Tilde Approximation

EMBRY-RIDDLE Aeronautical University

Definition. We write $\sim f(N)$ to represent any function that, when divided by f(N), approaches 1 as N grows, and we write $g(N) \sim f(N)$ to indicate that g(N)/f(N) approaches 1 as N grows.

We say our algorithm's performance is approximately if $\sim f(n)$

$$\lim_{n\to\infty}\frac{g(N)}{f(N)}=1$$

CS 315

College of Engineering, Daytona Beach, FL

1

EMBRY-RIDDLE Aeronautical University

statement block	time in seconds	frequency	total time		
E	t_0	$x\ (depends\ on\ input)$	t_0x		
D	t_1	$N^3/6 - N^2/2 + N/3$	$t_1(N^3/6 - N^2/2 + N/3)$		
C	t_2	$N^2/2 - N/2$	$t_2(N^2/2 - N/2)$		
В	t_3	N	$t_3 N$		
А	t_4	1	t_4		
$ \begin{array}{c} (t_1/6) \ N^3 \\ + \ (t_2/2 - t_1/2) \ N^2 \\ + \ (t_1/3 - t_2/2 + t_3) \ N \\ + \ t_4 + t_0 x \end{array} $					
		tilde approximation	\sim $(t_1/6)$ N^3 (assuming x is small)		
		order of growth	N^3		
Analyzing the running time of a program (example)					

3-sum cost model. When studying algorithms to solve the 3-sum problem, we count *array accesses* (the number of times an array entry is accessed, for read or write).

How many three number combinations sum to zero from our array?

EMBRY-RIDDLEAeronautical University

- How do we determine these frequencies of execution?
- One option, we can count the number of operations in each loop and how many times each loop is called
- · Working from the inside to the outside
- We can sum up operations that are on the same level
- More on this approach with some examples soon.
- · How else can we make these estimations?

CS 315

College of Engineering, Daytona Beach, FL

₹,

3

ThreeSum Example

EMBRY-RIDDLEAeronautical University

statement block	time in seconds	frequency	total time			
E	t_0	$x \ (depends \ on \ input)$	$t_0 x$			
D	t_1	$N^3/6 - N^2/2 + N/3$	$t_1(N^3/6 - N^2/2 + N/3)$			
С	t_2	$N^2/2 - N/2$	$t_2(N^2/2 - N/2)$			
В	t_3	N	$t_3 N$			
А	t_4	1	t_4			
$ \begin{array}{c} (t_1/6) \ N^3 \\ + \ (t_2/2 - t_1/2) \ N^2 \\ + \ (t_1/3 - t_2/2 + t_3) \ N \\ + \ (t_4 + t_0 x \end{array} $						
		tilde approximation	\sim $(t_1/6)$ N^3 (assuming x is small)			
order of growth N^3						
Analyzing the running time of a program (example)						

E. Is the operation of cnt++, which is listed as approximately t0 time and is performed x times. We do not know x precisely because it is determined by our input.

CS 31

EMBRY-RIDDLEAeronautical University

	statement block	time in seconds	frequency	total time				
	Е	t_0	$x\ (depends\ on\ input)$	$t_0 x$				
	D	t_1	$N^3/6 - N^2/2 + N/3$	$t_1(N^3/6 - N^2/2 + N/3)$				
	C	t_2	$N^2/2 - N/2$	$t_2(N^2/2 - N/2)$				
	В	t_3	N	$t_3 N$				
	Α	t_4	1	t_4				
			grand total	$\begin{array}{l} (t_1/6) \ N^3 \\ + \ (t_2/2 - t_1/2) \ N^2 \\ + \ (t_1/3 - t_2/2 + t_3) \ N \\ + \ t_4 + t_0 x \end{array}$				
			tilde approximation	\sim $(t_1/6)~N^3$ (assuming x is small)				
order of growth N^3								
	Analyzing the running time of a program (example)							

The code for block D is given an approximation of ~N^3/6

D is performing E block about $\sim \frac{n^3}{6}$ times

College of Engineering, Daytona Beach, FL

5

5

ThreeSum Example

EMBRY-RIDDLE Aeronautical University

statement block	time in seconds	frequency	total time			
E	t_0	$x\ (depends\ on\ input)$	$t_0 x$			
D	t_1	$N^3/6 - N^2/2 + N/3$	$t_1(N^3/6 - N^2/2 + N/3)$			
C	t_2	$N^2/2 - N/2$	$t_2(N^2/2 - N/2)$			
В	t_3	N	$t_3 N$			
Α	t_4	1	t_4			
$\begin{array}{c} (t_1/6)\ N^3 \\ +\ (t_2/2-t_1/2)\ N^2 \\ +\ (t_1/3-t_2/2+t_3)\ N \\ +\ t_4+t_0x \end{array}$						
		tilde approximation	\sim $(t_1/6)~N^3$ (assuming x is small)			
		order of growth	N^3			
Analyzing the running time of a program (example)						

The code for block C executes the content of block D approximately $\sim \frac{N^2}{2}$ times, which is typical of the 2nd nested loop of a multi-nested loop.

CS 3:

EMBRY-RIDDLE Aeronautical University

statement block	time in seconds	frequency	total time		
E	t_0	$x\ (depends\ on\ input)$	t_0x		
D	t_1	$N^3/6 - N^2/2 + N/3$	$t_1(N^3/6 - N^2/2 + N/3)$		
C	t_2	$N^2/2 - N/2$	$t_2(N^2/2 - N/2)$		
В	t_3	N	$t_3 N$		
А	t_4	1	t_4		
$\begin{array}{c} (t_1/6)\;N^3 \\ +\; (t_2/2-t_1/2)\;N^2 \\ +\; (t_1/3-t_2/2+t_3)\;N \\ +\; t_4+t_0x \end{array}$					
		tilde approximation	\sim $(t_1/6)$ N^3 (assuming x is small)		
order of growth N^3					
		Analyzing the running tir	ne of a program (example)		

Block B executes N time calling C and its subblocks with each call. Lastly, A times a fixed set of time to perform the configuration of the array once.

CS 315

College of Engineering, Daytona Beach, FL

7

7

ThreeSum Example

EMBRY-RIDDLEAeronautical University

statement block	time in seconds	frequency	total time			
E	t_0	$x \ (depends \ on \ input)$	$t_0 x$			
D	t_1	$N^3/6 - N^2/2 + N/3$	$t_1(N^3/6 - N^2/2 + N/3)$			
С	t_2	$N^2/2 - N/2$	$t_2(N^2/2 - N/2)$			
В	t_3	N	$t_3 N$			
А	t_4	1	t_4			
$\begin{array}{c} (t_{\rm l}/6)N^3 \\ + (t_{\rm 2}/2 - t_{\rm l}/2)N^2 \\ + (t_{\rm l}/3 - t_{\rm 2}/2 + t_{\rm 3})N \\ + t_{\rm 4} + t_{\rm 0}x \end{array}$						
		tilde approximation	\sim $(t_1/6)$ N^3 (assuming x is small)			
order of growth N^3						
		Analyzing the running tin	ne of a program (example)			

In essence, we really need to know how many times the content of block D occur given the input. We can treat its operations as close to constant time, but we need to know how often.

CS 3:

College of Engineering, Daytona Beach, FL

3

EMBRY-RIDDLE Aeronautical University

ThreeSum essentially visits each combination of three elements from the array only once.

Recall, we can use the binominal coefficient as a means of identifying how many combinations given N values and choosing k of those values.

binomial coefficients

 $\binom{N}{k} \sim N^k/k!$ when k is a small constant

By the vary nature of the algorithm and its purpose, we can use this as the approximation for how many times we call block D, which is the number of times this block is executed.

So, we can see that this is a problem that is approximately $\sim \frac{N^3}{3!} = \sim \frac{N^3}{6}$

CS 315

College of Engineering, Daytona Beach, FL

9

Helpful Tables

EMBRY-RIDDLE Aeronautical University

description	notation	definition		
floor	$\lfloor x \rfloor$	largest integer not greater than x		
ceiling	$\lceil x \rceil$	smallest integer not smaller than x		
natural logarithm	$\ln N$	$\log_e N$ (x such that $e^x = N$)		
binary logarithm	$\lg N$	$\log_2 N$ (x such that $2^x = N$)		
integer binary logarithm	$\lfloor \lg N \rfloor$	largest integer not greater than $\lg N$ (# bits in binary representation of N) –		
harmonic numbers	\mathbf{H}_N	$1 + 1/2 + 1/3 + 1/4 + \ldots + 1/N$		
factorial	N!	$1 \times 2 \times 3 \times 4 \times \times N$		

description	approximation				
harmonic sum	$H_N = 1 + 1/2 + 1/3 + 1/4 + + 1/N \sim \ln N$				
triangular sum	$1 + 2 + 3 + 4 + \ldots + N \sim N^2/2$				
geometric sum	$1 + 2 + 4 + 8 + + N = 2N - 1 \sim 2N \text{ when } N = 2^n$				
Stirling's approximation	$\lg N! = \lg 1 + \lg 2 + \lg 3 + \lg 4 + \ldots + \lg N \sim N \lg N$				
binomial coefficients	$\binom{N}{k} \sim N^k/k!$ when k is a small constant				
exponential	$(1-1/x)^x \sim 1/e$				
Useful approximations for the analysis of algorithms					

CS 315

Helpful Tables (2)	description	order of growth	typical code framework	description	example
Helpful Tables (2)	constant	1	a = b + c;	statement	add two numbers
	logarithmic	$\log N$	[see page 47]	divide in half	binary search
	linear	N	<pre>double max = a[0]; for (int i = 1; i < N; i++) if (a[i] > max) max = a[i];</pre>	loop	find the maximum
	linearithmic	$N \log N$	[see algorithm 2.4]	divide and conquer	mergesort
	quadratic	N^2	<pre>for (int i = 0; i < N; i++) for (int j = i+1; j < N; j++) if (a[i] + a[j] == 0) cnt++;</pre>	double loop	check all pairs
	cubic	N^3	<pre>for (int i = 0; i < N; i++) for (int j = i+1; j < N; j++) for (int k = j+1; k < N; k++) if (a[i] + a[j] + a[k] == 0) cnt++;</pre>	triple loop	check all triples
CS 315 College of Engineerin	exponential	2 ^N	[see Chapter 6]	exhasutive search	check all

11

Caveats

EMBRY-RIDDLEAeronautical University

- Handling large constants in lower order terms
 - Simplify dropping lower order terms when their influence is low.
 - $2N^2 + cN$ is $\sim 2N^2$ if c is small, but ...
 - As c increases, say 10³ or 10⁶, it should not be dropped because including the term in the model better represents the problem's growth characteristics
- Nondominant inner loop
 - Cannot assume that inner loop will dominate the computation
 - Some problems include significant additional code at the same nested level as the inner loop
- · Instruction time
 - Treat all instructions as approximately the same time
- System activity outside of analysis should be negligible
- Some cases will be too close to call, or not worth the effort of being more precise or knowing which of two
 algorithms is truly best
- Strong dependence on input
- Multiple problem parameters
 - Consider the whitelist example from Module 1. For each of the M items within the input, it takes log N runtime to find the solution using binary search

CS 315

College of Engineering, Daytona Beach, FL

12

12