FEDERAL AVIATION ADMINISTRATION TECHNICAL CENTER ATL--ETC F/0 1/3 A COMPENDIUM OF LIGHTNING EFFECTS ON FUTURE AIRCRAFT ELECTRONIC--ETC(U) FEB 82 N O RASCH DOT/FAA/CT-82/30 NL AD-A114 117 UNCLASSIFIED

DOT/FAA/CT-82/30

A Compendium of Lightning Effects on Future Aircraft Electronic Systems

Nickolus O. Rasch

February 1982

Compendium

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

US Department of Transportation Federal Aviation Administration

Technical Center Atlantic City Airport, N.J. 08405

A

82 05 00 004

DTIC FILE COP

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

1. Report No.	2. Government Accession No.	Technical Report Documentation F 3. Recipient's Catalog No.
DOT/FAA/CT-82/30 AT	J NAJIHAN	`.
4. Title and Subtitle	7-47777	
4. Little and Subtifle		5. Report Date February 1982
A COMPENDIUM OF LIGHTNING	EFFECTS ON FUTURE AIRCRAFT	6. Performing Organization Code
SYSTEMS		o. Forthing Organization Code
		8. Performing Organization Report No.
7. Author's)		
Nickolus O. Rasc	h	ACT-340
9. Performing Organization Name and Add	ress	10. Work Unit No. (TRAIS)
Federal Aviation Administr Technical Center	acion	
rechnical Center Atlantic City Airport, New	11. Contract or Grant No. 182-340-100	
and to orey arrivate, new	13. Type of Report and Period Covered	
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
U.S. Department of Transpo	rtation	Final
Federal Aviation Administr	ation	November 4-8, 1981
Technical Center		14. Sponsoring Agency Code
Atlantic City Airport, New		
15. Supplementary Notes		
16. Abstract		
Center/FAA Technical Cente	r "Lightning Effects on Futu , at the NASA-Langley Resear	at the NASA-Langley Research re Aircraft Systems Workshop" ch Center Facility. htning research from lighting

17. Key Words Triboelectrification Corona Stepped Leader Tortuous Channel		through the N	nent Vailable to the Ational Technica ngfield, Virgini	1 Information
19. Security Classif. (of this report)	20. Security Clas	sif, (of this page)	21- No. of Pages	22. Price
Unclassified	Uncle	ssified	251	

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

METRIC CONVERSION FACTORS

	i i	.\$.1	e V I	J# J# J	't	8 ቋ	हैं इस हैं के है	•	
c Mossures	T. Fig.	unches	ford ford railes	aquare inches square yards	square miles	ownces pounds short tons	Huid ounces prints quarts gellons cubic feet cubic yands	Fahranheit temperature	28 09 09 09 09 09 09 09 09 09 09 09 09 09
rsiens from Metri	Multiply by	PO.0	. E. C. O. (0.16 1.2	0.4 2.5 MASS {weight}	0.036 2.2 1.3 VOLUME	0.03 2.1 1.06 1.06 35 35	TEMPERATURE (exect) 3/8 (then add 32)	04 - 05 - 05 - 05 - 05 - 05 - 05 - 05 -
Appraximate Conversions from Metric Moasures	When Yes K.ew	millimeters	Contimeters meters meters kijdmeters	square certimeters square meters	square hilometers hectares (10,000 m²)	grams kitograms tomes (1000 kg)	militiers Hers Hers Hers Cubic meters Cubic meters	TEN Celsius temperature	35 04 40 40 40 40 40 40 40 40 40 40 40 40
	Symbol	firm	5 e e \$	~E~e`	.	0 % ~	Ê~~~Ê ^E E	့ပ	* 4 T 5°
33 111	11111111111111111111111111111111111111	oz e	.t 81 21	72 76 - 					
,,,,,,,	11111	•	7	e - - - - - - - - - - - - - - - - - - -	,	la l	3 		1 inches
	Symptol		8 5 e \$	ĨĘ"	r É s' s'	a 2 ~	ĒĒĒ	. F 2	υ γε
Mensurer	To Find		centimeters centimeters meters higheters	squere centimeters	aquere maters aquere maters aquere kilometers hectares	grams It (figrams torines	militions militions militions militions france france	Cubic meters	Celaius tamperature tables, vee 1855 M-sc. P.D.
Appreximate Conversions to Metric N	Makiphy by	LENGTH	2.5 80 84.1	AREA 1.5	€ 9 9 9 9	23 2.46 0.96 VOLUME	5 30 30 0.24 0.47 2.55 3.8	0.03 0.76 TEMPERATURE (exact)	5/9 (after subtracting 32) 32) 32) metaura and more cets led 50 Cetalog No. C13.10286
Appreximate Con-	When You Know	1	e species	ander socker	to the same to the	countes poweds poweds abort tons (2000 lb)	teampoons tablespoons (their owners cups pints parts castons	5 5	Fallwandrait 5/9 (after Celsius surpersture subtracting temperature 32) 32) 32) 32) 32) 33) 34) 35) 35) 35) 35) 35) 36) 36) 37) 37) 38) 38) 38) 38) 38) 39) 39) 39) 39) 39) 39) 39) 39) 39) 39
	Sympto		: \$ ³	~ *	ኔ <i>'</i> ጀ'፤	₹ €		ት ድቹ	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PREFACE

The "Lightning Effects on Future Aircraft Electronic Systems" workshop, November 4-6, 1981, sponsored by the NASA-Langley Research Center in conjunction with the Federal Aviation Administration (FAA) Technical Center, provided an ideal vehicle for information exchange. This workshop provided regional and headquarters personnel with an insight into the magnitude of the problem, and the progress being accomplished through existing and future FAA programs.

Protection of electrical and electronic subsystems and equipments against the atmospheric electricity hazards constituted by lightning and static electricity must be taken into special account in the design of advanced technology aircraft. Two primary factors have contributed to an increased potential hazard to new generation aircraft: (1) The increasingly widespread use of digital microelectronic subsystems and/or avionic equipment which are inherently susceptible to upset and damage caused by electrical transients to implement flight and mission critical functions; and (2) the reduced electromagnetic shielding provided by many advanced structural materials. Present military and civil design guides and standards are being reviewed to assure adequate protection for new generation aircraft.

The NASA-Langley Research Center Electronic System Branch of the Flight Electronic Division was the host for this workshop; which is a major element in the FAA Technical Center's Advanced Integrated Flight Systems (AIFS) program. The AIFS program objectives are to acquire and disseminate data, enhance communications, and provide Aviation Standards, lead and/or certify regions airworthiness/certification personnel with a vehicle for information transfer in this highly technological area of lightning research as related to aircraft flight safety.

The personnel from the NASA-Langley Research Center Aircraft Electronic System Branch and their associates exhibited professionalism in the planning, assembling the technical experts and material, and conducting this workshop. It is with a deep and sincere sense of gratitude that we of the FAA would like to extend our appreciation to those persons for a job well done.

TABLE OF CONTENTS

	Page
Lightning Effects Research Program - by Mr. Felix Pitts	1
Lightning Phenomenology - by Dr. M. Levine	5
Flight Experiment Definition and Summary - by Mr Felix Pitts	19
Data System Description - by Mr. Mitchel E. Thomas	29
Electromagnetic Sensors for Aircraft Lightning Reseach - by Mr. Klaus P. Zaepfel	39
Lightning Modeling - by Dr. M. Levine	51
Interpretation of In-Flight Test Data Approach, Problems and Outlook - by Dr. R. A. Perala	61
Corona and Streamer Effects - by Dr. R. A. Perala	76
An Analysis Method for the F-106 Direct Strike Data - by Dr. T. F. Trost	81
An Overview of the Electrical/Electromagnetic Impact of Advanced Composite Materials on Aircraft Design - by Dr. John C. Corbin, Jr.	91
Structural Application of Composite Materials and the Direct Effects of Lightning Strikes - by Mr. William E. Howell	155
Lightning Interaction Analysis - by Dr. Karl S. Kunz	171
Intermittent/Transient Faults in Digital Computers - by Dr. Gerald M. Masson	195
A Microprocessor-Based Upset Test Method - by Ms. Celeste M. Belcasto	213
Diagnostic Emulation Analysis Need and Technique by Mr. Gerard E. Migneault	221
Digital System Hardware Description Technique Used in Emulation - by Mr. Robert M. Thomas, Jr.	231
The Need for Transient Data in a CARE III Reliability Analysis - by Mr. Salvatore J. Bavuso	241

LIGHTNING EFFECTS RESEARCH PROGRAM

bу

Mr. Felix Pitts

Langley Research Center
National Aeronautics and Space Administration

The current research program being pursued at the Langley Research Center on lightning and its effects on digital electronic systems will be presented.

LIGHTNING EFFECTS

- CURRENT TRANSPORT AIRCRAFT STRUCK ABOUT ONCE PER YEAR
 - ALUMINUM SKIN
 - HYDRAULIC/MECHANICAL PRIMARY CONTROLS
 - MOSTLY NUISANCE PROBLEMS CAUSED BY LIGHTNING
- FUTURE AIRCRAFT WILL EMPLOY
 - COMPOSITE STRUCTURE
 - DIGITAL AVIONICS/ELECTRONIC CONTROLS
 SUSCEPTIBLE TO DISTURBANCE
 POTENTIAL FOR UPSET
- NEED FOR FUTURE AIRCRAFT DESIGNS
 - BETTER UNDERSTANDING OF IN-FLIGHT LIGHTNING ENVIRONMENT
 - TECHNIQUES FOR ASSESSING DIGITAL SYSTEM PERFORMANCE IN LIGHTNING ENVIRONMENT

LIGHTNING EFFECTS RESEARCH PROGRAM

LIGHTNING PHENOMENOLOGY

by

Dr. M. LeVine

Goddard Space Flight Center
National Aeronautics and Space Administration

State-of-the-art of lightning knowledge: Theories of charge generation, the lightning discharge, stepped leaders, return strokes, fundamental electromagnetics of lightning, statistical distribution of lightning characteristics.

CLOUD-TO-GROUND LIGHTNING PARAMETERS

•	MINIMUM*	REPRESENTATIVE	MAXIMUM*
STEPPED LEADER			
LENGTH OF STEP (m)	က	20	200
TIME INTERVAL BETWEEN STEPS (4.56c)	30	20	125
AVERAGE VELOCITY OF PROPAGATION OF	Ľ	1	•
STEPPED LEADER (m/sec)	1.0×10^{5}	1.5×10^{5}	2.6×10^{6}
DART LEADER	•	•	ı
VELOCITY OF PROPAGATION (m/sec)	1.0 × 10 ⁶	2.0×10^{6}	2.1×10^{7}
RETURN STROKE**			
PEAK CURRENT (ka)		10-20	110
TIME TO HALF OF PEAK CURRENT (14 900)	2	\$	250
CHANNEL LENGTH (km)	7	1	14
VELOCITY OF PROPAGATION (m/sec)	2.0×10^7	5.0×10^7	1.4×10^{8}
LIGHTNING FLASH			
NUMBER OF STROKES PER FLASH	_	34	26
TIME INTERVAL BETWEEN STROKES (msec)	m	4 0	1 00
TIME DURATION OF FLASH (sec)	10-2	0.2	7
CHARGE TRANSFERRED (coul)	ო	5 2	06

THE WORDS MAXIMUM AND MINIMUM ARE USED IN THE SENSE THAT MOST MEASURED VALUES FALL BETWEEN THESE LIMITS.

**FIRST RETURN STROKES HAVE SLOWER AVERAGE VELOCITIES OF PROPAGATION, SLOWER, CURRENT RATES OF INCREASE, LONGER TIMES TO CURRENT PEAK, AND GENERALLY LARGER CHARGE TRANSFER THAN SUBSEQUENT RETURN STROKES IN A FLASH.

HISTORICAL PERSPECTIVE

THE STREAK CAMERA

FIELD MILL

DISTRIBUTION OF CHARGE IN A THUNDERCLOUD

FIELD CHANGE SYSTEM

SLOW ELECTRIC FIELD CHANGES

FAST ELECTRIC FIELD CHANGES

FIRST RETURN STROKE

SUBSEQUENT RETURN STROKE

INTRA CLOUD PROCESS

RADIO RECEIVER

MAPPING USING RF RADIATION

CURRENT WAVEFORMS

FLIGHT EXPERIMENT DEFINITION AND SUMMARY

bу

Mr. Felix Pitts

Langley Research Center
National Aeronautics and Space Administration

Description of NASA F-106B in-flight direct strike measurement program. Electromagnetic measurements, instrumentation concept, and results summary.

MEASUREMENTS SUMMARY

MEASUREMENT	SYMBOL	AMPLITUDE RANGE	SENSOR TYPE
RATE OF CHANGE OF ELECTRIC FLUX DENSITY	Ď	50 A/m²	FLUSH PLATE DIPOLE
RATE OF CHANGE OF MAGNETIC FLUX DENSITY	Ė	2 X 10 ⁴ TESLA/SEC	MULTIGAP LOOP
RATE OF CHANGE OF CURRENT	i	10 ¹¹ A/SEC	INDUCTIVE CURRENT PROBE

MEASUREMENTS SUMMARY

	MEASUREMENT	SYMBOL	DIMENSION	SENSOR TYPE
•	RATE OF CHANGE OF ELECTRIC FLUX DENSITY	Ď	A/M ²	FLUSH PLATE DIPOLE
•	RATE OF CHANGE OF MAGNETIC FLUX DENSITY	B	TESLA/SEC	MULTIGAP LOOP
•	RATE OF CHANGE OF CURRENT	i	A/SEC	INDUCTIVE CURRENT-PROBE
•	ELECTRIC FIELD	Ε	V/M	FIELD MILL
•	CURRENT	I	Α	CURRENT TRANSFORMER

MEASUREMENT LOCATIONS - 1980

1981 LIGHTNING OCCURRENCES

X - INDICATES TRIGGER POINT

DATA SUMMARY

- o 1980
 - 19 FLIGHTS 69 STORM PENETRATIONS
 - 10 STRIKES 17 TRANSIERTS: (7 D, 5 B, 5 T)
 - RESULTS REPORTED:

 NASA TM 81946 "1980 DIRECT STRIKE LIGHTNING DATA"

 AIAA 81-0083 "E/M MEASUREMENT OF DIRECT LIGHTNING STRIKES TO Λ/C"
- o 1931
 - 24 FLIGHTS 111 STORM PENETRATIONS
 - 10 STRIKES 27 TRANSIENTS
 1 BOOM CURRENT (BOEING)
 16 B, 10 D (DISTANT)
- O MAXIMUM MEASURED VALUES
 - D 30.5 A/m² 340 KV/0.1 us B 1160 T/s 2 KA/0.1 us I 15 KA

OTHER F-106 LIGHTNING EXPERIMENTS

- ATMOSPHERIC CHEMISTRY EXPERIMENTS LARC
 - 1980 SHOWED N20 ENHANCEMENT NEAR LIGHTNING
 - 1981 SHOWED CO ENHANCEMENT NEAR LIGHTNING
- X-RAY EXPERIMENT U. WASHINGTON
 - 1980 SHOWED INCREASED COUNT NEAR LIGHTNING
 - 1981 BEING EVALUATED
- OPTICAL SIGNATURE EXPERIMENT NSSL
 - PROTOTYPE FOR ORBITAL LIGHTNING MAPPER
 - RESULTS BEING ANALYZED AT NSSL
- STORM SCOPE
 - TURBULENCE/LIGHTNING DO NOT ALWAYS CORRELATE
 - LIGHTNING LOCATIONS DISPLAYED TEND TO BE FURTHER FROM AIRCRAFT POSITION THAN RADAR CONTOURS (BUT AT SAME BEARING)
- BOEING DATA LOGGER
 - FIRST BOOM CURRENT RECORDED AUGUST 1981

DATA SYSTEM DESCRIPTION

bу

Mr. Mitchel E. Thomas

Langley Research Center
National Aeronautics and Space Administration

The research data-gathering system on the F-106B aircraft developed for in-flight measurement of direct and nearby lightning strike characteristics is described. Details of the design and performance are presented for system components including the digital transient recorders, wideband analog recorder, fiber optic control and diagnostic links, power system isolation, and system shielding.

LIGHTNING INSTRUMENTATION SYSTEM

- WIDE BANDWIDTH FOR SUBMICROSECOND SIGNAL RESOLUTION
 - 10 NS SAMPLE INTERVAL
- CONTINUOUS RECORDS FOR DEFINITION OF FULL LIGHTNING SCENARIO
 - 15 MHz ANALOG BANDWIDTH
- PROTECT AGAINST SPURIOUS RESPONSES (EMI)
 - SHIELDED ENCLOSURE
 - MOTOR-GENERATOR POWER ISOLATION
 - FIBER OPTIC CONTROL
- AUTOMATIC OPERATION

TRANSIENT RECORDER

EXPANDED TRANSIENT WAVEFORM RECORDER FEATURES

- 6-BIT AMPLITUDE RESOLUTION (1.56%)
- FREQUENCY RESPONSE DC TO 50 MHz
- 131072 (2¹⁷) DATA WORD CAPACITY
- SAMPLE RATES UP TO 100 MHz
- DATA WINDOW LENGTH OF 1310 MICROSECONDS AT 100 MHz
- INTERNAL OR EXTERNAL TRIGGERING
- DATA WINDOW SELECTION WHICH IS BEFORE, DURING, OR AFTER TRIGGER EVENT

WIDEBAND ANALOG RECORDER

- VIDEO RECORD TECHNIQUES
- FREQUENCY MODULATED CARRIER
- 10 Hz TO 15 MHz BANDWIDTH
- 12 MINUTES RECORD TIME
- 2 CHANNELS & 2 AUXILIARY

LOGARITHMIC AMPLIFIER

COMPRESSION AMPLIFIER

- 15 MHz BANDWIDTH
- DIFFERENTIAL INPUT, 50 OHM IMPEDANCE
- E₀ = 1 + .3 LOG E_{1N}
- 60 db DYNAMIC RANGE

SIMPLIFIED SHIELDING TOPOLOGY

LIGHTNING INSTRUMENTATION CONTROL

ELECTROMAGNETIC SENSORS FOR AIRCRAFT LIGHTNING RESEARCH

by

Mr. Klaus P. Zaepfel

Langley Research Center
National Aeronautics and Space Administration

Electromagnetic sensors designed for measuring EM fields and currents during lightning strikes to the F-106B research aircraft are described. Sensor theoretical basis, performance, and parallel-plate transmission line used to check and calibrate these sensors are described.

MEASUREMENT REQUIREMENTS

MEA SUREMENT	FIELD CHANGE	SENSOR OUTPUT
J _T	$50A/m^2 (\Delta E \approx 6 \times 10^5 \frac{V}{m} \text{ per } 0.1 \mu \text{s})$	> 100V
B	2 × 10 ⁴ Tesla/s	> 100V
İ	10kA per 0. 1µs	> 100V

SENSOR CHARACTERISTICS

- DESIGN PRINCIPLES DEVELOPED BY AIR FORCE WEAPONS LAB FOR NEMP
- WIDE BANDWIDTH: \geq 80 MHz ($t_R \leq 4.4$ ns)
- SIMPLE GEOMETRY: CALIBRATION BY RULER
- APPROXIMATELY 100 V OUTPUT FOR FULL-SCALE DIRECT STRIKE

DEFINITIONS: ELECTRIC FIELDS

SENSOR FUNDAMENTALS

NO CORONA CORONA
$$\dot{D} = \dot{c} \dot{c}$$

$$I_{t} = \dot{D} \cdot AREA$$

$$V_{out} = R I_{t}$$

DEFINITION: MAGNETIC FIELDS

SENSOR FUNDAMENTALS

$$B = \frac{dr}{2\pi r} I$$

$$MAXWELL-FARADAY LAW: \oint_C E \cdot dI = -\int_A \frac{dR}{dt} \cdot dA$$

$$Vour = -\int_A \frac{dR}{dt} \cdot dA \qquad B-DOT Sensor$$

$$= -\int_A \left(\frac{dR}{2\pi r} \cdot \frac{dT}{dt}\right) dA$$

$$= -\frac{dT}{dt} \int_A \frac{dT}{2\pi r} dA$$

$$Vour = -MI, \quad M = \frac{dA}{2\pi r} \int_A \frac{1}{r} dA \qquad I-DOT Sensor$$

B-DOT SENSOR

B DOT SENSOR ON F 106 FUSELAGE PANEL

2 Car 36 Ta 18

I-DOT SENSOR

FLAT-PLATE TRANSMISSION LINE CALIBRATOR

B-DOT SENSOR DIFFERENTIAL AND INTEGRATED OUTPUTS

SUMMARY OF SENSOR PARAMETERS

SENSOR	LOCATION	DESIGN	SENSITIVITY	RISETIME (10%-90%)
J _T .	FUSELAGE/TAIL	CIRCULAR	4.1×10 ⁻² m ²	2.4 ns
JT	WINGS	RECTANGULAR	2.7×10 ⁻² m ²	3.0 ns
B-DOT	FUSELAGE	2 GAPS, 4 LOAD POINTS	5.7×10 ⁻³ m ²	.85 ns
B-DOT	WINGS	1 GAP, 1 LOAD POINT	5.5×10 ⁻³ m ²	2.0 ns
I-DOT	RADOME	1 GAP, 4 LOAD POINTS	2.1×10 ⁻⁹ H	0.8 ns

FIELD MILLS

O 1 2 3 4 5 CENTIMETERS INCHES O 1 2

LIGHTNING MODELING

by

Dr. M. LeVine

Goddard Space Flight Center
National Aeronautics and Space Administration

The ground-based lightning measurements made at Wallops Flight Center concurrently with the in-flight direct strike measurements are described. Lightning mathematical model development to arrive at credible lightning models for use in induced effects electromagnetic coupling studies is discussed.

CHANNEL GEOMETRY

CHANNEL GEOMETRY

FREQUENCY (kHz)

INTERPRETATION OF IN-FLIGHT TEST DATA APPROACH, PROBLEMS, AND OUTLOOK

by

Dr. R. A. Perala

Electromagnetic Applications, Incorporated

Discussion of the direct strike data interpretation problem and issues to be resolved. Review of lightning/aircraft interaction process and aircraft electrical resonance considerations. Approach for generalization of F-106 data to other aircraft classes.

OUTLINE

- THE LIGHTNING/AIRCRAFT INTERACTION PROCESS
- THE NEED FOR IN-FLIGHT TEST DATA
- **EXTENSION OF DATA TO OTHER AIRCRAFT**
- LIGHTNING MODELING
- AIRCRAFT MODELING
- EXAMPLES

STEPPED LEADER APPROACHING AIRCRAFT

RETURN STROKE THROUGH THE AIRCRAFT

STEPPED LEADER ATTACHMENT AND CONTINUED PROPAGATION FROM AN AIRCRAFT

No RETURN STROKE THROUGH THE AIRCRAFT

LIGHTNING/AIRCRAFT INTERACTION DESCRIPTION

- AIRCRAFT IN LARGE STATIC ELECTRIC FIELD, 10-100 KV/M TYPICAL
- ATRCRAFT PROBABLY ALREADY CHARGED BY TRIBOLITECIBLE TOATION
- APPROACHING STEPPED LEADER GIVES LARGE E, aE/at
- WHEN E LARGE ENOUGH, AIRCRAFT STREAMERS
- STREAMER ATTACHES TO APPROACHING LEADER
- CHARGE FROM LEADER DEPOSITED ON AIRCRAFT AND ELEVATES ITS POTENTIAL
- WHEN ITS POTENTIAL IS HIGH ENOUGH, LEADER CONTINUES FROM AIRCRAFT TO DESTINATION
- STEPPED LEADER CURRENT FLOWS THROUGH AIRCRAFT UNTIL RETURN STROKE
- RETURN STROKE CURRENT LOWERS AIRCRAFT POTENTIAL
- AIRCRAFT IN CORONA DURING MUCH OF THIS TIME

APPROACHING LEADER E FIELDS

ELECTRIC GRADIENT BELOW LEADER CHANNEL: (*) AS FUNCTION OF HORIZONTAL DISTANCE AND (b) AS FUNCTION OF HEIGHT OF LEADER TIP ABOVE GROUND

ASSUME
$$\frac{3E}{3E} = \frac{3E}{3h} = \frac{3h}{3t}$$
 and $\frac{3h}{3t} = 1.5 \times 10^5$ m/sec
WE GET $\frac{3E}{3t} = 1.2 \times 10^7$ at 1000 m
= 1.5 × 10¹⁰ at 10-20 m

AIRCRAFT STREAMERING

- CURRENTS PROBABLY LESS THAN 100A, BASED ON GROUND STREAMER DATA
- WAVESHAPES: 10 usec RISETIMES
- NEGATIVE CHARGE ENTERING AIRCRAFT AT STREAMER POINT
- STRFAMERING CAN OCCUR FROM CRITICAL POINTS
- STREAMERING INFLUENCED BY STATIC FIELD
- ELECTRIC FIELD ON AIRCRAFT REVERSES AT ATTACHMENT

STEPPED LEADER CURRENT FLOW THROUGH AIRCRAFT

- \blacksquare AIRCRAFT NEEDS TO ACCUMULATE $\gtrsim\!100~\text{pc}$ of charge for stepped leader to continue on from AIRCRAFT
- IF LEADER CURRENT IS 1000A RISING IN 100 ns, CHARGING TIME IS ABOUT 150 ns
- DURING THIS TIME AIRCRAFT NORMAL ELECTRIC FIELDS APPROACH 3 MV/m
- THIS GIVES aE/at ≈2 x 10¹³ V/m/sec
- LEADER CURRENT CONTINUES THROUGH AIRCRAFT AND ELECTRIC FIELD STAYS
 CONSTANT AND CURRENT ASSUMES THE SLOWLY INCREASING ARC CURRENT UPON
 WHICH IS SUPERIMPOSED LEADER PULSE CURRENTS
- AIRCRAFT IS IN CORONA DURING THIS PHASE

STEPPED LEADER CURRENTS

J- AND K- CHANGES

J-Changes: SLOW, 100A CURRENTS

K-Changes: Several Thousand Amps

Possibly 50 NS Rise Times

ISSUES OF INTEREST AND THE NEED FOR IN-FLIGHT TEST DATA

- ATTACHMENT PROCESS
 - . WHAT ARE LAND I ?
 - HOW IMPORTANT ARE NONLINEAR (CORONA, STREAMERS) EFFECTS!
 - What is the equivalent circuit of the leader (channel imperance), norton current source)
- RETURN STROKE
 - WHAT ARE E AND E?
 - WHAT ARE H AND all ?
 - HOW IMPORTANT ARE NONLINEAR EFFECTS?
 - WHAT IS THE RETURN STROKE EQUIVALENT CIRCUIT?
- NEARBY LIGHTNING: HOW IMPORTANT IS IT?
- HOW APPLICABLE ARE STATE OF THE ART LIGHTNING MODELS AT AIRCRAFT ALTITUDES
 - Models so far are Based on Terrestrial Observations
 - NODELS HAVE NOT BEEN TESTED AT AIRCRAFT ALTITUDES
- OBTAIN DATA ON INTRACLOUD LIGHTNING
- How Does the Aircraft Interact with Lightning? Is the Lightning Envision of Itself Modelfied by the Presence of an Aircraft? Is it Different for Different Aircraft.

THE OBJECTIVE OF DATA INTERPRETATION

- WHAT ARE THE LIGHTNINGS THAT CAUSE THE F106B RESPONSES? (AN INVERSE PROBLEM)
- WHAT WOULD BE THE RESPONSE OF A DIFFERENT AIRCRAFT?
- CAN A METHODOLOGY BE DEVELOPED FOR EXTENDING IN-FLIGHT DATA FROM ANY AIRCRAFT TO ANY OTHER AIRCRAFT?

APPROACH

IMPORTANCE OF NEAR MISS DATA

- Interaction Calculations Can Be Done Linearly, Without Complications Introduced By Nonlinearities
- DATA CAN BE USED TO INFER NEARBY LIGHTNING ELECTROMAGNETIC WAVEFORMS AT AIRCRAFT ALTITUDES TO CORRELATE WITH PREDICTIONS

A DRAWING DEFINING ALL GEOMETRICAL PARAMETERS NEEDED IN THE CALCULATION OF ELECTRIC AND MAGNETIC FIELDS. (FROM UMAN)

CURRENT DISTRIBUTION FOR THE MODEL OF LIN ET AL. (1980) IN WHICH THE BREAKDOWN PULSE CURRENT IS CONSTANT WITH HEIGHT. THE CONSTANT VELOCITY OF THE BREAKDOWN PULSE CURRENT IS v. Current Profiles are Shown at Four Different Times $\mathbf{t_1}$ through $\mathbf{t_4}$, When the Return Stroke Wavefront and the Breakdown Pulse Current are at Four Different Heights $\mathbf{z_1}$ Through $\mathbf{z_4}$, Respectively. (From Uman)

RETURN STROKE CURRENT COMPONENTS AT GROUND FOR A TYPICAL SUBSEQUENT STROKE CALCULATED FROM MEASURED ELECTRIC AND MAGNETIC FIELDS (FROM UMAN)

CALCULATED VERTICAL ELECTRIC FIELDS FOR A TYPICAL SUBSEQUENT RETURN STROKE (FROM UMAN)

CALCULATED HORIZONTAL ELECTRIC FIELDS FOR A TYPICAL SUBSEQUENT RETURN STROKE (FROM UMAN)

T3DFD MODEL OF F106B

$$\begin{aligned} & \frac{y_{1}^{ren} \left(\{ 1, 1, k = 1 \} = H_{x}^{n} \left(\{ 1, 1, k = 1 \} \right) - \frac{z^{2}}{u} \cdot \left(\frac{E_{x}^{n} \left(\{ 1, 1, k = 1 \} + E_{x}^{n} \left(\{ 1, 1, k = 1 \} \right) - \frac{z^{2}}{u} \cdot \left(\frac{E_{x}^{n} \left(\{ 1, 1, k = 1 \} + E_{x}^{n} \left(\{ 1, 1, k = 1 \} \right) - \frac{z^{2}}{u} \cdot \left(\frac{E_{x}^{n} \left(\{ 1, 1, k = 1 \} + E_{x}^{n} \left(\{ 1, 1, k = 1 \} \right) - E_{x}^{n} \left(\{ 1, 1, k = 1 \} \right) - \frac{z^{2}}{u} \cdot \left(\frac{E_{x}^{n} \left(\{ 1, 1, 1, k = 1 \} + E_{x}^{n} \left(\{ 1, 1, k = 1 \} + E_{x}^{n} \left(\{ 1, 1, k = 1 \} \right) - E_{x}^{n} \left(\{ 1, 1, k = 1 \} \right) - \frac{z^{2}}{u} \cdot \left(\frac{E_{x}^{n} \left(\{ 1, 1, 1, k = 1 \} + E_{x}^{n} \left(\{ 1, 1, 1, k = 1 \} \right) - E_{x}^{n} \left(\{ 1, 1, 1, k = 1 \} \right) - \frac{z^{2}}{u} \cdot \left(\frac{E_{x}^{n} \left(\{ 1, 1, 1, k = 1 \} + E_{x}^{n} \left(\{ 1, 1, 1, k = 1 \} \right) - E_{x}^{n} \left(\{ 1, 1, 1, k = 1 \} \right) - E_{x}^{n} \left(\{ 1, 1, 1, k = 1 \} \right) - E_{x}^{n} \left(\{ 1, 1, 1, k = 1 \} \right) - \frac{z^{2}}{u} \cdot \left(\frac{E_{x}^{n} \left(\{ 1, 1, 1, k = 1 \} + E_{x}^{n} \left(\{ 1, 1, 1, k = 1 \} \right) - E_{x}^{n} \left(\{ 1, 1, 1, 1, k = 1 \} \right) - E_{x}^{n} \left(\{ 1, 1, 1, k = 1 \} \right) - E_{x}^{n} \left(\{ 1, 1, 1, k = 1 \} \right) - E_{x}^{n} \left(\{ 1, 1, 1, k = 1 \} \right) - E_{x}^{n} \left(\{ 1, 1, 1, k = 1 \} \right) - E_{x}^{n} \left(\{ 1, 1, 1, k = 1 \} \right) - E_{x}^{n} \left(\{ 1, 1, 1, k = 1 \} \right) - E_{x}^{n} \left(\{ 1, 1, 1, k = 1 \} \right) - E_{x}^{n} \left(\{ 1, 1, 1, 1, k = 1 \} \right) - E_{x}^{n} \left(\{ 1, 1, 1, 1, k = 1 \} \right) - E_{x}^{n} \left(\{ 1, 1, 1, 1, k = 1$$

Externally supplied values are tangential electric fields on outer surface of problem space:

3-D FINITE DIFFERENCE EQUATIONS IN RECTANGULAR COORDINATES SET UP WITH EXTERNALLY SUPPLIED H FIELDS

DATA FROM FLIGHT 80-038, RECORD 4

COMPARISON OF MEASURED RESPONSE (FLIGHT 80-18) AND COMPUTED WITH T3DFD AND A 30Ns RISE TIME, 590 AMPERE STEP CURRENT SOURCE, NOSE TO TAIL.

CORONA AND STREAMER EFFECTS

by

Dr. R. A. Perala

Electromagnetic Applications, Incorporated

Description of possible corona effects on direct strike data, review of elements and state-of-the-art of corona modeling, and application of corona modeling to lightning/aircraft interaction. Corona to arc transition, importance, and modeling of streamers.

DEFINITIONS

A CONDUCTING ARC CHANNEL EMANATING FROM A CORONA REGION STREAMER:

A STATE OF THE GASEOUS CONDUCTION PREVIOUS TO ARC FORMATION

CORONA:

CURONA: BASIC MECHANISM

• REQUIREMENT: FREE ELECTRONS ACCELERATED BY ELECTRIC FIELD

 \bullet Source of free (TRIGGER) ELECTRONS: BACKGROUND IONIZATION CAUSED BY COSMIC RAYS; \sim 2 X 10^7 ELECTRON-ION PARIS/(m³-sec). THIS GIVES AMBIENT AIR CONDUCTIVITY \sim 10^{-13} $_{\rm mho/m}.$

ELECTRON AND ION LOSS MECHANISMS

- \blacksquare ELECTRON ATTACHMENT TO NEUTRAL AIR MOLECULES TO FORM NEGATIVE IONS ATTACHMENT RATE α_E
- RECOMBINATION OF POSITIVE IONS AND ELECTRONS TO FORM NEUTRAL PARTICLES

 RECOMBINATION RATE B
- RECOMBINATION OF POSITIVE AND NEGATIVE IONS
 RECOMBINATION RATE Y

AIR CHEMISTRY EQUATIONS FOR CORONA

$$\frac{dn_{e}(t)}{dt} + [\beta n + (t) + \alpha_{e} - G] n_{e}(t) = Q(t),$$

$$\frac{dn_{e}(t)}{dt} + [\gamma n + (t)] n_{e}(t) = \alpha_{e} n_{e}(t),$$

$$\frac{dn_{e}(t)}{dt} + [\beta n_{e}(t) + \gamma n_{e}(t)] = Q(t) + G n_{e}(t),$$

AIR CONDUCTIVITY $\sigma = q (\mu_e n_e + \mu_i (n_+ + n_+))$

1 CONDUCTIVITY → FEEDS BACK INTO MAXWELL'S EQUATIONS

$$\nabla \quad X \quad \overline{E} \quad = \quad - u \quad \frac{\partial \overline{H}}{\partial t}$$

$$\nabla \quad X \quad \overline{H} \quad = \quad c \quad \frac{\partial \overline{E}}{\partial t} \quad + \quad c \quad \overline{E}$$

- COEFFICIENTS G. ae. Pe IN TURN DEPEND UPON E
- COEFFICIENTS ALSO DEPEND UPON HUMIDITY AND AIR PRESSURE

IF WE ASSUME SPACE CHARGE NEUTRALITY

$$n_{+} = n_{e} + n_{-}$$

HOWEVER, SPACE CHARGE EFFECTS ARE IMPORTANT FOR CORONA, SO WE NEED TO INCLUDE:

$$\nabla \cdot \overrightarrow{J} + \frac{\partial p}{\partial t} = 0$$

$$p = (n_{+} - n_{-} - n_{e}) q$$

$$\overrightarrow{J} = (n_{+} \overrightarrow{V}_{+} - n_{-} \overrightarrow{V}_{-} - n_{e} \overrightarrow{V}_{e}) q$$

ALSO NEED TO INCLUDE PARTICLE DYNAMICS

$$\overline{F}_S = q_S (\overline{E} + \overline{V}_S \times \overline{B})$$
, s Refers to species

RESULTS FOR A ROD-PLANE GAP.
NUMERICAL RESULTS ASSUME SPACE CHARGE NEUTRALITY.

EFFECTS OF NONLINEARITIES

- AIR CONDUCTIVITY MAY SHIELD APERTURES >
- AIR BREAKDOWN MAY CAUSE INCREASES IN $\frac{\partial E}{\partial t}$, FOR EXAMPLE, AS INDICATED ON A PREVIOUS SLIDE
- AIRCRAFT COMPLEX RESONANT FREQUENCIES MAY CHANGE BECAUSE CORONA
 AND STREAMERS EFFECTIVELY EXTEND AIRCRAFT DIMENSIONS

STREAMERS

- Based on ground measurements, amplitudes limited to ~100 A
- No model based on first principles is known to exist for streamer formation and propagation
- AT PRESENT, MODELING IS PROBABLY BEST ACCOMPLISHED BY PRESCRIBING NONLINEAR CURRENT SOURCE REPRESENTATIONS

AN ANALYSIS METHOD FOR THE F-106 DIRECT STRIKE DATA

bу

Dr. T. F. Trost

Texas Tech University

Summary of characteristics of electric and magnetic fields and currents measured during strikes. Description of laboratory modeling of direct strike fields and currents including test apparatus, airplane model, and data acquisition system. Comparison of model results with in-flight data: Resonances, attachment points, and waveforms. First order interpretation of in-flight data as a lightning input-aircraft response problem.

F-106 DIRECT STRIKE DATA OBJECTIVES

- I. MEASURE STRENGTHS AND WAVEFORMS OF ELECTRIC AND MAGNETIC FIELDS ON AIRCRAFT
- II. INTERPRET WAVEFORMS
 - A. DETERMINE WHICH CHARACTERISTICS OF WAVEFORMS ARE DUE TO ELECTROMAGNETIC MODES OF AIRCRAFT/CHANNEL
 - B. INFER NATURE OF IONIZATION PROCESSES
 - C. STATE IMPLICATIONS OF MEASURED WAVEFORMS REGARDING COUPLING TO INTERIOR

APPARATUS FOR AIRCRAFT-LIGHTNING MODELING

TRANSFER FUNCTIONS FOR THE F-106 MODEL

FREQUENCY DOMAIN DESCRIPTION

TRANSFER = FOURIER TRANSFORM OF OUTPUT FOURIER TRANSFORM OF INPUT

INPUT: B-DOT NEAR LOWER WIRE

OUTPUTS: D-DOT AT NOSE

B-DOT ON FUSELAGE OVER RIGHT WING

B-DOT AT VARIOUS LOCATIONS NEAR SURFACE D-DOT AT VARIOUS LOCATIONS NEAR SURFACE

EXAMPLES OF TRANSFER FUNCTIONS

PRONY ANALYSIS OF FIELDS MEASURED ON THE MODEL

REPRESENT SENSOR OUTPUT WAVEFORMS AS FOLLOWS:

$$V(t) = \sum_{i=1}^{N} A_i e^{\sigma_i t} \cos(\omega_i t + \phi_i)$$
$$= \sum_{i=1}^{2N} R_i e^{s_i t}$$

 $s_i = \sigma_i + j\omega_i$ ARE NATURAL FREQUENCIES OR POLES R_i ARE RESIDUES

Model of thunderstorm charge distribution.

CHARACTERISTIC TIMES

CORONA CURRENT RISETIME (LABORATORY MEAS.)	10-50 ns
LIGHTNING CURRENT RISETIME (REMOTE ELECTRIC FIELD MEAS.)	30-8000 ns
PERIOD OF LOWEST ELECTROMAGNETIC MODE OF F-106 (LABORATORY SCALE MODEL MEAS.)	110 ns
TIME CONSTANT FOR CHARGING F-106 IN CHANNEL (ESTIMATE)	~250 ns
F-106 DIRECT STRIKE RISETIME OF B	20-40 ns
OF D	20-1000 ns

1.024

.512

1.536 1E-6 S 2.56

1.536 1E-6 S

.512

-2 -2.5-

2.56

1.536 1E-6 5

.512

1E-6 S

SOME RESULTS FROM COMPARISON OF MODEL AND IN-FLIGHT DATA

IN-FLIGHT FREQUENCY SPECTRUM PEAKS ARE IN GENERAL AGREEMENT WITH MODES OF MODEL AT 9MHz AND 21 MHz

SHOULD BE ABLE TO INFER SOME CHANNEL PROPERTIES FROM IN-FLIGHT SPECTRA

IN-FLIGHT D-DOT WAVEFORMS LONGER DURATION THAN B-DOT WHEREAS DURATIONS SAME ON MODEL

AN OVERVIEW OF THE ELECTRICAL/ELECTROMAGNETIC IMPACT OF ADVANCED COMPOSITE MATERIALS ON AIRCRAFT DESIGN

by

Dr. John C. Corbin, Jr.

Wright-Patterson Air Force Base

The impact of the application of composite structures in aircraft presented from the electromagnetic viewpoint. Fundamental electromagnetic differences between metal and composite aircraft are described and technology developments in shielding effectiveness, joint and fuel system design, and power system/equipment integration are reviewed.

TRENDS IN AIRCRAFT DESIGN

FUEL ECONOMY - NEW ENGINE DESIGNS

- ACTIVE CONTROLS

REDUCED WEIGHT - LIGHTER STRUCTURES

· INCREASED PAYLOAD AND/OR RANGE

DIGITAL ELECTRONICS - HIGH DENSITY PACKAGING

· MICROMINIATURIZATION

· CRITICAL FLIGHT FUNCTIONS

ELECTROMAGNETIC (EM) ENVIRONMENTAL IMPACT

ELECTRONICS MORE SUSCEPTIBLE TO FAILURE (PERMANENT DAMAGE OR TRANSIENT UPSET)

CHARACTERISTICS OF THE AIRCRAFT SUBSTANTIALLY CHANGED

TECHNOLOGY TRENDS

VERY LARGE SCALE INTEGRATED CIRCUITS (VLSI)	CARRIER Z	1.5V – 3V 10-5 – 10-8 WATTS/TRANS	CERAMIC/ EPOXY	VSTOL, AFTI	GRAPHITE – EPOXY ?	1980'S
LARGE SCALE INTEGRATED CIRCUITS (LSI)		5V - 7V 10-3 - 10-4 WATTS/TRANS	METAL/ CERAMIC/ EPOXY	F-16, F-18	GRAPHITE – EPOXY ALUMINUM	1970′S
INTEGRATED CIRCUITS (IC)	FLAT PACK	5V - 12V 10-2 - 10-3 WATTS/TRANS	METAL/ CERAMIC/ EPOXY	F-14, F-15	ALUMINUM/ TITAN	5,0961
DISCRETE	10-5	/ / 12V – 24V 10-1 – 10-2 WATTS/DEVICE	METAL/ CERAMIC	F-4, F-111	ALUMINUM	1950′S
TUBES		250V 1 WATT/ DEVICE	GLASS/ METAL/ CERAMIC	F-9, F-100, F-106	ALUMINUM	PRE-1950'S

FEDERAL AVIATION ADMINISTRATION TECHNICAL CENTER ATL--ETC F/6 1/3 A COMPENDIUM OF LIGHTNING EFFECTS ON FUTURE AIRCRAFT ELECTRONIC--ETC(U) FEB 92 N O RASCH DOT/FAA/CT-82/30 NL AD-A114 117 UNCLASSIFIED 2013 A. 75 \overline{T} ie. Ŧ

EM FEATURES OF THE ALL-METAL AIRCRAFT

- SHIELDING OF 20 dB OR MORE BETWEEN THE **EXTERNAL EM ENVIRONMENT AND INTERNAL** AIRCRAFT ELECTRONICS
- READILY AVAILABLE "COMMON GROUND" RETURN PATHS FOR SIGNAL AND POWER
- **CURRENTS AND DISSIPATING PRECIPITATION STATIC** A LOW RESISTANCE, HIGH CONDUCTIVITY OUTER SKIN FOR CARRYING DIRECT STRIKE LIGHTNING CHARGES
- A RELATIVELY UNBROKEN COUNTERPOISE SYSTEM **FOR AIRCRAFT ANTENNAS**

ELECTRICAL/ELECTRONIC SYSTEMS

ADVANCED COMPOSITE MATERIALS

FIBER-REINFORCED MATERIALS (FIBERS COMPARABLE OR SUPERIOR TO METALS AND BONDED TO A MATRIX) HAVING PROPERTIES FIBERGLASS **DEFINITION:**

FIBER/MATRIX SYSTEMS IN COMMON USAGE:

GRAPHITE/EPOXY

BORON/EPOXY

KEVLAR/EPOXY

HYBRIDS (CARBON, GLASS & KEVLAR)

AIRCRAFT APPLICATIONS

YF-16 FORWARD FUSELAGE

• F/A 18 HORNET

AV-8B V/STOL

767

100.0

F/A-18A MATERIALS DISTRIBUTION

AV-8B COMPOSITES APPLICATIONS

COMPOSITE (GR/EP-KEV)

767 NON METAL STRUCTURE

AIR FORCE STUDY (1979)

APPLICATION OF ADVANCED COMPOSITE **ELECTROMAGNETIC IMPACTS OF THE** MATERIALS TO AEROSPACE SYSTEMS **ASSESS POTENTIAL ELECTRICAL/** SCOPE:

OBJECTIVES: IDENTIFY POTENTIAL SUSCEPTIBILITIES **OF SYSTEMS**

DETERMINE IF EM ASPECTS ARE BEING FULLY CONSIDERED

DETERMINE IF EM PROGRAMS ARE IN BALANCE WITH STRUCTURAL PROGRAMS

CONDUCT OF STUDY

QUESTIONNAIRE SENT TO GOVERNMENT AGENCIES & AEROSPACE CONTRACTORS

VISITS & IN-DEPTH DISCUSSIONS AT SPECIFIC **FACILITIES**

JOINT GOVERNMENT - INDUSTRY MEETING

BRIEFINGS TO:

 SAMSO
 NASA

 AFWAL
 NAVAL ASC

 ASD
 AFSC (DL/SD)

 RADC
 USAF (RD)

 RAND
 DOD (USDR&E)

SCOPE

MATERIAL CLASS

METALLICS GRAPHITE/EPOXIES

CONDUCTIVE

HIGH MODULUS (GY70 - SPECIAL,

REDUCED CONDUCTIVITY MISSILE & SPACECRAFT)-

HIGH STRENGTH (T-300, AS -

AIRCRAFT)-

FIBER GLASS KEVLAR

DIELECTRIC

TOPICS

- MPLEMENTATION ISSUES:
- DESIGN CAPABILITY
 - **DESIGN DATA**
- DEVELOPMENT NEEDS
 - JEM CONCERNS
- LIGHTNING EFFECTS (DIRECT/INDIRECT)
- STATIC ELECTRIC EFFECTS
 - **ANTENNA PERFORMANCE**
- RADAR CROSS-SECTION
- ELECTROMAGNETIC INTERFERENCE (EMI)
- ELECTROMAGNETIC COMPATIBILITY (EMC) ELECTROMAGNETIC PULSE (EMP)

 - SYSTEM GENERATED EMP
 - POWER SYSTEM DESIGN
- SPACE ENVIRONMENT EFFECTS

SUMMARIZATION

SHONNOWS SHOP																	
JOINT IMPEDANCE	٥			×	×		×	×					×	×			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ပ			×	×		×	×	×	×		×	×	×			
CONDUCTIVITY	80				×								×	•			
NMONAN	4		×	×	×				×		×		×	×	×		
1	>														×	×	×
INTERMEDIATE	2																
40	==			×	×		×		×			×	×	×			
INSIGNIFICANT	=		×					×		×	×						
INSISNI	_			-													
												SE					FECTS
			S	15	CTS	ш	<u> </u>					LE CA			۵	TS	!!.
		FFEC	STRUCTURAL EFFECTS	FUEL SYSTEM EFFECTS	EFF	ANC				\	TION	LOW RCS OBSERVABLE		5	D EM	FEC	NTAL
		CT E	IL EF	EM E	RECT	FORM		۵	QN	RICIT	SEC	BSEF		STE	RATE	AR EF	NME
		DIRE	TURA	YST	INDII	PERI	u.	VHF -L BAND	ABOVE L BAND	ECT!	3055	cs o	EMP	UBSY	ENE	CLE	VIRC
		TING	rRUC	JEL S	TING	ANN	HF & LF	1F -L	OVE	IC EL	IR CF	₩.	MC/	ER S	EM G	R N	E EN
		LIGHTING DIRECT EFFECT	S	F	LIGHTING INDIRECT EFFEC	ANTENNA PERFORMANCE	¥	>	AB	STATIC ELECTRICITY	RADAR CROSS SECTION	71	EMI/EMC/EMP	POWER SUBSYSTEM	SYSTEM GENERATED EMP	OTHER NUCLEAR EFFECTS	SPACE ENVIRONMENTAL E

LEADING CONCERNS

- LIGHTNING
- SPARK FREE FUEL TANK DESIGN
- INDIRECT EFFECTS (UPSET/DAMAGE)
- BONDING OF JOINTS AND SEAMS (EMI/EMC, EMP, SGEMP)
- CORROSION CONTROL
- ELECTRICAL DURABILITY (A/C AND SPACE)
- STRUCTURAL/PRODUCIBILITY
- POWER SYSTEM GROUNDING
- HF AND LF ANTENNA TECHNOLOGY
- COMBINED SPACE ENVIRONMENT EFFECTS
- SPECIFIC DATA REQUIREMENTS
- TECHNOLOGY TRANSITION

CONCERNS REFLECT

MATERIAL PROPERTY DIFFERENCES:

· REDUCED SURFACE CONDUCTIVITY REDUCED CONDUCTIVITY

· REDUCED SHIELDING

ELECTROCHEMICAL POTENTIAL FOR CORROSION STRUCTURAL JOINT ELECTRICAL CONDUCTIVITY

LIMITED DATA AND EXPERIENCE:

VARYING DEGREES OF CONCERN SOME CONCERNS GENERIC

CONCLUSIONS

- TECHNOLOGY DEVELOPMENT ESSENTIAL IN FIVE **MAJOR AREAS:**
- JOINT DESIGN
- FUEL SYSTEM DESIGN
- POWER SYSTEM/EQUIPMENT INTEGRATION
 - SHIELDING EFFECTIVENESS
 - RADAR CROSS SECTION
- APPLICATION OF COMPOSITES TO AIRCRAFT IS LOW RISK
- ESTABLISHMENT OF TRI-SERVICE/NASA/FAA WORKING GROUP NEEDED FOR PROGRAM COORDINATION, DEVELOPMENT OF DESIGN GUIDES, HANDBOOKS, DEVELOPMENT OF STANDARD ACCEPTED TEST **METHODS FOR CRITICAL AREAS (SUCH AS** STANDARDS AND SPECIFICATIONS, AND SHIELDING EFFECTIVENESS)

McAIR ANALYSIS/TEST PROGRAM OF GRAPHITE EPOXY COMPOSITES

- INHERENT SHIELDING
- PANEL SHIELDING
- PANEL/JOINT LEAKAGE
- PANEL JOINT IMPEDANCE
- FUSELAGE SHIELDING
- STATIC WING SHIELDING
- ANTENNA PERFORMANCE
- INTERMODULATION EFFECTS
- **LIGHTNING EFFECTS**

INHERENT SHIELDING

- **COAXIAL LINE FIXTURE (FIGURE 1)**
- G/E WASHER SPECIMENS FROM 1, 2, 4, & 8 PLY PANELS
- CW SIGNAL INSERTED/RECEIVED SIGNAL MEASURED
- EFFECTIVE SHIELDING > 60 dB FROM 40 KHz - 1 GHz (FIGURE 2)
- SHIELDING PREDOMINANTLY BY REFLECTION

COAXIAL FIXTURE

PLANE WAVE SHIELDING MEASURED WITH COAXIAL LINE

PANEL SHIELDING

- VARIOUS THICKNESSES (1, 2, 4, & 8 PLY)
- VARIOUS CONSTRUCTION TYPES (MONOLYTHIC, HONEYCOMB, SYNTACTIC CORE)
- **CUBICAL COPPER BOX FIXTURE (FIGURE 3)**
- PLANE WAVE SOURCE (40 KHz · 20 GHz) · ROD **ANTENNA SENSOR**
- **VARIOUS PANEL ATTACHMENTS**
- (a) CONTACT MOUNTING (FIGURE 4)
- CONDUCTIVE MOUNTING (EPOXY) @ @ @ @
- CONDUCTING FOIL MOUNTING (FIGURE 5) **FASTENER MOUNTING**
- FINGER STOCK MOUNTING

ELECTRIC FIELD SHIELDING FOR GRAPHITE PANELS ON BOX

ELECTRIC FIELD SHIELDING FOR GRAPHITE PANELS ON BOX (CAPACITIVELY COUPLED)

PANEL/JOINT LEAKAGE TESTS

- 13 PANELS TESTED: 4 SOLID, 9 WITH JOINTS (TABLE 1)
- TEST FIXTURE (FIGURE 6)
- RELATIVE PERFORMANCE DATA (TABLE 2)
- CONCLUSIONS
- PROTECTION IMPROVEMENT THROUGH G/E TIN PLATING PROVIDED APPRECIABLE SINGLE LAP SHEAR JOINTS
- **BONDING IS DESIRED BETWEEN A METALLIC** FINGER STOCKS MOST EFFECTIVE WHEN PANEL AND A G/E PANEL
- **EFFECTIVENESS OF NON-JOINTED G/E PANEL** TIN PLATING INCREASES SHIELDING

EMI LEAKAGE TEST PANEL LIST

CONFIGURATION IDENT.	CONFIGURATION	TNIOL	JOINT SEAL CONFIGURATION
Α	G/E Tape Mat'l	None	None
8	G/E Cloth	None	None
С	Atuminum	None	None
D	G/E (fin Plated)	None	None
G	G/E-Aluminum	Single Lap Shear	Form-In-Place (FIP) Seal
н	G/E-Aluminum	Single Lap Shear	Tin Plated-FIP Seal
ĵ	G/E-Aluminum	Single Lap Shear	FIP Seal
κ	G/E-Aluminum	Single Lap Shear	FIP Seal-Finger Stock
L	G/E-G/E	Single Lap Shear	Tin Plated
M	G/E -G/E	Double Lap Shear	Fay Seal
N	Aluminum—Aluminum	Double Lap Shear	Fay Seal
Р	G/E-Aluminum	Single Lap Shear	FtP Seal-Finger Stock
R	G/E <i>-</i> G/E	Single Lap	Tin Plated-FIP Seal- Finger Stock

TYPICAL TEST CONFIGURATIONS

EMI TEST PANEL DATA RELATIVE PERFORMANCE OF PANELS WITH SEAMS

		Some Propagation (5)	Relat	
Test	Panel Description	Seam Preparation (5)	<u>Perfor</u> E	H
N	Aluminum-Aluminum	None Double Lap Shear (DLS)	100	97
L	Graphite/Epoxy Cloth - Graphite/ Epoxy Cloth	Tin Plated, Sealed	84	84
Р	Aluminum - Graphite/Epoxy Cloth	Bonding Strip, Sealed	69	79
R	Graphite/Epoxy Cloth - Graphite/ Epoxy Cloth	Tin Plated, Bonding Strip Seated	64	78
G	Aluminum - Graphite/Epoxy Cloth	Sealed	58	99
н	Aluminum - Graphite/Epoxy Cloth	Tin Plated, Sealed	49	96
M	Graphite/Epoxy Cloth - Graphite/ Epoxy Cloth	None (DLS)	50	4
К	Graphite/Epoxy Cloth - Graphite/ Epoxy Cloth	Bonding Strip, Sealed	37	55
J	Graphite/Epoxy Cloth - Graphite/ Epoxy Cloth	Sea led	10	68
С	(4) Atuminum		99	99
D	(4) Tin Plated, Graphite/E	Epoxy Cloth	95	89
A	(4) Graphite/Epoxy Tape		80	71
В	(4) Graphite/Epoxy Cloth		70	79

NOTES:

- I. All panels show relationship to best panel whose value is 100
- 2. E (electric field)
- 3. H (magnetic field)
- 4. One piece panels (no seams)
- 5. Single lap shear (SLS) unless otherwise indicated
- 6. The seals are a formed-in-place rubber gasket used to prevent water leaks

PANEL JOINT IMPEDANCE TESTS

- FREQUENCIES FROM 14 KHz TO 500 KHz RESISTANCE/IMPEDANCE AT **MEASURED JOINT BONDING** (FIGURE 7)
- **TESTED SOLID AND JOINTED PANELS** (TABLE 3)
- **BULK MATERIAL TABULATED (TABLE 4)** RATIO OF IMPEDANCES OF JOINT TO
- TIN SPRAYING AT THE JOINT INTERFACE IMPROVED RATIO

ADJACENT GRAPHITE/EPOXY AND ALUMINUM LIGHTNING ATTACHMENT CHARACTERISTICS

JOINT IMPEDANCE TEST PANEL LIST

RATIO OF IMPEDANCES

		0°C	Ratio of	Joint-Impe	dance to Bu	Ratio of Joint-Impedance to Bulk Material
		RESISTANCE				
PANEL	TYPE	(OHMS)	14 KHZ	42 KHz	112 KHz	500 KHz
ω	G/E Cloth	0.03	0.1	0.	0	0•1
ပ	Aluminum	0.0	0 -	0	0•	0*1
ၒ	G/E-Alum SLS	0.013	2.3	2.4	2.1	2.8
I	G/E-Alum SLS	0.01	0 -	0-1	0.1	0.1
, ,	AI-G/E SLS	0.03	7.0	10.4	5.9	8-
Σ	G/E DLS	0.41	42.5	42.5	42.5	30.0
a	G/E-Alum SLS	0.013	0.1	0.1	0•-	0-1
œ	G/E SLS	0.012	0	0.1	0.1	0.

FUSELAGE SHIELDING

- AVIONICS BAY FOR METAL AND G/E BOXES (FIGURE 8) COMPARED INDUCED VOLTAGES IN TYPICAL
 - TESTS CONDUCTED FROM 14 KHz TO 18 GHz
- TESTS CONDUCTED WITH IDENTICAL WIRE BUNDLES, LOAD TERMINATIONS, AND ROUTING LOCATION (FIGURE 9)
 - (TYPICAL RESULTS SHOWN IN FIGURES 10 AND 11) OVER 100 DIFFERENT TEST CONFIGURATIONS
- TEST OF SIMULATED FUSELAGE STRUCTURE WITH ACCESS PANEL (FIGURE 12)
- BOTH ALUMINUM AND G/E ARE DOMINANT FACTOR IN SHIELDING EFFECTIVENESS. LITTLE DIFFERENCE CONCLUSION: LEAKAGE EFFECTS OF JOINTS FOR BETWEEN G/E AND ALUMINUM SHIELDING EFFECTIVENESS

FORWARD FUSELAGE EMI TEST ARTICLE

GP03-0153-10

Graphite/Epoxy Test Box and Aluminum Test Box

130

INDUCED VOLTAGE ON SINGLE WIRE, 1 VOLT/METER FIELD

INDUCED VOLTAGE ON TWISTED PAIR, 1 VOLT/METER FIELD

SHIELDING OF ALUMINUM AND COMPOSITE FIXTURES RELATIVE TO EXPOSED GROUND RETURN WIRE

Simulated Forward Fuselage Structure with Access Panel

Test Setup

134

SHIELDING EFFECTIVENESS OF AIRCRAFT STRUCTURES AGAINST MAGNETIC FIELDS

TYP. METALLIC AIRCRAFT STRUCTURE

.-- TYP. CFRP AIRCRAFT STRUCTURE

STATIC WING SHIELDING TESTS

- **USED A FULL SIZE YAV-8B WING ASSEMBLY WITH** TERMINATION BOX AT THE WING TIP (FIGURE 13)
- COMPARED INDUCED VOLTAGES FOR WIRES LOCATED **UNDER THE METAL LEADING EDGE AND UNDER THE** G/E TORQUE BOX SECTION OF THE WING
- 14 KHz TO 100 MHz AND ANACHOIC CHAMBER AT **TESTS CONDUCTED IN OUTDOOR OPEN AREA AT** 200 MHz TO 18 GHz (FIGURES 15 & 14)
- TESTS SHOWED G/E PROVIDES HIGH DEGREE OF SHIELDING; LITTLE DIFFERENCE IN INDUCED **VOLTAGES ON SEPARATE WIRES**

(A) ANTENNA, (B) FIELD METER, (C) WING, (D) INSTRUMENTATION BOX

EMI TEST SETUP IN ANECHOIC CHAMBER (A) ANTENNA, (B) FIELD METER, (C) WING

ANTENNA PERFORMANCE TESTS

- PATTERN, GAIN, AND VSWR TESTS CONDUCTED
- **USED VARIOUS TEST CONFIGURATIONS TO DETERMINE** CONFIGURATION, AND TYPE OF ANTENNA MOUNT EFFECTS OF COMPOSITES, GROUND PLANE
- **USED VHF AND TACAN BLADE ANTENNAS AT 400 MHz** AND 1 GHz AND A RADAR BEACON STUB ANTENNA AT 10 GHz
- ONLY SMALL PATTERN AND GAIN CHANGES OBSERVED REGARDLESS OF GROUND PLANE OR BASE MOUNTING
- **VSWR TESTS SHOWED SLIGHT CHANGES IN GAIN** DUE TO SLIGHT CHANGES IN INPUT IMPEDANCE

INTERMODULATION EFFECTS

CONCERN WITH INTERMODULATION PRODUCED BY GRAPHITE FIBERS IN **EFFECTS (NONLINEAR JUNCTION)** THE COMPOSITE MATRIX

FOUND (NO HARMONICS GENERATED) FROM HIGH CURRENT LEVEL TESTS NO INTERMODULATION EFFECTS

LIGHTNING EFFECTS

MESH, OR OTHER CONDUCTIVE LAYERS NEEDED TO SPREAD AND DISSIPATE THE LIGHTNING ENERGY POINT. THIN METALLIC COATINGS, SCREEN WIRE **NO DAMAGE EXCEPT IN AREA OF ATTACHMENT**

ATTACHMENT ZONES FOR PARTIALLY COMPOSITE VEHICLE CAN BE DETERMINED FROM TESTS ON A METAL MODEL

ATTACHMENT POINT BEHAVIOR BETWEEN METAL & *TESTS SHOWED NO MEASURABLE DIFFERENCE IN* G/E STRUCTURE (FIGURE 16)

CIRCUIT AND PROBE ATTACHMENT POINTS

OVERALL FINDINGS

ELECTROMAGNETIC SHIELDING FOR G/E AIRCRAFT STRUCTURE CAN BE DESIGNED TO PROVIDE ADEQUATE **AVIONICS AND ELECTRICAL** SUBSYSTEMS NO ELECTROMAGNETIC G/E ISSUE HAS HANDLED IN NORMAL AIRCRAFT BEEN FOUND THAT CANNOT BE DESIGN

AV-8B COMPOSITE FORWARD FUSELAGE DEVELOPMENT PROGRAM

MDC REPORT A6398 (MAY 1980) - CONTRACT NO0019-76-C-0666

- **ASSESSED LIGHTNING PROTECTION DESIGN** REQUIREMENTS FOR
- FORWARD FUSELAGE STRUCTURE
- AIRFRAME DOORS & PANELS
- ANTENNAS
- SENSOR PROBES
- **FORMATION LIGHTS**
- ELECTRICAL POWER
- AVIONICS

G/E PANELS AND COUPONS WITH BOLTED JOINTS

THRESHOLD FOR STRENGTH DEGRADATION APPROX 20KA/INCH OF G/E WIDTH FOR PULSED PORTION OF LIGHTNING STROKE AND 150A FOR CONTINUING **CURRENT PHASE (FIG 6-61 & 6-62)** BOLTED JOINTS CAN CARRY RESTRIKE CURRENT AND ARE REMOVABLE WITHOUT HAVING TO DRILL OUT SCREWS

PREVENT LIGHTNING PENETRATION OF G/E TEST CONDUCTIVE SURFACE COATING REQUIRED TO SPECIMENS (FIG 6-65)

SIMPLIFIED BLOCK DIAGRAM OF LIGHTNING TEST SETUP

ELECTRICAL POWER

LIGHTNING COUPLING MECHANISMS: DIRECT ATTACHMENT TO WIRING (LIGHTS, PROBES, ETC.)

MAGNETIC INDUCTION (FIG 6-63)

COMMON MODE INJECTION (FIG 6-64)

PROTECTION REQUIREMENTS:

DEDICATED WIRES USED AS POWER RETURNS INSTEAD OF STRUCTURE

INSTALLATION OF LIGHTNING ARRESTORS AT REMOTE POINTS OF POSSIBLE LIGHTNING ENTRY (LIGHTS, PROBES, ETC.)

MAGNETIC COUPLING OF LIGHTNING TO A RECEPTOR

COMMON MODE LIGHTNING COUPLING TO A RECEPTOR

BOEING STUDY PROGRAM

SYSTEMS FROM ATMOSPHERIC ELECTROMAGNETIC HAZARDS (AF CONTRACT F33615-79-C-2006) PROTECTION OF ADVANCED ELECTRICAL POWER

PHASE

TASK 1 - THREAT ASSESSMENT

TASK 2 - EVALUATION OF NORMAL DESIGN FOR INHERENT HARDNESS

TASK 3 - ADD-ON PROTECTION DEVICE EVALUATION

PHASE II

· TASK 4 · DESIGN GUIDE

TRADE STUDY SUMMARY OF LIGHTHING PROTECTION TECHNIQUES

ENT NA T NAT NAT NAT NAT NAT NAT NAT NAT	## OF ADDIT PROTECTION RE AND TRAMS IGNT 1	OUIRED LEVEL 1 J HIL FOIL ON-
	S KV AT R BUS KV KV AT K BUS KV KV AT K BUS KV	1

PREFERAED, DUE 10: 1. SREATEST PROTECTION
 2. MEIGHT
 3. RELIABILITY AND COST

CONCLUSIONS

- PROTECTED BY A COMBINATION OF STRUCTURAL SHIELDING, WIRE SHIELDING, AND VOLTAGE **ELECTRICAL POWER SYSTEMS IN COMPOSITE** STRUCTURE AIRCRAFT CAN BE ADEQUATELY SUPPRESSION DEVICES
- HE IMPACT OF LIGHTNING ON ADVANCED COMPOSITE SYSTEMS MUST BE ASSESSED EARLY IN THE DESIGN MATERIALS AND ADVANCED ELECTRICAL POWER PHASE FOR NEW AIRCRAFT
- HARDWARE TESTING OF PROTOTYPE SYSTEMS SHOULD BE CONDUCTED TO VERIFY THE **ASSESSMEN**

REFERENCES

- 1. COMPOSITE MATERIAL AIRCRAFT ELECTROMAGNETIC PROPERTIES AND DESIGN GUIDELINES, ARC REPORT NO. 50-5779, JANUARY 1981 (CONTRACT N00019-79-C-0634)
- ELECTROMAGNETIC EFFECTS OF (CARBON) COMPOSITE MATERIALS UPON AVIONICS SYSTEMS, AGARD CONFERENCE PROCEEDINGS NO. 283, LISBON, PORTUGAL, 16·19 JUNE 1980 તં
- OF GRAPHITE EPOXY STRUCTURES FOR ELECTRICAL PERFORMANCE AND MAINTAINABILITY, FIFTH CONFERENCE ON FIBROUS C. D. SKOUBY AND G. L. WEINSTOCK, TECHNIQUES IN THE DESIGN COMPOSITES IN STRUCTURAL DESIGN, NEW ORLEANS, LOUISIANA, က
- AV-8B COMPOSITE FORWARD FUSELAGE DEVELOPMENT PROGRAM (FINAL REPORT), MDC REPORT NO. A6398, MAY 1980 (CONTRACT N00019-76-C-0666) 4
- PROTECTION OF ELECTRICAL SYSTEMS FROM EM HAZARDS, BOEING REPORT NO. D180-26154-2 (FINAL REPORT) AND D180-26154-3 (DESIGN GUIDE), OCTOBER 1981 (CONTRACT F33615-79-C-2006) AFWAL-TR-81-2117 and 2118 S.
- F. W. TORTOLANO, HYBRID COMPOSITES, DESIGN NEWS, SEP 21, 1981 တ်

STRUCTURAL APPLICATION OF COMPOSITE MATERIALS AND THE DIRECT EFFECTS OF LIGHTNING STRIKES

by

Mr. William E. Howell

Langley Research Center
National Aeronautics and Space Administration

The direct effects of lightning strikes on composite materials and protection approaches will be described. Approaches to EMI shielding which maintain weight advantage and structural integrity over the life of the airframe will be discussed.

SCOPE OF PRESENTATION

- O ADVANCED COMPOSITE MATERIALS
- O APPLICATIONS IN AIRCRAFT STRUCTURES
- O LANGLEY'S RESEARCH ON DIRECT EFFECTS OF LIGHTNING ON COMPOSITE STRUCTURES

MATERIAL PROPERTIES

		PROPE	ŔŢĬĔŜ		
MATERIAL	STRENGTH, KSI	MODULUS, X 10 ³ KSI	DENSITY, LB/IN. ³	RESISTIVITY, OHM-CM	COST \$/LB
GRAPHITE-EPOXY	110-225	18	0.055	0.9-1.1x10 ⁻⁴	30
KEVLAR-EPOXY	75-270	11	0.050	•	15
GLASS-EPOXY	<i>7</i> 5-200	6	0.070	•	10
ALUMINUM	55	10	0.101	2.8x10 ⁻⁶	2

DIELECTRIC MATERIAL (NON-CONDUCTOR)

GRAPHITE-EPOXY SPOILERS FOR 737 COMMERCIAL FLIGHT SERVICE

FLIGHT SERVICE EVALUATION OF PRD-49/EPOXY PANELS ON LOCKHEED L-1011 AIRCRAFT .

ACEE COMPOSITE SECONDARY STRUCTURES

DOUGLAS DC-10 COMPOSITE RUDDER

LOCKHEED L-1011 COMPOSITE AILERON

BOEING 767 COMPOSITE STRUCTURE APPLICATIONS

LIGHTNING PROTECTION SYSTEM FOR 727 ELEVATOR

AIRCRAFT STRIKE ZONES

LIGHTNING EFFECTS ON COMPOSITE STRUCTURES

EXAMPLE PROTECTION SYSTEMS

- O FLAME SPRAYED ALUMINUM
- o ALUMINIZED GLASS (THORSTRAND®)
- O ALUMINUM STRIPS/TAPE
- O METAL SCREEN OR WIRE MESH

CERTIFICATION CURRENT TEST WAVEFORM COMPONENTS
FOR
EVALUATION OF DIRECT EFFECTS

F-106B COMPOSITE FIN TIPS

- O KEVLAR-EPOXY WITH THORSTRAND®
- O GRAPHITE/EPOXY WITHOUT PROTECTION
- O GRAPHITE/EPOXY WITH FLAME SPRAYED ALUMINUM
- O KEVLAR/EPOXY WITH FLAME SPRAYED ALUMINUM

EFFECT OF LIGHTNING ON KEVLAR/EPOXY WITH THORSTRAND

1_p 105 kA

ACTION INTEGRAL = 0.82 x 10⁶ A².s

 $\tau_p = 96 \text{ kA}$ ACTION INTEGRAL = 0.47 x 10⁶ A²-s

CONCLUDING REMARKS

- O COMPOSITES EXHIBIT STRUCTURAL ADVANTAGES COMPARED TO METALS
- O EXCELLENT IN-SERVICE PERFORMANCE AND MAINTENANCE EXPERIENCE HAVE BEEN ACHIEVED WITH OVER 150 COMPOSITE COMPONENTS DURING 8 YEARS AND OVER 2 MILLION HOURS OF FLIGHT SERVICE WITH NO SIGNIFICANT DAMAGE FROM LIGHTNING STRIKES
- O EFFECTS OF LIGHTNING ON COMPOSITE MATERIALS AND LIGHTNING PROTECTION SYSTEMS ARE BEING EVALUATED
- O GROUND AND FLIGHT DATA BASE IS BEING DEVELOPED FOR THE ELECTRICAL SAFETY OF AIRCRAFT

LIGHTNING INTERACTION ANALYSIS

by

Dr. Karl S. Kunz

Kunz Associates, Incorporated

Description of lightning interaction analyses and how they are performed including lightning model, aircraft geometry, interior equipment and cable layout, and modeling of interconnecting system. Sample direct strike problem and (generic) expected results. Overview of mathematical basis used in interaction analysis and description of finite difference method.

WHAT IS A LIGHTNING INTERACTION ANALYSIS -

- A MATHEMATICAL TREATMENT OF THE PROPAGATION OF ELECTROMAGNETIC ENERGY FROM A LIGHTNING BOLT TO AN AIRCRAFT AND ON INTO SUSCEPTIBLE INTERIOR EQUIPMENT
- USES EXPERIMENTALLY DETERMINED CHARACTERISTICS
 AS THE INPUTS OF MATHEMATICAL MODELS
- PREDICTS RESPONSE LEVELS (VOLTAGE AND CURRENT) AT THE INPUTS (PINS) OF SUSCEPTIBLE EQUIPMENT
- · ALLOWS UPSET/DAMAGE/FAILURE ASSESSMENTS TO BE MADE FOR THE SUSCEPTIBLE EQUIPMENT

WHY A LIGHTNING INTERACTION ANALYSIS AND NOT JUST EXPERIMENT -

- · EXPANDS ON EXPERIMENT
 - SOURCE VARIATIONS, AIRCRAFT MODIFICATIONS AND EQUIPMENT CAN BE ACCOMODATED
- · INCREASES UNDERSTANDING
 - MODELING INCREASES UNDERSTANDING AS MODELS ARE REFINED AND MADE MORE ACCURATE
- · EFFECTIVE
 - ANALYSIS CAN BE QUICKLY AND INEXPENSIVELY PER-FORMED, WHILE ADEQUATE ACCURRACY IS MAINTAINED

HOW IS A LIGHTNING INTERACTION ANALYSIS PERFORMED -

- DEFINE SOURCE (DIRECT STRIKE, RADIATED FIELDS, ETC.), AIRCRAFT (707, 747, ETC.) AND POSSIBLY SUSCEPTIBLE EQUIPMENT (RADAR, NAVIGATIONAL EQUIPMENT, ETC.)
- OBTAIN RELEVANT EXPERIMENTAL DATA, SUCH AS
 - LIGHTNING TIME BEHAVIOR OR SPECTRUM
 - AIRCRAFT GEOMETRY AND CONSTRUCTION
 - INTERIOR EQUIPMENT AND CABLE LAYOUTS
 - ELECTRICAL PARAMETERS (CABLE SIZE, SHIELDING, IMPEDANCE, TERMINATIONS, ETC.)
 - DEVICE UPSET/DAMAGE/FAILURE THRESHOLDS AND MECHANISMS
- MODEL THE INTERCONNECTED SYSTEM OF SOURCE, AIRCRAFT AND EQUIPMENT
- SELECT A MATHEMATICALLY TRACTABLE REALIZATION OF THE MODEL
- CHECK THE MATHEMATICAL MODEL FOR COMPLETENESS AND VALIDITY (COMPARE PREDICTIONS WITH KNOWN EXPERIMENTAL RESULTS)
- PREDICT RESPONSES AT THE SELECTED SUSCEPTIBLE EQUIPMENT
- * EXAMINE SENSITIVITY TO PARAMETER VARIATIONS (OPTIONAL "SAFETY" MEASURE)

AIRCRAFT DETAILS

Typical elements and cabling associated with the aircraft power system.

Elementary volumes within the aircraft.

CABLE DETAILS

CABLE TYPES (TRANSMISSION LINES)

	COAXIAL
	TRIAXIAL
	MULTIAXIAL
•	Twinaxial
•	OPEN LINES
	• STRIPLINE
	MICROSTRIP
	■ TWO-WIRE ● ●
	■ EDGESTRIP - →
	■ EDGEWIRE ●
	•

MATHEMATICAL REALIZATION -

- * GENERAL REQUIREMENTS
 SOURCE X EXTERIOR RESPONSE X PENETRATION X INTERIOR RESPONSE X SHIELDING EFFECT = RESPONSE AT "PIN"
- * EXTERIOR RESPONSE X PENETRATION X INTERIOR RESPONSE MOST DIFFICULT PART
- POSSIBLE APPROACHES (MAY BE COMBINED WITH TRANSMISSION LINE THEORY, BETHE SMALL HOLE THEORY, MULTIPLE RUNS, ETC.)
 - SIMPLE CANONICAL SHAPES
 - MoM THIN WIRE TYPE CODES (EFIE)
 - PATCH CODES (MFIE)
 - FINITE DIFFERENCE TECHNIQUES

CANONICAL SHAPES

$$z=h$$
 $z=h$
 $z=h$
 $z=h$
 $z=h$
 $z=h$
 $z=h$
 $z=h$
 $z=h$

Plane wave broadside incident on a prolate spheroid.

Diagram of flat plate crossed with an electrically thick cylinder.

WIRE MODEL/BOR'S

Stick (intersecting cylinders) model of the B-l aircraft in the wings-forward and wings-swept configurations.

Body-of-revolution model of the EC-135 aircraft. Current zones are indicated with dotted lines.

MoM

Some Computational Aspects of Thin-Wire Modeling

FINITE DIFFERENCE METHOD -

- * BASED ON BRUTE FORCE TIME STEPPING OF MAXWELL'S EQUATIONS
- INCORPORATES ANY MATHEMATICALLY EXPRESSIBLE SOURCE, I.E. $I(t) = e^{-\alpha t} - e^{-\beta t}$
- ACCURATE EXTERIOR RESPONSE PREDICTIONS
- * WITH EXPANSION TECHNIQUE CAN, ALSO, PERFORM INTERIOR RESPONSE PREDICTIONS AT REASONABLE COST
- CAN HANDLE COMPOSITES, AS WELL AS METAL AIRCRAFT **PANELS**

DEFINITION OF THE FINITE DIFFERENCE APPROACH

Finite differencing consists of replacing continuous partial derivatives in P.D.E.'s with appropriate finite differences. For example:

$$\partial y \rightarrow \Delta(y_n) = y_{n+1} - y_n$$
; $\partial^2 y \rightarrow \Delta[\Delta(y_n)] = y_{n+2} - 2y_{n+} + y_n$; etc.

Finite differencing discritizes the P.D.E. and, hence, the problem being solved, i.e.

Finite differencing is, therefore, an approximation that in the limit of zero mesh size is exact.

Finite differencing does <u>not</u> require any special model of the problem to facilitate a solution, just the appropriate P.D.E. such as:

$$\frac{1}{\alpha} \frac{\partial T}{\partial \Theta} = \nabla^2 T + Q/k \quad \text{or} \quad (\frac{\partial e_r}{\partial z} - \frac{\partial e_z}{\partial r}) = -\mu_0 \quad \frac{\partial h_\phi}{\partial t}$$

EVOLUTION OF PRECEEDING FINITE DIFFERENCE APPROACH TO EM

- The Maxwell Equations
- · Classical Boundary Value Solutions
- Introduction of Computers/Computer Oriented Numerical Analysis
- Integral Equation Approaches (EFIE and MFIE)
- · Finite Difference as presently applied to EM coupling
 - 1) feasibility of application to realistic problems -K.S. Lee - "Num. Sol. of Int. Bound. Val. Prob. Involving Maxwell's Equas. in Iso. Media", <u>IEEE Trans-actions A and P</u>, May, 1966.
 - 2) application in 2D to realistic problem with radiation boundary condition -
 - D.E. Merewether "Trans. Currents Induced on a Metallic Body of Rev. by an EM Pulse", <u>IEEE Trans-actions on EMC</u>, May, 1971.
 - 3) formulation of 3D code with radiation boundary condition R. Holland "THREDE: A Free-Field EMP Coupling and Scattering Code", Mission Research Corp., AMRCR-95, Sept., 1976.

EVOLUTION - 2

- 4) application to complex scattering object with comparison to experiment -
 - K.S. Kunz and K.M. Lee "A Three-Dim. Finite-Diff. Solu.

 to the Ext. Response of an Aircraft
 to a Complex Transient EM Environment: Part 1 -The Method and Its Implementation and Part 2 Comparison
 of Predictions and Measurements",
 IEEE Transactions on EMC, May, 1978.
- 5) expand subvolume in a second run for increased spatial and frequency resolution -
 - K.S. Kunz and L.T. Simpson "A Technique for Increasing the

 Resolution of Finite-Difference

 Solutions of the Maxwell Equations",

 IEEE Transaction on EMC

 November, 1981
- 6) generalize the 3D code to treat lossy dielectrics R. Holland, L.T. Simpson and K.S. Kunz "Finite-Difference Analysis of EMP Coupling to Lossy
 Dielectric Structures", <u>IEEE Transactions on EMC</u>,
 August, 1980.

SAMPLE PERFECTLY CONDUCTING A/C RESULTS

INCREASED RESOLUTION USING EXPANSION TECHNIQUE - A/C UNEXPANDED -

- A/C EXPANDED -

Figure 7. Expanded Run Showing Cockpit Area Detail.

Fig. B. Het - 4 Het an inhocerual

INTERIOR COUPLING APPROACH

Contiguous Skin Model of the Aircraft for Diffusion Calculations

Perfectly Conducting Aircraft with Seams

Complement of the Seam Model

Original and Conjugate/Complement Geometry -Planar Screen Example

Lightning Channel Source

Conjugate Lightning Channel Source

Finite Difference Formulation of the Complementary Aircraft Surface Showing the Half Cell Displacement and the Wire Model of the Seam Girdling the Surface

190

PIN PREDICTIONS - SINGLE MULTILAYERED CABLE

Model of aerial cables.

Model of shielded cables

- . USE F.D. TO FIND CURRENTS ALONG CABLE SHEATH, $I_{\rm b}$
- USE SURFACE TRANSFER IMPEDANCE, Z_T, AS DEFINED BY SCHELKUNOFF, TO FIND THE INTERIOR CURRENTS:

$$I_a(x) = \int_0^L G_{II}(x,x') \cdot Z_T \cdot I_b(x') dx'$$

where $G_{\mbox{\scriptsize I}\mbox{\scriptsize 1}}$ is the appropriate Green's function that incorporates the correct boundary conditions for the geometry at hand

- . EVALUATE I_a (x = L) to find the current at the pin
- EVALUATE THE VOLTAGE ACROSS THE DEVICE CONNECTED TO THE PIN, Vd, USING THE PIN CURRENT AND THE DEVICE'S IMPEDENCE Zd, i.e. Vd = Ia(x = L)Zd.

^{*}ONLY DIFFUSION THROUGH SHIELD CONSIDERED

AD-A114 117

FEDERAL AVIATION ADMINISTRATION TECHNICAL CENTER ATL--ETC F/8 1/3

A COMPENDIUM OF LIGHTNING EFFECTS ON FUTURE AIRCRAFT ELECTRONIC--ETC(U)

FEB 82 N O RASCH

DOT/FAA/CT-82/30

BL

END
FIRE
FERENCE
FERE

EXPECTED RESULTS -

- EXTERIOR RESPONSE SIMILAR TO PERFECTLY CONDUCTING A/C RESPONSES
- INTERIOR CABLE RESPONSE, WIRE EXTERIOR WEAKLY DAMPED SINUSOID, SEE BELOW
- PIN RESPONSE SIMILAR TO WIRE EXTERIOR

Interior Geometry of Expended Region

Sample of Predicted Results

SUMMARY

FEATURES

- Any fuselage exterior geometry can be modeled, including:
 - composites
 - conducting panels
 - mix of composite and metal
- ° Various coupling pathways can be modeled, including:
 - diffusion through composite panels
 - seams around panels
 - small apertures around doors/hatches/wheel wells, etc.
 - large apertures such as windows
- * Detailed interior geometries can be treated, including:
 - individual wires with various terminations
 - surrounding "fill"
 - adjacent wires to within a cell size (~0.05m or ~2" at best)
- ° Fast risetime (~30-50ns) pulses can be easily incorporated
- ° Non-linear effects can be modeled
 - attachment points can be selected based on experience, while detachment points can be selected based on fields exceeding preset thresholds
 - interior arcing can be modeled similarly

AREAS OF APPLICATION

- Exterior I and V response predictions as a function of:
 - position
 - A C construction (metal or composite or mix)
 - excitation source
 - attachment/detachment location
- ° Interior Responses
 - interior field levels
 - wire currents
 - transfer functions
- Hazard Assessment
 - induced current damage
 - field induced upset
 - fuel ignition from arcing
- ° Protection Measures Evaluation
 - field/charge and current penetration reduction (from covered seams, mesh across windows, etc.)
 - arc suppression (from cable rerouting, interior geometry changes, etc.)
 - protective device effects
 (depends on "threat" spectrum, device location, device
 operations, etc.)

INTERMITTENT/TRANSIENT FAULTS IN DIGITAL COMPUTERS

by

Dr. Gerald M. Masson

Johns Hopkins University

Need and objectives of digital system upset assessment methodology: The definition of upset. Description of approach being developed for assessing upset potential of digital systems. Upset model types and importance of burst error models; dominant importance of program transition models. Definition and use of system state probability transition matrix in upset analyses. Example of upset tolerant microcontroller.

FAULT ANALYSIS

- * FAULTS
 - PERMANENT
 - INTERMITTENT
 - TRANSIENT
 - I/T
- MODELS
 - STUCK-AT
- TESTS
 - DETECTION
 - LOCATION

FAULT TOLERANCE

- DUPLEX SYSTEMS
 - ROLLBACK
- * TMR SYSTEMS
 - ROLLAHEAD
- * DIAGNOSABLE SYSTEMS
 - INTELLIGENT UNITS

MICROPROCESSOR CONTROLLERS

* HARDWARE

- CENTRAL PROCESSING UNIT (CPU)
- READ-ONLY MEMORY (ROM)
- READ/WRITE MEMORY (RAM)
- INPUT/OUTPUT DEVICES (I/O)
- SUPPORT LOGIC

* SOFTWARE

- LOOKUP TABLES
- CHARACTERIZATION
 - I, INPUT SENSORS SCANNED
 - II. DATA PROCESSING
 - III. CONTROL SIGNALS TO ACTUATORS

FAULTS IN MICROPROCESSORS

- * CPU TESTING
- * RECOVERY STRATEGIES
 - DUPLICATION
 - TMR
 - WATCHDOG TIMER

FIGURE 1. WATCHDOG TIMER

FIGURE 2. CONTROL SYSTEM CONSIDERED ALONE

FIGURE 3. CONTROL SYSTEM SITUATED IN ITS ENVIRONMENT

FIGURE 4. CONTROL SYSTEM SITUATED IN EQUIVALENT HOSTILE ENVIRONMENT

FAULT/SYSTEM INTERACTION

- * CONTROL SYSTEM INTERACTS WITH ENVIRONMENT
- * INTERMITTENT/TRANSIENT FAULTS
 - SYSTEM "TRANSIENT" RESPONSE
 - SYSTEM "STEADY STATE" RESPONSE

FIGURE 5. CONTROL SYSTEM SITUATED IN HOSTILE ENVIRONMENT

FAULTS, ERRORS, AND UPSETS

- FAILURES
 - CIRCUIT LEVEL
 - ANALOG NATURE
- * FAULTS
 - LOGICAL LEVEL
 - DIGITAL NATURE
 - LOGICAL DIFFERENCE AT FAULT SITE
- ERRORS
 - LOGICAL LEVEL
 - DIGITAL NATURE
 - DUE TO PROPAGATION OF FAULTS
 - LOSS OF SYNCHRONIZATION PROBLEM NEW DEFINITION
- UPSETS
 - SYSTEM LEVEL
 - FUNCTIONAL NATURE
 - TRANSFER FUNCTION

CONTAINMENT SETS

- * A FINITE SET OF MUTUALLY EXCLUSIVE FUNCTIONAL STATES
- * COVERS ALL POSSIBLE SYSTEM TRANSFER FUNCTIONS
- * INCLUDES
 - VALID STATES
 - ERRONEOUS STATES

CONTAINMENT SET TRANSITIONS

TRANSITION MATRIX:

 $T=[P_{ij}]$, WHERE P_{ij} IS THE PROBABILITY OF A TRANSITION FROM STATE j TO STATE j , GIVEN THAT AN ERROR HAS OCCURRED

$$L(K+1) = T L(K) , L(K) = \begin{bmatrix} P_0 \\ P_1 \\ \vdots \\ P_n \end{bmatrix}$$

 $\mathbf{P_i}^{(K)}$ IS THE PROBABILITY OF BEING IN CONTAINMENT STATE $\mathbf{L_i}$ $\mathbf{\epsilon}$ { \mathbf{L} } AFTER \mathbf{K} UPSETS

AFTER * UPSETS,

$$L(K) = T^{K} L(0)$$

FAULT ANALYSIS AND SYSTEM VALIDATION

- * SINGLE UPSET ENVIRONMENT
 - P_{11} OF $T[P_{ij}]$ OF MAJOR CONCERN
- * MULTIPLE UPSET ENVIRONMENT
 - P $_{11}$ OF T $^{\rm K}$ FOR LARGE K OF MAJOR CONCERN
- * EXAMPLE

$$T^{\bullet} = \begin{bmatrix} 3/4 & 15/16 \\ 1/4 & 1/16 \end{bmatrix}, \qquad T^{\bullet \bullet} = \begin{bmatrix} 7/8 & 1/8 \\ 1/8 & 7/8 \end{bmatrix}$$

$$\lim_{K \to \infty} (T^*)^K = \begin{bmatrix} 15/19 & 15/19 \\ 4/19 & 4/19 \end{bmatrix}, \lim_{K \to \infty} (T^{**})^K = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

FIGURE 6. TWO 2-LOOP IMPLEMENTATIONS

FAULT TOLERANCE

- * CONTAINMENT SET AND TRANSITION MATRIX ANALYSIS PROVIDES FEEDBACK
 TO IMPROVE DESIGNS
- * REMOVAL OF ERRONEOUS ELEMENTS FROM THE CONTAINMENT SET

 AUTOMATICALLY PROVIDES FAULT TOLERANCE

CONTAINMENT SET FOR MICROPROCESSORS

- PROGRAM TYPES
 - EXITING
 - LOOPING
- * TAKE THE CONTAINMENT SET TO CONSIST OF ALL POSSIBLE LOOP PROGRAMS
 - INCLUDES VALID LOOPS
 - INCLUDES ERRONEOUS LOOPS

GIVEN THE EXECUTION OF LOOP PROGRAM $\mathbf{L_i} \in \{\mathbf{L}\}$, upsets can BE CHARACTERIZED AS:

- (1) DATA CHANGE -DATA VALUES ARE MODIFIED, BUT EXECUTION REMAINS IN L;
- (2) PROGRAM BUMP -- EXECUTION TEMPORARILY DIVERGES FROM $\mathbf{L_i}$ BUT EVENTUALLY RETURNS TO $\mathbf{L_i}$
- (3) PROGRAM TRANSITION -- EXECUTION JUMPS FROM L_i TO L_j , $L_i \neq L_j$

PROGRAM TRANSITION = STEADY STATE OPERATIONAL DEVIATION TRANSITION INTO INVALID EMBEDDED LOOP = SYSTEM CRASH

	<u>ADDRESS</u>	<u>CONTENTS</u>
NORMAL EXECUTION	N	OP-CODE
ERRONEOUS EXECUTION	N+1	DATA
NORMAL EXECUTION	N	OP- CODE
ERRONEOUS EXECUTION	N+1	DATA O
ERRONEOUS EXECUTION	N+2	DATA 1
ERRONEOUS EXECUTION	N	DATA YABLE
ERRONEOUS EXECUTION	N+1	DATA TABLE
•	•	•
•	•	
•	•	•

FIGURE 7. ERRONEOUS LOOP INSTRUCTION EXECUTION

		1				
Result	Addr	Data	LO Code	L1 Code	L2 Code	Other
L0	0000	00				NOP
•	•	•				•
•	•	•				•
•	•	•				•
L0	00C9	00	_			NOP
L0	OOCA	3E	→MVI A,0C3H	_		
L1	OOCB	C3	1	→JMP OD3H		
LO	00CC	D3	OUT 0	1 1		
LO	00CD	00	1	1 1		NOP
LO	OOCE	22	LXI H, OCFC3H	!		
L2	OOCF	C3	i	1 1	→JMP OCFH	
LO	00D0	CF		1 1	1 1	rst 1
LO	00D1	00	NOP	1 1	1 1	
LO	00D2	32	STA OCBC3H	i v	L	
Ľ1	00D3	C3		JMP OCBH		
LO	00D4	CB	1	1		rstv
LO	00D5	00	NOP	L		
LO	DOD6	C3	JMP OCAH			
LO	00D7	CA				JZ O
LO	00D8	00	L			NOP
20	7025	. ••				
LO	0009	00				NOP
•	•	. •				•
•						•
•		•	•			•
LÒ	OOFE	00				HOP
LO	OOFF	Č7				RST 0
		- '				

Figure 8. An Erroneous Loop Example for the 8085

FIGURE 9. CONTROLLER WITH CONTAINMENT HARDWARE

PROGRAM PATH DIVERTERS

- * HARDWARE
 - CLOCK STOP
 - HALT
 - READY
 - HOLD
 - INTERRUPTS

- * SOFTWARE
 - JUMP CATEGORY INSTRUCTIONS
 - CALL CATEGORY INSTRUCTIONS
 - RETURN CATEGORY INSTRUCTIONS
 - (+ EFFECTS OF "UNDEFINED"

INSTRUCTIONS)

** A PROGRAM STRUCTURAL ANALYSIS IS MADE BASED ON PATH DIVERTERS **

FIGURE 10. LOOP STRUCTURES

FAULT TOLERANT CONTROLLER DESIGN RULES

* HARDWARE

- CONTINUOUS CLOCK
- UNCONDITIONAL INSTRUCTION EXECUTION (OP-CODE FETCH DETECTION)
- BAD FETCH DETECTOR
 (ROM RESTRICT MECHANISM)
- OPTIONAL SAFE ROM
- REQUIRES 2-3 INTEGRATED CIRCUITS

TABLE I

CRASH-PROOF SOFTWARE DESIGN RULES SUMMARY

- 1. PROGRAM EXECUTION FROM RAM IS PROHIBITED.
- 2. EXIT FROM TEMPORARY LOOPS MUST BE GUARANTEED.
- 3. STABLE LOOPS MUST INCLUDE A CALL TO A CHECK SUBROUTINE, WHICH GUARANTEES ALL ASSUMPTIONS THE PROGRAM REQUIRES FOR CONTINUED EXECUTION. (THESE INCLUDE ASSUMPTIONS ON 1/0, INTERRUPTS, AND VARIABLES.)
 - 4. RETURN FROM ALL POSSIBLE INTERRUPTS MUST BE GUARANTEED.
 - 5. SUBROUTINES CANNOT CALL THEMSELVES.
 - 6. SUBROUTINES CANNOT MODIFY THE STACK POINTER OR THE RETURN ADDRESS.
- 7. WITHIN SUBROUTINES, MEMORY STORE INSTRUCTIONS WHICH PERMIT A VARIABLE STORE ADDRESS MUST GUARANTEE THAT THE REGISTER USED AS THE ADDRESS POINTER CANNOT POINT TO THE STACK SPACE.
- 8. INSTEAD OF USING RET OR RCN INSTRUCTIONS, A JMP OR JCN TO A SPECIAL RETURN ROUTINE WHICH GUARANTEES THAT THE STACK POINTER POINTS WITHIN THE STACK SPACE BEFORE RETURNING MUST BE USED. (THE RETURN ROUTINE CONTAINS THE ONLY RET INSTRUCTION IN THE ENTIRE PROGRAM.)
- 9. A STACK WALL MUST BE ADDED. (LEAVE UNUSED ROM SPACE AS 00 OR FF.)
- 10. THE PCHL INSTRUCTION CANNOT BE USED.
- 11. EITHER A SAFE ROM MUST BE USED, OR ALL ERRONEOUS LOOPS AND ERRONEOUS CALLS TO ADDRESSES WHICH, WHEN CONSIDERED TO BE SUBROUTINES, DO NOT SATISFY EITHER RULE 5, 6, 7, OR 8 MUST BE REMOVED.

FAULT TOLERANT CONTROLLER TEST SYSTEM

- * NOISY POWER SUPPLY TEST SOURCE
- * DUAL LED CONTROLLERS
- * UNMODIFIED SOFTWARE
 - LED 1.1
 - LED 4.6
- * CRASH-PROOF SOFTWARE
 - LED 2.2
 - LED 3.3
 - LED 3.4
 - LED 5.2
 - OVERHEAD

LED 2.2/LED 1.1 = 8.5 %

LED 5.2/LED 4.6 = 14 %

LED 3.3/LED 2.2 = 35 %

LED 3.3/LED 1.1 = 47 %

SOFTWARE TOOLS

- * DESIGN AIDS FOR FAULT TOLERANCE IMPLEMENTATION
- * INTERACTIVE USE PROVIDES EFFECTIVE AND EFFICIENT DESIGN
- * SAFE
 - PRODUCES SAFE ROM CONTENTS FROM SOURCE CODE
 - OUTPUT USED AS INPUT TO LOOP
- LOOP
 - LOCATES BANNED PROGRAM STRUCTURES
 - LOCATES ERRONEOUS LOOPS
 - PROVIDES CHECK ON INTENTIONAL LOOPS

LOOP ANALYSIS OF LED 1.1, FAGE 1

```
% LOOP LED1.1.0BJ LED1.1.SAFE
LOOF SEARCH? Y
ONLY VALID (V,v) OR ERRONEOUS (E,e) ? E'
LOOP: ERRONEOUS
OFF F5 PSH PSW
OOFC 00 NOP
OOFD C3 F3 00 JMP 00F3
OOF3 05 DCR B
OOF4 CB RZ
LOOP SEARCH? N
LIST CALLE? Y
ONLY VALID (V.V) OR ERRONEOUS (E.E) ? E.
LOOP: ERRONEOUS
036D FC 07 FB CM F807 [I/O]
 LOOP: ERRONEOUS
0395 FC OF FE CM FEOF
                                                                             [1/0]
LOOP SEARCH? N
LIST CALLS? N
LIST MEMORY STORES? Y
ONLY VALID (V,v) OR E:RRONEOUS (E,e) ? V
LOOP: VALID
DD6A 77 MOV M.A
LOOP: VALID
                                         INR M
LOOP: VALID
                                        MVI M. 00
*** MAIN AND SWTCH SET AS ERRONEOUS ***
X LOOP LED1.1.0BJ LED1.1.SAFE
LOOP SEARCH? Y
ONLY VALID (V,v) OR ERRONEOUS (E,c) ? V
LOOP: VALID
DOPD CD EB 01 CALL D1FH
D0AD 0D DCR C
00A1 C2 9D 00 JNZ 609D
LOOP: VALID
00F3.05
00F4 C8
00F5 23
00F6 7E
00F7 23
                                        DCR E
RZ
INX H
                                        MÔÛ Â,M
INX H
CPI FO
JNZ OO!
JMP OO!
00F6 FE F0
00FA C2 F5 00
00FD C3 F3 00
                                                     F0
00F5
00F3
LOOP: VI
00F5 23
00F6 7E
00F7 23
               VALID
                                        INX H
MOV A.M
INX H
00FB FE F0
00FA C2 F5 00
                                        CPI
JNZ
                                                     F'0
00F5
LOOF: VALID
00F3 05
00F4 CB
                                        DCR 8
RZ
00F5 23
00F6 7E
                                        ÎÑX H
MOV A,M
```

TABLE II LED Program Comparisons

Features	* Functional	* Functional * Crash-proof	* Functional * Crash-proof with SAFE ROM * State encode	* Functional * Crash-proof * State encode	* Functional	* Functional * Crash-proof
Bytes (Dec)	955	1036	1399	1400	922	1049
Bytes (Hex)	03BB	040C	0577	0578	039A	0419
Program	LED 1.1	LED 2.2	LED 3.3	1.ED 3.4	LED 4.6	LED 5.2

CONCLUS I ONS

- * DIRECT APPLICATION TO MICROPROCESSOR CONTROLLERS
- TRADE-OFFS
- MEASUREMENTS
- COMPARISON WITH WATCHDOG TIMER
- LANGUAGE CONSIDERATIONS

ASSEMBLY LANGUAGE

COMPILED LANGUAGES

INTERPRETIVE LANGUAGES

- CPU SELECTION REQUIREMENTS AND ARCHITECTURAL RECOMMENDATIONS

ROM RESTRICT MECHANISM

TEST MODES

UNDEFINED OP-CODES

- * APPLICATION TO LARGE COMPUTER SYSTEMS
- MONITORS
- DIAGNOSABLE SYSTEMS
- THEORY EXPANSION

A MICROPROCESSOR-BASED UPSET TEST METHOD

by

Ms. Celeste M. Belcastro

Langley Research Center
National Aeronautics and Space Administration

Description of a microprocessor-based upset testing method employing transient waveforms randomly injected into a digital unit. Upset test data presented along with preliminary observations.

OUTLINE

- BACKGROUND
- RESEARCH OBJECTIVES OF UPSET TESTING
- UPSET TEST DESIGN CRITERIA
- UPSET TEST HARDWARE IMPLEMENTATION
- PRELIMINARY OBSERVATIONS.
- FUTURE PLANS

INDUCED EFFECTS TESTING LEVELS

• SYSTEM AND SUBSYSTEM ASSESSMENT -

CABLE EXCITATION

- CHANGING MAGNETIC FIELD IN A COUPLING TRANSFORMER
- TRANSVERSE ELECTROMAGNETIC WAVES GENERATED ON PARALLEL-PLATE TRANSMISSION LINES
- INDIVIDUAL UNIT ASSESSMENT ~

INTERFACE CIRCUIT INJECTION

• DIRECT APPLICATION OF TRANSIENT WAVEFORMS TO PIN CONNECTIONS

RESEARCH OBJECTIVES

- SHORT RANGE
 - DEVELOP A METHODOLOGY TO TEST A DIGITAL SYSTEM FOR UPSETS
- LONG RANGE
 - CHARACTERIZE UPSET PHENOMENA
 - DEVELOP DIGITAL FAULT SIGNATURES THAT MODEL UPSETS
 - ' DIAGNOSTIC EMULATION
 - UPSET VULNERABILITY ASSESSMENT

UPSET TEST CRITERIA

- CHOOSE A CANDIDATE PROCESSOR/CONTROLLER
- INJECT TRANSIENT SIGNALS RANDOMLY
 - ENHANCE SIMULATION
 - AVOID SYNCHRONIZATION
- IDENTIFY PROCESSOR'S INTERNAL STATE WHEN INJECTION OCCURS
 - DETERMINE IF UPSET OCCURS INDEPENDENTLY
 OF PROCESSING STATE
- VARY THE TRANSIENT SIGNAL INJECTION POINT
 - DETERMINE IF UPSET SUSCEPTIBILITY
 IS UNIFORM THROUGHOUT THE
 PROCESSING SYSTEM
- OBTAIN BIT PATTERNS
 - DEVELOP FAULT SIGNATURES

CANDIDATE PROCESSOR/CONTROLLER

INTEL PP UNIT -

PROGRAMMING HIERARCHY

PROGRAMMER

8080 INSTRUCTION SET
(244 INSTRUCTIONS)

PROGRAM

OPERATION CODE (OP-CODE)

8080 µP

INSTRUCTION CYCLES

MACHINE CYCLES (IDENTIFIED BY STATUS BITS)

STATES

CLOCK CYCLES (Ø2)

MICROPROCESSOR MACHINE CYCLES

TYPE OF MACHINE	STATUS BITS						NO. OF CLOCK CYCLES		
CYCLE	ŞΖ	<u>\$6</u>	<u>\$5</u>	<u>\$4</u>	<u>\$3</u>	\$2	\$1	\$0	
INSTRUCTION FETCH	1	0	1	0	0	0]	0	4 OR 5
MEMORY READ	1	0	0	0	0	0	1	Ŋ	3
MEMORY WRITE	0	0	Ó	0	0	0	0	0	3 OR 4
STACK READ	1	0	0	0	0	1	1	0	3
STACK WRITE	0	0	0	0	0	1	0	0	3
INPUT	0	1	0	0	0	0	1	0	3
OUTPUT	0	0	0	1	0	Ò	0	0	3
INTERRUPT	0	0	1	0	0	0	1	1	. 5
HALT	1	0	0	0	1	0	1	0	3x
INTERRUPT WHILE HALT	0	0	1	0	1	0	1	1	5 '

LIGHTNING INDUCED EFFECTS WAVEFORMS

- DAMPED SINUSOID
- DECAYING EXPONENTIAL

DAMPED SINUSOIDAL WAVEFORM

WAVEFORM

FREQUENCY

1 MHz (±20%)
10 MHz (±20%)

tr (ns)

_ta

Amplitude decreases' 25-50% in 4 cycles

1 MHz
R = 68 Ω
L = 196 μH
C = 129 ρF

 $\frac{R}{2L} = \frac{-4n0.5}{t_d}$ $C = \frac{1}{L \left(\frac{R}{4n^2 f^2} + \left(\frac{R}{2L} \right)^2 \right)}$

10 Hiz

R = 47 Ω L = 13.5 μH C = 18.7 ρF

DECAYING EXPONENTIAL HAVEFORM

v₀ - C

 $RC = \frac{t_d}{\ln 0.1}$

t_d = 170 us

R = 1.0 KΩ C = 0.0068 μF $t_d = 2 \mu s$

R = 1.8 EQ C = 470 pF

PRELIMINARY OBSERVATIONS

- UPSET HAS BEEN INDUCED AND OBSERVED IN THE LABORATORY
 - UPSET DOES NOT OCCUR AFTER EACH TRANSIENT SIGNAL INJECTION
 - HIMPLIES CORRELATION BETWEEN UPSET AND PROCESSING STATE
- NORMAL FUNCTION IS RESTORED BY RESETTING AND/OR REPROGRAMMING THE SYSTEM
- O STATUS BIT SEQUENCES HAVE BEEN RECORDED THAT DO NOT CORRESPOND TO AN 8080 MACHINE CYCLE
 - IMPLIES UNDEFINED PROCESSING STATES BEING ENTERED

FUTURE PLANS

@ COMPLETE THE FOLLOWING UPSET TEST MATRIX

- PERFORM A STATISTICAL ANALYSIS OF THE TIME DATA TO RELATE UPSET TO
 - INTERNAL STATE OF THE CANDIDATE PROCESSOR
 - TRANSIENT SIGNAL INJECTION POINT
- UTILIZE A SOFTWARE SIMULATION APPROACH TO DEVELOP FAULT SIGNATURES FROM THE STATUS BYTE DATA

DIAGNOSTIC EMULATION ANALYSIS -- NEED AND TECHNIQUE

bу

Mr. Gerard E. Migneault

Langley Research Center
National Aeronautics and Space Administration

A brief description of the problem of determining failure modes will clarify the usefulness of emulation. The discussion will cover the relationship of complexity, definitional flaws, specific software dependent behavior and lumped parameter analytical models. Deterministic and stochastic application possibilities of emulation will be identified, as will implementation details — at the level of a conceptual scheme and in terms of supporting components. A sample application will be described. Future possible directions will be identified.

CHARACTERISTICS OF FAULT TOLERANCE

- REDUNDANCY
- ERROR DETECTION
- CONTINUED OPERATIONRECOVERY
- ••• INCREASED COMPLEXITY

- SAFETY REQUIREMENT IMPLIES PROBABILITY OF SYSTEM FAILURE IN 10-HOUR FLIGHT LESS THAN ABOUT 10⁻⁹
- FAULT INTOLERANT SYSTEM
 WORST COMPONENT/DEVICE
 MTTF ~ 10¹⁰ HOURS
 NOT FEASIBLE TODAY
- SYSTEM MUST TOLERATE FAULTS AND BE MAINTAINED

$$\frac{\text{SYSTEM MTTF}}{\text{DEVICE MTTF}} = \sum_{j=R}^{N} \frac{\text{aN-}j}{j}$$

a s=1,
$$\alpha_K = \prod_{k=1}^{j} C_k$$

MAINTAINED FAULT TOLERANT SYSTEM

TOLERANCE OF DEFINITIONAL FLAWS SOFTWARE PRIME CULPRIT

TOLERANCE OF DEFINITIONAL FLAWS

SOFTWARE PRIME CULPRIT

H/W+S/W FAULT TOLERANT MODEL

. ANALYTICAL SOLUTION TECHNIQUE

PROB FAIL =
$$1-e^{-\begin{bmatrix} N\lambda + \mu(1-k) \end{bmatrix}t}$$

$$\sum_{\ell=0}^{N-R} a_{\ell} \binom{\eta}{\ell} \binom{e^{\lambda}t}{-1}$$

• BUT

0.999999 < C₁ ≤1 0.9999 < C₂ ≤1

 $0 \le \mu (1-k)$ 0.000 000 000 1

TEST DURATION FOR 10⁷
FAULT INSERTIONS FOR
~2000 GATE EQUIVALENTS CPU
WITH ARBITRARY MEMORY
AND SOFTWARE

OBJECTIVE

DEVELOPMENT AND SPECIFICATION OF AN EMULATION TECHNIQUE FOR GENERATING STATISTICALLY SIGNIFICANT QUANTITIES OF FAILURE MODES EFFECTS DATA OF HIGHLY RELIABLE COMPUTER SYSTEMS

JUSTIFICATION

- IN HIGHLY RELIABLE, FAULT TOLERANT SYSTEMS SYSTEM FAILURE MODES DUE TO DESIGN FLAWS BECOME SIGNIFICANT - PERHAPS DOMINANT
- CREDIBILITY OF ANALYTICAL RELIABILITY MODELS IS DEPENDENT UPON AMOUNT OF DATA FROM WHICH INPUT PARAMETERS ARE DERIVED
- HIGH RELIABILITY (10⁻⁹) OF SYSTEMS BEING AHALYZED PRECLUDES USE/LIFETIME TESTING OF ACTUAL SYSTEMS BECAUSE OF INORDINATELY LONG MTTF's
- NO OTHER MEANS IDENTIFIED TO ACQUIRE SUFFICIENT DATA FOR THE ABOVE.

TECHNICAL APPROACH

- DEVELOPMENT OF FAST EMULATION ALGORITHMS CAPABLE OF SUPPORTING FAULT INSERTION
 - GATE LOGIC LEVEL
 - HYBRID LEVELS
 GATE/CHIP/REGISTER/INSTRUCTION COMBINATIONS
- IMPLEMENTATION OF ALGORITHMS IN A HORIZONTALLY MICROPROGRAMMABLE COMPUTER AS AN ALGORITHM <u>TEST BED</u> WITH OPERATIONS SYSTEMS
- DEVELOPMENT AND SPECIFICATION OF NEEDED SUPPORT CAPABILITIES
 - META COMPILERS/ASSEMBLERS
 - DATA RECORDING CAPABILITIES
 - RUN TIME CONTROL FUNCTIONS
 - FAULT TABLE GENERATORS
 - . H/W DESCRIPTION TRANSLATOR
 - ENVIRONMENT SIMULATOR/INTERFACING
 - ~ DATA POST PROCESSORS
 - OPERATOR GRAPHICS

CONCEPTUAL EMULATION SCHEME

	a	b	С	d	e	f	а	β	γ	δ	•
а	1 0 0	1	0	0	0	0	0	0	0	0	0
β	0	0	1	1	0	0	0	0	0	0	0
Ϋ́	0	0	0	0	0	0	1	1	0	0	0
s	0	0	0	0	1	1	0	0	0	0	0
ć	0	0	0	0	0	0	0	0	1	1	0
S	0	0	0	0	0	0	0	0	0	0	1

SAMPLE LATENT FAULT ANALYSIS

OF CORRECT CYCLES BEFORE ERRONEOUS DATA GENERATED

DIAGNOSTIC EMULATION APPLICATIONS

DETERMINISTIC:

- HARDWARE LOGIC DESIGN ANALYSIS.
- SOFTWARE DESIGN ANALYSIS.
- SYSTEM (H/W & S/W) EFFICIENCY/MISMATCH ANALYSIS.
- H/W/S/W/SYSTEM FAILURE MODES & EFFECTS ANALYSIS
- SYSTEM PERFORMANCE ANALYSIS IN A SIMULATED MISSION

DIAGNOSTIC EMULATION APPLICATIONS

STATISTICAL:

- LATENT FAULT ANALYSIS AND MODELING.
- COVERAGE DETERMINATION AND MODELING.
- TRANSIENT FAULT ANALYSIS.

DIGITAL SYSTEM HARDWARE DESCRIPTION TECHNIQUE USED IN EMULATION

by

Mr. Robert M. Thomas, Jr.

Langley Research Center
National Aeronautics and Space Administration

A technique to translate a digital circuit description into the form required to emulate the circuit at the gate and flip-flop level is described. This technique, implemented as computer programs, takes as input a description of the integrated circuit and translates the description into tables for the emulation. Integrated circuit description language is described.

OUTLINE

- HARDWARE DESCRIPTION LANGUAGE
- TRANSLATION
- FAULT GENERATION AND INSERTION

HARDWARE DESCRIPTION LANGUAGE

SYSTEMATIC RULES FOR EXPRESSING MARDWARE LOGIC.
IN A FORM USABLE BY THE TRANSLATOR.

SOURCE OF INFORMATION

SCHEMATICS

- INTEGRATED CIRCUIT TYPES
- INTERCONNECTIONS
- NAMES OF EACH IC

INTEGRATED CIRCUIT DATA SHEETS

- GATE/FLIP-FLOP MODELS

HARDWARE DESCRIPTION LANGUAGE

LANGUAGE ELEMENTS

GATE TYPES:

AND, OR, NOT, NAND, NOR, EXCLUSIVE OR,

EXCLUSIVE NOR

FLIP-FLOP TYPES:

D, J-K, R-S, T

INTEGRATED CIRCUIT

IDENTIFIERS:

ALPHA-NUMERIC

INTEGRATED CIRCUIT

CONNECTIONS:

PIN TO PIN

CHIP DESCRIPTION

```
$ CHIP DEFINITION $
TYPE !
POWER !
DESCRIPTION !
UNUSED PINS !
FUNCTIONS !
   G-S =
   G-A =
   G-R =
   G-C =
   G-A' =
   G-B' =
   G-C' =
   G-D 0 =
  G-D ) =
  G-D 2 =
   G-D 3 =
  G-D 4 =
  G-D 5 =
  G-D 6 =
  G-D 7 =
  G-W (P-6) =
  G-Y (P-5) =
  END CHIP $
```

LATCHED PARALLEL TO SERIAL CONVERTER SCHEMATIC

CHIP DESCRIPTION FOR 74LS151

```
$ CHIP DEFINITION $
TYPE : $N54L$151
POWER : VCC = P-16, GND = P-8
DESCRIPTION : ONE OF EIGHT DATA SELECTORS MULTIPLEXERS.
UNUSED PINS : NONE
FUNCTIONS :
  6-3 = NOT(P-7)
  6-A = AND(P-11)
                                  ı
  G-B = AND(P-10)
  6-0 = AND(P-9)
  G-A' = NOT (G-A)
G-B' = NOT (G+R)
  G-C' = NOT (G-C)
  6-D0 = AND(G-S, P-4, G-A', G-B', G-C')
  G-D1 = AND(G-S, P-3, G-A, G-B', G-C')
G-D2 = AND(G-S, P-2, G-A', G-B, G-C')
  6-D3 = AND(6-S, P-1, G-A, G-B, G-C')
  G-D4 = AND(G+S), P-15, G-A', G-B', G-C)
  G-D5 = AND(G^{L}S, P-14, G-A, G-B^{\prime}, G-C)
  G-D6 = AND(G-S, P-13, G-A', G-B, G-C)
G-D7 = AND(G-S, P-12, G-A, G-B, G-C)
  G-W(P-6) = NDR(G-D0,G-D1,G-D2,G-D3,G-D4,G-D5,G-D6,G-D7)
  G-Y(P-5) = NDT(G-W)
$ END CHIP $
```

INTEGRATED CIRCUIT NAME TABLE

<u>NAME</u>	IC TYPE				
IC 1	74LS273				
IC 2	74LS151				
IC 3	74LS169				

INTEGRATED CIRCUIT CONNECTION TABLE

OUTPUT	DESTINATION	SIGNAL NAME (OPTIONAL)
IC 1-2	1C 2-4	(OF I TORAL)
IC 1-5	IC 2-3	
IC 1-6	IC 2-2	
IC 1-9	IC 2-15	
IC 1-12	IC 2-14	
IC 1-15	IC 2-13	
IC 1-16	IC 2-12	
IC 1-19		
IC 2-5	OUTPUT CONNECTOR	SERIAL DATA
IC 3-14	IC 2-11	
IC 3-13	IC 2-10	
IC 3-12	IC 2-9	

TRANSLATION PROCESS

TRANSLATION PROCESS

CONVERT A PSEUDO ENGLISH CIRCUIT DESCRIPTION TO A PACKED BINARY ENCODED FORM REQUIRED BY THE EMULATION ALGORITHM

REJECT DESCRIPTION THAT DOES NOT FOLLOW PRECISELY THE HARDWARE DESCRIPTION LANGUAGE RULES

EMULATION MATRIX

CONCEPTUAL EMULATION SCHEME

FAULT GENERATION AND INSERTION

FAULT SELECTION

- MANUAL SELECTED BY EXPERIMENTER
- AUTOMATIC RANDOMLY SELECTED

FAULT INSERTION

- MODIFY EMULATION MATRIX TO REFLECT FAULT

FAULT OCCURRENCE

- INFORMATION TO EMULATION ALGORITHM AS TO WHEN FAULT OCCURS

SUMMARY

DEVELOPING THE TOOLS TO SUPPORT GATE/FLIP-FLOP LEVEL EMULATION OF DIGITAL COMPUTERS

- HARDWARE DESCRIPTION LANGUAGE
- TRANSLATOR PROGRAM
- FAULT GENERATOR PROGRAMS

THE NEED FOR TRANSIENT DATA IN A CARE III RELIABILITY ANALYSIS

by

Mr. Salvatore J. Bavuso

Langley Research Center
National Aeronautics and Space Administration

The recently developed CARE III (Computer-Aided Reli-ability Estimation) computer program incorporates a transient/intermittent fault model that is mathematically accurate in contrast to many existing reliability evaluator programs which employ approximations for the transient/intermittent model. The CARE III transient/intermittent model will be discussed and compared to existing approximating models. Computational complexity arising from the use of the CARE III transient/intermittent model will also be addressed.

ADVANCED RELIABILITY ASSESSMENT TECHNIQUES

OBJECTIVE: DEVELOP A CAPABILITY TO ASSESS THE RELIABILITY OF ANY FAULT-TOLERANT COMPUTER-BASED SYSTEM, INCLUDING EXECUTIVE SOFTWARE

Triplex computer architecture.

 $S_1 = \overline{X}_1 \ X_2 \ X_3 + X_1 \ \overline{X}_2 \ X_3 + X_1 \ X_2 \ \overline{X}_3$ (Two out of three channels operational)

-

Markov state space model of triplex channel RCS.

$$P_0(t+\Delta t)=P_0(t)-3\lambda C_1\Delta t P_0(t)-3\lambda \left(1-C_1\right)\Delta t P_0(t)$$

$$\lim_{\Delta t \to 0} \frac{P_0(t + \Delta t) - P_0(t)}{\Delta t} = \frac{dP_0(t)}{dt} = -3\lambda P_0(t)$$

$$\frac{dP_{0}(t)}{dt} = -3\lambda P_{0}(t)$$

$$\frac{dP_{1}(t)}{dt} = 3\lambda C_{1}P_{0}(t) - 2\lambda P_{1}(t)$$

$$\frac{dP_{2}(t)}{dt} = 2\lambda C_{2}P_{1}(t) - \lambda P_{2}(t)$$

$$\frac{dP_{3}(t)}{dt} = 3\lambda(1 - C_{1})P_{0}(t) + 2\lambda(1 - C_{2})P_{1}(t) + \lambda P_{2}(t)$$

where P_0 is the probability of the system being in state S_0 , that is

$$P_0 = P(S_0)$$
 $P_1 = P(S_1)$ $P_2 = P(S_2)$ $P_3 = P(S_3)$

and the initial conditions are

$$P_0(0) = 1$$
 $P_1(0) = P_2(0) = P_3(0) = 0$

$$\begin{split} & P_{0}(t) = e^{-3\lambda t} \\ & P_{1}(t) = 3C_{1} \left(e^{-2\lambda t} - e^{-3\lambda t} \right) \\ & P_{2}(t) = 3C_{1}C_{2} \left(e^{-\lambda t} - 2e^{-2\lambda t} + e^{-3\lambda t} \right) \\ & P_{3}(t) = 1 - \left[P_{0}(t) + P_{1}(t) + P_{2}(t) \right] \end{split}$$

FOR CWS, DELETE R/A AND ILS

-Near-Term ARCS Dependency Tree

DELINEATION OF HARDWARE AND SOFTWARE ANOMALIES

Delineation of hardware and software anomalies.

NUMBER OF STATES NEEDED, FOR A MARKOV MODEL

LET: n = NUMBER OF "COUPLED" STAGES

k₁ = NUMBER OF POSSIBLE FAULT TYPES IN 1TH STAGE

s₁ = NUMBER OF POSSIBLE FAULT STATES/TYPE 'IN 1TH STAGE

m₁ = NUMBER OF MODULE FAILURES THAT CAN BE TOLERATED

IN THE 1TH STAGE

THEN NUMBER OF STSTEM STATES N IS

$$N = \prod_{i=1}^{n} \left[\sum_{j=0}^{m_i} \binom{k_i k_i + j - 1}{j} \right]$$

R.g., If n=4 and $k_i=2$, $k_i=3$, $m_i=2$ for all i, M=614,656

CARE III N =
$$2 \pi (m_1 + 1) = 162$$

CARE III APPROACH

- DEFINE SYSTEM STATE ONLY IN TERMS OF NUMBER OF EXISTING FAULTS
- INDEPENDENTLY EVALUATE TRANSITION PARAMETERS
 AS A FUNCTION OF DISTRIBUTION OF POSSIBLE
 FAULT TYPES AND STATES
- DETERMINE RELIABILITY USING KOLMOGOROV'S FORWARD DIFFERENTIAL EQUATIONS
- NUMBER OF STATES DRASTICALLY REDUCED;

 TRANSITION RATES NECESSARILY TIME-DEPENDENT 81 -> 614,656

COMPUTER AIDED RELIABILITY ESTIMATION (CARE 111) WELLWHITTH but prelitions INPUL) — ANY DIGITAL COMPUTER RASED DEGREE VICTORIAN FAULT FAULT · DITE TO MAPINALLY LINETERS (1111110) EXISTING/CONCEPTUAL · TOTAL SYSTEM UNRELIABILITY SYSTEM DESIGN CARE III PROGRAM DISKS SYSTEM SUCCESS FAULT TREE . FAULT HANDLING ₩. INPUTS USER \Rightarrow APUT LANGUA SYSTEM FAUL HANDLING DATA Ð COMPARISON MONITORING INTERMITTENTS/ TRANSIENTS SELF TEST AULT HANDLING (A) (B) (E)-(B) CYBER 175 ð CLASS COMPUTER ELECTRONIC HYDRAULIC MECHANICAL

RELIABILITY CON

PERMANENT, TRANSIENT/INTERMITTENT FAULT ANALOG

PERMANENT FAULT

TRANSIENT/INTERMITTENT FAULT

LOGICAL FAULT MODEL AFTER FAULT ARRIVAL

S-a-1/S-a-0 DETERMINISTIC: $\tau_{\rm F} \leq \tau < \infty$

S-A-1/S-A-0

STOCHASTIC T FOR DURATION OF

S-a-1 AND S-a-0

EXPONENTIAL: $f(t) = \alpha e^{-\alpha t}$

FAULT ARRIVAL MODEL

WEIBULL: $f(t) = w\lambda t^{w-1}e^{-\lambda tw}$ EXPONENTIAL: $f(t) = \lambda e^{-\lambda t}$

TRANSIENT AND PERMANENT FAULTS CONVENTIONAL MARKOV MODEL 2-UNIT SYSTEM

 λ_p = PERMANENT FAILURE RATE (ARRIVAL RATE)

 λ_{τ} = TRANSIENT RATE (ARRIVAL RATE)

1 = PROPORTION OF TRANSIENTS THAT ARE MISTAKEN FOR PERMANENT FAILURES

Overall reliability model of two-unit system.

Aggregated reliability model for a two-unit system.

- . System states defined by number of failed modules of each type
- . Transition rates determined by averaging overall failure types and states

SINGLE-FAULT MODEL EQUATIONS

$$\phi(t) = \alpha e^{-\beta t} \int_0^t e^{-(\alpha-\beta)\tau} r(\tau) d(\tau) d\tau$$
 FEEAR(IT)

YARIABLE

$$P_{a}(t) = e^{-\alpha t} r(t) d(t) + \beta \int_{0}^{t} \phi(t-\tau) P_{a}(\tau) d\tau \qquad PA(IT)$$

$$P_{b}(t) = \phi(t) + \beta \int_{0}^{t} \phi(t-\tau)P_{b}(\tau)d\tau$$
 PB1(IT)

$$P_{e}(t) = \int_{0}^{t} e^{-\alpha \tau} \rho(\tau) d(\tau) e(t-\tau) d\tau + \beta \int_{0}^{t} \phi(t-\tau) P_{e}(\tau) d\tau \qquad PERR(IT)$$

$$p_e(t) = e^{-\alpha t} \rho(t) d(t) + \beta \int_0^t \phi(t-\tau) p_e(\tau) d\tau$$
 PEAR(IT)

$$p_{e}(t) = e^{-\alpha t} \delta(t) r(t) + \beta \int_{0}^{t} \phi(t-\tau) p_{e}(\tau) d\tau \qquad PNEAR(IT)$$

$$p_f(t) = (1-C) \int_0^t p_e(\tau) \epsilon(t-\tau) d\tau$$
 PFLD(IT)

$$\Psi_{A}(t) = C \int_{0}^{t} p_{e}(\tau) \varepsilon(t-\tau) \left(\frac{\beta + \alpha e^{-(\alpha+\beta)(t-\tau)}}{\alpha+\beta} \right) d\tau + p_{e}(t) \quad PSIA(IT)$$

$$\Psi_{B}(t) = \frac{\alpha C}{\alpha + \beta} \int_{0}^{t} p_{e}(\tau) (1 - e^{-(\alpha + \beta)(t - \tau)}) \varepsilon(t - \tau) d\tau$$
 PSIB(IT)

ADVANCED RELIABILITY ASSESSMENT DEVELOPMENT

· 43.

