

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ: ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ КАФЕДРА: КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

Отчет

по домашнему заданию № 2

Название лабораторной работы:		
Студент гр. ИУ6-12Б	(Подпись, дата)	С.В.Астахов (И.О. Фамилия)
Преподаватель	(Подпись, дата)	(И.О. Фамилия)

I вариант

Задание 1

Сортировать одномерный массив вещественных чисел по возрастанию абсолютной величины числа. Использовать метод вставок.

Текст программы:

```
program Project1;
{$APPTYPE CONSOLE}
uses
 System.SysUtils;
type
 arr = array [0 .. 50] of real;
var
 a: arr;
 n, i, g: byte;
 target: real;
begin
 writeln('Enter array size in (0;50]');
 readln(n);
 if ((n \le 0) \text{ or } (n \ge 50)) then
  writeln('n not in (0;50]')
 else
 begin
  writeln('Enter array, each element in new string');
  for i := 1 to n do
    readln(a[i]);
  writeln;
   writeln('Not sorted array: ');
  for i := 1 to n do
    write(a[i]:6:2, ' ');
  for i := 1 to n do
   begin
    target := a[i];
    a[0] := target;
    g := i - 1;
    while ((abs(target)) < (abs(a[g]))) do
    begin
```

```
a[g + 1] := a[g];
    g := g - 1;
    end;

a[g + 1] := target;
end;

writeln;
writeln('Sorted array: ');
for i := 1 to n do
    write(a[i]:6:2, ' ');
end;
readIn;
end.
```

Тесты:

Входные данные	Ожидаемые выходные данные	Выходные данные
5	Not sorted array: 10.00 1.00 -9.00 8.00 -3.00	Not sorted array: 10.00 1.00 -9.00 8.00 -3.00
10	Sorted array:	Sorted array:
1	1.00 -3.00 8.00 -9.00 10.00	1.00 -3.00 8.00 -9.00 10.00
-9		
8		
-3		
-3	'n not in (0;50]'	'n not in (0;50]'
7	Not sorted array: 1.00 4.00 3.00 -2.00 8.00	Not sorted array: 1.00 4.00 3.00 -2.00 8.00
1	-6.00 7.00	-6.00 7.00
4	Sorted array:	Sorted array:
3	1.00 -2.00 3.00 4.00 -6.00	1.00 -2.00 3.00 4.00 -6.00
-2	7.00 8.00	7.00 8.00
8		
-6		
7		

Схема алгоритма:

Задание 2

Составить программу, которая в матрице A(n, n), (n<11) меняет местами строку, содержащую максимальный элемент, со строкой, содержащей минимальный элемент. Предполагается, что искомые элементы единственные. Вывести на экран исходную и преобразованную матрицы, минимальный и максимальный элементы, а также номера строк, в которых они расположены.

```
Текст программы:
            program Project1;
            {$APPTYPE CONSOLE}
            uses
              SysUtils;
            type
              arr = array [1 .. 11, 1 .. 11] of real;
            var
              a: arr;
              n, i, g, imin, imax: byte;
              min, max, dub: real;
            begin
              writeln('Enter size of matrix in range (0;11]');
              readln(n);
              if ((n \le 0) \text{ or } (n > 11)) \text{ then }
               writeln('N not in (0;11]')
              else
              begin
               writeln('Enter elements(each with enter)');
               for i := 1 to n do
                for q := 1 to n do
                  readln(a[i, g]);
               min := a[1, 1];
               max := a[1, 1];
               imin := 1:
               imax := 1;
               writeln;
               writeln('Inputed matrix: ');
```

for i := 1 to n do

```
begin
    writeln;
   for g := 1 to n do
     write(a[i, g]:6:2, ' ');
  end;
  for i := 1 to n do
   for g := 1 to n do
    begin
     if (a[i, g] > max) then
     begin
       max := a[i, g];
      imax := i;
     end;
     if (a[i, g] < min) then
     begin
      min := a[i, g];
      imin := i;
     end;
    end;
 for g := 1 to n do
 begin
  dub := a[imax, g];
  a[imax, g] := a[imin, g];
  a[imin, g] := dub;
 end;
 writeln;
 writeln('Modified matrix: ');
 for i := 1 to n do
 begin
  writeln;
  for g := 1 to n do
   write(a[i, g]:6:2, ' ');
 end;
 writeln:
 writeln('max(imax), min(imin): ', max:6:2, '(', imax, ') ', min:6:2, '(',
  imin, ')');
 end;
 readln;
end.
```

Тесты

Входные данные	Ожидаемые выходные данные	Выходные данные
5	Inputed matrix:	Inputed matrix:
1 2 3 4 5 -5 1 2 3 4 1 2 3 4 4 5 5 56 1 2 2 3 4 4 7 8 9 10	1.00 2.00 3.00 4.00 5.00 -5.00 1.00 2.00 3.00 4.00 1.00 2.00 3.00 4.00 5.00 56.00 1.00 2.00 3.00 4.00 7.00 8.00 9.00 10.00 11.00 Modified matrix: 1.00 2.00 3.00 4.00 5.00 56.00 1.00 2.00 3.00 4.00 1.00 2.00 3.00 4.00 5.00 -5.00 1.00 2.00 3.00 4.00 7.00 8.00 9.00 10.00 11.00 max(imax), min(imin): 56.00(4) -5.00(2)	1.00 2.00 3.00 4.00 5.00 -5.00 1.00 2.00 3.00 4.00 1.00 2.00 3.00 4.00 5.00 56.00 1.00 2.00 3.00 4.00 7.00 8.00 9.00 10.00 11.00 Modified matrix: 1.00 2.00 3.00 4.00 5.00 56.00 1.00 2.00 3.00 4.00 1.00 2.00 3.00 4.00 5.00 -5.00 1.00 2.00 3.00 4.00 7.00 8.00 9.00 10.00 11.00 max(imax), min(imin): 56.00(4) -5.00(2)
11		
6	Inputed matrix:	Inputed matrix:
1 2 3 4 5 6 7	1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 21.00 22.00 -40.00 24.00 25.00 60.00 32.00 33.00 34.00 35.00	1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 21.00 22.00 -40.00 24.00 25.00 60.00 32.00 33.00 34.00 35.00
8 9 10 11	36.00 4.00 4.00 4.00 4.00 4.00 4.00 9.00 8.00 7.00 6.00 5.00 4.00	36.00 4.00 4.00 4.00 4.00 4.00 4.00 9.00 8.00 7.00 6.00 5.00 4.00

12	1.00	1.00
21	Modified matrix:	Modified matrix:
22		
-40	1.00 2.00 3.00 4.00 5.00	1.00 2.00 3.00 4.00 5.00
24	6.00	6.00
25	7.00 8.00 9.00 10.00 11.00	7.00 8.00 9.00 10.00 11.00
60	12.00	12.00
32	21.00 22.00 -40.00 24.00	21.00 22.00 -40.00 24.00
33	25.00 60.00	25.00 60.00
34	32.00 33.00 34.00 35.00	32.00 33.00 34.00 35.00
35	36.00 4.00	36.00 4.00
36	4.00 4.00 4.00 4.00 4.00	4.00 4.00 4.00 4.00 4.00
4	9.00	9.00
4	8.00 7.00 6.00 5.00 4.00	8.00 7.00 6.00 5.00 4.00
4	1.00	1.00
4	max(imax), min(imin):	max(imax), min(imin):
4	60.00(3) -40.00(3)	60.00(3) -40.00(3)
4		
9		
8		
7		
6		
5		
4		
1		
-2	N not in (0;11]	N not in (0;11]

Задание 3

(Составить программу, используя множественный тип.)

Дана последовательность слов, разделенных пробелами, в конце точка. Определить количество слов, в записи которых есть специальные символы #,%,&,@,*,^. Вывести на экран найденные символы в порядке возрастания их кодов, а также количество слов, удовлетворяющих условию. При отсутствии таких слов выдать соответствующее сообщение.

```
program Project1;
{$APPTYPE CONSOLE}
uses
 System.SysUtils;
type
 st1 = string[50];
 chrs = set of char;
var
 new: boolean;
 included, symbs: chrs;
 i, k: byte;
 a: st1;
begin
 symbs := ['#', '%', '&', '@', '*', '^'];
 included := [];
 writeln('Enter string');
 readln(a);
 i := 0;
 new := true;
 while ((a[i] <> '.') and (i < length(a))) do
 begin
  i := i + 1;
  if (a[i] = ',') then
   new := true;
  if ((new) and (a[i] in symbs)) then
  begin
    k := k + 1;
   included := included + [a[i]];
   new := false;
  end;
 end;
 if (k = 0) then
  writeln('No searching words')
 else
 begin
```

```
writeln('Number of found words: ', k);
write('Founded symbs: ');
for i := 0 to 255 do
   if (chr(i) in included) then
     write(chr(i), ' ');
end;
readIn;
end.
```

Тесты

Входные данные	Ожидаемые выходные данные	Выходные данные
df@, hgf, fvb#.	Number of found words: 2 Founded symbs: # @	Number of found words: 2 Founded symbs: # @
hj, mku,lk,bc.	No searching words	No searching words
hj&, mn@,###, ggg.	Number of found words: 3 Founded symbs: # & @	Number of found words: 3 Founded symbs: # & @

Схема алгоритма: начало symbs := ['#', '%', '&', '@', '*', '^']; included := []; Ввод а i := 0;new := true; нет (a[i] <> '.') and (i < length(a)) да нет да (k = 0)i := i + 1Вывод нет 'No да Вывод К searchin (a[i] = ',') g words' i:=0,255,1 new := true да нет (chr(i) in included) да нет (new) and (a[i] in symbs) Вывод Chr(i) k := k + 1;included := included + [a[i]]; new := false; конец

Задание 4

Разработать модуль, содержащий указанную процедуру. Написать тестирующую программу.

Составить подпрограмму-процедуру MINMAX, отыскивающую х□[а, b], для которых функция y=f(x) принимает максимальное и минимальное значение с точностью 0,01.

Функцию f(x) передать в процедуру через параметр. В основной программе использовать процедуру для функций y=(x-1)/(x+2); $x \square [0, 2]$ и $y=\sin(x/2-1)$, $x \square [-1, 1]$.

Текст программы:

Текст модуля:

unit LabLib1;

```
program Project1;
{$APPTYPE CONSOLE}
uses
 System.SysUtils,
 LabLib1:
function fx1(x: real): real;
begin
 result := (x - 1) / (x + 2);
end:
function fx2(x: real): real;
begin
 result := sin((x / 2) - 1); {abs(x-0.3) to check}
end:
var
 minx1, maxx1, minx2, maxx2: real;
begin
 minmax(fx1, 0, 2, 0.01, minx1, maxx1);
 minmax(fx2, -1, 1, 0.01, minx2, maxx2);
 writeln('x of min (x - 1) / (x + 2): ', minx1:6:2, ' x of max: ',
maxx1:6:2):
 writeln('x of min sin((x/2) - 1): ', minx2:6:2, ' x of max: ',
maxx2:6:2);
 readIn:
end.
```

```
interface
type
 funcOf1 = function(arg: real): real;
procedure minmax(f: funcOf1; a, b, eps: real; var minarg, maxarg: real);
implementation
procedure minmax;
 tempArg: real;
begin
 tempArg := a;
 minarg := tempArg;
 maxarg := tempArg;
 while (tempArg <= b) do
 begin
  if (f(tempArg) < f(minarg)) then
   minarg := tempArg;
  if (f(tempArg) > f(maxarg)) then
   maxarg := tempArg;
  tempArg := tempArg + eps;
```

Тесты:

1001511		
Входные данные	Ожидаемые выходные	Выходные данные
	данные	
-	x of min (x - 1) / (x + 2): 0.00	x of min (x - 1) / (x + 2): 0.00
	x of max: 1.99	x of max: 1.99
	$x ext{ of min sin}((x / 2) - 1): -1.00 x$	x of min $sin((x / 2) - 1)$: -1.00 x
	of max: 0.99	of max: 0.99

Графики для проверки:

end; end;

end.

График функции (x-1)/(x+2)

Подробнее

График функции sin(x/2-1)

Подробнее

Схема алгоритма:

Вывод:

- сортировку массива можно осуществлять по различным критериям и различными алгоритмами.
- многие операции в матрицах проще осуществлять по индексам.
- множества облегчают решения многих типов задач, например, проверку вхождения элемента в последовательность(т.е. символа в строку).
- модули позволяют более удобно хранить часто используемые подпрограммы, чтобы их можно было вызывать из модулей, а не переписывать в каждой программе.