}^{n}\epsilon_{i}^{2} + 2\sum_{i < j}\epsilon_{i}\epsilon_{j}\right]$$

$$= \frac{1}{n^{2}}\left(\sum_{i=1}^{n}\mathbb{E}\left[\epsilon_{i}^{2}\right] + 2\sum_{i < j}\mathbb{E}\left[\epsilon_{i}\epsilon_{j}\right]\right)$$

$$= \frac{1}{n^{2}}\left(n\sigma^{2} + 2\frac{n(n-1)}{2}\gamma\right)$$

$$= \frac{\sigma^{2}}{n} + \frac{(n-1)}{n}\gamma$$

From this expression of the MSE, we can observe that if n is high $(n \to \infty)$, that is, if there are several base learners in the ensemble, and the out-of-sample expected error is low, the out-of-sample MSE of the ensemble prediction will decrease, and can eventually be reduced to γ . If, in addition, the model predictions are perfectly uncorrelated, i.e $\gamma=0$, then the out-of-sample MSE is further decreased.

Having a low value for γ , along with a low out-of-sample expected error, helps in achieving a lower out-of-sample prediction error for the ensemble model. Decorrelation in ensemble learning is hence important, and consists in increasing the diversity in the base learners, in order to obtain a low value for γ .

This decorrelation among the base learners is achieved for example in Random Forest models (cite Breiman, L. (2001)), by growing each tree in the forest, with only a subset of the predictors available. Also, an example of use of decorrelation, specifically for ensembles of neural networks is demonstrated in (cite Rosen (1996)). The author presents three approaches for achieving *disagreement* between the networks: one in which they are trained independently and aggregated with the

hope that their predictions are somewhat different; a second one, in which different activation functions or achitecture (typically, more or less hidden layers or nodes in the hidden layers etc.) for each base learner. A third approach consists in training the individual networks on different subsamples of the original training set. The case of decorrelation learning for RVFL is treated in (cite Alamdoosh et Wang (2014))

In both papers, (cite Rosen (1996)) and (cite Alamdoosh et Wang (2014)), the procedure implemented in order to obtain a decorrelation of the base learners is denoted as Negative Correlation Learning (NCL). The general idea is to minimize the penalized Root Mean Squared Error:

$$\sum_{i=1}^{n} \left[(y_i - f_k(\mathbf{x}_i))^2 + \lambda p_k(\mathbf{x}_i) \right]$$

where $\mathbf{x}_i \in \mathbb{R}^p$ is the i^{th} observation of the training data set, with p features. f_k is a base learner with $k \in \{1 \dots B\}$, and B is the number of bootstrap resamples. p_k is a penalty term decorrelating the current network's error with the errors of the networks previously trained. λ is a Lagrange multiplier, a regularization parameter, preventing the correlation between the successive base learners in-sample errors from being high. For example, p_k could be defined as:

$$p_k(\mathbf{x}_i) = (y_i - f_k(\mathbf{x}_i)) \sum_{j < k} (y_i - f_j(\mathbf{x}_i))$$

In this chapter, we use the third approach described in (cite Rosen (1996)) (although many other approaches can be envisaged). Multiple samples (training) data sets are constructed by randomly picking a fraction col_sample_coeff of the covariates, and a subset (using the fraction row_sample_coeff) of the lines, as described in figure 1.1 (using notations from section 1.2).

Taking a subset of the lines is done by respecting the serial dependence of the series and taking consecutive observations (that is, without skipping any observation) for each bootstrap resample.

The predictions associated to each training set resample are then averaged, in order to obtain a single prediction, with an uncertainty around it. Some numerical examples on the application of bagging to RVFL base learners can be found in section 1.4

Fig. 1.1: Construction of B bootstrap resamples by using the initial data

1.3.2 Boosting

The boosting approach adopted here, is described in Hothorn et al. (2010) and implemented in R package mboost. The general idea of the algorithm is to fit the in-sample residuals with base-learners, iteratively and slowly, but to stop learning before the out-of-sample error starts to worsen. With the response being y and the covariates stored in \mathbf{x} , we are interested in constructing a regression function \hat{f} , so that:

$$\hat{f}(\mathbf{x}) = \sum_{j=1}^{B} \nu \hat{f}_{j}(\mathbf{x})$$

B is the number of boosting iterations, ν is a learning rate parameter preventing the base learners from fitting the residuals too quickly, and \hat{f}_j , $j \in \{1, \dots, B\}$ are the base learners, which are obtained as:

$$\left(\hat{f}_{1},\ldots,\hat{f}_{p}\right)=argmin_{f_{1},\ldots,f_{p}}\rho\left(y,\sum_{j}\nu f_{j}\left(\mathbf{x}\right)\right)$$

In this expression, ρ is a loss function to be minimized (for example $x\mapsto x^2$, or $x\mapsto |x|$). And in the case of multivariate time series, we are doing multitask learning. Each series (their most contemporaneous observations) share the same set of predictors (their lagged observations) as in the RVFL model described in section 1.2, but without regularization of the regression models' parameters. This model is a different version of the Stochastic Configuration Network model from (cite Wang et al. (2017)). They do not include the *direct link* (linear part of the RVFL) but only the transformed predictors $\Phi(\mathbf{X})^{(l)} = g\left(\sum_{j=1}^p W^{(j,l)} X_i^{(j)}\right)$, and show that under certain specific conditions, the model verifies an universal approximator property.

The same number of boosting iterations and the same learning rate are used for all the observed time series. It would be possible to consider different numbers of iterations and different learning rates for each time series, but in this situation there would be as much as parameters as time series, and the regularization parameters would be trickier to optimize.

1.3.3 Stacking

Stacked generalization or stacking, was introduced (cite Wolpert (1992)). It is also presented in (Breiman (2001)) for regression models. The idea behind this procedure is to construct new predictors for the training data set, by using diverse predictions of multiple models, which are combined by a meta-learner model. A simple example of 2-fold stacking applied to regression is described hereafter. It is possible to imagine examples with more stacked layers:

- Divide the original training data set $\mathbf{X} \in \mathbb{R}^{n \times p}$, into two parts: part1 and part2, each with n/2 rows
- Train a base learner model on part1 and obtain n/2 predictions on part2.
- Train the same base learner model on part2 and obtain n/2 predictions on part1.
- Train a meta-learner model on the new data set part3, consisting in the the
 original predictors, plus the predictors constructed by applying the base learner
 model on part1 and part2.

Typically, in this procedure, various types of base learners are used, to increate the diversity of new predictors. Since we are using time series data here, which inherently exhibit a serial dependence between the observations, we have to adapt the procedure described previously. In the case of a 2-fold stacking again, we divide the original training data set $\mathbf{X} \in \mathbb{R}^{n \times p}$ (with p time series observed at n dates) into two parts: part1 and part2; each consisting of n/2 rows. part1 contains the most ancient observations and part2, the most recent observations of the time series contained in \mathbf{X} . Also, we use multiple resamples of the base learner, as follows (this procedure is also described in figure 1.2):

• Train B resampled RVFL models on part1, using a random subset of part1 in each resampling iteration. Obtain B sets of predictions ($B \times p$ new predictors) with these models, over the whole horizon of part2.

- Create a new enriched data set part3, containing the observed time series from part2, and the B × p additional series predicted from part1 on part2.
- Use a meta-learning model to obtain predictions on the new, enriched dataset, part3.

For the latter point, we consider a few meta-learner models that have been used in the past in the literature (cite Breiman's Stacked Regressions). In general, the idea is that a relatively simple meta-learner will achieve a good performance. We use the following models for this purpose:

- Linear least squares regression model
- Linear least squares regression model with positive coefficients (cite Lawson CL, Hanson RJ (1974)) and Lawson CL, Hanson RJ (1995), as used in (cite Breiman (2001))
- Ridge regression (cite Hoerl et Kennard 1970)

These selected meta-learners are trained on part3, with the most contemporaneous observations of the series as responses, and their respective lags as predictors. Some numerical examples on the application of stacking to RVFL base learners can be found in section 1.4

Fig. 1.2: Construction of the enriched/stacked dataset

1.4 Numerical examples

For the numerical examples, we obtain forecast of the Treasury Bill rates among other macroeconomic variables, in a *data-rich* environment. We use data from (cite Greene (20something)). Four of the time series are considered: the Treasury Bill rates, the real consumption, the consumer price index, and the real expenditure. They are all observed on a quaterly basis.

We annualize the last three time series, but keep the Treasury Bill rates unchanged. So that, the four time series are nearly on the same scale.

The out-of-sample Root Mean Squared Error (RMSE) is used as a measure of performance of the different implemented models.

1.4.1 Descriptive statistics

Figure 1.3 presents the resulting time series' data obtained after the few transformations described in the previous paragraph. Table 1.1 contains a summary of these data, where we can see that the four time series are now nearly expressed in the same scale.

Fig. 1.3: Treasury Bills rates and transformed Real consumption, Real disposable income, and Inflation data from (cite Greene et. al (2007)) in a *data-rich* environment

Tab. 1.1: Summary statistics for the four transformed time series: Treasury Bills and transformed Real consumption, Real disposable income, and Inflation data from (cite Greene et. al (2007))

Series	Min	1st Qrt	Median	Mean	3rd Qrt	Max	Std. Dev.
Real consumption	-11.990	1.814	3.637	3.513	5.414	19.978	3.546
Real disposable income	-7.275	1.613	3.390	3.423	5.518	18.358	3.486
Inflation	-2.530	1.755	3.135	3.936	5.593	16.864	3.407
Treasury Bills rates	0.810	3.138	5.050	5.270	6.715	15.090	2.829

Tab. 1.2: Box-Pierce test for the independence in the time series observations

X-squared	p-value
0.0133	0.9082
1.3912	0.2382
86.428	2.2e-16
186.35	2.2e-16
	1.3912 86.428

Fig. 1.4: Autocorrelation function for the four times series: Treasury Bills rates, Real consumption, Real disposable income, Inflation

The Box-Pierce tests results presented in table 1.2, and the autocorrelation functions presented in 1.4, show that the two time series for Real consumption and Real disposable income could be considered as stationary after the transformations. Whereas for the Treasury Bills rates and Inflation, there is still a non-negligible autocorrelation within the series.

Another interesting information is given by figure 1.5. We observe that the distribution of the data for inflation and Treasury Bills rates is skewed, when compared to the data for Real consumption and Real disposable income.

Also, based on the correlations displayed in figure 1.5, the Real consumption is globally decreasing when the Treasury Bills rates and the inflation are increasing. But when the Real disposable income increases, the Real consumption increases as well.

Fig. 1.5: Correlation plot for the four times series: Treasury Bills rates, Real consumption, Real disposable income, Inflation

In sections ?? and ??, we apply the bagging and stacking procedures described in sections 1.3.1 and 1.3.3 to the dataset we have just described.

A rolling forecasting cross-validation method (see [Ber+15] and figure 1.6). At the beginning of the procedure, the training set contains 24 points (4 years), and the test set contains 4 points (1 year) and 8 points (2 years). The training set is then advanced of one point forward (rolled), and the procedure is repeated until no more data for the training set are found.

Fig. 1.6: Training and testing sets in rolling forecasting cross-validation

As we said at the beginning of section 1.4, we use the Root Mean Squared Error (RMSE) as a measure of the out-of-sample error. All the benchmarks are made on what is defined as part3 in section 1.3.3, in order to have a similar perimeter for bagging and stacking. The results obtained by the ensemble learners are compared to those obtained by the base RVFL model, which are presented here:

For the bagging example, we use B=100 resamples of the data, and calculate the average out-of-sample RMSE obtained by the ensemble model on all the testing sets (see figure 1.6). The dataset used, is the one defined as part3 in section 1.3.3.

For the boosting example, we use B=10 boosting iterations of the least squares regression model from formula 1.1. The tuning parameters are the learning rate of the boosting algorithm denoted as ν , the number of nodes in the hidden layer for the base-learner nb_hidden, the fraction of the initial time series considered as predictors col_sample, the number of lags.

For the stacking example, The dataset used, is also the one defined as part3 in section 1.3.3. The tuning parameters are the number of boostrap resamples, B, and the hyperparameter of the ridge regression model is the regularization parameter.

1.4.2 Summary of results

A summary of the out-of-sample RMSE is presented in figure 1.7 in a logarithmic scale, for all the methods that we described and tested in the previous sections. The numerical values corresponding to these boxplots can be found in appendix 1.5.1, in their original scale.

The base RVFL model is denoted as ridge2. bagging, stack_ridge, stack_lm, stack_nnls, and glmboost respectively denote the bootstrap aggregating method from section 1.3.1, stacking with ridge regression, with ordinary least squares, least squares regression with positive coefficients from section 1.3.3, and boosting from section 1.3.2. We also added an unrestricted Vector AutoRegression (VAR) model to the benchmarks, denoted as VAR, which mostly helps us in assessing if the other models' implementation/predictions are not off track.

Fig. 1.7: Out-of-sample RMSE distribution for the different tested models

Bagging is performing the best on average (cf. appendix 1.7 for details) on both horizons, 4-steps ahead and 8-steps ahead, and is followed by boosting. The stacking algorithm works best with the ridge regression model taken as a meta-learner, but is failing with the other meta learners (ordinary least squares and least squares regression with positive coefficients). Overall the boosting algorithm is also very robust, and displays the lowest standard deviation of all the models tested.

The *best* hyperparameters obtained for each algorithm are presented below, for the different horizons of projection.

• For horizon = 4

```
# base RVFL
    lags nb_hidden lambda_1 lambda_2
               100
                     10000
                                100
    # bootstrap aggregating
    lags nb_hidden lambda_1 lambda_2 B col_sample row_sample
               1 21.54435 21.54435 100
                                             0.9
                                                        0.9
    # stacking with ridge regression
    lags
           lambda
       3 21.54435
   # stacking with ordinary least squares
    lags
       1
   # stacking with least squares and > 0 coeffs
    lags
       1
   # boosting
                 eta col_sample nb_hidden lambda_1 lambda_2
    lags B
      3 10 0.2020798
                         1
                                     1
                                                      Inf
   # VAR
    type_VAR lags
       const 1
• For horizon = 8
   # base RVFL
   lags nb_hidden lambda_1 lambda_2
      3
               2 21.54435 10000
   # bootstrap aggregating
   lags nb_hidden lambda_1 lambda_2 B col_sample row_sample
          1 21.54435 21.54435 100 0.9 0.9
      1
```

```
# stacking with ridge regression
lags
       lambda
   3 21.54435
# stacking with ordinary least squares
lags
   1
# stacking with least squares and > 0 coeffs
lags
   1
# boosting
lags B eta col_sample nb_hidden
   3 10 0.175
# VAR
type_VAR lags
  none
           1
```

Below, in figure 1.8, we can observe how the different methods perform through time. We observe that the models' errors are highly correlated, which is reassuring concerning their implementation.

The details of the correlations between these errors can be found in appendix 1.5.2. The VAR model generally exhibits a higher variance than the other models (excluding stacking with stack_lm and stack_nnls), but is still able to perform better than them at times.

Fig. 1.8: Out-of-sample RMSE over time for the different tested models + VAR

To finish, we compute Diebold-Mariano tests for the significance of the difference in forecasting errors. The tests are computed for each ensemble model, against the errors from the base RVFL model and a VAR model.

TABLEDMTESTSHERE

1.5 Appendix

1.5.1 Out-of-sample errors summary

horizon = 4

• Min., 1st Qu., Median, Mean, 3rd Qu., Max

ridge2	bagging	stack_ridge	${\tt stack_lm}$
Min. :0.9995	Min. :0.8746	Min. :0.9291	Min. :0.9784
1st Qu.:1.5529	1st Qu.:1.5908	1st Qu.:1.6426	1st Qu.:1.7379
Median :2.3605	Median :2.1484	Median :2.2407	Median :2.1715
Mean :2.3763	Mean :2.3034	Mean :2.3676	Mean :2.5058
3rd Qu.:3.0261	3rd Qu.:2.8957	3rd Qu.:3.0690	3rd Qu.:3.0031
Max. :4.2952	Max. :4.6781	Max. :4.5133	Max. :5.7641
stack_nnls	glmboost	VAR	
Min. :0.9874	Min. :0.89	96 Min. :1.0	41
1st Qu.:1.7273	1st Qu.:1.64	77 1st Qu.:1.6	80
Median :2.2839	Median :2.24	43 Median :2.1	46
Mean :2.5115	Mean :2.32	61 Mean :2.4	98
3rd Qu.:3.0494	3rd Qu.:3.06	48 3rd Qu.:3.0	70
Max. :6.0210	Max. :4.31	21 Max. :6.0	68

• Standard deviation

```
ridge2 bagging stack_ridge stack_lm stack_nnls glmboost VAR 0.8804324 0.8881329 0.8870853 1.0549136 1.0889430 0.8238531 1.051120
```

horizon = 8

• Min., 1st Qu., Median, Mean, 3rd Qu., Max

ridge2	2	bagging	g :	stack_rid	.ge	stack_l	_m
Min.	:1.192	Min.	:1.066	Min.	:1.143	Min.	:1.253
1st Qu.	:1.740	1st Qu.	:1.717	1st Qu.	:1.754	1st Qu.	:1.813
Median	:2.663	Median	:2.467	Median	:2.656	Median	:2.694
Mean	:2.529	Mean	:2.440	Mean	:2.509	Mean	:2.676
3rd Qu.	:3.154	3rd Qu.	:2.868	3rd Qu.	:3.041	3rd Qu.	:3.065
Max.	:5.394	Max.	:4.800	Max.	:5.243	Max.	:6.032

stack_nnls	glmboost	VAR		
Min. : 1.164	Min. :1.203	Min. :1.289		
1st Qu.: 2.056	1st Qu.:1.718	1st Qu.:1.920		
Median : 2.775	Median :2.683	Median :2.648		
Mean : 3.331	Mean :2.478	Mean :2.696		
3rd Qu.: 4.069	3rd Qu.:3.024	3rd Qu.:2.964		
Max. :10.935	Max. :5.387	Max. :7.711		

• Standard deviation

ridge2	bagging	stack_ridge	${\tt stack_lm}$	${\tt stack_nnls}$	glmboost	VAR
0.8955453	0.8883188	0.9093582	1.0406195	1.8865643	0.8547240	1.1482777

1.5.2 Correlation of out-of-sample errors

horizon = 4

	ridge2	bagging	stack_ridge	glmboost	VAR
ridge2	1.0000000	0.9350414	0.9658978	0.9627834	0.8422500
bagging	0.9350414	1.0000000	0.9796091	0.9388819	0.8746823
stack_ridge	0.9658978	0.9796091	1.0000000	0.9731609	0.8758017
glmboost	0.9627834	0.9388819	0.9731609	1.0000000	0.8840573
VAR	0.8422500	0.8746823	0.8758017	0.8840573	1.0000000

horizon = 8

	ridge	2 baggin	g stack_ridge	e glmboost	VAR
ridge2	1.0000000	0.928098	3 0.969342	4 0.9909838	0.8185879
bagging	0.9280983	1.000000	0.985572	0.9481774	0.8522099
stack_ridge	0.9693424	0.985572	1.000000	0.9804522	0.8561227
glmboost	0.9909838	0.948177	4 0.980452	2 1.0000000	0.8622763
VAR	0.8185879	0.852209	9 0.856122	7 0.8622763	1.0000000

Bibliography

[Ber+15] Christoph Bergmeir, Rob J Hyndman, Bonsoo Koo, et al. "A Note on the Validity of Cross-Validation for Evaluating Time Series Prediction". In: *Monash University, Department of Econometrics and Business Statistics, Tech. Rep.* (2015) (cit. on p. 14).

List of Figures

1.1	Construction of B bootstrap resamples by using the initial data \dots	8
1.2	Construction of the enriched/stacked dataset	10
1.3	Treasury Bills rates and transformed Real consumption, Real disposable	
	income, and Inflation data from (cite Greene et. al (2007)) in a data-	
	rich environment	11
1.4	Autocorrelation function for the four times series: Treasury Bills rates,	
	Real consumption, Real disposable income, Inflation	12
1.5	Correlation plot for the four times series: Treasury Bills rates, Real	
	consumption, Real disposable income, Inflation	13
1.6	Training and testing sets in rolling forecasting cross-validation	14
1.7	Out-of-sample RMSE distribution for the different tested models	15
1.8	Out-of-sample RMSE over time for the different tested models + VAR .	18

List of Tables

1.1	Summary statistics for the four transformed time series: Treasury Bills	
	and transformed Real consumption, Real disposable income, and Infla-	
	tion data from (cite Greene et. al (2007))	12
1.2	Box-Pierce test for the independence in the time series observations	12

Colophon This thesis was typeset with $\text{MTEX} 2_{\varepsilon}$. It uses the *Clean Thesis* style developed by Ricardo Langner. The design of the *Clean Thesis* style is inspired by user guide documents from Apple Inc. Download the *Clean Thesis* style at http://cleanthesis.der-ric.de/.

Declaration

You can put your declaration here, to declare that you have completed your wor solely and only with the help of the references you mentioned.
City, August 26, 2015

Ricardo Langner