Turing Machines

Recursively Enumerable and Recursive Languages

The Hierarchy of Languages:

Non-Recursively Enumerable Languages Recursively Enumerable Languages Recursive Languages Context-Sensitive Languages Context-Free Languages Regular Languages

Combinational Logic

Finite-state Machine

Pushdown Automaton

Turing Machine

- Recursively enumerable languages are also known as *type 0* languages.
- Context-sensitive languages are also known as type 1 languages.
- Context-free languages are also known as *type 2* languages.
- Regular languages are also known as *type 3* languages.

- TMs model the computing capability of a general purpose computer, which informally can be described as:
 - Effective procedure
 - Finitely describable
 - Well defined, discrete, "mechanical" steps
 - Always terminates
 - Computable function
 - A function computable by an effective procedure

- TMs model the computing capability of a general purpose computer, which informally can be described as:
 - Effective procedure
 - Finitely describable
 - Well defined, discrete, "mechanical" steps
 - Always terminates
 - Computable function
 - A function computable by an effective procedure
- TMs formalize the above notion.
- Church-Turing Thesis: There is an effective procedure for solving a problem if and only if there is a TM that halts for all inputs and solves the problem.
 - There are many other computing models, but all are equivalent to or subsumed by TMs. There is no more powerful machine (Technically cannot be proved).
- DFAs and PDAs do not model all effective procedures or computable functions, but only a subset.

Deterministic Turing Machine (DTM)

- Two-way, infinite tape, broken into cells, each containing one symbol.
- Two-way, read/write tape head.
- An input string is placed on the tape, padded to the left and right infinitely with blanks, read/write head is positioned at the left most input character.
- Finite control (read/write head is part of this control), knows current symbol being scanned, and its current state.

Deterministic Turing Machine (DTM)

- In one move, depending on the current state and the current symbol being scanned, the TM does: (1) changes state, (2) prints a symbol over the cell being scanned, and (3) moves its' tape head one cell left or right.
- Many modifications possible, but Church-Turing declares equivalence of all.

Formal Definition of a DTM

A DTM is a seven-tuple:

```
M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)
```

- Q A <u>finite</u> set of states
- Σ A <u>finite</u> input alphabet, which is a subset of Γ– {B}
- Γ A <u>finite</u> tape alphabet, which is a strict <u>superset</u> of Σ
- B A distinguished blank symbol, which is in Γ
- q_0 The initial/starting state, q_0 is in Q
- F A set of final/accepting states, which is a subset of Q
- δ A next-move function, which is a *mapping* (i.e., may be undefined) $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}$

Intuitively, $\delta(q,s)$ specifies the next state, symbol to be written, and the direction of tape head movement by M after reading symbol s while in state q.

• Example #1: {w | w is in {0,1}* and w ends with a 0}

Note: ϵ is not in the language

• Example #1: {w | w is in {0,1}* and w ends with a 0}

Note: ε is not in the language

Q =
$$\{q_0, q_1, q_2\}$$

 $\Gamma = \{0, 1, B\}$
 $\Sigma = \{0, 1\}$
 $F = \{q_2\}$
 δ :

	0	1	В
->q ₀	(q ₀ , 0, R) (q ₂ , 0, R) -	(q ₀ , 1, R)	(q ₁ , B, <mark>L</mark>)
$\mathbf{q_1}$	(q ₂ , 0, R)	-	-
q_2^{*}	-	-	-

- q₀ is the start state and the "scan right" state, until hits B
- q₁ state is to begin the verification last character is 0 or not
- q₂ is the final state

• Example #1: {w | w is in {0,1}* and w ends with a 0}

Q =
$$\{q_0, q_1, q_2\}$$

 $\Gamma = \{0, 1, B\}$
 $\Sigma = \{0, 1\}$
 $F = \{q_2\}$
 δ :

	0	1	В
->q ₀	(q ₀ , 0, R) (q ₂ , 0, R) -	(q ₀ , 1, R)	(q ₁ , B, L)
$\mathbf{q_1}$	(q ₂ , 0, R)	-	-
q_2^*	-	-	-

- q₀ is the start state and the "scan right" state, until hits B
- q₁ state is to begin the verification last character is 0 or not
- q₂ is the final state

ID

- To describe the steps we use Instantaneous Descriptions.
- An ID is $\alpha q \beta$
- $\alpha, \beta \in \Gamma^*$
- $\alpha\beta$ is on the tape. Left and right of this are blanks.
- Head is on the first character of eta
- The TM is in state q

Step

- $id_1 \vdash id_2$ describes one step
- ⊢* is reflexive and transitive closure of ⊢

• For input 1010, computation steps...

Have you noticed

- Recognition is immediate.
 - TM, once hits one of the final states, it accepts and halts.
- No need for the input to be exhausted !!

- How TM rejects?
 - It gets stuck.
 - It goes on infinitely without ever hitting a final state.

- $\{0^n 1^n | n \ge 1\}$
- Idea??

- $\{0^n 1^n | n \ge 1\}$
- Idea??

•
$$\{0^n 1^n | n \ge 1\}$$

В	В	0	0	0	1	1	1	В
		\uparrow						

• Idea??

 q_0

- $\{0^n 1^n | n \ge 1\}$
- Idea??

We turn
0 in to X and
probe for 1.
We turn 1 to Y.

В	В	0	0	0	1	1	1	В
		\uparrow						
		q_0						
В	D	X	0	0	1	1	1	В
D	D	^	U	U	_	_	_	L L
Б	Ь	^	↑	U	•	1	•	<u> </u>

В	В	0	0	0	1	1	1	В
		\uparrow_{q_0}						
		q_0						
В	В	X	0	0	1	1	1	В
			\uparrow					
			q_1		•			
					•			

В	В	X	0	0	1	1	1	В
					\uparrow			

 q_1

В	В	0	0	0	1	1	1	В
		\uparrow						
		q_0						
В	В	Х	0	0	1	1	1	В
			\uparrow					
			q_1		•			
					•			

В	В	X	0	0	1	1	1	В
					\uparrow			
					q_1			
В	В	X	0	0	Υ	1	1	В
				↑				

В	В	0	0	0	1	1	1	В
		↑						
		q_0						
В	В	X	0	0	1	1	1	В
			\uparrow					
			q_1		•			
					•			
					•			
В	В	X	0	0	1	1	1	В
В	В	X	0		1	1	1	В
				0	1 ↑ q ₁			
B B	B B	X	0		1	1	1	B
				0	1 ↑ q ₁			

Example: $L = \{0^n1^n \mid n \ge 1\}$

• Strategy:

$$w = 000111$$

• **Example #2:** $\{0^n1^n \mid n \ge 1\}$

_	0	1	X	Υ	В
->q ₀	(q ₁ , X, R)	-	-	(q ₃ , Y, R)o's finished	-
q_1	(q ₁ , 0, R) <i>ignore</i> 1	(q ₂ , Y, L)	-	(q ₁ , Y, R) ignore2	- [more 0's]
q_2	(q ₂ , 0, L) ignore2	-	(q ₀ , X, R)	(q ₂ , Y, L) ignore1	-
q_3	-	- [more 1's]	-	(q ₃ , Y, R) ignore	(q ₄ , B, R)
q_4^*	-	-	-	-	-

• Sample Computation: (on input: 0011),

TMs for calculations

- TMs can also be used for calculating values
 - Like arithmetic computations
 - Eg., addition, subtraction, multiplication, etc.

Example 2: monus subtraction

```
"m -- n" = max\{m-n,0\}

...B 0^{m-n} B... (if m>n)

...BB...B.. (otherwise)
```

- 1. For every 0 on the left (mark B), mark off a 0 on the right (mark 1)
- 2. Repeat process, until one of the following happens:
 - // No more 0s remaining on the left of 1
 Answer is 0, so flip all excess 0s on the right of 1 to Bs (and the 1 itself) and halt
 - 2. //No more 0s remaining on the right of 1
 Answer is m-n, so simply halt after making 1 to B

