

TrenchP™ Power MOSFETs

IXTA120P065T IXTP120P065T IXTH120P065T

- 65V - 120A $R_{DS(on)} \leq$ $10m\Omega$

P-Channel Enhancement Mode Avalanche Rated

TO-263 AA (IXTA) D (Tab)

TO-220AB (IXTP) **Test Conditions Maximum Ratings** Symbol

V _{DSS}	$T_{J} = 25^{\circ}C$ to $150^{\circ}C$	- 65	V
V_{DGR}	$T_{_{\rm J}} = 25^{\circ}\text{C} \text{ to } 150^{\circ}\text{C}, \ R_{_{\rm GS}} = 1\text{M}\Omega$	- 65	V
V _{GSS}	Continuous	±15	V
V _{GSM}	Transient	±25	V
I _{D25}	T _c = 25°C	- 120	А
I _{DM}	$T_{_{\rm C}}$ = 25°C, Pulse Width Limited by $T_{_{\rm JM}}$	- 360	Α
IA	$T_c = 25$ °C	- 60	А
E _{AS}	$T_{c} = 25^{\circ}C$	1	J
$\mathbf{P}_{_{\mathrm{D}}}$	$T_{c} = 25^{\circ}C$	298	W
T		-55 +150	°C
T _{JM}		150	°C
T _{stg}		-55 +150	°C
T _L	1.6mm (0.062 in.) from Case for 10s	300	°C
T _{SOLD}	Plastic Body for 10s	260	°C
M _d	Mounting Torque (TO-220 & TO-247)	1.13/10	Nm/lb.in.
Weight	TO-263	2.5	g
	TO-220	3.0	g

	`	,			
					_
				7//	2
		73			
(3		Ť		
	D ~ 1		D (Ta	h)	

G = GateD = Drain S = SourceTab = Drain

Features

- International Standard Packages
- Avalanche Rated
- Extended FBSOA
- Fast Intrinsic Diode
- $^{\bullet}$ Low $\rm R_{\rm DS(ON)}$ and $\rm Q_{\rm G}$

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- High-Side Switching
- Push Pull Amplifiers
- DC Choppers
- Automatic Test Equipment
- Current Regulators
- Battery Charger Applications

			cterist Typ.	ic Valu Max.	
BV _{DSS}	$V_{GS} = 0V, I_{D} = -250\mu A$	- 65			V
V _{GS(th)}	$V_{DS} = V_{GS}$, $I_{D} = -250\mu A$	- 2.0		- 4.0	V
I _{GSS}	$V_{GS} = \pm 15V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			- 10 - 750	•
R _{DS(on)}	$V_{GS} = -10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$			10	mΩ

IXTA120P065T IXTH120P065T IXTP120P065T

Symbol (T _J = 25°C	Test Conditions , Unless Otherwise Specified)	Charae Min.	cteristic Typ.	Values Max.
g _{fs}	$V_{DS} = -10V, I_{D} = 0.5 \cdot I_{D25}, \text{ Note 1}$	45	75	S
C _{iss}			13.2	nF
C _{oss}	$V_{GS} = 0V, V_{DS} = -25V, f = 1MHz$		1345	pF
C _{rss}			505	pF
t _{d(on)}	Resistive Switching Times		31	ns
t _r			28	ns
$\mathbf{t}_{d(off)}$	$V_{GS} = -10V, V_{DS} = -33V, I_{D} = -50A$		38	ns
t,	$R_{\rm g} = 1\Omega$ (External)		21	ns
$Q_{g(on)}$			185	nC
Q_{gs}	$V_{GS} = -10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		55	nC
\mathbf{Q}_{gd}			58	nC
R _{thJC}				0.42 °C/W
R _{thCS}	(TO-220) (TO-247)		0.50 0.21	°C/W

Source-Drain Diode

Symbol (T _J = 25°C,	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.		
I _s	$V_{GS} = 0V$			- 120	Α
I _{SM}	Repetitive, Pulse Width Limited by T_{JM}			- 480	Α
V _{SD}	$I_F = -60A, V_{GS} = 0V, \text{ Note 1}$			-1.3	V
$\left\{ egin{array}{c} \mathbf{t}_{rr} \\ \mathbf{Q}_{RM} \\ \mathbf{I}_{RM} \end{array} \right\}$	$I_{_{\rm F}}$ = - 60A, -di/dt = -100A/ μ s $V_{_{\rm R}}$ = - 33V, $V_{_{\rm GS}}$ = 0V		53 77 - 2.9		ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

SYM	INCHES		MILLIMETERS	
STM	MIN	MAX	MIN	MAX
Α	.185	.209	4.7	5.3
Α1	.087	.102	2.2	2.54
A ₂	.059	.098	2.2	2.6
b	.040	.055	1.0	1.4
b ₁	.065	.084	1.65	2.13
b ₂	.113	.123	2.87	3.12
O	.016	.031	.4	.8
D	.819	.845	20.80	21.46
П	.610	.640	15.75	16.26
е	.215	BSC	5.45	BSC
Г	.780	.800	19.81	20.32
L1		.177		4.50
φP	.140	.144	3.55	3.65
Q	.212	.244	5.4	6.2
R	.170	.216	4.32	5.49
S	.242	BSC	6.15	BSC

MYZ	INCHES		MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
A	.170	.190	4.32	4.83	
b	.025	.040	0.64	1.02	
b1	.045	.065	1.15	1.65	
С	.014	.022	0.35	0.56	
D	.580	.630	14.73	16.00	
E	.390	.420	9.91	10.66	
е	.100 BSC		2.54 BSC		
F	.045	.055	1.14	1.40	
H1	.230	.270	5.85	6.85	
J1	.090	.110	2.29	2.79	
k	0	.015	0	0.38	
L	.500	.550	12.70	13.97	
L1	.110	.230	2.79	5.84	
ØΡ	.139	.161	3.53	4.08	
Q	.100	.125	2.54	3.18	

IXYS Reserves The Right to Change Limits, Test Conditions, and Dimensions.

Fig. 1. Output Characteristics @ $T_J = 25$ °C -120 V_{GS} = -10V -100 - 7V -80 l_D - Amperes -60 -40 -20 - 5V 0 -0.2 -1.2 -0.4 -0.6 -0.8 V_{DS} - Volts

Fig. 2. Extended Output Characteristics @ T_J = 25°C -350 V_{GS} = -10V -300 -250 - Amperes - 150 7V -100 6V -50 5V 0 0 -2 -6 -10 -12 -14 -18 V_{DS} - Volts

Fig. 3. Output Characteristics @ T_J = 125°C -120 = -10V -100 -80 ID - Amperes -60 -40 - 5V -20 0 -0.2 -0.4 -0.6 -0.8 -1.2 -1.4 -1.6 -1.8 V_{DS} - Volts

Fig. 9. Forward Voltage Drop of Intrinsic Diode -300 -250 -200 Is - Amperes -100 T_J = 25°C -50 0 -0.4 -0.5 -0.6 -1.3 -0.7 -0.8 -0.9 -1 0 -1.1 -1.2 -1.4 -1.5 V_{SD} - Volts

IXYS Reserves The Right to Change Limits, Test Conditions, and Dimensions.

IXTA120P065T IXTH120P065T IXTP120P065T

Fig. 13. Resistive Turn-on Rise Time vs.
Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs.

Drain Current

Fig. 15. Resistive Turn-on Switching Times vs.

Gate Resistance

Fig. 16. Resistive Turn-off Switching Times vs.
Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs.

Drain Current

Fig. 18. Resistive Turn-off Switching Times vs.

Gate Resistance

0.00001

Pulse Width - Seconds

Fig. 19. Maximum Transient Thermal Impedance