Review 2.5 - 3.2

Liang Ling E02201210...

MATH@NUS

September 22, 2018

Table of Contents

Determinants

2 Linear Combinations and Linear Spans

Cofactor Expansion

Recalled that

$$det(A) = a_{11}A_{11} + \cdots + a_{1n}A_{1n}, \quad A_{ij} = (-1)^{i+j}det(M_{ij}).$$

 A_{ij} is called the cofactor of a_{ij} , $det(M_{ij})$ is called the minor of a_{ij} .

Theorem

For an $n \times n$ matrix $A = (a_{ij})$,

$$det(A) = a_{i1}A_{i1} + \cdots + a_{in}A_{in}$$
, (Along the ith row).

Or

$$det(A) = a_{1j}A_{1j} + \cdots + a_{nj}A_{nj}$$
, (Along the jth column).

Mathematical Induction

- Goal: To prove that a property P(n) holds for every natrual number n. (Sometime can be extended to all integers.)
- Steps.
 - **1** The Initial Step: Prove that the statment holds for the first natural number n. (eg. n = 0 or n = 1 or larger one.)
 - ② The Induction Step: Assume that the statement holds for some natural number k, and prove that then the statement hold for k + 1,
 - **1** The Conclusion Step: Hence, P(n) is true for every $n \ge 0$ (or $n \ge 1$).

A example for illustrating mathematical induction

Theorem

If A is a square matrix, then $det(A) = det(A^T)$.

Proof.

First we restate the statement. For all $n \ge 1$, and A is a square matrix of order n, we have that $det(A) = det(A^T)$ holds.

- **1 The initial step**. The first number is 1. So if A is 1×1 matrix, then A is a number, so $A = A^T$. Therefore, $det(A) = A = A^T = det(A^T)$.
- **2 The induction step**. Assume that the statement hold for n = k, i.e., $det(A) = det(A^T)$ holds for any $k \times k$ matrix. Now for n = k + 1, which means that A is $(k + 1) \times (k + 1)$ matrix. Then we expand along the first row of A to get det(A) and expand the first column of A^T to get $det(A^T)$. And find that $det(A) = det(A^T)$ by assumption for n = k. So the statement holds for n = k + 1.
- **3** The conclusion step. The statement holds for all $n \ge 1$.

Determinants of Elementary Matrices

$$E_i(k) = \begin{bmatrix} \mathbb{I}_{i-1} & & & & \\ & k & & \\ & \mathbb{I}_{n-i} & \end{bmatrix}, E_{ij} = \begin{bmatrix} \mathbb{I}_{i-1} & 0 & & \mathbf{1} & & \\ & \ddots & & & \\ & \mathbf{1} & & 0 & \\ & & \mathbb{I}_{n-j} & \end{bmatrix},$$
 $E_{ij}(k) = \begin{bmatrix} \mathbb{I}_{i-1} & & & & \\ & & \ddots & & & \\ & & k & & 1 & \\ & & & \mathbb{I}_{n-j} & \end{bmatrix}$

- **1** (Multiply ith row by a constant k) $det(E_i(k)) = k$.
- (Interchange ith row and jth row) $det(E_{ij}) = -1$.
- (Add a multiple of ith row to jth row) $det(E_{ij}(k)) = 1$.

The most important theorem of determinant

Theorem

Let A be a square matrix and E be a elementary matrix of the same size of A. Then

$$det(EA) = det(E)det(A)$$
.

- If B obtained from A by multiplying ith row of A by a constant k, then $det(B) = det(E_i(k)A) = det(E_i(k))det(A) = kdet(A)$.
- ② If B obtained from A by interchanges ith and jth rows of A, then $det(B) = det(E_{ii}A) = det(E_{ii})det(A) = -det(A)$.
- **③** If *B* obtained from *A* by adding *k* times of ith row of *A* to jth row, then $det(B) = det(E_{ij}(k)A) = det(E_{ij}(k))det(A) = det(A)$.
- If the ith row and jth row of A are equal, then $det(A) = det(E_{ij}A) = -det(A)$. So det(A) = 0.

Determinants of Row Equivalent Matrices

If A and B are row equivalent, i.e., B be obtained from A by perform a sequence of elementary row operations. Which meams there exist a sequence of elementary matrices E_1, \dots, E_k such that

$$B = E_k \cdots E_1 A$$
.

Hence,

$$det(B) = det(E_k) \cdots det(E_1) det(A).$$

Consequently:

- **1** det(A) = 0 if and only if det(B) = 0.
- ② A is invertible (I and A are row equivalent) if and only if $det(A) \neq 0$.
- 3 See Q1, Q2 and Q4.

The Adjoint of Matrix

Let $A = (a_{ij})_{n \times n}$, we consider $b_{ij} = a_{i1}A_{j1} + \cdots + a_{in}A_{jn}$.

- **1** If i = j, then by the definition of determinant, $b_{ij} = det(A)$.
- ② If $i \neq j$, suppose that i < j, consider

$$B = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} & \cdots & a_{in} \\ \vdots & & \vdots \\ a_{i1} & \cdots & a_{in} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

cofactor expanding along jth row of B, then we can find that $b_{ij} = det(B) = 0$ (since B has two rows identical).

The Adjoint of Matrix

Definition

Let A be a square matrix of order n. Then the adjoint of A is the $n \times n$ matrix

$$adj(A) = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{bmatrix}^{T} = \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{bmatrix}$$

Theorem

Let A be a square matrix, if A is invertible. Then

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A).$$

Cramer's Rule

Let A is of order n, then if A is invertible, the unique solution of linear system Ax = b can be written as

$$x = A^{-1}b = \frac{1}{det(A)}adj(A)b.$$

Let

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

Then we have

$$x_i = \frac{b_1 A_{i1} + \cdots + b_n A_{ni}}{\det(A)} = \frac{\det(A_i)}{\det(A)}.$$

Where A_i is the matrix obtained from A by replacing the ith column of A by A column of A by A by A column of A by A by A column of A column of A by A column of A column of A by A column of A

Table of Contents

Determinants

2 Linear Combinations and Linear Spans

Linear Combinations and Linear Spans

Definition

Let u_1, u_2, \dots, u_k be vectors in \mathbb{R}^n . For any real numbers c_1, c_2, \dots, c_k , the vector

$$c_1u_1 + c_2u_2 + \cdots + c_ku_k$$

is called a *linear combination* of u_1, u_2, \dots, u_k .

Definition

Let $S = \{u_1, u_2, \dots, u_k\}$ be a set of vectors in \mathbb{R}^n . Then the set of all linear combinations of u_1, u_2, \dots, u_k ,

$${c_1u_1+c_2u_2+\cdots+c_ku_k|c_1,c_2,\cdots,c_k\in\mathbb{R}},$$

is called the *linear span* of S, denoted by span(S) ($span\{u_1, u_2, \cdots, u_k\}$).

Determine if $x \in span(S)$.

Let $S = \{u_1, u_2, \dots, u_k\}$, and $u_i = (u_{i1}, u_{i2}, \dots, u_{in})$.

- Write all the vector u_1, u_2, \dots, u_k in \mathbb{R}^n in the column form. Denote by $u_i^T, 1 \leq i \leq k$.
- 2 Then find c_1, \dots, c_k by solving the following linear system

$$c_1 u_1^T + c_2 u_2^T + \cdots + c_k u_k^T = x^T.$$

Write the linear system in (2) in the matrix form,

$$\begin{bmatrix} u_{11} & u_{21} & \cdots & u_{k1} \\ u_{12} & u_{22} & \cdots & u_{k2} \\ \vdots & \vdots & & \vdots \\ u_{1n} & u_{2n} & \cdots & u_{kn} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix}.$$

1 If the linear system is not consistent, then $x \notin span(S)$. Otherwise, c_1, \dots, c_k is a solution to the above linear system.