

Chapter 2: Estimating the Term Structure

2.2 Exact Methods

Interest Rate Models

Damir Filipović

2.2 Exact Methods

- Bootstrapping is an example of an exact method
- Formalize the exact method
- Provide an alternative exact method based on pseudoinverse

General Formulation

Data: n market prices $p = (p_1, \ldots, p_n)^{\top}$ at spot date t_0 with N cash flow dates $t_0 < t_1 < \cdots < t_N$ and corresponding $n \times N$ -cash flow matrix $C = (c_{ij})$:

$$p_i = \sum_{j=1}^N P(t_0, t_j) c_{ij}.$$

Aim: find discount curve $d = (P(t_0, t_1), \dots, P(t_0, t_N))^{\top}$ exactly matching the market prices

$$C d = p$$
.

Next step: bring data from bond and interest rate markets into the above format.

Bond Markets

Example: UK government bond (gilt) market on 4 September 1996

	Coupon	Next	Maturity	Dirty price
	(%)	coupon	date	(p_i)
Bond 1	10	15/11/96	15/11/96	103.82
Bond 2	9.75	19/01/97	19/01/98	106.04
Bond 3	12.25	26/09/96	26/03/99	118.44
Bond 4	9	03/03/97	03/03/00	106.28
Bond 5	7	06/11/96	06/11/01	101.15
Bond 6	9.75	27/02/97	27/08/02	111.06
Bond 7	8.5	07/12/96	07/12/05	106.24
Bond 8	7.75	08/03/97	08/09/06	98.49
Bond 9	9	13/10/96	13/10/08	110.87

Cash Flow Dates

UK government bond market on 4/9/96 (spot date):

- Coupon bonds with semiannual coupons
- Day-count convention actual/365

Number of

- market prices n = 9
- cash flow dates N = 1 + 3 + 6 + 7 + 11 + 12 + 19 + 20 + 25 = 104

Cash flow dates
$$t_1 = 26/09/96$$
 (bond 3), $t_2 = 13/10/96$ (bond 9), $t_3 = 06/11/97$ (bond 5),...

Sparse Cash Flow Matrix

None of the bonds have cash flows at the same date. Cash flow matrix is sparse:

$$C = \begin{pmatrix} 0 & 0 & 0 & 105 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 4.875 & 0 & 0 & 0 & 0 & \dots \\ 6.125 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 6.125 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4.5 & 0 & 0 & \dots \\ 0 & 0 & 3.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & 4.875 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 4.25 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3.875 & 0 & \dots \\ 0 & 4.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \dots \end{pmatrix}$$

Money and FRA Markets: Formalization

LIBOR $L(t_0, T)$ with maturity T:

- Price *p* = 1
- Cash flow $c = 1 + \delta(t_0, T)L(t_0, T)$ at T

Forward rate $F(t_0, T_1, T_2)$ for $[T_1, T_2]$:

- Price p = 0
- ullet Cash flows $c_1=-1$ at T_1 and $c_2=1+\delta(T_1,\,T_2)F(t_0,\,T_1,\,T_2)$ at T_2

Swap Markets: Formalization

Swap with swap rate K and dates $t_0 \leq T_0 < \cdots < T_n$ where $T_i - T_{i-1} \equiv \delta$.

Since

$$0 = -P(t_0, T_0) + \delta K \sum_{j=1}^{n-1} P(t_0, T_j) + (1 + \delta K) P(t_0, T_n),$$

we can choose

- if $T_0 = t_0$: p = 1, $c_1 = \cdots = c_{n-1} = \delta K$, $c_n = 1 + \delta K$,
- if $T_0 > t_0$: p = 0, $c_0 = -1$, $c_1 = \cdots = c_{n-1} = \delta K$, $c_n = 1 + \delta K$.

Formalization Summary

At spot date t_0

- LIBOR and swaps have notional price 1
- FRAs and forward starting swaps have notional price 0

Money and Swap Markets: Example

US market: LIBOR, futures, swaps

Spot date t_0 is 1 October 2012.

Day-count convention is actual/360.

Number of

- market prices n = 3 + 5 + 9 = 17
- cash flow dates N = 3 + 6 + 30 = 39

Cash flow dates $t_1 = 02/10/2012$, $t_2 = 05/11/2012$, $t_3 = 19/12/2012$ (first futures), . . .

Source	Quote	Maturity			
LIBOR	0.15	02/10/2012			
	0.21	05/11/2012			
	0.36	03/01/2013			
Futures	99.68	20/03/2013			
	99.67	19/06/2013			
	99.65	18/09/2013			
	99.64	18/12/2013			
	99.62	19/03/2014			
Swap	0.36	03/10/2014			
	0.43	05/10/2015			
	0.56	03/10/2016			
	0.75	03/10/2017			
	1.17	03/10/2019			
	1.68	03/10/2022			
	2.19	04/10/2027			
	2.40	04/10/2032			
	2.58	03/10/2042			

Money and Swap Markets: Sparse Cash Flow Matrix

First 12 columns of the 17×39 cash flow matrix C:

	$/c_{11}$	0	0	0	0	0	0	0	0	0	0	0	/
	0	C 22	0	0	0	0	0	0	0	0	0	0	
	0	0	0	C34	0	0	0	0	0	0	0	0	
	0	0	-1	0	C45	0	0	0	0	0	0	0	
	0	0	0	0	-1	<i>C</i> 56	0	0	0	0	0	0	
	0	0	0	0	0	-1	C ₆₇	0	0	0	0	0	
	0	0	0	0	0	0	-1	0	C 79	0	0	0	
	0	0	0	0	0	0	0	0	-1	c _{8,10}	0	0	
C =	0	0	0	0	0	0	0	<i>C</i> 98	0	0	C _{9,11}	0	
	0	0	0	0	0	0	0	$c_{10,8}$	0	0	$c_{10,11}$	$c_{10,12}$	
	0	0	0	0	0	0	0	$c_{11,8}$	0	0	$c_{11,11}$	$c_{11,12}$	
	0	0	0	0	0	0	0	$c_{12,8}$	0	0	$c_{12,11}$	$c_{12,12}$	
	0	0	0	0	0	0	0	<i>c</i> _{13,8}	0	0	$c_{13,11}$	<i>c</i> _{13,12}	
	0	0	0	0	0	0	0	C _{14,8}	0	0	$c_{14,11}$	$c_{14,12}$	
	0	0	0	0	0	0	0	<i>c</i> _{15,8}	0	0	$c_{15,11}$	$c_{15,12}$	
	0	0	0	0	0	0	0	<i>c</i> _{16,8}	0	0	$c_{16,11}$	$c_{16,12}$	
	\ 0	0	0	0	0	0	0	C17 8	0	0	C17 11	C17 12	/

Problem and Solutions

Typically $n \ll N$:

- The linear system C d = p is under-determined.
- There exists many discount curve solutions d.
- Which one to choose?

Solution: Bootstrap (previous section)

- Synthetically create N-n new market instruments, e.g. by linear interpolation of swap rates, such that $N \times N$ cash flow matrix C becomes invertible.
- Unique discount curve is given by $d = C^{-1}p$.

Alternative solution: Pseudoinverse of weighted increments (next)

Pseudoinverse: Weighted Increments

Idea: instead of estimating discount function $d = (P(t_0, t_1), \dots, P(t_0, t_N))^{\top}$ estimate weighted increments vector

$$\Delta = \left(\frac{P(t_0, t_1) - 1}{\sqrt{\delta(t_1, t_0)}}, \frac{P(t_0, t_2) - P(t_0, t_1)}{\sqrt{\delta(t_2, t_1)}}, \dots, \frac{P(t_0, t_N) - P(t_0, t_{N-1})}{\sqrt{\delta(t_N, t_{N-1})}}\right)^\top = \textcolor{red}{\boldsymbol{W}} \left(\textit{M} \, \textit{d} - \begin{pmatrix} 1, 0, \dots, 0 \end{pmatrix}^\top\right)$$

with
$$\mathit{N} \times \mathit{N}$$
 matrices $\mathit{W} = \mathrm{diag}\left(\frac{1}{\sqrt{\delta(t_1,t_0)}}, \cdots, \frac{1}{\sqrt{\delta(t_N,t_{N-1})}}\right)$ and $\mathit{M} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ -1 & 1 & 0 & & \vdots \\ 0 & -1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & 1 \end{pmatrix}$.

Pseudoinverse: Matching Equation

In consequence, Δ satisfies $d = M^{-1} (W^{-1}\Delta + (1, 0, \dots, 0)^{\top})$ where

$$M^{-1} = egin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \ 1 & 1 & 0 & & dots \ dots & 1 & \ddots & \ddots & dots \ dots & dots & \ddots & \ddots & 0 \ 1 & 1 & \cdots & 1 & 1 \end{pmatrix}.$$

Hence the discount curve matching problem C d = p is equivalent to

$$CM^{-1}W^{-1}\Delta = p - CM^{-1}(1, 0, \dots, 0)^{\top}.$$
 (

Pseudoinverse Solution

Assume the $n \times N$ -matrix $A = CM^{-1}W^{-1}$ has full rank then the pseudoinverse

$$\Delta^* = \mathsf{A}^ op \left(\mathsf{A}\mathsf{A}^ op
ight)^{-1} \left(\mathsf{p} - \mathsf{C}\mathsf{M}^{-1}(1,0,\ldots,0)^ op
ight)$$

is the solution Δ of (*) with minimal Euclidian norm

$$\|\Delta\|^2 = \sum_{j=1}^N \left| \frac{P(t_0, t_j) - P(t_0, t_{j-1})}{\sqrt{\delta(t_j, t_{j-1})}} \right|^2 \approx \int_{t_0}^{t_N} |\partial_T P(t_0, T)|^2 dT.$$

We thus obtain the smoothest possible matching discount curve.

Pseudoinverse Example: Discount Curve

US market on 1 October 2012: we find discount curve $P(t_0, t_i)$ for 40 points

$$t_i = t_0, S_1, S_2, T_1, S_3, T_2, T_3, T_4, U_1, T_5, T_6, U_2, \dots, U_{30}$$

Pseudoinverse Example: Yield and Forward Curves

Irregular implied forward curve but smoother than bootstrapping solution:

