Generalized Compliments

N's & N-1's Comp Base-B

Binary Digits are Complimentary

- The digits in binary are complimentary
- Add the two digits together and you get largest digit as the sum

+ve digits	-ve digits	sum
0	1	1

- Hex is shorthand for binary so
 - 2's complement numbers can be expressed in hex
- Example:

```
00000010_2 = 02_{16} = 2_{10} note: 00-7F<sub>16</sub> are +ve 00000001_2 = 01_{16} = 1_{10} 00000000_2 = 00_{16} = 0_{10} 11111111_2 = FF_{16} = -1_{10} 11111110_2 = FE_{16} = -2_{10} note: 80-FF<sub>16</sub> are -ve
```

Realize that the digits are complements

NOTE: In hex, there are 16 digits, and that for the leading digit value, half will indicate a +ve, and half will indicate a -ve number

+ve digits	-ve digits	sum
0	F	F
1	Е	F
2	D	F
3	С	F
4	В	F
5	A	F
6	9	F
7	8	F

Are the following 2's Comp binary numbers, expressed in hex, positive or negative?

- 801F₁₆
 - Negative because MS digit is 8_{16} (1000₂), which is >= 8
- 6FFF₁₆
 - Positive because MS digit is 6_{16} (0110₂), which is < 8

Convert 801F₁₆ 2's complement to decimal

- 2. 7FE1 converted to decimal = ((7 * 16 + 15) * 16 + 14) * 16 + 1 = 32737
- 3. 801F is negative therefore result = -1 * 32737 = -32737

Devpac does not do signed conversion, so this skill will be required

Generalized Complements

- In fixed length binary there exists:
 - 1's complement
 - 2's complement
- In fixed length base n there exists:
 - n-1's complement flip digits
 - n's complement flip digits, then add 1
- Example: In hex we have:
 - 15's complement hex and 16's complement hex

Generalized Complements

- Even bases have same number of positive/negative indicators
 - base 2
 2 digits / 2 = 1 (1 digit positive, 1 digit negative)
 - base 16
 16 digits / 2= 8 (8 digits positive, 8 digits negative)
- Odd bases indicators do not split evenly
 - base 55 digits / 2 = 2.5
 - one leading symbol is both positive and negative
 - o in base 5 that symbol is 2

+ve digits	-ve digits	sum
0	4	4
1	3	4
2	2	4

Generalized Complements - Example

Convert 3211 in 4-digit 5's comp base 5 number to 4-digit 7's comp base 8 +ve or -ve?

-ve since MS digit is a $3 \rightarrow 4$, 3 and part of 2 are -ve

since n's comp base $n \rightarrow flip$ the digits then add 1

then convert to base 8 through decimal

since original is -ve need to make result -ve, but represented in n-1's comp base n, so flip the digits (draw digit table if necessary)

Generalized Complements - Example

Since -ve 5's comp flip digits and add 1

Convert to decimal:

$$1*125 + 2*25 + 3*5 + 4*1$$

= $125 + 50 + 15 + 4 = 194_{10}$

+ve digits	-ve digits	sum
0	4	4
1	3	4
2	2	4

Generalized Complements - Example

Convert 194₁₀ to base 8

$$194_{10} = 302_8 \Rightarrow 0302_8$$
 (it is 4-digit)

+ve digits	-ve digits	sum
0	7	7
1	6	7
2	5	7
3	4	7

Original was -ve so to make 7's comp base 8, flip the digits:

$$0302 \rightarrow 7475$$

$$\therefore$$
 3211₅ 5's comp = 7475₈ 7's comp

Find Last Positive in Odd Bases

- In odd numbered bases one digit is both positive and negative
- If a number starts with that digit is it +ve or -ve
- One method is to do this via range
- For 3-digit base 5 5's comp (remember fixed length)
 - Number of values = 5^3 = 125 but one zero \rightarrow 125 - 1 = 124 total non-zero values
 - \circ 124 / 2 = 62 since half +ve & half -ve

Find Last Positive in Odd Bases

• Convert 62₁₀ to base 5

N	N/5	N%5
62	12	2
12	2	2
2	0	2
0		

the values 000 to 222 are +ve and 223 to 444 are -ve