Chapitre 1

Ensembles \mathbb{N} , \mathbb{Z} , \mathbb{D} , \mathbb{Q} et \mathbb{R}

	Sommaire	
1	Sous-ensembles de $\mathbb R$	1
	1.1 Sous-ensembles remarquables	1
	1.2 Écritures et notations	1
2	Opérations dans $\mathbb R$	2
	2.1 Addition	2
	2.2 Multiplication	2
	2.3 Opérations sur les fractions	2
3	Racines carrées	2
4	Puissances – Puissances de 10 – Écriture scientifique	3
	4.1 Puissances	3
	4.2 Puissances de 10	3
	4.3 Écriture scientifique	3
5	Identités remarquables – Développement et factorisation	4
5		4 4
5		-

1 Sous-ensembles de \mathbb{R}

1.1 Sous-ensembles remarquables

On distingue plusieurs ensembles de nombres.

- L'ensemble des «entiers naturels», noté N, qui contient les nombres 0, 1, 2, 3, etc.
- L'ensemble des «entiers relatifs», noté \mathbb{Z} , qui contient les entiers naturels et leurs opposés -1, -2, -3, etc.
- L'ensemble des nombres «décimaux», noté \mathbb{D} , qui contient les nombres pouvant s'écrire sous la forme $\frac{a}{10^n}$, où a est un entier relatif et n est un entier naturel.
- L'ensemble des nombres «rationnels», noté \mathbb{Q} , qui contient les nombres pouvant s'écrire sous la forme $\frac{a}{b}$, où a est un entier relatif et b est un entier naturel non nul.
- L'ensemble des nombres «réels», noté \mathbb{R} , qui contient tout les nombres qu'on utilise à ce niveau.
- L'ensemble des nombres «irrationnels», noté $\mathbb{R} \setminus \mathbb{Q}$, qui contient tout les nombres réels qui ne sont pas rationnels.

Exemples

- 7 appartient à l'ensemble \mathbb{N} ; on note $7 \in \mathbb{N}$.
- -5 n'appartient pas à l'ensemble \mathbb{N} et appartient à \mathbb{Z} ; on note $-5 \notin \mathbb{N}$ et $-5 \in \mathbb{Z}$.
- On a $2 \in \mathbb{D}$ car $2 = \frac{2}{10^0}$; $3, 14 \in \mathbb{D}$ car $3, 14 = \frac{314}{10^2}$; et $\frac{1}{2} \in \mathbb{D}$ car $\frac{3}{8} = \frac{375}{10^3}$. On a $-3 \in \mathbb{Q}$ car $-3 = \frac{-3}{1}$; $-24, 8 \in \mathbb{Q}$ car $-24, 8 = -\frac{124}{5}$; et $1, 232323... \in \mathbb{Q}$ car $1, 232323... = \frac{122}{99}$.
- On a $\sqrt{3} \in \mathbb{R} \setminus \mathbb{Q}$ et $\pi \in \mathbb{R} \setminus \mathbb{Q}$ car $\sqrt{3}$ et π ne sont pas des rationnels.

Remarques

- Un nombre écrit en virgule n'appartient pas nécessairement à D.
 - o S'il est avec un nombre limité de chiffres après la virgule, il appartient à D.
 - o S'il est avec un nombre de chiffres limité ou répété infiniment après la virgule, il appartient à Q.
 - o S'il est avec un nombre de chiffres illimité et sans répétition, après la virgule, il appartient à R√Q.
- Tout nombre irrationnel est un nombre réel.

On dit alors que $\mathbb{R} \setminus \mathbb{Q}$ est inclus dans \mathbb{R} », et on écrit $\mathbb{R} \setminus \mathbb{Q} \subset \mathbb{R}$.

De même, on conclue que :

- o Tout entier naturel est un entier relatif, et on écrit $\mathbb{N} \subset \mathbb{Z}$.
- o Tout entier relatif est un nombre décimal, et on écrit $\mathbb{Z} \subset \mathbb{D}$.
- Tout nombre décimal est un nombre rationnel, et on écrit $\mathbb{D} \subset \mathbb{Q}$.
- \circ Tout nombre rationnel est un nombre réel, et on écrit $\mathbb{Q} \subset \mathbb{R}$.

On en déduit que $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$ (voir le figure de l'exercice suivant).

Exercice

Mettre chacun des nombres suivants dans la zone correspondante, dans la figure ci-contre: $-7,2; -\sqrt{169}; \frac{\pi-1}{2}; 5 + \sqrt{6};$ $\frac{357}{17}$; $\frac{\sqrt{81}}{27}$.

1.2 Écritures et notations

- L'ensemble des entier naturels s'écrit $\mathbb{N} = \{0; 1; 2; 3; \ldots\}$.
- L'ensemble des entier relatifs s'écrit $\mathbb{Z} = \{\ldots; -3; -2; -1; 0; 1; 2; 3; \ldots\}.$
- L'ensemble des nombres décimaux s'écrit $\mathbb{D} = \{ \frac{a}{10^n} / a \in \mathbb{Z} \text{ et } n \in \mathbb{N} \}.$
- L'ensemble des nombres rationnels s'écrit $\mathbb{Q} = \{\frac{a}{b} \mid a \in \mathbb{Z} , b \in \mathbb{N} \text{ et } b \neq 0\}.$

- Le symbole * dans les ensembles \mathbb{N}^* , \mathbb{Z}^* , \mathbb{D}^* , \mathbb{Q}^* et \mathbb{R}^* exclu le nombre 0 d'eux. Par exemple, $\mathbb{N}^* = \{1; 2; 3; \ldots\}$ et $\mathbb{Z}^* = \{\ldots; -3; -2; -1; 1; 2; 3; \ldots\}$.
- Les ensembles des nombres positifs, 0 y compris, sont notés \mathbb{Z}^+ , \mathbb{D}^+ , \mathbb{Q}^+ et \mathbb{R}^+ . Par exemple, $\mathbb{Z}^+ = \{0; 1; 2; 3; \ldots\} = \mathbb{N}.$
- Les ensembles des nombres négatifs, 0 y compris, sont notés \mathbb{Z}^- , \mathbb{D}^- , \mathbb{Q}^- et \mathbb{R}^- . Par exemple, $\mathbb{Z}^- = \{0; -1; -2; -3; \ldots\}.$
- Un ensemble qui ne contient pas de nombre s'appelle l'«ensemble vide» et se note \emptyset .

Exercice

Compléter avec l'un des symboles \in , \notin , \subset ou $\not\subset$:

$$4\cdots\mathbb{N};\ \frac{1}{2}\cdots\mathbb{N};\ 4,5\cdots\mathbb{Z};\ \frac{1}{6}\cdots\mathbb{Q};\ \frac{1}{4}\cdots\mathbb{D};\ \frac{1}{3}\cdots\mathbb{D};\ \sqrt{3}\cdots\mathbb{R};\ \frac{\sqrt{3}}{2}\cdots\mathbb{Q};\ \pi\cdots\mathbb{R};\ \pi\cdots\mathbb{Q};\ \sqrt{0,25}\cdots\mathbb{D};\\ \frac{\sqrt{8}}{\sqrt{18}}\cdots\mathbb{Q};\ \frac{17}{125}\cdots\mathbb{D};\ \frac{2}{15}\cdots\mathbb{D};\ -2\cdots\mathbb{R};\ \mathbb{Z}\cdots\mathbb{R};\ \mathbb{Q}\cdots\mathbb{Z};\ \mathbb{R}^+\cdots\mathbb{R};\ \mathbb{Q}\cdots\mathbb{N};\ \mathbb{Z}^*\cdots\mathbb{Q};\ \mathbb{D}^+\cdots\mathbb{Q}^-;\ \emptyset\cdots\mathbb{D}.$$

2 Opérations dans \mathbb{R}

2.1 Addition

Propriétés

Soient a, b et c des nombres réels, on a :

(i)
$$a + b = b + a$$

(ii)
$$a + (b+c) = (a+b) + c = a+b+c$$

(iii)
$$a + 0 = 0 + a = a$$

(iv)
$$(-a) + a = a + (-a) = 0$$
 où $-a$ est appelé «**opposé de** a ».

2.2 Multiplication

Propriétés

Soient a, b et c des nombres réels, on a :

(i)
$$a \times b = b \times a$$

(ii)
$$a \times (b \times c) = (a \times b) \times c = a \times b \times c$$

(iii)
$$1 \times a = a \times 1 = a$$

(ii)
$$a \times (b \times c) = (a \times b) \times c = a \times b \times c$$

(iv) $a \times \frac{1}{a} = \frac{1}{a} \times a = \frac{a}{a} = 1$; $a \neq 0$ où $\frac{1}{a}$ est appelé «**inverse de** a ».

Opérations sur les fractions 2.3

Propriétés

Soient a, b, c et d des nombres réels tel que $b \neq 0, c \neq 0$ et $d \neq 0$, on a :

(i)
$$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$$

(ii)
$$\frac{a}{b} + c = \frac{a+bc}{b}$$

(iii)
$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$$

(iv)
$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

(ii)
$$\frac{a}{b} + c = \frac{a+bc}{b}$$
 (iii) $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$ (v) $\frac{a}{\frac{b}{c}} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$ (vi) $\frac{a}{\underline{b}} = a \times \frac{c}{b} = \frac{ac}{b}$

(vi)
$$\frac{a}{\underline{b}} = a \times \frac{c}{\overline{b}} = \frac{ac}{\overline{b}}$$

(vii)
$$\frac{a}{b} = \frac{c}{d}$$
 est équivaut à $ad = bc$. (viii) $\frac{a}{b} = 1$ est équivaut à $a = b$. (ix) $\frac{c}{b} = 0$ est équivaut à $a = 0$.

(ix)
$$\frac{\ddot{a}}{a} = 0$$
 est équivant à $a = 0$

3 Racines carrées

Définition

Soit a un nombre réel positif.

On appelle «racine carrée de a» le nombre réel positif b vérifiant $a = b^2$.

Le nombre b est noté \sqrt{a} , et on écrit $(\sqrt{a})^2 = a$.

Exemples

- $\sqrt{9} = 3 \text{ car } 3^2 = 9.$
- $\sqrt{49} = 7 \text{ car } 7^2 = 49.$
- $\sqrt{0} = 0 \text{ car } 0^2 = 0.$

Propriétés

Soient a et b deux nombres de réels positifs, on a :

(i)
$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$

(ii)
$$\sqrt{a^2} = (\sqrt{a})^2 = a$$

(iii)
$$(\sqrt{a})^n = \sqrt{a^n}$$
 où $n \in \mathbb{N}$.

(iv)
$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$
 où $b \neq 0$

$$(v) \sqrt{\frac{1}{a}} = \frac{1}{\sqrt{a}} = \frac{\sqrt{a}}{a} = a \text{ où } a \neq 0.$$

(i)
$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$
 (ii) $\sqrt{a^2} = (\sqrt{a})^2 = a$ (iii) $(\sqrt{a})^n = \sqrt{a^n}$ où $n \in \mathbb{N}$.
(iv) $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$ où $b \neq 0$.
(v) $\sqrt{\frac{1}{a}} = \frac{1}{\sqrt{a}} = \frac{\sqrt{a}}{a} = a$ où $a \neq 0$.
(vi) $\sqrt{a} = b$ est équivaut à $a = b^2$. (vii) $\sqrt{a} = \sqrt{b}$ est équivaut à $a = b$. (viii) $\sqrt{a} = 0$ est équivaut à $a = 0$.

Exercice

1. Simplifier l'écriture des nombres suivants :

(a)
$$\sqrt{27} \times 5\sqrt{6}$$

(b)
$$7\sqrt{75} - 2\sqrt{12}$$

(c)
$$(11\sqrt{5} - 5\sqrt{1})$$

(c)
$$(11\sqrt{5} - 5\sqrt{11})(11\sqrt{5} + 5\sqrt{11})$$

(d)
$$3\sqrt{20} + 4\sqrt{45} - 2\sqrt{80} - \sqrt{180}$$

- 2. On pose $X = \sqrt{10 \sqrt{84}} + \sqrt{10 + \sqrt{84}}$. Développer X^2 , puis en déduire la valeur X.
- 3. Écrire les fractions suivantes sans racine carrée au dénominateur : (a) $\frac{2}{\sqrt{3}}$ (b) $\frac{1}{2+\sqrt{5}}$ (c) $\frac{1}{\sqrt{3}-\sqrt{5}}$

Puissances – Puissances de 10 – Écriture scientifique

4.1 **Puissances**

Définition

Soient a un réel non nul et n un entier naturel.

• La «**puissance de** a **d'exposant** n», noté a^n , se définit par :

$$\circ$$
 Si $n = 0$ alors $a^0 = 1$.

$$\circ$$
 Si $n=1$ alors $a^1=a$.

• Si
$$n \neq 0$$
 et $n \neq 1$ alors $a^n = a \times a \times a \times \cdots \times a$

$$n$$
 facteurs

• La «puissance de a d'exposant -n», noté a^{-n} , est l'inverse de a^n , et on a :

$$\circ \text{ Si } n = 1 \text{ alors } a^{-1} = \frac{1}{a}.$$

$$\circ \text{ Si } n \neq 0 \text{ et } n \neq 1 \text{ alors } a^{-n} = \frac{1}{a^n} = \underbrace{\frac{1}{a \times a \times a \times \cdots \times a}}_{n \text{ facteurs}}$$

Propriétés

Soient a et b deux nombres de réels non nuls, et n et m deux entiers relatifs, on a :

(i)
$$a^n \times a^m = a^{n+m}$$

(ii)
$$\frac{a^n}{a^m} = a^{n-m}$$

(v) $a^n \times b^n = (ab)^n$

(iii)
$$(a^n)^m = a^{n \times m}$$

(iv)
$$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$$

$$(v) \ \tilde{a}^n \times b^n = (ab)^n$$

Puissances de 10 4.2

Définition

Soit n un entier naturel, on a:

•
$$10^0 = 1$$

$$\bullet 10^1 = 10^1$$

$$\bullet 10^{-1} = 0,1$$

•
$$10^1 = 10$$
 • $10^{-1} = 0, 1$ • $10^n = 1000 \cdots 000$

$$\bullet 10 = 0,0$$

4.3 Écriture scientifique

Définition

Tout nombre décimal x peut s'écrire sous la forme $x = a \times 10^n$, où $n \in \mathbb{Z}$, et $a \in \mathbb{D}$ vérifiant $1 \le a < 10$ si x est positive, ou $-10 < a \le -1$ si x est négatif.

L'écriture $a \times 10^n$ est appelé l'«**écriture scientifique**» du nombre x.

Exercice

- 1. Simplifier les expressions suivantes : (a) $\frac{10^9 \times 6^3}{25^4 \times 3 \times 2^{11}}$ (b) $\frac{1}{10^{118}} \frac{1}{10^{119}}$ (c) $5^{108} \times 2^{106} \times 11 \times \frac{1}{10^{107}}$ 2. Donner l'écriture scientifique des nombres suivants : (a) 2000000 (b) 0,0036 (c) 0,00000375 × 5000

Identités remarquables – Développement et factorisation 5

5.1 Identités remarquables

Propriétés

Soient a, b et k des réels, on a :

(i)
$$k(a+b) = ka + kb$$

(iii)
$$(a+b)^2 = a^2 + 2ab + b^2$$

(v)
$$(a-b)(a+b) = a^2 - b^2$$

(vi)
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

(viii)
$$(a - b)(a^2 + ab + b^2) = a^3 - b^3$$

(ii)
$$k(a-b) = ka - kb$$

$$(iv) (a-b)^2 = a^2 - 2ab + b^2$$

(vii)
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$(ix)(a+b)(a^2-ab+b^2) = a^3+b^3$$

5.2 Développement et factorisation

Définitions

Dans une expression algébrique:

- «Factoriser» c'est transformer une somme de termes en un produit de facteurs.
- «Développer» c'est transformer un produit de facteurs en une somme de termes.
- «Réduire» c'est rassembler les termes de même nature (mêmes lettres et mêmes exposants).
- «Ordonner» c'est ranger les termes suivant les puissances (dé)croissantes et l'ordre alphabétique.

Exercice

1. Développer, réduire et ordonner les expressions suivantes :

(a)
$$(x - \frac{2}{3})^2$$

(b)
$$(2x+1)^2 + (4x-1)(4x+1)$$
 (c) $(2x+3)^3$ (d) $(x-2)^3$

(c)
$$(2x+3)^3$$

(d)
$$(x-2)^3$$

2. Factoriser les expressions suivantes :

(a)
$$(3x+2)(x-1) - (1-x)(-2x+1)$$

(b)
$$12x^3 - 16x^2 + 32x$$
 (c) $16 - 4x^2$
(e) $64x^3 - 27$ (f) $x^2 - 2x - 3$

(c)
$$16 - 4x^2$$

(d)
$$(4x-8)(3x-1)-x^2+4x-4$$

(e)
$$64x^3 - 27$$

(f)
$$x^2 - 2x - 3$$

6 **Exercices**

Exercice 1

(a)
$$-12 \cdots \mathbb{N}$$

(b)
$$37, \underline{9} \cdots \mathbb{Q}$$

(c)
$$\frac{95}{19} \cdots \mathbb{N}$$

(d)
$$-1, 4 \cdots \mathbb{D}$$

(e)
$$0 \cdots \mathbb{Z}^*$$

(f)
$$-5\cdots\mathbb{Z}^+$$

$$(g) \frac{\sqrt{3}}{2} \cdots \mathbb{R}^{-1}$$

$$(h) = \frac{-\sqrt{49}}{8} \cdots 0$$

(i)
$$\mathbb{N} \cdots \mathbb{Z}$$

$$(j) \mathbb{Q}^+ \cdots \mathbb{R}^-$$

$$(k) \,\, \mathbb{N}^* \cdots \mathbb{Q}$$

(l)
$$\mathbb{Z}^+ \cdots \mathbb{Z}^+$$

Exercice 2

- 1. Montrer que $\frac{\sqrt{5808}}{\sqrt{3675}} \in \mathbb{Q}$ et que $\frac{\sqrt{3^2+4^2}}{\frac{1}{3}-\frac{1}{4}} \in \mathbb{N}$. 2. Trouver l'entier naturel n vérifiant $\frac{3n+17}{n+4} \in \mathbb{N}$.

Exercice 3

- 1. Simplifier les expressions suivantes : (a) $\frac{2^2 \times 3 \times (\sqrt{7})^4 \times (\sqrt{21})^3}{7^2 \times (\sqrt{3})^{-2} \times (\sqrt{2})^4}$ (b) $\frac{(2\sqrt{2})^4 \times (-7\sqrt{3})^{-3}}{\left(\frac{1}{2\sqrt{5}}\right)^4}$
- 2. Donner l'écriture scientifiques de : (a) 0,0001234 (b) $578,21\times10^5$ (c) $0,0074\times10^{-2}$ (d) 52×10^3

Exercice 4

Développer et réduire les expressions suivants :

(a)
$$(2x+3)^2$$

(b)
$$(7x - 3y)^2$$

(c)
$$(x+y)^2 - (x-y)^2$$

(f) $(x+y-z)^3$

(d)
$$(2x + 3y)^3$$

(e)
$$(x+y)^3 - (x-y)^3$$

(f)
$$(x+y-z)^3$$

Exercice 5

Factoriser les expressions suivantes :

(a)
$$A = 9x^2 - 4$$

(b)
$$B = 27x^4 + 81x$$

(c)
$$C = 12x^3 - 16x^2 + 32x$$

(d)
$$D = 36 - 16x^2$$

(e)
$$E = (3x+2)^2 - 36(x+1)^2$$

(f)
$$F = (7x+3)(x-1) - (1-x)(-2x+1)$$

(e)
$$E = (3x+2)^2 - 36(x+1)^2$$

(1)
$$F = (1x+3)(x-1) - (1-x)(-2x+1)$$

(b) $H = (4x-9)(3x-1) - x^2 + 4x - 4$

(g)
$$G = (-2x + 1) - (4 - 6x)$$

(g)
$$G = (-2x+1)^2 - (4-8x)(x+3) + (3-12x^2)$$
 (h) $H = (4x-8)(\frac{3}{2}x-1) - x^2 + 4x - 4$ (i) $I = x^5 + x^3 - x^2 - 1$ (j) $J = x^{12} - 2x^6 + 1$

(i)
$$I = x^5 + x^3 - x^2 - 1$$

(j)
$$J = x^{12} - 2x^6 + 1$$

(k)
$$K = x^3 - 27 - 4(x - 3) + x^2 - 9$$

Exercice 6

Soient x et y de deux réels non nuls.

Montrer que $\frac{-1+\frac{x}{x-y}}{1+\frac{y}{x-y}}=\frac{y}{x}$, et en déduire la valeur de $\frac{-1+\frac{1}{1+\sqrt{5}}}{1-\frac{\sqrt{5}}{1+\sqrt{5}}}$

Exercice 7

Soient a et b deux réels tels que $a = \sqrt{14 + 6\sqrt{5}}$ et $b = \sqrt{14 - 6\sqrt{5}}$.

- 1. Calculer $(3 + \sqrt{5})^2$ et $(3 \sqrt{5})^2$.
- 2. En déduire les valeurs de a et b.
- 3. Chercher l'entier naturel t tel que $(7+3\sqrt{5})(3-\sqrt{5})\sqrt{7-3\sqrt{5}}=t\sqrt{2}$.

Soient x, y et z des réels deux à deux distincts. Montrer que $\frac{x}{(x-y)(x-z)} + \frac{y}{(y-x)(y-z)} + \frac{z}{(z-x)(z-y)} = 0$.

Exercice 9

Soit a un réel non nul. On pose $A = a + \frac{1}{a}$.

Calculer en fonction de A les expressions suivants : (a) $a^2 + \frac{1}{a^2}$ (b) $a^3 + \frac{1}{a^3}$ (c) $a^4 + \frac{1}{a^4}$

Exercice 10

a et b sont deux réels non nuls tels que $2(a^2+b^2)=5ab$. Calculer la valeur de $A=\frac{a-b}{a+b}$.

Exercice 11

Soit x un réel positif tel que $\sqrt{x+9} + \sqrt{x} = 18$. Calculer la valeur de $\sqrt{x+9} - \sqrt{x}$.