实验九 刚体转动实验 实验报告

钱思天 1600011388 No.8 2017 年 12 月 24 日

1 实验数据与处理

1.1 测量数据列表

1.1.1 实验内容(2)

测量数据列表如下:

表 1: h = 86.00cm, r = 2.505cm

添加砝码质量 $\Delta m_i/g$	总砝码质量 m_i/g	t_1/s	t_2/s	t_3/s	\bar{t}/s	t^{-2}/s^{-2}
4.99	4.99	17.63	17.65	17.63	17.64	0.003215
5.00	9.99	11.13	11.16	11.12	11.14	0.008063
4.98	14.97	8.85	8.98	8.95	8.93	0.012549
5.01	19.98	7.50	7.50	7.50	7.50	0.017778
5.02	25.00	6.65	6.72	6.62	6.66	0.022523
5.01	30.01	6.00	6.00	6.00	6.00	0.027778
4.98	34.99	5.62	5.60	5.62	5.61	0.031736

1.1.2 实验内容(3)

测量数据表格如下:

10.00g, 10 00.000 m						
半径 r/cm	t_1/s	t_2/s	t_3/s	\bar{t}/s	t^{-2}/s^{-2}	$r^{-1}t^{-2}/s^{-2}cm^{-1}$
1.001	18.82	18.81	18.85	18.83	0.002821	0.002819
1.495	12.71	12.73	12.79	12.74	0.006158	0.004119
2.000	9.55	9.53	9.49	9.52	0.011026	0.005513
2.505	7.51	7.56	7.53	7.53	0.017621	0.007034
3.002	6.31	6.29	6.27	6.29	0.025275	0.00842

表 2: m = 19.98g, h = 86.00cm

1.1.3 实验内容(4)

测量数据表格如下:

$4.5. \ n = 60.00em, r = 2.909em, m = 10.019$							
x_i/cm	t_1/s	t_2/s	t_3/s	\bar{t}/s	t^2/s^2	x_i^2/cm^2	
3.354	6.56	6.41	6.47	6.48	41.9904	11.24932	
5.777	7.44	7.44	7.53	7.47	55.8009	33.37373	
8.163	8.62	8.59	8.53	8.58	73.6164	66.63457	
10.792	10.04	9.99	9.91	9.98	99.6004	116.4673	

124.5456

170.0677

11.16 | 11.2 | 11.12 | 11.16

表 3: h = 86.00cm, r = 2.505cm, m = 10.01q

1.2 实验数据处理

13.041

1.2.1 验证线性关系

根据实测数据,可分别作图如下:

图 1: $t^{-2}-m$ 散点及趋势线图

计算得相关系数为: $R\approx 0.9997$; 可以看出 (1) 在 r 一定的情况下, t^{-2} 与 r 成线性关系.

图 2: $r^{-1}t^{-2} - r$ 散点及趋势线图

计算得相关系数为: $R\approx 0.9998$; 可以看出 (2) 在 m 一定的情况下, $t^{-2}r^{-1}$ 与 r 成线性关系。

图 3: $t^2 - x_i^2$ 散点及趋势线图

计算得相关系数为: $R \approx 0.9990$ 从图中,可得 t^2 与 x^2 确实存在线性关系,这也验证了平行轴定理。

1.2.2 线性拟合求转动惯量

对于实验 (2):

采用最小二乘法,设:

$$t^{-2} = k_1 m + b_1$$

则有公式:

$$k_1 = \frac{\sum_{i=1}^{7} (t_i^{-2} - \bar{t}^{-2})(m_i - \bar{m})}{\sum_{i=1}^{7} (m_i - \bar{m})^2} = 9.636 \times 10^{-4} (g^{-1}s^{-2})$$

下计算 k_1 的不确定度,分为两项:

A 类不确定度: 其计算可利用:

$$\frac{\sigma_{k_1 A}}{k_1} = \sqrt{\frac{R^{-2} - 1}{7 - 2}} \Rightarrow \sigma_{k_1 A} = 1.1 \times 10^{-5} (g^{-1} s^{-2})$$

B 类不确定度:根据 k_1 的计算公式,可得

$$\sigma_{k_2 B} = \sqrt{\sum_{i=1}^{7} \left(\frac{(m_i - \bar{m})\sigma_{t_i^{-2}}}{\sum_{i=1}^{7} (m_i - \bar{m})^2}\right)^2}$$

,理论上,应代入不同的 $\sigma_{t_i^{-2}}$ 值,但为了计算方便,我取 $\sigma_{t_i^{-2}}$ 的最大值代 入计算,事实上这一数值也能反应实验偏差的最大限度。而对于 σ_{t-2} 的计 算,首先应计算 t_i 的不确定度再进行传递, t_i 的不确定度为两项的<u></u>叠合,一

项是秒表的允差 $\sigma_B = \frac{e_t}{\sqrt{3}}$,另一项是平均值的标准偏差 $\sigma_A = \sqrt{\frac{\sum\limits_{i=1}^3 (t_i - \bar{t})^2}{2 \times 3}}$ 。 经计算 $\sigma_{t-2}^{MAX} = 9.9723 \times 10^{-5} (s^{-2})$ 。 故 $\sigma_{k_1B} = 3.7672 \times 10^{-6} g^{-1} s^{-2}$ 。

综上,得

$$\sigma_{k_1} = 1 \times 10^{-5} (g^{-1} s^{-2})$$

故

$$k_1 \pm \sigma_{k_1} = (9.6 \pm 0.1) \times 10^{-4} (g^{-1} s^{-2})$$

$$h \pm \sigma_h = 86.0 \pm 0.6(cm)$$

$$r \pm \sigma_r = 2.505 \pm 0.001(cm)$$

根据公式

$$I_1 = \frac{gr^2}{2hk_1} = 3.710 \times 10^{-3} (kg \cdot m^3)$$

$$\frac{\sigma_{I_1}}{I_1} = \sqrt{(\frac{2\sigma_r}{r})^2 + (\frac{\sigma_h}{h})^2 + (\frac{\sigma_{k_1}}{k_1})^2}$$

得:

$$\sigma_{I_1} = 2 \times 10^{-4} (kg \cdot m^3)$$

$$I_1 \pm \sigma_{I_1} = (3.7 \pm 0.2) \times 10^{-3} (kg \cdot m^3)$$

对于实验(3):

采用最小二乘法,设:

$$r^{-1}t^{-2} = k_2r + b_2$$

则有公式:

$$k_2 = \frac{\sum_{i=1}^{7} ((r^{-1}t^{-2})_i - \bar{t}^{-2})(m_i - \bar{m})}{\sum_{i=1}^{7} (m_i - \bar{m})^2} = 2.82 \times 10^{-3} (cm^{-2}s^{-2})$$

下计算 k_2 的不确定度,分为两项:

A 类不确定度: 其计算可利用:

$$\frac{\sigma_{k_2A}}{k_2} = \sqrt{\frac{R^{-2}-1}{5-2}} \Rightarrow \sigma_{k_2A} = 3.646 \times 10^{-5} (cm^{-2}s^{-2})$$

B 类不确定度:根据 k_1 的计算公式,可得

$$\sigma_{k_2 B} = \sqrt{\sum_{i=1}^{7} \left(\frac{(m_i - \bar{m})\sigma_{t_i^{-2}}}{\sum_{i=1}^{7} (m_i - \bar{m})^2}\right)^2}$$

,理论上,应代入不同的 $\sigma_{t_i^{-2}}$ 值,但为了计算方便,我取 $\sigma_{t_i^{-2}}$ 的最大值代入计算,事实上这一数值也能反应实验偏差的最大限度。而对于 $\sigma_{t_i^{-2}}$ 的计算,首先应计算 t_i 的不确定度再进行传递, t_i 的不确定度为两项的叠合,一

项是秒表的允差 $\sigma_B = \frac{e_t}{\sqrt{3}}$,另一项是平均值的标准偏差 $\sigma_A = \sqrt{\frac{\sum\limits_{i=1}^3 (t_i - \bar{t})^2}{2 \times 3}}$ 。 经计算 $\sigma_{t^{-2}}^{MAX} = 9.9723 \times 10^{-5} (s^{-2})$ 。故 $\sigma_{k_1B} = 3.7672 \times 10^{-6} g^{-1} s^{-2}$ 。

综上,得

$$\sigma_{k_1} = 1 \times 10^{-5} (g^{-1} s^{-2})$$

故

$$k_1 \pm \sigma_{k_1} = (9.6 \pm 0.1) \times 10^{-4} (g^{-1} s^{-2})$$

$$h \pm \sigma_h = 86.0 \pm 0.6(cm)$$

$$r \pm \sigma_r = 2.505 \pm 0.001(cm)$$

2 分析与讨论 8

根据公式

$$I_1 = \frac{gr^2}{2hk_1} = 3.710 \times 10^{-3} (kg \cdot m^3)$$

$$\frac{\sigma_{I_1}}{I_1} = \sqrt{(\frac{2\sigma_r}{r})^2 + (\frac{\sigma_h}{h})^2 + (\frac{\sigma_{k_1}}{k_1})^2}$$

得:

$$\sigma_{I_1} = 2 \times 10^{-4} (kg \cdot m^3)$$

$$I_1 \pm \sigma_{I_1} = (3.7 \pm 0.2) \times 10^{-3} (kg \cdot m^3)$$

2 分析与讨论

2.1 减少误差

系统误差 为减少系统误差,应尽量满足得出实验结论所需的一系列近似条件;同时,应使 OO_1 轴尽量竖直,绳子尽量水平以及让绳子密绕在塔轮上等。

随机误差 掐秒表时应集中注意力,找准落地点等。

2.2 思考题(5)

实验(3)中,考虑塔轮半径的改变,其摩擦力矩 M_{μ} 改变且越来越大,因此有:

$$(mg - f)r - M_{others} = I\dot{\omega} = \frac{2hI}{rt^2}$$

$$\Rightarrow I_2 = \frac{mgk}{2h} = \frac{mg}{mg - f}I > I$$

同时,实验(2)中,塔轮半径不变,因此摩擦力矩 M_{μ} 可认为不变,故可认为 $I_1=I$ 则有 $I_2>I_1$ 。

3 收获与感想

在预习这个实验的时候,我情不自禁地想起来高一时所做的,验证牛顿第二定律的实验,也是用重物的重力做外力并计算加速度。

3 收获与感想 9

在我看来,这两个实验有很多相似的地方,譬如都要使加速度远小于 重力加速度等。

其实从实验研究的对象,也能感受到高中与大学所学习内容的区别, 从可当作质点运动的整体平动,到刚体的转动,我们所学习的物理也更加 高深了。

此外,在本次实验中,我也感受到了自己某些实验能力还有不足,例如对秒表的掌控等,希望在以后的实验课程中,能够提高自己的实验能力。