Performance benchmarks for common circuit simulators

Evan

August 7, 2019

Abstract

abstract here

Contents

1	Methods
2	Simulator methods 2.1 General unitary matrix multiplication
	2.2 Nonlinear mappings
	2.2.1 Example: X_k
	2.2.2 General Clifford operations
3	Benchmark methods
4	Results
Α	Appendix 1: Einsum operations

Methods 1

2 Simulator methods

2.1 General unitary matrix multiplication

A complete wavefunction simulator (cite Biamonte for what that means; I'll be reffing tensor networks anyways) generally applies the action of a gate as an einsum to the qubit axes acted on by the gate.

Worked example: Computing $U_2U_1\vec{\psi}$ For example, let U_1 be a unitary over a subset of k_1 and U_2 be qubits on a state defined over k_2 , and the target state $|\psi\rangle$ be defined over n qubits. Then we have:

$$\vec{\psi} \in \mathbb{C}^{2^n} \tag{1}$$

$$U_1 \in \mathbb{C}^{2^{k_1} \times 2^{k_1}} \tag{2}$$

$$U_1 \in \mathbb{C}^{2^{k_1} \times 2^{k_1}} \tag{2}$$

$$U_2 \in \mathbb{C}^{2^{k_2} \times 2^{k_2}} \tag{3}$$

(4)

The following list details approaches to computing $U_2U_1|\psi\rangle$ in order of worst to best:

- 1. **kronecker product** + **matmul**: This requires resizing the matrices to n dimensions then performing matrix multiplication
 - (a) kronecker product $U_1 \to U_1' \in \mathbb{C}^{2^n \times 2^n}$ using $I_2\left(\mathbb{O}(2_1^k 2_1^k 2^{n-k_1} 2^{n-k_1}) = 1\right)$ $\mathbb{O}(2^{2n})$
 - (b) kronecker product $U_2 \to U_2' \in \mathbb{C}^{2^n \times 2^n}$ using $I_2 (\mathbb{O}(2_2^k 2_2^k 2^{n-k_2} 2^{n-k_2}) = \mathbb{O}(2_2^k 2_2^k 2^{n-k_2})$ $\mathbb{O}(2^{2n})$
 - (c) matmul $U_2'U_1' \to U_f \in \mathbb{C}^{2^n \times 2^n} (\mathbb{O}(2^{3n}))^1$
 - (d) matmul $U_f \vec{\psi}$ ($\mathbb{O}(2^{2n})$)
- 2. kronecker product + matmul, associativity: This swaps (c) and (d), taking advantage of the fact that $U\vec{\psi}$ has complexity $\mathbb{O}(2^{2n})$ for $U\in$ $\mathbb{C}^{2^n \times 2^n}$, meaning both products cost $\mathbb{O}(2^{2n+1})$ instead of $\mathbb{O}(2^{3n} + 2^{2n})$. Conceptually this results from not having to calculate the full intermediate U_f .
- 3. einsum: An einstein summation allows general tensor transformations using repeated (summation) and permuted (free) indices (See Appendix A

 $^{^1}$ Assuming "schoolbook" matrix multiplication algorithm. For square matrix multiplication this can be improved to $\mathbb{O}(2^{2.807n})$ or even $\mathbb{O}(2^{2.37n})$ with ML but that's not the point of this worst-case example

for some common examples). The austere implementation results in a complexity of?:

$$\mathbb{O}\left(\left(\prod_{i}^{N_{\text{free}}} d_{i}\right) \left(\prod_{i}^{N_{\text{sum}}} d_{i}\right)\right) \tag{5}$$

where N_{free} is the number of free indices (indices of output), N_{sum} is the number of unique input indices between input tensors, and d_i is the size of the axis corresponding to the i-th index. 2

Let unitaries and wavefunctions be represented as tensors of the shape:

$$U \in \mathbb{C}^{2 \times 2 \times \cdots}$$

$$\vec{\psi} \in \mathbb{C}^{2 \times \cdots}$$

$$(6)$$

$$\vec{\psi} \in \mathbb{C}^{\stackrel{\text{n times}}{2 \times \cdots}} \tag{7}$$

with the restriction that $n \geq 2k$ to ensure compatible the state and matrix are compatible for multiplication. Then the einsum computing $U\vec{\psi}$ is indexed as 3

$$i_1 \cdots i_k, i'_1 \cdots i'_k i_1 \cdots i_n \rightarrow i_{k+1} \cdots i_n i'_1 \cdots i'_k$$

has k summation indices and (n-2k) free indices, resulting in a complexity of $\mathbb{O}(2^{n+k})$ since every tensor axis is dimension two.

The complexity of method (3) does not saturate the lower bound for computing all of the elements in $\vec{\psi}' = U\vec{\psi}$ elements, which can require as few as 2^n operations (namely, $I\vec{\psi}$ using sparse multiplication saturates this bound). This motivates even more streamlined unitary action, which will be introduced in the following sections.

2.2Nonlinear mappings

2.2.1Example: X_k

This section begins with an example of applying a permutation to a tensor subspace (taken from the apply_unitary from the CIRQ library). Let X_k

²For example, the einsum string **ik,kj->ij** multiplies two matrices using free indices **i**, **j** and summation index k; if i, j, k index axes of sizes ℓ, m, n respectively, the complexity of this einsum is $\mathbb{O}((d_id_i)(d_k)) = \mathbb{O}(\ell mn)$, the expected complexity of matrix multiplication.

³Three worked examples:

⁽a) single-qubit matrix M acting on two-qubit state ψ (k=1,n=2): $(M\psi)_{jk}=M_{ij}\psi_{ik}$ has one summation index **i** and two free indices **j**,**k**, for $\mathbb{O}(2^3)$

⁽b) two-qubit matrix M acting on two-qubit state ψ (k=2,n=2): $(M\psi)_{\ell m}=M_{jk\ell m}\psi_{jk}$ has two summation indices \mathbf{j}, \mathbf{k} and two free indices ℓ, \mathbf{m} , for $\mathbb{O}(2^4)$

⁽c) two-qubit matrix M acting on three-qubit state ψ (k=2,n=3): $(M\psi)_{\ell mn}=$ $M_{jk\ell m}\psi_{jkn}$ has two summation indices **j,k** and three free indices ℓ ,**m,n**, for $O(2^5)$

be the Pauli-X gate acting on the qubit indexed "k". Define the operation slice_for_bitstring(T, {i for i=1...k}, \vec{s}) to access elements of tensor T for which the subspace corresponding to qubits { $0,1,\dots,k$ } is represented by the (little-endian) bitstring \vec{s} (and so $|\vec{s}| = |\{i_k\}|$). TODO: example of this....

This slices for a subset of 2^{n-k} elements. Then the action of X_k on $\vec{\psi}$ can be computed in two steps using a memory buffer T' sized the same as T (namely, 2^n):

- Compute $S_0 = \text{slice_for_bitstring}(T, \{k\}, (0))$ and $S_1 = \text{slice_for_bitstring}(T, \{k\}, (0))$ which slice T for all elements in which the k-th qubit is a "0" or "1" respectively
- Set $T'[S_1] = T[S_0]$ and $T'[S_0] = T[S_1]$ at a cost of $\mathbb{O}(2^{n-1})$ each, for a total complexity requirement of $\mathbb{O}(2^n)$. In plain English, this sets the amplitude for each basis state in T' to be the same as the amplitude in T where the k-th qubit of that basis state is flipped.

Section 2.2.1 demonstrated how a certain single-qubit gate acting on an n-qubit state can be implemented in $\mathbb{O}(2^n)$, which is at least $2\times$ improvement over the best matrix-style operations (at the expense of exponential memory overhead in the number of qubits, i.e. the uninitialized buffer state).

TODO

2.2.2 General Clifford operations

- Clifford circuits are easy to simulate (Gottesman). Computationally these are relatively sparse matrices.

Here we review an algorithmic app

3 Benchmark methods

This repo uses the PYTEST-BENCHMARK fixture to profile python code.

4 Results

Appendix A Appendix 1: Einsum operations

Some common einsum-compatible operations: transpose, inner produc, matrix multiplication, trace.