Pretext tasks 3. SimCLR

1 2	SELF-PREDICTION	INNATE RELATIONSHIP (Context-based)	 ROTATION RELATIVE POSITION 	IMAGE	
3	CONTRASTIVE LEARNING	INTER-SAMPLE CLASSIFICATION	 Instance Discrimination SimCLR [Contrastive Loss] Theory – Guarantees / Bound 	IMAGE nds	
4	CONTRASTIVE LEARNING	INTER-SAMPLE CLASSIFICATION	Contrastive Predictive Coding (CPC), [NCE, InfoNCE Loss]	AUDIO/ SPEECH	
5	SELF-PREDICTION	GENERATIVE (VAE)	1. AE – Variational Bayes	IMAGE	
			2. VQ-VAE + AR	AUDIO/ SPEECH	
6	SELF-PREDICTION	GENERATIVE	1. AR-LM – GPT	LANGUAGE	
		(AR)	2. Masked-LM – BERT		
7	SELF-PREDICTION	MASKED-GEN	1. Wav2Vec / 2.0	AUDIO/	
		(Masked LM for ASR)	2. HuBERT	SPEECH	

A Simple Framework for

Contrastive Learning of Visual Representations

Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen 1 Simon Kornblith 1 Mohammad Norouzi 1 Geoffrey Hinton 1

Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by the author(s).

¹Code available at https://github.com/google-research/simclr.

Figure 1. ImageNet Top-1 accuracy of linear classifiers trained on representations learned with different self-supervised methods (pretrained on ImageNet). Gray cross indicates supervised ResNet-50. Our method, SimCLR, is shown in bold.

¹Google Research, Brain Team. Correspondence to: Ting Chen <iamtingchen@google.com>.

Deep Metric Learning

Siamese network = shared weights

- Distance function $d(A,B) = ||f(A) f(B)||^2$
- Training: learn the parameter such that
 - If A and B depict the same person, d(A,B) is small
 - If A and B depict a different person, d(A,B) is large

Contrastive loss:

$$\mathcal{L}(A,B) = y^* ||f(A) - f(B)||^2 + (1 - y^*) \max(0, m^2 - ||f(A) - f(B)||^2)$$

Positive pair, reduce the distance between the elements

- Training the siamese networks
 - You can update the weights for each channel independently and then average them
- This loss function allows us to learn to bring positive pairs together and negative pairs apart

Triplet Network

From Siamese to Triplet Network

Triplet loss

Triplet loss allows us to learn a ranking

Positive (P)

Negative (N)

We want:
$$||f(A) - f(P)||^2 < ||f(A) - f(N)||^2$$

• Triplet loss allows us to learn a ranking

$$||f(A) - f(P)||^2 < ||f(A) - f(N)||^2$$

$$||f(A) - f(P)||^2 - ||f(A) - f(N)||^2 < 0$$

$$||f(A) - f(P)||^2 - ||f(A) - f(N)||^2 + m < 0$$
 margin

Triplet loss allows us to learn a ranking

$$||f(A) - f(P)||^{2} < ||f(A) - f(N)||^{2}$$
$$||f(A) - f(P)||^{2} - ||f(A) - f(N)||^{2} < 0$$
$$||f(A) - f(P)||^{2} - ||f(A) - f(N)||^{2} + m < 0$$

$$\mathcal{L}(A, P, N) = \max(0, ||f(A) - f(P)||^2 - ||f(A) - f(N)||^2 + m)$$

The proposed SimCLR framework

A simple idea: maximizing the agreement of representations under data transformation, using a contrastive loss in the latent/feature space.

Figure 2. A framework for contrastive representation learning. Two separate stochastic data augmentations $t, t' \sim T$ are applied to each example to obtain two correlated views. A base encoder network $f(\cdot)$ with a projection head $g(\cdot)$ is trained to maximize agreement in *latent representations* via a contrastive loss.

Framework

We use random crop and color distortion for augmentation.

Examples of augmentation applied to the left most images:

Three augmentations applied sequentially

Random cropping
Random color distortions
Random Gaussian blur

Systematically study a set of augmentation

SimCLR chooses ResNet $h_i = f(\widetilde{x}_i) = ResNet(\widetilde{x}_i)$

f(x) is the base network that computes internal representation.

We use (unconstrained) ResNet in this work. However, it can be other networks.

Base Encoder

Performance gap shrinks as model size increases Unsupervised learning benefits more from bigger models

g(h) is a projection network that project representation to a latent space.

We use a 2-layer non-linear MLP (fully connected net).

A small neural network

Multilayer Perceptron (MLP)

$$\boldsymbol{z}_i = g(\boldsymbol{h}_i) = W^{(2)} \sigma(W^{(1)} \boldsymbol{h}_i)$$

 σ is ReLU (non-linearity)

Projection Head

Non-Linear > Linear >> None

Maximize agreement using a contrastive task:

Given {x_k} where two different examples x_i and x_j are a positive pair, identify x_j in {x_k}_{k!=i} for x_i.

Let
$$sim(\boldsymbol{u}, \boldsymbol{v}) = \boldsymbol{u}^{\top} \boldsymbol{v} / \|\boldsymbol{u}\| \|\boldsymbol{v}\|$$

$$\ell_{i,j} = -\log \frac{\exp(sim(\boldsymbol{z}_i, \boldsymbol{z}_j) / \tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(sim(\boldsymbol{z}_i, \boldsymbol{z}_k) / \tau)}$$

SimCLR pseudo code

Algorithm 1 SimCLR's main learning algorithm.

```
input: batch size N, temperature \tau, form of f, g, \mathcal{T}.
for sampled mini-batch \{x_k\}_{k=1}^N do
   for all k \in \{1, \ldots, N\} do
       draw two augmentation functions t \sim T, t' \sim T
       # the first augmentation
       \tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)
      h_{2k-1} = f(\tilde{x}_{2k-1})
                                                          # representation
       z_{2k-1} = g(h_{2k-1})
                                                                # projection
       # the second augmentation
       \tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)
      h_{2k} = f(\tilde{x}_{2k})
                                                          # representation
       \boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})
                                                                # projection
   end for
   for all i \in \{1, ..., 2N\} and j \in \{1, ..., 2N\} do
       s_{i,j} = \mathbf{z}_i^{\mathsf{T}} \mathbf{z}_i / (\tau \|\mathbf{z}_i\| \|\mathbf{z}_i\|) # pairwise similarity
   end for
   define \ell(i,j) as -s_{i,j} + \log \sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k})
   \mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[ \ell(2k-1, 2k) + \ell(2k, 2k-1) \right]
   update networks f and g to minimize \mathcal{L}
end for
return encoder network f
```

Sim CLR NT-Xent Random Sampling of a mini boutch of N examples

, K	>(R	$\xi(x_n)$	t (xx)	2= 9($(f(\widetilde{x}))$	-
1	\prec_1	\$€,	$\widetilde{\chi}_{2}$	2,	22	
2	2/2	213	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	23	24	
1	\	1 1	,	1	1	
. 1	Transf	orm ~	2k 9(9)	(i)) Z2/2/2	22k	
R	$x_{R} - [t, t]$	-,-	zk /	- 2K-1		
1) Augme	ct (1	1		
1	1	~!		:	72N	
\sim	χ^{\sim} .	2(22-1)	(2 ~)	ZN-1	2/0	

 $\forall i=21,\dots i,\dots 2N3$ 2 $\hat{j}=\{1,\dots,j,\dots 2N\}$ Define 2 Coupute Cosine Similarity [Dot product between]
Le normalized &;, &; 2; 2; +i,j ∈[1,-..,2N] Sij = 112:11 11251 Ensure \widetilde{x}_i is closer to \widetilde{x}_i + repairs i=2k-1 than all $x_k, k \neq i, k \neq j$

Jeadity

Tim { Tim { Tim }

for a given Ti

Identify Si; (ie Zzk) for a given in fire I X: > FER-1 Ensure 7; is dosen to Fi Than all In, kti, 1. [si, xj] are the pairs e closer than goli, xm] How CS + Black Line High 72R. Hish + Low

2. When {xi,x5} trepains are not yet close [when g (f(o)) is not effective yet] Black-line SRed-Lines

Contravoline - repairs tre pairs w.r.t Good embedding of P(.) eg(.) enteddings //earnings 2 learning with epochs. Hrsh Hish & Low Hisher the header Black-line Black-Line + S Redlines (ZN-Z) terms

Q(i,5) + Q(5,i)Note he Denominator difference on the $\frac{1}{2} \left(\frac{2k}{i}, \frac{2k}{i} + \frac{2(2k, 2k-1)}{i} \right)$

(10)

SimCLR pseudo code

Algorithm 1 SimCLR's main learning algorithm.

```
input: batch size N, temperature \tau, form of f, g, \mathcal{T}.
for sampled mini-batch \{x_k\}_{k=1}^N do
   for all k \in \{1, \ldots, N\} do
       draw two augmentation functions t \sim T, t' \sim T
       # the first augmentation
       \tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)
      h_{2k-1} = f(\tilde{x}_{2k-1})
                                                          # representation
       z_{2k-1} = g(h_{2k-1})
                                                                # projection
       # the second augmentation
       \tilde{\boldsymbol{x}}_{2k} = t'(\boldsymbol{x}_k)
      h_{2k} = f(\tilde{x}_{2k})
                                                          # representation
       \boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})
                                                                # projection
   end for
   for all i \in \{1, ..., 2N\} and j \in \{1, ..., 2N\} do
       s_{i,j} = \mathbf{z}_i^{\mathsf{T}} \mathbf{z}_i / (\tau \|\mathbf{z}_i\| \|\mathbf{z}_i\|) # pairwise similarity
   end for
   define \ell(i,j) as -s_{i,j} + \log \sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k})
   \mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[ \ell(2k-1, 2k) + \ell(2k, 2k-1) \right]
   update networks f and g to minimize \mathcal{L}
end for
return encoder network f
```

TWANK YOU!