Otimização de Sistemas

Prof. Sandro Jerônimo de Almeida, PhD.

Otimização Combinatória

Definição

 A otimização combinatória lida com técnicas e abordagens que visam encontrar "objetos ótimos" a partir de um conjunto finito de (grafos, redes, conjuntos parcialmente ordenados)

 Geralmente busca maneiras eficiente de alocar recursos para problemas complexos

Classes de Problemas

- Polinomiais (P) utiliza-se algoritmos polinomiais para uma classes de problemas mais simples, como caminho mais curto, árvore de menor diâmetro, fluxo e caminhos, matching, grafo bipartite, etc. O(n²), O(n³)...
- NP-Completo geralmente são utilizados algoritmos aproximados (heurísticas), que executam em tempo polinomial e entregam soluções "próximas" a ótima. O(2ⁿ), O(n!), O(nⁿ)

Alguns Problemas Combinatoriais

- Árvore geradora mínima
- Problema do caixeiro viajante (PCV)
- Problema de roteirização de veículo (PRV)
- Problema da mochila
- Problema de alocação de Armas-Alvos

Alguns Problemas Combinatoriais

- Minimum Spanning Tree (MTS)
- Travelling salesman problem (TSP)
- Vehicle routing problem (VRP)
- Knapsack problem (KP)
- Weapon target assignment problem (WTA)

- O problema do caixeiro viajante (PCV) é um dos mais tradicionais e conhecidos problemas
- O objetivo do PCV é encontrar, em um grafo G = (N, A), o caminho hamiltoniano de menor custo
- No jogo de Hamilton (Around the World 1857), o desafio consistia em encontrar uma rota através dos vértices do dodecaedro que iniciasse e terminasse em uma mesma cidade sem nunca repetir uma visita

Exemplo – Matriz de Distâncias

Origem/ Destino	Nova Iorque	Miami	Dallas	Chicago
Nova Iorque		1334	1559	809
Miami	1334		1343	1397
Dallas	1559	1343		921
Chicago	809	1397	921	

Formulação: variáveis de Decisão

Origem/	Nova	Miami	Dallas	Chicago
Destino	lorque			
Nova Iorque	X ₁₁	X ₁₂	X ₁₃	X ₁₄
Miami	X ₂₁	X ₂₂	X ₂₃	X_{24}
Dallas	X ₃₁	X ₃₂	X ₃₃	X ₃₄
Chicago	X ₄₁	X ₄₂	X ₄₃	X_{44}

Formulação

Variáveis de decisão

Origem/ Destino	Nova Iorque	Miami	Dallas	Chicago
Nova Iorque		1334	1559	809
Miami	1334		1343	1397
Dallas	1559	1343		921
Chicago	809	1397	921	

Formulação

Origem/ Destino	Nova Iorque	Miami	Dallas	Chicago
Nova Iorque		1334	1559	809
Miami	1334		1343	1397
Dallas	1559	1343		921
Chicago	809	1397	921	

Variáveis de decisão

 X_{ii} = decide se haverá caminho ou não (0 ou 1) entre as cidade i e j

Minimizar Z = 0
$$X_{11}$$
 + 1334 X_{12} + 1559 X_{13} + 809 X_{14} + 1334 X_{21} + 0 X_{22} + 1343 X_{23} + 1397 X_{24} + 1559 X_{31} + 1343 X_{32} + 0 X_{33} + 921 X_{34} + 809 X_{41} + 1397 X_{42} + 921 X_{43} + 0 X_{44}

Formulação

Restrições

Origem/ Destino	Nova Iorque	Miami	Dallas	Chicago
Nova Iorque	X ₁₁	X ₁₂	X ₁₃	X ₁₄
Miami	X ₂₁	X ₂₂	X ₂₃	X ₂₄
Dallas	X ₃₁	X ₃₂	X ₃₃	X ₃₄
Chicago	X ₄₁	X ₄₂	X ₄₃	X ₄₄

$$X_{11} + X_{12} + X_{13} + X_{14} = 1$$
 $X_{11} + X_{21} + X_{31} + X_{41} = 1$ $X_{21} + X_{22} + X_{23} + X_{24} = 1$ $X_{12} + X_{22} + X_{32} + X_{42} = 1$ $X_{31} + X_{32} + X_{33} + X_{34} = 1$ $X_{13} + X_{23} + X_{33} + X_{43} = 1$ $X_{41} + X_{42} + X_{43} + X_{44} = 1$ $X_{14} + X_{24} + X_{34} + X_{44} = 1$

 $X_{ij} \in \{0,1\} \mid i, j = \{\text{Nova Iorque, Miami, Dallas, Chicago}\}\$

Formulação de Dantzig-Fulkerson-Johnson (DFJ)

(PCV1) Minimizar
$$z = \sum_{j=1}^{n} \sum_{i=1}^{n} c_{ij} x_{ij}$$

sujeito a:

$$\sum_{i=1}^{n} x_{ij} = 1$$

$$\forall j \in N$$

$$\sum_{j=1}^{n} x_{ij} = 1$$

$$\forall i \in N$$

$$\sum_{i,j\in S} x_{ij} \le |S| - 1$$

$$\forall S \subset N$$

$$x_{ij} \in \{0, 1\}$$

$$\forall i, j \in N$$

Detalhes

- X_{ii} não existe
- n-1 variáveis
- O(2ⁿ) restrições
- S é um subgrafo de G, em que |S| representa o número de vértices desse subgrafo

Problema da Mochila

Formulação geral - Knapsack problem (PK)

(PK) Maximizar
$$z = \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} w_j x_j \le b$$

$$x_j \ge 0 \text{ e inteiro.}$$

Problema da Mochila

Apenas 1 item disponível - (PKI)

(PKI) Maximizar
$$z = \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} w_j x_j \le b$$

$$j = 1, ..., n$$

Problema da Mochila

Quantidade limitada de Itens - (PKL)

(PKL) Maximizar
$$z = \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} w_{j}x_{j} \leq b$$

$$x_{j} \leq l_{j} \qquad j = 1, ..., n$$

$$x_{i} \in \mathfrak{I}^{+}$$

Problema do Carteiro Chinês

 O PCC é um problema de otimização que objetiva cobrir com um passeio (ou tour) todos os arcos do grafo, minimizando a distância total percorrida.

 O passeio do carteiro distingue-se do circuito (ou ciclo) euleriano por nele ser permitida, se necessária, a repetição de arestas.

Circuito Euleriano (1736)

 Encontrar um caminho sobre um grafo G que contenha toda aresta de G exatamente uma vez

Problema do Carteiro Chinês

(PCC1) Minimizar
$$z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

sujeito a:

$$\sum_{j=1}^{n} x_{ji} - \sum_{j=1}^{n} x_{ij} = 0 i = 1, ..., n$$
$$x_{ij} + x_{ji} \ge 1 \forall (i, j) \in A$$

$$x_{ij} \ge 0$$
 e inteiro

 $x_{ij} \equiv$ número de vezes em que a aresta (i, j) é percorrida de i para j; $c_{ij} \equiv$ comprimento ou o custo da aresta (i, j).

Problemas de Roteamento de Veículos

Estratégias

Algoritmos Aproximados

Heurísticas

- Nem sempre precisamos da melhor solução.
- Reduzem o tempo de execução ao sacrificar a ideia de perfeição.
- Embora exista uma chance do algoritmo aproximado entregar uma solução ruim, se o algoritmo for bom, isso raramente acontecerá.

Problema da Mochila Múltipla Binária

Exercício: apresente a formulação geral

• O problema da mochila múltipla (PMM) consiste em colocar n itens em m mochilas. Cada mochila i possui uma capacidade de peso bi que não pode ser ultrapassada. Cada item j possuem um peso w_j e um valor c_j . O objetivo é colocar (escolher) itens nas mochilas de forma a maximizar o valor a ser carregado na mochila. Considere o seguinte cenário ilustrativo:

Mochila	Capacidade (Kg)	
A	12	
В	10	
C	7	
D	3	
Е	9	

Itens disponíveis em estoque:

Itens	Valor (R\$)	Peso (Kg)
1	70	6
2	30	3
3	28	3
4	40	4
5	13	2
6	12	2
7	100	12

Problema da Mochila Múltipla Binária

• O problema da mochila múltipla (PMM) consiste em colocar n itens em m mochilas. Cada mochila i possui uma capacidade de peso bi que não pode ser ultrapassada. Cada item j possuem um peso w_j e um valor c_j . O objetivo é colocar (escolher) itens nas mochilas de forma a maximizar o valor a ser carregado na mochila. Considere o seguinte cenário ilustrativo:

Resolução

Problema da Mochila Múltipla Binária

• O problema da mochila múltipla (PMM) consiste em colocar n itens em m mochilas. Cada mochila i possui uma capacidade de peso bi que não pode ser ultrapassada. Cada item j possuem um peso w_j e um valor c_j . O objetivo é colocar (escolher) itens nas mochilas de forma a maximizar o valor a ser carregado na mochila. Considere o seguinte cenário ilustrativo:

Resolução

(PKM) Maximizar
$$z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_j x_{ij}$$

$$\sum_{j=1}^{n} w_{j}x_{ij} \leq b_{i} \qquad i = 1, ..., m$$

$$\sum_{i=1}^{m} x_{ij} \leq 1 \qquad j = 1, ..., n$$

$$x_{ij} \in \{0, 1\} \quad i = 1, ..., m; j = 1, ..., n.$$

Problema da Mochila Múltipla Com múltiplos itens

Exercício: apresente a formulação geral

O problema da mochila múltipla (PMM) consiste em colocar n itens em m mochilas. Cada mochila i possui uma capacidade de peso bi que não pode ser ultrapassada. Cada item j possuem um peso w_j , um valor c_j e a quantidade em estoque l_j . O objetivo é colocar (escolher) itens nas mochilas de forma a maximizar o valor a ser carregado na mochila. Considere o seguinte cenário ilustrativo:

Mochila	Capacidade (Kg)
A	12
В	10
С	7
D	3
Е	9

Itens disponíveis em estoque:

Itens	Valor (R\$)	Peso (Kg)	Quantidade
			disponível
1	70	6	4
2	30	3	3
3	28	3	6
4	40	4	7
5	13	2	2
6	12	2	5
7	100	12	1

