www.fernando.parreiras.nom.br

Introdução à construção de ontologias

Fernando Silva Parreiras www.fernando.parreiras.nom.br

servir com que comida?

Uma ontologia de vinhos e comidas

Regiões Produtoras de Vinho na Califórnia

Sumário

- □ O que é uma ontologia?
- Por que desenvolver uma ontologia?
- Criando uma ontologia passo a passo
- □ Problemas e soluções comuns
- Ontologias na web semântica
- Pesquisas na criação de ontologias

O que é uma ontologia

- Uma ontologia é uma descrição explícita de um domínio:
 - Conceitos;
 - Propriedades e atributos do conceito;
 - Restrições à propriedade e atributos;
 - Instâncias.
- Uma ontologia define
 - Um vocabulário comum;
 - Um entendimento compartilhado.

Exemplos de ontologias

- Taxonomias na Internet
 - Categorias no Yahoo!
- □ Catálogos de compras on-line
 - Amazon.com
- Padrões terminológicos de domínios específicos
 - Unified Medical Language System (UMLS)
 - UNSPSC terminology for products and services

O que é engenharia de ontologias?

Definição de termos e um domínio e os relacionamentos entre eles

- Definição de conceitos em um domínio (classes)
- Organizar os conceitos em hierarquias (subclassessuperclasses)
- Definindo quais atributos e propriedades (slots) as classes devem ter, e as restrições de valores
- Definição de instâncias e preenchimento dos slots

Sumário

- □ O que é uma ontologia?
- □ Por que desenvolver uma ontologia?
- Criando uma ontologia passo a passo
- Problemas e soluções comuns
- Ontologias na web semântica
- Pesquisas na criação de ontologias

Porque desenvolver uma ontologia?

- Para compartilhar o entendimento de uma estrutura de informação
 - Entre pessoas
 - Entre agentes de software
- Para permitir o reuso de um domínio de conhecimento
 - Para evitar "re-inventar a roda"
 - Para criar padrões e permitir a interoperabilidade

Mais razões

- Para separar conhecimento de domínio de conhecimento operacional
 - Reuso de conhecimento de domínio e operacional separadamente.

Uma ontologia é só o começo

Sumário

- □ O que é uma ontologia?
- Por que desenvolver uma ontologia?
- Criando uma ontologia passo a passo
- Problemas e soluções comuns
- Ontologias na web semântica
- Pesquisas na criação de ontologias

Wines and Wineries

Processo de desenvolvimento

Neste mini-curso:

Na realidade:

Engenharia de ontologias versus modelagem 00

<u>Uma ontologia</u>

- Reflete a estrutura do mundo
- É geralmente sobre estruturas de conceitos
- Não se preocupa com a representação física

<u>Uma estrutura 00</u>

- Reflete a estrutura de dados e código
- Trata comportamento (métodos)
- Descreve a representação física dos dados

Ferramentas

- □ Protégé-2000:
 - Editor gráfico de ontologias
 - Suporta um modelo rico de conhecimento
 - É código livre (http://protege.stanford.edu)
- Outras ferramentas
 - Ontolingua and Chimaera
 - OntoEdit
 - OilEd

Determinando domínio e escopo

- Que domínio a ontologia vai cobrir?
- Para que nós vamos utilizar a ontologia?
- Que tipo de questões as informações na ontologia vão responder?

As respostas à estas questões podem mudar ao longo do tempo

Questões de competência

- Quais características do vinho eu devo considerar na escolha
- □ Bordeaux é um vinho tinto ou branco
- Cabernet Sauvignon combina com pescado?
- Qual é a melhor escolha de vinho para carnes grelhadas?
- Quais características de um vinho afetam sua combinação com um prato?
- O sabor ou cor de um vinho específico muda de acordo com a safra?

Considerando a reutilização

- Por que reutilizar ontologias?
 - Para poupar esforço
 - Para interagir com as ferramentas que usam outras ontologias
 - Para utilizar ontologias validadas através do uso em aplicações

Onde buscar ontologias existentes?

- Bibliotecas de ontologias
 - DAML ontology library (www.daml.org/ontologies)
 - Ontolingua ontology library (www.ksl.stanford.edu/software/ontolingua/)
 - Protégé ontology library (protege.stanford.edu/plugins.html)
- Upper ontologies
 - IEEE Standard Upper Ontology (suo.ieee.org)
 - Cyc (www.cyc.com)

Onde buscar ontologias existentes? (II)

- Ontologias gerais
 - DMOZ (<u>www.dmoz.org</u>)
 - Yahoo! (www.yahoo.com.br)
 - WordNet (www.cogsci.princeton.edu/~wn/)
- Específicas de um domínio
 - UMLS Semantic Net
 - GO (Gene Ontology) (www.geneontology.org)

Enumerando Termos Importantes

- Quais são os termos que nós estamos tratando?
- Quais são suas propriedades?
- O que nós queremos dizer sobre estes termos

The Wine Ontology

wine, grape, winery, location, wine color, wine body, wine flavor, sugar content white wine, red wine, Bordeaux wine food, seafood, fish, meat, vegetables, cheese

Definindo as Classes e a Hierarquia das Classes

- Uma classe é um conceito em um domínio
 - Uma classe de wines
 - Uma classe de wineries
 - Uma classe de red wines
- Uma classe é uma coleção de elementos com propriedades similares
- Instâncias de classes
 - Uma garrafa de vinho qualquer

Herança de classes

- Classes usualmente constituem uma hierarquia taxonômica (uma hierarquia subclassesuperclasse)
- Uma hierarquia de classe é usualmente uma hierarquia "IS-A":
 - Uma instância de uma subclasse é uma instância de uma superclasse
- Se uma classe é um conjunto de elementos, uma subclasse é um subconjunto

Exemplos

- Maçã é uma subclasse de fruta Toda maça é uma fruta
- □ Vinhos tintos é uma subclasse de vinho

 Todo vinho tinto é um vinho
- Vinho Chianti é uma subclasse de vinho Todo vinho Chianti é um vinho tinto

Níveis de hierarquia

Modos de desenvolvimento

- top-down Define os conceitos genéricos e depois os detalha
- bottom-up define os conceitos específicos e então os organiza em classes mais genéricas
- combination define os conceitos mais salientes primeiro e depois os generaliza e especializa

Documentação

- Classes (e slots) usualmente tem documentação
 - Descrevendo a classe em linguagem natural
 - Listando premissas do domínio relevantes para a definição da classe
 - Listando sinônimos
- Documentar classes e slots é tão importante quanto documentar código fonte!

Definindo Propriedades das classes - Slots

 Slots em uma definição de classe, descreve atributos de instancias da classe e as relações com outras instâncias

Cada vinho tem cor, produtor, acidez, etc.

Propriedades (Slots)

- □ Tipos de propriedades:
 - propriedades: name e price do vinho
 - partes: ingredientes em um prato
 - Relações com outros objetos: produtora de vinho (winery)
- Propriedades simples e complexas
 - Propriedades simples (atributos): contem valores atômicos (número, caracteres)
 - Propriedades complexas: contém outros objetos

Slots da classe vinho

Template Slots			₹ 4 -
Name	Type	Cardinality	Other Facets
S body	Symbol	single	allowed-values={FULL,MEDIUM,LIGHT}
S color	Symbol	single	allowed-values={RED,ROSÉ,WHITE}
S flavor	Symbol	single	allowed-values={DELICATE,MODERATE,STRONG}
S grape	Instance	multiple	classes={Wine grape}
S maker ^I	Instance	single	classes={VVinery}
S name	String	single	
S sugar	Symbol	single	allowed-values={DRY,SWEET,OFF-DRY}

(in Protégé-2000)

Slot e herança de classes

 Uma subclasse herda todos os slots da superclasse

Se um vinho tem um nome e sabor, um vinho tinto também tem nome e sabor

 Se uma classe tem múltiplas superclasses, ela herda slots de todas

Restrições das propriedades

 Restrições das propriedades (facetas) descrevem ou limitam o conjunto de valores possíveis para um slot

The name of a wine is a string
The wine producer is an instance of Winery
A winery has exactly one location

Facetas dos Slots da Classe vinhos

Template Slots			₩ C × + -
Name	Type	Cardinality	Other Facets
S body	Symbol	single	allowed-values={FULL,MEDIUM,LIGHT}
S color	Symbol	single	allowed-values={RED,ROSÉ,WHITE}
S flavor	Symbol	single	allowed-values={DELICATE,MODERATE,STRONG}
S grape	Instance	multiple	classes={Wine grape}
S maker ^I	Instance	single	classes={Winery}
S name	String	single	
S sugar	Symbol	single	allowed-values={DRY,SWEET,OFF-DRY}

Facetas comuns

- Cardinalidade
- Tipo de dado
- □ Valor mínimo e máximo
- □ Valor padrão

Facetas comuns: Cardinalidade

- Cardinalidade
 - N se o slot deve ter N valores
- Cardinalidade mínima
 - 1 se o slot deve ter pelo menos um valor (requerido)
 - 0 se o slot é opcional
- Cardinalidade máxima
 - 1 se no máximo (single-valued slot)
 - >1 se o slot é multivalorado (multiple-valued slot)

Facetas comuns: Tipos de dados

- String: uma cadeia de caracteres
- Number: um inteiro ou ponto flutuante
- □ Boolean: true/false
- Enumerated type: lista de valores
- Complex type: uma instância de outra classe
 The Wine class is the value type for the slot "produces" at the Winery class

Domínio e intervalo de Slot

- □ Domain a classe (ou classes) que tem o slot
 - Mais precisamente: instância de classe (ou classes) que podem ter o slot
- Range a classe (ou classes) a qual os valores do slot pertencem

Facetas e Herança de Classe

- uma subclasse herda todos os slots de uma superclasse
- Uma subclasse pode sobrescrever as facetas para restringir a lista de valores permitidos
 - Diminuindo a cardinalidade

Criando instâncias

- Ao criar a instância de uma classe
 - A classe se torna um tipo direto da instância
 - Qualquer superclasse do tipo direto e um tipo da instância
- Atribuindo valores
 - Os valores devem ser conforme com as facetas
 - Ferramentas de aquisição de conhecimento verificam os valores

Exemplo

Sumário

- □ O que é uma ontologia?
- Por que desenvolver uma ontologia?
- Criando uma ontologia passo a passo
- □ Problemas e soluções comuns
- Ontologias na web semântica
- Pesquisas na criação de ontologias

Aprofundando

Definindo classes e sua hierarquia

- Lembre-se:
 - Não existe uma hierarquia correta
 - Mas sim melhores práticas
- □ Pergunte-se:

"Cada instâncias de uma subclasse uma instância de uma superclasse?"

Transitividade da hierarquia de classes

- O relacionamento "is-a" transitivo:
 - B é uma subclasse de A
 - C é uma subclasse de B
 - C é uma subclasse de A
- Uma superclasse direta de uma classe é sua superclasse mais perto

Herança múltipla

- Uma classe pode ter mais de uma superclasse
- Uma subclasse herda slots e facetas de todos os pais
- Sistemas diferentes resolvem conflitos de maneira diferente

Classes Disjuntas

- □ Classes são disjuntas se elas não podem ter instâncias em comum
- classes disjuntas não podem ter nenhuma subclasse em comum

Red wine, White wine, Rosé wine são disjuntas Dessert wine and Red wine não são disjuntas

Evitando Ciclos de Classes

- Perigo de herança múltipla: hierarquia cíclica
- Classes A, B, e C tem conjuntos equivalentes de instância
 - A, B, e C são equivalentes

Irmãos na hierarquia

- Todos irmãos devem estar no mesmo nível de generalidade
- Compare com as seções e subseções de um livro

O tamanho perfeito

- P- C Red wine

 C Beaujolais

 P- C Red Burgundy

 C Cotes d'Or

 C Red Zinfandel
- PC Red wine
 C Beaujolais
 PC Red Burgundy
 C Cotes d'Or
 C Cotes Chalonnaise
 C Red Zinfandel
- Se uma classe tem apenas um filho, há um problema de modelagem
- □ Se o único Red Burgundy que tem-se é Côtes d'Or, porque criar uma hierarquia?
- Compare com uma lista marcada

O tamanho perfeito(II)

- Se uma classe tem dezenas de filhos, subcategorias podem ser necessárias
- Entretanto, se não existe uma classificação natural, isso pode ser natural

Nomes no plural e no singular

- Um "wine" não é um tipo de "wines"
- Um wine é uma instância da classe Wines
- Os nomes devem ser
 - Todos no singular ou
 - Todos no plural

Nomes de classes

- □ Classes representam conceitos no domínio, não os nomes
- O nome da classe pode mudar, mas ele vai continuar a se referir ao mesmo conceito
- Nomes sinônimos para o mesmo conceito não são classes diferentes
 - Muitos sistemas permitem listar sinônimos como parte da definição das classes

Slots: domínio e intervalo

- □ Considerando o slot flavor
 - Domain: Red wine, White wine, Rosé wine
 - Domain: Wine
- Considerando o slot produces para uma Winery:
 - Range: Red wine, White wine, Rosé wine
 - Range: Wine

Domínio e intervalo

- Considerando o slot flavor
 - Domain: Red wine, White wine, Rosé wine
 - Domain: Wine
- Considerando o slot produces para uma Winery:
 - Range: Red wine, White wine, Rosé wine
 - Range: Wine

Definindo domínio e intervalo

- Uma classe e uma subclasse - substitua por uma superclasse
- Muitas subclasses em uma classe - considere substituir por superclasses

Slots inversos

Maker e Producer are são slots inversos

Slots inversos (II)

- Slots inversos contem informação redundante, mas
 - Permite aquisição de conhecimento nas duas direções
 - Habilita verificação
 - Permite apresentação da informação em duas direções
- A implementação atual se difere de sistema para sistema
 - Os dois valores são armazenados?
 - Quando preencher?
 - O que acontece se mudar um link?

Valores Padrão

- Valor Padrão- um valor assumido pelo slot na criação da instância
- Pode ser mudado
- É um valor comum, não necessariamente requerido
- O valor padrão para "wine body" pode ser "FULL"

Limitando o escopo

- Uma ontologia não deve conter todas as informações possíveis sobre o domínio
 - Não é necessário especializar ou generalizar mais que a aplicação requer
 - Não é necessário incluir todas propriedades possíveis de uma classe
 - Apenas as mais salientes
 - Apenas as que a aplicação requer

Limitando o escopo (II)

- A ontologia de vinhos provavelmente não incluirá:
 - Bottle size
 - Label color
 - My favorite food and wine
- Uma ontologia de experimentos médicos conterá
 - Organismo Biológico
 - Experimentador
- A classe experimentador é uma subclasse de organismo biológico?

Sumário

- O que é uma ontologia?
- Por que desenvolver uma ontologia?
- Criando uma ontologia passo a passo
- Problemas e soluções comuns
- □ Ontologias na web semântica
- Pesquisas na criação de ontologias

Ontologias e as linguagens da WS

- As linguagens de web semântica podem ser utilizadas para definir ontologias
 - RDF Schema
 - DAML+OIL
 - SHOE
 - XOL
 - XML Schema

Linguagens SW

- □ As linguagens podem ser diferentes em
 - sintaxe
 - terminologia
 - expressividade
 - semântica

Classes RDF e RDF Schema

RDF Schema Specification 1.0 (http://www.w3.org/TR/2000/CR-rdf-schema-20000327/)

RDF(S) Terminologia e Semântica

- Hierarquia de classes
 - Todas classes são instâncias de rdfs:Class
 - Uma hierarquia é definida por rdfs:subClassOf
- Instâncias de uma classe
 - Definidas por rdf:type
- Propriedades
 - Propriedades são global:
 - Uma propriedade name em um lugar é o mesmo que a propriedade name em outro lugar (assumindo o mesmo namespace)
 - Propriedades tem hierarquia também (rdfs:subPropertyOf)

Restrições em RDF(S)

- Cardinalidade
 - Não há restrições explícitas
 - Qualquer propriedade pode ter múltiplos valores
- Intervalo de propriedades
 - Uma propriedade pode ter apenas um intervalo
- Domínio
 - Uma propriedade pode ter mais de um domínio (Pode ser ligada à mais de uma classe)
- Não há valores padrão

DAML+OIL: Classes e hierarquia

- Classes
 - Cada classe é uma instância de daml:Class
- Hierarquia
 - Definida por rdfs:subClassOf
- Mais formas de organizar as classes
 - disjuntura (daml:disjointWith)
 - Equivalência (daml:sameClassAs)
- A hierarquia de classes pode ser calculada a partir das propriedades das classes

Mais definições de classes em DAML+OIL

- □ União de classes
 - A class Person is a union of classes Male and Female
- Restrição em propriedades
 - A class Red Thing is a collection of things with color: Red
- □ Intercessão classes
 - A class Red Wine is an intersection of Wine and Red Thing
- Complemento de uma classe
 - Carnivores are all the animals that are not herbivores
- Listagem de elementos
 - A class Wine Color contains the following instances: red, white, rosé

Restrições em DAML+OIL

- Cardinalidade
 - Mínimo, máximo, cardinalidade exata
- Range
 - Um intervalo podem incluir múltiplas classes: o valor de uma propriedade precisa ser uma instância de cada classe
 - Pode especificar a união explícita de classe se necessitar semântica diferente
- Domínio: o mesmo
- Sem valores padrão

Sumário

- □ O que é uma ontologia?
- Por que desenvolver uma ontologia?
- Criando uma ontologia passo a passo
- Problemas e soluções comuns
- Ontologias na web semântica
- Pesquisas na criação de ontologias

Pesquisas na engenharia de ontologias

- □ Geração de conteúdo
- □ Análise e avaliação
- □ Manutenção
- Linguagens
- Ferramentas

Conteúdo

- □ O que significa "top-level"?
 - Objetos: tangíveis, intangíveis
 - Processos, eventos, atores, papéis
 - Agentes, organizações
 - Espaço, limites, localização
 - Tempo
- □ IEEE Standard Upper Ontology effort
 - Meta: Desenha uma ontologia de alto nível
 - Processo: utilizar ontologias existentes

Aquisição de conhecimento

- Aquisição de conhecimento é o gargalo
- Compartilhar e reusar alivia o problema
- Técnicas de aquisição automática são necessárias
 - Lingüística computacional
 - Machine-learning: gerar ontologias a partir de documentos estruturados
 - Explorar a web para gerar estruturas

Análise

- □ Consistência semântica
 - Violação de restrições
 - Hierarquia cíclica
 - Termos que são usados mas não definidos
 - (min > max)
- estilo
 - Classes com uma única subclasse
 - Classes e slots sem definições
 - Slots sem restrições
- Earramantas nara análisa automática

Avaliação

- Um dos maiores problemas no desenho de ontologias
- O desenho é subjetivo
- Como saber se uma ontologia está correta
- O melhor teste é a aplicação da ontologia

Manutenção de ontologias

- □ Mesclagem
 - Duas ontologias criam uma nova
- Mapeamento
 - Criar um mapeamento entre ontologias
- □ Versionamento e evolução
 - Compatibilidades entre versões da mesma ontologia
 - Compatibilidades entre versões da ontologia e das instâncias

Ferramentas

- Suporte a várias linguagens
- Expressividade
- Usabilidade

Por onde seguir?

Tutoriais

- Natalya F. Noy and Deborah L. McGuinness (2001) "Ontology Development 101: A Guide to Creating Your First Ontology" http://protege.stanford.edu/publications/ontology_development/ontology101.html
- Farquhar, A. (1997). Ontolingua tutorial. http://ksl-web.stanford.edu/people/axf/tutorial.pdf
 - We borrowed some ideas from this tutorial

Metodologia

- Gómez-Pérez, A. (1998). Knowledge sharing and reuse.
 Handbook of Applied Expert Systems. Liebowitz, editor, CRC Press.
- Uschold, M. and Gruninger, M. (1996). Ontologies: Principles, Methods and Applications. Knowledge Engineering Review 11(2)

www.fernando.parreiras.nom.br

Perguntas?

Obrigado!

www.fernando.parreiras.nom.br