《SE-205+数值计算方法》期末试题答案(B)

1. Fill in the blankets with proper answers (5 marks each, total 40 marks)

- 1) Suppose $x \approx 0.0473996$, then the approximate value 0.0474000 has <u>5</u> significant digits.
- 2) For the numerical integration formula $\int_{a}^{b} f(x)dx \approx (b-a)\sum_{i=1}^{n} C_{i}f(x_{i})$, if $\sum_{i=1}^{n} |C_{i}| > 1$, then we think it is not stable.
- 3) Suppose $g(x) \in C^1[a,b]$, and P is an attractive fixed point, then the fixed point iteration $\{p_n\}$, defined by $p_n = g(p_{n-1})$, satisfies the afterwards (事后) error estimation:

$$\left| \mathbf{P} - \mathbf{p}_n \right| \le \frac{\left| \mathbf{g}'(P) \right|}{1 - \left| \mathbf{g}'(P) \right|} \left| \mathbf{p}_n - \mathbf{p}_{n-1} \right|$$

- 4) The recursive rule of Newton's methods for solving nonlinear equation $x^2 A = 0$ is $x_{k+1} = \frac{1}{2} \left(x_k + \frac{A}{x_k} \right)$, and its speed of convergence is _______.
- 5) Let X = (0, -2, 5) and $A = \begin{pmatrix} 1 & -5 & 2 \\ 0 & 1 & 6 \\ 0 & 0 & 1 \end{pmatrix}$, then $||X||_{\infty} = \underline{\qquad 5 \qquad}$, $||A||_{1} = \underline{\qquad 9 \qquad}$.
- 6) Suppose that $\{(x_k, y_k)\}_{k=1}^N$ are N points, the normal equation for the least-square line y = Ax + B is

$$\left\{ \left(\sum_{k=1}^{N} x_k^2 \right) A + \left(\sum_{k=1}^{N} x_k \right) B = \sum_{k=1}^{N} x_k y_k \right.$$

$$\left(\left(\sum_{k=1}^{N} x_k \right) A + NB = \sum_{k=1}^{N} y_k \right.$$

7) Newton iteration for the following nonlinear system

$$\begin{cases} y = x^2 - \frac{1}{2} \\ x^2 + y^2 = 1 \end{cases}$$

is

$$\begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} = \begin{bmatrix} x_k \\ y_k \end{bmatrix} - J^{-1} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$$

where
$$f_1 = \underline{y_k - x_k^2 + \frac{1}{2}}$$
, $f_2 = \underline{x_k^2 + y_k^2 - 1}$ and $J = \begin{pmatrix} -2x_k & 1 \\ 2x_k & 2y_k \end{pmatrix}$.

8) Let y(t) be the solution to the initial value problem

$$\begin{cases} \frac{dy}{dt} = f(t, y) \\ y(t_0) = y_0 \end{cases}$$

and $\{(t_k, y_k)\}$ is the sequence of approximations generated by Euler's method, then the local discretization error is $\varepsilon_{k+1} = y(t_{k+1}) - y_k - hf(t_k, y_k) = O(h^2)$.

2. (10 Marks)The following tableau illustrates Romberg algorithm for calculating definite integral $\int_a^b f(x)dx$. Suppose the data on the first three lines have been calculated out, please write out the formula to calculate all the data on the last line.

R(0, 0)			
R(1, 0)	R(1, 1)		
R(2, 0)	R(2, 1)	R(2, 2)	
R(3, 0)=?	R(3, 1)=?	R(3, 2)=?	R(3, 3)=?

解:

$$\begin{cases} N = 2^{2}, h = \frac{b - a}{N} \\ R(3,0) = \frac{R(2,0)}{2} + \frac{h}{2} \left[\sum_{k=1}^{N} f\left(a + \left(k - \frac{1}{2}\right) \cdot h\right) \right] \end{cases}$$

$$\begin{cases} R(3,1) = \frac{4}{3}R(3,0) - \frac{1}{3}R(2,0) \\ R(3,2) = \frac{16}{15}R(3,1) - \frac{1}{15}R(2,1) \\ R(3,3) = \frac{64}{63}R(3,2) - \frac{1}{63}R(2,2) \end{cases}$$

3. (10 Marks)Given the function constrain table

X	0	2	5	6
f(x)	5	7	22	11

first construct the divided difference table, and then find the Newton interpolation polynomial. (12 marks)

解: 均差表为

	$\chi_{\rm k}$	$f(x_k)$	一阶均差	二阶均差	三阶均差			
	0	5						
	2	7	1					
	5	22	5	4/5				
	6	11	-11	-4	-4/5			

所以

$$N_3(x) = 5 + x + \frac{4}{5}x(x-2) - \frac{4}{5}x(x-2)(x-5)$$
$$= -\frac{4}{5}x^3 + \frac{32}{5}x^2 - \frac{43}{5}x + 5$$

4. (15 Marks)Find the PA=LU factorization for the following matrix. The factorization should correspond to Gauss elimination that selects the element, which has the largest absolute value in column, as the pivotal element.

$$A = \begin{bmatrix} 0 & 2 & 1 & 4 \\ 2 & 0 & 6 & 3 \\ 4 & 2 & 2 & 2 \\ -1 & 1 & 3 & 2 \end{bmatrix}$$

解:

$$\begin{bmatrix} 0 & 2 & 1 & 4 \\ 2 & 0 & 6 & 3 \\ 4 & 2 & 2 & 2 \\ -1 & 1 & 3 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 1 & 4 \\ 2 & 0 & 6 & 3 \\ 4 & 2 & 2 & 2 \\ -1 & 1 & 3 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 2 & 1 & 4 \\ \frac{1}{2} & -1 & 5 & 2 \\ 4 & 2 & 2 & 2 \\ -\frac{1}{4} & \frac{3}{2} & \frac{7}{2} & \frac{5}{2} \end{bmatrix}$$

$$p = (1,2,3,4)$$

$$p = (3,2,1,4)$$

$$p = (3,2,1,4)$$

$$p = (3,2,1,4)$$

$$p = (3,2,1,4)$$

$$p = (3,1,2,4)$$

所以

$$P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \frac{1}{2} & -\frac{1}{2} & 1 & 0 \\ -\frac{1}{4} & \frac{3}{4} & \frac{1}{2} & 1 \end{pmatrix}, U = \begin{pmatrix} 4 & 2 & 2 & 2 \\ 0 & 2 & 1 & 4 \\ 0 & 0 & \frac{11}{2} & 4 \\ 0 & 0 & 0 & -\frac{5}{2} \end{pmatrix}$$

5. (15 Marks)Show that when Heun's method is used to solve the following ordinary differential equation over [a,b]:

$$\begin{cases} \frac{dy}{dt} = f(t) \\ y(a) = 0 \end{cases}$$

The result is

$$y(b) = \frac{h}{2} \sum_{k=0}^{N-1} (f(t_k) + f(t_{k+1}))$$

Where
$$h = \frac{b-a}{N}$$
.

证明: Heun's 递推公式为

$$y_0 = 0$$

$$\begin{cases} p_{k+1} = y_k + hf(t_k, y_k) = y_k + hf(t_k) & 这个式子下面没有用到 \\ y_{k+1} = y_k + \frac{h}{2}(f(t_k, y_k) + f(t_{k+1}, p_{k+1})) = y_k + \frac{h}{2}(f(t_k) + f(t_{k+1})) \end{cases}$$

所以

$$\sum_{k=0}^{N-1} y_{k+1} = \sum_{k=0}^{N-1} y_k + \sum_{k=0}^{N-1} \frac{h}{2} (f(t_k) + f(t_{k+1}))$$

$$y_N = y_0 + \sum_{k=0}^{N-1} \frac{h}{2} (f(t_k) + f(t_{k+1}))$$

$$= \frac{h}{2} \sum_{k=0}^{N-1} (f(t_k) + f(t_{k+1}))$$

(第6、7两题任选一题。两题都做仅给第六题的得分)

- **6.** (10 Marks)Let $g(x) = \sqrt{x+6}$,
 - 1) Can fixed-point iteration $\{x_n\}$ defined by $x_n = g(x_{n-1})$ be used to find the solution(s) to the equation x = g(x).
- Prove that for any initial value $x_0 \ge -6$, the fixed point iteration $\{x_n\}$ always converges?

解: x = g(x) 等价于

$$x = \sqrt{x+6}$$

 $x^2 - x - 6 = 0$
 $(x-3)(x+2) = 0$
 $x = 3, x = -2$ (舍去)

所以方程x = g(x)有唯一一个解x = 3,且

$$g'(x) = \frac{1}{2\sqrt{x+6}}, |g'(3)| = \frac{1}{6} < 1$$

于是x=3是g(x)的吸性不动点,可以用不动点迭代求解到这个根。

令[a,b]=[0,b],其中b是任何一个不小于3的数,则g(x)是[a,b]上的压缩映射:

- 1. $\forall x \in [a,b], g(x) \in [a,b];$
- 2. $\forall x \in [a,b], |g'(x)| = \frac{1}{2\sqrt{6}} < 1$

根据压缩映射定理,对于任何一个不小于0的初值,迭代收敛于x=3。

又由于对于任何一个不小于-6的初值 x_0 ,迭代一次 $x_1 \ge 0$ 。由前所述,之后的跌代必收敛于x=3。所以对于任何一个不小于-6的初值,迭代收敛于x=3。

7. (10 Marks)Find the nature cubic spline that passes through the end points (-1,-2), (0,0), (1,3) with the free boundary conditions $S^{"}(-1) = S^{"}(1) = 0$.

解:对于唯一的内部节点x=0,可以列两个方程

$$\frac{1}{2}m_0 + 2m_1 + \frac{1}{2}m_2 = g_1$$

其中
$$m_0 = m_2 = 0$$
 , $g_1 = 6f[-1,0,1] = 3(f[0,1]-f[-1,0]) = 6(\frac{3-2}{2}) = 3$, 所以

 $m_1 = \frac{3}{2}$ 。最后用待定系数法求出三次样条中的各个系数

$$S(x) = \begin{cases} \frac{1}{4}x^3 + \frac{3}{4}x^2 + \frac{5}{2}x & \stackrel{\text{\psi}}{=} x \in [-1, 0] \\ -\frac{1}{4}x^3 + \frac{3}{4}x^2 + \frac{5}{2}x & \stackrel{\text{\psi}}{=} x \in [0, 1] \end{cases}$$