

▼ Session 5 Sorting

bold text###Sorting

```
1 import numpy as np
2 import pandas as pd

1 df = pd.read_csv("FiveYearData.csv")
2 df
```

```
pop continent lifeExp gdpPercap
             country vear
Double-click (or enter) to edit
1 df.describe()
2 df.info()
3 df.shape
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1704 entries, 0 to 1703
    Data columns (total 6 columns):
         Column
                    Non-Null Count Dtype
                    _____
                   1704 non-null
         country
                                  object
                   1704 non-null int64
     1
         year
     2
                   1704 non-null float64
         pop
         continent 1704 non-null object
        lifeExp
                   1704 non-null float64
         gdpPercap 1704 non-null
                                 float64
    dtypes: float64(3), int64(1), object(2)
    memory usage: 80.0+ KB
    (1704, 6)
```

pandas.DataFrame.sort_values

DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False, key=None)

Sort by the values along either axis.

```
1 df.sort_values('lifeExp', inplace=True)
2 df
```

	country	year	рор	continent	lifeExp	gdpPercap
1292	Rwanda	1992	7290203.0	Africa	23.599	737.068595
0	Afghanistan	1952	8425333.0	Asia	28.801	779.445314
552	Gambia	1952	284320.0	Africa	30.000	485.230659
36	Angola	1952	4232095.0	Africa	30.015	3520.610273
1344	Sierra Leone	1952	2143249.0	Africa	30.331	879.787736
1487	Switzerland	2007	7554661.0	Europe	81.701	37506.419070
695	Iceland	2007	301931.0	Europe	81.757	36180.789190
802	Japan	2002	127065841.0	Asia	82.000	28604.591900
671	Hong Kong China	2007	6980412.0	Asia	82.208	39724.978670

¹ df.sort_values('lifeExp', inplace=True, ascending=False)

² df

	country	year	рор	continent	lifeExp	gdpPercap
803	Japan	2007	127467972.0	Asia	82.603	31656.068060
671	Hong Kong China	2007	6980412.0	Asia	82.208	39724.978670

pandas.DataFrame.sort_index

DataFrame.sort_index(axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, ignore_index=False, key=None)

Sort object by labels (along an axis).

Returns a new DataFrame sorted by label if inplace argument is False, otherwise updates the original DataFrame and returns None.

```
0     Afghanistan 1952 8425333.0     Asia 28.801 779.445314
1 df.sort_values('lifeExp', inplace=True, na_position="first")
2 df
```

	country	year	рор	continent	lifeExp	gdpPercap
1292	Rwanda	1992	7290203.0	Africa	23.599	737.068595
0	Afghanistan	1952	8425333.0	Asia	28.801	779.445314

¹ df.sort_index(inplace=True)

² df

	country	year	рор	continent	lifeExp	gdpPercap
0	Afghanistan	1952	8425333.0	Asia	28.801	779.445314
1	Afghanistan	1957	9240934.0	Asia	30.332	820.853030
2	Afghanistan	1962	10267083.0	Asia	31.997	853.100710
3	Afghanistan	1967	11537966.0	Asia	34.020	836.197138
4	Afghanistan	1972	13079460.0	Asia	36.088	739.981106
1699	Zimbabwe	1987	9216418.0	Africa	62.351	706.157306
1700	Zimbabwe	1992	10704340.0	Africa	60.377	693.420786
1701	Zimbabwe	1997	11404948.0	Africa	46.809	792.449960
1702	Zimbabwe	2002	11926563.0	Africa	39.989	672.038623
1703	Zimbabwe	2007	12311143.0	Africa	43.487	469.709298

¹⁷⁰⁴ rows × 6 columns

▼ pandas.DataFrame.reindex

DataFrame.reindex(labels=None, index=None, columns=None, axis=None, method=None, copy=True, level=None, fill_value=nan, limit=None, tolerance=None)[source] Conform Series/DataFrame to new index with optional filling logic.

Places NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False.

1 df.reindex()

	country	year	рор	continent	lifeExp	gdpPercap
0	Afghanistan	1952	8425333.0	Asia	28.801	779.445314
1	Afghanistan	1957	9240934.0	Asia	30.332	820.853030
2	Afghanistan	1962	10267083.0	Asia	31.997	853.100710
3	Afghanistan	1967	11537966.0	Asia	34.020	836.197138
4	Afghanistan	1972	13079460.0	Asia	36.088	739.981106
1699	Zimbabwe	1987	9216418.0	Africa	62.351	706.157306
1700	Zimbabwe	1992	10704340.0	Africa	60.377	693.420786
1701	Zimbabwe	1997	11404948.0	Africa	46.809	792.449960
1702	Zimbabwe	2002	11926563.0	Africa	39.989	672.038623
1703	Zimbabwe	2007	12311143.0	Africa	43.487	469.709298

1704 rows × 6 columns

1 tr=df.sort_values(['lifeExp', 'gdpPercap'], ascending = [True,False])
2 tr

	country	year	рор	continent	lifeExp	gdpPercap
1292	Rwanda	1992	7290203.0	Africa	23.599	737.068595
0	Afghanistan	1952	8425333.0	Asia	28.801	779.445314
552	Gambia	1952	284320.0	Africa	30.000	485.230659
36	Angola	1952	4232095.0	Africa	30.015	3520.610273
1344	Sierra Leone	1952	2143249.0	Africa	30.331	879.787736
1487	Switzerland	2007	7554661.0	Europe	81.701	37506.419070
695	Iceland	2007	301931.0	Europe	81.757	36180.789190
802	Japan	2002	127065841.0	Asia	82.000	28604.591900

 $^{1 \}text{ tr} = \text{df.round}(2)$

² tr = df.round({'lifeExp': 2, 'gdpPercap': 1})

³ tr

	country	year	рор	continent	lifeExp	gdpPercap
0	Afghanistan	1952	8425333.0	Asia	28.80	779.4
4	A fala a sista a	40E7	0040004.0	۸ ۵:۵	20.22	000.0

▼ N-Largest

3 Afahanistan 1967 11537966.0 Asia 34.02 836.2

Pandas nlargest() method is used to get n largest values from a data frame or a series.

```
1 df = pd.DataFrame({'population': [58812491, 37522972, 339757,
                                     339757, 339757, 38964, 11646, 11646, 11646],
 2
 3
                      'GDP': [2033594, 1833594 , 153594, 14520, 10128,
 4
                              836, 139, 39, 539],
                      'alpha-2': ["SA", "CA", "AU", "MV", "IS",
 5
                                  "MC", "NU", "TV", "PW"]},
 6
                     index=["South Africa", "Canada", "Australia",
 7
                            "Maldives", "Iceland", "Monaco", "Niue",
 8
                            "Tuvalu", "Palau"])
 9
10 df
```

1 df.nlargest(3, 'population', keep='last')

	population	GDP	alpha-2
South Africa	58812491	2033594	SA
Canada	37522972	1833594	CA
Iceland	339757	10128	IS
Monaco	38964	836	MC
1 df.nlargest(3,	'population'	, keep='a	11')

	population	GDP	alpha-2
South Africa	58812491	2033594	SA
Canada	37522972	1833594	CA
Australia	339757	153594	AU
Maldives	339757	14520	MV
Iceland	339757	10128	IS

Pandas nsmallest() method is used to get n least values from a data frame or a series.

1 df.nsmallest(5, 'population')

population GDP alpha-2

1 df.nsmallest(5, 'population', keep='last')

	population	GDP	alpha-2
Palau	11646	539	PW
Tuvalu	11646	39	TV
Niue	11646	139	NU
Monaco	38964	836	МС
Iceland	339757	10128	IS

1 df.nsmallest(5, 'population', keep='all')

	population	GDP	alpha-2
Niue	11646	139	NU
Tuvalu	11646	39	TV
Palau	11646	539	PW
Monaco	38964	836	MC
Australia	339757	153594	AU
Maldives	339757	14520	MV
Iceland	339757	10128	IS

1 df = pd.read_csv("winequality-red.csv")
2 df

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780
								**
1594	6.2	0.600	80.0	2.0	0.090	32.0	44.0	0.99490
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.9951;
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.9954
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549

1 df.iloc[:,[3,4,6]].head()

	residual sugar	chlorides	total sulfur dioxide
0	1.9	0.076	34.0
1	2.6	0.098	67.0
2	2.3	0.092	54.0
3	1.9	0.075	60.0
4	1.9	0.076	34.0

1 df.iloc[[5,9],[7,9]]

1

```
density sulphates
                      0.56
         0.9978
                      0.80
    9
         0.9978
1 df[df['density'] == 0.998].info()
    <class 'pandas.core.frame.DataFrame'>
    Int64Index: 29 entries, 3 to 905
   Data columns (total 12 columns):
        Column
                               Non-Null Count Dtype
                               -----
    _ _ _
        -----
        fixed acidity
                               29 non-null
                                              float64
        volatile acidity
                                              float64
    1
                               29 non-null
     2
        citric acid
                               29 non-null
                                              float64
        residual sugar
                               29 non-null
                                              float64
        chlorides
                               29 non-null
                                              float64
        free sulfur dioxide 29 non-null
     5
                                              float64
        total sulfur dioxide 29 non-null
                                              float64
    7
         density
                               29 non-null
                                              float64
    8
         рΗ
                               29 non-null
                                              float64
     9
        sulphates
                               29 non-null
                                              float64
    10 alcohol
                               29 non-null
                                              float64
    11 quality
                               29 non-null
                                               int64
    dtypes: float64(11), int64(1)
   memory usage: 2.9 KB
1 df[df['fixed acidity']>5 | (df['residual sugar']<2)]['density'].unique().sum()</pre>
    434.33755
```

https://colab.research.google.com/drive/1oW2Y9ghNQxhaf2Dm46gtRFklj9rHSYkb#scrollTo=Qbb_QdsmTf4W&printMode=true

✓ 0s completed at 12:08 PM

• X