Presentation On

NETWORK SLICING

Presented By

S M Himel Ahmed ID: B190305028

Nibir Joydhar ID: B190305036

Mosammat shima Aktar ID: B190305024

Course: Introduction to Machine Learning

Presented to

Dr. Md. Aminul Islam, Associate Professor Dept. of Computer Science & Engineering Jagannath University

Paper Title

ECP: Error-Aware, Cost-Effective and Proactive Network Slicing Framework

Author

Amre. Aboeleneen Aiman M. ERBAD (member, IEEE), Alaa A. Abdellatif (member, IEEE), (senior Member, IEEE), AND AMR M. Salem (Senior Member, IEEE),"

Date of publication 17 April 2024; date of current version 3 May 2024

Presentation Outline

- Introduction
- Objective
- System Architecture
- Methodology
- Problem Formulation
- Algorithm Analysis
- Simulation Results
- Conclusion

Introduction

The **5G network revolution** has introduced unprecedented connectivity and performance, enabling critical applications like:

• Healthcare: Remote surgeries and realtime monitoring.

• Autonomous Systems: Self-driving cars and drones.

• **IoT Expansion**: Smart cities and industrial automation.

Objectives

- ✓ Proactively predicts network slice loads.
- ✓ Corrects prediction errors.
- ✓ Minimizes costs while meeting service KPIs.
- ✓ Diverse Key Performance Indicators (KPIs).
- ✓ Cost variations and over/under-provisioning.
- ✓ Efficient resource allocation is critical for quality service.

ECP Framework

• Two-Phase Approach:

- Prediction Phase:
 - Historical load data analyzed using AI-based models.
 - Predicts service loads and KPI requirements.
- Optimization Phase:
 - DRL agent corrects prediction errors.
 - Allocates resources to minimize costs and ensure QoS.

System Architecture

System model within the Open RAN 5G architecture

- Virtual Control Unit (vCU) and Distributed Unit (vDU).
- DRL agent for dynamic slice optimization.

Methodology

• Phase 1: Predictive Model:

- Uses historical data for load forecasting.
- Models tested: ARIMA, SARIMA, LSTM, etc.

Methodology

• Phase 2: Network Slice Optimization:

- DRL-based allocation.
- Objectives: Minimize costs, correct prediction errors, and meet KPIs.
- DRL was used to ensure the optimal choice of paths and resources.

Ecp Algorithm

Input

- Simulation Parameters:
 - Episode Counter (**Ecounter**) and Maximum Episodes (**Emax**).
 - Buffer Size (**Bsize**) and Allocation Map (**M**).
 - Simulation Hours Per Day (hcount).
- Service Data:
 - Hourly Forecasts for all services (σs) and actual loads (σ*s).

Output

- Optimized resource allocation map (**M**).
- Metrics for cost efficiency, resource utilization, and adherence to service demands.

Main Loop

- **1.Reinitialize Environment**: Prepare for a new episode.
- 2.Iterate Through Days and Hours:
 - 1. Form **state (St)** using:
 - 1. Current day/hour (dcurr, hcurr).
 - 2. Hourly service forecasts (σs).
 - 2. Feed **St** to the PPO agent to select action (at) for each service.
 - 3. Save paths and intermediary nodes in **M**.

3. Resource Allocation:

- Link Bandwidth Adjustment: Split equally among demanding services if links exceed capacity.
- 2. Node Resource Adjustment: Proportionally share resources for over-utilized nodes.

4.Execute Action:

- 1. Apply action (at) and transfer data using updated map M.
- 2. Calculate reward (rt+1) based on performance.
- 3. Save the trajectory (st, at, rt+1, st+1) in the buffer (B).

Training Phase

- **5.Batch Processing**: For each mini-batch in buffer (**B**):
 - 5. Compute Rewards-to-Go (Rt) and Advantage Estimates (Ât).
 - 6. Update the PPO's Actor and Critic Neural Networks.

6.Increment Episode Counter: Continue until **Ecounter** equals **Emax**.

Simulation Results

The prediction of classical machine learning algorithms

The effect of different window sizes of the LSTM model on the prediction

Changing input length affects the prediction output.

Conclusion

- ✓ First to integrate dynamic load prediction, error correction, and endto-end slice optimization.
- ✓ Effectively balances cost reduction with minimal resource overprovisioning.
- ✓ 37-51% cost savings compared to static and reactive allocation methods.
- ✓ The framework ensures high-quality service delivery.

Overall Conclusion

- ✓ Resource allocation Optimized in end-to-end network slicing under demand.
- ✓ It ensures high-quality service delivery while minimizing costs.
- ✓ Maximize utility in end-to-end network slicing using AI.
- ✓ Improved healthcare service delivery.
- ✓ The framework ensures high-quality service delivery.
- ✓ Establish sustainable economic models for network operators.
- ✓ Allocates resources to minimize costs and ensure QoS.

Thank You