Datas Importantes

Atos acadêmicos no SIGA - Calendário Trimestral	1º Trimestre	2º Trimestre	3º Trimestre	4º Trimestre
Início de atividades	06/07/2020	13/10/2020	01/02/2021	x
Rematrícula de matrícula trancada (destrancamento de matrícula)	Até 27/06/2020	Até 05/10/2020	Até 23/01/2021	x
Previsão de turmas	Até 19/06/2020	Até 26/09/2020	Até 15/01/2021	x
Trancamento de matrícula	Até 10/08/2020	Até 17/11/2020	Até 08/03/2021	x
Pedido de inscrição em disciplinas	De 06/07/2020 a 24/07/2020	De 11/10/2020 a 17/10/2020	De 30/01/2021 a 05/02/2021	x
Concordância do pedido de inscrição em discip l ina	De 27/07/2020 a 30/07/2020	De 18/10/2020 a 24/10/2020	De 06/022021 a 12/02/2021	X
Efetivação do Pedido de Inscrição (Divisão de Ensino — PR2)	31/07/2020	27/10/2020	15/02/2021	x
Pedido de alteração de inscrição em disciplina — AID	De 02/08/2020 a 08/08/2020	De 28/10/2020 a 31/10/2020	De 16/02/2021 a 19/02/2021	x
Concordância do pedido de alteração de inscrição em disciplina - AID	De 09/08/2020 a 12/08/2020	De 01/11/2020 a 07/11/2020	De 20/02/2021 a 26/02/2021	x
Efetivação De Alteração do Pedido de Inscrição (Divisão de Ensino — PR2)	13/08/2020	10/11/2020	01/03/2021	x
Pedido de trancamento de inscrição em discip l ina (desistência de inscrição)	De 14/08/2020 a 19/08/2020	De 11/11/2020 a 14/11/2020	De 02/03/2021 a 05/03/2021	x
Concordância do pedido de trancamento de inscrição em disciplina	De 20/08/2020 a 31/08/2020	De 15/11/2020 a 28/11/2020	De 06/03/2021 a 19/03/2021	x
Efetivação do Trancamento do Pedido de Inscrição (Divisão de Ensino — PR2)	24/08/2020	01/12/2020	22/03/2021	x
Término de atividades	03/10/2020	16/01/2021	24/04/2021	x
Notas – Pautas de graus e frequência	De 04/10/2020 a 17/10/2020	De 17/01/2021 a 30/01/2021	De 25/04/2021 a 08/05/2021	x

Avaliação e Atendimento

Critérios de aprovação são os do PPGI/UFRJ.

A avaliação da disciplina consiste em participação em sala de aula (P); exercícios e/ou protótipos desenvolvidos (E); apresentações//escritas de artigos (A).

$$MF = 0.2 * P + 0.2 * E + 0.6 * A$$

O aluno que desejar atendimento deverá requisitar o mesmo por e-mail e um horário será agendado pelos responsáveis para o atendimento.

Entregáveis - Março

4/3 - Aula + Definição dos grupos + PIT 5 min (Apresentação geral em PPT - DataSet + Problema + Objetivo)

11/3 - Aula + Descrição do projeto de DS - Tudo é via GIT!

• Entregar o projeto contendo (V1): Detalhamento e descrição textual da definição do problema a ser explorado pela equipe; descrever tecnicamente o dataset e sua fonte, o que pretendem fazer e o que vão e como extrair (plano dos experimentos). Apresentar os objetivos geral e específico do projeto de DS; apresentar métodos de data cleaning/tratamento de dados que serão usados, apresentar a proposta de modelo de extração de conhecimento e visualização de dados que será adotado.

18/3 - Aula + Refinamento do projeto de DS

 Agregar ao projeto (V2): Plano do experimento a ser executado (scripts no Colab x Jupyter x IDE), projeto de coleta de metadados da proveniência dos experimentos, projeto para tornar seu experimento reprodutível, adicionar qualquer outro melhoria ou diferencial que julguem necessário

25/3 – Aula + entregar da 1a versão do artigo – Recomenda-se usar o template da LNCS e suas regras de formatação.

Texto final (15-20) páginas com referências (pode ser em português ou inglês, escolha do grupo)

Entregáveis - Abril

1/4 - Aula

8/4 - Aula + Sorteio ordem de apresentação dos grupos

15/4 - Entregar da 2a versão do artigo + Apresentação trabalho alunos (1ª. Parte dos grupos)

22/4 - Apresentação - trabalho alunos (2ª. Parte dos grupos)

10/5 (?) - Entrega da versão final do artigo + projeto completo (V3) + scripts com provenance + datasets anotados+ resultados de DS+ Depósito do notebook reprodutível e executáveis no GIT

Introduction to Data Science

MODULE IV - PART II

Scientific in Silico Experiments as Workflows and Scripts

Prof Sergio Serra e Jorge Zavaleta

What? The Modeling Process

Ask an interesting question & learn reproducibility

Get the Data

Explore the Data

Model the Data

Communicate/Visualize the Results

How were the model made?

Which model is relevant?

Who made it and when/how its executed?

Module III and IV

The data science landscape today

Data science is rapidly changing...

Phrases like "sexiest job of the 21st century" and "data is the new oil" have become old and replaced by more realistic business problems and grounded technical challenges.

The changes are three-fold: We need to support both the

- (1) Demand for productionizing analyses and experiments,
- (2) Rapid adoption of the Cloud,
- (3) Different data user needs

Our (future) data users

Data science teams grow (confluence of users). Unfortunately, their toolsets and workstyles vary a lot. To look forward at (future) needs, we ask a few basic questions:

- What interface will a **data analyst** use to chart a few combined queries into a business report?
- How will a data engineer write code that a reliability engineer can help ensure runs every hour?
- How will a **machine learning developer** encapsulate a model iteration their colleagues can reuse?

Notebooks.

- Shareable
- Easy to Read

- Code
- Outputs as Reports
- Familiar Interface

Multi-Language

Documentation with

Notebooks: Woes To Wins...

The Good

- Quick iteration cycles
- Recorded outputs
- Easy to modify

The Bad

- Lack of history (version and provenance)
- Easy to modify

The Ugly

- Concurrent edits
- Browser state

...production gaps to fill

Things to preserve:

- Results linked to code
- Good visuals
- Easy to share

Things to improve:

- Not versioned
- Mutable state
- Templating
- Provenance

The three forces of change

Jupyter Notebook ecosystem is growing, three forces:

- **1- Experiment on the Cloud**: big data demands large compute and storage, something that your average consumer-grade machine will not always be capable of.
- 2- Support for developer workflow: more and more data science teams are starting to adopt software engineering best practices—version-control, gitfow, pull requests, and more.
- 3- Quick turnaround from analysis to production/research: it's not enough to test hypotheses under controlled environments.

 Software written for analysis should be easily reused for prod.

The three forces of change

- •Growing towards a more **Cloud-first environment** means → perform Notebook-based tasks in machines more powerful than our own.
 - For example, managed notebook instances enabled us to run Jupyter notebooks from a remote server with no-ops and setup.
- •Growing towards a more **production workflow** provides us with a set of tools to endow our notebook-based tasks with **software engineering practices**.
 - the growth of a tool doesn't depend on a single entity or organization. Filling these gaps may stem from individuals who contribute **third-party plugins or organizations offering managed services from notebooks**.

1- Experiment on the Cloud

A huge component of the data science workflow is experimentation. It includes engineering, hyperparameter optimization, and testing-out models.

As data gets bigger and models get more compute-intensive, it is not enough to do everything on your laptop. Experimentation workloads are often delegated to the Cloud.

1- Experiment on the Cloud

2- Support for developer workflow

As data science teams grow, we see a confluence of researchers and engineers working together. Unfortunately, their toolsets and workstyles vary a lot.

 Engineers are comfortable with text editors and IDEs, while some researchers find Jupyter Notebooks convenient. Sometimes engineers disdain notebooks, researchers who aren't familiar with concepts like DRY or KISS ©©©

In an ideal world, everyone uses the same thing and we're all happy. However, in practice.....

- (1) Engineers supporting the tools comfortable for researchers, and
- (2) Researchers learning basic software engineering principles.

2- Support for developer workflow

2- Support for developer workflow

Focus on software eng'g principles Full-fledged "notebook IDEs" nbdime magics fastAl's nbstripout nbdev + plugin system Exploration **Production**

it encourages two things: modularization and documentation.

Modularization means that if you have copy-pasted functions scattered across multiple notebooks, then don't repeat yourself, and put them in a module where you can define them once and import anywhere.

Documentation, is the practice of writing text to accompany your analyses and code.

My suggestion is to document aggressively: learn about Python docstrings,
 Sphinx, or simple Markdown.

Jupyter Notebooks aren't suited for a Git-like workflow. Even if they're just a JSON text file, they become quite unruly when checking for diffs or *gulps* resolving conflicts.

Try a combination of nbstripout and nbdime.

3- Quick turnaround from prototype to production or research

This means that an engineer/researcher can treat Notebooks as **blackboxes** with expected inputs and outputs, then run it as she would any other process.

How notebooks behave as software components? and how it integrates with some standard engineering tools?

Using notebooks in production or research is a highly-debated topic. There may be merits in using Notebooks, but it is important for data science teams to evaluate if a Notebook or the standard stack is the right tool for the job.

There are lots of tools that support bringing Notebooks into production/reproducible research.

- Components of a data pipeline: Notebooks can be thought of as a function that takes in an input, transforms it, and returns an output.
 - For example, it can be used to obtain embeddings from an image before storing it into a distributed filesystem, a final layer in a data pipeline to generate templated reports, or a batch ML service that outputs some predictions for downstream tasks.
- Web-application: Interactivity is one of the main features of Jupyter Notebooks.
 - On one end you can intersperse code with text, then on the other, you can put widgets for control. Nowadays, there are tools that convert Notebooks into a fully-fledged web application or reproductible research
- Big data processing interface: We used to analyze Big Data using SQL, Hive, or some other DSL.
 - We can replace this interface with a Notebook-like point-of-contact. This gives enough expressiveness (since we're using Python) to quickly analye petabyte-scale datasets.

3- Quick turnaround from prototype to production or research

	Recommendation
Best Tool of Choice	Papermill for parametrizing and running notebooks as you'd do for Python scripts. Streamlit, although not Jupyter-native, can be used to create web-apps in-tandem with nbconvert.
Runner-up	Voila for a Jupyter-native experience of building webapps, and Apache Spark for Big Data Analysis.
Check out	<u>Dagster (Dagstermill)</u> and <u>Airflow</u> (<u>PapermillOperator</u>) for Notebook-based data pipelines. Although I recommend that for critical ETLs, traditional Python scripts should be considered.

Putting-it together

This means... even if you start with some ad-hoc and dirty analyses, You always need to update them so that you (or other people) can rerun them seamlessly and understand my methods in the future...

How to e convert exploratory Notebooks to Production/Reproductible research ones?

Putting-it together – The Principles

- 1. Keep a standard project structure and gitflow.
- Refactor oft-repeated functions into Python modules.
- 3. Ensure that your notebook runs from top-to-bottom.
- 4. For data pipelines, use papermill (et al..) and configure your notebook to take advantage of it.

Papermill

How it works

Reads from a source

Injects a parameters cell to the JSON document

Launches a runtime manager which runs the notebook kernel and collects messages.

Outputs to a sink

Turn a Git repo into a collection of interactive notebooks

Have a repository full of Jupyter notebooks? With Binder, open those notebooks in an executable environment, making your code immediately reproducible by anyone, anywhere.

Hands on...

NOTEBOOK:
MACHINE LEARNING

References

https://towardsdatascience.com/workflow-tools-for-model-pipelines-45030a93e9e0

https://elifesciences.org/labs/d42fe2b9/inte grating-binder-and-stencila-the-building-blocks-to-increased-open-communication-and-transparency

https://zenodo.org/

https://mybinder.org/

https://stenci.la/

https://www.mysciencework.com/

University of Groningen

FACULTY OF SCHENCE AND ENGINEERING

Tracking provenance of change in data science pipelines

PROVIDING PROVENANCE AND REPRODUCIBILITY OF PEPELINE EXECUTIONS OF TRACKING PROVENANCE OF PEPELINE DEPORTIONS AND THEIR CODE

A THESIS SUBMITTED IN PULPILLMENT OF THE REQUIREMENTS FOR DEGREE OF MASTER OF SCIENCE IN COMPUTING SCIENCE

Author:

BSc. Edser Apperlago

First Supervisor: prof. dr. Dimka Karastoyanova

Second Supervisor: dr. Vasilios Andrikopoulos