

Evasive and efficient distributed adversarial attacks using PSO

Intermediate presentation II

Sander Prenen

Thesis supervisors: Prof. dr. ir. W. Joosen, Dr. ir. D. Preuveneers

Mentors: I. Tsingenopoulos, V. Rimmer

0 Outline

Background

2 Research

3 Threat model

4 Evaluation

5 Remaining evaluations

1 Adversarial Attacks

Imperceptibly small perturbations to a correctly classified input image, so that it is no longer classified correctly.¹

- White box attacks
- Black box attacks
 - Subset of white box attacks
 - More relevant in security use-cases
- Adversarial defenses
 - Adversarial training
 - Gradient hiding
 - Denoising

¹Christian Szegedy et al. *Intriguing properties of neural networks*. 2014. arXiv: 1312.6199 [cs.CV].

1 Boundary attack²

²Wieland Brendel, Jonas Rauber, and Matthias Bethge. "Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models". In: *arXiv:1712.04248* [cs, stat] (Feb. 2018). arXiv: 1712.04248. URL: http://arxiv.org/abs/1712.04248 (visited on 08/04/2021).

1 Biased boundary attack³

- Improvement on boundary attack
 - Low frequency noise sampling
 - Regional masking
 - Gradients of surrogate models

³Thomas Brunner et al. "Guessing Smart: Biased Sampling for Efficient Black-Box Adversarial Attacks". In: *2019 IEEE/CVF International Conference on Computer Vision (ICCV)* (Oct. 2019). arXiv: 1812.09803, pp. 4957–4965. DOI: 10.1109/ICCV.2019.00506. URL: http://arxiv.org/abs/1812.09803 (visited on 08/04/2021).

1 Stateful defense⁴

⁴Steven Chen, Nicholas Carlini, and David Wagner. "Stateful Detection of Black-Box Adversarial Attacks". In: *arXiv:1907.05587 [cs]* (July 2019). arXiv: 1907.05587. URL: http://arxiv.org/abs/1907.05587 (visited on 08/04/2021).

1 Particle swarm optimization

- ► Can be used to optimize hyperparameters at attack level
- ► Can be used to to guide adversarial examples closer to original

1 Multiple starting points

2 Goal

- Propose new family of attacks
 - Evade stateful detection
 - Still be efficient
- Define threat model
- Experiment with the proposed attack
- Answer the following research questions:
 - What are the (dis)advantages of using PSO in relation to vanilla adversarial attacks?
 - How can PSO be combined with state of the art adversarial attacks?
 - What are the (dis)advantages of distributing an adversarial attack?

3 Threat model

- Decision based attack
- ► Targeted attack
- ► Stateful detection mechanism
 - Query bounded buffer
 - One buffer per account
- Cost per account
- Cost per query

4 Evaluation protocol

- ► MNIST⁵ and CIFAR-10⁶
- ► Black box model⁷

⁵Y. Lecun et al. "Gradient-based learning applied to document recognition". In: *Proceedings of the IEEE* 86.11 (1998), pp. 2278–2324. DOI: 10.1109/5.726791.

⁶Alex Krizhevsky. "Learning Multiple Layers of Features from Tiny Images". In: (2009), pp. 32–33. URL: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

⁷Nicholas Carlini and David Wagner. *Towards Evaluating the Robustness of Neural Networks.* 2017. arXiv: 1608.04644 [cs.CR].

4 Evaluation protocol

- MNIST and CIFAR-10
- Black box model
- List of experiments
 - Original image (+label)
 - Target label
 - Starting position(s)
- Query bounded detector buffer of size 1000
- Number of neighbors is 50
- Query budget of 25000

4 Baseline results

- lacktriangle Determine baseline distance (L_2) and number of detections for biased boundary attack
- ► Hyperparameters as suggested in original paper⁸

	ΙM	VIST	CIFAR		
Attack	Distance	Detections	Distance	Detections	
Baseline BBA	2.807	413	1.306	474	

⁸Brunner et al., "Guessing Smart".

4 Combining BBA and PSO

- Multiple starting positions
- ► More aggressive
- Communication between particles
- Fitness function

$$f(x) = \begin{cases} ||x - x'||_2, & \text{if } x \text{ is adversarial} \\ +\infty, & \text{else} \end{cases}$$

4 Combining BBA and PSO

	MNIST		CIFAR	
Attack	Distance	Detections	Distance	Detections
Baseline BBA	2.807	413	1.306	474
PSO-BBA (5 particles)	2.712	138	1.239	257
PSO-BBA (10 particles)	3.157	44	2.290	184

4 Combining BBA and PSO

Detections happen at the end of attack

- ► Round-Robin (RR)
- ► Modified Round-Robin (MRR)

- ► Round-Robin (RR)
- ► Modified Round-Robin (MRR)
- Distance based (DB)
- ► Embedded distance based (EDB)

		MNIST		CIFAR	
Attack		Distance	Detections	Distance	Detections
Baseline BBA		2.807	413	1.306	474
PSO-BBA		2.712	138	1.239	257
RR-PSO-BBA	(5 nodes)	2.712	124	1.239	224
MRR-PSO-BBA	(5 nodes)	2.712	110	1.239	227
DB-PSO-BBA	(5 nodes)	2.712	107	1.239	230
EDB-PSO-BBA	(5 nodes)	2.712	108	1.239	229
RR-PSO-BBA	(10 nodes)	2.712	104	1.239	202
MRR-PSO-BBA	(10 nodes)	2.712	93	1.239	206
DB-PSO-BBA	(10 nodes)	2.712	87	1.239	207
EDB-PSO-BBA	(10 nodes)	2.712	88	1.239	205

5 Remaining evaluations

- Inserting random queries
- Optimizing hyperparameters
- Running optimized attack on larger test sample
- Comparing with HopSkipJump attack