FST Prep and Analysis Script

Grace Saville

16/05/2022

1. Prepping the dataframe

```
# load(".RData") # if necessary
data <- read.csv("./data/RStudio/ratsSNPs_clean.csv")</pre>
copy <- data # making a copy</pre>
t(copy[1,1:20]) # checking column names
##
## island
                        "Borneo_002"
## registration.number "NBC.LAB.1968"
                        "Rattus"
## genus
## species
                        "exulans"
                       "female"
## sex
## country
                       "Indonesia"
                       "Kalimantan Timur"
## state_province
## island.1
                       "Borneo"
                       "Badang, Sungai Kajan"
## locality
## site
                       "-0.5102"
## geo_lat
## geo_long
                       "117.0912"
                       "Victor von Plessen"
## collector
                       "1935"
## collecting.date
                       "AMNH.103837"
## field.number
## Populatie
## X299_CHR1_114679736 "?"
## X13_CHR1_116614092
                        "?"
## X14_CHR1_124857905
                       "T:T"
## X15_CHR1_134869867
copy <- copy[,-c(2:16)] # removing all but specimen names and SNPs</pre>
t(copy[1,1:20]) # checking
##
## island
                        "Borneo_002"
## X299_CHR1_114679736 "?"
## X13_CHR1_116614092
## X14_CHR1_124857905
```

```
## X15_CHR1_134869867
## X16_CHR1_137314938
                       "A:A"
## X18 CHR1 185979552
                       וויףוו
## X19_CHR1_192708191
                       "C:C"
## X20_CHR1_198383739
## X21_CHR1_201964872 "?"
## X22 CHR1 209547552 "A:A"
## X23_CHR1_211919559
                      "?"
## X262_CHR1_212322960 "C:C"
## X24_CHR1_216451585 "G:G"
## X25_CHR1_220057345 "T:T"
## X26_CHR1_231126749
## X27_CHR1_255622475 "?"
## X300_CHR1_262011841 "A:A"
## X301_CHR1_262011844 "C:C"
## X28_CHR1_265508390
copy[copy == "?"] <- "?:?" # replacing single ? with double ? so alleles can be split
x <- data.frame(island = copy$island) # setting up new df for for loop
coln <- as.vector(colnames(copy)) # prepping to paste the column names into the for loop
dim(copy) # 379 rows 283 columns
## [1] 370 283
for (i in 2:283) {
 y <- reshape::colsplit(
          copy[, i], split = ":", names = c(coln[i], paste("blank", i, sep = ".")))
          # splitting each i column and renaming them
 x <- cbind(x, y) # combining output with current df
 rm(i, y) # removing temp objects
# Checking:
# dim(x3) # 379 rows 565 columns
# x2[1:5,1:5]
# x3[1:5,1:5] # comparing the 2 dfs to check the column naming worked correctly
copy <- x
rm(x, coln) # removing excess objects
```

2. Producing the file necessary for PGDSpider program

```
copy <- copy[order(copy$island, decreasing = FALSE), ] # ordering df alphabetically
# by island
# print(as.matrix(copy[, 1])) # printing the island names and row numbers

# A=1, T=2, G=3, C=4
copy[copy == "A"] <- "1"
copy[copy == "T"] <- "2"</pre>
```

```
copy[copy == "G"] <- "3"
copy[copy == "C"] <- "4"
# row numbers in dataset df listed below for each popn.
popnames <- as.character(</pre>
  с(
    "pop = Aotea", # 1:10
    "pop = Borneo", # 11:28
    "pop = Doubtful Sound", # 306
    "pop = Great_Mercury_Island", # 30
    "pop = Halmahera", # 31:42
    "pop = Hatutaa", # 43:63
    "pop = Honuea", # 64:83
    "pop = Kaikura_Island", # 84:103
    "pop = Kamaka", # 104:123
    "pop = Kayangel", # 124:138
    "pop = Late_Island", # 141:161
    "pop = Mainland", # 29, 139, 140, 162, 349, 350 (including Luzon here because
    # Luzon is part of the mainland cluster in the NeighborNet network)
    "pop = Malenge", # 163:174
    "pop = Mohotani", # 175:188
    "pop = Motukawanui", # 189:209
    "pop = New_Britain", # 210:219
    "pop = New_Guinea", # 220:221
    "pop = Normanby Island", # 223
    "pop = Rakiura", # 224:244
    "pop = Reiono", # 245:265
    "pop = Rimatuu", # 266:284
    "pop = Slipper_Island", # 285:305
    "pop = Sulawesi", # 307:328
    "pop = Tahanea", # 329:348
    "pop = Wake_Island" # 351:370
)
# Creating population dfs
a <- as.data.frame(copy[1:10,]) # Aotea
b <- as.data.frame(copy[11:28,]) # Borneo
c <- as.data.frame(copy[306,]) # Doubtful_Sound</pre>
d <- as.data.frame(copy[30,]) # Great_Mercury_Island</pre>
e <- as.data.frame(copy[31:42,]) # Halmahera
f <- as.data.frame(copy[43:63,]) # Hatutaa</pre>
g <- as.data.frame(copy[64:83,]) # Honuea
h <- as.data.frame(copy[84:103,]) # Kaikura Island
i <- as.data.frame(copy[104:123,]) # Kamaka</pre>
j <- as.data.frame(copy[124:138,]) # Kayangel</pre>
k <- as.data.frame(copy[141:161,]) # Late_Island
1 <- as.data.frame(copy[c(29, 139, 140, 162, 349, 350),]) # Mainland</pre>
m <- as.data.frame(copy[163:174,]) # Malenge
n <- as.data.frame(copy[175:188,]) # Mohotani</pre>
o <- as.data.frame(copy[189:209,]) # Motukawanui
p <- as.data.frame(copy[210:219,]) # New_Britain</pre>
q <- as.data.frame(copy[220:221,]) # New_Guinea
```

```
r <- as.data.frame(copy[223,]) # Normanby_Island
s <- as.data.frame(copy[224:244,]) # Rakiura
t <- as.data.frame(copy[245:265,]) # Reiono
u <- as.data.frame(copy[266:284,]) # Rimatuu
v <- as.data.frame(copy[285:305,]) # Slipper_Island
w <- as.data.frame(copy[307:328,]) # Sulawesi
x <- as.data.frame(copy[329:348,]) # Tahanea
y <- as.data.frame(copy[351:370,]) # Wake_Island

pops <- as.character(c(letters[seq(from = 1, to = 25)])) # list of popn object names</pre>
```

```
ncol(copy) #565
getwd()
sink("./data/PGDSpider/ratsSNPs_PGDSpider_input_CLEAN.txt") # create empty file
cat("rats_SNPS", "npops = 25", "nloci = 282", fill = 1)
cat("\t", fill = FALSE)
cat(colnames(copy[,c(FALSE,TRUE)]), "\n", sep = "\t\t", fill = FALSE) # column/SNP names
# (even columns only)
for (i1 in 1:25) {
  cat(popnames[i1], fill = 1) # island name
 foo <- get(pops[i1]) # calling the island object based on the pops vector
 for (i2 in 1:nrow(foo)) {
    cat(as.character(foo[i2, ]), "\n", fill = FALSE, sep = "\t") # printing the SNP rows
  } # inner loop close
} # outer loop close
sink() # closing the sink connection (do not forget!)
rm(i1, i2, foo, popnames, pops)
rm(list = c(letters[seq(from = 1, to = 25)])) # removing excess objects
```

At this stage PGDSpider program and Arlequin were used to convert the file produced and run tests on the data. The resulting output is used here for analysis.

3. Loading the results files for analysis

```
popnames <- as.character(
   c(
    "Aotea",
    "Borneo",
    "Doubtful_Sound",
    "Great_Mercury_Island",
    "Halmahera",
    "Hatutaa",
    "Honuea",
    "Kaikura_Island",
    "Kamaka",
    "Kayangel",
    "Late_Island",
    "Mainland", # (inc Luzon here)</pre>
```

```
"Malenge",
    "Mohotani",
    "Motukawanui",
    "New Britain",
    "New Guinea",
    "Normanby_Island",
    "Rakiura",
    "Reiono",
    "Rimatuu",
    "Slipper_Island",
    "Sulawesi",
    "Tahanea",
    "Wake_Island"
pwd <- read.csv("./results/Arlequin_FST/fst_pairwisedistances_only.csv",</pre>
                 header = TRUE)
pv <- read.csv("./results/Arlequin_FST/fst_pairwisedistances_pvalues_only.csv",</pre>
               header = TRUE)
colnames(pwd) <- popnames</pre>
rownames(pwd) <- popnames</pre>
pwd <- as.matrix(pwd)</pre>
colnames(pv) <- popnames</pre>
rownames(pv) <- popnames</pre>
pv <- as.matrix(pv)</pre>
x <- t(pwd) # transposed copy
pwd[upper.tri(pwd, diag = FALSE)] <- x[upper.tri(x, diag = FALSE)] # making full</pre>
# matrix (not just lower tri)
x <- t(pv) # transposed copy for p-values
pv[upper.tri(pv, diag = FALSE)] <- x[upper.tri(x, diag = FALSE)]</pre>
rm(x)
```

4. Making Geopgraphic distance matrix

```
longlat <- data[,c(8,11,12)]
longlat <- longlat[!duplicated(longlat$island.1),] # keeping only 1 coordinate
# for each island
longlat <- longlat[order(longlat$island.1, decreasing = FALSE),] # sorting alphabetically
row.names(longlat) <- seq(nrow(longlat)) # renaming row numbers to be sequential
kable(longlat) # checking</pre>
```

island.1	geo_lat	geo_long
Aotea (Great Barrier I)	-36.23000	175.4300
Borneo	-0.51020	117.0912
Doubtful Sound	-45.31667	166.9833
Great Mercury Island	-36.58333	175.9167

island.1	geo_lat	geo_long
Halmahera	1.26600	127.8565
Hatutaa	-7.92000	-140.5700
Honuea	-17.00900	-149.5850
Kaikura Island	-36.18000	175.3200
Kamaka	-23.24000	-134.6300
Kayangel	8.07000	134.7000
Late Island	-18.85000	-174.6000
Luzon	15.43469	120.4959
Mainland	15.20989	105.7906
Malenge	-0.26590	122.0439
Mohotani	-10.00000	-138.9300
Motukawanui	-35.00000	173.9400
New Britain	-5.81450	150.0610
New Guinea	-6.22080	147.3689
Normanby Island	-10.05460	150.9625
Rakiura (Stewart Isl)	-46.95000	167.9000
Reiono	-17.04600	-149.5460
Rimatuu (Tetiaroa)	-17.03000	-149.5580
Slipper Island	-37.05000	175.9300
Sulawesi	-1.32520	120.1039
Tahanea	-16.87000	-144.9700
Wake Island	19.30000	166.5800

```
# editing the names to match those in the pwd df so I can merge them later
longlat[1,1] <- "Aotea"</pre>
longlat[3,1] <- "Doubtful_Sound"</pre>
longlat[4,1] <- "Great_Mercury_Island"</pre>
longlat[8,1] <- "Kaikura_Island"</pre>
longlat[11,1] <- "Late_Island"</pre>
longlat[17,1] <- "New_Britain"</pre>
longlat[18,1] <- "New_Guinea"</pre>
longlat[19,1] <- "Normanby_Island"</pre>
longlat[20,1] <- "Rakiura"</pre>
longlat[22,1] <- "Rimatuu"</pre>
longlat[23,1] <- "Slipper_Island"</pre>
longlat[26,1] <- "Wake_Island"</pre>
longlat <- longlat[-12,] # removing luzon since fst has it with mainland</pre>
row.names(longlat) <- seq(nrow(longlat)) # renaming row numbers to be sequential</pre>
geo.matrix <- as.matrix(longlat[,c(3,2)]) # distGeo function needs a matrix with
\#\ 2 columns, col 1 longitude and col 2 latitude
geo.matrix <- distm(geo.matrix, fun = distGeo) # converting to pairwise distance matrix</pre>
dim(geo.matrix) # 25 25
```

[1] 25 25

5. FST Mantel test

```
dim(geo.matrix) # 25 25
## [1] 25 25
dim(pwd) # 25 25
## [1] 25 25
geo.dist <- as.dist(geo.matrix, diag = TRUE, upper = TRUE) # converting to dist object</pre>
fst.dist <- as.dist(pwd, diag = TRUE, upper = TRUE)</pre>
set.seed(4)
r1 <- mantel.rtest(fst.dist, geo.dist, nrepet = 999)
## Warning in is.euclid(m1): Zero distance(s)
r1
## Monte-Carlo test
## Call: mantelnoneuclid(m1 = m1, m2 = m2, nrepet = nrepet)
##
## Observation: 0.376738
##
## Based on 999 replicates
## Simulated p-value: 0.001
## Alternative hypothesis: greater
##
       Std.Obs Expectation
                               Variance
## 4.747032343 0.003179756 0.006192589
plot(r1$plot$hist, main = "Mantel test", xlim = c(-0.5, 0.5))
```

Mantel test


```
\# abline(v = )
```

6. Creating results dataframe on which to base analyses

6a. Converting FST matrix to dataframe

```
pwd.df <- pwd
pwd.df[lower.tri(pwd.df, diag = TRUE)] <- NA # keeping only the upper triangle
# of each matrix

pwd.df <- data.frame(
    col = colnames(pwd.df)[col(pwd.df)],
    row = rownames(pwd.df)[row(pwd.df)],
    fst.dist = c(pwd.df)
) # converting the fst matrix into a df with columns describing which combos
# result in the distance

pwd.df <- na.omit(pwd.df)

pwd.df <- unite(pwd.df, islands.combo, 1:2, sep = ":", remove = TRUE) # combining
# the first 2 columns (the names of the matrices columns and rows) to give a label
# to each pairwise distance</pre>
```

6b. Combining the FST and Geographic dataframes

```
colnames(geo.matrix) <- longlat[,1]</pre>
rownames(geo.matrix) <- longlat[,1] # naming the rows and columns</pre>
geo.matrix[lower.tri(geo.matrix, diag = TRUE)] <- NA # keeping only the upper</pre>
# triangle of matrix
geo.df <- data.frame(</pre>
  col = colnames(geo.matrix)[col(geo.matrix)],
 row = rownames(geo.matrix)[row(geo.matrix)],
 geo.dist = c(geo.matrix)
) # converting the genetic matrix into a df with columns describing which combos
# result in the distance
geo.df <- na.omit(geo.df) # removing NA's left from lower triangle</pre>
geo.df <- unite(geo.df, islands.combo, 1:2, sep = ":", remove = TRUE) # combining
# the first 2 columns (the names of the matrices columns and rows) to give a label
# to each pairwise distance
pwd.df <- merge(pwd.df, geo.df, by = "islands.combo", all = FALSE) # merging distance
# between islands with FST df
pwd.df$geo.dist <- pwd.df$geo.dist/1000 # going from metres to km</pre>
rm(longlat, geo.df)
```

6c. Saving outcomes

```
write.csv(pwd.df, "./Results/Arlequin_FST/FST_RStudio_outcomes_df.csv", row.names = FALSE)
write.csv(pv, "./Results/Arlequin_FST/FST_RStudio_pvalue_matrix.csv", row.names = FALSE)
```

7. Linear modelling

```
pwd.df <- read.csv("./Results/Arlequin_FST/FST_RStudio_outcomes_df.csv")</pre>
```

7a. Test model

```
testLM <- lm(fst.dist ~ geo.dist, data = pwd.df) # model
summary(testLM) # model results

##
## Call:
## lm(formula = fst.dist ~ geo.dist, data = pwd.df)</pre>
```

```
##
## Residuals:
                      Median
##
       Min
                 1Q
## -0.80573 -0.08944 0.00017 0.11193 0.37928
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.531e-01 1.842e-02 19.172 < 2e-16 ***
## geo.dist
              2.096e-05 2.985e-06
                                    7.021 1.5e-11 ***
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1626 on 298 degrees of freedom
## Multiple R-squared: 0.1419, Adjusted R-squared: 0.1391
## F-statistic: 49.29 on 1 and 298 DF, p-value: 1.496e-11
plot(fst.dist ~ geo.dist, data = pwd.df)
abline(coef = coef(testLM), col = 4, lwd = 2)
```


par(mfrow = c(2, 2)) # changing the number of plots visible at once
plot(testLM) # diagnostic plots


```
par(mfrow = c(1,1))
hist(testLM$residuals, breaks = 10, xlim = c(-1,1))
```

Histogram of testLM\$residuals

qqPlot(testLM\$residuals, line = "quartiles") # normal, possible outliers 132, 148

[1] 148 132

influenceIndexPlot(testLM) # outliers

```
shapiro.test(testLM$residuals) # indicates non-normality of residuals but

##
## Shapiro-Wilk normality test
##
## data: testLM$residuals
## W = 0.97774, p-value = 0.0001291

# likely affected by the 2 outliers mentioned above

ncvTest(testLM) # homoscedasticity test: HO of constant variance is rejected.

## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 12.31918, Df = 1, p = 0.00044833

# Supported by downward slope in Scale-location plot (plot(testLM))
```

Diagnostic Plots


```
# Cooks distances: none larger than 0.5,

# Studentised residuals: 132 and 148 less than -3

# Bonferroni p-value: 132 and 148 smaller then 0.05,

# Hat-values: none influential, higher than 1

outlierTest(testLM)
```

```
## rstudent unadjusted p-value Bonferroni p
## 148 -5.174788 4.2083e-07 0.00012625
```

• Diagnostic Plots: indications that the relationship is linear, normal distribution of residuals, down trending scale-location plot and cone-shaped residuals vs. fitted plot therefore non-constant variance, and 132 (New Guinea to Mainland) and 148 (Normanby Island to Mainland) are potential issues.

7b. Adjusted Model

```
z <- pwd.df[pwd.df$fst.dist >= 0,] # removing 132 (New_Guinea:Mainland) and
# 148 (Normanby_Island:Mainland) which are both negative FST values
x <- lm(fst.dist ~ geo.dist, data = z) # creating model to take weights from
wt <- 1 / lm(abs(x$residuals) ~ x$fitted.values)$fitted.values^2 # weighting
# residuals by how large they are
rm(x)
```

```
LM <- lm(fst.dist ~ geo.dist, data = z, weights = wt) # weighted residual model summary(LM) # model results
```

```
##
## Call:
## lm(formula = fst.dist ~ geo.dist, data = z, weights = wt)
## Weighted Residuals:
##
       Min
                 1Q
                      Median
  -3.08685 -0.81585 -0.02973 0.88374 3.06125
##
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.696e-01 1.825e-02 20.251 < 2e-16 ***
## geo.dist
              1.889e-05 2.386e-06
                                    7.916 4.96e-14 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.246 on 296 degrees of freedom
## Multiple R-squared: 0.1747, Adjusted R-squared: 0.1719
## F-statistic: 62.66 on 1 and 296 DF, p-value: 4.959e-14
plot(fst.dist ~ geo.dist, data = z)
abline(coef = coef(LM), col = 4, lwd = 2)
```


Histogram of LM\$residuals

qqPlot(LM\$residuals, line = "quartiles") # normal


```
## 78 138
## 78 137
```

```
shapiro.test(LM$residuals) # indicates normality of residuals
```

```
##
## Shapiro-Wilk normality test
##
## data: LM$residuals
## W = 0.99402, p-value = 0.2898
```

ncvTest(LM) # homoscedasticity test: HO of constant variance is not rejected.

```
## Non-constant Variance Score Test
## Variance formula: ~ fitted.values
## Chisquare = 2.234525e-07, Df = 1, p = 0.99962

# Supported by flat-ish slope in Scale-location plot (plot(testLM))
influenceIndexPlot(LM) # outliers test, nothing concerning
```

Diagnostic Plots

boxCox(LM) # recommended to stay as is

Profile Log-likelihood

- \bullet Even spread of residuals around 0
- t-values are far from 1 and both are significant
- Residual standard error is very high compared to the estimate
- Only approx. 17% of the variance of fst.dist can de explained by geo.dist!

8. Examining values below the regression line

```
fv <- as.vector(LM$fitted.values)
under.fv <- cbind(z, fv)

under.fv <- under.fv[under.fv$fst.dist < under.fv$fv,] # keeping only fst.dist
# values less than fitted values

plot(fst.dist ~ geo.dist, data = under.fv)</pre>
```



```
# should be all values up to the regression line

under.fv <- under.fv[order(under.fv$geo.dist, decreasing = FALSE),] # sorting by geo.dist
under.fv <- under.fv[order(under.fv$fst.dist, decreasing = FALSE),] # sorting by fst.dist

# kable(under.fv)

y <- under.fv[under.fv$fst.dist < under.fv$fv - 0.2,] # keeping only fst.dist values far below fitted v
y <- y[order(y$islands.combo, decreasing = FALSE),] # sorting alphabetically
kable(y)</pre>
```

	islands.combo	fst.dist	geo.dist	fv
8	Halmahera:Borneo	0.07889	1214.30243	0.3924859
22	Kaikura_Island:Aotea	0.12005	11.34191	0.3697671
47	Late_Island:Borneo	0.23973	7717.53588	0.5153042
50	Late_Island:Halmahera	0.25721	6670.51554	0.4955305
57	Mainland:Borneo	0.18879	2137.59450	0.4099229
59	Mainland:Great_Mercury_Island	0.34331	9315.89717	0.5454904
60	Mainland:Halmahera	0.04813	2873.43923	0.4238199
68	Malenge:Borneo	0.12910	551.98046	0.3799775
71	Malenge:Halmahera	0.03679	668.81775	0.3821840
77	Malenge:Late_Island	0.29640	7209.75997	0.5057145
78	Malenge:Mainland	0.00394	2475.34786	0.4163017
107	New_Britain:Borneo	0.07531	3709.81181	0.4396154

	islands.combo	fst.dist	geo.dist	fv
110	New_Britain:Halmahera	0.11590	2589.46231	0.4184568
116	New_Britain:Late_Island	0.15697	4093.72898	0.4468660
117	New_Britain:Mainland	0.12692	5407.84290	0.4716840
118	New_Britain:Malenge	0.20231	3173.05957	0.4294785
122	New_Guinea:Borneo	0.17006	3421.94929	0.4341789
125	New_Guinea:Halmahera	0.08549	2321.18262	0.4133901
133	New_Guinea:Malenge	0.18645	2889.36517	0.4241207
138	Normanby_Island:Borneo	0.03730	3895.41030	0.4431206
141	Normanby_Island:Halmahera	0.05525	2849.96944	0.4233767
147	Normanby_Island:Late_Island	0.16366	3830.70472	0.4418986
149	Normanby_Island:Malenge	0.20633	3379.99872	0.4333867
164	Rakiura:Late_Island	0.22990	3502.11701	0.4356930
233	Sulawesi:Borneo	0.15189	347.22512	0.3761105
236	Sulawesi:Halmahera	0.12484	909.26532	0.3867251
243	Sulawesi:Mainland	0.19395	2414.11727	0.4151453
244	Sulawesi:Malenge	0.14773	245.65870	0.3741924
247	Sulawesi:New_Britain	0.19298	3364.19820	0.4330883
249	Sulawesi:Normanby_Island	0.09321	3548.36951	0.4365665
287	Wake_Island:Late_Island	0.20963	4694.07489	0.4582039

```
# in progress, not evaluated
library(GGally)
library(network)
library(sna)
foo <- pwd[1:5,1:5]
foo <- as.network(foo, directed = FALSE, names.eval = "weights")
ggnet2(foo, edge.size = "weights")

island.km <- read.csv("./data/Raw_data/island_size_data.csv", header = TRUE)
island.km <- island.km[,c(2, 4)]
foo %v% "area_km2" <- c(island.km[1:5,2])</pre>
```

9. Plots

```
mtext("Correlogram of FST values between Islands", at = 10, line = -5, cex = 1.3)
# at = horizontal, line = height, cex = size
# this plot is best seen in the viewer rather than in the knitted pdf. Has also been saved as a separat
```

From 0 to 1: 0 implying free interbreeding, 1 means the popn.s don't interbreed "Values for mammal populations between subspecies, or closely related species, typical values are of the order of 5% to 20%"

```
ggplot(data = z, aes(x = geo.dist, y = fst.dist)) +
  geom_point(shape = 1, colour = "black") +
  geom_smooth(method = "lm", se = TRUE) +
  ggtitle("Correlation between FST and Geographic Distance between Islands") +
  xlab("Geographic Distance between 2 islands (km)") + ylab("FST Distance between 2 islands") +
  theme_light()
```

'geom_smooth()' using formula 'y ~ x'

Correlation between FST and Geographic Distance between Islands

The two negative values may be due to low sample size (could be outliers). FST is usually between 0 and 1. The negative values are also identified and non-significant.