Algebraic Geometry.

Alec Zabel-Mena

June 7, 2023

Contents

1	Preliminaries	5
	1.1 Affine Varieties	5

4 CONTENTS

Chapter 1

Preliminaries

1.1 Affine Varieties

Definition. Let k be an algebraically closed field. We define **affine** n-space over k to be the set $\mathbb{A}^n(k)$ of n-tuples of elements of k. We write simply \mathbb{A}^n when k is understood. We call the elements of \mathbb{A}^n points and if $P = (a_1, \ldots, a_n)$ is a point of \mathbb{A}^n , we call each a_i the coordinates of P.

Example 1.1. Let k be any algebraically closed field, and consider the multivariate polynomial ring $k[x_1, \ldots, x_n]$. We can interperate the elements of $k[x_1, \ldots, x_n]$ as functions from affine space $\mathbb{A}^n(k)$ to k by taking $f(P) = f(a_1, \ldots, a_n)$, where $f \in k[x_1, \ldots, x_n]$ and $P \in \mathbb{A}^n(k)$. This leads us to be able to talk about the set of zeros of a polynomial over k.

Definition. Let k be an algebraically closed field, and $f \in k[x_1, ..., x_n]$ a multivariate polynomial over k. We define the **set of zeros** of f to be the set

$$Z(f)=\{P\in \mathbb{A}^n(k): f(P)=0\}$$

Let T be a subset of $k[x_1, \ldots, x_n]$. Then we define the **set of zeros** of T to be

$$Z(T) = \bigcap_{f \in T} Z(f)$$

Now, if $I = (f_1, \ldots, f_r)$ is an ideal of $k[x_1, \ldots, x_n]$ generated by T, then we write $Z(T) = Z(I) = Z(f_1, \ldots, f_r)$.

Definition. Let k be an algebraically closed field. We call a subset Y of \mathbb{A}^n an **algebraic** set if there exists some $T \subseteq k[x_1, \ldots, x_n]$ for which Y is the set of zeros of T; i.e. Y = Z(T).

Lemma 1.1.1. Let k be an algebraically closed field. Then algebraic sets of \mathbb{A}^n make \mathbb{A}^n into a topology under closed sets.

Proof. Let $\mathbb{A}^n = Z(0)$ and $\emptyset = Z(1)$. Then \mathbb{A}^n and \emptyset are both algebraic. Now, let X and Y be algebraic, then there are S, T such that X = Z(S) and Y = Z(T). Now, let $P \in X \cup Y$, then P is a zero of any polynomial $f \in ST$, conversly, suppose that $P \in Z(ST)$ where

 $P \notin Y$. There exists a polynomial $f \in S$ with $f(P) \neq 0$. Now, for any $g \in T$, we have that if fg(P) = 0, then g(P) = 0, so that $P \in S$. Therefore we have $X \cup Y = Z(ST)$, making $X \cup Y$ algebraic. So that the collection of algebraic sets is closed under finite intersection. Lastly, consider a collection $\{Y_{\alpha}\}$ of algebraic sets, where $Y_{\alpha} = Z(T_{\alpha})$ for some T_{α} . Let

$$Y = \bigcap Y_{\alpha}$$
 and $T = \bigcup T_{\alpha}$

and let $P \in Y$. Then P is in every Y_{α} making it a zero of some $f_{\alpha} \in T_{\alpha}$, thus $P \in Z(T)$. Similarly, if $P \in Z(T)$, then $P \in Y$, making Y = Z(T), and making the collection of algebraic sets closed under arbitrary intersections.

Definition. We define the **Zariski topology** on affine n-space \mathbb{A}^n to be the topology on \mathbb{A}^n whose open sets are complements of algebraic sets.

Example 1.2. Consider the Zariski topology on affine 1-space \mathbb{A}^1 . Now, since k[x] is a PID, every algebraic set of \mathbb{A}^1 is the set of zeros of preciesly one polynomial. Moreover, by the algebraic closure of k, for any nonzero polynomial f over k, we have

$$f(x) = c(x - a_1) \dots (x - a_n)$$

where $c, a_1, \ldots, a_n \in k$. Then $Z(f) = \{a_1, \ldots, a_n\}$, so that the algebraic sets of \mathbb{A}^1 are the emptyset, itself, and finite subsets. Thus the Zariski topology on \mathbb{A}^1 consists of complements of finite sets, the emptyset, and \mathbb{A}^1 itself. Notice that this topology is not Hausdorff.

Definition. Let X be a topological space, and Y a subspace of X. We call Y **irreducible** if it cannot be written as the union $Y = Y_1 \cup Y_2$ of two sets Y_1 and Y_2 closed in Y. We make the convention that the emptyset is not irreducible.

- **Example 1.3.** (1) Notice that the affine space \mathbb{A}^1 is irreducible. We have the only closed sets are finite sets, and since k is algebraically closed, and hence infinite, then \mathbb{A}^1 must be infinite.
 - (2) Subspaces of irreducible spaces are irreducible and dense.
 - (3) If Y is an irreducible space of a topological space X, then the closure $\operatorname{cl} Y$ is also irreducible in X.

Definition. We define an **algebraic affine variety** to be an irreducible closed subset of \mathbb{A}^1 under the Zariski topology. We define an open set of an affine variety to be a **quasi-affine variety**.

Bibliography

- [1] D. Dummit, Abstract algebra. Hoboken, NJ: John Wiley & Sons, Inc, 2004.
- [2] I. N. Herstein, Topics in algebra. New York: Wiley, 1975.