	Utech
Name :	
Roll No. :	To place (1/ Knowledge Stall Explained)
Invigilator's Signature :	

SYSTEM PROGRAMMING AND OPERATING SYSTEM

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$

- i) The execution of a program written in a high level language involves
 - a) Translation of the program
 - b) Linking of the program with other programs needed for its execution
 - c) Relocation of the program to execute from the specific memory area allocated to it
 - d) Loading of the program in the memory for the purpose of execution
 - e) All of these.

7309 [Turn over

- ii) Which one of the following is called command interpreter?
 - a) Kernel

- b) Shell
- c) Dispatcher
- d) Scheduler.
- iii) Round robin scheduling algorithm with infinite time quantum becomes
 - a) FCFS
 - b) SJF
 - c) Priority scheduling
 - d) Multilevel queue scheduling.
- iv) Which of the following is the solution of starvation?
 - a) Priority scheduling
 - b) Killing the process
 - c) Aging
 - d) None of these.
- v) Mutual exclusion problem occurs between
 - a) processes that share resources
 - b) two disjoint processes that don't interact
 - c) processes that don't share resources
 - d) none of these.

7309

- x) A system has 3 processes sharing 4 resources. If each process needs a maximum of 2 units then
 - a) Deadlock definitely will occur
 - b) Deadlock may occur
 - c) Deadlock never occurs
 - d) None of these.
- xi) If the page size is 8 kilobyte then no. of bits required to represent offset is
 - a) 11

b) 12

c) 13

- d) 8.
- xii) Compaction is the solution for
 - a) internal fragmentation
 - b) external fragmentation
 - c) mutual exclusion
 - d) both (a) and (b).

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

- 2. a) What do you mean by LC processing in assembler? Exemplify & explain.
 - b) Explain with a specific example how the problem of forward references is tackled by the assembler in case of single pass translation. 2+3
- 3. a) What do you mean by a macro expansion?
 - b) Differentiate between positional & keyword parameters in case of a macro definition. 2+3

7309

- 4. a) What are the different services provided by an operating system?
 - b) Is there any difference between multi-programming and multi-tasking? 3 + 2
- 5. a) What is the difference between internal and external fragmentations? Explain with example.
 - b) Can we solve the problem of internal fragmentation with paging? Explain with example. 3 + 2
- 6. a) What do you mean by wait-for graph? Why do we need it?
 - b) What is the difference between paging and segmentation ? 3 + 2

GROUP – C (Long Answer Type Questions)

 $3\times15=45$

7. What is deadlock? State Banker's algorithm. Consider the following snapshot of a system:

Process	Allocation	Max	Available
	АВС	АВС	АВС
P_{1}	0 0 1	1 1 2	3 5 2
P_2	1 0 0	1 7 5	
P_3	1 1 5	$2\ 3\ 5$	
P_4	0 6 3	065	

Justify whether the system is in safe state or not. If a further request (0 2 1) is made by $P_{\,3}$, illustrate whether that may

be granted or not. What is starvation?

2 + 4 + 4 + 3 + 2

- 8. What are the advantages of assembly language? Write the advantages of 2 pass assembler over 1 pass assembler. What is compile and go loader? How does it differ with absolute loader? 4 + 4 + 3 + 4
- 9. a) Draw and explain the state diagram of a process.
 - b) What is PCB? What are the contents of it?
 - c) What is the difference between pre-emptive & non-pre-emptive schedulings?
 - d) Suppose that the following processes arrive for execution at the times indicated. Each process will run the listed amount of time. In answering the questions, use non-pre-emptive scheduling and base all decisions on the information you have at the time the decision must be made:

Process	Burst Time	Arrival Time
P 1	8	0.0
P_{2}	4	0.4
P_3	1	1.0

What is the average turnaround time for these processes with FCFS and SJF scheduling algorithm?

$$5 + (1 + 2) + 2 + (2 + 3)$$

- 10. a) Is there any difference between overlay and swapping?
 Give reason for your answer.
 - b) Why the sizes of pages are taken as power of 2?
 - c) Consider a logical address space of eight pages of 1024 words each, mapped onto a physical memory of 32 frames. How many bits are there in the logical and physical address?

- d) Consider a paging system with the page table stored in memory.
 - i) If a memory reference takes 200 nanoseconds, how long does a paged memory reference take? Why?
 - ii) If we add associative registers and 75 per cent of all page-table references are found in the associative registers, what is the effective memory reference time? (assume that finding a page table entry in the associative registers takes 10 nanosecnods).
- e) Can we maintain a single page table for all the processes in the system ? If "yes", then how, else give reason for your answer. 3 + 2 + 2 + (2 + 3) + 3
- 11. Write short notes on any *three* of the following: 3×5
 - a) Semaphore and its applications
 - b) Protection and security
 - c) Solution of critical section problem
 - d) Shell and kernel
 - e) Simple batch system and spooling.

7309 7 [Turn over