LAB 3 MATLAB

Esercizio 1

L'obiettivo di questo esercizio è quello di calcolare gli autovalori di due matrici in due modi diversi e confrontare gli output risultanti.

Come indicato dal testo partiamo calcolando n usando la formula:

$$n = 10(d_1 + 1) + d_0$$

 $d_1 \ e \ d_0 \ sono \ dati \ dalla \ penultima \ e \ ultima \ cifra \ della \ matricola$

La matrice A viene calcolata come indicata dal testo in questo modo:

$$A = diag(ones(1, n-1), 1) + eye(n)$$

Calcoliamo E e B in questo modo:

Creiamo la matrice E pari a 0 di dimensioni $n \times n$. Questa matrice è destinata a rappresentare la perturbazione rispetto alla matrice A.

Inseriamo la perturbazione con il comando $E(n, 1) = 2^{-(-n)}$. Infine sommiamo le matrici come richiesto dal testo.

Parte a

Per quanto riguarda gli autovalori usiamo la funzione eig di matlab.

Una volta generati gli autovalori dobbiamo confrontarli in questi due modi:

- Confronto puntuale
- Confronto in norma

A livello di codice è il seguente:

```
% Confronta con norma
norma1 = norm(B - A) / norm(A); %
norma2 = norm(VB - VA) / norm(VA)
```

L'output del confronto puntuale è:

La differenza puntuale calcolata tra gli autovalori di A e B risulta costante e pari a 0.5 per ogni componente. Questo accade perché la matrice E, che introduce una piccola perturbazione in A, modifica tutti gli autovalori in modo uniforme a causa della struttura regolare di A.

Per quanto riguarda l'output della norma1 abbiamo ottenuto **2.913402281235099e-11** mentre l'output della norma2 è **0.500000000000000.** La norma1 misura quanto la matrice perturbata B differisce dalla matrice originale A in termini relativi. L'output ottenuto infatti è molto piccolo ed indica che la perturbazione introdotta da E ha avuto un effetto poco rilevante sull'intera matrice B. Mentre per la norma2 l'output 0.5 indica che nonostante la perturbazione E sia piccola, il cambiamento è stato sufficiente a modificare proporzionalmente tutti gli autovalori in modo uniforme.

Parte b

Ripetiamo l'esercizio per A^tA e B^tB .

L'output del confronto puntuale è:

La differenza puntuale tra gli autovalori di A^tA e B^tB è estremamente piccola. La perturbazione introdotta da E è trascurabile sul prodotto matriciale rispetto alla matrice di partenza, e i valori decrescono progressivamente, mostrando un impatto maggiore sugli autovalori più grandi.

Per quanto riguarda l'output della norma3 abbiamo ottenuto **1.458212324478072e-11** mentre l'output della norma2 è **1.404970982458071e-12**. L'output della norma3 indica che l'effetto della perturbazione introdotta da E è estremamente piccolo anche a livello del prodotto matriciale A^tA rispetto alla sua norma. Questo risultato conferma che il prodotto matriciale A^tA è molto stabile rispetto alla perturbazione.

Mentre l'output della norma4 è ancora più piccolo rispetto alla norma3, evidenziando che la perturbazione ha un effetto praticamente trascurabile sugli autovalori del prodotto matriciale. Gli autovalori di A^tA sono molto stabili rispetto a piccole perturbazioni.

Esercizio 2

Generiamo A manualmente. La diagonale D viene costruita tramite la formula fornita dal testo:

$$D = \operatorname{diag}(g_1 \dots g_n)$$

La matrice G è ottenuta moltiplicando A per l'inversa di D:

$$G = A * D^{-1}$$

In matlab per rappresentare la funzioe inversa di D usiamo (D^{-1}).

Gli autovalori e autovettori di G sono stati calcolati utilizzando:

```
% Calcolo degli autovalori e autovettori
[autovettori, autovalori] = eig(G);
```

Output ottenuti

Autovalori di G:

```
0.0000 + 0... 0.0000 + 0...
             0.0000 + 0...
                                                         0.0000 + 0....
                                                                        0.0000 + 0....
                                                                                       0.0000 + 0.
                                                                                                      0.0000 + 0.
                                                                                                                     0.0000 + 0.
                                                                                                                                                      00000
0.0000 + 0... 0.7640 + 0... 0.0000 + 0... 0.0000 + 0... 0.0000 + 0...
                                                                        0.0000 + 0.... 0.0000 + 0.
                                                                                                      0.0000 + 0.
                                                                                                                     0.0000 + 0...
                                                                                                      0.0000 + 0....
0.0000 + 0... 0.0000 + 0... 0.5774 + 0... 0.0000 + 0... 0.0000 + 0... 0.0000 + 0... 0.0000 + 0...
                                                                                                                     0.0000 + 0... 0.0000
0.0000 + 0... \ \ 0.0000 + 0... \ \ 0.0000 + 0... \ \ 0.2241 + 0... \ \ 0.0000 + 0.... \ \ 0.0000 + 0.... \ \ 0.0000 + 0...
                                                                                                      0.0000 + 0....
                                                                                                                     0.0000 + 0... 0.0000.
0.0000 + 0... 0.0000 + 0... 0.0000 + 0... 0.0000 + 0... -0.8824 + 0... 0.0000 + 0... 0.0000 + 0...
                                                                                                      0.0000 + 0..
                                                                                                                     0.0000 + 0... 0.0000.
0.0000 + 0... 0.0000 + 0... 0.0000 + 0... 0.0000 + 0... 0.0000 + 0...
                                                                       -0.7255 + 0... 0.0000 + 0.
                                                                                                      0.0000 + 0.
                                                                                                                     0.0000 + 0...
                                                                                                                                   0.0000
0.0000 + 0... 0.0000 + 0... 0.0000 + 0... 0.0000 + 0... 0.0000 + 0....
                                                                                       -0.5774 + 0...
                                                                                                      0.0000 + 0....
                                                                                                                     0.0000 + 0.
                                                                                                                                   0.0000.
0.0000 + 0... 0.0000 + 0...
                            0.0000 + 0... 0.0000 + 0...
                                                         0.0000 + 0....
                                                                        0.0000 + 0.... 0.0000 + 0....
0.0000 + 0... 0.0000 + 0... 0.0000 + 0... 0.0000 + 0... 0.0000 + 0...
                                                                                                      0.0000 + 0....
                                                                                                                     0.0000 + 0...
                                                                        0.0000 + 0.... 0.0000 + 0...
                                                                                                                                   0.0000
                                                                        0.0000 + 0....
0.0000 + 0... 0.0000 + 0... 0.0000 + 0... 0.0000 + 0... 0.0000 + 0...
                                                                                      0.0000 + 0....
                                                                                                      0.0000 + 0....
                                                                                                                     0.0000 + 0...
                                                                                                                                   3.5724
                                                                                                                                                      0
0.0000 + 0... 0.0000 + 0...
                            0.0000 + 0... 0.0000 + 0...
                                                         0.0000 + 0....
                                                                        0.0000 + 0....
                                                                                       0.0000 + 0.
                                                                                                      0.0000 + 0..
                                                                                                                     0.0000 + 0...
```

Gli autovalori della matrice G confermano le proprietà teoriche attese. Notiamo come il primo autovalore sia uguale ad 1 mentre gli altri hanno modulo minore di 1.

Autovettori di G:

```
0.0441 + 0....
                                                             -0.3307 + 0... 0.1606 + 0.... 0.0000 + 0....
                                                            0.0335 + 0.
                                                                             -0.3382 + 0... -0.0000 + 0...
                              -0.0000 + 0...
                                                             -0.1622 + 0
                                                                             -0.2735 + 0... -0.0000 + 0...
                                                                                                           0.5011 + 0....
                                                                                                                          -0.0087 - 0....
                              -0.2132 + 0.
                                                             -0.1185 + 0...
                                                                            -0.0865 + 0...
                                                                                           -0.2132 + 0...
                                                                                                           -0.0310 + 0.
-0.3062 + 0...
                             0.3693 + 0.
                                                            0.0905 + 0.
                                                                            0.6606 + 0....
                                                                                            -0.3693 + 0...
                                                                                                           -0.0425 + 0.
                                                                                                                          0.0000 + 0....
                                                             -0.0342 + 0
                                                                            -0.3036 + 0.
                                                                                           0.2132 + 0....
                                                                                                                          0.0029 + 0.
                                                                                           -0.3693 + 0...
                             0.3693 + 0.
                                             -0.0378 + 0.
                                                            0.5367 + 0.
                                                                            -0.2842 + 0.
                                                                                                           0.1133 + 0.
                                                                                                                          -0.0000 - 0.
                                                                                                                                          -0.0000 + 0.
                                                                                                                                                         -0.0000 + 0
                             0.2132 + 0.
                                             -0.0562 + 0.
                                                            -0.2028 + 0.
                                                                           0.1306 + 0....
                                                                                           0.2132 + 0..
                                                                                                           -0.0994 + 0
                                                                                                                          -0.1273 + 0.
```

L'autovettore associato all'autovalore λ =1 è dato dalla prima colonna della matrice degli autovettori:

```
x = [-0.6124, -0.1021, -0.2041, -0.3062, -0.4082, -0.3062, -0.1021, -0.3062, -0.1021, -0.3062, -0.1021]^T
```

Questo autovettore deve essere normalizzato per verificare che le sue componenti siano comprese tra 0 e 1:

$$x_{norm} = \frac{x}{\max(x)}$$

Dove:

$$\min(x) = -0.6124$$
$$\max(x) = -0.1021$$

Per verificare che le componenti risultino effettivamente comprese tra 0 e 1 dobbiamo svolgere i calcoli manualmente per ciascuna x, a seguito mettiamo soltato i primi due calcoli effettuati:

Per $x_1 = -0.6124$:

$$x_{norm,1} = \frac{-0.6124}{-0.1021} = 5.99$$

Per $x_2 = -0.1021$:

$$x_{norm,2} = \frac{-0.1021}{-0.1021} = 1.00$$

Il risultato normalizzato è:

$$x_{norm} = [5.99, 1.00, 1.99, 2.99, 3.99, 2.99, 1.00, 2.99, 1.00, 2.99, 1.00]$$

NOTA: per verificare la veridicità dei calcoli elencati qua sopra guardare il codice commentato su matlab (riga 88)

Infine per il terzo punto della parte C notiamo dall'analisi degli autovettori che il corrispondente autovettore ha componenti sia positive che negative.

Per ogni stazione ferroviaria (nodo del grafo), è stata calcolata una stima intuitiva della sua importanza relativa sulla base dell'autovettore normalizzato associato all'autovalore $\lambda = 1$. La tabella seguente riporta le stazioni ferroviarie con la loro rispettiva importanza:

Nodo	Stazione	Importanza relativa (x_{norm})
1	Milano	5.99
2	Pavia	1.00
3	Lodi	1.99
4	Brescia	2.99
5	Bergamo	3.99
6	Como	2.99
7	Varese	1.00
8	Lecco	2.99
9	Sondrio	1.00
10	Cremona	2.99
11	Mantova	1.00

Le stazioni con importanza più alta sono quelle centrali o con molte connessioni, come **Milano**, **Bergamo**, **Brescia**, e **Cremona**. Questa analisi riflette il concetto di centralità

utilizzato nei motori di ricerca, come il <u>PageRank</u>, per determinare la rilevanza dei nodi in un grafo.

Esercizio 3

L'obiettivo di questo esercizio è utilizzare il metodo delle potenze e il metodo delle potenze inverse per stimare gli autovalori dominanti di una matrice data e analizzare il comportamento di convergenza dei due metodi.

Parte a

Per il metodo delle potenze, sono stati scelti due vettori iniziali:

$$v_1 = \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} \quad v_2 = \begin{vmatrix} 3 \\ 10 \\ 4 \end{vmatrix}$$

Il metodo delle potenze converge all'autovalore di massimo modulo, l'algoritmo segue questa scala:

- a) Si riordinano gli autovalori in base al massimo modulo, ottenendo $\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n$ dove λ_1 è l'autovalore di massimo modulo
- b) Converge se $\lambda_1 > \lambda_2$
- c) Si trova la velocità di convergenza con

$$V = (\frac{\lambda_2}{\lambda_1})^k$$

Nel nostro caso gli autovalori riordinati in base al massimo modulo sono:

$$|\lambda_1| = 5$$
, $|\lambda_2| = 3$, $|\lambda_3| = 1$

L'autovalore di massimo modulo è λ_1

Nel nostro caso il punto b è soddisfatto.

La velocità di convergenza è:

$$V = \left(\frac{\lambda_2}{\lambda_1}\right)^k = \left(\frac{3}{5}\right)^k$$

Output ottenuti

■ A	[11.2:-2.0.5:63.6]	3×3	double
■ autovalore 1	5.0000	1x1	double
■ autovalore 2	3.0000	1x1	double
■ autovettore 1	[0.2033:0.6505:0.7318]	3x1	double
■ autovettore 2	[0.1374:0.8242:0.5494]	3x1	double
≡ iter 1	29	1x1	double
≡ iter 2	16	1x1	double
■ max iter	1000	1×1	double
■ tolerance	1.0000e-06	1x1	double
■ v1	[1:1:1]	3x1	double
■ v2	[3:10:4]	3×1	double

Parte b

L'algoritmo del metodo delle potenze inverse segue questa scala:

- a) Dato uno shift p, bisogna trovare l'autovalore più vicino a p (λ_1) ed il secondo più vicino a p (λ_2)
- b) Si calcola:

$$\mu_i = \frac{1}{\lambda_i - p}$$

per ogni lambda

- c) μ_i sarà quello di massimo modulo tra tutti μ calcolati, mentre μ_2 sarà quello subito più piccolo.
- d) La velocità di convergenza si calcola:

$$V = (\frac{\mu_2}{\mu_1})^k$$

Se si hanno due autovalori con lo stesso modulo massimo, allora non converge.

Output ottenuti

 A	[11.2:-2.0.5:63	3x3	double
autovalore 1	5.0000	1x1	double
autovalore 2	3.0000	1x1	double
autovettore 1	[0.2033:0.6505:0	3x1	double
autovettore 2	[0.1374:0.8242:0	3x1	double
autovettore inv	[0.2033:0.6505:0	3x1	double
 iter 1	29	1x1	double
 iter 2	16	1x1	double
 iter inv	40	1x1	double
■ lambda inv	15.0000	1x1	double
max iter	1000	1x1	double
■ mu	10	1x1	double
tolerance	1.0000e-06	1x1	double
<mark> </mark>	[1:1:1]	3x1	double
■ v2	[3:10:4]	3x1	double