Environmental and Development Economics Module 2 - How does development affect the environment?

Raahil Madhok UMN Apllied Economics

2024-09-04

Lecture 2

How does development affect the environment?

Housekeeping

- ► Replication project (Ryan announcement)
 - ▶ Due Oct 17th
- Research proposal
 - Start thinking about idea + come talk to me
 - First draft: Oct 3rd (pass/fail)
- Lecture slides will be posted before each class
- Reading list is a work in progress
- ▶ 5 min break mid-way through lectures

Today

- Guiding question: how does economic development affect the environment?
- Descriptive overview
- ► Channel I: Income effects (today)
 - Changes in consumption
 - Energy
 - Diet
- Channel II: Technology and Infrastructure (next week)
 - Agricultural productivity
 - Infrastructure
- ► Channel III: Institutions
 - Later in the course

How does economic development affect the environment?

- ▶ There is no one answer
- Choices that maximize economic growth often degrade environment
- But development expands our choice set (e.g. clean energy)
- ▶ Development also lowers u'(c) (model from last week)
- ► Hence: the Environmental Kuznets Curve (EKC)

Environmental Kuznets Curve

Discussion: Do you believe EKC?

► Mechanisms?

► Causality?

► Robustness?

GDP and Lead in Gasoline

GDP and CO2

- Middle East and North Africa
- East Asia and Pacific
- Europe and Central Asia
- A North America
- Sub-Saharan Africa
- Latin America and Caribbean
- South Asia
- --- Fitted values

GDP and PM2.5

- Middle East and North Africa
- East Asia and Pacific
- Europe and Central Asia
- North America
- Sub-Saharan Africa
- Latin America and Caribbean
- South Asia
- --- Fitted values

GDP and Ozone

- Middle East and North Africa
- East Asia and Pacific
- Europe and Central Asia
 - North America
- + Sub-Saharan Africa
- Latin America and Caribbean
- South Asia
- Fitted values

My view

Macro correlations give limited answer

- ► Not the right question
 - What do we mean by development?
 - ▶ e.g. manufacturing ↑ pollution, but services may not

- ► Narrow, micro/empirical papers more helpful
 - even if they don't find consensus

Discussion: What is the ideal (quasi-) experiment?

- ► Can we randomize GDP?
- What variation in "development" can approximate the experiment?
 - what proxies development? (see ookla speed test)
 - what does the proxy miss?
 - what (non-random) variation isolates causal relationship?

Discussion: What about mechanisms?

- ▶ Why and how does economic development affect the environment?
- ► Theory is your friend: especially total derivatives. . .
 - Sometimes enough to rationalize mechanisms
 - Otherwise generate testable predictions
- Heterogeneity is your friend
 - But have a reason why you choose one channel over another

Alix-Garcia et al. (2013): Ecological footprint of poverty alleviation

Question: What is the effect of income on environmental quality?

▶ Poverty alleviation may ↑ demand for resource-intensive good

▶ Or, it may ↑ demand for conservation

▶ This paper: Exploit RDD eligibility to study impact of CCT on forests

Why can't we regress forests on income?

Income correlated with other things that affect environment

► Like what?

► If we control for OVB, will panel fixed effects work?

Mexico's Oportunidades Program

- ► **Goal:** Ambitious program to build human capital
- ► **Scope:** \$2.6 billion/year (half of anti-poverty budget)
 - ► Transfers are 1/3 of total income
 - Represents shift to new income path
- Size: 4 million households treated
- ▶ **Design:** Randomized rollout from 1998-2000
 - ► Afterwards, enrollment is non-random and based on marginality index
 - ► Two step: 1) village selected on index; 2) households selected in eligible villages

Results Preview: conditional cash transfer increases deforestation

Data

- ▶ Main variables: village lat/lon, eligibility index, forest cover (satellite)
 - Enrollment by village until 2003

► Sample size: 105,749 villages

- ► Unit of analysis: only village centroids provided?
 - ► How do we estimate village-level impacts? Thiessen polygons
 - Area around a point where every location closer to the point than to all others
 - ► Problems?

Thiessen/Voronoi Polygons

FIGURE 2.—ILLUSTRATION OF LOCALITY BOUNDARIES DEFINED USING THIESSEN POLYGONS

Data Visualization

Eligibility cutoff: -1.2

FIGURE 3.—Entire Sample Minus Observations with Index > 3

FIGURE 4.—KERNEL ESTIMATION OF DEFORESTATION ON MARGINALITY INDEX—RESTRICTED SAMPLE

Empirical Strategy: OLS Equation

$$\Delta f_i = \alpha + \delta T_i + \beta' X_i + \epsilon_i$$

- ▶ where Δf_i is % deforestation in polygon i over 2000-2003
- $ightharpoonup T_i = 1$ if the locality enrolled by 2003
- \triangleright X_i includes poverty
- ightharpoonup But T_i is not random!

- ▶ If discontinuity is sharp, replace T_i with $1[E_i > -1.2]$
- ▶ RDD: Sample window -2 < I < -0.2

RDD Equation

- Discontinuity is fuzzy, not sharp
 - ► How do we know? Two reasons
- Solution: Use cutoff to instrument treatment probability
- ► Fuzzy RDD/IV:

$$\Delta f_i = \alpha + \delta T_i + \gamma I_i + \beta' X_i + \epsilon_i$$

$$\Delta T_i = \omega + \tau_1 E_i + \tau_2 E_i I_i + \tau_3 M_i + \tau_4 M_i I_i + \mu I_i + \Gamma' X_i + \epsilon_i$$

where T_i is enrollment dummy, E_i is eligibility cutoff dummy, I_i is index, M_i is dummy for region where enrollment increases rapidly

Results: OLS and Sharp RDD

		Tobit	O	LS	
		% Polygon Deforested	Deforestation (0/1)	% Deforested (If 1)	
	(1)	(2)	(3)	(4)	(5)
Eligible	.383 (.181)**	.549 (.295)*	.370 (.217)*	.013 (.008)*	.387 (.190)**
Marginality index	.523 (.041)***	.753 (.077)***	.219 (.189)	.031 (.003)***	.069
$Index^2$	(10.12)	.069	(1105)	.002	.060 (.075)
$Index^3$		100 (.037)***		004 (.001)***	022 (.025)
Index ⁴		002 (.015)		0001 (.0005)	012 (.013)
Baseline area in forest, 2000	0004 (.001)	0005 (.001)	.004 (.002)**	.0006 (.0001)***	.005 (.001)***
Ln(polygon area)	.947 (.042)***	.954 (.042)***	.728 (.068)***	.046 (.002)***	993 (.062)***
Ln(total population in 1995)	.142 (.024)***	.144 (.024)***	.036 (.034)	.010 (.001)***	040 (.025)
Ln(slope)	052 (.005)***	053 (.005)***	009 (.010)	003 (.0002)***	029 (.006)***
Ln(road density)	059 (.026)**	056 (.026)**	.025 (.053)	004 (.001)***	010 (.027)
Observations	58,587	58,587	15,758	58,587	5,545
Ecoregion controls	Yes	Yes	Yes	Yes	Yes

Results: Fuzzy RDD / Instrumental Variables

▶ Very strong first stage: eligiblity ↑ probability of enrollment $(\tau_1 = 0.8)$

				IV Tobit				
	Full Estimation Sam		nple Restricted Sample		Deforestation (0/1)	% Deforested (If 1)		
	(1)	(2)	(3)	(4)	(5)	(6)		
Treated	.584 (.280)**	1.293 (.715)*		1.038 (.609)*	.031 (.019)*	1.264 (.680)*		
Proportion treated	()	(,	3.453 (1.870)*	,	(1111)	(/		
Marginality index	.521 (.042)***	.641 (.106)***	.244 (.298)	072 (.339)	.028 (.003)***	005 (.101)		
Index ²	(10.12)	.177	.391 (.221)*	(1000)	.004	.162 (.119)		
Index ³		091 (.035)***	053 (.031)*		003 (.001)***	036 (.030)		
Index ⁴		010 (.015)	037 (.022)*		0003 (.0005)	019 (.014)		
Baseline area in forest, 2000	0005 (.001)	0008 (.001)	001 (.001)	.003 (.002)**	.0006	.004		
Ln(polygon area)	.963 (.043)***	.990 (.047)***	1.075	.756 (.070)***	.047	948 (.065)***		
Ln(total population in 1995)	.055	056 (.116)	305 (.245)	097 (.086)	.005	262 (.120)**		
Ln(slope)	054 (.005)***	057 (.006)***	064 (.008)***	012 (.010)	003 (.0002)***	033 (.007)***		
Ln(road density)	075 (.027)***	092 (.033)***	119 (.043)***	.016	005 (.001)***	049 (.036)		
Observations Ecoregion controls	58,587 Yes	58,587 Yes	58,587 Yes	15,758 Yes	58,587 Yes	5,545 Yes		

Mechanisms

▶ RD results show that CCT increases deforestation

▶ Why? What changes at the household level?

- ▶ Approach 1: Use experimental sample (Progresa) with household survey data
 - ▶ Progresa had randomized rollout at village level for first 3 yrs

▶ Approach 2: Heterogeneity by road density to study role of market access

Mechanisms: Consumption channel

- ▶ Before (1997-1998) and after (2000) data on consumption
- ▶ 506 villages, 320 treated, 186 control
- Treatment at the village level

Difference in differences:

$$y_{it} = \gamma_0 + \gamma_1 \mathit{Treat}_i + \gamma_2 \mathit{Post}_t + \gamma_3 \mathit{Treat}_i \times \mathit{Post}_t + \epsilon_{it}$$

- $\triangleright y_{it} = consumption$
- ▶ $Treat_i = 1$ if household i in treated locality
- cluster at locality level bc randomization was at locality level
- ▶ How do we interpret γ_3 ?

Hypothesis: $\gamma_3 > 0$

Mechanisms: Market channel

- Demand shock must be met by supply, which drives land use change
 - ightharpoonup e.g. \uparrow consumption of milk met by \uparrow in grazing land
- ▶ But γ_3 captures partial equilibrium
 - Part of demand shock supplied locally. What about rest?
- Hypothesis: If consumption is driving deforestation
 - Then effect should be larger when infrastructure quality is low
 - Low market access: demand met by local supply
 - ► High market access: demand shock propagates across markets

Triple Differences:

Heterogeneity by infrastructure quality:

$$y_{it} = \beta_0 + \beta_1 \operatorname{Treat}_i + \beta_2 \operatorname{Post}_t + \beta_3 (\operatorname{Treat}_i \times \operatorname{Post}_t)$$

$$+ \beta_4 \operatorname{Road}_i + \beta_5 (\operatorname{Road}_i \times \operatorname{Treat}_i) + \beta_6 (\operatorname{Road}_i \times \operatorname{Post}_t)$$

$$+ \beta_7 (\operatorname{Road}_i \times \operatorname{Treat}_i \times \operatorname{Post}_t) + \epsilon_{it}$$

 $ightharpoonup Road_i = ext{inverse road density (km of road w/n 10km of village/polygon)}$

Hypothesis: $\beta_7 > 0$

Results: Increase in consumption of land intensive goods

	Rooms in Home		Days Ate Beef		Days Drank Milk	
	(1)	(2)	(3)	(4)	(5)	(6)
Treatment effect	.014	.017	.114	.118	.337	.331
	(.033)	(.035)	(.030)***	(.031)***	(.081)***	(.087)**
Treatment × inverse road density	,	034	, , , ,	070	, , ,	.183
,		(.148)		(.097)		(.669)
Village chosen to receive Progresa	.0001	.002	025	031	133	143
	(.037)	(.038)	(.029)	(.030)	(.111)	(.118)
Posttreatment year	.053	.049	137	138	655	664
	(.028)*	(.029)*	(.024)***	(.025)***	(.061)***	(.065)**
Inverse of road density		.266		156		.051
•		(.169)		(.069)**		(.499)
Village × inverse road density		.043		.102		.232
,		(.236)		(.140)		(.682)
Posttreatment × inverse road density		.067		.016		.155
•		(.140)		(.068)		(.252)
Observations	23,318	23,318	33,128	33,128	33,128	33,128
Mean dependent	1.557		0.388		1.440	
Variable in baseline	(0.930)		(0.661)		(2.367)	

Higher beef and milk demand (land intensive products)

Demand-side impacts do not vary with market access (we did't expect it to)

Results: No increase in local production

	Number of Plots		Log (1+ Tot	Log (1+ Total Hectares)		Number of Cows	
	(1)	(2)	(3)	(4)	(5)	(6)	
Treatment effect	.030	.031	014	015	.092	.036	
	(.039)	(.040)	(.038)	(.039)	(.057)	(.057)	
Treatment × inverse road density	, ,	107		.142	, ,	.936	
•		(.210)		(.223)		(.522)*	
Village chosen to receive Progresa	.014	.037	004	.017	004	.058	
	(.056)	(.057)	(.040)	(.040)	(.087)	(.085)	
Posttreatment year	094	077	.312	.317	239	180	
,	(.032)***	(.033)**	(.033)***	(.033)***	(.046)***	(.046)**	
Inverse of road density	, ,	.833	, ,	.820	, , ,	2.122	
•		(.161)***		(.227)***		(.799)**	
Village × inverse road density		263		217		760	
,		(.317)		(.258)		(.872)	
Posttreatment × inverse road density		275		235		982	
•		(.149)*		(.128)*		(.402)**	
Observations	45,087	45,087	32,631	32,631	34,248	34,248	
Mean dependent	0.824	,	1.724	,	0.604	,	
Variable in baseline	(0.955)		(3.535)		(2.304)		

Supply-side impacts do not vary with market access

Results: Deforestation higher in places with poor market access

	Low 1	Density	Mediun	n Density	High	Density	Intera	actions
Dependent Variable	(%) (1)	(0/1) (2)	(%) (3)	(0/1) (4)	(%) (5)	(0/1) (6)	(%) (7)	(0/1) (8)
Treated	1.619 (.868)*	.075 (.037)**	.554 (.836)	.019 (.030)	1.818 (1.472)	.023 (.021)	.778 (.600)	.008
Treated × low	(,	(1-1-1)	(1223)	(,	(/	(/	1.041 (.582)*	.059 (.017)**
Low road density							550 (.400)	028 (.012)**
Observations	19,529	19,529	19,529	19,529	19,529	19,529	58,587	58,587

More deforestation in places with less market access (low road density)

Supports mechanism of increased demand for land-intensive goods

Thoughts?

- ▶ Do we believe the story about increased demand for land-intensive goods?
 - Less market access means less access to inputs
 - Underinvest in technology, leading to higher deforestation
 - Maybe this is a story about technology, not consumption
- Can you think of an alternate explanation?
- Other concerns?
- ► This all points to shortcomings of RCTs in general
 - we cannot answer why

Same results in Colombia! Malerba (2020)

- Question: What is the impacts of CCT on consumption, energy, and deforestation?
- ► Context: Familias en Accion CCT project (2001-2005)
- Design: Matched Difference in Differences
- Result: Increased beef and milk (land intensive) consumption
 - Mediated by markets
 - ▶ Negligible ↑ in deforestation (counterintuitive)
 - ► No impact on CO2

Research Design

- ► CCT program launched in 2000
 - Non-random: Municipalities selected on amenities (banks, education, health)
 - ▶ 721 eligible: slow phase-in
- ► Study sample: 5,477 households
- Variation: compare outcome in treated hh before/after enrollment relative to control hh
- ► Identification assumptions

	Number of municipalities enrolled (annual)
2000	2
2001	360
2002	244
2003	6
2004	0
Total	612

Results: Increased beed and milk consumption

Household DiD:

$$\Delta Y_i = \alpha + \delta T_i + X_i + \epsilon_i$$

Variables	(1) Beef, days per week	(2) Beef, days per week	(3) Milk, days per week	(4) Milk, days per week
FA	0.416**	0.879**	0.720**	1.099**
	(0.166)	(0.333)	(0.282)	(0.547)
FA *distance to closest		-0.010*		-0.008
market		(0.005)		(800.0)
Households	2268	2268	2269	2269
R-squared	0.029	0.032	0.045	0.046

- ► Effect muted with low market access (very weak)
- ▶ Why is sample size declining from 5,477?

Design: Environmental Impacts

- Unit of analysis: Municipality
- Design: municipalities enrolled gradually over time
 - Many were not enrolled by 2004
- ▶ Define $Treat_i = 1$ if enrolled by 2004
- $ightharpoonup Post_t = 1$ after treatment, zero for 2000

$$y_{it} + \beta_0 + \beta_1 Treat_i + \beta_2 Post_t + \beta_3 (Treat_i \times Post_t) + \beta_4 X_{it} + \epsilon_{it}$$

- Variation: Δ forest b/w 2000/05 for municipalities enrolled by 2004 rel. to non-enrolled

Results: No environmental impact

Variables	(1) % forest	(2) % forest, incl. ref.	(3) % forest
FA enrollment	0.510*	0.369	0.523*
FA enrollment, number of years	(0.271)	(0.303)	(0.293)
FA enrollment * distance to closest market			-0.000
			(0.001)
2005	-2.166***	-1.479***	-2.167**
	(0.266)	(0.309)	
Constant	22.361***	23.452***	22.358***
	(1.588)	(2.324)	(1.615)
R-squared	0.370	0.196	0.370
Observations	1440	1440	1440

- Weakly positive deforestation (counterintuitive)
- ► Why?

Take a 5 minute break

Back to the question

How does development affect the environment?

- Income
 - ► Land intensive consumption
 - Energy

► Next time: Technology and Infrastructure

Development, Energy, and the Environment

- lacktriangle Energy ladder: as income \uparrow , move from solid fuel ightarrow gas ightarrow electricity
 - ► Electricity may displace dirty energy (wood), which ↓ pollution
- ▶ But, electricity also increases total energy (fridge, AC)
 - ightharpoonup ... which ightarrow pollution
 - energy footprint increases with income
- Unless generated from solar, wind, etc
- ▶ People also buy cars as they get richer. . .

GDP and Car Ownership

Europe and Central Asia

North America

Sub-Saharan Africa

Latin America and Caribbean

South Asia

Fitted values

Of course, these are correlations

But first, some theory

- Imagine we can exogenously vary income to poor households
- Will transfers to initially poor households yield lumpy investments?
 - Movements up the ladder involve big purchases
 - ▶ May explain why 1.3 billion people lack electricity (Gertler et. al, 2016)
- Credit constraints play an important role
 - Without credit markets, buy now but have nothing in next period
 - ► With savings, can save now, buy later (smooth consumption)
 - With borrowing, buy now, smooth consumption over time
- Lets formalize this

Model Set up

- ► Two periods with no discounting
- ► Agent *i* can consume two goods
 - ▶ non-durable gives per period utility: $u'(\cdot) > 0$, $u''(\cdot) < 0$
 - lumpy durable that gives static per period utility R, if owned
- Durable price = P; non-durable is numeraire
- ▶ Let Y_1 , Y_2 be per period 1, 2 income
- ▶ Define $\overline{Y} = 1/2(Y_1 + Y_2) = \text{average per period income}$

No credit constraints

Without credit constraints, if don't buy, total utility is:

$$u(\bar{Y}) + u(\bar{Y}) = 2u(\bar{Y})$$

If buy durable, spend P and spread cost equally across periods:

$$2u(\bar{Y}-\frac{P}{2})+2R$$

Purchase durable iff:

$$u(\bar{Y}) - u(\bar{Y} - \frac{P}{2}) \le R$$

 $u''(\cdot) < 0$ implies acquisition increases in income

1) With credit constraints: Buy in period 1

If don't purchase, total utility is:

$$u(Y_1) + u(Y_2)$$

If purchase in period 1:

$$u(Y_1-P)+2R+u(Y_2)$$

Purchase in period 1 iff:

$$\frac{u(Y_1)-u(Y_1-P)}{2}\leq R$$

2) With credit constraints: Wait to buy in period 2

If don't purchase, total utility is:

$$u(Y_1) + u(Y_2)$$

If save in period 1, and buy in period 2:

$$2u(\bar{Y}-\frac{P}{2})+R$$

Wait to buy in period 2 if:

$$u(Y_1) + u(Y_2) - 2u(\bar{Y} - \frac{P}{2}) \le R$$

Intuition of Model

- $ightharpoonup u''(\cdot) < 0$ means consumers gain from smoothing consumption
- Unconstrained household will buy in period 1
 - Use period 2 income (loan) to smooth consumption
- Credit constrained households cannot do this
 - If buy now, magnify consumption inequality across periods
 - Or, wait and buy in period 2, but delay utility gain
- Higher income in any period leads savers to buy more
- But, first period buyers respond only to first period income (lemma 1)
- ▶ But increase in *cumulative* income increases buying through delay/saving (lemma 2)

Testable Predictions

- Prediction 0: Acquisition increasing in income
- Prediction 1: S-shaped curve in acquisition
- ▶ Prediction 2: Faster income growth leads to more period 2 adoption

Gertler et al. (2016): Demand for energy-using assets among middle class

- ► **Question:** How does income affect energy demand?
- ► **Motivation:** 1.3 billion people live without electricity
- Should we expect linear climb up the energy ladder as incomes rise?

 what about credit markets?

	Electricity access (percent of population)	Refrigerators (share of households)
Brazil	98.7	0.93
China	99.7	0.69
India	75.0	0.13
Indonesia	73.0	0.17
Mexico	97.9	0.83
Sub-Saharan Africa	32.5	0.11
Total	70.8	0.38
United States	100.0	0.99

Non-linear relationship between income and fridges

- ► Are fridges representative of energy-intensive assets?
- ► Can aggregating non-linearities → linearity?

S-shape appears robust

Empirical Setting: Mexico Oportunidades (again)

- ▶ 320 randomly selected communities given early treatment (April 1998)
 - ► 52% were "eligible" for cash transfer
- ▶ 186 randomly selected communities given late treatment (October 1999)
- ► This paper: N=506 communities, 10,000 households surveyed (1997-2007)
 - Surveys done in 1998, 1999, 2000, 2003, and 2007
- Compare early and late treatment households (not treatment vs. control)
 - ► Similar b/c both groups selected on "vulnerability' characteristics
 - Strongly balanced on covariates
 - Assumes timing is random

Empirical Design

▶ Prediction 0: Probability of asset purchase ↑ in income

$$h(a_{it}) = Pr(a_{it} = 1 | a_{it-1} = 0) = \gamma_0 + \alpha_1 CI_{it} + \beta X_i + \beta_t F_i + R_{rt} + \epsilon_{it}$$

- where h(a) is the prob. that i buys a in time t conditional on not having it in t-1.
- Clit is cumulative income
- ► X_i includes baseline household controls
- \triangleright F_i are family structure variables interacted w/ survey round
- $ightharpoonup R_{rt}$ are state-year fixed effects

Hypothesis: $\alpha_1 > 0$

Empirical Design

▶ **Prediction 1:** S-shaped curve in acquisition

$$h(a_{it}) = Pr(a_{it} = 1 | a_{it-1} = 0) = \gamma_0 + \alpha_1 C I_{it} + \alpha_2 C I_{it}^2 + \beta X_i + R_{rt} + \epsilon_{it}$$

Hypothesis: $\alpha_2 \leq 0$?

Measurement issues

- Cumulative Income is sum of wage, farm, business income, CCT transfers
 - Reporting biases in wage data
 - Income reported in survey year, not cumulative
 - Authors interpolate across years, adding noise

Double counting problem if households invest CCT money into business

▶ **Solution:** use potential CCT **transfers** to instrument cumulative **income**

Identifying Variation

TABLE 2—OPORTUNIDADES BIMONTHLY SUPPORT LEVELS IN 2003 (Pesos)

Basic Support	155		
Educational scholarship			
Grade	Boys	Girls	
Third	105	105	
Fourth	120	120	
Fifth	155	155	
Sixth	205	205	
Seventh	300	315	
Eighth	315	350	
Ninth	335	385	
Tenth	505	580	
Eleventh	545	620	
Twelfth	575	655	

Use maximum cumulative transfer as **instrument** for actual (cumulative) transfer Plus variation from early/late enrollment

Identification Assumptions

- ► What is the exclusion restriction?
- ▶ Is it reasonable?

Results: Prediction 0

TABLE 4—BASIC RESULTS: REFRIGERATOR (Income Effects)

	Discrete time hazard		Household FE		Discrete time hazard	
	OLS	IV	IV	OLS	IV	IV
	(1)	(2)	(3)	(4)	(5)	(6)
Cumulative Transfers	0.018*** [0.005]	0.020*** [0.007]	0.047***			
Cumulative Income				0.003*** [0.001]	0.016*** [0.005]	0.034*** [0.007]
Observations R^2	30,414 0.103	30,414	30,258	30,414 0.104	30,414	30,258
Kleibergen-Paap Wald F-Stat on excluded variables		2,503	2,060		92	108
Number of households			6,655			6,655

 $[\]blacktriangleright$ For every 10,000 pesos, probability of buy fridge \uparrow by 4.7 pp.

Results: Prediction 1

Table 5—Basic Results: Refrigerator (Nonlinear Income Effects)

	Discrete tir	Discrete time hazard		
	OLS	IV	IV	
	(1)	(2)	(3)	
Cumulative Income	-0.0007 [0.0011]	-0.0059 [0.0108]	0.0132 [0.0132]	
Cumulative Income ²	0.0001*** [<0.0001]	0.0009** [0.0004]	0.0008** [0.0004]	
Observations R^2	30,414 0.105	30,414	30,258	
Kleibergen-Paap Wald F-Stat on excluded variables		22	23	
Number of households			6,655	

^{ho} $\alpha_2 > 0$ implies convex relationship b/w cumulative income and asset purchase

[▶] Since all households are poor, don't expect any to be past second inflexion point

Research gaps

Does earned income have different effect than transfers?

Can we trace out the full S-curve?

► Is there an S-curve for other technologies?

Which externalities have highest income elasticities?

Next week

- ► How does development affect the environment?
 - ► Technology and Infrastructure
- ->
- ->