LEAN CHEATSHEET

In the following table, *name* always refers to a name already known to Lean while *new_name* refers to a new name provided by the user. When one of these words appears twice in the same line, the appearances do not designate the same name. *expr* designates an expression, for example the name of an object in the context, an arithmetic expression that is a function of such objects, a hypothesis in the context, or a lemma applied to any of these.

Logical symbol	Appears in goal	Appears in hypothesis
∀ (for all)	intro new_name	apply expr or specialize name expr
∃ (there exists)	use expr	cases expr with new_name new_name
\rightarrow (implies)	intro new_name	apply expr or specialize name expr
\longleftrightarrow (if and only if)	split	rw expr or rw expr
∧ (and)	split	cases expr with new_name new_name
V (or)	left or right	cases expr with new_name new_name
¬ (not)	intro new_name	apply expr or specialize name expr

Note: Traditional paper-based practice uses \Rightarrow for implication, uses \iff for equivalence, and does not use a notation for "and", "or" and "not".

In the left-hand column of the following table, the parts in brackets are optional. The effect of these parts is also in brackets in the right-hand column. It is almost always a matter of specifying that a manipulation, which acts by default on the goal, must be performed rather on a certain hypothesis named *hyp*.

Tactic	Effect	
exact expr	asserts that the goal can be satisfied by <i>expr</i>	
have new_name : fact	introduces a name <i>new_name</i> asserting that <i>fact</i> is provable	
unfold <i>name</i> (at <i>hyp</i>)	unfold the definition of <i>name</i> in the goal (or in the hypothesis <i>hyp</i>)	
change expr (at hyp)	transform the goal (or the hypothesis hyp) into the expression $expr$ to which it is equivalent by definition	
rw() expr(at hyp)	in the goal (or in the hypothesis <i>hyp</i>), replace the left-hand side (or the right-hand side, if is present) of the equality or equivalence <i>expr</i> by the other side. The expression to be replaced must appear explicitly, one may use unfold or change to ensure this.	
linarith	prove the goal by a linear combination of hypotheses	
ring	prove the goal by combining the axioms of a commutative (semi)ring	
library_search	search for a single existing lemma which closes the goal, also using local hypotheses.	
choose new_name new_name using expr	given $expr: \forall x, \exists y, P(x,y)$, use the axiom of choice to produce a function $x \mapsto y(x)$ satisfying $\forall x, P(x,y(x))$	
exfalso	apply the rule ex falso quod libet	
by_contradiction new_name	start a proof by contradiction, using <i>new_name</i> as name for the hypothesis that is the negation of the goal	
by_cases new_name: expr	split the proof into two cases depending on whether <i>expr</i> is true or false, using <i>new_name</i> as name for this hypothesis	
contrapose	transform a goal of the form $expr \rightarrow expr$ into its contrapositive	
<pre>push_neg (at hyp)</pre>	push negations in the goal (or in the hypothesis <i>hyp</i>)	