吉林大学

2015~2016 学年第二学期《高等数学 AII》试卷

2016年6月28日

_	=	Ξ	四	总分

得 分 一、单项选择题(共 6 道小题,每小题 3 分,满分 18 分,下列每小题 给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)

- **1.** 函数 $f(x,y) = \sqrt{x^2 + y^4}$ 在点(0,0)处的偏导数().

 - (A) $f_x'(0,0)$ 存在, $f_y'(0,0)$ 不存在 (B) $f_x'(0,0)$ 不存在, $f_y'(0,0)$ 存在
 - (C) f'(0,0), f'(0,0)都存在
- (D) f'(0,0), f'(0,0)都不存在
- **2.** 设方程 $xyz + e^z = 1$ 确定 $z \neq x$, y 的函数,则 $\frac{\partial z}{\partial x} = ($).
- (A) $-\frac{yz}{e^z}$ (B) $\frac{yz}{e^z}$ (C) $-\frac{yz}{xy+e^z}$ (D) $\frac{yz}{xy+e^z}$

3. 空间区域 $\Omega = \{(x, y, z) | 0 \le z \le \sqrt{4 - x^2 - y^2}, x^2 + y^2 \le 1 \}$ 的体积是().

- (A) $\int_{0}^{2\pi} d\theta \int_{0}^{2} r \sqrt{4 r^{2}} dr$ (B) $4 \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{1} r \sqrt{4 r^{2}} dr$
- (C) $\int_{0}^{2\pi} d\theta \int_{0}^{2} \sqrt{4-r^{2}} dr$ (D) $4 \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{1} \sqrt{4-r^{2}} dr$

4. $I_1 = \iint_{\mathbb{R}} [\ln(x+y)]^9 \, dxdy$, $I_2 = \iint_{\mathbb{R}} (x+y)^9 \, dxdy$, $I_3 = \iint_{\mathbb{R}} [\sin(x+y)]^9 \, dxdy$, Herm

平面区域 D 由直线 $x + y = 1, x + y = \frac{1}{2}, x = 0, y = 0$ 所围成,则(

 $(A) I_1 \leq I_3 \leq I_5$

(B) $I_3 \leq I_2 \leq I_1$

(C) $I_1 \leq I_2 \leq I_3$

(D) $I_3 \leq I_1 \leq I_2$

5. 设空间区域 $\Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le 2, z \ge \sqrt{x^2 + y^2} \}$, f(x, y, z) 为连续函 数,则三重积分 $\iiint_{\mathbb{R}} f(x,y,z) dV = ($

(A)
$$\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{\sqrt{2-x^2-y^2}}^{\sqrt{x^2+y^2}} f(x, y, z) dz$$

(B)
$$4\int_0^1 dx \int_0^{\sqrt{1-x^2}} dy \int_{\sqrt{x^2+y^2}}^{\sqrt{2-x^2-y^2}} f(x, y, z) dz$$

(C)
$$\int_0^{2\pi} d\theta \int_0^1 dr \int_r^{2-r^2} f(r\cos\theta, r\sin\theta, z) dz$$

(D)
$$\int_0^{2\pi} d\theta \int_0^{\frac{\pi}{4}} d\varphi \int_0^{\sqrt{2}} f(r\sin\varphi\cos\theta, r\sin\varphi\sin\theta, r\cos\varphi) r^2 \sin\varphi dr$$

6. 如果反常积分
$$\int_{-\infty}^{0} e^{-kx} dx$$
 收敛,则必有().

(A)
$$k > 0$$

(B)
$$k < 0$$

$$(C)$$
 $k > 0$

(B) k < 0 (C) $k \ge 0$ (D) $k \le 0$

得 分 二、填空题(共6道小题,每小题3分,满分18分,请将答案写在题后 的横线上.)

1. 极限
$$\lim_{\substack{x\to 0\\y\to \pi}} \frac{\sin(xy)}{x} = \underline{\qquad}.$$

2. 直线
$$L: \frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$$
 与平面 $\Pi: -x-y+2z=1$ 的夹角为______.

3. 曲线
$$\Gamma$$
: $\begin{cases} x^2 + y^2 + z^2 = 4, \\ y = z + x \end{cases}$ 在 Oxz 平面上的投影柱面方程为______.

4. 由曲线 $y = x^2$ 与 $x = y^2$ 所围成的图形绕 x 轴旋转一周所形成的旋转体的体积

5. 曲面
$$z = xy$$
 在点 $M(-1, -1, 1)$ 处的切平面方程为 . .

6.
$$\int_0^2 dx \int_x^2 e^{-y^2} dy =$$
_______.

三、按要求解答下列各题(共4道小题,每小题8分,满分32分).

1. 设f为 $C^{(2)}$ 类函数,且z = f(x+y,x-y),求dz和 $\frac{\partial^2 z}{\partial x \partial y}$.

2. 设 y = y(x), z = z(x) 是由方程组 $\begin{cases} x^2 + 2y^2 + z^2 = 10, \\ x + y + z = 0 \end{cases}$ 确定的隐函数, 求 $\frac{dy}{dx}, \frac{dz}{dx}$.

3. 求过点(-1,2,3)垂直于直线 $\frac{x}{4} = \frac{y}{5} = \frac{z}{6}$, 且平行于平面7x + 8y + 9z + 10 = 0的直线方程.

4. 设平面区域
$$D = \{(x,y) | x^2 + y^2 \le 1, x \ge 0 \}$$
, 计算二重积分 $\iint_D \frac{1+xy}{1+x^2+y^2} dxdy$.

1. 求心脏线 $r = 2(1 + \cos \theta)$ 的全长.

2. 设 n 是曲面 $2x^2 + 3y^2 + z^2 = 6$ 在点 P(1,1,1) 处的指向外侧的法向量,

求函数 $u = \frac{\sqrt{6x^2 + 8y^2}}{z}$ 在点 P 处沿方向 n 的方向导数.

- 3. 曲面 Σ 是由曲线 $\begin{cases} y = \sqrt{z-1}, \\ x = 0 \end{cases}$ ($1 \le z \le 3$) 绕 z 轴旋转一周所形成的曲面.
 - (1) 写出Σ的方程;
 - (2) 设区域 Ω 是由曲面 Σ 与平面z=3围成的区域,计算 \iint_{Ω} e^zdxdydz.

4. 已知 a,b 满足 $\int_a^b |x| dx = \frac{1}{2} (a \le 0 \le b)$,求曲线 $y = x^2 + ax$ 与直线 y = bx 所围区域面积的最大值和最小值.