Lecture 13 EE 421 / C\$ 425 Digital System Design

Fall 2025
Shahid Masud

Topics

- Binary Array Multipliers Quick Recap
- Operation of Sequential Multiplier
- Control Circuits for Multipliers
- Reducing Registers in Sequential Multipliers
- Taking care of sign in Signed Multiplication
- Fractional Binary numbers
- QUIZ 3 NEXT LECTURE

Decimal Multiplication using Pencil and paper

Keep shifting right

Keep shifting left

Complexity of Binary Array Multiplier

				X ₃	X ₂	X ₁	X _o
				Y ₃	Y ₂	Y ₁	\mathbf{Y}_{0}
				X_3Y_0	X_2Y_0	X_1Y_0	X_0Y_0
			X_3Y_1	X_2Y_1	X_1Y_1	X_0Y_1	0
		X_3Y_2	X_2Y_2	X_1Y_2	X_0Y_2	0	0
	X_3Y_3	X_2Y_3	X_1Y_3	X_0Y_3	0	0	0
Cout	P ₆	P ₅	P ₄	P ₃	P ₂	P ₁	P ₀

How many AND gates?
How many Adders?
Identify longest Carry path?

Complexity and Timing

For an n-bit x n-bit multiplier; We need:

n(n-2) full adders

n half adders

n² AND Gates

Worst Case Delay is (2n+1) C Where C is the worst adder delay

Designing An Array Multiplier Cell

				A_3	A ₂	A_1	A_0
				B ₃	B ₂	B_1	B_0
				A_3B_0	A_2B_0	A_1B_0	A_0B_0
			A_3B_1	A_2B_1	A_1B_1	A_0B_1	0
		A_3B_2	A_2B_2	A_1B_2	A_0B_2	0	0
	A_3B_3	A_2B_3	A_1B_3	A_0B_3	0	0	0
Cout	P ₆	P ₅	P ₄	P ₃	P ₂	P ₁	P_0

4-Bit Array Multiplier connected as AND and ADD

				A_3	A ₂	A_1	A_0
				B ₃	B ₂	B_1	B ₀
				A_3B_0	A_2B_0	A_1B_0	A_0B_0
			A_3B_1	A_2B_1	A_1B_1	A_0B_1	0
		A_3B_2	A_2B_2	A_1B_2	A_0B_2	0	0
	A_3B_3	A_2B_3	A_1B_3	A_0B_3	0	0	0
Cout	P ₆	P ₅	P ₄	P ₃	P ₂	P ₁	P ₀

Embedded Systems Lab (EESL)

Array Multiplier Circuit Delays

Building Block B_{i} Sum_in Cout Cin Full Adder Sum_out I

Worst case delay path is shaded
This is Critical Path
LUMS

Operation of Sequential Multiplier

Data Path Architecture of Sequential Mult

STG for a 4 Bit Sequential Binary

Improvement - Sequential Multiplier with Reduced Registers

STG of Reduced Register Sequential Multiplier

Example of a 4-bit Serial Parallel Multiplier Product Accumulator Register (8 + 1) bits

Product Accumulator Register (8 + 1) bits Load Shift Cout Add Controller Multiplier 4 Bits Carry 4 Bit Adder M Done Start Multiplicand 4 Bits

Shift the contents To the right after Every step

Example continued

				1	1	0	1	Multiplicand
			X	1	0	1	1	Multiplier
				1	1	0	1	
			1	1	0	1	(X)—	→ Shift Left by one
		1	0	0	1	1	1	Partial product after first step
		0	0	0	0	X	X	Another shift left
		1	0	0	1	1	1	Partial product after second step
	1	1	0	1	X	X	X	Another shift left
1	0	0	0	1	1	1	1	Partial product after final step

Answer = $(10001111)_2 = (143)_{10}$

Embedded Systems Lab (EESL)

Multiplier Register
Operation Initial Conte

Initial Contents of Accumulator

Multiplicand bit [0] is '1'

After Add operation

After Shift Right

Next bit M = 1 hence Add

After Add

After Shift Right

Next bit M=0, hence Skip Add

operation

After Shift Right

Next bit M=1, hence Add

After Addition

After Shift Right, final answer

STG Control Diagram for this Multiplier

Flexible STG for any no. of multiplicand bits

Parallel-Serial Multiplier - Concept

Multiplication of **Signed Binary Numbers**

Case I: Negative Multiplicand, Positive Multiplier

Example: -3₁₀ x 6₁₀

Sign-bit of the multiplicand must be extended to the word length of the final product before Operating on the 2's Complement words.

This sign-extended multiplicand is used when forming Partial products and accumulated sums.

The result of the multiplication is the 2's Complement of the Product. The final magnitude is found by taking 2's Complement. Bit Assignment: We assign 8 bits to both numbers.

The product will thus be 16 bits.

+3 = 0000 0011

Thus 2's Complement = -3 = 1111 1101

+6 = 0000 0110

1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
							X	0	0	0	0	0	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	X
1	1	1	1	1	1	1	1	1	1	1	1	0	1	X	X
1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	0

Remember: Sign Extension to maximum number of bits in datapath

Multiplication of Fractions

Convert from decimal to binary

$$(\frac{3}{4})$$

= 0.75

 $0.75 \times 2 = 1.5$, keep 1

 $0.5 \times 2 = 1.0$, keep 1

 $0 \times 2 = 0 \text{ keep } 0$

And only zeros afterwards

$$= 2^{-1} + 2^{-2} + 0 + 0$$

= 0.1100; assigning four fractional bits

21

2's Complement of Binary Fractional Nos.

- Given binary fractional number = (0.1100)
- Method 1:
- Decide on the number of total bits, eg. 5 bits; Invert all bits; add +1 to LSB
- 2's Complement = 1.0011
- + 3
- •
- = 1.0100
- Method 2:
- Look from right to left; when you Encounter first 1; invert all bits to the left
- For (0.1100), the 2's Complement = (1.0100)

Question?

- Represent 9/16 using five fractional bits:
- Hint: 9/16 = 0.xxxxx
- Keep multiplying by 2; if answer is greater than 1, keep 1

```
• Solve: 0.562 x 2 = 1.125, keep 1
```

- $0.125 \times 2 = 0.25$, keep 0
- $0.25 \times 2 = 0.5$, keep 0
- 0.5 x 2 = 1.0, keep 1
- 0 x 2 = 0, keep 0, and same for more terms
- Answer = 0.10010 in binary

Finally, 2's Complement of "0.10010" is (look right to left) "1.01110" that is [-9/16]

Convert Fraction Number to Binary

- Represent 9/16 using five fractional bits:
- Hint: 9/16 = 0.5625
- Keep multiplying by 2; if answer is greater than 1, keep 1
- Solve: 0.5625 x 2 = 1,125, keep 1
- $0.125 \times 2 = 0.25$, keep 0
- $0.25 \times 2 = 0.5$, keep 0
- $0.5 \times 2 = 1.0$, keep 1
- $0 \times 2 = 0$, keep 0, and same for more terms
- Answer = 0.10010 in binary

Finally, 2's Complement of "0.10010" is (look right to left) "1.01110" that is [-9/16]

Multiplication of Signed Fractions

- Fractions are multiplied like whole numbers, but overflow is not possible
- A 4-bit fractional number is represented as minimum 5-bit fixed point number with MSB holding the sign bit in 2's Complement format
- The product of two 5-bit numbers will produce 10-bit result
- MSB will be sign-extended (bit replication) for negative multiplicand

Example 1: Positive multiplicand, positive multiplier, fraction multiplication

Show binary multiplication of $(3/4)_{10} \times (1/2)_{10}$ Use 5-bits to represent each number

3/4 = 0.1100

1/2 = 0.1000

Insert decimal, count how many bits after decimal in both numbers (4 + 4 = 8 bits in both numbers)

Answer = (0.0110000000) = +(3/8)

Example 2: Negative multiplicand, positive multiplier, fraction multiplication

Show binary multiplication of $(-3/4)_{10} \times (3/8)_{10}$ Use 5-bits to represent each number

Negative multiplicand

Negative multiplier
(first 0 only shift, then 1, Add multiplicand)
(next 1, Add Multiplicand, then 0 shifts only)

Insert decimal, count how many bits after decimal in both numbers (4 + 4 = 8 bits in both numbers)Answer = (11.10111000), take 2's complement = -(0.01001000) = (-9/32)

Example 3: Positive multiplicand, negative multiplier, fraction multiplication

Show binary multiplication of $(3/4)_{10} \times (-3/8)_{10}$ Use 5-bits to represent each number

Insert decimal, count how many bits after decimal in both numbers (4 + 4 = 8 bits in both numbers)

Answer = (1.10111000), take 2's Complement = -(0.01001000) = -(9/32)

Example 4: Negative multiplicand, negative multiplier, fraction multiplication

Insert decimal, count how many bits after decimal in both numbers (4 + 4 = 8 bits in both numbers)

To Remember in Signed Multiplication

• When Multiplicand is Negative, do a sign extension to cover the possible bit-width of Answer

When Multiplier is Negative, there is a final 2's Complement Addition
 Step corresponding to the MSB of multiplier

Algorithmic Improvement in Multipliers

Booth Encoding

Booth Multiplication Process

Booth Encoded Multipliers

Object: To reduce the number of 'Add' steps required in complete multiplication cycle

→ MSB '1' shows negative number

2's Complement of
$$7_{10} = (1 \ 0 \ 0 \ 1)_2$$

$$1 \times 2^0 = 1$$

$$0 \times 2^1 = 0$$

Allow both +ive and -ive signs to be used in conversion

$$0 \times 2^2 = 0$$

$$-1 \times 2^3 = -8$$

Decimal value of $(1001)_2 = (-8+1) = -7 = (\underline{l} \ 0 \ 0 \ 1) \text{ or } (-1 \ 0 \ 0 \ 1)$

Booth's algorithm is valid for both positive and negative numbers in 2's complement format

Booth Recoding of a 2's Complement Number

m _i	m _{i-1}	Booth Recoded C _i	Value	Status
0				String of 0s
0	1	1	+1	End of string of 1s
1		<u>l</u>	-1 or <u>l</u>	Begin string of 1s
1	1			Midstring of 1s

Booth Recoding of -65₁₀

 -65_{10} = 1 0 1 1 1 1 1 0 +65 = (01000001) 2's Complement

Append '0' on right, if LSB=1

2's Complement notation

m _i	m _{i-1}	Booth Recoded Ci
0	0	0
0	1	1
1	0	<u>l</u>
1	1	0

-65₁₀=

Or

Booth Recoded notation

-65 = (10111111)

Question?

Convert decimal number –78 to Booth Encoded format using 8 binary bits

+78 = 01001110 Take 2's Complement -78 = 10110010

m _i	m _{i-1}	Booth Recoded Ci
0	0	0
0	1	1
1	0	<u>l</u>
1	1	0

After Booth Encoding

