This page has some useful notation that will be used throughout the course. Find the definitions for each of these terms by looking in the Appendix of the course textbook (zybook).

Term	Notation Example(s)	We say in English
n-tuple	(x_1, x_2, x_3)	The 3-tuple of x_1 , x_2 , and x_3
	(3,4)	The 2-tuple or ordered pair of 3 and 4
sequence	x_1,\ldots,x_n	A sequence x_1 to x_n
	x_1, \ldots, x_n where $n = 0$	An empty sequence
	x_1, \ldots, x_n where $n = 1$	A sequence containing just x_1
	x_1, \ldots, x_n where $n = 2$	A sequence containing just x_1 and x_2 in order
	x_1, x_2	A sequence containing just x_1 and x_2 in order
set		Unordered collection of objects. The set of \dots
all integers	\mathbb{Z}	The (set of all) integers (whole numbers including
		negatives, zero, and positives)
all positive integers	\mathbb{Z}^+	The (set of all) strictly positive integers
all natural numbers	\mathbb{N}	The (set of all) natural numbers. Note : we use
		the convention that 0 is a natural number.
roster method	$\{43, 7, 9\}$	The set whose elements are 43, 7, and 9
	$\{9,\mathbb{N}\}$	The set whose elements are 9 and \mathbb{N}
set builder notation	$\{x \in \mathbb{Z} \mid x > 0\}$	The set of all x from the integers such that x is
		greater than 0
	$\{3x \mid x \in \mathbb{Z}\}$	The set of all integer multiples of 3 Note : we use
		the convention that writing two numbers next to
		each other means multiplication.
function definition	f(x) = x + 4	Define f of x to be $x + 4$
function application	f(7)	f of 7 or f applied to 7 or the image of 7 under f
	f(z)	f of z or f applied to z or the image of z under f
	f(g(z))	f of g of z or f applied to the result of g applied
		to z
absolute value	-3	The absolute value of -3
square root	$\sqrt{9}$	The non-negative square root of 9
•		
summation notation	$\sum_{i=1}^{n} i$	The sum of the integers from 1 to n , inclusive
Summation notation	$\sum_{i=1}^{n} i$ $\sum_{i=1}^{n} i^2 - 1$	The sum of the integers from 1 to n, inclusive
	$\sum_{i=1}^{n} i^2 - 1$	The sum of $i^2 - 1$ (<i>i</i> squared minus 1) for each <i>i</i>
	$\underset{i=1}{\overset{\sim}{\sum}}$	from 1 to n , inclusive
anationt interes 11 11	din	The (integer) quetient 1: 11 1
quotient, integer division	$n \operatorname{\mathbf{div}} m$	The (integer) quotient upon dividing n by m; in-
modulo remainder	n mod m	formally: divide and then drop the fractional part. The remainder upon dividing a by m
modulo, remainder	$n \mod m$	The remainder upon dividing n by m

Themes for CS 40

- Technical skepticism
- Multiple representations

Recurring examples in CS 40

- Clustering and recommendation systems (machine learning, Netflix)
- Genomics and bioinformatics (DNA and RNA)
- Codes and information (secret message sharing and error correction)
- "Under the hood" of computers (number representation, data structures)

Week 1 Part A highlights

- Use and apply definitions and notation
- Explore mathematical definitions related to a specific application (Netflix)
- Evaluate the truth value of a compound proposition given truth values of its constituent variables.
- Prove propositional equivalences using truth tables
- Prove propositional equivalences using other known equivalences, e.g.
 - DeMorgan's laws
 - Double negation laws
 - Distributive laws, etc.
- Form the converse, contrapositive, and inverse of a given conditional statement.
- Translate sentences from English to propositional logic using appropriate propositional variables and boolean operators.

What data should we encode about each Netflix account holder to help us make effective recommendations?

In machine learning, clustering can be used to group similar data for prediction and recommendation. For example, each Netflix user's viewing history can be represented as a n-tuple indicating their preferences about movies in the database, where n is the number of movies in the database. People with similar tastes in movies can then be clustered to provide recommendations of movies for one another. Mathematically, clustering is based on a notion of distance between pairs of n-tuples.

In the table below, each row represents a user's ratings of movies: \checkmark (check) indicates the person liked the movie, \checkmark (x) that they didn't, and \bullet (dot) that they didn't rate it one way or another (neutral rating or didn't watch).

	Person	Fyre	Frozen II	Picard	Ratings written as a 3-tuple
Ī	P_1	Х	•	✓	(-1,0,1)
	P_2	1	\checkmark	X	(1, 1, -1)
	P_3	1	✓	✓	(1, 1, 1)
	P_4	•	X	✓	. ,

Which of P_1 , P_2 , P_3 has movie preferences most similar to P_4 ?

One approach to answer this question: use **functions** to define distance between user preferences.

Define the following functions whose inputs are ordered pairs of 3-tuples each of whose components comes from the set $\{-1,0,1\}$

$$d_1((x_1, x_2, x_3), (y_1, y_2, y_3)) = \sum_{i=1}^{3} (|x_i - y_i|)$$

$$d_2((x_1, x_2, x_3), (y_1, y_2, y_3)) = \sqrt{\sum_{i=1}^{3} (|x_i - y_i|)^2}$$

$d_1(P_4, P_1)$	$d_1(P_4, P_2)$	$d_1(P_4, P_3)$
$d_2(P_4, P_1)$	$d_2(P_4, P_2)$	$d_2(P_4, P_3)$

Extra example: A new movie is released, and P_1 and P_2 watch it before P_3 , and give it ratings; P_1 gives \checkmark and P_2 gives \checkmark . Should this movie be recommended to P_3 ? Why or why not?

Extra example: Define the new functions that would be used to compare the 4-tuples of ratings encoding movie preferences now that there are four movies in the database.

Proposition Declarative sentence that is true or false (not both).

Propositional variable Variable that represents a proposition.

Compound proposition New propositions formed from existing propositions (potentially) using

logical operators.

Truth table Table with 1 row for each of the possible combinations of truth values

of the input and an additional column that shows the truth value of

the result of the operation corresponding to a particular row.

Note: A propositional variable is one example of a compound proposition.

Logical operators aka propositional connectives

AND	\wedge	\land	2 inputs	Evaluates to T when both inputs are T
XOR	\oplus	\oplus	2 inputs	Evaluates to T when exactly one of inputs is T
OR	\vee	\lor	2 inputs	Evaluates to T when at least one of inputs is T
NOT	\neg	\label{lnot}	1 input	Evaluates to T when its input is F
	XOR OR	XOR ⊕ OR ∨	$ \begin{array}{ccc} XOR & \oplus & \text{loplus} \\ OR & \lor & \text{lor} \end{array} $	XOR \oplus \oplus 2 inputs OR \vee \lor 2 inputs

Inp	out		Output			
		Conjunction	Exclusive or	Disjunction	Input	Output
p	q	$p \wedge q$	$p\oplus q$	$p \lor q$		Output Negation
T	T	T	F	T	p	$\neg p$
T	F	F	T	T	T	F
F	T	F	T	T	F	T
F	F	$\mid F \mid$	F	F	1	1

Input		Output	
p - q - r		$ \mid (p \wedge q) \oplus ((p \oplus q) \wedge r) $	$(p \wedge q) \vee ((p \oplus q) \wedge r)$
T T T			
T T F	,		
T F T	·		
T F F	'		
F T T	·		
F T F	'		
F F T	·		
F F F	'		

Logical equivalence Two compound propositions are logically equivalent

means that they have the same truth values for all settings of truth values to their propositional variables.

Tautology A compound proposition that evaluates to true for all

settings of truth values to its propositional variables; it

is abbreviated T.

Contradiction A compound proposition that evaluates to false for all

settings of truth values to its propositional variables; it

is abbreviated F.

Contingency A compound proposition that is neither a tautology nor

a contradiction.

Extra Example: Which of the compound propositions in the table below are logically equivalent?

Inp	out			Output		
p	q	$\neg (p \land \neg q)$	$\neg (\neg p \lor \neg q)$	$(\neg p \lor q)$	$(\neg q \vee \neg p)$	$(p \land q)$
\overline{T}	T					
T	F					
F	T					
F	F					

(Some) logical equivalences (zybook, Chapter 1.5, Table 1.5.1):

Laws of propositional logic.

$$\begin{array}{ll} p \vee q \equiv q \vee p & p \wedge q \equiv q \wedge p \\ (p \vee q) \vee r \equiv p \vee (q \vee r) & (p \wedge q) \wedge r \equiv p \wedge (q \wedge r) \\ p \wedge F \equiv F & p \vee T \equiv T & p \wedge T \equiv p & p \vee F \equiv p \\ \neg (p \wedge q) \equiv \neg p \vee \neg q & \neg (p \vee q) \equiv \neg p \wedge \neg q \end{array}$$

Commutativity Ordering of terms
Associativity Grouping of terms
Absorption aka short circuit evaluation
DeMorgan's Laws

Can replace p and q with any compound proposition

Given an compound proposition, we can use

- Truth tables
- Logical equivalences

to compute its truth value for specific input values.

Now, given a truth table, how do we find a compound proposition that has the specified output values? *Application*: design a circuit given a desired input-output relationship.

Input	Out	put
p q	$mystery_1$	$mystery_2$
T T	T	F
T F	T	F
F T	F	F
F F	T	T

I	npu	Output	
p	q	r	?
T	T	T	T
T	T	F	T
T	F	T	F
T	F	F	T
F	T	T	F
F	T	F	F
F	F	T	T
F	F	F	F

A compound proposition that gives output $mystery_1$ is:

A compound proposition that gives output $mystery_2$ is:

Definition A compound proposition is in **disjunctive normal form** (DNF) means that it is an OR of ANDs of variables and their negations.

Definition A compound proposition is in **conjunctive normal form** (CNF) means that it is an AND of ORs of variables and their negations.

Extra example: A compound proposition that gives output? is:

The only way to make the conditional statement $p \to q$ false is to ______

The **hypothesis** of $p \to q$ is _____ The **premise** of $p \to q$ is _____

The conclusion of $p \to q$ is ______ The consequent of $p \to q$ is ______

Inpu	t	Output					
		Conjunction	Exclusive or	Disjunction	Conditional	Biconditional	
p q	$q \mid$	$p \wedge q$	$p\oplus q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$	
T T	Γ	T	F	T	T	T	
T I	F	F	T	T	F	F	
F 7	$\Gamma \mid$	F	T	T	T	F	
F F	F	F	F	F	T	T	

Examp	les
Lawring	

$$p \to q \equiv \neg p \lor q \text{ because}$$

 $p \leftrightarrow q$ is not logically equivalent to $p \land q$ because _____

 $\neg (p \leftrightarrow q) \equiv p \oplus q \text{ because} _$

 $p \to q$ is not logically equivalent to $q \to p$ because _____

 $p \leftrightarrow q \equiv q \leftrightarrow p$ because _____

The **converse** of $p \to q$ is _____

The **inverse** of $p \to q$ is _____ Which of these is logically equivalent to $p \to q$?

The **contrapositive** of $p \to q$ is _____

Translation : Express each of the following sentences tions.	s as compound propositions, using the given proposi-
"A sufficient condition for the warranty to be good is that you bought the computer less than a year ago"	\boldsymbol{w} is "the warranty is good" \boldsymbol{b} is "you bought the computer less than a year ago"
"Whenever the message was sent from an unknown system, it is scanned for viruses."	s is "The message is scanned for viruses" u is "The message was sent from an unknown system"
"I will complete my to-do list only if I put a reminder in my calendar"	r is "I will complete my to-do list" c is "I put a reminder in my calendar"

Discrete Mathematics Material created by Mia Minnes and Joe Politz is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License. Adapted for CMPSC 40 by Diba Mirza.