-	
Lycée Buffon	TD 14
MPSI	Année 2020 - 2021

Continuité

Exercice 1:

- 1. Que dire d'une fonction continue sur un intervalle à valeurs dans Q?
- 2. Que dire d'une fonction continue sur un intervalle à valeurs dans une partie finie?
- 3. Que dire de deux fonctions continues sur \mathbb{R} qui coïncident sur \mathbb{Q} ?

Exercice 2:

Soit f continue sur \mathbb{R}^+ admettant une limite finie en $+\infty$

- 1. Montrer que f est bornée.
- 2. Montrer que f atteint une de ses bornes.
- 3. Que dire si f tend vers $+\infty$ en $+\infty$?

Exercice 3:

- 1. Étudiez la continuité de $f: x \mapsto x |x|$
- 2. Soit g une fonction continue sur \mathbb{R} . Montrer que $g \circ f$ est continue sur \mathbb{R} si, et seulement si, g(0) = g(1).
- 3. Soit $\theta \in \mathbb{R}$. Trouver une CNS sur θ pour que la fonction $x \mapsto (\lfloor x \rfloor + \lfloor -x \rfloor) \sin(\theta x)$ soit continue sur \mathbb{R} .

Exercice 4 : On cherche toutes les applications de $\mathbb R$ dans $\mathbb R$ continues telles que

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x+y) = f(x) + f(y)$$

1. Montrer que si f est solution alors il existe une constante c telle que

$$\forall x \in \mathbb{Q}, \quad f(x) = cx$$

2. Conclure.

Exercice 5 : Un coureur parcourt 10 km en une heure. Montrer qu'il existe un intervalle de temps d'une demi-heure pendant lequel il a parcouru 5km.

Exercice 6: Soit $f:[a,b] \rightarrow [a,b]$ continue.

Montrer que f admet un point fixe i.e. qu'il existe $c \in [a, b]$ tel que f(c) = c.

Exercice 7: Soit f continue sur [a, b]. Montrer que:

$$\exists c \in [a, b] : f(c) = \frac{1}{b-a} \int_a^b f(t) dt$$

Exercice 8: Soit f continue sur \mathbb{R}^+ tel que $\lim_{t\to\infty} f=\ell\in\overline{\mathbb{R}}$. Montrer que :

$$\lim_{n \to +\infty} \frac{1}{n} \int_0^n f(t) \, \mathrm{d}t = \ell$$

Comparer à un résultat déjà vu sur les suites.

Exercice 9 : On note E l'ensemble des fonctions de $\mathcal{C}(\mathbb{R}, \mathbb{R})$ bornées

- 1. Montrer que si $f \in E$ et si $g \in \mathcal{C}(\mathbb{R}, \mathbb{R})$, alors $f \circ g$ et $g \circ f$ appartiennent à E.
- 2. Trouver les fonctions $f \in E$ telles que

$$\exists \lambda \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x-1) = \lambda f(x).$$

Exercice 10: Soit $f: \mathbb{R} \to \mathbb{R}$ une application continue telle que $f|_{\mathbb{Q}}$ soit croissante. Montrer que f est croissante.

Exercice 11:

1

Soient $(a,b) \in \mathbb{R}^2$, a < b, $f,g:[a,b] \to \mathbb{R}$ deux applications continues telles que

$$\max_{x \in [a,b]} f(x) = \max_{x \in [a,b]} g(x)$$

Montrer qu'il existe $c \in [a, b]$ tel que f(c) = g(c).