

UNIVERSIDAD AUTONOMA DEL ESTADO DE MEXICO

MATERIA: SISTEMAS EMBEBIDOS

PROFESOR: BENJAMIN PEREZ CLAVEL

INTEGRANTES DEL EQUIPO: ULISES BECERRIL VALDÉS JOSE BRAYANT ALVARES MORALES YANELA MICHELLE TRINIDAD CALIXTO

FECHA DE ENTREGA: 26 DE MAYO DEL 2024 GRUPO E1

PRÁCTICA		
RUBRO	VALOR	CALIF.
Portada	2.5	
Introducción	10	
Desarrollo	65	
Conclusiones	20	
Referencias / citas	2.5	
	TOTAL/10	
	Firma del docente	

INTRODUCCION

En esta práctica, se diseñará, programará y simulará un sistema que permite la introducción de números a través de un teclado matricial 4x4 y la visualización de dichos números en un LCD. Utilizando el puerto D del microcontrolador para el control y comunicación del LCD y el puerto B para la conexión del codificador de teclado y la interrupción externa causada por el teclado (INT0), se implementará un sistema que incluye tanto el desarrollo de hardware como de software, empleando herramientas como MPLAB X IDE para la programación y Proteus para la simulación. Este reporte detalla el proceso de diseño, implementación y validación del sistema, incluyendo capturas de pantalla, simulaciones y resultado..En base a este concepto clave, se construyo un circuito utilizando el microcontrolador PIC18F46k22 utilizando el siguiente esquema con especificaciones de material a utilizar:

DESAROLLO

1. Establecimiento de los Pines de Entrada y Salida

Para la correcta configuración del sistema, se asignaron los siguientes pines del microcontrolador:

• LCD (2x16):

• RS: RD0

• RW: RD1

• E: RD2

Datos: RD4-RD7

• Codificador de Teclado (74C922/74C923):

• Salida de código: RB0-RB3

Interrupción: RB4

2. Lista de Materiales

- Para la construcción del circuito físico, se utilizó el siguiente listado de materiales:
- 1 Microcontrolador PIC16F877A
- 1 Pantalla LCD 2x16
- 1 Teclado matricial 4x4
- 1 Codificador de teclado 74C922/74C923
- 1 Cristal de cuarzo de 4 MHz
- 2 Condensadores de 22 pF
- 1 Resistencia de 10 kΩ
- 1 Botón pulsador (para reset)
- Cables de conexión
- Protoboard
- Fuente de alimentación de 5V

3. Programación del Sistema

se encargó de configurar los pines, manejar las interrupciones del teclado y actualizar la pantalla LCD con los números introducidos.

4. Simulación del Sistema

Se utilizó Proteus para simular el funcionamiento del sistema. En el simulador, se construyó el diagrama esquemático, conectando el microcontrolador, el LCD y el teclado matricial según las especificaciones. Capturas de pantalla de la simulación muestran el diagrama del circuito y la correcta visualización de los números en el LCD.

5. Construcción del Circuito Físico

Para validar el diseño, se construyó el circuito físico siguiendo estos pasos:

- Montaje del Microcontrolador: Se colocó el microcontrolador PIC16F877A en el protoboard.
- Conexión del Cristal de Cuarzo: Se conectó el cristal de cuarzo de 4 MHz entre los pines OSC1 y OSC2 del microcontrolador, junto con los condensadores de 22 pF a tierra.

puerto D del microcontrolador (RD0 a RD7), y los pines de control (RS, RW y E) se conectaron a RD0, RD1 y RD2 respectivamente.

- Conexión de los pines de retroiluminación de pantalla LCD, estos pines son requeridos para que la pantalla tenga una iluminación adecuada y se puedan visualizar los caracteres, por lo que se decidió poner los leds correspondientes a 5v y tierra para de esa manera tener la iluminación máxima posible.
- Conexión del Teclado Matricial: El teclado matricial 4x4 se conectó al codificador 74C922, el cual a su vez se conectó a los pines RB0 a RB3 del puerto B del microcontrolador para las salidas de código, y a RB4 para la señal de interrupción.
- Botón de Reset: Se instaló un botón pulsador entre el pin MCLR y Vcc, con una resistencia de $10~k\Omega$ a tierra.
- Fuente de Alimentación: Se suministró una fuente de 5V para alimentar todo el circuito.
- Fotografías del montaje final del circuito se tomaron para evidenciar el trabajo realizado.

6. Validación del Circuito en el Laboratorio

Con el circuito ensamblado, se procedió a verificar su funcionamiento

Encendido y Configuración Inicial: Se encendió la fuente de alimentación y se observó la inicialización correcta del LCD.

Cambio de Línea en el LCD: Se verificó que al presionar una tecla no numérica, el cursor del LCD cambiara de línea correctamente.

Medición con Osciloscopio: Se utilizó un osciloscopio para medir los diferentes anchos de pulso generados por el microcontrolador, tomando imágenes de los resultados obtenidos.

Conclusiones

Durante la realización de esta práctica, el equipo enfrentó varios desafíos, incluyendo la correcta configuración de las interrupciones y la sincronización entre el teclado y el LCD. A través del trabajo en equipo y la consulta de documentación técnica, se lograron superar estos obstáculos. La práctica permitió profundizar en el manejo de periféricos del microcontrolador y mejorar habilidades en programación y diseño de circuitos electrónicos. La validación final en el laboratorio confirmó que el sistema cumplía con los requisitos especificados, demostrando la correcta integración de hardware y software.

Este ejercicio no solo proporcionó una experiencia práctica en el desarrollo de sistemas embebidos, sino que también reforzó la importancia de la planificación, el trabajo en equipo y la atención al detalle en proyectos de ingeniería.

REFERENCIAS

Introducción a la programación de microcontroladores PIC. (s/f). TECmikro Ecuador.

Recuperado el 9 de marzo de 2024, de https://tecmikro.com/content/8-

programacion-microcontroladores-pic

Hubor. (s/f). ¿ Qué es proteus? Hubor-proteus.com. Recuperado el 13 de febrero de 2024,

pcb/2https://www.huboproteus.com/proteus-pcb/proteus-pcb/2-proteus.htmlproteus.html

Abuelo, E. (2020, febrero 21). Parpadeo de un LED. Reset.

https://www.reset.etsii.upm.es/servicios/tutoriales/tutorial

