EMTF Studies on Reconstructed Muons

EMTF Working Meeting March 2018

Wei Shi on behalf of the EMTF working group

Geometry

3/14/2018 A. Madorsky weishi@rice.edu

EMTF Track-building

- At most 4 stations (CSC or RPC)
 - Local Charged Tracks (LCTs) or RPC hits correlated in theta (±2°) and phi (±8° in station 1, ±4° in stations 2 4)
 - Tracks built from LCTs and RPC hits from 3 consecutive bunch crossing (BX)
 - Will be reduced to 2 BX in 2018
 - LCT mis-timing rate < 1% (conservative) per LCT (the actual collision BX where the LCT is from)
 - Track BX assigned using the 2nd-earliest LCT or RPC hit in the track
 - For a 3 or 4-station track, the track BX will always be fine
 - For a 2-station track, if one LCT has mistiming(<1%), then it's possible track BX is not right
 - pT assignment mostly based on dPhis between stations
- Magnetic field strongest between stations 1 and 2, very little bending after that - so station 1 is important

Motivations

- Study on EMTF rate and efficiency by track modes/quality
 - Tracks/modes contribute to the most efficiency; pT range
 - Tracks/modes contribute to the most rate; pT range
- Implications
 - Modify the current muon quality assignment for EMTF?
 - How to improve the current EMTF track-building?
 - What tracks to use in EMTF pT training in 2018?
- Interested parameter ranges
 - 0 < pT < 30 GeV (L1 muon trigger pT)
 - 1.25 < Eta < 2.4 (Endcap)

Matching

- RECO muon
 - ID [1]: Normal (loose), Soft
 - coordinates extrapolated to station 1 or 2
- dR based: dR < 0.5
- Unique: match is reciprocal
- dBX: LCTs max BX min BX
 - dBX = 0 means all LCTs from a track come from the same BX
- Plateau: require EMTF track pT > RECO mu pT *(7/8)
- 2017 data
 - SingleMu: 14,750,159 events (efficiency)
 - ZeroBias: 6,247,725 events (rate)

RECO Muon pT

efficiency & timing down to 3 GeV

IsoMu24 Biased: Find match because they are fired by EMTF

EMTF Tracks

All Modes No. of tracks above threshold BX=0 BX=0 && dBX=0 BX=0 && RECO+RECOSoft BX=0 && RECO 10⁴ 10³ 30 Trig pT[GeV] 10 15 20 25

Muon Quality from uGMT

- SingleMu Quality (Q>=12)
 - EMTF mode 15, 14, 13, 11
- DoubleMu Quality (Q>=8)
 - EMTF mode 12, 10, 7
- MuOpen Quality (Q>=4)
 - EMTF mode 9, 6, 5, 3

Mode #	Definition	Stations
15	1+2+4+8	1,2,3,4
14	2+4+8	1,2,3
13	1+4+8	1,2,4
12	4+8	1,2
11	1+2+8	1,3,4
10	2+8	1,3
9	1+8	1,4
7	1+2+4	2,3,4
6	2+4	2,3
5	1+4	2,4
3	1+2	3,4

SingleMu Modes

- Left: Fraction of RECO muons from SingleMu data; Right: ratio = count/total count (BX=0) from Zerobias data
- pT>5 GeV: plateau efficiency is 80%-95%
- pT>5 GeV: contribution to rate decreases from 66% to 22% as pT increases (exactly what we want: high eff, low rate)

Mode 15 (station 1-2-3-4)

- Account for most efficiency in EMTF tracks
- pT<5 GeV: contribution to rate is reasonable, linear to efficiency;
- pT>15 GeV: plateau efficiency is high (75%~80%) but rate contribution drops below 30%

Mode 14 (station 1-2-3)

- pT>10 GeV: efficiency is already 10 times smaller than mode 15
- Contribution to rate is reasonable, mostly below 12% with a plateau efficiency 5%-9%

Mode 13 (station 1-2-4)

- Efficiency is even lower than mode 14 (station 1-2-3)
- Contribution to rate is reasonable, mostly below 3% with a plateau efficiency 2%-3%

Mode 11 (station 1-3-4)

- Efficiency is between mode 13 (station 1-2-4) and mode 14 (station 1-2-3)
- Contribution to rate is reasonable, mostly below 7% with a plateau efficiency 5%-7%

Muon Quality from uGMT

- SingleMu Quality (Q>=12)
 - EMTF mode 15, 14, 13, 11
- DoubleMu Quality (Q>=8)
 - EMTF mode 12, 10, 7
- MuOpen Quality (Q>=4)
 - EMTF mode 9, 6, 5, 3

Mode #	Definition	Stations
15	1+2+4+8	1,2,3,4
14	2+4+8	1,2,3
13	1+4+8	1,2,4
12	4+8	1,2
11	1+2+8	1,3,4
10	2+8	1,3
9	1+8	1,4
7	1+2+4	2,3,4
6	2+4	2,3
5	1+4	2,4
3	1+2	3,4

DoubleMu Modes

- Plateau efficiency is 10 times smaller than SingleMu modes (even lower in pT > 10GeV)
- pT>5 GeV: contribution to rate is surprisingly high, increase from 25% to 68% as pT increases
- Add "dBX=0" reduces ~10% rate (pT>15 GeV) without losing much efficiency

Mode 12 (station 1-2)

- pT>5 GeV: plateau efficiency is 100 times smaller than mode 15 (station 1-2-3-4)
- pT>5 GeV: contribution to rate is surprisingly high, increase from 15% to 60% as pT increases
- May need to put it in MuOpen quality

Mode 10 (station 1-3)

- pT>5 GeV: plateau efficiency is 100 times smaller than mode 15 (station 1-2-3-4)
- pT>5 GeV: overall contribution to rate is reasonable, but it increases from 2.4% to 3.7% as pT increases

Mode 7 (station 2-3-4)

- pT>5 GeV: plateau efficiency is 10 times smaller than mode 15 (station 1-2-3-4), even lower in pT > 15 GeV
- pT>5 GeV: contribution to rate is reasonable, 7%-2% as pT increases

Muon Quality from uGMT

- SingleMu Quality (Q>=12)
 - EMTF mode 15, 14, 13, 11
- DoubleMu Quality (Q>=8)
 - EMTF mode 12, 10, 7
- MuOpen Quality (Q>=4)
 - EMTF mode 9, 6, 5, 3

Mode #	Definition	Stations
15	1+2+4+8	1,2,3,4
14	2+4+8	1,2,3
13	1+4+8	1,2,4
12	4+8	1,2
11	1+2+8	1,3,4
10	2+8	1,3
9	1+8	1,4
7	1+2+4	2,3,4
6	2+4	2,3
5	1+4	2,4
3	1+2	3,4

MuOpen Modes

- pT>5 GeV: plateau efficiency is 1000 times smaller than SingleMu modes
- pT>5 GeV: contribution to rate looks reasonable, decreases from 9% to 5% as pT increases

Mode 9 (station 1-4)

- pT>5 GeV: plateau efficiency is 1000 times smaller than mode 15 (station 1-2-3-4)
- pT>5 GeV: overall contribution to rate is reasonable, but increases from 1.8% 3.5% as pT increases

Mode 6 (station 2-3)

- pT>5 GeV: plateau efficiency is 100 times smaller than mode 15 (station 1-2-3-4)
- pT>5 GeV: overall contribution to rate is reasonable, 4% 0.5% as pT increases

Mode 5 (station 2-4)

- pT > 5 GeV: efficiency is 1000 times smaller than mode 15 (station 1-2-3-4)
- pT > 5 GeV: overall contribution to rate is reasonable, 0.9% 0.4% as pT increases

Mode 3 (station 3-4)

- pT>5 GeV: efficiency is at least 1000 times smaller than mode 15 (station 1-2-3-4)
- pT>10 GeV: overall contribution to rate is reasonable, 1.7% 0.6% as pT increases

Conclusions

- EMTF builds tracks with very high efficiency and good timing down to pT values of 3 - 5 GeV
- May re-map quality vs. mode e.g. mode 12 -> MuOpen
 - Reduce rate while barely affecting efficiency
- Could add dBX == 0 requirement for 2-station tracks
 - Again, significant rate reduction for almost no efficiency loss
- Working to tighten dTheta windows between stations in trackbuilding
 - Should help reject EMTF tracks built from multiple different muons in high-PU environment
 - Need to find a working point which will not reduce efficiency, even for fairly low-pT muons (5 - 10 GeV)

Back Up

Data Files

root://eoscms.cern.ch//store/user/abrinke1/EMTF/Emulator/ntuples/HADD/

- SingleMu
 - NTuple_SingleMuon_FlatNtuple_Run_306092_2018_03_02_SingleMu.root
 - NTuple_SingleMuon_FlatNtuple_Run_306135_2018_03_02_SingleMu.root
 - NTuple_SingleMuon_FlatNtuple_Run_306154_2018_03_02_SingleMu.root
- Zerobias
 - NTuple_ZeroBias1_FlatNtuple_Run_306091_2018_03_02_ZB1.root
 - NTuple_ZeroBias2_FlatNtuple_Run_306091_2018_03_02_ZB2.root
 - NTuple_ZeroBias3_FlatNtuple_Run_306091_2018_03_02_ZB3.root
 - NTuple_ZeroBias4_FlatNtuple_Run_306091_2018_03_02_ZB4.root

Codes

EMTF tracks

• https://github.com/abrinke1/EMTFAnalyzer/blob/master/NTupleMaker/src/FlatNtupleBranches/EMTFTrackInfo.cc

RECO muons

https://github.com/abrinke1/EMTFAnalyzer/blob/master/NTupleMaker/src/FlatNtupleBranches/RecoMuonInfo.cc

RECO muon-EMTF track dR match

https://github.com/abrinke1/EMTFAnalyzer/blob/master/NTupleMaker/src/FlatNtupleMatchers/RecoTrkDR.cc

Macro

https://github.com/weishi10141993/EMTF CSCTF pTResolution TrackBuild dR Matching/blob/master/ModesRateEff.C