Fall 2015: COMP 7300 Advanced Computer Architecture

Test 2 (100 pts)

Grading policy:

¹/₄ Credit for correct answer only

 $^{3}\!/_{\!4}\ Credit$ for well written and solid justification/facts/arguments. Show your work.

For Test 2, we assume a CPU with a 32-bit address bus.

- A) Cache
 - 1) **(8 points)** We consider a 2-way associative 32 KB cache with 4 KB blocks. The CPU generates the address 0x568402.
 - a. **(3 points)** What is the block address (in Hexa **OR** binary) of Block *B* containing address 0x568402?
 - b. (3 points) What is Block B's tag (in Hexa OR binary)?
 - c. (2 points) What is the index where Block **B** will be stored in the cache?
 - 2) (12 points) Consider the cache on the figure below. Answer the following questions based on the figure below

- a. (2 points) Is the above cache 2-way associative cache?
- b. **(10 points) Redraw** Figure 1 (above) such that the cache becomes 2-way associative with a block size of 32 bytes and a cache size of 32 KB of data. Just like for Figure 1, **indicate clearly the size** of the busses as well as the smallest and largest Indexes.

Exercise 1: (30 points) We assume that the data cache size is 8 Kbytes (data) and the block size is 64 bytes. We assume that M[i][j] is adjacent to M[i][j+1] in the memory and that the cache is fully associative using LRU replacing. Consider the following code:

```
char A[128][128];
int i,j;
for (j = 0; j < 64; j++) {
    for (i = 0; i < 128; i++)
        A[i][j] = A[i][j] ^ A[i][n-1-j];
        A[i][n-1-j] = A[i][j] ^ A[i][n-1-j];
        A[i][j] = A[i][j] ^ A[i][n-1-j];
}</pre>
```

This code performs a SPECIAL column-wise transpose. As indicated on **Figure 2**, the transposition is performed as follows: the first column(j=0) and the last column (j=127) are swapped, the second column (j=1) and the column (j=126) are swapped, and so on...

Figure 2

We assume that the code is in a separate instruction cache and the variables i and j are in registers.

a)	(2 points) How many blocks are needed to store one line of the matrix?
b)	(2 points) How many blocks are needed to store the full matrix?
c)	(2 points) How many blocks does the cache contain?
d)	(6 points) How many compulsory misses occur?
e)	(4 points) How many capacity misses occur?
f)	(2 points) How many conflict misses occur?

g)	(6 points) Would a loop interchange decrease the number of capacity misses? If yes, rewrite the loops with the loop interchange (no need to repeat the swapping instructions) and provide the new number of capacity misses.
h)	(2 points) What would be the number of compulsory misses with a loop interchange?
i)	(4 points) What should be the minimal size of the cache if we wanted to use blocking?

We bit a	tual Memory (15 points) consider a 32-bit address bus and a 1 MB physical memory. Page size is 16 KB. Assuming a nd a dirty bit, the objective is to compute the size of the table. (2 points) How many entries does the page table have?
b)	(2 points) How many frames are in the main memory?
c)	(4 points) What is the size of each entry (page table)?
d)	(3 points) What is then the size of the page table?

e) **(4 points)** Suppose that physical memory is managed like direct-mapped cache: each page with number i is stored in the frame with number n % 2⁶. What is in hexadecimal the physical address corresponding to the virtual (logical address) 0x984765?

Exercise 2) (20 points)

Consider the datapath on this figure:

1) (2 points) Consider the following instruction:

Addw \$r1, Constant(\$r2) \$r1 <- Constant + \$r2 (Constant is 16 bits wide)

Example: if r2 = 8 and Constant = 120, the CPU will compute the sum (120 + 8) and will store it in Register r1, i.e r1 = 128 after the execution of the instruction.

Propose an instruction format for *addw* (consistent with the instruction set defined so far. This means that the first 6 most significant bits are reserved for the opcode).

Opcode

- 2) **(1 point)** Does the full datapath support the *addw* instruction? **Answer only Yes or No.** (**No justification is needed here**). If the answer is Yes, jump to Question 4.
- 3) **(2 points)** If the answer to Question 2) is **NO**, add **on the figure** all **needed** lines, units, resources, inputs, outputs, multiplexers.... to support the instruction *addw*.
- 4) **(6 points)** Based on the instruction code you proposed, **draw/highlight on the figure** the datapath used by the instruction *addw*.

- 5) **(8 points)** After you draw the datapath, label the relevant buses with size and the content for the instruction addw \$1, 250(\$17). Assume that \$1 = 32, \$17 = 48.
- 6) (1 point) Provide the final values of the registers \$1 and \$17.

Exercise 3: (15 points) Deriving the pipeline speed up

Consider a monocycle CPU with 4 operations (stages) that take, 100ps, 100ps, 100ps, and 200ps.

- 1) (1 point) What is the latency of one instruction on the monocycle CPU?
- 2) **(1 point)** Consider a program P with n instructions. What is the execution time for Program P (expression as a function of n) on the monocycle CPU?
- 3) (11 points) We want to pipeline the CPU above with one stage per operation. We neglect the buffer time between stages. All the questions below apply to the pipeline
 - a) (3 points) What should be the clock frequency for the pipelined CPU?

- b) (3 points) What is the latency for one instruction for the pipelined CPU?
- c) (2 point) What is the throughput (bandwidth) in MIPS of the pipelined CPU?

- d) (3 points) Consider a program P with n instruction. What is the execution time for Program P? (Make sure to take into account the phase to fill up the pipeline and wind it up)
- 4) (2 points) What is the expression of the speed up (monocycle versus pipelined)? If n tends to infinity, what is the speed up?