Sterowanie Procesami Ciągłymi i Dyskretnymi

Politechnika Poznańska Instytut Automatyki i Robotyki

ĆWICZENIE 3

WPŁYW ZER TRANSMITANCJI NA WŁASNOŚCI DYNAMICZNE UKŁADU.

W ramach przygotowania do ćwiczenia należy:

- → Przypomnieć wiadomości z zakresu:
 - charakterystyki częstotliwościowe podstawowych obiektów,
 - transmitancja obiektu oscylacyjnego,
 - odpowiedzi skokowe i impulsowe podstawowych obiektów
- \rightarrow Wyprowadzić równanie różniczkowe i transmitancję operatorową dla obiektu z rys 4.
- \rightarrow Wykonać polecenia z punktu 4.
- → Przygotować skrypty do punktów 3.3, 3.8 i 3.12.

1 Odpowiedzi czasowe i charakterystyki częstotliwościowe obiektów z miejscami zerowymi transmitancji

Podstawowe elementy dynamiczne mają licznik transmitancji o stałej wartości. W przypadku ogólniejszym licznik transmitancji jest także wielomianem zmiennej s. Ogólna postać transmitancji z zerami jest przedstawiona wzorem:

$$G(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}, \quad m \le n.$$
(1)

Miejsca zerowe licznika (1) nazywamy zerami transmitancji. Zera pojawiające się w transmitancji mają wpływ na własności dynamiczne obiektów, a tym samym na charakter ich odpowiedzi czasowych i charakterystyki częstotliwościowe. Przykładowo, zera mogą spowodować pojawienie się w odpowiedzi skokowej przeregulowania, początkowej oscylacyjności powodującej przejścia odpowiedzi przez wartość 0 lub początkowego podregulowania (ang. initial undershoot - dodatek).

W przypadku analizy odpowiedzi czasowych wygodnie jest przekształcić wzór (1) do postaci:

$$G(s) = b_0 \left(\frac{1}{M(s)} + s \frac{c_1}{M(s)} + s^2 \frac{c_2}{M(s)} + \dots + s^m \frac{c_m}{M(s)} \right);$$

$$c_1 = \frac{b_1}{b_0}, \quad c_2 = \frac{b_2}{b_0}, \quad \dots, \quad c_m = \frac{b_m}{b_0};$$

$$M(s) = a_n s^n + a_{m-1} s^{m-1} + \dots + a_1 s + a_0.$$

$$(2)$$

Na podstawie równania (2) można stwierdzić, że odpowiedzi czasowe składają się z sumy odpowiedzi członu o transmitancji $\frac{1}{M(s)}$ i kolejnych pochodnych tej odpowiedzi mnożonych przez współczynniki c_i , dla $i=1,\ldots,m$. Przykładowo, odpowiedź skokowa członu o transmitancji

$$G(s) = \frac{\tau s + 1}{Ts + 1} \tag{3}$$

składa się z sumy odpowiedzi skokowej członu o transmitancji $G(s) = \frac{1}{Ts+1}$ i pochodnej tej odpowiedzi pomnożonej przez τ (rys. 1 i rys. 2).

Rysunek 1: Odpowiedź skokowa i jej pochodna dla obiektu o transmitancji $G(s) = \frac{1}{T_{s+1}}$.

Rysunek 2: Odpowiedzi skokowe obiektu o transmitancji (3) dla różnych wartości τ .

Wpływ zer transmitancji na charakterystyki częstotliwościowe najwygodniej analizować po rozłożeniu wielomianów licznika i mianownika na czynniki pierwszego stopnia (lub ewentualnie drugiego stopnia 'oscylacyjne'). Wówczas transmitancja (1) przybiera postać kanoniczną (dla przypadku czynników tylko pierwszego stopnia):

$$G(S) = \frac{(\tau_m s + 1)...(\tau_0 s + 1)}{(T_n s + 1)...(T_0 s + 1)}; \ m \le n.$$
(4)

Czynniki licznika, typu $(\tau s+1)$, mają w pewnym sensie przeciwstawny wpływ na własności dynamiczne układu do podobnych czynników mianownika. Człon $(\tau s+1)$ ma charakterystykę asymptotyczną o nachyleniu 0 dB/dek dla $\omega < 1/\tau$ i +20 dB/dek dla $\omega > 1/\tau$ (gdyby występował sam czynnik s, reprezentujący różniczkowanie idealne, to charakterystyka miałaby cały czas jednakowe nachylenie +20 dB/dek). Na rysunku 3 pokazano charakterystyki częstotliwościowe dla czterech przypadków elementarnego członu pierwszego rzędu – z jednym biegunem i jednym zerem transmitancji. Przypadki te różnią się tylko relacją stałych czasowych T i τ , jednak relacja ta ma bardzo istotny wpływ na właściwości układu. W szczególności w przypadku (d) – mamy do

czynienia z członem nieminimalnofazowym (punkt 2,
przykład IV, Definicja 1). Charakterystyki wypadkowe powstały przez złożenie charakterystyk
 liczników transmitancji $L(s)=\tau s+1$, oraz charakterystyki transmitancji $G(s)=\frac{1}{Ts+1}$.

Rysunek 3: Charakterystyki częstotliwościowe członu o transmitancji $G(s) = \frac{\tau s + 1}{T s + 1}$ dla różnych wartości τ : a) $\tau < T$, b) $\tau > T$, c) $\tau = T$ (skracanie się czynników licznika i mianownika), d) $\tau = -T$ (człon nieminimalnofazowy)

2 Przykłady transmitancji z zerami

W niniejszym rozdziale zaprezentowane zostaną przykładowe systemy, w których pojawia się zero w liczniku transmitancji.

Przykład I: Transmitancja amortyzatora Uproszczony model urządzenia, przy pominięciu masy i sprężystości koła, przedstawiono na rysunku 4.

Rysunek 4: Uproszczony model fizyczny amortyzatora.

W tym przypadku zero transmitancji wynika z własności samego obiektu. Transmitancja ma postać:

$$G(s) = \frac{X_2(s)}{X_1(s)} = \frac{\frac{B}{k}s + 1}{\frac{M}{k}s^2 + \frac{B}{k}s + 1}.$$
 (5)

W zależności od doboru parametrów B i k można uzyskać transmitancję z 2 biegunami rzeczywistymi lub zespolonymi. Równocześnie wraz ze zmianą B i k zmienia się wartość zera transmitancji (5).

Przykład II: Układ mieszania dwóch składników ze zmienną wydajnością. Składnikami mogą być barwniki, paliwo i utleniacz, woda i chlor itp. Przykładowy model układu mieszania przedstawiono na rys. 5a. W celu zachowania proporcji składników w mieszance, pompy (lub zawory) sterowane są tym samym sygnałem. Jednak z uwagi na np. różne gęstości składników pompy mogą mieć różne rozmiary (a co za tym idzie - inną dynamikę). Na rysunku 5b przedstawiono schemat blokowy układu.

Rysunek 5: Układ mieszalnika o zmiennej wydajności: a) model, b) schemat blokowy

W tym przypadku mamy do czynienia z dodawaniem transmitancji o różnych parametrach. Wypadkowa transmitancja układu wynosi:

$$G_w = \frac{k_1}{sT_1 + 1} + \frac{k_2}{sT_2 + 1} = \frac{(k_1T_2 + k_1T_2)\mathbf{s} + (k_1 + k_2)}{(sT_1 + 1)(sT_2 + 1)}.$$
 (6)

Przykład III: Transmitancje regulatorów PD, PI, PID. Regulatory tego typu ze względu na uniwersalność i łatwość zastosowania są najczęściej stosowane w przemyśle. Transmitancje poszczególnych regulatorów opisane są równaniami (7) - (9). Warto zauważyć, że transmitancja G_{PI} nie jest ściśle właściwa, a transmitancja G_{PID} jest wręcz niewłaściwa (stopień wielomianu licznika > od stopnia wielomianu mianownika !)

$$G_{PD} = k \left(1 + T_D \mathbf{s} \right) \tag{7}$$

$$G_{PI} = k \left(1 + \frac{1}{T_I s} \right) = k \left(\frac{T_I \mathbf{s} + 1}{T_I s} \right) \tag{8}$$

$$G_{PID} = k \left(1 + T_D s + \frac{1}{T_I s} \right) = k \frac{T_I T_D s^2 + T_I s + 1}{T_I s}$$
 (9)

Przykład IV: Obiekty z dodatnim zerem transmitancji - nieminimalnofazowe.

Definicja 1 (Nieminimalnofazowość) System o transmitancji właściwej G(s) nazywamy nieminimalnofazowym, jeżeli istnieje transmitancja $G^*(s)$, którą cechują jednocześnie:

- $taki\ sam\ przebieg\ modulu:\ Lm\left(G^{*}\left(j\omega\right)\right)=Lm\left(G\left(j\omega\right)\right), \forall\omega,$
- mniejszy zakres przesunięcia fazowego: $|\Delta Arg(G^*(j\omega))| < |\Delta Arg(G(j\omega))|$.

System $G^*(s)$ nazywamy minimalnofazowym.

Przyczyną nieminimalnofazowości jest dodatnie zero lub opóźnienie transportowe. Przykładami obiektów z nieminimalnofazowych z dodatnim zerem są:

• przesuwnik fazowy, którego dynamikę można opisać za pomocą następującej transmitancji:

$$G(s) = \frac{1 - T\mathbf{s}}{1 + Ts},\tag{10}$$

- separator o zmiennej wydajności,
- eksperymentalny samolot Grumman X-29. Ten system jest (w przybliżeniu) modelowany przez ściśle właściwą transmitancję G, która zawiera dodatnie i ujemne zero:

$$G(s) = \dots \left(\frac{\mathbf{s} + p}{s - p}\right) \left(\frac{\mathbf{s} - q}{s + q}\right). \tag{11}$$

Warto zauważyć że w transmitancji występuje niestabilny biegun. Jest to działanie zamierzone (wywołane miedzy innymi ujemnym skosem skrzydeł)! Samolot ze skrzydłem o ujemnym skosie charakteryzuje się mniejszymi oporami, lepszą zwrotnością, niższą prędkością przeciągnięcia i doskonalszymi własnościami podczas lotu z niskimi prędkościami, oraz niewrażliwością na wpadanie w korkociąg.

3 Badanie własności dynamicznych liniowego obiektu drugiego rzędu z pojedynczym zerem

- 3.1 Wyprowadzić transmitancję operatorową amortyzatora z rysunku 4.
- $\bf 3.2$ Obliczyć dla jakich wartości ilorazu B/k bieguny transmitancji będą miały tylko część rzeczywistą.
- **3.3** Przyjąć wartości parametrów: $T_1 = 1, T_2 = 2, c_i = \{-1, 0, 0.2, 0.5, 1, 2, 2.1, 5, 10\}$. Zamodelować transmitancje:

$$G_{Ai}(s) = \frac{c_i s + 1}{(T_1 s + 1)(T_2 s + 1)}$$
 (12)

- 3.4 Wyznaczyć wartości biegunów transmitancji. Ustalić wartości zer dla poszczególnych wartości współczynnika c_i . Wykreślić na wspólnych wykresach odpowiedzi skokowe, charakterystyki Bodego i Nyquista oraz zera i bieguny transmitancji G_{Ai} . Wykorzystać polecenie 'ltiview'.
- 3.5 Na podstawie odpowiedzi skokowych określić dla jakich wartości współczynnika c_i pojawia się przeregulowanie, a dla jakiej podregulowanie. Wynik odnieść do wzajemnego położenia zer i biegunów poszczególnych transmitancji.
 - Jaki wpływ na czas ustalania odpowiedzi ma wartość współczynnika c_i ?
- 3.6 Na podstawie wykresu Nyquista (lub Bodego) określić jaki wpływ na stabilność układu zamkniętego (z regulatorem proporcjonalnym o wzmocnieniu $k_p = 1$ i transmitancją G_{Ai}) mają wartości współczynnika c_i .
- **3.7** Na wykresie Bodego odszukać pokrywające się przebiegi modułu. Porównać odpowiadające im charakterystyki fazowe.
 - Czy któryś z obiektów jest nieminimalnofazowy?
- **3.8** Przyjąć wartości parametrów: $T = \xi = 0.25, c_i = \{0, 0.05, 0.1, 0.2, 0.5, 1, 1.5, -0.05\}$. Zamodelować transmitancje:

$$G_{Bi}(s) = \frac{c_i s + 1}{T^2 s^2 + 2\xi T s + 1}$$
(13)

- **3.9** Wyznaczyć wartości biegunów transmitancji G_{Bi} . Ustalić wartości zer dla poszczególnych wartości współczynnika c_i . Wykreślić na wspólnych wykresach odpowiedzi skokowe, charakterystyki Bodego, Nyquista oraz zera i bieguny transmitancji G_{Bi} (z wyjątkiem G_{B8}). Wykorzystać polecenie 'ltiview'.
- **3.10** Zbadać wpływ wartości c_i na wartość przeregulowania
- **3.11** Na podstawie wykresu Nyquista (lub Bodego) określić jaki wpływ na stabilność układu zamkniętego (z regulatorem proporcjonalnym o wzmocnieniu $k_p = 1$ i transmitancją G_{Bi}) mają wartości współczynnika c_i .
- **3.12** Wykreślić na wspólnych wykresach odpowiedzi skokowe, charakterystyki Bodego i Nyquista oraz zera i bieguny transmitancji G_{B1} , G_{B2} i G_{B8} . Wykorzystać polecenie 'ltiview'.
 - Jak zmienia się przeregulowanie w przypadku ujemnej wartości współczynnika c_8 ? Odpowiedź uzasadnić w oparciu o wzór (2).
 - Czy obiekt o transmitancji G_{B8} jest minimalnofazowy?

4 Wpływ sprzężenia zwrotnego na położenie zer układu regulacji.

- 4.1 Wyznaczyć transmitancję układu zamkniętego składającego się z regulatora typu P i obiektu o transmitancji $G_{ob} = \frac{L_{ob}}{M_{ob}}$; założyć że transmitancja obiektu zawiera zera.
 - Czy sprzężenie zwrotne zmieniło wartości zer?
 - Czy zastosowanie innego regulatora (np. PD, PI, PID) wpływa na wartości zer ?
- **4.2** Dla transmitancji regulatora PID (9) wyznaczyć zależność pomiędzy T_D i T_I przy której zera transmitancji mają tylko część rzeczywistą.

Dodatek

Rysunek 6: Określenie początkowego podregulowania w zależności od kierunku zmian sygnału wejściowego