ROZMAITOŚCI RÓŻNICZKOWALNE. LISTA 5.

Podrozmaitości

- 1. Uzasadnij, że jśli $S^n = \{x \in R^{n+1} : |x| = 1\}$, to dla każdego k < n+1 podzbiór $S^n \cap (R^k \times \{0, \dots, 0\})$ jest podrozmaitością w S^n .
- 2. Czy podrozmaitość w podrozmaitości jest podrozmaitością wyjściowej rozmaitości? Odpowiedź uzasadnij.
- 3. Niech N będzie podrozmaitością w M, zas $f:M\to P$ gładkim odwzorowaniem rozmaitości. Uzasadnij, że obcięcie f do N jest gładkim odwzorowaniem $N\to P$.
- 4. Dana jest domknięta podrozmaitość $N\subset M$. Uzasadnij, że dowolna funkcja gładka $h:N\to R$ rozszerza się do gładkiej funkcji $F:M\to R$. Wskazówka: wykorzystaj odpowiedni rozkład jedności.
- 5. Uzasadnij za pomocą odpowiedniego przykładu, że założenie domkniętości w poprzednim zadaniu jest istotne.
- 6. Uzasadnij, że odwzorowanie $f: S^2 \to R^4$ określone wzorem $f(x_1, x_2, x_3) = (x_1^2 x_2^2, x_1x_2, x_1x_3, x_2x_3)$ indukuje różniczkowalne włożenie płaszczyzny rzutowej $RP^2 = S^2/Z_2 \le R^4$.
- 7. Uzasadnij, że zamknięta (tzn. zwarta i bez brzegu) rozmaitość wymiaru n>0 nie da się zanurzyć w \mathbb{R}^n .
- 8. Posługując się rozkładem jedności uzasadnij, że każde gładkie pole wektorowe na podrozmaitości domkniętej można rozszerzyć do gładkiego pola wektorowego na całej rozmaitości.
- 9. Niech $f: \mathbb{R}^n \to \mathbb{R}$ będzie funkcją zadaną wzorem $f(x_1, \dots, x_n) = x_1^2 + \dots x_n^2$. Uzasadnij, że 1 jest wartością regularną tej funkcji, zaś 0 nie jest.
- 10. Wykaż, że równanie $x^3 + y^3 + z^3 3xyz = 1$ definiuje podrozmaitość w R^3 .
- 11. Uzasadnij, że równania x+y+z=0, xyz=2 określają podrozmaitość w R^3 , jeśli usuniemy punkty (-1,-1,2), (-1,2,-1) i (2,-1,-1).
- 12. Uzasadnij, że dla k < n zbiór M_n^k macierzy $n \times n$ rzędu k jest podrozmaitością w R^{n^2} .
- 13. Torus T powstaje przez obrót okręgu $(x-2)^2 + y^2 = 1$ (leżącego w płaszczyźnie Oxy w przestrzeni) wokół osi Oy. Skonstruuj funkcję $f: R^3 \to R$ o wartości regularnej 0 taką, że torus T jest przeiwobrazem zera przez tą funkcję.
- 14. Okrag K dany wzorem $(x-2)^2+y^2=1$ leży na płaszczyźnie Oxy w przestrzeni Oxyz. Skonstruuj funkcję $f: R^3 \to R^2$ o wartości regularnej (0,0), dla której okrąg K jest przeciwobrazem punktu (0,0).
- 15. Uzasadnij, że zbiory SL_nR macierzy o wyznaczniku 1 oraz O(n) macierzy ortogonalnych są podrozmaitościami w zbiorze R^{n^2} wszystkich rzeczywistych macierzy $n \times n$.
- 16. Uzasadnij, że rozmaitość (grupa) SL_2R jest dyfeomorficzna z $S^1 \times R^2$. Uzasadnij, że działanie grupowe (mnożenie macierzowe) jest działaniem różniczkowalnym (jako odwzorowanie $SL_2R \times SL_2R \to SL_2R$).
- 17. Niech N ⊂ M będzie spójną (drogowo) podrozmaitościa, zaś f : M → R gładką funkcją rzeczywistą. Uzasadnij, że f|N jest stała wtedy i tylko wtedy gdy dla każdego p ∈ N ⊂ M obcięcie różniczki df_p|T_pN jest funkcjonałem zerowym.
 18. N jest podrozmaitością w M, zaś X jest polem wektorowym na M takimi że dla
- 18. N jest podrozmaitością w M, zaś X jest polem wektorowym na M takimi że dla wszystkich punktów $q \in N$ zachodzi $X(q) \in T_qN$. Niech φ_t będzie potokiem pola X na rozmaitości M. Uzasadnij, że ze jeśli $q \in N$, to

- (1) $\varphi_t(q) \in N$ dla dostatecznie małych t wokół zera;
- (2) ponadto, jeśli N jest podrozmaitością domkniętą, to $\varphi_t(q) \in N$ dla każdego t, dla którego $\varphi_t(q)$ jest określone.
- 19. Uzasadnij na podstawie definicji komutatora i pochodnej Liego, ale nie korzystając z ich równości, że jeśli N jest podrozmaitością w M, zaś X,Y są polami wektorowymi na M takimi że dla wszystkich punktów $q \in N$ zachodzi $X(q) \in T_qN$ i $Y(q) \in T_qN$, to dla wszystkich takich punktów mamy $L_XY(q) \in T_qN$ oraz $[X,Y](q) \in T_qN$.
- 20. Niech $p:TM\to M$ będzie naturalnym rzutowaniem, zaś $N\subset M$ podrozmaitością. Uzasadnij, że $W:=p^{-1}(N)$ jest podrozmaitością w TM, zaś TN jest podrozmaitościa w W.
- 21. Niech q będzie wartością regularną gładkiego odwzorowania $f: M \to N$ i niech $W = f^{-1}(q)$. Uzasadnij, że dla dowolnego $p \in W$ zachodzi $T_pW = \ker(df_p: T_pM \to T_qN)$.
- 22. Wykresem Γ gładkiego przekształcenia $f:M\to N$ nazywamy zbiór wszystkich par $(x,y)\in M\times N$ dla których f(x)=y. Udowodnij, że Γ jest podrozmaitością w $M\times N$, i że przestrzeń styczna $T_{(x,y)}\Gamma\subset T_{(x,y)}(M\times N)=T_xM\times T_yN$ jest równa wykresowi różniczki $df_x:T_xM\to T_yN$.
- 23. Rozważmy grupę SL_2R jako podrozmaitość w R^4 . Dla punktu (macierzy) $A \in SL_2R$ przestrzeń styczna T_ASL_2R jest podprzestrzenia w R^4 . Opisz ta podprzestrzeń.

Nieco trudniejsze zadania

- 24. Uzasadnij, że jeśli odwzorowanie $f: M \to N$ jest różniczkowalne, dim $N \leq \dim M$, Q jest podrozmaitością z brzegiem w M, zaś każdy punkt Q jest wartością regularną dla f, to przeciwobraz $f^{-1}(Q)$ jest podrozmaitością z brzegiem w M.
- 25. Niech X będzie zwartą rozmaitością gładką. Posługując się rozkładem jedności skonstruuj różnowartościową immersję $i:X\to R^N$ dla pewnego (dużego) N. W ten sposób uzasadnisz, że każda zwarta rozmaitość jest dyfeomorficzna z pewną podrozmaitością w pewnym R^N .
- 26. Uzasadnij, że równanie zespolone $z_1^2 + \ldots + z_n^2 = 1$ zadaje w C^n podrozmaitość. Uzasadnij, że ta podrozmaitość jest dyfeomorficzna z wiązką styczną TS^{n-1} sfery (n-1)-wymiarowej.
- 27. Uzasadnij, że $TS^n \times R \cong S^n \times R^{n+1}$. Wykorzystaj fakt, że S^n jest w naturalny sposób podrozmaitością w R^{n+1} .