2022/02/01 先端エネルギー工学専攻 修士論文本審査 トカマク合体実験を用いた 磁気リコネクション中の 磁場構造変化の検証 小野靖 研究室 47-216081 土井 久瑠美

目次 • 背景: 磁気リコネクション ・目的: 高速磁気リコネクション機構の解明 ・実験装置:トカマク合体実験装置TS-6 ・計測手法:高精度磁気プローブ計測の広域化 結果:高速リコネクション実験 1) 電流ブロブの生成による高速化 2) プラズモイド生成による高速化 3) 電流シート放出による高速化 結論

目的:高速リコネクション機構の解明 Sweet-Parker モデルにおける仮定の見直し ①異常抵抗 ②プラズモイド放出 電流シート圧縮に伴って抵抗率増大 電流シートから放出されたプラズモイドを補う分 だけインフローが増加し、リコネクションが高速化 $\rightarrow v_{in}/v_{a} \propto \sqrt{\eta}$ よりリコネクションが高速化 400[μs] 425[μs] 450[μs] 475[μs] Effective resistivity η (=E/J) $\Box B_{X}B_{x}=1.5$ B_X/B_/=2.0 525[µs] \times $B_X/B_y=3.0$ ※プラズモイド + 8/8,=4.0 閉じた磁気島内部 のプラズマの塊 実効抵抗の電流シート厚さ8に対する依存性印 TS-4室内実験でのプラズモイドの生成と放出の様子(2) 電流シート付近の詳細な磁場計測を行い、 磁場構造がリコネクション高速化に与える影響について調査する

計測手法:高精度磁気プローブ計測の広域化 磁場計測の原理 $=\int 2\pi r B_z(r,z,t) dr$ $V_{int}(t) = -\frac{A}{RC}\int V_{coil}(t) dt$ $=\frac{NSA}{RC}B(t)$ $J_t(R, z) = \frac{1}{\mu_0} \left[\frac{dB_r}{dz} - \frac{dB_z}{dr} \right]_{r=1}$ $E_t(R, z) = -\frac{1}{2\pi R} \frac{d\Psi}{dt}\Big|_{r=R}$ 巻き数 N 平衡磁場(直流成分) $B_z(r,z) = \frac{\mu_0 I}{2\pi} \frac{1}{\sqrt{(R+r)^2 + z^2}} \left[K(k) + \frac{R^2 - r^2 - z^2}{(R-r)^2 + z^2} E(k) \right]$ 断面積S E_t J_t 従来システム: 手巻きで作成したコイルによる装置内の広域計測 +プリント基板 (PCB) 上に印刷されたコイルによる中心領域の高精細な計測 新規システム: PCB型プローブによる広範囲な計測 磁場の時間変化による誘導起電力から磁場を計測した. 特にPCB基板上のコイルパターンを用いた精度の高い計測を行った。

5

8

9 10

13 14

17 18

結果②:インフロー駆動位置による磁場構造変化	ロ.インフロー駆動	か位置が近い場合	19		
の () () () () () () () () () ()	ハインフローで 京シート圧縮 電場Etが増加, 体速度が急増	Time (us) 1	770 400 300 E 200 G 100		
インフロー駆動位置が近い場合,合体速度は速く,電流シートが強く圧縮されて電流シートが分裂した.					

結論:プラズモイド・プロプ生成による高速化機構			
インフロー 駆動位置	I. 遠い	Ⅱ. 中程度	Ⅲ. 近い
異常抵抗	なし	前半:なし,後半:あり	あり
質量放出	なし	なし	あり
磁場構造	プラズモイド X点	前半:複数個のプロブ後半:圧縮されたシートが傾く	電流シート分裂・放出
高速化機構	弱いインフローで磁気 エネルギーが供給され続ける -パイルアップで プラズモイド生成 -X点が二個に増えて 拡散領域増加して高速化	前半:弱いインフローで縦長の電流シート内に複数個のブロブーが散領域増加して高速化後半:シート圧縮・異常抵抗による高速化	強いインフローで異常抵抗 が生じる ーシート圧縮 ー電流シートが分裂,放出 されて,さらにインフロー を引きこんで高速化

19 20

まとめ

- 最小5 mmの分解能を有する高精細なPCB型磁気プローブを用いて、 磁気リコネクション領域の磁場計測を行った。
- インフロー駆動位置が遠いと、複数個の電流ブロブやブラズモイドが生成され、 拡散領域が増加することで合体が高速化した。

21

- インフロー駆動位置が近いと、 強いインフローで圧縮された電流シートがX点で上下に分裂・放出され、 質量放出効果でインフローがさらに増加して合体が高速化した。
- 異常抵抗によらない高速化機構としてプラズモイド・ブロブ生成の効果が実証された。
- ・プラズモイド・ブロブ生成によるリコネクション高速化のメカニズムは 核融合加熱に応用可能である。