```
pic = imread('objects.png');
imshow(pic);
```



```
s = im2double(pic);
x = im2bw(s);
```

Black and white image

```
bw = imcomplement(pic);
bw= im2bw(bw,230/255);
bw=imcomplement(bw);
imshow(bw);
```



```
% SE = strel('disk',10);
% B=imclose(bw,SE)
% B= imcomplement(B)
% imshow(B)
```

finding centroid

```
s = regionprops(bw, 'all')
```

$s = 13 \times 1$ struct

Fields	Area	Centroid	BoundingBox	Subarrayldx	MajorAxisLength
1	1760	[33.1176,228.4	[9.5,181.5,48,71]	1×2 cell	68.1965
2	4878	[64.5,50.9906]	[14.5,26.5,100,49]	1×2 cell	114.9831
3	4271	[53.177,129.17	[16.5,92.5,74,74]	1×2 cell	73.8194
4	1285	[45.8132,281.8	[25.5,261.5,41,41]	1×2 cell	40.5078
5	4257	[112.5835,246	[71.5,211.5,80,77]	1×2 cell	74.2515
6	3788	[133.1573,165	[88.5,124.5,89,82]	1×2 cell	86.2677
7	4965	[174.0278,44.9	[138.5,9.5,71,71]	1×2 cell	80.9345
8	3368	[196.1482,240	[157.5,201.5,78,78]	1×2 cell	67.0339
9	2113	[202.7018,109	[172.5,76.5,77,74]	1×2 cell	83.0134
10	2512	[230.5,171.1775]	[202.5,142.5,56,57]	1×2 cell	56.6455
11	2627	[279.3514,41.6	[232.5,17.5,71,72]	1×2 cell	83.63
12	4066	[275.8645,273	[236.5,238.5,79,69]	1×2 cell	72.3797

Fields	Area	Centroid	BoundingBox	Subarrayldx	MajorAxisLength
13	3442	[291.1554,162	[268.5,111.5,46,101]	1×2 cell	112.8873

R = regionprops(bw, 'Centroid')

$R = 13 \times 1$ struct

1 - 15×1 301 acc		
Fields	Centroid	
1	[33.1176,228.4	
2	[64.5,50.9906]	
3	[53.177,129.17	
4	[45.8132,281.8	
5	[112.5835,246	
6	[133.1573,165	
7	[174.0278,44.9	
8	[196.1482,240	
9	[202.7018,109	
10	[230.5,171.1775]	
11	[279.3514,41.6	
12	[275.8645,273	
13	[291.1554,162	

position

```
for i = 1:length(s)
 center = R(i).Centroid;
 disp([num2str(i), ': Position = (', num2str(center(1)), ',',num2str(center(2)), ')']);
end
1: Position = (33.1176,228.4261)
2: Position = (64.5, 50.9906)
3: Position = (53.177, 129.1707)
4: Position = (45.8132,281.8132)
5: Position = (112.5835,246.5321)
6: Position = (133.1573,165.4931)
7: Position = (174.0278,44.9722)
8: Position = (196.1482,240.848)
9: Position = (202.7018,109.2882)
10: Position = (230.5,171.1775)
11: Position = (279.3514,41.6757)
12: Position = (275.8645,273.3077)
13: Position = (291.1554,162.493)
```

red outline

```
figure
imshow(pic,'InitialMagnification','fit')
```

```
t = linspace(0,2*pi,50);
px = cell(1,length(s));
py=cell(1,length(s));
hold on
for k = 1:length(s)
    a = s(k).MajorAxisLength/2;
    b = s(k).MinorAxisLength/2;
    Xc = s(k).Centroid(1);
    Yc = s(k).Centroid(2);
%
      px\{k\}=[yc];
      py{k}=[xc];
%
    phi = deg2rad(-s(k).Orientation);
    x = Xc + a*cos(t)*cos(phi) - b*sin(t)*sin(phi);
    y = Yc + a*cos(t)*sin(phi) + b*sin(t)*cos(phi);
    plot(x,y,'cyan','Linewidth',3);
    ex = a*cos(phi) + Xc;
    ey = a*sin(phi) + Yc;
    plot([Xc,ex], [Yc,ey], 'cyan', 'LineWidth', 2);
%
      Rz = [\cos d(s(i).Orientation) - \sin d(s(i).Orientation); sind(s(i).Orientation) cosd(s(i).Orientation)]
%
      new_p = Rz*[ex;ey]+[Xc;Yc]
end
hold off
```


rotating the i

```
stats = regionprops(bw,{'Centroid','MajorAxisLength','MinorAxisLength','Orientation','pixelIdx
new image = pic; % Initiating a new image
new image(:,:,:) = 0; % With RGB = black background
for i = 1:length(s)
 centroid = stats(i).Centroid; % centeroid of each object
 orientation = -stats(i).Orientation; % oreintation of each object
 Pixel_Index_List = stats(i).PixelIdxList; %Pixcel Index list of each object
 R z = [cosd(orientation), -sind(orientation), 0;
 sind(orientation), cosd(orientation), 0;
 0, 0, 1]; % Rotation Matrix around z-axis:
 T_f = [cosd(orientation), -sind(orientation), 0, 0;
 sind(orientation), cosd(orientation), 0, 0;
 0, 0, 1, 0;
 0, 0, 0, 1]; %Transformation matrix
 % finding each point of the object
 for j = 1: length(Pixel_Index_List)
 x = mod(Pixel Index List(j), 320) + 1;
 y = ceil(Pixel Index List(j) / 320);
 % shifting each point (x, y) to the origin
 shifted_x = x - centroid(2);
 shifted_y = y - centroid(1);
 % Rotating object at transformation T f
 P_a = [shifted_x; shifted_y; 0; 1];
 P_b = T_f*P_a;
 % Shifting object back to its previous position
 new_x = P_b(1) + centroid(2);
 new_y = P_b(2) + centroid(1);
 % we have to limit the boundary to the image pixcels
 if ((new x>0 && new x<320) && (new y>0 && new y<320))
 % RGB
 new_image(ceil(new_x), ceil(new_y), 1) = pic(x, y, 1);
 new image(ceil(new x), ceil(new y),2) = pic(x,y, 2);
 new_image(ceil(new_x), ceil(new_y), 3) = pic(x,y, 3);
 end
 end
end
imshow(new_image)
```

