Página www Contenido **>>** Página 1 de 56 Regresar Full Screen Cerrar Abandonar

Estadística Bayesiana Clase 13

Juan Carlos Correa

15 de abril de 2021

Página de Abertura

Contenido

Página 2 de 56

Regresar

Full Screen

Cerrar

Abandonar

Familia Conjugada para la Distribución Multinomial

Distribución Dirichlet El vector aleatorio $X = (X_1, \dots, X_k)'$ se distribuye como una Dirichlet con vector de parámetros $\alpha = (\alpha_1, \dots, \alpha_k)'$ con $\alpha_i > 0$; $i = 1, \dots, k$, si la p.d.f. $f(x|\alpha)$ para $x = (x_1, \dots, x_k)$ y $\sum_{i=1}^k x_i = 1$ está dada por:

$$f(x|\alpha) = \frac{\Gamma(\alpha_1 + \dots + \alpha_k)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_k)} x_1^{\alpha_1 - 1} \cdots x_k^{\alpha_k - 1}$$

• La media de X_i es

Contenido

Regresar

Full Screen

Cerrar

Abandonar

$$E(X_i) = \frac{\alpha_i}{\alpha_0}$$

donde $\alpha_0 = \sum_{i=1}^k \alpha_1$.

■ La varianza de X_i es

$$var(X_i) = \frac{\alpha_i(\alpha_0 - \alpha_i)}{\alpha_0^2(\alpha_0 + 1)}$$

• y la covarianza entre X_i y X_j es, $(i \neq j)$,

$$Cov(X_i, X_j) = -\frac{\alpha_i \alpha_j}{\alpha_0^2(\alpha_0 + 1)}$$

Página de Abertura

Contenido

Full Screen

Cerrar

Abandonar

Resultado:

- Suponga que $Y = (Y_1, \dots, Y_k)'$ tiene una distribución multinomial con parámetros n (fijo) y $\pi = (\pi_1, \dots, \pi_k)'$, desconocidos con $0 \le Y_i \le n$, para $i = 1, 2, \dots, k$, y $\sum_i Y_i = n$.
- Suponga también que la distribución apriori de π es una Dirichlet con vector de parámetros $\alpha = (\alpha_1, \dots, \alpha_k)'$ con $\alpha_i > 0$; $i = 1, \dots, k$.
- Entonces la distribución posterior de π cuando $Y_i = y_i$, $i = 1, \dots, k$, es una distribución Dirichlet con vector de parámetros $\alpha^* = (\alpha_1 + y_1, \dots, \alpha_k + y_k)'$.

Página de Abertura

Contenido

Página 5 de 56

Regresar

Full Screen

Cerrar

Abandonar

Ejemplo

La siguiente tabla presenta los datos sobre el tipo de sangre en una muestra de personas de la región central y oriental de Antioquia

	Tipo de Sangre				
	Ο	A	AB	В	
Frecuencia	474	246	11	59	

Si no tenemos un conocimiento apriori sobre las diversas proporciones, digamos π_O , π_A , π_{AB} y π_{AB} , entonces podemos escoger como apriori una Dirichlet(1, 1, 1, 1). Entonces la aposteriori será Dirichlet(474 + 1, 246 + 1, 11 + 1, 59 + 1).

```
Página www
Página de Abertura
                   library(bayesm)
                   res < -apply(matrix(c(475,247,12,60),nrow=1000,ncol=4,byrow=T),1,
                   rdirichlet)
  Contenido
                   par(mfrow=c(2,2))
                   plot(density(res[1,]),main='Tipo 0',xlim=c(0,1))
                   plot(density(res[2,]),main='Tipo A',xlim=c(0,1))
                   plot(density(res[3,]),main='Tipo AB',xlim=c(0,1))
                   plot(density(res[4,]),main='Tipo B',xlim=c(0,1))
 Página 6 de 56
                   plot(density(res[1,]),main='Tipo 0')
   Regresar
                   plot(density(res[2,]),main='Tipo A')
                   plot(density(res[3,]),main='Tipo AB')
                   plot(density(res[4,]),main='Tipo B')
  Full Screen
   Cerrar
```

Página de Abertura

Contenido

Página 7 de 56

Regresar

Full Screen

Cerrar

Página de Abertura

Contenido

Página 8 de 56

Regresar

Full Screen

Cerrar


```
Página www
Página de Abertura
                   > library(hdrcde)
                   This is hdrcde 2.07
                   > hdr(res[1,])
  Contenido
                   $hdr
                              [,1] \qquad [,2]
       >>
                   99% 0.5556055 0.6435400
                   95% 0.5646887 0.6321565
                   50% 0.5856615 0.6083180
                   $mode
 Página 9 de 56
                    [1] 0.5965341
   Regresar
                   $falpha
                           1% 5% 50%
                     1.104883 4.021291 18.497656
  Full Screen
    Cerrar
```

```
Página www
Página de Abertura
    Contenido
            >>
 Página 10 de 56
     Regresar
    Full Screen
      Cerrar
    Abandonar
```

```
> hdr(res[2,])

$hdr

[,1] [,2]

99% 0.2711979 0.3517752

95% 0.2794612 0.3421650

50% 0.2991745 0.3219154

$mode
```

[1] 0.3091064

\$falpha 1% 5% 50% 1.241335 4.484015 19.068098

```
Página www
Página de Abertura
    Contenido
            >>
 Página 11 de 56
     Regresar
    Full Screen
      Cerrar
    Abandonar
```

\$falpha 1% 5% 50% 2.697576 13.571135 75.217231

```
Página www
                   > hdr(res[4,])
                   $hdr
Página de Abertura
                              [,1] \qquad [,2]
                   99% 0.05381815 0.10095793
                   95% 0.05772293 0.09302976
  Contenido
                   50% 0.06889325 0.08154789
       >>
                   $mode
                   [1] 0.07507367
                   $falpha
                              5% 50%
                           1%
 Página 12 de 56
                    2.343003 7.706535 33.528008
   Regresar
                    > par(mfrow=c(1,1))
                   > hdr.boxplot.2d(res[1,],res[2,])
                   Loading required package: ash
  Full Screen
                   > title(xlab='Tipo O',ylab='Tipo A',
                   main='Dist. Conjunta Bivariable')
   Cerrar
```

Página www Página de Abertura Contenido **>>** Página 13 de 56 Regresar Full Screen Cerrar

Dist. Conjunta Bivariable

Página de Abertura

Contenido

Página 14 de 56

Regresar

Full Screen

Cerrar

Abandonar

Intervalos multinomiales clásicos

	Tipo de Sangre					
	O	A	AB	В		
Frecuencia	474	246	11	59		
$\hat{\pi}_i$	0.60000000	0.31139241	0.01392405	0.07468354		
Intervalos simultáneos: TCL						
	0.556465534	0.270242626	0.003511297	0.051322879		
	0.64353447	0.35254218	0.02433680	0.09804421		
Intervalos simultáneos: Quesenberry y Hurst						
	0.53763946	0.25675391	0.00505438	0.04795771		
	0.65927993	0.37184116	0.03776781	0.11451171		
Intervalos simultáneos Bootstrap						
0.625%	0.5509415	0.2746835	0.005063291	0.05094146		
99.375%	0.6414636	0.3518987	0.026582278	0.09842563		
Intervalos simultáneos: Sison y Glaz						
	0.5658	0.2772	0.0000	0.0405		
	0.6363	0.3477	0.0502	0.1109		
Intervalos simultáneos: Sison y Glaz II						
	0.5646	0.2759	-0.0215	0.0392		
	0.6354	0.3465	0.0494	0.1101		

Cómo elicitamos los parámetros apriori de la distribución Dirichlet?

Página de Abertura

Contenido

Página 16 de 56

Regresar

Full Screen

Cerrar

Abandonar

Ejemplo usando muestras hipotéticas mentales

Recuerde la época en que no había pandemia...Cómo venían los estudiantes de pregrado a la universidad a una clase de 6 de la mañana en El Volador. Suponga que ud. se imagina una muestra mental de 1000 estudiantes:

Medio	A pie	en bus	en bicicleta	en taxi	en moto	en carro particular
Nro.	50	600	70	50	200	30

Nivel de seguridad: 30

```
Página www
                   Elicita.Apriori.Multinomial<-function(Valores.hipotéticos,
                     Muestra.equivalente, Nsim=1000) {
Página de Abertura
                    Valores.hipotéticos<-ifelse(Valores.hipotéticos==0,0.5,
                    Valores.hipotéticos)
                   prob.estima <- Valores.hipotéticos/sum (Valores.hipotéticos)
  Contenido
                   muestras<-rmultinom(Nsim, Muestra.equivalente, prob=prob.estima)
       >>
                    aux1<-function(xx){</pre>
                    xx < -ifelse(xx == 0, 0.5, xx)
                   propor<-xx/sum(xx)</pre>
                   return(propor)
 Página 17 de 56
                    } # Fin aux1
   Regresar
                   resu<-apply(muestras,2,aux1)
                    library(sirt)
  Full Screen
                    alfas<-dirichlet.mle(t(resu))$alpha
                   return(alfas)
    Cerrar
                    }# Fin Elicita.Apriori.Multinomial
  Abandonar
```

Página de Abertura

Contenido

Página 18 de 56

Regresar

Full Screen

Cerrar

Abandonar

Parámetros de la Dirichlet elicitados...

> Elicita.Apriori.Multinomial(c(50,600,70,50,200,30),30) [1] 2.180651 22.957719 2.760708 2.153159 7.588523 1.633315

Página de Abertura

Contenido

Regresar

Full Screen

Cerrar

Abandonar

Volviendo al tema de Simulación...

Ejemplo para la proporción

Suponga que estamos interesados en determinar la proporción de estudiantes que sufren gastritis.

- Como apriori supongamos que una normal truncada con parámetros $\mu = 0.5$ y $\sigma^2 = 0.2^2$.
- Se saca una muestra al azar de 10 estudiantes y se les evalúa. De éstos solo dos tienen gastritis.

Página www Página de Abertura Contenido **>>** Página 20 de 56 Regresar Full Screen Cerrar


```
#Generación de muestra de una distribución aposteriori por medio
                  #del método de discretización
 Página www
                  densidad.posteriori <- function(x, media.apriori,
                      dt.apriori, n, nro.exitos){
                  #n = tamaño de muestra
Página de Abertura
                  #vero = verosimilitud
                  vero <- x^nro.exitos*(1-x)^(n - nro.exitos)</pre>
  Contenido
                  apriori <- exp(-(x - media.apriori)^2/(2*dt.apriori^2))</pre>
                  aposteriori <- vero*apriori
                  list(vero = vero, apriori = apriori, aposteriori = aposteriori)
       >>
                  #Graficos de la verosimilitud, distribuciones apriori, aposteriori
                  pis \leftarrow seq(0.00001, 0.9999, length = 100)
                  res <- densidad.posteriori(pis, 0.5, 0.2, 10, 2)
Página 21 de 56
                  res.apriori<-res$apriori/sum(res$apriori)</pre>
                  plot(pis, res.apriori, type ='1', col='red', ylab='', ylim=c(0,0.04)
                  title(ylab='Densidad')
   Regresar
                  res.vero<-res$vero/sum(res$vero)
                  points(pis, res.vero, type ='l', col='blue')
  Full Screen
                  res.aposteriori<-res$aposteriori/sum(res$aposteriori)</pre>
                  points(pis, res.aposteriori, type ='l', col='black')
   Cerrar
                  legend(0.7,0.04,c('Apriori','Verosimilitud','Aposteriori'),
  Abandonar
                  lty=1,col=c('red','blue','black'))
```

Página www Página de Abertura Contenido **>>** resu<-sample(pis,10000,prob=res.aposteriori,replace=T)
hist(resu,main='Distribución Simulada',xlab=expression(pi))</pre> Página 22 de 56 Regresar Full Screen Cerrar Abandonar

Distribución Simulada


```
> mean(resu)
  Página www
                   Γ1 0.3171478
                   > median(resu)
                   [1] 0.3131069
Página de Abertura
                   > quantile(resu, probs=c(0.025, 0.975))
                         2.5% 97.5%
  Contenido
                   0.1111089 0.5555044
       >>
                   > require(hdrcde)
                   > hdr(resu)
                   $hdr
                               [,1] \qquad [,2]
                   99% 0.05800344 0.6060039
 Página 24 de 56
                   95% 0.10100899 0.5371268
                   50% 0.22220778 0.3912115
   Regresar
                   $mode
                    [1] 0.317054
  Full Screen
                   $falpha
                                      5% 50%
                           1%
   Cerrar
                   0.1858224 0.6524188 2.6730446
  Abandonar
```

density.default(x = x, bw = h)

