Amirreza Rouhi- Master student

Thesis submission: April 2020

Adv: Prof. Stefano Ceri

Ensemble Feature Selection for Single Cell Hi-c data

- 1. Introduction to single-cell Hi-C data
- 2-What is the Goal?
- 3. Proposed Method
- 4. Experimental Results
- 5- Future works

Hi-C Chromatin conformation capture method

Hi-C data is often used to analyze genome-wide chromatin organization

Single-cell Hi-C is a modification of the original Hi-C protocol

Allows us to determine proximity of different regions of the genome in a single cell

Single-cell assays introduce a new axis of variation— cell-to-cell variability—that is not directly observable in data derived from a bulk sequencing

Single Cell Hi-C Data

- 1. Introduction to single-cell Hi-C data
- 2-What is the Goal?
- 3. Proposed Method
- 4. Experimental Results
- 5- Future works

The sparsity of single-cell Hi-C data is higher than most other types of single-cell data.

0.09 0.02

- **2-What is the Goal?**
- 3. Proposed Method
- 4. Experimental Results
- 5- Future works

What is the Goal?

Design a Unique method to use in two different problems:

Determine the 1-Cell Cycle and 2-Cell line of each cell

Proposed framework

1. Introduction to single-cell Hi-C data

2-What is the Goal?

- 4. Experimental Results
- 5- Future works

- 1. Introduction to single-cell Hi-C data
- 2-What is the Goal?
- 3. Proposed Method
- 4. Experimental Results
- 5- Future works

Directionality:

If in a sparse matrix X for diagonal cell (i,i) we have:

$$X4 = \begin{pmatrix} 0 & 3 & 1 & 0 & 2 & 3 & 8 & 1 & 1 & 3 \\ 1 & 1 & 0 & 0 & 7 & 1 & 2 & 2 & 3 & 3 \\ 1A4 & 2 & 2 & 0 & 0 & 6 & 7 & 1 & 2B42 \\ 1 & 2 & 3 & 10 & 0 & 4 & 6 & 1 & 0 & 5 \\ 3 & 2 & 2 & 1 & 4 & 3 & 2 & 1 & 6 & 0 \\ 7 & 4 & 4 & 5 & 3 & 9 & 6 & 1 & 6 & 1 \\ 7 & 1 & 1 & 5 & 2 & 8 & 9 & 1 & 3 & 6 \\ 5 & 0 & 1 & 6 & 2 & 0 & 0 & 0 & 1 & 5 \\ 1 & 6 & 3 & 3 & 4 & 6 & 2 & 0 & 1 & 1 \\ 1 & 2 & 2 & 4 & 1 & 1 & 3 & 0 & 8 & 2 \end{pmatrix}$$

 $Ai = \sum_{j=n}^{i} X(i,j)$ Summation of contacts between bin i and previous bins $Bi = \sum_{k=i}^{i+n} X(i,k)$ Summation of contacts between bin i and next bins

Where n is a boundaries variable. Then we can assign a score (Directionality Score) to each bin as:

Directionality_Score= $\frac{B-A}{|B-A|}$.

Now we were able to convert the matrix into vectors (for each column we have a score).

Experimental Results- Accuracy

Comparison between the accuracy rate of the proposed Ensemble method and single methods using MLP classifier (10 CV)

- 1. Introduction to single-cell Hi-C data
- 2-What is the Goal?
- 3. Proposed Method
 - 4. Experimental Results
- 5- Future works

- 2-What is the Goal?
- 3. Proposed Method

4. Experimental **Results**

5- Future works

Experimental Results- ROC

Cell Cycle:

ROC Curve for applying

ReliefF method

Cell Line:

ROC Curve for applying Fscore method

ROC Curve for applying Laplacian score method

ROC Curve for applying ReliefF method

- 1. Introduction to single-cell Hi-C data
- 2-What is the Goal?
- 3. Proposed Method
 - 4. Experimental Results
- 5- Future works

Experimental Results- Cell Cycle

MDS projections from the four cell-cycle phases when the Distance measure is calculated using cosine

PCA projections from the four cell-cycle phases:

- 2-What is the Goal?
- 3. Proposed Method
- 4. Experimental Results
- 5- Future works

Experimental Results- Cell Line

PCA projections from the four lines

Compare with result from Zhou et al. :

- 2-What is the Goal?
- 3. Proposed Method
- 4. Experimental Results
 - 5- Future works

Future works

Applying Ensemble Classification

Benefit:

*Increase the classification accuracy by using ensemble technique and aggregate the results

- 2-What is the Goal?
- 3. Proposed Method
- 4. Experimental Results
 - 5- Future works

Future works

Applying meta-Heuristic Feature Selection methods

^{*}Increase the performance of selecting the effective bins

Thank you for your attention