

Politechnika Wrocławska

Wydział Matematyki

Kierunek studiów: Matematyka

Specjalność: Matematyka teoretyczna

Praca dyplomowa – licencjacka

TYTUŁ PRACY DYPLOMOWEJ

Imię i nazwisko dyplomanta

słowa kluczowe: tutaj podajemy najważniejsze słowa kluczowe (łącznie nie powinny być dłuższe niż 150 znaków).

krótkie streszczenie:

Tutaj piszemy krótkie streszczenie pracy (nie powinno być dłuższe niż 530 znaków).

Opiekun pracy	dr inż. Dawid Huczek		
dyplomowej	Tytuł/stopień naukowy/imię i nazwisko	ocena	podpis

Do celów archiwalnych pracę dyplomową zakwalifikowano do:*

- a) kategorii A (akta wieczyste)
- b) kategorii BE 50 (po 50 latach podlegające ekspertyzie)

pieczątka wydziałowa

Wrocław, rok 2019

^{*} niepotrzebne skreślić

Faculty of Pure and Applied Mathematics

Field of study: Mathematics

Specialty: Theoretical Mathematics

Bachelor's Thesis

TYTUŁ PRACY DYPLOMOWEJ W JĘZYKU ANGIELSKIM

Imię i nazwisko dyplomanta

keywords:

tutaj podajemy najważniejsze słowa kluczowe w języku angielskim (łącznie nie powinny być dłuższe niż 150 znaków)

short summary:

Tutaj piszemy krótkie streszczenie pracy w języku angielskim (nie powinno być dłuższe niż 530 znaków).

Supervisor	dr inż. Dawid Huczek		
	Title/degree/name and surname	grade	signature

For the purposes of archival thesis qualified to:*

- a) category A (perpetual files)
- b) category BE 50 (subject to expertise after 50 years)

stamp of the faculty

 $^{*\} delete\ as\ appropriate$

Spis treści

W	stęp			3
	0.1	Motyw	vacje	3
	0.2	Histor	ia badań nad układami dynamicznymi	3
		0.2.1	Od starożytności do Newtona	3
		0.2.2	Problem stabilności układu słonecznego	3
		0.2.3	Lorenz i jego atraktor	3
		0.2.4	Mandelbrodt i fraktale	3
		0.2.5	Chaos	3
1	Wpi	rowadz	zenie	5
	1.1^{-}	Definic	eje	5
		1.1.1	Definicje i fakty ogólne	6
		1.1.2	Definicje dotyczące zwartych przestrzeni metrycznych	6
		1.1.3	Fakty ogólne, dotyczące zwartych przestrzeni metrycznych	9
		1.1.4	Definicje dotyczące układów dynamicznych	10
		1.1.5	Entropia topologiczna	10
		1.1.6	Chaos	11
		1.1.7	Odwzorowania trójkątne	13
		1.1.8	Definicje utworzone na potrzeby dowodu twierdzenia o rozszerzaniu	13
	1.2	Lemat	y	13
2			ie o rozszerzaniu odwzorowań chaotycznych w sensie Deva-	- 17
	neya	a		11
Po	odsur	nowan	ie	21
D	odate	ek		23
${f B}_{f i}$	ibliog	grafia		24

Wstęp

0.1 Motywacje

Studia matematycznę podjąłem w dość późnym wieku, już po ukończeniu innych kierunków. Od zawsze jednak matematyka pociągała mnie jako klucz do zrozumienia pozostałych dziedzin, jako narzędzie pozwalające dostrzec lepiej i głębiej urodę przyrody. Wykorzystując matematykę, możemy uchwycić reguły, wzorce i schematy które opisują niewyobrażalną złożoność świata w którym żyjemy. Matematykę postrzegam jako klamrę spinające wszystkie dziedziny intelektualnej działalności człowieka, począwszy od fizyki, poprzez chemię, biologię, aż po psychologię czy nauki społeczne. Decyzję o rozpoczęciu studiów matematycznych podjąłem w lecie siedząc nad rzeką i przyglądając się hipnotyzującym zawirowaniom na powierzchni wody płynącej w rzece Odrze przepływającej przez Wrocław, oraz leniwemu ruchowi fraktalnych kształtów chmur na błękitnym niebie. Byłem wówczas absolwentem wyższej uczelni, w którym wciąż żyło pragnienie poznawania głębiej wszystkich tych pięknych zjawisk, które nas otaczają. Byłem również świeżo po lekturze inspirującej popularnonaukowej książki Jamesa Gleicka zatytuowanej "Chaos" [5]...

0.2 Historia badań nad układami dynamicznymi

- 0.2.1 Od starożytności do Newtona
- 0.2.2 Problem stabilności układu słonecznego
- 0.2.3 Lorenz i jego atraktor
- 0.2.4 Mandelbrodt i fraktale
- 0.2.5 Chaos

Li-Yorke, Von Neumann, Birkhoff, Smale, Szarkowski, Devaney

Rozdział 1

Wprowadzenie

1.1 Definicje

- 1. ciąg
- 2. podciąg TODO: Dopisać do sekcji definicji definicję punktu skupienia ciągu.
- 3. ciąg Cauchy'ego (pojawia się w definicji zupełności, TODO ma byc tutaj czy w faktach ogolnych dotyczacych zwartych przestrzeni metrycznych?)
- 4. topologia zbieżności jednostajnej (pojawia się w definicji metryki na przestrzeni odwzorowan trojkatnych)
- 5. zbiór domknięty w przestrzeni metrycznej
- 6. zbiór nigdziegęsty
- 7. ośrodkowość
- 8. baza topologii w przestrzeni zwartej (kule o srodkach w osrodku i promieniach wymiernych potrzebne w dowodzie ogolnym patrz TODO na czerwono)
- 9. punkt izolowany w przestrzeni metrycznej
- 10. Ciaglosc funkcji na przestrzeni metrycznej
- 11. (zbior C(X))
- 12. iteracja odwzorowania
- 13. orbita okresowa
- 14. niezmienniczosc zbioru ze wzgledu na odwzorowanie
- 15. topologiczna tranzytywnosc
- 16. entropia topologiczna Adler
- 17. entropia topologiczna Bowen
- 18. entropia topologiczna dowod rownowazności (ksiazka misiurewicz combinatorial dynamics and entropy in dimension one oraz ksiazka ruette rozdział 4)

- 19. wrazliwosc na warunki poczatkowe
- 20. RODZAJE CHAOSU (Devaneya, Li Yorka)
- 21. napisac ze chaotycznosc odwzorowania rozumiem przez chaotycznosc odpowiedniego ukladu dynamicznego
- 22. zbiór rezydualny
- 23. separable, second category (czyli 1 i 2 kategoria bairea)
- 24. twierdzenie baire'a dla przestrzeni metrycznych zupełnych napisac
- 25. g-delta
- 26. odwzorowania trójkątne, zbior $C_{\triangle}(X \times I)$

1.1.1 Definicje i fakty ogólne

Definicja 1.1 (Ciąg). Ciąg $(x_n)_{n=1}^{\infty}$ jest to funkcja określona na zbiorze liczb naturalnych. Wartości tej funkcji dla kolejnych liczb naturalnych nazywamy wyrazami ciągu i oznaczamy: x_1, x_2, \ldots Niekiedy ciąg oznaczamy skrótowo przez (x_n) . W pracy rozważać będziemy ciągi w przestrzeniach metrycznych, czyli funkcje postaci $x: \mathbb{N} \to X$, gdzie X jest rozważaną przestrzenią metryczną

Definicja 1.2 (Podciąg).

Definicia 1.3 (Granica ciagu).

Definicja 1.4 (Punkt skupienia ciągu).

Definicja 1.5 (Ciąg Cauchy'ego). Ciągiem Cauchyego w przestrzeni metrycznej (X, ρ) nazywamy ciąg (x_n) spełniający warunek:

$$\forall_{\epsilon>0}\,\exists_{N\in\mathbb{N}}\,\forall_{n,m>N}\,\rho(x_n,x_m)<\epsilon.$$

1.1.2 Definicje dotyczące zwartych przestrzeni metrycznych

Definicja 1.6 (Metryka). Metryką na zbiorze X nazywamy funkcję $\rho: X \times X \longrightarrow \mathbb{R}_+ \cup \{0\}$ spełniającą następujące warunki:

- 1. $\forall_{x,y \in X} : \rho(x,y) = 0 \iff x = y,$
- $2. \ \forall_{x,y \in X} : \rho(x,y) = \rho(y,x),$
- 3. $\forall_{x,y,z \in X} : \rho(x,y) \le \rho(x,z) + \rho(z,y)$.

Warunek 3 nazywany jest zwykle nierównościa trójkata.

Definicja 1.7 (Przestrzeń metryczna). Przestrzenią metryczną nazywamy parę (X, ρ) , gdzie X jest zbiorem a ρ zdefiniowaną na nim metryką. Czasami, tam gdzie nie będzie prowadziło to do nieporozumień, przestrzeń metryczną (X, ρ) będziemy oznaczać przez samo X.

1.1. Definicje

Definicja 1.8 (Kula otwarta). Kulą otwartą w przestrzeni metrycznej (X, ρ) nazywamy zbiór: $K(s, r) = \{x \in X : \rho(s, x) < r\}$. Punkt s nazywamy wówczas środkiem kuli K, a $r \in \mathbb{R}_+ \cup \{0\}$ jej promieniem.

Definicja 1.9 (Zbiór otwarty). Zbiór A w przestrzeni metrycznej (X, ρ) nazywamy otwartym wtedy i tylko wtedy gdy, dla każdego $a \in A$ istnieje kula otwarta o środku w a, zawierająca się w A.

Lemat 1.10 (Kula otwarta w przestrzeni metrycznej jest zbiorem otwartym). W przestrzeni metrycznej (X, ρ) , każda kula otwarta jest zbiorem otwartym.

Dowód. Niech (X, ρ) będzie przestrzenią metryczną. Weźmy dowolnyą kulę otwartą $K = K(s, r) \subseteq X$. Weźmy teraz dowolny punkt $k \in K$. Wiemy, że $\rho(s, k) < r$, czyli $r - \rho(s, k) = \epsilon > 0$. Zatem, jeżeli weźmiemy $r_k = \frac{\epsilon}{2}$ to $K_2 = K(k, r_k) \subset K$, ponieważ

$$\forall_{a \in K_{2}} \\
\rho(s, a) \leq \rho(s, k) + \rho(k, a) \leq \rho(s, k) + r_{k} \\
= \rho(s, k) + \frac{\epsilon}{2} = \rho(s, k) + \frac{r}{2} - \frac{\rho(s, k)}{2} \\
= \frac{\rho(s, k)}{2} + \frac{r}{2} < r,$$
(1.1)

czyli $\forall_{a \in K_2} a \in K$. Z dowolności k otrzymujemy, że kula K jest otwarta a z dowolności wyborku kuli K otrzymujemy tezę.

Definicja 1.11 (Otoczenie punktu). W przestrzeni metrycznej X zbiór $V \subseteq X$ nazywamy otoczeniem punktu x, jeżeli istnieje zbiór otwarty $U \subseteq X$ taki, że $x \in U \subseteq V$.

Definicja 1.12 (Sąsiedztwo punktu). Sąsiedztwem punktu $x \in X$ nazywamy każdy zbiór $V_x = V \setminus \{x\}$, gdzie V jest pewnym otoczeniem punktu x.

Definicja 1.13 (Wnętrze zbioru). W przestrzeni metrycznej, wnętrzem zbioru A nazywamy zbiór wszystkich punktów, które należą do A wraz z pewnym swoim otoczeniem.

Definicja 1.14 (Domknięcie zbioru). Domknięciem zbioru $A \subset X$ nazywamy zbiór $\{x \in X : \forall_{r>0} K(x,r) \cap A \neq \emptyset\}$. Domknięcie zbioru A oznaczamy przez \bar{A} lub $\mathrm{Cl}(A)$.

Definicja 1.15 (Zbiór domknięty). Zbiór A jest domknięty gdy A = Cl(A).

Definicja 1.16 (Zbiór gęsty). Dla danej przestrzeni metrycznej (X, ρ) . Zbiór $A \subset X$ nazwiemy gęstym, gdy $\forall_{x \in X} \forall_{\epsilon > 0} \exists_{a \in A} : \rho(x, a) < \epsilon$.

Definicja 1.17 (Zbiór nigdziegęsty). Dla danej przestrzeni metrycznej (X, ρ) . Zbiór $A \subset X$ nazwiemy nigdziegęstym, gdy wnętrze domknięcia tego zbioru jest puste.

Definicja 1.18 (Pokrycie otwarte). [6, s. 195] Pokryciem otwartym przestrzeni metrycznej X nazywamy rodzinę zbiorów otwartych $(U_i)_{i\in I}$ taką, że $X = \bigcup_{i\in I} U_i$.

Definicja 1.19 (Przestrzeń metryczna zwarta, definicja pokryciowa). [6, s. 196] TODO: Nieznacznie zmienilismy definicje wzgledem tej ktora pojawa sie u Ruette (tam byla mowa o topologii indukowanej na Y, a my zastapilismy to po prostu przez podprzestrzen (Y, ρ)) czy w takim razie usunac cytowanie? Przestrzeń metryczną (X, ρ) nazywamy zwartą jeżeli każde pokrycie otwarte $(U_i)_{i\in I}$ tej przestrzeni zawiera podpokrycie skończone, to znaczy istnieje skończony zbiór indeksów $J \subset I$ taki, że $X = \bigcup_{i\in J} U_i$. Podzbiór $Y \subset X$ jest zwarty jeżeli (Y, ρ) jest przestrzenią zwartą.

Twierdzenie 1.20 (Ciągowa charakteryzacja zwartości przestrzeni metrycznej). Przestrzeń metryczna (X, ρ) jest zwarta wtedy i tylko wtedy, gdy z każdego ciągu $(x_n) \subset X$ można wybrać podciąg zbieżny.

Dowód. TODO: przyjzec sie temu dowodowi czy pasuje teraz do sformulowania twierdzenia oraz sprobowac poprawic dowod implikacji w lewa strone (problem z tym ze rodzina tylko przeliczalna a nie uwzgledniamy nieprzeliczalnych) (\Rightarrow) Załóżmy, że z dowolnego pokrycia X zbiorami otwartymi możemy wybrac podpokrycie skończone. Weźmy dowolony ciąg $(x_n) \in X$. Pokażę, że ten ciąg ma punkt skupienia w X. Załóżmy, że ciąg (x_n) nie ma punktu skupienia w X, to znaczy $\forall_{x \in X} x$ nie jest punktem skupienia x_n , czyli $\forall_{x \in X} \exists_{\epsilon > 0} K(x, \epsilon) \setminus \{x\} \cap \{x_n\}_{n=1}^{\infty} = \emptyset$. Utwórzmy pokrycie X w następujący sposób:

$$\mathcal{A} = \bigcup_{x \in X} K(x, \epsilon_x),$$

gdzie $\epsilon_x > 0$ jest liczbą spełniającą warunek $K(x, \epsilon_x) \setminus \{x\} \cap \{x_n\}_{n=1}^{\infty} = \emptyset$. Oczywiście rodzina \mathcal{A} jest pokryciem otwartym przestrzeni X. Zgodnie z założeniem, z pokrycia \mathcal{A} możemy wybrać podpokrycie skończone. Każdy zbiór $A \in \mathcal{A}$ zawiera najwyżej jeden element ciągu (x_n) . Skończenie wiele zbiorów zawierających po co najwyżej jednym elemencie ciągu prowadzi do wniosku, że przestrzeń X zawiera skończenie wiele elementów nieskończonego ciągu co stanowi sprzeczność.

Oznaczmy przez g punkt skupienia ciągu (x_n) . Oznaczmy przez y_1 pierwszy element ciągu (x_n) różny od g. przez y_2 pierwszy element ciągu (x_n) różny od g i taki, że $y_2 \in K(g, \frac{d}{2})$, gdzie $d = \rho(y_1, g)$. Następnie niech y_n będzie pierwszym elementem ciągu (x_n) różnym od g i spełniającym warunek $y_n \in K(g, \frac{d_{n-1}}{2})$, gdzie $d_{n-1} = \rho(y_{n-1}, g)$. Powstały w ten sposób podciąg $(y_n) \subset (x_n)$ jest zbieżny do $g \in X$. W przypadku gdyby na którymś etapie powyższej konstrukcji nie można było wskazać kolejnego elementu różnego od g, znaczyłoby to, że od pewnego miejsca ciąg (x_n) jest stale równy g, a więc zbieżny.

 (\Leftarrow) Złóżmy, że X spełnia definicję pokryciową. Dowód przez kontrapozycję (TODO: Opisać na czym polega kontrapozycja w logice czy to zbyt elementarne na poziom pracy licencjackiej?). Pokażemy, że jeżeli istnieje pokrycie X, z którego nie można wybrć podpokrycia skończonego to istnieje ciąg z którego nie można wybrać podciagu zbieżnego.

Załóżmy zatem, że nieskończona, przeliczalna rodzina zbiorów otwartych $\{U_i\}_{i=1}^{\infty}$ stanowi pokrycie X. Skonstruujmy następujący ciąg:

$$x_1 \notin U_1$$

$$x_n \notin \bigcup_{k=1}^{n-1} U_k$$

Zawsze znajdziemy taki $x_n \in X$, gdyż gdyby taki nie istniał znaczyłoby to, że $\bigcup_{i=1}^{n-1} U_{k_i} = X$, czyli istniałoby podpokrycie skończone. Załóżmy teraz, że ciąg (x_n) ma podciąg zbieżny. Wtedy istniałaby jego granica, tj. element $g \in X$ taki że dla każdego $\epsilon > 0$ nieskończenie wiele elementów ciągu leży wewnątrz kuli $B(g,\epsilon)$, z kolei z otwartości zbiorów U_n możemy wybrać taki ϵ , że $B(g,\epsilon) \subset U_k$, gdzie U_k jest dowolnym zbiorem z pokrycia X, zawierającym g. Z konstrukcji naszego ciągu wynika jednak, że $\forall_{n\in N}\forall_{m>n} x_m \notin U_n$, czyli do każdego U_n należy jedynie skończenie wiele elementów. Zatem otrzymujemy sprzeczność. Czyli ciąg (x_n) nie zawiera podciągu zbieżnego.

1.1. Definicje

1.1.3 Fakty ogólne, dotyczące zwartych przestrzeni metrycznych

Definicja 1.21 (Ośrodkowość).

Definicja 1.22 (Zupełność). Przestrzeń metryczna jest zupełna jeśli każdy ciąg Cauchy'ego jest zbieżny.

Twierdzenie 1.23 (Ośrodkowość zwartych przestrzeni metrycznych). Jeżeli przestrzeń metryczna jest zwarta to jest również ośrodkowa.

Dow'od.Niech (X,ρ) będzie przestrzenią metryczną zwartą. Oznacza to, że z każdego pokrycia Xzbiorami otwartymi, można wybrać podpokrycie skończone.

Dla $i \in \mathbb{N}$, niech $\mathcal{A}_i = \{K(x, \frac{1}{i}) : x \in X\}$, \mathcal{A}_i jest oczywiście pokryciem X zbiorami otwartymi, zatem z każdej rodziny \mathcal{A}_i możemy wybrać podpokrycie skończone, oznaczmy je przez \mathcal{B}_i . Rozważmy teraz następującą rodzinę:

$$B = \bigcup_{i=1}^{\infty} \mathcal{B}_i.$$

Składa się ona ze zbiorów postaci $K(x, \frac{1}{i})$ dla pewnych $i \in \mathbb{N}$ i $x \in X$ i jako przeliczalna suma rodzin skończonych jest przeliczalną rodziną zbiorów. Niech teraz

$$C = \{s : \exists_{i \in \mathbb{N}} K(s, \frac{1}{i}) \in B\}.$$

Zbiór C jest równoliczny ze zbiorem B, a więc przeliczalny. Ponadto C jest gęsty w X: Niech $\epsilon > 0$. Weźmy dowolny $x \in X$. Oczywiście istnieje $i_0 \in \mathbb{N}$ takie, że $\frac{1}{i_0} < \epsilon$. Wiemy, że \mathcal{B}_{i_0} stanowi pokrycie X i składa się ze zbiorów postaci $K(s, \frac{1}{i_0})$, gdzie $s \in X$. Skoro \mathcal{B}_{i_0} jest pokryciem X to $\exists_{K(s, \frac{1}{i_0}) \in \mathcal{B}_{i_0}} : x \in K(s, \frac{1}{i_0})$, czyli $\rho(x, s) < \frac{1}{i_0} < \epsilon$, natomiast $s \in C$ z definicji zbioru C

Czyli X zawiera podzbiór przeliczalny i gęsty, zatem przestrzeń (X,ρ) jest ośrodkowa.

Twierdzenie 1.24 (Zupełność zwartych przestrzeni metrycznych). Każda zwarta przestrzeń metryczna jest zupełna.

Dowód. Niech (X, ρ) będzie przestrzenią zwartą. Weźmy ciąg Cauchy'ego (x_n) elementów X. Ze zwartości (twierdzenie 1.20) wynika, że istnieje podciąg (y_{n_k}) ciągu (x_n) zbieżny do jakiegoś $g \in X$. Zatem $\forall_{\epsilon>0} \exists_{n_0 \in \mathbb{N}} \forall_{n>n_0} \rho(y_n, g) < \epsilon$. Pokażemy, że (x_n) zbiega do g.

Ustalmy $\epsilon > 0$. Z faktu, że (x_n) jest ciągiem Cauchy'ego wynika, że

$$\exists_{N\in\mathbb{N}}\,\forall_{n,m>N}\,\rho(x_m,x_n)<\frac{\epsilon}{2}$$

Ponadto

$$\exists_{n_0 \in \mathbb{N}} \, \forall_{n > n_0} \, \rho(y_n, g) < \frac{\epsilon}{2}$$

Weźmy teraz element y_k podciągu (y_n) , taki że $y_k = x_M$, gdzie $M > N \wedge M > n_0$. Wówczas

$$M > N \implies \forall_{n > N} \, \rho(x_M, x_n) < \frac{\epsilon}{2}$$

$$M > n_0 \implies \rho(x_M, g) < \frac{\epsilon}{2}$$

Zatem $\forall_{n>N}: \rho(x_n,g) \leq \rho(x_n,x_M) + \rho(x_M,g) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$, czyli $g \in X$ jest granicą ciągu (x_n) , a więc (x_n) jest zbieżny w (X,ρ) .

1.1.4 Definicje dotyczące układów dynamicznych

Definicja 1.25 (Układ dynamiczny). Układem dynamicznym nazywamy parę (X, T), gdzie X jest zbiorem a $T: X \to X$ przekształceniem (odwzorowaniem).

Definicja 1.26 (Orbita). Orbita punktu x to ciąg $x, Tx, T^2x, T^3x, \ldots$, czyli

$$O_T(x) = \{T^n x : n = 0, 1, 2, \ldots\}.$$

Jeśli T jest odwracalne (czyli różnowartościowe i ńa"), to możemy rozważać orbitę obustronna:

$$\{T^nx:n\in\mathbb{Z}\}.$$

Definicja 1.27 (Iterata przekształcenia). Iterata przekształcenia T to potęga przekształcenia T^n , $n \in \mathbb{N}$.

Definicja 1.28 (Punkt stały). Punkt x jest stały, gdy Tx = x.

Definicja 1.29 (Punkt okresowy odwzorowania). Punkt x jest okresowy, gdy jest stały dla jakiejś iteraty, tzn. gdy $\exists_{n\in\mathbb{N}} T^n x = x$.

Definicja 1.30 (Orbita okresowa).

Definicja 1.31 (Niezmienniczość zbioru ze względu na odwzorowanie).

Definicja 1.32 (Topologiczna tranzytywność).

1.1.5 Entropia topologiczna

Definicja 1.33 (Entropia topologiczna pokrycia). Na podstawie [2]. Rozważamy układ dynamiczny (X, f), gdzie X jest zwartą przestrzenią metryczną. Niech \mathcal{A} będzie otwartym pokryciem X. Wprowadzamy oznaczenia:

$$\bigvee_{i=1}^{n} \mathcal{A}_i = \{A_1 \cap A_2 \cap \ldots \cap A_n : A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2, \ldots, A_n \in \mathcal{A}_n, A_1 \cap A_2 \cap \ldots \cap A_n \neq \emptyset\},$$

gdzie A_1, A_2, \ldots, A_n są otwartymi pokryciami X.

$$f^{-n}(\mathcal{A}) = \{ f^{-n}(A) : A \in \mathcal{A} \},$$

$$\mathcal{A}^n = \bigvee_{i=0}^{n-1} f^{-i}(\mathcal{A}).$$

Ponadto niech $\mathcal{N}(\mathcal{A})$ będzie najmniejszą możliwą mocą podpokrycia wybranego z \mathcal{A} (tzn. licznością podzrodziny rodziny \mathcal{A} , która również jest pokryciem X). Moc tej rodziny możemy utożsamiać z licznością ponieważ zawsze istnieje podpokrycie skończone, gdyż X jest zwarta.

Wtedy entropia topologiczna odwzorowania f przy pokryciu \mathcal{A} nazywamy wartość:

$$h(f, \mathcal{A}) = \lim_{n \to \infty} \frac{1}{n} \log \mathcal{N}(\mathcal{A}^n)$$

1.1. Definicje

Definicja 1.34 (Entropia topologiczna Adler, Konheim, McAndrew). Na podstawie [2]. Adler, Konheim i McAndrew entropię topologiczną odwzorowania f definiują następująco:

$$h(f) = \sup h(f, \mathcal{A}),$$

gdzie supremum jest brane po wszystkich otwartych pokryciach \mathcal{A} przestrzeni X.

Definicja 1.35 (Entropia topologiczna Bowen). TODO: entropia topologiczna - dowod rownowazności (ksiazka misiurewicz combinatorial dynamics and entropy in dimension one oraz ksiazka ruette rozdział 4)

Twierdzenie 1.36 (Dolne ograniczenie na entropię na odcinku). [6] Jeżeli f jest topologicznie tranzytywne, to entropia topologiczna $h(f) \ge \frac{1}{2} \log(2)$. TODO

 $Dow \acute{o}d. \text{ TODO}$

1.1.6 Chaos

[4]

Pomimo dużej popularności chaotycznych ukłądów dynamicznych, przez długi czas nie było jednej powszechnia akceptowanej definicji chaosu.

Definicja 1.37 (Tranzytywność). [4]

Definicja 1.38 (Wrażliwość na warunki początkowe). [3] Niech (X, ρ) będzie przestrzenią metryczną, a $f: X \to X$ odwzorowaniem ciągłym. Mówimy, że f jest wrażliwe na warunki początkowe jeżeli istnieje $\delta > 0$ taki, że dla każdego $x \in X$ i dla każdego sąsiedztwa U punktu x, istnieją $y \in U$ i $n \geq 0$ dla których zachodzi $\rho(f^n(x), f^n(y)) > \delta$.

Definicja 1.39 (Chaos w sensie Devaneya). [4] Niech X będzie przestrzenią metryczną. Ciągłe odwzorowanie $f:X\to X$ nazywamy chaotycznym na X jeżeli:

- 1. f jest tranzytywne,
- 2. zbiór punktów okresowych f jest gesty w X,
- 3. f jest wrażliwe na warunki początkowe.

Twierdzenie 1.40 (Warunki dostateczne chaotyczności w sensie Devaneya). [4] Niech (X, ρ) będzie przestrzenią metryczną oraz niech X nie będzie zbiorem skończonym. Jeżeli $f: X \to X$ jest tranzytywne i posiada gęsty zbiór punktów okresowych to f jest wrażliwe na warunki początkowe.

Dowód. [4] Załóżmy, że $f:X\to X$ jest tranzytywne i posiada gęsty zbiór punktów okresowych.

W pierwszej kolejności zauważmy, że istnieje liczba $\delta_0 > 0$ taka, że dla każdego $x \in X$ istnieje punkt okresowy $q \in X$, którego orbita O(q) jest w odległości co najmniej $\frac{\delta_0}{2}$ od x:

Wybierzmy dwa dowolne punkty okresowe q_1 i q_2 o rozłącznych (TODO: Trzeba uzasadnie dlaczego moge wybrac w punkty o rozlacznych orbitach?) orbitach $O(q_1), O(q_2)$. Oznaczmy przez δ_0 odległość między $O(q_1)$ a $O(q_2)$. Wówczas z nierówności trójkąta, każdy punkt $x \in X$ jest w odległości co najmniej $\frac{\delta_0}{2}$ od jednej z dwóch wybranych orbit. Pokażemy, że f jest wrażliwe na warunki początkowe ze stałą (ang. sensitivity constant) $\delta = \frac{\delta_0}{8}$.

Weźmy dowolny punkt $x \in X$ i niech N będzie pewnym otoczeniem punktu x. Ponieważ zbiór punktów okresowych odwzorowania f jest gęsty, to istnieje punkt okresowy p należący do przekroju $U = N \cap K(x, \delta)$. Niech n oznacza okres punktu p. Z wcześniejszych rozważań wiemy, że istnieje punkt okresowy $q \in X$, którego orbita O(q) jest w odległości co najmniej 4δ od x. Oznaczmy

$$V = \bigcap_{i=0}^{n} f^{-i}(K(f^{i}(q), \delta)).$$

Zbiór V jest otwarty i niepusty, gdyż $q\in V$. W związku z tym, ponieważ f jest tranzytywne, to istnieją $y\in U$ i $k\in\mathbb{N}$ takie, że $f^k(y)\in V$.

Niech teraz jbędzie częścią całkowitą z $\frac{k}{n}+1.$ Wtedy $1 \leq nj-k \leq n.$ Z konstrukcji mamy

$$f^{nj}(y) = f^{nj-k}(f^k(y)) \in f^{nj-k}(V) \subseteq K(f^{nj-k}(q), \delta).$$

Liczba n jest okresem p, więc $f^{nj}(p) = p$, a z nierówności trójkąta otrzymujemy:

$$\rho(f^{nj}(p), f^{nj}(y)) = \rho(p, f^{nj}(y))
\geq \rho(x, f^{nj-k}(q)) - \rho(f^{nj-k}(q), f^{nj}(y)) - \rho(p, x),$$
(1.2)

Następnie, ponieważ $p \in K(x, \delta)$ oraz $f^{nj}(y) \in K(f^{nj-k}(q), \delta)$ otrzymujemy

$$\rho(f^{nj}(p), f^{nj}(y) > 4\delta - \delta - \delta = 2\delta.$$

Ostatecznie, korzystając z nierówności trójkąta dostajemy, że albo $\rho(f^{nj}(x), f^{nj}(y)) > \delta$, albo $\rho(f^{nj}(x), f^{nj}(p)) > \delta$. W obu przypadkach znaleźliśmy punkt, którego nj-ta iterata jest w odległości większej od δ od $f^{nj}(x)$.

Lemat 1.41 (Warunki dostateczne chaotyczności w sensie Devaneya alternatywa). Niech (X, ρ) będzie nieskończoną i zwartą przestrzenią metryczną, a $f: X \to X$ odwzorowaniem ciągłym. Wówczas jeżeli f jest topologicznie tranzytywne i zbiór punktów okresowych odwzorowania f jest gęsty w X, to f jest wrażliwe na warunki początkowe. Oznacza to, że dla przestrzeni metrycznych nieskończonych i zwartych dwa pierwsze warunki z definicji chaotyczności w sensie Devaneya implikują trzeci, a więc ich spełnienie pociąga za sobą chaotyczność odwzorowania.

Dowód. Dowód przytaczamy na podstawie [?]. Załóżmy, że (X, ρ) jest nieskończona i zwarta, a ciągłe odwzorowanie $f: X \to X$ jest topologicznie tranzytywne i ma gęsty zbiór punktów okresowych, ale nie jest wrażliwe na warunki początkowe.

TODO: zaprzeczyc sobie warzliwosci na warunki poczatkowe

Niech x_0 będzie punktem okresowym, U otoczeniem punktu x_0 takim, że dla każdych $y \in U, n \in \mathbb{N}$ zachodzi $\rho(f^n(x_0), f^n(y)) \leq \epsilon$. Z gęstości zbioru punktów okresowych istnieje $z \in U$ taki, że $f^k(z) = z$ dla pewnego k.

Wówczas

$$\forall_{n,m} \, \rho(f^{n+mk}(x_0), f^n(x_0)) < \rho(f^{n+mk}(x_0), f^{n+mk}(z)) + \rho(f^n(z), f^n(x_0)) < 2\epsilon.$$

Zatem $\rho(f^{mk}(w), w) < 2\epsilon$ dla każdego $w \in X$ i każdego m. (TODO: ponizsze jest tlumaczneiem na zywca zrozumiec i dowiedziec sie co to znaczy equicontinuity) (To implikuje equicontinuity; tranzytywność implikuje minimalność a skoro punkty okresowe są gęste X musi być skończony). Co prowadzi do sprzeczności z założeniem o nieskończoności X.

Definicja 1.42 (Chaos w sensie Li-Yorke'a).

1.2. Lematy 13

1.1.7 Odwzorowania trójkątne

Definicja 1.43 (Odwzorowanie trójkątne). Rozważmy "prostokąt" $X \times Y$, gdzie X, Y są przestrzeniami metrycznymi. Odwzorowaniem trójkątnym nazywamy funkcję $F: X \times Y \to X \times Y$ postaci:

$$F(x,y) = (f(x), g(x,y)).$$

Definicja 1.44 (Ciągłość odwzorowań trójkątnych). W pracy rozważać będziemy wyłącznie odwzorowania ciągłe, tj. takie trójkątne F dla których $f \in C(X)$ i g jest ciągłą funkcją z $X \times Y$ w Y. Zbiór takich odwzorowań oznaczać będziemy $C_{\triangle}(X \times Y)$ Zamiast g(x,y) będziemy pisać $g_x(y)$, gdzie $g_x: Y \to Y$ jest rodziną ciągłych przekształceń zależną w sposób ciągły od $x \in X$.

Definicja 1.45 (Odwzorowanie bazowe). Odwzorowanie f nazywamy odwzorowaniem bazowym (ang. basis map) odwzorowania $F = (f, g_x)$

Definicja 1.46 (Odwzorowania włóknowe). Odwzorowania g_x dla $x \in X$ nazywamy odwzorowaniami włóknowymi (ang. *fibre maps*) odwzorowania $F = (f, g_x)$.

1.1.8 Definicje utworzone na potrzeby dowodu twierdzenia o rozszerzaniu

Definicje i własności odwzorowań trójkątnych podajemy na podstawie pracy [3].

Na potrzeby dowodu wprowadźmy pojęcia odległości między odwzorowaniami oraz dwie funkcje: $\operatorname{pr}_1(x,y)$ i $\operatorname{pr}_2(x,y)$.

Definicja 1.47 (Metryka na przestrzeni funkcji ciągłych w przestrzeni metrycznej). Niech (M, σ) będzie zwartą przestrzenią metryczną, rozważmy odwzorowania $h, k \in C(M)$. Odległość między nimi zdefiniujmy jako $\max_{m \in M} \sigma(h(m), k(m))$ i oznaczmy ją jako $d_1(h, k)$.

Definicja 1.48 (Metryka na przestrzeni odwzorowań trójkątnych). Odległość między odwzorowaniami trójkątnymi definiujemy wówczas następująco: Niech (X, ρ) i (Y, τ) będą zwartymi przestrzeniami metrycznymi a $F(x,y)=(f(x),g_x(y))$ i $\Phi(x,y)=(\phi(x),\psi_x(y))$ trójkątnymi odwzorowaniami należącymi do $C_{\triangle}(X\times Y)$. Odległość definiujemy wówczas jako

$$\begin{aligned} d_2(F, \Phi) &= \max_{(x,y) \in X \times Y} \max \{ \rho(f(x), \phi(x)), \tau(g_x(y), \psi_x(y)) \} \\ &= \max \{ d_1(f, \phi), \max_{x \in X} d_1(g_x, \psi_x) \} \end{aligned}$$

Zauważmy, że jak wynika z lematu 1.50 przestrzenie metryczne $(C(X), d_1)$ oraz $(C_{\triangle}(X \times Y), d_2)$ są zupełne i odpowiednie topologie na nich są topologiami zbieżności jednostajnej.

Definicja 1.49 ($\operatorname{pr}_1(x,y)$, $\operatorname{pr}_2(x,y)$). Dla $(x,y) \in X \times Y$ niech $\operatorname{pr}_1(x,y) = x$ i $\operatorname{pr}_2(x,y) = y$. Odwzorowanie identycznościowe na Y będziemy oznaczać przez Id_Y lub krótko Id. W dalszej części pracy przestrzeń Y będzie odcinkiem rzeczywistym I = [0,1].

1.2 Lematy

Lemat 1.50.

Lemat 1.51.

Lemat 1.52.

Lemat 1.53.

Lemat 1.54.

Twierdzenie 1.55. [1] - dowod twierdzenia 1.5

Lemat 1.56.

Lemat 1.57.

Lemat 1.58. W glownej pracy to byl lemat 3

Lemat 1.59.

Lemat 1.60. [1] Niech (X, ρ) będzie zwartą przestrzenią metryczną i niech $F = (f, g_x)$ będzie odwzorowaniem należącym do $C_{\triangle}(X \times I)$ którego wszystkie odwzorowania włóknowe są niemalejące i pozostawiają krańce I niezmienione. Niech $\{a_1, a_2, \ldots, a_n\}$ będzie podzbiorem X oraz dla $i = 1, 2, \ldots, n$ niech U_i będą parami rozłącznymi zbiorami otwartymi takimi, że $a_i \in U_i$. Załóżmy, że h_i są niemalejącymi odwzorowaniami z C(I) pozostawiającymi krańce I niezmienione i spełniającymi $d_1(h_i, g_{a_i}) < \epsilon$ dla pewnego dodatniego ϵ i każdego $i = 1, 2, \ldots, n$. Wówczas istnieje odwzorowanie $F = (f, \tilde{g}_x) \in C_{\triangle}(X \times I)$ spełniające cztery następujące warunki:

- 1. wszystkie odwzorowania włóknowe \widetilde{F} są niemalejące i pozostawiające krańce I niezmienione,
- 2. $d_2(F, \tilde{F}) < \epsilon$,
- 3. $\tilde{g}_{a_i} = h_i \ dla \ i = 1, 2, \dots, n,$
- 4. $\tilde{g}_x = g_x \ dla \ x \in X \setminus \bigcup_{i=1}^n U_i$.

Dowód. [1] Dla każdego $i=1,2,\ldots,n$ niech $V_i\subset U_i$ będzie otwartym sąsiedztwem a_i takim, że dla pewnego dodatniego $\tilde{\epsilon}<\epsilon$, $d_1(h_i,g_x)<\tilde{\epsilon}$ zawsze wtedy gdy $x\in V_i$.

Oznaczmy $U=\bigcup_{i=1}^n U_i,\ V=\bigcup_{i=1}^n V_i$. Niech $u:X\longrightarrow [0,1]$ TODO: cwiczenie - dlaczego funkcja u istnieje? będzie ciągłą funkcją, przyjmującą wartość 1 na zbiorze $\{a_1,a_2,\ldots,a_n\}$, natomiast 0 poza zbiorem V. Zastąpmy każde odwzorowanie włóknowe g_x przez \tilde{g}_x , gdzie

$$\widetilde{g}_{x}(y) = \begin{cases}
g_{x}(y) & \text{dla } x \in X \setminus V, \\
g_{x}(y)(1 - u(x)) + h_{i}(y)u(x) & \text{dla } x \in V_{i} : i \in \{1, 2, \dots, n\}.
\end{cases}$$
(1.3)

TODO: Przemyslec, w kontekscie powyzszego zdanie: kombinacja wypukla odwzorowan niemalejacych jest niemalejaca - do czego to tutaj jest porzebne

dla każdego $y \in I$. Zauważmy ponadto, że dla $x \in V_i$ oraz $i \in \{1, 2, ..., n\}$ możemy równoważnie napisać

$$\tilde{g}_x(y) = u(x)(h_i(y) - g_x(y)) + g_x(y).$$
 (1.4)

1.2. Lematy 15

Rozważmy odwzorowanie $\widetilde{F}=(f,\widetilde{g}_x)$. Należy ono do $C_{\triangle}(X\times I)$. Z równości 1.3 widzimy, że wszystkie odwzorowania włóknowe \widetilde{g}_x są niemalejące i krańce przedziału I są ich punktami stałymi. Ponadto $\widetilde{g}_{a_i}=h_i$ dla każdego i oraz $\widetilde{g}_x=g_x$ dla $x\in X\setminus V\supset X\setminus U$. Ponieważ dla $x\in V_i$, gdzie $i\in\{1,2,\ldots,n\}$ mamy $d_1(h_i,g_x)<\widetilde{\epsilon}$ oraz $u(x)\in[0,1]$, zatem z równości 1.4 otrzymujemy $d_1(g_x,\widetilde{g}_x)<\widetilde{\epsilon}$ dla każdego $x\in V$. Wynika z tego, że $d_2(F,\widetilde{(F)})\le\widetilde{\epsilon}<\epsilon$ (TODO uzasadnic tutaj wewnatrz to ostatnie przejscie od d1 do d2 z definicji d1 i d2), co kończy dowód.

Lemat 1.61.

Lemat 1.62.

Lemat 1.63.

Lemat 1.64.

Lemat 1.65.

Lemat 1.66.

Lemat 1.67.

Rozdział 2

Twierdzenie o rozszerzaniu odwzorowań chaotycznych w sensie Devaneya

Twierdzenie 2.1 (O rozszerzaniu). Twierdzenie wraz z dowodem przytaczamy za pracą [3] Niech (X, ρ) będzie zwartą przestrzenią metryczną bez punktów izolowanych oraz niech $f \in C(X)$ będzie odwzorowaniem chaotycznym w sensie Devaneya. Wówczas odwzorowanie f można rozszerzyć do odwzorowania $F \in C_{\triangle}(X \times I)$ (to znaczy tak, że f jest odwzorowaniem bazowym dla F) w taki sposób, że:

- (i) F jest również chaotyczne w sensie Devaneya,
- (ii) F ma taką samą entropię topologiczną jak f,
- (iii) zbiory $X \times \{0\}$ i $X \times \{1\}$ są niezmiennicze ze względu na F.

 $Dowód\ twierdzenia\ o\ rozszerzaniu.$ Odw
zorowanie f jest chaotyczne w sensie Devaneya, zatem spełnia warunek (2), czyli ma gęsty zbiór punktów okresowych, w szczególności istnieje orbita okresowa. Możemy zatem ustalić okresową orbitę P_0 odw
zorowania f. Ponieważ P_0 jest zbiorem skończonym a X nie ma punktów izolowanych, to P_0 jest nigdziegęstym dom
kniętym podzbiorem X.

Rozważmy zbiór \mathcal{F} wszystkich odwzorowań $F = (f, g_x)$ ze zbioru $C_{\triangle}(X \times I)$ spełniających następujące warunki:

- 1. Odwzorowanie bazowe f spełnia założenia twierdzenia 2.1.
- 2. $\forall_{x \in X}$ odwzorowanie g_x jest niemalejące i krańce przedziału I pozostawia niezmienione.
- 3. $\forall_{x \in P_0} g_x$ jest identycznością

Warunek ?? implikuje, że dla każdego odwzorowania z \mathcal{F} zbiory $X \times \{0\}$ i $X \times \{1\}$ są niezmiennicze, czyli $\forall_{F \in \mathcal{F}}$ zachodzi warunek (iii) twierdzenia 2.1. Zachodzenie warunku (ii) twierdzenia 2.1 dla każdego odwzorowania $F \in \mathcal{F}$ wynika z lematu 1.51. Pozostaje zatem wykazać prawdziwość warunku (i), czyli chaotyczność w sensie Devaneya jakiegoś odwzorowania $F \in \mathcal{F}$. Takie odwzorowanie będzie bowiem łącznie spełniało wszystkie 3 warunki, czyli tezę twierdzenia.

Z lematu 1.40 wynika, że aby odwzorowanie F było chaotyczne w sense Devaneya potrzeba i wystarcza, żeby spełniało dwa poniższe warunki:

- 1. F jest topologicznie tranzytywne
- 2. zbiór punktów okresowych odwzorowania F jest gęsty w $(X \times I)$

Jest tak gdyż przestrzeń $(X \times I)$ spełnia założenia lematu, tj. jest przestrzenią nieskończoną i zwartą.

Chcemy wykazać, że istnieje $F \in \mathcal{F}$ będące jednocześnie topologicznie tranzytywne i posiadające gęsty w $(X \times I)$ zbiór punktów okresowych. Z lematu 1.52wiemy, że \mathcal{F} jest niepustym, domkniętym podzbiorem ptrzestrzeni $C_{\triangle}(X \times I)$, która jak wynika z lematu 1.53 jest przestrzenią metryczną zupełną.

Przekrój dwóch zbiorów rezydualnych jest rezydualny (patrz lemat 1.54) a więc niepusty. Wystarczy zatem pokazać, że oba zbiory:

- zbiór odwzorowań topologicznie tranzytywnych
- \bullet zbiór odwzorowań, których zbiór punktów okresowych jest gęsty w $(X \times I)$

są rezydualne w \mathcal{F} . Wówczas każde odwzorowanie należące do ich przekroju będzie spełniało wszystkie trzy warunki tezy twierdzenia 2.1

Zbiór odwzorowań tranzytywnych jest rezydualny w \mathcal{F} , zostało to udowodnione w twierdzeniu 1.55

Pozostało wykazać, że również zbiór odwzorowań posiadających gęsty zbiór punktów okresowych jest rezydualny w \mathcal{F} . Oznaczmy zbiór takich odwzorowań (jednocześnie należących do \mathcal{F}) przez \mathcal{F}_{DP} .

Niech $\{U_i^X\}_{i=1}^{\infty}$ będzie TODO: bazą topologii komentarz: moze nie pisac ogolnie o bazie topologii tylko o konkretnej bazie dla przypadku przestrzeni zwartej tzn baza - rodzina kul o srodkach w osrodku i promieniach wymiernych X i niech $\{U_i^I\}_{i=1}^{\infty}$ będzie zbiorem wszystkich odcinków otwartych o końcach wymiernych, należących do odcinka otwartego (0,1). Niech $\{U_i\}_{i=1}^{\infty}$ będzie ponumerowaniem zbioru $\{U_i^X \times U_j^I : i, j \in \mathbb{N}\}$. Wtedy każda kula otwarta w $X \times I$ zawiera jakiś spośród otwartych zbiorów U_i .

Dla każdego i=1,2,... niech zbiór \mathcal{F}_{SO}^i ("S" - stabilny, "O" - okresowy) będzie zdefiniowany następująco. Odwzorowanie G należy do \mathcal{F}_{SO}^i wtedy i tylko wtedy, gdy należy do \mathcal{F} , posiada punkt okresowy w U_i oraz wszystkie dostatecznie bliskie G odwzorowania z \mathcal{F} również posiadają punkt okresowy w U_i (być może różne od punktuów okresowych odwzorowania G). Zbiory \mathcal{F}_{SO}^i są otwartymi podzbiorami \mathcal{F} (patrz lemat 1.56). Ponieważ $\mathcal{F}_{DP} \supseteq \bigcap_{i=1}^{\infty} \mathcal{F}_{SO}^i$ aby pokazać, że \mathcal{F}_{DP} jest rezydualny w \mathcal{F} wystarczy pokazać, że $\forall_{i \in \mathbb{N}} \mathcal{F}_{SO}^i$ jest gęsty w \mathcal{F} . (Wynika to z faktów: 1.61 i 1.62).

Aby wykazać że każdy zbiór \mathcal{F}_{SO}^i jest gęsty w \mathcal{F} ustalmy dowolne: $i \in \mathbb{N}, F = (f, g_x) \in \mathcal{F}$ i $\epsilon > 0$. Pokażemy, że istnieje odwrorowanie $G \in \mathcal{F}_{SO}^i$, którego odległość od F nie przekracza ϵ . Dla uproszczenia sytuacji załóżmy, że $\rho(\operatorname{pr}_1(U_i), P_0) > 0$ (Jeżeli tak nie jest, zawsze możemy wziąć zamiast U_i mniejszy prostokąt $U_i^* \subset U_i$).

Weźmy dodatnią liczbę naturalną $N \geq \frac{4}{\epsilon}$. Następnie rozważmy otwarte sąsiedztwo V orbity P_0 w przestrzeni (X, ρ) takie, że $\rho(\operatorname{pr}_1(U_i), V) \geq 0$ oraz $d_1(g_x, \operatorname{Id}) < \frac{\epsilon}{4}$ dla każdego $x \in V$ (pamiętamy, że $g_x = \operatorname{Id}$ dla $x \in P_0$).

 P_0 jest zbiorem niezmienniczym ze względu na f, na mocy lematu 1.57 istnieje niepusty zbiór otwarty $W \subseteq V$ taki, że $W \cup f(W) \cup \ldots \cup f^N(W) \subseteq V$. Na mocy lematu 1.58 istnieje punkt okresowy x_0 odwzorowania f taki, że $x_0 \in \operatorname{pr}_1(U_i)$ oraz orbita x_0 kroi się niepusto ze zbiorem W. Niech r > 0 będzie pierwszą dodatnią liczbą całkowitą dla której $f^r(x_0) \in W$. Wtedy $f^r(x_0), f^{r+1}(x_0), \ldots, f^{r+N-1}(x_0) \in V$. Niech $s \ge 0$ będzie pierwszą nieujemną liczbą całkowitą dla której $f^{r+N+s}(x_0) = x_0$, tj. r + N + s jest okresem punktu

 x_0 . Weźmy y_0 takie, że $(x_0, y_0) \in U_i$. Ponieważ wszystkie odwzorowania włóknowe (g_x) odwzorowania F są "na", to istnieje punkt $y^* \in (0,1)$ taki, że $F^s(f^{r+N}(x_0), y^*) = (x_0, y_0)$ (patrz lemat 1.59).

Przypadek 1. $z = \text{pr}_2(F^r(x_0, y_0))$ jest różne od 0 i 1. Oznaczmy przez g odwzorowanie z C(I) posiadające następujące trzy własności:

- (g1) $d_1(g, \mathrm{Id}) < \frac{\epsilon}{4}$,
- (g2) g jest odwzorowaniem niemalejącym, pozostawiającym końce przedziału I niezmienione,
- (g3) $g^N(z) = y^*$.

Następnie, rozważmy odwzorowanie $h \in C(I)$ posiadające trzy następujące własności:

- (h1) $d_1(h, g_{x_0}) < \frac{\epsilon}{4}$,
- (h2) $h(y_0) = g_{x_0}(y_0)$
- (h3) hjest stałe na zwartym odcinku $[a,b]\subseteq \operatorname{pr}_2(U_i)$ zawierającym punkt y_0 w swoim wnętrzu.

Weźmy teraz odwzorowanie $G=(f,\tilde{g}_x)\in\mathcal{F}$ takie, że $d_2(G,F)<\frac{\epsilon}{2}$ oraz

$$\widetilde{g}_{x} = \begin{cases}
h & \text{if } x = x_{0}, \\
g & \text{if } x \in \{f^{k}(x_{0}) : r \leq k \leq r + N - 1\}, \\
g_{x} & \text{if } x \in \{f^{k}(x_{0}) : 1 \leq k \leq r - 1 \text{ or } r + N \leq k \leq r + N + s - 1\}.
\end{cases}$$
(2.1)

Odwzorowanie takie istnieje na mocy lematu 1.60, ponieważ

$$d_1(\widetilde{g}_{x_0}, g_{x_0}) = d_1(h, g_{x_0}) < \frac{\epsilon}{4}$$

oraz dla $x \in \{f^r(x_0), f^{r+1}(x_0), \dots, f^{r+N-1}(x_0)\},\$

$$d_1(\tilde{g}_x, g_x) = d_1(g, g_x) \le d_1(g, \operatorname{Id}) + d_1(\operatorname{Id}, g_x) < \frac{\epsilon}{4} + \frac{\epsilon}{4} = \frac{\epsilon}{2}$$

Punkt $(x_0,y_0)\in U_i$ jest punktem okresowym odwzorowania G,ponieważ

$$G^{r+N+s}(x_0, y_0) = G^{r+N+s-1}(G(x_0, y_0))$$

$$= G^{r+N+s-1}(F(x_0, y_0)) = G^{N+s}(F^r(x_0, y_0))$$

$$= G^{N+s}(f^r(x_0), z) = G^s(f^{r+N}(x_0), y^*)$$

$$= F^s(f^{r+N}(x_0), y^*) = (x_0, y_0).$$
(2.2)

TODO: Szczegółowe uzasadnienie powyższej równości:

Ponadto, ze względu na (h3), na mocy 1.63 zachodzi

$$G^{r+N+s}(\{x_0\} \times [a,b]) = \{(x_0, y_0)\}.$$

Z faktu $y_0 \in (a,b)$ oraz 1.64 wynika, że każde odwzorowanie $\tilde{G} \in \mathcal{F}$ dostatecznie bliskie G posiada własność

 $\widetilde{G}^{r+N+s}(\{x_0\} \times [a,b]) \subseteq \{x_0\} \times [a,b].$

Zatem \tilde{G} posiada punkt okresowy w $\{x_0\} \times [a,b] \subseteq U_i$. Zatem $G \in \mathcal{F}_{SO}^i$, co kończy dowód dla przypadku 1.

Przypadek 2. $\operatorname{pr}_2(F^r(x_0, y_0))$ jest równy 0 lub 1.

W takim przypadku użyjemy lematu 1.60 aby dostać odwzorowanie $H=(f,h_x)\in\mathcal{F}$ takie, że $d_2(H,F)<\frac{\epsilon}{2}$ i dla $x\in\{x_0,f(x_0),\ldots,f^{r-1}(x_0)\}$ odwzorowania włóknowe h_x są ściśle rosnące. (Odwzorowanie takie istnieje na mocy 1.65) Ponieważ y_0 jest różnie od 0 i 1 dostajemy, że $\operatorname{pr}_2(H^r(x_0,y_0))$ również jest różne od 0 i 1 (uzasadnienie w 1.66). Następnie korzystając z przypadku 1 i z lematu 1.67 dostajemy odwzorowanie $G\in\mathcal{F}_{SO}^i$, dla którego zachodzi nierówność $d_2(G,H)<\frac{\epsilon}{2}$. Wówczas $d_2(G,F)<\epsilon$. (TODO powolac sie na nierownośc trojkata)

Podsumowanie

Podsumowanie w pracach matematycznych nie jest obligatoryjne. Warto jednak na zakończenie krótko napisać, co udało nam się zrobić w pracy, a czasem także o tym, czego nie udało się zrobić.

Dodatek

Dodatek w pracach matematycznych również nie jest wymagany. Można w nim przedstawić np. jakiś dłuższy dowód, który z pewnych przyczyn pominęliśmy we właściwej części pracy lub (np. w przypadku prac statystycznych) umieścić dane, które analizowaliśmy.

Bibliografia

- [1] ALSEDA, L., KOLYADA, S., LLIBRE, J., SNOHA, L. Entropy and periodic points for transitive maps. *Transactions of the American Mathematical Society 351*, 4 (1999), 1551–1573.
- [2] Alsedà, L., Llibre, J., Misiurewicz, M. Combinatorial Dynamics and Entropy in Dimension One, vol. 5. 1993.
- [3] Balibrea, F., Snoha, L. Topological entropy of devaney chaotic maps. *Topology* and its Applications 133, 3 (2003), 225–239.
- [4] Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P. On devaney's definition of chaos. *The American Mathematical Monthly 99*, 4 (1992), 332–334.
- [5] GLEICK, J. Chaos: Making a New Science. Penguin Books, New York, NY, USA, 1987.
- [6] RUETTE, S. Chaos on the Interval. 2018.