Introducción a la Probabilidad y la Estadística

Martes y Jueves Aula B17 Dra Ana Georgina Flesia Si en un experimento aleatorio, a cada suceso elemental del espacio (Ω, \mathcal{P}) le asignamos un valor numérico obtenemos una variable que "hereda" de Ω la probabilidad \mathcal{P} , y que denominamos **variable aleatoria**.

La probabilidad P de que X tome un valor concreto a, P(X=a), es la probabilidad que corresponde a la unión de los sucesos aleatorios elementales a los que hemos asignado ese valor a.

Medidas características de una v.a.

El estudio y comparación de la distribución de probabilidad de distintas variables aleatorias es más sencillo mediante el uso de constantes (medidas características de la variable) que caracterizan

- la tendencia central de las distribuciones (o valor central alrededor del cual se encuentran repartidas de forma equilibrada las probabilidades),
- la dispersión (mayor o menor densidad en torno al valor central),
- etc.

 la tendencia central de las distribuciones (o valor central alrededor del cual se encuentran repartidas de forma equilibrada las probabilidades),

Esperanza

- 1. Sea X a la variable que representa nuestra ganancia en un juego.
- 2. Esto es, con probabilidad $p(x_i)$ ganamos x_i monedas, con $i=1,\cdots,n$.
- 3. La interpretación frecuentista dice que si jugamos este juego infinitas veces, la proporción de veces que ganamos x_i monedas es $p(x_i)$.
- 4. Supongamos que jugamos N veces el mismo juego, con N muy grande. Aproximadamente $Np(x_i)$ veces de esos juegos, ganaremos x_i monedas y el total de nuestra ganancia en N juegos sera

$$\sum_{i=1}^{n} x_i N p(x_i)$$

y la ganancia promedio por juego seria

$$\frac{1}{N} \sum_{i=1}^{n} x_i N p(x_i) = \sum_{i=1}^{n} x_i p(x_i) = E(X)$$

Esperanza (I)

- medida característica de tendencia central más importante
- también se denomina "esperanza matemática", "media" o "valor esperado" de la v.a.
- se denota como E[X] o μ_X
- representa el valor promedio o centro de gravedad de los valores que toma la variable, ponderando éstos mediante la correspondiente probabilidad.

Esperanza

- Vamos a llamar E(X) esperanza de la variable X o valor esperado de la variable X, pero no debemos interpretarlo como el valor que debiéramos esperar que X nos dé sino el valor promedio de X es una gran cantidad de repeticiones del experimento, y no necesariamente este valor es un resultado posible del experimento.
- Como ejemplo pensemos en la variable indicadora de un evento particular.

$$I = \begin{cases} 1 & \text{si } A \text{ ocurre} \\ 0 & \text{si } A \text{ no ocurre} \end{cases}$$

entonces

$$E(I) = 1P(A) + 0(1 - P(A)) = P(A)$$

Esperanza (II)

Esperanza de una v.a.discreta

$$\mu_X = E[X] = \sum_i x_i p_X(x_i)$$

• Dada $g: \mathbb{R} \to \mathbb{R}$, la esperanza de Y = g(X), viene dada por

$$\mu_Y = E[Y] = \sum_i g(x_i) p_X(x_i)$$

Ejemplo

En el ejemplo de Y el número de aciertos al corresponder el nombre de un animal con su dibujo al azar,

$$p_Y(0) = \frac{2}{6}$$
 $p_Y(1) = \frac{3}{6}$
 $p_Y(3) = \frac{1}{6}$

La esperanza de Y es

$$E(Y) = 0p_Y(0) + 1p_Y(1) + 3p_Y(3) = 0\frac{2}{6} + 1\frac{3}{6} + 3\frac{1}{6} = 1$$

Ejemplo

¿Cual es el tamaño promedio de una familia argentina? Aquí presentamos una tabla de la distribución de las familias argentinas de acuerdo a uno de los institutos de estadística provinciales

PF	2	3	4	5	6	7	8
р	0.231	0.397	0.212	0.097	0.038	0.017	0.008

Resolución

Si imaginamos seleccionar una sola familia al azar el tamaño de la familia seleccionada es la variable aleatoria X con distribución de probabilidad dada por la tabla. La esperanza E(X) es el tamaño medio de las familias de la población. Esta media es

$$E(X) = 2 \times 0.231 + 3 \times 0.397 + 4 \times 0.212 + 5 \times 0.097 + 6 \times 0.038 + 7 \times 0.017 + 8 \times 0.008$$

$$E(X) = 3,396$$

En este ejemplo hemos ignorado las familias con 9 miembros o más, en realidad el tamaño real de las familias argentinas es más cercano a cuatro que lo que muestra este ejemplo.

Ejemplo

Consideremos los siguientes tres juegos:

- 1. Tiro una moneda. Gano 1\$ si sale cara y pierdo 1\$ si sale número.
- Apuesto al rojo en la ruleta. Gano 1\$ si sale rojo y pierdo 1\$ si no sale rojo.
- Gano 1\$ si saco una bolilla roja de una caja con 5 bolas, solo una roja, las demás negras. Pierdo 0.1\$ si no saco la bola roja.
- ¿A cuál juego conviene jugar?

Resolución

Sea X la ganancia neta (toma en cuenta lo que me paga la banca, lo que cuesta jugar y lo que apuesto).

1. En el primer juego, la moneda tiene dos posiciones solamente y la esperanza de X es

$$E(X) = 1.\frac{1}{2} + (-1).\frac{1}{2} = 0$$

2. En el segundo juego, hay 37 posiciones en la ruleta, de las cuales 18 son rojas y 18 negras y el cero.

$$E(X) = 1.\frac{18}{37} + (-1).\frac{19}{37} = -\frac{1}{37}$$

En el tercer juego, hay una bola roja y cuatro negras, un 20% de posibilidades de sacar roja en una extracción al azar, por lo tanto

$$E(X) = 1.0.2 + (-0.1).0.8 = 0.2 - 0.008 = 0.12$$

Esperanza (III)

Propiedades:

Dadas las variables aleatorias X, Y y dos números reales $a, b \in \mathbb{R}$, se tiene:

- E[aX + b] = aE[X] + b
- E[X + Y] = E[X] + E[Y]

(es un operador lineal)

Propiedad

1. Supongamos que medimos el error al predecir el valor de una variable X por un número c usando la función $g=(x-c)^2$. Sea $\mu=E(X)$

$$E[(X-c)^{2}] = E[(X-\mu+\mu-c)^{2}]$$

$$= E[(X-\mu)^{2} + 2(\mu-c)(X-\mu) + (\mu-c)^{2}]$$

$$= E[(X-\mu)^{2}] + 2(\mu-c)E[(X-\mu)] + (\mu-c)^{2}]$$

$$= E[(X-\mu)^{2}] + 2(\mu-c)(E[X]-\mu) + (\mu-c)^{2}]$$

$$= E[(X-\mu)^{2}] + (\mu-c)^{2}]$$

$$\geq E[(X-\mu)^{2}]$$

El mejor predictor de una variable aleatoria, minimizando el error cuadrático media es la esperanza de la variable.

Varianza

- 1. Dada una variable aleatoria X, sería muy útil poder resumir las propiedades esenciales de una función de masa con medidas diseñadas cuidadosamente. Una de esas medidas es la esperanza E(X).
- 2. Observemos las variables, mW, Y y Z con funciones de masa determinada por

$$W=0$$
 con probabilidad 1 $Y=egin{cases} -1 & ext{con probabilidad 1/2} \ 1 & ext{con probabilidad 1/2} \end{cases}$

$$W = \begin{cases} -100 & \text{con probabilidad 1/2} \\ 100 & \text{con probabilidad 1/2} \end{cases}$$

Las tres tienen la misma esperanza, están centradas en cero. Pero su dispersión alrededor de la media es muy diferente.

3. Podemos calcular la $E(|X - \mu|)$, pero es matemáticamente inconveniente, por lo cual se considera mas apropiada $E((X - \mu)^2)$.

Varianza (I)

- momento central de orden 2: $\mu_2 = E[(X \mu_X)^2]$
- se denota por V(X) o σ_X^2
- representa la distancia cuadrática promedio a la media ⇒ dispersión de una v.a. en torno a su media
- su raíz cuadrada, σ, se denomina desviación típica
- $E[(X \mu_X)^2] = E[X^2] \mu_X^2$

(el momento central de orden 2 es igual al momento ordinario de orden 2 menos el cuadrado del momento ordinario de orden 1)

Varianza (II)

Varianza de una v.a. discreta

$$\sigma_X^2 = V(X) = E[(X - \mu_X)^2] = \sum_i (x_i - \mu_X)^2 p_X(x_i)$$

o alternativamente:

$$\sigma_X^2 = E[X^2] - \mu_X^2 = \sum_i x_i^2 p_X(x_i) - \mu_X^2$$

Momentos

- valores esperados de ciertas funciones de X
- se pueden definir alrededor de cualquier punto de referencia
 - ▶ alrededor del cero ⇒ momentos **ordinarios** o respecto al origen
 - ▶ alrededor de la esperanza de X ⇒ momentos centrales o respecto a la media

Momento ordinario de orden k: $\alpha_k = E[X^k]$

• $\alpha_1 = \mu_X$ (el momento ordinario de orden 1 es la media de X)

Momento central de orden k: $\mu_k = E[(X - \mu_X)^k]$

• $\mu_1 = E[X - \mu_X] = E[X] - \mu_X = \mu_X - \mu_X = 0$ (el momento central de orden 1 de cualquier v.a. es cero)

Dos v.a. con los mismos momentos tienen la misma distribución de probabilidad (los momentos caracterizan la distribución de probabilidad)

Varianza (III)

Propiedades:

Dada una variable aleatoria X y dos números reales $a, b \in \mathbb{R}$, se verifica:

- $V(X) = E[X^2] (E[X])^2$
- $V(aX) = a^2V(X)$
- V(b) = 0
- $V(aX + b) = a^2V(X)$
- Desigualdad de Chebichev:

$$P(|X - \mu_X| > k\sigma_X) \le \frac{1}{k^2}$$

Mediana (I)

Mediana de una v.a. X

Es el valor Me tal que

$$P(X < Me) \le \frac{1}{2}$$
, y $F(Me) = P(X \le Me) \ge \frac{1}{2}$

 es una medida de tendencia central en el sentido de que es el valor para el cual la distribución de probabilidad queda dividida en dos partes iguales

Mediana (II)

Mediana de una v.a.discreta

es el primer valor (o rango de valores) que acumula (por la izquierda) una probabilidad mayor o igual a $\frac{1}{2}$

Coeficiente de variación

- $CV_X = \frac{\sigma_X}{\mu_X}$
- expresa la magnitud de la dispersión de una variable aleatoria con respecto a su valor esperado
- permite comparar la dispersión relativa de dos distribuciones de probabilidad
- especialmente útil cuando la escala de medida de las variables que queremos comparar difiere notablemente

Ejemplo:

Sea la variable aleatoria discreta X correspondiente al número de cruces obtenidas al lanzar 4 veces una moneda

Función de masa:
$$P(x_i)=\left\{egin{array}{ll} rac{10}{16} & x_i=1 \ rac{6}{16} & x_i=2 \end{array}
ight.$$

Función de masa:
$$P(x_i) = \begin{cases} \frac{1}{16} & x_i = 0\\ \frac{4}{16} & x_i = 1\\ \frac{6}{16} & x_i = 2\\ \frac{4}{16} & x_i = 3\\ \frac{1}{16} & x_i = 4 \end{cases}$$

$$\begin{bmatrix}
\frac{1}{16} & x_i = 3 \\
\frac{1}{16} & x_i = 4
\end{bmatrix}$$
Media: $ux = 0$, $\frac{1}{16} + 1$, $\frac{4}{16} + 2$, $\frac{6}{16} + 3$.

Media:
$$\mu_X = 0 \cdot \frac{1}{16} + 1 \cdot \frac{4}{16} + 2 \cdot \frac{6}{16} + 3 \cdot \frac{4}{16} + 4 \cdot \frac{1}{16} = 2$$

La función de distribución a la izquierda de 2 es $\frac{5}{16}$ y en 2 es $\frac{11}{16}$ \Rightarrow Me = 2. Varianza: $\sigma_X^2 = 0^2 \cdot \frac{1}{16} + 1^2 \cdot \frac{4}{16} + 2^2 \cdot \frac{6}{16} + 3^2 \cdot \frac{4}{16} + 4^2 \cdot \frac{1}{16} - 2^2 = \frac{16}{16} = 1$

Varianza:
$$\sigma_X^2 = 0^2 \cdot \frac{1}{16} + 1^2 \cdot \frac{1}{16} + 2^2 \cdot \frac{1}{16} + 3$$

Coeficiente de variación: $CV_X = \frac{\sqrt{1}}{2} = \frac{1}{2}$