Сетевые технологии

Лабораторная работа №2

Тойчубекова Асель Нурлановна

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	10
5	Выводы	18

Список иллюстраций

2.1	Конфигурация сети	6
2.2	Топология сети	6
4.1	Предельно допустимый диаметр домена коллизий в Fast Ethernet	10
4.2	Временные задержки компонентов сети Fast Ethernet	11
4.3	Время двойного оборота сети	11
4.4	Итоговая таблица по моделью 1	14
4.5	Итоговая таблица по моделью 2	17

Список таблиц

1 Цель работы

Цель данной работы — изучение принципов технологий Ethernet и Fast Ethernet и практическое освоение методик оценки работоспособности сети, построенной на базе технологии Fast Ethernet.

2 Задание

Требуется оценить работоспособность 100-мегабитной сети Fast Ethernet в соответствии с первой и второй моделями. Конфигурации сети приведены на (рис. 2.1). Топология сети представлена на (рис. 2.2).

No	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6
1.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 96 м	ТХ, 92 м	ТХ, 80 м	ТХ, 5 м	ТХ, 97 м	ТХ, 97 м
2.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 95 м	ТХ, 85 м	ТХ, 85 м	ТХ, 90 м	ТХ, 90 м	ТХ, 98 м
3.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 60 м	ТХ, 95 м	ТХ, 10 м	ТХ, 5 м	ТХ, 90 м	ТХ, 100 м
4.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 70 м	ТХ, 65 м	ТХ, 10 м	ТХ, 4 м	ТХ, 90 м	ТХ, 80 м
5.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 60 м	ТХ, 95 м	ТХ, 10 м	ТХ, 15 м	ТХ, 90 м	ТХ, 100 м
6.	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-	100BASE-
	ТХ, 70 м	ТХ, 98 м	ТХ, 10 м	ТХ, 9 м	ТХ, 70 м	ТХ, 100 м

Рисунок 2.1: Конфигурация сети

Рисунок 2.2: Топология сети

3 Теоретическое введение

Технология Ethernet является одной из наиболее распространённых технологий локальных вычислительных сетей. Первые версии Ethernet были предложены в 1980 году компаниями DEC, Intel и Xerox (DIX), а позже легли в основу стандарта IEEE 802.3. Первоначально в качестве среды передачи данных использовался только коаксиальный кабель, однако с развитием стандарта стало возможным применение витой пары и оптоволокна.

Развитие Ethernet сопровождалось увеличением скоростей передачи данных:

- 1995 г. IEEE 802.3u (Fast Ethernet) со скоростью 100 Мбит/с;
- 1997 г. IEEE 802.3z (Gigabit Ethernet, 1000 Мбит/с);
- 1999 г. IEEE 802.3ab (Gigabit Ethernet на витой паре Cat. 5);
- 2002 г. IEEE 802.3ae (10 Gigabit Ethernet по оптоволокну);
- 2006 г. IEEE 802.3an (10 Gigabit Ethernet по витой паре).

В обозначениях Ethernet (например, 10BASE2, 100BASE-TX) первый элемент указывает скорость передачи данных в Мбит/с, второй — тип передачи (BASE означает немодулированную передачу), а третий — тип среды передачи или длину кабеля. Например:

- T, TX, T2, T4 витая пара;
- FX, FL, SX, LX оптоволокно;

• СХ — твинаксиальный кабель.

На канальном уровне структура кадра Ethernet практически одинакова для всех версий. Кадр содержит заголовки и служебную информацию вокруг полезных данных (PDU) и имеет минимальный размер 64 байта и максимальный — 1518 байт (с возможностью увеличения до 1522 байт при использовании VLAN по стандарту IEEE 802.3ac). Любой кадр, не соответствующий этим ограничениям, отклоняется устройствами сети.

В основе работы Ethernet используется метод множественного доступа с прослушиванием несущей и обнаружением коллизий — CSMA/CD (Carrier Sense Multiple Access with Collision Detection). Его работа заключается в том, что:

- перед передачей узлы проверяют отсутствие сигнала в линии;
- при коллизии передача прекращается, а повторная попытка выполняется через случайный промежуток времени;
- минимальная длина кадра гарантирует возможность обнаружения коллизий;
- между кадрами выдерживается межкадровый интервал (IPG).

Ключевые понятия:

- Домен коллизий группа узлов, связанных общей средой передачи.
- Диаметр домена коллизий расстояние между наиболее удалёнными устройствами.
- Битовый интервал время передачи одного бита (при 10 Мбит/с равен 0,1 мкс, при 100 Мбит/с 0,01 мкс).

Технология Fast Ethernet (IEEE 802.3u) стала важным этапом в развитии сетей, обеспечив десятикратное увеличение скорости передачи данных (100 Мбит/с) при сохранении формата кадра и принципов работы протокола доступа к среде. Для передачи данных применяются следующие варианты среды:

- 100BASE-TX, 100BASE-T4 витая пара;
- 100BASE-FX, 100BASE-SX оптоволоконный кабель.

4 Выполнение лабораторной работы

Для начала выполнения лабораторной работы представим все таблицы которые нам понадобятся для оценки работоспособности 100-мегабитной сети Fast Ethernet в соответствии с первой и второй моделями.

Предельно допустимый диаметр домена коллизий в Fast Ethernet: (рис. 4.1).

Тип повторителя	Все сегменты ТХ или Т4	Все сегменты FX	Сочетание сегментов (Т4 и ТХ/FX)	Сочетание сегментов (ТХ и FX)
Сегмент, соеди- няющий два узла без повторителей	100	412,0	-	-
Один повтори- тель класса I	200	272,0	231,0	260,8
Один повтори- тель класса II	200	320,0	-	308,8
Два повторителя класса II	205	228,0	-	216,2

Рисунок 4.1: Предельно допустимый диаметр домена коллизий в Fast Ethernet

Временные задержки компонентов сети Fast Ethernet: (рис. 4.2).

Компонент	Удельное время двойно- го оборота (би/м)	Максимальное время двойного оборота (би)		
Пара терминалов TX/FX	-	100		
Пара терминалов Т4	-	138		
Пара терминалов Т4 и ТХ/FX	-	127		
Витая пара категории 3	1,14	114 (100 м)		
Витая пара категории 4	1,14	114 (100 м)		
Витая пара категории 5	1,112	111,2 (100 м)		
Экранированная витая пара	1,112	111,2 (100 м)		
Оптоволокно	1,0	412 (412 м)		
Повторитель класса I	-	140		
Повторитель класса II, имеющий порты типа ТХ/FX	-	92		
Повторитель класса II, имеющий порты типа Т4	-	67		

Рисунок 4.2: Временные задержки компонентов сети Fast Ethernet

Время двойного оборота сети: (рис. 4.3).

Компонент пути	Время двойного оборота, би
Пара терминалов с интерфейсами TX	100
Сегмент на витой паре категории 5 (100 м)	111,2
Сегмент на витой паре категории 5 (100 м)	111,2
Сегмент на витой паре категории 5 (5 м)	5,56
Повторитель класса II	92
Повторитель класса II	92

Рисунок 4.3: Время двойного оборота сети

Теперь оценим работоспособность 100-мегабитной сети Fast Ethernet в соответствии с первой моделью, которая выглядит следующим образом:

- 1. Записать длины всех сегментов сети (кабелей).
- 2. Проверить:
- витая пара (100BASE-TX, Т4) ≤ 100 м;
- оптоволокно $(100BASE-FX) \le 412 \text{ м};$

- кабель MII ≤ 0,5 м.
- 3. Определить тип и количество повторителей:
- класс $I \to допускается только 1 в домене коллизий;$
- класс II \rightarrow допускается максимум 2.
- 4. Посчитать диаметр домена коллизий = сумма длин сегментов между самыми удалёнными устройствами.
- 5. Сравнить полученный диаметр с допустимым значением из (рис. 2.1).
- 6. Если все условия выполняются \rightarrow сеть удовлетворяет первой модели.

Для каждого из вариантов сети проделаем эти действия.

Рассмотрим вариант 1. Все сегменты имеют вид витой пары (100BASE-TX). Мы видим, что все сегменты меньше или равны 100м. Присутствуют два повторителя второго класса, что допускается. Теперь посчитаем диаметр коллизий, то есть длинну сегментов между самыми удаленными устройствами. Мы видим, что самыми удаленными устройствами являются узел 1 и узел 4 или узел 5. Складываем все сегменты между этими устройствами: 96+5+97=198, что меньше чем 205, то есть сеть работоспособна в соответствии с моделью 1.

Рассмотрим вариант 2. Все сегменты имеют вид витой пары (100BASE-TX). Мы видим, что все сегменты меньше или равны 100м. Присутствуют два повторителя второго класса, что допускается. Теперь посчитаем диаметр коллизий, то есть длинну сегментов между самыми удаленными устройствами. Мы видим, что самыми удаленными устройствами являются узел 1 и узел 5. Складываем все сегменты между этими устройствами: 95+90+98=283, что больше чем 205, то есть сеть не работоспособна в соответствии с моделью 1.

Рассмотрим вариант 3. Все сегменты имеют вид витой пары (100BASE-TX). Мы видим, что все сегменты меньше или равны 100м. Присутствуют два повторителя

второго класса, что допускается. Теперь посчитаем диаметр коллизий, то есть длинну сегментов между самыми удаленными устройствами. Мы видим, что самыми удаленными устройствами являются узел 2 и узел 5. Складываем все сегменты между этими устройствами: 95+5+100=200, что меньше чем 205, то есть сеть работоспособна в соответствии с моделью 1.

Рассмотрим вариант 4. Все сегменты имеют вид витой пары (100BASE-TX). Мы видим, что все сегменты меньше или равны 100м. Присутствуют два повторителя второго класса, что допускается. Теперь посчитаем диаметр коллизий, то есть длинну сегментов между самыми удаленными устройствами. Мы видим, что самыми удаленными устройствами являются узел 4 и узел 5. Складываем все сегменты между этими устройствами: 90+80=170, что меньше чем 205, то есть сеть работоспособна в соответствии с моделью 1.

Рассмотрим вариант 5. Все сегменты имеют вид витой пары (100BASE-TX). Мы видим, что все сегменты меньше или равны 100м. Присутствуют два повторителя второго класса, что допускается. Теперь посчитаем диаметр коллизий, то есть длинну сегментов между самыми удаленными устройствами. Мы видим, что самыми удаленными устройствами являются узел 2 и узел 5. Складываем все сегменты между этими устройствами: 95+15+100=210, что больше чем 205, то есть сеть не работоспособна в соответствии с моделью 1.

Рассмотрим вариант 6. Все сегменты имеют вид витой пары (100BASE-TX). Мы видим, что все сегменты меньше или равны 100м. Присутствуют два повторителя второго класса, что допускается. Теперь посчитаем диаметр коллизий, то есть длинну сегментов между самыми удаленными устройствами. Мы видим, что самыми удаленными устройствами являются узел 2 и узел 5. Складываем все сегменты между этими устройствами: 98+9+100=207, что больше чем 205, то есть сеть не работоспособна в соответствии с моделью 1.

В итоге мы получаем таблицу, где вариант 1,3,4, а остальные нет. (рис. 4.4).

Nō	Сегмент 1	Сегмент 2	Сегмент 3	Сегмент 4	Сегмент 5	Сегмент 6	Диаметр домена коллизи и
1.	100BASET	100BASET	100BASET	100BASET	100BASET	100BASET	198
	Х, 96 м	Х, 92 м	Х, 80 м	Х, 5 м	Х, 97 м	Х, 97 м	
2.	100BASET	100BASET	100BASET	100BASET	100BASET	100BASET	<mark>283</mark>
	Х, 95 м	Х, 85 м	Х, 85 м	Х, 90 м	Х, 90 м	Х, 98 м	
3.	100BASET	100BASET	100BASET	100BASET	100BASET	100BASET	200
	Х, 60 м	Х, 95 м	Х, 10 м	Х, 5 м	Х, 90 м	Х, 100 м	
4.	100BASET	100BASET	100BASET	100BASET	100BASET	100BASET	170
	Х, 70 м	Х, 65 м	Х, 10 м	Х, 4 м	Х, 90 м	Х, 80 м	
5.	100BASET	100BASET	100BASET	100BASET	100BASET	100BASET	210
	Х, 60 м	Х, 95 м	Х, 10 м	Х, 15 м	Х, 90 м	Х, 100 м	
6.	100BASET	100BASET	100BASET	100BASET	100BASET	100BASET	207
	Х, 70 м	Х, 98 м	Х, 10 м	Х, 9 м	Х, 70 м	Х, 100 м	

Рисунок 4.4: Итоговая таблица по моделью 1

Теперь проверим работоспособность сети в соответствии со второй моделью, которая выглядит следующим образом:

- 1. Определить наихудший путь в домене коллизий (самый длинный путь между двумя узлами).
- 2. Для каждого сегмента:
- умножить его длину на удельное время задержки (рис. 2.2):
- витая пара кат. $5 \to 1{,}112$ би/м;
- оптоволокно \rightarrow 1,0 би/м;
- кат. 3 и 4 \rightarrow 1,14 би/м.
- 3. Добавить задержки оборудования:
- пара терминалов ТХ/FX = 100 би;
- повторитель класса I = 140 би;
- повторитель класса II = 92 би.
- 4. Сложить все задержки сегментов, повторителей и терминалов.

- 5. Прибавить запас на непредвиденные задержки = 4 би.
- 6. Сравнить результат с 512 би:
- если ≤ 512 би \rightarrow сеть работоспособна;
- если > 512 би \rightarrow сеть не работает по второй модели.

Рассмотрим вариант 1. Все сегменты имеют вид витой пары (100ВАЅЕ-ТХ). Присутствуют два повторителя второго класса, что допускается. Находим наихудший путь в домене коллизий: узел1->узел5. Складываем длину сегментов и умножаем на 1,112 би, чтобы найти время двойного оборота, (96+5+97)1.112=220.176, далее добавляем к этому значению 100, т.к. у нас два устройства и прибавляем 922, т.к. у нас 2 повторителя второго класса (рис. 2.1) и 4 бита за непредвиденные задержки, 220.176+100+92*2+4=508.176, что меньше чем 512, то есть сеть работоспособна по моделью 2.

Рассмотрим вариант 2. Все сегменты имеют вид витой пары (100ВАЅЕ-ТХ). Присутствуют два повторителя второго класса, что допускается. Находим наихудший путь в домене коллизий: узел1->узел5. Складываем длину сегментов и умножаем на 1,112 би, чтобы найти время двойного оборота, (95+90+98)1.112=314.696, далее добавляем к этому значению 100, т.к. у нас два устройства и прибавляем 922, т.к. у нас 2 повторителя второго класса (рис. 2.1) и 4 бита за непредвиденные задержки, 314.696+100+92*2+4=602.696, что больше чем 512, то есть сеть не работоспособна по моделью 2.

Рассмотрим вариант 3. Все сегменты имеют вид витой пары (100BASE-TX). Присутствуют два повторителя второго класса, что допускается. Находим наихудший путь в домене коллизий: узел2->узел5. Складываем длину сегментов и умножаем на 1,112 би, чтобы найти время двойного оборота, (95+5+100)1.112=222.4, далее добавляем к этому значению 100, т.к. у нас два устройства и прибавляем 922, т.к. у нас 2 повторителя второго класса (рис. 2.1) и 4 бита за непредвиденные задержки,

222.4+100+92*2+4=510.4, что меньше чем 512, то есть сеть работоспособна по моделью 2

Рассмотрим вариант 4. Все сегменты имеют вид витой пары (100ВАЅЕ-ТХ). Присутствуют два повторителя второго класса, что допускается. Находим наихудший путь в домене коллизий: узел4->узел5. Складываем длину сегментов и умножаем на 1,112 би, чтобы найти время двойного оборота, (90+80)*1.112=189.04, далее добавляем к этому значению 100, т.к. у нас два устройства и прибавляем 92, т.к. у нас 1 повторитель второго класса (рис. 2.1) и 4 бита за непредвиденные задержки, 189.04+100+92+4=385.04, что меньше чем 512, то есть сеть работоспособна по моделью 2.

Рассмотрим вариант 5. Все сегменты имеют вид витой пары (100ВАЅЕ-ТХ). Присутствуют два повторителя второго класса, что допускается. Находим наихудший путь в домене коллизий: узел2->узел5. Складываем длину сегментов и умножаем на 1,112 би, чтобы найти время двойного оборота, (95+15+100)1.112=233.52, далее добавляем к этому значению 100, т.к. у нас два устройства и прибавляем 922, т.к. у нас 2 повторителя второго класса (рис. 2.1) и 4 бита за непредвиденные задержки, 233.52+100+92*2+4=521.52, что больше чем 512, то есть сеть не работоспособна по моделью 2.

Рассмотрим вариант 6. Все сегменты имеют вид витой пары (100ВАЅЕ-ТХ). Присутствуют два повторителя второго класса, что допускается. Находим наихудший путь в домене коллизий: узел2->узел5. Складываем длину сегментов и умножаем на 1,112 би, чтобы найти время двойного оборота, (98+9+100)1.112=230.184, далее добавляем к этому значению 100, т.к. у нас два устройства и прибавляем 922, т.к. у нас 2 повторителя второго класса (рис. 2.1) и 4 бита за непредвиденные задержки, 230.184+100+92*2+4=518.184, что больше чем 512, то есть сеть не работоспособна по моделью 2.

В итоге мы получаем таблицу, где вариант 1,3,4, а остальные нет. (рис. 4.5).

Νō	Сегмент	Сегмент	Сегмент	Сегмент	Сегмент	Сегмент	Время	+запасн
	1	2	3	4	5	6	двойного	ые биты
							оборота	
							для	
							наихудш	
							его пути	
1.	100BASE	100BASE	100BASE	100BASE	100BASE	100BASE	220,176	508,176
	ТХ, 96 м	ТХ, 92 м	ТХ, 80 м	TX, 5 м	ТХ, 97 м	ТХ, 97 м		
2.	100BASE	100BASE	100BASE	100BASE	100BASE	100BASE	314,696	602,696
	ТХ, 95 м	ТХ, 85 м	ТХ, 85 м	TX, 90 м	ТХ, 90 м	TX, 98 м		
3.	100BASE	100BASE	100BASE	100BASE	100BASE	100BASE	222,4	510,4
	ТХ, 60 м	TX, 95 м	ТХ, 10 м	TX, 5 м	ТХ, 90 м	ТХ, 100 м		
4.	100BASE	100BASE	100BASE	100BASE	100BASE	100BASE	189,04	385,04
	ТХ, 70 м	ТХ, 65 м	ТХ, 10 м	ТХ, 4 м	TX, 90 M	TX, 80 M		
5.	100BASE	100BASE	100BASE	100BASE	100BASE	100BASE	233,52	521,52
	ТХ, 60 м	ТХ, 95 м	ТХ, 10 м	ТХ, 15 м	ТХ, 90 м	ТХ, 100 м		
6.	100BASE	100BASE	100BASE	100BASE	100BASE	100BASE	230,184	518,184
	ТХ, 70 м	ТХ, 98 м	ТХ, 10 м	ТХ, 9 м	ТХ, 70 м	ТХ, 100 м		

Рисунок 4.5: Итоговая таблица по моделью 2

5 Выводы

В ходе выполнения лабораторной работы $\mathbb{N}2$ я изучила принципы технологий Ethernet и Fast Ethernet и практическое освоение методик оценки работоспособности сети, построенной на базе технологии Fast Ethernet.