M16600 Lecture Notes

Section 11.6: Absolute Convergence and the Ratio and Root Tests

■ Section 11.6 textbook exercises, page 782: #1, 2, 3, 4, 5, 7, 8, 9, 11, 14, 25, 26, 27, 31, 33, 35.

DEFINITION OF ABSOLUTE CONVERGENCE. A series $\sum a_n$ is called **absolutely convergent** if the series of absolute values $\sum |a_n|$ is convergent.

Example 1: Test for absolute convergence.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$$
 \Rightarrow Test the convergence of $\sum_{n=1}^{\infty} \frac{|(-1)^{n-1}|}{n^2}$ $=$ $\sum_{n=1}^{\infty} \frac{1}{n^2}$ $=$ $\sum_{n=1}^$

Test the convergence of
$$\sum_{n=1}^{\infty} \frac{|n|}{n} = \sum_{n=1}^{\infty} \frac{|n|}{|n|}$$

$$\stackrel{>}{\sim} \frac{1}{n} \stackrel{?}{\circ} \stackrel{$$

DEFINITION OF CONDITIONAL CONVERGENCE. A series $\sum a_n$ is called *conditionally* convergent if

- it is **not** absolutely convergent, but
- it is convergent.

For example, the series $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n}$ is conditionally convergent because Alternating Series with $b_n = \frac{1}{n} \Rightarrow \lim_{n \to \infty} \frac{1}{n} = 0$ and $\frac{1}{n+1} \leq \frac{1}{n} \Rightarrow 0$ (onvergent By AST9 Sconvergent is convergent

Example 2: Determine whether the series is absolutely convergent or conditionally convergent.

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}+1}$$

For absolute convergence, check the convergence of

$$\sum_{n=1}^{\infty} \left| (-1)^{n-1} \frac{1}{\sqrt{n}+1} \right| = \sum_{n=1}^{\infty} \left| (-1)^{n-1} \right| \left| \frac{1}{\sqrt{n}+1} \right| = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+1}$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+1} \times \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \rightarrow P\text{-series with } P = \frac{1}{2} \Rightarrow \text{diverges}.$$

By LCT, $\frac{1}{2}$ also diverges.

$$\Rightarrow \sum_{n=1}^{\infty} (-i)^{n-1} \frac{1}{\sqrt{n+1}}$$
 is not absolutely Convergent.

Now we want to Check its Convergence

$$b_{n+1} = \frac{1}{\sqrt{n+1}+1} \leq \frac{1}{\sqrt{n+1}} = b_n \Rightarrow (ii)$$
 of AST is true

By AST 9
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n+1}$$
 98 Convergent Wsing $O \neq O$ the given series is cond. Conv.

THEOREM. If a series $\sum a_n$ is absolutely convergent then $\sum a_n$ is convergent.

For example, we know the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ is absolutely convergent from example 1. There-using Alternating Series Tests.

- 1) Absolutely Convergent 2) Conditionally Convergent 3) Divergent.

divergent => not absolutele Convergent.

Example 3: Determine whether the series $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$ is convergent or divergent.

Cosn
$$\Rightarrow$$
 +Ve depending on n and moreover its not alternating
Cannot use Comparison tests.

Cannot use AST

Cannot use AST

$$\frac{2}{N-1} \left| \frac{\cos n}{n^2} \right| = \frac{2}{N-1} \frac{|\cos n|}{n^2} \qquad 0 \le |\cos n| \le |$$

$$|\cos n| \le |\Rightarrow |\cos n| \le \frac{1}{N^2} \Rightarrow \frac{|\cos n|}{n^2} \le \frac{1}{N^2}$$

By CT $\Rightarrow \frac{|\cos n|}{N^2}$ is Convergent.

P-series with P=2

 \Rightarrow Convergent

 \Rightarrow $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$ is absolutely convergent. By the theorem $\sum_{n=1}^{\infty} \frac{\cos n}{n^2}$ is convergent.

The following test is very useful in determining whether a given series is absolutely convergent

THE RATIO TEST. Given $\sum a_n$. First, we compute $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$

- (i) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \text{a number } < 1$, then the series $\sum a_n$ is absolutely convergent (and therefore $\sum a_n$ is convergent).
- (ii) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$ (or $=\infty$), then the series $\sum a_n$ is divergent.
- (iii) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, then the Ratio Test is inconclusive; that is no conclusion can be drawn about the convergence or divergence of $\sum a_n$.

Example 4: Use the Ratio Test to determine whether the series is convergent or divergent

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(n+1)^3 5^n}{3^n}$$
 \Rightarrow $Q_n = (-1)^n \frac{(n+1)^3 5^n}{3^n}$ $\Rightarrow a_{n+1} = (-1)^{n+1} \frac{(n+1)^3 5^{n+1}}{3^n}$ $\frac{a_{n+1}}{a_n} = (-1)^n \frac{(n+1)^3 5^n}{(n+1)^3}$ $\frac{a_{n+1}}{a_n} = (-1)^n \frac{(n+1)^3 5^n}{(n+1)^3}$ $\frac{a_{n+1}}{a_n} = (-1)^n \frac{(n+1)^3 5^n}{(n+1)^3} = (-1)^n \frac{(n+1)^3}{3^n} = (-1)^n \frac$

$$(b) \sum_{n=1}^{\infty} \frac{2^{n-1}}{n!} \Rightarrow Q_{n} = \frac{2^{n-1}}{n!} \Rightarrow Q_{n+1} = \frac{2^{n+1-1}}{(n+1)!} = \frac{2^{n}}{(n+1)!}$$

$$\Rightarrow \frac{Q_{n+1}}{Q_{n}} = \frac{2^{n}}{(n+1)!} \times \frac{n!}{2^{n-1}} = \frac{2^{n}-(n-1)}{(n+1)!} = \frac{2^{n}}{(n+1)!}$$

$$= \frac{2^{n}-(n-1)}{(n+1)!} \times \frac{2^{n}-(n-1)}{(n+1)!} = \frac{2^{n}-(n-1)}{(n+1)!}$$

$$= \frac{2^{n}-(n-1)}{(n+1)!} \times \frac{2^{n}-(n-1)}{(n+1)!} = \frac{2^{n}-(n-1)}{(n+1)!}$$

$$= \frac{2^{n}-(n-1)}{(n+1)!} \times \frac{2^{n}-(n-1)}{(n+1)!} = \frac{2^{n}-(n-1)}{(n+1)!}$$

$$= \frac{2^{n}-(n-1)}{(n+1)!} = \frac{2^{n}-(n-1)}{(n+1)!} = \frac{2^{n}-(n-1)}{(n+1)!}$$

$$= \frac{2^{n}-(n-1)}{(n+1)!} = \frac{2^{n}-(n-1)}{(n+1)!} = \frac{2^{n}-(n-1)}{(n+1)!} = \frac{2^{n}-(n-1)}{(n+1)!}$$

$$= \frac{2^{n}-(n-1)}{(n+1)!} = \frac{2^{n}-(n-1)}{(n+1)!} =$$

=> the given series is absolutely convergent, hence convergent

The following test is convenient to apply when nth powers occur.

THE ROOT TEST. Given $\sum a_n$.

$$\sqrt{|a_n|} = (|a_n|)^n$$

en en

- (i) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \text{a number } < 1$, then the series $\sum a_n$ is absolutely convergent (and therefore $\sum a_n$ is convergent).
- (ii) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} > 1$ (or $=\infty$), then the series $\sum a_n$ is divergent.
- (iii) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, then the Root Test is inconclusive.

Example 5: Test the convergence of the series $\sum_{1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$.

$$\alpha_{n} = \left(\frac{3n+3}{3n+2}\right)^{n} \Rightarrow \sqrt{|\alpha_{n}|} = \left|\frac{3n+3}{3n+2}\right|^{n} \left|\frac{1}{n}\right|$$

$$= \left(\left|\frac{3n+3}{3n+2}\right|\right)^{n} = \left|\frac{3n+3}{3n+2}\right|^{n \times \frac{1}{n}}$$

$$= \left|\frac{3n+3}{3n+2}\right| = \frac{3n+3}{3n+2}$$

 $\lim_{n\to\infty} \sqrt{|a_n|} = \lim_{n\to\infty} \frac{2n+3}{3n+2} = \frac{\infty}{\infty}$ $= \lim_{n\to\infty} \frac{2n}{3n} = \frac{2}{3} < 1$

=) the given series 18 absolutely convergent.