Containers Deep Dive

Mohammad Karimi

We're going to talk about:

- Container (from outside)
- Linux lies!
 - Process
 - Virtual Memory
 - Process management
 - Namespaces
 - CGroup
- Container Runtimes

Containers

(From Outside)

Containers (from outside)

- We know containers for being
 - Lightweight
 - Portable
 - Secure

- Is there a hypervisor?
- Is it running on host kernel?
- Container vs VM

Linux Lies!

Process

- Generally what computer does
- Run a series of instructions
- Long series of instruction: program

Process

- First program to run : Operating System
- Lots of processes and limited resources!
- Scheduler!
- OS Keeps track of process states
- Context Switch
- Other processes are communicating with OS

Virtual Memory

- A process thinks he's alone!
- Process (virtual) memory starts at 0
- OS translates process-local memory into physical memory
- Simplicity and security

Process Management

- Process hierarchy
- Each process has a unique ID
- Fork and exec process
- Init Process (PID 1)

OS Lies!

Process Asks OS:

- To pass a message to another process
 - Fake file!
- Every Process can know about every other process
 - What filesystems are available
 - What users are on the system
 - What permissions they have
 - What is the hostname
 - Network devices available
- OS will give the same answer to all of processes

Each process has its own contained memory

Linux Namespaces

- A way to lie to processes!
- Provide a way to segment groups of processes from each other
- Allow OS to lie to different sets of processes in different ways!
- Processes are in hierarchy!
 - Lying to parent means OS is lying to all of its children
- Namespaces are created using system calls
 - Programmatic way which process requests a service from OS

The UTS Namespace

- Controls the hostname of the computer
- sethostname() setdomainname(), and uname()

The mount Namespace

- Lets operating system present a different filesystem to a different set of processes
- chroot()
 - Lets a selected process to view a specific subset of filesystem as though it were the whole
 - Chroot jail

IPC Namespace

- IPC
 - The way processes talk to each other
- Makes communication possible only for processes inside a namespace

Process ID (PID) Namespace

- Remember process hierarchy?
- You can see processes of all users!
- PID namespace abstracts PIDs in a namespace
- Process can't initiate process if it doesn't know they exist!

Network Namespace

- Allows creation of separate (virtual) network devices
- A network device can be used in only one device at a time
- Physical devices can only remain in root namespace

User Namespace

- Each process has a user and group
 - Manage access control
- Process is owned by any user (including root)

Control Groups

- Yet Another Lie!
- This time, about resources

Control Groups

- Scheduler assigns CPU time to different processes
- How does it decide which processes are allowed to spend more time or less
- Computer has limited amount of memory
- How does it make sure one process doesn't consume all of it?

Control Groups!!

Control Groups

- Create a parallel hierarchy of processes
- Processes can be associated with one and only one leaf in that hierarchy
- Any node can have one or more controllers associated with it
 - Dozens of controllers
 - Some just track resource usage
 - Some limit
 - Some of them both
 - Most important: CPU and Memory

Lie, lie, lie!!!

Container Runtimes

Q&A

Sources

- https://blog.scottlowe.org/2013/09/04/introducing-linux-network-namespaces/
- https://www.youtube.com/watch?v=8fi7uSYlOdc&vl=en
- https://platform.sh/blog/2020/the-container-is-a-lie/