Class 11

Sharlene Yang (PID: A16351303)

Candy Project

In today's class we will examine 538 candy.

```
candy <- read.csv("candy-data.csv", row.names = 1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanut	yalmondy	nougat	crispedricewafe	er
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar]	pluribus	sugarpe	ercent	priceper	cent wir	npercent	
100 Grand	0	1	()	0.732	0	.860	66.97173	
3 Musketeers	0	1	()	0.604	0	.511	67.60294	
One dime	0	0	()	0.011	0	.116 3	32.26109	
One quarter	0	0	()	0.011	0	.511 4	16.11650	
Air Heads	0	0	()	0.906	0	.511 5	52.34146	
Almond Joy	0	1	()	0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

Q2. How many fruity candy types are in the dataset?

candy\$fruity

[1] 38

Q. What these fruity candy?

We can use the ==

```
rownames(candy [candy$fruity == 1,])
```

[1]	"Air Heads"	"Caramel Apple Pops"
[3]	"Chewey Lemonhead Fruit Mix"	"Chiclets"
[5]	"Dots"	"Dum Dums"
[7]	"Fruit Chews"	"Fun Dip"
[9]	"Gobstopper"	"Haribo Gold Bears"
[11]	"Haribo Sour Bears"	"Haribo Twin Snakes"
[13]	"Jawbusters"	"Laffy Taffy"
[15]	"Lemonhead"	"Lifesavers big ring gummies"
[17]	"Mike & Ike"	"Nerds"
[19]	"Nik L Nip"	"Now & Later"
[21]	"Pop Rocks"	"Red vines"
[23]	"Ring pop"	"Runts"
[25]	"Skittles original"	"Skittles wildberry"
[27]	"Smarties candy"	"Sour Patch Kids"
[29]	"Sour Patch Tricksters"	"Starburst"
[31]	"Strawberry bon bons"	"Super Bubble"
[33]	"Swedish Fish"	"Tootsie Pop"
[35]	"Trolli Sour Bites"	"Twizzlers"
[37]	"Warheads"	"Welch's Fruit Snacks"

How often does my favorite candy win

skim(candy)

```
candy["Twix", ]$winpercent

[1] 81.64291

Q3. What is your favorite candy in the dataset and what is it's winpercent value?

candy["Sour Patch Tricksters", ]$winpercent

[1] 52.82595

Q4. What is the winpercent value for "Kit Kat"?

candy ["Kit Kat",] $winpercent

[1] 76.7686

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

candy["Tootsie Roll Snack Bars",] $winpercent

[1] 49.6535

library("skimr")
```

Table 1: Data summary

Name	candy
Number of rows	85
Number of columns	12
Column type frequency: numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcomp	olete_ra	tmenean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

Yes, the winpercent is on a 0:100 scale and all others appear to be 0:1 scale.

- Q7. What do you think a zero and one represent for the candy\$\text{chocolate column}?

 A zero means that the candy is not classified as a chocolate candy.
 - Q8. Plot a histogram of winpercent values

```
library("ggplot2")

ggplot(candy) +
  aes(winpercent) +
  geom_histogram(bins= 10)
```


hist(candy\$winpercent)

Histogram of candy\$winpercent

Q9. Is the distribution of winpercent values symmetrical?

No, they are not symmetrical.

Q10. Is the center of the distribution above or below 50%?

Below with the a mean:

```
mean(candy$winpercent)
```

[1] 50.31676

Q11. On average is chocolate candy higher or lower ranked than fruit candy?

To answer this question I will need to:

- "subset" (aka "select", "filter") the candy dataset to just chocolate candy
- get their winpercent values
- calculate the mean of these

Then do the same for fruity candy and compare.

```
#filter to just chocolate rows
chocolate.candy <- candy[as.logical(candy$chocolate),]

#get their winpercent values
chocolate.winpercent <- chocolate.candy$winpercent

#calculate their mean winpercent value
mean(chocolate.winpercent)</pre>
```

[1] 60.92153

```
fruity.candy <- candy[as.logical(candy$fruity),]
fruity.winpercent <- fruity.candy$winpercent
mean(fruity.winpercent)</pre>
```

[1] 44.11974

Chocolate candy is higher ranked than fruity candy.

```
Q12. Is this difference statistically significant?
```

```
t.test(chocolate.winpercent, fruity.winpercent)

Welch Two Sample t-test

data: chocolate.winpercent and fruity.winpercent
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    11.44563 22.15795
sample estimates:
mean of x mean of y
60.92153 44.11974
```

Overall Candy Rankings

There is a base R function called sort() for, guess what sorting vectors of input.

```
x <- c(5, 2, 10)

#sort(x, decreasing = TRUE)
sort(x)</pre>
```

The related function to sort that is often more useful is called order(). It returns the "indices" of the input that would result in it being sorted.

```
order(x)

[1] 2 1 3

x[order(x)]

[1] 2 5 10
```

[1] 2 5 10

Q13. What are the five least liked candy types in this set?

$I \ can \ order \ bt \ {\tt winpercent}$

```
ord <- order(candy$winpercent)
head(candy[ord,], 5)</pre>
```

	chocolate	fruity	cara	nel p	peanutyaln	nondy r	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
	crispedric	ewafer	${\tt hard}$	bar	${\tt pluribus}$	sugarp	percent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
	winpercent							
Nik L Nip	22.44534	:						
Boston Baked Beans	23.41782							
Chiclets	24.52499	1						
Super Bubble	27.30386							
Jawbusters	28.12744	:						

Q14. What are the top 5 all time favorite candy types out of this set?

```
new_ord <- order(candy$winpercent, decreasing = TRUE)
head(candy[new_ord, ], 5)</pre>
```

	${\tt chocolate}$	fruity	caram	nel	peanutyaln	nondy	nougat
Reese's Peanut Butter cup	1	0		0		1	0
Reese's Miniatures	1	0		0		1	0
Twix	1	0		1		0	0
Kit Kat	1	0		0		0	0
Snickers	1	0		1		1	1
	crispedri	cewafer	hard	bar	pluribus	sugai	rpercent
Reese's Peanut Butter cup		0	0	0	0		0.720

Reese's Miniatures		0	0	0	0	0.034
Twix		1	0	1	0	0.546
Kit Kat		1	0	1	0	0.313
Snickers		0	0	1	0	0.546
	pricepercent	winpe	ercent	;		
Reese's Peanut Butter cup	0.651	84.	18029)		
Reese's Miniatures	0.279	81.	86626	3		
Twix	0.906	81.	64291	-		
Kit Kat	0.511	76.	76860)		
Snickers	0.651	76.	67378	3		

Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col()
```



```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
```

```
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col(fill= my_cols)
```


Q17. What is the worst ranked chocolate candy?

Sixlets

Q18. What is the best ranked fruity candy?

Starburst

Taking a look at pricepercent

Q. What is the best candy for the least money?

```
my_cols[as.logical(candy$fruity)] = "red"
```

```
ggplot(candy) +
  aes(winpercent, pricepercent) +
  geom_point(col = my_cols)
```


Add some labels

```
ggplot(candy) +
  aes(winpercent, pricepercent, label = rownames(candy)) +
  geom_point(col = my_cols)+
  geom_text()
```


To deal with overlapping labels I can use the **geom_repel** package.

```
library(ggrepel)

ggplot(candy) +
  aes(winpercent, pricepercent, label = rownames(candy)) +
  geom_point(col = my_cols)+
  geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Exploring the correlation structure

Pearson correlation goes between -1 and +1 with zero indicating no correlations and values close to one being very highly (ani) correlated.

```
library(corrplot)

corrplot 0.92 loaded

cij <- cor(candy)
    corrplot(cij)</pre>
```


Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)?

Chocolate and fruit are anti-correlated

Q23. Similarly, what two variables are most positively correlated?

Chocolate and winpercent or chocolate and bar

Principal Component Analysis

The base R function for PCA is called prcomp() and we can set "scale= TRUE/FALSE".

```
pca <- prcomp(candy, scale = TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                        PC3
                                                 PC4
                                                        PC5
                                                                PC6
                                                                        PC7
Standard deviation
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion
                       0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                   PC9
                                           PC10
                                                   PC11
                                                           PC12
```

```
Standard deviation 0.74530 0.67824 0.62349 0.43974 0.39760 Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317 Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000
```

The main result of PCA- i.e. the new PC plot (projection of candy on out new PC axis) is contained in pca\$x

```
pc <- as.data.frame(pca$x)

ggplot(pc) +
  aes(PC1, PC2, label = rownames(pc)) +
  geom_point(col = my_cols) +
  geom_text_repel(max.overlaps = 5)</pre>
```

Warning: ggrepel: 71 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Fruity and pluribus are picked up strongly by PC1 in the positive direction.