30. 9. 2004

日本国特許庁 JAPAN PATENT OFFICE

REC'D	18	NOV	2004
WIPO	1		PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 9月30日

出願番号

特願2003-339358

Application Number: [ST. 10/C]:

[JP2003-339358]

出 願 人
Applicant(s):

日産化学工業株式会社

特 Comm Japan

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年11月 4日

特許庁長官 Commissioner, Japan Patent Office i) [1]

BEST AVAILABLE COPY

【書類名】 特許願 【整理番号】 4596000

【あて先】 特許庁長官 殿

【国際特許分類】 CO7D

【発明者】

【住所又は居所】 千葉県船橋市坪井町722番地1 日産化学工業株式会社 物質

科学研究所内 池田 栄達

【氏名】

【発明者】

【住所又は居所】 埼玉県南埼玉郡白岡町大字白岡1470 日産化学工業株式会社

生物科学研究所内

【氏名】 瀧井 新自

【特許出願人】

【識別番号】 000003986

【氏名又は名称】 日産化学工業株式会社

【代表者】藤本 修一郎【電話番号】047-465-1120

【手数料の表示】

【予納台帳番号】 005212 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 要約書 1

【書類名】特許請求の範囲

【請求項1】

一般式(1):

【化1】

$$(Y)_{n} \qquad R^{4} \qquad R^{5}$$

$$R^{1} \qquad \qquad (I)$$

$$(X)_{m} \qquad \qquad (I)$$

$$R^{2N} \qquad \qquad (I)$$

$$R^{2N} \qquad \qquad (I)$$

[式中、Wi及びWiは、各々独立して酸素原子又は硫黄原子を表し、

Xは、ハロゲン原子、シアノ、ニトロ、アジド、-SCN、 $-SF_5$ 、 $C_1 \sim C_6$ アルキル、 R^7 によって任意に置換された $(C_1 \sim C_6)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^7 によって任意に置換された $(C_2 \sim C_6)$ アルケニル、 R^7 によって任意に置換された $(C_2 \sim C_6)$ アルケニル、 $C_3 \sim C_8$ シクロアルケニル、 $C_3 \sim C_8$ ハロシクロアルケニル、 $C_2 \sim C_6$ アルキニル、 R^7 によって任意に置換された $(C_2 \sim C_6)$ アルキニル、-OH、 $-OR^8$ 、 $-OS(0)_2$ R^8 、-SH、 $-S(0)_r$ R^8 、-CHO、<math>-C(0) R^9 、-C(0) R^9 、-C(0) R^9 、-C(0) R^{10} 、 R^9 、-C(0) R^{10} R^{10}

さらに、2つのXが隣接する場合には、隣接する2つのXは $-CH_2$ CH_2 CH_2 -, $-CH_2$ CH_2 0-, $-CH_2$ 0-,

Yは、ハロゲン原子、シアノ、ニトロ、アジド、-SCN、 $-SF_5$ 、 $C_1 \sim C_6$ アルキル、 R^7 によって任意に置換された $(C_1 \sim C_6)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^7 によって任意に置換された $(C_3 \sim C_8)$ シクロアルキル、-OH、 $-OR^8$ 、 $-OS(0)_2$ R^8 、-SH、 $-S(0)_r$ R^8 、 $-NH_2$ 、 $C_1 \sim C_6$ アルキルアミノ、ジ $(C_1 \sim C_6$ アルキル) アミノ、 $-Si(R^{13})(R^{14})R^{12}$ 、 $(Z^1)_{p_1}$ によって置換されていてもよいフェニル、L又はMを表し、nが2、3又は4を表すとき、各々のYは互いに同一であっても又は互いに相異なっていてもよく、

さらに、2つのYが隣接する場合には、隣接する2つのYは $-CH_2$ CH $_2$ CH $_2$ -, $-CH_2$ CH $_2$ O-, $-CH_2$ OCH $_2$ -, $-OCH_2$ O-, $-CH_2$ CH $_2$ S-, $-CH_2$ SCH $_2$ -, $-SCH_2$ S-, $-CH_2$ CH $_2$ C

 R^1 、 R^2 及び R^3 は、各々独立して水素原子、シアノ、 $C_1\sim C_{12}$ アルキル、 R^{16} によって任意に置換された $(C_1\sim C_{12})$ アルキル、 $C_3\sim C_{12}$ シクロアルキル、 R^{16} によって任意に置換された $(C_3\sim C_{12})$ シクロアルキル、 $C_3\sim C_{12}$ アルケニル、 R^{16} によって任意に置換された $(C_3\sim C_{12})$

2) アルケニル、 $C_3 \sim C_{12}$ シクロアルケニル、 $C_3 \sim C_{12}$ ハロシクロアルケニル、 $C_3 \sim C_{12}$ アルキニル、 R^{16} によって任意に置換された $(C_3 \sim C_{12})$ アルキニル、-OH、 $C_1 \sim C_8$ アルコキシ、 $C_3 \sim C_8$ アルケニルオキシ、 $C_3 \sim C_8$ ハロアルケニルオキシ、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $(Z^1)_{p1}$ によって置換されていてもよいフェニルチオ、 $-S(0)_2R^9$ 、 $-SN(R^{18})R^{17}$ 、 $-S(0)_2N(R^{10})R^9$ 、 $-N(R^{20})R^{19}$ 、 $-C(0)R^9$ $-C(0)R^9$ 、 $-C(0)R^9$ $-C(0)R^9$ 、 $-C(0)R^9$ $-C(0)R^9$ 、 $-C(0)R^9$ $-C(0)R^9$

 R^4 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 R^{21} によって任意に置換された($C_1 \sim C_6$) アルキル、 R^{21} によって任意に置換された($C_1 \sim C_6$) ハロアルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 R^{21} によって任意に置換された($C_3 \sim C_8$) シクロアルキル、 R^{21} によって任意に置換された($C_3 \sim C_8$) ハロシクロアルキル、 R^{21} によって任意に置換された(R^{21} によって任意に置換された(R^{21} によって任意に置換された(R^{21} によって管換されていてもよいフェニル、 R^{21} によってでである。 R^{21} によってである。 R^{21} によってのなる。 R^{21} によってのなる。 R^{21} によってのなる。 R^{21} によってのなる。 R^{21} によってのなる。 R^{21} によっての

 R^5 は、シアノ、 R^{21} によって任意に置換された $(C_1 \sim C_6)$ アルキル、 R^{21} によって任意に置 換された $(C_1 \sim C_6)$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 \mathbb{R}^2 1 によって任意に置換された $(C_3 \sim C_8)$ シクロアルキル、 R^{21} によって任意に置換された $(C_3$ \sim C₈)ハロシクロアルキル、C₃ \sim C₈シクロアルケニル、C₃ \sim C₈ハロシクロアルケニル、-OR ⁸. $-S(0)_{r}R^{8}$. $-N(R^{10})R^{9}$. -CHO. $-C(0)R^{9}$. $-C(0)OR^{9}$. $-C(0)SR^{9}$. $-C(0)NHR^{10}$. $-C(0)N(R^{10})R^{10}$. 0) 9 , $^{-C}$ (S) 0 , $^{-C}$ (S) 0 , $^{-C}$ (S) 0 , $^{-C}$ (S) 0 , 0 , $^{-C}$ (S) $^{$ $^2)_{p1}$ によって置換されていてもよいフェニル、1-ナフチル、2-ナフチル、L又はMを表し、 R^6 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $R^{2\,1}$ によって任意に置換され た $(C_1 \sim C_6)$ アルキル、 R^{21} によって任意に置換された $(C_1 \sim C_6)$ ハロアルキル、 $C_3 \sim C_8$ シク ロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 R^{21} によって任意に置換された $(C_3 \sim C_8)$ シクロ アルキル、 R^{21} によって任意に置換された $(C_3 \sim C_8)$ ハロシクロアルキル、 $C_3 \sim C_6$ アルケニ ル、 $C_3 \sim C_6$ ハロアルケニル、 R^{21} によって任意に置換された $(C_3 \sim C_6)$ アルケニル、 R^{21} によ って任意に置換された $(C_3 \sim C_6)$ ハロアルケニル、 $C_3 \sim C_8$ シクロアルケニル、 $C_3 \sim C_8$ ハロシ クロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキニル、 R^{21} によって任意に置換さ れた $(C_3 \sim C_6)$ アルキニル、 R^{21} によって任意に置換された $(C_3 \sim C_6)$ ハロアルキニル、-S(0) ${}_{2}R^{9}$, ${}_{-C}(0)R^{9}$, ${}_{-C}(0)OR^{9}$, ${}_{-C}(0)SR^{9}$, ${}_{-C}(S)OR^{9}$, ${}_{-C}(S)SR^{9}$, ${}_{-C}(O)NHR^{10}$, ${}_{-C}(O)N(R^{10})R^{9}$ $-C(S)NHR^{10}, -C(S)N(R^{10})R^{9}, -Si(R^{13})(R^{14})R^{12}, -P(0)(0R^{22})_{2}, -P(S)(0R^{22})_{2}, (Z^{2})_{p}$ 1によって置換されていてもよいフェニル、1-ナフチル、2-ナフチル、L-1~L-4、L-8~L-13、L-15~L-23、L-25~L-35、L-37、L-38、L-40、L-43~L-58又はMを表し、

Lは、式L-1から式L-58までの何れかで表される芳香族複素環を表し、

L-28

L-27

L-26

L-30

L-29

$$(O)_{r} \qquad (R^{23})_{q2} \qquad R^{24} \qquad R^{24}$$

$$(R^{23})_{q3} \qquad (R^{23})_{q3} \qquad (R^{23})_{q3} \qquad (R^{23})_{q3}$$

$$M-9 \qquad M-10 \qquad M-11 \qquad M-12 \qquad M-13$$

$$(R^{23})_{q4} \qquad O \qquad (O)_{r} \cdot S \qquad (R^{23})_{q4} \qquad (O)_{r} \cdot S \qquad S$$

$$(R^{23})_{q4} \qquad (R^{23})_{q4} \qquad (R^{23})_{q4} \qquad (R^{23})_{q4}$$

$$M-14 \qquad M-15 \qquad M-16 \qquad M-17 \qquad M-18$$

$$(R^{23})_{q4}$$
 $(R^{23})_{q4}$
 $(R^{23})_{q4}$

$$(R^{23})_{q3} \qquad (R^{23})_{q3} \qquad (R^{23})_{q3$$

 Z^1 は、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル、 $C_3 \sim C_6$ ハロシクロアルキル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ アルキニル、 $C_2 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキン・、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルオニル、 $C_1 \sim C_6$ アルキルスルホニル

、 $C_1 \sim C_6$ アルキルアミノ、ジ($C_1 \sim C_6$ アルキル)アミノ、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ ハロアルコキシカルボニル又はハロゲン原子によって任意に置換されていてもよいフェニルを表し、p1, p2, p3又はp4が 2 以上の整数を表すとき、各々の Z^1 は互いに同一であっても又は互いに相異なっていてもよく、

 Z^2 は、ハロゲン原子、シアノ、ニトロ、アミノ、アジド、-SCN、-SF5、 $C_1 \sim C_6$ アルキル、 R^7 によって任意に置換された $(C_1 \sim C_6)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^7 によって任意に置換された $(C_3 \sim C_8)$ シクロアルキル、 $C_2 \sim C_6$ アルケニル、 R^7 によって任意に置換された $(C_2 \sim C_6)$ アルケニル、 $C_3 \sim C_8$ シクロアルケニル、 $C_3 \sim C_8$ ハロシクロアルケニル、 $C_2 \sim C_6$ アルキニル、 R^7 によって任意に置換された $(C_2 \sim C_6)$ アルキニル、 $(C_1 \sim C_1)$ の $(C_1 \sim C_1)$

さらに、2つの Z^2 が隣接する場合には、隣接する2つの Z^2 は $-CH_2$ CH $_2$ CH $_2$ CH $_2$ O-, $-CH_2$ CH $_2$ O-, $-CH_2$ CH $_2$ O-, $-CH_2$ CH $_2$ O-, $-CH_2$ CH $_2$ CH $_2$ O-, $-CH_2$ CH $_2$

 R^7 は、ハロゲン原子、シアノ、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、-0 H、 $-0R^8$ 、-SH、 $-S(0)_rR^8$ 、 $-N(R^{10})R^9$ 、 $-N(R^{10})CHO$ 、 $-N(R^{10})C(0)R^9$ 、 $-N(R^{10})C(0)OR^9$ 、 $-N(R^{10})C(0)OR^9$ 、 $-N(R^{10})C(0)OR^9$ 、 $-N(R^{10})C(0)OR^9$ 、 $-C(0)OR^9$ 、-C(0)OR

 R^8 は、 $C_1 \sim C_6$ アルキル、 $R^{2\,5}$ によって任意に置換された($C_1 \sim C_6$)アルキル、 $C_3 \sim C_8$ シクロアルキル、 $R^{2\,5}$ によって任意に置換された($C_3 \sim C_8$)シクロアルキル、 $C_2 \sim C_6$ アルケニル、 $R^{2\,5}$ によって任意に置換された($C_2 \sim C_6$)アルケニル、 $C_3 \sim C_8$ シクロアルケニル、 $C_3 \sim C_6$ フルキニル、 $R^{2\,5}$ によって任意に置換された($R^{2\,5}$) によって置換されていてもよいフェニル、L又はMを表し、

 R^9 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルチオ($C_1 \sim C_4$)アルキル、シアノ($C_1 \sim C_6$)アルキル、($C_1 \sim C_4$)アルキル、 $C_2 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキニル又は($C_1 \sim C_4 \sim C_6$)アルケニルを表し、

 R^{10} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、或いは、 R^9 と R^{10} とが一緒になって $C_2 \sim C_6$ アルキレン鎖を形成することにより、結合する原子と共に $3 \sim 7$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、硫黄原子又は窒素原子を 1 個含んでもよく、且つハロゲン原子、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルキルカルボニル基又は $C_1 \sim C_6$ アルコキシカルボニル基によって任意に置換されていてもよく、

 R^{11} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル又は $C_3 \sim C_6$ ハロアルキニルを表すか、或いは、 R^9 と R^{11} とが一緒になって R^{11} とが一緒になって R^{11} とが一緒になって R^{11} とび一名により、結合する原子と共に R^{11} とが一緒になって R^{11} とび一名にひときこのアルキレン鎖は酸素原子、硫黄原子又は窒素原子を R^{11} によって任意に置換されていてもよく

 R^{12} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ アルケニル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、

 R^{13} 及び R^{14} は、各々独立して $C_1 \sim C_6$ アルキル又は $C_1 \sim C_6$ ハロアルキルを表し、

 R^{15} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシカルボニル $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_6$ ハロアルコキシカルボニル $(C_1 \sim C_4)$ アルキル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルコキンカルボニル、 $C_3 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ ハロアルコキシカルボニル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、

 R^{16} は、ハロゲン原子、シアノ、ニトロ、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $-OR^{26}$ 、 $-N(R^{27})R^{26}$ 、-SH、 $-S(0)_rR^{28}$ 、-CHO、 $-C(0)_rR^{29}$ 、 $-C(0)_rR^{29}$ 、 $-C(0)_rR^{29}$ 、 $-C(0)_rR^{29}$ 、 $-C(0)_rR^{29}$ 、 $-C(0)_rR^{29}$ 、 $-C(0)_rR^{29}$ 、-

 R^{17} は、 $C_1 \sim C_{12}$ アルキル、 $C_1 \sim C_{12}$ ハロアルキル、 $C_1 \sim C_{12}$ アルコキシ($C_1 \sim C_{12}$)アルキル、シアノ($C_1 \sim C_{12}$)アルキル、 $C_1 \sim C_{12}$ アルコキシカルボニル($C_1 \sim C_{12}$)アルキル、(Z^1) $_1$ によって置換されていてもよいフェニル($C_1 \sim C_4$)アルキル、 $C_3 \sim C_{12}$ アルケニル、 $C_3 \sim C_{12}$ アルキニル、 $C_3 \sim C_{12}$ アルキニル、 $C_1 \sim C_{12}$ アルキルカルボニル、 $C_1 \sim C_{12}$ アルコキシカルボニル又は(Z^1) $_1$ によって置換されていてもよいフェニルを表し、

 R^{18} は、 $C_1 \sim C_{12}$ アルキル、 $C_1 \sim C_{12}$ ハロアルキル、 $C_1 \sim C_{12}$ アルコキシ($C_1 \sim C_{12}$)アルキル、シアノ($C_1 \sim C_{12}$)アルキル、 $C_1 \sim C_{12}$ アルコキシカルボニル($C_1 \sim C_{12}$)アルキル、(Z^1) $_p$ 1によって置換されていてもよいフェニル($C_1 \sim C_4$)アルキル、 $C_3 \sim C_{12}$ アルケニル、 $C_3 \sim C_1$ 2アルケニル、 $C_3 \sim C_1$ 2アルキニル又は(Z^1) $_p$ 1によって置換されていてもよいフェニルを表すか、或いは、 Z^1 0 とが一緒になって $Z_4 \sim Z_7$ アルキレン鎖を形成することにより、結合する窒素原子と共に $Z_4 \sim Z_7$ アルキレン鎖は酸素原子又は硫黄原子を $Z_4 \sim Z_7$ 個含んでもよく、且つ $Z_4 \sim Z_7$ ルキル基又は $Z_4 \sim Z_7$ ルコキシ基によって任意に置換されていてもよく、

 R^{19} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルコキシカルボニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニルカルボニル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルカルボニル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルカルボニル又は

 R^{20} は、水素原子、 $C_1 \sim C_6$ アルキル、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ ハロアルキルカルボニル又は $C_1 \sim C_6$ アルコキシカルボニルを表し、

 R^{21} は、シアノ、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、-OH、 $-OR^8$ 、-SH、 $-S(0)_rR^8$ 、 $-N(R^{10})R^9$ 、 $-N(R^{10})CHO$ 、 $-N(R^{10})C(0)R^9$ 、 $-N(R^{10})C(0)OR^9$ 、 $-N(R^{10})C(0)SR^9$ 、 $-N(R^{10})C(S)SR^9$ 、 $-N(R^{10})C(S)SR^9$ 、 $-N(R^{10})S(0)_2R^9$ 、 $-C(0)OR^9$ 、 $-C(0)N(R^{10})R^9$ 、 $-Si(R^{13})(R^{14})R^{12}$ 、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル、L又はMを表し、

 R^{22} は、 $C_1 \sim C_6$ アルキル又は $C_1 \sim C_6$ ハロアルキルを表し、

 R^{23} は、ハロゲン原子、シアノ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、ヒドロキシ($C_1 \sim C_6$) アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシカルボニル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシカルボニル又は(Z^1) $_p1$ によって置換されていてもよいフェニルを表し、 Q_1 , Q_2 , Q_3 又は Q_4 が2以上の整数を表すとき、各々の Q_1 2 は Q_2 1 は Q_3 2 は Q_4 3 に同一であっても、または互いに相異なっていてもよく、

 R^{24} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ ハロアルキルカルボニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ ハロアルコキシカル

 R^{25} は、ハロゲン原子、シアノ、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルアミノ、ジ($C_1 \sim C_6$ アルキル)アミノ、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $-CH=NOR^{11}$ 、 $-C(R^9)=NOR^{11}$ 、(Z^1) $_{p1}$ によって置換されていてもよいフェニル、L又はMを表し、

 R^{26} は、水素原子、 $C_1 \sim C_8$ アルキル、 R^{33} によって任意に置換された $(C_1 \sim C_8)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^{33} によって任意に置換された $(C_3 \sim C_8)$ シクロアルキル、 $C_3 \sim C_8$ アルケニル、 R^{33} によって任意に置換された $(C_3 \sim C_8)$ アルケニル、 $C_3 \sim C_8$ アルケニル、 $C_3 \sim C_8$ アルキニル、 $C_3 \sim C_8$ アルケニル、 $C_3 \sim C_8$ アルケニル $C_3 \sim C_8$

 R^{27} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル又は $C_1 \sim C_6$ アルコキシを表すか、或いは、 R^{26} と R^{27} とが一緒になって $C_2 \sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 6$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子又は硫黄原子を 1 個含んでもよく、且つハロゲン原子、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基又は $(Z^1)_{p1}$ によって置換されていてもよいフェニル基によって置換されていてもよく、

 R^{28} は、 $C_1 \sim C_8$ アルキル、 R^{33} によって任意に置換された $(C_1 \sim C_8)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^{33} によって任意に置換された $(C_3 \sim C_8)$ シクロアルキル、 $C_3 \sim C_8$ アルケニル、 R^{33} によって任意に置換された $(C_3 \sim C_8)$ アルケニル、 $C_3 \sim C_8$ アルキニル、 R^{33} によって任意に置換された $(C_3 \sim C_8)$ アルキニル、-SH、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $(Z^1)_{p1}$ によって置換されていてもよいフェニルチオ、-CHO、 $-C(0)R^{29}$ 、 $-C(0)OR^{29}$ 、 $-C(0)SR^{29}$ 、 $-C(0)N(R^{30})R^{29}$ 、 $-C(0)C(0)R^{29}$ 、 $-C(0)C(0)OR^{29}$ 、 $-C(S)R^{29}$ 、 $-C(S)OR^{29}$ 、 $-C(S)OR^{29$

 R^{29} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ ハロアルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ ハロアルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルスルホニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルスルホニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルカルボニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルカルボニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルコキシカルボニル($C_1 \sim C_4$)アルキル、ジ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルコキシカルボニル($C_1 \sim C_4$)アルキル、ジ($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキル、トリ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキル、($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキル、($C_1 \sim C_4$)アルキル、 $C_2 \sim C_6$ アルキル、 $C_3 \sim C_8$ 0クロアルキル、 $C_3 \sim C_8$ 0クロアルキル、 $C_2 \sim C_6$ アルケニル($C_3 \sim C_8$ 0)シクロアルキル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ アルキニル、 $C_2 \sim C_6$ アルキニー $C_2 \sim C_6$ アルキニー

 R^{30} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表すか、或いは、 R^{29} と R^{30} とが一緒になって $C_2 \sim C_5$ アルキレン鎖

を形成することにより、結合する窒素原子と共に $3\sim6$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、硫黄原子又は窒素原子を1 個含んでもよく、且つハロゲン原子、 $C_1\sim C_6$ アルキル基、 $C_1\sim C_6$ アルコキシ基、ホルミル基、 $C_1\sim C_6$ アルキルカルボニル基、 $C_1\sim C_6$ アルコキシカルボニル基又は $(Z^1)_{p1}$ によって置換されていてもよいフェニル基によって任意に置換されていてもよく、

 R^{31} は、水素原子、 $C_1 \sim C_8$ アルキル、 R^{33} によって任意に置換された $(C_1 \sim C_8)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ アルケニル、 R^{33} によって任意に置換された $(C_3 \sim C_8)$ アルケニル、 $C_3 \sim C_8$ アルキニル又は R^{33} によって任意に置換された $(C_3 \sim C_8)$ アルキニルを表し

 R^{32} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルチオ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルチオ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルキルチオ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルキルスルホニル($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキルスは($C_1 \sim$

 R^{33} は、ハロゲン原子、シアノ、ニトロ、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、-OH、 $-OR^{34}$ 、-SH、-S(0) $_1R^{34}$ 、 $-NHR^{35}$ 、 $-N(R^{35})R^{34}$ 、-CHO、 $-C(0)R^{29}$ 、 $-C(0)OR^{29}$ 、 $-C(0)SR^{29}$ 、 $-C(0)NHR^{30}$ 、 $-C(0)N(R^{30})R^{29}$ 、 $-C(0)C(0)OR^{29}$ 、 $-CH=NOR^{11}$ 、 $-C(R^{9})=NOR^{11}$ 、 $-Si(R^{13})(R^{14})R^{12}$ 、 $-P(0)(OR^{22})_2$ 、 $-P(S)(OR^{22})_2$ 、 $-P(7x=n)_2$ 、 $-P(0)(7x=n)_2$ 、(Z^1) $_{p_1}$ によって置換されていてもよいフェニル、L又はMを表し、

 R^{34} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルチオ($C_1 \sim C_4$) アルキル、(Z^1) $_{p1}$ によって置換されていてもよいフェニル($C_1 \sim C_4$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $C_1 \sim C_6$ アルキルアミノチオカルボニル、 $C_1 \sim C_6$ アルキル

 R^{35} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $(2^1)_{p1}$ によって置換されていてもよいフェノキシカルボニル、 $(2^1)_{p1}$ によって置換されていてもよいフェニルカルボニル、 $(2^1)_{p1}$ によって置換されていてもよいフェニル、 $(2^1)_{p1}$ によって置換されていてもよいフェニル、L又はMを表すか、或いは、 $(2^1)_{p1}$ になって $(2^1)_{p1}$ によって置換されていてもより、指合する窒素原子と共に3~6 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子又は硫黄原子を1個含んでもよく、且つハロゲン原子又はメチル基によって置換されていてもよく、

mは、0~4の整数を表し、

nは、0~4の整数を表し、

p1は、1~5の整数を表し、

p2は、0~4の整数を表し、

p3は、0~3の整数を表し、

p4は、0~2の整数を表し、

p5は、0又は1の整数を表し、

q1は、0~3の整数を表し、

a2は、0~5の整数を表し、

q3は、0~7の整数を表し、

q4は、0~9の整数を表し、

rは、0~2の整数を表し、

tは、0又は1の整数を表す。]

で表される置換ベンズアニリド化合物又はその塩。

【請求項2】

Xは、ハロゲン原子、シアノ、ニトロ、 $-SF_5$ 、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_2 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルカイニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $C_1 \sim C_6$ アルキル)アミノカルボニル又は (Z^1) p_1 によって置換されていてもよいフェニルを表し、mが 2、 3 又は 4 を表すとき、各々のX は互いに同一であっても又は互いに相異なっていてもよく、

さらに、2つのXが隣接する場合には、隣接する2つのXは $-CH_2$ CH_2 -, $-CH_2$ CH_2 0-, $-CH_2$ 0-, $-CH_2$

Yは、ハロゲン原子、シアノ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、ヒドロキシ($C_1 \sim C_6$) アルキル、 $C_1 \sim C_3$ アルコキシ($C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルアミノ、ジ($C_1 \sim C_6$ アルキル) アミノ、($C_1 \sim C_6$ アルキル ($C_1 \sim C_6$ アルキル) アミノ、ジ($C_1 \sim C_6$ アルキル) アミノ、($C_1 \sim C_6$ アルキル ($C_1 \sim C$

さらに、2つのYが隣接する場合には、隣接する2つのYは $-CH_2$ CH $_2$ CH $_2$ -, $-CH_2$ CH $_2$ 0-, $-CH_2$ OCH $_2$ -, $-OCH_2$ 0-, $-OCH_2$ 0-, $-CH_2$ CH $_2$ CH $_2$ CH $_2$ CH $_2$ CH $_2$ CH $_2$ CH $_3$ CH $_4$ CH $_4$ CH $_4$ CH $_5$ CH $_5$ CH $_5$ CH $_5$ CH $_5$ CH $_5$ CH $_6$ CH $_6$ CH $_6$ CH $_7$ CH $_8$ CH $_9$

 R^1 及び R^2 は、各々独立して水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルキルチオ($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキール、($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキル、(

 R^3 は、 $C_1 \sim C_8$ アルキル、 R^{16} によって任意に置換された($C_1 \sim C_8$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_1 \sim C_4$ アルコキシ($C_3 \sim C_8$) シクロアルキル、 $C_1 \sim C_4$ アルキルチオ($C_3 \sim C_8$) シクロアルキル、 $C_1 \sim C_4$ アルキルチル($C_3 \sim C_8$) シクロアルキル、 $C_1 \sim C_4$ アルキルスルフィニル($C_3 \sim C_8$) シクロアルキル、 $C_1 \sim C_4$ アルキルスルボニル($C_3 \sim C_8$) シクロアルキル、 $C_3 \sim C_8$ アルケニル、($C_3 \sim C_8$) アルキニル、($C_3 \sim C_8$) アルキニル、($C_3 \sim C_8$) アルキニル、($C_3 \sim C_8$) アルキニル、 $C_3 \sim C_8$ アルキニル、($C_3 \sim C_8$) アルキニル、 $C_3 \sim C_8$ アルキシ、 $C_3 \sim C_8$ アルキシ、

 R^4 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $R^{2\,1}$ によって任意に置換された($C_1 \sim C_6$)

アルキル、 R^{21} によって任意に置換された $(C_1 \sim C_6)$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 R^{21} によって任意に置換された $(C_3 \sim C_8)$ シクロアルキル、 R^{21} によって任意に置換された $(C_3 \sim C_8)$ ハロシクロアルキル、 $R_3 \sim C_6$ アルケニル、 $R_3 \sim C_6$ アルケニル、 $R_3 \sim C_6$ アルケニル、 $R_3 \sim C_6$ アルキニル、 $R_3 \sim C_6$ アルキニル、 $R_3 \sim C_6$ アルキニル、 $R_3 \sim C_6$ アルキュル、 $R_3 \sim C_6$ アルキュル・ $R_3 \sim C_6$ アル・ $R_3 \sim C_6$ アル・ $R_3 \sim C_6$ アル・ $R_3 \sim C_6$ アル・R

 R^6 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $R^{2\,1}$ によって任意に置換された($C_1 \sim C_6$)アルキル、 $C_1 \sim C_4$ ハロアルコキシ($C_1 \sim C_4$)ハロアルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、(Z^1) $_{p1}$ によって置換されていてもよいフェニル($C_3 \sim C_6$)アルケニル、 $C_3 \sim C_6$ ハロアルケニル、(Z^1) $_{p1}$ によって置換されていてもよいフェニル($Z_1 \sim C_6$)アルキニル、 $Z_1 \sim C_6$ アルキニル、($Z_1 \sim C_6$) アルキニル、 $Z_1 \sim C_6$ アルキニル、 $Z_1 \sim C_6$ ($Z_1 \sim C_6$) アルキニル、 $Z_1 \sim C_6$ ($Z_1 \sim C_6$) アルキニル、 $Z_1 \sim C_6$ ($Z_1 \sim C_6$) アルキニル、 $Z_1 \sim C_6$ ($Z_1 \sim C_6$) N($Z_1 \sim C_6$

 Z^2 は、ハロゲン原子、シアノ、ニトロ、アミノ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル 、 $C_1 \sim C_3$ アルコキシ $(C_1 \sim C_3)$ アルキル、 $C_1 \sim C_3$ ハロアルコキシ $(C_1 \sim C_3)$ アルキル、 $C_1 \sim C_3$ アルキルチオ $(C_1 \sim C_3)$ アルキル、 $C_1 \sim C_3$ ハロアルキルチオ $(C_1 \sim C_3)$ アルキル、 $C_1 \sim C_3$ アル キルスルフィニル $(C_1 \sim C_3)$ アルキル、 $C_1 \sim C_3$ ハロアルキルスルフィニル $(C_1 \sim C_3)$ アルキル 、 $C_1\sim C_3$ アルキルスルホニル($C_1\sim C_3$) アルキル、 $C_1\sim C_3$ ハロアルキルスルホニル($C_1\sim C_3$) アルキル、シアノ $(C_1 \sim C_6)$ アルキル、ヒドロキシ $(C_1 \sim C_3)$ ハロアルキル、 $C_1 \sim C_3$ アルコキ ルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_3$ ハロアルコキシ($C_1 \sim C_3$)ハロアルコキシ、 $C_1 \sim C_6$ アルキルスルホニルオキシ、 $C_1 \sim C_6$ ハロ アルキルスルホニルオキシ、 $(Z^1)_{p1}$ によって置換されていてもよいフェノキシ、-0(L-45)、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $C_3 \sim C_8$ シクロアルキルチオ、 $(Z^1)_{p1}$ に よって置換されていてもよいフェニルチオ、-S(L-45)、C1~C6アルキルスルフィニル、C1 \sim C₆ハロアルキルスルフィニル、C₃ \sim C₈シクロアルキルスルフィニル、 $(Z^1)_{p1}$ によって置 換されていてもよいフェニルスルフィニル、-S(0)(L-45)、 $C_1 \sim C_6$ アルキルスルホニル、C $_1\sim C_6$ ハロアルキルスルホニル、 $C_3\sim C_8$ シクロアルキルスルホニル、 $(Z^1)_{p\,1}$ によって置換 されていてもよいフェニルスルホニル、 $-SO_2(L-45)$ 、 $C_1 \sim C_6$ アルキルアミノ、5 ($C_1 \sim C_6$ アルキル) アミノ、 $C_1 \sim C_6$ アルキルアミノスルホニル、ジ $(C_1 \sim C_6$ アルキル) アミノスルホ ニル、 $C_1 \sim C_6$ アルキルスルホニルアミノ、 $C_1 \sim C_6$ ハロアルキルスルホニルアミノ、-C(0) N H_2 、 $C_1 \sim C_6$ アルキルアミノカルボニル、ジ($C_1 \sim C_6$ アルキル)アミノカルボニル、-C(S) NH_2 、-Si $(R^{13})(R^{14})R^{12}$ 、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル、L-5、L-14、L-24 、L-36、L-39、L-41、L-42、L-43、L-44又はMを表し、p1が2以上の整数を表すとき、各 々のZ²は互いに同一であっても又は互いに相異なっていてもよく、

さらに、2つの Z^2 が隣接する場合には、隣接する2つの Z^2 は $-CF_2CF_2O_-$, $-CF_2OCF_2$ -又は-O CF_2O_- を形成することにより、それぞれが結合する炭素原子と共に5 員環を形成してもよく、

 R^8 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル($C_1 \sim C_4$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_6$ ハロシクロアルキル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ ハロア

ルケニル、 $C_3 \sim C_8$ シクロアルケニル、 $C_3 \sim C_8$ ハロシクロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル、L又はMを表し、 \mathbb{R}^9 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$) アルキル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル($C_1 \sim C_4$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル又は($C_1 \sim C_4$) アルキルスは($C_1 \sim C_4$) アルキル

 R^{10} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、或いは、 R^9 と R^{10} とが一緒になって $C_2 \sim C_6$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 7$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子又は硫黄原子を1 個含んでもよく

 R^{12} は、 $C_1 \sim C_6$ アルキル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、 R^{13} 及び R^{14} は、各々独立して $C_1 \sim C_6$ アルキルを表し、

 R^{15} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、 R^{16} は、ハロゲン原子、シアノ、 $C_3 \sim C_6$ シクロアルキル、 $-OR^{26}$ 、 $-N(R^{27})R^{26}$ 、-SH、 $-S(0)_rR^{28}$ 、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $-C(0)N(R^{30})R^{29}$ 、 $-C(R^{32})=NOH$ 、 $-C(R^{32})=NOR^{31}$ 、 $-Si(R^{13})(R^{14})R^{12}$ 、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル、L-1、L-2、L-3、L-4、L-45、L-46、L-47又はMを表し、

 R^{17} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ アルコキシカルボニル($C_1 \sim C_4$) アルキル又は $C_1 \sim C_6$ アルコキシカルボニルを表し、

 R^{18} は、 $C_1 \sim C_6$ アルキルを表すか、或いは、 R^{17} と R^{18} とが一緒になって $C_4 \sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に5員環又は6員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子又は硫黄原子1個を含んでもよく、且つメチル基又はメトキシ基によって任意に置換されていてもよく、

 R^{21} は、シアノ、 $C_3\sim C_8$ シクロアルキル、 $C_3\sim C_8$ ハロシクロアルキル、 $C_1\sim C_6$ アルコキシ、 $C_1\sim C_6$ ハロアルコキシ、 $(Z^1)_{p1}$ によって置換されていてもよいフェノキシ、 $C_1\sim C_6$ アルキルチオ、 $C_1\sim C_6$ ハロアルキルチオ、 $(Z^1)_{p1}$ によって置換されていてもよいフェニルチオ、 $C_1\sim C_6$ アルキルスルホニル、 $C_1\sim C_6$ ハロアルキルスルホニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニルスルホニル、 $C_1\sim C_6$ アルコキシカルボニル、 $C_1\sim C_6$ アルコキシカルボニル、 $C_1\sim C_6$ アルコキシカルボニル、 $C_1\sim C_6$ アルコキシカルボニル、 $C_1\sim C_6$ アルキル)アミノカルボニル、 $C_1\sim C_6$ アルコトンカルボニル、 $C_1\sim C_6$ アロアルコトンカルボニル、 $C_1\sim C_6$ アルコトンカルボニル、 $C_1\sim C_6$ アルコトンカルズニル

 R^{23} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル又は $C_1 \sim C_6$ アルコキシを表し、 Q_1 、 Q_2 、 Q_3 又は Q_4 が Q_4 以上の整数を表すとき、各々の Q_2 は互いに同一であっても、または互いに相異なっていてもよく、

 R^{24} は、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルキルチオカルボニル、 $C_1 \sim C_6$ アルコキシチオカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $(C_1 \sim C_6$ アルキル) アミノカルボニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニルカルボニル、 $(C_1 \sim C_6$ アルキルスルホニル又は $(C_1 \sim C_6)$ アルキルスルホニルを表し、

 R^{26} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$) アルキル、(Z^1) $_p1$ によって置換されていてもよいフェニル($Z_1 \sim C_4$) アルキル、 $Z_2 \sim Z_8$ シクロアルキル、 $Z_3 \sim Z_8$ アルケニル、 $Z_3 \sim Z_8$ アルキニル、 $Z_1 \sim Z_8$ アルキルカルボニル、 $Z_1 \sim Z_8$ アルカルボニル、 $Z_1 \sim Z_8$ アルガルボニル、 $Z_1 \sim Z_8$ アルボニル、 $Z_1 \sim Z_8$ アルボニ

 R^{27} は、水素原子、 $C_1 \sim C_6$ アルキル又は $C_1 \sim C_6$ アルコキシを表し、

 R^{28} は、 $C_1 \sim C_6$ アルキル、 R^{33} によって任意に置換された($C_1 \sim C_4$)アルキル、 $C_3 \sim C_6$ シク

ロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキルチオ、 $(Z^1)_{p1}$ によって置換されていてもよいフェニルチオ、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $\mathcal{O}(C_1 \sim C_4$ アルキル) アミノカルボニル、 $\mathcal{O}(C_1 \sim C_4$ アルキル) アミノチオカルボニル、 $\mathcal{O}(C_1 \sim C_4$ アルキル) アミノチオカルボニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル、L-21、L-35、L-45又はL-48を表し、

 R^{29} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$)アルキル、(Z^1) $_{p1}$ によって置換されていてもよいフェニル($C_1 \sim C_4$)アルキル、(L-45)-($C_1 \sim C_4$)アルキル、(L-46)-($C_1 \sim C_4$)アルキル、(L-47)-(L-46)アルキル、L-46)-(L-47) アルキル、(L-47)-(L-47) アルキル、L-47) によって置換されていてもよいフェニルを表し、L-47) によって置換されていてもよいフェニルを表し、L-47) によって置換されていてもよいフェニルを表し、L-47) によって置換されていてもよいフェニルを表し、L-47) によって置換されていてもよい大素原子又はL-47) によって置換されていてもよい大素原子又はL-47) によってL-47) によってL-47 によってL-47 によってL-47 によってL-47 によってL-47 によってL-47 によってL-47 によってL-47 によってL-47 によってL-48 によっとL-49 によっとL-4

 R^{31} は、 $C_1 \sim C_6$ アルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキシカルボニル($C_1 \sim C_4$) アルキル、ジ($C_1 \sim C_4$ アルキル) アミノカルボニル($C_1 \sim C_4$) アルキル、 $C_3 \sim C_6$ アルケニル又は($C_1 \sim C_4$) アルキルを表し、 $C_1 \sim C_4$ アルキル又は($C_1 \sim C_4$) アルキルを表し、 $C_1 \sim C_4$ アルキル又は($C_1 \sim C_4$) アルキルを表し、 $C_1 \sim C_4$ アルキル又は($C_1 \sim C_4$) アルキルを表し、 $C_1 \sim C_4$ アルキル又は($C_1 \sim C_4$) アルキルでもよいフェニル

を表し、 R^{33} は、ハロゲン原子、-OH、 $C_1 \sim C_4$ アルコキシ、 $C_1 \sim C_6$ アルキルカルボニルオキシ、 $C_1 \sim C_4$ ハロアルキルカルボニルオキシ、 $C_1 \sim C_4$ アルキルカルボニルオキシ、 $C_1 \sim C_4$ アルコキシカルボニル、 $C_1 \sim C_4$ アルキルアミノカルボニル、ジ($C_1 \sim C_4$ アルキル) アミノカルボニル、-Si (R^{13}) (R^{14}) R^{12} 又は(Z^1) $_{p1}$ によって置換されていてもよいフェニルを表す請求項 1 記載の置換ベンズアニリド化合物又はその塩。

【請求項3】

W¹及びW²は、酸素原子を表し、

Xは、ハロゲン原子、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ ハロアルキルスルカニル又は $C_1 \sim C_6$ ハロアルキルスルホニルを表し、mが 2 又は 3 を表すとき、各々のXは互いに同一であっても又は互いに相異なっていてもよく、

さらに、2つのXが隣接する場合には、隣接する2つのXは $-0CF_2$ 0-又は $-0CF_2$ CF_2 0-を形成することにより、それぞれが結合する炭素原子と共に5員環又は6員環を形成してもよく

Yは、ハロゲン原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、ヒドロキシ($C_1 \sim C_6$)アルキル、 $C_1 \sim C_3$ アルコキシ($C_1 \sim C_3$)アルキル、 $C_1 \sim C_6$ アルコキシ又は $C_1 \sim C_6$ アルキルチオを表し、 $C_1 \sim C_1$ であっても又は互いに相異なっていてもよく、

R1は、水素原子を表し、

 R^2 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル又は $C_3 \sim C_6$ アルケニルを表し、

 R^3 は、 $C_1 \sim C_8$ アルキル、 R^{16} によって任意に置換された $(C_1 \sim C_8)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ アルケニル、 $C_1 \sim C_6$ アルキルアミノカルボニル $(C_3 \sim C_6)$ アルケニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_3 \sim C_6)$ アルケニル、 $(C_3 \sim C_6)$ アルキニル、 $(C_3 \sim C_6)$ アルキニル、ナフタレン $(C_3 \sim C_6)$ アルキニル、ナフタレン $(C_3 \sim C_6)$ アルキニル、ナフタレン $(C_3 \sim C_6)$ アルキニル、 $(L-1)-(C_3 \sim C_6)$ アルキニル、 $(L-2)-(C_3 \sim C_6)$ アルキニル、 $(L-3)-(C_3 \sim C_6)$ アルキニル

 R^4 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$)アルキル、 $C_3 \sim C_6$ ハロシクロアルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルスルフィニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルスルフィニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルスルホニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルスルホニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルスルホニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ソロアルキルスルホニル($C_1 \sim C_4$)アルキル、 $C_3 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルキール、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルナニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニーク、 $C_4 \sim C_4$ アルキニーク $C_4 \sim C_4$ アルキニーク $C_4 \sim C_4$ アルキニーク $C_4 \sim C_4$ アルキニーク $C_4 \sim C_4 \sim C_4$ アルキニーク $C_4 \sim C_4 \sim$

 R^5 は、シアノ、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$)アルキル、 $C_3 \sim C_6$ ハロシクロアルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルスルフィニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルスルフィニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキルスルカホニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキルスルカルカル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルカール、 $C_1 \sim C_4$ アルカール、 $C_1 \sim C_4$ アルカール、 $C_1 \sim C_4$ アルカール、 $C_1 \sim C_6$ アルカール・ $C_1 \sim$

 R^6 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$)アルキル、 $C_3 \sim C_6$ ハロシクロアルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルキルチオ($C_1 \sim C_4$)アルキル、シアノ($C_1 \sim C_6$)アルキル、($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルコキシ($C_1 \sim C_4$)ハロアルキル、 $C_3 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキニル、 $C_3 \sim C_6$ アルキル)ホスホリル又はジ($C_1 \sim C_6$ アルキル)チオホスホリルを表し、

 ノ、ジ $(C_1 \sim C_6 T N + N) T$ ミノ、 $C_1 \sim C_6 T N + N T$ ミノスルホニル、ジ $(C_1 \sim C_6 T N + N) T$ ミノスルホニル、 $-C(0) NH_2$ 、 $C_1 \sim C_6 T N + N T$ ミノカルボニル、 $-C(S) NH_2 T U$ はトリ $(C_1 \sim C_6 T N + N)$ シリルを表し、p1が2以上の整数を表すとき、各々の Z^2 は互いに同一であっても又は互いに相異なっていてもよく、

さらに、2つの \mathbb{Z}^2 が隣接する場合には、隣接する2つの \mathbb{Z}^2 は-0CF $_2$ 0-を形成することにより、それぞれが結合する炭素原子と共に5員環を形成してもよく、

 R^9 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_8$ シクロアルキル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、

 R^{10} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、或いは、 R^9 と R^{10} とが一緒になって $C_4 \sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に 5 員環又は 6 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子又は硫黄原子を 1 個含んでもよく、

 \mathbb{R}^{15} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル又は $(\mathbb{Z}^1)_{p1}$ によって置換されていてもよいフェニルを表し、

 R^{16} は、ハロゲン原子、シアノ、 $C_3 \sim C_6$ シクロアルキル、 $-OR^{26}$ 、 $-N(R^{27})R^{26}$ 、 $-S(0)_rR^2$ 8 、 $C_1 \sim C_6$ アルコキシカルボニル、 $-C(0)N(R^{30})R^{29}$ 、 $-C(R^{32})=NOH$ 、 $-C(R^{32})=NOR^{31}$ 、トリ($C_1 \sim C_4$ アルキル) シリル、(Z^1) $_{p1}$ によって置換されていてもよいフェニル、L-1、L-2、L-3、L-4、L-45、L-46、L-47又はMを表し、

 R^{23} は、 $C_1 \sim C_4$ アルキルを表し、

 R^{24} は、 $C_1 \sim C_6$ アルキルカルボニル又は $C_1 \sim C_6$ アルコキシカルボニルを表し、

 R^{26} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$)アルキル、(Z^1) $_{p_1}$ によって置換されていてもよいフェニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_3 \sim C_6$ シクロアルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、-C(0)N(R^{30}) R^{29} 、 $C_1 \sim C_6$ アルキルスルホニル、ジ($C_1 \sim C_6$ アルキル)アミノスルホニル、(Z^1) $_{p_1}$ によって置換されていてもよいフェニルスルホニル、ジ($C_1 \sim C_6$ アルキル) ホスホリル、ドリ($C_1 \sim C_6$ アルキル) シリル又は(Z^1) $_{p_1}$ によって置換されていてもよいフェニルを表し、

 R^{27} は、水素原子又は $C_1 \sim C_6$ アルキルを表し、

 R^{28} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、ヒドロキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルカルボニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルカルボニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシカルボニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル、トリ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキル、トリ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル・ $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル・ $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル・ $C_1 \sim C_4$

 R^{29} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_4$ アルキルチオ $(C_1 \sim C_4)$ アルキル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_6$ シクロアルキル、 $C_3 \sim C_6$ アルケニル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、

 R^{30} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、或いは、 R^{29} と R^{30} とが一緒になって $C_2 \sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 6$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子又は硫黄原子を 1 個含んでもよく、

 R^{31} は、 $C_1 \sim C_6$ アルキル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキルを表し、

 R^{32} は、水素原子又は $C_1 \sim C_6$ アルキルを表し、

mは、0~3の整数を表し、

nは、0~3の整数を表し、

q2は、 $0 \sim 3$ の整数を表し、

q3は、 $0 \sim 2$ の整数を表し、

q4は、0~2の整数を表す請求項2記載の置換ベンズアニリド化合物又はその塩。

【請求項4】

Xは、ハロゲン原子、ニトロ、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ ハロアルキル、 $C_1 \sim C_4$ アルコキ シ、 $C_1 \sim C_4$ ハロアルコキシ、 $C_1 \sim C_4$ アルキルチオ、 $C_1 \sim C_4$ ハロアルキルチオ、 $C_1 \sim C_4$ アル キルスルフィニル、 $C_1 \sim C_4$ ハロアルキルスルフィニル、 $C_1 \sim C_4$ アルキルスルホニル又は C_1 ~C4ハロアルキルスルホニルを表し、mが2を表すとき、各々のXは互いに同一であっても 又は互いに相異なっていてもよく、

Yは、ハロゲン原子、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ ハロアルキル、 $C_1 \sim C_4$ アルコキシ又は C_1 ~C4アルキルチオを表し、nが2を表すとき、各々のYは互いに同一であっても又は互いに 相異なっていてもよく、

 R^2 は、水素原子又は $C_1 \sim C_6$ アルキルを表し、

 R^3 は、 $C_1 \sim C_8$ アルキル、 R^{16} によって任意に置換された $(C_1 \sim C_8)$ アルキル、 $C_3 \sim C_8$ アル ケニル又はC3~C8アルキニルを表し、

 R^4 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル又は $C_3 \sim C_6$ シクロアルキルを表し、

 R^5 は、シアノ、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)ア ルキル、 $C_1 \sim C_4$ ハロアルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$) アルキル 、 $C_1\sim C_4$ ハロアルキルチオ $(C_1\sim C_4)$ アルキル、 $C_1\sim C_4$ アルキルスルフィニル $(C_1\sim C_4)$ アル キル、 $C_1 \sim C_4$ ハロアルキルスルフィニル ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルスルホニル ($C_1 \sim C_4$ アルキルスルカール ($C_1 \sim C_4$ アルカール ($_1\sim$ C4)アルキル、C $_1\sim$ C4ハロアルキルスルホニル(C $_1\sim$ C4)アルキル、C $_3\sim$ C8シクロアルキ ル、 $C_3 \sim C_8$ ハロシクロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アル キルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $(Z^2)_{\mathfrak{p}1}$ によって置換されていてもよいフェニル、1-ナフチル、2-ナフチル、L-1~L-4、L-8~L-13、L-15~L-23、L-25~L-35、L-37、L-38、L -40、L-43~L-58、M-4、M-5、M-8、M-9、M-14~M-18又はM-19を表し、

 R^6 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)ア ルキル、 $C_1 \sim C_4$ アルキルチオ $(C_1 \sim C_4)$ アルキル、 $(Z^1)_{p1}$ によって置換されていてもよいフ ェニル $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_4$ ハロアルコキシ $(C_1 \sim C_4)$ ハロアルキル、 $C_3 \sim C_6$ アルケニ ル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキニル、 $C_1 \sim C_6$ アルキル カルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、ジ $(C_1 \sim C_6$ アルキル) アミノカルボニル、 $C_1 \sim C_6$ アルキルスルホニル、トリ $(C_1 \sim C_4$ アルキル) シリル又はジ $(C_1 \sim C_6$ アルキル) ホスホ リルを表し、

 $R^{16} \text{ it. } -OR^{26} \text{ , } -N(R^{27})R^{26} \text{ , } -S(0)_{r}R^{28} \text{ , } -C(R^{32}) = NOH, \ -C(R^{32}) = NOR^{31} \text{ Vit}(Z^{1})_{p1} \text{ it. } \text{ it. } -C(R^{32}) = NOR^{31} \text{ Vit}(Z^{1})_{p1} \text{ it. } \text{ it. } -C(R^{32}) = NOR^{31} \text{ Vit}(Z^{1})_{p1} \text{ it. } \text{ it. } -C(R^{32}) = NOR^{31} \text{ Vit}(Z^{1})_{p1} \text{ it. } \text{ it. } -C(R^{32}) = NOR^{31} \text{ Vit}(Z^{1})_{p1} \text{ it. } \text{ it. } -C(R^{32}) = NOR^{31} \text{ Vit}(Z^{1})_{p1} \text{ it. } \text{ it. } -C(R^{32}) = NOR^{31} \text{ Vit}(Z^{1})_{p1} \text{ it. } \text{ it. } -C(R^{32}) = NOR^{31} \text{ Vit}(Z^{1})_{p1} \text{ it. } \text{ it. } -C(R^{32}) = NOR^{31} \text{ Vit}(Z^{1})_{p1} \text{ it. } \text{ it. } -C(R^{32}) = NOR^{31} \text{ Vit}(Z^{1})_{p1} \text{ it. } \text{ it. } -C(R^{32}) = NOR^{31} \text{ Vit}(Z^{1})_{p1} \text{ it. } \text{ it. } -C(R^{32})_{p1} \text{ it. } -C(R^{32})$ って置換されていてもよいフェニルを表し、

 R^{26} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカ ルボニル、C1~C6アルキルアミノカルボニル、C3~C6シクロアルキルアミノカルボニル、 $arphi(C_1 \sim C_6$ アルキル)アミノカルボニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニルア ミノカルボニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキルアミノ カルボニル、 $C_1 \sim C_6$ アルキルスルホニル、ジ $(C_1 \sim C_6$ アルキル) チオホスホリル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、

 \mathbb{R}^{28} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキルチオ、 $(\mathbb{Z}^1)_{\mathfrak{p}1}$ によって置換されていてもよい フェニル又はL-45を表し、

 R^{31} は、 $C_1 \sim C_6$ アルキルを表し、

R32は、水素原子を表し、

mは、0~2の整数を表し、

nは、 $0 \sim 2$ の整数を表す請求項3記載の置換ベンズアニリド化合物又はその塩。

【請求項5】

Xは、ハロゲン原子、ニトロ、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ ハロアルキル、 $C_1 \sim C_4$ アルキル チオ、C1 ~C4 アルキルスルフィニル又はC1 ~C4 アルキルスルホニルを表し、mが 2 を表す とき、各々のXは互いに同一であっても又は互いに相異なっていてもよく、

Yは、ハロゲン原子又はC1~C4アルキルを表し、nが2を表すとき、各々のYは互いに同 一であっても又は互いに相異なっていてもよく、

 R^4 は、 $C_1 \sim C_6$ アルキル又は $C_1 \sim C_6$ ハロアルキルを表し、

 R^5 は、 $(Z^2)_{p1}$ によって置換されていてもよいフェニル、1-ナフチル、2-ナフチル、L-1~L-4、L-8~L-13、L-15~L-23、L-25~L-35、L-45~L-52又はL-53を表し、

 R^6 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニル又はトリ($C_1 \sim C_4$ アルキル)シリルを表す請求項 4 記載の置換ベンズアニリド化合物又はその塩。

【請求項6】

一般式 (2) 又は一般式 (3):

【化5】

[式中、 Y^1 は、ハロゲン原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、ヒドロキシ($C_1 \sim C_6$) アルキル、 $C_1 \sim C_3$ アルコキシ($C_1 \sim C_6$) アルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ又は $C_1 \sim C_6$ ハロアルキルチオを表し、

 Y^2 は、ハロゲン原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ アルコキシ又は $C_1 \sim C_6$ アルキルチオを表し、n1が 2 を表すとき、各々の Y^2 は互いに同一であっても又は互いに相異なっていてもよく、

 R^4 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルスルフィニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルスルフィニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルスルカニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルスルカニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルスルホニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルキルスルホニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルキル、 $C_1 \sim C_4$ ハロアルキル、 $C_1 \sim C_4$ ハロアルキル、 $C_2 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルナニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルナニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニー $C_4 \sim C_6$ アルキー $C_4 \sim C_6$ アルキー $C_4 \sim C_6$ アルキニー $C_4 \sim C_6$ アルキー $C_4 \sim$

 R^5 は、シアノ、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$)アルキル、 $C_3 \sim C_6$ ハロシクロアルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルコキン($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルキルスルフィニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルキルスルフィニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルキルスルカール、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルコキン、 $C_1 \sim C_4$ アルカール、 $C_1 \sim C_6$ アルカール・ $C_1 \sim C_6$ アルカル・ $C_1 \sim C_6$

 $_4$) アルキル、 $_{C_3}$ \sim $_{C_6}$ ハロシクロアルキル($_{C_1}$ \sim $_{C_4}$) アルキル、 $_{C_1}$ \sim $_{C_4}$ アルコキシ($_{C_1}$ \sim $_{C_4}$) ア

、 $C_1 \sim C_4$ ハロアルキルチオ $(C_1 \sim C_4)$ アルキル、シアノ $(C_1 \sim C_6)$ アルキル、 $(Z^1)_{\mathfrak{p}1}$ によって 置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_4$ ハロアルコキシ $(C_1 \sim C_4)$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルナニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキル) $C_4 \sim C_6$ アルキル) $C_5 \sim C_6$ アルキル

L-1~L-4、L-8~L-13、L-15~L-23、L-25~L-35、L-37、L-38、L-40、L-43~L-57又はL-58は、それぞれ下記の芳香族複素環を表し、

 Z^1 は、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルコキン、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルアミノ又はジ($C_1 \sim C_6$ アルキル)アミノを表し、 $C_1 \sim C_6$ アルキル シアミノを表し、 $C_1 \sim C_6$ アルキル シアミノスはジ($C_1 \sim C_6$ アルキル シア・スロー シア・ス

 \mathbb{Z}^2 は、ハロゲン原子、シアノ、ニトロ、アミノ、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ ハロアルキル 、 $C_1 \sim C_3$ アルコキシ($C_1 \sim C_3$) アルキル、 $C_1 \sim C_3$ ハロアルコキシ($C_1 \sim C_3$) アルキル、 $C_1 \sim C_3$ アルキルチオ $(C_1 \sim C_3)$ アルキル、 $C_1 \sim C_3$ ハロアルキルチオ $(C_1 \sim C_3)$ アルキル、 $C_1 \sim C_3$ アル キルスルフィニル $(C_1 \sim C_3)$ アルキル、 $C_1 \sim C_3$ ハロアルキルスルフィニル $(C_1 \sim C_3)$ アルキル 、 $C_1 \sim C_3$ アルキルスルホニル($C_1 \sim C_3$) アルキル、 $C_1 \sim C_3$ ハロアルキルスルホニル($C_1 \sim C_3$) アルキル、シアノ($C_1 \sim C_6$)アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル 、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_3$ ハロアルコキシ($C_1 \sim C_3$) ハロアルコ キシ、 $C_1 \sim C_6$ アルキルスルホニルオキシ、 $C_1 \sim C_6$ ハロアルキルスルホニルオキシ、 $(Z^1)_{D1}$ によって置換されていてもよいフェノキシ、-0(L-45)、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロ アルキルチオ、 $C_3 \sim C_8$ シクロアルキルチオ、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ ハロア ルキルスルフィニル、 $C_3 \sim C_8$ シクロアルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ ハロアルキルスルホニル、 $C_3 \sim C_8$ シクロアルキルスルホニル、 $C_1 \sim C_6$ アルキルアミ ノ、ジ($C_1 \sim C_6$ アルキル) アミノ、 $C_1 \sim C_6$ アルキルアミノスルホニル、ジ($C_1 \sim C_6$ アルキル) アミノスルホニル、-C(0) NH₂、 $C_1 \sim C_6$ アルキルアミノカルボニル、ジ $(C_1 \sim C_6$ アルキル) ア ミノカルボニル、-C(S)NH2又はトリ(C1~C6アルキル)シリルを表し、p1が2以上の整数を 表すとき、各々の22は互いに同一であっても又は互いに相異なっていてもよく、 さらに、2つのZ²が隣接する場合には、隣接する2つのZ²は-0CF20-を形成することによ り、それぞれが結合する炭素原子と共に5員環を形成してもよく、

 R^9 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_8$ シクロアルキル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、

 R^{10} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、或いは、 R^9 と R^{10} とが一緒になって $C_4 \sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に 5 員環又は 6 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子又は硫黄原子を 1 個含んでもよく、

 R^{12} は、 $C_1 \sim C_6$ アルキル又は(Z^1) $_{p1}$ によって置換されていてもよいフェニルを表し、 R^{13} 及び R^{14} は、各々独立して $C_1 \sim C_6$ アルキルを表し、

 \mathbb{R}^{15} は、 $C_1 \sim C_6$ アルキル又は $(Z^1)_{p\,1}$ によって置換されていてもよいフェニルを表し、

 R^{23} は、 $C_1 \sim C_4$ アルキルを表し、

n1は、0~3の整数を表し、

p1は、 $1\sim5$ の整数を表し、

p2は、0~4の整数を表し、

p3は、0~3の整数を表し、

p4は、0~2の整数を表し、

p5は、0又は1の整数を表し、

q3は、0~2の整数を表し、

q4は、0~2の整数を表し、

rは、0~2の整数を表し、

tは、0又は1の整数を表す。]

で表されるN-置換フェニルー3-ニトロフタルイミド若しくは置換アニリン又はそれらの塩。

【請求項7】

請求項1~請求項5記載の置換ベンズアニリド化合物及びその塩から選ばれる1種又は 2種以上を有効成分として含有することを特徴とする有害生物防除剤。

【請求項8】

請求項1~請求項5記載の置換ベンズアニリド化合物及びその塩から選ばれる1種又は 2種以上を有効成分として含有することを特徴とする農薬。

【請求項9】

請求項1~請求項5記載の置換ベンズアニリド化合物及びその塩から選ばれる1種又は 2種以上を有効成分として含有することを特徴とする殺虫剤又は殺ダニ剤。

【書類名】明細書

【発明の名称】置換ベンズアニリド化合物及び有害生物防除剤

【技術分野】

[0001]

本発明は、新規な置換ベンズアニリド化合物及びその塩、並びに該化合物を有効成分として含有することを特徴とする有害生物防除剤に関するものである。本発明における有害生物防除剤とは、農園芸分野又は畜産、衛生分野(動物薬や家庭用、業務用殺虫剤)における有害な節足動物を対象とした害虫防除剤を意味する。また、本発明における農薬とは、農園芸分野における殺虫・殺ダニ剤、殺線虫剤、除草剤及び殺菌剤を意味する。

【背景技術】

[0002]

従来、特定の置換ベンズアニリド誘導体が、サイトカイン産生阻害活性、バソプレッシン拮抗活性等を有し、医薬品として用いられることが知られている(例えば、特許文献 $1 \sim 3$ 参照。)。また、特定の置換ベンズアニリド誘導体が、殺虫活性を有することが知られている(例えば、特許文献 $1 \sim 1$ の参照。)。しかしながら、本発明に係る置換ベンズアニリド化合物に関しては何ら開示されていない。

【特許文献1】国際公開第98/024771号パンフレット

【特許文献2】国際公開第99/051580号パンフレット

【特許文献3】特開2002-249473号公報

【特許文献4】欧州特許出願公開第0919542号明細書

【特許文献5】欧州特許出願公開第1006107号明細書

【特許文献6】国際公開第01/021576号パンフレット

【特許文献7】国際公開第01/046124号パンフレット

【特許文献 8】 許開 2 0 0 1 - 3 3 5 5 5 9 号公報

【特許文献9】国際公開第02/062807号パンフレット

【特許文献10】国際公開第02/094765号パンフレット

【発明の開示】

【発明が解決しようとする課題】

[0003]

有害生物防除剤、例えば殺虫剤や殺菌剤の長年にわたる使用により、近年、病害虫が抵抗性を獲得し、従来用いられてきた殺虫剤や殺菌剤による防除が困難になっている。また、既存の有害生物防除剤の一部のものは毒性が高く、或いはあるものは長期の残留性により、生態系を乱しつつある。このような状況下、低毒性かつ低残留性の新規な有害生物防除剤の開発が常に期待されている。

【課題を解決するための手段】

[0004]

本発明者らは、上記の課題解決を目標に鋭意研究を重ねた結果、本発明に係る下記一般式(1)で表される新規な置換ベンズアニリド化合物が優れた有害生物防除活性、特に殺虫・殺ダニ活性を示し、且つ、ホ乳動物、魚類及び益虫等の非標的生物に対してほとんど悪影響の無い、極めて有用な化合物であることを見い出し、本発明を完成した。

[0005]

すなわち、本発明は下記〔1〕~〔9〕に関するものである。

[0006]

[1] 一般式(1):

[0007]

$$(X)_{m} = \begin{pmatrix} (Y)_{n} & R^{4} & R^{5} \\ R^{1} & & & \\ (X)_{m} & & & \\ (X)_{m}$$

「式中、W1及びW2は、各々独立して酸素原子又は硫黄原子を表し、

Xは、ハロゲン原子、シアノ、ニトロ、アジド、-SCN、 $-SF_5$ 、 $C_1 \sim C_6$ アルキル、 R^7 によって任意に置換された $(C_1 \sim C_6)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^7 によって任意に置換された $(C_2 \sim C_6)$ アルケニル、 $C_2 \sim C_6$ アルケニル、 $C_3 \sim C_8$ シクロアルキル、 $C_2 \sim C_6$ アルケニル、 $C_3 \sim C_8$ シクロアルケニル、 $C_3 \sim C_8$ ハロシクロアルケニル、 $C_2 \sim C_6$ アルキニル、 R^7 によって任意に置換された $(C_2 \sim C_6)$ アルキニル、-OH、 $-OR^8$ 、 $-OS(0)_2$ R^8 、-SH、 $-S(0)_r$ R^8 、-CHO、<math>-C(0) R^9 、-C(0) R^9 、-C(0) R^9 、-C(0) R^{10} R^9 、-C(S) R^{10} R^{10} 、-C(S) R^{10} R^{10} 、-C(S) R^{10} R^{10} 、-C(S) R^{10} R^{10} R^{10} 、-C(S) R^{10} R^{10} R^{10} R^{10} 、-C(S) R^{10} R^{10}

さらに、2つのXが隣接する場合には、隣接する2つのXは $-CH_2$ CH_2 -, $-CH_2$ CH_2 0-, $-CH_2$ 0-, $-CH_2$

Yは、ハロゲン原子、シアノ、ニトロ、アジド、-SCN、 $-SF_5$ 、 $C_1 \sim C_6$ アルキル、 R^7 によって任意に置換された $(C_1 \sim C_6)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^7 によって任意に置換された $(C_3 \sim C_8)$ シクロアルキル、-OH、 $-OR^8$ 、 $-OS(0)_2R^8$ 、-SH、 $-S(0)_rR^8$ 、 $-NH_2$ 、 $C_1 \sim C_6$ アルキルアミノ、ジ $(C_1 \sim C_6$ アルキル)アミノ、 $-Si(R^{13})(R^{14})R^{12}$ 、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル、L又はMを表し、nが2、3又は4を表すとき、各々のYは互いに同一であっても又は互いに相異なっていてもよく、

さらに、2つのYが隣接する場合には、隣接する2つのYは $-CH_2$ CH $_2$ CH $_2$ CH $_2$ O-, $-CH_2$ CH $_2$ CH $_2$ O-, $-CH_2$ CH $_2$ CH $_2$ O-, $-CH_2$ CH $_2$ CH

 R^1 、 R^2 及び R^3 は、各々独立して水素原子、シアノ、 $C_1 \sim C_{12}$ アルキル、 R^{16} によって任意に置換された $(C_1 \sim C_{12})$ アルキル、 $C_3 \sim C_{12}$ シクロアルキル、 R^{16} によって任意に置換された $(C_3 \sim C_{12})$ シクロアルキル、 $C_3 \sim C_{12}$ アルケニル、 R^{16} によって任意に置換された $(C_3 \sim C_{12})$ アルケニル、 $C_3 \sim C_{12}$ シクロアルケニル、 $C_3 \sim C_{12}$ ハロシクロアルケニル、 $C_3 \sim C_{12}$ アルキニル、 R^{16} によって任意に置換された $(C_3 \sim C_{12})$ アルキニル、 R^{16} によって任意に置換された $(C_3 \sim C_{12})$ アルキニル、 R^{16} 0によって任意に置換された $(C_3 \sim C_{12})$ アルキニル、 R^{16} 0によって任意に置換された $(C_3 \sim C_{12})$ アルキニル、 R^{16} 0によって任意に置換された $(C_3 \sim C_{12})$

 $3 \sim C_8$ アルケニルオキシ、 $C_3 \sim C_8$ ハロアルケニルオキシ、 $(Z^1)_{p1}$ によって置換されていてもよいフェノキシ、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $(Z^1)_{p1}$ によって置換されていてもよいフェニルチオ、 $-S(0)_2$ R^9 、 $-SN(R^{18})$ R^{17} 、 $-S(0)_2$ $N(R^{10})$ R^9 、 $-N(R^{20})$ R^{19} 、-C(0) R^9 R^9

 R^4 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 R^{21} によって任意に置換された($C_1 \sim C_6$) アルキル、 R^{21} によって任意に置換された($C_1 \sim C_6$) ハロアルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 R^{21} によって任意に置換された($C_3 \sim C_8$) シクロアルキル、 R^{21} によって任意に置換された($C_3 \sim C_8$) ハロシクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルナニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキュー $C_3 \sim$

 R^5 は、シアノ、 R^{21} によって任意に置換された $(C_1 \sim C_6)$ アルキル、 R^{21} によって任意に置 換された $(C_1 \sim C_6)$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 R^2 1 によって任意に置換された $(C_{3} \sim C_{8})$ シクロアルキル、 R^{21} によって任意に置換された $(C_{3}$ \sim C₈)ハロシクロアルキル、C₃ \sim C₈シクロアルケニル、C₃ \sim C₈ハロシクロアルケニル、-OR 8 , $-S(0)_{r}R^{8}$, $-N(R^{10})R^{9}$, $-CHO_{5}$, $-C(0)R^{9}$, $-C(0)SR^{9}$, $-C(0)NHR^{10}$, $-C(0)N(R^{1})$ ${}^{0})R^{9}, -C(S)OR^{9}, -C(S)SR^{9}, -C(S)NHR^{10}, -C(S)N(R^{10})R^{9}, -CH=NOR^{11}, -C(R^{9})=NOR^{11}, (Z)$ 2) $_{\text{pl}}$ によって置換されていてもよいフェニル、1-ナフチル、2-ナフチル、L又はMを表し、 R^6 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 R^{21} によって任意に置換され た $(C_1 \sim C_6)$ アルキル、 R^{21} によって任意に置換された $(C_1 \sim C_6)$ ハロアルキル、 $C_3 \sim C_8$ シク ロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 R^{21} によって任意に置換された $(C_3 \sim C_8)$ シクロ アルキル、 R^{21} によって任意に置換された $(C_3 \sim C_8)$ ハロシクロアルキル、 $C_3 \sim C_6$ アルケニ ル、 $C_3 \sim C_6$ ハロアルケニル、 R^{21} によって任意に置換された $(C_3 \sim C_6)$ アルケニル、 R^{21} によ って任意に置換された $(C_3 \sim C_6)$ ハロアルケニル、 $C_3 \sim C_8$ シクロアルケニル、 $C_3 \sim C_8$ ハロシ クロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキニル、 R^{21} によって任意に置換さ れた $(C_3 \sim C_6)$ アルキニル、 R^{21} によって任意に置換された $(C_3 \sim C_6)$ ハロアルキニル、-S(0) $_{2}R^{9}$, $_{-C}(0)R^{9}$, $_{-C}(0)OR^{9}$, $_{-C}(0)SR^{9}$, $_{-C}(S)OR^{9}$, $_{-C}(S)SR^{9}$, $_{-C}(0)NHR^{10}$, $_{-C}(0)N(R^{10})R^{9}$ $-C(S)NHR^{10}$, $-C(S)N(R^{10})R^9$, $-Si(R^{13})(R^{14})R^{12}$, $-P(0)(OR^{22})_2$, $-P(S)(OR^{22})_2$, $(Z^2)_p$ 1によって置換されていてもよいフェニル、1-ナフチル、2-ナフチル、L-1~L-4、L-8~L-13、L-15~L-23、L-25~L-35、L-37、L-38、L-40、L-43~L-58又はMを表し、

Lは、式L-1から式L-58までの何れかで表される芳香族複素環を表し、

[0009]

[0012]

出証特2004-3099262

M-8

[0013]

 Z^1 は、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル、 $C_3 \sim C_6$ ハロシクロアルキル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ ハロアルケニル 、 $C_2 \sim C_6$ アルキニル、 $C_2 \sim C_6$ ハロアルキニル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ 、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$

ハロアルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ ハロアルキルスルホニル、 $C_1 \sim C_6$ アルキルアミノ、ジ($C_1 \sim C_6$ アルキル)アミノ、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ ハロアルコキシカルボニル又はハロゲン原子によって任意に置換されていてもよいフェニルを表し、p1, p2, p3又はp4が 2 以上の整数を表すとき、各々の Z^1 は互いに同一であっても又は互いに相異なっていてもよく、

 Z^2 は、ハロゲン原子、シアノ、ニトロ、アミノ、アジド、-SCN、-SF5、C1~C6アルキル、R⁷によって任意に置換された(C1~C6)アルキル、C3~C8シクロアルキル、R⁷によって任意に置換された(C3~C8)シクロアルキル、C2~C6アルケニル、R⁷によって任意に置換された(C2~C6)アルケニル、C3~C8シクロアルケニル、C3~C8ハロシクロアルケニル、C2~C6アルキニル、R⁷によって任意に置換された(C2~C6)アルキニル、R⁷によって任意に置換された(C2~C6)アルキニル、-OH、-OR⁸、-OS(O)2R⁸、-SH、-S(O)rR⁸、-N(R¹⁰)R⁹、-N(R¹⁰)CHO、-N(R¹⁰)C(O)R⁹、-N(R¹⁰)C(O)OR⁹、-N(R¹⁰)C(O)SR⁹、-N(R¹⁰)C(S)OR⁹、-N(R¹⁰)C(S)SR⁹、-N(R¹⁰)S(O)2R⁹、-CHO、-C(O)R⁹、-C(O)OR⁹、-C(O)NHR¹⁰、-C(S)NHR¹⁰、-C(S)N(R¹⁰)R⁹、-S(O)2OR⁹、-S(O)2NHR¹⁰、-S(O)2N(R¹⁰)R⁹、-Si(R¹³)(R¹⁴)R¹²、(Z¹)p1によって置換されていてもよいフェニル、L又はMを表し、p1が2以上の整数を表すとき、各々のZ²は互いに同一であっても又は互いに相異なっていてもよく、

さらに、2つの Z^2 が隣接する場合には、隣接する2つの Z^2 は $-CH_2$ CH $_2$ CH $_2$ -, $-CH_2$ CH $_2$ 0-, -CH $_2$ 0CH $_2$ -, -OCH $_2$ 0-, -CH $_2$ 0CH $_2$ -, -OCH $_2$ 10-, -CH $_2$

 R^7 は、ハロゲン原子、シアノ、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、-0 H、 $-0R^8$ 、-SH、 $-S(0)_rR^8$ 、 $-N(R^{10})R^9$ 、 $-N(R^{10})CH0$ 、 $-N(R^{10})C(0)R^9$ 、 $-N(R^{10})C(0)OR^9$ 、 $-N(R^{10})C(0)OR^9$ 、 $-N(R^{10})C(0)OR^9$ 、 $-C(0)OR^9$ 、 $-C(0)OR^9$ 、-C(

 R^8 は、 $C_1 \sim C_6$ アルキル、 R^{25} によって任意に置換された($C_1 \sim C_6$)アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^{25} によって任意に置換された($C_3 \sim C_8$)シクロアルキル、 $C_2 \sim C_6$ アルケニル、 R^{25} によって任意に置換された($C_2 \sim C_6$)アルケニル、 $C_3 \sim C_8$ シクロアルケニル、 $C_3 \sim C_6$ アルキニル、 R^{25} によって任意に置換された($C_3 \sim C_6$)アルキニル、($C_3 \sim C_6$)アルカー・

 R^9 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルチオ($C_1 \sim C_4$)アルキル、シアノ($C_1 \sim C_6$)アルキル、($C_1 \sim C_4$)アルキル、 $C_2 \sim C_6$ アルキル、($C_1 \sim C_4$)アルキル、 $C_3 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキニル又は($C_1 \sim C_4 \sim C_6$ アルケニルを表し、換されていてもよいフェニルを表し、

 R^{10} は、水素原子又は $C_1\sim C_6$ アルキルを表すか、或いは、 R^9 と R^{10} とが一緒になって $C_2\sim C_6$ アルキレン鎖を形成することにより、結合する原子と共に $3\sim 7$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、硫黄原子又は窒素原子を1 個含んでもよく、且つハロゲン原子、 $C_1\sim C_6$ アルキル基、 $C_1\sim C_6$ アルキルカルボニル基又は $C_1\sim C_6$ アルコキシカルボニル基によって任意に置換されていてもよく、

 R^{12} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ アルケニル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、

 R^{13} 及び R^{14} は、各々独立して $C_1 \sim C_6$ アルキル又は $C_1 \sim C_6$ ハロアルキルを表し、

 R^{15} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシカルボニル $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_6$ ハロアルコキシカルボニル $(C_1 \sim C_4)$ アルキル、 $(C_1 \sim C_4)$ アルキル、 $(C_1 \sim C_4)$ アルキル、 $(C_3 \sim C_6$ アルケニル、 $(C_3 \sim C_6$ アルカン、 $(C_3 \sim C_6$ アルコキンカルボニル、 $(C_3 \sim C_6$ アルコキシカルボニル、 $(C_1 \sim C_6$ アルコキシカルボニル、 $(C_1 \sim C_6$ アルコキシカルボニル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、

 R^{16} は、ハロゲン原子、シアノ、ニトロ、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $-OR^{26}$ 、 $-N(R^{27})R^{26}$ 、-SH、 $-S(0)_rR^{28}$ 、-CHO、 $-C(0)R^{29}$ 、-C(0)OH、 $-C(0)OR^{29}$ 、 $-C(0)SR^{29}$ 、 $-C(0)NHR^{30}$ 、 $-C(0)N(R^{30})R^{29}$ 、 $-C(0)C(0)OR^{29}$ 、 $-C(R^{32})=NOH$ 、 $-C(R^{32})=NOR^{31}$ 、 $-Si(R^{13})(R^{14})R^{12}$ 、 $-P(0)(OR^{22})_2$ 、 $-P(S)(OR^{22})_2$ 、 $-P(7x=\nu)_2$ 、 $-P(0)(7x=\nu)_2$ 、(Z^1) $_{p_1}$ によって置換されていてもよいフェニル、L又はMを表し、

 R^{17} は、 $C_1 \sim C_{12}$ アルキル、 $C_1 \sim C_{12}$ ハロアルキル、 $C_1 \sim C_{12}$ アルコキシ($C_1 \sim C_{12}$)アルキル、V、シアノ(V0)アルキル、V1 (V1)アルキル、V1 (V1)アルキル、V2 (V1)アルキル、V3 (V1) アルキル、V3 (V1) アルケニル、V3 (V1) アルキニル、V3 (V1) アルキニル、V3 (V1) アルキニル、V3 (V1) アルキニル、V4 (V1) アルキニル、V5 (V1) アルキニル、V6 (V1) アルコキシカルボニル又は(V1) アルコキシカルボニル

 R^{18} は、 $C_1 \sim C_{12}$ アルキル、 $C_1 \sim C_{12}$ ハロアルキル、 $C_1 \sim C_{12}$ アルコキシ($C_1 \sim C_{12}$)アルキル、 $D_1 \sim C_1 \sim C_$

 R^{19} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル、 $-C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ ハロアルコキシカルボニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルコキシカルボニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェノキシカルボニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニルカルボニル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルカルボニル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、

 R^{20} は、水素原子、 $C_1 \sim C_6$ アルキル、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ ハロアルキルカルボニル又は $C_1 \sim C_6$ アルコキシカルボニルを表し、

 R^{21} は、シアノ、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、-OH、 $-OR^8$ 、-SH、 $-S(0)_rR^8$ 、 $-N(R^{10})R^9$ 、 $-N(R^{10})CHO$ 、 $-N(R^{10})C(0)R^9$ 、 $-N(R^{10})C(0)OR^9$ 、 $-N(R^{10})C(0)SR^9$ 、 $-N(R^{10})C(S)OR^9$ 、 $-N(R^{10})C(S)SR^9$ 、 $-N(R^{10})S(0)_2R^9$ 、 $-C(0)OR^9$ 、 $-C(0)N(R^{10})R^9$ 、 $-Si(R^{13})(R^{14})R^{12}$ 、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル、L又はMを表し、

 R^{22} は、 $C_1 \sim C_6$ アルキル又は $C_1 \sim C_6$ ハロアルキルを表し、

 R^{23} は、ハロゲン原子、シアノ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、ヒドロキシ($C_1 \sim C_6$) アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシカルボニル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシカルボニル又は($C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ アルコキシカルボニル又は($C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシカルボニル又は($C_1 \sim C_6$ アルコキシカルボニル又は($C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシカルボニル又は($C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシカルボニル又は($C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシカルボニル又は($C_1 \sim C_6$ アルコキシカルボニル又は($C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシカルボニル又は($C_1 \sim C_6$ アルコキシカルボニルスと($C_1 \sim C_6$ アルコキシカルボニルスと($C_1 \sim C_6$ アルコキシカルボニルスと($C_1 \sim C_6$ アルコ・ $C_1 \sim C_6$ アコ・ $C_1 \sim C_6$ アルコ・ $C_1 \sim C_6$ アルコ・ $C_1 \sim C_6$ アコ・ $C_1 \sim C_6$ アルコ・ $C_1 \sim C_6$ アルコ・ $C_1 \sim C_6$ アルコ・ $C_1 \sim C_6$ アルコ・ $C_1 \sim C_6$ アコ・ $C_1 \sim C_6$ アルコ・ $C_1 \sim C_6$ アルコ・ $C_1 \sim C_6$ アコ・ $C_1 \sim C_6$ アルコ・ $C_1 \sim C_6$ アルコ・ $C_1 \sim C_6$

 R^{24} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル

 $(C_1 \sim C_4)$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ ハロアルコキシカルボニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルコキシカルボニル、 $C_1 \sim C_6$ アルキルチオカルボニル、 $C_1 \sim C_6$ アルコキシチオカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $(C_1 \sim C_6$ アルキル) アミノカルボニル、 $(C_1 \sim C_6$ アルキル) アミノチオカルボニル、 $(C_1 \sim C_6$ アルキル) アミノチオカルボニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニルカルボニル、 $(Z_1 \sim C_6)$ アルキルスルホニル、 $(Z_1 \sim C_6)$ アルキルスルホニル、 $(Z_1 \sim C_6)$ (OR $(Z_1 \sim C_6)$ 2 又は $(Z_1 \sim C_6)$ (OR $(Z_1 \sim C_6)$ 2 又は $(Z_1 \sim C_6)$ 2 を表し、

 R^{25} は、ハロゲン原子、シアノ、 $C_3\sim C_8$ シクロアルキル、 $C_3\sim C_8$ ハロシクロアルキル、 $C_1\sim C_6$ アルコキシ、 $C_1\sim C_6$ ハロアルコキシ、 $C_1\sim C_6$ アルキルチオ、 $C_1\sim C_6$ ハロアルコキシ、 $C_1\sim C_6$ アルキルスルホニル、 $C_1\sim C_6$ アルキルスルホニル、 $C_1\sim C_6$ アルキルアミノ、ジ($C_1\sim C_6$ アルキル)アミノ、 $C_1\sim C_6$ アルキル)アミノ、 $C_1\sim C_6$ アルキルカルボニル、 $C_1\sim C_6$ アルコキシカルボニル、 $C_1\sim C_6$ アルコキシカルボニル、 $C_1\sim C_6$ ハロアルコキシカルボニル、 $C_1\sim C_6$ アルコキシカルボニル、 $C_1\sim C_6$ アルキルカルボニル、 $C_1\sim C_6$ アルオーカルボニル、 $C_1\sim C_6$ アルオーカルボニル $C_1\sim C_6$ アルオーカルボニル $C_1\sim C_6$ アルオーカル $C_1\sim C_6$ アルオーカル $C_1\sim C_6$ アルカル $C_1\sim C_6$ アルカル

 R^{27} は、水素原子、 $C_1\sim C_6$ アルキル、 $C_1\sim C_6$ ハロアルキル、 $C_3\sim C_6$ シクロアルキル又は $C_1\sim C_6$ アルコキシを表すか、或いは、 R^{26} と R^{27} とが一緒になって $C_2\sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3\sim 6$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子又は硫黄原子を 1 個含んでもよく、且つハロゲン原子、 $C_1\sim C_6$ アルキル基、 $C_1\sim C_6$ アルコキシ基又は $(Z^1)_{p1}$ によって置換されていてもよいフェニル基によって置換されていてもよく、

 R^{28} は、 $C_1 \sim C_8$ アルキル、 R^{33} によって任意に置換された($C_1 \sim C_8$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 R^{33} によって任意に置換された($C_3 \sim C_8$) シクロアルキル、 $C_3 \sim C_8$ アルケニル、 R^{33} によって任意に置換された($C_3 \sim C_8$) アルケニル、 $C_3 \sim C_8$ アルキニル、 R^{33} によって任意に置換された($C_3 \sim C_8$) アルキニル、-SH、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、($C_1 \sim C_6$ ハロアルキルチネ、($C_1 \sim C_6$ ハロアルキルチオ、($C_1 \sim C_6$ ハロアルキャルチャ、($C_1 \sim C_6$ ハロアルキャルチャ、($C_1 \sim C_6$ ハロアルキャルチャ、($C_1 \sim C_6$ ハロアルキャルチャル・($C_1 \sim C_6$ ハロアルキャルチャル・($C_1 \sim C_6$ ハロアルキャルチャル・($C_1 \sim C_6$ ハロアルキャルチャル・($C_1 \sim C_6$ ハロアル・($C_1 \sim C_6$ ハロアル・($C_1 \sim C$

 R^{29} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ ハロアルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ ハロアルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルスルホニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルスルホニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルスルボニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルカルボニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルコキシカルボニル($C_1 \sim C_4$)アルキル、ジ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルコキシカルボニル($C_1 \sim C_4$)アルキル、ジ($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキル、トリ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキル)シリル($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ 0アルキル、 $C_2 \sim C_6$ アルキル、 $C_3 \sim C_8$ 0クロアルキル、 $C_3 \sim C_8$ 0クロアルキル、 $C_2 \sim C_6$ アルケニル($C_3 \sim C_8$ 0)シクロアルキル、 $C_2 \sim C_6$ アルケニル($C_3 \sim C_8$ 0)シクロアルキニル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ アルキニル、 $C_2 \sim C_6$ アルキニル、 $C_2 \sim C_6$ アルキニー

 R^{30} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル又は $(Z^1)_{p1}$ によって置換され

ていてもよいフェニルを表すか、或いは、 R^{29} と R^{30} とが一緒になって $C_2 \sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 6$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、硫黄原子又は窒素原子を1 個含んでもよく、且つハロゲン原子、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルキルカルボニル基、 $C_1 \sim C_6$ アルコキシカルボニル基又は $(Z^1)_{p1}$ によって置換されていてもよいフェニル基によって任意に置換されていてもよく、

 R^{31} は、水素原子、 $C_1 \sim C_8$ アルキル、 R^{33} によって任意に置換された $(C_1 \sim C_8)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ アルケニル、 R^{33} によって任意に置換された $(C_3 \sim C_8)$ アルケニル、 $C_3 \sim C_8$ アルキニル又は R^{33} によって任意に置換された $(C_3 \sim C_8)$ アルキニルを表し

 R^{32} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルコキン($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルキルチオ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ ハロアルキルスルホニル($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル又は($C_1 \sim C_4$) アルキル

 R^{33} は、ハロゲン原子、シアノ、ニトロ、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、-OH、 $-OR^{34}$ 、-SH、 $-S(0)_r R^{34}$ 、 $-NHR^{35}$ 、 $-N(R^{35})R^{34}$ 、-CHO、 $-C(0)R^{29}$ 、 $-C(0)R^2$ °、 $-C(0)SR^2$ °、 $-C(0)NHR^3$ °、 $-C(0)N(R^3)R^2$ °、 $-C(0)C(0)R^2$ °、 $-CH=NOR^{11}$ ° $-C(R^9)=NOR^{11}$ ° $-Si(R^{13})(R^{14})R^{12}$ ° $-P(0)(0R^{22})_2$ ° $-P(S)(0R^{22})_2$ ° $-P(D_1 = D_2)_2$ ° $-P(0)(D_1 = D_2)_2$ ° $-P(D_1 = D_2$

 R^{34} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルチオ($C_1 \sim C_4$) アルキル、(Z^1) $_{p1}$ によって置換されていてもよいフェニル($C_1 \sim C_4$) アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ ハロアルキニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、(Z^1) $_{p1}$ によって置換されていてもよいフェニルカルボニル、(Z^1) $_{p1}$ によって置換されていてもよいフェニルカルボニル、(Z^1) $_{p1}$ によって置換されていてもよいフェニル、L又はMを表し、

 R^{35} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、(Z^1) $_{p1}$ によって置換されていてもよいフェノキシカルボニル、(Z^1) $_{p1}$ によって置換されていてもよいフェニルカルボニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、(Z^1) $_{p1}$ によって置換されていてもよいフェニル、L又はMを表すか、或いは、 Z^3 と Z^3 とが一緒になって $Z_2 \sim Z_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に $Z_1 \sim Z_5$ を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子又は硫黄原子を $Z_1 \sim Z_5$ になって $Z_2 \sim Z_5$ スルキレン原子又はメチル基によって置換されていてもよく、

mは、0~4の整数を表し、

nは、0~4の整数を表し、

plは、1~5の整数を表し、

p2は、0~4の整数を表し、

p3は、0~3の整数を表し、

p4は、0~2の整数を表し、

p5は、0又は1の整数を表し、

q1は、 $0 \sim 3$ の整数を表し、

q2は、 $0 \sim 5$ の整数を表し、

a3は、0~7の整数を表し、

q4は、0~9の整数を表し、

rは、0~2の整数を表し、

tは、0又は1の整数を表す。]

で表される置換ベンズアニリド化合物又はその塩。

[0014]

[2] Xは、ハロゲン原子、シアノ、ニトロ、 $-SF_5$ 、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_2 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルキルオ、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルカルボニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルボニル、 $C_1 \sim C_6$ アルキルスルボニル、 $C_1 \sim C_6$ アルキルスルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $C_1 \sim C_6$ アルギニル $C_1 \sim C_6$ アルキルアミノカルボニル、 $C_1 \sim C_6$ アルギニル $C_1 \sim C_6$ ア

さらに、2つのXが隣接する場合には、隣接する2つのXは $-CH_2$ CH_2 CH_2 -, $-CH_2$ CH_2 0-, $-CH_2$ 0-,

Yは、ハロゲン原子、シアノ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、ヒドロキシ($C_1 \sim C_6$) アルキル、 $C_1 \sim C_3$ アルコキシ($C_1 \sim C_6$) アルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ アルキルアミノ、ジ($C_1 \sim C_6$ アルキル) アミノ、(Z^1) $_p1$ によって置換されていてもよいフェニル又は(Z^1) $_p1$ によって置換されていてもよいフェノキシを表し、 $Z_1 \sim Z_1$ な表すとき、各々のYは互いに同一であっても又は互いに相異なっていてもよく、

さらに、2つのYが隣接する場合には、隣接する2つのYは $-CH_2$ CH_2 CH_2 -, $-CH_2$ CH_2 0-, $-CH_2$ 0-,

 R^1 及び R^2 は、各々独立して水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルスルホニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルキルスルホニル($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキール、($C_1 \sim C_4$)アルキール・($C_1 \sim C_4$)アルキール、($C_1 \sim C_4$)アルキール、($C_1 \sim C_4$)アルキール、($C_1 \sim C_4$)アルキール、($C_1 \sim C_4$)アルキル、($C_1 \sim$

 R^3 は、 $C_1 \sim C_8$ アルキル、 R^{16} によって任意に置換された($C_1 \sim C_8$) アルキル、 $C_3 \sim C_8$ シクロアルキル、ヒドロキシ($C_3 \sim C_8$) シクロアルキル、 $C_1 \sim C_4$ アルキルチオ($C_3 \sim C_8$) シクロアルキル、 $C_1 \sim C_4$ アルキルチオ($C_3 \sim C_8$) シクロアルキル、 $C_1 \sim C_4$ アルキルチル、 $C_1 \sim C_4$ アルキルスルカイニル($C_3 \sim C_8$) シクロアルキル、 $C_1 \sim C_6$ アルキルアミノカルボニル($C_3 \sim C_8$) シクロアルキル、 $C_3 \sim C_8$ アルケニル、($C_3 \sim C_8$) アルキニル、($C_3 \sim C_8$) アルキニル、($C_3 \sim C_8$) アルキニル、($C_3 \sim C_8$) アルキニル、 $C_3 \sim C_8$ アルキニル、($C_3 \sim C_8$) アルキニル、 $C_3 \sim C_8$ アルキシ、 $C_3 \sim C_8$ アルキシ、 $C_3 \sim C_8$ アルオキシ、 $C_3 \sim C_8$ アルオキシ、 $C_3 \sim C_8$ アルカイン、($C_3 \sim C_8$ アルカイン、($C_3 \sim C_8$ アルカイン、($C_3 \sim C_8$ アルカイン・($C_3 \sim C_8$

 R^4 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 R^{21} によって任意に置換された($C_1 \sim C_6$) アルキル、 R^{21} によって任意に置換された($C_1 \sim C_6$) ハロアルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 R^{21} によって任意に置換された($C_3 \sim C_8$) シクロアルキル、 R^{21} によって任意に置換された($C_3 \sim C_8$) ハロシクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルナニル、 $C_3 \sim C_6$ アルナニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニル、($C_3 \sim C_6$ アルキニル、($C_3 \sim C_6$ アルキニル、($C_3 \sim C_6$ アルキニル、($C_3 \sim C_6$ アルナニル、($C_3 \sim C_6$ アルナニル ($C_3 \sim C_6$

 R^5 は、シアノ、 R^{21} によって任意に置換された $(C_1 \sim C_6)$ アルキル、 R^{21} によって任意に置換された $(C_1 \sim C_6)$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 R^2 によって任意に置換された $(C_3 \sim C_8)$ シクロアルキル、 R^{21} によって任意に置換された $(C_3 \sim C_8)$ ハロシクロアルキル、 $C_3 \sim C_8$ シクロアルケニル、 $C_3 \sim C_8$ ハロシクロアルケニル、 $C_3 \sim C_8$ の R^8 、 $-S(0)_R^8$ 、 $-N(R^{10})_R^9$ 、 $-C(0)_R^9$ 、 $-C(0)_R^9$ 、 $-C(0)_R^9$ 、 $-C(0)_R^9$ 、 $-C(0)_R^9$ 、-C(

 R^6 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $R^{2\,1}$ によって任意に置換された($C_1 \sim C_6$)アルキル、 $C_1 \sim C_4$ ハロアルコキシ($C_1 \sim C_4$)ハロアルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、(Z^1) $_{p\,1}$ によって置換されていてもよいフェニル($C_3 \sim C_6$)アルケニル、 $C_3 \sim C_6$ ハロアルケニル、(Z^1) $_{p\,1}$ によって置換されていてもよいフェニル($Z_1 \sim C_6$)アルキニル、 $Z_2 \sim C_6$ ハロアルキニル、($Z_1 \sim C_6$) アルキニル、 $Z_3 \sim C_6$ ハロアルキニル、($Z_1 \sim C_6$) アルキニル、 $Z_1 \sim C_6$ ($Z_1 \sim C_6$) アルキニル、 $Z_2 \sim C_6$ ($Z_1 \sim C_6$) アルキニル、 $Z_1 \sim C_6$ ($Z_1 \sim C_6$) N($Z_$

 Z^2 は、ハロゲン原子、シアノ、ニトロ、アミノ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル 、 $C_1 \sim C_3$ アルコキシ($C_1 \sim C_3$) アルキル、 $C_1 \sim C_3$ ハロアルコキシ($C_1 \sim C_3$) アルキル、 $C_1 \sim C_3$ アルキルチオ $(C_1 \sim C_3)$ アルキル、 $C_1 \sim C_3$ ハロアルキルチオ $(C_1 \sim C_3)$ アルキル、 $C_1 \sim C_3$ アル キルスルフィニル $(C_1 \sim C_3)$ アルキル、 $C_1 \sim C_3$ ハロアルキルスルフィニル $(C_1 \sim C_3)$ アルキル 、 $C_1 \sim C_3$ アルキルスルホニル $(C_1 \sim C_3)$ アルキル、 $C_1 \sim C_3$ ハロアルキルスルホニル $(C_1 \sim C_3)$ アルキル、シアノ $(C_1 \sim C_6)$ アルキル、ヒドロキシ $(C_1 \sim C_3)$ ハロアルキル、 $C_1 \sim C_3$ アルコキ ルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_3$ ハロアルコキシ($C_1 \sim C_3$)ハロアルコキシ、 $C_1 \sim C_6$ アルキルスルホニルオキシ、 $C_1 \sim C_6$ ハロ アルキルスルホニルオキシ、 $(Z^1)_{\mathfrak{p}1}$ によって置換されていてもよいフェノキシ、-0(L-45)、 $C_1\sim C_6$ アルキルチオ、 $C_1\sim C_6$ ハロアルキルチオ、 $C_3\sim C_8$ シクロアルキルチオ、 $(Z^1)_{\mathfrak{p}1}$ に よって置換されていてもよいフェニルチオ、-S(L-45)、C1~C6アルキルスルフィニル、C1 \sim C₆ハロアルキルスルフィニル、C₃ \sim C₈シクロアルキルスルフィニル、 $(Z^1)_{p1}$ によって置 換されていてもよいフェニルスルフィニル、-S(0)(L-45)、C1~C6アルキルスルホニル、C $_1\sim C_6$ ハロアルキルスルホニル、 $C_3\sim C_8$ シクロアルキルスルホニル、 $(Z^1)_{p\,1}$ によって置換 されていてもよいフェニルスルホニル、 $-SO_2(L-45)$ 、 $C_1 \sim C_6$ アルキルアミノ、ジ($C_1 \sim C_6$ アルキル) アミノ、C1 ~C6 アルキルアミノスルホニル、ジ(C1 ~C6 アルキル) アミノスルホ ニル、 $C_1 \sim C_6$ アルキルスルホニルアミノ、 $C_1 \sim C_6$ ハロアルキルスルホニルアミノ、-C(0) N H_2 、 $C_1 \sim C_6$ アルキルアミノカルボニル、ジ $(C_1 \sim C_6$ アルキル) アミノカルボニル、-C(S) NH_2 、-Si(R¹³)(R¹⁴)R¹²、(Z¹)p1によって置換されていてもよいフェニル、L-5、L-14、L-24 、L-36、L-39、L-41、L-42、L-43、L-44又はMを表し、p1が2以上の整数を表すとき、各 々のZ²は互いに同一であっても又は互いに相異なっていてもよく、

さらに、2つの Z^2 が隣接する場合には、隣接する2つの Z^2 は $-CF_2CF_2O_-$, $-CF_2OCF_2$ -又は-O CF_2O_- を形成することにより、それぞれが結合する炭素原子と共に5 員環を形成してもよく、

 \mathbb{R}^8 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル($C_1 \sim C_4$)アルキル

、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $C_2 \sim C_6$ アルケニル、 $C_2 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキニル、 $C_3 \sim C_6$ ハロアルキニル、 $C_3 \sim C_6$ ハロアルキニル、 $C_3 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$) アルキル、 $(C_1 \sim C_4)$ アルキル・ $(C_1$

 R^{10} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、或いは、 R^9 と R^{10} とが一緒になって $C_2 \sim C_6$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 7$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子又は硫黄原子を1 個含んでもよく

 R^{12} は、 $C_1 \sim C_6$ アルキル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、 R^{13} 及び R^{14} は、各々独立して $C_1 \sim C_6$ アルキルを表し、

 R^{15} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、(Z^1) $_{p1}$ によって置換されていてもよいフェニル($C_1 \sim C_4$)アルキル又は(Z^1) $_{p1}$ によって置換されていてもよいフェニルを表し、 R^{16} は、ハロゲン原子、シアノ、 $C_3 \sim C_6$ シクロアルキル、 $-OR^{26}$ 、 $-N(R^{27})R^{26}$ 、-SH、 $-S(0)_rR^{28}$ 、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $-C(0)N(R^{30})R^{29}$ 、 $-C(R^{32})=NOH$ 、 $-C(R^{32})=NOR^{31}$ 、 $-Si(R^{13})(R^{14})R^{12}$ 、(Z^1) $_{p1}$ によって置換されていてもよいフェニル、L-1、L-2、L-3、L-4、L-45、L-46、L-47又はMを表し、

 R^{17} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ アルコキシカルボニル($C_1 \sim C_4$)アルキル又は $C_1 \sim C_6$ アルコキシカルボニルを表し、

 R^{18} は、 $C_1 \sim C_6$ アルキルを表すか、或いは、 R^{17} と R^{18} とが一緒になって $C_4 \sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に 5 員環又は 6 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子又は硫黄原子 1 個を含んでもよく、且つメチル基又はメトキシ基によって任意に置換されていてもよく、

 R^{21} は、シアノ、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $(Z^1)_{p1}$ によって置換されていてもよいフェノキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $(Z^1)_{p1}$ によって置換されていてもよいフェニルチオ、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ ハロアルキルスルホニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニルスルホニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ ハロアルコキシカルボニル、 $\mathcal{S}(C_1 \sim C_6$ アルキル)アミノカルボニル、 $\mathcal{S}(R^{13})$ (R^{14}) R^{12} 、(R^{14}) R^{12} 、(R^{14}) R^{12} 、(R^{14}) R^{12} 、(R^{14}) R^{12} 、(R^{14}) R^{12} 、(R^{14}) R^{12} 、(R^{14}) R^{12} 、(R^{14}) R^{12} 、(R^{14}) R^{12} 、(R^{14}) R^{12} 、(R^{14}) R^{14} 、

 R^{23} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル又は $C_1 \sim C_6$ アルコキシを表し、q1, q2, q3又はq4が 2 以上の整数を表すとき、各々の R^{23} は互いに同一であっても、または互いに相異なっていてもよく、

 R^{24} は、-CHO、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルキルチオカルボニル、 $C_1 \sim C_6$ アルコキシチオカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $\mathcal{O}(C_1 \sim C_6$ アルキル) アミノカルボニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニルカルボニル、 $C_1 \sim C_6$ アルキルスルホニル又は $C_1 \sim C_6$ ハロアルキルスルホニルを表し、

 R^{28} は、 $C_1 \sim C_6$ アルキル、 R^{33} によって任意に置換された $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_6$ シクロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルキニル、 $C_1 \sim C_6$ アルキルチオ、 $(Z^1)_{p1}$ によって置換されていてもよいフェニルチオ、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、ジ $(C_1 \sim C_4$ アルキル)アミノカルボニル、 $(C_1 \sim C_6$ アルキル)アミノチオカルボニル、ジ $(C_1 \sim C_4$ アルキル)アミノチオカルボニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル、L-21、L-35、L-45又はL-48を表し、

 R^{29} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$) アルキル、($C_2 \sim C_6$ アルキル、($C_1 \sim C_4$) アルキル、 $C_3 \sim C_6$ アルケニル、 $C_2 \sim C_6$ アルキニル又は($C_1 \sim C_6$ アルキルを表すか、或いは、 $C_1 \sim C_6$ アルキルを表し、 $C_2 \sim C_6$ アルキレン鎖を形成することにより、結合する窒素原子と共に3 $C_1 \sim C_6$ アルキルン鎖を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、硫黄原子又は窒素原子を1 個含んでもよく、且つ $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基、ホルミル基、 $C_1 \sim C_6$ アルキルボニル基又は $C_1 \sim C_6$ アルコキシカルボニル基によって任意に置換されていてもよく

 R^{31} は、 $C_1 \sim C_6$ アルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシカルボニル($C_1 \sim C_4$) アルキル、ジ($C_1 \sim C_4$) アルキル、ジ($C_1 \sim C_4$) アルキル、グ($C_1 \sim C_4$) アルキル、 $C_3 \sim C_6$ アルケニル又は($C_1 \sim C_4$) アルキルを表し、

 R^{32} は、水素原子、 $C_1 \sim C_6$ アルキル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、

[0015]

[3] W¹及びW²は、酸素原子を表し、

Xは、ハロゲン原子、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ ハロアルキルスルホニル又は $C_1 \sim C_6$ ハロアルキルスルホニルを表し、mが 2 又は 3 を表すとき、各々のXは互いに同一であっても又は互いに相異なっていてもよく、

さらに、2つのXが隣接する場合には、隣接する2つのXは $-0CF_2$ 0-又は $-0CF_2$ CF_2 0-を形成することにより、それぞれが結合する炭素原子と共に5員環又は6員環を形成してもよく

Yは、ハロゲン原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、ヒドロキシ($C_1 \sim C_6$) アルキル、 $C_1 \sim C_3$ アルコキシ($C_1 \sim C_3$) アルキル、 $C_1 \sim C_6$ アルコキシ又は $C_1 \sim C_6$ アルキルチオを表し、nが2 又は3 を表すとき、各々のYは互いに同一であっても又は互いに相異なっていてもよく、

R¹は、水素原子を表し、

 R^2 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル又は $C_3 \sim C_6$ アルケニルを表し、

 R^3 は、 $C_1 \sim C_8$ アルキル、 R^{16} によって任意に置換された $(C_1 \sim C_8)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ アルケニル、 $C_1 \sim C_6$ アルキルアミノカルボニル $(C_3 \sim C_6)$ アルケニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_3 \sim C_6)$ アルケニル、 $(C_3 \sim C_6)$ アルキニル、ナフタレン-1-イル- $(C_3 \sim C_6)$ アルキニル、ナフタレン-2-イル- $(C_3 \sim C_6)$ アルキニル、(L-1)- $(C_3 \sim C_6)$ アルキニ

ル、 $(L-2)-(C_3\sim C_6)$ アルキニル、 $(L-3)-(C_3\sim C_6)$ アルキニル、 $(L-4)-(C_3\sim C_6)$ アルキニル、 $(L-45)-(C_3\sim C_6)$ アルキニル、 $(L-46)-(C_3\sim C_6)$ アルキニル、 $(L-47)-(C_3\sim C_6)$ アルキニル、 $(L-4)-(C_3\sim C_6)$ アルキニル $(L-4)-(C_3\sim C_6)$ アルキニル $(L-4)-(C_3\sim C_6)$ アルキニル

 R^4 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$)アルキル、 $C_3 \sim C_6$ ハロシクロアルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルスルフィニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルスルカコイニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルスルカコイニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルスルカコン($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルスルカコン($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルコキシ($C_1 \sim C_4$)ハロアルキル、 $C_3 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルキール、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ アルカコン($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルキル、 $C_1 \sim C_4$ ハロアルカコン($C_1 \sim C_4$)ハロアルキル、 $C_2 \sim C_4$ ハロアルカコン($C_1 \sim C_4$)ハロアルキル、 $C_2 \sim C_4$ ハロアルカコン($C_1 \sim C_4$)ハロアルカコン($C_1 \sim C_4$)ハロアルカコン($C_1 \sim C_4$)ハロアルカコン($C_1 \sim C_4$)ハロアルカコン($C_1 \sim C_4$)ハロアルカン($C_1 \sim C_4$)ハ

 R^6 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$)アルキル、 $C_3 \sim C_6$ ハロシクロアルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキル、($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$) アルキル、($C_1 \sim C_4$) アルキル) ポスポリル又はジ($C_1 \sim C_4$) アルキル) チオホスポリルを表し、

 $C_1 \sim C_6$ ハロアルキルスルホニル、 $C_3 \sim C_8$ シクロアルキルスルホニル、 $C_1 \sim C_6$ アルキルアミノ、ジ $(C_1 \sim C_6$ アルキル)アミノ、 $C_1 \sim C_6$ アルキルアミノスルホニル、ジ $(C_1 \sim C_6$ アルキル)アミノスルホニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、ジ $(C_1 \sim C_6$ アルキル)アミノカルボニル、 $C_1 \sim C_6$ アルキル)のサンボニル、 $C_1 \sim C_6$ アルキル)のサンドル・ $C_1 \sim C_6$ アルキル・ $C_1 \sim C_6$ アル・ $C_1 \sim C_6$ アルキル・ $C_1 \sim C_6$ アルキル・ $C_1 \sim C_6$ アル・ $C_1 \sim C_6$ アルキル・ $C_1 \sim C_6$ アル・ $C_1 \sim C_6$

さらに、2つの \mathbb{Z}^2 が隣接する場合には、隣接する2つの \mathbb{Z}^2 は-0CF $_2$ 0-を形成することにより、それぞれが結合する炭素原子と共に5員環を形成してもよく、

 R^9 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_8$ シクロアルキル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、

 R^{10} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、或いは、 R^9 と R^{10} とが一緒になって $C_4 \sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に 5 員環又は 6 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子又は硫黄原子を 1 個含んでもよく、

 R^{15} は、 $C_1 \sim C_6$ アルキル又は(Z^1) $_{p1}$ によって置換されていてもよいフェニルを表し、 R^{16} は、ハロゲン原子、シアノ、 $C_3 \sim C_6$ シクロアルキル、 $-OR^{26}$ 、 $-N(R^{27})R^{26}$ 、 $-S(0)_rR^2$ 8、 $C_1 \sim C_6$ アルコキシカルボニル、 $-C(0)N(R^{30})R^{29}$ 、 $-C(R^{32})=NOH$ 、 $-C(R^{32})=NOR^{31}$ 、トリ($C_1 \sim C_4$ アルキル)シリル、(Z^1) $_{p1}$ によって置換されていてもよいフェニル、L-1、L-2、L-3、L-4、L-45、L-46、L-47又はMを表し、

 R^{23} は、 $C_1 \sim C_4$ アルキルを表し、

 R^{24} は、 $C_1 \sim C_6$ アルキルカルボニル又は $C_1 \sim C_6$ アルコキシカルボニルを表し、

 R^{26} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$) アルキル、(Z^1) $_{p1}$ によって置換されていてもよいフェニル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_3 \sim C_6$ シクロアルキルカルボニル、 $C_1 \sim C_6$ アルコキシカルボニル、 $-C(0)N(R^{30})R^{29}$ 、 $C_1 \sim C_6$ アルキルスルホニル、ジ($C_1 \sim C_6$ アルキル) アミノスルホニル、(Z^1) $_{p1}$ によって置換されていてもよいフェニルスルホニル、ジ($C_1 \sim C_6$ アルキル) ホスホリル、ジ($C_1 \sim C_6$ アルキル) チオホスホリル、トリ($C_1 \sim C_6$ アルキル) シリル又は(Z^1) $_{p1}$ によって置換されていてもよいフェニルを表し、

 R^{27} は、水素原子又は $C_1 \sim C_6$ アルキルを表し、

 R^{28} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、ヒドロキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルカルボニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシカルボニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル、トリ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキル、トリ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_6$ アルキルチオ、($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルチオ、($C_1 \sim C_4$)アルキル、 $C_1 \sim C_6$ アルキルチオ、($C_1 \sim C_4$)アルキルでもよいフェニル、 $C_1 \sim C_6$ アルキルチオ、($C_1 \sim C_4$)アルキルでは、 $C_1 \sim C_6$ アルキル・ $C_1 \sim C$

 R^{29} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_4$ アルキルチオ $(C_1 \sim C_4)$ アルキル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_6$ シクロアルキル、 $C_3 \sim C_6$ アルケニル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、

 R^{30} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、或いは、 R^{29} と R^{30} とが一緒になって $C_2 \sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 6$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子又は硫黄原子を 1 個含んでもよく、

 R^{31} は、 $C_1 \sim C_6$ アルキル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキルを表し、

R³²は、水素原子又はC1~C6アルキルを表し、

mは、0~3の整数を表し、

nは、0~3の整数を表し、

q2は、0~3の整数を表し、

q3は、0~2の整数を表し、

q4は、 $0\sim2$ の整数を表す上記〔2〕記載の置換ベンズアニリド化合物又はその塩。 [0016]

[4] Xは、ハロゲン原子、ニトロ、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ ハロアルキル、 $C_1 \sim C_4$ アルコキシ、 $C_1 \sim C_4$ ハロアルコキシ、 $C_1 \sim C_4$ アルキルチオ、 $C_1 \sim C_4$ ハロアルキルチオ、 C_1 \sim C4アルキルスルフィニル、C1 \sim C4ハロアルキルスルフィニル、C1 \sim C4アルキルスルホニ ル又はC1~C4ハロアルキルスルホニルを表し、mが2を表すとき、各々のXは互いに同一で あっても又は互いに相異なっていてもよく、

Yは、ハロゲン原子、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ ハロアルキル、 $C_1 \sim C_4$ アルコキシ又は C_1 ~C4アルキルチオを表し、nが2を表すとき、各々のYは互いに同一であっても又は互いに 相異なっていてもよく、

 R^2 は、水素原子又は $C_1 \sim C_6$ アルキルを表し、

 R^3 は、 $C_1 \sim C_8$ アルキル、 R^{16} によって任意に置換された $(C_1 \sim C_8)$ アルキル、 $C_3 \sim C_8$ アル ケニル又はC3~C8アルキニルを表し、

 R^4 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル又は $C_3 \sim C_6$ シクロアルキルを表し、

 R^5 は、シアノ、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)ア ルキル、 $C_1 \sim C_4$ ハロアルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$) アルキル 、 $C_1\sim C_4$ ハロアルキルチオ $(C_1\sim C_4)$ アルキル、 $C_1\sim C_4$ アルキルスルフィニル $(C_1\sim C_4)$ アル キル、 $C_1 \sim C_4$ ハロアルキルスルフィニル ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルスルホニル ($C_1 \sim C_4$ アルキルスルホニル ($C_1 \sim C_4$) $_1\sim C_4)$ アルキル、 $C_1\sim C_4$ ハロアルキルスルホニル $(C_1\sim C_4)$ アルキル、 $C_3\sim C_8$ シクロアルキ ル、 $C_3 \sim C_8$ ハロシクロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アル キルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $(Z^2)_{p1}$ によって置換されていてもよいフェニル、1-ナフチル、2-ナフチル、L-1~L-4、L-8~L-13、L-15~L-23、L-25~L-35、L-37、L-38、L -40、L-43~L-58、M-4、M-5、M-8、M-9、M-14~M-18又はM-19を表し、

 R^6 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)ア ルキル、 $C_1 \sim C_4$ アルキルチオ $(C_1 \sim C_4)$ アルキル、 $(Z^1)_{\mathfrak{p}1}$ によって置換されていてもよいフ ェニル $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_4$ ハロアルコキシ $(C_1 \sim C_4)$ ハロアルキル、 $C_3 \sim C_6$ アルケニ ル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキニル、 $C_1 \sim C_6$ アルキル カルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、ジ $(C_1 \sim C_6$ アルキル)アミノカルボニル、 $C_1 \sim C_6$ アルキルスルホニル、トリ $(C_1 \sim C_4$ アルキル) シリル又はジ $(C_1 \sim C_6$ アルキル) ホスホ リルを表し、

 R^{16} は、 $-0R^{26}$ 、 $-N(R^{27})R^{26}$ 、 $-S(0)_rR^{28}$ 、 $-C(R^{32})=NOH$ 、 $-C(R^{32})=NOR^{31}$ 又は $(Z^1)_{p1}$ によ って置換されていてもよいフェニルを表し、

 R^{26} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ アルキルカルボニル、 $C_1 \sim C_6$ アルコキシカ ルボニル、 $C_1 \sim C_6$ アルキルアミノカルボニル、 $C_3 \sim C_6$ シクロアルキルアミノカルボニル、 arphi $(C_1 \sim C_6$ アルキル)アミノカルボニル、 $(Z^1)_{\mathfrak{p}1}$ によって置換されていてもよいフェニルア ミノカルボニル、(Z¹)p1によって置換されていてもよいフェニル(C1~C4)アルキルアミノ カルボニル、 $C_1 \sim C_6$ アルキルスルホニル、ジ $(C_1 \sim C_6$ アルキル) チオホスホリル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、

 R^{28} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ アルキルチオ、 $(Z^1)_{p1}$ によって置換されていてもよい フェニル又はL-45を表し、

 R^{31} は、 $C_1 \sim C_6$ アルキルを表し、

R32は、水素原子を表し、

mは、0~2の整数を表し、

nは、 $0 \sim 2$ の整数を表す上記〔3〕記載の置換ベンズアニリド化合物又はその塩。

[0 0 1 7]

[5] Xは、ハロゲン原子、ニトロ、 $C_1 \sim C_4$ アルキル、 $C_1 \sim C_4$ ハロアルキル、 $C_1 \sim C_4$ アルキルチオ、C1~C4アルキルスルフィニル又はC1~C4アルキルスルホニルを表し、mが 2を表すとき、各々のXは互いに同一であっても又は互いに相異なっていてもよく、

Yは、ハロゲン原子又はC1~C4アルキルを表し、nが2を表すとき、各々のYは互いに同 一であっても又は互いに相異なっていてもよく、

 R^4 は、 $C_1 \sim C_6$ アルキル又は $C_1 \sim C_6$ ハロアルキルを表し、

 \mathbb{R}^5 は、 $(\mathbb{Z}^2)_{\mathtt{p}1}$ によって置換されていてもよいフェニル、1-ナフチル、2-ナフチル、L-1~L-4、L-8~L-13、L-15~L-23、L-25~L-35、L-45~L-52又はL-53を表し、

 R^6 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハ ロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキニル又はトリ ($C_1 \sim C_4$ アルキル) シリ ルを表す上記〔4〕記載の置換ベンズアニリド化合物又はその塩。

[0018]

[6] 一般式(2)又は一般式(3):

[0019]

【化5】

$$R^4$$
 R^5
 R^6
 Y^1
 Y^1
 Y^2
 Y^2
 Y^2
 Y^2
 Y^2
 Y^2
 Y^2
 Y^2
 Y^2
 Y^3
 Y^4
 Y^2
 Y^3
 Y^4
 Y^2
 Y^3
 Y^4
 Y^2
 Y^3
 Y^4
 Y^4
 Y^2
 Y^3
 Y^4
 Y^4

[0020]

[式中、 Y^1 は、ハロゲン原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、ヒドロキシ($C_1 \sim C_6$ $_6$)アルキル、 $C_1 \sim C_3$ アルコキシ($C_1 \sim C_3$)アルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコ キシ、Ci~C6アルキルチオ又はC1~C6ハロアルキルチオを表し、

 Y^2 は、ハロゲン原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ アルコキシ又は $C_1 \sim C_6$ アルキルチオを表 し、nlが2を表すとき、各々のY²は互いに同一であっても又は互いに相異なっていてもよ く、

 R^4 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$)アルキル 、 $C_3\sim C_6$ ハロシクロアルキル $(C_1\sim C_4)$ アルキル、 $C_1\sim C_4$ アルコキシ $(C_1\sim C_4)$ アルキル、 C_1 \sim C₄ハロアルコキシ(C₁ \sim C₄)アルキル、C₁ \sim C₄アルキルチオ(C₁ \sim C₄)アルキル、C₁ \sim C₄ハ ロアルキルチオ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_4$ アルキルスルフィニル $(C_1 \sim C_4)$ アルキル、 $C_1 \sim$ C_4 ハロアルキルスルフィニル $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_4$ アルキルスルホニル $(C_1 \sim C_4)$ アル キル、 $C_1 \sim C_4$ ハロアルキルスルホニル $(C_1 \sim C_4)$ アルキル、シアノ $(C_1 \sim C_6)$ アルキル、 $C_1 \sim$ C_4 ハロアルコキシ $(C_1 \sim C_4)$ ハロアルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアル キル、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ ハロアルキ ニル、 $(Z^2)_{\mathsf{p}1}$ によって置換されていてもよいフェニル、1-ナフチル、2-ナフチル、 L -1 $\sim \mathsf{L}$ -4、L-8~L-13、L-15~L-23、L-25~L-35、L-37、L-38、L-40、L-43~L-58、M-4、M-5、M -8、M-9、M-14~M-18又はM-19を表し、

 \mathbb{R}^5 は、シアノ、 $\mathbb{C}_3 \sim \mathbb{C}_6$ シクロアルキル($\mathbb{C}_1 \sim \mathbb{C}_4$)アルキル、 $\mathbb{C}_3 \sim \mathbb{C}_6$ ハロシクロアルキル($\mathbb{C}_1 \sim \mathbb{C}_4$) $_{1}$ \sim C_{4}) アルキル、 C_{1} \sim C_{4} アルコキシ(C_{1} \sim C_{4}) アルキル、 C_{1} \sim C_{4} ハロアルコキシ(C_{1} \sim C_{4}) ア ルキル、 $C_1 \sim C_4$ アルキルチオ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_4$ ハロアルキルチオ $(C_1 \sim C_4)$ アルキ ル、 $C_1 \sim C_4$ アルキルスルフィニル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ ハロアルキルスルフィニル($C_1 \sim C_4 \sim C$ $_1\sim C_4)$ アルキル、 $C_1\sim C_4$ アルキルスルホニル $(C_1\sim C_4)$ アルキル、 $C_1\sim C_4$ ハロアルキルスル ホニル $(C_1 \sim C_4)$ アルキル、シアノ $(C_1 \sim C_6)$ アルキル、 $C_1 \sim C_4$ ハロアルコキシ $(C_1 \sim C_4)$ ハロ アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、 $C_3 \sim C_8$ シクロアルケニル 、 $C_3 \sim C_8$ ハロシクロアルケニル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アル キルチオ、 $C_1 \sim C_6$ ハロアルキルチオ、 $-C(0)OR^9$ 、 $-C(0)SR^9$ 、 $-C(0)NHR^{10}$ 、 $-C(0)N(R^{10})R^9$ 、 $-C(S)OR^9$ 、 $-C(S)SR^9$ 、 $-C(S)NHR^{10}$ 、 $-C(S)N(R^{10})R^9$ 、 $(Z^2)_{p1}$ によって置換されていても よいフェニル、1-ナフチル、2-ナフチル、L-1~L-4、L-8~L-13、L-15~L-23、L-25~L-3 5、L-37、L-38、L-40、L-43~L-58、M-4、M-5、M-8、M-9、M-14~M-18又はM-19を表し、

 R^6 は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$)アルキル、 $C_3 \sim C_6$ ハロシクロアルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルキルチオ($C_1 \sim C_4$)アルキル、シアノ($C_1 \sim C_6$)アルキル、($C_1 \sim C_4$)アルキル、($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルコキシ($C_1 \sim C_4$)ハロアルキル、 $C_1 \sim C_4$ ハロアルコキシ($C_1 \sim C_4$)ハロアルキル、 $C_3 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルキル、 $C_3 \sim C_6$ アルキール、 $C_3 \sim C_6$ アルキール、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキニル、 $C_3 \sim C_6$ アルキル)ホスホリル又はジ($C_1 \sim C_6$ アルキル)チオホスホリルを表し、

L-1~L-4、L-8~L-13、L-15~L-23、L-25~L-35、L-37、L-38、L-40、L-43~L-57又はL-58は、それぞれ下記の芳香族複素環を表し、

[0021]

[代7]
$$R^{15}$$
 R^{15} R^{1

【0023】 M-4、M-5、M-8、M-9、M-14~M-18又はM-19は、それぞれ下記の飽和複素環を表し、 【0024】

[0025]

 Z^1 は、ハロゲン原子、シアノ、ニトロ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロアルコキン、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ アルキルアミノ又はジ($C_1 \sim C_6$ アルキル)アミノを表し、 $C_1 \sim C_6$ アルキルクンは $C_1 \sim C_6$ アルキル)であっても又は互いに相異なっていてもよく、

 Z^2 は、ハロゲン原子、シアノ、ニトロ、アミノ、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル 、 $C_1 \sim C_3$ アルコキシ $(C_1 \sim C_3)$ アルキル、 $C_1 \sim C_3$ ハロアルコキシ $(C_1 \sim C_3)$ アルキル、 $C_1 \sim C_3$ アルキルチオ $(C_1 \sim C_3)$ アルキル、 $C_1 \sim C_3$ ハロアルキルチオ $(C_1 \sim C_3)$ アルキル、 $C_1 \sim C_3$ アル キルスルフィニル $(C_1 \sim C_3)$ アルキル、 $C_1 \sim C_3$ ハロアルキルスルフィニル $(C_1 \sim C_3)$ アルキル 、 $C_1\sim C_3$ アルキルスルホニル($C_1\sim C_3$)アルキル、 $C_1\sim C_3$ ハロアルキルスルホニル($C_1\sim C_3$) アルキル、シアノ $(C_1 \sim C_6)$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル 、 $C_1 \sim C_6$ アルコキシ、 $C_1 \sim C_6$ ハロアルコキシ、 $C_1 \sim C_3$ ハロアルコキシ($C_1 \sim C_3$) ハロアルコ キシ、 $C_1 \sim C_6$ アルキルスルホニルオキシ、 $C_1 \sim C_6$ ハロアルキルスルホニルオキシ、 $(Z^1)_{p1}$ によって置換されていてもよいフェノキシ、-0(L-45)、 $C_1 \sim C_6$ アルキルチオ、 $C_1 \sim C_6$ ハロ アルキルチオ、 $C_3 \sim C_8$ シクロアルキルチオ、 $C_1 \sim C_6$ アルキルスルフィニル、 $C_1 \sim C_6$ ハロア ルキルスルフィニル、 $C_3 \sim C_8$ シクロアルキルスルフィニル、 $C_1 \sim C_6$ アルキルスルホニル、 $C_1 \sim C_6$ ハロアルキルスルホニル、 $C_3 \sim C_8$ シクロアルキルスルホニル、 $C_1 \sim C_6$ アルキルアミ ノ、ジ $(C_1 \sim C_6$ アルキル)アミノ、 $C_1 \sim C_6$ アルキルアミノスルホニル、ジ $(C_1 \sim C_6$ アルキル) アミノスルホニル、-C(0) NH2、 $C_1 \sim C_6$ アルキルアミノカルボニル、ジ $(C_1 \sim C_6$ アルキル) ア ミノカルボニル、-C(S)NH2又はトリ(C1~C6アルキル)シリルを表し、p1が2以上の整数を 表すとき、各々のZ²は互いに同一であっても又は互いに相異なっていてもよく、 さらに、2つの2²が隣接する場合には、隣接する2つの2²は-0CF₂0-を形成することによ

り、それぞれが結合する炭素原子と共に5員環を形成してもよく、 R^9 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $(Z^1)_{p1}$ によって置換されていてもよいフ

ェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_8$ シクロアルキル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、

 R^{10} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、或いは、 R^9 と R^{10} とが一緒になって $C_4 \sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に 5 員環又は 6 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子又は硫黄原子を 1 個含んでもよく、

 R^{12} は、 $C_1 \sim C_6$ アルキル又は(Z^1) $_{p1}$ によって置換されていてもよいフェニルを表し、 R^{13} 及び R^{14} は、各々独立して $C_1 \sim C_6$ アルキルを表し、

 \mathbb{R}^{15} は、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルキル又は $(\mathbb{Z}^1)_{p1}$ によって置換されていてもよいフェニルを表し、

 R^{23} は、 $C_1 \sim C_4$ アルキルを表し、

n1は、 $0 \sim 3$ の整数を表し、

plは、1~5の整数を表し、

p2は、0~4の整数を表し、

p3は、0~3の整数を表し、

p4は、0~2の整数を表し、

p5は、0又は1の整数を表し、

q3は、0~2の整数を表し、

q4は、0~2の整数を表し、

rは、0~2の整数を表し、

tは、0又は1の整数を表す。]

で表されるN-置換フェニルー3-ニトロフタルイミド若しくは置換アニリン又はそれらの塩。

[0026]

[7] 上記[1]~[5]記載の置換ベンズアニリド化合物及びその塩から選ばれる 1種又は2種以上を有効成分として含有することを特徴とする有害生物防除剤。

[0027]

[8] 上記[1]~[5]記載の置換ベンズアニリド化合物及びその塩から選ばれる 1種又は2種以上を有効成分として含有することを特徴とする農薬。

[0028]

[9] 上記[1]~[5]記載の置換ベンズアニリド化合物及びその塩から選ばれる 1種又は2種以上を有効成分として含有することを特徴とする殺虫剤又は殺ダニ剤。

【発明の効果】

[0029]

殺虫剤や殺菌剤の長年にわたる使用により、近年、病害虫が抵抗性を獲得し、従来の殺虫剤や殺菌剤による防除が困難になっている。また、殺虫剤の一部には毒性の高いもの、長く環境中に残留するものが存在し、これらによる生態系の攪乱が問題となっている。一方、本発明化合物は多くの農業害虫、ハダニ類に対して優れた殺虫・殺ダニ活性を有し、既存の殺虫剤に対して抵抗性を獲得した害虫に対しても十分な防除効果を発揮する。さらに、ホ乳類、魚類及び益虫に対してほとんど悪影響を及ぼさず、低残留性で環境に対する負荷も軽い。

[0030]

従って、本発明は有用な新規有害生物防除剤を提供することができる。

【発明を実施するための最良の形態】

[0031]

本発明に包含される化合物には、置換基の種類によってはE-体及びZ-体の幾何異性体が存在する場合があるが、本発明はこれらE-体、Z-体又はE-体及びZ-体を任意の割合で含む混合物を包含するものである。また、本発明に包含される化合物は、1個又は2個以上の不斉炭素原子の存在に起因する光学活性体が存在するが、本発明は全ての光学活性体又はラセミ体を包含する。さらに、一般式(1)で表される本発明化合物においては、R¹或いはR²が水素原子であるときに、場合によっては次式で表される互変異性体の存在が考えられるが、本発明はそれらの構造をも包含するものである。

[0032]

$$(X)_{m} \qquad (X)_{m} \qquad (X)_$$

[0033]

本発明に包含される化合物のうちで、常法に従って酸付加塩にすることができるものは 、例えば、フッ化水素酸、塩酸、臭化水素酸、沃化水素酸等のハロゲン化水素酸の塩、硝 酸、硫酸、燐酸、塩素酸、過塩素酸等の無機酸の塩、メタンスルホン酸、エタンスルホン 酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等のス ルホン酸の塩、ギ酸、酢酸、プロピオン酸、トリフルオロ酢酸、フマール酸、酒石酸、蓚 酸、マレイン酸、リンゴ酸、コハク酸、安息香酸、マンデル酸、アスコルビン酸、乳酸、 グルコン酸、クエン酸等のカルボン酸の塩又はグルタミン酸、アスパラギン酸等のアミノ 酸の塩とすることができる。

[0034]

或いは、本発明に包含される化合物のうちで、常法に従って金属塩にすることができる ものは、例えば、リチウム、ナトリウム、カリウムといったアルカリ金属の塩、カルシウ ム、バリウム、マグネシウムといったアルカリ土類金属の塩又はアルミニウムの塩とする ことができる。

[0035]

次に、本明細書において示した各置換基の具体例を以下に示す。ここで、n-はノルマル 、i-はイソ、s-はセカンダリー及びt-はターシャリーを各々意味し、Phはフェニルを意味 する。

[0036]

本発明化合物におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨ ウ素原子が挙げられる。尚、本明細書中「ハロ」の表記もこれらのハロゲン原子を表す。

[0037]

本明細書におけるCa~Cbアルキルの表記は、炭素原子数がa~b個よりなる直鎖状又は分 岐鎖状の炭化水素基を表し、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、 n-ブチル基、s-ブチル基、i-プチル基、t-ブチル基、n-ペンチル基、1-メチルプチル基、 2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、

1,2-ジメチルプロピル基、ネオペンチル基、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1-エチルプチル基、2-エチルプチル基、1,1-ジメチルプチル基、1,2-ジメチルプチル基、1,3-ジメチルプチル基、2,2-ジメチルプチル基、2,3-ジメチルプチル基、3,3-ジメチルプチル基、1,1,2-トリメチルプロピル基、1,1,2-トリメチルプロピル基、1,1,2-トリメチルプロピル基、1,1,3-トリプロピル基、1,1,3-トリメチルプロピル基、1,1,3-トリメチルプロピル基、1,1,3-トリメチルプチル基、1,1-ジメチルペンチル基、1,1,3-トリメチルプチル基、1,1-ジメチルペプチルスプチル基、1,1-ジメチルペプチル

[0038]

本明細書におけるCa~Cbハロアルキルの表記は、炭素原子に結合した水素原子が、ハロ ゲン原子によって任意に置換された、炭素原子数がa~b個よりなる直鎖状又は分岐鎖状の 炭化水素基を表し、このとき、2個以上のハロゲン原子によって置換されている場合、そ れらのハロゲン原子は互いに同一でも、または互いに相異なっていてもよい。例えばフル オロメチル基、クロロメチル基、ブロモメチル基、ジフルオロメチル基、ジクロロメチル 基、トリフルオロメチル基、トリクロロメチル基、クロロジフルオロメチル基、プロモジ フルオロメチル基、2-フルオロエチル基、1-クロロエチル基、2-クロロエチル基、1-プロ モエチル基、2-ブロモエチル基、2,2-ジフルオロエチル基、1,2-ジクロロエチル基、2,2-ジクロロエチル基、2-ブロモ-2-クロロエチル基、2,2,2-トリフルオロエチル基、2,2,2-トリクロロエチル基、1,1,2,2-テトラフルオロエチル基、2-クロロ-1,1,2-トリフルオロ エチル基、2-プロモ-1,1,2-トリフルオロエチル基、ペンタフルオロエチル基、2-クロロ-1,1,2,2-テトラフルオロエチル基、1-クロロ-1,2,2,2-テトラフルオロエチル基、2-プロ モ-1, 1, 2, 2-テトラフルオロエチル基、2, 2-ジクロロ-1, 1, 2-トリフルオロエチル基、2, 2, 2-トリクロロ-1,1-ジフルオロエチル基、1-クロロプロピル基、2-クロロプロピル基、3-クロロプロピル基、3-プロモプロピル基、2-フルオロ-1-メチルエチル基、2-クロロ-1-メ チルエチル基、2-ブロモ-1-メチルエチル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1 , 2, 3, 3, 3-ヘキサフルオロプロピル基、2, 2, 2-トリフルオロ-1-トリフルオロメチルエチル 基、ヘプタフルオロプロピル基、1,2,2,2-テトラフルオロ-1-トリフルオロメチルエチル 基、2-ブロモ-1,1,2,3,3,3-ヘキサフルオロプロピル基、4-クロロブチル基、2-クロロ-1, 1-ジメチルエチル基、2-ブロモ-1,1-ジメチルエチル基、3,3,3-トリフルオロ-1-メチルプ ロピル基、ノナフルオロブチル基、5-クロロペンチル基、2,3-ジブロモ-1,1-ジメチルプ ロピル基、6-クロロヘキシル基、トリデカフルオロヘキシル基、7-ブロモヘプチル基、8-クロロオクチル基、9-プロモノニル基、10-クロロデシル基、11-ブロモウンデシル基、12 -ブロモドデシル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択さ れる。

[0039]

[0040]

本明細書におけるシアノ($C_a \sim C_b$)アルキルの表記は、炭素原子に結合した水素原子が、シアノ基によって任意に置換された、炭素原子数が $a \sim b$ 個よりなる直鎖状又は分岐鎖状のアルキル基を表し、例えばシアノメチル基、1-シアノエチル基、2-シアノエチル基、3-シアノプロピル基、1-シアノ-1-メチルエチル基、4-シアノプチル基、2-シアノ-1, 1-ジメチルエチル基、1-シアノ-1-メチルプロピル基、1-シアノ-1-メチルプロピル基、1-シアノ-1-メチルプロピル基、1-シアノー1-メチルプロピル基、1-シアノー1-メチルプロピル基、1-シアノー1-メチルプロピル基、1-シアノー1-メチルプロピル基、1-シアノー1-メチルプロピル基、1-シアノー1-メチルプロピル基、1-シアノー1-メチルプロピル基、1-シアノへキシル基等が具体例として挙げ

ページ: 26/

られ、各々の指定の炭素原子数の範囲で選択される。

[0041]

本明細書における $C_a \sim C_b$ シクロアルキルの表記は、炭素原子数が $a \sim b$ 個よりなる環状の炭化水素基を表し、3 員環から6 員環までの単環又は複合環構造を形成することが出来る。また、各々の環は指定の炭素原子数の範囲でアルキル基によって任意に置換されていてもよい。例えばシクロプロピル基、1-メチルシクロプロピル基、2-メチルシクロプロピル基、3-メチルシクロプロピル基、3-メチルシクロペンチル基、3-メチルシクロペンチル基、3-メチルシクロペンチル基、シクロペンチル基、3-メチルシクロペンチル基、3-メチルシクロペンチル基、3-メチルシクロペンチル基、3-メチルシクロペキシル基、3-メチルシクロペキシル基、3-メチルシクロペキシル基、3-メチルシクロペキシル基、3-メチルシクロペキシル基、3-メチルシクロペキシル基、ビシクロ[2.2.1] ヘプタン-2-イル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0042]

本明細書における $C_a \sim C_b$ ハロシクロアルキルの表記は、炭素原子に結合した水素原子が、ハロゲン原子によって任意に置換された、炭素原子数が $a \sim b$ 個よりなる環状の炭化水素基を表し、3 員環から6 員環までの単環又は複合環構造を形成することが出来る。また、各々の環は指定の炭素原子数の範囲でアルキル基によって任意に置換されていてもよく、ハロゲン原子による置換は環構造部分であっても、側鎖部分であっても、或いはそれらの両方であってもよく、さらに、2個以上のハロゲン原子によって置換されている場合、それらのハロゲン原子は互いに同一でも、または互いに相異なっていてもよい。例えば1-ブロモシクロプロピル基、2,2-ジクロロシクロプロピル基、2,2-ジプロモシクロプロピル基、2,2-ジプロセー1-メチルシクロプロピル基、2,2-ジクロロー3,3-ジメチルシクロプロピル基、2,2-ジプロモー1-メチルシクロプロピル基、2,2-ジクロロー3,3-ジメチルシクロプロピル基、2,2-ジプロモー1-メチルシクロプロピル基、2,2-ジクロロー3,3-ジメチルシクロプロピル基、2,2-ジプロモー1-メチルシクロプロピル基、2-アルオロシクロへキシル基、2-トリフルオロメチルシクロへキシル基、3-トリフルオロメチルシクロへキシル基、3-トリフルオロメチルシクロへキシル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0043]

本明細書における $C_a \sim C_b$ アルケニルの表記は、炭素原子数が $a \sim b$ 個よりなる直鎖状又は分岐鎖状で、且つ分子内に1個又は2個以上の二重結合を有する不飽和炭化水素基を表し、例えばビニル基、1-プロペニル基、1-メチルエテニル基、2-プロペニル基、1-ブテニル基、1-ブテニル基、1-メチル-1-プロペニル基、2-メチル-1-プロペニル基、2-ブテニル基、1-メチル-2-プロペニル基、2-メチル-2-プロペニル基、3-ブテニル基、1,3-ブタジエニル基、1-メチル-2-ブテニル基、1-メチル-2-ブテニル基、1-メチル-2-ブテニル基、1-ブテニル

[0044]

本明細書における $C_a \sim C_b$ ハロアルケニルの表記は、炭素原子に結合した水素原子が、ハロゲン原子によって任意に置換された、炭素原子数が $a \sim b$ 個よりなる直鎖状又は分岐鎖状で、且つ分子内に 1 個又は 2 個以上の二重結合を有する不飽和炭化水素基を表す。このとき、 2 個以上のハロゲン原子によって置換されている場合、それらのハロゲン原子は互いに同一でも、または互いに相異なっていてもよい。例えば2-クロロビニル基、2-プロモビニル基、2-プロモビニル基、2-プロモビニル基、2-プロモビニル基、2-プロモビニル基、2-プロモビニル基、2-プロモニーンチルビニル基、2-プロエールビニル基、2-プロロースチルビニル基、2-プロロース・2-プロペニル基、2-プロロース・2-プロペニル基、2-プロロー2-プロペニル基、2-プロロー2-プロペニル基、2-プロペニル基、2-プロロー2-プロペニル基、2-プロペニル基、2-プロペニル基、2-プロペニル基、2-プロペニル基、2-プロペニル基、2-プロペニル基、2-プロペニル基、2-プロペニル基、2-プロペニル基、2-

プロペニル基、2,3,3-トリフルオロ-2-プロペニル基、2,3,3-トリクロロ-2-プロペニル基、4,4-ジフルオロ-3-プテニル基、3,4,4-トリフルオロ-3-プテニル基、3-クロロ-4,4,4-トリフルオロ-2-ブテニル基、3,3,3-トリフルオロ-1-メチル-1-プロペニル基、3,3,3-トリフルオロ-2-トリフルオロメチル-1-プロペニル基、1,3,3,3-テトラフルオロ-2-トリフルオロメチル-1-プロペニル基、1,3,3,3-テトラフルオロ-2-トリフルオロメチル-1-プロペニル基、1,3,3,4-テトラフルオロ-1-ペンテニル基、1,4,4-テトラフルオロ-1-ペンテニル基、1,4,4-テトラフルオロ-1-ペンテニル基、1,4,4-テトラフルオロ-1-ペンテニル基、1,4,4-テトラフルオロ-1-ペンテニル基、1,4,4-テトラフルオロ-1-ペンテニル基、1,4,4-テトラフルオロ-1-ペンテニル基、1,4,4-テトラフルオロペキシルエテニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0045]

[0046]

本明細書における $C_a \sim C_b$ ハロシクロアルケニルの表記は、炭素原子に結合した水素原子が、ハロゲン原子によって任意に置換された、炭素原子数が $a \sim b$ 個よりなる環状の、且つ1個又は2個以上の二重結合を有する不飽和炭化水素基を表し、3員環から6員環までの単環又は複合環構造を形成することが出来る。また、各々の環は指定の炭素原子数の範囲でアルキル基によって任意に置換されていてもよく、さらに、二重結合はendo-又はexoのどちらの形式であってもよい。また、ハロゲン原子による置換は環構造部分であっても、側鎖部分であっても、或いはそれらの両方であってもよく、2個以上のハロゲン原子によって置換されている場合、それらのハロゲン原子は互いに同一でも、または互いに相異なっていても良い。例えば2-クロロビシクロ[2.2.1]-5-ヘプテン-2-イル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0047]

本明細書における $C_a \sim C_b$ アルキニルの表記は、炭素原子数が $a \sim b$ 個よりなる直鎖状又は分岐鎖状で、且つ分子内に 1 個又は 2 個以上の三重結合を有する不飽和炭化水素基を表し、例えばエチニル基、1-プロピニル基、2-プロピニル基、1-メチル-2-プロピニル基、2-ブチニル基、3-ブチニル基、2-ペンチニル基、1-メチル-2-ブチニル基、1-メチル-1-ブチニル基、1-バチル-1-ブチニル基、1-バチル-1-ブチニル基、1-バチル-1-ブチニル基、1-バチンニル基、1-バチンニル基、1-バチニル基、1-バチンニル基、1-バチンニル基、1-バチンニル基、1-バチンニル基、1-バチニル基、1-バチニル基、1-バチンニル基、1-バチニル基、1-バチニル基、1-バチニル基、1-バチニル基、1-バチニル基、1-バチニル基、1-バチニル基、1-バチニル基、1-バチニル基、1-バチニル基、1-バチェル国、1-バチェル基、1-バチェル基、1-バチェル国、1-バチェル国、1-バチェル国、1-バチェル国、1-バチェル基、1-バチェル基、1-バチェル国、1-バチェル

[0048]

本明細書における $C_a \sim C_b$ ハロアルキニルの表記は、炭素原子に結合した水素原子が、ハロゲン原子によって任意に置換された、炭素原子数が $a \sim b$ 個よりなる直鎖状又は分岐鎖状で、且つ分子内に 1 個又は 2 個以上の三重結合を有する不飽和炭化水素基を表す。このとき、 2 個以上のハロゲン原子によって置換されている場合、それらのハロゲン原子は互いに同一でも、または互いに相異なっていても良い。例えば2-クロロエチニル基、2-プロモエチニル基、3-プロモ2-プロピニル基、3-プロモ2-プロピニル基、3-プロモ2-プロピニル基、3-3ーヨード2-プロピニル基、3-3ーコード2-プロピニル基、3-7ロモ2-プロピニル基、3-7ロピニル基、3-7ロピニル基、3-7ロピニル基、3-7ロピニル基、3-7ロピニル基、3-7ロピニル基、3-7ロピニル基、3-7ロピニル

基、3-クロロ-1, 1-ジメチル-2-プロピニル基、3-プロモ-1, 1-ジメチル-2-プロピニル基、3-ヨード-1, 1-ジメチル-2-プロピニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0049]

本明細書における $C_a \sim C_b$ アルコキシの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル-0-基を表し、例えばメトキシ基、エトキシ基、n-プロピルオキシ基、i-プロピルオキシ基、n-ブチルオキシ基、n-ブチルオキシ基、n-ブチルオキシ基、n-ブチルオキシ基、n-ブチルオキシ基、n-ブチルオキシ基、n-ベンチルオキシ基、n-ベンチルオキシ基、n-ベンチルオキシ基、n-ベンチルオキシ基、n-ベンチルガロピルオキシ基、n-ベンチルガロピルオキシ基、n-ベンチルガロピルオキシ基、n-ベキシルオキシ基、n-ベキシルオキシ基、n-ベキシルオキシ基、n-ベキシルオキシ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0050]

本明細書における $C_a \sim C_b$ ハロアルコキシの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロアルキル-0-基を表し、例えばジフルオロメトキシ基、トリフルオロメトキシ基、クロロジフルオロメトキシ基、ブロモジフルオロメトキシ基、2-フルオロエトキシ基、2-クロロエトキシ基、2-クロロエトキシ基、2-ブルオロエトキシ基、2-ブルオロエトキシ基、2-ブロモ-1, 1, 2-トリフルオロエトキシ基、2-ブロモ-1, 1, 2-トリフルオロエトキシ基、2-ブロロ-1, 1, 2-トリフルオロエトキシ基、2-ブロロ-1, 1, 2-トリフルオロエトキシ基、2, 2-ジクロロ-1, 1, 2-トリフルオロエトキシ基、2, 2-ジクロロ-1, 1, 2-トリフルオロエトキシ基、2, 2-グロロプロピルオキシ基、3-クロロプロピルオキシ基、4-ブロピルオキシ基、4-ブロピルオキシ基、4-ブロモ-1-トリフルオロプロピルオキシ基、4-ブロモ-1-トリフルオロプロピルオキシ基、4-ブロモ-1-トリフルオロプロピルオキシ基、4-ブロモ-1-トリフルオロプロピルオキシ基、4-ブロモ-1-ハオロプロピルオキシ基、4-ブロモ-1-ハオロプロピルオキシ基、4-ブロモ-1-ハオロプロピルオキシ基、4-ブロモ-1-ハオロプロピルオキシ基等が具体例として挙げられ、4-の指定の炭素原子数の範囲で選択される。

[0051]

本明細書における $C_a \sim C_b$ アルケニルオキシの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルケニル-0-基を表し、例えば2-プロペニルオキシ基、2-ブテニルオキシ基、2-ブテニルオキシ基、3-メチル-2-ブテニルオキシ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0052]

本明細書における $C_a \sim C_b$ ハロアルケニルオキシの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロアルケニル-0-基を表し、例えば2-クロロ-2-プロペニル基、3-クロロ-2-プロペニル基、3,3-ジフルオロ-2-プロペニル基、3,3-ジクロロ-2-プロペニル基、2,3,3-トリフルオロ-2-プロペニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0053]

本明細書における $C_a \sim C_b$ アルキルチオの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル-S-基を表し、例えばメチルチオ基、エチルチオ基、n-プロピルチオ基、i-プロピルチオ基、n-プチルチオ基、s-プチルチオ基、i-ブチルチオ基、t-プチルチオ基、t-プチルチオ基、t-プチルチオ基、t-プチルチオ基、t-プチルチオ基、t-プチルチオ基、t-アチルブチルチオ基、t-アチルブチルチオ基、t-アチルブチルチオ基、t-アチルブロピルチオ基、t-アチルプロピルチオ基、t-アチルプロピルチオ基、t-アチルチオ基、t-アチルチオ基、t-アチルチオ基、t-アチルチオ基、t-アチルチオ基、t-アキシルチオ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0054]

本明細書における $C_a \sim C_b$ ハロアルキルチオの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロアルキル-S-基を表し、例えばジフルオロメチルチオ基、トリフルオロメチルチオ基、プロモジフルオロメチルチオ基、2,2,2-トリフルオロエチルチオ基、1,1,2-トリフルオロ-S-クロロエチルチオ基、ペンタフルオロエチルチオ基、2-プロモ-S-1,1,2,2-テトラフルオロエチルチオ基、ヘプタフルオ

ロプロピルチオ基、1,2,2,2-テトラフルオロ-1-トリフルオロメチルエチルチオ基、ノナ フルオロブチルチオ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択 される。

· [0055]

本明細書におけるCa~Cbシクロアルキルチオの表記は、炭素原子数がa~b個よりなる前 記の意味であるシクロアルキル-S-基を表し、例えばシクロプロピルチオ基、シクロブチ ルチオ基、シクロペンチルチオ基、シクロヘキシルチオ基等が具体例として挙げられ、各 々の指定の炭素原子数の範囲で選択される。

[0056]

本明細書におけるCa~Cbアルキルスルフィニルの表記は、炭素原子数がa~b個よりなる 前記の意味であるアルキル-S(0)-基を表し、例えばメチルスルフィニル基、エチルスルフ ィニル基、n-プロピルスルフィニル基、i-プロピルスルフィニル基、n-ブチルスルフィニ ル基、s-ブチルスルフィニル基、i-プチルスルフィニル基、t-プチルスルフィニル基等が 具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0057]

本明細書におけるC_a~C_bハロアルキルスルフィニルの表記は、炭素原子数がa~b個より なる前記の意味であるハロアルキル-S(0)-基を表し、例えばジフルオロメチルスルフィニ ル基、トリフルオロメチルスルフィニル基、プロモジフルオロメチルスルフィニル基、2, 2,2-トリフルオロエチルスルフィニル基、2-ブロモ-1,1,2,2-テトラフルオロエチルスル フィニル基、1,2,2,2-テトラフルオロ-1-トリフルオロメチルエチルスルフィニル基、ノ ナフルオロプチルスルフィニル基等が具体例として挙げられ、各々の指定の炭素原子数の 節囲で選択される。

[0058]

本明細書におけるCa~Cbシクロアルキルスルフィニルの表記は、炭素原子数がa~b個よ りなる前記の意味であるシクロアルキル-S(0)-基を表し、例えばシクロプロビルスルフィ ニル基、シクロブチルスルフィニル基、シクロペンチルスルフィニル基、シクロヘキシル スルフィニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される

[0059]

本明細書におけるCa~Cbアルキルスルホニルの表記は、炭素原子数がa~b個よりなる前 記の意味であるアルキル-SO2-基を表し、例えばメタンスルホニル基、エタンスルホニル 基、n-プロピルスルホニル基、i-プロピルスルホニル基、n-ブチルスルホニル基、s-ブチ ルスルホニル基、i-ブチルスルホニル基、t-ブチルスルホニル基、n-ペンチルスルホニル 基、n-ヘキシルスルホニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲 で選択される。

[0060]

本明細書におけるCa~Cbハロアルキルスルホニルの表記は、炭素原子数がa~b個よりな る前記の意味であるハロアルキル-SO₂-基を表し、例えばジフルオロメタンスルホニル基 、トリフルオロメタンスルホニル基、クロロジフルオロメタンスルホニル基、プロモジフ ルオロメタンスルホニル基、2,2,2-トリフルオロエタンスルホニル基、1,1,2,2-テトラフ ルオロエタンスルホニル基、1,1,2-トリフルオロ-2-クロロエタンスルホニル基等が具体 例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0061]

本明細書におけるC_a~C_bシクロアルキルスルホニルの表記は、炭素原子数がa~b個より なる前記の意味であるシクロアルキル-SO2-基を表し、例えばシクロプロピルスルホニル 基、シクロプチルスルホニル基、シクロペンチルスルホニル基、シクロヘキシルスルホニ ル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0062]

本明細書におけるC_a~C_bアルキルアミノの表記は、水素原子の一方が炭素原子数がa~b 個よりなる前記の意味であるアルキル基によって置換されたアミノ基を表し、例えばメチ

ルアミノ基、エチルアミノ基、n-プロピルアミノ基、i-プロピルアミノ基、n-プチルアミノ基、i-プチルアミノ基、t-プチルアミノ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0063]

本明細書におけるジ($C_a \sim C_b$ アルキル)アミノの表記は、水素原子が両方とも、それぞれ同一でも又は互いに相異なっていてもよい炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル基によって置換されたアミノ基を表し、例えばジメチルアミノ基、エチル(メチル)アミノ基、ジエチルアミノ基、n-プロピル(メチル)アミノ基、i-プロピル(メチル)アミノ基、i-プロピル(メチル)アミノ基、i-プロピル(メチル)アミノ基、i-プチル(メチル)アミノ基、i-プチル(メチル)アミノ基、i- が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0064]

本明細書における $C_a \sim C_b$ アルキルカルボニルの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル-C(0) –基を表し、例えば CH_3 C(0) –基、 CH_3 CH_2 C(0) –基、 CH_3 CH_2 C(0) –基、 CH_3 CH_2 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_5 CH_5 CH_5 CH_5 CH_5 CH_6 CH_7 CH_7 CH_7 CH_7 CH_8 CH_8

[0065]

本明細書における $C_a \sim C_b$ ハロアルキルカルボニルの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロアルキル-C(0)-基を表し、例えば $FCH_2C(0)$ -基、 $C1CH_2C(0)$ -基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0066]

本明細書における $C_a \sim C_b$ シクロアルキルカルボニルの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるシクロアルキル-C(0)-基を表し、例えばシクロプロピル-C(0)-基、1-メチルシクロプロピル-C(0)-基、2-メチルシクロプロピル-C(0)-基、2-メチルシクロプロピル-C(0)-基、2-メチルシクロプロピル-C(0)-基、2-メチルシクロプロピル-C(0)-基、2-メチルシクロプロピル-C(0)-基、シクロブチル-C(0)-基、シクロブチル-C(0)-基、シクロブチル-C(0)-基、シクロペンチル-C(0)-基、シクロペキシル-C(0)-基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0067]

本明細書における $C_a \sim C_b$ アルコキシカルボニルの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル-0-C(0) –基を表し、例えば CH_3 OC(0) –基、 CH_3 CH_2 OC(0) –基、 CH_3 CH_2 OC(0) –基、 CH_3 OC(0) –基、 CH_3 OC(0) –基、 CH_3 OC(0) –基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0068]

本明細書における $C_a \sim C_b$ ハロアルコキシカルボニルの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロアルキル-0-C(0)-基を表し、例えば $C1CH_2CH_2CH_2CC(0)$ -基、 $CF_3CH_2CC(0)$ -基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0069]

本明細書における $C_a \sim C_b$ アルキルチオカルボニルの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル-S-C(0)-基を表し、例えば CH_3 SC(0)-基、 CH_3 CH_2 SC(0)-基、 CH_3 CH_3 CSC(0)-基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0070]

本明細書における $C_a \sim C_b$ アルコキシチオカルボニルの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル-0-C(S)-基を表し、例えば CH_3 OC(S)-基、 CH_3 CH_2 OC(S)-基、 CH_3 CH_2 OC(S)-基、 CH_3 CH_2 OC(S)-基、 CH_3 CH_3 OC(S)-基、 CH_3 OC(S)-基、 CH_3 OC(S)-基、 CH_3 OC(S)-基、 CH_3 OC(S)-基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0071]

本明細書における $C_a \sim C_b$ アルキルアミノカルボニルの表記は、水素原子の一方が炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル基によって置換されたカルバモイル基を表し、例えば CH_3 NHC(0)-基、 CH_3 CH $_2$ NHC(0)-基、 CH_3 CH $_3$ NHC(0)-基、 CH_3 CH $_3$ NHC(0)-基、 CH_3 NHC(0)-基、 CH_3 CH $_3$ NHC(0)-基、 CH_3 NHC(0)-AL(0)-A

[0072]

本明細書における $C_a \sim C_b$ シクロアルキルアミノカルボニルの表記は、水素原子の一方が炭素原子数が $a \sim b$ 個よりなる前記の意味であるシクロアルキル基によって置換されたカルバモイル基を表し、例えばシクロプロピル-NHC(0)-基、シクロブチル-NHC(0)-基、シクロペンチル-NHC(0)-基、シクロペキシル-NHC(0)-基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0073]

本明細書におけるジ($C_a \sim C_b$ アルキル)アミノカルボニルの表記は、水素原子が両方とも、それぞれ同一でも又は互いに相異なっていてもよい炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル基によって置換されたカルバモイル基を表し、例えば(CH_3) $_2$ NC(0)-基、(CH_3 CH $_2$ N(CH_3) $_2$ NC(0)-基、(CH_3 CH $_2$ CH $_3$ CH $_3$ CH $_4$ CH $_5$

[0074]

本明細書における $C_a \sim C_b$ アルキルアミノチオカルボニルの表記は、水素原子の一方が炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル基によって置換されたチオカルバモイル基を表し、例えば CH_3 NHC(S)-基、 CH_3 CH $_2$ NHC(S)-基、 CH_3 CH $_3$ CH $_4$ CH $_5$ CH $_6$ CH $_6$ CH $_6$ NHC(S)-基、(CH $_6$ CH $_6$ CH $_6$ CH $_6$ CH $_6$ CH $_6$ NHC(S)-基、(CH $_6$ CH $_6$

[0075]

本明細書におけるジ($C_a \sim C_b$ アルキル)アミノチオカルボニルの表記は、水素原子が両方とも、それぞれ同一でも又は互いに相異なっていてもよい炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル基によって置換されたチオカルバモイル基を表し、例えば(CH_3)2 NC(S)-基、 CH_3 CH_2 N(CH_3) C(S)-基、(CH_3 CH_2)2 NC(S)-基、(CH_3 CH_2)2 NC(S)-基、(CH_3 CH_2)2 NC(S)-基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0076]

本明細書における $C_a \sim C_b$ アルキルアミノスルホニルの表記は、水素原子の一方が炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル基によって置換されたスルファモイル基を表し、例えば CH_3 NHSO $_2$ -基、 CH_3 CH $_2$ NHSO $_2$ -基、 CH_3 CH $_3$ NHSO $_2$ -基、 CH_3 CH $_3$ NHSO $_2$ -基、 CH_3 CH $_3$ NHSO $_3$ -基、 CH_3 CH $_4$ CH $_5$ NHSO $_4$ -基、 CH_3 CH $_5$ NHSO $_5$ -基、 CH_5 CH $_5$ NHSO $_5$ -基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0077]

本明細書におけるジ($C_a \sim C_b$ アルキル)アミノスルホニルの表記は、水素原子が両方とも、それぞれ同一でも又は互いに相異なっていてもよい炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル基によって置換されたスルファモイル基を表し、例えば(CH_3)2 NSO2 – 基、 CH_3 CH_2 N(CH_3) SO2 – 基、(CH_3 CH_2)2 NSO2 – 基、(CH_3 CH_2 CH_2)2 NSO2 – 基、(CH_3 CH_2 CH_3 $CH_$

[0078]

本明細書におけるジ($C_a \sim C_b P \nu + \nu$)ホスホリルの表記は、水素原子が両方とも、それぞれ同一でも又は互いに相異なっていてもよい炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル基によって置換されたホスホリル基を表し、例えば(CH_3O) $_2P(O)$ -基、(CH_3CH_2O) $_2P(O)$ -基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0079]

本明細書におけるジ(Ca~Cbアルキル)チオホスホリルの表記は、水素原子が両方とも、

それぞれ同一でも又は互いに相異なっていてもよい炭素原子数が $a\sim b$ 個よりなる前記の意味であるアルキル基によって置換されたチオホスホリル基を表し、例えば $(CH_3\,O)_2\,P(S)$ -基、 $(CH_3\,CH_2\,O)_2\,P(S)$ -基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0800]

本明細書におけるトリ($C_a \sim C_b T N$ キル)シリルの表記は、それぞれ同一でも又は互いに相異なっていてもよい炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル基によって置換されたシリル基を表し、例えばトリメチルシリル基、トリエチルシリル基、トリ(n-プロピル)シリル基、エチルジメチルシリル基、n-プロピルジメチルシリル基、n-プチルジメチルシリル基、n-プチルシリル

[0081]

本明細書における C_a \sim C_b r ν + ν ν ν ν + ν ν ν + ν ν + ν +

[0082]

本明細書における $C_a \sim C_b$ ハロアルキルカルボニルオキシの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロアルキル-C(0)-0-基を表し、例えば $FCH_2C(0)-0$ -基、 $C1CH_2C(0)-0$ -基、 $F_2CHC(0)-0$ -基、 $C1_2CHC(0)-0$ -基、 $CF_3C(0)-0$ -基、 $C1CF_2C(0)-0$ -基、 $C1CF_2C(0)-0$ -基、 $C1CF_2C(0)-0$ -基、 $C1CF_2C(0)-0$ -基、 $C1CH_2CH_2C(0)-0$ -基、 $C1CH_2CH_2C(0)-0$ -基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0083]

[0084]

本明細書における $C_a \sim C_b$ ハロアルキルスルホニルオキシの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロアルキル $-SO_2 - O$ -基を表し、例えば $CF_3 SO_2 - O$ -基、 $CF_3 CF_2 SO_2 - O$ -基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0085]

本明細書における $C_a \sim C_b$ アルキルスルホニルアミノの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキル $-SO_2$ –NH-基を表し、例えば CH_3 SO_2 –NH-基、 CH_3 CH_2 SO_2 –NH-基、 CH_3 CH_2 SO_2 –NH-基、 CH_3 CH_2 SO_2 –NH-基、 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5

[0086]

本明細書における $C_a \sim C_b$ ハロアルキルスルホニルアミノの表記は、炭素原子数が $a \sim b$ 個よりなる前記の意味であるハロアルキル $-SO_2-NH$ -基を表し、例えば CF_3SO_2-NH -基、 $CF_3CF_2SO_2-NH$ -基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0087]

本明細書における $C_a \sim C_b$ シクロアルキル $(C_d \sim C_e)$ アルキル、 $C_a \sim C_b$ ハロシクロアルキル $(C_d \sim C_e)$ アルキル、 $C_a \sim C_b$ アルコキシ $(C_d \sim C_e)$ アルキル、 $C_a \sim C_b$ アルキル、 $C_a \sim C_b$ アルキルチオ $(C_d \sim C_e)$ アルキル、 $(C_d \sim C_e)$ アルキルスルオニル $(C_d \sim C_e)$ アルキル、 $(C_d \sim C_e)$ アルキル、 $(C_d \sim C_e)$ アルキルスルホニル $(C_d \sim C_e)$

アルキル、 $C_a \sim C_b$ アルキルカルボニル($C_a \sim C_e$) アルキル、 $C_a \sim C_b$ ハロアルキルカルボニル $(C_d \sim C_e)$ アルキル、 $C_a \sim C_b$ アルコキシカルボニル $(C_d \sim C_e)$ アルキル、 $C_a \sim C_b$ ハロアルコキ シカルボニル $(C_d \sim C_e)$ アルキル、 $C_a \sim C_b$ アルキルアミノカルボニル $(C_d \sim C_e)$ アルキル、ジ $(C_a \sim C_b$ アルキル) アミノカルボニル $(C_d \sim C_e)$ アルキル、トリ $(C_a \sim C_b$ アルキル) シリル $(C_d \sim C_b$ アルキル) シリカ $(C_d \sim C_b$ アルキル) シリル $(C_d \sim C_b$ アルキル) シリル $(C_d \sim C_b$ アルキル) シリカ $(C_d \sim C_b$ アルキル) シリカ $(C_d \sim C_b$ アルキル) シリカ $(C_d \sim C_b)$ アル $(C_d \sim C_b)$ アルキル $(C_d \sim C_b)$ アルキル $(C_d \sim C_b)$ アル $(C_d \sim C_b)$ アル $(C_d \sim C_b)$ アルキル $(C_d \sim C_b)$ アルキル $(C_d \sim C_b)$ アル $(C_d \sim$ $\sim C_e$)アルキル、 $(Z^1)_{n1}$ によって置換されていてもよいフェニル $(C_a \sim C_e)$ アルキル、 $L_-(C_a)_{n1}$ $\sim C_e$)アルキル又はM- $(C_d \sim C_e)$ アルキル等の表記は、それぞれ前記の意味である任意の C_a ~C_bシクロアルキル基、C_a~C_bハロシクロアルキル基、C_a~C_bアルコキシ基、C_a~C_bハロ アルコキシ基、Ca~Cbアルキルチオ基、Ca~Cbハロアルキルチオ基、(Z¹)p1によって置換 されていてもよいフェニルチオ基、Ca~Cbアルキルスルフィニル基、Ca~Cbハロアルキル スルフィニル基、Ca~Cbアルキルスルホニル基、Ca~Cbハロアルキルスルホニル基、Ca~ Cbアルキルカルボニル基、Ca~Cbハロアルキルカルボニル基、Ca~Cbアルコキシカルボニ ル基、Ca~Cbハロアルコキシカルボニル基、Ca~Cbアルキルアミノカルボニル基、ジ(Ca \sim C_bアルキル)アミノカルボニル基、トリ(C_a \sim C_bアルキル)シリル基、(Z^1) $_{p1}$ によって置 換されていてもよいフェニル基、L基又はM基によって、炭素原子に結合した水素原子が任 意に置換された炭素原子数がd~e個よりなる直鎖状又は分岐鎖状の炭化水素基を表し、各 々の指定の炭素原子数の範囲で選択される。

[0088]

本明細書における R^7 によって任意に置換された $(C_a \sim C_b)$ アルキル、 R^{16} によって任意に置換された $(C_a \sim C_b)$ アルキル、 R^{25} によって任意に置換された $(C_a \sim C_b)$ アルキル、 R^{25} によって任意に置換された $(C_a \sim C_b)$ アルキル又は R^{33} によって任意に置換された $(C_a \sim C_b)$ アルキルの表記は、任意の R^7 、 R^{16} 、 R^{21} 、 R^{25} 又は R^{33} によって、炭素原子に結合した水素原子が任意に置換された炭素原子数が $a \sim b$ 個よりなる直鎖状又は分岐鎖状の炭化水素基を表し、各々の指定の炭素原子数の範囲で選択される。このとき、それぞれの $(C_a \sim C_b)$ アルキル基上の置換基 R^7 、 R^{16} 、 R^{21} 、 R^{25} 又は R^{33} が2個以上存在するとき、それぞれの R^7 、 R^{16} 、 R^{21} 、 R^{25} 又は R^{33} は互いに同一でも、または互いに相異なっていてもよい。

[0089]

本明細書におけるヒドロキシ $(C_d \sim C_e)$ ハロアルキル、 $C_a \sim C_b$ アルコキシ $(C_d \sim C_e)$ ハロアルキル又は $C_a \sim C_b$ ハロアルコキシ $(C_d \sim C_e)$ ハロアルキルの表記は、水酸基、それぞれ前記の意味である任意の $C_a \sim C_b$ アルコキシ基又は $C_a \sim C_b$ ハロアルコキシ基によって、炭素原子に結合した水素原子又はハロゲン原子が任意に置換された炭素原子数が $d \sim e$ 個よりなる前記の意味であるハロアルキル基を表し、例えば2,2,2-トリフルオロ-1-ヒドロキシ-1-(トリフルオロメチル)エチル基、2,2,2-トリフルオロ-1-メトキシ-1-(トリフルオロメチル)エチル基、2,2,2-トリフルオロエトキシ)-1-(トリフルオロメチル)エチル基、3-(1,2-ジクロロ-1,2,2-トリフルオロエトキシ)-1,1,2,2,3,3-ヘキサフルオロプロピル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される

[0090]

本明細書における R^{21} によって任意に置換された $(C_a \sim C_b)$ ハロアルキルの表記は、任意の R^{21} によって、炭素原子に結合した水素原子又はハロゲン原子が任意に置換された炭素原子数が $a\sim b$ 個よりなる直鎖状又は分岐鎖状の炭化水素基を表し、各々の指定の炭素原子数の範囲で選択される。このとき、それぞれの $(C_a \sim C_b)$ アルキル基上の置換基 R^{21} が2個以上存在するとき、それぞれの R^{21} は互いに同一でも、または互いに相異なっていてもよい。

[0091]

本明細書における $C_a \sim C_b$ アルケニル $(C_d \sim C_e)$ シクロアルキル、 $C_a \sim C_b$ ハロアルケニル $(C_d \sim C_e)$ シクロアルキル、ヒドロキシ $(C_d \sim C_e)$ シクロアルキル、 $C_a \sim C_b$ アルコキシ $(C_d \sim C_e)$ シクロアルキル、 $C_a \sim C_b$ アルキルチオ $(C_d \sim C_e)$ シクロアルキル、 $C_a \sim C_b$ アルキルスルフィニル $(C_d \sim C_e)$ シクロアルキル又は $C_a \sim C_b$ アルキルスルホニル $(C_d \sim C_e)$ シクロアルキル等の表記は、それぞれ前記の意味である任意の $C_a \sim C_b$ アルケニル基、 $C_a \sim C_b$ アルコキシ基、 $C_a \sim C_b$ アルキルスルフィ

ニル基又は $C_a \sim C_b$ アルキルスルホニル基によって、炭素原子に結合した水素原子が任意に置換された炭素原子数が $d \sim e$ 個よりなる前記の意味であるシクロアルキル基を表し、例えば2-ビニルシクロプロピル基、3,3-ジメチル-2-(2-メチル-1-プロペニル)シクロプロピル基、2-(2,2-ジクロロエテニル)-3,3-ジメチルシクロプロピル基、2-(2-クロロ-3,3,3-トリフルオロ-1-プロペニル)-3,3-ジメチルシクロプロピル基、1-(メチルチオメチル)シクロプロピル基、1-(メチルスルフィニルメチル)シクロプロピル基、1-(メチルスルホニルメチル)シクロプロピル基、1-(メチルスルホニルメチル)シクロプロピル基、1-(メチルチオメチル)シクロペンチル基、1-(メチルチオメチル)シクロペンチル基、1-(メチルチオメチル)シクロペンチル基、1-(メチルチオメチル)シクロペンチル基、1-(メチルスルホニルメチル)シクロペンチル基、1-(メチルスルホニルメチル)シクロペンチル基、2-(メチルチオ)シクロペンチル基、2-(メチルチル)シクロペンチル基、2-(メチルチオ)シクロペンチル基、2-(χチルチオ)シクロペンチル基、2-(χチルチオ)シクロペンチル基、2-(χチルチオ)シクロペンチル基、2-(χチルチオ)シクロペンチル基、2-(χチルチオ)シクロペンチル

[0092]

本明細書における R^7 によって任意に置換された $(C_a \sim C_b)$ シクロアルキル、 $R^{1\,6}$ によって任意に置換された $(C_a \sim C_b)$ シクロアルキル、 $R^{2\,1}$ によって任意に置換された $(C_a \sim C_b)$ シクロアルキル、 $R^{2\,5}$ によって任意に置換された $(C_a \sim C_b)$ シクロアルキル又は $R^{3\,3}$ によって任意に置換された $(C_a \sim C_b)$ シクロアルキル等の表記は、任意の R^7 、 $R^{1\,6}$ 、 $R^{2\,1}$ 、 $R^{2\,5}$ 又は $R^{3\,3}$ によって、炭素原子に結合した水素原子が任意に置換された炭素原子数が $a \sim b$ 個よりなる前記の意味であるシクロアルキル基を表す。このとき、 R^7 、 $R^{1\,6}$ 、 $R^{2\,1}$ 、 $R^{2\,5}$ 又は $R^{3\,3}$ による置換は、環構造部分であっても、側鎖部分であっても、或いはそれらの両方であってもよく、さらに、それぞれの $(C_a \sim C_b)$ シクロアルキル基上の置換基 R^7 、 $R^{1\,6}$ 、 $R^{2\,1}$ 、 $R^{2\,5}$ 又は $R^{3\,3}$ が2個以上存在するとき、それぞれの R^7 、 $R^{1\,6}$ 、 $R^{2\,1}$ 、 $R^{2\,5}$ 又は $R^{3\,3}$ は互いに同一でも、または互いに相異なっていてもよい。

[0093]

本明細書における R^{21} によって任意に置換された $(C_a \sim C_b)$ ハロシクロアルキルの表記は、任意の R^{21} によって、炭素原子に結合した水素原子又はハロゲン原子が任意に置換された炭素原子数が $a\sim b$ 個よりなる前記の意味であるシクロアルキル基を表す。このとき、 R^2 1による置換は、環構造部分であっても、側鎖部分であっても、或いはそれらの両方であってもよく、さらに、それぞれの $(C_a \sim C_b)$ シクロアルキル基上の置換基 R^{21} が2個以上存在するとき、それぞれの R^{21} は互いに同一でも、または互いに相異なっていてもよい。

[0094]

本明細書における $C_a \sim C_b$ アルキルアミノカルボニル $(C_d \sim C_e)$ アルケニル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_d \sim C_e)$ アルケニル等の表記は、それぞれ前記の意味である任意の $C_a \sim C_b$ アルキルアミノカルボニル基又は $(Z^1)_{p1}$ によって置換されていてもよいフェニル基によって、炭素原子に結合した水素原子が任意に置換された炭素原子数がd~e個よりなる前記の意味であるアルケニル基を表し、各々の指定の炭素原子数の範囲で選択される。

[0095]

本明細書における R^7 によって任意に置換された $(C_a \sim C_b)$ アルケニル、 R^{16} によって任意に置換された $(C_a \sim C_b)$ アルケニル、 R^{21} によって任意に置換された $(C_a \sim C_b)$ アルケニル、 R^{25} によって任意に置換された $(C_a \sim C_b)$ アルケニル又は R^{33} によって任意に置換された $(C_a \sim C_b)$ アルケニルの表記は、任意の R^7 、 R^{16} 、 R^{21} 、 R^{25} 又は R^{33} によって、炭素原子に結合した水素原子が任意に置換された炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルケニル基を表し、各々の指定の炭素原子数の範囲で選択される。このとき、それぞれの R^7 、 R^{16} 、 R^{21} 、 R^{25} 又は R^{33} が2個以上存在するとき、それぞれの R^7 、 R^{16} 、 R^{21} 、 R^{25} 又は R^{33} が2個以上存在するとき、それぞれの R^7 、 R^{16} 、 R^{21} 、 R^{25} 又は R^{33} は互いに同一でも、または互いに相異なっていてもよい。

[0096]

本明細書における R^{21} によって任意に置換された $(C_a \sim C_b)$ ハロアルケニルの表記は、任意の R^{21} によって、炭素原子に結合した水素原子又はハロゲン原子が任意に置換された炭素原子数が $a\sim b$ 個よりなる前記の意味であるハロアルケニル基を表し、各々の指定の炭素

原子数の範囲で選択される。このとき、それぞれの $(C_a \sim C_b)$ ハロアルケニル基上の置換基 R^{21} が2個以上存在するとき、それぞれの R^{21} は互いに同一でも、または互いに相異なっていてもよい。

[0097]

本明細書における $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_d \sim C_e)$ アルキニル、ナフチル $(C_d \sim C_e)$ アルキニル又は $L_-(C_d \sim C_e)$ アルキニル等の表記は、任意の $(Z^1)_{p1}$ によって置換されていてもよいフェニル基、ナフチル基又はL基によって、炭素原子に結合した水素原子が任意に置換された炭素原子数が $d\sim e$ 個よりなる前記の意味であるアルキニル基を表し、各々の指定の炭素原子数の範囲で選択される。

[0098]

本明細書における R^7 によって任意に置換された $(C_a \sim C_b)$ アルキニル、 R^{16} によって任意に置換された $(C_a \sim C_b)$ アルキニル、 R^{21} によって任意に置換された $(C_a \sim C_b)$ アルキニル、 R^{25} によって任意に置換された $(C_a \sim C_b)$ アルキニル又は R^{33} によって任意に置換された $(C_a \sim C_b)$ アルキニル又は R^{33} によって任意に置換された $(C_a \sim C_b)$ アルキニルの表記は、任意の R^7 、 R^{16} 、 R^{21} 、 R^{25} 又は R^{33} によって、炭素原子に結合した水素原子が任意に置換された炭素原子数が $a \sim b$ 個よりなる前記の意味であるアルキニル基を表し、各々の指定の炭素原子数の範囲で選択される。このとき、それぞれの R^{25} 、 R^{25} 又は R^{25} 又は R^{25} では R^{25} では

[0099]

本明細書における R^{21} によって任意に置換された $(C_a \sim C_b)$ ハロアルキニルの表記は、任意の R^{21} によって、炭素原子に結合した水素原子又はハロゲン原子が任意に置換された炭素原子数が $a\sim b$ 個よりなる前記の意味であるハロアルキニル基を表し、各々の指定の炭素原子数の範囲で選択される。このとき、それぞれの $(C_a \sim C_b)$ ハロアルキニル基上の置換基 R^{21} が2個以上存在するとき、それぞれの R^{21} は互いに同一でも、または互いに相異なっていてもよい。

[0100]

本明細書における $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_a \sim C_b)$ アルコキシの表記は、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル基によって炭素原子に結合した水素原子が任意に置換された前記の意味である $(C_a \sim C_b)$ アルコキシ基を表し、 $(C_a \sim C_b)$ アルコキシ基として例えば $-CH_2O$ -基、 $-CH(CH_3)O$ -基、 $-C(CH_3)_2O$ -基、 $-CH_2CH_2O$ -基、 $-CH(CH_3)O$ -基、 $-C(CH_3)_2CH_2O$ -基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0101]

本明細書における $C_a \sim C_b$ ハロアルコキシ($C_d \sim C_e$)ハロアルコキシの表記は、前記の意味である任意の $C_a \sim C_b$ ハロアルコキシ基によって、炭素原子に結合した水素原子又はハロゲン原子が任意に置換された炭素原子数が $d \sim e$ 個よりなる前記の意味であるハロアルコキシ基を表し、例えば1,1,2-トリフルオロ-2-トリフルオロメトキシエトキシ基、1,1,2-トリフルオロ-2-ヘプタフルオロプロピルオキシエトキシ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0102]

本明細書における $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_a \sim C_b)$ アルキルカルボニルの表記は、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル基によって炭素原子に結合した水素原子が任意に置換された前記の意味である $(C_a \sim C_b)$ アルキルカルボニル基を表し、 $(C_a \sim C_b)$ アルキルカルボニル基として例えば $-CH_2C(0)$ -基、 $-CH(CH_3)C(0)$ -基、 $-C(CH_3)C(0)$ -基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0103]

本明細書における $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_a \sim C_b)$ アルコキシカルボニルの表記は、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル基によって炭素原子に

結合した水素原子が任意に置換された前記の意味である $(C_a \sim C_b)$ アルコキシカルボニル基を表し、 $(C_a \sim C_b)$ アルコキシカルボニル基として例えば $-CH_2O-C(0)$ -基、 $-CH(CH_3)O-C(0)$ -基、 $-CH(CH_3)O-C(0)$ -基、 $-C(CH_3)_2O-C(0)$ -基、 $-C(CH_3)_2CH_2O-C(0)$ -基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0104]

本明細書における $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_a \sim C_b)$ アルキルアミノカルボニルの表記は、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル基によって炭素原子に結合した水素原子が任意に置換された前記の意味である $(C_a \sim C_b)$ アルキルアミノカルボニル基を表し、 $(C_a \sim C_b)$ アルキルアミノカルボニル基を表し、 $(C_a \sim C_b)$ アルキルアミノカルボニル基として例えば $-CH_2$ NH-C(0)-基、-CH (CH_3) NH-C(0)-基、 $-C(CH_3)_2$ NH-C(0)-基、 $-CH_2$ CH $_2$ NH-C(0)-基、 $-CH_3$ CH $_2$ NH-C(0)-基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。

[0105]

本明細書における

 $[R^2 \, \&\, R^3 \, \&\, b$ が一緒になって $C_2 \sim C_6 \, r$ ルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 7$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子、硫黄原子又は窒素原子を1 個含んでもよく、]、

[R²⁶とR²⁷とが一緒になってC₂~C₅アルキレン鎖を形成することにより、結合する窒素 原子と共に3~6 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原 子又は硫黄原子を1個含んでもよく、]、

 $[R^{34} \ ER^{35} \ E$ が一緒になって $C_2 \sim C_5$ アルキレン鎖を形成することにより、結合する窒素原子と共に $3 \sim 6$ 員環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子又は硫黄原子を1 個含んでもよく、]

の表記の具体例として、例えばアジリジン、アゼチジン、ピロリジン、オキサゾリジン、チアゾリジン、イミダゾリジン、ピペリジン、モルホリン、チオモルホリン、ピペラジン、ホモピペリジン、ヘプタメチレンイミン等が挙げられ、各々の指定の原子数の範囲で選択される。

[0106]

本明細書における

の表記の具体例として、例えばアジリジン、アゼチジン、アゼチジン-2-オン、ピロリジン、ピロリジン-2-オン、オキサゾリジン、オキサゾリジン-2-オン、チアゾリジン、チアゾリジン-2-オン、イミダゾリジン、イミダゾリジン-2-オン、ピペリジン、ピペリジン-2-オン、モルホリン、テトラヒドロ-1,3-オキサジン-2-オン、チオモルホリン、テトラヒドロ-1,3-チアジン-2-オン、ピペラジン、テトラヒドロピリミジン-2-オン、ホモピペリジン、ホモピペリジン-2-オン等が挙げられ、各々の指定の原子数の範囲で選択される。

[0107]

本明細書における

の表記の具体例として、例えばイソキサゾリン、1,4,2-ジオキサゾリン、1,4,2-オキサチ アゾリン、1,2,4-オキサジアゾリン、ジヒドロ-1,2-オキサジン、ジヒドロ-1,4,2-ジオキ サジン、ジヒドロ-1,4,2-オキサチアジン、ジヒドロ-4H-1,2,4-オキサジアジン、テトラ ヒドロ-1,2-オキサゼピン等が挙げられ、各々の指定の原子数の範囲で選択される。

[0108]

本発明に包含される化合物において、W1又はW2で表される置換基として、例えば酸素原 子又は硫黄原子が挙げられ、これらのうち酸素原子が好ましい。

[0109]

本発明に包含される化合物において、Xで表される置換基の範囲として、例えば下記の 各群が挙げられる。

[0110]

すなわち、X-I:ハロゲン原子。

[0111]

X-II:シアノ及びニトロ。

[0112]

X-III:水素原子、 $C_1 \sim C_6$ アルキル及び $C_1 \sim C_6$ ハロアルキル。

[0113]

 $X-IV: C_1 \sim C_6$ アルコキシ及び $C_1 \sim C_6$ ハロアルコキシ。

[0114]

 $X-V:C_1\sim C_6$ P ν + ν $_1\sim C_6$ ハロアルキルスルフィニル、 $C_1\sim C_6$ アルキルスルホニル及び $C_1\sim C_6$ ハロアルキルス ルホニル。

[0115]

本発明に包含される化合物において、Yで表される置換基の範囲として、例えば下記の 各群が挙げられる。

[0116]

すなわち、Y-I:水素原子。

[0117]

Y-II:ハロゲン原子。

[0118]

 $Y_{-}III: C_1 \sim C_6 P \nu + \nu_o$

[0119]

 $Y-IV: C_1 \sim C_6$ ハロアルキル、ヒドロキシ($C_1 \sim C_6$)アルキル及び $C_1 \sim C_4$ アルコキシ($C_1 \sim C_6$) 4)アルキル。

[0120]

 $Y-V:C_1\sim C_6$ P ν a+><math>o.

[0121]

 $Y-VI:C_1 \sim C_6 P \mathcal{V} + \mathcal{V} + \mathcal{V}$

[0122]

本発明に包含される化合物において、R¹で表される置換基としては水素原子が好ましい

[0123]

本発明に包含される化合物において、R²で表される置換基の範囲として、例えば下記の 各群が挙げられる。

[0124]

すなわち、R²-I:水素原子。

[0125]

 R^2 -II: $C_1 \sim C_6 \mathcal{P} \mathcal{V} + \mathcal{V}_o$

[0126]

R²-III:C1~C4アルコキシ(C1~C4)アルキル及びC1~C4アルキルチオ(C1~C4)アルキル

[0127]

 R^2 -IV: $C_3 \sim C_6$ アルケニル及び $C_3 \sim C_6$ アルキニル。

[0128]

本発明に包含される化合物において、R³で表される置換基の範囲として、例えば下記の 各群が挙げられる。

[0129]

すなわち、 $R^3-I: C_1 \sim C_8$ アルキル及び $C_3 \sim C_8$ シクロアルキル。

[0130]

 R^3 -II: $C_3 \sim C_8$ アルケニル及び $C_3 \sim C_8$ アルキニル。

[0131]

 R^3 -III: R^{26} 0-(C_1 ~ C_8)アルキル [ここで、 R^{26} は C_1 ~ C_6 アルキル又は-C(0)N(R^{30}) R^{29} を 表し、 R^{29} は $C_1 \sim C_6$ アルキルを表し、 R^{30} は水素原子又は $C_1 \sim C_6$ アルキルを表す。]。

[0132]

 R^3 -IV: R^{26} 0-($C_1 \sim C_8$) アルキル [ここで、 R^{26} は、水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$) アルキ ル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_6$ アルキルカ ルボニル、 $C_3 \sim C_6$ シクロアルキルカルボニル、 $-C(0)N(R^{30})R^{29}$ 、 $\Im(C_1 \sim C_6$ アルキル) ホス ホリル、ジ($C_1 \sim C_6$ アルキル)チオホスホリル、トリ($C_1 \sim C_4$ アルキル)シリル又は(Z^1) $_{p1}$ に よって置換されていてもよいフェニルを表し、 R^{29} は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_4$ アルキル チオ $(C_1 \sim C_4)$ アルキル、 $(Z^1)_{p1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル 、 $C_3\sim C_6$ シクロアルキル、 $C_3\sim C_6$ アルケニル又は $(Z^1)_{\mathfrak{p}1}$ によって置換されていてもよいフ ェニルを表し、 R^{30} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、或いは、 R^{29} と R^{30} とが一 緒になってC2~C5アルキレン鎖を形成することにより、結合する窒素原子と共に3~6員 環を形成してもよいことを表し、このときこのアルキレン鎖は酸素原子又は硫黄原子を 1 個含んでもよいことを表す。]、 $(M-1)-(C_1\sim C_8)$ アルキル、 $(M-2)-(C_1\sim C_8)$ アルキル、(M-2)-3) $-(C_1 \sim C_8)$ アルキル、 $(M-4)-(C_1 \sim C_8)$ アルキル、 $(M-5)-(C_1 \sim C_8)$ アルキル、 $(M-6)-(C_1 \sim C_8)$ \sim C₈)アルキル、(M-7)-(C₁ \sim C₈)アルキル、(M-14)-(C₁ \sim C₈)アルキル、(M-15)-(C₁ \sim C₈) アルキル、 $(M-16)-(C_1 \sim C_8)$ アルキル、 $(M-23)-(C_1 \sim C_8)$ アルキル、 $(M-24)-(C_1 \sim C_8)$ アル キル、(M-25)-(C1~C8)アルキル、M-4、M-5、M-14、M-15及びM-16。

[0133]

 $R^3-V:C_1\sim C_8$ ハロアルキル、 $C_3\sim C_6$ シクロアルキル($C_1\sim C_8$) アルキル、トリ($C_1\sim C_6$ ア ルキル)シリル $(C_1 \sim C_8)$ アルキル、 $(Z^1)_{\mathfrak{p}1}$ によって置換されていてもよいフェニル $(C_1 \sim C_8)$)アルキル、 $(L-1)-(C_1 \sim C_8)$ アルキル、 $(L-2)-(C_1 \sim C_8)$ アルキル、 $(L-3)-(C_1 \sim C_8)$ アルキ ル、 $(L-4)-(C_1\sim C_8)$ アルキル、 $(L-45)-(C_1\sim C_8)$ アルキル、 $(L-46)-(C_1\sim C_8)$ -47) $-(C_1 \sim C_8)$ アルキル、 $C_3 \sim C_8$ アルケニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェ ニル $(C_3 \sim C_6)$ アルケニル、 $C_3 \sim C_8$ アルキニル、 $(Z^1)_{p1}$ によって置換されていてもよいフェ ニル($C_3 \sim C_6$)アルキニル、ナフタレン-1-イル $-(C_3 \sim C_6)$ アルキニル、ナフタレン-2-イル- $(C_3 \sim C_6)$ アルキニル、(L-1) $-(C_3 \sim C_6)$ アルキニル、(L-2) $-(C_3 \sim C_6)$ アルキニル、(L-3) $-(C_3 \sim C_6)$ $-(C_4 \sim C_6)$ $-(C_5 \sim C_6)$ $-(C_6 \sim C_6)$ $-(C_6 \sim C_6)$ $-(C_6 \sim C_6)$ $-(C_6 \sim C_6)$ $_3\sim C_6$) アルキニル、 $(L-4)-(C_3\sim C_6)$ アルキニル、 $(L-45)-(C_3\sim C_6)$ アルキニル、 $(L-46)-(C_3\sim C_6)$ アルキニル、 $(L-46)-(C_3\sim C_6)$ 3~C6)アルキニル及び(L-47)-(C3~C6)アルキニル。

[0134]

 \mathbb{R}^3 -VI:シアノ($\mathbb{C}_1 \sim \mathbb{C}_8$)アルキル、 $\mathbb{C}_1 \sim \mathbb{C}_6$ アルコキシカルボニル($\mathbb{C}_1 \sim \mathbb{C}_8$)アルキル、 \mathbb{C}_1 \sim C₆アルキルアミノカルボニル(C₁ \sim C₈)アルキル、ジ(C₁ \sim C₆アルキル)アミノカルボニル $(C_1 \sim C_8)$ アルキル、 $HON=C(R^{3\,2})-(C_1 \sim C_8)$ アルキル、 $R^{3\,1}ON=C(R^{3\,2})-(C_1 \sim C_8)$ アルキル [こ)アルキルを表し、 R^{32} は、水素原子又は $C_1 \sim C_6$ アルキルを表す。]及び $C_1 \sim C_6$ アルキルア ミノカルボニル(C3~C6)アルケニル。

[0135]

アルキル及び $C_1 \sim C_4$ アルキルスルホニル $(C_1 \sim C_4)$ アルキル。

[0136]

 R^3 -VIII: HON=CH-($C_1 \sim C_8$)アルキル及び $R^{3\,1}$ ON=CH-($C_1 \sim C_8$)アルキル [ここで、 $R^{3\,1}$ は C_1 ~C₆アルキルを表す。]。

[0137]

 R^{3} -IX: $R^{26}(R^{27})$ N-($C_{1}\sim C_{8}$)アルキル [ここで、 R^{26} は $C_{1}\sim C_{6}$ アルコキシカルボニル、 C_{1} \sim C₆アルキルスルホニル又はジ(C₁ \sim C₆アルキル)チオホスホリルを表し、 \mathbb{R}^{27} は、水素原 子又はC1~C6アルキルを表す。]。

[0138]

 $R^3-X:R^{28}S(0)_{r-}(C_1\sim C_8)$ アルキル [ここで、 R^{28} は、 $C_1\sim C_6$ アルキル、 $C_1\sim C_6$ ハロアル キル、ヒドロキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルキ ルチオ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_4$ アルキルカルボニル $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_4$ アルコキ シカルボニル $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_4$ アルキルアミノカルボニル $(C_1 \sim C_4)$ アルキル、ジ $(C_1 \sim C_4 \,$ アルキル) アミノカルボニル $(C_1 \sim C_4)$ アルキル、トリ $(C_1 \sim C_4 \,$ アルキル) シリル $(C_1 \sim C_4 \,$ アルキル) シリル $(C_1 \sim C_4 \,$ アルキル) \sim C₄ $)アルキル、(Z¹)_{p1}によって置換されていてもよいフェニル(C₁<math>\sim$ C₄ $)アルキル、C₃<math>\sim$ C $_6$ アルケニル、 $C_3\sim C_6$ アルキニル、 $C_1\sim C_6$ アルキルチオ、 $(Z^1)_{p1}$ によって置換されていて もよいフェニル、L-21又はL-45を表し、rは、0~2の整数を表す。]、(M-8)-(C1~C8) アルキル、 $(M-9)-(C_1 \sim C_8)$ アルキル、 $(M-10)-(C_1 \sim C_8)$ アルキル、 $(M-11)-(C_1 \sim C_8)$ アルキ ル、 $(M-17)-(C_1 \sim C_8)$ アルキル、 $(M-18)-(C_1 \sim C_8)$ アルキル、 $(M-19)-(C_1 \sim C_8)$ M-26) $-(C_1 \sim C_8)$ アルキル、 $(M-27)-(C_1 \sim C_8)$ アルキル、 $(M-28)-(C_1 \sim C_8)$ アルキル、M-8、M-8-9、M-17、M-18及びM-19。

[0139]

 R^3 -XI: $R^{26}(R^{27})$ N-($C_1 \sim C_8$)アルキル [ここで、 R^{26} は、 $C_1 \sim C_6$ アルキルカルボニル、 C_3 \sim C₆シクロアルキルカルボニル、C₁ \sim C₆アルコキシカルボニル、ジ(C₁ \sim C₆アルキル)アミ ノカルボニル、 $C_1 \sim C_6$ アルキルスルホニル、ジ $(C_1 \sim C_6$ アルキル) アミノスルホニル、 (Z^1) p1によって置換されていてもよいフェニルスルホニル又はジ(C1~C6アルキル)チオホスホ リルを表し、R²⁷は、水素原子又はC₁~C₆アルキルを表す。]、(M-12)-(C₁~C₈)アルキル 、 $(M-13)-(C_1 \sim C_8)$ アルキル、 $(M-20)-(C_1 \sim C_8)$ アルキル、 $(M-21)-(C_1 \sim C_8)$ アルキル、 $(M-21)-(C_1 \sim C_8)$ アルキル、 $(M-20)-(C_1 \sim C_8)$ 22)-(C₁~C₈)アルキル、M-13、M-21及びM-22。

[0140]

 R^3 -XII: R^2 と R^3 とが一緒になって形成する3~7員環がアジリジン、アゼチジン、ピロ リジン、オキサゾリジン、チアゾリジン、ピペリジン、モルホリン、チオモルホリン及び ホモピペリジン。

[0 1 4 1]

 \mathbb{R}^3 -XIII: $C_1 \sim C_8$ アルキル、 $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ アルケニル及び $C_3 \sim C_8$ アル キニル。

[0142]

 \mathbb{R}^3 -XIV: $C_1 \sim C_6$ アルキル、 $C_1 \sim C_4$ アルキルチオ ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルスル フィニル($C_1 \sim C_4$)アルキル及び $C_1 \sim C_4$ アルキルスルホニル($C_1 \sim C_4$)アルキル。

[0143]

 R^3 -XV: R^{26} 0-(C_1 ~ C_8)アルキル [ここで、 R^{26} は C_1 ~ C_6 アルキル又は-C(0)N(R^{30}) R^{29} を 表し、 R^{29} は $C_1 \sim C_6$ アルキルを表し、 R^{30} は水素原子又は $C_1 \sim C_6$ アルキルを表す。]、 $C_1 \sim$ C_4 アルキルチオ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_4$ アルキルスルフィニル $(C_1 \sim C_4)$ アルキル及び $(C_1 \sim C_4)$ アルキル \sim C4アルキルスルホニル(C1 \sim C4)アルキル。

[0144]

 R^3 -XVI: $C_1 \sim C_6$ アルキル、 R^{26} 0- $(C_1 \sim C_8)$ アルキル [ここで、 R^{26} は $C_1 \sim C_6$ アルキル又は $-C(0)N(R^{30})R^{29}$ を表し、 R^{29} は $C_1 \sim C_6$ アルキルを表し、 R^{30} は水素原子又は $C_1 \sim C_6$ アルキル を表す。]、 $C_1 \sim C_4$ アルキルチオ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルキルスルフィニル($C_1 \sim C_4$) 4) アルキル、 $C_1 \sim C_4$ アルキルスルホニル $(C_1 \sim C_4)$ アルキル、 $R^{26}(R^{27})$ N- $(C_1 \sim C_8)$ アルキル [ここで、 R^{26} は $C_1 \sim C_6$ アルコキシカルボニル、 $C_1 \sim C_6$ アルキルスルホニル又はジ($C_1 \sim C_6$

アルキル) チオホスホリルを表し、 R^{27} は、水素原子又は $C_1 \sim C_6$ アルキルを表す。]、HON= $CH_-(C_1 \sim C_8)$ アルキル及び $R^{3\,1}$ $ON=CH_-(C_1 \sim C_8)$ アルキル [ここで、 $R^{3\,1}$ は $C_1 \sim C_6$ アルキルを 表す。]。

[0145]

本発明に包含される化合物において、R4で表される置換基の範囲として、例えば下記の 各群が挙げられる。

[0146]

すなわち、 $R^4-I:C_1\sim C_6$ アルキル及び $C_1\sim C_6$ ハロアルキル。

[0147]

 R^4 -II: $C_3 \sim C_6$ シクロアルキル($C_1 \sim C_4$)アルキル、 $C_3 \sim C_6$ ハロシクロアルキル($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ ハロアルコキシ($C_1 \sim C_4$) アルキル 、 $C_1 \sim C_4$ アルキルチオ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_4$ ハロアルキルチオ $(C_1 \sim C_4)$ アルキル、 C_1 \sim C₄アルキルスルフィニル(C₁ \sim C₄)アルキル、C₁ \sim C₄ハロアルキルスルフィニル(C₁ \sim C₄) アルキル、 $C_1 \sim C_4$ アルキルスルホニル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ ハロアルキルスルホニル $(C_1 \sim C_4)$ アルキル、シアノ $(C_1 \sim C_6)$ アルキル及び $(C_1 \sim C_4)$ クロアルコキシ $(C_1 \sim C_4)$ クロアル キル。

[0148]

 R^4 -III: $C_3 \sim C_8$ シクロアルキル、 $C_3 \sim C_8$ ハロシクロアルキル、M-4、M-5、M-8、M-9、M-90、M-90、M-90、M-90、M-90、M-90、M-90、M-90、M-90、M-90、M-90、M-90、M-90、M-90、M-90、M-90 (M-90) (M-90 (M-914~M-18及びM-19。

[0149]

 R^4 -IV: $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_6$ アルキニル及び $C_3 \sim C_6$ ハロ アルキニル。

[0150]

 \mathbb{R}^4 -V: $(\mathbb{Z}^2)_{\mathfrak{p}1}$ によって置換されていてもよいフェニル、1-ナフチル、2-ナフチル、L-1 ~L-4、L-8~L-13、L-15~L-23、L-25~L-35、L-37、L-38、L-40、L-43~L-57及びL-58。

本発明に包含される化合物において、R⁵で表される置換基の範囲として、例えば下記の 各群が挙げられる。

[0152]

すなわち、 $R^5-I:C_1\sim C_6$ アルコキシ、 $C_1\sim C_6$ ハロアルコキシ、 $C_1\sim C_6$ アルキルチオ及び C1~C6ハロアルキルチオ。

[0153]

 $R^5-II: C_3 \sim C_6$ シクロアルキル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_6$ ハロシクロアルキル $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_4$ アルコキシ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_4$ ハロアルコキシ $(C_1 \sim C_4)$ アルキル 、 $C_1 \sim C_4$ アルキルチオ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_4$ ハロアルキルチオ $(C_1 \sim C_4)$ アルキル、 C_1 \sim C4アルキルスルフィニル(C1 \sim C4)アルキル、C1 \sim C4ハロアルキルスルフィニル(C1 \sim C4) アルキル、 $C_1 \sim C_4$ アルキルスルホニル $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_4$ ハロアルキルスルホニル $(C_1 \sim C_4)$ アルキル、シアノ $(C_1 \sim C_6)$ アルキル及び $(C_1 \sim C_4)$ クロアルコキシ $(C_1 \sim C_4)$ クロアル キル。

[0154]

 \mathbb{R}^5 -III: $\mathbb{C}_3 \sim \mathbb{C}_8$ シクロアルキル、 $\mathbb{C}_3 \sim \mathbb{C}_8$ ハロシクロアルキル、 $\mathbb{C}_3 \sim \mathbb{C}_8$ シクロアルケニル 、C3~C8ハロシクロアルケニル、M-4、M-5、M-8、M-9、M-14~M-18及びM-19。

[0155]

 $R^{5}-IV: > \mathcal{T} / \text{, } -C(0)OR^{9}\text{, } -C(0)SR^{9}\text{, } -C(0)NHR^{10}\text{, } -C(0)N(R^{10})R^{9}\text{, } -C(S)OR^{9}\text{, } -C(S)SR^{9}\text{, } -C$ R^9 、 $-C(S)NHR^{10}$ 及び $-C(S)N(R^{10})R^9$ [ここで、 R^9 は、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキ ル、 $(Z^1)_{\mathfrak{p}_1}$ によって置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_8$ シクロアル キル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、 R^{10} は、水素原子又は C_1 \sim C₆アルキルを表すか、或いは、 R^9 と $R^{1\,0}$ とが一緒になってC₄ \sim C₅アルキレン鎖を形成す ることにより、結合する窒素原子と共に5員環又は6員環を形成してもよいことを表し、 このときこのアルキレン鎖は酸素原子又は硫黄原子を1個含んでもよいことを表す。〕。

[0156]

 \mathbb{R}^5 -V: $(\mathbb{Z}^2)_{p1}$ によって置換されていてもよいフェニル、1-ナフチル、2-ナフチル、L-1~L-4、L-8~L-13、L-15~L-23、L-25~L-35、L-37、L-38、L-40、L-43~L-57及びL-58。

[0157]

 R^5 -VI: $(Z^2)_{p1}$ によって置換されていてもよいフェニル、L-1~L-4、L-15~L-23、L-45 ~L-49及びL-50。

[0158]

本発明に包含される化合物において、Rfで表される置換基の範囲として、例えば下記の 各群が挙げられる。

[0159]

すなわち、R⁶-I:水素原子。

[0160]

 R^6 -II:水素原子、 $C_1 \sim C_6$ アルキル、 $C_1 \sim C_6$ ハロアルキル、 $C_3 \sim C_6$ シクロアルキル($C_1 \sim$ C_4)アルキル、 $C_3 \sim C_6$ ハロシクロアルキル($C_1 \sim C_4$)アルキル、 $C_1 \sim C_4$ アルコキシ($C_1 \sim C_4$) アルキル、 $C_1 \sim C_4$ ハロアルコキシ $(C_1 \sim C_4)$ アルキル、 $C_1 \sim C_4$ アルキルチオ $(C_1 \sim C_4)$ アルキ ル、 $C_1 \sim C_4$ ハロアルキルチオ $(C_1 \sim C_4)$ アルキル、シアノ $(C_1 \sim C_6)$ アルキル、 $(Z^1)_{\mathfrak{p}1}$ によっ て置換されていてもよいフェニル $(C_1 \sim C_4)$ アルキル及び $C_1 \sim C_4$ ハロアルコキシ $(C_1 \sim C_4)$ ハ ロアルキル。

[0 1 6 1]

 R^6 -III: 水素原子、 $C_3 \sim C_8$ シクロアルキル及び $C_3 \sim C_8$ ハロシクロアルキル。

[0162]

 R^6 -IV:水素原子、 $C_3 \sim C_6$ アルケニル、 $C_3 \sim C_6$ ハロアルケニル、 $C_3 \sim C_8$ シクロアルケニ ル、 $C_3 \sim C_8$ ハロシクロアルケニル、 $C_3 \sim C_6$ アルキニル及び $C_3 \sim C_6$ ハロアルキニル。

[0163]

 R^6-V :水素原子、 $-S(0)_2R^9$ 、 $-C(0)R^9$ 、 $-C(0)NHR^{10}$ 、 $-C(0)N(R^{10})R^9$ 、 $-C(S)NHR^{10}$ 、 $-C(S)NHR^{10}$ $)N(R^{10})R^{9}$ [ここで、 R^{9} は、 $C_{1}\sim C_{6}$ アルキル、 $C_{1}\sim C_{6}$ ハロアルキル、 $(Z^{1})_{p1}$ によって置換 されていてもよいフェニル $(C_1 \sim C_4)$ アルキル、 $C_3 \sim C_8$ シクロアルキル又は $(Z^1)_{p1}$ によって 置換されていてもよいフェニルを表し、 R^{10} は、水素原子又は $C_1 \sim C_6$ アルキルを表すか、 或いは、 R^9 と R^{10} とが一緒になって $C_4 \sim C_5$ アルキレン鎖を形成することにより、結合する 窒素原子と共に5員環又は6員環を形成してもよいことを表し、このときこのアルキレン 鎖は酸素原子又は硫黄原子を1個含んでもよいことを表す。]、-Si $(R^{13})(R^{14})R^{12}$ [ここ で、 R^{12} は、 $C_1 \sim C_6$ アルキル又は $(Z^1)_{p1}$ によって置換されていてもよいフェニルを表し、R 13 及び R^{14} は、各々独立して $C_1\sim C_6$ アルキルを表す。]、ジ $(C_1\sim C_6$ アルキル)ホスホリル 及びジ(C1~C6アルキル)チオホスホリル。

[0164]

 R^6 -VI:水素原子及び-Si (R^{13}) (R^{14}) R^{12} [ここで、 R^{12} は、 $C_1 \sim C_6$ アルキル又は $(Z^1)_{p1}$ に よって置換されていてもよいフェニルを表し、 R^{13} 及び R^{14} は、各々独立して $C_1 \sim C_6$ アルキ ルを表す。〕。

[0 1 6 5]

 $R^6-VII: C_1 \sim C_6 T \nu + \nu$.

[0 1 6 6]

これらの本発明に包含される化合物における各置換基の範囲を示す各群は、それぞれ任 意に組み合わせることができそれぞれ本発明化合物の範囲を表す。 R^3 、 R^4 、 R^5 及び R^6 につ いての範囲の組み合わせの例としては、例えば以下の第1表に示す組み合わせが挙げられ る。但し、第1表の組み合わせは例示のためのものであって、本発明はこれらのみに限定 されるものではない。

第1表

第1表(続き)

R ³	\mathbb{R}^4	\mathbb{R}^5	R^6	\mathbb{R}^3	\mathbb{R}^4	\mathbb{R}^5	\mathbb{R}^6	

$\mathbb{R}^3 - \mathbb{I}$	R^4-I	R ⁵ – I	R ⁶ –VII	R ³ -TT	R^4-I	R^5-I	R ⁶ -VII
R³ – I	R^4-I	R ⁵ -II	R^6-I	R^3-II	$R^4 - I$	R ⁵ -II	$R^6 - I$
	R^4-I	$R^5 - III$	R −1 R ⁶ −I	R ³ -II	$R^4 - I$	R ⁵ -III	$R^6 - I$
R^3-I	R ⁴ – I	R^5-IV	R -1 R ⁶ -I	R ³ -II	$R^4 - I$	R ⁵ -IV	$R^6 - I$
$R^3 - I$		$R^5 - V$	R −1 R ⁶ −I	R ³ -II	R -I R ⁴ -I	R ⁵ –V	R^6-I
$R^3 - I$	$R^4 - I$	R ⁵ – V	κ −1 R ⁶ –II	R -11 R ³ -II	R^4-I	$R^5 - V$	R^6-II
$R^3 - I$	$R^4 - I$	R ⁵ – V	R -11 R ⁶ -III	R ³ -II	R^4-I	$R^5 - V$	R ⁶ -III
$R^3 - I$	R^4-I R^4-I	R ⁵ – V	R ⁶ -IV	R -11 R ³ -11	R^4-I	R ⁵ –V	$R^6 - IV$
$R^3 - I$		R ⁵ – V	R −1 V R ⁶ –V	R -II R ³ -II	$R^4 - I$	R ⁵ –V	R ⁶ –V
$R^3 - I$	$R^4 - I$	R ⁵ – V R ⁵ – V	R -V R ⁶ -VI	R -11 R ³ -11	$R^4 - I$	R ⁵ –V	R ⁶ –VI
R^3-I	$R^4 - I$	R ⁵ – V R ⁵ – V	R ⁶ -VII	R -II R ³ -II	$R^4 - I$	$R^5 - V$	R ⁶ -VII
$R^3 - I$	R ⁴ - I	R°-V R ⁵ -VI	· R ⁶ – I	R^{-11} R^3-II	R^4-I	R ⁵ –VI	$R^6 - I$
$R^3 - I$	$R^4 - I$	R ⁵ –VI	· K -1 R ⁶ -II	R -11 R ³ -11	R^4-I	R ⁵ –VI	R^6-II
$R^3 - I$	R ⁴ – I	R ⁵ –VI	R ⁶ – III	R -11 R ³ -II	R -1 R ⁴ -I	R ⁵ -VI	R ⁶ -III
$R^3 - I$	$R^4 - I$		R ⁶ – I V	R ³ -II	R -1 R ⁴ -I	$R^5 - VI$	R^6-IV
$R^3 - I$	$R^4 - I$	R ⁵ –VI		R ³ -II	R -1 R ⁴ -I	R - VI R ⁵ - VI	$R^6 - V$
$R^3 - I$	$R^4 - I$	R ⁵ –VI	R ⁶ –V	R -11 R ³ -II	R -1 R ⁴ -I	R ⁵ -VI	$R^6 - VI$
$R^3 - I$	$R^4 - I$	R ⁵ –VI	R ⁶ –VI	R ³ – I I	R -1 R ⁴ -I	R - VI R ⁵ - VI	R ⁶ -VII
$R^3 - I$	$R^4 - I$	R ⁵ –VI	R ⁶ -VII	R ³ -II	R -1 R ⁴ -II	R – V I	R^6-VI
R^3-I	R ⁴ -II	R ⁵ –V	R ⁶ –VI	R ³ – II	R -11 R ⁴ -11	R ⁵ -VI	R^6-VI
R^3-I	R ⁴ – II	R ⁵ –VI	R ⁶ –VI	R³ −11 R³ −11	R -II R ⁴ -III	R ⁵ –V	R ⁶ -VI
$R^3 - I$	R ⁴ -III	$R^5 - V$	R ⁶ –VI	R ³ – I I	R -111 R ⁴ -111	R ⁵ -VI	$R^6 - VI$
$R^3 - I$	R ⁴ –III	R ⁵ –VI	R ⁶ –VI	R³−11 R³−II	R ⁴ – IV	R ⁵ – V	R ⁶ -VI
R^3-I	R ⁴ – IV	R ⁵ –V	R ⁶ –VI	R³−11	R ⁴ – IV	R – V R ⁵ – VI	R ⁶ -VI
$\mathbb{R}^3 - \mathbb{I}$	$R^4 - IV$	R ⁵ –VI	R ⁶ –VI	R ³ −11	R ⁴ – V	R ⁵ -I	R ⁶ -VII
R^3-I	$R^4 - V$	$R^5 - I$	R ⁶ –VII		R' – V R ⁴ – V	R ⁵ IV	R -VII R ⁶ -VI
R^3-I	R ⁴ –V	$R^5 - IV$	$R^6 - VI$	R^3-II		R ⁵ -VI	$R^6 - VI$
R^3-I	$\mathbb{R}^4 - \mathbb{V}$	$R^5 - VI$	$R^6 - VI$	$R^3 - II$	$R^4 - V$	R ⁵ – V I	R ⁶ -VII
R^3-III	$R^4 - I$	$R^5 - I$	$R^6 - VII$	$R^3 - VII$	$R^4 - I$	R ⁵ – I	R ⁶ -I
R^3-III	$R^4 - I$	$R^5 - II$	$R^6 - I$	R ³ –VII	R ⁴ – I		R ⁶ – I
R^3-III	$R^4 - I$	R^5 -III	$R^6 - I$	$R^3 - VII$	$R^4 - I$	R ⁵ -III	R ⁶ – I
R^3-III	$\mathbb{R}^4 - \mathbb{I}$	$R^5 - IV$	$R^6 - I$	$R^3 - VII$	$R^4 - I$	$R^5 - IV$	R ⁶ – I
R^3-III	R^4-I	R^5V	$R^6 - I$	R ³ –VII	$R^4 - I$	$R^5 - V$	R ⁶ – I I
R^3-III	R^4-I	$R^5 - V$	R^6-II	$R^3 - VII$	$R^4 - I$	R ⁵ –V	R ⁶ -III
R^3-III	R^4-I	$R^5 - V$	R^6-III	$R^3 - VII$	$R^4 - I$	R ⁵ –V	R^6-IV
R^3-III	R^4-I	$R^5 - V$	$R^6 - IV$	R ³ –VII	R ⁴ – I	$R^5 - V$	R ⁶ – V
R^3-III	R^4-I	$R^5 - V$	$R^6 - V$	R ³ –VII	$R^4 - I$	R ⁵ –V	R°-V R ⁶ -VI
R^3-III	R^4-I	$R^5 - V$	R ⁶ -VI	R ³ –VII	$R^4 - I$	$R^5 - V$	R ⁶ –VI
R^3-III	R^4-I	$R_{-}^{5}-V$	$R^6 - VII$	R ³ –VII	$R^4 - I$	R ⁵ –V	$R^6 - I$
R^3-III	R^4-I	R^5VI	$R^6 - I$	R ³ –VII	$R^4 - I$	R ⁵ –VI	R ⁶ – I
R^3-III	R^4-I	$R^5 - VI$	R ⁶ -II	R ³ -VII	$R^4 - I$	R ⁵ -VI	
R^3-III	$R^4 - I$	R^5VI	R^6-III	R ³ –VII	$R^4 - I$	$R^5 - VI$	R^6-III R^6-IV
R^3-III	R^4-I	$R^5 - VI$	R^6-IV	R ³ –VII	$R^4 - I$	$R^5 - VI$	
R^3-III	R4 – I	$R^5 - VI$	$R^6 - V$	$R^3 - VII$	$R^4 - I$	$R^5 - VI$	$R^6 - V$
R^3-III	R^4-I	$R^5 - VI$	$R^6 - VI$	R ³ –VII	$R^4 - I$	R ⁵ –VI	R ⁶ –VI
R^3-III	R^4-I	$R^5 - VI$	$R^6 - VII$	R ³ -VII	R ⁴ – I	R ⁵ -VI	R ⁶ -VII
R^3-III	R^4-II	R ⁵ –V	$R^6 - VI$	R ³ –VII	R ⁴ – II	R ⁵ –V	R ⁶ –VI
R^3-III	R^4-II	$R^5 - VI$	$R^6 - VI$	$R^3 - VII$	R ⁴ -II	R ⁵ –VI	$R^6 - VI$
R^3-III	R ⁴ -III	_	$R^6 - VI$	R ³ -VII	R ⁴ -III	R ⁵ -V	R ⁶ -VI
R^3-III	R ⁴ -III		R^6-VI	R^3 -VII	R ⁴ -III	R ⁵ –VI	$R^6 - VI$
R³-III	R^4-IV	R ⁵ –V	$R^6 - VI$	R ³ -VII	R^4-IV	$R^5 - V$	R ⁶ -VI

						· •	- C
R^3-III	R^4-IV	R^5-VI	$R^6 - VI$	R ³ -VII	$R^4 - IV$	$R^5 - VI$	$R^6 - VI$
R^3-III	R^4-V	R^5-I	R^6-VII	$R^3 - VII$	$R^4 - V$	$R^5 - I$	R ⁶ -VII
R^3-III	R4 -V	R^5-IV	$R^6 - VI$	R^3-VII	R4 V	R^5-IV	R^6-VI
R^3 -III	R ⁴ –V	R ⁵ –VI	R^6-VI	R^3-VII	$R^4 - V$	R^5-VI	R^6-VI
R^3-IV	$R^4 - I$	R ⁵ – V	$R^6 - I$	$R^3 - V$	R^4-I	R^5-V	R^6-I
R ³ -IV	R -1 R ⁴ -I	R – V R ⁵ – V	R ⁶ -II	R ³ –V	$R^4 - I$	$R^5 - V$	R^6-II
		κ – V R ⁵ – V	R -II R ⁶ -III	$R^3 - V$	R^4-I	R ⁵ –V	R ⁶ -III
$R^3 - IV$	$R^4 - I$		R^6-IV	R – V R ³ – V	R^4-I	R ⁵ –V	R ⁶ -IV
R^3-IV	$R^4 - I$	R ⁵ –V		R −V R ³ –V	R -1 R ⁴ -I	R – V R ⁵ – V	R ⁶ -V
R^3-IV	R^4-I	R ⁵ –V	R ⁶ –V		R^4-I	R – V R ⁵ – V	R -V R ⁶ -VI
R^3-IV	$R^4 - I$	R^5V	$R^6 - VI$	R ³ –V			R ⁶ -VII
R^3-IV	R^4-I	$R^5 - V$	R ⁶ -VII	$R^3 - V$	$R^4 - I$	R ⁵ –V	
R^3-IV	R^4-I	R^5-VI	R^6-I	$R^3 - V$	R^4-I	$R^5 - VI$	$R^6 - I$
R^3-IV	R^4-I	R^5-VI	R^6-II	$R^3 - V$	$R^4 - I$	$R^5 - VI$	R^6-II
R^3-IV	R^4-I	R^5-VI	R^6-III	$R^3 - V$	$R^4 - I$	$R^5 - VI$	R^6 -III
R^3-IV	R^4-I	R^5-VI	R^6-IV	$\mathbb{R}^3 - \mathbb{V}$	$R^4 - I$	R^5-VI	R^6-IV
R ³ -IV	$R^4 - I$	R ⁵ -VI	$R^6 - V$	$R^3 - V$	R^4-I	R^5-VI	$R^6 - V$
R^3-IV	R^4-I	$R^5 - VI$	R ⁶ –VI	$R^3 - V$	R^4-I	R^5-VI	R^6 –VI
R^3-IV	R ⁴ – I	R ⁵ -VI	R ⁶ -VII	R ³ –V	R^4-I	R ⁵ -VI	R ⁶ -VII
$R^3 - IV$	R −1 R ⁴ −I	R -V1 R ⁵ -V	R ⁶ -I	$R^3 - X$	$R^4 - I$	$\mathbb{R}^5 - \mathbb{V}$	R^6-I
		R ⁵ – V	R -1 R ⁶ -II	$R^3 - X$	R^4-I	R ⁵ –V	R ⁶ -II
$R^3 - VI$	$R^4 - I$		R ⁶ -III	$R^3 - X$	R^4-I	$R^5 - V$	R ⁶ -III
$R^3 - VI$	$R^4 - I$	R ⁵ –V		к – х R ³ – Х	R^4-I	R – V R ⁵ – V	R^6-IV
$R^3 - VI$	R^4-I	R ⁵ –V	$R^6 - IV$		R ⁴ – I	R ⁵ – V	R -1 V R ⁶ -V
R^3-VI	R^4-I	$R^5 - V$	$R^6 - V$	$R^3 - X$			R ⁶ -VI
$\underline{R}^3 - \underline{V}\underline{I}$	$\mathbb{R}^4 - \mathbb{I}$	$R^5 - V$	R^6-VI	$R^3 - X$	$R^4 - I$	R ⁵ –V	
R^3-VI	R^4-I	$R^5 - V$	R^6-VII	R^3-X	$R^4 - I$	R ⁵ -V	R ⁶ -VII
R^3-VI	R^4-I	$R^5 - VI$	R^6-I	$R^3 - X$	R^4-I	$R^5 - VI$	$R^6 - I$
R^3-VI	R^4-I	$R^5 - VI$	R^6-II	$R^3 - X$	R^4-I	$R^5 - VI$	R ⁶ -II
R^3-VI	R^4-I	$R^5 - VI$	R^6-III	$\mathbb{R}^3 - \mathbb{X}$	R^4-I	$R^5 - VI$	R ⁶ -III
$R^3 - VI$	R^4-I	R ⁵ –VI	R^6-IV	R^3-X	$R^4 - I$	$R^5 - VI$	R^6-IV
$R^3 - VI$	R ⁴ – I	R ⁵ -VI	R ⁶ –V	$R^3 - X$	R^4-I	$R^5 - VI$	R^6-V
R ³ -VI	R^4-I	R ⁵ -VI	R ⁶ -VI	$R^3 - X$	R^4-I	$R^5 - VI$	R ⁶ -VI
R^3-VI	R^4-I	$R^5 - VI$	R ⁶ -VII	R^3-X	R^4-I	R ⁵ –VI	R ⁶ -VII
R ³ -VII		R ⁵ -I	R ⁶ -VII	R^3-IX	R^4-I	R^5-I	R ⁶ -VII
R ³ -VIII		R ⁵ -II	R^6-I	R^3-IX	$R^4 - I$	R^5-II	$R^6 - I$
		R ⁵ -III	R -1 R ⁶ -I	R^3-IX	R^4-I	R ⁵ -III	R^6-I
R ³ –VIII			R -1 R ⁶ -I	R^3-IX	R^4-I	$R^5 - IV$	$R^6 - I$
R ³ –VII		R ⁵ – IV		R ³ -IX	R^4-I	R ⁵ –V	R^6-I
R ³ -VII		$R^5 - V$	$R^6 - I$	R^3-IX	$R^4 - I$	R – V R ⁵ – V	R ⁶ -II
$R^3 - VII$		$R^5 - V$	$R^6 - II$		R^4-I	R −V R ⁵ −V	R^6-III
$R^3 - VII$		$R^5 - V$	R ⁶ -III	$R^3 - IX$			R^6-IV
R^3-VII	_	$R^5 - V$	$R^6 - IV$	$R^3 - IX$	$R^4 - I$	R ⁵ –V	
R ³ -VII	$I R^4 - I$	$R^5 - V$	$R^6 - V$	R^3-IX	$R^4 - I$	R ⁵ V	R ⁶ –V
R^3-VII	$I R^4 - I$	R ⁵ –V	$R^6 - VI$	R^3-IX	$R^4 - I$	R ⁵ -V	$R^6 - VI$
R ³ -VII	$I R^4 - I$	R ⁵ –V	R^6-VII	R^3-IX	$R^4 - I$	R ⁵ -V	R ⁶ -VII
R ³ -VII	$I R^4 - I$	R ⁵ –VI	R^6-I	R^3-IX	$R^4 - I$	R^5-VI	$R^6 - I$
R ³ -VII	_	R^5-VI	R^6-II	R^3-IX	$R^4 - I$	R ⁵ -VI	R^6-II
R ³ -VII		$R^5 - VI$	R^6-III	R^3-IX	$R^4 - I$	$R^5 - VI$	R^6-III
R ³ -VII		R ⁵ -VI	R ⁶ -IV	R^3-IX	R^4-I	$R^5 - VI$	R^6-IV
R ³ -VII		$R^5 - VI$	$R^6 - V$	R^3-IX	R^4-I	R^5-VI	$R^6 - V$
R -VII R ³ -VII		R ⁵ -VI	R ⁶ –VI	R^3-IX	R^4-I	$R^5 - VI$	R^6-VI
		R -VI R ⁵ -VI	R ⁶ -VII	$R^3 - IX$	$R^4 - I$	R ⁵ –VI	R ⁶ -VII
R³-VII	$I R^4 - I$	K AT	V -ATT	V -IV	V -1	V -AT	Y 177

n3 n4 II	R ⁵ –V	R ⁶ –VI	$R^3 - IX$	R ⁴ –II	R^5-V	R ⁶ -VI
$R^3 - VIII R^4 - II$	R ⁵ –VI	R -VI R ⁶ -VI	R^3-IX	R ⁴ -II	R ⁵ -VI	R ⁶ –VT
R^3 –VIII R^4 –II	R ⁵ – V I	R –VI R ⁶ –VI	$R^3 - TX$	R ⁴ -III	R ⁵ –V	R ⁶ -VI
R ³ -VIII R ⁴ -III	R ⁵ – VI	R -VI R ⁶ -VI	R^3-IX	R^4-III	$R^5 - VI$	R ⁶ –VI
R ³ -VIII R ⁴ -III		R ⁶ -VI	R^3-IX	R^4-IV	R ⁵ –V	R ⁶ -VI
R^3 -VIII R^4 -IV	R ⁵ −V R ⁵ −VI	$R^6 - VI$	R^3-IX	R ⁴ -IV	R ⁵ –VI	R ⁶ -VI
$R^3 - VIII R^4 - IV$	R ⁵ – V I	R -VI R ⁶ -VII	R^3-IX	R -1 V R ⁴ -V	$R^5 - I$	R ⁶ -VII
$R^3 - VIII R^4 - V$	R ⁵ – IV	$R^6 - VII$	R^3-IX	R ⁴ –V	R ⁵ – IV	R ⁶ -VI
R ³ -VIII R ⁴ -V	R^5-IV	R -VI R ⁶ -VI	R ³ -IX	R ⁴ –V	R ⁵ –VI	R ⁶ -VI
$R^3 - VIII R^4 - V$	R ⁵ –V1	R - V I	R ³ -XII		$R^5 - V$	R^6-I
$R^3 - XI$ $R^4 - I$	R ⁵ – V R ⁵ – V	R ⁶ -II	$R^3 - XII$		R ⁵ –V	R^6-II
$R^3 - XI$ $R^4 - I$	'	R ⁶ -III	R ³ -XII		$R^5 - V$	R ⁶ -III
$R^3 - XI$ $R^4 - I$	R ⁵ –V	R^6-III	$R^3 - XI$	·	R ⁵ –V	R ⁶ -IV
$R^3 - XI$ $R^4 - I$	R ⁵ –V R ⁵ –V	$R^6 - V$	$R^3 - XI$		R ⁵ –V	R ⁶ –V
$R^3 - XI$ $R^4 - I$		R°-V R ⁶ -VI	R^3-XI		R ⁵ –V	R ⁶ -VI
$R^3 - XI$ $R^4 - I$	$R^5 - V$	$R^6 - VII$	$R^3 - XI$		R ⁵ –V	R ⁶ -VII
$R^3 - XI$ $R^4 - I$	R ⁵ –V		R ³ – XI		R ⁵ –VI	$R^6 - I$
$R^3 - XI$ $R^4 - I$	R ⁵ –VI	$R^6 - I$	R ³ – X I .		R ⁵ -VI	R^6-II
$R^3 - XI$ $R^4 - I$	R ⁵ –VI	$R^6 - II$	$R^3 - XI$	_	R ⁵ -VI	R ⁶ -III
$R^3 - XI$ $R^4 - I$	$R^5 - VI$	R ⁶ –III R ⁶ –IV	R ³ – XI		R ⁵ -VI	R^6-IV
$R^3 - XI$ $R^4 - I$	R ⁵ -VI		$R^3 - XI$	_	R ⁵ -VI	$R^6 - V$
$R^3 - XI$ $R^4 - I$	R ⁵ –VI	R ⁶ –V	$R^3 - XI$	·-	R ⁵ -VI	R ⁶ -VI
$R^3 - XI$ $R^4 - I$	$R^5 - VI$	R ⁶ –VI	R ³ – XI		R ⁵ -VI	R ⁶ -VII
$R^3 - XI$ $R^4 - I$	$R^5 - VI$	R ⁶ –VII	R ³ – X V		R ⁵ -I	R ⁶ -VII
$R^3 - XIII R^4 - I$	<u>R</u> ⁵ – I	R ⁶ –VII	R ³ – XV		R ⁵ -II	R^6-I
$R^3 - XIII R^4 - I$	R^5-II	$R^6 - I$	R ³ – XV	<u>-</u> -	R ⁵ -III	R ⁶ -I
R^3 –XIII R^4 –I	R ⁵ – III	$R^6 - I$	R ³ – X V R ³ – X V		R -111 R ⁵ -IV	R -1 R ⁶ -I
R^3 –XIII R^4 –I	R ⁵ – IV	$R^6 - I$	R ³ – X V R ³ – X V		R – I V R ⁵ – V	R -1 R ⁶ -I
$R^3 - XIII R^4 - I$	R ⁵ –V	$R^6 - I$			R – V R ⁵ – V	R ⁶ -II
$R^3 - XIII R^4 - I$	R ⁵ –V	$R^6 - II$	$R^3 - XV$		R −V R ⁵ –V	R ⁶ -III
$R^3 - XIII R^4 - I$	$R^5_r - V$	R ⁶ –III	R ³ ~XV		R ⁵ – V	R^6-IV
$R^3 - XIII R^4 - I$	$R^5 - V$	R^6-IV	R ³ – XV		R −V R ⁵ −V	R -1 V R ⁶ -V
$R^3 - XIII R^4 - I$	$R^5 - V$	R ⁶ -V	$R^3 - XV$		R ⁵ – V	R -V R ⁶ -VI
R ³ -XIII R ⁴ -I	R ⁵ –V	R ⁶ –VI	R ³ – X\		R - V R ⁵ - V	R ⁶ -VII
$R^3 - XIII R^4 - I$	$R^5 - V$	R ⁶ -VII	R ³ -X\		R – V R ⁵ – VI	R - VII R ⁶ - I
$R^3 - XIII R^4 - I$	$R^5 - VI$	$R^6 - I$	$R^3 - XV$	·	R -VI R ⁵ -VI	R^6-II
$R^3 - XIII R^4 - I$	$R^5 - VI$	R ⁶ –II	R ³ –X ⁷ R ³ –X ⁷	*	R -VI R ⁵ -VI	R^6-III
$R^3 - XIII R^4 - I$	$R^5 - VI$	R ⁶ -III	$R^3 - X^3$		R ⁵ -VI	R -111 R ⁶ -IV
$R^3 - XIII R^4 - I$	$R^5 - VI$	$R^6 - IV$			R -VI R ⁵ -VI	R ⁶ – V
$R^3 - XIII R^4 - I$	$R^5 - VI$	R ⁶ –V	$R^3 - X^3$	•	R -VI R ⁵ -VI	R -V R ⁶ -VI
$R^3 - XIII R^4 - I$	$R^5 - VI$	R ⁶ –VI	$R^3 - X$	•	R ⁵ -VI	R ⁶ -VII
$R^3 - XIII R^4 - I$	$R^5 - VI$	R ⁶ -VII	$R^3 - X$		R −V⊥ R ⁵ −V	R^6-VI
$R^3 - XIII R^4 - II$	R ⁵ –V	$R^6 - VI$	$\mathbb{R}^3 - \mathbb{X}$	•	R ⁵ -VI	R ⁶ -VI
$R^3 - XIII R^4 - II$	R^5-VI	$R^6 - VI$	$R^3 - X$	•		R ⁶ -VI
R ³ -XIII R ⁴ -III	_	$R^6 - VI$	$R^3 - X$	·		R ⁶ -VI
R ³ -XIII R ⁴ -III		$R^6 - VI$	$\mathbb{R}^3 - \mathbb{X}$		R ⁵ – V I	R -VI R ⁶ -VI
$R^3 - XIII R^4 - IV$	R ⁵ –V	$R^6 - VI$	R ³ -X		R ⁵ – V R ⁵ – VI	R° –VI R ⁶ –VI
$R^3 - XIII R^4 - IV$	R ⁵ -VI	$R^6 - VI$	R ³ -X		R ⁵ – V I	R°-VI R ⁶ -VII
$R^3 - XIII R^4 - V$	R^5-I	$R^6 - VII$	$R^3 - X$	_	R^5-I	R^6-VII
$R^3 - XIII R^4 - V$	R^5-IV	•	R ³ -X		R ⁵ – VI	R ⁶ – VI
$R^3 - XIII R^4 - V$	R^5-VI	R^6-VI	R ³ – X	V R ⁴ –V	KA1	KAT

2	_1	-5 -	D6 1/17	,	R ³ –X T V	R ⁴ –TTT	R ⁵ -III	R^6-I
R^3-XIV	$R^4 - I$	$R^5 - I$	R ⁶ -VII	-		R^4-III	R^{-111} $R^{5}-IV$	R -1 R ⁶ -I
$R^3 - XIV$	$R^4 - I$	R^5-II	$R^6 - I$	-	R ³ -XIV		-• -·	R ⁶ -II
R^3-XIV	R^4-I	R^5-II	$R^6 - IV$	•	$R^3 - XIV$	R ⁴ –III	R ⁵ – IV	
$R^3 - XIV$	R^4-I	R^5-II	$R^6 - V$	-	$R^3 - XIV$	R4-III	$R^5 - IV$	$R^6 - IV$
$R^3 - XIV$	R^4-I	R^5-II	R^6-VI	-	R³-XIV	R^4-III	R^5 IV	$R^6 - V$
$R^3 - XIV$	R^4-I	R^5-II	R^6-VII	•	$R^3 - XIV$	R^4-III	R^5-IV	$R^6 - VI$
$R^3 - XIV$	R^4-I	R^5-III	R^6-I		$R^3 - XIV$	R^4-III	R^5-IV	R ⁶ -VII
R ³ -XIV	R^4-I	R ⁵ -III	R ⁶ –IV		$R^3 - XIV$	R^4-III	$R^5 - V$	R^6-I
R ³ -XIV	R^4-I	R ⁵ -III	R ⁶ –V		$R^3 - XIV$	R^4-III	$R^5 - V$	R^6-II
R ³ -XIV	R ⁴ -I	R ⁵ -III	R ⁶ -VI		R ³ –XIV	R ⁴ -III	R ⁵ V	R^6-III
R^3-XIV	R -1 R ⁴ -I	R ⁵ -III	R ⁶ -VII		R ³ -XIV	R ⁴ –III	R ⁵ –V	R^6-IV
	R ⁴ – I	R -111 R ⁵ -IV	R^6-I		R ³ -XIV	R^4 – III	R ⁵ –V	R ⁶ –V
$R^3 - XIV$			R -I R ⁶ -II		R ³ -XIV	R^4-III	R ⁵ –V	R ⁶ -VI
$R^3 - XIV$	$R^4 - I$	$R^5 - IV$			$R^3 - XIV$	R -111 R ⁴ -111	R – V R ⁵ – V	R ⁶ -VII
$R^3 - XIV$	R4 - I	$R^5 - IV$	$R^6 - IV$				R ⁵ –VI	R^6-I
R^3-XIV	$R^4 - I$	$R^5 - IV$	$R^6 - V$		$R^3 - XIV$	R ⁴ –III	== :	R ⁶ -II
R^3-XIV	R^4-I	R^5-IV	R ⁶ -VI		$R^3 - XIV$	R ⁴ –III	$R^5 - VI$	
R^3-XIV	R^4-I	R^5-IV	R^6-VII		R ³ -XIV	R4-III	$R^5 - VI$	$R^6 - III$
R ³ -XIV	$R^4 - I$	R ⁵ –V	R^6-I		$R^3 - XIV$	R4-III	$R^5 - VI$	R^6-IV
R ³ -XIV	R^4-I	$R^5 - V$	R^6-II		$R^3 - XIV$	R^4-III	R^5-VI	$R^6 - V$
R ³ -XIV	R^4-I	$R^5 - V$	R^6-III		$R^3 - XIV$	R ⁴ -III	$R^5 - VI$	R^6-VI
R ³ -XIV	R^4-I	$R^5 - V$	R^6-IV		$R^3 - XIV$	R4-III	R ⁵ –VI	R^6-VII
R ³ -XIV	$R^4 - I$	R ⁵ –V	R ⁶ –V		R ³ -XIV	$R^4 - IV$	R^5-I	R^6-VII
R ³ -XIV	R^4-I	R ⁵ –V	R ⁶ –VI		R ³ –XIV	$R^4 - IV$	R^5-II	R^6-I
R ³ -XIV	R -1 R ⁴ -I	R ⁵ –V	R ⁶ –VII		R ³ -XIV	$R^4 - IV$	R^5-III	R^6-I
$R^3 - XIV$	R -1 R ⁴ -I	R ⁵ –VI	R^6-I		$R^3 - XIV$	R ⁴ –IV	R^5-IV	R ⁶ −I
	R ⁴ – I	R -VI R ⁵ -VI	R ⁶ -II	•	$R^3 - XIV$	$R^4 - IV$	$R^5 - IV$	R^6-II
$R^3 - XIV$	R ⁴ – I	R ⁵ –VI	R ⁶ -III		$R^3 - XIV$	R^4-IV	R ⁵ -IV	$R^6 - IV$
$R^3 - XIV$		R ⁵ –VI	R^6-IV		$R^3 - XIV$	R^4-IV	R ⁵ – IV	R ⁶ –V
$R^3 - XIV$	$R^4 - I$		R ⁶ – V		$R^3 - XIV$	R^4-IV	R ⁵ -IV	R ⁶ –VT
$R^3 - XIV$	$R^4 - I$	R ⁵ -VI ·			$R^3 - XIV$	R -1V R ⁴ -IV	$R^{5}-IV$	R ⁶ -VII
$R^3 - XIV$	$R^4 - I$	R ⁵ -VI	$R^6 - VI$		$R^3 - XIV$	R −1V R ⁴ −1V	R ⁵ –V	R ⁶ -I
R^3-XIV	R^4-I	R ⁵ -VI	R ⁶ -VII				к – v R ⁵ – V	R ⁶ -II
$R^3 - XIV$	R ⁴ -II	$R^5 - I$	R ⁶ -VII		$R^3 - XIV$	$R^4 - IV$		R ⁶ -III
R^3-XIV	R^4-II	$R^5 - II$	$R^6 - I$		$R^3 - XIV$	$R^4 - IV$	$R^5 - V$	R ⁶ -IV
$R^3 - XIV$	R^4-II	$R_{-}^{5}-III$	$R^6 - I$		$R^3 - XIV$	R ⁴ – IV	R ⁵ –V	
$R^3 - XIV$	R^4-II	$R^5 - IV$	$R^6 - I$		$R^3 - XIV$	$R^4 - IV$	$R^5 - V$	R ⁶ –V
R^3-XIV	R^4-II	R^5-IV	R^6-II		R^3-XIV	$R^4 - IV$	$R^5 - V$	$R^6 - VI$
R^3-XIV	R^4-II	R^5-IV	R^6-IV		$R^3 - XIV$	$R^4 - IV$	R ⁵ –V	$R^6 - VII$
$R^3 - XIV$	R^4-II	R^5-IV	$R^6 - V$		$R^3 - XIV$	$R^4 - IV$	R ⁵ –VI	$R^6 - I$
$R^3 - XIV$	R^4-II	R^5-IV	R^6-VI		$R^3 - XIV$	$R^4 - IV$	$R^5 - VI$	R^6-II
$R^3 - XIV$	R^4-II	R^5-IV	R^6-VII		$R^3 - XIV$	$R^4 - IV$	$R_{-}^{5}-VI$	R^6-III
$R^3 - XIV$	R^4-II	R ⁵ -V	R^6-I		$R^3 - XIV$	R^4-IV	R^5VI	R^6-IV
R ³ -XIV	R^4-II	$R^5 - V$	R^6-II		$R^3 - XIV$	$R^4 - IV$	$R^5 - VI$	R ⁶ V
$R^3 - XIV$	R^4-II	R ⁵ -V	R^6-III		$R^3 - XIV$	R^4-IV	$R^5 - VI$	$R^6 - VI$
R ³ -XIV	R^4-II	R ⁵ –V	R^6-IV		$R^3 - XIV$	$R^4 - IV$	$R^5 - VI$	R ⁶ -VII
R ³ -XIV	R ⁴ -II	R ⁵ –V	R^6-V		R3-XIV	$R^4 - V$	R^5-I	R ⁶ -VII
$R^3 - XIV$	R ⁴ -II	R ⁵ – V	R ⁶ -VI		R ³ -XIV	$R^4 - V$	R^5-IV	R^6-I
R ³ -XIV	R^4-II	R ⁵ –V	R ⁶ -VII		R ³ -XIV		$R^5 - IV$	R^6-II
R ³ -XIV	R -11 R ⁴ -11	R ⁵ -VI	$R^6 - I$		R ³ -XIV		R^5-IV	R^6-IV
R ³ -XIV	R - I I R ⁴ - I I	R ⁵ -VI	R^6-II		R ³ -XIV		R^5-IV	$R^6 - V$
R ³ -XIV	R - I I R ⁴ - I I	R ⁵ -VI	R ⁶ -III		R ³ -XIV		R ⁵ -IV	R^6-VI
1 . −ΥΤΛ	V - TT	V -AT	Y -TTT			'		–

R^3-XIV	R ⁴ -II	R^5-VI	R^6-IV	$R^3 - XIV$	$R^4 - V$	R^5-IV	R ⁶ -VII
R ³ -XIV	R^4-II	R ⁵ -VI	$R^6 - V$	R^3-XIV	R4 -V	$R^5 - V$	R^6-I
R ³ -XIV	R^4-II	R ⁵ -VI	R ⁶ -VI	R^3-XIV	$R^4 - V$	$R^5 - V$	R^6-VI
R ³ -XIV	$R^4 - II$	R^5-VI	R^6-VII	R^3-XIV	$R^4 - V$	$R^5 - VI$	R^6-I
R ³ -XIV	R^4-III	R^5-I	R ⁶ -VII	$R^3 - XIV$	$R^4 - V$	R ⁵ -VI	R ⁶ -VI
R ³ -XVI	R^4-I	R^5-I	R ⁶ -VII	R^3-XVI	R4-III	R ⁵ -III	R^6-I
R ³ -XVI	R^4-I	R^5-II	R^6-I	$R^3 - XVI$	R4-III	$R^5 \div IV$	R^6-I
R^3-XVI	R^4-I	R^5-II	R^6-IV	R^3-XVI	R4-III	R^5-IV	R^6-II
R ³ -XVI	R^4-I	R^5-II	R^6-V	$R^3 - XVI$	R4-III	R^5-IV	R^6-IV
R^3-XVI	R^4-I	R^5-II	R^6-VI	$R^3 - XVI$	R4-III	R^5-IV	$R^6 - V$
R ³ -XVI	R^4-I	R^5-II	R ⁶ -VII	R^3-XVI	R4-III	R^5-IV	R^6-VI
$R^3 - XVI$	R^4-I	R^5-III	R^6-I	$R^3 - XVI$	R^4-III	R^5-IV	R^6-VII
R^3-XVI	R^4-I	R^5-III	R^6-IV	R^3-XVI	R^4-III	$R^5 - V$	R^6-I
R^3-XVI	R^4-I	R^5-III	$R^6 - V$	$R^3 - XVI$	R^4-III	$R^5 - V$	R^6-II
$R^3 - XVI$	R^4-I	R^5-III	$R^6 - VI$	$R^3 - XVI$	R^4-III	R^5-V	R^6-III
$R^3 - XVI$	R^4-I	R^5-III	R^6-VII	R^3-XVI	R^4-III	$R^5 - V$	R^6-IV
R^3-XVI	R^4-I	R^5-IV	R^6-I	$R^3 - XVI$	R^4-III	$R^5 - V$	R^6-V
$R^3 - XVI$	R^4-I	R^5-IV	R^6-II	R^3-XVI	R^4-III	$R^5 - V$	R^6-VI
$R^3 - XVI$	$R^4 - I$	R^5-IV	R^6-IV	$R^3 - XVI$	$R^4 - III$	$R^5 - V$	R^6-VII
$R^3 - XVI$	R^4-I	R^5-IV	R^6-V	$R^3 - XVI$	R^4-III	$R^5 - VI$	R^6-I
$R^3 - XVI$	R^4-I	R^5-IV	R^6-VI	$R^3 - XVI$	R4-III	$R^5 - VI$	R^6-II
$R^3 - XVI$	R^4-I	R^5-IV	R ⁶ -VII	R^3-XVI	R^4-III	$R^5 - VI$	R^6-III
$R^3 - XVI$	$\mathbb{R}^4 - \mathbb{I}$	R ⁵ -V	R^6-I	R^3-XVI	R^4-III	$R^5 - VI$	R^6-IV
R^3-XVI	R^4-I	$R^5 - V$	R^6-II	$R^3 - XVI$	R4-III	$R^5 - VI$	$R^6 - V$
R^3-XVI	R^4-I	$R^5 - V$	R^6-III	R^3-XVI	R4-III	R^5-VI	R^6-VI
$R^3 - XVI$	R^4-I	$R^5 - V$	R^6-IV	R^3-XVI	R4-III	R^5-VI	R ⁶ -VII
R^3-XVI	$R^4 - I$	$R^5 - V$	$R^6 - V$	R^3-XVI	R^4-IV	R^5-I	R ⁶ -VII
R^3-XVI	R^4-I	$R^5 - V$	R^6-VI	$R^3 - XVI$	$R^4 - IV$	R^5-II	R^6-I
R^3-XVI	R^4-I	$R^5 - V$	R^6-VII	R^3-XVI	R^4-IV	R^5-III	R^6-I
R^3-XVI	R^4-I	R^5-VI	R^6-I	$R^3 - XVI$	R^4-IV	R^5_{-} – IV	$R^6 - I$
R^3-XVI	R^4-I	$R^5 - VI$	R^6-II	R^3-XVI	R^4-IV	$R^5 - IV$	R^6-II
R³-XVI	R^4-I	R^5-VI	R^6-III	$R^3 - XVI$	R^4_{\cdot} – IV	$R^5 - IV$	R^6-IV
R³-XVI	R^4-I	$R^5 - VI$	R^6-IV	R ³ –XVI	$R^4 - IV$	$R^5 - IV$	R ⁶ –V
R³-XVI	R^4-I	R^5-VI	$R^6 - V$	$R^3 - XVI$	R ⁴ –IV	$R^5 - IV$	R ⁶ -VI
R^3-XVI	R^4-I	$R^5 - VI$	R ⁶ -VI	$R^3 - XVI$	R4-IV	$R^5 - IV$	R ⁶ -VII
R^3-XVI	R^4-I	$R^5 - VI$	R ⁶ -VII	R^3-XVI	R4-IV	$R^5 - V$	$R^6 - I$
$R^3 - XVI$	R^4-II	R^5 -I	R^6-VII	$R^3 - XVI$	$R^4 - IV$	R ⁵ –V	$R^6 - II$
$R^3 - XVI$	R4-II	$R_{-}^{5}-II$	R^6-I	$R^3 - XVI$	R ⁴ – IV	R^5_{-} –V	R ⁶ -III
R^3-XVI	R^4-II	R ⁵ -III	$R^6 - I$	$R^3 - XVI$	$R^4 - IV$	R ⁵ –V	$R^6 - IV$
$R^3 - XVI$	R4-II	$R^5 - IV$	$R^6 - I$	$R^3 - XVI$	$R^4 - IV$	R ⁵ –V	R ⁶ -V
$R^3 - XVI$	R ⁴ -II	$R^5 - IV$	R^6-II	R^3 –XVI	R ⁴ -IV	$R^5 - V$	R ⁶ –VI
$R^3 - XVI$	R^4-II	$R^5 - IV$	$R^6 - IV$	$R^3 - XVI$	$R^4 - IV$	R ⁵ –V	R ⁶ -VII
$R^3 - XVI$	R4-II	$R^5 - IV$	$R^6 - V$	$R^3 - XVI$	$R^4 - IV$	R ⁵ –VI	$R^6 - I$
$R^3 - XVI$	R4-II	$R^5 - IV$	R ⁶ -VI	$R^3 - XVI$	$R^4 - IV$	R ⁵ –VI	R ⁶ -II
$R^3 - XVI$	R ⁴ -II	$R^5 - IV$	R ⁶ -VII	R ³ –XVI	R ⁴ –IV	R ⁵ -VI	R ⁶ -III
$R^3 - XVI$	R^4-II	R ⁵ V	R ⁶ – I	R ³ –XVI	$R^4 - IV$	R ⁵ –VI	$R^6 - IV$
$R^3 - XVI$	R^4-II	R ⁵ –V	R^6-II	R ³ –XVI	$R^4 - IV$	R ⁵ –VI	R ⁶ –V
$R^3 - XVI$	R^4-II	$R^5 - V$	R ⁶ -III	R ³ –XVI	$R^4 - IV$	R ⁵ –VI	R ⁶ -VI
R ³ -XVI	R ⁴ -II	R ⁵ – V	R ⁶ – IV	R ³ –XVI	$R^4 - IV$	$R^5 - VI$	R ⁶ -VII
R^3-XVI	R^4-II	R^5-V	$R^6 - V$	R^3-XVI	$R^4 - V$	R^5-I	R ⁶ -VII

R ³ -XVI R ³ -XVI	R ⁴ -II R ⁴ -II	$R^{5}-V$ $R^{5}-V$ $R^{5}-VI$ $R^{5}-VI$ $R^{5}-VI$ $R^{5}-VI$ $R^{5}-VI$ $R^{5}-VI$ $R^{5}-VI$ $R^{5}-VI$	R ⁶ -VI R ⁶ -VII R ⁶ -I R ⁶ -II R ⁶ -IV R ⁶ -V R ⁶ -VI R ⁶ -VII	R ³ – X R ³ – X		R ⁵ – IV R ⁵ – V R ⁵ – V R ⁵ – VI R ⁵ – VI	R ⁶ -I R ⁶ -II R ⁶ -IV R ⁶ -V R ⁶ -VI R ⁶ -I R ⁶ -I R ⁶ -I
--	--	---	--	--	--	---	---

本発明化合物は、例えば以下の方法により製造することが出来る。

[0167]

製造法A

[0168]

【化10】

$$(Y)_{n} \qquad R^{4} \qquad R^{5} \qquad H-N$$

$$(X)_{m} \qquad (Y)_{n} \qquad R^{7} \qquad R^{3}$$

$$(X)_{m} \qquad (X)_{m} \qquad (Y)_{n} \qquad R^{7} \qquad R^{3}$$

$$(X)_{m} \qquad (X)_{m} \qquad$$

[0169]

一般式(4) [式中、W¹, W², X, Y, R⁴, R⁵, R⁶, m及びnは前記と同じ意味を表す。] で 表される化合物と一般式(5) [式中、 R^2 及び R^3 は前記と同じ意味を表す。] で表される化 合物とを、該反応に対して不活性な溶媒中又は無溶媒にて、必要ならば触媒の存在下、反 応させることにより、一般式(1)において \mathbb{R}^1 が水素原子である一般式(1-1) [式中、 \mathbb{W}^1 , \mathbb{W}^2 , X, Y, R^2 , R^3 , R^4 , R^5 , R^6 , m及びnは前記と同じ意味を表す。] で表される本発明化合 物を得ることができる。

[0170]

反応基質の量は、一般式(4)で表される化合物1当量に対して1~50当量の一般式(5) で表される化合物を用いることができる。

[0171]

溶媒を用いる場合、用いられる溶媒としては反応の進行を阻害しないものであれば何で もよく、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタ ン等の脂肪族炭化水素類、シクロヘキサン等の脂環式炭化水素類、クロロベンゼン、ジク ロロベンゼン等の芳香族ハロゲン化炭化水素類、ジクロロメタン、クロロホルム、四塩化 炭素、1,2-ジクロロエタン、1,1,1-トリクロロエタン、トリクロロエチレン、テトラクロ ロエチレン等の脂肪族ハロゲン化炭化水素類、ジエチルエーテル、1,2-ジメトキシエタン 、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、酢酸エチル、プロピオン酸エチ ル等のエステル類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリ ドン等のアミド類、ギ酸、酢酸、プロピオン酸等のカルボン酸類、トリエチルアミン、ト リプチルアミン、N、N-ジメチルアニリン等のアミン類、ピリジン、ピコリン等のピリ ジン類、メタノール、エタノール、エチレングリコール等のアルコール類、アセトニトリ

ル、ジメチルスルホキシド、スルホラン、1,3-ジメチル-2-イミダゾリジノン及び水等が 挙げられる。これらの溶媒は単独で用いても、これらのうちの2種類以上を混合して用い てもよい。

[0172]

触媒を用いる場合、反応の触媒としては、例えば塩酸、硫酸、硝酸等の鉱酸類、ギ酸、 酢酸、プロピオン酸、トリフルオロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、p-ト ルエンスルホン酸等の有機酸類、トリエチルアミン塩酸塩、ピリジン塩酸塩等のアミン類 の酸付加塩、塩化亜鉛、ヨウ化亜鉛、四塩化チタン、塩化セリウム、イッテルビウムトリ フレート、三フッ化ホウ素-エーテル錯体等のルイス酸を、一般式(4)で表される化合物に 対して0.001~1当量用いることができる。

[0173]

反応温度は-60℃から反応混合物の還流温度までの任意の温度を設定することができ 、反応時間は、反応基質の濃度、反応温度によって変化するが、通常5分から100時間 の範囲で任意に設定できる。

[0174]

一般的には、例えば一般式(4)で表される化合物1当量に対して1~10当量の一般式(5)で表される化合物を用い、無溶媒か、或いはテトラヒドロフラン又は1,4-ジオキサン等 の溶媒を用い、50℃から反応混合物の還流温度の温度範囲で、30分から24時間反応 を行なうのが好ましい。

[0175]

製造法B

[0176]

【化11】

$$(Y)_{n} R^{4} R^{5} (Y)_{n} (Y)_{n} R^{4} R^{5} (Y)_{n} (Y)_{n} R^{4} R^{5} (Y)_{n} (Y)_{n} (Y)_{n} R^{4} R^{5} (Y)_{n} (Y)_{n}$$

[0177]

一般式(6) [式中、 \mathbb{W}^1 , \mathbb{X} , \mathbb{Y} , \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , \mathbf{m} 及び \mathbf{n} は前記と同じ意味を表す。] で表さ れる化合物と一般式(5) [式中、 R^2 及び R^3 は前記と同じ意味を表す。] で表される化合物 とを製造法Aと同様な条件下反応させることにより、一般式(1)において₩ が酸素原子であ り、 R^1 が水素原子である一般式(1-2) [式中、 W^1 , X, Y, R^2 , R^3 , R^4 , R^5 , R^6 , m及Unは 前記と同じ意味を表す。〕で表される本発明化合物を得ることができる。

[0178]

製造法C

[0179]

$$(Y)_{n} \qquad R^{4} \qquad R^{5}$$

$$(X)_{m} \qquad N-R^{3}$$

$$(X)_{m} \qquad HN \qquad R^{3}$$

$$(1-3)$$

[0180]

一般式(7) [式中、 W^2 , X, R^3 及びmは前記と同じ意味を表す。] で表される化合物と一般式(8) [式中、Y, R^1 , R^4 , R^5 , R^6 及びnは前記と同じ意味を表す。] で表される化合物とを製造法Aと同様な条件下反応させることにより、一般式(1)において W^2 が酸素原子であり、 R^2 が水素原子である一般式(1-3) [式中、 W^2 , X, Y, R^1 , R^3 , R^4 , R^5 , R^6 , m及びnは前記と同じ意味を表す。] で表される本発明化合物を得ることができる。

[0181]

製造法D

[0182]

【化13】

$$(Y)_{n} \quad R^{4} \quad R^{5} \quad R^{6} \quad H-N$$

$$(X)_{m} \quad (Y)_{n} \quad R^{4} \quad R^{5} \quad R^{6}$$

$$(Y)_{n} \quad R^{4} \quad R^{5} \quad R^{6}$$

$$(X)_{m} \quad (X)_{m} \quad (X)_{m$$

[0183]

一般式(9) [式中、 \mathbb{W}^1 , X, Y, \mathbb{R}^1 , \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , m及Unは前記と同じ意味を表す。] で表される化合物と一般式(5) [式中、 \mathbb{R}^2 及UR 3 は前記と同じ意味を表す。] で表される化合物とを、該反応に対して不活性な溶媒中又は無溶媒にて、必要ならば塩基の存在下、縮合剤を用いて反応させることにより、一般式(1)において \mathbb{W}^2 が酸素原子である一般式(1-4) [式中、 \mathbb{W}^1 , X, Y, \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , m及Unは前記と同じ意味を表す。 \mathbb{R}^5 で表される本発明化合物を得ることができる。

[0184]

反応基質の量は、一般式(9)で表される化合物 1 当量に対して 1 ~ 1 0 0 当量の一般式(5)で表される化合物を用いることができる。

[0185]

縮合剤は、通常のアミド合成に使用されるものであれば特に制限はないが、例えば向山 試薬 (2-クロロ-N-メチルピリジニウム アイオダイド)、DCC (1,3-ジシクロヘキシルカ ルボジイミド)、WSC $(1-x+\nu-3-(3-3)x+\nu)$ ではいり - カルボジイミド 塩酸塩)、CDI (カルボニルジイミダゾール)、ジメチルプロピニルスルホニウム ブロマイド、プロパルギルトリフェニルホスホニウム ブロマイド、DEPC (シアノ燐酸ジェチル)等を、一般式(9)で表される化合物に対して $1\sim4$ 当量用いることができる。

[0186]

溶媒を用いる場合、用いられる溶媒としては反応の進行を阻害しないものであれば何でもよく、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、シクロヘキサン等の脂環式炭化水素類、クロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン化炭化水素類、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、1,1,1-トリクロロエタン、トリクロロエチレン、テトラクロエチレン等の脂肪族ハロゲン化炭化水素類、ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、酢酸エチル、プロピオン酸エチル等のエステル類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド類、トリエチルアミン、トリブチルアミン、N、N-ジメチルアニリン等のアミン類、ピリジン、ピコリン等のピリジン類、アセトニトリル及びジメチルスルホキシド等が挙げられる。これらの溶媒は単独で用いても、これらのうちの2種類以上を混合して用いてもよい。

[0187]

塩基の添加は必ずしも必要ではないが、塩基を用いる場合、用いられる塩基としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等のアルカリ金属炭酸塩、トリエチルアミン、トリブチルアミン、N、N-ジメチルアニリン、ピリジン、4-(ジメチルアミノ)ピリジン、イミダゾール、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン等の有機塩基等を、一般式(9)で表される化合物に対して $1\sim4$ 当量用いることができる。

[0188]

反応温度は-60℃から反応混合物の還流温度までの任意の温度を設定することができ、反応時間は、反応基質の濃度、反応温度によって変化するが、通常5分から100時間の範囲で任意に設定できる。

[0189]

一般的には、例えば一般式(9)で表される化合物 1 当量に対して $1\sim2$ 0 当量の一般式(5)で表される化合物及び $1\sim4$ 当量のWSC $(1-x+\nu-3-(3-y+\nu)-1)$ プロピル) - カルボジイミド 塩酸塩)、CDI (カルボニルジイミダゾール) 等の縮合剤を用い、必要ならば $1\sim4$ 当量の炭酸カリウム、トリエチルアミン、ピリジン、 $4-(y+\nu)$ ジン等の塩基存在下にて、無溶媒か又はジクロロメタン、クロロホルム、ジエチルエーテル、テトラヒドロフラン、 $1,4-y+\nu$ が存む。

[0190]

製造法E

[0191]

COOH

$$\begin{array}{c}
(Y)_n & R^4 & R^5 \\
R^1 & & & \\
R^1 & & & \\
(8) & & & \\
(X)_m & R^2 & R^3 \\
(10) & & & \\
(1-5) & & & \\
\end{array}$$
 $(Y)_n & R^4 & R^5 \\
R^1 & & & \\
R^1 & & & \\
R^1 & & & \\
(X)_m & & & \\
(1-5) & & & \\
\end{array}$
 $(Y)_n & R^4 & R^5 \\
R^5 & & & \\
(X)_m & & & \\
(1-5) & & & \\
\end{array}$

[0192]

一般式(10) [式中、 W^2 , X, R^2 , R^3 及びmは前記と同じ意味を表す。] で表される化合物と一般式(8) [式中、Y, R^1 , R^4 , R^5 , R^6 及びnは前記と同じ意味を表す。] で表される化合物とを製造法Dと同様な条件下反応させることにより、一般式(1)において W^1 が酸素原子である一般式(1-5) [式中、 W^2 , X, Y, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , m及びnは前記と同じ意味を表す。] で表される本発明化合物を得ることができる。

[0193]

製造法F

[0194]

【化15】

$$(X)_{m} \quad \stackrel{H}{\overset{(1)}}{\overset{(1)}}{\overset{(1)}{\overset{(1)}{\overset{(1)}{\overset{(1$$

[0195]

一般式(11) [式中、X, R^3 及Vmは前記と同じ意味を表す。] で表される化合物を文献記載の公知の方法、例えばケミカル・レビューズ[Chem. Rev.] 1990年、90巻、879 頁等に記載の方法に準じて位置選択的リチオ化後、一般式(12) [式中、 W^1 , Y, R^4 , R^5 , R^6 及Vnは前記と同じ意味を表す。] で表される化合物と反応させることにより、一般式(1)において W^2 が酸素原子であり、 R^1 及VR 2 が水素原子である一般式(1-6) [式中、 W^1 , X, Y, R^3 , R^4 , R^5 , R^6 , m及Vnは前記と同じ意味を表す。] で表される本発明化合物を得ることができる。なお、R-Liはブチルリチウム等のアルキルリチウム試薬を表す。

[0196]

製造法G

[0197]

[
$$\{1816\}$$
]

(Y)_n \mathbb{R}^4 \mathbb{R}^5

(X)_m \mathbb{R}^6

(13)

[0198]

一般式(13) [式中、X, Y, R⁴, R⁵, R⁶, m及びnは前記と同じ意味を表す。] で表される化合物と一般式(14) [式中、 \mathbb{W}^2 及び \mathbb{R}^3 は前記と同じ意味を表す。] で表される化合物とを製造法Fと同様な条件下反応させることにより、一般式(1)において、 \mathbb{W}^1 が酸素原子であり、 \mathbb{R}^1 及び \mathbb{R}^2 が水素原子である一般式(1-7) [式中、 \mathbb{W}^2 , X, Y, \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , m及びnは前記と同じ意味を表す。] で表される本発明化合物を得ることができる。なお、 \mathbb{R} -Liはブチルリチウム等のアルキルリチウム試薬を表す。

[0199]

製造法H

[0200]

【化17】

$$(Y)_{n} \quad R^{4} \quad R^{5}$$

$$R^{1} - J^{1} \quad R^{1}$$

$$(X)_{m} \quad R^{2} = N$$

$$R^{3} \quad (1-8)$$

$$(Y)_{n} \quad R^{4} \quad R^{5}$$

$$R^{1} \quad N$$

$$R^{1} \quad N$$

$$(X)_{m} \quad R^{2} = N$$

$$R^{2} = N$$

$$R^{3} \quad (1-5)$$

[0201]

一般式(1)において \mathbb{W}^1 が酸素原子であり、 \mathbb{R}^1 が水素原子である一般式(1-8) [式中、 \mathbb{W}^2 , \mathbb{X} , \mathbb{Y} , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , m及びnは前記と同じ意味を表す。] で表される本発明化合物と一般式(15) [式中、 \mathbb{R}^1 は前記と同じ意味を表し、 \mathbb{J}^1 は塩素原子、臭素原子、ヨウ素原子、 $\mathbb{C}_1 \sim \mathbb{C}_4$ アルキルカルボニルオキシ基(例えば、ピバロイルオキシ基)、 $\mathbb{C}_1 \sim \mathbb{C}_4$ アルキルスルホネート基(例えば、メタンスルホニルオキシ基)、 $\mathbb{C}_1 \sim \mathbb{C}_4$ アルキルスルホネート基(例えば、トリフルオロメタンスルホニルオキシ基)、アリールスルホネート基(例えば、ベンゼンスルホニルオキシ基、 \mathbb{P} -トルエンスルホニルオキシ基)又はアゾリル基(例えば、イミダゾール-1-イル基)のような良好な脱離基を表す。] で表される化合物とを、必要ならば塩基の存在下、必要ならば該反応に対して不活性な溶媒を用いて反応させることにより、一般式(1)において \mathbb{W}^1 が酸素原子である一般式(1-5) [式中、 \mathbb{W}^2 , \mathbb{X} , \mathbb{Y} , \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , m及びnは前記と同じ意味を表す。] で表される本発明化合物を得ることができる。

[0202]

反応基質の量は、一般式(1-8)で表される化合物1当量に対して1~50当量の一般式(15)で表される化合物を用いることができる。

[0203]

溶媒を用いる場合、用いられる溶媒としては反応の進行を阻害しないものであれば何でもよく、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類、ヘキサン、ヘプタン等の脂肪族炭化水素類、シクロヘキサン等の脂環式炭化水素類、クロロベンゼン、ジクロロベンゼン等の芳香族ハロゲン化炭化水素類、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン、1,1,1-トリクロロエタン、トリクロロエチレン、テトラクロロエチレン等の脂肪族ハロゲン化炭化水素類、ジエチルエーテル、1,2-ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、酢酸エチル、プロピオン酸エチル等のエステル類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド類、トリエチルアミン、トリブチルアミン、N、N-ジメチルアニリン等のアミン類、ピリジン、ピコリン等のピリジン類、メタノール、エタノール、エチレングリコール等のアルコール類、アセトニトリル、ジメチルスルホキシド、スルホラン、1,3-ジメチル-2-イミダゾリジノン及び水等が挙げられる。これらの溶媒は単独で用いても、これらのうちの2種類以上を混合して用いてもよい。

[0204]

塩基を用いる場合、用いられる塩基としては、例えば水素化ナトリウム、水素化カリウム等のアルカリ金属水素化物、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、ナトリウムエトキシド、カリウムターシャリーブトキシド等のアルカリ金属アルコキシド類、リチウムジイソプロピルアミド、リチウムヘキサメチルジシラザン、ナトリウムアミド等のアルカリ金属アミド類、ターシャリーブチルリチウム等の有機金属化合物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム等のアルカリ金属炭酸塩、トリエチルアミン、トリブチルアミン、N,N-ジメチルアニリン、ピリジン、4-(ジメチルアミノ)ピリジン、イミダゾール、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン等の有機塩基等を、一般式(1-8)で表される化合物に対して1~4当量用いることができる。

[0205]

反応温度は-60℃から反応混合物の還流温度までの任意の温度を設定することができ、反応時間は、反応基質の濃度、反応温度によって変化するが、通常5分から100時間の範囲で任意に設定できる。

[0206]

一般的には、例えば一般式(1-8)で表される化合物 1 当量に対して 1 ~ 1 0 当量の一般式(15)で表される化合物を用い、テトラヒドロフラン、1,4-ジオキサン、アセトニトリルやN、N-ジメチルホルムアミド等の極性溶媒中、必要ならば塩基として水素化ナトリウム、カリウムターシャリープトキシド、水酸化カリウム、炭酸カリウム、トリエチルアミンやピリジン等を一般式(1-8)で表される化合物 1 当量に対して 1 ~ 3 当量用いて、0~90℃の温度範囲で、10分から24時間反応を行なうのが好ましい。

[0207]

製造法I

[0208]

[代18]
$$(Y)_n$$
 R^4 R^5 $(Y)_n$ R^4 R^5 R^6 R^2-J^1 R^1 R^1 R^2 R^3 R^3 R^3 R^4 R^5 R^6 R^6 R^2-J^1 R^1 R^3 R^3 R^3 R^4 R^5 R^6 R^6 R^6 R^6 R^7 R^8 R^8

[0209]

一般式(1)において \mathbb{W}^2 が酸素原子であり、 \mathbb{R}^2 が水素原子である一般式(1-9) [式中、 \mathbb{W}^1 , X, Y, \mathbb{R}^1 , \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , m及Unは前記と同じ意味を表す。] で表される本発明化合物と一般式(16) [式中、 \mathbb{R}^2 及U1 は前記と同じ意味を表す。] で表される化合物とを製造法Hと同様な条件下反応させることにより、一般式(1)において \mathbb{W}^2 が酸素原子である一般式(1-4) [式中、 \mathbb{W}^1 , X, Y, \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , m及Unは前記と同じ意味を表す。] で表される本発明化合物を得ることができる。

[0210]

製造法A~製造法Iにおいて、反応終了後の反応混合物は、直接濃縮、又は有機溶媒に溶解し、水洗後濃縮、又は氷水に投入、有機溶媒抽出後濃縮といった通常の後処理を行ない、目的の本発明化合物を得ることができる。また、精製の必要が生じたときには、再結晶、カラムクロマトグラフ、薄層クロマトグラフ、液体クロマトグラフ分取等の任意の精製方法によって分離、精製することができる。

[0211]

製造法Aにおいて本発明化合物を製造するための原料化合物である一般式(4)において \mathbb{W}^1 及び \mathbb{W}^2 が酸素原子でである一般式(4-1)で表される化合物、及び一般式(4-1)において(\mathbb{X}) が 3 位ニトロ基である一般式(2)で表される化合物は、次のようにして合成できる。

[0212]

反応式1

[0213]

[代19]
$$H_{2}N \longrightarrow \begin{array}{c} (Y)_{n} \\ = \\ -\\ (X)_{m} \end{array}$$

$$(8-1) \longrightarrow \begin{array}{c} (X)_{m} \\ (X)_{m} \end{array}$$

$$(4-1)$$

[0214]

すなわち、一般式(17) [式中、X及びmは前記と同じ意味を表す。] で表される化合物と一般式(8)において R^1 が水素原子である一般式(8-1) [式中、Y, R^4 , R^5 , R^6 及びnは前記と同じ意味を表す。] で表される化合物とを文献記載の公知の方法、例えばベリヒテ・デア・ドイッチェン・ヘミッシェン・ゲゼルシャフト [Ber. Dtsch. Chem. Ges.] 1907年、40巻、3177頁、ジャーナル・オブ・ザ・ケミカル・ソサイエティー [J. Chem. Soc.] 1954年、2023頁、ジャーナル・オブ・ザ・ケミカル・ソサイエティー・パーキン・トランスアクションズ、1[J. Chem. Soc. Perkin Trans. 1] 1994年、2975頁等に記載の方法に準じて反応させることにより、一般式(4)において W^1 及び W^2 が酸素原子である一般式(4-1) [式中、X, Y, W^4 , W^5 , W^6 , m及びnは前記と同じ意味を表す。] で表される化合物を容易に合成することができる。

[0215]

また、市販の3 ーニトロフタル酸無水物(17-1)と一般式(3) [式中、 Y^1 , Y^2 , R^4 , R^5 , R^6 及Un1は前記と同じ意味を表す。] で表される化合物とを同様な条件下反応させることにより、一般式(2) [式中、X, Y^1 , Y^2 , R^4 , R^5 , R^6 , m及Un1は前記と同じ意味を表す。] で表される化合物を合成することができる。

[0216]

製造法A、製造法B及び製造法Dで用いられる一般式(5)で表される化合物の或るものは公知化合物であり、一部は市販品として入手できる。また、それ以外のものも、例えばケミカル・アンド・ファーマシューティカル・プレティン [Chem. Pharm. Bull.] 1982年、30巻、1921頁、ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイエティー[J. Am. Chem. Soc.] 1986年、108巻、3811頁、国際特許出願公報(WO 01/23350号公報)等に記載の方法及び文献記載のその他1級又は2級アルキルアミン類それぞれの一般的な合成方法に準じて合成することができる。

[0217]

製造法Bにおいて、本発明化合物を製造するための原料化合物である、一般式(6)で表される化合物は、次のようにして合成できる。

[0218]

反応式2

[0219]

【化20】

$$(Y)_n$$
 R^4 R^5 O R^6 $(Y)_n$ R^4 R^5 O R^6 $(Y)_m$ $(Y)_n$ $(Y)_n$

[0220]

すなわち、一般式(9)において R^1 が水素原子である一般式(9-1) [式中、 W^1 , X, Y, R^4 , R^5 , R^6 , m及びnは前記と同じ意味を表す。] で表される化合物を文献記載の一般的な脱水環化によるイソイミドの合成反応、例えばジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイエティー[J. Am. Chem. Soc.] 1975年、97巻、5582頁、ジャーナル・オブ・メディシナル・ケミストリー [J. Med. Chem.] 1967年、10巻、982頁、ザ・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1963年、28巻、2018頁等に記載の方法等に準じて環化することにより、一般式(6) [式中、 W^1 , X, Y, R^4 , R^5 , R^6 , m及びnは前記と同じ意味を表す。] で表される化合物を容易に合成することができる。

[0221]

製造法Cにおいて、本発明化合物を製造するための原料化合物である、一般式(7)で表される化合物は、次のようにして合成できる。

[0222]

反応式3

[0223]

【化21】

COOH
$$(X)_{m} \quad HN \\ R^{3}$$

$$(10-1) \quad (7)$$

[0224]

すなわち、一般式(10)において R^2 が水素原子である一般式(10-1) [式中、 W^2 , X, R^3 及 U_m は前記と同じ意味を表す。] で表される化合物を反応式 2 と同様に反応させることにより、一般式(7) [式中、 W^2 , X, R^3 及 U_m は前記と同じ意味を表す。] で表される化合物を容易に合成することができる。

[0225]

製造法C及び製造法Eで用いられる一般式(8)で表される化合物及び一般式(3)で表される 出証特2004-3099262 化合物は、例えば下記の反応式4~反応式7で表される方法等を用いて合成することがで きる。

[0226] 反応式4 [0227]【化22】

[0228]

一般式(18) [式中、Y, R^1 , R^4 及びnは前記と同じ意味を表し、Pはアセチル基、ピバロ イル基、ベンゾイル基、ターシャリープトキシカルボニル基、ベンジルオキシカルボニル 基等の一般に用いられるアミノ基の保護基を表す。] で表される化合物と、一般式(19) [式中、R⁵は前記と同じ意味を表す。] で表されるリチウム反応剤又は一般式(20) [式中、 \mathbb{R}^5 は前記と同じ意味を表し、 \mathbb{J}^2 は臭素原子、ヨウ素原子等のハロゲン原子を表す。] で表 されるグリニャール反応剤とを文献記載の公知の方法、例えば、ヘテロサイクルズ [Hete rocycles] 1994年、39巻、801頁、ジャーナル・オブ・ジ・アメリカン・ケミカ ル・ソサイエティー[J. Am. Chem. Soc.] 1988年、110巻、1862頁、テトラヘ ドロン [Tetrahedron] 1960年、11巻、252頁、テトラヘドロン・レターズ [Tet rahedron Lett.] 1995年、36巻、9117頁等に記載の方法に準じて反応させた後 、各々の保護基について一般的に用いられる方法で脱保護することにより、一般式(8)に おいて R^6 が水素原子である一般式(8-2) [式中、Y, R^1 , R^4 , R^5 及Unは前記と同じ意味を 表す。〕で表される化合物を得ることができる。

[0229]

また、一般式(21) [式中、Y, R^1 , R^5 , n及びPは前記と同じ意味を表す。] で表される 化合物と、一般式(22) [式中、 R^4 は前記と同じ意味を表す。] で表されるリチウム反応剤 又は一般式(23) [式中、 R^4 及び J^2 は前記と同じ意味を表す。] で表されるグリニャール反 応剤とを上記と同様な条件下反応させることによっても一般式(8-2)で表される化合物を 得ることができる。

[0230]

ここで用いられる一般式(19)及び一般式(22)で表されるリチウム反応剤の或るものは公 知化合物であり、一部は市販品として入手できる。また、それ以外のものも文献記載の一 般的なハロゲンーメタル交換反応、例えばプレティン・オブ・ザ・ケミカル・ソサイエテ ィー・オブ・ジャパン [Bull. Chem. Soc. Jpn.] 1990年、63巻、3719頁、ザ

・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1983年、48巻、1449頁等に記載の方法に準じて対応する公知のハロゲン化物から容易に合成することができる。

[0231]

また、一般式 (20) 及び一般式 (23) で表されるグリニャール反応剤の或るものは公知化合物であり、一部は市販品として入手できる。また、それ以外のものも文献記載の一般的なグリニャール試薬の調製方法、例えばアンゲバンテ・ヘミー・インターナショナル・エディション・イン・イングリッシュ [Angew. Chem. Int. Ed. Engl.] 1969年、8巻、279頁、ザ・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1989年、54巻、4413頁等に記載の方法に準じて対応する公知のハロゲン化物から容易に合成することができる。

【0232】 反応式5 【0233】

[1k 2 3]

CF₃
$$\stackrel{\bullet}{S}$$
 $\stackrel{\bullet}{N}$ $\stackrel{\bullet}{N}$ $\stackrel{\bullet}{Ph}$ $\stackrel{\bullet}{CF_3}$ $\stackrel{\bullet}{R^5}$ $\stackrel{\bullet}{N}$ $\stackrel{$

[0234]

一般式(21) [式中、Y, R^1 , R^5 , n及びPは前記と同じ意味を表す。] で表される化合物を、式(24)で表される化合物と文献記載の公知の方法、例えば、シンレット [Synlett] 2003年、233頁に記載の方法に準じて反応させるか、或いは公知の一般式(25) [式中、 J^3 は水素原子、臭素原子、トリメチルシリル基等を表す。] で表される化合物と文献記載の公知の方法、例えば、ザ・ジャーナル・オブ・オーガニック・ケミストリー [J. 0 rg. Chem.] 2000年、65巻、8848頁及び2001年、66巻、1436頁、テトラヘドロン [Tetrahedron] 1989年、45巻、1423頁等に記載の方法に準じて反応させた後、各々の保護基について一般的に用いられる方法で脱保護することにより、一般式(8)において R^4 がトリフルオロメチル基であり、 R^6 が水素原子である一般式(8-3) [式中、Y, R^1 , R^5 及びnは前記と同じ意味を表す。] で表される化合物を得ることができる

【0235】 反応式6 【0236】

[0237]

一般式(26) [式中、Y, R^1 , n, J^2 及びPは前記と同じ意味を表す。] で表される化合物を文献記載の一般的な方法、例えばリチオ化した後、一般式(27) [式中、 R^4 及び R^5 は前記と同じ意味を表す。] で表される化合物と反応させるテトラヘドロン・レターズ [Tetrahedron Lett.] 1995年、36巻、9117頁等に記載の方法、或いはグリニャール反応剤を形成した後、一般式(27)で表される化合物と反応させるテトラヘドロン [Tetrahedron] 1960年、11巻、252頁、ザ・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1988年、53巻、754頁等に記載の方法に準じて反応させた後、各々の保護基について一般的に用いられる方法で脱保護することにより、一般式(8)において R^6 が水素原子である一般式(8-2) [式中、Y, R^1 , R^4 , R^5 及びnは前記と同じ意味を表す。] で表される化合物を得ることができる。なお、R-Liはブチルリチウム等のアルキルリチウム試薬を表す。

[0238]

反応式7

[0239]

【化25】

[0240]

一般式(28) [式中、Y, R^1 , R^4 , R^5 , n及びPは前記と同じ意味を表す。] で表される化合物と一般式(29) [式中、 R^6 及び J^1 は前記と同じ意味を表す。] で表される化合物とを製造法Hと同様な条件下反応させた後、各々の保護基について一般的に用いられる方法で脱保護することにより、一般式(8) [式中、Y, R^1 , R^4 , R^5 及びnは前記と同じ意味を表し、 R^6 は水素原子以外の前記の意味を表す。] で表される化合物を得ることができる。

[0241]

ここで用いられる一般式(28)で表される化合物は、反応式4、反応式5及び反応式6において得られる脱保護前の中間体である。

[0242]

製造法Dにおいて、本発明化合物を製造するための原料化合物である、一般式(9)で表される化合物は、例えば下記の反応式8又は反応式9で表される方法等を用いて合成することができる。

[0243]

反応式8

[0244]

[
$$\{126\}$$
]

(Y)_n \mathbb{R}^4 \mathbb{R}^5

(Y)_n \mathbb{R}^4 \mathbb{R}^5

(Y)_n \mathbb{R}^4 \mathbb{R}^5

(X)_m \mathbb{R}^1 \mathbb{R}^1 \mathbb{R}^5

(Y)_n \mathbb{R}^4 \mathbb{R}^5 \mathbb{R}^6

(X)_m \mathbb{R}^1 \mathbb{R}^1

[0245]

一般式(17) [式中、X及びmは前記と同じ意味を表す。] で表される化合物と一般式(8) [式中、Y, R^1 , R^4 , R^5 , R^6 及びnは前記と同じ意味を表す。] で表される化合物とを製造 法Aと同様な条件下反応させることにより、一般式(9)においてW1が酸素原子である一般式 (9-2) [式中、X, Y, R^1 , R^4 , R^5 , R^6 , m及Unは前記と同じ意味を表す。] で表される化 合物を得ることができる。

[0246]

反応式9

[0247]

【化27】

$$(Y)_{n} R^{4} R^{5} (Y)_{n} (Y)_{n$$

[0248]

一般式(13)[式中、X, Y, R^4 , R^5 , R^6 , ${
m m}$ 及び ${
m n}$ は前記と同じ意味を表す。]で表される 化合物を文献記載の公知の方法、例えば、ケミカル・レビューズ[Chem. Rev.] 1990年 、90巻、879頁等に記載の方法に準じて、位置選択的リチオ化後、炭酸ガスと反応さ せることにより、一般式(9)においてWIが酸素原子であり、RIが水素原子である一般式(9-3) [式中、X, Y, R⁴, R⁵, R⁶, m及びnは前記と同じ意味を表す。] で表される化合物を得 ることができる。なお、R-Liはプチルリチウム等のアルキルリチウム試薬を表す。

[0249]

製造法Eにおいて、本発明化合物を製造するための原料化合物である、一般式(10)で表 される化合物は、例えば下記の反応式10又は反応式11で表される方法等を用いて合成 できる。

[0250]

反応式10

[0251]

【化28】

[0252]

一般式(17) [式中、X及びmは前記と同じ意味を表す。] で表される化合物と一般式(5) [式中、 R^2 及び R^3 は前記と同じ意味を表す。] で表される化合物とを製造法Aと同様な条件下反応させることにより、一般式(10)において R^2 が酸素原子である一般式(10-2) [式中、X, R^2 , R^3 及びmは前記と同じ意味を表す。] で表される化合物を得ることができる。

【0253】 反応式11 【0254】

【化29】

$$(X)_{m} \stackrel{H}{\overset{||}{O}} \qquad (11)$$

$$(X)_{m} \stackrel{H}{\overset{||}{O}} \qquad (10-3)$$

$$(X)_{m} \stackrel{H}{\overset{||}{O}} \qquad (10-3)$$

[0255]

一般式(11) [式中、X, R^3 及びmは前記と同じ意味を表す。] で表される化合物を反応式 1 2 と同様に反応させることにより、一般式(10)において \mathbb{R}^2 が酸素原子であり、 R^2 が水素原子である一般式(10-3) [式中、X, R^3 及びmは前記と同じ意味を表す。] で表される化合物を得ることができる。なお、R-Liはブチルリチウム等のアルキルリチウム試薬を表す。

[0256]

製造法Fにおいて、本発明化合物を製造するための原料化合物である一般式(11)で表される化合物の或るものは公知化合物であり、一部は市販品として入手できる。また、それ以外のものも文献記載の公知の方法、例えばブレティン・オブ・ザ・ケミカル・ソサイエティー・オブ・ジャパン [Bull. Chem. Soc. Jpn.] 1985年、58巻、3291頁、ザ・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1991年、56巻、2395頁、テトラヘドロン・レターズ [Tetrahedron Lett.] 1994年、35巻、2113頁、国際特許出願公報(WO 98/23581号公報)等に記載の方法に準じて容易に合成することができる。

[0257]

製造法Fで用いられる一般式(12)で表される化合物は、次のようにして合成できる。

[0258]

反応式12

[0259]

【化30】

[0260]

すなわち、一般式(8)において R^1 が水素原子である一般式(8-1) [式中、Y, R^4 , R^5 , R^6 及びnは前記と同じ意味を表す。] で表される化合物と一般式(30) [式中、 W^1 は酸素原子又は硫黄原子を表す。] で表される市販のホスゲン、チオオスゲン又はそれらの等価体とを文献記載の公知の方法、例えばアンゲバンテ・ヘミー・インターナショナル・エディション・イン・イングリッシュ[Angew. Chem. Int. Ed. Engl.] 1987年、26 巻、894 頁及び1995年、34 巻、2497 頁、ザ・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1976年、41 巻、2070 頁、シンセシス [Synthesis] 1988年、990 頁、テトラヘドロン・レターズ [Tetrahedron Lett.] 1997年、38 巻、919 頁等に記載の方法に準じて反応させることにより、一般式(12) [式中、 W^1 , Y, W^1 , W^2 , W^3 , W^4 , W^5 , W^6 ,

[0 2 6 1]

製造法Gにおいて、本発明化合物を製造するための原料化合物である、一般式(13)で表される化合物は、次のようにして合成できる。

[0 2 6 2]

反応式13

[0263]

【化31】

$$(X)_{m}$$
 $(X)_{m}$
 $(X)_{m}$

[0264]

すなわち、一般式(31) [式中、X及びmは前記と同じ意味を表す。] で表される化合物と一般式(8)において \mathbb{R}^1 が水素原子である一般式(8-1) [式中、Y, \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 及びnは前記と同じ意味を表す。] で表される化合物とを製造法Dと同様な条件下反応させるか、或いは一般式(31)で表される化合物を公知の方法(例えば、塩化チオニル、五塩化リン又はオキザリルクロライド等のクロル化剤)を用いて対応するカルボン酸クロライドした後に、一般式(8-1)で表される化合物と反応させることにより、一般式(13) [式中、X, Y, \mathbb{R}^4 , \mathbb{R}^5 , \mathbb{R}^6 , \mathbb{R}^6 , \mathbb{R}^6 0 がのは前記と同じ意味を表す。] で表される化合物を容易に合成することができる。

[0265]

ここで用いられる一般式(31)で表される化合物は公知化合物であり、一部は市販品として入手できる。

[0266]

製造法Gで用いられる一般式(14)で表される化合物の或るものは公知化合物であり、一部は市販品として入手できる。また、それ以外のものも文献記載の一般的な合成方法、例えばザ・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1996年、61巻、3883頁、3929頁及び6575頁、テトラヘドロン・レターズ [Tetrah edron Lett.] 1999年、40巻、363頁及び6121頁等に記載の方法に準じて容易に合成することができる。

[0267]

製造法Hで用いられる一般式(15)で表される化合物、製造法Iで用いられる一般式(16)で表される化合物及び反応式7で用いられる一般式(29)で表される化合物の或るものは公知化合物であり、一部は市販品として入手できる。また、それ以外のものも文献記載の一般的な合成方法、例えばケミストリー・レターズ [Chem. Lett.] 1976年、373頁、ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイエティー[J. Am. Chem. Soc.] 1964年、86巻、4383頁、ザ・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1976年、41巻、4028頁及び1978年、43巻、3244頁、オーガニック・シンセシス[Org. Synth.] 1988年、コレクティブボリューム6巻、101頁、テトラヘドロン・レターズ [Tetrahedron Lett.] 1972年、4339頁、英国特許(GB2,161,802号公報)、ヨーロッパ特許(EP0,051,273号公報)等に記載の方法に準じて容易に合成することができる。

[0268]

一般式(17)で表される化合物の或るものは公知化合物であり、一部は市販品として入手できる。また、それ以外のものも、例えば次のようにして合成できる。

[0269]

反応式14

[0270]

【化32】

[0271]

すなわち、一般式(32) [式中、X及びmは前記と同じ意味を表し、Rはメチル基、エチル基等の低級アルキル基を表す。] で表される化合物を文献記載の一般的な加水分解反応、例えばアンゲバンテ・ヘミー[Angew. Chem.] 1951年、63卷、329頁、ジャーナル・オブ・ジ・アメリカン・ケミカル・ソサイエティー[J. Am. Chem. Soc.] 1929年、51卷、1865頁等に記載の方法に準じて一般式(33) [式中、X及びmは前記と同じ意味を表す。] で表されるフタル酸誘導体とした後、文献記載の一般的な脱水環化反応、例えばザ・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1987年、52卷、129頁等に記載の方法に準じた条件下反応させることにより、一般式(17) [式中、X及びmは前記と同じ意味を表す。] で表される化合物を得ることができる。

[0272]

ここで用いられる一般式(32)で表される化合物は公知化合物であり、一部は市販品として入手できる。

[0273]

一般式(18)で表される化合物は、例えば次のように合成できる。

[0276]

すなわち、公知の一般式(34) [式中、Y, R¹, n及びPは前記と同じ意味を表す。] で表される化合物と公知の一般式(35) [式中、R⁴は前記と同じ意味を表し、J⁴はハロゲン原子、トリフルオロメタンスルホニルオキシ基、2-ピリジルオキシ基等の脱離基を表す。] で表される化合物又は公知の一般式(36) [式中、R⁴は前記と同じ意味を表す。] で表される化合物とを文献記載の一般的な芳香環のアシル化反応、例えばケミストリー・レターズ [Chem. Lett.] 1990年、783頁、ザ・ジャーナル・オブ・オーガニック・ケミストリー [J. Org. Chem.] 1991年、56巻、1963頁等に記載の方法に準じて反応させることにより、一般式(18) [式中、Y, R¹, R⁴, n及びPは前記と同じ意味を表す。] で表される化合物を得ることができる。

[0277]

或いは、一般式(26) [式中、Y, R^1 , n, J^2 及びPは前記と同じ意味を表す。] で表され る化合物を文献記載の一般的な方法、例えばリチオ化した後、公知の一般式(37)[式中、 R^4 は前記と同じ意味を表し、 J^5 はハロゲン原子、水酸基、金属塩(例えば、-0Li、-0Na) 、C1~C4アルコキシ基(例えば、メトキシ基、エトキシ基)、ジ(C1~C4アルキル)アミノ 基(例えば、ジエチルアミノ基)、 $C_1 \sim C_4$ アルコキシ $(C_1 \sim C_4$ アルキル)アミノ基(例えば 、0,N-ジメチルヒドロキシアミノ基)又は環状アミノ基(例えば、ピペリジン-1-イル基 、モルホリン-4-イル基、4-メチルピペラジン-1-イル基)を表す。]で表される化合物又 は公知の一般式(36)で表される化合物と反応させるジャーナル・オブ・ジ・アメリカン・ ケミカル・ソサイエティー[J. Am. Chem. Soc.] 1955年、77巻、3657頁、テト ラヘドロン・レターズ [Tetrahedron Lett.] 1980年、21巻、2129頁及び19 91年、32巻、2003頁、アメリカ合衆国特許出願公報(US 5,514,816号公報)等に 記載の方法、或いはグリニャール反応剤を形成した後、一般式(37)で表される化合物又は 一般式(36)で表される化合物と反応させるヘテロサイクルズ [Heterocycles] 1987年 、25巻、221頁、シンセティック・コミュニケーションズ [Synth. Commun.] 198 5年、15巻、1291頁及び1990年、20巻、1469頁、ドイツ国特許出願公報 (DE 19727042号公報) 等に記載の方法に準じて反応させることにより、一般式(18)で表 される化合物を得ることもできる。

[0278]

一般式(21)で表される化合物は一般式(18)で表される化合物と同様に合成することがで きる。

[0279]

一般式(26)で表される化合物は、例えば次のように合成できる。

[0280]

反応式16

[0281]

【化34】

[0282]

すなわち、公知の一般式(38) [式中、Y, R^1 , n及び J^2 は前記と同じ意味を表す。] で表 される置換アニリンを文献記載の一般的な方法、例えばジャーナル・オブ・メディシナル ·ケミストリー [J. Med. Chem.] 1996年、39巻、673頁及び1997年、40 巻、3542頁等に記載の方法に準じてアミノ基を保護することにより、一般式(26)[式 中、Y, R^1 , n, J^2 及びPは前記と同じ意味を表す。] で表される化合物を得ることができ る。

[0283]

一般式(27)で表される化合物の或るものは公知化合物であり、一部は市販品として入手 できる。また、それ以外のものも一般式(18)で表される化合物と同様に合成することがで きる。

[0284]

これらの各反応においては、反応終了後、通常の後処理を行なうことにより製造法A~ 製造法Iの原料化合物となる各々の製造中間体を得ることができる。

[0285]

また、これらの方法により製造された各々の製造中間体は、単離・精製することなく、 それぞれそのまま次工程の反応に用いることもできる。

[0286]

本発明に包含される化合物としては、具体的に例えば、第2表~第4表に示す化合物が 挙げられる。但し、第2表~第4表の化合物は例示のためのものであって、本発明はこれ らのみに限定されるものではない。

[0287]

尚、表中Etとの記載はエチル基を表し、以下同様にn-Pr及びPr-nはノルマルプロピル基 を、i-Pr及びPr-iはイソプロピル基を、c-Pr及びPr-cはシクロプロピル基を、n-Bu及びBu -nはノルマルプチル基を、s-Bu及びBu-sはセカンダリープチル基を、i-Bu及びBu-iはイソ ブチル基を、t-Bu及びBu-tはターシャリーブチル基を、c-Bu及びBu-cはシクロブチル基を 、n-Pen及びPen-nはノルマルペンチル基を、c-Pen及びPen-cはシクロペンチル基を、n-He x及びHex-nはノルマルヘキシル基を、c-Hex及びHex-cはシクロヘキシル基を、Octはオク チル基を、Phはフェニル基を、1-Naphは1-ナフチル基を、2-Naphは2-ナフチル基をそれぞ れ表し、

表中T-1~T-24は、それぞれ下記の構造を表し、

[0288]

$$T-4:$$
 CI CH_3

T-7:
$$CH_2S(O)CH_3$$
 $T-8:$ $CH_2SO_2CH_3$ $T-9:$

T-10:
$$CH_2OH$$
 $T-11:$ CH_2SCH_3 $T-12:$ $CH_2S(O)CH_3$

$$CF_3$$
 CH_3
 $T-23:$
 CH_3
 $T-24:$
 CF_3

[0289]

表中L-la~L-55aで表される芳香族複素環は、それぞれ下記の構造を表し、 [0290]

$$L-1d:$$
O

$$L-1d:$$
 CF_3 $L-1f:$

$$L$$
-3a : S

$$L-3c:$$
 S Cl $L-3d:$ S Br

L-3e:
$$L-3f: CF_3$$
 L-3g: NO_2

$$L-3h: SCH_3$$

$$L-3k:$$
 $L-3n:$
 S
 $L-3m:$

$$SO_2CH_3$$
 $L-3o:$
 Br
 Br
 $L-4a:$
 S

$$L-10a:$$
 N
 $L-10b:$
 N
 $L-10c:$

$$L-14e:$$
 N
 CI
 $L-14f:$
 N

L-17a:
$$N$$
CH₃

$$L-19a: N$$

$$L-20a: N$$

L-21a:
$$N$$
L-21b: N
Br

L-21d:
$$N$$

L-21e: N

N

N

N

N

NO₂

$$L\text{--}22a: \overbrace{N}^{\mathbf{S}}$$

L-22a:
$$I$$
 S L-22b: I CI L-22c: I CF₃

L-22d:
$$N$$
 SCH₃ L-23a: N L-23b: N CI

$$L-23a: S$$

$$L-23d:$$
 NO_2

L-23c:
$$N$$
Br

L-23d: N
NO₂

L-23e: N
SCH₃

$$L-35a: N-N \longrightarrow Ph$$

$$^{\text{F}_3}$$
 L-45h:

SCH₃

【化40】

L-46g:

L-46h:

L-46j:

L-461:

L-46m :

L-46n:

-3 I --460 ·

L-46p:

L-46q:

L-46r:

I -47a ·

I.–47b

L-47c:

L-47d :

L-47e:

L-48a:

L-48b

L-50a:

L-50b

I -50c

$$N \rightarrow B$$

L-50d:

L-50e:

[0295]

L-50f:

SO₂CH₃
L-51a:
N

L-51c : N

N

L-53a : N

L-55a: N

[0296]

さらに、表中M-4a~M-22aで表される脂肪族複素環は、それぞれ下記の構造を表す。

【0297】 【化42】

M-4a:

M-5a:

M-7a: OCH₃

M-8a:

M-9a:

M-9b: -

M-9c: SO_2

M-16a:

M-19a: — s

M-22a: -\(\bigve{N}-C''\)OE6

[0298]

第2表

[0299]

[1] - 2

[1] - 4

[1] - 6

$$CH_3 \xrightarrow{R^4} R^5$$

$$CH_3 \xrightarrow{C} O \xrightarrow{R^2} C-N$$

$$CH_3 \xrightarrow{S} O \xrightarrow{R^3} C$$

$$[1] - 12$$

$$CH_3 \xrightarrow{R^4} R^5$$

$$HN \xrightarrow{C} O - R^6$$

$$CH_3 \xrightarrow{SO_2} O \xrightarrow{R^3} R^3$$

$$[1] - 15$$

$$\begin{array}{c|c}
\mathbf{CH_3} & \mathbf{R^4} & \mathbf{R^5} \\
\mathbf{HN} & \mathbf{O} - \mathbf{R^6} \\
\mathbf{R^2} & \mathbf{C} - \mathbf{N} \\
\mathbf{CHF_2} & \mathbf{R^3} \\
\mathbf{CHF_2} & \mathbf{R^3}
\end{array}$$

$$\begin{array}{c|c}
& R^4 \\
& R^5 \\
& O - R^6
\end{array}$$

$$\begin{array}{c|c}
& R^2 \\
& C - N \\
& NO_2 O R^3
\end{array}$$

$$[1] - 18$$

$$\begin{array}{c|c}
 & R^4 \\
 & R^5 \\
 & O - R^6 \\
\hline
 & C - N \\
 & C - N \\
\hline
 & D - R^3 \\$$

$$\begin{array}{c|c}
 & R^4 \\
\hline
 & R^5 \\
\hline
 & O - R^6 \\
\hline
 & C \\
\hline
 & C \\
\hline
 & C \\
\hline
 & R^2 \\
\hline
 & C \\
\hline
 & R^3 \\
\hline
 & [1] - 20$$

$$\begin{array}{c|c}
R^4 \\
R^5 \\
\hline
C > O \\
R^2 \\
\hline
C - N \\
\hline
R^3 \\
\hline
\end{array}$$
[1] - 22

$$\begin{array}{c|c}
R^4 & R^5 \\
\hline
HN & O-R^6 \\
\hline
C-N & R^3 \\
\hline
CH_3 & O-R^6
\end{array}$$
[1] - 24

$$\begin{array}{c|c}
R^4 & R^5 \\
\hline
HIN & O-R^6 \\
\hline
C & O \\
R^2 & C-N \\
\hline
Br & O & R^3
\end{array}$$

[1] - 25

[1] - 26

[1] - 27

$$\begin{array}{c|c}
R^4 \\
R^5 \\
O-R^6 \\
\hline
C \\
CF_3O O R^3
\end{array}$$

[1] - 28

[1] - 29 [0 3 0 4]

CI

$$R^4$$
 R^5
 $O-R^6$
 $C = C$
 R^2
 $C = C$
 $C = N$
 $C =$

[1] - 33

[0305]

[1] - 37

$$\begin{array}{c|c}
R^4 \\
R^5 \\
\hline
C \\
C \\
C \\
C \\
C \\
C \\
R^3
\end{array}$$

$$\begin{array}{c|c}
R^2 \\
\hline
C \\
C \\
R^3
\end{array}$$

$$\begin{array}{c|c}
C \\
C \\
R^3
\end{array}$$

$$\begin{array}{c|c}
C \\
C \\
R^3
\end{array}$$

$$\begin{array}{c|c}
R^4 \\
R^5 \\
\hline
CH_3 \\
\hline
O-R^6 \\
\hline
C-N \\
\hline
I O R^3
\end{array}$$
[1] - 38

$$\begin{array}{c|c}
R^4 \\
R^5 \\
\hline
CH_3 \\
\hline
CP_3O \\
\hline
C \\
\hline
R^2 \\
\hline
C-N \\
\hline
R^3
\end{array}$$
[1] - 40

$$\begin{array}{c|c}
& R^4 \\
& R^5 \\
& O - R^6 \\
\hline
& C - N \\
& CH_3 \\$$

$$\begin{array}{c|c}
R^4 \\
R^5 \\
O - R^6 \\
\hline
C - N \\
Br O R^3
\end{array}$$

$$\begin{array}{c|c}
R^4 & R^5 \\
\hline
 & O - R^6 \\
\hline
 & C & \\
\hline
 & R^2 & \\
\hline
 & C & \\
\hline
 & C & \\
\hline
 & R^3 & \\
\end{array}$$

[1] - 44

$$\begin{array}{c|c}
R^4 \\
R^5 \\
\hline
O-R^6 \\
\hline
C \\
\hline
C \\
CF_3 \\
\hline
O \\
R^3
\end{array}$$

$$\begin{array}{c|c}
R^4 \\
R^5 \\
O-R^6 \\
\hline
C > O \\
CF_3O O R^3
\end{array}$$

[1] - 47 [0307]

HN

または

[1] - 48

R^2 R^3	R ⁴	R ⁵	R ⁶
Н СНз	CF₃	Ph-4-F	Н
H CH ₃	CF ₃	Ph-4-Cl	H
H CH3	CF ₃	Ph-4-Br	H
H CH3	CF ₃	Ph-4-I	Н
H CH₃	CF ₃	Ph-4-CF ₃	Н
H CH3	CF ₃	Ph-4-OCHF2	Н

出証特2004-3099262

Н	СНз	CF ₃ Ph-4-0CF ₃	Н
п Н	CH ₃	CF ₃ Ph-4-0CF ₂ Br	H
Н	СНз	CF ₃ Ph-4-0CF ₂ CHF ₂	H
H	СНз	CF ₃ Ph-4-0CF ₂ CHFC l	H
H	CH ₃	CF ₃ Ph-4-OCF ₂ CHFCF ₃	H
Н	СНз	CF ₃ Ph-4-0CF ₂ CHF0CF ₃	H
H	СНз	CF ₃ Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	3 H
H	CH ₃	CF ₃ Ph-4-OSO ₂ CH ₃	Н
H	CH ₃	CF_3 Ph-4-0(L-45g)	Н
Н	CH ₃	CF ₃ Ph-4-SCH ₃	Н
Н	CH ₃	CF_3 $Ph-4-S(0)$ CH_3	H
Н	СНз	CF ₃ Ph-4-SO ₂ CH ₃	H
H	CH ₃	CF ₃ Ph-4-CN	Н
Н	CH ₃	CF ₃ Ph-4-C(0) NH ₂	Н
н Н	СНЗ	CF ₃ Ph-4-C(S) NH ₂	Н
n H	снз СНз	CF ₃ Ph-3, 4-Cl ₂	H
		CF ₃ L-45d	Н
H	CH ₃	CF ₃ L-45e	Н
H	CH ₃	CF ₃ L-45f	Н
H	CH ₃	CF ₃ L-45g	Н
H	СНз	CF ₃ L-451	Н
H	CH ₃	CF ₃ L-45m	Н
H	CH ₃	CF ₃ L-46d	Н
Н	CH ₃	CF ₃ L-46e	Н
H	CH ₃	CF ₃ L-46f	Н
Н	CH ₃	CF ₃ L-46g	H
H	CH ₃	CF ₃ L-46j	H
Н	СНз	CF ₃ L-46k	H
Н	CH ₃	CF3 L-46r	H
Н	CH ₃		H
	l ₃ CH ₃		Н
	I ₃ CH ₃		Н
	I ₃ CH ₃		Н
Н	Et		H
Н	Et	The state of the s	H
Н	Et		H
H	Et		H
Н	Et		Н
Н	Et	-	Н
H	Et	_	Н
H	Et	CH_3 $Ph-4-0CF_2Br$ CH_3 $Ph-4-0CF_2CHF_2$	Н
H			H
Н			H
H		CH ₃ Ph-4-0CF ₂ CHFCF ₃ CH ₃ Ph-4-0CF ₂ CHF0CF ₃	H
H			
H	Et	CH ₃ Ph-4-OCF ₂ CHFOCF ₂ CF ₂ C	
Н		CH ₃ Ph-4-0S0 ₂ CH ₃	H H
H		$CH_3 \qquad Ph-4-O(L-45g)$	
H	Et	CH ₃ Ph-4-SCH ₃	Н
H		CH ₃ Ph-4-SO ₂ CH ₃	Н
Н	Et	CH ₃ Ph-4-CN	Н

		CH_3 Ph-3, 4- F_2	Н
H	Et	0115	H
Н	Et	0113	H
H	Et	015	H
H	Et	015 2 100	H
Н	Et		H
Н	Et		H
H	Et		H
H	Et	· -	Н
Н	Et		Н
H	Et		H
H	Et		Н
H	Et		H
H	Et	CH ₃ L-46g	H
H	Et	CH ₃ L−46j	Н
H	Et	CH ₃ L-46k	н
H	Et	CH₃ L-46r	H
H	Et	Et Ph-4-SO ₂ CH ₃	
H	Et	n-Pr L-45g	H
H	Et	i-Pr Ph-4-F	H
H	Et	CHF_2 $Ph-4-SO_2 CH_3$	H
H	Et	CF₃ OCH₃	CH ₃
H	Et	CF ₃ Ph-4-F	H
H	Et	CF ₃ Ph-4-C1	H
Н	Et	CF ₃ Ph-4-Br	Н
Н	Et	CF ₃ Ph-4-I	H
Н	Et	CF_3 $Ph-4-CF_3$	H
Н	Et	CF_3 Ph-4-0CHF ₂	Н
Н	Et	CF_3 $Ph-4-OCF_3$	H
Н	Et	CF_3 Ph-4-OCF ₂ Br	H
H	Et	CF ₃ Ph-4-OCF ₂ CHF ₂	Н
Н	Et	CF ₃ Ph-4-OCF ₂ CHFC l	H
Н	Et	CF ₃ Ph-4-OCF ₂ CHFCF ₃	H
Н	Et	CF ₃ Ph-4-0CF ₂ CHF0CF ₃	H
Н	Et	CF ₃ Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
Н	Et	CF ₃ Ph-4-0SO ₂ CH ₃	H
Н	Et	CF_3 $Ph-4-0(L-45g)$	Н
Н	Et	CF_3 $Ph-4-0(L-451)$	H
Н	Et	CF ₃ Ph-4-SCH ₃	H
Н	Et	CF_3 $Ph-4-S(0)CH_3$	Н
Н	Et	CF_3 Ph-4-SO ₂ CH ₃	Н
H	Et	CF ₃ Ph-4-CN	Н
Н	Et	CF_3 $Ph-4-C(0)$ NH_2	H
H	Et	CF_3 $Ph-4-C(S)NH_2$	H
H		CF_3 Ph-3, 4- F_2	H
H	Et	CF_3 $Ph-3-F-4-C1$	H
H		CF ₃ Ph-3, 4-Cl ₂	H
H		CF_3 $L-1c$	H
H		CF_3 $L-1e$	H
H		CF ₃ L-1 i	H
n H		CF ₃ L-2b	H
п	ש ענ		

			• •	••
H	Et	CF ₃	L-3d	Н
Н	Et	CF ₃	L-3f	H
H	Et	CF ₃	L-31	H
		CF ₃	L-3o	Н
Н	Et	•	L-21c	Н
H	Et	CF ₃		H
H	Et	CF₃	L-21e	
Н	Et	CF ₃	L-22c	H
Н	Et	CF ₃	L-23c	Н
Н	Et	CF ₃	L-23e	H
Н	Et	CF ₃	L-45d	Н
		CF ₃	L-45e	Н
Н	Et	·CF ₃	L-45f	Н
H	Et		L-45g	Н
H	Et	· CF ₃		H
H	Et	CF ₃	L-451	
Н	Et	CF ₃	L-45m	H
H	Et	CF ₃	L-46d	· H
Н	Et	CF ₃	L-46e	Н
Н	Et	CF₃	L-46f	Н
Н	Et	CF ₃	L-46g	H
		CF ₃	L-46j	H
Н	Et		L-46k	Н
H	Et	CF ₃	L-46m	H
H	Et	CF ₃		н
H	Et	CF ₃	L-46r	
H	Et	CF ₃	L-47a	Н
Н	Et	CF ₃	L-47e	H
Н	Et	CF ₂ C1	L-45g	H
H	Et	CF ₂ CF ₃	Ph-4-F	Н
Et.		CH ₃	Ph-4-F	Н
Et		CH₃	Ph-4-Cl	Н
		CH ₃	Ph-4-Br	Н
Et		CH ₃	Ph-4-CF ₃	Н
Et			Ph-4-0CHF ₂	H
Et		CH ₃	Ph-4-0CF ₃	н
Et	: Et	CH₃		H
Et	: Et	СНз	Ph-4-0S0 ₂ CH ₃	
Et	: Et	СН₃	Ph-4-SCH ₃	Н
Et	: Et	СН₃	Ph-4-S0 ₂ CH ₃	H
Et		CH ₃	Ph-4-CN	Н
Et		CH₃	Ph-3, 4-Cl ₂	Н
Et		CF₃	Ph-4-F	Н
E i		CF ₃	Ph-4-C1	Н
		CF ₃	Ph-4-Br	Н
E		CF ₃	Ph-4-CF ₃	Н
E		CF ₃	Ph-4-0CHF ₂	Н
E				H
E		CF ₃	Ph-4-0CF3	H
E	t Et	CF ₃	Ph-4-0S0 ₂ CH ₃	
E	t Et	CF ₃	Ph-4-SCH ₃	Н
E		CF ₃	$Ph-4-S(0)CH_3$	Н
E		CF ₃	Ph-4-SO ₂ CH ₃	H
E		CF ₃	· Ph-4-CN	H
E		CF ₃	Ph-3, 4-Cl ₂	H
Ľ,	L EL			

Et	Et	CF ₃	L-45g	Н
H	n-Pr	CH ₃	Ph-4-F	Н
n H	n-Pr	CH ₃	Ph-4-Cl	Н
H	n-Pr	CH₃	Ph-4-Br	Н
H	n-Pr	CH ₃	Ph-4-CF ₃	H
п Н	n-Pr	CH₃	Ph-4-OCHF2	H
п Н	n-Pr	CH ₃	Ph-4-0CF ₃	H
Ή,	n-Pr	CH ₃	Ph-4-0(L-45g)	Н
,11 H	n-Pr	CH ₃	Ph-4-SCH3	Н
Н	n-Pr	CH ₃	Ph-4-SO ₂ CH ₃	Н
Н	n-Pr	СНз	Ph-4-CN	Н
Н	n-Pr	CH ₃	$Ph-3, 4-F_2$	H
H	n-Pr	CH ₃	L-3c	Н
Н	n-Pr	CH ₃	L-3k	H
H	n-Pr	CH ₃	L-4b	Н
Н	n-Pr	CH ₃	L-45g	Н
Н	n-Pr	CH ₃	L-46g	Н
Н	n-Pr	Et	L-45g	Н
H	n-Pr	n-Pr	Ph-4-F	H
H	n-Pr	i-Pr	Ph-4-SO ₂ CH ₃	H
Н	n-Pr	CHF ₂	L-45g	Н
Н	n-Pr	CF ₃	ОСН3	СНз
H	n-Pr	CF ₃	Ph-4-F	Н
Н	n-Pr	CF ₃	Ph-4-C1	H
Н	n-Pr	CF ₃	Ph-4-Br	Н
Н	n-Pr	CF ₃	Ph-4-CF ₃	Н
Н	n-Pr	CF ₃	Ph-4-0CHF2	H
H	n-Pr	CF ₃	Ph-4-0CF3	H
Н	n-Pr	CF ₃	Ph-4-0(L-45g)	H
Н	n-Pr	CF ₃	Ph-4-SCH3	Н
Н	n-Pr	CF ₃	Ph-4-S(0)CH ₃	Н
Н	n-Pr	CF ₃	Ph-4-SO ₂ CH ₃	Н
Н	n-Pr	· CF ₃	Ph-4-CN	Н
Н	n-Pr	CF3	$Ph-4-C(0)NH_2$	Н
Н	n-Pr	CF ₃	$Ph-4-C(S)NH_2$	H
Н	n-Pr	CF ₃	$Ph-3, 4-F_2$	H
Н		CF ₃	L-3c	Н
H		CF ₃	L-3d	H
H		CF ₃	L–3f	Н
Н		CF ₃	L-3k	H
H		$ ext{CF}_3$	L-4b	Н
H		CF ₃	L-4c	Н
H		CF ₃	L-45d	Н
H		CF ₃	L-45e	Н
H		CF ₃	L-45f	Н
H		CF ₃	L-45g	Н
H		CF ₃	L-451	H
H		CF ₃	L-45m	H
H		CF ₃	L-46d	Н
H		CF ₃	L-46e	Н
11	1 11-1 1		DETER O O O A	2000

H n-Pr	CF3	L-46f	H
H n-Pr	CF ₃	L-46g	H
H n-Pr	CF ₃	L-46j	H
H n-Pr	CF ₃	L-46k	H
H n-Pr	CF ₃	L-46r	Н
H n-Pr	CF3	L-47a	H
H n-Pr	CF ₃	L-47e	Н
H n-Pr	CF ₂ C1	Ph-4-F	Н
H n-Pr	CF ₂ CF ₃	$Ph-4-SO_2CH_3$	Н
CH ₃ n-Pr	CH ₃	Ph-4-Cl	Н
CH ₃ n-Pr	CH ₃	Ph-4-OCF3	Н
CH ₃ n-Pr	CH ₃	Ph-4-SO ₂ CH ₃	H
CH ₃ n-Pr	СFз	Ph-4-SCH ₃	H
CH ₃ n-Pr	CF ₃	$Ph-4-S(0)CH_3$	H
CH ₃ n-Pr	СFз	Ph-4-SO ₂ CH ₃	H
Et n-Pr	СНз	Ph-4-0CF3	H
Et n-Pr	СFз	Ph-4-F	Н
n-Pr n-Pr	СНз	Ph-4-OCF3	H
n-Pr n-Pr	CF3	Ph-4-SO ₂ CH ₃	H
H i-Pr	СН3	CH ₂ OCH ₂ CF ₃	H
H i-Pr	СН3	CH ₂ OCH ₂ CF ₂ CF ₃	H
H i-Pr	CH ₃	CH ₂ OCH (CF ₃) ₂	H
H i-Pr	СН3	CF2 OCF2 CF2 OCF3	Н
н i-Pr	СНз	$CF(CF_3)OCF_2CF_2CF_3$	Н
H i-Pr	СНз	Ph	Н
H i-Pr	СНз	Ph-4-F	Н
H i-Pr	СНз	Ph-4-Cl	H
H i-Pr	СНз	Ph-4-Br	H
H i-Pr	СНз	Ph-4-I	H
H i-Pr	СНз	Ph-4-CF ₃	Н
H i-Pr	СНз	Ph-4-CH ₂ SCH ₃	H
H i-Pr	СНз	Ph-4-CH ₂ SO ₂ CH ₃	H
H i-Pr	СНз	Ph-4-CH ₂ SCF ₃	H
H i-Pr	СНз	Ph-4-CH ₂ SO ₂ CF ₃	H
H i-Pr	СНз	Ph-4-OCHF ₂	H
H i-Pr	СНз	Ph-4-0CF ₃	H
H i-Pr	СНз	Ph-4-0S0 ₂ CH ₃	H
H i-Pr	СНз	Ph-4-0(L-45g)	H
H i-Pr	СН₃	Ph-4-SCH ₃	Н
H i-Pr	СНз	Ph-4-S(0) CH ₃	H
H i-Pr	СНз	Ph-4-SO ₂ CH ₃	Н
H i-Pr	СНз	Ph-4-SEt	H
H i-Pr	СНз	Ph-4-S(0)Et	Н
H i-Pr	СН3	Ph-4-S0 ₂ Et	Н
H i-Pr	СН₃	Ph-4-SCHF ₂	Н
H i-Pr	СНз	Ph-4-S(0) CHF ₂	Н
H i-Pr	СНз	Ph-4-S0 ₂ CHF ₂	Н
H i-Pr	СНз	Ph-4-SCF ₃	Н
H i-Pr	СНз	Ph-4-S(0) CF3	Н
H i-Pr	СН3	Ph-4-SO ₂ CF ₃	Н
		电証性2004-3	2 0 9 9

Н	i-Pr	CH₃	Ph-4-CN	Н
H	i-Pr	CH ₃	$Ph-4-C(0)NH_2$	H
H	i-Pr	CH ₃	$Ph-4-C(S)NH_2$	H
H	i-Pr	СН3	Ph-3, 4-F ₂	Ĥ
Н	i–Pr	CH ₃	Ph-3-F-4-C1	Н
Н	i-Pr	СНз	Ph-3, 4-Cl ₂	Н
Н	i–Pr	СН3	L-1b	H
H	i-Pr	CH ₃	L-1c	Н
Н	i-Pr	CH ₃	L-1e	H
Н	i-Pr	CH ₃	L-1f	Н
H	i-Pr	CH₃	L-1g	Н
H	i-Pr	CH₃	L-1i	Н
H	i-Pr	CH₃	L-2b	Н
Н	i-Pr	CH₃	L–3c	Н
Н	i-Pr	CH ₃	L-3d	Н
Н	i-Pr	CH ₃	L-3f	Н
Н	i-Pr	CH ₃	L-3h	Н
Н	i-Pr	CH ₃	L-3i	Н
Н	i-Pr	CH ₃	L–3j	H
Н	i-Pr	CH ₃	L-3k	Н
Н	i-Pr	CH ₃	L-31	H
H	i–Pr	CH ₃	L-3m	Н
Н	i-Pr	CH ₃	L-3n	Н
H	i-Pr	CH ₃	L-30	Н
Н	i-Pr	CH ₃	L-4b	H
Н	i-Pr	CH ₃	L-4c	Н
H	i-Pr	CH ₃	L-45d	Н
Н	i-Pr	CH ₃	L-45e	Н
Н	i-Pr	CH ₃	L-45f	Н
H	i-Pr	CH ₃	L-45g	Н
H	i-Pr	CH ₃	L-451	Н
H	i-Pr	CH ₃	L-45m	Н
Н	i-Pr	CH ₃	L-46d	Н
H	i-Pr	CH ₃	L-46e	Н
Н	i-Pr	CH ₃	L-46f	H
Н	i-Pr	CH ₃	L-46g	Н
Н	i-Pr	CH ₃	L-46j	Н
Н	i-Pr	СН3	L-46k	Н
Н	i-Pr	CH ₃	L-46m	Н
H	i-Pr	CH ₃	L-46n	Н
Н	i-Pr	СН3	L-46r	Н
Н	i-Pr	CH ₃	L-47a	Н
Н	i-Pr	CH ₃	L-47e	Н
Н	i-Pr	CH ₃	L-48b	H
H	i–Pr	СН₃	L-50b	Н
Н	i-Pr	CH ₃	L-50c	H
Н	i-Pr	Et	Ph-4-F	Н
Н	i-Pr	Et	Ph-4-CI	Н
Н	i-Pr	Et	Ph-4-Br	Н
Н	i-Pr	Et	Ph-4-I	Н

Н	i-Pr	Et	Ph-4-CF3	Н
H	i-Pr	Et	Ph-4-CH ₂ SCH ₃	H
H	i–Pr	Et	Ph-4-CH ₂ SO ₂ CH ₃	Н
Н	i-Pr	Et	Ph-4-CH ₂ SCF ₃	H
H	i-Pr	Et	Ph-4-CH ₂ SO ₂ CF ₃	H
H	i-Pr	Et	Ph-4-0CHF ₂	H
H	i-Pr	Et	Ph-4-0CF ₃	Н
H	i-Pr	Et	Ph-4-0S0 ₂ CH ₃	Н
H	i–Pr	Et	Ph-4-0(L-45g)	Н
Н	i-Pr	Et	Ph-4-SCH3	Н
H	i-Pr	Et	Ph-4-S(0)CH₃	Н
H	i-Pr	Et	Ph-4-SO ₂ CH ₃	Н
H	i-Pr	Et	Ph-4-SEt	Н
Н	i–Pr	Et	Ph-4-S(0)Et	H
Н	i–Pr	Et	Ph-4-SO ₂ Et	Н
Н	i-Pr	Et	Ph-4-SPr-i	Н
Н	i-Pr	Et	Ph-4-S(0)Pr-i	Н
H	i–Pr	Et	Ph-4-S0 ₂ Pr-i	Н
Н	i-Pr	Et	Ph-4-SCHF2	Н
H	i-Pr	Et	$Ph-4-S(0)CHF_2$	Н
Н	i–Pr	Et	Ph-4-SO ₂ CHF ₂	H
Н	i-Pr	Et	Ph-4-SCF ₃	H
Н	i–Pr	Et	$Ph-4-S(0)CF_3$	H
H	i-Pr	Et	Ph-4-SO ₂ CF ₃	H
Н	i–Pr	Et	Ph-4-CN	H
Н	i-Pr	Et	$Ph-4-C(0)NH_2$	Н
Н	i-Pr	Et	$Ph-4-C(S)NH_2$	Н
Н	i–Pr	Et	Ph-3, 4-F ₂	Н
Н	i-Pr	Et	Ph-3-F-4-C1	Н
Н	i–Pr	Et	Ph-3, 4-Cl ₂	Н
H	i–Pr	Et	L-1c	Н
Н	i-Pr	Et	L-le	H
Н	i-Pr	Et	L-1g	Н
Н	i–Pr	Et	L-1 i	H
Н	i-Pr	Et	L-2b	Н
Н	i-Pr	Et	L-3d	H
Н	i-Pr	Et	L-3f	Н
Н	i-Pr	Et	L-3i	H
Н	i-Pr	Et	L-31	H
Н	i-Pr	Et	L-3n	H
Н	i-Pr	Et	L-30	H
Н	i-Pr	Et	L-4c	H
Н	i-Pr	Et	L-45d	Н
Н	i-Pr	Et	L-45e	H
H	i-Pr	Et	L-45f	Н
Н	i-Pr	Et	L-45g	Н
Н	i-Pr	Et	L-451	Н
Н	i-Pr	Et	L-45m	H
Н	i-Pr	Et	L-46d	H
Н	i-Pr	Et	L-46e	Н

**	: D.,	Et	L-46f	Н
H	i-Pr	Et	L-46g	H
H	i-Pr	Et	L-46j	H
H	i-Pr	Et	L-46k	Н
H	i-Pr	Et	L-46m	Н
H	i-Pr	Et	L-46n	H
Н	i-Pr	Et	L-46r	Н
H	i-Pr	Et	L-47a	Н
Н	i-Pr	Et	L-47e	Н
Н	i-Pr	n-Pr	Ph-4-F	H
H	i-Pr	n-rr n-Pr	Ph-4-C1	Н
H	i-Pr	n-rr n-Pr	Ph-4-0S0 ₂ CH ₃	H
H	i-Pr	n-11 n-Pr	Ph-4-SCH ₃	Н
H	i-Pr	n-Pr	Ph-4-SO ₂ CH ₃	Н
Н	i-Pr	n-Pr	Ph-4-CN	H
Н	i-Pr	n-Pr	L-45g	H
Н	i-Pr	i-Pr	c-Pr	H
Н	i-Pr	i-ri i-Pr	Ph-4-F	H
H	i-Pr		Ph-4-Cl	H
Н	i-Pr	i–Pr i–Pr	Ph-4-Br	H
H	i-Pr	i-Pr	Ph-4-I	H
H	i-Pr	i-Fi i-Pr	Ph-4-CF ₃	H
H	i-Pr		Ph-4-CH ₂ SCH ₃	H
Н	i–Pr	i-Pr	Ph-4-CH ₂ SO ₂ CH ₃	H
Н	i-Pr	i-Pr	Ph-4-CH ₂ SCF ₃	H
Н	i-Pr	i-Pr	Ph-4-CH ₂ SO ₂ CF ₃	H
H	i-Pr	i-Pr	Ph-4-0CHF ₂	H
Н	i-Pr	i-Pr	Ph-4-0CF3	H
Н	i-Pr	i-Pr	Ph-4-0S0 ₂ CH ₃	H
Н	i-Pr	i-Pr	Ph-4-SCH3	H
H	i-Pr	i-Pr		H
H	i-Pr	i-Pr	Ph-4-S(0) CH ₃	H
Н	i-Pr	i-Pr	Ph-4-SO ₂ CH ₃ Ph-4-SEt	H
Н	i-Pr	i-Pr	Ph-4-S(0)Et	H
Н	i-Pr	i-Pr	Ph-4-S02Et	H
H	i–Pr	i-Pr		H
Н	i–Pr	i-Pr	Ph-4-SCHF ₂	Н
Н	i–Pr	i-Pr	Ph-4-S(0) CHF ₂	H
Н	i-Pr	i-Pr	Ph-4-SO ₂ CHF ₂	H
Н	i-Pr	i-Pr	Ph-4-SCF ₃	H
H	i-Pr	i-Pr	Ph-4-S(0) CF ₃	H
Н	i–Pr	i-Pr	Ph-4-SO ₂ CF ₃	H
Н	i–Pr	i-Pr	Ph-4-CN	H
Н	i-Pr	i-Pr	Ph-4-C(0) NH ₂	Н
Н	i-Pr	i-Pr	Ph-4-C(S) NH ₂	
H	i-Pr	i-Pr	Ph-3, 4-F ₂	H H
Н	i–Pr	i-Pr	Ph-3-F-4-C1	
H		i-Pr	Ph-3, 4-Cl ₂	Н
Н		i-Pr	L-1c	Н
Н		i-Pr	L-1e	Н
H	i-Pr	i-Pr	L-1g	Н

Н	i-Pr	i-Pr L-1i	H
Н	i-Pr	i-Pr L-le	H
Н	i-Pr	i–Pr L–2b	Н
H	i-Pr	i–Pr L–3d	Н
H	i-Pr	i-Pr L-3f	Н
Н	i–Pr	i-Pr L-3i	H
H	i–Pr	i-Pr L-3k	Н
H	i–Pr	i-Pr L-31	H
Н	i–Pr	i-Pr L-3n	H
Н	i-Pr	i-Pr L-3o	Н
Н	i–Pr	i-Pr L-4b	H
H	i-Pr	i-Pr L-4c	Н
Н	i-Pr	i–Pr L–45d	Н
п Н	i-Fr	i–Pr L–45e	Н
		i–Pr L–45f	Н
H	i-Pr	i-Pr L-45g	Н
H	i-Pr	i-Pr L-451	Н
H	i-Pr	i-Pr L-45m	H
H	i-Pr	i-Pr L-46d	H
Н	i-Pr	i-Pr L-46e	H
H	i-Pr	i–Pr L–46f	H
H	i-Pr	i-Pr L-46g	Н
Н	i-Pr		H
H	i-Pr		Н
H	i-Pr		H
Н	i-Pr	i-Pr L-46m	H
H	i-Pr	i-Pr L-46n	H
H	i-Pr	i-Pr L-46r	H
Н	i-Pr	i-Pr L-47a	H
H	i-Pr	i-Pr L-47e	Н
Н	i–Pr	c-Pr Ph-4-F	n H
Н	i–Pr	c-Pr Ph-4-Cl	п Н
Н	i–Pr	c-Pr Ph-4-0S0 ₂ CH ₃	
H	i-Pr	c-Pr Ph-4-SCH ₃	Н
H	i-Pr	c-Pr Ph-4-SO ₂ CH ₃	Н
H	i-Pr	c-Pr Ph-4-CN	Н
H	i-Pr	c-Pr Ph-3, 4-Cl ₂	Н
Н	i-Pr	c-Pr L-45g	Н
H	i-Pr	n-Bu Ph-4-F	Н
Н	i-Pr	n-Bu Ph-4-Cl	Н
H	i-Pr	n–Bu Ph–4–0S0 ₂ CH ₃	Н
Н	i-Pr	n–Bu Ph–4–SCH ₃	Н
Н	i-Pr	n-Bu Ph-4-SO ₂ CH ₃	Н
Н	i-Pr	n-Bu Ph-4-CN	H
Н	i-Pr	n-Bu L-45g	H
Н	i-Pr	s-Bu Ph-4-F	Н
Н	i-Pr	s-Bu Ph-4-Cl	Н
Н	i-Pr	i-Bu Ph-4-Cl	Н
Н	i–Pr	i-Bu Ph-4-SO ₂ CH ₃	Н
H	i-Pr	c-Bu Ph-4-Cl	H
H	i-Pr	c–Bu L–45g	H
• • •		u ≂r#± o o o	

Н	i-Pr	n-Pen	Ph-4-F	H
H	i-Pr		Ph-4-Cl	H
H	i-Pr		Ph-4-Cl	H
H	i-Pr		Ph-4-SO ₂ CH ₃	H
H	i–Pr		Ph-4-Cl	Н
H	i-Pr		L-45g	H
Н	i-Pr		Ph-4-F	H
H	i-Pr		Ph-4-Cl	Ħ
H	i-Pr		Ph-4-Cl	Н
H	i-Pr		Ph-4-SO ₂ CH ₃	H
H	i–Pr		Ph-4-Cl	H
H	i-Pr		L-45g	Н
H	i-Pr		Ph-4-F	H
H	i-Pr		Ph-4-Cl	H
H	i-Pr		Ph-4-F	Н
H	i-Pr	CHF ₂	Ph-4-Cl	Н
Н	i–Pr	CHF ₂	Ph-4-Br	H
H	i-Pr	CHF ₂	Ph-4-I	H
Н	i-Pr	CHF ₂	Ph-4-CF ₃	H
H	i-Pr	CHF ₂	Ph-4-CH ₂ SCH ₃	H
H	i-Pr	CHF_2	Ph-4-CH ₂ SO ₂ CH ₃	Н
Н	i-Pr	CHF ₂	Ph-4-CH ₂ SCF ₃	Н
Н	i-Pr	CHF ₂	Ph-4-CH ₂ SO ₂ CF ₃	H
H	i-Pr	$ m CHF_2$	Ph-4-OCHF2	Η
H	i-Pr	CHF_2	Ph-4-OCF3	Н
H	i–Pr	CHF ₂	Ph-4-0S0 ₂ CH ₃	Н
Н	i–Pr	CHF ₂	Ph-4-0S02 CF3	Н
H	i-Pr	$ ext{CHF}_2$	Ph-4-0(L-45g)	Н
H	i-Pr	$ ext{CHF}_2$	Ph-4-SCH ₃	H
Н	i-Pr	CHF_2	Ph-4-S(0)CH ₃	Н
Н	i-Pr	CHF ₂	Ph-4-S0 ₂ CH ₃	Н
Н	i-Pr	CHF ₂	Ph-4-SEt	H
Н	i-Pr	CHF ₂	Ph-4-S(0)Et	H
Н	i-Pr	CHF ₂	Ph-4-S0 ₂ Et	Н
Н	i-Pr	CHF ₂	Ph-4-SCHF ₂	Н
Н	i-Pr	CHF ₂	$Ph-4-S(0)CHF_2$	Н
H	i-Pr	CHF ₂	Ph-4-SO ₂ CHF ₂	H
Н	i-Pr	CHF ₂	Ph-4-SCF3	H
Н	i-Pr	CHF ₂	$Ph-4-S(0)CF_3$	H
Н	i-Pr	CHF ₂	Ph-4-S02 CF3	H
Н	i-Pr	CHF ₂	Ph-4-CN	H
H	i-Pr	CHF ₂	Ph-4-C(0) NH ₂	H
Н	i-Pr	$ ext{CHF}_2$	$Ph-4-C(S)NH_2$	H
Н	i-Pr	CHF ₂	$Ph-3, 4-F_2$	H
Н	i–Pr	CHF ₂	Ph-3-F-4-Cl	Н
Н	i-Pr	CHF ₂	Ph-3, 4-Cl ₂	H
Н	i-Pr	CHF ₂	L-1b	Н
Н	i-Pr	CHF ₂	L-1c	Н
Н	i-Pr	CHF ₂	L-le	Н
Н	i-Pr	CHF ₂	L-1g	Н

H i-Pr	Н	i-Pr	CHF2	L-1i	Н
				L-2b	
H i-Pr				L-3c	
H i-Pr				L-3d	
H i-Pr CHF2 L-3i H H i-Pr CHF2 L-3k H H i-Pr CHF2 L-3l H H i-Pr CHF2 L-3l H H i-Pr CHF2 L-3l H H i-Pr CHF2 L-3n H H i-Pr CHF2 L-3n H H i-Pr CHF2 L-3o H H i-Pr CHF2 L-4b H H i-Pr CHF2 L-4b H H i-Pr CHF2 L-4c H H i-Pr CHF2 L-10b H H i-Pr CHF2 L-10c H H i-Pr CHF2 L-10c H H i-Pr CHF2 L-10c H H i-Pr CHF2 L-2lb H H i-Pr CHF2 L-2lb H H i-Pr CHF2 L-2lc H H i-Pr CHF2 L-3lc H H i-Pr CHF2 L-4lc H H i-Pr CHF2 L-5lc H H i-Pr CF3 C-Pen C-			CHF ₂	L-3f	
H i-Pr CHF2 L-3k H H i-Pr CHF2 L-31 H H i-Pr CHF2 L-30 H H i-Pr CHF2 L-30 H H i-Pr CHF2 L-30 H H i-Pr CHF2 L-40 H H i-Pr CHF2 L-40 H H i-Pr CHF2 L-40 H H i-Pr CHF2 L-10b H H i-Pr CHF2 L-10c H H i-Pr CHF2 L-10c H H i-Pr CHF2 L-11c H H i-Pr CHF2 L-11c H H i-Pr CHF2 L-21b H H i-Pr CHF2 L-21b H H i-Pr CHF2 L-21b H H i-Pr CHF2 L-21c H H i-Pr CHF2 L-22c H H i-Pr CHF2 L-22b H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-31a H I-Pr CHF2 L-31a H I-Pr CHF2 L-31b H I i-Pr CHF2 L-31b H H i-Pr CHF2 L-31b H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-46d H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50b			CHF ₂	L-3i	
H i-Pr				L-3k	
H i-Pr CHF2 L-30 H H i-Pr CHF2 L-30 H H i-Pr CHF2 L-4b H H i-Pr CHF2 L-4b H H i-Pr CHF2 L-4c H H i-Pr CHF2 L-10b H H i-Pr CHF2 L-10c H H i-Pr CHF2 L-21c H H i-Pr CHF2 L-21c H H i-Pr CHF2 L-21c H H i-Pr CHF2 L-22c H H i-Pr CHF2 L-22c H H i-Pr CHF2 L-23b H H i-Pr CHF2 L-23b H H i-Pr CHF2 L-23b H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-31a H H i-Pr CHF2 L-31b H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-46d H H i-Pr CHF2 L-46d H H i-Pr CHF2 L-46e H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CHF3 C-Bu H H i-Pr CHF3 C-Bu H H i-Pr CF3 C-Pu H H i-Pr CF3 T-3 H H i-Pr CF3 T-3 H H i-Pr CF3 T-3 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5				L-31	
H i-Pr CHF2 L-30 H i i-Pr CHF2 L-4b H i i-Pr CHF2 L-4b H H i-Pr CHF2 L-4c H H i-Pr CHF2 L-10b H H i-Pr CHF2 L-10c H H i-Pr CHF2 L-10c H H i-Pr CHF2 L-17a H H i-Pr CHF2 L-21b H H i-Pr CHF2 L-21b H H i-Pr CHF2 L-21c H H i-Pr CHF2 L-21c H H i-Pr CHF2 L-22c H H i-Pr CHF2 L-22c H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-23b H H i-Pr CHF2 L-33b H H i-Pr CHF2 L-33b H H i-Pr CHF2 L-33b H H i-Pr CHF2 L-33c H H i-Pr CHF2 L-31a H H i-Pr CHF2 L-31b H H i-Pr CHF2 L-31b H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45g H H i-Pr CHF2 L-46d H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50d H H i-Pr CHF			CHF_2	L-3n	
H i-Pr CHF2 L-4c H H i-Pr CHF2 L-10b H H i-Pr CHF2 L-10c H H i-Pr CHF2 L-10c H H i-Pr CHF2 L-10c H H i-Pr CHF2 L-11a H H i-Pr CHF2 L-21b H H i-Pr CHF2 L-21b H H i-Pr CHF2 L-21c H H i-Pr CHF2 L-22c H H i-Pr CHF2 L-22c H H i-Pr CHF2 L-22b H H i-Pr CHF2 L-23b H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-3a H H i-Pr CHF2 L-3b H H i-Pr CHF2 L-3b H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45e H H i-Pr CHF2 L-46d H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CF3 C-Pen H H i-Pr CF3 T-2 H H i-Pr CF3 T-3 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5 T-5 T-5 H H i-Pr CF3 T-6 T-6 T			CHF_2	L-30	
H i-Pr CHF2 L-10b H i-Pr CHF2 L-10b H i-Pr CHF2 L-10b H i-Pr CHF2 L-10c H H i-Pr CHF2 L-17a H H i-Pr CHF2 L-21b H H i-Pr CHF2 L-21c H H i-Pr CHF2 L-21c H H i-Pr CHF2 L-22c H H i-Pr CHF2 L-22b H i-Pr CHF2 L-22b H i-Pr CHF2 L-23b H i-Pr CHF2 L-23c H i-Pr CHF2 L-23c H H i-Pr CHF2 L-33b H i-Pr CHF2 L-33c H H i-Pr CHF2 L-33c H H i-Pr CHF2 L-33c H H i-Pr CHF2 L-35b H H i-Pr CHF2 L-36b H H i-Pr CHF2 L-36b H H i-Pr CHF2 L-36b H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45e H H i-Pr CHF2 L-46c H H i-Pr CHF2 L-50c H H			CHF_2	L-4b	
H i-Pr			CHF_2	L-4c	
H i-Pr CHF2 L-10c H H i-Pr CHF2 L-17a H H i-Pr CHF2 L-21b H H i-Pr CHF2 L-21c H H i-Pr CHF2 L-21c H H i-Pr CHF2 L-22c H H i-Pr CHF2 L-22b H H i-Pr CHF2 L-22b H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-31a H H i-Pr CHF2 L-31a H H i-Pr CHF2 L-31b H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45g H H i-Pr CHF2 L-46d H H i-Pr CHF2 L-50b H H i-Pr CHF3 C-Pr H H i-Pr CF3 C-Pen H H i-Pr CF3 C-Pen H H i-Pr CF3 T-2 H H i-Pr CF3 T-3 C-Pen H H i-Pr CF3 T-5 CH-COLONNIAL H T CHCCOLONNIAL H T CHF2 CF3 T-5 CH-COLONNIAL H T CHF2 CF3 T-4 H T CHF2 CF3 T-5 CH-COLONNIAL H T CHF2 CF3 T-7 CH-COLONNIAL H T CHF2 CF3 T-7 CH-COLONNIAL H T CHF2 CH-CHF2 CH-CAN T T CHCCOLONNIAL H T CHF2 CH-CHF2 CH-CAN T T CHCCOLONNIAL H T CHF2 CH-CAN T T CH			CHF_2	L-10b	
H i-Pr CHF2 L-21b H H i-Pr CHF2 L-21b H H i-Pr CHF2 L-21c H H i-Pr CHF2 L-21c H H i-Pr CHF2 L-22c H H i-Pr CHF2 L-22b H H i-Pr CHF2 L-22b H H i-Pr CHF2 L-22b H H i-Pr CHF2 L-23b H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-31a H I i-Pr CHF2 L-31a H I i-Pr CHF2 L-31a H I i-Pr CHF2 L-45d H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-46d H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-45m H H i-Pr CHF2 L-50b H H i-Pr			CHF_2	L-10c	
H i-Pr CHF2 L-21b H i-Pr CHF2 L-21c H H i-Pr CHF2 L-21e H H i-Pr CHF2 L-22b H H i-Pr CHF2 L-22b H H i-Pr CHF2 L-22c H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-23e H H i-Pr CHF2 L-31a H I-Pr CHF2 L-31a H I-Pr CHF2 L-45d H I-Pr CHF2 L-46d H I-Pr CHF2 L-46m H I-Pr CHF2 L-50c H I-Pr CHF3 C-Pr H I-Pr CF3 C-Pen H I-Pr CF3 C-Pen H I-Pr CF3 C-Pen H I-Pr CF3 T-2 H I-Pr CF3 T-3 H I-Pr CF3 T-4 H I-Pr CF3 T-5 H I-Pr CF3 T-5 H I-Pr CF3 T-5 H			CHF_2	L-17a	
H i-Pr CHF2 L-21c H H i-Pr CHF2 L-21e H H i-Pr CHF2 L-22b H H i-Pr CHF2 L-22b H H i-Pr CHF2 L-23b H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-31a H H i-Pr CHF2 L-31a H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45e H H i-Pr CHF2 L-46e H H i-Pr CHF2 L-50b H H i-Pr CHF3 C-Pr H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pr H H i-Pr CF3 T-2 H H i-Pr CF3 T-3 H H i-Pr CF3 T-3 H H i-Pr CF3 T-3 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5 H			CHF ₂	L-21b	
H i-Pr CHF2 L-21e H H i-Pr CHF2 L-22b H H i-Pr CHF2 L-22c H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-31a H H i-Pr CHF2 L-31b H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-46d H H i-Pr CHF2 L-46g H H i-Pr CHF2 L-46g H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-50b H H i-Pr CHF3 C-Pr H H i-Pr CF3 T-2 H H i-Pr CF3 T-3 H H i-Pr CF3 T-5 H			$ ext{CHF}_2$	L-21c	
H i-Pr CHF2 L-22b H H i-Pr CHF2 L-22c H H i-Pr CHF2 L-23b H H i-Pr CHF2 L-23b H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-31a H H i-Pr CHF2 L-31a H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45e H H i-Pr CHF2 L-45e H H i-Pr CHF2 L-46d H H i-Pr CHF2 L-46e H H i-Pr CHF2 L-46e H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-47a H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50b H H i-Pr CHF3 C-Pr H H i-Pr CHF3 C-Pr H H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-3 H H i-Pr CF3 T-3 H H i-Pr CF3 T-5 H				L-21e	
H i-Pr CHF2 L-22c H H i-Pr CHF2 L-23b H H i-Pr CHF2 L-23c H H i-Pr CHF2 L-31a H H i-Pr CHF2 L-31b H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45e H H i-Pr CHF2 L-45g H H i-Pr CHF2 L-46d H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-46n H H i-Pr CHF2 L-47a H H i-Pr CHF2 L-47a H H i-Pr CHF2 L-50b H H i-Pr CHF3 C-Pr H H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-2 H H i-Pr CF3 T-3 H H i-Pr CF3 T-3 H H i-Pr CF3 T-5 H			$ ext{CHF}_2$	L-22b	
H i-Pr				L-22c	
H i-Pr				L-23b	
H i-Pr CHF2 L-33e H H i-Pr CHF2 L-31a H H i-Pr CHF2 L-31b H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45g H H i-Pr CHF2 L-46d H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-51b H H i-Pr CHF2 L-53a H H i-Pr CHF2 L-53a H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Hex H H i-Pr CF3 T-1 H H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-2 H H i-Pr CF3 T-3 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5 H				L-23c	
H i-Pr CHF2 L-31a H H i-Pr CHF2 L-31b H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45e H H i-Pr CHF2 L-45g H H i-Pr CHF2 L-46e H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-47a H H i-Pr CHF2 L-47a H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-53a H H i-Pr CHF2 L-53a H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pen H H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-2 H H i-Pr CF3 T-2 H H i-Pr CF3 T-3 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5 H H i-Pr CF3 T-5 H				L-23e	
H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45e H H i-Pr CHF2 L-45e H H i-Pr CHF2 L-46e H H i-Pr CHF2 L-46e H H i-Pr CHF2 L-46e H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-46n H H i-Pr CHF2 L-46n H H i-Pr CHF2 L-46n H H i-Pr CHF2 L-47a H H i-Pr CHF2 L-47a H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-51b H H i-Pr CHF2 L-53a H H i-Pr CHF2 L-53a H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pen H H i-Pr CF3 C-Pen H H i-Pr CF3 C-Hex H H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-2 H H i-Pr CF3 T-3 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5 H H i-Pr CF3 T-5 H				L-31a	
H i-Pr CHF2 L-45d H H i-Pr CHF2 L-45e H H i-Pr CHF2 L-45g H H i-Pr CHF2 L-46d H H i-Pr CHF2 L-46d H H i-Pr CHF2 L-46d H H i-Pr CHF2 L-46e H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-47a H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-51b H H i-Pr CHF2 L-53a H H i-Pr CHF2 L-53a H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pen H H i-Pr CF3 C-Pen H H i-Pr CF3 C-Pen H H i-Pr CF3 C-Hex H H i-Pr CF3 T-2 H H i-Pr CF3 T-2 H H i-Pr CF3 T-5 H H i-Pr CF3 T-5 H				L-31b	Н
H i-Pr CHF2 L-45e H H i-Pr CHF2 L-45g H H i-Pr CHF2 L-46d H H i-Pr CHF2 L-46e H H i-Pr CHF2 L-46e H H i-Pr CHF2 L-46e H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-47a H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-51b H H i-Pr CHF2 L-51b H H i-Pr CHF3 C-Pr H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pen H H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-2 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5 H				L-45d	
H i-Pr CHF2 L-45g H H i-Pr CHF2 L-46d H H i-Pr CHF2 L-46e H H i-Pr CHF2 L-46g H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-46n H H i-Pr CHF2 L-46n H H i-Pr CHF2 L-47a H H i-Pr CHF2 L-47e H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-51b H H i-Pr CHF2 L-53a H H i-Pr CHF2 L-53a H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pen H H i-Pr CF3 C-Pen H H i-Pr CF3 C-Pen H H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-3 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5 H				L-45e	
H i-Pr CHF2 L-46d H H i-Pr CHF2 L-46e H H i-Pr CHF2 L-46g H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-46n H H i-Pr CHF2 L-46n H H i-Pr CHF2 L-47a H H i-Pr CHF2 L-47e H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-51b H H i-Pr CHF2 L-53a H H i-Pr CHF2 L-53a H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pu H H i-Pr CF3 T-1 C-Pu H H i-Pr CF3 T-2 H H i-Pr CF3 T-3 H H i-Pr CF3 T-5 H				L-45g	
H i-Pr CHF2 L-46e H H i-Pr CHF2 L-46g H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-46m H H i-Pr CHF2 L-46n H H i-Pr CHF2 L-47a H H i-Pr CHF2 L-47a H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-51b H H i-Pr CHF2 L-51b H H i-Pr CHF2 L-53a H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pu H H i-Pr CF3 C-Pu H H i-Pr CF3 C-Hex H H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-3 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5 H				L-46d	
H i-Pr H i-Pr CHF2 L-46m H H i-Pr CHF2 L-46n H H i-Pr CHF2 L-47a H H i-Pr CHF2 L-47e H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-51b H H i-Pr CHF2 CHF2 CHF2 CHF2 L-51b H H i-Pr CHF2 CHF2 CHF2 CHF2 CHF2 CHF2 CHF2 CHF2				L-46e	
H i-Pr H i-Pr CHF2 L-46n H H i-Pr CHF2 L-47a H H i-Pr CHF2 L-47e H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-51b H H i-Pr CHF2 L-51b H H i-Pr CHF2 CF3 C-Pr H H i-Pr CF3 C-Pn H H i-Pr CF3 C-Pen H H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-3 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5 H H H H-Pr CF3 CH-OCH				L-46g	
H i-Pr H i-Pr CHF2 L-46n H i-Pr CHF2 L-47a H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-51b H H i-Pr CHF2 L-53a H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pen H H i-Pr CF3 C-Hex H H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-4 H H i-Pr CF3 CF3 C-F8 H H i-Pr CF3 CF3 CF3 CF3 CF3 CF3 CF3 CF3 CF4 H H i-Pr CF5 CF3 CF5 CF3 CF5 CF3 CF6 H H H i-Pr CF7				L-46m	
H i-Pr H i-Pr CHF2 L-47a H H i-Pr CHF2 L-47e H H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-51b H H i-Pr CHF2 L-53a H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pen H H i-Pr CF3 C-Hex H H i-Pr CF3 T-2 H H i-Pr CF3 T-4 H I-Pr CF3 T-5 H CF3 CF3 CF3 CF3 CF3 CF3 CF3 CF3 C-Hex CF3 CF3 C-Hex CF3			CHF ₂	L-46n	
H i-Pr H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-51b H H i-Pr CHF2 L-53a H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Pen H H i-Pr CF3 C-Pen H H i-Pr CF3 C-Hex H H i-Pr CF3 T-1 H H i-Pr CF3 T-3 H H i-Pr CF3 T-4 H H i-Pr CF3 CH-OCH				L-47a	
H i-Pr H i-Pr CHF2 L-50b H H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-51b H H i-Pr CHF2 L-53a H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Bu H H i-Pr CF3 C-Pen H H i-Pr CF3 C-Hex H H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5 H CF3 C-Bu H CF3 C-Hex CF3 C-Hex CF3 C-Hex CF3 C-Hex CF3 C-Hex CF3 C-Hex CF3 CF3 C-Hex CF3 CF3 C-Hex CF3 CF3 C-Hex CF3 CF3 C-Hex CF3 CF3 C-Hex CF3 CF3 C-Hex C-Hex CF3 C-Hex C-Hex CF3 C-Hex C-He				L-47e	
H i-Pr H i-Pr CHF2 L-50c H H i-Pr CHF2 L-50f H H i-Pr CHF2 L-51b H H i-Pr CHF2 L-53a H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Bu H H i-Pr CF3 C-Pen H H i-Pr CF3 C-Pen H H i-Pr CF3 C-F3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-4 H H i-Pr CF3				L-50b	
H i-Pr H i-Pr CHF2 L-51b H H i-Pr CHF2 L-53a H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Bu H H i-Pr CF3 C-Pen H H i-Pr CF3 C-Hex H H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-4 H H i-Pr CF3 CF3 CF3 T-5 H CF3 CHCCH				L-50c	
H i-Pr H i-Pr CHF2 L-51b H H i-Pr CHF2 L-53a H H H i-Pr CF3 C-Pr H H i-Pr CF3 C-Bu H H I-Pr CF3 C-Pen H H i-Pr CF3 C-Hex H H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5 H CH-OCH				L-50f	
H i-Pr H i-Pr CF3 CF3 C-Pr H i-Pr CF3 C-Bu H H i-Pr CF3 C-Pen H H i-Pr CF3 C-Hex H H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5 H CF3 C-Hex H CF3 CF3 C-Hex H CF3				L-51b	
H i-Pr H i-Pr CF3 C-Pr H H i-Pr CF3 C-Bu H H i-Pr CF3 C-Pen H H i-Pr CF3 C-Hex H H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-3 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5 H CF3 T-5 H CF3 C-Pen H H CF3 C-Pr CF3 T-1 H H CF3 C-Pr CF3 T-1 H CF3 C-Pr CF3 T-1 H CF3 CF3 C-Pr CF3 C-Pen H CF3 C-Pen				L-53a	
H i-Pr CF3 c-Bu H H i-Pr CF3 c-Pen H H i-Pr CF3 c-Hex H H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-3 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5 H			CF ₃	c-Pr	
H i-Pr H i-Pr CF3 C-Pen H H i-Pr CF3 C-Hex H H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-3 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5 H CF3 T-5 H CF3 C-Pen H H H H H H H H H H H H H H H H H H H			CF3 .	c-Bu	
H i-Pr H i-Pr CF3 CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-3 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5 H H H-Pr CF3 T-5 H CF3 T-5 H CF3 T-5 H CF3 T-5 H CF3 T-6 H CF3 T-7 CF3 T				c-Pen	
H i-Pr H i-Pr CF3 T-1 H H i-Pr CF3 T-2 H H i-Pr CF3 T-3 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5 H				c-Hex	
H i-Pr H i-Pr CF3 T-2 H H i-Pr CF3 T-3 H H i-Pr CF3 T-4 H I-Pr CF3 T-5 H CF3 T-5 H				T-1	
H i-Pr CF3 T-3 H H i-Pr CF3 T-4 H H i-Pr CF3 T-5 H				T-2	
H i-Pr CF3 T-4 H H i-Pr CF3 T-5 H				T-3	
H i-Pr CF3 T-5 H				T-4	
THE CIT OCU-				T-5	
			CF ₃	CH ₂ OCH ₃	Н

Н	i-Pr	CF ₃	CH ₂ CH ₂ OCH ₃	Н
Н	i-Pr	CF ₃	CH2 OCH2 CF3	Н
Н	i-Pr	CF ₃	CH ₂ OCH ₂ CF ₂ CF ₃	Н
Н	i-Pr	СНз	CH ₂ OCH (CF ₃) ₂	H
Н	i-Pr	CF ₃	CH ₂ OPh	H
Н	i-Pr	CF ₃	$CH_2O(Ph-2-F)$	H
Н	i-Pr	CF ₃	$CH_2O(Ph-3-F)$	Н
H	i-Pr	CF3	$CH_2O(Ph-4-F)$	Н
H	i-Pr	CF ₃	$CH_2O(Ph-2-C1)$	Н
H	i-Pr	CF ₃	CH ₂ O (Ph-3-C1)	H
H	i-Pr	CF ₃	$CH_2O(Ph-4-C1)$	H
Н	i–Pr	CF ₃	$CH_2O(Ph-2-Br)$	H
Н	i-Pr	CF ₃	$CH_2O(Ph-3-Br)$	Н
H	i–Pr	CF ₃	$CH_2O(Ph-4-Br)$	Н
Н	i–Pr	CF3	$CH_2O(Ph-2-CF_3)$	Н
Н	i-Pr	CF3	$CH_2O(Ph-3-CF_3)$	Н
Н	i–Pr	CF ₃	$CH_2O(Ph-4-CF_3)$	Н
H	i-Pr	CF ₃	$CH_2O(Ph-2-OCF_3)$	Н
Н	i-Pr	CF ₃	$CH_2O(Ph-3-OCF_3)$	H
Н	i-Pr	CF ₃	$CH_2O(Ph-4-OCF_3)$	Н
H	i-Pr	CF ₃	CH ₂ SCH ₃	Н
Н	i-Pr	CF ₃	CH ₂ SO ₂ CH ₃	Н
Н	i–Pr	CF ₃	CH ₂ SCF ₃	H
H	i-Pr	CF ₃	CH ₂ SO ₂ CF ₃	Н
H	i-Pr	CF ₃	CH ₂ CH ₂ SCH ₃	Н
H	i-Pr	CF ₃	CH ₂ CH ₂ SO ₂ CH ₃	H
H	i-Pr	CF ₃	CH ₂ CH (CH ₃) SCH ₃	Н
H	i-Pr	CF ₃	CH ₂ CH (CH ₃) SEt	Н
Н	i-Pr	CF ₃	CH ₂ CH ₂ SCF ₃	H
Н	i-Pr	СН3	CH ₂ SPh	H
Н	i-Pr	CF3	CH ₂ NHPh	Н
H	i–Pr	CF ₃	CH ₂ CH ₂ Ph	H
Н	i-Pr	CF ₃	CH(CH ₃)CH ₂ Ph	Н
Н	i–Pr	СF3	M-4a	Н
Н	i–Pr	CF ₃	M-5a	Н
Н	i–Pr	CF ₃	ОСН3	CH₃
Н	i–Pr	CF3	OEt	Et
Н	i-Pr	CF ₃	OPr-n	Pr-n
Н	i–Pr	CF ₃	OPr-i	Pr-i
H	i–Pr	CF ₃	OBu-n	Bu-n
Н	i–Pr	CF ₃	OCH ₂ CF ₃	CH ₂ CF ₃
Н	i–Pr	CF ₃	C(0) 0CH₃	H
H	i–Pr	CF ₃	C(0) 0Et	H
Н	i–Pr	CF ₃	C(0) 0Pr-n	H ••
H	i–Pr	CF ₃	C(0) 0Pr-i	H
H	i-Pr	CF ₃	C(0) 0Bu-n	H
H	i-Pr	CF ₃	C(0) 0Bu-t	Н
H	i-Pr	CF ₃	C(0) 0CH ₂ CF ₃	H
H	i-Pr	CF₃	C(0) SEt	Н
H	i–Pr	CF ₃	C(0)N(CH ₃) ₂	Н
			$\mu = \tau + 0$	0 0 0 0 0

			**
H	i-Pr	CF₃ T-22	Н
H	i-Pr	CF ₃ T-23	H
H	i-Pr	CF ₃ T-24	Н
H	i-Pr	CF_3 $CH=C(CH_3)_2$	Н
H	i-Pr	CF_3 $C(C1)=CH_2$	H
H	i-Pr	CF_3 $CBr=CHBr$	H
H	i-Pr	CF_3 $CF=CF_2$	H
H	i-Pr	CF_3 $CC1=CC1_2$	H
H	i-Pr	CF_3 $C(CH_3)=CHBr$	H
H	i-Pr	CF ₃ Ph	H
Н	i-Pr	CF ₃ Ph-2-F	H
Н	i-Pr	CF_3 Ph-3-F	H
H	i-Pr	CF ₃ Ph-4-F	H
Н	i-Pr	CF_3 Ph-2-C1	Н
Н	i-Pr	CF_3 Ph-3-C1	Н
H	i-Pr	CF_3 Ph-4-C1	Н
H	i-Pr	CF_3 Ph-4-C1	СНз
Н	i-Pr	CF_3 Ph-4-C1	Et
H	i-Pr	CF_3 Ph-4-C1	n-Pr
Н	i-Pr	CF_3 Ph-4-C1	i-Pr
. Н	i-Pr	CF_3 Ph-4-C1	n-Bu
H	i-Pr	CF_3 $Ph-4-C1$	CH ₂ CF ₃
Н	i-Pr	CF_3 $Ph-4-C1$	CH ₂ CH=CH ₂
H	i-Pr	CF ₃ Ph-4-C1	CH ₂ CH=CF ₂
Н	i-Pr	CF ₃ Ph-4-C1	CH ₂ CH=CC1 ₂
Н	i-Pr	CF ₃ Ph-4-C1	CH ₂ CF=CF ₂
Н	i-Pr	CF ₃ Ph-4-C1	$CH_2CC1=CC1_2$
Н	i-Pr	CF ₃ Ph-4-C1	CH ₂ CH=CHPh
Н	i–Pr	CF_3 Ph-4-C1	$CH_2C \equiv CH$
Н	i-Pr	CF_3 Ph-4-C1	CH ₂ Ph
Н	i-Pr	CF_3 Ph-4-C1	C(0) CH ₃
Н	i-Pr	CF_3 Ph-4-C1	Si (CH ₃) ₃
Н	i-Pr	CF_3 Ph-4-C1	Si(CH ₃) ₂ Bu-t
Н	i-Pr	CF_3 Ph-4-C1	Si(CH3)2Ph
H	i-Pr	CF_3 Ph-3-Br	Н
Н	i–Pr	CF_3 $Ph-4-Br$	Н
H	i–Pr	CF_3 $Ph-3-I$	Н
H	i-Pr	CF ₃ Ph-4-I	Н
H	i-Pr	CF ₃ Ph-2-CH ₃	Н
Н	i-Pr	CF ₃ Ph-3-CH ₃	Н
H	i-Pr	CF ₃ Ph-4-CH ₃	Н
H	i-Pr	CF ₃ Ph-4-Et	H
Н	i-Pr	CF_3 $Ph-4-Pr-n$	Н
Н	i-Pr	CF_3 $Ph-4-Pr-i$	Н
Н	i-Pr	CF ₃ Ph-4-Bu-n	Н
Н	i–Pr	CF ₃ Ph-4-Bu-i	Н
H	i–Pr	CF ₃ Ph-4-Bu-t	Н
H	i–Pr	CF ₃ Ph-3-CF ₃	Н
п Н	i-Pr	CF ₃ Ph-4-CF ₃	. Н
H	i-Pr	CF_3 Ph-4-C(CF_3) 2 OH	Н
п	I-T T		

			DI 4 C(CE) OCII-	Н
H	i–Pr	CF ₃	Ph-4-C (CF ₃) ₂ OCH ₃	H
Н	i-Pr	CF ₃	Ph-4-CH ₂ OCH ₃	H
H	i-Pr	CF ₃	Ph-4-CH ₂ OCH ₂ CF ₃	н Н
Н	i-Pr	CF ₃	Ph-4-CH ₂ SCH ₃	
H	i-Pr	CF ₃	Ph-4-CH ₂ S(0) CH ₃	H
H	i–Pr	CF ₃	Ph-4-CH ₂ SO ₂ CH ₃	H
H	i-Pr	CF ₃	Ph-4-CH ₂ SEt	H
Н	i-Pr	CF ₃	$Ph-4-CH_2S(0)Et$	H
Н	i-Pr	CF ₃	Ph-4-CH ₂ SO ₂ Et	Н
H	i-Pr	CF ₃	Ph-4-CH ₂ SPr-n	H
H	i-Pr	CF ₃	$Ph-4-CH_2SO_2Pr-n$	H
Н	i-Pr	CF ₃	Ph-4-CH ₂ SPr-i	H
H	i-Pr	CF ₃	Ph-4-CH ₂ SO ₂ Pr-i	H
Н	i–Pr	CF ₃	Ph-4-CH ₂ SPr-c	Н
H.	i-Pr	CF ₃	Ph-4-CH ₂ SO ₂ Pr-c	Н
	i-Pr	CF ₃	Ph-4-CH ₂ SBu-n	Н
H		CF ₃	Ph-4-CH ₂ SO ₂ Bu-n	H
H	i-Pr	CF ₃	Ph-4-CH ₂ SCF ₃	Н
Н	i-Pr	CF ₃	Ph-4-CH ₂ S (0) CF ₃	Н
Н	i–Pr	CF ₃	Ph-4-CH ₂ SO ₂ CF ₃	Н
Н	i-Pr	CF ₃	Ph-4-CH ₂ SCH ₂ CF ₃	Н
H	i-Pr	CF ₃	Ph-3-0H	Н
Н	i–Pr		Ph-4-0H	H
Н	i-Pr	CF ₃	Ph-2-0CH ₃	 Н
H	i-Pr	CF ₃	Ph-3-0CH ₃	H
H	i-Pr	CF ₃		H
H	i-Pr	CF ₃	Ph-4-0CH ₃	H
H	i-Pr	CF ₃	Ph-3-OEt	H
Н	i–Pr	CF ₃	Ph-4-OEt	H
Н	i-Pr	CF ₃	Ph-4-0Pr-n	
Н	i-Pr	CF ₃	Ph-4-0Pr-i	Н
Н	i-Pr	CF ₃	Ph-4-0Bu-n	Н
Н	i-Pr	CF ₃	Ph-4-0Bu-t	H
Н	i-Pr	CF ₃	Ph-2-0CHF ₂	H
Н	i-Pr	CF ₃	Ph-3-0CHF ₂	H
H	i-Pr	CF ₃	Ph-4-0CHF ₂	H
Н	i-Pr	CF ₃	Ph-3-0CF ₃	Н
Н	i-Pr	CF ₃	Ph-4-0CF3	Н
H	i-Pr	CF ₃	Ph-4-0CF3	СНз
Н		CF₃	Ph-4-0CF ₃	CH ₂ CH=CH ₂
H	i-Pr	CF ₃	Ph-4-0CF3	$CH_2C \equiv CH$
H		CF ₃	Ph-4-0CF ₃	CH ₂ Ph
H		CF ₃	Ph-4-0CF3	C (0) CH₃
H		CF ₃	Ph-4-0CF3	Si(CH ₃) ₃
H		CF ₃	Ph-3-OCF ₂ Br	H
п Н		CF ₃	Ph-4-OCF ₂ Br	Н
		CF ₃	Ph-4-OCH2 CH2 C1	H
H		CF ₃	Ph-4-0CH ₂ CF ₃	H
H		CF3	Ph-3-0CF ₂ CHF ₂	H
H		CF ₃	Ph-4-OCF ₂ CHF ₂	Н
Н		CF ₃	Ph-3-OCF ₂ CHFC1	Н
H	i-Pr	Or 3		0 0 0 0 0

. Н	i-Pr	CF ₃	Ph-4-OCF2 CHFC1	H
H	i-Pr	CF ₃	Ph-4-OCF ₂ CHFCF ₃	Н
Н	i-Pr	CF ₃	Ph-4-0CF ₂ CHFOCF ₃	H
H	i-Pr	CF3	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
H	i-Pr	CF ₃	Ph-4-OCH ₂ CH=CH ₂	H
H	i-Pr	CF ₃	Ph-4-OCH ₂ CH=CF ₂	H
Н	i-Pr	CF ₃	Ph-4-0CH ₂ CF=CF ₂	H
Н	i-Pr	CF ₃	Ph-4-0CH ₂ CH=CCl ₂	H
Н	i-Pr	CF ₃	Ph-4-0CH ₂ CC1=CC1 ₂	H
Н	i-Pr	CF ₃	Ph-2-0CH ₂ Ph	H
H	i-Pr	CF3	Ph-3-0CH ₂ Ph	H
H	i-Pr	CF ₃	Ph-4-0CH ₂ Ph	H
Н	i-Pr	CF₃	Ph-4-0S0 ₂ CH ₃	Н
Н	i-Pr	CF ₃	Ph-4-0S0 ₂ Et	Н
H	i-Pr	CF ₃	$Ph-4-0SO_2Pr-n$	H
H	i-Pr	CF3	Ph-4-0S0 ₂ Pr-i	H
H	i-Pr	CF3	Ph-4-0S0 ₂ Pr-c	H
H	i-Pr	СFз	Ph-4-0S0 ₂ Bu-n	H
H	i–Pr	CF3	Ph-4-0S0 ₂ CHC1 ₂	H
Н	i–Pr	CF ₃	Ph-4-0S0 ₂ CF ₃	H
H	i-Pr	CF ₃	Ph-4-0S0 ₂ CH ₂ CF ₃	H
H	i–Pr	CF ₃	Ph-3-0Ph	H
H	i-Pr	CF ₃	Ph-4-0Ph	H
Н	i-Pr	CF ₃	Ph-4-0(Ph-4-C1)	Н
H	i-Pr	CF ₃	Ph-4-0(Ph-4-Br)	H
H	i-Pr	CF ₃	$Ph-4-0(Ph-4-CF_3)$	Н
H	i-Pr	CF₃	Ph-4-0(L-21c)	Н
Н	i-Pr	CF ₃	Ph-4-0(L-21e)	Н
Н	i-Pr	CF₃	Ph-3-0(L-45e)	Н
Н	i-Pr	CF₃	Ph-4-0(L-45e)	H
H	i–Pr	CF ₃	Ph-3-0(L-45g)	Н
H	i-Pr	CF₃	Ph-4-0(L-45g)	H
Н	i-Pr	CF₃	Ph-3-0(L-451)	H
H	i-Pr	CF ₃	Ph-4-0(L-451)	H
H	i-Pr	CF ₃	Ph-3-0(L-48b)	H
Н	i-Pr	CF ₃	Ph-4-0(L-48b)	H
H	i-Pr	CF ₃	Ph-2-SCH ₃	H
H	i-Pr	CF ₃	Ph-3-SCH ₃	H
Н	i-Pr	CF ₃	Ph-4-SCH ₃	Н
H	i-Pr	CF ₃	Ph-4-S(0)CH ₃	Н
H	i-Pr	CF ₃	Ph-4-S0 ₂ CH ₃	Н
Н	i-Pr	CF ₃	Ph-4-SEt	Н
Н	i-Pr	CF3	Ph-4-S(0)Et	H
H		CF ₃	$Ph-4-SO_2Et$	Н
Н		CF ₃	Ph-4-SPr-n	H
H		CF3	Ph-4-S(0)Pr-n	Н
H		CF ₃	$Ph-4-SO_2 Pr-n$	Н
Н		CF ₃	Ph-4-SPr-i	H
Н		CF3	Ph-4-S(0)Pr-i	H
Н		CF ₃	$Ph-4-SO_2Pr-i$	H

Н	i-Pr	CF_3 $Ph-4-SBu-n$	H
Н	i-Pr	CF_3 $Ph-4-S(0)Bu-n$	Н
H	i-Pr	CF_3 Ph-4-SO ₂ Bu-n	H
H	i–Pr	CF₃ Ph-2-SBu-t	H
H	i-Pr	CF_3 $Ph-4-SBu-t$	Н
H	i-Pr	CF_3 $Ph-4-S(0)Bu-t$	H
H	i-Pr	CF_3 Ph-4-SO ₂ Bu-t	H
Н	i-Pr	CF ₃ Ph-2-SCHF ₂	H
H	i-Pr	CF_3 Ph-3-SCHF ₂	Н
H	i-Pr	CF ₃ Ph-4-SCH ₂ F	H
Н	i–Pr	CF_3 $Ph-4-S(0)$ CH_2 F	H
Н	i–Pr	CF_3 Ph-4-SO ₂ CH ₂ F	H
Н	i-Pr	CF ₃ Ph-4-SCHF ₂	H
Н	i-Pr	CF ₃ Ph-4-S(0) CHF ₂	Н
H	i–Pr	CF ₃ Ph-4-SO ₂ CHF ₂	Н
Н	i-Pr	CF ₃ Ph-3-SCF ₃	Н
Н	i-Pr	CF ₃ Ph-4-SCF ₃	Н
Н	i-Pr	CF_3 $Ph-4-S(0)CF_3$	Н
Н	i-Pr	CF ₃ Ph-4-SO ₂ CF ₃	Н
Н	i-Pr	CF ₃ Ph-4-SCF ₂ Cl	Н
Н	i-Pr	CF_3 $Ph-4-S(0)CF_2C1$	H
H	i–Pr	CF ₃ Ph-4-SO ₂ CF ₂ C1	Н
Н	i-Pr	CF ₃ Ph-4-SCF ₂ Br	H
Н	i-Pr	CF_3 Ph-4-S(0) CF_2 Br	Н
Н	i-Pr	CF_3 $Ph-4-SO_2 CF_2 Br$	Н
H	i-Pr	CF_3 $Ph-4-S(Ph-4-C1)$	Н
Н	i-Pr	CF_3 $Ph-4-S(Ph-4-Br)$	Н
H	i-Pr	CF_3 $Ph-4-S(Ph-4-CF_3)$	Н
H	i-Pr	CF_3 Ph-4-S(L-21c)	Н
H	i-Pr	CF_3 Ph-4-S(L-21e)	Н
Н	i–Pr	CF_3 Ph-4-S(L-45e)	Н
Н	i–Pr	CF_3 Ph-3-S(L-45g)	H
H	i–Pr	CF_3 $Ph-4-S(L-45g)$	Н
Н	i-Pr	CF_3 Ph-3-S(L-451)	Н
H	i–Pr	CF_3 $Ph-4-S(L-451)$	Н
Н	i-Pr	CF_3 $Ph-4-S(L-48b)$	Н
H	i-Pr	CF_3 $Ph-3-NO_2$	Н
Н	i–Pr	CF_3 $Ph-4-NO_2$	H
Н	i-Pr	CF_3 $Ph-4-N(CH_3)_2$	H
H	i-Pr	CF_3 $Ph-4-N(Et)_2$	Н
Н	i-Pr	CF_3 $Ph-4-(T-16)$	Н
H	i-Pr	CF ₃ Ph-2-CN	Н
H	i-Pr	CF_3 Ph-3-CN	Н
H	i-Pr	CF ₃ Ph-4-CN	Н
Н	i-Pr	CF_3 $Ph-4-C(0)OCH_3$	Н
Н	i-Pr	CF_3 $Ph-4-C(0)NH_2$	H
H	i-Pr	CF_3 Ph-4-C(0) NHCH ₃	Н
Н	i-Pr	CF_3 Ph-4-C(0)NHEt	Н
H	i-Pr	CF_3 $Ph-4-C(0)N(CH_3)_2$	Н
H	i-Pr	CF_3 $Ph-4-C(S)NH_2$	H

Н	i-Pr	CF ₃	Ph-3-Ph	Н
Н	i–Pr	CF3	Ph-4-Ph	H
H	i–Pr	CF3	Ph-4-(L-5a)	Н
H	i-Pr	CF ₃	Ph-4-(L-14a)	Н
H	i-Pr	CF ₃	Ph-4-(L-24a)	H
H	i-Pr	CF ₃	Ph-4-(L-36a)	Н
H	i–Pr	CF ₃	$Ph-2, 3-F_2$	H
H	i-Pr	CF ₃	$Ph-2, 4-F_2$	H
Н	i–Pr	CF ₃	Ph-2, 5-F ₂	Н
Н	i-Pr	CF ₃	$Ph-2,6-F_2$	Н
H	i-Pr	CF ₃	Ph-3, 4-F ₂	Н
Н	i–Pr	CF ₃	$Ph-3, 5-F_2$	Н
H	i–Pr	CF ₃	Ph-2-Cl-4-F	H
H	i-Pr	CF ₃	Ph-2-F-3-C1	Н
H	i-Pr	CF ₃	Ph-3-Cl-4-F	H
Н	i–Pr	CF ₃	Ph-2-F-4-C1	H
H	i-Pr	CF ₃	Ph-3-F-4-C1	H
H	i-Pr	CF3	Ph-2-F-6-C1	H
H	i-Pr	CF ₃	Ph-2, 3-Cl ₂	Н
Н	i–Pr	CF ₃	Ph-2, 4-Cl ₂	Н
Н	i–Pr	CF ₃	Ph-2, 5-Cl ₂	Н
H	i–Pr	CF ₃	Ph-2, 6-Cl ₂	Н
H	i–Pr	CF3	Ph-3, 4-Cl ₂	Н
<u>H</u>	i–Pr	CF ₃	Ph-3, 5-Cl ₂	H
H	i-Pr	CF ₃	Ph-3-Br-4-F	Н
Н	i-Pr	CF3	Ph-2-F-4-Br	Н
Н	i–Pr	CF ₃	Ph-2-F-5-Br	Н
Н	i-Pr	CF ₃	Ph-3, 4-Br ₂	Н
Н	i–Pr	CF3	Ph-3, 5-Br ₂	Н
Н	i–Pr	CF ₃	Ph-3-CH ₃ -4-F	Н
H	i-Pr	CF ₃	Ph-3-F-4-CH ₃	Н
Н	i-Pr	CF ₃	Ph-2-F-5-CH ₃	H
Н	i-Pr	CF ₃	$Ph-2, 4-(CH_3)_2$	H
Н	i-Pr	CF ₃	$Ph-2, 6-(CH_3)_2$	Н
Н	i-Pr	CF ₃	$Ph-3, 4-(CH_3)_2$	Н
Н	i-Pr	CF ₃	$Ph-2-F-3-CF_3$	Н
Н	i-Pr	CF ₃	Ph-3-CF ₃ -4-F	Н
Н	i–Pr	CF ₃	$Ph-3-CF_3-4-C1$	H
H	i–Pr	CF ₃	$Ph-2-F-4-CF_3$	Н
Н	i–Pr	CF ₃	Ph-3-F-4-CF ₃	Н
H	i–Pr	CF ₃	Ph-2-C1-4-CF ₃	H
Н	i–Pr	CF ₃	Ph-2-F-5-CF ₃	H
Н	i–Pr	CF ₃	Ph-3-F-5-CF ₃	Н
Н	i-Pr	CF ₃	Ph-3-0CH ₃ -4-F	Н
H	i-Pr	CF_3	Ph-2-F-4-0CH ₃	Н
Н	i-Pr	CF ₃	Ph-3-C1-4-0CH ₃	H
Н	i–Pr	CF ₃	Ph-3-Br-4-0CH ₃	H
Н	i-Pr	CF ₃	Ph-3-CH ₃ -4-OCH ₃	H
Н	i-Pr	CF ₃	Ph-2-F-5-0CH ₃	H
H	i-Pr	CF3	Ph-3-F-4-0CHF ₂	Н

Н	: D+	CF3	Ph-3-C1-4-0CHF2	Н
п Н	i-Pr i-Pr	CF ₃	Ph-3-Br-4-0CHF ₂	Н
п Н	i-Pr	CF ₃	Ph-3-F-4-0CF ₃	Н
н	i-Pr	CF ₃	Ph-3-C1-4-0CF3	Н
п Н	i-Pr	CF3	Ph-3-Br-4-0CF3	Н
n H	i-Pr	CF ₃	Ph-3-F-4-0CF ₂ Br	Н
п Н	i-Pr	CF3	Ph-3-0Ph-4-F	Н
H	i-Pr	CF ₃	Ph-3-NO ₂ -4-F	Н
H	i-Pr	CF ₃	Ph-3-NO ₂ -4-C1	Н
n H	i-Pr	CF ₃	Ph-2-F-5-NO ₂	Н
H	i-Pr	CF ₃	Ph-3-CN-4-F	Н
п Н	i-Pr	CF ₃	Ph-2, 3, 4-F ₃	Н
п Н		CF ₃	Ph-2, 3, 5-F ₃	Н
	i-Pr	CF ₃	Ph-2, 3, 6-F3	Н
H	i-Pr	CF ₃	Ph-2, 4, 5-F ₃	Н
H	i-Pr	CF ₃	Ph-2, 4, 6-F ₃	Н
H	i-Pr	CF ₃	Ph-3, 4, 5-F ₃	Н
H	i-Pr	CF ₃	Ph-2, $6-F_2-3-C1$	Н
H	i-Pr	CF3	$Ph-2, 6-F_2-3-CH_3$	Н
H	i-Pr	CF ₃	Ph-2, 3-F ₂ -4-CH ₃	H
H	i-Pr	CF ₃	$Ph-2, 3-F_2-4-CF_3$	H
H	i-Pr	CF3	Ph-3, 4-F ₂ -5-CF ₃	Н
H	i-Pr	CF ₃	Ph-2, 3, 5, 6-F ₄	Н
H	i-Pr	CF3	Ph-2, 3, 4, 5, 6-F ₅	Н
H	i-Pr	CF ₃	1-Naph	Н
Н	i-Pr	CF ₃	2-Naph	H
Н	i-Pr	CF3	L-1a	H
Н	i-Pr	CF ₃	L-1b	H
H	i-Pr	CF ₃	L-1c	H
H	i-Pr	CF₃	L-1d	Н
Н	i-Pr	CF ₃	L-1e	Н
H	i-Pr	CF ₃	L-1f	Н
H	i-Pr	CF ₃	L-1g	Н
Н	i-Pr	CF ₃	L-1h	Н
Н	i-Pr	CF ₃	L-1i	Н
H	i-Pr	CF ₃	L-2a	Н
Н	i-Pr	CF3	L-2b	Н
H	i-Pr : p-	CF3	L-3a	Н
Н	i-Pr	CF ₃	L–3b	Н
H	i-Pr	CF ₃	L-3c	Н
H	i-Pr	CF ₃	L-3d	Н
Н	i-Pr	CF ₃	L-3e	Н
Н	i-Pr	CF₃	L-3f	Н
Н	i-Pr	CF ₃	L-3g	Н
H	i-Pr	CF ₃	L-3h	Н
H	i-Pr	CF₃	L-3i	Н
Н	i-Pr	CF ₃	L-3j	H
Н	i-Pr	CF₃	L–3k	H
H		CF ₃	L-31	H
H	i-Pr	CF ₃	L-3m	H
Н	i–Pr	Or 3	2 000	

Н	i-Pr	CF ₃	L-3n	Н
H	i-Pr	CF ₃	L-30	Н
H	i-Pr	CF ₃	L-4a	Н
H	i-Pr	CF ₃	L-4b	H
	i-Pr	CF ₃	L-4c	Н
H		CF ₃	L-4d	Н
H	i-Pr	CF ₃	L-4e	Н
H	i-Pr	CF ₃	L-6a	Н
H	i-Pr	CF ₃	L-6b	Н
H	i-Pr	CF ₃	L-6c	Н
H	i-Pr	CF ₃	L-6d	Н
H	i-Pr	CF ₃	L-6e	Н
H	i-Pr	CF₃	L-8a	Н
Н	i-Pr	CF ₃	L-10a	Н
H	i-Pr	CF ₃	L-10b	Н
H	i-Pr	CF ₃	L-10c	Н
H	i-Pr	CF ₃	L-10d	Н
Н	i-Pr	CF3	L-11a	Н
H	i-Pr		L-16a	Н
H	i-Pr	CF ₃	L-16b	H
Н	i-Pr	CF3	L-105 L-17a	H
H	i-Pr	CF ₃	L-17a L-19a	 H
Н	i-Pr	CF ₃	L-20a	H
Н	i-Pr	CF ₃	L-21a	н
H	i–Pr	CF ₃		Н
Н	i–Pr	CF ₃	L-21b	H
Н	i-Pr	CF ₃	L-21c	Н
Н	i-Pr	CF ₃	L-21d	H
H	i-Pr	CF ₃	L-21e	H
H	i-Pr	CF ₃	L-21f	H
H	i-Pr	CF ₃	L-22a	H
Н	iPr	CF ₃	L-22b	H
Н	i-Pr	CF ₃	L-22c	H
H	i-Pr	CF ₃	L-22d	H
Н	i-Pr	CF ₃	L-23a	H
H	i-Pr	CF ₃	L-23b	Н
Н	i-Pr	CF ₃	L-23c	H
Н		CF ₃	L-23d	Н
Н	i-Pr	CF ₃	L-23e	H
H	i-Pr	CF ₃	L-23f	H
H		CF ₃	L–23g L–23h	H
Н		CF ₃		H
H		CF ₃	L-25a	Н
Н		CF ₃	L-25b	.H
Н		CF ₃	L-25c	.11 H
Н		. CF3	L-25d	H
H		CF ₃	L-25e	H
Н		CF ₃	L-30a	H
H	i-Pr	CF ₃	L-31a	n H
Н		CF ₃	L-31b	H
H	i–Pr	CF ₃	L-31c	
			山田で駐り	004 20002

Н	i-Pr	CF_3 L-34a	Н
H	i–Pr	CF ₃ L-35a	H
H	i-Pr	CF_3 L-38a	Н
H	i–Pr	CF_3 L-38b	H
H	i-Pr	CF_3 L-38c	Н
H	i-Pr	CF ₃ L-45a	H
H	i-Pr	CF_3 L-45b	H
Н	i-Pr	CF ₃ L-45c	H
Н	i-Pr	CF_3 $L-45d$	Н
Н	i–Pr	CF ₃ L-45e	H
H	i-Pr	CF ₃ L-45f	Н
Н	i-Pr	CF ₃ L-45g	H
H	i–Pr	CF ₃ L-45h	H
H	i-Pr	CF ₃ L-45i	Н
H	i-Pr	CF ₃ L-45j	H
H	i–Pr	CF ₃ L-45k	H
H	i-Pr	CF ₃ L-451	Н
n H	i-Fr	CF ₃ L-45m	Н
		CF ₃ L-46a	Н
Н	i-Pr	CF ₃ L-46b	H
H	i-Pr	CF ₃ L-46c	Н
H	i-Pr	CF ₃ L-46d	Н
H	i-Pr	CF ₃ L-46e	Н
Н	i-Pr	CF ₃ L-46f	Н
H	i-Pr	CF ₃ L-46g	Н
Н	i-Pr	CF ₃ L-46h	Н
Н	i-Pr	CF3 L-46i	Н
H	i-Pr	CF ₃ L-46j	Н
H	i-Pr	CF ₃ L-46k	Н
Н	i-Pr	CF ₃ L-461	Н
H	i-Pr	CF ₃ L-46m	Н
H	i-Pr	CF ₃ L-46n	Н
Н	i-Pr	CF ₃ L-460	Н
Н	i–Pr	CF ₃ L-46p	Н
Н	i-Pr	CF ₃ L-46q	Н
Н	i-Pr	CF ₃ L-46r	Н
Н	i-Pr	CF ₃ L-47a	Н
Н	i-Pr	CF ₃ L-47b	Н
Н	i-Pr	CF ₃ L-47c	Н
Н	i-Pr	CF ₃ L-47d	Н
Н	i-Pr	CF ₃ L-47e	Н
H	i-Pr	CF ₃ L-48a	Н
Н	i-Pr	CF ₃ L-48b	Н
Н		CF ₃ L-50a	Н
Н		CF ₃ L-50b	Н
Н		CF ₃ L-50c	Н
Н		CF3 L-50d	Н
Н		CF ₃ L-50e	H
Н		CF3 L-50f	H
Н		CF ₃ L-501 CF ₃ L-51a	H
Н	i-Pr		

Н	i-Pr	CF ₃	L-51b	H
Н	i-Pr	CF ₃	L-51c	Н
H	i-Pr	CF ₃	L-53a	Н
H	i–Pr	CF ₃	L-55a	H
Н	i-Pr	CF ₂ C1	c-Pr	H
Н	i-Pr	CF ₂ C1	CH ₂ OCH ₃	H
Н	i-Pr	CF ₂ C1	CH ₂ SCH ₃	Н
H	i-Pr	CF ₂ Cl	OCH₃	CH ₃
Н	i-Pr	CF ₂ C1	Ph-4-F	Н
Н	i-Pr	CF ₂ C1	Ph-4-Cl	H
Н	i-Pr	CF ₂ C1	Ph-4-Br	H
Н	i-Pr	CF ₂ C1	Ph-4-I	Н
Н	i-Pr	CF ₂ C1	Ph-4-CF ₃	H
Н	i-Pr	CF ₂ C1	Ph-4-CH ₂ SCH ₃	H
Н	i–Pr	CF ₂ C1	Ph-4-CH ₂ SO ₂ CH ₃	H
Н	i-Pr	CF ₂ C1	Ph-4-CH ₂ SCF ₃	H
Н	i–Pr	CF ₂ C1	Ph-4-CH ₂ SO ₂ CF ₃	H
Н	i-Pr	CF ₂ Cl	Ph-4-OCHF2	H
H	i-Pr	CF ₂ C1	Ph-4-OCF3	Н
Н	i-Pr	CF ₂ C1	Ph-4-0S0 ₂ CH ₃	H
Н	i–Pr	CF ₂ C1	Ph-4-0 (L-45g)	H
Н	i-Pr	CF ₂ C1	Ph-4-SCH ₃	H
H	i-Pr	CF ₂ C1	Ph-4-S(0) CH ₃	H
H	i-Pr	CF ₂ C1	Ph-4-S0 ₂ CH ₃	Н
H	i-Pr	CF ₂ C1	Ph-4-SEt	Н
H	i-Pr	CF ₂ C1	Ph-4-S(0)Et	Н
H	i–Pr	CF ₂ C1	Ph-4-S0 ₂ Et	Н
Н	i-Pr	CF ₂ C1	Ph-4-SCHF ₂	H
Н	i-Pr	CF ₂ C1	Ph-4-S(0) CHF ₂	Н
H	i-Pr	CF ₂ C1	Ph-4-S0 ₂ CHF ₂	H
Н	i-Pr	CF ₂ C1	Ph-4-SCF ₃	Н
H	i–Pr	CF ₂ Cl	Ph-4-S(0) CF ₃	Н
Н	i–Pr	CF ₂ C1	Ph-4-S0 ₂ CF ₃	Н
H	i–Pr	CF ₂ C1	Ph-4-CN	Н
Н	i–Pr	CF ₂ C1	Ph-4-C(0) NH ₂	H H
H	i–Pr	CF ₂ Cl	Ph-4-C(S) NH ₂	п Н
H	i–Pr	CF ₂ C1	Ph-3, 4-F ₂	H
H	i–Pr	CF ₂ C1	Ph-3-F-4-Cl	H
H	i–Pr	CF ₂ C1	Ph-3, 4-Cl ₂	H
Н	i-Pr	CF ₂ C1	L-1b	H
H	i–Pr	CF ₂ C1	L-1c	H
Н	i–Pr	CF ₂ Cl	L-le	Н
Н	i-Pr	CF ₂ C1	L-lg	H
Н	i–Pr	CF ₂ C1	L-1i	Н
H	i–Pr	CF ₂ C1	L–2b L–3b	H
Н	i-Pr	CF ₂ Cl		H
Н	i-Pr	CF ₂ C1	L–3c L–3d	H
Н	i-Pr	CF ₂ C1	L-3d L-3f	H
Н	i-Pr	CF ₂ Cl	L-3i L-3i	H
Н	i–Pr	CF ₂ C1	L-91	11

Н	i-Pr	CF ₂ C1	L-3k	Н
Н.	i–Pr	CF ₂ C1	L-31	Н
Н	i-Pr	CF ₂ C1	L-3n	H
Н	i–Pr	CF ₂ C1	L-3o	H
Н	i–Pr	CF ₂ C1	L-4b	H
Н	i-Pr	CF ₂ C1	L-4c	H
Н	i–Pr	CF ₂ C1	L-10b	H
H	i–Pr	CF ₂ C1	L-10c	H
Н	i-Pr	CF ₂ C1	L-17a	Н
Н	i-Pr	CF ₂ C1	L-21b	H
Н	i-Pr	CF ₂ C1	L-21c	H
Н	i-Pr	CF ₂ C1	L-21e	Н
Н	i–Pr	CF ₂ C1	L-22b	H
Н	i-Pr	CF ₂ C1	L-22c	H
Н	i–Pr	CF ₂ C1	L-23b	Н .
Н	i–Pr	CF ₂ C1	L-23c	H
Н	i–Pr	CF ₂ C1	L-23e	Н
Н	i–Pr	CF ₂ C1	L-31a	H
H	i–Pr	CF ₂ C1	L-31b	H
Н	i–Pr	CF ₂ C1	L-45c	H
Н	i–Pr	CF ₂ C1	L-45d	Н
H	i-Pr	CF ₂ C1	L-45e	H
Н	i–Pr	CF ₂ C1	L-45f	Н
H	i–Pr	CF ₂ C1	L-45g	Н
Н	i–Pr	CF ₂ C1	L-451	H
Н	i–Pr	CF ₂ C1	L-45m	Н
Н	i-Pr	CF ₂ C1	L-46c	Н
Н	i–Pr	CF ₂ C1	L-46d	Н
Н	i-Pr	CF ₂ C1	L-46m	Н
Н	i-Pr	CF ₂ C1	L-46n	Н
Н	i–Pr	CF ₂ C1	L-47a	H
Н	i-Pr	CF ₂ C1	L-50b	H
Н	i–Pr	CF ₂ C1	L-50e	H
Н	i-Pr	CF ₂ C1	L-51b	Н
Н	i-Pr	CF ₂ C1	L-53a	H
Н	i-Pr	CF_2Br	Ph-4-F	H
Н	i-Pr	CF_2Br	Ph-4-Cl	Н
Н	i-Pr	CF_2Br	Ph-4-Br	Н
H	i–Pr	CF_2Br	Ph-4-I	H
Н	i–Pr	CF_2Br	Ph-4-CF ₃	Н
Н	i-Pr	CF_2Br	Ph-4-CH ₂ SCH ₃	Н
Н	i-Pr	CF_2Br	Ph-4-CH ₂ SO ₂ CH ₃	H
Н	i-Pr	CF_2Br	Ph-4-CH ₂ SCF ₃	Н
Н	i-Pr	CF_2Br	Ph-4-CH ₂ SO ₂ CF ₃	Н
Н	i–Pr	CF_2Br	Ph-4-0CHF2	Н
H	i–Pr	CF_2Br	Ph-4-OCF3	Н
Н	i–Pr	CF_2Br	Ph-4-OSO ₂ CH ₃	H
H	i-Pr	CF_2Br	Ph-4-0(L-45g)	H
H	i-Pr	CF_2Br	Ph-4-SCH ₃	H
Н	i–Pr	CF_2Br	$Ph-4-S(0)CH_3$	Н

Н	i-Pr	CF ₂ Br	Ph-4-SO ₂ CH ₃	H
Н	i–Pr	CF_2Br	Ph-4-SEt	Н
Н	i-Pr	CF ₂ Br	Ph-4-S(0)Et	Н
Н	i-Pr	CF_2Br	$Ph-4-SO_2Et$	Н
Н	i-Pr	CF_2Br	Ph-4-SCHF2	H
Н	i-Pr	CF_2Br	$Ph-4-S(0)CHF_2$	H
Н	i-Pr	CF_2Br	Ph-4-SO ₂ CHF ₂	H
Н	i-Pr	CF_2Br	Ph-4-SCF ₃	H
Н	i-Pr	CF_2Br	$Ph-4-S(0)CF_3$	Н
H	i-Pr	CF_2Br	Ph-4-SO ₂ CF ₃	H
Н	i-Pr	CF_2Br	Ph-4-CN	Н
H	i–Pr	CF_2Br	$Ph-4-C(0)NH_2$	H
Н	i-Pr	CF_2Br	$Ph-4-C(S)NH_2$	Н
Н	i-Pr	CF_2Br	$Ph-3, 4-F_2$	H
Н	i-Pr	CF_2Br	Ph-3-F-4-C1	Н
Н	i-Pr	CF_2Br	Ph-3, 4-Cl ₂	H
Н	i-Pr	CF_2Br	L-45d	Н
Н	i–Pr	CF ₂ Br	L-45e	Н
Н	i–Pr	CF_2Br	L-45f	H
Н	i–Pr	CF_2Br	L-45g	Н
H	i–Pr	CF ₂ Br	L-451	Н
Н	i–Pr	CF_2Br	L-45m	Н
Н	i–Pr	CF_2Br	L-46d	H
Н	i–Pr	CF ₂ Br	L-46e	H
Н	i–Pr	CF_2Br	L-46f	Н
H	i-Pr	CF_2Br	L-46g	H
Н	i–Pr	CF_2Br	L-46j	Н
Н	i–Pr	CF_2Br	L-46k	Н
Н	i–Pr	CF_2Br	L-46r	Н
Н	i–Pr	CF_2Br	L-47a	Н
Н	i-Pr	CF2 CHF2	Ph-4-F	Н
Н	i-Pr	CF2 CHF2	Ph-4-C1	Н
Н	i-Pr	CF2 CHF2	Ph-4-0S0 ₂ CH ₃	Н
Н	i-Pr	CF2 CHF2	Ph-4-SCH ₃	Н
Н	i–Pr	CF2 CHF2	Ph-4-SO ₂ CH ₃	Н
Н	i-Pr	CF2 CHF2	Ph-4-CN	H
Н	i-Pr	CF2 CHF2	Ph-3,4-Cl ₂	H
Н	i-Pr	CF2 CHF2	L-45e	Н
Н	i-Pr	CF2 CHF2	L-45g	H
Н	i–Pr	CF2 CHF2	L-46e	Н
Н	i-Pr	CF2 CHF2	L-46g	H
Н	i-Pr	CF2 CHF2	L-47a	Н
Н	i-Pr	CF ₂ CF ₃	c-Pr	Н
Н	i-Pr	CF ₂ CF ₃	CH ₂ OCH ₃	H
Н	i-Pr	CF ₂ CF ₃	CH₂ SCH₃	Н
Н	i-Pr	CF ₂ CF ₃	OCH ₃	Н
Н	i-Pr	CF ₂ CF ₃	0Et	Н
Н	i-Pr	CF ₂ CF ₃	Ph-4-F	Н
Н	i-Pr	CF ₂ CF ₃	Ph-4-Cl	Н
Н	i-Pr	CF ₂ CF ₃	Ph-4-I	Н

Н	i–Pr	CF ₂ CF ₃ Pł	n-4-CF3	Н
Н	i-Pr		n-4-CH2 SCH3	H
Н	i-Pr		h-4-CH2 SO2 CH3	Н
Н	i-Pr		h-4-CH ₂ SCF ₃	H
H	i-Pr		h-4-CH ₂ SO ₂ CF ₃	H
Н	i-Pr		h-4-0CHF2	H
H	i-Pr		h-4-0CF3	H
H	i-Pr		h-4-0S0 ₂ CH ₃	H
Н	i-Pr		h-4-0S0 ₂ CF ₃	H
H	i-Pr		h-4-0(L-45g)	Н
H	i-Pr		h-4-SCH3	Н
H	i–Pr		$h-4-S(0)CH_3$	Н
H	i-Pr		h-4-SO ₂ CH ₃	Н
Н	i-Pr		h-4-SEt	H
Н	i-Pr		h-4-S(0)Et	H
Н	i–Pr		h-4-S02 Et	Н
Н	i–Pr		Ph-4-SPr-n	H
Н	i-Pr		Ph-4-S(0)Pr-n	Н
H	i-Pr		Ph-4-SO ₂ Pr-n	H
Н	i-Pr	CF ₂ CF ₃ P	Ph-4-SPr-i	H
Н	i-Pr		Ph-4-S(0)Pr-i	H
Н	i-Pr		Ph-4-S0 ₂ Pr-i	H
Н	i-Pr		Ph-4-SCHF2	H
Н	i-Pr	CF_2CF_3 F	Ph-4-S(0) CHF ₂	H
H	i-Pr	CF ₂ CF ₃	Ph-4-SO ₂ CHF ₂	H
H	i-Pr	CF ₂ CF ₃	Ph-4-SCF3	Н
Н	i–Pr	CF ₂ CF ₃	Ph-4-S(0)CF3	Н
Н	i-Pr	CF ₂ CF ₃	Ph-4-SO ₂ CF ₃	Н
Н	i–Pr	CF ₂ CF ₃	Ph-4-SCF2C1	H
Н	i-Pr	CF ₂ CF ₃	Ph-4-S(0)CF2C1	Н
Н	i-Pr		Ph-4-SO ₂ CF ₂ C1	Н
Н	i-Pr	CF ₂ CF ₃	Ph-4-SCF ₂ Br	H
Н	i-Pr	-:: - : -	Ph-4-S(0)CF2Br	Н
Н	i-Pr	CF ₂ CF ₃	Ph-4-SO ₂ CF ₂ Br	H
Н	i-Pr		Ph-4-CN	Н
Н	i-Pr		Ph-4-C(0) NH ₂	Н
H	i-Pr		Ph-4-C(S)NH2	Н
H	i-Pr		Ph-3, 4-F ₂	Н
Н	i-Pr		Ph-3-F-4-C1	H
Н	i-Pr	- - -	Ph-3-C1-4-F	Н
Н	i-Pr	# · - · · ·	Ph-3-F-4-CF ₃	H
Н	i-Pr	· · · · · · · · · · · · · · · · · · ·	Ph-3, 4-Cl ₂	H
Н	i-Pr		L-1c	H
Н	i-Pr		L-1e	H
Н	i-Pr		L-1g	H
Н	i-Pr		L-1i	H
Н	i-Pr		L-2b	H
Н	i-Pr		L-3c	H
Н	i-Pr		L-3d	H
Н	i-Pr	CF ₂ CF ₃	L-3f	Н

Н	i-Pr	CF ₂ CF ₃	L-3i	H
H	i-Pr	CF ₂ CF ₃	L-31	H
H	i-Pr	CF ₂ CF ₃	L-3n	H
H	i-Pr	CF ₂ CF ₃	L-3o	Н
Н	i-Pr	CF ₂ CF ₃	L-4c	Н
п Н	i-Pr	CF ₂ CF ₃	L-10c	Н
		CF ₂ CF ₃	L-17a	Н
H	i-Pr	CF ₂ CF ₃	L-21b	Н
H	i-Pr	CF ₂ CF ₃	L-21c	Н
H	i-Pr	CF ₂ CF ₃	L-21e	Н
H	i-Pr	CF ₂ CF ₃	L-22b	H
H	i-Pr	CF ₂ CF ₃	L-22c	H
Н	i–Pr		L-23b	Н
H	i–Pr	CF ₂ CF ₃	L-23c	H
Н	i-Pr	CF ₂ CF ₃		H
H	i–Pr	CF ₂ CF ₃	L-23e	H
Н	i-Pr	CF ₂ CF ₃	L-31b	H
H	i-Pr	CF ₂ CF ₃	L-45d	H
H	i–Pr	CF ₂ CF ₃	L-45e	п Н
H	i-Pr	CF ₂ CF ₃	L-45f	
H	i–Pr	CF ₂ CF ₃	L-45g	Н
H	i-Pr	CF ₂ CF ₃	L-451	Н
H	i-Pr	CF ₂ CF ₃	L-45m	H
Н	i-Pr	CF ₂ CF ₃	L-46d	Н
H	i-Pr	CF ₂ CF ₃	L-46e	Н
Н	i-Pr	CF ₂ CF ₃	L-46f	Н
Н	i–Pr	CF ₂ CF ₃	L-46g	Н
Н	i-Pr	CF ₂ CF ₃	L-46 j	Н
Н	i-Pr	CF ₂ CF ₃	L-46k	Н
Н	i–Pr	CF ₂ CF ₃	L-46m	Н
Н	i–Pr	CF ₂ CF ₃	L-46n	H
Н	i-Pr	CF ₂ CF ₃	L-46r	Н
H	i-Pr	CF ₂ CF ₃	L-47a	Н
Н	i-Pr	CF ₂ CF ₃	L-47e	Н
Н	i-Pr	CF ₂ CF ₃	L-50c	Н
Н	i-Pr	CF ₂ CF ₃	L-50e	Н
Н	i-Pr	CF ₂ CF ₂ C1	Ph-4-F	H
Н	i-Pr	CF ₂ CF ₂ C1	Ph-4-Cl	H
Н	i-Pr	CF ₂ CF ₂ C1	Ph-4-0S0 ₂ CH ₃	Н
H	i-Pr	CF ₂ CF ₂ C1	Ph-4-SCH3	Н
H	i-Pr	CF ₂ CF ₂ C1	Ph-4-SO ₂ CH ₃	Н
Н	i-Pr	CF ₂ CF ₂ C1	Ph-4-CN	Н
n H	i-Pr	CF ₂ CF ₂ C1	L-45g	Н
		CF ₂ CF ₂ Br	Ph-4-F	Н
Н		CF ₂ CF ₂ Br	Ph-4-Cl	Н
Н		CF ₂ CF ₂ Br	Ph-4-SO ₂ CH ₃	H
H		CF ₂ CF ₂ Br	L-45g	H
Н		CFC1CF3	Ph-4-F	H
Н		CFC1CF3	Ph-4-Cl	H
Н		CFC1CF3	Ph-4-SO ₂ CH ₃	H
Н		CFC1CF3	L-45g	Н
H	i-Pr	CFC ICF3	L-40g	2000
			⇒.r.arr. ∩ /\ /\ /	** ** (1 (1

Н	i-Pr	CFBrCF3	Ph-4-F	H
H	i-Pr	CFBrCF3	Ph-4-Cl	H
H	i-Pr	CFBrCF3	Ph-4-SO ₂ CH ₃	H
Н	i-Pr	CFBrCF3	L-45g	Н
H	i-Pr	CFC1CF2C1	Ph-4-F	H
H	i-Pr	CFC1CF2C1	Ph-4-C1	H
H	i-Pr	CFC1CF2C1	Ph-4-SO ₂ CH ₃	H
H	i-Pr	CFC1CF2C1	L-45g	H
H	i-Pr	CF ₂ CF ₂ CF ₃	Ph-4-F	H
Н	i-Pr	CF ₂ CF ₂ CF ₃	Ph-4-Cl	H
Н	i-Pr	CF ₂ CF ₂ CF ₃	Ph-4-Br	H
Н	i-Pr	CF ₂ CF ₂ CF ₃	Ph-4-CF ₃	H
Н	i-Pr	CF ₂ CF ₂ CF ₃	Ph-4-OCHF ₂	Н
Н	i-Pr	CF2 CF2 CF3	Ph-4-0CF3	H
H	i-Pr	CF ₂ CF ₂ CF ₃	Ph-4-0SO ₂ CH ₃	H
H	i-Pr	CF2 CF2 CF3	Ph-4-SCH ₃	H
Н	i–Pr	CF ₂ CF ₂ CF ₃	Ph-4-SO ₂ CH ₃	Н
H	i–Pr	CF2 CF2 CF3	Ph-4-CN	H
Н	i-Pr	CF2 CF2 CF3	L-45g	Н
H	i–Pr	CF(CF ₃) ₂	Ph-4-F	H
Н	i–Pr	CF(CF ₃) ₂	Ph-4-Cl	H
H	i–Pr	CF(CF ₃) ₂	Ph-4-0S0 ₂ CH ₃	Н
Н	i–Pr	CF(CF ₃) ₂	Ph-4-SCH ₃	H
Н	i-Pr	$CF(CF_3)_2$	Ph-4-SO ₂ CH ₃	H
Н	i-Pr	$CF(CF_3)_2$	Ph-4-CN	Н
Н	i–Pr	$CF(CF_3)_2$	L-45g	H
Н	i-Pr	CF2 CFC1CF2 C1		Н
Н	i–Pr	CF2 CFC1CF2 C1		Н
Н	i-Pr	CF2 CF2 CF2 CHF2		Н
H	i-Pr	CF2 CF2 CF2 CHF2		H
Н	i-Pr	CF ₂ CF ₂ CF ₂ CF ₃		H
Н	i-Pr	CF ₂ CF ₂ CF ₂ CF ₃	Ph-4-Cl	H
Н	i-Pr	CF ₂ CF ₂ CF ₂ CF ₃	Ph-4-0S0 ₂ CH ₃	Н
Н	i-Pr	CF ₂ CF ₂ CF ₂ CF ₃		Н
Н	i-Pr	CF2 CF2 CF2 CF3		Н
Н	i-Pr	CF ₂ CF ₂ CF ₂ CF ₃		H
Н	i-Pr	CF ₂ CF ₂ CF ₂ CF ₃		H
Н	i-Pr	CF (CF ₃) CF ₂ CF		Н.
Н	i-Pr	CF ₂ CF ₂ CF ₂ CF ₂		Н
Н	i-Pr	CF ₂ CF ₂ CF ₂ CF ₂		Н
Н	i-Pr	CH ₂ OCH ₃	Ph-4-F	Н
Н	i-Pr	CH ₂ OCH ₃	Ph-4-C1	Н
Н	i-Pr	CH ₂ OCH ₃	Ph-4-0S0 ₂ CH ₃	H H
Н	i-Pr	CH ₂ OCH ₃	Ph-4-SCH ₃	
Н	i-Pr	CH ₂ OCH ₃	Ph-4-SO ₂ CH ₃	Н
Н	i-Pr	CH ₂ OCH ₃	Ph-4-CN	Н
Н	i-Pr	CH ₂ OCH ₃	Ph-3, 4-Cl ₂	Н
Н	i-Pr	CH ₂ OCH ₃	L-45g	H
H	i-Pr	CH ₂ OCH ₃	L-47a	Н
Н	i-Pr	CH ₂ OEt	Ph-4-F	Н

Н	i–Pr	CH ₂ OEt	Ph-4-Cl	H
H	i-Pr	CH ₂ OEt	Ph-4-SO ₂ CH ₃	H
H	i-Pr	CH ₂ OEt	L-45g	H
H	i-Pr	CH2 OCH2 CF3	Ph-4-F	Н
H	i-Pr	CH2 OCH2 CF3	Ph-4-Cl	H
H	i-Pr	CH2 OCH2 CF3	Ph-4-SO ₂ CH ₃	H
H	i-Pr	CH2 OCH2 CF3	L-45g	H
H	i–Pr	CF2 OCF2 CF2 OCF3	Ph-4-F	H
Н	i-Pr	CF(CF ₃)OCF ₂ CF ₂	CF ₃ Ph-4-SO ₂ CH ₃	Н
H	i-Pr	CH ₂ SCH ₃	Ph-4-F	H
H	i-Pr	CH ₂ SCH ₃	Ph-4-Cl	H
H	i-Pr	CH ₂ SCH ₃	Ph-4-0SO ₂ CH ₃	Н
Н	i–Pr	CH ₂ SCH ₃	Ph-4-SCH ₃	Н
Н	i–Pr	CH ₂ SCH ₃	Ph-4-SO ₂ CH ₃	H
H	i–Pr	CH ₂ SCH ₃	Ph-4-CN	H
Н	i–Pr	CH ₂ SCH ₃	Ph-3, 4-Cl ₂	Н
H	i–Pr	CH ₂ SCH ₃	L-45g	H
H	i–Pr	CH ₂ SCH ₃	L-47a	H
	i–Pr	CH ₂ SO ₂ CH ₃	Ph-4-F	Н
	i-Pr	CH ₂ SO ₂ CH ₃	Ph-4-Cl	Н
Н	i-Pr	CH ₂ SO ₂ CH ₃	Ph-4-SO ₂ CH ₃	H
H	i–Pr	CH ₂ SO ₂ CH ₃	L-45g	H
H	i–Pr	CH ₂ SEt	Ph-4-F	H
<u>H</u>	i-Pr	CH ₂ SEt	Ph-4-Cl	·H
H	i–Pr	CH ₂ SEt	Ph-4-SO ₂ CH ₃	H
Н	i–Pr	CH ₂ SEt	L-45g	Н
Н	i–Pr	CH2 CH2 SCH3	Ph-4-Cl	Н
Н	i–Pr	CH ₂ CH ₂ SCH ₃	Ph-4-SO ₂ CH ₃	Н
Н	i-Pr	CH ₂ SCF ₃	Ph-4-F	Н
Н	i–Pr	CH ₂ SCF ₃	Ph-4-C1	Н
Н	i–Pr	CH ₂ SCF ₃	Ph-4-0S0 ₂ CH ₃	Н
Н	i-Pr	CH ₂ SCF ₃	Ph-4-SCH ₃	Н
Н	i-Pr	CH ₂ SCF ₃	Ph-4-SO ₂ CH ₃	Н
Н	i-Pr	CH ₂ SCF ₃	Ph-4-CN	H
Н	i–Pr	CH ₂ SCF ₃	Ph-3, 4-Cl ₂	Н
Н	i-Pr	CH ₂ SCF ₃	L-45g	H
Н	i-Pr	CH ₂ SCF ₃	L-47a	Н
Н	i-Pr	CH ₂ CH ₂ SCF ₃	Ph-4-C1	H
Н	i-Pr	CH ₂ CH ₂ SCF ₃	Ph-4-S0 ₂ CH ₃	Н
Н	i-Pr	CH ₂ SPh	Ph-4-F	H
H	i-Pr	CH ₂ SPh	Ph-4-Cl	Н
H	i-Pr	CH ₂ SPh	Ph-4-SO ₂ CH ₃	H
Н	i–Pr	CH ₂ SPh	L-45g	H
Н	i–Pr	Ph	Ph-4-Cl	Н
Н	i-Pr	Ph	Ph-4-SO ₂ CH ₃	Н
H	i-Pr	Ph-4-F	OCH ₃	CH ₃
Н	i-Pr	Ph-4-F	Ph-4-Cl	H
H	i-Pr	Ph-4-F	Ph-4-SO ₂ CH ₃	H
Н	i-Pr	Ph-4-C1	OCH ₃	СНз
Н	i–Pr	Ph-4-C1	Ph-4-Cl	Н

H i-Pr	Ph-4-Cl	Ph-4-SO ₂ CH ₃		Н
H i-Pr	Ph-4-Br	OCH ₃		СНз
H i-Pr	Ph-4-CF ₃	OCH ₃		СН3
H i-Pr	Ph-4-0CHF2	OCH ₃		СНз
H i-Pr	Ph-4-0CF3	OCH ₃		СНз
H i-Pr	Ph-4-0CF3	O Et		Et
H i-Pr	Ph-4-0CF3	0Pr-n		n-Pr
H i-Pr	Ph-4-0CF3	OPr-i		i-Pr
H i-Pr	Ph-4-0CF3	OCH ₂ CF ₃		CH ₂ CF ₃
H i-Pr	Ph-4-0CF3	Ph-4-Cl		H
H i-Pr	Ph-4-0CF3	Ph-4-SO ₂ CH ₃		H
H i-Pr	Ph-4-OCF ₂ Br	OCH ₃		СНз
H i-Pr	Ph-4-OCF2 CHF2	OCH ₃		СНз
H i-Pr	Ph-4-OCF2 CHFC	3	OCH ₃	СНз
H i-Pr	Ph-4-OCF2 CHFO		OCH ₃	CH ₃
H i-Pr	Ph-4-OCF2CHFO	CF ₂ CF ₂ CF ₃	OCH ₃	СН3
CH ₃ i-Pr	CF ₃	Ph-4-Cl		H
CH ₃ i-Pr	CF ₃	Ph-4-OCF ₃		H
Et i-Pr	CF ₃	Ph-4-SO ₂ CH ₃		H
Et i-Pr	CF ₃	Ph-4-OCF ₃		H
i-Pr i-Pr	CF ₃	Ph-4-F		H
i-Pr i-Pr	CF ₃	Ph-4-0CF3		H
CH ₂ OCH ₃ i-Pr	CF ₃	Ph-4-Cl		Н
CH ₂ OCH ₃ i-Pr	CF ₃	Ph-4-0CF ₃		Н
H c-Pr	CF ₃	Ph-4-F		H
H c-Pr	CF ₃	Ph-4-C1		H
H c-Pr	CF ₃	Ph-4-Br		H H
H c-Pr	CF ₃	Ph-4-I		n H
H c-Pr	CF ₃	Ph-4-CF ₃		п Н
H c-Pr	CF ₃	Ph-4-OCHF ₂		n H
H c-Pr	CF ₃	Ph-4-OCF ₃		H
H c-Pr	CF ₃	Ph-4-OCF ₂ B		H
H c-Pr	CF ₃	Ph-4-0CF ₂ C Ph-4-0CF ₂ C		H
H c-Pr	CF ₃	Ph-4-0CF ₂ C		H
H c-Pr	CF ₃	Ph-4-0CF2 C		H
H c-Pr	CF ₃	_	HFOCF2 CF2 CF3	
H c-Pr	CF ₃	Ph-4-0S0 ₂ C		H
H c-Pr	CF ₃	Ph-4-0(L-4		Н
H c-Pr	CF3 CF3	Ph-4-SCH ₃	.05/	H
H c-Pr	CF3 CF3	Ph-4-S(0)	H3	Н
H c-Pr	CF ₃	Ph-4-S0 ₂ Ch		Н
H c-Pr	CF ₃	Ph-4-CN	~	Н
H c-Pr	CF ₃	Ph-4-C(0)1	√H2	Н
H c-Pr	CF ₃	Ph-4-C(S)		H
H c-Pr	CF ₃	Ph-3, 4-F ₂		H
H c-Pr	CF3	Ph-3-F-4-0	C1	Н
H c-Pr	CF ₃	Ph-3, 4-Cl:		Н
H c-Pr Н c-Pr	CF3	L-45d		H
H c-Pr H c-Pr	CF ₃	L-45e	•	Н
п С-11		·····································	004 20	002

	_	OD.	T 45	Н
H	c-Pr	CF ₃	L-45g L-46d	H
H	c-Pr	CF ₃	L-46e	H
H	c-Pr	CF ₃	L-46g	H
H	c-Pr	CF ₃	L-40g L-47a	H
H	c-Pr	CF ₃	L-47a L-47e	H
H	c-Pr	CF ₃	Ph-4-F	H
H	n-Bu	CF ₃	Ph-4-Cl	H
H	n-Bu	CF₃	Ph-4-0CF ₃	H
H	n-Bu	CF ₃	Ph-4-0S0 ₂ CH ₃	H
H	n-Bu	CF3	Ph-4-SCH ₃	H
H	n-Bu	CF ₃	Ph-4-S(0) CH ₃	H
H	n-Bu	CF3	Ph-4-SO ₂ CH ₃	H
H	n-Bu	CF3	Ph-4-CN	H
H	n-Bu	CF ₃	Ph-4-C(0) NH ₂	H
Н	n-Bu	CF ₃		H
H	n-Bu	CF ₃	Ph-4-C(S) NH ₂	Н
Н	n-Bu	CF ₃	L-45g	H
H	i–Bu	CF ₃	Ph-4-F	H
Н	i–Bu	CF ₃	Ph-4-C1 Ph-4-0CF3	H
H	i –Bu	CF ₃	Ph-4-SO ₂ CH ₃	H
H	i-Bu	CF ₃		H
	3 i-Bu	CF ₃	Ph-4-C1 Ph-4-0CF3	H
	3 i-Bu	CF ₃		H
H	CH ₂ Pr-c	CF3	Ph-4-SO ₂ CH ₃	H
H	s-Bu	CH ₃	Ph-4-F	H
Н	s-Bu	CH ₃	Ph-4-Cl	H
Н	s-Bu	CH ₃	Ph-4-SO ₂ CH ₃	H
H	s-Bu	СНз	L-45g	Н
H	s-Bu	Et	Ph-4-F	H
Н	s-Bu	Et	Ph-4-C1	H
Н	s-Bu	Et	Ph-4-S0 ₂ CH ₃	H
Н	s-Bu	Et	L-45g	H
H	s-Bu	n-Pr	Ph-4-F	Н
H	s-Bu	i-Pr	Ph-4-SO ₂ CH ₃	Н
Н	s-Bu	CHF ₂	L-45g	H
H	s-Bu	CF ₃	CH ₂ OPh	H
H	s-Bu	CF ₃	$CH_2O(Ph-2-C1)$	H
Н	s-Bu	CF ₃	$CH_2O(Ph-3-C1)$	Н
Н	s-Bu	CF ₃	$CH_2O(Ph-4-C1)$	Н
H	s-Bu	CF ₃	CH ₂ SPh	H
H	s-Bu	CF ₃	CH ₂ NHPh	CH ₃
Н	s-Bu	CF ₃	OCH3	Н
H	s-Bu	CF ₃	Ph-4-F	Н
H	s-Bu	CF ₃	Ph-4-Cl	
Н	s-Bu	CF ₃	Ph-4-Br	H H
Н		CF ₃	Ph-4-I	
Н		CF ₃	Ph-4-CF ₃	H
Н	s-Bu	CF ₃	Ph-4-CH ₂ SCH ₃	Н
Н	s-Bu	CF₃	Ph-4-CH ₂ SO ₂ CH ₃	H
Н	s-Bu	CF ₃	Ph-4-CH ₂ SCF ₃	Н

	•		
Н	s-Bu	CF ₃ Ph-4-CH ₂ SO ₂ CF ₃	H
Н	s-Bu	CF ₃ Ph-4-OCHF ₂	H
Н	s-Bu	CF ₃ Ph-4-OCF ₃	H
H	s-Bu	CF_3 $Ph-4-0CF_2Br$	H
H	s-Bu	CF ₃ Ph-4-OCF ₂ CHF ₂	H
Н	s-Bu	CF ₃ Ph-4-0CF ₂ CHFC1	H
Н	s-Bu	CF ₃ Ph-4-OCF ₂ CHFCF ₃	H
Н	s-Bu	CF ₃ Ph-4-OCF ₂ CHFOCF ₃	H
Н	s-Bu	CF ₃ Ph-4-OCF ₂ CHFOCF ₂ CF ₃	H
Н	s-Bu	CF ₃ Ph-4-OSO ₂ CH ₃	H
Н	s-Bu	CF_3 $Ph-4-0(L-45g)$	H
H	s-Bu	CF ₃ Ph-4-SCH ₃	Н
Н	s-Bu	CF_3 $Ph-4-S(0)CH_3$	H
Н	s-Bu	CF_3 Ph-4-SO ₂ CH ₃	H
Н	s-Bu	CF_3 $Ph-4-SEt$	H
Н	s-Bu	CF_3 $Ph-4-S(0)Et$	H
Н	s-Bu	CF_3 Ph-4-SO ₂ Et	Н
Н	s-Bu	CF_3 $Ph-4-SPr-n$	H
Н	s-Bu	CF_3 $Ph-4-S(0)Pr-n$	H
H	s-Bu	CF_3 $Ph-4-SO_2Pr-n$	H
Н	s-Bu	CF_3 $Ph-4-SPr-i$	H
Н	s-Bu	CF_3 $Ph-4-S(0)Pr-i$	H
Н	s-Bu	CF_3 $Ph-4-SO_2Pr-i$	Н
H	s-Bu	CF ₃ Ph-4-SCHF ₂	Н
Н	s-Bu	CF_3 $Ph-4-S(0)CHF_2$	H
Н	s-Bu	CF_3 Ph-4-SO ₂ CHF ₂	H
H	s-Bu	CF_3 $Ph-4-SCF_3$	Н
H	s-Bu	CF_3 $Ph-4-S(0)CF_3$	H
Н	s-Bu	CF_3 Ph-4-SO ₂ CF ₃	H
H	s-Bu	CF_3 Ph-4-SCF ₂ C1	H
H	s-Bu	CF_3 Ph-4-S(0) CF_2 C1	Н
H	s-Bu	CF_3 Ph-4-SO ₂ CF_2 C1	Н
Н	s-Bu	CF_3 $Ph-4-SCF_2Br$	H
H	s-Bu	CF_3 $Ph-4-S(0)CF_2Br$	H
H	s-Bu	CF_3 $Ph-4-SO_2 CF_2 Br$	H
H	s-Bu	CF ₃ Ph-4-CN	H
H	s-Bu	CF_3 $Ph-4-C(0)NH_2$	H
H		CF_3 $Ph-4-C(S)NH_2$	H
H		CF_3 Ph-3, 4- F_2	Н
H		CF_3 Ph-3-F-4-Cl	H
H		CF_3 Ph-3, 4-Cl ₂	Н
H		CF_3 $L-1b$	H
H		$\mathrm{CF_3}$ $\mathrm{L}\text{-lc}$	H
H		$ ext{CF}_3 ext{L-1d}$	H
H		CF_3 L-le	H
H		CF ₃ L-1f	Н
H		CF_3 L-1g	H
H		CF ₃ L-1i	H
H		CF ₃ L-2b	Н
H		CF_3 L-3b	H
1.1	. จ-มน	•	

		an.	T 0-	Н
H	s-Bu	CF3	L–3c L–3d	H
H	s-Bu	CF ₃		Н
Н	s-Bu	CF ₃	L–3e L–3f	Н
H	s-Bu	CF3		H
Н	s-Bu	CF3	L–3g L–3h	H
H	s-Bu	CF ₃	L-3i L-3i	H
H	s-Bu	CF ₃	L-3i L-3j	H
H	s-Bu	CF ₃	L-3) L-3k	Н
H	s-Bu	CF ₃	L-3k L-31	H
Н	s-Bu	CF ₃	L-31 L-3m	H
Н	s-Bu	CF3	L-3m L-3n	H
Н	s-Bu	CF ₃	L=30	н
Н	s-Bu	CF ₃	L-30 L-4b	Н
H	s-Bu	CF ₃	L-4c	H
Н	s-Bu	CF ₃	L-4d	H
Н	s-Bu	CF₃	L-4d L-4e	, н
H	s-Bu	CF ₃		Н
H	s-Bu	CF ₃	L-10b	Н
Н	s-Bu	CF ₃	L-10c	H
Н	s-Bu	CF ₃	L-10d	H
H	s-Bu	CF ₃	L-17a	H
Н	s-Bu	CF ₃	L-21b	H
Н	s-Bu	CF ₃	L-21c	H
H	s-Bu	CF ₃	L-21d	H
Н	s-Bu	CF ₃	L-21e	H
Н	s-Bu	CF ₃	L-22b	H
H	s-Bu	CF ₃	L-22c	H
Н	s-Bu	CF ₃	L-22d	H
H	s-Bu	CF ₃	L-23b	H
H	s-Bu	CF ₃	L-23c	Н
Н	s-Bu	CF ₃	L–23e L–31a	H
H		CF ₃		H
Н	s-Bu	CF ₃	L-31b	H
Н	s-Bu	CF ₃	L-31c	H
H	s-Bu	CF ₃	L–45d L–45e	H
Н	s-Bu	CF ₃	L-45f	Н
Н	s-Bu	CF ₃	L-45g	H
Н	s-Bu	CF ₃	L-45g L-451	H
Н	s-Bu	CF ₃	L-45m	Н
Н	s-Bu	CF ₃	L-46d	н
Н	s-Bu	CF ₃	L-46e	H
H		CF ₃	L-46f	Н
Н		CF ₃		H
Н		CF ₃	L-46g	H
H		CF3	L-46j	H
Н		CF ₃	L-46k	H
H		CF₃	L-46m	H
Н		CF3	L-46n	H
Н		CF ₃	L-460	H
H	s-Bu	CF ₃	L-46p	11

		OD I AC.,	Н
H	s-Bu	0.13	H
Н	s-Bu	013 2 114	H
H	s-Bu	013	H
Н	s-Bu	013	n H
H	s-Bu	CF ₃ L-50b	
H	s-Bu	CF ₃ L-50c	H
H	s-Bu	CF ₃ L-50e	H
H	s-Bu	CF_3 $L-51b$	H
H	s-Bu	CF ₃ L-51c	H
Н	s-Bu	CF_2C1 $Ph-4-F$	H
Н	s-Bu	$CF_2 CF_3$ $Ph-4-SO_2 CH_3$	H
H	t-Bu	CH ₃ Ph-4-F	H
Н	t-Bu	CH_3 $Ph-4-C1$	H
Н	t-Bu	CH ₃ Ph-4-SO ₂ CH ₃	H
Н	t-Bu	CH_3 $L-45g$	H
Н	t-Bu	Et Ph-4-F	H
Н	t-Bu	Et Ph-4-Cl	H
H	t-Bu	Et Ph-4-SO ₂ CH ₃	H
Н	t-Bu	Et L-45g	H
H	t-Bu	n-Pr Ph-4-F	H
Н	t-Bu	i-Pr Ph-4-SO ₂ CH ₃	H
Н	t-Bu	$ ext{CHF}_2 ext{L-45g}$	H
Н	t-Bu	CF ₃ CH ₂ OPh	H
H	t-Bu	CF_3 $CH_2 O (Ph-2-C1)$	H
H	t-Bu	CF_3 $CH_2 O (Ph-3-C1)$	H
H	t-Bu	CF_3 $CH_2 O (Ph-4-C1)$	H
H	t-Bu t-Bu	CF ₃ CH ₂ SPh	H
H	t-Bu t-Bu	CF ₃ CH ₂ NHPh	H
н		CF ₃ OCH ₃	СНз
	t-Bu t-Bu	CF ₃ Ph-4-F	Н
Н	t-ви t-Вu	CF ₃ Ph-4-C1	H
H H		CF ₃ Ph-4-Br	H
	t-Bu	CF ₃ Ph-4-I	Н
Н	t-Bu	CF ₃ Ph-4-CF ₃	H
Н	t-Bu	CF ₃ Ph-4-CH ₂ SCH ₃	H
H	t-Bu	CF ₃ Ph-4-CH ₂ SO ₂ CH ₃	H
Н	t-Bu	CF ₃ Ph-4-CH ₂ SCF ₃	Н
Н	t–Bu	CF ₃ Ph-4-CH ₂ SO ₂ CF ₃	H
Н	t-Bu	CF ₃ Ph-4-0CHF ₂	Н
Н	t-Bu	CF ₃ Ph-4-OCF ₃	Н
Н	t-Bu	CF ₃ Ph-4-0CF ₂ Br	Н
Н	t-Bu	CF ₃ Ph-4-0CF ₂ CHF ₂	H
Н	t-Bu		Н
Н	t-Bu		H
H	t-Bu		H
Н			
Н		02.0	Н
Н			H
H	t-Bu	CF ₃ Ph-4-OSO ₂ CF ₃	п Н
Н		CF ₃ Ph-4-O(L-45g)	п Н
Н	t-Bu	CF ₃ Ph-4-SCH ₃	11

Н	t-Bu	CF ₃	Ph-4-S(0)CH3	Н
H	t-Bu	CF ₃	Ph-4-SO ₂ CH ₃	Н
Н	t-Bu	CF ₃	Ph-4-SEt	Н
H	t-Bu	CF ₃	Ph-4-S(0)Et	Н
Н	t-Bu	CF ₃	Ph-4-S0 ₂ Et	H
H	t-Bu	CF ₃	Ph-4-SPr-n	Н
H	t-Bu	CF ₃	Ph-4-S(0)Pr-n	H
Н	t-Bu	CF ₃	$Ph-4-SO_2Pr-n$	H
Н	t-Bu	CF ₃	Ph-4-SPr-i	H
H	t-Bu	CF ₃	Ph-4-S(0)Pr-i	H
Н	t-Bu	CF ₃	Ph-4-S0 ₂ Pr-i	Н
Н	t-Bu	CF ₃	Ph-4-SCHF2	H
Н	t-Bu	CF ₃	$Ph-4-S(0)CHF_2$	Н
H	t-Bu	CF ₃	Ph-4-SO ₂ CHF ₂	H
H	t-Bu	CF ₃	Ph-4-SCF3	. Н
H	t-Bu	CF ₃	$Ph-4-S(0)CF_3$	H
H	t-Bu	CF ₃	Ph-4-S0 ₂ CF ₃	H
Н	t-Bu	CF ₃	Ph-4-SCF ₂ Cl	H
Н	t-Bu	CF ₃	$Ph-4-S(0)CF_2C1$	H
Н	t-Bu	CF ₃	Ph-4-SO ₂ CF ₂ C1	Н
H	t-Bu	CF ₃	Ph-4-SCF ₂ Br	Н
H	t-Bu	CF ₃	$Ph-4-S(0)CF_2Br$	Н
H	t-Bu	CF ₃	Ph-4-SO ₂ CF ₂ Br	Н
Н	t-Bu	CF ₃	Ph-4-CN	Н
Н	t-Bu	CF ₃	$Ph-4-C(0)NH_2$	Н
Н	t-Bu	CF ₃	$Ph-4-C(S)NH_2$	Н
Н	t-Bu	CF ₃	Ph-3, 4-F ₂	Н
Н	t-Bu	CF ₃	Ph-3-F-4-C1	Н
Н	t-Bu	CF ₃	Ph-3, 4-Cl ₂	H
Н	t-Bu	CF ₃	L–1b	H
Н	t-Bu	CF ₃	L-1c	Н
Н	t-Bu	CF ₃	L-1d	Н
Н	t-Bu	CF_3	L-1e	H
Н	t-Bu	CF ₃	L-1f	H
Н	t-Bu	CF ₃	L-1g	Н
Н	t-Bu	CF ₃	L-1i	Н
H	t-Bu	CF ₃	L-2b	Н
Н	t-Bu	CF ₃	L-3c	Н
Н	t-Bu	CF ₃	L-3d	Н
H	t-Bu	CF ₃	L-3e	H
Н	t-Bu	CF ₃	L-3f	Н
Н	t-Bu	CF ₃	L-3h	Н
Н	t-Bu	CF ₃	L-3i	H
Н	t-Bu	CF ₃	L-3j	H
Н	t-Bu	CF ₃	L-3k	H
H	t-Bu	CF ₃	L-31	Н
Н	t-Bu	CF ₃	L-3m	Н
H		CF ₃	L-3n	H
H		CF ₃	L-30	H
Н	t-Bu	CF ₃	L-4b	Н

Н	t-Bu	CF_3	L-4c	H
H	t-Bu	CF ₃	L-4e	H
H	t-Bu	CF ₃	L-10b	H
H	t-Bu	CF ₃	L-10c	H
H	t-Bu	CF ₃	L-10d	Н
H	t-Bu	CF ₃	L-17a	Н
Н	t-Bu	CF ₃	L-21b	H
Н	t-Bu	CF ₃	L-21c	Н
H	t-Bu	CF ₃	L-21d	Н
		CF ₃	L-21e	Н
H	t-Bu	CF ₃	L-22b	H
H	t-Bu	CF ₃	L-22c	Н
H	t-Bu	CF ₃	L-22d	Н
H	t-Bu	CF ₃	L-23b	H
H	t-Bu		L-23c	H
Н	t-Bu	CF ₃	L-23e	H
H	t-Bu	CF ₃	L-31a	Н
Н	t-Bu	CF ₃		Н
Н	t-Bu	CF ₃	L-31b	H
H	t-Bu	CF ₃	L-31c	Н
Н	t-Bu	CF ₃	L-45d	H
H	t-Bu	CF ₃	L-45e	H
Н	t-Bu	CF ₃	L-45f	Н
H	t-Bu	CF ₃	L-45g	
H	t-Bu	CF ₃	L-451	Н
Н	t-Bu	CF ₃	L-45m	H
H	t-Bu	CF ₃	L-46d	H
Н	t–Bu	CF ₃	L-46e	H
H	t-Bu	CF ₃	L-46f	Н
H	t–Bu	CF ₃	L-46g	Н
H	t-Bu	CF ₃	L-46j	Н
Н	t-Bu	CF3	L-46k	Н
Н	t-Bu ·	CF ₃	L-46m	Н
H	t-Bu	CF3	L-46n	Н
H	t-Bu	CF ₃	L-460	Н
H	t-Bu	CF ₃	L-46p	Н
Н	t-Bu	CF3	L-46r	Н
Н	t–Bu	CF ₃	L-47a	Н
H	t–Bu	CF ₃	L-47e	H
Н	t-Bu	CF ₃	L-48b	H
Н	t-Bu	CF ₃	L-50b	Н
Н	t-Bu	CF ₃	L-50c	Н
Н	t–Bu	CF ₃	L-50e	Н
Н	t–Bu	CF ₃	L-51b	Н
Н	t–Bu	CF ₃	L-51c	Н
Н	t-Bu	CF ₂ C1	Ph-4-F	Н
Н	t-Bu	CF ₂ CF ₃	Ph-4-SO ₂ CH ₃	Н
Н	c-Bu	CF ₃	L-45g	Н
Н	n-Pen	CF ₃	Ph-4-C1	Н
Н	CH ₂ CH ₂ Pr-i	CF ₃	Ph-4-0CF3	Н
Н	CH ₂ CH (CH ₃) Et	CF ₃	Ph-4-Cl	Н
	***** * * *			

		OF	Dh. 4 OCEs	Н
H	CH ₂ Bu-t	CF ₃	Ph-4-OCF ₃	H
Н	CH(CH ₃)Pr-n	CF ₃	Ph-4-F	H
H	CH(CH ₃)Pr-n	CF ₃	Ph-4-C1	H
Н	CH(CH ₃)Pr-n	CF ₃	Ph-4-Br	H
Н	CH(CH ₃)Pr-n	CF ₃	Ph-4-CF ₃	H
H	CH(CH ₃)Pr-n	CF ₃	Ph-4-0CF ₃	п Н
Н	CH(CH ₃)Pr-n	CF ₃	Ph-4-0S0 ₂ CH ₃	п Н
Н	CH(CH ₃)Pr-n	CF ₃	Ph-4-0(L-45g)	
Н	CH(CH₃)Pr-n	CF ₃	Ph-4-SCH ₃	Н
H	CH(CH ₃)Pr-n	CF ₃	Ph-4-S(0) CH ₃	H
H	$CH(CH_3)Pr-n$	CF ₃	Ph-4-SO ₂ CH ₃	H
Н	CH(CH ₃)Pr-n	CF ₃	Ph-4-CN	H
Н	CH(CH ₃)Pr-n	CF ₃	L-45g	H
H	CH(CH ₃)Pr-i	CF3	Ph-4-C1	H
H	CH(Et) ₂	CF ₃	Ph-4-0CF3	H
Н	C(CH ₃) ₂ Et	CF ₃	Ph-4-F	H
Н	C(CH ₃) ₂ Et	CF3	Ph-4-Cl	H
Н	C(CH ₃) ₂ Et	CF ₃	Ph-4-OCF3	Н
Н	C(CH ₃) ₂ Et	CF ₃	Ph-4-SO ₂ CH ₃	Н
Н	c–Pen	CF ₃	Ph-4-Cl	Н
Н	c–Pen	CF ₃	Ph-4-SO ₂ CH ₃	Н
Н	n–Hex	CF ₃	Ph-4-Cl	Н
Н		CF ₃	Ph-4-SO ₂ CH ₃	H
H		CF ₃	Ph-4-Cl	H
Н		CF ₃	Ph-4-SO ₂ CH ₃	Н
H		CF ₃	Ph-4-F	H
H		CF ₃	Ph-4-Cl	Н
H		CF ₃	Ph-4-Br	H
H		CF ₃	Ph-4-CF3	H
H		CF ₃	Ph-4-0CF3	H
H		CF ₃	Ph-4-0(L-45g)	H
Н		CF ₃	Ph-4-S0 ₂ CH ₃	H
n H		CF ₃	Ph-4-CN	H
		CF ₃	L-45g	Н
H	·	CF ₃	Ph-4-Cl	Н
H		CF3	Ph-4-S0 ₂ CH ₃	H
H		CF3	Ph-4-C1	Н
H		CF ₃	Ph-4-0CF3	H
H		CF3	Ph-4-SO ₂ CH ₃	Н
H	- 1	CF3	Ph-4-Cl	Н
	-CH ₂ CH ₂ CH ₂ CH ₂ -	CF3	Ph-4-0CF3	Н
	-CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ -	CF3	Ph-4-Cl	Н
	-CH ₂ CH ₂ CH (CH ₃) CH ₂ CH ₂ -	CF3	Ph-4-0CF3	Н
	-CH ₂ CH (CH ₃) CH ₂ CH (CH ₃) CH ₂ -	CF3	Ph-4-C1	H
	-CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ -		Ph-4-C1	H
	H CH ₂ CH ₂ F	CF3 CF3	Ph-4-SO ₂ CH ₃	H
	H CH ₂ CH ₂ F	CF3 CF3	Ph-4-Cl	H
	H CH2 CH2 C1		Ph-4-SO ₂ CH ₃	H
	H CH ₂ CH ₂ C1	CF3	Ph-4-Cl	H
	H CH2 CF3	CF3	Ph-4-F	Н
]	H CH (CH3) CH2 F	СҒз	FII-4~F	2000
			HISTER O O O	') /) () /\

		O.D.	DL 4 C1	Н
H	CH (CH ₃) CH ₂ F	CF ₃	Ph-4-C1	H
H	CH(CH ₃)CH ₂ F(S)	CF ₃	Ph-4-Cl Ph-4-OCF3	H
H	CH (CH ₃) CH ₂ F	CF ₃		H
H	CH (CH ₃) CH ₂ F	CF ₃	Ph-4-SO ₂ CH ₃	H
Н	CH(CH ₃)CH ₂ F	CF ₃	L-45g	H
H	CH (CH ₃) CH ₂ C1	CF ₃	Ph-4-F	H
Н	CH (CH ₃) CH ₂ C1	CF ₃	Ph-4-C1	п Н
Н	CH (CH ₃) CH ₂ C1	CF ₃	Ph-4-Br	н Н
H	CH (CH ₃) CH ₂ C1	CF ₃	Ph-4-CF ₃	
Н	CH (CH ₃) CH ₂ C1	CF ₃	Ph-4-0CF ₃	Н
Н	CH (CH ₃) CH ₂ C1	CF ₃	Ph-4-SO ₂ CH ₃	. H
Н	CH (CH ₃) CH ₂ C l	CF ₃	L-45g	H
Н	$CH(CH_3)CH_2Br(R)$	CF ₃	Ph-4-C1	H
Н	$CH(CH_3)CH_2Br(S)$	CF3	Ph-4-Cl	H
H	CH(CH ₃)CH ₂ Br	CF3	Ph-4-0CF ₃	H
Н	C (CH ₃) ₂ CH ₂ C1	CF ₃	Ph-4-F	H
Н	C(CH ₃) ₂ CH ₂ C1	CF ₃	Ph-4-Cl	Н
Н	C(CH ₃) ₂ CH ₂ C1	CF ₃	Ph-4-Br	Н
Н	C(CH ₃) ₂ CH ₂ C1	CF3	Ph-4-CF3	Н
Н	C (CH ₃) ₂ CH ₂ C1	CF ₃	$Ph-4-OCF_3$	Н
Н	C (CH ₃) ₂ CH ₂ C1	CF ₃	$Ph-4-SO_2$ CH_3	Н
H	C (CH ₃) ₂ CH ₂ C1	CF3	L-45g	Н
H	C(CH ₃) ₂ CH ₂ Br	CF ₃	Ph-4-C1	Н
H	C(CH ₃) ₂ CH ₂ Br	CF3	Ph-4-0CF3	Н
H	C(CH ₃) ₂ CHBrCH ₂ Br	CF3	Ph-4-Cl	Н
Н	CH ₂ OCH ₃	CF3	Ph-4-0CF ₃	Н
Н	CH ₂ CH ₂ OCH ₃	CF ₃	Ph-4-Cl	Н
Н	CH ₂ CH ₂ OE t	CF ₃	Ph-4-0CF3	Н
	2 CH2 OEt CH2 CH2 OEt	CF ₃	Ph-4-C1	Н
	I ₂ CH ₂ OEt CH ₂ CH ₂ OEt	CF ₃	Ph-4-0CF3	Н
H	CH ₂ CH ₂ OC (0) NHE t	CF ₃	Ph-4-Cl	Н
Н		CF ₃	Ph-4-OCF3	Н
H	CH ₂ CH ₂ O (Ph-2-C1)	CF ₃	Ph-4-Cl	H
H	CH ₂ CH ₂ O (Ph-3-C1)	CF ₃	Ph-4-OCF3	Н
H	CH ₂ CH ₂ O (Ph-4-C1)	CF ₃	Ph-4-C1	Н
Н	CH ₂ CH ₂ O(1 H=4=01) CH ₂ CH (OH) CH ₃	CF3	Ph-4-0CF3	Н
H	CH ₂ CH (OH) Et	CF ₃	Ph-4-C1	Н
H	CH ₂ CH (OH) Ph	CF ₃	Ph-4-0CF3	Н
H	CH ₂ CH (OH) CH ₂ Ph	CF ₃	Ph-4-C1	Н
H		CF ₃	Ph-4-F	Н
H		CF ₃	Ph-4-C1	Н
		CF3	Ph-4-Br	Н
H		CF ₃	Ph-4-I	Н
H		CF ₃	Ph-4-CF ₃	Н
Н		CF ₃	Ph-4-OCHF2	H
H		CF ₃	Ph-4-0CF ₃	Н
H		CF ₃	Ph-4-0S0 ₂ CH ₃	Н
H		CF3	Ph-4-0(L-45g)	Н
Н		CF3	Ph-4-SCH ₃	Н
H	. \/ \	CF ₃	Ph-4-S(0)CH ₃	Н
H	CU3C (CU3) 2 CO31 (CU3) 3	01.3	iii∃Tetooo Λ	_ 2

H	$CH_2C(CH_3)_2OSi(CH_3)_3$	CF3	Ph-4-S0 ₂ CH ₃	H
Н	CH ₂ C (CH ₃) ₂ OS i (CH ₃) ₃	CF3	Ph-4-CN	H
H	CH ₂ C (CH ₃) ₂ OS i (CH ₃) ₃	CF3	$Ph-4-C(0)NH_2$	H
H	CH ₂ C (CH ₃) ₂ OSi (CH ₃) ₃	CF ₃	$Ph-4-C(S)NH_2$	H
H	CH ₂ C (CH ₃) ₂ OS i (CH ₃) ₃	CF ₃	L-45g	H
Н	CH ₂ CH(OEt) ₂	CF ₃	Ph-4-Cl	H
H	CH (CH ₃) CH ₂ OH	CF ₃	Ph-4-0CF ₃	Н
Н	CH (CH ₃) CH ₂ OH (R)	CF ₃	Ph-4-0CF ₃	Н
H	CH(CH ₃)CH ₂ OH(S)	· CF ₃	Ph-4-0CF ₃	Н
Н	CH (CH ₃) CH ₂ OH	CF ₃	Ph-3, 4-Cl ₂	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CH₃	Ph-4-F	H
Н	CH (CH ₃) CH ₂ OCH ₃	CH ₃	Ph-4-Cl	H
Н	CH (CH ₃) CH ₂ OCH ₃	CH ₃	Ph-4-SO ₂ CH ₃	H
Н	CH (CH ₃) CH ₂ OCH ₃	CH ₃	L-45g	H
Н	CH (CH ₃) CH ₂ OCH ₃	Et	Ph-4-F	H
H	CH (CH ₃) CH ₂ OCH ₃	n-Pr	Ph-4-SO ₂ CH ₃	Н
Н	CH (CH ₃) CH ₂ OCH ₃	i-Pr	L-45g	Н
H	CH (CH ₃) CH ₂ OCH ₃	CHF_2	Ph-4-F	H
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	CH₂ OPh	Н
H	CH (CH ₃) CH ₂ OCH ₃	CF ₃	$CH_2O(Ph-2-C1)$	H
H	CH (CH ₃) CH ₂ OCH ₃	CF ₃	CH ₂ O (Ph-3-C1)	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	CH ₂ O(Ph-4-C1)	H
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	CH ₂ SPh	Н
H	CH (CH ₂) CH ₂ OCH ₃	CF ₃	CH2 NHPh	H
H	CH (CH ₃) CH ₂ OCH ₃	CF ₃	OCH₃	CH ₃
H	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-F	Н
H	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-Cl	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-Br	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-I	H
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-CF ₃	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-0CHF ₂	H
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-0CF ₃	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-0CF ₂ Br	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-OCF ₂ CHF ₂	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-OCF ₂ CHFC l	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-OCF ₂ CHFCF ₃	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-OCF2 CHFOCF3	H
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-OCF2 CHFOCF2 CF2 CF3	H
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-0S0 ₂ CH ₃	H
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-0(L-45e)	H
Н	CH (CH ₃) CH ₂ OCH ₃	CF3	Ph-4-0(L-45g)	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-0(L-451)	Н
H	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-0(L-48b)	Н
H	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-SCH ₃	Н
H	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-S(0) CH ₃	H
		CF ₃	Ph-4-S0 ₂ CH ₃	Н
H H	CH (CH ₃) CH ₂ OCH ₃ CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-4-CN	Н
	CH (CH ₃) CH ₂ OCH ₃ CH (CH ₃) CH ₂ OCH ₃	CF3	Ph-4-C(0) NH ₂	Н
Н		CF ₃	Ph-4-C(S) NH ₂	H
Н	CH (CH ₃) CH ₂ OCH ₃	CF3	Ph-3, 4-F ₂	H
H	CH (CH3) CH2 OCH3	Or 3	0,	••

Н	CH (CH ₃) CH ₂ OCH ₃	CF3 .	Ph-3-F-4-C1	H
H	CH (CH ₃) CH ₂ OCH ₃	CF ₃	Ph-3, 4-Cl ₂	H
H	CH (CH ₃) CH ₂ OCH ₃	CF3	L-1c	Н
H	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-1d	H
H	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-le	H
H	CH (CH ₃) CH ₂ OCH ₃	CF3	L-1 i	H
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-2 b	H
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-3d	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-3e	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-3f	Н
H	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-31	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-30	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-4c	H
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-45d	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-45e	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-45f	H
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-45g	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-451	Н
H	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-45m	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-46d	H
H	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-46e	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF3	L-46f	H
Н	CH (CH ₃) CH ₂ OCH ₃	CF3	L-46g	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-46j	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-46k	H
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-46m	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-460	H
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-46p	H
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-46r	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-47a	. Н
H	CH (CH ₃) CH ₂ OCH ₃	CF ₃	L-47e	Н
Н	CH (CH ₃) CH ₂ OCH ₃	CF ₂ C1	Ph-4-S0 ₂ CH ₃	Н
H	CH (CH ₃) CH ₂ OCH ₃	CF_2Br	L-45g	Н
H	CH (CH ₃) CH ₂ OCH ₃	CF ₂ CF ₃	Ph-4-F	H
Н	CH(CH ₃)CH ₂ OEt	CF ₃	Ph-4-Cl	Н
Н	CH(CH ₃)CH ₂ OPr-n	CF ₃	Ph-4-0CF3	Н
Н	CH(CH ₃)CH ₂ OBu-i	CF ₃	Ph-4-Cl	Н
Н	CH (CH ₃) CH ₂ OCH ₂ CH ₂ OCH ₃	CF ₃	Ph-4-0CF ₃	H
Н	CH (CH ₃) CH ₂ OCH ₂ CH ₂ SCH ₃	CF3	Ph-4-Cl	Н
Н	CH (CH ₃) CH ₂ OCH ₂ CH ₂ SE t	CF3	Ph-4-OCF ₃	Н
Н	CH (CH ₃) CH ₂ OCH ₂ Ph	CF ₃	Ph-4-Cl	Н
Н	$CH(CH_3)CH_2OC(0)CH_3$	CF3	Ph-4-F	Н
H	$CH(CH_3)CH_2OC(0)CH_3$	CF ₃	Ph-4-Cl	Н
H	$CH(CH_3)CH_2OC(0)CH_3$	CF ₃	Ph-4-Br	Н
H		CF ₃	Ph-4-I	Н
Н		CF ₃	Ph-4-CF ₃	Н
Н		CF ₃	Ph-4-OCHF ₂	Н
Н		CF ₃	Ph-4-0CF ₃	Н
H		CF ₃	Ph-4-OCF ₂ Br	Н
Н	$CH(CH_3)CH_2OC(0)CH_3$	CF ₃	Ph-4-OCF ₂ CHF ₂	Н
			山紅味のAAA	2000

	4	an-	DI I COD GUDOD	11
H	CH (CH ₃) CH ₂ OC (0) CH ₃	CF ₃	Ph-4-OCF ₂ CHFCF ₃	H
H	$CH(CH_3)CH_2OC(0)CH_3$	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	H
H	$CH(CH_3)CH_2OC(0)CH_3$	CF₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
H	$CH(CH_3)CH_2OC(0)CH_3$	CF ₃	Ph-4-0 (L-45g)	H
H	CH (CH ₃) CH ₂ OC (0) CH ₃	CF ₃	Ph-4-CN	H
Н	$CH(CH_3)CH_2OC(0)CH_3$	CF ₃	Ph-3, 4-F ₂	H
Н	$CH(CH_3)CH_2OC(0)CH_3$	CF ₃	Ph-3-F-4-C1	H
Н	$CH(CH_3)CH_2OC(0)CH_3$	CF ₃	Ph-3, 4-Cl ₂	H
Н	$CH(CH_3)CH_2OC(0)CH_3$	CF ₃	L-45d	H
Н	CH (CH ₃) CH ₂ OC (0) CH ₃	CF ₃	L-45e	H
H	$CH(CH_3)CH_2OC(0)CH_3$	CF ₃	L-45g	Н
Н	CH (CH ₃) CH ₂ OC (0) CH ₃	CF ₃	L-46d	Н
Н	CH (CH ₃) CH ₂ OC (0) CH ₃	CF ₃	L-46e	Н
Н	CH (CH ₃) CH ₂ OC (0) CH ₃	CF ₃	L-46g	H
Н	CH (CH ₃) CH ₂ OC (0) CF ₃	CF ₃	Ph-4-C1	H
Н	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	CH ₂ OPh	H
Н	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	$CH_2O(Ph-2-C1)$	H
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₃	CF ₃	$CH_2O(Ph-3-C1)$	H
Н	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	$CH_2O(Ph-4-C1)$	H
H	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	CH₂ SPh	Η
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₃	CF ₃	CH2 NHPh	Н
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₃	CF ₃	OCH₃	СНз
Н	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	Ph-4-F	Н
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₃	CF ₃	Ph-4-C1	Н
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₃	CF ₃	Ph-4-Br	Н
Н	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	Ph-4-I	Н
H	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	Ph-4-CF ₃	Н
Н	CH (CH ₃) CH ₂ OC (O) NHCH ₃	- CF ₃	Ph-4-0CHF ₂	Н
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₃	CF ₃	Ph-4-OCF3	H
Н	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	Ph-4-0CF ₂ Br	H
H	CH (CH ₃) CH ₂ OC (0) NHCH ₃	CF ₃	Ph-4-OCF ₂ CHF ₂	Н
Н	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	Ph-4-OCF ₂ CHFC1	Н
H	$CH(CH_3)CH_2OC(O)NHCH_3$	CF ₃	Ph-4-OCF ₂ CHFCF ₃	Н
Н	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	H
Н	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
H	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	Ph-4-0(L-45g)	Н
Н	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	Ph-4-0(L-451)	Н
H	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	Ph-4-SCH ₃	Н
	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	Ph-4-S(0) CH ₃	Н
H	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	Ph-4-S0 ₂ CH ₃	Н
H	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	Ph-4-SCF ₃	Н
H	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	Ph-4-CN	Н
H	CH (CH ₃) CH ₂ OC (0) NHCH ₃	CF ₃	Ph-3, 4-F ₂	Н
H	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	Ph-3-F-4-C1	Н
H	CH (CH ₃) CH ₂ OC (O) NHCH ₃	CF ₃	Ph-3-F-4-CF ₃	Н
Н		CF3	Ph-3, 4-Cl ₂	Н
H	CH (CH ₃) CH ₂ OC (0) NHCH ₃	CF3	Ph-3-C1-4-0CF ₃	H
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₃	CF3	L-1c	Н
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₃	CF3	L-1d	Н
H	CH (CH ₃) CH ₂ OC (0) NHCH ₃		L-1u L-1e	Н
Н	$CH(CH_3)CH_2OC(0)NHCH_3$	CF ₃	r-1c	11

				Н
H	$CH(CH_3)CH_2OC(0)NHCH_3$	CF ₃	L-li	H
H	$CH(CH_3)CH_2OC(0)NHCH_3$	CF3	L-2b	н Н
H	$CH(CH_3)CH_2OC(0)NHCH_3$	CF ₃	L-3d	H
H	$CH(CH_3)CH_2OC(0)NHCH_3$	CF ₃	L-3e	п Н
Н	$CH(CH_3)CH_2OC(0)NHCH_3$	CF3	L-3f	п Н
H	$CH(CH_3)CH_2OC(0)NHCH_3$	CF ₃	L-31	
Н	$CH(CH_3)CH_2OC(0)NHCH_3$	CF3	L-30	H H
H	$CH(CH_3)CH_2OC(0)NHCH_3$	CF ₃	L-4c	
H	$CH(CH_3)CH_2OC(0)NHCH_3$	CF ₃	L-45d	H
Н	$CH(CH_3)CH_2OC(0)NHCH_3$	CF ₃	L-45e	Н
Н	$CH(CH_3)CH_2OC(0)NHCH_3$	CF ₃	L-45f	Н
H	$CH(CH_3)CH_2OC(0)NHCH_3$	CF3	L-45g	H
·H	$CH(CH_3)CH_2OC(0)NHCH_3$	CF3	L-451	Н
Н	$CH(CH_3)CH_2OC(0)NHCH_3$	CF ₃	L-45m	H
Н	$CH(CH_3)CH_2OC(0)NHCH_3$	CF ₃	L-46d	Н
Н	$CH(CH_3)CH_2OC(0)NHCH_3$	CF ₃	L-46e	Н
Н	$CH(CH_3)CH_2OC(0)NHCH_3$	CF ₃	L-46f	H
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₃	CF ₃	L-46g	H
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₃	CF ₃	L-46j	H
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₃	CF ₃	L-46k	H
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₃	CF ₃	L-46r	Н
Н	CH (CH ₃) CH ₂ OC (0) NHE t	CH ₃	Ph-4-F	H
Н	CH(CH ₃)CH ₂ OC(0)NHEt	Et	Ph-4-SO ₂ CH ₃	H
Н	CH(CH ₃)CH ₂ OC(0)NHEt	n-Pr	L-45g	H
Н	CH(CH ₃)CH ₂ OC(0)NHEt	i-Pr	Ph-4-F	H
Н	CH (CH ₃) CH ₂ OC (0) NHE t	$ ext{CHF}_2$	Ph-4-SO ₂ CH ₃	H
Н	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	CH ₂ OPh	Н
Н	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	$CH_2O(Ph-2-C1)$	Н
Н	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	$CH_2O(Ph-3-C1)$	Н
H	CH(CH ₃)CH ₂ OC(0)NHEt	CF ₃	$CH_2O(Ph-4-C1)$	Н
H	CH (CH ₃) CH ₂ OC (O) NHE t	CF ₃	CH ₂ SPh	H
Н		CF ₃	CH2 NHPh	Н
H	CH(CH ₃)CH ₂ OC(0)NHEt	CF ₃	ОСН3	CH ₃
H	CH(CH ₃)CH ₂ OC(0)NHEt	CF ₃	Ph-4-F	Н
H	$CH(CH_3)CH_2OC(0)NHEt$	CF ₃	Ph-4-Cl	Н
H		CF ₃	Ph-4-Br	Н
H		CF3	Ph-4-I	Н
H		CF3	Ph-4-CF3	Н
H		CF ₃	Ph-4-0CHF ₂	H
Н		CF ₃	Ph-4-0CF3	Н
H		CF ₃	Ph-4-OCF ₂ Br	Н
H		CF ₃	Ph-4-OCF2 CHF2	Н
H		CF ₃	Ph-4-OCF2 CHFC1	H
H		CF ₃	Ph-4-OCF2 CHFCF3	H
H		CF ₃	Ph-4-OCF2 CHFOCF3	Н
H		CF ₃	Ph-4-OCF2 CHFOCF2 CF	
H		CF ₃	Ph-4-0(L-45e)	H
H		CF ₃	Ph-4-0(L-45g)	Н
F		CF ₃	Ph-4-0(L-451)	Н
r H		CF ₃	Ph-4-0(L-48b)	Н
r	1 011(0115) 0112 00 (0) 1.1.22		東証券2004 -	3099

Н	CH(CH ₃)CH ₂ OC(0)NHEt	CF ₃	Ph-4-SCH3	Н
H	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	$Ph-4-S(0)CH_3$	Н
Н	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	Ph-4-SO ₂ CH ₃	H
H	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	Ph-4-SCF3	Н
H	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	Ph-4-CN	Н
H	CH (CH ₃) CH ₂ OC (O) NHE t	CF ₃	$Ph-3, 4-F_2$	Н
H	CH (CH ₃) CH ₂ OC (O) NHE t	CF ₃	Ph-3-F-4-Cl	Н
H	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	Ph-3-F-4-CF ₃	Н
H	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	Ph-3, 4-Cl ₂	Н
H	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	Ph-3-C1-4-0CF3	Н
H	CH (CH ₃) CH ₂ OC (0) NHE t	CF3	L-1c	Н
Н	CH(CH ₃)CH ₂ OC(0)NHEt	CF3	L-1d	Н
Н	CH (CH ₃) CH ₂ OC (0) NHE t	CF3	L-le	Н
H	CH (CH ₃) CH ₂ OC (0) NHE t	CF3	L-1i	Н
Н	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	L-2b	Н
H	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	L-3c	Н
Н	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	L-3d	Н
H	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	L-3e	H
Н	$CH(CH_3)CH_2OC(0)NHEt$	CF ₃	L-3f	Н
H	$CH(CH_3)CH_2OC(0)NHEt$.	CF ₃	L-3k	H
Н	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	L-31	Н
H	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	L-3o	Н
Н	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	L-4b	. Н
Н	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	L-4c	Н
H	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	L-10b	H
Н	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	L-10c	Н
H	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	L-21b	Н
Н	CH (CH ₃) CH ₂ OC (O) NHE t	CF ₃	L-21c	Н
Н	CH (CH ₃) CH ₂ OC (O) NHE t	CF ₃	L-21d	Н
Н	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₃	L-21e	H
Н	CH(CH ₃)CH ₂ OC(0)NHEt	CF ₃	L-22b	Н
Н	$CH(CH_3)CH_2OC(0)NHEt$	CF ₃	L-22c	Н
Н	CH (CH3) CH2 OC (O) NHEt	CF ₃	L-23b	H
Н	CH(CH ₃)CH ₂ OC(O)NHEt	CF ₃	L-23c	H
Н	CH(CH ₃)CH ₂ OC(O)NHEt	CF ₃	L-31a	H
Н	$CH(CH_3)CH_2OC(0)NHEt$	CF ₃	L-31b	Н
Н	CH(CH ₃)CH ₂ OC(O)NHEt	CF ₃	L-45d	Н
Н	CH(CH ₃)CH ₂ OC(O)NHEt	CF ₃	L-45e	Н
Н	$CH(CH_3)CH_2OC(0)NHEt$	CF ₃	L-45f	Н
Н	$CH(CH_3)CH_2OC(O)NHEt$	CF ₃	L-45g	Н
Н	$CH(CH_3)CH_2OC(0)NHEt$	CF ₃	L-451	Н
Н	$CH(CH_3)CH_2OC(0)NHEt$	CF3	L-45m	Н
Н	$CH(CH_3)CH_2OC(0)NHEt$	CF ₃	L-46d	Н
Н	$CH(CH_3)CH_2OC(O)NHEt$	CF ₃	L-46e	Н
Н	$CH(CH_3)CH_2OC(0)NHEt$	CF ₃	L-46f	Н
Н	$CH(CH_3)CH_2OC(0)NHEt$	CF ₃	L-46g	Н
Н	$CH(CH_3)CH_2OC(0)NHEt$	CF ₃	L-46j	H
Н		CF ₃	L-46k	H
Н		CF ₃	L-46r	H
Н	$CH(CH_3)CH_2OC(0)NHEt$	CF ₂ C1	L-45g	Н
			山気性のAA。	4 2000

				11
Н	CH (CH ₃) CH ₂ OC (0) NHE t	CF ₂ CF ₃	Ph-4-F	H H
H	$CH(CH_3)CH_2OC(0)NHPr-n$	CF ₃	Ph-4-F	n H
H	$CH(CH_3)CH_2OC(0)NHPr-n$	CF3	Ph-4-C1	п Н
Н	$CH(CH_3)CH_2OC(0)NHPr-n$	CF ₃	Ph-4-Br	п Н
H	$CH(CH_3)CH_2OC(0)NHPr-n$	CF ₃	Ph-4-I	n H
H	$CH(CH_3)CH_2OC(0)NHPr-n$	CF3	Ph-4-CF ₃	п Н
Н	$CH(CH_3)CH_2OC(0)NHPr-n$	CF ₃	Ph-4-0CHF ₂	п Н
Н	$CH(CH_3)CH_2OC(0)NHPr-n$	CF ₃	Ph-4-0CF ₃	п Н
H	$CH(CH_3)CH_2OC(0)NHPr-n$	CF ₃	Ph-4-0CF ₂ Br	n H
Н	$CH(CH_3)CH_2OC(0)NHPr-n$	CF ₃	Ph-4-0CF ₂ CHF ₂	n H
H	$CH(CH_3)CH_2OC(0)NHPr-n$	CF ₃	Ph-4-OCF ₂ CHFCF ₃	п Н
Н	$CH(CH_3)CH_2OC(0)NHPr-n$	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	
H	$CH(CH_3)CH_2OC(0)NHPr-n$	CF3	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
H	$CH(CH_3)CH_2OC(0)NHPr-n$	СF3	Ph-4-0(L-45g)	H
H	$CH(CH_3)CH_2OC(0)NHPr-n$	CF3	Ph-4-CN	H
H	$CH(CH_3)CH_2OC(0)NHPr-n$	CF3	Ph-3, 4-F ₂	H
H	$CH(CH_3)CH_2OC(0)NHPr-n$	CF3	Ph-3-F-4-C1	Н
H	$CH(CH_3)CH_2OC(0)NHPr-n$	CF3	Ph-3, 4-Cl ₂	H
H	$CH(CH_3)CH_2OC(0)NHPr-n$	CF3	L-45d	H
H	$CH(CH_3)CH_2OC(0)NHPr-n$	CF ₃	L-45e	H
H	$CH(CH_3)CH_2OC(0)NHPr-n$	CF ₃	L-45g	Н
H	$CH(CH_3)CH_2OC(0)NHPr-n$	CF ₃	L-46d	Н
Н	$CH(CH_3)CH_2OC(0)NHPr-n$	CF3	L-46e	H
H	$CH(CH_3)CH_2OC(0)NHPr-n$	CF ₃	L-46g_	Н
Н	$CH(CH_3)CH_2OC(0)NHPr-i$	CF ₃	Ph-4-F	H
H	$CH(CH_3)CH_2OC(0)NHPr-i$	CF ₃	Ph-4-Cl	H
Н	$CH(CH_3)CH_2OC(0)NHPr-i$	CF ₃	Ph-4-Br	Н
Н	$CH(CH_3)CH_2OC(0)NHPr-i$	CF3	Ph-4-CF ₃	Н
Н	$CH(CH_3)CH_2OC(0)NHPr-i$	CF ₃	Ph-4-OCHF ₂	H
Н	$CH(CH_3)CH_2OC(0)NHPr-i$	CF ₃	Ph-4-0CF ₃	Н
Н	$CH(CH_3)CH_2OC(0)NHPr-i$	CF ₃	Ph-4-OCF ₂ Br	H
Н	$CH(CH_3)CH_2OC(0)NHPr-i$	CF ₃	Ph-4-OCF ₂ CHF ₂	H
Н	$CH(CH_3)CH_2OC(0)NHPr-i$	CF ₃	Ph-4-OCF ₂ CHFCF ₃	H
Н	$CH(CH_3)CH_2OC(0)NHPr-i$	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	Н
Н	$CH(CH_3)CH_2OC(0)NHPr-i$	CF ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	
Н	$CH(CH_3)CH_2OC(0)NHPr-i$	CF ₃	Ph-4-0(L-45g)	H
Н	$CH(CH_3)CH_2OC(0)NHPr-i$	CF ₃	Ph-4-CN	H
Н	$CH(CH_3)CH_2OC(0)NHPr-i$	CF ₃	Ph-3, 4-F ₂	Н
Н	$CH(CH_3)CH_2OC(0)NHPr-i$	CF ₃	Ph-3-F-4-C1	Н
Н	$CH(CH_3)CH_2OC(0)NHPr-i$	CF ₃	Ph-3, 4-Cl ₂	Н
Н		CF ₃	L-45d	Н
Н		CF ₃	L-45e	H
Н		CF ₃	L-45g	Н
Н		CF ₃	L-46d	H
Н		CF ₃	L-46e	Н
Н		CF ₃	L-46g	Н
H	i i	CF ₃	Ph-4-F	H
H		CF ₃	Ph-4-Cl	Н
H		CF ₃	Ph-4-Br	H
H		CF ₃	Ph-4-CF3	Н

Н	$CH(CH_3)CH_2OC(0)NHPr-c$	CF ₃		111 1 00:25	H
H	CH(CH ₃)CH ₂ OC(0)NHPr-c	CF3		111 1 0010	H
H	CH(CH ₃)CH ₂ OC(0)NHPr-c	CF ₃		111 1 0015-4	H
H	$CH(CH_3)CH_2OC(0)NHPr-c$	CF ₃		111 1 001 5	H
Н	CH(CH ₃)CH ₂ OC(0)NHPr-c	CF ₃		12	H
H	CH (CH ₃) CH ₂ OC (0) NHPr-c	CF ₃			H
Н	CH (CH ₃) CH ₂ OC (0) NHPr-c	CF ₃			Н
H	CH (CH ₃) CH ₂ OC (0) NHPr-c	CF ₃		111 - 0 (=8)	H
Н	CH (CH ₃) CH ₂ OC (0) NHPr-c	CF ₃		111 - 011	H
Н	CH(CH ₃)CH ₂ OC(0)NHPr-c	CF ₃		$Ph-3, 4-F_2$	H
Н	CH(CH ₃)CH ₂ OC(0)NHPr-c	CF ₃		Ph-3-F-4-C1	H
H	CH(CH ₃)CH ₂ OC(0)NHPr-c	CF3		Ph-3, 4-Cl ₂	H
H	CH (CH ₃) CH ₂ OC (0) NHPr-c	CF3		L-45d	Н
Н	$CH(CH_3)CH_2OC(0)NHPr-c$	CF ₃		L-45e	H
Н	CH (CH ₃) CH ₂ OC (0) NHPr-c	CF3		L-45g	H
H	CH (CH ₃) CH ₂ OC (0) NHPr-c	CF ₃		L-46d	H
H	CH (CH ₃) CH ₂ OC (0) NHPr-c	CF ₃		L-46e	H
Н	CH (CH ₃) CH ₂ OC (0) NHPr-c	CF ₃		L-46g	Н
H	CH (CH ₃) CH ₂ OC (0) NHBu-t	CF ₃		Ph-4-Cl	Н
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₂ CF ₃	CF ₃		Ph-4-0CF ₃	H
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₂ CH ₂ OCH ₃	CF ₃		Ph-4-C1	H
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₂ CH ₂ SCH ₃	CF ₃		Ph-4-0CF ₃	H
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₂ CH ₂ CH ₂ S		CF3	Ph-4-Cl	H
n H	CH (CH ₃) CH ₂ OC (0) NHCH ₂ CH=CH ₂	CF ₃		Ph-4-0CF3	H
H	CH (CH ₃) CH ₂ OC (0) NHCH ₂ Ph	CF ₃		Ph-4-F	Н
	CH (CH ₃) CH ₂ OC (0) NHCH ₂ Ph	CF ₃		Ph-4-Cl	Н
H	CH (CH ₃) CH ₂ OC (O) NHCH ₂ Ph	CF ₃		Ph-4-Br	Н
H	CH (CH ₃) CH ₂ OC (O) NHCH ₂ Ph	CF3		Ph-4-I	H
Н	CH (CH ₃) CH ₂ OC (O) NHCH ₂ Ph	CF ₃		Ph-4-CF ₃	H
Н	CH (CH ₃) CH ₂ OC (O) NHCH ₂ Ph	CF ₃		Ph-4-OCHF2	Н
H	CH (CH ₃) CH ₂ OC (O) NHCH ₂ Ph	CF ₃		Ph-4-OCF3	Н
H	CH (CH ₃) CH ₂ OC (O) NHCH ₂ Ph	CF ₃		Ph-4-0CF ₂ Br	Н
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₂ Ph	CF ₃		Ph-4-OCF ₂ CHF ₂	Н
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₂ Ph	CF ₃		Ph-4-0CF ₂ CHFCF ₃	Н
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₂ Ph	CF ₃		Ph-4-OCF ₂ CHFOCF ₃	Н
H	CH (CH ₃) CH ₂ OC (O) NHCH ₂ Ph	CF ₃		Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
H	CH (CH ₃) CH ₂ OC (0) NHCH ₂ Ph	CF ₃		Ph-4-0(L-45g)	Н
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₂ Ph	.CF3		Ph-4-CN	Н
Н	CH (CH ₃) CH ₂ OC (O) NHCH ₂ Ph	CF ₃		Ph-3, 4-F ₂	\mathbf{H}'
Н		CF ₃		Ph-3-F-4-C1	Н
H	CH (CH ₃) CH ₂ OC (0) NHCH ₂ Ph	CF3		Ph-3, 4-Cl ₂	Н
Н		CF ₃		L-45g	Н
Н	CH (CH ₃) CH ₂ OC (O) NHCH ₂ Ph		CF ₃	Ph-4-C1	Н
H	CH (CH ₃) CH ₂ OC (0) NHCH ₂ (Ph-4-	UCH")	CF ₃	Ph-4-0CF ₃	Н
Н	CH (CH ₃) CH ₂ OC (0) NHCH ₂ (Ph-4-) ((13)	CF ₃	Ph-4-Cl	Н
Н	CH (CH ₃) CH ₂ OC (O) NHCH ₂ (L-46a) \	CF ₃	Ph-4-0CF ₃	Н
H		CF ₃	OT 2	Ph-4-F	Н
H	CH (CH ₃) CH ₂ OC (O) NHPh	CF ₃		Ph-4-C1	Н
Н	CH (CH ₃) CH ₂ OC (O) NHPh	CF ₃		Ph-4-Br	Н
H	CH (CH ₃) CH ₂ OC (O) NHPh	CF ₃		Ph-4-I	H
Н	CH (CH ₃) CH ₂ OC (0) NHPh	OI 3		東証券2004-30	
				#4 SIE/EX / LI LI /L *** 1 ()	7 4

				**
Н	CH (CH ₃) CH ₂ OC (0) NHPh	CF3	Ph-4-CF ₃	H
H	CH(CH ₃)CH ₂ OC(0)NHPh	CF3	Ph-4-0CHF ₂	H
Н	CH (CH ₃) CH ₂ OC (0) NHPh	CF ₃	Ph-4-0CF3	H
Н	CH (CH ₃) CH ₂ OC (0) NHPh	CF3	Ph-4-OCF ₂ Br	H
Н	CH (CH ₃) CH ₂ OC (0) NHPh	CF ₃	Ph-4-OCF ₂ CHF ₂	H
H	CH(CH ₃)CH ₂ OC(0)NHPh	CF ₃	Ph-4-OCF ₂ CHFCF ₃	H
H	CH (CH ₃) CH ₂ OC (0) NHPh	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	H
H	CH (CH ₃) CH ₂ OC (0) NHPh	CF ₃	Ph-4-OCF2 CHFOCF2 CF2 CF3	H
H	CH (CH ₃) CH ₂ OC (0) NHPh	CF ₃	Ph-4-0(L-45g)	H
Н	CH (CH ₃) CH ₂ OC (0) NHPh	CF3	Ph-4-CN	H
Н	$CH(CH_3)CH_2OC(0)NHPh$	CF3	$Ph-3, 4-F_2$	Н
Н	CH (CH ₃) CH ₂ OC (0) NHPh	CF ₃	Ph-3-F-4-C1	Н
Н	CH (CH ₃) CH ₂ OC (0) NHPh	CF ₃	Ph-3, 4-Cl ₂	Н
п Н	CH (CH ₃) CH ₂ OC (0) NHPh	CF ₃	L-45g	Н
	$CH(CH_3)CH_2OC(0)N(CH_3)_2$	CF ₃	Ph-4-C1	Н
Н	$CH(CH_3)CH_2OC(0)N(CH_3)_2$ $CH(CH_3)CH_2OC(0)N(Et)_2$	CF ₃	Ph-4-F	Н
H	$CH(CH_3)CH_2OC(O)N(Et)_2$ $CH(CH_3)CH_2OC(O)N(Et)_2$	CF ₃	Ph-4-C1	H
H	CH (CH ₃) CH ₂ OC (O) N (Et) ₂	CF3	Ph-4-Br	Н
H		CF ₃	Ph-4-I	H
H	CH(CH3)CH2OC(O)N(Et)2	CF ₃	Ph-4-CF ₃	Н
Н	$CH(CH_3)CH_2OC(0)N(Et)_2$	CF ₃	Ph-4-OCHF ₂	Н
Н	CH(CH ₃)CH ₂ OC(0)N(Et) ₂	CF3	Ph-4-0CF3	Н
Н	CH(CH ₃)CH ₂ OC(0)N(Et) ₂		Ph-4-OCF ₂ Br	Н
Н	CH (CH ₃) CH ₂ OC (0) N (Et) 2	CF3	Ph-4-OCF ₂ CHF ₂	Н
H	CH(CH ₃)CH ₂ OC(O)N(Et) ₂	CF3	Ph-4-OCF ₂ CHFCF ₃	H
H	CH(CH ₃)CH ₂ OC(0)N(Et) ₂	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	H
H	$CH(CH_3)CH_2OC(0)N(Et)_2$	CF ₃	Ph-4-OCF ₂ CHFOCF ₃ CF ₂ CF ₃	H
Н	$CH(CH_3)CH_2OC(0)N(Et)_2$	CF₃	Ph-4-0(L-45g)	Н
Н	$CH(CH_3)CH_2OC(0)N(Et)_2$	CF ₃		H
Н	$CH(CH_3)CH_2OC(0)N(Et)_2$	CF ₃	Ph-4-CN	Н
H	$CH(CH_3)CH_2OC(0)N(Et)_2$	CF ₃	Ph-3, 4-F ₂	Н
H	$CH(CH_3)CH_2OC(0)N(Et)_2$	CF₃	Ph-3-F-4-C1	H
Н	$CH(CH_3)CH_2OC(0)N(Et)_2$	CF ₃	Ph-3, 4-Cl ₂	
H	$CH(CH_3)CH_2OC(0)N(Et)_2$	CF ₃	L-45d	Н
Н	$CH(CH_3)CH_2OC(0)N(Et)_2$	СFз	L-45e	Н
Н	$CH(CH_3)CH_2OC(0)N(Et)_2$	СF3	L-45g	H
Н	$CH(CH_3)CH_2OC(0)N(Et)_2$	CF3	L-46d	H
H	$CH(CH_3)CH_2OC(0)N(Et)_2$	CF3	L-46e	H
Н	$CH(CH_3)CH_2OC(0)N(Et)_2$	CF3	L-46g	H
Н	$CH(CH_3)CH_2OC(0)N(Pr-i)_2$	CF3	Ph-4-Cl	H
Н	$CH(CH_3)CH_2OC(0)N(CH_3)Ph$	CF3	Ph-4-0CF ₃	Н
Н	CH (CH ₃) CH ₂ OC (0) (T-16)	CF3	Ph-4-C1	Н
H	CH (CH ₃) CH ₂ OC (0) (T-19)	CF3	Ph-4-0CF ₃	H
H	CH (CH ₃) CH ₂ OC (0) (T-20)	CF ₃	Ph-4-C1	Н
Н	CH (CH ₃) CH ₂ OC (0) (T-21)	CF ₃	Ph-4-0CF ₃	Н
Н	CH(CH ₃)CH ₂ OP(0)(OEt) ₂	CF ₃	Ph-4-C1	H
H		CF3	Ph-4-F	Н
H	CH (CH ₃) CH ₂ OP (S) (OCH ₃) ₂	СГз	Ph-4-C1	Н
H		СГз	Ph-4-Br	Н
H	· · · · · · · · · · · · · · · · · · ·	CF3	Ph-4-I	Н
H	() (-) (0.077)	CF3	Ph-4-CF3	H
11			山紅牌2004-20	0 0

			•	
Н	CH (CH ₃) CH ₂ OP (S) (OCH ₃ ·) ₂	CF ₃	Ph-4-0CHF ₂	H
Н	CH (CH ₃) CH ₂ OP (S) (OCH ₃) ₂	CF ₃	Ph-4-0CF ₃	H
Н	CH (CH ₃) CH ₂ OP (S) (OCH ₃) ₂	CF ₃	Ph-4-0CF ₂ Br	H
Н	CH (CH ₃) CH ₂ OP (S) (OCH ₃) ₂	CF ₃	Ph-4-OCF ₂ CHF ₂	H
Н	CH (CH ₃) CH ₂ OP (S) (OCH ₃) ₂	CF ₃	Ph-4-OCF ₂ CHFCF ₃	H
Н	CH (CH ₃) CH ₂ OP (S) (OCH ₃) ₂	CF3	Ph-4-OCF ₂ CHFOCF ₃	H
· H	CH (CH ₃) CH ₂ OP (S) (OCH ₃) ₂	CF ₃	Ph-4-OCF2 CHFOCF2 CF2 CF3	H
H	CH (CH ₃) CH ₂ OP (S) (OCH ₃) ₂	CF ₃	Ph-4-0(L-45g)	H
Н	CH(CH ₃)CH ₂ OP(S)(OCH ₃) ₂	CF ₃	Ph-4-CN	H
Н	CH (CH ₃) CH ₂ OP (S) (OCH ₃) ₂	CF ₃	$Ph-3, 4-F_2$	Н
Н	CH (CH ₃) CH ₂ OP (S) (OCH ₃) ₂	CF ₃	Ph-3-F-4-C1	H
Н	CH (CH ₃) CH ₂ OP (S) (OCH ₃) ₂	CF ₃	Ph-3, 4-Cl ₂	H
Н	CH (CH ₃) CH ₂ OP (S) (OCH ₃) ₂	CF ₃	L-45d	H
Н	CH (CH ₃) CH ₂ OP (S) (OCH ₃) ₂	CF ₃	L-45e	H
H	CH (CH ₃) CH ₂ OP (S) (OCH ₃) ₂	CF ₃	L-45g	H
H	CH (CH ₃) CH ₂ OP (S) (OCH ₃) ₂	CF ₃	L-46d	H
H	CH (CH ₃) CH ₂ OP (S) (OCH ₃) ₂	CF ₃	L-46e	H
H	CH (CH ₃) CH ₂ OP (S) (OCH ₃) ₂	CF ₃	L-46g	Н
H	CH (CH ₃) CH ₂ OP (S) (OEt) ₂	CF ₃	Ph-4-F	Н
Н	$CH(CH_3)CH_2OP(S)(OEt)_2$	CF ₃	Ph-4-C1	H
H	$CH(CH_3)CH_2OP(S)(OEt)_2$	CF ₃	Ph-4-Br	H
Н	$CH(CH_3)CH_2OP(S)(OEt)_2$	CF ₃	Ph-4-I	H
H	$CH(CH_3)CH_2OP(S)(OEt)_2$	CF ₃	Ph-4-CF ₃	Н
Н	CH(CH ₃)CH ₂ OP(S)(OEt) ₂	CF ₃	Ph-4-0CHF2	H
H	CH(CH ₃) CH ₂ OP(S) (OEt) ₂	CF ₃	Ph-4-OCF ₃	H
H	$CH(CH_3)CH_2OP(S)(OEt)_2$	CF ₃	Ph-4-0CF ₂ Br	H
Н	CH (CH ₃) CH ₂ OP (S) (OEt) ₂	CF3	Ph-4-OCF ₂ CHF ₂	H
Н	$CH(CH_3)CH_2OP(S)(OEt)_2$	CF ₃	Ph-4-OCF2 CHFCF3	H
Н	CH (CH ₃) CH ₂ OP (S) (OEt) ₂	CF ₃	Ph-4-OCF2 CHFOCF3	Н
Н	CH (CH ₃) CH ₂ OP (S) (OEt) ₂	CF ₃	Ph-4-OCF2 CHFOCF2 CF2 CF3	H
Н	CH(CH ₃) CH ₂ OP(S) (OEt) ₂	CF ₃	Ph-4-0(L-45g)	H
Н	CH(CH ₃) CH ₂ OP(S) (OEt) ₂	CF ₃	Ph-4-CN	H
Н	CH(CH ₃) CH ₂ OP(S) (OEt) ₂	CF ₃	$Ph-3, 4-F_2$	Н
Н	CH (CH ₃) CH ₂ OP (S) (OEt) ₂	CF ₃	Ph-3-F-4-C1	Н
Н	$CH(CH_3)CH_2OP(S)(OEt)_2$	CF ₃	Ph-3,4-Cl ₂	Н
Н	CH (CH ₃) CH ₂ OP (S) (OEt) ₂	CF ₃	. L-45d	H
Н	CH (CH ₃) CH ₂ OP (S) (OEt) ₂	CF ₃	L-45e	Н
Н	CH (CH ₃) CH ₂ OP (S) (OEt) ₂	CF ₃	L-45g	Н
H	CH (CH ₃) CH ₂ OP (S) (OEt) ₂	CF3	L-46d	Н
H	CH (CH ₃) CH ₂ OP (S) (OEt) ₂	CF ₃	L-46e	Н
Н		CF ₃	L-46g	H
H		CF ₃	Ph-4-Cl	H
H		CF ₃	Ph-4-F	H
H		CF ₃	Ph-4-Cl	H
H		CF ₃	Ph-4-Br	Н
л Н		CF ₃	Ph-4-CF3	Н
п Н		CF ₃	Ph-4-OCHF2	Н
H		CF3	Ph-4-0CF ₃	H
n H		CF ₃	Ph-4-0S0 ₂ CH ₃	Н
		CF ₃	Ph-4-0(L-45g)	H
H		u	· -	

••	011/011 \ 011 \ 0 (DL \ 4 \ C1 \	CF3	Ph-4-SCH3	Н
H	CH (CH ₃) CH ₂ O (Ph-4-C1)	CF3 CF3	Ph-4-S(0) CH ₃	Н
H	CH (CH ₃) CH ₂ O (Ph-4-C1)	CF3	Ph-4-S0 ₂ CH ₃	Н
Н	CH (CH ₃) CH ₂ O (Ph-4-C1)	CF3 CF3	Ph-4-CN	Н
Н	CH (CH ₃) CH ₂ O (Ph-4-C1)	CF3 CF3	L-45g	Н
Н	CH (CH ₃) CH ₂ O (Ph-4-C1)		Ph-4-Cl	H
H	CH(CH ₃)CH ₂ O(Ph-3-CF ₃)	CF ₃	Ph-4-0CF3	H
Н	$CH(CH_3)CH_2O(Ph-3-CF_3)$	CF3	Ph-4-Cl	Н
H	CH(Et)CH2OH	CF ₃	Ph-4-0CF ₃	H
Н	CH(Et)CH2OH	CF ₃	Ph-4-C1	H
H	CH(Et)CH2OCH3	CF ₃		H
H	CH (Ph) CH ₂ OH	CF ₃	Ph-4-0CF ₃	H
Н	CH (Ph) CH ₂ OH (R)	CF ₃	Ph-4-Cl	H
H	CH (Ph-2-C1) CH ₂ OH	CF ₃	Ph-4-0CF ₃	Н
H	CH(Ph-4-C1)CH2OH	CF ₃	Ph-4-Cl	H
Н	CH (Ph-4-Ph) CH ₂ OH	CF ₃	Ph-4-OCF ₃	H
Н	C (CH ₃) ₂ CH ₂ OH	CF ₃	Ph-4-Cl	H
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	CH ₂ OPh	
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	$CH_2 O (Ph-2-C1)$	H
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	CH ₂ O (Ph-3-C1)	H
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	CH ₂ O(Ph-4-C1)	Н
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	CH₂ SPh	Н
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	CH2 NHPh	Н
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	Ph-4-F	H
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	Ph-4-Cl	Н
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	Ph-4-Br	H
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	Ph-4-I	Н
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF3	Ph-4-CF ₃	H
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	Ph-4-0CHF ₂	H
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	Ph-4-0CF ₃	H
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	Ph-4-OCF ₂ Br	H
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	Ph-4-OCF ₂ CHF ₂	Н
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	Ph-4-OCF ₂ CHFC1	Н
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	Ph-4-OCF ₂ CHFCF ₃	Н
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	H
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	Ph-4-OCF2 CHFOCF2 CF2 CF	
H	1 1	CF3	Ph-4-0S0 ₂ CH ₃	Н
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	Ph-4-0 (L-45e)	H
H		CF ₃	Ph-4-0(L-45g)	H
H		CF ₃	Ph-4-0(L-451)	Н
H		CF3	Ph-4-0 (L-48b)	H
H	1	CF ₃	Ph-4-SCH3	Н
H		CF ₃	Ph-4-S(0)CH ₃	Н
H		CF ₃	Ph-4-SO ₂ CH ₃	Н
H		CF ₃	Ph-4-SEt	Н
H		· CF ₃	Ph-4-SO ₂ Et	Н
H		CF ₃	Ph-4-SPr-i	H
n H		CF ₃	$Ph-4-SO_2Pr-i$	H
		CF ₃	Ph-4-CN	H
Н		CF ₃	$Ph-4-C(0)NH_2$	H
H		CF3	Ph-4-C(S) NH ₂	H
H		O ₁ 3	- \-/	

**	C (CIL) - CIL- OCU-	CF ₃	Ph-3, 4-F ₂	Н
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF3	Ph-3-F-4-Cl	Н
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF3	Ph-3, 4-Cl ₂	Н
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF3	L-1b	Н
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-1c	Н
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF3 CF3	L-1d	Н
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-le	Н
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF3 CF3	L-1i	Н
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF3 CF3	L-2b	Н
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF3 CF3	L-3c	Н
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF₃ CF₃	L-3d	Н
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF3	L–3e	Н
Н	C (CH ₃) ₂ CH ₂ OCH ₃		L-3f	Н .
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-3k	Н
Н	C (CH ₃) 2 CH ₂ OCH ₃	CF ₃	L-31	H
Н	C (CH ₃) 2 CH ₂ OCH ₃	CF ₃	L-30	H
Н	C (CH ₃) 2 CH ₂ OCH ₃	CF ₃	L-30 L-4b	 Н
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF₃	L-4c	Н .
Н	C (CH ₃) 2 CH ₂ OCH ₃	CF ₃		H
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-10b	H
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF₃	L-10c	Н
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-21b	Н
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-21c	H
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-21d	H
H	C (CH ₃) 2 CH2 OCH3	CF ₃	L-21e	Н
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-22b	H
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-22c	H
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-23b	H
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-23c	H
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-31a	H
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-31b	H
Н	C (CH3) 2 CH2 OCH3	CF ₃	L-45d	H
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-45e	H
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-45f	H
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-45g	H
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-451	n H
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF3	L-45m	п Н
H	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-46d	n H
Н	C (CH ₃) ₂ CH ₂ OCH ₃	CF ₃	L-46e	n H
H		CF ₃	L-46f	н
H		CF ₃	L-46g	н Н
Н		CF ₃	L-46j	H
H		CF ₃	L-46k	n H
H		CF3	L-46r	H
H		CF3	Ph-4-C1	n H
H	C (CH ₃) ₂ CH ₂ OC (0) CF ₃	CF ₃	Ph-4-0CF ₃	H
Н		СНз	L-45g	n H
Н	C (CH ₃) ₂ CH ₂ OC (0)NHCH ₃	Et_	Ph-4-F	
Н	$C(CH_3)_2CH_2OC(0)NHCH_3$	n-Pr	Ph-4-SO ₂ CH ₃	H H
H	$C(CH_3)_2CH_2OC(0)NHCH_3$	i-Pr	L-45g	н Н
H	$C(CH_3)_2CH_2OC(0)NHCH_3$	CHF ₂	Ph-4F	
			山紅鮭りAA	1-300026

Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF3	CH ₂ OPh	H
Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	СГз	$CH_2O(Ph-2-C1)$	H
Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	$CH_2O(Ph-3-C1)$	H
Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF3	$CH_2O(Ph-4-C1)$	Н
Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	CH₂SPh	Н
H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF3	CH2 NHPh	H
H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	OCH ₃	СНз
H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	Ph-4-F	Н
H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	Ph-4-Cl	H
H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	Ph-4-Br	Н
Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	Ph-4-I	H
H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	Ph-4-CF3	H
H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	Ph-4-OCHF2	H
H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	Ph-4-0CF3	H
H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	Ph-4-0CF ₂ Br	H
n H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF3	Ph-4-OCF ₂ CHF ₂	H
n H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	Ph-4-0CF ₂ CHFC1	H
	$C(CH_3)_2 CH_2 OC(O) NHCH_3$	CF3	Ph-4-OCF ₂ CHFCF ₃	H
Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	H
Н	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃	CF ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
H	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃	CF3	Ph-4-0(L-45e)	H
H	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃	CF ₃	Ph-4-0(L-45g)	Н
Н	C (CH ₃) 2 CH ₂ OC (O) NHCH ₃	CF ₃	Ph-4-0(L-451)	Н
H		CF ₃	Ph-4-0 (L-48b)	Н
H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF3	Ph-4-SCH ₃	Н
Н	C (CH ₃) 2 CH ₂ OC (0) NHCH ₃	CF3 CF3	Ph-4-S (0) CH ₃	Н
Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF3 CF3	Ph-4-SO ₂ CH ₃	Н
Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF3 CF3	Ph-4-SCF3	Н
H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃		Ph-4-CN	H
H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	$Ph-4-C(0)NH_2$	H
Н	C (CH ₃) 2 CH ₂ OC (0) NHCH ₃	CF ₃	Ph-4-C(S) NH2	Н
Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	Ph-3, 4-F ₂	H
Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	Ph-3-F-4-C1	Н
H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	Ph-3-F-4-CF3	H
Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	Ph-3, 4-Cl ₂	H
H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	Ph-3-C1-4-0CF ₃	H
Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃		H
Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	L-lc	Н
Н	$C(CH_3)_2CH_2OC(0)NHCH_3$	CF ₃	L-1d	Н
Н	$C(CH_3)_2CH_2OC(0)NHCH_3$	CF ₃	L-le	Н
H	$C(CH_3)_2CH_2OC(0)NHCH_3$	CF ₃	L-li	H
H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	L-2b	H
H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	L-3c	H
Н		CF ₃	L-3d	Н
Н		CF ₃	L-3e	п Н
Н		CF ₃	L-3f	н Н
Н		CF ₃	L-3k	п Н
H		CF ₃	L-31	
H	$C(CH_3)_2CH_2OC(0)NHCH_3$	CF ₃	L-30	Н
Н		CF ₃	L-4b	Н
H	/__	CF ₃	L-4c	Н
			山紅鮭2004-30	n a a

出証特2004-3099262

				* -01	11
]	H	$C(CH_3)_2CH_2OC(0)NHCH_3$	CF ₃	L-10b	H
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	L-10c	H
]	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	L-21b	H
	Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF3	L-21c	Н
	Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	L-21d	H
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	L-21e	H
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	L-22b	H
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	L-22c	H
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	L-23b	H
	n H	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃	CF ₃	L-23c	H
		C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃	CF₃	L-31a	Н
	H	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₃	CF ₃	L-31b	Н
	H		CF ₃	L-45d	Н
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF3	L-45e	Н
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃		L-45f	H
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	L-45g	H
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	-	H
	Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	L-451	H
	H	$C(CH_3)_2CH_2OC(0)NHCH_3$	CF ₃	L-45m	Н
	Н	$C(CH_3)_2CH_2OC(0)NHCH_3$	CF ₃	L-46d	п Н
	H	$C(CH_3)_2CH_2OC(0)NHCH_3$	CF ₃	L-46e	
	H	$C(CH_3)_2CH_2OC(0)NHCH_3$	CF ₃	L-46f	H
	H	$C(CH_3)_2CH_2OC(0)NHCH_3$	CF3	L-46g	H
	Н	$C(CH_3)_2CH_2OC(0)NHCH_3$	CF ₃	L-46j	H
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF_3	L-46k	H
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₃	L-46r	Н
	Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₂ C1	Ph-4-SO ₂ CH ₃	H
	Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₃	CF ₂ CF ₃	L-45g	Н
	H	C (CH ₃) ₂ CH ₂ OC (0) NHE t	CF ₃	CH ₂ OPh	H
	Н	C(CH ₃) ₂ CH ₂ OC(0)NHEt	CF ₃	$CH_2O(Ph-2-C1)$	H
	Н	C(CH ₃) ₂ CH ₂ OC(0)NHEt	CF ₃	$CH_2O(Ph-3-C1)$	Н
	Н	C (CH ₃) ₂ CH ₂ OC (0) NHE t	CF ₃	$CH_2O(Ph-4-C1)$	Н
	Н	C (CH ₃) ₂ CH ₂ OC (0) NHE t	CF ₃	CH ₂ SPh	H
		C (CH ₃) ₂ CH ₂ OC (0) NHE t	CF ₃	CH ₂ NHPh	H
	H	C (CH ₃) ₂ CH ₂ OC (O) NHE t	CF₃	ОСН3	СН3
	Н		CF ₃	Ph-4-F	Н
	H	C(CH ₃) ₂ CH ₂ OC(O)NHEt	CF ₃	Ph-4-Cl	Н
	Н	C(CH ₃) ₂ CH ₂ OC(0)NHEt	CF ₃	Ph-4-Br	Н
	Н	C(CH ₃) ₂ CH ₂ OC(0)NHEt	CF3 CF3	Ph-4-I	Н
	H	C(CH ₃) ₂ CH ₂ OC(0)NHEt		Ph-4-CF3	H
	H	C(CH ₃) ₂ CH ₂ OC(0)NHEt	CF ₃	Ph-4-0CHF2	H
	H	C (CH ₃) ₂ CH ₂ OC (0) NHE t	CF ₃	DL 4 OCE-	H
	H	$C(CH_3)_2CH_2OC(0)NHEt$	CF ₃		H
	H	$C(CH_3)_2CH_2OC(0)NHEt$	CF ₃	Ph-4-OCF ₂ Br	H
	H	$C(CH_3)_2 CH_2 OC(0) NHE t$	CF ₃	Ph-4-OCF ₂ CHF ₂	H
	Н	$C(CH_3)_2CH_2OC(0)NHEt$	CF ₃	Ph-4-OCF ₂ CHFC 1	
	Н	$C(CH_3)_2CH_2OC(0)NHEt$	CF ₃	Ph-4-OCF ₂ CHFCF ₃	Н
	Н	$C(CH_3)_2CH_2OC(0)NHEt$	CF ₃	Ph-4-OCF2 CHFOCF3	Н
	Н	$C(CH_3)_2CH_2OC(0)NHEt$	CF ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ C	
	Н	$C(CH_3)_2CH_2OC(0)NHEt$	CF ₃	Ph-4-0(L-45g)	H
	Н	$C(CH_3)_2CH_2OC(0)$ NHEt	CF ₃	Ph-4-0(L-451)	H
	Н	$C(CH_3)_2CH_2OC(0)$ NHEt	CF ₃	Ph-4-SCH ₃	H
		• • •		11. == ritt 0 0 0 1 0	0 0 0

Н	$C(CH_3)_2CH_2OC(0)NHEt$	CF3	111 1 0 (0) 01-0	H
Н	C(CH ₃) ₂ CH ₂ OC(0)NHEt	CF ₃	1.1 1 505 01-5	H
Н	C(CH ₃) ₂ CH ₂ OC(0)NHEt	CF3	Ph-4-SCF ₃	H
H	$C(CH_3)_2 CH_2 OC(0) NHEt$	CF ₃	Ph-4-CN	H
H	C(CH ₃) ₂ CH ₂ OC(0)NHEt	CF ₃	Ph-3, 4-F ₂	H
H	C(CH ₃) ₂ CH ₂ OC(0) NHEt	CF ₃	Ph-3-F-4-C1	H
H	C (CH ₃) ₂ CH ₂ OC (0) NHE t	CF ₃	Ph-3-F-4-CF3	H.
H	C(CH ₃) ₂ CH ₂ OC(0)NHEt	CF ₃	Ph-3, 4-Cl ₂	H
Н	C (CH ₃) ₂ CH ₂ OC (0) NHE t	CF3	Ph-3-C1-4-0CF3	Н
H	C(CH ₃) ₂ CH ₂ OC(0)NHEt	CF ₃	L-1c	H
Н	C(CH ₃) ₂ CH ₂ OC(0)NHEt	CF ₃	L-1d	H
n H	C(CH ₃) ₂ CH ₂ OC(0)NHEt	CF ₃	L-1e	Н
п Н	C(CH ₃) ₂ CH ₂ OC(O)NHEt	CF3	L-1i	H
	$C(CH_3)_2 CH_2 OC(O) NHE t$	CF ₃	L–2b	Н
H	C(CH ₃) ₂ CH ₂ OC(O)NHEt	CF ₃	L-3d	Н
Н	C(CH3)2CH2OC(O)NHE+	CF ₃	L–3e	H
H	C(CH ₃) ₂ CH ₂ OC(0)NHEt	CF ₃	L-3f	Н
H	C(CH ₃) ₂ CH ₂ OC(0)NHEt	CF ₃	L-31	Н
H	C(CH ₃) ₂ CH ₂ OC(O)NHEt	CF3 CF3	L-30	Н
H	C(CH ₃) ₂ CH ₂ OC(O)NHEt	CF3 CF3	L-4c	
H	C(CH ₃) ₂ CH ₂ OC(0)NHEt		L-45d	H
Н	C(CH ₃) ₂ CH ₂ OC(0)NHEt	CF ₃	L-45e	H
Н	C(CH ₃) ₂ CH ₂ OC(0)NHEt	CF₃	L-45e L-45f	Н
Н	C(CH ₃) ₂ CH ₂ OC(0) NHEt	CF ₃	L-451 L-45g	Н
H	C(CH ₃) ₂ CH ₂ OC(0)NHEt	CF ₃		Н
Н	$C(CH_3)_2 CH_2 OC(0) NHEt$	CF ₃	L-451	Н
Н	$C(CH_3)_2 CH_2 OC(0) NHEt$	CF ₃	L-45m	Н
H	$C(CH_3)_2 CH_2 OC(0) NHEt$	CF ₃	L-46d	H
Н	$C(CH_3)_2CH_2OC(0)NHEt$	CF ₃	L-46e	H
Н	$C(CH_3)_2CH_2OC(0)NHEt$	CF ₃	L-46f	
Н	$C(CH_3)_2CH_2OC(0)NHEt$	CF ₃	L-46g	H
H	$C(CH_3)_2CH_2OC(0)NHEt$	CF ₃	L-46j	H
Н	$C(CH_3)_2CH_2OC(0)NHEt$	CF ₃	L-46k	Н
Н	$C(CH_3)_2CH_2OC(0)NHEt$	CF ₃	L-46r	H
H	$C(CH_3)_2CH_2OC(0)NHPr-n$	CF3	Ph-4-F	H
Н	$C(CH_3)_2CH_2OC(0)NHPr-n$	CF ₃	Ph-4-Cl	H
H	$C(CH_3)_2CH_2OC(0)NHPr-n$	CF ₃	Ph-4-Br	H
Н	$C(CH_3)_2CH_2OC(0)NHPr-n$	CF3	Ph-4-I	H
Н	$C(CH_3)_2CH_2OC(0)NHPr-n$	CF ₃	Ph-4-CF ₃	Н
Н	$C(CH_3)_2CH_2OC(0)NHPr-n$	CF ₃	Ph-4-0CHF ₂	H
Н	$C(CH_3)_2CH_2OC(0)NHPr-n$	CF ₃	Ph-4-0CF3	H
Н	$C(CH_3)_2CH_2OC(0)NHPr-n$	CF ₃	Ph-4-0CF ₂ Br	H
Н	$C(CH_3)_2 CH_2 OC(0) NHPr-n$	CF ₃	Ph-4-OCF ₂ CHF ₂	H
Н	$C(CH_3)_2CH_2OC(0)NHPr-n$	CF ₃	Ph-4-OCF ₂ CHFCF ₃	H
Н	$C(CH_3)_2 CH_2 OC(0) NHPr-n$	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	Н
Н	$C(CH_3)_2 CH_2 OC(0) NHPr-n$	CF ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	
H		CF ₃	Ph-4-0(L-45g)	Н
Н	$C(CH_3)_2 CH_2 OC(0) NHPr-n$	CF3	Ph-4-CN	Н
H		СFз	$Ph-3,4-F_2$	Н
H		CF3	Ph-3-F-4-C1	H
H		CF3	Ph-3, 4-Cl ₂	H
.1	0 (0.00 / 0 0 0 0 (0 / 0 0		山气性200420	0.0

	Н	$C(CH_3)_2CH_2OC(0)NHPr-n$	СFз	L-45d H	
	H	C(CH ₃) ₂ CH ₂ OC(0)NHPr-n	CF ₃	L-45e H	
	H	$C(CH_3)_2 CH_2 OC(0) NHPr-n$	CF ₃	L-45g H	
	Н	$C(CH_3)_2 CH_2 OC(0) NHPr-n$	CF3	L-46d H	
	H	C(CH ₃) ₂ CH ₂ OC(O)NHPr-n	СFз	L-46e H	
	H	C(CH ₃) ₂ CH ₂ OC(0)NHPr-n	CF ₃	L-46g H	
	H	C(CH ₃) ₂ CH ₂ OC(0)NHPr-i	CF ₃	Ph-4-Cl H	
•	H	C(CH ₃) ₂ CH ₂ OC(0)NHPr-c	CF ₃	Ph-4-0CF ₃	
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ CF ₃	CF ₃	Ph-4-Cl	
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ CH ₂ OCH ₃	СFз	Ph-4-0CF ₃	ł
	H	C (CH ₃) 2 CH ₂ OC (0) NHCH ₂ CH ₂ SCH ₃	CF3	Ph-4-Cl F	ł
	H	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₂ CH ₂ CH ₂ SC		CF ₃ Ph-4-OCF ₃ F	ł
	п Н	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₂ CH=CH ₂	CF3	Ph-4-Cl F	i
		· C (CH ₃) ₂ CH ₂ OC (O) NHCH ₂ Ph	CF ₃	Ph-4-F	H
	H	$C(CH_3)_2 CH_2 OC(O) NHCH_2 Ph$	CF3		H
	H	C (CII) - CII - OC (O) NUCU - Ph	CF3		H
	Н	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₂ Ph	CF ₃		Н
	Н	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₂ Ph	CF ₃		Н
	Н	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₂ Ph	CF ₃		Н
	Н	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₂ Ph	CF ₃	111 1 001-1	H
	Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ Ph	CF ₃	11. 1 00-0	Н
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ Ph	CF ₃	111 1 0012	Н
	Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ Ph	CF ₃	111 1 0018 01-1	Н
	Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ Ph	CF3	111 1 001 2 012 0 0	Н
	Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ Ph		111 1 001201110000	H
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ Ph	CF3	111 1 001 2 01 2 01 2 01	H
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ Ph	CF3	111 1 0 (2 108)	H
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ Ph	CF3	111 1 50125	Н
	H	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₂ Ph	CF3	111 1 502 00	Н
	H	C (CH ₃) ₂ CH ₂ OC (O) NHCH ₂ Ph	CF3	Ph-3, 4-F2	Н
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ Ph	CF ₃	Ph-3-F-4-C1	Н
	H	C (CH ₃) 2 CH ₂ OC (0) NHCH ₂ Ph	CF ₃	Ph-3, 4-Cl ₂	Н
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ Ph	CF ₃	L-45d	Н
	Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ Ph	CF3	L-45u L-45e	Н
	Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ Ph	CF3	L-45g	Н
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ Ph	CF ₃	L-45g L-46d	Н
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ Ph	CF ₃		Н
	Н	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ Ph	CF ₃	L-46e	Н
	H	C (CH ₃) ₂ CH ₂ OC (0) NHCH ₂ Ph	CF ₃	L-46g	Н
	Н	C(CH3)2CH2OC(O)N(CH3)2	CF ₃	Ph-4-F	Н
	H	C(CH3)2CH2OC(O)N(CH3)2	CF ₃	Ph-4-Cl	Н
	H	C(CH3)2CH2OC(O)N(CH3)2	CF ₃	Ph-4-Br	Н
	Н		CF ₃	Ph-4-I	Н
	H		CF ₃	Ph-4-CF ₃	Н
	Н		CF ₃	Ph-4-0CHF ₂	Н
	Н		CF ₃	Ph-4-0CF ₃	Н
	Н		CF ₃	Ph-4-OCF ₂ Br	Н
	Н		CF ₃	Ph-4-OCF ₂ CHF ₂	Н
	H		CF ₃	Ph-4-OCF ₂ CHFCF ₃	H
	H		CF ₃	Ph-4-OCF ₂ CHFOCF ₃	H
	Н	C(CH3)2CH2OC(O)N(CH3)2	CF3	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	п

Н	$C(CH_3)_2 CH_2 OC(0) N(CH_3)_2$	CF3	Ph-4-0(L-45g)	H
H	$C(CH_3)_2 CH_2 OC(0) N(CH_3)_2$	CF3	Ph-4-SCH ₃	H
H	C(CH ₃) ₂ CH ₂ OC(0)N(CH ₃) ₂	CF3	Ph-4-S0 ₂ CH ₃	H
H	C(CH3)2CH2OC(0)N(CH3)2	CF3	Ph-4-CN	H
H	C(CH3)2CH2OC(0)N(CH3)2	CF3	$Ph-3,4-F_2$	H
H	C(CH3)2CH2OC(0)N(CH3)2	CF ₃	Ph-3-F-4-C1	H
H	C(CH3)2CH2OC(O)N(CH3)2	CF ₃	Ph-3, 4-Cl ₂	Н
H	C(CH3)2CH2OC(O)N(CH3)2	CF ₃	L-45d	Н
H	C(CH3)2CH2OC(O)N(CH3)2	CF ₃	L-45e	Н
H	C(CH3)2CH2OC(O)N(CH3)2	CF3	L-45g	Н
Н	C(CH3)2CH2OC(O)N(CH3)2	CF ₃	L-46d	H
	C(CH3)2CH2OC(O)N(CH3)2	CF ₃	L-46e	H
H	$C(CH_3)_2 CH_2 OC(O) N(CH_3)_2$	CF ₃	L-46g	H
Н	$C(CH_3)_2 CH_2 OC(O) N(CH_3)_2$ $C(CH_3)_2 CH_2 OP(S) (OCH_3)_2$	CF ₃	Ph-4-C1	H
Н		CF₃	Ph-4-0CF ₃	H
H	CH ₂ CH ₂ CH ₂ OH	CF ₃	Ph-4-Cl	H
H	CH ₂ CH ₂ CH ₂ OCH ₃	CF ₃	Ph-4-C1	H
H	CH (CH ₃) CH ₂ CH ₂ OCH ₃	CF ₃	Ph-4-0CF ₃	Η .
Н	CH (CH ₃) CH ₂ CH ₂ OCH ₃	CF ₃	Ph-4-F	H
H	CH (CH ₃) CH ₂ CH ₂ OEt	CF ₃	Ph-4-Cl	Н
H	CH (CH ₃) CH ₂ CH ₂ OEt	CF ₃	Ph-4-Br	Н
H	CH (CH ₃) CH ₂ CH ₂ OEt	CF3	Ph-4-I	Н
H	CH (CH ₃) CH ₂ CH ₂ OEt	CF ₃	Ph-4-CF ₃	H
Н	CH (CH ₃) CH ₂ CH ₂ OEt	CF₃	Ph-4-0CHF ₂	H
H	CH (CH ₃) CH ₂ CH ₂ OEt		Ph-4-0CF3	Н
H	CH (CH ₃) CH ₂ CH ₂ OEt	CF3	Ph-4-0CF ₂ Br	H
Н	CH (CH ₃) CH ₂ CH ₂ OEt	CF ₃	Ph-4-OCF ₂ CHF ₂	H
Н	CH (CH ₃) CH ₂ CH ₂ OE t	CF ₃	Ph-4-OCF ₂ CHFCF ₃	H
H	CH (CH ₃) CH ₂ CH ₂ OEt	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	H
H	CH (CH ₃) CH ₂ CH ₂ OEt	CF ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	
H	CH (CH ₃) CH ₂ CH ₂ OEt	CF ₃	Ph-4-0S02 CH3	H
H	CH (CH ₃) CH ₂ CH ₂ OEt	CF ₃	Ph-4-0502 Ch3 Ph-4-0 (L-45g)	H
Н	CH (CH ₃) CH ₂ CH ₂ OE t	CF ₃	. –	H
Н	CH (CH ₃) CH ₂ CH ₂ OEt	CF ₃	Ph-4-SCH ₃	Н
Н	CH (CH3) CH2 CH2 OE t	CF ₃	Ph-4-S(0) CH ₃	Н
Н	CH (CH ₃) CH ₂ CH ₂ OE t	CF ₃	Ph-4-SO ₂ CH ₃	Н
Н	CH (CH ₃) CH ₂ CH ₂ OE t	CF ₃	Ph-4-SCF ₃	H
Н	CH (CH ₃) CH ₂ CH ₂ OE t	CF ₃	Ph-4-CN	H
Н	CH (CH ₃) CH ₂ CH ₂ OE t	CF ₃	Ph-3, 4-F ₂	H
H	CH (CH ₃) CH ₂ CH ₂ OE t	CF ₃	Ph-3-F-4-C1	H
H	CH (CH ₃) CH ₂ CH ₂ OE t	CF ₃	Ph-3, 4-Cl ₂	H
H	CH (CH ₃) CH ₂ CH ₂ OE t	CF ₃	L-45d	H
Н	CH (CH ₃) CH ₂ CH ₂ OE t	CF ₃	L-45e	H
Н	CH (CH ₃) CH ₂ CH ₂ OE t	CF ₃	L-45g	H
Н	CH(CH3)CH2CH2OEt	CF ₃	L-46d	
Н	CH(CH ₃)CH ₂ CH ₂ OEt	CF ₃	L-46e	H
Н	CH (CH ₃) CH ₂ CH ₂ OEt	CF ₃	L-46g	Н
Н	CH (CH ₃) CH ₂ CH ₂ OE t	CF ₃	L-47a	H
Н	· · · · · · · · · · · · · · · · · · ·	СFз	Ph-4-Cl	Н
Н		CF ₃	Ph-4-0CF ₃	Н
H		CF3	Ph-4-C1	Н
-	·		山紅鮭2001-3	0 9 9

		CE	Ph-4-0CF3	Н
H	CH (CH ₃) CH ₂ CH ₂ OCH ₂ CH ₂ OCH ₃	CF ₃	111 1 0010	Н
H	CH (CH ₃) CH ₂ CH ₂ OC (0) NHE t	CF3	1 0.	H
H	CH ₂ CH ₂ CH ₂ CH ₂ OC (0) NHE t	CF ₃	Ph-4-C1	H
H	CH ₂ CH ₂ CH ₂ CH ₂ OC (0) NHPr-i	CF ₃	Ph-4-0CF3	H
H	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OC (0) NHE t	CF ₃	Ph-4-C1	H
H	T-10	CF₃	Ph-4-0CF3	Н
Н	M-4a	CF ₃	Ph-4-01	H
H	M-5a	CF ₃	Ph-4-0CF3	H
H	CH ₂ (M-7a)	CF ₃	Ph-4-Cl	H
H	CH ₂ (M-16a)	CF₃	Ph-4-0CF ₃	Н
	2 CH2 OCH2 CH2 —	CF₃	Ph-4-Cl	H
Н	CH ₂ SCH ₃	CF₃	Ph-4-0CF3	H
Н	CH ₂ CH ₂ SCH ₃	CF ₃	Ph-4-C1	H
Н	CH ₂ CH ₂ SEt	CF₃	Ph-4-OCF3	H
Н	CH ₂ CH ₂ SPr-i	CF ₃	Ph-4-Cl	H
H	CH ₂ CH (CH ₃) SCH ₃	CF ₃	Ph-4-0CF3	H
Н	CH ₂ CH (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-C1	H
H	CH ₂ CH (CH ₃) SEt	CF ₃	Ph-4-0CF3	H
Н	CH ₂ CH (CH ₃) SO ₂ Et	CF3	Ph-4-Cl	H
Н	CH (CH ₃) CH ₂ SH	CF ₃		Н
H	CH (CH ₃) CH ₂ SCH ₃	CH₃	Ph-4-F Ph-4-Cl	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CH ₃		Н
Н	CH (CH ₃) CH ₂ SCH ₃	CH ₃	Ph-4-Br	H
Н	CH (CH3) CH2 SCH3	CH₃	Ph-4-I	Н
H	CH (CH ₃) CH ₂ SCH ₃	CH ₃	Ph-4-CF ₃	H
H	CH (CH ₃) CH ₂ SCH ₃	СН3	Ph-4-OCHF2	H
Н	CH (CH ₃) CH ₂ SCH ₃	CH₃	Ph-4-OCF3	Н
Н	CH (CH ₃) CH ₂ SCH ₃	СНз	Ph-4-OCF ₂ CHF ₂	H
Н	CH (CH ₃) CH ₂ SCH ₃	СНз	Ph-4-OCF ₂ CHF ₂	H
Н	CH (CH ₃) CH ₂ SCH ₃	СН₃	Ph-4-OCF ₂ CHFC1	H
H	CH (CH₃) CH2 SCH3	СНз	Ph-4-OCF ₂ CHFCF ₃	H
H	CH (CH ₃) CH ₂ SCH ₃	СН₃	Ph-4-OCF ₂ CHFOCF ₃	
Н	CH (CH ₃) CH ₂ SCH ₃	CH ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
Н	CH (CH ₃) CH ₂ SCH ₃	СН₃	Ph-4-0S0 ₂ CH ₃	Н
H	CH (CH ₃) CH ₂ SCH ₃	CH ₃	Ph-4-0 (L-45g)	Н
H	CH (CH ₃) CH ₂ SCH ₃	CH ₃	Ph-4-0(L-451)	H
H	CH (CH ₃) CH ₂ SCH ₃	СНз	Ph-4-CN	H
Н	CH (CH₃) CH₂ SCH₃	CH ₃	Ph-3, 4-F ₂	Н
H	CH (CH3) CH2 SCH3	CH₃	Ph-3-F-4-C1	Н
Н	CH (CH₃) CH2 SCH3	CH ₃	Ph-3, 4-Cl ₂	Н
H	CH (CH ₃) CH ₂ SCH ₃	CH ₃	L-45d	H
Н	CH (CH3) CH2 SCH3	CH ₃	L-45e	H
H		CH₃	L-45g	Н
Н		CH₃	L-45m	Н
H		CH₃	L-46d	Н
H		CH ₃	L-46e	Н
Н		CH ₃	L-46g	н
H	CH (CH ₃) CH ₂ SCH ₃	СНз	L-46j	n H
Н		СНз	L-46k	п Н
Н	CH (CH ₃) CH ₂ SCH ₃	CH ₃	L-46r	п

11	CH (CH ₃) CH ₂ SCH ₃	Et	Ph-4-F	H
H H	CH (CH ₃) CH ₂ SCH ₃	Et	Ph-4-Cl	Н
п Н	CH (CH ₃) CH ₂ SCH ₃	Et	Ph-4-Br	H
п Н	CH (CH ₃) CH ₂ SCH ₃	Et	Ph-4-CF ₃	H
п Н	CH (CH ₃) CH ₂ SCH ₃	Et	Ph-4-0CHF ₂	H
	CH (CH ₃) CH ₂ SCH ₃	Et	Ph-4-0CF3	Н
H	CH (CH ₃) CH ₂ SCH ₃	Et	L-45g	H
H	CH (CH ₃) CH ₂ SCH ₃	n-Pr	Ph-4-F	Н
H	CH (CH ₃) CH ₂ SCH ₃	n-Pr	Ph-4-C1	H
Н	CH (CH ₃) CH ₂ SCH ₃	n-Pr	Ph-4-Br	Н
H	- •	n-Pr	Ph-4-CF3	Н
H	CH (CH ₃) CH ₂ SCH ₃	n-Pr	Ph-4-0CF ₃	Н
H	CH (CH ₃) CH ₂ SCH ₃	n-Pr	L-45g	Н
Н	CH (CH ₃) CH ₂ SCH ₃	i-Pr	Ph-4-F	Н
H	CH (CH ₃) CH ₂ SCH ₃	i-Pr	Ph-4-Cl	Н
H	CH (CH ₃) CH ₂ SCH ₃	i-Pr	Ph-4-Br	Н
Н	CH (CH ₃) CH ₂ SCH ₃	i-Pr	Ph-4-CF ₃	Н
H	CH (CH ₃) CH ₂ SCH ₃	i-Pr	Ph-4-0CF ₃	Н
H	CH (CH ₃) CH ₂ SCH ₃	i-Pr	L-45g	Н
H	CH (CH ₃) CH ₂ SCH ₃	n-Bu	Ph-4-Cl	H
Н	CH (CH ₃) CH ₂ SCH ₃	CHF ₂	Ph-4-F	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CHF ₂	Ph-4-Cl	Н
H	CH (CH ₃) CH ₂ SCH ₃	CHF ₂	Ph-4-Br	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CHF ₂	Ph-4-I	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CHF ₂ CHF ₂	Ph-4-CF3	H
H	CH (CH ₃) CH ₂ SCH ₃	CHF ₂	Ph-4-0CHF ₂	H
Н	CH (CH ₃) CH ₂ SCH ₃	CHF ₂	Ph-4-0CF3	H
Н	CH (CH ₃) CH ₂ SCH ₃	CHF ₂	Ph-4-0CF ₂ Br	H
Н	CH (CH ₃) CH ₂ SCH ₃		Ph-4-0CF ₂ CHF ₂	H
H	CH (CH ₃) CH ₂ SCH ₃	CHF ₂	Ph-4-OCF ₂ CHFCF ₃	Н
H	CH (CH ₃) CH ₂ SCH ₃	CHF ₂	Ph-4-OCF ₂ CHFOCF ₃	H
Н	CH (CH ₃) CH ₂ SCH ₃	CHF2 CHF2	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	
Н	CH(CH ₃)CH ₂ SCH ₃	CHF ₂	Ph-4-0SO ₂ CH ₃	H
H	CH (CH ₃) CH ₂ SCH ₃		Ph-4-0(L-45g)	H
Н	CH (CH ₃) CH ₂ SCH ₃	CHF ₂	Ph-4-CN	H
H	CH (CH ₃) CH ₂ SCH ₃	CHF ₂	Ph-3, 4-F ₂	H
H	CH (CH ₃) CH ₂ SCH ₃	CHF ₂	Ph-3-F-4-Cl	H
H	CH (CH ₃) CH ₂ SCH ₃	CHF ₂	Ph-3, 4-Cl ₂	 Н
Н		CHF ₂	L-45d	 Н
H		CHF ₂	L-45e	H
Н		CHF ₂	L-45g	 Н
Н		CHF ₂	L-45g L-46d	H
Н		CHF ₂	L-46e	H
H	·	CHF ₂	L-46g	H
H		CHF ₂	CH ₂ OPh	H
Н		CF ₃	CH ₂ OFII CH ₂ O(Ph-2-F)	H
H		CF3	CH ₂ O(Ph-3-F)	H
Н		CF ₃	CH ₂ O(Ph-4-F)	H
H		CF ₃	CH ₂ O(Ph-2-C1)	 Н
H		CF ₃	CH ₂ O(Ph-3-C1)	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃		
			出証特2004-30	099262

Н	CH (CH ₃) CH ₂ SCH ₃	CF3	$CH_2O(Ph-4-C1)$	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	$CH_2O(Ph-2-Br)$	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF3	$CH_2O(Ph-3-Br)$	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	$CH_2O(Ph-4-Br)$	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	$CH_2O(Ph-2-CF_3)$	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	$CH_2O(Ph-3-CF_3)$	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	$CH_2O(Ph-4-CF_3)$	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	$CH_2O(Ph-2-OCF_3)$	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	$CH_2O(Ph-3-OCF_3)$	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	$CH_2O(Ph-4-OCF_3)$	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	CH ₂ SPh	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	CH2 NHPh	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	c-Pr	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	c–Bu	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	c-Pen	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	c-Hex	Н
	CH (CH ₃) CH ₂ SCH ₃	CF ₃	T-1	H
H		CF ₃	T-2	H
H	CH (CH ₃) CH ₂ SCH ₃	CF3	T-3	H
H	CH (CH ₃) CH ₂ SCH ₃		T-4	н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	T-5	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	OCH ₃	СН ₃
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	OEt	Et
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃		n-Pr
H	CH (CH ₃) CH ₂ SCH ₃	CF3	OPr-n	i-Pr
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	OPr-i	
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	OBu-n	n-Bu
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	OCH ₂ CF ₃	CH ₂ CF ₃
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	C(0)0Bu-t	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	C(0)0CH ₂ CF ₃	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	T-22	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	T-23	H
H	CH (CH ₃) CH ₂ SCH ₃	$ ext{CF}_3$	T-24	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph	Н
Н	CH (CH3) CH2 SCH3	CF ₃	Ph-2-F	H
H	CH (CH ₃) CH ₂ SCH ₃	CF3	Ph-3-F	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-F	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-C1	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-C1	Н
H	CH (CH ₃) CH ₂ SCH ₃ (R)	· CF ₃	Ph-4-Cl	Н
Н	CH (CH ₃) CH ₂ SCH ₃ (S)	CF ₃	Ph-4-Cl	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-C1	СН₃
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-Br	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-I	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-CF ₃	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-OCHF2	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0CF ₃	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0CF ₃	CH₃
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0CF3	CH2 CH=CH2
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0CF ₃	$CH_2 C \equiv CH$
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0CF ₃	CH₂ Ph
11	OII (OIII) / OIII OOIII	•	-	- -

**	CH/CH- \ CH- CCH-	CF3	Ph-4-0CF3	C (0) CH ₃
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0CF3	Si (CH ₃) ₃
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0CF ₂ Br	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0CH ₂ CF ₃	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-OCF ₂ CHF ₂	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-OCF ₂ CHFC1	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-OCF ₂ CHFBr	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-OCF ₂ CF ₂ Br	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0CF ₂ CFCl ₂	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0CF ₂ CC l ₃	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃ ·	Ph-4-0CH ₂ CF ₂ CHF ₂	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-OCF ₂ CHFCF ₃	H
H	CH (CH ₃) CH ₂ SCH ₃		Ph-4-OCF ₂ CHFCF ₃	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0CH (CF ₃) ₂	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-OCF ₂ CFBrCF ₃	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-OCF ₂ CHFOCF ₃	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF	
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0SO ₂ CH ₃	3 11 H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0S02 CF3	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-0(Ph-4-C1)	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0(Ph-4-C1)	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-0(Ph-4-Br)	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0(Ph-4-Br)	H
H	CH (CH ₃) CH ₂ SCH ₃	CF₃	Ph-3-0(Ph-4-CF ₃)	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0(Ph-4-CF ₃)	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF₃	Ph-4-0(L-45e)	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0(L-45g)	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0(L-451)	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-0(L-48b)	H
Н		CF ₃	Ph-4-SCH3	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-SO ₂ CH ₃	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-S(Ph-4-C1)	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-S(Ph-4-C1)	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-S(Ph-4-Br)	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-S(Ph-4-Br)	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-S(Ph-4-CF ₃)	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-S(Ph-4-CF ₃)	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-S(L-45e)	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-S(L-45g)	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-S(L-451)	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF₃	Ph-4-S(L-48b)	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-NO ₂	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-CN	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2, 3-F ₂	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2, 4-F ₂	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3, 4-F ₂	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2, 5-F ₂	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF3	Pn-2, 5-F ₂ Ph-3, 5-F ₂	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Pn-3, 5-F2 Ph-2-C1-4-F	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	F11-4-01-4-1	11

				**
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2-F-3-C1	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-C1-4-F	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2-F-4-Cl	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-F-4-C1	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2,3-Cl ₂	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2, 4-Cl ₂	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF3	Ph-2, 5-Cl ₂	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3, 4-Cl ₂	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3, 5-Cl ₂	H
Н	CH (CH ₃) CH ₂ SCH ₃	СF3	Ph-3-Br-4-F	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2-F-4-Br	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2-F-5-Br	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3, 4-Br ₂	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3,5-Br ₂	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-CH ₃ -4-F	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	$Ph-3-F-4-CH_3$	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2-F-5-CH ₃	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	$Ph-2, 4-(CH_3)_2$	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	$Ph-3, 4-(CH_3)_2$	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2-F-3-CF3	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-CF ₃ -4-F	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-CF ₃ -4-C1	H
н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2-F-4-CF3	Н
n II	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-F-4-CF ₃	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2-F-5-CF3	Н
	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-F-5-CF3	Н
H H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2-C1-4-CF3	H
н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	$Ph-3, 5-(CF_3)_2$	Н
	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-Br-4-0CH ₃	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-F-4-0CHF ₂	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-C1-4-0CHF ₂	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-Br-4-0CHF ₂	H
Н	· · · · · · · · · · · · · · · · · · ·	CF ₃	Ph-3-F-4-0CF ₃	Н
H	CH (CH ₃) CH ₂ SCH ₃ CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-C1-4-OCF3	H
H		CF ₃	Ph-3-Br-4-OCF3	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF3	Ph-3-F-4-0CF ₂ Br	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-C1-4-0CF ₂ Br	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-Br-4-0CF ₂ Br	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-F-4-0CF ₂ CHF ₂	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-C1-4-0CF ₂ CHF ₂	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-Br-4-OCF ₂ CHF ₂	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-F-4-0CF ₂ CHFC1	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-C1-4-OCF ₂ CHFC1	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-Br-4-OCF ₂ CHFC1	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF3	Ph-3-F-4-OCF ₂ CHFCF ₃	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF3	Ph-3-C1-4-OCF ₂ CHFCF ₃	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF3 CF3	Ph-3-Br-4-OCF ₂ CHFCF ₃	H
Н		CF3	Ph-3-F-4-0CF ₂ CHF0CF ₃	H
H		CF3 CF3	Ph-3-C1-4-OCF ₂ CHFOCF ₃	H
Н			Ph-3-Br-4-OCF ₂ CHFOCF ₃	Н
H	CH (CH3) CH2 SCH3	CF ₃	TIT-0-DI-4-OOLSOUROOK3	11

Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-F-4-OCF2 CHFOCF	₂ CF ₂ CF ₃ H
п Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-C1-4-OCF ₂ CHFOC	
	•	CF ₃	Ph-3-Br-4-OCF ₂ CHFOC	
Н	CH (CH ₃) CH ₂ SCH ₃	CF3	Ph(-3-0CF ₂ 0-4-)	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF3	$Ph(-3-0CF_2CF_20-4-)$	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF3	Ph-3-0Ph-4-F	H
H	CH (CH ₃) CH ₂ SCH ₃		Ph-3-NO ₂ -4-F	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	$Ph-3-NO_2-4-C1$	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2-F-5-NO ₂	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3-CN-4-F	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2, 3, 4-F3	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	· ·	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2, 3, 5-F ₃	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2, 4, 5-F ₃	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-3, 4, 5-F ₃	H
H	CH (CH3) CH2 SCH3	CF ₃	Ph-2, 3-F ₂ -4-CH ₃	п Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-2, 3-F ₂ -4-CF ₃	
Н	$CH(CH_3)CH_2SCH_3$	CF₃	Ph-3, 4-F ₂ -5-CF ₃	H
H	CH (CH ₃) CH ₂ SCH ₃	CF₃	Ph-2-F-3-C1-5-CF ₃	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	1-Naph	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	2-Naph	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-1b	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-1c	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-1d	H
Н	CH (CH3) CH2 SCH3	CF3	L-1e	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-1i .	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-2b	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-3b	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-3c	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-3d	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-3e	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF₃	L-3f	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-3j	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF₃	L-3k	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF3	L-31	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF₃	L-30	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-4b	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-4c	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-4e	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-10b	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-10c	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-16a	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-16b	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-17a	H
	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-21b	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-21c	Н
Н	•	CF ₃	L-21d	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-21e	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF3	L-22b	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-22c	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-23b	H
Н	CH (CH ₃) CH ₂ SCH ₃	Or 3	un=r#t o o o 4	20002

Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-23c	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-23f	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-23g	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-31a	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-31b	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-45c	H
H	CH (CH ₃) CH ₂ SCH ₃	\mathbb{CF}_3	L-45d	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-45e	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-45f	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-45g	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-451	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-45m	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-46c	H
п Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-46d	H
	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-46e	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-46f	H
Н		CF ₃	L-46g	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-46j	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-46k	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF3	L-46r	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF3	L-47a	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-47e	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF3	L-48b	Н
Н	CH (CH ₃) CH ₂ SCH ₃		L-50b	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-50c	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	L-51b	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-F	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₂ C1		H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₂ C1	Ph-4-Cl	Н
H	CH (CH ₃) CH ₂ SCH ₃	CF ₂ C1	Ph-4-Br	Н
Н	CH (CH₃) CH₂ SCH₃	CF ₂ C1	Ph-4-CF3	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₂ C1	Ph-4-OCHF ₂	H
Н	$CH(CH_3)CH_2SCH_3$	CF ₂ C1	Ph-4-0CF ₃	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₂ C1	Ph-4-CN	
Н	CH (CH3) CH2 SCH3	CF ₂ C1	Ph-3, 4-Cl ₂	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₂ C1	L-45g	H
H	CH (CH ₃) CH ₂ SCH ₃	CF_2Br	Ph-4-Br	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₂ CHF ₂	Ph-4-0CF ₃	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₂ CF ₃	Ph-4-F	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₂ CF ₃	Ph-4-C1	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₂ CF ₃	Ph-4-Br	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₂ CF ₃	Ph-4-I	H
Н		CF ₂ CF ₃	Ph-4-CF3	Н
Н		CF ₂ CF ₃	Ph-4-OCHF ₂	Н
Н	i i	CF ₂ CF ₃	Ph-4-0CF ₃	H
H		CF ₂ CF ₃	Ph-4-OCF ₂ Br	Н
H		CF ₂ CF ₃	Ph-4-0CF ₂ CHF ₂	Н
H	i i	CF ₂ CF ₃	Ph-4-0CF ₂ CHFCF ₃	H
H		CF ₂ CF ₃	Ph-4-OCF ₂ CHFOCF ₃	Н
H		CF ₂ CF ₃	Ph-4-OCF2 CHFOCF2 CF2 CF	
Н		CF ₂ CF ₃	Ph-4-0S0 ₂ CH ₃	· H
11			山武胜2004—20	00

	() 0	OD OD	DL 4 CN	Н
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₂ CF ₃	Ph-4-CN	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₂ CF ₃	Ph-3, 4-F ₂	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₂ CF ₃	Ph-3-F-4-Cl	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₂ CF ₃	Ph-3, 4-Cl ₂	H
H	CH (CH ₃) CH ₂ SCH ₃	CF ₂ CF ₃	L-45d	H
Н	CH (CH₃) CH₂ SCH₃	CF ₂ CF ₃	L-45e	
H	CH (CH3) CH2 SCH3	CF ₂ CF ₃	L-45g	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₂ CF ₃	L-46d	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₂ CF ₃	L-46e	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₂ CF ₃	L-46g	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₂ CF ₂ C1	Ph-4-Cl	H
Н	CH (CH ₃) CH ₂ SCH ₃	CFC1CF3	Ph-4-Br	H
H	CH (CH ₃) CH ₂ SCH ₃	CFC1CF2C1	Ph-4-OCF ₃	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF ₂ CF ₂ CF ₃	Ph-4-C1	H
Н	CH (CH ₃) CH ₂ SCH ₃	$CF(CF_3)_2$	Ph-4-Br	H
Н	CH (CH ₃) CH ₂ SCH ₃	CF2 CF2 CF2 CF3	Ph-4-0CF ₃	Н
Н	CH (CH ₃) CH ₂ SCH ₃	Ph-4-F	Ph-4-Cl	H
H	CH (CH ₃) CH ₂ SCH ₃	Ph-4-C1	Ph-4-Cl	H
Н	CH (CH ₃) CH ₂ SCH ₃	Ph-4-Br	Ph-4-Cl	Н
H	CH (CH ₃) CH ₂ SCH ₃	Ph-4-CF ₃	Ph-4-Cl	H
Н	CH (CH ₃) CH ₂ SCH ₃	Ph-4-0CHF2	Ph-4-Cl	H
H	CH (CH ₃) CH ₂ SCH ₃	Ph-4-0CF3	OCH ₃	СНз
Н	CH (CH ₃) CH ₂ SCH ₃	Ph-4-0CF3	Ph-4-Cl	H
H	CH (CH ₃) CH ₂ SCH ₃	Ph-4-OCF ₂ Br	OCH ₃	СНз
Н	CH (CH ₃) CH ₂ SCH ₃	Ph-4-OCF2 CHFC	CF ₃ OCH ₃	CH ₃
Н	CH (CH ₃) CH ₂ SCH ₃	Ph-4-OCF2 CHFC		CH ₃
Н	CH (CH ₃) CH ₂ SCH ₃	Ph-4-0(L-45g)		CH ₃
	3 CH (CH ₃) CH ₂ SCH ₃	CF ₃	Ph-4-Cl	H
Et		CF ₃	Ph-4-0CF3	H
Н	CH (CH ₃) CH ₂ S (0) CH ₃	СН3	Ph-4-F	Н
H	CH (CH ₃) CH ₂ S (0) CH ₃	CH ₃	Ph-4-Cl	H
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CH ₃	Ph-4-Br	H
H	CH (CH ₃) CH ₂ S (0) CH ₃	CH ₃	Ph-4-CF ₃	H
H	CH (CH ₃) CH ₂ S (0) CH ₃	CH₃	Ph-4-0CHF2	H
H	CH (CH ₃) CH ₂ S (0) CH ₃	CH ₃	Ph-4-0CF3	H
п Н	CH (CH ₃) CH ₂ S (0) CH ₃	CH ₃	L-45g	Н
	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	CH₂ OPh	Н
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF3	CH ₂ O (Ph-2-C1)	Н
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF3	CH ₂ O(Ph-3-C1)	Н
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	$CH_2O(Ph-4-C1)$	Н
Н	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CF3	CH ₂ SPh	Н
Н		CF ₃	CH ₂ NHPh	Н
Н		CF ₃	Ph-4-F	Н
Н		CF ₃	Ph-4-Cl	H
H		CF ₃	Ph-4-Cl	CH ₃
Н		CF3 CF3	Ph-4-Br	Н
Н		CF3 CF3	Ph-4-I	H
Н		CF3 CF3	Ph-4-CF ₃	. Н
Н			Ph-4-0CHF ₂	H
Н		CF ₃	Ph-4-0CF ₃	H
Н	CH (CH ₃) CH ₂ S (O) CH ₃	CF ₃	111-4-0013	

	CT / CT / CT / C / C) CT	OF.	Ph-4-0CF3	СНз
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	Ph-4-0CF3	CH ₂ CH=CH ₂
H	$CH(CH_3)CH_2S(0)CH_3$	CF ₃	Ph-4-0CF ₃	$CH_2 C \equiv CH$
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	Ph-4-0CF3	CH ₂ Ph
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	Ph-4-0CF ₃	C(0) CH ₃
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	Ph-4-0CF3	Si (CH ₃) ₃
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	Ph-4-0CF ₂ Br	H
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	Ph-4-0CH ₂ CF ₃	. H
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃		H
H	$CH(CH_3)CH_2S(0)CH_3$	CF ₃	Ph-4-OCF ₂ CHF ₂	H
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	Ph-4-OCF ₂ CHFC1	H
H	$CH(CH_3)CH_2S(0)CH_3$	CF ₃	Ph-4-OCF ₂ CHFBr	H
H	$CH(CH_3)CH_2S(0)CH_3$	CF ₃	Ph-4-OCF ₂ CF ₂ Br	п Н
H	$CH(CH_3)CH_2S(0)CH_3$	CF ₃	Ph-4-OCF ₂ CFC1 ₂	
H	$CH(CH_3)CH_2S(0)CH_3$	CF ₃	Ph-4-OCF ₂ CCl ₃	H
H	$CH(CH_3)CH_2S(0)CH_3$	CF ₃	Ph-4-OCF ₂ CHFCF ₃	Н
H	$CH(CH_3)CH_2S(0)CH_3$	CF ₃	Ph-4-0CH(CF ₃) ₂	H
H	$CH(CH_3)CH_2S(0)CH_3$	CF ₃	Ph-4-OCF ₂ CFBrCF ₃	H
Н	$CH(CH_3)CH_2S(0)CH_3$	CF3	Ph-4-OCF ₂ CHFOCF ₃	Н
Н	$CH(CH_3)CH_2S(0)CH_3$	CF ₃	Ph-4-OCF ₂ CHFOCF ₂ C	
H	$CH(CH_3)CH_2S(0)CH_3$	CF ₃	Ph-4-0S0 ₂ CH ₃	H
H	$CH(CH_3)CH_2S(0)CH_3$	CF ₃	Ph-4-0(L-45e)	Н
H	$CH(CH_3)CH_2S(0)CH_3$	CF ₃	Ph-4-0(L-45g)	Н
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	Ph-4-0(L-451)	Н
Н	CH (CH3) CH2S(0) CH3	CF ₃	Ph-4-0(L-48b)	Н
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	Ph-4-SO ₂ CH ₃	H
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	Ph-4-CN	Н
Н	$CH(CH_3)CH_2S(0)CH_3$	CF ₃	$Ph-3, 4-F_2$	Н
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	Ph-3-F-4-C1	Н
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	Ph-3,4-Cl2	Н
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-1c	Н
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L–1d	Н
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-1e	Н
H	$CH(CH_3)CH_2S(0)CH_3$	CF_3	L-1 i	H
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-2b	Н
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-3d	Н
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L–3e	Н
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-3f	Н
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-31	Н
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-3o	H
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-4c	H
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-10c	H
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-21c	H
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-21d	Н
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-21e	. Н
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-22c	Н
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-23c	Н
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-31b	Н
H	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-45d	Н
п Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-45e	H
n H	CH (CH ₃) CH ₂ S (0) CH ₃	CF3	L-45f	Н
п	OU (OUR) OUR 2 (A) CU3	OI 3	山三陸 2 0 0 4	20002

				11
Н	$CH(CH_3)CH_2S(0)CH_3$	CF ₃	L-45g	H
H	$CH(CH_3)CH_2S(0)CH_3$	CF ₃	L-451	H
H	$CH(CH_3)CH_2S(0)CH_3$	CF3	L-45m	H
Н	$CH(CH_3)CH_2S(0)CH_3$	CF3	L-46d	H
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-46e	H
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-46f	H
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-46g	H
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-46j	H
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-46k	H
Н	CH (CH ₃) CH ₂ S (0) CH ₃	CF ₃	L-46r	H
H	CH (CH ₃) CH ₂ S (0) CH ₃	Ph-4-F	Ph-4-C1	H
Н	CH (CH ₃) CH ₂ S (0) CH ₃	Ph-4-Cl	Ph-4-Cl	H
H	CH (CH ₃) CH ₂ S (0) CH ₃	Ph-4-Br	Ph-4-Cl	Н
H	CH (CH ₃) CH ₂ S (0) CH ₃	Ph-4-CF3	Ph-4-Cl	H
Н	CH (CH ₃) CH ₂ S (0) CH ₃	Ph-4-OCHF2	Ph-4-Cl	H
H	$CH(CH_3)CH_2S(0)CH_3$	Ph-4-0CF3	OCH₃	СНз
Н	CH (CH ₃) CH ₂ S (0) CH ₃	Ph-4-0CF3	Ph-4-Cl	H
Н	CH (CH ₃) CH ₂ S (0) CH ₃	Ph-4-OCF ₂ Br	OCH₃	СНз
Н	CH (CH ₃) CH ₂ S (0) CH ₃	Ph-4-OCF2 CHF	CF ₃ OCH ₃	СНз
H	CH (CH ₃) CH ₂ S (0) CH ₃	Ph-4-OCF ₂ CHF		CH ₃
Н	CH (CH ₃) CH ₂ S (0) CH ₃	Ph-4-0(L-45g)	_	СН3
п Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-F	Н
	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH₃	Ph-4-C1	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-Br	H
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-I	Н
Н		CH ₃	Ph-4-CF3	H
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃ CH (CH ₃) CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-0CHF ₂	H
H		CH ₃	Ph-4-OCF3	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-0CF ₂ Br	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-OCF ₂ CHF ₂	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-OCF ₂ CHFC1	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-OCF ₂ CHFCF ₃	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-OCF ₂ CHFOCF ₃	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF	
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-0S0 ₂ CH ₃	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH3 CH3	Ph-4-0(L-45g)	H
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH3	Ph-4-CN	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃		Ph-3, 4-F ₂	H
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH ₃	Ph-3-F-4-C1	H
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	СНз	Ph-3, 4-Cl ₂	H
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH ₃	L-45d	 Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH ₃	L-45e	H
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH ₃		Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CH ₃	L-45g	Н
H		CH ₃	L-46d	H
Н		CH₃	L-46e	H
Н		CH ₃	L-46g	H
Н		Et	Ph-4-F	H
Н		Et	Ph-4-Cl	H
Н	•	Et	Ph-4-Br	H
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	Et	Ph-4-CF ₃	
	•		$u = x + \alpha \wedge A = 3$	α

Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	Et	Ph-4-OCHF2	Н
п Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	Et	Ph-4-OCF ₃	Н
n H	CH (CH ₃) CH ₂ SO ₂ CH ₃	Et	Ph-4-CN	Н
н Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	Et	Ph-3, 4-Cl ₂	H
n H	CH (CH ₃) CH ₂ SO ₂ CH ₃	Et	L-45g	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	n-Pr	Ph-4-Cl	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	i-Pr	Ph-4-Br	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	n-Bu	Ph-4-0CF ₃	H
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CHF ₂	Ph-4-F	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CHF ₂	Ph-4-C1	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CHF ₂	Ph-4-Br	H
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CHF ₂	Ph-4-CF ₃	H
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CHF ₂	Ph-4-OCHF2	H
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CHF ₂	Ph-4-OCF3	H
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CHF ₂	Ph-4-0 (L-45g)	H
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CHF ₂	Ph-4-CN	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CHF ₂	Ph-3, 4-Cl ₂	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CHF ₂	L-45g	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	CH ₂ OPh	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	$CH_2O(Ph-2-F)$	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	$CH_2O(Ph-3-F)$	H
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	$CH_2O(Ph-4-F)$	H
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	$CH_2O(Ph-2-C1)$	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	$CH_2O(Ph-3-C1)$	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	$CH_2O(Ph-4-C1)$	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	$CH_2O(Ph-2-Br)$	H
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	CH ₂ O(Ph-3-Br)	H
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	$CH_2O(Ph-4-Br)$	H
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	$CH_2O(Ph-2-CF_3)$	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	$CH_2O(Ph-3-CF_3)$	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	$CH_2O(Ph-4-CF_3)$	H
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	$CH_2O(Ph-2-OCF_3)$	H
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	$CH_2O(Ph-3-OCF_3)$	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	$CH_2O(Ph-4-OCF_3)$	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	CH ₂ SPh	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	CH2 NHPh	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	c-Pr	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	OCH₃	СН3
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	0Et	Et
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	0Pr-n	n–Pr
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	OPr-i	i-Pr
H		CF ₃	0Bu-n	n–Bu
H		CF ₃	OCH ₂ CF ₃	CH ₂ CF ₃
H	·	CF ₃	Ph-4-F	Н
H	· · · · · · · · · · · · · · · · · · ·	CF ₃	Ph-4-Cl	H
H	1 1	CF ₃	Ph-4-Cl	СН₃
H		CF ₃	Ph-4-Br	Н
H	1 1	CF ₃	Ph-4-I	H
n H		CF ₃	Ph-4-CF3	Н
n H		CF ₃	Ph-4-OCHF2	Н
п	011 (0113) 0112 002 0113	- -	山≤に貼っ 0 0 1 -	- 2 0 0 0 2 6

••	OTT OTT OTT CO. CIT.	CF ₃	Ph-4-0CF ₃	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF3	Ph-4-0CF ₃	СНз
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF3	Ph-4-0CF ₃	CH ₂ CH=CH ₂
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF3	Ph-4-0CF ₃	$CH_2C \equiv CH$
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF3	Ph-4-0CF ₃	CH ₂ Ph
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF3	Ph-4-0CF ₃	$C(0)CH_3$
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF3	Ph-4-0CF3	Si (CH ₃) ₃
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-0CF ₂ Br	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃ CH (CH ₃) CH ₂ SO ₂ CH ₃	CF3	Ph-4-0CH ₂ CF ₃	H
H	- · · · ·	CF3	Ph-4-0CF ₂ CHF ₂	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF3	Ph-4-0CF ₂ CHFC1	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF3	Ph-4-OCF ₂ CHFBr	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-OCF ₂ CF ₂ Br	H
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF3	Ph-4-0CF ₂ CFCl ₂	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-0CF ₂ CC1 ₃	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF3 CF3	Ph-4-OCF ₂ CHFCF ₃	H
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-0CH(CF ₃) ₂	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-OCF ₂ CFBrCF ₃	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-OCF ₂ CHFOCF ₂ C	
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-0S0 ₂ CH ₃	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-0 (L-45e)	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-0 (L-45g)	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF₃	Ph-4-0(L-451)	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF3	Ph-4-0 (L-48b)	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF3	Ph-4-SCH ₃	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-SO ₂ CH ₃	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-CN	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF3	Ph-3, 4-F ₂	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	Ph-3-F-4-C1	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF3	Ph-3, 4-Cl ₂	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-1b	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-1c	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-1d	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-le	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-1i	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-2b	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-3b	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-3c	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-3d	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L–3e	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-3f	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-3j	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-3k	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-31	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-30	Н
Н		CF3 CF3	L-4b	Н
H		CF ₃	L-4c	H
H		CF3 CF3	L-4e	H
H	-	CF3 CF3	L-10b	H
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	Or 3	山記供2004	

H	[CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-10c	Н
Н	[CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-16a	Н
H	[CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-16b	Н
Н		CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-17a	Н
F		CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-21b	Н
ŀ		CH (CH ₃) CH ₂ SO ₂ CH ₃	CF_3	L-21c	H
ŀ		CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-21d	H
ŀ		CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-21e	H
	I	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-22b	H
	ł	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-22c	Н
	-[CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-23b	Н
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-23c	H
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-23f	H
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-23g	H
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-31a	Н
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-31b	Н
	n H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-45c	Н
	rı H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-45d	Н
		CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-45e	Н
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-45f	Н
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-45g	Н
	H	· • · · · ·	CF ₃	L-451	Н
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-45m	Н
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF3	L-46c	Н
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF3	L-46d	Н
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-46e	H
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃		L-46f	H
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-46g	H
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-46j	H
	Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-46k	н
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-46r	н
	Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-47a	н
	Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-47a L-47e	Н
	Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-48b	H
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-40b L-50b	H
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-50c	Н
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃		Н
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-50d	H
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₃	L-51b	Н
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ C1	Ph-4-F	Н
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ C1	Ph-4-Cl	H
	Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ Cl	Ph-4-Br Ph-4-CF3	Н
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ C1		Н
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ C1	Ph-4-OCHF ₂	H
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ C1	Ph-4-OCF ₃	Н
	Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ Cl	Ph-4-CN	H
	H	CH (CH ₃) CH ₂ .SO ₂ CH ₃	CF ₂ Cl	Ph-3, 4-Cl ₂	H
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ Cl	L-45g	H
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ Br	Ph-4-Cl	п Н
	H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ CF ₃	Ph-4-F	n H
	Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ CF ₃	Ph-4-Cl	
				山戸性のへの	4 2000

				**
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ CF ₃	Ph-4-Br	H
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ CF ₃	Ph-4-CF ₃	H
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ CF ₃	Ph-4-OCHF ₂	H
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ CF ₃	Ph-4-0CF ₃	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ CF ₃	Ph-4-CN	H
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ CF ₃	Ph-3, 4-Cl ₂	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ CF ₃	L-45g	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	CF ₂ CF ₂ CF ₃	Ph-4-Br	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	Ph-4-F	Ph-4-Cl	Н
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	Ph-4-Cl	Ph-4-Cl	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	Ph-4-Br	Ph-4-Cl	H
Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	Ph-4-CF ₃	Ph-4-Cl	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	Ph-4-OCHF2	Ph-4-Cl	Н
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	Ph-4-OCF ₃	OCH ₃	CH ₃
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	Ph-4-OCF ₃	Ph-4-C1	H
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	Ph-4-OCF ₂ Br	OCH ₃	СН₃
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	Ph-4-OCF ₂ CHFC	F ₃ OCH ₃	СН₃
H	CH (CH ₃) CH ₂ SO ₂ CH ₃	Ph-4-0CF ₂ CHF0		СН₃
п Н	CH (CH ₃) CH ₂ SO ₂ CH ₃	Ph-4-0(L-45g)		СН3
	CH (CH ₃) CH ₂ SEt	CF ₃	Ph-4-F	Н
H	CH (CH ₃) CH ₂ SEt	. CF ₃	Ph-4-Cl	Н
Н	CH (CH ₃) CH ₂ SEt	CF ₃	Ph-4-Br	Н
Н		CF ₃	Ph-4-Br	Н
Н	CH (CH ₃) CH ₂ SEt (R)	CF ₃	Ph-4-Br	Н
H	CH (CH ₃) CH ₂ SEt (S)	CF ₃	Ph-4-I	Н
H	CH(CH ₃)CH ₂ SEt	CF ₃	Ph-4-CF3	Н
Н	CH (CH ₃) CH ₂ SEt	CF ₃	Ph-4-0CHF ₂	H
Н	CH (CH ₃) CH ₂ SEt		Ph-4-0CF3	H
H	CH (CH ₃) CH ₂ SEt	CF ₃	Ph-4-0CF ₂ Br	H
H	CH (CH ₃) CH ₂ SEt	CF₃	Ph-4-OCF ₂ CHF ₂	H
Н	CH (CH ₃) CH ₂ SEt	CF ₃	Ph-4-OCF ₂ CHFCF ₃	Н
H	CH (CH ₃) CH ₂ SEt	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	
Н	CH (CH ₃) CH ₂ SEt	CF ₃		
H	CH (CH ₃) CH ₂ SEt	CF ₃	Ph-4-OCF ₂ CHFOCF ₂	H
H	CH(CH ₃)CH ₂ SEt	CF ₃	Ph-4-0 (L-45g)	H
H	CH(CH ₃)CH ₂ SEt	CF ₃	Ph-4-CN	H
H	CH(CH3)CH2SEt	CF ₃	Ph-3, 4-F ₂	H
Н	$CH(CH_3)CH_2SEt$	CF ₃	Ph-3-F-4-C1	п Н
H	$CH(CH_3)CH_2SEt$	CF ₃	Ph-3, 4-Cl ₂	
Н	$CH(CH_3)CH_2SEt$	CF ₃	L-45d	H
Н	$CH(CH_3)CH_2SEt$	CF ₃	L-45e	H
Н	CH(CH3)CH2SEt	CF3	L-45f	H
Н	CH(CH3)CH2SEt	CF ₃	L-45g	H
Н	CH (CH ₃) CH ₂ SEt	CF3	L-451	Н
Н	CH (CH ₃) CH ₂ SEt	CF ₃	L-45m	Н
Н	CH(CH₃)CH₂SEt	CF ₃	L-46d	Н
H	CH(CH₃)CH₂SEt	CF3	L-46e	Н
Н	CH (CH3) CH2 SEt	CF ₃	L-46f	Н
Н	CH (CH ₃) CH ₂ SEt	CF ₃	L-46g	Н
Н		CF ₃	L-46j	Н
H		CF ₃	L-46k	Н
	- •		warte o o o d	2000

Н	CH(CH ₃)CH ₂ SEt	CF ₃	L-46r	Н
Н	$CH(CH_3)CH_2S(0)Et$	CF ₃	Ph-4-F	H
Н	$CH(CH_3)CH_2S(0)Et$	CF ₃	Ph-4-Cl	H
H	CH(CH ₃)CH ₂ S(0)Et	CF ₃	Ph-4-Br	Н
H	CH(CH ₃)CH ₂ S(0)Et	CF ₃	Ph-4-I	H
Н	CH(CH ₃)CH ₂ S(0)Et	CF ₃	Ph-4-CF3	Н
Н	CH(CH ₃)CH ₂ S(0)Et	CF ₃	Ph-4-0CHF2	H
H	CH (CH ₃) CH ₂ S (0) Et	CF ₃	Ph-4-0CF3	Н
H	$CH(CH_3)CH_2S(0)Et$	CF ₃	Ph-4-OCF ₂ Br	H
Н	$CH(CH_3)CH_2S(0)Et$	CF ₃	Ph-4-OCF ₂ CHF ₂	H
Н	CH(CH3)CH2S(0)Et	CF ₃	Ph-4-OCF ₂ CHFCF ₃	H
H	$CH(CH_3)CH_2S(0)Et$	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	H
H	CH(CH ₃) CH ₂ S(0) Et	CF ₃	Ph-4-OCF2 CHFOCF2 CF2 CF	`3 H
п Н	CH(CH ₃) CH ₂ S(0) Et	CF ₃	Ph-4-0(L-45g)	H
п Н	$CH(CH_3)CH_2S(0)Et$ $CH(CH_3)CH_2S(0)Et$	CF ₃	Ph-4-CN	Н
п Н	CH (CH ₃) CH ₂ S(0) Et	CF ₃	Ph-3, 4-F ₂	H
	CH (CH ₃) CH ₂ S(0) Et	CF ₃	Ph-3-F-4-C1	H
H	CH(CH ₃)CH ₂ S(0)Et	CF ₃	Ph-3, 4-Cl ₂	Н
H	•	CF3	L-45d	Н
H	$CH(CH_3)CH_2S(0)Et$	CF ₃	L-45e	Н
H	$CH(CH_3)CH_2S(0)Et$	· CF ₃	L-45g	Н
Н	CH(CH ₃)CH ₂ S(0)Et	CF ₃	L-46d	Н
Н	CH(CH ₃)CH ₂ S(0)Et	CF ₃	L-46e	Н
Н	CH(CH ₃)CH ₂ S(0)Et	· CF3	L-46g	Н
H	CH(CH ₃)CH ₂ S(0)Et	CF3	Ph-4-F	Н
H	CH (CH ₃) CH ₂ SO ₂ Et		Ph-4-C1	H
Н	CH(CH ₃)CH ₂ SO ₂ Et	CF ₃	Ph-4-Br	H
Н	CH(CH ₃)CH ₂ SO ₂ Et	CF ₃	Ph-4-I	H
H	CH(CH ₃)CH ₂ SO ₂ Et	CF ₃	Ph-4-CF3	H
Н	CH(CH ₃)CH ₂ SO ₂ Et	CF ₃	Ph-4-0CHF ₂	H
Н	CH (CH ₃) CH ₂ SO ₂ Et	CF ₃	Ph-4-0CF3	H
H	CH (CH ₃) CH ₂ SO ₂ Et	CF ₃	Ph-4-OCF ₂ Br	H
H	CH(CH ₃)CH ₂ SO ₂ Et	CF ₃		Н
H	$CH(CH_3)CH_2SO_2Et$	CF ₃	Ph-4-OCF ₂ CHF ₂	Н
Н	CH(CH ₃)CH ₂ SO ₂ Et	CF ₃	Ph-4-OCF ₂ CHFCF ₃	Н
Н	$CH(CH_3)CH_2SO_2Et$	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	
Н	$CH(CH_3)CH_2SO_2Et$	CF ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ C	лз н Н
Н	$CH(CH_3)CH_2SO_2Et$	CF ₃	Ph-4-0(L-45g)	Н
Н	$CH(CH_3)CH_2SO_2Et$	CF ₃	Ph-4-CN	H
Н	$CH(CH_3)CH_2SO_2Et$	CF ₃	Ph-3, 4-F ₂	Н
Н	$CH(CH_3)CH_2SO_2Et$	CF ₃	Ph-3-F-4-C1	
Н	CH (CH ₃) CH ₂ SO ₂ Et	CF ₃	Ph-3, 4-Cl ₂	Н
Н	CH(CH ₃)CH ₂ SO ₂ Et	CF ₃	L-45d	Н
Н	CH (CH ₃) CH ₂ SO ₂ Et	CF ₃	L-45e	Н
Н	CH (CH ₃) CH ₂ SO ₂ Et	CF ₃	L-45f	Н
Н	CH (CH ₃) CH ₂ SO ₂ Et	CF ₃	L-45g	H
Н	CH (CH ₃) CH ₂ SO ₂ Et	CF ₃	L-451	Н
Н		CF ₃	L-45m	H
Н	1 1 1	CF ₃	L-46d	Н
Н		CF ₃	L-46e	Н
H	i i	CF ₃	L-46f	H
	•		#i=r#+ 0 0 0 4 − 2	000

				**
Н	CH(CH ₃)CH ₂ SO ₂ Et	СFз	L-46g	Н
Н	CH (CH ₃) CH ₂ SO ₂ Et	CF3	L-46j	H
Н	CH(CH ₃)CH ₂ SO ₂ Et	CF3	L-46k	H
Н	CH(CH ₃)CH ₂ SO ₂ Et	CF3	L-46r	H
H	CH (CH ₃) CH ₂ SPr-n	CF ₃	Ph-4-F	H
Н	CH (CH ₃) CH ₂ SPr-n	CF ₃	Ph-4-Cl	Н
Н	CH (CH ₃) CH ₂ SPr-n	CF3	Ph-4-Br	Н
Н	CH(CH ₃)CH ₂ SPr-n	CF3	Ph-4-CF ₃	H
Н	CH(CH ₃)CH ₂ SPr-n	CF ₃	Ph-4-OCHF ₂	H
Н	CH(CH ₃)CH ₂ SPr-n	CF ₃	Ph-4-0CF ₃	H
Н	CH(CH ₃)CH ₂ SPr-n	CF ₃	L-45g	Н
Н	CH(CH ₃)CH ₂ SPr-i	CF ₃	Ph-4-Cl	Н
H	CH(CH ₃)CH ₂ SPr-i	CF3	Ph-4-0CF ₃	H
Н	CH(CH ₃)CH ₂ SO ₂ Pr-i	CF3	Ph-4-C1	H
Н	CH(CH ₃) CH ₂ SO ₂ Pr-i	CF ₃	Ph-4-OCF ₃	H
H	CH (CH ₃) CH ₂ SBu-n	CF ₃	Ph-4-Cl	H
H	CH (CH ₃) CH ₂ SBu-n	CF ₃	Ph-4-OCF3	H
H	CH (CH ₃) CH ₂ SBu-i	CF ₃	Ph-4-F	H
H	CH (CH ₃) CH ₂ SBu−i	CF ₃	Ph-4-C1	H
Н	CH (CH ₃) CH ₂ SBu-i	CF ₃	Ph-4-Br	H
Н	CH(CH ₃) CH ₂ SBu-i	CF ₃	Ph-4-CF ₃	Н
п Н	CH (CH ₃) CH ₂ SBu-i	CF ₃	Ph-4-0CHF2	Н
п Н	CH (CH ₃) CH ₂ SBu-i	CF₃	Ph-4-0CF ₃	H
	CH (CH ₃) CH ₂ SBu-i	CF3	L-45g	Н
Н	CH (CH ₃) CH ₂ SBu-t	CF ₃	Ph-4-F	Н
H	CH (CH3) CH2 SBu-t CH (CH3) CH2 SBu-t	CF ₃	Ph-4-C1	Н
H		CF ₃	Ph-4-Br	Н
Н	CH (CH ₃) CH ₂ SBu-t	CF ₃	Ph-4-CF ₃	Н
Н	CH (CH ₃) CH ₂ SBu-t	CF ₃	Ph-4-OCHF ₂	Н
H	CH(CH ₃)CH ₂ SBu-t	CF ₃	Ph-4-0CF3	Н
Н	CH(CH ₃)CH ₂ SBu-t	CF3	L-45g	Н
Н	CH(CH ₃)CH ₂ SBu-t	CF3	Ph-4-C1	Н
Н	CH(CH ₃)CH ₂ SO ₂ Bu-t	CF3	Ph-4-0CF3	Н
Н	CH(CH ₃)CH ₂ SO ₂ Bu-t	CF3 CF3	Ph-4-C1	H
Н	CH(CH ₃)CH ₂ SHex-n		Ph-4-0CF3	Н
Н	CH(CH ₃)CH ₂ SHex−c	CF3	Ph-4-C1	H
Н	CH (CH ₃) CH ₂ SCH ₂ CF ₃	CF ₃	Ph-4-0CF3	H
Н	CH (CH ₃) CH ₂ S (0) CH ₂ CF ₃	CF ₃	Ph-4-Cl	H
H	CH (CH ₃) CH ₂ SO ₂ CH ₂ CF ₃	CF ₃	Ph-4-0CF3	Н
H	CH (CH ₃) CH ₂ SCH ₂ CH ₂ OH	CF ₃	Ph-4-C1	Н
Н	CH (CH ₃) CH ₂ SCH ₂ CH ₂ OCH ₃	CF₃		H
H	CH (CH ₃) CH ₂ S (0) CH ₂ CH ₂ OCH ₃	CF3	Ph-4-0CF3	H
Н	CH (CH ₃) CH ₂ SO ₂ CH ₂ CH ₂ OCH ₃	CF3	Ph-4-Cl	Н
Н		CF3	Ph-4-0CF3	Н
H		CF ₃	Ph-4-Cl	H
Н		CF ₃	Ph-4-0CF3	Н
Н		CF ₃	Ph-4-C1	H
Н		CF ₃	Ph-4-0CF3	H
Н		CF ₃	Ph-4-F	п Н
Н		CF ₃	Ph-4-C1	п Н
H	CH(CH ₃)CH ₂ SCH ₂ Si(CH ₃) ₃	СFз	Ph-4-Br	
			山紅柱りハハルー2	$\Lambda \Omega \Omega$

Н	CH(CH ₃)CH ₂ SCH ₂ Si(CH ₃) ₃	CF ₃	Ph-4-CF ₃	H
H	CH(CH ₃)CH ₂ SCH ₂ Si(CH ₃) ₃	CF ₃	Ph-4-0CHF ₂	H
Н	CH (CH ₃) CH ₂ SCH ₂ Si (CH ₃) ₃	CF3	Ph-4-OCF3	Н
Н	CH (CH ₃) CH ₂ SCH ₂ Si (CH ₃) ₃	CF ₃	L-45g	H
Н	CH (CH ₃) CH ₂ SCH ₂ CH=CH ₂	CF ₃	Ph-4-C1	H
Н	$CH(CH_3)CH_2SCH_2C\equiv CH$	CF3	Ph-4-OCF3	H
H	CH (CH ₃) CH ₂ SC (0) CH ₃	CF ₃	Ph-4-Cl	H
Н	CH (CH ₃) CH ₂ SCH ₂ C (0) CH ₃	CF ₃	Ph-4-0CF3	Н
Н	CH (CH ₃) CH ₂ SCH ₂ CH ₂ C (0) OCH ₃	CF ₃	Ph-4-C1	H
H	CH (CH ₃) CH ₂ S (0) CH ₂ CH ₂ C (0) OCH ₃	CF3	Ph-4-0CF3	H
H	CH (CH ₃) CH ₂ SO ₂ CH ₂ CH ₂ C (0) OCH ₃	CF ₃	Ph-4-Cl	Н
Н	CH(CH ₃)CH ₂ SC(0)NHEt	CF ₃	Ph-4-OCF3	H
H	CH (CH ₃) CH ₂ SC (0) N (CH ₃) ₂	CF ₃	Ph-4-C1	Н
H	CH (CH ₃) CH ₂ SC (0) N (Et) ₂	CF ₃	Ph-4-OCF3	H
H	CH (CH ₃) CH ₂ SC (S) NHCH ₃	CF ₃	Ph-4-Cl	Н
H	CH(CH ₃)CH ₂ SC(S)NHEt	CF3	Ph-4-OCF3	H
Н	CH (CH ₃) CH ₂ SC (S) N (CH ₃) 2	СFз	Ph-4-Cl	Н
Н	CH (CH ₃) CH ₂ SCH ₂ C (0) N (Et) ₂	CF3	Ph-4-OCF3	Н
H	CH(CH ₃)CH ₂ S(0)CH ₂ C(0)N(Et) ₂	CF ₃	Ph-4-Cl	Н
H	CH(CH ₃)CH ₂ SO ₂ CH ₂ C(0)N(Et) ₂	CF ₃	Ph-4-0CF ₃	Н
H	CH(CH ₃)CH ₂ SCH ₂ (Ph-2, 4-Cl ₂)	CF_3	Ph-4-Cl	H
Н	CH(CH ₃)CH ₂ SPh	CF ₃	Ph-4-F	Н
Н	CH (CH ₃) CH ₂ SPh	CF ₃	Ph-4-Cl	H
H	CH(CH ₃)CII ₂ SPh	CF3	Ph-4-Br	Н
Н	CH(CH ₃)CH ₂ SPh	CF ₃	Ph-4-CF3	Н
Н	CH (CH ₃) CH ₂ SPh	CF ₃	Ph-4-OCHF2	H
n H	CH (CH ₃) CH ₂ SPh	CF3	Ph-4-0CF3	Н
n H	CH (CH ₃) CH ₂ SPh	CF ₃	L-45g	H
H	CH(CH ₃)CH ₂ S(L-21a)	CF3	Ph-4-0CF3	H
	CH (CH ₃) CH ₂ SO ₂ (L-21a)	CF ₃	Ph-4-C1	Н
H H	CH (CH ₃) CH ₂ S(L-45a)	CF ₃	Ph-4-F .	Н
n H	CH(CH3)CH2S(L-45a) CH(CH3)CH2S(L-45a)	CF ₃	Ph-4-C1	Н
	CH(CH3)CH2S(L-45a) $CH(CH3)CH2S(L-45a)$	CF ₃	Ph-4-Br	Н
H H	CH (CH ₃) CH ₂ S (L-45a)	CF ₃	Ph-4-CF3	Н
	CH (CH ₃) CH ₂ S (L-45a)	CF ₃	Ph-4-OCHF2	Н
H H	CH(CH ₃)CH ₂ S(L-45a)	CF ₃	Ph-4-OCF3	H
Н	CH(CH ₃)CH ₂ S(L-45a)	CF3	L-45g	H
н	CH (CH ₃) CH ₂ S (D-45a) CH (CH ₃) CH ₂ S (0) (L-45a)	CF ₃	Ph-4-F	Н
	CH(CH ₃)CH ₂ S(0)(L-45a)	CF3	Ph-4-Cl	H
H H	CH(CH ₃)CH ₂ S(0)(L-45a)	CF3	Ph-4-Br	H
н	CH(CH ₃)CH ₂ S(0)(L-45a)	CF3	Ph-4-CF3	Н
n H	CH(CH ₃)CH ₂ S(0)(L-45a)	CF3	Ph-4-OCHF2	Н
H		CF3	Ph-4-0CF3	Н
л Н		CF ₃	L-45g	Н
		CF ₃	Ph-4-F	Н
H H		CF ₃	Ph-4-Cl	H
		CF3	Ph-4-Br	H
H H		CF3	Ph-4-CF ₃	H
	·	CF ₃	Ph-4-OCHF2	Н
Н	(CF3	Ph-4-0CF ₃	H
Н	CII(CIB) CIE COE (D GOE)	•	山紅焼2004—	3 0 0 0

	() (- ,)	OD	ĭ 45~	Н
H	CH (CH ₃) CH ₂ SO ₂ (L-45a)	CF₃	L-45g Ph-4-Cl	Н
H	CH (CH ₃) CH ₂ S (L-48a)	CF ₃		H
H	CH (CH ₃) CH ₂ S(0) (L-48a)	CF ₃	Ph-4-0CF3	H
Н	CH (CH ₃) CH ₂ SO ₂ (L-48a)	CF ₃	Ph-4-C1	H
H	CH (CH ₃) CH ₂ S (L-48b)	CF ₃	Ph-4-0CF ₃	H
H	$CH(CH_3)CH_2S(0)(L-48b)$	CF ₃	Ph-4-C1	Н
H	CH (CH ₃) CH ₂ SO ₂ (L-48b)	CF ₃	Ph-4-0CF ₃	H
H	CH (CH ₃) CH ₂ SSCH ₃	CF ₃	Ph-4-F	H
Н	CH (CH ₃) CH ₂ SSCH ₃	CF ₃	Ph-4-Cl	H
Н	CH (CH ₃) CH ₂ SSCH ₃	CF ₃	Ph-4-Br	H
H	CH (CH ₃) CH ₂ SSCH ₃	CF ₃	Ph-4-I	H
Н	CH (CH ₃) CH ₂ SSCH ₃	·CF ₃	Ph-4-CF ₃	H
Н	CH (CH ₃) CH ₂ SSCH ₃	CF ₃	Ph-4-OCHF ₂	п Н
Н	CH (CH ₃) CH ₂ SSCH ₃	CF ₃	Ph-4-0CF ₃	
H	CH (CH ₃) CH ₂ SSCH ₃	CF ₃	Ph-4-0CF ₂ Br	H
H	CH (CH ₃) CH ₂ SSCH ₃	CF ₃	Ph-4-OCF ₂ CHF ₂	H
H	CH (CH ₃) CH ₂ SSCH ₃	CF3	Ph-4-OCF ₂ CHFCF ₃	H
Н	CH (CH ₃) CH ₂ SSCH ₃	CF3	Ph-4-OCF ₂ CHFOCF ₃	H
Н	CH (CH ₃) CH ₂ SSCH ₃	CF3	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
Н	CH (CH ₃) CH ₂ SSCH ₃	CF ₃	Ph-4-0(L-45g)	Н
Н	CH (CH ₃) CH ₂ SSCH ₃	CF ₃	Ph-4-CN	H
H	CH (CH ₃) CH ₂ SSCH ₃	CF3	Ph-3, 4-F ₂	H
Н	CH (CH ₃) CH ₂ SSCH ₃	CF ₃	Ph-3-F-4-C1	H
Н	CH (CH3) CH2 SSCH3	CF3	Ph-3, 4-Cl ₂	Н
Н	CH (CH ₃) CH ₂ SSCH ₃	CF ₃	L-45d	H
Н	CH (CH ₃) CH ₂ SSCH ₃	CF ₃	L-45e	Н
Н	CH (CH ₃) CH ₂ SSCH ₃	CF3	L-45g	H
Н	CH (CH3) CH2 SSCH3	CF ₃	L-45m	H
Н	CH (CH ₃) CH ₂ SSCH ₃	CF ₃	L-46d	Н
Н	CH (CH ₃) CH ₂ SSCH ₃	CF ₃	L-46e	Н
Н	CH (CH ₃) CH ₂ SSCH ₃	CF3	L-46g	Н
Н	CH (CH ₃) CH ₂ SSCH ₃	CF ₃	L-46j	H
Н	CH (CH ₃) CH ₂ SSCH ₃	CF ₃	L-46k	Н
Н	CH (CH ₃) CH ₂ SSCH ₃	CF3	L-46r	Н
Н	$CH(CH_3)CH_2SS(Ph-2-NO_2)$	CF ₃	Ph-4-Cl	Н
Н	CH(Et)CH2SCH3	CF3	Ph-4-0CF ₃	H
Н	CH (CH ₂ SCH ₃) ₂	СF3	Ph-4-C1	Н
Н	CH (Ph) CH2 SCH3	СГз	Ph-4-0CF ₃	H
Н	CH (Ph) CH2 S (0) CH3	CF ₃	Ph-4-Cl	Н
Н	CH (Ph) CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-OCF ₃	Н
Н	$CH(CH_3)CH(CH_3)SCH_3$	CF3	Ph-4-Cl	Н
Н	CH (CH ₃) CH (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-0CF ₃	Н
Н	CH(CH₃)CH(CH₃)SEt	· CF ₃	Ph-4-Cl	Н
Н	$CH(CH_3)CH(CH_3)SO_2Et$	CF ₃	Ph-4-0CF ₃	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	СНз	Ph-4-F	Н
Н		СНз	Ph-4-Cl	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	СНз	Ph-4-Br	Н
Н		СНз	Ph-4-I	Н
Н		СНз	Ph-4-CF ₃	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	СНз	Ph-4-OCHF ₂	H
			ilieration on A 2 /	100

Н		C (CH ₃) ₂ CH ₂ SCH ₃	СНз	Ph-4-0CF3	Н
Н		C (CH ₃) ₂ CH ₂ SCH ₃	СНз	Ph-4-0CF ₂ Br	H
Н		C (CH ₃) ₂ CH ₂ SCH ₃	СНз	Ph-4-OCF ₂ CHF ₂	H
Н		C (CH ₃) ₂ CH ₂ SCH ₃	СНз	Ph-4-OCF2 CHFC1	H
H		C (CH ₃) ₂ CH ₂ SCH ₃	СНз	Ph-4-OCF ₂ CHFCF ₃	H
F		C (CH ₃) ₂ CH ₂ SCH ₃	СНз	Ph-4-OCF2 CHFOCF3	H
H		C (CH ₃) ₂ CH ₂ SCH ₃	СНз	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
ŀ		C (CH ₃) ₂ CH ₂ SCH ₃	CH ₃	Ph-4-0S0 ₂ CH ₃	H
ŀ		C (CH ₃) ₂ CH ₂ SCH ₃	CH ₃	Ph-4-0(L-45g)	H
ŀ		C (CH ₃) ₂ CH ₂ SCH ₃	CH ₃	Ph-4-0(L-451)	Н
	ł	C (CH ₃) ₂ CH ₂ SCH ₃	CH ₃	Ph-4-CN	Н
	ł	C (CH ₃) ₂ CH ₂ SCH ₃	CH ₃	Ph-3, 4-F ₂	H
	1	C (CH ₃) ₂ CH ₂ SCH ₃	CH ₃	Ph-3-F-4-C1	Н
	1 -{	C (CH ₃) ₂ CH ₂ SCH ₃	CH ₃	Ph-3, 4-Cl ₂	H
			CH ₃	L-45d	Н
	I	C (CH ₃) ₂ CH ₂ SCH ₃	CH ₃	L-45e	Н
	H	C (CH ₃) ₂ CH ₂ SCH ₃	CH ₃	L-45g	Н
	H	C (CH ₃) ₂ CH ₂ SCH ₃	CH ₃	L-45m	Н
	H	C (CH ₃) ₂ CH ₂ SCH ₃	CH ₃	L-46d	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃		L-46e	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃	CH ₃	L-46g	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃	CH ₃	L-46j	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃	CH ₃	L-46k	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃	CH ₃	L-46r	Н
	H	C (CH ₃) ₂ CH ₂ SCH ₃	CH ₃		H
	H	C (CH ₃) ₂ CH ₂ SCH ₃	Et	Ph-4-F	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃	Et	Ph-4-Cl	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃	Et	Ph-4-Br	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃	Et	Ph-4-CF ₃	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃	Et	Ph-4-0CF ₃	п Н
	H	C (CH ₃) ₂ CH ₂ SCH ₃	Et_	L-45g	п Н
	Н	$C(CH_3)_2CH_2SCH_3$	n-Pr	Ph-4-F	
	H	$C(CH_3)_2CH_2SCH_3$	n-Pr	Ph-4-Cl	H
	Н	$C(CH_3)_2CH_2SCH_3$	n-Pr	Ph-4-Br	Н
	H	C (CH ₃) ₂ CH ₂ SCH ₃	n-Pr	Ph-4-CF ₃	H
	H	$C(CH_3)_2CH_2SCH_3$	n–Pr	Ph-4-0CF ₃	H
	H	C(CH ₃) ₂ CH ₂ SCH ₃	n-Pr	L-45g	Н
	H	C (CH ₃) ₂ CH ₂ SCH ₃	i-Pr	Ph-4-F	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃	i–Pr	Ph-4-Cl	Н
	Н	C (CH ₃) ₂ CH ₂ SCH ₃	i–Pr	Ph-4-Br	H
	H	C (CH ₃) ₂ CH ₂ SCH ₃	i–Pr	Ph-4-CF ₃	H
	Н	C (CH ₃) ₂ CH ₂ SCH ₃	i–Pr	Ph-4-0CF ₃	H
	Н	C (CH ₃) ₂ CH ₂ SCH ₃	i–Pr	L-45g	H
	Н	C (CH ₃) ₂ CH ₂ SCH ₃	n–Bu	Ph-4-0CF ₃	H
	Н	C (CH ₃) ₂ CH ₂ SCH ₃	CHF ₂	Ph-4-F	Н
	H	C (CH ₃) ₂ CH ₂ SCH ₃	CHF_2	Ph-4-Cl	Н
	Н	C (CH ₃) ₂ CH ₂ SCH ₃	CHF_2	Ph-4-Br	Н
	Н	: : 	CHF ₂	Ph-4-I	Н
	Н		CHF_2	Ph-4-CF ₃	Н
	Н		CHF ₂	Ph-4-0CHF ₂	H
	Н		CHF ₂	Ph-4-0CF ₃	H
		• •		山紅杵2001-3	000

TT	С (СП.) - СП- ССП-	CHF ₂	Ph-4-OCF ₂ Br	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CHF ₂	Ph-4-0CF ₂ CHF ₂	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CHF ₂	Ph-4-OCF ₂ CHFCF ₃	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CHF ₂	Ph-4-OCF ₂ CHFOCF ₃	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CHF ₂	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
H	C (CH ₃) ₂ CH ₂ SCH ₃		Ph-4-0S0 ₂ CH ₃	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CHF ₂	Ph-4-0(L-45g)	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CHF ₂	Ph-4-CN	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CHF ₂	Ph-3, 4-F ₂	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CHF ₂	Ph-3-F-4-Cl	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CHF ₂	Ph-3, 4-Cl ₂	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CHF ₂		H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CHF ₂	L-45d	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CHF ₂	L-45e	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CHF ₂	L-45g	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CHF ₂	L-46d	п Н
Н	$C(CH_3)_2 CH_2 SCH_3$	CHF ₂	L-46e	
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CHF ₂	L-46g	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	СГз	CH ₂ OPh	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$CH_2O(Ph-2-F)$	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$CH_2O(Ph-3-F)$	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF₃	$CH_2O(Ph-4-F)$	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	CH ₂ O (Ph-2-C1)	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF₃	CH ₂ O (Ph-3-C1)	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF3	CH ₂ O(Ph-4-C1)	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$CH_2O(Ph-2-Br)$	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$CH_2O(Ph-3-Br)$	H
Н	C(CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$CH_2O(Ph-4-Br)$	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$CH_2O(Ph-2-CF_3)$	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$CH_2O(Ph-3-CF_3)$	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$CH_2O(Ph-4-CF_3)$	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$CH_2 O (Ph-2-OCF_3)$	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$CH_2O(Ph-3-OCF_3)$	H
Н	C(CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$CH_2O(Ph-4-OCF_3)$	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	CH ₂ SPh	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	CH2 NHPh	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	c-Pr	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	c-Bu	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	c-Pen	H
H		CF ₃	c-Hex	H
Н		CF ₃	T-1	H
H	• • •	CF ₃	T-2	H
H		CF ₃	T-3	Н
H		CF3	T-4	Н
H		CF ₃	T-5	Н
H	• • •	CF ₃	OCH₃	CH ₃
H		CF ₃	OEt	Et
H		CF ₃	0Pr-n	n-Pr
H		CF ₃	OPr-i	i-Pr
H		CF ₃	0Bu-n	n-Bu
H		CF ₃	OCH ₂ CF ₃	CH ₂ CF ₃
п	0 (013 / 2 012 0013		東証券2004-3	00026

**	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	C(0)0Bu-t	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	C(0) OCH ₂ CF ₃	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	T-22	Н
Н		CF ₃	T-23	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	T-24	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-2-F	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-F	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-F	Н
Η.	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-C1	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃		Ph-4-C1	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-Cl	СНз
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-Br	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-I	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-CF3	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-CH ₂ SCH ₃	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃		H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-CH ₂ SCF ₃	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-0CHF ₂	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-0CF3	CH ₃
Н	C(CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-0CF ₃	CH ₂ CH=CH ₂
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF3	Ph-4-0CF ₃	$CH_2 CH = CH_2$ $CH_2 C = CH$
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-0CF ₃	
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-OCF ₃	CH ₂ Ph
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-0CF3	C(0)CH ₃
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-0CF3	Si(CH ₃) ₃
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-OCF ₂ Br	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-OCH ₂ CF ₃	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-OCF ₂ CHF ₂	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF3	Ph-4-OCF2CHFC1	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-OCF ₂ CHFBr	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-OCF ₂ CF ₂ Br	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-OCF2 CFC 12	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$Ph-4-OCF_2CCl_3$	Н
Н		CF ₃	Ph-4-OCH2 CF2 CHF2	Н
H		CF ₃	Ph-3-OCF2 CHFCF3	Н
H		CF ₃	Ph-4-OCF2 CHFCF3	Н
H		CF ₃	$Ph-4-OCH(CF_3)_2$	Н
Н	i i	CF ₃	Ph-4-OCF ₂ CFBrCF ₃	H
H		CF ₃	Ph-3-OCF2 CHFOCF3	H
n H		CF ₃	Ph-4-OCF2 CHFOCF3	Н
H		CF ₃	Ph-4-OCF2 CHFOCF2 C	CF ₂ CF ₃ H
п Н		CF ₃	Ph-4-0S0 ₂ CH ₃	Н
		CF ₃	Ph-4-0S02 CF3	Н
H	· · · · · · · · · · · · · · · · · · ·	CF ₃	Ph-3-0 (Ph-4-C1)	Н
H		CF ₃	Ph-4-0(Ph-4-C1)	Н
Н		CF ₃	Ph-3-0 (Ph-4-Br)	H
H		CF3	Ph-4-0 (Ph-4-Br)	H
H		CF3	Ph-3-0 (Ph-4-CF ₃)	H
F	C (CH ₃) 2 CH ₂ SCH ₃	CF ₃	Ph-4-0 (Ph-4-CF ₃)	H
ŀ		CF3	Ph-4-0 (L-45e)	Н
ł	H C (CH ₃) 2 CH ₂ SCH ₃	Or 3		-3099262
		•	口配付4004~	3033202

		(CD)	Ph-4-0 (L-45g)	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-0(L-451)	H
H	C (CH ₃) ₂ CH ₂ SCH ₃ :	CF ₃	Ph-4-0(L-48b)	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-SCH3	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-SO ₂ CH ₃	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-S(Ph-4-C1)	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-S(Ph-4-C1)	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-S(Ph-4-Br)	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-S(Ph-4-Br)	. Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF₃	Ph-3-S(Ph-4-CF ₃)	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-5(Ph-4-CF3)	H
Н	$C(CH_3)_2CH_2SCH_3$	CF ₃		H
H	$C(CH_3)_2CH_2SCH_3$	CF ₃	Ph-4-S(L-45e)	H
Н	$C(CH_3)_2CH_2SCH_3$	CF ₃	Ph-4-S (L-45g)	H.
Н	C(CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-S(L-451)	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-S(L-48b)	H
H	C (CH3) 2 CH2 SCH3	CF ₃	Ph-4-NO ₂	л Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-4-CN	
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF_3	$Ph-2, 3-F_2$	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$Ph-2, 4-F_2$	Н
Н	C(CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$Ph-2, 5-F_2$	Н
H	C(CH ₃) ₂ CH ₂ SCH ₃	CF_3	$Ph-3, 4-F_2$	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$Ph-3, 5-F_2$	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-2-C1-4-F	H
Н	C (CH ₃) 2 CH2 SCH3	CF ₃	Ph-2-F-3-C1	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-C1-4-F	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-2-F-4-C1	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-F-4-C1	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-2, 3-Cl ₂	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-2, 4-Cl ₂	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-2, 5-Cl ₂	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3, 4-Cl ₂	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3, 5-Cl ₂	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-Br-4-F	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-2-F-4-Br	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-2-F-5-Br	Н
н		CF ₃	Ph-3, 4-Br ₂	Н
Н		CF ₃	Ph-3,5-Br2	H
Н		CF3	Ph-3-CH ₃ -4-F	Н
H	i	CF ₃	Ph-3-F-4-CH3	Н
H		CF3	$Ph-2-F-5-CH_3$	H
H		CF ₃	Ph-2, 4-(CH ₃) ₂	Н
H		CF3	Ph-3, 4-(CH ₃) ₂	H
H	1 1	CF ₃	Ph-2-F-3-CF3	Н
H		CF ₃	Ph-3-CF ₃ -4-F	Н
H		CF ₃	Ph-3-CF ₃ -4-C1	H
n H	i ,	CF ₃	Ph-2-F-4-CF3	Н
n H		CF ₃	Ph-3-F-4-CF3	Н
л Н		CF3	Ph-2-F-5-CF3	H
		CF ₃	Ph-3-F-5-CF3	Н
H H		CF ₃	$Ph-3, 5-(CF_3)_2$	H
П	I C(OIR) SOUR BOIR	320	山証胜2004	_ 3 0 9 9

Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF3	Ph-3-Br-4-0CH ₃	H	
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-F-4-0CHF2	Н	
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-C1-4-0CHF2	H	
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$Ph-3-Br-4-OCHF_2$	Н	
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-F-4-0CF ₃	Н	
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-C1-4-0CF3	H	
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$Ph-3-Br-4-OCF_3$	Н	
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-F-4-0CF ₂ Br	Н	
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-C1-4-0CF ₂ Br	Н	
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-Br-4-OCF ₂ Br	H	
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-F-4-OCF ₂ CHF ₂	H	
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-C1-4-0CF ₂ CHF ₂	H	
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-Br-4-OCF ₂ CHF ₂	H	
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-F-4-OCF2 CHFC1	H	
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-C1-4-OCF2 CHFC1	H	
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-Br-4-OCF ₂ CHFC1	Н	
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-F-4-OCF ₂ CHFCF ₃	H	
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-C1-4-OCF ₂ CHFCF ₃	H	
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-Br-4-0CF2CHFCF3	H	
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-F-4-OCF ₂ CHFOCF ₃	H	
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-C1-4-OCF2 CHFOCF3		
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-Br-4-OCF2 CHFOCF	з Н	
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-F-4-OCF ₂ CHFOCF ₂	CF ₂ CF ₃	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-C1-4-OCF ₂ CHFOCF	2 CF2 CF3	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-Br-4-OCF2 CHFOCF		H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$Ph(-3-0CF_20-4-)$	H 	
Н	C(CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$Ph(-3-OCF_2CF_2O-4-)$	H	
Н	C(CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-0Ph-4-F	Н	
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$Ph-3-NO_2-4-F$	H 	
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-N0 ₂ -4-C1	H	
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-2-F-5-N02	H	
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-3-CN-4-F	H	
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$Ph-2, 3, 4-F_3$	H	
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-2, 3, 5-F ₃	Н	
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	Ph-2, 4, 5-F ₃	H	
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF₃	Ph-3, 4, 5-F ₃	H	
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	$Ph-2, 3-F_2-4-CH_3$	Н	
. Н	: :	CF3	$Ph-2, 3-F_2-4-CF_3$	Н	
Н		CF ₃	$Ph-3, 4-F_2-5-CF_3$	H	
Н		CF ₃	Ph-2-F-3-C1-5-CF ₃	H	
Н		CF ₃	1–Naph	H	
Н	i	CF ₃	2-Naph	H	
Н		CF ₃	L-1b	H	
Н		CF ₃	L-1c	H	
Н		CF ₃	L-1d	Н	
Н		CF ₃	L-1e	Н	
H		CF ₃	L-1i	H	
H		CF ₃	L-2b	H	
H		CF ₃	L-3b	H	
H		CF3	L-3c	H	
-			山気除り001-3	2 0 0 0	26

Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-3d	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-3e	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-3f	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-3j	. Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-3k	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-31	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-30	H
n H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-4b	H
п Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-4c	Н
п Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-4e	Н
		CF ₃	L-10b	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-10c	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-16a	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF3	L-16b	· H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF3	L-17a	H
H	C (CH ₃) ₂ CH ₂ SCH ₃		L-21b	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-21c	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-21d	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-21a L-21e	н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-22b	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF₃		Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-22c	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF₃	L-23b	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-23c	H
H	C (CH3) 2 CH2 SCH3	CF ₃	L-23f	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-23g	H
H	$C(CH_3)_2CH_2SCH_3$	CF ₃	L-31a	
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF3	L-31b	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-45c	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-45d	Н
Н	$C(CH_3)_2CH_2SCH_3$	CF ₃	L-45e	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF3	L-45f	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-45g	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-451	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-45m	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-46c	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-46d	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-46e	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-46f	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-46g	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-46j	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₃	L-46k	Н
Н		CF ₃	L-46r	H
H		CF3	L-47a	Н
H		CF ₃	L-47e	H
H		CF ₃	L-48b	Н
H		CF ₃	L-50b	Н
H		CF ₃	L-50c	H
H	_	CF ₃	L-50d	Н
H		CF ₃	L-51b	Н
H		CF ₂ C1	Ph-4-F	Н
п	0 (0113 / 2 0112 00113	02 2 0 -		

Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ C1	Ph-4-Cl	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ C1	Ph-4-Br	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ C1	Ph-4-CF ₃	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ C1	Ph-4-OCHF ₂	H
Н	C (CH ₃) 2 CH ₂ SCH ₃	CF ₂ C1	Ph-4-0CF ₃	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ C1	Ph-4-CN	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ Cl	Ph-3, 4-Cl ₂	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ C1	L-45g	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ Br	Ph-4-Cl	H
H	C (CH ₃) 2 CH ₂ SCH ₃	CF2 CHF2	Ph-4-Br	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	Ph-4-F	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	Ph-4-Cl	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	Ph-4-Br	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	Ph-4-I	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	Ph-4-CF ₃	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	Ph-4-0CHF2	Н
n H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	Ph-4-0CF ₃	Н
п Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	Ph-4-OCF ₂ Br	Н
	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	Ph-4-OCF ₂ CHF ₂	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	Ph-4-OCF ₂ CHFCF ₃	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	Ph-4-0CF ₂ CHF0CF ₃	H
H	C (CH ₃) 2 CH ₂ SCH ₃ C (CH ₃) 2 CH ₂ SCH ₃	CF ₂ CF ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
H	• •	CF ₂ CF ₃	Ph-4-CN	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	$Ph-3, 4-F_2$	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	Ph-3-F-4-C1	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	Ph-3, 4-Cl ₂	H
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	L-45d	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	`L-45e	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	L-45f	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	L-45g	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	L-451	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	L-45m	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	L-46d	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	L-46e	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃		L-46g	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃ CF ₂ CF ₃	L-46j	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	L-46k	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₃	L-46r	Н
Н	C (CH ₃) ₂ CH ₂ SCH ₃	CF ₂ CF ₂ C1	Ph-4-0CF3	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CFC1CF3	Ph-4-C1	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CFC1CF ₂ C1	Ph-4-Br	H
H	C (CH ₃) ₂ CH ₂ SCH ₃	CFCTCF2CT CF2CF2CF3	Ph-4-0CF3	Н
H	C (CH ₃) ₂ CH ₂ SCH ₃	CF(CF ₃) ₂	Ph-4-Cl	H
Н		CF ₂ CF ₂ CF ₂ CF ₃		H
Н		_	Ph-4-Cl	H
Н		Ph-4-F	Ph-4-Cl	H
Н	•	Ph-4-Cl	Ph-4-C1 Ph-4-C1	H
H	-	Ph-4-Br	Ph-4-C1 Ph-4-C1	H
Н	1 1	Ph-4-CF3	Ph-4-C1 Ph-4-C1	Н
Н	-	Ph-4-OCHF2	OCH3	CH ₃
H	C (CH ₃) ₂ CH ₂ SCH ₃	Ph-4-0CF ₃		
			山 証 柱 り へ ん 4 9 (100

11	C (CH ₃) ₂ CH ₂ SCH ₃	Ph-4-0CF3	Ph-4-Cl		Н
H H	C (CH ₃) ₂ CH ₂ SCH ₃	Ph-4-0CF ₂ Br	ОСН3		СН3
	C (CH ₃) ₂ CH ₂ SCH ₃	Ph-4-OCF ₂ CHFCF		ОСН3	CH ₃
H	C (CH ₃) ₂ CH ₂ SCH ₃	Ph-4-0CF ₂ CHF00		ОСН3	CH ₃
H	C (CH ₃) ₂ CH ₂ SCH ₃	Ph-4-0(L-45g)	OCH ₃		CH ₃
H		CH ₃	Ph-4-F		Н
Н	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CH ₃	Ph-4-C1		Н
H	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CH ₃	Ph-4-Br		Н
Н	$C(CH_3)_2CH_2S(0)CH_3$	CH ₃	Ph-4-CF ₃		Н
Н	$C(CH_3)_2CH_2S(0)CH_3$	CH ₃	Ph-4-OCHF2		Н
Н	C(CH3)2CH2S(0)CH3	CH ₃	Ph-4-0CF ₃		Н
H	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CH ₃	L-45g		Н
H	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF ₃	CH ₂ OPh		Н
Н	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF3 CF3	CH ₂ O (Ph-2-6	C1)	Н
H	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF ₃	CH ₂ O (Ph-3-		Н
H	C (CH ₃) ₂ CH ₂ S (0) CH ₃		CH ₂ O (Ph-4-	_	H
H	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF3	CH ₂ SPh	01)	H
Н	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF ₃	CH ₂ NHPh		H
H	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF ₃	Ph-4-F		H
H	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF ₃	Ph-4-Cl		H
H	C (CH ₃) ₂ CH ₂ S(0) CH ₃	CF ₃	Ph-4-Cl		CH ₃
Н	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF ₃	Ph-4-Br		H
H	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF ₃	Ph-4-Br		H
H	$C(CH_3)_2 CH_2 S(0) CH_3 (-)$	CF ₃			H
Н	C(CH3)2 CH2 S(0) CH3 (+)	CF ₃	Ph-4-Br		H
H	$C(CH_3)_2CH_2S(0)CH_3$	CF ₃	Ph-4-I		H
H	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF ₃	Ph-4-CF3		H
Н	$C(CH_3)_2CH_2S(0)CH_3$	CF ₃	Ph-4-0CHF2	3	H
Н	$C(CH_3)_2CH_2S(0)CH_3$	CF ₃	Ph-4-0CF3		CH ₂ CH=CH ₂
Н	$C(CH_3)_2CH_2S(0)CH_3$	CF ₃	Ph-4-0CF ₃		$CH_2 CH = CH_2$ $CH_2 C = CH$
Н	$C(CH_3)_2CH_2S(0)CH_3$	CF ₃	Ph-4-OCF3		CH ₂ C≡ CH CH ₂ Ph
H	$C(CH_3)_2CH_2S(0)CH_3$	CF ₃	Ph-4-0CF ₃		C(0) CH ₃
Н	$C(CH_3)_2CH_2S(0)CH_3$	CF ₃	Ph-4-0CF3		Si (CH ₃) ₃
H	$C(CH_3)_2 CH_2 S(0) CH_3$	CF ₃	Ph-4-0CF ₃	n	
Н	$C(CH_3)_2CH_2S(0)CH_3$	CF ₃	Ph-4-0CF ₂		H H
Н	$C(CH_3)_2CH_2S(0)CH_3$	CF ₃	Ph-4-0CH ₂		п Н
Н	$C(CH_3)_2CH_2S(0)CH_3$	CF3	Ph-4-0CF ₂		n H
Н	$C(CH_3)_2CH_2S(0)CH_3$	CF ₃	Ph-4-OCF2		
Н	$C(CH_3)_2CH_2S(0)CH_3$	CF3	Ph-4-0CF ₂		H
Н	$C(CH_3)_2CH_2S(0)CH_3$	CF ₃	Ph-4-0CF ₂		Н
H	$C(CH_3)_2CH_2S(0)CH_3$	CF ₃	Ph-4-0CF ₂		H
Н	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF ₃	Ph-4-0CF ₂		Н
Н		CF ₃	Ph-4-0CF ₂		H
H		CF ₃	Ph-4-0CH		Н
Н	- (-)	CF ₃	Ph-4-0CF ₂		Н
Н		CF ₃	Ph-4-0CF ₂		Н
Н	$C(CH_3)_2CH_2S(0)CH_3$	CF ₃		CHFOCF2 CF2 C	
Н		CF ₃	Ph-4-0(L-		H
H		CF3	Ph-4-0 (L-		Н
H	- / - / - / - / - / - / - / - / - / - /	CF ₃	Ph-4-0 (L-		Н
H		CF3	Ph-4-0 (L	-48b)	Н
-	•		出証特2	2004 - 3	0 9 9 2 6 2

出証特2004-3099262

	() (0) 077	CE-	Ph-4-S0 ₂ CH ₃		Н
Н	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF3	Ph-4-CN		Н
H	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF ₃	Ph-3, 4-F ₂		Н
Н	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF ₃			H
H	$C(CH_3)_2CH_2S(0)CH_3$	CF ₃	Ph-3-F-4-C1		H
H	$C(CH_3)_2 CH_2 S(0) CH_3$	CF ₃	Ph-3,4-Cl ₂	-	H
H	$C(CH_3)_2CH_2S(0)CH_3$	CF ₃	L-1c		H
Н	$C(CH_3)_2CH_2S(0)CH_3$	CF3	L-1d		H
H	$C(CH_3)_2CH_2S(0)CH_3$	CF ₃	L-le		H
Н	$C(CH_3)_2 CH_2 S(0) CH_3$	CF ₃	L-1i		H
H	$C(CH_3)_2CH_2S(0)CH_3$	CF3	L-2b		
Н	C(CH3)2CH2S(0)CH3	CF ₃	L-3d		Н
H	$C(CH_3)_2 CH_2 S(0) CH_3$	CF ₃	L-3e		H
Н	$C(CH_3)_2CH_2S(0)CH_3$	CF3	L-3f		H
Н	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF ₃	L-31		H
H	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF ₃	L-30		H
H	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF3	L-4c		H
Н	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF ₃	L-10c		H
Н	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF ₃	L-21c		Н
Н	C (CH ₃) 2 CH ₂ S (0) CH ₃	CF ₃	L-21d		Н
H	$C(CH_3)_2 CH_2 S(0) CH_3$	CF ₃	L-21e		Н
Н	C(CH3)2CH2S(0)CH3	CF ₃	L-22c		H
Н	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF ₃	L-23c		H
Н	$C(CH_3)_2 CH_2 S(0) CH_3$	CF ₃	L-31b		Н
	C(CH3)2CH2S(0)CH3	CF3	L-45d		H
H	C (CH ₃) 2 CH ₂ S (0) CH ₃	CF ₃	L-45e		Н
Н	C (CH ₃) ₂ CH ₂ S(0) CH ₃	CF ₃	L-45f		Н
Н		CF ₃	L-45g		Н
Н	$C(CH_3)_2 CH_2 S(0) CH_3$	CF3	L-451		H
Н	$C(CH_3)_2 CH_2 S(0) CH_3$	CF ₃	L-45m		H
Н	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF ₃	L-46d		Н
H	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF ₃	L-46e		Н
H		CF ₃	L-46f		Н
Н	C (CH ₃) ₂ CH ₂ S (0) CH ₃	CF3	L-46g		H
Н		CF3	L-46j		Н
Н		CF3	L-46k		Н
H	/-\	CF3	L-46r		Н
H			Ph-4-C1		Н
H		Ph-4-F	Ph-4-C1		Н
H		Ph-4-C1	Ph-4-Cl		Н
Н		Ph-4-Br	Ph-4-C1		H
Н		Ph-4-CF ₃	Ph-4-C1		H
H		Ph-4-0CHF ₂	711-4-С1 ОСН3		CH₃
H		Ph-4-0CF3	Ph-4-Cl		H
H		Ph-4-0CF3			CH₃
H		Ph-4-OCF ₂ Br		ОСНз	CH ₃
H		Ph-4-OCF ₂ CH		оснз ОСНз	CH ₃
ŀ			FOCF ₂ CF ₂ CF ₃	OCH	СНз
ŀ		Ph-4-0(L-45			Н
ŀ		CH ₃	Ph-4-F		H
I	H C (CH3) 2 CH2 SO2 CH3	СНз	Ph-4-Cl		H
I	H C (CH3) 2 CH2 SO2 CH3	СН3	Ph-4-Br		
			出証券の	0.04 -	30992

		СНз	Ph-4-I	H
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-CF ₃	H
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-OCHF ₂	H
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-0CF3	Н
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-0CF ₂ Br	·H
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-OCF ₂ CHF ₂	H
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	СН3 СН3	Ph-4-OCF ₂ CHFC1	H
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	СН3 СН3	Ph-4-OCF ₂ CHFCF ₃	H
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃		Ph-4-OCF ₂ CHFOCF ₃	H
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-OCF2 CHFOCF2 CF2 CF3	H
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-0S0 ₂ CH ₃	Η .
Н	C (CH ₃) 2 CH ₂ SO ₂ CH ₃	CH₃	Ph-4-0 (L-45g)	H
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CH ₃	Ph-4-CN	Н
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	СНз	Ph-3, 4-F ₂	H
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CH ₃	Ph-3-F-4-Cl	H
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CH ₃	Ph-3, 4-Cl ₂	H
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	СНз	L-45d	Н
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CH ₃	L-45e	Н
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CH₃	L-45g	Н
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	СНз	L-46d	Н
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CH ₃	L-46e	Н
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	СН3	L-46g	Н
Н		CH ₃		Н
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	Et	Ph-4-F	H
H		Et	Ph-4-Cl Ph-4-Br	H
H	1 \ 007 00 011	Et		Н
H		Et	Ph-4-CF3	H
H		Et	Ph-4-OCHF2	H
H	() CTT CO CII	Et	Ph-4-0CF3	H
ŀ		Et	Ph-4-CN	H
ŀ		Et	Ph-3, 4-Cl ₂	H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	Et	L-45g	H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	n-Pr	Ph-4-OCF3	H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	i-Pr	Ph-4-C1	H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	n-Bu	Ph-4-Br	H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CHF_2	Ph-4-F	H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CHF_2	Ph-4-C1	H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CHF ₂	Ph-4-Br	H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CHF_2	Ph-4-CF ₃	H
	H C(CH ₃) ₂ CH ₂ SO ₂ CH ₃	CHF_2	Ph-4-0CHF ₂	H
	H C(CH ₃) ₂ CH ₂ SO ₂ CH ₃	. CHF2	Ph-4-0CF3	H
	H C(CH ₃) ₂ CH ₂ SO ₂ CH ₃	CHF2	Ph-4-0(L-45g)	H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CHF ₂	Ph-4-CN	H
	- > 071 CO CU	CHF ₂	Ph-3, 4-Cl ₂	H
		$ ext{CHF}_2$	L-45g	н Н
	· · · · · · · · · · · · · · · · · · ·	CF3	CH ₂ OPh	n H
	, or co cit	СFз	CH ₂ O (Ph-2-F)	п Н
		CF3	$CH_2O(Ph-3-F)$	
	A CAL CO CII-	., CF3	$CH_2O(Ph-4-F)$	Н
	. S OTT CO CII.	CF ₃	$CH_2O(Ph-2-C1)$	Н
		CF ₃	$CH_2O(Ph-3-C1)$	Н
	H C(CH ₃) ₂ CH ₂ SO ₂ CH ₃		出証特2004-	3 0 9 9 2 6 2

		CF ₃	$CH_2O(Ph-4-C1)$	Н
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	$CH_2O(Ph-2-Br)$	Н
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	$CH_2O(Ph-3-Br)$	Н
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	$CH_2O(Ph-4-Br)$	Н
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	$CH_2O(Ph-2-CF_3)$	Н
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	$CH_2O(Ph-3-CF_3)$	Н
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3 CF3	CH ₂ O (Ph-4-CF ₃)	Н
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃		$CH_2O(Ph-2-OCF_3)$	Н
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	$CH_2O(Ph-3-OCF_3)$	Н
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	CH ₂ O (Ph-4-OCF ₃)	Н
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	CH ₂ SPh	H
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	CH ₂ NHPh	Н
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	c-Pr	H
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	OCH ₃	CH ₃
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	0Et	Et
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	. CF3	OPr-n	n-Pr
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃		i-Pr
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	OPr-i	n-Bu
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	OBu-n	CH ₂ CF ₃
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	СF3	OCH ₂ CF ₃	Н
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-F	Н
H		CF ₃	Ph-4-C1	CH ₃
Н		CF ₃	Ph-4-Cl	Н
H		CF ₃	Ph-4-Br	H
Н		CF ₃	Ph-4-I	H
H		CF ₃	Ph-4-CF3	H
H		CF ₃	Ph-4-OCHF2	H
		CF ₃	Ph-4-OCF3	CH ₃
F		CF3	Ph-4-0CF3	CH ₂ CH=CH ₂
		CF3	Ph-4-OCF3	$CH_2 CH = CH_2$ $CH_2 C = CH$
		CF3	Ph-4-OCF3	$CH_2 C = CH$ $CH_2 Ph$
		CF ₃	Ph-4-0CF3	C(0) CH3
		CF ₃	Ph-4-0CF3	* *
	(CO CII	CF ₃	Ph-4-0CF3	Si(CH ₃) ₃
	H C(CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-OCF ₂ Br	H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	СF3	Ph-4-OCH ₂ CF ₃	H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-OCF2CHF2	H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-OCF2CHFC1	H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-OCF2CHFBr	H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-OCF ₂ CF ₂ Br	H
	H C (CH ₃) 2 CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-OCF ₂ CFCl ₂	H
	H C (CH ₃) 2 CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-OCF ₂ CCl ₃	H
	H C (CH ₃) 2 CH ₂ SO ₂ CH ₃	CF3	Ph-4-OCF2CHFCF3	H
	H C (CH ₃) 2 CH ₂ SO ₂ CH ₃	CF ₃	$Ph-4-OCH(CF_3)_2$	H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-OCF2CFBrCF3	Н
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-OCF2CHFOCF3	H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-OCF2 CHFOCF2	CF ₂ CF ₃ H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	Ph-4-0S0 ₂ CH ₃	Н
	H C (CH ₃) 2 CH ₂ SO ₂ CH ₃	CF3 CF3	Ph-4-0(L-45e)	H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3 CF3	Ph-4-0 (L-45g)	H
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃		Ph-4-0(L-451)	Н
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃		-3099262
			口部分でのよ	

			**
- (or) OH CO CH-	CF3	Ph-4-0(L-48b)	H
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-SCH3	H
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	Ph-4-SO ₂ CH ₃	H
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-CN	H
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	$Ph-3, 4-F_2$	H
H C (CH ₃) 2 CH ₂ SO ₂ CH ₃	CF3	Ph-3-F-4-C1	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	Ph-3, 4-Cl ₂	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3 CF3	L-1b	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃		L-1c	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-1d	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	L-le	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	L-1i	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-2b	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-3b	H
H C (CH ₃) 2 CH ₂ SO ₂ CH ₃	CF3	L-3c	Н
H C (CH ₃) 2 CH2 SO2 CH3	CF ₃	L-3d	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-3e	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-36 L-3f	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-3i L-3j	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-3k	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-31	Н
H C(CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-30	Н
H C(CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-30 L-4b	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-4c	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-4e	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3		Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-10b	Н
H C (CH ₃) 2 CH ₂ SO ₂ CH ₃	CF3	L-10c	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-16a	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-16b	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	L-17a	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-21b	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-21c	Н
H C(CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-21d	Н
H C (CH ₃) 2 CH ₂ SO ₂ CH ₃	CF3	L-21e	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	L-22b	H
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-22c	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-23b	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	L-23c	H
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	L-23f	H
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-23g	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	L-31a	H
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-31b	H
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	L-45c	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-45d	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-45e	Н
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-45f	H
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	L-45g	 H
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-451	H
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	L-45m	H
H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-46c	
II 0(015/20-20-2-1		出証特2(0 0 4 - 3 0 9 9 2 6 2

				••	
	C (CU) CU CO- CU	CF ₃	L-46d	H 	
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-46e	H	
H	C (CH ₃) 2 CH ₂ SO ₂ CH ₃	CF3	L-46f	Н	
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-46g	H	
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-46j	H	
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃		L-46k	H	
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	L-46r	Н	
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-47a	H	
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-47e	H	
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-48b	Н	
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3		Н	
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-50b	Н	
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	L-50c	H	
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF3	L-51b	H	
	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₂ Cl	Ph-4-F	H	
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₂ C1	Ph-4-Cl		
Н	C (CH) CH SO CH	CF ₂ Cl	Ph-4-Br	H	
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₂ C1	Ph-4-CF3	H	
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₂ C1	Ph-4-0CHF2	Н	
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₂ C1	Ph-4-0CF3	H	
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₂ C1	Ph-4-CN	H	
H	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃		Ph-3, 4-Cl ₂	Н	
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₂ C1	L-45g	Н	
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₂ C1	Ph-4-0CF3	H	
Н	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	CF ₂ Br	Ph-4-F	Н	
Н		CF ₂ CF ₃		Н	
Н		CF ₂ CF ₃	Ph-4-C1	H	
H		CF ₂ CF ₃	Ph-4-Br	H	
H		CF ₂ CF ₃	Ph-4-CF ₃	H	
H		CF ₂ CF ₃	Ph-4-0CHF ₂	Н	
	()	CF ₂ CF ₃	Ph-4-0CF ₃	H	
F		CF ₂ CF ₃	Ph-4-CN		
ŀ		CF ₂ CF ₃	Ph-3, 4-Cl ₂	Н	
ŀ	1 (CH3) 2 CH2 SO2 CH3	CF ₂ CF ₃	L-45g	Н	
	H C (CH ₃) 2 CH ₂ SO ₂ CH ₃	CF ₂ CF ₂ CF ₃	Ph-4-Cl	H	
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	Ph-4-F	Ph-4-C1	H	
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	Ph-4-Cl	Ph-4-Cl	Н	
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	Ph-4-Br	Ph-4-C1	Н	
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	Ph-4-CF3	Ph-4-Cl	Н	
	H C (CH ₃) 2 CH ₂ SO ₂ CH ₃	Ph-4-OCHF		Н	
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	Ph-4-0CF3	OCH ₃	CH ₃	
	H C(CH ₃) ₂ CH ₂ SO ₂ CH ₃			H	
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	Ph-4-0CF ₃		СНз	
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	Ph-4-0CF ₂		OCH ₃ CH ₃	
	H C (CH ₃) 2 CH ₂ SO ₂ CH ₃	Ph-4-0CF ₂	CHPCP3	OCH ₃ CH ₃	
	H C(CH ₃) ₂ CH ₂ SO ₂ CH ₃	Ph-4-0CF2	CHFOCF ₂ CF ₂ CF ₃	CH ₃	
	H C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	Ph-4-0(L-	-45g) OCH ₃	Н	
	H C(CH ₃) ₂ CH ₂ SEt	CF3	Ph-4-F	H	
	H C(CH ₃) ₂ CH ₂ SEt	CF ₃	Ph-4-Cl	Н	
	H C(CH ₃) ₂ CH ₂ SEt	CF ₃	Ph-4-Br	H	
		CF ₃	Ph-4-I	n H	
		CFз	Ph-4-CF ₃		
		CF3	Ph-4-OCHF2	Н	
	H C(CH ₃) ₂ CH ₂ SEt		出証券20	0 0 4 - 3 0 9 9 2	6 2
			ت باعظیا بند		

Н	C(CH ₃) ₂ CH ₂ SEt	CF ₃	Ph-4-0CF3	H
H	C(CH ₃) ₂ CH ₂ SEt	CF ₃	Ph-4-OCF ₂ Br	H
H	C(CH ₃) ₂ CH ₂ SEt	CF ₃	Ph-4-OCF ₂ CHF ₂	H
H	C (CH ₃) ₂ CH ₂ SEt	CF ₃	Ph-4-OCF ₂ CHFCF ₃	H
H	C (CH ₃) ₂ CH ₂ SEt	CF ₃	Ph-4-OCF2 CHFOCF3	Н
Н	C (CH ₃) ₂ CH ₂ SEt	CF ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
Н	C (CH ₃) ₂ CH ₂ SEt	CF ₃	Ph-4-0(L-45g)	H
H	C (CH ₃) ₂ CH ₂ SEt	CF ₃	Ph-4-CN	H
H	C (CH ₃) ₂ CH ₂ SEt	CF ₃	Ph-3, 4-F ₂	Н
Н	C (CH ₃) ₂ CH ₂ SEt	CF ₃	Ph-3-F-4-C1	Н
H	C (CH ₃) ₂ CH ₂ SEt	CF ₃	Ph-3, 4-Cl ₂	H
н	C (CH ₃) ₂ CH ₂ SEt	CF₃	L-45d	H
л Н	C (CH ₃) ₂ CH ₂ SEt	CF₃	L-45e	Н
	C (CH ₃) ₂ CH ₂ SEt	CF ₃	L-45f	H
H	•	CF ₃	L-45g	H
H	C(CH ₃) ₂ CH ₂ SEt	CF ₃	L-451	H
H	C(CH ₃) ₂ CH ₂ SEt	CF ₃	L-45m	H
H	C(CH ₃) ₂ CH ₂ SEt	CF ₃	L-46d	H
Н	C(CH ₃) ₂ CH ₂ SEt	CF3 CF3	L-46e	H
Н	C(CH ₃) ₂ CH ₂ SEt		L-40f	H
H	C(CH ₃) ₂ CH ₂ SEt	CF ₃	L-401 L-46g	H
H	C(CH ₃) ₂ CH ₂ SEt	CF ₃	L-40g L-46j	H
H	C(CH ₃) ₂ CH ₂ SEt	CF ₃	L-46) L-46k	Н
H	C(CH ₃) ₂ CH ₂ SEt	CF ₃		H
H	C(CH ₃) ₂ CH ₂ SEt	CF ₃	L-46r	H
Н	$C(CH_3)_2CH_2S(0)Et$	CF ₃	Ph-4-F	H
Н	$C(CH_3)_2CH_2S(0)Et$	CF ₃	Ph-4-Cl	H
H	$C(CH_3)_2CH_2S(0)Et$	CF ₃	Ph-4-Br	Н
Н	$C(CH_3)_2CH_2S(0)Et$	CF ₃	Ph-4-I	H
H	$C(CH_3)_2CH_2S(0)Et$	CF ₃	Ph-4-CF ₃	
Н	$C(CH_3)_2CH_2S(0)Et$	CF ₃	Ph-4-OCHF ₂	Н
Н	$C(CH_3)_2CH_2S(0)Et$	CF ₃	Ph-4-0CF ₃	H
Н	$C(CH_3)_2CH_2S(0)Et$	CF ₃	Ph-4-OCF ₂ Br	H
H	$C(CH_3)_2CH_2S(0)Et$	CF ₃	Ph-4-OCF ₂ CHF ₂	H
H	$C(CH_3)_2CH_2S(0)Et$	CF ₃	Ph-4-OCF ₂ CHFCF ₃	H
Н	$C(CH_3)_2CH_2S(0)Et$	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	Н
Н	$C(CH_3)_2CH_2S(0)Et$	CF ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	
Н	$C(CH_3)_2CH_2S(0)Et$	CF₃	Ph-4-0(L-45g)	Н
Н	$C(CH_3)_2CH_2S(0)Et$	CF₃	Ph-4-CN	Н
H	$C(CH_3)_2CH_2S(0)Et$	CF ₃	Ph-3, 4-F ₂	Н
H	$C(CH_3)_2CH_2S(0)Et$	CF₃	Ph-3-F-4-Cl	Н
Н	$C(CH_3)_2CH_2S(0)Et$	СГз	Ph-3, 4-Cl ₂	H
Н	$C(CH_3)_2CH_2S(0)Et$	CF ₃	L-45d	H
Н	$C(CH_3)_2CH_2S(0)Et$	CF ₃	L-45e	H
Н	$C(CH_3)_2CH_2S(0)Et$	CF ₃	L-45g	Н
Н	$C(CH_3)_2CH_2S(0)Et$	CF ₃	L-46d	H
Н	$C(CH_3)_2CH_2S(0)Et$	CF ₃	L-46e	H
Н	$C(CH_3)_2CH_2S(0)Et$	CF ₃	L-46g	Н
Н		· CF ₃	Ph-4-F	H
Н		CF ₃	Ph-4-Cl	H
Н		CF ₃	Ph-4-Br	H
	· /		instate on on a significant	

	OD	Ph-4-I	Н
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF ₃	Ph-4-CF3	Н
H C(CH3)2CH2SO2Et	CF ₃	Ph-4-OCHF2	Н .
H C(CH3)2CH2SO2Et	CF ₃	Ph-4-0CF3	Н
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF ₃	Ph-4-OCF ₂ Br	Н
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF ₃	Ph-4-0CF ₂ CHF ₂	Н
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF ₃	Ph-4-OCF ₂ CHFCF ₃	Н
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	Н
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂	CF ₃ H
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF ₃	Ph-4-0(L-45g)	Н
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF3	Ph-4-CN	Н
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF3		Н
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF3	$Ph-3, 4-F_2$	Н
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF3	Ph-3-F-4-Cl	Н
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF3	Ph-3, 4-Cl ₂	H
town \ OTT OO TH	CF3	L-45d	H
	CF ₃	L-45e	H
A COLUMN TO THE	CF ₃	L-45f	Н
\ arr an E)	CF ₃	L-45g	Н
	CF ₃	L-451	H
(CT OO T)	CF ₃	L-45m	H
H C(CH ₃) ₂ CH ₂ SU ₂ Et	CF ₃	L-46d	H
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF3	L-46e	H
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF3	L=46f	
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF3	L-46g	H
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF3	L-46j	H.
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF ₃	L-46k	H
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF ₃	L-46r	H
H C(CH ₃) ₂ CH ₂ SO ₂ Et	CF3	Ph-4-F	H
H $C(CH_3)_2 CH_2 SPr-n$	CF3	Ph-4-Cl	H
H C(CH ₃) ₂ CH ₂ SPr-n	CF3	Ph-4-Br	Н
H C(CH ₃) ₂ CH ₂ SPr-n	CF3	Ph-4-CF3	Н
H $C(CH_3)_2 CH_2 SPr-n$	CF ₃	Ph-4-0CHF2	H
$H C(CH_3)_2 CH_2 SPr-n$	CF3	Ph-4-0CF3	Н
H $C(CH_3)_2 CH_2 SPr-n$	CF3	L-45g	Н
H C(CH ₃) ₂ CH ₂ SPr-n		Ph-4-Cl	Н
$H C(CH_3)_2 CH_2 S(0) Pr-n$	CF3	Ph-4-0CF3	Н
$H C(CH_3)_2 CH_2 S(0) Pr-n$	CF3	Ph-4-F	Н
$H C(CH_3)_2 CH_2 SO_2 Pr-n$	CF3	Ph-4-C1	H
$H C(CH_3)_2 CH_2 SO_2 Pr-n$	CF ₃	Ph-4-Br	H
H C(CH3)2CH2SO2Pr-n	CF3	Ph-4-CF ₃	Н
H $C(CH_3)_2 CH_2 SO_2 Pr-n$	CF ₃	Ph-4-0CHF2	Н
$H C(CH_3)_2 CH_2 SO_2 Pr-n$	CF ₃	Ph-4-0CF3	Н
H $C(CH_3)_2 CH_2 SO_2 Pr-n$	CF ₃	L-45g	Н
H $C(CH_3)_2 CH_2 SO_2 Pr-n$	CF ₃	Ph-4-F	Н
H C(CH ₃) ₂ CH ₂ SPr-i	CF ₃	Ph-4-Cl	H
H C(CH ₃) ₂ CH ₂ SPr-i	CF3	Ph-4-Br	Н
H $C(CH_3)_2CH_2SPr-i$	СFз	Ph-4-CF3	Н
H C(CH ₃) ₂ CH ₂ SPr-i	CF ₃	Ph-4-OCHF ₂	H
H C(CH ₃) ₂ CH ₂ SPr-i	CF3	Ph-4-OCF3	Н
	CF3		 H
	CF ₃	L-45g	
H C(CH ₃) ₂ CH ₂ SPr-1		出証特200	4 - 3099262

	••			
	(m) 0(0) Dm;	CF3	Ph-4-Cl	H
H	$C(CH_3)_2CH_2S(0)Pr-i$	CF3	Ph-4-OCF3	. Н
H	C(CH ₃) ₂ CH ₂ S(0)Pr-i	CF3	Ph-4-C1	H
H	C(CH ₃) ₂ CH ₂ SO ₂ Pr-i	CF ₃	Ph-4-OCF3	H
H	C(CH ₃) ₂ CH ₂ SO ₂ Pr-i	CF3	Ph-4-Cl	Н
Н	C(CH ₃) ₂ CH ₂ SBu-t	CF ₃	Ph-4-OCF3	Н
H	$C(CH_3)_2CH_2S(0)Bu-t$	CF3	Ph-4-C1	Н
H	C(CH ₃) ₂ CH ₂ SPh		Ph-4-0CF3	H
H	$C(CH_3)_2CH_2S(0)Ph$	CF3	Ph-4-Cl	Н
H	C (CH ₃) ₂ CH ₂ SO ₂ Ph	CF3	Ph-4-0CF3	Н
H	C(CH ₃) ₂ CH ₂ SCH ₂ (Ph-4-C1)	CF3	Ph-4-Cl	Н
H	$C(CH_3)_2CH_2S(L-45a)$	CF3	Ph-4-0CF3	Н
Н	$C(CH_3)_2CH_2S(0)(L-45a)$	CF ₃	Ph-4-C1	Н
Н	C (CH ₃) ₂ CH ₂ SO ₂ (L-45a)	CF ₃	Ph-4-0CF3	Н
H	CH2 CH2 CH2 SCH3	CF ₃	Ph-4-F	Н
Н	CH (CH ₃) CH ₂ CH ₂ SCH ₃	CF ₃	Ph-4-C1	Н
H	CH (CH ₃) CH ₂ CH ₂ SCH ₃	CF3	Ph-4-Br	Н
Н	CH (CH ₃) CH ₂ CH ₂ SCH ₃	CF3		Н
Н	CH (CH ₃) CH ₂ CH ₂ SCH ₃	CF3	Ph-4-CF3	H
Н	CH (CH ₃) CH ₂ CH ₂ SCH ₃	CF3	Ph-4-0CHF ₂	. Н
H	CH (CH ₃) CH ₂ CH ₂ SCH ₃	CF ₃	Ph-4-0CF ₃	H
Н	CH (CH ₃) CH ₂ CH ₂ SCH ₃	CF3	L-45g	H
	CH (CH ₃) CH ₂ CH ₂ S (0) CH ₃	CF ₃	Ph-4-F	H
Н	> OTT O (O) CII	CF3	Ph-4-C1	H
H	· · · · · · · · · · · · · · · · · · ·	CF3	Ph-4-Br	Н
Ħ	(C (C (C (C (C (C (C (C (C (C	CF ₃	Ph-4-CF ₃	H
Н		CF3	Ph-4-OCHF2	H
H	· · · · · · · · · · · · · · · · · · ·	CF ₃	Ph-4-OCF3	H
H	() orr Orr C(A) CU-	CF3	L-45g	n H
H	· · · · · · · · · · · · · · · · · · ·	CF ₃	Ph-4-F	n H
H		CF ₃	· Ph-4-C1	
ŀ	CH (CH ₃) CH ₂ CH ₂ SO ₂ CH ₃	CF3	Ph-4-Br	H
I	H CH (CH ₃) CH ₂ CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-CF3	H
	H CH (CH ₃) CH ₂ CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-OCHF2	Н
	H CH (CH ₃) CH ₂ CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-0CF3	H
	H CH (CH ₃) CH ₂ CH ₂ SO ₂ CH ₃	CF ₃	L-45g	Н
	H CH (CH ₃) CH ₂ CH ₂ SO ₂ CH ₃	CF ₃	Ph-4-F	H
	H CH(CH ₃) CH ₂ CH ₂ SEt	CF ₃	Ph-4-Cl	Н
	H CH (CH ₃) CH ₂ CH ₂ SEt	CF3	Ph-4-Br	H
	H CH (CH ₃) CH ₂ CH ₂ SEt	CF3	Ph-4-CF3	H
	H CH(CH ₃) CH ₂ CH ₂ SEt	CF3	$Ph-4-OCHF_2$	H
	H CH (CH ₃) CH ₂ CH ₂ SEt	CF3	Ph-4-0CF3	H
	H CH (CH ₃) CH ₂ CH ₂ SEt	CF3	L-45g	Н
	H CH (CH ₃) CH ₂ CH ₂ SEt	CF3	Ph-4-Cl	Н
	H $CH(CH_3)CH_2CH_2S(0)Et$	CF3	Ph-4-OCF3	H
	H $CH(CH_3)CH_2CH_2S(0)Et$	CF3	Ph-4-Cl	Н
	H CH (CH ₃) CH ₂ CH ₂ SO ₂ Et	CF3 CF3	Ph-4-OCF3	Н
•	H CH(CH ₃)CH ₂ CH ₂ SO ₂ Et		Ph-4-Cl	Н
	H CH(Et)CH2CH2SCH3	CF3	Ph-4-OCF3	Н
	H CH (CH2 OH) CH2 CH2 SCH3	CF3	Ph-4-Cl	Н
	H C (CH ₃) ₂ CH ₂ CH ₂ SCH ₃	CF ₃	Ph-4-0CF3	Н
	H C(CH ₃) ₂ CH ₂ CH ₂ SEt	CF ₃		04 - 3099262
			四証行 4 0 (

		OF	Ph-4-F	H
Н	CH(CH ₃)(CH ₂) ₃ SCH ₃	CF3	Ph-4-C1	Н
Н	CH (CH ₃) (CH ₂) 3 SCH ₃	CF3	Ph-4-Br	Н
H	CH (CH ₃) (CH ₂) ₃ SCH ₃	CF3	Ph-4-CF ₃	Н
Н	CH (CH ₃) (CH ₂) ₃ SCH ₃	CF ₃	Ph-4-0CHF2	H
Н	CH (CH ₃) (CH ₂) ₃ SCH ₃	CF3	Ph-4-0CF3	H
Н	CH (CH ₃) (CH ₂) ₃ SCH ₃	CF ₃	L-45g	H
Н	CH (CH ₃) (CH ₂) ₃ SCH ₃	CF3	Ph-4-Cl	H
Н	$CH(CH_3)(CH_2)_3S(0)CH_3$	CF ₃	Ph-4-0CF3	H
Н	CH(CH3)(CH2)3S(0)CH3	CF ₃	Ph-4-F	Н
Н	CH (CH ₃) (CH ₂) ₃ SO ₂ CH ₃	CF ₃	Ph-4-C1	Н
Н	CH (CH ₃) (CH ₂) ₃ SO ₂ CH ₃	CF3	Ph-4-Br	Н
Н	CH (CH ₃) (CH ₂) ₃ SO ₂ CH ₃	CF ₃	Ph-4-CF ₃	Н
H	CH (CH ₃) (CH ₂) ₃ SO ₂ CH ₃	CF3	Ph-4-0CHF2	H
H	CH(CH ₃)(CH ₂) ₃ SO ₂ CH ₃	CF3	Ph-4-0CF3	H
H	CH(CH ₃)(CH ₂) ₃ SO ₂ CH ₃	CF3		Н
H	CH (CH ₃) (CH ₂) ₃ SO ₂ CH ₃	CF ₃	L–45g Ph–4–F	Н
Н	CH(CH ₃)(CH ₂) ₃ SEt	CF3		Н
H	CH(CH ₃)(CH ₂) ₃ SEt	CF3	Ph-4-Cl	Н
Н	CH(CH ₃)(CH ₂) ₃ SEt	CF3	Ph-4-Br	H
Н	CH(CH ₃)(CH ₂) ₃ SEt	CF3	Ph-4-CF3	H
H	CH(CH ₃)(CH ₂) ₃ SEt	СF3	Ph-4-OCHF2	. H
H	CH(CH ₃) (CH ₂) ₃ SEt	СFз	Ph-4-OCF3	. <u></u> Н
Н	CH(CH ₃) (CH ₂) ₃ SEt	CF3 .	L-45g	Н
H	$CH(CH_3)(CH_2)_3S(0)Et$	СFз	Ph-4-Cl	Н
H	() (or) O (O) D +	СFз	Ph-4-0CF3	H
H	() (OTT) OO TEL	CF ₃	Ph-4-C1	H
n H	() (GTT) CO EL	CF3	Ph-4-OCF3	H
		СFз	Ph-4-F	H
H		CF3	Ph-4-Cl	H
Н	· · · · · · · · · · · · · · · · · · ·	СFз	Ph-4-Br	H
H	· · · · · · · · · · · · · · · · · · ·	СFз	Ph-4-CF3	H
H		CF ₃	Ph-4-OCHF2	H
	() (OTT) COIL	CF3	Ph-4-OCF ₃	H
ŀ	\	CF3	L-45g_	H
	()	CF3	Ph-4-F	H
	, \ (m= \ OT)	CF ₃	Ph-4-C1	H
		CF3	Ph-4-Br	H
		CF3	Ph-4-CF ₃	H
		СFз	Ph-4-OCHF2	H
	. \ /~~~ \ OT)	CF3	Ph-4-OCF3	H
	· · · · · · · · · · · · · · · · · · ·	CF3	L-45g	н Н
	· · · · · · · · · · · · · · · · · · ·	CF3	Ph-4-OCF3	H
	(\	CF3	Ph-4-Cl	
	H CH(CH ₃) (CH ₂) 4 SCH ₃	CF3	Ph-4-OCF3	H H
	H CH(CH ₃) (CH ₂) ₄ SO ₂ CH ₃	CF ₃	Ph-4-Cl	
	H CH(CH ₃)(CH ₂) ₄ SEt	CF3	Ph-4-0CF3	Н
	H CH(CH ₃)(CH ₂) ₄ S(0)Et	CF3	Ph-4-Cl	H
	H CH(CH ₃)(CH ₂) ₄ SO ₂ Et	CF3	Ph-4-0CF3	Н
	н т-6	CF3	Ph-4-Cl	Н
	Н Т-7	CF3	Ph-4-0CF3	Н
	Н Т-8	0.20	出証特200	4-3099262

		Ph-4-Cl	Н
н т-9	CF3	Ph-4-0CF3	Н
H T-11	CF3	Ph-4-Cl	Н
H T-12	CF3	Ph-4-0CF3	Н
H T-13	CF3		Н
H T-14	CF3	Ph-4-Cl	Н
н 1-14 н Т-15	СFз	Ph-4-0CF3	Н
- -	CF3	Ph-4-Cl	Н
	CF3	Ph-4-0CF3	Н
	CF3	Ph-4-C1	H
	CF3	Ph-4-0CF3	H
H M-9c	CF ₃	Ph-4-Cl	H
н M-19a н CH2NHC(0)ОСН3	CF3	Ph-4-0CF ₃	H
(0) 0731	CF3	Ph-4-Cl	H
H CH2NHC(0) OEt	CF ₃	Ph-4-F	H
H CH2NHC(0) OPr-i	CF ₃	Ph-4-Cl	H.
H CH2NHC(0) OPr-i	CF ₃	Ph-4-Br	H
H CH2NHC(0) OPr-i	CF ₃	Ph-4-CF3	H
H CH2NHC(0)OPr-i	CF3	Ph-4-0CF3	
H CH ₂ NHC(0)OPr-i	CF ₃	L-45g	H
H CH2NHC(0)OPr-i	CF3	Ph-4-0CF3	H
H CH ₂ CH ₂ NHC (0) CH ₃	CF3	Ph-4-Cl	H
H CH ₂ CH ₂ NHC (0) N (CH ₃) 2	CF3	Ph-4-0CF3	Н
H CH ₂ CH ₂ NHC (O) Ph	CF3	Ph-4-Cl	H
H CH ₂ CH ₂ N (CH ₃) OCH ₃	CF3	Ph-4-F	H
H CH (CH ₃) CH ₂ NHC (O) CH ₃	CF3	Ph-4-Cl	H
H CH(CH ₃) CH ₂ NHC (0) CH ₃	CF3	Ph-4-Br	H .
H CH(CH ₃) CH ₂ NHC (0) CH ₃	CF3	Ph-4-CF3	H
H CH(CH ₃) CH ₂ NHC(0) CH ₃	CF3	Ph-4-0CF3	H
H CH(CH ₃)CH ₂ NHC(0)CH ₃	CF3	L-45g	H
H CH (CH ₃) CH ₂ NHC (0) CH ₃	CF ₃	Ph-4-0CF3	Н
H CH(CH ₃)CH ₂ NHC(0)Et	CF3	Ph-4-Cl	Н
H CH (CH ₃) CH ₂ NHC (0) OCH ₃		Ph-4-0CF ₃	Н
H $CH(CH_3)CH_2NHC(0)N(CH_3)_2$	CF3	Ph-4-C1	Н
H CH(CH3)CH2NHC(S)NHEt	CF3	Ph-4-0CF3	H
H CH (CH ₃) CH ₂ NHSO ₂ CH ₃	CF3	Ph-4-Cl	Н
H CH(CH3)CH2NHSO2Et	CF3	Ph-4-0CF3	H
н СН (СН3) CH2 NHSO2 Ph	CF ₃	Ph-4-C1	H
H CH (CH3) CH2 NHSO2 N (CH3)2	CF3	Ph-4-0CF3	H
H CH (CH ₃) CH ₂ NHP (S) (OCH ₃) 2	CF ₃	Ph-4-Cl	Н
$H CH(CH_3)CH_2NHP(S)(OEt)_2$	CF ₃	Ph-4-0CF3	H
н СН (СН3) СН2 N (СН3) 2	CF3	Ph-4-F	H
u CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CH ₃	Ph-4-SO ₂ CH ₃	H
H CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	Et	L-45g	Н
H CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	n-Pr	Ph-4-F	Н
u CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	i-Pr	Ph-4-SO ₂ CH ₃	Н
$_{\text{LH}}$ CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CHF ₂	CH ₂ OPh	H
$_{\rm LH}$ CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	CH ₂ O (Ph-2-C1)	H
u CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	CH ₂ O (Ph-3-C1)	Н
CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	CH ₂ O (Ph-4-C1)	Н
1 \ OVI \ \ (CVI - \ \ COo (`H2	Cr3	CH2U(FII-4-01)	Н
LECTION AND AND AND AND AND AND AND AND AND AN	CF ₃	CH ₂ SPh	
H CH(CH ₃) CH ₂ N (CH ₃) 502 CH ₃		出証特2004	4-3099262

		CD	CU- NUDh	Н
Н	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	CH2 NHPh OCH3	CH ₃
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	OCH2 CF3	CH ₂ CF ₃
Н	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-F	H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-C1	H
Н	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-Br	H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-I	H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	· CF ₃	Ph-4-CF ₃	H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-OCHF ₂	Н
Н	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-0CF ₃	Н
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-OCF ₂ Br	H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF3	Ph-4-0CF ₂ CHF ₂	H
H	CH(CH ₃) CH ₂ N(CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-OCF2 CHFC1	H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-OCF ₂ CHFCF ₃	H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-OCF2 CHFOCF3	H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-OCF2 CHFOCF2 CF2 CF3	H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF3	Ph-4-0(L-45e)	п Н
Н	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃		n H
Н	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-0 (L-45g)	п Н
Н	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-0(L-451)	H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-0 (L-48b)	п Н
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-SCH ₃	n H
Н	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-S(0) CH ₃	n H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-SO ₂ CH ₃	n H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF3	Ph-4-SCF ₃	п Н
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-4-CN	n H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-3, 4-F ₂	n H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-3-F-4-C1	п Н
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-3-F-4-CF ₃	
Н	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF₃	Ph-3, 4-Cl ₂	H
Н	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	Ph-3-C1-4-0CF ₃	H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	L-1c	H
Н	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	L-1d	H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	L-le	H
Н	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	L-1i	H
Н	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	L-2b	H
Н	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	L-3c	H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	L-3d	H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	L-3e	H
H	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	L-3f	H
H	$CH(CH_3)CH_2N(CH_3)SO_2CH_3$	CF ₃	L–3k	Н
Н	$CH(CH_3)CH_2N(CH_3)SO_2CH_3$	CF ₃	L-31	H
Н	$CH(CH_3)CH_2N(CH_3)SO_2CH_3$	CF ₃	L-30	H
Н	$CH(CH_3)CH_2N(CH_3)SO_2CH_3$	CF ₃	L-4b	H
Н	$CH(CH_3)CH_2N(CH_3)SO_2CH_3$	CF ₃	L-4c	H
Н	$CH(CH_3)CH_2N(CH_3)SO_2CH_3$	CF ₃	L-10b	H
Н	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	L-10c	H
Н	CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	L-21b	H
Н	$CH(CH_3)CH_2N(CH_3)SO_2CH_3$	CF ₃	L-21c	H
H	$CH(CH_3)CH_2N(CH_3)SO_2CH_3$	CF ₃	L-21d	H
Н	$CH(CH_3)CH_2N(CH_3)SO_2CH_3$	CF ₃	L-21e	H

			Н
H CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF3	L-22b	Н
1 - 1 - 1 / OII \ CO- CU-	CF ₃	L-22c	H
1 \ 077 \1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CF ₃	L-23b	H
() ON MICH \ CO. CHO	СF3	L-23c	H
H CH(CH ₃) CH ₂ N(CH ₃) SO ₂ CH ₃	CF3	L-31a	
H CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF3	L-31b	H
H CH(CH ₃) CH ₂ N(CH ₃) SO ₂ CH ₃	CF3	L-45d	H
H CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF3	L-45e	H
H CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF3	L-45f	Н
H CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF3 CF3	L-45g	Н
$H CH(CH_3) CH_2 N(CH_3) SO_2 CH_3$		L-451	H
H CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	L-45m	Н
H CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	L-46d	Н
H CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF3	L-46e	Н
H CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF ₃	L-46f	Н
H CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF3		H
H CH (CH ₃) CH ₂ N (CH ₃) SO ₂ CH ₃	CF3	L-46g	Н
A STATION CO. CU.	CF3	L-46j	. . Н
CO. CU.	CF3	L-46k	H
	CF3	L-46r	H
. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CF ₂ C1	L-45g	H
CO-CH-	CF ₂ CF ₃	Ph-4-F	
H CH(CH ₃) CH ₂ N(CH ₃) SO ₂ CH ₃	CF3	Ph-4-Cl	H
H C (CH ₃) ₂ CH ₂ NHC (0) CH ₃	CF3	Ph-4-0CF3	H
H C(CH ₃) ₂ CH ₂ NHC(0)Et	CF ₃	Ph-4-Cl	H
H C(CH ₃) ₂ CH ₂ NHC(0)Pr-c	CF3	Ph-4-0CF3	H
H C(CH ₃) ₂ CH ₂ NHC(0)Bu-t	CF3	Ph-4-Cl	Н
H C(CH ₃) ₂ CH ₂ NHC(0)CF ₃		Ph-4-OCF3	Н
H $C(CH_3)_2 CH_2 NHC(0) Ph$	CF3	CH ₂ OPh	Н
H C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃	CF3	$CH_2O(Ph-2-C1)$	Н
$H C(CH_3)_2 CH_2 NHC(0) OCH_3$	CF3	CH2O(Ph-3-C1)	H
н С (СН ₃) 2 СН2 NHC (О) ОСН3	CF ₃	CH ₂ O (Ph-4-C1)	H
и С (СН3) 2 СН2 NHC (О) ОСН3	CF ₃	CH ₂ SPh	Н
H C (CH ₃) ₂ CH ₂ NHC (O) OCH ₃	CF ₃	CH ₂ NHPh	Н
H C (CH ₃) ₂ CH ₂ NHC (O) OCH ₃	CF ₃		Н
H C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃	СF3	Ph-4-F	Н
H C (CH ₃) ₂ CH ₂ NHC (0) 0CH ₃	CF3	Ph-4-Cl	Н
1 \ CTT \ TTO (O\ OCU-	CF ₃	Ph-4-Br	H
. \ >770 (0) 0011-	CF ₃	Ph-4-CF3	н
- \ ~~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CF ₃	Ph-4-0CHF2	H
(TO () OTT NITO () OCU	CF3	Ph-4-0CF3	H
H C (CH ₃) 2 CH ₂ NHC (U) OCH ₃	CF ₃	Ph-4-OCF ₂ Br	
H C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃	CF ₃	Ph-4-OCF2 CHF2	
H C(CH ₃) ₂ CH ₂ NHC(0)OCH ₃	CF ₃	Ph-4-OCF2 CHFC	, ,
H C (CH ₃) 2 CH ₂ NHC (0) OCH ₃	CF3	Ph-4-OCF2 CHFC	F ₃ H
H C (CH ₃) ₂ CH ₂ NHC (0) 0CH ₃	CF3	Ph-4-OCF2 CHFC	CF ₃ H
H C (CH ₃) ₂ CH ₂ NHC (0) 0CH ₃	CF ₃	Ph-4-OCF ₂ CHFO	CF ₂ CF ₂ CF ₃ H
H C (CH ₃) ₂ CH ₂ NHC (0) 0CH ₃	CF3	Ph-4-CN	н
H C(CH ₃) ₂ CH ₂ NHC(0) OCH ₃	CF3	Ph-3, 4-Cl2	Н
H C(CH ₃) ₂ CH ₂ NHC(0)0CH ₃	CF3 CF3	L-1c	Н
$_{\rm H}$ C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃		L-1d	Н
$_{\rm H}$ C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃	CF ₃	L-le	H
H C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃	CF ₃		04 - 3099262
AA		出証特20	04-3093202

1,4			
1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	CF ₃	L-li	H
H C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃	CF3	L-2b	Н .
H C(CH ₃) ₂ CH ₂ NHC(0)0CH ₃	CF3	L-3d	Н
H C(CH ₃) ₂ CH ₂ NHC(0)0CH ₃	CF3	L-3e	H
H C (CH ₃) 2 CH ₂ NHC (0) OCH ₃	CF ₃	L-3f	Н
H C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃	CF ₃	L-31	H
H C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃		L-30	Н
H C (CH ₃) ₂ CH ₂ NHC (O) OCH ₃	CF ₃	L-4c	H
н С (CH ₃) 2 CH2 NHC (O) ОСН3	CF ₃	L-45d	Н
$H C(CH_3)_2 CH_2 NHC(0) OCH_3$	CF ₃	L-45e	Н
$H = C(CH_3)_2 CH_2 NHC(0) OCH_3$	CF ₃	L-45f	Н
H C(CH3)2 CH2 NHC(0) OCH3	CF ₃	L-45g	Н
H C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃	CF3	L-45l	Н
H C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃	CF3		Н
H C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃	СF3	L-45m	Н
H C (CH ₃) ₂ CH ₂ NHC (0) OCH ₃	CF3	L-46d	Н
H C (CH ₃) ₂ CH ₂ NHC (O) OCH ₃	CF3	L-46e	H
	CF3	L-46f	H
$\sim 10^{-1} \text{ Mpc}^{-1} / \text{O} / O$	CF ₃	L-46g	H
, and Ango (0) OCII-	CF ₃	L-46j	H
$\alpha = \lambda \alpha = $	CF ₃	L-46k	H
	CF ₃	L-46r	H
· > +#10 (0) OFL	CF3	Ph-4-Cl	H
	CF ₃	$Ph-4-OCF_3$	п Н
AND (A) ACIT	CF ₃	Ph-4-C1	
H CH2 CH2 CH2 NHC (0) OCH3	CF ₃	Ph-4-OCF3	H
H CH ₂ CH ₂ CH ₂ NHC (0) OBu-t	CF ₃	Ph-4-Cl	H
H CH ₂ CH ₂ CH ₂ N(CH ₃) ₂	CF ₃	Ph-4-OCF3	H
H CH ₂ CH ₂ CH ₂ N(CH ₃) OCH ₃	CF3	Ph-4-Cl	H
H M-22a	CF3	Ph-4-0CF3	H
H CH ₂ Si(CH ₃) ₃	CF3	Ph-4-Cl	Н
H C(CH ₃) ₂ CHO	CF3	Ph-4-0CF3	Н
H CH(CH3)C(0)CH3	CF3	Ph-4-Cl	Н
H CH (CHO) CH ₂ SO ₂ CH ₃	CF3	Ph-4-0CF3	H
H C (CH ₃) (CHO) CH ₂ SO ₂ CH ₃	CF3	Ph-4-Cl	H
H C(CH ₃)(CHO)CH ₂ SO ₂ Et	СF3 СF3	Ph-4-0CF3	Н
H CH ₂ CH=NOCH ₃		Ph-4-Cl	Н
H CH2 C (Ph) = NOCH3	CF3	Ph-4-SO ₂ CH ₃	Н
H CH (CH ₃) CH=NOCH ₃	CH ₃	L-45g	Н
H CH (CH ₃) CH=NOCH ₃	Et	Ph-4-F	H
H CH (CH ₃) CH=NOCH ₃	n-Pr	Ph-4-SO ₂ CH ₃	H
H CH (CH3) CH=NOCH3	i-Pr	L-45g	H
H CH (CH ₃) CH=NOCH ₃	CHF ₂	CH ₂ OPh	Н
H CH (CH ₃) CH=NOCH ₃	CF3	$CH_2O(Ph-2-C1)$	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	CH2O(Ph-3-C1)	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	CH ₂ O(Ph-4-C1)	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	CH ₂ O(FII-4-01)	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	CH2 SF11 CH2 NHPh	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃		CH ₃
H CH (CH ₃) CH=NOCH ₃	CF ₃	OCH3	CH ₂ CF ₃
H CH (CH ₃) CH=NOCH ₃	CF ₃	OCH ₂ CF ₃	Н
A COLUMN TO A COLU	CF ₃	Ph-4-F	
H CH(CH3)CH=NUCH3		出証特200	4 - 3099262

••			••
CY/CH \CH NOCUs	CF3	Ph-4-Cl	H
H CH(CH ₃) CH=NOCH ₃	CF3	Ph-4-Br	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	Ph-4-I	H
H CH (CH ₃) CH=NOCH ₃	CF3	Ph-4-CF3	H
H CH (CH ₃) CH=NOCH ₃	CF ₃	Ph-4-0CHF ₂	Н
H CH (CH ₃) CH=NOCH ₃	CF3	Ph-4-0CF3	Н
H CH (CH ₃) CH=NOCH ₃	CF3	Ph-4-0CF ₂ Br	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	Ph-4-OCF2CHF2	Н
H CH(CH ₃) CH=NOCH ₃	CF ₃	Ph-4-OCF2 CHFC1	H
H CH (CH ₃) CH=NOCH ₃	CF ₃	Ph-4-OCF2 CHFCF3	H
H CH (CH ₃) CH=NOCH ₃	CF ₃	Ph-4-OCF2 CHFOCF3	H
H CH (CH ₃) CH=NOCH ₃	CF3	Ph-4-OCF2 CHFOCF2 CF2	CF ₃ H
H CH (CH ₃) CH=NOCH ₃	CF3	Ph-4-0S0 ₂ CH ₃	H
H CH(CH ₃)CH=NOCH ₃	CF ₃	Ph-4-0 (L-45e)	H
H CH (CH ₃) CH=NOCH ₃	CF ₃	Ph-4-0 (L-45g)	Н
H CH(CH ₃)CH=NOCH ₃	CF3	Ph-4-0(L-451)	Н
H CH(CH ₃) CH=NOCH ₃	CF3	Ph-4-0(L-48b)	Н
H CH (CH ₃) CH=NOCH ₃	CF₃ CF₃	Ph-4-SCH ₃	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	Ph-4-S(0)CH ₃	Н
H CH (CH ₃) CH=NOCH ₃	СF3 СF3	Ph-4-S0 ₂ CH ₃	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	Ph-4-SEt	Н
H CH (CH ₃) CH=NOCH ₃	CF3	Ph-4-S0 ₂ Et	Н
H CH (CH ₃) CH=NOCH ₃	CF3	Ph-4-SPr-i	Н
H CH (CH ₃) CH=NOCH ₃		Ph-4-S0 ₂ Pr-i	Н
H CH (CH3) CH=NOCH3	CF3	Ph-4-SCHF2	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	Ph-4-SO ₂ CHF ₂	H
H CH (CH ₃) CH=NOCH ₃	CF ₃	Ph-4-SCF3	H
H CH (CH ₃) CH=NOCH ₃	CF3	Ph-4-SO ₂ CF ₃	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	Ph-4-SCF ₂ Cl	Н
H CH (CH ₃) CH=NOCH ₃	CF3	Ph-4-S02 CF2 C1	Н
$H CH(CH_3)CH=NOCH_3$	CF ₃	Ph-4-SCF ₂ Br	Н
H CH (CH ₃) CH=NOCH ₃	CF3	Ph-4-SO ₂ CF ₂ Br	Н
H CH (CH₃) CH=NOCH₃	CF₃	Ph-4-CN	. H
H CH (CH ₃) CH=NOCH ₃	CF ₃	Ph-4-C(0)NH2	Н
H CH (CH3) CH=NOCH3	CF ₃	Ph-4-C(S)NH2	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	Ph-3, 4-F ₂	H
H CH (CH ₃) CH=NOCH ₃	CF ₃	Ph-3-F-4-C1	Н
H CH (CH3) CH=NOCH3	CF3	Ph-3-F-4-CF3	Н
H CH (CH3) CH=NOCH3	CF ₃	Ph-3, 4-Cl ₂	Н
H CH (CH3) CH=NOCH3	CF ₃	Ph-3-C1-4-OCF3	Н
H CH (CH ₃) CH=NOCH ₃	CF3	L-1c	H
H CH (CH ₃) CH=NOCH ₃	CF3	L-1d	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	L-le	H
H CH (CH ₃) CH=NOCH ₃	CF3	L-1i	Н
H CH (CH3) CH=NOCH3	CF ₃	L-11 L-2b	H
H CH (CH ₃) CH=NOCH ₃	CF ₃	L-25 L-3c	Н
H CH(CH₃)CH=NOCH₃	CF ₃	L-3d	H
H $CH(CH_3)CH=NOCH_3$	CF ₃	L-3e	Н
H CH (CH ₃) CH=NOCH ₃	CF3	L-3e L-3f	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃		Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	L-3k	
II OIL (OLD)		出証特2004	1-3099262

	CIP.	L-31	Н
H CH(CH ₃)CH=NOCH ₃	CF ₃	L-30	H
H CH (CH ₃) CH=NOCH ₃	CF ₃	L-4b	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	L-4c	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	L-10c	Н
H CH (CH3) CH=NOCH3	CF ₃	L-21c	Н
H CH (CH3) CH=NOCH3	CF ₃	L-21d	Н
H CH (CH3) CH=NOCH3	CF ₃	L-21e	H
H CH (CH ₃) CH=NOCH ₃	CF ₃	L-21c L-22c	H
H CH (CH ₃) CH=NOCH ₃	CF ₃	L-22c	H
H CH(CH ₃) CH=NOCH ₃	CF ₃	L-31b	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	L-45c	H
H CH (CH ₃) CH=NOCH ₃	CF ₃	L-45d	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	L-45e	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	L-45f	Н
H CH (CH ₃) CH=NOCH ₃	CF3	L-45g	Н
H CH(CH ₃) CH=NOCH ₃	CF ₃		Н
H CH (CH ₃) CH=NOCH ₃	CF3	L-451	Н
H CH (CH ₃) CH=NOCH ₃	CF3	L-45m	H
H CH (CH ₃) CH=NOCH ₃	CF3	L-46c	H
H CH(CH ₃) CH=NOCH ₃	CF3	L-46d	Н
H CH (CH ₃) CH=NOCH ₃	CF ₃	L-46e	H
H CH (CH ₃) CH=NOCH ₃	CF3	L-46f	Н .
H CH (CH ₃) CH=NOCH ₃	CF3	L-46g	H
4 > > 370.077	CF ₃	L-46j	H ·
/ > > OTT	CF ₃	L-46k	H
	CF ₃	L-46m	H
() OFF MOOTI	CF ₃	L-46n	H
	СF3	L-460	H
() GTT 310 OTT	CF ₃	L-46p	H
	CF ₃	L-46r	H
	CF3	L-47a	H
	CF ₃	L-47e	H
() OTT NOOTI	CF ₃	L-48b	H
H CH (CH ₃) CH=NOCH ₃	CF ₃	L-50b	H
H CH (CH ₃) CH=NOCH ₃	CF ₃	L-50c	n H
H CH (CH ₃) CH=NOCH ₃	CF3	L-50e	n H
H CH (CH ₃) CH=NOCH ₃	CF3	L-51b	п Н
H CH (CH ₃) CH=NOCH ₃	CF3	L-51c	H
H CH (CH3) CH=NOCH3	CF ₂ C1	Ph-4-F	н Н
H CH (CH ₃) CH=NOCH ₃	CF ₂ CF ₃	Ph-4-SO ₂ CH ₃	
H CH(CH ₃) CH=NOCH ₃	CF3	Ph-4-F	Н
H CH(CH ₃) CH=NOPr-n	CF3	Ph-4-Cl	Н
H CH(CH ₃)CH=NOPr-n	CF ₃	Ph-4-Br	H
H CH(CH ₃) CH=NOPr-n	CF3	Ph-4-CF ₃	H
H CH(CH ₃) CH=NOPr-n	CF ₃	Ph-4-0CHF ₂	H
H CH(CH ₃) CH=NOPr-n	CF3	Ph-4-0CF3	Н
H CH(CH ₃)CH=NOPr-n	CF3	Ph-4-OCF ₂ Br	H
H CH(CH ₃) CH=NOPr-n	CF ₃	Ph-4-0S02CH3	H
H CH(CH ₃) CH=NOPr-n	CF3	Ph-4-SCH3	H
H CH(CH ₃)CH=NOPr-n	CF3	$Ph-4-S(0)CH_3$	Н
H $CH(CH_3)CH=NOPr-n$	Or 3	山証胜200	4 - 3099262
		TT bir.13 2 0 0	

		OF	DI A CO CIL	Н
H	CH (CH ₃) CH=NOPr-n	CF ₃		H
H	CH(CH ₃)CH=NOPr-n	CF ₃		H
H	CH (CH ₃) CH=NOPr-n	CF ₃		H
H	CH(CH ₃)CH=NOPr-n	CF ₃		
H	CH(CH ₃)CH=NOCH ₂ Pr-c	CF ₃		H
H	CH(CH ₃)CH=NOCH ₂ CH ₂ OEt	CF ₃	Ph-4-C1	H
H	CH(CH ₃)CH=NOCH ₂ CH ₂ SEt	CF ₃	Ph-4-OCF ₃	H
H	$CH(CH_3)CH=NOCH_2CH=CH_2$	CF ₃	Ph-4-C1	H
Н	CH (CH3) CH=NOCH2 Ph	CF ₃	Ph-4-0CF ₃	H
H	$CH(CH_3)C(CH_3)=NOCH_3$	CF ₃	Ph-4-C1	H
H	$C(CH_3)_2CH=NOH$	CF ₃	Ph-4-F	H
H	$C(CH_3)_2CH=NOH$	CF ₃	Ph-4-Cl	H
H	C(CH ₃) ₂ CH=NOH	CF ₃	Ph-4-Br	H
H	C (CH ₃) ₂ CH=NOH	CF ₃	Ph-4-CF ₃	H
H	C (CH ₃) ₂ CH=NOH	CF ₃	Ph-4-OCHF ₂	H
H	C (CH ₃) ₂ CH=NOH	CF ₃	Ph-4-OCF ₃	H
Н	C (CH ₃) ₂ CH=NOH	\mathbb{CF}_3	L-45g	H
Н	C (CH ₃) ₂ CH=NOCH ₃	CH ₃	L-45g	H
Н	C (CH ₃) ₂ CH=NOCH ₃	Et	Ph-4-F	H
Н	C (CH ₃) ₂ CH=NOCH ₃	n-Pr	Ph-4-SO ₂ CH ₃	H
Н	C (CH ₃) ₂ CH=NOCH ₃	i-Pr	L-45g	H
Н	C (CH ₃) ₂ CH=NOCH ₃	CHF ₂	Ph-4-F	H
Н	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	CH2 OPh	H
Н	C (CH ₃) ₂ CH=NOCH ₃	CF3	CH ₂ O(Ph-2-C1)	H
H	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	CH ₂ O(Ph-3-C1)	H
Н	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	$CH_2O(Ph-4-C1)$	H
Н	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	CH₂ SPh	H
H	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	CH2 NHPh	Н
H	C (CH ₃) 2 CH=NOCH ₃	CF ₃	OCH ₃	СН3
Н	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	OCH ₂ CF ₃	CH ₂ CF ₃
Н	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	Ph-4-F	H
Н	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	Ph-4-Cl	H
Н	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	Ph-4-Br	H
Н	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	Ph-4-I	H
H	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	Ph-4-CF ₃	H
Н	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	Ph-4-OCHF2	Н
Н	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	Ph-4-0CF ₃	H
Н	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	Ph-4-OCF ₂ Br	H
H	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	Ph-4-OCF ₂ CHF ₂	H
H	$C(CH_3)_2 CH=NOCH_3$	CF ₃	Ph-4-OCF ₂ CHFC1	H
н	$C(CH_3)_2 CH=NOCH_3$	CF₃	Ph-4-OCF ₂ CHFCF ₃	Н
	C (CH ₃) 2 CH=NOCH ₃	CF₃	Ph-4-OCF ₂ CHFOCF ₃	Н
H	C(CH ₃) ₂ CH=NOCH ₃	CF ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
Н	$C(CH_3)_2CH=NOCH_3$	CF ₃	Ph-4-0S0 ₂ CH ₃	Н
Н		CF ₃	Ph-4-0(L-45e)	Н
Н	C(CH ₃) ₂ CH=NOCH ₃	CF ₃	Ph-4-0 (L-45g)	H
Н	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	Ph-4-0(L-451)	H
H	C (CH ₃) ₂ CH=NOCH ₃	CF3	Ph-4-0(L-48b)	H
Н	C (CH ₃) ₂ CH=NOCH ₃	CF3	Ph-4-SCH ₃	H
Н	C (CH ₃) ₂ CH=NOCH ₃		Ph-4-S(0) CH ₃	H
H	$C(CH_3)_2CH=NOCH_3$	CF ₃	1 H-4-9 (A) (N)	

			**
(and) OH MOOH	CF ₃	Ph-4-SO ₂ CH ₃	Н
H C (CH ₃) ₂ CH=NOCH ₃	CF ₃	Ph-4-SEt	H
H C (CH ₃) 2 CH=NOCH ₃	CF3	Ph-4-S02Et	Н
H C (CH ₃) ₂ CH=NOCH ₃	CF3	Ph-4-SPr-i	Н
H C (CH ₃) ₂ CH=NOCH ₃		Ph-4-SO ₂ Pr-i	H
H C (CH ₃) ₂ CH=NOCH ₃	CF3	Ph-4-SCHF2	Н
H C (CH ₃) ₂ CH=NOCH ₃	CF3	Ph-4-SO ₂ CHF ₂	Н
H C (CH ₃) ₂ CH=NOCH ₃	CF3	Ph-4-SCF ₃	H
H C (CH ₃) ₂ CH=NOCH ₃	CF ₃	Ph-4-SO ₂ CF ₃	Н
H C (CH ₃) ₂ CH=NOCH ₃	CF3	Ph-4-SCF ₂ Cl	Н
H C (CH ₃) ₂ CH=NOCH ₃	CF3	Ph-4-SO ₂ CF ₂ C1	Н
H C (CH ₃) 2 CH=NOCH ₃	СFз		Н .
	СF3	Ph-4-SCF ₂ Br	 H
	CF3	Ph-4-SO ₂ CF ₂ Br	н
\ art 1/0/011	· CF3	Ph-4-CN	H
. \ >:0.011	CF ₃	Ph-4-C(0)NH2	H
	CF ₃	$Ph-4-C(S)NH_2$	
H C (CH ₃) ₂ CH=NOCH ₃	CF ₃	$Ph-3, 4-F_2$	H
H C (CH ₃) ₂ CH=NOCH ₃	CF ₃	Ph-3-F-4-C1	· Н
H C (CH ₃) ₂ CH=NOCH ₃	CF ₃	Ph-3-F-4-CF3	H
H C (CH ₃) ₂ CH=NOCH ₃	CF ₃	Ph-3, 4-Cl ₂	H
H C (CH ₃) ₂ CH=NOCH ₃		Ph-3-C1-4-0CF ₃	Н
H C (CH ₃) ₂ CH=NOCH ₃	CF3	L-1c	H
H C(CH ₃) ₂ CH=NOCH ₃	CF3	L-1d	H
H C (CH ₃) ₂ CH=NOCH ₃	CF3	L-1e	H
H C(CH ₃) ₂ CH=NOCH ₃	CF ₃	L-1f	Н
H C(CH ₃) ₂ CH=NOCH ₃	CF3		Н
H C(CH ₃) ₂ CH=NOCH ₃	CF3	L-li	Н
H C (CH ₃) ₂ CH=NOCH ₃	CF3	L-2b	Н
H C(CH ₃) ₂ CH=NOCH ₃	CF3	L-3c	H
H C(CH ₃) ₂ CH=NOCH ₃	CF ₃	L-3d	H
	CF ₃	L-3e	H
	CF3	L-3f	H
() OTT NOCH	СГз	L–3k	H
H C(CH ₃) ₂ CH=NUCH ₃	CF ₃	L-31	H
H C(CH ₃) ₂ CH=NOCH ₃	CF ₃	L-30	
H C (CH ₃) ₂ CH=NOCH ₃	CF ₃	L-4b	H
H C(CH ₃) ₂ CH=NOCH ₃	CF ₃	L-4c	H
H C(CH ₃) ₂ CH=NOCH ₃	CF ₃	L-10b	H
H C (CH ₃) ₂ CH=NOCH ₃	CF3	L-10c	Н
H C(CH ₃) ₂ CH=NOCH ₃	CF3	L-21b	Н
H C (CH ₃) 2 CH=NOCH ₃	CF3	L-21c	H
H C (CH ₃) ₂ CH=NOCH ₃		L-21d	Н
H C (CH ₃) ₂ CH=NOCH ₃	CF ₃	L-21e	Н
H C (CH ₃) ₂ CH=NOCH ₃	CF ₃	L-22b	H
$H C(CH_3)_2 CH=NOCH_3$	CF ₃	L-22c	H
H C (CH ₃) ₂ CH=NOCH ₃	CF ₃	L-23b	Н
H C (CH ₃) ₂ CH=NOCH ₃	CF ₃	L-23c	Н
H C(CH3)2CH=NOCH3	CF ₃	L-23c L-31a	Н
H C (CH ₃) ₂ CH=NOCH ₃	CF ₃		Н
H C (CH ₃) ₂ CH=NOCH ₃	CF3	L-31b	H
	CF ₃	L-45c	H
\ ~~ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	СFз	L-45d	
H C(CH ₃) ₂ CH=NUCH ₃		出証特 2 0 0	4 - 3099262

		CF ₃	L-45e	Н
H	C (CH ₃) ₂ CH=NOCH ₃		L-45f	Н
Н	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	L-45g	H
H	C (CH ₃) ₂ CH=NOCH ₃		L-451	Н
Н	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	L-45m	Н
Н	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	L-46c	Н
H	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	L-46d	Н
Н	$C(CH_3)_2CH=NOCH_3$	CF ₃	L-46e	Н
Н	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	L-46f	H
Н	$C(CH_3)_2CH=NOCH_3$	CF ₃	L-46g	H
Н	C (CH ₃) ₂ CH=NOCH ₃	CF ₃	L-46j	H .
Н	$C(CH_3)_2CH=NOCH_3$	CF ₃	L-46k	Н
Н	C(CH ₃) ₂ CH=NOCH ₃	CF ₃	L-46m	Н
Н	C (CH ₃) ₂ CH=NOCH ₃	CF3		Н
Н	C (CH ₃) ₂ CH=NOCH ₃	CF3	L-46n	Н
Н	C (CH ₃) 2 CH=NOCH ₃	CF3	L-460	H
H	C (CH ₃) ₂ CH=NOCH ₃	CF3	L-46p	H
Н	C (CH ₃) ₂ CH=NOCH ₃	CF3	L-46r	H
п Н	C (CH ₃) ₂ CH=NOCH ₃	CF3	L-47a	H
n H	C (CH ₃) ₂ CH=NOCH ₃	CF3	L-47e	H
		CF3	L-48b	H
H		СFз	L-50b	H
Н		CF3	L-50c	H
H		CF ₃	L-50d	H
H		CF ₃	L-50e	
H	C(CH3)2CH=NOCH2	CF3	L-50f	H
H	C (CH ₃) ₂ CH=NOCH ₃	CF3	L-51b	Н
ŀ	to a North North	CF ₃	L-51c	H
	C (CH ₃) ₂ CH=NOCH ₃	CF ₂ C1	Ph-4-SO ₂ CH ₃	H
	H C (CH ₃) ₂ CH=NOCH ₃	CF ₂ CF ₃	L-45g	H
	H C(CH ₃) ₂ CH=NOCH ₃	CF ₃	Ph-4-0CF3	H
	H C(CH ₃) ₂ CH=NOEt	CF ₃	Ph-4-Cl	H
	H $C(CH_3)_2 CH=NOCH_2 C(0) OBu-t$	CF ₃	Ph-4-0CF3	H
	H $C(CH_3)_2 CH=NOCH_2 C(O) N(Et)_2$	CF3	Ph-4-Cl	Н
	H C (CH ₃) (CH ₂ SO ₂ CH ₃) CH=NOH	CF3	Ph-4-0CF3	Н
	H C(CH ₃) (CH ₂ SO ₂ Et) CH=NOH	CF ₃	Ph-4-C1	Н
	H CH ₂ CH ₂ CH=NOCH ₃	CF3	Ph-4-OCF3	Н
	H CH (CH ₃) CH ₂ CH=NOCH ₃	CF3	Ph-4-Cl	Н
	H CH ₂ CH ₂ CH ₂ CH=NOEt	CF3	Ph-4-0CF3	H
	H CH ₂ C(0)OEt		Ph-4-Cl	H
	H CH(CH ₃)C(0)OCH ₃	CF3	Ph-4-0CF3	Н
	H CH(CH ₃)C(0)OEt	CF3	Ph-4-Cl	Н
	H CH ₂ CH ₂ C(0) OEt	CF3	Ph-4-OCF3	H
	H CH(CH ₃)CH ₂ C(0)OEt	CF3	Ph-4-C1	Н
	н CH(CH3)C(O)NHEt	CF3	Ph-4-OCF3	H
	$H CH(CH_3)C(0)NHPr-n$	CF3	Ph-4-Cl	Н
	н СН(СНз)С(О)NHBu-n	CF3	Ph-4-0CF3	H
	H CH (CH3) C (O) NHCH2 Ph	CF3	Ph-4-Cl	H
	H CH(CH3)C(0)N(CH3)2	CF ₃	Ph-4-0CF3	Н
	H CH(CH3)C(0)N(Et)2	CF3	Ph-4-Cl	Н
	H CH(CH3)C(0)N(Pr-n)2	CF ₃	Ph-4-0CF3	 H
	H $CH(CH_3)C(0)(T-16)$	CF3		
	11 011(0110)		出証特200	4-3099262

	•		Н
H CH(CH ₃)C(0)(T-17)	CF ₃	Ph-4-Cl .	H
H $CH(CH_3)C(0)(T-17)$ H $CH(CH_3)C(0)(T-18)$	CF ₃	Ph-4-OCF3	H
(=== \ a (a) (ft 10)	CF3	Ph-4-Cl	H
() a (a) (m an)	CF3	Ph-4-0CF3	H
/ \ m /o\ /m 01\	CF ₃	Ph-4-Cl	H
. \ ~~~ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CF ₃	Ph-4-OCF3	
H CH(CH ₃) CH ₂ C(O) NHCH ₃	CF ₃	Ph-4-Cl	H
H CH(CH ₃)CH ₂ C(0)NHEt	CF ₃	Ph-4-OCF3	Н
H CH (CH ₃) CH ₂ C (0) N (CH ₃) ₂	CF ₃	Ph-4-Cl	Н
H $CH(CH_3)CH_2C(0)N(Et)_2$	CF ₃	Ph-4-0CF3	H
H $CH(CH_3)CH_2C(0)N(CH_3)Ph$	CF ₃	Ph-4-Cl	H
H CH(CH₃)CN	CF3	Ph-4-Cl	H
H C(CH ₃) ₂ CN	CF ₃	Ph-4-0CF3	H
H C(CH ₃) ₂ CN	CF ₃	Ph-4-SO ₂ CH ₃	H
H C(CH ₃) ₂ CN	CF3	L-45g	Н
H C(CH ₃) ₂ CN	CF3	Ph-4-C1	Н
H CH ₂ CH=CH ₂	CF3	Ph-4-Cl	H
CH ₂ CH=CH ₂ CH ₂ CH=CH ₂	CF3 CF3	Ph-4-0CF3	Н
CH ₂ CH=CH ₂ CH ₂ CH=CH ₂	CF3 CF3	L-45g	Н
CH ₂ CH=CH ₂ CH ₂ CH=CH ₂		CH ₂ OPh	Н
$H C(CH_3)_2 CH=CH_2$	CF3	$CH_2O(Ph-2-C1)$	Н
H C(CH ₃) ₂ CH=CH ₂	CF3	CH2O(Ph-3-C1)	Н
$H C(CH_3)_2CH=CH_2$	CF ₃	CH2O(Ph-4-C1)	Н
H C(CH3)2CH=CH2	CF3	CH ₂ SPh	Н
H C (CH ₃) 2 CH=CH2	CF ₃	CH ₂ NHPh	Н
H $C(CH_3)_2CH=CH_2$	CF ₃	Ph-4-F	Н
H C (CH3)2 CH=CH2	CF3	Ph-4-C1	Н
H C(CH3)2CH=CH2	CF ₃	Ph-4-Br	Н
H C(CH ₃) ₂ CH=CH ₂	CF ₃	Ph-4-I	H
H $C(CH_3)_2CH=CH_2$	CF ₃	Ph-4-CF3	Н
H $C(CH_3)_2CH=CH_2$	CF ₃	Ph-4-0CHF ₂	Н
H $C(CH_3)_2 CH=CH_2$	CF ₃	Ph-4-0CF3	Н
H $C(CH_3)_2CH=CH_2$	CF3	Ph-4-OCF ₂ Br	Н
H $C(CH_3)_2CH=CH_2$	CF ₃	Ph-4-OCF2CHF2	H
H C (CH ₃) 2 CH=CH ₂	CF ₃	Ph-4-OCF2 CHFC1	Н
H C (CH ₃) ₂ CH=CH ₂	CF3	Ph-4-UCF2CHFCI	Н
H C (CH ₃) ₂ CH=CH ₂	CF ₃	Ph-4-OCF ₂ CHFCF ₃	
H C(CH ₃) ₂ CH=CH ₂	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	
H C(CH ₃) ₂ CH=CH ₂	CF ₃	Ph-4-OCF ₂ CHFOCF ₂	H
() CIT OIT	CF ₃	Ph-4-0S0 ₂ CH ₃	H
	CF3	Ph-4-0(L-45g)	H
017	CF3	Ph-4-SCH ₃	H
	CF ₃	Ph-4-S(0) CH ₃	H
	CF ₃	Ph-4-SO ₂ CH ₃	H
	CF ₃	Ph-4-CN	H
	CF ₃	Ph-4-C(0)NH2	H
H C(CH ₃) ₂ CH=CH ₂	CF3	$Ph-4-C(S)NH_2$	H
H C(CH ₃) ₂ CH=CH ₂	CF3	Ph-3, 4-Cl ₂	
H $C(CH_3)_2CH=CH_2$	CF ₃	L-1c	Н
H C(CH ₃) ₂ CH=CH ₂	CF ₃	L–1d	H
H C(CH ₃) ₂ CH=CH ₂	CF3	L-le	Н
H $C(CH_3)_2CH=CH_2$	01.9	出証特2004	4 - 3099262
		14 mm 14 = 0 0	

			T 1f	Н
H $C(CH_3)_2CH=CI$	-1_2	CF ₃	L-1f	Н
H C (CH ₃) ₂ CH=C	H_2	CF ₃	L-1i L-2b	Н
H C (CH ₃) ₂ CH=C	H ₂	CF ₃	L-20 L-3c	Н
H C (CH ₃) ₂ CH=C	$_{ m H_2}$	CF ₃		Н
H $C(CH_3)_2CH=C$	H ₂ .	CF3	L-3d	Н
H C(CH ₃) ₂ CH=0	H ₂	CF3	L-3e	Н
H C(CH ₃) ₂ CH=(H2	CF3	L-3f	H
H $C(CH_3)_2 CH=0$	CH ₂	CF ₃	L-3k	H
H $C(CH_3)_2CH=0$	CH ₂	CF ₃	L-31	H
H $C(CH_3)_2CH=$	CH ₂	CF3	L-30	H
H $C(CH_3)_2CH=$	CH ₂	CF ₃	L-4b	H
H $C(CH_3)_2CH=$	CH2	CF ₃	L-4c	H
H $C(CH_3)_2CH=$	CH ₂	CF ₃	L-10b	H
H $C(CH_3)_2CH_=$:CH2	CF ₃	L-10c	 H
	:CH2	CF ₃	L-21b	H
	-CH2	CF ₃	L-21c	H
4 \ 647	-CH2	CF ₃	L-21d	H
	-012 -042	CF3	L-21e	H
	-CHo	CF3	L-22b	H
H C(CH ₃) ₂ CH	=0112 _CHa	CF3	L-22c	·H
H C(CH ₃) ₂ CH	=CH2	CF3	L-23b	H
H C(CH ₃) ₂ CH	=C112	CF3	L-23c	
H C(CH ₃) ₂ CH	CU.	CF ₃	L-31a	H
H C(CH ₃) ₂ Cl	I=UNZ	CF ₃	L-31b	H
H C(CH ₃) ₂ CH	1=UN2 1 CU-	CF ₃	L-45d	Н
H C(CH ₃) ₂ CI	1=UΠ2	CF ₃	L-45e	Н
H C(CH ₃) ₂ Cl	H=UH2	CF ₃	L-45f	H
H C(CH ₃) ₂ C	H=UH2	CF ₃	L-45g	Н
H C(CH ₃) ₂ C	H=UH2	CF3	L-451	H
H C(CH ₃) ₂ C	H=CH2	CF ₃	L-45m	. Н
H C(CH ₃) ₂ C	H=CH2	CF ₃	L-46d	Н
H C(CH ₃) ₂ (CH=CH2	CF ₃	L-46e	H
H C(CH ₃) ₂ (CH=CH2	CF ₃	L-46f	H
$H C(CH_3)_2$	CH=CH2	CF3	L-46g	H
H C(CH ₃) ₂	CH=CH2	CF3	L-46j	H
H C(CH ₃) ₂	CH=CH2	CF3	L-46k	Н
H C(CH ₃) ₂	CH=CH ₂	CF3	L-46r	Н
H C(CH ₃) ₂	CH=CH ₂	CF3	Ph-4-0CF3	Н
H C(CH ₃) ₂	CH=CHC(0)NHEt	CF ₃	Ph-4-Cl	Н
	CH=CHPh(E)	CF3	Ph-4-0CF3	Н
$H CH_2C \equiv C$		CF3 CF3	Ph-4-F	Н
$CH_3 CH_2 C \equiv 0$	H	CF3 CF3	Ph-4-Cl	Н
$CH_3 CH_2 C \equiv 0$		CF3 CF3	Ph-4-Br	H
CH ₃ CH ₂ C≡	CH		Ph-4-CF ₃	Н
CH ₃ CH ₂ C≡	CH	CF ₃	Ph-4-0CHF2	H H
CH ₃ CH ₂ C≡	CH	CF ₃	Ph-4-0CF3	. Н
CH ₃ CH ₂ C≡	CH	CF ₃	Ph-4-SCH ₃	Н
CH ₃ CH ₂ C≡	CH	CF3	Ph-4-S(0)	СН3 Н
CH ₃ CH ₂ C≡	CH	CF3	Ph-4-S0 ₂ C	
CH ₃ CH ₂ C≡	СН	CF ₃	Ph-4-CN	Н
CH ₃ CH ₂ C≡	:CH	CF3		0 0 4 - 3 0 9 9 2 6 2
• ·			出証符 Z	004-3055202

	CE.	L-45d	Н
CH_3 CH_2 $C \equiv CH$	CF3	L-45e	Н
CH ₃ CH ₂ C≡CH	CF ₃	L-45g	Н
CH ₃ CH ₂ C≡CH	CF3	L-46d	H
CH ₃ CH ₂ C≡CH	CF ₃	L-46e	Н
CH_3 CH_2 $C \equiv CH$	CF ₃	L-46g	Н
CH ₃ CH ₂ C≡CH	CF ₃	Ph-4-F	Н
$H C(CH_3)_2C \equiv CH$	СНз	Ph-4-Cl	Н
$H C(CH_3)_2C \equiv CH$	Et_	Ph-4-SO ₂ CH ₃	Н
$H C(CH_3)_2C \equiv CH$	n-Pr		Н
$H C(CH_3)_2C \equiv CH$	i-Pr	L-45g Ph-4-F	Н
$H C(CH_3)_2C \equiv CH$	CHF2		Н
H $C(CH_3)_2C \equiv CH$	CF3	CH ₂ OPh	H
H $C(CH_3)_2C \equiv CH$	CF3	$CH_2O(Ph-2-C1)$	H
$H C(CH_3)_2C \equiv CH$	CF3	CH ₂ O (Ph-3-C1)	H
$\begin{array}{ccc} H & C(CH_3)_2C \Longrightarrow CH \\ \end{array}$	СFз	CH2O(Ph-4-C1)	H
H $C(CH_3)_2C = CH$	CF3	CH ₂ SPh	H ·
	CF3	CH2 NHPh	CH ₃
	CF ₃	ОСН₃	
() ~ 077	CF3	OCH ₂ CF ₃	CH ₂ CF ₃
$H C(CH_3)_2 C \equiv CH$	CF ₃	Ph-4-F	Н
$H C(CH_3)_2 C \equiv CH$	CF ₃	Ph-4-Cl	Н
$H \qquad C(CH_3)_2 C \equiv CH$	CF3	Ph-4-Br	Н
$H \qquad C(CH_3)_2 C \equiv CH$	CF ₃	Ph-4-I	Н
$H C(CH_3)_2 C \equiv CH$	CF3	Ph-4-CF3	Н
$H C(CH_3)_2 C \equiv CH$	CF3	Ph-4-CH ₂ SCH ₃	Н
$H C(CH_3)_2 C \equiv CH$		Ph-4-CH ₂ SO ₂ CH ₃	Н
$H C(CH_3)_2 C \equiv CH$	CF ₃	Ph-4-CH ₂ SCF ₃	Н
$H C(CH_3)_2 C \equiv CH$	CF3	Ph-4-CH ₂ SO ₂ CF ₃	Н
$H C(CH_3)_2C \equiv CH$	CF ₃	Ph-4-OCHF2	Н
$H C(CH_3)_2 C \equiv CH$	CF ₃	Ph-4-0CF3	Н
$H C(CH_3)_2C \equiv CH$	CF ₃	Ph-4-0CF ₂ Br	Н
$H C(CH_3)_2C \equiv CH$	CF ₃	Ph-4-0CF2 CHF2	Н
H $C(CH_3)_2C\equiv CH$	CF3	Ph-4-OCF ₂ CHFC 1	Н
$H C(CH_3)_2 C \equiv CH$	CF ₃	Ph-4-OCF2 CHFCF3	H
H $C(CH_3)_2 C \equiv CH$	CF ₃	Ph-4-OCF2 CHFOCF3	Н
H $C(CH_3)_2C \equiv CH$	CF ₃	Ph-4-OCF2 CHFOCF3 CF2	
H $C(CH_3)_2C \equiv CH$	CF ₃		H
H $C(CH_3)_2C \equiv CH$	CF ₃	Ph-4-0S0 ₂ CH ₃	H
	СFз	Ph-4-0(L-45g)	H
	CF3	Ph-4-SCH ₃	H
~~*	CF ₃	Ph-4-S(0)CH ₃	H
$H C(CH_3)_2 C \equiv CH$	CF ₃	Ph-4-S0 ₂ CH ₃	
H $C(CH_3)_2 C \equiv CH$	CF3	Ph-4-SEt	H
H $C(CH_3)_2 C \equiv CH$	CF ₃	Ph-4-S(0)Et	H
H $C(CH_3)_2C \equiv CH$	CF ₃	Ph-4-S02Et	H
$H C(CH_3)_2 C \equiv CH$	CF ₃	Ph-4-SPr-n	H
$H \qquad C(CH_3)_2 C \equiv CH$	CF ₃	Ph-4-S(0)Pr-n	H
H $C(CH_3)_2 C \equiv CH$	CF ₃	$Ph-4-SO_2Pr-n$	H
H $C(CH_3)_2C \equiv CH$	CF ₃	Ph-4-SPr-i	H
$H C(CH_3)_2 C \equiv CH$	CF3 CF3	Ph-4-S(0)Pr-i	H
$H C(CH_3)_2 C \equiv CH$		Ph-4-S0 ₂ Pr-i	H
$H C(CH_3)_2C \equiv CH$	CF3	出証特2004-	-3099262
		出証符2004-	3 0 <i>3 3 2</i> 0 2

•			••
(O O O O	CF3	Ph-4-SCHF2	H
$H C(CH_3)_2 C \equiv CH$	CF3	$Ph-4-S(0)CHF_2$	Н
$H C(CH_3)_2 C \equiv CH$	CF3	Ph-4-SO ₂ CHF ₂	Н
$H C(CH_3)_2C \equiv CH$		Ph-4-SCF3	H
$H C(CH_3)_2C \equiv CH$	CF ₃	Ph-4-S(0) CF3	Н
$H C(CH_3)_2C \equiv CH$	CF ₃	Ph-4-S0 ₂ CF ₃	Н
$H C(CH_3)_2 C \equiv CH$	CF ₃	Ph-4-SCF ₂ Cl	Н
H $C(CH_3)_2C \equiv CH$	CF ₃	Ph-4-S(0) CF ₂ C1	Н
H $C(CH_3)_2C\equiv CH$	CF3	Ph-4-S0 ₂ CF ₂ C1	Н
H $C(CH_3)_2 C \equiv CH$	CF ₃		Н
H $C(CH_3)_2C \equiv CH$	CF ₃	Ph-4-SCF ₂ Br	H
H $C(CH_3)_2C \equiv CH$	CF ₃	$Ph-4-S(0)CF_2Br$	H
	CF ₃	Ph-4-SO ₂ CF ₂ Br	H
	CF3	Ph-4-CN	H
$H C(CH_3)_2 C \equiv CH$	CF3	$Ph-4-C(0)NH_2$	
$H C(CH_3)_2 C \equiv CH$	CF3	$Ph-4-C(S)NH_2$	H
$H C(CH_3)_2 C \equiv CH$	CF3	$Ph-3, 4-F_2$	H
H C(CH ₃) ₂ C≡CH	CF ₃	Ph-3-F-4-C1	H
$H C(CH_3)_2C \equiv CH$	CF3	Ph-3-F-4-CF3	Н
$H C(CH_3)_2 C \equiv CH$	CF3	Ph-3, 4-Cl ₂	Н
H $C(CH_3)_2C\equiv CH$		Ph-3-C1-4-0CF3	Н
$H C(CH_3)_2C \equiv CH$	CF ₃	L-1c	Н
$H C(CH_3)_2C \equiv CH$	CF ₃	L-1d	Н
$H C(CH_3)_2 C \equiv CH$	CF ₃	L-1e	H
$H C(CH_3)_2 C \equiv CH$	CF3	L-1f	Н
H C(CH ₃) ₂ C≡CH	CF3	•	Н
$H C(CH_3)_2 C \equiv CH$	CF3	L-lg	Н
H $C(CH_3)_2C \equiv CH$	CF3	L-1i	H
$\begin{array}{ccc} H & C(CH_3)_2 C \equiv CH \end{array}$	CF3	L-2b	H
H $C(CH_3)_2C \equiv CH$	CF ₃	L-3c	H
	CF3	L-3d	H
	CF ₃	L-3e	H
$H C(CH_3)_2 C \equiv CH$	CF ₃	L-3f	
H $C(CH_3)_2 C \equiv CH$	CF ₃	L-3h	H
H $C(CH_3)_2C \equiv CH$	CF ₃	L-3i	H
$H \qquad C(CH_3) \circ C \equiv CH$	CF ₃	L-3j	H
$H C(CH_3)_2 C \equiv CH$	CF ₃	L-3k	Н
H $C(CH_3)_2C \equiv CH$	CF ₃	L-31	Н
$H C(CH_3)_2C \equiv CH$	CF ₃	L-3m	Н
$H C(CH_3)_2 C \equiv CH$	CF3	L-3n	Н
$H C(CH_3)_2C \equiv CH$		L-30	H
$H C(CH_3)_2C \equiv CH$	CF3	L-4b	H
$H C(CH_3)_2C \equiv CH$	CF ₃	L-4c	Н
$H C(CH_3)_2C \equiv CH$	CF ₃	L-4e	H
$H C(CH_3)_2C \equiv CH$	CF ₃	L-10b	Н
H $C(CH_3)_2C\equiv CH$	CF ₃		Н
H $C(CH_3)_2C \equiv CH$	CF ₃	L-10c	Н
H $C(CH_3)_2C \equiv CH$	CF ₃	L-10d	Н
H $C(CH_3)_2C \equiv CH$	CF ₃	L-21b	H
	СFз	L-21c	H
() G 011	CF ₃	L-21d	H
H C(CH ₃) ₂ C≡CH	CF ₃	L-21e	n H
H C(CH ₃) ₂ C≡CH	CF ₃	L-22b	
$H C(CH_3)_2C \equiv CH$		出証特200	4 - 3099262
		Frithe 13 P 0 0	

		CTF-	L-22c	H
Н	$C(CH_3)_2C \equiv CH$	CF ₃	L-22d	Н
Н	$C(CH_3)_2C \equiv CH$	CF ₃	L-23b	Н
H	$C(CH_3)_2C \equiv CH$	CF ₃	L-23c	Н
H	$C(CH_3)_2C \equiv CH$	CF ₃	L-23e	Н
Н	$C(CH_3)_2C\equiv CH$	CF ₃	L-23e L-31a	Н
H	$C(CH_3)_2C \equiv CH$	CF ₃	L-31b	H
Н	$C(CH_3)_2C \equiv CH$	CF3	L-31c	Н
Н	$C(CH_3)_2C \equiv CH$	CF ₃	L-45c	Н
H	$C(CH_3)_2C \equiv CH$	CF ₃	L-45d	Н
Н	$C(CH_3)_2C \equiv CH$	CF ₃	L-45e	Н
Н	$C(CH_3)_2C \equiv CH$	CF ₃	L-45f	Н
Н	$C(CH_3)_2C \equiv CH$	CF ₃	L-45g	Н
Н	$C(CH_3)_2C \equiv CH$	CF ₃		Н
Н	$C(CH_3)_2C \equiv CH$	CF3	L-451	Н
H	$C(CH_3)_2C \equiv CH$	· CF3	L-45m	Н
H	$C(CH_3)_2 C \equiv CH$	CF ₃	L-46c	H
Н	$C(CH_3)_2 C \equiv CH$	CF ₃	L-46d	H
Н	$C(CH_3)_2C \equiv CH$	CF ₃	L-46e	 H
Н	$C(CH_3)_2C \equiv CH$	CF3	L-46f	 Н
Н	$C(CH_3)_2 C \equiv CH$	CF ₃	L-46g	H
Н	$C(CH_3)_2C \equiv CH$	CF_3	L-46j	Н
H	$C(CH_3)_2C \equiv CH$	CF ₃	L-46k	H
H	: 	CF3	L-46m	H
H		CF ₃	L-46n	H
п Н		CF ₃	L-46r	H
		CF3	L-47a	H
H		CF3	L-47e	
H		CF ₃	L-50b	H
H		CF ₃	L-50c	H
H		CF ₃	L-50e	Н
H		CF3	L-50f	H
ŀ		CF ₃	L-51b	H
	$\{C(CH_3)_2 C \equiv CH\}$	CF ₃	L-51c	H
	$\begin{array}{ccc} & C(CH_3)_2 C \equiv CH \\ & C(CH_3)_2 C \equiv CH \end{array}$	CF ₂ C1	Ph-4-Cl	Н
	$\begin{array}{ccc} H & C(CH_3)_2 C \equiv CH \\ & & & & & & & & & & & & & & & & & & $	CF ₂ CF ₃	Ph-4-SO ₂ CH ₃	H
	$\begin{array}{ccc} H & C(CH_3)_2 C \equiv CH \\ & & & & & & & & & & & & & & & & & & $	CF ₃	Ph-4-Cl	H
	$\begin{array}{ccc} H & C(CH_3)_2 C \equiv CPh \\ & C(CH_3)_2 C \equiv CPh & CH_3 \end{array}$	CF3	Ph-4-OCF3	H
	H $C(CH_3)_2C \equiv C(Ph-4-CH_3)$	CF ₃	Ph-4-Cl	H
	H $C(CH_3)_2 C \equiv C(Ph-4-CF_3)$	CF3	Ph-4-OCF3	H
	H $C(CH_3)_2 C \equiv C(Ph-4-0CH_3)$	CF3	Ph-4-Cl	H
	H $C(CH_3)_2 C \equiv C(Ph-4-0CF_3)$	CF3	Ph-4-0CF3	H
	H $C(CH_3)_2 C \equiv C(Ph-2, 4-F_2)$	CF3	Ph-4-C1	Н
	H $C(CH_3)_2 C \equiv C(Ph-2, 4-Cl_2)$	CF3	Ph-4-0CF3	Н
	H $C(CH_3)_2C \equiv C(Ph-2, 6-Cl_2)$	CF3	Ph-4-Cl	Н
	$H C(CH_3)_2C \equiv C(1-Naph)$	CF3	Ph-4-0CF3	Н
	$H C(CH_3)_2 C \equiv C(L-3a)$	CF3	Ph-4-Cl	H
	$H C(CH_3)_2C \equiv C(L-4a)$	CF3	Ph-4-0CF3	H
	$H C(CH_3)_2C \equiv C(L-45a)$	CF3	Ph-4-Cl	H
	$H C(CH_3)_2C \equiv C(L-45g)$		Ph-4-0CF3	H
	$H C(CH_3)_2C \equiv C(L-46a)$	CF3	Ph-4-Cl	H
	H CH₂Ph	CF ₃		04 - 3099262
			出証符 4 0	

	OD.	Ph-4-Cl	Н
CH ₃ CH ₂ Ph	CF3	Ph-4-0CF3	Н
CH ₃ CH ₂ Ph	CF ₃	Ph-4-C1	H
Et CH2Ph	CF ₃	Ph-4-0CF3	Н
Et CH2Ph	CF ₃	Ph-4-0CF3	Н
$H ext{CH}_2 ext{(Ph-2-F)}$	CF3	Ph-4-Cl	Н
CH_3 CH_2 $(Ph-2-F)$	CF ₃	Ph-4-0CF3	Н
CH_3 CH_2 $(Ph-2-F)$	CF ₃	Ph-4-Cl	Н
H CH ₂ (Ph-2-C1)	CF ₃	Ph-4-OCF3	Н
H CH2 (Ph-3-C1)	CF ₃	Ph-4-C1	Н
CH ₃ CH ₂ (Ph-3-C1)	CF ₃	Ph-4-0CF3	Н
CH_3 CH_2 (Ph-3-C1)	CF ₃	Ph-4-Cl	H
$H ext{CH}_2 ext{(Ph-4-C1)}$	CF ₃	Ph-4-0CF3	- H
H CH ₂ (Ph-2-CH ₃)	CF ₃	Ph-4-Cl	H
$H ext{CH}_2 ext{(Ph-3-CH}_3 ext{)}$	CF ₃	Ph-4-0CF3	Н
$H ext{CH}_2 ext{(Ph-4-CH}_3 ext{)}$	CF3	Ph-4-Cl	Н
$H ext{CH}_2 ext{(Ph-2-CF}_3 ext{)}$	CF ₃	Ph-4-0CF3	Н
H CH2 (Ph-2-OCH3)	CF3	Ph-4-C1	H
H CH2 (Ph-3-OCH3)	CF ₃	Ph-4-0CF3	Н
H CH2 (Ph-4-OCH3)	CF ₃	Ph-4-Cl	Н
H CH2 (Ph-4-OCF3)	CF ₃	Ph-4-0CF3	Н
H CH_2 (Ph-2, 3-Cl ₂)	CF3	Ph-4-Cl	H
H CH2 (Ph-2, 4-Cl2)	CF3	Ph-4-0CF3	Н
H CH2 (Ph-3, 4-Cl2)	CF ₃	Ph-4-C1	Н
H CH ₂ (L-45a)	CF ₃	Ph-4-0CF3	Н
H CH2 (L-46a)	CF ₃	Ph-4-C1	Н
н СН ₂ (L-47а)	CF ₃	Ph-4-0CF3	Н
H CH(CH₃)Ph	CF3	Ph-4-Cl	Н
$H CH(CH_3)Ph(R)$	CF3	Ph-4-0CF3	H
$H CH(CH_3)Ph(R)$	CF3	Ph-4-SO ₂ CH ₃	Н
$H CH(CH_3)Ph(R)$	CF ₃	Ph-4-C1	Н
H CH(CH3)Ph(S)	CF3	Ph-4-0CF3	H
$H CH(CH_3)Ph(S)$	CF ₃	Ph-4-Cl	Н
$H CH(CH_3) (Ph-2-C1)$	CF ₃	Ph-4-0CF3	Н
H CH(CH3) (Ph-3-C1)	CF ₃	Ph-4-C1	Н
H CH(CH3) (Ph-4-C1)	CF3	Ph-4-0CF3	Н
$H CH(CH_3)(L-1a)$	CF3	Ph-4-C1	Н
H CH(CH3)(L-3a)	CF₃ CF₃	Ph-4-0CF3	Н .
$H CH(CH_3)(L-45a)$	CF3 CF3	Ph-4-Cl	Н
$H C(CH_3)_2Ph$	CF3	Ph-4-0CF3	H
H $C(CH_3)_2(Ph-3-C1)$	CF3	Ph-4-Cl	Н
$H C(CH_3)_2 (Ph-4-C1)$	CF3	Ph-4-0CF3	Н
H CH ₂ CH ₂ Ph	CF3	Ph-4-C1	Н
H CH ₂ CH ₂ (Ph-2-C1)	CF ₃	Ph-4-0CF3	Н
H CH ₂ CH ₂ (Ph-3-C1)	CF3	Ph-4-Cl	Н
H CH ₂ CH ₂ (Ph-4-C1)	CF3 CF3	Ph-4-0CF ₃	Н
H CH ₂ CH ₂ (L-46a)	CF3 CF3	Ph-4-Cl	Н
H C(CH ₃) ₂ CH ₂ Ph	CF3 CF3	Ph-4-0CF3	Н
H CH2 CH2 CH2 Ph	CF3 CF3	Ph-4-Cl	Н
н оснз	CF3 CF3	Ph-4-0CF3	Н
H OPr-n	Ora		4-3099262
		加州470 0	· • · · ·

H H H H H H H	OCH ₂ CH=CHC1 OCH ₂ Ph NHCHO NHC (O) CH ₃ NHC (O) Ph NHC (O) OCH ₃ NHC (O) OPh NHC (O) OCH ₂ Ph N(CH ₃) 2 N(CH ₃) CHO N(CH ₃) C (O) CH ₃ N(CH ₃) C (O) CH ₃	CF3	Ph-4-Cl Ph-4-OCF3 Ph-4-Cl Ph-4-OCF3 Ph-4-Cl Ph-4-OCF3 Ph-4-Cl Ph-4-OCF3 Ph-4-Cl Ph-4-Cl Ph-4-Cl Ph-4-Cl Ph-4-Cl	H H H H H H H H
---------------------------------	--	---	---	--------------------------------------

第3表表中、置換基 $(X)_m$ 及び $(Y)_n$ の置換位置を表す番号は、それぞれ下記の構造式に於いて記された番号の位置に対応するものであり、一の表記は、無置換を表す。

[0308]

[0309]

[0312]

[0312]				6
(X) _m	(Y) _n	R ⁴	R ⁵	R ⁶
_	2-CH ₃	CF3	Ph-4-F 出証特 2 0	H 0 4 - 3 0 9 9 2 6 2

	o CII-	CF ₃	Ph-4-Cl	Н
	2-CH ₃	CF3	Ph-4-Br	Н
_	2-CH ₃	CF3	Ph-4-CF3	Н
	2-CH ₃	CF3	Ph-4-0CHF2	Н
-	2-CH ₃	CF3	Ph-4-0CF3	H
_	2-CH ₃	CF3	Ph-4-SCH ₃	Н
_	2-CH ₃		Ph-4-S(0) CH ₃	Н
_	2-CH ₃	CF3	Ph-4-SO ₂ CH ₃	H
	2-СНз	CF3	Ph-4-CN	H
-	2-СН3	CF ₃	Ph-3, 4-Cl ₂	H
_	2-СН3	CF3	L-45g	Н
_	2-СН3	CF3	Ph-4-C1	Н
5-F	2-СН3	CF ₃	Ph-4-0CF3	Н
5-F	2–СНз	CF ₃	Ph-4-SO ₂ CH ₃	Н
5-F	2-СНз	CF ₃	Ph-4-F	Н
6-F	2-CH3	CF ₃		H
6-F	2-CH3	CF3	Ph-4-C1	 H
6-F	2-CH3	CF3	Ph-4-Br	H
6-F	2-CH3	СFз	Ph-4-I	H
6-F	2-СНз	CF ₃	Ph-4-CF3	H
6-F	2-CH ₃	CF ₃	Ph-4-OCHF ₂	H
6-F	2-CH3	CF ₃	Ph-4-0CF ₃	H
6-F	2-СН3	CF ₃	Ph-4-0S0 ₂ CH ₃	H
6-F	2-CH3	CF ₃	Ph-4-SCH ₃	H
6-F	2-CH3	CF3	$Ph-4-S(0)CH_3$	H
6-F	2-CH3	CF ₃	Ph-4-SO ₂ CH ₃	H
6-F	2-СН3	CF3	Ph-4-CN	н Н
6-F	2-CH ₃	CF3	Ph-3, 4-Cl ₂	n H
	2-CH ₃	CF3	L-45d	
6-F	2-СНз	CF3	L-45e	Н
6-F	2-CH ₃	CF ₃	L-45g	H
6-F	2-CH3	CF3	L-46d	Н
6-F	2-CH ₃	CF ₃	L-46e	H
6-F	2-CH ₃	CF ₃	L-46g	H ••
6-F	2-CH3	CF ₃	L-47a	H
6-F	2-CH3	CF ₃	L-47e	H
6-F	2-CH3	CF ₃	Ph-4-Cl	H
$3,4-F_2$	2-CH3	CF ₃	Ph-4-Br	H
3, 4-F ₂	2–CH3	CF ₃	Ph-4-CF3	H
$3, 4-F_2$	2-CH3	CF3	Ph-4-OCHF2	Н
$3,4-F_2$	2-С13 2-СНз	CF3	Ph-4-OCF3	Н
$3,4-F_2$		CF3	Ph-4-SO ₂ CH ₃	Н
$3,4-F_2$	2-CH ₃	CF3	L-45g	Н
3,4-F2	2-CH ₃	CF ₃	Ph-4-Cl	H
$3,6-F_2$	2-СНз	CF ₃	Ph-4-Cl	Н
4,5-F ₂	2-CH ₃	CF3	Ph-4-0CF3	Н
4,5-F ₂	2-CH ₃	CF3	Ph-4-Cl	Н
4-C1	2-CH ₃	CF3	Ph-4-Br	H
4-C1	2-CH ₃	CF3	Ph-4-CF3	H
4-C1	2-CH3	CF3	Ph-4-OCHF2	Н
4-C1	2–CH3	CF3	Ph-4-0CF3	Н
4-C1	2-CH ₃	Cr3		004-30992

		OD.	Ph-4-SO ₂ CH ₃	Н
4-C1	2-CH3	CF ₃	L-45g	Н
4-C1	2-CH3	CF3	Ph-4-Cl	Н
5-C1	2-CH3	CF3	Ph-4-F	Н
6-C1	2-CH3	CF3	Ph-4-Cl	Н
6-C1	2-СН3	CF ₃	Ph-4-Br	Н
6-C1	2-CH3	СГз		Н
6-C1	2-CH3	CF3	Ph-4-I	H
6-C1	2-CH3	CF3	Ph-4-CF ₃	Н
6-C1	-2-СН3	CF3	Ph-4-OCHF2	H
6-C1	2-СНз	CF ₃	Ph-4-OCF3	H
6-C1	2-СН3	CF ₃	Ph-4-OCF ₂ Br	Н
6-C1	2-CH3	CF3	Ph-4-OCF ₂ CHF ₂	H
6-C1	2-CH3	CF ₃	Ph-4-OCF ₂ CHFCF ₃	H
6-C1	2-CH3	CF3	Ph-4-0S0 ₂ CH ₃	H
6-C1	2-CH ₃	CF3	Ph-4-SCH ₃	H
6-C1	2-CH ₃	CF3	Ph-4-S(0) CH ₃	H
6-C1	2-CH ₃	CF3	Ph-4-S02 CH3	H
6-C1 6-C1	2-CH ₃	CF ₃	Ph-4-CN	
	2-CH ₃	CF ₃	$Ph-4-C(0)NH_2$	H
6-C1	2-CH ₃	CF ₃	$Ph-4-C(S)NH_2$	H
6-C1	2-CH ₃	CF ₃	$Ph-3, 4-F_2$	H
6-C1	2-CH ₃	CF3	Ph-3-F-4-C1	H
6-C1	2-CH3	CF3	Ph-3, 4-Cl ₂	H
6-C1	2-CH3	СFз	L-1c	H
6-C1	2-CH3	CF3	L-1d	* H
6-C1		CF3	L-1e	H
6-C1	2-CH ₃	CF3	L-1i	H
6-C1	2–CH3	CF3	L-2b	H
6-C1	2-CH ₃	CF ₃	L-3d	Н
6-C1	2-CH₃	CF3	L-3e	H
6-C1	2-CH ₃	CF3	L-3f	Н
6-C1	2-CH ₃	CF3	L-31	H
6-C1	2-CH ₃	CF ₃	L-30	Н
6-C1	2-CH ₃	CF3 CF3	L-4c	Н
6-C1	2-СНз		L-45g	H
6-C1	2-CH ₃	CF3	L-46g	Н
6-C1	2-СН3	CF₃	L-47a	Н
6-C1	2-СН3	CF ₃	L-47e	H
6-C1	2-СН3	CF3	Ph-4-F	Н
3-C1-4-F	2-СНз	CF ₃	Ph-4-Cl	Н
3-C1-4-F	2-СНз	CF ₃	Ph-4-Br	Н
3-C1-4-F	2-СН3	CF ₃	Ph-4-CF3	Н
3-C1-4-F	2-СНз	CF ₃	Ph-4-0CHF2	Н
3-C1-4-F	2-СНз	CF ₃	Ph-4-0CF3	Н
3-C1-4-F	2-CH3	CF ₃	Ph-4-0CF ₂ Br	Н
3-C1-4-F	2-CH3	CF ₃	Ph-4-OCF2 CHF2	Н
3-C1-4-F	2-СНз	CF3	Ph-4-0CF2CHFC1	H
3-C1-4-F	2-СНз	CF ₃	Ph-4-UCF2CIFCI	
3-C1-4-F	2-CH3	CF ₃	Ph-4-OCF ₂ CHFCF ₃	
3-C1-4-F	2-CH₃	CF ₃	Ph-4-OCF2 CHFOCF	•
3-C1-4-F	2-CH3	CF ₃	Ph-4-OCF2 CHFOCF	
0 01 1 1			出証特20	04-3099262

		a D	Ph-4-SO ₂ CH ₃	Н
3-C1-4-F	2–CH₃	CF ₃		Н
3-C1-4-F	2-CH3	CF ₃	L-45d	Н
3-C1-4-F	2-CH3	CF ₃	L-45e	H
3-C1-4-F	2-СНз	CF ₃	L-45g	Н
3-C1-4-F	2-CH3	CF ₃	L-46d	H
3-C1-4-F	2-CH ₃	CF ₃	L-46e	H
3-C1-4-F	2-CH3	CF ₃	L-46g	Н
3,4-Cl ₂	2-CH3	CF ₃	Ph-4-F	 Н
3,4-Cl ₂	2-CH ₃	CF₃	Ph-4-Cl	 H
3, 4-Cl ₂	2-CH ₃	CF ₃	Ph-4-Br	H
3, 4-Cl ₂	2-CH3	CF3	Ph-4-I	н
3, 4-Cl ₂	2-CH ₃	CF ₃	Ph-4-CF3	H
3, 4-Cl ₂	2-СН3	CF3	Ph-4-0CHF ₂	H
3, 4-Cl ₂	2-СН3	CF ₃	Ph-4-0CF3	H
3, 4-Cl ₂	2-CH3	CF ₃	Ph-4-OCF ₂ Br	Н
3, 4-Cl ₂	2-CH3	CF3	Ph-4-OCF ₂ CHF ₂	H
3, 4-Cl ₂	2-CH3	CF3	Ph-4-OCF ₂ CHFC1	H
3, 4-Cl ₂	2-CH3	CF3	Ph-4-OCF ₂ CHFCF ₃	H
3,4-Cl ₂	2-СНз	CF3	Ph-4-OCF ₂ CHFOCF ₃	
3,4-Cl ₂	2-CH ₃	CF ₃	Ph-4-OCF ₂ CHFOCF ₂ C	H
3,4-Cl ₂	2-CH3	CF ₃	Ph-4-0S0 ₂ CH ₃	H
3, 4-Cl ₂	2-CH ₃	CF3	Ph-4-0(L-45g)	п Н
3,4-Cl ₂	2-CH ₃	CF ₃	Ph-4-SCH ₃	
3, 4-C12	2-CH ₃	CF ₃	Ph-4-S(0)CH ₃	H H
3, 4-Cl ₂	2-СН3	СF3	Ph-4-SO ₂ CH ₃	
3, 4-C12	2-CH ₃	СFз	Ph-4-CN	H
3,4-C12 3,4-C12	2-CH ₃	СFз	Ph-4-C(0)NH2	Н
3,4-C12 3,4-C12	2-CH ₃	CF3	$Ph-4-C(S)NH_2$	Н
3,4-Cl ₂	2-CH ₃	CF3	$Ph-3,4-F_2$	Н
3, 4-Cl ₂	2-CH ₃	CF ₃	Ph-3-F-4-C1	Н
3, 4-C12 3, 4-C12	2-CH ₃	·CF ₃	Ph-3, 4-Cl ₂	Н
3, 4-C12	2-CH ₃	CF3	L-1c	H
3, 4-Cl ₂	2-CH ₃	CF ₃	L-1d	H
*	2-CH ₃	СF3	L-1e	H
3, 4-Cl ₂ 3, 4-Cl ₂	2-CH₃	CF3	L-1 i	H
3, 4-Cl ₂	2-CH ₃	CF3	L-2b	H
3, 4-C12 3, 4-C12	2-CH ₃	CF3	L-3c	Н
3, 4-C12 3, 4-C12	2-CH ₃	CF3	L-3d	H
	2-CH ₃	CF ₃	L-3e	H
3,4-Cl ₂	2-CH ₃	CF ₃	L-3f	H
3, 4-Cl ₂ 3, 4-Cl ₂	2-CH ₃	CF ₃	L-3k	Н
	2-CH ₃	CF ₃	L-31	Н
3,4-Cl ₂	2-CH3	CF3	L-3o	H
3, 4-Cl ₂	2-CH ₃	CF ₃	L-4b	Н
3, 4-Cl ₂	2-CH3	CF ₃	L-4c	Н
3, 4-Cl ₂	2-CH3	CF ₃	L-10b	Н
3, 4-Cl ₂	2-CH3	CF ₃	L-10c	Н
3, 4-Cl ₂	2-CH3	CF ₃	L-21b	H
3, 4-Cl ₂	2-CH3	CF ₃	L-21c	H
3, 4-Cl ₂	2-CH3	CF3	L-21d	Н
3, 4–Cl ₂	2-015		出証特20	04-3099262

	o CII	CF ₃	L-21e	Н
3,4-Cl ₂	2-CH ₃	CF3	L-22b	Н
3,4-Cl ₂	2–CH₃	CF3	L-22c	H
3,4-Cl ₂	2-CH ₃	CF3	L-23b	Н
3,4-Cl ₂	2-CH ₃		L-23c	Н
3,4-Cl2	2-CH ₃	CF3 .	L-31a	Н
3,4-Cl2	2-CH ₃	CF ₃	L-31b	Н
3,4-Cl ₂	2-CH ₃	CF ₃	L-45d	Н
3,4-Cl ₂	2-CH ₃	CF ₃	L-45e	Н
3,4-Cl ₂	2-CH ₃	CF ₃	L-45f	Н
3,4-Cl ₂	2-СН3	CF ₃	L-45g	H
3,4-Cl2	2-СН3	CF ₃	L-45g L-451	H
3,4-Cl ₂	2-CH3	CF ₃		Н
3,4-Cl ₂	2-CH ₃	CF ₃	L-45m	H
3,4-Cl ₂	2-СН3	CF ₃	L-46d	H
3,4-Cl ₂	2-СН3	CF ₃	L-46e	H
3,4-Cl ₂	2-CH ₃	CF3	L-46f	Н
3,4-Cl ₂	2-CH ₃	CF3	L-46g	H
3, 4-C1 ₂	2-СНз	CF3	L-46j	H
3, 4-Cl ₂	2-CH ₃	CF3	L-46k	H
3, 4-Cl ₂	2-СН3	CF ₃	L-46r	H
3, 4-Cl ₂	2-CH3	CF ₃	L-47a	H
3, 4-Cl ₂	2-СН3	CF3	L-47e	Н
3,5-Cl ₂	2-CH3	CF ₃	Ph-4-0CF ₃	H
3,6-C1z	2-CH₃	CF3	Ph-4-C1	л Н
5,6-Cl ₂	2-CH3	CF3	Ph-4-0CF3	п Н
6-Br	2-CH3	CF3	Ph-4-F	H
6-Br	2-CH3	CF3	Ph-4-Cl	
6-Br	2-CH3	CF3	Ph-4-Br	Н
6-Br	2-CH3	CF ₃	Ph-4-CF ₃	H
6-Br	2-CH ₃	СFз	Ph-4-0CHF2	Н
6-Br	2-СН3	CF3	Ph-4-OCF3	Н
6-Br	2-CH ₃	CF ₃	Ph-4-0S0 ₂ CH ₃	Н
6-Br	2-CH ₃	CF3	Ph-4-SCH ₃	Н
6-Br	2-CH ₃	СFз	$Ph-4-S(0)CH_3$	Н
6-Br	2-CH ₃	СFз	Ph-4-SO ₂ CH ₃	Н
6–Br	2-CH ₃	CF3	Ph-4-CN	Н
6-Br	2-CH ₃	CF3	Ph-3,4-Cl ₂	Н
6-Br	2-CH ₃	CF3	L-45d	Н
6-Br	2-CH ₃	СF3	L-45e	Н
6-Br	2-CH ₃	CF ₃	L-45g	Н
6-Br	2-CH ₃	CF ₃	L-47a	Н
6-Br	2-CH ₃	CF ₃	L-47e	Н
	2-CH ₃	CF ₃	Ph-4-C1	H
3, 4-Br ₂	2-CH ₃	CF ₃	Ph-4-0CF3	Н
3, 4-Br ₂	2-CH ₃	CF ₃	Ph-4-SO ₂ CH ₃	Н
3, 4-Br ₂	2-CH ₃	CF ₃	Ph-4-Cl	Н
3, 6-Br2	2-CH ₃	CF ₃	Ph-4-OCF3	Н
3, 6-Br2	2-CH3	CF ₃	Ph-4-SO ₂ CH ₃	H
3, 6-Br2	2-CH ₃	CF ₃	Ph-4-Cl	Н
5, 6-Br ₂	2-C13 2-I	CF ₃	Ph-4-Cl	Н
3–I	<i>u</i> -1		出証特2(004-3099

	2-I	CF ₃	Ph-4-0CF3	Н
3-I	2-1 2-I	CF ₃	Ph-4-SO ₂ CH ₃	Н
3-I		CF3	Ph-4-0CF3	Н
3-I	2-Pr-n	CF ₃	Ph-4-C1	H
3-I	2-Pr-i	CF ₃	Ph-4-0CF3	Н
3-I	2-Bu-n	CF ₃	Ph-4-F	Н
3-I	2-CF3	CF3	Ph-4-C1	H
3-I	2-CF ₃	CF3	Ph-4-Br	Н
3-I	2-CF ₃	CF3	Ph-4-CF3	H
3–I	2-CF ₃	CF3	Ph-4-OCHF ₂	H
3-I	2-CF ₃	CF3	Ph-4-0CF3	H
3-I	2-CF ₃		Ph-4-SCH ₃	Н
3–I	2-CF ₃	CF3	Ph-4-S(0) CH ₃	Н
3-I	2–CF3	CF3	Ph-4-SO ₂ CH ₃	Н
3-I	2-CF3	CF3	L-45g	Н
3-I	2-CF ₃	CF ₃	Ph-4-Cl	Н
3-I	2-CF ₂ CF ₃	CF ₃	Ph-4-F	Н
3-I	2-CH ₂ OH	CF3	Ph-4-Cl	Н
3-I	2-CH ₂ OH	CF3	Ph-4-Br	Н
3-I	2-CH ₂ OH	CF ₃		Н
3-I	2-CH ₂ OH	CF ₃	Ph-4-I	H
3-I	2-CH ₂ OH	CF3	Ph-4-CF3	H
3-I	2-CH ₂ OH	CF3	Ph-4-OCHF2	H
3-I	2-CH ₂ OH	CF3	Ph-4-OCF3	H
3-I	2-CH2 OH	CF ₃	Ph-4-OCF ₂ Br	H
3-I	2-CH ₂ OH	CF3	Ph-4-OCF ₂ CHF ₂	H
3-I	2-CH ₂ OH	CF3	Ph-4-OCF ₂ CHFC1	H
3-I	2-CH ₂ OH	СFз	Ph-4-OCF ₂ CHFCF ₃	H
3-I	2-CH ₂ OH	СFз	Ph-4-OCF ₂ CHFOCF ₃	
3-I	2-CH ₂ OH	СF3	Ph-4-OCF ₂ CHFOCF ₂ CF	2CF3 II
3-I	2-CH ₂ OH	СF3	Ph-4-0S0 ₂ CH ₃	H
3-I	2-CH2 OH	СFз	Ph-4-0(L-45g)	H
3-I	2-CH ₂ OH	CF ₃	Ph-4-SCH ₃	H
3-I	2-CH ₂ OH	СFз	Ph-4-S(0) CH ₃	Н
3-I	2-CH ₂ OH	СFз	Ph-4-SO ₂ CH ₃	H
3-I	2-CH ₂ OH	СFз	Ph-4-CN	H
3-I	2-CH2 OH	СFз	$Ph-4-C(0)NH_2$	H
3-I	2-CH2 OH	СFз	$Ph-4-C(S)NH_2$	H
3-I	2-CH ₂ OH	СF3	$Ph-3, 4-F_2$	H
3-I 3-I	2-CH ₂ OH	СFз	Ph-3-F-4-C1	
3-I	2-CH ₂ OH	CF ₃ .	Ph-3, 4-Cl ₂	H H
3-I	2-CH2 OH	СFз	L-45d	п Н
3–1 3–I	2-CH ₂ OH	СFз	L-45e	
3-I	2-CH ₂ OH	СFз	L-45f	H
3-I	2-CH ₂ OH	CF3	L-45g	H
3-I 3-I	2-CH ₂ OH	CF3	L-451	H
	2-CH ₂ OH	CF3	L-45m	Н
3-I	2-CH ₂ OH	CF3	L-46d	H
3-I	2-CH ₂ OH	CF ₃	L-46e	H
3-I	2-CH ₂ OH	СFз	L-46f	Н
3-I	2-CH ₂ OH	CF ₃	L-46g	Н
3-I	2 014 011		出証特200	4 - 309

о т	2-CH ₂ OH	СГз	L-46j	Н
3-I	2-CH ₂ OH	CF ₃	L-46k	Н
3-I	2-CH ₂ OH	CF ₃	L-46r	H
3-I	2-CH ₂ OH	CF ₃	L-47a	H
3-I	2-CH ₂ OH	CF3	L-47e	H
3-I	2-0H ₂ on 2-0CH ₃	CF ₃	Ph-4-F	H
3-I	2-0CH3	CF ₃	Ph-4-Cl	H
3-I	2-0CH ₃	CF ₃	Ph-4-Br	Н
3-I	2-0CH ₃	CF ₃	Ph-4-CF3	H
3-I	2-0CH ₃	CF ₃	Ph-4-OCHF2	H
3-I	2-0CH ₃	CF3	Ph-4-0CF3	H
3-I	2-0CH ₃	CF3	Ph-4-SCH3	H
3-I	2-0CH ₃	CF ₃	Ph-4-S(0)CH3	H
3–I	2-0CH ₃	CF3	$Ph-4-SO_2CH_3$	Н
3-I	2-0CH ₃	CF3	L-45g	H
3-I	2-0Et	CF ₃	Ph-4-OCF3	H
3–I	2-0EF3	CF ₃	Ph-4-Cl	H
3-İ	2-0013 2-0Ph	CF ₃	Ph-4-OCF3	H
3-I	2-SCH ₃	CF3	Ph-4-F	H
3-I	2-SCH ₃	CF ₃	Ph-4-C1	H
3-I	2-SCH ₃	CF ₃	Ph-4-Br	H
3-I	2-SCH3	CF3	Ph-4-CF3	H
3-I	2-SCH ₃	CF3	Ph-4-OCHF2	H
3-I	2-SCH ₃	CF ₃	Ph-4-OCF3	Н
3-I	2-SCH ₃	CF ₃	Ph-4-SCH3	H
3-I	2-SCH ₃	CF3	$Ph-4-S(0)CH_3$	H
3-I	2-SCH ₃	CF3	Ph-4-SO ₂ CH ₃	H
3–I	2-SCH ₃	CF3	L-45g	Н
3-I	2-SPr-i	CF3	Ph-4-Cl	H
3-I	2-SPr-i	CF ₃	Ph-4-0CF3	H
3-I	2-SPr-i	CF ₃	Ph-4-SO ₂ CH ₃	H
3-I	2-SCHF ₂	CF ₃	Ph-4-C1	Н
3-I	2-N(CH ₃) ₂	CF ₃	Ph-4-0CF ₃	Н
3–I	2-CN	СFз	Ph-4-Cl	Н
3–I	2–Ph	CF ₃	$Ph-4-OCF_3$	H
3-I	2-(L-14a)	CF3	Ph-4-Cl	H
3–I	2-(L-14b)	СFз	Ph-4-0CF3	Н
3-I	2-(L-14c)	СFз	Ph-4-Cl	H
3–I	2-(L-14d)	СFз	Ph-4-0CF3	Н
3–I	2-(L-14e)	CF3	Ph-4-Cl	Н
3-I	2-(L-14f)	CF3	Ph-4-0CF3	Н
3–I	2-CH ₃ -3-F	СFз	Ph-4-Cl	Н
3–I	2-CH ₃ -3-F	CF3	Ph-4-Br	Н
3–I	2-CH ₃ -3-F	СFз	Ph-4-0CF ₃	Н
3-I	2-CH ₃ -3-F	СFз	Ph-4-SO ₂ CH ₃	Н
3–I	2-CH ₃ -5-F	СFз	Ph-4-Cl	Н
3–I	2-CH ₃ -5-F	CF ₃	Ph-4-Br	Н
3–I	2-CH ₃ -5-F	СFз	Ph-4-0CF ₃	Н
3–I	2-CH ₃ -5-F	CF ₃	Ph-4-SO ₂ CH ₃	Н
3–I	2-CH ₃ -3-C1		Ph-4-Cl	Н
3-I	2 3.2 3 4.		出証特2	004 - 309

		CTP.	Ph-4-Br	H
3-I	D 0115 0 0-	CF3	Ph-4-OCF3	Н
3-I	2 015 0 0	CF ₃	Ph-4-SO ₂ CH ₃	Н
3-I	D 0110 0 4 -	CF ₃	Ph-4-Cl	H
3-I	2-CH ₃ -5-C1	CF3	Ph-4-Br	H
3-I	2-CH ₃ -5-C1	CF ₃	Ph-4-0CF3	Н
3-I	2-CH ₃ -5-Cl	CF ₃	Ph-4-SO ₂ CH ₃	Н
3-I	2-CH ₃ -5-Cl	CF ₃	Ph-4-Cl	Н
3-I	2,3-(CH ₃) ₂	CF ₃	Ph-4-Br	Н
3-I	2,3-(CH ₃) ₂	CF ₃	Ph-4-0CF3	Н
3-I	2,3-(CH ₃) ₂	CF ₃	Ph-4-SO ₂ CH ₃	Н
3-I	2,3-(CH ₃) ₂	CF ₃	Ph-4-Cl	Н
3-I	2,5-(CH ₃) ₂	CF ₃	Ph-4-Br	Н
3-I	2,5-(CH ₃) ₂	CF ₃		Н
3-I	2,5-(CH ₃) ₂	CF ₃	Ph-4-0CF3	H
3-I	2,5-(CH ₃) ₂	CF3	Ph-4-SO ₂ CH ₃	H
3-I	2,6-(CH ₃) ₂	CF3	Ph-4-OCF3	Н
3-I	2-СН3-3-ОСН3	CF3	Ph-4-Cl	H
3-I	$2-CH_3-3-OCHF_2$	СF3	Ph-4-0CF ₃	H
3-I	$2-CH_3-3, 5-Cl_2$	CF3	Ph-4-Cl	H
4-I	2-CH3	СF3	Ph-4-Cl	H
4-I·	2-CH3	CF3	Ph-4-0CF ₃	H
4-I	2-CH3	CF3	Ph-4-SO ₂ CH ₃	H
5-I	2-CH ₃	CF ₃	Ph-4-0CF ₃	H
6-I	2-CH3	СНз	Ph-4-Cl	ii H
6-I	2-CH ₃	СНз	Ph-4-0CF3	н Н
6-I	2-CH ₃	СН₃	Ph-4-S0 ₂ CH ₃	п Н
6-I	2-CH ₃	CF3	Ph-4-F	
	2-CH ₃	CF3	Ph-4-Cl	H
6-I	2-CH ₃	CF3	Ph-4-Br	Н
6-I	2-CH ₃	CF3	Ph-4-CF3	H
6-I	2-CH ₃	CF ₃	Ph-4-0CHF2	H
6-I	2-CH ₃	CF ₃	Ph-4-0CF3	H
6-I	2-CH ₃	CF3	Ph-4-0CF ₂ Br	H
6-I	2-CH ₃	СF3	Ph-4-OCF ₂ CHF ₂	Н
6-I	2-CH ₃	CF ₃	Ph-4-OCF ₂ CHFC ₁	H
6-I	2-CH ₃	CF3	Ph-4-OCF ₂ CHFCF ₃	H
6-I	2-CH ₃	CF3	Ph-4-OCF ₂ CHFOCF ₃	Н
6-I	2-CH ₃	СF3	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ C	F ₃ H
6-I	2-CH ₃	CF3	Ph-4-0S0 ₂ CH ₃	H
6-I	2-CH ₃	CF3	Ph-4-0(L-45g)	H
6-I	2-CH ₃	CF3	Ph-4-SCH ₃	H
6-I	2-CH ₃	CF3	Ph-4-S(0)CH3	Н
6-I	2-CH ₃	CF3	Ph-4-SO ₂ CH ₃	H
6-I	2-CH ₃	CF ₃	Ph-4-CN	H
6-I	2-CH ₃	CF3	$Ph-3, 4-F_2$	H
6-I	2-CH ₃	CF3	Ph-3-F-4-C1	Н
6-I	2-CH3 2-CH3	CF3	Ph-3, 4-Cl ₂	Н.
6-I	2–CH3 2–CH3	CF3	L-45d	H
6-I		CF3	L-45e	H
6-I	2–CH₃	CF ₃	L-45f	Н
6-I	2–СНз	OI 3	出証特2004	-30992

	2-CH3	CF ₃	L-45g	H
6-I	2-CH ₃	CF3	L-45m	H
6-I	2-CH3 2-CH3	CF ₃	L-46d	Н
6-I	2-CH3	CF3	L-46e	H
6-I	2-CH3	CF ₃	L-46f	Н
6-I	2-CH3	CF3	L-46g	H
6-I	2-CH3	CF ₃	L-46j	H
6-I	2-CH ₃	CF ₃	L-46k	Н
6-I	2-CH ₃	CF ₃	L-46r	Н
6-I	2-СН3 2-СН3	CF ₃	L-47a	H
6-I	2-CH3	CF ₃	L-47e	H
6-I	2-CH3	CF ₃	Ph-4-Cl	H
3-I-4-Cl	2-CH ₃	CF3	Ph-4-OCF3	H
4-C1-6-I	2-CH3	CF ₃	Ph-4-Cl	H
5-CH ₃	2-CH3	CF ₃	Ph-4-OCF3	H
6-CH ₃	2-CH3	CF ₃	Ph-4-F	H
3-C1-4-CH ₃	2-CH3	CF ₃	Ph-4-Cl	H
3-C1-4-CH ₃	2-CH ₃	CF ₃	Ph-4-Br	H
3-C1-4-CH ₃	2-CH ₃	CF ₃	Ph-4-I	Н
3-C1-4-CH ₃	2-CH ₃	CF ₃	Ph-4-CF ₃	H
3-C1-4-CH ₃	2-СН3 2-СН3	CF ₃	Ph-4-OCHF2	H
3-C1-4-CH ₃	2-CH3 2-CH3	CF3	Ph-4-OCF3	H
3-C1-4-CH ₃	2-CH3	CF ₃	Ph-4-OCF ₂ Br	H
3-C1-4-CH ₃	2-CH3	CF3	Ph-4-OCF ₂ CHF ₂	H
3-C1-4-CH ₃	2-CH3	CF ₃	Ph-4-OCF2CHFC1	H
3-C1-4-CH ₃	2-CH ₃	CF ₃	Ph-4-OCF ₂ CHFCF ₃	H
3-C1-4-CH ₃	2-CH3	CF ₃	Ph-4-OCF2 CHFOCF3	H
3-C1-4-CH ₃	2-CH3	CF ₃	Ph-4-OCF2 CHFOCF2 CF2 CF	з Н
3-C1-4-CH ₃	2-CH ₃	CF ₃	Ph-4-0S0 ₂ CH ₃	H
3-C1-4-CH ₃	2-CH3	CF3	Ph-4-0(L-45g)	H
3-C1-4-CH ₃	2-CH ₃	CF ₃	Ph-4-SCH₃	H
3-C1-4-CH ₃	2-CH3	CF3	$Ph-4-S(0)CH_3$	H
3-C1-4-CH ₃	2-CH ₃	CF ₃	Ph-4-S0 ₂ CH ₃	H
3-C1-4-CH ₃	2-CH ₃	CF ₃	Ph-4-CN	H
3-C1-4-CH ₃	2-CH3	CF ₃	Ph-3, 4-F2	H
3-C1-4-CH3	2-CH ₃	CF ₃	Ph-3-F-4-C1	Н
3-C1-4-CH ₃	2-CH3	CF ₃	Ph-3, 4-Cl ₂	H
3-C1-4-CH₃ 3-C1-4-CH₃	2-CH3	CF ₃	L-45d	H
3-C1-4-CH3	2-CH ₃	CF3	L-45e	H
3-C1-4-CH ₃	2-СНз	CF ₃	L-45f	Н
3-C1-4-CH3	2-CH ₃	CF ₃	L-45g	H
3-C1-4-CH ₃	2-CH ₃	CF ₃	L-451	H
	2-CH ₃	CF ₃	L-45m	Н
3-C1-4-CH₃ 3-C1-4-CH₃	2-CH ₃	CF ₃	L-46d	Н
	2-CH ₃	CF ₃	L-46e	H
3-C1-4-CH ₃	2-CH ₃	CF ₃	L-46f	H
3-C1-4-CH ₃ 3-C1-4-CH ₃	2-CH ₃	CF ₃	L-46g	Н
	2-CH ₃	CF ₃	L-46j	Н
3-C1-4-CH ₃ 3-C1-4-CH ₃	2-CH3	CF ₃	L-46k	H
	2-CH ₃	CF ₃	L-46r	Н
3-C1-4-CH3	<i>a</i> ∹Otto		DETEC O O A	_ 2 0 0

	0.011	CF3	Ph-4-Cl	Н
6-Et	2-CH ₃	CF3 CF3	Ph-4-0CF3	Н
4-CF ₃	2-CH ₃	CF3 CF3	Ph-4-C1	Н
6-CF3	2-CH ₃	CF3 CF3	Ph-4-OCF3	Н
3-CF ₂ CF ₃	2-CH ₃		Ph-4-Cl	H
3-0CH ₃	2-CH ₃	CF3	Ph-4-Cl	H
6-0CH ₃	2-СН3	CF ₃	Ph-4-0CF3	· H
6-0CH₃	2-CH ₃	CF3	Ph-4-SO ₂ CH ₃	Н
6-0CH₃	2-CH ₃	CF ₃	Ph-4-0CF3	H
3-C1-4-OCH₃	2-CH ₃	CF ₃	Ph-4-Cl	H
$3-0CH_2O-4$	2-CH ₃	CF ₃	Ph-4-0CF3	Н
5-OCHF2	2-CH ₃	CF3	Ph-4-C1	Н
6-OCHF2	2-CH3	CF ₃	Ph-4-0CF3	Н
5-0CF3	2-CH3	CF ₃	Ph-4-F	Н
$3-0$ CF $_2$ $0-4$	2-CH ₃	CF ₃	Ph-4-Cl	Н
$3-0$ CF $_2$ 0 -4	2-CH3	CF ₃	Ph-4-Br	Н
3-0CF ₂ 0-4	2-СН3	CF ₃	Ph-4-I	Н
$3-00F_20-4$	2-CH3	CF3	Ph-4-CF3	H
3-0CF ₂ 0-4	2–CH₃	CF ₃	Ph-4-OCHF2	Н
3-0CF ₂ 0-4	2-СНз	CF ₃	Ph-4-0CF3	Н
$3-0CF_20-4$	2-CH ₃	CF ₃	Ph-4-0CF ₂ Br	H
$3-0$ CF $_2$ 0 -4	2-CH3	CF ₃	Ph-4-0CF2B1 Ph-4-0CF2CHF2	Н
3-0CF ₂ 0-4	2-CH ₃	CF ₃	Ph-4-0CF2 CHFC1	H
3-0CF ₂ 0-4	2-CH3	CF ₃	Ph-4-0CF2 CHFCF3	H
3-0CF ₂ 0-4	2-CH3	CF3		
3-0CF ₂ 0-4	2-CH3	CF ₃	Ph-4-OCF2 CHFOCF Ph-4-OCF2 CHFOCF	o .
3-0CF ₂ 0-4	2-CH3	CF3		H
3-0CF ₂ 0-4	2-CH3	CF ₃	Ph-4-0S0 ₂ CH ₃	. Н
3-0CF ₂ 0-4	2-СНз	CF3	Ph-4-0 (L-45g)	H
3-0CF ₂ 0-4	2-СН3	СF3	Ph-4-SCH ₃	H
3-0CF ₂ 0-4	2-СН3	CF ₃	Ph-4-S(0) CH ₃	H
3-0CF ₂ 0-4	2-CH3	CF3	Ph-4-SO ₂ CH ₃	Н
3-0CF ₂ 0-4	2-CH3	CF ₃	Ph-4-CN	H
3-0CF ₂ 0-4	2-CH3	CF ₃	$Ph-3, 4-F_2$	H
3-0CF ₂ 0-4	2-СНз	CF ₃	Ph-3-F-4-C1	H
3-0CF ₂ 0-4	2-СНз	CF3	Ph-3, 4-Cl ₂	H
3-0CF ₂ 0-4	2-СНз	CF ₃	L-45d	H
3-0CF ₂ 0-4	2–CH₃	CF ₃	L-45e	H
3-0CF ₂ 0-4	. 2-CH ₃	CF ₃	L-45f	H
3-0CF ₂ 0-4	2-СНз	CF ₃	L-45g	H
3-0CF ₂ 0-4	2-СНз	CF ₃	L-451	H
3-0CF ₂ 0-4	2-CH3	CF ₃	L-45m	H
3-0CF ₂ 0-4	2-CH3	CF3	L-46d	H
3-0CF ₂ 0-4	2-CH3	CF3	L-46e	H
3-0CF ₂ 0-4	2-CH3	CF ₃	L-46f	H
3-0CF ₂ 0-4	2-CH3	CF ₃	L-46g	H
3-0CF ₂ O-4	2-CH3	CF ₃	L-46j	H
3-0CF ₂ 0-4	2-СН3	CF ₃	L-46k	n H
3-0CF ₂ O-4	2-CH ₃	CF ₃	L-46r	n H
3-0CF ₂ CF ₂ 0-4		CF ₃	Ph-4-F	н Н
3-0CF ₂ CF ₂ O-4	_	CF ₃	Ph-4-Cl	
0-00120120	_		出証特2	0 0 4 - 3 0 9

		CIE-	Ph-4-Br	Н
3-0CF ₂ CF ₂ 0-4	2-CH ₃	CF ₃	Ph-4-I	Н
3-0CF ₂ CF ₂ 0-4	2-CH ₃	CF3	Ph-4-CF3	H
3-0CF ₂ CF ₂ 0-4	2-CH ₃	CF ₃	Ph-4-OCHF2	Н
3-0CF ₂ CF ₂ 0-4	2-CH ₃	CF3	Ph-4-0CF3	Н
3-0CF ₂ CF ₂ 0-4	2-CH ₃	CF ₃	Ph-4-OCF ₂ Br	Н
3-0CF ₂ CF ₂ 0-4	2-CH ₃	CF3	Ph-4-OCF ₂ CHF ₂	Н
3-0CF ₂ CF ₂ 0-4	2-СН3	CF ₃	Ph-4-OCF ₂ CHFC1	Н
$3-0$ CF $_2$ CF $_2$ 0 -4	2-CH ₃	CF ₃	Ph-4-OCF ₂ CHFCF ₃	Н
3-0CF ₂ CF ₂ 0-4	2-CH ₃	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	Н
3-0CF ₂ CF ₂ 0-4	2-CH ₃	CF3	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ (CF ₃ H
3-0CF ₂ CF ₂ 0-4	2-CH ₃	CF3	Ph-4-0S0 ₂ CH ₃	Н
$3-0$ CF $_2$ CF $_2$ 0 -4	2-CH3	CF3	Ph-4-0(L-45g)	Н
3-0CF ₂ CF ₂ 0-4	2-CH3	CF3	Ph-4-SCH3	Н
3-0CF ₂ CF ₂ 0-4	2-CH ₃	CF3	Ph-4-S(0) CH ₃	Н
3-0CF ₂ CF ₂ 0-4	2-СН3	CF3	Ph-4-SO ₂ CH ₃	Н
3-0CF ₂ CF ₂ 0-4	2-СН3	CF ₃	Ph-4-CN	Н
3-0CF2CF2O-4	2-СН3	CF ₃	Ph-3, 4-F ₂	Н
3-0CF2CF2O-4	2-СНз	CF ₃	Ph-3-F-4-Cl	Н
3-0CF ₂ CF ₂ 0-4	2-СНз	CF ₃	Ph-3, 4-Cl ₂	Н
3-0CF ₂ CF ₂ 0-4	2-СНз	CF ₃	L-45d	H
3-0CF ₂ CF ₂ 0-4	2-CH3	CF ₃	L-45a L-45e	Н
3-0CF ₂ CF ₂ 0-4	2-CH3	CF ₃	L-45f	Н
$3-0$ CF $_2$ CF $_2$ 0 -4	2-СН3	CF3		Н
3-0CF2CF2O-4	2-CH3	CF ₃	L-45g	Ħ
3-0CF ₂ CF ₂ 0-4	2-СН3	CF3	L-451	Н
$3-0 CF_2 CF_2 0-4$	2-СНз	CF ₃	L-45m	H
3-0CF ₂ CF ₂ 0-4	2-CH3	CF ₃	L-46d	Н
3-0CF ₂ CF ₂ 0-4	2-CH3	CF3	L-46e	Н
3-0CF ₂ CF ₂ 0-4	2-CH3	CF ₃	L-46f	Н
3-0CF ₂ CF ₂ 0-4	2-CH3	CF ₃	L-46g	H
3-0CF ₂ CF ₂ 0-4	2-CH3	CF ₃	L-46j	H
3-0CF ₂ CF ₂ 0-4	2-CH3	CF ₃	L-46k	Н
3-0CF ₂ CF ₂ 0-4	2-CH ₃	CF ₃	L-46r Ph-4-Cl	Н
6-SCH ₃	2-CH3	CF ₃	Ph-4-0CF3	Н
6-SO ₂ CH ₃	2-CH3	CF ₃		H
3-SPr-i	2-СН3	CF ₃	Ph-4-C1 Ph-4-OCF3	H
3-S(0)Pr-i	2-СНз	CF ₃	Ph-4-Cl	H
3-S0 ₂ Pr-i	2-СН3	CF ₃	Ph-4-0CF3	H
6-S(0)CF3	2-CH3	CF ₃	Ph-4-Cl	Н
3-SCH ₂ CF ₃	2-CH3	CF ₃	Ph-4-0CF3	Н
6-SCH ₂ CF ₃	2-СН3	CF ₃	Ph-4-Cl	Н
3-S(0)CH2CF3	2-CH3	CF ₃	Ph-4-0CF3	Н
6-S(0)CH2CF3	2-CH3	CF ₃	Ph-4-Cl	H
3-SO ₂ CH ₂ CF ₃	2-СН₃	CF ₃	Ph-4-0CF3	H
3-C1-6-SCF3	2-CH3	CF ₃		H
6-NO2	2-CH3	CF ₃	Ph-4-F Ph-4-Cl	H
6-NO ₂	2-CH3	CF₃		H
6-NO ₂	2-CH3	CF ₃	Ph-4-Br Ph-4-CF3	H
6-NO ₂	2-CH3	CF ₃	Ph-4-OCHF2	H
6-NO ₂	2-CH ₃	CF ₃	- -	
			出証特200) 4 - 3 0 9 9 2 6 2

ペー	33	•	198/
~ ~	/	•	130/

6-NO ₂ 6-NO ₂ 6-NO ₂ 3-CN 3-CN 3-CN 3-CN 3-CN 6-C(0) OCH ₃ 3-C(0) NHPr-i 3-C≡CH 3-C≡CSi(CH ₃) ₃ 6-C≡CH 6-Ph 3-CH=CH-CH=CH-4 4-CH=CH-CH=CH-5 3-Si(CH ₃) ₃		CF3	Ph-4-0CF ₃ Ph-4-SO ₂ CH ₃ L-45g Ph-4-C1 Ph-4-Br Ph-4-OCF ₃ Ph-4-SO ₂ CH ₃ L-45g Ph-4-C1 Ph-4-C1 Ph-4-C1 Ph-4-OCF ₃	H H H H H H H H H H H H H
--	--	---	---	---------------------------

第4表 【0313】 【化55】

[3] - 1

または

[3] - 2

	14)	R ⁵	R^6	
F F F F F F F F F F F F F F F F F F F	CH ₃ Et CHF ₂ CF ₃	Ph-4-0CF3 Ph-4-0CF3 Ph-4-0CF3 Ph-4-F Ph-4-C1 Ph-4-Br Ph-4-I Ph-4-CF3 Ph-4-OCF2 Ph-4-OCF3 Ph-4-OCF2	H H H H H H H H H H	9 2 6 2

H₂N

		TO A OCE CHECCE	Н
F	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	H
F	CF3	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
F	CF3	Ph-4-0 (L-45g)	H
F	CF ₃	Ph-4-SO ₂ CH ₃	H
F	CF ₃	Ph-3, 4-F ₂	H
F	CF3	Ph-3-F-4-C1	H
F	CF3	Ph-3, 4-Cl ₂	Н
F	CF ₃	L-45e	Н
F	CF3	L-45g	Н
F	CF3	L-451	Н
F	CF ₃	L-45m	Н
F	CF ₃	L-46e	Н
F	CF3	L-46g	Н
F	CF ₃	L-46j	H
F	CF ₃	L-46k	H
F	CF ₃	L-46r	Н
F	CF ₃	L-47a	H
F	CF ₃	L-47e	H
F	CF ₂ C1	Ph-4-0CF3	H
F	CF ₂ CF ₃	Ph-4-0CF ₃	H
F	CF ₂ CF ₂ CF ₃	Ph-4-0CF ₃	H
Cl	СНз	Ph-4-F	H
C1	CH ₃	Ph-4-C1	H
Cl	CH ₃	Ph-4-Br	Ĥ
C1	CH ₃	Ph-4-CF ₃	H
C1	CH ₃	Ph-4-OCHF2	H
C1	CH ₃	Ph-4-OCF3	H
Cl	CH ₃	Ph-4-0CF ₂ Br	H
Cl	CH ₃	Ph-4-0CF ₂ CHF ₂	H
C1	CH ₃	Ph-4-0CF ₂ CHFC1	H
Cl	CH ₃	Ph-4-OCF ₂ CHFCF ₃	H
C1	CH ₃	Ph-4-OCF ₂ CHFOCF ₃	H
C1	CH ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
C1	CH ₃	Ph-4-0(L-45g)	H
C1	CH ₃	Ph-4-CN	H
C1	CH ₃	Ph-3, 4-F ₂	H
Cl	СНз	Ph-3-F-4-C1	H
Cl	СНз	Ph-3, 4-Cl ₂	H
C1	СНз	L-45d	H
C1	CH ₃	L-45e	H
C1	CH ₃	L-45g	H
Cl	CH ₃	L-46d	H
Cl	CH ₃	L-46e	H
Cl	СНз	L-46g	H
C1	Et	Ph-4-OCF ₃	п Н
Cl	CHF ₂	Ph-4-F	п Н
C1	CHF ₂	Ph-4-Cl	n H
C1	CHF ₂	Ph-4-Br	
C1	CHF ₂	Ph-4-CF3	Н
C1	CHF ₂	Ph-4-OCHF2	Н
CI	V <i>u</i>	山雪味りん	0.4 - 3.0.9

			Н	
C1	CHF ₂	Ph-4-0CF3	H	
Cl	CHF ₂	Ph-4-CN	H	
C1	CHF ₂	Ph-3, 4-Cl ₂	H	
C1	CHF_2	L-45g	H	
C1	CF ₃	Ph-4-F	Н	
C1	CF ₃	Ph-4-Cl	H	
C1	CF ₃	Ph-4-Br	H	
Cl	CF ₃	Ph-4-I	H	
C1	CF ₃	Ph-4-CF3	H	
Cl	CF3	Ph-4-OCHF2	H	
C1	CF ₃	Ph-4-0CF3	H	
Cl	СF3	Ph-4-OCF ₂ Br	H	
C1	CF ₃	Ph-4-OCF ₂ CHF ₂	H	
Cl	CF ₃	Ph-4-OCF ₂ CHFC1	H	
C1	CF3	Ph-4-OCF ₂ CHFCF ₃	H	
C1	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	H	
C1	CF ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H	
C1	CF3	Ph-4-0S0 ₂ CH ₃	H	
C1	CF ₃	Ph-4-0(L-45g)	Н .	
C1	CF ₃	Ph-4-SCH ₃	H	
C1	CF3	Ph-4-SO ₂ CH ₃ Ph-4-CN	Н	
C1	CF3	Ph-4-CN Ph-3, 4-F ₂	Н	
Cl	CF3	Ph-3-F-4-Cl	Н	
Cl	CF3		Ħ	
C1	CF ₃	Ph-3, 4-Cl ₂	Н	
C1	CF ₃	L-1c	Н	
C1	CF3	L-le	Н	
Cl	CF ₃	L-1i L-2b	Н	
C1	CF3	L-20 L-3d	Н	
C1	CF3	L-3d L-3f	Н	
C1	CF ₃	L-31 L-31	Н	
C1	CF ₃	L-31 L-4c	Н	
C1	CF ₃	L-10c	Н	
C1	CF ₃	L-16b	Н	
C1	CF3	L-21c	Н	
C1	CF ₃	L-21e	Н	
C1	CF ₃	L-22c	Н	
C1	CF ₃	L-23c	Н	
C1	CF ₃	L-23b	H	
C1	CF ₃	L-45e	H	
C1	CF3	L-45g	Н	
Cl	CF ₃	L-451	H	
C1	CF ₃	L-45m	Н	
C1	CF ₃	L-46e	H	
C1	CF ₃	L-46g	Н	
C1	CF ₃	L-46j	H	
Cl	CF ₃	L-46k	Н	
Cl	CF ₃	L-46r	H	
C1	CF ₃	L-47a	Н	
Cl	CF ₃		0.04 - 3.099	2

	0.77	L-47e	Н
C1	CF ₃	Ph-4-F	H
Cl	CF ₂ C1	Ph-4-Cl	H
C1	CF ₂ C1	Ph-4-Br	H
Cl	CF ₂ C1	Ph-4-CF3	Н
C1	CF ₂ C1	Ph-4-OCHF2	Н
C1	CF ₂ C1	Ph-4-0CF3	Н
C1	CF ₂ Cl	Ph-4-CN	Н
C1	CF ₂ C1	Ph-3, 4-Cl ₂	Н
Cl	CF ₂ Cl		Н
C1	CF ₂ Cl	L-45g	H
C1	CF ₂ CF ₃	Ph-4-F	Н
C1	CF ₂ CF ₃	Ph-4-Cl	H
Cl	CF ₂ CF ₃	Ph-4-Br	H
C1	CF ₂ CF ₃	Ph-4-CF ₃	H
C1	CF ₂ CF ₃	Ph-4-OCHF2	Н
C1	CF ₂ CF ₃	Ph-4-0CF3	H
C1	CF ₂ CF ₃	Ph-4-CN	H
C1	CF ₂ CF ₃	Ph-3, 4-Cl ₂	H
C1	CF ₂ CF ₃	L-45g	H
C1	CF2 CF2 CF3	Ph-4-OCF ₃	H
C1	Ph-4-F	Ph-4-Cl	H
Cl	Ph-4-Cl	Ph-4-Cl	п Н
Cl	Ph-4-Br	Ph-4-Cl	
Cl	Ph-4-CF3	Ph-4-Cl	H
C1	Ph-4-0CHF2	Ph-4-Cl	H
C1	Ph-4-0CF3	Ph-4-Cl	Н
Br	СНз	Ph-4-0CF ₃	Н
Br	Et	Ph-4-0CF3	Н
Br	CHF ₂	Ph-4-0CF3	H
Br	CF ₃	Ph-4-F	· H
Br	CF ₃	Ph-4-Cl	H
Br	CF ₃	Ph-4-Br	Н
Br	CF ₃	Ph-4-I	H
	CF ₃	Ph-4-CF3	H
Br Br	CF ₃	Ph-4-OCHF2	H
Br	CF₃	Ph-4-0CF3	H
Br Dr	CF ₃	Ph-4-OCF ₂ Br	H
Br	CF3 CF3	Ph-4-OCF ₂ CHF ₂	Н
Br	CF ₃	Ph-4-OCF ₂ CHFC1	H
Br	CF3	Ph-4-OCF2 CHFCF3	Н
Br	CF3	Ph-4-OCF2 CHFOCF3	Н
Br	CF3	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
Br	CF3	Ph-4-0(L-45g)	H
Br	CF3	Ph-4-SO ₂ CH ₃	H
Br		Ph-3, 4-F ₂	Н
Br	CF₃ CF₃	Ph-3-F-4-C1	Н
Br		Ph-3, 4-Cl ₂	Н
Br	CF ₃	L-45e	Н
Br	CF ₃	L-45g	H
Br	CF ₃	L-451	Н
Br	CF ₃	出証特20	0.4 - 3
		11mi.49 4 V	

		L-45m	Н
Br	CF ₃	L-46e	Н
Br	CF ₃	L-46g	H
Br	CF ₃	L-46j	Н
Br	CF ₃	L-46k	Н
Br	CF ₃	L-46r	H
Br	CF ₃	L-47a	H
Br	CF3	L-47e	Н
Br	CF ₃	Ph-4-0CF ₃	H
Br	CF ₂ Cl	Ph-4-0CF ₃	H
Br	CF ₂ CF ₃	Ph-4-0CF ₃	H
Br	CF ₂ CF ₂ CF ₃	Ph-4-Cl	Н
I	CF ₃	Ph-4-0CF3	Н
I	CF3	Ph-4-SO ₂ CH ₃	Н
I	CF3	Ph-4-F	H
CH ₃	CH ₃	Ph-4-Cl	Н
CH ₃	CH ₃	Ph-4-Br	H
CH ₃	CH3 CH3	Ph-4-I	Н
CH ₃	CH3	Ph-4-CF ₃	H
CH ₃	снз СН₃	Ph-4-0CHF2	Н
CH ₃	CH ₃	Ph-4-0CF3	Н
CH₃	CH ₃	Ph-4-0CF ₂ Br	H
CH ₃	CH ₃	Ph-4-OCF2 CHF2	Н
CH ₃	CH ₃	Ph-4-OCF ₂ CHFC1	Н
CH ₃	CH ₃	Ph-4-OCF2 CHFCF3	Ħ
CH ₃	CH3 CH3	Ph-4-OCF2 CHFOCF3	H
CH ₃	CH ₃	Ph-4-OCF2 CHFOCF2 CF2 CF3	Н
CH ₃	CH3	Ph-4-0S0 ₂ CH ₃	Н
CH₃	CH ₃	Ph-4-0(L-45g)	Н
CH ₃	СНЗ	Ph-4-0(L-451)	Н
CH ₃	CH ₃	Ph-4-CN	H
CH ₃	CH ₃	$Ph-3, 4-F_2$	H
CH₃	CH ₃	Ph-3-F-4-C1	H
CH ₃	CH ₃	Ph-3,4-Cl ₂	H
CH3	CH ₃	L-45d	Н
CH3 CH3	CH ₃	L-45e	H
снз СНз	CH ₃	L-45g	Н
CH ₃	CH ₃	L-45m	H
CH ₃	CH ₃	L-46d	H
CH ₃	CH ₃	L-46e	H
CH ₃	CH ₃	L-46g	H H
CH ₃	СНз	L-46j	н Н
CH ₃	CH ₃	L-46k	н Н
CH ₃	CH ₃	L-46r	Н
CH ₃	Et	Ph-4-F	Н
CH ₃	Et	Ph-4-Cl	Н
CH ₃		Ph-4-Br	п Н
CH ₃	~ .	Ph-4-CF3	n H
CH ₃	- .	Ph-4-0CHF2	п Н
CH ₃	- .	Ph-4-0CF3	
0113		出証特2	$0\ 0\ 4-3$

		L-45g	Н	
СНз	Et	L-40g Ph-4-F	Н	
СНз	n-Pr	Ph-4-C1	Н	
СНз	n–Pr	Ph-4-Br	Н	
СНз	n-Pr	Ph-4-CF3	Н	
СНз	n–Pr	Pn-4-0r3 Ph-4-0CF3	Н	
СН3	n-Pr		Н	
СНз	n-Pr	L-45g	Н	
CH ₃	i-Pr	Ph-4-F	Н	
СНз	i-Pr	Ph-4-C1	Н	
CH ₃	i-Pr	Ph-4-Br	H	
CH ₃	i-Pr	Ph-4-CF3	H	
СН3	i-Pr	Ph-4-OCF3	H	
СНз	i-Pr	L-45g	H	
СНз	n-Bu	Ph-4-Cl	H	
CH ₃	CHF_2	Ph-4-F	H	
СНз	CHF ₂	Ph-4-C1	H	
СН3	CHF_2	Ph-4-Br	H	
CH ₃	CHF2	Ph-4-I	H	
CH ₃	CHF ₂	Ph-4-CF ₃	H	
CH ₃	CHF ₂	Ph-4-0CHF2	H	
CH ₃	CHF ₂	Ph-4-0CF ₃	H	
CH ₃	CHF ₂	Ph-4-OCF ₂ Br	H	
CH ₃	CHF ₂	Ph-4-OCF ₂ CHF ₂	H	
CH ₃	CHF ₂	Ph-4-OCF ₂ CHFCF ₃	n H	
CH ₃	CHF ₂	Ph-4-OCF ₂ CHFOCF ₃	n H	
CH ₃	CHF ₂	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	н Н	
CH ₃	CHF ₂	Ph-4-0S02 CH3	п Н	
CH ₃	CHF ₂	Ph-4-0(L-45g)		
СН3	CHF2	Ph-4-CN	H	
CH ₃	CHF ₂	$Ph-3, 4-F_2$	H	
СН3 СН3	CHF2	Ph-3-F-4-C1	Н	
	CHF ₂	Ph-3, 4-Cl ₂	H	
CH ₃	CHF ₂	L-45d	Н	
CH₃	CHF ₂	L-45e	H	
CH ₃	CHF ₂	L-45g	Н	
CH3	CHF2	L-46d	H	
CH ₃	CHF ₂	L-46e	Н	
CH ₃	CHF ₂	L-46g	H	
CH ₃	CF3	CH ₂ OPh	H	
CH3	CF3	$CH_2O(Ph-2-F)$	H	
CH3	CF3	$CH_2O(Ph-3-F)$	H	
CH ₃	CF3	$CH_2O(Ph-4-F)$	Н	
CH ₃	CF3	$CH_2O(Ph-2-C1)$	Н	
CH₃	CF ₃	$CH_2O(Ph-3-C1)$	H	
CH ₃	CF ₃	$CH_2O(Ph-4-C1)$	Н	
CH ₃	CF3 CF3	$CH_2O(Ph-2-Br)$	H	
CH ₃	CF3 CF3	$CH_2O(Ph-3-Br)$	H	
СНз	CF3	CH ₂ O(Ph-4-Br)	H	
CH ₃		CH ₂ O (Ph-2-CF ₃)	Н	
CH ₃	CF₃ CF₃	$CH_2O(Ph-3-CF_3)$	Н	
СНз	Cr3	出証券2	0 0 4 - 3 0 9	926

			**
СН3	CF3	CH ₂ O (Ph-4-CF ₃)	H H
CH ₃	CF3	$CH_2O(Ph-2-OCF_3)$	
CH ₃	CF ₃	$CH_2O(Ph-3-OCF_3)$	H H
CH ₃	CF ₃	$CH_2O(Ph-4-OCF_3)$	
CH3	CF ₃	CH ₂ SPh	H
CH ₃	CF3	CH ₂ NHPh	H
СН3	CF3	Ph	Н
СНЗ	CF ₃	Ph-2-F	Н
СН3 СН3	CF ₃	Ph-3-F	Н
CH3 CH3	CF ₃	Ph-4-F	H
СН3 СН3	CF3	Ph-3-C1	H
	CF3	Ph-4-Cl	Н
CH ₃	CF3	Ph-4-C1	CH ₃
CH ₃	CF ₃	Ph-4-C1	Et
CH ₃	CF3	Ph-4-C1	n-Pr
CH ₃	CF3	Ph-4-Cl	i-Pr
CH ₃	CF3 CF3	Ph-4-Cl	n-Bu
CH ₃	CF3 CF3	Ph-4-Cl	CH ₂ CF ₃
CH ₃	CF3	Ph-4-Cl	CH ₂ CH=CH ₂
CH ₃	CF3 CF3	Ph-4-Cl	CH ₂ CH=CF ₂
CH ₃	CF3	Ph-4-Cl	CH ₂ CH=CC1 ₂
CH ₃	CF3	Ph-4-C1	CH ₂ CF=CF ₂
СНз		Ph-4-Cl	CH ₂ CC1=CC1 ₂
СНз	CF₃	Ph-4-C1	CH ₂ CH=CHPh
СНз	CF₃	Ph-4-C1	$CH_2C \equiv CH$
СНз	CF3	Ph-4-C1	$\mathrm{CH}_2\mathrm{Ph}$
СНз	CF ₃	Ph-4-Br	H
СНз	CF ₃	Ph-4-I	Н
СНз	CF ₃	Ph-4-CF3	Н
СНз	CF3	Ph-4-OCHF2	Н
СНз	CF3	Ph-4-0CF3	Н
СНз	CF ₃	Ph-4-OCF3	CH ₃
CH ₃	CF ₃	Ph-4-0CF ₃	CH ₂ CH=CH ₂
СНз	CF ₃	Ph-4-0CF3	$CH_2 C \equiv CH$
СНз	CF ₃	Ph-4-0CF ₃	$\mathrm{CH_{2}Ph}$
СНз	CF ₃	Ph-4-OCF ₂ Br	H
СНз	CF ₃	Ph-4-OCH ₂ CF ₃	H
СНз	CF ₃	Ph-4-OCF ₂ CHF ₂	H
СНз	CF ₃	Ph-4-OCF ₂ CHFC1	Н
СНз	CF ₃	Ph-4-OCF ₂ CHFBr	H
СНз	CF ₃	Ph-4-OCF ₂ CF ₂ Br	Н
СНз	CF ₃	Ph-4-OCF ₂ CFCl ₂	Н
СН₃	CF ₃	Ph-4-OCF ₂ CCl ₃	Н
СН3	CF ₃	Ph-4-OCH ₂ CF ₂ CHF ₂	Н
СН₃	CF ₃	Ph-3-OCF ₂ CHFCF ₃	H
СН3	CF ₃	Ph-4-OCF ₂ CHFCF ₃	Н
СН3	CF ₃	Ph-4-0CH(CF ₃) ₂	Н
CH ₃	CF ₃	Ph-4-OCF ₂ CFBrCF ₃	Н
СН3	CF ₃	Ph-3-OCF ₂ CHFOCF ₃	H
CH ₃	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	Н
CH ₃	CF ₃		004 - 30992
		LI all.147 & C	, , , , , , , , , , , , , , , , , , , ,

CH3	OII	CF3	Ph-4-OCF2 CHFOCF2 CF2 CF3	Н
CH3 CF3 Ph-4-OSD2CF3 II CH3 CF3 Ph-3-O(Ph-4-C1) H CH3 CF3 Ph-3-O(Ph-4-C1) H CH4 CF3 Ph-3-O(Ph-4-Br) H CH3 CF3 Ph-3-O(Ph-4-Br) H CH3 CF3 Ph-3-O(Ph-4-Br) H CH3 CF3 Ph-3-O(Ph-4-Br) H CH3 CF3 Ph-3-O(Ph-4-CF3) H CH3 CF3 Ph-4-O(Ph-4-CF3) H CH3 CF3 Ph-4-O(Ph-4-CF3) H CH3 CF3 Ph-4-O(Ph-4-CF3) H CH4 CF3 Ph-4-O(Ph-4-CF3) H CH5 CF3 Ph-4-SCH5 H CH5 CF5 Ph-4-SCH	CH ₃		Ph-4-0S0 ₂ CH ₃	Н
CHS CF3 Ph3-O(Ph.4-C1) II CHS CF3 Ph4-O(Ph.4-C1) II CHS CF3 Ph3-O(Ph.4-Br) II CHS CF3 Ph3-O(Ph.4-Br) II CHS CF3 Ph4-O(Ph.4-Br) II CHS CF3 Ph4-O(Ph.4-Br) II CHS CF3 Ph3-O(Ph.4-CF3) II CHS CF3 Ph4-O(Ph.4-CF3) II CHS CF3 Ph4-O(Ph.4-CF3) II CHS CF3 Ph4-O(Ph.4-CF3) II CHS CF3 Ph4-O(L-45E) II CHS CF3 Ph4-O(L-45E) II CHS CF3 Ph4-O(L-45E) II CHS CF3 Ph4-O(L-45E) II CHS CF3 Ph4-SCH3 II CHS CF3 Ph4-SCP3 II CHS CF3 Ph4-SCP4 II CHS CF3 Ph.			Ph-4-0S02 CF3	
CH3 CF3 Ph-4-O(Ph-4-Br) H CH3 CF3 Ph-3-O(Ph-4-Br) H CH3 CF3 Ph-3-O(Ph-4-Br) H CH3 CF3 Ph-3-O(Ph-4-Br) H CH3 CF3 Ph-4-O(Ph-4-Br) H CH3 CF3 Ph-4-O(Ph-4-CF3) H CH4 CF3 Ph-4-O(Ph-4-CF3) H CH5 CF3 Ph-4-SCH3 H CH5 CF3 Ph-4-SCD CH3 H CH5 CF3 Ph-4-SCD CH3 H CH5 CF3 Ph-4-SCD CH5 H CH5 CF3 Ph-4-SCD Ph CH5 CF5			Ph-3-0(Ph-4-C1)	
CH3 CF3 Ph-3-0(Ph-4-Br) H CH3 CF3 Ph-4-0(Ph-4-Br) H CH3 CF3 Ph-3-0(Ph-4-CF3) H CH3 CF3 Ph-3-0(Ph-4-CF3) H CH3 CF3 Ph-3-0(Ph-4-CF3) H CH3 CF3 Ph-4-0(Ph-4-CF3) H CH3 CF3 Ph-4-0(Ph-4-CF3) H CH3 CF3 Ph-4-0(Ph-4-CF3) H CH3 CF3 Ph-4-0(L-45g) H CH3 CF3 Ph-4-0(L-45g) H CH3 CF3 Ph-4-0(L-45g) H CH3 CF3 Ph-4-SCH3 H CH3 CF3 Ph-4-SCH3 H CH4 CF3 Ph-4-SCH3 H CH5 CF3 Ph-4-SCH3 H CH6 CF3 Ph-4-SCH3 H CH6 CF3 Ph-4-SCH3 H CH6 CF3 Ph-4-SCH3 H CH6 CF3 Ph-4-SCH3 H CH7 CF3 Ph-4-SCH3 H CH8 CF3 Ph-4-SCH5 H CH9 CF3 Ph-4-SCH5 PT-1 H CH9 CF9 Ph-4-SCH5 P				
CH3 CH3 CH3 CH3 CH5				
CH3 CH3 CH3 CF3 Ph-3-0(Ph-4-CF3) H CH3 CF3 Ph-4-0(L-45e) H CH3 CF3 Ph-4-0(L-45e) H CH3 CF3 Ph-4-0(L-45e) H CH3 CF3 Ph-4-0(L-45g) H CH3 CF3 Ph-4-0(L-45h) H CH3 CF3 Ph-4-0(L-48h) H CH3 CF3 Ph-4-0(L-48h) H CH3 CF3 Ph-4-SCH3 H CH3 CF3 Ph-4-SCH3 H CH3 CF3 Ph-4-SCH3 H CH3 CF3 Ph-4-SCH3 H CH3 CF3 Ph-4-SO2CH3 H CH3 CF3 Ph-4-SO2CH3 H CH3 CF3 Ph-4-SO2CH3 H CH3 CF3 Ph-4-SO2Pr-n H CH3 CF3 Ph-4-SO2Pr-i H CH3 CF3 Ph-4-SO2Pr-i H CH3 CF3 Ph-4-SO2Pr-i H CH3 CF3 Ph-4-SO2Pr-i H CH3 CF3 Ph-4-SCP3Pr-i H CH3 CF				
CH3 CF3 Ph-4-O(Ph-4-CF3) H CH3 CF3 Ph-4-O(L-45e) H CH3 CF3 Ph-4-SCH3 H CH4 CF3 Ph-4-SCH3 H CH5 CF3 Ph-4-SCH3 H CH6 CF3 Ph-4-SO2CH3 H CH6 CF3 Ph-4-SO2Et H CH6 CF3 Ph-4-SO2Et H CH7 CF3 Ph-4-SO2Et H CH8 CF3 Ph-4-SO2Et H CH9 CF3 Ph-4-SO2Et H CH9 CF3 Ph-4-SO2Pr-n H CH9 CF3 Ph-4-SO2Pr-n H CH9 CF3 Ph-4-SO2Pr-n H CH9 CF3 Ph-4-SCP-1 H CH9 CF9 Ph-4-SCP-2 B CH9 CF9 Ph-4-SCP-3 H CH9 CF9 Ph-4-SCP-3 H CH9 CF9 Ph-4-SCP-3 H CH9 CF9 Ph-4-SCP-3 H CH9 CF9 Ph-4-SCP-4-CF9 H CH9 C				
CH3				
CH3 CF3 Ph-4-0(L-45g) H CH3 CF3 Ph-4-0(L-45l) H CH3 CF3 Ph-4-0(L-45l) H CH3 CF3 Ph-4-0(L-48b) H CH3 CF3 Ph-4-0(L-48b) H CH3 CF3 Ph-4-S(0)CH3 H CH3 CF3 Ph-4-S(0)CH3 H CH3 CF3 Ph-4-S(0)Et H CH4 CF3 Ph-4-S(0)Et H CH5 CF3 Ph-4-S(0)Et H CH5 CF3 Ph-4-S(0)Et H CH6 CF3 Ph-4-S(0)Et B CH6 CF3 Ph				
CH3 CF3 Ph-4-0(L-451) H CH3 CF3 Ph-4-0(L-48b) H CH3 CF3 Ph-4-SCH3 H CH4 CF3 Ph-4-SCH3 H CH5 CF3 Ph-4-SCH3 H CH6 CF3 Ph-4-SCH3 H CH7 CH8 CF3 Ph-4-SCH3 H CH8 CF3 Ph-4-SCH4 H CH9 CF3 Ph-4-SCH5				Н
CHs CF3 CHS CH				
CH3 CF3 Ph-4-SCH3 H CH3 CF3 Ph-4-SC) CH3 CF3 Ph-4-SO2CH3 H CH3 CF3 Ph-4-SO2CH3 H CH3 CF3 Ph-4-SO2CH3 H CH3 CF3 Ph-4-SO2CH3 H CH3 CF3 Ph-4-SO2E H CH3 CF3 Ph-4-SO2E H CH3 CF3 Ph-4-SO2E H CH3 CF3 Ph-4-SPr-n H CH4 CF3 Ph-4-SPr-n H CH5 CF3 Ph-4-SPr-n H CH6 CF6 Ph-4-SPR-N H CH6				Н
CH3 CF3 Ph-4-S(0)CH3 H CH3 CF3 Ph-4-SO2CH3 H CH3 CF3 Ph-4-SSEt H CH3 CF3 Ph-4-SEt H CH3 CF3 Ph-4-SEt H CH3 CF3 Ph-4-SQ2Et H CH3 CF3 Ph-4-SQ2Et H CH3 CF3 Ph-4-SQ2Et H CH3 CF3 Ph-4-SQ2Pr-n H CH3 CF3 Ph-4-SQ2Pr-i H CH4 CF3 Ph-4-SQ2Pr-i H CH5 CF3 Ph-4-SQ2Pr-i H CH5 CF3 Ph-4-SQ2Pr-i H CH6 CF6 Ph-4-SQ2Pr-1 H CH6 CF6 Ph-4-SQ2Pr-1 H CH6 CF6 Ph-4-SQ2Pr-1 H CH6 Ph-4-SQ2Pr-1				Н
CH3				Н
CH3 CF3 CH3 CF3 CH4 CF3 CH5 CH3 CF3 CH4 CF3 CH5 CH5 CH5 CH5 CF5 CH5 CH5 CH5 CF5 CH5 CH5 CH5 CF5 CH5 CH5 CH5 CH5 CH5 CF5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH			_	Н
CH3 CF3 CH3 CF3 CH3 CF3 CH3 CF3 CH4 CF3 CH5 CH5 CH5 CH5 CF5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH				Н
CH3				Н
CH3 CF3 Ph-4-SPr-n H CH3 CF3 Ph-4-S(0)Pr-n H CH3 CF3 Ph-4-S02Pr-n H CH3 CF3 Ph-4-S02Pr-n H CH3 CF3 Ph-4-S02Pr-i H CH3 CF3 Ph-4-SCH2F H CH3 CF3 Ph-4-S02CH2F H CH3 CF3 Ph-4-S02CH2F H CH3 CF3 Ph-4-S02CH2F H CH3 CF3 Ph-4-S02CH2P H CH3 CF3 Ph-4-SC0CH2P H CH3 CF3 Ph-4-SC0CH2P H CH3 CF3 Ph-4-SC0CH2P H CH3 CF3 Ph-4-SC2CH3P H CH3 CF3 Ph-4-SC2CH3P H CH3 CF3 Ph-4-SC2CH3P H CH3 CF3 Ph-4-SC2CT3 H CH3 CF3 Ph-4-SC2CT3 H CH3 CF3 Ph-4-SC2CT3 H CH3 CF3 Ph-4-SC2CT3 H CH3 CF3 Ph-4-SC2CT2 H CH3 CF3 Ph-4-SC4CT2 H CH3 CF3 Ph-4-SC4CT3 H CH3 CF3 Ph-4-SC4CT5 H CH4			- · · · · · · · · · · · · · · · · ·	Н
CH3 CF3 Ph-4-S(0)Pr-n H CH3 CF3 Ph-4-S02Pr-n H CH3 CF3 Ph-4-S02Pr-i H CH3 CF3 Ph-4-S02Pr-i H CH3 CF3 Ph-4-S02Pr-i H CH3 CF3 Ph-4-SCH2F CH3 CF3 Ph-4-SCH2 H CH3 CF3 Ph-4-SCO2CH2P CH3 CF3 Ph-4-SCO2CH2P CH3 CF3 Ph-4-SCCF3 H CH3 CF3 Ph-4-SCO2CH2P CH3 CF3 Ph-4-SCCF3 H CH3 CF3 Ph-4-SCCF2 C1 H CH4 CF3 Ph-4-SCCF4 C1 H CH5 CF3 Ph-4-SCCF4 Ph CH5 CH5 CF3 Ph-4-SCCF4 Ph CH5 CH5 CF3 Ph CH5 CH5 CH5 CH5 Ph CH5 CH5 CH5 CH5 Ph	CH ₃			H
CH3 CF3 Ph-4-S02Pr-n H CH3 CF3 Ph-4-S(0)Pr-i H CH3 CF3 Ph-4-S(Ph-4-CI) H CH3 CF3 Ph-4-S(Ph-4-DF3) H CH4 CH3 CF3 Ph-4-S(Ph-4-DF3) H CH4 CH4 CH4 Ph-4-S(Ph-4-DF3) H CH4 CH4 CH4 Ph-4-S(Ph-4-	CH ₃			Н
CH3 CF3 CH4 CF3 CH3 CF3 CH4 CF3 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH6 CF5 CH6 CF6 CH7 CH7 CH7 CH8 CF7 CH8 CF7 CH9 CF8 CH9 CF8 CH9 CF9 CH9 CF9 CH9 CF9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH9 CH	CH ₃			H
CH3	CH ₃			Н
CH3 CF3 CH4 CF3 CH3 CF3 CH4 CF3 CH5	СН3			Н
CH3 CF3 CH4 CH3 CF3 CH4 CH5	СНз			Ħ
CH3 CF3 CH4-SCHF2 CH5 CH5 CH5 CF5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH5 CH	СН3			Н
CH3 CF3 CH4 CH5 CF3 CH5	СН3			
CH3	СНз	•		Н
CH3	СНз			Н
CH3	СН3			Н
CH3 CF3 Ph-4-SCF3 H CH3 CF3 Ph-4-SCF3 H CH3 CF3 Ph-4-SCF3 H CH3 CF3 Ph-4-S(0) CF3 H CH3 CF3 Ph-4-SCF2 CF3 H CH3 CF3 Ph-4-SCF2 CF3 H CH3 CF3 Ph-4-SCF2 CF1 H CH3 CF3 Ph-4-SCF2 CF1 H CH3 CF3 Ph-4-SCF2 CF1 H CH3 CF3 Ph-4-SCF2 Br H CH3 CF3 Ph-4-SCF2 Br H CH3 CF3 Ph-4-SO2 CF2 Br H CH3 CF3 Ph-4-SO2 CF2 Br H CH3 CF3 Ph-4-SCP4 Br H CH3 CF3 Ph-4-S(0) CF2 Br H CH3 CF3 Ph-4-S(Ph-4-C1) H CH3 CF3 Ph-4-S(Ph-4-C1) H CH3 CF3 Ph-4-S(Ph-4-Br) H CH3 CF3 Ph-4-S(Ph-4-Br) H CH3 CF3 Ph-4-S(Ph-4-Br) H CH3 CF3 Ph-4-S(Ph-4-CF3) H CH3 CF3 Ph-4-S(Ph-4-CF3) H CH3 CF3 Ph-4-S(Ph-4-CF3) H CH3 CF3 Ph-4-S(Ph-4-CF3) H CH3 CF3 Ph-4-S(L-45e) H CH3 CF3 Ph-4-S(L-45e) H CH3 CF3 Ph-4-S(L-45f) H CH4 CF3 Ph-4-S(L-45f) H	СНз			
CH ₃ CF ₃ Ph-4-S(0) CF ₃ H CH ₃ CF ₃ Ph-4-S(0) CF ₃ H CH ₃ CF ₃ Ph-4-SO ₂ CF ₃ H CH ₃ CF ₃ Ph-4-SC ₂ C1 H CH ₃ CF ₃ Ph-4-S(0) CF ₂ C1 H CH ₃ CF ₃ Ph-4-S(0) CF ₂ C1 H CH ₃ CF ₃ Ph-4-SO ₂ CF ₂ C1 H CH ₃ CF ₃ Ph-4-S(0) CF ₂ Br H CH ₃ CF ₃ Ph-4-S(0) CF ₂ Br H CH ₃ CF ₃ Ph-4-S(0) CF ₂ Br H CH ₃ CF ₃ Ph-4-S(0) CF ₂ Br H CH ₃ CF ₃ Ph-4-S(0) CF ₂ Br H CH ₃ CF ₃ Ph-4-S(0) CF ₂ Br H CH ₃ CF ₃ Ph-4-S(0) CF ₂ Br H CH ₃ CF ₃ Ph-4-S(Ph-4-C1) H CH ₃ CF ₃ Ph-4-S(Ph-4-C1) H CH ₃ CF ₃ Ph-3-S(Ph-4-C1) H CH ₃ CF ₃ Ph-4-S(Ph-4-Br) H CH ₃ CF ₃ Ph-4-S(Ph-4-Br) H CH ₃ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₃ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₃ CF ₃ Ph-4-S(L-45e) H CH ₃ CF ₃ Ph-4-S(L-45e) H CH ₃ CF ₃ Ph-4-S(L-45f) H CH ₄ CF ₃ Ph-4-S(L-45f) H	СНз			
CH3 CF3 CH3 CF3 CH3 CF3 CH3 CF3 CH3 CF3 CH3 CF3 CH4-SO2CF3 CH5	СНз			
CH3 CF3 CH4 CH5 CF5 CH5 CF6 CH6 CH6 CF6 CH6 CH	СНз			
CH3 CF3 CH4 CH3 CF3 CH5 CF3 CH5 CF3 CH5 CF3 CH5 CF3 CH5 CF3 CH5 CF3 CF3 CF3 CF4 CF3 CF4 CF4 CF5 CH5 CF5 CF4 CH5 CF5 CF5 CH5 CF5 CF5 CF5 CH6 CF6 CF6 CF6 CF6 CF6 CF6 CF6 CF6 CF6 CF	СНз			
CH3 CF3 CH3 CF3 CH3 CF3 CH3 CF3 CH4-SO ₂ CF ₂ C1 H CH3 CF3 CH3 CF3 Ph-4-SC ₂ Br H CH3 CF3 Ph-4-SO ₂ CF ₂ Br H CH3 CF3 Ph-4-SO ₂ CF ₂ Br H CH3 CF3 Ph-4-SO ₂ CF ₂ Br H CH3 CF3 Ph-3-S(Ph-4-C1) H CH3 CF3 Ph-3-S(Ph-4-C1) H CH3 CF3 Ph-4-S(Ph-4-Br) H CH3 CF3 Ph-4-S(Ph-4-Br) CH3 CF3 Ph-3-S(Ph-4-CF3) H CH3 CF3 Ph-4-S(Ph-4-CF3) H CH3 CF3 Ph-4-S(Ph-4-CF3) H CH3 CF3 Ph-4-S(L-45e) H CH3 CF3 Ph-4-S(L-45f) CH3 CF3 Ph-4-S(L-45f) H CH3 CF3 Ph-4-S(L-45f) H CH3 CF3 Ph-4-S(L-45f) H CH3 CF3 Ph-4-S(L-45f) H CH4 CF3 Ph-4-S(L-45f) H CH5 CH5 CH5 CH6 CF3 Ph-4-S(L-45f) H CH6 CF3	СНз			
CH ₃ CF ₃ CF ₃ Ph-4-SCF ₂ Br H CH ₃ CF ₃ Ph-4-S(0) CF ₂ Br H CH ₃ CF ₃ Ph-4-S ₀ ₂ CF ₂ Br H CH ₃ CF ₃ Ph-4-S ₀ ₂ CF ₂ Br H CH ₃ CF ₃ Ph-3-S(Ph-4-C1) H CH ₃ CF ₃ Ph-4-S(Ph-4-C1) H CH ₃ CF ₃ Ph-4-S(Ph-4-Br) H CH ₃ CF ₃ Ph-4-S(Ph-4-Br) H CH ₃ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₄ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₅ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₆ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₇ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₈ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₉ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₉ CF ₃ Ph-4-S(Ph-4-CF ₃) H	СНз			
CH ₃ CF ₃ Ph-4-S(0) CF ₂ Br H CH ₃ CF ₃ Ph-4-S(0) CF ₂ Br H CH ₃ CF ₃ Ph-4-S0 ₂ CF ₂ Br H CH ₃ CF ₃ Ph-3-S(Ph-4-C1) H CH ₃ CF ₃ Ph-4-S(Ph-4-C1) H CH ₃ CF ₃ Ph-3-S(Ph-4-Br) H CH ₃ CF ₃ Ph-4-S(Ph-4-Br) H CH ₃ CF ₃ Ph-3-S(Ph-4-CF ₃) H CH ₃ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₃ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₃ CF ₃ Ph-4-S(L-45e) H CH ₃ CF ₃ Ph-4-S(L-45f) H	СНз			
CH ₃ CF ₃ Ph-4-S0 ₂ CF ₂ Br H CH ₃ CF ₃ Ph-3-S(Ph-4-C1) H CH ₃ CF ₃ Ph-4-S(Ph-4-C1) H CH ₃ CF ₃ Ph-3-S(Ph-4-Br) H CH ₃ CF ₃ Ph-4-S(Ph-4-Br) H CH ₃ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₃ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₃ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₃ CF ₃ Ph-4-S(L-45e) H CH ₃ CF ₃ Ph-4-S(L-45e) H CH ₃ CF ₃ Ph-4-S(L-45f) H CH ₃ CF ₃ Ph-4-S(L-45f) H CH ₃ CF ₃ Ph-4-S(L-45f) H CH ₄ CF ₃ Ph-4-S(L-45f) H	СНз			
CH ₃ CF ₃ Ph-4-S(L-45 ₁) H CH ₃ CF ₃ Ph-3-S(Ph-4-C1) H CH ₃ CF ₃ Ph-4-S(Ph-4-C1) H CH ₃ CF ₃ Ph-3-S(Ph-4-Br) H CH ₃ CF ₃ Ph-4-S(Ph-4-Br) H CH ₃ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₃ CF ₃ Ph-4-S(L-45 ₂) H CH ₄ CF ₃ Ph-4-S(L-45 ₂) H	СНз		Ph 4 CA CE Br	
CH ₃ CF ₃ Ph-4-S(Ph-4-Cl) H CH ₃ CF ₃ Ph-3-S(Ph-4-Br) H CH ₃ CF ₃ Ph-4-S(Ph-4-Br) H CH ₃ CF ₃ Ph-3-S(Ph-4-CF ₃) H CH ₃ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₃ CF ₃ Ph-4-S(L-45e) H CH ₃ CF ₃ Ph-4-S(L-45g) H CH ₃ CF ₃ Ph-4-S(L-45f) H CH ₃ CF ₃ Ph-4-S(L-45f) H CH ₄ CF ₃ Ph-4-S(L-45f) H CH ₅ CF ₃ Ph-4-S(L-48b) H	СНз		ph 2 C(Ph 4_C1)	Н
CH ₃ CF ₃ Ph-4-S(H-4-Br) H CH ₃ CF ₃ Ph-4-S(Ph-4-Br) H CH ₃ CF ₃ Ph-3-S(Ph-4-CF ₃) H CH ₃ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₃ CF ₃ Ph-4-S(L-45e) H CH ₃ CF ₃ Ph-4-S(L-45g) H CH ₃ CF ₃ Ph-4-S(L-45f) H CH ₃ CF ₃ Ph-4-S(L-45f) H CH ₃ CF ₃ Ph-4-S(L-48b) H	СНз		Ph-4-S(Ph-4-C1)	
CH ₃ CF ₃ Ph-4-S(Ph-4-Br) H CH ₃ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₃ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₃ CF ₃ Ph-4-S(L-45e) H CH ₃ CF ₃ Ph-4-S(L-45g) H CH ₃ CF ₃ Ph-4-S(L-45f) H CH ₃ CF ₃ Ph-4-S(L-45f) H CH ₄ CF ₃ Ph-4-S(L-48b) H	СН₃		PN-4-5(FN-4-01)	
CH ₃ CF ₃ Ph-4-S(H-4-DF) CH ₃ CF ₃ Ph-3-S(Ph-4-CF ₃) H CH ₃ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₃ CF ₃ Ph-4-S(L-45e) H CH ₃ CF ₃ Ph-4-S(L-45g) H CH ₃ CF ₃ Ph-4-S(L-451) H CH ₄ CF ₃ Ph-4-S(L-48b) H	СНз		Ph 4 C(Ph 4-Br)	
CH ₃ CF ₃ Ph-3-S(11-4-013) H CH ₃ CF ₃ Ph-4-S(Ph-4-CF ₃) H CH ₃ CF ₃ Ph-4-S(L-45e) H CH ₃ CF ₃ Ph-4-S(L-45g) H CH ₃ CF ₃ Ph-4-S(L-451) H CH ₄ CF ₃ Ph-4-S(L-48b) H	СН3		Ph-4-5(111-4-517	Н
CH ₃ CF ₃ Ph-4-S(L-45e) H CH ₃ CF ₃ Ph-4-S(L-45g) H CH ₃ CF ₃ Ph-4-S(L-45f) H CH ₃ CF ₃ Ph-4-S(L-45l) H CH ₄ CF ₃ Ph-4-S(L-48b) H	CH ₃		PN-3-5(FN-4-015)	
CH ₃ CF ₃ Ph-4-S(L-45g) H CH ₃ CF ₃ Ph-4-S(L-451) H CH ₃ CF ₃ Ph-4-S(L-48b) H CH ₄ CF ₃ Ph-4-S(L-48b)	CH ₃		Ph 4 C(I 45a)	
CH ₃ CF ₃ Ph-4-S(L-45g) H CH ₃ CF ₃ Ph-4-S(L-45l) H CH ₄ CF ₃ Ph-4-S(L-48b) H	СНз			
CH ₃ CF ₃ Ph-4-S(L-48b) H			711-4-3(L-40g)	
CU ₂ CF ₃ Pn-4-5(L-400)			Ph 4 C/I 49h)	
		CF ₃		

	an.	Ph-4-NO2	Н
CH ₃	CF ₃	Ph-4-CN	Н
СНз	CF ₃	Ph-4-C(0) NH ₂	H
СНз	CF ₃	Ph-4-C(S) NH ₂	Н
СНз	CF ₃	Ph-2, 3-F2	Н
CH ₃	CF ₃	Ph-2, 4-F2	Н
CH ₃	CF3		H
CH ₃	CF3	Ph-3, 4-F2	H
СНз	CF ₃	Ph-2, 5-F ₂	H
CH ₃	CF ₃	Ph-3, 5-F ₂	H
CH ₃	CF ₃	Ph-2-C1-4-F	H
CH ₃	CF3	Ph-2-F-3-C1	H
СН3	CF3	Ph-3-C1-4-F	H
СН3	CF ₃	Ph-2-F-4-C1	
СНз	CF3	Ph-3-F-4-C1	H
CH ₃	CF ₃	Ph-2, 3-Cl ₂	H
CH ₃	CF ₃	Ph-2, 4-Cl ₂	H
CH ₃	CF ₃	Ph-2,5-Cl ₂	H
CH ₃	CF ₃	Ph-3,4-Cl ₂	H
CH ₃	CF ₃	Ph-3, 5-Cl ₂	H
CH ₃	CF ₃	Ph-3-Br-4-F	Н
	CF3	Ph-2-F-4-Br	H
CH ₃	CF3	Ph-2-F-5-Br	H
CH ₃	CF3	Ph-3, 4-Br ₂	Н
CH ₃		Ph-3, 5-Br2	Н
CH ₃	CF3	Ph-3-CH ₃ -4-F	H
CH ₃	CF ₃	Ph-3-F-4-CH ₃	Н
СНз	CF ₃	Ph-2-F-5-CH ₃	H
СНз	CF ₃	Ph-2, 4-(CH ₃) ₂	H
СНз	CF ₃	Ph-3, 4-(CH ₃) ₂	Н
СН3	CF ₃	Ph-2-F-3-CF3	Н
СНз	СFз	Ph-3-CF ₃ -4-F	Н
CH ₃	CF3	Ph-3-CF3-4-C1	H
CH ₃	CF ₃	Ph-2-F-4-CF3	Н
СНз	CF ₃		H
СНз	CF ₃	Ph-3-F-4-CF3	H
СН3	CF3	Ph-2-F-5-CF3	Н
СНз	CF3	Ph-3-F-5-CF3	Н
CH ₃	CF ₃	Ph-2-C1-4-CF3	H
СНз	CF ₃	Ph-3, 5-(CF ₃) ₂	H
СН3	СFз	Ph-3-Br-4-0CH ₃	· H
СН3	CF ₃	Ph-3-F-4-0CHF2	Н
CH ₃	CF ₃	Ph-3-C1-4-0CHF ₂	H
СНз	CF ₃	$Ph-3-Br-4-OCHF_2$	
СНз	CF3	Ph-3-F-4-0CF ₃	H
CH ₃	CF ₃	Ph-3-C1-4-0CF3	Н
CH ₃	CF ₃	Ph-3-Br-4-0CF ₃	Н
CH ₃	CF3	Ph-3-F-4-0CF ₂ Br	Н
снз СН3	CF3	Ph-3-C1-4-0CF ₂ Br	H
	CF3	Ph-3-Br-4-OCF ₂ Br	H
CH ₃	CF3	Ph-3-F-4-0CF2 CHF2	H
CH₃	CF ₃	Ph-3-C1-4-0CF2 CHF2	Н
СНз	Ors	出証特2	0.04 - 3

	CTC-	Ph-3-Br-4-0CF2CHF2	Н
CH ₃	CF3	Ph-3-F-4-OCF ₂ CHFC1	H
СНз	CF ₃	Ph-3-C1-4-OCF2 CHFC1	H
СНз	CF ₃	Ph-3-Br-4-OCF ₂ CHFC1	H
CH ₃	CF ₃	Ph-3-F-4-OCF ₂ CHFCF ₃	Н
СНз	CF ₃	Ph-3-C1-4-OCF ₂ CHFCF ₃	Н
СНз	CF3	Ph-3-Br-4-OCF ₂ CHFCF ₃	Н
СНз	CF ₃	Ph-3-F-4-0CF ₂ CHFOCF ₃	Н
CH ₃	CF ₃	Ph-3-C1-4-0CF ₂ CHF0CF ₃	Н
CH ₃	CF ₃	Ph-3-Br-4-0CF ₂ CHF0CF ₃	Н
СН3	CF ₃	Ph-3-F-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	.H
СНз	CF ₃	Ph-3-C1-4-OCF ₂ CHFOCF ₂ CF ₃	Н
CH ₃	CF ₃	Ph-3-Br-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
СНз	CF3	Ph(-3-0CF ₂ 0-4-)	Н
СНз	CF ₃	Ph(-3-0CF ₂ 0-4-) Ph(-3-0CF ₂ CF ₂ 0-4-)	Н
CH ₃	CF3		H
CH ₃	CF ₃	Ph-3-0Ph-4-F	H
CH ₃	CF3	Ph-3-CN-4-F	H
СНз	CF3	Ph-2, 3, 4-F3	H
СН3	CF ₃	Ph-2, 3, 5-F3	H
СН3	CF ₃	Ph-2, 4, 5-F ₃	H
CH ₃	CF ₃	Ph-3, 4, 5-F ₃	H
CH ₃	CF3	Ph-2, 3-F ₂ -4-CH ₃	H
СН3	CF ₃	Ph-2, 3-F ₂ -4-CF ₃	H
СНз	CF3	Ph-3, 4-F ₂ -5-CF ₃	H
CH ₃	CF3	Ph-2-F-3-C1-5-CF ₃	H
СН3	CF ₃	1-Naph	Н
СНз	CF ₃	2-Naph	H
СНз	CF ₃	L-1b	H
СНз	CF ₃	L-1c	Н
CH ₃	CF ₃	L-1d	H
CH ₃	CF ₃	L-1e	H
CH ₃	CF ₃	L-1i	
CH ₃	CF ₃	L–2b	H H
CH ₃	CF ₃	L-3b	
CH ₃	CF ₃	L-3c	Н
СНз	CF ₃	L–3d	H
CH ₃	CF ₃	L–3e	H
CH ₃	CF3	L-3f	Н
CH ₃	CF ₃	L-3j	Н
· CH ₃	CF ₃	L-3k	Н
CH ₃	CF ₃	L-31	H
CH ₃	CF ₃	L-30	H
CH ₃	CF3	L-4b	H
СНз	CF ₃	L-4c	H
CH ₃	CF ₃	L–4e	Н
CH ₃	CF ₃	L-10b	Н
CH ₃	CF ₃	L-10c	H
CH ₃	CF ₃	. L-16a	Н
CH ₃	CF ₃	L-16b	Н
CH ₃	CF ₃	L-17a	H
0113	0.0	出証特200	4 - 3

	an	L-21b	H
СНз	CF ₃	L-21c	Н
СНз	CF ₃	L-21d	H
СНз	CF ₃	L-21e	Н
СН3	CF ₃	L-22b	Н
СНз	CF ₃	L-22c	Н
СНз	CF ₃	L-23b	Н
СНз	CF ₃	L-23c	Н
CH ₃	CF ₃	L-23f	Н
CH ₃	СГз	L-23g	Н
СН3	CF3	L-23g L-31a	Н
СНз	CF ₃		Н
CH ₃	CF ₃	L-31b	Н
СН3	CF3	L-45c	H
CH ₃	CF ₃	L-45d .	Н
CH ₃	CF ₃	L-45e	H
CH ₃	CF3	L-45f	H
СН3	CF ₃	L-45g	H
СНз	CF ₃	L-451	H
СНз	CF ₃	L-45m	H
CH ₃	CF ₃	L-46c	H
СНз	CF ₃	L-46d	H
СНз	CF ₃	L-46e	H
CH ₃	CF3	L-46f	Н
CH3	CF3	L-46g	H
СНз	CF ₃	L-46j	H
СНз	CF ₃	L-46k	· H
СНз	CF3	L-46r	H
СНз	CF ₃	L-47a	H
CH ₃	CF ₃	L-47e	H
СНз	CF ₃	L-48b	H
СНз	CF ₃	L-50b	H
CH ₃	CF ₃	L-50c	H
CH ₃	CF ₃	L-51b	H
СНз	CF ₂ C1	Ph-4-F	n H
СНз	CF ₂ Cl .	Ph-4-C1	H
СНз	CF ₂ Cl	Ph-4-Br	H
CH ₃	CF ₂ C1	Ph-4-CF ₃	H
CH ₃	CF ₂ C1	Ph-4-0CHF2	H
СНз	CF ₂ C1	Ph-4-0CF3	H
СНз	CF ₂ Cl	Ph-4-CN	n H
СНз	CF ₂ C1	Ph-3, 4-Cl ₂	H
CH ₃	CF ₂ C1	L-45g	n H
CH3	CF ₂ Br	Ph-4-Br	
CH ₃	CF ₂ CHF ₂	Ph-4-0CF3	Н
CH ₃	CF ₂ CF ₃	Ph-4-F	Н
СН3	CF ₂ CF ₃	Ph-4-Cl	Н
СН3	CF ₂ CF ₃	Ph-4-Br	Н
спз СНз	CF ₂ CF ₃	Ph-4-I	H
СН3 СН3	CF ₂ CF ₃	Ph-4-CF3	H
	CF ₂ CF ₃	Ph-4-OCHF2	Н
CH ₃	O. 4 0- 0		出証特2004-3

		Ph-4-0CF3	Н
CH ₃	CF ₂ CF ₃	Ph-4-OCF ₂ Br	H^{\cdot}
СНз	CF ₂ CF ₃	Ph-4-OCF2 CHF2	Н
СН3	CF ₂ CF ₃	Ph-4-OCF2 CHFCF3	Н
CH ₃	CF ₂ CF ₃	Ph-4-OCF ₂ CHFOCF ₃	Н
CH ₃	CF ₂ CF ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
CH ₃	CF ₂ CF ₃		H
CH ₃	CF ₂ CF ₃	Ph-4-0S0 ₂ CH ₃	H
CH ₃	CF ₂ CF ₃	Ph-4-CN	Н
CH ₃	CF ₂ CF ₃	Ph-3, 4-F ₂	Н
CH ₃	CF ₂ CF ₃	Ph-3-F-4-C1	H
СНз	CF ₂ CF ₃	Ph-3, 4-Cl ₂	H .
СНз	CF ₂ CF ₃	L-45d	H
CH ₃	CF ₂ CF ₃	L-45e	H
СНз	CF ₂ CF ₃	L-45g	H
CH ₃	CF ₂ CF ₃	L-46d	H
CH ₃	CF ₂ CF ₃	L-46e	H
CH ₃	CF ₂ CF ₃	L-46g	H
СНз	CF ₂ CF ₂ C1	Ph-4-Cl	H
CH ₃	CFC1CF3	Ph-4-Br	п Н
CH ₃	CFC1CF2C1	Ph-4-0CF3	n H
CH ₃	CF ₂ CF ₂ CF ₃	Ph-4-C1	
CH ₃	CF(CF ₃) ₂	Ph-4-Br	H
CH ₃	CF ₂ CF ₂ CF ₂ CF ₃	Ph-4-0CF3	H
	Ph-4-F	Ph-4-Cl	H
CH ₃	Ph-4-Cl	Ph-4-Cl	Н
CH ₃	Ph-4-Br	Ph-4-Cl	H
CH ₃	Ph-4-CF3	Ph-4-Cl	H
CH ₃	Ph-4-0CHF ₂	Ph-4-C1	H
CH ₃	Ph-4-0CF ₃	Ph-4-C1	H
CH ₃	Ph-4-OCF ₂ Br	Ph-4-Cl	H
СНз	Ph-4-OCF ₂ CHFCF ₃	Ph-4-Cl	H
CH ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ C	F ₃ Ph-4-Cl	H
CH₃	Ph-4-0(L-45g)	Ph-4-Cl	H
CH ₃	CH3.	Ph-4-F	Н
Et	CH ₃	Ph-4-Cl	H
Et		Ph-4-Br	Н
Et	CH ₃	Ph-4-CF3	Н
Et	CH ₃	Ph-4-OCHF2	Н
Et	CH ₃	Ph-4-0CF3	Н
Et	CH ₃	Ph-4-OCF ₂ Br	Н
Et	CH ₃	Ph-4-OCF ₂ CHF ₂	Н
Et	CH₃	Ph-4-OCF ₂ CHFC1	Н
Et	CH ₃	Ph-4-OCF ₂ CHFCF ₃	Н
Et	CH ₃	Ph-4-OCF ₂ CHFOCF ₃	Н
Et	CH ₃	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	Н
Et	CH ₃	Ph-4-0 (L-45g)	Н
Et	СНз	Ph-4-CN	H
Et	CH ₃	Ph-3, 4-F ₂	Н
Et	CH ₃	Ph-3-F-4-C1	Н
Et	СНз	Ph-3, 4-Cl ₂	Н
Et	СН₃	111-0, 1-012	04 - 3099262
		出証符20	U T

	OTI	L-45d	Н
Et	CH ₃	L-45e	H
Et	CH ₃	L-45g	H
Et	CH ₃	L-46d	H
Et	СНз	L-46e	H
Et	CH3	L-46g	H
Et	CH3	Ph-4-0CF3	Н
Et	Et CUE-	Ph-4-F	Н
Et	CHF ₂	Ph-4-Cl	H
Et	CHF ₂	Ph-4-Br	H
Et	CHF ₂	Ph-4-CF ₃	H
Et	CHF ₂	Ph-4-0CHF2	H
Et	CHF ₂	Ph-4-0CF3	H
Et	CHF ₂	Ph-4-CN	Н
Et	CHF2	Ph-3, 4-Cl ₂	H
Et	CHF ₂	L-45g	Н
Et	CHF ₂	Ph-4-F	Н
Et	CF ₃	Ph-4-C1	H
Et	CF3	Ph-4-Br	H
Et	CF3	Ph-4-I	H
Et	CF ₃	Ph-4-CF3	Н
Et	CF3	Ph-4-0CHF2	H
Et	CF₃ CF₃	Ph-4-0CF ₃	H
Et		Ph-4-0CF ₂ Br	Н
Et	CF3	Ph-4-OCF2 CHF2	Ħ
Et	CF3 CF3	Ph-4-OCF2 CHFC1	H
Et	CF3 CF3	Ph-4-OCF ₂ CHFCF ₃	H
Et		Ph-4-OCF ₂ CHFOCF ₃	H
Et	CF3 CF3	Ph-4-OCF ₂ CHFOCF ₂ CF ₂ CF ₃	H
Et		Ph-4-0S0 ₂ CH ₃	H
Et	CF ₃	Ph-4-0(L-45g)	H
Et	CF ₃	Ph-4-SCH ₃	Н
Et	CF ₃	Ph-4-SO ₂ CH ₃	Н
Et	CF₃ CF₃	Ph-4-CN	Н
Et	CF3 CF3	Ph-3, 4-F ₂	H
Et	CF3 CF3	Ph-3-F-4-C1	H
Et	CF ₃	. Ph-3, 4-Cl ₂	H
Et	CF3	L-1c	H
Et	CF3	L-le	H
Et	CF ₃	L-1i	Н
Et	CF3	L-2b	H
Et	CF3	L-3d	Н
Et	CF3	L-3f	Н
Et	CF ₃	L-31	Н
Et	CF3	L-4c	H
Et	CF3	L-10c	H
Et	CF3	L-16b	H
Et	CF3 CF3	L-21c	H
Et	CF3 CF3	L-21e	H
Et	CF3 CF3	L-22c	Н
Et	CL3	出証特20	0.4 - 3.0

70.	CF ₃	L-23c	H
Et	CF3	L-31b	H
Et	CF3	L-45e	H
Et	CF3 CF3	L-45g	H
Et	CF3	L-451	Н
Et	CF3	L-45m	Н
Et	CF3 CF3	L-46e	Н
Et	CF ₃	L-46g	H
Et	CF3	L-46j	Н
Et	CF3 CF3	L-46k	Н
Et	CF3	L-46r	Н
Et	CF3	L-47a	H
Et	CF3	L-47e	H
Et	CF ₂ Cl	Ph-4-F	H
Et	CF ₂ C1	Ph-4-C1	H
Et		Ph-4-Br	Н
Et	CF ₂ Cl	Ph-4-CF ₃	Н
Et	CF ₂ C1	Ph-4-OCHF ₂	Н
Et	CF ₂ C1	Ph-4-0CF3	Н
Et	CF ₂ C1	Ph-4-CN	Н
Et	CF ₂ C1	Ph-3, 4-Cl ₂	Н
Et	CF ₂ Cl	L-45g	H
Et	CF ₂ C1	Ph-4-F	H
Et	CF ₂ CF ₃	Ph-4-C1	H
Et	CF ₂ CF ₃	Ph-4-Br	Н
Et	CF ₂ CF ₃	Ph-4-CF3	H
Et	CF ₂ CF ₃	Ph-4-0CHF ₂	Н
Et	CF ₂ CF ₃	Ph-4-0CF3	Н
Et	CF ₂ CF ₃	Ph-4-CN	H
Et	CF ₂ CF ₃	Ph-3, 4-Cl ₂	Н
Et	CF ₂ CF ₃	L-45g	Н
Et	CF ₂ CF ₃	Ph-4-0CF3	Н
Et	CF ₂ CF ₂ CF ₃	Ph-4-C1	Н
Et	Ph-4-F	Ph-4-C1	H
Et	Ph-4-Cl	Ph-4-C1	H
Et	Ph-4-Br	Ph-4-C1	H
Et	Ph-4-CF3	Ph-4-Cl	H
Et	Ph-4-OCHF ₂	Ph-4-C1	H
Et	Ph-4-OCF3	Ph-4-0CF3	H
Pr-n	CF ₃	Ph-4-C1	Н
Pr-i	CF ₃	Ph-4-0CF3	Н
Bu-n	CF ₃	Ph-4-F	H
СF3	CF ₃	Ph-4-C1	Н
CF3	CF ₃	Ph-4-Br	Н
CF ₃	CF ₃	Ph-4-B1 Ph-4-CF3	Н
CF ₃	CF ₃	Ph-4-OCHF2	Н
CF ₃	CF ₃	Ph-4-OCF3	Н
CF ₃	CF ₃	Ph-4-SCH3	Н
CF ₃	CF ₃	Ph-4-S(0) CH3	Н
CF ₃	CF3	Ph-4-S02 CH3	Н
CF ₃	CF ₃		寺2004-309

			Н
CF ₃	CF ₃	L-45g	H
CF ₂ CF ₃	CF ₃	Ph-4-C1	H
CH ₂ OH	CF ₃	Ph-4-F	п Н
CH ₂ OH	CF ₃	Ph-4-C1	
CH ₂ OH	CF ₃	Ph-4-Br	H
CH ₂ OH	CF ₃	Ph-4-I	H
CH ₂ OH	CF ₃	Ph-4−CF3	H
CH ₂ OH	CF ₃	Ph-4-OCHF ₂	H
CH ₂ OH	CF ₃	Ph-4-0CF ₃	H
CH ₂ OH	CF ₃	Ph-4-0CF ₂ Br	H
CH ₂ OH	CF ₃	Ph-4-OCF ₂ CHF ₂	H
CH ₂ OH	CF3	Ph-4-OCF ₂ CHFC1	H
CH ₂ OH	CF3	Ph-4-OCF2 CHFCF3	H
CH ₂ OH	CF ₃	Ph-4-OCF ₂ CHFOCF ₃	H
CH ₂ OH	CF ₃	Ph-4-OCF2 CHFOCF2 CF2 CF3	H
CH ₂ OH	CF ₃	Ph-4-0S0 ₂ CH ₃	H
CH ₂ OH	CF ₃	Ph-4-0(L-45g)	H
CH ₂ OH	CF ₃	Ph-4-SCH ₃	H
CH ₂ OH	CF ₃	$Ph-4-S(0)CH_3$	H
CH ₂ OH	CF ₃	Ph-4-SO ₂ CH ₃	Н
CH ₂ OH	CF ₃	Ph-4-CN	H
CH ₂ OH	CF ₃	$Ph-4-C(0)NH_2$	H
CH ₂ OH	CF ₃	$Ph-4-C(S)NH_2$	Н
CH ₂ OH	CF3	Ph-3, 4-F ₂	Н
CH ₂ OH	CF ₃	Ph-3-F-4-C1	Н
CH ₂ OH	CF ₃	Ph-3, 4-Cl ₂	Н
CH ₂ OH	CF ₃	L-45d	H
CH ₂ OH	CF ₃	L-45e	Н
CH ₂ OH CH ₂ OH	CF3	L-45f	Н
CH ₂ OH CH ₂ OH	CF3	L-45g	Н
CH ₂ OH CH ₂ OH	CF3	L-451	Н
	CF3	L-45m	H
CH ₂ OH	CF ₃	L-46d	Н
CH ₂ OH	CF ₃	. L-46e	Н
CH ₂ OH	CF3	L-46f	Н
CH ₂ OH	CF3	L-46g	H
CH2 OH CH2 OH	CF ₃	L-46j	H
CH ₂ OH	CF3	L-46k	Н
CH ₂ OH	CF3	L-46r	H
CH ₂ OH	CF ₃	L-47a	Н
CH ₂ OH	CF ₃	L-47e	Н
0CH ₃	CF3	Ph-4-F	Н
OCH3	CF ₃	Ph-4-Cl	Н
осна осна	CF3	Ph-4-Br	H
	CF₃	Ph-4-CF3	Н
OCH ₃	CF ₃	Ph-4-OCHF2	H
OCH ₃	CF ₃	Ph-4-0CF3	Н
OCH3	CF ₃	Ph-4-SCH ₃	Н
OCH3	CF3 CF3	Ph-4-S(0) CH3	Н
OCH3	CF3	Ph-4-S0 ₂ CH ₃	Н
ОСН₃	Or 3		0.04 - 3.0

OEt CF3 Ph-4-Cl OCF3 CF3 Ph-4-Cl OPh CF3 Ph-4-OCF3 SCH3 CF3 Ph-4-F SCH3 CF3 Ph-4-Br SCH3 CF3 Ph-4-CF3 SCH3 CF3 Ph-4-OCF2 SCH3 CF3 Ph-4-OCF3 SCH3 CF3 Ph-4-SCH3 SCH3 CF3 Ph-4-SCH3 SCH3 CF3 Ph-4-SO2 CH3 SCH3 CF3 Ph-4-SO2 CH3 SCH3 CF3 Ph-4-C1 SPr-i CF3 Ph-4-OCF3 SPr-i CF3 Ph-4-OCF3 SCH52 CF3 Ph-4-C1 N(CH3)2 CF3 Ph-4-C1 Ph CF3 Ph-4-C1 Ph-4-C1 Ph-4-C1 Ph-4-C1 Ph-4-C1 Ph-4-C1 Ph-4-C1 Ph-4-C1 Ph-4-C1 Ph-4-C1 Ph-4-C1 Ph-4-C1 Ph-4-C1 Ph-4-C1	H H H H H H H H H H H H H H H H H H H
---	---------------------------------------

本発明化合物は、農園芸作物及び樹木などを加害する所謂農業害虫、家畜、家禽類に寄 生する所謂家畜害虫、家屋等の人間の生活環境で様々な悪影響を与える所謂衛生害虫、倉 庫に貯蔵された穀物等を加害する所謂貯穀害虫、及び同様の場面で発生、加害するダニ類 、線虫類、軟体動物、甲殻類の何れの害虫も低濃度で有効に防除できる。

本発明化合物を用いて防除しうる昆虫類、ダニ類、線虫類、軟体動物及び甲殻類には具 体的に、例えば、

コナガ(Plutella xylostella)、タマナヤガ(Agrotis ipsilon)、カプラヤガ(Agrotis s egetum)、オオタバコガ(Helicoverpa armigera)、タバコガ(Helicoverpa assulta)、コッ トンボールワーム(Helicoverpa zea)、タバコバッドワーム(Heliothis virescens)、ヨト ウガ(Mamestra brassicae)、フタオビコヤガ(Naranga aenescens)、タマナギンウワバ(P1 usia nigrisigna)、アワヨトウ(Pseudaletia separata)、シロイチモジヨトウ(Spodopter a exigua)、ハスモンヨトウ(Spodoptera litura)、コットンリーフワーム(Spodoptera li ttoralis)、フォールアーミーワーム(Spodoptera frugiperda)、サザンアーミーワーム(S podoptera eridania)、トマトホーンワーム(Manduca quinquemaculata)、タバコホーンワ ーム (Manduca sexta)、グレープベリーモス (Endopiza viteana)、ギンモンハモグリガ(Ly onetia prunifoliella malinella)、キンモンホソガ(Phyllonorycter ringoneella)、ミ カンハモグリガ(Phyllocnistis citrella)、ワタアカミムシ(Pectinophora gossypiella) 、モモシンクイガ(Carposina niponensis)、リンゴコカクモンハマキ(Adoxophyes orana faciata)、チャノコカクモンハマキ(Adoxophyes honmai)、チャハマキ(Homona magnamina)、コドリンガ(Cydla pomonella)、ナシヒメシンクイ(Grapholita molesta)、ニカメイガ (Chilo suppressalis)、コプノメイガ(Cnaphalocrocis medinalis)、ハイマダラノメイガ (Hellula undalis)、ヨーロピアンコーンボーラー(Ostrinia nubilalis)、ソイビーンル ーパー(Pseudoplusia includens)、イラクサギンウワバ(Trichoplusia ni)、アメリカシ ロヒトリ(Hyphantria cunea)、モンシロチョウ(Pieris rapae crucivora)、イチモンジセ セリ (Parnara guttata)等の鱗翅目害虫、

ドウガネブイブイ(Anomala cuprea)、ヒメコガネ(Anomala rufocuprea)、マメコガネ(P opillia japonica)、コロラドポテトビートル(Lepinotarsa decemlineata)、インゲンテ ントウ(Epilachna varivestis)、カンシャクシコメツキ(Melanotus tamsuyensis)、タバ コシバンムシ(Lasioderma serricorne)、ヒメヒラタケシキスイ(Epuraea domina)、ニジ ュウヤホシテントウ(Henosepilachna vigintioctopunctata)、チャイロコメノゴミムシダ マシ(Tenebrio molitor)、コクヌストモドキ(Tribolium castaneum)、ゴマダラカミキリ(Anoplophora malasiaca)、マツノマダラカミキリ(Monochamus alternatus)、アズキゾウ ムシ(Callosobruchus chinensis)、ウリハムシ(Aulacophora femoralis)、イネドロオイ ムシ(Oulema oryzae)、キスジノミハムシ(Phyllotreta striolata)、アリモドキゾウムシ (Cylas formicarius)、ワタミゾウムシ(Anthonomus grandis)、イネゾウムシ(Ethinocnem us squameus)、アルファルファタコゾウムシ(Hypera postica)、イネミズゾウムシ(Lisso rhoptrus oryzophilus)、コクゾウ(Sitophilus zeamais)、シバオサゾウムシ(Sphenophru s venatus vestius)、グラナリーウィービル(Sitophilus granarius)、サザンコーンルー トワーム(Diabrotica undecimpunctata)、ウエスタンコーンルートワーム(Diabrotica vi rgifera)、ノーザンコーンルートワーム(Diabrotica barberi)、アオバアリガタハネカク シ(Paederus fuscipes)等の鞘翅目害虫、

ナガメ(Eurydema rugosa)、シラホシカメムシ(Eysarcoris ventralis)、クサギカメム シ(Halyomorpha mista)、ミナミアオカメムシ(Nezara viridula)、クモヘリカメムシ(Lep tocorisa chinensis)、ホソヘリカメムシ(Riptortus clavatus)、コバネヒョウタンナガ カメムシ(Togo hemipterus)、ターニッシュドプラントバグ(Lygus lineolaris)、コット ンフリーホッパー(Psuedatomoscelis seriatus)、ツツジグンバイ(Stephanitis pyrioide s)、フタテンオオヨコバイ(Epiacanthus stramineus)、チャノミドリヒメヨコバイ(Empoa sca onukii)、ポテトリーフホッパー(Empoasca fabae)、ツマグロヨコバイ(Nephotettix cinctinceps)、ヒメトビウンカ(Laodelphax striatellus)、トビイロウンカ(Nilaparvata lugens)、セジロウンカ(Sogatella furcifera)、ミカンキジラミ(Trioza erytreae)、ナ シキジラミ(Psylla pyrisuga)、シルバーリーフコナジラミ(Bemisia argentifolii)、タ バココナジラミ(Bemisia tabaci)、ミカンコナジラミ(Dialeurodes citri)、オンシツコ ナジラミ(Trialeurodes vaporariorum)、ワタアブラムシ(Aphis gossypii)、ユキヤナギ アプラムシ(Aphis pomi)、モモアカアプラムシ(Myzus persicae)、オオワラジカイガラム シ(Drosicha corpulenta)、イセリアカイガラムシ(Icerya purchasi)、ミカンコナカイガ ラムシ(Planococcus citri)、クワコナカイガラムシ(Pseudococcus comstocki)、ルビー ロウムシ(Ceroplastes rubens)、ヤノネカイガラムシ(Unaspis yanonensis)、トコジラミ (Cimex lectularius)等の半翅目害虫、

ミカンキイロアザミウマ(Frankliniella occidentalis)、ヒラズハナアザミウマ(Frank liniella intonsa)、チャノキイロアザミウマ(Scirtothrips dorsalis)、ミナミキイロア ザミウマ(Thrips palmi)、ネギアザミウマ(Thrips tabaci)等の総翅目害虫、

ミカンコミバエ(Dacus dorsalis)、ウリミバエ(Dacus cucurbitae)、チチュウカイミバ エ(Ceratitis capitata)、イネヒメハモグリバエ(Hydrellia griseola)、ナスハモグリバ エ(Liriomyza bryoniae)、マメハモグリバエ(Liriomyza trifolii)、タネバエ(Hylemya p latura)、アップルマゴット(Rhagoletis pomonella)、ヘシアンフライ(Mayetiola destru ctor)、イエバエ(Musca domestica)、サシバエ(Stomoxys calcitrans)、ヒツジシラミバ エ(Melophagus ovinus)、ウシバエ(Hypoderma bovis)、キスジウシバエ(Hypoderma linea tum)、ヒツジバエ(Oestrus ovis)、ツェツェバエ(Glossina palpalis, Glossina morsita ns)、キアシオオプユ(Prosimulium yezoensis)、ウシアブ(Tabanus trigonus)、オオチョ ウバエ(Telmatoscopus albipunctatus)、トクナガヌカカ(Leptoconops nipponensis)、ア カイエカ(Culex pipiens pallens)、ネッタイシマカ(Aedes aegypti)、ヒトスジシマカ(A edes albopicutus)、シナハマダラカ(Anopheles hyracanus sinesis)等の双翅目害虫、

クリハバチ(Apethymus kuri)、カブラハバチ(Athalia rosae japonensis)、マツノキハ バチ(Neodiprion sertifer)、グンタイアリ(Eciton burchelli, Eciton schmitti)、クロ オオアリ(Camponotus japonicus)、オオスズメバチ(Vespa mandarina)、ブルドックアン ト(Myrmecia spp.)、ファイヤーアント類(Solenopsis spp.)、ファラオアント(Monomoriu m pharaonis)等の膜翅目害虫、

クロゴキブリ(Periplaneta fuliginosa)、ヤマトゴキブリ(Periplaneta japonica)、チ ャバネゴキブリ(Blattella germanica)等の網翅目害虫、

エンマコオロギ(Teleogryllus emma)、ケラ(Gryllotalpa africana)、トノサマバッタ(Locusta migratoria)、コバネイナゴ(Oxya yezoensis)、サバクワタリバッタ(Schistocer ca gregaria)等の直翅目害虫、

イエシロアリ(Coptotermes formosanus)、ヤマトシロアリ(Reticulitermes speratus) 、タイワンシロアリ(Odontotermes formosanus)等のシロアリ目害虫、

ネコノミ(Ctenocephalidae felis)、ヒトノミ(Pulex irritans)、ケオプスネズミノミ(Xenopsylla cheopis)等の等翅目害虫、

ニワトリオオハジラミ(Menacanthus stramineus)、ウシハジラミ(Bovicola bovis)等の ハジラミ目害虫、

ウシジラミ(Haematopinus eurysternus)、ブタジラミ(Haematopinus suis)、ウシホソ ジラミ(Linognathus vituli)、ケブカウシジラミ(Solenopotes capillatus)等のシラミ目 害虫、

ミカンハダニ(Panonychus citri)、リンゴハダニ(Panonychus ulmi)、カンザワハダニ(Tetranychus kanzawai)、ナミハダニ(Tetranychus urticae)等のハダニ類、

チャノナガサビダニ(Acaphylla theae)、ミカンサビダニ(Aculops pelekassi)、ニセナ シサビダニ(Eriophyes chibaensis)、チューリップサビダニ(Aceria tulipae)等のフシダ ニ類、

チャノホコリダニ(Polyphaotarsonemus latus)、シクラメンホコリダニ(Steneotarsone mus pallidus)等のホコリダニ類、

ケナガコナダニ(Tyrophagus putrescentiae)、ロビンネダニ(Rhizoglyphus robini)等 のコナダニ類、

ミツバチヘギイタダニ(Varroa jacobsoni)等のハチダニ類、

オウシマダニ(Boophilus microplus)、フタトゲチマダニ(Haemaphysalis longicornis) 等のマダニ類、

ヒツジキュウセンダニ(Psoroptes ovis)等のキュウセンダニ類、

ヒゼンダニ(Sarcoptes scabiei)等のヒゼンダニ類、

オカダンゴムシ(Armadillidium vulgare)等の甲殻類、

キタネグサレセンチュウ(Prathylenchus penetrans)、クルミネグサレセンチュウ(Prat hylenchus vulnus)、ジャガイモシストセンチュウ(Globodera rostochiensis)、ダイズシ ストセンチュウ(Heterodera glycines)、キタネコプセンチュウ(Meloidogyne hapla)、サ ツマイモネコプセンチュウ(Meloidogyne incognita)、マツノザイセンチュウ(Bursaphele nchus lignicolus)等の線虫類、

スクミリンゴガイ(Ponacea canaliculata)、ナメクジ(Incilaria bilineata)、ウスカ ワマイマイ(Acusta despecta sieboldiana)、ミスジマイマイ(Euhadra peliomphala)等の

等が挙げられるが、本発明はこれらのみに限定されるものではない。

さらに、本発明化合物は、有機燐系化合物、カーバメート系化合物又はピレスロイド系 化合物等の既存の殺虫剤に対して抵抗性の発達した害虫に対しても有効である。

すなわち、本発明化合物は、直翅目、アザミウマ目、半翅目、鱗翅目、鞘翅目、膜翅目 、双翅目、網翅目、等翅目、シロアリ目、ダニ・シラミ類及び線虫類の害虫を低濃度で有 効に防除することが出来る。一方、本発明化合物はホ乳類、魚類、甲殻類及び益虫に対し てほとんど悪影響の無い極めて有用な特長を有している。

本発明化合物を使用するにあたっては、通常適当な固体担体又は液体担体と混合し、更 に所望により界面活性剤、浸透剤、展着剤、増粘剤、凍結防止剤、結合剤、固結防止剤、 崩壊剤、消泡剤、防腐剤および分解防止剤等を添加して、液剤 (soluble concentrate) 、乳剤(emulsifiable concentrate)、水和剤(wettable powder)、水溶剤(water sol uble powder) 、顆粒水和剤(water dispersible granule)、顆粒水溶剤(water solubl e granule)、懸濁剤 (suspension concentrate) 、乳濁剤 (concentrated emulsion) 、 サスポエマルジョン (suspoemulsion)、マイクロエマルジョン (microemulsion)、粉剤 (dustable powder) 、粒剤(granule)錠剤(tablet)および乳化性ゲル剤(emulsifiab le gel) 等任意の剤型の製剤にて実用に供することができる。また、省力化および安全性 向上の観点から、上記任意の剤型の製剤を、水溶性カプセルおよび水溶性フィルムの袋等 の水溶性包装体に封入して供することもできる。

固体担体としては、例えば石英、方解石、海泡石、ドロマイト、チョーク、カオリナイ ト、パイロフィライト、セリサイト、ハロサイト、メタハロサイト、木節粘土、蛙目粘土 、陶石、ジークライト、アロフェン、シラス、きら、タルク、ベントナイト、活性白土、 酸性白土、軽石、アタパルジャイト、ゼオライトおよび珪藻土等の天然鉱物質、例えば焼 成クレー、パーライト、シラスバルーン、バーミキュライト、アタパルガスクレーおよび 焼成珪藻土等の天然鉱物質の焼成品、例えば炭酸マグネシウム、炭酸カルシウム、炭酸ナ トリウム、炭酸水素ナトリウム、硫酸アンモニウム、硫酸ナトリウム、硫酸マグネシウム 、リン酸水素二アンモニウム、リン酸二水素アンモニウムおよび塩化カリウム等の無機塩 類、例えばブドウ糖、果糖、しょ糖および乳糖などの糖類、例えば澱粉、粉末セルロース およびデキストリン等の多糖類、例えば尿素、尿素誘導体、安息香酸および安息香酸の塩 等の有機物、例えば木粉、コルク粉、トウモロコシ穂軸、クルミ殻およびタバコ茎等の植 物類、フライアッシュ、ホワイトカーボン(例えば、含水合成シリカ、無水合成シリカお よび含水合成シリケート等) ならびに肥料等が挙げられる。

液体担体としては、例えばキシレン、アルキル (CgまたはC10等) ベンゼン、フェニ ルキシリルエタンおよびアルキル(C_1 または C_3 等)ナフタレン等の芳香族炭化水素類、 マシン油、ノルマルパラフィン、イソパラフィンおよびナフテン等の脂肪族炭化水素類、 ケロシン等の芳香族炭化水素と脂肪族炭化水素の混合物、エタノール、イソプロパノール 、シクロヘキサノール、フェノキシエタノールおよびベンジルアルコール等のアルコール 、エチレングリコール、プロピレングリコール、ジエチレングリコール、ヘキシレングリ コール、ポリエチレングリコールおよびポリプロピレングリコール等の多価アルコール、 プロピルセロソルプ、プチルセロソルプ、フェニルセロソルブ、プロピレングリコールモ ノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモ ノプロピルエーテル、プロピレングリコールモノブチルエーテルおよびプロピレングリコ ールモノフェニルエーテル等のエーテル、アセトフェノン、シクロヘキサノンおよびγ **ー** プチロラクトン等のケトン、脂肪酸メチルエステル、コハク酸ジアルキルエステル、グル タミン酸ジアルキルエステル、アジピン酸ジアルキルエステルおよびフタル酸ジアルキル エステル等のエステル、Nーアルキル(C_1 、 C_8 または C_{12} 等)ピロリドン等の酸アミド 、大豆油、アマニ油、ナタネ油、ヤシ油、綿実油およびヒマシ油等の油脂、ジメチルスル ホキシドならびに水が挙げられる。

これら固体および液体担体は、単独で用いても2種以上を併用してもよい。 [0321]

界面活性剤としては、例えばポリオキシエチレンアルキルエーテル、ポリオキシエチレ ンアルキル(モノまたはジ)フェニルエーテル、ポリオキシエチレン(モノ、ジまたはト リ) スチリルフェニルエーテル、ポリオキシエチレンポリオキシプロピレンプロックコポ リマー、ポリオキシエチレン脂肪酸(モノまたはジ)エステル、ソルビタン脂肪酸エステ ル、ポリオキシエチレンソルビタン脂肪酸エステル、ヒマシ油エチレンオキサイド付加物 、アセチレングリコール、アセチレンアルコール、アセチレングリコールのエチレンオキ サイド付加物、アセチレンアルコールのエチレンオキサイド付加物およびアルキルグリコ シド等のノニオン性界面活性剤、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸 塩、リグニンスルホン酸塩、アルキルスルホコハク酸塩、ナフタレンスルホン酸塩、アル キルナフタレンスルホン酸塩、ナフタレンスルホン酸のホルマリン縮合物の塩、アルキル ナフタレンスルホン酸のホルマリン縮合物の塩、ポリオキシエチレンアルキルエーテル硫 酸または燐酸エステル塩、ポリオキシエチレン(モノまたはジ)アルキルフェニルエーテ ル硫酸または燐酸エステル塩、ポリオキシエチレン(モノ、ジまたはトリ)スチリルフェ ニルエーテル硫酸または燐酸エステル塩、ポリカルボン酸塩(例えば、ポリアクリル酸塩 、ポリマレイン酸塩およびマレイン酸とオレフィンとの共重合物等)およびポリスチレン スルホン酸塩等のアニオン性界面活性剤、アルキルアミン塩およびアルキル4級アンモニ ウム塩等のカチオン性界面活性剤、アミノ酸型およびベタイン型等の両性界面活性剤、シ リコーン系界面活性剤ならびにフッ素系界面活性剤が挙げられる。

これら界面活性剤の含有量は、特に限定されるものではないが、本発明の製剤100重 量部に対し、通常0.05~20重量部の範囲が望ましい。また、これら界面活性剤は、 単独で用いても2種以上を併用してもよい。

本発明化合物の施用薬量は適用場面、施用時期、施用方法、栽培作物等により差異は有 るが、一般には有効成分量としてヘクタール (ha) 当たり 0.005~50 kg程度が適当 である。

次に本発明化合物を用いる場合の製剤の配合例を示す。但し本発明の配合例は、これら のみに限定されるものではない。なお、以下の配合例において「部」は重量部を意味する

[0326]

[水和剤]

0.1~80部 本発明化合物 5~98.9部 固体担体 1~10部 界面活性剤 0~5部

その他 その他として、例えば固結防止剤、分解防止剤等があげれらる。

[0327]

[乳 剤]

0.1~30部 本発明化合物 45~95部 液体担体 4.9~15部 界面活性剤 0~10部 その他

その他として、例えば展着剤、分解防止剤等が挙げられる。

[0328]

[懸濁剤]

0.1~70部 本発明化合物 15~98.89部 液体担体 1~12部 界面活性剤 0.01~30部 その他

その他として、例えば凍結防止剤、増粘剤等が挙げられる。

[0329]

```
「顆粒水和剤〕
                0.1~90部
本発明化合物
                ∩~98.9部
固体担体
                  1~20部
界面活性剤
                  0~10部
その他
 その他として、例えば結合剤、分解防止剤等が挙げられる。
  [0330]
  [液 剤]
               0.01~70部
本発明化合物
              20~99.99部
液体担体
                  0~10部
その他
 その他として、例えば凍結防止剤、展着剤等が挙げられる。
  [0331]
  〔粒 剤〕
               0.01~80部
本発明化合物
               10~99.99部
固体担体
                   0~10部
その他
  その他として、例えば結合剤、分解防止剤等が挙げられる。
  [0332]
  [粉 剤]
                0.01~30部
 本発明化合物
               65~99.99部
 固体担体
                    0~5部
 その他
  その他として、例えばドリフト防止剤、分解防止剤等が挙げられる。
  次に、本発明化合物を有効成分とする製剤例をより具体的に示すが、本発明はこれらに
 限定されるものではない。
   [0334]
  尚、以下の配合例において、「部」は重量部を意味する。
   [0335]
   「配合例1〕水和剤
                        20部
 本発明化合物No. 1-002
                        7 4 部
 パイロフィライト
                          4部
 ソルポール5039
  (非イオン性界面活性剤とアニオン性界面活性剤との混合物:東邦化学工業(株)商品名
 )
                          2部
  カープレックス#80D
  (合成含水珪酸:塩野義製薬(株)商品名)
   以上を均一に混合粉砕して水和剤とする。
   [0336]
    [配合例2]乳 剤
                          5部
  本発明化合物No. 1-002
                         75部
  キシレン
                         15部
  Nーメチルピロリドン
                          5部
  ソルポール2680
   (非イオン性界面活性剤とアニオン性界面活性剤との混合物:東邦化学工業(株)商品名
   以上を均一に混合して乳剤とする。
    [0337]
  . [配合例3] 懸濁剤
```

ページ: 219/

25部 本発明化合物No. 1-002 10部 アグリゾールS-710

(非イオン性界面活性剤:花王(株)商品名)

0.5部 ルノックス1000C

(アニオン性界面活性剤:東邦化学工業(株)商品名) 0.2部 キサンタンガム 64.3部

水 以上を均一に混合した後、湿式粉砕して懸濁剤とする。

[0338]

[配合例4] 顆粒水和剤

75部 本発明化合物No. 1-002 5部 ハイテノールNE-15

(アニオン性界面活性剤:第一工業製薬(株)商品名) 10部

バニレックスN

(アニオン性界面活性剤:日本製紙(株)商品名) 10部 カープレックス#80D

(合成含水珪酸:塩野義製薬(株)商品名)

以上を均一に混合粉砕した後、少量の水を加えて攪拌混合し、押出式造粒機で造粒し、 乾燥して顆粒水和剤とする。

[0339]

[配合例5] 粒 剤

5部 本発明化合物No. 1-002 50部 ベントナイト 45部

以上を均一に混合粉砕した後、少量の水を加えて攪拌混合し、押出式造粒機で造粒し、 タルク 乾燥して粒剤とする。

[0340]

[配合例6]粉 剤

3部 本発明化合物No. 1-002 0.5部 カープレックス#80D

(合成含水珪酸:塩野義製薬(株)商品名)

95部 カオリナイト

1.5部 リン酸ジイソプロピル

以上を均一に混合粉砕して粉剤とする。

使用に際しては、上記製剤を水で1~10000倍に希釈して、又は希釈せずに直接散 布する。

また、本発明化合物を農薬として使用する場合には、必要に応じて製剤時又は散布時に 他種の除草剤、各種殺虫剤、殺ダニ剤、殺線虫剤、殺菌剤、植物生長調節剤、共力剤、肥 料、土壌改良剤等と混合施用しても良い。

特に他の農薬あるいは植物ホルモンと混合施用することにより、施用薬量の低減による 低コスト化、混合薬剤の相乗作用による殺虫スペクトラムの拡大やより高い有害生物防除 効果が期待できる。この際、同時に複数の公知農薬との組み合わせも可能である。本発明 化合物と混合使用する農薬の種類としては、例えばファーム・ケミカルズ・ハンドプック (Farm Chemicals Handbook) 1999年版に記載されている化合物等が挙げられる。具 体的にその一般名を例示すれば次の通りであるが、必ずしもこれらのみに限定されるもの ではない。

[0344]

殺菌剤:アシベンゾラルーS-メチル (acibenzolar-S-methyl) 、アシルアミノベンザ ミド(acylaminobenzamide)、アンバム(amobam)、アムプロピルホス (ampropyfos)、アニ ラジン (anilazine)、アザコナゾール (azaconazole)、アゾキシストロビン (azoxystr obin)、ベナラキシル (benalaxyl)、ベノダニル (benodanil)、ベノミル (benomyl) 、ベンチアゾール(benthiazole)、ベンザマクリル (benzamacril) 、ビナパクリル (bina pacryl) 、ビフェニル (biphenyl) 、ビテルタノール (bitertanol) 、ベトキサジン (be thoxazine)、ボルドー液 (bordeaux mixture) 、プラストサイジンーS (blasticidin-S)、プロモコナゾール(bromoconazole)、ブピリメート(bupirimate)、ブチオベート (buthiobate)、カルシウムポリスルフィド (calcium polysulfide)、キャプタフォー ル (captafol) 、キャプタン (captan) 、カッパーオキシクロリド (copper oxychloride)、カルプロパミド (carpropamid)、カルベンダジン (carbendazim)、カルボキシン(carboxin)、CGA-279202 (試験名)、キノメチオネート (chinomethionat)、クロベ ンチアゾン (chlobenthiazone)、クロルフェナゾール (chlorfenazol)、クロロネブ (c hloroneb)、クロロタロニル (chlorothalonil) 、クロゾリネート (chlozolinate) 、ク フラネブ (cufraneb) 、シモキサニル (cymoxanil) 、シプロコナゾール (cyproconazol)、シプロジニル(cyprodinil)、シプロフラム(cyprofuram)、ダゾメット(dazomet) 、デバカルブ (debacarb) 、ジクロロフェン (dichlorophen) 、ジクロブトラゾール (di clobutrazol)、ジクロフラニド (diclhlofluanid)、ジクロメジン (diclomedine)、ジ クロラン (dicloran) 、ジエトフェンカルブ (diethofencarb) 、ジクロシメット (diclo cymet)、ジフェノコナゾール (difenoconazole)、ジフルメトリン (diflumetorim)、 ジメチリモール (dimethirimol) 、ジメトモルフ (dimethomorph) 、ジニコナゾール (di niconazole)、ジニコナゾールーM (diniconazole-M)、ジノカップ (dinocap)、ジフェ ニルアミン (diphenylamine) 、ジピリチオン (dipyrithione) 、ジタリムホス (ditalim fos) 、ジチアノン (dithianon) 、ドデモルフ (dodemorph) 、ドジン (dodine) 、ドラ ゾクソロン (drazoxolon) 、エデフェノホス (edifenphos) 、エポキシコナゾール (epox iconazole)、エタコナゾール (etaconazole)、エチリモル (ethirimol)、エトリジア ノール (etridiazole) 、ファモキサゾン (famoxadone) 、フェナリモル (fenarimol) 、 フェプコナゾール (febuconazole) 、フェナミドン (fenamidone) 、フェンダゾスラム(f endazosulam)、フェンフラム (fenfuram) 、フェンヘキサミド (fenhexamid) 、フェンピ クロニル (fenpiclonil) 、フェンプロピジン (fenpropidin) 、フェンプロピモルフ (fe npropimorph) 、フェンチン (fentin) 、フェルバン (ferbam) 、フェリムゾン (ferimzo ne)、フルアジナム (fluazinam)、フルジオキソニル (fludioxonil)、フルオロイミド (fluoroimide)、フルキンコナゾール (fluquinconazole)、フルシラゾール (flusilaz ole)、フルスルファミド (flusulfamide)、フルトラニル (flutolanil)、フルトリア フォール (flutriafol) 、フォルペット (folpet) 、フォセチルーアルミニウム (fosety l-aluminium)、フベリダゾール(fuberidazole)、フララキシル(furalaxyl)、フラメ トピル(furametpyr)、グアザチン (guazatine)、ヘキサクロロベンゼン (hexachloroben zene)、ヘキサコナゾール (hexaconazole)、ヒメキサゾール (hymexazol)、イマザリ ル (imazalil) 、イミベンコナゾール (imibenconazole) 、イミノクタジン (iminoctadi ne)、イプコナゾール (ipconazole)、イプロベンホス (iprobenfos)、イプロジオン (iprodione)、イソプロチオラン (isoprothiolane)、イプロバリカルブ (iprovalicarb)、カスガマイシン(kasugamycin)、クレソキシムーメチル(kresoxim-methyl)、マン カッパー (mancopper) 、マンコゼブ (mancozeb) 、マンネブ (maneb) 、メパニピリム (mepanipyrim)、メプロニル (mepronil)、メタラキシル (metalaxyl)、メトコナゾール (metconazole) 、メタスルホカルブ(methasulfocarb)、メチラム (metiram) 、メトミノ ストロビン (metominostrobin) 、ミクロブタニル (myclobutanil) 、MTF-753 (試験 名)、ナバム (nabam)、ニッケルビス (ジメチルジチオカーバメート) (nickel bis(di methyldithiocarbamate))、ニトロタールーイソプロピル (nitrothal-isopropyl)、ヌ アリモル (nuarimol) 、NNF-9425 (試験名) 、オクチリノン (octhilinone) 、オフ レース (ofurace) 、オキサジキシル (oxadixyl) 、オキシカルボキシン (oxycarboxin)

、オキポコナゾールフマール酸塩 (oxpoconazole fumarate) 、ペフラゾエート (pefurzo ate)、ペンコナゾール (penconazole)、ペンシクロン (pencycuron)、フタライド (ph thalide)、ピペラリン (piperalin)、ポリオキシン (polyoxins) 、炭酸水素カリウム(potassium hydrogen carbonate)、プロベナゾール (probenazole) 、プロクロラズ (proc hloraz)、プロシミドン(procymidone)、プロパモカルブ塩酸塩(propamocarb hydroch loride)、プロピコナゾール (propiconazole)、プロピネブ (propineb)、ピラゾホス (pyrazophos) 、ピリフェノックス (pyrifenox) 、ピリメタニル (pyrimethanil) 、ピ ロキュロン (pyroquilon) 、キノメチオネート(quinomethionate)、キノキシフェン (qui noxyfen) 、キントゼン (quintozene) 、RH7281 (試験名) 、炭酸水素ナトリウム(sodi um hydrogen carbonate)、次亜塩素酸ナトリウム(sodium hypochlorite)、硫黄 (sulfur)、スピロキサミン(spiroxamine)、テブコナゾール(tebuconazole)、テクナゼン(t ecnazene)、テトラコナゾール(tetraconazole)、チアベンダゾール(thiabendazole) 、チアジアジン(thiadiazin/milneb)、チフルザミド(thifluzamide)、チオファネート ーメチル (thiophanate-methyl) 、チラム (thiram) 、トルクロホスーメチル (tolclofo s-methyl) 、トリルフラニド (tolylfluanid) 、トリアジメホン (triadimefon) 、トリ アジメノール (toriadimenol) 、トリアゾキシド (triazoxide) 、トリシクラゾール (tr icyclazole)、トリデモルフ (tridemorph)、トリフルミゾール (triflumizole)、トリ ホリン (triforine) 、トリチコナゾール (triticonazole) 、バリダマイシン (validamy cin) 、ビンクロゾリン (vinclozolin) 、硫酸亜鉛(zinc sulfate)、ジネブ (zineb) 、 ジラム (ziram) 及びシイタケ菌糸体抽出物など。

殺バクテリア剤:ストレプトマイシン(streptomycin)、テクロフタラム(tecloftalam)、オキシテトラサイクリン (oxyterracycline) 及びオキソリニックアシド (oxolinic a cid) など。

殺線虫剤:アルドキシカルブ (aldoxycarb) 、カズサホス (cadusafos) 、フォスチア ゼート (fosthiazate) 、フォスチエタン (fosthietan) 、オキサミル (oxamyl) 及びフ ェナミホス (fenamiphos) など。

殺ダニ剤:アセキノシル (acequinocyl) 、アミトラズ (amitraz) 、ビフェナゼート (bifenazate)、プロモプロピレート (bromopropylate) 、チノメチオネート (chinomethi onat)、クロロベンジラート (chlorobezilate) 、クロフェンテジン (clofentezine) 、 サイヘキサチン (cyhexatine) 、ジコフォール (dicofol) 、ジエノクロール (dienochlo r)、エトキサゾール (etoxazole)、フェナザキン (fenazaquin)、フェンプタチンオキ シド (fenbutatin oxide) 、フェンプロパトリン (fenpropathrin) 、フェンプロキシメ ート (fenproximate) 、ハルフェンプロックス (halfenprox) 、ヘキシチアゾックス (he xythiazox)、ミルベメクチン (milbemectin)、プロパルギット (propargite)、ピリダ ベン (pyridaben) 、ピリミジフェン (pyrimidifen) 及びテプフェンピラド (tebufenpyr ad) など。

殺虫剤:アバメクチン (abamectin) 、アセフェート (acephate) 、アセタミピリド (a cetamipirid)、アルディカルブ (aldicarb)、アレスリン (allethrin)、アジンホスー メチル (azinphos-methyl) 、ベンジオカルブ (bendiocarb) 、ベンフラカルブ (benfura carb)、ベンスルタップ (bensultap)、ビフェントリン (bifenthrin)、ブプロフェジ ン (buprofezin)、プトカルボキシン (butocarboxim)、カルバリル (carbaryl)、カル ボフラン (carbofuran) 、カルボスルファン (carbosulfan) 、カルタップ (cartap) 、 クロルフェナピル (chlorfenapyr) 、クロルピリホス (chlorpyrifos) 、クロルフェンビ ンホス (chlorfenvinphos)、クロルフルアズロン (chlorfluazuron)、クロチアニジン (clothianidin)、クロマフェノジド (chromafenozide) 、クロピリホスーメチル (chlo rpyrifos-methyl)、シクロプロトリン (cycloprothrin)、シフルトリン (cyfluthrin)

、ベーターシフルトリン(beta-cyfluthrin)、シペルメトリン(cypermethrin)、シロ マジン (cyromazine) 、シハロトリン (cyhalothrin) 、ラムダーシハロトリン (lambdacyhalothrin)、デルタメトリン (deltamethrin)、ジアフェンチウロン (diafenthiuron)、ダイアジノン (diazinon)、ジアクロデン (diacloden)、ジフルベンズロン (diflu benzuron)、ジメチルビンホス(dimethylvinphos)、ジオフェノラン(diofenolan)、 ジスルフォトン (disulfoton) 、ジメトエート (dimethoate) 、エマメクチンベンゾエー ト (emamectin-benzoate) 、EPN、エスフェンバレレート (esfenvalerate) 、エチオフェ ンカルブ (ethiofencarb) 、エチプロール (ethiprole) 、エトフェンプロックス (etofe nprox)、エトリムホス (etrimfos)、フェニトロチオン (fenitrothion)、フェノブカ ルブ (fenobucarb) 、フェノキシカーブ (fenoxycarb) 、フェンプロパトリン (fenpropa thrin)、フェンバレレート (fenvalerate)、フィプロニル (fipronil)、フルアクリピ リム (fluacrypyrim)、フルシトリネート (flucythrinate)、フルフェノクスウロン (f lufenoxuron)、フルフェンプロックス(flufenprox)、タウーフルバリネート(tau-flu valinate)、ホノホス (fonophos)、フォルメタネート (formetanate)、フォルモチオ ン (formothion) 、フラチオカルブ (furathiocarb) 、ハロフェノジド (halofenozide) 、ヘキサフルムロン(hexaflumuron)、ヒドラメチルノン(hydramethylnon)、イミダク ロプリド (imidacloprid) 、イソフェンホス (isofenphos) 、インドキサカルブ (indoxa carb)、イソプロカルブ (isoprocarb)、イソキサチオン (isoxathion)、ルフェヌウロ ン (lufenuron) 、マラチオン (malathion) 、メタルデヒド (metaldehyde) 、メタミド ホス (methamidophos) 、メチダチオン (methidathion) 、メタクリホス (methacrifos) 、メタルカルブ (metalcarb) 、メソミル (methomyl) 、メソプレン (methoprene) 、メ トキシクロール (methoxychlor)、メトキシフェノジド (methoxyfenozide)、モノクロ トホス (monocrotophos) 、ムスカルーレ (muscalure) 、ニジノテフラン (nidinotefura n)、ニテンピラム (nitenpyram)、オメトエート (omethoate)、オキシデメトンーメチ ル (oxydemeton-methyl) 、オキサミル (oxamyl) 、パラチオン (parathion) 、パラチオ ンーメチル (parathion-methyl) 、ペルメトリン (permethrin) 、フェントエート (phen thoate)、フォキシム (phoxim)、ホレート (phorate)、ホサロン (phosalone)、ホス メット (phosmet) 、ホスファミドン (phosphamidon) 、ピリミカルブ (pirimicarb) 、 ピリミホスーメチル(pirimiphos-methyl)、プロフェノホス(profenofos)、プロトリ フェンプト (protrifenbute) 、ピメトロジン (pymetrozine) 、ピラクロホス (pyraclof os)、ピリプロキシフェン (pyriproxyfen)、ロテノン (rotenone)、スルプロホス (su lprofos)、シラフルオフェン (silafluofen)、スピノサド (spinosad)、スルホテップ (sulfotep)、テプフェノジド (tebfenozide)、テフルベンズロン (teflubenzuron)、 テフルトリン (tefluthorin) 、テルプホス (terbufos) 、テトラクロロビンホス (tetra chlorvinphos)、チアクロプリド (thiacloprid)、チオシクラム (thiocyclam)、チオ ジカルプ (thiodicarb) 、チアメトキサム (thiamethoxam) 、チオファノックス (thiofa nox)、チオメトン (thiometon)、トルフェンピラド (tolfenpyrad)、トラロメスリン (tralomethrin) 、トリクロルホン (trichlorfon) 、トリアズロン (triazuron) 、トリ フルムロン (triflumuron) 及びバミドチオン (vamidothion) など。

【実施例】

以下に本発明化合物の合成例、試験例を実施例として具体的に述べることで、本発明を さらに詳しく説明するが、本発明はこれらによって限定されるものではない。

[0350]

[合成例]

合成例 1 $N^1-[4-[1-ヒドロキシー1-(4-トリフルオロメチルピリジン-2-イル)エチル]-[4-[1-ヒドロキシー1-(4-トリフルオロメチルピリジン-2-イル)エチル]-2-メチルフェニル]-3-ヨード-<math>N^2-$ イソプロピルフタル酸ジアミド(本発明化合物No.1-001)。

[0351]

ページ: 223/

工程1;2-シアノー5ートリフルオロメチルピリジンの製造

2-クロロ-5-トリフルオロメチルピリジン15.0gのN、N-ジメチルホルムアミ ド150ml溶液にシアン化亜鉛19.4g及びテトラキストリフェニルホスフィンパラジウ ム9.6gを添加し、窒素雰囲気下、80℃にて3時間攪拌した。反応完結後反応混合物を 室温まで放冷、希アンモニア水300mlに注ぎ、ジエチルエーテル300mlにて抽出した 。有機層を飽和食塩水200mlにて洗浄後、無水硫酸マグネシウムで乾燥、減圧下にて溶 媒を留去し、残留物を減圧蒸留(96.0~99.0℃/40mmHg)にて精製し、目的物 1 0.9 gを 白色結晶として得た。

融点36.0~38.0℃

 $^{1}\text{H NMR}$ (CDCl₃, Me₄Si, 300MHz) δ 9.00 (bs, 1H), 8.13 (dd, J=8.3, 2.1Hz, 1H), 7.87 (d, J=8.3Hz, 1H).

[0352]

工程2;2ーアセチルー5ートリフルオロメチルピリジンの製造

窒素雰囲気下の2-シアノー5-トリフルオロメチルピリジン4.7gのテトラヒドロフ ラン40ml溶液に、-78℃にて攪拌下、臭化メチルマグネシウムのテトラヒドロフラン 溶液(0.93M)35.0mlを滴下し、滴下終了後室温まで昇温、室温にてさらに1時間攪 拌を継続した。反応完結後、反応混合物を2N塩酸100mlに注ぎ、酢酸エチル200ml にて抽出した。有機層を飽和食塩水次いで無水硫酸マグネシウムの順で脱水・乾燥、減圧 下にて溶媒を留去し、目的物 4.5 gを褐色油状物質として得た。

 $^{1}\text{H NMR}$ (CDCl₃, Me₄Si, 300MHz) δ 8.95 (bs, 1H), 8.16 (d, J=8.4Hz, 1H), 8.08 (dd, J=8.4, 2.1Hz, 1H), 2.76 (s, 3H).

工程3;4-[1-ヒドロキシ-1-(5-トリフルオロメチルピリジン-2-イル)エ チル]-2-メチルカルバニリド酸ターシャリーブチルの製造

窒素雰囲気下の4-ヨードー2-メチルカルバニリド酸-t-ブチル3.0gのt-ブチル メチルエーテル 4 0 ml 溶液に、−50℃にて攪拌下、nープチルリチウム(1.57 Mへキ サン溶液)12.5mlを滴下し、滴下終了後0℃に昇温、さらに30分間攪拌した。次いで 、この反応混合物を-78℃に冷却、2-アセチル-5-トリフルオロメチルピリジン1 .7gを添加し、徐々に0℃まで昇温、さらに同温度にて14時間攪拌を継続した。反応完 結後、反応混合物に飽和塩化アンモニウム水溶液100mlを加え有機層を分取、水層は酢 酸エチル100mlにて抽出した。有機層を合わせ無水硫酸マグネシウムで乾燥、減圧下に て溶媒を留去した。残留物を酢酸エチルーヘキサン(1:9~2:3)にて溶出するシリ カゲルカラムクロマトグラフィーにて精製し、目的物 1.3 gを褐色固体として得た。

融点132.0~134.5℃ $^{1}\text{H NMR}$ (CDCl₃, Me₄Si, 300MHz) δ 8.79 (bs, 1H), 7.86 (dd, J=8.3, 2.1Hz, 1H), 7.77 (d, J=8.3Hz, 1H), 7.42 (d, J=8.3Hz, 1H), 7.2-7.3 (m, 2H), 6.24 (bs, 1H), 5.23 (s, 1H), 2.22 (s, 3H), 1.92 (s, 3H), 1.51 (s, 9H).

工程4;1-(4-アミノ-3-メチルフェニル)-1-(5-トリフルオロメチルピリ ジンー2ーイル)エタノールの製造

4-[1-ヒドロキシー1-(5-トリフルオロメチルピリジン-2-イル)エチル]-2 -メチルカルバニリド酸ターシャリープチル 0.4 gに、氷冷攪拌下、トリフルオロ酢酸 3 .0mlを滴下した。室温にて20分攪拌を継続した後、氷冷下、飽和炭酸カリウム水溶液 5 0mlを加えクロロホルム 3 0mlにて抽出、有機層を無水硫酸ナトリウムにて乾燥後、減 圧下にて溶媒を留去し、目的物 0.2 7gを褐色油状物質として得た。

 $^{1}\text{H NMR}$ (CDCl₃, Me₄Si, 300MHz) δ 8.78 (bs, 1H), 7.84 (dd, J=8.3, 2.1Hz, 1H), 7.43 (d, J=8.3Hz, 1H), 7.05-7.15 (m, 2H), 6.61 (d, J=8.3Hz, 1H), 5.15 (s, 1H), 3.59(bs, 2H), 2.13 (s, 3H), 1.90 (s, 3H).

工程 5 ; $N^1-[4-[1-ヒドロキシー1-(4ートリフルオロメチルピリジンー2ーイ$

 ν)エチル]ー2ーメチルフェニル]ー3ーヨードー N^2 ーイソプロピルフタル酸ジアミドの 製造

3-ヨードーN-イソプロピルフタルアミド酸 0.3 6gのトルエン 5 ml溶液に、室温に て攪拌下、トリフルオロ酢酸無水物 0.2 6 gを滴下した。同温度にて 2 時間攪拌した後、 減圧下に溶媒を留去、残留物をアセトニトリル3.0mlに溶解し、1-(4-アミノー3-メチルフェニル)ー1ー(5ートリフルオロメチルピリジンー2ーイル)エタノール0.27 gを添加、室温にて2時間攪拌を継続した。反応完結後、減圧下にて溶媒を留去、残留物 を酢酸エチルーヘキサン(3:2)にて溶出するシリカゲルカラムクロマトグラフィーに て精製し、目的物 0.4 3gを褐色油状物質として得た。

 $^{1}\text{H NMR}$ (CDCl₃, Me₄Si, 300MHz) δ 8.80 (bs, 1H), 8.29 (bs, 1H), 7.7-8.05 (m, 4H), 7.1-7.5 (m, 4H), 5.84 (d, J=8.3Hz, 1H), 5.28 (s, 1H), 4.1-4.3 (m, 1H), 2.28 (s, 3H), 1.94 (s, 3H), 1.17 (d, J=6.6Hz, 6H).

[0356]

合成例 2 チル]-2-メチルフェニル]-3-ヨード-N²-イソプロピルフタル酸ジアミド (本発 明化合物No.1-003)。

工程1;4-[1-(4-クロロフェニル)-2、2、2-トリフルオロ-1-ヒドロキ [0357] シエチル]-2-メチルカルバニリド酸ターシャリープチルの製造

窒素雰囲気下の4-ヨードー2-メチルカルバニリド酸ーtープチル3.0gのtープチル メチルエーテル4 0ml溶液に、−50℃にて攪拌下、n−ブチルリチウム(1.58Mヘキ サン溶液) 1 2.5 mlを滴下し、滴下終了後 0 ℃に昇温、さらに 3 0 分間攪拌した。次いで 、この反応混合物を−78℃に冷却、4′ークロロ−2、2、2−トリフルオロアセトフ ェノン1.88gを添加し、徐々に0℃まで昇温、さらに同温度にて30分間攪拌を継続し た。反応完結後、反応混合物に飽和塩化アンモニウム水溶液100mlを加え有機層を分取 、水層は酢酸エチル100mlにて抽出した。有機層を合わせ無水硫酸マグネシウムで乾燥 、減圧下にて溶媒を留去した。残留物を酢酸エチルーヘキサン(1:9~2:3)にて溶 出するシリカゲルカラムクロマトグラフィーにて精製し、目的物 2.9 6 gを無色透明油状 物質として得た。

 $^{1}\text{H NMR (CDCl}_{3}$, Me₄Si, 300MHz) δ 7.86 (d, J=8.7Hz, 1H), 7.40 (d, J=8.4Hz, 2H), 7. 15-7.35 (m, 4H), 6.30 (bs, 1H), 2.93 (s, 1H), 2.22 (s, 3H), 1.52 (s, 9H).

工程 2 ; 1-(4-rミノー 3-メチルフェニル)-1-(4-クロロフェニル)-2、 2[0358] 、2-トリフルオロエタノールの製造

4-[1-(4-クロロフェニル)-2、2、2-トリフルオロ<math>-1-ヒドロキシエチル] -2-メチルカルバニリド酸ターシャリープチル2.96gに、氷冷攪拌下、トリフルオロ 酢酸 6.0 mlを滴下した。室温にて20分攪拌を継続した後、氷冷下、飽和炭酸カリウム 水溶液 70mlを加えクロロホルム100mlにて抽出、有機層を無水硫酸ナトリウムにて乾 燥後、減圧下にて溶媒を留去し、目的物 1.80gを褐色固体として得た。

融点157.0~160.5℃

 $^{1}\text{H NMR}$ (CDC13, Me₄Si, 300MHz) δ 7.45 (d, J=8.8Hz, 2H), 7.28 (d, J=8.8Hz, 2H), 7. 05-7.15 (m, 2H), 6.60 (d, J=8.3Hz, 1H), 5.03 (bs, 1H), 3.74 (bs, 2H), 2.12 (s, 3) H) 。

工程3;4-[1-(4-クロロフェニル)-2、2、2-トリフルオロー1-メトキシ エチル]-2-メチルアニリンの製造

1-(4-アミノー3-メチルフェニル)-1-(4-クロロフェニル)-2、2、2ートリフルオロエタノール O.5gのN、Nージメチルホルムアミド 3ml溶液に、氷冷攪拌下、 55%油性水素化ナトリウム 0.073gを添加し、室温にて 20分間攪拌、次いでヨウ化 メチル 0.2 4 gを添加し、同温度にてさらに 2 時間攪拌を継続した。反応完結後、反応混 合物を氷水20mlに注ぎ酢酸エチル30mlにて抽出、有機層を無水硫酸マグネシウムで乾 燥後、減圧下にて溶媒を留去した。残留物を酢酸エチルーヘキサン(2:3)にて溶出す るシリカゲルカラムクロマトグラフィーにて精製し、目的物 0.4 4 gを褐色油状物質とし

 1 H NMR (CDCl₃, Me₄Si, 300MHz) δ 7.2-7.4 (m, 4H), 6.9-7.1 (m, 3H), 6.62 (d, J=8.3) Hz, 1H), 3.71 (bs, 2H), 3.27 (s, 3H), 2.14 (s, 3H).

工程 4 ; $N^1-[4-[1-(4-クロロフェニル)-2、2、2-トリフルオロー1ーメ$ トキシエチル]-2-メチルフェニル]-3-ヨード- N^2 -イソプロピルフタル酸ジアミ ドの製造

3-ヨードーN-イソプロピルフタルアミド酸 0.2 5gのトルエン 5ml溶液に、室温に て攪拌下、トリフルオロ酢酸無水物 0.1 8gを滴下した。同温度にて1時間攪拌した後、 減圧下に溶媒を留去、残留物をアセトニトリル3.0mlに溶解し、4-[1-(4-クロロ フェニル)-2、2、2ートリフルオロ-1ーメトキシエチル]-2ーメチルアニリン0. 21gを添加、室温にて14時間攪拌を継続した。反応完結後、析出した結晶を濾別、少 量のアセトニトリルで洗浄することにより、目的物 0.2gを白色結晶として得た。 融点211.5~214.0℃

 $^{1}\text{H NMR}$ (CDCl₃, Me₄Si, 300MHz) δ 8.35 (bs, 1H), 8.09 (d, J=8.8Hz, 1H), 7.97 (d, J =7.6Hz, 1H), 7.79 (d, J=8.0Hz, 1H), 7.15-7.35 (m, 7H), 5.83 (d, J=8.0Hz, 1H), 4. 15-4.3 (m, 1H), 3.30 (s, 3H), 2.31 (s, 3H), 1.17 (d, J=6.6Hz, 6H).

本発明化合物は、前記製造法及び実施例に準じて製造することができる。そのような化 [0361] 合物の例を第5表及び第6表に示すが、本発明はこれらのみに限定されるものではない。

[0362]

尚、表中i-Prとの記載はイソプロピル基を表し、Phはフェニル基を表し、 表中L-45gで表される芳香族複素環は、下記の構造を表す。

[0363]

【化56】

[0364]

また、表中、*1は「樹脂状」を、*2は「油状」をそれぞれ意味する。

第5表

[0365]

【化57】

[0366]

No.	(X) _m	\mathbb{R}^3	R ⁴	R ⁵	R ⁶	m.p. (℃)
1-001 1-002 1-003 1-004 1-005 1-006 1-007	3-I 3-I 3-I 3-I 3-I 3-I 3-I 3-I	i-Pr i-Pr i-Pr i-Pr i-Pr i-Pr CH(CH ₃)CH ₂ SCH ₃ CH(CH ₃)CH ₂ SO ₂ CH ₃	CH₃ CF₃ CF₃ CF₃ CF₃ CF₃ CF₃ CF₃ CF₃	L-45g Ph-4-C1 Ph-4-C1 CH ₂ O(Ph-4-C1) CH ₂ NH(Ph-4-C1) L-45g Ph-4-C1 Ph-4-C1	H H CH ₃ H H CH ₃ CH ₃	*1 107.5-109.5 211.5-214.0 90.0-95.0 120.0-122.0 107.0-110.0 103.0-107.0 111.0-114.0

第6表

[0367] 【化58】

$$R^4$$
 R^5
 $O-R^6$

[0368]

[0300]					
No.	Y ¹	R ⁴	R ⁵	R ⁶	m.p. (℃)
2-01 2-02 2-03 2-04	CH₂ CH₃ CH₃ CH₃	CH ₃ CF ₃ CF ₃ CF ₃	L-45g Ph-4-C1 Ph-4-C1 L-45g	Н Н СН3 Н	*2 157.0-160.5 *2 136.0-138.5

次に、本発明化合物の有害生物防除剤としての有用性について、以下の試験例において [試験例] 具体的に説明するが、本発明はこれらのみに限定されるものではない。

[0369]

試験例1 ハスモンヨトウに対する殺虫試験

本発明化合物の10%乳剤(化合物によっては25%水和剤を供試)を展着剤の入った 水で希釈して、100ppm濃度の薬液を調製した。この薬液中にカンランの葉を約10秒間浸 漬し、風乾後シャーレに入れ、この中にハスモンヨトウ(Spodoptera litura)の2齢幼虫 をシャーレ当たり10頭放虫し、孔の開いた蓋をして25℃恒温室に収容した。6日後の 死虫数を調査し、下記の計算式から死虫率を算出した。尚、試験は2区制で行なった。

[0370]

死虫率 (%) = (死虫数/放虫数) ×100

その結果、下記の化合物が80%以上の死虫率を示した。

本発明化合物:No. 1-001、1-002、1-003、1-004、1-005、1-007、1-008。

[0371]

試験例2 コナガに対する殺虫試験

本発明化合物の10%乳剤(化合物によっては25%水和剤を供試)を展着剤の入った 水で希釈して、100ppm濃度の薬液を調製した。この薬液中にカンランの葉を約10秒間浸 潰し、風乾後シャーレに入れ、この中にコナガ(Plutella xylostella)の2齢幼虫をシャ ーレ当たり10頭放虫し、孔の開いた蓋をして25℃恒温室に収容した。6日後の死虫数 を調査し、試験例1と同様の計算式から死虫率を算出した。尚、試験は2区制で行なった

その結果、下記の化合物が80%以上の死虫率を示した。 本発明化合物:No.1-001、1-002、1-003、1-004、1-005、1-007、1-008。 【産業上の利用可能性】

[0373] 本発明に係る置換ベンズアニリド化合物は、優れた有害生物防除活性、特に殺虫・殺ダ ニ活性を示し、且つ、ホ乳動物、魚類及び益虫等の非標的生物に対してほとんど悪影響の 無い、極めて有用な化合物である。

【要約】

新規な農薬、特に殺虫剤又は殺ダニ剤を提供する。 【課題】

【解決手段】 一般式(1):

【化1】

$$(Y)_{n} \qquad R^{4} \qquad R^{5}$$

$$R^{1} \qquad O - R^{6}$$

$$(X)_{\overline{m} \quad ||} \qquad C \qquad W^{2}$$

$$R^{2} \qquad N^{3}$$

$$(1)$$

[式中、W¹及びW²は各々独立して酸素原子又は硫黄原子を表し、Xはハロゲン原子等を表 し、Yは $C_1 \sim C_6$ アルキル等を表し、 R^1 、 R^2 及び R^3 は各々独立して水素原子、 $C_1 \sim C_{12}$ アルキ ル又は $C_1 \sim C_8$ アルキルチオ $(C_1 \sim C_{1\,2})$ アルキル等を表し、 R^4 は $C_1 \sim C_6$ アルキル又は $C_1 \sim C_6$ ハロアルキル等を表し、 R^5 は $(Z^2)_{\mathfrak{p}1}$ によって置換されていてもよいフェニル又は芳香族複 素環等を表し、 R^6 は水素原子又は $C_1 \sim C_6$ アルキル等を表し、 Z^2 はハロゲン原子、 $C_1 \sim C_6$ ハ ロアルコキシ又は $C_1 \sim C_6$ アルキルスルホニル等を表し、m及びnは各々独立して $0 \sim 4$ の整 数を表し、p1は $1\sim5$ の整数を表す。] で表される置換ベンズアニリド化合物又はその塩 、及びそれらを含有する有害生物防除剤。

【選択図】 なし

認定・付加情報

特許出願の番号 特願2003-339358

受付番号 50301614691

書類名特許願

担当官 第五担当上席 0094

平成15年10月 1日

<認定情報・付加情報>

【提出日】 平成15年 9月30日

特願2003-339358

出願人履歴情報

識別番号

[000003986]

1. 変更年月日 [変更理由] 住 所

氏 名

1990年 8月29日 新規登録 東京都千代田区神田錦町3丁目7番地1 日産化学工業株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:					
BLACK BORDERS					
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES					
☐ FADED TEXT OR DRAWING					
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING					
☐ SKEWED/SLANTED IMAGES					
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS					
☐ GRAY SCALE DOCUMENTS					
☐ LINES OR MARKS ON ORIGINAL DOCUMENT					
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY					

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.