MIDDLE EAST TECHNICAL UNIVERSITY

CE486 STRUCTURAL DESIGN CONCRETE STRUCTURES

SAP2000 TUTORIAL

OUTLINE

Create a 3D model of the given building and do the gravity and dynamic analyses.

- Set the unit system
- Form a grid.
- Define the material properties
- Define the section properties (cracked section)
- Draw the geometry (for one floor)
- Define Rigid End Zones
- Define the loads (load patterns → load cases → load combinations)
- Replicate
- Define the boundary conditions
- Define rigid diaphragms at floor levels
- Run the analysis
- Define the mass source (tie it to the diaphragm)
- Define the response spectrum
- Define the dynamic load case
- Run the dynamic analysis

The plan of a 7-story reinforced concrete residential building is shown below.

The floor-to-floor height is 3.5 m.

C30 class concrete will be used in the structural elements.

The dead load including the self-weight on beams on grid lines A, C and E is 15 kN/m and on grid lines B and D is 30 kN/m. Likewise, the dead load on beams on grid lines 1 and 4 is 15 kN/m and on grid line 2 and 3 is 30 kN/m.

Assume that *the live load* on all beams is equal to 12 kN/m.

The beam and columns are rectangular and the dimensions are 50 cm x 60 cm and 50 cm x 70 cm, respectively.

Set the unit system and Form the grids

Define the material properties

TS500

ÇİZELGE 3.2 - Beton Sınıfları ve Dayanımları

Beton Sınıfı	Karakteristik Basınç Dayanımı, f _{ck}	Eşdeğer Küp (200 mm) Basınç Dayanımı	Karakteristik Eksenel Çekme Dayanımı, f _{ctk}	28 Günlük Elastisite Modülü, E _c
	MPa	MPa	MPa	MPa
C16	16	20	1,4	27 000
C18	18	22	1,5	27 500
C20	20	25	1,6	28 000
C25	25	30	1,8	30 000
C30	30	37	1,9	32 000
C35	35	45	2,1	33 000
C40	40	50	2,2	34 000
C45	45	55	2,3	36 000
C50	50	60	2,5	37 000

$$E_{cj} = 3250 \sqrt{f_{ckj}} + 14000$$
 (MPa)

TEC 2007 Cracked Section Definition

7.4.13 – Eğilme etkisindeki betonarme elemanlarda çatlamış kesite ait *etkin eğilme* rijitlikleri (EI)_e kullanılacaktır. Daha kesin bir hesap yapılmadıkça, etkin eğilme rijitlikleri için aşağıda verilen değerler kullanılacaktır:

- (a) Kirişlerde: $(EI)_e = 0.40 (EI)_o$
- (b) Kolon ve perdelerde, $N_{\rm D}$ / $(A_{\rm c}f_{\rm cm}) \le 0.10$ olması durumunda: $(EI)_{\rm e} = 0.40$ $(EI)_{\rm o}$ $N_{\rm D}$ / $(A_{\rm c}f_{\rm cm}) \ge 0.40$ olması durumunda: $(EI)_{\rm e} = 0.80$ $(EI)_{\rm o}$

Eksenel basınç kuvveti N_D 'nin ara değerleri için doğrusal enterpolasyon yapılabilir. N_D , deprem hesabında esas alınan toplam kütlelerle uyumlu yüklerin gözönüne alındığı ve çatlamamış kesitlere ait $(EI)_o$ eğilme rijitliklerinin kullanıldığı bir ön düşey yük hesabı ile belirlenecektir. Deprem hesabı için başlangıç durumunu oluşturan düşey yük hesabı ise, yukarıda belirtildiği şekilde elde edilen etkin eğilme rijitliği $(EI)_e$ kullanılarak, deprem hesabında esas alınan kütlelerle uyumlu yüklere göre yeniden yapılacaktır. Deprem hesabında da aynı rijitlikler kullanılacaktır.

Define the section properties (cracked section)

Draw the geometry (for one floor)

Define Rigid End Zones

<u>Automatic from connectivity:</u> Choose this option to have SAP2000 calculate the end offsets from the connectivity of the model. The program will automatically calculate the end offsets from the Depth (Major) and Width (Minor) specified for the frame section properties.

Define Lengths: Type values for the offsets at End I and End J

Rigid Zone Factor: This is a factor used to define the percentage of the zone specified through end offsets to be taken as fully rigid.

O means no rigid zone and 1 means that the entire zone is taken as rigid.

FRAME ELEMENTS IN SAP2000

Real Structural Member:

Mathematical Idealization:

Real Structural Member:

Mathematical Idealization:

Axis Shifting:

One Dimensional Modelling Alternatives

Mathematical Idealization:

Example Frame Centroidal Axis Modelling without Rigid End Offsets:

• Beam: 50 x 50 cm

• Columns: 30 x 60 cm

Centroidal Axis Modelling with Rigid

End Offsets:

Axis Shifting Frame Insertion Point

Member Axis Shifted Modelling with Rigid End Offsets:

Summary of Results:

	Δ	M _{span}	M _{support}	M _{column}
Centroidal without Rigid End Zone	1,41	45	45	45
Centroidal with Rigid End Zone	1,07	38,3	34	46,7
Rigid End Zone Axis Shifting	1,07	40,4	31,9	49

Define Rigid End Zones

Axis shift

Define the loads (load patterns \rightarrow load cases \rightarrow load combinations)

Define rigid diaphragms at floor levels

Define the mass source

Lineer Static Procedure (TEC 2007)

Şekil 2.6

2.7.2.1 – Denk.(2.4) ile hesaplanan toplam eşdeğer deprem yükü, bina katlarına etkiyen eşdeğer deprem yüklerinin toplamı olarak Denk.(2.7) ile ifade edilir (Şekil 2.6a):

$$V_{\rm t} = \Delta F_{\rm N} + \sum_{\rm i=1}^{\rm N} F_{\rm i}$$
 (2.7)

2.7.2.2 – Binanın N'inci katına (tepesine) etkiyen ek eşdeğer deprem yükü ΔF_N 'in değeri **Denk.(2.8)** ile belirlenecektir.

$$\Delta F_{\rm N} = 0.0075 \, N \, V_{\rm t} \tag{2.8}$$

2.7.2.3 – Toplam eşdeğer deprem yükünün $\Delta F_{\rm N}$ dışında geri kalan kısmı, N inci kat dahil olmak üzere, bina katlarına **Denk.(2.9)** ile dağıtılacaktır.

$$F_{i} = (V_{t} - \Delta F_{N}) \frac{w_{i} H_{i}}{\sum_{j=1}^{N} w_{j} H_{j}}$$
(2.9)

Lineer Static Procedure (TEC 2007)

$$A(T) = A_0 I S(T)$$

$$S_{3p}(T) = A(T) g$$
(2.1)

2.4.3. Spektrum Katsayısı

2.4.3.1 – **Denk.**(2.1)'de yer alan *Spektrum Katsayısı*, S(T), yerel zemin koşullarına ve bina doğal periyodu T'ye bağlı olarak **Denk.**(2.2) ile hesaplanacaktır (Şekil 2.5).

$$S(T) = 1 + 1.5 \frac{T}{T_A}$$
 $(0 \le T \le T_A)$
 $S(T) = 2.5$ $(T_A < T \le T_B)$ (2.2)
 $S(T) = 2.5 \left(\frac{T_B}{T}\right)^{0.8}$ $(T_B < T)$

Denk.(2.2)'deki Spektrum Karakteristik Periyotları, T_A ve T_B , Bölüm 6'da Tablo 6.2 ile tanımlanan Yerel Zemin Sınıfları'na bağlı olarak Tablo 2.4'te verilmiştir.

TABLO 2.4 – SPEKTRUM KARAKTERİSTİK PERİYOTLARI (T_A, T_B)

Tablo 6.2'ye göre Yerel Zemin Sınıfı	T _A (saniye)	T _B (saniye)
Z1	0.10	0.30
Z 2	0.15	0.40
Z3	0.15	0.60
Z4	0.20	0.90

2.7.4.1 – Eşdeğer Deprem Yükü Yöntemi'nin uygulanması durumunda, binanın deprem doğrultusundaki hakim doğal periyodu, **Denk.(2.11)** ile hesaplanan değerden daha büyük alınmayacaktır.

$$T_{1} = 2\pi \left(\frac{\sum_{i=1}^{N} m_{i} d_{fi}^{2}}{\sum_{i=1}^{N} F_{fi} d_{fi}} \right)^{1/2}$$

TABLO 2.2 – ETKİN YER İVMESİ KATSAYISI (A_0)

Deprem Bölgesi	A_{o}
1	0.40
2	0.30
3	0.20
4	0.10

	ZU	\cup / \mid				
T=	0.88206	S				
Ta=	0.1			W=	32972.1	kN
Tb=	0.3			Ao=	0.3	
R=	4			l=	1	
N=	7	number o	f story	0.10*Ao*I*W=	989.163	kN
S(T)=	1.054966					
Ra(T)=	4					
A(T1)=	0.31649					
Vt=	2608.834	kN	GREATER			
DeltaFn=	136.9638	kN				
Story	weight	height	Fi			
7	4710.3	24.5	755	kN		
6	4710.3	21	530	kN		
5	4710.3	17.5	441	kN		
4	4710.3	14	353	kN		
3	4710.3	10.5	265	kN		
2	4710.3	7	177	kN		
1	4710.3	3.5	88	kN		
			2608.834	kN		

Lineer Static Procedure (TEC 2007)

Response Spectrum

• Scale factor: 0.736 (Ao*g/R=(0.3*9.814)/4 = 0.9814)

