WESTERN REGION

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

1999

MATHEMATICS

3 Unit (Additional) and 3/4 Unit (Common)

Time allowed - TWO hours (Plus 5 minutes reading time)

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- ALL questions are of equal value.
- ALL necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are printed on the last page. These may be removed for your convenience.
- Board-approved calculators may be used.
- Each question should be started on a new page.

Question One. Start a new page

Marks

(a) Find a general solution for x if $\tan x = \frac{1}{\sqrt{3}}$ (in terms of π).

2

(b) If α , β and χ are the roots of $3x^3 + 5x^2 - 7x + 4 = 0.$ Find the values of $\alpha\beta + \alpha\chi + \beta\chi$ and $\alpha + \beta + \chi$.

2

(c) Solve $\sec^2 x + \tan x - 7 = 0$ for $0^{\circ} \le x \le 360^{\circ}$ (to the nearest minute).

3

(d) Given that $x = \cos \theta + 1$ and $y = \sin \theta - 2$ By eliminating θ determine a relationship between x and y only.

2

(e) Solve $\frac{2x}{x-3} \le 1$ if $x \ne 3$.

3

Question Two.

Start a new page

Marks

(a) Given $\frac{x^3 + 3x^2 + 9x - 1}{x^2 + 9} = Q(x) + \frac{R(x)}{x^2 + 9}$

4

- (i) By performing the division or otherwise find Q(x) and R(x).
- (ii) Hence find $\int \frac{x^3 + 3x^2 + 9x 1}{x^2 + 9} dx$

(b) Using Mathematical Induction prove that $7^n - 5^n$ is even for all positive integer n.

3

(c) Eight people are seated about a round table.

3

- (i) How many different seating arrangements are possible?
- (ii) If the eight people consist of four couples find the probability that each person is seated adjacent to their partner.
- (d) Given that the quadrilateral ABCD is cyclic show that the sum of the tangents of the angles is zero.

2

That is, $\tan A + \tan B + \tan C + \tan D = 0$

Question Three.

Start a new page

Marks

Evaluate $\int_0^1 \frac{2x}{(2x+1)^2} dx$

3

using the substitution u = 2x + 1.

By making suitable substitutions for A and B in the expansion of (b) cos (A + B) find the exact value of cos 75°.

2

If $\sqrt{3} \cos x - \sin x = R \cos (x + \alpha)$ determine the values of R and α . (c)

3

(d) Find the constant term in the expansion of 2

$$\left(2x - \frac{1}{x^3}\right)^{20}$$

(Do not evaluate).

If $f(x) = \sin^{-1} x + \cos^{-1} x$ and $1 \ge x \ge 0$, find

f'(x)(i)

(ii) $\int_0^1 f(x) \ dx$

Start a new page

Marks

(a) A Horticulturalist knows that the probability of grafting a particular rose successfully is 0.4.

5

- (i) If ten grafts are made find the probability of six successful grafts. Give your answer correct to 3 significant figures.
- (ii) How many grafts must be made to ensure that the probability of at least one success is at least 99.9 %.
- (b) A spherical balloon is being inflated at the rate of 1000 cm³ s⁻¹ and given that

5

$$V = \frac{4}{3} \pi r^3$$
 and $A = 4\pi r^2$

find:

- (i) An expression for the instantaneous rate of change of the radius in terms of r. (Find $\frac{dr}{dt}$).
- (ii) The rate of change of the surface area of the balloon when the radius is 10 cm.
- (c) Evaluate $\int_0^{\frac{\pi}{2}} \cos^2 x \ dx$

2

Question Five.

Start a new page

Marks

(a) It is known that $f(x) = \frac{1}{2}x - \sin x$ has a root of f(x) = 0 near x = 2.

2

By using one application of Newton's method find a better approximation to two decimal places.

(b)

7

The parabola $x^2 = 4ay$ is shown in the sketch above.

The tangent at $P(2ap, ap^2)$ cuts the x axis at M and passes through the point N.

PR is parallel to the axis of the parabola and makes \angle RPN = α° . PL is such that it cuts the x axis at L and \angle LPM = α° .

- (i) Show that $\tan \alpha = \frac{1}{p}$.
- (ii) Show that the gradient of LP is $\frac{p^2-1}{2p}$.
- (iii) Show that the line LP passes through the focus of the parabola.
- (c) A particle is projected such that at any time 't', the equation of the trajectory is given by

3

$$x = 36t$$
 and $y = 15t - \frac{1}{2}gt^2$

find the angle of projection to the nearest minute.

Question Six.

Start a new page

Marks

(a) (i) State the domain and range of $y = 2 \sin^{-1}(3x)$.

3

- (ii) Sketch $y = 2 \sin^{-1}(3x)$.
- (b) The rate at which a body cools is proportional to the difference between its temperature (T) and the constant temperature of the surrounding air (S). That is

7

 $\frac{dT}{dt} = k (T - S)$

where t is the time elapsed and k is a constant.

- (i) Show that $T = S + B e^{kt}$, where B is a constant, is a solution of the above differential equation.
- (ii) A body cools from 150° C to 90° C in three hours. If the air temperature is 30° C find the value of B and hence the value of k to 3 decimal places.
- (iii) Using the values of B and k found in (ii) determine the temperature of the body after a further three hours.
- (c) Find the coordinates of the point P which divides the interval joining A(-1, 2) and B(5, -3) internally such that AP: PB = 3: 2.

2

Question Seven. Start a new page		Marks	
(a)	circl A se	Two circles touch internally at P. A line through P cuts the smaller circle at A and the larger circle at B. A second line through P cuts the smaller and larger circles at C and D respectively.	
	(i)	Sketch this information.	
	(ii)	Prove that the line joining A and C is parallel to the line joining B and D.	
(b)	acce	are given that x , v , a and t represent displacement, velocity, leration and time elapsed respectively. w that $a = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$	2
(c)		rticle moves in a straight line such that its acceleration is given by $a = -e^{-2x}$ = 1 and $x = 0$ when $t = 0$	6
	(i)	Express v in terms of x . (Use the result proven in (b))	

(ii) Express x in terms of t.

(iii) Express v in terms of t.