Planning, Learning and Intelligent Decision Making

Markov chains

Markov property: the state at instant t is enough to predict the state at instant t+1

$$\Pr(X_{t+1} = y \mid X_{0,t} = x_{0,t}) = \Pr(X_{t+1} = y \mid X_t = x_t)$$

Markov chain: sequence of random variables $X_i \in \mathcal{X}$

- Follows the Markov property
- \mathcal{X} is the state space
- $P \in \mathbb{R}^{|\mathcal{X}| \times |\mathcal{X}|}$ is the transition probability matrix

$$[P]_{xy} = \Pr(X_{t+1} = y \mid X_t = x)$$

The transition probability after k steps is given by $[P^k]_{xy} = \Pr(X_{t+k} = y \mid X_t = x)$

Irreducible chain: any state can be reached from any other state

$$\forall_{x,y\in\mathcal{X}}, \exists_{k\in\mathbb{N}}: [P^k]_{xy} > 0$$

• An irreducible chain has a single communicating class

Aperiodic chain: all states are aperiodic, otherwise periodic

• A state x is aperiodic if it's period d_x is 1

$$d_x=\gcd\{t\in\mathbb{N}\mid P^t(x|x)>0, t>0\}=1$$

Distribution over a state space: μ is a distribution over $\mathcal X$ if

$$\mu = \begin{bmatrix} \Pr(X = x_1) & \Pr(X = x_2) & \dots & \Pr(X = x_{|\mathcal{X}|}) \end{bmatrix}$$

Stationary distribution: $\mu P = \mu$

Positive chain: possesses a stationary distribution, otherwise a null chain

Ergodic chain: irreducible and aperiodic

• An ergodic chain possesses a stationary distribution μ^* such that for any initial distribution μ_0 , $\lim_{k\to\infty}\mu_0P^k=\mu^*$

Hidden Markov models

Hidden Markov model: sequence of pairs of random variables (X_i, Z_i) , where

- ullet The state at instante t is enough to predict the state at instant t+1
- The state at instante *t* is enough to predict the observation at instant *t*
- X is the state space
- Z is the observation space
- ullet $P \in \mathbb{R}^{|\mathcal{X}| imes |\mathcal{X}|}$ is the transition probability matrix

$$[P]_{xy} = \Pr(X_{t+1} = y \mid X_t = x)$$

• $O \in \mathbb{R}^{|\mathcal{X}| \times |\mathcal{Z}|}$ is the observation probability matrix

$$[O]_{xz} = \Pr(Z_t = z \mid X_t = x)$$

Estimation: given a sequence of observations $z_{0..t}$

- Filtering: estimate the final state $P_{\mu_0}(X_t=x\mid Z_{0..t}=z_{0..t}) \text{ for an initial distribution } \mu_0$ \circ Forward algorithm
- Smoothing: estimate the sequence of states
 - Forward-Backward algorithm for marginal smoothing (only one state)
 - Viterbi algorithm for smoothing (valid sequence of states)
- Prediction: predict future states
 - o Forward algorithm followed by markov property

Forward mapping: given a sequence of observations, the forward mapping $\alpha_t: \mathcal{X} \to \mathbb{R}$ is defined as

$$\alpha_t(x) = P_{\mu_0}(X_t = x, Z_{0..t} = z_{0..t})$$

• We can compute $\mu_{t|0:t}(x) = P_{\mu_0}(X_t = x \mid Z_{0..t} = z_{0..t})$ from $\alpha_t(x)$

$$\mu_{t|0:t}(x) = rac{lpha_t(x)}{\sum_{y \in \mathcal{X}} lpha_t(y)} \qquad \mu_{t|0:t} = rac{lpha_t}{||lpha_t||_1}$$

• The forward mapping can be computed recursively

$$egin{aligned} lpha_t(x) &= O(z_t \mid x) \sum_{y \in \mathcal{X}} P(x \mid y) lpha_{t-1}(y) \ &lpha_t^ op = \mathrm{diag}(O(z_t \mid \cdot)) P^ op lpha_{t-1}^ op \ &lpha_0^ op = \mathrm{diag}(O(z_t \mid \cdot)) \mu_0^ op \end{aligned}$$

The forward algorithm uses the forward mapping for filtering

Backward mapping: given a sequence of observations, the backward mapping $\beta_t : \mathcal{X} \to \mathbb{R}$ is defined as

$$eta_t(x) = P(Z_{t+1..T} = z_{t+1..T} \mid X_t = x)$$

• We can compute $\mu_{t|0:T}(x)=P_{\mu_0}(X_t=x\mid Z_{0..T}=z_{0..T})$ from $lpha_t(x)$ and $eta_t(x)$

$$\mu_{t|0:T}(x) = rac{lpha_t(x)eta_t(x)}{\sum_{y\in\mathcal{X}}lpha_t(y)eta_t(y)} \qquad \mu_{t|0:T} = rac{lpha_t\odoteta_t}{||lpha_t\odoteta_t||_1}$$

• The backward mapping can be computed recursively

$$egin{aligned} eta_t(x) &= \sum_{y \in \mathcal{X}} O(z_{t+1} \mid y) eta_{t+1}(y) P(y \mid x) \ eta_t^ op &= P \operatorname{diag}(O(z_t \mid \cdot)) eta_{t+1}^ op \ eta_T^ op &= \mathbf{1} \end{aligned}$$

Maximizing forward mapping: given a sequence of observations, the maximizing forward mapping $m_t:\mathcal{X}\to\mathbb{R}$ is defined as

$$m_t(x) = \max_{x_{0..t-1}} P_{\mu_0}(X_t = x, X_{0..t-1} = x_{0..t-1}, Z_{0..t} = Z_{0..t})$$

Viterbi algorithm

- 1. Initialize $m_0 = diag(O(z_0 \mid \cdot))\mu_0^{\top}$
- 2. For $\tau = 1, \ldots, T$ do
 - i. Forward update

$$m_t = diag(O(z_t \mid \cdot)) \max(P^{ op} diag(m_{t-1}))$$

ii.
$$i_t = rg \max(P^ op diag(m_{t-1}))$$

- 3. Let $x_T^* = \argmax_{x \in \mathcal{X}} m_T(x)$
- 4. For $au=T-1,\ldots,0$ do
 - i. Backtrack $x_t^st = i_{t+1}(x_{t+1}^st)$
- 5. Return $x_{0..T}^*$

Preferences

A strict preference is a binary relation between outcomes:

- When outcome x is preferred to y, we write $x \succ y$
- If two outcomes are indifferent, we write $x \sim y$
- Properties
 - is anti-symetric, transitive and negative transitive
 - ∘ ≥ is complete and transitive
 - $\circ \sim$ is reflexive, symmetric and transitive
- A relation is called rational if it is complete and transitive

Rational preference: a relation that is complete and transitive, such as \succeq .

Let \succeq be a rational preference on a set of possible outcomes \mathcal{X} . There is a utility function $u:\mathcal{X}\to\mathbb{R}$ such that $u(x)\geq u(y)\iff x\succeq y.$

An action with outcome X(a) has value Q(a) = u(X(a))

When utilities are negative, they are called costs.

Markov decision processes

Markov decision processes: decision process X_i, A_i, C_i that satisfies the markov property

- \mathcal{X} is the state space
- A is the action space
- For each action $a \in \mathcal{A}$, P_a is the transition probability matrix

$$[P_a]_{xy} = \Pr(X_{t+1} = y \mid X_t = x, a_t = a)$$

• $c(x,a): \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$ is the immediate cost function

History: random variable containing all states and actions seen by an agent up to a time step t

$$H_t = \{X_0, A_0, X_1, A_1, \dots, X_{t-1}, A_{t-1}, X_t\} \in \mathcal{H}_t$$

Policy: mapping from histories to distributions over actions $\pi:\mathcal{H} o \Delta(\mathcal{A})$

$$\pi(a \mid h) = \Pr(A_t = a \mid H_t = h)$$

- Deterministic: actions are selected with probability 1
- Markov: the distribution over actions depends only on the last state and t

$$\pi(a \mid h_t) = \pi_t(a \mid x)$$

• **Stationary**: the distribution over actions depends only on the last state

$$\pi(a \mid h_t) = \pi(a \mid x)$$

If an agent follows a stationary policy, the resulting process is a Markov cost process with transition probability matrix P_π and costs c_π

$$[P_\pi]_{xy} = \sum_{a \in \mathcal{A}} \pi(a \mid x) P_a(y \mid x) \qquad c_\pi(x) = \sum_{a \in \mathcal{A}} \pi(a \mid x) c(x,a)$$

Expected discounted cost-to-go: given a policy and an initial state, the cost-to-go function is

$$J^{\pi}(x) = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^t c_t \mid X_0 = x
ight]$$

• a policy π^* is optimal if

$$orall_{\pi.x\in\mathcal{X}}:J^{\pi^*}(x)< J^{\pi}(x)$$

Calculating J^{π} :

$$J^\pi(x) = c_\pi(x_0) + \gamma \sum_{x \in \mathcal{X}} J^\pi(x) P_\pi(x \mid x_0)$$

$$J^\pi = c_\pi + \gamma P_\pi J^\pi \implies J^\pi = (I - \gamma P_\pi)^{-1} c_\pi$$

Computing J^{π} with value iteration:

1. Initialize $k = 0, J_0 = 0$

2. do

i.
$$J_{k+1} = T_\pi J_k = c_\pi + \gamma P_\pi J_k$$

ii. $k=k+1$

II.
$$\kappa = \kappa + 1$$

3. while $||J_k - J_{k-1}|| > \epsilon$

Computing J^* with value iteration:

1. Initialize $k = 0, J_0 = 0$

2. do

i.
$$J_{k+1} = TJ_k = \min_{a \in \mathcal{A}} (c_a + \gamma P_a J_k)$$

ii. $k = k+1$

3. while
$$||J_k - J_{k-1}|| > \epsilon$$

Q-functions: mapping from state-action pairs to values $Q: \mathcal{X} \times \mathcal{A} \to \mathbb{R}$

$$egin{aligned} Q^\pi(x,a) &= c(x,a) + \gamma \sum_{x' \in \mathcal{X}} P_a(x' \mid x) J^\pi(x') \ Q^\pi(\cdot,a) &= c(\cdot,a) + \gamma P_a J^\pi \end{aligned}$$

 We can compute the cost-to-go functions from Qfunctions

$$J^\pi(x) = \mathbb{E}_\pi[Q^\pi(x,a)] \qquad J^*(x) = \min_{a \in \mathcal{A}}[Q^*(x,a)]$$

• We can compute the optimal policy from Q^*

$$\pi^*(x) = rg \min_{a \in \mathcal{A}} [Q^*(x,a)]$$

Computing Q^{π} with value iteration:

- 1. Initialize $k = 0, Q_0 = 0$
- 2. Do

i.
$$Q_{k+1} = H_{\pi}Q_k = C + \gamma P\mathbb{E}_{\pi}[Q]$$

ii.
$$k=k+1$$

3. While $||Q_k - Q_{k-1}|| > \epsilon$

Computing Q^* with value iteration:

1. Initialize $k = 0, J_0 = 0$

2. Do

i.
$$Q_{k+1} = H \, Q_k = C + \gamma P \min[Q_k]$$

ii.
$$k=k+1$$

3. While $||Q_k - J_{k-1}|| > \epsilon$

Greedy policy with respect to (w.r.t.) *J*:

$$egin{aligned} \pi_g(x) &= rg\min_{a \in \mathcal{A}} [c(x,a) + \gamma \sum_{y \in \mathcal{X}} P_a(y \mid x) J(y)] \ &= rg\min_{a \in \mathcal{A}} Q \ J^{\pi_g}(x) \leq J^{\pi}(x) \end{aligned}$$

Computing π^* with policy iteration (policy optimization)

1. Initialize k=0

- 2. Initialize π_0 randomly
- 3. Do

i.
$$J^{\pi_k}=(I-\gamma P_{\pi_k})^{-1}c_{\pi_k}$$
ii. $\pi_{k+1}=\pi_a^{J^{\pi_k}}$

iii.
$$k = k + 1$$

- 4. While $\pi_k \neq \pi_{k-1}$
- Takes less iterations than VI, but takes more time per iteration

Large problems suffer the curse of dimensionality and can't be solved exactly. Possible approximations include:

- State aggregation
 - Limited representation power
 - o Retains convergence guarantees
- Linear approximation: states described as a vector of features
 - Good representation power, difficult to choose good features
 - Does not retain convergence guarantees
- Averagers
 - o Do not extrapolate
 - o Retains convergence guarantees

Partially observable Markov decision processes

Partially observable MDPs

- ullet The state and action at instante t is enough to predict the state at instant t+1
- The state at instante t and action at instant t-1 is enough to predict the observation at instant t
- \mathcal{X} is the state space
- A is the action space
- Z is the observation space
- $P_a \in \mathbb{R}^{|\mathcal{X}| \times |\mathcal{X}|}$ is the transition probability matrix for each action a

$$[P_a]_{xy} = \Pr(X_{t+1} = y \mid X_t = x, A_t = a)$$

 $m{\bullet} \ \ O_a \in \mathbb{R}^{|\mathcal{X}| imes |\mathcal{Z}|}$ is the observation probability matrix for each action a

$$[O_a]_{xz} = \Pr(Z_t = z \mid X_t = x, A_{t-1} = a)$$

• $c(x,a): \mathcal{X} \times \mathcal{A} \to \mathbb{R}$ is the immediate cost function

Belief: $b_t = \mu_{t|0..t}$

$$b_{t+1} = rac{b_t P_{a_t} \operatorname{diag}(O_{a_t}(z_{t+1} \mid \cdot))}{||b_t P_{a_t} \operatorname{diag}(O_{a_t}(z_{t+1} \mid \cdot))||_1}$$

Belief MDP

Belief MDPs: can adapt MDP results to POMDPs

- B is the state space containing all beliefs
- A is the action space
- $P_B \in \mathbb{R}^{|\mathcal{X}| \times |\mathcal{X}|}$ is the transition probability matrix
- $c_B(b,a): \mathcal{B} \times \mathcal{A} \to \mathbb{R}$ is the immediate cost function

$$c_B(b,a) = \sum_{x \in \mathcal{X}} b(x) c(x,a)$$

We can adapt MDP results to POMDPs through belief-**MDPs**

Heuristic solutions using the MDP associated with the POMDP:

MLS heuristic:

$$\pi_{ ext{MLS}}(b) = \pi_{ ext{MDP}}(rg \max_{x \in \mathcal{X}} b(x))$$

AV heuristic

$$\pi_{ ext{AV}}(b) = rg\max_{a \in \mathcal{A}} \sum_{x \in \mathcal{X}} b(x) \mathbb{I}(a = \pi_{ ext{MDP}}(x))$$

Q-MDP heuristic

$$\pi_{ ext{QMDP}}(b) = rg \min_{a \in \mathcal{A}} \sum_{x \in \mathcal{X}} b(x) Q^*_{ ext{MDP}}(x,a)$$

• FIB heuristic:

$$\begin{aligned} Q_{\mathrm{FIB}}(x,a) &= c(x,a) + \gamma \sum_{z \in \mathcal{Z}} \min_{a' \in \mathcal{A}} \sum_{x' \in \mathcal{X}} P_a(x' \mid x) O_a(z \mid x') Q_{\mathrm{FIB}}(x',a') & \text{Task: lean } \pi: \mathcal{X} \to \Delta(\mathcal{A}) \\ \pi_{\mathrm{FIB}}(b) &= \arg\min_{a \in \mathcal{A}} \sum_{x \in \mathcal{X}} b(x) Q_{\mathrm{FIB}}(x,a) & \text{Experience: dataset of experience: } \mathcal{D} &= \{(x_0,a_0),(x_1,a_1),\dots\} \end{aligned}$$

Exact solutions:

- Value iteration: the cost-to-go is PWLC (picewise linear and concave)
 - Point-based methods: select a finite set of beliefs to perform updates
- Policy iteration: representing policies as graphs

Complexity of MDPs:

- MDPs are solvable in polynomial-time
- Infinite horizon POMDPs are undecidable
- Finite-horizon POMDPs are PSPACE-complete
- POMDPs are non-approximable

Learning

Learning problem:

- T is the task
- P is the performance measure
- E is the training experience

Types of learning:

- Supervised: P is the correctness of actions in all possible situations
- Reinforcement: P is the accumulated cost of actions in all possible situations
- Unsupervised: P is the quality of structure found

No free lunches: some hypothesis are more likely than others

Inductive bias: we use assumptions to reduce the search space

Assumptions must compromise between:

- Bias: error introduced by assumptions about the hypothesis
- Variance: error introduced by the variability of the training set

Nomenclature

- Experience: dataset of examples $\mathcal{D} = \{(x_0, a_0), (x_1, a_1), \dots, (x_N, a_N)\}$, where pairs are generated from an unknown distribution μ_D
- Performance: expected cost or risk of policy π

$$\circ \ L(\pi) = \mathbb{E}_{\mu_D}[\ell(x,a;\pi)] = \sum_{x,a} \ell(x,a;\pi) \mu_D(x,a)$$

- \circ Ideally, $\pi^* = \arg\min_{\pi} L(\pi)$
- Empirical risk: $L(\pi) pprox \hat{L}_N(\pi) = rac{1}{N} \sum_{n=1}^N \ell(x_n, a_n; \pi)$
- \circ ℓ is a similarity measure

Inductive learning assumption: if we learn form a sufficiently large set of examples, we will do well in the actual task

Learining from examples:

- MDP induced metric: uses bissimulation metric to choose an action based on the closest example from
- Inverse reinforcement learning (IRL): recover the task from the optimal policy

- If the cost function to be computed can be arbitrary, the teacher must demonstrate the optimal action in all states
- \circ We can get c from an optimal policy, however, if c=0, all policies are optimal, and the problem is ill-defined

$$(P_{\pi} - P_{a})(I - \gamma P_{\pi})^{-1}c \leq 0$$

Stochastic approximation

Reinforcement learning:

- At each step, the agent collects a data point (x_t, a_t, c_t, x_{t+1})
- The agent must compute the optimal policy by collecting many data points
- Agent learns from reward and punishment

Methods:

- · Model-based methods
- Value-based methods: Monte Carlo, TD(λ), Q-learning, SARSA
- Policy-based methods: policy gradient

Model-based methods:

- Given a sample (x_t, a_t, c_t, x_{t+1})
- Update model

$$\hat{c}(x_t, a_t) = \hat{c}(x_t, a_t) + lpha_t(c_t - \hat{c}(x_t, a_t)) \ \hat{P}(x' \mid x_t, a_t) = \hat{P}(x' \mid x_t, a_t) + lpha_t(\mathbb{I}(x_{t+1} = x') - \hat{P}(x' \mid x_t, a_t))$$

• Use value iteration or policy iteration to get Q^* or π^*

$$Q_{t+1}(x_t, a_t) = \hat{c}(x_t, a_t) + \gamma \sum_{x' \in \mathcal{X}} \hat{P}(x' \mid x_t, a_t) \min_{a' \in \mathcal{A}} Q_t(x', a')$$

Exploration in Monte Carlo RL:

• Given a trajectory obtained with policy π

$$au = \{x_0, c_0, x_1, c_1, \dots, c_{T-1}, x_T\}$$

- Compute loss $L(\tau) = \sum_{t=0}^{T} \gamma^t c_t$
- Update

$$J_{t+1}(x_0) = J_t(x_0) + \alpha_t [L(\tau) - J_t(x_0)]$$

Policy optimization in Monte Carlo RL:

• Given a trajectory obtained with policy π

$$\tau = \{x_0, a_0, c_0, x_1, a_1, c_1, \dots, c_{T-1}, x_T\}$$

- ullet Compute loss $L(au) = \sum_{t=0}^T \gamma^t c_t$
- Update

$$Q_{t+1}(x_0,a_0) = Q_t(x_0,a_0) + lpha_t[L(au) - Q_t(x_0,a_0)]$$

- Compute an improved policy and repeat
- We can update the cost-to-go for every state-action pair visited along a trajectory
- Sufficient exploration requires exploring starts for all state-action pairs

Temporal difference - TD(0):

- Given a sample (x_t, c_t, x_{t+1}) , where action was selected from π
- Update

$$J_{t+1}(x_t) = J_t(x_t) + \alpha_t[c_t + \gamma J_t(x_{t+1}) + J_t(x_t)]$$

$TD(\lambda)$:

- Given a sample (x_t, c_t, x_{t+1}) , where action was selected from π
- Update

$$z_{t+1}(x) = \lambda \gamma z_t(x) + \mathbb{I}(x=x_t) \ J_{t+1}(x) = J_t(x) + lpha_t z_{t+1}(x) [c_t + \gamma J_t(x_{t+1}) - J_t(x_t)]$$

- ullet Converges for any $\lambda \in [0,1]$
- Each update uses informations from multiple steps

Q-learning:

- Given a sample (x_t, a_t, c_t, x_{t+1})
- Update using temporal difference δ_t

$$Q_{t+1}(x_t, a_t) = Q_{t}(x_t, a_t) + lpha_t [\underbrace{c_t + \gamma \min_{a' \in \mathcal{A}} Q_{t}(x_{t+1}, a') - Q_{t}(x_t, a_t)}_{\delta.}]$$

• Most known form of RL

E vs E:

- Exploration: trying new actions
- **Exploitation**: using the knowledge already acquired to select the better actions
- RL algorithms require visiting every state-action pair infinitely often (in practise, a large number of times), which would mean making sub-optimal actions for a long time

E vs E heuristics:

- ϵ -greedy
 - \circ Select random action with probability ϵ
 - $\circ~$ Select greedy action (action with smallest Q-value) with probability $1-\epsilon$
- Boltzmann policy: η controls exploration, may grow with time

$$\pi(a \mid x) = rac{e^{-\eta Q_t(x,a)}}{\sum_{a \in \mathcal{A}} e^{-\eta Q_t(x,a')}}$$

- Optimistic initialization
 - All Q-values are initialized to 0 or negative
 - o Agent always selects greedy action

SARSA:

- Given a sample $(x_t, a_t, c_t, x_{t+1}, a_{t+1})$
- Update using temporal difference δ_t

$$Q_{t+1}(x_t, a_t) = Q_t(x_t, a_t) + lpha_t [\underbrace{c_t + \gamma Q_t(x_{t+1}, a_{t+1}) - Q_t(x_t, a_t)}_{\delta_t}]$$

• Must be combined with policy improvement to learn Q^*

On vs off policy:

- Off-policy: learns a value of one policy while following another (Q-learning)
- On-policy: learns the value of the followed policy (SARSA, TD)

Gradient descent: solves curse of dimensionality by limiting the possible functions

- Start somewhere
- Compute gradient
- Take a step in the opposite direction
- Repeat until convergence

Monte carlo methods are stochastic gradient descent methods and converge, possibly to a local minimum.

TD(λ) with linear function approximation converges as long as policy π induces an ergodic Markov chain and $\mathbb{E}_{x\sim\mu}(\phi(x)\phi^\top(x))$ is non singular.

SARSA with linear function approximation converges as long as policy π induces an ergodic Markov chain and $\mathbb{E}_{x,a\sim\mu}(\phi(x,a)\phi^\top(x,a))$ is non singular. More stable than Q-learning, as long as the learning policy changes soothly with Q_t

Q-learining with linear function approximation may diverge due to:

- Function approximation
- Bootstrapping (using the previous value to calculate the new)
- Off-policy updates

Turning RL into SL (supervised learning):

• Task: learn Q*

• Experience:

$$\mathcal{D}_{ ext{supervised}} = \{(x_n, a_n, target_n), n = 1, \dots, N\}$$

• Performance: $L(\theta) = \frac{1}{N} \sum_{n=1}^{N} (target_n - Q_{\theta}(x_n, a_n))^2$

Policy gradient

• Consider a family of parameterized policies $\{\pi_w, w \in \mathbb{R}^P\}$

$$\pi_w(a \mid x) = rac{e^{w^ op \phi(x,a)}}{\sum_{a' \in \mathcal{A}} e^{w^ op \phi(x,a')}}$$

- \bullet w is the parameter of the policy
- ullet V is a function of w

Proto-PG algorith

• Given a trajectory obtained with policy π_{w_t}

$$au = \{x_0, a_0, c_0, x_1, a_1, c_1, \dots, c_{T-1}, x_N\}$$

• Compute gradient

$$\hat{
abla}_w V(w_t) pprox \sum_{n=0}^N \gamma^n
abla_w \log \pi_{w_t}(x_{t+n}, a_{t+n}) Q^{\pi_{w_t}}(x_{t+n}, a_{t+n})$$

Update

$$w_{t+1} = w_t - lpha_t \hat{
abla}_w V(w_t)$$

REINFORCE algorithm:

• Given a trajectory obtained with policy π_{w_t}

$$au = \{x_0, a_0, c_0, x_1, a_1, c_1, \dots, c_{T-1}, x_N\}$$

Compute gradient

$$\hat{
abla}_w V(w_t) pprox \sum_{n=0}^N
abla_w \log \pi_{w_t}(x_{t+n}, a_{t+n}) \sum_{m=0}^N \gamma^m c_{t+m}$$

• Update

$$w_{t+1} = w_t - \alpha_t \hat{\nabla}_w V(w_t)$$

- On-policy algorithm
- A baseline can be used to decrease the variance of the gradient estimate

Sequential prediction

Weighted majority algorithm:

- Initialize weights $w_0(a) = 1, \forall_{a \in \mathcal{A}}$
- Make prediction based on weighted majority vote
- Update weights of wrong predictors as $w_{t+1}(a) = w_t(a)(1-\eta)$
- After a mistake, at least half of the sources decreased

ullet Maximum number of mistakes $M \leq 2(1+\eta)m + rac{2\log(N)}{\eta}$

Exponentially weighted averager:

- Initialize weights $w_0(a) = 1, \forall_{a \in \mathcal{A}}$
- Select an action according to the distribution $p_t(a) = rac{w_t(a)}{||w_t||_1}$
- ullet Update weights of all actions $w_{t+1}=w_t(a)e^{-\eta c_t(a)}$
- Makes no assumptions on how costs are selected
- Depends logarithmically on |A|
- It's regret is sublinear in T

EXP3 (Exponentially weighted algorithm for Exporation and Exploitation):

- Initialize weights $w_0(a) = 1, \forall_{a \in \mathcal{A}}$
- Select an action according to the distribution $p_t(a) = rac{w_t(a)}{||w_t||_1}$
- ullet Update weights of all actions $w_{t+1}=w_t(a)e^{-\etarac{c_t(a)}{p_t(a)}\mathbb{I}(a=a_t)}$
- After a mistake, at least half of the sources decreased
- Makes no assumptions on how costs are selected

- Depends sublinearly on $|\mathcal{A}|$
- It's regret is sublinear in T
- Can be used for the multi-armed bandit problem

UCB algorithm (Upper Confidence Bound):

- Execute each action once
- ullet From then on, at each step t select action $a^* = rg \min \hat{c}(a) \sqrt{rac{2 \log(t)}{N_t(a)}}$
- Assumes that costs follow an unknown but fixed distribution
- ullet It's regret is sublinear in T
- Makes use of the priciple of pptimism in the face of uncertainty (unknown is probably better)

Monte Carlo Tree Search: application of UCB

- 1. Selection: select a node to expand, using UCB
- 2. Expansion: expand it
- 3. Simulation: simulate the process starting from the node
- 4. Back-propagation: back-propagate the result