

Oct 27, 2022

© OT-2 Protocol to transfer volume from several plates to a single plate

Ana Mariya Anhel¹, Lorea Alejaldre¹, Ángel Goñi-Moreno¹

¹Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Na cional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain Ángel Goñi-Moreno: angel.goni@upm.es

1	Works for me	8	Share
---	--------------	---	-------

dx.doi.org/10.17504/protocols.io.6qpvr4o62gmk/v1

biocomp.cbgp

ABSTRACT

This protocol is meant to transfer samples from different plates to a single plate. The output of running this script will be the final plate(s) and the corresponding map(s) with the original identities of the samples.

This protocol uses a python script for an Opentrons 2 robot and a .csv file containing the required variables to set the number of samples, volumes of transfer, type of plates, etc... In our laboratory, this protocol has been used as part of the "High-throughput workflow for the genotypic characterization of transposon library variants" also available in protocols.io

DOI

dx.doi.org/10.17504/protocols.io.6qpvr4o62gmk/v1

PROTOCOL CITATION

Ana Mariya Anhel, Lorea Alejaldre, Ángel Goñi-Moreno 2022. OT-2 Protocol to transfer volume from several plates to a single plate . **protocols.io** https://dx.doi.org/10.17504/protocols.io.6qpvr4o62gmk/v1

FUNDERS ACKNOWLEDGEMENT

Comunidad de Madrid

Grant ID: Y2020/TCS-6555, 2019-T1/BIO-14053

MCIN/AEI

Grant ID: CEX2020-000999-S, PID2020-117205GA-I00

European Research Council

Grant ID: 101044360

1

Citation: Ana Mariya Anhel, Lorea Alejaldre, ÃÂngel Goñi-Moreno OT-2 Protocol to transfer volume from several plates to a single plateÃÂ https://dx.doi.org/10.17504/protocols.io.6gpvr4o62gmk/v1

KEYWORDS

OT-2, Opentrons, Media transfer, 96-well

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Sep 22, 2022

LAST MODIFIED

Oct 27, 2022

OWNERSHIP HISTORY

Sep 22, 2022 Lorea Alejaldre
Oct 27, 2022 biocomp.cbgp

PROTOCOL INTEGER ID

70382

PARENT PROTOCOLS

In steps of

High-throughput workflow for the genotypic characterization of transposon library variants

GUIDELINES

This protocol was developed with python 3.9.7, OT App Software Version 6.1.0 and API level version 2.13. It has been tested with cultures from *Pseudomonas putida* KT2440 as part of the High-throughput workflow for the genotypic characterization of transposon library variants.

The maximum number of 96-well plates per run is 6 source plates to 2 final plates (if no media is dispensed and only 30 samples are transferred per source plate)

MATERIALS TEXT

Software

- python 3.9.6
- python packages: pandas, logging, math, copy, numpy, opentrons
- OT App
- Excel

OT-2 Labware

Opentrons Tipracks

2

Opentrons 96 Filter Tip Rack 20 µL Tip rack Opentrons - 🖘

• 96- well plates

Opentrons Falcon tuberack

■ 15mL Falcon tubes

3

Equipment:

OT-2

Liquid handler

Opentrons OT-2

Single Channel Electronic Pipette (GEN2)
300uL
Opentrons Pipette
Opentrons -

BEFORE STARTING

It is important to annotate the location of the source plate in the OT-2 slots, the identity of the samples in each well is going to be a combination of the position of the source well and the identity given in the map of that position.

4

Citation: Ana Mariya Anhel, Lorea Alejaldre, ÃÂngel Goñi-Moreno OT-2 Protocol to transfer volume from several plates to a single plateÃÂ https://dx.doi.org/10.17504/protocols.io.6gpvr4o62gmk/v1

1 Preparing Customized Template

Preparing the template (.csv file) with the specific variables for each experiment.

Here we attach one excel with the following sheets:

- 1. Template to use in protocol
- 2. Explanation of each variable
- 3. An Example
- Template_MergingSamplesPlates.xlsx
 - 1.1 Fill the template with the corresponding values
 - 1.2 Store it as .csv file with the name Variables-SamplesMerging-OT.csv

The file should be spelled exactly *Variables-SamplesMerging-OT.csv* or the python script won't work.

Make sure that the final csv is separated by commas, not by semicolons and that the variables have 2 quotation marks and not 6, in case they need quotation marks (these are added when going from excel to csv)

In Windows 10 to change excel separator from ";" to "," you should go to Region Setings > Change date, time, or number formats > Additional settings > change List separator from ; to ,

Alternatively open the exported .csv file in an editor and replace all; to, and remove the extra quotation marks

2 Transferring csv to Robot

Transfer the *Variables-SamplesMerging-OT.csv* to the directory */data/user_storage* of the OT system that we are going to use to perform the protocol.

Previous to transfering any file to the OT, we need to know the IP of the robot.

This can be obtained in the Networking section of the Device that we are going to use (In the OT-App > Devices > (three dots) Networking)

Here we present a summary of how to transfer the files in 3 OS: *Windows, Mac and Ubuntu* (applicable to most Linux)

Mac/Linux

We will use the command line with scp to transfer the file *Variables-SamplesMerging-OT.csv* to the OT system.

We need to perform the following line:

Passing Files to OT

scp -i [ot_key] [file] root@[IP_OT]:/data/user_storage

File passing from linux (our computer) to linux (OT raspberry) Ubuntu

The OT key should have been previously generated, for more info visit https://support.opentrons.com/s/article/Setting-up-SSH-access-to-your-OT-2

Windows

There are several ways to pass files from a windows to a linux (for example with a virtual machine).

Here we will use FileZilla (https://filezilla-project.org/download.php?type=client).

Go to **File > Site Manager > New Site > Change Protocol to SFTP**. Then introduce in Host the OT IP, change the Logon Type to key file, change the user name to root and give the directory were the ot key is. Should look something like this

Example of setting the FileZilla to transfer files from windows (our computer) to linux (OT)

Then press connect and we will have a conection between our computer and the robot.

After this connection, we should be able to move out *Variables-SamplesMerging-OT.csv* (in our computer) to the directory */data/user_storage* in the robot.

Take in account that the IP of the robot could change, so it is possible that from time to time it will be needed to change the host in these connections.

The method described for the Windows system can be done as well in Ubuntu and Mac

3 Adding the custom labware

There is only a need to do this step when a labware that you are using is not OT official or your labware is not in the OT directory

/data/labware/v2/custom_definitions/custom_labware

This process/step is needed in the version 6.0.1 or below (when this protocol was developed).

According to their guide, this protocol should be possible only loading the labware in the OT-App (https://support.opentrons.com/s/article/Using-labware-in-your-protocols).

This bug has been reported and, hopefully, will be resolved as soon as possible. It is possible that you do not need to do this step if this error does not occur to you.

3.1 Creation of .json file

The description file can be obtained by describing the labware dimensions in https://labware.opentrons.com/create/

3.2 Creating description folder

We need to create for our custom labware a folder with the API name containing the description file (.json) called *1.json*

3.3 Transfer the description folder to the OT robot

We need to transfer the directory or directories created in Step 3.2

For that we need to introduce the following command (in Linux), for Windows process \circlearrowleft **go to step #2**

Transfering directory to OT

scp -i [ot_key] -r [directory_custom_labware]
root@[IP_OT]:/data/labware/v2/custom_definitions/custom_be/

Transfering the custom labware to OT Linux

We do not need to execute this part every time the protocol is used, only when that labware is not included in the OT official labware and these directories are not in the robot

4 Simulating and getting the output (user instructions)

For more information in how to setup the ssh visit the official OT support blog (https://support.opentrons.com/s/article/Setting-up-SSH-access-to-your-OT-2)

4.1 Transferring python script

To make sure that the protocol will work with the variables we have introduced we need to run the python script in the robot with the OT simulator.

The last script version can be found at https://github.com/Biocomputation-cbgP/OT2/tree/main/MergingSamplesSourcePlates (name of this file is user's choice)

For that we can **o go to step #2** but instead of passing the variables file, we pass the python script. In this case we can transfer it to the directory /data/user_storage or we can directly pass it to the directory /root (recommended)

You can do this step only once and use always the same python script

The only time that you need to change it is when there is an update in github, then you should download the new script version and do this step

4.2 Simulating

We should connect to the robot via ssh

Connect to Linux based OT via ssh

ssh -i [ot_key] root@[Robot_IP]

Simulate the protocol so we can know if the protocol is going to work with the given variables

Linux

Then we would move to the directory where the python script is with the **cd** command

Finally we are going to perform the simulation of the opentrons

Simulate OT protocol

opentrons_simulate -o nothing -e [name_script].py > [name instruction file].txt 2>&1

Simulate the protocol so we can know if the protocol is going to work with the given variables

Linux

Do not wory if it takes a little bit of time

4.3 In case that you want to see the instruction file before the next step, you can see the instruction file with cat

Show content file cmd

cat [name_instruction_file].txt

Show in the command line the instruction file content Linux

4.4 Retrieving output file (user instructions)

To retrieve the output from the OT system you can \circlearrowleft **go to step #2**, replicate it but transfering the file from the OT to your computer

In this file we have 2 or more sections:

- 1. (Optional) Warnings
- 2. *General Information:* pieces of information that are extracted from variables in the variables file and are only remainders
- 3. **Deck Labware Position:** this information will be provided by the OT as well
- (Optional) Falcon Reactive Positions: for each falcon tuberack that is needed (with 15 positions) we have a table with the reactives and their respective volumes

It is recommended to have at least 10uL more of each reactive in each tube

to make sure that the pipette does not take a bubble when aspirating

In the case that something went wrong, the variables are not consistent or there is not enough deck place to perform the experiments the instruction file will be sorter and will have a single section, *Errors*.

Running Protocol

5 Setting Labware

5.1 Wipe the surface of the deck with 70% ethanol to clean and desinfect the surfaces

For more information in how to clean the robot go to the following link https://support.opentrons.com/s/article/Cleaning-the-robot-s-surfaces

5.2 Set the respective labwares in the slots as the OT App and the instruction file set

Make sure that the source and final A1 wells are at the left top (common mistake), and each labware fits appropierly.

5.3 Set the different reactives in their respective coldblock positions, as stated in the instructions file

The protocol is going to aspirate from the falcon at a scpecific height which is set with the volume of the faqlcon, so make sure that you dont have a falcon with more than 1mL more than the instruction file specific volume.

This way, the pipette will not end wet in the running of the protocol

6 Load script in OT-App

Now that we have made sure that the protocol is going to work we import the python script in the

OT-App.

This whole step has been developed with version 6 of the OT-App

Indications may vary from version to version

6.1 Load the script

Protocols > Import > Drag the python script

The last script version can be found at https://github.com/Biocomputation-cbgP/OT2/tree/main/MergingSamplesSourcePlates (name of this file is user's choice)

The App with version 6 analyzes your protocol before setting a robot to run, so the labware will not be shown before assigning the protocol to a specific robot.

6.2 Select Robot to Perform Script

Click in the protocol > Run Protocol > Choose the OT where the file Variables-SamplesMerging-OT.csv is > Proceed To Setup

After clicking in Proceed to Setup you should obtain the setup of the labware as instructed in the Deck Labware Positions section of the instructions file.

The Labware Setup tab should look similar to the following image

Example of a Labware Setup for a compressing plates

It is recommended that you perform a labware position check.

You can do it with test plates before cleaning the surface, that way you reduce the probability of contamination (using the test plates and labware) and pipetting errors (position check).

7 Run Protocol in OT

- 7.1 Make sure the needed calibrations are done
- 7.2 Labware position check is performed (if needed)

7.3 Start Run

The procedure that the robot is going to do is mainly divided in 3 parts:

- 1. Distributing media to all wells that will have a sample (in case that volume of media to transfer is greater than 0)
- 2. Transfering samples to the corresponding wells
- 3. Creating maps with their identifiers, one per final plate

One or more final plates with the corresponding samples of each source plate, set in the variables .csv file

The script is going to be the same so we can load it only once to the OT-App.

To re-run the protocol make sure that the filled template is in the OT system and \circlearrowleft go to step #6.2

After-running

8 Retrieve labware from the OT

9 Importing maps from robot

This can be done if in Step 1 the variable Optional Map was set to True

There will be as many maps as source plates with the following structure of names: VariableNameMap_PositionSlot.csv

To retrieve we can **o go to step #2** and reproduce it with transfering the files to the computer.

They will be in the directory /data/user_storage

The maps contains a table of where the initial samples (from the source plate) are

Example

10 We are going to transfer 30, 45 and 15 samples from 3 different source plates to a single plate with the variables set in the Example of the Template_MergingSamplesPlates.xlsx attached in Step 1.

We will use a computer with an Ubuntu system connected via USB to the robot

10.1 Excel template filled and exported to csv with the name *Variables-SamplesMerging-OT.csv*

▶ Variables-SampleMerging-OT.csv

10.2 Export the variables and source plates maps (for the creation of the final map) csv to /data/user_storage

cmd window with scp commands to transfer the variables.csv from our computer to the OT

```
biocomp@Chuwi: ~/Documents
biocomp@Chuwi:~/Documents$ scp -i ot2_ssh_key library1.csv root@169.254.136.252:
/data/user storage/
library1.csv
                                             100% 404 172.4KB/s 00:00
biocomp@Chuwi:~/Documents$ scp -i ot2_ssh_key library2.csv root@169.254.136.252:
/data/user_storage/
library2.csv
                                             100% 349
                                                       157.8KB/s
                                                                    00:00
biocomp@Chuwi:~/Documents$ scp -i ot2_ssh_key library3.csv root@169.254.136.252:
/data/user_storage/
library3.csv
                                             100% 813 294.8KB/s 00:00
biocomp@Chuwi:~/Documents$
```

 $\,$ cmd window with the scp commands to transfer the maps for the source plates from the computer to the $\,$ OT $\,$

10.3 We have never used a 96 tisue plate labware with the API name vwrblueprintdepth105_96_wellplate_390ul, so we must pass the directory regarding this labware to the robot

 $\,$ cmd window with scp commands to transfer the custom labware directory from our computer to the $\,$ OT $\,$

10.4 Pass the scipt that I have downloaded from https://github.com/Biocomputation-cBGP/OT2/tree/main/MergingSamplesSourcePlates (I named it *PlateMerging-Example.py*), connect to OT computer, simulate, exit OT system, store the output in instructions_examplePlateMerging.txt and import it to the computer

cmd window with scp commands to transfer the python script from our computer to the OT and simulate it

cmd window with the scp commands to retrieve from the OT the instructions file

instructions_examplePlateMerging.txt

10.5 Prepare all reactives and labwares

Initial Labware Setup and falcon tuberack(s) setup should look like the following picture

Deck sketch with labware and reactives leyend

Falcon Tuberack with reactives (positions and volumes)

10.6 Load to OT-App the *PlateMerging-Example.py* > Run > Select robot in which we are going to run the protocol

The window and tabs of the OT-App should look like the following pictures

Calibration Tab OT with Example variables

Labware Setup Tab OT with Example variables

- 10.7 Desinfect OT
- 10.8 Load protocol labware as instructed in Step 10.6
- 10.9 Run protocol

The final results should look like the following pictures

Deck reactives positions and volumes at the end of the run

Falcon tuberack reactive volumes at the end of the protocol

10.10 Retrieve labwares from the OT

10.11 Retrieve final maps.

There is going to as many maps as final plates were needed.

cmd transfering final map from the OT to our computer

maps_master_example_4.csv