An Implementation of

SAT-Based Two-Terminal Path Finding

Using Z3 Solver

Yihong Gu Tsinghua University gyh15@mails.tsinghua.edu.cn

- Introduction
- Model
 - Flow based model
 - Point based model
- Optimization
- Evaluation and Results
- System Architecture
- Demo
- Acknowledgements

- Introduction
- Model
 - Flow based model
 - Point based model
- Optimization
- Evaluation and Results
- System Architecture
- Demo
- Acknowledgements

Introduction

Problem

given N × N routing grids, and M pairs of terminals use program to find routing paths connecting each pair of terminals.

Contraints

different paths <u>cannot cross</u> <u>each other</u> no path can cross obstacles

Introduction

Object

maximize the number
of connected pairs
when all pairs of terminals
can be connected, should
minimize the total length
of all the paths.

Stipulates

if one grid is defined to be one terminal of pair d, then other pairs d' can not route across the grid.

- Introduction
- Model
 - Flow based model
 - Point based model
- Optimization
- Evaluation and Results
- System Architecture
- Demo
- Acknowledgements

Flow Based Model

- For every droplet
 - establish a network flow model
 - edge: binary variable (SAT-Based model)
 - contraints: flow conservation
- · Every grid can only be visited once
 - linear-like term
- $2*N^2*M$ variables, $O(N^2*M)$ contraints.
- Is <u>equivalent</u> to the original model

Point Based Model

- $c_{p,d}$: whether the droplet d visit across the position p
- limit terms
 - barrier/not corresponding layer: FALSE
 - one grid be visited once: $\sum_{d=1}^{M} [c_{p,d}] \leq 1$
- connection terms:

$$c_{p,d} o (\sum_{p' \in B(p)} [c_{p',d}] = 2)$$
 (free grid)
$$c_{p,d} o (\sum_{p' \in B(p)} [c_{p',d}] = 1)$$
 (terminal grid)

source and terminal terms:

$$c_{p_d^*,d} \leftrightarrow c_{p_d^\dagger,d}$$

• objective: $\max_{d=1}^{M} [c_{p_d^*,d}] \text{ minimize } \sum_{d} \sum_{p} [c_{p,d}]$

Point Based Model

- $c_{p,d}$: whether the droplet d visit across the position p
- limit terms
 - barrier/not corresponding layer: FALSE
 - one grid be visited once: $\sum_{d=1}^{M} [c_{p,d}] \leq 1$
- connection terms:

$$c_{p,d} o (\sum [c_{p',d}] = 2)$$
 (free grid)

Is not equivalent to the original model (terminal grid)

$$c_{p,d} \to (\sum_{p' \in B(p)} [c_{p',d}] = 1)$$

source and terminal terms:

$$c_{p_d^*,d} \leftrightarrow c_{p_d^\dagger,d}$$

• objective: $\max_{d=1}^{M} [c_{p_d^{\star},d}] \text{ minimize } \sum_{d} \sum_{p} [c_{p,d}]$

- Introduction
- Model
 - Flow based model
 - Point based model
- Optimization
- Evaluation and Results
- System Architecture
- Demo
- Acknowledgements

Optimization

- Problem Confronted: Too slow
- Solution:
 - Combined Terms
 Combine several constraints together
 (in Z3 solver)
 - Prune Terms

Prune Terms

- Aim: told Z3 directly how shortest path like
- Prune Term 0: $\neg (c_{p_1,d} \land c_{p_2,d} \land c_{p_3,d} \land c_{p_4,d})$

• Prune Term 1: $(\sum_{x=1}^{N} [c_{p_1,x}] = 0) \to \neg(c_{p_2,d} \land c_{p_3,d} \land c_{p_4,d})$

• Prune Term 2: $(\sum_{x=1}^{M} [c_{p_1,x}] = 0) \to \neg (c_{p_2,d} \land c_{p_3,d})$

Prune Terms

- Aim: told Z3 directly how shortest path like
- Prune Term 0: $\neg (c_{p_1,d} \land c_{p_2,d} \land c_{p_3,d} \land c_{p_4,d})$

• Prune Term 1: $(\sum_{x=1}^{n} [c_{p_1,x}] = 0) \to \neg(c_{p_2,d} \land c_{p_3,d})$

• Prune Term 2: $(\sum_{x=1}^{M} [c_{p_1,x}] = 0) \rightarrow \neg (c_{p_2,d} \land c_{p_3,d})$

- Introduction
- Model
 - Flow based model
 - Point based model
- Optimization
- Evaluation and Results
- System Architecture
- Demo
- Acknowledgements

Evaluation & Results

Correctness

- legality check
- pair-wise check (using 2 different models)
- N in {6,7,8}, M in {1,...,9}, proportion of obstacles 10%
- randomly generate 30 tests each batch

Efficiency

- proportion of obstacles 0%, M in {1..9}, N up to 12
- randomly generate 100 tests each batch

N	flow	$\mathbf{flow}_{m{p}}$	point_p	$\operatorname{point}_{p}^{\dagger}$
6	0.07	••••		
7	0.09			
8	120	0.43	0.13	0.12
9		1.70	0.40	0.35
10		8.24	1.44	1.18
11	••••	49.6	4.80	4.47
12		349	36.0	27.3

N	flow	flow_p	point_p	$\operatorname{point}_{p}^{\dagger}$
6	0.21(2)	(.)	(.)	(.)
7	3.38(3)	(.)	(.)	(.)
8	482(4)	0.81(4)	0.21(4)	0.18(4)
9	(.)	4.02(4)	0.61(5)	0.56(4)
10	(.)	18.4(4)	2.37(6)	1.88(7)
11	(.)	159(5)	8.30(5)	7.46(6)
12	(.)	1125(5)	70.6(6)	50.0(6)

Table 1. Mean Time

Table 2. Max Mean Time[1]

^[1] unit: sec, the data format is X(Y), which X represent the total time(seconds) and Y in $\{1,...,9\}$ means the value M which has the largest mean time.

- Introduction
- Model
 - Flow based model
 - Point based model
- Optimization
- Evaluation and Results
- System Architecture
- Demo
- Acknowledgements

System Architecture

Four main parts

- **core**: the whole algorithm.
- **checker**: check if the answer calculated by the algorithm is legal and correct.
- **evaluation**: evaluate the efficiency and correctness of the algorithm(including data generator).
- · demo.

Core & Checker

CheckerMessage

- + ok
- + res
- + CheckerMessage()
- + ~CheckerMessage()

AnswerChecker

- + AnswerChecker()
- + ~AnswerChecker()
- + cmp_check()
- + legal_check()
- + legal_step_check()
- + length_check()
- + pairs_check()

Evaluation

Time

- max_time_
- min time
- rec list
- square sum
- sum
- tot
- + Time()
- + average()
- + push_back()
- + standard_deviation()
- + sum()

- Introduction
- Model
 - Flow based model
 - Point based model
- Optimization
- Evaluation and Results
- System Architecture
- Demo
- Acknowledgements

Demo

Acknowledgements

- Yue Yu
 - for the prune terms
- Zihan Xu
 - for the discussion on the implementation

Thank you Q&A[1]