

SECOND SEMESTER 2014-2015

Course Handout (Part II)

Date: 11/01/2016

In addition to Part I (General Handout for all courses appended to the Time Table), this portion gives further specific details regarding the course.

Course No. : CHE G641

Course Title : Reaction Engineering

Instructor-in-charge : Srinivas Appari

1. COURSE DESCRIPTION

Non-isothermal reactor design (steady and unsteady state), Gas – solid reactions and reactors with emphasis on external and internal diffusion effects, Non-ideal reactors with emphasis on models for predicting conversion, design on heterogeneous reactor systems, Biochemical reaction systems

2. SCOPE AND OBJECTIVE OF THE COURSE

This course includes basic and advanced topics in Chemical Reaction Engineering. The initial part of the course aims to understand the basics in Kinetics and Reactor design gained at First Degree/ Undergraduate level to solve complex problems in reaction engineering. The emphasis will be on designing different heterogeneous reactor systems commonly encountered in practice.

3. TEXT BOOK

- 1. O. Levenspiel, Chemical Reaction Engineering, John Wiley, 3rd Ed., 1999
- 2. H. Scott Fogler, Elements of Chemical Reaction Engineering, PHI, 4th Ed, 2007

4. REFERENCE BOOKS

- 1. Y. T. Shah, Gas-solid-liquid reactor design, McGraw Hill, 1979
- 2. J.M. Smith, Chemical Engineering Kinetics, McGraw Hill, 3rd Ed., 1981

- 3. L. D. Schmidt, The Engineering of Chemical Reactions, Oxford University Press, 2nd Ed., 2014
- 4. G. F. Froment, K. B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, John Wiley & Sons, 3rd Ed., 2011.
- 5. R. J. Kee, M. E. Coltrin, P. Glarborg, Chemically Reacting Flow: Theory and Practice, John Wiley & Sons, 2003.

5. COURSE PLAN

Lecture No.	Learning Objectives	Topics to be covered	Reference
1 – 2	Introduction	Review of fundamentals, Reactor types, Design equations and reactor design algorithm, Catalysis	T1, T2
3 – 4	Non isothermal reactor Review of Energy balance, Steady state design reactor design of CSTR and PFR		T2, Chap. 8
5 – 7	Additional topics	Equilibrium conversion, non-adiabatic operation, multiple study states, multiple reactions	T2, Chap. 8
8 – 10	Non-ideal reactors	Review of concepts of RTD, Models for non-ideal reactors	T1 Chap. 12 – 16 T2, Chap. 13, 14
11 – 12	Heterogeneous reactions	Introduction, Rate equation and concept of rate controlling step, contacting patterns for 2 phase systems	T1 Chap. 17
13 – 16	Solid Catalyzed reactions (emphasis on intra-particle diffusion)	Review of catalysis and rate equation for surface kinetics, External diffusion (review only), Combined pore diffusion and surface kinetics, Heat Effects, Reactor Performance equations, Experimental methods for finding rates, Catalyst deactivation	T1 Chap. 18, 21 T2 Chap. 10 - 12
17 – 19	Packed and Fluidized bed	Overview, Staged reactor systems,	T1 Chap.

	catalytic reactors	Bubbling and circulating fluidized bed	19, 20	
		reactors, Reactor models		
20 – 22	Gas liquid reactions on solid catalysts	General rate equation, Reactor	T1 Chap. 22	
		performance equations with one excess		
		reactant, Contactor selection		
	Fluid – Fluid Reactions	Kinetics and rate equation, Rate equations	T1 Chap. 23	
23 – 25		mass-transfer with and without chemical		
		reaction, Role of Hatta number, Use of		
		solubility data to determine kinetic regime		
	D : 0EH:1 EH:1	Contactor selection criteria, Straight Mass	T1 Chap. 24	
26 – 28	Design of Fluid – Fluid	Transfer, Mass transfer plus not very slow		
	Reactors	reaction (counter and co-current towers,		
		agitator and bubble-tank contactors etc.)		
	Fluid – Particle Reactions	Selection of Model (PCM and SCM),	T1 Chap. 25	
29 – 31		Shrinking Core Model for particles of	T2 Chap.	
		unchanging size, Rate of reaction for	11	
		varying particle size, Limitations of SCM		
		Contacting Schemes/ Patterns, Particle	T1 Chap. 26	
32 – 34	Design of Fluid – Particle	mixing involving size and gas		
32 31	Reactors	composition, Fluidized bed with		
		entrainment of Solid fines		
	Biochemical reaction	Non-elementary reaction kinetics,	T1 Chap. 27	
35 – 37	Systems (Enzyme	Reaction Pathways, Michaelis – Menten	T2 Chap. 7	
	fermentation)	Kinetics, Batch and plug flow fermentors	12 Chap. /	
		Introduction, Batch and Mixed flow	_	
38 – 40	Biochemical reaction	fermentors, Kinetic expressions, Substrate	T1 Chap.	
	Systems (Microbial	Limiting Microbial fermentation (Monod	28 - 30	
	fermentation)	Kinetics), Optimum operating parameters,	T2 Chap. 7	
		Product Limiting Microbial fermentation		

6. EVALUATION SCHEME

No.	Evaluation Component	Duration	Weightage %	Date & Time	Remarks**
1.	Mid Sem. Test	1.5 hrs	20	16/3 11:00 - 12:30 PM	CB+ OB
2.	Assignments	-	10	-	-
3.	Surprise tests*	15 min	15	-	СВ
4.	Project	-	15	-	-
5.	Comprehensive Examination	3 hrs	40	7/5 AN	CB+ OB

^{*} Surprise tests will be conducted during class hours. Best <u>five</u> performances out of <u>six</u> will be considered for final grading.

- ** **CB** = Close book, **OB**= Open book
 - Chamber consultation hours will be announced in the class.
 - The notices will be displayed on the Chemical Engineering Notice Board
 - Make-up will be granted for genuine cases only. Prior permission of IC is compulsory.

Instructor-in-charge (CHE G641)