Sistemas complejos The Nonlinear Workbook III

Carlos Manuel Rodríguez Martínez

Universidad Veracruzana

11 de marzo de 2016

Variedad

- Es un objeto que generaliza la noción de curva y superficie.
- Una variedad de dimensión n es un espacio que se parece localmente a \mathbb{R} . (Wikipedia)

- Supongamos que existe una función ϕ_1 tal que $V_1 = \phi_1(U_1)$.
- Un espacio M es una variedad diferenciable si

$$M = \cup_{\alpha} U_{\alpha}$$
,

y se pide que para $U_{\alpha} \cap U_{\beta} \neq \emptyset$, el mapa $\phi_{\beta} \circ \phi_{\alpha}^{-1}$ sea suave.

Difeomorfismo

- Dadas dos variedades M y N, un difeomorfismo es una aplicación diferenciable f : M → N si es biyectiva y su inversa f⁻¹ : N → M también es diferenciable.
- Los mapeos con los que se trabajará en esta exposición son difeomorfismos.

Sea un mapa bidimensional

$$x_{t+1}^{(1)} = f_1(x_t^{(1)}, x_t^{(2)}), \quad x_{t+1}^{(2)} = f_2(x_t^{(1)}, x_t^{(2)}),$$

donde $t \in \mathbb{Z}^+$. A la gráfica de los puntos $(x_{t+1}^{(1)}, x_{t+1}^{(2)})$ se le denomina retrato de fase.

• Ejemplos: Mapa de Henón, $f(x, y) = (y + 1 - ax^2, bx)$.

• Mapa de Lozi, f(x, y) = (y + 1 - a|x|, bx).

• Mapa Standard, $f(I, \theta) = (I + k \sin(\theta), \theta + I + k \sin(\theta))$.

Ikeda Laser Map. Dado por

$$x_{t+1} = \rho + c_2(x_t \cos(\tau_t) - y_t \sin(\tau_t)),$$

$$y_{t+1} = c_2(x_t \sin(\tau_t) + y_t \cos(\tau_t)),$$

donde

$$\tau_t = c_1 - \frac{c_3}{1 + x_t^2 + y_t^2}.$$

• El mapa logístico acoplado. Dado por

$$x_{t+1} = rx_t(1 - x_t) + e(y_t - x_t)$$

 $y_{t+1} = ry_t(1 - y_t) + e(x_t - y_t),$

Billares dinámicos

- Los billares son sistemas dinámicos que muestran una dinámica compleja.
- Sufren reflexiones cuando la partícula se encuentra en los bordes del sistema.

$$V(q) = egin{cases} 0, & q \in \Omega \ \infty, & q
otin \Omega \end{cases}$$

 ϕ : Angulo de inyección (-90° < ϕ < 90°) ω : Parámetro de corte. $\omega=\frac{W}{R}$ (0 < ω ≤ 2)

Figura: Billar circular cortado.

Billares dinámicos II

 Al ser un sistema potencialmente caótico también presentan alta sensibilidad a condiciones iniciales.

Figura: Diferencia de trayectorias.

Coordenadas de Birkhoff I

- Son útiles para describir la dinámica de un billar.
- Están definidas como

$$\begin{aligned} \mathbf{s} &= \text{fracción de arco}, \\ \mathbf{p} &= \alpha \cos \theta, \end{aligned}$$

donde α es la magnitud total del momento y θ es el ángulo entre el vector velocidad y la normal a la colisión.

• Se puede visualizar la trayectoria del billar como retrato de fase $(s_{t+1}, p_{t+1}) = f(s_t, p_t)$.

Figura: Coordenadas de Birkhoff

Coordenadas de Birkhoff II

Figura: Mapa de Birkhoff para caos suave.

Figura: Mapa de Birkhoff para caos duro.

Análisis de estabilidad

• Sea un sistema dinámico dado por

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}),$$

donde $\mathbf{x} \in U$, con puntos fijos \mathbf{x}^* para los cuales

$$\mathbf{f}(\mathbf{x}^*) = 0 \Rightarrow \frac{d\mathbf{x}^*}{dt} = 0.$$

• Haciendo que $\mathbf{x} = \mathbf{x}^* + \Delta \mathbf{x}$, y expandiendo alrededor de \mathbf{x}^* queda

$$f(x^* + \Delta x) = f(x^*) + Df(x^*)\Delta x + \cdots$$

• $Df(x^*)$ es el Jacobiano.

$$\mathbf{J} = D\mathbf{f}(\mathbf{x}) = \frac{d\mathbf{f}}{d\mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Análisis de estabilidad

• Al tomar los términos a primer orden queda

$$\frac{d}{dt}(\mathbf{x}^* + \Delta \mathbf{x}) = \mathbf{f}(\mathbf{x}^*) + D\mathbf{f}(\mathbf{x}^*)\Delta \mathbf{x},$$

pero

$$\mathbf{f}(\mathbf{x}^*) = 0, \ \frac{d\mathbf{x}^*}{dt} = 0,$$

entonces queda

$$\frac{d\Delta \mathbf{x}}{dt} = \mathbf{J}(\mathbf{x}^*) \cdot \Delta \mathbf{x}.$$

• Esto es una ecuación diferencial cuya solución es

$$\Delta \mathbf{x} = \hat{u}e^{\lambda t}$$

donde λ son los eigenvalores de $\mathbf{J}(\mathbf{x}^*)$, es decir, las soluciones a

$$|\mathbf{J}(\mathbf{x}^*) - \lambda \mathbb{I}| = 0.$$

Definiciones y teoremas

- Un punto fijo x* de un difeomorfismo f es hiperbólico si el mapa Df(x*) es hiperbólico y lineal.
- Un difeomorfismo lineal $A: \mathbb{R}^n \to \mathbb{R}^n$ es hiperbólico si no tiene eigenvalores con módulo igual a 1.
- Ejemplo: En el mapa de Henón los puntos fijos son

$$x^* = \frac{(b-1) \pm \sqrt{(1-b)^2 + 4a}}{2a}, \quad y^* = bx^*.$$

El Jacobiano

$$J = \begin{pmatrix} -2ax & 1 \\ b & 0 \end{pmatrix}$$

cuyos eigenvalores son

$$\lambda_{1,2} = -ax^* \pm \sqrt{b + (ax^*)^2}$$

Definiciones y teoremas: Teorema de Hartman-Grobman

Sea $\mathbf{x} \in \mathbb{R}^n$. Considere un sistema no lineal $\dot{\mathbf{x}} = f(\mathbf{x})$ con flujo ϕ_t . Ahora considere el sistema lineal $\dot{\mathbf{x}} = J(\mathbf{x}^*)\mathbf{x}$. Sean $U \in \mathbb{R}^n$, $V \in \mathbb{R}^n$. Entonces existe un homeomorfismo $H: U \to V$ tal que

$$H(\phi_t(\mathbf{x_0})) = e^{\mathbf{J}(\mathbf{x}^*)t}H(\mathbf{x_0}).$$

Definiciones y teoremas: Teorema de la variedad invariante

Sea $f: U \to \mathbb{R}^n$ un difeomorfismo con punto fijo hiperbólico $\mathbf{x}^* \in U$. Entonces en una vecindad lo suficientemente pequeña $N \subseteq U$ existen variedades localmente estables e inestables.

$$W^s_{loc}(\mathbf{x}^*) = \{\mathbf{x} \in U | \mathbf{f}^{(t)}(\mathbf{x}) \to \mathbf{x}^* \text{ cuando } t \to \infty\},$$

 $W^u_{loc}(\mathbf{x}^*) = \{\mathbf{x} \in U | \mathbf{f}^{(t)}(\mathbf{x}) \to \mathbf{x}^* \text{ cuando } t \to -\infty\},$

Definiciones y teoremas: Teorema de la bifurcación de Hopf

- Sea $\dot{\mathbf{r}} = \mathbf{f}(\mathbf{r})$ un sistema dinámico. \mathbf{r} está en coordenadas cartesianas.
- El sistema dinámico es

$$\dot{r} = \mu r - r^3$$
$$\dot{\theta} = \omega + br^2.$$

• Dado un punto inicial ¿Con qué parámetros μ , ω y b es estable o inestable?

Definiciones y teoremas: Teorema de la bifurcación de Hopf

- En el análisis de estabilidad se vio que el eigenvalor del Jacobiano nos da la respuesta.
- Para poder calcularlo más fácilmente nos pasamos a coordenadas cartesianas

$$\dot{x} = \mu x - \omega y + O(3)$$
$$\dot{y} = \omega x + \mu y + O(3)$$

• El Jacobiano es

$$J(r=0, \theta=0) = \begin{pmatrix} \mu & -\omega \\ \omega & \mu \end{pmatrix}$$

cuyos eigenvalores son $\lambda = \mu \pm i\omega$.

- Si $Re(\lambda) = \mu < 0$ es estable. Si $Re(\lambda) = \mu > 0$ es inestable.
- El teorema nos asegura que siempre existe un cambio de coordenadas en el cual podemos identificar parámetros con los cuales podemos averiguar la naturaleza de las órbitas dependiendo de su signo.

Exponente de Lyapunov

Sea un sistema de ecuaciones

$$x_{t+1} = f_1(x_t, y_t), \quad y_{t+1} = f_2(x_t, y_t).$$

Sus derivadas son

$$\begin{split} \frac{\partial f_1}{\partial t} &= u_{t+1} = \frac{\partial f_1}{\partial x} u_t + \frac{\partial f_1}{\partial y} v_t \\ \frac{\partial f_2}{\partial t} &= v_{t+1} = \frac{\partial f_2}{\partial x} u_t + \frac{\partial f_2}{\partial y} v_t \end{split}$$

• El exponente de Lyapunov está dado por

$$\lambda = \lim_{T o \infty} rac{1}{T} \log(|u_T| + |v_T|).$$

• Ejemplo: Para el mapa de Henón el exponente de Lyapunov es $\lambda = 0.42$.

Dimensiones no enteras

- La dimensión de un objeto se define informalmente como el número mínimo de coordenadas necesarias para especificar cualquier punto del mismo.
- Un punto tiene dimensión cero, una línea dimensión 1, cuadrado dimensión 2 y un cubo dimensión 3.
- ¿Cuál es la dimensión de la costa de Gran Bretaña?

- La costa no es una curva de dimensión 1 porque la longitud no converge. Tampoco tiene área de dimensión 2. Su dimensión ha de ser un número entre el 1 y 2.
- A este número se le conoce como dimensión fractal.

¿Qué es un fractal?

Figura: Fractal. Conjunto de Julia.

Dimensión fractal

 La dimensión por conteo de cajas está definida por

$$D = \lim_{\varepsilon \to 0} \frac{\log \mathit{N}(\varepsilon)}{\log(1/\varepsilon)}.$$

 Es una forma de caracterizar al caos.

Figura: Cálculo de la dimensión fractal, N = 91.

Figura: Cálculo de la dimensión fractal, N = 497.

Gráfica de recurrencia

 Muestra en un momento dado los tiempos en los cuales la órbita visita una posición cercana en el espacio fase.

$$\mathbf{x}(t) \approx \mathbf{x}(\tau)$$
.

• Es una gráfica de la cantidad

$$R(t,\tau) = H(\epsilon - |\mathbf{x}(t) - \mathbf{x}(\tau)|),$$

donde

$$H(x) = \begin{cases} 0, & x < 0, \\ 1, & x \ge 0. \end{cases}$$

Gráfica de recurrencia

• Para el mapa de Henón

Gráfica de recurrencia

• Para una serie financiera

Integral de correlación

- Mide las correlaciones entre los puntos.
- Está definida por

$$c(\epsilon) = \lim_{T \to \infty} \frac{1}{T^2} \sum_{i,j=1}^{T} H(\epsilon - |x_i - x_j|).$$

• El comportamiento de la función $c(\epsilon)$ es aproximadamente

$$c(\epsilon) = a\epsilon^{v},$$

donde v es la dimensión por conteo de cajas.

• Para el mapa de Henón

se encuentra que v = 1.24508.