CLAIMS

What is claimed is:

1	1.	A device for fluid cooled channeled heat exchange comprising:
2		a. a flat plate heat exchanger, wherein the flat plate heat exchanger comprises
3		a top plate and a base plate coupled together; and
4		b. a plurality of fins coupled to the top plate;
5		wherein the base plate comprises:
6		i. fluid inlet configured to receive flow of a fluid in a heated state
7		therethrough;
8		ii. a plurality of channels coupled to the fluid inlet and configured to
9		receive and to cool the fluid; and
10		iii. a fluid outlet coupled to the plurality of channels and configured to
11		receive the cooled fluid and to allow the cooled fluid to exit the
12		device.
1	2.	The device of claim 1, wherein the device further comprises a second plurality of
2		fins coupled to the base plate.
1	3.	The device of claim 1, wherein the device further comprises a first plurality of
2		separate sealed gaps coupled in between the plurality of channels, wherein the
3		separate sealed gaps are not traversed by the fluid.
1	4.	The device of claim 3, wherein the first plurality of separate sealed gaps are filled
2		with a gas.
		-

PATENT Attorney Docket No.: COOL-00601

1	5.	The device of claim 3, wherein the device further comprises a second plurality of
2		separate sealed gaps coupled in between the fluid inlet and the plurality of
3		channels, wherein the separate sealed gaps are not traversed by the fluid.
1	6.	The device of claim 5, wherein the second plurality of separate sealed gaps are
2		filled with a gas.
1	7.	The device of claim 3, wherein the device further comprises a third plurality of
2		separate sealed gaps coupled in between the fluid outlet and the plurality of
3		channels, wherein the separate sealed gaps are not traversed by the fluid.
1	8.	The device of claim 7, wherein the third plurality of separate sealed gaps are filled
2		with a gas.
1	9.	The device of claim 1, wherein the device is coupled to heat source.
1	10.	The device of claim 9, wherein the heat source is a microprocessor.
1	11.	The device of claim 1, wherein the device is coupled to a pump.
1	12.	The device of claim 1, wherein the plurality of channels comprise condensers
2		configured to condense the fluid.
1	13.	The device of claim 1, wherein the plurality of channels further comprise pins,
2		wherein the pins protrude from and are perpendicular to the surface of the base
3		plate.

PATENT
Attorney Docket No.: COOL-00601

1	14.	The device of claim 1, wherein the fluid inlet, the plurality of channels, and the
2		fluid outlet are in a radial configuration.
1	15.	The device of claim 1, wherein the fluid inlet, the plurality of channels, and the
2		fluid outlet are in a spiral configuration.
1	16.	The device of claim 1, wherein the fluid inlet, the plurality of channels, and the
2		fluid outlet are in an angular configuration.
1	17.	The device of claim 1, wherein the fluid inlet, the plurality of channels, and the
2		fluid outlet are in a parallel configuration.
1	18.	The device of claim 1, wherein the fluid inlet, the plurality of channels, and the
2		fluid outlet are in a serpentine configuration.
1	19.	The device of claim 1, wherein the device is in a monolithic configuration.
1	20.	The device of claim 1, wherein the device further comprises a conductive fluid
2		proof barrier, wherein the barrier is interposed between the base plate and the top
3		plate.
1	21.	The device of claim 1, wherein the first plurality of fins are coupled with the top
2		plate and the second plurality of fins are coupled with the base plate by a eutectic
3		bonding method.
1	22.	The device of claim 1, wherein the first plurality of fins are coupled with the top
2		plate and the second plurality of fins are coupled with the base plate by an

3		adhesive bonding method.
1	23.	The device of claim 1, wherein the first plurality of fins are coupled with the top
2		plate and the second plurality of fins are coupled with the base plate by a brazing
3		method.
1	24.	The device of claim 1, wherein the first plurality of fins are coupled with the top
2		plate and the second plurality of fins are coupled with the base plate by a welding
3		method.
1	25.	The device of claim 1, wherein the first plurality of fins are coupled with the top
2		plate and the second plurality of fins are coupled with the base plate by a
3		soldering method.
1	26.	The device of claim 1, wherein the first plurality of fins are coupled with the top
2		plate and the second plurality of fins are coupled with the base plate by an epoxy.
1	27.	The device of claim 1, wherein the flat plate heat exchanger comprises a material
2		with a thermal conductivity value larger than 150 W/m-K.
1	28.	The device of claim 1, wherein the flat plate heat exchanger comprises copper.
1	29.	The device of claim 1, wherein the flat plate heat exchanger comprises aluminum
1	30.	The device of claim 1, wherein the fluid outlet and the plurality of channels
2		comprise precision machined metals.

Attorney Docket No.: COOL-00601

1	31.	The device of claim 1, wherein the fluid outlet and the plurality of channels
2		comprise precision machined alloys.
1	32.	The device of claim 1, wherein the plurality of fins comprise aluminum.
1	33.	The device of claim 1, wherein the fluid is selected from one of a liquid and a
2		combination of a liquid and a vapor.
1	34.	The device of claim 1, wherein the fluid is comprised from the group comprising
2		of water, ethylene glycol, isopropyl alcohol, ethanol, methanol, and hydrogen
3		peroxide.
1	35.	A device for two phase fluid cooled channeled heat exchange comprising:
2		a. a flat plate heat exchanger, wherein the flat plate heat exchanger comprise
3		a top plate and a base plate coupled together, and the base plate comprises
4		i. a single phase region comprising a plurality of two phase channels
5		configured to permit flow of a fluid therethrough, along a first axis
6		ii. a condensation region comprising a plurality of condenser channel
7		coupled to the plurality of two phase channels, and configured to
8		permit flow of the fluid therethrough, along a second axis not
9		parallel to the first axis; and
10		b. a first plurality of fins coupled to the top plate of the flat plate heat
11		exchanger.
1	36.	The device of claim 35, wherein the device further comprises a plurality of
2		separate sealed gaps coupled in between the single phase region and the
3		condensation region, wherein the separate sealed gaps are filled with a gas.

Attorney Docket No.: COOL-00601

1	37.	The device of claim 35, wherein the device further comprises a second single
2		phase region comprising a plurality of single phase channels coupled to the
3		plurality of condenser channels and configured to permit flow of a fluid
4		therethrough, along the first axis.
1	38.	The device of claim 35, wherein the plurality of two phase channels and the
2		plurality of condenser channels are in a serpentine configuration.
1	39.	The device of claim 35, wherein the device further comprises a second plurality of
2		fins coupled to the base plate of the flat plate heat exchanger.
1	40.	The device of claim 35, wherein the device is coupled to a heat source.
1	41.	The device of claim 40, wherein the heat source is a microprocessor.
1	42.	The device of claim 35, wherein the fluid is selected from one of a liquid and a
2		combination of a liquid and a vapor.
1	43.	The device of claim 35, wherein the fluid is comprised from the group comprising
2		of water, ethylene glycol, isopropyl alcohol, ethanol, methanol, and hydrogen
3		peroxide.
1	44.	The device of claim 35, wherein the fluid comprises water.
1	45.	The device of claim 35, wherein the flat plate heat exchanger comprises copper.

PATENT Attorney Docket No.: COOL-00601

1	46.	The device of claim 35, wherein the plurality of fins comprise aluminum.
1	47.	A device for fluid cooled channeled heat exchange comprising:
2		a. means for supplying fluid;
3		b. means for flat plate heat exchange having a channel fluid carrying means
4		and configured to receive the fluid from the means for supplying fluid,
5		and;
6		c. means for heat dissipation coupled to the means for flat plate heat
7		exchange; and
8		d. means for airflow generation coupled to the means for heat dissipation.
1	48.	A system for heat exchange comprising:
2		a. one or more fluid channel heat exchangers each comprising at least two
3		separate fluid paths configured to permit flow of a fluid therethrough; and
4		b. one or more pumps configured to circulate the fluid to and from the one or
5		more fluid channel heat exchangers.
1	49.	The system for heat exchange of claim 48, wherein the system further comprises a
2		plurality of heat sources.
1	50.	The system for heat exchange of claim 49, wherein the plurality of heat sources
2		comprise one or more microprocessors.
1	51.	The system for heat exchange of claim 49, wherein the plurality of heat sources
2	JI.	comprise the one or more pumps.
1	52.	The system for heat exchange of claim 48, wherein the one or more fluid channel

PATENT
Attorney Docket No.: COOL-00601

2		heat exchangers are further configured to cool a fluid in a heated state to a cooled
3		state.
1	53.	The system for heat exchange of claim 52, wherein the at least two fluid paths are
2		configured to carry the fluid in the heated state from the plurality of heat sources
3		and to carry the fluid in the cooled state to the plurality of heat sources.
1	54.	The system of claim 48, wherein the at least two separate fluid paths are parallel.
1	55.	The system of claim 48, wherein the at least two separate fluid paths are in a
2		serpentine configuration.
1	56.	The system of claim 48, wherein the fluid is selected from one of a liquid and a
2		combination of a liquid and a vapor.
1	57.	A method for manufacturing a flat plate heat exchanger comprising:
2		a. machining fluid channels into each of two plate halves;
3		b. soldering fins onto each of the two plate halves;
4		c. nickle plating the fluid channels; and
5		d. coupling the two halves such that the fluid channels of each of the two
6		plate halves mate and form a leakproof fluid path.
1	58.	The method of claim 57, wherein the two halves are coupled by a soldering
2		method.
1	59.	The method of claim 58, wherein the soldering method comprises utilizing a
2		solder paste applied by stencil screen printing onto each of the two plate halves to

Attorney Docket No.: COOL-00601

3		form a bonding interface resulting in a hermetic seal.
1	60.	The method of claim 58, wherein the soldering method comprises a step soldering
2		process for multiple soldering operations.
1	61.	The method of claim 57, wherein the two halves are coupled by an epoxy.
1	62.	A method for manufacturing a flat plate heat exchanger comprising:
2		a. manufacturing a first finned extrusion;
3		b. manufacturing a second finned extrusion;
4		c. machining complementary fluid channels onto the first and second finned
5		extrusions;
6		d. coupling the first finned extrusion to the second fined extrusion such that
7		the fluid channels of the first and second finned extrusions mate and form
8		a leakproof fluid path.
1	63.	The method of claim 62, wherein the first finned extrusion is coupled to the
2		second finned extrusion by a soldering method.
1	64.	The method of claim 63, wherein the soldering method comprises utilizing a
2		solder paste applied by stencil screen printing onto each of the first and second
3		finned extrusions to form a bonding interface resulting in a hermetic seal.
1	65.	The method of claim 63, wherein the soldering method comprises a step soldering
2		process for multiple soldering operations.
1	66.	The method of claim 62, wherein the first finned extrusion is coupled to the

2		second finned extrusion by an epoxy.
1	67.	A method for manufacturing a flat plate heat exchanger comprising:
2		a. manufacturing a first finned halve by a skiving method;
3		b. manufacturing a second finned halve by a skiving method;
4		c. machining complementary fluid channels onto the first and second finned
5		halves;
6		d. coupling the first finned halve to the second fined halve such that the fluid
7		channels of the first and second finned halves mate and form a leakproof
8		fluid path.
1	68.	The method of claim 67, wherein the two finned halves are coupled by a soldering
2		method.
1	69.	The method of claim 68, wherein the soldering method comprises utilizing a
2		solder paste applied by stencil screen printing onto each of the first and second
3		finned halves to form a bonding interface resulting in a hermetic seal.
1	70.	The method of claim 68, wherein the soldering method comprises a step soldering
2		process for multiple soldering operations.
1	71.	The method of claim 67, wherein the two finned halves are coupled by an epoxy.