This collection of exam questions and solutions is intended to help you study for this semester's Math 340 courses.

Chapter 1

2025 Spring Exams

1.1 Math 340 Sp 25-Midterm 1

Notation: 0 denotes the zero vector, O denotes the zero matrix, and I_n denotes the $n \times n$ identity matrix.

- 1. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ by $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 3x_1 x_2 + 2x_3 \\ 2x_1 \\ 2x_1 + 4x_3 \end{bmatrix}$.
 - (a) Evaluate $T \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$.

(b) Find the (induced) matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for all \mathbf{x} in \mathbb{R}^3 .

(c) Is there a **nonzero** vector \mathbf{x} in \mathbb{R}^3 such that $T(\mathbf{x}) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$? Fully justify your answer.

2. Suppose A is a 3×3 matrix and $\mathbf{u} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ is an eigenvector of A corresponding to eigenvalue -2, and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ is an eigenvector of A corresponding to eigenvalue 3. Compute each of the following (note: your final answers will be vectors in \mathbb{R}^3). Show all work.

(a)
$$A \begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix} =$$

 $\mathbf{(b)} \ A^3 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} =$

(c) $A \begin{bmatrix} -1 \\ -5 \\ 1 \end{bmatrix} =$

Hint. Can you write this vector as a linear combination of \mathbf{u} and \mathbf{v} ?

- 3. Clearly mark the correct answer for each of the following by **completely** filling in the appropriate bubble. **No** justification is needed.
 - (a) (True/False) If A and B are both 3×3 matrices, then $(A+B)^2 = A^2 + 2AB + B^2$.
 - A. True
 - B. False
 - **(b)** (True/False) $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} xy \\ 0 \end{bmatrix}$ is a linear transformation.
 - A. True
 - B. False

- (c) (True/False) The matrix $A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ is a reduced row echelon form matrix.
 - A. True
 - B. False
- (d) (True/False) If A is a 2×2 matrix such that for every 2×2 matrix B, we have AB = BA, then A must be I_2 .
 - A. True
 - B. False
- (e) (True/False) If $T: \mathbb{R}^5 \to \mathbb{R}^4$ is a matrix transformation defined by $T(\mathbf{x}) = A\mathbf{x}$, then A is a 5×4 matrix.
 - A. True
 - B. False
- (f) (Multiple Choice-choose one) For $M = \begin{bmatrix} 2 & 3 & 1 \\ -3 & c & 2 \\ 1 & 0 & 2 \end{bmatrix}$, for which values(s) of c would M be not

invertible?

A.
$$c = \frac{12}{5}$$

B.
$$c = -8$$

C. All values of c except c = -8

D.
$$c = 0$$

E. None of the above.

(g) (Multiple Choice-choose one) What are the eigenvalues of the matrix $A = \begin{bmatrix} -2 & 1 \\ 3 & 0 \end{bmatrix}$?

A.
$$\lambda = 0, 2$$

B.
$$\lambda = 1, 3$$

C.
$$\lambda = -1, 3$$

D.
$$\lambda = -3, 1$$

E. None of the above.

(h) (Multiple Choice-choose one)

For which s and t is the matrix $M = \begin{bmatrix} 0 & t & s \\ 3t & 0 & s+t \\ 4 & 4 & t \end{bmatrix}$ symmetric?

A.
$$s = 0, t = 0$$

B.
$$s = -4, t = 0$$

C.
$$s = 4, t = 0$$

D. s = 0, t can be any value.

E. None of the above.

4.

(a) Suppose A and B are 4×4 matrices with $2A^TB^{-1} + I_4 = O$. If $\det(A) = 10$, find the determinant of B.

- (b) Suppose C, D are 4×4 matrices, and D is obtained from C by the following elementary row operations:
 - Add $3r_2$ to r_4 (and replace r_4)
 - Multiply r_3 by k (for some unknown scalar k)
 - Swap r_3 and r_4
 - Add $-r_1$ to r_2 (and replace r_2)
 - Multiply r_2 by 5

If det(C) = 10 and det(D) = -4, find the scalar k. Show all work.

5. Suppose a system of three equations in four unknowns (x_1, x_2, x_3, x_4) is represented by the follow augmented matrix:

$$\begin{bmatrix}
1 & 2 & 1 & -1 & 3 \\
-1 & -2 & 1 & -3 & 5 \\
2 & 4 & 2 & -2 & 6
\end{bmatrix}$$

(a) Write out the system of linear equations corresponding to this augmented matrix.

(b) Through elementary row operations, we have the following reduction to reduced row echelon form:

$$\begin{bmatrix} 1 & 2 & 1 & -1 & 3 \\ -1 & -2 & 1 & -3 & 5 \\ 2 & 4 & 2 & -2 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 1 & -1 \\ 0 & 0 & 1 & -2 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Using the reduced row echelon form, write out the parametrized solution for x_1, x_2, x_3, x_4 for this linear system.

- **6.** Consider 2×2 matrices A, B, C, D, where $B = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 3 & 1 \\ 2 & -1 \end{bmatrix}$, and $D = \begin{bmatrix} 3 & 4 \\ -1 & -1 \end{bmatrix}$.
 - (a) Find D^{-1} . Show all work.
 - (b) If $(2A+B)^{-1}C=D$, find A. Show all work. (Hint: You can use your answer to part (a)).
- 7. Suppose A is a 4 × 4 matrix that is row-equivalent to the matrix $B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

Answer each of the following questions about the matrix A, if possible. Justification is not required. (Another reminder: You are answering questions about A, not B).

- (a) (Multiple Choice-choose one) Is A invertible?
 - A. Yes
 - B. No
 - C. Not enough information to answer.
- (b) (Multiple Choice-choose one) What is the rank of A?
 - A. 0
 - B. 1
 - C. 2
 - D. 3
 - E. 4
 - F. Not enough information to answer.
- (c) (Multiple Choice-choose one) For $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 3 \end{bmatrix}$, does the linear system $A\mathbf{x} = \mathbf{b}$ have...
 - A. No solutions
 - B. One solution

- C. Infinitely many solutions
- D. Not enough information to answer.

(d) (Multiple Choice-choose one) For
$$\mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, does the linear system $A\mathbf{x} = \mathbf{b}$ have...

- A. No solutions
- B. One solution
- C. Infinitely many solutions
- D. Not enough information to answer.

1.2 Math 340 Sp 25-Midterm 2

Notation reminders: M_{mn} is the vector space of $m \times n$ real matrices with standard matrix addition and scalar multiplication, P_d is the vector space of polynomials (with single variable x) of degree at most d with standard polynomial addition and scalar multiplication, $\mathbf{0}$ denotes the zero vector in a vector space V. \mathbb{R}^n uses the standard vector addition/scalar multiplication unless otherwise noted.

Additional notation reminders: O denotes the zero matrix, and I_n denotes the $n \times n$ identity matrix. tr(A) denotes the trace of a matrix A.

- 1. Suppose $T: \mathbb{R}^3 \to M_{22}$ is a linear transformation with $T\begin{pmatrix} \begin{bmatrix} 1\\1\\0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 2 & 0\\-1 & 1 \end{bmatrix}$, $T\begin{pmatrix} \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 3 & 1\\4 & 0 \end{bmatrix}$, and $T\begin{pmatrix} \begin{bmatrix} 0\\0\\4 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 0 & 1\\0 & 1 \end{bmatrix}$.
 - (a) Compute $T\begin{pmatrix} 4\\-5\\2 \end{pmatrix}$. Show all work. You do not need to simplify your final numerical answer.
 - **(b)** Is T onto? Justify your answer.

2. Let $A = \begin{bmatrix} 8 & 0 & -5 \\ -20 & -2 & 10 \\ 10 & 0 & -7 \end{bmatrix}$. You are given the following information about A: A has exactly two eigenvalues

 $\lambda = -2$ and $\lambda = 3$, and a basis for the eigenspace for $\lambda = -2$ is $\left\{ \begin{bmatrix} 1\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$.

- (a) Find a basis for the eigenspace of A for $\lambda = 3$. Show all work.
- **(b)** Is A diagonalizable? Justify your answer.

- 3. Clearly mark the correct answer for each of the following by **completely** filling in the appropriate bubble. **No** justification is needed.
 - (a) (True/False) If U is a subspace of V and $\mathbf{u} + \mathbf{v}$ is in U, then \mathbf{u} and \mathbf{v} are both in U.
 - A. True
 - B. False

- (b) (True/False) Suppose A and B are invertible 2×2 matrices with A + B = O. Then $\{A, B\}$ is a linearly independent set.
 - A. True
 - B. False
- (c) (True/False) Suppose A and B are invertible 2×2 matrices with A + B = O. Then the columns of A is a linearly independent set, and the columns of B is a linearly independent set.
 - A. True
 - B. False
- (d) (True/False) The set of noninvertible 3×3 matrices is closed under scalar multiplication.
 - A. True
 - B. False
- (e) (True/False) Any set of 7 matrices in M_{23} must span M_{23} .
 - A. True
 - B. False
- (f) (Multiple Choice-choose one) Suppose A is similar to $B = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 10 \end{bmatrix}$. Which of the following must be true about A?
 - A. A has trace 0.
 - B. A is diagonalizable.
 - C. The eigenvectors of A are the same as the eigenvectors of B.
 - D. A is similar to I_3 .
 - E. All of the above.

- (g) (Multiple Choice-choose one) Suppose $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for a vector space V. Which of the following is also a basis for V?
 - A. $\{\mathbf{u} + \mathbf{v}, \mathbf{v} + \mathbf{w}\}$
 - B. $\{\mathbf{u}, \mathbf{u} + \mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w}\}$
 - C. $\{u + v, v + w, w + u, v\}$
 - D. $\{u v, u + v, w\}$
 - E. All of the above.
 - F. None of the above.
- (h) (Multiple Choice-choose one) Which vector space has the same dimension as M_{24} ?
 - A. \mathbb{R}^6
 - B. P_8
 - C. M_{42}
 - D. All of the above.
 - E. None of the above.
- **4.** Consider P_2 and the following subset W of polynomials:

$$W = \{p(x) \text{ in } P_2 \mid p'(0) = 0\}.$$

- (Reminder: p'(x) is the derivative of p(x).)
- (a) Show that W is nonempty.

- (b) Show that for $p_1(x), p_2(x)$ in $W, p_1(x) + p_2(x)$ is in W. Fully justify your answer.
- (c) Show that for p(x) in W and c in \mathbb{R} , cp(x) is in W. Fully justify your answer.
- 5. Let V be the set of vectors of the form $\begin{bmatrix} x \\ y \end{bmatrix}$ where x and y are both positive real numbers.

We define vector addition \oplus and scalar multiplication \odot as:

$$\begin{bmatrix} x \\ y \end{bmatrix} \oplus \begin{bmatrix} w \\ z \end{bmatrix} = \begin{bmatrix} xw \\ yz \end{bmatrix}, \quad c \odot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x^c \\ y^c \end{bmatrix}$$

- (a) Find the zero vector $\mathbf{0}$ for this vector addition \oplus . Justify your answer.
- (b) For \mathbf{v} in V, find the additive inverse of \mathbf{v} (Recall: the additive inverse of \mathbf{v} is a vector \mathbf{u} in V such that $\mathbf{u} \oplus \mathbf{v} = \mathbf{0} = \mathbf{v} \oplus \mathbf{u}$). Fully justify your answer.

- (c) Show that the following vector space property is true for this vector addition and scalar multiplication: For any c, d in \mathbb{R} and any vector \mathbf{u} in V, $(c+d) \odot \mathbf{u} = c \odot \mathbf{u} \oplus d \odot \mathbf{u}$.
- (d) For an arbitrary vector \mathbf{u} in V, compute $0 \odot \mathbf{u}$. Does the vector space property $0 \odot \mathbf{u} = \mathbf{0}$ hold?

- Consider the vector space P_1 and the set $S = \{2x + 10, c^2 41 5x\}$. Find all values of c so that the set S is 6. linearly dependent.
- 7. Each of the following statements is false. Show each statement is false by providing explicit counterexamples. You must fully justify your answers.
 - (a) Let V be \mathbb{R}^2 with the operation $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \oplus \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 x_2 \\ y_1 + y_2 \end{bmatrix}$. Then \oplus satisfies the vector space property
 - (b) $F: M_{22} \to \mathbb{R}$ by $F(A) = \det(A) + \operatorname{tr}(A)$ is a linear transformation.
 - (c) $W = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \text{ in } \mathbb{R}^2 : |x| \ge |y| \right\}$ is a subspace of \mathbb{R}^2 .

Suppose
$$A$$
 is a 3×5 matrix whose reduced row echelon form $RREF(A)$ is
$$RREF(A) = \left[\begin{array}{cccc} 1 & 3 & -2 & 0 & 4 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right].$$

Answer each of the following questions about the matrix A, if possible. Justification is not required.

- (a) (Multiple Choice-choose one) What is the $\dim(\text{null } A)$?
 - A. 0
 - B. 1
 - C. 2
 - D. 3
 - E. 4
 - F. Not enough information to answer.
- (b) (Multiple Choice-choose one) Is $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ in the column space of A?
 - A. Yes
 - B. No
 - C. Not enough information to answer.
- (c) (Multiple Choice-choose one) For $T: \mathbb{R}^5 \to \mathbb{R}^3$ defined by $T(\mathbf{x}) = A\mathbf{x}$, what is the dimension of the image of T?
 - A. 0
 - B. 1
 - C. 2
 - D. 3
 - E. 4

- F. 5
- G. Not enough information to answer.
- (d) (Multiple Choice-choose one) For $T: \mathbb{R}^5 \to \mathbb{R}^3$ defined by $T(\mathbf{x}) = A\mathbf{x}$, is T one-to-one (also called injective)?
 - A. Yes
 - B. No
 - C. Not enough information to answer.
- (e) (Multiple Choice-choose one) Are the (five) column vectors making up A a linearly independent set in \mathbb{R}^3 ?
 - A. Yes
 - B. No
 - C. Not enough information to answer.

1.3 Math340Sp25-FinalExam

Vector space notation reminders: M_{mn} is the vector space of $m \times n$ real matrices with standard matrix addition and scalar multiplication, P_d is the vector space of polynomials (in x) of degree at most d with standard polynomial addition and scalar multiplication, $\mathbf{0}$ denotes the zero vector in a vector space V. \mathbb{R}^n uses the standard vector addition/scalar multiplication and dot product unless otherwise noted.

Matrix notation reminders: O denotes the zero matrix, and I_n denotes the $n \times n$ identity matrix. $\operatorname{tr}(A)$ denotes the trace of a matrix A.

Additional notation reminders: $M_{DB}(T)$ denotes the matrix representation of the linear transformation $T: V \to W$ using ordered bases B for V and D for W. $M_B(T)$ denotes the matrix representation of the linear operator T with respect to the ordered basis B. $C_B(\mathbf{v})$ denotes the coordinate representation of the vector \mathbf{v} with respect to the ordered basis B.

1. Given
$$A = \begin{bmatrix} 2 & 3 & 0 \\ 0 & -2 & 4 \\ 1 & 2 & -1 \end{bmatrix}$$
, $C^{-1} = \begin{bmatrix} 2 & 4 & 1 \\ 2 & 6 & 4 \\ 1 & 2 & 2 \end{bmatrix}$, and $D = \begin{bmatrix} 2 & 4 & 1 \\ 0 & 1 & 4 \\ 3 & 2 & 9 \end{bmatrix}$, find B if $A + BC = D$. Show all work.

- 2. Let W be the vector space of 2×2 symmetric matrices (using standard matrix addition/scalar multiplication), and define $T: P_2 \to W$ by $T(p(x)) = \begin{bmatrix} p'(0) & p(0) \\ p(0) & 0 \end{bmatrix}$. You can assume (without proof) that T is a linear transformation.
 - (a) Using ordered basis $B = (4x + 1, x^2, x^2 2)$ for P_2 and ordered basis $D = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \end{pmatrix}$ for W, find the matrix representation $M_{DB}(T)$. Show all work.
 - (b) Is T an isomorphism? Justify your answer.

- 3. Clearly mark the correct answer for each of the following by **completely** filling in the appropriate bubble. **No** justification is needed.
 - (a) (True/False) If v is a 3×1 vector, and A is a 3×3 matrix, then vA is a 3×1 vector.
 - A. True
 - B. False
 - (b) (True/False) If A is a 4×4 matrix with tr(A) = 0, then A is invertible.
 - A. True
 - B. False
 - (c) (True/False) The subspace $W = \left\{ p \text{ in } P_{10} \middle| \int_0^1 p(x) dx = 0 \right\}$ of P_{10} is finite-dimensional.
 - A. True
 - B. False

- (d) (True/False) The function $F: \mathbb{R} \to \mathbb{R}$ by F(x) = 2x + 1 is an isomorphism.
 - A. True
 - B. False
- (e) (True/False) Suppose A is a 3×3 matrix with $A = A^{-1}$. Then $\det(A) = 1$ or $\det(A) = -1$.
 - A. True
 - B. False
- (f) (True/False) If x and y are orthogonal vectors in an inner product space, then x and x+y must also be orthogonal.
 - A. True
 - B. False
- (g) (Multiple Choice-choose one) Which vector space is isomorphic to P_3 ?
 - A. \mathbb{R}^4
 - B. The nullspace of $A = \begin{bmatrix} 1 & 2 & 4 & 3 & -1 \\ 2 & 4 & 8 & 6 & -2 \end{bmatrix}$
 - C. M_{22}
 - D. All of the above.
- (h) (Multiple Choice-choose one) Suppose A is a 3×3 matrix which is row-equivalent to

$$B = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$
. Which of the following must be true about A?

- A. $A\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ has no solutions.
- B. $\lambda = 1$ is an eigenvalue of A.
- C. $\lambda = 0$ is an eigenvalue of A.
- D. The columns of A must be linearly independent.
- E. All of the above.
- F. None of the above.
- (i) (Multiple Choice-choose one) Suppose $\{\mathbf{u}, \mathbf{v}\}$ is a basis for a vector space V. Which of the following is also a basis for V?
 - A. $\{\mathbf{u} + \mathbf{v}\}$
 - B. $\{u + v, 2u v\}$
 - C. $\{u v, v u\}$
 - D. $\{\mathbf{u} + \mathbf{v}, \mathbf{u} + 2\mathbf{v}, \mathbf{v}\}$
 - E. All of the above.
 - F. None of the above.
- (j) (Multiple Choice-choose one) Let V be \mathbb{R}^2 with the following vector addition \oplus and scalar multiplication \odot :

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \oplus \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 + 3 \\ y_1 + y_2 \end{bmatrix}, \quad c \odot \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} cx_1 + 3c - 3 \\ cy_1 \end{bmatrix}$$

Which of the following is the zero vector $\mathbf{0}$ for this vector addition \oplus ?

A.
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

B.
$$\begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

C.
$$\begin{bmatrix} -3 \\ 0 \end{bmatrix}$$

D.
$$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

E. None of the above.

4. Consider the vector space P_1 , and define the function

$$\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x)dx$$

for p(x), q(x) in P_1 .

You can assume that $\langle p(x), q(x) \rangle$ is an inner product for P_1 .

- (a) With respect to this inner product, $\langle p(x), q(x) \rangle$, find the distance between 3x + 1 and x 3. Show all work, but you do not need to simplify your final numerical answer.
- (b) With respect to this inner product, $\langle p(x), q(x) \rangle$, show that the polynomials p=3-3x and q=6x-2 are orthogonal. Show all work.
- (c) With respect to this inner product, $\langle p(x), q(x) \rangle$, using p = 3 3x and q = 6x 2, create an orthonormal basis for P_1 . Show all work.
- **5.** Let $T: P_1 \to P_1$ be a linear transformation with $M_B(T) = \begin{bmatrix} 6 & 2 \\ -2 & 10 \end{bmatrix}$ with respect to the ordered basis B = (x+1, x-3).
 - (a) Compute T(2x-1). Show all work.

(b) Is T diagonalizable? Justify your answer.

(Problem 5 continued)

Again, let $T: P_1 \to P_1$ be a linear transformation with $M_B(T) = \begin{bmatrix} 6 & 2 \\ -2 & 10 \end{bmatrix}$ with respect to the ordered basis B = (x + 1, x - 3).

(c) Suppose $P_{B\leftarrow D}=\begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}$ is the change matrix from unknown basis $D=(p_1,p_2)$ to B. Find p_1 and p_2 .

- (d) For the same basis D as in part (c), use the Similarity Theorem find $M_D(T)$. (Hint: You do NOT need to know D to solve this problem). Show all work.
- Consider the vector space \mathbb{R}^3 , and consider the set U of vectors $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ where $x_1 + 3x_2 = x_3$ and $x_1x_2 \ge 0$, i.e. $U = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \middle| x_1 + 3x_2 = x_3, \ x_1x_2 \ge 0 \right\}$. Is U a subspace of \mathbb{R}^3 ? Fully justify your answer.
- Consider $\mathbf{u}=\begin{bmatrix}u_1\\u_2\end{bmatrix}$, $\mathbf{v}=\begin{bmatrix}v_1\\v_2\end{bmatrix}$ in \mathbb{R}^2 , and define the function

$$\langle \mathbf{u}, \mathbf{v} \rangle = 2u_1v_1 + 3u_2v_2.$$

(a) Verify the following inner product property for $\langle \mathbf{u}, \mathbf{v} \rangle$:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$$
 for all \mathbf{u}, \mathbf{v} in \mathbb{R}^2 .

For part (b), assume the remaining inner product properties are true for

$$\langle \mathbf{u}, \mathbf{v} \rangle = 2u_1v_1 + 3u_2v_2.$$

(b) With respect to this inner product $\langle \mathbf{u}, \mathbf{v} \rangle$, find a basis for W, where W is the subspace of \mathbb{R}^2 of vectors orthogonal to $\begin{bmatrix} 5 \\ -4 \end{bmatrix}$. Show all work.

8. Let $A = \begin{bmatrix} 0 & 2 & 1 \\ 2 & 4 & 3 \\ 0 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 5 & -1 & 1 \\ 3 & -3 & 1 \\ 10 & 2 \end{bmatrix}$. If A and B are similar matrices, find c. Show all work.

- **9.** Suppose A is a 3×7 matrix with rank(A) = 3. Answer the following questions about A, if possible. Justification is not required.
 - (a) (Multiple Choice-choose one) What is the $\dim(\text{null } A)$?
 - A. 0
 - B. 1
 - C. 2
 - D. 3
 - E. 4
 - F. Not enough information to answer.
 - (b) (Multiple Choice-choose one) Is $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ in the column space of A?
 - A. Yes
 - B. No
 - C. Not enough information to answer.
 - (c) (Multiple Choice-choose one) Does the linear system $A\mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ have...
 - A. No solution
 - B. One solution
 - C. Infinitely many solutions
 - D. Not enough information to answer.
 - (d) (Multiple Choice-choose one) For $T: \mathbb{R}^7 \to \mathbb{R}^3$ defined by $T(\mathbf{x}) = A\mathbf{x}$, is T onto?
 - A. Yes
 - B. No
 - C. Not enough information to answer.
 - (e) (Multiple Choice-choose one) For $T: \mathbb{R}^7 \to \mathbb{R}^3$ defined by $T(\mathbf{x}) = A\mathbf{x}$, is T one-to-one (also called injective)?
 - A. Yes
 - B. No
 - C. Not enough information to answer.

Chapter 2

2024 Fall Exams

2.1 Math340Fa24-Midterm1

Notation: 0 denotes the zero vector, O denotes the zero matrix, and I_n denotes the $n \times n$ identity matrix.

- 1. Clearly mark the correct answer(s) for each of the following by completely filling in the appropriate bubble. No justification is needed.
 - (a) (True/False) $\begin{bmatrix} 1 & 2 & 4 & 3 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ is a row echelon matrix.
 - A. True
 - B. False
 - (b) (True/False) If A is an 3×3 matrix such that $A^2 = O$, then A = O.
 - A. True
 - B. False
 - (c) (True/False) If two square matrices A and B are row equivalent, then $\det(A) = \det(B)$.
 - A. True
 - B. False
 - (d) (True/False) If A is a 3×3 matrix with det(A) = 6, then det(3A) = 18.
 - A. True
 - B. False
 - (e) (True/False) $\begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 4 \\ 0 & 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 4 \end{bmatrix}$ are row equivalent.
 - A. True
 - B. False

- (f) (Multiple Choice-choose one) Suppose A is a 5×5 matrix. If the rank of A is 3, then the homogeneous system $A\mathbf{x} = \mathbf{0}$ will have...
 - A. No solutions.
 - B. Exactly one solution.
 - C. Exactly two solutions.
 - D. Exactly three solutions.
 - E. Infinitely many solutions.
- (g) (Multiple Choice-choose one) If A is 2×3 , B is 4×4 , and C is 4×3 , then what is the size of the matrix AC^TB ?
 - A. 4×4
 - B. 2×3
 - C. 3×4
 - D. 4×3
 - E. None of the above.
- (h) (Multiple Choice-choose one) Suppose A is a 3×3 skew-symmetric matrix. Consider the following statements:
 - $A + A^T = O$
 - $A^T A = O$
 - $A + I_3 = I_3 + A$
 - $A\mathbf{x} = -A^T\mathbf{x}$ for all \mathbf{x} in \mathbb{R}^3 .
 - $A\mathbf{x} = \mathbf{0}$ for all \mathbf{x} in \mathbb{R}^3 .

Which of these statements is true about A?

- A. (a), (b), and (d)
- B. (a), (c), and (d)
- C. (b) and (c)
- D. (a) and (e)
- E. None of the above.
- 2.
- (a) Suppose A, B are 4×4 matrices, and B is obtained from A by the following elementary row operations:
 - Multiply r_3 by $\frac{1}{6}$
 - Add $7r_1$ to r_2 (and replace r_2)
 - Swap r_2 and r_4
 - Add $-r_3$ to r_4 (and replace r_4)

• Multiply r_3 by 10

If det(B) = -4, find det(A). Show all work.

- (b) Suppose C, D, E are 3×3 matrices, where $\det(C) = 5$ and $\det(D) = -2$. If $C^{-1}D^TE = I_3$, find $\det(E)$. Show all work.
- 3. Let $A = \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix}$.
 - (a) Find all the eigenvalues of A. Show all work. (Hint: One of the eigenvalues is 5).

- (b) Find an eigenvector of A corresponding to $\lambda = 5$. Show all work.
- **4.** Suppose A, B, C, D are 2×2 matrices, where $D^{-1} = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} -3 & 2 \\ 1 & -1 \end{bmatrix}$, $A = \begin{bmatrix} 1 & -3 \\ 2 & 2 \end{bmatrix}$, and D(B+C) = A.
 - (a) Which of the following is a correct expression for C? (Choose one. No justification is required).

$$A. C = AD^{-1} - B$$

B.
$$C = D^{-1}A - B$$

- (b) Using your answer from part (a), calculate matrix C. Show all work.
- 5. Suppose a linear system of 3 equations and 3 unknowns (x, y, z) reduces to the following form via elementary row operations:

$$\left[\begin{array}{ccc|ccc}
1 & 3 & 0 & 2 \\
0 & 1 & 2 & 2 \\
0 & 0 & (k-3) & (k+1)
\end{array}\right]$$

(a) For what value(s) of k (if any) will the system have **no solutions**? Briefly explain your answer.

(b) If k = 5, finish reducing the augmented matrix to **reduced row echelon form**, then solve for x, y, z. Show all work.

6. (this problem has overflow room on the next page)

Let
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 by $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 2x_2 \\ 2x_2 \\ 2x_1 - x_2 \end{bmatrix}$.

(Overflow room for Problem 6, if needed)

(a) Evaluate $T\left(\begin{bmatrix}2\\3\end{bmatrix}\right)$.

(b) Find the matrix A such that $T(\mathbf{x}) = A\mathbf{x}$.

(c) Is there an \mathbf{x} in \mathbb{R}^2 such that $T(\mathbf{x}) = \begin{bmatrix} -2 \\ -6 \\ 11 \end{bmatrix}$? Fully justify your answer.

- 7. Find A, if $(I_2 + 4A)^{-1} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$. Show all work.
- 8. For which value(s) of c does $A = \begin{bmatrix} 3 & 0 & 1 \\ c & 0 & 3 \\ -1 & 2 & 1 \end{bmatrix}$ have a **nontrivial** solution for $A\mathbf{x} = \mathbf{0}$? Show all work, and justify your answer.

2.2 Math340Fa24-Midterm2

Notation reminders: M_{mn} is the vector space of $m \times n$ real matrices with standard matrix addition and scalar multiplication, P_d is the vector space of polynomials (with single variable x) of degree at most d with standard polynomial addition and scalar multiplication, $\mathbf{0}$ denotes the zero vector in a vector space V. \mathbb{R}^n uses the standard vector addition/scalar multiplication unless otherwise noted.

Additional notation reminders: O denotes the zero matrix, and I_n denotes the $n \times n$ identity matrix. $\operatorname{tr}(A)$ denotes the trace of a matrix A.

- 1. Clearly mark the correct answer(s) for each of the following by completely filling in the appropriate bubble. No justification is needed.
 - (a) Let A be an $n \times m$ matrix. If $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a set of linearly independent vectors in \mathbb{R}^m , then $\{A\mathbf{v}_1, \dots, A\mathbf{v}_n\}$ is a set of linearly independent vectors in \mathbb{R}^n .
 - A. True
 - B. False
 - (b) For the matrix $A = \begin{bmatrix} 1 & -1 \\ 3 & -3 \end{bmatrix}$, the image of A, im A, is a subspace of \mathbb{R}^2 with dim(im A) = 2.
 - A. True
 - B. False
 - (c) If A is 5×5 diagonalizable matrix, then A must have 5 distinct eigenvalues.
 - A. True
 - B. False
 - (d) Let V be a vector space, and $W = \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a subspace of V. If \mathbf{v} is a vector in V which is not in W, then \mathbf{v} is not a linear combination of $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$.
 - A. True
 - B. False
 - (e) In P_2 , the vectors $4x^2 2x + 1$ and $2x^2 x + 3$ are linearly dependent.

- A. True
- B. False
- (f) (Multiple Choice-choose one) Suppose A is a 2×2 matrix where AP = PD for $P = \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$ and

$$D = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$
. Note that $P^{-1} = \begin{bmatrix} -2 & 3 \\ 1 & -1 \end{bmatrix}$. What is A^{10} ?

A.
$$\begin{bmatrix} -2a^{10} + 3b^{10} & 3a^{10} - 3b^{10} \\ -2a^{10} + 2b^{10} & 3a^{10} - 2b^{10} \end{bmatrix}$$
B.
$$\begin{bmatrix} -2a^{10} + 3b^{10} & -6a^{10} + 6b^{10} \\ a^{10} - b^{10} & 3a^{10} - 2b^{10} \end{bmatrix}$$
C.
$$\begin{bmatrix} a^{10} & 0 \\ 0 & b^{10} \end{bmatrix}$$

B.
$$\begin{bmatrix} -2a^{10} + 3b^{10} & -6a^{10} + 6b^{10} \\ a^{10} - b^{10} & 3a^{10} - 2b^{10} \end{bmatrix}$$

C.
$$\begin{bmatrix} a^{10} & 0 \\ 0 & b^{10} \end{bmatrix}$$

- D. None of the above.
- (g) (Multiple Choice-choose one) Consider a set $S = \{p_1, p_2, p_3, p_4, p_5\}$ of 5 polynomials in P_3 . Which of the following is true?
 - A. S spans P_3 .
 - B. S is a linearly independent set.
 - C. S is a basis for P_3 .
 - D. At least one of the polynomials in S is a linear combination of the others.
 - E. None of the above.
- (h) (Multiple Choice-choose one) For what value(s) of c do the vectors $\begin{bmatrix} 3 \\ 0 \\ c \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ form a basis for \mathbb{R}^3 ?
 - A. c = 9
 - B. All values of c except c = 9
 - C. No values of c make this a basis.
 - D. All values of c make this a basis.
 - E. None of the above.
- Suppose A is a 6×4 matrix of rank 4, and consider the linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^6$ by $T(\mathbf{x}) = A\mathbf{x}$. Answer each of the following questions. Justification is not required.
 - (a) What is the dimension of the kernel of T? Fill in the blank below.

$$\dim \ker(T) =$$

- (b) (Multiple Choice-choose one) Is T one-to-one?
 - A. Yes
 - B. No

- C. Not enough information to answer.
- (c) What is the dimension of the image of T? Fill in the blank below.

$$\dim \operatorname{im}(T) =$$

- (d) (Multiple Choice-choose one) Is T onto?
 - A. Yes
 - B. No
 - C. Not enough information to answer.
- **3.** Suppose $T: P_1 \to M_{22}$ is a linear transformation with $T(4x+3) = \begin{bmatrix} 1 & 3 \\ -2 & 2 \end{bmatrix}, T(x+1) = \begin{bmatrix} 2 & 2 \\ 1 & 0 \end{bmatrix}$. Find T(1). Show all work.
- **4.** Consider $A = \begin{bmatrix} 2 & -2 \\ 0 & 1 \end{bmatrix}$, and let $W = \{X \text{ in } M_{22} | AX = XA\}$.
 - (a) Show that W is nonempty.

- (b) Is W closed under addition? Fully justify your answer using complete sentences.
- (c) Is W closed under scalar multiplication? Fully justify your answer using complete sentences.
- 5. Let V be \mathbb{R}^2 with the following vector addition \oplus and scalar multiplication \odot :

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \oplus \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 + 4 \\ y_1 + y_2 - 5 \end{bmatrix}, \quad c \odot \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} cx_1 + 4c - 4 \\ cy_1 - 5c + 5 \end{bmatrix}$$

(a) Compute $\begin{bmatrix} 2 \\ 4 \end{bmatrix} \oplus \begin{bmatrix} 0 \\ -1 \end{bmatrix}$.

(b) Find the zero vector $\mathbf{0}$ for this vector addition \oplus . You must justify that $\mathbf{v}\oplus\mathbf{0}=\mathbf{v}=\mathbf{0}\oplus\mathbf{v}$ for all \mathbf{v} in \mathbb{R}^2 .

(c) For $\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$, find the additive inverse of \mathbf{v} (i.e. find \mathbf{u} such that $\mathbf{u} \oplus \mathbf{v} = \mathbf{0} = \mathbf{v} \oplus \mathbf{u}$). Fully justify your answer.

(d) Show the following vector space property holds:

 $1 \odot \mathbf{u} = \mathbf{u}$ for all \mathbf{u} in \mathbb{R}^2 .

6. For
$$A = \begin{bmatrix} 10 & 6 & 12 \\ -3 & 1 & -6 \\ -3 & -3 & -2 \end{bmatrix}$$
:

- a.) (4 points) Find a basis for the eigenspace associated to the eigenvalue $\lambda = 4$ (in other words, find a set of basic eigenvectors associated to $\lambda = 4$). Show all work.
- b.) (2 points) Given that $\lambda = 1$ is the only other eigenvalue of A, and a basis for the eigenspace of $\lambda = 1$ is $\left\{ \begin{bmatrix} -2\\1\\1 \end{bmatrix} \right\}$, answer the following: Is A diagonalizable? Fully justify your answer using complete sentences.
- 7. For this problem, let A be a 3×5 matrix whose reduced row echelon form RREF(A) is given as RREF(A) =

$$\begin{bmatrix} 1 & -2 & 0 & 3 & 0 \\ 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
. Note: This is the **reduced row echelon form of** A , not A . Answer each of the

following questions about the matrix A, if possible. Justification is not required.

- (a) (Multiple Choice-choose one) What is the rank of A?
 - A. 1
 - B. 2
 - C. 3
 - D. 4
 - E 5
 - F. Not enough information to answer.

(b) (Multiple Choice-choose one) For which value of
$$c$$
 is $\begin{bmatrix} c \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}$ in the nullspace of A ?

A.
$$c = -3$$

B.
$$c = 0$$

C.
$$c = 1$$

D.
$$c = 3$$

(c) (Multiple Choice-choose one) Is
$$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 in the column space of A ?

(d) (Multiple Choice-choose one) Are the (five) column vectors making up
$$A$$
 a linearly independent set in \mathbb{R}^3 ?

(a) The function
$$F: M_{22} \to \mathbb{R}$$
 by $F(A) = (\operatorname{tr}(A))^2$ is a linear transformation.

(b) The set of vectors
$$W = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} \middle| a+b \ge -1 \right\}$$
 is a subspace of \mathbb{R}^2 .

(c) Let
$$V$$
 be \mathbb{R}^2 with the operation $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} \oplus \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ y_1 \end{bmatrix}$. \oplus satisfies the vector space property $\mathbf{v} \oplus \mathbf{u} = \mathbf{u} \oplus \mathbf{v}$.

C. Not enough information to answer.

C. Not enough information to answer.

^{8.} Each of the following statements is **false**. Show each statement is false by providing explicit counterexamples. You must fully justify your answers.

2.3 Math340Fa24-FinalExam

Notation reminders: M_{mn} is the vector space of $m \times n$ real matrices with standard matrix addition and scalar multiplication, P_d is the vector space of polynomials (in x) of degree at most d with standard polynomial addition and scalar multiplication, $\mathbf{0}$ denotes the zero vector in a vector space V. \mathbb{R}^n uses the standard vector addition/scalar multiplication and dot product unless otherwise noted.

Additional notation reminders: O denotes the zero matrix, and I_n denotes the $n \times n$ identity matrix. $\operatorname{tr}(A)$ denotes the trace of a matrix A.

- 1. Consider $T: P_2 \to P_1$ by T(p(x)) = p(0) + 2p'(x). You can assume that T is a linear transformation. Find $M_{DB}(T)$, where $B = (5, x^2 + 3, x)$ and D = (1, x). Show all work. (Hint: your final matrix will be 2×3).
- 2. Consider the subspace W of \mathbb{R}^4 spanned by the set

$$\left\{ \begin{bmatrix} 1 \\ 0 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 2 \\ 6 \end{bmatrix} \right\}$$

- (a) What is the dimension of W? Show your work, and briefly justify your answer.
- (b) For which d is W isomorphic to P_d ? Justify your answer in one sentence.

(c) Is W isomorphic to M_{22} ? Justify your answer in one sentence.

- **3.** Fill in the bubble next to the correct answer. Justification is not necessary.
 - (a) Let A be an $n \times n$ matrix with $\operatorname{rank}(A) = n$. If $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a set of linearly independent vectors in \mathbb{R}^n , then $\{A\mathbf{v}_1, \dots, A\mathbf{v}_k\}$ is a set of linearly independent vectors in \mathbb{R}^n .
 - A. True
 - B. False
 - (b) Let A be an $n \times n$ matrix. If A^2 is invertible, then A is invertible.
 - A. True
 - B. False

- (c) Let V be a finite-dimensional vector space where $\dim(V) = n$. Let B and D be ordered bases for V, and let $T: V \to V$ be a linear operator on V. Then $\det(M_B(T)) = \det(M_D(T))$.
 - A. True
 - B. False
- (d) Consider P_1 with the following inner product: $\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x) dx$. Using this inner product, x is a unit vector.
 - A. True
 - B. False
- (e) Suppose A and B are 3×3 matrices. Then rank(AB) = rank(A).
 - A. True
 - B. False
- (f) If \mathbf{u}, \mathbf{v} are linearly dependent vectors in \mathbb{R}^2 , then $|\langle \mathbf{u}, \mathbf{v} \rangle| = ||\mathbf{u}|| \, ||\mathbf{v}||$.
 - A. True
 - B. False
- (g) (Multiple Choice-choose one) If $T: P_2 \to \mathbb{R}^3$ is an isomorphism, which of the following is true?
 - A. $ker(T) = P_2$
 - B. $im(T) = P_2$
 - C. T is onto
 - D. The inverse of T does not exist.
 - E. None of the above.
- (h) (Multiple Choice-choose one) Consider \mathbb{R}^3 with the standard inner product, and consider the subspace W of vectors in \mathbb{R}^3 which are orthogonal to both $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} -2 \\ 0 \\ 6 \end{bmatrix}$. What is the dimension of W?

A.
$$\dim(W) = 0$$

B.
$$\dim(W) = 1$$

C.
$$\dim(W) = 2$$

D.
$$\dim(W) = 3$$

- (i) (Multiple Choice-choose one) Suppose A is a 3×3 matrix with eigenvalue 2 and eigenvalue 3. Which of the following is true?
 - A. If **v** is in both the eigenspace of $\lambda = 2$ and the eigenspace of $\lambda = 3$, then **v** = **0**.
 - B. If w is an eigenvector of A associated to $\lambda = 2$, then $-\mathbf{w}$ is an eigenvector of A associated to $\lambda = -2$.
 - C. A is not diagonalizable.
 - D. A is similar to I_3 .
 - E. All of the above.
- (j) (Multiple Choice-choose one) Suppose $A = \begin{bmatrix} -1 & x \\ -2 & y \end{bmatrix}$, and you know that A is similar to $\begin{bmatrix} -3 & -2 \\ 12 & 8 \end{bmatrix}$. Find x and y.

A.
$$x = 6, y = 3$$

B.
$$x = -4, y = 22$$

C.
$$x = 12, y = 24$$

D.
$$x = 3, y = 6$$

- E. None of the above.
- **4.** Given $A = \begin{bmatrix} 3 & 0 \\ -2 & 1 \end{bmatrix}$, $C^{-1} = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$, and $D = \begin{bmatrix} 4 & 2 \\ 0 & 3 \end{bmatrix}$, find B if (A+B)C = D. Show all work.
- 5. (This problem continues onto the next page)

Let $T: P_1 \to P_1$ be a linear transformation with $M_B(T) = \begin{bmatrix} 1 & -3 \\ -2 & 6 \end{bmatrix}$ with respect to the ordered basis B = (x+3, x-1). (NOTE: B is NOT the standard basis for P_1).

(a) Compute T(9-x). Show all work. (Note: your final answer should be in P_1).

(b) Find a basis for the kernel of T. (Note: your final answer should be in P_1).

(c) Is T diagonalizable? Justify your answer.

(Problem 5 continued) Again, let $T: P_1 \to P_1$ be a linear transformation with $M_B(T) = \begin{bmatrix} 1 & -3 \\ -2 & 6 \end{bmatrix}$ with respect to the ordered basis B = (x+3, x-1).

(d) Is T an isomorphism? Justify your answer.

(e) Suppose $P_{B\leftarrow D}=\begin{bmatrix}1&3\\1&2\end{bmatrix}$ is the change matrix from unknown basis $D=(p_1,p_2)$ to B. Find p_1 and p_2 .

- (f) For the same basis D as in part (e), find $M_D(T)$.(Hint: You do NOT need to know D to solve this problem).
- **6.** Consider the vector space P_1 , and define the function

$$\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x)dx$$

for p(x), q(x) in P_1 .

Fully justify your answer.

You can assume that $\langle p(x), q(x) \rangle$ is an inner product for P_1 .

- (a) Using this inner product $\langle p(x), q(x) \rangle$, find the distance between 2x + 3 and x 4. Show all work. You do not need to simplify your final numerical answer.
- (b) Still using this inner product $\langle p(x), q(x) \rangle$, for which c is cx + 2, 2x 2 orthogonal? Show all work.
- 7. Is $W = \left\{ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \middle| x_2 = 2x_1 + 3x_3, \ x_1x_3 \ge 0 \right\}$ a subspace of \mathbb{R}^3 ? If it is a subspace, prove it using the subspace test. If it is not a subspace, provide an explicit counterexample showing which of the subspace criteria is violated.
- 8. Consider M_{22} , and let A, B be matrices in M_{22} . Let $\langle A, B \rangle = \operatorname{tr}(AB^T)$. You can assume this is an inner product for M_{22} .

Consider $M = \begin{bmatrix} 6 & 1 \\ 2 & 4 \end{bmatrix}$ and $N = \begin{bmatrix} -1 & 2 \\ 2 & 0 \end{bmatrix}$. Consider $W = \text{span}\{M, N\}$.

- (a) Verify that M and N are orthogonal using this inner product. Show all work.
- (b) Assuming that $\{M, N\}$ is a basis for W, use M and N to build an orthonormal basis for W using this inner product. Show all work.
- **9.** Suppose a linear system of 3 equations and 3 unknowns (x, y, z) reduces to the following form via elementary row operations:

$$\begin{bmatrix}
1 & 0 & 0 & 3 \\
0 & 1 & -2 & 5 \\
0 & 0 & (a^2 - 9) & (a + 3)
\end{bmatrix}$$

(a) For which value(s) of a will the system have **no solutions**? Briefly explain your answer.

(b) For which value(s) of a will the system have **infinitely many solutions**? Briefly explain your answer.

(c) If a=2, finish reducing the augmented matrix to **reduced row echelon form**, then solve for x,y,z. Show all work.

10. Suppose A is a 5×5 matrix with

This is the reduced row echelon form of A, not A. Answer each question. Justification is not required.

- (a) Is A invertible?
 - A. Yes
 - B. No
 - C. Not enough information to determine.
- (b) $\left\{ \begin{bmatrix} j \\ -1 \\ 0 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ k \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}$ is a basis for the nullspace of A. Find j and k. Write your answers in the provided boxes. $j = \begin{bmatrix} k \\ k \end{bmatrix}$

(c) Is 0 an eigenvalue of A ?
A. Yes
B. No
C. Not enough information to determine.
(d) Is 1 an eigenvalue of A ?
A. Yes
B. No
C. Not enough information to determine.

