Tutoraggio Ricerca Operativa 2019/2020 5. Programmazione Lineare: Teoria della dualità e Analisi di sensitività

Alice Raffaele, Romeo Rizzi

Università degli Studi di Verona

28 aprile 2020 05 maggio 2020

Sommario

Teoria della dualità

Dualità in Programmazione Lineare

Ogni problema **primale** di massimo, è associato a un problema **duale** di minimo:

Dal Primale (max) al Duale (min)

max
$$-6x_1-3x_2$$
 min $1y_1 + 1y_2 + 2y_3$
s.t. $x_1 + x_2 \ge 1$ s.t. $y_1 + 2y_2 \ge -6$
 $2x_1 - x_2 \ge 1$ $y_1 - y_2 + 3y_3 \ge -3$
 $3x_2 \le 2$ $y_1, y_2 \le 0$
 $x_1, x_2 \ge 0$ $y_3 \ge 0$

D

- **1** Si introduce in **D** una variabile y_i per ogni vincolo in **P**;
- ② I coefficienti della funzione obiettivo di D sono i termini noti di P;
- I termini noti di D sono i coefficienti della funzione di obiettivo di P;
- **1** La matrice A di **D** corrisponde alla matrice A^T di **P**;
- I segni delle variabili di D sono opposti ai segni dei vincoli di P:
 - Se il vincolo $i \in A$, la variabile y_i sarà $b \in A$;
 - Se il vincolo $i \ge 1$, la variabile y_i sarà ≤ 0 ;
 - Se il vincolo i è =, la variabile y_i sarà libera in segno.
- I segni dei vincoli di D corrispondono a quelli delle variabili x in P.

Dal Primale (min) al Duale (max)

min
$$1y_1 + 1y_2 + 2y_3$$
 max $-6x_1 - 3x_2$
s.t. $y_1 + 2y_2 \ge -6$ s.t. $x_1 + x_2 \ge 1$
 $y_1 - y_2 + 3y_3 \ge -3$ $2x_1 - x_2 \ge 1$
 $y_1, y_2 \le 0$ $3x_2 \le 2$
 $y_3 \ge 0$ $x_1, x_2 \ge 0$

D

- **1** Si introduce in **D** una variabile y_i per ogni vincolo in **P**;
- I coefficienti della funzione obiettivo di **D** sono i termini noti di **P**;
- I termini noti di **D** sono i coefficienti della funzione di obiettivo di **P**;
- **1** La matrice A di **D** corrisponde alla matrice A^T di **P**:
- Segni delle variabili di D corrispondono a quelli dei vincoli di P:
- I segni dei vincoli di D sono opposti a quelli delle variabili x in P:
 - Se la variabile x_i è <, il vincolo i sarà > 0;
 - Se la variabile x_i è >, il vincolo i sarà < 0;
 - Se la variabile x_i è libera in segno, il vincolo i sarà =.

28 aprile 2020

Esercizio sul passaggio tra P e D

max
$$2x_1 + 3x_2 - 4x_3$$

s.t. $3x_1 - x_2 \le -3$
 $17x_1 + 3x_3 \ge 8$
 $4x_2 + 12x_3 \le 2$
 $x_1 + x_2 + x_3 = 4$
 $x_1, x_2 \ge 0$
 x_3 libera

Esercizio sul passaggio tra P e D - Soluzione

min
$$-3y_1 + 8y_2 + 2y_3 + 4y_4$$

s.t. $3y_1 + 17y_2 + y_4 \ge 2$
 $-y_1 + 4y_3 + y_4 \ge 3$
 $3y_2 + 12y_3 + y_4 = -4$
 $y_1, y_3 \ge 0$
 $y_2 \le 0$
 y_4 libera

Teoremi della dualità

Dato il problema primale $P : \max \mathbf{c}^T \mathbf{x}$ t.c. $A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq 0$ e il suo duale $D : \min \mathbf{b}^T \mathbf{y}$ t.c. $A^T \mathbf{y} \geq \mathbf{c}, \mathbf{y} \geq 0$:

- Il duale del duale D è il primale P stesso;
- Teorema della dualità in forma debole: $c^T x \le b^T y$.
- Teorema della dualità in forma forte: P una soluzione ottima finita se e solo se anche D ce l'ha e il valore delle due funzioni obiettivo coincide $\rightarrow \mathbf{c}^T \mathbf{x} = \mathbf{b}^T \mathbf{y}$.

Relazione tra Primale e Duale

		DUALE		
		OTTIMO FINITO	ILLIMITATO SUPERIOR.	INAMMISSIBILE
PRIMALE	OTTIMO FINITO	SI	NO	NO
	ILLIMITATO INFERIOR.	NO	NO	SI
	INAMMISSIBILE	NO	SI	SI