WORKSHEET II

- 1. On a 90 MHz spectrometer, calculate the frequency at which a proton absorbs if it appears at 4.20 ppm.
- 2. Using a 60 MHz spectrometer, the protons in dichloromethane appear at 5.30 ppm. When the same sample is placed in a 100 MHz instrument, where does the signal appear?
- A) 8.33
- B) 5.30
- C) 3.18
- D) cannot be determined from information given
- 3. State the relationship between the protons indicated in the structure below (as: equivalent, enantiotopic, diastereotopic, or unrelated)

- 4. The chair form of cyclohexane has protons in two distinct environments, axial and equatorial. When the proton NMR of cyclohexane is run on a 100-MHz instrument at 23°C, only one signal for the compound is observed. Explain this apparent contradiction.
- 5. How might the proton spectrum of ultrapure dimethylamine, $(CH_3)_2NH$, differ from the spectrum of this compound to which D_2O has been added?
- 6. Predict the number of signals expected (disregarding splitting) in the ¹H spectrum of the following compounds:
- (a) m-xylene (1,3-dimethylbenzene)
- (b) o-chlorophenol (2-chlorophenol)
- (c) dibutyl ether
- (d) 1,1-dimethylcyclobutane
- (e) m-dichlorobenzene (1,3-dichlorobenzene)

- 7. Predict the number of signals expected, their splitting, and their relative area in the ¹H-NMR spectrum of the following compounds
- (a) CH₃CH₂OCH₃
- **(b)** (CH₃)₃CCHO
- (c) 2-methylpropane (isobutane)
- (d) 1,2-dichloroethane (CICH₂CH₂CI)
- 8. Deduce the identity of the following compound from the ¹H-NMR data given.
- (a) $C_3H_3Cl_5$: δ 4.5 (1H, triplet), 6.1 (2H, doublet) (ppm)
- **(b)** $C_4H_7BrO: \delta 2.2$ (3H, singlet), 3.5 (2H, triplet), 4.5 (2H, triplet) (ppm)
- (c) C₃H₆Br₂: δ 2.4 (2H, quintet), 3.5 (4H, triplet) (ppm)
- (d) $C_5H_{10}O$: δ 1.1 (6H, doublet), 2.2 (3H, singlet), 2.5 (1H, septet) (ppm)
- (e) $C_6H_8O_4$: δ 3.9 (6H, singlet), 6.1 (2H, singlet) (ppm)
- **(f)** C₇H₁₂O₄: δ 1.3 (6H, triplet), 3.4 (2H, singlet), 4.2 (4H, quartet) (ppm)
- (g) $C_5H_{12}O$: δ 1.0 (3H, triplet), 1.2-1.8 (6H, multiplet), 3.0 (1H, broad singlet), 3.8 (2H, triplet) (ppm)
- **(h)** $C_7H_7NO_3$: δ 3.9 (3H, singlet), 6.9 (2H, doublet), 8.1 (2H, doublet) (ppm)
- (i) C₈H₁₈O: δ 0.89 (6H, doublet), 1.87 (1H, multiplet), 3.17 (2H, doublet)(ppm)
- (j) $C_6H_{10}O_2$: δ 2.19 (3H, singlet), 2.70 (2H, singlet) (ppm)
- (k) $C_4H_{11}N$: δ 0.90 (3H, triplet), 1.07 (3H, doublet), 1.14 (2H, broad singlet), 1.34 (2H, multiplet), 2.79 (1H, multiplet) (ppm)
- 9. What is the approximate chemical shift of an alkynyl carbon in ¹³C-NMR spectroscopy?
- A) 10 ppm
- B) 30 ppm
- C) 70 ppm
- D) 120 ppm
- E) 200 ppm
- 10. Predict the number of signals expected in the proton spin decoupled ¹³C-NMR spectrum of the following compounds:
- (a) o-diethylbenzene (1,2-diethylbenzene).
- **(b)** *p*-diethylbenzene (1,4-diethylbenzene).
- 11. Predict the number of signals expected (disregarding splitting) in the ¹H-NMR and in the proton spin decoupled ¹³C NMR spectra of the compound shown below.

B H^{III}OCH₃

CI

- 12. Deduce the identity of the following compound from the 13 C NMR data given. C_9H_{12} : δ 21.3 (quartet), 127.2 (doublet), 138.0 (singlet) (ppm)
- 13. Deduce the identity of the following compound from the given spectral data.
- (a) $C_7H_{10}O_2$: ¹H-NMR, δ 1.16 (3H, singlet), 2.21 (2H, singlet)
- ¹³C-NMR: δ 216.25 (singlet), 52.57 (singlet), 34.51 (triplet), 20.22 (quartet) (ppm)
- **(b)** C₃H₄BrN: ¹H-NMR, δ 2.98 (2H, triplet), 3.53 (2H, triplet) ¹³C-NMR: δ 21.05 (triplet), 23.87 (triplet), 118.08 (singlet) (ppm); IR, 2963, 2254 cm⁻¹
- (c) $C_5H_{10}O$: 1H -NMR, δ 1.2 (6H, doublet), 2.1 (3H, singlet), 2.8 (1H, septet) (ppm) IR: 2980, 1710 cm $^{-1}$; MS, m/z 71, 43
- (d) C_8H_{10} : ¹H-NMR, δ 1.20 (3H, triplet), 2.60 (2H, quartet), 7.12 (5H, multiplet) (ppm) IR: 3050, 2970, 1600 cm⁻¹; MS, m/z 91
- (e) $C_4H_8O_2$: 1H -NMR (δ) 1.23 (3H, triplet), 2.00 (3H, singlet), 4.02 (2H, quartet) (ppm) IR: 2980, 1740 cm $^{-1}$
- (f) C_8H_{14} : IR (cm⁻¹): 2950, 2180; ¹H-NMR (δ): 0.9 (3H, t), 1.0 (9H, s), 2.3 (2H, q) (ppm).
- (g) $C_4H_8O_3$: IR (cm⁻¹): 2800-3300 (broad), 2950, 1750; ¹³C-NMR (δ): 17.7 (q), 65.4 (q), 72.3 (d), 210.8 (s) (ppm)
- **(h)** C₆H₁₀: IR (cm⁻¹): 2950, 2230; ¹H-NMR (δ): 2.0 (1H, septet), 1.8 (3H, s), 0.9 (6H, d) ppm 13 C-NMR (δ): 78, 72, 45, 18, 15 ppm
- (i) $C_5H_8Cl_2$: IR (cm⁻¹): 2950; ¹H-NMR (δ): 1.4 (4H, t), 1.2 (4H, t) ppm; ¹³C-NMR (δ): 62, 26, 23 ppm
- **(j)** $C_7H_{14}O_2$: IR (cm⁻¹): 2950, 1740; ¹H-NMR (δ): 0.9 (9H, s), 1.0 (3H, t), 2.3 (2H, q) ppm ¹³C-NMR (δ): 185, 78, 29, 14, 12 ppm
- **(k)** C₅H₁₀O: IR (cm⁻¹): 2950, 1720; ¹H-NMR (δ): 2.6 (1H, septet), 2.1 (3H, s), 1.0 (6H, d) ppm 13 C-NMR (δ): 195, 42, 18, 11 ppm
- (I) C₉H₇Cl: IR (cm⁻¹): 3050, 2950, 2220, 1620; ¹H-NMR (d): 7.8 (2H, d), 7.2 (2H, d), 2.1 (3H, s) ppm ¹³C-NMR: 140, 132, 125, 122, 88, 83, 18 ppm
- (m) $C_7H_{16}O$: IR (cm⁻¹): 3200-3600 (broad), 2950; ¹H-NMR (δ): 2.9 (1H, broad s), 1.2 (6H, q), 0.9 (9H, t) ppm; ¹³C-NMR (δ): 70, 25, 12 ppm
- (n) $C_5H_{10}O$: IR (cm⁻¹): 2950; ¹H-NMR (δ): 3.5 (4H, s), 0.9 (6H, s) ppm; ¹³C-NMR (δ): 64, 41, 12 ppm
- (o) $C_7H_{16}O$: IR (cm⁻¹): 3200-3600 (broad), 2950; ¹H-NMR (δ): 2.8 (1H, broad s), 1.0 (6H, s), 0.9 (9H, s) ppm; ¹³C-NMR (δ): 68, 39, 16, 13 ppm

14. Deduce the identity of the following compound from the $^1\mathrm{H}\text{-}\ \mathrm{NMR}$ spectrum and the data given.

$A C_{10}H_{12}O_2$

B $C_{10}H_{12}O$

 \mathbf{C} C_6H_6NCI

