Support Vector Machines

Nipun Batra

July 21, 2025

IIT Gandhinagar

Outline

Introduction and Motivation

Mathematical Foundation

SVM Formulation

Worked Example

Kernel Methods

Kernel Motivation

Kernel Examples

Kernel Properties

Summary

Introduction and Motivation

IDEA: DRAW A SEPARATING HYPER PLANE

IDEA: MAXIMIZE THE MARGIN

SUPPORT VECTORS: POINTS ON BOUNDARY MARGIN

HYPERPLANE VIS # DIMENSIONS

HYPERPLANE VIS # DIMENSIONS

HOW TO DEFINE?

TOUGHON DE HYPERPLANE

P: Any point on plane Po: One point on plane

Pand Po lie on plane

PPo = zi - zi. lies or plane

BIW II HIPER PLANES

$$\sqrt{\vec{\omega} \cdot \vec{x} + b_2} = 0$$

DISTANCE BIW II HYPER PLANES

$$\vec{\omega} \cdot \vec{x} + b_2 = \vec{D}$$

$$\vec{\omega} \cdot \vec{x} + b_1 = \vec{\omega} \cdot \vec{x} + b_1 = \vec{D}$$

$$\vec{D} \cdot \vec{A} \cdot \vec{A$$

Mathematical Foundation

•••

Equation of two planes is:

$$\mathbf{w} \cdot \mathbf{x} + b_1 = 0$$
$$\mathbf{w} \cdot \mathbf{x} + b_2 = 0$$

Equation of two planes is:

$$\mathbf{w} \cdot \mathbf{x} + b_1 = 0$$
$$\mathbf{w} \cdot \mathbf{x} + b_2 = 0$$

For a point \mathbf{x}_1 on plane 1 and \mathbf{x}_2 on plane 2, we have:

Equation of two planes is:

$$\mathbf{w} \cdot \mathbf{x} + b_1 = 0$$
$$\mathbf{w} \cdot \mathbf{x} + b_2 = 0$$

For a point \mathbf{x}_1 on plane 1 and \mathbf{x}_2 on plane 2, we have:

$$\mathbf{x}_2 = \mathbf{x}_1 + t\mathbf{w}$$
 $D = |t\mathbf{w}| = |t| ||\mathbf{w}||$

Equation of two planes is:

$$\mathbf{w} \cdot \mathbf{x} + b_1 = 0$$
$$\mathbf{w} \cdot \mathbf{x} + b_2 = 0$$

For a point \mathbf{x}_1 on plane 1 and \mathbf{x}_2 on plane 2, we have:

$$\mathbf{x}_2 = \mathbf{x}_1 + t\mathbf{w}$$

$$D = |t\mathbf{w}| = |t| ||\mathbf{w}||$$

We can rewrite as follows:

Equation of two planes is:

$$\mathbf{w} \cdot \mathbf{x} + b_1 = 0$$
$$\mathbf{w} \cdot \mathbf{x} + b_2 = 0$$

For a point \mathbf{x}_1 on plane 1 and \mathbf{x}_2 on plane 2, we have:

$$\mathbf{x}_2 = \mathbf{x}_1 + t\mathbf{w}$$
 $D = |t\mathbf{w}| = |t| ||\mathbf{w}||$

We can rewrite as follows:

$$\mathbf{w} \cdot \mathbf{x}_2 + b_2 = 0$$

$$\Rightarrow \mathbf{w} \cdot (\mathbf{x}_1 + t\mathbf{w}) + b_2 = 0$$

Equation of two planes is:

$$\mathbf{w} \cdot \mathbf{x} + b_1 = 0$$
$$\mathbf{w} \cdot \mathbf{x} + b_2 = 0$$

For a point x_1 on plane 1 and x_2 on plane 2, we have:

$$\mathbf{x}_2 = \mathbf{x}_1 + t\mathbf{w}$$

$$D = |t\mathbf{w}| = |t| ||\mathbf{w}||$$

We can rewrite as follows:

$$\mathbf{w} \cdot \mathbf{x}_2 + b_2 = 0$$

 $\Rightarrow \mathbf{w} \cdot (\mathbf{x}_1 + t\mathbf{w}) + b_2 = 0$

$$\Rightarrow \mathbf{w} \cdot (\mathbf{x}_1 + t\mathbf{w}) + b_2 = 0$$

$$\Rightarrow \mathbf{w} \cdot \mathbf{x}_1 + t \|\mathbf{w}\|^2 + b_1 - b_1 + b_2 = 0 \Rightarrow t = \frac{b_1 - b_2}{\|\mathbf{w}\|^2} \Rightarrow D = t \|\mathbf{w}\| = \frac{|b_1 - b_2|}{\|\mathbf{w}\|}$$

Quick Question!

If two parallel hyperplanes are given by:

• $\mathbf{w} \cdot \mathbf{x} + 3 = 0$

Quick Question!

If two parallel hyperplanes are given by:

- $\mathbf{w} \cdot \mathbf{x} + 3 = 0$
- $\mathbf{w} \cdot \mathbf{x} 1 = 0$

Quick Question!

If two parallel hyperplanes are given by:

- $\mathbf{w} \cdot \mathbf{x} + 3 = 0$
- $\mathbf{w} \cdot \mathbf{x} 1 = 0$

Quick Question!

If two parallel hyperplanes are given by:

•
$$\mathbf{w} \cdot \mathbf{x} + 3 = 0$$

•
$$\mathbf{w} \cdot \mathbf{x} - 1 = 0$$

Answer:
$$D = \frac{|3-(-1)|}{2} = \frac{4}{2} = 2$$
 units

SVM Formulation

FORMULATION

FORMULATION

EDRMULATION

FORMULATION

GDAL: MAXIMIZE MARGIN

=) MAXIMIZE 2

[[W])

⇒ MINIMIZE 111511

S.T. (ome ctly label points i.e. if y = -1

ਲ.ਕੇ+b ≤ −1 if yi= +1

y; (v. x+b ≥1)

Primal Formulation

Objective

$$\begin{aligned} & \mathsf{minimize} \frac{1}{2} \| \mathbf{w} \|^2 \\ & \mathsf{subject} \ \mathsf{to} y_i \big(\mathbf{w} \cdot \mathbf{x}_i + b \big) \geq 1 \quad \forall i \end{aligned}$$

Primal Formulation

Objective

$$\begin{aligned} & \mathsf{minimize} \frac{1}{2} \| \mathbf{w} \|^2 \\ & \mathsf{subject} \ \mathsf{to} y_i \big(\mathbf{w} \cdot \mathbf{x}_i + b \big) \geq 1 \quad \forall i \end{aligned}$$

Q) What is $\|\mathbf{w}\|$?

Primal Formulation

Q) What is $\|\mathbf{w}\|$?

$$\mathbf{w} = egin{bmatrix} w_1 \ w_2 \ dots \ w_n \end{bmatrix} \qquad \|\mathbf{w}\| = \sqrt{\mathbf{w}^{ op} \mathbf{w}}$$

$$= \sqrt{egin{bmatrix} w_1 & w_2 & \cdots & w_n \end{bmatrix} \begin{bmatrix} w_1 \ w_2 \ dots \ w_{1n} \end{bmatrix}}$$

$$= \sqrt{egin{bmatrix} w_1 & w_2 & \cdots & w_n \end{bmatrix} \begin{bmatrix} w_1 \ w_2 \ dots \ w_{2n} \end{bmatrix}}$$

Worked Example

EXAMPLE (IN 10)

$$\begin{bmatrix} x & y \\ 1 & 1 \\ 2 & 1 \\ -1 & -1 \\ -2 & -1 \end{bmatrix}$$

Separating Hyperplane: $\mathbf{w} \cdot \mathbf{x} + b = 0$

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \geq 1$$

$$w_{min} = 1, b = 0$$
$$w.x + b = 0$$
$$x = 0$$

Minimum values satisfying constraints $\Rightarrow w=1$ and b=0

 \therefore Max margin classifier $\Rightarrow x = 0$

Think About This!

In our simple 1D example, why did we choose w=1 and b=0 as the optimal solution?

Think About This!

In our simple 1D example, why did we choose w=1 and b=0 as the optimal solution?

• Is this the **only** solution that separates the data?

Think About This!

In our simple 1D example, why did we choose w=1 and b=0 as the optimal solution?

- Is this the **only** solution that separates the data?
- What makes this solution **optimal** for SVM?

Think About This!

In our simple 1D example, why did we choose w=1 and b=0 as the optimal solution?

- Is this the **only** solution that separates the data?
- What makes this solution **optimal** for SVM?

Think About This!

In our simple 1D example, why did we choose w=1 and b=0 as the optimal solution?

- Is this the **only** solution that separates the data?
- What makes this solution **optimal** for SVM?

Answer: No, infinitely many solutions exist (e.g., w = 2, b = 0 or w = 0.5, b = 0).

SVM chooses w = 1, b = 0 because it minimizes $\|\mathbf{w}\|^2$ while satisfying all constraints!

Primal Formulation is a Quadratic Program

Generally;

- \Rightarrow Minimize Quadratic(x)
- \Rightarrow such that, Linear(x)

Question

$$x = (x_1, x_2)$$

minimize $\frac{1}{2}||x||^2$
: $x_1 + x_2 - 1 > 0$

MINIMIZE QUADRATIC S.L. LINEAR

Converting to Dual Problem

Primal ⇒ Dual Conversion using Lagrangian multipliers

Minimize
$$\frac{1}{2}\|\mathbf{w}\|^2$$
 s.t. $y_i(\mathbf{w}\cdot\mathbf{x}_i+b)\geq 1$ $\forall i$

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \sum_{i=1}^{d} w_i^2 - \sum_{i=1}^{N} \alpha_i (y_i (\mathbf{w} \cdot \mathbf{x}_i + b) - 1) \quad \forall \quad \alpha_i \ge 0$$

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^{n} \alpha_i y_i = 0$$

Converting to Dual Problem

$$\frac{\partial L}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = 0$$

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \sum_{i=1}^{d} w_i^2 - \sum_{i=1}^{N} \alpha_i (y_i (\mathbf{w} \cdot \mathbf{x}_i + b) - 1)$$

$$= \frac{1}{2} ||\mathbf{w}||^2 - \sum_{i=1}^{N} \alpha_i y_i \mathbf{w} \cdot \mathbf{x}_i - \sum_{i=1}^{N} \alpha_i y_i b + \sum_{i=1}^{N} \alpha_i$$

$$= \sum_{i=1}^{N} \alpha_i + \frac{(\sum_i \alpha_i y_i \mathbf{x}_i) \cdot (\sum_j \alpha_j y_j \mathbf{x}_j)}{2} - \sum_i \alpha_i y_i \left(\sum_j \alpha_j y_j \mathbf{x}_j\right) \cdot \mathbf{x}_i$$

Converting to Dual Problem

$$L(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$

$$\begin{array}{ll} \text{Minimize } \|\mathbf{w}\|^2 \Rightarrow & \text{Maximize } L(\alpha) \\ s.t & s.t \\ y_i \left(\mathbf{w} \cdot \mathbf{x}_i + b\right) \geqslant 1 & \sum_{i=1}^N \alpha_i y_i = 0 \ \forall \ \alpha_i \geq 0 \end{array}$$

Lagrangian Mystery!

Why do we convert the primal SVM problem to its dual formulation?

Lagrangian Mystery!

Why do we convert the primal SVM problem to its dual formulation?

Hint: Think about what the dual formulation enables us to do that the primal doesn't...

Lagrangian Mystery!

Why do we convert the primal SVM problem to its dual formulation?

Hint: Think about what the dual formulation enables us to do that the primal doesn't...

Answer: The dual formulation enables the kernel trick!

Primal: w appears explicitly → no kernels

Lagrangian Mystery!

Why do we convert the primal SVM problem to its dual formulation?

Hint: Think about what the dual formulation enables us to do that the primal doesn't...

Answer: The dual formulation enables the kernel trick!

- ullet Primal: **w** appears explicitly o no kernels
- Dual: Only dot products x_i · x_j appear → can replace with K(x_i, x_i)

Question: KKT Complementary Slackness

Question:

$$\alpha_i (y_i (\mathbf{w} \cdot \mathbf{x}_i + b) - 1) = 0 \quad \forall i \text{ as per KKT slackness}$$

What is α_i for support vector points?

Answer: For support vectors,

$$\mathbf{w} \cdot \mathbf{x}_i + b = -1 \text{ (for } y_i = -1)$$

 $\mathbf{w} \cdot \mathbf{x}_i + b = +1 \text{ (for } y_i = +1)$

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1 = 0$$
 for $i \in \{\text{support vector points}\}$
 $\therefore \alpha_i \neq 0$ where $i \in \{\text{support vector points}\}$
For all non-support vector points: $\alpha_i = 0$

EXAMPLE (IN 10)

Revisiting the Simple Example

$$\begin{bmatrix} x_1 & y \\ 1 & 1 \\ 2 & 1 \\ -1 & -1 \\ -2 & -1 \end{bmatrix}$$

$$L(\alpha) = \sum_{i=1}^{4} \alpha_i - \frac{1}{2} \sum_{i=1}^{4} \sum_{j=1}^{4} \alpha_i \alpha_j y_i y_j x_i x_j \qquad \alpha_i \ge 0$$
$$\sum_{i=1}^{4} \alpha_i y_i = 0 \qquad \alpha_i (y_i (w \cdot x_i + b) - 1) = 0$$

Support Vector Challenge!

In our 1D example with data points $\{(1,+1),(2,+1),(-1,-1),(-2,-1)\}$, which points will be the support vectors?

Support Vector Challenge!

In our 1D example with data points $\{(1,+1),(2,+1),(-1,-1),(-2,-1)\}$, which points will be the support vectors?

Think: Support vectors are the closest points to the decision boundary that actively constrain the solution.

Support Vector Challenge!

In our 1D example with data points $\{(1,+1),(2,+1),(-1,-1),(-2,-1)\}$, which points will be the support vectors?

Think: Support vectors are the closest points to the decision boundary that actively constrain the solution.

Answer: Points (1, +1) and (-1, -1) are the support vectors!

• These are closest to the decision boundary x = 0

Support Vector Challenge!

In our 1D example with data points $\{(1,+1),(2,+1),(-1,-1),(-2,-1)\}$, which points will be the support vectors?

Think: Support vectors are the closest points to the decision boundary that actively constrain the solution.

Answer: Points (1, +1) and (-1, -1) are the support vectors!

- These are closest to the decision boundary x = 0
- They satisfy $y_i(w \cdot x_i + b) = 1$ exactly

Support Vector Challenge!

In our 1D example with data points $\{(1,+1),(2,+1),(-1,-1),(-2,-1)\}$, which points will be the support vectors?

Think: Support vectors are the closest points to the decision boundary that actively constrain the solution.

Answer: Points (1, +1) and (-1, -1) are the support vectors!

- These are closest to the decision boundary x = 0
- They satisfy $y_i(w \cdot x_i + b) = 1$ exactly
- Points (2, +1) and (-2, -1) are farther away $\Rightarrow \alpha = 0$

$$L(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}) = \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4}$$

$$-\frac{1}{2} \{\alpha_{1}\alpha_{1} \times (1*1) \times (1*1) + \alpha_{1}\alpha_{2} \times (1*1) \times (1*2) + \alpha_{1}\alpha_{3} \times (1*-1) \times (1*1)$$
...
$$\alpha_{4}\alpha_{4} \times (-1*-1) \times (-2*-2)\}$$

How to Solve? \Rightarrow Use the QP Solver!!

For the trivial example,

We know that only $x=\pm 1$ will take part in the constraint actively.

Thus,
$$\alpha_2, \alpha_4 = 0$$

By symmetry,
$$\alpha_1 = \alpha_3 = \alpha$$
 (say) & $\sum v_i \alpha_i = 0$

$$L(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = 2\alpha$$

Maximize
$$2\alpha - \frac{1}{2}(4\alpha^2)$$

$$\frac{\partial}{\partial \alpha} \left(2\alpha - 2\alpha^2 \right) = 0 \Rightarrow 2 - 4\alpha = 0$$

$$\Rightarrow \alpha = 1/2$$

$$\therefore \alpha_1 = 1/2 \ \alpha_2 = 0; \ \alpha_3 = 1/2 \ \alpha_4 = 0$$

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \bar{x}_i = 1/2 \times 1 \times 1 + 0 \times 1 \times 2$$

$$+1/2 \times -1 \times -1 + 0 \times -1 \times -2$$

$$= 1/2 + 1/2 = 1$$

Finding b:

For the support vectors we have,

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1 = 0$$

or, $y_i \ (\bar{w} \cdot \bar{x}_1 + b) = 1$
or, $y_i^2 \ (\bar{w} \cdot \bar{x}_i + b) = y_i$
or, $\bar{w}, \bar{x}_i + b = y_i \ (\because y_i^2 = 1)$
or, $b = y_i - w \cdot x_i$
In practice, $b = \frac{1}{N_{SV}} \sum_{i=1}^{N_{SV}} (y_i - \bar{w}\bar{x}_i)$

In practice,
$$b = \frac{1}{N_{SV}} \sum_{i=1}^{N_{SV}} (y_i - \bar{w}\bar{x}_i)$$

Obtaining the Solution

$$b = \frac{1}{2} \{ (1 - (1)(1)) + (-1 - (1)(-1)) \}$$

$$= \frac{1}{2} \{ 0 + 0 \} = 0$$

$$= 0$$

$$\therefore w = 1 \& b = 0$$

Making Predictions

Making Predictions

$$\hat{y}(x_i) = \mathsf{SIGN}(w \cdot x_i + b)$$

For $x_{test} = 3$; $\hat{y}(3) = \mathsf{SIGN}(1 \times 3 + 0) = +\mathsf{ve}$ class

Making Predictions

$$\begin{split} & \hat{\mathbf{y}}(\mathbf{x}_{\mathsf{test}}) = \mathsf{sign}(\mathbf{w} \cdot \mathbf{x}_{\mathsf{test}} + b) \\ & = \mathsf{sign}\left(\sum_{j=1}^{N_{\mathsf{SV}}} \alpha_j y_j \mathbf{x}_j \cdot \mathbf{x}_{\mathsf{test}} + b\right) \end{split}$$

$$\begin{split} &\alpha_1=1/2;\alpha_2=0;\quad \alpha_3=1/2;\alpha_4=0\\ &\hat{\mathbf{y}}(3)=\operatorname{sign}\left(\frac{1}{2}\times 1\times (1\times 3)+0+\frac{1}{2}\times (-1)\times (-1\times 3)+0\right)\\ &=\operatorname{sign}\left(\frac{6}{2}\right)=\operatorname{sign}(3)=+1 \end{split}$$

Prediction Power!

We found our SVM solution: w = 1, b = 0. Let's test it! What will our SVM predict for the test point $x_{\text{test}} = -0.5$?

Prediction Power!

We found our SVM solution: w = 1, b = 0. Let's test it! What will our SVM predict for the test point $x_{\text{test}} = -0.5$?

Method 1: Direct: $\hat{\mathbf{y}}(-0.5) = \text{sign}(1 \times (-0.5) + 0) = \frac{1}{2}$

 $\mathsf{sign}(-0.5) = -1$

Prediction Power!

We found our SVM solution: w = 1, b = 0. Let's test it!

What will our SVM predict for the test point $x_{\text{test}} = -0.5$?

Method 1: Direct:
$$\hat{\mathbf{y}}(-0.5) = \text{sign}(1 \times (-0.5) + 0) = \text{sign}(-0.5) = -1$$

Method 2: Using support vectors: $\hat{\mathbf{y}}(-0.5) = \text{sign}(\frac{1}{2} \times 1 \times 1 \times (-0.5) + \frac{1}{2} \times (-1) \times (-1) \times (-0.5)) = \text{sign}(-0.5) = -1$ (Correct!)

Kernel Methods

ORIGINAL DATA

Non-Linearly Separable Data

• Data is not linearly separable in \mathbb{R}^d .

Non-Linearly Separable Data

- Data is not linearly separable in \mathbb{R}^d .
- Can we still use SVM?

Non-Linearly Separable Data

- Data is not linearly separable in \mathbb{R}^d .
- Can we still use SVM?
- Yes! Project data to a higher dimensional space.

Projection/Transformation Function

$$\phi: \mathbb{R}^d o \mathbb{R}^D$$
 where, $d=$ original dimension $D=$ new dimension In our example: $d=1; D=2$

From Linear to Kernel SVM

Linear SVM:

Maximize

$$L(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \mathbf{x}_i \cdot \mathbf{x}_j$$

such that constriants are satisfied.

$$L(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j)$$

Steps

1. Compute $\phi(\mathbf{x})$ for each point

$$\phi: \mathbb{R}^d \to \mathbb{R}^D$$

Q. If D >> dBoth steps are expensive!

Steps

1. Compute $\phi(\mathbf{x})$ for each point

$$\phi: \mathbb{R}^d \to \mathbb{R}^D$$

- 2. Compute dot products over \mathbb{R}^D space
- Q. If D >> dBoth steps are expensive!

The Kernel Trick

Brilliant idea: Can we compute $K(\mathbf{x}_i, \mathbf{x}_j)$ such that:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j)$$

Without explicitly computing ϕ !

• $K(\mathbf{x}_i, \mathbf{x}_j)$: Simple function in original space

Result: Get non-linear classification power without computational cost!

The Kernel Trick

Brilliant idea: Can we compute $K(\mathbf{x}_i, \mathbf{x}_j)$ such that:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j)$$

Without explicitly computing ϕ !

- $K(\mathbf{x}_i, \mathbf{x}_i)$: Simple function in original space
- $\phi(\mathbf{x}_i) \cdot \phi(\mathbf{x}_j)$: Complex dot product in high-dimensional space

Result: Get non-linear classification power without computational cost!

$$(0,1)$$

$$(-1,0)$$

$$(0,1)$$

$$(0,1)$$

$$(0,1)$$

$$(-1,0)$$

$$X_1$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

(01)
$$(-1,0)$$

$$(0,1)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

$$(-1,0)$$

Kernel Trick

Q) Why did we use dual form? Kernels again!!

Primal form doesn't allow for the kernel trick $K(\mathbf{x}_1, \mathbf{x}_2)$ in dual and compute $\phi(\mathbf{x})$ and then dot product in D dimensions

Gram Matrix: (Positive Semi-Definite)

x₇ 48

Most frequently used kernels:

1. Linear: $K(x_1, x_2) = x_1 \cdot x_2$

Most frequently used kernels:

- 1. Linear: $K(x_1, x_2) = x_1 \cdot x_2$
- 2. **Polynomial:** $K(\mathbf{x}_1, \mathbf{x}_2) = (c + \mathbf{x}_1 \cdot \mathbf{x}_2)^d$

Most frequently used kernels:

- 1. Linear: $K(x_1, x_2) = x_1 \cdot x_2$
- 2. **Polynomial:** $K(\mathbf{x}_1, \mathbf{x}_2) = (c + \mathbf{x}_1 \cdot \mathbf{x}_2)^d$
- 3. **RBF** (Gaussian): $K(\mathbf{x}_1, \mathbf{x}_2) = \exp(-\gamma ||\mathbf{x}_1 \mathbf{x}_2||^2)$

Most frequently used kernels:

- 1. Linear: $K(x_1, x_2) = x_1 \cdot x_2$
- 2. **Polynomial:** $K(\mathbf{x}_1, \mathbf{x}_2) = (c + \mathbf{x}_1 \cdot \mathbf{x}_2)^d$
- 3. **RBF** (Gaussian): $K(\mathbf{x}_1, \mathbf{x}_2) = \exp(-\gamma ||\mathbf{x}_1 \mathbf{x}_2||^2)$

Parameters:

• c: constant term, d: degree (polynomial)

Most frequently used kernels:

- 1. Linear: $K(x_1, x_2) = x_1 \cdot x_2$
- 2. Polynomial: $K(\mathbf{x}_1, \mathbf{x}_2) = (c + \mathbf{x}_1 \cdot \mathbf{x}_2)^d$
- 3. **RBF** (Gaussian): $K(\mathbf{x}_1, \mathbf{x}_2) = \exp(-\gamma ||\mathbf{x}_1 \mathbf{x}_2||^2)$

- c: constant term, d: degree (polynomial)
- γ : bandwidth parameter (RBF)

Kernel Example: Polynomial Kernel

Question: For
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, what is the feature space for $K(\mathbf{x}, \mathbf{z}) = (1 + \mathbf{x} \cdot \mathbf{z})^3$?

Given: $\mathbf{x} \in \mathbb{R}^2$, find dimension of $\phi(\mathbf{x})$

Expansion:

$$K(\mathbf{x}, \mathbf{z}) = (1 + x_1 z_1 + x_2 z_2)^3$$
= all terms of degree ≤ 3
= $\phi(\mathbf{x}) \cdot \phi(\mathbf{z})$

Feature map: $\phi(\mathbf{x}) = [1, \sqrt{3}x_1, \sqrt{3}x_2, \sqrt{3}x_1^2, \sqrt{3}x_2^2, \sqrt{6}x_1x_2, x_1^3, x_2^3, \sqrt{3}x_1^2x_2, \sqrt{3}x_1x_2^2]$

Answer: $\phi(\mathbf{x}) \in \mathbb{R}^{10}$

RBF Kernel: Infinite Dimensions

Question: What is the dimensionality of RBF kernel feature space?

RBF Kernel:

$$K(x, z) = \exp(-\gamma ||x - z||^2)$$
$$= \exp(-\gamma (x - z)^2)$$

Key insight: Using Taylor series expansion

$$\exp(\alpha) = \sum_{n=0}^{\infty} \frac{\alpha^n}{n!} = 1 + \alpha + \frac{\alpha^2}{2!} + \frac{\alpha^3}{3!} + \cdots$$

Result: RBF kernel corresponds to ∞ -dimensional feature space!

Amazing: Infinite-dimensional classification with finite computation!

Does RBF Involve Dot Product in Lower-Dimensional Space?

Question: Can we see the original dot product in RBF kernel?

Assuming \mathbf{x} is a one-dimensional vector, we can rewrite the RBF kernel as:

$$K(x, z) = \exp(-\gamma ||x - z||^2) = \exp(-\gamma (x - z)^2)$$

Does RBF Involve Dot Product in Lower-Dimensional Space?

Question: Can we see the original dot product in RBF kernel?

Assuming \mathbf{x} is a one-dimensional vector, we can rewrite the RBF kernel as:

$$K(x,z) = \exp(-\gamma ||x-z||^2) = \exp(-\gamma (x-z)^2)$$

Expanding the squared term:

$$(x-z)^2 = x^2 - 2xz + z^2$$

Does RBF Involve Dot Product in Lower-Dimensional Space?

Question: Can we see the original dot product in RBF kernel?

Assuming \mathbf{x} is a one-dimensional vector, we can rewrite the RBF kernel as:

$$K(x,z) = \exp(-\gamma ||x-z||^2) = \exp(-\gamma (x-z)^2)$$

Expanding the squared term:

$$(x-z)^2 = x^2 - 2xz + z^2$$

Substituting back into the RBF kernel:

$$K(x, z) = \exp(-\gamma(x^2 - 2xz + z^2))$$

= $\exp(-\gamma x^2) \cdot \exp(2\gamma xz) \cdot \exp(-\gamma z^2)$

Key insight: The middle term $\exp(2\gamma xz)$ contains the dot product xz from the original space!

Question: Is SVM parametric or non-parametric?

Question: Is SVM parametric or non-parametric?

Answer: It depends on the kernel!

• Parametric: Linear and polynomial kernels

Question: Is SVM parametric or non-parametric?

- Parametric: Linear and polynomial kernels
 - Fixed functional form

Question: Is SVM parametric or non-parametric?

- Parametric: Linear and polynomial kernels
 - Fixed functional form
 - Number of parameters independent of training data size

Question: Is SVM parametric or non-parametric?

- Parametric: Linear and polynomial kernels
 - Fixed functional form
 - Number of parameters independent of training data size
- Non-parametric: RBF kernel

Question: Is SVM parametric or non-parametric?

- Parametric: Linear and polynomial kernels
 - Fixed functional form
 - Number of parameters independent of training data size
- Non-parametric: RBF kernel
 - Model complexity grows with data

Question: Is SVM parametric or non-parametric?

- Parametric: Linear and polynomial kernels
 - Fixed functional form
 - Number of parameters independent of training data size
- Non-parametric: RBF kernel
 - Model complexity grows with data
 - Uses all support vectors for prediction

RBF is Non-Parametric

 $\alpha_i = 0$ where $j \neq S.V.$

$$\begin{split} \hat{\mathbf{y}}(\mathbf{x}_{\text{test}}) &= \text{sign}(\mathbf{w} \cdot \mathbf{x}_{\text{test}} + b) \\ &= \text{sign}(\sum_{j=1}^{N_{\text{SV}}} \alpha_j y_j \mathbf{x}_j \cdot \mathbf{x}_{\text{test}} + b) \\ \hat{\mathbf{y}}(\mathbf{x}_{\text{test}}) &= \text{sign}(\sum_{j=1}^{N} \alpha_j y_j \mathcal{K}(\mathbf{x}_j, \mathbf{x}_{\text{test}}) + b) \end{split}$$

•
$$\hat{\mathbf{y}}(\mathbf{x}) = \operatorname{sign}(\sum \alpha_i y_i \exp(-\|\mathbf{x} - \mathbf{x}_i\|^2) + b)$$

•
$$\hat{\mathbf{y}}(\mathbf{x}) = \operatorname{sign}(\sum \alpha_i y_i \exp(-\|\mathbf{x} - \mathbf{x}_i\|^2) + b)$$

ullet $-\|\mathbf{x}-\mathbf{x}_i\|^2$ corresponds to radial term

- $\hat{\mathbf{y}}(\mathbf{x}) = \operatorname{sign}(\sum \alpha_i y_i \exp(-\|\mathbf{x} \mathbf{x}_i\|^2) + b)$
- $-\|\mathbf{x} \mathbf{x}_i\|^2$ corresponds to radial term
- $\sum \alpha_i y_i$ is the activation component

- $\hat{\mathbf{y}}(\mathbf{x}) = \operatorname{sign}(\sum \alpha_i y_i \exp(-\|\mathbf{x} \mathbf{x}_i\|^2) + b)$
- $-\|\mathbf{x} \mathbf{x}_i\|^2$ corresponds to radial term
- $\sum \alpha_i y_i$ is the activation component
- $\exp(-\|\mathbf{x}-\mathbf{x}_i\|^2)$ is the basis component

RBF INTERPRETATION

RBF INTERPRETATION

Summary

• **Goal:** SVM finds optimal separating hyperplane by maximizing margin

- **Goal:** SVM finds optimal separating hyperplane by maximizing margin
- Math: Dual formulation enables kernel trick

- Goal: SVM finds optimal separating hyperplane by maximizing margin
- Math: Dual formulation enables kernel trick
- Power: Kernels enable non-linear classification without explicit mapping

- Goal: SVM finds optimal separating hyperplane by maximizing margin
- Math: Dual formulation enables kernel trick
- Power: Kernels enable non-linear classification without explicit mapping
- Popular kernels: Linear, Polynomial, RBF (Gaussian)

- Goal: SVM finds optimal separating hyperplane by maximizing margin
- Math: Dual formulation enables kernel trick
- Power: Kernels enable non-linear classification without explicit mapping
- Popular kernels: Linear, Polynomial, RBF (Gaussian)
- $\bullet \ \ \textbf{Remarkable:} \ \ \mathsf{RBF} \ \ \mathsf{kernel} \ \leftrightarrow \ \mathsf{infinite\text{-}dimensional} \ \ \mathsf{space}$

- Goal: SVM finds optimal separating hyperplane by maximizing margin
- Math: Dual formulation enables kernel trick
- Power: Kernels enable non-linear classification without explicit mapping
- Popular kernels: Linear, Polynomial, RBF (Gaussian)
- **Remarkable:** RBF kernel ↔ infinite-dimensional space
- Flexibility: Parametric (linear/poly) or non-parametric (RBF)

- Goal: SVM finds optimal separating hyperplane by maximizing margin
- Math: Dual formulation enables kernel trick
- Power: Kernels enable non-linear classification without explicit mapping
- Popular kernels: Linear, Polynomial, RBF (Gaussian)
- **Remarkable:** RBF kernel ↔ infinite-dimensional space
- Flexibility: Parametric (linear/poly) or non-parametric (RBF)
- Efficiency: Only support vectors matter for prediction

• Soft-margin SVM for non-separable data

- Soft-margin SVM for non-separable data
- Hyperparameter tuning (C, γ)

- Soft-margin SVM for non-separable data
- Hyperparameter tuning (C, γ)
- Multi-class SVM extensions

- Soft-margin SVM for non-separable data
- Hyperparameter tuning (C, γ)
- Multi-class SVM extensions
- Computational considerations and optimization

- Soft-margin SVM for non-separable data
- Hyperparameter tuning (C, γ)
- Multi-class SVM extensions
- Computational considerations and optimization
- Comparison with other classifiers