マルチサイクルの機能動作による故障診断用パターン生成

神崎 壽伯 王 シンレイ 甲斐 博 樋上 喜信 高橋 寛 愛媛大学大学院

発表概要

- 1. 研究の背景
- 2. 研究の目的・目標
- 3. 提案する故障診断パターン生成法
- 4. 実験結果
- 5. まとめ

研究の背景

製造技術の発展によりLSIの高集積化

⇒回路が大規模になり,故障箇所の特定(故障診断)が困難に

高精度な故障診断の実現には...

被疑故障を区別できる診断用パターンを新たに生成するための 生成アルゴリズムが必要

背景~故障辞書に基づく故障診断~

表1 故障辞書に基づく故障診断(0:未検出 1:検出)

	f1	f2	f3	f4	f5	f6
t1	1	0	0	1	0	0
t2	1	1	0	1	0	0
t3	0	1	0	0	1	0
t4	0	0	1	0	1	1
T1	1	0	0	0	0	1

f1とf4, f3とf6の検出/未検出が同じ ⇒{f1,f4}と{f3,f6}は診断できずf2,f5の みが診断可能

> 診断用パターン生成の ためにコストがかかる

検出/未検出が異なる

T1パターンを改めて生成 ⇒f1,f4,f3,f6が診断可能に

背景~マルチサイクルテスト~

複数回のキャプチャサイクルを与え、各サイクルで得たテスト応答を次のテストパターンとして 再利用する方法

⇒テストパターン数を削減でき、故障検出能力の向上に利用されている

背景~マルチサイクルテスト~

マルチサイクルテストにおいては、組合せ論理の機能パターンを利用 ⇒通常のシングルサイクルテストで検出不可(可能)の故障を検出する(しない)ことがある

研究の目的・目標

目的:

診断対象回路の組合せ論理回路をパターン生成器として活用した、 マルチサイクルの機能動作による故障診断用パターン生成法の提案

目標:

提案手法で生成した故障診断用パターンを用いて故障診断を行い、 その効果を評価する

提案する故障診断パターン生成法

表2 マルチサイクル機能動作による診断パターン生成

	f1	f2	f3	f4	f5	f6
t1	1	0	0	1	0	0
t2	1	1	0	1	0	0
t3	0	1	0	0	1	0
t4	0	0	1	0	1	1
t4@3cycle	0	0	0	1	1	1

t4@3cycleを用いることで f1とf4およびf3とf6が、それぞれ区別 できるように

初期パターンt4を用いて、組合せ論理を3回繰り返し実行した機能パターン

故障診断を行った回路情報

パターン数:10000

故障シミュレーションを行い、検出率の高い上位30%の故障を対象に

()内の値は対象故障全体に占める割合

表3 回路情報と1サイクルでの診断可能な故障数

回路名	故障数	対象故障数	診断可能な故障数
s9234	6927個	2078個	1027個(49.4%)
s13207	9815個	2944個	1201個(40.8%)
b14	12811個	3843個	2828個(73.6%)

実験結果:故障診断能力(s9234回路)

MA¬Sとは、そのサイクルで診断可能な故障の内、サイクル数1の時に 診断できなかった故障数

表4 s9234回路での診断可能な故障数

サイクル数	診断可能な故障数	M人¬Sの故障数
1	1027個(49.4%)	0個(0%)
2	1110個(53.4%)	177個(8.5%)
3	1112個(53.5%)	217個(10.4%)
4	1025個(49.3%)	169個(8.1%)
5	1056個(50.8%)	197個(9.5%)

※()内の値は対象故障全体に 占める割合

パターン数:10000

実験結果:故障診断能力(s13207回路)

表5 s13207回路での診断可能な故障数

サイクル数	診断可能な故障数	M人¬Sの故障数
1	1201個(40.8%)	O個(0%)
2	1385個(47.0%)	371個(12.6%)
3	1359個(46.2%)	427個(14.5%)
4	1273個(43.2%)	414個(14.1%)
5	1247個(42.4%)	418個(14.2%)

※()内の値は対象故障全体に 占める割合

パターン数:10000

実験結果:故障診断能力(b14回路)

表6 b14回路での診断可能な故障数

サイクル数	診断可能な故障数	M人¬Sの故障数
1	2828個(73.6%)	O個(O%)
2	2841個(73.9%)	195個(5.1%)
3	2926個(76.1%)	260個(6.8%)
4	2914個(75.8%)	248個(6.5%)
5	2895個(75.3%)	237個(6.2%)

※()内の値は対象故障全体に 占める割合

パターン数:10000

まとめ

本研究のまとめ

- マルチサイクルの機能動作による故障診断用パターン生成法を提案
- ・実験結果より、提案する故障診断用パターン生成法によって、シングルサイクルテストでは 診断できなかった故障を新たに診断できることを確認

今後の課題

• 故障診断能力向上のための最適なサイクル数の調査