# Lineārās programmas piemērs

• Maksimizēt -  $\frac{x_1}{3}$  +  $x_2$  pie nosacījumiem  $2x_1-x_2$  + 3,  $x_1+x_2$  + 4,  $x_1$  + 0,  $x_2$  + 0.



Sākumpunkts:  $x_1=1$ ,  $x_2=1$ .

#### Standartforma

- Pārveido LP formā, kur ir tikai vienādības.
- Maksimizēt  $\frac{x_1}{3}$  +  $x_2$  pie nosacījumiem

$$2x_1-x_2 + x_3 = 3$$
,  
 $x_1+x_2 + x_4 = 4$ ,  
 $x_1 = 0$ ,  $x_2 = 0$ ,  $x_3 = 0$ ,  $x_4 = 0$ .

Sākumpunkts:  $x_1=1$ ,  $x_2=1$ ,  $x_3=2$ ,  $x_2=2$ .

- Koordinātu transformācija.
- $x_1=1+y_1$ ,  $x_2=1+y_2$ ,  $x_3=2+y_3$ ,  $x_4=2+y_4$ .
- (1, 1, 2, 2) = (0, 0, 0, 0).
- Jaunā programma:

Maksimizēt -  $\frac{y_1}{3}$  +  $y_2$  pie nosacījumiem

- $2y_1 y_2 + y_3 = 0$ ,
- $y_1 + y_2 + y_4 = 0$ ,
- $y_1 = -1$ ,  $y_2 = -1$ ,  $y_3 = -2$ ,  $y_4 = -2$ .

- Koordinātu "saspiešana".
- $y_1=z_1$ ,  $y_2=2z_2$ ,  $y_3=2z_3$ ,  $y_4=2z_4$ .
- Jaunā programma:

Maksimizēt -  $\frac{z_1}{3}$  +  $z_2$  pie nosacījumiem

- $2z_1-z_2+2z_3=0$ ,
- $z_1 + z_2 + 2z_4 = 0$ ,
- $z_1 = -1$ ,  $z_2 = -1$ ,  $z_3 = -1$ ,  $z_4 = -1$ .

Tekošais punkts – vienādā apkārtnē no visiem ierobežojumiem.

Maksimizēt -  $\frac{z_1}{3}$  +  $z_2$  pie nosacījumiem

• 
$$2z_1-z_2+2z_3=0$$
,

- $z_1+z_2+2z_4=0$ ,
- $z_1 = -1$ ,  $z_2 = -1$ ,  $z_3 = -1$ ,  $z_4 = -1$ .

Sfēra, kas pieskaras visiem ierobežojumiem:

$$z_1^2 + z_2^2 + z_3^2 + z_4^2 = 1$$

- Teorēma Izteiksmes  $a_1z_1+a_2z_2+...$  maksimums uz sfēras  $z_1^2+z_2^2+...+z_n^2=1$  tiek sasniegts virzienā
  - $z_1=a_1, z_2=a_2, ..., z_n=a_n.$
- Izteiksme:  $-\frac{z_1}{3} + z_2$
- Maksimums:  $z_1=-1/3$ ,  $z_2=1$ ,  $z_3=0$ ,  $z_4=0$ .

• Projicē  $z_1=-1/3$ ,  $z_2=1$ ,  $z_3=0$ ,  $z_4=0$  uz plakni, kur izpildās nosacījumi

• 
$$2z_1-z_2+2z_3=0$$
,

• 
$$z_1 + z_2 + 2z_4 = 0$$
.

Nosacījumi matricu formā:

# Projekcijas formulas

- z projicējamais vektors.
- 1. Atrod vektoru w, kuram (B  $\dashv$  B<sup>T</sup>)w = Bz.
- 2. Nem  $p = z B^Tw$ .

#### **Piemērs**

Jāatrisina:  $(B - B^T)w = Bz$ .

#### **Piemērs**

$$6 w_1 + w_2 = \frac{2}{3}$$

$$w_1 + 9 w_2 = -\frac{5}{3}$$

#### Risinājums:

$$w_1 = \frac{23}{159}, w_2 = -\frac{32}{159}$$

# Projekcija

•  $p = z - B^T w$ 

$$p = \begin{bmatrix} 5 & 1/3 & \bullet & \bullet & \bullet \\ 5 & 1/3 & \bullet & \bullet \\ \vdots & 5 & 1 & \bullet \\ 0 & \vdots & 5 & 1 & 1 & \bullet \\ 0 & \vdots & 5 & 1 & 1 & \bullet \\ 0 & \vdots & 5 & 2 & 0 & \bullet \\ 0 & \vdots & 5 & 2 & 0 & \bullet \\ 0 & \vdots & 5 & 2 & 0 & \bullet \\ 0 & \vdots & 5 & 2 & 0 & \bullet \\ 0 & \vdots & 5 & 2 & 0 & \bullet \\ 0 & 0 & \vdots & 5 & 2 & 0 & \bullet \\ 0 & 0 & \vdots & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bullet \\ 0 & 0$$

Virziens, kur mērķfunkcija pieaug visātrāk (ievērojot nosacījumus)

• Taisne, kur mērķfunkcija pieaug visātrāk:

```
-z_1=-12 t;
```

$$-z_2=104 t$$
;

$$-z_3=-46 t$$
;

$$-z_4=64 t.$$

- Tā kā z<sub>3</sub> -1, t maksimālā vērtība ir t=1/46.
- Nem t=0.96 (1/46).

• Taisne, kur mērķfunkcija pieaug visātrāk:

$$-z_2 = 104$$
 되  $0.96$ 되 $(1/46);$ 

$$-z_3 = -46$$
 교  $0.96$ 교 $(1/46);$ 

Sākotnējās koordinātēs:

$$-x_1=0.75, x_2=3.17.$$

# Rezultāts

