

Pinto, Grech Maria Almeida, Paulina Diana Domingues, Marco

Paulina				
Tentativas	Medição (cm)	Medição (m)	Tempo de Reação	
1	10.7	1.07E-01	1.48E-01	
2	17	1.70E-01	1.86E-01	
3	12.3	1.23E-01	1.58E-01	
4	9.8	9.80E-02	1.41E-01	
5	14	1.40E-01	1.69E-01	
6	9.8	9.80E-02	1.41E-01	
7	11.1	1.11E-01	1.50E-01	
8	10.8	1.08E-01	1.48E-01	
9	14	1.40E-01	1.69E-01	
10	14.9	1.49E-01	1.74E-01	
11	23.2	2.32E-01	2.18E-01	
12	10.2	1.02E-01	1.44E-01	
13	11.8	1.18E-01	1.55E-01	
14	13.4	1.34E-01	1.65E-01	
15	10.1	1.01E-01	1.44E-01	
16	15.5	1.55E-01	1.78E-01	
17	20.4	2.04E-01	2.04E-01	
18	17.9	1.79E-01	1.91E-01	
19	11.7	1.17E-01	1.55E-01	
20	11.3	1.13E-01	1.52E-01	
Média	1.35E+01	Desvio Padrão	± 2.11E-02	

		Maria	
Tentativas	Medição (cm)	Medição (m)	Tempo de Reação
1	9.8	9.80E-02	1.41E-01
2	13.3	1.33E-01	1.65E-01
3	19	1.90E-01	1.97E-01
4	15.5	1.55E-01	1.78E-01
5	13	1.30E-01	1.63E-01
6	12.5	1.25E-01	1.60E-01
7	15.7	1.57E-01	1.79E-01
8	14	1.40E-01	1.69E-01
9	17	1.70E-01	1.86E-01
10	7.5	7.50E-02	1.24E-01
11	14.5	1.45E-01	1.72E-01
12	14	1.40E-01	1.69E-01
13	9.7	9.70E-02	1.41E-01
14	17	1.70E-01	1.86E-01
15	14	1.40E-01	1.69E-01
16	11.5	1.15E-01	1.53E-01
17	11	1.10E-01	1.50E-01
18	11.5	1.15E-01	1.53E-01
19	14	1.40E-01	1.69E-01
20	13.7	1.37E-01	1.67E-01
Média	1.34E+01	Desvio Padrão	± 1.70E-02

Marco					
Tentativas	Medição	Desvio Padrão			
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
Média		土			

Como é que avaliou o alinhamento da marcação do zero da régua com os dedos do seu colega?

- Considerando a hipótese de os dedos estarem muito afastados, o movimento necessário para fechar os dedos e agarrar a régua será superior em comparação aquando os dedos estivessem a uma largura de 1 cm. Consequentemente, irá ocorrer um atraso no tempo de captura da régua, ou seja, iria afetar a posição em relação ao zero da régua. Deste modo o tempo de reação seria maior. - Por outro lado, se os dedos estiverem muito próximos, existe uma possibilidade o tempo de reação ser inferior ao esperado, uma vez que a distância percorrida pela régua desde o zero até ao instante em que se agarra a mesma seria menor. - Deste modo, é necessário que para as várias medidas o afastamento entre os dedos seja constante a fim de evitar valores de medidas muito dispersos.

Explique o porquê da sua escolha. Consegue estimar que importância terá para o resultado o afastamento entre os dedos enquanto se espera que a régua seja libertada?

- Com o objetivo de obter dados precisos, a marcação do zero da régua deve estar alinhada com o ponto onde os dedos do elemento do grupo estão posicionados antes da queda. Caso o zero não esteja bem alinhado, a distância medida será incorreta, afetando o tempo de reação e resultando em medidas pouco fiáveis. Deste modo, minimizamos a ocorrência de erros experimentais através da garantia de que para todas as medições efetuadas a posição inicial dos dedos em relação à régua é igual. Ao garantir que os dedos no início da queda se encontram alinhados com o zero da régua, o cálculo do tempo de reação irá ser mais preciso.