Desempenho de um modelo de Machine Learning

Métricas de avaliação:

Classificação

0) Matriz de confusão

1) Acurácia

- Indica o quanto o modelo acertou em classificar
- Razão entre os acertos e o total de amostras
- Taxa de acertos

$$Acur\'{a}cia = \frac{VP + VN}{VP + VN + FP + FN}$$

Uso: Quando as classes estão balanceadas e o custo dos erros de classificação (falsos positivos e falsos negativos) é semelhante.

2) Precisão

- Indica a porcentagem de casos classificados como positivos que estão corretamente classificados

$$Precis\~ao = \frac{VP}{VP + FP}$$

Uso: Quando o custo de falsos positivos é alto, ou seja, você quer minimizar o número de falsos positivos.

3) Recall - Sensibilidade

- Também chamado de taxa de verdadeiros positivos
- Porcentagem dos casos positivos da amostra que foram classificados como positivos pelo
- Probabilidade de um positivo da amostra ser classificado como positivo no modelo

$$Sensibilidade = \frac{VP}{VP + FN}$$

Uso: Quando o custo de falsos negativos é alto, ou seja, é crucial capturar a maioria dos verdadeiros positivos.

4) Especificidade

- Também chamada taxa de verdadeiros negativos
- Porcentagem dos casos negativos da amostra que foram classificados como negativos pelo modelo
- Probabilidade de um negativo da amostra ser classificado como negativo no modelo

$$Especificidade = \frac{VN}{VN + FP}$$

Uso: Quando o foco é minimizar os falsos positivos e a classe negativa é de maior interesse.

5) F1 Score

- Combinação de precisão e sensibilidade em uma medida
- Média harmônica da precisão e da sensibilidade
- Valores maiores indicam melhor performance

- Valores maiores indicam melhor performan
$$F1Score = 2 \times \frac{Precisão \times Sensibilidade}{Precisão + Sensibilidade}$$
$$= \frac{2 \times VP}{2 \times VP + FP + FN}$$

Uso: Quando há necessidade de um equilíbrio entre precisão e recall, especialmente com classes desbalanceadas.

6) Taxa de Falsos Positivos

- Porcentagem de verdadeiros da amostra que foram classificados incorretamente
- Pode ser encontrada por 1 Especificidade
- Valores mais baixos são o ideal

$$TFP = \frac{FP}{VN + FP}$$

Uso: Quando é importante minimizar o número de falsos positivos em relação ao total de negativos.

7) Taxa de Falsos Negativos

- Porcentagem de falsos previstos que foram classificados incorretamente
- Valores mais baixos são o ideal

$$TFN = \frac{FN}{VP + FN}$$

Uso: Quando é crucial minimizar o número de falsos negativos em relação ao total de positivos.

Regressão

0) Erro residual

- Diferença entre valor observado e valor

y = valor observado \hat{y} = valor previsto

Erro Residual = $y - \hat{y}$

Ex: Gols numa partida Observado: 1 Previsto: 3 Erro residual = -2

Amostra	Previsto	Erro (amostra – previsto)
5	10	-5
12	6	6
12	4	8
6	10	-4
11	6	5
8	12	-4
1	4	-3
5	8	-3

Erro =
$$\frac{-5+6+8-4+5-4-3-3}{9} = 0$$
 ???

- Não é muito bom ser utilizado cru
- Muitas vezes não representa o erro real
- Por isso deve-se utilizar métricas mais complexas

1) MAE - Mean Absolute Error

- Média do erro residual na mesma magnitude da unidade em análise, como é um módulo não há valores negativos

$$\frac{\sum_{i=1}^{n} \left| y_j - \hat{y}_j \right|}{n}$$

n número de amostras

 $y - \hat{y}$ Erro residual

| | módulo

somatório dos termos

 $\frac{1}{m}$ média

2) MSR - Mean Squared Error

- Medida para o próximo passo, dá mais peso a erros maiores

$$\frac{\sum_{i=1}^{n} (y_j - \hat{y}_j)^2}{n}$$

n número de amostras

 $y - \hat{y}$ Erro residual ()² quadrado

 $\sum_{m} som \frac{1}{m} média$ somatório dos termos

3) RMSE – Root Mean Squared Error

- Desvio padrão dos erros residuais
- Na mesma magnitude da amostra penaliza grandes erros

$$\frac{\sum_{i=1}^{n} (y_j - \hat{y}_j)^2}{n}$$

n número de amostras

y - ŷ Erro residual

()² quadrado

 \sum_{1}^{∞} so $\frac{1}{2}$ média somatório dos termos

raiz quadrada

4) R² - R squared

- Também chamado de coeficiente de determinação
- Porcentagem da variância do modelo
- Mostra o quanto as variáveis independentes explicam a variável dependente

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{j} - \hat{y}_{j})^{2}}{\sum_{i=1}^{n} (y_{j} - \bar{y}_{j})^{2}}$$