Week 12 Recitation Problems

MATH:114, Recitations 309 and 310

Names:

space? I've started the list for you:

How many possible outcomes are there?

A $random\ variable$ is a function that assigns numbers to outcomes of an experiment. Let's use coin tosses as an example: the possible outcomes, or the $sample\ space$, is the set $\Omega=\{H,T\}$, for H eads and T ails. We can set up C to be a random variable that models a coin-flipping game: if the coin turns up heads, I get two dollars, and otherwise I gain one dollar. Our random variable looks like this: $C=\begin{cases} 1 & \text{if the coin lands on } T \\ 2 & \text{if the coin lands on } T \end{cases}$
We can also assign $probabilities$ to each value of C : for example, the probability that our coin lands on H (or that we
get two dollars) is
$\mathbf{P}\left[C=2\right] = \frac{1}{2}.$
Because the probabilities of all values of ${\cal C}$ have to sum to 1, we also know that
$\mathbf{P}\left[C=1\right]=\frac{1}{2}.$
The $\it expected\ \it value\ of\ a\ random\ variable\ is\ a\ long-term\ average:\ each\ time\ I\ play\ the\ game,\ how\ much\ money\ can\ I\ expect\ to\ win?$ Because we have 2 possible values for our random variable, the expected value is
$\sum_{i=1}^{2} i \cdot \mathbf{P}\left[C=i\right]$
1. What is the expected value of the random variable C ? In other words, how much should money should I expect to win every time I play the game?
2. If I play the game 1000 times, how much money should I expect to win?
2. If I play the game 1000 times, now much money should I expect to win:
Now, because I'm interested in winning some serious cash, I want to know something in particular: how many flips do I need before I get my first H ? Let's define our random variable together.
3. What are the possible "strings" of coin flips that have all <i>T</i> s and then one <i>H</i> ? In other words, what is my <i>sample</i>

 $\Omega = \{H, TH, TTH,$

4. Let's make a random variable called Flips, and define it like this:

$$\mathbf{Flips} = \begin{cases} 1 & \text{one flip until the first head} \\ \vdots & \vdots \\ n & n \text{ flips until the first head} \\ \vdots & \vdots \end{cases}$$

What is the probability of getting TTH — that is, Flips = 3? What is the probability that Flips = n, for some natural number n?

5. Let's check that our probabilities sum to 1. The partial sum S_n is the sum of our first n terms in our sequence of probabilities. For example,

$$S_3 = \mathbf{P}\left[\mathbf{Flips} = 1\right] + \mathbf{P}\left[\mathbf{Flips} = 2\right] + \mathbf{P}\left[\mathbf{Flips} = 3\right]$$

= $\frac{1}{2} + \frac{1}{4} + \frac{1}{8}$

Can you express S_3 where only one term has an exponent? (Hint: multiply S_3 by 1/2, then subtract the result from S_3 , and do some algebra.) Can you express S_n the same way?

6. Take the limit of your expression for S_n . Using that limit, what can we say about the sum of the probabilities as n goes to infinity?

.....

7. Write out the first few terms of \mathbf{E} [Flips], the expected value of Flips. If $p_i = \mathbf{P}$ [Flips = i], we can write it like:

$$\mathbf{E}[\mathbf{Flips}] = (1 \cdot p_1) + (2 \cdot p_2) + (3 \cdot p_3) \cdots$$

$$= (p_1) + (p_2 + p_2) + (p_3 + p_3 + p_3) + \cdots$$

$$= (p_1 + p_2 + p_3 + \cdots) + (p_2 + p_3 + \cdots) + (p_3 + \cdots) + \cdots$$

where each of the terms are grouped into partial sums. We know the value of $p_1 + p_2 + p_3 + \cdots$ (look at the last problem)! What is the value of $p_2 + p_3 + \cdots$?

8. What is the expected value of Flips?