

Coviders

Renan Hiroki Bastos - 176573 Vinicius Alves Mancine Dantas - 188092 Fernando dos Reis Santos Filho - 234471

01

Tema

Descrição do tema do dataset, motivo e contexto gerador

COVID-19 E OS CUIDADOS NECESSÁRIOS

02

Modelos

Modelos conceitual e lógicos escolhidos

Modelo conceitual

Modelos lógicos - Relacional

CASOS(_id_, location, date, new_cases, total_cases, new_deaths, total_deaths, mask_use_percentage);

Location chave estrangeira -> POPULACAO(location)

POPULACAO(_location_, população);

Modelos lógicos - Hierárquico

03

Fontes e Tratamentos

Fontes de dados utilizados e tratamentos realizados

Data on COVID-19 (coronavirus) by Our World in Data

Link

https://github.com/owid/ covid-19-data/tree/mast er/public/data

Formatos

CSV Json

Personal measures taken to avoid COVID-19

Link

https://today.yougov.co m/topics/international/art icles-reports/2020/03/17 /personal-measures-tak en-avoid-covid-19

Formatos

CSV XLS

YouGov COVID-19 behaviour changes tracker: Wearing a face mask when in public places

% of people in each market who say they are: Wearing a face mask when in public places.

Coronavirus (Covid-19) Data in the United States

Link

https://github.com/nytimes/covid-19-data

Formato

CSV

6	nyt-covid-19-bot Updating data.	be56cda 7 hours ago	① 2,304 commits
	.github/ISSUE_TEMPLATE	New data for 6/26.	15 months ago
•	colleges	update colleges readme to note it is not currently being updated	yesterday
	excess-deaths	Final update for excess deaths dataset.	8 months ago
	live	Updating data.	7 hours ago
	mask-use	*NEW DATASET*: Estimates of mask-usage by county from a nationwide \dots	14 months ago
	prisons	NEW: We're publishing files detailing the outbreak in prisons, jails	6 months ago
	rolling-averages	Updating data.	20 hours ago
٥	.gitignore	excess deaths	17 months ago
٥	LICENSE	Update license and citation year	8 months ago
D	NEW-YORK-DEATHS-METHODOLOGY	Add special methodology note explaining New York deaths.	14 months ago
D	PROBABLE-CASES-NOTE.md	Adding note on our methodology change to include probable cases.	17 months ago
D	README.md	Latest contributors list	4 months ago
٥	us-counties-recent.csv	Updating data.	20 hours ago
<u>D</u>	us-counties.csv	Updating data.	20 hours ago
D	us-states.csv	Updating data.	20 hours ago
D	us.csv	Updating data.	20 hours ago

Mask adherence and rate of COVID-19 across the United States

Link

https://journals.plos.or g/plosone/article?id=1 0.1371/journal.pone.0 249891#sec011

Formatos

CSV XLS

Importação dos dados

```
# IMPORTAR ARQUIVOS CSV PARA OS EUA
CREATE TABLE dados yougov (
        id INTEGER NOT NULL,
                                            DROP TABLE IF EXISTS dados nyt;
        date VARCHAR(10),
        location VARCHAR(20),
                                            CREATE TABLE dados nyt (
        mask use percentage DEC(4, 2),
                                                    id INTEGER NOT NULL,
        PRIMARY KEY(ID)
                                                    date VARCHAR(10),
);
                                                    state VARCHAR(40),
                                                    fips INTEGER,
COPY dados yougov
                                                    cases INTEGER,
FROM '../data/external/yougov-chart.csv'
                                                    deaths INTEGER,
DELIMITER ','
                                                    PRIMARY KEY(ID)
CSV HEADER;
                                            COPY dados nyt
                                            FROM '../data/external/nyt.csv'
                                            DELIMITER ','
                                            CSV HEADER;
```

Tratamento dos dados: Our World In Data

```
# TRATAR DADOS DA OUR WORLD IN DATA (EUROPA)
DROP VIEW IF EXISTS view_europa;
DROP TABLE IF EXISTS dados owid tratados;
DROP TABLE IF EXISTS table_europa;
DROP VIEW IF EXISTS view europa;
CREATE VIEW view_europa AS
SELECT id,
           location.
           date,
           total cases,
           LAG(total cases) OVER (
                   ORDER BY id) AS old_total_cases,
           total deaths,
           LAG(total deaths) OVER (
                   ORDER BY id) AS old total deaths
FROM tabela original
WHERE (location='Denmark' OR location='Finland' OR location='France' OR location='Germany' OR location='Italy' OR location='Norway' OR location='Spain'
                AND (date='2020-02-01' OR date='2020-03-01' OR date='2020-04-01' OR date='2020-05-01' OR date='2020-06-01' OR date='2020-07-01' OR date
CREATE TABLE table europa AS
        SELECT id.
           location.
           date.
           total cases,
           total cases - old total cases as new cases,
           total deaths,
           total deaths - old_total_deaths as new_deaths
FROM view europa;
UPDATE table europa
SET new cases = total cases
WHERE (date = '2020-02-01' AND new cases < 0) OR (date = '2020-03-01' AND new cases < 0);
SELECT * FROM table europa ORDER BY id;
```

União de dados: Europa

```
# JOIN DAS TABELAS DE NUMEROS DE CASOS E USO DE MÁSCARA PARA A EUROPA

DROP TABLE IF EXISTS europa_final;

CREATE TABLE europa_final AS
SELECT eu.*, um.mask_use_percentage
FROM table_europa eu
INNER JOIN uso_mascara_original um ON (eu.date = um.date) AND (eu.location = um.location);

SELECT * FROM europa_final;
```

Tratamento dos dados: New York Times

```
# TRATAR DADOS DO NYT (EUA)
DROP VIEW IF EXISTS view eua;
DROP TABLE IF EXISTS table eua;
CREATE VIEW view eua AS
SELECT temp_data.id,
                              temp_data.location,
                              temp data.date,
                              temp data.cases as total cases,
                              LAG(temp_data.cases) OVER (
                                                   ORDER BY temp data.location, temp data.id) AS old total cases,
                              temp data.deaths as total deaths,
                              LAG(temp data.deaths) OVER (
                                                   ORDER BY temp data.location, temp data.id) AS old total deaths
FROM (SELECT id,
                                              state as location,
                                              date,
                                              cases,
                                               deaths
                                              FROM dados nyt
                                              ORDER BY state, id) as temp data
WHERE (date='2020-02-01' OR date='2020-03-01' OR date='2020-04-01' OR date='2020-05-01' OR date='2020-06-01' OR date='2020-07-01' OR date='2020-08-01'
CREATE TABLE table eua AS
                      SELECT id.
                             location,
                              date,
                              total_cases,
                              total cases - old total cases as new cases,
                              total deaths,
                              total deaths - old total deaths as new deaths
FROM view eua;
UPDATE table eua
SET new cases = total cases,
                     new_deaths = total_deaths
WHERE (date = '2020-02-01' AND new_cases < 0) OR (date = '2020-03-01' AND new_cases < 0) OR (date = '2020-04-01' AND new_cases < 0) OR (date = '2020-05-01' AND new_cases < 0) OR (date = '2020-05-01
SELECT * FROM table eua;
```

Tratamento dos dados: Plos One

```
# TRATAR DADOS DO PLOS ONE (USO DE MÁSCARA NOS EUA)
DROP TABLE IF EXISTS mascara eua;
CREATE TABLE mascara eua (
        date VARCHAR(10),
       location VARCHAR(40).
        mask use percentage DEC(4, 2)
);
INSERT INTO mascara eua (location, date, mask use percentage)
SELECT State, '2020-04-01', adh APRavg
FROM plosone data;
INSERT INTO mascara eua (location, date, mask use percentage)
SELECT State, '2020-05-01', adh MAYavg
FROM plosone data;
INSERT INTO mascara eua (location, date, mask use percentage)
SELECT State, '2020-06-01', adh JUNEavg
FROM plosone data;
INSERT INTO mascara eua (location, date, mask use percentage)
SELECT State, '2020-07-01', adh_JULavg
FROM plosone data;
INSERT INTO mascara eua (location, date, mask use percentage)
SELECT State, '2020-08-01', adh_AUGavg
FROM plosone data;
INSERT INTO mascara eua (location, date, mask use percentage)
SELECT State, '2020-09-01', AdhSEPavg
FROM plosone data;
```

União de dados: EUA

```
# JOIN DAS TABELAS DE NUMERO DE CASOS E DE USO DE MÁSCARA PARA OS EUA

DROP TABLE IF EXISTS eua_final;

CREATE TABLE eua_final AS

SELECT eua.*, mask.mask_use_percentage
FROM table_eua eua

INNER JOIN mascara_eua mask ON (eua.date = mask.date AND eua.location = mask.location);

INSERT INTO eua_final (id, location, date, new_cases, total_cases, new_deaths, total_deaths, mask_use_percentage)
SELECT id, location, date, new_cases, total_cases, new_deaths, total_deaths, NULL
FROM table_eua te
WHERE NOT EXISTS (SELECT 1 FROM mascara_eua mask where mask.date = te.date limit 1);

SELECT * FROM eua final ORDER BY (location, id);
```

União das tabelas da Europa e dos EUA

```
# JOIN DAS TABELAS DE NUMERO DE CASOS E DE USO DE MÁSCARA PARA OS FUA
DROP TABLE IF EXISTS eua final;
CREATE TABLE eua final AS
SELECT eua.*, mask.mask use percentage
FROM dados nyt tratados eua
INNER JOIN dados plosone tratados mask ON ((eua.date = mask.date) AND (eua.location = mask.location));
INSERT INTO eua final (id, location, date, new cases, total cases, new deaths, total deaths, mask use percentage)
SELECT id, location, '2020-04-01', new cases, total cases, new deaths, total deaths, NULL
FROM dados nyt tratados;
# UNINDO AS TABELAS FINAIS DA EUROPA E DOS EUA
DROP TABLE IF EXISTS tabela final;
CREATE TABLE tabela final AS
SELECT *
FROM europa final;
INSERT INTO tabela final(id, location, date, new cases, total cases, new deaths, total deaths, mask use percentage)
    SELECT id, location, date, new cases, total cases, new deaths, total deaths, mask use percentage
    FROM eua final;
```

União das tabelas com a população

Tratamento e transformação do CSV final para JSON

```
import pandas as pd
import json
import math
casos pd = pd.read csv('../data/processed/casos.csv')
locations = []
dates = []
for index, row in casos pd.iterrows():
 if(row.location not in locations):
    locations.append(row.location)
  if(row.date not in dates):
    dates.append(row.date)
datesDic = {}
for date in dates:
 datesDic[date] = {}
final = {}
for location in locations:
    final[location] = {}
    dates = datesDic.copv()
    final[location]["dates"] = dates
```

```
import csv
casos = '../data/processed/casos.csv'
with open(casos, 'r') as csvfile:
    datareader = csv.reader(csvfile)
    for row in datareader:
        if row[1] != 'location':
            final[row[1]]['dates'][row[2]] = {'total cases': row[3]}
           final[row[1]]['dates'][row[2]].update({'new_cases': row[4]})
            final[row[1]]['dates'][row[2]].update({'total deaths': row[5]})
           final[row[1]]['dates'][row[2]].update({'new deaths': row[6]})
            final[row[1]]['dates'][row[2]].update({'mask_use_percentage': row[7]})
            final[row[1]]['dates'][row[2]].update({'new_cases_per_million_habitants': row[8]})
           final[row[1]]['dates'][row[2]].update({'new deaths per million habitants': row[9]})
           final[row[1]]['dates'][row[2]].update({'total cases per million habitants': row[10]})
           final[row[1]]['dates'][row[2]].update({'total deaths per million habitants': row[11]})
    # print(final)
população = '../data/processed/população.csv'
with open(populacao, 'r') as csvfile:
   datareader = csv.reader(csvfile)
    for row in datareader:
        if row[0] != 'location':
            final[row[0]].update({'populacao': row[1]})
jsonFinal = json.dumps(final)
print(jsonFinal)
```


04

Análises

Algumas perguntas que podem ser respondidas pelo dataset

Perguntas

Os locais com maior número de casos são também os lugares com menor índice de uso de máscaras?

```
SELECT sum(new cases per million habitants),
       avg(new cases per million habitants)
FROM casos,
WHERE mask use percentage < 25;
SELECT sum(new cases per million habitants),
       avg(new cases per million habitants)
FROM casos,
WHERE mask use percentage >= 25 AND mask use percentage < 50;
SELECT sum(new cases per million habitants),
       avg(new cases per million habitants)
FROM casos,
WHERE mask use percentage >= 50 AND mask use percentage < 75;
SELECT sum(new cases per million habitants),
       avg(new cases per million habitants)
FROM casos,
WHERE mask use percentage >= 75;
```

sum	avg	
72193.92	949.92	
350075.25	2652.08	
654052.02	3574.05	
332372.74	5035.95	

Quais são os locais com maior número de casos por índice de uso de máscara?

```
SELECT location,

date,

mask_use_percentage,

new_cases_per_million_habitants,

new_cases_per_million_habitants/mask_use_percentage as case_mask_use_rate

FROM casos
```

FROM casos
WHERE mask_use_percentage > 0 AND new_cases > 0

WHERE	mask_use_percentage > 0 AND new_cases > 0
ORDER	BY case_mask_rate DESC
LIMIT	20;

4	location character varying (35)	date character varying (20)	mask_use_percentage numeric (4,2)	new_cases_per_million_habitants double precision	case_mask_use_rate double precision
1	Sweden	2020-12-01	16.00	13389.911335999084	836.8694584999428
2	Sweden	2021-01-01	29.00	17337.885017745168	597.8581040601782
3	Sweden	2020-05-01	3.00	1650.4371552836271	550.1457184278757
4	Sweden	2021-02-01	33.00	12719.939672119304	385.45271733694864
5	Sweden	2021-05-01	43.00	15746.837292006929	366.2055184187658
6	Sweden	2021-04-01	43.00	15302.05463866784	355.861735782973
7	Sweden	2020-06-01	5.50	1686.0708130108596	306.55832963833814
8	Sweden	2021-06-01	32.67	9312.753374448488	285.0551997076366
9	Denmark	2020-05-01	4.00	1068.470966333114	267.1177415832785
10	Sweden	2020-11-01	12.00	3017.5720069838044	251.46433391531704
11	United Kingdom	2021-02-01	75.50	18969.387495455667	251.25016550272406
12	New York	2020-05-01	46.16	11346.377642293306	245.8054081952623
13	Sweden	2021-03-01	36.50	8869.345021958383	242.99575402625706
14	United Kingdom	2021-08-01	64.00	15539.939978233993	242.81156215990615
15	Denmark	2021-01-01	65.00	14448.497002044682	222.2845692622259
16	Denmark	2021-08-01	18.50	4093.657776944702	221.2787987537677
17	Spain	2021-02-01	87.00	19122.389750190458	219.7975833355225
18	New Jersey	2020-05-01	50.03	10650.776607240785	212.88779946513662
19	Florida	2020-08-01	71.65	14905.20070236181	208.02792327092544
20	Louisiana	2020-08-01	58.06	12046.14152262559	207.4774633590353

Há algum indício de que a frequência de uso de máscara influência na taxa de mortalidade?

```
SELECT location,
        date.
        mask use percentage,
        new deaths*100/new cases as monthly death rate,
        total deaths*100/total cases as overall death rate
FROM tabela final final
WHERE new cases != 0 AND total cases != 0 AND mask use percentage IS NOT NULL
ORDER BY mask use percentage DESC;
SELECT avg(new deaths*100/new cases) as avarage death rate
FROM casos
WHERE mask use percentage < 25;
SELECT avg(new deaths*100/new cases) as avarage death rate
FROM casos
WHERE mask use percentage >= 25 AND mask use percentage < 50;
SELECT avg(new deaths*100/new cases) as avarage death rate
FROM casos
WHERE mask use percentage >= 50 AND mask use percentage < 75;
SELECT avg(new_deaths*100/new_cases) as avarage_death_rate
FROM casos
WHERE mask use percentage >= 75;
```

3.89	
1.96	
2.18	
4.06	

Há algum indício de que a frequência de uso de máscara influência na taxa de mortalidade?

```
dictionary = json.loads(jsonFinal)
new deaths 25 = 0
new cases 25 = 0
new deaths 50 = 0
new cases 50 = 0
new deaths 75 = 0
new cases 75 = 0
new deaths 100 = 0
new cases 100 = 0
for location in final:
    for date in dictionary[location]['dates']:
        if ('mask use percentage' in dictionary[location]['dates'][date] and dictionary[location]['dates'][date]['mask use percentage'] != '') and \
        ('new deaths per million habitants' in dictionary[location]['dates'][date] and dictionary[location]['dates'][date]['new deaths per million habit
        ('new cases per million habitants' in dictionary[location]['dates'][date] and dictionary[location]['dates'][date]['new cases per million habita
            if(float(dictionary[location]['dates'][date]['mask use percentage']) < 25):</pre>
                new deaths 25 += float(dictionary[location]['dates'][date]['new deaths per million habitants'])
                new cases 25 += float(dictionary[location]['dates'][date]['new cases per million habitants'])
            if(float(dictionary[location]['dates'][date]['mask use percentage']) < 50 and float(dictionary[location]['dates'][date]['mask use percentage'])
                new deaths 50 += float(dictionary[location]['dates'][date]['new deaths per million habitants'])
                new cases 50 += float(dictionary[location]['dates'][date]['new cases per million habitants'])
            if(float(dictionary[location]['dates'][date]['mask use percentage']) < 75 and float(dictionary[location]['dates'][date]['mask use percentage'])
                new deaths 75 += float(dictionary[location]['dates'][date]['new deaths per million habitants'])
                new_cases_75 += float(dictionary[location]['dates'][date]['new_cases_per_million_habitants'])
            if(float(dictionary[location]['dates'][date]['mask use percentage']) >= 75);
                new deaths 100 += float(dictionary[location]['dates'][date]['new deaths per million habitants'])
                new cases 100 += float(dictionary[location]['dates'][date]['new cases per million habitants'])
new deaths 25 = new deaths 25/new cases 25
new deaths 50 = new deaths 50/new cases 50
new deaths 75 = new deaths 75/new cases 75
new deaths 100 = new deaths 100/new cases 100
print("Uso de máscara < 25%: {:.2f}%, Uso de máscara entre 25% e 50%: {:.2f}%, Uso de máscara entre 50% e 75%: {:.2f}%, Uso de máscara entre < 75%:
```

Uso de máscara < 25%; 2.91%. Uso de máscara entre 25% e 50%; 3.06%. Uso de máscara entre 50% e 75%; 2.15%. Uso de máscara entre < 75%; 2.05%

Locais na mesma faixa de porcentagem de uso de máscara possuem taxas de infecções parecidas?

SELECT location,
new_cases_per_million_habitants
FROM casos,
WHERE mask_use_percentage < 10;
SELECT location,
new_cases_per_million_habitants
FROM casos,
WHERE mask_use_percentage >= 10 AND mask_user_percentage < 20;
SELECT location,
new_cases_per_million_habitants
FROM casos,
WHERE mask_use_percentage >= 20 AND mask_user_percentage < 30;
SELECT location,
new_cases_per_million_habitants
FROM casos,
WHERE mask_use_percentage >= 30 AND mask_user_percentage < 40;
SELECT location,
new_cases_per_million_habitants
FROM casos,
WHERE mask_use_percentage >= 40 AND mask_user_percentage < 50;
SELECT location,
new_cases_per_million_habitants
FROM casos,
WHERE mask_use_percentage >= 50 AND mask_user_percentage < 60;
SELECT location,
new_cases_per_million_habitants
FROM casos,
WHERE mask_use_percentage >= 60 AND mask_user_percentage < 70;
SELECT location,
new_cases_per_million_habitants
FROM casos,
WHERE mask_use_percentage >= 70 AND mask_user_percentage < 80;
SELECT location,
new_cases_per_million_habitants
FROM casos,
WHERE mask_use_percentage >= 80 AND mask_user_percentage < 90;
SELECT location,
new_cases_per_million_habitants
FROM casos,
WHERE mask_use_percentage >= 90;

4	location character varying (35)	new_cases_per_million_habitants double precision
1	Denmark	5181.027570468143
2	Finland	1114.432677586594
3	Italy	28.041177109615894
4	Norway	1082.5684223202873
5	United Kingdom	384.54642795618605
6	Alabama	7616.4162061860025
7	Alaska	951.7433401827947
8	Alaska	3614.7157518976915
9	Alaska	3114.3005572743596
10	Arkansas	4567.12282551957
11	Arkansas	7297.301964055408
12	Connecticut	3875.822808119039
13	Georgia	3158.354235305232
14	Georgia	8891.506536463905
15	Georgia	7627.95946343079
16	Indiana	1684.7620406252836
17	Indiana	4158.11415117585
18	Iowa	3080.8348501380246
19	Kansas	1715.182376407477

05

Evolução do projeto

Evoluções na modelagem do projeto e melhorias

Evolução do Projeto

Evolução do Projeto

CASO(_id_, locations, date, new_cases, total_cases, new_deaths, total_deaths, mask_use_percentage)

CASOS(_id_, location, date, new_cases, total_cases, new_deaths, total_deaths, mask_use_percentage);

Location chave estrangeira -> POPULACAO(location)

POPULACAO(_location_, população);