Linear Algebra and its Applications HW#9

- 1. If Q_1 and Q_2 are orthogonal matrices, so that $Q^TQ = I$, show that Q_1Q_2 is also orthogonal.
- 2. Apply the Gram-Schmidt process to $a=[1, 1, 0]^T$, $b=[1, 0, 1]^T$ and $c=[0, 1, 1]^T$ and write the result in the form A=OR.
- 3. (a) Find the parabola: $y = C + Dt + Et^2$ fit to the following measurements by solving the normal equations:

$$y = 2$$
 at $t = -1$,
 $y = 0$ at $t = 0$,
 $y = 1$ at $t = 1$,

$$y = 2$$
 at $t = 2$.

- (b) Find your approximate solution by QR factorization and draw the observations with best-fit parabola on Excel.
- 4. Project the vector b=(1, 2) onto a 2-dimensional space with two basis vectors, (1, 0) and (1, 1), and show that, unlike the orthogonal basis, the sum of the two projections does not equal to b.
- 5. Find the Fourier coefficients a_0 , a_1 , b_1 , a_2 , b_2 to approximate a step function y(x) which equals to -1 for the interval $-\pi \le x \le 0$ and equals to for interval $0 \le x \le \pi$. Use Excel to plot y(x) and the Fourier series on the same figure.
- 6. Find the closest degree-3 polynomial function to fit the same step function in problem (4) over $-\pi \le x \le \pi$ by:
 - (1) solving the normal equation
 - (2) minimizing the least square
 - (3) the Legendre polynomials and
 - (4) Use Excel to plot the original step function and the fitted polynomial function on the same figure.