## **National University of Computer and Emerging Sciences, Lahore Campus**



Course: Theory of Automata Program: **BS** (Computer Science) Duration:

180 Minutes

17-December-2022

Semester: Fall 2022 **Total Marks:** 80 Weight 40 % Page(s): 16

CS-3005

Course Code:

Roll No.

Section: ALL

Paper Date:

**Final Term** Exam:

Instruction/Notes:

- 1. Answer in the space provided, showing all the work.
- 2. Rough Sheets are not allowed.
- 3. In case of confusion or ambiguity make a reasonable assumption.
- 4. Attempt all Questions

## Section 1: (Short Question Answers) [25 Marks]

Q1: What is the cardinality of L? [3 Marks]

 $L = \{ w \text{ over } \Sigma \mid |w| > 5 \text{ and } |w| \le 10 \}.$ 

 $\Sigma = \{0,1,2\}$ 

**Note:** Cardinality means the total number of elements in the given set. 26+27+28+29+210=3 88209

Q2: Design a Finite Automaton (DFA or NFA) for the following language. [3 Marks]

 $L = \{ x \mid x \text{ over } \{a, b, c\} \text{ x starts and ends with same alphabet } \}$ 



Q3: What will be the language of the following grammar? [7 Marks]

$$L \rightarrow ALB \mid AABB$$

A → aAb | aaabbb

$$B \rightarrow ccBd \mid \wedge$$

**Note:** You are required to write answer in a proper format. For Example, see Q1 statement. You are expected to write a proper answer based on CFG given above. Lengthy Statements are not required here.



Q4: Write a Regular Expression for the following Language. [4 Marks]

 $L = \{x \mid x \text{ over } \{a, b\} \text{ x contains 'aba' and 'bab' as a substring } \}$ 

```
R. E= { abab + baba + (a+b)*aba(a+b)*bab(a+b)* + (a+b)*bab(a+b)*aba(a+b)* }
```

Q5: Design the transition diagram of a PDA for the following Language? [4 Marks]

$$L \,=\, \{a^nb^m\,;\, n+m=even\,\}$$



Q6: What will be the Regular Expression for the following Finite Automaton? [4 Marks]

Start State = A & Final State = {A,C}

| States(q) | δ(q,a) | δ(q,b) |
|-----------|--------|--------|
| А         | В      | А      |
| В         | В      | С      |
| С         | D      | С      |
| D         | D      | D      |

**Note:** Use State Elimination Method for extraction of Regular Expression. Write Final Regular Expression in the space provided below. Delete the given states in the following order, first State A then B then C & then D.



## Section 2: (Long / Detailed Solving Question Answers) [55 Marks]

Q1: Develop 3 multi-tape TM having 2 inputs X and Y (X and Y  $\varepsilon$  {0,1}\*) [15 Marks]

X is on tape 1 and Y is on tape 2. Y slides over the X with the step of 1. Each time it computes the exclusive nor (XNOR) of the corresponding overlapping bits and note down the number of 1's (only) in tape 3 as shown below:

| Α | В | A XNOR B |
|---|---|----------|
| 0 | 0 | 1        |
| 0 | 1 | 0        |
| 1 | 0 | 0        |
| 1 | 1 | 1        |

Truth Table for XNOR for inputs A and B

Initial configuration of 3 multi-tape TM

| Tape 1:           | Δ | 0 | 1 | 1 | 1 | 1 | 0 | 0 | Δ |
|-------------------|---|---|---|---|---|---|---|---|---|
| Tape 2:<br>Y      | Δ | 1 | 0 | 1 | Δ | Δ | Δ | Δ | Δ |
| Tape 3:<br>Output | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ | Δ |

Y will slide 5 times on X (in this example)

First time (first slide)



Second time (second slide)



•

•

(last and 5th slide) Eventually Output will be

| Tape 1 | Δ | 0 | 1 | 1 | 1 | 1 | 0 | 0 | Δ | Δ |
|--------|---|---|---|---|---|---|---|---|---|---|
| Tape 2 | Δ | 1 | 0 | 1 | Δ | Δ | Δ | Δ | Δ | Δ |
| Tape 3 | Δ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Δ |

Provide the algorithm first that will explain your logic in simple statement and then draw TM:

Note: Be clear and to the point. Clearly mention where your pointers are. No marks if algorithm is incorrect.

| Algorithm: |  |  |  |
|------------|--|--|--|
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |
|            |  |  |  |

770/177 'EUG

COD/002 , RPR

100/1001.RRS

Q2: Dry run the single-tape Turing machine on page 10 and give the content of the tape after running it (When TM halts). [15 Marks = 10 + 5]

The initial configuration of the TM is given below



What is TM doing? (Explain in not more than 2 lines. Be brief and to the point. No mark for stories)



Q3. For the DFA pictured in the figure below, use the minimization algorithm discussed in the class to find a minimum-state DFA recognizing the same language. [10 Marks] DFA:



Minimized DFA:

$$\begin{cases}
-7 & AB & \frac{1}{1} \\
7 & AB & \frac{1}{1}
\end{cases} \quad COE & \frac{1}{1} \\
4 & marks
\end{cases}$$

$$R \cdot E = \begin{cases} 0 \times 10^{8} \end{cases}$$

|                  |   | Α        | В        | С        | D | Е | F |
|------------------|---|----------|----------|----------|---|---|---|
|                  | Α | -        |          |          |   |   |   |
| A,B              | В |          | -        |          |   |   |   |
|                  | С | <b>~</b> | <b>✓</b> | -        |   |   |   |
| (2)              | D |          | /        | 4        | - |   |   |
| COPE DOPE        | Е | V        | <b>✓</b> |          |   | - |   |
|                  | F | <        | <b>\</b> | <b>\</b> | ) |   | • |
| Possible Compris |   |          |          |          |   |   |   |

 $\underline{\textbf{Note:}} \ \textbf{Use only the cell required}$ 

Q4. Let G be the following CFG:

$$S \rightarrow AaB \mid aB$$

$$A \rightarrow a \mid Aa$$

$$B \rightarrow b \mid C$$

$$C \rightarrow bC \mid a$$

$$X \rightarrow a$$

$$X \rightarrow a$$

$$Y \rightarrow b$$

$$Z \rightarrow AX$$

$$S \rightarrow ZB \mid XB$$

$$A \rightarrow AX \mid a$$

$$B \rightarrow YC \mid a \mid b$$

$$C \rightarrow YC \mid a$$

Determine whether the string "abba" is a member of L(G) using CYK Algorithm.

[10 Marks]

| j=4 | S       | -   | -   | -       |
|-----|---------|-----|-----|---------|
| j=3 | -       | B,C | -   | -       |
| j=2 | S       | -   | В,С | -       |
| j=1 | X,A,B,C | Y,B | Y,B | X,A,B,C |
| ·   | а       | b   | b   | а       |

**Note:** Use only the cell required

Each = 1.5 marks = 1.5x4 = 6

'abba' belongs to Language.

=7 1 menis

Require Work for CFG (if needed)

Q5. Tell whether the following Language is context free (CFL) or non- context free (non- CFL). If it is CFL provide PDA else prove it using Pumping Lemma



## **Rough Work**