TV Ratings Prediction with Time Weighting Based Regression (TWR)

Master Thesis Defense

Ting-Wei Ku (Martin)

Advisor — Prof. Shou-De Lin

Committee — Prof. Pu-Jen Cheng, Ph.D. Cheng-Te Li

National Taiwan University
Department of Computer Science & Information Engineering
Machine Discovery & Social Network Mining Lab

Feb 2, 2015

Agenda

- 1 Thesis Goal: Improve TV Ratings Prediction with NOVELTY
- 2 Related Work
- 3 Solution: Time Weighting Based Regression (TWR)
- 4 Experiments
- Conclusion

Why TV ratings prediction?

It is an important, complex, and real-world problem with money.

- It's important because TV ratings decide **price of advertising time**.
- It's complex because...
 - TV ratings are aggregate measure of many people's choices.
 - TV is **competing** with many platforms/services (mobile/YouTube).

Agenda

- Thesis Goal: Improve TV Ratings Prediction with NOVELTY
- 2 Related Work
 - 5 Works of TV Ratings Prediction
- Solution: Time Weighting Based Regression (TWR)
- 4 Experiments
- Conclusion

TV Ratings Prediction (1/3)

- Forecasting television ratings (IJF 2011, Danaher et al.)
 - Compared 8 regression models such as Bayesian model averaging
 - Suggested features such as seasonal factors and program genre
 - Found that modeling ratings directly is better than as total_audience×channel_share
 - Relatively large data: 5,000 programs and 48,000 ratings from 2004-2008
- Using a nested logit model to forecast television ratings (IJF 2012, Danaher et al.)
 - Applied nested logit model to TV ratings prediction
 - Same relatively large data

Both works are not compared to ours due to key difference in data.

TV Ratings Prediction (2/3)

- Predicting TV audience rating with social media (SocialNLP 2013, Hsieh et al.)
 A predicting model of TV audience rating based on the Facebook (SocialCom 2013, Cheng et al.)
 - Introduced Facebook features such as # of likes on the fan page
 - Fit data with neural network
 - 4 weekly dramas (78 ratings) broadcast in TW

Key difference between they and us

We only use historical ratings as features, i.e., no external features at all.

TV Ratings Prediction (3/3)

- A weight-sharing gaussian process model using web-based information for audience rating prediction (TAAI 2014, Huang et al.)
 - Proposed a novel GP model
 - Introduced Google Trends features (search-term frequency)
 - 4 daily dramas (336 ratings) broadcast in TW

Key difference between they and us

We only use historical ratings as features, i.e., no external features at all. Besides, we only focus on weekly dramas broadcast in TW.

Agenda

- Thesis Goal: Improve TV Ratings Prediction with NOVELTY
- 2 Related Work
- 3 Solution: Time Weighting Based Regression (TWR)
 - TWR Overview
 - Motivation: Exponential Smoothing
 - How does TWR work?
 - Deciding Parameters of TWR
 - Implementation of Weighting
- 4 Experiments
- Conclusion

TWR Overview

Key idea of TWR

Fit regression model with time-weighted instances.

- **Example**: Given x(x1,...,xN) is a time series of ratings,
 - (x1, x2, x3, x4=y4), t=4, weight=4
 - (x2, x3, x4, x5=y5), t=5, weight=5
 - (x3, x4, x5, x6=y6), t=6, weight=6
 - ... more weighted training instances
 - (x6, x7, x8, x9=y9), t=9, testing instance
- Assumption: Intuitively, newer instances are more important.

We'll show how **effective** this **simple** solution is via experiments later.

Motivation: Exponential Smoothing

Key idea of Exponential Smoothing (ES)

Forecast is the weighted average of past values, and the weights decay exponentially as values get older.

Key idea of TWR

While ES weights on FEATURES decay as they get older, TWR weights on INSTANCES decay as they get older.

How does TWR work?

Pseudo-code of TWR is as below...

- Input data: a time series x with length N
- Parameter: window size w, growth function f, a base algorithm Learner with its parameters p

Fitting process:

- Get instances via windowing transformation with window size w
- Weigh instances with growth function f
- Get base model m via fitting Learner with weighted instances

Predicting process:

- $lue{}$ Get testing instance of one-step forecast from imes
- \odot One-step forecast = Learner.Predict(m, testing instance)

Deciding Parameters of TWR

- Window size
 - Decide via AIC (Akaike Information Criterion) for fair comparison
 - ARIMA pacakge decides its parameters via AICc.
- Growth function
 - 3 functions are considered: linear (t), exp (e^t), cubic exp (e^{3t})
 - Automatically select the one with min validation error
 - Borrow 1 validation instance from the last training instance
- Base algorithm and its parameters
 - Choose decision tree because it is sensitive to different data
 - Allow tree to grow as depth as possible
 - Prune the grown tree via validation error
 - minsplit=2 (min # of instances on leaf for allowing split)

Implementation of Weighting

Q: Re-sample instances or infuse weights as cost?

A: We choose the former because...

- Not all learning algorithms support instance weights.
- When combining with bagging, predictions are likely to be improved.

Agenda

- Thesis Goal: Improve TV Ratings Prediction with NOVELTY
- 2 Related Work
- 3 Solution: Time Weighting Based Regression (TWR)
- 4 Experiments
 - What TV ratings to predict?
 - Data
 - Evaluation Metric
 - Competitors (Other Models)
 - Our Models with Different Settings
 - Results
- Conclusion

What TV ratings to predict?

- Data: 8 real-world weekly dramas (170 ratings) broadcast in TW
 - Originally from SET but now also available at Wikipedia
- Predict next ratings of each drama (one-step forecasting)
- Start making predictions from the 6th episode

Time Series Plot of Data

Figure 1: Time series plot of ratings

Box Plot of Data

Figure 2: Box plot of ratings

Basic Info of Data

Drama	# Episode	Start	Avg(ratings)	Std(ratings)	
D1	16	2013/2/28	0.21	0.08	
D2	25	2011/8/21	5.12	1.09	
D3	22	2012/2/19	2.38	0.16	
D4	21	2013/1/6	1.57	0.23	
D5	21	2013/6/9	2.16	0.3	
D6	19	2010/12/5	1.1	0.21	
D7	23	2010/11/5	3.36	2.75	
D8	23	2012/7/22	3.47	0.56	

Evaluation Metric

Two commonly used metrics in literature of TV ratings prediction:

- MAPE = avg(|actual-predicted| / actual)
- MAE = |actual-predicted| / actual

Competitors (Other Models)

We compare our solution with 8 models:

- Previous period (PP)
- Past average (PA)
- Simple Exponential Smoothing (SES)
- Double Exponential Smoothing (DES)
- Exponential Smoothing State Space (ETS)
- Autoregressive Integrated Moving Average (ARIMA)
- Neural network auto-regression (NNA)
- Support Vector Regression with external features (SVR.EF)

Our Models with Different Settings

- TWR with no growth (TWR.N)
- TWR with linear growth (TWR.L)
- TWR with exponential growth (TWR.E)
- TWR with e^{3x} growth (TWR.E3)
- TWR with auto-selected growth (TWR.A)
- TWR with auto-selected growth and external features (T.A.EF)

Results (MAPE %)

	D1	D2	D3	D4	D5	D6	D7	D8	All
PP	24.27	8.53	8.59	13.95	12.65	12.63	13.07	8.98	12.18
PA	60.17	19.37	6.47	10.72	13.98	20.77	46.09	13.75	22.48
SES	32.47	8.21	6.33	11.94	12.35	12.57	13.07	8.90	12.22
DES	30.16	8.41	6.88	18.59	15.15	12.66	12.15	13.22	13.77
ETS	40.39	9.12	6.49	10.67	12.22	13.50	13.30	8.94	13.02
ARIMA	34.12	8.34	7.18	10.72	13.02	13.01	13.58	9.58	12.64
NNA	55.36	9.22	7.65	12.52	12.46	13.78	11.71	10.81	14.78
SVR.EF	NA	6.34	6.69	11.72	NA	11.75	12.14	11.79	NA
TWR.N	56.93	14.75	6.49	12.82	13.43	17.61	36.59	11.51	19.72
TWR.L	44.23	11.30	6.61	11.88	12.41	15.43	27.51	11.12	16.35
TWR.E	25.60	7.65	7.91	11.93	11.22	12.69	15.88	8.52	11.97
TWR.E3	24.28	8.39	8.42	13.58	12.55	12.63	13.34	8.84	12.09
TWR.A	25.47	7.86	7.59	10.81	12.11	11.67	13.44	8.97	11.54
T.A.EF	25.47	7.55	7.64	10.63	12.11	11.34	13.50	9.11	11.47

Average MAPE of 6 dramas: SVR.EF is 10.07; TWR.A is 10.06.

Results (MAE)

	D1	D2	D3	D4	D5	D6	D7	D8	All
PP	0.0518	0.4775	0.1965	0.2250	0.2569	0.1286	0.5950	0.3272	0.3044
PA	0.0882	1.1048	0.1439	0.1681	0.2764	0.1900	2.3341	0.4646	0.6589
SES	0.0598	0.4604	0.1410	0.1909	0.2520	0.1280	0.5950	0.3202	0.2893
DES	0.0627	0.4644	0.1589	0.2880	0.3158	0.1370	0.5679	0.4904	0.3331
ETS	0.0686	0.5068	0.1447	0.1675	0.2504	0.1381	0.6249	0.3213	0.3000
ARIMA	0.0576	0.4573	0.1608	0.1681	0.2628	0.1318	0.6124	0.3412	0.2955
NNA	0.0955	0.5232	0.1731	0.1943	0.2442	0.1348	0.5031	0.3669	0.3002
TWR.N	0.0836	0.8287	0.1444	0.1973	0.2644	0.1606	1.6678	0.3880	0.5122
TWR.L	0.0695	0.6435	0.1480	0.1854	0.2458	0.1441	1.1960	0.3714	0.4099
TWR.E	0.0510	0.4335	0.1800	0.1915	0.2286	0.1283	0.6919	0.3035	0.2979
TWR.E3	0.0515	0.4699	0.1928	0.2190	0.2550	0.1288	0.6055	0.3208	0.3023
TWR.A	0.0497	0.4429	0.1712	0.1756	0.2440	0.1173	0.6094	0.3248	0.2883
T.A.EF	0.0497	0.4252	0.1723	0.1733	0.2440	0.1135	0.6119	0.3292	0.2860

Discussion (Competitors)

- PP is a challenging baseline.
- PA performs badly, which indicates older ratings are not important.
- SES performs well because ratings lack of seasonal/trend pattern.
- NNA performs normally overall, but its predictions of D7 are the best.

Discussion (TWR)

- Results of TWR.N, TWR.L and TWR.E indicate as weighing more on the newer instances, the better results we get.
- Results of TWR.E3 are mixed, which indicates it's important to find the best growth function.
- Results of TWR.A improves 8% MAPE from TWR.N and outperforms all models overall, which indicates the effectiveness of our idea.

Agenda

- Thesis Goal: Improve TV Ratings Prediction with NOVELTY
- 2 Related Work
- 3 Solution: Time Weighting Based Regression (TWR)
- 4 Experiments
- Conclusion

Contributions and Future Work

Contributions:

- Propose TWR, which is a novel, simple, effective, and extensible solution to TV ratings prediction.
- Evaluate effectiveness of TWR via real-world data.

Future work:

- Find better growth functions in better ways.
- Test TWR with more data.

Thank you!