Équation et inéquation avec des valeurs absolues

1 Équation

Résoudre dans $\mathbb R$ l'équation suivante :

$$|-3x + 4| + |-5 + x| = 10$$
 (*E*₁)

- On détermine les valeurs frontières de chaque valeur absolue :

$$-3x + 4 = 0$$

soit

$$x = \frac{4}{3}$$

$$-5 + x = 0$$

soit

$$x = 5$$

→ On remplit un tableau de forme :

x	-∞	$\frac{4}{3}$		5		+∞
$\left -3x + 4 \right $	-3x + 4	0	3x - 4	11	3x - 4	
$\left -5+x\right $	5 – <i>x</i>	$\frac{11}{3}$	5 – <i>x</i>	0	-5 + x	
(E_1)	$-4x+9 = 1$ $x = -\frac{1}{4}$ possible		$2x + 1 = 10$ $x = \frac{9}{2}$ possible		$4x - 9 = 10$ $x = \frac{19}{4}$ impossible	

on obtient alors deux solutions $S = \left\{-\frac{9}{4}; \frac{9}{2}\right\}$

- Résolution graphique :

2 Inéquation

Résoudre dans ${\mathbb R}$ l'inéquation suivante :

$$|2x - 1| \le |x + 2|$$
 (*E*₂)

- On détermine les valeurs frontières de chaque valeur absolue.

$$2x - 1 = 0$$

soit

$$x = \frac{1}{2}$$

$$x + 2 = 0$$

soit

$$x = -2$$

- On remplit un tableau de forme :

x	$-\infty$		-2		$\frac{1}{2}$		+∞
2x - 1		-2x + 1	5	-2x + 1	0	2x - 1	
x+2		-x - 2	0	<i>x</i> + 2	$\frac{5}{2}$	x + 2	
(E ₂)		$-2x+1 \leqslant -x-2$ $x \geqslant 3$ impossible $S_1 = \emptyset$		$-2x+1 \leqslant x+2$ $x \geqslant -\frac{1}{3}$ $S_2 = \left[-\frac{1}{3}; \frac{1}{2} \right]$		$2x-1 \le x+2$ $x \le 3$ $S_3 = \left[\frac{1}{2}; 3\right]$	

on obtient alors la solution
$$S = S_1 \cup S_2 \cup S_3 = \left[-\frac{1}{3};3\right]$$

· Résolution graphique :

