- 1. [20 points] Let $S = \mathbb{R} \setminus \{0\}$, with $f : S \to S$, $f(x) = x^2$, and $g : S \to \mathbb{R}$, $g(x) = \ln |x|$.
 - (a) Explain why f is not onto S.
 - (b) Prove that g is onto \mathbb{R} .
 - (c) Write out an expression for $g \circ f : S \to \mathbb{R}$.
 - (d) Prove that $g \circ f$ is onto \mathbb{R} .
 - (e) In class we proved the theorem: "If f is onto and g is onto, then $g \circ f$ is onto." In this example $g \circ f$ is onto, but f and g are not both onto. Does this contradict the theorem? Explain why or why not.