Домашнее задание 6

Баширов 778

18 октября 2018 г.

1

2

$$L = L_1 \cup R$$

$$L_1 = (L \setminus R) \cup (L_1 \cap R)$$

 $L_1 \cap R$ — конечный язык (R — конечный) а следовательно регулярный $L \backslash R = L \cap \overline{R}$ — регулярный язык тк отрицание регулярного и пересечение регулярных языков тоже регулярные языки

Следовательно L_1 регулярный язык как объединение регулярных Ответ: нет

3

Предположим что классами эквивалентности будут множества с одинаковыми остатками от деления на три

Докажем предположение

1.

При приписывании нуля справа остаток изменится следующим образом $d_2 = d_1 \times 2 (mod 3)$

При приписывании единицы справа остаток изменится следующим образом

$$d_2 = d_1 \times 2 + 1 \pmod{3}$$

Последовательным приписыванием нулей и единиц справа можно приписать любое слово и принадлежность результата к какому либо классу будет зависеть только от остатка изначального слова те его принадлежности к некоторому классу

Так как язык L является классом эквивалентности то все слова из некоторого класса эквивалентности попарно эквивалентны

2.

Если слова принадлежат разным классам то они не эквивалентны так как у них разные остатки и при приписывании справа одинакового слова остатки результатов конкатенации тоже будут разные

3.

У любого числа есть остаток

Значит объедининение всех классов смежности равно языку всех слов

Язык L – регулярный так как колличество эквивалентных классов конечно

4

\mathbf{a}

Каждое слово является классом смежности

Докажем это утверждение

для любого х,у такого что $x \neq y \exists z : xz \in PAL, yz \notin PAL$ чтд

b

Пусть есть три класса эквивалентности: L_1, L_2, L_3

 $L_1 = L$

 $L_2 = b^*aa*$

 $L_3 = b^*$

Докажем что это классы эквивалентности:

Если в слове есть подслово ab то оно принадлежит $L_1 = L$ и после приписывания любого слова там останется

Если слово заканчивается на а и оно не принадлежит $L_1 = L$ (принадлежит L_2) то только при приписывании слова начинающегося на b или содержащего подслова ab результат конкатенации принадлежит L

В остальных случаях слово будет принадлежать L только после приписывания слова с подсловом ab

$$L_2 + L_3 = b^* a^*$$

$$L_1 + b^* a^* = \Sigma^*$$

ЧТД

И так колличество классов конечно

Построим автомат:

Каждому состоянию соответствует класс смежности

Начальное состояние соответствует классу с ε те классу L_3

Принимающее состояние L_1

а. Всегда можем взять $y=\varepsilon$ Тогда язык равен $\Sigma^* a \Sigma^*$ Те язык регулярный