I. More homotopy

Warmup:  $X = [0,1] \times [0,1]$ 

partition P: A, {x} for x ∈ A.

write X/A for P w/ quotient topology.

Claim X/4 ~ D2

Proof Sketch Want map X - D2 whose

partition 13 P.

Egnivalently, since [0.1] = D2, Suffices to find surj 1D2 = D2

St. q(A) = p and q|Ac: Ac -> D2/p bis.

////, A



Recall • fundamental group of X based at 
$$p \in X$$
  
 $\pi_1(X,p) = \{f: To, T] - xX | f(o) = p = f(1) \}/homstopy$ 

· [c] ∈ π,(Xp) homotopy chri of constant is identifyedur.

if frc say fis nullhomotopic.

Observations

$$\begin{cases} f: [0,1] \longrightarrow X \mid f(a) = p = f(1) \end{cases} \stackrel{f}{\longleftarrow} \begin{cases} g: S' \longrightarrow X \mid g(1) = p \end{cases}$$
Given  $f$ , define  $\hat{f}: S' \longrightarrow X$  by  $\hat{f}(e^{2\pi i t}) = f(t)$  for  $t \in [0,1]$ 

$$\hat{f} \text{ well defined ble } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } g(t) = e^{2\pi i t} \text{ quotient map } [0,1] \text{ quotient map } [0,1] \text{ so } f(a) = f(1).$$
Is continuous.

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ so } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ continuous } [0,1] \text{ for } f(a) = f(1).$$

$$f \text{ continuous } f(a) = f(1).$$

$$f \text{ for } f(a) =$$

a: 2, -x

(2) 
$$f:[0,1] \rightarrow X$$
  $\Longrightarrow$   $S' \xrightarrow{\hat{f}} X$  extends

Null hamotopic loop

 $D^2 \xrightarrow{\varphi} \varphi$ 
 $\varphi|_{S'} = \hat{f}$ 

Proof ( $\Longrightarrow$ ) Fix  $f$  hull hamotopic.

Y:=  $[0,1] \times [0,1] \xrightarrow{F} X$ 

 $\varphi(\lbrace x \rbrace) = F(x)$   $\varphi(A) = F(A) = p.$ observe that  $\varphi|_{S^1} = f$ 

(2) 
$$f: [0,1] \rightarrow X$$
  $\iff$   $S' \xrightarrow{\hat{f}} X$  extends to  $D^2$ 

Proof  $\iff$  Assume  $\hat{f}$  extends.

That  $\iff$  Assume  $\hat{f}$  extends.

$$F(s,t) = \varphi((1-t)e^{2\pi is} + t)$$

$$F(s,o) = \varphi(e^{2\pi i s}) = \hat{f}(e^{2\pi i s}) = f(s)$$

$$F(s,i) = \varphi(i) = \varphi$$

$$F(o,t) = \varphi(1) = P$$
 $F(1,t) = \varphi(1) = P$ 

56[0,1].

44/1

$$S^{2}$$
  $g_{1}(s) = (Cos \pi s, Sin \pi s, 6)$   
 $g_{2}(s) = (cos 2\pi s, Sin 2\pi s, 6)$ 

$$f_1 = q \circ g_1$$
 7 | 30ps | based et  
 $f_2 = q \circ g_2$  7 |  $p = q(1,0,0)$ 

Note fz extends to  $0^2$  b/e  $\hat{g}_2$  does:

Define 
$$\varphi: \mathbb{D}^2 \longrightarrow S^2$$
  
 $(rus 2\pi s, rs_n 2\pi s) \longmapsto (rcos 2\pi s, rs_n 2\pi s, \sqrt{1-s^2})$   
where  $\varphi|_{\partial \mathbb{D}^2} = \widehat{q}_2$   
and  $q \circ \varphi: \mathbb{D}^2 \longrightarrow \mathbb{R}^{p^2}$   $q \circ \varphi|_{\partial \mathbb{D}^2} = q \circ \widehat{q}_2 = \widehat{f}_2$ .

$$7 = [c] = [t'] = [t'*t'] = [t']$$

Example 
$$T^2 = S^1 \times S^1$$
 $f,g: [0,1] \longrightarrow T^2$ 
 $f(t) = (e^{2\pi i t}, 1)$ 
 $g(t) = (1, e^{2\pi i t})$ 
 $f(t) = f(1-t)$ 
 $f(t) = f(1-t)$ 

Thus in  $\pi_1(T,p)$ 
 $f(t) = f(1-t)$ 
 $f(t) = f(1-t)$ 

OTOH for K = Klein bottle

instead, we see that  $f * g * \overline{f} * g$  extends to  $\mathbb{D}^2$  So in  $\pi_1(K,p)$  have [f][g][f]'[g] = 1.

$$\Rightarrow [f][g] = [g]'[f].$$

Rmh. If [f][g] = [g][f] then  $[g][f] = [g]^{-1}[f] \Rightarrow [g] = [g]^{-1}$  $\Rightarrow [g]^2 = 1$ . later: show [f], [g]
have so order.
Hence [f], [g] don't wante.  $\Rightarrow T_i(K, p) \text{ is not abelian.}$