EC5.102: Information and Communication

Introduction to probability and random variables

Arti D. Yardi

Email address: arti.yardi@iiit.ac.in Office: A2-204, Vindhya A2, 1st floor

Recap of the previous class

Recap: Probability space

- Review: Set theory and elementary concepts in probability (Bayes theorem, total probability law, Axioms of probability etc)
- A probability space consists of three elements (Ω, \mathcal{F}, P) :
 - **1** Sample space Ω : Set of all possible outcomes
 - **2** Event space \mathcal{F} : Collection of sets outcomes in Ω such that
 - **\star** Contains both empty set ϕ and Ω
 - ★ Closed under complement: If $A \in \mathcal{F}$ then $A^c \in \mathcal{F}$
 - ★ Closed under countable union: If $A_1, A_2, \ldots \in \mathcal{F}$ then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$
 - **3** Probability measure P(.): Function from event space \mathcal{F} to [0,1]
- Think: Probability space does capture "essential" model of a random experiment!

Motivation to random variables

Example of rolling two dice

- Example of rolling two dice where we are interested in the sum of two dice.
- Suppose X = sum of two dice. Then we have

$$\Omega = \left\{ (1,1), (1,2), \dots, (1,6) \\ (2,1), (2,2), \dots, (2,6) \\ \vdots \qquad \xrightarrow{X} \qquad \Omega' = \left\{ 2, 3, \dots, 12 \right\} \\ (6,1), (6,2), \dots, (6,6) \right\}$$

- Suppose $\mathcal F$ and $\mathcal F'$ are power sets of Ω and Ω' respectively.
- Can you write down P'?
- We have a map X given by

$$X:(\Omega,\mathcal{F},P)\to(\Omega',\mathcal{F}',P')$$

• For our application, it is more convenient to work with $(\Omega', \mathcal{F}', P')$ than (Ω, \mathcal{F}, P) .

Example of choosing two real numbers from [0,1]

- ullet Choose any two real numbers from [0,1]
 - What will be Ω?
 - ▶ What will be F? (to be discussed soon)
 - ▶ What will be *P*? (e.g. choose any number with uniform probability)
- We are interested only in addition of these two numbers.
 - What will be Ω′?
 - ▶ What will be \mathcal{F}' ?
 - ▶ What will be P'? (Will it be uniform? Yes/no?)
- We have a map X given by

$$X: (\Omega, \mathcal{F}, P) \rightarrow (\Omega', \mathcal{F}', P')$$

• It is more convenient to work with $(\Omega', \mathcal{F}', P')$ than (Ω, \mathcal{F}, P) .

Motivation to random variables

- One can write down the event space \mathcal{F} , when Ω has finite entries.
- What to do when Ω has infinite (countable/uncountable) entries?
- Given a random experiment with associated (Ω, \mathcal{F}, P) , it is sometimes difficult to deal directly with $\omega \in \Omega$. Example: Rolling a dice twice
- Depending on the experiment, Ω will be different.
- Can we come up with a general platform which is independent of the choice of a particular Ω ?
- It is desirable and convenient to study probability space and related advanced concepts using this general platform!

Answer: Random Variables (rv or RV)

Definition of random variables

Random variables

- Recall example of rolling two dice.
 - Suppose we are only interested in 'sum of two dice'.
 - ▶ It is convenient to consider the map $X : (\Omega, \mathcal{F}, P) \to (\Omega', \mathcal{F}', P')$
- For random variables, we consider "special" Ω', \mathcal{F}' and the corresponding induced probability measure P'.
 - $ightharpoonup \Omega'$ will be the set of real numbers, denoted by \mathbb{R} .
 - \mathcal{F}' will be Borel σ -algebra, denoted by $\mathcal{B}(\mathbb{R})$. (This is an advanced level topic. We will not go into the details).
 - ightharpoonup P' will be the corresponding induced probability measure, denoted by P_X .
- A random variable X is a map given by

$$X:(\Omega,\mathcal{F},P)\to(\mathbb{R},\mathcal{B}(\mathbb{R}),P_X)$$

(Map X needs to satisfy some more conditions! To be discussed soon.)

Borel σ -algebra

• Borel σ -algebra $\mathcal{B}(\mathbb{R})$:

If $\Omega = \mathbb{R}$, then $\mathcal{B}(\mathbb{R})$ is the event space generated by open sets of the form (a,b) where $a \leq b$ and $a,b \in \mathbb{R}$.

ullet $\mathcal{B}(\mathbb{R})$ contains unions and intersections of the intervals of the form

[a, b] [a, b) (a, ∞) $[a, \infty)$ $(-\infty, b]$ $(-\infty, b)$

Random variables

- $\Omega \xrightarrow{X} \mathbb{R}$, $\mathcal{F} \xrightarrow{X} \mathcal{B}(\mathbb{R})$, and $P(.) \xrightarrow{X} P_X(.)$
- Care must be taken such that the events you consider in the new event space $\mathcal{B}(\mathbb{R})$ are also valid events included in \mathcal{F} .
- $X^{-1}(B)$ is called as the preimage or the inverse image of B.

Definition of a random variables

A random variable X is a map $X:(\Omega,\mathcal{F},P)\to (\mathbb{R},\mathcal{B}(\mathbb{R}),P_X)$ such that for each $B\in\mathcal{B}(\mathbb{R})$, the inverse image $X^{-1}(B):=\{w\in\Omega:X(w)\in B\}$ satisfies

$$X^{-1}(B) \in \mathcal{F}$$
 and $P_X(B) = \Pr(w \in \Omega : X(w) \in B)$

Examples

Definition of a random variable: Example-1

Definition of a random variable:

A rv X is a map $X:(\Omega,\mathcal{F},P)\to (\mathbb{R},\mathcal{B}(\mathbb{R}),P_X)$ s.t. for each $B\in \mathcal{B}(\mathbb{R})$, the inverse image $X^{-1}(B)\coloneqq \{w\in \Omega: X(w)\in B\}$ satisfies

$$X^{-1}(B) \in \mathcal{F}$$
 and $P_X(B) = \Pr(w \in \Omega : X(w) \in B)$

Example: Consider the following map corresponding to two coin tosses.

$$HH \xrightarrow{X} 0$$
, $HT \xrightarrow{X} 1$, $TH \xrightarrow{X} 2$, $TT \xrightarrow{X} 3$

- For which of the following event spaces can the map X defined above will be a valid random variable and why?
 - $\mathcal{F} = \{ \phi, \Omega, \{ HH \cup TT \}, \{ HT \cup TH \} \}$
 - $ightharpoonup \mathcal{F}$ is a power set of Ω

Definition of a random variable: Example-2 (Homework)

Definition of a random variable:

A rv X is a map $X:(\Omega,\mathcal{F},P)\to (\mathbb{R},\mathcal{B}(\mathbb{R}),P_X)$ s.t. for each $B\in\mathcal{B}(\mathbb{R})$, the inverse image $X^{-1}(B)\coloneqq \{w\in\Omega:X(w)\in B\}$ satisfies

$$X^{-1}(B) \in \mathcal{F}$$
 and $P_X(B) = \Pr(w \in \Omega : X(w) \in B)$

Example: Consider the following map corresponding to three coin tosses.

$$HHH \xrightarrow{X} 0$$
, $HHT \xrightarrow{X} 1$, $HTH \xrightarrow{X} 2$, $HTT \xrightarrow{X} 3$
 $THH \xrightarrow{X} 4$, $THT \xrightarrow{X} 5$, $TTH \xrightarrow{X} 6$, $TTT \xrightarrow{X} 7$

- For which of the following event spaces can the map X defined above will be a valid random variable and why?
 - $\mathcal{F} = \{\phi, \Omega, \{HHH, HTT, THT, TTH\}, \{HHT, HTH, THH, TTT\}\}$
 - \triangleright \mathcal{F} is a power set of Ω

Definition of a random variable: Example-3

General definition of a random variable:

A rv X is a map $X:(\Omega,\mathcal{F},P)\to (\Omega',\mathcal{F}',P')$ s.t. for each $f\in\mathcal{F}'$, the inverse image $X^{-1}(f):=\{w\in\Omega:X(w)\in f\}$ satisfies

$$X^{-1}(f) \in \mathcal{F}$$
 and $P_X(f) = \Pr(w \in \Omega : X(w) \in f)$

- Example:
 - $\Omega = \{1, 2, 3, 4\}$ and $\Omega' = \{a, b, c\}$
 - \mathcal{F} and \mathcal{F}' are power sets of Ω and Ω' respectively.
 - Consider the following map.

$$X(1) = a, X(2) = b, X(3) = c, X(4) = a$$

▶ Is $X : (\Omega, \mathcal{F}, P) \rightarrow (\Omega', \mathcal{F}', P')$ a random variable?

Definition of a random variable: Example-4 (Homework)

• General definition of a random variable:

A rv X is a map $X: (\Omega, \mathcal{F}, P) \to (\Omega', \mathcal{F}', P')$ s.t. for each $f \in \mathcal{F}'$, the inverse image $X^{-1}(f) := \{w \in \Omega : X(w) \in f\}$ satisfies $X^{-1}(f) \in \mathcal{F} \text{ and } P_X(f) = \Pr(w \in \Omega : X(w) \in f)$

- Example: Rolling two dice where we are interested in the sum of two dice.
 - Suppose X denotes sum of two dice.
 - Write down Ω, P, Ω', P'
 - $\mathcal{F} = \text{Power set of } \Omega \text{ and } \mathcal{F}' = \text{Power set of } \Omega'$
 - ▶ Is $X : (\Omega, \mathcal{F}, P) \to (\Omega', \mathcal{F}', P')$ a random variable?

Definition of a random variable: Example-5

General definition of a random variable:

A rv X is a map $X:(\Omega,\mathcal{F},P)\to (\Omega',\mathcal{F}',P')$ s.t. for each $f\in\mathcal{F}'$, the inverse image $X^{-1}(f):=\{w\in\Omega:X(w)\in f\}$ satisfies

$$X^{-1}(f) \in \mathcal{F}$$
 and $P_X(f) = \Pr(w \in \Omega : X(w) \in f)$

- Example:
 - $\Omega = \{a, b, c\} \text{ and } \Omega' = \{0, 1\}$
 - $\mathcal{F} = \{\phi, \Omega, \{a\}, \{b \cup c\}\}$ and \mathcal{F}' is power set of Ω' .
 - Consider the following map.

$$X(a) = 1$$
, $X(b) = 0$, $X(c) = 0$

- ▶ Is $X : (\Omega, \mathcal{F}, P) \to (\Omega', \mathcal{F}', P')$ a random variable?
- ► This is an indicator random variable.

Recap till now

Summary

- Motivation for random variables
- Definition of a random variable

Examples

Random variables

- Irrespective of which random experiment we are conducting, our probability space will be $(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_X)!$
 - ▶ R: Sample space
 - $ightharpoonup \mathcal{B}(\mathbb{R})$: Event space
 - ▶ P_X : Probability measure (Note: $P_X : \mathcal{B}(\mathbb{R}) \to [0,1]$)
- Focus: Let X be a random variable.
 - ► X: Random variable (rv or RV or r.v.)
 - ▶ X: "Support set" of rv X
 - ▶ x: "Realization" of rv X (Note: $x \in \mathcal{X}$)

Discrete random variables

Discrete random variable: Example

- Support set of a rv: The set of values that it can take.
- A random variable is called "discrete" if its support set consists of finite or countable finite elements.
- Example of discrete rv: Tossing two coins

 - ► Suppose P[HH] = 0.2, P[HT] = 0.3, P[TH] = 0.35, P[TT] = 0.15
 - Consider example map: In class
- For a discrete rv X, we shall next study:
 - Probability mass function (PMF or pmf) of a discrete rv
 - ▶ Cumulative distribution function (CDF or cdf) of a discrete rv