Domanda 1

Si completi il programma per un processore di tipo MIPS riportato in tabella in modo che rispecchi i valori dei iniziali e finali dei predittori della Branch Prediction Unit (BPU) basata su Branch History Table (BHT) riportata in tabella. Nel caso specifico, si consideri una BPU di tipo BHT con contatori a saturazione di 2-bit e 1K elementi. Si assuma che lo stato iniziale della BHT è indicato nella colonna **BHT INIT** e lo stato finale dopo l'esecuzione del programma nella

colonna **BHT END**. Il programma deve essere in grado di portare la BHT dalla colonna di inizio allo stato finale indicato, prima di arrivare all'istruzione HALT.

Assunzioni Generali:

r2 = 0 nelle iterazioni pari (0, 2, 4, ..., 98) e 1 nelle iterazioni dispari (1, 3, 5, ..., 99)

Address	Instruc	tion	BHT INIT	BHT END
0x0000		DADDUI r10, r0, r0		
0x0004		DADDUI r9, r0, #1		
0x0008				
0x000C				
0x0010	Lab0:	SLT r1, r10, r9		
0x0014		BEQZ r1, Lab2	0	3
0x0018	Lab1:			
0x001C		BEQZ r0 Lab2	0	1
0x0020				
0x0024	Lab2:	•••		
0x0028		DADDUI r10, r10, #1		
0x002C		DADDI r11, r10, #-100		
0x0030		BNEZ r11 Lab3	0	2
0x0038		•••		
0x003c	Lab3:	SLT r1, r2, r9		
0x0040		BEQZ r1 Lab4	0	1
0x0044				
0x0048	Lab4:	•••		
0x004c				
0x0050				
0x0054		BNEZ r11, Lab0	0	2
0x0058		HALT		

Domanda 2

Considerando il processore MIPS64 con l'architettura descritta in seguito:

- Unità intera ALU: 1 clock cycle
- Data memory: 1 clock cycle
- FP multiplier unit: pipelined 8 stages
- FP arithmetic unit: pipelined 4 stages
- FP divider unit: not pipelined unit that requires 10 clock cycles
- branch delay slot: 1 clock cycle
- data forwarding is enabled
- it is possible to complete instruction EXE stage in an out-of-order fashion,

Si ottimizzi il programma per migliorare le sue prestazioni cercando di eliminare la maggior degli stalli dovuti ai hazard presenti nel programma. Si usino le seguenti tecniche di ottimizzazione: instruction rescheduling, register renaming, loop unrolling (di massimo 2 iterazioni) e abilitazione del branch delay slot.

		Clock cycles - Originali	Versione codice ottimizzato		Clock cycles - Ottimizzati		
V1- V2-V3-V4: .double "100 values"			_	V1-V2-V3-V4: .double "100 values"		_	
main:	daddu	i r1,r0,0	5	main:	daddu	i r1,r0,0	5
	daddu	i r2,r0,100	1		daddu	i r2,r0,50	1
loop:	l.d	f1,v1(r1)	$1 \rightarrow 2$	start:	l.d	f1,v1(r1)	1
	1.d	f2,v2(r1)	1		l.d	f2,v2(r1)	1
	mul.d	f7,f1,f2	9		l.d	f3,v3(r1)	1
	1.d	f3,v3(r1)	0		l.d	f4,v4(r1)	1
	1.d	f4,v4(r1)	0		mul.d	f7,f1,f2	8
	mul.d	f8,f3,f4	4		mul.d	f8,f3,f4	1
	add.d	f10,f8,f7	4		daddi	r2,r2,-1	0
	s.d	f10,v7(r1)	1		l.d	f11,v1+8(r1)	0
	daddui	r1,r1,8	1		l.d	f12,v2+8(r1)	0
	daddi	r2,r2,-1	1		l.d	f13,v3+8(r1)	0
	bnez	r2,loop	2		1.d	f14,v4+8(r1)	0

Architetture dei Sistemi di Elaborazione - TEORIA – 23 giugno 2021

halt	$0 \rightarrow 1$	mul.d f5,f11,f12	6
_		mul.d f6,f13,f14	1
_		add.d f10,f8,f7	0
_	_	s.d f10,v7(r1)	0
_	_	add.d f9,f6,f5	4
_	_	daddui r1,r1,16	0
_	_	bnez r2,loop	0
_	_	s.d f9,v7-8(r1)	1
_	_	halt	0
Totale	2506		1256