UMC-202 Problems Sheet-2 Fall 2024

- 1. Let f be a cubic polynomial such that $f(-1) \ge 0$, f(0) = 0 and $f(1) \ge 0$. Then show that $\int_{-1}^{1} f(x) dx \ge 0$. If f(0) = -1, does the integral $\int_{-1}^{1} f(x) dx$ remain non-negative? Justify your answer (may be a counter example).
- 2. Let f(x) = |1 + x| + |x| for $x \in [-2, 1]$. For the numerical integration of f over the interval [-2, 1], determine the minimum value of k so that the composite trapezoidal rule using the break points $\{x_j\}_{j=0}^k$ in the interval [-2, 1] gives the exact value of $\int_{-2}^1 f(x) dx$. Justify your answer.
- 3. Let $p_3(x)$ be the interpolating polynomial of degree less than or equal to 3 interpolating a smooth function f(x) at the points $x_0 = a 2h$, $x_1 = a h$, $x_2 = a + h$, and $x_3 = a + 2h$, for h > 0. If f'(a) is approximated by $p'_3(a)$, then find the formula for the numerical differentiation (i.e. find $p'_3(a)$) and determine the order of convergence $O(h^k)$ by expressing the error in terms of h^k and the derivatives of f.