第2节 双曲线的焦点三角形相关问题(★★★)

强化训练

1. (2020・新课标Ⅲ巻・★★) 设双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 F_1 、 F_2 , 离心率为 $\sqrt{5}$,P是C上一点, $F_1P \perp F_2P$,若 ΔPF_1F_2 的面积为4,则a = (

(A) 1 (B) 2 (C) 4 (D) 8

答案: A

解析: 先由离心率把变量统一起来, $e = \frac{c}{-} = \sqrt{5}$ $\Rightarrow c = \sqrt{5}a$, 所以 $|F_1F_2| = 2c = 2\sqrt{5}a$,

焦点三角形中涉及垂直关系,常用勾股定理翻译,并结合定义处理,

设 $|PF_1|=m$, $|PF_2|=n$,如图, $F_1P\perp F_2P\Rightarrow m^2+n^2=|F_1F_2|^2=20a^2$ ①,由双曲线定义,|m-n|=2a ②, 把①配方可得 $m^2 + n^2 = (m-n)^2 + 2mn = 20a^2$, 结合式②可得 $4a^2 + 2mn = 20a^2$, 所以 $mn = 8a^2$,

故 $S_{\Delta PF_1F_2} = \frac{1}{2}mn = 4a^2$,由题意, $S_{\Delta PF_1F_2} = 4$,所以 $4a^2 = 4$,故 a = 1.

2. (2022 • 九江三模 • ★★) 双曲线 $\frac{x^2}{t} - \frac{y^2}{1-t} = 1(0 < t < 1)$ 的左、右焦点分别为 F_1 , F_2 , P 为圆 $x^2 + y^2 = 1$ 与

该双曲线的一个公共点,则 ΔPF_1F_2 的面积为()

- (A) 1-t (B) t (C) 2t-1 (D) 1

答案: A

解析: 由题意,双曲线的半焦距 $c = \sqrt{t+1-t} = 1$,

所给圆即为以 F_1F_2 为直径的圆,点P在圆上隐含了 $PF_1 \perp PF_2$,可用勾股定理结合双曲线定义来处理,

如图,设 $|PF_1|=m$, $|PF_2|=n$,则 $m^2+n^2=|F_1F_2|^2=4c^2=4$ ①,由双曲线定义, $|m-n|=2\sqrt{t}$ ②,

由①可得 $m^2 + n^2 = (m-n)^2 + 2mn = 4$,将②代入得4t + 2mn = 4,所以mn = 2 - 2t,故 $S_{\Delta PF_1F_2} = \frac{1}{2}mn = 1 - t$.

3. (2022・南宁模拟・★★★) 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的右焦点为 F,直线 $y = kx(k \neq 0)$ 与双 曲线 C 交于 A, B 两点,若 $\angle AFB = 90^{\circ}$,且 $\triangle OAF$ 的面积为 $4a^2$,则 C 的离心率为()

(A)
$$\frac{2\sqrt{6}}{5}$$
 (B) $\frac{\sqrt{26}}{5}$ (C) 2 (D) 3

(B)
$$\frac{\sqrt{26}}{5}$$

答案: D

解析:看到过原点的直线与双曲线交于A、B两点,想到和两焦点构成平行四边形,

如图,设双曲线 C 的左焦点为 F_1 ,则四边形 AF_1BF 为平行四边形,

又 $\angle AFB = 90^{\circ}$,所以四边形 AF_1BF 为矩形,故 $\angle F_1AF = 90^{\circ}$,

 ΔOAF 的面积可换算成 ΔAFF 的面积,于是结合双曲线的定义和勾股定理处理即可,

设 $|AF_1|=m$,|AF|=n,则 $m^2+n^2=|F_1F_2|^2=4c^2$ ①,由双曲线定义,|m-n|=2a②,

由①可得 $m^2 + n^2 = (m-n)^2 + 2mn = 4c^2$,将式②代入可得 $4a^2 + 2mn = 4c^2$,所以 $mn = 2c^2 - 2a^2$,

故 $S_{\Delta AFF_1} = \frac{1}{2}mn = c^2 - a^2$,由题意, $S_{\Delta OAF} = 4a^2$,所以 $S_{\Delta AFF_1} = 2S_{\Delta OAF} = 8a^2$,从而 $c^2 - a^2 = 8a^2$,故 $c^2 = 9a^2$,

所以双曲线 C 的离心率 $e = \frac{c}{c} = 3$.

4. $(2022 \cdot 长沙模拟 \cdot \star \star \star \star)$ 已知 F_1 , F_2 分别是双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点,过 F_2 的 直线与双曲线的右支相交于 $P \setminus Q$ 两点,若 $PQ \perp PF_1$,且 $|PQ| = |PF_1|$,则 C 的离心率为()

(A)
$$\sqrt{6} - \sqrt{3}$$

(A)
$$\sqrt{6} - \sqrt{3}$$
 (B) $\sqrt{5 - 2\sqrt{2}}$ (C) $\sqrt{5 + 2\sqrt{2}}$ (D) $1 + 2\sqrt{2}$

(C)
$$\sqrt{5+2\sqrt{2}}$$

(D)
$$1+2\sqrt{2}$$

答案: B

解析:如图,涉及双曲线上的点和左、右焦点,可尝试结合已知条件和双曲线定义研究有关线段的长,

设 $|PQ| = |PF_1| = m$,因为 $PQ \perp PF_1$,所以 $|QF_1| = \sqrt{2}m$,由双曲线定义, $\begin{cases} |PF_1| - |PF_2| = 2a \\ |OF_1| - |OF_2| = 2a \end{cases}$

两式相加得: $|PF_1|+|QF_1|-(|PF_2|+|QF_2|)=|PF_1|+|QF_1|-|PQ|=m+\sqrt{2}m-m=4a$,所以 $m=2\sqrt{2}a$,

故 $|PF_1| = 2\sqrt{2}a$, $|PF_2| = |PF_1| - 2a = 2(\sqrt{2} - 1)a$,

接下来只需在 ΔPF_iF_i ,中用勾股定理,即可建立a和c的方程求离心率,

因为 $PQ \perp PF_1$,所以 $|PF_1|^2 + |PF_2|^2 = |F_1F_2|^2$,故 $8a^2 + 4(\sqrt{2}-1)^2a^2 = 4c^2$,

整理得: $\frac{c^2}{a^2} = 5 - 2\sqrt{2}$, 所以 $e = \frac{c}{a} = \sqrt{5 - 2\sqrt{2}}$.

5. (2022 • 河南模拟 • ★★★)已知 F_1 , F_2 分别是双曲线 C: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点,过 F_1 的 直线与双曲线 C 的左、右两支分别交于 A, B 两点,若 $\triangle ABF$,是等边三角形,则 C 的离心率是____.

答案: √7

解析: 涉及双曲线上的点和左、右焦点, 优先考虑定义, 如图, 由双曲线定义, $|BF_1| - |BF_2| = 2a$ ①,

又 $\triangle ABF_2$ 是正三角形,所以 $|BF_2| = |AB|$,代入①得: $|BF_1| - |BF_2| = |BF_1| - |AB| = |AF_1| = 2a$,

因为点 A 也在双曲线上,所以 $|AF_2|-|AF_1|=2a$,故 $|AF_2|=|AF_1|+2a=4a$,

正三角形除了已知边长关系外,还知道角,可在 ΔAF_1F_2 ,中由余弦定理建立方程求离心率,

由题意, $\angle BAF_2 = 60^{\circ}$, $\angle F_1AF_2 = 180^{\circ} - \angle BAF_2 = 120^{\circ}$,

在 ΔAF_1F_2 中,由余弦定理, $|F_1F_2|^2 = |AF_1|^2 + |AF_2|^2 - 2|AF_1| \cdot |AF_2| \cdot \cos \angle F_1AF_2$,

所以 $4c^2 = 4a^2 + 16a^2 - 2 \times 2a \times 4a \times \cos 120^\circ$,整理得: $\frac{c^2}{a^2} = 7$,故离心率 $e = \frac{c}{a} = \sqrt{7}$.

6. (2022•河南模拟•★★★) 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的离心率为 3,焦点分别为 F_1 , F_2 , 点 A 在双曲线 C 上,若 ΔAF_1F_2 的周长为 14a,则 ΔAF_1F_2 的面积为 ()

- (A) $\sqrt{17}a^2$ (B) $15a^2$ (C) $2\sqrt{14}a^2$ (D) $2\sqrt{15}a^2$

答案: C

解析:答案都是用a表示的,于是先由离心率把变量统一成a,

双曲线 C 的离心率 $e = \frac{c}{a} = 3 \Rightarrow c = 3a$, 所以 $|F_1F_2| = 2c = 6a$,

又 ΔAF_1F_2 的周长 $L = |AF_1| + |AF_2| + |F_1F_2| = |AF_1| + |AF_2| + 6a = 14a$,所以 $|AF_1| + |AF_2| = 8a$ ①,

由①可联想到用定义再构造一个式子,解出 $|AF_1|$ 和 $|AF_2|$,不妨设A在右支上,则 $|AF_1|$ - $|AF_2|$ = 2a ②,

由①②可得: $|AF_1|=5a$, $|AF_2|=3a$,已知三边了,求面积可先用余弦定理推论求一个内角余弦,

在
$$\Delta AF_1F_2$$
中, $\cos \angle F_1AF_2 = \frac{\left|AF_1\right|^2 + \left|AF_2\right|^2 - \left|F_1F_2\right|^2}{2\left|AF_1\right| \cdot \left|AF_2\right|} = \frac{25a^2 + 9a^2 - 36a^2}{2 \times 5a \times 3a} = -\frac{1}{15}$

所以
$$\sin \angle F_1 A F_2 = \sqrt{1 - \cos^2 \angle F_1 A F_2} = \frac{4\sqrt{14}}{15}$$
,故 $S_{\Delta A F_1 F_2} = \frac{1}{2} |AF_1| \cdot |AF_2| \cdot \sin \angle F_1 A F_2 = \frac{1}{2} \times 5a \times 3a \times \frac{4\sqrt{14}}{15} = 2\sqrt{14}a^2$.

7. (2023・新高考 I 卷・★★★) 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 F_1 , F_2 ,点 A在 C上,点 B 在 y 轴上, $\overrightarrow{F_1A} \perp \overrightarrow{F_1B}$, $\overrightarrow{F_2A} = -\frac{2}{3}\overrightarrow{F_2B}$,则 C 的离心率为_____.

答案:
$$\frac{3\sqrt{5}}{5}$$

答案: 3√5 《一数•高考数学核心方法》

解析:如图,条件中有 $\overline{F_2A} = -\frac{2}{2}\overline{F_2B}$,不妨设一段长度,看能否表示其余线段的长,

设
$$|AF_2|=2m$$
,因为 $\overrightarrow{F_2A}=-\frac{2}{3}\overrightarrow{F_2B}$,所以 $|BF_2|=3m$,

故
$$|AB| = |AF_2| + |BF_2| = 5m$$
, 由对称性, $|BF_1| = |BF_2| = 3m$,

又
$$\overrightarrow{F_1A} \perp \overrightarrow{F_1B}$$
,所以 $|AF_1| = \sqrt{|AB|^2 - |BF_1|^2} = 4m$,

 $|AF_1|$ 和 $|AF_2|$ 都有了,结合双曲线的定义可计算 ΔABF_1 的各边,则可用"双余弦法"建立方程,

由图可知 A 在双曲线 C 的右支上,所以 $\left|AF_1\right|-\left|AF_2\right|=2m=2a$,从而 m=a,故 $\left|BF_1\right|=\left|BF_2\right|=3a$, $\mathbb{Z}|F_1F_2|=2c$,所以在 ΔBF_1F_2 中,由余弦定理推论,

$$\cos \angle F_1 B F_2 = \frac{|BF_1|^2 + |BF_2|^2 - |F_1 F_2|^2}{2|BF_1| \cdot |BF_2|}$$

$$= \frac{9a^2 + 9a^2 - 4c^2}{2 \times 3a \times 3a} = \frac{9a^2 - 2c^2}{9a^2},$$

在
$$\Delta ABF_1$$
 中, $\cos \angle ABF_1 = \frac{|BF_1|}{|AB|} = \frac{3m}{5m} = \frac{3}{5}$,

因为
$$\angle ABF_1 = \angle F_1BF_2$$
,所以 $\frac{9a^2 - 2c^2}{9a^2} = \frac{3}{5}$,

故双曲线 C 的离心率 $e = \frac{c}{a} = \frac{3\sqrt{5}}{5}$.

8. $(\star\star\star\star\star)$ 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点分别为 F_1 , F_2 ,点 A、B 分别在其左、

右两支上, $\overrightarrow{F_1B} = 3\overrightarrow{F_1A}$,T为线段 AB 的中点,且 $F_1T \perp F_2T$,则双曲线的离心率为_____.

答案: √7

解析:如图,先由已知条件结合双曲线定义分析有关线段的长,

因为 T 为线段 AB 的中点,且 $F_1T \perp F_2T$,所以 $|AF_2| = |BF_2|$,设 $|AF_2| = |BF_2| = m$,

由双曲线定义, $|AF_2|-|AF_1|=2a$,所以 $|AF_1|=|AF_2|-2a=m-2a$,

又 $\overrightarrow{F_1B} = 3\overrightarrow{F_1A}$,所以 $|BF_1| = 3|AF_1| = 3m - 6a$,因为点B在双曲线右支上,所以 $|BF_1| - |BF_2| = 2a$,

即 3m-6a-m=2a ,故 m=4a ,所以 $|BF_1|=6a$, $|BF_2|=4a$, $|AF_1|=2a$, $|AF_2|=4a$,

注意到 $|AB| = |BF_1| - |AF_1| = 4a$,所以 $|AB| = |AF_2| = |BF_2|$,从而 ΔABF_2 是正三角形,故 $\angle F_1BF_2 = 60^\circ$,

此时 ΔBF_1F_2 三边都已知,还知道一个角,可用余弦定理建立方程求离心率,

由余弦定理, $|F_1F_2|^2 = |BF_1|^2 + |BF_2|^2 - 2|BF_1| \cdot |BF_2| \cdot \cos \angle F_1BF_2$,即 $4c^2 = 36a^2 + 16a^2 - 2 \times 6a \times 4a \times \cos 60^\circ$,

整理得: $\frac{c^2}{a^2} = 7$,所以双曲线 C 的离心率 $e = \frac{c}{a} = \sqrt{7}$.

9. $(2022 \cdot 江西模拟 \cdot ★★★★)$ 已知双曲线 $\frac{x^2}{4} - \frac{y^2}{b^2} = 1(b > 0)$ 的左、右焦点分别为 F_1 , F_2 , 点P是右支上异于顶点的一点,PI是 $\angle F_1PF_2$ 的平分线,过 F_2 作PI的垂线,垂足为M, O为原点,则|OM| = ((A) 2 (B) 4 (C) 8 (D) 16

答案: A

解析:看到过F,作角平分线PI的垂线,想到三线合一,构造等腰三角形,

如图,延长 F_2M 交 PF_1 于点N,由题意,PM既是 $\angle NPF_2$ 的平分线,又是 NF_2 的垂线,

所以 $|PN| = |PF_2|$ ①,且 $M \in NF_2$ 的中点,涉及中点,考虑中位线,

又 O 是 F_1F_2 的中点,所以 $|OM| = \frac{1}{2}|F_1N| = \frac{1}{2}(|PF_1| - |PN|)$ ②,

将①代入②可得 $|OM| = \frac{1}{2}(|PF_1| - |PF_2|) = \frac{1}{2} \times 2a = a = 2.$

【反思】本题构造等腰三角形的方法眼熟吧?之前椭圆涉及角平分线的

10. (2022・大同月考・★★★★) 设 F_1 , F_2 是双曲线 $E: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的左、右焦点,点P在E

上,且 $\angle F_1PF_2$ 的平分线交 x 轴于点 D,若 $\angle F_1PF_2 = \frac{\pi}{3}$, $|PF_1| + |PF_2| = 8$,且 $|PD| = \sqrt{3}$,则 E 的方程为()

(A)
$$\frac{x^2}{2} - \frac{y^2}{8} = 1$$
 (B) $\frac{x^2}{8} - \frac{y^2}{2} = 1$ (C) $\frac{x^2}{6} - \frac{y^2}{4} = 1$ (D) $\frac{x^2}{4} - \frac{y^2}{6} = 1$

(B)
$$\frac{x^2}{8} - \frac{y^2}{2} =$$

(C)
$$\frac{x^2}{6} - \frac{y^2}{4} =$$

(D)
$$\frac{x^2}{4} - \frac{y^2}{6} =$$

答案: B

解析:如图,题干给出了 $|PF_1|+|PF_2|=8$,结合双曲线定义可求得 $|PF_1|$ 和 $|PF_2|$,

不妨设 P 在右支,由题意, $\begin{cases} |PF_1| + |PF_2| = 8\\ |PF_1| - |PF_2| = 2a \end{cases}$,所以 $|PF_1| = 4 + a$, $|PF_2| = 4 - a$,

注意到 $\angle F_1PF_2$ 给了大小,可用小三角形面积和等于大三角形面积建立方程求a,

因为 PD 是 $\angle F_1PF_2$ 的平分线,且 $\angle F_1PF_2 = \frac{\pi}{3}$,所以 $\angle F_1PD = \angle F_2PD = \frac{\pi}{6}$,

因为 $S_{\Delta PF_1D} + S_{\Delta PF_2D} = S_{\Delta PF_1F_2}$,所以 $\frac{1}{2}|PF_1|\cdot|PD|\cdot\sin\angle F_1PD + \frac{1}{2}|PF_2|\cdot|PD|\cdot\sin\angle F_2PD = \frac{1}{2}|PF_1|\cdot|PF_2|\cdot\sin\angle F_1PF_2$,

即 $\frac{1}{2}(4+a)\cdot\sqrt{3}\cdot\sin\frac{\pi}{6}+\frac{1}{2}(4-a)\cdot\sqrt{3}\cdot\sin\frac{\pi}{6}=\frac{1}{2}(4+a)(4-a)\sin\frac{\pi}{3}$,解得: $a=2\sqrt{2}$,

再求b,此时 ΔPF_1F_2 已知两边及夹角了,可先由余弦定理求 $|F_1F_2|$,从而得到c,那么b也就有了,

在 ΔPF_1F_2 中, $|F_1F_2|^2 = |PF_1|^2 + |PF_2|^2 - 2|PF_1| \cdot |PF_2| \cdot \cos \angle F_1PF_2$,

所以 $4c^2 = (4+a)^2 + (4-a)^2 - 2(4+a)(4-a)\cos 60^\circ = 16+3a^2 = 40$, 从而 $c^2 = 10$, 故 $b^2 = c^2 - a^2 = 2$,

所以双曲线 *E* 的方程为 $\frac{x^2}{8} - \frac{y^2}{2} = 1$.

【反思】本题对角平分线的翻译与上一题不一样,为什么?因为本题已知顶角,就可用解三角形中的等面积法构造方程,所以解析几何难题常与解三角形结合.

《一数•高考数学核心方法》