Reg. No.:

Name:

Term End Examination (TEE) – January 2021

Programme	:	B.Tech – Computer Science and Engineering	Semester	:	Interim 2020-2021
Course	:	Design and Analysis of Algorithm	Code	:	CSE3004
Faculty	:	Mr. Muneeswaran V	Slot/Class No.	:	B11 / 1045
Time	:	1½ hours	Max. Marks	:	50

Answer all the Questions

Q. No.	Question Description	Marks				
1 (a)	PART - A (3 X 10 = 30 Marks) Show that the Hamiltonian-path problem is NP-complete (OR)					
1 (b)	 i. Construct the possible binary search trees with keys <i>A</i>, <i>B</i>, <i>C</i>, and <i>D</i>. ii. Construct the optimal binary search tree with the following root matrix with P, Q, R, S, T, U keys. 	5				
	01 01 02 02 03 03 02 03 03 04 04 03 03 04 05 04 04 06 05 06	5				
2 (a)	Create a suffix tree for given string $S = \text{``KDFRFRETREK''}$. Find the pattern "FRE" from the suffix tree, and analyze the complexity of this algorithm. (OR)					
2 (b)	Determining whether any pair of segments intersects using Plane sweep algorithm. Explain with relevant pseudo code	10				
3 (a)	Prove that in the procedure $GRAHAM$ - $SCAN$, points p_1 and p_m must be vertices of $CH(Q)$ with the algorithm. Write the relevant pseudo code.	10				
(OR)						
3 (b)	Write an efficient greedy algorithm that finds an optimal vertex cover for the following graph:	10				

PART - B (2 X 10 = 20 Marks)

- Muddy City, where the roads get too muddy to use when it rains. The mayor decided to pave some of the streets, but did not want to spend more money than necessary. Such that everyone can travel from their house to anyone else's house using only paved roads. Find the minimum set cover with the relevant pseudo code for the following:

10

10