

Divide and Conquer (1)

Recurrences and The Solution DAA Term 2 2023/2024

- Insertion sort uses incremental approach to sort an array in place
- Another approach: divide and conquer (it uses recursive structure)
- Algorithms with divide and conquer paradigm:
 - Break the problem into several sub problems that are similar to the original problem but smaller in size [divide]
 - Solve the sub problems recursively [conquer]
 - Combine the solutions to create a solution to the original problem [combine]
- Example: Merge sort

Merge Sort

```
    Merge-Sort (A, p, r)
        1. if p<r/>
        2. q = [(p+r)/2] // divide
        3. Merge-Sort (A, p, q) // conquer
        4. Merge-Sort (A, q+1, r) // conquer
        5. Merge (A, p, q, r) // combine
```

- Merge sort divides the array of n-element $(A[p \dots r])$ into two subarrays of n/2 elements each $(A[p \dots q] \text{ and } A[q+1 \dots r])$ [divide]
- The two subarrays (A[p ... q] and A[q + 1 ... r]) are sorted recursively using merge sort [conquer]
- The solution of each subarray (sorted version of A[p ... q] and A[q + 1 ... r]) is merged to produce the sorted array A[p ... r] [combine]

Merge Sort

The "Merge" Procedure


```
• Merge(A, p, q, r)
   1. n_1 = q-p+1
   2. n_2 = r - q
   3. L \leftarrow [1...n<sub>1</sub>+1] and R \leftarrow [1...n<sub>2</sub>+1]
   4. for i = 1 to n_1
   5. L[i] = A[p+i-1]
                                        \boldsymbol{\Theta}(\boldsymbol{n}_1)
   6. for j = 1 to n_2
   7. R[j] = A[q+j]
                                        O(n_2)
   8. L[n_1+1] = \infty
   9. L[n2+1] = \infty
                                          Sentinel, to avoid
   10.i = 1
                                            checking whether
   11.j = 1
                                            the subarray is
   12.for k = p to r
                                            empty
   13. if L[i] \leftarrow R[j]
   14.
         A[k] = L[i]
                                        \Theta(n)
   15. i = i+1
   16. else A[k] = R[j]
   17.
             j = j+1
```

It takes $\Theta(n)$ in total to combine

Correctness of Merge Sort?

- Show that the **Merge** procedure correctly merges the subarray A[1...q] and A[q+1...r].
 - Loop invariant for Merge procedure:

```
At the start of each iteration of the for loop of lines 12–17, the subarray A[p..k-1] contains the k-p smallest elements of L[1..n_1+1] and R[1..n_2+1], in sorted order. Moreover, L[i] and R[j] are the smallest elements of their arrays that have not been copied back into A.
```

• Show that **Merge-Sort** procedure correctly sorts the whole input array A[1...A.length].

Correctness of Merge Sort? (2)

Correctness of Other Recursive Problems UNIVERSITAS INDONESIA Verlate, Problems

• Compute x^n , (x is a nonzero real number and n is a positive integer)

```
power (x, n):

if (n = 0) then return 1

else return x * power (x, n-1)
```

• Compute GCD (x, y), (x and y are positive integers and x < y)

```
GCD (x, y):

if (x = 0) then return y

else return GCD (y \mod x, x)
```


Complexity

- Let T(n) denotes the running time of a recursive algorithm with input size n.
 - Divide the problems into a smaller problems, size $\frac{n}{b}$ each.

 It takes D(n) to **divide** the original problem, $T\left(\frac{n}{b}\right)$ to **solve (conquer)** each sub problems, and C(n) to **combine** the solutions.

$$T(n) = \begin{cases} \Theta(1), & \text{if } n \leq c \\ aT\left(\frac{n}{b}\right) + D(n) + C(n), & \text{otherwise} \end{cases}$$

• When the input size is small enough $(n \le c)$ for some constant c, the running time is constant

Complexity of Merge Sort?

- Assume that n is a power of 2 \rightarrow each divide step yields two sub problems, both of size exactly $\frac{n}{2}$
- Let the running time of Merge Sort for n-element is T(n)
 - **Divide**: Compute the average of p and $r \rightarrow$ takes constant time $(\Theta(1))$
 - Conquer: Solve 2 sub problems recursively, each takes $T\left(\frac{n}{2}\right) \to 2T\left(\frac{n}{2}\right)$
 - Combine: Merge n-element sub array $\rightarrow \Theta(n)$
- Running time of Merge Sort in a recurrence function:

$$T(n) = \begin{cases} \Theta(1), & \text{if } n = 1\\ 2T\left(\frac{n}{2}\right) + \Theta(n), & \text{if } n > 1 \end{cases}$$

• The recursion tree illustration:

Solving Recurrences

Recurrences

 Following recurrence function denotes the running time of Merge Sort.

$$T(n) = \begin{cases} \Theta(1), & \text{if } n = 1\\ 2T\left(\frac{n}{2}\right) + \Theta(n), & \text{if } n > 1 \end{cases}$$

- We need to know the explicit form of this recurrence function.
 - Example: Merge sort runs in $\Theta(n \lg n)$

- A recurrence is
 - a recursive description of a function, or
 - a description of a function in terms of itself
 - that consists of
 - one or more base cases
 - one or more recursive cases
- A solution of a recurrence is:
 - A non-recursive description of a function that satisfies the recurrence.
 - It is also known as the closed form or explicit form.
 - It can be defined as
 - An exact, tight solution, or
 - A solution written in asymptotic notation

Example

Tower of Hanoi

$$T(n) = \begin{cases} 0 & if \ n = 0 \\ 2T(n-1) + 1 & otherwise \end{cases}$$

Solution: $2^n - 1$

Merge Sort

$$T(n) = \begin{cases} \Theta(1) & if \ n = 1 \\ 2T(\frac{n}{2}) + \Theta(n) & otherwise \end{cases}$$

Solution: $\Theta(n \lg n)$

Iterative method

Iteratively expand the function until we reach the boundary condition

Substitution method (Guess and Prove)

 Guess the answer (sometimes we use the iterative method or recursion tree), then prove it by using mathematical induction (explicitly).

Recursion tree

- Like the iterative method, but it is visualized in a tree structure.
- It can be used to generate a good guess for Substitution Method

Master method

• Existed theorem to understand the running time of an algorithm from its recurrence function T(n) = aT(n/b) + f(n), $a \ge 1$, b > 1

Tower of Hanoi

$$T(n) = \begin{cases} 0 & if \ n = 0 \\ 2T(n-1) + 1 & otherwise \end{cases}$$

$$2T(n-1) + 1 = 2(2T(n-2) + 1) + 1$$

$$= 2^{2}T(n-2) + 3$$

$$= 2^{3}T(n-3) + 7$$

$$= \cdots$$

$$= 2^{i}T(n-i) + (2^{i}-1)$$

$$= \cdots$$

$$= 2^{n}T(0) + (2^{n}-1)$$

The boundary condition is reached when i = n, hence $T(n) = 2^n - 1$

Iterative Method

Merge Sort

$$T(n) = \begin{cases} \Theta(1) & if \ n = 1 \\ 2T\left(\frac{n}{2}\right) + \Theta(n) & otherwise \end{cases}$$

$$2T\left(\frac{n}{2}\right) + cn = 2\left(2T\left(\frac{n}{4}\right) + \frac{cn}{2}\right) + cn$$
$$= \cdots$$

Example 1: Tower of Hanoi

$$T(n) = \begin{cases} 0 & if \ n = 0 \\ 2T(n-1) + 1 & otherwise \end{cases}$$

Solution: $2^n - 1$

Show that the closed form of recurrence above is $2^n - 1$

- Base Case: when n = 0 then $2^0 1 = 0 = T(0)$
- Inductive Case:
 - Assume $\underline{T(k)} = 2^k 1$ is true for all k < n, so our Inductive Hypotheses is $\underline{T(n-1)} = 2^{n-1} 1$
 - Show that $T(n) = 2^n 1$ is also true

Example 1 (cont'd)

• Example 2: A recurrence function is defined below.

$$T(n) = \begin{cases} 1 & if \ n = 1 \\ 2T\left(\frac{n}{2}\right) + n & otherwise \end{cases}$$

Show that the solution is $n \lg n + n$

Example 2 (cont'd)

Example 3: Merge Sort

$$T(n) = \begin{cases} \Theta(1) & if \ n = 1 \\ 2T(\frac{n}{2}) + \Theta(n) & otherwise \end{cases}$$

Show that the solution is $\Theta(n \lg n)$

Example 3 (cont'd)

More Examples

- Show that $T(n) = 8T\left(\frac{n}{2}\right) + \Theta(n^2)$ is $O(n^3)$.
 - Show an explicit proof
 - For example by lowering the upper bound
 - Assume that we want to show that $T(n) \le cn^3 dn^2$
 - Our IH: $T\left(\frac{n}{2}\right) \le c\left(\frac{n}{2}\right)^3 d\left(\frac{n}{2}\right)^2$

- Find the solution of $T(n) = 2T(\sqrt{n}) + \lg n$.
 - By changing variable: Bring this form into a "standard" recursive function, i.e. $T(n) = aT\left(\frac{n}{h}\right) + f(n)$.
 - For example by substituting n with 2^m , so $\lg n = m$

Merge Sort

- $\lg n + 1$ levels
- Total cost = $cn(\lg n + 1)$ = $cn \lg n + cn$
- $T(n) = \Theta(n \lg n)$

- Tower of Hanoi
 - Cost at level- $i = 1 \cdot 2^i$
 - Height of the tree = n (there are n + 1 levels)
 - Total cost = $1 + 2 + 4 + \dots + 2^{n-1} = 2^n 1$
 - $T(n) = 2^n 1$

- Example: $T(n) = 3T\left(\left|\frac{n}{4}\right|\right) + \Theta(n^2)$
 - Assumption: ignore the floor function, assume n is power of 4
 - Build recursion tree for $T(n) = 3T(\frac{n}{4}) + cn^2$
 - At level-i:
 - Size of each sub problem $\rightarrow \frac{n}{4^i}$
 - Number of node $\rightarrow 3^i$
 - At leaf (when the size of sub problem =1):
 - $\frac{n}{4^i} = 1 \iff n = 4^i \iff i = \log_4 n$
 - Height of the tree = $\log_4 n$, number of level = $\log_4 n + 1$
 - Number of node in level $\log_4 n = 3^{\log_4 n}$ (leaf)

FAKULTAS ILMU UNIVERSITAS INDONESIA Veritas, Proliitas, Pustitia

Recursion Tree

•
$$T(n) = 3T\left(\left|\frac{n}{4}\right|\right) + \Theta(n^2)$$

Summary for the previous illustration:

- Total cost at each level = number of node * cost for each node
 - Cost at level $i = 3^i c \left(\frac{n}{4^i}\right)^2 = \left(\frac{3}{16}\right)^i cn^2$, for $i = 0,1,2,...,\log_4 n 1$
 - Cost at leaf or level $\log_4 n = 3^{\log_4 n} \left(\frac{n}{4^{\log_4 n}}\right)^2 = \Theta(n^{\log_4 3})$ • $3^{\log_4 n} = n^{\log_4 3}$
- Total cost for the entire tree:

•
$$T(n) = \sum_{i=0}^{(\log_4 n) - 1} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3}) = O(n^2)$$

• The detailed calculation to obtain $O(n^2)$:

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + (\frac{3}{16})^{2}cn^{2} + \dots + (\frac{3}{16})^{\log_{4}n-1}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \sum_{i=0}^{\log_{4}n-1} (\frac{3}{16})^{i}cn^{2} + \Theta(n^{\log_{4}3})$$

$$< \sum_{i=0}^{\infty} (\frac{3}{16})^{i}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \frac{1}{1 - (3/16)}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \frac{1}{1 - (3/16)}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \frac{16}{13}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= O(n^{2}).$$
Next, we can us $O(n^{2})$ is an upper that $T(n) \le dn^{2}$.
$$\le 3d(n^{2})$$

From lecturer slide by Bpk LYS

Next, we can use the substitution method to verify that T(n) = O(n²) is an upper bound for the given recurrence. We have to show that T(n) ≤ dn² for some constant d > 0.

$$T(n) \le 3T(\lfloor n/4 \rfloor) + cn^2$$

$$\le 3d\lfloor n/4 \rfloor^2 + cn^2$$

$$\le 3d(n/4)^2 + cn^2$$

$$= \frac{3}{16}dn^2 + cn^2$$

$$\le dn^2, \quad \text{provided that } d \ge (16/13)c.$$

Exercise

- Use recursion tree to find/guess the solution of T(n) = T(n/3) + T(2n/3) + O(n)
 - Assume the running time is constant when n=1

Master Theorem

• Let $a \ge 1$ and b > 1 be constant. Let f(n) be a function > 0 and T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where we interpret $\frac{n}{b}$ to mean either $\left\lfloor \frac{n}{b} \right\rfloor$ or $\left\lceil \frac{n}{b} \right\rceil$.

Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = O(n^{\log_b a})$
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \lg n)$ In general: If $f(n) = \Theta(n^{\log_b a} \lg^k n)$, then $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$ for a constant $k \ge 0$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(\frac{n}{b}) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$ -> regularity condition

- What does it mean?
 - Suppose we have a recursion tree for function $T(n) = aT(\frac{n}{b}) + f(n)$
 - By using master theorem, we compare the cost in the root of the recursion tree and in the remaining subtree.
 - The solution to the recurrence function: the most dominant cost.

Master Theorem

It compares f(n) as the driving function to n^{log_ba} (cost on all leaves)

FAKULTAS
ILMU
KOMPUTER

Intuitively, we compare the function f(n) (driving function) with the function $n^{\log_b a}$ (watershed function). The larger (polinomially larger) of the two functions determines the solution of the recurrence.

- Case 1: f(n) is polynomially smaller than $n^{\log_b a}$
 - $T(n) = \Theta(n^{\log_b a}) \rightarrow$ the leaves dominate the total cost
- Case 2: f(n) is (nearly) equal to $n^{\log_b a}$
 - $T(n) = \Theta(n^{\log_b a} \lg n) \rightarrow$ the cost is distributed evenly among the levels of the tree
- Case 3: f(n) is polynomially larger than $n^{\log_b a}$ and f(n) satisfy the regularity condition $af\left(\frac{n}{b}\right) \le cf(n)$
 - $T(n) = \Theta(f(n)) \rightarrow$ the root dominates the total cost

Master Theorem

Example

- Find the solution of $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$.
 - $a = 2, b = 2, f(n) = \Theta(n), n^{\log_b a} = n$
 - Therefore, $f(n) = \Theta(n)$ (case 2 applied)
 - The solution is $T(n) = \Theta(n^{\log_b a} \lg n) = \Theta(n \lg n)$
- Can we use master method to solve

$$T(n) = 2T(n-1) + 1$$
?

Exercise

- Find the solution of following recurrences using master method (if applicable):
 - $T(n) = 9T\left(\frac{n}{3}\right) + n$
 - $T(n) = T\left(\frac{2n}{3}\right) + 1$
 - $T(n) = 2T(n/2) + n \lg n$
 - $T(n) = 2T\left(\frac{n}{2}\right) + 1$
 - $T(n) = 4T(n/2) + n^3$
 - $T(n) = 5T(n/3) + \Theta(n^3)$
 - $T(n) = 27T(n/3) + \Theta(n^3/\lg n)$

Solving Recurrences

- Recursion tree
 - Recursion tree and iterative method are similar
 - With extra care in the development of a recursion tree, it can be used as direct proof for a solution to a recurrence.
 - When some tolerable sloppiness are applied, the substitution method is necessary to complete the proof.
 - Recursion tree can be used to generate a "good guess" for the substitution method
- Substitution
 - Based on the concept of "mathematical induction"
 - Proof the solution explicitly.
- Master method
 - A "cook book" for solving a recurrence function
 - Not applicable for all recursive functions

- Lecturer Slides by Bapak L. Yohanes Stefanus
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, Third Edition (3rd. ed.). The MIT Press.