

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

FACULTAD DE INGENIERÍA Laboratorio de Ingeniería Sanitaria

Guía práctica para el uso y manejo del Turbidímetro HF Scientific Micro 100

1. Turbidimetro

Diagrama

Componentes del equipo:

Cubetas para muestra: se utilizan para colocar la muestra hasta la marca indicada, y se colocan dentro del porta-muestras del turbidímetro.

Panel de medición: se utiliza en la calibración del turbidímetro con patrones de 1000, 10, y 0.02 Unidades Nefelométricas de Turbiedad (UNT) y una vez calibrado es donde se observa la lectura de turbiedad de la muestra.

Porta-muestras: consiste en un compartimiento el cual contiene en su interior una fuente de luz constante, la cual genera un haz luminoso el cual atraviesa la muestra. Sistema óptico: consta de una lámpara de filamento de tungsteno, un detector en 90° para controlar la luz difusa y un detector de luz transmitida. El microprocesador del instrumento calcula el coeficiente entre las señales desde 90° y los detectores de luz transmitida. Asimismo, el diseño óptico minimiza la luz difusa, aumentando la precisión de las mediciones.

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

FACULTAD DE INGENIERÍA Laboratorio de Ingeniería Sanitaria

Guía práctica para el uso y manejo del Turbidímetro HF Scientific Micro 100

1.1 Propósito del equipo

La turbiedad es una expresión de la propiedad óptica de una muestra, que origina que, al pasar un haz de luz a través de ella, la luz se disperse y se absorba en vez de transmitirse en línea recta.

La turbiedad en agua se debe a la presencia de partículas suspendidas y disueltas, materia en suspensión como arcilla, cieno o materia orgánica e inorgánica finamente dividida, así como compuestos solubles coloridos, plancton y diversos microorganismos.

Este método se basa en la comparación entre la intensidad de la luz dispersada por la muestra bajo condiciones definidas y la intensidad de luz dispersada por una suspensión de referencia bajo las mismas condiciones; a mayor dispersión de luz corresponde una mayor turbiedad. Las lecturas son realizadas empleando un turbidímetro calibrado con una suspensión de referencia de formacina preparada bajo condiciones específicas.

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA

FACULTAD DE INGENIERÍA Laboratorio de Ingeniería Sanitaria

Guía práctica para el uso y manejo del Turbidímetro HF Scientific Micro 100

1.2 Principios de operación

El aparato empleado en esta determinación consiste en un nefelómetro con una fuente de luz para iluminar la muestra y uno o varios detectores fotoeléctricos con un dispositivo de lectura exterior para indicar la intensidad de la luz dispersada a 90° de la dirección del haz de luz incidente.

En la determinación de turbiedad, el microprocesador del instrumento calcula el coeficiente entre las señales desde 90° y los detectores de luz transmitida. Asimismo, el diseño óptico minimiza la luz difusa, aumentando la precisión de las mediciones.

1.3 Precauciones para el manejo del equipo:

Seguridad del equipo.

Colocar el turbidimetro sobre una base sólida.

No dejar encendido el turbidimetro con el espacio vacío del porta-muetras.

Seguridad del usuario (EPP).

Uso obligatorio de lentes de seguridad y bata.