计算机网络实验3-4报告

学号: 2213034

姓名: 辛杰

专业: 物联网工程

计算机网络实验3-4报告

一、实验目的

二、实验内容

- 1、停等机制与滑动窗口机制性能对比
- 2、滑动窗口机制中不同窗口大小对性能的影响
- 3、有拥塞控制和无拥塞控制的性能比较
- 三、收获感悟

一、实验目的

基于给定的实验测试环境,通过改变延时和丢包率,完成下面3组性能对比实验:

- (1) 停等机制与滑动窗口机制性能对比;
- (2) 滑动窗口机制中不同窗口大小对性能的影响;
- (3) 有拥塞控制和无拥塞控制的性能比较。

二、实验内容

说明:传输文件为helloworld.txt,大小为1,655,808 字节,因为传输的字节固定,所以对吞吐率不作 对比图

1、停等机制与滑动窗口机制性能对比

停等机制用3-1实验的程序,滑动窗口机制用3-2实验的程序,滑动窗口发送窗口为20,接收窗口为1利用控制变量法,采用多组相同的延时和丢包率,对比停等机制与滑动窗口机制性能

(这是停等机制在0丢包0延时的数据)

延时(ms)	丢包率(%)	停等_时延(s)	滑动窗口_时延(s)	停等_吞吐率(MB/s)	滑动窗口_吞吐率(MB/s)
0	0	0.874	0.689	1. 80675	2. 2918715
30	0	9. 92	18. 549	0. 159184	0. 0851314
50	0	12.008	22. 482	0. 131504	0. 0702385
100	0	21.482	37. 711	0. 0735081	0. 0418738
200	0	37. 721	68.742	0. 0418627	0.0229714
0	0.1	1.829	119.398	0.863369	0. 0132255
0	1	3. 985	104.062	0.396261	0. 0151746
0	3	11.899	154. 793	0. 132709	0.0102014
0	5	19.872	156. 952	0. 0794636	0. 010061
200	5	54. 504	91. 84	0. 0289722	0. 0171941

(这是总数据表)

(这里丢包率设置为0)

分析:

随着延时 (ms) 的增加, 停等协议和滑动窗口协议的总时延 (s) 均显著增加。

延时为0 ms时,滑动窗口协议的时延小于停等协议,显示其在低延时环境下的效率更高。

随着延时升高,两种协议的时延增长趋势不同,滑动窗口协议的时延增长幅度大于停等协议。

(这里延时设置为0)

停等协议:随着丢包率从0%增加到5%,停等协议的时延逐渐增加,呈非线性上升趋势,但总体增长较为平稳。

滑动窗口协议:滑动窗口协议的时延对丢包率非常敏感,时延显著增加,尤其在低丢包率(如0.1%)时时延激增,表现出明显的性能劣化。

结论:

停等协议的适用性:

- 停等协议虽然在低去包率条件下效率较低,但其简单的设计使得在高去包率环境下具有更好的稳定性。
- 适用于丢包率较高或网络质量波动较大的环境,例如无线网络或长距离传输链路。

滑动窗口协议的适用性:

- 滑动窗口协议在低丢包率条件下能够充分利用网络带宽,具有较低时延,适用于高质量网络(丢包率接近0%)。
- 然而,当丢包率升高时,滑动窗口协议性能迅速下降,尤其在丢包率超过0.1%后表现较差,可能导致严重的延迟积累

2、滑动窗口机制中不同窗口大小对性能的影响

滑动窗口用3-2的实验,修改窗口大小,观察在延时为50ms、丢包率为0.1%和延时为0和丢包率为0.1% 两种情况下的延时

窗口大小	延时(ms)	丢包率(%)	时延(ms)	吞吐率(Mbps)
4	50	0. 1	15. 103	0. 104555
8	50	0. 1	16. 406	0.0962515
16	50	0. 1	31.863	0.0495591
32	50	0.1	29. 454	0.0536125
64	50	0. 1	25. 951	0.0608494
4	0	0	60.844	0.0259533
8	0	0	24. 739	0.0638305
16	0	0	0.798	1. 97882
32	0	0	0.731	2. 16019
64	0	0	0.707	2. 23352

(这是总数据表)

(丢包率为0.1%, 延时为50ms)

随着窗口大小增加,时延总体呈现上升趋势,但并不线性增长。

小窗口(4和8)的时延较低,但窗口从16到64时,时延开始波动,32的时延较低,而64的时延下降。

(丢包率为0%,延时为0ms)

窗口大小为4时, 时延较高 (60.844ms)。

随着窗口大小的增加,时延显著下降,在窗口为16时降到不到1ms,并在32和64时进一步略微降低。

结论:

在无延迟和无丢包的理想网络中, 窗口大小是影响时延和吞吐率的关键因素。

窗口大小为16时,时延和吞吐率已有明显优化,窗口大小为32或64时接近性能上限

延时和丢包率的存在显著影响网络性能,吞吐率与时延表现不再随窗口大小单调优化。

窗口大小过大(16及以上)反而可能因拥塞和重传导致性能下降,建议在此环境下选择较小窗口(如4或 8)

3、有拥塞控制和无拥塞控制的性能比较

用3-2和3-3中的实验,在多组不同的延时和丢包率,比较有拥塞控制和无拥塞控制的时延

延时(ms)	丢包率(%)	无拥塞_时延(ms)	有拥塞_时延(ms)	无拥塞_吞吐率(Mbps)	有拥塞_吞吐率(Mbps)
0	0	0.64	0. 795	2. 46735	1. 98629
30	0.1	21. 439	12.641	0. 0736556	0. 124919
50	1	29. 788	15. 94	0.0530113	0. 0990653
100	3	49.048	31.078	0.032195	0. 0508109
200	5	88. 505	76. 715	0.0178419	0. 020584

(这是总数据表)

(网络状态以时延为主, 丢包率随时延增加也增加)

随着延时和丢包率增加,时延显著增长。延时从0增加到200ms时,无拥塞时延从0.64ms增至88.505ms,呈明显的线性增长趋势。

有拥塞条件下,时延相比无拥塞条件始终更低(如延时100ms、丢包率3%时,有拥塞时延31.078ms < 无拥塞时延49.048ms)。

在任何延时和丢包率条件下,无拥塞控制的时延始终高于无拥塞控制的时延

结论:

在稳定、可靠的网络环境(如局域网)中,可优先选择无拥塞控制以实现更高的吞吐率和更低的时延。

在**复杂、不稳定的网络环境**(如广域网、互联网)中,推荐采用拥塞控制机制,以提高网络的稳定性和抗拥塞能力。

三、收获感悟

这次实验不仅让我更好地理解了网络协议与机制,还培养了我的实验设计和数据分析能力。通过对不同 网络条件下的性能测试和比较,我认识到了网络性能优化中的多种因素,并学会了如何在实践中进行调整和优化。