TP Hard ALM – Compte rendu Réalisation d'une machine algorithmique

Dorian Mounier Eloi Charra 02/01/2022

3 - Le circuit

3.3 - La partie opérative

2. Schéma de la partie opérative

Figure 1: Schéma de la partie opérative

3. Codage des commandes de l'UAL

L'UAL nous permet de faire quatre opérations à savoir la soustraction, la décrémentation, l'incrémentation et une opération neutre qui permet de rendre le nombre A comme résultat. Nous pouvons coder uc0 et uc1 comme ceci :

uc1	uc0	opération
0	0	A - B
0	1	A-1
1	0	A+1
1	1	A

4. Réprésentation d'une registre à n bits

```
node registren <<const n : int>> (ent : bool^n; char: bool)
returns (sort : bool^n)
let
    sort = map<<bascule;n>>(ent,char^n,false^n,false^n);
tel;
```

3.4 - La partie contrôle

1. Automate

Voici le graphe de l'automate de contrôle de la PO. Nous avons traduit l'algorithme donné dans le sujet en associant à chaque état une opération de l'algorithme (affectation ou test). De plus, les flags C et Z sont mis à jour pour les 3 comparaisons où

Figure 2: Automate de contrôle de la PO

2. Valeurs de sorties

Nous pouvons résumer les valeurs que doivent prendre les entrées à chaque état de cet automate :

Etat	chQ	chR	$\mathrm{ch} A$	chB	chK	$\max AR$	muxB	$\max Q$	opA0	opA1	uc0	uc1	j0
E1	1	1	1	0	1	0	0	0	0	0	1	1	1
E2	0	0	1	1	0	0	0	0	0	0	0	0	0
E3	0	0	0	1	0	0	0	0	1	0	1	1	0
E4	0	0	0	0	1	0	0	0	0	1	1	0	0
E5	0	0	0	0	1	0	0	0	0	1	1	1	0
E6	0	0	0	0	1	0	0	0	0	1	0	1	0
E7	0	0	0	1	0	0	1	0	1	0	1	1	0
E8	1	0	0	0	0	0	0	1	1	1	1	1	0
E9	0	1	0	1	0	1	0	0	0	0	0	0	0
E10	0	1	0	1	0	1	0	0	0	0	0	0	0
E11	1	0	0	0	0	0	0	0	1	1	1	0	0

- muxAR étant la valeur du bit de contrôle du multiplexeur 2 vers 1 qui a soit A soit R comme sortie
- muxB étant la valeur du bit de contrôle du multiplexeur 2 vers 1 qui a soit B*2 soit B/2 comme sortie

• muxQ étant la valeur du bit de contrôle du multiplexeur 2 vers 1 qui a soit Q soit Q*2 comme sortie

Nous avons donc:

- chQ = E1 + E8 + E11
- chR = E1 + E9 + E10
- chA = E1 + E2
- chB = E2 + E3 + E7 + E9 + E10
- chK = E1 + E4 + E5 + E6
- muxAR = E9 + E10
- muxB = E7
- muxQ = E8
- opA0 = E3 + E7 + E8 + E11
- opA1 = E4 + E5 + E6 + E8 + E11
- uc0 = E1 + E3 + E4 + E5 + E7 + E8 + E11
- uc1 = E1 + E3 + E5 + E6 + E7 + E8
- j0 = E1

3. Circuit de la partie contrôle

Valeur des états à l'étape suivante notés NE :

- NE0 = \overline{begin} .E0 + E12
- NE1 = begin.E0
- NE2 = E1 + E4
- NE3 = $E2.\bar{C}$
- NE4 = E3
- NE5 = (E2.C) + (E9.C) + E11
- NE6 = $E5.\bar{Z}$
- NE7 = E6
- NE8 = E7
- NE9 = E8
- NE10 = $E9.\bar{C}$
- NE11 = E10
- NE12 = E5.Z

Figure 3: Circuit de la partie contrôle