Cluster analysis

Louis Jachiet

Louis JACHIET 1 / 2:

What is clustering?

Wikipedia definition

Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters).

Clustering

Infer structure from data.

Louis JACHIET 3 / 2:

Figure 1: Cluster of species (from cell.com)

Examples

Figure 2: Screenshot of Duckduckgo

Clustering clustering algorithms

Hierarchical

Partitional

Density based

Clustering goal

Minimize some error function on clusters!

Clustering goal

Minimize some error function on clusters!

Classical error functions

- Closest link
- Farthest link
- Average distance
- Squared Centroid distance

• . . .

Hierarchical clustering

• Each item starts in its own cluster

- Each item starts in its own cluster
- While we have more than one cluster

- Each item starts in its own cluster
- While we have more than one cluster
 - Merge the two "closest" clusters

- Each item starts in its own cluster
- While we have more than one cluster
 - Merge the two "closest" clusters

⇒ What defines cluster proximity?

- Each item starts in its own cluster
- While we have more than one cluster
 - Merge the two "closest" clusters

⇒ What defines cluster proximity? MAX?

- Each item starts in its own cluster
- While we have more than one cluster
 - Merge the two "closest" clusters

⇒ What defines cluster proximity? MAX? MIN?

- Each item starts in its own cluster
- While we have more than one cluster
 - Merge the two "closest" clusters

⇒ What defines cluster proximity? MAX? MIN? Average?

- Each item starts in its own cluster
- While we have more than one cluster
 - Merge the two "closest" clusters

⇒ What defines cluster proximity?
MAX? MIN? Average? Ward?

BIRCH CF-tree

Summarize N points $v_1 ldots v_N$ with (N, \vec{LS}, SS) where

- $\vec{LS} = \sum v_i$
- $SS = \sum v_i^2$

Computing centroid:

$$\vec{C} = \frac{\vec{LS}}{N}$$

Computing radius:

$$R^2 = \frac{SS}{N} - \vec{C}^2$$

Combine clusters:

$$(N_1, \vec{LS}_1, SS_1) + (N_2, \vec{LS}_2, SS_2) = (N_1 + N_2, \vec{LS}_1 + \vec{LS}_2, SS_1 + SS_2)$$

BIRCH algorithm

Parameters

- B branching factor
- T threshold

BIRCH algorithm

Parameters

- B branching factor
- T threshold

Adding point in the CF-tree

- Try to find the appropriate leaf
- When it doesn't exist, create one
- Explode node if it is too big

BIRCH algorithm

Parameters

- B branching factor
- T threshold

Adding point in the CF-tree

- Try to find the appropriate leaf
- When it doesn't exist, create one
- Explode node if it is too big

Algorithm

- Initialize empty CF-tree
- Add each point to the CF-tree
- Compute clusters over the data summarized by the CF-tree

Extension for streaming data

Clu-Stream

- Uses micro-clusters to store statistics on-line
 - Clustering Features CF = (N, LS, SS, LT, ST)
 - N: numer of data points
 - LS: linear sum of the N data points
 - SS: square sum of the N data points
 - LT: linear sum of the time stamps
 - ST: square sum of the time stamps
- Uses pyramidal time frame

Partitional clustering

Input

- K a number
- P a set of points

Algorithm

- Select K points $C_1 \dots C_K$ (Forgy or Random)
- Iterate
 - Partition P into $P_1 \dots P_K$ ($p \in P$ goes into P_i when C_i is the closest to p among the $C_1 \dots C_K$)

• Set $C_i = center(P_i)$

Louis JACHIET 13 / 22

Louis JACHIET 13 / 22

Louis JACHIET 13 / 22

K-Means can be slow ... and does not necessarily converges to an optimal solution!

Louis JACHIET 14 / 22

K-Means++

Improve initialization

- First point is selected randomly
- Each new point is choosen randomly but depending on the distance from selected points

Louis JACHIET 15 / 22

K-Means / K-Means++

Finding *K*?

- Test several K and plot (elbow method)
- Silhouette method
- Maximizing Bayesian Information Criterion

• . . .

Louis JACHIET 16 / 22

Extension for streaming data

StreamKM++

- Creates a *coreset* of points (inspired by *K*-means++)
- Runs K-means on the coreset

Louis JACHIET 17 / 22

Density

Density-Based Spatial Clustering of Applications with Noise

$\mathsf{DBSCAN}(\epsilon, \mu)$

- ϵ -neighborhood(p): set of points that are at a distance of p less or equal to ϵ
- Core object: object whose ϵ -neighborhood has an overall weight at least μ
- A point p is directly density-reachable from q if
 - p is in ϵ -neighborhood(q)
 - q is a core object
- A point p is density-reachable from q if
 - there is a chain of points p_1, \ldots, p_n such that p_{i+1} is directly density-reachable from p_i
- A point p is density-connected from q if
 - there is point o such that p and q are density-reachable from o

Louis JACHIET 18 / 22

DBSCAN

- A *cluster C* of points satisfies
 - if $p \in C$ and q is density-reachable from p, then $q \in C$
 - all points $p, q \in C$ are density-connected
- A *cluster* is uniquely determined by any of its core points
- A *cluster* can be obtained
 - choosing an arbitrary core point as a seed
 - · retrieve all points that are density-reachable from the seed

Louis JACHIET 19 / 22

DBSCAN(ϵ , 3)

Louis JACHIET 20 / 22

$\mathsf{DBSCAN}(\epsilon,4)$

Louis JACHIET 21 / 22

DBSCAN

Algorithm

- select an arbitrary non treated point p
- retrieve $N = \epsilon$ -neighborhood(p)
- if $|N| \ge \mu$
 - set $T = N \setminus \{p\}$
 - While $T \neq \emptyset$
 - Set (p', T) = T
 - Mark p' as cluster p
 - Set $N' = \epsilon$ -neighborhood(p')
 - If $|N'| \ge \mu$ then $T = T \cup N'$
- Continue the process until all of the points have been processed

Louis JACHIET 22 / 22