My abstract algebra exercises

Evgeny Markin

2023

Contents

Ι	\mathbf{Pre}	liminari	ies																								3
1	Rela	ations an	ıd Fu	\mathbf{inct}	ions	5																					4
2	The	Integers	s and	l M	odu	lar	A	rit	hn	ıet	ic																5
II	Gr	oups																									6
3	Intr	oduction	ı to (Gro	ups																						7
	3.1	An Impo	rtant	Exa	amp	le																					7
		3.1.1																									7
		3.1.2																									7
		3.1.3																									8
		3.1.4																									8
		3.1.5																									8
		3.1.6																									8
	3.2	Groups.																									8
		3.2.1																									8
		3.2.2																									8
		3.2.3																									9
	3.3																										9
	3.4																										9
	3.5																										9
	3.6	Cyclic G	roups																								9
		3.6.1																									9
		3.6.2																									9
		3.6.3												•		-	 -										10
		3.6.4																						•			10
		3.6.5						•			•	•		•		•	 •		•		•	. •	•	•	•	•	10
		3.6.6		• •	• •	•		•	•	• •	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	11
		3.6.7		• •	• •	• •		•	• •		•	•		•		•	 •		•	•	•		•	•	•	•	11

CONTENTS 2

	3.7	Cosets a	and	Lae	rai	าตะ	e's	Tł	hec	ore	m	١.		_	_	_									_	11
	٥.,	3.7.1		•																						11
		3.7.2																								11
		3.7.3																								12
		3.7.4																								12
		3.7.5																								12
4	Fac	tor Gro	ups	an	d I	Ю	m	on	no	rp	h	isı	m	\mathbf{s}												13
	4.1	Normal	Sub	gro	ups	з.																				13
		4.1.1																								13
		4.1.2																								14
		4.1.3																								14
		4.1.4																								15
		4.1.5																								15
		4.1.6																								16
		4.1.7																								16
		4.1.8																								16
		4.1.9																								16
		4.1.10																								17

Part I Preliminaries

Relations and Functions

The Integers and Modular Arithmetic

Part II

Groups

Introduction to Groups

3.1 An Important Example

3.1.1

In
$$S_4$$
, let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$, and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$. Calculate $\sigma \tau$, $\tau \sigma$ and σ^{-1} .
$$\sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{pmatrix}$$
$$\tau \sigma = \begin{pmatrix} l1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix}$$
$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$

3.1.2

In
$$S_5$$
, let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{pmatrix}$ calculate $\sigma \tau \sigma$, $\sigma \sigma \tau$, σ^{-1} .
$$\sigma \tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 3 & 2 \end{pmatrix}$$

$$\sigma \sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{pmatrix}$$

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 5 & 1 \end{pmatrix}$$

How many permutations are there in S_n ? In S_5 , how many permutations α satisfy $\alpha(2) = 2$?

We can follow that there are n! permutations total, and if we've got a restriction $\alpha(2) = 2$, then we've got (n-1)! permutation. For the case S_5 it means that there are 4! = 24 such permutations.

3.1.4

Let H be the set of all permutations $\alpha \in S_5$ satisfying $\alpha(2) = 2$. Which of the properties of closure, associativity, identit, inverses does H enjoy under composition? All of them

3.1.5

Consider the set of all functions from 6 to 6. Which of the ... Everything other then inverse

3.1.6

Let G be the set of all ... All of them

3.2 Groups

3.2.1

Give group tables for following additive grops: Z_3 , $Z_3 \times Z_2$

	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

last one is ommitted

3.2.2

Give group tables for the following groups: U(12), S_3

We follow that $U(12) = \{1, 5, 7, 11\}$. THus

	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

One of the programs in progs folder produces desired table for S_3 (and can produce one for any S_n for that matter).

3.2.3

Show that $G \times H$ is abelian iff G and H are both abelian

Was proven in dummit and foote, check 1.1.29

Rest of the exercises in this section were either already proven in $D \mathcal{E} F$, are trivial, or could be solved at a later time if I encounter some gaps in the theory.

- 3.3
- 3.4
- 3.5

3.6 Cyclic Groups

3.6.1

Let $G = \langle a \rangle$ be a cyclic group of order 12. List every subgroup of G. List every group of Z_{12}

12's divisors are $\{1, 2, 3, 4, 6, 12\}$, therefore subgroups of G are $\langle a^i \rangle$ for $i \in \{0, 1, 2, 3, 4, 6\}$ Since Z_{12} is cyclic, we follow that $\langle [0, 1, 2, 3, 4, 6] \rangle$ are the subgroups of Z_{12} .

3.6.2

Let $G = \langle a \rangle$ be a cyclic group of order 120. List all of the groups of order 120. List all of the elements of order 12 in G.

Divisors of 120 are $\{1, 2, 3, 4, 5, 6, 8, 10, 12, 24, 60, 120\}$, thus we can state that subgroups of a cyclic group are a to powers of those numbers

According to the theorems, there should be $\phi(12) = 4$ elements of order 12. All of them lie in a subgroup $\langle a^{120/12} \rangle = \langle a^{10} \rangle$ and are in form $(a^{10})^k$ where $k \in 1, 5, 7, 11$.

How many element of order 12 are there in a cyclic group of order 1200?

Also 4.

3.6.3

Let p be a prime and n a positive integer. Show that $\phi(p^n) = p^n - p^{n-1}$

If $j \in Z_+$ is such that j = pi for some $i \in Z_+$, then we follow that $(p^n, j) = p$, therefore they are not relatively prime. Suppose that $(p^n, j) = 1$ for some $j \in Z_+$. Let S be a multiset of prime divisors of $p^n N$ and T be a multiset of divisors of j. Then we follow that $S \cap T = \emptyset$, since otherwise we would've had that j is a multiple of p, which is not relatively prime to p^n . Thus we follow that the set of not relatively prime numbers to p^n is equal to the set of multiples of p.

We can follow that there are pricicely p^{n-1} of multiples of p that are less or equal to p^n (don't think that we need to prove that), therefore the total amount of numbers that are less or equal to p^n , which are relatively prime to p^n is $p^n - p^{n-1}$, as desired.

3.6.4

Find all positive integers n such that |U(n)| = 24.

We can follow that $\phi(n)$ is an function that tends to infinity (i.e. for every $n \in Z_+$ there exists $j \in Z_+$ such that m > n implies that $\phi(m) > j$ since $\phi(n)$ is larger than the number of prime numbers that is in the set $Z_+ \cap [1, n)$. Therefore we conclude that there is an upper bound for a number of numbers n such that $\phi(n) = 24$.

Brute-force shows that those numbers are

Can't come up with a better answer than that, but I'm sure that it's there.

3.6.5

Let G be a nonabelian group. If H and K are cyclic subgroups of G, does it follow that $H \cap K$ is also a cyclyc subgroup? Prove that it does, or provide a counterexample.

We follow that every subgroup has an identity in it, thus $e \in H \cap K$. Suppose that $j \in H \cap K$. We follow that $j \in H \wedge j \in K$. Since H and K are both subgroups, we follow that $j^{-1} \in H \wedge j^{-1} \in K$. Thus $j^{-1} \in H \cap K$. Therefore $H \cap K$ is closed under inverses. We can follow also by the same logic that $j, l \in H \cap K$ implies that $jl \in H \cap K$. Therefore we can conclude that $H \cap K$ is a subgroup.

We can follow that if $H \cap K = \{e\}$, then it's cyclic. We can follow that $H \cap K$ can be not only a trivial subgroup by setting H = K. Suppose that $H \cap K \neq \{e\}$. By the fact that both H and K are cyclic we follow that $H \cap K = \{a^i : i \in \text{ some subset of } Z_+\}$. Since $H \cap K \neq \{e\}$, we follow that there exists an element $a \in G$ and two sets $H', K' \in \mathcal{P}(Z_+)$ such that $H = \{a^i : i \in H'\}$ and $K = \{a^i : i \in K'\}$. Since both H and K are cyclic we follow that

both H' and K' are the sets of multiples of some number. Thus $H' \cap K'$ is a set of multiples of some number as well (proof ommitted). Thus we follow that $H \cap K = \{a^i : i \in H' \cap K'\}$ is a cyclic group as well.

3.6.6

Let $G = \langle a \rangle$ be an infinite cyclic. If m and n are positive integers, find a generator for $\langle a^m \rangle \cap \langle a^n \rangle$.

We can follow pretty easily that $\langle a^m \rangle \cap \langle a^n \rangle = \langle a^{lcm(m,n)} \rangle$

3.6.7

Let n be a positive integer and let T be the set of positive integers that divide n. Show that $\sum_{k \in T} \phi(k) = n$.

For 12 we've got

$$T = \{1, 2, 3, 4, 6, 12\}$$

$$\phi(1) = 1$$

$$\phi(2) = 1$$

$$\phi(3) = 2$$

$$\phi(4) = 2$$

$$\phi(6) = 2$$

$$\phi(12) = 4$$

and we follow that result works.

3.7 Cosets and Lagrange's Theorem

3.7.1

For each group G and subgroup H, find all the left cosets and right cosets of H in G.

1. G = Z, H = 4Z.

We follow that 0 + H = 4Z = H, $1 + H = \{1 + x : x \in Z\}$, and so on for 3 + H. Since the group is abelian, we follow that right cosets are the same.

3.7.2

Let G be a group whose order is the product of two (not necessarily distinct) primes. Show that every proper subgroup of G is cyclic

We follow that order of any given proper subgroup is equal to one of those primes, or 1. This implies that this subgroup is cyclic, as desired.

3.7.3

Let G be a group of order p^n for some prime p and positive integer n. Show that G has an element of order p.

We follow that any proper subgroup is some power of p. By induction we can conclude that such an element exists.

3.7.4

Let G be a group having a subgroup H of order 28 and a subgroup K of order 65. Show that $H \cap K = \{e\}$.

We follow that

$$28 = 2 * 2 * 7$$

$$65 = 13 * 5$$

since they don't have no commot prime multiples, we follow that $H \cap K$'s only order as a subgroup of both can be only 1. Since every group has an identity, we conclude the desired result.

3.7.5

blah blah blah

Factor Groups and Homomorphisms

4.1 Normal Subgroups

4.1.1

Is each of the following sets a normal subgroup of $GL_2(R)$?

1.
$$H = \{A \in GL_2(R) : \det(A) \in Q\}$$

We can follow that this thing is a subgroup by the properties of determinants of compositions of matrices and the fact that $Q \setminus \{0\}$ is closed under multiplication.

We follow that for all $a \in GL_2(R)$ and $h \in H$ we've got that

$$\det(a^{-1} * h * a) = \det(a^{-1}) * \det(h) * \det(a) = \det(a^{-1}) * \det(a) * \det(h) = \det(I) * \det(h) = \det(h)$$

and thus we follow that sH is a normal subgroup by one of the equivalencees in of the normal group.

2. the set of diagonal matrices in $GL_2(R)$.

We can follow that the thing is a subgroup my matrix identities and whatnot (identity is diagonal, inverse of diagonal is diagonal and composition of diagonal is diagonal; for justification GOTO linear algebra course, chapter 6 or 7) We can't follow that it's a normal group though, since we can set

$$a = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$

$$h = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

which gives us that $a^{-1} ha$ is not in H (details are ommitted put can be supplimented easily if you feel that you don't have nothing to do).

Find every normal subgroup of S_3 .

We follow that S_3 is itself a normal subgroup. Every sugroup of index 2 is normal, thus we follow that in this case that means that every subgroup of size 3 is normal. Every subgroup of length 1 must contain the identity, and thus we follow that the only subgroup of size 1 is the one that contains identity. Therefore by Lagrange's theorem we follow that the only subgroups left are the ones that have size 2. Let U be a subgroup of length 2. We follow that it must contain the identity, and thus they have the form

$$U = \{e, s\}$$

where $s \in S_3 \setminus \{e\}$. There are 5 such elements, and thus we can check them by hand.

Since U has to be a subgroup, we follow that $s \in S_3$ must be such that $s = s^{-1}$. Thus our search is limited to cycles

We follow that

$$(1,2)^{-1} \circ (2,3) \circ (1,2) = (1,2) \circ (2,3) \circ (1,2) = (1,3)$$

$$(2,3)^{-1} \circ (1,2) \circ (2,3) = (2,3) \circ (1,2) \circ (2,3) = (1,3)$$

$$(2,3)^{-1} \circ (1,3) \circ (2,3) = (2,3) \circ (1,3) \circ (2,3) = (1,2)$$

thus we follow that none of those are normal. Therefore we conclude that the only normal subgroups of S_3 are the ones with size 6, 3 and 1.

4.1.3

If N is a normal subgroup of G, and |N| = 2, show that $N \leq Z(G)$ We follow that

$$(\forall a \in G)(\forall h \in H)(a^{-1} ha \in H)$$

since |H|=2, we follow that $H=\{e,b\}$ for some $a\in G\setminus\{e\}$. Let $x\in H$. If x=e, then we follow that $x\in Z(G)$. If x=b, then we follow that

$$a^{-1}ba \in H \Leftrightarrow a^{-1}ba = e \vee a^{-1}ba = b \Leftrightarrow ba = ae \vee ba = ab$$

Since $b \neq e$, we follow that $ba \neq a = ae$, thus we follow that for all $a \in G$ we've got that ba = ab. Thus we follow that $x \in Z(G)$. Therefore we follow that $H \subseteq Z(G)$, and thus $H \subseteq Z(G)$, since the operation is the same, as desired.

Let N be a normal subgroup of G. Let H be the set of all elements h of G such that hn = nh for all $n \in N$. Show that H is a normal subgroup of G.

Proof that H is a subgroup is trivial and therefore ommitted.

Let $a \in G$. We follow that for all $n \in N$, $a^{-1} n a \in N$. Since N is normal in G, we follow that $N = a^{-1} N a$. Thus for given $a \in G$ and $n \in N$ there exists $n' \in N$ such that $n = a^{-1} n' a$. Thus an = n' a.

We want to show that if $h \in H$, then $a^{-1}ha \in H$. We follow that $a^{-1}ha \in H$ if and only if for all $n \in N$ we've got that

$$n(a^{-1}ha) = (a^{-1}ha)n$$

$$(a^{-1}ha) = n^{-1}(a^{-1}ha)n$$

$$(a^{-1}ha) = (an)^{-1}h(an)$$

$$(a^{-1}ha) = (n'a)^{-1}h(n'a)$$

$$(a^{-1}ha) = a^{-1}n'^{-1}hn'a$$

$$(a^{-1}ha) = a^{-1}n'^{-1}n'ha$$

$$(a^{-1}ha) = a^{-1}eha$$

$$a^{-1}ha = a^{-1}ha$$

as desired.

4.1.5

Show that the intersection of two normal subgroups of G is also a normal subgroup. Then extend this to show that if N_i is a normal subgroup of G for every i in some set T, then $\bigcap_{i \in T} N_i$ is a normal subgroup of G.

I think that I've shown earlier (maybe in another document) that $\bigcap_{i \in T} N_i$ is a subgroup. If not, then showing that is pretty trivial.

We firstly state here explicitly that T is nonempty, otherwise \bigcap is not defined. Let $x \in \bigcap_{i \in T} N_i$. This means that

$$(\forall i \in T)(x \in N_i)$$

Since N_i is normal for every $i \in T$, we follow that for all $a \in G$ we've got that $a^{-1} x a \in N_i$. Thus

$$(\forall a \in G)(\forall i \in T)(a^{-1} xa \in N_i)$$

which is equivalent to

$$(\forall a \in G)(a^{-1} xa \in \bigcap_{i \in T} N_i)$$

thus we conclude that if $x \in \bigcap_{i \in T} N_i$, then $a^{-1} x a \in \bigcap_{i \in T} N_i$. Therefore for all $x \in \bigcap_{i \in T} N_i$ and all $a \in G$ we've got that $a^{-1} x a \in \bigcap_{i \in T} N_i$. Therefore $\bigcap_{i \in T} N_i$ is normal.

Let $N_1 \leq N_2 \leq N_3 \leq ...$ be normal subgroups of G. Show that $\bigcup_{i=1}^{\infty} N_i$ is a normal subgroup of G.

This exexrcise is pretty much the same as the previous one, except that we might have to use a different quantifier.

4.1.7

Let G be a group having exactly one subgroup H of order n. Show that H is normal in G. Suppose that H is not normal. Then we follow that $a^{-1}Ha \neq H$. Since $a^{-1}Ha$ is a subgroup with $|a^{-1}Ha| = |H| = n$. Thus we follow that there are at least two disctinct groups of order n, which is a contradiction.

4.1.8

Let $G = H \times K$. If N and L are normal subgroups of H and K respectively, show that $N \times L$ is a normal subgroup of G. Is every normal subgroup of G of this form?

Let $a \in G$ be arbitrary. We follow that $a = \langle h', k' \rangle$ for some $h' \in H, k' \in K$. We follow that $a^{-1} = \langle h'^{-1}, k'^{-1} \rangle$. Let $\langle n, l \rangle \in N \times L$ be also arbitrary. We follow that $h'^{-1} nh' \in N$ and $k'^{-1} lk' \in L$, and thus $\langle h'^{-1} nh', k'^{-1} lk' \rangle \in N \times L$. Therefore we follow that $N \times L$ is normal, as desired.

Rule of the thumb is that if someone asks you an open question in a math book, then the answer is no, therefore we want to find a contradiction. Let $H = K = \mathbb{Z}_2$. Let $U = \{\langle 1, 1 \rangle, \langle 0, 0 \rangle\}$. We follow that since |U| = 2, index of U is 2, and thus it is normal.

4.1.9

Suppose that H is a subgroup of G and $a^{-1}b^{-1}ab \in H$ for all $a, b \in G$. Show that H is normal.

Let $c \in G$ and $h \in H$ be arbitrary. We follow that $h, h^{-1} \in G$ by the fact that H is a subgroup. Thus

$$c^{\text{--}1}(h^{\text{--}1})^{\text{--}1}\,c(h^{\text{--}1})\in H$$

by property of H. Thus

$$c^{\operatorname{-1}} \operatorname{hc}(h^{\operatorname{-1}}) \in H$$

Since $h \in H$, we follow that

$$c^{-1} h c(h^{-1}) h \in H$$

thus

$$c^{-1} hc \in H$$

thus H is normal, as desired.

Let H and K be subgroups of G. Show that HK is a subgroup if and only if HK = KH.

Assume that HK is a subgroup. We follow that since $e \in K$ that $he = h \in HK$ for all $h \in H$. Thus $H \leq HK$. We also follow by the same logic that $K \leq HK$. Let $j \in KH$. We follow that j = k'h' for some $h' \in H$ and $k' \in K$. Since $H \leq HK$ and $K \leq HK$, we follow that $k' \in HK$ and $h' \in HK$, thus $k'h' \in HK$. Thus $KH \subseteq HK$.

Let $hk \in HK$. We follow that $(hk)^{-1} \in HK$. Thus there exist $h' \in H$ and $k' \in K$ such that $h'k' = (hk)^{-1}$. Thus $hk = (h'k')^{-1} = k'^{-1}h'^{-1}$. Since $k' \in K$ and $h' \in H$, we follow that $k'^{-1} \in K$ and $h'^{-1} \in H$, and thus $k'^{-1}h'^{-1} \in KH$. Thus $hk = k'^{-1}h'^{-1} \in KH$. Therefore $HK \subseteq KH$, as desired.

Suppose that HK = KH. Since $e \in H$ and $e \in K$ we follow that $e \in HK$. Let $hk \in HK$. We follow that $(hk)^{-1} = k^{-1}h^{-1} \in KH = HK$. Thus $(hk)^{-1} \in HK$. Let $a, b \in HK$. We follow that a = hk and b = h'k' for somce $h, h' \in H$ and $k, k' \in K$. Thus

$$ab = hkh'k' = h(kh')k'$$

since $h \in HK$, $k \in HK$ and $kh' \in KH = HK$, we conclude that $ab \in HK$. Thus HK is a subgroup.