BIO 217 Evolution Simulation	Your Name
Other Names in Group	

Background. We are going to simulate evolution using threespine stickleback. Each generation you will use 1 or 2 coin flips to determine if an individual fish reproduces, for each fish in the generation. You'll repeat this until one of the phenotypes goes to **fixation**. The simulation models what happens when a marine population colonizes freshwater. In this **founder** population, there is a **low frequency** of partially plated individuals. The simulation models two mechanisms of evolution.

Need: 70 partially plated (freshwater) fish, 30 fully plated (marine) fish.

Read through the simulation directions and answer these questions before beginning the simulation

- 1. In Simulation 1, what is the probability of reproduction in the partial fish? _____
- 2. In Simulation 1, what is the probability of reproduction in the full fish? _____
- 3. In Simulation 2, what is the probability of reproduction in the partial fish?
- 4. In Simulation 2, what is the probability of reproduction in the full fish? _____

Simulation 1

- 1. Start with 16 full and 4 partial
 - a. align the fish in a row in front of you, keep the remaining fish in a partial pile and a full pile
 - b. write the **absolute frequency** of each phenotype in row 1 of your data sheet
- 2. For each fish, flip 2 coins
 - a. **if partial**: if there is **at least one head**, the fish reproduces add this fish and a new partial from the pile to the new generation
 - i. to start a new generation, create a new row of fish
 - ii. if the fish doesn't reproduce, add to the correct pile
 - b. **if full**: if there **are two heads**, the fish reproduces add this fish and a new full from the pile to the new generation
 - i. if the fish doesn't reproduce, add to the correct pile
- 3. After completing reproduction for each fish in the generation, write the **absolute frequency** of each phenotype in the next blank row of your data sheet
- 4. Repeat Items 2 and 3 until one of the phenotypes goes to fixation

Simulation 2

- 1. Start with 8 full and 2 partial
 - a. align the fish in a row in front of you, keep the remaining fish in a partial pile and a full pile
 - b. write the **absolute frequency** of each phenotype in row 1 of your data sheet
- 2. For each fish, flip 1 coin
 - a. **for both phenotypes**: if heads, the fish reproduces add this fish and a new fish of the same phenotype from the pile to the new generation
 - i. to start a new generation, create a new row of fish
 - ii. if the fish doesn't reproduce, add to the correct pile
 - b. write the absolute frequency of each phenotype in the next blank row
 - i. if the fish doesn't reproduce, add to the correct pile
- 3. After completing reproduction for each fish in the generation, write the **absolute frequency** of each phenotype in the next blank row of your data sheet
- 4. Repeat Items 2 and 3 until one of the phenotypes goes to fixation or both go extinct

Your Name	

	Simulation 1		Simulation 2		Simulation 1		Simulation 2	
Generation	Full	Partial	Full	Partial	Full	Partial	Full	Partial
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								
24								
25								
26								
27								
28								
29								
30								