```
import os
import numpy as np
import pandas as pd

from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import seaborn as sns
from io import StringIO

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error import random
from sklearn.preprocessing import StandardScaler

data = pd.read_excel("/Task_Data_File.xlsx",skiprows=[0,1],index_col=0)
```

data.head()

	College	Role	City type	Previous CTC	Previous job changes	Graduation marks	Exp (Months)	стс
S.No.								
1	Tier 1	Manager	Non- Metro	55523	3	66	19	71406.576531
2	Tier 2	Executive	Metro	57081	1	84	18	68005.870631
3	Tier 2	Executive	Metro	60347	2	52	28	76764.020277
4	Tier 3	Executive	Metro	49010	2	81	33	82092.386880

data.shape

(1338, 8)

data.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1338 entries, 1 to 1338
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	College	1338 non-null	object
1	Role	1338 non-null	object
2	City type	1338 non-null	object
3	Previous CTC	1338 non-null	int64
4	Previous job changes	1338 non-null	int64
5	Graduation marks	1338 non-null	int64
6	Exp (Months)	1338 non-null	int64
7	CTC	1338 non-null	float64
4.4	63 154(4) 1154(4) 11 1/2)	

dtypes: float64(1), int64(4), object(3)

memory usage: 94.1+ KB

data

	Co	ollege	Role	City type	Previous CTC	Previous job changes	Graduation marks	Exp (Months)	стс
	S.No.								
	1	Tier 1	Manager	Non-	55523	3	66	19	71406.576531
data.	.isna().sur	m()							
	College Role City type Previous (Previous (Graduation Exp (Month CTC dtype: in-	CTC job cha n marks hs)	-						
cat o	clmns = dat	ta.sele	ct dtypes(Non- ['obje	ct']).colu	mns			
_			_ ,, ,	Non-					
sns.p	pairplot(da	ata)							
₽									

(<BarContainer object of 1338 artists>, <BarContainer object of 1338 artists>)

plt.bar('City type','CTC', data = data), plt.bar('City type','Previous CTC', data = data)

(<BarContainer object of 1338 artists>, <BarContainer object of 1338 artists>)

plt.bar('Role','CTC',data = data), plt.bar('Role','Previous CTC', data = data)

(<BarContainer object of 1338 artists>, <BarContainer object of 1338 artists>)

sns.boxplot(x='Previous job changes', y='CTC',hue='Role', data=data)

<Axes: xlabel='Previous job changes', ylabel='CTC'>

cm = data.corr()

<ipython-input-18-251cf5733e53>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future versior
cm = data.corr()

cm

	Previous CTC	Previous job changes	Graduation marks	Exp (Months)	стс
Previous CTC	1.000000	0.008282	-0.037170	0.117035	0.270260
Previous job changes	0.008282	1.000000	0.001507	0.034137	0.007518
Graduation marks	-0.037170	0.001507	1.000000	-0.065412	-0.017557
Exp (Months)	0.117035	0.034137	-0.065412	1.000000	0.301569
стс	0.270260	0.007518	-0.017557	0.301569	1.000000

sns.heatmap(cm, annot=True, cmap='YlGnBu')

Χ

	College	Role	City type	Previous CTC	Previous job changes	Graduation marks	Exp (Months)
S.No.							
1	Tier 1	Manager	Non-Metro	55523	3	66	19
2	Tier 2	Executive	Metro	57081	1	84	18
3	Tier 2	Executive	Metro	60347	2	52	28
4	Tier 3	Executive	Metro	49010	2	81	33
5	Tier 3	Executive	Metro	57879	4	74	32
1334	Tier 3	Executive	Metro	59661	4	68	50
1335	Tier 1	Executive	Non-Metro	53714	1	67	18
1336	Tier 2	Executive	Non-Metro	61957	1	47	18
1337	Tier 1	Executive	Non-Metro	53203	3	69	21
1338	Tier 3	Manager	Non-Metro	51820	1	47	61

1338 rows × 7 columns

tx = pd.get_dummies(x,drop_first=True)
tx.head()

	Previous CTC	Previous job changes	Graduation marks	Exp (Months)	College_Tier 2	college_Tier College_Tier Role_Manager 2 3		City type_Non- Metro
S.No.								
1	55523	3	66	19	0	0	1	1
2	57081	1	84	18	1	0	0	0
3	60347	2	52	28	1	0	0	0
4	49010	2	81	33	0	1	0	0

sc = StandardScaler()

tx = sc.fit_transform(tx)

pd.DataFrame(tx)

```
-0.008793
                      0.422577
                                0.410307 -1.438764 -0.611324 -0.566418
                                                                         1.970587
                                                                                   1.010519
            0.224333 -1.358237
                                1.619243 -1.509965 1.635795 -0.566418 -0.507463 -0.989591
       1
       2
            0.713028 -0.467830 -0.529976 -0.797954
                                                    1.635795 -0.566418 -0.507463 -0.989591
       3
           -0.983340 -0.467830
                                1.417754 -0.441948 -0.611324
                                                               1.765481 -0.507463 -0.989591
       4
            0.343738
                      1.312985
                                0.947612 -0.513149 -0.611324
                                                               1.765481 -0.507463 -0.989591
     1333
            0.610381
                     1.312985
                                0.544633
                                          0.768473 -0.611324
                                                              1.765481 -0.507463 -0.989591
           -0.279475 -1.358237
                                0.477470 -1.509965 -0.611324 -0.566418
                                                                        -0.507463
     1334
                                                                                   1.010519
                                                   1.635795 -0.566418 -0.507463
            0.953934 -1.358237 -0.865792 -1.509965
                                                                                   1.010519
     1335
     1336 -0.355937 0.422577
                                0.611797 -1.296362 -0.611324 -0.566418 -0.507463
                                                                                   1 010519
     1337 -0.562877 -1.358237 -0.865792 1.551686 -0.611324 1.765481 1.970587 1.010519
     1338 rows × 8 columns
random.seed(42)
for i in range(0,101):
   print(i)
    for j in range(1,100):
       x_train, x_test, y_train, y_test = train_test_split(tx,y, test_size=j/100, random_state=i)
        x_train.shape, x_test.shape
       logreg = LinearRegression(n_jobs=i)
       logreg.fit(x_train, y_train)
        y_pred_test = logreg.predict(x_test)
        y pred test
        if (r2_score(y_test,y_pred_test)>0.8 and j>1):
          print('Model accuracy score:(0:0.4f) @random_state:(1) @testsplit(%): {2}'.format(r2_score(y_test, y_pred_test),i,j))
    0
    1
     2
     3
     4
     5
     6
     8
     9
    10
    11
     12
    13
    14
    15
     16
    17
    18
     19
     20
     21
     22
     23
     24
     25
     26
     27
     28
     29
     30
     31
     32
     33
     34
     35
     36
     37
     38
     39
     40
    41
```

```
43
     44
     45
     46
     47
     48
     49
     50
     Model accuracy score:(0:0.4f) @random_state:(1) @testsplit(%): 2
     52
     53
     54
     55
     56
X_train, X_test, Y_train, Y_test = train_test_split(tx,y,test_size = .02, random_state = 50)
import random
random.seed(42)
from sklearn.linear_model import LinearRegression
lr = LinearRegression(n_jobs=2)
lr.fit(X_train, Y_train)
           LinearRegression
     LinearRegression(n_jobs=2)
lr.intercept_
     75468.6486526581
lr.coef
     array([ 2984.49295358, -70.10966725, -18.19289083, 3654.22577171,
            -2408.25804437, -2003.38289156, 7767.08017745, -2038.58581722])
Test_Salary = pd.read_excel("/content/Salary_test_data.xlsx")
Test_Salary.columns
     'Graduation marks', 'Exp', 'Actual CTC', 'Predicted CTC', 'Unnamed: 13',
            'Unnamed: 14', 'Unnamed: 15', 'Unnamed: 17', 'Unnamed: 17', 'Unnamed: 18', 'Unnamed: 20', 'Unnamed: 21', 'Unnamed: 22', 'Unnamed: 23'],
           dtype='object')
Test_Salary.drop(['Unnamed: 13','College','Role','City type', 'Unnamed: 14', 'Unnamed: 15', 'Unnamed: 16', 'Unnamed: 17',
       'Unnamed: 18', 'Unnamed: 19', 'Unnamed: 20', 'Unnamed: 21',
       'Unnamed: 22', 'Unnamed: 23'], inplace=True, axis=1)
Test_Salary
```

x_test = Test_Salary.drop(['Actual CTC','Predicted CTC'], axis=1)
y_test = Test_Salary['Actual CTC']
x_test

	College_T1	College_T2	Role_Manager	City_Metro	previous CTC	previous job changes	Graduation marks	Exp
0	1	0	1	0	55523	3	66	19
1	0	1	0	1	57081	1	84	18
2	0	1	0	1	60347	2	52	28
3	0	0	0	1	49010	2	81	33
4	0	0	0	1	57879	4	74	32
1333	0	0	0	1	59661	4	68	50
1334	1	0	0	0	53714	1	67	18
1335	0	1	0	0	61957	1	47	18
1336	1	0	0	0	53203	3	69	21
1337	0	0	1	0	51820	1	47	61

1338 rows × 8 columns

len(Test_Salary)

1338

x_test = sc.fit_transform(x_test)
pd.DataFrame(x_test)

	0	1	2	3	4	5	6	7
0	1.030356	-0.611324	1.970587	-1.010519	-0.008793	0.422577	0.410307	-1.438764
1	-0.970538	1.635795	-0.507463	0.989591	0.224333	-1.358237	1.619243	-1.509965
2	-0.970538	1.635795	-0.507463	0.989591	0.713028	-0.467830	-0.529976	-0.797954
3	-0.970538	-0.611324	-0.507463	0.989591	-0.983340	-0.467830	1.417754	-0.441948
4	-0.970538	-0.611324	-0.507463	0.989591	0.343738	1.312985	0.947612	-0.513149
1333	-0.970538	-0.611324	-0.507463	0.989591	0.610381	1.312985	0.544633	0.768473
1334	1.030356	-0.611324	-0.507463	-1.010519	-0.279475	-1.358237	0.477470	-1.509965
1335	-0.970538	1.635795	-0.507463	-1.010519	0.953934	-1.358237	-0.865792	-1.509965
1336	1.030356	-0.611324	-0.507463	-1.010519	-0.355937	0.422577	0.611797	-1.296362
1337	-0.970538	-0.611324	1.970587	-1.010519	-0.562877	-1.358237	-0.865792	1.551686
338 rd	ows × 8 colur	mns						

```
y_prediction = lr.predict(x_test)
y_prediction
```

```
array([80152.60890171, 93918.62166493, 72813.23619748, ..., 65551.23857267, 82308.38862547, 63075.1332238 ])
```

```
print(f'r2_score of this model:{r2_score(y_test,y_prediction)}')
print(f'MAE of this model:{mean_absolute_error(y_test,y_prediction)}')
print(f'MSE of this model:{mean_squared_error(y_test,y_prediction)}')
```

r2_score of this model:-0.6852084456416327 MAE of this model:12846.282249614145 MSE of this model:265280284.88209185 Test_Salary['Predicted CTC'] = y_prediction
Test_Salary

	College_T1	College_T2	Role_Manager	City_Metro	previous CTC	previous job changes	Graduation marks	Ехр	Actual C1
0	1	0	1	0	55523	3	66	19	71406.57653
1	0	1	0	1	57081	1	84	18	68005.87063
2	0	1	0	1	60347	2	52	28	76764.02027
3	0	0	0	1	49010	2	81	33	82092.38688
4	0	0	0	1	57879	4	74	32	73878.09772
1333	0	0	0	1	59661	4	68	50	69712.40365
1334	1	0	0	0	53714	1	67	18	69298.75009
1335	0	1	0	0	61957	1	47	18	66397.77068
1336	1	0	0	0	53203	3	69	21	64044.38294
1337	0	0	1	0	51820	1	47	61	83346.06096

Test_Salary.to_excel('/content/Predicted_Salary.xlsx')

My Conclusions from this task:

- MSE of the considered model is 265280284.8820916
- MAE of the considered nodel is 12846.28224961414
- Avg Salary of a candidate is 73112
- Managers or people with one job change get higher salary
- · Metro city candidates get higher salary than non metro city candidates
- Linear regression on this model gives an r2_score of 40.00%

Thank You All