Universidad de la Fuerzas Armadas ESPE - L

Nombre: Ismael Simbaña

Fecha: 20/01/2022

Métodos de integración

1. Teoría, demostración de las expresiones numéricas

Regla del Trapecio

La regla del trapecio es la primera de las fórmulas cerradas de integración de Newton-Cotes. Corresponde al caso donde el polinomio de primer grado:

$$I = \int_a^b f(x) \, dx \cong \int_a^b f_1(x) \, dx$$

Una línea recta se puede representar como:

$$f_1(x) = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

E integrado se obtiene

$$I = (b-a)\frac{f(a) + f(b)}{2}$$

Demostración

$$\int_{a}^{b} f(x)dx = \int_{a}^{x_{1}} f(x)dx + \int_{a}^{x_{2}} f(x)dx + \dots + \int_{a}^{b} f(x)dx$$

$$\int_{a}^{x_{1}} P_{1}(x)dx + \int_{a}^{x_{2}} P_{2}(x)dx + \dots + \int_{a}^{b} P_{n}(x)dx$$

$$\int_{x_{i}}^{x_{i+1}} P_{i+1}(x)dx = \frac{f(x_{i}) + f(x_{i+1})}{2}(h)$$

$$\frac{f(x_{0}) + f(x_{1})}{2}(h) + \frac{f(x_{1}) + f(x_{2})}{2}(h) + \dots + \frac{f(x_{n-1}) + f(x_{n})}{2}(h)$$

$$\frac{h}{2}(f(x_{0}) + 2f(x_{1}) + \dots + 2f(x_{n-1}) + f(x_{n}))$$

$$\int_{a}^{b} f(x)dx \sim \frac{h}{2}[f(a) + 2f(a + 2h) + \dots + f(b)]$$

Regla de Boole

Si tienes una función f(x) y quieres aproximar:

La regla de Boole consiste en aproximar la función mediante un polinomio de grado cuatro, considerando cinco valores de la misma distancia en [a, b].

$$\int_{a}^{b} f(x)dx$$

$$\int_a^b f(x) dx pprox rac{2h}{45} (7f_0 + 32f_1 + 12f_2 + 32f_3 + 7f_4).$$

Demostración

$$I = \int_{a}^{b} f(x)dx \approx \int_{a}^{b} f_{4}(x)dx$$

$$I = (b-a)\frac{7f(x_0) + 32f(x_1) + 12f(x_2) + 32f(x_3) + 7f(x_4)}{90}$$

$$\int_{a}^{b} f(x)dx \sim \frac{2h}{45} (7f_0 + 32f_1 + 12f_2 + 32f_3 + 7f_4)$$

Gauss Legendre

Se escogen los "mejores" x0, $x1...xn \in [a, b]$, de tal manera que la aproximación sea exacta al menos, para polinomios de grado menor o igual a 2n + 1 y su fórmula de cuadratura esta referente a los nodos y los presos que hay que usar estos están tabulados y pueden conseguirse fácilmente en manual de fórmulas y tablas donde se puede hablar de la integración numérica y las tablas de matemáticas estos se relacionan los valores correspondientes a las aproximaciones

$$I = \int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} w_{i}f(x_{i})dx$$

Demostración:

$$I = \int_{a}^{b} f(x)dx$$

$$I = \frac{b-a}{2}z + \frac{a+b}{2}, \quad dx = \frac{b-a}{2}dz$$

$$I = \frac{b-a}{2} \int_{-1}^{1} F\left(\frac{b-a}{2}z + \frac{a+b}{2}\right)dz = \frac{b-a}{2} \int_{-1}^{1} f(z)dz$$

$$f(z) := F\left(\frac{b-a}{2}z + \frac{a+b}{2}\right)$$

$$I = \int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} w_{i}f(x_{i})dx$$

$$I = \frac{b-a}{2} \sum_{i=0}^{n} F\left(\left(\frac{b-a}{2}z + \frac{a+b}{2}\right)\right) + E_{n}$$

2. Ejercicios

egla del Trapeus		201								1 3	13/193
adia (6) tichana						7					
promon la siguente	integral o	00 6	Subia	te conto	1 100	ribit	mad	wit	1	છ .	10000
coopers es obde					7 may						
			2		9-5(x)						
(M:p)		1	0	0	0		Ħ		1		47
Sen(x) d	*	1 1	1	ast?							
0=0			2		531						
			1	7/2							
N=6			4		531	2					1 47
1030			5		1/9						E X
			6		2000					5 C	
h had d	0		9		24.0					DE	
h= b-a 71-0	= 7/6				F17.0 3					2	
N 6	100	100	3	1		HIX	7	1			100
	2 8				1						tom to
		1									am Jo
1= 1 70 + 20 5	- 430	7			-h +:	-			7	2 4	1
7 7 5 0 5	1000	1000	(Peg)	BELOW:	1 100	坪		P	6	-	94
77	11	531		107.	1/3						11
1 = 1/6 . E 0 +	2 (12)	+ 112	4 17 7	0 12	チュル	14 0					
2)		19417	0107	5+00	ED JON !		7				
1 05 111 30						-	-				
1 = 1.9541 11								-			
					2012		1				
one or coder of	Trapeco	con do	Ses	Jusupo	PULC	ati	uni	10	1 10	tegro	N.
e f(x) = 0,2 +23 x	- 200 K2	4677	×2 . c	100 × 4	+1100	X	00:	xx	0 =0	10	as ha
-0,8	43		100						+		1-1-
											4
(0,8 0,2 +25 x - 2	Fd+ x0	5 x3 - ac	1 3x Ox	* COD+	1000	BIZ	181	191		12	10773
Jo		AGN			E	1112	8,0				
											11
£(0) :0,2	P(0,4)=2	1,456	8	£ = (0	,8)	1,0	880			10	*2m 9
4 1 4 7 4 6		4 1									
	1271 43	4 (0)7	2	-50-	3 3)		2.8	0 =	XA	KA	1
E1101 = 1.640333	8800,1-	= 0,571	+3	1011							to .
			1								
Er = 1,64533 -	1068	2000	- 3	1,251	, 10	0	10				nne

3. Programa en Python

Regla del trapecio

```
# Integración: Regla de los trapecios
from email.policy import default
from matplotlib import transforms
import numpy as np
import matplotlib.pyplot as plt
from sympy import *
from dill.source import getsource
# INGRESO
fx = lambda x: np.sqrt(x)*np.sin(x)
# intervalo de integración
a = 1
b = 3
tramos = 4
print ('\tUniversidad de las Fuerzas Armadas ESPE-L\n')
print ('Metodos de integracion numerica')
print ('Metodo del trapecio')
# PROCEDIMIENTO
# Puntos de muestra
def reglaTrapecio (a, b , tramos):
    muestras = tramos + 1
    xi = np.linspace(a,b,muestras)
    fi = fx(xi)
    # Regla del Trapecio
    # Usando puntos muestreados
    # incluso arbitrariamente espaciados
    suma = 0
    for i in range(0,tramos,1):
        dx = xi[i+1]-xi[i]
        Atrapecio = dx*(fi[i]+fi[i+1])/2
        suma = suma + Atrapecio
    integral = suma
    # SALIDA
    print (dx)
    print('tramos: ', tramos)
    print('integral: ', integral)
    # GRAFICA
```

```
# Puntos de muestra
    muestras = tramos + 1
    xi = np.linspace(a,b,muestras)
    fi = fx(xi)
    # Linea suave
    muestraslinea = tramos*10 + 1
    xk = np.linspace(a,b,muestraslinea)
    fk = fx(xk)
    # Graficando
    plt.plot(xk,fk, label ='f(x)')
    plt.plot(xi,fi, marker='o',
            color='orange', label ='muestras')
    plt.xlabel('x')
    plt.ylabel('f(x)')
    plt.title('Integral: Regla de Trapecios')
    plt.legend()
    # Trapecios
    plt.fill_between(xi,0,fi, color='g')
    for i in range(0, muestras, 1):
        plt.axvline(xi[i], color='w')
    plt.show()
print (reglaTrapecio (a, b , tramos))
```

Regla de Boole

```
import numpy as np

print ('\tUniversidad de las Fuerzas Armadas ESPE-L\n')
print ('Metodos de integracion numerica')
print ('Metodo del Boole')

def funcion(x): #aquí va la funcion a evaluar
    res = (x**2)*np.e**(-x**2)
    return res

# aqui se deben ingresar los valores de la integral
limite_inferior=1 #b
limite_superior=2#a
```

```
n=5 #tomamos el valor de n como 3 para este metodo
# se calcula h para la formula
h= (limite_superior-limite_inferior)/n # (a-b) /n recordando que n=3
# se calculan x0,x1,x2,x3..
x0= limite inferior #x0=b
x1=x0+h #b+h
x2=x1+h
x3=x2+h
x4=x3+h
fx0= funcion(x0)
fx1=funcion(x1)
fx2=funcion(x2)
fx3=funcion(x3)
fx4=funcion(x4)
resultado= (2/45)*(h)*(7*(fx0)+32*(fx1)+12*(fx2)+32*(fx3)+7*(fx4))
print ('Resultado', resultado)
print ('h',h)
```

Regla de Gauss Legendre

```
import numpy as np
puntos = 2

print ('\tUniversidad de las Fuerzas Armadas ESPE-L\n')
print ('Metodos de integracion numerica')
print ('Metodo de Gauss Legendre')

def funcion(x): #aquí va la funcion a evaluar
    res = ((2*x**2+1)*np.e**(-x**2))/x**2
    return res

b = 2
a = 1

if (puntos == 2):
    t1 = - 1/np.sqrt(3)
    t2 = 1/np.sqrt(3)
    lam = 1
```

```
x1 = (b-a)/2*t1+(a+b)/2
   x2 = (b-a)/2*t2+(a+b)/2
   fx1 = funcion(x1)
   fx2 = funcion(x2)
   print (fx1)
   print (fx2)
   integral = ((b-a)/2)*(lam*fx1+lam*fx2)
   print ('Resulta por el metodo de Gauss Legendre',integral)
elif (puntos == 3):
   t1 = -np.sqrt(6)
   t2 = 0
   t3 = np.sqrt(6)
   lam = 5/9
   x1 = (b-a)/2*t1+(a+b)/2
   x2 = (b-a)/2*t2+(a+b)/2
   x3 = (b-a)/2*t3+(a+b)/2
   fx1 = funcion(x1)
   fx2 = funcion(x2)
   fx3 = funcion(x3)
   integral = ((b-a)/2)*(lam*fx1+lam*fx2+lam*fx3)
   print ('Resulta por el metodo de Gauss Legendre',integral)
```

4. Conclusiones:

- En el calculo de la regla del trapecio viene a realizarse creando ecuaciones de primer grado, en las cuales se unen entre ellas, aunque el calculo tiene un menor error, es más demoroso.
- En la regla de Boole tiene una limitación, y es que solo se puede usar cuando deseemos calcular en un intervalo de [a, b] con respecto a 5 puntos, aparte que estos deben tener la misma x distancia. Es decir, para cuando la integral pida un calculo con menos puntos este método es imposible de realizarse, y se tendrá que tomar otro método, como el de trapecios.
- La desventaja de la regla de Gauss Legendre es que tiene los parámetros ya establecidos para utilizarlos, y no es que se pueda calcular tan fácilmente, por ende, es más complejo y aun así, el área que nos da la integral no es exacta del todo, y su grado de error es mayor a las otras dos.

5. Bibliografía

Bibliografía

- Chapra, S., & Canale, R. (2017). Regla del Trapecio. En *Métodos numéricos para ingenieros* (págs. 621-625). México D.F,: McGraw Hill.
- Fuentes, L. (10 de Marzo de 2014). *rinconmatematico*. Obtenido de https://foro.rinconmatematico.com/index.php?topic=73290.0
- Rosario, E. d. (5 de Enero de 2018). *Metodos Numericos*. Obtenido de http://blog.espol.edu.ec/analisisnumerico/regla-del-trapecio/
- Rosario, E. d. (12 de Julio de 2018). *Metodos Numericos*. Obtenido de http://blog.espol.edu.ec/analisisnumerico/cuadratura-de-gauss/