Deformation thy & Partition Lie Algebras. Akhil Hathen X/ I smooth variety. Recall: 1) Deformations of X over CTEJ/(E2) - H' [Tx]. 21 Aut (1st order def.) - H° (Tx.). 3) Given a first order determation ye H' (Tx),
then [y,y] & H' (Tx) vanishes AD y extends to a define
over [[E]/(E3)] Principle: RT (X, Tx) together w/ natural structure determine

the det. they of X.

Ex: Consider

| local Artigian (Sets.

(F-algs.)

A poisson classes of det ins 'of X A. Ex: One can regard RP(x, Tex) as a DGLA.

(explicitly a in the Dolbeaut complex). Generally, given a DGLA ge one has Fg: Art. C-algs. - 5%. A ~ ma s A consider ma & g. ~ solutions of the Maver - Cartan eq. dx + \(\frac{1}{2} \big[\times_1 \times_1 \] = 0 \ \(\times_1 \times_2 \big[\times_2 \times_2 \] \(\times_1 \times_2 \times_2 \big[\times_2 \times_2 \times_2 \] \(\times_1 \times_2 \

	Principle: (Delipne, Drinfeld, Feigin)
	Principle: (Deligne, Printeld, Feigin) Any det'n problem ower from a DGLA.
	Ex: Deforming a sheat & on X -> RT(End(E)).
88.78	Ex: (Bogomolov-Tian-Todorov) X smooth groj., wx = Ox.
	Than X has unabstructed deformations
- Notes	Than X has unobstructed deformations. In fact, RT(TX) is abelian, i.e. DGLA w/zero diff. Ex: (Goldman- Millson)
101	Consider the variety of grp homo's: $R(\hat{n}_i X_i, 6) = 1 + : \hat{n}_i X_i \rightarrow 6$
	Consider the variety of grp homo's:
-	$R(\lambda, x, 6) = 1+ \lambda \times \rightarrow 6.$
T's	If $f \in R(h, X, G)$ corresponds to a bold image, then has quadratic singulativities at f .
	singularities at t.
	Strategy: associated DGLA is formal (9 iso to a DGLA)
	Strategy: associated DGLA is tormal (qiso. to a DGLA) =D quadratic singularities. w/d=0
	This principle becames a theorem in DAG.
	Det: K a tield, SCRK
	Arth C SCRE
	11
) & R (i) Ho (R) is local Autinian;
) IR (i) Ho (R) is local Autinian; (ii) D Hu (R) is fed. over k

	Octo: A formal a malili ample of a formal
	Defn: A formal a moduli problem is a functor F: Arth - Spc s.t.
	PC S.Y.
	(:1 F/6/ ~ -
	(i) $F(k) \simeq x$.
	(:) + A -> A
	(ii) if $A_1 \rightarrow A_2$ is a pull back in Author s.t. A3 -> A4 Ho (A2) ->> Ho(A4) & Ho (A1) ->> (A1)
	is a pull back in Auth s.t.
-	A3 -> A4 Ho (Az) ->> Ho(A4) &
01. 1	Ho (As/ -+> Ho (Ag)
KK: Any	$\Rightarrow F(A_1) \simeq F(A_2) \times F(A_3).$ $F(A_4)$
formal mod.	TAA
prob.	In practice, most geometric situations (e.g., formal oungleton of schemes, stacks, det's of alg. objects) produce formal mod. problems.
gives a	schenes, stacks, dets of alg. objects produce formal mod.
de formation	problems.
problem.	
	Thin : (Lurie - Pridham): Suppose they k = 0, there is an ex.
	Thu : (Lurie - Pridham): Suppose char k = 0, there is an eq. of on- cats:
	Model: \(\alpha \) DGCAK.
	· ·
	tormal moduli
	pbs.
	pbs. FINE TO FE-1]
	Extensions of this worlt by: Hennian, Nuiten, Gaits gary-Rosen blyom.
	Ex: 6 gn g/g. grown
	Ex: 6 gn alg. group. B6 Lie alg. of 6. Jn char. 0, formal groups = Lie Algs.
	In char. O, formal aroups = Lie Alar.

	2
	= D p= ? Goerss. D p7 ?, one writes down a bosis of the ah of a free algebras (Arane-Browt ner).
	- 77
	p/ c, one wither down a bosis of the Gh. of a tree
	919ebras (Mrane - Drawtner).
1244	
.) ······	