This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representation of The original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-240570

(43)Date of publication of application: 27.08.1992

(51)Int.Cl.

GO1R 1/073 GO1R 31/26

(21)Application number: 03-006660

(71)Applicant: SHIMADZU CORP

(22)Date of filing:

24.01.1991

(72)Inventor: INOUE NAOAKI

(54) MICRO-PROBE BOARD

(57) Abstract:

PURPOSE: To collectively perform the probing of an electronic part having matrix like electrode arrangement and to improve high frequency characteristics.

CONSTITUTION: An electronic part having electrodes arranged thereto at a fine pitch in a matrix form is brought into contact with a micro-probe board equipped with probe needles 5 each formed by covering a bonding wire 3 being a core with a hard metal 4 to take continuity and a predetermined test signal is applied to the electronic part from the micro-probe board to perform a test.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's

decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(citation 2)

Japanese Patent Laying-Open Publication No. H4-240,570

Publication Date: August 27, 1992

Application No. H3-6,660 filed January 24, 1991

Inventor: Naoaki INOUE

Applicant: K.K. Shimazu Seisakusho

Title of the invention: Micro probe board

(Claim)

A micro probe board (1) characterized by having probe needles (5) each of which has a core (3) of a bonding wire and a hard metal coverage (4) surrounding the core.

(Abridgment of the description)

The claimed invention aims to provide a micro probe board 1 which can be connected to probe an electronic device 6 having a matrix of electrodes or terminals 7. As shown in Fig. 4, a gold wire 3 is bonded at one end to a pad 2 of a board 1 and to a pad 8 at the other end. A voltage is applied across the pads 2,8 so that a sheath or coverage 4 of a hard metal material (not specified) can be plated over the wire core as shown in Fig. 5. The resultant structure is coated with a resin material and ground to a predetermined height (A-A'). The wire section on the pad 8 and the coated resin material are then removed to leave a free-standing, truncated probe needle 5. A plurality of such probe needles are arrayed on the substrate 1 and wired to a testing circuit 10.

Fig. 12 shows a prior art micro probe board wherein tungsten needles are soldered to printed circuit boards 13. To test a wafer 15 placed on a wafer stage 14, the tungsten needles 12 are brought to contact with the wafer 15 to apply predetermined test signals.

(19)日本国特許庁 (JP) (12) 公 開 特 許 公 報 (A)

(11)特許出願公開番号

特開平4-240570

(43)公開日 平成4年(1992)8月27日

(51) Int.Cl.3

塑別記号

庁内室理番号

FI

技術表示箇所

G 0 1 R 1/073 31/25

D 9016-2G

J 8411-2G

管査請求 未請求 請求項の数1(全 4 頁)

(21)出類番号

(22)出頭日

持額平3-6660

平成3年(1991)1月24日

(71)出類人 000001993

朱式会社島津製作所

京都府京都市中京区西ノ京桑原可1 番地

(72) 発明者 井上 尚明

京都市中京区西ノ京桑原町1番地 朱式会

社島津製作所三条工場内

(74)代理人 弁理士 武石 培彦

(54)【発明の名称】 マイクロ・ブローブ・ボード・

(57)【要約】

【目的】 マトリクス状の電極配置を有する電子部品の プロービングを一括して可能にするとともに、高周波特 性を改善する。

【構成】 ポンディングワイヤー3をコアとし、そのま わりを硬質の金属4で度ったプローブ・ニードル5を漏 えたマイクロ・プローブ・ボードにマトリクス状に強小 ピッテの電流が配置された電子部品を接触させることに よって導通を取り、所定の試験信号をマイクロ・プロー ブ・ボードから電子部品に加えることによって試験を行

【特許請求の範囲】

【請求項1】 ポンディングワイヤーをコアとし、その まわりを硬質の金属で使ったプローブ・ニードルを育す ること特徴とするマイクロ・プローブ・ボード。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、アレー型デバイスを一 活して検査できるようにしたマイクロ・ブローブ・ボー ドに関する。

[0002]

【従来の技術】従来、集積回路等の検査に用いるマイク ロ・プローブ・ボードとして、タングステン・ニードル をプリント基板内にハンダ付けしたものを用いている。 第12図はこのようなマイクロ・ブローブ・ボードの一例 を示す図である。第12図において、12はタングステン・ ニードルであり、プリント基板13に半田付けされてい る。集積回路の検査時には、ウェハステージ14に裁置さ れた集積回路ウェハ15にタングステン・ニードル12を接 **煎させ、所定の試験信号を集積回路に加えることにより** 試験を行う。

[0003]

【発明が解決しようとする課題】従来のマイクロ・プロ ープ・ボードは上記のように構成されており、エードル の密度を高めることが困難なため、マトリクス状に強小 ビッテの電極が配置された電子部品を一括してプロービ ングすることが困難であった。また、ニードル挿入角度 が電極面と垂直でないため、例えばハンダ電極をプロー ピングし、検査した後、ニードルを上げるとき、ニード ルが電極を持ち上げて剝離させてしまうという欠点もあ った。さらに、従来のマイクロ・ブローブ・ボードは針 30 とにより基本的な構造を形成することができる。 **売から測定回路までの経路が長く、高い周波数に対応す** ることができないという欠点もあった。

【0004】本発明は上記のような問題点を解消するた めに創案されたものであり、マトリクス状の電極配置を 有する電子部品のプロービングが一括して可能であり、 しかも、高周波特性にすぐれ、ノイズの低減にも有効な マイクロ・プローブ・ボードを提供することを自的とす ō.

[0005]

に、本発明のマイクロ・ブローブ・ボードは、ポンディ ングワイヤーをコアとする高密度で重重なプローブ・ニ ードルを配領基板上に形成し、また必要によって配領基 版に測定回路も実装することにより、信号経路を短縮す **るものである。**

[0.0061

【作用】本発明のマイクロ・プローブ・ボードは、上記 のように構成され、マトリクス状に強小ビッチの電極が 配置された電子部品の検査時には、電子部品をマイクロ

ことによって導通を取り、所定の試験信号をマイクロ・ プローブ・ボードから電子部品に加えることによって試 験を行う。

[0007]

【実施例】本発明の実施例を以下図面に基づいて説明す **さ、第1回は本発明のマイクロ・プローブ・ボードを**赤 す図であり、基板1上のパッド2にポンディングワイヤ 一3をコアとし、そのまわりを疫質の金属4で度ったブ ローブ・ニードル5が形成されている。マトリクス状に 10 強小ピッテの電極7が配置された電子部品6の検査時に は、第2図、第3図に示すように、電子部品6の電極で をマイクロ・プローブ・ボードのプローブ・ニードル5 に接触させることによって導通を取り、所定の試験信号 をマイクロ・ブローブ・ボードのニードルから電子部品 6に加えることによって試験を行う。

【0008】次に、本発明のマイクロ・プロープ・ボー ドの基本的な構造の作製方法について説明する。第4回 は、通常のワイヤーボンディングを配線基板1に行った ものであり、金のワイヤー3を配線基板1上のプローブ 20 形式場所であるバッド2にポンディングし、さらに、バ ッド8に第2のボンディングを行う。次に、第5回に示 すように、パッド8に養源9を接続し、ワイヤー合体に 章位をかけることにより、第2ボンディング側のパッド 8から電流経路を確保し、メッキ波中で硬質な金属4を メッキして成長させる。この処理の後、ワイヤー部分に 剥離可能な硬化性樹脂を塗布し、上方から樹脂とワイヤ ーを同時に研磨することにより第6回に示すように希望 する高さ(A-A^{*})に調整する。そして、残った第2 ポンディング側のワイヤーをピンセット等で取り除くこ

【0009】次に、アレー状のプローブ・ボードを作成 する場合について説明する。まず、第7四に示すように 基板1のアレー配置パッドにそれぞれ全のワイヤー3を、 ポンディングし、第2のポンディング位置はメッキリー ドを取り出すため、共通なバッド (図示せず) を用い る。そして、上記の基本的構造の形成と同様に、ワイヤ 一全体に急位をかけることにより、第2ポンディング側 のパッドから電流経路を確保し、第8回のようにメッキ 波中で薄質な金属 4をメッキし、成長させる。この後、 【課題を解決するための手段】上記目的を達成するため 40 競化性出指でパッド部分をワイヤーごと覆い、第9個に 示すように希望する両さ(B-B^{*})に研磨した後、獣 雅を除去する。これによって、第10回に示すように、ポ ンディングワイヤー3をコアとし、そのまわりを殖賃の 金属 4 で浸ったプローブ・エードルを窺えたマイクロ・ ブローブ・ボードを得ることができる。

【0010】第11回は、本発明のマイクロ・プローブ・ ポードの他の実施例で、マイクロ・プローブ・ポードの 基板 1 上に測定回路10を実装するとともに、配線パター ン11を施したものであり、これにより短い信号経路で検 ・プロープ・ボードのプローブ・エードルに接触させる 50 弦を行うことができ、高周波特性をさらに向上させるこ

とがてきる。

[0011]

【発明の効果】本発明のマイクロ・プローブ・ボード 【図7】アレー! は、以上のように構成されおり、高密度で垂直に形成さ 第1の工程を示すれたプローブ・エードルを有しているので、従来のタン (図8】アレー! グステン・エードルでは不可能であった。マトリクス状 第2の工程を示すの電極配置を有する電子部品のプロービングを一括して (図9】アレー! 行うことができる。また、プローブの針先から信号処理 第3の工程を示す 国路までの経路を著しく短端することができるので、高 同次特性を向上できるとともに、ノイズも有効に延減す 10 を示す図である。 (図11】本発見

3

【図面の簡単な説明】

【図1】本発明のマイクロ・ブローブ・ボードを示す図である。

【図2】本発明のマイクロ・プローブ・ボードを使用した検査方法を説明する図である。

【図3】本発明のマイクロ・プローブ・ボードを使用した検査状態を示す図である。

【図4】マイクロ・プローブ・ボードの基本的な構造を 形成するための第1の工程を示す図である。

【図5】マイクロ・プローブ・ボードの基本的な構造を 形成するための第2の工程を示す図である。 【図 6】マイクロ・プローブ・ボードの基本的な構造を 形成するための第3の工程を示す図である。

【図7】アレー状のプローブ・ボードを作成する場合の 第1の工程を示す図である。

(図8) アレー状のプローブ・ポードを作成する場合の 第2の工程を示す図である。

(図9) アレー状のプローブ・ボードを作成する場合の 第3の工程を示す図である。

【図 1 0】本発明のアレー状のプローブ・ボードの外設を示す図である。

【図11】本発明のアレー状のプローブ・ボードの他の 実施例の外観を示す図である。

【図 1 2】従来のマイクロ・プローブ・ボードを示す図 である。

【符号の説明】

- 1 空線基板
- 2 バッド
- 3 ポンディングワイヤー
- 4 硬質の全属
- 20 5 プローブ・ニードル
 - 6 電子部品
 - 7 電極

[31]

(図3]

