Компьютерный практикум по статистическому анализу данных

Лабораторная работа № 3. Управляющие структуры

Сунгурова Мариян Мухсиновна

Содержание

1	Введение	4
2	Теоретическое введение	5
3	Выполнение лабораторной работы	6
4	Выводы	22
Список литературы		23

Список иллюстраций

3.1	Іримеры. Циклы
3.2	Іримеры. Циклы
3.3	Іримеры. Циклы
3.4	Іримеры. Условия
3.5	Iримеры. Функции
3.6	Іримеры. Функции
3.7	Іримеры. Функции
3.8	Іримеры. Функции
3.9	Вадание 1
3.10	Задание 1
3.11	Вадание 2
3.12	Вадание З
3.13	Вадание 4
3.14	Вадание 5
3.15	Вадание 5
3.16	Вадание 6
3.17	Вадание 7
3.18	Вадание 7
3.19	Вадание 7
	Вадания 8
3.21	Вадания 8
3.22	Вадания 9
	Вадание 10
3.24	Залание 11

1 Введение

Цель работы

Основная цель работы – освоить применение циклов функций и сторонних для Julia пакетов для решения задач линейной алгебры и работы с матрицами.

Задачи

- 1. Используя Jupyter Lab, повторите примеры из раздела 3.2.
- 2. Выполните задания для самостоятельной работы (раздел 3.4).

2 Теоретическое введение

Julia — высокоуровневый свободный язык программирования с динамической типизацией, созданный для математических вычислений.[1]. Эффективен также и для написания программ общего назначения. Синтаксис языка схож с синтаксисом других математических языков, однако имеет некоторые существенные отличия.

Для выполнения заданий была использована официальная документация Julia[2].

3 Выполнение лабораторной работы

Выполним примеры из лабораторной работы для изучения циклов и функций(рис. fig. 3.1 - fig. 3.5)

Рис. 3.1: Примеры. Циклы

Рис. 3.2: Примеры. Циклы

Рис. 3.3: Примеры. Циклы

```
Условные выражения

N = 10

# используем '&&' для реализации операции "AND"

# операция % вычисляет остаток от деления

if (N % 3 == 0) && (N % 5 == 0)

println("FizzBuzz")

elseif N % 3 == 0

println("Fizz")

elseif N % 5 == 0

println("Buzz")

else

println(N)

end

10

x = 5

y = 10
(x > y) ? x : y

11

√ 0.15

10
```

Рис. 3.4: Примеры. Условия

Рис. 3.5: Примеры. Функции

Рис. 3.6: Примеры. Функции

Рис. 3.7: Примеры. Функции

```
f(A)

√ 0.6s

3x3 Matrix{Int64}:
  30
       36
            42
  66
       81
            96
 102 126
          150
   f.(A)
 ✓ 0.0s
3x3 Matrix{Int64}:
 16
    25
         36
     64
         81
 49
```

Рис. 3.8: Примеры. Функции

В первом задании рассмотрим цикл for и создадим словарь, который будет содержать целые числа в качестве ключей и квадраты в качестве их пар-значений(рис. fig. 3.9)

Рис. 3.9: Задание 1

Создадим список с квадратами чисел от 1 до 100:

```
C = [i^2 \text{ for } i \text{ in } 1:100]
 ✓ 0.0s
100-element Vector{Int64}:
      4
      9
     16
     25
     36
    49
    64
    81
   100
  8464
  8649
  8836
  9025
  9216
  9409
  9604
  9801
 10000
```

Рис. 3.10: Задание 1

Во втором задании напишем цикл на определение четности числа при помощи условных операторов

```
2. Hannumre условный оператор, который печагает число, если число чётное, и строку «нечётное», если число нечётное. Перепишите код, используя тернарный оператор.

nm = 18
if (nuxt>=e)
printin(ma)
else
printin(ma)
else
(nuxt2=e) ? num : "Nevernoe"
end
(nuxt2=e) ? num : "Nevernoe"
```

Рис. 3.11: Задание 2

В третьем напишем простую функцию прибавления единицы,

Рис. 3.12: Задание 3

А в четвертом зададим матрицу A, каждый элемент которой увеличивается на единицу по сравнению с предыдущим(рис. fig. 3.13)

Рис. 3.13: Задание 4

Зададим матрицу A, найдем ее куб и изменим столбец(рис. fig. ??)

```
5. Задайте матрицу A следующего вида:

A = (1 1 1 3 5 2 6 -2 -1 -3).

. Найдите A3

. Замените третий столбец матрицы A на сумму второго и третьего сто

A = [1 1 3; 5 2 6; -2 -1 -3]

function cube_f(e1)

e1/3

cube_f.(A)

[80] ∨ 0.05

... Зах Маtrix(Int64):
1 1 27

125 8 216
-8 -1 -27

cube_f(A)

[79] ∨ 0.05

... Зах Маtrix(Int64):
1 0 0
-4 -3 -12
1 1 4
```

Рис. 3.14: Задание 5

Рис. 3.15: Задание 5

Зададим матрицу и умножим её на обратную себе же(рис. fig. 3.16)

Рис. 3.16: Задание 6

При помощи циклов преобразуем матрицы в различные виды(рис. fig. 3.17)

```
Z_1 = \begin{cases} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 &
```

Рис. 3.17: Задание 7

Рис. 3.18: Задание 7

```
Z4 = fill(0, 6, 6)
  for i in 1:6
      for j in 1:6
          if (i + j) % 2 != 1
             Z4[i, j] = 1
          end
      end
   end
   Z4

√ 0.0s

6x6 Matrix{Int64}:
   0
     1 0 1 0
0
   1
      0 1
           0 1
1
  0 1 0 1 0
0
  1 0 1 0 1
  0 1 0 1 0
1
0
   1 0 1 0 1
```

Рис. 3.19: Задание 7

Создадим функцию эквивалентную одноименной функции из языка R(puc. fig. 3.20)

```
B. B stace R cts. $\frac{1}{2}\text{ principle coloring}$ Section (principle of personnel principle of personnel p
```

Рис. 3.20: Задания 8

Рис. 3.21: Задания 8

Решим линейное уравнение в матричном виде в задании 9(рис. fig. 3.22)

Рис. 3.22: Задания 9

В 10 задании произведем анализ количества элементов матрицы, удовлетворяющих необходимым условиям(рис. fig. 3.12)

```
10. Создайте матрицу M размерности 6 × 10; элементами которой вяляются целье числа выбранные случайным образом с повторениями из совокупности 1; 2; ...; 10.

- Найдите число элементов в каждой строке матрицы M; которые больше числа M (например; N = 4).

- Определите, в каких строках матрицыМ-ислом(например; M = 7) встречается ровно 2 раза?

- Определите все пары столбцов матрицы M; сумма элементов которых больше K (например; K = 75).

| N = rand(1:10; 6; 10) |
| II = 4 |
| K = 75 |
| count, N = sum(N, N) |
| printin(count, N) |
| count, N = sum(N, N) |
| printin(count, N) |
| printin(
```

Рис. 3.23: Задание 10

В задании 10 найдем значения двух сумм(рис. fig. 3.12)

```
-\sum_{i=1}^{20}\sum_{j=1}^{5}\frac{i^4}{(3+j)}, -\sum_{i=1}^{20}\sum_{j=1}^{5}\frac{i^4}{(3+ij)}.

11. Вычислите выражения

sum1 = sum(i^4/(3+j) for i=1:20, j=1:5) println(sum1) sum2 = sum(i^4/(3+i*j) for i=1:20, j=1:5) println(sum2)

\checkmark 0.1s

639215.2833333338
89912.02146097131
```

Рис. 3.24: Задание 11

4 Выводы

В результате выполнения данной лабораторной работы были освоены циклы, функции и сторонние для Julia пакеты для решения задач линейной алгебры и работы с матрицами.

Список литературы

- 1. JuliaLang [Электронный ресурс]. 2024 JuliaLang.org contributors. URL: https://julialang.org/ (дата обращения: 11.10.2024).
- 2. Julia 1.11 Documentation [Электронный pecypc]. 2024 JuliaLang.org contributors. URL: https://docs.julialang.org/en/v1/ (дата обращения: 11.10.2024).