PQC Function Evaluation

Carnegie Vacation Scholarship

David Amorim

Week 4 (22/07/2024 - 26/07/2024)

Aims for the Week

The following aims were set at the last meeting (22/07/2024):

1. Change Input Layer Structure

Improve the connectivity of input layers. Each input qubit should ideally control each target qubit at some point in the network.

2. Fix Parameters

Add the option to keep parameters fixed for each type of network layer.

3. Improve Loss Function

Develop a distance measure taking into account digital encoding. Either incorporate this into weights for an existing loss function or define a new loss function on this basis.

David Amorim PQC Function Evaluation 29/07/2024 2 / 17

Glossary

Acronym	Meaning
CL	convolutional layer
AA-CL	all-to-all convolutional layer
NN-CL	neighbour-to-neighbour convolutional layer
IL	input layer

Table 1: Acronyms and short-hands used in the following.

Variable	Meaning
\overline{n}	input register size
m	target register size
L	number of network layers

Table 2: Variables used in the following.

- 1 Changing Input Layer Structure
- Pixing Parameters
- Improving the Loss Function Preliminary Definitions
- A Results
- 6 Next Steps

4 / 17

David Amorim PQC Function Evaluation 29/07/2024

Changing Input Layer Structure

- Previously, the jth input qubit controlled an operation on the jth target qubit (with wrap-around for n>m)
- An optional shift parameter, s, has now been added so that the jth input qubit controls an operation on the j+sth target qubit
- This shift parameter is incremented for each successive IL
- The QCNN is padded with additional ILs to ensure that the number of ILs is $\geq m$
- Thus, each input qubit now controls an operation on each target qubit at some point in the QCNN
- Note that ILs still alternate between control states 0 and 1
- FIND A WAY TO COMPARE THIS TO PREVIOUS OUTPUT!
 GRAPH! WHAT IS THE EFFECT OF THIS??

- Changing Input Layer Structure
- 2 Fixing Parameters
- 3 Improving the Loss Function Preliminary Definitions
- A Results
- Next Steps

6/17

David Amorim PQC Function Evaluation 29/07/2024

Fixing Parameters

- Implemented the option to fix parameters for each layer type
- This means that each instance of a layer type (IL, AA-CL, NN-CL) uses the same set of parameters
- ullet This significantly reduces the number of trainable parameters at large L
- Initial testing shows this to slightly decrease network performance (DO MORE TESTING!; GET A GRAPH?!)
- Surprisingly, reducing the parameter space produces no noticeable speed-up (so-called qiskit primitives, i.e. the sampler, take up roughly 95% of the computational time)

David Amorim PQC Function Evaluation 29/07/2024 7 / 17

- Changing Input Layer Structure
- 2 Fixing Parameters
- 3 Improving the Loss Function Preliminary Definitions
- A Results
- 6 Next Steps

8 / 17

David Amorim PQC Function Evaluation 29/07/2024

• Consider a computational basis state, $|j\rangle$, in a p-qubit register:

$$|j\rangle = \bigotimes_{\alpha=0}^{p-1} |j_{\alpha}\rangle, \quad |j_{\alpha}\rangle \in \{|0\rangle, |1\rangle\}$$
 (1)

Define

$$j_{\alpha} \equiv \begin{cases} 0 & \text{if } |j_{\alpha}\rangle = |0\rangle \\ 1 & \text{if } |j_{\alpha}\rangle = |1\rangle \end{cases}$$
 (2)

9/17

• Two digitally encoded binary numbers can be associated with $|j\rangle$:

$$j \equiv \sum_{\alpha=0}^{p-1} j_{\alpha} 2^{\alpha}$$
 $(0 \le j \le 2^p - 1),$ (3)

$$j' \equiv \sum_{\alpha}^{p-1} j_{\alpha} 2^{\alpha - p} \qquad (0 \le j' \le 1) \tag{4}$$

4 D N 4 D N 4 E N

- Consider an n-qubit input register and an m-qubit target register, denoted with subscripts i and t, respectively
- A computational basis state of the combined system, $|k\rangle_{i+t}$, can be decomposed into

$$|k\rangle_{i+t} = |j\rangle_i \otimes |l\rangle_t \,, \tag{5}$$

for computational basis states $|j\rangle_i$, $|l\rangle_t$ of the two registers

Define

$$input(|k\rangle_{i+t}) \equiv |j\rangle_i$$
 (6)

$$target(|k\rangle_{i+t}) \equiv |l\rangle_t \tag{7}$$

(8)

10 / 17

• A general state of the two-register system is then

$$|z\rangle = \sum_{k=0}^{2^{n+m}-1} z_k |k\rangle_{i+t} \tag{9}$$

• For training in superposition, the two-register target state is

$$|y\rangle = \sum_{j=0}^{2^{n}-1} \frac{1}{\sqrt{2^{n}}} |j\rangle_{i} |\Psi'(j)\rangle_{t} \equiv \sum_{k=0}^{2^{n+m}-1} y_{k} |k\rangle_{i+t},$$
 (10)

with $y_k = 0$ if $target(|k\rangle_{i+t})$

David Amorim PQC Function Evaluation 29/07/2024 11/17

- FIND GOOD NOTATION FOR ALL THIS !!!
- THINK ABOUT THIS ALL MORE DEEPLY! MAYBE HAVE TO SWITCH TO WEIGHTED L1/2 LOSS INSTEAD? (WILL)

David Amorim PQC Function Evaluation 29/07/2024 12 / 17

Improving WIM

Recall the definition of WIM (Welghted Mismatch):

WIM
$$(x, y) = \left| 1 - \sum_{k=0}^{2^{n+m}-1} \tilde{w}_k x_k y_k \right|,$$
 (11)

where

- $|x\rangle = \sum_{k=0}^{2^{n+m}-1} x_k |k\rangle$ is the output state produced by the QCNN,
- $|y\rangle = \sum_{k=0}^{2^{n+m}-1} y_k |k\rangle$ is the target state,
- $ilde{w}_k \in \mathbb{R}_+$ are weighting factors
- calculate w_k
- *w*

- Changing Input Layer Structure
- Pixing Parameters
- Improving the Loss Function Preliminary Definitions
- 4 Results
- 6 Next Steps

David Amorim PQC Function Evaluation 29/07/2024 14/17

Results

Show phase encoding with improved methods show the full waveform [new frame]

- Changing Input Layer Structure
- Pixing Parameters
- Improving the Loss Function Preliminary Definitions
- A Results
- 6 Next Steps

16 / 17

Next Steps

• ...

David Amorim PQC Function Evaluation 29/07/2024 17/17