Authorization

Shuai Wang

Some slides are from Mark Stamp.

Authentication vs Authorization

- Authentication Are you who you say you are?
 - Restrictions on who (or what) can access system
- Authorization Are you allowed to do that?
 - Restrictions on actions of authenticated users
- Authorization is a form of access control
- Two major views of authorization...
 - Firewall → networking (our topic today)
 - Access Control Lists (ACLs)/Capabilities (C-lists) → OS kernel

Firewalls

- All network flows were possible
 - Into or out of our network
 - To/from individual hosts and their processes

Firewall decides what to let in to internal network and/or what to let out → access control

Firewall

- No standard firewall terminology
- Types of firewalls
 - Packet filter works at network layer
 - Stateful packet filter transport layer
 - Application proxy application layer
- Lots of other terms often used
 - E.g., "deep packet inspection"
 - Some marketing strategies...

Packet Filter

- Operates at network layer
 - What do we have on network layer?
- Can filters based on...
 - Source IP address
 - Destination IP address
 - Source Port
 - Destination Port
- But also "cheat" to some extent:
 - Flag bits (SYN, ACK, etc.)

Packet Filter

- Advantages?
 - Speed
- Disadvantages?
 - No concept of state
 - Cannot see TCP connections
 - Blind to application data

application transport network link physical

Packet Filter

- Configured via Access Control Lists (ACLs)
 - Note that this is a bit different from the ACLs is OS

Action	Source IP	Dest IP	Source Port	Dest Port	Protocol	Flag Bits
Allow	Inside	Outside	Any	80	HTTP	Any
Allow	Outside	Inside	80	> 1023	HTTP	ACK
Deny	All	All	All	All	All	All

□ **Q**: Intention?

■ A: Restrict traffic to Web browsing

Vulnerable! But let's first introduce Port Scan Attacks...

Port Scanning

- Attacker scans for open ports thru firewall
 - Port scanning often the prerequisite in network attack
 - Knock on "doors" (ports) to see which are open
- Attackers wants to determine open ports
 - 65k TCP ports and 65k UPD ports
 - Well-known ports correspond to services
 - Open port is a doorway into machine

Nmap

- Nmap --- most popular port scan tool
 - Developed by Fydor
 - Free at <u>www.insecure.org</u>
 - Unix, Linux and Windows versions
 - Command line and GUI
 - Appeared in The Matrix Reloaded

TCP 3-Way Handshake

Recall the 3-way handshake...

- **SYN** synchronization requested
- SYN-ACK acknowledge SYN request
- ACK acknowledge SYN-ACK (send data)
- Then TCP "connection" established

TCP Connect Scan

- "Polite scan"
- Complete the TCP 3-way handshake
 - Nmap sends SYN, wait for SYN-ACK
 - If port is open, Nmap sends ACK, then FIN
 - If closed, no reply
- Pros?
 - Should not cause problem for target
- Cons?
 - attacker's IP address in logs, etc.

TCP SYN Scans

- Nmap sends SYN
 - Gets SYN-ACK
 - In any case, Nmap sends RESET
 - I.e., only 2/3rds of 3-way handshake completed
- Pros?
 - may not be logged by host
 - Faster, fewer packets

But we have firewall...

- Simpleminded packet filter might...
 - Allow outbound, established connections
 - Block incoming if ACK bit not set

Action	Source IP	Dest IP	Source Port	Dest Port	Protocol	Flag Bits
Allow	Inside	Outside	Any	80	HTTP	Any
Allow	Outside	Inside	80	> 1023	HTTP	ACK
Deny	All	All	All	All	All	All

But we have firewall...

- Simpleminded packet filter might...
 - Allow outbound, established connections
 - Block incoming if ACK bit not set

But we can do TCP ACK Scan...

- Packet filter assumes
 - ACK bit set ⇒ established connection
- How can the Attacker take advantage of this?
- Send packets with ACK bit set!
 - These pass thru open ports
 - Allows for simple port scan of firewall

But we can do TCP ACK Scan...

- No response/unreachable: filtered
- RESET if port is not filtered

So how to prevent this? Our firewall does not have the "state" of TCP connection in mind.

A stateful packet filter can prevent this

Since scans not part of established connections

Stateful Packet Filter

- Adds state to packet filter
- Operates at transport layer
- *Remembers* TCP connections, flag bits, etc.

Stateful Packet Filter

- Advantages?
 - Can do everything a packet filter can do plus...
 - Keep track of ongoing connections (e.g., prevents TCP ACK scan)
- Disadvantages?
 - Cannot see application data
 - Slower than packet filtering

Application Proxy

- A proxy is something that acts on your behalf
- Application proxy looks at incoming application data
- Verifies that data is safe before letting it in
- Proxy firewall; application firewall; gateway firewall.

application transport network link physical

Application Proxy

- Advantages?
 - Complete view of connections and applications data
 - Filter bad data at application layer (viruses, Word macros)
- Disadvantages?
 - Speed

application transport network link physical

Application Proxy

- Creates a new packet before sending it thru to internal network
- Proxy has complete view of connection
- Can prevent some scans stateful packet filter cannot → Firewalk style scanning

But let's first introduce Firewalk...

- Determines what gets thru firewall
 - Assuming a packet filter firewall
- Firewalk has 2 phases
 - Network discovery
 - Actual scanning

- Network discovery phase
 - Use TTL to find hops to firewall
 - TTL: Time to Live

- Scanning phase
 - Packet sent to host behind firewall

- Nmap vs Firewalk
 - Nmap does port scan of hosts
 - What happens if you Nmap a firewall?
 - Tells you ports firewall is listening on
 - But, you want to know filtered ports

- Nmap vs Firewalk
- But what about Nmap ACK scan?
 - Attacker learns which ports firewall allows established connections
- Firewalk tells attacker ports that firewall allows new connections on
 - More useful info to attacker to certain extent

- TTL field crucial to Firewalk
- Packet filter and stateful packet filters both decrement TTL field
 - So Firewalk can work against these
- Application proxy firewall?
 - Proxy does not forward packet
 - Instead, creates a new packet... so what?

Firewalk and Proxy Firewall

- This will not work thru an application proxy (why?)
- The proxy creates a new packet, destroys old TTL
 - Usually the TTL is set [32, 64], and max value is 256

Intrusion Detection Systems

Intrusion Prevention

- Want to keep bad guys out
- Intrusion prevention is a traditional focus of computer security
 - Authentication is to prevent intrusions
 - Firewalls a form of intrusion prevention
 - Virus defenses aimed at intrusion prevention
 - Like locking the door on your car

Intrusion Detection

- In spite of intrusion prevention, bad guys will sometime get in
- Intrusion detection systems (IDS)
 - Detect attacks in progress (or soon after)
 - Look for unusual or suspicious activity
- IDS evolved from log file analysis
- How to respond when intrusion detected?
 - We don't deal with this topic here...

Intrusion Detection Systems

- Who is likely intruder?
 - May be outsider who got thru firewall
 - May be evil insider
- What do intruders do?
 - Launch well-known attacks
 - Launch variations on well-known attacks
 - Launch new/little-known attacks
 - "Borrow" system resources
 - Use compromised system to attack others. etc.

IDS

- Intrusion detection approaches
 - Signature-based IDS
 - Anomaly-based IDS
- Intrusion detection architectures
 - Host-based IDS
 - Network-based IDS

Host-Based IDS

- Monitor activities on hosts for
 - Known attacks
 - Suspicious behavior
- Designed to detect attacks such as
 - Buffer overflow
 - Escalation of privilege, ...
- Little or no view of network activities

Network-Based IDS

- Monitor activity on the network for...
 - Known attacks
 - Suspicious network activity
- Designed to detect attacks such as
 - Denial of service
 - Network probes
 - Malformed packets, etc.
- Some overlap with firewall
- Little or no view of host-base attacks
- Can have both host and network IDS

Signature Detection Example

- Failed login attempts may indicate password cracking attack
- IDS could use the rule "N failed login attempts in M seconds" as signature
- If N or more failed login attempts in M seconds, IDS warns of attack

Signature Detection

- Suppose IDS warns whenever N or more failed logins in M seconds
 - Set N and M so false alarms not common (how?)
 - Can do this based on "normal" behavior
- But, if an attacker knows the signature, she can try N-1 logins every M seconds...
- Then signature detection slows down the attacker, but might not stop her

Signature Detection

- Many techniques used to make signature detection more robust
- Goal is to detect "almost" signatures
- For example, if "about" N login attempts in "about" M seconds
 - Warn of possible password cracking attempt
 - What are reasonable values for "about"?
 - Can use statistical analysis, heuristics, etc.
 - Must not increase false alarm rate too much

Signature Detection

- Advantages of signature detection
 - Simple
 - Detect known attacks
 - Know which attack at time of detection
 - Efficient (if reasonable number of signatures)
- Disadvantages of signature detection
 - Signature files must be kept up to date
 - Number of signatures may become large
 - Can only detect known attacks
 - Variation on known attack may not be detected

Anomaly Detection

- Anomaly detection systems look for unusual or abnormal behavior
- There are (at least) two challenges
 - What is normal for this system?
 - How "far" from normal is abnormal?
- Some statistics...
 - mean defines normal
 - variance gives distance from normal to abnormal

How to Measure Abnormal?

- Abnormal is relative to some "normal"
 - Abnormal indicates possible attack
- Statistical discrimination techniques include
 - Bayesian statistics
 - Linear discriminant analysis (LDA)
 - Quadratic discriminant analysis (QDA)
 - Neural nets, hidden Markov models (HMMs), etc.
- Fancy modeling techniques also used
 - Artificial intelligence
 - Artificial immune system principles
 - Many, many, many others

Anomaly Detection (1)

 $\begin{tabular}{ll} \bullet & Over time, Alice has \\ accessed file F_n at rate \\ H_n \end{tabular}$

Recently, "Alice" has accessed
F_n at rate A_n

H_0	H_1	H_2	H_3
.10	.40	.40	.10

A_0	A_1	A_2	A_3
.10	.40	.30	.20

- Is this normal use for Alice?
- □ We compute $S = (H_0 A_0)^2 + (H_1 A_1)^2 + ... + (H_3 A_3)^2 = .02$
 - We consider S < 0.1 to be normal, so this is normal
- How to account for use that varies over time?

Anomaly Detection (1)

- To allow "normal" to adapt to new use, we update averages: $H_n = 0.2A_n + 0.8H_n$
- In this example, H_n are updated... H_2 =.2*.3+.8*.4=.38 and H_3 =.2*.2+.8*.1=.12
- And we now have

H_0	H_1	H_2	H_3
.10	.40	.38	.12

Anomaly Detection (1)

 The updated long term average is

H_0	H_1	H_2	H_3
.10	.40	.38	.12

Suppose new observed rates...

A_0	A_1	A_2	A_3
.10	.30	.30	.30

- Is this normal use?
- □ Compute $S = (H_0 A_0)^2 + ... + (H_3 A_3)^2 = .0488$
 - o Since S = .0488 < 0.1 we consider this normal
- And we again update the long term averages:

$$H_n = 0.2A_n + 0.8H_n$$

Anomaly Detection (2)

The starting averages were:

H_0	H_1	H_2	H_3
.10	.40	.40	.10

After 2 iterations, averages are:

H_0	H_1	H_2	H_3
.10	.38	.364	.156

- Statistics slowly evolve to match behavior
- This reduces false alarms
- But attackers can, well, move slow and gradually convince the IDS

Anomaly Detection (2)

- To make this approach more robust, must incorporate the variance
- Can also combine N stats S_i as, say,

$$T = (S_{N-k} + ... + S_{N-1} + S_N) / N$$

to obtain a more complete view of "normal"

Real-world approach combines anomaly & signature IDS

Anomaly Detection Issues

- Systems constantly evolve and so must IDS
 - Static system would place huge burden on admin
 - But evolving IDS makes it possible for attacker to (slowly) convince IDS that an attack is normal
 - Attacker may win simply by "going slow"
- What does "abnormal" really mean?
 - Indicates there may be an attack
 - Might not be any specific info about "attack"
 - How to respond to such vague information?
 - In contrast, signature detection is very specific

Anomaly Detection

- Advantages?
 - Chance of detecting unknown attacks
- Disadvantages?
 - Cannot use anomaly detection alone...
 - ...should be used with signature detection
 - Reliability is unclear → arguable
 - May be subject to attack
 - Anomaly detection indicates "something unusual", but lacks specific info on possible attack