

SAE

Alcalá Bauza M., Araujo Rodríguez H., Font Sala L., Guzmán Alá A.

Index

- Description of SAE
- SAE technology
- Description of the operation and modes of the SAE
- Development of the software
- Instructions and usage
- Applicable regulation
- Quality control
- Risk Analysis
- What do we expect from the future
- * References

Presentation of the group

Maite Alcalá: CEO and Regulatory director

Helena Araujo: Director of quality control and risks

Laia Font:
Marketing and logistics
director

Adalid Guzmán: Technical departament

Description of SAE

Figure 2: SAE presentation

Figure x:

Description of SAE: Measurement

Acceleration

Figure 3: Coordinate system of SAE [1]

Figure 4: Active forces while swimming

Direction

Figure 5: Diagram of forces present in Front Crawl. Profile view

Figure 6: D. of forces present in Front Crawl. Frontal view

Video 1: Components of SAE in exploded view

Figure 7: Main electronic components of SAE

IMU

- 3 acceleration channels, 3 angular channels and 3 magnetic field channels
- Data output: 16-bit
- Embedded FIFO
- "Always-on" eco power mode 1.9 mA
- $\pm 2/\pm 4/\pm 8/\pm 16$ g linear acc. full scale
- $\pm 4/\pm 8/\pm 12/\pm 16$ gauss magc. full scale
- $\pm 245/\pm 500/\pm 2000$ dps ang. rate full scale [2]

Figure 8: LSM9DS1 iNEMO,inertial module:3D accelerometer, 3D gyroscope, 3D magnetometer/STMicroelectronics

MICROCONTROLLER

- Power supply : 1.8 to 3.6 $\mbox{\ensuremath{\text{V}}}$

- Temperature range : -40 to 85 °C

- Core: 32bit

-10 nA ultra-low I/O leakage

- Memory: 128Kbytes of flash, 10kBytes of RAM. [3]

Figure 9: STM32L100R8/ STMicroelectronics

BATTERY

-Supply voltage: 3.8V

-Charge voltage : 4.35V

-Capacity: 55mAh

-Dimensions: 20x12x3 mm

-Weight: 1.9g

-Saving battery : no display, ultra-low-power components [4]

Figure 10: AUCOPO 301220/ AUCOPO

Description of the operation and mode/s of the SAE

Description of the software

Description of the software

Figure 12: Gyroscope Navigation frame to Body frame

Figure 13: Body Coordinate System: axis and angles

Instructions and Usage

www.swimminganalysisequipment.com

Figures 14,15: Swimming analysis software log in and objectives

Software and Analysis

Figure 16: SAS graphics presentation

Instructions and Usage

Figures 17: Position when calibrating SAE and its buttons

Applicable regulation

UNE-EN 60601-1 for basic Safety and Performance requirements for electromedical equipment.

-Safety
-Electromagnetic compatibility
-Contact to water
-Temperature and humidity environment
-Biocompatibility

Quality Control

Quality control tests:

- Test in normal pool
- Testing in a salt water pool
- Immersion test with the device
- Water jet test
- Movement capture test Dry test Pool test

Figure 18: Data Capture

Electromagnetic compatibility test

Quality Control

Quality in manufacturing Product design must receive a rigorous quality review and engineering readiness before it is released into production

Quality of end device All the failure modes that may occur with products that are defective from the factory and / or possible failures that users purchasing the product have will be taken into account when creating next product batches in order to improve the quality of this and increase its useful life.

Risk Analysis: Evaluation of probability and severity

Probability of risk	Description
6- Always	Always happens
5-Frequent	≥ 10 ⁻³
4- Probable	$< 10^{-3} \ and \ge 10^{-4}$
3- Occasional	$< 10^{-4} \ and \ge 10^{-5}$
2-Remote	$< 10^{-5} \ and \ge 10^{-6}$
1-Improbable	< 10 ⁻⁶
0-None Observed	Never happens

Table 1: Probability

Severity of the Harm	Description
5-Catastrophic	Results in patient death
4- Critical	Results in permanent impairment or life threatening injury
3- Serious	Results in injury or impairment requiring professional medical intervention
2-Minor	Results in temporary injury or impairment not requiring professional medical intervention
1-Negligible	Inconvenience or temporary discomfort

Table 2: Severity

Risk Analysis: FMEA I

OPERATION	FUNCTION	FAILURE			INDEX		
		MODE	EFFECT	CAUSE	SEVERITY	PROBABILITY	RISK
Swimming Analysis Equipment Equipment on the wrist		Erroneous data transfer. 1a	Incorrect study of your style in crawl	misuse of the equipment, wrong software programmi ng, noises and interferenc es	3	2	6
		Equipment inestability 1b	Wrong data capture	Turbulent pool water, poor equipment placement	2	3	9
	Equipment on the wrist in Front Crawl	Leakage current. 1c	Damage to the swimmer	Breakage of the protective case of the equipment	4	2	8
		Incorrect measurem ent. 1d	Obtaining incorrect data and inability to assess swimming style	Incorrect positioning of the equipment on the wrist or presence of interferenc e in the measurem ent	3	3	g

Risk Analysis: FMEA II

	Breakage.	Inability to	Friction of	3	2	6
	1e	use the	the body			
		equipment	with the			
		again and	chest,			
		posibility	defective			
		of damage	protective			
		to the	box			
		client				
	Incorrect	Obtaining	Incorrect	2	3	6
	measurem	incorrect	positioning			
	ent. 2a	data and	of the			
		inability to	equipment			
		assess	on the			
		swimming	chest			
		style				
	Leakage	Damage to	Breakage	5	2	10
	current. 2b	the	of the	١	-	1 20
Equipment on the chest in Front	corrent. 20	swimmer	protective			
Crawl		Swiiiiiiei	case of the			
0.0111			equipment			
	Breakage.	Inability to	Friction of	4	2	8
		use the	the body	4	4	°
	2c		with the			
		equipment				
		again and	chest,			
		posibility	defective			
		of damage	protective			
		to the	box			
		client				
	Incorrect	Obtaining	Incorrect	3	4	12
	measuram	incorrect	positioning			
	ent. 3a	data and	of the			
		inability to	equipment			
Hand held measuring equipment		assess				
		swimming				
			I	I	I	
		style	1	ı	ı	
	Breakage.	Inability to	the	4	4	16

Risk Analysis: FMEA III

Equipment worn on the chest or wrist in a style of swimming other than swimming or in another sport	Incorrect output. 4a Breakage. 4b	equipment again and posibility of damage to the client The desired information is not obtained Inability to use the equipment again and posibility of damage to the client	may fall to the bottom of the pool, where the box that surrounds the equipment may break The equipment is not programm ed for these uses Breakage of the elastic band due to friction when using it in areas of the body for which it is not intended or breakage of the protective box due to incorrect use while the Arduino board is	4	5	20
			the			

Table 3: FMEA

Risk Analysis: Acceptance of the risk

Diagram 2: Acceptance of the risk

WHAT DO WE EXPECT FROM THE FUTURE

Goals in the future:

- -Cover all swimming disciplines
- -Mesure all parameters in different parts of the body
- -Move to other sports

References

[1] Fag. 4/ Pag. 700/ Microcomputer-based Acceleration Sensor Device for Sports Biomechanics: "Stroke Evaluation by Using Swimmer's Wrist Acceleration"/ Y. Ohgl/ doi: https://doi.org/10.1109/ICSENS.2002.1037188

[2] Pag. 1/ DatasheetLSM6DS3/ STMicroelectronics/https://www.st.com/resource/en/datasheet/lsm6ds3.pdf

[3] Pag. 1/ Datasheet STM32L100R8/ STMicroelectronics/ https://www.st.com/resource/en/datasheet/stm32l100r8.pdf

[4] Aucopo 301220 especifications/ AUCOPO/ http://www.aucopo.com/index.php?m=content&c=index&a=lists&catid=100

THANKS FOR YOUR ATTENTION

