Hidden Markov Models

Toby Dylan Hocking

Background: detecting abrupt changes is important

Example from cancer diagnosis: breakpoints are associated with aggressive disease in neuroblastoma.

Motivation for Hidden Markov Models (HMMs)

- ➤ Sometimes we have an interpretation / expectation of what the segments/clusters mean.
- ► For example in DNA copy number data the logratio=0 means normal copy number (two copies – one from each parent), whereas higher logratio values indicate gain/amplification and lower values indicate loss/deletion.

HMM ideas

- Each observed data variable in the sequence has a corresponding un-observed (hidden) state variable.
- ▶ There are typically a finite number of possible values for each hidden state variable, $k \in \{1, ..., K\}$.
- Markov assumption: first-order dependency (each hidden variable only depends on the previous hidden variable in the sequence).

Parameters of HMM

- ▶ transition matrix: $A \in [0,1]^{K \times K}$ for K clusters. Each entry a_{ij} is the probability of transitioning from state i to state j.
- ▶ initial state distribution: $\pi \in [0,1]^K$ (prior weights).
- ▶ emission: define the probablity of observing data y in state k, $b_j(y) \in [0,1]$ (mean, covariance).
- ► These parameters are unknown in advance and must be learned from the data.
- Comparison with Gaussian Mixture Models: HMM has all of GMM parameters, plus transition matrix.

Three problems and algorithms

- ► Evaluation of likelihood of a given data sequence and model parameters => forward algorithm.
- Decoding most likely sequence of hidden states given observed data => Viterbi algorithm.
- ► Learning model parameters that maximize likelihood of a given data set => Baum-Welch algorithm.

Forward algorithm

- Assume each state $k \in \{1, ..., K\}$ has an emission probability function $b_k(o_t)$ for observed data o_t at time t.
- Let a_{kj} be a transition parameter (probability of going from state k to state j).
- Then we can recursively compute the forward path probability, $\alpha_t(j) = \sum_{k=1}^K \alpha_{t-1}(k) a_{kj} b_j(o_t)$.
- ► Total log likelihood is summed over all states at the last data point in the sequence.

Viterbi algorithm

- Assume each state $k \in \{1, ..., K\}$ has an emission probability function $b_k(o_t)$ for observed data o_t at time t.
- Let a_{kj} be a transition parameter (probability of going from state k to state j).
- ▶ Then we can recursively compute the probability of the best sequence of hidden variables that ends at data point t in state j, $v_t(j) = \max_{k \in \{1, ..., K\}} v_{t-1}(k) a_{kj} b_j(o_t)$.

Viterbi algorithm example

```
## List of 4
## $ mean : num [1:3] 0.25 0 -0.5
## $ sd : num 1
```

\$ transition: num [1:3, 1:3] 0.333 0.333 0.333 0.333 0

\$ initial : num [1:3] 0.333 0.333

Baum-Welch learning algorithm

- Is an instance of Expectation-Maximization (EM), like the Gaussian Mixture Model learning algorithm.
- ► E step involves forward/backward passes over data sequences, to compute probability of each data point in each state.
- M step involves re-computing model parameters.
- Repeat until the log likelihood stops increasing.

Shared states between chromosomes on a profile?

- ➤ Sometimes there are several data sequences which are assumed to have the same set of hidden states.
- ► In this case Baum-Welch can be used to fit HMM to all data at the same time (total log likelihood is summed over all data sequences).

HMM on whole profile

Time/space complexity TODO

Possible exam questions TODO