AMENDMENTS TO THE CLAIMS:

4 4

This listing of claims will replace all prior versions and listings of claims in the application:

Claims 1-39. (Canceled).

40. (New) A compound of formula IA:

wherein,

X is O or S;

Z is -CHR₈-;

 R_1 is chosen from hydroxy, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halogen, halo (C_1-C_6) alkyl, (C_1-C_6) alkoxy-CO-, CN, NO₂, NH₂, mono- or di (C_1-C_6) alkylamino, and carboxyl;

 $R_3 \text{ is chosen from hydroxy, } (C_1-C_6)\text{alkyl, } (C_2-C_6)\text{alkenyl, hydroxy}(C_1-C_6)\text{alkyl, } (C_1-C_6)\text{alkoxy, } (C_1-C_6)\text{alkoxy}(C_1-C_6)\text{alkyl, hydroxy}(C_1-C_6)\text{alkoxy}(C_1-C_6)\text{alkyl, } (C_3-C_7)\text{cycloalkyl}(C_1-C_6)\text{alkyl, aryl, aryl}(C_1-C_6)\text{alkyl, aryloxy, aryl}(C_1-C_6)\text{alkoxy, aryloxy}(C_1-C_6)\text{alkyl, aryl}(C_1-C_6)\text{alkoxy}(C_1-C_6)\text{alkyl, halo}(C_1-C_6)\text{alkyl, NH}_2,\\ \text{amino}(C_1-C_6)\text{alkyl, mono- or di}(C_1-C_6)\text{alkylamino,mono- or di}(C_1-C_6)\text{alkylamino}(C_1-C_6)\text{alkyl, } (C_1-C_6)\text{alkyl-CO-, } (C_1-C_6)\text{alkyl-CO-O-, } (C_1-C_6)\text{alkyl-CO-O-(}(C_1-C_6)\text{alkyl, } (C_1-C_6)\text{alkyl, } (C_1-C_6)\text{alkyl-CO-O-(}(C_1-C_6)\text{alkyl, } (C_1-C_6)\text{alkyl, } (C_1-C_6)\text{alkyl, } (C_1-C_6)\text{alkyl, } (C_1-C_6)\text{alkyl-CO-O-(}(C_1-C_6)\text{alkyl, } (C_1-C_6)\text{alkyl, } (C_1$

 C_6)alkoxy-CO-, (C_1 - C_6)alkoxy-CO-(C_1 - C_6)alkyl, (C_1 - C_6)alkoxy-CO-(C_1 - C_6)alkyl, carbamoyl, mono- or di(C_1 - C_6)alkylcarbamoyl, carboxyl and (C_1 - C_6)alkyl, C_6)alkyl,

4 8

wherein the (C_3-C_7) cycloalkyl or aryl group is unsubstituted or is substituted with 1 or 2 substituents each independently chosen from hydroxy, (C_1-C_6) alkyl, halogen, (C_1-C_6) alkoxy, NH_2 , CN and NO_2 , or one of R_3 or R_4 and R_6 together form a bond between the ring atoms to which they are attached;

 R_4 is chosen from hydroxy, (C_1-C_6) alkyl, hydroxy (C_1-C_6) alkyl, (C_1-C_6) alkoxy and (C_1-C_6) alkoxy (C_1-C_6) alkyl;

 R_5 is chosen from H, hydroxy, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_1-C_6) alkoxy, (C_1-C_6) alkoxy, (C_1-C_6) alkyl, (C_3-C_7) cycloalkyl, (C_3-C_7) cycloalkyl, (C_1-C_6) alkyl, aryl, aryl,

wherein the (C_3-C_7) cycloalkyl or aryl is unsubstituted or is substituted with 1 or 2 substituents each independently chosen from hydroxy, (C_1-C_6) alkyl, halogen, (C_1-C_6) alkoxy, NH₂, CN and NO₂, or R₄ and R₅ form, together with the carbon ring atoms to which they are attached, a condensed five to seven membered saturated carbocyclic ring substituted with 1, 2, or 3 substituents, R₉,

wherein R_9 are each independently chosen from hydroxy, (C_1-C_6) alkyl, halogen, NH₂, NO₂, (C_3-C_7) cycloalkyl, hydroxy (C_1-C_6) alkyl, halo (C_1-C_6) alkyl, amino (C_1-C_6) alkyl, mono- or di (C_1-C_6) alkylamino, mono- or di (C_1-C_6) alkylamino (C_1-C_6) alkyl, (C_1-C_6) alkoxy,

 (C_1-C_6) alkoxy (C_1-C_6) alkyl, carboxyl, (C_1-C_6) alkyl-CO-, (C_1-C_6) alkyl-CO-O-, (C_1-C_6) alkoxy-CO-, (C_1-C_6) alkoxy-CO- (C_1-C_6) alkyl, carbamoyl mono- or di (C_1-C_6) alkylcarbamoyl and oxo;

6.0

 R_6 is chosen from H, hydroxy, (C_1-C_6) alkyl, (C_1-C_6) alkoxy and (C_1-C_6) alkoxy(C_1-C_6)alkyl, or R_6 forms a bond between the ring atom to which it is attached and the ring atom to which R_7 is attached;

 R_7 is chosen from H, hydroxy, (C_1-C_6) alkyl, hydroxy (C_1-C_6) alkyl, (C_1-C_6) alkoxy and (C_1-C_6) alkoxy (C_1-C_6) alkyl;

 $R_8 \text{ is H, hydroxy, } (C_1\text{-}C_6)\text{alkyl, hydroxy} (C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkoxy or } (C_1\text{-}C_6)\text{alkoxy} (C_1\text{-}C_6)\text{alkyl;}$

 $R_{15} \text{ is chosen from H, } (C_1\text{-}C_6)\text{alkyl, } (C_2\text{-}C_6)\text{alkenyl, hydroxy}(C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkyl, hydroxy}(C_1\text{-}C_6)\text{alkyl, halo}(C_1\text{-}C_6)\text{alkyl, amino}(C_1\text{-}C_6)\text{alkyl, mono- or di}(C_1\text{-}C_6)\text{alkylamino}(C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkyl-CO-, } (C_1\text{-}C_6)\text{alkyl-CO-} (C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkoxy-CO-, } (C_1\text{-}C_6)\text{alkoxy-CO-} (C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkoxy-CO-} (C_1\text{-}C_6)\text{alkyl, carbamoyl, mono- or di}(C_1\text{-}C_6)\text{alkylcarbamoyl and carboxyl;}$

R₁₆ is chosen from H and (C₁-C₆)alkyl;

 R_7 and R_8 are attached to the carbon ring atoms, which are adjacent; and m is 0 to 2;

or a pharmaceutically acceptable salt or ester thereof.

- 41. (New) The compound according to claim 40, wherein X is O.
- 42. (New) The compound according to claim 40, wherein X is S.
- 43. (New) The compound according to claim 40, wherein R_3 is chosen from hydroxy, (C_1-C_6) alkyl, hydroxy (C_1-C_6) alkyl, (C_1-C_6) alkoxy (C_1-C_6) alk

and (C_1-C_6) alkyl-CO-O- (C_1-C_6) alkyl, and R_4 chosen from is (C_1-C_6) alkyl and hydroxy (C_1-C_6) alkyl.

4,0

- 44. (New) The compound according to claim 40, wherein R₃ is chosen from hydroxy, hydroxy(C₁-C₆)alkyl, and (C₁-C₆)alkoxy(C₁-C₆)alkyl, and R₄ is (C₁-C₆)alkyl.
- 45. (New) The compound according to claim 40, wherein R_4 and R_5 form, together with the carbon ring atoms to which they are attached, a condensed six membered saturated carbocyclic ring.
- 46. (New) The compound according to claim 40, wherein the compound is 1α -Methyl-1,3,4,5,6,11b-hexahydro-2H-11-oxa-4a-aza-benzo[a]fluoren-1-ol, (1α -Methyl-1,3,4,5,6,11b β -hexahydro-2H-11-oxa-4a-aza-benzo[a]fluoren-1-yl)-methanol, (-)-(1 α -Methyl-1,3,4,5,6,11bβ-hexahydro-2H-11-oxa-4a-aza-benzo[a]fluoren-1-yl)-methanol, (+)- $(1\alpha$ -Methyl-1,3,4,5,6,11bβ-hexahydro-2H-11-oxa-4a-aza-benzo[a]fluoren-1-yl)methanol, 1α-lsopropyl-1,3,4,5,6,11b-Hexahydro-2H-11-oxa-4a-aza-benzo[a]fluoren-1ol, 1α -Ethyl-1,3,4,5,6,11b β -hexahydro-2H-11-oxa-4a-aza-benzo[a]fluoren-1-ol, (1α -Ethyl-1,3,4,5,6,11bβ-hexahydro-2H-11-oxa-4a-aza-benzo[a]fluoren-1-yl)-methanol, (1-Hydroxymethyl-1,3,4,5,6,11b-hexahydro-2H-11-oxa-4a-aza-benzo[a]fluoren-1-yl]methanol, 1-Methoxymethyl- 1α -methyl- $1,3,4,5,6,11b\beta$ -hexahydro-2H-11-oxa-4a-azabenzo[a]fluorene, (-)-1-Methoxymethyl-1 α -methyl-1,3,4,5,6,11b β -hexahydro-2H-11-oxa-4a-aza-benzo[a]fluorene, (+)-1-Methoxymethyl-1 α -methyl-1,3,4,5,6,11b β -hexahydro-2H-11-oxa-4a-aza-benzo[a]fluorene, 1α -Methyl-1,3,4,5,6,11b- α -hexahydro-2H-11-oxa-4a-aza-benzo[a]fluorene-1-carboxylic acid ethyl ester, 1-Ethoxymethyl-1α-methyl-1,3,4,5,6,11b β -hexahydro-2H-11-oxa-4a-aza-benzo[a]fluorene, (1 α -Methyl- $1,3,4,5,6,11b\alpha$ -hexahydro-2H-11-oxa-4a-aza-benzo[a]fluoren-1-yl)-methanol, (-)-(1α -

Methyl-1,3,4,5,6,11bα-hexahydro-2H-11-oxa-4a-aza-benzo[a]fluoren-1-yl)-methanol, (+)-(1α-Methyl-1,3,4,5,6,11bα-hexahydro-2H-11-oxa-4a-aza-benzo[a]fluoren-1-yl)-methanol, 1α–Ethyl-1,3,4,5,6,11bα-hexahydro-2H-11-oxa-4a-aza-benzo[a]fluorene-1-carboxylic methyl ester, 1-Methoxymethyl-1α-methyl-1,3,4,5,6,11bα-hexahydro-2H-11-oxa-4a-aza-benzo[a]fluorene, (-)-1-Methoxymethyl-1α-methyl-1,3,4,5,6,11bα-hexahydro-2H-11-oxa-4a-aza-benzo[a]fluorene, (+)-1-Methoxymethyl-1α-methyl-1,3,4,5,6,11bα-hexahydro-2H-11-oxa-4a-aza-benzo[a]fluorene, (1α-Ethyl-1,3,4,5,6,11bα-hexahydro-2H-11-oxa-4a-aza-benzo[a]fluorene-1-yl)-methanol or acetic acid 1α-Methyl-1,3,4,5,6,11bβ-hexahydro-2H-11-oxa-4a-aza-benzo[a]fluoren-1-ylmethyl ester.

- 47. (New) The pharmaceutical composition comprising at least one compound according to claim 1 and a pharmaceutically acceptable diluent, carrier and/or excipient.
- 48. (New) A method for the treatment of a disease or condition where an antagonist of the alpha-2C adrenoceptor is indicated to be useful, comprising administering to a patient in need of such treatment an effective amount of a compound of formula IA:

$$\begin{array}{c|c} R_{16} \\ \hline \\ (R_1)m \\ \hline \\ X \\ \hline \\ R_3 \\ \hline \\ R_4 \\ \hline \\ R_5 \\ \hline \end{array} \qquad IA$$

wherein,

X is O or S;

Z is -CHR₈-;

 R_1 is chosen from hydroxy, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halogen, halo (C_1-C_6) alkyl, (C_1-C_6) alkoxy-CO-, CN, NO₂, NH₂, mono- or di (C_1-C_6) alkylamino, and carboxyl;

 $R_3 \text{ is chosen from hydroxy, } (C_1\text{-}C_6)\text{alkyl, } (C_2\text{-}C_6)\text{alkenyl, hydroxy}(C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkoxy, } (C_1\text{-}C_6)\text{alkoxy}(C_1\text{-}C_6)\text{alkyl, hydroxy}(C_1\text{-}C_6)\text{alkoxy}(C_1\text{-}C_6)\text{alkyl, } (C_3\text{-}C_7)\text{cycloalkyl, } (C_3\text{-}C_7)\text{cycloalkyl, } (C_3\text{-}C_7)\text{cycloalkyl, aryl}(C_1\text{-}C_6)\text{alkyl, aryl}(C_1\text{-}C_6)\text{alkyl, aryloxy, aryloxy, aryloxy, aryloxy}(C_1\text{-}C_6)\text{alkyl, aryl}(C_1\text{-}C_6)\text{alkoxy}(C_1\text{-}C_6)\text{alkyl, halo}(C_1\text{-}C_6)\text{alkyl, NH}_2, \\ \text{amino}(C_1\text{-}C_6)\text{alkyl, mono- or di}(C_1\text{-}C_6)\text{alkylamino,mono- or di}(C_1\text{-}C_6)\text{alkyl, aryloxy, } (C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkoxy-CO-}(C_1\text{-}C_6)\text{alkoxy-CO-}(C_1\text{-}C_6)\text{alkoxy-CO-}(C_1\text{-}C_6)\text{alkoxy-CO-}(C_1\text{-}C_6)\text{alkyl, } (C_1\text{-}C_6)\text{alkyl, }$

wherein the (C₃-C₇)cycloalkyl or aryl group is unsubstituted or is substituted with 1 or 2 substituents each independently chosen from hydroxy, (C₁-C₆)alkyl, halogen, (C₁-

C₆)alkoxy, NH₂, CN and NO₂, or one of R₃ or R₄ and R₆ together form a bond between the ring atoms to which they are attached;

Age of the

 R_4 is chosen from hydroxy, (C_1-C_6) alkyl, hydroxy (C_1-C_6) alkyl, (C_1-C_6) alkoxy and (C_1-C_6) alkoxy (C_1-C_6) alkyl;

 R_5 is chosen from H, hydroxy, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_1-C_6) alkoxy, (C_1-C_6) alkoxy, (C_1-C_6) alkyl, (C_3-C_7) cycloalkyl, (C_3-C_7) cycloalkyl, (C_1-C_6) alkyl, aryl, aryl, aryl, aryl, aryl, aryl, aryloxy, aryloxy,

wherein the (C_3-C_7) cycloalkyl or aryl is unsubstituted or is substituted with 1 or 2 substituents each independently chosen from hydroxy, (C_1-C_6) alkyl, halogen, (C_1-C_6) alkoxy, NH_2 , CN and NO_2 , or R_4 and R_5 form, together with the carbon ring atoms to which they are attached, a condensed five to seven membered saturated carbocyclic ring substituted with 1, 2, or 3 substituents, R_9 ,

wherein R_9 are each independently chosen from hydroxy, (C_1-C_6) alkyl, halogen, NH₂, NO₂, (C_3-C_7) cycloalkyl, hydroxy(C_1-C_6)alkyl, halo(C_1-C_6)alkyl, amino(C_1-C_6)alkyl, mono- or di(C_1-C_6)alkylamino, mono- or di(C_1-C_6)alkylamino(C_1-C_6)alkyl, (C_1-C_6) alkoxy, (C_1-C_6) alkoxy((C_1-C_6) alkyl, carboxyl, (C_1-C_6) alkyl-CO-, (C_1-C_6) alkyl-CO-o-, (C_1-C_6) alkoxy-CO-, (C_1-C_6) alkoxy-CO-((C_1-C_6) alkyl, carbamoyl mono- or di((C_1-C_6) alkylcarbamoyl and oxo;

 R_6 is chosen from H, hydroxy, (C_1-C_6) alkyl, (C_1-C_6) alkoxy and (C_1-C_6) alkoxy(C_1-C_6)alkyl, or R_6 forms a bond between the ring atom to which it is attached and the ring atom to which R_7 is attached;

 R_7 is chosen from H, hydroxy, (C_1-C_6) alkyl, hydroxy (C_1-C_6) alkyl, (C_1-C_6) alkoxy and (C_1-C_6) alkoxy (C_1-C_6) alkyl;

 R_8 is H, hydroxy, (C_1-C_6) alkyl, hydroxy (C_1-C_6) alkyl, (C_1-C_6) alkoxy or (C_1-C_6) alkoxy (C_1-C_6) alkyl;

 $R_{15} \text{ is chosen from H, } (C_1-C_6)\text{alkyl, } (C_2-C_6)\text{alkenyl, hydroxy} (C_1-C_6)\text{alkyl, } (C_1-C_6)\text{alkyl, hydroxy} (C_1-C_6)\text{alkyl, halo} (C_1-C_6)\text{alkyl, amino} (C_1-C_6)\text{alkyl, mono- or di} (C_1-C_6)\text{alkylamino} (C_1-C_6)\text{alkyl, } (C_1-C_6)\text{alkyl-CO-, } (C_1-C_6)\text{alkyl-CO-} (C_1-C_6)\text{alkyl, } (C_1-C_6)\text{alkoxy-CO-, } (C_1-C_6)\text{alkoxy-CO-} (C_1-C_6)\text{alkyl, carbamoyl, mono- or di} (C_1-C_6)\text{alkylcarbamoyl and carboxyl; } (C_1-C_6)\text{alkyl, carbamoyl, mono- or di} (C_1-C_6)\text{alkylcarbamoyl and carboxyl; } (C_1-C_6)\text{alkyl, carbamoyl, mono- or di} (C_1-C_6)\text{alkylcarbamoyl and carboxyl; } ($

R₁₆ is chosen from H and (C₁-C₆)alkyl;

 R_7 and R_8 are attached to the carbon ring atoms, which are adjacent; and m is 0 to 2;

or a pharmaceutically acceptable salt or ester thereof.

49. (New) The method according to claim 48, wherein the disease or condition is chosen from a mental disorder propagated by stress, Parkinson's disease, depression, schizophrenia, attention deficit hyperactivity disorder, post-traumatic stress-disorder, anxiety disorders, obsessive compulsive disorder, Tourette's syndrome, blepharospasm and other focal dystonias, temporal lobe epilepsy with psychosis, druginduced psychosis, Huntington's disease, disorders caused by fluctuation of the levels of sex hormones, and panic disorder.