0 REACTIESNELHEID EN ACTIVERINGSENERGIE

DOEL

De activatie-energie, reactiesnelheid en reactie-orde bepalen van de chemische reactie tussen waterstofperoxide en een kaliumjodide waarbij het nauwkeurig leren pipetteren ook van belang was.

RESULTATEN

Concentratie Na₂S₂O₃ (mol/L):	0,0200 M
Volume Na ₂ S ₂ O ₃ (mL):	1,00 mL
Concentratie KI (mol/L):	0,300 M
Concentratie H ₂ O ₂ (mol/L):	0,100 M
Totaal volume (mL):	10,0 mL
Temperatuur (°C en K)	20 °C = 293,15 K

A. Bepaling van de reactietijden

Exp nr.	1	2	3	4	5	6	7
Tijd (s)	132s	64s	45s	33s	69s	56s	211s

B. Berekeningen voor de bepaling van de reactiesnelheid

Exp nr.	1	2	3	4	5	6	7
mol Na ₂ S ₂ O ₃ verbruikt (mol)	2,00*10 ⁻⁵ mol	2,00*10 ⁻⁵ mol	2,00*10 ⁻⁵ mol	2,00*10 ⁻⁵ mol	2,00*10 ⁻⁵ mol	2,00*10 ⁻⁵ mol	2,00*10 ⁻⁵ mol
Δ (mol I ₃ -)	1,00*10 ⁻⁵ mol	1,00*10 ⁻⁵ mol	1,00*10 ⁻⁵ mol	1,00*10 ⁻⁵ mol	1,00*10 ⁻⁵ mol	1,00*10 ⁻⁵ mol	1,00*10 ⁻⁵ mol
$\frac{\Delta(\text{mol } I_3)}{\Delta t}$	7,60*10 ⁻⁸ (mol/s)	1,56*10 ⁻⁷ (mol/s)	2,22*10 ⁻⁷ (mol/s)	3,03*10 ⁻⁷ (mol/s)	1,45*10 ⁻⁷ (mol/s)	1,79*10 ⁻⁷ (mol/s)	4,70*10 ⁻⁸ (mol/s)
$\log \frac{\Delta (\text{mol } I_3^-)}{\Delta t}$	-7,12	-6,81	-6,65	-6,52	-6,84	-6,75	-7,33
Volume KI (mL)	1,00 mL	2,00 mL	3,00 mL	4,00 mL	1,00 mL	1,00 mL	1,00 mL
[I ⁻] ₀ (mol/L)	0,0300 M	0,0600 M	0,0900 M	0,120 M	0,0300 M	0,0300 M	0,0300 M
log [l ⁻] ₀	-1,52	-1,22	-1,05	-0,921	-1,52	-1,52	-1,52
Volume H ₂ O ₂ (mL)	3,00 mL	3,00 mL	3,00 mL	3,00 mL	5,00 mL	7,00 mL	2,00 mL
[H ₂ O ₂] ₀ (mol/L)	0,0300 M	0,0300 M	0,0300 M	0,0300 M	0,0500 M	0,0700 M	0,0200 M
log [H ₂ O ₂] ₀	-1,52	-1,52	-1,52	-1,52	-1,30	-1,15	-1,70

C. Bepaling van de partiële reactie-orden, p en q

Partiële reactie-orde p:

$$p = 0.9883 (\approx 1)$$

Partiële reactie-orde q:

$$q = 1,0992 (\approx 1)$$

D. Bepaling van k', de specifieke snelheidsconstante

Exp. Nr.	1	2	3	4	5	6	7
k' (L²/(mol*s))	1,15*10 ⁻⁴	1,19*10 ⁻⁴	1,13*10-4	1,16*10 ⁻⁴	1,25*10 ⁻⁴	1,07*10-4	1,11*10-4
	Gemidde	elde k'			1,15*10 ⁻⁴ l	.²/(mol*s)	

E. Bepaling van de activeringsenergie

	Temperatuur (K)	Tijd (s)	reactiesnelheid	k'	In k'	1/T	
	(K)			L ² /(mol*s))			
Exp 4 bij KT	293,15 K	27 s	3,70*10 ⁻⁷ mol/s	1,42*10 ⁻⁴	-8,86	0,00341	
, ,						(1/K)	
Exp 4 bij T < KT	279,15 K	78 s	1,28*10 ⁻⁷ mol/s	4,91*10 ⁻⁵	-9,92	0,00358	
	,		,	,		(1/K)	
Exp 4 bij T > KT	307,15 K	6 s	1,67*10 ⁻⁶ mol/s	6,41*10 ⁻⁴	-7,35	0,00326	
	,			,		(1/K)	
Ev. Exp 4 bij	293,15 K	29 s	3,45*10 ⁻⁷ mol/s	1,32*10 ⁻⁴	-8,93	0,00343	
andere T			, , ,			(1/K)	
Ev. Exp 4 bij	276,15 K	110 s	9,10*10 ⁻⁸ mol/s	3,49*10 ⁻⁵	-10,3	0,00362	
andere T			2,20 20	3,10 20		(1/K)	
Ev. Exp 4 bij	324,15 K	2 s	5,00*10 ⁻⁶ mol/s	1,92*10 ⁻³	-6,26	0,00309	
andere T	32 i)13 i	2.5	3,00 10 11101,0	1,32 10		(1/K)	
-E _a /R			-7575,4 K				
E _a			62,98 kJ/mol				

BESLUIT

De activeringsenergie van deze reactie bedraagt 62,98 kJ. Het is ook duidelijk dat hoe hoger de temperatuur van het mengsel is, hoe hoger de reactiesnelheid en hoe hoger de reactiesnelheidsconstante k.

Onze reactie orden p en q bedragen respectievelijk: 0,9883 en 1,0992 welke dicht in de buurt liggen van orde grootte 1. Kleine foutjes op de tijd en volumes zijn natuurlijk niet uitgesloten waardoor de experimentele waarden een beetje kunnen afwijken van theoretische waarden.

De reactiesnelheden bedragen:

Α	1	2	3	4	5	6	7
v (mol/s)	7,60*10 ⁻⁸ (mol/s)	1,56*10 ⁻⁷ (mol/s)	2,22*10 ⁻⁷ (mol/s)	3,03*10 ⁻⁷ (mol/s)	1,45*10 ⁻⁷ (mol/s)	1,79*10 ⁻⁷ (mol/s)	4,70*10 ⁻⁸ (mol/s)
E	293,15 K	279,15 K	307,15 K	293,15 K	276,15 K	324,15 K	
v (mol/s)	3,70*10 ⁻⁷ mol/s	1,28*10 ⁻⁷ mol/s	1,67*10 ⁻⁶ mol/s	3,45*10 ⁻⁷ mol/s	9,10*10 ⁻⁸ mol/s	5,00*10 ⁻⁶ mol/s	

 $D[H_2O_2]_0 \quad pnoef \Lambda := \begin{array}{c} 0,100 \cdot 0.00300 \\ 0,01300 \cdot \Pi = 0,0300\Pi, \ lag(0,0300) = -1,522... \\ = 0,0300 \Pi, \ lag(0,0300) = -1,522... \\ = 0,0500 \Pi, \ lag(0,0500) = -1,301... \\ = 0,0700 \Pi, \ lag(0,0700) = -1,301... \\ = 0,0700 \Pi, \ lag(0,0700) = -1,154... \\ proof 7=0,0200 \Pi, \ lag(0,0200) = -1,633... \\ \end{array}$

Herhoding 1:

At = 127

In = 20°C = 233, 15 K

At = 127

In = 6°C = 273, 15 K

Warm 7 At 3 = 6 0

The 2 20°C = 273, 15 K

230°C = 307, 15 K

242 = 10 80 500 T₂ = 30°C = 276, 15 K

242 = 10 80 500 T₃ = 50°C = 324, 15 K

243 = 20 T₃ = 50°C = 324, 15 K

Met de eenheid van k: $L^2/(mol s)$ en niet dus niet (mol/L s).

 $E_a=8,314 \text{ J(mol*k)}^{-1} * 7575,4 \text{ K} =62,98 \text{ kJ/mol}$