Github link: https://github.com/Arthiarthiangamuthu/projectforecasting-house-prices.git

Phase-2

Forecasting house prices accurately using smart regression techniques in data science

1. Problem Statement:

This problem can be tackled using **advanced regression techniques** in data science, which can model and predict house prices with higher accuracy. By leveraging machine learning algorithms such as **linear regression**, **decision trees**, **random forests**, **gradient boosting**, or even **neural networks**, we aim to provide a more reliable and data-driven approach to predicting house prices.

The goal is to develop a regression model that:

- Accurately predicts house prices based on available feature
- **Minimizes errors** such as overfitting or underfitting, ensuring that the model generalizes well to new data.
- **Incorporates advanced techniques** like feature engineering, hyperparameter tuning, and ensemble learning to optimize performance.
- Provides **insightful explanations** of how different features (such as location, amenities, or square footage) influence the pricing, offering transparency and interpretability.

2. Project Objectives:

• Data Cleaning & Preprocessing:

a. Ensure that the dataset is free of inconsistencies and missing values, and all features are ready for machine learning models.

• Feature Selection & Engineering:

b. Identify which features significantly contribute to house price prediction and create new, meaningful features that can enhance model performance.

• Hyperparameter Tuning:

- c. Use methods like Grid Search or Randomized Search to find the best model configuration, including regularization strengths, learning rates, and tree depth (for treebased models).
- Model Evaluation & Error Analysis:

d. Ensure that the model is robust, generalizing well to unseen data by evaluating it on test datasets and using error analysis to identify bias or areas for improvement.

• Model Interpretability:

e. Provide stakeholders with clear explanations about how the model makes predictions, using feature importance, SHAP values, and other interpretability tools.

• Scalability & Real-time Prediction:

f. Ensure the solution is scalable for real-world applications and can handle real-time house price predictions in dynamic environments.

3. Flowchart of the Project Workflow:

4. Data Description:

Dataset Name & Source:

House Prices: Advanced Regression Techniques — available on https://www.kaggle.com/datasets/yasserh/housing-prices-dataset

• Data Type:

Structured tabular data comprising numerical and categorical variables.

• Size & Features:

- o **Training Set**: 1,460 records with 81 columns (including the target).
- o **Test Set**: 1,459 records with 80 features (excluding the target).
- The dataset includes 79 explanatory variables detailing various aspects of residential homes in Ames, Iowa, such as lot size, year built, and overall quality.
 GitHub+2Medium+2Medium+2GitHub+5Medium+5GitHub+5

• Static or Dynamic:

Static dataset — it does not update over time.

• Target Variable:

SalePrice — representing the property's sale price in dollars. This is the variable the models aim to predict. <u>DataHen+3Kaggle+3Medium+3</u>

5. Data Preprocessing:

• Data Cleaning

a. Handling Missing Values

- Numerical Features: Impute missing values using the median or mean. For instance, if the 'LotFrontage' feature has missing values, you might fill them with the median value of that column.
- Categorical Features: Fill missing values with the mode (most frequent value) or a placeholder likeUnknown'. For example, if 'GarageType' is missing, you can replace it with 'Unknown'.

• Feature Engineering

a. Encoding Categorical Variables

• **Ordinal Encoding**: For features with an inherent order (e.g., 'ExterQual' with values like 'Poor', 'Fair', 'Good', 'Excellent'), map them to numerical values accordingly.

b. Creating New Features

• Combine existing features to create new ones. For instance, 'TotalBathrooms' can be derived by summing full and half bathrooms.

3. Feature Scaling

• **Standardization (Z-score Normalization)**: Rescale features to have a mean of 0 and a standard deviation of 1. This is especially useful for algorithms sensitive to feature scales.

• **Min-Max Scaling**: Rescale features to a specific range, typically [0, 1]. This is useful when the distribution is not Gaussian..

4. Data Splitting

- **Train-Test Split**: Divide the dataset into training and testing sets, typically using an 80-20 split. This helps in evaluating the model's performance on unseen data.
- Cross-Validation: Use k-fold cross-validation to ensure that the model's performance is consistent across different subsets of the data.

6. Exploratory Data Analysis (EDA):

1. Univariate Analysis

a. Numerical Features

Objective: Understand the distribution, central tendency, and dispersion of individual numerical variables.

- **Histograms**: Visualize the frequency distribution of variables like SalePrice, GrLivArea, and LotAreaCategorical Features
- Objective: Assess the frequency distribution of categorical variables.

b.Categorical Features

• Countplots: Visualize the count of each category in variables like Neighborhood or HouseStyle.

2. Bivariate Analysis

a. Numerical vs. Numerical

Objective: Examine relationships between pairs of numerical variables. <u>GeoDa+8The Click</u> Reader+8Artificial Intelligence in Plain English+8

• Scatterplots: Identify correlations between variables like GrLivArea and SalePrice.

b. Categorical vs. Numerical

Objective: Understand how categorical variables influence numerical outcomes.

• Boxplots: Compare SalePrice across different categories of OverallQual

3. Multivariate Analysis

- **Objective**: Explore interactions among multiple variables simultaneously.
- Correlation Matrix: Identify pairs of variables with strong linear relationships.
- Pairplots: Visualize pairwise relationships and distributions among a set of variables.

7. Feature Engineering:

1. Creating New Features Based on Domain Knowledge and EDA Insights

a. Total Square Footage

Combine various area-related features to capture the total usable space:DEV Community.

```
df['TotalSF'] = df['TotalBsmtSF'] + df['1stFlrSF'] + df['2ndFlrSF']
```

2. Combining or Splitting Columns

a. Extracting Year and Month from Sale Date

If a 'SaleDate' column exists, decompose it:

```
df['SaleYear'] = df['SaleDate'].dt.year
df['SaleMonth'] = df['SaleDate'].dt.mont
```

b. Interaction Feature

```
Create features that capture interactions between variables:
df['OverallQual GrLivArea'] = df['OverallQual'] * df['GrLivArea']
```

3. Applying Techniques like Binning, Polynomial Features, Ratios

a. Binning 'HouseAge'

Group houses into age categories:

```
df['AgeBin'] = pd.cut(df['HouseAge'], bins=[0, 10, 20, 50, 100, np.inf], labels=['0-10', '11-20', '21-50', '51-100', '100+'])
```

8. Model Building:

1. Model Selection

For predicting continuous variables like house prices, regression models are suitable. Two commonly used models are:

a. Linear Regression

- Overview: Assumes a linear relationship between independent variables and the target variable.
- **Pros**: Simple to implement and interpret.
- Cons: May underperform if the underlying relationship is non-linear or if multicollinearity exists.

b. Random Forest Regressor

- Overview: An ensemble learning method that builds multiple decision trees and merges their results.
- **Pros**: Handles non-linear relationships and interactions well; robust to outliers and overfitting.
- Cons: Less interpretable compared to linear models.

2. Data Splitting

Divide the dataset into training and testing sets to evaluate model performance on unseen data.

from sklearn.model selection import train test split

3. Model Training

a. Linear Regression

from sklearn.linear model import LinearRegression

```
lr_model = LinearRegression()
lr model.fit(X train, y train)
```

b. Random Forest Regressor

from sklearn.ensemble import RandomForestRegressor

```
rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
rf_model.fit(X_train, y_train)
```

4. Model Evaluation

Evaluate model performance using regression metrics: <u>CodeSignal+1DataHen+1</u>

- Mean Absolute Error (MAE): Average absolute difference between predicted and actual values.
- **Root Mean Squared Error (RMSE)**: Square root of the average squared differences between predicted and actual values.
- R-squared (R²): Proportion of variance in the target variable explained by the model.

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score import numpy as np

5. Interpretation of Results

- MAE: Provides a straightforward measure of average error in the same units as the target variable.
- **RMSE**: Penalizes larger errors more than MAE, useful when large errors are particularly undesirable.
- R²: Indicates how well the model explains the variability of the target variable; values closer to 1 suggest better performance.

9. Visualization of Results & Model Insights:

1. Feature Importance Plot

Purpose: Identify which features most significantly influence house price predictions.

import matplotlib.pyplot as plt import pandas as pd import seaborn as sns

2. Residual Plot

Purpose: Assess the difference between actual and predicted values to identify patterns indicating model issues.

import matplotlib.pyplot as plt import seaborn as sns

3. Actual vs. Predicted Plot

Purpose: Visualize how closely the model's predictions align with actual house prices.

import matplotlib.pyplot as plt import seaborn as sns

4. Model Performance Metrics

Purpose: Quantify the model's predictive accuracy using standard regression metrics.

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score import numpy as np

10. Tools and Technologies Used:

1. Programming Language

• **Python**: Chosen for its extensive libraries and community support in data science and machine learning.

2. Development Environment

- **Jupyter Notebook**: Utilized for its interactive environment, facilitating exploratory data analysis and iterative model development.
- **Google Colab**: Employed for its cloud-based platform, allowing for collaboration and access to GPU resources.

3. Data Manipulation and Analysis Libraries

- pandas: Used for data manipulation and analysis, providing data structures like DataFrames.
- NumPy: Leveraged for numerical computations and handling arrays.

4. Data Visualization Tools

- matplotlib: Employed for creating static, animated, and interactive visualizations.
- seaborn: Built on top of matplotlib, used for making statistical graphics.
- **Plotly**: Utilized for interactive visualizations, aiding in dynamic data exploration.

5. Machine Learning Libraries

- **scikit-learn**: Used for implementing machine learning algorithms, including regression models, and for model evaluation.
- **XGBoost**: Applied for its efficient and scalable implementation of gradient boosting, enhancing model performance.

6. Optional Visualization Tools

- Tableau: Considered for creating dashboards and sharing insights with stakeholders.
- Power BI: Evaluated for its business analytics capabilities and interactive visualizations.

11. Team Members and Contributions:

A. Arthi

Data Cleaning

• Responsibilities:

- o Handled missing values through imputation or removal strategies.
- o Identified and removed duplicate records to ensure data integrity.
- o Standardized data formats and ensured consistency across the dataset.

Model Development & Evaluation

- Responsibilities:
- Built and compared multiple regression models, including Linear Regression and Random Forest.
- Split data into training and testing sets, ensuring appropriate stratification.

P. Babyshalini

Exploratory Data Analysis (EDA)

- Responsibilities:
 - o Conducted univariate analysis using histograms, boxplots, and countplots.
 - o Identified patterns, trends, and potential outliers in the data.

Feature Engineering

- Responsibilities:
- Created new features based on domain knowledge and insights from EDA.
- Applied techniques like binning and polynomial features to enhance model performance.

R. Akila

Documentation & Reporting

- Responsibilities:
- Compiled comprehensive documentation detailing each phase of the project.
- Created visual comparisons of model performance.