VE230 RC slides Week 3

han.fang

May 30, 2021

Overview

Content

- Electrostatics in Free Space
- Coulomb's Law
- Gauss's Law and Application
- Electric Potential

Electrostatics in Free Space

Static electric charges (source) in free space \rightarrow electric field

Electric field intensity

$$\mathbf{E} = \lim_{q \to 0} \frac{\mathbf{F}}{q} \quad (\mathbf{V}/\mathbf{m})$$

Fundamental Postulates of Electrostatics

Differential form:

$$\vec{\nabla} \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} \quad (divergence)$$

$$\vec{\nabla} \times \mathbf{E} = 0 \quad (curl)$$

where ρ is the volume charge density of free charges (C/m^3) , ϵ_0 is the permittivity of free space, a universal constant.

Integral form:

$$\oint_{S} \mathbf{E} \cdot d\mathbf{s} = \frac{Q}{\epsilon_{0}}$$

$$\oint_{C} \mathbf{E} \cdot d\ell = 0$$

where Q is the total charge contained in volume V bounded by surface S. Also, the scalar line integral of the static electric field intensity around any closed path vanishes.

E is **not solenoidal** (unless $\rho = 0$), but **irrotational**

Electric Field due to a System of Discrete Charges

a single point charge (charge on the origin):

$$\mathbf{E} = \mathbf{a}_R E_R = \mathbf{a}_R \frac{q}{4\pi\epsilon_0 R^2} \quad (\mathbf{V}/\mathbf{m})$$

a single point charge (charge is not on the origin):

$$\mathbf{E}_{p} = \frac{q \left(\mathbf{R} - \mathbf{R}' \right)}{4\pi\epsilon_{0} \left| \mathbf{R} - \mathbf{R}' \right|^{3}} \quad (\mathbf{V}/\mathbf{m})$$

(a) Point charge at the origin.

(b) Point charge not at the origin.

FIGURE 3-2 Electric field iFIGURE due to a point charge.

Electric Field due to a System of Discrete Charges

a single point charge (charge is not on the origin): When a point charge q_2 is placed in the field of another point charge q_1 at the origin, a force \vec{F}_{12} is experienced by q_2 due to the electric field intensity \vec{E}_{12} of q_1 at q_2 . Then we have:

$$\vec{F_{12}} = q_2 \vec{E_{12}} = \vec{a_R} \frac{q_1 q_2}{4\pi \epsilon_0 R^2}$$

several point charges:

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \sum_{k=1}^{n} \frac{q_k \left(\mathbf{R} - \mathbf{R}'_k\right)}{\left|\mathbf{R} - \mathbf{R}'_k\right|^3}$$

Electric Dipole

■ Electric Field

Electric Dipole

Electric Field general expression:

$$\mathbf{E} = \frac{q}{4\pi\epsilon_0} \left\{ \frac{\mathbf{R} - \frac{\mathbf{d}}{2}}{\left|\mathbf{R} - \frac{\mathbf{d}}{2}\right|^3} - \frac{\mathbf{R} + \frac{\mathbf{d}}{2}}{\left|\mathbf{R} + \frac{\mathbf{d}}{2}\right|^3} \right\}$$

if $d \ll R$:

$$\mathbf{E} \cong \frac{q}{4\pi\epsilon_0 R^3} \left[3 \frac{\mathbf{R} \cdot \mathbf{d}}{R^2} \mathbf{R} - \mathbf{d} \right]$$

Electric Dipole Moment Definition:

$$\mathbf{p} = q\mathbf{d}$$

,where q is the charge, vector \mathbf{d} goes from -q to +q.

$$\mathbf{p} = \mathbf{a}_z p = p \left(\mathbf{a}_R \cos \theta - \mathbf{a}_\theta \sin \theta \right)$$
$$\mathbf{R} \cdot \mathbf{p} = Rp \cos \theta$$

Electric Dipole

■ Electric Field: (spherical coordinate)

$$\mathbf{E} = \frac{p}{4\pi\epsilon_0 R^3} \left(\mathbf{a}_R 2 \cos \theta + \mathbf{a}_\theta \sin \theta \right) \quad (V/m)$$

Electric Field due to a Continuous Distribution of Charge

General Differential Element:

$$d\mathbf{E} = \mathbf{a}_R \frac{\rho dv'}{4\pi\epsilon_0 R^2},$$

where dv' is the differential volume element.

Line Charge:

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \int_{L'} \mathbf{a}_R \frac{\rho_\ell}{R^2} d\ell' \quad (\mathbf{V/m})$$

Surface Charge:

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \int_{\mathbf{S}'} \mathbf{a}_R \frac{\rho_s}{R^2} ds' \quad (\mathbf{V}/\mathbf{m})$$

■ Volume Charge:

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \int_{V'} \mathbf{a}_R \frac{\rho}{R^2} dv' \quad (\mathbf{V}/\mathbf{m})$$

Gauss's Law and Application

Definition

The total outward flux of the E-field over any closed surface in free space is equal to **the total charge enclosed in the surface** divided by ϵ_0 . (Note that we can choose arbitrary surface S for our convenience.)

$$\oint_{S} \mathbf{E} \cdot d\mathbf{s} = \frac{Q}{\epsilon_0}$$

Application

Conditions for Maxwell's Integral Equations: There is a high degree of symmetry in the charge distribution or in the electrical field (i.e., spherically symmetric, planar, line charge, etc.

Gauss's Law Application

Example:

Determine the electric field intensity of an infinitely long, straight, line charge of a uniform density ρ_s in air.

Gauss's Law Application

Example:

Determine the electric field intensity of an infinitely long, straight, line charge of a uniform density ρ_s in air.

Answer

$$E \cdot 2\pi \cdot r \cdot l = \frac{\rho \cdot l}{\epsilon_0}$$

Several Useful Models

Note: The charge distribution should be **uniform**.

different models	E(magnitude)
infinitely long, line charge	$E = \frac{\rho_{\ell}}{2\pi r \epsilon_0}$
infinite planar charge	$E = \frac{\rho_s}{2\epsilon_0}$
uniform spherical surface charge with radius R	$\begin{cases} E = 0(r < R) \\ E = \frac{Q}{4\pi r^2 \epsilon_0}(r > R) \end{cases}$
uniform sphere charge with radius R	$\begin{cases} E = \frac{Qr}{4\pi R^3} (r < R) \\ E = \frac{Q}{4\pi r^2 \epsilon_0} (r > R) \end{cases}$
infinitely long, cylindrical charge with radius R	$\begin{cases} E = \frac{\rho_v r}{2\epsilon_0} (r < R) \\ E = \frac{\rho_v R^2}{2r\epsilon_0} (r > R) \end{cases}$

Electric Potential

Expression:

$$\mathbf{E} = -\nabla V$$

the reason for the negative sign: consistent with the convention that in going against the ${\bf E}$ field, the electric potential V increases.

Electric Potential Difference:

$$V_2 - V_1 = -\int_{P_1}^{P_2} \mathbf{E} \cdot dl$$

Electric Potential due to a Charge Distribution

$$V = \frac{q}{4\pi\epsilon_0 R}$$

Electric Potential

■ Line Charge:

$$V = \frac{1}{4\pi\epsilon_0} \int_{L'} \frac{\rho_l}{R} dl' \quad (V)$$

Surface Charge:

$$V = \frac{1}{4\pi\epsilon_0} \int_{\mathbf{S}'} \frac{\rho_s}{R} ds' \quad (V)$$

Volume Charge:

$$V = \frac{1}{4\pi\epsilon_0} \int_{V'} \frac{\rho}{R} dv' \quad (V)$$

P.3-22

The polarization in a dielectric cube of side L centered at the origin is given by $\mathbf{P} = P_0(\mathbf{a_x}x + \mathbf{a_y}y + \mathbf{a_z}z)$.

- a) Determine the surface and volume bound-charge densities
- **b)** Show that the total bound charge is zero.

P.3-22

The polarization in a dielectric cube of side L centered at the origin is given by $\mathbf{P} = P_0(\mathbf{a_x}x + \mathbf{a_y}y + \mathbf{a_z}z)$.

- a) Determine the surface and volume bound-charge densities
- **b)** Show that the total bound charge is zero.

a)
$$P_{ps} = \overline{P} \cdot \overline{a}_n = P_0 \frac{1}{2}$$
 on all six faces of the cube.
 $P_p = -\overline{\nabla} \cdot \overline{P} = -3P_0$.

b)
$$Q_s = 6L^2 f_{ps} = 3P_0L^2$$
, $Q_v = L^3 f_p = -3P_0L^2$.
Total bound charge = $Q_s + Q_v = 0$.

P.3-23

Determine the electric field intensity at the center of a small spherical cavity cut out of a large block of dielectric in which a polarization ${\bf P}$ exists.

P.3-23

Determine the electric field intensity at the center of a small spherical cavity cut out of a large block of dielectric in which a polarization ${\bf P}$ exists.

1-19 Assume
$$\bar{P} = \bar{a}_z P$$
. Surface charge denity $f_{\mu\nu} = \bar{p} \cdot \bar{a}_n$

$$= (a_z P) \cdot (\bar{a}_R)$$
The z-component $= -P \cos \theta$.
Of the electric field intensity due to a ring of $f_{\mu\nu}$ centained in width Rd0 at θ is
$$dE_z = \frac{P \cos \theta}{4\pi \epsilon_R R^2} (2\pi R \sin \theta) (Rd\theta) \cos \theta$$

$$= \frac{P}{2\epsilon_\theta} \cos^2 \theta \sin \theta d\theta$$
At the center of the cavity: $\bar{E} = \bar{a}_z E_z = \bar{a}_z \frac{P}{2\epsilon_\theta} \int_0^{\pi} \cos^2 \theta \sin \theta d\theta = \frac{\bar{P}}{3\epsilon_\theta}$

P.3-25

Assume that the z=0 plane separates two lossless dielectric regions with $\epsilon_{r1}=2$ and $\epsilon_{r2}=3$. If we know that $\boldsymbol{E_1}$ in region 1 is $\boldsymbol{a_x}2y-\boldsymbol{a_y}3x+\boldsymbol{a_z}(5+z)$, what do we also know about $\boldsymbol{E_2}$ and $\boldsymbol{D_2}$ in region 2? Can we determine $\boldsymbol{E_2}$ and $\boldsymbol{D_2}$ at any point in region 2? Explain.

P.3-25

Assume that the z=0 plane separates two lossless dielectric regions with $\epsilon_{r1}=2$ and $\epsilon_{r2}=3$. If we know that E_1 in region 1 is $a_x 2y - a_y 3x + a_z (5+z)$, what do we also know about E_2 and D_2 in region 2? Can we determine E_2 and D_2 at any point in region 2? Explain.

$$\frac{\rho.3-21}{E_{1t}} \text{ ($z=0$) = $\bar{E}_{2t}(z=0$) = $\bar{a}_x 2y - \bar{a}_y 3x + \bar{a}_x 5$.}$$

$$\bar{E}_{1t}(z=0) = \bar{E}_{2t}(z=0) = \bar{a}_x 2y - \bar{a}_y 3x ,$$

$$\bar{D}_{1n}(z=0) = \bar{D}_{2n}(z=0) \longrightarrow 2 \bar{E}_{1n}(\bar{z}=0) = 3 \bar{E}_{3n}(\bar{z}=0)$$

$$\longrightarrow \bar{E}_{1n}(z=0) = \frac{1}{3} (\bar{a}_x 5) = \bar{a}_x \frac{10}{3}.$$

$$\bar{E}_{2}(z=0) = \bar{a}_x 2y - \bar{a}_y 3x + \bar{a}_x \frac{10}{3}.$$

$$\bar{D}_{2}(z=0) = (\bar{a}_x 6y - \bar{a}_y 9x + \bar{a}_x 10) \in_{0}.$$

P.3-28

Dielectric lenses can be used to collimate electromagnetic fields. In Fig.1 the left surface of the lens is that of a circular cylinder, and the right surface is a plane. If E_1 at point $P(r_0,45^\circ,z)$ in region 1 is $a_r 5 - a_\phi 3$, what must be the dielectric constant of the lens in order that E_3 in region 3 is parallel to the x-axis?

Assume
$$\overline{E}_2 = \overline{a}_1 E_{3r} + \overline{a}_4 E_{2\phi}$$

B.C.: $\overline{a}_n \times \overline{E}_1 = \overline{a}_n \times \overline{E}_2 \longrightarrow E_{2\phi} = -\overline{E}_2$
For \overline{E}_3 , and hence \overline{E}_2 , to be parallel to the x-axis,
 $E_{2\phi} = -E_{2r} \longrightarrow E_{2r} = 3$.
B.C.: $\overline{a}_n \cdot \overline{D}_1 = \overline{a}_n \cdot \overline{D}_2 \longrightarrow S = 3c$
 $\vdots \quad \epsilon_{rr} = 5/3$.

P.3-32

The radius of the core and the inner radius of the outer conductor of a very long coaxial transmission line are r_i and r_o , respectively. The space between the conductors is filled with two coaxial layers of dielectrics. The dielectric constants of the dielectrics are ϵ_{r_1} for $r_i < r < b$ and ϵ_{r_2} for $b < r < r_o$. Determine its capacitance per unit length.

P.3-32

The radius of the core and the inner radius of the outer conductor of a very long coaxial transmission line are r_i and r_o , respectively. The space between the conductors is filled with two coaxial layers of dielectrics. The dielectric constants of the dielectrics are ϵ_{r_1} for $r_i < r < b$ and ϵ_{r2} for $b < r < r_o$. Determine its capacitance per unit length.

$$\begin{array}{ll} \underline{P.3-30} & \overline{D} = \overline{a_r} \frac{f_r}{2\pi r} \cdot \quad \overline{E_r} = \overline{a_r} \frac{f_b}{2\pi c_b c_{nr}} \cdot f_t < r < b_j \overline{E_s} = \overline{a_r} \frac{f_s}{2\pi c_b c_{rs}} \cdot b < r < r_b \\ V = -\int_{r_b}^{r_c} \overline{E} \cdot d\overline{r} = \frac{f_s}{2\pi c_b} \left[\frac{f}{c_{rj}} \ln \left(\frac{b}{r_s} \right) + \frac{f}{c_{rs}} \ln \left(\frac{f_a}{b} \right) \right], \\ C = \frac{f_b}{V} = \frac{2\pi c_b}{c_{rs}} \ln \left(\frac{f_s}{f_s} \right) + \frac{f}{c_{rs}} \ln \left(\frac{f_a}{b} \right) \right]. \end{array}$$