Понятие субстанциальной и локальной производных.

$$\dfrac{d}{dt}=\dfrac{\partial}{\partial t}+(\vec{v}\nabla)$$
 - субстанциальная $\dfrac{\partial}{\partial v}$ - локальная

2 Уравнение неразрывности для сжимаемой и несжимаемой жидкости.

$$\dfrac{d\rho}{dt}+\rho\,\mathrm{div}(\vec{v})=0,$$
 $\dfrac{d\rho}{dt}=0$ - для несжимаемой $(\mathrm{div}(\vec{v})=0)$

3 Уравнение Эйлера в векторной форме и в проекциях на оси в декартовой системе координат. Уравнение Эйлера описывает движение идеальной жидкости

 $\frac{\partial v_i}{\partial t} + \sum_{k=1}^{3} v_k \frac{\partial v_i}{\partial x_k} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + f_i$

4 Закон сохранения энергии идеальной жидкости. Поток энергии.

$$\int\limits_{V}\left[rac{\partial}{\partial t}(rac{
ho v^{2}}{2}+
hoarepsilon)+\mathrm{div}(rac{
ho v^{2}}{2}+W)ec{(v)}
ight]dV=0$$
, где

 $W=
ho \varepsilon + p$ - энтальпия, ε - плотность энергии на единицу массы или в дифференциальной форме

$$\frac{\partial E}{\partial t} + div \vec{N} = 0$$
, где

$$E = \frac{\rho v^2}{2} + \rho \varepsilon$$
 - плотность энергии

$$ec{N} = \left[rac{
ho v^2}{2} +
ho arepsilon + p
ight] ec{v}$$
 - вектор плотности потока энергии

5 Закон сохранения импульса идеальной жидкости. Тензор плотности потока импульса и его представление в декартовой системе координат.

$$\frac{\partial}{\partial t} \int\limits_{V} \vec{p(v)} dV = - \oint\limits_{S} \left[p \vec{n} + \rho \vec{v}(\vec{v} \vec{n}) \right] d\sigma$$

$$\frac{\partial}{\partial t}(\rho v_i) = -\sum_{k=1}^{3} \frac{\partial \Pi_{ik}}{\partial x_k} + \rho f_i$$

 $\Pi_{ik} = p\delta_{ik} + \rho v_i v_k$ - тензор ППИ

6 Уравнение гидростатики.

 $\operatorname{grad} p = \rho f, \quad p = p(\rho)$

7 Частота Брента-Вяйсяля.

$$N = \sqrt{\frac{g}{\rho}} \frac{d\rho}{dz}$$

Если $N^2 < 0$, то неустойчивость жидкости (тело всплывает или тонет). Если $N^2 > 0$, то жидкость устойчива (тело не двигается).

8 Теорема Бернулли для потенциальных и непотенциальных, стационарных и нестационарных

$$\frac{v^2}{2} + \frac{p}{\rho} - gz = const$$
 - стационарное безвихревое $(const$ во всём объёме)

$$\frac{v^2}{2} + W - gz = const$$
 - стационарное вихревое ($const$ на линии тока)

$$\frac{\partial \varphi}{\partial t} + \frac{v^2}{2} + \frac{p}{\rho} - gz = const$$
 - нестационарное безвихревое

9 Теорема Томсона.

Циркуляция скорости (Γ) вдоль замкнутого контура, перемещающегося в идеальной жидкости, остается постоянной.

$$\Gamma = \oint_{\vec{r}} \vec{v} d\vec{r} = const$$

10 Потенциальные течения идеальной несжимаемой жидкости. Основные уравнения, граничные

$$\Delta \varphi = 0, \ \vec{v} = \operatorname{grad}(\phi)$$

Граничное условие непротекания:

Нормальная компонента скорости на границе с телом равна нулю.

$$|\vec{v}\vec{n}|_s = \frac{\partial \varphi}{\partial n} = \vec{v_0}\vec{n}$$

Граничное условие на бесконечности:

используют значение потенциала на бесконечности.

$$??? \vec{v}\vec{n}|_{\infty} = \frac{\partial \varphi}{\partial n} = 0 ???$$

11 Парадокс Д'Аламбера-Эйлера.

 $\Phi 1.$ При обтекании тела с гладкой поверхностью идеальной несжимаемой жидкостью сила лобового сопротивления, действующая на тело со стороны потока, равна нулю.

 $\Phi 2$. Для тела, движущегося равномерно в идеальной несжимаемой жидкости постоянной плотности без границ, сила сопротивления равна нулю.

$$\vec{F} = -\oint p_s \vec{n} dS = 0$$

12 Понятие присоединенной массы. Присоединенная масса сферы и единицы длины бесконечного кругового цилиндра.

Присоединенная масса - это масса, которая добавляется к массе тела, движущегося неравномерно в жидкой среде для учета воздействия среды на это тело. $M = F_{\text{comp}}/a$

$$M_{\text{сферы}} = \frac{2}{3} \rho \pi R^3$$
 (равна половине массы вытесненной жидкости)

 $M_{\text{цилиндра}} = \rho \pi R^2$ (равна массе вытесненной жидкости)

13 Функция тока и ее свойства.

Для плоского потенциального течения несжимаемой идеальной жидкости:

$$\psi = \psi(x, y, t); v_x = \frac{\partial \psi}{\partial y}; v_y = -\frac{\partial \psi}{\partial x}$$

$$d\psi = \frac{\partial \psi}{\partial x} dx + \frac{\partial \psi}{\partial y} dy = -v_y dx + v_x dy$$

На линии тока $\psi = const.$ Линии тока ортогональны линиям уровня. Функция тока - является гармонической функцией, удовлетворяющей уравнению Лапласа $\Delta \varphi = 0$.

14 Комплексный потенциал.

 $F(z) = \phi + i\Psi$ (действительная часть - потенциал, мнимая – функция тока)

Любую аналитическую функцию комплексного переменного можно поставить в соответствие с неким плоским потенциальным течением идеальной несжимаемой жидкости.

15 Линии тока и эквипотенциальные линии.

 Π иния тока - это линия, касательные к которой в данный момент времени и в каждой точке совпадают с вектором скорости \vec{v}

 $\Psi = const$ - линии тока (постоянная функция тока)

 $\varphi = const$ - эквипотенциальные линии (постоянный потенциал)

16 Формула Жуковского.

$$F_y = -\int p_n y dl = \rho \Gamma v_0$$

Сила пропорциональна плотности, скорости и параметру, характеризующему вихрь.

17 Точечные вихри и их взаимодействия.

Устремляем сечение нашей вихревой трубки к нулю, а частоту к бесконечности - получаем точечный вихрь. Скорость точечного і-ого вихря равна скорости жидкости в данной точке, создаваемой всеми остальными вихрями.

$$\frac{d\vec{r_i}}{dt} = \sum_{k \neq i} \vec{v_k}(\vec{r_i})$$

18 Поверхностные гравитационные волны (длинные, короткие, гравитационно-капиллярные) и их основные свойства (траектории движения частиц, дисперсионные уравнения, фазовые и групповые скорости).

Траектории описываются уравнением эллипса:

$$\frac{\xi^{2}}{a_{\xi}^{2}} + \frac{\eta^{2}}{a_{\eta}^{2}} = 1, \quad a_{\xi} = \frac{a \operatorname{ch} k(z+H)}{\operatorname{sh} kH}, \quad a_{\eta} = \frac{a \operatorname{sh} k(z+H)}{\operatorname{sh} kH}$$

 ξ и η - смещения частицы по вертикали и горизонтали соответственно

$$\xi = -\frac{a}{\frac{\sinh kH}{\sinh kH}} \cosh k(z+H) \sin (kx - \omega t)$$

$$\eta = \frac{a}{\sinh kH} \sinh k(z+H) \cos (kx - \omega t)$$

Дисперсионное уравнение:
$$\omega^2 = gk \operatorname{th} kH = gk \frac{e^{kH} - e^{-kH}}{e^{kH} + e^{-kH}} = gk \frac{\operatorname{sh} kH}{\operatorname{ch} x}$$

В случае волн на мелкой воде:

$$\omega^2 = gk^2H, \quad \omega = \pm k\sqrt{gH}, \ v_{\Phi} = \frac{\omega}{k}, v_{\rm rp} = \frac{d\omega}{dk}$$

В случае волн на глубокой воде:

$$\omega = \pm \sqrt{gk}, \ v_{\Phi} = \sqrt{\frac{g}{k}}, \qquad v_{\rm rp} = \frac{g}{2\sqrt{gk}} = \frac{1}{2}v_{\rm f}$$
 В случае гравитационно-капиллярных волн:

$$\omega^2 = (gk + \gamma k^3) \operatorname{th} kH, \gamma = \frac{\alpha}{g}$$

$$v_{\rm th}^2 = \omega^2 k^2 = gk + \gamma k$$

$$k_* = \sqrt{gk}$$
 - минимум v_{Φ}

$$v_{\rm rp} = \frac{d\omega}{dk} \quad \Rightarrow \quad v_{\rm rp} = \frac{v_{\rm d}}{2} \frac{k_*^2 + 3k^2}{k_*^2 + k^2}$$

Если $k \gg k_*$, это капиллярные волны. Если $H \ll k \ll k_*$, то это гравитационные короткие волны (дно ещё не чувствуется). Если же $k \ll H$, то это длинные гравитационные волны.

19 Уравнение Навье-Стокса для несжимаемой вязкой жидкости в векторной форме и в проекциях на оси в декартовой системе координат.

Запись через кинематическую вязкость $\nu = \eta/\rho$:

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v}\nabla)\vec{v} = -\frac{\nabla p}{\rho} + \nu\Delta\vec{v}$$

$$\frac{\partial v_i}{\partial t} + v_k \frac{\partial v_i}{\partial x_k} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 v_i}{\partial x_i^2}$$

20 Тензор вязких напряжений, физический смысл, представление в декартовой системе коорди-

Общий вид тензора вязких напряжения (при относительном смещении слоёв жидкости, зависимость $\sim \eta$ линейна, жидкость будем считать изотропной):

$$\sigma_{ik} = a \left(\frac{\partial v_i}{\partial x_k} + \frac{\partial v_k}{\partial x_i} \right) + c \left(\frac{\partial v_i}{\partial x_k} - \frac{\partial v_k}{\partial x_i} \right) + b \sum_{i=1}^{\infty} \frac{\partial v_i}{\partial x_i} \delta_{ij}$$

 $\sigma_{ik} = a \left(\frac{\partial v_i}{\partial x_k} + \frac{\partial v_k}{\partial x_i} \right) + c \left(\frac{\partial v_i}{\partial x_k} - \frac{\partial v_k}{\partial x_i} \right) + b \sum \frac{\partial v_l}{\partial x_l} \delta_{ik}$ Переобозначим константы $a = \eta, b = \xi$. Тогда тензор вязких напряжений перепишется как

$$\sigma_{ik} = \eta \left(\frac{\partial v_i}{\partial x_k} + \frac{\partial v_k}{\partial x_i} \right) + \xi \sum_{l} \frac{\partial v_l}{\partial x_l} \delta_{ik}$$

Тензор вязких напряжений - это тензор, используемый для моделирования части напряжения в точке внутри некоторого материала, которая может быть отнесена к скорости деформации, т.е. скорости, с которой материал деформируется вокруг этой точки.

21 Граничные условия для несжимаемой вязкой жидкости на поверхности твердого тела и свободной поверхности.

В случае вязкой жидкости скорость жидкости на границе с телом равна скорости тела:

При рассмотрении гидродинамики слоя жидкости на верхней границе:

$$f_i = \sigma_{ik} n_k = \eta \frac{\partial v_x}{\partial u} = 0$$

22 Формула Пуазейля для расхода жидкости.

$$Q=2\pi\int\limits_{0}^{R}v(r)rdr=\frac{\pi}{8\eta}\left(\frac{\partial p}{\partial z}\right)R^{4}$$

23 Скин-слой.

Поскольку среда вязкая, возмущения передаются наверх, но затухают на характерном масштабе толщины скин-слоя

$$\delta = \sqrt{\frac{2\nu}{\omega}}$$

24 Числа Рейнольдса, Фруда, Струхаля и их физический смысл.

$$Re = \frac{v_0 l}{\mu} = \frac{2v_0 R}{\mu} = \frac{V_{\rm cp} H}{\nu}$$

 $\nu = \frac{\eta}{2}$ - кинематический коэффициент вязкости

Число Рейнольдса показывает относительное влияние нелинейных эффектов. Если Re мало, то можно пренебречь в уравнении движения вязкой жидкости всем, кроме давления.

$$Fr = \frac{v_0^2}{gl}$$

Число Фруда описывает отношение кинетической энергии жидкости к потенциальной (энергии гравитационных сил)

$$Sh = \frac{v_0 T}{l}$$

Число Струхаля характеризхует стационарность. Если Sh>>1 можно пренебречь нестационар-

25 Формула Стокса.

Сила сопротивления, действующая на маленькое тело, движущееся в жидкости.

$$F = 6\pi\eta R v_0, Re \ll 1$$

$$F = 6\pi \eta R v_0 \left(1 + \frac{3}{16} Re \right)$$

26 Зависимость ширины пограничного слоя от параметров.

Пограничный слой - слой, где скорость меняется от нуля до скорости, соответствующей скорости обтекания тела идеальной жидкостью.

Во-первых, чем больше вязкость, тем толще пограничный слой. Кроме того, чем дальше по x. тем слой толще. И, наконец, чем больше скорость, тем больше пограничный слой должен быть прижат к пластине.

27 Уравнения линейной акустики. Волновое уравнение.

Уравнение Эйлера, уравнение непрерывности и последнее уравнение - состояния:

$$\frac{\partial \vec{v}'}{\partial t} = -\frac{\nabla p'}{\rho_0}, \ \frac{\partial \rho'}{\partial t} + \rho_0 c^2 \operatorname{div} \vec{v} = 0, \ p' = c^2 \rho'$$

Здесь
$$p = p_0 + p', v = v_0 + v', \rho = \rho_0 + \rho'$$

$$p_0 >> p', v_0 >> v', \rho_0 >> \rho'$$

Величины с индексом 0 равновесная среда, штрихами обозначены добавки, возникающие при распространении звука.

$$M=rac{v}{c}=rac{p'}{p_0}=rac{
ho'}{
ho_0}$$
 - число Маха, $M<<1$

Волновое уравнение:
$$\frac{\partial^2 \varphi}{\partial t^2} - c^2 \Delta \varphi = 0$$

28 Монохроматические волны, уравнение Гельмгольца

Уравнение Гельмгольца: $\Delta \Phi_0 + k_0^2 \Phi_0 = 0$, $k_0 = \frac{\omega}{2}$

Простейшее решение - плоские волны: $\Phi_0 = e^{i(\vec{k}, \vec{r})}$

В случае $\vec{k} = \vec{k}_1 + i \vec{k}_2$ (неоднородная плоская волна):

 $\Phi_0 = e^{i(\vec{k}_1, \vec{r})} e^{-(\vec{k}_2, \vec{r})}$. Всякую волну можно представить в виде суперпозиции плоских монохроматических волн с различными волновыми векторами и частотами.

Закон сохранения энергии (звуковой волны)

$$\frac{\partial E}{\partial t} + \operatorname{div} \vec{J} = 0$$

 $ec{J} =
ho ec{v}$ - вектор Умова-Пойнтинга - интенсивность звуковой волны, сила звука.

E - полная энергия звуковой волны.