Треугольники общего вида.

Основные свойства треугольников:

- 1. Сумма всех углов в треугольнике равна 180°.
- 2. В равнобедренном треугольнике углы при основании равны.
- 3. В равнобедренном треугольнике высота, проведенная к основанию, одновременно является медианой и биссектрисой.
- 4. В равностороннем треугольнике все углы по 60° .
- 5. Внешний угол треугольника равен сумме двух углов, не смежных с ним.
- 6. Средняя линия треугольника параллельна основанию и равна его половине.

MN - средняя линия, так как соединяет середины соседних сторон.

$$MN // AC$$
, $MN = \frac{AC}{2}$

Биссектриса - это линия, которая делит угол пополам.

Свойства биссектрисы:

- 1. В равнобедренном треугольнике биссектриса, проведённая из вершины к основанию, является также и медианой, и высотой.
- 2. Три биссектрисы в треугольнике пересекаются в одной точке, эта точка является центром вписанной в треугольник окружности.
- 3. Биссектрисы смежных углов перпендикулярны.
- 4. В треугольнике биссектриса угла делит противоположную сторону на отрезки, отношение которых такое же, как отношение сторон треугольника, между которыми эта биссектриса прошла.

$$\frac{AB}{AC} = \frac{BA_1}{A_1C}$$

Медиана - это линия, проведенная из вершины треугольника к середине противоположной стороны.

Свойства медиан:

1. Медиана делит треугольник на два равновеликих треугольника, т.е. на два треугольника, у которых площади равны.

$$S_1 = S_2$$

- 2. Медианы пересекаются в одной точке и этой точкой делятся в отношении два к одному, считая от вершины.
- 3. В прямоугольном треугольнике медиана, проведенная к гипотенузе, равна половине гипотенузы и радиусу описанной около этого треугольника окружности.

Высота в треугольнике - это линия, проведенная из вершины треугольника к противоположной стороне под углом в 90 градусов.

 BB_1 - высота

Свойства высот:

- 1. Три высоты (или их продолжения) пересекаются в одной точке.
- 2. Угол между высотами в остроугольном треугольнике равен углу между сторонами, к которым эти высоты проведены.

3. Высоты треугольника обратно пропорциональны его сторонам:

$$h_a: h_b: h_c = \frac{1}{a}: \frac{1}{b}: \frac{1}{c}$$

Прямоугольный треугольник и его свойства:

В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

- 1. Сумма острых углов в прямоугольном треугольнике равна 90 градусов.
- 2. Катет прямоугольного треугольника, лежащий напротив угла в 30 градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)
- 3. Медиана прямоугольного треугольника, проведенная к его гипотенузе, равна ее половине и радиусу описанной окружности (R)
- 4. Медиана прямоугольного треугольника, проведенная к его гипотенузе, делит треугольник на два равнобедренных треугольника, основаниями которых являются катеты данного треугольника.

$$CD = AC = CB = R$$

5. В прямоугольном треугольнике радиус вписанной окружности равен: $r=\frac{a+b-c}{2}$, где a и b — это катеты, c — гипотенуза.

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$$AC^2 + BC^2 = AB^2$$

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике АВС, с прямым углом С

Для острого угла B: AC - противолежащий катет; BC - прилежащий катет.

Для острого угла A: BC - противолежащий катет; AC - прилежащий катет.

- 1. Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
- 2. Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
- 3. Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
- 4. Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
- 5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
- 6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
- 7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения

Значения тригонометрических функций некоторых углов:

$$\alpha \qquad 30 \quad 45 \quad 60$$

$$\sin \alpha \quad \frac{1}{2} \quad \frac{\sqrt{2}}{2} \quad \frac{\sqrt{3}}{2}$$

$$\cos \alpha \quad \frac{\sqrt{3}}{2} \quad \frac{\sqrt{2}}{2} \quad \frac{1}{2}$$

$$tg\alpha \quad \frac{\sqrt{3}}{3} \quad 1 \quad \sqrt{3}$$

$$ctg\alpha \quad \sqrt{3} \quad 1 \quad \frac{\sqrt{3}}{3}$$

Тригонометрические тождества:

1. Основное тригонометрическое тождество:

$$\sin^2 x + \cos^2 x = 1$$

2. Связь между тангенсом и косинусом одного и того же угла:

$$1 + tg^2 x = \frac{1}{\cos^2 x}$$

3. Связь между котангенсом и синусом одного и того же угла:

$$1 + ctg^2 x = \frac{1}{\sin^2 x}$$

Подобие треугольников

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.

Число k - коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)

- 1. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия k.
- 2. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Признаки подобия треугольников:

- 1. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
- 2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между ними равны, то такие треугольники подобны.

3. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.

Теорема синусов

Во всяком треугольнике стороны относятся как синусы противолежащих углов:

 $\frac{a}{sin\alpha}=\frac{b}{sin\beta}=\frac{c}{sin\gamma}=2R$, где R - радиус описанной около треугольника окружности.

Пример:

В треугольнике ABCBC = 16, $sin \angle A = \frac{4}{5}$. Найдите радиус окружности, описанной вокруг треугольника ABC.

Решение:

Воспользуемся теоремой синусов:

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной окружности

$$\frac{BC}{sinA} = 2R$$

Далее подставим числовые данные и найдем R

$$\frac{16\cdot 5}{4} = 2R$$

$$R = \frac{16 \cdot 5}{4 \cdot 2} = 10$$

Ответ: 10

Теорема косинусов

Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

$$a^{2} = b^{2} + c^{2} - 2 \cdot b \cdot c \cdot \cos\alpha;$$

$$b^{2} = a^{2} + c^{2} - 2 \cdot a \cdot c \cdot \cos\beta;$$

$$c^{2} = b^{2} + a^{2} - 2 \cdot b \cdot a \cdot \cos\gamma.$$

Формулы площадей треугольника:

- 1. $\frac{a \cdot h_a}{2}$, где h_a высота, проведенная к стороне a
- 2. $S = \frac{a \cdot b \cdot sin\alpha}{2}$, где a, b соседние стороны, α угол между этими соседними сторонами.