FedGH: Gradient Harmonization in Federated Learning

Algorithm 1: Federated Averaging with Gradient Harmonization (FedGH)

Input: $K, T, \eta, E, w^0, N, p_k, k = 1, ..., N$

for T = 0, ..., T - 1 do

Server selects a subset S_t of K devices at random (each device k is chosen with probability p_k)

Server sends w^t to all chosen devices

Each device $k \in S_t$ updates w^t for E epochs of SGD on F_k with step-size η to obtain w_k^{t+1}

Each device $k \in S_t$ sends w_k^{t+1} back to the server

Server recalculates gradient $g_k^{t+1}, k \in S_t$

for $i \in S_t$ do

for $j \in S_t \setminus i$ in random order do

if $g_i^{t+1} \cdot g_j^{t+1} < 0$ then

$$g_i^{t+1} := g_i^{t+1} - \frac{g_i^{t+1} \cdot g_j^{t+1}}{\|g_i^{t+1}\|^2} g_j^{t+1}$$

Server updates w_k^{t+1} using $g_k^{t+1}, k \in S_t$

Server aggregates the w's as $w^{t+1} = \frac{1}{K} \sum_{k \in S_t} w_k^{t+1}$

end

1. Faster convergence rate

2. Mitigating local drifts

3. A parameter-free distal term

Easily integrates with other federated learning frameworks as a plug-and-play module that does not require any parameter tuning.

Related works: non-IID federated learning

1. Mitigating local drifts during local training

Algorithm 2 FedProx (Proposed Framework)

Input: $K, T, \mu, \gamma, w^0, N, p_k, k = 1, \dots, N$ for $t = 0, \dots, T - 1$ do

Server selects a subset S_t of K devices at random (each device k is chosen with probability p_k)

Server sends w^t to all chosen devices

Each chosen device $k \in S_t$ finds a w_k^{t+1} which is a γ_k^t -inexact minimizer of: $w_k^{t+1} \approx$ $\operatorname{arg\,min}_{w} h_{k}(w; w^{t}) = F_{k}(w) + \frac{\mu}{2} \|w - w^{t}\|^{2}$ Each device $k \in S_t$ sends w_k^{t+1} back to the server

Server aggregates the w's as $w^{t+1} = \frac{1}{K} \sum_{k \in S_t} w_k^{t+1}$

end for

FedProx [1]:

Proximal term with hyperparameter μ

FedGH(ours):

Distal term without any hyperparameters

FedProx + GH(ours)

2. Mitigating local drifts on server aggregation

$$\begin{aligned} \boldsymbol{x}^{(t+1,0)} - \boldsymbol{x}^{(t,0)} &= \sum_{i=1}^m p_i \Delta_i^{(t)} = -\sum_{i=1}^m p_i \|\boldsymbol{a}_i\|_1 \cdot \frac{\eta \boldsymbol{G}_i^{(t)} \boldsymbol{a}_i}{\|\boldsymbol{a}_i\|_1} \\ &= -\underbrace{\left(\sum_{i=1}^m p_i \|\boldsymbol{a}_i\|_1\right)}_{\tau_{\text{eff}}: \text{ effective local steps}} \sum_{i=1}^m \eta \underbrace{\left(\frac{p_i \|\boldsymbol{a}_i\|_1}{\sum_{i=1}^m p_i \|\boldsymbol{a}_i\|_1}\right)}_{w_i: \text{ weight}} \underbrace{\left(\frac{\boldsymbol{G}_i^{(t)} \boldsymbol{a}_i}{\|\boldsymbol{a}_i\|_1}\right)}_{\boldsymbol{d}_i: \text{ normalized gradien}} \end{aligned}$$

We use the vanilla SGD to ensure a fair comparison with other baselines

Novel Generalized Update Rule

$$oldsymbol{x}^{(t+1,0)} = oldsymbol{x}^{(t,0)} - oldsymbol{ au_{ ext{eff}}} \sum_{i=1}^m w_i \hspace{0.1cm} oldsymbol{\eta} oldsymbol{d}_i^{(t)}$$

Optimizes
$$\widetilde{F}(oldsymbol{x}) = \sum_{i=1}^m w_i F_i(oldsymbol{x})$$

$$x^{(t+1,0)} - x^{(t,0)} = (\sum_{i=1}^{m} p_i \tau_i^{(t)}) \sum_{i=1}^{m} \frac{p_i \Delta_i^{(t)}}{\tau_i^{(t)}}$$

FedNova [2]:

Server weighted aggregates based on the number of iterations

FedGH(ours):

Server aggregates after gradient deconfliction

FedNova + GH(ours)

[1] Federated Optimization in Heterogeneous Networks, MLSys, 2020

[2] Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization, NeurIPS, 2020

10 categories

Training samples: 70000

Testing samples: 10000

Sample size: (28, 28)

Layer (type)	Output Shape	Param #
Linear-1 ReLU-2 Linear-3 ReLU-4 Linear-5	[-1, 512] [-1, 512] [-1, 256] [-1, 256] [-1, 10]	401,920 0 131,328 0 2,570
		2,570

Default hyperparameters:

$$E = 1 \qquad \qquad K = 20$$

$$B = 128 \qquad \qquad C = 1.0$$

$$Ir = 0.01 \qquad \qquad Rounds = 50$$

$$Optimizer = vanilla SGD \qquad \alpha = 0.01$$

$$\mu = 0.1$$

2NN Model

(Params: 0.536M, FLOPs: 0.535M)

FedGH(ours)

Clients	Method	Top-1 acc.	Тор-3 асс.
5	FedAvg []	85.08	98.17
3	FedAvg [] + GH (ours)	84.19 (-0.89)	98.64 (+0.47)
10	FedAvg [I]	74.96	95.43
10	FedAvg [] + GH (ours)	79.20 (+4.24)	96.31 (+0.88)
15	FedAvg [I]	75.23	94.87
13	FedAvg [] + GH (ours)	81.66 (+6.43)	96.53 (+1.66)
20	FedAvg [I]	72.05	93.32
20	FedAvg [] + GH (ours)	80.47 (+8.42)	95.65 (+2.33)

Table 1. Effect of the number of clients on the MNIST 2NN with C = 1.0, α = 0.01.

[1] Communication-Efficient Learning of Deep Networks from Decentralized Data, PMLR, 2017

α	Method	Top-1 acc.	Top-3 acc.
0.01	FedAvg [1]	72.05	93.32
0.01	FedAvg [1] + GH (ours)	80.47 (+8.42)	95.65 (+2.33)
0.1	FedAvg [1]	82.69	96.19
0.1	FedAvg [1] + GH (ours)	88.44 (+5.75)	97.69 (+1.50)
1	FedAvg [1]	87.03	97.81
1	FedAvg [1] + GH (ours)	90.66 (+3.63)	98.51 (+0.70)
10	FedAvg [1]	90.71	98.06
10	FedAvg [1] + GH (ours)	91.10 (+0.39)	98.23 (+0.17)
20 (jid)	FedAvg [1]	90.87	98.05
∞ (iid)	FedAvg [] + GH (ours)	90.87 (+0.00)	98.05 (+0.00)

Table 2. Effect of the heterogeneity α on the MNIST 2NN with C = 1.0, 20 clients.

[1] Communication-Efficient Learning of Deep Networks from Decentralized Data, PMLR, 2017

Fraction	Method	Top-1 acc.	Тор-3 асс.
0.2	FedAvg [1]	24.12	62.83
0.2	FedAvg [] + GH (ours)	30.54 (+6.42)	67.96 (+5.13)
0.4	FedAvg [1]	45.70	69.70
0.4	FedAvg [] + GH (ours)	57.16 (+11.46)	81.87 (+12.17)
0.6	FedAvg [I]	63.24	81.53
0.0	FedAvg [] + GH (ours)	61.45 (-1.79)	81.20 (-0.33)
0.8	FedAvg [I]	63.98	77.55
0.8	FedAvg 1 + GH (ours)	63.74 (-0.39)	78.92 (+0.17)
1.0	FedAvg [1]	72.05	93.32
1.0	FedAvg 1 + GH (ours)	80.47 (+8.42)	95.65 (+2.33)

Table 3. Effect of the client fraction C on the MNIST 2NN with α = 0.01, 20 clients.

[1] Communication-Efficient Learning of Deep Networks from Decentralized Data, PMLR, 2017

Experiments on CIFAR-10

40 4

10 categories

Training samples: 50000

Testing samples: 10000

Sample size: (32, 32, 3)

Layer (type)	Output Shape	Param #
Conv2d-1 ReLU-2 Conv2d-3 ReLU-4 MaxPool2d-5 Dropout-6 Linear-7 ReLU-8 Dropout-9 Linear-10	[-1, 32, 28, 28] [-1, 32, 28, 28] [-1, 64, 24, 24] [-1, 64, 12, 12] [-1, 64, 12, 12] [-1, 128] [-1, 128] [-1, 128] [-1, 128]	2,432 0 51,264 0 0 0 1,179,776 0 0
ReLU-11	[-1, 10] [-1, 10]	0

CNN Model

(Params: 1.235M, FLOPs: 32.554M)

Default hyperparameters:

$$E = 1$$
 $K = 20$

$$B = 128$$
 $C = 1.0$

$$Ir = 0.01$$
 Rounds = 500

Optimizer = vanilla SGD
$$\alpha = 0.5$$

$$\mu = 0.1$$

Experiments on CIFAR-10

Rounds	Method	Top-1 acc.	Тор-3 асс.
100	FedAvg [1]	45.31	80.11
100	FedAvg 1 + GH (ours)	47.78 (+2.47)	81.85 (+1.74)
200	FedAvg [1]	50.65	83.48
200	FedAvg 1 + GH (ours)	57.04 (+6.39)	87.85 (+4.37)
500	FedAvg [1]	62.09	90.29
300	FedAvg 1 + GH (ours)	66.75 (+4.66)	91.88 (+1.59)
100	FedProx [2]	45.29	80.11
100	FedProx $\boxed{2}$ + GH (ours)	47.69 (+2.40)	81.86 (+1.75)
200	FedProx [2]	50.67	83.52
200	FedProx [2] + GH (ours)	57.03 (+6.36)	87.92 (+4.40)
500	FedProx [2]	62.13	90.30
300	FedProx [2] + GH (ours)	66.91 (+4.78)	91.97 (+1.67)
100	FedNova [3]	45.44	80.21
100	FedNova 3 + GH (ours)	47.16 (+1.72)	81.47 (+1.26)
200	FedNova [3]	50.44	83.57
200	FedNova 3 + GH (ours)	56.21 (+5.77)	87.38 (+3.81)
500	FedNova [3]	62.14	90.22
300	FedNova 3 + GH (ours)	66.16 (+4.02)	91.59 (+1.37)

Table 4. Results on the CIFAR-10 CNN with $\alpha = 0.5$, C = 1.0, 20 clients.

[1] Communication-Efficient Learning of Deep Networks from Decentralized Data, PMLR, 2017
[2] Federated Optimization in Heterogeneous Networks, MLSys, 2020
[3] Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization, NeurIPS, 2020

Experiments on Tiny-ImageNet

Tiny-ImageNet

200 categories

Training samples: 100000

Testing samples: 10000

Sample size: (64, 64, 3)

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112	7×7, 64, stride 2				
			3×3 max pool, stride 2			
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$
	1×1	average pool, 1000-d fc, softmax				
FL	OPs	1.8×10^9	3.6×10^9	3.8×10^{9}	7.6×10^9	11.3×10 ⁹

ResNet18

(Params: 11.27M, FLOPs: 148.951M)

Default hyperparameters:

E = 5

K = 20

B = 64

C = 1.0

Ir = 0.01

Rounds = 100

Optimizer = vanilla SGD $\alpha = 0.1$

 $\mu = 0.1$

Experiments on Tiny-ImageNet

Rounds	Method	Top-1 acc.	Тор-3 асс.
70	FedAvg [1]	29.05	47.08
70	FedAvg 🗓 + GH (ours)	30.63 (+1.58)	48.58 (+1.50)
100	FedAvg [1]	30.62	49.21
100	FedAvg [1] + GH (ours)	31.30 (+0.68)	49.30 (+0.09)
70	FedProx [2]	29.20	47.24
70	FedProx $\boxed{2}$ + GH (ours)	30.26 (+1.06)	47.93 (+0.69)
100	FedProx [2]	31.02	49.09
100	FedProx [2] + GH (ours)	31.06 (+0.04)	49.71 (+0.62)
70	FedNova [3]	29.50	47.61
70	FedNova 3 + GH (ours)	30.07 (+0.57)	48.74 (+1.13)
100	FedNova [3]	31.01	49.29
100	FedNova 3 + GH (ours)	31.41 (+0.40)	50.04 (+0.75)

Table 5. Results on the Tiny-ImageNet ResNet18 [4] with $\alpha = 0.1$, C = 1.0, 20 clients.

[4] Deep residual learning for image recognition, CVPR, 2016 [1] Communication-Efficient Learning of Deep Networks from Decentralized Data, PMLR, 2017 [2] Federated Optimization in Heterogeneous Networks, MLSys, 2020

[3] Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization, NeurIPS, 2020

Limitations

1 Performance

FedGH only works if the gradient conflict (noniid) occurs. It is powerless in the small number of clients or homogeneous data scenarios. Empirically, **FedGH** brings limited performance gains on over-parameterized models.

03 Theory

FedGH is derived from intuitive ideas and observations of toy experiments. Convergence guarantee and principled understanding should be done further.

17 Methodology

FedGH can be viewed as an adaptive global learning rate scheduler based on clients' consensus. However, a larger learning rate may lead to training oscillations and a faster transition from underfitting to overfitting. Thus, Introducing EMA [1] or plugging **FedGH** with other existing methods will perform better.

1 Experiment

Further validation of **FedGH** on more challenging tasks (semantic segmentation, language modeling, etc.) and more SOTA models is also needed.

[1] Generalized Federated Learning via Sharpness Aware Minimization, ICML, 2022

Human Faces (Object Detection)

Training samples: 1983

Testing samples: 221

Sample size: (640, 640, 3)

```
464 ultralytics.nn.modules.conv.Conv
                                                                                    [3, 16, 3, 2]
                               4672 ultralytics.nn.modules.conv.Conv
                                                                                    [16, 32, 3, 2]
                               7360 ultralytics.nn.modules.block.C2f
                                                                                    [32, 32, 1, True]
                                     ultralytics.nn.modules.conv.Conv
                                                                                   [32, 64, 3, 2]
[64, 64, 2, True]
                                     ultralytics.nn.modules.block.C2f
                                     ultralytics.nn.modules.conv.Conv
                                                                                    [64, 128, 3, 2]
                             197632 ultralytics.nn.modules.block.C2f
                                                                                    [128, 128, 2, True]
                                                                                    [128, 256, 3, 2]
                             295424 ultralytics.nn.modules.conv.Conv
                             460288 ultralytics.nn.modules.block.C2f
                                                                                    [256, 256, 1, True]
                             164608 ultralytics.nn.modules.block.SPPF
                                                                                    [256, 256, 5]
                                  0 torch.nn.modules.upsampling.Upsample
                                                                                    [None, 2, 'nearest']
                                  0 ultralytics.nn.modules.conv.Concat
                                                                                    [384, 128, 1]
                             148224 ultralytics.nn.modules.block.C2f
                                  0 torch.nn.modules.upsampling.Upsample
                                                                                    [None, 2, 'nearest']
                                   0 ultralytics.nn.modules.conv.Concat
                                                                                    [192, 64, 1]
                              37248 ultralytics.nn.modules.block.C2f
                              36992 ultralytics.nn.modules.conv.Conv
                                                                                    [64, 64, 3, 2]
                                  0 ultralytics.nn.modules.conv.Concat
                                                                                   [192, 128, 1]
[128, 128, 3, 2]
                             123648 ultralytics.nn.modules.block.C2f
                             147712 ultralytics.nn.modules.conv.Conv
                                  0 ultralytics.nn.modules.conv.Concat
                             493056 ultralytics.nn.modules.block.C2f
                                                                                    [384, 256, 1]
                                                                                   [1, [64, 128, 256]]
          [15, 18, 21] 1
                             751507 ultralytics.nn.modules.head.Detect
YOLOv8n summary: 225 layers, 3011043 parameters, 3011027 gradients
```

YOLOv8n (225 layers, 3011043 parameters, 3011027 gradients)

Default hyperparameters:

num_clients = 4 rounds = 30

batch_size = 32 local_steps = 1.0

 $learning_rate = 0.0000001$

Round	Method	mAP50
5	FedAvg	0.615
5	FedAvg + GH(ours)	0.916 (+0.301)
10	FedAvg	0.83
10	FedAvg + GH(ours)	0.897 (+0.067)
30	FedAvg	0.842
30	FedAvg + GH(ours)	0.897 (+0.055)

Sample output

