

دانشکده مهندسی کامپیوتر دانشگاه صنعتی امیرکبیر

دانشکده مهندسی کامپیوتر و فناوری اطلاعات دانشگاه صنعتی امیرکبیر

ریزپردازنده ۱

(معرفی درس)

اهداف درس

آشنایی با معماری، اجزاء و نحوه کار پردازندهها، یادگیری نحوه اتصال و ارتباط پردازندهها با حافظهها، درگاهها و سایر ادوات جانبی و استفاده از آنها در ساخت:

- سختافزارهای دیجیتال
 - سیستمهای نهفته
- تجهیزات کنترلی در اینترنت اشیاء
 - خانه هوشمند
 - کشاورزی هوشمند
 - سلامت هوشمند
 - ترافیک هوشمند
 - ... •

Microprocessor Powered Products

مثالی از یک سیستم مبتنی بر پردازندهها (گلخانه هوشمند، دستگاه جوجه کشی)

سنسورها

سنسورها معمولا برای تشخیص محرکها و اندازه گیری متغیرهای فیزیکی استفاده میشوند.

مثال	محرک
متغیرهای وابسته به موقعیت ، سرعت ، شتاب ، نیرو ، گشتاور ، فشار، ضربه، کشش، حجم ، غلظت مکانیکی	مکانیکی
ولتاژ ، جریان ، شارژ ، هدایت ، ظرفیت الکتریکی	الكتريكي
دما ، گرما ، جریان گرمایی ، هدایت گرمایی ، گرمای ویژه	حرارتی
انوع اشعه مانند اشعه گاما، اشعه ایکس، نور مرئی، شدت، طول موج	تشعشعى
میدان مغناطیسی، شار مغناطیسی، هدایت مغناطیسی، نفوذپذیری مغناطیسی	مغناطيسي
تشکیل دهنده اجزاء یک ماده، غلظت ، سطح PH، حضور مواد سمی، آلایندهها	شیمیایی

سنسورها

سنسورهای تشخیص حضور

سنسورها

عملگرها

عملگرها برای ایجاد یک تغییر در محیط استفاده میشوند.

عملكرها

- مقدمه ای بر پردازندهها:
- تاثیر کامپیوترها بر زندگی انسان (مطالعه توسط دانشجو)
 - تاریخچه مختصری از کامپیوتر (مطالعه توسط دانشجو)
 - تاریخچه مختصری از CPU (مطالعه توسط دانشجو)
 - انواع ریزپردازندهها
 - انواع روشهای بستهبندی تراشه ریزپردازندهها
- معرفی ریزپردازنده ها و میکروکنترلرها و اجزاء داخلی آنها با انتخاب یکی از معماری های موجود، آشنایی با ثباتها، باسهای داده، آدرس و کنترل، صف دستورالعمل، معماری خط لوله، واحد پردازش گر مرکزی، واحد محاسبه و منطق، حافظه، پشته و ...

- معرفی اجمالی شرکتهای سازنده، انواع معماریها، ابزارهای توسعه نرمافزار، برنامهنویسی و عیبیابی برنامه میکروکنترلر
- برنامهنویسی میکروکنترلر به زبان اسمبلی، قالب دستورالعمل، حالتهای آدرسدهی،
 مجموعه دستورالعملها، شبهدستورالعملها، زیرروال،
- آشنایی با معماری و تشکیلات نرمافزاری، سختافزاری و اجزاء میکروکنترلرها (با انتخاب یک میکروکنترلر از خانواده AVR)
 - سیستم تولید ساعت و گزینههای آن
 - مباحث ریست، انواع ریست و تایمر نگهبان
 - درگاههای ورودی/خروجی موازی در میکروکنترلرها

- وقفه و نحوه مدیریت آن، ارتباط با واحد کنترل وقفه خارجی
 - زمان سنج/شمارنده (تولید موج، PWM ، شمارش، و)
 - مقایسه کننده آنالوگ
 - مبدلهای آنالوگ به دیجیتال و دیجیتال به آنالوگ
- آشنایی با مدهای کاهش توان مصرفی و سیستم مدیریت توان مصرفی در میکروکنترلرها
 - درگاه سریال و ارتباط همگام و ناهمگام، معرفی USART، آشنایی با پروتکل RS232

- انواع حافظهها (SRAM، Flash وBootLoader) Flash و BootLoader
- نحوه ارتباط با حافظه خارجی، رمزگشایی آدرس، رعایت زمانبندی در ارتباط حافظهها و پردازنده
- نحوه ارتباط با درگاههای خارجی، رمزگشایی آدرس برای درگاه ورودی اخروجی،
 زمانبندی ارتباط درگاه
- کنترل ارتباط داده با تجهیزات خارجی (سرکشی، وقفه) و مدارات سختافزاری برای مدیریت وقفه و رعایت اولویتدهی وقفهها
- بررسی مثالهای واقعی از کاربرد میکروکنترلرها در سیستمهای نهفته بر حسب زمان باقیمانده

آشنایی با یک معماری پردازنده پیشرفتهتر مورد استفاده در میکروکنترلرها مانند معماری ARM

نحوه ارزيابي

تكاليف: ٣.٥ نمره

فعالیت کلاسی: ۵. • تا ۱ نمره (پرسش از مطالب جلسات قبل)

امتحانات: ۱۶ تا ۱۶.۵ نمره

حضور مرتب: ١ نمره ارفاق

منابع

منبع اصلى:

کتاب ریزپردازنده و زبان اسمبلی، تالیف محمد مهدی همایونپور و همکاران، ۱۳۹۴ (قابل تهیه از انتشارات دانشکده)

منابع

ساير منابع مفيد:

- 1. M. A. Mazidi et al., The AVR Microcontroller and Embedded Systems using Assembly and C, 1st Edition, Prentice Hall, 2010.
- 2. M. A. Mazidi et al., PIC Microcontroller and Embedded Systems using Assembly and C for PIC18, Prentice Hall, 2008.
- 3. Gerhard Schmidt, Beginners Introduction to the Assembly Language of ATMEL AVR Microprocessors, 2016
- 4. John Uffenbeck, The 8086/8088 Family: Design, Programming, and Interfacing, Prentice Hall, 3rd 5. ATmega16 microcontroller datasheets.
- 6. James L. Antonakos, The Intel Family of Microprocessors: Hardware and Software Principles and Applications, Thomson Delmar learning, 2006.
- 7. NASM Development Team, NASM-Netwide Assembler User Manual, 2012...
- 8. Richard H. Barnett, Sarah Cox, Larry O'Cull, Embedded C Programming and the Atmel AVR, Delnmar Cengage Learning Publishing, 2011.
- 9. CodeVisionAVR C compiler, User manual, 2003.
- 10. AVR Assembler, Atmel, 2004.
- 11. ATMEL Studio User Guide, Atmel.
- 12. WinAVR, Accessible from http://winavr.sourceforge.net/index.html.
- 13. AVR Instruction Set Manual

منابع

سایر منابع مفید:

- 14. STM32F7 Series Cortex-M7 processor programming manual, ST Company, 2017.
- 15. STM32F7 Series system architecture and performance, ST Company, 2017.