!wget https://d2beiqkhq929f0.cloudfront.net/public_assets/assets/000/001/428/ori

--2025-02-01 06:45:09-- https://d2beiqkhq929f0.cloudfront.net/public_asset Resolving d2beiqkhq929f0.cloudfront.net (d2beiqkhq929f0.cloudfront.net)... Connecting to d2beiqkhq929f0.cloudfront.net (d2beiqkhq929f0.cloudfront.net) HTTP request sent, awaiting response... 200 OK

Length: 648353 (633K) [text/plain]

Saving to: 'bike_sharing.csv?1642089089.1'

bike_sharing.csv?16 100%[============] 633.16K --.-KB/s in 0.06

2025-02-01 06:45:09 (11.2 MB/s) - 'bike_sharing.csv?1642089089.1' saved [64

import pandas as pd
df=pd.read_csv('bike_sharing.csv?1642089089')

df.head()

Next steps:

Generate code with df

View recommended plots

New interactive sheet

1. Define the Problem Statement, Import the required Libraries and perform Exp

#importing Libraries
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import ttest_ind,norm
import warnings
warnings.filterwarnings('ignore')

#a Examine dataset structure, characteristics, and statistical summary.
print('Shape is ',df.shape)

```
print('-'*50)
print(df.info())
print('-'*50)
print(df.describe())

#renaming count column
df.rename({'count':'Total_Users'},axis=1,inplace=True)
```

→ Shape is (10886, 12)

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10886 entries, 0 to 10885 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype					
0	datetime	10886 non-null	object					
1	season	10886 non-null	int64					
2	holiday	10886 non-null	int64					
3	workingday	10886 non-null	int64					
4	weather	10886 non-null	int64					
5	temp	10886 non-null	float64					
6	atemp	10886 non-null	float64					
7	humidity	10886 non-null	int64					
8	windspeed	10886 non-null	float64					
9	casual	10886 non-null	int64					
10	registered	10886 non-null	int64					
11	count	10886 non-null	int64					
dtypes: float64(3), int64(8), object(1)								
memoi	ry usage: 1020.7+ KB							

None

	season	holiday	workingday	weather	temp
count	10886.000000	10886.000000	10886.000000	10886.000000	10886.00000
mean	2.506614	0.028569	0.680875	1.418427	20.23086
std	1.116174	0.166599	0.466159	0.633839	7.79159
min	1.000000	0.000000	0.000000	1.000000	0.82000
25%	2.000000	0.000000	0.000000	1.000000	13.94000
50%	3.000000	0.000000	1.000000	1.000000	20.50000
75%	4.000000	0.000000	1.000000	2.000000	26.24000
max	4.000000	1.000000	1.000000	4.000000	41.00000
	atemp	humidity	windspeed	casual	registered
count	10886.000000	10886.000000	10886.000000	10886.000000	10886.000000
mean	23.655084	61.886460	12.799395	36.021955	155.552177
std	8.474601	19.245033	8.164537	49.960477	151.039033
min	0.760000	0.000000	0.000000	0.000000	0.000000
25%	16.665000	47.000000	7.001500	4.000000	36.000000
50%	24.240000	62.000000	12.998000	17.000000	118.000000
75%	31.060000	77.000000	16.997900	49.000000	222.000000
max	45.455000	100.000000	56.996900	367.000000	886.000000
	count				
count	10886.000000				
mean	191.574132				
std	181.144454				
min	1.000000				
25%	42.000000				
50%	145.000000				
75%	284.000000				
max	977.000000				

#b Identify missing values and perform Imputation using an appropriate method.
df.isna().sum()

No missing Values

```
# c. Identify and remove duplicate records.

df[df.duplicated()]

datetime season holiday workingday weather temp atemp humidity winds
```

No Duplicate records

```
#d. Analyze the distribution of Numerical & Categorical variables, separately
#Categorical variables
print(df['season'].unique(),'and',df['holiday'].unique(),'and',df['workingday']
```

```
plt.figure(figsize=[10,8])

plt.subplot(2,2,1)
sns.countplot(x='season',data=df,order=df['season'].value_counts().index)

plt.subplot(2,2,2)
sns.countplot(x='holiday',data=df)

plt.subplot(2,2,3)
sns.countplot(x='workingday',data=df)

plt.subplot(2,2,4)
sns.countplot(x='weather',data=df,order=df['season'].value_counts().index)
plt.tight_layout()
plt.show()
```


#Numercial variables

plt.figure(figsize=[10,10])

```
plt.subplot(4,2,1)
sns.histplot(df['temp'],bins=25)
plt.subplot(4,2,2)
sns.histplot(df['atemp'],bins=25)
plt.subplot(4,2,3)
sns.histplot(df['humidity'],bins=25)
plt.subplot(4,2,4)
sns.histplot(df['windspeed'],bins=25)
plt.subplot(4,2,5)
sns.histplot(df['casual'],bins=25)
plt.subplot(4,2,6)
sns.histplot(df['registered'],bins=25)
plt.subplot(4,1,4)
sns.histplot(df['Total_Users'],bins=25)
plt.tight_layout()
plt.show()
```



```
#e. Check for Outliers and deal with them accordingly
num_var= list(['temp','atemp','humidity','windspeed','casual','registered','Tot
for i in num_var:
    sns.boxplot(x=df[i])
    plt.show()
```


Temp and atemp column does not have any outliers whereas Humidity, windspeed, casual, registered and Total_Users have outliers.

```
#Handling Outliers

df_num = df.select_dtypes(include=np.number)
df_num.drop(['season','holiday','workingday','weather'],axis=1,inplace=True)

Q1=df_num.quantile(0.25)
Q3=df_num.quantile(0.75)

IQR=Q3-Q1

df_iqr = df[((df_num>=(Q1-1.5*IQR)) & (df_num<=(Q3+1.5*IQR))).all(axis=1)]

df_iqr.shape</pre>
```

→ (9518, 12)

After removing outliers, Length of the entire dataframe reduced to 9518 rows from 10886 rows.

#2. Try establishing a Relationship between the Dependent and Independent Variab

df_iqr_corr = df_iqr.drop(['datetime'],axis=1)

sns.heatmap(df_iqr_corr.corr(),annot=True,cmap='Blues',linewidths=1,fmt='.2f',li
plt.show()

												- 1.0
season -	1.00	0.01	0.00	0.01	0.27	0.27	0.19	-0.13	0.13	0.16	0.17	
holiday -	0.01	1.00	-0.26	-0.01	-0.03	-0.04	0.00	0.02	0.01	-0.03	-0.02	- 0.8
workingday -	0.00	-0.26	1.00	0.01	0.12	0.11	-0.08	0.03	-0.10	0.19	0.14	
weather -	0.01	-0.01	0.01	1.00	-0.04	-0.04	0.42	0.01	-0.12	-0.09	-0.10	- 0.6
temp -	0.27	-0.03	0.12	-0.04	1.00	0.99	-0.01	-0.02	0.52	0.28	0.35	- 0.4
atemp -	0.27	-0.04	0.11	-0.04	0.99	1.00	0.01	-0.06	0.51	0.27	0.34	0.4
humidity -	0.19	0.00	-0.08	0.42	-0.01	0.01	1.00	-0.30	-0.34	-0.26	-0.30	- 0.2
windspeed -	-0.13	0.02	0.03	0.01	-0.02	-0.06	-0.30	1.00	0.11	0.11	0.12	
casual -	0.13	0.01	-0.10	-0.12	0.52	0.51	-0.34	0.11	1.00	0.58	0.71	- 0.0
registered -	0.16	-0.03	0.19	-0.09	0.28	0.27	-0.26	0.11	0.58	1.00	0.99	0.2
Total_Users -	0.17	-0.02	0.14	-0.10	0.35	0.34	-0.30	0.12	0.71	0.99	1.00	0.2
	season -	holiday -	workingday -	weather -	temp -	atemp -	humidity -	windspeed -	- casual	registered -	Total_Users -	

```
#3. Check if there any significant difference between the no. of bike rides on
#weekdays
workingday bike = df igr[df igr['workingday']==1]['Total Users']
#weekends
holiday bike = df igr[df igr['workingday']==0]['Total Users']
print('Average count in working days',np.round(workingday_bike.mean(),2)) #161
print('Average count in Holidays ',np.round(holiday_bike.mean(),2)) #120
print('-'*100)
#NULL Hypothesis (H0): There is no significant difference in number of bike ri
#Alternate Hypothesis(Ha): There is a significant difference, number of bike
alpha=0.05
#2 sample Independent ttest
pvalue= ttest_ind(workingday_bike,holiday_bike,alternative='greater')[1]
print('P value is ',pvalue)
if(pvalue<alpha):</pre>
  print('Reject the Null Hypothesis')
else:
  print('Failed to reject the Null Hypothesis')
```

```
Average count in working days 161.97
Average count in Holidays 120.68

P value is 2.6924480901178837e-44
Reject the Null Hypothesis
```

Hence, we see there is significant difference in number of bike rides. Number of bike rides in weekdays/working days are significantly higher than those in holidays/weekends.

Recommendations: Company can introduce some offers for users in weekdays to increase the demands further.

```
#4. Check if the demand of bicycles on rent is the same for different Weather c
#Null Hypothesis (H0): There is no impact on demand of bicycles for different
#Alternate (Ha): Demand of bicyles are significantly different for different v

clear_weather = df_iqr[df_iqr['weather']==1]
cloudy = df_iqr[df_iqr['weather']==2]
LightRain = df_iqr[df_iqr['weather']==3]
HeavyRain = df_iqr[df_iqr['weather']==4]
```

```
#Checking assumptions for one way ANOVA
#Normality(shapiro Wilk)
print('SHAPIRO WILK TEST')
from scipy.stats import shapiro
p1 = shapiro(clear_weather['Total_Users'])[1]
p2 = shapiro(cloudy['Total_Users'])[1]
p3 = shapiro(LightRain['Total_Users'])[1]
#p4 = shapiro(HeavyRain['Total_Users'])[1]
print('p values are',p1,p2,p3) #Very small value , Data is not gaussian. Same
sns.histplot(clear weather['Total Users'])
plt.show()
sns.histplot(cloudy['Total_Users'])
plt.show()
sns.histplot(LightRain['Total_Users'])
plt.show()
sns.histplot(HeavyRain['Total Users'])
plt.show()
#Checking Variance through Levene's test
print('-'*100)
print('LEVENE TEST')
from scipy.stats import levene
p=levene(clear_weather['Total_Users'],cloudy['Total_Users'],LightRain['Total_Users']
print('P value for levene test is ',p ) #Very small p value , variances are no
sns.boxplot(y='Total_Users',hue='weather',data=df_iqr)
plt.xlabel('Weather Category')
plt.show() # As visible from boxplot , variances are not equal
#One way ANOVA(as asked in question , even though assumptions fail)
print('*'*100)
print('One Way ANOVA Testing')
alpha=0.05
from scipy.stats import f_oneway
pvalue = f_oneway(clear_weather['Total_Users'],cloudy['Total_Users'],LightRain|
print('P value from Anova test is',pvalue)
if(pvalue<alpha):</pre>
  print('Reject the Null Hypothesis')
else:
  print('Failed to reject the Null Hypothesis')
```


As clear from above test that p value calculated from Anova is less than significance. Hence, we reject the null hypothesis and therefor there is significant difference in demands of bicycles for different weather conditions.

Recommendations: Company can look further more as to which weather condition is supporting the demand and which is leading to decline and make appropriate strategies

```
#5 Check if the demand of bicycles on rent is the same for different Seasons?
#Null Hypothesis (H0): There is no impact on demand of bicycles for different
#Alternate (Ha): Demand of bicyles are significantly different for different S
spring=df_iqr[df_iqr['season']==1]
summer=df_iqr[df_iqr['season']==2]
fall=df_iqr[df_iqr['season']==3]
winter=df_iqr[df_iqr['season']==4]
```

```
#Assumptions of One way ANOVA
#Checking Normality
print('Shapiro Wilk Test')
p1=shapiro(spring['Total_Users'])[1]
p2=shapiro(summer['Total_Users'])[1]
p3=shapiro(fall['Total_Users'])[1]
p4=shapiro(winter['Total_Users'])[1]
print('P values for Shapiro Wilk Test are ',p1,p2,p3,p4)
print('Very small value, Data is not gaussian. Same is visible from below hist
sns.histplot(spring['Total_Users'])
plt.show()
sns.histplot(summer['Total_Users'])
plt.show()
sns.histplot(fall['Total_Users'])
plt.show()
sns.histplot(winter['Total Users'])
plt.show()
#Checking Variance
print('-'*100)
print('LEVENE TEST')
p = levene(spring['Total_Users'], summer['Total_Users'], fall['Total_Users'], wint
print('P value for Levene Test is ',p) #
print('Very small p value ,variances are not equal for different groups.Below i
sns.boxplot(y='Total_Users',hue='season',data=df_iqr)
plt.show()
#One way ANOVA(as asked in question , even though assumptions fail)
print('*'*100)
print('One Way ANOVA Testing')
alpha=0.05
pvalue=f_oneway(spring['Total_Users'],summer['Total_Users'],fall['Total_Users']
print('P value from Anova test is',pvalue)
if(pvalue<alpha):</pre>
  print('Reject the Null Hypothesis')
else:
  print('Failed to reject the Null Hypothesis')
```


As clear from above test that p value calculated from Anova is less than significance. Hence, we reject the null hypothesis and therefor there is significant difference in demands of bicycles for different seasons

Recommendations: Company can look further more as to which season is supporting the demand and which is leading to decline and make appropriate strategies

```
#6 Check if the Weather conditions are significantly different during different
#Null Hypothesis (H0): Weather condition and seasons are independent of each c
#Alternate (Ha): Weather conditions are affected by seasons or vice-versa
df iqr['season_names']=df_iqr['season'].replace({1:'spring',2:'summer',3:'fall'
df_iqr['weather_names']=df_iqr['weather'].replace({1:'clear',2:'cloudy',3:'Light

df_iqr.drop(df_iqr[df_iqr['weather_names']=='HeavyRain'].index,inplace=True)
observed=pd.crosstab(df_iqr['season_names'],df_iqr['weather_names'])
#Chi Square test for independence
alpha=0.05
from scipy.stats import chi2_contingency
p_value=chi2_contingency(observed)[1]
print('P value is ',p_value)
if(p value<alpha):</pre>
  print('Reject the Null Hypothesis')
else:
  print('Failed to reject the Null Hypothesis')
```

P value is 1.797264261807596e-08
Reject the Null Hypothesis

As clear from above test that p value calculated is less than significance. Hence, we reject the null hypothesis and therefor there is significant difference in weather conditions for different seasons

Recommendations: Company can look further into a particular season and weather which is supporting the demand and which one is leading to decline and make appropriate strategies