Correction 24.56

Hasard 2 Math

Si vous voyez une coquille, n'hésitez pas à la signaler par mail.

1 Indication

- 1. Montrer que la "pente" de u est la même pour u(x) et u(y). Dinstinguer le cas (x,y) liée ou non.
- 2. Procéder par récurrence. Si u n'est pas une homététhie, commencer une base par $(x_0, u(x_0))$.
- 3. Caractériser l'image et le noyau afin de trouver un antécédent interréssant à φ .

2 Correction

1. Supposons que $\forall x \in E, (x, u(x))$ est liée. Ainsi,

$$\forall x \in E, \exists \lambda_x \in \mathbb{K}, u(x) = \lambda_x x$$

Soit $(x,y) \in E^2$. Montrons que l'on dispose de $\lambda \in \mathbb{K}$ tel que $u(x) = \lambda x$ et $u(y) = \lambda y$.

— Si (x, y) est liée, alors on dispose de $\mu \in \mathbb{K}^*$ tel que $x = \mu y$. On a aussi λ_x et λ_y pour x et y (notation juste au dessus).

$$u(x) = \lambda_x x = \lambda_x \mu y = u(\mu y)$$

Donc,

$$u(y) = \lambda_x y = \lambda_y y$$

Ainsi $\lambda_x = \lambda_y$.

— Si (x,y) est libre, de même, on dispose de λ_x, λ_y et λ_{x+y} tel que $u(x+y) = \lambda_{x+y}(x+y)$.

$$u(x) + u(y) = \lambda_x x + \lambda_y y = u(x+y) = \lambda_{x+y}(x+y)$$

Donc,

$$(\lambda_x - \lambda_{x+y})x = (\lambda_{x+y} - \lambda_y)y$$

Or (x, y) est libre donc $\lambda_x = \lambda_y = \lambda_{x+y}$ car x et y sont non nuls.

Ainsi u est bien une homotéthie.

2. Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice de trace nulle.

On pose u_A la projection cannoniquement associcée à A.

Si u_A est une homététhie, alors $A = \lambda I_n$, donc A = 0 car sa trace est nulle. Ainsi A convient.

Sinon (u_A n'est pas une homététhie). Pour $n \in \mathbb{N}^*$, on note H_n : "Toute matrice carrée d'ordre n de trace nulle est semblable à une matrice de diagonale nulle".

1

- Le cas n=1 est évident. En effet, un matrice d'ordre 1 de trace nulle est nulle.
- Soit $n \in \mathbb{N}^*$, $n \geq 2$ tel que H_{n-1} soit vraie. D'après la question précédente, on dispose de $X_0 \in \mathcal{M}_n(\mathbb{K})$ tel que $(X_0, u_A(X_0))$ est libre. On complète cette famille en une base que l'on note $\mathcal{B} = (X_0, u(X_0), ...)$. On a ainsi :

$$M = \operatorname{Mat}_{\mathcal{B}}(u_A) = \begin{pmatrix} 0 & \star & - & \star \\ \hline 1 & & & \\ 0 & & & \\ | & & M' & \\ 0 & & & \end{pmatrix}$$

avec $M' \in \mathcal{M}_{n-1}(\mathbb{K})$. On remarque que M est semblable à A.

$$\operatorname{tr}(M) = 0 + \operatorname{tr}(N) = 0$$

Donc tr(N) = 0, d'après l'hypothèse de récurrence, on dispose de N de diagonalle nulle et semblable à M'. Notons P la matrice de changement de base de N à M' tel que $M' = PNP^{-1}$.

$$M = \begin{pmatrix} 0 & \star & - & \star \\ \hline 1 & & & \\ 0 & & & \\ | & PNP^{-1} & \\ | & & \\ 0 & & & \end{pmatrix}$$

On pose

$$Q = \left(\begin{array}{c|c} 1 & 0 \\ \hline 0 & P \end{array}\right)$$

Après vérification, on a $Q \times Q^{-1} = I_n$. Donc, on a,

$$Q^{-1}MQ = \left(\begin{array}{c|c} 0 & \star \\ \hline \star & N \end{array}\right)$$

Ainsi $Q^{-1}MQ$, une matrice de diagonnale nulle, est semblable à M elle même semblable à A. Par transitivité, $Q^{-1}MQ$ est semblable à A. Dès lors H_n est vraie. Ce qui conclut.

- 3.
- $(ii) \Rightarrow (i)$ se déduit des propriétés de la trace.
- $(i) \Rightarrow (ii)$ Soit $A \in \mathcal{M}_n(\mathbb{K})$ de trace nulle. D'après la question précédente, on dipose de $B \in \mathcal{M}_n(\mathbb{K})$ de diagonnale nulle et semblable à A telle que $A = PBP^{-1}$.

On pose donc $\varphi: M \longmapsto MD - DM$ où D est la matrice décrite dans l'énoncé.

On remarque, après quelques calculs, que $\ker(\varphi) = \{$ l'ensemble des matrices diagonales $\}$. Dès lors, $\dim \ker(\varphi) = n$. On a aussi que $\ker(\varphi) \cup \operatorname{Im}(\varphi) = \{0\}$, donc $\operatorname{Im}(\varphi) = \{$ l'ensemble des matrices de diagonale nulle $\}$.

Ainsi, on dispose de $M \in \mathcal{M}_n(\mathbb{K})$ tel que B = MD - DM, puis

$$A = PMDP^{-1} - PDMP^{-1} = PMP^{-1}PDP^{-1} - PDP^{-1}PMP^{-1}$$

Ainsi, on a bien (ii). Remarque : Toute matrice de trace nulle est un crochet de Lie Ce qui clôture la démonstration