1 Bessel functions

1.1 Bessel functions

$$J_{\nu}(z) = \left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \, \Gamma(\nu+k+1)} \left(\frac{z}{2}\right)^{2k}$$
 (17.1.2a)

$$j_n(z) = \sqrt{\frac{\pi}{2z}} \left(\frac{z}{2}\right)^{n+\frac{1}{2}} \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma((n+\frac{1}{2})+k+1)} \left(\frac{z}{2}\right)^{2k}$$
(17.1.12a)

$$J_{\nu}(z) = \frac{e^{-iz} \left(\frac{z}{2}\right)^{\nu}}{\Gamma(\nu+1)} \sum_{k=0}^{\infty} \frac{\left(\nu + \frac{1}{2}\right)_{k} (2i)^{k} z^{k}}{(2\nu+1)_{k} k!}$$
(17.1.22)

$$j_n(z) = \frac{\sqrt{\pi}}{(2n+1)\Gamma(n+\frac{1}{2})} \left(\frac{z}{2}\right)^n \sum_{k=0}^{\infty} \frac{\frac{1}{(n+\frac{3}{2})_k} \left(-\frac{z^2}{4}\right)^k}{k!}$$
(17.1.25)

$$j_n(z) = \frac{\sqrt{\pi}e^{-iz}}{(2n+1)\Gamma(n+\frac{1}{2})} \left(\frac{z}{2}\right)^n \sum_{k=0}^{\infty} \frac{\frac{(n+1)_k}{(2n+2)_k} (2iz)^k}{k!}$$
(17.1.26)

$$J_{\nu}(z) = \sqrt{\frac{2}{\pi z}} \sum_{k=0}^{\infty} \left(\frac{(-1)^k (\nu, 2k)}{(2z)^{2k}} \cos\left(z - \left(\frac{\nu}{2} + \frac{1}{4}\right)\pi\right) - \frac{(-1)^k (\nu, 2k+1)}{(2z)^{2k+1}} \sin\left(z - \left(\frac{\nu}{2} + \frac{1}{4}\right)\pi\right) \right)$$
(17.1.28)

$$Y_{\nu}(z) = \sqrt{\frac{2}{\pi z}} \sum_{k=0}^{\infty} \left(\frac{(-1)^k (\nu, 2k)}{(2z)^{2k}} \sin\left(z - \left(\frac{\nu}{2} + \frac{1}{4}\right)\pi\right) + \frac{(-1)^k (\nu, 2k+1)}{(2z)^{2k+1}} \cos\left(z - \left(\frac{\nu}{2} + \frac{1}{4}\right)\pi\right) \right)$$

$$(17.1.29)$$

$$\frac{J_{\nu+1}(z)}{J_{\nu}(z)} = \frac{\frac{z}{2\nu+2}}{1} + \prod_{m=2}^{\infty} \left(\frac{\frac{(iz)^2}{4(\nu+m-1)(\nu+m)}}{1}\right)$$
(17.1.38)

$$\frac{\mathbf{j}_{n+1}(z)}{\mathbf{j}_n(z)} = \frac{\frac{z}{2n+3}}{1} + K \left(\frac{\frac{(iz)^2}{4(n+\frac{1}{2}+m-1)(n+\frac{1}{2}+m)}}{1} \right)$$
(17.1.39)

$$\frac{J_{\nu+1}(z)}{J_{\nu}(z)} = -\prod_{m=1}^{\infty} \left(\frac{-1}{\frac{2(\nu+m)}{z}}\right)$$
(17.1.40)

$$\frac{H_{\nu+1}^{(1)}(z)}{H_{\nu}^{(1)}(z)} = \frac{-1}{1} + \prod_{m=2}^{\infty} \left(\frac{\frac{m-3-2\nu}{-2iz}}{1}\right)$$
(17.1.44)

$$\frac{J_{\nu+1}(z)}{J_{\nu}(z)} = \frac{z}{2\nu + 2 - iz} + \prod_{m=2}^{\infty} \left(\frac{(2\nu + 2m - 1)iz}{2\nu + m + 1 + (-2i)z} \right)$$
(17.1.48)

$$\frac{\mathbf{j}_{n+1}(z)}{\mathbf{j}_n(z)} = \frac{z}{2n+3-iz} + \prod_{m=2}^{\infty} \left(\frac{2(n+m)iz}{2n+m+2+(-2i)z} \right)$$
(17.1.49)

$$\frac{H_{\nu+1}^{(1)}(z)}{H_{\nu}^{(1)}(z)} = \frac{2\nu + 1 - 2iz}{2z} - \frac{1}{z} \prod_{m=1}^{\infty} \left(\frac{\nu^2 - \frac{(2m-1)^2}{4}}{2(iz-m)} \right)$$
(17.1.51)

1.2 Modified Bessel functions

$$I_{\nu}(z) = \left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{\left(\frac{z}{2}\right)^{2k}}{k! \, \Gamma(\nu+k+1)}$$
 (17.2.20)

$$I_{\nu}(z) = \frac{e^{-z} \left(\frac{z}{2}\right)^{\nu}}{\Gamma(\nu+1)} \sum_{k=0}^{\infty} \frac{\left(\nu + \frac{1}{2}\right)_{k} 2^{k} z^{k}}{\left(2\nu + 1\right)_{k} k!}$$
(17.2.21)

$$\mathbf{i}_{n}^{(1)}(z) = \frac{\sqrt{\pi}}{(2n+1)\Gamma(n+\frac{1}{2})} \left(\frac{z}{2}\right)^{n} \sum_{k=0}^{\infty} \frac{\left(\frac{z^{2}}{4}\right)^{k}}{k!(n+\frac{3}{2})_{k}}$$
(17.2.22)

$$\mathbf{i}_{n}^{(1)}(z) = \frac{\sqrt{\pi}e^{-iz}}{(2n+1)\Gamma(n+\frac{1}{2})} \left(\frac{z}{2}\right)^{n} \sum_{k=0}^{\infty} \frac{(n+1)_{k}(2z)^{k}}{k!(2n+2)_{k}}$$
(17.2.23)

$$I_{\nu}(z) = \sum_{k=0}^{\infty} \left(\frac{\left((-1)^k e^z + e^{-z + \frac{(2\nu+1)i\pi}{2}} \right) (\nu, k)}{\sqrt{2\pi z} (2z)^k} \right)$$
(17.2.24)

$$I_{\nu}(z) = \sum_{k=0}^{\infty} \left(\frac{\left((-1)^k e^z + e^{-z - \frac{(2\nu+1)i\pi}{2}} \right) (\nu, k)}{\sqrt{2\pi z} (2z)^k} \right)$$
(17.2.25)

$$K_{\nu}(z) = \sqrt{\frac{\pi}{2z}} e^{-z} \sum_{k=0}^{\infty} \left(\frac{(\nu, k)}{(-2z)^k} \right)$$
 (17.2.27)

$$\frac{I_{\nu+1}(z)}{I_{\nu}(z)} = \frac{\frac{z}{2(\nu+1)}}{1} + \prod_{m=2}^{\infty} \left(\frac{\frac{1}{4(\nu+m-1)(\nu+m)}z^2}{1} \right)$$
(17.2.32)

$$\frac{\mathbf{i}_{n+1}^{(1)}(z)}{\mathbf{i}_{n}^{(1)}(z)} = \frac{\frac{z}{2n+3}}{1} + K \sum_{m=2}^{\infty} \left(\frac{\frac{1}{4((n+\frac{1}{2})+m-1)((n+\frac{1}{2})+m)}z^2}{1} \right)$$
(17.2.33)

$$\frac{\nu}{z} - \frac{K_{\nu+1}(z)}{K_{\nu}(z)} = \frac{\nu}{z} + \frac{1}{1} + \frac{\frac{-2\nu - 1}{2z}}{1} - \prod_{m=3}^{\infty} \left(\frac{\frac{m}{2} + \nu}{2z}\right)$$
(17.2.34)

$$\frac{I_{\nu+1}(z)}{I_{\nu}(z)} = \frac{z}{2\nu+2+z} + K \left(\frac{-(2\nu+2m-1)z}{2\nu+m+1+2z}\right)$$
(17.2.38)

$$\frac{\mathbf{i}_{n+1}^{(1)}(z)}{\mathbf{i}_{n}^{(1)}(z)} = \frac{z}{2n+3+z} + K \sum_{m=2}^{\infty} \left(\frac{-2(n+m)z}{2n+m+2+2z} \right)$$
(17.2.39)

$$\frac{\nu}{z} - \frac{K_{\nu+1}(z)}{K_{\nu}(z)} = \frac{\nu}{z} - \frac{2\nu + 1 + 2z}{2z} - \frac{1}{z} \prod_{m=1}^{\infty} \left(\frac{\nu^2 - \frac{(2m-1)^2}{4}}{2(z+m)} \right)$$
(17.2.40)

2 Confluent hypergeometric functions

2.1 Confluent hypergeometric series $_2F_0$

$$\frac{{}_{2}F_{0}(a,b;z)}{{}_{2}F_{0}(a,b+1;z)} = 1 + \underset{m=1}{\overset{\infty}{K}} \left(\frac{-\left(b + \frac{m}{2}\right)z}{1} \right)$$
 (16.2.4)

2.2 Confluent hypergeometric limit function

$$_{0}F_{1}(;b;z) = \sum_{k=0}^{\infty} \frac{z^{k}}{(b)_{k}k!}$$
 (16.3.1)

$$\frac{{}_{0}F_{1}(;b;z)}{{}_{0}F_{1}(;b+1;z)} = 1 + \underset{m=1}{\overset{\infty}{K}} \left(\frac{\frac{1}{(b+m-1)(b+m)}z}{1} \right)$$
 (16.3.4)

$$\frac{{}_{0}F_{1}(;b;z)}{{}_{0}F_{1}(;b+1;z)} = 1 + \frac{\sqrt{z}}{b} + \frac{1}{2b} \prod_{m=1}^{\infty} \left(\frac{-2(2b+2m-1)\sqrt{z}}{2b+m+4\sqrt{z}} \right)$$
(16.3.6)

2.3 Kummer functions

$$_{1}F_{1}(a;b;z) = \sum_{k=0}^{\infty} \frac{\frac{(a)_{k}}{(b)_{k}} z^{k}}{k!}$$
 (16.1.2)

$$_{2}F_{0}(a,b;;z) = \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}z^{k}}{k!}$$
 (16.1.12)

$$\frac{{}_{1}F_{1}(a;b;z)}{{}_{1}F_{1}(a+1;b+1;z)} = 1 + \prod_{m=1}^{\infty} \left(\frac{\frac{z(a+\frac{m}{2})}{(b+m-1)(b+m)}}{1} \right)$$
(16.1.13)

$$z_{1}F_{1}(1;b+1;z) = \frac{z}{1} + K \left(\frac{-\frac{z(b+\frac{m}{2}-1)}{(b+m-2)(b+m-1)}}{1} \right)$$
 (16.1.14)

$$\frac{{}_{1}F_{1}(a;b;z)}{{}_{1}F_{1}(a+1;b+1;z)} = \frac{b-z}{b} + \frac{1}{b} \prod_{m=1}^{\infty} \left(\frac{(a+m)z}{b+m-z} \right)$$
(16.1.16)

$$_{1}F_{1}(1;b+1;z) = \frac{b}{b-z} + \underset{m=2}{\overset{\infty}{\text{K}}} \left(\frac{(m-1)z}{b+m-1-z} \right)$$
 (16.1.17)

$$\frac{U(a,b,z)}{U(a+1,b,z)} = 2a - b + 2 + z - \prod_{m=1}^{\infty} \left(\frac{(a+m)(b-a-m-1)}{b-2a-2m-2-z} \right)$$
(16.1.20)

2.4 Parabolic cylinder functions

$$\frac{U(a,x)}{U(a-1,x)} = \frac{1}{x} + \prod_{m=2}^{\infty} \left(\frac{a + (m-1) - \frac{1}{2}}{x} \right)$$
 (16.5.7)

2.5 Whittaker functions

$$W_{\kappa,\mu}(z) = e^{-z^2} z^{\kappa} \sum_{k=0}^{\infty} \left(\frac{\left(-\kappa - \mu + \frac{1}{2}\right)_k \left(-\kappa + \mu + \frac{1}{2}\right)_k \left(-z\right)^{-k}}{k!} \right)$$
(16.4.7)

$$functions: WhittakerPsi(\alpha, \beta, z) = \sum_{k=0}^{\infty} \left(\frac{\left(\alpha + \frac{1}{2}\right)_k \left(\beta + \frac{1}{2}, k\right) z^{-k-1}}{k!} \right)$$
(16.4.12)

3 Mathematical constants

3.1 Apéry's constant, $\zeta(3)$

$$\zeta(z) = \sum_{k=0}^{\infty} \frac{1}{(k+1)^z}$$
 (10.11.1)

$$\zeta(3) = \sum_{k=0}^{\infty} (-1)^k \left(\frac{(k!)^{10} \left(205k^2 + 250k + 77 \right)}{64 \left((2k+1)! \right)^5} \right)$$
(10.11.3)

$$\zeta(3) = \frac{6}{5} + \prod_{m=2}^{\infty} \left(\frac{-(m-1)^6}{34(m-1)^3 + 51(m-1)^2 + 27(m-1) + 5} \right)$$
(10.11.5)

$$\zeta(3) = 1 + \frac{1}{22} + \prod_{m=2}^{\infty} \left(\frac{\left(\frac{m}{2}\right)^3}{1} \right)$$
 (No label)

$$\zeta(3) = \sum_{n=1}^{k} \left(\frac{1}{n^3}\right) + \frac{1}{2k^2 + 2k + 1} + \prod_{m=2}^{\infty} \left(\frac{-(m-1)^6}{(m-1)^3 + m^3 + (2m-1)(2k^2 + 2k)}\right)$$
(No label)

$$\zeta(3) = 1 + \frac{1}{5} + \prod_{m=2}^{\infty} \left(\frac{-(m-1)^6}{2(m-1)^3 + 3(m-1)^2 + 11(m-1) + 5} \right)$$
 (No label)

$$\zeta(3) = 1 + \frac{1}{4} + \frac{1}{1} + \frac{1}{18} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{4} + \frac{1}{1} + \frac{1}{9} + \frac{1}{9} + \frac{1}{9} + \frac{1}{1} \times \left(\frac{0}{1}\right)$$
(10.11.4)

3.2 Archimedes' constant, symbol π

$$\pi = 4\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} \tag{10.2.1}$$

$$\pi = 3 + \frac{1}{7} + \frac{1}{15} + \frac{1}{1} + \frac{1}{292} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{1} + \frac{1}{3} + \prod_{m=11}^{\infty} {0 \choose 1}$$
(10.2.4)

$$\pi = \frac{4}{1} + K \sum_{m=2}^{\infty} \left(\frac{(m-1)^2}{2m-1} \right)$$
 (10.2.5)

$$\pi = 3 + \prod_{m=1}^{\infty} \left(\frac{(2m-1)^2}{6} \right) \tag{10.2.6}$$

$$P = 2 + \frac{1}{1} + 2 \prod_{m=2}^{\infty} \left(\frac{(m-1)m}{1} \right)$$
 (No label)

$$\pi = \frac{4}{4k+1} + 2^{4k} \left(\frac{(k!)^2}{2k}! \right)^2 \prod_{m=2}^{\infty} \left(\frac{(2m-3)^2}{8k+2} \right)$$
 (No label)

$$\pi = \frac{4}{1} + \prod_{m=2}^{\infty} \left(\frac{(2m-3)^2}{2} \right)$$
 (No label)

$$\pi = \frac{4}{4+1} + 4 \prod_{m=2}^{\infty} \left(\frac{(2m-3)^2}{8+2} \right)$$
 (No label)

3.3 Catalan's constant, symbol C

$$G = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}$$
 (10.12.1)

$$G = 0 + \frac{1}{1} + \frac{1}{10} + \frac{1}{1} + \frac{1}{8} + \frac{1}{1} + \frac{1}{88} + \frac{1}{4} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{7} + \prod_{m=1}^{\infty} {0 \choose 1}$$
(10.12.2)

$$G = \frac{1}{2} + \frac{1}{\frac{1}{2}} + \frac{1}{2} \sum_{m=2}^{\infty} \left(\frac{\left(\frac{m}{2}\right)^2}{\frac{1}{2}} \right)$$
 (10.12.3)

$$G = \frac{\frac{13}{2}}{7} + K \left(\frac{(2m-3)^4 (2m-2)^4 \left(20 (m-2)^2 - 8 (m-2) + 1\right) \left(20 (m)^2 - 8 (m) + 1\right)}{3520 (m-1)^6 + 5632 (m-1)^5 + 2064 (m-1)^4 - 384 (m-1)^3 - 156 (m-1)^2 + 16 (m-1) + 7} \right)$$

$$(10.12.5)$$

$$G = 1 + \frac{-1}{3} + \frac{1}{2} \prod_{m=2}^{\infty} \left(\frac{m^2}{1}\right)$$
 (No label)

3.4 Euler's constant, symbol γ

$$\gamma = -\log(n) + \sum_{k=0}^{\infty} \frac{1}{k}$$
 (10.8.1)

$$\gamma = 0 + \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{1} + \frac{1}{2} + \frac{1}{1} + \frac{1}{2} + \frac{1}{1} + \frac{1}{4} + \frac{1}{3} + \frac{1}{13} + \frac{1}{5} + \prod_{m=11}^{\infty} {0 \choose 1}$$
 (No label)

3.5 Euler's number, base of the natural logarithm

$$e = \sum_{k=0}^{\infty} \frac{1}{k}!$$
 (10.3.1b)

$$e = 2 + \prod_{m=1}^{\infty} \left(\frac{1}{1}\right) \tag{10.3.5}$$

$$\frac{e-1}{e+1} = \prod_{m=1}^{\infty} \left(\frac{1}{(4m-2)} \right)$$
 (10.3.6)

$$e = 2 + \prod_{m=1}^{\infty} \left(\frac{m+1}{m+1} \right)$$
 (No label)

$$e = 1 + \frac{2}{1} + \prod_{m=2}^{\infty} \left(\frac{1}{6 + (m-2)4} \right)$$
 (No label)

$$e = \frac{1}{1} + \sum_{m=2}^{\infty} \left(\frac{-1}{m-1} \right)$$
 (No label)

3.6 Golden ratio, symbol ϕ

$$\phi = 1 + \mathop{K}\limits_{m=1}^{\infty} \left(\frac{1}{1}\right) \tag{10.9.4}$$

3.7 Gompertz' constant, symbol G

$$G = \frac{1}{2} + K \left(\frac{-(m-1)^2}{2m} \right)$$
 (10.13.1)

$$G = \frac{1}{1} + \prod_{m=2}^{\infty} \left(\frac{\frac{m}{2}}{1}\right)$$
 (No label)

3.8 The natural logarithm, ln(2)

$$\ln(2) = \sum_{k=0}^{\infty} \frac{(-1)^k 1^{k+1}}{k+1}$$
 (10.5.2)

$$\ln(2) = \frac{1}{1} + K \sum_{m=2}^{\infty} \left(\frac{(m-1)^2}{1} \right)$$
 (10.5.3)

$$\ln(2) = \frac{1}{1} + \prod_{m=2}^{\infty} \left(\frac{\frac{m}{4m-4}}{1}\right)$$
 (10.5.4)

3.9 Regular continued fractions

$$\sqrt{e} = 1 + \frac{1}{1} + \prod_{m=2}^{\infty} \left(\frac{1}{1}\right) \tag{10.4.1}$$

$$e^{\frac{1}{\alpha}} = 1 + \prod_{m=1}^{\infty} \left(\frac{1}{\left(2\left(\frac{m+2}{3}\right) - 1\right)\alpha - 1} \right)$$
 (10.4.2)

$$e^{\frac{1}{\alpha}} = \frac{\alpha+1}{\alpha} + \frac{1}{\alpha} \prod_{m=1}^{\infty} \left(\frac{1}{2\alpha-1}\right)$$
 (10.4.3)

$$e^{\frac{1}{\alpha}} = \frac{1}{\alpha - 1} + \frac{1}{2\alpha} + \alpha \prod_{m=3}^{\infty} \left(\frac{1}{1}\right)$$
 (10.4.4)

$$\sqrt{\pi} = 1 + \frac{1}{1} + \frac{1}{3} + \frac{1}{2} + \frac{1}{1} + \frac{1}{1} + \frac{1}{6} + \frac{1}{1} + \frac{1}{28} + \frac{1}{13} + \frac{1}{1} + \prod_{m=1}^{\infty} {0 \choose 1}$$
 (No label)

$$ee = 7 + \prod_{m=1}^{\infty} \left(\frac{1}{\frac{3(m+4)}{5} - 1} \right)$$
 (10.4.5)

$$\frac{\pi^2}{12} = \frac{1}{1} + K \sum_{m=2}^{\infty} \left(\frac{(m-1)^4}{2m-1} \right)$$
 (10.4.6)

$$\frac{e^{\frac{2\alpha}{\beta}} - 1}{e^{\frac{2\alpha}{\beta}} + 1} = \frac{\alpha}{\beta} + \prod_{m=2}^{\infty} \left(\frac{\alpha^2}{(2m-1)\beta} \right)$$
 (10.4.7)

3.10 Pythagoras' constant, the square root of two

$$1 + \sqrt{2} = 2 + \prod_{m=1}^{\infty} \left(\frac{1}{2}\right) \tag{10.6.3}$$

$$\left(1+\sqrt{2}\right)^2 = 5 + \prod_{m=1}^{\infty} \left(\frac{1}{1}\right)$$
 (No label)

$$\left(1+\sqrt{2}\right)^3 = 14 + \prod_{m=1}^{\infty} \left(\frac{1}{14}\right)$$
 (No label)

$$\left(1+\sqrt{2}\right)^4 = 33 + \prod_{m=1}^{\infty} \left(\frac{1}{1}\right)$$
 (No label)

$$(1+\sqrt{2})^5 = 82 + \prod_{m=1}^{\infty} (\frac{1}{82})$$
 (No label)

3.11 The rabbit constant, symbol ρ

$$\rho = \sum_{k=0}^{\infty} 2^{-\left\lfloor (k+1)\left(\frac{\sqrt{5}+1}{2}\right)\right\rfloor} \tag{10.10.2}$$

$$\rho = \prod_{m=1}^{\infty} \left(\frac{1}{2:combinat fibonacci(m-1)} \right)$$
 (10.10.5)

3.12 zeta2, $\zeta(2)$

$$\zeta(2) = \frac{2}{1} + \prod_{m=2}^{\infty} \left(\frac{(m-1)^4}{2m-1} \right)$$
 (No label)

$$\zeta(2) = \frac{1}{1} + K \left(\frac{-\frac{\left(\left((m-2)\left(\frac{1}{2}\right) + 1\right) \left((m-2)\left(\frac{1}{2}\right) + 1\right) \right) \left((m-2)\left(\frac{1}{2}\right) + 1\right)}{(m-1)(1 + (m-1))}}{1} \right)$$
(No label)

$$\zeta(2) = 1 + \frac{1}{1} + \prod_{m=2}^{\infty} \left(\frac{\left(\frac{m}{2}\right)^2}{1} \right)$$
 (No label)

$$\zeta(2) = \sum_{n=1}^{k} \left(\frac{1}{n^2}\right) + \frac{2}{2k+1} + \prod_{m=2}^{\infty} \left(\frac{(m-1)^4}{(2m-1)(2k+1)}\right)$$
 (No label)

$$\zeta(2) = 2\sum_{n=1}^{k} \left(\frac{(-1)^{n-1}}{n^2} \right) + \frac{(-1)^k}{k^2 + k + 1} + \prod_{m=2}^{\infty} \left(\frac{-(m-1)^4}{(m-1)^2 + m^2 + k^2 + k} \right)$$
(No label)

$$\zeta(2) = \frac{5}{3} + K \left(\frac{(m-1)^4}{11(m-1)^2 + 11(m-1) + 3} \right)$$
 (No label)

3.13 zeta4, $\zeta(4)$

$$\zeta(4) = \frac{13}{12} + K \left(\frac{(m-1)^7 (3m-2) (3m-3) (3m-4)}{3 (2 (m-1) + 1) (3 (m-1)^2 + 3 (m-1) + 1) (15 (m-1)^2 + 15 (m-1) + 4)} \right)$$
(No label)

$$\zeta(4) = 1 + \frac{1}{12} + \frac{1}{6} + \frac{1}{1} + \frac{1}{3} + \frac{1}{1} + \frac{1}{4} + \frac{1}{183} + \frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \sum_{m=11}^{\infty} {0 \choose 1}$$
 (No label)

4 Elementary functions

4.1 Inverse trigonometric functions

$$\operatorname{Arccos}(z) = \frac{\pi}{2} - z + \sum_{k=0}^{\infty} -\left(\frac{(2k-1)!!}{(2k)!!(2k+1)}\right) z^{2k+1}$$
(11.4.2)

$$\operatorname{Arccos}(z) = \frac{\frac{\sqrt{1-z^2}}{z}}{1} + K \left(\frac{\left(\frac{(m-1)^2}{(2m-3)(2m-1)}\right)(1-z^2)}{z^2} \right)$$
 (11.4.6)

$$\operatorname{Arccos}(z) = \frac{z\sqrt{1-z^2}}{1} + \prod_{m=2}^{\infty} \left(\frac{\left(-\frac{m(m-1)}{(2m-1)(2m-3)}\right)(1-z^2)}{1} \right)$$
(11.4.7)

4.2 Inverse hyperbolic functions

Arccosh
$$\left(\frac{1}{z}\right) = \ln\left(\frac{2}{z}\right) + \sum_{k=0}^{\infty} -\left(\frac{(2k-1)!!}{(2k)!!(2k)}\right) z^{2k}$$
 (11.6.2)

Arccosh
$$(z) = \frac{z\sqrt{z^2 - 1}}{1} + \prod_{m=2}^{\infty} \left(\frac{\left(\frac{m(m-1)}{(2m-3)(2m-1)}\right)(z^2 - 1)}{1} \right)$$
 (11.6.6)

$$\operatorname{Arccosh}(z) = \frac{\frac{\sqrt{z^2 - 1}}{z}}{1} + K \sum_{m=2}^{\infty} \left(\frac{-\frac{\left(\frac{(m-1)^2}{(2m-3)(2m-1)}\right)(z^2 - 1)}{z^2}}{1} \right)$$
(11.6.7)

4.3 Inverse trigonometric functions

$$\operatorname{Arcsin}(z) = z + \sum_{k=0}^{\infty} \left(\frac{(2k-1)!!}{(2k)!!(2k+1)} \right) z^{2k+1}$$
 (11.4.1)

$$\operatorname{Arcsin}(z) = \frac{\frac{z}{\sqrt{1-z^2}}}{1} + K \left(\frac{\left(\frac{(m-1)^2}{(2m-3)(2m-1)}\right)z^2}{1} \right)$$

$$(11.4.4)$$

Arcsin
$$(z) = \frac{z\sqrt{1-z^2}}{1} + \prod_{m=2}^{\infty} \left(\frac{\left(-\frac{m(m-1)}{(2m-1)(2m-3)}\right)z^2}{1} \right)$$
 (11.4.5)

4.4 Inverse hyperbolic functions

Arcsinh
$$(z) = z + \sum_{k=0}^{\infty} \left(\frac{(-1)^k (2k-1)!!}{(2k)!! (2k+1)} \right) z^{2k+1}$$
 (11.6.1)

Arcsinh
$$(z) = \frac{z\sqrt{1+z^2}}{1} + \prod_{m=2}^{\infty} \left(\frac{\left(\frac{m(m-1)}{(2m-3)(2m-1)}\right)z^2}{1} \right)$$
 (11.6.4)

Arcsinh
$$(z) = \frac{\frac{z}{\sqrt{1+z^2}}}{1} + \prod_{m=2}^{\infty} \left(\frac{-\frac{\left(\frac{(m-1)^2}{(2m-3)(2m-1)}\right)z^2}{1+z^2}}{1} \right)$$
 (11.6.5)

4.5 Inverse trigonometric functions

Arctan
$$(z) = \sum_{k=0}^{\infty} \left(\frac{(-1)^k}{2k+1} \right) z^{2k+1}$$
 (11.4.3)

Arctan
$$(z) = \frac{z}{1} + \prod_{m=2}^{\infty} \left(\frac{(m-1)^2 z^2}{2m-1} \right)$$
 (11.4.8)

$$\operatorname{Arctan}(z) = \frac{\frac{z}{1+z^2}}{1} + \prod_{m=2}^{\infty} \left(\frac{-\left(\frac{m(m-1)}{(2m-3)(2m-1)}\right)\left(\frac{z^2}{1+z^2}\right)}{1} \right)$$
(11.4.9)

4.6 Inverse hyperbolic functions

Arctanh
$$(z) = \sum_{k=0}^{\infty} \left(\frac{1}{2k+1}\right) z^{2k+1}$$
 (11.6.3)

Arctanh
$$(z) = \frac{\frac{z}{1-z^2}}{1} + \prod_{m=2}^{\infty} \left(\frac{\left(\frac{m(m-1)}{(2m-3)(2m-1)}\right)z^2}{1} \right)$$
 (11.6.8)

Arctanh
$$(z) = \frac{z}{1} + \prod_{m=2}^{\infty} \left(\frac{\left(-\frac{(m-1)^2 z^2}{4(m-1)^2 - 1} \right)}{1} \right)$$
 (11.6.9)

4.7 Trigonometric functions

$$\cos(z) = \sum_{k=0}^{\infty} \left(\frac{(-1)^k}{2k!} \right) z^{2k}$$
 (11.3.2)

4.8 Hyperbolic functions

$$\cosh(z) = \sum_{k=0}^{\infty} \left(\frac{1}{2k}!\right) z^{2k}$$
 (11.5.2)

4.9 Hyperbolic functions

$$\coth(z) = \sum_{k=0}^{\infty} \left(4^k bernoulli \frac{2k}{2k}! \right) z^{2k-1}$$
(11.5.4)

$$\coth(z) = \frac{1}{z} + \frac{4\pi^{-2}z}{1} + K \left(\frac{(m-1)^2 \left((m-1)^2 + 4\pi^{-2}z^2 \right)}{2m-1} \right)$$
 (11.5.6)

4.10 The exponential function

$$e^z = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$
 (11.1.1)

$$e^{z} = 1 + \frac{2z}{2-z} + \frac{\frac{z^{2}}{6}}{1} + K \sum_{m=3}^{\infty} \left(\frac{\left(\frac{1}{4(2m-3)(2m-1)}\right)z^{2}}{1} \right)$$
 (11.1.2)

$$e^{z} = 1 + \frac{z}{1} + \prod_{m=2}^{\infty} \left(\frac{\left(-\frac{1}{2(m-1)} \right) z}{1} \right)$$
 (11.1.3)

$$e^{z} = \frac{1}{1} + \frac{-z}{1} + \prod_{m=3}^{\infty} \left(\frac{\left(-\frac{1}{2(m-1)}\right)z}{1} \right)$$
 (No label)

$$e^{z} = 1 + \frac{z}{1-z} + \prod_{m=2}^{\infty} \left(\frac{(m-1)z}{m-z} \right)$$
 (11.1.4)

4.11 The natural logarithm

$$\ln\left(1+z\right) = \sum_{k=0}^{\infty} \left(\frac{(-1)^{k+2}}{k+1}\right) z^{k+1} \tag{11.2.1}$$

$$\ln(1+z) = \frac{z}{1} + K \int_{m=2}^{\infty} \left(\frac{\left(\frac{m}{4(m-1)}\right)z}{1} \right)$$
 (11.2.2)

$$\ln(1+z) = \frac{2z}{2+z} + \prod_{m=2}^{\infty} \left(\frac{-(m-1)^2 z^2}{(2m-1)(2+z)} \right)$$
 (11.2.3)

$$\ln\left(\frac{1+z}{1-z}\right) = \frac{2z}{1} + \prod_{m=2}^{\infty} \left(\frac{\left(-\left(\frac{(m-1)^2}{(2m-3)(2m-1)}\right)z^2\right)}{1}\right)$$
(11.2.4)

$$\ln(1+z) = z + \frac{-\frac{z^2}{2}}{1} + K \left(\frac{\left(\frac{m}{2}\right) + 1\right)^2 z}{m(m+1)}\right)$$
(6.8.8)

4.12 The power function

$$(1+z)^{\alpha} = 1 + \frac{\alpha z}{1} + K \sum_{m=2}^{\infty} \left(\frac{\left(\frac{m}{2} - \alpha \right) z}{2(m-1)} \right)$$
 (11.7.1)

$$(1+z)^{\alpha} = \frac{1}{1} + \frac{-\alpha z}{1} + \prod_{m=3}^{\infty} \left(\frac{\frac{\left(\frac{m-1}{2} + \alpha\right)z}{2(m-2)}}{1} \right)$$
(11.7.2)

$$(1+z)^{\alpha} = \frac{1}{1} + \frac{-\alpha z}{1+z} + \frac{\frac{(\alpha-1)z}{2}}{1} + \prod_{m=4}^{\infty} \left(\frac{\frac{(-\alpha - (\frac{m-2}{2}))z}{2(m-1)(1+z)}}{1} \right)$$
(11.7.3)

$$\left(\frac{z+1}{z-1}\right)^{\alpha} = 1 + \frac{\frac{2\alpha}{z}}{1-\frac{\alpha}{z}} + \prod_{m=2}^{\infty} \left(\frac{\frac{\alpha^2 - (m-1)^2}{(2(m-1)-1)(2(m-1)+1)z^2}}{1}\right)$$
(11.7.4)

4.13 Trigonometric functions

$$\sin(z) = \sum_{k=0}^{\infty} \left(\frac{(-1)^k}{2k+1}! \right) z^{2k+1}$$
 (11.3.1)

4.14 Hyperbolic functions

$$sinh(z) = \sum_{k=0}^{\infty} \left(\frac{1}{2k+1}!\right) z^{2k+1}$$
 (11.5.1)

4.15 Trigonometric functions

$$tan(z) = \sum_{k=0}^{\infty} \left(\frac{4^{k+1} (4^{k+1} - 1) |bernoulli(2(k+1))|}{2(k+1)}! \right) z^{2(k+1)-1}$$
(11.3.3)

$$tan(z) = \frac{z}{1} + \prod_{m=2}^{\infty} \left(\frac{-\frac{z^2}{(2m-1)(2m-3)}}{1} \right)$$
 (11.3.7)

$$\tan\left(\frac{\pi z}{4}\right) = \frac{z}{1} + \prod_{m=2}^{\infty} \left(\frac{(2m-3)^2 - z^2}{2}\right)$$
 (11.3.8)

$$tan(z) = \frac{z}{1} + \frac{-4\pi^{-2}z^{2}}{1} + K \left(\frac{(m-2)^{4} - 4\pi^{-2}(m-2)^{2}z^{2}}{2m-3} \right)$$
(11.3.9)

4.16 Hyperbolic functions

$$tanh(z) = \sum_{k=0}^{\infty} \left(4^{k+1} \left(4^{k+1} - 1 \right) \left(bernoulli \frac{2(k+1)}{2(k+1)}! \right) \right) z^{2(k+1)-1}$$
 (11.5.3)

$$tanh(z) = \frac{z}{1} + K \left(\frac{\left(\frac{1}{(2m-3)(2m-1)}\right)z^2}{1} \right)$$
 (11.5.5)

- 5 Error function and related integrals
- 6 Exponential integrals and related functions
- 7 Gamma function and related functions
- 8 Hypergeometric functions
- 9 q-Hypergeometric function
- 10 Probability functions