Import the libraries

```
In [4]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

Read the dataset

```
In [5]: df = pd.read_csv('Heart Disease data.csv')
    df.head()
```

Out[5]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	target
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	0
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	0
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	0
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	0
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	0

```
In [6]: df.shape
```

Out[6]: (1025, 14)

Data Preprocessing

1) Handling Null

```
In [7]: df.isna().sum()
Out[7]: age
                     0
                     0
        sex
        ср
                     0
        trestbps
                     0
        chol
                     0
        fbs
                     0
        restecg
                     0
        thalach
                     0
        exang
        oldpeak
                     0
        slope
                     0
        ca
                     0
        thal
                     0
        target
        dtype: int64
```

2) Handling Duplicates

```
In [8]: |df.duplicated().sum()
Out[8]: 723
 In [9]: |df.drop_duplicates(inplace=True)
         df.duplicated().sum()
Out[9]: 0
         3) Check data types
In [10]: df.dtypes
Out[10]: age
                        int64
         sex
                        int64
                        int64
         ср
         trestbps
                        int64
         chol
                        int64
         fbs
                        int64
                        int64
         restecg
         thalach
                        int64
         exang
                        int64
                      float64
         oldpeak
         slope
                        int64
         ca
                        int64
         thal
                        int64
         target
                        int64
         dtype: object
In [11]: for i in df.columns:
             print(f'{i} - {df[i].nunique()}')
         age - 41
         sex - 2
         cp - 4
         trestbps - 49
         chol - 152
         fbs - 2
         restecg - 3
         thalach - 91
         exang - 2
         oldpeak - 40
         slope - 3
         ca - 5
         thal - 4
```

target - 2

Bivariate Analysis

Countplot

```
In [14]: plt.figure(figsize=(20,20))
    for i in range(0,len(cat_cols)):
        plt.subplot(3,3,i+1)
        sns.countplot(x=df[cat_cols[i]],hue= df['target'],palette=['maroon','blue
        plt.title(f'Countplot for {cat_cols[i]}')
    plt.show()
```


Boxplot - cont vs target

```
In [15]: |print(cont_cols)
           ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']
In [16]:
           plt.figure(figsize=(18,12))
           for i in range(0,len(cont_cols)):
                plt.subplot(2,3,i+1)
                sns.boxplot(y=df[cont_cols[i]],x=df['target'])
                plt.title(f'Box for {cont_cols[i]}')
           plt.show()
                         Box for age
                                                                                       Box for chol
                                                       Box for trestbps
                                            180
              60
                                            160
                                                                           400
             age
                                                                         chol
                                            120
                                                                           200
                                            100
                           target
                                                          target
                                                                                        target
                        Box for thalach
                                                       Box for oldpeak
             200
             180
             140
             120
In [17]: | df.columns
Out[17]: Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
                    'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
                  dtype='object')
```

```
r1 = df.groupby('target')[['age', 'trestbps', 'chol', 'thalach']].agg(['min', 'max
In [19]:
          r1
Out[19]:
                                                                                 thalach
                                      trestbps
                                                            chol
                  age
                  min max mean
                                      min max mean
                                                           min max mean
                                                                                 min max mean
           target
               0
                   35
                            56.601449
                                      100
                                            200
                                                134.398551
                                                                 409
                                                                      251.086957
                                                                                  71
                                                                                      195
                                                                                           139.1014
                                                            131
               1
                   29
                            52.585366
                                       94
                                            180
                                                129.250000
                                                            126
                                                                 564
                                                                      242.640244
                                                                                  96
                                                                                      202
                                                                                           158.3780
In [20]:
          cont cols
Out[20]: ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']
          r2 = df.groupby('target').agg({'age':['mean', 'median'],
                                             'oldpeak':['min','max'],
                                             'thalach':['min','max','mean']})
          r2
Out[21]:
                  age
                                    oldpeak
                                              thalach
                  mean
                            median
                                    min max min max mean
           target
                  56.601449
                               58.0
                                     0.0
                                               71
                                                    195
                                                        139.101449
                                          6.2
               1 52.585366
                               52.0
                                     0.0
                                          4.2
                                               96
                                                    202
                                                       158.378049
```

Find Age_bins based mean cholestrol for each target. use Pivot_table

```
df['age'].describe()
                                #where have we found age bins based mean????
In [22]:
Out[22]: count
                   302.00000
                    54.42053
         mean
          std
                     9.04797
          min
                    29.00000
          25%
                    48.00000
          50%
                    55.50000
          75%
                    61.00000
                    77.00000
         max
         Name: age, dtype: float64
```

```
# Binning
In [23]:
         df['Age_bins'] = pd.cut(df['age'],bins=list(range(25,85,5)))
         df['Age_bins'].value_counts()
Out[23]: (55, 60]
                      72
         (50, 55]
                      57
         (60, 65]
                      46
         (40, 45]
                      45
         (45, 50]
                      31
         (65, 70]
         (35, 40]
                      11
         (30, 35]
                       6
         (70, 75]
                       4
         (75, 80]
                       2
         (25, 30]
                       1
         Name: Age_bins, dtype: int64
In [25]: pt1 = pd.pivot_table(data=df,columns=['target'],index=['Age_bins'],values=['ch
         pt1 # default agg used is mean
Out[25]:
                   chol
          taract
```

target	0	1
Age_bins		
(25, 30]	NaN	204.000000
(30, 35]	240.000000	191.750000
(35, 40]	210.000000	225.571429
(40, 45]	248.100000	233.371429
(45, 50]	237.000000	236.166667
(50, 55]	257.350000	245.675676
(55, 60]	253.000000	237.703704
(60, 65]	258.678571	268.333333
(65, 70]	245.933333	275.333333
(70, 75]	NaN	246.250000
(75, 80]	304.000000	197.000000

```
In [26]: pt1.plot(kind='bar')
plt.show()
```



```
In [27]: plt.figure(figsize=(18,12))
    for i in range(0,len(cont_cols)):
        plt.subplot(2,3,i+1)
        sns.kdeplot(x=df[cont_cols[i]])
        plt.title(f'KDE plot for {cont_cols[i]}')
    plt.show()
```


Correlation

In [28]: df[cont_cols].head()

Out[28]:

	age	trestbps	chol	thalach	oldpeak
0	52	125	212	168	1.0
1	53	140	203	155	3.1
2	70	145	174	125	2.6
3	61	148	203	161	0.0
4	62	138	294	106	1.9

```
In [29]: corr = df.corr()

plt.figure(figsize=(15,15))
    sns.heatmap(corr,annot=True,cmap='RdBu')
    plt.show()
```

C:\Users\win 8.1\AppData\Local\Temp\ipykernel_10732\3849691348.py:1: FutureW arning: The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

Inference

Highly correlated features are not present

Outlier Treatment

```
In [31]: a = df[cont_cols].describe(percentiles=[0.01,0.02,0.05,0.95,0.97,0.98,0.99]).1
a = a.iloc[:,3:]
a
```

Out[31]:

	min	1%	2%	5%	50%	95%	97%	98%	99%	max
age	29.0	35.00	35.04	40.00	55.5	68.00	69.97	70.00	71.00	77.0
trestbps	94.0	100.00	101.02	108.00	130.0	160.00	170.00	177.92	180.00	200.0
chol	126.0	149.00	160.08	175.05	240.5	326.95	340.97	353.98	406.87	564.0
thalach	71.0	95.01	97.04	108.05	152.5	181.95	184.97	186.98	191.98	202.0
oldpeak	0.0	0.00	0.00	0.00	8.0	3.40	3.60	4.00	4.20	6.2

```
In [32]: def outlier_treatment(x):
    x = x.clip(upper=x.quantile(0.99))
    x = x.clip(lower=x.quantile(0.01))
    return x
```

```
In [33]: df1 = df.copy()
```

```
In [34]: df[cont_cols] = df[cont_cols].apply(outlier_treatment)
```

```
In [35]: a = df[cont_cols].describe(percentiles=[0.01,0.02,0.05,0.95,0.97,0.98,0.99]).1
    a = a.iloc[:,3:]
    a
```

Out[35]:

	min	1%	2%	5%	50%	95%	97%	98%	99%	max
age	35.00	35.0000	35.04	40.00	55.5	68.00	69.97	70.00	71.0000	71.00
trestbps	100.00	100.0000	101.02	108.00	130.0	160.00	170.00	177.92	180.0000	180.00
chol	149.00	149.0000	160.08	175.05	240.5	326.95	340.97	353.98	406.7413	406.87
thalach	95.01	95.0199	97.04	108.05	152.5	181.95	184.97	186.98	191.9602	191.98
oldpeak	0.00	0.0000	0.00	0.00	0.8	3.40	3.60	4.00	4.2000	4.20

Select x and y

```
In [37]: x = df.drop(['target', 'Age_bins'],axis=1)
y = df['target']
print(x.shape)
print(y.shape)

(302, 13)
(302,)
```

Split data into train and test

Function to evaluate model

```
In [40]: from sklearn.metrics import confusion_matrix,classification_report,accuracy_so
from sklearn.metrics import precision_score,recall_score
```

```
In [41]:
    def eval_model(ytest,ypred):
        cm = confusion_matrix(ytest,ypred)
        cr = classification_report(ytest,ypred)
        print('Confusion Matrix\n',cm)
        print('Classification Report\n',cr)

def gen_res(model,xtrain,xtest,ytrain,ytest,ypred,model_name):
        eval_model(ytest,ypred)
        train_acc = model.score(xtrain,ytrain) # Train Acc
        test_acc = model.score(xtest,ytest) # Test Acc
        pre1 = precision_score(ytest,ypred) # pre score = 1
        rec1 = recall_score(ytest,ypred) # rec score = 1
        res = pd.DataFrame({'Train Acc':train_acc,'Test Acc':test_acc, 'Pre1':pre1,'Rec1':rec1},index=[model_name])
        return res
```

Train the model

```
In [42]: from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
```

Model-1: DT1

In [43]: dt1 = DecisionTreeClassifier(criterion='gini',random_state=25)
dt1.fit(x_train,y_train)

Out[43]:

DecisionTreeClassifier
DecisionTreeClassifier(random_state=25)

In [44]: ypred_dt1 = dt1.predict(x_test)
dt1_res = gen_res(dt1,x_train,x_test,y_train,y_test,ypred_dt1,'DT1(gini)')
dt1_res

Confusion Matrix

[[37 11] [10 33]]

Classification Report

	precision	recall	f1-score	support
0	0.79	0.77	0.78	48
1	0.75	0.77	0.76	43
accuracy			0.77	91
macro avg	0.77	0.77	0.77	91
weighted avg	0.77	0.77	0.77	91

Out[44]:

	Train Acc	Test Acc	Pre1	Rec1
DT1(gini)	1.0	0.769231	0.75	0.767442

Inference

Overfitting exists

In [45]: from sklearn.tree import plot_tree

```
In [46]: cn = ['0','1']
    plt.figure(figsize=(20,20))
    plot_tree(dt1,feature_names=x_train.columns,class_names=cn,filled=True)
    plt.show()
```


Model-2: DT2

```
In [47]: dt2 = DecisionTreeClassifier(criterion='gini', max_depth=6, min_samples_split=10
dt2.fit(x_train,y_train)
```

```
Out[47]:

DecisionTreeClassifier

DecisionTreeClassifier(max_depth=6, min_samples_split=10, random_state=25)
```

Confusion Matrix

[[36 12] [9 34]]

Classification Report

	precision	recall	f1-score	support
0	0.80	0.75	0.77	48
1	0.74	0.79	0.76	43
accuracy			0.77	91
macro avg	0.77	0.77	0.77	91
weighted avg	0.77	0.77	0.77	91

Out[48]:

	Train Acc	Test Acc	Pre1	Rec1
DT2(gini md=6 mss=15)	0 900474	0 769231	ი 73913	0 790698

Model-3: DT3

Out[49]:

```
In [50]: ypred_dt3 = dt3.predict(x_test)
    dt3_res = gen_res(dt3,x_train,x_test,y_train,y_test,ypred_dt2,'DT3(ent,md=7,n)
    dt3_res

Confusion Matrix
```

Confusion Matrix [[36 12] [9 34]]

Classification Report

	precision	recall	f1-score	support
0	0.80	0.75	0.77	48
1	0.74	0.79	0.76	43
accuracy			0.77	91
macro avg	0.77	0.77	0.77	91
weighted avg	0.77	0.77	0.77	91

Out[50]:

	Train Acc	Test Acc	Pre1	Rec1
DT3(ent md=7 mss=20)	0.895735	0 769231	ი 73913	0.790698

Inference

By changing the hyperparameters(criterion,max_depth,min_samples_split), the performace of the model changes. So we need to tune the hyperparameters

HyperParameter Tuning

- 1. GridSearchCV
 - a) It consumes a lot of time. Time inefficient.
 - b) It works on all combination of hyperparameters and then it returns the best set of hyperparemeters that generated the best results on different splits.
- 2. RandomizedSearchCV
 - a) It consumes a comparatively less time. Time efficient.
 - b) It works on all random subset of hyperparameters and then it returns the best set of hyperparemeters that generated the best results.

GridSearchCV

```
In [53]: dt_model = DecisionTreeClassifier(random_state=0)

gs1 = GridSearchCV(dt_model,param_grid=hparams,scoring='accuracy',cv=5)
gs1.fit(x_train,y_train)
```

Out[53]:

```
► GridSearchCV
► estimator: DecisionTreeClassifier
► DecisionTreeClassifier
```

```
In [54]: print(gs1.best_params_)
    print(gs1.best_estimator_)
    print(gs1.best_score_)
```

{'criterion': 'gini', 'max_depth': 6, 'min_samples_split': 8}
DecisionTreeClassifier(max_depth=6, min_samples_split=8, random_state=0)
0.8059800664451828

Analysis of Grid SearchCV Results

```
In [55]: gs1_res = pd.DataFrame(gs1.cv_results_)
gs1_res.head()
```

Out[55]:

· _	mean_fit_time	std_fit_time	mean_score_time	std_score_time	param_criterion	param_max_de
(0.004999	0.000963	0.002996	0.000801	gini	
,	0.005593	0.004036	0.003808	0.004682	gini	
2	2 0.004529	0.005784	0.000610	0.000805	gini	
;	0.003125	0.006250	0.003121	0.006243	gini	
4	0.003125	0.006250	0.003124	0.006248	gini	
	1					

Out[57]:

	param_criterion	param_max_depth	param_min_samples_split	params	mean_test_score
0	gini	4	8	{'criterion': 'gini', 'max_depth': 4, 'min_sam	0.772425
1	gini	4	10	{'criterion': 'gini', 'max_depth': 4, 'min_sam	0.772425
2	gini	4	12	{'criterion': 'gini', 'max_depth': 4, 'min_sam	0.777187
3	gini	4	15	{'criterion': 'gini', 'max_depth': 4, 'min_sam	0.777076
4	gini	4	20	{'criterion': 'gini', 'max_depth': 4, 'min_sam	0.762791
4				_	

In [58]: gs1_res.sort_values('rank_test_score').head() # asc order or rank

```
Out[58]:
```

	param_criterion	param_max_depth	param_min_samples_split	params	mean_test_score
10	gini	6	8	{'criterion': 'gini', 'max_depth': 6, 'min_sam	0.805980
20	gini	8	8	{'criterion': 'gini', 'max_depth': 8, 'min_sam	0.796456
15	gini	7	8	{'criterion': 'gini', 'max_depth': 7, 'min_sam	0.796456
5	gini	5	8	{'criterion': 'gini', 'max_depth': 5, 'min_sam	0.796456
6	gini	5	10	{'criterion': 'gini', 'max_depth': 5, 'min_sam	0.786932
4					•

```
In [59]: print(gs1.best_params_)
# {'criterion': 'entropy', 'max_depth': 5, 'min_samples_split': 10}
# {'criterion': 'entropy', 'max_depth': 5, 'min_samples_split': 12}

{'criterion': 'gini', 'max_depth': 6, 'min_samples_split': 8}
```

Model 4: DT4 (based on GridSearchCV Results)

```
In [60]: dt4 = DecisionTreeClassifier(**gs1.best_params_)
dt4.fit(x_train,y_train)
```

Out[60]:

```
DecisionTreeClassifier

DecisionTreeClassifier(max_depth=6, min_samples_split=8)
```

```
In [61]: ypred_dt4 = dt4.predict(x_test)
        dt4_res = gen_res(dt4,x_train,x_test,y_train,y_test,ypred_dt4,'DT4_GS1(ent,md=
        dt4_res
         Confusion Matrix
          [[35 13]
          [10 33]]
         Classification Report
                       precision recall f1-score support
                   0
                           0.78
                                    0.73
                                              0.75
                                                          48
                   1
                           0.72
                                    0.77
                                              0.74
                                                          43
                                              0.75
                                                         91
            accuracy
                           0.75
                                    0.75
                                              0.75
                                                          91
           macro avg
         weighted avg
                           0.75
                                    0.75
                                              0.75
                                                          91
```

Out[61]:

	Irain Acc	lest Acc	Pre1	Rec1
DT4 GS1(ent.md=5.mss=10)	0.900474	0.747253	0.717391	0.767442

Randomized SearchCV

Out[62]:

```
▶ RandomizedSearchCV▶ estimator: DecisionTreeClassifier▶ DecisionTreeClassifier
```

```
In [63]: print(rs1.best_params_)
    print(rs1.best_estimator_)
    print(rs1.best_score_)

    {'min_samples_split': 8, 'max_depth': 6, 'criterion': 'gini'}
```

```
DecisionTreeClassifier(max_depth=6, min_samples_split=8, random_state=0) 0.8059800664451828
```

```
In [64]: rs1_res = pd.DataFrame(rs1.cv_results_)
print(rs1_res.shape)

(20, 16)
```

Log Reg

```
lr1 = LogisticRegression(max_iter=1000)
In [65]:
         lr1.fit(x_train,y_train)
Out[65]:
                  LogisticRegression
          LogisticRegression(max_iter=1000)
In [66]:
         ypred_lr1 = lr1.predict(x_test)
         lr1_res = gen_res(lr1,x_train,x_test,y_train,y_test,ypred_lr1,'LogReg')
         Confusion Matrix
          [[38 10]
          [ 5 38]]
         Classification Report
                                      recall f1-score
                        precision
                                                         support
                     0
                            0.88
                                       0.79
                                                 0.84
                                                             48
                            0.79
                     1
                                       0.88
                                                 0.84
                                                             43
                                                 0.84
                                                             91
             accuracy
            macro avg
                            0.84
                                       0.84
                                                 0.84
                                                             91
                            0.84
                                                             91
         weighted avg
                                       0.84
                                                 0.84
         model_res = pd.concat([dt1_res,dt2_res,dt3_res,dt4_res,lr1_res])
In [67]:
         model res
Out[67]:
                                 Train Acc Test Acc
                                                     Pre1
                                                             Rec1
                        DT1(gini)
                                1.000000 0.769231 0.750000 0.767442
              DT2(gini,md=6,mss=15) 0.900474 0.769231 0.739130 0.790698
              DT3(ent,md=7,mss=20) 0.895735 0.769231 0.739130 0.790698
          DT4_GS1(ent,md=5,mss=10) 0.900474 0.747253 0.717391 0.767442
                          LogReg
                                 In [68]:
         \# Recall = TP/(TP+FN)
         Saving the Model
In [72]:
         import pickle
         pickle.dump(lr1,open('heart_disease_lr.pkl','wb')) # write binary
In [73]:
In [76]: model = pickle.load(open('heart_disease_lr.pkl','rb'))
```

In []: