

Introduction to Simulation

Comparing Systems

Comparing Designs

We often want to compare different system designs

This is one of the most important applications of simulation

Examples:

- Different scheduling policies (queueing strategies)
- Different system structures
- Different times or probabilities
- Validation

Background Reading

Relevant sections of the book:

12.1

Example: Simple Queue

Arrivals are $\sim \exp(11)$

Solution S_1 : One server with service time $\sim \exp(10)$

Example: Simple Queue

Solution S_2 : Two servers with service time $\sim \exp(20)$

Which system is better?

Example: Simple Queue

Observe the average queue length at T=10000

Simulate both systems and compare results:

Replication	1	2	3	4	5	6	7	8	9	10
Shorter Q.	S ₂	S_1	S_2	S_2	S_2	S_2	S ₁	S_2	S_1	S_2

Which system is better?

The General Procedure

Perform R_1 replications on S_1 , obtaining Y_{r1} $r=1...R_1$

Perform R_2 replications on S_2 , obtaining Y_{r2} $r=1...R_2$

Compute averages \overline{Y}_1 , \overline{Y}_2

Compute a confidence interval around $\overline{Y}_1 - \overline{Y}_2$:

$$(\overline{Y_1} - \overline{Y_2}) - \hat{\sigma} \cdot t_{\alpha/2, f} \le \theta_1 - \theta_2 \le (\overline{Y_1} - \overline{Y_2}) + \hat{\sigma} \cdot t_{\alpha/2, f}$$

The General Procedure

There are three possibilities for the confidence interval:

Significance

We consider the difference in system performance ...

Practical significance:

"The actual difference in performance is significant with respect to our goals."

Statistical significance:

"Is our simulation experiment good enough to reveal the difference between the systems, or are we just seeing the result of randomness?"

Computing σ

We need the value of σ for the confidence interval

$$(\overline{Y_1} - \overline{Y_2}) - (\hat{\sigma}) t_{\alpha/2,f} \leq \theta_1 - \theta_2 \leq (\overline{Y_1} - \overline{Y_2}) + (\hat{\sigma}) t_{\alpha/2,f}$$

There are three cases to be considered:

- Independent sampling with equal variances
- Independent sampling with unequal variances
- Correlated sampling

Indep. Sampling, Equal Var.

We make the following assumptions:

- We will perform independent replications
- The variances in $Y_1,\ Y_2$ are (approximately) equal

We can pool our estimates as follows:

$$S^{2} = \frac{(R_{1} - 1)S_{1}^{2} + (R_{2} - 1)S_{2}^{2}}{R_{1} + R_{2} - 2}$$

We then obtain
$$\sigma$$
 using: $\sigma = S\sqrt{\frac{1}{R_1} + \frac{1}{R_2}}$

The confidence interval then has $R_1 + R_2 - 2$ d.o.f.

Indep. Sampling, Unequal Var.

What if the variances in \overline{Y}_1 , \overline{Y}_2 are not equal?

Then we must use the following for the standard error:

$$\sigma = \sqrt{\frac{S_1^2}{R_1} + \frac{S_2^2}{R_2}}$$

The formula for the number of d.o.f. is very complicated! (Refer to literature)

Until now, replications were always independent

One technique, however, does this differently

This is the method of *Correlated Sampling*

- It is the most common example of variance reduction
- It is used to improve the confidence intervals
- It can be difficult to implement
- It can also be very effective

Motivation:

- The width of our confidence interval depends on σ
- Is there a way to reduce the size of σ ?

$$\sigma^2$$
 is an estimator for $var(\overline{Y_1} - \overline{Y_2})$

In the general case, we have

$$\operatorname{var}(\overline{Y_1} - \overline{Y_2}) = \operatorname{var}(\overline{Y_1}) + \operatorname{var}(\overline{Y_2}) - 2\operatorname{cov}(\overline{Y_1}, \overline{Y_2})$$

Or, more specifically, (with $R_1 = R_2 = R$):

$$\operatorname{var}(\overline{Y_1} - \overline{Y_2}) = \frac{\sigma_1^2}{R} + \frac{\sigma_2^2}{R} - \frac{2\rho_{12}\sigma_1\sigma_2}{R}$$

We have
$$\operatorname{var}(\overline{Y_1} - \overline{Y_2}) = \frac{\sigma_1^2}{R} + \frac{\sigma_2^2}{R} - \frac{2\rho_{12}\sigma_1\sigma_2}{R}$$

 (ρ_{12}) is the correlation)

Therefore, if we could achieve $\rho_{12} > 0$...

- We could reduce $var(\overline{Y_1} \overline{Y_2})$...
- And thus reduce the width of the C.I.

How can we achieve a positive correlation between \overline{Y}_1 , \overline{Y}_2 ?

Idea:

Use the same random numbers in both models

More precisely:

- Each replication uses different random numbers
- In each replication, use the same RNs for each model

Then,

- Different replications will be independent
- Every pair of results Y_{r1} , Y_{r2} will be positively correlated

Example: Single-server and two server comparison

- Use same RNs for arrival times and service times
- We get *identical* arrival times for both models
- We get similar service times for both models:

The result is very similar behaviour for queue lengths:

The variance of the difference between these is small

Independent Sampling

Compare with the standard case using independent RN:

The result is different behaviour for queue lengths:

The variance of the difference between these is large

Algorithm for comparing two systems:

• Compute
$$D_r = Y_{r1} - Y_{r2}$$

• Compute
$$\overline{D} = \frac{1}{R} \sum D_r$$

• Compute
$$S^2 = \frac{1}{R-1} \sum (D_r - \overline{D})^2$$

• Compute
$$\sigma = \frac{S}{\sqrt{R}}$$

• Choose α and compute the confidence interval

If the correlation is positive...

- The variance will be smaller than in the independent case
- Our C.I. should be narrower

Plus ...

We get this improvement at no extra cost!

But:

How to implement common random numbers?

The main idea:

 Each random number used in model 1 must be used for the same purpose in model 2

i.e. the random numbers must be *synchronised*

Example:

 The same random number must used to generate the *i*th arrival time in model 1 and in model 2

If the models are very different, this might be difficult

Important principles:

- The systems should be subjected to similar load
- The systems should show similar reactions
- Simulate incomparable subsystems independently

Solution:

- Use multiple random number streams
- Assign one stream to the same activity in each model

N.B. This does *not* guarantee a reduction in the variance!

Example: Compare one- and two-server models

Results ($\alpha = 0.1, R = 100$):

	Indep.	Arr.	Serv.	Both
$ ho_{12}$	0.001	0.539	0.37	0.996
S^2	15.317	7.584	9.775	0.057
width of c.i.	1.552	1.092	1.24	0.094

Learning Goals

Learning questions for the exam:

- What is meant by practical and statistical significance?
- What are synchronised random numbers?
- How does the method of correlated sampling work?
- What is the key idea behind the method of correlated sampling?
- How does the method of correlated sampling achieve a reduced confidence interval at no extra cost?
- What conditions must be achieved in order that the method of correlated sampling can work?