Các cấu trúc dữ liệu cơ bản

Giảng viên: Tạ Việt Cường Phòng HMI – Khoa CNTT

Ôn tập

- Đọc thi chup sedudo o de đương ràng iản
- Tính được độ phác tạ tạp chả bản
 - ŚŚĘ XŚĘptere đờợ phác tạ prestêndân
 - 1: 8(N)
 - 2: 8(NlpgN)
 - $\frac{3}{3} \cdot \frac{8(\sqrt{N})}{N}$

 - 4. O(N²) 4. O(N²) 5. O(logN)
- 5. O(logN) Học thuộc 2 thuật toán sắp xếp
- Học thuộc 2 thuật toán sắp xếp
 - \$ § \$ p x pchen chọn
 - Sắp xếp chèn

Bài 5

- Đếm số lần xuất hiện nhiều nhất của 1 số trong dãy số
- Cách đơn giản:
 - Input: N và dãy A[0], A[1],...,A[N-1]
 - Output: Số xuất hiện nhiều nhất và số lần xuất hiện
 - Pseudocode:
 - 1 countmax = 0
 - $2 \quad amax = -1$
 - 3 for i = 0 -> N-1 do
 - 4 count = 1
 - 5 for j = i + 1 -> N-1 do
 - if A[i] == A[j] then
 - 7 count++
 - if (count>countmax)||
 ((count==countmax)&&(A[i]<amax))then</pre>
 - 9 countmax = count, amax = A[i]
 - 10 return amax, countmax

Bài 7

Đếm số lần xuất hiện nhiều nhất của 1 số trong dãy số sắp xếp tăng dần

```
Pseudocode:
   countmax = 1
   amax = A[0]
   for i = 0 \rightarrow N-1 do— i = 0; while i < N-1 do
3
      count = 1
4
      for j = i + 1 -> N-1 do
5
6
           if A[i] == A[j] then
               count++
7
        (**) else break
       if (count>countmax)||
8
   ((count==countmax)&&(A[i]<amax))then
          countmax = count, amax = A[i]
9
       i = j
```

10 return amax, countmax

4

Nội dung tóm tắt

- Mång Easy
 - Array, Vector
 - * 1 chiều, 2 chiều, ...
- Danh sách liên kết Easy
 - Linked-list

- Stack
 Not so difficult
- Queue Not so difficult

Bài toán thực tế

- Bài toán thực tế được biểu diễn dưới dạng các câu truy vấn trên kiểu dữ liệu động
- Ví dụ về một danh sách động:
 - ❖ Bài 5:
 - Xóa A[j] nếu A[i] == A[j]
 - Nhanh hay chậm hơn?
 - Dãy người xếp hàng trả tiền ở quầy siêu thị
 - Có nhiều quầy xếp hàng
 - Người đến trước thì được trả tiền trước
 - Có 1 số lối ra, bạn chọn lối ra nào ?
 - Danh sách bạn bè đang online trên facebook
 - Người được chat gần nhất được đưa lên đầu

Phép toán cơ bản trên cấu trúc dữ liệu

- Cho một cấu trúc dữ liệu (mảng, linkedlist, stack, queue...)
- Một số phép toán cơ bản:
 - Thêm 1 phần tử vào danh sách
 - Xóa 1 phần tử khỏi danh sách
 - Tìm kiếm 1 phần tử trong danh sách
 - Tìm phần tử lớn nhất/nhỏ nhất (tùy trường hợp)

Mảng 1 chiều

- Hai cách:
 - Cách 1: int N; int A[N];
 - Cách 2: vector<int> A;
- Độ phức tạp:
 - Thêm 1 phần tử: O(1)
 - Thêm 1 phần tử vào vị trí k: O(N)
 - Xóa 1 phần tử: O(N)
 - Tìm kiếm 1 phần tử: O(N)
 - Tìm phần tử lớn nhất: O(N)

Làm quen với kiểu dữ liệu tổng quát

- Dữ liệu trên thực tế thường không biểu diễn dưới dạng int
 - Sinhvien: tên, ngày tháng năm sinh, email, ...
 - Gmail
 - Facebook
- Khái niệm về bản ghi (record/struct/class):
 - ID mã số định danh
 - Tập hợp các dữ liệu khác
 - Trong thực tế rất phức tạp
 - Ví dụ: 1 sinh viên thì cần những thông tin gì

Làm quen với kiểu dữ liệu tổng quát

- Để so sánh 2 sinh viên giống nhau:
 - Dùng MSSV
- Để sắp xếp:
 - Phụ thuộc vào điều kiện muốn sắp xếp
 - Theo tên
 - Theo điểm
 - Sử dụng hàm compare(sinhvien1, sinhvien2)
 - Có thể thay đổi mục tiêu bằng cách truy cập vào các giá trị

Mảng 2 chiều

- 2 cách khai báo:
 - datatype A[100][100];
 - vector<vector<datatype> >
 A;
- Bài tập:
 - Cho mảng 2 chiều A(MxN)
 gồm các phần tử giá trị 0 hoặc
 1
 - Tìm hình chữ nhật toàn 0 có diện tích lớn nhất

- Phần tử của danh sách gồm 2 phần
 - Dữ liệu Data (thông tin về sinh viên)
 - Con tro next

Danh sách liên kết: chuỗi các phần tử

Duyệt/in ra cả danh sách

```
ptr = head
while (ptr != null) do
  in ra ptr->data
  ptr = ptr-> next
```

- Tìm kiếm 1 phần tử giá trị là x
 - Thay lệnh in ra = lệnh so sánh

- Thêm vào 1 phần tử tại vị trí thứ k (head = 0)
 - Step 1: Tìm ví trí thứ k
 - Step 2: Tạo phần tử mới có giá trị là data là E
 - Step 3: Thay đổi giá trị con trỏ

Số lượng con trỏ phải thay đổi = ?

Xóa 1 phần tử tại vị trí thứ k

Step 0: Sử dụng 2 con trỏ p0, p1

Step 1: Tìm vị trí thứ k, ở p1 (có p1 = p0->next)

Step 2: Sửa lại p0->next = p1->next

Số lượng con trỏ phải thay đổi = ?

Danh sách liên kết kép

- Giống với danh sách đơn, ngoại trừ
 - Thêm vào 1 con trỏ previous

Danh sách liên kết kép

- Diểm khác biệt
 - Di chuyển theo 2 chiều
- Trade-off: tốn nhiều bộ nhớ để lưu các con trỏ (gấp đôi)
- Độ phức tạp:
 - Tương đương

Bài tập ví dụ: Cẩn thận các trường hợp của input

Cho danh sách liên kết được trỏ bởi con trỏ head như sau:

Viết pseudo-code của insert(X, k): chèn vào vị trí thứ k giá trị X, với vị trí đc trỏ bởi head là vị trí thứ 1

Stack và Queue

- Dữ liệu được lấy ra theo "thời điểm" xuất hiện trong danh sách:
 - Stack: Last in First Out
 - Queue: First In First Out
- 2 phép toán cơ bản:
 - push/enqueue: thêm phần tử vào
 - pop/dequeue: lấy phần tử ra, và trả về giá trị của phần tử đó

Kiểu dữ liệu stack (ngăn xếp)

- Lấy ra phần tử vừa được thêm vào
 - Dùng phổ biến trong cấu trúc tổ chức bộ nhớ của máy tính
- Ví dụ đơn giản: Cài đặt stack bằng mảng Stack mở rộng về hướng

Phép toán	N	Stack	Return
push 1	1	1	
push 2	2	1 2	
push 5	3	1 2 5	
pop	2	1 2	5
push 1	3	121	
pop	2	1 2	1
рор	1	1	2

Kiểu dữ liệu queue (hàng đơi)

- Lấy ra phần tử được thêm vào đầu tiên (sớm nhất)
 - Xép hang
- Ví dụ đơn giản: Cài đặt queue bằng mảng

Queue mở rộng về hướng

Phép toán	N	Queue	Return
push 1	1	1	
push 2	2	1 2	
push 5	3	1 2 5	
pop	2	_ 2 5	1
push 1	3	_ 2 5 1	
pop	2	51	2
pop	1	1	5

Các kiểu bài tập có thể có về queue và stack

- Cài đặt bằng array, linked-list, double linked-list
 - Viết pseudo-code cho các hàm push, pop
 - Xử lí các trường hợp đặc biệt:
 - pop khi stack/queue bị rỗng
- Cho trạng thái stack/queue + dãy các phép toán:
 - In ra stack/queue sau khi thực hiện
 - In ra kết quả của phép toán pop
 - Ví dụ:
 - Stack: [push 2, push 1, pop, push 2, push 3, pop] = 2 2
 - Queue: [push 2, push 1, pop, push 2, push 3, pop] = 2 3

Tổng kết

- Phân biệt:
 - Mång
 - Danh sách liên kết đơn
 - Danh sách liên kết kép
- Phân biệt:
 - Ngăn xếp (Stack)
 - Hàng đợi (Queue)
- Chú ý các trường hợp của input
- Kiểm tra bài thực hành tuần trước ngày mai, yêu cầu các nhóm đi học đầy đủ
- Bài thực hành của lý thuyết hôm nay sẽ được cập nhật và cuối tuần