Physics	3410
---------	------

April 13, 2016

Exam 2

Name:_____

21 questions, 89 points

- 1. Heat flows from system A to system B.
- (a) ____ During the heat flow, the entropy of A

 A) increases B) stays the same C) decreases
- $\begin{array}{|c|c|}\hline A & Q \\ \hline \end{array} \qquad \begin{array}{|c|c|c|}\hline B \\ \hline \end{array}$
- (b) If U_A and U_B are the energies of the two systems, what is $\frac{dU_A}{dU_B}$?

3 2. ____ The chemical potential of sodium inside a cell is $\mu_{\text{Na}} = -30 \,\text{eV}$; outside the cell, $\mu_{\text{Na}} = -28 \,\text{eV}$. For the two sides to reach equilibrium, sodium would have to flow **A)** into the cell **B)** out of the cell

- 3. System A has a temperature of $T=-300\,\mathrm{K}$, and system B has a temperature of $T=300\,\mathrm{K}$. If the systems are placed in contact,
 - A) heat will flow from A to B
 - B) heat will flow from B to A
 - $\mathbf{C})$ they will undergo matter-antimatter annihilation
 - **D**) none of the above

A-300K **B**300K

- $\fbox{2}$ 4. $\r{}$ A paramagnet in a magnetic field has an entropy S(U) as shown. It has negative temperature when its energy is
 - A) low B) high C) never

S(U) for a paramagnet

3 5. ____ A miserly system at $T = 300 \,\mathrm{K}$ is placed in contact with a normal system at $T = 280 \,\mathrm{K}$. What happens initially?

Μ 300K 280K

- A) Both systems get hotter B) Both systems get colder
- C) M gets colder, N gets hotter D) None of these.

6. The figure shows a process of an ideal gas with f = 3, on a PV diagram. The internal energy decreases by $-120\,\mathrm{kJ}$ during the process.

- 3
- (a) _____ How much work is done during this process? (Positive means work flows into the gas.)
 - **A)** $+10 \, \text{kJ}$
- **B)** $+20 \, kJ$
- $(C) +80 \, kJ$

- **D)** $-10 \, \text{kJ}$
- **E)** $-20 \, \text{kJ}$
- **F)** $-80 \, \text{kJ}$

- 3
- (b) _____ How much heat Q flows into or out of the gas?
 - **A)** 0 kJ
 - **B)** $-80 \, \text{kJ}$
- C) $-120 \,\mathrm{kJ}$
- **D)** $-200 \,\mathrm{kJ}$

- **E)** $+80 \, \text{kJ}$
- **F)** $+120 \, kJ$
- **G**) $+200 \, \text{kJ}$

- 3 7. Which is faster?
 A) an adiabatic process
 - A) an adiabatic process B) an isothermal process

3 8. ____ Suppose gas is in a container sealed by an ideal piston that is free to move. The gas is heated, and the gas expands. This is an . . . expansion.

A) adiabatic B) isobaric C) isothermal

- 9. This figure shows a heat engine operating between $200\,\mathrm{K}$ and $800\,\mathrm{K}.$
- (a) ____ What is this engine's efficiency?

 A) 25% B) 33% C) 67% D) 75%

(b) How much work would this engine produce for the same amount of heat $Q_{in} = 45 \,\mathrm{J}$, if it were a Carnot engine?

- 3 10. ____ Nitrogen gas (f = 5) at standard pressure (P = 1) atm expands adiabatically to twice its volume. What is the pressure of the gas after the expansion?
 - **A)** 0.38 atm
- **B)** 0.5 atm
- **C)** 1 atm
- **D)** 2 atm
- **E)** 2.6 atm

- 11. This figure shows a refrigerator.
- 3
 - (a) _____ How much heat Q_{out} flows into the hot reservoir?
 - **A**) 5 J **B**) 15 J
 - **C**) 20 J **D**) 35 J

- 3 (b) _____ What is its Coefficient of Performance?
 - **A)** 0.33
- **B**) 0.43
- **C**) 0.75
- **D**) 1.33
- **E)** 2 **F)** 2.33

- 3 12. ____ Which of these is an intensive quantity?
 - A) internal energy B) pressure C) volume

- 313. ____ A car has two identical hubcaps: one is shiny and new, the other is rusty. Which has the larger Gibbs free energy?
 - A) the shiny one B) the rusty one
- 3 14. ____ How does the van der Waals model differ from the ideal gas model?
 - A) it models a phase transition
 - B) it takes into account the minimum volume of atoms
 - C) it explains the critical point
 - **D)** all of the above
 - 15. During a chemical process at constant temperature and pressure, $30\,\mathrm{J}$ of heat flows into the system, the internal energy increases by $\Delta U = +10\,\mathrm{J}$, and $20\,\mathrm{J}$ of compression work flows outward to move the air out of the way.

- $\boxed{2}$ (a) ____ What is the change ΔH in the enthalpy?
 - **A)** $-20 \, \text{J}$
- **B)** $-10 \, \text{J}$
- **C**) 0 J
- \mathbf{D}) +10 J
- **E**) +20 J
- **F**) +30 J

- $\boxed{2}$ (b) _____ What is the change ΔG in the Gibbs free energy?
 - **A)** $-20 \, \text{J}$
- **B**) −10 J
- **C**) 0 J
- **D)** $+10 \, J$
- E) +20 J
- **F)** $+30 \,\mathrm{J}$

16. We can write the thermodynamic identity of a rubber band as

$$dU = T dS + F dL$$

where L is the length of the rubber band, and F is the tension in the rubber band.

- $\boxed{3}$ (a) What are the natural variables of U in this case?
- $\boxed{3} \qquad \text{(b) What is } \left(\frac{\partial S}{\partial L}\right)_{U}?$

(c) ____ Which of these is a pair of conjugate variables? **A)** T & U **B)** S & L **C)** F & L **D)** U & S

 $\boxed{3}$ 17. What is $\left(\frac{\partial H}{\partial S}\right)_{P,N}$?

18. In the following equation, fill in the blanks.

$$\boxed{ \left(\frac{\partial \mathbf{a}}{\partial V} \right)_{T,N} = \mathbf{c} \left(\frac{\partial P}{\partial N} \right)_{V,\text{(b)}} }$$

- (a) ____ F) F μ) μ N) N P) P S) S T) T V) V
- 2 (c) _____ +) + -) -
- [5] 19. This figure is the phase diagram of water. Label the following regions and points on the diagram. (You can use the letter or the word as you like.)
 - S) solid L) liquid G) gas T) triple point C) critical point

Page 7

20. Consider a new material called *bowlingrene*. At standard atmospheric pressure, the Gibbs free energy (in joules per mole) of the solid and liquid phases of bowlingrene, as functions of temperature, are

solid:
$$G_s(T) = -8000 - 30T$$
 liquid: $G_l(T) = +8000 - 80T$

The entropy of each phase is independent of temperature, and the pressure is held constant.

(a) Find the entropy (per mole) of solid bowlingrene.

(b) ____ At 300 K, bowlingrene is **A)** solid **B)** liquid

(c) Find the melting/freezing temperature of bowlingrene. (Note: your answer shouldn't contradict your answer to part (b).)

3 XC 21. **Extra Credit:** The figure shows the boundary between the solid and liquid phases of a material. At P=1 atm, the solid phase has a density of $\rho=900\,\mathrm{kg/m^3}$, the liquid phase has a density of $\rho=800\,\mathrm{kg/m^3}$, and the latent heat of fusion is $L=4000\,\mathrm{J}$. Find the slope of the boundary (with the correct units).

