Wydanie III Odd Even TABLICE INFORMATYCZNE

BUDOWA APLIKACJI

Program w Javie składa się ze zbioru klas. Każda klasa publiczna musi być zapisana w oddzielnym pliku o takiej samej nazwie, jak nazwa tej klasy (zasada ta nie dotyczy klas wewnętrznych i pakietowych), oraz rozserzeniu jawa. Wykonywanie programu rozpoczyna się od metody o nazwie mai-n, która musi być zadeklarowana jako publiczna i statyczna. Jeżeli program składa się, z wielu klas publicznych i więcej niż jedna z nich zawiera taką metodę mai-n, to aplikacja ma wiele punktów wejscia (startowych). może być więc uruchamiana na kilka sposobów. Schematyczna konstrukcja programu:

public static void main(String args[]) //kod metody main

KOMPILACJA KODU

W przypadku korzystania ze zintegrowanych środowisk programistycznych sposób kompilacji zależy od wykorzystywanego produktu. W przypadku korzystania z kompilatora pracującego w wierszu poleceń, zawartego w pakiecie Java Development Kit (JDK), kompilacja odbywa się po wydaniu następującego polecenia:

Kompilator ten udostępnia m.in. opcje

Opcja	Znaczenie
g	Włącza lub wyłącza generowanie informacji dla debugera
nowarn	Wyłącza wyświetlanie ostrzeżeń
verbose	Wyświetla dodatkowe informacje o postępie kompilacji
deprecation	Wyświetla informacje o użyciu przestarzałych metod API
classpath	Specyfikuje położenie plików bibliotecznych
sourcepath	Specyfikuje położenie plików źródłowych
d	Określa położenie plików wynikowych
encoding	Określa standard kodowania znaków w plikach źródłowych
source	Określa standard, z którym kompatybilne są pliki źródłowe
target	Określa kompatybilność kodów wynikowych z poszczególnymi wersjami maszyn wirtualnych
help	Wyświetla skróconą listę opcji kompilatora

Parametr target może przyjmować jedną z następujących wartości:

1.1 — kod zgodny z maszyną wirtualną w wersji 1.1;

1.2 — kod zgodny z wersją 1.2 i wyższymi;

- 1.3 kod zgodny z wersją 1.3 i wyższymi;
 1.4 kod zgodny z wersją 1.4 i wyższymi;
- 1.5 kod zgodny z wersją 1.5 i wyższymi
- 1.6 kod zgodny z wersją 1.6 i wyższymi
- 1.7 kod zgodny z wersją 1.7 i wyższymi;
- 5 kod zgodny z wersją 1.5 i wyższymi;
 6 kod zgodny z wersją 1.6 i wyższymi;
- 7 kod zgodny z wersją 1.7 i wyższymi.

TYPY DANYCH

Java udostępnia pewną liczbę wbudowanych typów danych, czyli takich, które oferuje sam język i z których można korzystać bez potrzeby ich definiowania. Określa się je jako typy proste lub podstawowe (z ang. primitive types).

Typ znakowy (char)

Typ char służy do reprezentowania wszelkich znaków, m.in. liter. Jest on 16-bitowy i opiera się na standardzie Unicode (czyli standardzie umożliwiającym przedstawienie znaków występujących w większości języków świata). Ponieważ znaki reprezentowane są tak naprawdę jako 16-bitowe kody liczbowe, typ ten można zaliczyć również do typów arytmetycznych.

Typ logiczny (boolean)

lean może reprezentować jedynie dwie wartości: true (prawda) i false (fałsz).

Typy arytmetyczne

Typy całkowitoliczbowe

Typy arytmetyczne całkowitoliczbowe służą do reprezentowania liczb całkowitych. W Javie występują cztery ich rodzaje:

- byte, short, int,
- long

Rodzaje te różnią się zakresem liczb, które można reprezentować za ich pomocą, co przedstawia poniższa tabela.

Тур	Liczba bitów	Zakres
byte	8	od -128 do 127
short	16	od -32 768 do 32 767
int	32	od -2 ³¹ do 2 ³¹ - 1
long	64	od -2 ⁶³ do 2 ⁶³ - 1

Osoby programujące w innych językach programowania, takich jak C, C++ czy PHP, powinny zwrócić uwagę, że zakres wartości możliwych do przedstawienia jest z góry ustalony i nie zależy od platformy systemowej, na której uruchamiany jest program w Javie.

Typy zmiennopozycyjne

Typy zmiennopozycyjne występują w dwóch odmianach:
• float (pojedynczej precyzji),

doub Le (podwójnej precyzji),
różniących się rozmiarem oraz zakresem liczb możliwych
do zaprezentowania.

Тур	Liczba bitów	Zakres
float	32	od -3,4e38 do 3,4e38
double	64	od –1,8e308 do 1,8e308

KOMENTARZE

W Javie istnieją dwa rodzaje komentarzy, oba zapożyczone z języków takich, jak C i C++:

- blokowy,wierszowy

Komentarz blokowy

Komentarz błokowy rozpoczyna się od znaków / *, a kończy się znakami * /. Wszystko, co znajduje się pomiędzy tymi znakami, jest traktowane przez kompilator jako komentarz i pomijane w procesie kompilacji. Umiejscowienie komentarza błokowego jest w zasadzie dowolne — może on się znaleźć nawet w środku instrukcji (pod warunkiem, że nie zostanie przedzielone żadne słowo). Komentarzy błokowych nie wolno zagnieżdzać.

```
public static void main(String args[])
  to jest komentarz blokowy
  System.out.println("To jest napis");
```

Komentarz wierszowy

Komentarz wierszowy zaczyna się od znaków // i obowiązuje do końca danej linii programu. Wszystko to, co występuje po tych dwóch znakach aż do końca bieżącej linii, jest ignorowane przez kompilator.

```
class Main
```

```
ublic static void main(String args[])
       //to jest komentarz wierszowy
System.out.println ("To jest napis.");
Komentarz wierszowy może znaleźć się w środku komentarza blokowego
  //ta konstrukcja jest poprawna
```

Marcin Lis

ZMIENNE

Deklaracja pojedynczej zmiennej

Deklaracja zmiennej polega na podaniu jej typu oraz nazwy i kończy się znakiem średnika; schematycznie

zmieni Przykładowo:

```
public static void main(String args[])
```

Deklaracja może być równoczesna z przypisaniem wartości (inicjalizacją zmiennej):

niennej typ zmie. Przykładowo:

liczba = 100.

Nazwy zmiennych

Nazwa zmiennej może się składać z liter (zarówno małych, jak i dużych), cyfr oraz znaku podkreślenia, nie może jednak zaczynać się od cyfry. Dopuszczalny jest także znak dolara, ale przyjmuje się, że jest on zarezerwowany dla narzędzi przetwarzających kod i raczej nie należy go stosować w nazwach zmiennych. Można wykorzystać znaki spoza ścislego alfabetu łacińskiego (wszelkiego rodzaju znaki narodowe).

Deklaracja wielu zmiennych

W jednym wierszu można deklarować wiele zmiennych, jeśli są one tego samego typu; schematycznie:

zmiennej nazwal, nazwa2,

Deklaracje wielu zmiennych mogą być powiązane z ich równoczesną inicjalizacją:

Zmienne referencyjne

Zmienne typów referencyjnych (z ang. reference types), inaczej odnośnikowych, deklaruje się tak, jak przedstawiono wyżej, czyli:

z tą różnicą, konstrukcja i powoduje powstanie jedynie odniesienia, któremu domyślnie zostanie przypisana wartość pusta null. Zmiennej referencyjnej po deklaracji należy przypisać odniesienie do obiektu utworzonego oddzielną instrukcją (patrz sekcia "Klasv i obiekty").

OPERATORY

Operatory arytmetyczne

Operator	Wykonywane działanie
*	mnożenie
1	dzielenie
+	dodawanie
-	odejmowanie
8	dzielenie modulo (reszta z dzielenia)
++	inkrementacja (zwiększanie)
	dekrementacja (zmniejszanie)

Operatory logiczne

Operator	Symbol	
Iloczyn (AND)	& &	
Suma (OR)	11	
	111	
Negacja (NOT)	:	
Operatory logiczne działają według zasad opisanych		
poniżej.		

Iloczyn logiczn

Wynikiem operacji AND (iloczynu logicznego) jest wartość true, wtedy i tylko wtedy, kiedy oba argumenty mają wartość true. W każdym innym przypadku wynikiem jest

Argument 2	Wynik
true	true
false	false
true	false
false	false
	true false true

Suma logiczn

Wynikiem operacji OR (sumy logicznej) jest wartość fa se, wtedy i tylko wtedy, kiedy oba argumenty mają wartość false. W każdym innym przypadku wynikiem jest true.

Argument 1	Argument 2	Wynik	
true	true	true	
true	false	true	
false	true	true	
false	falee	fales	•

Operacja NOT (negacja logiczna) zamienia wartość arqu-Operacja Novi niegacja rogijcznał zaniienia wartość true, mentu na przeciwną. Jeśli argument miał wartość true, będzie miał wartość false, jeśli argument miał wartość false, będzie miał wartość true.

Argument	Wynik
true	false
false	true

Operatory bitowe

Operator	Symbol
Iloczyn (AND)	&
Suma (OR)	1
Negacja (NOT)	~
Różnica symetryczna (XOR)	^
Przesunięcie bitowe w prawo	>>
Przesunięcie bitowe w lewo	<<
Przesunięcie bitowe w prawo z wypełnieniem zerami	>>>
2	

Operatory przypisania

	•		
Argument 1	Operator	Argument 2	Znaczenie
Х	=	у	x = y
х	+=	у	x = x + y
Х	-=	у	x = x - y
Х	*=	у	x = x * y
Х	/=	у	x = x / y
Х	%=	у	x = x % y
Х	<<=	у	$x = x \ll y$
Х	>>=	у	$x = x \gg y$
Х	>>>=	у	$x = x \gg y$
х	£=	у	x = x & y
Х	=	у	$x = x \mid y$
Х	^=	у	$x = x ^ y$

Operatory porównywania

Operator	Opis
	Wynikiem jest true, jeśli argumenty są sobie równe
!=	Wynikiem jest true, jeśli argumenty są różne
>	Wynikiem jest true, jeśli argument lewostronny jest większy od prawostronnego
<	Wynikiem jest true, jeśli argument lewostronny jest mniejszy od prawostronnego
>=	Wynikiem jest true, jeśli argument lewostronny jest większy od prawostronnego lub równy mu
<=	Wynikiem jest true, jeśli argument lewostronny jest mniejszy od prawostronnego lub równy mu

Priorytet operatorów

niejszych do najsłabszych; operatory w jednym wierszu mają ten sam priorytet).

Grupa operatorów	Symbole
Inkrementacja przyrostkowa	++,
Inkrementacja przedrostkowa, negacja	++,, ~, !
Mnożenie, dzielenie	*, /, %
Dodawanie, odejmowanie	+, -
Przesunięcia bitowe	<<,>>,>>>
Porównania (mniejsze, większe)	<,>,<=,>=
Porównania (równe, różne)	==, !=
Bitowe AND	&
Bitowe XOR	^
Bitowe OR	
Logiczne AND	&&
Logiczne OR	H
Warunkowy	?
Przypisania	=, +=, -=, *=, /=, &=, &=, ^=, =, <<=, >>>=

INSTRUKCJE JEZYKA

Instrukcja warunkowa if...else

```
(warunek) {
instrukcjel
else{
instrukcje2
```

Oznacza to, że jeżeli warunek jest prawdziwy, to zostaną wykonane *instrukcje1*, w przeciwnym wypadku zosta ną wykonane *instrukcje2*. Blok *else* jest opcjonalny.

Instrukcja warunkowa if...else if

```
Instrukcja złożona if...else
if (warunek1) {
instrukcje1
  else if (warunek2) {
  instrukcje2
   //dalsze bloki else if
  else{ instrukcjeN
```

)
Oznacza to, że jeżeli warunek jest prawdziwy, to zostaną wykonane instrukcjel, w przeciwnym wypadku, jeżeli prawdziwy jest warunek2, zostaną wykonane instrukcje2. Liczba błoków else if nie jest ograniczona. Jeżeli żaden warunek nie będzie spełniony, zostaną wykonane instrukcjeNz bloku else. Blok else jest
opcjonalny. Przykład:

```
public static void main(String args[])
}
else if(x < 0){
   System.out.println("x mniejsze
   od zera");</pre>
    else{
   System.out.println("x równe zero");
```

Instrukcia switch

Instrukcja warunkowa switch może zastąpić serię instrukcji if...else if:
switch (wyrażenie) (

```
case wartość1
  instrukcjel;
   instrukcje2;
break;
case wartość3:
```

Znaczenie jest takie samo, jak w innych językach programo wania. Jeżeli wartością wyrażenia jest wartośći, wyko-nywane są instrukcjel, jeżeli wartością wyrażenia jest wartośćz, wykonywane są instrukcjeż itd. Jeżeli nie uda się dopasować wartości wyrażenia do wartości występujących po klauzulach case, wykonywane są instrukcje występujące po słowie default. Instrukcja break przeryw wykonywanie bloku switch.

Operator warunkowy

Operator warunkowy ma postać:

warunek ? wartość! : wartość?
Zapis ten oznacza, że jeżeli warunek jest prawdziwy, wartości wyrażenia staje się wartość!, w przeciwnym wypadku wartości wyrażenia staje się wartość?.

```
public static void main (String args[])
  int liczba = 10;
int liczba2 = liczba < 0 ? -1 : 1;
System.out.println(liczba2);
```

Petla for

```
fila for ma ogólną postać:
for (wyrażenie początkowe; wyrażenie
warunkowe; wyrażenie modyfikujące) {
instrukcje do wykonania
```

- wyrażenie początkowe jest stosowane do zainicjalizowania zmiennej używanej jako licznik liczby wykonań patli:
- wyrażenie warunkowe określa warunek, jaki musi być spełniony, aby dokonać kolejnego przejścia w pętli; wyrażenie modyfikujące używane jest zwykle do modyfikacji zmiennej będącej licznikiem.

Przykład:

```
for(int i = 0; i < 10; i++){
   System.out.println("Przebieg " + i);</pre>
```

Rozszerzona petla for

Począwszy od Javy w wersji 5.0 (1.5), dostępna jest rozsze-rzona pętla for (z ang. enhanced for), nazywana też pętla typu foreach. Umożliwia ona automatyczną iterację po obiekcie udostępniającym iterator (np. po kolekcji lub tablicy). Konstrukcja jest następująca: for (typ nazwa: obj) {

W kolejnych przebiegach pętli pod nazwa będzie podsta-wiana wartość kolejnego elementu (np. kolejnej komórki tablicy). Pętla będzie działała tak długo, aż zostaną przejrzane wszystkie elementy obiektu obj typu typ. Przykład:

Petla while

Ogólna postać pętli while jest następująca

```
while(wyrażenie warunkowe)
instrukcje;
```

Oznacza to, że dopóki warunek jest prawdziwy, będą wykony wane instrukcje. Przykład:

```
int i = 0;
while(i < 10){
    System.out.println("Przebieg " + i);
    i++;</pre>
```

Petla do...while

```
Pętla do...while jest odmianą pętli while i ma postać:
    instrukcje;
```

while (warunek);
Oznacza to, że instrukcje będą wykonywane, dopóki warunek jest prawdziwy. **Przykład:**

```
System.out.println("Przebieg " + i);
while(i++ < 9);
```

Instrukcja break

Pętle pojedyncze

Instrukcia break powoduje przerwanie wykonywania bieża cej iteracji pętli i opuszczenie bloku pętli. Przykład:

```
System.out.println("Przebieg " + i);
if(i++ >= 9) break;
```

Petle zagnieżdżone

```
W przypadku pętli zagnieżdżonych instrukcja break po-
woduje przerwanie bieżącej iteracji jedynie tej pętli, w której
została umieszczona:
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
if (i = 1) break; //w tym miejscu
zostanie przerwane wykonywanie pętli
wewnetrznei
            wewnetrznej
System.out.println(i + " " + j);
```

Instrukcia continue

Instrukcja continue powoduje przerwanie bieżącej iteracji pętli i przejście do kolejnej iteracji.

```
Przykład (wyświetlenie parzystych liczb z zakresu 1 – 20):
    for(int i = 1; i <= 20; i++) {
  if(i % 2 != 0) continue;
  System.out.println(i);</pre>
```

TABLICE

Deklaracje tablic

Tablice w Javie są obiektami. Aby móc skorzystać z tablicy, należy najpierw zadeklarować zmienną tablicową, a następ-nie utworzyć samą tablicę (obiekt tablicy). Schematycznie deklaracja taka jest następująca:

```
lub (co ma identyczne znaczenie):
```

typ_tablicy[] nazwa_tablicy;
Tablice tworzy się za pomocą operatora new o postaci:

```
new typ_tablicy[liczba_elementów];

Tablice można również jednocześnie zadeklarować i utwo-

rzyć, korzystając z konstrukcji:

typ_tablicy_nazwa_tablicy[] = new typ_

*tablicy[liczba_elementów];
```

lass Main public static void main (String args[]) { int tab[] = new int[1]; tab[0] = 10; System.out.println("Pierwszy ⇔ element tablicy ma wartość: " + tab[0]);

Inicjalizacja tablicy

W przypadku niewielkich tablic można dokonać inicjalizacji tablicy, ujmując wartości, które mają się znaleźć w jej komór-kach, w nawias klamrowy. Nie trzeba wtedy korzystać z operatora new. Schematycznie deklaracja taka jest następująca:

Na przykład deklarację sześcioelementowej tablicy liczb całkowitych typu int i wypełnienie jej kolejnych komórek wartościami od 1 do 6 można wykonać za pomocą instrukcji: int tablica[] = $\{1, 2, 3, 4, 5, 6\};$

Właściwość length

Każda tablica ma właściwość length, która określa liczbe Przykład:

```
int tablica[] = new int[10];
for(int i = 0; i < tablica.length;</pre>
```

Tablice wielowymiarowe

Deklaracja regularnych tablic wielowymiarowych odbywa się w sposób analogiczny do deklaracji tablic jednowymia-rowych, dodawane są jedynie kolejne nawiasy kwadratowe. Schematyczna deklaracja tablicy dwuwymiarowej ma po-stać:

Tablica tego typu może zostać zainicjowana przy użyciu

```
składni znawiasami klamrowymi:

typ_tablicy nazwa_tablicy[][] = {

(wartośćl, wartość2, ..., wartośćN]

(wartośćl, wartość2, ..., wartośćN]
```

Przykład (dwuwymiarowa tablica liczb całkowitych wypełniona danymi):

Do jej utworzenia można użyć także standardowego operaw w postaci:

```
new typ_tablicy[liczba_elementów]

[liczba_elementów];
```

```
int tab[][] = new int[2][4];
int count = 1;
for(int i = 0; i < 2; i++) {
  for(int j = 0; j < 4; j++) {
    tab[i][j] = count++;
```

KLASY I OBIEKTY

Budowa klasy

Definicja klasy ma schematyczną postać

```
//treść klasy
//definicje pól i metod
```

Przykład:

```
class Punkt
```

Tworzenie obiektów

Zmienna typu obiektowego (odnośnikowego, referencyjnego) tworzona jest za pomocą konstrukcji:

```
Do tak zadeklarowanej zmiennej można przypisać obiekt
```

utworzony za pomocą operatora ne Jednoczesna deklaracja zmiennej, utworzenie obiektu i przy-

```
pisanie go zmiennej odbywa się za pomocą schematycznej konstrukcji:
 nazwa_klasy nazwa_zmiennej = new
❤nazwa_klasy();
```

Przykład: mojPunkt = new Punkt();

Pola klas

Definicje pól

Pola definiowane są w ciele klasy, podobnie jak zwykłe zmien ne. Najpierw należy podać typ pola, a po nim — nazwę pola:

```
typ_polal nazwa_polal;
typ_pola2 nazwa_pola2;
typ polaN nazwa polaN;
```

Odwołania do pól obiektu

Po utworzeniu obiektu do jego pól można odwoływać się za pomocą operatora kropki (.); schematycznie: nazwa obiektu.nazwa_pola;
Przykład:

```
Punkt punkt1 = new Punkt();
punkt1.x = 100;
punkt1.y = 200;
```

Wartości domyślne pól Każde niezainicjowane pole klasy otrzymuje wartość domyślną, zależną od jego typu. Wartości te zaprezentowane są w poniż-

Тур	Wartość domyślna	
byte	0	
short	0	
int	0	
long	0	
float	0.0	
double	0.0	
char	\0	
boolean	false	
obiektowy	null	

Metody klas

Definicje metod

Metody definiowane są w ciele klasy pomiędzy znakami na-wiasu klamrowego. Każda metoda może przyjmować argu-menty oraz zwracać wynik. Schematyczna deklaracja metody

```
typ_wyniku nazwa_metody(argumenty_metody)
 //instrukcie metody
```

Po umieszczeniu w ciele klasy deklaracja taka będzie wyglądała nastepujaco:

```
class nazwa_klasy
typ_wyniku nazwa_metody(argumenty_
>>metody)
   //instrukcje metody
```

Jeśli metoda nie zwraca żadnego wyniku, jako typ wyniku należy zastosować słowo void, jeśli natomiast nie przyjmuje żadnych argumentów, pomiędzy znakami nawiasu okrągłego nie należy nic wpisywać

Przykład:

```
int x,
int y;
void wyswietlWspolrzedne()
System.out.println("współrzędna x == " + x);
System.out.println("współrzędna y == " + y);
```

Odwołania do metod obiektu

Po utworzeniu obiektu do jego metod można odwoływać się (podobnie jak w przypadku pól) za pomocą operatora kropki (.); schematycznie:

__nazwa_obiektu.nazwa_metody();

Punkt punkt1 = new Punkt();
punkt1.wyswiet1Wspolrzedne();

Argumenty metod

Metoda może mieć dowolną liczbę argumentów umiesz-czonych w nawiasie okrągłym za jej nazwą. Poszczególne argumenty należy oddzielić od siebie znakami przecinka; schematycznie:

chematycznie:

typ_wyniku nazwa_metody(typ_argumentu_1

nazwa_argumentu_1, typ_argumentu_2

nazwa_argumentu_2, ..., typ_argumentu

N nazwa_argumentu_N)

rzykład:

Przykład:

```
void ustawXY(int wspX, int wspY)
```

Argumentami mogą być typy zarówno proste, jak i obiektowe.

Przeciążanie metod

W każdei klasie może istnieć dowolna liczba metod o takiej samej nazwie, jeśli tylko różnią się przyjmowanymi argumen-tami. Mogą, ale nie muszą się one różnić również typem zwracanego wyniku. Technika ta jest nazywana przeciążaniem (z ang. overloading) metod. **Przykład:**

```
int x;
int y;
void ustawXY(int wspX, int wspY)
void ustawXY(Punkt punkt)
```

Rodzaje klas

Klasy w Javie można ogólnie podzielić na:

- pakietowe,
- publiczne
- wewnętrzne

interfeisowe (patrz sekcia "Interfeisy").

Jeśli przed nazwą klasy nie znajduje się modyfikator pub-lic, to jest to klasa pakietowa, czyli klasa dostępna jedynie dla innych klas z tego samego pakietu. Jeśli natomiast przed nazwą klasy znajduje się modyfikator public, to jest to klasa publiczna, czyli klasa dostępna dla wszystkich innych klas. Deklaracja klasy pakietowej ma postać:

```
//pola i metody klasy
Deklaracja klasy publicznej ma postać:
    //pola i metody klasy
```

Klasy wewnętrzne to klasy zdefiniowane wewnątrz innych klas. Postać schematyczna:

```
[specyfikator dostępu] class klasa_
   //pola i metody klasy wewnętrznej
 ,
//pola i metody klasy zewnętrznej
```

Przykład klasy wewnętrznej (Inside):

```
class Inside
```

Ponieważ klasy wewnętrzne są definiowane wewnątrz innych klas, w pewnym sensie można je traktować jako składowe tych klas, a zatem można też w stosunku do nich stosować modyfikatory dostępu. W związku z tym klasy wewnętrzne

- mogą być:

 pakietowe
- publiczne
- prywatne,chronione

i należy je traktować tak jak składowe wymienionych typów

Konstruktory

Definicja konstruktora

Konstruktor to specjalna metoda, która jest wywoływana zawsze po utworzeniu obiektu w pamięci. Metoda będąca konstruktorem nigdy nie zwraca wyniku i musi mieć nazwę zgodną z nawą klasy; schematycznie:

```
nazwa klasy()
 //kod konstruktora
```

```
int y;
Punkt()
```

Argumenty konstruktorów

Konstruktor może być bezargumentowy albo może przyimo wać argumenty używane (bezpośrednio lub pośrednio) np. do zainicjowania pól obiektu. Argumenty przekazuje się do-kładnie w taki sam sposób, jak w przypadku zwykłych metod; schematycznie:

```
nazwa klasy
nazwa_klasy(typ1 argument1, typ2

→argument2,..., typN argumentN)
     //kod konstruktora
```

Przykład:

```
blic class Punkt
Punkt(int wspX, int wspY)
```

Wywołanie konstruktora

Konstruktor bezargumentowy (czyli konstruktor domyślny) jest wywoływany automatycznie w trakcie tworzenia obiektu danej klasy, czyli po wykonaniu instrukcji: Jeżeli konstruktor wymaga podania argumentów, należy umieścić je w nawiasie okrągłym, tak jak w przypadku zwyklei metody:

a klasy(argumenty konstruktora)

nkt punkt1 = new Punkt(100, 200):

Przeciążanie konstruktorów

Konstruktory, tak jak zwykłe metody, mogą być przeciążane, tzn. każda klasa może mieć kilka konstruktorów, jeśli tylko róż-nią się one przyjmowanymi argumentami. **Przykład:**

```
Punkt(int wspX, int wspY)
Punkt(Punkt punkt)
```

Konstruktor domyślny

Jeżeli w klasie nie będzie zdefiniowany żaden konstruktor, zo-stanie do niej automatycznie dodany bezargumentowy konstruktor domyślny. Klasa taka będzie się zatem zachowywała

```
tak, jakby miała schematyczną postać:
public class nazwa klasy
       nazwa klasy()
       ,
//pola i metody klasy
```

Jeżeli w klasie zostanie jawnie zdefiniowany konstruktor bezargumentowy, automatycznie stanie się on konstruktorem domyślnym (jest to ważne przy dziedziczeniu), niezależnie od tego, czy istnieją inne konstruktory.

Słowo kluczowe this

Słowo kluczowe this to odwołanie do obiektu bieżącego. Można je traktować jako referencję do aktualnego obiektu. Odwołanie do pól i metod przez wskazanie this odbywa się za pomocą operatora kropki ("):

Umożliwia to m.in. stosowanie w metodach i konstruktorach argumentów o nazwach identycznych z nazwami pól klasy. Przykład:

```
olic class Punkt
```

Składowe statyczne

Składowe statyczne są to pola i metody klasy, które mogą istnieć, nawet jeśli nie istnieje obiekt tej klasy. Każda taka meto-da lub takie pole są wspólne dla wszystkich obiektów tej klasy. Składowe te oznaczane są słowem static

Metody statyczne

Metody statyczne oznacza sie słowem static, które zwyczajowo powinno znaleźć się zaraz za modyfikatorem dostę pu; schematycznie:

```
odyfikator_dostępu static typ_zwracany
nazwa metody(argumenty)
 //treść metody
```

Przykład:

```
public static void f()
System.out.println("Metoda f klasy
→A");
```

Tak napisana metode można wywołać klasycznie, tzn. po utworzeniu obiektu klasy A, np. w postaci:

Ponieważ jednak metody statyczne istnieją nawet wtedy, kiedy nie ma żadnego obiektu danej klasy, możliwe jest wywołanie w postaci:

Ogólniej metodę statyczną można wywołać w postaci:

bez konieczności tworzenia obiektu danei klasy.

Pola statyczne

Pola statyczne są deklarowane przez umieszczenie słowa static przed typem pola; schematycznie:

```
static typ_pola nazwa pola;
lub
modyfikator_dostępu static typ_pola

→ nazwa pola;

Przykład:
      blic class A
```

Do pól statycznych można odwoływać się tak, jak do innych pól klasy, poprzedzając je nazwą obiektu, czyli stosując konstrukcję:

```
bądź też poprzedzając je nazwą klasy
```

Przykład:

Dziedziczenie

Klasy potomne

W Javie dziedziczenie wyraża się za pomoca słowa extends.

```
Schematyczna konstrukcja jest następująca:
class klasa potomna extends klasa bazowa
       //treść klasy poto
```

Zapis taki oznacza, że klasa potomna dziedziczy z klasy

Przykład:

```
class Punkt3D extends Punkt
 int z:
```

Konstruktory w klasach potomnych

Podczas tworzenia obiektu klasy potomnej zawsze wywoły rouczas twoizenia obiektu kiasy potoinniej zawsze wywóry-wany jest domyślin, bezargumentowy konstruktor klasy pa-zowej. Jeżeli w klasie bazowej nie istnieje konstruktor domyśl-ny, wymagane jest jawne wywodanie jednego z pozostałych konstruktorów. Wywołanie to wymaga zastosowania składni ze słowem kluczowym super. Słowo to oznacza w tym przy-padku wywołanie konstruktora klasy bazowej. Schematyczna konstrukcja ich zastawiskie. konstrukcja jest następująca:

```
class klasa_potomna extends klasa_bazowa
 klasa_potomna()
   super (argumenty);
    dalszy kod konstruktora.
```

Jeśli metodzie super przekaże się argumenty, zostanie wy-wolany konstruktor klasy bazowej, który tym argumentom odpowiada. Ważne jest, aby metoda super była pierwszą instrukcją konstruktora klasy potomnej. er była pierwsza

```
int y;
Punkt(int x, int y)
class Punkt3D extends Punkt
  int z;
Punkt3D(int x, int y, int z)
```

Modyfikatory dostępu

Przed każdym polem i każdą metodą może wystąpić modyfi-kator (inaczej specyfikator) dostępu, określający prawa dostępu do składowych klasy. Wyróżnia się cztery rodzaje dostępu

- · prywatny,
- pakietowy

pakretowy.
 Domyślnie, jeżeli przed składową klasy nie występuje żadne określenie, dostęp jest pakietowy, co oznacza, że dostęp do tej składowej mają wyłącznie klasy pakietu, w którym się ona znajduje. Dostęp publiczny jest określany słowem public, dostęp prywatny – słowem przivate, a chroniony – sło-wem przipacted

Dostęp publiczny

Jeżeli dana składowa klasy jest publiczna, oznacza to, że mają do niej dostęp wszystkie inne klasy, czyli dostęp nie jest w żaden sposób ograniczony. Modyfikator dostępu public należy zatem umieścić przed nazwą typu, co schematycznie wyglada tak:

Podobnie jest z metodami — modyfikator dostępu powinien być pierwszym elementem deklaracji:

blic typ_zwracany nazwa_metody (argumenty)

Przykład:

```
public int x;
public int y;
public int pobierzX()
   return x;
public int pobierzY()
```

Dostęp prywatny

Składowe oznaczone słowem private to takie, które do Składowe oznaczone słowem private to takie, które do-stepne są jedynie z wnętrza danej klasy, tr. nazystkie metody danej klasy mogą je dowolnie odczytywać, zapisywać (pola) i wywoływać (metody), natomiast żadna inna klasa nie może ich ani odczytać, ani zapisać Modyfikatro dostępu private należy umieścić przed nazwą typu; schematycznie:

Podobnie jest z metodami — specyfikator dostępu powinien być pierwszym elementem deklaracji:

```
private typ_zwracany nazwa_metody
❤argumenty)
```

→Przykład:

```
private int x;
private int y;
public int pobierzX()
    return y;
```

Dostep chroniony

Dostep chroniony

Składowe klasy, oznaczone słowem protected, to składowe chronione. Są one dostępne jedynie dla metod danej klasy, klas potomnych oraz klas z tego samego pakietu.
Specyfikator dostępu protected należy umieścić przed nazwą typu, co schematycznie wygląda tak:

protected <u>nazwa_typu nazwa_zmiennej;</u> Podobnie jest z metodami — specyfikator dostępu powinien być pierwszym elementem deklaracji:

```
otected typ_zwracany nazwa_metody
argumenty)
```

Przykład:

```
protected int x;
protected int y;
protected int pobierzX()
   return x:
 orotected int pobierzY()
   return y;
```

Dostęp pakietowy

Dostęp pakietowy jest dostępem domyślnym, stosowanym, kiedy przed składową klasy nie występuje żaden modyfikator dostępu. Konstrukcja taka conacza, że dostęp do składowej mają wszystkie klasy pakietu, w którym się ona znajduje. Przykład:

```
return y;
```

Klasy i składowe finalne

Klasy finalne

Klasa finalna to taka, z której nie wolno wyprowadzać innych klas, innymi słowy: taka, z której nie mogą dziedziczyć inne klasy. Pozwala to tworzyć klasy, których postać będzie z góry ustalona. Jeśli klasa ma stać się klasą finalną, należy przed jej nazwą umieścić słowo kluczowe Final, zgodnie ze sche-

```
modyfikator_dostępu final class
→nazwa_klasy
 //pola i metody klasy
```

```
ublic final class Example
public int liczba;
public void wyswietl()
   System.out.println(liczba);
```

Pola finalne

Pole klasy oznaczone słowem <u>final</u> staje się polem final-nym, czyli takim, którego wartość jest stała i nie można jej zmieniać. Ślowo kluczowe <u>final</u> umieszcza się zwyczajowo przed nazwą typu danego pola:

```
yp_pola nazwa pola
lub ogólniei:
        kator dostępu [static] final typ
```

Poprawne są wszystkie poniższe deklaracje:

```
final int liczba;
public final double liczba;
public static final char znak
```

Po takiej deklaracji pierwsze przypisanie wartości ustala niezmienna wartość pola.

Deklaracja może też być połączona z inicjalizacją, np.

Jeśli pole finalne jest typu referencyjnego, np.:

rinal Punkt punkt! = new Punkt(); ornacza to, że nie można zmieniać pierwotnie przypisanej re-ferencji. Nic jednak nie stoi na przeszkodzie, aby modyfikować pola obiektu wskazywanego przez tę referencję, np.:

punkt1.x = 100;Metody finalne

Metoda oznaczona słowem <u>final</u> staje się metodą finalną, co oznacza, że nie będzie możliwe jej przesłonięcie w klasie potomnej. Ślowo <u>final</u> umieszczane jest przed typem wartości zwracznej przez metodę:

```
typ_zwracany nazwa_metody
umenty)
```

lub ogólniei: kator_dostępu [static] final typ_ Prawidłowe są następujące przykładowe deklaracje:

final void metoda(){/*kod metod public final int metoda(){/*kod public static final void metoda()

→{/*kod metody*/};

Tablice informatyczne. Java. Wydanie III

Argumenty finalne

Argument finalny to taki, którego nie wolno zmieniać w ciele metody. Aby uczynić argument finalnym, należy umieścić słowo final przed jego typem. Schematycznie:

modyfikator_dostepu [static][final]
typ_zwracany nazwa_metody(final typ

Targumentu indzwa argumentu)
Na przykład deklarają publicznej metody o nazwie metodal, która nie zwraca żadnej wartości, lecz przyjmuje jeden finalny argument typu int o nazwie argument1, będzie miała postać:

public void metodal(final int argument1) /*treść metody*/

Klasy i metody abstrakcyjne

Klasy i metody abstrakcyjne deklaruje się za pomocą słowa kluczowego abstract. Jeżeli w klasie znajduje się co naj-

►mniej jedna metoda abstrakcyjna, klasa taka musi być również zadeklarowana jako abstrakcyjna (nie wyklucza to istnienia klas abstrakcyjnych, w których żadna z metod nie jest abs-

[public] abstract class nazwa klasy [specyfikator_dostepu] abstract >zwracany nazwa_metody(argumenty);

Metoda abstrakcyjna ma jedynie definicję, nie może zawierać żadnego kodu. Przykładowa publiczna i abstrakcyjna klasa zawierająca abstrakcyjną metodę draw miała postać:

public abstract class Shape public abstract void draw();

Po takiej deklaracji nie można będzie tworzyć obiektów klasy

Zadeklarowanie metody jako abstrakcyjnej wymusza jej rede klarację w klasie potomnej.

INTERFEJSY

Tworzenie interfejsu

Interfejs to klasa czysto abstrakcyjna, czyli taka, w której wszystkie metody traktuje się jako abstrakcyjne. Interfejs deklaruje się za pomocą słowa kluczowego interface. Interfejs może być publiczny, jeśli jest zdefiniowany w pliku o takiei samei nazwie iak nazwa interfeisu. Jub pakietowy (dostępny jedynie dla klas wchodzących w skład danego pa-kietu). Schematyczna konstrukcja interfejsu jest następująca:

n, JunemanyLana Womstunkan mieriepu jest masepunjed.
typ zwracany nazwa_metodyl(argumenty);
typ zwracany nazwa_metodyl(argumenty);
...dalsze metody interfejsu.../
typ zwracany nazwa_metodyN(argumenty);

Przykładowy interfeis o nazwie Drawable zawierający deklarację jednej tylko metody o nazwie draw będzie miał postać:

Implementowanie interfejsu

To, że klasa ma implementować dany interfeis, zaznacza sie. wykorzystując słowo kluczowe implements; schen

```
[specyfikator dostępu][abstract]
class nazwa_klasy implements nazwa_
→interfejsu {
    .pola i metody klasy.
```

Jeśli więc przykładowa klasa Shape ma implementować przedstawiony wyżej interfejs Drawable, powinna mieć

```
public class Shape implements Drawable {
   public void draw() {
     /* wnetrze metody draw */
```

Pola interfejsu

Pola interfejsu są jednocześnie publiczne, statyczne i finalne — trzeba im przypisać wartości już w momencie ich deklara-cji. Deklaracja pola interfejsu nie różni się od deklaracji pola klasy. Zgodnie z konwencja przyjmuje się, ze nazwy takich pól pisze się wielkimi literami, a poszczególne człony nazwy

```
pot pisze się wielkimi ulterami, a poszczegolne człony nazwy
oddziela się znakiem podkreślenia, np:
   public interface NowyInterfejs {
    int POLE TYPU_INT = 100;
    double POLE TYPU_OBJECT = 1.0;
    Object POLE_TYPU_OBJECT = new Object();
}
```

TYPY UOGÓLNIONE

Uogólnianie w klasach

Jeśli w klasie ma być użyty typ uogólniony (z ang. *generic* type), należy to zaznaczyć w jej definicji za pomocą nawiasu kątowego umieszczonego zo nazwą klasy. W nawiasie trzeba umieścić identyfikatory typów, które zostaną zastosowane, oddzielając je od siebie znakami przecinka; schematycznie:

```
[public] class nazwa_klasy<idl, i
  //treść klasy
```

każdy z identyfikatorów może być następnie użyty we wnętrzu klasy jako określenie konkretnego typu danych. Zwyczajowo stosuje się identyfikatory jednoliterowe (rozpoczynając od litery T), jednak nie jest to ograniczenie formalne (identyfikator typu może być wieloznakowy). Przykład klasy przechowującej jedną wartość dowolnego typu:

blic class Opakowaniel<?
public T val;

Przykład klasy przechowującej dwie wartości dwóch do wolnych typów:

```
public class Opakowanie2<T, V>{
  public T val1;
  public V val2;
```

Przy deklaracji zmiennych klasy korzystającej z typów uogólnionych należy podać w nawiasie kątowym określenia kon-kretnych typów; schematycznie:

Przykład:

:owanie1<Integer> op1; :owanie2<Integer, String> op2;

Analogicznie należy postąpić przy tworzeniu obiektów;

nazwa klasy<id1, id2, ..., idN>();

Przvkład:

Po takich definicjach możliwe będą m.in. następujące przy-

```
op1.val = 10;
op1.val = new Integer(100);
op2.val1 = 20;
op2.val2 = "abcxyz";
```

Uogólnianie metod

Uogólnianie metod jest niezależne od uogólnień klas, więc w klasie uogólnionej mogą się znajdować nieuogólnione metody, a uogólnione metody mogą się znajdować w zwy-kłych klasach. Jeśli metoda ma operować na argumencie typu ogólnego, to specyfikację tego typu należy umieścić przed typem zwracanym przez metodę: ogólnie:

```
//treść metody
```

Przykład:

```
ublic class Main
public static<U> void show(U val)
  System.out.println(val.toString())
public static void main (String args[])
  show(new Object());
show(new Integer(100));
```

PAKIETY

Tworzenie pakietów

Klasy w Javie grupowane są w jednostki nazywane pakieta-mi. Pakiet to inaczej biblioteka, zestaw powiązanych tema-tycznie klas. Do tworzenia pakietów służy słowo kluczowe package, po którym następuje nazwa pakietu, zakończona znakiem średnika; schematycznie:

ckage nazwa pakietu;

Instrukcja ta musi znajdować się na początku pliku, przed nią nie może być żadnych innych instrukcji. Przed package mogą występować jedynie komentarze:

```
//pakiet i klasa pakietowa
package nazwa_pakietu;
class nazwa klasy
     treść klasv
```

Aby skorzystać z klasy zawartej w pakiecie w innej klasie, na-

huy shulzystat z niasy zawartej ny panteur w ninej niastej ni leży użyć dyrektywy import w postaci: import nazwa pakietu. nazwa klasy; Dyrektywa import musi znajdować się na początku pliku.

Aby zaimportować wszystkie klasy z danego pakietu, dyrek tywa import powinna mieć postać: import nazwa_pakietu.*;

Nazwy pakietów

Nazwy pakietów powinny być pisane w całości małymi literami, a jeśli pakiet ma być udostępniony publicznie, należy poprzedzić go odwróconą nazwą domeny twórcy pakietu. Nie jest to obligatoryjne, ale pozwala na utworzenie, z dużym prawdopodobieństwem, nazwy unikatowej w skali globu. Jeżeli np. domeną autora jest marcinifis.com i ma powstaż pakiet o nazwie grafika, jego pełna nazwa będzie brzmieć-com.marcinis.grafika. Wszystike klasy tego pakietu będą musiały zostać umieszczone w strukturze katalogów odpowiadajacych tei nazwie.

WYJĄTKI

Instrukcja try...catch

```
Do przechwytywania wyjątków służy blok instrukcji try...catch o schematycznej, podstawowej postaci:
```

```
/
/instrukcje mogące spowodować wyjątek
,
catch(TypWyjątku identyfikatorWyjątku){
//obsługa wyjątku
```

W nawiasie klamrowym, występującym po słowie try, umieszcza się instrukcję (instrukcje), która może spowodo-wać wystąpienie błędu. W bloku występującym po catch należy umieścić kod, który ma zostać wykonany, kiedy wystapi wyjatek.

```
blic static void main (String args[])
   int tab[] = new int[10];
      //przekroczenie indeksu tablicy
tab[10] = 100;
}
catch(ArrayIndexOutOfBoundsException e){
  //przechwycenie wyjątku
  System.out.println("Nieprawidłowy
  indeks tablicy!");
```

Hierarchia wyjątków

Każdy wyjątek jest obiektem pewnej klasy. Klasy podlegają nazdy wyjątek jest obiektem pewnej klasy. Nasy pobiegają z kolei regulom dziedziczenia, zgodnie z którymi powstaje hierarchia klas. Wszystkie typowe wyjątki, które można standardowo przechwytywać w aplikacjach za pomocą bloku try...catch, dziedziczą (bezpośrednio lub pośrednio) z klasy Exception, dziedziczącej z klas Throwable oraz Object. Wymika z tego ważna właściwość jeżeli dana instrukcja może wygenerować wyjątek typu X, to można zawsze przechwycić wyjątek ogólniejszy, czyli wyjątek, którego typem będzie jedna z klas nadrzędnych w stosunku do X.

Przechwytywanie wielu wyjątków

W jednym bloku try...catch można przechwytywać wiele wyjątków. Konstrukcja taka zawiera wtedy jeden blok try i wiele bloków catch: iele bloków cat

```
try{
    //instrukcje mogące spowodować
❤wyjątek
  atch(KlasaWyjątkul identyfikator
 →Wyjątku1){
//obsługa wyjątku 1
  atch(KlasaWyjątku2 identyfikator
 →Wyjątku2){
//obsługa wyjątku 2
  dalsze bloki catch.
~/
catch(KlasaWyjątkuN identyfikator
→WyjątkuN){
//obsługa wyjątku n
```

) Po wygenerowaniu wyjątku maszyna wirtualna sprawdza, czy jego typem jest *KlasaWyjątku1* — jeśli tak, to wykonywane są instrukcje obsługi tego wyjątku lolkot try. catch jest opuszczany. Jeżeli jednak typem wyjątku nie jest *KlasaWyjątku1*, wtedy sprawdza się, czy jest on typu *KlasaWyjątku2* to.

Przy przechwytywaniu wielu wyjątków w jednym bloku należy pamiętać o ich hierarchii. Ogólna zasada jest taka: nie ma zypamięka Util mieratiki usygnika pasyjątki są na jednym poziomie hierachii. Jeśli jednak przechwytywane są wyjątki z różnych poziomów, najpierw muszą to być wyjątki bardziej szczegółowe, czyli stojące niżej w hierarchii, a dopiero po nich wyjątki bardziej ogólne, czyli stojące wyżej w hierarchii. Przykład:

```
olic static void main (String args[])
try{
  int liczba = 10 / 0;
catch(ArithmeticException e){
  System.out.println(e);
catch(RuntimeException e) {
   System.out.println(e);
catch(Exception e) {
  System.out.println(e);
```

Zagnieżdżanie bloków try...catch

Bloki try...catch można zagnieżdżać. W jednym bloku przechwytującym wyjątek X może istnieć drugi blok, który bedzie przechwytywał wyjątek Y. Schematycznie taka kon-strukcja ma postać:

```
//instrukcje mogące spowodować
cry{
//instrukcje mogące spowodować
⊶wyjątek 2
}
catch (TypWyjątku2 identyfikator
→Wyjątku2){
//obsługa wyjątku 2
,
catch (TypWyjątkul identyfikator
❤Wyjątkul){
   //obsługa wyjątku 1
```

Przykład:

```
ublic static void main (String args[])
Punkt punkt = null;
int liczba;
try{
    try{
    liczba = 10 / 0;
```

```
itch(ArithmeticException e) {
System.out.println("Nieprawidłowa
acja arytmetyczna.");
System.out.println("Przypisuje
nnej liczba wartość 10.");
liczba = 10;
     punkt.x = liczba;
}
catch(Exception e){
   System.out.println("Błąd ogólny.");
   System.out.println(e);
```

Zgłaszanie wyjątków

Zgłaszanie wyjątkow Zgłoszenie własnego wyjątku polega na utworzeniu nowego obiektu jednej z kłas wyjątków. Za pomocą instrukcji new należy utworzyć nowy obiekt klasy, która dziedziczy (pośred-nio lub bezpośrednio) z kłasy Throwable. W najbardziej ogólnym przypadku będzie to kłasa Exception. Tak utwo-rzony obiekt musi stać się parametrem instrukcji throw, np.:

throw new Exception(); Jeśli taki wyjątek zostanie obsłużony przez znajdującą się Jesii taki wyjątek zostanie obsłużony przez znajoującą się w danym bloku (danej metodzie) instrukcję try, - catch, nie trzeba robić nic więcej. Jeśli jednak nie zostanie obsłużony, w specyfikacji metody należy zaznaczyć, że może ona taki wyjątek zgłaszać. Wymaga to zastosowania instrukcji throws w ogólnej postaci:

```
specyfikator_dostępu [static] [final]
typ_zwracany nazwa_metody(argumenty)
throws KlasaWyjątkuI, KlasaWyjątku2,
..., KlasaWyjątkuN
     //treść metody
```

Przykład:

```
public static void main (String args[])
throws Exception
  throw new Exception():
```

Jeżeli zgłaszany wyjątek ma otrzymać własny komunikat, należy przekazać go jako argument konstruktora klasy

```
throw new Exception("komunikat");
Exception exception = new
Exception("komunikat");
throw exception;
```

Ponowne zgłaszanie wyjątków

Raz przechwycony wyjątek można zgłosić ponownie ("wyrzucić"), wykorzystując instrukcję throw:

```
iry{
   //instrukcje mogace spowodować
catch(typWyjątku identyfikatorWyjątku){
  //instrukcje obsługujące sytuację
→wyjątkową
throw indentyfikatorWyjątku;
```

Przykład:

```
ublic static void main (String args[])
   try{
  int liczba = 10 / 0;
}
catch(ArithmeticException e){
System.out.println("Tu wyjątek
>został przechwycony.");
//ponowne zgłoszenie wyjątku
```

Tworzenie wyjątków

W Javie można tworzyć własne klasy wyjątków. Należy napisać klasę pochodną, dziedziczącą pośrednio lub bezpośrednio z klasy Throwable. W praktyce wyjątki najczęściej są wprowadzane z klasy Exception i klas od niej pochodnych:

public class nazwa klasy extends Exception

```
//treść klasu
```

public class GeneralException extends →Exception Zgłoszenie wyjątku General Exception:

Przykład (nowy wyjątek GeneralException):

```
public static void main (String args[])
throws GeneralException
  throw new GeneralException();
```

Do bloku try możemy dołączyć sekcję finally, która będzie wykonywana zawsze, niezależnie od tego, co będzie działo się w bloku try; schematycznie:

```
try{
//instrukcje mogące spowodować wyjątek
catch() {
  //instrukcje sekcji catch
}
finally{
  //instrukcje sekcji finally
```

skcję finally można stosować w przypadku dowolnych instrukcji, nie ma też konieczności przechwytywania wyjątku. Stosowana jest wtedy konstrukcja try...finally w postaci:

```
try{
//instrukcje
```

Kod z bloku <u>finally</u> zostanie wykonany zawsze, niezależnie od tego, jakie instrukcje znajdują się w bloku <u>try</u>.

Tablice informatyczne. Java. Wydanie III

WSPÓŁPRACA Z SYSTEMEM

Standardowy strumień wejściowy

Standardowy strumień wejściowy jest reprzentowany przez obiekt System.in, czyli obiekt in zawarty w klasie System (statyczne i finalne pole klasy). Jest to obiekt typu InputStream (klasy reprezentującej strumienie wejściowe). Metody udostępniane przez tę klasę zostały zebrane w poniższej tabeli.

Typ zwracany	Metoda	Opis	
int	available()	Zwraca liczbę bajtów, które mogą być odczytane ze strumienia	
void	close()	Zamyka strumień i zwalnia związane z nim zasoby	
void	mark(int readlimit)	Zaznacza bieżącą pozycję w strumieniu	
boolean	markSupported()	Sprawdza, czy strumień może obsługiwać metody mark i reset	
abstract int	read()	Odczytuje kolejny bajt ze strumienia	
int	read(byte[] b)	Odczytuje ze strumienia liczbę bajtów nie większą niż rozmiar tablicy b. Zwraca faktycznie odczytaną liczbę bajtów.	
int	<pre>read(byte[] b, int off, int len)</pre>	Odczytuje ze strumienia liczbę bajtów nie większą niż wskazywana przez len, i zapisuje je w tablicy b, począwszy od komórki wska- zywanej przez off. Zwraca faktycznie przeczytaną liczbę bajtów.	
void	reset()	Wraca do pozycji strumienia wskazywanej przez wywołanie metody mark	
long	skip(long n)	Pomija w strumieniu liczbę bajtów wskazywanych przez n. Zwraca faktycznie pominiętą liczbę bajtów.	

Wczytywanie tekstu za pomocą klasy buforowej

Należy skorzystać z metody readLine klasy BufferedReader. Aby utworzyć obiekt tej klasy powiązany ze standardowym strumieniem wejściowym System. in, trzeba dodatkowo utworzyć obiekt pośredniczący klasy InputStreamReader, stosując konstrukcję:

```
BufferedReader brIn = new BufferedReader(
new InputStreamReader(System.in)
```

Przykład:

```
public static void main(String args[])
     BufferedReader brIn = new BufferedReader(
  new InputStreamReader(System.in)
      System.out.println("Wprowadź wiersz tekstu zakończony znakiem Enter:");
     String line = brIn.readLine();
String line = brIn.readLine();
System.out.print("Wprowadzona linia to: " + line);
     }
catch(IOException e){
   System.out.println("Błąd podczas odczytu strumienia.");
```

Wprowadzanie liczb

Do wprowadzania wartości liczbowych można zastosować klasę StreamTokenizer, która dzieli strumień wejściowy na jednostki leksykalne, czyli tokeny. Ma ona pole o nazwie nval, które zawiera wartość aktualnego tokena w postaci liczby typu double (o ile ten token jest liczbą). Typ tokena można rozpoznać, odczytując stan pola ttype, które może przyjmować następujące wartości:

- ıçınığıcı waltusu.

 StreamTokenizer.TT_EOF osiągnięty został koniec strumienia;

 StreamTokenizer.TT_EOL osiągnięty został koniec linii;

 StreamTokenizer.TT_NUMBER token jest liczbą;
- amTokenizer.TT_WORD token jest słowem.

```
public class Main
   public static void main(String args[])
     StreamTokenizer strTok = new StreamTokenizer(
   new BufferedReader(
     new InputStreamReader(System.in)
      System.out.print("Wprowadź liczbę: ");
      try{
   strTok.nextToken();
      catch(IOException e){
   System.out.print("Błąd podczas odczytu danych ze strumienia.");
   return;
     if(strTok.ttype != StreamTokenizer.TT_NUMBER)(
   System.out.print("To nie jest prawidłowa liczba.");
   return;
      double liczba = strTok.nval;
System.out.print("Wprowadzona liczba to " + liczba);
```

Klasa Scanner

Rusas Acanner

Począwszy od wersji Javy 5.0 (1.5), do przetwarzania danych
wejściowych można używać klasy Scanner. Zawiera ona
konstruktory, które mogą przyjmować obiekty klas: File,
InputReader i String, a także obiekty implementujec
interfejsy Readable lub ReadableByteChannel. Jest
to wiez cestaw pozwalający na obsługe bardzo wielu formatów
wejściowych. Metod klasy Scanner jest bardzo wiele, a najbardziej przydatne są te z rodziny next i ha stwat, konstruowane na bardzo prostych zasadach, które schematycznie można
przedstawić jako:
hasNextMazwaTypuProstego

hasNextNazwaTypuProstego oraz:

nextNazwaTypuProstego
Istnieją więc metody: hasNext, hasNextInt, hasNextDouble, hasNextByte itd. Wszystkie one zwracają wartość true, jeśli w powiązanym strumieniu danych kolejną jednostką leksykalną jest wartość danego typu prostego, natomiast "pusta metoda hasNext zwraca wartość true, jeżel w strumieniu istnieje jakakolwiek kolejna jednostka leksykalna. Dodatkowo istnieje metoda hasNextLine, która określa, czy w strumieniu podatkowo istnieje metoda hasNextLine, która określa, czy w strumieniuszadnie określa określa.

istnieje metoda hasNextLi niu znajduje się wiersz tekstu. Metody z rodziny next, a więc: nextInt, nextDouble, nextByte itd, zwracają kolejną jednostkę leksykalną w postaci wartości danego typu prostego. Metoda next zwraca z kolei token w postaci ciągu znaków, a nextLine — cały wiersz tekstu.

Standardowy strumień wyjściowy

► Przvkład:

```
import java.util.*;
System.out.print("Wprowadź wartość
❤całkowitą: ");
while(!scanner.hasNextInt()){
    System.out.print("To nie jest
→wartość całkowita: ");
System.out.println(scanner.
}
int value = scanner.nextInt();
int result = value * 2;
System.out.println(value + " * 2

>= " + result);
```

Dane można wyprowadzać (np. na ekran konsoli) za pomocą instrukcji System.out.println lub System.out.print, czyli przez wywołanie metody println lub print obiektu System.out. Jest to obiekt klasy PrintStream. Metody udostępniane przez tę klasę zostały zebrane w tabeli u góry po prawej.

PrintStream append (CharSequence csq. Dodaje do strumienia Sekwencje znaków PrintStream append (CharSequence csq. Dodaje do strumienia sekwencje znaków PrintStream append (CharSequence csq. Dodaje do strumienia sekwencje znaków wyznaczaną przez indeksy start i end) boolean checkError() Opróznia bufor oraz sprawdza, czy nie wystapił błąd protected void clearError() Zeruje status błędu void close() Zamyka strumień void flush() Powoduje opróznienie bufora PrintStream format (Locale 1, String **Format, Object args) PrintStream format(String format, "Chipet args) void print (Char c) Wyświetla wartość typu boolean void print (Char c) Wyświetla wartość typu double void print (Char c) Wyświetla wartość typu double void print (Indo f) Wyświetla wartość typu long void print (String s) Wyświetla wartość typu long void print (String s) Wyświetla wartość typu long void print (String s) Wyświetla wartość typu long void print (Indo f) Wyświetla wartość typu indouble void printin (Indo f) Wyświetla wartość typu indouble oraz znak końca linii void printin (Indo f) Wyświetla wartość typu double oraz znak końca linii void printin (Indo f) Wyświetla wartość typu indouble oraz znak końca linii void printin (Indo f) Wyświetla wartość typu indouble oraz znak końca linii void printin (Indo f) Wyświetla wartość typu indoubl		
PrintStream append (CharSequence csq) PrintStream append (CharSequence csq, but start, int end) PrintStream append (CharSequence csq, but start, int end) PrintStream append (CharSequence csq, but start, int end) Boolean checkError() Protected void clearError() Protected void clearError() Void close() Void flush() Powoduje opróżnienie bufora Zapisuje w strumieniu dane określone przez argumenty args w formacie zdefiniowanym przez format, zgodnie z ustawieniami narodowymi wskazanymi przez l PrintStream format (String format, object args) Void print (boolean b) Void print (boolean b) Void print (char c) Void print (char c) Void print (char c) Void print (float f) Void print (float f) Void print (float f) Void print (float f) Void print (object obj) Void print (String s) PrintStream printf (Locale 1, String format, Object args) PrintStream printf (Locale 1, String format, Object args) Void print (float f) Void print (float f) Void print (float f) Void print (bolean b) Vyświetla wartość typu int Vyświe	Deklaracja	
PrintStream append(CharSequence csq, Sinch Start, int end) Society Startiend Doolean checkError() Dopfoina bufor oraz sprawdza, czy nie wystąpił błąd Protected void clearError() Void close() Void close() PrintStream format(Locale 1, String Format, Object args) PrintStream format(String format, Object args) PrintStream format(String format, Wyświetla znak void print(boolean b) Void print (boolean b) Void print (char c) Void print (char [] s) Void print (char [] s) Void print (float f) Void print (long l) Void print (long l) Void print (String s) PrintStream printf(Locale 1, String Wyświetla wartość typu int Void print (long l) Void print (String s) PrintStream printf(Locale 1, String Format, Zapisuje w strumieniu dane określone przez argumenty args w formacie określonym przez format Vyświetla znak Vyświetla wartość typu int Void print (long l) Vyświetla wartość typu int Void print (String s) Vyświetla wartość typu int Vyświetla wartość typu boolean oraz znak końca linii Void println (char c) Vyświetla wartość typu int oraz znak końca linii Void println (char c) Vyświetla wartość typu int oraz znak końca linii Void println (char c)	PrintStream append(char c)	Dodaje znak do strumienia
przez indeksy startiend boolean checkError() Opróżnia bufor oraz sprawdza, czy nie wystąpił bląd protected void clearError() Zeruje status blędu void close() Zamyka strumień void flush() Powoduje opróżnienie bufora Zamyka strumień udane określone przez argumenty args w format, Object args) w formacie zdefiniowanym przez format, zgodnie z ustawienia- mi narodowymi wskazanymi przez 1 Zapisuje w strumieniu dane określone przez argumenty args w formacie określonym przez format, zgodnie z ustawienia- mi narodowymi wskazanymi przez 1 Zapisuje w strumieniu dane określone przez argumenty args w formacie określonym przez format, woid print (char c) Wyświetla wartość typu boolean woid print (char f) Wyświetla tablicę znaków woid print (float f) Wyświetla wartość typu float woid print (float f) Wyświetla wartość typu long Wyświetla okaj znaków w zostring objektu obj void print (Char c) Wyświetla okaj znaków w zostring objektu obj PrintStream printf (Locale 1, String Format, Object args) Wyświetla okaj znaków w zostring objektu obj Wyświetla wartość typu boolean oraz znak końca linii void println (char c) Wyświetla znak zapisany w c oraz znak końca linii void println (char c) Wyświetla znak zapisany w c oraz znak końca linii void println (float f) Wyświetla wartość typu float oraz znak końca linii void println (float f) Wyświetla wartość typu long oraz znak końca linii void println (float f) Wyświetla wartość typu int oraz znak końca linii void println (object obj) Wyświetla wartość typu long oraz znak końca linii void println (object obj) Wyświetla wartość typu long oraz znak końca linii Wyświetla warto	PrintStream append(CharSequence csq)	Dodaje do strumienia sekwencję znaków
protected void clearError() void close() void close() PrintStream format(Locale 1, String → format, Object args) PrintStream format(String format, → Object args) Wyswietla wardsc typu boolean Void print(boolean b) Vyswietla varboś typu boolean Void print(char c) Vyswietla varboś typu boolean Vyswietla varboś typu float Void print(float f) Vyswietla wartoś typu float Void print(long l) Vyswietla wartoś typu int Void print(Object obj) Vyswietla wartoś typu long Wyswietla wartoś typu long PrintStream printf(Locale l, String → format, Object args) PrintStream printf(String format, → Object args) Wyswietla wartoś (typu boolean oraz znak końca linii void println(char c) Wyswietla vartoś (typu boolean oraz znak końca linii void println(char c) Wyswietla vartoś (typu boolean oraz znak końca linii void println(char c) Wyswietla vartoś (typu long oraz znak końca linii void println(float f) Wyswietla wartoś (typu long oraz znak końca linii void println(float f) Wyswietla wartoś (typu long oraz znak końca linii void println(object obj) Wyswietla wartoś (typu long oraz znak końca linii void println(float f) Wyswietla wartoś (typu long oraz znak końca linii void println(object obj) Wyswietla wartoś (typu long oraz znak końca linii void println(object obj) Wyswietla wartoś (typu long oraz znak końca linii Wyświetla dajg znaków so		
void close() Zamyka strumień void flush() Powoduje opróżnienie bufora PrintStream format (Locale 1, String format, Object args) Zapisuje w strumieniu dane określone przez argumenty args w formacie zdefiniowanym przez format, zgodnie z ustawieniami narodowymi wskazanymi przez 1 PrintStream format (String format, Sobject args) Wyświetla wartość typu boolean void print (boolean b) Wyświetla wartość typu boolean void print (char c) Wyświetla wartość typu boolean void print (double d) Wyświetla wartość typu double void print (float f) Wyświetla wartość typu long void print (Int i) Wyświetla wartość typu long void print (Object obj) Wyświetla wartość typu long void print (String s) Wyświetla wartość typu long PrintStream printf (Locale 1, String format, Object args) Zapisuje w strumieniu dane określone przez argumenty args w formacie zdefiniowanym przez format, zgodnie z ustawieniami narodowymi wskazanymi przez 1 PrintStream printf (String format, Object args) Zapisuje w strumieniu dane określone przez argumenty args w formacie określonym przez format, zgodnie z ustawieniami narodowymi wskazanymi przez 1 PrintStream printf (String format, Object args) Zapisuje w strumieniu dane określone przez argumenty args w formacie z definiowanymi wskazanymi przez 1 <t< td=""><td>boolean checkError()</td><td>Opróżnia bufor oraz sprawdza, czy nie wystąpił błąd</td></t<>	boolean checkError()	Opróżnia bufor oraz sprawdza, czy nie wystąpił błąd
Powoduje opróżnienie bufora Zapisuje w strumieniu dane określone przez argumenty args w formacie zdefiniowanym przez format, zgodnie z ustawieniam inarodowymi wskazanymi przez 1 Zapisuje w strumieniu dane określone przez argumenty args w formacie zdefiniowanym przez format, zgodnie z ustawieniam inarodowymi wskazanymi przez 1 Zapisuje w strumieniu dane określone przez argumenty args w formacie określonym przez format, zgodnie z ustawieniam inarodowymi wskazanymi przez 1 Zapisuje w strumieniu dane określone przez argumenty args w formacie określonym przez format format (char c) Wyświetla znak w wyświetla wartość typu double woid print (float f) Wyświetla wartość typu float woid print (float f) Wyświetla wartość typu int wyświetla wartość typu int wyświetla wartość typu int wyświetla wartość typu int wyświetla cją znaków uzyskany przez wywołanie metody tostring obiektu obj wyświetla cją znaków uzyskany przez wywołanie metody tostring obiektu obj wyświetla cją znaków uzyskany przez argumenty args w formacie zdefiniowanym przez format, zgodnie z ustawieniam in anodowymi wskazanymi przez 1 Zapisuje w strumieniu dane określone przez argumenty args w formacie zdefiniowanym przez format z zapisuje w strumieniu dane określone przez argumenty args w formacie zdefiniowanym przez z zapisuje w strumieniu dane określone przez argumenty args w formacie zdefiniowanym przez z zapisuje w strumieniu dane określone przez argumenty args w formacie zdefiniowanym przez z zapisuje w strumieniu dane określone przez argumenty args w formacie zdefiniowanym przez z zapisuje w strumieniu dane określone przez argumenty args w formacie zdefiniowanym przez z zapisuje w strumieniu dane określone przez argumenty args w formacie zdefiniowanym przez z zapisuje w strumieniu dane określone przez zapisuje w strumieniu dane określone przez znak końca linii wyświetla wartość typu boolean oraz znak końca linii wież println (char c) wyświetla wartość typu into oraz zna	protected void clearError()	Zeruje status błędu
PrintStream format (Locale 1, String format, Object args) PrintStream format (String format, Object args) PrintStream format (String format, Object args) PrintStream format (String format, Object args) Void print (boolean b) Void print (boolean b) Void print (char c) Void print (char c) Void print (char f) Void print (float f) Void print (float f) Void print (float f) Void print (long l) Void print (Object obj) Void print (String s) PrintStream printf (Locale l, String format, Object args) PrintStream printf (String format, Object args) Void println (boolean b) Void println	void close()	Zamyka strumień
wformacie zdefiniowanym przez format, zgodnie z ustawienia- min arodowymi wskazanym przez 1 PrintStream format (String format, Sobject args) PrintStream format (String format, Sobject args) void print (boolean b) void print (char c) void print (char c) void print (char f) void print (char f) void print (char f) void print (float f) void print (int i) void print (long l) void print (String s) PrintStream printf (Locale 1, String Soformat, Object args) PrintStream printf (String format, Sobject args) Wyświetla wartość typu boolean Wyświetla wartość typu long Wyświetla wartość typu boolean oraz rank końca linii Wyświetla wartość typu boolean oraz znak końca linii Wyświetla wartość typu boolean oraz znak końca linii Wyświetla wartość typu long oraz znak końca linii Wyświetla całag znaków zowaz znak końca linii Wyświetla całag	void flush()	Powoduje opróżnienie bufora
void print (char[] s) void print (char[] s) void print (char[] s) void print (char[] s) void print (double d) void print (float f) void print (float f) void print (long l) void print (String s) PrintStream printf (Locale l, String format, Object args) void print (String s) PrintStream printf (String format, Object args) void print (long l) void print (long l) void print (long l) void print (String s) PrintStream printf (Locale l, String format, Object args) void printl(String format, Object args) void printl(String format, Object args) void println(bolean b) void println(bolean b) void println (bolean b) void println (bolean b) void println (char c) void println (float f) void prin		w formacie zdefiniowanym przez format, zgodnie z ustawienia-
void print (char c) void print (char[] s) void print (char[] s) void print (char[] s) void print (char[] s) void print (float f) void print (float f) void print (int i) void print (long l) void print (object obj) void print (String s) PrintStream printf (Locale 1, String format, Object args) PrintStream printf (String format, Object args) PrintStream printf (String format, Object args) PrintStream printf (String format, Object args) Wyświetla wartość typu int Void println (bolean b) Wyświetla oiag znaków uzyskany przez wywolanie metody toString objektu obj Vosywietla ciąg znaków s Zapisuje w strumieniu dane określone przez argumenty args w formacie zdefiniowanym przez format, zgodnie z ustawieniam inarodowymi wskazanymi przez 1 PrintStream printf (String format, Zapisuje w strumieniu dane określone przez argumenty args w formacie określonym przez format, zwoid println (bolean b) Wyświetla vaktośc typu boolean oraz znak końca linii void println (char c) Wyświetla znak zapisany w - oraz znak końca linii void println (double d) Wyświetla wartość typu float oraz znak końca linii void println (float f) woid println (int i) Wyświetla wartość typu long oraz znak końca linii void println (long l) Wyświetla wartość typu long oraz znak końca linii void println (Object obj) Wyświetla akie znaków zab oraz znak końca linii void println (String s) Wyświetla wartość typu long oraz znak końca linii void println (String s) Wyświetla oig znaków uzyskany przez wywolanie metody toString objektu obj oraz znak końca linii Wyświetla ciąg znaków oraz znak końca linii Wyświetla dag znaków oraz znak końca linii Wyświetla dag znaków oraz znak końca linii void println (String s) Wyświetla oig znaków oraz znak końca linii void write (byte[] buf, int off, Zapisuje do strumienia bajty z tablicy buf, w liczbie wskazywanej przez len, poczynając od komórki określonej przez of f		
void print (char[] s)	void print(boolean b)	Wyświetla wartość typu boolean
void print (double d) Void print (float f) Void print (float f) Void print (float f) Void print (long 1) Void print (long 1) Void print (Object obj) Void print (Object obj) Void print (String s) Void print (String format, Object args) Void println (String format, Void println (String format, Void println (Obolean b) Void println (Char c) Void println (Char [1 tab) Void println (Char [1 tab) Void println (Char [1 tab) Void println (float f) V	void print(char c)	Wyświetla znak
void print(float f) void print(int i) void print(long l) void print(long l) void print(Object obj) void print(String s) PrintStream printf(Locale l, String format, Object args) PrintStream printf(String format, Object args) Void println(Obolean b) Void println(Cholean b) Void println(Char c) Vyświetla znak końca linii (Obolean b) Vyświetla znak zapisany w coraz znak końca linii (Object obj) Void println(Char f) Vyświetla wartość typu float oraz znak końca linii (Vyświetla wartość typu float oraz znak końca linii (Vyświetla wartość typu long oraz znak końca linii (Vyświetla dag znaków w zyskany przez wywolanie metody tostring objektu obj oraz znak końca linii (Vyświetla dag znaków w zoraz znak końca linii (Vyświetla dag znaków zyskany przez wywolanie metody tostring objektu obj oraz znak końca linii (Vyświetla dag znaków soraz znak końca linii (Vyświetla vartość typu long oraz znak końca linii (Vyświetla dag znaków zyskany przez wywolanie metody tostring objektu obj oraz znak końca linii (Vyświetla caj znaków oraz znak końca linii (Vyświet	void print(char[] s)	Wyświetla tablicę znaków
void print (int i) void print (long 1) void print (long 1) void print (Object obj) void print (String s) PrintStream printf (Locale 1, String format, Object args) PrintStream printf (String format, Object args) Void println (Object args) Void println (Char c) Voyswietla vakt (Noria Inii (Dowoduje przež cied o nowej linii) Void println (char c) Voyświetla vartość typu boolean oraz znak końca linii Void println (char c) Voyświetla vartość typu double oraz znak końca linii Void println (float f) Voyświetla wartość typu float oraz znak końca linii Void println (Ini ti) Void println (Object obj) Voyświetla wartość typu long oraz znak końca linii Void println (Object obj) Voyświetla wartość typu long oraz znak końca linii Void println (String s) Wyświetla wartość typu long oraz znak końca linii Void println (String s) Wyświetla wartość typu long oraz znak końca linii Void println (String s) Voyświetla wartość typu long oraz znak końca linii Void println (String s) Voyświetla wartość typu long oraz znak końca linii Voyświetla wartość typu long oraz znak końca lin	void print(double d)	Wyświetla wartość typu double
void print(long 1) Wyświetla wartość typu long void print(Object obj) Wyświetla cjag znaków uzyskany przez wywolanie metody toString objektu obj void print(String s) Wyświetla cjag znaków uzyskany przez wywolanie metody toString objektu obj PrintStream printf(Locale 1, String objektu obj Zapisuje w strumieniu dane określone przez argumenty args w formacie określone przez of format argo argumenty args w formacie określone przez of format argo argumenty args w formacie określone przez of format argo argumenty args w formacie argumenty args w f	void print(float f)	Wyświetla wartość typu float
void print (Object obj) Wyświetla cjąg znaków uzyskany przez wywołanie metody toString obiektu obj void print (String s) Wyświetla cjąg znaków s PrintStream printf (Locale 1, String format, Object args) Zapisuje w strumieniu dane określone przez argumenty args w formacie zdefiniowanym przez format, zgodnie z ustawieniam inarodowymi wskazanymi przez 1. PrintStream printf (String format, Object args) Zapisuje w strumieniu dane określone przez argumenty args w formacie określonym przez format. void println (boolean b) Wyświetla znak końca linii (powoduje przejście do nowej linii) void println (char c) Wyświetla wartość typu boolean oraz znak końca linii void println (char [] tab) Wyświetla znak zapisany w c oraz znak końca linii void println (Gouble d) Wyświetla wartość typu double oraz znak końca linii void println (float f) Wyświetla wartość typu float oraz znak końca linii void println (Ini i) Wyświetla wartość typu long oraz znak końca linii void println (Object obj) Wyświetla wartość typu long oraz znak końca linii void println (String s) Wyświetla cjąg znaków uzyskany przez wywołanie metody tośt println (String s) wyświetla cjąg znaków s oraz znak końca linii void write (byte[] buf, int off, Zapisuje do strumienia bajty z tablicy buf, w liczbie wskazywanej przez off	void print(int i)	Wyświetla wartość typu int
void print(Ustring s) PrintStream printf(Locale 1, String objects obj) PrintStream printf(Locale 1, String format, Object	void print(long 1)	Wyświetla wartość typu long
PrintStream printf (Locale 1, String Format, Object args) PrintStream printf (String format, Object args) PrintStream printf (String format, Object args) PrintStream printf (String format, Object args) void println (String format, Object args) void println (boolean b) void println (boolean b) void println (char c) void println (char c) void println (char [1 tab) void println (char [1 tab) void println (char [1 tab) void println (float f) void println (fl	void print(Object obj)	
wformacie zdefiniowanym przez format, zgódnie z ustawienia- minarodowymi wskazanymi przez 1 PrintStream printf (String format, CObject args) PrintStream printf (String format, CObject args) Void println () Void println (boolean b) Vyświetla vaktości lnii (powoduje przejście do nowej linii) Void println (char c) Vyświetla znak zapisany w c oraz znak końca linii Void println (char [] tab) Vyświetla znak zapisany w c oraz znak końca linii Void println (char [] tab) Vyświetla znak zapisany w c oraz znak końca linii Void println (float f) Vyświetla wartość typu double oraz znak końca linii Void println (float f) Vyświetla wartość typu float oraz znak końca linii Void println (long l) Vyświetla wartość typu long oraz znak końca linii Void println (Object obj) Vyświetla wartość typu long oraz znak końca linii Void println (String s) Vyświetla wartość typu long oraz znak końca linii Void println (String s) Vyświetla wartość vypu long oraz znak końca linii Void println (String s) Vyświetla wartość vypu long oraz znak końca linii Void println (String s) Vyświetla wartość vypu long oraz znak końca linii Void println (String s) Vyświetla wartość vypu long oraz znak końca linii Void println (String s) Vyświetla wartość vypu long oraz znak końca linii Void println (String s) Vyświetla wartość vypu long oraz znak końca linii Void println (String s) Vyświetla wartość vypu long oraz znak końca linii Void println (String s) Vyświetla wartość vypu long oraz znak końca linii Void println (String s) Vyświetla wartość vypu long oraz znak końca linii Void println (String s) Vyświetla wartość vypu long oraz znak końca linii Void println (String s) Vyświetla wartość vypu long oraz znak końca linii Void println (String s) Vyświetla wartość vypu long oraz znak końca linii	void print(String s)	Wyświetla ciąg znaków s
wobject args) wformacie określonym przez format void println() Wyświetla znak końca linii (powoduje przejście do nowej linii) void println(boolean b) Wyświetla wartość typu boolean oraz znak końca linii void println(charc) Wyświetla anak zapisany w o oraz znak końca linii void println(charc[] tab) Wyświetla tablicę znaków tab oraz znak końca linii void println(double d) Wyświetla wartość typu double oraz znak końca linii void println(float f) Wyświetla wartość typu ilo oraz znak końca linii void println(long l) Wyświetla wartość typu ilong oraz znak końca linii void println(Object obj) Wyświetla wartość typu long oraz znak końca linii void println(String s) Wyświetla cją znaków zyskany przez wywołanie metody tożstring oblektu obj oraz znak końca linii void write (byte[] buf, int off, Zapisuje do strumienia bajty z tablicy buf, w liczbie wskazywanej przez len, poczynając od komórki określonej przez off		w formacie zdefiniowanym przez format, zgodnie z ustawienia-
void println (boolean b) Wyświetla wartość typu boolean oraz znak końca linii void println (char c) Wyświetla znak zapisany w c oraz znak końca linii void println (char c) Wyświetla tablicę znaków tab oraz znak końca linii void println (char c) Wyświetla wartość typu double oraz znak końca linii void println (float f) Wyświetla wartość typu float oraz znak końca linii void println (int i) Wyświetla wartość typu long oraz znak końca linii void println (Object obj) Wyświetla wartość typu long oraz znak końca linii void println (String s) Wyświetla cjag znaków z oraz znak końca linii void println (String s) Wyświetla djag znaków s oraz znak końca linii void write (byte[] buf, int off, zapisuje do strumienia bajty z tablicy buf, w liczbie wskazywanej przez len, poczynając od komórki określonej przez off		
void println (char c) Wyświetla znak zapisany w c oraz znak końca linii void println (char [] tab) Wyświetla tablicę znaków tab oraz znak końca linii void println (double d) Wyświetla wartość typu double oraz znak końca linii void println (float f) Wyświetla wartość typu float oraz znak końca linii void println (int i) Wyświetla wartość typu int oraz znak końca linii void println (long l) Wyświetla wartość typu long oraz znak końca linii void println (Object obj) Wyświetla ciąg znaków uzyskany przez wywołanie metody tostring obiektu obj oraz znak końca linii void println (String s) Wyświetla ciąg znaków s oraz znak końca linii protected void setError () Ustawia strumień w stan błędu void write (byte[] buf, int off, int off, int len) Zapisuje do strumienia bajty z tablicy buf, w liczbie wskazywanej przez len, poczynając od komórki określonej przez off	void println()	Wyświetla znak końca linii (powoduje przejście do nowej linii)
void println (char[] tab) Wyświetla tablicę znaków tab oraz znak końca linii void println (double d) Wyświetla wartość typu double oraz znak końca linii void println (float f) Wyświetla wartość typu 1 oraz znak końca linii void println (int i) Wyświetla wartość typu 1 oraz znak końca linii void println (long 1) Wyświetla wartość typu long oraz znak końca linii void println (Object obj) Wyświetla wartość typu long oraz znak końca linii void println (Object obj) Wyświetla cjag znaków uzyskany przez wywołanie metody tostring objektu obj oraz znak końca linii void println (String s) Wyświetla cjag znaków s oraz znak końca linii protected void setError () Ustawia strumień w stan blędu void write (byte[] buf, int off, Zapisuje do strumienia bajty z tablicy buf, w liczbie wskazywanej przez 1-en, poczynając od komórki określonej przez off	void println(boolean b)	Wyświetla wartość typu boolean oraz znak końca linii
void println (double d) Wyświetla wartość typu double oraz znak końca linii void println (float f) Wyświetla wartość typu float oraz znak końca linii void println (int i) Wyświetla wartość typu int oraz znak końca linii void println (long l) Wyświetla wartość typu long oraz znak końca linii void println (Object obj) Wyświetla cjag znaków uzyskany przez wywołanie metody tości println (String s) void println (String s) Wyświetla cjag znaków s oraz znak końca linii protected void setError () Ustawia strumień w stan blędu void write (byte[] buf, int off, Zapisuje do strumienia bajty z tablicy buf, w liczbie wskazywanej przez len, poczynając od komórki określonej przez off	void println(char c)	Wyświetla znak zapisany w c oraz znak końca linii
void println(float f) Wyświetla wartość typu float oraz znak końca linii void println(long 1) Wyświetla wartość typu long oraz znak końca linii void println(long 1) Wyświetla wartość typu long oraz znak końca linii void println(Object obj) Wyświetla ciąg znaków uzyskany przez wywolanie metody toString oblektu obj oraz znak końca linii void println(String s) Wyświetla ciąg znaków s oraz znak końca linii protected void setError() Ustawia strumień w stan blędu void write (byte[] buf, int off, int len) Zapisuje do strumienia bajty z tablicy buf, w liczbie wskazywanej przez len, poczynając od komórki określonej przez off	void println(char[] tab)	Wyświetla tablicę znaków tab oraz znak końca linii
void println(int i) Wyświetla wartość typu int oraz znak końca linii void println(long 1) Wyświetla wartość typu long oraz znak końca linii void println(Object obj) Wyświetla ciąg znaków uzyskany przez wywolanie metody tośtring obiektu obj oraz znak końca linii void println(String s) Wyświetla ciąg znaków s oraz znak końca linii protected void setError() Ustawia strumień w stan błędu void write (byte[] buf, int off, Zapisuje do strumienia bajty z tablicy buf, w liczbie wskazywanej przez len, poczynając od komórki określonej przez off	void println(double d)	Wyświetla wartość typu double oraz znak końca linii
void println(long 1) Wyświetla wartość typu long oraz znak końca linil void println(Object obj) Wyświetla cjag znaków uzyskany przez wywołanie metody tośrtini objektu obj oraz znak końca linil void println(String s) Wyświetla cjag znaków s oraz znak końca linil protected void setError() Ustawia strumień w stan blędu void write (byte[] buf, int off, in	void println(float f)	Wyświetla wartość typu float oraz znak końca linii
void println (Object obj) Wyświetla ciąg znaków uzyskany przez wywołanie metody toString obiektu obj oraz znak końca linii void println (String s) Wyświetla ciąg znaków uzyskany przez wywołanie metody toString obiektu obj oraz znak końca linii Wyświetla ciąg znaków uzyskany przez wywołanie metody toString obiektu obj oraz znak końca linii Wyświetla ciąg znaków uzyskany przez wywołanie metody toString obiektu obj oraz znak końca linii Wyświetla ciąg znaków uzyskany przez wywołanie metody toString obiektu obj oraz znak końca linii Wyświetla ciąg znaków uzyskany przez wywołanie metody toString obiektu obj oraz znak końca linii Wyświetla ciąg znaków uzyskany przez wywołanie metody toString obiektu obj oraz znak końca linii Voda wywoła w stan blędu Zapisuje do strumienia bajty z tablicy buf, w liczbie wskazywa- nej przez len, poczynając od komórki określonej przez off	void println(int i)	Wyświetla wartość typu int oraz znak końca linii
void printin(object obj) void printin(object obj) void printin(object obj) void printin(string s) protected void setError() void write(byte[] buf, int off, int len) void write(byte[] buf, int off, prizezlen, poczynając od komórki określonej przez off	void println(long 1)	Wyświetla wartość typu long oraz znak końca linii
protected void setError() void write (byte[] buf, int off, →int len) Ustawia strumień w stan blędu Zapisuje do strumienia bajty z tablicy buf, w liczbie wskazywanej przez len, poczynając od komórki określonej przez off	void println(Object obj)	
void write (byte[] buf, int off, Yapisuje do strumienia bajty z tablicy buf, w liczbie wskazywanej przez len, poczynając od komórki określonej przez off	void println(String s)	Wyświetla ciąg znaków s oraz znak końca linii
→int len) nej przez len, poczynając od komórki określonej przez off	protected void setError()	Ustawia strumień w stan błędu
void write (int b) Zapisuje bajt b do strumienia	void write(byte[] buf, int off, →int len)	
	void write(int b)	Zapisuje bajt b do strumienia

System plików

Klasa File

Klasa File pozwala na wykonywanie podstawowych operacji na plikach i katalogach, takich jak ich tworzenie i usuwanie, operacje na nazwach czy pobieranie parametrów (np. czasu utworzenia bądź modyfikacji). Nie jest to jednak klasa, która umoż-liwiałaby modyfikację zawartości pliku. Wybrane metody udostępniane przez klasę File zostały zebrane w poniższej tabeli.

Тур	Nazwa metody	Opis	
boolean	canExecute()	Sprawdza, czy aplikacja może uruchomić dany plik	
boolean	canRead()	Sprawdza, czy aplikacja może odczytywać dany plik	
boolean	canWrite()	Sprawdza, czy aplikacja ma prawa zapisu do danego pliku	
int	compareTo(File pathname)	Porównuje ścieżki dostępu do plików	
static File	createTempFile(String →prefix, String suffix)	Tworzy pusty plik tymczasowy. Nazwa tego pliku powstaje przy wykorzystaniu prefiksu i sufiksu przekazanych w parametrach.	
static File	createTempFile(String →prefix, String suffix, →boolean deleteOnExit, →FileAttribute attrs)	Tworzy pusty plik tymczasowy o atrybutach wskazanych przez attrs. Argument deleteonExit wskazuje, czy plik ma być automatycznie usunięty po zakończeniu pracy maszyny wirtualnej. Metoda dostępna od JDK 1.7.	
static File	createTempFile(String →prefix, String suffix, →File directory)	Tworzy pusty plik tymczasowy w katalogu wskazywanym przez argument directory	
boolean	delete()	Usuwa plik lub katalog	
void	deleteOnExit()	Zaznacza, że plik ma zostać usunięty, kiedy maszyna wirtualna będzie kończyć pracę	
boolean	exists()	Sprawdza istnienie pliku lub katalogu	
File	getAbsoluteFile()	Zwraca obiekt zawierający bezwzględną nazwę pliku lub katalogu (wraz z pełną ścieżką dostępu)	
String	getAbsolutePath()	Zwraca bezwzględną ścieżkę dostępu do pliku lub katalogu	
File	getCanonicalFile()	Zwraca obiekt zawierający kanoniczną postać nazwy pliku lub katalogu (wraz z pełną ścieżką dostępu)	
String	getCanonicalPath()	Zwraca kanoniczną postać ścieżki dostępu do pliku lub katalogu	
long	getFreeSpace()	Zwraca ilość wolnego miejsca na partycji wskazywanej przez bieżący obiekt typu File	
String	getName()	Zwraca nazwę pliku (bez ścieżki dostępu)	
String	getParent()	Zwraca nazwę katalogu nadrzędnego	
File	getParentFile()	Zwraca obiekt wskazujący na katalog nadrzędny	
String	getPath()	Zwraca nazwę bieżącego katalogu lub pliku w postaci obiektu typu String	
long	getTotalSpace()	Zwraca całkowity rozmiar partycji wskazywanej przez bieżący obiekt	
long	getUsableSpace()	Zwraca ilość miejsca dostępnego dla maszyny wirtualnej na partycji wskazywanej przez bieżący obiekt	
int	hashCode()	Oblicza wartość funkcji skrótu dla danej ścieżki dostępu	
boolean	isAbsolute()	Sprawdza, czy dana ścieżka dostępu jest ścieżką bezwzględną	
boolean	isDirectory()	Sprawdza, czy ścieżka dostępu wskazuje na katalog	
boolean	isFile()	Sprawdza, czy ścieżka dostępu wskazuje na plik	
boolean	isHidden()	Sprawdza, czy ścieżka dostępu wskazuje na ukryty katalog lub plik	
long	lastModified()	Zwraca czas ostatniej modyfikacji pliku lub katalogu	
long	length()	Zwraca wielkość pliku w bajtach	
String[]	list()	Zwraca zawartość katalogu w postaci tablicy obiektów typu String	
String[]	list(FilenameFilter filter)	Zwraca listę plików i podkatalogów spełniających kryteria wskazane przez filter	
File[]	listFiles()	Zwraca zawartość katalogu w postaci obiektów typu File	
File[]	listFiles(FileFilter filter)	Zwraca zawartość katalogu spełniającą kryteria wskazane przez filter w postaci obiektów typu File	

Tablice informatyczne. Java. Wydanie III

File[]	listFiles(FilenameFilter →filter)	Zwraca zawartość katalogu spełniającą kryteria wskazane przez filter w postaci obiektów typu File Wyświetla wszystkie "korzenie" systemu plików	
static ⊶File[]	listRoots()		
boolean	mkdir()	Tworzy nowy katalog	
boolean	mkdirs()	Tworzy nowy katalog z uwzględnieniem nieistniejących katalogów nadrzędnych	
boolean	renameTo(File dest)	Zmienia nazwę na wskazywaną przez argument dest	
boolean	setExecutable(boolean →executable)	Ustawia prawo wykonywalności dla danego pliku lub katalogu Ustawia datę ostatniej modyfikacji pliku lub katalogu Ustawia prawo do odczytu dla danego pliku lub katalogu	
boolean	setLastModified(long time)		
boolean	setReadable(boolean →readable)		
boolean	setReadOnly()	Ustawia atrybut ReadOnly pliku lub katalogu	
boolean	setWritable(boolean ❤writable)	Ustawia prawo do zapisu dla danego pliku lub katalogu	
String	toString()	Zwraca ścieżkę dostępu w postaci obiektu klasy String	
URI	toURI()	Przekształca ścieżkę dostępu na obiekt URI	

Klasa RandomAccessFile pozwala na wykonywanie wszelkich operacji na plikach o dostępnie swobodnym, a także na odczytywanie i zapisywanie danych z pliku i do niego oraz przemieszczanie się po pliku. Jest dostępna we wszystkich JDK, począwszy od wersji 1.0. Wybrane metody udostępniane przez RandomAccessFile zostały zebrane w poniższej tabeli.

Тур	Metoda	Opis	
void	close()	Zamyka strumień oraz zwalnia wszystkie związane z nim zasoby	
FileChannel	getChannel()	Zwraca powiązany z plikiem unikatowy obiekt typu FileChannel	
FileDescriptor	getFD()	Zwraca deskryptor pliku powiązanego ze strumieniem	
long	getFilePointer()	Zwraca aktualną pozycję w pliku	
long	length()	Zwraca długość pliku	
int	read()	Odczytuje jeden bajt danych z pliku	
int	read(byte[] b)	Odczytuje z pliku liczbę bajtów, nie większą niż rozmiar tablicy b, i umieszcza je w tej tablicy. Zwraca faktycznie odczytaną liczbę bajtów.	
int	read(byte[] b, int off, →int len)	Odczytuje z pliku liczbę bajtów, nie większą niż wskazywana przez len, i zapisuje je w tablicy b, począwszy od komórki wskazywanej przez off. Zwraca faktycznie przeczytaną liczbę bajtów.	
boolean	readBoolean()	Odczytuje wartość typu boolean	
byte	readByte()	Odczytuje wartość typu byte	
char	readChar()	Odczytuje wartość typu char	
double	readDouble()	Odczytuje wartość typu double	
float	readFloat()	Odczytuje wartość typu float	
int	readFully(byte[] b)	Odczytuje liczbę bajtów równą wielkości tablicy b. Zwraca liczbę faktycznie odczytanych bajtów.	
int	readFully(byte[] b, →int off, int len)	Odczytuje liczbę bajtów, wskazywaną przez len, i zapisuje je w tablicy b, począwszy od komórki wskazywanej przez off. Zwraca faktycznie przeczytaną liczbę bajtów.	
int	readInt()	Odczytuje wartość typu int	
String	readLine()	Odczytuje wiersz tekstu	
long	readLong()	Odczytuje wartość typu long	
short	readShort()	Odczytuje wartość typu short	
int	readUnsignedByte()	Odczytuje 8-bitową wartość bez znaku	
int	readUnsignedShort()	Odczytuje 16-bitową wartość bez znaku	
String	readUTF()	Odczytuje tekst w kodowaniu UTF-8	
void	seek(long pos)	Zmienia wskaźnik pozycji w pliku na pos	
void	setLength(long new- Length)	Ustawia rozmiar pliku na newLength	
int	skipBytes(int n)	Pomija n bajtów	
void	write(byte[] b)	Zapisuje tablicę bajtów b do pliku	
void	write(byte[] b, int off, int len)	Zapisuje do pliku len bajtów z tablicy b, począwszy od komórki wskazywanej przez off	
void	write(int b)	Zapisuje bajt b do pliku	
void	writeBoolean(boolean v)	Zapisuje do pliku wartość boolean w postaci jednego bajta	
void	writeByte(int v)	Zapisuje bajt v do pliku	
void	writeBytes(String s)	Zapisuje do pliku ciąg znaków, wskazywany przez s, w postaci ciągu bajtów	
void	writeChar(int v)	Zapisuje do pliku wartość typu char w postaci dwóch bajtów	
void	writeChars(String s)	Zapisuje do pliku ciąg wskazywany przez s w postaci ciągu znaków	
void	writeDouble(double v)	Konwertuje wartość v na typ long, korzystając z metody doubleToLongBits klasy Double, i tak powstałą wartość zapisuje do pliku	
void	writeFloat(float v)	Konwertuje wartość v na typ int, korzystając z metody floatToIntBits klasy Float, i tak powstałą wartość zapisuje do pliku	
void	writeInt(int v)	Zapisuje do pliku wartość typu int w postaci czterech bajtów	
void	writeLong(long v)	Zapisuje do pliku wartość typu long w postaci ośmiu bajtów	
void	writeShort(int v)	Zapisuje do pliku wartość typu short w postaci dwóch bajtów	
void	writeUTF(String str)	Zapisuje do pliku ciąg znaków, wskazywany przez s, w kodowaniu UTF-8	
Odczyt pliku			

Przykład:

```
import java.io.*;
public class Main
   public static void main (String args[])
     if(args.length < 1){
    System.out.println("Wywołanie programu: Main nazwa_pliku");
    return;</pre>
     File file = new File(args[0]);
     if(!file.exists()){
   System.out.println("Nie ma takiego pliku.");
   return;
```

```
RandomAccessFile raf = null;
try{
  raf = new RandomAccessFile(file, "r");
}
catch(FileNotFoundException e){
   System.out.println("Nie ma takiego pliku.");
   return;
String line = "";
try{
  while((line = raf.readLine()) != null){
    System.out.println(line);
}
  raf.close();
catch(IOException e){
   System.out.println("Błąd wejścia/wyjścia.");
```

Zapis do pliku

Przykład:

```
import java.io.*;
  public static void main (String args[])
    if(args.length < 1){
    System.out.println("Wywołanie programu: Main nazwa_pliku");
    return;</pre>
    BufferedReader brIn = new BufferedReader(
  new InputStreamReader(System.in)
  );
    RandomAccessFile raf = null;
    try{
  raf = new RandomAccessFile(args[0], "rw");
    catch(FileNotFoundException e) {
   System.out.println("Błędna nazwa pliku lub brak dostępu.");
   return;
    String line = "";
    raf.close():
    }
catch(IOException e){
   System.out.print("\nBłąd wejścia/wyjścia.");
   return;
```

Strumieniowe operacje na plikach

Podstawowe klasy odczytujące dane z plików to:

Pierwsza z nich powinna być stosowana podczas korzystania z strumienia znakowego, czyli dla plików tekstowych, druga – podczas korzystania ze strumienia binarnego, czyli dla pli-ków binarnych. Obie klasy mają po trzy przeciążone konstruk-tory, których argumentami mogą być:

ciąg znaków zawierający nazwę pliku,

obiekt klasy FileDescriptor
obiekt klasy File.

Metody odczytujące dane klasy FileReader:

Тур	Metoda Opis read () Odczytuje pojedynczy zna	
int		
int	read(char[] >cbuf, int >offset, >int length)	Odczytuje liczbę znaków, nie większą niż wskazywana przez length, i zapisuje je w tablicy cbuf, począwszy od komórki wskazywanej przez offset. Zwraca faktycznie przeczytaną liczbę znaków.
Metody odczytujące dane klasy File Input Stream:		dasv FileInputStream:

		•	
Тур	Metoda	Opis	
int	read()	Odczytuje jeden bajt danych	
int	read(byte[] b)	Odczytuje liczbę bajtów, nie większą od długości tablicy b, i zapisuje je w tablicy b. Zwraca faktycznie odczytaną liczbę bajtów.	
read(byte[] int ⇔b, int off, wint len)		Odczytuje liczbę bajtów, nie większą niż wskazywana przez len, i zapisuje je w tablicy b, począwszy od komórki wskazywanej przez off. Zwraca faktycznie przeczytaną liczbę bajtów.	

Metod tych można używać bezpośrednio lub też wykorzystać obiekty klas <u>FileReader</u> i <u>FileInputStream</u> jako argumenty dla konstruktorów klas dających większą funkcjonalność, np. <u>BufferedInputStream</u> lub

Podstawowe klasy zapisujące dane z plików to:

- Pierwsza z nich powinna być wykorzystywana do zapisu plików tekstowych, druga do zapisu strumieni binarnych. Obie klasy mają po pięć przeciążonych konstruktorów. Trzy z nich są jedindig þu þret þrætaganyari kvinatukatori. 1971 indig á proagramannari menargumentowe í moga przyjmować następujące argumenty:

 i ciąg znaków zawierający nazwę pliku,

 obiekt klasy FileDescriptor,

 - objekt klasy File.

Pozostałe konstruktory są dwuargumentowe. Pierwszy przyj-muję ciąg znaków oraz wartość boolean, drugi — obiekt klasy File i wartość boolean. W obu przypadkach drugi argument ustawiony na true oznacza, że dane mają być dopisywane na końcu pliku, a ustawiony na <u>false</u> – że dane mają być zapisywane od początku pliku (nadpisując jego wcze-śniejszą zawartość).

Wszystkie konstruktory generują wyjątek

podana nazwa wskazuje na katalog, a nie na plik;
 podany plik nie istnieje i nie można go również utworzyć;

- nie można z jakiegoś powodu otworzyć istniejącego pliku. Metody zapisujące dane klasy FileWriter:

Typ zwracany	Metoda	Opis	
void	write(char[] >cbuf, int >off, int len)	Zapisuje do stru- mienia len znaków z tablicy cbuf, począwszy od ko- mórki wskazywanej przez off	
void	write (int c) Zapisuje do stru mienia znak c		
void	write (String Str, int off, int Hen)	Zapisuje do strumienia len znaków z ciągu str, począwszy od znaku o indeksie wskazywanym przez off	

Metody zapisujące dane klasy FileOutputStream:

Typ Zwiacuity	Mctodu	Opis
void	write(byte[] b)	Zapisuje tablicę bajtów b do strumienia
void	write(byte[] b, ⇔int off, int ⇔len)	Zapisuje do strumienia len bajtów z tablicy b, począwszy od komórki wskazywanej przez off
void	write(int b)	Zapisuje bajt b do strumienia

e-mail: helion@helion.pl

- Poleć książkę na Facebook.com
- Kup w wersji papierowej
- Oceń książkę

- Księgarnia internetowa
- Lubię to! » Nasza społeczność