Université Abou Bakr Belkaid - Tlemcen

Faculté des Sciences Département de Mathématiques Année universitaire : 2021-2022. Master I : Probabilités-Statistiques Module : Analyse Fonctionnelle II Durée : 1h30

Contrôle Continu

Exercice-01: (07 points)

1. Vérifier que

$$||a+b|-|a|-|b|| \le 2|b|$$
 $\forall a,b \in \mathbb{R}.$

- 2. Soit $(f_n)_{n\in\mathbb{N}}$ une suite dans $L^1(\Omega)$ tel que :
 - $f_n(x) \to f(x)$ presque partout dans Ω .
 - $(f_n)_{n\in\mathbb{N}}$ est borné dans $L^1(\Omega)$.

Montrer que $f \in L^1(\Omega)$ et que

$$\lim_{n \to \infty} \int \left\{ |f_n| - |f_n - f| \right\} = \int |f|.$$

Indication : on pose : $a = f_n - f$ et b = f, et on considère la suite $\varphi_n = \Big| |f_n| - |f_n - f| - |f| \Big|$.

- 3. Soit $(f_n)_{n\in\mathbb{N}}$ une suite dans $L^1(\Omega)$ et soit f une fonction dans $L^1(\Omega)$ tel que :
 - $f_n(x) \to f(x)$ presque partout dans Ω .
 - $-- \|f_n\|_1 \to \|f\|_1.$

Montrer que

$$\lim_{n \to \infty} ||f_n - f||_1 = 0.$$

Exercice-02: (06 points)

Soit $1 \leq q \leq p \leq \infty$. On considère a une fonction mesurable sur Ω . Supposons que $au \in L^q(\Omega)$ pour tout $u \in L^p(\Omega)$.

Démontrer que $a \in L^r(\Omega)$ avec :

$$r = \begin{cases} \frac{pq}{p-q} & \text{si} & p < \infty. \\ q & \text{si} & p = \infty \end{cases}$$

Indication: Utiliser le théorème du graphe fermé.

Exercice-03: (07 points) Soient $f, g \in L^p(\Omega)$ avec $1 \le p \le \infty$.

1. Soit $a, b \in \mathbb{R}$, démontrer que :

$$\max(a;b) = \frac{(a+b)+|b-a|}{2}, \min(a;b) = \frac{(a+b)-|b-a|}{2}.$$

2. Montrer que

$$h(x) = \max \left\{ f(x); g(x) \right\} \in L^p(\Omega).$$

- 3. Soit $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ deux suites dans $L^p(\Omega)$ avec $1 \leq p \leq \infty$ tel que $f_n \to f$ et $g_n \to g$ dans $L^p(\Omega)$. Posons $h_n(x) = \max \left\{ f_n(x); g_n(x) \right\}$ et démontrer que $h_n \to h$ dans $L^p(\Omega)$.
- 4. Soit $(f_n)_{n\in\mathbb{N}}$ une suite dans $L^p(\Omega)$ avec $1 et soit <math>(g_n)_{n\in\mathbb{N}}$ une suite bornée dans $L^\infty(\Omega)$. Supposons que $f_n \to f$ dans $L^p(\Omega)$ et $g_n \to g$ presque partout. Démontrer que

$$f_n g_n \to fg$$
 dans $L^p(\Omega)$.

Bonne chance.

Correction du contrôle continu

Exercice-01: (07 points)

1. Vérifier que

$$|a+b|-|a|-|b| \le 2|b|$$
 $\forall a,b \in \mathbb{R}$(02 points)

Il suffit de démontrer

$$-2|b| \le |a+b| - |a| - |b| \le 2|b|.$$

On a $|a+b| \ge ||a|-|b|| \ge |a|-|b| = |a|-2|b|+|b|$, donc $|a+b|-|a|-|b| \ge -2|b|$(01 point). De plus $|a+b| \le |a|+|b| \le |a|+|b|+2|b|$, alors $|a+b|-|a|-|b| \le 2|b|$(01 point)

- 2. Soit $(f_n)_{n\in\mathbb{N}}$ une suite dans $L^1(\Omega)$ tel que :
 - $f_n(x) \to f(x)$ presque partout dans Ω .
 - $(f_n)_{n\in\mathbb{N}}$ est borné dans $L^1(\Omega)$. Montrer que $f \in L^1(\Omega)$ et que

$$\lim_{n \to \infty} \int \left\{ |f_n| - |f_n - f| \right\} = \int |f|.$$

Indication : on pose : $a = f_n - f$ et b = f, et on considère la suite $\varphi_n = \Big| |f_n| - |f_n - f| - |f| \Big|$. D'apres le théoreme de Fatou on aura

$$\int |f| \le \liminf_{n \to \infty} \int |f_n| \le C.....(01 \text{ points})$$

Donc $f \in L^1$.

En utilisant, la première question avec $a = f_n - f$ et b = f et choisissons $\varphi_n = \Big| |f_n| - |f_n - f| - |f| \Big|$, on obtiendra $\varphi_n \leq 2|f|$.

On a φ_n converge presque partout vers 0, alors, d'apres le Théoreme de Lebesgue Dominée

$$\varphi_n \to 0$$

et par suite

$$||f_n - f||_1 \to 0 \text{ et } ||f_n||_1 \to ||f||_1 \dots (02 \text{ points})$$

Ce qu'il faut démonter.

- 3. Soit $(f_n)_{n\in\mathbb{N}}$ une suite dans $L^1(\Omega)$ et soit f une fonction dans $L^1(\Omega)$ tel que :
 - $f_n(x) \to f(x)$ presque partout dans Ω .
 - $-- ||f_n||_1 \to ||f||_1.$

Montrer que

$$\lim_{n\to\infty} ||f_n - f||_1 = 0.$$

D'apres ce qui précede

$$\lim_{n \to \infty} |f_n - f||_1 = \lim_{n \to \infty} ||f_n||_1 - ||f||_1$$

Donc $\lim_{n\to\infty} ||f_n - f||_1 = 0$

Exercice-02 (06 points)

Soit $1 \le q \le p \le \infty$. Soit a est une fonction mesurable sur Ω . Supposons que $au \in L^q(\Omega)$ pour tout $u \in L^p(\Omega)$. Démontrer que $a \in L^r(\Omega)$ avec :

$$r = \begin{cases} \frac{pq}{p - q} & \text{si} & p < \infty. \\ q & \text{si} & p = \infty \end{cases}$$

Considérons l'opérateur $T: L^p(\Omega) \to L^q(\Omega)$ définie par Tu = au. On démontre que le graphe de T est fermé. En effet, soit $(u_n)_n$ est une suite dans $L^p(\Omega)$ telque

$$u_n \to u$$
 dans $L^p(\Omega)$ et $Tu_n \to f$ dans $L^q(\Omega)$.

Donc a une sous suite

$$u_n \to u$$
 p.p dans Ω .

Et

$$Tu_n \to f$$
 p.p dans Ω .

Alors f = Tu. Par le théorème du graphe fermé que T est continue, alors il existe une constante positive C telque

$$||Tu||_q = ||au||_q \le C||u||_p$$
 $\forall u \in L^p(\Omega).....(02 \text{ points})$

Cas 01 : Si $p < \infty$ alors supposons $v = u^q$ alors

$$\int_{\Omega} a^q v \, dx \le C^q \left(\int_{\Omega} a^q v^{\frac{p}{q}} \right)^{\frac{q}{p}} = C^q \|u\|_{\frac{q}{p}} \qquad \forall v \in L^{\frac{p}{q}}(\Omega).$$

Alors l'application $K: v \to Kv = \int_{\Omega} |a|^q v$ est continue et lineaire fonctionnelle de $L^{\frac{p}{q}}(\Omega)$ et ceci implique alors que $|a|^q \in L^{(\frac{p}{q})'}(\Omega)$, où $(\frac{p}{q})' = \frac{p}{p-q}$ alors $a \in L^r(\Omega)$ avec $r = \frac{qp}{p-q}$

Cas 02 : Si $p = \infty$, alors $u \in L^{\infty}(\Omega)$, prenons par exemple u = 1 alors

$$||Tu||_q = ||a||_q \le C$$
 $\forall u \in L^{\infty}(\Omega).$

Alors $a \in L^q(\Omega)$ (02 points)

Exercice-03: (07 points)

Soient $f, g \in L^p(\Omega)$ avec $1 \le p \le \infty$.

1. Soit $a, b \in \mathbb{R}$, démontrer que :

$$\max(a;b) = \frac{(a+b)+|b-a|}{2}, \min(a;b) = \frac{(a+b)-|b-a|}{2}.....$$
évident.....(02 points)

2. Montrer que

$$h(x) = \max \left\{ f(x); g(x) \right\} = \frac{1}{2} \left((f(x) + g(x)) + |f(x) - g(x)| \right) \in L^p(\Omega).....(01 \text{ point})$$

3. Soit $(f_n)_{n\in\mathbb{N}}$ et $(g_n)_{n\in\mathbb{N}}$ deux suites dans $L^p(\Omega)$ avec $1 \leq p \leq \infty$ tel que $f_n \to f$ et $g_n \to g$ dans $L^p(\Omega)$. Posons

$$h_n(x) = \max \left\{ f_n(x); g_n(x) \right\} = \frac{1}{2} \left((f_n(x) + g_n(x)) + |f_n(x) - g_n(x)| \right)$$
$$\to \frac{1}{2} \left((f(x) + g(x)) + |f(x) - g(x)| \right) = h(x) = \max \left\{ f(x); g(x) \right\} \text{ dans } L^p(\Omega).$$

Alors

$$||h_n - h||_p = ||\frac{1}{2}((f_n(x) - f(x)) + (g_n(x) - g(x)) + (|f_n(x) - g_n(x)| - |f(x) - g(x)|))||_p \to 0...(02 \text{ points})$$

4. Soit $(f_n)_{n \in \mathbb{N}}$ une suite dans $L^p(\Omega)$ avec $1 et soit <math>(g_n)_{n \in \mathbb{N}}$ une suite bornée dans $L^\infty(\Omega)$. Supposons que $f_n \to f$ dans $L^p(\Omega)$ et $g_n \to g$ presque partout. Démontrer que

$$||f_n g_n - fg||_p \to 0$$
(02 points).