JP-A-7-302974

\* NOTICES \*

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.\*\*\* shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

# DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application] This invention relates to the junction method of the circuit board which joins other metal parts to the circuit board, or joins other circuit boards.
[0002]

[Description of the Prior Art] It is common to connect with the conductor on a printed circuit board using a connector as a method of connecting the conductor of metal parts or other printed circuit boards, or to use and carry out the fused junction of the soldering of soldering etc. to both connection conventionally. Although there is an advantage that the connector mentioned above can be detached and attached, since part mark increase, it is expensive, and since there are many crotch article mark, the rate which occupies a space is large, and it is not desirable from a viewpoint of miniaturizing an electronic circuitry.

[0003] therefore, a conductor -- although many soldering is generally used for carrying out the direct file of the comrades and research and development in the connection method by the bump is done, it may not be desirable in respect of reliability

[0004] then, direct [by welding of resistance welding, laser welding, ultrasonic welding, etc.] as a method of replacing with these -- a conductor -- the attempt which is going to weld comrades is made [0005] Ultrasonic welding is the general most reliable method as a method of joining metals among the above-mentioned welding processes. As everyone knows, the principle of this ultrasonic welding piles up weld-metal-ed material, places it on a base (Annville), where a static pressure is impressed to the plane of composition of metallic materials with the vibrator called welding tip, it adds vibration with vibrator, and it joins by producing the relative velocity of vibration between welding sides by supersonic oscillation parallel to the plane of composition of a metallic material.

[0006] The principle of this ultrasonic welding is applied and the ultrasonic welding method which connects the copper wire gold-plated by the printed wiring substrate by which the terminal area was gold-plated is indicated by JP,55-41871,B. Contact arrangement of the gold plate copper wire is carried out at the above-mentioned substrate plating terminal area, and it is made apply a pressure to both, and to add supersonic oscillation by this method, until metallic bond is formed between gold plate.

[0007] as other applications -- the conductor of a printed-circuit board -- the method of making stick a terminal to a circuit and connecting is indicated by JP,4-212277,A

[Problem(s) to be Solved by the Invention] However, according to the ultrasonic welding method by the first official report of the above, both the terminal areas and copper wire of a wiring substrate need to plate, and, for this reason, have the problem that cost becomes high.

[0009] Moreover, according to the ultrasonic welding by the second official report, the adhesives on which resin material, and the substrate and copper foil of a substrate are pasted up may deteriorate with heat.

[0010] moreover, the above -- since the insulator unremovable in supersonic oscillation is generally

contained in the printed circuit board when applying a general ultrasonic welding method to a printed circuit board, supersonic oscillation does not get across to the weld zone of a conductor directly, therefore a bonding strength varies greatly, and there is a difficulty that reliability is missing [0011] In case this invention welds a joined object to the conductor of the circuit board, it prepares so that it may suit as a material geometrically, carries out perfect ultrasonic welding beforehand so that an insulating material may not serve as the obstacle of ultrasonic welding, and makes it a technical problem to offer the junction method of the circuit board which can acquire sufficient welding effect of peel strength with careful attention to the trouble of the junction method of the circuit board by the abovementioned conventional ultrasonic welding.

[Means for Solving the Problem] As a means to solve the above-mentioned technical problem, by this invention, the joined object was made to contact the circuit board portion by which single-sided beveling \*\*\*\* and the insulating material were beforehand removed at least in the insulating material which carries out the insulation protection of the conductor of the circuit board, and it considered as the junction method of the circuit board which consists of giving supersonic oscillation and joining where a static pressure is applied.

[0013] By this method, the aforementioned joined object is made into the circuit board, and single-sided beveling \*\*\*\*\*\* Lycium chinense can do the insulating material at least beforehand.

[0014] Moreover, the insulating material of a weld can be beforehand formed by pre-insulation removable at the time of ultrasonic welding at least as another means which can solve the abovementioned technical problem among the insulating materials which carry out the insulation protection of the conductor of the circuit board, a joined object can be made to be able to contact a weld, and the junction method of the circuit board which consists of giving supersonic oscillation where a static pressure is applied, removing pre-insulation, and joining to a conductor can also be adopted. [0015]

[Function] By the junction method by the first above-mentioned invention, the insulating material of the portion which is going to join the circuit board is removed beforehand, and a joined object is directly contacted by this removal portion, therefore -- if supersonic oscillation is added by the ultrasonic vibrator -- a mechanical friction -- a conductor -- a portion fuses and perfect welding with a joined object is performed

[0016] By the junction method of the second invention, when a joined object is the circuit board, the insulating material of the circuit board of the joined object is also removed beforehand, therefore, a conductor -- comrades contact directly and perfect ultrasonic welding is obtained [0017] By the method of the third invention, the thing beforehand removable by ultrasonic welding as an insulating material of a weld is chosen and used therefore, even if it is the circuit boards in which the insulating material is prepared, at the time of ultrasonic welding, an insulating material removes first -having -- after that -- a conductor -- ultrasonic welding of the comrades is carried out Therefore, perfect welding is performed even if it is an insulating material.

[Example] The example of this invention is explained with reference to a drawing below. The cross section of the method of carrying out ultrasonic welding of the circuit board which made the polyimide film the insulating material to drawing 1 is shown. 1 is a ultrasonic vibrator and 2 is Annville (base). [0019] In this example, the example which carries out ultrasonic welding of the printed-circuit-board 3 same flexible comrades of two sheets is shown, and the printed circuit board 3 is carrying out the insulation protection of the conductor (copper foil) 5 by the insulating material 4 of a polyimide film. The insulating material 4 is made to 25 micrometers, and the conductor 5 is made into the thickness of 18 micrometers in this example.

[0020] Moreover, the insulating material 4 is beforehand removed in one side of the circuit board 3 like illustration in the portion of a weld which faces mutually, this insulating material -- removing -- in case the circuit board 3 is formed beforehand, it is made for an insulating material 4 not to adhere to the portion

[0021] And a static pressure is applied in the direction of Annville 2 by the ultrasonic vibrator 1 in the state of illustration, when vibrator 1 vibrates to a plane of composition and parallel, in a frictional heat operation, a conductor 5 and a conductor 5 fuse and metal junction is carried out.

[0022] <u>Drawing 2</u> is the cross section showing the example which removed the insulating material 4 beforehand by both sides of the circuit board 3. It is completely the same as the case of <u>drawing 1</u> except the point that the double-sided insulating material 4 is removed.

[0023] <u>Drawing 3</u> is the cross section of the example which carries out ultrasonic welding of the printed circuit board of other examples. Although insulating material 4' of a polyvinyl chloride film is used for printed-circuit-board 3' and it is the same as the example of <u>drawing 1</u> and <u>drawing 2</u> about thickness, as a material, the melting point is low resin material comparatively, and the synergism of the mechanical work of frictional heat and sliding by sliding at the time of ultrasonic welding is easy to remove it from a plane of composition.

[0024] Therefore, in this example, it has not carried out removing an insulating material beforehand by the weld unlike the example of <u>drawing 1</u> and <u>drawing 2</u>. Moreover, insulating material 4' is good also considering whole printed-circuit-board 3' as a thing of the same quality of the material, or makes only a part for a joint the thing of the above-mentioned quality of the material, and others may be made to be taken as a polyimide film.

[0025] Furthermore, although the cross section is the same as the thing of <u>drawing 3</u> as other examples, you may constitute printed-circuit-board 3', using a polyethylene film as insulating material 4'. Also in this case, the melting point is low resin material comparatively, and the synergism of the mechanical work of frictional heat and sliding by sliding at the time of ultrasonic welding is easy to remove insulating material 4' from a plane of composition.

[0026] the supersonic oscillation to which the portion which contacts mutually by the plane of composition of insulating material 4' first by supersonic oscillation is removed, and it is further added after that in the two examples shown in above-mentioned <u>drawing 3</u> in any case -- a conductor -- comrades will be joined

[0027] The standard deviation value which shows dispersion in the peel strength and intensity of the joint by the experiment at the time of carrying out ultrasonic welding of the printed circuit boards about two examples shown in <u>drawing 3</u> among the above examples is shown in Table 1. In addition, the data about a printed circuit board using the conventional polyimide as an insulating layer are displayed on reference as comparison material. Moreover, the case of PVC and a polyethylene film is displayed for the case of a polyvinyl chloride film as PE as an insulating material of <u>drawing 3</u>.

[0028] By this experiment, the data of a display are the frequency of 20kHz, the amplitude of 30 micrometers, and the static compression force 3 kgf(s)/mm about vibration added to the vibrator for ultrasonic welding 2 All are obtained as the same conditions on conditions.

[0029]

[Table 1]

妻 1

| 実施例 | 刺 離 強 度<br>(kgf/cm) | 標準偏差  |
|-----|---------------------|-------|
| PVC | 16.5                | 2 . 1 |
| PE  | 1 4 . 7             | 1.9   |
| 比較例 | 0.5                 | 5.5   |

#### [0030]

[Effect] As explained to the detail above, by the junction method of the circuit board by invention of the first of this application, it is prevented that welding with which the conductor was directly contacted by the shell of the circuit board which removes the insulating material of a single-sided side beforehand at

least, a joined object is made to contact this removed portion, pressurizes, adds supersonic oscillation, and was joined, and the joined object, and the insulating material interfered becomes imperfect.

[0031] if remove the insulating material of the single-sided field beforehand at least, the portions are made to contact and ultrasonic welding is carried out by the method of the second invention, when the other party's joined object is the circuit board -- the same -- a conductor -- the advantage that ultrasonic welding of the comrades is carried out completely is acquired

[0032] the shell which according to the method of the third invention makes the insulating material of the circuit board what can be removed about a weld beforehand at least at the time of ultrasonic welding, a joined object is made to contact this, pressurizes, adds supersonic oscillation, and was joined, and a conductor -- even if it carries out ultrasonic welding, with the pre-insulation of the portion carried out, a perfect welding result is obtained, and good welding without dispersion in peel strength is attained

[Translation done.]

# **EUROPEAN PATENT OFFICE**

# Patent Abstracts of Japan

**PUBLICATION NUMBER PUBLICATION DATE** 

07302974 14-11-95

APPLICATION DATE

09-05-94

APPLICATION NUMBER

06094994

APPLICANT: SUMITOMO ELECTRIC IND LTD:

INVENTOR :

TAKADA KENSAKU:

INT.CL.

H05K 3/36 B23K 20/10

TITLE

METHOD OF BONDING CIRCUIT

**BOARDS** 





## ABSTRACT:

PURPOSE: To obtain a welding effect whose exfoliation strength is sufficient by a method wherein a part to be bonded is brought into contact with a circuit board part from which an insulating material has been removed and both are bonded by giving ultrasonic vibrations in a state that a static pressure is applied.

CONSTITUTION: Two printed-circuit boards 3 are welded ultrasonically, and conductors (copper foils) 5 on the printer-circuit boards 3 are insulated and protected by insulating materials 4 as polyimide films. In the insulating materials 4, faces, on one side, of the circuit boards 3 are removed in advance in parts in which welded parts are faced in such a way that the insulating materials 4 do not adhere to the parts when the circuit boards 3 are formed in advance. A static pressure is applied to the direction of an anvil 2 by using an ultrasonic vibrator 1, and the vibrator 1 is vibrated in parallel with bonding faces, and the conductor 5 and the conductor 5 are melted by the action of frictional heat so as to be metal-bonded. Since the insulating materials on the faces, on one side, of the circuit boards are removed in advance, objects to be bonded are brought into contact with the removed parts, both are pressurized and bonded by applying the ultrasonic vibrations, the conductors come into direct contact with the parts to be bonded, and it is possible to prevent a welding operation from becoming imperfect when the insulating materials constitute an obstacle.

COPYRIGHT: (C)1995,JPO

# (19)日本国特許庁 (JP) (12) 公 開 特 許 公 報 (A) (11)特許出願公開番号

# 特開平7-302974

(43)公開日 平成7年(1995)11月14日

(51) Int.Cl.<sup>6</sup>

識別記号 庁内整理番号 FΙ

技術表示箇所

H 0 5 K 3/36 B23K 20/10 Z

審査請求 未請求 請求項の数3 OL (全 4 頁)

(21)出願番号

(22)出願日

特願平6-94994

平成6年(1994)5月9日

(71)出願人 000002130

住友電気工業株式会社

大阪府大阪市中央区北浜四丁目5番33号

(72)発明者 藤井 淳彦

大阪市此花区島屋一丁目1番3号 住友電

気工業株式会社大阪製作所内

(72)発明者 高田 憲作

大阪市此花区岛屋一丁目1番3号 住友電

気工業株式会社大阪製作所内

(74)代理人 弁理士 鎌田 文二 (外2名)

## (54) 【発明の名称】 回路基板の接合方法

## (57)【要約】

【目的】 回路基板の絶縁材が超音波溶接時に障害とな らないようにして完全な溶接を実現する。

【構成】 超音波振動子1とアンビル2との間に回路基 板3と3を重ねて超音波溶接する。回路基板3、3は溶 接部分の絶縁材が予め取り除かれており、その除去され た部分の導体同士を互いに当接させ加圧して超音波振動 により溶接する。



【特許請求の範囲】

【請求項1】 回路基板の導体を絶縁保護する絶縁材を 予め少なくとも片側面取り除き、絶縁材の取り除かれた 回路基板部分に被接合物を当接させ、静圧力を加えた状態で超音波振動を付与して接合することから成る回路基 板の接合方法。

1

【請求項2】 前記被接合物を回路基板とし、その絶縁 材を予め少なくとも片側面取り除いておくことを特徴と する請求項1に記載の回路基板の接合方法。

【請求項3】 回路基板の導体を絶縁保護する絶縁材の うち予め少なくとも溶接部分の絶縁材を超音波溶接時に 除去可能な絶縁被覆により形成し、溶接部分に被接合物 を当接させ、静圧力を加えた状態で超音波振動を付与し て絶縁被覆を除去し導体に接合することから成る回路基 板の接合方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、回路基板に他の金属 部品を接合したり、あるいは他の回路基板を接合したり する回路基板の接合方法に関する。

[0002]

【従来の技術】従来、ブリント回路基板上の導体に金属 部品や他のプリント回路基板の導体を接続する方法として、コネクタを使用して接続するか、又は両者の接続部 に半田付け等のろう付けを用いて溶融接合するのが一般 的である。上述したコネクタは着脱できるという利点は あるが、部品点数が増加するために高価であり、又部品点数が多いためにスペースを占有する割合が大きく、電子回路を小型化するという観点からは好ましくない。

【0003】従って、導体同士を直接接続するのには一般に半田付けが多く用いられ、バンプによる接続方法が研究開発されているが、信頼性の点で好ましくない場合がある。

【0004】そこで、これらに代わる方法として、例えば抵抗溶接、レーザー溶接、超音波溶接等の溶接により直接導体同士を溶接しようとする試みがなされている。

【0005】上記溶接方法のうち、超音液溶接は金属同士を接合する方法として一般には最も信頼性の高い方法である。この超音波溶接の原理は、周知のように、被溶接金属材料を重ね合せて台(アンビル)上に置き、溶接チップと呼ばれる振動子で金属材料同士の接合面に静圧力を印加した状態で振動子により振動を加え、金属材料の接合面に平行な超音波振動により溶接面間に相対振動速度を生じさせて接合を行なうものである。

【0006】かかる超音波溶接の原理を応用して、端子部が金メッキされた印刷配線基板に金メッキされた銅線を接続する超音波溶接方法が特公昭55~41871号公報に開示されている。この方法では、上記基板メッキ端子部に金メッキ銅線を接触配置し、両者に圧力を加え金メッキ相互間に金属結合が形成されるまで超音波振動

を加えるようにしている。

【0007】他の応用例として、プリント配線基板の導体回路に端子を密着させて接続する方法が特開平4-2 12277号公報に開示されている。

[0008]

【発明が解決しようとする課題】しかし、上記第一の公報による超音波溶接法によると、配線基板の端子部や銅線は共にメッキを施すことを必要とし、このため、コストが高くなるという問題がある。

【0009】又、第二の公報による超音波溶接による と、基板の樹脂材料、基板と銅箔を接着している接着剤 が熱により劣化する可能性がある。

【0010】又、上記一般的な超音波溶接法をプリント 回路基板に適用する場合、一般にはプリント回路基板に は超音波振動では除去できない絶縁体が含まれているた め超音波振動が導体の溶接部に直接伝わらず、そのため 接合強度が大きくばらつき、信頼性に欠けるという難点 がある。

【0011】この発明は、上記従来の超音波溶接による 回路基板の接合方法の問題点に留意して、回路基板の導 体に被接合物を溶接する際に絶縁材が超音波溶接の障害 とならないように予め形状的に、あるいは材料として適 合し得るように準備をして完全な超音波溶接をし、剥離 強度の十分な溶接効果を得ることのできる回路基板の接 合方法を提供することを課題とする。

[0012]

【課題を解決するための手段】上記課題を解決する手段としてこの発明では、回路基板の導体を絶縁保護する絶縁材を予め少なくとも片側面取り除き、絶縁材の取り除かれた回路基板部分に被接合物を当接させ、静圧力を加えた状態で超音波振動を付与して接合することから成る回路基板の接合方法としたのである。

【0013】この方法では、前記被接合物を回路基板とし、その絶縁材を予め少なくとも片側面取り除いておくことができる。

【0014】又、上記課題を解決し得る別の手段として、回路基板の導体を絶縁保護する絶縁材のうち予め少なくとも溶接部分の絶縁材を超音波溶接時に除去可能な絶縁被覆により形成し、溶接部分に被接合物を当接させ、静圧力を加えた状態で超音波振動を付与して絶縁被覆を除去し導体に接合することから成る回路基板の接合方法を採用することもできる。

[0015]

【作用】上記第一の発明による接合方法では、回路基板の接合しようとする部分の絶縁材は予め除去されており、この除去部分に被接合物が直接当接される。従って、超音波振動子により超音波振動を加えると機械的摩擦により導体部分が溶融して被接合物との完全な溶接が行なわれる。

【0016】第二の発明の接合方法では、被接合物が回

2

路基板である場合、その被接合物の回路基板の絶縁材も 予め取り除かれている。従って、導体同士が直接当接し て完全な超音波溶接が得られる。

【0017】第三の発明の方法では、溶接部分の絶縁材として予め超音波溶接で除去可能なものを選択して用いている。従って、絶縁材が設けられている回路基板同士であっても超音波溶接時にはまず絶縁材が除去され、その後導体同士が超音波溶接される。従って、絶縁材であっても完全な溶接が行なわれる。

#### [0018]

【実施例】以下この発明の実施例について図面を参照して説明する。図1にポリイミド膜を絶縁材とした回路基板を超音波溶接する方法の断面図を示す。1は超音波振動子、2はアンビル(台)である。

【0019】この実施例では、同じフレキシブルな2枚のプリント回路基板3同士を超音波溶接する例を示しており、プリント回路基板3はポリイミド膜の絶縁材4で導体(銅箔)5を絶縁保護している。絶縁材4は、この実施例では $25\mu m$ 、導体5は $18\mu m$ の厚さとしている。

【0020】又、絶縁材4は、図示のように、溶接部分の互いに向い合う部分で回路基板3の片側を予め取り除かれている。この絶縁材の取除さは、予め回路基板3を形成する際にその部分に絶縁材4が付着しないようにする。

【0021】そして、図示の状態で超音波振動子1でアンビル2の方向へ静圧力を加え、振動子1が接合面と平行に振動することにより導体5と導体5が摩擦熱作用で溶融して金属接合される。

【0022】図2は絶縁材4を回路基板3の両面で予め 取り除いた例を示す断面図である。両面の絶縁材4が取 り除かれている点以外は図1の場合と全く同じである。

【0023】図3は他の実施例のプリント回路基板を超音波溶接する例の断面図である。プリント回路基板3'は、ポリ塩化ビニル膜の絶縁材4'を用いており、厚さについては図1、図2の例と同じであるが、材料としては融点の比較的低い樹脂材料であって、超音波溶接時の摺動による摩擦熱と摺動の機械的作用の相乗作用により接合面から除去し易いものである。

【0024】従って、この例では図1、図2の例と異なり絶縁材を溶接部分で予め取除くことはしていない。 又、絶縁材4、は、プリント回路基板3、の全体を同一材質のものとしてもよいし、あるいは接合部分のみを上記材質のものとし、その他はポリイミド膜とするようにしてもよい。

【0025】さらに、他の実施例として断面は図3のものと同じであるが、絶縁材4、としてポリエチレン膜を用いてプリント回路基板3、を構成してもよい。この場合も絶縁材4、は、融点が比較的低い樹脂材料であり、超音波溶接時の摺動による摩擦熱と摺動の機械的作用の

相乗作用により接合面から除去し易いものである。

【0026】上記図3に示す2つの実施例では、いずれの場合も超音波振動によりまず絶縁材4'の接合面で互いに当接する部分が除去され、その後さらに加えられる超音波振動により導体同士が接合されることになる。

【0027】以上の実施例のうち、図3に示す2つの実施例についてプリント回路基板同士を超音波溶接した場合の実験による接合部の剥離強度とその強度のばらつきを示す標準偏差値を表1に示す。なお、比較材として従来のポリイミドを絶縁層として用いたプリント回路基板についてのデータを参考に表示する。又、図3の絶縁材としてポリ塩化ビニル膜の場合をPVC、ポリエチレン膜の場合をPEと表示する。

【0028】この実験では、表示のデータは超音波溶接用の振動子に加える振動を周波数 $20\,\mathrm{KHz}$ 、振幅 $30\,\mu\mathrm{m}$ 、静加圧力を $3\,\mathrm{kg}$  f  $/\mathrm{mm}^2$  の条件で全て同一条件として得たものである。

[0029]

【表1】

20

表

| 実施例 | 別離強度<br>(kg <b>/</b> /cm) | 標準偏差  |
|-----|---------------------------|-------|
| PVC | 16.5                      | 2 . 1 |
| PE  | 1 4 . 7                   | 1.9   |
| 比較例 | 0.5                       | 5.5   |

## [0030]

【効果】以上詳細に説明したように、この出願の第一の 発明による回路基板の接合方法では、回路基板の少なく とも片側面の絶縁材を予め取り除き、この取り除いた部 分に被接合物を当接させて加圧し、超音波振動を加えて 接合するようにしたから、被接合物に導体が直接当接さ れ絶縁材が邪魔した溶接が不完全となるのが防止され る。

【0031】第二の発明の方法では、相手方の被接合物が回路基板である場合に少なくともその片側面の絶縁材を予め取り除いておき、その部分同士を当接させて超音波溶接させれば、同様に導体同士が完全に超音波溶接されるという利点が得られる。

【0032】第三の発明の方法によると、回路基板の絶縁材を予め少なくとも溶接部分について超音波溶接時に除去可能なものとし、これに被接合物を当接させ加圧し、超音波振動を加えて接合するようにしたから、導体部分を絶縁被覆したままで超音波溶接しても完全な溶接結果が得られ、剥離強度のばらつきのない良好な溶接が可能となる。

### 【図面の簡単な説明】

【図1】回路基板同士を超音波溶接する接合方法の実施

## 例の断面図

【図2】回路基板同士を超音波溶接する接合方法の他の 実施例の断面図

【図3】回路基板同士を超音波溶接する接合方法のさら に別の実施例の断面図

【符号の説明】

- 1 超音波振動子
- 2 アンピル
- 3、4 絶縁材
- 3'、4' 絶縁材
- 5 導体





【図3】



【図2】

