ЗАДАНИЕ 2

1. Откроем модель rc2pole.cir.

По графикам определим затухание на частоте $f_0 \simeq 10~\kappa\Gamma u$, оно равно -9,6 dB и скорость его нарастания в полосах задержания -40,4 + 9,6 = -30,8 $dB/\partial\epsilon\kappa a\partial y$. По графикам ФЧХ измерим значения фазовых сдвигов ФВЧ, ПФ и ФНЧ на частотах $0,\,f_0,\,\infty$.

	ФВЧ	ПΦ	ФНЧ
0	180	90	0
f_0	90	0	-90
∞	0	-90	-180

Двухсторонняя полоса $\triangle f$ пропускания $\Pi \Phi \approx 30~\kappa \Gamma u$, что в три раза больше f_0 . Это сходится с теорией.

2. Откроем графики преходных характеристик.

Оценим время спада τ_- первого выброса переходной характеристик ФВЧ до уровня $1/e \simeq 0,37$:

$$\tau_- = 5 \; \mathrm{m} \kappa c$$

Оценим время нарастания t_+ фронта переходной характеристики ФНЧ до уровня $1-1/e \simeq 0,63$:

$$\tau_{+}=61~\mathrm{mkc}$$

Найдем их отношение:

$$\frac{\tau_+}{\tau_-} = 12, 2$$

ЗАДАНИЕ 3

1. Откроем модель **phshift.cir**.

Наибольший диапазон перестройки реализуется на частоте $f=20~\kappa \Gamma q$. Границы этого диапазона [-143,4;-22,7].

2. Откроем модель двойного T-моста 2tbridge.cir.

Измерим полосу режекции $\triangle f=39~\kappa \Gamma$ ų. $f_0=10~\kappa \Gamma$ ų, следовательно выполняется $\triangle f=f_0.$

При росте R, f_0 падает. При $R=5~\kappa O M$ наблюдается скачок на $\Phi \Psi X$.

3. Подключив ко фходу источник прямоугольного импульса, проанализиурем переходную характеристику. $\tau_+=4~\text{mkc},~\tau_-=58~\text{mkc}$. Это сходится с теоретическими значениями.

Варьирование приводит к усреднению функции.

4. Откроем модель ${f 2tdelay.cir}.$

Оценим $Q = f_0/\triangle f$.

$R, \kappa O M$	4,9	5	5,1
$f_0, \kappa \Gamma u$	10,05	10	9,95
$\triangle f$, $\kappa \Gamma u$,	0,05	$10^{-4} \cdot 2,5$	0,05
Q	100,5	40000	99,5

В режиме $\mathit{Transient}$ измерим групповые задержки τ_g :

$$au_g=3~{\it Mc},$$

значение для обоих случаев ($R=4,9~\kappa O {\it M},f=10,05~\kappa \Gamma {\it U}$ и $R=5,1~\kappa O {\it M},f=9,95~\kappa O {\it M}$).

ЗАДАНИЕ 5

1. Откроем в Місто Сар модель **parallel.cir** параллельного контура с $f_0=100~\kappa \Gamma u$, $\varrho=570$. По схеме оценим параметры:

$$\alpha = \frac{\rho}{R_0}$$

$$\beta = \frac{R}{\rho}$$

$$Q = \frac{1}{\alpha + \beta}$$

$$\rho = \sqrt{\frac{L}{C}} = 568$$

5

$$\alpha = 0,0568$$
 $\beta = 0,0563$

$$Q = 8,84$$

2. Найдем резонансную частоту $f_0=100~\kappa \Gamma u$, полосу пропускания $\Delta f=11,6~\kappa \Gamma u$. Измерим сопротивление контура $R_0=5~\kappa O$ м. Оценим добротность как:

$$Q = \frac{R_0}{\rho} = 8,8$$

$$Q = \frac{f_0}{\triangle f} = 8, 6$$

3. Изучим влияние на добротность последовательных потерь R, установив варьирование R = [0, 32 || 32].

Добротность при R=0:

$$Q = \frac{f_0}{\triangle f} = 17, 3$$

Изучим влияние параллельных потерь R_0 , установив варьирование $R_0 = [10k, 1000k || 1000k]$. Измерим добротность при $R_0 = 1000 \ \kappa O M$:

$$Q = \frac{f_0}{\triangle f} = 17, 2$$

При увеличении R от 0 Oм до 32 Oм 1/Q меняется от 0,058 до 0,116. При увеличении R_0 от 10 κO м до 1000 κO м 1/Q меняется от 0,116 до 0,058.

4. Изучим зависимость частоты параллельного резонанса от R = [0, 150||50].

R, OM	0	50	100	150
$f_{artheta\kappa cn},\ \kappa arGamma u$	100	99,6	98,42	96,4
β	0	0,088	0,176	0,264
f_{meop}	100	99,6	98,43	96,45

5. Исследуем влияние последовательных потерь в области низких частот. Установим частотный диапазон от 1 $\kappa \Gamma u$ до 130 $\kappa \Gamma u$ и будем варьировать R = [0, 20||2].

Получаем, что при R=12~Oм фазовый сдвиг на частоте $f=2~\kappa \Gamma u$ составляет $\pi/4$.

ЗАДАНИЕ 6

1. Откроем модель **combined.cir** с $f_0 = 100 \ \kappa \Gamma \eta$, $\rho = 15, 9 \ \kappa \Gamma \eta$, $q \simeq 10, \ \alpha = 1$.

Изучим графики частотной и фазовой характеристик, а также графики частотных зависимостей вещественной и мнимой частей мпеданса.

2. Измерим частоты f_p , f_0 последовательного и параллельного резонансов по точкам пересечения нуля фазовой характеристикой:

$$f_p = 100, 5 \ \kappa \Gamma u, \quad f_0 = 140, 6 \ \kappa \Gamma u,$$

Измерим полосы $\triangle f_p, \triangle f_0$, в которых фазовая характеристика изменяется в диапазоне $\pm 45 \deg$ в окрестностях резонансов.

$$\triangle f_p = 10,6 \ \kappa \Gamma u$$

$$\triangle f_0 = 10,8 \ \kappa \Gamma u$$

Оценим добротности Q_p, Q_0 и проверим, что $f_0 = f_p \sqrt{2}, \, Q_0 = Q_p \sqrt{2}$:

$$Q_p = \frac{f_p}{\triangle f_p} = 9,5$$

$$Q_0 = \frac{f_0}{\triangle f_0} = 13$$

$$Q_0 = 13 \simeq 13, 43 = Q_p \sqrt{2}$$

$$f_0 = 140, 6 \simeq 142, 1 = f_p \sqrt{2}$$

3. Измерим сопротивление контура на частотах последовательного и параллельного резонансов, сравним результаты с теоретическими значениями $(r, k^2 \rho_p, Q_p)$:

$$r_{\varkappa\kappa cn} = 1,565 \ \kappa O_{\mathcal{M}} \simeq 1,59 \ \kappa O_{\mathcal{M}} = r_{meop}$$

$$(k^2 \rho_p, Q_p)_{\Re cn} = 78, 1 \ \kappa O M \simeq 79, 1 \ \kappa O M = \left(\frac{\alpha}{1+\alpha}\right)^2 \sqrt{\frac{L}{c}} (1+\alpha) \frac{r}{\rho} = (k^2 \rho_p, Q_p)_{meop}$$

Снимем зависимость сопротивления на частоте параллельного резонанса от $R=[500,2000\|500]$ и емкости $C_0=[100p,300p\|100p]$. Сопоставим их с теорией. Осмыслим характер изменения графиков при варьировании R и C_0 .

R, OM	500	1000	1500	2000
Z , $\kappa O M$	247	124,4	83	61,9

Получаем зависимость:

$$Z \sim \frac{1}{R}$$

$C_0, n\Phi$	100	200	300
$Z, \kappa O M$	78,3	25,4	11,9

Получаем зависимость:

$$Z \sim \frac{1}{C_0^2}$$

4. Обнулим последовательности потери r и варьированием $R_0 = [10k, 100k || 10k]$ подберем сопротивления параллельных потерь так, чтобы достичь того же резонансного сопротивления, что и при $r = 1590 \ Om$.

Получим $R_0 = 80 \ \kappa O$ м. Проверим закон пересчета:

$$R_0 r = k^2 \rho_p^2$$

$$80000 \cdot 1590 \simeq \left(\frac{1}{2}\right)^2 \cdot 2 \cdot 15900^2.$$

Соотношение выше выполняется.

5. Варьируя $R_0 = [80k, 10Meg || 10Meg]$ при r = 1590~Oм, изучим влияние R_0 на поведения частотной и фазовой характеристик на низких частотах - в диапазоне 1k, 180k. При увеличении R_0 частотная характеристика увеличивается, а фазовая уменьшается.

