Support Vector Machines Kernel Methods

 Question: at what serial number did the new \$5 bill enter circulation?

Old Old Old

New New New

Serial No.

 Question: at what serial number did the new \$5 bill enter circulation?

- If we assume approximately uniformly-distributed observations, then the likelihood will be approximately uniform over [max(Old),min(New)]
- Min expected squared-error is max margin

 Sometimes the boundaries of the classes are more "informative" than the overall distribution of the classes.

- Sometimes the boundaries of the classes are more "informative" than the overall distribution of the classes.
- SVMs are faster.

Hard-margin SVMs

 Enforce that all points are out of the margin:

$$(\boldsymbol{w}^T \boldsymbol{x}_j + b) y_j \ge a$$

• Then maximize margin:

$$\max_{w} \gamma = \frac{a}{\|\mathbf{w}\|}$$

- Here, a is the margin after points are projected onto w
- solution is the same for any a

Hard-margin SVMs

• set *a*=1, rewrite:

$$\min_{\mathbf{w}} \|\mathbf{w}\|$$

$$(\mathbf{w}^T \mathbf{x}_j + b) y_j \ge 1$$

Hard-margin SVMs

 Dual form: W is a linear combination of training examples.

$$\mathbf{w} = \sum_{l=1}^{M} \alpha_l y_l \mathbf{x}_l$$

- Can optimize α 's directly
- α's will be 0 except for support vectors.

Soft-margin SVMs

Slack variables ξ
 which represent
 how 'wrong' our
 prediction is.

$$\min_{\mathbf{w}} \|\mathbf{w}\| + C \sum_{j} \xi_{j}$$
$$(\mathbf{w}^{T} \mathbf{x}_{j} + b) y_{j} \ge 1 - \xi_{j}$$

Support Vector Machines Kernel Methods

The HOG features of a patch:

Given this dog as input:

• This window is very close:

 And both of these windows are somewhat close:

This window is very far:

- Distances mean nothing past a certain point
- We want a classifier that gives more weight to 'nearby' examples

- Sometimes it is easier to define similarity between examples than it is to embed them in a feature space!
- Similarity of two patches a and b, for example:

$$\exp\left(-\frac{\|HOG(a) - HOG(b)\|_{2}^{2}}{2\sigma^{2}}\right)$$

 The kernel lets us not worry about the underlying HOG space.

Classification & learning with Kernels

Simplest idea: k-nearest neighbors

Classification & learning with Kernels

- Simplest idea: k-nearest neighbors
- Find nearest points using the kernel

Linear methods with Kernels

- We want to maintain the properties of linear methods such as linear regression and, especially, support vector machines
- One approach: find a (possibly infinitedimensional) space where dot product between two points in the space equals the kernel evaluated on the two points

Linear methods with Kernels

 Largest 16 bases corresponding to the Gaussian kernel in one dimension, over a bounded interval:

(Hastie, Tibshirani & Friedman 2009)

How do you compute these bases?

- You don't. You get lucky with math instead.
- This is the kernel trick: for many important problems, the final regression function has the form:

$$f(\mathbf{x}) = \sum_{\mathbf{x}^l \in trainingSet} \alpha_l * \kappa(\mathbf{x}, \mathbf{x}^l)$$

- Where κ is the kernel and the α 's are a function of only the training data.
- Plug in testing examples as x and get a prediction in time linear in the size of the training set.

How to compute the α 's?

 For linear regression in the a known space, use this formula to compute the α's:

$$\alpha = (XX^{T} + \lambda I_{m})^{-1} y$$

$$f(x) = \sum_{\substack{x^{l} \in trainingSet}} \alpha_{l} * \langle x, x^{l} \rangle$$

See Tom's slides for derivation

How to compute the a's?

 For linear regression in the expanded space, use this formula to compute the α's:

$$\boldsymbol{\alpha} = (K + \lambda I_m)^{-1} \boldsymbol{y}$$

$$f(\boldsymbol{x}) = \sum_{\substack{x^l \in trainingSet}} \alpha_l * \kappa(\boldsymbol{x}, \boldsymbol{x}^l)$$

- Where $K_{ij} = \kappa(\mathbf{x}^i, \mathbf{x}^j)$
- See Tom's slides for derivation

This works for SVM's too

 For any valid kernel, the final SVM classifier will have the form:

$$f(\mathbf{x}) = \sum_{\mathbf{x}^l \in trainingSet} \alpha_l * \kappa(\mathbf{x}, \mathbf{x}^l)$$

Compute α's via:

$$\max_{\alpha_{1}...\alpha_{M}} \sum_{l=1}^{M} \alpha_{l} - \frac{1}{2} \sum_{j=1}^{M} \sum_{k=1}^{M} \alpha_{j} \alpha_{k} y_{j} y_{k} \ \kappa(\mathbf{x_{j}}, \mathbf{x_{k}})$$
s.t.
$$\alpha_{l} \geq 0 \qquad \forall l \in \text{ training examples}$$

$$\sum_{l=1}^{M} \alpha_{l} y_{l} = 0$$