Network Administration

By: Mahad Mohamood

Table of contents

Table of contents	1
Introduction	2
Key findings	2
Network Devices information	3
Information collection methodology	4
Analyzing Wireshark captures	4
Topology	6
References	7

Introduction

This project involves a systematic exploration and documentation process aimed at uncovering detailed information about devices within your Lab environment. Using tools like Nmap and Wireshark, I've conducted thorough scans to identify and gather critical data on each networked device. The following three devices were discovered and analyzed: Linux kali computer, linux ubuntu device, and windows device. Below are some of the key findings post-analysis.

Key findings

- The Kali Linux virtual machine exhibited the least amount of information exposure in Zenmap scans.
- In Wireshark, the Kali Linux VM also had the lowest number of packets captured during the Zenmap scan compared to other systems.
- Windows and Linux Ubuntu systems exposed significantly more information during Zenmap scans.
- Correspondingly, these systems generated a higher volume of packets captured in Wireshark during the scan.
- Based on the findings, Kali Linux appears to demonstrate stronger security posture compared to Linux Ubuntu and Windows.
- The greater information exposure and higher packet capture rate observed in Windows and Linux Ubuntu suggest potentially lower security levels in these systems.

Network Devices information

The three devices were analyzed in this project via nmap. According to freecodecamp, "Nmap is short for Network Mapper. It is an open-source Linux command-line tool that is used to scan IP addresses and ports in a network and to detect installed applications.(para.1)" Below is the name of each device followed by a nmap screenshot of the devices information.

1. Virtual machine: Linux kali 10.0.2.8

2. Virtual machine: Windows:10.0.2.5

3. Virtual machine: Linux:10.0.2.15

Information collection methodology

Below is the step-by-step process that I followed when conducting the scans.

- 1. Three virtual machines were turned on.
- 2. Wireshark was launched on a Kali Linux virtual machine to monitor network traffic.
- 3. Zenmap, running on the same Kali Linux virtual machine, was launched and configured with an intense scan profile targeting all TCP ports.
- 4. The following IP addresses were sequentially scanned using Zenmap:
- 5. Linux kali: 10.0.2.8, Windows:10.0.2.55, Linux:10.0.2.15
- 6. Once all scans were completed in Zenmap, Wireshark's monitoring was halted.

Analyzing Wireshark captures

I used wireshark to analyze the traffic that was coming through my network. According to Comptia "Wireshark is a network protocol analyzer, or an application that captures packets from a network connection, such as from your computer to your home office or the internet." (para. 2). Below is a brief overview of each machine that I analyzed and

some of the key findings.

1. Virtual machine: Linux kali 10.0.2.8

- The packets for this capture were few and that's how i know that it belongs to kali linux.
- The kali linux capture was terse and it did not return a lot of information.
- This could be either because it is the main vm being used to run the scans, or maybe it has some way of detecting and dodging scans.

Screenshot of capture:

					le alle
No.	Time	Source	Destination		
	1 0.00000000	PCSSystemtec_cb:20:4a	Broadcast	ARP	60 Who has 10.0.2.6? Tell 10.0.2.55
	2 0.928350343	PCSSystemtec_cb:20:4a	Broadcast	ARP	60 Who has 10.0.2.6? Tell 10.0.2.55
	3 1.913200889	PCSSystemtec_cb:20:4a	Broadcast	ARP	60 Who has 10.0.2.6? Tell 10.0.2.55
	4 2.953490316	PCSSystemtec_cb:20:4a	Broadcast	ARP	60 Who has 10.0.2.6? Tell 10.0.2.55
	5 3.919690818	PCSSystemtec_cb:20:4a	Broadcast	ARP	60 Who has 10.0.2.6? Tell 10.0.2.55
	6 4.931149124	PCSSystemtec_cb:20:4a	Broadcast	ARP	60 Who has 10.0.2.6? Tell 10.0.2.55
	7 5.990839458	PCSSystemtec_cb:20:4a	Broadcast	ARP	60 Who has 10.0.2.6? Tell 10.0.2.55
	8 6.913752013	PCSSystemtec_cb:20:4a	Broadcast	ARP	60 Who has 10.0.2.6? Tell 10.0.2.55
	9 7.173748735	10.0.2.8	192.168.0.1	DNS	81 Standard query 0x6c4f PTR 8.2.0.10.in-addr.arpa
	10 7.180049535	192.168.0.1	10.0.2.8	DNS	81 Standard query response 0x6c4f No such name PTR 8.2.0.10.in-addr.arpa
	11 7.920638918	PCSSystemtec_cb:20:4a	Broadcast	ARP	60 Who has 10.0.2.6? Tell 10.0.2.55
	12 8.704119662	PCSSystemtec_cb:20:4a	Broadcast	ARP	60 Who has 10.0.2.2? Tell 10.0.2.55
	13 8.966331823	PCSSystemtec_cb:20:4a	Broadcast	ARP	60 Who has 10.0.2.6? Tell 10.0.2.55
	14 9.923683122	PCSSystemtec_cb:20:4a	Broadcast	ARP	60 Who has 10.0.2.6? Tell 10.0.2.55
	15 10.930449618	PCSSystemtec_cb:20:4a	Broadcast	ARP	69 Who has 10.0.2.6? Tell 10.0.2.55
	16 11.159934635	fe80::82e1:f9bc:62f2:f172	ff02::2	ICMPv6	62 Router Solicitation
	17 11.963150711	PCSSystemtec_cb:20:4a	Broadcast	ARP	60 Who has 10.0.2.6? Tell 10.0.2.55
	18 12.143113138	PCSSystemtec_1b:76:b0	52:54:00:12:35:00	ARP	42 Who has 10.0.2.1? Tell 10.0.2.8
	19 12.143586857	52:54:00:12:35:00	PCSSystemtec_1b:76:b0	ARP	60 10.0.2.1 is at 52:54:00:12:35:00
	20 12.931284057	PCSSystemtec_cb:20:4a	Broadcast	ARP	60 Who has 10.0.2.6? Tell 10.0.2.55
	21 13.918443849	PCSSystemtec_cb:20:4a	Broadcast	ARP	60 Who has 10.0.2.6? Tell 10.0.2.55
	22 18.354737789	PCSSystemtec_cb:20:4a	Broadcast	ARP	60 Who has 10.0.2.3? Tell 10.0.2.55
	23 26.971813290	fe80::82e1:f9bc:62f2:f172	ff02::fb	MDNS	107 Standard query 0x0000 PTR _ipptcp.local, "QM" question PTR _ippstcp.local, "QM" question
	24 26.972161496	10.0.2.15	224.0.0.251	MDNS	87 Standard query 0x0000 PTR _ipptcp.local, "QM" question PTR _ippstcp.local, "QM" question
		480 bits), 60 bytes captured (48			0000 ff ff ff ff ff 98 90 27 cb 20 4a 08 06 00 01 '. J
		tec_cb:20:4a (08:00:27:cb:20:4a)	, Dst: Broadcast (ff:ff:ff:	ff:ff:ff)	0010 08 00 06 04 00 01 08 00 27 cb 20 4a 0a 00 02 37 ······· '. J7
▶ Al	ddress Resolution Protocol	l (request)			8828 00 00 00 00 00 00 00 00 00 00 00 00 00
					0030 00 00 00 00 00 00 00 00 00 00 00 00

2. Virtual machine: Windows:10.0.2.55

- The packet participants are the kali linux and the windows vm, i verified them by their IP's.
- Wireshark captured more packets for windows than for the Linux Kali.

There were a lot of packets such as the one below with TCP protocol.

١	lo.	Time	Source	Destination	Protocol	Length Info				
	139	5.325022663	10.0.2.8	10.0.2.55	TCP	58 53258 → 2661	[SYN]	Seq=0 Win=1024	Len=0	MSS=1460

There were a few instances where ARP protocol was sent to identify IP's.

No).	Time	Source	Destination	Protocol	Length Info
	116	85.591641457	PCSSystemted ch:20	Broadcast	ΔRP	60 Who has 10.0.2.62 Tell 10.0.2.55

The two machines started to make ping requests and replies via the ICMP protocol.

N	0.	Time	Source	Destination	Protocol	Length Info							
	- 131	185.3435071	10.0.2.8	10.0.2.55	ICMP	162 Echo	(ping)	request	id=0x6af2,	seq=295/9985,	ttl=48 (no	o response :	found!)
П	131	185.3441070	10.0.2.55	10.0.2.8	ICMP	162 Echo	(pina)	reply	id=0x6af2,	seq=295/9985,	ttl=128		

There were also a few HTTP protocols with text/html

No.	Time	Source	Destination	Protocol	Length Info
131	99.487776472	10.0.2.8	10.0.2.55	HTTP	84 GET / HTTP/1.0
131	99.506543848	10.0.2.55	10.0.2.8	HTTP	120 HTTP/1.1 302 Moved Temporarily (text/html)

3. Virtual machine: Linux:10.0.2.15

- The packet participants are the kali linux and the linux vm, i verified them by their IP's.
- The wireshark for linux capture had a lot more packets than the windows.

There were packets such as the one below with TCP protocol.

No.	▼ Time	Source	Destination	Protocol	Length Info
	131102 24.953179753		10.0.2.8	TCP	74 80 → 57730 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1460
	131103 24.953214212		10.0.2.15	TCP	54 57730 → 80 [RST] Seq=1 Win=0 Len=0
	131104 25.051528277	10.0.2.8	10.0.2.15	TCP	74 57731 → 80 [SYN] Seq=0 Win=63 Len=0 MSS=1400 WS=1 SACK_PERM
	131105 25.053253426	10.0.2.15	10.0.2.8	TCP	74 80 → 57731 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1460
	131106 25.053292055	10.0.2.8	10.0.2.15	TCP	54 57731 → 80 [RST] Seq=1 Win=0 Len=0

There were a few instances where ARP protocol was sent to identify IP's.

1	No. ▼	Time	Source	Destination	Protocol	Length Info
Г	1	0.000000000	PCSSystemtec_1b:76:	Broadcast	ARP	42 Who has 10.0.2.15? Tell 10.0.2.8
	2	0.000657757	PCSSystemtec_dd:d8:	PCSSystemtec_1b:76:	ARP	60 10.0.2.15 is at 08:00:27:dd:d8:f8
	4	0.052943652	52:54:00:12:35:00	Broadcast	ARP	60 Who has 10.0.2.8? Tell 10.0.2.1

The two machines started to make ping requests and replies via the ICMP protocol.

No.	* Time	Source	Destination	Protocol	Length Info	
-	131119 25.480760095	10.0.2.8	10.0.2.15	ICMP	162 Echo (ping) request id=0x517e, seq=295/9985, ttl=56 (reply in 131	120)
4	131120 25.482833757	10.0.2.15	10.0.2.8	ICMP	162 Echo (ping) reply id=0x517e, seq=295/9985, ttl=64 (request in 1	31119)

There were also a few HTTP protocols with text/html

No.	▼ Time	Source	Destination	Protocol	Length Info
131	996 24.846067807	10.0.2.15	10.0.2.8	HTTP	310 HTTP/1.1 200 OK
131	180 26.165084336	10.0.2.8	10.0.2.15	HTTP	217 OPTIONS / HTTP/1.1
131	181 26.165591011	10.0.2.8	10.0.2.15	HTTP	84 GET / HTTP/1.0
131	182 26.165687734	10.0.2.8	10.0.2.15	HTTP	237 GET /nmaplowercheck1719967854 HTTP/1.1

Topology

This topology was provided by the zenmap interface. It captures the basic structure of the network.

References

- Computing Technology Industry Association (CompTIA). What Is Wireshark and How Is It Used? Retrieved from [https://www.comptia.org/content/articles/what-is-wireshark-and-how-to-use-it]
- 2. FreeCodeCamp. What is Nmap and How to Use it A Tutorial for the Greatest Scanning Tool of All Time. Retrieved from [https://www.freecodecamp.org/news/what-is-nmap-and-how-to-use-it-a-tutorial-for-the-greatest-scanning-tool-of-all-time]