

Árvore de Decisão

Disciplina: Mineração de Dados

Prof. Braian Varjão

Árvore de Decisão

Árvore de decisão

Algoritmos de árvores de decisão adquirem conhecimento simbólico a partir dos dados de treinamento.

Árvore de decisão

Is a Person Fit?

IF (age < 30 AND eats_pizza) OR (age >= 30 AND exercices) THEN
 Fit

ELSE

Unfit!

Representação

Árvore de decisão com atributos contínuos

Processo de aprendizado

De modo geral, os algoritmos utilizam uma abordagem de busca gulosa *top-down* no espaço de possíveis árvores de decisão.

Processo de aprendizado

Como selecionar o nó raiz?

Algumas opções:

- 1. Atributo selecionado aleatoriamente;
- 2. O atributo com mais valores possíveis;
- 3. O atributo com menos valores possíveis;
- 4. Maior ganho de informação;
- 5. Maior índice Gini, etc.

O particionamento da base se dá em busca de reduzir a impureza dos dados a cada iteração. Essa impureza é observada por uma medida chamada entropia.

Cálculo em problemas binários:

- \triangleright Seja um conjunto de exemplo S
- ▶ Proporção de exemplos positivos 𝒫(+)
- Proporção de exemplos negativos p(-)

A entropia dessa classificação booleana é:

$$Entropia(S) = -p_{(+)} \log_2 p_{(+)} - p_{(-)} \log_2 p_{(-)}$$

A. root node only

B. decision tree with partially expanded leaf nodes

C. decision tree with fully expanded leaf nodes

A: high in Expected Cross-Entropy

B: Expected Cross-Entropy?

C: lowest in Expected Cross-Entropy (it is 0)

Qual a entropia dessa base?

$$Entropia(S) = -p_{(+)} \log_2 p_{(+)} - p_{(-)} \log_2 p_{(-)}$$

dia	tempo	temperatura	umidade	vento	jogar_tênis	
D1	ensolarado	quente	alta	fraco	não	
D2	ensolarado	quente	alta	forte	não	
D3	nublado	quente	alta	fraco	sim	
D4	chuva	moderada	alta	fraco	sim	
D5	chuva	fria	normal	fraco	sim	
D6	chuva	fria	normal	forte	não	
D7	nublado	fria	normal	forte	sim	
D8	ensolarado	moderada	alta	fraco	não	
D9	ensolarado	fria	normal	fraco	sim	
D10	chuva	moderada	normal	fraco	sim	
D11	ensolarado	moderada	normal	forte	sim	
D12	nublado	moderada	alta	forte	sim	
D13	nublado	quente	normal	fraco	sim	
D14	chuva	moderada	alta	forte	não	

Exercício 1: resposta

S possui 14 exemplos, sendo que a classe é constituída por 9 positivos e 5 negativos, ou seja, [9+,5-]. Assim sendo, a entropia de S é:

Entropia(S) = $-(9/14)\log 2(9/14) - (5/14)\log 2(5/14) = 0.94$

Cálculo em problemas multi-classe:

- \triangleright Seja um conjunto de exemplos S;
- Seja pi a proporção de instâncias (exemplos) de S
 pertencendo a classe i;
- ▷ Seja C o número total de classes:

$$Entropia(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Como definir o nó raiz?

Busca pelo atributo que provê o maior ganho de informação (IG).

O IG permite identificar o atributo cujo particionamento resultará na maior redução da entropia, reduzindo o tamanho das sub árvores "enraizadas" em seus filhos.

Ganho de informação

Como calcular o IG de um atributo

- \triangleright Seja um conjunto de exemplo S;
- Seja o atributo A;
- Seja Valores(A) o conjunto de todos os valores possíveis de A;
- Seja SV o subconjunto de S para o qual o atributo A tem valor V.

$$Ganho(S, A) \equiv Entropia(S) - \sum_{v \in Valores(A)} \frac{|Sv|}{|S|} Entropia(Sv)$$

Escolhendo o nó raiz (1/3

$$Entropia(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

$$Ganho(S, A) \equiv Entropia(S) - \sum_{v \in Valores(A)} \frac{|Sv|}{|S|} Entropia(Sv)$$

dia	tempo	temperatura	umidade	vento	jogar_tênis	
D1	ensolarado	quente	alta	fraco	não	
D2	ensolarado	quente	alta	forte	não	
D3	nublado	quente	alta	fraco	sim	
D4	chuva	moderada	alta	fraco	sim	
D5	chuva	fria	normal	fraco	sim	
D6	chuva	fria	normal	forte	não	
D7	nublado	fria	normal	forte	sim	
D8	ensolarado	moderada	alta	fraco	não	
D9	ensolarado	fria	normal	fraco	sim	
D10	chuva	moderada	normal	fraco	sim	
D11	ensolarado	moderada	normal	forte	sim	
D12	nublado	moderada	alta	forte	sim	
D13	nublado	quente	normal	fraco	sim	
D14	chuva	moderada	alta	forte	não	

Escolhendo o nó raiz (2/3)

Entropia(S) = 0,94 Vento.forte = [6+,2-] Vento.fraco = [3+,3-]

$$Ganho(S, Vento) \equiv Entropia(S) - \sum_{v \in \{fraco, forte\}} \frac{|Sv|}{|S|} Entropia(Sv)$$

$$Ganho(S, Vento) \equiv Entropia(S) - \left(\frac{8}{14}\right) Entropia(Sfraco) - \left(\frac{6}{14}\right) Entropia(Sforte)$$

$$Ganho(S, Vento) \equiv 0.940 - \left(\frac{8}{14}\right)0.811 - \left(\frac{6}{14}\right)1.00$$

$$Ganho(S, Vento) \equiv 0.048$$

Escolhendo o nó raiz (3/3)

Definição do nó raiz:

Ganho(S, tempo) = 0.246

Ganho(S, umidade) = 0.151

Ganho(S, vento) = 0.048

Ganho(S, temperatura) = 0.029

Para cada ramo da árvore o processo continua até que:

- 1. Todos os atributos já foram incluídos neste caminho da árvore;
- 2. Os exemplos de treinamento associados com este nó folha sejam todos da mesma classe (entropia zero).

Para cada ramo da árvore o processo continua até que:

1. Todos os atributos já foram incluídos neste caminho da árvore;

2. Os exemplos de treina nó folha sejam todos da zero).

Isso porque o ID3 lida apenas com atributos categóricos. Algoritmos como o C4.5, que lidam com atributos contínuos, permitem que um mesmo atributo apareça mais de uma vez num mesmo ramo.

dia	tempo	temperatura	umidade	vento	jogar_tênis	
D1	ensolarado	quente	alta	fraco	não	
D2	ensolarado	quente	alta	forte	não	
D3	nublado	quente	alta	fraco	sim	
D4	chuva	moderada	alta	fraco	sim	
D5	chuva	fria	normal	fraco	sim	
D6	chuva	fria	normal	forte	não	
D7	nublado	fria	normal	forte	sim	
D8	ensolarado	moderada	alta	fraco	não	
D9	ensolarado	fria	normal	fraco	sim	
D10	chuva	moderada	normal	fraco	sim	
D11	ensolarado	moderada	normal	forte	sim	
D12	nublado	moderada	alta	forte	sim	
D13	nublado	quente	normal	fraco	sim	
D14	chuva	moderada	alta	forte	não	

S.ensolarado = {D1, D2, D8, D9, D11}

Ganho(S.ensolarado, umidade) = 0.971-(3/5)0.0 - (2/5)0.0 = 0.971

Ganho(S.ensolarado, temperatura) = 0.971-(2/5)1.0 - (2/5)0.0 - (1/5)0.0 = 0.571

Ganho(S.ensolarado, vento) = 0.970-(2/5)1.0 - (3/5)0.918 = 0.020

Exercício 3

Questões importantes

Atributos contínuos

Dados faltantes

Overffiting

Poda

Árvores de decisão: atributos contínuos

dia	hora	tempo	temperatura	umidade	vento	jogar tênis
D1	6	ensolarado	quente	alta	fraco	não
D2	9	ensolarado	quente	alta	forte	não
D3	10	nublado	quente	alta	fraco	sim
D4	15	chuva	moderada	alta	fraco	sim
D5	7	chuva	fria	normal	fraco	sim
D6	8	chuva	fria	normal	forte	não
D7	16	nublado	fria	normal	forte	sim
D8	11	ensolarado	moderada	alta	fraco	não
D9	20	ensolarado	fria	normal	fraco	sim
D10	21	chuva	moderada	normal	fraco	sim
D11	13	ensolarado	moderada	normal	forte	sim
D12	12	nublado	moderada	alta	forte	sim
D13	19	nublado	quente	normal	fraco	sim
D14	18	chuva	moderada	alta	forte	não

Dados ausentes

Na construção da árvore:

Ignora as instâncias com dados ausentes.

Na classificação:

Diante de um valor ausente, segue-se pelo ramo com mais nós (moda).

Overfitting

Poda

Pré-poda

Realizado durante o processo de construção da árvore.

Estratégias:

- ▷ IG mínimo;
- Profundidade máxima;
- Número mínimo de exemplos.

Poda

Pós poda

Remover ramos completos após a construção da árvore.

Testa a árvore com e sem o ramo com um conjunto de teste. Se o resultado da classificação for similar ou melhor, corta-se o ramo.

Árvores de decisão

Vantagens

- Fáceis de interpretar e visualizar;
- Lida facilmente padrões não lineares;
- Não há necessidade de tarefas de pré-processamento como normalização;
- Robusto a dados ausentes;
- Não tem exigências relativas à distribuição dos dados.

Árvores de decisão

Desvantagens

- Tendência a overfitting;
- Sensíveis ao desbalanceamento entre classes;
- Instáveis, ou seja, uma pequena variação nos dados pode gerar uma árvore completamente diferente.

Árvores de decisão

Desvantagens

- Tendência a overfitting;
- Sensíveis ao desbalanceamento entre classes;
- Instáveis, ou seja, uma pequena variação nos dados pode gerar uma árvore completamente diferente.
 - Esse problema pode ser minimizado com o uso de um ensemble, como o Randon Forest.

Random Forest

E como faz no python?

from sklearn.tree import DecisionTreeClassifier

model= DecisionTreeClassifier()
model.fit(Features, classes)
model.predict(new_object)

from sklearn.ensemble import RandomForestClassifier

model=RandomForestClassifier(n_estimators=25) model.fit(Features, classes) model.predict(new_object)