

Grado en Físicas *Métodos Numéricos*Tema 5. Sistemas de Ecuaciones Lineales

Alejandro Medina Domínguez

Diciembre 2016

ESQUEMA

- Introducción
- 2 Métodos directos
- Métodos iterativos
- 4 Ejercicios
- BIBLIOGRAFÍA

Introducción Métodos directos Métodos iterativos Ejercicios Bibliografía

ESQUEMA

- Introducción
- 2 Métodos directos
- 3 MÉTODOS ITERATIVOS
- 4 Ejercicios
- BIBLIOGRAFÍA

Introducción

Consideraremos sistemas de ecuaciones lineales de la forma:

que matricialmente se puede escribir como:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix},$$

esto es,

$$\mathbf{A} \cdot \vec{\mathbf{x}} = \vec{\mathbf{b}}$$

ESQUEMA

- 1 Introducción
- 2 MÉTODOS DIRECTOS
 - Sistemas simples
 - Eliminación gaussiana
 - Descomposición LU
 - Cálculo de la inversa y el determinante de una matriz
- MÉTODOS ITERATIVOS
- 4 EJERCICIOS
- BIBLIOGRAFÍA

SISTEMA TRIANGULAR. SUSTITUCIÓN HACIA ATRÁS

Sistema triangular:

Sustitución hacia atrás:

A partir de la ecuación n-ésima se obtiene,

$$x_n = \frac{b_n}{a_{nn}}$$
.

• A continuación se despeja x_{n-1} , que sólo depende de x_n (que ya conocemos):

$$x_{n-1} = \frac{b_{n-1} - a_{n-1,n}x_n}{a_{n-1,n-1}}.$$

• El proceso se repite hacia atrás hasta llegar a la primera ecuación, en el caso i-ésimo se tiene:

$$b_i - \sum_{j=i+1}^n a_{ij} x_j$$
$$x_i = \frac{1}{a_{ii}}.$$

ELIMINACIÓN GAUSSIANA

La solución de un sistema lineal no cambia si:

- A) Se multiplica una ecuación por una constante distinta de cero.
- B) Se suma o resta a una ecuación una combinación lineal de las otras.
- C) Se intercambian dos ecuaciones.
- D) Se efectúa una secuencia cualquiera de las operaciones anteriores.

Descomposición LU

EJEMPLO

La matriz **A** viene dada por:

$$\mathbf{A}_0 \equiv \mathbf{A} = \begin{pmatrix} 2 & 1 & 3 \\ 4 & 3 & 10 \\ 2 & 4 & 17 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Definimos,

$$\mathbf{L}_1 \equiv \left(\begin{array}{ccc} 1 & 0 & 0 \\ -a_{21}/a_{11} & 1 & 0 \\ -a_{31}/a_{11} & 0 & 1 \end{array} \right) \equiv \left(\begin{array}{ccc} 1 & 0 & 0 \\ -m_{21} & 1 & 0 \\ -m_{31} & 0 & 1 \end{array} \right) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ -4/2 & 1 & 0 \\ -2/2 & 0 & 1 \end{array} \right),$$

donde $m_{i1} = a_{i1}/a_{11}$, (i > 1).

$$\mathbf{A}_1 \equiv \mathbf{L}_1 \cdot \mathbf{A}_0 = \left(\begin{array}{ccc} 2 & 1 & 3 \\ 0 & 1 & 4 \\ 0 & 3 & 14 \end{array} \right).$$

Análogamente se define:

$$\mathbf{L}_2 \equiv \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -m_{32} & 1 \end{array}\right) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3/1 & 1 \end{array}\right),$$

donde ahora,

$$m_{32} = rac{ ext{elemento } a_{32} ext{ de la nueva } \mathbf{A}_1}{ ext{elemento } a_{22} ext{ de la nueva } \mathbf{A}_1}.$$

Multiplicando \mathbf{L}_2 por \mathbf{A}_1 se obtiene:

$$\mathbf{A}_2 \equiv \mathbf{L}_2 \cdot \mathbf{A}_1 = \begin{pmatrix} 2 & 1 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 2 \end{pmatrix} \equiv \mathbf{U},$$

donde ${f U}$ es una matriz triangular superior. Finalmente se tiene que,

$$\mathbf{L}_2 \cdot \mathbf{L}_1 \cdot \mathbf{A} = \mathbf{U}$$

En general,

$$\textbf{L}_{n-1}\cdot\dots\cdot\textbf{L}_1\cdot\textbf{A}=\textbf{U},$$

donde ${\bf U}$ es la matriz triangular superior,

$$\mathbf{U} = \left(\begin{array}{cccc} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{nn} \end{array} \right),$$

Las matrices \mathbf{L}_i vienen dadas por:

$$m_{ij} = rac{ ext{elemento } a_{ij} ext{ de la matriz } \mathbf{A}_{j-1}}{ ext{elemento } a_{jj} ext{ de la matriz } \mathbf{A}_{i-1}} \qquad (i > j)$$

$$A_j = L_j \cdot A_{j-1} \quad (j \ge 1); \qquad A_0 = A; \qquad A_{n-1} = U.$$

Es fácil comprobar que,

columna j

Teniendo en cuenta que,

$$A = \underbrace{L_1^{-1} \cdot \cdots \cdot L_{n-1}^{-1}}_{I} \cdot U = L \cdot U,$$

se obtiene, por inducción, que L es la siguiente matriz triangular inferior :

$$\mathbf{L} \equiv \mathbf{L}_{1}^{-1} \cdot \dots \cdot \mathbf{L}_{n-1}^{-1} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ m_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & m_{n2} & \cdots & 1 \end{pmatrix}.$$

Entonces podemos escribir:

$$A = L \cdot U$$

DESCOMPOSICIÓN LU PARA RESOLVER SISTEMAS LINEALES

$$\mathbf{A} \cdot \vec{\mathbf{x}} = \vec{\mathbf{b}},$$

donde A se puede factorizar como:

$$\mathbf{A} = \mathbf{L} \cdot \mathbf{U},$$

Se tiene entonces:

$$\mathbf{A} \cdot \vec{x} = \mathbf{L} \cdot (\underbrace{\mathbf{U} \cdot \vec{x}}) = \vec{b},$$

$$\equiv \vec{y}$$

y, por tanto, podemos reescribir el sistema como:

- 1) $\mathbf{L} \cdot \vec{y} = \vec{b} \longrightarrow \vec{y}$ (por sustitución hacia adelante)
- 2) $\mathbf{U} \cdot \vec{x} = \vec{y} \longrightarrow \vec{x}$ (por sustitución hacia atrás)

La primera ecuación se puede resolver para \vec{y} por sustitución hacia adelante (L es triangular inferior) y una vez obtenido \vec{y} , se resuelve la segunda ecuación por sustitución hacia atrás (U es triangular superior) .

Algoritmo Doolittle

EJEMPLO

$$\begin{pmatrix} 1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & m_{32} & 1 \end{pmatrix} \cdot \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\begin{pmatrix} \otimes & \otimes & \otimes \\ & & &$$

$$\left(\begin{array}{ccc} \otimes & \otimes & \end{array} \right) \cdot \left(\begin{array}{ccc} \otimes \\ \otimes \\ \end{array} \right) \longrightarrow m_{21} \widehat{u_{11}} = \widehat{a_{21}} \longrightarrow m_{21} = \frac{a_{21}}{u_{11}}$$

$$\left(\begin{array}{ccc} \otimes & \otimes & \end{array} \right) \cdot \left(\begin{array}{ccc} & \otimes \\ & \otimes \\ & \otimes \end{array} \right) \longrightarrow \widehat{m_{21}} \widehat{u_{12}} + u_{22} = \widehat{a_{22}} \longrightarrow u_{22} = a_{22} - m_{21} u_{12}$$

$$\left(\begin{array}{ccc} \otimes & \otimes & \end{array} \right) \cdot \left(\begin{array}{ccc} & \otimes \\ \otimes \\ \otimes \end{array} \right) \longrightarrow \widehat{m_{21}} \widehat{u_{13}} + u_{23} = \widehat{a_{23}} \longrightarrow u_{23} = a_{23} - m_{21} u_{13}$$

$$\left(\begin{array}{ccc} & & \\ & \otimes & \otimes & \end{array}\right) \cdot \left(\begin{array}{ccc} \otimes & & \\ \otimes & & \\ \otimes & \end{array}\right) \longrightarrow m_{31} \widehat{u_{11}} = \widehat{a_{31}} \longrightarrow m_{31} = \frac{a_{31}}{u_{11}}$$

$$\left(\begin{array}{ccc} & & \\ & \otimes & \otimes \end{array}\right) \cdot \left(\begin{array}{ccc} & \otimes & \\ & \otimes & \\ & \otimes & \end{array}\right) \longrightarrow \widehat{m_{31}} \widehat{u_{12}} + m_{32} \widehat{u_{22}} = \widehat{a_{32}} \longrightarrow m_{32} = \frac{a_{32} - m_{31} u_{12}}{u_{22}}$$

$$\left(\begin{array}{ccc} & & \\ & \otimes & \otimes & \end{array}\right) \cdot \left(\begin{array}{ccc} & \otimes \\ & \otimes & \\ & \otimes & \end{array}\right) \longrightarrow \widehat{m_{31}} \, \widehat{u_{13}} + \widehat{m_{32}} \, \widehat{u_{23}} + u_{33} = \widehat{a_{23}} \longrightarrow$$

$$u_{33} = a_{33} - m_{32}u_{23} - m_{31}u_{13}$$

Las ecuaciones para el caso general serían las siguientes:

•
$$m_{ii} = 1 \quad (i = 1, 2 \dots n)$$

•
$$u_{1i} = a_{1i}$$
 $(i = 1, 2 ... n)$

$$a_{ki} - \sum_{i=1}^{i-1} m_{kj} u_{ji}$$

•
$$m_{ki} = \frac{\sum_{j=1}^{m} u_{ji}}{u_{ii}} (k = 2, 3 ... n)$$
. Para cada $k : (i = 1, 2 ... k - 1)$

•
$$u_{kp} = a_{kp} - \sum_{j=1}^{n} m_{kj} u_{jp} (k = 2, 3 ... n)$$
. Para cada $k : (p = k, k + 1 ... n)$

Introducción Métodos directos Métodos iterativos Eiercicios

ESQUEMA

- Introducción
- 2 Métodos directos
- MÉTODOS ITERATIVOS
 - Método de Jacobi
 - Método de Gauss-Seidel
- 4 Ejercicios
- BIBLIOGRAFÍA

MÉTODOS ITERATIVOS. MÉTODO DE JACOBI

Despejando en cada ecuación:

$$x_{1} = \frac{1}{a_{11}} (b_{1} - a_{12}x_{2} - \dots - a_{1n}x_{n})$$

$$x_{2} = \frac{1}{a_{22}} (b_{2} - a_{21}x_{1} - \dots - a_{2n}x_{n})$$

$$\vdots$$

$$x_{n} = \frac{1}{a_{nn}} (b_{n} - a_{n1}x_{1} - \dots - a_{n,n-1}x_{n-1})$$

Con lo que el sistema se puede resolver iterativamente.

Término general:

 \bullet $a_{ii} \neq 0$

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{\substack{j=1\\j \neq i}}^n a_{ij} x_j^{(k)} \right)$$

 a_{ii} = 0: En este caso sumamos y restamos en la fila i la correspondiente incógnita, x_i. De este modo resulta:

$$x_i^{(k+1)} = b_i - \sum_{\substack{j=1\\j\neq i}}^n a_{ij} x_j^{(k)} + x_i^{(k)}$$

- Condiciones iniciales: Se pueden escoger aquellas que se consideren más convenientes. Otra posibilidad es tomar $x_i^{(0)} = 0$, esto es, $x_i^{(1)} = b_i/a_{ii}$.
- Convergencia: El proceso se itera hasta que se verifique una condición de convergencia, por ejemplo:

$$||\vec{x}^{(p+1)} - \vec{x}^{(p)}|| < \epsilon \quad \text{con } \epsilon > 0,$$

donde ϵ es el error elegido.

MÉTODO DE JACOBI

EJEMPLO:

Supongamos que queremos resolver el sistema:

$$3x_1 + x_2 + x_3 = 8$$

 $x_1 + 4x_2 - x_3 = 6$
 $x_1 - 3x_2 + 6x_3 = 13$

Si no tenemos otros datos, siempre podemos partir de la condición inicial:

$$x_1^{(0)} = \frac{8}{3}; \quad x_2^{(0)} = \frac{3}{2}; \quad x_3^{(0)} = \frac{13}{6}.$$

El método de Jacobi, daría una secuencia de este modo:

$$\begin{aligned} x_1^{(k+1)} &= \frac{1}{3} \left(8 - x_3^{(k)} - x_2^{(k)} \right) \\ x_2^{(k+1)} &= \frac{1}{4} \left(6 + x_3^{(k)} - x_1^{(k)} \right) \\ x_3^{(k+1)} &= \frac{1}{6} \left(13 + 3x_2^{(k)} - x_1^{(k)} \right) \end{aligned}$$

MÉTODO DE JACOBI

k	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$
0	2,6666670	1,5000000	2,1666670
1	1,4444440	1,3750000	2,4722220
2	1,3842590	1,7569440	2,6134260
3	1,2098770	1,8072920	2,8144290
4	1,1260930	1,9011380	2,8686660
5	1,0767320	1,9356430	2,9295540
6	1,0449340	1,9632050	2,9550330
:	:	:	:
16	1,0002630	1,9997840	2,9997460
17	1,0001570	1,9998710	2,9998480
18	1,0000940	1,9999230	2,9999090
:	:	:	:

Solución exacta: $x_1 = 1$; $x_2 = 2$; $x_3 = 3$

MÉTODO DE GAUSS-SEIDEL

EJEMPLO:

Consideremos el sistema:

$$\begin{cases} x_1 + x_2 &= 2 \\ x_1 - x_2 &= 1 \end{cases}$$

$$x_1 = 2 - x_2;$$
 $x_2 = -(1 - x_1) \longrightarrow \begin{cases} x_1^{(k+1)} &= 2 - x_2^{(k)} \\ x_2^{(k+1)} &= -(1 - x_1^{(k+1)}) \end{cases}$

En general,

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{i=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{i=i+1}^{n} a_{ij} x_j^{(k)} \right)$$

MÉTODO DE GAUSS-SEIDEL

EJEMPLO:

Para conocer las ventajas del método de Gauss-Seidel, consideremos el sistema

Introducción Métodos directos Métodos iterativos

> Ejercicios Bibliografía

$$\begin{cases} x_1 &= 1 \\ x_1 + x_2 &= 2 \\ x_1 + x_2 + x_3 &= 3 \end{cases}$$

Este sistema es fácilmente soluble por sustitución. Su solución analítica es: $x_1 = 1$, $x_2 = 1$ y $x_3 = 1$.

Apliquemos el método de Jacobi, tomando como solución inicial: $x_1^{(0)}=1$, $x_2^{(0)}=2$ y $x_3^{(0)}=3$

$$\begin{cases} x_1^{(k+1)} &= 1 \\ x_2^{(k+1)} &= 2 - x_1^{(k)} \\ x_3^{(k+1)} &= 3 - x_1^{(k)} - x_2^{(k)} \end{cases}$$

Se necesitan tres iteraciones: k = 0, 1, 2. Con el método de Gauss-Seidel las ecuaciones serían estas:

$$\begin{cases} x_1^{(k+1)} &= 1 \\ x_2^{(k+1)} &= 2 - x_1^{(k+1)} \\ x_3^{(k+1)} &= 3 - x_1^{(k+1)} - x_2^{(k+1)} \end{cases}$$

Ahora el método converge a la primera.

	Jacobi			G.	-S.
$k \rightarrow$	0	1	2	0	1
$x_{1}^{(k)}$ $x_{2}^{(k)}$ $x_{3}^{(k)}$	1,0 2,0 3,0	1,0 1,0 0,0	1,0 1,0 1,0	1,0 2,0 3,0	1,0 1,0 1,0

EJEMPLO:

Resolveremos el mismo ejemplo con las mismas condiciones iniciales que consideramos con el método de Jacobi. El método de Gauss-Seidel, daría una secuencia de este modo:

$$\begin{aligned} x_1^{(k+1)} &= \frac{1}{3} \left(8 - x_3^{(k)} - x_2^{(k)} \right) \\ x_2^{(k+1)} &= \frac{1}{4} \left(6 + x_3^{(k)} - x_1^{(k+1)} \right) \\ x_3^{(k+1)} &= \frac{1}{6} \left(13 + 3x_2^{(k+1)} - x_1^{(k+1)} \right) \end{aligned}$$

k	$x_{1}^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$
0	2,6666670	1,5000000	2,1666670
1	1,4444440	1,6805560	2,7662040
2	1,1844140	1,8954470	2,9169880
3	1,0625210	1,9636170	2,9713880
4	1,0216650	1,9874310	2,9901040
5	1,0074880	1,9956540	2,9965790
.			
- 1			:
11	1,0000130	1,9999930	2,9999940
12	1,0000040	1,9999970	2,9998980
13	1,0000010	1,9999990	2,9999990
14	1,0000000	2,0000000	3,0000000

Jacobi: hacia k = 18 se alcanza con precisión (10^{-4}) la solución exacta. Gauss-Seidel: en k = 14 converge a la solución analítica (10^{-7}) .

ESQUEMA

- Introducción
- 2 Métodos directos
- 3 MÉTODOS ITERATIVOS
- 4 Ejercicios
- BIBLIOGRAFÍA

EJERCICIOS

1.- Obténgase, explicando cada uno de los pasos, la descomposición LU de la matriz:

$$A = \left(\begin{array}{ccc} 6 & 10 & 0 \\ 12 & 26 & 4 \\ 0 & 9 & 12 \end{array}\right) .$$

A partir de la descomposición LU obtenida calcúlense el determinante, det(A), y la inversa, A^{-1} , de la matriz A.

2.- Obténgase la descomposición LU de la matriz:

$$A = \left(\begin{array}{cccc} 6 & -2 & 2 & 4 \\ 12 & 8 & 4 & 10 \\ 3 & -13 & 3 & 3 \\ -6 & 4 & 2 & -18 \end{array}\right)$$

Explíquense cada uno de los pasos seguidos. A partir de la descomposición LU obtenida calcúlese el determinante de la matriz A.

3.- En un experimento de tiro parabólico se miden los siguientes valores de alturas h y desplazamientos x,

X	0	1	2	3	4
h	0,01	1,769	3,260	4,189	4,749

Sabiendo que los valores medidos son aproximados pero que siguen un modelo parabólico de *tres* parámetros del tipo

$$h = a + bx + cx^2,$$

- a) Obténgase el sistema de 3 ecuaciones con tres incógnitas (a, b y
- c) al que se llega por medio de un ajuste por mínimos cuadrados.
- b) Resuelve el sistema haciendo uso de la técnica de *eliminación* gaussiana con pivotación.
- c) Calcula el área subtendida por la curva, $h = a + bx + cx^2$ (el área comprendida entre esta curva y la recta h=0), haciendo uso de una regla de cuadratura exacta para este polinomio.

4.- En la tabla adjunta se indican los índices de refracción, n, para diversas longitudes de onda, λ , (en unidades de 10^{-7} m) del cristal de borosilicato. Considérese la ecuación de Cauchy del índice de refracción:

$$n = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4},$$

donde A, B y C son constantes a determinar.

- a) Plantea un sistema de ecuaciones para determinar esas constantes a partir de los valores correspondientes a la segunda, cuarta y séptima posiciones de la serie de la tabla. Utilícese el criterio de los mínimos cuadrados.
- b) Resuelve el sistema mediante una eliminación gaussiana sin pivotación para obtener A, B y C.
- c) Comprueba la bondad de la aproximación obtenida calculando el error relativo en la predicción del primer, tercer y octavo de la tabla.

λ (10 ⁻⁷ m)	n
6, 563	1,50883
6, 439	1,50917
5,890	1,51124
5, 338	1,51386
5,086	1,51534
4,861	1,51690
4, 340	1,52136
3,988	1,52546

5.- Resuelve iterativamente el siguiente sistema lineal:

$$10x_1 - x_2 + 2x_3 = 6$$

$$-x_1 + 11x_2 - x_3 + 3x_4 = 25$$

$$2x_1 - x_2 + 10x_3 - x_4 = -11$$

$$3x_2 - x_3 + 8x_4 = 15$$

- a) Utilizando el método de Jacobi hasta la iteración, k=6.
- b) Utilizando el método de Gauss-Seidel hasta la iteración, k=3. Considera en ambos casos la condición inicial, $x_i^{(0)}=0,0$; $i=1,\ldots 4$ y cuatro cifras decimales en los cálculos.

6.- Las leyes de Kirchoff para un circuito de corriente continua de varias mallas dan lugar al siguiente sistema de ecuaciones para las intensidades:

$$2 i_1 - i_2 = 1$$

$$-i_1 + 2 i_2 - i_3 = 0$$

$$-i_2 + 2 i_3 - i_4 = 0$$

$$-i_3 + 2 i_4 = 1$$

- a) Hágase la descomposición LU de la matriz de coeficientes.
- b) Resuélvase el sistema de ecuaciones.
- c) ¿Cuánto vale el determinante de la matriz?

7.- Resuélvase el siguiente sistema matricial,

$$\mathbf{A} \cdot \mathbf{X} = \mathbf{B}$$

donde,

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 1 \\ 1 & 1 & 2 \end{pmatrix}; \qquad \mathbf{B} = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ 0 & 2 & 2 \end{pmatrix}$$

para obtener la matriz 3×3 , \boldsymbol{X} , utilizando una descomposición LU sin pivotación.

8.- Resuélvase el sistema de ecuaciones:

$$5x_1 + x_2 + 3x_3 = 16$$

$$x_1 + 4x_2 + x_3 + x_4 = 11$$

$$-x_1 + 2x_2 + 6x_3 - 2x_4 = 23$$

$$x_1 - x_2 + x_3 + 4x_4 = -2$$

de forma iterativa mediante los *métodos de Jacobi y Gauss-Seidel*. En concreto, constrúyase la tabla de convergencia de la solución con los dos métodos hasta que se satisfaga el criterio de convergencia:

$$||\vec{x}^{(k+1)} - \vec{x}^{(k)}|| < 0.10$$

donde ||...|| denota la distancia euclídea entre los puntos considerados.

ESQUEMA

- Introducción
- 2 Métodos directos
- 3 MÉTODOS ITERATIVOS
- 4 EJERCICIOS
- 6 Bibliografía

BIBLIOGRAFÍA

Numerical Recipes: the art of scientific computing (FORTRAN Version)

Press, W.H. y otros Cambridge University Press, 2007

- Cálculo numérico. Métodos, Aplicaciones.
 B. Carnahan, y otros
 Ed. Rueda, 1979
- Análisis Numérico.
 R.L. Burden and J.Douglas Faires
 Thomson. 2003
- Introducción a los Métodos Numéricos con Pascal L.V. Atkinson y P.J. Harley Addison-Wesley, 1987
- http://www.wolfram.com/mathematica/ (Mathematica)