The Theory of NP-Completeness

Tractable and intractable problems

NP-complete problems

The theory of NP-completeness

- Tractable and intractable problems
- NP-complete problems

Classifying problems

- Classify problems as tractable or intractable.
- Problem is *tractable* if there **exists at least one** polynomial bound algorithm that solves it.
- An algorithm is polynomial bound if its worst case growth rate can be bound by a polynomial p(n) in the size n of the problem

$$p(n) = a_n n^k + ... + a_1 n + a_0$$
 where k is a constant

Intractable problems

- Problem is intractable if it is not tractable.
- All algorithms that solve the problem are not polynomial bound.
- It has a worst case growth rate f(n) which cannot be bound by a polynomial p(n) in the size n of the problem.
- For intractable problems the bounds are:

$$f(n) = c^n$$
, or $n^{\log n}$, etc.

Why is this classification useful?

- If problem is intractable, no point in trying to find an efficient algorithm
- All algorithms will be too slow for large inputs.

Intractable problems

 Turing showed some problems are so hard that no algorithm can solve them (undecidable)

 Other researchers showed some decidable problems from automata, mathematical logic, etc. are intractable:

Presburger Arithmetic

Halting Problem and Presburger Arith. are in here

Hard practical problems

- There are many practical problems for which no one has yet found a polynomial bound algorithm.
- Examples: traveling salesperson, 0/1 knapsack, graph coloring, bin packing etc.
- Most design automation problems such as testing and routing.
- Many networks, database and graph problems.

How are they solved?

- A variety of algorithms based on backtracking, branch and bound, dynamic programming, etc.
- None can be shown to be polynomial bound

The theory of NP completeness

- The theory of NP-completeness enables showing that these problems are at least as hard as NP-complete problems
- Practical implication of knowing problem is NPcomplete is that it is **probably** intractable (whether it is or not has not been proved yet)
- So any algorithm that solves it will probably be very slow for large inputs

We will need to discuss

- Decision problems
- Converting optimization problems into decision problems
- The relationship between an optimization problem and its decision version
- The class P
- Verification algorithms
- The class NP
- The concept of polynomial transformations
- The class of NP-complete problems

Decision Problems

A decision problem answers yes or no for a given input

Examples:

- Given a graph G Is there a path from s to t of length at most k?
- Does graph G contain a Hamiltonian cycle?
- Given a graph G is it bipartite?

A decision problem: HAMILTONIAN-CYCLE

- A Hamiltonian cycle of a graph G is a cycle that includes each vertex of the graph exactly once.
- Problem: Given a graph G, does G have a Hamiltonian cycle?

Converting to decision problems

- Optimization problems can be converted to decision problems (typically) by adding a bound B on the value to optimize, and asking the question:
 - Is there a solution whose value is at most B? (for a minimization problem)
 - Is there a solution whose value is at least B? (for a maximization problem)

An optimization problem: traveling salesman

- Given:
 - A finite set C={c₁,...,c_m} of cities,
 - A distance function d(c_i, c_j) of nonnegative numbers.
- Find the length of the minimum distance tour which includes every city exactly once

A decision problem for traveling salesman (TS)

- Given a finite set C={c₁,...,c_m} of cities, a distance function d(c_i, c_j) of nonnegative numbers and a bound B
- Is there a tour of all the cities (in which each city is visited exactly once) with total length **at most B**?
- There is no known polynomial bound algorithm for TS.

The relation between

- If we have a solution to the optimization problem we can compare the solution to the bound and answer "yes" or "no".
- Therefore if the optimization problem is tractable so is the decision problem
- If the decision problem is "hard" the optimization problems are also "hard"
 - If the optimization was easy then the decision problem is easy.

The class P

- P is the class of decision problems that are polynomial bounded
- Is the following problem in P?
 - Given a weighted graph G, is there a spanning tree of weight at most B?
- The decision versions of problems such as shortest distance, and minimum spanning tree belong to P

The goal of verification algorithms

- The goal of a verification algorithm is to verify a "yes" answer to a decision problem's input (i.e., if the answer is "yes" the verification algorithm verify this answer)
- The inputs to the verification algorithm are:
 - the original input (problem instance) and
 - a certificate (possible solution)

Verification Algorithms

- A verification algorithm, takes a problem instance x and answers "yes", if there **exists** a certificate y such that the answer for x with certificate y is "yes"
- Consider HAMILTONIAN-CYCLE
- A problem *instance* x lists the vertices and edges of G: ({1,2,3,4}, {(3,2), (2,4), (3,4), (4,1), (1, 3)})
- There **exists** a certificate y = (3, 2, 4, 1, 3) for which the verification algorithm answers "yes"

Polynomial bound verification algorithms

- Given a decision problem d.
- A verification algorithm for d is polynomial bound if given an input x to d, there exists a certificate y, such that |y|=O(|x|c) where c is a constant, and a polynomial bound algorithm A(x, y) that verifies an answer "yes" for d with input x

Note: |y| is the size of the certificate, |x| is the size of the input

The problem PATH

- PATH denotes the decision problem version of shortest path.
- PATH: Given a graph G, a start vertex u, and an end vertex v. Does there exist a path in G, from u to v of length at most k?
- The instance is: G=({A, B, C, D}, {(A, C,2), (A, D, 15), (C,D, 3), (D, B, 1)} k=6
- A certificate y=(A, C, D, B)

A verification algorithm for PATH

- Verification algorithm:
 - Given the problem instance x and a certificate y
 - Check that y is indeed a path from u to v.
 - Verify that the length of y is at most k
- Is the verification algorithm for PATH polynomial bound?
- Is the size of y polynomial in the size of x?
- Is the verification algorithm polynomial bound?

Example: A verification algorithm for TS

- Given a problem instance x for TS and a certificate y
 - Check that y is indeed a cycle that includes every vertex exactly once
 - Verify that the length of the cycle is at most B
- Is the size of y polynomial in the size of x?
- Is the verification algorithm polynomial?

The class NP

- NP is the class of decision problems for which there is a polynomial bounded verification algorithm
- It can be shown that:
 - all decision problems in P, and
 - decision problems such as traveling salesman, knapsack, bin pack, are also in NP

The relation between P and NP

- P ⊂ NP
- If a problem is solvable in polynomial time, a polynomial time verification algorithm can easily be designed that *ignores the certificate* and answers "yes" for all inputs with the answer "yes".

The relation between P and NP

- It is not known whether P = NP.
- Problems in P can be solved "quickly"
- Problems in NP can be verified "quickly".
- It is easier to verify a solution than to solve a problem.

 Some researchers believe that P and NP are not the same class.

Polynomial reductions

 Motivation: The definition of NP-completeness uses the notion of polynomial reductions of one problem A to another problem B, written as

 $A \propto B$

 Let tran be a function that converts any input x for decision problem A into input tran(x) for decision problem B

Polynomial reductions

tran is a *polynomial reduction* from A to B if:

- 1. *tran* can be computed in polynomial bounded time
- 2. The answer to A for input x is yes if and only if the answer to B for input tran(x) is yes.

Algorithm for A

Two simple problems

- A: Given n Boolean variables with values $x_1,...,x_n$, does at least one variable have the value True?
- B: Given n integers i₁,...,i_n is *max*{i₁,...,i_n}>0?

Algorithm for B:

Check the integers one after the other. If one is positive stop and answer "yes", otherwise (if none is positive) stop and answer "no".

Example:

n=4.

Given integers: -1, 0, 3, and 20.

Algorithm for B answers "yes".

Given integers: -1, 0, 0, and 0.

Algorithm for B answers "no".

Is there a transformation?

- Can we transform an instance of A into an instance of B?
- Yes.

$$tran(x)$$
for $(j=1; j = < n; j + +)$
if $(x_j = = true)$

$$i_j = 1$$
else $// x_j = false$

$$i_j = 0$$

T(false, false, true, false)= 0,0,1,0

Is this transformation polynomial bounded? yes

Does it satisfy all the requirements?

- Can we show that when the answer for an instance X₁, ...,X_n of A is "yes" the answer for the transformed instance tran(x₁,...,x_n)= i₁,...,i_n of B is also "yes"?
- If the answer for the given instance $x_1,...,x_n$ of A is "yes", there is some x_j =true.
- The transformation assigns i_i=1.
- Therefore the answer for problem B is also "yes" (the maximum is positive)

The other direction

- Can we also show that when the answer for problem B with input tran(x₁,...,x_n)= i₁,...,i_n is "yes", the answer for the instance x₁,...,x_n of A is also "yes"?
- If the answer for problem B is "yes", it means that there is an i_i>0 in the transformed instance.
- i_j is either 0 or 1 in the transformed instance. So i_j=1, and therefore x_j=true.
- So the answer for A is also "yes"

Polynomial reductions

Theorem:

If $A \propto B$ and B is in P, then A is in P If A is not in P then B is also not in P

NP-complete problems

- A problem A is NP-complete if
 - 1. It is in NP and
 - 2. For every other problem A' in NP, $A' \propto A$
- A problem A is NP-hard if
 For every other problem A' in NP, A'∝ A

Examples of NP-Complete problems

- Cook's theorem
 - Satisfiability is NP-complete
- This was the first problem shown to be NP-complete
- Other problems
 - the decision version of knapsack,
 - the decision version of traveling salesman

Coping with NP- Complete Problems

- To solve use approximations, heuristics, etc.
- Sometimes we need to solve only a restricted version of the problem.
- If restricted problem tractable design an algorithm for restricted problem

NP-complete problems: Theorem

If any NP-complete problem is in P, then P = NP.

If any NP-complete problem is not polynomial bound, then all NP-Complete problems are not polynomial bound.

The trival decision problem that always answers "yes" in here

NP-completeness and Reducibility

- The existence of NP-complete problems is leads us suspect that P ≠NP.
- If HAMILTONIAN CYCLE could be solved in polynomial time, every problem in NP can be solved in polynomial time.
- If HAMILTONIAN CYCLE could not be solved in polynomial time, every NP-complete problem can not be solved in polynomial time.

The Satisfiability problem

- First, Conjunctive Normal Form (CNF) will be defined
- Then, the Satisfiability problem will be defined
- Finally, we will show a polynomial bounded verification algorithm for the problem

Conjunctive Normal Form (CNF)

- A logical (Boolean) variable is a variable that may be assigned the value true or false (p, q, r and s are Boolean variables)
- A literal is a logical variable or the negation of a logical variable (p and ¬q are literals)
- A clause is a disjunction of literals
 ((p∨q∨s) and (¬q ∨ r) are clauses)

Conjunctive Normal Form (CNF)

- A logical (Boolean) expression is in Conjunctive Normal Form if it is a conjunction of *clauses*.
- The following expression is in conjunctive normal form:

$$(p \lor q \lor s) \land (\neg q \lor r) \land (\neg p \lor r) \land (\neg r \lor s) \land (\neg p \lor \neg s \lor \neg q)$$

The Satisfiability problem

- Is there a truth assignment to the n variables of a logical expression in Conjunctive Normal Form which makes the value of the expression true?
- For the answer to be "yes", all clauses must evaluate to true
- Otherwise the answer is "no"

The Satisfiability problem

- p=T, q=F, r=T and s=T is a truth assignment for:
 (p∨q∨s) ∧(¬q ∨ r) ∧(¬p ∨ r) ∧(¬r ∨ s) ∧(¬p∨¬s∨¬q)
- Note that if q=F then ¬q=T
- Each clause evaluates to true

A verification algorithm for Satisfiability

- 1. Check that the certificate s is a string of exactly n characters which are T or F.
- 2. while (there are unchecked clauses) {
 select next clause
 if (clause evaluates to false) return("no") }3. return ("yes")

- Is verification algorithm polynomial bound?
- Satisfiability is in NP since there exists a polynomial bound verification algorithm for it