1. De acuerdo con [1], la curva de un aerogenerador se puede aproximar con diferentes tipos de funciones. La función que se emplea para describir la función del aerogenerador es

$$P(v, \boldsymbol{\theta}) = u + \frac{l - u}{(1 + (v/x)^y)^z},\tag{1}$$

donde u y l representan el valor máximo y mínimo, respectivamente. x es el punto de inflexión, y es la pendiente de la colina, y z es el factor de asimetría, con $x \ge 0$, $z \ge 0$. El problema de optimización es encontrar los valores de los 5 parámetros $\theta = [u, l, x, y, z]$, que mejor describan los datos medidos de la potencia y velocidad del aero-generador.

La función objetivo se describe a partir del error cuadrático entre la potencia medida y la potencia aproximada, así

$$\min_{\boldsymbol{\theta}} \frac{1}{N} \sum_{n=1}^{N} (P_n - P(v_n, \boldsymbol{\theta}))^2,$$

donde P_i es la *i*-esima medida de la potencia, v_i es la *i*-esima medida de la velocidad del viento. La expresión anterior se puede reescribir de forma vectorial como

$$\min_{\boldsymbol{\theta}} \ \frac{1}{N} (\mathbf{P} - P(\mathbf{v}, \boldsymbol{\theta}))^{\top} (\mathbf{P} - P(\mathbf{v}, \boldsymbol{\theta})),$$

donde $\mathbf{P} \in \mathbb{R}^n$ es el vector columna de todas las potencias medidas, $P(\mathbf{v}, \boldsymbol{\theta})$ es un vector generado a partir de la evaluación de la función (1) del vector de velocidades medidas, \mathbf{v} . Para el proyecto se emplean los datos mostrados en la Tabla 1.

#	v (m/s)	P (kW)	#	v (m/s)	P (kW)	#	v (m/s)	P (kW)
1	0.126	-3.151	13	6.234	838.259	25	12.245	1838.213
2	0.799	-3.181	14	6.738	1039.989	26	12.715	1839.370
3	1.287	-3.213	15	7.243	1229.457	27	13.226	1838.915
4	1.749	-3.187	16	7.728	1411.141	28	13.743	1839.852
5	2.259	2.824	17	8.232	1540.810	29	14.300	1840.354
6	2.719	20.331	18	8.741	1681.272	30	14.696	1840.536
7	3.284	74.153	19	9.219	1783.571	31	15.232	1840.206
8	3.751	132.315	20	9.704	1818.255	32	15.649	1840.670
9	4.246	225.115	21	10.230	1822.494	33	16.029	1839.220
10	4.745	347.751	22	10.724	1821.436	34	16.803	1838.905
11	5.244	486.502	23	11.211	1838.905	35	17.049	1829.330
12	5.724	660.094	24	11.767	1840.394	36	17.885	1837.585

Table 1: 36 datos de potencia y velocidad del viento, tomado de [1].

Adicionalmente, cut-in speed es 2 m/s, cut-out speed es 18 m/s, y rated speed es 10 m/s. Rated power es 1800 kW.

(a) Resolver el problema de optimización empleando alguna de las técnicas vistas en la sección de técnicas NLP.

C. Guarnizo

- (b) Comparar con técnicas implementadas en solver como Scipy.minimize.
- 2. Se requiere estimar los parámetros de sistemas fotovoltaicos a partir de mediciones reales en diferentes puntos de operación. Este problema se conoce mínimos cuadrados no lineales, en donde se busca minimizar el error medio cuadrático entre mediciones reales y un modelo que predice dichas mediciones. El modelo depende de unos parámetros que están relacionados con el sistema físico. En nuestro caso, el sistema físico es un panel fotovoltaico. Adicionalmente usaremos la información disponible en el artículo de investigación. En la tabla 1 se relaciona la información disponible en el artículo para describir los diferentes problemas: Single-diode Model (SDM), Double-diode Model (DDM) y Triple-diode model (TDM).

Table 2: Descripción de los problemas de optimización.

Item	SDM	DDM	TDM
Función Objetivo	Eq (11) y Eq (12)	Eq (11) y Eq (13)	Eq (11) y Eq (14)
Restricciones	Table 1 (PWP201)	Table 1 (RTC)	Table 1 (RTC)
Datos (V_L, I_L)	Table 11	Table 6	Table 6

- (a) Resolver el problema de optimización empleando alguna de las técnicas vistas en la sección de técnicas NLP.
- (b) Comparar con técnicas implementadas en solver como Scipy.minimize.
- 3. Se requiere estimar los parámetros de dispositivos eléctricos. Este problema se conoce mínimos cuadrados no lineales, en donde se busca minimizar el error medio cuadrático para estimar los parámetros de un transformador a partir de los datos de la placa suministrados por el fabricante. Adicionalmente usaremos la información disponible en el trabajo de grado. En la tabla 1 se relaciona la información disponible en el artículo para describir los diferentes problemas: Transformador, Reactor y Celda Fotovoltaica.

Table 3: Descripción de los problemas de optimización.

Item	Transformador	Reactor	Celda solar
Función Objetivo	Eq (2.1) y Eq (2.10) a (2014)	Eq (2.15)	Eq (2.27)
Restricciones	Eq 2.2 a 2.9	Eq $2.16 \ a \ 2.26$	Seccion 2.3.2
Datos	Tabla 3.1	Tabla 3.2	Tabla 3.3

- (a) Resolver el problema de optimización empleando alguna de las técnicas vistas en la sección de técnicas NLP.
- (b) Comparar con técnicas implementadas en solver como Scipy.minimize.

References

[1] Zhiming Wang, Xuan Wang, and Weimin Liu. Genetic least square estimation approach to wind power curve modelling and wind power prediction. *Scientific Reports*, 13(1):9188, June 2023.

C. Guarnizo 2