Note on the limit $\alpha \searrow 1$

Anna Jenčová

December 19, 2023

1 Conditional expectations and L_p -spaces

Let \mathcal{N} be a von Neumann algebra and let $\mathcal{M} \subseteq \mathcal{N}$ be a von Neumann subalgebra such that there is a conditional expectation \mathcal{E} onto \mathcal{M} preserving a faithful normal state ϕ . Then the modular group σ^{ϕ} of ϕ preserves \mathcal{M} by the Takesaki theorem and we have $\sigma^{\phi|_{\mathcal{M}}} = \sigma^{\phi}|_{\mathcal{M}}$. It follows that the crossed product $\mathcal{M} \rtimes_{\sigma^{\phi|_{\mathcal{M}}}} \mathbb{R}$ can be identified with a subalgebra in $\mathcal{N} \rtimes_{\sigma^{\phi}} \mathbb{R}$. By [1, Thm. 4.1], the map

$$\hat{\mathcal{E}} := (\mathcal{E} \otimes id_{B(L_2(G))})|_{\mathcal{N} \rtimes_{\sigma^{\phi}} \mathbb{R}}$$

is a faithful normal conditional expectation of $\mathcal{N} \rtimes_{\sigma^{\phi}} \mathbb{R}$ onto $\mathcal{M} \rtimes_{\sigma^{\phi}|_{\mathcal{M}}} \mathbb{R}$, moreover, we have

$$\hat{\sigma} \circ \hat{\mathcal{E}} = \hat{\mathcal{E}} \circ \hat{\sigma}$$

and clearly also

$$\hat{\mathcal{E}}(\pi(x)\lambda(s)) = \pi(\mathcal{E}(x))\lambda(s), \qquad x\mathcal{M}, \ s \in \mathbb{R}.$$

For the dual weight $\hat{\phi}$, we obtain

$$\hat{\mathcal{E}} \circ \sigma^{\hat{\phi}} = \sigma^{\hat{\phi}} \circ \hat{\mathcal{E}}$$

and $\hat{\phi} = \hat{\phi} \circ \hat{\mathcal{E}}$. Clearly, the dual weight for \mathcal{M} is the restriction of $\hat{\phi}$. Let τ be the canonical trace and let us denote the canonical trace for \mathcal{M} by $\tau_{\mathcal{M}}$, then we have by [6, Cor. 4.22]

$$[D\hat{\phi}\circ\hat{\mathcal{E}}:\tau_{\mathcal{M}}\circ\hat{\mathcal{E}}]_{t}=[D\hat{\phi}|_{\mathcal{M}\rtimes_{\sigma^{\phi}|_{\mathcal{M}}}\mathbb{R}}:D\tau_{\mathcal{M}}]_{t}=\lambda(t)=[D\hat{\phi}\circ\hat{\mathcal{E}}:D\tau]_{t},$$

it follows that $\tau = \tau_{\mathcal{M}} \circ \hat{\mathcal{E}} = \tau \circ \hat{\mathcal{E}}$. Consequently, we can see that the space of $\tau_{\mathcal{M}}$ -measurable elements $L_0(\mathcal{M})$ can be identified with a *-subalgebra in $L_0(\mathcal{N})$ and therefore also $L_p(\mathcal{M}) \subseteq L_p(\mathcal{N})$, 0 . In particular, for <math>p = 1 we obtain the identification $\mathcal{M}_* \subseteq \mathcal{N}_*$, given as

$$\omega \equiv \omega \circ \mathcal{E}, \qquad \omega \in \mathcal{M}_*.$$

By [5, Prop. 2.3], for $1 \leq p \leq \infty$, \mathcal{E} can be extended to a contractive projection \mathcal{E}_p of $L_p(\mathcal{N})$ onto $L_p(\mathcal{M})$. We have

$$\mathcal{E}_1(h_\omega) = h_{\omega \circ \mathcal{E}}, \qquad h_\omega \in L_1(\mathcal{N})$$

and \mathcal{E}_q is the adjoint of \mathcal{E}_p for 1/p + 1/q = 1. The index p is often dropped, so we just write \mathcal{E} instead of \mathcal{E}_p . For $1 \leq p, q, r \leq \infty$ such that $1/p + 1/q + 1/r \leq 1$, we have

$$\mathcal{E}(hxk) = h\mathcal{E}(x)k, \qquad h \in L_p(\mathcal{M}), \ k \in L_q(\mathcal{M}), \ x \in L_r(\mathcal{N}). \tag{1}$$

Lemma 1. In the above situation, let $\psi, \varphi \in \mathcal{M}_*^+$ and let $\tilde{\psi} = \psi \circ \mathcal{E}$, $\tilde{\varphi} = \varphi \circ \mathcal{E}$. Then for $1/2 < \alpha/2 \le z$ we have

$$D_{\alpha,z}(\psi||\varphi) = D_{\alpha,z}(\tilde{\psi}||\tilde{\varphi}).$$

Proof. Using the above identifications, we see that $h_{\psi} = h_{\tilde{\psi}}$, $h_{\varphi} = h_{\tilde{\varphi}}$. Assume that $D_{\alpha,z}(\psi \| \varphi) < \infty$, then there is some $y \in L_{2z}(\mathcal{M})s(\varphi)$ such that

$$h_{\psi}^{\frac{\alpha}{2z}} = y h_{\varphi}^{\frac{\alpha-1}{2}z}.$$
 (2)

Since $L_{2z}(\mathcal{M}) \subseteq L_{2z}(\mathcal{N})$ and $s(\varphi) = s(\tilde{\varphi})$, we see that $y \in L_{2z}(\mathcal{N})s(\tilde{\varphi})$, so that

$$Q_{\alpha,z}(\tilde{\psi}||\tilde{\varphi}) = ||y||_{2z}^{2z} = Q_{\alpha,z}(\psi||\varphi).$$

This implies that $D_{\alpha,z}(\tilde{\psi}\|\tilde{\varphi}) \leq D_{\alpha,z}(\psi\|\varphi)$ in general. Assume next that $1/2 < \alpha/2 \leq z$ and let $D_{\alpha,z}(\tilde{\psi}\|\tilde{\varphi}) < \infty$, so that (2) is satisfied with some $y \in L_{2z}(\mathcal{N})s(\tilde{\varphi})$. Using the assumption on α, z and (1), we have

$$h_{\psi}^{\frac{\alpha}{2z}} = \mathcal{E}(h_{\psi}^{\frac{\alpha}{2z}}) = \mathcal{E}(y)h_{\varphi}^{\frac{\alpha-1}{2z}}.$$

By uniqueness of y and the fact that $s(\tilde{\varphi}) = s(\varphi) \in \mathcal{M}$, we obtain $y = \mathcal{E}(y) \in L_{2z}(\mathcal{M})s(\varphi)$. This finishes the proof.

2 The limit $\alpha \setminus 1$

Haagerup reduction theorem [1, Thm. 2.1] says that there is a von Neumann algebra \mathcal{R} with a faithful normal state ϕ and a sequence of von Neumann algebras $(\mathcal{R}_n)_{n\geq 1}$ such that

- (i) $\mathcal{M} \subseteq \mathcal{R}$ and there is a conditional expectation \mathcal{E} on \mathcal{R} onto \mathcal{M} such that $\phi \circ \mathcal{E} = \phi$,
- (ii) $\mathcal{R}_n \subseteq \mathcal{R}_{n+1}$ and each \mathcal{R}_n is finite,
- (iii) $\bigcup_n \mathcal{R}_n$ is w*-dense in \mathcal{R} ,
- (iv) for each n there is a conditional expectation on \mathcal{R} onto \mathcal{R}_n such that $\phi \circ \mathcal{E}_n = \phi$.

For any $\psi \in \mathcal{M}_*^+$, let us denote $\hat{\psi} := \psi \circ \mathcal{E}$ and $\psi_n := \hat{\psi} \circ \mathcal{E}_n$. Then $\psi_n \to \hat{\psi}$ in norm. By DPI and martingale convergence (or DPI + LS), we have

$$D_{\alpha,z}(\psi\|\varphi) = D_{\alpha,z}(\hat{\psi}\|\hat{\varphi}) = \lim_{n} D_{\alpha,z}(\psi_n\|\varphi_n), \quad \text{if } \max\{\frac{\alpha}{2}, \alpha - 1\} \le z \le \alpha.$$
 (3)

Using Lemma 1 and LS, we get

$$D_{\alpha,z}(\psi\|\varphi) = D_{\alpha,z}(\hat{\psi}\|\hat{\varphi}) \le \liminf_{n} D_{\alpha,z}(\psi_n\|\varphi_n), \quad \text{if } \frac{\alpha}{2} \le z.$$
 (4)

Proposition 1. Let $\max\{\alpha/2, \alpha-1\} \leq z \leq \alpha$. Then for any $z' \geq z$,

$$D_{\alpha,z'}(\psi||\varphi) \le D_{\alpha,z}(\psi||\varphi).$$

Proof. By [3, Lemma 1.3], we have $D_{\alpha,z'}(\psi_n \| \varphi_n) \leq D_{\alpha,z}(\psi_n \| \varphi_n)$ for all n. The statement is proved by using (3) for z and (4) for z'.

Corollary 1. Let $1 < \alpha \le 2$. Then for any $z \ge 1$, we have

$$D_{\alpha,z}(\psi||\varphi) \leq D_{\alpha,1}(\psi||\varphi).$$

Proof. This follows by putting z = 1 and z' = z is Proposition 1.

The next statement is an extension of [4, Lemma 2].

Lemma 2. Let $\alpha > 1$ and $z \ge 1$. Then

$$D_{\beta,1}(\psi \| \varphi) \le D_{\alpha,z}(\psi \| \varphi),$$

where $\beta := \frac{\alpha + z - 1}{z} > 1$.

Proof. Using the scaling property of $D_{\alpha,z}$, we may assume that $\psi(1) = 1$. We will also suppose that $D_{\alpha,z}(\psi||\varphi) < \infty$, otherwise there is nothing to prove. In this case,

$$h_{\psi}^{\frac{\alpha}{2z}} = y h_{\varphi}^{\frac{\alpha-1}{2z}}$$

for some $y \in L_{2z}(\mathcal{M})s(\varphi)$. We then get

$$h_{\psi}^{\frac{\beta}{2}} = h_{\psi}^{\frac{z-1}{2z}} h_{\psi}^{\frac{\alpha}{2z}} = h_{\psi}^{\frac{z-1}{2z}} y h_{\varphi}^{\frac{\alpha-1}{2z}} = \eta h_{\varphi}^{\frac{\beta-1}{2}}$$

with $\eta = h_{\psi}^{\frac{z-1}{2z}} y \in L_2(\mathcal{M})$. By [2, Thm. 3.6], it follows that

$$Q_{\beta,1}(\psi\|\varphi) = \|\Delta_{\psi,\varphi}^{\frac{\beta}{2}}(h_{\varphi}^{1/2})\|_{2}^{2} = \|\eta\|_{2}^{2} \le \|y\|_{2z}^{2} = Q_{\alpha,z}(\psi\|\varphi)^{1/z},$$

this implies the statement.

Corollary 2. Assume that $D_{\alpha_0,z_0}(\psi \| \varphi) < \infty$ for some $1 < \alpha_0$ and either $z_0 \ge 1$ or $\alpha_0/2 \le z_0 \le 1$. Then for any z > 1/2 we have

$$\lim_{\alpha \searrow 1} D_{\alpha,z}(\psi \| \varphi) = D_1(\psi \| \varphi) < \infty.$$

Proof. We first note that under the above assumptions, $D_{\beta,1}(\psi \| \varphi) < \infty$ for some $\beta > 1$. Indeed, this follows from Lemma 2 in the first case, or by [3, Prop. 2.3] in the second case (note that we necessarily have $\alpha_0 - 1 \le \alpha_0/2 \le z_0 \le 1 < \alpha_0$).

For $z \ge 1$, the statement now follows by using Lemma 2 and Corollary 1 for α close enough to 1. If $1/2 < z \le 1$, we may use [3, Prop. 2.3] or Proposition 1 for α close enough to 1.

References

[1] U. Haagerup, M. Junge, and Q. Xu. A reduction method for noncommutative L_p -spaces and applications. Transactions of the American Mathematical Society, 362(4):2125–2165, 2010. doi:10.1090/S0002-9947-09-04935-6.

- [2] F. Hiai, Quantum f-Divergences in von Neumann Algebras: Reversibility of Quantum Operations, Mathematical Physics Studies, Springer Singapore, 2021
- [3] F. Hiai, Monotonicity of $z \mapsto D_{\alpha,z}(\psi \| \varphi)$, (12/3/2023, 12/8/2023), notes.
- [4] A. Jenčová, Notes for αz -Rényi divergence, December 7, 2023, notes.
- [5] M. Junge and Q. Xu. Noncommutative Burkholder/Rosenthal inequalities. *The Annals of Probability*, 31(2):948–995, 2003.
- [6] M. Takesaki. Theory of Operator Algebras. II, volume 125 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2003. ISBN 3-540-42914-X. doi:10.1007/978-3-662-10451-4.