

Physics NEET Formula

PHYSICAL CONSTANTS

- > Speed of light $c = 3 \times 10^8$ m/s
- ightharpoonup Plank constant $h = 6.63 \times 10^{-34} \text{J s}$

$$hc = 1242 \text{ eV-nm}$$

- For Gravitation constant $G=6.67 \times 10^{-11} m^3 kg^{-1}s^{-2}$
- ► Boltzmann constant $k = 1.38 \times 10^{-23} \text{ J/K}$
- ➤ Molar gas constant R=8.314 J/(mol K)
- \triangleright Avogadro's number $N_A = 6.023 \times 10^{23} mol^{-1}$
- \triangleright Charge of electron $e = 1.602 \times 10^{-19} C$
- Permeability of vacuum $\mu_0 = 4\pi \times 10^{-7} N/A^2$
- ➤ Permittivity of vacuum $\epsilon_0 = 8.85 \times 10^{-12} F/m$
- Faraday constant F = 96485C / mol
- Mass of electron $m_e = 9.1 \times 10^{-31} kg$
- Mass of proton $m_p = 1.6726 \times 10^{-27} kg$
- ightharpoonup Mass of neutron $m_n = 1.6749 \times 10^{-27} kg$
- Atomic mass unit $u = 1.66 \times 10^{-27} kg$
- Atomic mass unit $u = 9.31.49 MeV/c^2$
- > Stefan Boltzmann constant $\sigma = 5.67 \times 10^{-8} W / (m^2 K^4)$
- ightharpoonup Rydberg constant $R_{\infty} = 1/097 \times 10^7 m^{-1}$
- **Bohr magneton** $\mu_B = 9.27 \times 10^{-24} J/T$
- **>** Bohr radius $a_0 = 0.529 \times 10^{-10} m$

- > Standard atmosphere atm = $1.01325 \times 10^5 Pa$
- ➤ Wien displacement constant $b = 2.9 \times 10^{-3} mK$

MECHANICS

- Notation: $\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$
- Magnitude: $\vec{a} \cdot |\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$
- ightharpoonup Dot product: $\overrightarrow{a}.\overrightarrow{b} = a_x b_x + a_y b_y + a_z b_z = ab \cos \theta$
- Cross product:

$$\vec{a} \times \vec{b} = (a_y b_z - a_z b_y) \hat{i} + (a_z b_x - a_x b_z) \hat{j} + (a_x b_y - a_y b_x) \hat{k}$$

$$|\vec{a} \times \vec{b}| = ab \sin \theta$$

KINETICS

Average and Instantaneous vel. And Accel.:

$$\overrightarrow{u}_{av} = \overrightarrow{\Delta r} / \Delta t, \overrightarrow{u}_{inst} = \overrightarrow{d r} / dt$$

$$\overrightarrow{a}_{av} = \overrightarrow{\Delta u} / \Delta t, \overrightarrow{a}_{inst} = \overrightarrow{d u} / dt$$

Motion in a straight line with constant a:

$$v = u + at, s = ut + \frac{1}{2}at^2, v^2 - u^2 = 2as$$

- \triangleright Relative velocity: $\overrightarrow{u}_{A/B} = \overrightarrow{u}_A \overrightarrow{u}_B$
- > Projectile Motion:

$$x = ut \cos \theta, y = ut \sin \theta - \frac{1}{2}gt^{2}$$

$$y = x \tan \theta - \frac{g}{2u^{2} \cos^{2} \theta}x^{2}$$

$$T = \frac{2u \sin \theta}{g}, R = \frac{u^{2} \sin 2\theta}{g}, H = \frac{u^{2} \sin \theta}{2g}$$

NEWTONS LAWS AND FRICITION

ightharpoonup Linear momentum: $\overrightarrow{p} = \overrightarrow{m} \overrightarrow{v}$

Newton's first law: internal frame

Newton's second law: $\vec{F} = \frac{d\vec{p}}{dt}, \vec{F} = m\vec{a}$

Newton's third law: $\vec{F}_{AB} = -\vec{F}_{BA}$

Frictional force: fstatic, max = $\mu_s N$, fkinetic = $\mu_K N$

► Banking angle: $\frac{v^2}{rg} = \tan \theta, \frac{v^2}{rg} = \frac{\mu + \tan \theta}{1 - \mu \tan \theta}$

ightharpoonup Centripetal force: $F_c = \frac{mv^2}{r}, a_c = \frac{v^2}{r}$

> Pseudo force: $\overrightarrow{F}_{Pseudo} = -m\overrightarrow{a}_0$, $F_{centrifugal} = -\frac{mv^2}{r}$

Minimum speed to complete vertical circle: $u_{\text{min,bottom}} = \sqrt{5gl}$, $u_{\text{min,top}} = \sqrt{gl}$

ightharpoonup Conical pendulum: $T = 2\pi \sqrt{\frac{l\cos\theta}{g}}$

WORK POWER AND ENERGY

 \triangleright Work: $W = \overrightarrow{F} \cdot \overrightarrow{S} = FS \cos \theta, W = \int \overrightarrow{F} \cdot d\overrightarrow{S}$

ightharpoonup Kinetic energy: $K = \frac{1}{2}mv^2 = \frac{p^2}{2m}$

Potential energy: $F = -\partial U / \partial x$ for conservative forces.

$$U_{\text{gravitational}} = mgh, U_{\text{spring}} = \frac{1}{2}kx^2$$

- Work done by conservative force is path independent and depends only on initial and final points: $\phi \vec{F}_{conservative} \cdot d\vec{r} = 0$.
- Work energy theorem: $W = \Delta K$
- ➤ Mechanical energy: E=U+K. conserved if forces are conservative in nature.
- Power: $P_{av} = \frac{\Delta W}{\Delta t}, P_{inst} = \vec{F}.\vec{v}$

CENTRE OF MASS AND COLLISION

- 1. Centre of mass: $x_{cm} = \frac{\sum x_i m_i}{\sum m_i}, x_{cm} = \frac{\int x dm}{\int dm}$
- 2. CM of few useful configurations:
- \triangleright m_1, m_2 separated by r:
- Triangle: (CM=centroid) $y_c = \frac{h}{3}$
- Semi-circular ring: $y_c = \frac{2r}{\pi}$
- Semi-circular disc: $y_c = \frac{4r}{3m}$
- ightharpoonup Hemispherical shell: $y_c = \frac{r}{2}$
- Solid hemisphere: $y_c = \frac{3r}{s}$
- ➤ Cone: the height of CM from the base is h/4 for the solid cone and h/3 for the hollow cone.
 - 1. Motion of the CM: $M = \sum m_i$

$$\overrightarrow{v}_{cm} = \frac{\sum m_i \overrightarrow{v}_i}{M}, \overrightarrow{p}_{cm} = M \overrightarrow{v}_{cm}, \overrightarrow{a}_{cm} = \frac{\overrightarrow{F}_{ext}}{M}$$

- 2. Impulse: $\vec{J} = \vec{J} \vec{F} dt = \vec{\Delta p}$
- 3. Collision:

Momentum conservation: $m_1v_1 + m_2v_2 = m_1v'_1 + m_2v'_2$

Elastic collision: $\frac{1}{2}m_1v_1^2 + m_2v_2^2 = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2$

$$\epsilon = \frac{-(v_1 - v_2)}{v_1 - v_2} = \begin{cases} 1, \text{ completely elastic} \\ 2, \text{ completely in-elastic} \end{cases}$$

If $v_2 = 0$ and $m_1 << m_2$ then $v_1 = -v_1$.

If $v_2 = 0$ and $m_1 >> m_2$; $v_1 = v_2$ and $v_2 = v_1$.

RIGHT PHYSICS

1. Angular velocity:
$$w_{av} = \frac{\Delta \theta}{\Delta t}, w = \frac{d\theta}{dt}, \vec{v} = \vec{w} \times \vec{r}$$

2. Angular Accel.:
$$\alpha_{av} = \frac{\Delta w}{\Delta t}, \alpha \frac{dw}{dt}, \vec{a} = \vec{a} \times \vec{r}$$

3. Rotation about an axis with constant α :

$$w = w_0 + \alpha t, \theta = wt + \frac{1}{2}\alpha t^2, w^2 - w_0^2 = 2\alpha\theta$$

- 4. Moment of inertia: $I = \sum_{i} m_{i} r_{i}^{2}$, $I = \int r^{2} dm$
- 5. Theorem of parallel Axes: $I_{\parallel} = I_{cm} + md^2$
- 6. Theorem of Perp. Axes: $I_z = I_x + I_y$
- 7. Radius of Gyration: $k = \sqrt{I/m}$
- 8. Angular momentum: $\overrightarrow{L} = \overrightarrow{r} \times \overrightarrow{p}, \overrightarrow{L} = \overrightarrow{I} \overrightarrow{w}$
- 9. Torque: $\vec{r} = \vec{r} \times \vec{F}, \vec{r} = \frac{d\vec{L}}{dt}, \tau = I\alpha$

10. Conservation of $\vec{L}: \vec{T}_{ext} = 0 \Rightarrow \vec{L} = const.$

11. Equilibrium condition:
$$\sum \vec{F} = \vec{0}, \sum \vec{r} = \vec{0}$$

12. Kinetic energy:
$$K_{rot} = \frac{1}{2}Iw^2$$

13.Dynamics:

$$\overrightarrow{\tau}_{cm} = I_{cm} \overrightarrow{\alpha}, \overrightarrow{F}_{ext} = \overrightarrow{m} \overrightarrow{a}_{cm}, \overrightarrow{p}_{cm} = \overrightarrow{m} \overrightarrow{v}_{cm}$$

$$K = \frac{1}{2} m v_{cm^2} + \frac{1}{2} I_{cm} w^2, \overrightarrow{L} = I_{cm} \overrightarrow{w} + \overrightarrow{r}_{cm} \times \overrightarrow{m} \overrightarrow{v}_{cm}$$

GRAVITATION

- 1. Gravitation force: $F = G \frac{m_1 m_2}{r^2}$
- 2. Potential energy: $U = -\frac{GMm}{r}$
- 3. Gravitational energy: $g = \frac{GM}{R^2}$
- 4. Variation of g with depth: $g_{inside} \approx g \left(1 \frac{h}{R}\right)$
- 5. Variation of g with height: $g_{outside} \approx g \left(1 \frac{2h}{R} \right)$
- 6. Effect of non-spherical earth shape on g:

$$g_{at} pole > g_{at \text{ equator}} \left(:: R_e - R_p \approx 21 km \right)$$

- 7. Effect of earth rotation on apparent weight: $mg_{\theta} = mg mw^2R\cos^2\theta$
- 8. Orbital velocity of satellite : $v_0 = \sqrt{\frac{GM}{R}}$
- 9. Escape velocity: $v_e = \sqrt{\frac{2GM}{R}}$
- 10.Kepler's laws:

First: elliptical orbit with sum at one of the focus.

Second: A real velocity is constant $\left(\because d\overrightarrow{L}/dt = 0\right)$

Third: $T^2 \propto a^3$. In circular orbit $T^2 = \frac{4\pi^2}{GM}a^3$

SIMPLE HARMONIC MOTION

- ❖ Hooke's Law: F=-kx (for small elongation x)
- Acceleration: $a = \frac{d^2x}{dx^2} = -\frac{k}{m}x = -w^2x$
- Time period: $T = \frac{2\pi}{w} = 2\pi \sqrt{\frac{m}{k}}$
- ightharpoonup Displacement: $x = A\sin(wt + \phi)$
- Velocity: $v = Aw\cos(wt + \phi) = \pm w\sqrt{A^2 x^2}$
- Potential energy: $U = \frac{1}{2}kx^2$
- **\Leftrigorange** Kinetic energy: $k = \frac{1}{2}mv^2$
- **Total energy:** $E = U + K = \frac{1}{2}mw^2A^2$
- Simple pendulum: $T = 2\pi \sqrt{\frac{l}{9}}$
- Physical pendulum: $T = 2\pi \sqrt{\frac{I}{mgl}}$
- Torsional pendulum: $T = 2\pi \sqrt{\frac{I}{k}}$
- Springs in series: $\frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2}$
- Spring in parallel: $k_{eq} = k_1 + k_2$
- Superposition of two SHM's:

$$x_{1} = A_{1} \sin wt, x_{2} = A_{2} \sin (wt + \delta)$$

$$x = x_{1} + x_{2} = A \sin (wt + \epsilon)$$

$$A = \sqrt{A_{1}^{2} + A_{2}^{2} + 2A_{1}A_{2} \cos \delta}$$

$$\tan \epsilon = \frac{A_{2} \sin \delta}{A_{1} + A_{2} \cos \delta}$$

PROPERTIES OF MATTER

• Modulus of rigidity:
$$Y = \frac{F/A}{\Delta t/t'}, B = -V \frac{\Delta P}{\Delta V}, \eta = \frac{F}{A\theta}$$

• Compressibility:
$$K = \frac{1}{B} = -\frac{1}{V} \frac{dV}{dP}$$

• Poisson's ratio:
$$\sigma = \frac{\text{lateral strain}}{\text{longitudinal strain}} = \frac{\Delta D/D}{\Delta t/t}$$

❖ Elastic energy:
$$U = \frac{1}{2}$$
 stress × strain × volume

$$\bullet$$
 Surface tension: $S = F/l$

$$\clubsuit$$
 Surface energy: $U = SA$

***** Excess pressure in bubble:
$$\Delta_{pair} = 2S / R$$
, $\Delta_{psoap} = 4S / R$

$$\clubsuit$$
 Hydrostatic pressure: $p = \rho g h$

\Delta Buoyant force:
$$F_B = \rho Vg = \text{weight of displaced liquid}$$

t Equation of continuity:
$$A_1v_1 = A_2v_2$$

❖ Bernoulli's equation:
$$p + \frac{1}{2}pv^2 + \rho gh = \text{constant}$$

• Torricell's theorem:
$$v_{efflux} = \sqrt{2gh}$$

❖ Viscous force:
$$F = -\eta A \frac{dv}{dx}$$

• Stoke's law:
$$F = 6\pi\eta rv$$

- Poiseuilli's equation: $\frac{\text{volume flow}}{\text{time}} = \frac{\pi pr^4}{8\eta l}$
- ***** Terminal velocity: $v_t = \frac{2r^2(\rho \sigma)g}{9\eta}$

WAVES MOTION

- (i) General equation of wave: $\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$
- (ii) Notation: Amplitude A, frequency v, Wavelength λ , Period T,

 Angular Frequency w, Wave number k, $T = \frac{1}{v} = \frac{2\pi}{w}$, $v = v\lambda$, $k = \frac{2\pi}{\lambda}$
- (iii) Progressive wave travelling with speed v: y = f(t x/v), x + x; y = f(t + x/v), x + x
- (iv) Progressive sine wave:

$$y = A\sin(kx - wt) = A\sin(2\pi(x/\lambda - t/T))$$

WAVES ON A STRING

- (i) Speed of waves on a string with mass per unit length μ and tension T: $v = \sqrt{T/\mu}$
- (ii) Transmitted power: $P_{av} = 2\pi^2 \mu v A^2 v^2$
- (iii) Interference:

$$\begin{aligned} y_1 &= A_1 \sin \left(kx - wt\right), \ y_2 &= A_2 \sin \left(kx - wt + \delta\right) \\ y &= y_1 + y_2 = A \sin \left(x - wt + \epsilon\right) \\ A &= \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos \delta} \\ \tan \epsilon &= \frac{A_2 \sin \delta}{A_1 + A_2 \cos \delta} \\ \delta &= \begin{cases} 2n\pi & \text{constructive} \\ \left(2n + 1\right)\pi, \text{ destructive} \end{cases} \end{aligned}$$

(iv) Standing waves:

$$y_{1} = A_{1} \sin(kx - wt), y_{2} = A_{2} \sin(kx + wt)$$

$$y = y_{1} + y_{2} = (2A \cos kx) \sin wt$$

$$x = \begin{cases} \left(n + \frac{1}{2}\right) \frac{\lambda}{2}, & \text{modes}; n = 0, 1, 2.... \\ n \frac{\lambda}{2}, & \text{antinodes}. & n = 0, 1, 2.... \end{cases}$$

- > String fixed at both ends:
 - 1. Boundary conditions: y=0 at x=0 and at x=L

2. Allowed Freq.:
$$L = n \frac{\lambda}{2}, v = \frac{n}{2L} \sqrt{\frac{T}{\mu}}, n = 1, 2, 3...$$

3. Fundamental/1st harmonics:
$$v_0 = \frac{1}{2L} \sqrt{\frac{T}{\mu}}$$

4. 1st overtone/2nd harmonics:
$$v_1 = \frac{2}{2L} \sqrt{\frac{T}{\mu}}$$

5. 2nd overtone/3rd harmonics:
$$v_2 = \frac{3}{2L} \sqrt{\frac{T}{\mu}}$$

- 6. All harmonics are present.
- > String fixed at one end:
- \triangleright Boundary conditions: y=0 at x=0

Allowed Freq.:
$$L = (2n+1)\frac{\lambda}{4}, v = \frac{2n+1}{4L}\sqrt{\frac{T}{\mu}}, n = 0,1,2...$$

Fundamental /1st harmonics: $v_0 = \frac{1}{4L} \sqrt{\frac{T}{\mu}}$

- > 1st overtone/3rd harmonics: $v_1 = \frac{3}{4L} \sqrt{\frac{T}{\mu}}$
- $ightharpoonup 2^{\text{nd}} \text{ overtone/5}^{\text{th}} \text{ harmonics: } v_2 = \frac{5}{4L} \sqrt{\frac{T}{\mu}}$
- > Only add harmonics are present.
- Sonometer: $v \propto \frac{1}{L}, v \propto \sqrt{T}, v \propto \frac{1}{\sqrt{\mu}}, v \propto = \frac{n}{2L} \sqrt{\frac{T}{\mu}}$

SOUND WAVES

- ➤ Displacement wave: $s = s_0 \sin w (t x/v)$
- Pressure wave: $p = p_0 \cos w(t x/v)$, $p_0 = (Bw/v)s_0$
- > Speed of sound water: $v_{liquid} = \sqrt{\frac{B}{\rho}}, v_{solid} = \sqrt{\frac{Y}{\rho}}, v_{gas} = \sqrt{\frac{\gamma P}{\rho}}$
- Intensity: $I = \frac{2\pi^2 B}{v} s_0^2 v^2 = \frac{p_0^2 v}{2B} = \frac{p_0^2}{2\rho v}$
- > Standing longitudinal waves:

$$p_1 = p_0 \sin w (t - x/v), p_2 = p_0 \sin w (t + x/v)$$
$$p = p_1 + p_2 = 2p_0 \cos kx \sin wt$$

- Closed organ pipe:
 - 1. Boundary conditions: y=0 at x=0
 - 2. Allowed freq.: $L = (2n+1)\frac{\lambda}{4}, v = (2n+1)\frac{v}{4L}, n = 0,1,2...$
 - 3. Fundamental/1st harmonics: $v_0 = \frac{v}{4L}$
 - 4. 1st overtone/3rd harmonics: $v_1 = 3v_0 = \frac{3v}{4L}$
 - 5. 2^{nd} overtone/5th harmonics: $v_2 = 5v_0 = \frac{5}{4L}$
 - 6. Only add harmonics are present.

> Open organ pipe:

1. Boundary condition: y=0 at x=0

Allowed Freq.:
$$L = n \frac{\lambda}{2}, v = n \frac{v}{4L}, n = 1, 2, \dots$$

- 2. Fundamental/1st harmonics: $v_0 = \frac{v}{2L}$
- 3. 1st overtone/2nd harmonics: $v_1 = 2v_0 = \frac{2v}{2L}$
- 4. 2nd overtone/ 3rd harmonics: $v_2 = 3v_0 = \frac{3v}{2L}$
- 5. All harmonics are present.
- Resonance column:

$$l_1 + d = \frac{\lambda}{2}, l_2 + d = \frac{3\lambda}{4}, v = 2(l_2 - l_1)v$$

Beasts: two waves of almost equal frequencies $w_1 \approx w_2$

$$p_{1} = p_{0} \sin w_{1} (t - x/v), p_{2} = p_{0} \sin w_{2} (t - x/v)$$

$$p = p_{1} + p_{2} = 2p_{0} \cos \Delta w (t - x/v) \sin w (t - x/v)$$

$$w = (w_{1} + w_{2})/2, \Delta w = w_{1} - w_{2} \text{ (beasts freq.)}$$

Doppler effect:

$$v = \frac{v + u_0}{v - u} v_0$$

Where, v is the speed of sound in the medium, u_0 is the speed of the observer w.r.t the medium, considered positive when it moves towards the source, and u_s is the speed of the source w.r.t. the medium, considered positive when it moves towards the observer and negative when it moves away from the observer.

LIGHT WAVES

Plane wave: $E = E_0 \sin w \left(t - \frac{x}{v} \right), I = I_0$

- > Spherical waves: $E = \frac{aE_0}{r} \sin w \left(t \frac{r}{v} \right), I = \frac{I_0}{r^2}$
- > Young's double slit experiment:
- ightharpoonup Path difference: $\Delta x = \frac{dy}{D}$
- ightharpoonup Phase difference: $\delta = \frac{2\pi}{\lambda} \Delta x$
- > Interference conditions: for integer n,

$$\delta = \begin{cases} 2n\pi, \text{ constructive;} \\ (2n+1)\pi, \text{ destructive;} \end{cases}$$

$$\Delta x = \begin{cases} n\lambda, \text{ constructive} \\ \left(n + \frac{1}{2}\right)\lambda, \text{ destructive} \end{cases}$$

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \delta,$$

$$Intensity: I_{\text{max}} = \left(\sqrt{I_1} + \sqrt{I_2}\right)^2, I_{\text{min}} = \left(\sqrt{I_1} - \sqrt{I_2}\right)^2$$

$$I_1 = I_2 : I = 4I_0 \cos^2 \frac{\delta}{2}, I_{\text{max}} = 4I_0, I_{\text{min}} = 0$$

- Fringe width: $w = \frac{\lambda D}{d}$
- \triangleright Optical path: $\Delta x' = \mu \Delta x$
- > Interference of waves transmitted through this film:

$$\Delta x = 2\mu d = \begin{cases} n\lambda, \text{ constructive} \\ \left(n + \frac{1}{2}\right)\lambda, \text{ destructive} \end{cases}$$

> Diffraction from a single slit:

For minima: $n\lambda = b \sin \theta \approx b(y/D)$

- Resolution: $\sin \theta = \frac{1.22\lambda}{h}$
- ightharpoonup Law of malus: $I = I_0 \cos^2 \theta$

REFLECTION OF LIGHT

- > Laws of reflection:
- > Incident ray, reflected ray, and normal lie on the same plane
- \triangleright $\angle i = \angle r$.
- > Plane mirror:
- The image and the object are equidistant from mirror
- Virtual image of the real object
- > Spherical mirror:
- Focul length f = R/2
- ightharpoonup Mirror equidistant: $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$
- ightharpoonup Magnification $m = -\frac{v}{u}$

REFRACTION OF LIGHT

- Refractive index: $\mu = \frac{\text{speed of light in vacuum}}{\text{speed of light in medium}} = \frac{c}{v}$
- ightharpoonup Snell's law: $\frac{\sin i}{\sin r} = \frac{\mu_2}{\mu_1}$
- Apparent depth: $\mu = \frac{\text{real depth}}{\text{apparent depth}} = \frac{d}{d'}$
- ightharpoonup Critical angle: $\theta_c = \sin^{-1} \frac{1}{\mu}$
- > Deviation by a prism:

$$\delta = i + i' - A$$
, general result

$$\mu = \frac{\sin \frac{A + \delta_m}{2}}{\sin \frac{A}{2}}, i = i' \text{ for minimum deviation}$$

$$\delta_m = (\mu - 1)A$$
, for small A

1. Refraction at spherical surface:

$$\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}, m = \frac{\mu_1 v}{\mu_2 u}$$

- 2. Lens marker's formula: $\frac{1}{f} = (\mu 1) \left[\frac{1}{R_1} \frac{1}{R_2} \right]$
- 3. Lens formula: $\frac{1}{v} \frac{1}{u} = \frac{1}{f}, m = \frac{v}{u}$
- 4. Power of the lens: $P = \frac{1}{f}$, P in dioptre if f in metre.
- 5. Two thin lenses separated by distance d:

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$

OPTICAL INSTRUMENTS

- 1. Simple microscope: m=D/f in normal adjustment.
- 2. Compound microscope:
- 1. Magnification in normal adjustment: $m = \frac{v}{u} \frac{D}{f_{\epsilon}}$
- 2. Resolving power: $R = \frac{1}{\Delta d} = \frac{2\mu \sin \theta}{\lambda}$
- 1. Astronomical telescope:
- 1. In normal adjustment: $m = -\frac{f_o}{f_c}$, $L = f_o + f_c$
- 2. Resolving power: $R = \frac{1}{\Delta \theta} = \frac{1}{1.22\lambda}$

DISPERSION

- 3. Cauchy's equation: $\mu = \mu_0 + \frac{A}{\lambda^2}, A > 0$
- 4. Dispersion by prism with small A and i:
- 1. Mean deviation: $\delta_y = (\mu_y 1)A$
- 2. Angular dispersion: $\theta = (\mu_v \mu_r)A$
- 1. Dispersive power: $w = \frac{\mu_v \mu_r}{\mu_v 1} \approx \frac{\theta}{\delta_v}$ (if A and i small)
- 2. Dispersion without deviation: $(\mu_y 1)A + (\mu_y 1)A' = 0$
- 3. Deviation without dispersion: $(\mu_v \mu_r)A = (\mu'_v \mu'_r)A'$

HEAT AND TEMPERATURE

- 1. Temp. scales: $F = 32 + \frac{9}{5}C$, K = C + 273.16
- 2. Ideal gas equation: pV = nRT, n; number of moles
- 3. Van der Waals equation: $\left(p + \frac{a}{V^2}\right)(V b) = nRT$
- 4. Thermal expansion: $L = L_0 (1 + \alpha \Delta T),$ $A = A_0 (1 + \beta \Delta T), V = V_0 (1 + \gamma \Delta T), \gamma = 2\beta = 3\alpha$
- 5. Thermal stress of a material: $\frac{F}{A} = Y \frac{\Delta l}{l}$

KINETIC THEORY OF GASES

- 1. General: $M = mN_A, k = R / N_A$
- 2. Maxwell distribution of speed:
- 3. RMS speed: $v_{rms} = \sqrt{\frac{3kT}{m}} = \sqrt{\frac{3RT}{M}}$

- 4. Average speed: $\overline{v} = \sqrt{\frac{8kT}{\pi m}} = \sqrt{\frac{8RT}{\pi M}}$
- 5. Most probable speed: $v_p = \sqrt{\frac{2kT}{m}}$
- 6. Pressure: $p = \frac{1}{3}\rho v_{rms}^2$
- 7. Equipartition of energy: $K = \frac{1}{2}kT$ for each degree if freedom. Thus, $K = \frac{f}{2}kT$ for molecule having f degrees of freedoms.
- 8. Internal energy: of n mole of an ideal gas is $U = \frac{f}{2} nRT$

SPECIFIC HEAT

- 1. Specific heat: $s = \frac{Q}{m\Delta T}$
- 2. Latent heat: L = Q / m
- 3. Specific heat at constant volume: $C_v = \frac{\Delta Q}{n\Delta T}\Big|_{V}$
- 4. Specific heat at constant pressure: $C_P = \frac{\Delta Q}{n\Delta T}\Big|_{P}$
- 5. Relation between C_p and C_v : $C_p C_v = R$
- 6. Ratio of specific heats: $\gamma = C_P / C_V$
- 7. Relation between U and C_V : $\Delta U = nC_v \Delta T$
- 8. Specific heat of gas mixture:

$$C_{v} = \frac{n_{1}C_{v1} + n_{2}C_{v2}}{n_{1} + n_{2}}, \gamma = \frac{n_{1}C_{p1} + n_{2}C_{p2}}{n_{1}C_{v1} + n_{2}C_{v2}}$$

9. Molar internal energy of an ideal gas: $U = \frac{f}{2}RT$, f=3 for monatomic and f=5 for diatomic gas.

THERMODYNAMICS PROCESSS

10. First law of thermodynamics: $\Delta Q = \Delta U + \Delta W$

11. Work done by the gas:

$$\Delta W = p\Delta V, W = \int_{v_1}^{v_2} p dV$$

$$W_{isothermal} = nRT \ln \left(\frac{V_2}{V_1}\right)$$

$$W_{isobaric} = p(V_2 - V_1)$$

$$W_{adiabatic} = \frac{p_1 V_1 - p_2 V_2}{\lambda - 1}$$

$$W_{isocharic} = 0$$

12. Efficiency of the heat engine:

$$\eta = \frac{\text{work done by the engine}}{\text{heat supplied to it}} = \frac{Q_1 - Q_2}{Q_1}$$

$$\eta_{carnot} = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1}$$

13.Co eff. Of performance of refrigerator:

$$COP = \frac{Q_2}{W} = \frac{Q_2}{Q_1 - Q_2}$$

$$\Delta S = \frac{\Delta Q}{T}, S_f - S_i = \int_i^f \frac{\Delta Q}{T}$$

14.Entropy:
$$T$$
 const. T: $\Delta S = \frac{Q}{T}$, var ying T: $\Delta S = ms \ln \frac{T_f}{T_i}$

15. Adiabatic process: $\Delta Q = 0$, $pV^{\gamma} = \text{constant}$

HEAT TRANSFER

- 1. Conduction: $\frac{\Delta Q}{\Delta t} = -KA \frac{\Delta T}{x}$
- 2. Thermal resistance: $R = \frac{x}{KA}$

$$R_{series} = R_1 + R_2 = \frac{1}{A} \left(\frac{x_1}{K_1} + \frac{x_2}{K_2} \right)$$

$$\frac{1}{R_{parallel}} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{x} \left(K_1 A_1 + K_2 A_2 \right)$$

- 3. Kirchoff's Law: $\frac{\text{emissive power}}{\text{absorptive power}} = \frac{E_{body}}{a_{body}} = E_{blackbody}$
- 4. Wien's displacement law: $\lambda_m T = b$
- 5. Stefan-Boltzmann law: $\frac{\Delta Q}{\Delta t} = \sigma e A T^4$
- 6. Newton's law of cooling: $\frac{dT}{dt} = -bA(T T_0)$

ELECTROSTATICS

- 1. Coulomb's law: $\vec{F} = \frac{1}{4\pi \in_0} \frac{q_1 q_2}{r^2} \hat{r}$
- 2. Electric field: $\vec{E}(\vec{r}) = \frac{1}{4\pi \in_0} \frac{q}{r^2} \hat{r}$
- 3. Electrostatic energy: $U = -\frac{1}{4\pi \in_0} \frac{q_1 q_2}{r}$
- 4. Electrostatic potential: $V = \frac{1}{4\pi \in_0} \frac{q}{r}$

$$dV = -\vec{E}.\vec{r}, V(\vec{r}) = -\int_{\infty}^{\vec{r}} \vec{E}.d\vec{r}$$

- 5. Electric dipole moment: $\vec{p} = q\vec{d}$
- 6. Potential of a dipole: $V = \frac{1}{4\pi \in 0} \frac{p \cos \theta}{r^2}$
- 7. Field of a dipole: $E_r = \frac{1}{4\pi \in \Omega} \frac{2p\cos\theta}{r^3}$, $E_\theta = \frac{1}{4\pi \in \Omega} \frac{p\sin\theta}{r^3}$
- 8. Torque on a dipole placed in \vec{E} : $\vec{r} = \vec{p} \times \vec{E}$
- 9. Pot. Energy of a dipole placed in \vec{E} : $U = -\vec{p}.\vec{E}$

GAUSS'S LAW AND ITS APPLICATIONS

1. Electric flux: $\phi = \phi \vec{E} \cdot d\vec{S}$

2. Gauss's law: $\phi \vec{E}.d\vec{S} = q_{in}/\in_0$

3. Field of a uniformly charged ring on its axis:

$$E_{P} = \frac{1}{4\pi \in_{0}} \frac{qx}{\left(a^{2} + x^{2}\right)^{3/2}}$$

4. E and V of a uniformly charged sphere:

$$E = \begin{cases} \frac{1}{4\pi \in_0} \frac{Qr}{R^3}, & \text{for } r < R \\ \frac{1}{4\pi \in_0} \frac{Q}{r^2}, & \text{for } r \ge R \end{cases}$$

$$V = \begin{cases} \frac{Q}{8\pi \in_{0} R} \left(3 - \frac{r^{2}}{R^{2}} \right), \text{ for } r < R \\ \frac{1}{4\pi \in_{0}} \frac{Q}{r}, \text{ for } r \ge R \end{cases}$$

5. E and V of a uniformly charged spherical shell:

$$E = \begin{cases} 0, \text{ for } r < R \\ \frac{1}{4\pi \in_{0}} \frac{Q}{r^{2}}, \text{ for } r \ge R \end{cases}$$

$$V = \begin{cases} \frac{1}{4\pi \in_{0}} \frac{Q}{R}, & \text{for } r < R \\ \frac{1}{4\pi \in_{0}} \frac{Q}{r}, & \text{for } r \ge R \end{cases}$$

6. Field of a line charge: $E = \frac{\lambda}{2\pi \in_0 r}$

7. Field of an infinite sheet: $E = \frac{\sigma}{2 \in 0}$

8. Field in the vicinity of conducting surface: $E = \frac{\sigma}{\epsilon_0}$

CAPACITORS

- ➤ Capacitance: C=q/V
- \triangleright Parallel plate capacitor: $C = \in_0 A/d$
- Spherical capacitor: $C = \frac{4\pi \in_0 r_1 r_2}{r_2 r_1}$
- ightharpoonup Cylindrical capacitor $C = \frac{2\pi \in_0 l}{\ln(r_2/r_1)}$
- ightharpoonup Capacitors in parallel: $C_{eq} = C_1 + C_2$
- ightharpoonup Capacitors in series: $\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$
- Force between plates of a parallel plate capacitor: $F = \frac{Q^2}{2A \in_0}$
- Energy stored in capacitor: $U = \frac{1}{2}CV^2 = \frac{Q^2}{2C} = \frac{1}{2}QV$
- Energy density in electric field $E: U/V = \frac{1}{2} \in_0 E^2$
- Capacitor with dielectric: $C = \frac{\epsilon_0 KA}{d}$

CURRENT ELECTRICITY

- \triangleright Current density: $j = i/A = \sigma E$
- ightharpoonup Drift speed: $v_d = \frac{1}{2} \frac{eE}{m} T = \frac{i}{neA}$
- Resistance of a wire: $R = \rho l / A$, where $\rho = 1 / \sigma$
- ightharpoonup Temp. dependence of resistance: $R = R_0 (1 + \alpha \Delta T)$
- ➤ Ohm's law: V=iR
- ➤ Kirchhoff's law:

- (i) the junction law: The algebraic sum of all the currents directed towards a node is zero i.e., $\sum_{node} Ii = 0$.
- (ii) The loop law: the algebraic sum of all the potential along a closed loop in a circuit is zero i.e., $\sum_{loop} \Delta V_i = 0$
- Resistance in parallel: $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$
- Resistance in sectors: $R_{eq} = R_1 + R_2$
- Wheatstone bridge: Balanced if $R_1 / R_2 = R_3 / R_4$
- \triangleright Electric power: $P = V^2 / R = I^2 R = IV$
- ➤ Galvanometer as an Ammeter:

$$i_{g}G = \left(i - i_{g}\right)S$$

➤ Galvanometer as a Voltmeter:

$$V_{AB} = i_g \left(R + G \right)$$

Charging of capacitors:

$$q(t) = CV \left[1 - e^{-\frac{t}{RC}} \right]$$

- ► Discharging of capacitors: $q(t) = q_0 e^{-\frac{t}{RC}}$
- ightharpoonup Time constant in RC circuit: $\tau = RC$
- Peltier effect: emf e = $\frac{\Delta H}{\Delta Q}$ = $\frac{\text{peltier heat}}{\text{charge transferred}}$
- Seeback effect
- 1. Thermo-emf: $e = aT + \frac{1}{2}bT^2$
- 2. Thermoelectric power: de/dt = a + bT
- 3. Neutral temp: $T_n = -a/b$
- 4. Inversion temp: $T_i = -2a/b$

- Thomson effect: emf $e = \frac{\Delta H}{\Delta Q} = \frac{\text{Thomson heat}}{\text{charge transferred}} = \sigma \Delta T$
- Faraday's law of electrolysis: The mass deposited is $m = Zit = \frac{1}{F}Eit$ where I is current, Z is electrochemical equivalent, E is chemical equivalent and F=96485C/g is Faraday constant.

MAGNETISM

- Lorentz force on a moving charge: $\vec{F} = q\vec{v} \times \vec{B} + q\vec{E}$
- > Charged particle in a uniform magnetic field:

$$r = \frac{mv}{qB}, T = \frac{2\pi m}{qB}$$

> Force on a current carrying wire:

$$\vec{F} = i\vec{l} \times \vec{B}$$

Magnetic moment of a current loop (dipole):

$$\vec{\mu} = i\vec{A}$$

- Torque on a magnetic dipole placed in $\vec{B}: \vec{r} = \vec{\mu} \times \vec{B}$
- Energy of a magnetic dipole placed in $\vec{B}: \vec{U} = -\vec{\mu}.\vec{B}$
- ightharpoonup Hall effect: $V_w = \frac{Bi}{ned}$

MAGNETIC FIELD

- ightharpoonup Biot-Savart law: $d\vec{B} = \frac{\mu_0}{4\pi} \frac{id\vec{l} \times \vec{r}}{r^3}$
- Field due to a straight conductor: $B = \frac{\mu_0 i}{4\pi d} (\cos \theta_1 \cos \theta_2)$
- Field due to an infinite straight wire: $B = \frac{\mu_0 i}{2\pi d}$

- Force between parallel wires: $\frac{dF}{dt} = \frac{\mu_0 i_1 i_2}{2\pi d}$
- Field on the axis of a ring: $B_P = \frac{\mu_o i_a^2}{2(a^2 + d^2)^{3/2}}$
- Field at the centre of an arc: $B = \frac{\mu_0 i\theta}{4\pi a}$
- Field at the centre of a ring: $B = \frac{\mu_0 i}{2a}$
- ightharpoonup Ampere's law: $\phi \vec{B} \cdot d\vec{l} = \mu_0 I_{in}$
- Field inside a solenoid: $B = \mu_0 ni, n = \frac{N}{l}$
- Field inside a toroid: $B = \frac{\mu_0 Ni}{2\pi r}$
- Field of a bar magnet: $B_1 = \frac{\mu_0}{4\pi} \frac{2M}{d^3}$, $B_2 = \frac{\mu_0}{4\pi} \frac{M}{d^3}$
- \triangleright Angle of dip: $B_h = B \cos \delta$
- Tangent galvanometer: $B_h \tan \theta = \frac{\mu_0 ni}{2r}, i = K \tan \theta$
- Moving coil galvanometer: $niAB = k\theta, i = \frac{k}{nAB}\theta$
- Time period of magnetometer: $T = 2\pi \sqrt{\frac{1}{MB_h}}$
- Permeability: $\vec{B} = \mu \vec{H}$

ELECTROMAGNETIC INDUCTION

- Magnetic flux: $\phi = \phi \vec{B} \cdot d\vec{S}$
- Faraday's law: $e = -\frac{d\phi}{dt}$
- ➤ Lenz's law: Induced current create a B-field that opposes the charge in magnetic flux.

➤ Motional emf: e=B/v

Self inductance:
$$\phi = Li, e = -L \frac{di}{dt}$$

- Self inductance of a solenoid: $L = \mu_0 n^2 (\pi r^2 l)$
- From Growth of current in LR circuit: $i = \frac{e}{R} \left[1 e^{-\frac{t}{L/R}} \right]$
- ➤ Decay of current in LR circuit: $i = i_0 e^{-\frac{t}{L/R}}$
- \triangleright Time constant of LR circuit: $\tau = L/R$
- Energy stored in an in inductor: $U = \frac{1}{2}Li^2$
- Energy density of B field: $u = \frac{U}{V} = \frac{B^2}{2\mu_0}$
- Mutual inductance: $\phi = Mi, e = -M \frac{di}{dt}$
- \triangleright EMF induced in a rotating coil: $e = NAB\omega \sin \omega t$
- ➤ Alternating current:

$$i = i_0 \sin(\omega t + \phi), T = 2\pi / \omega$$

- Average current in AC: $\bar{i} = \frac{1}{T} \int_0^T i dt = 0$
- **RMS** current: $i_{rms} = \left[\frac{1}{T} \int_0^T i^2 dt\right]^{1/2} = \frac{i_0}{\sqrt{2}}$
- \triangleright Energy: $E = i_{rms}^2 RT$
- ightharpoonup Capacitive reactance: $X_c = \frac{1}{\omega C}$
- ► Inductive reactance: $X_L = \omega L$
- ightharpoonup Impedance: $Z = e_0 / i_0$
- > RC circuit:

$$Z = \sqrt{R^2 + (1/\omega C)^2}$$
, $\tan \phi = \frac{1}{\omega CR}$

> LR circuit:

$$Z = \sqrt{R^2 + \omega^2 L^2}$$
, $\tan \phi = \frac{\omega L}{R}$

LCR circuit:

$$Z = \sqrt{R^2 + \left(\frac{1}{\omega C} - \omega L\right)^2}, \tan \phi = \frac{\frac{1}{\omega C} - \omega L}{R}$$

$$v_{resonance} = \frac{1}{2\pi} \sqrt{\frac{1}{LC}}$$

Power factor: $P = e_{rms}i_{rms}\cos\phi$

> Transformer: $\frac{N_1}{N_2} = \frac{e_1}{e_2}, e_1 i_1 = e_2 i_2$

Speed of the EM waves in vacuum: $c = 1/\sqrt{\mu_0 \in \mathbb{Q}}$