Analisi 2

Davide

October 31, 2019

1 Basi

Definizione di o-piccolo Sia f(x) = o(g(x)) per $x \to \infty$ allora:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

E vuol dire che f(x) ha ordine di grandezza più basso di g(x)

2 Derivate

2.1 Derivate da sapere come se si contasse da uno a 10

$$\frac{f(\mathbf{x}) \left| \frac{df(x)}{dx} \right|}{\tan(x) \left| \frac{1}{\cos^2(x)} = \sec^2(x) \right|}$$

$$\frac{a^x}{\arctan(\frac{x}{a})} \left| \frac{1}{a(1 + (\frac{x}{a})^2)} \right|$$

2.2 Chain Rule

Sia $u = f(\xi, \eta, ...)$ una funzione con argomenti che sono loro stessi funzioni.

$$\xi = \Phi(x, y)$$

$$\eta = \Psi(x, y)$$

Le sue derivate parziali saranno date da:

$$u_x = f_\xi \xi_x + f_\eta \eta_x + \dots$$

$$u_{y} = f_{\xi} \xi_{y} + f_{\eta} \eta_{y} + \dots$$

Esempio: Derivata di x^x

$$[u=x, v=x, z=u^v]$$

$$z_x = z_u u_x + z_v v_x = v u^{v-1} + u^v \log(u)$$

$$= xx^{x-1} + x^x \log(x)$$

2.3 Differenziabilità

2.3.1 Funzione differenziabile

Una funzione è differenziabile nel punto (0,0) se può essere approssimata nelle vicinanze di questo punto dalla seguente funzione lineare:

$$f(x+h, y+k) = f_x(x, y)h + f_y(x, y)k + f(x, y) + \varepsilon\sqrt{h^2 + k^2}$$
 (1)

dove $\varepsilon, h, k \to 0$ e $\sqrt{h^2 + k^2}$ denota la distanza tra il punto (x+h, x+k) e (x,y) Le funzioni differenziabili hanno le derivate parziali e anche le derivate in ogni direzione.

Il Piano tangente nel punto (ξ, η) :

$$z(x,y) = f(\xi,\eta) + f_x(x-\xi) + f_y(y-\eta)$$
 (2)

2.3.2 Derivate direzionali

$$D_{\theta}f(x,y) = \lim_{\rho \to 0} \frac{f(x + \rho \cos \theta, y + \rho \sin \theta) - f(x,y)}{\rho}$$
$$= f_x \cos(\theta) + f_y \sin(\theta)$$

Gradiente : $\nabla f = (f_x(x,y), f_y(x,y))$, esso è il vettore che indica la direzione della massima pendenza sul grafico ed è sempre perpendicolare alle curve di livello.

$$D_{\hat{v}}f(x,y) = \vec{\nabla f} \cdot \hat{v}$$

Dove \hat{v} è un versore.

3 Ottimizzazione

- 3.0.1 Massimi e minimi
- 3.0.2 Metodo dei moltiplicatori di Lagrange

4 Integrali

4.0.1 Integrali popolari

$$\begin{array}{c|c}
F(x) & f(x) \\
\hline
ln(x) & x(\ln x - 1) \\
a^x & \frac{a^x}{ln|a|}
\end{array}$$

4.1 Tecniche di integrazione

4.1.1 Per sostituzione

$$\int f(g(x))g'(x)\,\mathrm{d}x$$

$$u = g(x)$$
 e $du = g(x)'dx$

$$\int f(u) \, \mathrm{d}u$$

4.1.2 Per parti

$$\int f'(x)g(x)dx = f(x)g(x) - \int f(x)g'(x) dx$$
 (3)

Per risolvere tipo $\int \ln(x) dx$ o $\int x \sin(x) dx$

4.1.3 Funzioni Trigonometriche

$$\int \cos^2(t)dt = \frac{t + \sin(t)\cos(t)}{2} \tag{4}$$

$$\int \sin^2(t)dt = \frac{t - \sin(t)\cos(t)}{2} \tag{5}$$

Questa formula deriva da alcune formule trigonometriche a me oscure cioè $\cos^2 x = \frac{1}{2}(1+\cos(2x))$ e l'equivalente per il seno $\sin^2 x = \frac{1}{2}(1-\cos(2x))$

$$\int \cos^2(2t)dt = \frac{4t + \sin(4t)}{8} \tag{6}$$

4.2 Integrali Multipli

4.2.1 Trasformazioni

Matrice Jacobiana è la matrice delle derivate parziali delle funzioni che vengono sostituite.

$$x = f(u, v)$$

$$y=g(u,v)$$

Area Parallelogramma $\mathbf{a} \times \mathbf{b} = \det \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$

$$\mathbf{D} = \det \begin{bmatrix} \frac{\partial f}{\partial u} & \frac{\partial g}{\partial u} \\ \frac{\partial f}{\partial v} & \frac{\partial g}{\partial v} \end{bmatrix}$$
 (determinante matrice Jacobiana)

$$\int \int_{D} f(u, v)g(u, v)|D| \, \mathrm{d}u \, \mathrm{d}v \tag{7}$$

Nel caso delle **trasformazioni polari** |D| sarà sempre uguale a ρ .

Esempio coordinate ellittiche un esempio di base:

$$\iint_{D} \sqrt{4x^{2} + 9y^{2}} dx dy
D = \left\{ (x, y) : x \ge 0; y \ge -\frac{2}{3}x; 4x^{2} + 9y^{2} \le 4 \right\}
\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = \rho^{2}
x = a\rho \cos \theta
y = b\rho \sin \theta$$

$$|\det J| = ab\rho$$

nel nostro caso a=1/2, b=1/3 e $\rho=2$

quindi le nuove coordinate sono

$$x = \rho \frac{1}{2} \cos \theta$$

$$y = \rho \frac{1}{3} \sin \theta$$

$$|\det J| = \frac{1}{6}\rho$$

quantit to harve coordinate sono $x=\rho\frac{1}{2}\cos\theta$ $x=\rho\frac{1}{3}\sin\theta$ $y=\rho\frac{1}{3}\sin\theta$ $|\det J|=\frac{1}{6}\rho$ Il θ da cui partire si trova dall'equazione $y=-\frac{2}{3}x$ che diventa in coordinate polari $\frac{1}{3}\rho\sin\theta=-\frac{2}{3}\rho\frac{1}{2}\cos\theta$ da cui trovo che $\theta=\frac{\pi}{4}$. E quindi l'integrale finale risulterà essere:

$$\int_0^2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{6} \rho \rho \, \mathrm{d}\rho \, \mathrm{d}\theta$$

4.3 Integrali di linea

4.3.1Linee regolari

Generica

$$P(t) = 0 + x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k}$$
(8)

Una linea è regolare se rispetta le seguenti condizioni:

- Semplice quando non esistono $t_1 \neq t_2 : P(t_1) = P(t_2)$
 - $P(t) \in C^1([a,b])$
- $P'(t) \neq 0 \quad \forall t \in (a,b)$

4.3.2 Lunghezza linee

• y = f(x)

$$l = \int_{a}^{b} \sqrt{1 + [f'(x)]^{2}} \, \mathrm{d}x \tag{9}$$

• $x = \varphi(t), y = \psi(t), z = \tau(t)$

$$l = \int_{a}^{b} \sqrt{\varphi'(t)^{2} + \psi'(t)^{2} + \tau'(t)^{2}} dt$$
 (10)

• $\rho = \rho(\theta)$ $\theta \in [\alpha, \beta]$

$$l = \int_{0}^{\beta} \sqrt{\rho^2 + {\rho'}^2} \, \mathrm{d}\theta \tag{11}$$

Integrali di superficie

$$A = \int \int_{R} \sqrt{1 + f_x^2 + f_y^2} \, dR$$

Altra formula:

$$A = \int \int_R \sqrt{f_x^2 + f_y^2 + f_z^2} \left| \frac{1}{f_z} \right| \, \mathrm{d}x \, \mathrm{d}y$$

4.3.4 Integrali su campi vettoriali

Lavoro Sia $\mathbf{F} = P(x,y)\hat{i} + Q(x,y)\hat{j}$ un campo vettoriale (per esempio una forza che cambia a seconda della posizione x,y).

Mentre $d\mathbf{S} = dx\hat{i} + dy\hat{j}$ cioè il vettore tangente alla curva.

L'integrale di linea di F lungo la linea C è dato da:

$$\int_{C} \mathbf{F} \cdot d\mathbf{S} = \int_{C} P(x, y) dx + Q(x, y) dy$$

Funzione Potenziale Una f(x,y) è una funzione potenziale di un campo vettoriale $F = P\hat{i} + Q\hat{j}$ se il gradiente di f è $P\hat{i} + Q\hat{j}$.

Non tutti i campi vettoriali hanno una funzione potenziale.

Teorema 1 (Teorema per la verifica dell'esistenza di una funzione potenziale). Un campo vettoriale Pi + Qj ha una funzione potenziale se e solo se

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Un differenziale è esatto se vale la qua sopra citata formula.

Teorema 2 (Percorso indipendente). Sia f una funzione potenziale del campo vettoriale Pi + Qj

$$\int_{C} P \, dx + Q \, dy = f(B) - f(A) = \int_{A}^{B} P \, dx + Q \, dy$$
 (12)

Permette di trovare anche la funzione potenziale dal campo vettoriale. Sia g una funzione potenziale se e solo se g si può scrivere nel seguente modo:

$$g(x,y) = \int_{A}^{(x,y)} P \, \mathrm{d}x + Q \, \mathrm{d}y + K$$

Un Campo vettoriale con una funzione potenziale viene detto Campo conservativo.