Introduction

- Driverless car are autonomous driving system.
- These autonomous systems are less error prone, as they are bound to rules, and time bound.
- Faster in processing than human, to perform actions.
- Major Accidents due to human errors, and among those accidents, major are caused due to
 - Not following proper lane
 - Not observing vehicles opposite or behind
- Which also can aid in reducing traffic.

Who are working on?

UBER

And more...

Features

- Identifying lanes
- Identifying if user is changing lanes, then warning the user.

Tool

- Python
- Opency
- Numpy

Architecture

Proposed Models

Filters used for Lane Detection

- Blur Median Blur
- Canny Edge Detection
- Morphology
- Hough Transformation

Future Work

- Obstacle detection
- Out of road identification

Driverless Car

Lane Change Detection System

Under guidance of: Deepak Rao Asst. Professor

By:

Naren G S (191046004)Wajoud N (191046031)

Until Mid Term Evaluation

Lane Detection

Now

Dataset Collected

CULane TuSimple

Object Detection - HOG

Input image

Histogram of Oriented Gradients

Confusion Matrix

- 1. Provide actual image
- Detection classifiers search for matching coordinates values
- 3. Returns the top-left and bottom-right coordinates

Final Intersection

Thank You