Name:	Centre/Index No:
School	Signature

P525/1 CHEMISTRY Paper 1 July/August 2015 2 3/4 hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education

CHEMISTRY

Paper 1

2 hours 45 minutes

Instructions to Candidates

- Attempt all questions in section A and any six questions from section B.
- All questions are to be answered in the spaces provided.
- A Periodic Table with relevant atomic masses is supplied at the end of the paper.
- Mathematical tables (3 figures) and non-programmable silent scientific calculators may be used.
- Illustrate your answers with equations where applicable.

1 2	3 4	_	_	ı	or I	Cxan	niner	's Us	e On	ly					
	-	5	6	7	8	9	10	11	12	13	14	15	16	17	Total
												_		-	

© WAKISSHA Joint Mock Examinations 2015

Turn Over

SECTION A (46 marks)

Answer all questions in this section.

(a)	X, Y and Z are structural isomers of C ₄ H ₁₀ O. The isomers react with sod	iiuni metal
	liberating hydrogen gas	
	(i) Name the functional group in the isomers of C ₄ H ₁₀ O.	(1/2 mark)
	(ii) Write an equation for the general reaction that occur between C ₄ H and sodium metal.	10O (1 mark)
(b)	Isomer x reacts with hot concentrated sulphuric acid but it gives no obser change on addition of warm acidified potassium dichromate solution. (i) identify x.	vable (Imark)
	(ii) Suggest a suitable mechanism for the reaction between x and hot concentrated sulpuric acid.	(2 marks)
	(iii) State the molecularity of the reaction in b(ii) above. Give a reason for your answer.	1 ¹ /2 mark)
(a)	Copper like other transition elements forms compounds in oxidation state +1 and +2.	es:
	Write the electronic configuration of:	
		 (i) Name the functional group in the isomers of C₄H₁₀O. (ii) Write an equation for the general reaction that occur between C₄H and sodium metal. (b) Isomer x reacts with hot concentrated sulphuric acid but it gives no obserchange on addition of warm acidified potassium dichromate solution. (i) identify x. (ii) Suggest a suitable mechanism for the reaction between x and hot concentrated sulpuric acid. (iii) State the molecularity of the reaction in b(ii) above. Give a reason for your answer. (a) Copper like other transition elements forms compounds in oxidation state +1 and +2.

(c)	State any two practical applications of radioactive isotopes.	(1 m
of co	the the reagent(s) that can be used to distinguish between each of the ompounds. State the observation(s) when each compound is separateagent(s).	ne following pa ately treated wi
(a)	CH ₃ COONH ₄ (aq) and NH ₄ F(aq)	$(1^{1}/_{2} \text{ marks e})$
	Reagent(s)	
	Observations.	
(b)	CH ₃ CH CH ₂ NH ₂ and CH ₃ CH NH CH ₃	
	OH OH	
	Reagent(s)	
	Observations.	

(c)	NiO and FeO. Reagent(s)							
	Reage							
	Observations.							
Give	n the following reduction reactions and their corresponding electrode	e potentials.						
A: F	$e^{3+}(aq) + e^{-} \longrightarrow Fe^{3+}(aq)$: $E_1 = +0.77V$.							
B: I ₂	$(aq) + 2e^{-} \longrightarrow 2I^{-}(aq): E_2 = ?$	ation A at the						
The	two half cell reactions; A and B form a feasible cell reaction with reaction and E^{θ} cell = +0.23 V.	iction A at the						
cath (a)	(i) Write the equation for the reaction that occurs at the anode.	(1 mark)						
	(ii) Calculate the value of E ₂ .	(1mark						
(b)	Draw a well labelled diagram to show how the E^{θ} cell = $^{+}0.23$ V can	be measured						
(0)	practically from the half-cell reactions.	(3 marks						
		P-W- N						

Iroi (a)		ite the;	xides Fe ₃ O ₄ and Pb the oxide of lead (P	B ₃ O ₄) that represents the	e ratio in which
	(ii)	Equation to show	that Fe ₃ O ₄ is a mix	xed oxide.	(1 mar)
(b)	PB ₃ 0 redu	O ₄ oxidises hot conced to a colourless Identify the;	ncentrated hydroch s solution which for	loric acid to a pale green	gas and itself n cooling.
		Pale green gas.			(1/2 mar)
		White precipitate			(¹/2 mar
	(ii)	Write the equation hydrochloric acid	n for the reaction b	etween Pb ₃ O ₄ and hot c	oncentrated (1 ma
	State	any two other ch	emical properties t	o show the similarity be	etween iron
(c)	anu				
(c)					
At 10	00°C,	the dissociation p	pressures of carbon	dioxide in equilibrium	with the carbona
At 10	00°C,	the dissociation pot sodium and pot Li ₂ CO ₃	oressures of carbon assium are given in Na ₂ CO ₃	dioxide in equilibrium the table below. K ₂ CO ₃	with the carbona

(a) Which one of these carbonates is thermally most stable at 100°C?

		Give	a reason f				
(b)	(i)	Identify th				
		(ii)	Write an o				
		(iii)	Explain w b(i) above				
	(c)		te any two o				
		_					
8.	and	e figu d W. CH ₃ C(
		0	OH Ste				

	(ii) W			(1/2 mark)
	(b) State the condition(s)(i) Q from CH₃CO	necessary for the forma OH	tion of:	(1/2 mark)
	(ii) W from			
	(c) (i) Name the type o	f reaction that occurs in	step III.	(1/2 mark)
	(ii) Explain why W	reacts with Q to form Z u	under the conditions in	step III. (1 ¹ / ₂ mark)
	(d) (i) State what would	be observed when comp	oound Q is reacted wit	h OH (1/2 mark)
	(ii) Write an equation	for the reaction in d(i)	above.	(1 mark)
) .	Pure water boils at 100°C at 1 acid and ethanol boil at tempe	013.25KNm ⁻² pressure.	However aqueous sol	utions of nitric
	Solution	Composition	Boiling point (°C)	
	Aqueous nitric acid	68.0% HNO ₃	120.5	
	Aqueous ethanol	95.6% CH CH CH	.=	

Solution	Composition	Boiling point (°C)
Aqueous nitric acid	68.0% HNO ₃	120.5
Aqueous ethanol	95.6% CH ₃ CH ₂ OH	

(2	ı) If Ja	f pure nitric acid boils at 87°C at 1013.25KNm ⁻² pressure, the boiling point of aquith the mole fraction of water in the solution.	
	wi	ith the more	
	_		
	_		
	_		
	_		
	:		
(b)	A s (i)	solution containing 26% ethanol, 74% water was fractiona Distillate.	
	(ii)	Residual liquid.	
	Ctild	ng the table of boiling points and composition above, state anol to water on the;	
	(i)	Intermolecular forces in water.	
	(ii)	Vanous al	
ŀ		Vapour above the mixture relative to ideal solutions.	
		© WAKISSHA Joint Mock Examinations 2015	

SECTION B

Answer only six questions from this section.

Any additional questions answer will not be marked.

(a) (i)	Write equation(s) for the reaction(s) that take place in the experiment.	(2 1
(-) (-)		(2 marks
(ii)	Why is the silver nitrate solution acidified?	(1 mark)
(iii)		
,		(1/2 mark)
(b) 3.4g To the	an alkylhalide RCH ₂ I were refluxed with excess 2M sodium hydroxide the resultant mixture, excess acidified silver nitrate was added and the project. The mass of the dry residue was found to be 4.70g.	solution
(b) 3.4g To the	an alkylhalide RCH ₂ I were refluxed with excess 2M sodium hydroxide the resultant mixture, excess acidified silver nitrate was added and the project. The mass of the dry residue was found to be 4.70g.	solution.
(b) 3.4g To the filter (i)	an alkylhalide RCH ₂ I were refluxed with excess 2M sodium hydroxide the resultant mixture, excess acidified silver nitrate was added and the project. The mass of the dry residue was found to be 4.70g. Calculate the formula mass of R.	solution.
(b) 3.4g To the filter (i)	an alkylhalide RCH ₂ I were refluxed with excess 2M sodium hydroxide the resultant mixture, excess acidified silver nitrate was added and the project. The mass of the dry residue was found to be 4.70g.	solution.

b) When hoiled with Febling's solution, alighetic alkanals form a reddish brown		
when potassium methanoate solution is added to copper (II) sulphate solution, a blue precipitate is formed. (3 mark) (3 mark) (4) (5) When boiled with Fehling's solution, aliphatic alkanals form a reddish brown (12 mark)		
when potassium methanoate solution is added to copper (II) sulphate solution, a blue precipitate is formed. (3 mark) (3 mark) (4) (5) When boiled with Fehling's solution, aliphatic alkanals form a reddish brown (12 mark)		
when potassium methanoate solution is added to copper (II) sulphate solution, a blue precipitate is formed. (3 mark) (3 mark) (4) (5) When boiled with Fehling's solution, aliphatic alkanals form a reddish brown (12 mark)		
when potassium methanoate solution is added to copper (II) sulphate solution, a blue precipitate is formed. (3 mark) (3 mark) (4) (5) When boiled with Fehling's solution, aliphatic alkanals form a reddish brown (12 mark)		
when potassium methanoate solution is added to copper (II) sulphate solution, a blue precipitate is formed. (3 mark) (3 mark) (4) (5) When boiled with Fehling's solution, aliphatic alkanals form a reddish brown (12 mark)		
when potassium methanoate solution is added to copper (II) sulphate solution, a blue precipitate is formed. (3 mark) (3 mark) (4) (5) When boiled with Fehling's solution, aliphatic alkanals form a reddish brown (12 mark)		
when potassium methanoate solution is added to copper (II) sulphate solution, a blue precipitate is formed. (3 mark) (3 mark) (4) (5) When boiled with Fehling's solution, aliphatic alkanals form a reddish brown (12 mark)		
when potassium methanoate solution is added to copper (II) sulphate solution, a blue precipitate is formed. (3 mark) (3 mark) (4) (5) When boiled with Fehling's solution, aliphatic alkanals form a reddish brown (12 mark)		
when potassium methanoate solution is added to copper (II) sulphate solution, a blue precipitate is formed. (3 mark) (3 mark) (4) (5) When boiled with Fehling's solution, aliphatic alkanals form a reddish brown (12 mark)		
when potassium methanoate solution is added to copper (II) sulphate solution, a blue precipitate is formed. (3 mark) (3 mark) (4) (5) When boiled with Fehling's solution, aliphatic alkanals form a reddish brown (12 mark)		
when potassium methanoate solution is added to copper (II) sulphate solution, a blue precipitate is formed. (3 mark) (3 mark) (4) (5) When boiled with Fehling's solution, aliphatic alkanals form a reddish brown (12 mark)		
when potassium methanoate solution is added to copper (II) sulphate solution, a blue precipitate is formed. (3 mark) (3 mark) (4) (5) When boiled with Fehling's solution, aliphatic alkanals form a reddish brown (12 mark)		
when potassium methanoate solution is added to copper (II) sulphate solution, a blue precipitate is formed. (3 mark) (3 mark) (4) (5) When boiled with Fehling's solution, aliphatic alkanals form a reddish brown (12 mark)		
When potassium methanoate solution is added to copper (II) sulphate solution, a blue precipitate is formed. (3 mark) (3 mark) (b) When boiled with Fehling's solution, aliphatic alkanals form a reddish brown	Exp	tions (where applicable).
b) When boiled with Fehling's solution, aliphatic alkanals form a reddish brown	(a)	When potassium methanoate solution is added to copper (II) sulphate solution, a blue
b) When boiled with Fehling's solution, aliphatic alkanals form a reddish brown	• •	precipitate is formed. (3 marks
	(b)	When holled with Fulling a lighting alkanals form a reddish brown
precipitate.	(0)	
		precipitate.

Turn Over

11

	(c)	Helium can be separated from Argon by diffusion however a mixture of and nitrogen cannot be separated by diffusion.	of ethane (3 marks)
12.	(a)	3.0g of solid calcium iodate(v) were vigorously shaken with water in a shall and the shall be	
		bottle and the mixture allowed to stand at 25°C for about 30 minutes. The mixture was filtered to obtain exactly 200cm ³ of the filtrate. Given that iodate (v) is sparingly soluble in water;	e recultant
		(i) Name the filtrate.	(¹ / ₂ mark)
		(ii) Write an equation for the reaction that occurs at 25°C at the end of the minutes.	ne 30 (1marks)
	(b)	20cm ³ of the filtrate were pipetted into excess acidified potassium iodid and the mixture titrated with exactly 6.75cm ³ of 0.1M sodium thiosulph in the presence of starch indicator. Calculate the percentage by mass of calcium iodate(V) in 200cm ³ of the	ate solution
	9		
	-		
	-		
	-		
	_		
	_		

_		
_		
_		
_		
	e experiment in (a) above was repeated with potassium iodate sol ter at 25°c.	
(i)	State whether the percentage of calcium iodate(v) in the filtrate	would be less,
(1)	equal to or greater than the calculated value in (b) above.	(1 mark
(ii)	Explain your answer in c(i) above.	(2 mark
(a) F ₂ ,	Cl ₂ , Br ₂ and I ₂ are diatomic molecules of group VII elements of the describe how the elements react with;	ne periodic table
(i)	Potassium bromide solution,	(2 marks
(ii	Hydrogen sulphide.	(2 marks)

Turn Over

	Н	F HC	L HBR	. HI	
	+20	0°C -85°	°C -67°C	-350	C
	State and expla	in the trend in the	boiling points o	f the hydrides	(3 marks)
			1000 MB		
(d) (i)	State the order	in reducing stren	-A. Cd. 1. 1.		
() ()	oute the order	in reducing stren	gin of the hydric	ies.	
(ii)	Write a general acids (hydrides	l equation for the	reaction between um carbonate.	en aqueous sol	utions of halogen (1 mark
	he hydrolysis –	oxidation reaction	n, benzyl chlori	de is boiled u	nder air-reflux with
icac	ation				
equ	ation. CH ₂ CL	+ Pb(NO ₃) ₂ —	→ OCOH P	b(OH)C1 + 21	NO ₂ .
equ	ation. CH ₂ CL zaldehyde is ob	+ Pb(NO ₃) ₂ —	COH + P	b(OH)C1 + 21	
Ben by e	ation. CH ₂ CL zaldehyde is obther from the di	+ $Pb(NO_3)_2$ — tained by steam stillate. State the	COH + P	b(OH)Cl + 2l the reaction	NO ₂ . mixture and extracted
equ	ation. CH ₂ CL zaldehyde is obther from the di	+ Pb(NO ₃) ₂ —	COH + P	b(OH)Cl + 2l the reaction	NO ₂ . mixture and extracted and distillate?
Ben by e	ation. CH ₂ CL zaldehyde is obther from the di	+ $Pb(NO_3)_2$ — tained by steam stillate. State the	COH + P	b(OH)Cl + 2l the reaction	NO ₂ . mixture and extracted
Benz by e	zaldehyde is ob ther from the di the basic chlor	+ $Pb(NO_3)_2$ — tained by steam stillate. State the	distillation from reason(s) why	b(OH)Cl + 2l the reaction : and in the stea	NO ₂ . mixture and extracted and distillate?

14

followed by dilute hydrochloric acid and hydroxylamine in acidic medium.

interation.	(1 mark
Define the following terms as applied in some equilibria.	
1. Commercial or heavy-furthemorals	(2 marks
Programs/ from medits/ hemisens	er -, mares
very equations only show how hemostidefrestle can be	(1), marks
	, ,
 Suggest a consiste mechanism for the reaction between beauty trademicianism in acidis medicate. 	ilian shirefelikin () marki

(b) V	Write an equation for the;	(1 mark)
(i) Ionisation of ammonia in water.	
(ii) hydrolysis of ammonium sulphate.	(1 mark)
,	You are provided with solid anhydrous ammonium sulphate, water and 2 volumetric flask. Briefly outline how a solution of ammonium sulphate can be prepared in the laboratory. (Kb for ammonia = 1.78×10^{-5} moldm product of water at 25° C, $Kw = 1.0 \times 10^{-14}$ mol ² dm ⁻⁶)	250ml of pH = 5.20 -3 and ionic (5 marks)
n=		
-		
-		
-		
- (6 (a) -		
C	Powdered chlomite (FeCr ₂ O ₄) is roasted with anhydrous sodium carbonal calcium oxide. $ 4 \text{FeCr}_2O_4(s) + 8 \text{Na}_2\text{CO}_3(s) + 7 O_{2(g)} \longrightarrow 2 \text{Fe}_2O_3(s) + 8 \text{Na}_2\text{CrO}_4(s) + 8 \text{Na}_2\text{CrO}_4$	
	Hot water is added to the products of the reaction and a yellow solid crys	

(11)	Draw the structure and name the shape adopted by the anion in the ioni	c
(11)	Draw the structure and finance for property and afform the foliograph of the yellow solid in a(i) above.	(1 mark
which for the	yellow solid dissolves in excess dilute sulphuric acid to form an oran ch is a strong oxidizing agent. State what would be observed and write a the REDOX reaction (where applicable) that occurs when the orange ted with; Concentrated sodium hydroxide solution,	
(ii)	A saturated solution of potassium Sulphite.	(2 marks
(iii)	Excess warm ethanol.	(2 marks
the	er than acting as an oxidizing agent in volumetric analysis, the aqueous s yellow solid in a(i) above is used in precipitation titration involving silve	
W. W.	State the role of the yellow aqueous solution in precipitation titration.	(¹/2 mark
	Write an analysis of the state o	
(ii)	Write an equation for the reaction that occurs and state the observation at the end point.	(1 mark)

(ii) State Raoult's law of vapour pressure lowe	ring. (1 mark)

(b) The vapour pressure of aqueous solutions of glucose containing 9.0g of water at 27°C varies with the mass of glucose dissolved as shown in the table below.

Mass of glucose dissolved in 9.0g of water	0.00	0.45	0.90	1.80	3.60	4.50	7.20
Vapour pressure of solution (mmHg)	31.82	31.66	31.50	31.32	30.55	30.23	29.27

 (i) Plot a graph of lowering in vapour pressure (ΔP) against mass of glucose dissolved in 9.0g of water.
 (4 marks)

(ii)	Use your graph in b(i) above to determine the molar mass of glucose.	(2 marks)
State	the effect of water on the molecular state of glucose. Give a reason for	or vour
ansv	ver using the molar mass calculated in b(ii) above.	(1 mark
_		

END

* Actinide series	*Lanthanide series
2271	ية له ع
732 Pd	က် ကို
Pa U 1	P S
2 C 2 S	14 Q 60
Np 93	Pm
Np Pu	Sm
AM Se EPZ	E E
Am Cm	O s
BX S	7:
m Bk Cf E	Dy
S S S	Ho 67
Fm 1872	Щ &
1649 1678 1689 17300 17300 199 100 101 100 100 100 100 100 100 1	T _S
Z 103	★ 25

Ţ	thandum	Cs	55	9: 4:5	R	nitidium 37	391198	X	potassium 19	22.500	Z	± 55	1,941			1 0079	I	-	By Cropen
₽ Za	nuller R VEI	Ba	Sé an	97,92	S	strontum 38	4U 078	Ca	20	× .	<u> </u>	12	99172	Be	۸ ا	null/sed			
* 5	80 103	*	57-70													_			
₹ ,	barendun	Ε	71	99.99	<	39	484	Sc	21										
₹ ₽	175 49	¥	72	91.224	7r	40	47 867	=	22										
D _B	105	Ta	73	22.24	Z	41	50.042	<	23										
Sg Sg	Matergiani 106	8	74	ī	≤	42	21.8%	Ç	24										
B _r	tehum 107	Re	75	8	ī	43	30.5	3	25										
HS	106	80	76	10.07	R	1	13.845	Fe	26										
Z Z	108	=	17	19.50	곳 노	45	16.833	င္ပ	27										
un	_		_		2														
בו	111	P	79	10/87	Aq	47	38	Cu	29	-									
g.	mundum Tolling	Hg	80	112.41	Cd	8	65.30	Zn	30	ano.									
		=																	
Duq	awnquoduny	РЬ	82	11871	Sn	8	72 61	Ge	32	28.085	S) -	silbon	39(7	6 0000			
		<u>B</u>		1						Т			ᆔ				all common		
	707	Р	2 Paramium	127.60	Te	ន	78.55	Se	r	32 065	U) ह	SUM.	15.98	0		name of		
	BIS	A	85	126.90	_	ន	79.904	87	35	35.453 bromine	2	2 =	dhicrina	18.86	П	•	fluxing		
	-	꼰	_			_	+		-	+	_		-	-		-	+	I	