Performance Evaluation of Classifiers on Car Evaluation Dataset

Harshada Phadol

1. Dataset Description:

The dataset used in this study which is a collection of the records on specific attributes on cars donated by Marco Bohanec in 1997 was obtained from the UCI dataset repository (http://archive.ics.uci.edu/ml/datasets/Car+Evaluation).

Dataset Characteristics	Multivariate
Attribute Characteristics	Categorical
Associated Tasks	Classification
Number of Instances	1728
Number of Attributes	6
Missing Values	No

Table 1.1 Car Evaluation Dataset

1.1 Class Attributes:

Attributes	Identified as
Acceptable	Acc
Good	Good
Unacceptable	Unacc
Very Good	Vgood

Table 1.2 Class Attributes

1.2 Number of instances per class:

Class	No of records
Acceptable	384 (22.222%)
Good	69 (3.993 %)
Unacceptable	1210 (70.023%)
Very Good	65 (3.762 %)

Table 1.3 Class Distribution

2. Data Cleaning:

We have converted nominal attributes into numeric attributes. This conversion is essential for data normalization.

Column	Old value	New Numeric value
Buying	vhigh	0
	high	1
	med	2
	Low	3

Table 2.1 Numeric conversion for Buying column

Column	Old value	New Numeric value
Maintenance	vhigh	0
	high	1
	med	2
	low	3

Table 2.2 Numeric conversion for Maintenance column

Column	Old value	New Numeric value
Luggage	small	0
Boot	med	1
	Big	2

Table 2.3 Numeric conversion for Luggage Boot column

Column	Old value	New Numeric value
Safety	Low	0
	med	1
	high	2

Table 2.4 Numeric conversion for Safety column

Out[6]:

	buying	maint	doors	persons	lug_boot	safety	class
0	0	0	0	0	0	0	0
1	0	0	0	0	0	1	0
2	0	0	0	0	0	2	0
3	0	0	0	0	1	0	0
4	0	0	0	0	1	1	0

Figure 2.1 Dataset after Numerical Conversion

3. Classification:

We are using three classification techniques

- 1. Decision Tree Classification
- 2. Random Forest Classification
- 3. Naïve Bayes Classification

3.1 Decision Tree Classification:

In decision tree classification, it is built top-down from a root node and involves partitioning the data into subsets that contain instances with similar values. ID3 algorithm uses entropy to calculate the homogeneity of a sample. If the sample is completely same the entropy is zero and if the sample is an equally divided it has entropy of one.

As mentioned in below table, we can see the accuracy of Decision tree. With 92% of training data we can get 99% of accuracy.

Train Test Split					Decision	on Tree	
Training	Testing	Training	Testing	Correct	Incorrect	Correct	Incorrect
		%	%			%	%
1589	139	92	8	138	1	99	1
1261	208	73	12	204	4	98	2
760	208	44	12	180	28	87	13
501	208	29	12	169	39	81	19

3.1.1 Detailed Classification Report: Decision Tree

Train data: 1589 (92%) Test data: 139 (8%)

	prec	ision	recall	f1-score	support
9		1.00	1.00	1.00	78
1		0.92	1.00	0.96	12
2		1.00	1.00	1.00	19
3		1.00	0.97	0.98	30
accuracy				0.99	139
macro avg		0.98	0.99	0.99	139
weighted avg		0.99	0.99	0.99	139
unacc	acc	vgood	good		
unacc 78	0	9	0		
acc 0	12	0	0		
vgood 0	0	19	0		
good 0	1	0	29		

Figure 3.1.1 Classification Report

Per Class Classification Matrix: [1. 1. 1. 0.96666667]

3.1.2 Detailed Classification Report: Decision Tree

Train data: 1261(73%) Test data: 208 (12%)

	prec	ision	recall	f1-score	support
0		1.00	1.00	1.00	141
1		0.92	1.00	0.96	46
2		1.00	0.92	0.96	12
3		1.00	0.67	0.80	9
accuracy				0.98	208
macro avg		0.98	0.90	0.93	208
weighted avg		0.98	0.98	0.98	208
unacc	acc	vgood	good		
unacc 141	0	9	0		
acc 0	46	9	0		
vgood 0	1	11	0		
good 0	3	9	6		

Per Class Classification Matrix: [1. 1. 0.91666667 0.66666667]

3.1.3 Detailed Classification Report: Decision Tree

Train data: 760(44%) Test data: 208 (12%)

	prec	ision	recall	f1-score	support
0		0.91	1.00	0.95	147
1		0.72	0.69	0.70	48
2		0.00	0.00	0.00	7
3		0.00	0.00	0.00	6
accuracy				0.87	208
macro avg		0.41	0.42	0.41	208
weighted avg		0.81	0.87	0.83	208
unacc	acc	vgood	good		
unacc 147	0	9	0		
acc 15	33	9	0		
vgood 0	7	9	0		
good 0	6	9	0		

Decision Tree Accuracy:0.865

Per Class Classification Matrix: [1. 0.6875 0. 0.]

3.1.4 Detailed Classification Report: Decision Tree

Train data: 501(29%) Test data: 208 (12%)

			ision	recall	f1-score	support
	0		0.86	1.00	0.93	149
	1		0.57	0.47	0.51	43
	2		0.00	0.00	0.00	5
	3		0.00	0.00	0.00	11
acc	curacy				0.81	208
macr	o avg		0.36	0.37	0.36	208
weighte	ed avg		0.74	0.81	0.77	208
	unacc	acc	vgood	good		
unacc	149	0	9	0		
acc	23	20	9	0		
vgood	1	4	9	0		
good	0	11	9	0		

Decision Tree Accuracy:0.812

Per Class Classification Matrix: [1. 0.46511628 0. 0.]

1.2 Random Forest Classification:

Random forest algorithm creates decision trees on data samples and then gets the prediction from each of them and finally selects the best solution by means of voting.

As mentioned in below table, we can see the accuracy of Random Forest. With 92% of training data we can get 97% of accuracy.

	Train T	est Split		Random Forest			
Training	Testing	Training	Testing	Correct	Incorrect	Correct	Incorrect
		%	%	%	%		
1589	139	92	8	97	3	135	4
1261	208	73	12	97	3	201	7
760	208	44	12	84	16	174	34
501	208	29	12	78	22	162	46

1.2.1 Detailed Classification Report – Random Forest

Train data: 1589 (92%) Test data: 139 (8%)

	preci	sion	recall	f1-score	support
0		1.00	1.00	1.00	78
1		0.75	1.00	0.86	12
2		1.00	1.00	1.00	19
3		1.00	0.87	0.93	30
accuracy				0.97	139
macro avg		0.94	0.97	0.95	139
weighted avg		0.98	0.97	0.97	139
unacc	acc	vgood	good		
unacc 78	0	0	0		
acc 0	12	0	0		
vgood 0	0	19	0		
good 0	4	0	26		

Per Class Classification Matrix: [1. 1. 1. 0.86666667]

3.2.2 Detailed Classification Report: Random Forest

Train data: 1261(73%) Test data: 208 (12%)

precision	recall	f1-score	support
0.99	1.00	1.00	153
0.87	0.97	0.92	40
1.00	0.57	0.73	7
1.00	0.62	0.77	8
		0.97	208
0.97	0.79	0.85	208
0.97	0.97	0.96	208
acc vgood	good		
0 0	0		
39 0	0		
3 4	0		
3 0	5		
	0.99 0.87 1.00 1.00 0.97 0.97 acc vgood 0 0 39 0 3 4	0.99 1.00 0.87 0.97 1.00 0.57 1.00 0.62 0.97 0.79 0.97 0.97 acc vgood good 0 0 0 39 0 0 3 4 0	0.99 1.00 1.00 0.87 0.97 0.92 1.00 0.57 0.73 1.00 0.62 0.77 0.97 0.79 0.85 0.97 0.97 0.96 acc vgood good 0 0 0 39 0 0 3 4 0

Random Forest Accuracy:0.966

Per Class Classification Matrix: [1. 0.975 0.57142857 0.625]

3.2.3 Detailed Classification Report: Random Forest

Train data: 760(44%) Test data: 208 (12%)

		prec	ision	recall	f1-score	support
	0		0.93	1.00	0.97	138
	1		0.60	0.78	0.68	46
	2		0.00	0.00	0.00	7
	3		0.00	0.00	0.00	17
ac	curacy				0.84	208
mac	ro avg		0.38	0.45	0.41	208
weight	ed avg		0.75	0.84	0.79	208
	unacc	acc	vgood	good		
unacc	138	0	9	0		
acc	10	36	9	0		
vgood	0	7	9	0		
good	0	17	9	0		

Random Forest Accuracy:0.837

Per Class Classification Matrix: [1. 0.7826087 0. 0.]

3.2.4 Detailed Classification Report: Random Forest

Train data: 501(29%) Test data: 208 (12%)

			ision	recall	f1-score	support
	0		0.83	1.00	0.91	146
	1		0.48	0.38	0.43	42
	2		0.00	0.00	0.00	9
	3		0.00	0.00	0.00	11
acc	uracy				0.78	208
macr	o avg		0.33	0.35	0.33	208
weighte	d avg		0.68	0.78	0.72	208
Ū	ŭ					
	unacc	acc	vgood	good		
unacc	146	0	- 0	- 0		
acc	26	16	0	0		
vgood	1	8	9	0		
good	2	9	9	0		

Random Forest Accuracy: 0.779

Per Class Classification Matrix: [1. 0.38095238 0. 0.]

3.3 Naïve Bayes Classification:

Naïve Bayes classification is based on Bayes' Theorem with an assumption of individuality among predictors. Naïve Bayes classifier considers that the presence of a feature in a class is unrelated to the presence of any other feature. As mentioned in below table, we can see the accuracy of Naïve Bayes. With 92% of training data we can get 64% of accuracy.

	Train T	est Split		Naïve Bayes			
Training	Testing	Training	Testing	Correct	Incorrect	Correct	Incorrect %
		%	%			%	
1589	139	92	8	89	50	64	36
1261	208	73	12	155	53	75	25
760	208	44	12	162	46	78	22
501	208	29	12	136	72	65	35

3.3.1 Detailed Classification Report – Naïve Bayes

Train data: 1589 (92%) Test data: 139 (8%)

	prec	ision	recall	f1-score	support
0		0.87	0.78	0.82	78
1		0.14	0.08	0.11	12
2		0.40	1.00	0.58	19
3		0.53	0.27	0.36	30
accuracy				0.64	139
macro avg		0.49	0.53	0.47	139
weighted avg		0.67	0.64	0.63	139
unacc	acc	vgood	good		
unacc 61	0	16	1		
acc 5	1	9	6		
vgood 0	0	19	0		
good 4	6	12	8		

Per Class Classification Matrix: [0.78205128 0.08333333 1. 0.26666667]

Naive Bayes Accuracy:0.640

3.3.2 Detailed Classification Report: Naïve Bayes Train data: 1261(73%)

Test data: 200 (12%)

		prec	ision	recall	f1-score	support
	0		0.87	0.87	0.87	143
	1		0.59	0.49	0.54	45
	2		0.27	0.44	0.33	9
	3		0.31	0.36	0.33	11
ac	curacy				0.75	208
mac	ro avg		0.51	0.54	0.52	208
weight	ed avg		0.76	0.75	0.75	208
	unacc	acc	vgood	good		
unacc	125	5	5	8		
acc	16	22	6	1		
vgood	0	5	4	0		
good	2	5	9	4		

Naive Bayes Accuracy:0.745

Per Class Classification Matrix: [0.87412587 0.48888889 0.44444444 0.36363636]

3.3.3 Detailed Classification Report: Naïve Bayes

Train data: 760(44%) Test data: 208 (12%)

		prec	ision	recall	f1-score	support
	0		0.85	0.98	0.91	140
	1		0.54	0.50	0.52	50
	2		0.00	0.00	0.00	7
	3		0.00	0.00	0.00	11
accı	игасу				0.78	208
macro	avg	0.35		0.37	0.36	208
weighted	d avg		0.70	0.78	0.74	208
ι	unacc	acc	vgood	good		
unacc	137	3	0	0		
acc	25	25	0	0		
vgood	0	7	0	0		
good	0	11	0	0		

Per Class Classification Matrix: [0.97857143 0.5 0. 0.]

3.3.4 Detailed Classification Report: Naïve Bayes

Train data: 501(29%) Test data: 208 (12%)

	precision	recall	f1-score	support
0	0.71	0.86	0.78	147
1	0.31	0.19	0.24	47
2	0.00	0.00	0.00	5
3	0.00	0.00	0.00	9
accuracy			0.65	208
macro avg	0.25	0.26	0.25	208
weighted avg	0.57	0.65	0.60	208
unacc	acc vgood	good		
unacc 127	20 0	0		
acc 38	9 0	0		
vgood 5	0 0	0		
good 9	0 0	0		

Per Class Classification Matrix: [0.86394558 0.19148936 0. 0.]

4. Comparison of Classifiers:

Train Te	Train Test Split		on Tree	Randon	Random Forest		Naïve Bayes	
Training	Testing	Correct	Incorrect	Correct %	Incorrect	Correct	Incorrect	
%	%	%	%		%	%	%	
92	8	99	1	97	3	64	36	
73	12	98	2	97	3	75	25	
44	12	87	13	84	16	78	22	
29	12	81	19	78	22	65	35	

- The classified dataset has a class with four attribute values (i.e acc, unacc, good, vgood), thus; having a model with the highest accuracy to be 99% (92:8) with Decision Tree classification.
- The classified dataset has a class with four attribute values (i.e acc, unacc, good, vgood), thus; having a model with the lowest accuracy to be 64% (92:8) with Naïve Bayes classification.
- The classified dataset result from the comparison between the three classifiers shows (Decision Tree, Random Forest, Naïve Bayes) that Decision Tree and Random Forest have the close accuracy across the two (73:12) settings.
- A general observation on the dataset with regards to accuracy is the train test split dimensions. This means, more the training dataset; the higher the accuracy of the model.
- In Naïve Bayes classification, we can observe that accuracy increases when we decrease training dataset and after a point it starts decreasing.

Source Code Link:

- 1. Decision Tree: https://www.kaggle.com/harshadaaphadol/decision-tree-classification-in-python
- $2. \ \ Random \ Forest: \underline{https://www.kaggle.com/harshadaaphadol/random-forest-classifier}$
- 3. Naïve Bayes: https://www.kaggle.com/harshadaaphadol/naive-bayes-classification-in-python