ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Департамент программной инженерии

ПРОГРАММА, ВЫЧИСЛЯЮЩАЯ МАКСИМАЛЬНОЕ ПРОСТОЕ ЧИСЛО В ДИАПАЗОНЕ ОТ 1 ДО БЕЗЗНАКОВОГО МАШИННОГО СЛОВА

Пояснительная записка Листов 11

Исполнитель:	
студентка группы БПИ196	
/ А. А. Баранова /	
«»2020 г.	«
Руководитель:	
рессор департамента программной инженерии	профессор д
факультета компьютерных наук НИУ ВШЭ	факу.
/ А. И. Легалов /	
«»2020 г.	«

СОДЕРЖАНИЕ

1.	•	П	ОСТАНОВКА ЗАДАЧИ	.2
2.	•	О	ПИСАНИЕ ПРИМЕНЯЕМЫХ РАСЧЁТНЫХ МЕТОДОВ	.3
	2.1.		Метод проверки данного числа на простоту	.3
	2.2.		Метод определения границы поиска	.3
	2.3.		Метод нахождения максимального простого числа	.3
3.	•	О	ПИСАНИЕ ХРАНЕНИЯ ПРОМЕЖУТОЧНЫХ И ИСХОДНЫХ ДАННЫХ	5
	3.1.		Описание исходных данных	.5
	3.2.		Описание промежуточных данных	.5
4.	•	T	ЕСТОВЫЕ ПРИМЕРЫ	.6
5.	•	C	ПИСОК ЛИТЕРАТУРЫ	.7
6.	•	T	ЕКСТ ПРОГРАММЫ	.8
	6.1.		MaxPrime.asm	.8
	6.2		May Prime Procedures inc	g

1. ПОСТАНОВКА ЗАДАЧИ

1.1. Задание:

Разработать программу, вычисляющую максимальное простое число в диапазоне от 1 до беззнакового машинного слова.

- 1.2. Разрабатываемая программа должна:
- а реализовывать алгоритм нахождения максимального простого числа в диапазоне от 1 до беззнакового машинного слова;
- выводить в консоль информацию о полученных результатах;
- с при выводе рассчитанных данных подробно указывать их истинное назначение.

2. ОПИСАНИЕ ПРИМЕНЯЕМЫХ РАСЧЁТНЫХ МЕТОДОВ

2.1. Метод проверки данного числа на простоту

Для определения простоты текущего числа num, проверяется его делимость на числа от 2 до (num -1). Проверка организована как подпрограмма, имитирующая работу с параметрами и возвращающая результат проверки в регистре eax (1, если число простое, 0 в противном случае).

Число для проверки хранится в регистре bx (используется для проверки делимости) и сх (используется для итерации по возможным делителям от (num -1) до 2, с каждой итерацией уменьшается на 1).

Определение делимости числа num на данный делитель в сх определяется по значению остатка от деления в регистре dx (команда 'div сх' делит значение в регистре ах (куда предварительно помещается значение из bx) на значение в регистре сх и записывает остаток в регистр dx). Если после деления значение в dx равно 0, в еах записывается 0 и управление передается обратно вызывающему коду. В противном случае значение в сх уменьшается на единицу и осуществляется переход к следующей итерации. Когда значение в сх достигает 1, в еах записывается 1 и управление передается обратно вызывающему коду.

2.2. Метод определения границы поиска

Для определения верхней границы поиска (беззнакового машинного слова) используется переполнение. Число размером в машинное слово при увеличении на единицу дает ноль, поэтому для определения значения беззнакового машинного слова в есх записывается число, равное нулю, затем из сх вычитается единица. В результате — в регистре сх хранится беззнаковое машинное слово — с этого числа начинается поиск максимального простого числа.

2.3. Метод нахождения максимального простого числа

Итерируясь по значению в сх, начиная с беззнакового машинного слова, программа проверяет числа на простоту. Если подпрограмма, определяющая простоту числа (см. п. 2.1) вернула 0, значение в сх уменьшается на единицу и программа переходит к следующей итерации. Если число оказалось простым (подпрограмма, определяющая простоту числа (см. п. 2.1.) вернула 1), поиск прекращается.

Таким образом, первое (ввиду того, что итерация происходит начиная с верхней границы диапазона, оно будет наибольшим) найденное простое число будет являться результатом работы программы.

Для реализации циклов в программе используется инструкция 'loopw', защищающая от зацикливания. После каждой итерации значение в сх уменьшается на единицу, программа переходит к следующей итерации, если значение в сх не равно нулю.

3. ОПИСАНИЕ ХРАНЕНИЯ ПРОМЕЖУТОЧНЫХ И ИСХОДНЫХ ДАННЫХ

3.1. Описание исходных данных

Все исходные данные – строки с информацией, выводимой на различных этапах работы программы. Хранятся в переменных, описанных в секции '.data' программы:

- 1) strRange информация о диапазоне поиска;
- 2) strStart вспомогательная строка для запуска программы;
- 3) strResult строка для вывода результата;
- 4) strResInfo дополнительная информация о значении найденного числа;
- 5) strEnd вспомогательная строка для выхода.

3.2. Описание промежуточных данных

Промежуточные данные хранятся в регистрах:

- 1) еах используется для возврата значений из функции проверки числа на простоту (см. п. 2.1.);
- 2) ах используется в арифметических операциях при проверки делимости (как делимое);
- 3) bx используется для хранения текущего числа (при поиске максимального простого числа) при переходе к проверке на простоту (значение в сх будет потеряно при итерации по потенциальным делителям);
- 4) сх используется для итерации по числам (при поиске максимального простого числа) и потенциальным делителям числа (при проверке на простоту);
- 5) dx используется в арифметических операциях при проверки делимости (как остаток от деления).

4. ТЕСТОВЫЕ ПРИМЕРЫ

- 4.1. Описание области допустимых значений входных параметров: Программа не предполагает входных параметров.
- 4.2. Примеры работы программы:

```
Search range: [1; 65535] (from 1 to an unsigned machine word)

Press ENTER to calculate the maximum prime number...

| Result: 65521 |

Calculated number is prime and the biggest for the given range.

Press any key to exit...
```

Программа выводит информацию о цели своей работы, а также диапазон поиска.

Программа выводит результат работы, а также информацию о значении полученного числа.

Результат работы программы (число 65521) является корректным: оно простое и следующее за ним простое число 65537 не входит в указанный диапазон.

5. СПИСОК ЛИТЕРАТУРЫ

- 1) flat assembler 1.73 Programmer's Manual: [Электронный ресурс]: Режим доступа: URL: https://flatassembler.net/docs.php?article=manual, свободный. (дата обращения: 30.10.2020).
- 2) Программирование на языке ассемблера: [Электронный ресурс]: Режим доступа: URL: http://natalia.appmat.ru/c&c++/assembler.html, свободный. (дата обращения: 30.10.2020).
- 3) Программирование на языке ассемблера. Микропроект. Требования к оформлению. 2020-2021 уч.г. [Электронный ресурс]: Режим доступа: URL: http://softcraft.ru/edu/comparch/tasks/mp01/, свободный. (дата обращения: 30.10.2020).
- 4) Word (computer architecture) [Электронный ресурс]: Режим доступа: URL: https://en.wikipedia.org/wiki/Prime_number свободный. (дата обращения: 30.10.2020).
- 5) Prime number [Электронный ресурс]: Режим доступа: URL: https://en.wikipedia.org/wiki/Word_(computer_architecture) свободный. (дата обращения: 30.10.2020).
- 6) Типы данных в ассемблере [Электронный ресурс]: Режим доступа: URL: https://prog-cpp.ru/asm-datatypes/ свободный. (дата обращения: 30.10.2020).
- 7) Byte++ FASM. add, sub, mul, div, neg. Арифметика ассемблер. #3 [Электронный ресурс]: Режим доступа: URL: https://www.youtube.com/watch?v=gzDiLwIWcCY свободный. (дата обращения: 30.10.2020).
- 8) Список простых чисел от 1 до 100 000 [Электронный ресурс]: Режим доступа: URL: http://denisx.ru/tech/prime-number/prime-numbers-list/ свободный. (дата обращения: 30.10.2020).

RU.17701729.04.13-01 81 01-1

6. ТЕКСТ ПРОГРАММЫ

6.1. MaxPrime.asm

```
; Baranova Anastasia BSE196
; Course: Computer System Architecture
; Microproject:
; Develop a program calculating the maximum prime number
; in the range from 1 to an unsigned machine word
format PE console
entry start
include 'win32a.inc'
include 'MaxPrimeProcedures.inc'
section '.data' data readable
      strRange db 'Search range: [1; %d] (from 1 to an unsigned machine word)', 10, 0
                db 'Press ENTER to calculate the maximum prime number...', 0
      strStart
      strResult db 10, '| Result: %d |', 10, 0
      strResInfo \, db 10, 'Calculated number is prime and the biggest for the given range.', 10, 0
                db 10, 'Press any key to exit...', 0
section '.code' code readable executable
start:
                  ; Prints information about the process
      FindMaxPrime ; Finds the maximum prime number in the range
                   ; Prints result + info
finish:
      call [getch]
      push 0
      call [ExitProcess]
section '.idata' import data readable
      library kernel, 'kernel32.dll',\
            msvcrt, 'msvcrt.dll'
      import kernel,\
            ExitProcess, 'ExitProcess'
      import msvcrt,\
            printf, 'printf',\
            scanf, 'scanf',\
            getch, ' getch'
```

6.2. MaxPrimeProcedures.inc

```
;----Function checking if number is prime-----
; The number to test is in bx register
; Result puts in eax register (1 if number is prime, 0 otherwise)
macro IsPrime {
      sub cx, 1
                     ; put first possible divisor (number - 1) in cx
findDivisor:
      ; check if its the last possible divisor (no need to check 1 as a divisor)
      cmp cx, 1
                     ; number is prime
      je prime
      mov ax, bx
                     ; put the number in ax
      xor dx, dx
                     ; dx = 0
                     ; ax / cx, (remainder of the division is in dx)
      cmp dx, 0
                     ; check if cx is a divisor (the remainder = 0)
                     ; number is not prime (cx is a divisor)
      je notPrime
      loopw findDivisor ; to the next divisor
prime:
      ; put result in eax (number is prime)
      mov eax, 1
      jmp endIsPrime
notPrime:
      ; put result in eax (number is not prime)
      mov eax, 0
      jmp endIsPrime
endIsPrime:
;----Function looking for the maximum prime number in the range from 1 to an unsigned machine word--
; Result is in ecx register
macro FindMaxPrime {
      ; find an unsigned machine word value
      xor ecx, ecx
      sub cx, word 1
nextNumber:
      mov bx, cx
                        ; store the current number in bx register
      IsPrime
                        ; check if the value in cx(bx) is prime
                        ; restore the current number in cx register
      mov cx, bx
      cmp eax, 1
                        ; if the number is prime go to the end
      je endFindMaxPrime
      loopw nextNumber
endFindMaxPrime:
}
;----Procedure printing information to the user-----
macro Start {
      xor ecx, ecx
      sub cx, word 1
                        ; find an unsigned machine word value
                        ; print information about the search range
      push ecx
      push strRange
      call [printf]
```

```
add esp, 8
                     ; move the stack pointer
     push strStart ; print start line
     call [printf]
     call [scanf]
                     ; wait for user to press enter
                     ; move the stack pointer
     add esp, 4
endPrintInfo:
;----End of procedure-----
;----Procedure printing program result------
; Result is in ecx register
macro End {
     push ecx
                     ; print program result
     push strResult
     call [printf]
     add esp, 8
                     ; move the stack pointer
     push strResInfo
                     ; print additional information
     call [printf]
     add esp, 4
                     ; move the stack pointer
     push strEnd
                     ; print exit prompt
     call [printf]
     add esp, 4
                     ; move the stack pointer
endPrintResult:
;----End of procedure------
```