# National Aeronautics and Space Administration (NASA) Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM)

# Final Report on NASA Portable Laser Coating Removal Systems Field Demonstrations and Testing

NASA.PROJ.PLCRS.FTR.MR.01May08.F

May 1, 2008

Distribution Statement "A" applies. Authorized for public release; distribution is unlimited.

Contract No. NNH06CC40C DO #012

Prepared by: ITB Inc.

Submitted by: NASA TEERM

| Report Do                                              | cumentatio                                                                                                           | on Page                                                                                                                          |                                                       | Form Approved                                                                                                                                    |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| •                                                      |                                                                                                                      | •                                                                                                                                |                                                       | OMB No. 0704-0188                                                                                                                                |
| aspect of this collection of information, including su | ed, and completing and re<br>aggestions for reducing the<br>1215 Jefferson Davis Hig<br>ect to any penalty for faili | eviewing this collection of in<br>his burden to Department of<br>phway, Suite 1204, Arlingtor<br>ing to comply with a collection | ormation. Send c<br>Defense, Washing<br>VA 22202-4302 | omments regarding this burden estimate or any other gton Headquarters Services, Directorate for Respondents should be aware that notwithstanding |
|                                                        | 2. REPORT TYPE                                                                                                       |                                                                                                                                  | 18                                                    | B. DATES COVERED (From - To)                                                                                                                     |
| ,                                                      | Final Test Repor                                                                                                     | rt                                                                                                                               |                                                       | 09-08-2004 to 01-05-2008                                                                                                                         |
| 4. TITLE AND SUBTITLE                                  |                                                                                                                      |                                                                                                                                  |                                                       | a. CONTRACT NUMBER                                                                                                                               |
| Final Report on NASA Portable 1                        | Laser Coating                                                                                                        |                                                                                                                                  | 1                                                     | NNH06CC40C                                                                                                                                       |
| Removal Systems Field Demonst                          | rations and Testi                                                                                                    | ing                                                                                                                              | 5                                                     | b. GRANT NUMBER                                                                                                                                  |
|                                                        |                                                                                                                      |                                                                                                                                  |                                                       | C. PROGRAM ELEMENT NUMBER                                                                                                                        |
| 6. AUTHOR(S)                                           |                                                                                                                      |                                                                                                                                  | 5                                                     | d. PROJECT NUMBER                                                                                                                                |
| Rothgeb, Matthew, J.; McLaughl                         | in, Russell L.                                                                                                       |                                                                                                                                  |                                                       |                                                                                                                                                  |
|                                                        |                                                                                                                      |                                                                                                                                  |                                                       | e. TASK NUMBER                                                                                                                                   |
|                                                        |                                                                                                                      |                                                                                                                                  | 5                                                     | f. WORK UNIT NUMBER                                                                                                                              |
| 7. PERFORMING ORGANIZATION N                           | IAME(S) AND ADD                                                                                                      | ORESS(ES)                                                                                                                        |                                                       | B. PERFORMING ORGANIZATION REPORT NUMBER                                                                                                         |
| Technology Evaluation for                              | ITB Inc                                                                                                              |                                                                                                                                  | 1                                                     | NASA.PROJ.PLCRS.FTR.MR.01                                                                                                                        |
| <b>Environmental Risk Mitigation</b>                   | 1308 Resea                                                                                                           | arch Park Dr                                                                                                                     | I                                                     | May08.F                                                                                                                                          |
| Principal Center (TEERM)                               | Beavercree                                                                                                           | ek, OH 45432                                                                                                                     |                                                       |                                                                                                                                                  |
| MS: ITBINC                                             |                                                                                                                      |                                                                                                                                  |                                                       |                                                                                                                                                  |
| Kennedy Space Center, FL 32899                         | )                                                                                                                    |                                                                                                                                  |                                                       |                                                                                                                                                  |
| 9. SPONSORING / MONITORING AG                          | SENCY NAME(S)                                                                                                        | AND ADDRESS(ES)                                                                                                                  |                                                       | 0. SPONSOR/MONITOR'S                                                                                                                             |
|                                                        |                                                                                                                      |                                                                                                                                  |                                                       | ACRONYM(S)                                                                                                                                       |
|                                                        |                                                                                                                      |                                                                                                                                  |                                                       |                                                                                                                                                  |
|                                                        |                                                                                                                      |                                                                                                                                  | 4                                                     | 1. SPONSOR/MONITOR'S REPORT                                                                                                                      |
|                                                        |                                                                                                                      |                                                                                                                                  | '                                                     | NUMBER(S)                                                                                                                                        |
|                                                        |                                                                                                                      |                                                                                                                                  |                                                       | NOMBER(3)                                                                                                                                        |
| 12. DISTRIBUTION / AVAILABILITY                        | STATEMENT                                                                                                            |                                                                                                                                  |                                                       |                                                                                                                                                  |
| 13. SUPPLEMENTARY NOTES                                |                                                                                                                      |                                                                                                                                  |                                                       |                                                                                                                                                  |
| 14. ABSTRACT                                           |                                                                                                                      |                                                                                                                                  |                                                       |                                                                                                                                                  |
| 14. ABOTRAO!                                           |                                                                                                                      |                                                                                                                                  |                                                       |                                                                                                                                                  |
|                                                        |                                                                                                                      |                                                                                                                                  |                                                       |                                                                                                                                                  |
|                                                        |                                                                                                                      |                                                                                                                                  |                                                       |                                                                                                                                                  |
|                                                        |                                                                                                                      |                                                                                                                                  |                                                       |                                                                                                                                                  |
|                                                        |                                                                                                                      |                                                                                                                                  |                                                       |                                                                                                                                                  |
| 15. SUBJECT TERMS                                      |                                                                                                                      |                                                                                                                                  | <del></del>                                           |                                                                                                                                                  |
| Laser, portable, depainting, paint,                    | , removal, alumir                                                                                                    | num, evaluation, N                                                                                                               | DE                                                    |                                                                                                                                                  |
| 16. SECURITY CLASSIFICATION OF                         | E•                                                                                                                   | 17. LIMITATION                                                                                                                   | 18. NUMBE                                             | R 19a, NAME OF RESPONSIBLE                                                                                                                       |
|                                                        |                                                                                                                      | OF ABSTRACT                                                                                                                      | OF PAGES                                              | PERSON                                                                                                                                           |
| a. REPORT b. ABSTRACT                                  | c. THIS PAGE                                                                                                         |                                                                                                                                  |                                                       | 19b. TELEPHONE NUMBER                                                                                                                            |
|                                                        |                                                                                                                      |                                                                                                                                  |                                                       | (include area code)                                                                                                                              |
| <u> </u>                                               | 1                                                                                                                    |                                                                                                                                  | <u> </u>                                              | Standard Form 298 (Rev. 8-98)                                                                                                                    |

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18

# **Acronyms and Abbreviations**

AWT Altitude Wind Tunnel

CAA Clean Air Act

CL Clean-Lasersysteme
CrVI hexavalent chromium
CWA Clean Water Act

DoD US Department of Defense EDS Energy Dispersive Spectroscopy

ESTCP Environmental Security Technology Certification Program

GRC John H. Glenn Research Center GSE Ground Support Equipment

ioz inorganic zinc

JG-PP Joint Group on Pollution Prevention

kHz kiloHertz

KSC John F. Kennedy Space Center

mm millimeters

MST Mobile Support Tower

NASA National Aeronautics and Space Administration

NDE non-destructive evaluation

nm nanometers

OSHA Occupational Safety and Health Administration

PPE personal protective equipment

RCRA Resource Conservation and Recovery Act

SEM Scanning Electron Microscopy

SRB Solid Rocket Booster SSP Space Shuttle Program

TEERM NASA Technology Evaluation for Environmental Risk Mitigation Principal Center

TPS Thermal Protection System

US United States

USA United Space Alliance
VOC Volatile Organic Compound

W Watt

WPAFB Wright-Patterson Air Force Base

# **Executive Summary**

Processes currently used throughout the National Aeronautics and Space Administration (NASA) to remove corrosion and coatings from structures, ground service equipment, small parts and flight components result in waste streams consisting of toxic chemicals, spent media blast materials, and waste water. When chemicals are used in these processes they are typically high in volatile organic compounds (VOC) and are considered hazardous air pollutants (HAP). When blast media is used, the volume of hazardous waste generated is increased significantly.

Many of the coatings historically used within NASA contain toxic metals such as hexavalent chromium, and lead. These materials are highly regulated and restrictions on worker exposure continue to increase. Most recently the Occupational Safety and Health Administration (OSHA) reduced the permissible exposure limit (PEL) for hexavalent chromium (CrVI) from 52 to 5 micrograms per cubic meter of air as an 8-hour time-weighted average. Hexavalent chromium is found in numerous pretreatment and primer coatings used within the Space Shuttle Program.

In response to the need to continue to protect assets within the agency and the growing concern over these new regulations, NASA is researching different ways to continue the required maintenance of both facility and flight equipment in a safe, efficient, and environmentally preferable manner.

The use of laser energy to prepare surfaces for a variety of processes, such as corrosion and coating removal, weld preparation, and non destructive evaluation (NDE) is a relatively new application of the technology that has been proven to be environmentally preferable and in many cases less labor intensive than currently used removal methods. The novel process eliminates VOCs and blast media and captures the removed coatings with an integrated vacuum system. This means that the only waste generated are the coatings that are removed, resulting in an overall cleaner process.

The development of a Portable Laser Coating Removal System (PLCRS) started as the goal of a Joint Group on Pollution Prevention (JG-PP) project, led by the Air Force, where several types of lasers in several configurations were thoroughly evaluated. Following this project, NASA decided to evaluate the best performers on processes and coatings specific to the agency. Laser systems used during this project were all of a similar design, between 40 and 500 Watts, most of which had integrated vacuum systems in order to collect materials removed from substrate surfaces during operation.

Due to the fact that the technology lends itself to a wide variety of processes, several site demonstrations were organized in order to allow for greater evaluation of the laser systems across NASA. The project consisted initially of an introductory demonstration and a more indepth evaluation at Wright-Patterson Air Force Base. Additionally, field demonstrations occurred at Glenn Research Center and Kennedy Space Center (KSC). The objectives were to allow interested parties to observe the process on their items and ease any concerns that might provide a hurdle to implementation.

During these demonstrations several NASA specific applications were evaluated, including the removal of coatings within Orbiter tile cavities, removal of Teflon from Space Shuttle Main

Engine gaskets, removal of heavy grease from Solid Rocket Booster components, and the removal of coatings on weld lines for Shuttle and general ground service equipment for NDE. This entailed collecting measurements such as strip rates and temperature readings and performing NDE inspections after stripping.

In addition, several general industry applications such as corrosion removal, structural coating removal, weld line preparation and surface cleaning were evaluated. This included removal of coatings and corrosion from surfaces containing lead-based coatings and applications similar to launch structure maintenance and Crawler maintenance.

During the project lifecycle, an attempt was made to answer process specific concerns and questions as they arose. Some of these initially unexpected questions concerned the effects lasers might have on substrates used on flight equipment including strength, surface remelting, substrate temperature and corrosion resistance effects. Additionally a concern was what personal protective equipment (PPE) would be required for operating such a system including eye, breathing, and hearing protection. These questions although not initially planned, were fully explored as a part of this project.

Generally the results from testing were very positive. Corrosion was effectively removed from steel, but less successfully from aluminum alloys. While it easily removes corrosion from steel substrates even at low powers, white or light colored corrosion products typical of aluminum were not able to be removed. Coatings were able to be removed, with varying results, generally dark, matte and thin coatings were easier to remove. Coatings up to 16 mills thick were removable even with the lowest power laser, however such thick coatings took long periods of time to remove. For such applications higher power lasers should be used. Steel and aluminum panels were able to be cleaned for welding, with no known deleterious effects and weld lines were able to have coatings removed in critical areas for NDE while saving time as compared to other methods.

Shuttle components were able to be stripped efficiently and coatings were able to be completely removed, but the selectivity of the hand-held laser was not sensitive enough to allow for removal of only the primer layer, as the process demanded. Removing only the primer layer on Shuttle tile cavities allows for the preservation of underlying pretreatment which aids in corrosion resistance. It should be noted that a stationary two dimensional scanning laser was able to successfully remove primers while preserving pretreatments, showing promise for this type of application.

The technology in general had difficulty removing very thick coatings, such as those typically found on exterior structures. It should only be considered for this type of application for small-areas that may be difficult to work on with conventional methods. Additionally, higher power units such as the 300W, 500W or 750W lasers would be recommended. Similarly, the laser was able to remove contamination from parts, but the heavy greases found on the solid rocket boosters was very difficult to remove and frequent cleaning of the laser was required, however a modification of the vacuum system might alleviate this issue.

It was determined that substrates were not negatively affected by laser energy and corrosion rates of materials exposed to lasers was not increased as a result of exposure.

Air sampling showed that with the vacuum operating air exposure was not a risk to workers and no breathing protection would be required. Noise sampling showed that while the laser system did not exceed any limits, hearing protection is recommended would be likely be required at KSC if implemented.

It is the recommendation of the NASA Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) that KSC consider implementing this technology for cleaning, surface preparation for adhesive bonding, NDE, weld line preparation, small area depainting, and corrosion removal where chemical or media blasting is not optimum or completion of work is time-critical. Upon implementation other potential applications not tested during this project should be thoroughly explored and areas for further implementation identified. As NASA moves forward, other opportunities exist to continue the development of joint testing of this technology on larger-scale processes, including with the Air Force as they continue to test laser technologies and implement them in aircraft depainting processes.

# **Table of Contents**

| Acronyms and Abbreviations                                              | 111  |
|-------------------------------------------------------------------------|------|
| Executive Summary                                                       | iv   |
| Preface and Acknowledgements                                            | viii |
| 1.0. Introduction                                                       | 1    |
| 1.1. Cost Comparison, and Life-Cycle Cost Analysis                      | 1    |
| 1.2. Objectives of NASA Demonstrations                                  | 1    |
| 1.3. Regulatory & Other Drivers                                         | 2 2  |
| 2.0. Technology Description                                             | 2    |
| 3.0. Field Demonstrations                                               | 3    |
| 3.1. Previous Testing                                                   | 3    |
| 3.2. NASA Interest in Follow-on Field Demonstrations                    | 4    |
| 3.3. Wright-Patterson Air Force Base Demonstration (August 9-11, 2004)  | 5    |
| 3.3.1. Objective                                                        | 5    |
| 3.3.2. Field Test and Evaluation Plan                                   | 6    |
| 3.3.3. Conclusions/Recommendations                                      | 6    |
| 3.4. Glenn Research Center Demonstration (October 24-28, 2005)          | 6    |
| 3.4.1. Objective                                                        | 7    |
| 3.4.2. Field Test and Evaluation Plans                                  | 7    |
| 3.4.3. Results                                                          | 7    |
| 3.4.4. Laboratory Analysis                                              | 8    |
| 3.4.5. Conclusions/Recommendations                                      | 9    |
| 3.5. Wright-Patterson Air Force Base Demonstration (November 1-4, 2005) | 9    |
| 3.5.1. Objective                                                        | 10   |
| 3.5.2. Field Test and Evaluation Plans                                  | 10   |
| 3.5.3. Results                                                          | 12   |
| 3.5.4. Laboratory Analysis                                              | 13   |
| 3.5.5. Conclusions/Recommendations                                      | 14   |
| 3.6. Kennedy Space Center Demonstration (October 16 – November 3, 2006) | 19   |
| 3.6.1. Objective                                                        | 20   |
| 3.6.2. Field Test and Evaluation Plans                                  | 20   |
| 3.6.3. Results                                                          | 20   |
| 3.6.4. Conclusions/Recommendations                                      | 27   |
| 4.0. Discussions, Conclusions, & Recommendations                        | 28   |
| Appendix A: Test Articles and Matrices                                  | 32   |
| Appendix B: Attendees of Field Demonstrations                           | 34   |
| Appendix C: Operations Checklist Example                                | 38   |
| Appendix D: Example Depainting Inspection Form                          | 41   |
| Appendix E: Radiation Use Authorization Form                            | 42   |
| Primary Distribution List                                               | 47   |

# Preface and Acknowledgements

This report was prepared by ITB, Inc. through the National Aeronautics and Space Administration (NASA) Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) under Contract Number NNH06CC40C Delivery Order No. 012. The structure, format, and depth of technical content of the report were determined by TEERM, Government contractors, and other Government technical representatives in response to the specific needs of this project.

The information contained in this report was leveraged from the Joint Group on Pollution Prevention (JG-PP) document entitled *Portable Handheld Laser Small Area Supplemental Coatings Removal System*, prepared by the HQ Air Force Materiel Command Depot Modernization and Logistics Environmental Office, dated 17 Aug 2005 and funded by the Environmental Security Technology Certification Program (ESTCP).

TEERM acknowledges the efforts of Martin Boyd and Larry Nielson for helping to gather interest during the beginning stages of this effort and for their continued support throughout. We also appreciate the cooperation of Boeing personnel, namely Doug Boerigter, Marcy Solomon and Paul DeVries for assisting with selection of test articles and providing information found in this report. We also appreciate the cooperation of United Space Alliance personnel, namely Larry Nielson, Jon Seibert, Julia Hess, and Sandy Rozzo for assisting with selection of test articles and providing information found in this report. A special thanks to Doug Boerigter for his assistance with the coordination of testing and teleconferences as well as the assembly of test reports for metallurgical analysis. Thanks to the numerous participants and project stakeholders, without their technical expertise, patience and insight, the completion of this report would not have been possible.

TEERM also recognizes the efforts of the facility owners, process foreman and technicians for answering questions relating to specific processes. Their efforts assisted in the completion of this report. We wish to acknowledge the invaluable contributions provided by all the organizations involved in the creation of this document.

#### 1.0. Introduction

The National Aeronautics and Space Administration (NASA) built off of a successful project conducted by the Joint Group on Pollution Prevention (JG-PP) and Environmental Security Technology Certification Program (ESTCP) that evaluated Portable Laser Coating Removal System (PLCRS) technology. The laser technology is of interest to not only NASA, but also other military agencies that have painting/depainting other surface preparation related applications.

Various metallic surfaces on aerospace components exist in corrosive environments at NASA facilities. These components may include flight hardware, ground support equipment, or structures. Maintenance is a regular activity that must be performed regardless of the corrosivity of the environment in order to ensure that components meet or exceed design life. The standard practice for protecting metallic substrates in atmospheric environments is the application of an applied coating system. Applied coating systems work via a variety of methods (barrier, galvanic and/or inhibitor) and adhere to the substrate through a combination of chemical and physical bonds.

Surface preparation including coating and corrosion removal is a vital precursor to applying coating systems. A suitable substrate condition promotes the adhesion properties of the coating system and allows the coating system to perform to its designed capabilities. The level of cleanliness or anchor profile desired is typically a function of the type of coating to be applied or is outlined in a specific standard. Cleanliness and surface profile requirements for aluminum, steel, and stainless steel dictate the use of abrasive media, chemical strippers, or other methods of coating removal while not causing irreversible damage to the substrate or surrounding substrates of the equipment.

Many of the surface preparation methods used across NASA generate fugitive particulate emissions, waste, and can have significant process cycle times. The high quantities of airborne dust and waste generated from these operations pose significant processing and environmental concerns. Minimizing or eliminating the waste generated from the coating removal process will further minimize this risk. Chemical strippers often require multiple applications separated by lengthy wait times. Reducing cycle time can represent a significant cost savings.

# 1.1. Cost Comparison, and Life-Cycle Cost Analysis

Cost comparison data and Life Cycle Analysis can be found in the JG-PP/ESTCP Final Report titled *Joint Test Report for Validation of Coating Removal Systems* and dated 25 May 2005. Even though a comparison between specific NASA depot processes that might utilize such an alternative depainting technology has not been fully characterized, cost savings are assumed to be realizable.

# 1.2. Objectives of NASA Demonstrations

The objective of demonstrating this technology is to evaluate the performance on NASA-specific substrates, coatings, and components to determine both the effectiveness of using handheld lasers as decoating tools for paint and coating systems at NASA and to better understand the procedures required to implement such a process within NASA. In addition to conventional demonstration and validation testing, the development of several documents was required in order to operate a Class IV laser within a NASA shop. Although this initially was not considered as part of the scope of the testing, the methodology and documentation required to perform the testing was lengthy and brought with it a large volume of information that will be required to understand prior to any implementation. Examples of a checklist and radiation use approval form are included as appendices for reference. Checklist for Clean-Lasersysteme Demonstration & Operation at NASA KSC is attached as Appendix C and Radiation Protection Program Use Authorization, Form K-LA-50147 is attached as Appendix E. These documents were adopted from similar Air Force PLCRS Projects Standard Operating Procedures. Please see the References section for other related documentation.

# 1.3. Regulatory & Other Drivers

Coating removal and other surface preparation activities are impacted by a number of regulations including the Clean Water Act (CWA), Clean Air Act (CAA), and Resource Conservation and Recovery Act (RCRA). Washing surfaces following such operations can generate quantities of wastewater contaminated with media and residues. Discharging wastewater with traces of hazardous waste can result in a direct violation of the CWA. The most common regulation associated with coating removal operations is the CAA, including the efforts to minimize the use of hazardous air pollutants. The RCRA directly regulates disposal of wastes generated by coating removal operations. The RCRA regulates how and where depainting waste can be disposed and transported as well as any future liabilities resulting from environmental damage.

Chemical and mechanical coating removal operations also require consideration for worker protection and training under Occupational Safety and Health Administration (OSHA) guidelines. OSHA sets worker exposure limits for substances commonly used in coatings, and associated removal processes. These include hexavalent chromium, cadmium, lead, and methylene chloride among others.

NASA is involved in a number of coating removal operations and is concerned with the identification of alternative methodologies. If proven viable, laser coating removal systems could provide facilities with an environmentally friendly alternative to some of these types of operations. The use of laser paint stripping systems is applicable to coating removal on aerospace components, aerospace support equipment, and ground support equipment and systems.

# 2.0. Technology Description

This project involved the use of similar equipment with the same technology as the JG-PP/ESTCP funded PLCRS project. In general, the project utilized several differently sized Q-switched pulsed portable hand held neodymium-doped yttrium aluminum garnet (Nd:YAG)

lasers (40Watt (W), 120W & 500W), most of which had integrated vacuum containment systems. Q-switching allows a laser to produce a pulsed output beam and allows the production of light pulses with extremely high peak powers, much higher than would be produced by the same laser if it were operating in a constant output mode. A laser that is operating at 100W continuous can produce pulses in the gigawatt range with Q-switching. Several of the lasers used a rastering mechanism integrated into the end piece where the beam exits the hand-held unit, herein referred to as the 'end effector', allowing more versatility than a single beam laser alone offers. In the case of the 120W laser, this allows the fiber optically delivered beam to produce a 0.4 mm wide linear beam shape that can be adjusted from 1.3 to 50 mm in length at a varied speed (40 to 100) Hertz (Hz). A more detailed description of the technologies demonstrated as a part of the JG-PP projects and reviewed during this project can be found in the JG-PP/ESTCP Final Report.

#### 3.0. Field Demonstrations

# 3.1. Previous Testing

The JG-PP/ESTCP project originally focused on the development of a specification for a laser system to accomplish small-area depainting. Several companies worked with the Air Force to develop, design and test systems that would meet this specification. JG-PP/ESTCP testing was very robust and consisted of tests listed in Table 3-1A.

Table 3-1A: JG-PP/ESTCP Testing of PLCRS Technology

| Test Title                  | Performance Criterion / Metric                                                                                                   |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Performance – Qualitative   | Coating Removal w/o Damage                                                                                                       |
| Performance – Qualitative   | Ease of Use, Handling and Reliability                                                                                            |
| Coating Strip Rate          | Less than or equal to baselines or 0.06 ft <sup>2</sup> per minute at 6 mils, nominal thickness                                  |
| Warping/Denting             | No warping / denting visually observed                                                                                           |
| Metal / Composite Erosion   | No metal / composite erosion observable at 10X magnification                                                                     |
| Hardness                    | No significant change in hardness                                                                                                |
| Tensile Adhesion            | Compare Tensile Strength of samples values obtained with control samples of base materials (non-stripped and non-coated samples) |
| Wet Tape Adhesion           | Wet Tape Adhesion performance greater than or equal to 4a as specified in ASTM D3359                                             |
| Confirmation of Cladding    | No black indication                                                                                                              |
| Penetration                 |                                                                                                                                  |
| Surface Profile / Roughness | 2024-T3 Aluminum Clad: Not to exceed 125 micro inches. 2024-T3 Bare: Not to exceed 125 micro inches                              |
| Substrate Temperature       | 7075-T6 Aluminum: 300°F maximum spike condition. Carbon Epoxy                                                                    |
| During Coating Removal      | Laminate: 200°F maximum spike condition                                                                                          |
| Process                     |                                                                                                                                  |
| Four Point Flexure          | No significant change at 90% confidence                                                                                          |
| Rotary Wing Metallic        | No significant change at 90% confidence                                                                                          |
| Substrate Assessment        |                                                                                                                                  |

| Test Title                                                | Performance Criterion / Metric                                                                                                                       |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Damage Assessment to<br>Honeycomb Structural<br>Materials | Testing detail and results shall be documented for review and determination of pass/fail values                                                      |
| Tensile Strength Testing of Substrates                    | The average tensile ultimate strength, tensile yield strength, and elongation for each of the aluminum substrates after depainting cycles with laser |
| Conductivity                                              | Evaluated after 4 depaint cycles                                                                                                                     |
| Air Sampling                                              | Identification of air-based health risks; Tested on DoD Coatings                                                                                     |

# 3.2. NASA Interest in Follow-on Field Demonstrations

The JG-PP/ESTCP PLCRS project focused more on Air Force and DoD (Department of Defense) substrates and coatings. These efforts represented a data gap in NASA-specific substrates and coatings. The previous project also resulted in questions regarding the full effects of the laser on the substrate such as micro-structural anomalies observed on some surfaces, herein referred to as a 'remelt layer' and whether or not an Anodized layer could be left intact. The remelt layer refers to an observed grain structure of the surface of the substrate, with a depth of less than 7 microns when a 120W laser is used. This phenomenon is analyzed in the United Space Alliance (USA) report *Advanced Coating Removal Techniques* dated 18 Jan 2006.

Boeing conducted some testing in support of the Orbiter for Space Shuttle Program (SSP) and recommended further demonstrations at NASA facilities, particularly Kennedy Space Center (KSC). The initial tests included laser stripping of 12" x 13" x 0.040" 2024 aluminum panels and 11.5" x 11.5" x 0.025" graphite epoxy panels that were coated with several primers. Because the effects of energy departed on a substrate were of concern, temperature indicating labels were attached to the back of each panel and readings taken immediately after stripping with both the 120W Clean Laser and 40W Quantel Nd:YAG lasers. Tables 3-2A & B below show the strip rates and temperatures for the various aluminum and graphite epoxy panels that were tested.

Table 3-2A: Aluminum Panel Decoating Data

| * All panels application | were Bare 2024 aluminum, p                            | pating Rate of Alun<br>pretreated with Aloc |                    | d with isopropyl a | alcohol prior to |  |  |  |  |  |
|--------------------------|-------------------------------------------------------|---------------------------------------------|--------------------|--------------------|------------------|--|--|--|--|--|
| Panel                    | Panel Primers Coating Removal Rates Temperature Laser |                                             |                    |                    |                  |  |  |  |  |  |
| Number                   | 1 Timers                                              | Rate (sq ft / min)                          | Rate (min / sq ft) | Temperature        | Laser Used       |  |  |  |  |  |
| 1                        | Super Koropon                                         | 0.0754                                      | 13.2615            | < 100 °F           | CL 120W          |  |  |  |  |  |
| 2                        | (515-K012 / 910-K017)                                 | 0.0624                                      | 16.0308            | < 100 °F           | QL 40W           |  |  |  |  |  |
| 5                        | PRC DeSoto                                            | 0.0750                                      | 13.3385            | ≈ 100 °F           | CL 120W          |  |  |  |  |  |
| 6                        | (EWAE118 batch 675298)                                | 0.0743                                      | 13.4615            | < 100 °F           | QL 40W           |  |  |  |  |  |
| 9                        | PRC DeSoto                                            | 0.0939                                      | 10.6462            | ≈ 100 °F           | CL 120W          |  |  |  |  |  |
| 10                       | (EWDY048 batch 694925)                                | 0.0607                                      | 16.4615            | < 100 °F           | QL 40W           |  |  |  |  |  |

Table 3-2B: Graphite Epoxy Panel Decoating Data

| Decoating Rate of Graphite Epoxy Test Panels                                                         | l |
|------------------------------------------------------------------------------------------------------|---|
| All panels were abraded (240 grit) and wiped with methyl ethyl ketone prior to application of primer | l |

| Panel  |                        | Coating 1             | Removal Rates      |             | Laser Used |
|--------|------------------------|-----------------------|--------------------|-------------|------------|
| Number | Primers                | Rate (sq ft /<br>min) | Rate (min / sq ft) | Temperature |            |
| 3      | Super Koropon          | 0.1125                | 8.8922             | < 100 °F    | CL 120W    |
| 4      | (515-K012 / 910-K017)  | 0.1087                | 9.2008             | ≈ 100 °F    | QL 40W     |
| 8      | PRC DeSoto             | 0.0950                | 10.5255            | ≈ 125 °F    | CL 120W    |
| 7      | (EWAE118 batch 675298) | 0.0864                | 11.5781            | ≈ 150 °F    | QL 40W     |
| 11     | PRC DeSoto             | 0.0637                | 15.6975            | ≈ 125 °F    | CL 120W    |
| 12     | (EWDY048 batch 694925) | 0.0480                | 20.8333            | ≈ 150 °F    | QL 40W     |

The lasers were able to remove coatings from the aluminum and graphite epoxy panels. Temperatures observed did not exceed those allowable but some warping was observed in both substrates. Warping observations showed that there was some adverse impact on graphite epoxy panels, but the extent was unknown. Both the 40W and 120W lasers were effective in removing Super Koropon and both PRC DeSoto primers. It was observed that in general, laser paint stripping is slower than conventional methods, however, there does appear to be a niche for portable lasers in smaller scale applications. The 120W rastering laser was determined to be more effective on larger, relatively flat surfaces while the 40W single-point laser appeared to be more effective on complex geometries or hard to reach areas. It appears that the lasers tested would be effective in removing Super Koropon from tile cavities and other parts with complex geometries or hard to reach surfaces on the Orbiter. More detailed results of the Boeing testing can be found in Lab Report No. M&PE-3-1567, *Portable Laser Coating Removal Task* dated 06 Dec 2004.

# 3.3. Wright-Patterson Air Force Base Demonstration (August 9-11, 2004)

Initial testing with the SSP-specific and other NASA Ground Support Equipment (GSE) performed was successful, and gained enough interest within Boeing, USA, and NASA to organize more detailed demonstrations of the technology. NASA Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) began to identify NASA stakeholders wanting to test the technology further. In August 2004, several engineers from Glenn Research Center (GRC) and KSC attended a short demonstration of the technology at Wright-Patterson Air Force Base (WPAFB). This demonstration was performed at the Laser Hardened Materials Evaluation Laboratory at WPAFB near Dayton, Ohio. This facility is managed by the Air Force Research Laboratory, Hardened Materials Branch and is operated by Anteon Corporation. Besides the relatively close proximity of WPAFB to GRC, another reason that WPAFB was chosen for the initial demonstration site is the extensive amount of safety documentation and planning that must be generated for a demonstration involving lasers.

# 3.3.1. Objective

The objective of this demonstration at WPAFB was for GRC, Johnson Space Center, and KSC engineers to witness laser stripping technologies. It was also an opportunity for interested parties within NASA to begin considering how it could best be utilized within maintenance and manufacturing operations at their perspective facilities.

#### 3.3.2. Field Test and Evaluation Plan

No formal test plan was developed for this demonstration. Engineers were asked to bring samples of representative substrates and coatings. GRC sent three aluminum test panels from aircraft with coatings that they strip at their facility. While this was their primary reason for interest in laser stripping, they also expressed interest in other stripping applications within their facility. KSC sent five test panels. Four of the panels were aluminum and one was a composite honeycomb/aluminum material. Each test panel was coated with Koropon paint. Some test panels included Anodize layers as well. Additionally some panels consisted of Koropon and room-temperature vulcanizing silicone adhesive (RTV) used as a component of the Orbiter Thermal Protection System (TPS). One test panel was a mock-up of the Orbiter tile cavity, as it would appear when one tile is missing prior to replacement. The interests of the team were to demonstrate the ability of the laser to selectively remove materials such as Koropon and RTV from aluminum or honeycomb without causing disbonding or disturbing the Anodized layer, and to determine effects of laser energy on the TPS materials such as filler bar and tiles.

#### 3.3.3. Conclusions/Recommendations

Most results were incorporated into lab activity reports by Boeing and USA, as referenced in section 3.2 of this report. The stakeholders committed to determine what future follow-on testing was needed to fulfill any demonstration/validation requirements necessary for implementation of a laser stripping unit at their facility.

It should be noted that aluminum surfaces that are used as part of the TPS on Orbiter have unique requirements that include maintaining an Anodized layer for corrosion protection and adhesion properties. An added constraint is that chem-film cannot be applied to these surfaces if the Anodized layer is not intact. Current process for preserving the Anodized layer is bead blast media. At the time of this demonstration, the bead blast process was under review because of contamination issues in adjoining tile spaces. Boeing and USA stripped representative coatings to analyze the effects on the Anodized layer and initially concluded that the Anodized layer could not be left on the surfaces by any of the hand held lasers. Further testing was recommended to evaluate if laser processing with a stationary 2-D scanning head could leave Anodize intact on such surfaces.

# 3.4. Glenn Research Center Demonstration (October 24-28, 2005)

The first official coordinated demonstration of the PLCRS technology for this project took place in October 2005. The purpose of the visit to GRC was to test the hand held 120 Watt (W) Clean-Lasersysteme (CL) Nd:YAG laser in order to demonstrate the feasibility of the technology for use on GSE and small-area structural depainting within NASA. Participants from KSC, GRC, and Stennis Space Center were involved with this effort.

Prior to work beginning at the facility, Laser and Health Safety inspections were carried out for the test cell at GRC. Immediately following the inspection and approval, safety training from GRC and WPAFB representatives on the use of lasers for this activity was given. Only

those with previous training and operational permission with this laser system were allowed to use the laser at GRC.

# 3.4.1. Objective

The objectives included stripping test panels, fielded scrap GSE articles, structural samples, and field testing of the technology on an outdoor structure at GRC.

## 3.4.2. Field Test and Evaluation Plans

A number of tests were planned to be performed as documented in *Field Evaluations Test Plan for Validation of Portable Laser Coating Removal Systems for use on Ground Service Equipment*, dated October 13, 2005. Due to the availability of certified personnel, data from all planned tests was not able to be collected. Testing on field articles and test panels and demonstration of the laser was performed throughout the week. Testing of the laser on the outdoor structure known as the Altitude Wind Tunnel (AWT) began on the afternoon of October 27<sup>th</sup> and all testing was completed by that evening.

Samples were photographed; spaces were measured, and stripped to bare metal. Strip rates were taken and extrapolated to both square feet per minute and minutes per square feet. Photographs were also taken after stripping was complete and a certified technician from ASRC Aerospace made SSPC Vis 1 assessments where applicable. All samples were stripped with the 120W Nd:YAG laser at the following setting unless otherwise noted: Pulse: 20kHz, Scan Width: 50 millimeters (mm), Scan Speed: 75Hz. The frequency of the Nd:YAG laser is always 1064 nanometers (nm).

#### **3.4.3.** Results

Some of the testing was done in conjunction with the TEERM Depainting Technology for Structural Steel project and therefore some of the results are included in the *Depainting Technology for Structural Steel Final Report*, dated 15 Mar 2006.

Findings included that lighter colored coatings proved more difficult to strip due to lower heat absorption. Additionally, limited non-destructive evaluation (NDE) testing results from laser stripped weld lines were excellent. Field tests showed that the PLCRS excelled in corrosion removal. Corrosion on steel substrates was removed quickly and completely, even cleaning out pitted areas leaving the substrate in excellent condition for immediate recoating. Lighter colored corrosion typical of aluminum substrates was more difficult and in most cases not completely removed.

Table 3-4A contains the strip rates calculated from samples tested with the laser. Operators and observers present during the testing did not notice any results inconsistent with previous results during the JG-PP/ESTCP project.

Table 3-4A: Strip Rates of Test Specimen, GRC

| No. | Description                                              | Coating<br>Thickness | Rate (sq ft /min) | Rate (min / sq ft) |
|-----|----------------------------------------------------------|----------------------|-------------------|--------------------|
| 1A  | Cold-rolled Steel "Be Safe" sign                         | 1-1.5 mil            | 0.103             | 9.71               |
| 1B  | Steel Support Rail for Air Handling Unit                 | 11.5 mil             | 0.013             | 76.92              |
| 1C  | 8 in Steel strut                                         | 1.5 mil              | 0.057             | 17.54              |
| 1D  | Valve Spring-Loaded Actuator                             | 3 mil                | 0.063             | 15.87              |
| 1E  | Angle Iron                                               | 2-5 mil              | 0.027             | 37.04              |
| 2A  | High-Temp Silicone Coating and Garlock on Sheet Steel    | 15-16 mil            | 0.017             | 58.82              |
| 2B  | Locktite #2 (Permatex #2) and Garlock on Steel           | 12-15 mil            | 0.018             | 55.56              |
| 5A  | Aged Coating on Launch Structural Steel                  | 11 mil               | 0.018             | 55.56              |
| 5B  | Launch Structure with clean/new coating                  | 12 mil               | 0.013             | 76.92              |
| 5C  | Structural Steel from Launch Complex (heavily corroded)  | 15 mil               | 0.010             | 100                |
| 5D  | GSE for Shuttle Components                               | 4 mil                | 0.024             | 41.67              |
| 99A | Bearing House for M1 Tank with grease and carbon buildup | N/A                  | N/A               | N/A                |
| 99B | Outdoor AWT Structure                                    | 11 mil               | 0.017             | 58.82              |

# 3.4.4. Laboratory Analysis

Table 3-4B below shows the analysis of chemical sampling to better understand the composition of the exterior paint that exists on the AWT. The composition of the paint includes a significant amount of lead.

Table 3-4B: Chemical Sampling of Exterior Paint

| Environmental Management Office Chemical Sampling and Analysis Team ANALYTICAL REPORT |                                                            |  |  |  |  |  |
|---------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|
| Date:                                                                                 | April 18, 2005                                             |  |  |  |  |  |
| Requester:                                                                            | Eugene DiSanto                                             |  |  |  |  |  |
| Work Order #:                                                                         | EMD 0007                                                   |  |  |  |  |  |
| Analyst:                                                                              | Wai Ching Wan (3-5599)                                     |  |  |  |  |  |
| Metal concentrations in the paint s                                                   | ample AWT-ExtPaint-Metals-002 (Red/Silver) are as follows: |  |  |  |  |  |
| EXTERIOR Paint                                                                        |                                                            |  |  |  |  |  |
| <u>Metal</u>                                                                          | Parts per million (ppm)                                    |  |  |  |  |  |
| Magnesium                                                                             | 816                                                        |  |  |  |  |  |
| Manganese                                                                             | 128                                                        |  |  |  |  |  |
| Zinc                                                                                  | 179                                                        |  |  |  |  |  |
| Aluminum                                                                              | 89932                                                      |  |  |  |  |  |
| Chromium                                                                              | 25332                                                      |  |  |  |  |  |
| Copper                                                                                | 51                                                         |  |  |  |  |  |
| Iron                                                                                  | 17296                                                      |  |  |  |  |  |
| Lead                                                                                  | 219388 (21.9 % by Weight.)                                 |  |  |  |  |  |
| Nickel                                                                                | 26                                                         |  |  |  |  |  |
| Calcium                                                                               | 1709                                                       |  |  |  |  |  |
| Silicon                                                                               | 153                                                        |  |  |  |  |  |

| Mercury | 0.10 |
|---------|------|
| Cadmium | 1    |

Details on initial metallurgical analysis from activities performed on structural steel can be found in NASA KSC-MSL-2005-0561 Laser Depainting Metallurgical Report which is included as Appendix C of the Depainting Technology for Structural Steel Final Report. Essentially there were no measurable differences between laser treated and non-treated areas with respect to microstructure, hardness, or surface roughness. Only some superficial mechanical deformation of the surface was noted.

#### 3.4.5. Conclusions/Recommendations

This was a very successful effort and brought NASA closer to implementation of the technology. Visitors that observed the work at GRC were impressed with the promise this technology holds for near-zero waste generating depainting activities. There was increased interest in comparing results from a 500W laser to that of the smaller 120W laser. Of interest to observers of the technology, was the ability of the laser to remove corrosion from steel and the ability of the 120W to remove coatings on the Shuttle GSE relatively quickly, especially on weld lines for NDE analysis. Another area of particular interest was the possibility of reducing the environmental impacts of decommissioning structures that were painted with lead-based coatings such as the AWT at GRC.

At the time of the demonstration, the AWT was to be scheduled for demolition. The disturbance of coatings on the exterior present potentially problematic issues during this planned demolition, considering the high content of several toxic metals within its coatings.

One potential solution posed during the demonstration would be to remove only the coatings where cutting needs to take place to demolish the structure. Demonstration of the capability of a laser to remove these coatings without exposing the worker to such toxic metals was the primary goal. Testing was performed, and it was shown that compared to other methods of physical removal of coatings, PLCRS reduced or eliminated worker exposure to hazardous dusts via vacuum containment, but that removing coatings would take a considerably greater amount of time unless a more powerful laser was utilized due primarily to the thickness of the coating on such structures. More research into how best to use the technology for such an undertaking would be necessary before qualifying it for such work.

In total, there were 12 fielded GSE samples, 1 structure, and 8 test coupons brought for the depainting project. Several of the test panels were not used during field testing at GRC, but were saved for stripping at WPAFB with a 500W Nd:YAG laser. The coatings on samples varied in thickness from 1 to 16 mils. The ability of the laser to remove coatings from the Shuttle GSE component also highlighted the ability of the technology to remove coatings from weld lines on components that typically would require NDE during their lifecycle. Further analysis of the ability of lasers to remove coatings for GSE and to selectively strip weld lines for NDE were explored during the KSC Demonstration in 2006.

# 3.5. Wright-Patterson Air Force Base Demonstration (November 1-4, 2005)

A second, more detailed demonstration at WPAFB followed quickly upon the completion of testing at GRC.

# 3.5.1. Objective

The objectives of this demonstration were to field test the hand held 120W & 500W CL Nd:YAG lasers and the Quantel 40W Nd:YAG laser to validate the technology for use on Orbiter flight equipment and to further test the lasers for use on some of the GSE and structural steels tested at GRC.

#### 3.5.2. Field Test and Evaluation Plans

For the demonstration a formal agenda was drafted that specified when each grouping of submitted specimen would be evaluated throughout the week and in some instances the degree of coating removal was also specified. Test samples included coupons with varying coatings, including Anodized and non-Anodized pretreatments, primers, topcoats, and some with RTV. In addition to the coupons, another tile cavity mock-up was manufactured allowing for each tile to be removed so that the same variety of coatings could be tested in a real-world setting. The tile array was manufactured to be attached to support beams in an inverted fashion to further simulate real-world working conditions on the Orbiter. With this tile array mock-up, the ability of the laser to remove coatings and any negative affects that it might have on surrounding TPS were explored. A test plan was developed for the tile array mock-up, outlining all tests to be performed during the demonstration. Testing included removal of various coatings found within Orbiter tile cavities. The effectiveness of the laser at removing these coatings along with the temperature observed during stripping as well as other observations. Additional testing was performed to characterize how materials other than the coatings to be removed react to laser This testing included RTV, filler bar, felt, and tile surfaces (tops and edges). Exposure times varied in order to determine effects of incidental and worst-case scenario exposure. Related to this testing, a theoretical procedure was developed to effectively mask the tile cavity with materials that are already approved for use in the Orbiter Processing Facility.

Two previously flown flight articles; an Elevon Cove Seal Cover or "flipper door" and a Window Retainer from the crew cabin were brought to test the lasers on other substrates and components that occasionally require refurbishment prior to flight. Since temperature is of considerable significance to Orbiter, temperature readings were taken using several methods during the testing to determine if the substrate ever exceeded the limit of 350 °F since there is a requirement that the aluminum substrate of the Orbiter belly never exceeds this level.

Table 3-5A: Test Panel Configurations for Testing, WPAFB

| Panel                  | Specimen 1 | Specimen 2 | Specimen 3       | Specimen 4    | Specimen 5 | Specimen 6      | Specimen 7 |
|------------------------|------------|------------|------------------|---------------|------------|-----------------|------------|
| Configurations         |            |            |                  |               |            |                 |            |
|                        | 1A/B, 3A/B |            | 6A/B, <i>I2A</i> | 4A/B          | 18A/B      | 13A/B           |            |
|                        | (extra)    | (extra)    | (extra)          |               |            |                 |            |
| New Koropon            | Bare       | chem-Film  | Anodized         | Bare Aluminum | chem-Film  | Anodized        |            |
|                        | Aluminum   |            |                  |               |            |                 |            |
| (thickness variations) | Koropon    | Koropon    | Koropon          | 2 coats       | 2 coats    | 2 coats Koropon |            |
|                        | -          | _          |                  | Koropon       | Koropon    | •               |            |

| Old Koropon<br>(artificially aged – |                     | = 15A/B, [7B]<br>(extra)<br>chem-Film<br>Koropon | 7A/B, 12B<br>(extra)<br>Anodized<br>Koropon |                |            |                 |                      |
|-------------------------------------|---------------------|--------------------------------------------------|---------------------------------------------|----------------|------------|-----------------|----------------------|
| 5yr, 10yr, 20yr)                    |                     | Artificial Aging                                 | Artificial Aging                            |                |            |                 |                      |
|                                     | 2A/B                | 16A/B                                            | 8A/B                                        | 5A/B           |            |                 |                      |
| Other                               | Bare<br>Aluminum    | chem-Film                                        | Anodized                                    | Bare Aluminum  |            |                 |                      |
| TPS coatings and configurations     | Koropon             | Koropon                                          | Koropon                                     | RTV560         |            |                 |                      |
|                                     | RTV560              | RTV560                                           | RTV560                                      |                |            |                 |                      |
|                                     | 21A/B               | 24A/B, 26                                        | 25 (extra)                                  | 22A/B          |            | 23A/B           |                      |
| Face Sheet coatings                 | Bare                | (extra) Bare Aluminum                            | Bare Aluminum                               | Bare Aluminum  |            | Aluminum        |                      |
| and configurations                  | Aluminum            | Bui o i ii aiii ii aii                           |                                             |                |            |                 |                      |
|                                     | Face Sheet          | Face Sheet                                       | Face Sheet                                  | Face Sheet     |            | Face Sheet      |                      |
|                                     | Koropon             | chem-Film                                        | Anodized                                    | RTV560         |            | Anodized        |                      |
|                                     | RTV560              | Koropon                                          | Koropon                                     |                |            | 2 coats Koropon |                      |
|                                     | 9A/B, 10A           |                                                  | 11A/B, <i>10B</i>                           | KSC            | KSC        | KSC             | KSC                  |
| Non                                 | (extra)<br>Anodized |                                                  | (extra)<br>Anodized                         | Inconel        | Aluminum   | Aluminum        | Aluminum (2024)      |
|                                     |                     |                                                  |                                             |                | (2024)     | (2024)          | ì                    |
| TPS coatings                        | Koropon             |                                                  | Koropon                                     | Pyromark       | Corrosion  | Corrosion       | Corrosion            |
|                                     | Tie Coat (old)      |                                                  | Gloss<br>Polyurethane                       | (In house: KSC | Panel 1    | Panel 2         | Panel 3              |
|                                     | Thermal             |                                                  | Toryuremane                                 | coated part)   |            |                 |                      |
|                                     | control coating     |                                                  |                                             | ·              |            | •               |                      |
| Additional Coatings                 | SRB                 | SRB                                              | SRB                                         | . SRB          | NSLD       | NSLD            | NSLD                 |
|                                     | Aluminum            | Aluminum                                         | Aluminum                                    | Steel          | Aluminum   | Aluminum        | Laminate             |
|                                     | Primer              | Primer                                           | Primer                                      | Primer         | Koropon    | Koropon*        | Composite<br>Koropon |
|                                     | Hentzen             | Deft topcoat                                     | Hypalon                                     | Rustoleum      | Silverized | Gloss           | Conductive           |
| Coating Legend:                     | topcoat             |                                                  | topcoat                                     | topcoat        | coating    | Polyurethane    | Coating              |

Coating Legend:

Koropon

Koropon\* MB0125-080 MB0125-055 Thermal Control Coating MIL-P-23777 Type II class C MIL-C-5541 Tie Coat (old)
Gloss Polyurethane
Silverized Coating MB0125-094 MB0125-095 Chem Film MB0125-098 Anodize MIL-A-8625 MB0130-119 Type II MB0125-063 MB0125-070 RTV 560 Conductive Coating Pyromark

Table 3-5B: Panel Configuration, WPAFB

| Panel ID<br>Numbers | (part and panel sized varied)                                                                           |  |  |  |
|---------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| Window<br>Retainer  | Anodized Aluminum / Koropon / Gloss Polyurethane (black)                                                |  |  |  |
| Elevon Door         | Inconel Honeycomb / Pyromark                                                                            |  |  |  |
| GSE-1               | Cradle Assembly / Epoxy Polyamide Primer / Yellow Polyurethane Topcoat                                  |  |  |  |
| GSE-2               | Support Stand (carbon steel box beam) / Inorganic Zinc Silicate Primer / White Topcoat ( $\sim$ 11 mil) |  |  |  |
| NSLD-1A             | Bare Aluminum (2024-O) / Koropon / Aluminized Coating                                                   |  |  |  |
| NSLD-1B             | Inconel (X750) / Koropon / Aluminized Coating                                                           |  |  |  |
| NSLD-2              | Bare Aluminum (2024-O) / Epoxy Primer (1) / Gloss Polyurethane                                          |  |  |  |
| NSLD-3 L1/L2        | Laminate (Aramid/Epoxy prepreg – Kevlar –MB0130-127) / Koropon / Conductive Coating                     |  |  |  |

| NSLD-3 L3/L4 | Laminate (Aramid/Epoxy prepreg – Kevlar –MB0130-127) / Conductive Coating                  |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------|--|--|--|--|
| USA-1        | Aluminum (6061-T6) / chem-film / Epoxy Primer (Mil-P-53022B) / Hentzen Topcoat             |  |  |  |  |
| USA-2        | Aluminum (6061-T6) / chem-film / Epoxy Primer (Mil-PRF-85582D) / Deft Topcoat              |  |  |  |  |
| USA-3        | Aluminum (6061-T6) / chem-film / Epoxy Primer (Mil-PRF-85582D) /                           |  |  |  |  |
| 03A-3        | Hentzen Topcoat / Hypalon Topcoat                                                          |  |  |  |  |
| USA-4        | Steel (4130) / Epoxy Primer (zinc rich) / Polyamide Epoxy Topcoat                          |  |  |  |  |
| C-1          | Aluminum (2024) / Corrosion                                                                |  |  |  |  |
| C-2          | Aluminum (2024) / Corrosion                                                                |  |  |  |  |
| C-3          | Bare Aluminum (2024) / Corrosion                                                           |  |  |  |  |
| Structure    | Rusted I-Beam                                                                              |  |  |  |  |
| A3           | Anodized Aluminum / Koropon (Adapt Laser Panel)                                            |  |  |  |  |
| TPS Array    | TPS Test Panel consisting of 10 tiles with various surface prep and bonding configurations |  |  |  |  |
| TPS Tile     | An individual tile with the strain isolation pad attached to the inner mold line layer     |  |  |  |  |

After completion of testing at WPAFB, several of the panels stripped were exposed to B-117 salt fog testing for 14 days (336 Hours) at Boeing's Huntington Beach laboratory to determine if removing the coating had any effect on the corrosion of these coupons when compared to other coating removal methods. The interest was to see if the laser left enough Anodize behind to provide any level of corrosion protection.

Concurrent to the second WPAFB demonstration, several aluminum panels were shipped to Adapt Laser in order to test the capabilities of a gantry-mounted 2D scanning laser. The goal was to determine whether this laser stripping technique had a detrimental effect on the corrosion protection layer (i.e. Anodize or chem-film). These panels were also analyzed for any detrimental effects to the substrate through hardness, corrosion potential, and through observation using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS).

#### **3.5.3.** Results

Temperature results were included in the Boeing Lab Report No. MP&E-3-1766 Evaluation of Hand-Held Lasers To Remove Surface Finishes, dated 07 Aug 2006. Temperature measurements ranged from 110 °F to 170 °F, which are well below the maximum allowable of 350 °F. In tests performed to simulate a worst case scenario (i.e. where an operator might hold a laser on one location for extended periods of time at non-optimized laser settings) temperatures ranged from 116 °F to 222 °F, still below the maximum allowable.

Table 3-5C contains the strip rates calculated from Koropon coated samples tested with the laser. Operators and observers present during the testing did not notice any results inconsistent with previous results during the JG-PP/ESTCP project.

Table 3-5C: Strip Rates of Artificially Aged Panels, WPAFB

| Panel | Artificial<br>Aging | Coatings                        | Rate (sq ft / min) | Rate (min / sq ft) | Operator |
|-------|---------------------|---------------------------------|--------------------|--------------------|----------|
| 14A   | 0 years             | Koropon (0.79 mils) / Chem-film | 0.098              | 10.20              | #1       |
| 15A   | 5 years             | Koropon (0.78 mils) / Chem-film | 0.135              | 7.41               | #2       |
| 15B   | 10 years            | Koropon (0.86 mils) / Chem-film | 0.135              | 7.41               | #2       |

| 17B | 20 years | Koropon (0.76 mils) / Chem-film | 0.150 | 6.67  | #2 |
|-----|----------|---------------------------------|-------|-------|----|
| 6B  | 0 years  | Koropon (1.09 mils) / Anodize   | 0.056 | 17.86 | #1 |
| 7A  | 5 years  | Koropon (1.06 mils) / Anodize   | 0.086 | 11.63 | #2 |
| 7B  | 10 years | Koropon (1.10 mils) / Anodize   | 0.106 | 9.43  | #2 |
| 12B | 20 years | Koropon (1.15 mils) / Anodize   | 0.122 | 8.20  | #2 |

Note: Operator #1 was Harold (Pete) Hall, Operator #2 was Derek Upchurch from Anteon Corporation (this information is recorded because decoating techniques and strip rates tend to differ from one person to another)

Some of the selected test panels were tested in greater detail during this demonstration. Table 3-5D contains a listing of the parameters used during laser testing of test Panel 23B. Hardness testing was not achieved as the base material was approximately 0.011 inches thick and was thinner than allowed using the Rockwell B scale (requires a minimum thickness of approximately 0.028 inch), or the 15T superficial scale (requires a minimum material thickness of approximately 0.013 inch). Hardness readings can also be affected by surface treatments such as Anodize and Alodine. Conclusions drawn from detailed analysis of Panel 23B are found in Section 3.5.5. of this report.

Table 3-5D: Laser Parameters for Testing

| Area  | Laser    | Scan<br>Width<br>(SCW) | Scan<br>(SCSP) | Pulse<br>Frequency<br>(PF) | Current<br>(Amps) | Time<br>(min:sec) | IR Temp<br>(Surface) |
|-------|----------|------------------------|----------------|----------------------------|-------------------|-------------------|----------------------|
| 23B-1 | 40 watt  | N/A                    | 120 Hz         |                            |                   | 1:29              | 130 °F               |
| 23B-2 | 120 watt | 50 mm                  | 75 Hz          | 22 kHz                     |                   | 4:43              | 120 °F               |
| 23B-3 | 500 watt | 70 mm                  | 70 Hz          | 24 kHz                     | 41                | 1                 | 170 °F               |
| 24B-1 | 40 watt  |                        | 120 Hz         |                            |                   | 1:24              | 110 °F               |
| 24B-2 | 120 watt | 50 mm                  | 73 Hz          | 22 kHz                     |                   | 1:43              | 120 °F               |
| 24B-3 | 500 watt | 70 mm                  | 70 Hz          | 24 kHz                     | 41                | :25               | 140 °F               |

Corrosion potential testing was performed on a section of unaffected base material (i.e. a control sample) and sections taken from each of the laser stripped areas. Table 3-5E shows the results of the Conductivity Testing of Panel 23Bwhich are consistent with the T3 condition.

**Table 3-5E: Conductivity Results** 

| Sample                 | 23B Control | 23B-1 | 23B-2 | 23B-3 | 24B Control | 24B-1 | 24B-2 | 24B-3 |
|------------------------|-------------|-------|-------|-------|-------------|-------|-------|-------|
| Corrosion<br>Potential | -609        | -611  | -618  | -617  | -613        | -619  | -617  | -619  |

# 3.5.4. Laboratory Analysis

Previous conclusions made during the GRC demonstration regarding the Anodized layer were revisited. Several test panels were shipped to the Adapt Laser facility in Kansas City, Missouri in mid-January 2006. First sensitivity of the hand held lasers was adjusted and then a mounted 2-D scanning head was also utilized. The 2-D scanning head allowed for the Anodized layer to be selectively left on the substrate. Such a scanning head could be attached to a tripod and inverted and used on Orbiter tile cavities.

These panels were later analyzed by Boeing and included in Lab Report No. MP&E-3-1766 Evaluation of Hand-Held Lasers To Remove Surface Finishes, dated 07 Aug 2006. Tests were performed to determine if using a stationary 2-D scanning head would allow enough sensitivity and control to remove only primer, leaving the Anodized layer intact, and to determine if the remelt layer phenomenon could be eliminated with greater sensitivity. Boeing results are in Table 18 of the aforementioned report. Table 3-5F shows the maximum temperature readings observed during laser decoating.

**Table 3-5F: Temperature Results** 

|             | Single Coat Maximum Temperature | Double Coat Maximum Temperature |
|-------------|---------------------------------|---------------------------------|
| 40 W Laser  | 110 °F                          | 130 °F                          |
| 120 W Laser | 117 °F                          | 120 °F                          |
| 500 W Laser | 140 °F                          | 170 °F                          |

#### 3.5.5. Conclusions/Recommendations

#### **TPS Materials**

A concern of the stakeholders was a remelt layer of aluminum that was observed during metallurgical tests by USA after the initial demonstration at WPAFB in 2004 which is documented in *Advanced Coating Removal Techniques* dated 18 Jan 2006. Panels that represent Orbiter substrates and coatings were stripped at various laser settings so that further analysis could be performed on this phenomenon.

The lasers were successful at removing Koropon from the aluminum test panels whether it was bare, had chem-film, or Anodized. The lasers had difficulty with RTV, particularly for thicknesses of 9-12 mils, and lower intensities. If the RTV was skived from the surface prior to laser use, or aged, the lasers were more successful at these thicknesses.

Boeing Lab Report No. MP&E-3-1766 Evaluation of Hand-Held Lasers To Remove Surface Finishes, dated 07 Aug 2006 also drew some conclusions about laser-induced damage to TPS materials. Plasma flame was observed as the laser charred the filler bar. When the laser was directed at the tile, there was damage, although it was deemed to be repairable. Attempts to remove the felt strain isolation pad from the backside of a tile resulted in an open flame and a charred and scored inner mold line layer.

When testing TPS related coatings, all three lasers showed the ability to remove coatings that would typically be found on Orbiter including Koropon, aged Koropon, and thin layers of RTV. A small plasma flame was observed when ablating skived RTV560. Continuity testing and later metallurgical tests confirmed the removal of the Anodized layer during these tests. Some experimentation was done using several tapes authorized for use on TPS materials for protection against laser damage. A Kapton/aluminum taping system was developed and tested as protection for surrounding TPS materials when the lasers were being used. This protection system was effectively used to protect the filler bar and tiles in several decoating procedures. Both the 40W and the 120W lasers can easily char and damage the filler bar (a thin layer of RTV560 over Nomex felt), when the filler bar is left unprotected. A plasma flame was observed

as the laser burned through the filler bar. Both the 40W and the 120W lasers can cause damage to the tiles when the beam is applied directly to them. All of the damage seen during this evaluation was considered repairable.

# **SEM Results from TPS Surface Testing**

After using the three lasers on all coupons and test articles brought to WPAFB, some samples were shipped to Boeing for metallurgical analysis and scanning electron microscope analysis to determine how the substrates were affected during stripping activities using the laser systems. A key interest was evaluating the ability of the technology to selectively strip coatings such as leaving behind the Anodize layer, and if so, how much could be left behind (*Advanced Coating Removal Techniques* dated 18 Jan 2006). This was important to structural engineers and thermal protection engineers that work on the Orbiter tile cavities because according to specifications, Anodize must be present and chem-film replacement of Anodize is not permitted for this area of the Orbiter. This means that paint can be removed, but Anodize cannot. It was undetermined at the time of this demonstration if current methods for preparing tile cavities removed Anodized, or how much remains on the surface prior to repainting.

Preliminary analysis of coupons and components stripped with lasers showed that at least some Anodize was removed during all stripping activities. This was not entirely conclusive, as the full effect on Anodization was not captured.

Tables 16 and 17 of Boeing Lap Report No. MP&E-3-1766 include the results of comparative analyses between conventional hand sanding and laser stripping of both Anodized and primer layers. Hand-sanding can be used to remove Koropon while leaving the Anodized layer intact. Excessive sanding will break through the Anodized layer. The hand held lasers do not have the sensitivity and selectivity to remove Koropon while leaving the Anodized layer intact. It was discovered that the Adapt Laser automated CL 120W Gantry Mounted Q-switched laser (2D Scanning) can remove Koropon while leaving the Anodized layer intact.

Despite the initial testing that revealed hurdles to implementation for the Orbiter tile cavity application, other applications of interest exist. NASA personnel who were present during the technology demonstrations were optimistic that if a small room were constructed within the Orbiter Processing Facility, a laser could be used there for small part depainting and this approach would hold the highest potential for near-term flight hardware implementation. There was more optimism for implementation of the technology for use on GSE.

# **Inconel Substrates**

The transition area on the upper surface between the torque box and the movable elevon consists of a series of hinged panels that provide a closeout of the wing-to-elevon cavity. These panels are a combination of Inconel honeycomb sandwich and titanium honeycomb sandwich construction. The testing performed at WPAFB involved an inconel elevon cove seal cover and a window retainer from the crew cabin, both coated in a thermally protective coating (Pyromark). Coatings were able to be removed from Inconel substrates, however, discoloration of the

substrate did take place in some areas. Continuation of this phenomenon was explored during the demonstration at KSC.

#### **Corrosion Resistance**

According to MIL-A-8625F, type II sulfuric acid Anodized coatings should be able to withstand 14 days of salt spray testing per ASTM B117. Both the Automated Laser and the hand-sanding decoating methods left an effective Anodized layer after the Koropon primer was removed. The hand-held laser decoating method also left surfaces that showed more resistance to corrosion than was expected since testing showed most of the Anodized layer to be removed. Possible explanations include traces of chromium from the original Koropon application still reside on the panel, traces of chromium are leaching out of the adjacent painted surfaces in the salt fog process providing some unseen protection, or Anodize or chem-film still resides on the pre-treated aluminum panels.

#### **Non-TPS Materials**

When testing non-TPS specific coatings, all three lasers showed the ability to remove coatings, but some were more difficult to others, in general this can be attributed to the thickness of coatings and the color. White coatings, like the Thermal Control Coating and Gloss Polyurethane were the most difficult to remove. The 500W and 120W in all cases were more uniform in their ability to remove coatings while leaving a nicer surface finish upon completion.

In general, lasers appeared to have no obvious negative effect on substrate when compared to controls, however a remelt layer was observed which may reduce fatigue properties of the substrates and it was recommended that further fatigue testing be performed.

Other conclusions include that the laser decoating process affects the surface of 2024-T3 aluminum, increasing its resistance to corrosion for the short term (long term effects unknown), higher power settings correspond to more corrosion resistance, and may be some sort of surface heat treatment effect happening (possibly the remelt layer that has been observed for higher power settings).

#### **SEM Analysis**

The following discussion and recommendations come primarily from the Boeing Metallurgical Report, Case Number 401679, dated 30 Nov 2005 which also contains more detail regarding the analysis of corrosion potential.

Testing of the laser stripped areas was performed in an effort to identify possible detrimental effects of laser processing on the panel corrosion protection system (anodize or chem-film) and aluminum base material. To this end, SEM and microstructural evaluation were effective analytical tools in that they confirmed that all process settings resulted in removal of most, if not all of the corrosion control coatings from the base plate and that some settings produced a thin remelt layer on the panel surface. Attempts to identify the effect of this surface layer using hardness and conductivity tests were ineffective as the panel material was too thin to

test reliably. Similarly, corrosion potential testing resulted in corrosion of the sample surface and it seems likely that the remelt layer would be destroyed long before stable corrosion potential readings could be obtained.

SEM and microstructural analysis provided usable information regarding the effects of laser stripping on the panel and should continue to be used as preliminary investigation tools for evaluating the laser stripping process. Hardness and conductivity are typically used concurrently to determine conformance to thermal treatment, however, material thickness requirements will limit test effectiveness in panels under approximately 0.030 inch thick. It is possible that the remelt layer may reduce material response to fatigue, thus it may be advisable to investigate such a possibility.

The pictures below are taken from the Boeing Metallurgical Report, Case Number 401679 and show magnified views of Panel 23B. EDS results indicate that the Anodized layer was removed. Only little white chunks as shown in the middle frame remain of the Anodized layer. In the frame on the right side shows the splattering effect observed, or remelt layer.

Sample 23B Area 2

Case 401679

Figure 14

Figure 15

Sample 23B-2 was stripped using a 120 watt laser operating at 75 Hz with a pulse rate of 22 kHz. EDS spectra is similar to that of the base material

Page 9 of 21

010 23b2 spec 1.jpc

Figure 17

indicating the loss of the Anodize coating. Surface exhibits spatter-like ridges that suggest surface melting. The small particle in center figure is an

Anodize remnant.

Magnified views of Panel 27 and 6A below show a comparison of laser decoating with hand-sanding. In most cases, the Anodized layer was removed by the hand-held laser; and remained intact with hand-sanding.

# Panel 27 Anodized aluminum SEM pictures - 500X



Panel 6A – Anodized aluminum / Koropon (1.12 mils) SEM pictures - 500X



The panel that Adapt Laser decoated using a 2-D scanning head is shown in the magnified views below. This method was able to leave the Anodized layer intact.

# Panel Adapt A3 – Anodized aluminum / Koropon (0.85 mils) Decoated with CL120 Q-switched laser and a gantry mounted 2D scanner SEM pictures - 500X



In order to ascertain whether the hand-held PLCRS removes a protective Anodized layer, an aluminum panel was treated with a sulfuric Anodization, coated with a single layer of epoxy primer, and exposed to all three lasers. Afterwards, the panel was examined using EDS to determine if the Anodized layer remained. Evidence indicates that the lasers were unsuccessful in preserving the Anodized layer when removing the epoxy primer.

# **Corrosion Removal**

To test corrosion removal capabilities, several samples with various corrosion types were subjected to laser treatment. While the laser was able to completely remove rust-colored corrosion, it had more trouble with white corrosive products typical of aluminum substrates. The rust color was able to fully absorb the laser energy while the white corrosion reflected much of the energy rather than absorbing it.

# Protection from Incidental Damage to Tile Cavities

Media blasting becomes undesirable when the part to be subjected to coating removal lies next to a sensitive piece of flight hardware such as thermal protection tiles. Although the lasers did have some damaging effects on a tile surface and filler bar materials when directly exposed, it was also demonstrated that the RTV filler bar and the tile system could be adequately protected using a system of Kapton and aluminum tapes.

# 3.6. Kennedy Space Center Demonstration (October 16 – November 3, 2006)

PLCRS equipment was at the KSC Launch Equipment Services shop for a six (6) week period in order to demonstrate the technology on a variety of aluminum and steel substrates and configurations (weld lines, I-beams, Anodized, zinc coatings, polyurethane topcoats, etc.). Overall there were about 80 items that were decoated during the demonstration.

The laser used for the demonstration was the CL 120 Q<sup>TM</sup> - Mobile Laser Cleaning Unit from Adapt Laser Systems, LLC. This unit is an older model used primarily for demonstrations; more powerful units are available that would increase strip rates. For example, the CL 500 Q<sup>TM</sup> - High Power Mobile Laser Cleaning Unit increases productivity an estimated 550% over the CL 120 Q<sup>TM</sup>. Nearly ninety attendees, representing more than a dozen NASA and contractor entities, were present at various times during the demonstration at KSC to observe the PLCRS in operation.

# 3.6.1. Objective

The objective was to demonstrate candidate portable laser surface preparation/depainting technologies for GSE applications under the specifications for the standard processes. The performance of the proposed surface preparation/depainting alternatives would be compared to existing surface preparation/depainting processes.

In addition to laboratory-prepared test panels that were coated in a variety of coatings used on flight and support equipment, several SSP-specific fielded materials were tested. Orbiter materials tested included a window retainer, cove seal cover, Space Shuttle Main Engine gasket and a mock-up shuttle tile array. In-service SSP GSE was also tested during this demonstration. Several scale plates used in weighing the Orbiter prior to launch were tested to determine if the laser could effectively be used to strip coatings, especially on weld lines where NDE inspection was required.

#### 3.6.2. Field Test and Evaluation Plans

Tests that were planned to be performed were documented in *Field Evaluations Test Plan For Validation of Portable Laser Coating Removal Systems for use on Ground Service Equipment*, dated 11 Oct 2006. Due to the availability of certified personnel not all of the tests planned were accomplished and some data was not collected.

Previous air monitoring during the JG-PP/ESTCP project showed that all samples for hazardous materials were below actionable limits, but their testing did not include NASA specific coating systems. While Air Force corrosion inhibiting pretreatments and primers are very similar to their NASA counterparts, some NASA specific coating systems have material compositions with relatively higher amounts of chemicals that present exposure hazards. Primary coating systems of concern are chromium-based pretreatments and primers for corrosion protection and lead-based paints that are found on older structures at KSC.

#### **3.6.3.** Results

As with the other demonstrations no inconsistent results were observed. The lasers were easy to operate. Table 3-6A shows strip rates from samples tested during the KSC demonstration.

Table 3-6A: Strip Rates of Test Specimen, KSC

| No.       | Code | Description                                                         | Rate     | Rate   |
|-----------|------|---------------------------------------------------------------------|----------|--------|
|           |      | Description                                                         | (sq ft / | (min / |
|           |      |                                                                     | min)     | sq ft) |
| Item 5    | A-4  | 12" x 12" 2024-T3 Chem-film + Koropon                               | 0.058    | 17.24  |
| Item 6    | D-17 | 12" x 12" 5052-H32 Anodized                                         | 0.151    | 6.62   |
| Item 7    | G-1  | 6" x 12" Steel Angle                                                | 0.089    | 11.24  |
| Item 8    | A-6  | 12" x 12" 2024-T3 Chem-film + 2-Coat Koropon                        | 0.031    | 32.26  |
| Item 9    | D-25 | 12" x 12" 6061-T6 Anodized                                          | 0.147    | 6.80   |
| Item 10   | A-12 | 12" x 12" 2024-T3 Chem-film Koropon                                 | 0.081    | 12.35  |
| Item 11   | A-16 | 12" x 12" 2024-T3 Tie Coat + Thermal Control Coat                   | 0.012    | 83.33  |
| Item 12   | B-30 | 13" x 13.5" 2024-T81 Red Sulfuric Anodize                           | 0.044    | 22.73  |
| Item 13   | B-32 | 13" 13.5" 2024-T81 Red Sulfuric Anodize, Koropon, Grey Topcoat      | 0.019    | 52.63  |
| Item 14   | B-1  | 12" x 12" 6061-T6 Alodine+ Hentzen Primer + Hentzen Topcoat         | 0.010    | 100    |
| Item 16   | C-2  | 12" x 12" A36 Steel Weld Lines - IOZ primer + Epoxy Midcoat +       | 0.005    | 200    |
|           |      | White Urethane Topcoat                                              | 0.005    | 200    |
| Item 17   | C-2A | 12" x 12" A36 Steel Weld Lines - IOZ primer + Epoxy Midcoat +       | 0.006    | 166.67 |
|           |      | White Urethane Topcoat                                              | 0,000    | 100.07 |
| Item 18   | C-3  | 12" x 12" A36 Steel Weld Lines - IOZ primer + Grey IOZ Topcoat      | 0.010    | 100    |
| Item 19   | C-4  | 12" x 12" A36 Steel Weld Lines - IOZ primer + Grey IOZ Topcoat      | 0.014    | 71.43  |
| Item 20   | C-5  | 12" x 12" 5052-H32 - Epoxy primer + White Urethane Topcoat          | 0.012    | 83.33  |
| Item 21   | C-12 | 12" x 12" 6061-T6 - Epoxy primer + White Urethane Topcoat           | 0.020    | 50     |
| Item 23   | C-6  | 12" x 12" 5052-H32 - Epoxy primer + White Urethane Topcoat          | 0.017    | 58.82  |
| Item 24   | C-7  | 12" x 12" 5052-H32 - Epoxy primer + White Urethane Topcoat          | 0.015    | 66.67  |
| Item 25   | C-8  | 12" x 12" 5052-H32 - Epoxy primer + White Urethane Topcoat          | 0.009    | 111.11 |
| Item 26   | C-9  | 12" x 12" 6061-T6 - Epoxy primer + White Urethane Topcoat           | 0.013    | 76.92  |
| Item 27   | C-10 | 12" x 12" 6061-T6 - Epoxy primer + White Urethane Topcoat           | 0.014    | 71.43  |
| Item 28   | C-11 | 12" x 12" 6061-T6 - Epoxy primer + White Urethane Topcoat           | 0.013    | 76.92  |
| Item 29   | D-1  | 12" x 12" A36 - IOZ Primer + Epoxy Primer Midcoat + White Urethane  | 0.024    | 41.67  |
|           |      | Topcoat                                                             |          |        |
| Item 30   | D-5  | 12" x 12" A36 - IOZ Primer + Grey Inorganic Topcoat                 | 0.028    | 35.71  |
| Item 31   | D-9  | 12" x 12" 5052-H32 - Epoxy primer + White Urethane Topcoat          | 0.016    | 62.5   |
| Item 34   | D-   | 12" x 12" - 5052-H32 Epoxy Primer + White Urethane Topcoat w/       | 0.015    | 66.67  |
|           | 10A  | Black - Unknown Origin                                              |          |        |
| Item 35 a | D-13 | 12" x 12" - 6061-T6 Epoxy Primer + White Urethane Topcoat - 1/8 of  | 0.008    | 125    |
|           |      | panel with black ink added stripped                                 |          |        |
| Item 35 b | D-13 | 12" x 12" - 6061-T6 Epoxy Primer + White Urethane Topcoat - 1/8 w/o | 0.011    | 90.91  |
|           |      | black ink added stripped                                            |          |        |
| Item 36   | D-18 | 12" x 12" - 5052-H32 - Anodized                                     | 0.187    | 5.35   |
| Item 37   | D-26 | 12" x 12" - 6061-T6 - Anodized                                      | 0.203    | 4.93   |
| Item 70   | C-1A | 12" x 12" A36 Steel - w/Weld - IOZ Primer + Epoxy Primer Midcoat +  | 0.008    | 125    |
| .,        |      | White Urethane Topcoat                                              |          |        |
| Item 71   | G-23 | 12" x 12" Textured A36 Steel with IOZ Primer                        | 0.012    | 83.33  |
| Item 72   | G-24 | I-Beam - IOZ Primer                                                 | 0.010    | 100    |

Note: Group F panels were exposed to laser for subsequent corrosion rate testing, not for strip rate efficiency.

Surface cleaning and surface roughness was not accomplished as part of the KSC demonstration because the lab reports by Boeing and USA from previous demonstrations were felt to be sufficient. These reports showed that the PLCRS appeared to clean the corroded areas

to meet the SSPC-SP-10/NACE-No. 2 Near-White Blast Cleaning specification, but laboratory and other field tests have show this to be only true in some situations.

A series of steel and aluminum test panels were exposed to the PLCRS in order to determine if the surface effects observed in SEM analysis caused any significant changes in corrosion resistance of the bare substrates. The resulting Atmospheric Beach Exposure and Salt Fog testing data is captured by Tables 3-6B & C. Detailed analysis of this testing is documented in the ASRC report entitled *Laser Depainted Corrosion Study of Aluminum and Steel Substrates*, dated 20 July 2007.

Table 3-6B: Average Weight Loss for Metal Panels

| Sample                            | Average Weight Loss, grams | Standard Deviation |
|-----------------------------------|----------------------------|--------------------|
| Beach - Al control                | 0.076                      | 0.008              |
| Beach - Uncoated Al lasered       | 0.086                      | 0.019              |
| Beach - Coated Al lasered         | 0.090                      | 0.017              |
| Salt Fog - Al (control)           | 0.698                      | 0.034              |
| Salt Fog - Uncoated Al lasered    | 0.655                      | 0.021              |
| Salt Fog - Coated Al lasered      | 0.699                      | 0.009              |
| Beach - Steel control             | 11.872                     | 0.277              |
| Beach - Uncoated steel lasered    | 14.545                     | 2.000              |
| Beach - Coated steel lasered      | 13.036                     | 0.964              |
| Salt Fog - Steel control          | 44.918                     | 2.808              |
| Salt Fog - Uncoated steel lasered | 48.828                     | 1.755              |
| Salt Fog - Coated steel lasered   | 42.364                     | 1.590              |

Table 3-6C: Calculated t-values for Weight Loss Compared to Control

| Sample                              | Calculated t value when compared to control |
|-------------------------------------|---------------------------------------------|
| Beach - Al control                  | 0.00                                        |
| Beach - Uncoated Al lasered         | 0.82                                        |
| Beach - Coated Al lasered           | 1.30                                        |
| Salt Fog - Light blast Al (control) | 0.00                                        |
| Salt Fog - Uncoated Al lasered      | 1.84                                        |
| Salt Fog - Coated Al lasered        | 0.02                                        |
| Beach - Steel control               | 0.00                                        |
| Beach - Uncoated steel lasered      | 2.29                                        |
| Beach - Coated steel lasered        | 2.01                                        |
| Salt Fog - Steel control            | 0.00                                        |
| Salt Fog - Uncoated steel lasered   | 2.04                                        |
| Salt Fog - Coated steel lasered     | 1.37                                        |

According to the ASRC report, laser exposed coated and uncoated steel panels were placed at the beach and in salt fog chamber and were compared to control panels that were not exposed to laser energy. Using the student t-test to determine statistical significance, it was observed that the uncoated laser exposed steel panel placed at the beach lost slightly more weight when compared to the beach control at the 90% confidence limit, this is observed in the t-values of 2.29 for laser exposed and 2.13 for the control. The steel panels that were previously coated

prior to laser removal of those coatings showed no significant difference in weight loss compared to the beach control. There is no significant difference in the amount of mass lost on the steel panels when comparing the control salt fog panels to the coated and uncoated laser exposed panels placed in the salt fog chamber.

Similar comparisons were conducted for aluminum panels placed at the beach and in the salt fog chamber. Statistically, there is no significant difference in the amount of aluminum lost on the coated and uncoated aluminum when compared to controls.

Table 3-6D shows the average results for the corrosion rates in mils per year of the aluminum and steel panels.

Table 3-6D: Average Corrosion Rates of Metal Panels

| Sample                            | Average corrosion rate, mils per year |
|-----------------------------------|---------------------------------------|
| Beach - Al control                | 0.070                                 |
| Beach - Uncoated Al lasered       | 0.079                                 |
| Beach - Coated Al lasered         | 0.084                                 |
| Salt Fog - Al (control)           | 2.798                                 |
| Salt Fog - Uncoated Al lasered    | 2.627                                 |
| Salt Fog - Coated Al lasered      | 2.800                                 |
| Beach - Steel control             | 3.895                                 |
| Beach - Uncoated steel lasered    | 4.772                                 |
| Beach - Coated steel lasered      | 4.277                                 |
| Salt Fog - Steel control          | 63.666                                |
| Salt Fog - Uncoated steel lasered | 69.208                                |
| Salt Fog - Coated steel lasered   | 60.046                                |
|                                   |                                       |

Even though there is a significant difference between the beach and the accelerated samples, there were no significant measurable differences in pitting between the respective sets. Further analysis of the corrosion testing results can be found in ASRC report, *Laser Depainted Corrosion Study of Aluminum and Steel Substrates* dated 31 Jan 2007.

The ability of PLCRS to prepare weld lines for NDE testing was of interest to the stakeholders. Several test panels with coated weld lines were prepared for this test. Table 3-6E below shows the results from the weld line stripping for NDE that was performed.

Table 3-6E: NDE Preparation of Weld Lines

| tuble 5 del 112 de l'action de 17 cia entes |                    |                   |                                                            |  |  |
|---------------------------------------------|--------------------|-------------------|------------------------------------------------------------|--|--|
| Sample plate                                | Time to strip weld | NDE Method        | Results                                                    |  |  |
| C-1, A36                                    | 20 min roller/free | Magnetic Particle | Surface good, NDE excellent results with no further prep   |  |  |
| IOZ, EP, PU                                 |                    |                   |                                                            |  |  |
| C-2, A36                                    | 18 min freehand    | Magnetic Particle | Weld bead coated with sharpie – surface good, NDE          |  |  |
| IOZ, EP, PU                                 |                    |                   | excellent results with no further prep                     |  |  |
| C-2a, A36                                   | 15 min freehand    | Magnetic Particle | Sharpie continuous 5 coats, surface good, NDE excellent    |  |  |
| IOZ, EP, PU                                 |                    |                   | results, no further prep required                          |  |  |
| C-3, A36                                    | 8:33 min freehand  | Magnetic Particle | Surface good, ioz removed NDE excellent results            |  |  |
| IOZ, IOZ                                    |                    |                   |                                                            |  |  |
| C-4, A36                                    | 7:27 min roller    | Magnetic Particle | Surface good, roller strips faster, ioz removed, excellent |  |  |
| IOZ, IOZ                                    |                    |                   | NDE results                                                |  |  |

| Sample plate  | Time to strip weld | NDE Method    | Results                                                   |
|---------------|--------------------|---------------|-----------------------------------------------------------|
| C-5, Al 5052  | 7:16 min roller    | Dye Penetrant | Surface excellent, very clean surface, NDE excellent      |
| EP, PU        |                    |               | results                                                   |
| C-6, Al 5052  | 5:40 min freehand  | Dye Penetrant | Surface excellent, very clean surface, NDE excellent      |
| EP, PU        |                    |               | results                                                   |
| C-7, Al 5052  | 6:50 min roller    | Dye Penetrant | Sharpie, surface excellent, very clean surface, NDE       |
| EP, PU        |                    |               | excellent results                                         |
| C-8, Al 5052  | 9:50 min freehand  | Dye Penetrant | Sharpie, surface excellent, very clean surface, NDE       |
| EP, PU        |                    |               | excellent results                                         |
| C-9, Al 6061  | 6:49 min roller    | Dye Penetrant | Surface excellent, very clean surface, NDE excellent      |
| EP, PU        |                    |               | results                                                   |
| C-10, Al 6061 | 6:20 min freehand  | Dye Penetrant | Surface excellent, very clean surface, NDE excellent      |
| EP, PU        |                    |               | results                                                   |
| C-11, Al 6061 | 6:28 min roller    | Dye Penetrant | Sharpie, surface excellent, very clean surface, NDE       |
| EP, PU        |                    |               | excellent results                                         |
| C-12, Al 6061 | 4:20 min freehand  | Dye Penetrant | Double coated with sharpie, surface excellent, very clean |
| EP, PU        |                    |               | surface, NDE excellent results                            |

Air sampling was of concern to NASA stakeholders due to the toxic metals found in coatings used within the Agency. Tables 3-6F, G, & H show the results of air sampling required by KSC. None of the contaminants were detected in significant quantities and the integrated vacuum removal system was effective in removing the requisite source contaminants.

Table 3-6F: Air Sampling INDUSTRIAL HYGIENE EVALUATION – CHEMICAL SAMPLING DURING SPECIAL LASER PAINT REMOVAL TEST K6-1397 / PAINT SHOP

# JBOSC ENVIRONMENTAL HEALTH AND SERVICES CHEMICAL AIR SAMPLING REPORT ADMINISTRATIVE DATA

|            |                            | Facility Number<br>K6-1397 | Facility Name<br>NASA Paint Shop | Task Tra<br>T200610-   |       | umber    |          |         |  |  |
|------------|----------------------------|----------------------------|----------------------------------|------------------------|-------|----------|----------|---------|--|--|
|            | ·                          | EX                         | POSURE GROUP DATA                |                        |       |          |          |         |  |  |
|            | NAME OF EXPO               | SURE GROUP                 |                                  | NUMBER OF PERSONNEL IN |       |          |          |         |  |  |
| COMPANY    | (JOB CLASSIFICATI<br>EMPLO |                            | OPERATIONS                       | EXPOSURE GROUP         |       |          |          |         |  |  |
| ITB        | Senior E                   | ngineer                    | Paint Removal                    |                        |       | 1        |          |         |  |  |
|            |                            |                            | HAZARD DATA                      |                        |       | ·        |          |         |  |  |
|            | CHEMICAL                   | SAMPLED                    |                                  | EXI                    | POSUR | E CRITER | RIA (MG/ | $M^3$ ) |  |  |
| HAZARD     | ABSTRACTS                  | COMMODITY                  | SAMPLING METHOD AND              | ACGIH                  | OSHA  | etel .   |          | ÓSHA    |  |  |
| MATERIAL   | SERVICES (CAS)<br>NO.      | NOMENCLATURE               | INSTRUMENTATION                  | TLV                    | TWA   | ACGIH    | OSHA     | CEILING |  |  |
|            |                            | Hexavalent                 | OSHA ID-215, 37mm filter         |                        |       |          |          |         |  |  |
|            | 7440-47-3                  | Chromium                   | cassette                         | 0.01                   | 0.005 | N/A      | N/A      | N/A     |  |  |
|            |                            |                            | NIOSH 7300, .8 micron filter     |                        |       |          |          |         |  |  |
|            | 7440-39-3                  | Barium                     | cassette                         | 0.5                    | 0.5   | N/A      | N/A      | N/A     |  |  |
|            |                            |                            | NIOSH 7300, .8 micron filter     |                        |       |          |          |         |  |  |
| Paint and  | 7440-43-9                  | Cadmium                    | cassette                         | 0.002                  | 0.005 | N/A      | N/A      | N/A     |  |  |
| Coatings   |                            |                            | NIOSH 7300, .8 micron filter     |                        |       |          |          |         |  |  |
| Removed    | 7440-47-3                  | Total Chromium             | cassette                         | 0.5                    | 0.5   | N/A      | N/A      | N/A     |  |  |
| from Metal |                            |                            | NIOSH 7300, .8 micron filter     |                        |       |          |          |         |  |  |
| Cuts       | 7439-89-6                  | Iron Oxide                 | cassette                         | 5                      | 10    | N/A      | N/A      | N/A     |  |  |
| Odio       |                            |                            | NIOSH 7300, .8 micron filter     |                        |       |          |          |         |  |  |
|            | 7439-92-1                  | Lead                       | cassette                         | 0.05                   | 0.05  | N/A      | N/A      | N/A     |  |  |
|            |                            |                            | NIOSH 7300, .8 micron filter     |                        |       |          |          |         |  |  |
|            | 7440-66-6                  | Zinc Oxide                 | cassette                         | 2                      | 5     | 10       | N/A      | N/A     |  |  |
|            | 7647-01-0                  | Hydrochloric Acid          | Drager PAC III                   | N/A                    | N/A   | 2PPM     | N/A      | 5PPM    |  |  |
|            | 10102-44-0                 | Nitrogen Dioxide           | Drager PAC III                   | 3РРМ                   | N/A   | 5PPM     | N/A      | 5PPM    |  |  |

Table 3-6G: Air Sampling
JBOSC ENVIRONMENTAL HEALTH AND SERVICES
CHEMICAL AIR SAMPLING REPORT

LASER PAINT REMOVAL, BLDG K6-1397 - OCT 19/20, 2006

| AIR SAMPLING DATA |               |          |                     |                                                 |                     |  |  |  |  |
|-------------------|---------------|----------|---------------------|-------------------------------------------------|---------------------|--|--|--|--|
| DATE              | TIME          | DURATION | COMMODITY           |                                                 | EXPOSURE RESULTS    |  |  |  |  |
|                   |               |          |                     | TWA                                             | 8-HR TWA            |  |  |  |  |
| 10/19/06          | 09:06 – 11:55 | 169 MINS | Hexavalent Chromium | 0.000092                                        | 0.00003             |  |  |  |  |
| 10/19/06          | 09:06 11:55   | 169 MINS | Barium              | <0.0029                                         | <0.001              |  |  |  |  |
| 10/19/06          | 09:06 11:55   | 169 MINS | Cadmium             | <0.0014                                         | <0.0004             |  |  |  |  |
| 10/19/06          | 09:06 11:55   | 169 MINS | Total Chromium      | <0.0029                                         | <0.001              |  |  |  |  |
| 10/19/06          | 09:06 – 11:55 | 169 MINS | Iron                | 0.0038                                          | 0.001               |  |  |  |  |
| 10/19/06          | 09:06 – 11:55 | 169 MINS | Lead                | <0.0029                                         | <0.001              |  |  |  |  |
| 10/19/06          | 09:06 - 11:55 | 169 MINS | Zinc                | <0.0029                                         | <0.001              |  |  |  |  |
| 10/19/06          | 09:06 - 11:55 | 169 MINS | Hydrochloric Acid   | <lod< td=""><td><lod< td=""></lod<></td></lod<> | <lod< td=""></lod<> |  |  |  |  |
| 10/19/06          | 09:06 - 11:55 | 169 MINS | Nitrogen Dioxide    | <lod< td=""><td><lod< td=""></lod<></td></lod<> | <lod< td=""></lod<> |  |  |  |  |
| 10/20/06          | 08:24 - 11:45 | 201 MINS | Hexavalent Chromium | <0.000055                                       | <0.00002            |  |  |  |  |
| 10/20/06          | 08:24 11:45   | 201 MINS | Barium              | <0.0025                                         | <0.001              |  |  |  |  |
| 10/20/06          | 08:24 11:45   | 201 MINS | Cadmium             | <0.0012                                         | <0.0005             |  |  |  |  |
| 10/20/06          | 08:24 - 11:45 | 201 MINS | Chromium            | <0.0025                                         | <0.001              |  |  |  |  |
| 10/20/06          | 08:24 - 11:45 | 201 MINS | Iron                | <0.0025                                         | <0.001              |  |  |  |  |
| 10/20/06          | 08:24 - 11:45 | 201 MINS | Lead                | <0.0025                                         | <0.001              |  |  |  |  |
| 10/20/06          | 08:24 - 11:45 | 201 MINS | Zinc                | <0.0025                                         | <0.001              |  |  |  |  |
| 10/20/06          | 08:24 – 11:45 | 201 MINS | Hydrochloric Acid   | <lod< td=""><td><lod< td=""></lod<></td></lod<> | <lod< td=""></lod<> |  |  |  |  |
| 10/20/06          | 08:24 - 11:45 | 201 MINS | Nitrogen Dioxide    | <lod< td=""><td><lod< td=""></lod<></td></lod<> | <lod< td=""></lod<> |  |  |  |  |
|                   |               |          | CONCLUSIONS         |                                                 |                     |  |  |  |  |

<sup>•</sup> As indicated by the results of air sampling conducted, no significant levels of the contaminants were detected.

Table 3-6H: Air Sampling

JBOSC ENVIRONMENTAL HEALTH AND SERVICES

CHEMICAL AIR SAMPLING REPORT

LASER PAINT REMOVAL, BLDG K6-1397 - 11/14 - 11/15, 2006

| AIR SAMPLING DATA |               |           |                     |                  |          |  |  |  |  |  |
|-------------------|---------------|-----------|---------------------|------------------|----------|--|--|--|--|--|
| DATE TIME         | DURATION      | COMMODITY | EX                  | EXPOSURE RESULTS |          |  |  |  |  |  |
|                   |               |           |                     | TWA              | 8-HR TWA |  |  |  |  |  |
| 1/14/06           | 13:00 - 15:10 | 130MINS   | Hexavalent Chromium | 0.000022         | 0.000006 |  |  |  |  |  |
| 1/14/06           | 13:00 - 15:10 | 130MINS   | Barium              | <0.0013          | <0.00035 |  |  |  |  |  |
| 1/14/06           | 13:00 15:10   | 130MINS   | Cadmium             | <0.00067         | <0.0002  |  |  |  |  |  |
| 1/14/06           | 13:00 - 15:10 | 130MINS   | Total Chromium      | <0.0013          | <0.00035 |  |  |  |  |  |
| 1/14/06           | 13:00 - 15:10 | 130MINS   | Iron                | <0.0013          | <0.00035 |  |  |  |  |  |
| 1/14/06           | 13:00 - 15:10 | 130MINS   | Lead                | <0.0013          | <0.00035 |  |  |  |  |  |
| 1/14/06           | 13:00 15:10   | 130MINS   | Zinc                | 0.0021           | 0.0006   |  |  |  |  |  |
| 1/15/06           | 09:00 -11:37  | 157MINS   | Hexavalent Chromium | <0.000019        | <0.00002 |  |  |  |  |  |
| 1/15/06           | 09:00 -11:37  | 157MINS   | Barium              | <0.0013          | <0.0004  |  |  |  |  |  |
| 1/15/06           | 09:00 -11:37  | 157MINS   | Cadmium             | < 0.00063        | <0.0002  |  |  |  |  |  |
| 1/15/06           | 09:00 -11:37  | 157MINS   | Chromium            | <0.0013          | <0.0004  |  |  |  |  |  |
| 1/15/06           | 09:00 -11:37  | 157MINS   | Iron                | 0.0029           | 0.0009   |  |  |  |  |  |

<sup>•</sup> Use of the extraction system has been demonstrated to effectively remove contaminants at the source.

| • As indicated by the results of air sampling conducted, no significant levels of the contaminants were detected. |              |         |      |          |         |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|--------------|---------|------|----------|---------|--|--|--|--|
| 11/15/06                                                                                                          | 09:00 -11:37 | 157MINS | Zinc | 0.0021   | 0.0007  |  |  |  |  |
| 11/15/06                                                                                                          | 09:00 -11:37 | 157MINS | Lead | < 0.0013 | <0.0004 |  |  |  |  |

• Use of the extraction system has been demonstrated to effectively remove contaminants at the source.

Noise sampling was conducted to help determine amounts of personal protective equipment (PPE) that would be required if implementation were to occur. The noise data is shown in Table 3-6I.

Table 3-6I: Noise Sampling

|                                          |                       |          |       | De           | osim                  | etry       | Data  | ı    |            |                   |             |                                        |            |                       |  |
|------------------------------------------|-----------------------|----------|-------|--------------|-----------------------|------------|-------|------|------------|-------------------|-------------|----------------------------------------|------------|-----------------------|--|
| Monitor                                  | ing Date              |          | 10/19 | 9/06         |                       | 10/19/2006 |       |      |            |                   |             | 10/20/06                               |            |                       |  |
| Logging start time (24 hr)Total (min.)   |                       | Start: 0 | 834   | Total bi     | rs                    | tart:      | 0840  |      | Total: h   | rs<br>8           | Start:      | 0828                                   | Total:     | 3<br>hrs<br>18<br>min |  |
| Exchange Rate (dB)<br>& Criterion (dBA)  |                       | ER:      | 5 (   | Criterion: 8 | 15                    | ER:        | 5     | Cr   | iterion:   | 35                | ER:         | 5                                      | Criterion: | 85                    |  |
| Time > 11 (minutes)                      |                       | ,        | <     | 1            |                       |            |       | < 1  |            |                   | < 1         |                                        |            |                       |  |
| Time ≥ 85 (minutes)                      |                       |          | 34    | 4            |                       |            |       | < 1  |            |                   |             |                                        | 16         |                       |  |
| L(ACGIH)<br>ER; 8-hr TW                  | (A)                   |          | 79    | .2           |                       |            |       | 75.0 |            |                   |             |                                        | 76.9       |                       |  |
|                                          | L avg<br>(dBA)        |          | 80    | .5           |                       | 76.9       |       |      |            | 78.7              |             |                                        |            |                       |  |
| Noise<br>Exposure                        | Dose<br>(%)           |          | 22    |              | 13.4                  |            |       |      |            | 17.3              |             |                                        |            |                       |  |
| Exposure                                 | 8-hr<br>TWA<br>(dBA)  |          | 74.3  |              |                       |            | 70.5  |      |            |                   | 72.3        |                                        |            |                       |  |
|                                          |                       |          |       | D            | osin                  | etry       | Data  |      |            |                   |             |                                        |            |                       |  |
| Monito                                   | ring Date             |          | 1     | 1/14/06      |                       |            |       | 11   | /15/06     |                   |             |                                        |            |                       |  |
| Logging st<br>hr)Total (m                | tart time (24<br>in.) | Start:   | 1259  | Total        | l<br>hrs<br>19<br>min | Sta        | rt: 0 | 914  | Total:     | 1<br>hi<br>5<br>m | rs          | art:                                   | Total      |                       |  |
| Exchange<br>Criterion (                  | Rate (dB) & dBA)      | ER:      | 5     | Criterion:   | 85                    | E          | R:    | 5    | Criterion: | 8                 | 35 <b>E</b> | R:                                     | Criterion: |                       |  |
| Time > 11 (minutes)                      | 0 dBA                 |          | 0 < 1 |              |                       |            |       |      |            |                   |             |                                        |            |                       |  |
| Time ≥ 85 dBA (minutes)                  |                       |          | 43    |              |                       | 7          |       |      |            |                   |             | ······································ |            |                       |  |
| L(ACGIH) <b>TWA</b> (dB ER;<br>8-hr TWA) |                       | ξ;       | 78.9  |              |                       | 75.5       |       |      |            |                   |             |                                        |            |                       |  |
| Noise<br>Exposure                        | L avg<br>(dBA)        |          | 83.9  |              |                       |            | 75.4  |      |            |                   |             |                                        |            |                       |  |
|                                          | Dose (%)              |          |       | 21.2         |                       | 8.7        |       |      |            |                   |             |                                        |            |                       |  |
| •                                        | 8-hr TW.<br>(dBA)     | 4        |       |              | 67.4                  |            |       |      |            |                   |             |                                        |            |                       |  |

Some follow-on testing with an inconel gasket from the Space Shuttle Main Engine Shop was performed in order to determine if the technology could remove Teflon coatings. Two identical gaskets were brought to the test site at KSC, one was used during the demonstration where the hand-held laser was used to remove the coatings. While the coating was removed there was significant heating and some discoloration of the inconel substrate. The identical ring

was sent to the Adapt Laser facility in Germany in order to test the ability of the same laser to remove the coatings without damage using the 2D scanning laser. The 2D scanning laser was able to remove the Teflon coatings without significant observable damage to the gasket.

#### 3.6.4. Conclusions/Recommendations

#### MST Samples

Personnel from Space Launch Complex 17 provided two pieces of sample Mobile Support Tower (MST) materials for field evaluation, one piece of diamond plate steel, and one section of steel I-beam. Both samples had been recently coated with the Zinc Clad 5 Primer and are representative of the Cape Canaveral Air Force Station Space Launch Complex structures. It was noted that the 120W laser did have difficulty actually stripping the zinc based paint, taking approximately 25 minutes to adequately remove the paint from 1/4 sq. ft. of the diamond plate steel panel (the 500W model would take less than 5 minutes to do the same area). Focusing the beam on the contoured dimensions of the diamond shapes took additional time. Some coatings, especially lighter colored coatings proved tougher to strip due to lower heat absorption.

#### Corrosion/Refurbishment

There is potential for this technology for use on the MST, since refurbishment work is actually removing corrosion instead of existing protective coating. Field tests showed that the PLCRS excelled in corrosion removal. Corrosion was removed quickly and completely, even cleaning out pitted areas leaving the substrate in excellent condition for immediate recoating. In areas where the protective coating has already been compromised, little if any of the original zinc coating is left to remove. Coated areas that have not been compromised are not stripped; only deteriorated areas are refurbished as required. Therefore, further evaluation under actual conditions may be warranted for testing on the MST. With a scheduled refurbishment section prepared for the PLCRS, corroded areas may be effectively cleaned up and rapidly recoated once complete. The PLCRS would practically eliminate cleanup since removed material is collected with the aid of a HEPA vacuum system.

The PLCRS appeared to clean the corroded areas to meet the SSPC-SP-10/NACE-No. 2 Near-White Blast Cleaning specification, but laboratory and other field tests have show this to be only true in some situations. One aspect to note is that the PLCRS does not alter or establish a surface profile, but only removes the coating or corrosion. If a specific profile is required after stripping, this would need to be produced with hand tools capable of establishing the desired profile, unless there was a previously acceptable anchor profile on the substrate, in which case, it would be preserved. It appears that corroded substrates, if still structurally sound, may provide a less desirable profile than when originally coated. The PLCRS has a potential for use on the MST or similar structure since traditional blast methods cannot be used. There does not appear to be an adequate purpose for its consideration on the Fixed Umbilical Tower since traditional blast methods can be used.

Similar interest was shown for use on the Mobile Launch Platform and Crawler for SSP. The prime interest is removing corrosion and nearby affected coatings from steel for re-painting.

There was a concerted effort by interested stakeholders to demonstrate the laser on the Crawler, but there was not adequate time to plan the demonstration, primarily due to proper preparation of the site to avoid safety concerns and the launch schedule which would not allow for the site to be cleared of non-essential personnel for the demonstration.

# NDE Weld Line Prep

One of the more successful efforts during this demonstration involved using the laser to decoat weld lines (both aluminum and steel) or other areas in need of surface inspection. It was found during the demonstration that the lasers are able to successfully prepare an area for NDE. When using the lasers, no secondary or preparation steps were required (i.e. no chemical stripping or cleaning steps) before performing the appropriate NDE tests. Typically, after chemically stripping weld lines the surface must be cleaned and prepped prior to the NDE. Using the lasers to do the decoating and prep work resulted in a much cleaner and shorter process when working with both the weld lines and other NDE testing.

Another test for weld lines was the preparation of joint and interface areas of two panels prior to welding. These areas of bare substrates must be cleaned properly to achieve an acceptable weld. This technology is currently used widely within several auto-manufacturing facilities for this expressed purpose. Welds were to be tested for strength, but the stakeholder that was involved retired prior to accomplishing these tests. It is assumed that this testing would have been successful, but was not completed.

# **SRB Grease Test**

The Solid Rocket Booster (SRB) Grease tests had some significant problems. While the laser could remove the paint and grease on the SRB sample, it caused a moderate amount of grease to splatter onto the glass that protects the laser source from dirt and debris. Because of this, the glass had to be cleaned every 5-10 minutes to maintain laser efficiency and protect the glass from overheating. Unless engineered differently, the hand-held laser would not be very productive for this type of application.

# Safety, Air, and Noise

Safety, Air, and Noise sampling went well. All tests were below the level of action for noise, however because noise levels indoors were very close to action levels, ear protection is still recommended for the laser operator and if the process were implemented at KSC hearing protection would be required until further testing could be performed. Chromium and cadmium based coatings were stripped over 3 days of air sampling and all test results were well below the action limits.

# 4.0. Discussions, Conclusions, & Recommendations

While it is unlikely that this technology could be implemented for use on the Orbiter due to Anodize related specifications, the technology should not be precluded from use or further testing for other space flight hardware and/or future vehicles because of these conflicts. Should

KSC procure a laser system for GSE and non-flight equipment depainting processes, testing this technology for use within flight hardware processes should be fully explored.

Lasers as demonstrated during this project stripped slower than conventional technologies, but according to the JG-PP/ESTCP Final Report the amount of PPE required was reduced, and time to setup equipment, don PPE, doff PPE, and post-stripping cleanup was also reduced. It is recommended that lasers be used for small area applications or applications where there is not a short timeline scheduled for the activity.

When considering the use of lasers as decoating tools, concerns began to be voiced within the SSP community regarding issues such as laser temperatures, potential for damage, coating removal, effectiveness, damage to substrate and surrounding TPS materials, corrosion resistance, and the Anodized layer. Data from this project addresses many of these issues and should be helpful in assessing the value of hand held lasers for various decoating needs that will inevitably arise within SSP and other NASA programs.

Lasers do not present a threat to the established aluminum structure limits which are set at 350°F. It should also be noted that the temperature profiles for coating removal are expected to differ from one paint system to another.

Another goal of this project was to evaluate the possibility of using hand-held lasers within the tile cavities of the Orbiter. In summary, both the 40W and 120W lasers were effective in removing skived RTV and Koropon within these areas. The lasers have the potential to damage TPS materials as documented in Section 3.4., however, it should also be noted that a workable procedure was developed to protect TPS soft goods when employing the lasers as decoating tools. When taking proper steps to protect surrounding tiles and filler bar, all decoating tests for this program were successful. It should be noted that the two hand-held lasers were inefficient in removing thick layers of RTV and they do not have the sensitivity and selectivity to remove Koropon while leaving the Anodized layer intact.

Leaving the Anodized layer intact to preserve an element of corrosion protection in the tile cavities is a concern for many in the SSP. Several tests were conducted comparing the handheld lasers effect on the Anodized layer with the effects of using standard 220 and 400-grit sandpaper. It seemed that the hand-held lasers removed the Anodized layer in patches while hand-sanding was able to remove the Anodized surface one layer at a time allowing for easier preservation of the Anodized layer. As a follow up to this testing, Adapt Laser decoated an Anodized/Koropon panel using their CL120 gantry-mounted Q-Switched laser. After some experimentation with various laser settings, the automated laser demonstrated the ability to remove Koropon while leaving the Anodized layer intact.

In general, darker and thinner coatings tend to be easier to remove than the lighter and thick coatings when applying the lasers to various coating systems. Color, chemical composition, and thickness of the target layer all impact the effectiveness in the removal process. Overall, the 40W, 120W, and 500W lasers were able to remove each coating; however, the degree of success varied. Results were consistent with other methods of coating removal. In other applications it was shown that the lasers were successful in removing corrosion from most

substrates, but limited in their ability to remove all corrosion and pitting from aluminum substrates.

The Nd:YAG laser systems have proven to be quite versatile and practically maintenance-free. The 40W Nd:YAG system was very easy to use but was found to be tedious to use when stripping larger surface areas. This was due to the end effector design that produces a small, unrastered beam diameter on the part substrate. Likewise, the 120W Nd:YAG system was also very easy to use, but its end effector is designed to perform stripping on larger flat surfaces. Stripping of these flat or slightly contoured surfaces was performed very efficiently using this system, but the end effector design was found to be cumbersome when stripping components with complicated geometries. Newly developed laser systems have the ability to incorporate both types of laser by having multiple end effectors and a simple switching mechanism. Additionally, newer versions of the same 120W laser documented here have increased power ratings at 250W and 300W and lower maintenance costs due to switching from a lamp to a diode pumped laser. These newly marketed lasers would perform better and with higher reliability than the lasers reviewed here, and would be recommended for any potential implementation.

### References

- 1 JG-PP/ESTCP/HQ Air Force Materiel Command Depot Modernization and Logistics Environmental Office. *Portable Handheld Laser Small Area Supplemental Coatings Removal System.* 17 Aug 2005.
- 2 JG-PP/ESTCP. Joint Test Report for Validation of Coating Removal Systems. 25 May 2005.
- 3 NASA KSC. Checklist for Clean-Lasersysteme Demonstration & Operation at NASA KSC.
- 4 NASA KSC. Radiation Protection Program Use Authorization, Form K-LA-50147.
- 5 United Space Alliance. Advanced Coating Removal Techniques. 18 Jan 2006.
- 6 Boeing. Lab Report No. M&PE-3-1567, Portable Laser Coating Removal Task. 06 Dec 2004.
- 7 NASA TEERM. Field Evaluations Test Plan for Validation of Portable Laser Coating Removal Systems for use on Ground Service Equipment. 13 Oct 2005.
- 8 NASA TEERM. Depainting Technology for Structural Steel Final Report. 15 Mar 2006.
- 9 Boeing. Lab Report No. MP&E-3-1766 Evaluation of Hand-Held Lasers To Remove Surface Finishes. 07 Aug 2006.
- 10 Boeing. Metallurgical Report, Case Number 401679. 30 Nov 2005.
- 11 NASA TEERM. Field Evaluations Test Plan For Validation of Portable Laser Coating Removal Systems for use on Ground Service Equipment. 11 Oct 2006.
- 12 ASRC. Laser Depainted Corrosion Study of Aluminum and Steel Substrates. 31 Jan 2007.
- 13 45<sup>th</sup> Space Wing. Radiation Protection Program (Instruction 40-201). 15 Dec 2004.
- 14 Kennedy NASA Procedural Requirements. KSC Ionizing Radiation Protection Program (KNPR 1860.1). 15 Oct 2004.
- 15 Kennedy NASA Procedural Requirements. KSC Nonionizing Radiation Protection Program (KNPR 1860.2). 15 Oct 2004.
- 16 Boeing. Lab Report No. MP&P-3-1912 Investigating Smooth Surface Fatigue Strength As It Relates To Laser Affected Surfaces and The Formation of A Remelt Layer. 09 Apr 2008.

## Appendix A: Test Articles and Matrices

Group A: Boeing Huntington Beach – Doug Boerigter Group F: Lab Test Panels – Jerry Curran (KSC)

Group B: USA – Jon Seibert Group G: Weld-Line Panels – LES Shop
Group D: GSE Panels – Boeing & USA

Group C: GSE Panels – Boeing & USA

Group C: GSE Panels – Boeing & USA

Group C: GSE Panels – Boeing & USA

Lab Test Panels – Jerry Curran (KSC)

Field Articles – Martin Boyd, Ernie Banks,
Carol Waddell, Julia Hess, Jon Siebert,
Jennifer Van Den Driessche, Jennifer Parson

Group E: NSLD Panels – Julia Hess & Jim Mullican

| No.                       | Description                          | Substrate  | Pretreatment                  | Primer                                    | Topcoat                                     |
|---------------------------|--------------------------------------|------------|-------------------------------|-------------------------------------------|---------------------------------------------|
| 1A, 1B,<br>3A             | 12" x 12" (0.050" thick)             | 2024-T3    | Bare Aluminum                 | Koropon<br>(MB0125-055)                   | None                                        |
| A-4 (AKA<br>14-B)         | 12" x 12" (0.050"<br>thick)          | 2024-T3    | Chem-film (MIL-C-5541)        | Koropon<br>(MB0125-055)                   | None                                        |
| 4B                        | 12" x 12" (0.050" thick)             | 2024-T3    | Bare Aluminum                 | 2-Coats Koropon<br>(MB0125-055)           | None                                        |
| A-6 (AKA<br>18B)          | 12" x 12" (0.050" thick)             | 2024-T3    | Chem-film (MIL-C-5541)        | 2-Coats Koropon<br>(MB0125-055)           | None                                        |
| 2A                        | 12" x 12" (0.050"<br>thick)          | 2024-T3    | Bare Aluminum                 | Koropon<br>(MB0125-055)                   | RTV 560 (MB0130-<br>119 Type II)            |
| 8B                        | 12" x 12" (0.050"<br>thick)          | 2024-T3    | Anodized (MIL-A-<br>8625)     | Koropon<br>(MB0125-055)                   | RTV 560 (MB0130-<br>119 Type II)            |
| 5A, 5B                    | 12" x 12" (0.050" thick)             | 2024-T3    | Bare Aluminum                 | None                                      | RTV 560 (MB0130-<br>119 Type II)            |
| 21B                       | 12" x 12" (0.012"<br>- 0.016" thick) | 2024-T3    | Bare Aluminum /<br>Face Sheet | Koropon<br>(MB0125-055)                   | RTV 560 (MB0130-<br>119 Type II)            |
| A-12<br>(AKA<br>24A, 26A) | 12" x 12" (0.012"<br>- 0.016" thick) | 2024-T3    | Chem-film (MIL-C-5541)        | Koropon<br>(MB0125-055)                   |                                             |
| 22A, 22B                  | 12" x 12" (0.012" - 0.016" thick)    | 2024-T3    | Bare Aluminum /<br>Face Sheet | None                                      | RTV 560 (MB0130-<br>119 Type II)            |
| A-16<br>(AKA 9A,<br>9B)   | 12" x 12" (0.050"<br>thick)          | 2024-T3    | Anodized (MIL-A-<br>8625)     | Tie Coat (old)<br>(MB0125-094)            | Thermal Control<br>Coating (MB0125-<br>080) |
| 11A                       | 12" x 12" (0.050" thick)             | 2024-T3    | Anodized (MIL-A-<br>8625)     | Koropon<br>(MB0125-055)                   | Gloss Polyurethane<br>(MB0125-095)          |
| B-1                       | 12" x 12"                            | 6061-T6    | Alodine 1200                  | Hentzen Primer                            | Hentzen Topcoat                             |
| B-30                      | 13" x 13 1/2"<br>(0.016" thick)      | 2024-T81   | Red Sulfuric<br>Anodize       | No Primer                                 | No Topcoat                                  |
| B-32                      | 13" x 13 1/2"<br>(0.016" thick)      | 2024-T81   | Red Sulfuric<br>Anodize       | Koropon                                   | MB0125-039 Gray                             |
| C-1, 2                    | 12" x 12" with<br>Weld               | A 36 Steel | None                          | IOZ Primer /<br>Epoxy Primer<br>(Midcoat) | White Urethane<br>Topcoat                   |
| C-3, 4                    | 12" x 12" with<br>Weld               | A 36 Steel | None                          | IOZ Primer                                | Grey IOZ Topcoat                            |
| C-5<br>through 8          | 12" x 12" with<br>Weld               | 5052-H32   | None                          | Epoxy Primer                              | White Urethane<br>Topcoat                   |
| C-9<br>through 12         | 12" x 12" with<br>Weld               | 6061-T6    | None                          | Epoxy Primer                              | White Urethane<br>Topcoat                   |

| No.      | Description                                                              | Substrate  | Pretreatment      | Primer                                    | Topcoat                   |
|----------|--------------------------------------------------------------------------|------------|-------------------|-------------------------------------------|---------------------------|
| D-1      | 12" x 12" (USA)                                                          | A36 Steel  | None              | IOZ Primer /<br>Epoxy Primer<br>(Midcoat) | White Urethane<br>Topcoat |
| D-5      | 12" x 12"<br>(USA)                                                       | A36 Steel  | None              | IOZ Primer                                | Grey Inorganic<br>Topcoat |
| D-9, 10  | 12" x 12"<br>(USA)                                                       | 5052-H32   | None              | IOZ Primer                                | White Urethane<br>Topcoat |
| D-13     | 12" x 12"<br>(USA)                                                       | 6061-T6    | None              | Epoxy Primer                              | White Urethane<br>Topcoat |
| D-17, 18 | 12" x 12"                                                                | 5052-H32   | Anodized          | None                                      | None                      |
| D-25, 26 | 12" x 12"                                                                | 6061-T6    | Anodized          | None                                      | None                      |
| F-1, 2   | 3" x 6"                                                                  | Steel 1018 | CT - Pretreatment | CT - Primer                               | CT - Topcoat              |
| F-3, 4   | 3" x 6"                                                                  | Steel 1018 | No Pretreatment   | No Primer                                 | No Topcoat                |
| F- 5, 6  | 3" x 6"                                                                  | Steel 1018 | No Pretreatment   | No Primer                                 | No Topcoat                |
| F-7, 8   | 3" x 6"                                                                  | 2024-T3    | CT - Pretreatment | CT - Primer                               | CT - Topcoat              |
| F-9, 10  | 3" x 6"                                                                  | 2024-T3    | No Pretreatment   | No Primer                                 | No Topcoat                |
| F-11, 12 | 3" x 6"                                                                  | 2024-T3    | No Pretreatment   | No Primer                                 | No Topcoat                |
| G-1      | 6" x 12" Steel<br>angles<br>From Banks                                   | Steel      | Unknown           | Unknown                                   | Unknown                   |
| G-23     | CCAFS / Patrick<br>AFB Test Articles<br>From Mullican –<br>Diamond Plate | Steel      | None              | Zinc Clad Primer                          | None                      |
| G-24     | CCAFS / Patrick<br>AFB Test Articles<br>From Mullican –<br>I-Beam        | Steel      | None              | Zinc Clad Primer                          | None                      |

## **Appendix B: Attendees of Field Demonstrations**

## Attendees to First WPAFB Demo

| Last Name    | First Name     | Title                  | Organization |
|--------------|----------------|------------------------|--------------|
| Banks        | Marvin (Ernie) | M&P Engineer           | Boeing       |
| Beck         | Phil           | Mech. Eng. Technician  | NASA         |
| Boyd         | Martin         | NASA STR               | NASA         |
| Brown        | Christina      | TEERM Program Mgr      | NASA         |
| Chakravarthy | Sreevatsa      | Subsystem Area Mgr     | USA          |
| Hall         | Harold (Pete)  | Paint Stripping Coord. | Anteon       |
| Hayes        | Steve          | Mech. Eng. Technician  | NASA         |
| Headley      | David          | Project Engineer       | Boeing       |
| Hull         | Robert         | Program Manager        | Anteon       |
| Lee          | Charlie        | M&P Engineer           | USA          |
| Mongelli     | Gerard         | Manager, AF Programs   | CTC          |
| Nielsen      | Larry          | TPS Manager            | USA          |
| Rothgeb      | Matthew        | Engineer               | TEERM (ITB)  |
| Rozzo        | Sandy          | TPS Engineer           | USA          |
| Sekura       | Linda          | Environmental Research | SAIC         |
| Wagner       | Ken            | Structural Engineer    | USA          |
| Wagner       | Pete           | Project Leader         | USA          |

## Attendees to GRC Demo

| Last Name    | First Name     | Title                    | Organization |
|--------------|----------------|--------------------------|--------------|
| Banks        | Marvin (Ernie) | M&P Engineer             | Boeing       |
| Bertone      | Ernie          | Building Mgmt Spec.      | NASA GRC     |
| Blasio       | Chris          | Health Physicist         | NASA GRC     |
| Buettner     | Sandy          | Electronics Engineer     | NASA GRC     |
| Cherry       | Clint          | Carpenter                | JDDI         |
| Coates       | Bryan          | Facilities Development   | NASA GRC     |
| Curran       | Jerry          | Engineer                 | ASRC         |
| Dyke         | Mike           | Safety Engineer          | NASA GRC     |
| Forth        | Dave           | Program Manager          | SAIC         |
| Gibson       | Theresa        | Electrical Engineer      | NASA GRC     |
| Giriunas     | Julius         | Gas & Fluid Systems      | NASA GRC     |
| Greenwalt    | Christine      | Industrial Hygienist     | NASA GRC     |
| Hall         | Harold (Pete)  | Paint Stripping Coord.   | WPAFB        |
| Hempstead    | Tyrone         | Carpenter                | CHI          |
| Howser       | Bill           | Facilities Division      | SAIC         |
| Jeziorowsky  | Luz            | Industrial Hygienist     | NASA GRC     |
| Kearney      | Dick           | Tech Services Grp Mgr    | MTI          |
| Liou         | Larry          | Res Test Support Mgr     | NASA GRC     |
| Marabito     | Scott          | Electrical Foreman       | CHI          |
| McClanahan   | Ron            | Safety Engineer          | NASA GRC     |
| Merriweather | Jim            | Model Maker              | NASA GRC     |
| Papcke       | Dan            | P2/Sustainability Lead   | NASA GRC     |
| Parrott      | Edith          | Electrical Engineer      | NASA GRC     |
| Rothgeb      | Matthew        | Engineer                 | TEERM (ITB)  |
| Schade       | Greg           | Electrical Engineer      | NASA GRC     |
| Seibert      | Jon            | Engineer                 | USA          |
| Sekura       | Linda          | Environmental Specialist | NASA (CSU)   |
| Smith        | Tim            | Aerospace Engineer       | NASA GRC     |

| Straw   | Randy  | Engineer             | WPAFB    |
|---------|--------|----------------------|----------|
| Waddell | Carol  | Engineer             | NASA KSC |
| White   | Dan    | Admin Mgmt Spec      | NASA GRC |
| Windau  | Angela | Industrial Hygienist | SAIC     |

## Attendees to Second WPAFB Demo

| Last Name    | First Name     | Title                | Organization |
|--------------|----------------|----------------------|--------------|
| Banks        | Marvin (Ernie) | M&P Engineer         | Boeing       |
| Boerigter    | Doug           | Engineer / Scientist | Boeing HTS   |
| Boyd         | Martin         | NASA STR             | NASA         |
| Chakravarthy | Sreevatsa      | Subsystem Area Mgr   | USA          |
| Heidelmann   | Georg          |                      | Adapt Laser  |
| Hess         | Julia          | M&P Engineer         | Boeing NSLD  |
| Nielsen      | Larry          | TPS Manager          | USA          |
| Parsons      | Jennifer       | Structures Engineer  | USA          |
| Rothgeb      | Matthew        | Engineer             | TEERM (ITB)  |
| Rozzo        | Sandy          | TPS Engineer         | USA          |
| Seibert      | Jon            | Engineer             | USA          |

## Attendees to KSC Demo

| Last Name  | First Name     | Title                   | Organization           |
|------------|----------------|-------------------------|------------------------|
| Aman       | Bob            |                         | Wiltech                |
| Ballington | Joe            | Manager                 | USA                    |
| Banks      | Marvin (Ernie) | M&P Engineer            | Boeing                 |
| Batson     | Kurt           | Boeing M&P              | Boeing                 |
| Beckage    | Frank          | Boeing Environmental    | Boeing                 |
| Benison    | Wendy          | USA Safety and Health   | USA                    |
| Bergstrom  | Gary           | Industrial Hygienist    | CHS                    |
| Bland      | Jamel          | Engineer                | USA                    |
| Boehmer    | Linda          | USA Safety and Health   | USA                    |
| Boerigter  | Doug           | Engineer / Scientist    | Boeing HTS             |
| Boyd       | Martin         | NASA STR                | NASA                   |
| Brown      | Christina      | TEERM Program Mgr       | NASA                   |
| Brown      | Dale           | M&P Engineer            | Boeing                 |
| Brown      | David          | Engineer                | ATK                    |
| Brown      | Julias         | Property Spec           | Boeing / APL           |
| Byrd       | Curtis         | Environmental Manager   | SGS/CHS                |
| Clark      | Johnny         | Mechanical Engineer     | Lockheed Martin        |
| Corsa      | Anna           | Engineer                | NASA                   |
| Curran     | Jerry          | Engineer                | ASRC                   |
| Daly       | Shawn          | Avionics LSP            | NASA                   |
| Devlin     | Joe            | Industrial Hygienist    | CHS                    |
| Doucet     | Russell        | Engineer                | ASRC-17                |
| Exell      | Wally          | MATE                    | USA                    |
| Fineberg   | Larry          | Engineer                | NASA                   |
| Franco     | Rogelio        | Engineer                | NASA                   |
| Freeman    | Bob            | Nuclear Launch Approval | NASA                   |
| Gayle      | Michael        | Video Tech              | Indyne                 |
| Geber      | Kurt           | Agency Health Physicist | Dyn-4 NASA Occ. Health |
| Goforth    | Greg           | Tech                    | USA                    |

| Last Name  | First Name    | Title                    | Organization    |
|------------|---------------|--------------------------|-----------------|
| Gracom     | Glenn         | Process Engineer         | USA             |
| Greene     | Brian         | Senior Engineer          | TEERM (ITB)     |
| Hall       | Harold (Pete) | Paint Stripping Coord.   | WPAFB           |
| Harrell    | Laura         | NDE Inspector            | USA             |
| Harris     | Bill          | Engineer                 | ASRC            |
| Harris     | Robin         | M&P Engineer             | Boeing          |
| Hayes      | Christine A   | Environmental Engineer   | SGS/CHS         |
| Heidelmann | Georg         |                          | Adapt           |
| Herrington | John          | Engineer                 | TEERM (ITB)     |
| Hess       | Julia         | M&P Engineer             | Boeing NSLD     |
| Hoepfner   | Howard        | LEAD                     | WYLE/FSA-1      |
| Hoover     | Darrell       | BOSN                     | USA             |
| Hull       | Dan           | Aero Tech                | NASA            |
| Jiménez    | Luis          | Engineer                 | Wiltech         |
| Jonjevic   | Nathan        |                          | Adapt           |
| Kessel     | Kurt          | Senior Engineer          | TEERM (ITB)     |
| Layne      | Andrew        | NASA OHE                 | NASA            |
| Lewis      | Pattie        | Engineer                 | TEERM (ITB)     |
| Llibre     | John          | Industrial Hygienist     | USA             |
| Lockhart   | Leon          | Body & Fender Mechanic   | CMTI            |
| Loftin     | Sam           | Property Spec            | Boeing / APL    |
| McCauley   | Larry         | System Administrator     | USA             |
| McClure    | Michael       | OHE Engineer             | USA             |
| McLaughlin | David         | Tech                     | NASA            |
| Millwood   | Rick          | Property Spec            | Boeing / CMT    |
| Mitchell   | John          | Engineer                 | Lockheed Martin |
| Muktarian  | Ed            | Engineer                 | ASRC-17         |
| Myers      | Jim           | Engineer                 | NASA            |
| Nielsen    | Larry         | TPS Manager              | USA             |
| Nguyen     | Hien T.       | Environmental Specialist | NASA            |
| O'Connor   | Cristina      | Engineer                 | NASA            |
| Parsons    | Jennifer      | Structures Engineer      | USA             |
| Poimboeuf  | Ken           | Project Manager          | ASRC            |
| Remusat    | Todd          | Industrial Hygienist     | CHS             |
| Richer     | David         | Engineer                 | UPC/Wyle        |
| Ring       | Rich          | Engineer                 | USA             |
| Roberts    | Glenn         | USA OHE                  | USA             |
| Robinson   | Anthony       | Video Tech               | Indyne          |
| Rothgeb    | Matthew       | Engineer                 | TEERM (ITB)     |
| Seibert    | Jon           | Engineer                 | USA             |
| Sikora     | Ed            | SSME-USA                 | USA             |
| Solomon    | Marcella      | M&P Engineer             | Boeing          |
| Stevenson  | Charles       | NASA OHE                 | NASA            |
| Straw      | Randy         | Engineer                 | WPAFB           |
| Summers    | Robert        | NASA OHE                 | NASA            |
| Swartz     | Rich          | Engineer                 | Lockheed Martin |
| Thompson   | Gary          | Video Tech               | Indyne          |

| Last Name  | First Name  | Title                    | Organization |
|------------|-------------|--------------------------|--------------|
| Thompson   | Randy       | M&P Engineer             | Analex       |
| Waddell    | Carol       | Engineer                 | NASA         |
| Walsh      | Earl        | Body and Fender Mechanic | CMTI         |
| Waters     | George T    | QA                       | USA          |
| Wendorff   | Bill        | M&P Engineer             | Boeing       |
| White      | Brian       | Process Engineer         | USA          |
| Wickwire   | Pete        | Industrial Hygienist     | Boeing Delta |
| Williamson | Steve       | Project Manager          | Wiltech      |
| Witkowski  | Rich        | Engineer                 | NASA         |
| Woods      | Jim         | NDE Inspector            | USA          |
| Yarborough | Becky       | Property Spec            | Boeing / APL |
| Zink       | Nevin (Ray) |                          | USA          |

## **Appendix C: Operations Checklist Example**

Checklist for Clean-Lasersysteme Demonstration & Operation at NASA KSC

\*As stated in the Standard Operating Procedures, laser operators should complete this checklist prior to use at each new location of operation and daily before first operations of the day at a minimum.

Note: Qualified Laser operator onsite is to complete this checklist prior to operation of the Clean-Lasersysteme Portable Laser Coating Removal System. Deviations from the list must be approved by the Radiation Protection Officer through the Health Physics Office at KSC.

Before Operations can begin, assure the following pre-requisites are met for the appropriate environment of operation:

| A | RO | OM | W | ILL | HA | VE: |
|---|----|----|---|-----|----|-----|
|---|----|----|---|-----|----|-----|

| A 1 | XOOM WILL HAVE.                                                                                                                      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------|
|     | Vacuum designed to handle the vaporized paint or paint chips,  Hearing protection, if requested, for personnel inside the room,      |
| Α ( | CONTROLLED SPACE WILL HAVE:                                                                                                          |
| 1.  | Only laser protective curtains designed for the particular laser operations shall be used,                                           |
| 2.  |                                                                                                                                      |
|     | Vacuum designed to handle the vaporized paint or paint chips,                                                                        |
|     | Hearing protection,                                                                                                                  |
|     | Controlled entry point with laser interrupt, if unauthorized personnel                                                               |
|     | enter controlled space,                                                                                                              |
| 6.  | Laser warning signs,                                                                                                                 |
| 7.  | Laser operation warning light.                                                                                                       |
|     | CRIFY BEFORE PROCEEDING WITH STARTUP:                                                                                                |
|     | Verify operation of interlock system (inside use)                                                                                    |
| 2.  | ☐ Verify room exhaust ventilation is operating (inside use) ☐ Verify particle capture system is operational with appropriate filters |
| ٥.  | in place                                                                                                                             |
| 4   | ☐ Verify flashing sign(s) and warning lights are operational                                                                         |
|     | Verify warning signs in place                                                                                                        |
|     | ☐ Verify laser curtains erected and barricades established per safety                                                                |
|     | plan (outside use)                                                                                                                   |
| 7.  | Ensure person(s) monitoring safety barricade have been briefed                                                                       |
|     | regarding responsibilities                                                                                                           |
| 8.  | ☐ Verify operator and observers are wearing appropriate laser eye                                                                    |
|     | protection                                                                                                                           |

9. The Verify appropriate fire suppression system is available

## STARTUP PROCEDURE

| 1. | Verify that all cables and lines are in place and secure. |
|----|-----------------------------------------------------------|
| 2. | Turn on laser warning lights.                             |
| З. | Verify laser warning signs are posted.                    |
| 4. | Secure test area.                                         |
| 5. | Verify that beam stops are in place.                      |
| 6. | Verify that the power is switched OFF.                    |
| 7. | Follow Table 1 to start the laser.                        |

## TABLE 1: STARTUP PROCEDURES

| $N_2$ | X | Action                                                                                                                               | Laser System Reaction                                                                                                                                                                                                                                                                                        | Note                                                                                                                                                         |
|-------|---|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a.    |   | Turn the main switch (mains supply) to the "On" position                                                                             | Shutter display flashes shortly (lamp test). Cooling display lights up. Numerical display "8888" appears                                                                                                                                                                                                     | Wait approximately 5 seconds                                                                                                                                 |
| b.    |   | Wait<br>approximately<br>5 seconds                                                                                                   | Cooling water temperature in °C is displayed. When the temperature is below the preheating temperature, the water pump and the heating switch turns on automatically. The cooling control lamp #3 lights up; automatic preheating is activated                                                               | If the preheating temperature is already reached, go to point 4                                                                                              |
| c.    |   | Wait for set<br>temperature<br>to be reached                                                                                         | Automatic disconnection of the preheating and the water pump. Cooling control lamp #3 extinguishes. Start interlock of the laser is automatically released                                                                                                                                                   | Starting the laser is now possible                                                                                                                           |
| d.    |   | Pull<br>emergency<br>shutdown<br>switch                                                                                              | None                                                                                                                                                                                                                                                                                                         | Do not block the switch                                                                                                                                      |
| e.    |   | Insert key switch (laser) and turn to position "On"                                                                                  | Green laser function display "Ready" lights up                                                                                                                                                                                                                                                               | Laser beam source is ready for start                                                                                                                         |
| f.    |   | Start the laser<br>system by turning<br>and holding of the<br>key switch in the<br>"Start" position<br>for approximately<br>1 second | When the key is actuated the yellow control lamp (start) on the operating panel lights up. When the key is released, it returns to the "On" position. Make sure water pump is working. The laser beam source must ignite between 5 –20 seconds. This is displayed by a flash of the function display "Laser" | The laser radiation for the cleaning process is generated in the resonator Note: Strict supervision must be adhered when key is inserted in the laser system |
| g.    |   | Wait approximately 5 seconds                                                                                                         | Listen for the water pump working. The function displays "Ready" and "Laser" light up                                                                                                                                                                                                                        | Laser beam cleaning system is ready for operation                                                                                                            |

#### **OPERATION:**

- 1. Place sample in target area
- 2. Follow Start-up procedure
- 3. To open the shutter on the laser head and fire the laser, press the trigger button (pistol grip) simultaneously with the green button on the end effector on the dial pad, using both hands. The laser is now firing.
- 4. You can now release the green button on dial pad.
- 5. Adjust operating parameters (pulse frequency, scan frequency, scan width) if needed.
- **6.** Move the end piece over the target area by slowly rolling the end piece back and forth over the target area.
- 7. Release the trigger button to stop the laser.

#### SHUTDOWN PROCEDURES:

- 1. Follow Table 2 for shut-down procedures
- 2. Never disconnect the laser system directly using the main switch or by pulling the mains plug! Always actuate the key switch first to shut down the laser.

| №  | X | Action                                                                                             | Laser System Reaction                                                    | Note                                                                                            |  |  |
|----|---|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|
| а. |   | Turn key switch (laser) to the "Off" position for approximately 1 second and release it Remove key | Display "Laser" extinguishes                                             | Wait until the cooling system has cooled down to set temperature (normally 23°C)                |  |  |
| b. |   | Wait 5 seconds                                                                                     | Cooling water pump stops. Compressor cooling system switches off audibly | Laser beam source is switched off. The laser system can now be separated from the mains supply. |  |  |
| c. |   | Turn main switch (mains supply) to the "Off" position                                              | Cooling display extinguishes. Cooling adjuster beeps shortly             | Laser system is now switched off.                                                               |  |  |
| d. |   | Protect laser against unauthorized connection                                                      |                                                                          |                                                                                                 |  |  |

### **EMERGENCY SHUTDOWN PROCEDURE:**

1. Push the red emergency OFF button located on the laser system unit.

## **Appendix D: Example Depainting Inspection Form**

| DEPAINTING SYSTEM EVAI                    | L <b>UA</b> '   | ΓΙΟΝ AND INSP                          | ECTION | REPORT                                |  |
|-------------------------------------------|-----------------|----------------------------------------|--------|---------------------------------------|--|
| DATE PROJECT RI                           | EF. NO          |                                        | PAGE   | OF                                    |  |
| PROJECT NAME                              |                 | LOCATIO                                | N      | · · · · · · · · · · · · · · · · · · · |  |
| INSPECTION ORGANIZATION INSPECTOR         |                 |                                        |        |                                       |  |
| PRODUCT MANUFACTURER / NAME               |                 | ······································ |        |                                       |  |
| 1. EASE OF USE—Technician Evaluation      |                 |                                        |        |                                       |  |
|                                           |                 |                                        |        |                                       |  |
|                                           |                 |                                        |        |                                       |  |
| NOISE LEVEL                               |                 |                                        |        |                                       |  |
| 2. COATING STRIP RATE                     |                 |                                        |        |                                       |  |
| AVERAGE COATING THICKNESS                 |                 | mils                                   |        |                                       |  |
| TOTAL STRIPPING TIME                      | min             | CALCULATED STRIF                       | RATE   | . 2                                   |  |
| STRIPPING SURFACE AREA                    | ft <sup>2</sup> |                                        |        | ft <sup>2</sup> /min                  |  |
| AVERAGE POWER CONSUMED                    |                 |                                        |        |                                       |  |
| COMMENTS                                  |                 |                                        |        |                                       |  |
|                                           |                 |                                        |        |                                       |  |
| 3. SSPC SURFACE CLEANING LEVEL            |                 | ·                                      | -      |                                       |  |
|                                           |                 |                                        |        |                                       |  |
|                                           |                 |                                        |        |                                       |  |
| 4. LEVEL OF WASTE GENERATED               |                 |                                        |        |                                       |  |
|                                           |                 |                                        |        |                                       |  |
|                                           |                 |                                        |        |                                       |  |
| 5. PARTICULATE GENERATION                 |                 |                                        |        |                                       |  |
|                                           |                 |                                        |        |                                       |  |
|                                           |                 |                                        |        |                                       |  |
| 6. COATING REMOVAL DAMAGE APPRAI          | ISAL            |                                        |        |                                       |  |
| WARPING / DENTING—Technician Evaluation   | 1               |                                        |        |                                       |  |
|                                           |                 |                                        |        |                                       |  |
|                                           |                 |                                        |        |                                       |  |
| METAL / COMPOSITE EROSION—Technician      | Evalua          | tion                                   |        |                                       |  |
|                                           |                 |                                        |        |                                       |  |
| COMMENTS                                  |                 |                                        |        |                                       |  |
| COMMENTS                                  |                 |                                        |        |                                       |  |
| 7 CITOE ACE BROEH E / BOHOHNEG            |                 |                                        |        |                                       |  |
| 7. SURFACE PROFILE / ROUGHNESS READING #1 |                 | READING #6                             |        |                                       |  |
| READING #1                                |                 | READING #6 READING #7                  |        |                                       |  |
| READING #3                                |                 | READING #7                             |        |                                       |  |
| READING #4                                |                 | READING #9                             |        |                                       |  |
| READING #5                                |                 | READING #9                             |        |                                       |  |
| COMMENTS                                  |                 |                                        |        |                                       |  |
|                                           |                 |                                        |        |                                       |  |
|                                           |                 |                                        |        |                                       |  |
| INSPECTOR'S SIGNATURE                     |                 | D                                      | ATE    |                                       |  |

## **Appendix E: Radiation Use Authorization Form**

#### RADIATION PROTECTION PROGRAM USE AUTHORIZATION

Use Authorization: K-LA-50147 Modification: 000 Date: 9/12/2006

User Organization: United Space

United Space Alliance (USA)

Mail Code: USK-142

Kennedy Space Center, FL 32899

Area Radiation Officer: John Llibre Phone: (321) 861-2385 Fax: (321) 867-8169

#### I. PROTECTION GUIDES:

The Protection Guides (PGs) applicable to the evaluation of this UA are determined in accordance with ANSI Z136.1 (2000) and specified for each authorized source in Section VI.A. of this UA.

#### II. DESCRIPTION OF USE:

The PLCRS (Portable Laser Coating Removal System) is a Class IV, Nd:YAG, hand held laser. It will be use to demonstrate coating/stripping removal.

#### III. AUTHORIZED SOURCES AND APPROVED USE/STORAGE LOCATIONS:

Use Authorization K-LA-50147 provides for the radiation source and locations described below:

#### A. Authorized Sources:

| Manufacturer     | No. of<br>Sources | <u> </u> | Model<br><u>Number</u> | Serial<br><u>Number</u> | Wavelength (nanometers) | ANSI<br><u>Class</u> | Use<br><u>Description</u>    |
|------------------|-------------------|----------|------------------------|-------------------------|-------------------------|----------------------|------------------------------|
| Clean Lasersyste | eme               | 1        | CL120Q                 | 391Н0304                | 1064                    | IV                   | Coating Removal<br>Stripping |

### **B.** Authorized Locations:

Building/Area I.D Location Type Source Authorization

K6-1397/ Paint Barn Use/Storage All

#### IV. AUTHORIZED PERSONNEL:

The following named personnel are approved for activities under Use Authorization K-LA-50147.

Name <u>Function/Duties</u>

John Llibre Area Radiation Officer (ARO for USA)

\*Matthew Rothgeb Area Radiation Officer (All others)

\*Rich Ring Use Supervisor/Custodian (US/C)

\*Georg Heidelmann Operator/Maintenance \*Nathan Jonjevic Operator/Maintenance

Use Authorization: K-LA-50147 Modification: 000 Date: 9/12/2006

#### IV. AUTHORIZED PERSONNEL: (cont.)

| *Alan Baleyko             | Operator |
|---------------------------|----------|
| *Donald Walsh             | Operator |
| *Jeff Demming             | Operator |
| *Carson L. Yates          | Operator |
| *Jon Hamlin               | Operator |
| *Everett R. Smith         | Operator |
| *Randall Straw            | Operator |
| *Harold Hall Jr.          | Operator |
| *Brian Greene             | Observer |
| *Kurt Kessel              | Observer |
| *John Herrington          | Observer |
| *Pattie Lewis             | Observer |
| *Jon Seibert              | Observer |
| *Marcella Solomon         | Observer |
| *Jerome Curran            | Observer |
| *Marvin E. Banks Jr.      | Operator |
| *Doug Boerigter           | Observer |
| *Jennifer Urbauer-Parsons | Observer |
| *Julia Hess               | Observer |
| *Larry Nielsen            | Observer |
| *Christina Brown          | Observer |
| *Joe Devlin               | Observer |
| *Hien Nguyen              | Observer |
|                           |          |

<sup>\*</sup>Training and Experience Summary (T&E) form attached.

All operator personnel are required to have continuing laser training on an annual basis.

This training will be provided by the Health Physics Office (HPO) and coordinated through your ARO.

All other personnel listed above have a T&E on file in the HPO.

All users will be under the supervision of the ARO / US/C and be familiar with the provisions and controls outlined below.

#### V. PROCEDURES:

Use of the laser identified by the provisions of this UA will be in accordance with user-submitted procedures identified below and the radiation protection controls and provisions identified in Section VII. of this UA.

- 1) Manufacturer's Instruction
- 2) USA OP 000448

#### VI. HAZARD EVALUATION:

Hazard evaluations have been made based on the Protection Guide (PG) and operating parameters identified for the authorized source specified in Section A. below:

Use Authorization: K-LA-50147 Modification: 000 Date:

9/12/2006

#### VI, HAZARD EVALUATION: (cont.)

#### A. Evaluation Parameters:

#### 1. Clean Lasersysteme

Clean Lasersysteme / N0934 Manufacture Laser Type Nd:YAG (O-switched) Wavelength 1064 nm Peak Power 160 kW Jules/Pulse 9.8 mJ Pulse Duration 130 nsec **PRF** 10 kHz Beam Divergence 4 mrad Beam Waist Diameter 200 um Beam Waist Range 10 cm

2.81 e<sup>-7</sup> J/cm<sup>2</sup> MPE (Ocular)

#### B. Worst-Case Hazard Assessment:

Worst-case hazard assessment defines the controlled area and any personal protective equipment requirements for operation of the authorized laser under 'uncontrolled' conditions.

#### Nominal Ocular Hazard Distance (NOHD)

The NOHD is defined for unprotected intrabeam viewing (IBV) conditions.

#### Optical Density (OD) Requirements

The OD is defined at specific wavelengths for unprotected IBV exposure conditions within the NOHD control areas.

Source Description NOHD <u>O.D.</u>

Clean Lasersysteme / Nd:YAG 521.6 meters (1711 feet) 5 or greater

#### VII. CONTROL PROVISIONS:

Continued authorized use of the source identified by this UA is contingent upon operations in accordance with the representation of the RUR submittal and the controls and provision described herein.

#### A. Operational Controls:

#### Laser Radiation Controlled Areas (LRCA)

A Laser Radiation Controlled Area (LRCA) as required and defined by this document ( see section VI. B. NOHD) will be posted in accordance with the provisions of this UA and access limited to approved user /operator personnel.

#### Postings and Labeling Requirements

The LRCA will be posted with approved "Laser Warning

Signs" whenever the lasers are in operation as defined by ANSI Z136.1.

Use Authorization: K-LA-50147 Modification: 000 Date: 9/12/2006

VII. CONTROL PROVISIONS: (cont.)

A. Operational Controls: (cont.)

b. All lasers will be appropriately labeled in accordance with their ANSI classification. Labels shall be affixed to a conspicuous location on the laser housing.

3. Notification Requirements

a. Telephone numbers for the Health Physics Office (HPO) notifications are:

During Normal Working Hours:

HPO: 853-5688 (Mon-Fri 0700-1630)

NASA/KSC Radiation Protection Officer

RPO: 867-6958

After Normal Working Hours:

KSC/CCAFS: 853-5211

- b. The ARO must notify the HPO upon initial power/testing of the laser device to facilitate the required Health Physics Survey/Inspection.
- c. Operation of the laser device in other than the represented configuration will not occur without prior notification to and approval from the KSC Radiation Protection Officer, through the HPO.
- d. The ARO must notify the HPO upon transfer of the laser source on or off of KSC/CCAFS areas.
- e. All real or suspected exposures to laser radiation must be immediately reported to the HPO.
- 4. <u>Medical Surveillance Requirements</u>

All approved operators of the laser will have on file, a LOP eye exam as defined by KNPR 1860.2 "Noninonzing Radiation Protection Program" and ANSI Z136.1. (2000).

5. Personal Protective Equipment (PPE) Requirement

All operators will wear laser safety glasses/goggles with an Optical Density (OD) of 5.0 or greater as described in section VI.B. at all times during operation of this Class IV Laser system.

- 6. Inventory/Accountability Requirements
- a. Inventory and accountability control of all lasers shall be maintained by the ARO.
- b. The ARO will function as the point of contact for scheduling of periodic survey/audits by the HPO and will coordinate operational schedules to accommodate such surveys/audits on a non-interference basis to the extent possible.
- 7. General Operating Provisions
- a. Only qualified and authorized personnel identified by Section IV of this UA will operate the laser system.
- b. Personnel whose job duties require operation of the device listed in Section III. A shall be adequately trained, provided with appropriate PPE where required, and be familiar with the administrative and procedural controls established by operating procedures and this UA.
- c. Maintenance of the laser source must be performed by qualified and approved personnel only.
- d. It is the responsibility of the user organization ARO to supply the hazard evaluation information listed in Section VI.A & B. of this UA to the organization performing maintenance on the laser device.
- e. Intrabeam viewing (IBV) is <u>not</u> authorized unless <u>prior</u> approval from the KSC Radiation Protection Officer (RPO) is obtained.

| Use Authorization: K-LA-50147<br>9/12/2006 |                                                                                                  | Modification: 000                                                                                        |                        |
|--------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------|
|                                            | I. CONTROL PROVISIONS: (cont.) Operational Controls: (cont.)                                     | )                                                                                                        |                        |
| f.<br>the lase                             |                                                                                                  | ng room (paint barn) shall be equipped with interestations. The door interlocks will be tested daily, p  |                        |
| g.                                         | A flashing warning light at the entrar                                                           | nce door of the paint barn shall be activated during                                                     | all laser operations.  |
| h.                                         | All entrance ways to the paint barn w                                                            | vill be posted with approved Class IV laser warning                                                      | g signs.               |
| i.                                         | An adequate exhaust system will be a                                                             | activated prior to laser operations.                                                                     |                        |
| j.<br>of an ei                             | The laser system will be equipped we mergency.                                                   | ith an emergency stop button that will shut down                                                         | the laser in the event |
| k.<br>returne                              | The laser switch key must be remod to the US/C at the end of the day.                            | ved when the laser system will be left unattend                                                          | led. The key will be   |
| В.                                         | Administrative Provisions:                                                                       |                                                                                                          |                        |
|                                            | Authorized Use Period on Use Authorization K-LA-50147 is vures, and personnel defined by this UA | valid for a one (1) year period ending 9/30/2007 fo<br>document.                                         | or the use, operation, |
| through                                    |                                                                                                  | el, or use/storage location as described by this UA<br>Modification of Radiation Use Authorization" desc |                        |
|                                            | quest for changes in authorized use mu<br>ded change, as described by KNPR 18                    | est be submitted not less than thirty (30) days prior 60.2.                                              | to implementation      |
| 3.<br>Authori                              | Operations not in accordance with the ization and possible impoundment of ra                     | e conditions of this Use Authorization may result adiation source.                                       | in revocation of Use   |
| 4.<br>Use Au                               | Further correspondence regarding southorization Number K-LA-50147.                               | urces, personnel or procedures governed by this U                                                        | A must reference       |
| CHOW                                       | achth Physics Dent                                                                               |                                                                                                          |                        |
| CHS/H                                      | ealth Physics Dept.                                                                              | Date:                                                                                                    |                        |
| NASA/                                      | KSC Radiation Protection Officer                                                                 | Date:                                                                                                    |                        |

**EMS** 

# **Primary Distribution List**

| Last Name | First Name | Organization     | Role / Title             |
|-----------|------------|------------------|--------------------------|
| Amidei    | David      | NASA HQ (EMD)    | Program Manager          |
| Boerigter | Doug       | Boeing           | Engineer/Scientist       |
| Boyd      | Martin     | NASA             | NASA STR                 |
| Greene    | Brian      | TEERM (ITB Inc.) | ITB Manager              |
| Griffin   | Chuck      | NASA (KT-A2)     | TEERM Program Manager    |
| Hess      | Julia      | Boeing NLSD      | M&P Engineer             |
| Nielsen   | Larry      | USA              | TPS Manager              |
| Rothgeb   | Matthew    | TEERM (ITB Inc.) | Project Manager/Author   |
| Seibert   | Jon        | USA              | Engineer                 |
| Sekura    | Linda      | NASA (CSU)       | Environmental Specialist |
| Solomon   | Marcella   | Boeing           | M&P Engineer             |
| Waddell   | Carol      | NASA             | Engineer                 |