COMP 680 Statistics for Computing and Data Science Week 6: Hypothesis Testing I

Su Chen, Assistant Teaching Professor, Rice D2K Lab

Outline

- General Framework
- Framing the Hypotheses
- The P-value
- Code Demo

- Goal: to estimate a population parameter
 - mean, median, standard deviation...

- Goal: to estimate a population parameter
 - mean, median, standard deviation...
- Inference: point estimate and a confidence interval

- Goal: to estimate a population parameter
 - mean, median, standard deviation...
- Inference: point estimate and a confidence interval
 - point estimate is a statistic
 - need to quantify its sampling distribution

- Goal: to estimate a population parameter
 - mean, median, standard deviation...
- Inference: point estimate and a confidence interval
 - point estimate is a statistic
 - need to quantify its sampling distribution
- Method: parametric vs. nonparametric
 - MLE + asymptotic normality
 - bootstrap for standard error and CI

4 D > 4 B > 4 E > 4 E > 9 9 0

Hypothesis Testing

- Apply statistical inference to decision making
 - make conclusion about population
 - or the data generating mechanism

Hypothesis Testing

- Apply statistical inference to decision making
 - make conclusion about population
 - or the data generating mechanism
- Two hypotheses: H₀ vs. H₁
 - which one is better supported by data?
 - binary decision: reject H_0 or fail to reject

Hypothesis Testing

- Apply statistical inference to decision making
 - make conclusion about population
 - or the data generating mechanism
- Two hypotheses: H_0 vs. H_1
 - which one is better supported by data?
 - binary decision: reject H_0 or fail to reject
- Rational: if H₀ is true, data should look like...
 - data could have come out differently
 - inference quantifies the uncertainty

- Frame your hypothesis:
 - problem-dependent with some convention
 - H_0 : a predefined conjecture
 - H_1 : negate H_0 , a new discovery

- Frame your hypothesis:
 - problem-dependent with some convention
 - H₀: a predefined conjecture
 - H_1 : negate H_0 , a new discovery
- Pick a test statistic T:
 - one number summary of your data

- Frame your hypothesis:
 - problem-dependent with some convention
 - *H*₀: a predefined conjecture
 - H_1 : negate H_0 , a new discovery
- Pick a test statistic T:
 - one number summary of your data
- What is the value of T based on observed data?
 - calculate the observed test statistic

- Frame your hypothesis:
 - problem-dependent with some convention
 - H₀: a predefined conjecture
 - H_1 : negate H_0 , a new discovery
- Pick a test statistic T:
 - one number summary of your data
- What is the value of T based on observed data?
 - calculate the observed test statistic
- ① What would be the value of T if H_0 is true?
 - quantify the sampling distribution of T under H_0
 - often by simulation

General Framework Framing the Hypotheses The P-value Code Demo

General Framework

- Frame your hypothesis:
 - problem-dependent with some convention
 - *H*₀: a predefined conjecture
 - H_1 : negate H_0 , a new discovery
- Pick a test statistic T:
 - one number summary of your data
- What is the value of T based on observed data?
 - calculate the observed test statistic
- 4 What would be the value of T if H_0 is true?
 - quantify the sampling distribution of T under H_0
 - often by simulation
- Sompare 3 (one number) to 4 (a distribution):
 - does 3 looks like a "usual value" from 4

- Null hypothesis H_0 is our assumption of population distribution:
 - data is from $N(\mu = 100, \sigma^2 = 15^2)$
 - two sets of data are from the same distribution
 - data of two variables are independent

- Null hypothesis H_0 is our assumption of population distribution:
 - data is from $N(\mu = 100, \sigma^2 = 15^2)$
 - two sets of data are from the same distribution
 - data of two variables are independent
- Null hypothesis is usually specific about how data was generated
 - if null is true and we repeatedly collect data under H_0
 - how would those hypothetical data look like?
 - how does hypothetical data compare to the observed data at hand?

- Null hypothesis H_0 is our assumption of population distribution:
 - data is from $N(\mu = 100, \sigma^2 = 15^2)$
 - two sets of data are from the same distribution
 - data of two variables are independent
- Null hypothesis is usually specific about how data was generated
 - if null is true and we repeatedly collect data under H_0
 - how would those hypothetical data look like?
 - how does hypothetical data compare to the observed data at hand?
- Do the math:
 - calculate sampling distribution of the test statistic under H_0

- Null hypothesis H_0 is our assumption of population distribution:
 - data is from $N(\mu = 100, \sigma^2 = 15^2)$
 - two sets of data are from the same distribution
 - · data of two variables are independent
- Null hypothesis is usually specific about how data was generated
 - if null is true and we repeatedly collect data under H_0
 - how would those hypothetical data look like?
 - how does hypothetical data compare to the observed data at hand?
- Do the math:
 - ullet calculate sampling distribution of the test statistic under H_0
- Do the simulation:
 - simulate the empirical distribution of the the test statistic under H_0

Week 6 COMP 680 _______ 6 / 24

Outline

- General Framework
- Praming the Hypotheses
- The P-value
- Code Demo

- Swain v.s. Alabama 1965
 - Talladega County, Alabama
 - Robert Swain, a black man convicted of crime
 - appeal: one factor was all white jury
 - 26% of population in the county were black
 - Swains jury panel consisted of 100 men
 - 8 men on the panel were black

- Swain v.s. Alabama 1965
 - Talladega County, Alabama
 - Robert Swain, a black man convicted of crime
 - appeal: one factor was all white jury
 - 26% of population in the county were black
 - Swains jury panel consisted of 100 men
 - 8 men on the panel were black
- Supreme Court wrote:
 - "... the overall percentage disparity has been small and reflects no studied attempt to include or exclude a specified number of ..."
 - appeal denied

• Null hypothesis H_0 :

- Null hypothesis H₀:
 - the jury panel of 100 men is a random sample from the population.

- Null hypothesis H₀:
 - the jury panel of 100 men is a random sample from the population.
 - H_0 needs to specify the population distribution.
 - the population distribution has 26% blacks.

- Null hypothesis H₀:
 - the jury panel of 100 men is a random sample from the population.
 - H_0 needs to specify the population distribution.
 - the population distribution has 26% blacks.
- Alternative hypothesis H_1 : not H_0

- Null hypothesis H₀:
 - the jury panel of 100 men is a random sample from the population.
 - H_0 needs to specify the population distribution.
 - the population distribution has 26% blacks.
- Alternative hypothesis H_1 : not H_0
 - The jury panel contains too few blacks.

- Null hypothesis H₀:
 - the jury panel of 100 men is a random sample from the population.
 - H_0 needs to specify the population distribution.
 - the population distribution has 26% blacks.
- Alternative hypothesis H₁: not H₀
 - The jury panel contains too few blacks.
 - H₁ does not specify the population distribution.
 - H_1 can specify a direction of how the sample is different from H_0 .
 - this is called "one-sided" test

- Gregor Mendel (1822-1884)
- Pea plants with purple or white flowers

Week 6 **COMP 680** 10 / 24

- Gregor Mendel (1822- 1884)
- Pea plants with purple or white flowers
- Mendels model
 - each plant is purple-flowering with P=75%
 - regardless of the colors of others

- Gregor Mendel (1822-1884)
- Pea plants with purple or white flowers
- Mendels model
 - each plant is purple-flowering with P=75%
 - regardless of the colors of others
- Mendels data
 - 705 out of 929 pea plants with purple flowers

Week 6 **COMP 680** 10 / 24

• Null hypothesis *H*₀:

- Null hypothesis *H*₀:
 - the population distribution has 75% purple flowers

- Null hypothesis H_0 :
 - the population distribution has 75% purple flowers
 - 929 pea plants is a random sample from that population distribution

- Null hypothesis *H*₀:
 - the population distribution has 75% purple flowers
 - 929 pea plants is a random sample from that population distribution
- Alternative hypothesis H₁: not H₀

- Null hypothesis H₀:
 - the population distribution has 75% purple flowers
 - 929 pea plants is a random sample from that population distribution
- Alternative hypothesis H₁: not H₀
 - the population distribution is not 75% purple flowers

- Null hypothesis *H*₀:
 - the population distribution has 75% purple flowers
 - 929 pea plants is a random sample from that population distribution
- Alternative hypothesis H₁: not H₀
 - the population distribution is not 75% purple flowers
 - notice in this case, does not specify > 75% or < 75%
 - this is called "two-sided" test

- Stats101 at UT-Austin is divided into 12 sections
- Same course material / assignments/ exams, taught by different GAI
- After midterm exam, section 3 has the lowest average grade

- Stats101 at UT-Austin is divided into 12 sections
- Same course material / assignments/ exams, taught by different GAI
- After midterm exam, section 3 has the lowest average grade
- Question: are section 3 grades really lower?

- Stats101 at UT-Austin is divided into 12 sections
- Same course material / assignments/ exams, taught by different GAI
- After midterm exam, section 3 has the lowest average grade
- Question: are section 3 grades really lower?
 - are section 3 grades like a random sample from the entire population distribution (what is the population distribution)?

Week 6 **COMP 680** 12 / 24

- Stats101 at UT-Austin is divided into 12 sections
- Same course material / assignments/ exams, taught by different GAI
- After midterm exam, section 3 has the lowest average grade
- Question: are section 3 grades really lower?
 - are section 3 grades like a random sample from the entire population distribution (what is the population distribution) ?
- H_0 : section 3 grade is the same as others
- H₁: section 3 grade is significantly lower than others

• $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x|\theta)$ a distribution (PDF) with unknown parameter θ

- $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x|\theta)$ a distribution (PDF) with unknown parameter θ
- H_0 : $\theta = \theta_0$

Week 6 **COMP 680** 13 / 24

- $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} f_X(x|\theta)$ a distribution (PDF) with unknown parameter θ
- H_0 : $\theta = \theta_0$
- ullet $heta_0$ specifies the population distribution
 - $H_1: \theta \neq \theta_0$ two-sided test
 - $H_1: \theta > \theta_0$ or $\theta < \theta_0$ one-sided test

4□ > 4□ > 4 = > 4 = > = 900

- $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x|\theta)$ a distribution (PDF) with unknown parameter θ
- H_0 : $\theta = \theta_0$
- θ_0 specifies the population distribution
 - $H_1: \theta \neq \theta_0$ two-sided test
 - $H_1: \theta > \theta_0$ or $\theta < \theta_0$ one-sided test
- Often times, θ is about the population mean.

Week 6 **COMP 680** 13 / 24

- Data from Kaiser Study in the 1960s
- Birth weights and mother's smoking status

- Data from Kaiser Study in the 1960s
- Birth weights and mother's smoking status
- Question: are smoker mothers' babies have lower birth weights on average?

- Data from Kaiser Study in the 1960s
- Birth weights and mother's smoking status
- Question: are smoker mothers' babies have lower birth weights on average?
 - are babies from smoker and non-smoker mothers have same average birth weights?

- Data from Kaiser Study in the 1960s
- Birth weights and mother's smoking status
- Question: are smoker mothers' babies have lower birth weights on average?
 - are babies from smoker and non-smoker mothers have same average birth weights?
- H_0 : yes they are from "the same" population distribution
- H_1 : birth weights of babies from smoker mothers have lower average.

- Two samples from unknown distribution(s)
- $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} f_X(\cdot)$ and $Y_1, Y_2, \cdots Y_m \stackrel{\text{i.i.d.}}{\sim} f_Y(\cdot)$

◆□▶ ◆□▶ ◆ ≧ ▶ ◆ ≧ ▶ りへぐ

- Two samples from unknown distribution(s)
- $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} f_X(\cdot)$ and $Y_1, Y_2, \cdots Y_m \overset{\text{i.i.d.}}{\sim} f_Y(\cdot)$
- H_0 : they have the same population mean $\mu_X = \mu_Y$

Week 6 **COMP 680** 15 / 24

- Two samples from unknown distribution(s)
- $X_1, X_2, \cdots X_n \stackrel{\text{i.i.d.}}{\sim} f_X(\cdot)$ and $Y_1, Y_2, \cdots Y_m \stackrel{\text{i.i.d.}}{\sim} f_Y(\cdot)$
- H_0 : they have the same population mean $\mu_X = \mu_Y$
 - $H_1: \mu_X \neq \mu_Y$ two-sided test
 - $H_1: \mu_X > \mu_Y$ or $\mu_X < \mu_Y$ one-sided test

Week 6 **COMP 680** 15 / 24

- Two samples from unknown distribution(s)
- $X_1, X_2, \cdots X_n \overset{\text{i.i.d.}}{\sim} f_X(\cdot)$ and $Y_1, Y_2, \cdots Y_m \overset{\text{i.i.d.}}{\sim} f_Y(\cdot)$
- H_0 : they have the same population mean $\mu_X = \mu_Y$
 - $H_1: \mu_X \neq \mu_Y$ two-sided test
 - $H_1: \mu_X > \mu_Y$ or $\mu_X < \mu_Y$ one-sided test
- Can also test if they have the same median.
- In general, can test whether two samples are from the same distribution.

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ - 臺 - 釣९♡

Outline

- The P-value

- Jury Selection: $X_1, X_2, \cdots X_{100} \overset{\text{i.i.d.}}{\sim} \mathsf{Bernoulli}(p)$
- p is the probability of being black and $X_i = 1$ is black

- Jury Selection: $X_1, X_2, \cdots X_{100} \overset{\text{i.i.d.}}{\sim} \mathsf{Bernoulli}(p)$
- p is the probability of being black and $X_i = 1$ is black
 - $H_0: p = 26\%$
 - $H_1: p < 26\%$

- Jury Selection: $X_1, X_2, \cdots X_{100} \overset{\text{i.i.d.}}{\sim} \mathsf{Bernoulli}(p)$
- ullet p is the probability of being black and $X_i=1$ is black
 - $H_0: p = 26\%$
 - $H_1: p < 26\%$
- test statistic $T = \sum_{i=1}^{100} X_i$: number of blacks in a sample of 100
 - small number of T is evidence against H_0 , or support H_1
 - observed test statistic $T_{obs} = 9$

- Jury Selection: $X_1, X_2, \cdots X_{100} \overset{\text{i.i.d.}}{\sim} \mathsf{Bernoulli}(p)$
- ullet p is the probability of being black and $X_i=1$ is black
 - $H_0: p = 26\%$
 - $H_1: p < 26\%$
- test statistic $T = \sum_{i=1}^{100} X_i$: number of blacks in a sample of 100
 - small number of T is evidence against H_0 , or support H_1
 - observed test statistic $T_{obs} = 9$
- Simulate data under the null:
 - each time simulate a sample of 100 and calculate T_{H_0}

- Jury Selection: $X_1, X_2, \cdots X_{100} \overset{\text{i.i.d.}}{\sim} \mathsf{Bernoulli}(p)$
- ullet p is the probability of being black and $X_i=1$ is black
 - $H_0: p = 26\%$
 - $H_1: p < 26\%$
- test statistic $T = \sum_{i=1}^{100} X_i$: number of blacks in a sample of 100
 - small number of T is evidence against H_0 , or support H_1
 - observed test statistic $T_{obs} = 9$
- Simulate data under the null:
 - each time simulate a sample of 100 and calculate T_{H_0}
 - sampling distribution of T_{H_0} under the null

4 D > 4 B > 4 E > 4 E > E 9 9 C

The Significance Level

- ullet Compare T_{obs} with the sampling distribution of T_{H_0}
 - if H_0 is true, T_{obs} is "one of" the T_{H_0}
 - reject H_0 if T_{obs} is very "unlikely"

The Significance Level

- Compare T_{obs} with the sampling distribution of T_{H_0}
 - if H_0 is true, T_{obs} is "one of" the T_{H_0}
 - reject H_0 if T_{obs} is very "unlikely"
- How "unlikely"?
 - ullet significance level lpha defines the cut-off threshold
 - convention: 5% or 1%

The P-Value

- If H_0 is true, where is T_{obs} in the sampling distribution of T_{H_0} ?
 - p-value is a probability
 - ullet to observe the data or something even more extreme if H_0 is true
 - "more extreme" in the sense of against H_0 or supporting H_1

The P-Value

- If H_0 is true, where is T_{obs} in the sampling distribution of T_{H_0} ?
 - p-value is a probability
 - to observe the data or something even more extreme if H_0 is true
 - "more extreme" in the sense of against H_0 or supporting H_1
- Example of Jury Selection:
 - if 100 panel is indeed a random sample from the county population
 - what is the probability of getting 9 blacks or even fewer?

The P-Value

- If H_0 is true, where is T_{obs} in the sampling distribution of T_{H_0} ?
 - p-value is a probability
 - to observe the data or something even more extreme if H_0 is true
 - "more extreme" in the sense of against H_0 or supporting H_1
- Example of Jury Selection:
 - if 100 panel is indeed a random sample from the county population
 - what is the probability of getting 9 blacks or even fewer?
- Compare p-value to the significance level
 - p-value $< \alpha \Rightarrow$ reject H_0
 - p-value $\geq \alpha \Rightarrow$ fail to reject H_0

4□ ► 4□ ► 4 = ► = 900

Error Probability

Decision making:

Error Probability

Decision making:

Week 6

Reject H_0 ?

	No	Yes
H_0 is true	©	Type I error
H_1 is true	Type II error	©

Table 11.1: Type I and II errors.

COMP 680

20 / 24

P-value is NOT the probability of H_0 being true!!!

Week 6 **COMP 680** 21 / 24

- P-value is NOT the probability of H₀ being true!!!
- What is p-value really???

- P-value is NOT the probability of H₀ being true!!!
- What is p-value really????
 - the probability of making a Type I error when reject H_0
 - the small chance of observing such data when H_0 is true
- What is the significance level α ?

- P-value is NOT the probability of H₀ being true!!!
- What is p-value really????
 - the probability of making a Type I error when reject H_0
 - the small chance of observing such data when H_0 is true
- What is the significance level α ?
 - the upper bound of probability of making a Type I error
 - guaranteed control of Type I error

Power

- What about Type II error?
 - fail to reject when you should have

Week 6 COMP 680 22 / 24

Power

- What about Type II error?
 - fail to reject when you should have
- ullet Statistical power eta=1 Type II error
 - how likely you will correctly reject H₀

Week 6 COMP 680 22 / 24

- What about Type II error?
 - fail to reject when you should have
- Statistical power eta=1 Type II error
 - how likely you will correctly reject H₀
- Intuition: more data, more power
 - power analysis and sample size calculation
- A test with more power is better
 - given all else equal

Week 6 COMP 680 22 / 24

Outline

- Code Demo

Next week:

- More hypothesis testing
 - one sample vs. two-sample test
 - parametric vs. non-parametric test
 - implementation in Python
- Which test should I use?
- Multiple testing and FDR