Patrolling Games

Thomas Lowbridge

University Of Nottingham

October 20, 2017

Introduction to Patrolling Games

A Patrolling game, ${\cal G}={\cal G}(Q,T,m)$ is made of 3 major components

- A Graph, Q=(N,E), made of nodes, N (|N|=n), and a set of edges, E.
- A time horizon parameter, T (with set $\mathcal{T} = \{0, 1, ..., T-1\}$).
- An attack time parameter, m.

The game involves two players, the patroller and the attacker.

- ullet The patroller's strategy is a walk (with waiting) on the graph, $W:\mathcal{T} \to N$.
- ullet The attacker's strategy is a node, i and starting time, au .

The strategies are collected into the sets, $\mathcal W$ and $\mathcal A$, for the patroller and attacker respectively, with some arbitrary labelling inside the set to form strategies W_i and A_j .

Payoffs

The game is formulated as win-lose (a zero-sum game) with a payoff for the patroller of

$$P(W,(i,\tau)) = \left\{ \begin{array}{l} 1 \text{ if } i \in \{W(\tau), W(\tau+1), ..., W(\tau+m-1)\}\,, \\ 0 \text{ if } i \notin \{W(\tau), W(\tau+1), ..., W(\tau+m-1)\}\,. \end{array} \right.$$

With a pure payoff matrix $\mathcal{P} = (P(W_i, A_j))_{i \in \{1, \dots, |\mathcal{W}|\}, j \in \{1, \dots, |\mathcal{A}|\}}$

The game played on ${\cal Q}$ as below with m=3 and T=7

Patroller:
$$W(0)=1$$
 , $W(1)=6$, $W(2)=7$, $W(3)=3$, $W(4)=3$,

$$W(5) = 4$$
 , $W(8) = 8$

Attacker: (8,2)

The game played on ${\cal Q}$ as below with m=3 and T=7

The attacker fails to catch the patroller, therefore the patroller loses (and the attacker wins) meaning a payoff of 0 for the patroller (and -1 for the attacker).

Mixed games

Both the patroller and attacker will play their pure(realised) strategies with certain probabilities, let π be a mixed strategy for the patroller and let ϕ be a mixed strategy for the attacker. We collect these into the sets Π and Φ for the patroller and attacker respectively.

Then the payoff for the patroller of this mixed game becomes

$$P(oldsymbol{\pi},oldsymbol{\phi}) = \sum_{i=1}^{|\mathcal{W}|} \sum_{j=1}^{|\mathcal{I}|} \mathcal{P}_{i,j} oldsymbol{\pi}_i oldsymbol{\phi}_j = oldsymbol{\pi} \mathcal{P} oldsymbol{\phi}$$

By using the pure payoff as 1 when capture occurs and 0 otherwise, the mixed payoff is equivalent to the probability of capture.

Equilibrium and Value

Mixed Nash equilibrium

A choice of π^* and ϕ^* is said to be in Nash equilibrium if

$$P(\boldsymbol{\pi}^*, \boldsymbol{\phi}^*) \ge P(\boldsymbol{\pi}, \boldsymbol{\phi}^*) \quad \forall \boldsymbol{\pi} \in \Pi,$$

 $P(\boldsymbol{\pi}^*, \boldsymbol{\phi}^*) \ge P(\boldsymbol{\pi}^*, \boldsymbol{\phi}) \quad \forall \boldsymbol{\phi} \in \Phi.$

There will only be one Nash equilibrium, unless the patroller can guarantee capture.

We do this by searching for the games value,

$$V(G) \equiv \max_{\boldsymbol{\pi} \in \Pi} \min_{\boldsymbol{\phi} \in \Phi} P(\boldsymbol{\pi}, \boldsymbol{\phi}) = \min_{\boldsymbol{\phi} \in \Phi} \max_{\boldsymbol{\pi} \in \Pi} P(\boldsymbol{\pi}, \boldsymbol{\phi})$$

This is done by achieving both upper and lower bounds on the value of the game.

Solved graphs: Hamiltonian

Hamiltonian graphs

A Hamiltonian graph has the value $V=\frac{m}{n}$

Solved graphs:Bipartite

Bipartite graph

A bipartite graph with no-adjacency partition into sets A and B has the value $V=\frac{m}{2(\max(|A|,|B|))}$

Solved graphs:Star

Star graph

The star $S_n \equiv K_{1,n}$ so has the value $V = \frac{m}{2n}$

Solved graphs:Line

Line graph

The line graph, L_n made of n nodes has a value dependent on (n,m)

- **1** If m > 2(n-1) then V = 1.
- ② If $n-1 \leq m \leq 2(n-1)$ then $V = \frac{m}{2(n-1)}$
- $\mbox{ If } m=2, n \geq 3 \mbox{ then } V = \frac{1}{\left \lceil \frac{n}{2} \right \rceil}$
- ① If m=n-1 or m=n-2 and m=2k for some $k\geq 2$ then $V=\frac{1}{2}$
- $\text{ If } m \leq n-3 \text{ or } m=n-2 \text{ and } m=2k+1 \text{ for some } k \geq 1 \\ \text{ then } V = \frac{m}{m+n-1}$