CSI3660 – System Administration

Prof. Fredericks

Network Configuration

Outline

- Network configuration
 - Networks
 - Protocols
 - Access methods
 - TCP/IP configuration
 - NIC configuration

Objectives

- Describe the purpose of host names and how they are resolved to IP addresses
- Configure TCP/IP routing
- Identify common network services
- Use command-line utilities to perform remote administration

- Network
 - Two or more computers joined via media and able to exchange information
- Local area networks (LANs)
 - Networks that connect computers within close proximity
 - E.g., used to allow connection to shared resources
- Wide area networks (WANs)
 - Networks that connect computers separated by large distances
 - e.g., used to connect to Internet Service Provider
- Internet service provider (ISP)
 - Company providing Internet access

Routers

 Special computers/appliances capable of transferring information between networks

Protocol

Set of rules for communication between networked computers

Packets

- Data messages formatted by a network protocol
- Packets can be recognized by routers and other network devices

- Common network protocols:
 - TCP/IP (Transfer Control Protocol/Internet Protocol)
 - UDP/IP (User Datagram Protocol/Internet Protocol)
 - IPX/SPX (Internetwork Packet Exchange/Sequence Packet Exchange)
 - AppleTalk

- Media access method
 - Set of rules that govern how devices on a network share the network media
 - Contained within the hardware on NIC or modem.
- Ethernet
 - Most common network media access method
 - Ensures that packets are retransmitted onto the network if a network error occurs
- Token ring
 - Media access method
 - Controls which computer has the ability to transmit information by using a token

■ Early networking: vampire taps

■ Current: Ethernet (RJ45)

The TCP/IP Protocol

- Set of protocols with two core components
 - **TCP**: ensures that packets are assembled in the correct order, regardless of arrival order
 - **IP**: responsible for labeling each packet with destination address
- Together, TCP and IP ensure that information packets travel across the network as quickly as possible without getting lost

TCP/IP vs UDP

			TCP Segm	ent	Heade	r Forma	ıt	
Bit #	0	7	8	15	16	23	24	31
0	Source Port				Destination Port			
32	Sequence Number							
64	Acknowledgment Number							
96	Data Offset	Res	Flags			Window Size		
128	Header and Data Checksum			Urgent Pointer				
160	Options							

UDP Datagram Header Format								
Bit #	0	7	8	15	16	23	24	31
0	Source Port			Destination Port				
32	Length			Header and Data Checksum				

TCP/IP vs UDP

The TCP/IP Protocol

- Each computer on a TCP/IP network must have a valid Internet Protocol (IP) address
 - Identifies itself to the IP protocol
- IP version 4 still very common (IPv4)
- Next-generation protocol IP version 6 (IPv6) available
 - Anybody know one big difference between 4 and 6?

- To participate on an IPv4 network, your computer must have a valid IP address
 - As well as a subnet mask
 - To participate on a larger network (Internet) you can configure a default gateway

IPv4 Addresses

- IP address: unique number that identifies a networked computer
 - Octet: series of four 8-bit binary numbers
 - Common format of IPv4 addresses
 - 192.168.5.69 is an example
- Unicast
 - Directed TCP/IP communication from one computer to another single computer

IPv4 Addresses

- IPv4 addresses are composed of two parts
 - Network ID
 - Network on which a computer is located
 - Host ID
 - Single computer on that network
 - Two computers with different network IDs can have the same host ID
- Only computers with the same network ID can communicate without a router
 - Allows administrators to logically separate computers on a network

Subnet Masks

- Define which part of an IP address is the network ID and which part is the host ID
 - Series of four octets
 - Octet in subnet mask containing 255 is part of network ID
 - Octet in subnet mask containing 0 is part of host ID
- ANDing: calculate network and host IDs from an IP address and subnet mask
 - Compare binary digits and gives a result of 1 or 0

Subnet Masks

Figure 12-1: A sample IP address and subnet mask

IPv4 and Subnetting

```
192.168.123.132 - TP address
255.255.255.0 - subnet mask
11000000,10101000,01111011,10000100
         -- IP address (192.168.123.132)
11111111.11111111.1111111.0000000
         -- Subnet mask (255.255.25.0)
11000000.10101000.01111011.0000000
         -- Network address (192.168.123.0)
0000000.0000000.0000000.10000100
         -- Host address (000.000.000.132)
```

Subnet Masks

- IP addresses that cannot be assigned to a host computer:
 - 0.0.0.0 = all networks (sometimes localhost)
 - 255.255.255.255 = all computers on all networks
- 255 in an IP address can specify many hosts
 - Broadcast addresses
- Example: 192.168.255.255 refers to all hosts on the 192.168.0.0 network

- **127.0.0.1**
 - Loopback computer can talk to itself

Private Addresses

- Cannot be assigned to hosts on Internet
 - Available to be used on internal networks (behind router)
- All IPs in 10.0.0.0 network
- 172.16 172.31 networks
- 192.168 network

Subnetting

- Why subnet?
 - Ethernet can't have more than 1024 hosts on single domain
 - Performance issues switches can handle only so many
 - Departments need to compartmentalize their hosts
 - HR may need secure hosts but developers don't
 - Allocate Class C networks to different departments
 - 10.0.0.0 network
 - 10.1.1.0 HR
 - 10.1.2.0 Engineering
 - 10.1.3.0 Upper management
 - etc.

IPv4 Classes and Subnetting

- IPv4 address class defines default subnet mask of associated device
 - All IP address classes can be identified by first octet
 - Class A
 - 8 bits for network ID, 24 bits for host ID
 - Assigned to very large companies
 - Class B
 - 16 bits for network ID, 16 bits for host ID
 - Assigned to larger organizations with several thousand users
 - Class C
 - 24 bits for network ID, 8 bits for host ID
 - Used for small and home networks

IPv4 Classes and Subnetting

Class	Subnet Mask	First Octet	Maximum Number of Networks	Maximum Number of Hosts	Example IP Address
A	255.0.0.0	1–127	127	16,777,214	3.4.1.99
В	255.255.0.0	128–191	16,384	65,534	144.129.188.1
С	255.255.255.0	192–223	2,097,152	254	192.168.1.1
D	N/A	224–239	N/A	N/A	224.0.2.1
E	N/A	240-254	N/A	N/A	N/A

Table 12-1: IP address classes

IPv4 Classes and Subnetting

- Multicast: TCP/IP communication destined for a certain group of computers
 - Class D addresses
 - **224.0.0.0 239.255.255.255**
 - Relatively new ... older computers may not support multicast
- Subnetting
 - Process of dividing a large network into smaller networks
 - Used to control traffic flow
 - Take bits from host ID; give them to network ID

Default Gateway

- IP address of network interface on a router
 - Send packets destined for a different network
 - May not necessarily know destination
- Routers can distinguish between different networks
 - Move packets between
 - Have assigned IP addresses on each attached network interface

Determine if sending packets to local host or remote host

Troubleshooting

Issues typically caused by one of these main topics:

Incorrect subnet mask

- Non-default subnet mask used, but client uses default mask
- Communication will fail to nearby networks but not remote

Incorrect IP address

- Computers assigned IP addresses that should be assigned for different subnets
- Issues communicating with nearby networks using same address

Incorrect default gateway

- Wrong router configured as default gateway
- E.g., 1 router for internet, 1 for internal network
- Communication issues

- Number of IP addresses using IPv4 is unsuitable for Internet growth
- IPv6 protocol: uses 128 bits to identify computers

- IPv6 IP addresses are written using 8 colon-delimited 16-bit hexadecimal numbers
 - 2001:0db8:3c4d:0015:0000:0000:adb6:ef12
 - 0000 can be omitted in most notation
 - Above address could also be written:
 - 2001:0db8:3c4d:0015:::adb6:ef12

- IPv6 address contains two portions
 - First half assigned by ISP and identifies network
 - Last half is link local portion: used to uniquely identify computers in a LAN

- Most operating systems today support IPv6
 - Few networks and computers on the Internet have adopted IPv6

- Proxy servers and NAT routers
 - Computers or hardware devices that have an IP address and access to a network
 - Translate one IP address to another
 - Used by other computers to obtain network resources on their behalf
 - Allows computers behind different NAT routers or proxy servers to have the same IPv4 address
- Due to usage of proxy servers and NAT
 - Available IPv4 addresses has remained high and slowed the adoption of IPv6

- Due to usage of proxy servers and NAT
 - Available IPv4 addresses has remained high and slowed the adoption of IPv6

tcpdump

- Reading/writing traffic dumpfiles
 - [user]# tcpdump -w /path/to/dumpfile -i ens192 (write)
 - [user]# tcpdump -r /path/to/dumpfile -n icmp (read)
 - -vvv for more verbosity
- Captures first 65,535 bytes of packet
- If you need more or less, you can change this value
 - [user]\$ tcpdump -w /path/to/dumpfile -i ens192 -s 1500 (full 1500 byte packet)

tcpdump

- Packet tracing can impact performance
 - Minimize with good filter
 - -w option writes raw packet to disk for later decoding
- Don't capture your own traffic
 - Login to network then tcpdump
 - Capture your own session packets
 - Printing to screen...can generate new packets...which then get captured again...which then get printed to screen....
 - Skip port 22 (SSH)
 - [user]\$ tcpdump not tcp port 22
 - Watch 22 but skip your own IP address
 - [user]\$ tcpdump "not (host 192.168.1.8 and tcp port 22)"

tshark (Wireshark)

\$ tshark -nr dumpfile.pcap -z conv,ip

.. summarize

 Getting data with tshark (needs Wireshark) \$ sudo yum install wireshark \$ sudo tshark -i eth0 -w dumpfile.pcap ### doesn't work in Cent \$ sudo tshark -i eth0 -w - > dumpfile.pcap https://bugzilla.redhat.com/show bug.cgi?id=850768 \$ sudo chown <user> dumpfile.pcap .. get rid of those pesky permissions issues \$ tshark -r dumpfile.pcap

tshark

```
.. prettier summary
$ tshark -q -nr dumpfile.pcap -t ad -z
io,stat,1,"AVG(frame.len)frame.len"

what fields can we use?
$ tshark -G fields
```

Graphing Throughput

Graphing (the CLI way) (FIX LATER)

- Capture SYN/ACK packets sent from webserver (synchronize/acknowledge)
 - Plotting ISN (initial sequence number) helps prevent spoofing
- Pipe to Perl script

```
[user]$ tcpdump -i eth0 -l -c 5 -n -t "tcp[13] ==
18" | perl -ane '($s,$j)=split(/,/,$F[7]); print
"$s\n";' > graphme
```

Output file (graphme) is string of numbers

Graphing (the CLI way)

Use gnuplot to graph

```
[user]$ gnuplot
gnuplot>set terminal png
gnuplot> set output 'syns.png'
gnuplot> plot 'graphme'
gnuplot> quit
```


Day 2

Reddit> My college classes are like a high-level Dora the Explorer episode. Person up front asks a question, stares at you blankly for a few seconds, and then answers their own question.

Favorite comment:

My Intro to System Administration professor asked us a question on the first or second day and nobody said anything for a while. Then he said, "Don't worry, I'm really good at this 'awkward silence' thing." And proceeded to just stare back at us until someone guessed. He does that every class.

- If a NIC was detected during installation
 - Linux automatically configures appropriate driver
- insmod and modprobe commands
 - Load kernel objects into the Linux kernel
 - Can be used to load NIC drivers
- lsmod
 - Displays a list of currently loaded modules
- rmmod
 - Removes module from kernel
- Older Linux kernels loaded from entries within the /etc/modprobe.conf or /etc/modules.conf file

Network Drivers

All network drivers found here:

```
[user]$ cd /lib/modules/`uname -r`/kernel/drivers/net
[user]$ ls
```

```
[user]$ modinfo tulip | grep -i description
```

Create a Dummy NIC

Don't want to affect eth0 while messing around...

```
$ sudo lsmod | grep dummy
$ sudo modprobe dummy
$ sudo lsmod | grep dummy
$ sudo ip link set name eth10 dev dummy0
$ ip link show eth10

Remove later:
$ sudo ip link delete eth10 type dummy
$ sudo rmmod dummy
```

- ifconfig
 - Used to configure TCP/IP on a NIC
 - Also used without any arguments to view configuration of all network interfaces in computer
 - [user]\$ ifconfig eth10 <new IP address>
 - (Don't recommend changing your IP address on eth0 through SSH
 all kinds of things go wonky)
- dhclient command
 - Receive TCP/IP configuration from DHCP or Boot Protocol (BOOTP) server

- If your network has IPv6-configured routers
 - An IPv6 address is automatically assigned to each NIC
- NICs use Internet Control Message Protocol version 6 (ICMPv6) router discovery messages to probe the network for IPv6 configuration information

- /etc/sysconfig/network-scripts/ifcfg-interface file
 - Stores NIC configurations
 - Allows the system to activate and configure TCP/IP information at each boot time
- ifdown command
 - Unconfigures a NIC
- ifup command
 - Configures NIC using /etc/sysconfig/network-scripts/ifcfg-interface file
- ping (Packet Internet Groper)
 - Check TCP/IP connectivity on a network
 - -c option: limit the number of ping packets sent

More Configuration Options

- ifconfig <NIC> down
- ifconfig <NIC> up
 - Bring NIC up and down, respectively
 - Doesn't look to /etc/sysconfig/network-scripts/...

- Host name
 - User-friendly computer name
- Fully qualified domain name (FQDN)
 - Host name following the DNS (Domain Name Space) convention
- DNS
 - Hierarchical namespace for host names
- whois (need to yum install whois)
 - Used to obtain registration information about a domain within a name space
 - whois google.com
- hostname
 - View or set a computer's host name

Figure 12-6: The domain name space

- 1) Find correct server
 - Somewhat difficult (distributed via hierarchy of servers)
 - Starts at root (dot) then goes downward
 - Servers responsible for one zone of that namespace
- 2) Map server name to IP address
 - Lowest level (or second lowest) will generally have the address

Assume our fully-qualified domain name is www.oakland.edu

- Top-level domain (.) will have the information to resolve edu
- **edu** domain will have the information to resolve **oakland**
- oakland will have the info to resolve www

- Possible that edu may know IP address already, but not necessarily likely
 - But, knows server for resolving **www.oakland**, so therefore edu is considered authoritative for **www.oakland**

Name Resolution (for c.b.a domain)

- TCP/IP cannot identify computers via hostnames
 - Must map host names to IP addresses
 - Can be done by placing entries in the /etc/hosts file

\$ lynx csci3660.com

- ISPs list FQDNs in DNS servers on Internet
 - Applications request IP addresses associated with a specific FQDN
 - Configure by specifying the IP address of the DNS server in /etc/resolv.conf file

- Route table
 - List of TCP/IP networks stored in system memory
- route
 - Displays the route table
- Multihomed hosts
 - Computers with multiple network interfaces
- IP forwarding
 - Forwarding packets from one interface to another
 - Also known as routing

- To enable routing:
 - Place number 1 in:
 - /proc/sys/net/ipv4/ip_forward for IPv4
 - /proc/sys/net/ipv6/conf/all/forwarding for IPv6
- To enable routing at every boot:
 - Edit the /etc/sysctl.conf file to include:
 - "net.ipv4.ip_forward = 1" for IPv4
 - "net.ipv6.conf.default.forwarding = 1" for IPv6

Why have a workstation setup as a router?

- Large networks may have several routers
 - Packet may travel through several routers
 - May require adding entries in the router table
 - Redirect packets to appropriate destination
- route add <route>
 - Add entries to route table
- route del <route>
 - Remove entries from route table
- ip
 - Can be used to manipulate the route table

Set default gateway of 192.168.1.1

```
[user]$ route add -net default gw 192.168.1.1 dev eth0
```

default: destination network

gw: specify as gateway

Add route

[user]\$ sudo ip route add 192.168.2.6 dev eth10

Figure 12-7: A sample routed network

1.0.0.0/**8** ?? 8 ones -- subnet mask is 255.0.0.0

- Most routers are configured with a default gateway
 - For packets addressed to destinations not in route table
- traceroute
 - Used to troubleshoot routing
 - Displays all routers between the current and a remote computer
 - To trace an IPv6 route, use the traceroute6 or tracepath6 commands
 - \$ traceroute www.google.com

Network Services

- Must identify types and features of network services before they can be configured
- Network services
 - Processes that provide some type of valuable service for client computers on network
 - Often represented by daemon processes that listen to certain requests
 - Daemons identify packets to which they should respond using a port number
 - Ex: CUPS web admin

Network Services

- Port
 - Number uniquely identifying a network service
 - Ensure that packets are delivered to the proper service
 - Range from 0 to 65534
- /etc/services file
 - Lists ports and associated protocols
- Well-known port: ports from 0 to 1023
 - Represent commonly used services

Network Services

Service	Port
FTP	TCP 20, 21
Secure Shell (SSH)	TCP 22
Telnet	TCP 23
SMTP	TCP 25
HTTP / HTTPS	TCP 80 / TCP 443
rlogin	TCP 513
DNS	TCP 53, UDP 53
Trivial FTP (TFTP)	UDP 69
POP3 / POP3S	TCP 110 / TCP 995
NNTP / NNTPS	TCP 119 / TCP 563
IMAP4 / IMAP4S	TCP 143 / TCP 993

Table 12-2: Common well-known ports

Remote Administration

- There are several ways to perform command-line and graphical administration of remote Linux servers:
 - Telnet
 - Secure Shell (SSH)
 - Virtual Network Computing (VNC)

Telnet

- telnet
 - Traditionally used to obtain a command-line shell on remote server
 - Receives host name or IP address of remote computer as argument
 - Easiest way to perform remote administration
- Telnet is not installed by default on most modern Linux distributions
 - Can be installed from a software repository
- Use regular commands and exit to kill remote BASH shell

Secure Shell (SSH)

- Secure Shell (SSH)
 - Encrypts information passing between computers
 - Secure replacement for telnet
- ssh
 - Connects to a remote computer running ssh daemon (sshd)
 - Receives host name or IP address of target computer as argument
 - Accept RSA encryption fingerprint for target computer
 - Can be used to transfer files between computers

Secure Shell (SSH)

- SSH is used to perform command-line administration of remote systems
 - The -x option to the ssh command can be used to tunnel X Windows information through the SSH connection if you are using the ssh command within a GUI environment
- By default, sshd uses a secure challenge-response authentication method that ensures that the password is not transmitted on the network
 - Can be changed to Kerberos authentication

Secure Shell (SSH)

- Main types of encryption supported by ssh daemon:
 - Symmetric
 - Triple Data Encryption Standard (3DES)
 - Advanced Encryption Standard (AES)
 - Blowfish
 - Carlisle Adams Stafford Tavares (CAST)
 - ARCfour
 - Asymmetric
 - Public/private key

X Forwarding (Windows)

- Need Windows X server and fonts
 - VcXsrv: chttps://sourceforge.net/projects/vcxsrv/
- Install on server (with yum):
 - xorg-x11-xauth
 - xorg-x11-fonts-*
 - xorg-x11-utils
- Enable the following in the /etc/ssh/sshd_config file
 - X11Forwarding yes

X Forwarding

- Start Xming
- PuTTY
 - Hostname: <username>@IP address
 - Connection → SSH → X Forwarding
 - Enable X forwarding
 - Add localhost:0 to box for location (not necessary)
- OSX (untested)
 - Need to enable X forwarding on server (prev. slide)
 - ssh -Y <username>@IP
 - -Y is trusted X forwarding (-X is standard)