УДК 681.324

М.В. Голиков, А.М. Марченко

АДАПТИВНАЯ РЕГРЕССИОННАЯ МОДЕЛЬ ИНВЕРТОРА

Оптимизация цепей синхронизации СБИС методом вариации ширин проводников является актуальной задачей. Для ее решения необходимы модели источников синхросигнала, обладающие хорошей точностью и быстродействием. Кроме этого, эти модели должны работать с нагрузкой π -типа.

В данном докладе рассматривается адаптивная регрессионная модель простейшего источника - инвертора. Предлагаемая модель учитывает следующие факторы: параметры π -нагрузки (R, C1, C2), геометрические характеристики инвертора (ширины каналов Wn и Wp), а также фронт входного сигнала S. Параметром модели является задержка выходного сигнала инвертора, измеренная на определенном уровне. В качестве эталона измерений использовалась программа Spice.

Модель инвертора описывается набором регрессионных зависимостей следующего вида:

$$D = A_0 + \sum_{i} B_i X_i + \sum_{i \neq j} C_{ij} X_i X_j + \sum_{i \neq j \neq k} D_{ijk} X_i X_j X_k + ..., (1)$$

где $A_i, B_i, C_i, D_i, \ldots$ - коэффициенты регрессии, а X_i – значения факторов.

Каждая такая зависимость определена для некоторой локальной области пространства факторов методами планирования эксперимента. Для обеспечения непрерывности модели и ее частных производных в пограничных точках используется сплайн, построенный на основе нескольких уравнений (1). В случае, когда ни одно из уравнений не может быть выбрано для построения сплайна, автоматически запускается процедура динамической характеризации. Таким образом, реализуется самообучение модели в процессе работы оптимизатора.

Разработанная модель инвертора была интегрирована с системой оптимизации цепей синхронизации КМОП СБИС. Сравнение со Spice моделированием показало, что максимальная относительная ошибка модели не превышает 10%. При этом данная модель инвертора обладает более высоким быстродействием. Кроме того, необходимо отметить, что предложенная методика построения моделей может быть применена к любым типам источников сигнала в цепях синхронизации.

УДК 007:681.518.2

В.И.Городецкий, В.В. Самойлов*

ВИЗУАЛЬНЫЙ ПОДХОД К ИЗВЛЕЧЕНИЮ ЗНАНИЙ ИЗ ДАННЫХ

Проблема извлечения знаний из данных вот уже более чем два десятилетия относится к числу ключевых в области разработки интеллектуальных систем (ИС). Сейчас она становится еще более актуальной как в связи расширением области

^{*} Данная работа поддерживается грантом РФФИ №99-01-00733