vetoresLI

March 23, 2020

Sobre conjuntos linearmente independentes de vetores

Uma família de vetores $\{\vec{v}_1,\ldots,\vec{v}_n\}$ é linearmente independente se, e somente se a única forma de se escrever o vetor nulo $\vec{0}$ como combinação linear é a trivial. Isto também significa que nenhum vetor \vec{v}_i deste conjunto pode se escrever como combinação linear dos vetores restantes.

Se \vec{v} é um vetor do sub-espaço gerado por $\{\vec{v}_1 \dots \vec{v}_n\}$ de quantas formas diferentes ele pode ser escrito como combinação linear desses vetores?

Vamos resolver alguns exercícios do Apostol: Considerem os vetores

$$\vec{v}_1 = \mathbf{i} \ \vec{v}_2 = \mathbf{i} + \mathbf{j} \in \vec{v}_3 = \mathbf{i} + \mathbf{j} + 3\mathbf{k}$$

- Prove que $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ é LI
- Escreva os vetores i e j como combinação linear de $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$
- Escreva o vetor $2\mathbf{i} 3\mathbf{i} + 5\mathbf{k}$ como combinação linear de $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$.
- Prove que $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ é uma base.

Exercicio 13

- Mostre que os vetores $(\sqrt{3}, 1, 0)$, $(1, \sqrt{3}, 1)$ e $(0, 1, \sqrt{3})$ são LI.
- Mostre que os vetores $(\sqrt{2}, 1, 0)$, $(1, \sqrt{2}, 1)$ e $(0, 1, \sqrt{3})$ são LD.
- Encontre todos os valores reais possíveis de t para que os vetores (t,1,0), (1,t,1) e (0,1,t)sejam LI.

Exercício 15

Se três vetores de V_n, \vec{a}, \vec{b} e \vec{c} são LI. Verifique se cada uma das afirmações abaixo é verdadeira ou

- $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$ e $\vec{c} + \vec{a}$ formam um conjunto LI. $\vec{a} \vec{b}$, $\vec{b} + \vec{c}$ e $\vec{c} + \vec{a}$ formam um conjunto LI.

[]: