Exact simulation scheme for the Ornstein–Uhlenbeck driven stochastic volatility (OUSV) model with the Karhunen–Loève (KL) expansions
Applied Stochastic Processes (FIN 514)

Jaehyuk CHOI

Peking University HSBC Business School, Shenzhen, China

2023-24 Module 3 (Spring 2024)

Ornstein-Uhlenbeck driven stochastic volatiliy (OUSV) model

$$\frac{dS_t}{S_t} = rdt + \sigma_t dW_t \quad \text{and} \quad d\sigma_t = \kappa(\theta - \sigma_t) dt + \xi dZ_t,$$

where W_t and Z_t are the standard BMs correlated by ρ , κ is the mean reversion speed, ξ is the volatility of volatility (vol-of-vol), and θ is the long-term volatility.

- Volatility σ_t is driven by the Ornstein–Uhlenbeck (OU) process.
- One of the earliest stochastic volatility (SV) models: Uncorrelated OUSV (Stein and Stein, 1991)
 v.s. Hull and White (1987) and Heston (1993) models.
- Vanilla option can be efficiently priced with inverse Fourier transform (Schöbel and Zhu, 1999).
- Efficient and accurate Monte–Carlo (MC) simulation (i.e., sampling S_T) under the OUSV model is recently studied.

Introduction: Exact simulation

Exact simulation for various SV models

- Heston (1993) model: Broadie and Kaya (2006) and Glasserman and Kim (2011, Gamma RV series)
- 3/2 volatility model: Baldeaux (2012)
- Stochastic-alpha-beta-rho (SABR): Cai et al. (2017), Choi et al. (2019, $\beta=0$ SABR), and Cui et al. (2021, CTMC)
- OUSV model: Li and Wu (2019)
- ullet Directly sample S_T from S_0 for any time step T without time-discretization.
- Avoid possible discretization bias from the Euler/Milstein scheme.
- Typical procedures:
 - **1** Sample terminal volatility σ_T from a known distribution (SDE)
 - $oldsymbol{\circ}$ Sample integrated variance $V_{0,T}$ by numerically inverting its Laplace transform.
 - **3** Sample price S_T from a log-normal distribution.
- Heavy computation cost from the numerical inversion, step (2).
 Not necessarily more efficient than the simple Euler/Milstein scheme.

Contribution summary

Existing studies

- Li and Wu (2019, EJOR) propose the first exact simulation scheme for the OUSV model.
- As in other exact simulation schemes, Li and Wu (2019) suffer from costly numerical inversion.

Contribution of this study

- Using the Karhunen–Loève (KL) expansions, the volatility path (σ_t , OU process) is expressed as the infinite sine series.
- The time integrals of σ_t and σ_t^2 are analytically derived as the sum of independent normal variates.
- \bullet Only $N \leq 10$ sine terms required after handling the truncation error.
- The new simulation is several hundred times faster than Li and Wu (2019) by avoiding the transform inversion approach.

The average volatility $(U_{0,T})$ and variance $(V_{0,T})$

• Define the time averages of volatility and variance, respectively:

$$egin{aligned} oldsymbol{U_{0,T}} &= rac{1}{T} \int_0^T \sigma_t \, dt \quad ext{and} \quad oldsymbol{V_{0,T}} &= rac{1}{T} \int_0^T \sigma_t^2 \, dt. \end{aligned}$$

• The final price, S_T , conditional on $(\sigma_T, U_{0,T}, V_{0,T})$, follows a log-normal distribution (Li and Wu, 2019, Proposition 1):

$$\begin{split} \log(S_T/S_0) &= \mu_{0,T} + \Sigma_{0,T} Z \quad (Z: \text{standard normal}), \\ \mu_{0,T} &= rT + \frac{\rho}{2\xi} \left[\left(-\xi^2 - 2\kappa\theta U_{0,T} + \left(2\kappa - \xi/\rho \right) V_{0,T} \right) T + (\sigma_T^2 - \sigma_0^2) \right] \\ \Sigma_{0,T}^2 &= \rho_*^2 T V_{0,T} \quad (\rho_* = \sqrt{1-\rho^2}). \end{split}$$

Li and Wu (2019)'s sampling

- \bullet $(\sigma_T, U_{0,T})$ from a bi-variate normal distribution.
- ② $V_{0,T}$ from the inverse transform of $V_{0,T}$ conditional on $(\sigma_T, U_{0,T})$.

Derivation

- Let $U_{0,T}=rac{1}{T}\int_0^T\sigma_t\,dt$ and $V_{0,T}=rac{1}{T}\int_0^T\sigma_t^2\,dt.$
- Derive SDE for σ_t^2 :

$$d\sigma_t = \kappa(\theta - \sigma_t)dt + \xi dZ_t.$$

$$d\sigma_t^2 = 2\sigma_t d\sigma_t + (d\sigma_t)^2 = (\xi^2 + 2\kappa(\theta\sigma_t - \sigma_t^2))dt + 2\xi\sigma_t dZ_t$$

$$\sigma_T^2 - \sigma_0^2 = \xi^2 T + 2\kappa T(\theta U_{0,T} - V_{0,T}) + 2\xi \int_0^T \sigma_t dZ_t$$

• Stochastic integral of σ_t :

$$\int_0^T \sigma_t dZ_t = \frac{1}{2\xi} (\sigma_T^2 - \sigma_0^2) - T \left(\frac{\xi}{2} + \frac{\kappa \theta}{\xi} U_{0,T} - \frac{\kappa}{\xi} V_{0,T} \right)$$

• S_T is expressed by σ_T and $V_{0,T}$!

$$\log\left(\frac{S_T}{S_0}\right) = \rho \int_0^T \sigma_t dZ_t + \rho_* \int_0^T \sigma_t dX_t - \frac{1}{2} T V_{0,T}$$
$$= \rho \left[\cdots\right] - \frac{1}{2} T V_{0,T} + \rho_* \sqrt{T V_{0,T}} Z$$

Sampling the terminal volatility

• Define the centered (de-meaned) OU process $\hat{\sigma}_T$:

$$\hat{\sigma}_T = \sigma_T - \underbrace{\theta - (\sigma_0 - \theta)e^{-\kappa T}}_{E(\sigma_T)} = \xi e^{-\kappa T} \int_0^T e^{\kappa t} dZ_t \quad (\hat{\sigma}_0 = 0),$$

ullet $\hat{\sigma}_T$ follows a Gaussian process with zero mean and the covariance given by

$$\operatorname{Cov}(\hat{\sigma}_t, \hat{\sigma}_T) = \frac{\xi^2}{2\kappa} \left(e^{-\kappa(T-t)} - e^{-\kappa(T+t)} \right) = \xi^2 \frac{\sinh(\kappa t)}{\kappa e^{\kappa T}} \quad \text{for} \quad 0 \leq t \leq T.$$

ullet $\hat{\sigma}_T$ can be sampled by

$$\hat{\sigma}_T \stackrel{d}{=} \xi \sqrt{rac{\sinh(\kappa T)}{\kappa e^{\kappa T}}} \, Z_0 \quad \text{for} \quad Z_0 \sim N(0, 1).$$

Auxiliary processes (1/2)

• Remove the long-term volatility θ :

$$\bar{\sigma}_t = \sigma_t - \theta, \quad \bar{U}_{0,T} = \frac{1}{T} \int_0^T \bar{\sigma}_t \, dt \quad \text{and} \quad \bar{V}_{0,T} = \frac{1}{T} \int_0^T \bar{\sigma}_t^2 \, dt.$$

• The process $\bar{\sigma}_t$ satisfies a simpler form of the OU process:

$$d\bar{\sigma}_t = -\kappa \bar{\sigma}_t dt + \xi dZ_t \quad (\bar{\sigma}_0 = \sigma_0 - \theta).$$

• Its solution is well-known as

$$\bar{\sigma}_T = \bar{\sigma}_0 e^{-\kappa T} + \xi e^{-\kappa T} \int_0^T e^{\kappa t} dZ_t.$$

• The introduction of $(\bar{\sigma}_T, \bar{U}_{0,T}, \bar{V}_{0,T})$ will simplify algebra. The original triplets $(\sigma_T, U_{0,T}, V_{0,T})$ and the new triplet $(\bar{\sigma}_T, \bar{U}_{0,T}, \bar{V}_{0,T})$ are interchangeable by

$$\sigma_T = \theta + \bar{\sigma}_T, \quad U_{0,T} = \theta + \bar{U}_{0,T}, \quad \text{and} \quad V_{0,T} = \theta^2 + 2\theta \bar{U}_{0,T} + \bar{V}_{0,T}.$$

Auxiliary processes (2/2)

ullet Define the centered OU process $\hat{\sigma}_T$ by removing its mean from $\bar{\sigma}_T$,

$$\hat{\sigma}_T = \bar{\sigma}_T - \bar{\sigma}_0 e^{-\kappa T} = \xi e^{-\kappa T} \int_0^T e^{\kappa t} dZ_t \quad (\hat{\sigma}_0 = 0).$$

ullet $\hat{\sigma}_T$ is a Gaussian process with zero mean and the covariance given by

$$\operatorname{Cov}(\hat{\sigma}_t, \hat{\sigma}_T) = \frac{\xi^2}{2\kappa} \left(e^{-\kappa(T-t)} - e^{-\kappa(T+t)} \right) \quad \text{for} \quad 0 \leq t \leq T.$$

• The terminal value $\hat{\sigma}_T$ can be sampled by

$$\hat{\sigma}_T \sim \xi \sqrt{\frac{1-e^{-2\kappa T}}{2\kappa}} \, Z_0 = \xi \sqrt{T\phi(2\kappa T)} \, Z_0,$$
 where $Z_0 \sim N(0,1)$ and $\phi(x) = \frac{1-e^{-x}}{x} \quad (\phi(0)=1).$

• $\hat{\sigma}_T$ is interchangeably used with σ_T or $\bar{\sigma}_T$:

$$\sigma_T - \theta = \bar{\sigma}_T = \hat{\sigma}_T + \bar{\sigma}_0 e^{-\kappa T}$$
.

The KL expansion of the OU bridge

• Given $\hat{\sigma}_T$, construct the OU bridge process, B_t , of $\hat{\sigma}_t$ for $0 \le t \le T$:

$$B_t = \hat{\sigma}_t - \frac{\mathsf{Cov}(\hat{\sigma}_t, \hat{\sigma}_T)}{\mathsf{Cov}(\hat{\sigma}_T, \hat{\sigma}_T)} \hat{\sigma}_T = \hat{\sigma}_t - \frac{\sinh(\kappa t)}{\sinh(\kappa T)} \hat{\sigma}_T \quad (B_0 = B_T = 0).$$

• The OU bridge can be decomposed into the KL expansions (Daniluk and Muchorski, 2016, Theorem 2.3)

$$B_t = \xi \sum_{n=1}^{\infty} a_n \sqrt{T} \sin\left(\frac{n\pi t}{T}\right) Z_n$$
 for $a_n = \sqrt{\frac{2}{(\kappa T)^2 + (n\pi)^2}}$,

where $Z_n \sim N(0,1) \ i.i.d.$

- Effectively, **KL** expansions are the **PCA** on B_t (∞ -dimensional data).
- When $\kappa=0$, the expansions are nested to the KL expansions of the Brownian bridge, $a_n=\sqrt{2}/(n\pi)$.
- Finally, the volatility (i.e., OU process) path is represented by

$$\bar{\sigma}_t = \bar{\sigma}_0 e^{-\kappa t} + \hat{\sigma}_T \frac{\sinh(\kappa t)}{\sinh(\kappa T)} + \xi \sqrt{T} \sum_{n=1}^{\infty} a_n \sin\left(\frac{n\pi t}{T}\right) Z_n \quad (0 \le t \le T).$$

Illustration of σ_t paths from the KL expansions

Three sample volatility (OU process) paths generated by KL expansions with increasing $N=0,\,2,\,\cdots$, 64 sine terms for

$$\sigma_0 = \theta = \xi = 0.2$$
, and $\kappa = 1$.

Jaehyuk Choi (PHBS)

Exact simulation scheme

 $ar{U}_{0,T}$ and $ar{V}_{0,T}$ are analytically integrated to,

$$\bar{U}_{0,T} = \underbrace{\left[\bar{\sigma}_0 + \frac{\hat{\sigma}_T}{1 + e^{-\kappa T}}\right] \phi(\kappa T)}_{:=E(\bar{U}_{0,T} \mid \hat{\sigma}_T)} + 2\xi \sqrt{T} \sum_{\substack{n=1 \\ n: \text{ odd}}}^{\infty} \frac{a_n}{n\pi} Z_n,$$

$$\bar{V}_{0,T} = \bar{\sigma}_0^2 \phi(2\kappa T) + \hat{\sigma}_T^2 \frac{\sinh(2\kappa T) - 2\kappa T}{4\kappa T \sinh^2(\kappa T)} + \frac{\xi^2}{2\kappa} \left[\coth(\kappa T) - \frac{1}{\kappa T} \right] + \bar{\sigma}_0 \hat{\sigma}_T \frac{e^{-\kappa T}}{\kappa T} \left[\frac{1}{\phi(2\kappa T)} - 1 \right]$$

$$:= E(\bar{V}_{0,T} \mid \hat{\sigma}_T)$$

$$+ \xi \sqrt{T} \left[\bar{\sigma}_0 \sum_{n=1}^{\infty} n\pi \, a_n^3 Z_n + \bar{\sigma}_T \sum_{n=1}^{\infty} (-1)^{n-1} n\pi \, a_n^3 Z_n \right] + \frac{\xi^2 T}{2} \sum_{n=1}^{\infty} a_n^2 (Z_n^2 - 1).$$

$$\bar{U}_{0,T} = \underbrace{\left[\bar{\sigma}_0 + \frac{\hat{\sigma}_T}{1 + e^{-\kappa T}}\right] \phi(\kappa T)}_{:=E(\bar{U}_{0,T} \mid \hat{\sigma}_T)} + 2\xi \sqrt{T} \sum_{\substack{n=1\\n: \text{ odd}}}^L \frac{a_n}{n\pi} Z_n,$$

$$\bar{V}_{0,T} = \underline{\bar{\sigma}_0^2 \, \phi(2\kappa T) + \hat{\sigma}_T^2 \frac{\sinh(2\kappa T) - 2\kappa T}{4\kappa T \sinh^2(\kappa T)} + \underbrace{\frac{\xi^2}{2\kappa} \left[\coth(\kappa T) - \frac{1}{\kappa T} \right] + \bar{\sigma}_0 \hat{\sigma}_T \frac{e^{-\kappa T}}{\kappa T} \left[\frac{1}{\phi(2\kappa T)} - 1 \right]}_{:=E(\bar{V}_{0,T} \mid \hat{\sigma}_T)}$$

$$+ \xi \sqrt{T} \left[\bar{\sigma}_0 \sum_{n=1}^{L} n \pi \, a_n^3 Z_n + \bar{\sigma}_T \sum_{n=1}^{L} (-1)^{n-1} n \pi \, a_n^3 Z_n \right] + \frac{\xi^2 T}{2} \sum_{n=1}^{L} a_n^2 (Z_n^2 - 1).$$

Jaehyuk Choi (PHBS)

ASP: OUSV Model Simulation

Truncated terms (1/3)

We also need to simulate the truncated terms in $\bar{U}_{0,T}$ and $\bar{V}_{0,T}$:

$$G_L = \sum_{\substack{n=L+1\\ n \text{ odd}}}^{\infty} \frac{a_n}{n\pi} Z_n, \quad P_L = \sum_{\substack{n=L+1\\ n \text{ odd}}}^{\infty} n\pi \, a_n^3 Z_n, \quad Q_L = \sum_{\substack{n=L+1\\ n \text{ even}}}^{\infty} n\pi \, a_n^3 Z_n.$$

ullet G_L , P_L , and Q_L follow a multivariate normal distribution with

$$\mu=0, \quad \Sigma=\begin{pmatrix} f_L^{\rm odd} & c_L^{\rm odd} & 0\\ c_L^{\rm odd} & g_L^{\rm odd} & 0\\ 0 & 0 & g_L^{\rm even} \end{pmatrix},$$

where

$$c_L = \sum_{n=L+1}^{\infty} a_n^4, \ f_L = \sum_{n=L+1}^{\infty} \frac{a_n^2}{(n\pi)^2}, \ g_L = \sum_{n=L+1}^{\infty} (n\pi)^2 a_n^6.$$

and odd and even superscripts are defined by

$$c_L^{\mathsf{odd}} = \sum_{\substack{n = L+1 \\ n \; \mathsf{odd}}}^{\infty} a_n^4 \quad \mathsf{and} \quad c_L^{\mathsf{even}} = \sum_{\substack{n = L+1 \\ n \; \mathsf{even}}}^{\infty} a_n^4.$$

Truncated terms (2/3)

• We can exactly sample G_L , P_L , and Q_L :

$$\begin{split} G_L = \sqrt{f_L^{\rm odd}} \, \left(\sqrt{1 - \rho_{GP}^2} \, W_1 + \rho_{GP} \, W_2 \right) \quad \text{with} \quad \rho_{GP} = c_L^{\rm odd} \big/ \sqrt{f_L^{\rm odd}} \, g_L^{\rm odd} \; , \\ P_L = \sqrt{g_L^{\rm odd}} \, W_2 \quad \text{and} \quad Q_L = \sqrt{g_L^{\rm even}} \, W_3, \end{split}$$

where W_1 , W_2 , and W_3 are independent normal random variates.

ullet Even more, the infinite sums have analytic expressions: for $\lambda=\kappa T$,

$$\begin{split} c_0 &= \frac{1}{\lambda^4} \left(\frac{\lambda}{\tanh(\lambda)} + \frac{\lambda^2}{\sinh(\lambda)^2} - 2 \right), \\ f_0 &= \frac{b_0(0) - b_0(\lambda)}{\lambda^2}, \quad \text{and} \quad g_0(\lambda) = 2c_0 - \lambda^2 d_0. \end{split}$$

• No approximation so far.

Truncated terms (3/3)

$$R_L = \sum_{n=L+1}^{\infty} a_n^2 (Z_n^2 - 1) \approx \sqrt{c_L} (W_4^2 - 1)$$

ullet Mean and variance of R_L are

$$E(R_L) = 0 \quad \text{and} \quad \mathsf{Var}(R_L) = 2c_L = 2 \textstyle \sum_{n=L+1}^\infty a_n^4.$$

- ullet Not independent from, but zero-correlation with G_L , P_L , and Q_L .
- ullet W_4 is a normal variate independent from W_1 , W_2 , and W_3 .
- ullet Approximation of R_L is the only source of error.

Exact MC procedure

The procedure for simulating $\bar{\sigma}_T$, $\bar{U}_{0,T}$, and $\bar{V}_{0,T}$

$$\begin{split} \bar{\sigma}_T = & \bar{\sigma}_0 e^{-\kappa T} + \hat{\sigma}_T \quad \text{where} \quad \hat{\sigma}_T = \xi \sqrt{T\phi(2\kappa T)} \, Z_0, \\ \bar{U}_{0,T} = & E(\bar{U}_{0,T} \, | \, \hat{\sigma}_T) + 2\xi \sqrt{T} \left(\sum_{\substack{n=1\\n: \text{ odd}}}^L \frac{a_n}{n\pi} Z_n + G_L \right), \\ \bar{V}_{0,T} \approx & E(\bar{V}_{0,T} | \hat{\sigma}_T) + \xi \sqrt{T} \left[\bar{\sigma}_0 \left(\sum_{n=1}^L n\pi \, a_n^3 Z_n + P_L + Q_L \right) \right. \\ \left. + \bar{\sigma}_T \left(\sum_{n=1}^L (-1)^{n-1} n\pi \, a_n^3 Z_n + P_L - Q_L \right) \right] + \frac{\xi^2 T}{2} \left(\sum_{n=1}^L a_n^2 (Z_n^2 - 1) + R_L \right), \end{split}$$

- We use L+5 ($Z_0, \cdots, Z_L, W_1, W_2, W_3, W_4$) independent normal variates for simulating from t=0 to T.
- ullet R_T is the only source of approximation error.

Numerical test

- We test the new MC scheme against the spot and vanilla option prices as non-trivial examples.
- Exact option values are available from the inverse Fourier transform (Schöbel and Zhu, 1999).

Parameter set to test

• For direct comparison, we test the parameter set from Li and Wu (2019, Table 2):

$$S_0=K=100, \ \sigma_0=\theta=0.2, \ \kappa=4, \ \xi=0.1, \ \rho=-0.7, \ {\rm and} \ r=0.09531,$$

$$T=1, \quad 5, \quad {\rm and} \quad 10$$

ullet As in Fourier series, we expect more sine terms (L) is required for bigger T.

MC variance reduction

Conditional MC (Willard, 1997)

Instead of sampling S_T , MC-average conditional BS price over $(\sigma_T, U_{0,T}, V_{0,T})$:

$$\begin{split} C_{\mathsf{OUSV}} &= E_{\mathsf{MC}} \left\{ \left. C_{\mathsf{BS}} \Big(K, F_T, \, \rho_* \sqrt{V_{0,T}} \Big) \right. \right\}, \quad \mathsf{where} \\ F_T &= E \{ S_T \, | \, {\color{red}\sigma_T}, {\color{blue}U_{0,T}}, {\color{blue}V_{0,T}} \} = S_0 \exp \left(\mu_{0,T} + \Sigma_{0,T}^2 / 2 \right) \\ &= S_0 \exp \left(rT + \frac{\rho}{2\xi} \left[\left(-\xi^2 - 2\kappa\theta {\color{blue}U_{0,T}} + \left(2\kappa - \rho\xi \right) {\color{blue}V_{0,T}} \right) T + \left({\color{blue}\sigma_T}^2 - \sigma_0^2 \right) \right] \right). \end{split}$$

- Cai et al. (2017) reports 99% variance reduction (in the SABR model).
- With the reduced variance, we aim to measure the bias accurately.

Martingale-correcting control variate

Because $S_0 = e^{-rT} E_{MC} \{F_T\}$, correct F_T by

$$F_T^{\text{cv}} = \mu F_T$$
 for $\mu = S_0 e^{rT} / E_{\text{MC}} \{F_T\}$.

Numerical results: T=1

Table: The simulation result for T=1. "Spot Price" and "Option Price" evaluate \bar{S}_T and C_{OUSV} , respectively. "Option Price with CV" uses the control variate \bar{S}_T^{CV} . The true option price is 13.21492.

	n_{path}	Spot Price		Option Price		Option Price with CV		
N	(number	Bias	RMSE	Bias	RMSE	Bias	RMSE	CPU Time
	of paths)	$\times 10^{-4}$	$\times 10^{-2}$	$\times 10^{-4}$	$\times 10^{-2}$	$\times 10^{-4}$	$\times 10^{-2}$	(Seconds)
2	10,000	0.3	1.74	-0.4	4.04	-0.7	3.48	0.006
	40,000	0.3	0.87	-0.4	2.33	-0.6	1.74	0.024
	160,000	0.3	0.44	-0.4	1.17	-0.6	0.88	0.096
4	10,000	-0.2	1.73	-0.9	4.03	-0.7	3.47	0.008
	40,000	-0.2	0.87	-0.9	2.33	-0.7	1.74	0.028
	160,000	-0.2	0.44	-0.9	1.17	-0.7	0.87	0.109
6	10,000	-0.2	1.74	-0.4	4.04	-0.3	3.48	0.008
	40,000	-0.2	0.87	-0.4	2.33	-0.2	1.74	0.030
	160,000	-0.2	0.44	-0.4	1.17	-0.2	0.87	0.122

Numerical results: T=5

Table: The simulation result for T=5. "Spot Price" and "Option Price" evaluate \bar{S}_T and C_{OUSV} , respectively. "Option Price with CV" uses the control variate \bar{S}_T^{CV} . The true option price is 40.797689.

	n_{path}	Spot Price		Option Price		Option Price with CV		
N	(number	Bias	RMSE	Bias	RMSE	Bias	RMSE	CPU Time
	of paths)	$\times 10^{-4}$	$\times 10^{-2}$	$\times 10^{-4}$	$\times 10^{-2}$	$\times 10^{-4}$	$\times 10^{-2}$	(Seconds)
4	10,000	19.7	9.56	10.7	12.13	-6.8	4.11	0.006
	40,000	19.7	4.78	10.7	6.35	-6.9	2.06	0.026
	160,000	19.7	2.41	10.7	3.19	-7.0	1.04	0.103
6	10,000	5.4	9.57	3.4	12.13	-1.2	4.12	0.007
	40,000	5.4	4.79	3.4	6.37	-1.4	2.06	0.028
	160,000	5.4	2.39	3.4	3.18	-1.4	1.03	0.110
8	10,000	-0.2	9.54	-1.2	12.11	-0.7	4.11	0.007
	40,000	-0.2	4.76	-1.2	6.33	-0.9	2.05	0.028
	160,000	-0.2	2.37	-1.2	3.15	-0.9	1.02	0.111

Numerical results: T = 10

Table: The simulation result for T=10. "Spot Price" and "Option Price" evaluate \bar{S}_T and C_{OUSV} , respectively. "Option Price with CV" uses the control variate \bar{S}_T^{CV} . The true option price is 62.76312.

	n_{path}	Spot Price		Option Price		Option Price with CV		
N	(number	Bias	RMSE	Bias	RMSE	Bias	RMSE	CPU Time
	of paths)	$\times 10^{-4}$	$\times 10^{-2}$	$\times 10^{-4}$	$\times 10^{-2}$	$\times 10^{-4}$	$\times 10^{-2}$	(Seconds)
6	10,000	19.3	19.14	16.8	20.68	-1.3	2.65	0.007
	40,000	19.3	9.59	16.8	10.56	-1.6	1.33	0.028
	160,000	19.3	4.78	16.8	5.27	-1.7	0.66	0.111
8	10,000	-1.5	19.06	-1.9	20.63	0.0	2.64	0.007
	40,000	-1.5	9.50	-1.9	10.47	-0.3	1.32	0.029
	160,000	-1.5	4.73	-1.9	5.20	-0.4	0.65	0.117
10	10,000	-4.6	19.10	-4.5	20.65	0.5	2.65	0.008
	40,000	-4.6	9.57	-4.5	10.54	0.2	1.33	0.033
	160,000	-4.6	4.82	-4.5	5.31	0.1	0.67	0.132

Conclusion

Contribution of this study

- Using the Karhunen–Loève (KL) expansions, the volatility path (OU process) is expressed as the infinite sine series.
- The time integrals of σ_t and σ_t^2 are analytically derived as the sum of independent normal variates.
- Only $L \leq 10$ sine terms required after handling the truncation error.
- The new simulation is **several hundred times faster than** Li and Wu (2019) by avoiding the transform inversion approach.

References I

- Baldeaux, J., 2012. Exact simulation of the 3/2 model. International Journal of Theoretical and Applied Finance 15, 1250032. doi:10.1142/S021902491250032X.
- Broadie, M., Kaya, Ö., 2006. Exact simulation of stochastic volatility and other affine jump diffusion processes. Operations Research 54, 217–231. doi:10.1287/opre.1050.0247.
- Cai, N., Song, Y., Chen, N., 2017. Exact simulation of the SABR model. Operations Research 65, 931–951. doi:10.1287/opre.2017.1617.
- Choi, J., Liu, C., Seo, B.K., 2019. Hyperbolic normal stochastic volatility model. Journal of Futures Markets 39, 186–204. doi:10.1002/fut.21967.
- Cui, Z., Kirkby, J.L., Nguyen, D., 2021. Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations. European Journal of Operational Research 290, 1046–1062. doi:10.1016/j.ejor.2020.09.008.
- Daniluk, A., Muchorski, R., 2016. Approximations of bond and swaption prices In a Black–Karasiński model. International Journal of Theoretical and Applied Finance 19, 1650017. doi:10.1142/S0219024916500175, arXiv:1506.00697.
- Glasserman, P., Kim, K.K., 2011. Gamma expansion of the Heston stochastic volatility model. Finance and Stochastics 15, 267–296. doi:10.1007/s00780-009-0115-y.
- Heston, S.L., 1993. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies 6, 327–343. doi:10.1093/rfs/6.2.327.
- Hull, J., White, A., 1987. The Pricing of Options on Assets with Stochastic Volatilities. The Journal of Finance 42, 281–300. doi:10.1111/j.1540-6261.1987.tb02568.x.
- Li, C., Wu, L., 2019. Exact simulation of the Ornstein-Uhlenbeck driven stochastic volatility model. European Journal of Operational Research 275, 768-779. doi:10.1016/j.ejor.2018.11.057.

References II

- Schöbel, R., Zhu, J., 1999. Stochastic volatility with an Ornstein-Uhlenbeck process: An extension. Review of Finance 3, 23–46. doi:10.1023/A:1009803506170.
- Stein, E.M., Stein, J.C., 1991. Stock price distributions with stochastic volatility: An analytic approach. The Review of Financial Studies 4, 727–752. doi:10.1093/rfs/4.4.727.
- Willard, G.A., 1997. Calculating prices and sensitivities for path-independent derivatives securities in multifactor models. Journal of Derivatives 5, 45–61. doi:10.3905/jod.1997.407982.