Algorithmics Correction Midterm #4 (C4)

Undergraduate 2^{nd} year (S4) — Epita $6 \; March \; 2018 - 14:45$

Solution 1 (Cut points, cut edges - 3 points)

1. Spanning forest for the DFS of the graph G_1 :

Figure 1: Graphe G_1

Figure 2: Forêt couvrante

- 2. Cut points of G_1 : 1, 2, 4, 8, 9
- 3. Cut edges of G_1 : (2,4), (8,12), (9, 13).

Solution 2 (SCC and reduced digraphs - 5 points)

- 1. Digraph \rightarrow condensation
 - (a) Strongly connected components of the digraph G_2 :

 $C_1: \{0, 1\} \\ C_2: \{2, 3, 4, 6, 7, 8\} \\ C_3: \{5\} \\ C_4: \{9\}$

(b) Condensation of G_2 :

1

- (c) The addition of a single edge from component C_2 to the component C_1 builds a cycle that traverses all components. Thus it makes the digraph strongly connected.
- 2. Condensation \rightarrow digraph
 - (a) Vertices in the component C_2 (from 4 to 7) are unreachable from the vertex 0.
 - (b) Among the following paths, which ones can not exist in G_3 ?
 - 3 → 7
 - $4 \rightsquigarrow 21$ existe
 - 18 → 2
 - 11 → 15
 - (c) Adding two edges to G_3 is sufficient to make it strongly connected. For instance $x_1 \to y_1$ with $x_1 \in C_6$, $y_1 \in C_2$ and $x_2 \to y_2$ with $x_2 \in C_4$, $y_2 \in C_6$.

Solution 3 ("Global Connectivity Indicators" - 6 points)

Global connectivity indicators measure the subdivision degree of a graph into connected components separated from each other.

1. The weighted connectivity index expresses the probability that two random vertices can be connected by a path (i.e. belong to the same connected component).

2. Specifications:

The functions indexes (G) computes both "connectivity indexes" simple (IC_1) and weighted (IC_2) of the graph G.

```
def __nbVertexDFS(G, s, M):
                   M[s] = True
                   nb = 1
                   for adj in G.adjlists[s]:
                       if not M[adj]:
                           nb += __nbVertexDFS(G, adj, M)
6
                   return nb
               def connectivity(G):
                   M = [False]*G.order
                   k = 0
                   IC2 = 0
                   for s in range(G.order):
                       if not M[s]:
14
                           k += 1
                           nb = __nbVertexDFS(G, s, M)
                           IC2 += nb*nb
                   IC1 = (G.order - k) / (G.order - 1)
18
                   IC2 = IC2 / (G.order * G.order)
19
                   return (IC1, IC2)
```

Solution 4 (Strongly Connected? - 7 points)

1. Property(ies) of the first component root met:

The digraph is strongly connected if the first component root met during the traversal is the root of the unique spanning tree.

2. Specifications:

The function $is_strong(G)$ tests whether the digraph G is strongly connected.

```
def __isStronglyConnected(G, x, pref, cpt):
            cpt += 1
            pref[x] = cpt
            return_x = pref[x]
            for y in G.adjlists[x]:
                if pref[y] == 0:
                    (ret_y, cpt) = __isStronglyConnected(G, y, pref, cpt)
                    if ret_y == -1:
                       return (-1, cpt)
9
                    return_x = min(return_x, ret_y)
                else:
11
                    return_x = min(return_x, pref[y])
12
            if return_x == pref[x]:
14
                return (-1, cpt)
16
17
             return (return_x, cpt)
18
```

```
def isStronglyConnected(G):
    pref = [0]*G.order
    cpt = 0
    (r, cpt) = __isStronglyConnected(G, 0, pref, cpt)
    return (r != -1) and (cpt == G.order) # all vertices have been encountered
```