Formal Lab Hooke's Law

Physics 4A

Connor Darling

Lab Partner: Gabe Ilano

December 2022

Contents

T	Purpose	2		
2	Theory			
3	Procedure3.1Procedure Equipment3.2Position Measurements	4 4		
4	Data	6		
5	Analysis	7		
6	Error Analysis and Procedural Errors	8		
7	Conclusion	9		
8	Suggestions for Improvement	10		

Purpose

To verify Hooke's law and calculate the spring constant.

Theory

The force due to a spring stretched (or compressed) a distance Δx from the equilibrium position is given by the following expression:

$$\vec{F_s} = -k\Delta \vec{x}$$

where s = (force exerted by) spring k = the spring constant (in N/m)

Procedure

3.1 Procedure Equipment

The necessary equipment for this lab is as follow:

- Meter Stick
- Spring
- Weights
- Clamp
- Rods
- Suspension Clamp

3.2 Position Measurements

• The equipment is to be set up as shown below:

- Hang a weight from the end of the spring. For the lng spring use weights ranging from 0.5 kg to 2 kg and for the short spring use weights ranging from 2 kg to 4 kg. Make sure you do not select too heavy of a weight or the spring will permanently stretch.
- Measure the distance (Δx) the spring is stretched from its equilibrium position (x = 0).
- \bullet Repeat the above measurement for at least 7 more weights.

Data

Data Collected							
Configuration	Mass is kg	x_i in meters	x_f in meters	Δx in meters	Experimental		
of Mass					F in Nm		
1	1.036	0.782	0.784	0.002	10.153		
2	2.033	0.782	0.803	0.021	19.923		
3	4.033	0.782	0.876	0.094	39.523		
4	6.032	0.782	0.951	0.169	59.114		
5	1.528	0.782	0.786	0.004	14.974		
6	3.527	0.782	0.860	0.078	34.565		
7	5.526	0.782	0.933	0.151	54.155		
8	2.530	0.782	0.822	0.040	24.794		

Analysis

1. For each weight, calculate the force $(F=mg,g=9.8\frac{m}{s^2})$ exerted on the spring by the Earth's gravitational force.

Force Calculated for each Configuration of Mass				
Configuration	Experimental			
of Mass	F in Nm			
1	10.153			
2	19.923			
3	39.523			
4	59.114			
5	14.974			
6	34.565			
7	54.155			
8	24.794			

- 2. Plot the force F versus the distance the spring is stretched (Δx) . Based on Hooke's law your graph should follow a straight line.
- 3. Draw a best-fit line between the points and calculate the slope of the line. The slope of the line will correspond to the spring constant k.
- 4. Compare your experimental value(s) of k with the actual value(s) of k for your spring. (Long Spring k=23 N/m & Short Spring k=98 N/m)
- 5. Do your results agree with Hooke's law (i.e. is F directly proportional to x)?

Error Analysis and Procedural Errors

Conclusion

Suggestions for Improvement