The Theoretical Minimum Quantum Mechanics - Solutions

M. Bivert

April 8, 2023

Abstract

Below are solution proposals to the exercises of *The Theoretical Minimum - Quantum Mechanics*, written by Leonard Susskind and Art Friedman. An effort has been so as to recall from the book all the referenced equations, and to be rather verbose regarding mathematical details, rather in line with the general tone of the serie.

Contents

1	\mathbf{Sys}	tems and Experiments	1
	1.1	Inner Products	1
2	Qua	antum States	3
	2.1	Along the x Axis	3
	2.2	Along the y Axis	4
3	Pri	nciples of Quantum Mechanics	10
	3.1	Mathematical Interlude: Linear Operators	10
		3.1.1 Hermitian Operators and Orthonormal Bases	10
		3.1.2 The Gram-Schmidt Procedure	16
	3.2	The Principles	16
	3.3	An Example: Spin Operators	16
	3.4	Constructing Spin Operators	
	3.5		
	3.6	3-Vector Operators Revisited	17
	3.7	Reaping the Results	17

1 Systems and Experiments

1.1 Inner Products

Exercise 1. a) Using the axioms for inner products, prove

$$\Big(\langle A| + \langle B| \Big)|C\rangle = \langle A|C\rangle + \langle B|C\rangle$$

b) Prove $\langle A|A\rangle$ is a real number.

a) Let us recall the two axioms in question:

Axiom 1.

$$\langle C| \Big(|A\rangle + |B\rangle \Big) = \langle C|A\rangle + \langle C|B\rangle$$

Axiom 2.

$$\langle B|A\rangle = \langle A|B\rangle^*$$

Where z^* is the complex conjugate of $z \in \mathbb{C}$

Let us recall also that if

- $\langle A |$ is the bra of $|A \rangle$
- $\langle B|$ is the bra of $|B\rangle$

Then $\langle A| + \langle B|$ is the bra of $|A\rangle + |B\rangle$.

Let us also observe that for $(a,b) = (x_a + iy_a, x_b + iy_b) \in \mathbb{C}^2$:

$$(a+b)^* = (x_a + iy_a + x_b + iy_b)^*$$

= $x_a - iy_a + x_b - iy_b$
= $a^* + b^*$

We thus have:

b) Mainly from the second axiom:

$$\begin{aligned} x + iy &= \langle A | A \rangle \\ &= \langle A | A \rangle^* \\ &= x - iy \\ &\Rightarrow 2iy = 0 \\ &\Rightarrow y = 0 \\ &\Rightarrow \langle A | A \rangle = x \in \mathbb{R} \quad \Box \end{aligned}$$

Exercise 2. Show that the inner product defined by Eq. 1.2 satisfies all the axioms of inner products.

Let us recall the two axioms in question:

Axiom 3.

$$\langle C|\Big(|A\rangle + |B\rangle\Big) = \langle C|A\rangle + \langle C|B\rangle$$

Axiom 4.

$$\langle B|A\rangle = \langle A|B\rangle^*$$

Where z^* is the complex conjugate of $z \in \mathbb{C}$

And let us recall Eq. 1.2 of the book:

$$\langle B|A\rangle = \begin{pmatrix} \beta_1^* & \beta_2^* & \beta_3^* & \beta_4^* & \beta_5^* \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \end{pmatrix}$$
$$= \beta_1^* \alpha_1 + \beta_2^* \alpha_2 + \beta_3^* \alpha_3 + \beta_4^* \alpha_4 + \beta_5^* \alpha_5$$

For the first axiom, considering $\langle C|=(\gamma_i^*)$:

$$\langle C|(|A\rangle + |B\rangle) = (\gamma_1^* \quad \gamma_2^* \quad \gamma_3^* \quad \gamma_4^* \quad \gamma_5^*) \begin{pmatrix} \alpha_1 + \beta_1 \\ \alpha_2 + \beta_2 \\ \alpha_3 + \beta_3 \\ \alpha_4 + \beta_4 \\ \alpha_5 + \beta_5 \end{pmatrix}$$

$$= \gamma_1^*(\alpha_1 + \beta_1) + \gamma_2^*(\alpha_2 + \beta_2) + \gamma_3^*(\alpha_3 + \beta_3) + \gamma_4^*(\alpha_4 + \beta_4) + \gamma_5^*(\alpha_5 + \beta_5)$$

$$= (\gamma_1^* \alpha_1 + \gamma_2^* \alpha_2 + \gamma_3^* \alpha_3 + \gamma_4^* \alpha_4 + \gamma_5^* \alpha_5) + (\gamma_1^* \beta_1 + \gamma_2^* \beta_2 + \gamma_3^* \beta_3 + \gamma_4^* \beta_4 + \gamma_5^* \beta_5)$$

$$= (\gamma_1^* \quad \gamma_2^* \quad \gamma_3^* \quad \gamma_4^* \quad \gamma_5^*) \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \end{pmatrix} + (\gamma_1^* \quad \gamma_2^* \quad \gamma_3^* \quad \gamma_4^* \quad \gamma_5^*) \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \end{pmatrix}$$

$$= \langle C|A\rangle + \langle C|B\rangle \quad \Box$$

Before diving into the second axiom, let us observe that for $(a,b) = (x_a + iy_a, x_b + iy_b) \in \mathbb{C}^2$:

$$(ab)^* = ((x_a + iy_a) \times (x_b + iy_b))^*$$

$$= (x_a x_b - y_a y_b + i(x_b y_a + x_a y_b))^*$$

$$= x_a x_b - y_a y_b - i(x_b y_a + x_a y_b)$$

$$= (x_a - iy_a) \times (x_b - iy_b)$$

$$= a^* b^*$$

Or, perhaps more simply using complex numbers' exponential's form:

$$(ab)^* = \left(r_a r_b e^{i(\theta_a + \theta_b)}\right)^*$$
$$= r_a r_b e^{-i(\theta_a + \theta_b)}$$
$$= a^* b^*$$

Hence, regarding the second axiom:

$$\langle B|A\rangle = \left(\left(\langle B|A\rangle \right)^* \right)^*$$

$$= \left(\left(\beta_1^* \alpha_1 + \beta_2^* \alpha_2 + \beta_3^* \alpha_3 + \beta_4^* \alpha_4 + \beta_5^* \alpha_5 \right)^* \right)^*$$

$$= \left(\beta_1 \alpha_1^* + \beta_2 \alpha_2^* + \beta_3 \alpha_3^* + \beta_4 \alpha_4^* + \beta_5 \alpha_5^* \right)^*$$

$$= \left(\alpha_1^* \beta_1 + \alpha_2^* \beta_2 + \alpha_3^* \beta_3 + \alpha_4^* \beta_4 + \alpha_5^* \beta_5 \right)^*$$

$$= \left(\left(\alpha_1^* \quad \alpha_2^* \quad \alpha_3^* \quad \alpha_4^* \quad \alpha_5^* \right) \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \end{pmatrix} \right)^*$$

$$= \langle A|B\rangle^* \quad \Box$$

2 Quantum States

2.1 Along the x Axis

Exercise 3. Prove that the vector $|r\rangle$ in Eq. 2.5 is orthogonal to vector $|l\rangle$ in Eq. 2.6.

Let us recall respectively Eq. 2.5 and Eq. 2.6:

$$|r\rangle = \frac{1}{\sqrt{2}}|u\rangle + \frac{1}{\sqrt{2}}|d\rangle \qquad \qquad |l\rangle = \frac{1}{\sqrt{2}}|u\rangle - \frac{1}{\sqrt{2}}|d\rangle$$

Orthogonality can be detected with the inner-product: $|l\rangle$ and $|r\rangle$ are orthogonals $\Leftrightarrow \langle r|l\rangle = \langle l|r\rangle = 0$.

Remark 1.

The nullity of either inner-product is sufficient, because of the $\langle A|B\rangle = \langle B|A\rangle^*$ axiom.

For instance:

$$\langle l|r\rangle = \begin{pmatrix} \lambda_u^* & \lambda_d^* \end{pmatrix} \begin{pmatrix} \rho_u \\ \rho_d \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$
$$= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$$
$$= 0 \quad \Box$$

Or, similarly:

$$\langle r|l\rangle = \begin{pmatrix} \rho_u^* & \rho_d^* \end{pmatrix} \begin{pmatrix} \lambda_u \\ \lambda_d \end{pmatrix}$$
$$= \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$$
$$= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$$
$$= 0 \quad \Box$$

2.2 Along the y Axis

Exercise 4. Prove that $|i\rangle$ and $|o\rangle$ satisfy all of the conditions in Eqs. 2.7, 2.8 and 2.9. Are they unique in that respect?

Let us recall, in order, Eqs. 2.7, 2.8, 2.9, 2.10, which defines $|i\rangle$ and $|o\rangle$, and both 2.5 and 2.6 which defines $|r\rangle$ and $|l\rangle$:

$$\langle i|o\rangle = 0$$

$$\begin{split} \left\langle o|u\right\rangle \left\langle u|o\right\rangle &=\frac{1}{2} \\ \left\langle i|u\right\rangle \left\langle u|i\right\rangle &=\frac{1}{2} \\ \\ \left\langle o|r\right\rangle \left\langle r|o\right\rangle &=\frac{1}{2} \\ \\ \left\langle i|r\right\rangle \left\langle r|i\right\rangle &=\frac{1}{2} \\ \\ \left\langle i|r\right\rangle \left\langle r|i\right\rangle &=\frac{1}{2} \\ \\ \left\langle i|l\right\rangle \left\langle l|i\right\rangle &=\frac{1}{2} \\ \\ \left\langle i|l\right\rangle \left\langle l|i\right\rangle &=\frac{1}{2} \\ \end{split}$$

$$|i\rangle = \frac{1}{\sqrt{2}}|u\rangle + \frac{i}{\sqrt{2}}|d\rangle$$
 $|o\rangle = \frac{1}{\sqrt{2}}|u\rangle - \frac{i}{\sqrt{2}}|d\rangle$

$$|r\rangle = \frac{1}{\sqrt{2}}|u\rangle + \frac{1}{\sqrt{2}}|d\rangle$$
 $|l\rangle = \frac{1}{\sqrt{2}}|u\rangle - \frac{1}{\sqrt{2}}|d\rangle$

For clarity, let us recall that $\langle u|A\rangle$ is the component of $|A\rangle$ on the orthonormal vector $|u\rangle$. This is because in a $(|i\rangle)_{i\in F}$ orthonormal basis we have:

$$\begin{split} |A\rangle &= \sum_{i \in F} \alpha_i |i\rangle \\ \Rightarrow \langle j|A\rangle &= \langle j| \sum_{i \in F} \alpha_i |i\rangle = \sum_{i \in F} \alpha_i \, \langle j|i\rangle = \alpha_j \end{split}$$

And to make better sense of those equations, let us recall that $\alpha_u^*\alpha_u = \langle A|u\rangle \langle u|A\rangle$ is the probability of a state vector $|A\rangle = \alpha_u|u\rangle + \alpha_d|d\rangle$ to be measured in the state $|u\rangle$. For Eq. 2.7, we have

$$\begin{split} \langle i|o\rangle &= \begin{pmatrix} \iota_u^* & \iota_d^* \end{pmatrix} \begin{pmatrix} o_u \\ o_d \end{pmatrix} \\ &= \iota_u^* o_u + \iota_d^* o_d \\ &= \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{-i}{\sqrt{2}} \frac{-i}{\sqrt{2}} = \frac{1}{2} - \frac{1}{2} = 0 \quad \Box \end{split}$$

For Eqs. 2.8, we can rely on the projection on an orthonormal vector:

For Eqs. 2.9, we need to rely on the column form of the inner-product:

$$\begin{split} \langle o|r\rangle \, \langle r|o\rangle &= \left(o_{u}^{*} \quad o_{d}^{*}\right) \begin{pmatrix} \rho_{u} \\ \rho_{d} \end{pmatrix} \left(\rho_{u}^{*} \quad \rho_{d}^{*}\right) \begin{pmatrix} o_{u} \\ o_{d} \end{pmatrix} & \langle o|l\rangle \, \langle l|o\rangle = \left(o_{u}^{*} \quad o_{d}^{*}\right) \begin{pmatrix} \lambda_{u} \\ \lambda_{d} \end{pmatrix} \left(\lambda_{u}^{*} \quad \lambda_{d}^{*}\right) \begin{pmatrix} o_{u} \\ o_{d} \end{pmatrix} \\ &= \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{-i}{\sqrt{2}}\right) \\ &= \left(\frac{1}{2} + \frac{i}{2}\right) \left(\frac{1}{2} - \frac{i}{2}\right) \\ &= \left(\frac{1}{2} + \frac{i}{2}\right) \left(\frac{1}{2} - \frac{i}{2}\right) \\ &= \frac{1}{4} (1+i) (1-i) \\ &= \frac{1}{4} (1+i-i+1) = \frac{1}{2} \quad \Box \\ &= \frac{1}{4} (1-i) (1+i) \\ &= \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{-i}{\sqrt{2}} \frac{1}{\sqrt{2}}\right) \left(\rho_{u}^{*} \quad \rho_{d}^{*}\right) \begin{pmatrix} \iota_{u} \\ \iota_{d} \end{pmatrix} \\ &= \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{-i}{\sqrt{2}} \frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{i}{\sqrt{2}}\right) \\ &= \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{-i}{\sqrt{2}} \frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \frac{i}{\sqrt{2}}\right) \\ &= \left(\frac{1}{2} - \frac{i}{2}\right) \left(\frac{1}{2} + \frac{i}{2}\right) \\ &= \left(\frac{1}{2} - \frac{i}{2}\right) \left(\frac{1}{2} + \frac{i}{2}\right) \\ &= \left(\frac{1}{2} - \frac{i}{2}\right) \left(\frac{1}{2} + \frac{i}{2}\right) \\ &= \left(\frac{1}{2} - \frac{i}{2}\right) \left(\frac{1}{2} - \frac{i}{2}\right)$$

Regarding the unicity of $|i\rangle$, $|o\rangle$, as for $|r\rangle$, $|l\rangle$, there definitely is a phase ambiguity, meaning, we can multiply either $|i\rangle$ or $|o\rangle$ by a *phase factor*, say $e^{i\theta}$, without disturbing any of the constraints: orthogonality, probabilities, and the resulting vectors are still unitary.

But as stated by the authors for $|r\rangle$, $|l\rangle$, measurable quantities are independent of any phase factors. So up to it, they seem to be unique so far.

However, let's try to change the *i*'s place for instance in $|i\rangle$:

$$|i\rangle = \frac{i}{\sqrt{2}}|u\rangle + \frac{1}{\sqrt{2}}|d\rangle$$

The vector is still unitary, we still have orthogonality with $|o\rangle$, and if you try to compute $\langle i|u\rangle \langle u|i\rangle$, $\langle i|d\rangle \langle d|i\rangle$, $\langle i|r\rangle \langle r|i\rangle$ or $\langle i|l\rangle \langle l|i\rangle$, you'll still have the same probabilities.

Now the question is, is this "swapping" of the i a phase factor? Meaning, can encode this transformation as a multiplication by some $e^{i\theta}$, for some $\theta \in \mathbb{R}$?

Well, the first term of $|i\rangle$ is multiplied by i; recall the definition of the complex exponential:

$$e^{i\theta} = \cos\theta + i\sin\theta$$

So this means the first term is multiplied by

$$\exp(i\frac{\pi}{2}) = 0 + i$$

The second term though, is multiplied by -i, this means, multiplied by:

$$\exp(-i\frac{\pi}{2}) = 0 + i \times (-1)$$

So we've found a variant of $|i\rangle$, that cannot be obtained by multiplying $|i\rangle$ by a phase factor, and hence:

The proposed solution is *not* unique [up to a phase factor].

Remark 2. It may be interesting/possible to classify all such variants, meaning, see how much variety there is / how much structure they share and so forth.

Exercise 5. For the moment, forget that Eqs. 2.10 give us working definitions for $|i\rangle$ and $|o\rangle$ in terms of $|u\rangle$ and $|d\rangle$, and assume that the components α, β, γ and δ are unknown:

$$|o\rangle = \alpha |u\rangle + \beta |d\rangle$$
 $|i\rangle = \gamma |u\rangle + \delta |d\rangle$

a) Use Eqs. 2.8 to show that

$$\alpha^* \alpha = \beta^* \beta = \gamma^* \gamma = \delta^* \delta = \frac{1}{2}$$

b) Use the above results and Eqs. 2.9 to show that

$$\alpha^*\beta + \alpha\beta^* = \gamma^*\delta + \gamma\delta^* = 0$$

c) Show that $\alpha^*\beta$ and $\gamma^*\delta$ must each be pure imaginary.

If $\alpha^*\beta$ is pure imaginary, then α and β cannot both be real. The same reasoning applies to $\gamma^*\delta$.

Let's start by recalling Eqs. 2.8, 2.9 and 2.10, which are respectively:

$$\langle o|u\rangle \langle u|o\rangle = \frac{1}{2} \qquad \langle o|d\rangle \langle d|o\rangle = \frac{1}{2}$$

$$\langle i|u\rangle \langle u|i\rangle = \frac{1}{2} \qquad \langle i|d\rangle \langle d|i\rangle = \frac{1}{2}$$
(1)

$$\langle o|r\rangle \langle r|o\rangle = \frac{1}{2} \qquad \langle o|l\rangle \langle l|o\rangle = \frac{1}{2}$$

$$\langle i|r\rangle \langle r|i\rangle = \frac{1}{2} \qquad \langle i|l\rangle \langle l|i\rangle = \frac{1}{2}$$
(2)

$$|i\rangle = \frac{1}{\sqrt{2}}|u\rangle + \frac{i}{\sqrt{2}}|d\rangle \qquad |o\rangle = \frac{1}{\sqrt{2}}|u\rangle - \frac{i}{\sqrt{2}}|d\rangle$$
 (3)

a) Let's start by recalling that the inner-product in a Hilbert space is defined between a bra and a ket, and that it should satisfy the following two axioms:

$$\langle C|\{|A\rangle + |B\rangle\} = \langle C|A\rangle + \langle C|B\rangle$$
 (linearity)

$$\langle B|A\rangle = \langle A|B\rangle^*$$
 (complex conjugation)

Furthermore, the scalar-multiplication of a ket is linear:

$$z \in \mathbb{C}, \qquad |zA\rangle = z|A\rangle$$

Then we can multiply $|o\rangle = \alpha |u\rangle + \beta |d\rangle$ to the left by $\langle u|$ to compute $\langle u|o\rangle$, using the linearity of the inner-product/scalar multiplication, and the fact that $|u\rangle$ and $|d\rangle$ are, by definition, unitary orthogonal vectors (meaning, $\langle u|d\rangle = 0$ and $\langle u|u\rangle = \langle d|d\rangle = 1$)

$$\langle u|o\rangle = \alpha \langle u|u\rangle + \beta \langle u|d\rangle = \alpha$$

Because of the complex conjugation rule, we have

$$\langle o|u\rangle = \langle u|o\rangle^* = \alpha^*$$

And so by Eqs. 2.8 and the previous computation we have

$$\frac{1}{2} = \underbrace{\langle o|u\rangle}_{\alpha} \underbrace{\langle u|o\rangle}_{\alpha^*} = \alpha\alpha^* \quad \Box$$

The process is very similar to prove $\beta^*\beta = \gamma^*\gamma = \delta^*\delta = \frac{1}{2}$:

$$\frac{1}{2} = \langle o|d\rangle \langle d|o\rangle \\
= \langle \langle d|o\rangle \rangle^* \langle d|o\rangle \\
= \langle \langle d|\{\alpha|u\rangle + \beta|d\rangle \} \rangle^* (\langle d|\{\alpha|u\rangle + \beta|d\rangle \}) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle \rangle^* (\alpha \langle \underline{d}|u\rangle + \beta \langle \underline{d}|d\rangle) \\
= \langle \alpha \langle \underline{d}|u\rangle + \beta \langle$$

b) I don't think we can conclude here without recalling the definition of $|r\rangle$:

$$|r\rangle = \frac{1}{\sqrt{2}}|u\rangle + \frac{1}{\sqrt{2}}|d\rangle$$

Let's start with a piece from Eqs. 2.9, arbitrarily (we could use $\langle i|l\rangle \langle l|i\rangle = \frac{1}{2}$, but I think we'd still need the previous definition of $|r\rangle$):

$$\langle i|r\rangle\,\langle r|i\rangle = \frac{1}{2}$$

But:

$$\langle r|i\rangle = \langle r|\{\alpha + |u\rangle + \beta|d\rangle\} = \alpha\,\langle r|u\rangle + \beta\,\langle r|d\rangle$$

And:

$$\langle i|r\rangle = (\langle r|i\rangle)^* = (\alpha \langle r|u\rangle + \beta \langle r|d\rangle)^* = \alpha^* \langle u|r\rangle + \beta^* \langle d|r\rangle$$

So

$$\begin{split} \left\langle i|r\right\rangle \left\langle r|i\right\rangle &=\frac{1}{2}\\ \Leftrightarrow \left(\alpha^*\left\langle u|r\right\rangle +\beta^*\left\langle d|r\right\rangle\right)\!\left(\alpha\left\langle r|u\right\rangle +\beta\left\langle r|d\right\rangle\right) &=\frac{1}{2}\\ \Leftrightarrow \underbrace{\alpha^*\alpha}_{=1/2}\left\langle u|r\right\rangle \left\langle r|u\right\rangle +\alpha^*\beta\left\langle u|r\right\rangle \left\langle r|d\right\rangle +\beta^*\alpha\left\langle d|r\right\rangle \left\langle r|u\right\rangle +\underbrace{\beta^*\beta}_{=1/2}\left\langle d|r\right\rangle \left\langle r|d\right\rangle &=\frac{1}{2}\\ \Leftrightarrow \frac{1}{2}\left(\left\langle u|r\right\rangle \left\langle r|u\right\rangle +\left\langle d|r\right\rangle \left\langle r|d\right\rangle\right) +\alpha^*\beta\left\langle u|r\right\rangle \left\langle r|d\right\rangle +\beta^*\alpha\left\langle d|r\right\rangle \left\langle r|u\right\rangle &=\frac{1}{2} \end{split}$$

Now if $|r\rangle = \rho_u |u\rangle + \rho_d |d\rangle$, then

$$\langle u|r\rangle \langle r|u\rangle + \langle d|r\rangle \langle r|d\rangle = \rho_u \rho_u^* + \rho_d \rho_d^* = 1$$

As $\rho_u \rho_u^*$ would be the probability of $|r\rangle$ to be up, and $\rho_d \rho_d^*$ would the probability of $|r\rangle$ to be down, which are two orthogonal states in a two-states setting, and so the sum of their probability must be 1.

Hence the previous expression becomes:

$$\alpha^* \beta \langle u | r \rangle \langle r | d \rangle + \beta^* \alpha \langle d | r \rangle \langle r | u \rangle = 0$$

Note that so far, we haven't needed the expression of $|r\rangle$, but I think we don't have a choice but to use it to conclude:

$$|r\rangle = \frac{1}{\sqrt{2}}|u\rangle + \frac{1}{\sqrt{2}}|d\rangle$$

So, as the coefficient are real numbers:

$$\langle u|r\rangle=rac{1}{\sqrt{2}}=\langle r|u
angle\,; \qquad \langle d|r
angle=rac{1}{\sqrt{2}}=\langle r|d
angle$$

Replacing in the previous expression we have:

$$\alpha^*\beta \underbrace{\langle u|r\rangle}_{=1/\sqrt{2}} \underbrace{\langle r|d\rangle}_{=1/\sqrt{2}} + \beta^*\alpha \underbrace{\langle d|r\rangle}_{=1/\sqrt{2}} \underbrace{\langle r|u\rangle}_{=1/\sqrt{2}} = 0$$

$$\Leftrightarrow \frac{1}{2}\alpha^*\beta + \frac{1}{2}\beta^*\alpha = 0$$

$$\Leftrightarrow \boxed{\alpha^*\beta + \beta^*\alpha = 0} \quad \Box$$

The process is very similar to prove $\gamma^*\delta + \gamma\delta^* = 0$; one has to start again from a Eqs. 2.9, but this time, from another piece involving o, arbitrarily:

$$\langle o|r\rangle \, \langle r|o\rangle = \frac{1}{2}$$

$$\Leftrightarrow \left(\langle r|o\rangle\right)^* \, \langle r|o\rangle = \frac{1}{2}$$

$$\Leftrightarrow \left(\langle r|\{\gamma|u\rangle + \delta|d\rangle\}\right)^* \left(\langle r|\{\gamma|u\rangle + \delta|d\rangle\}\right) = \frac{1}{2}$$

$$\Leftrightarrow \left(\gamma^* \, \langle u|r\rangle + \delta^* \, \langle d|r\rangle\right) \left(\gamma \, \langle r|u\rangle + \delta \, \langle r|d\rangle\right) = \frac{1}{2}$$

$$\Leftrightarrow \underbrace{\gamma^* \gamma}_{=1/2} \, \langle u|r\rangle \, \langle r|u\rangle + \gamma^* \delta \, \langle u|r\rangle \, \langle r|d\rangle + \delta^* \gamma \, \langle d|r\rangle \, \langle r|u\rangle + \underbrace{\delta^* \delta}_{=1/2} \, \langle d|r\rangle \, \langle r|d\rangle = \frac{1}{2}$$

$$\Leftrightarrow \underbrace{\frac{1}{2} \left(\underbrace{\langle u|r\rangle \, \langle r|u\rangle + \langle d|r\rangle \, \langle r|d\rangle}_{=1}\right) + \gamma^* \delta \, \langle u|r\rangle \, \langle r|d\rangle + \delta^* \gamma \, \langle d|r\rangle \, \langle r|u\rangle = \frac{1}{2} }_{=1/2}$$

$$\Leftrightarrow \gamma^* \delta \, \underbrace{\langle u|r\rangle \, \langle r|d\rangle}_{=1/2} + \delta^* \gamma \, \underbrace{\langle d|r\rangle \, \langle r|u\rangle}_{=1/2} = 0$$

$$\Leftrightarrow \underbrace{\gamma^* \delta + \delta^* \gamma = 0}_{=1/2} \square$$

c) Let's assume $\alpha\beta^*$ is a complex number of the form:

$$\alpha \beta^* = a + ib, \qquad (a, b) \in \mathbb{R}^2$$

But then:

$$\left(\alpha\beta^*\right)^* = a - ib = \alpha^*\beta$$

That's because, for two complex numbers z = a + ib and w = x + iy, we have:

$$\left(zw\right)^* = z^*w^*$$

Indeed:

$$zw = (a+ib)(x+iy) = (ax - by) + i(bx + ya)$$

Hence:

$$\left(zw\right)^* = (ax - by) - i(bx + ya)$$

But:

$$z^*w^* = (a - ib)(x - iy) = (ax - by) - i(bx + ya)$$

Hence the result. Back to our α and β , we established in b) that:

$$\alpha^*\beta + \alpha\beta^* = 0$$

Which is equivalent from our previous little proof to:

$$\alpha^*\beta + \left(\alpha^*\beta\right)^* = 0$$

$$\Leftrightarrow (a+ib) + (a-ib) = 0 \Leftrightarrow 2a = 0 \Leftrightarrow \boxed{a=0}$$

Which is the same as saying that the real part of $\alpha^*\beta$ is zero, or that it's a pure imaginary number. The exact same argument applies for $\gamma^*\delta$.

3 Principles of Quantum Mechanics

3.1 Mathematical Interlude: Linear Operators

3.1.1 Hermitian Operators and Orthonormal Bases

Exercise 6. Prove the following: If a vector space in N-dimensional, an orthonormal basis of N vectors can be constructed from the eigenvectors of a Hermitian operator.

We're here asked to prove a portion of an important theorem. I'm going to be somehow thorough in doing so, but to save space, I'll assume familiarity with linear algebra, up to diagonalization. Let's start with some background.

This exercise is about proving one part of what the authors call the *Fundamental theorem*, also often called in the literature the *(real) Spectral theorem*. So far, we've been working more or less explicitly in finite-dimensional spaces, but this result in particular has a notorious analogue in infinite-dimensional Hilbert spaces, called the *Spectral theorem*¹.

Now, I'm *not* going to prove the the infinite dimension version here. There's a good reason why quantum mechanics courses often start with spins: they don't require the generalized results, which demands heavy mathematical machinery (a copious amount of functional analysis, and in some formulation at least, the Lebesgue integral, hence portions of measure theory). You may want to refer to F. Schuller YouTube lectures on quantum mechanics² for a thorough development.

Finally, I'm going to use a mathematically inclined approach here (definitions/theorems/proofs), and as we won't need it, I won't be using the bra-ket notation.

To fix things, here's the theorem we're going to prove (I'll slightly restate it with minor adjustments later on):

 $^{{}^{1}\}mathbf{See}\ \mathbf{https://ncatlab.org/nlab/show/spectral+theorem}\ \ \mathbf{and}\ \mathbf{https://en.wikipedia.org/wiki/Spectral_theorem}$

²https://www.youtube.com/watch?v=GbqA9Xn_iMO&list=PLPH7f_7ZlzxQVx5jRjbfRGEzWY_upS5K6; see also the lectures notes (.pdf) made by a student (Simon Rea): https://drive.google.com/file/d/lnchF1fRGSY3R3rP1QmjUg7fe28tAS428/view

Theorem 1. Let $H: V \to V$ be a Hermitian operator on a finite-dimensional vector space V, equipped with an inner-product³.

Then, the eigenvectors of
$$H$$
 form an orthonormal basis

Saying it otherwise, it means that a matrix representation M_H of H is diagonalizable, and that two eigenvectors associated with distinct eigenvalues are orthogonal.

For clarity, let's recall a few definitions.

Definition 1. Let $L: V \to V$ be a linear operator on a vector space V over a field \mathbb{F} . We say that a <u>non-zero</u> $\mathbf{p} \in U$ is an eigenvector for L, with associated eigenvalue $\lambda \in \mathbb{F}$ whenever:

$$L(\mathbf{p}) = \lambda \mathbf{p}$$

Remark 3. As this can be a source of confusion later on, note that the definition of eigenvector/eigenvalue does \underline{not} depend on the diagonalizability of L.

Remark 4. Note also that while eigenvectors must be non-zero, no such restrictions are imposed on the eigenvalues.

Definition 2. Two vectors \mathbf{p} and \mathbf{q} from a vector space V over a field \mathbb{F} equipped with an inner product $\langle .,. \rangle$ are said to be orthogonal (with respect to the inner-product) whenever:

$$\langle \boldsymbol{p}, \boldsymbol{q} \rangle = 0_{\mathbb{F}}$$

The following lemma will be of great use later on. Don't let yourself be discouraged by the length of the proof: it can literally be be shorten to just a few lines, but I'm going to be very precise, hence very explicit, as to make the otherwise simple underlying mathematical constructions as clear as I can.

Lemma 1. A linear operator $L: V \to V$ on a $n \in \mathbb{N}$ dimensional vector space V over the complex numbers has at least one eigenvalue.

Proof. Let's take a $v \in V$. We assume V is not trivial, that is, V isn't reduced to its zero vector $\mathbf{0}_V$, and so we can always choose $v \neq \mathbf{0}_V^4$.

Consider the following set of n+1 vectors:

$$\{\boldsymbol{v}, L(\boldsymbol{v}), L^2(\boldsymbol{v}), \dots, L^n(\boldsymbol{v})\}$$

where:

$$L^0 := \mathrm{id}_V; \qquad L^i := \underbrace{L \circ L \circ \ldots \circ L}_{i \in \mathbb{N} \text{ times}}$$

It's a set of n+1 vectors, but the space is n dimensional, so its vectors are *not* all linearly independent. This means there's a set of $(\alpha_0, \alpha_1, \dots, \alpha_n) \in \mathbb{C}^n$ which are not all zero, such that:

$$\sum_{i=0}^{n} \alpha_i L^i(\mathbf{v}) = \mathbf{0}_V \tag{4}$$

Here's the "subtle" part. You remember what a polynomial is right, something like:

$$x^2 - 2x + 1$$

You know it's customary to then consider this a function of a single variable x, which for instance, can range through the reals:

$$L: \begin{pmatrix} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^2 - 2x + 1 \end{pmatrix}$$

This allows you to graph the polynomial and so forth:

 $^{^3\}mathrm{Remember},$ we need it to be able to talk about orthogonality.

 $^{^4}$ Note that if V is trivial, because an eigenvalue is always associated to a non-zero vector, there are no eigenvalues/eigenvectors, and the result is trivial.

Figure 1: $L(x) = x^2 - 2x + 1$

But that's kindergarten polynomials. The more "correct" polynomials are not functions of a real variable. Rather, we say that L(x) or L is a polynomial of a single variable/indeterminate⁵ x, where x stands for an abstract symbol.

The reason is that, when you say that x is a real number (or a complex number, or whatever), you tacitly assume that you can for instance add, subtract or multiply various occurrences of x, but when mathematicians study polynomials, they want to do so without requiring additional (mathematical) structure on x.

Hence, x is just a placeholder, an abstract symbol.

The set of polynomials of a single variable X with coefficient in a field \mathbb{F} is denoted $\mathbb{F}[X]$. For instance, $\mathbb{C}[f]$ is the set of all polynomials with complex coefficient of a single variable f, say, $P(f) = (3+2i)f^3 + 5f \in \mathbb{C}[f]$.

Now you'd tell me, wait a minute: if I have a $P(X) = X^2 - 2X + 1$, am I not then adding a polynomial $X^2 - 2X$ with an element from the field, 1?

Well, you'd be somehow right: the notation is ambiguous, in part inherited from the habits of kinder-garten polynomials, in part because the context often makes things clear, and perhaps most importantly, because a truly unambiguous notation is unpractically verbose. Actually, $X^2 - 2X + 1$ is a shortcut notation for $X^2 - 2X^1 + 1X^0$. So no: all the + here are between polynomials.

What does this mean that the + are between polynomials? Well, most often when you encounter $\mathbb{F}[X]$, it's actually a shortcut for $(\mathbb{F}[X], +_{\mathbb{F}[X]}, \cdot \mathbb{F}[X])$, which is a $ring^6$ of polynomials of a single indeterminate over a field⁷ \mathbb{F} . This means that mathematicians have defined a way This means that $X^2 - 2X + 1$ is actually a shortcut for:

$$1._{\mathbb{F}[X]}X^{2} +_{\mathbb{F}[X]} (-2)._{\mathbb{F}[X]}X^{1} +_{\mathbb{F}[X]} (1)._{\mathbb{F}[X]}X^{0}$$

Awful, right? Hence why we often use ambiguous notations and reasonable syntactical shortcuts.

⁵https://en.wikipedia.org/wiki/Indeterminate_(variable)

⁶https://en.wikipedia.org/wiki/Ring_(mathematics). Note that there is no notion of subtraction in a ring: the minus signs actually are part of the coefficients.

⁷ttps://en.wikipedia.org/wiki/Field_(mathematics)

The main takeaway though is that mathematicians have defined a set of precise rules (addition, scalar multiplication, exponentiation of an indeterminate), and that by cleverly combining such rules and only such rules, they have obtain a bunch of interesting results, and we want to use one of them in particular.

Let's get back to our equation (4); let me add some parenthesis for clarity:

$$\sum_{i=0}^{n} \left(\alpha_i L^i(\boldsymbol{v}) \right) = \mathbf{0}_V$$

Our goal is to transform this expression so that it involves a polynomial in $\mathbb{C}[L]^8$.

Let's start by pulling out the \boldsymbol{v} on the left-hand side as such:

$$\left(\underbrace{\sum_{i=0}^{n}lpha_{i}L^{i}}_{=:P(L)}
ight)(oldsymbol{v})=oldsymbol{0}_{V}$$

What's P? It's a function which takes a linear operator on V and returns ... A polynomial? But then, we don't know how to evaluate a polynomial on a vector $\mathbf{v} \in V$ so there's an problem somewhere.

P actually returns a new linear operator on V:

$$P:\begin{pmatrix} (V\to V) & \to & (V\to V) \\ L & \mapsto & \sum_{i=0}^n \alpha_i L^i \end{pmatrix}$$

But this means that while in (4) the \sum was a sum of complex numbers, it's now a sum of functions, and that $\alpha_i L_i$ went from a multiplication between complex numbers to a scalar multiplication on a function.

The natural way, that is, the simplest consistent way, to do so, is to define them pointwise⁹ for two functions $f, g: X \to Y$, we define $(f+g): X \to Y$ by:

$$(\forall x \in X), (f+g)(x) := f(x) + g(x)$$

The process is similar for scalar multiplication:

$$(\forall x \in X), (\forall y \in Y), (yf)(e) := yf(e)$$

We equip the space of (linear) functions (on V) with additional laws. All in all, P is well defined v0 and that we can indeed pull the v0 out.

How then can we go from such a weird "meta" function P to a polynomial? Well, as we stated earlier, polynomials are defined by a set of specific rules: addition, scalar multiplication, and exponentiation of the indeterminate.

But if you look closely:

- Our point-wise addition has the same property as the additions on polynomial (symmetric, existence of inverse elements, neutral element, etc.)
- Similarly for our scalar multiplication;
- And our rules of exponentiation on function by repeated application also follows the rules of exponentiation for an indeterminate variable.

⁸Remember, this means a polynomial of a single variable L, with coefficient in \mathbb{C} .

 $^{^9 {\}tt https://en.wikipedia.org/wiki/Pointwise}$

¹⁰Meaning, the laws we introduce on functions are consistent with the results we would otherwise get without using them; you can check this out if you want

This mean that if we squint a little, if we only look at the expression P(L) as having nothing but those properties, then it behaves exactly as a polynomial. Hence, for all intents and purposes, it "is" a polynomial, and we can manipulate it as such.

So we can apply the fundamental theorem of algebra¹¹, we know that we can always factorize polynomials with complex coefficient as such:

$$(\exists (c, \lambda_1, \dots, \lambda_n) \in \mathbb{C}^{n+1}, c \neq 0), \ P(L) = c \prod_{i=0}^{n} (L - \lambda_i)$$

But don't we have a problem here? L is an abstract symbol, and we're "subtracting" it a scalar? Well, there are a few implicit elements:

$$P(L) = c \prod_{i=0}^{n} (L^{1} + (-\lambda_{i})L^{0})$$

Let's replace this new expression for P(L) in our previous equation, which we can do essentially re-using our previous argument: the rules (addition, scalar multiplication, etc.) to manipulate polynomials are "locally" consistent with the rules to manipulate our (linear) functions:

$$\left(c\prod_{i=0}^{n}(L^{1}-\lambda_{i}L^{0})\right)(\boldsymbol{v})=\boldsymbol{0}_{V}$$

Note that L^0 becomes the identity function, and by using the previous point-wise operations, we can reduce it to:

$$c\prod_{i=0}^{n}(L(\boldsymbol{v})-\lambda_{i}\mathrm{id}_{V}(\boldsymbol{v}))=c\prod_{i=0}^{n}(L(\boldsymbol{v})-\lambda_{i}\boldsymbol{v})=\mathbf{0}_{V}$$

Now, $c \neq 0$ by the fundamental theorem of algebra. So we must have:

$$\prod_{i=0}^{n} (L(\boldsymbol{v}) - \lambda_{i} \boldsymbol{v}) = \mathbf{0}_{V}$$

Which implies that there's at least a λ_j for which

$$L(\mathbf{v}) - \lambda_i \mathbf{v} = \mathbf{0}_V \Leftrightarrow L(\mathbf{v}) = \lambda_i \mathbf{v}$$

But we've selected v to be non-zero: λ_j is then an eigenvalue λ_j associated to the eigenvector v.

OK; let me adjust the fundamental theorem a little bit, and let's prove it.

Theorem 2. Let $H: V \to V$ be a Hermitian operator on a finite, n-dimensional vector space V, equipped with an inner-product $\langle .,. \rangle$.

Then, the eigenvectors of H form an orthogonal basis of V, and the associated eigenvalues are real.

Saying it otherwise, it means that a matrix representation M_H of H is diagonalizable, and that two eigenvectors associated with distinct eigenvalues are orthogonal.

Proof. I'm assuming that this is clear for you that the eigenvectors associated to the eigenvalues of a diagonalizable matrix makes a basis for the vector space. Again, refer to a linear algebra course for more.

Furthermore, you can refer to the book for a proof of orthogonality of the eigenvectors associated to distinct eigenvalues¹².

Note that I've included a mention to characterize the eigenvalues as real numbers: there's already a proof in the book, but it comes with almost no effort with the present proof, so I've included it anyway.

Remains then to prove that the matrix representation M_H of H is diagonalizable (and that the eigenvalues are real). Let's prove this by induction on the dimension of the vector space. If you're not familiar with proofs by induction, the idea is as follow:

 $^{^{11} \}mathtt{https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra}$

¹²I'm not doing it here, as I've avoided the bra-ket notation, and this would force me to talk about dual spaces, and so

- Prove that the result is true, say, for n = 1;
- Then, prove that if the result is true for n = k, then the result must be true for n = k + 1.
- If the two previous points hold, then you can combine them: if the first point hold then by applying the second point, the result must be true n = 1 + 1 = 2. But then by applying the second point again, it must be true that the result holds for n = 2 + 1 = 3.
- And so on: the result is true $\forall n \in \mathbb{N} \setminus \{0\}$.

n=1 Then, H is reduced to a 1×1 matrix, containing a single element h. This is trivially diagonal already, and because H is assumed to be Hermitian, the only eigenvalue $h = h^*$ is real.

Induction Assume the result holds for any Hermitian operator $H:W\to W$ on a k-dimensional vector space W over \mathbb{C} .

Let V be a k+1-dimensional vector space over \mathbb{C} . By our previous lemma, $H:V\to V$ must have at least one eigenvalue $\lambda \in \mathbb{C}$ associated to an eigenvector $\mathbf{v} \in V$.

Pick $\{v_1, v_1, \dots, v_{k+1}\} \subset V$ so that $\{v, v_1, v_2, \dots, v_{k+1}\}$ is an (ordered) basis of V^{13} .

Apply the Gram-Schmidt procedure¹⁴ to extract from it an (ordered) orthonormal basis $\{b_1, b_2, \dots, b_{k+1}\}$ of V; note that by construction:

$$oldsymbol{b}_1 = rac{oldsymbol{v}}{\|oldsymbol{v}\|}$$

That's to say, b_1 is still an eigenvector for λ^{15} .

Now we're trying to understand what's the matrix representation D_H of H, in this orthonormal basis. If you've taken the blue pill, you know how to "read" a matrix:

OK; let's start by what we know: b_1 is an eigenvector for H associated to λ , meaning:

$$H(\boldsymbol{b_1}) = \lambda \boldsymbol{b_1} = \lambda \boldsymbol{b_1} + \sum_{i=2}^{k+1} 0 \times \boldsymbol{e_i} = \begin{pmatrix} \lambda \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Rewrite D_H accordingly, and break it into blocks:

$$D_{H} = \begin{pmatrix} \lambda & & \\ 0 & & \\ \vdots & & \\ 0 & & \end{pmatrix} \quad \dots \quad \begin{pmatrix} & \\ \\ H(\boldsymbol{b}_{k+1}) \\ & & \end{pmatrix} = \begin{pmatrix} \lambda & & A & \\ \hline 0 & & \\ \vdots & & C & \\ 0 & & & \end{pmatrix}$$

Where A is a $1 \times k$ matrix (a row vector), and C a $k \times k$ matrix. But then H is Hermitian, which means its matrix representation obeys:

$$D_H = (D_H^T)^* = D_H^\dagger$$

¹³Start with $W = \{v\}$, and progressively augment it with elements of V so that all elements in W are linearly independent. If we can't select such elements no more, this mean we've got a basis. Ordering naturally follows from the iteration steps.

 $^{^{14}}$ https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process $^{15}H(\boldsymbol{b}_1) = H(\boldsymbol{v}/\|\boldsymbol{v}\|)$, by linearity of H, this is equal to $\frac{1}{\|\boldsymbol{v}\|}H(\boldsymbol{v})$. But \boldsymbol{v} is an eigenvector for an eigenvalue λ , so this is equal to $\frac{\lambda}{\|v\|} v = \lambda \frac{v}{\|v\|} = \lambda b_1$

This implies first that $\lambda = \lambda^*$, i.e λ is real, and we'll see shortly, can be considered an eigenvalue, as we can transform D_H in a diagonal matrix with λ on the diagonal.

Second, $A^{\dagger} = (0 \ 0 \ \dots \ 0) = A$, i.e:

$$\begin{pmatrix}
\lambda & 0 & \dots & 0 \\
0 & & & \\
\vdots & & C & \\
0 & & & &
\end{pmatrix}$$

Third, $C = C^{\dagger}$. But then, C is a $k \times k$ Hermitian matrix, corresponding to a Hermitian operator in a k-dimensional vector space. Using the induction assumption, it is diagonalizable, with real valued eigenvalues. Hence D_H is diagonalizable, and all its eigenvalues are real.

3.1.2 The Gram-Schmidt Procedure

3.2 The Principles

3.3 An Example: Spin Operators

3.4 Constructing Spin Operators

Exercise 7. Prove that Eq. 3.16 is the unique solution to Eqs. 3.14 and 3.15.

Let's recall all the equations, 3.14, 3.15 and 3.16

$$\begin{pmatrix} (\sigma_z)_{11} & (\sigma_z)_{12} \\ (\sigma_z)_{21} & (\sigma_z)_{22} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 (5)

$$\begin{pmatrix} (\sigma_z)_{11} & (\sigma_z)_{12} \\ (\sigma_z)_{21} & (\sigma_z)_{22} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = -\begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{6}$$

$$\begin{pmatrix} (\sigma_z)_{11} & (\sigma_z)_{12} \\ (\sigma_z)_{21} & (\sigma_z)_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (7)

By developing the matrix product and identifying the vectors components, the first two equations make a system of four equations involving four unknowns $(\sigma_z)_{11}$, $(\sigma_z)_{12}$, $(\sigma_z)_{21}$ and $(\sigma_z)_{22}$:

$$\begin{cases}
1(\sigma_z)_{11} + 0(\sigma_z)_{12} &= 1 \\
1(\sigma_z)_{21} + 0(\sigma_z)_{22} &= 0 \\
0(\sigma_z)_{11} + 1(\sigma_z)_{12} &= 0 \\
0(\sigma_z)_{21} + 1(\sigma_z)_{22} &= -1
\end{cases}
\Leftrightarrow
\begin{cases}
(\sigma_z)_{11} &= 1 \\
(\sigma_z)_{21} &= 0 \\
(\sigma_z)_{12} &= 0 \\
(\sigma_z)_{22} &= -1
\end{cases}$$
(8)

Remark 5. Observe that we are (were) trying to build a Hermitian operator with eigenvalues +1 and -1. The fundamental theorem / real spectral theorem, assures us that Hermitian operators are diagonalizable, hence there exists a basis in which the operator can be represented by a 2×2 matrix containing the eigenvalues on its diagonal:

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Which is exactly the matrix we've found.

But now of course, you'd be wondering: wait a minute, right after this exercise, we're trying to build σ_x , which also has those same eigenvalues +1 and -1, what's the catch?

Well, remember the diagonalization process: M diagonalizable means that there's a basis where it's diagonal. That is, there's a change of basis, which is an invertible linear function, which has a matrix representation P, such that the linear operation represented by M in a starting basis is now represented by a diagonal matrix D:

$$M = PDP^{-1}$$

Furthermore:

- The elements on the diagonal of D are the eigenvalues;
- The columns of P are the corresponding eigenvectors

So regarding σ_x , we still have a

$$D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

But the catch is that before for σ_z , P was the identity matrix I_2 (because of our choice for $|u\rangle$ and $|d\rangle$). But now, given our values for $|r\rangle$ and $|l\rangle$, we have:

$$|r\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$
 and $|l\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$ \Rightarrow $P = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

Note that the column order matters: the first column of P must be $|r\rangle$, and the first column of D must contain the eigenvalue associated to $|r\rangle$. But:

$$\sigma_x = PDP^{-1} \Leftrightarrow \sigma_x P = PD(\underbrace{P^{-1}P}_{:=I_2}) = PD = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Hence,

$$\sigma_x P = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \Leftrightarrow \frac{1}{\sqrt{2}} \begin{pmatrix} (\sigma_x)_{11} & (\sigma_x)_{12} \\ (\sigma_x)_{21} & (\sigma_x)_{22} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Solving for the components of σ_x :

$$\Leftrightarrow \begin{cases} (\sigma_x)_{11} + (\sigma_x)_{12} = 1\\ (\sigma_x)_{11} - (\sigma_x)_{12} = -1\\ (\sigma_x)_{21} + (\sigma_x)_{22} = 1\\ (\sigma_x)_{21} - (\sigma_x)_{22} = 1 \end{cases}$$

Which indeed yields the expected Pauli matrix, as described in the book, and computed by the authors using a different approach:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

And obviously, the same can be done for σ_y : that's to say that, reassuringly, we reach the same results using pure linear algebra.

3.5 A Common Misconception

3.6 3-Vector Operators Revisited

3.7 Reaping the Results

Exercise 8. Calculate the eigenvectors and eigenvalues of σ_n . Hint: Assume the eigenvector λ_1 has the form:

$$\begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$$
,

where α is an unknown parameter. Plug this vector into the eigenvalue equation and solve for α in terms of θ . Why did we use a single parameter α ? Notice that our suggested column vector must have unit length.

Let's recall the context: we're trying to build an operator that allows us to measure the spin of a particle. We've started by building the components of such an operator, each representing our ability to measure the spin along any of the 3D axsis: σ_x , σ_y and σ_z . Each of them was built from the behavior of the spin we "measured": we extracted from the observed behavior a set of constraints, which allowed us to determine the components of the spin operator:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \qquad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}; \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Those are individually fine to measure the spin components along the 3 main axis, but we'd like to measure spin components along an arbitrary axis \hat{n} . Such a measure can be performed by an operator constructed as a linear combination of the previous three matrices:

$$\sigma_n = \boldsymbol{\sigma} \cdot \hat{n} = \begin{pmatrix} \sigma_x \\ \sigma_y \\ \sigma_z \end{pmatrix} \cdot \begin{pmatrix} n_x \\ n_y \\ n_z \end{pmatrix} = n_x \sigma_x + n_y \sigma_y + n_z \sigma_z$$

Remark 6. Remember from your linear algebra courses that matrices can be added and scaled: they form a vector space.

The present exercise involves an arbitrary spin vector, that is, a linear combination of σ_x , σ_y and σ_z that is of the form:

$$\begin{array}{rcl} \sigma_n & = & \sin\theta\sigma_x + \cos\theta\sigma_z \\ & = & \sin\theta\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \cos\theta\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ & = & \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} \end{array}$$

We're then asked to look for the eigenvalues/eigenvectors of that matrix, that is, we want to understand what kind of spin (states) can be encoded by such a matrix, and which values they can take.

Let's recall that to find the eigenvalues/eigenvectors, we need to diagonalize the matrix: assuming it can be diagonalized, it means that there's a basis where it can be expressed as a diagonal matrix; the change of basis is encoded by a linear map, thus a matrix, and so we must be able to find an invertible matrix P and a diagonal matrix D such that:¹⁶

$$\sigma_n = PDP^{-1} \iff \sigma_n P = PD$$

$$\Leftrightarrow \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} \lambda_1 a & \lambda_2 b \\ \lambda_1 c & \lambda_2 d \end{pmatrix}$$

Where λ_1 and λ_2 would be the eigenvalues, associated to the two eigenvectors:

$$|\lambda_1\rangle = \begin{pmatrix} a \\ c \end{pmatrix}; \qquad |\lambda_2\rangle = \begin{pmatrix} b \\ d \end{pmatrix}$$

Note that the previous equation implies that we must have:

$$(\forall i \in \{1, 2\}), \ \sigma_n |\lambda_i\rangle = \lambda_i |\lambda_i\rangle$$

Which is equivalent to saying, where 0_2 is the zero 2×2 matrix, and I_2 the 2×2 identity matrix:

$$\sigma_n |\lambda_i\rangle - \lambda_i |\lambda_i\rangle = 0_2 \quad \Leftrightarrow \quad (\sigma_n - I_2\lambda_i) |\lambda_i\rangle = 0_2$$

If we want a non-trivial solution (i.e. $|\lambda_i| \neq 0$), then it follows that we must have:

$$\sigma_n - I_2 \lambda_i = 0_2$$

This means that the matrix $\sigma_n - I_2\lambda_i$ cannot be invertible (for otherwise multiplying it by its inverse would yield, by the rule of invertibility I_2 , but on the other side, from the matrix's definition, it would yield 0_2 , hence a contradiction, hence it's not invertible).

¹⁶This is "basic" linear algebra; the authors assume that you're already familiar with it to some degree (e.g. matrix product); don't hesitate to refer to a more thorough course on the subject for more. I'll quickly review here how diagonalization works

Non-invertibility of a matrix translates to their determinant being zero, which means the λ_i solves the following equation for λ :

$$\det(\sigma_n - I_2 \lambda) = 0 \quad \Leftrightarrow \quad \begin{vmatrix} \cos \theta - \lambda & \sin \theta \\ \sin \theta & -\cos \theta - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow \quad -(\cos \theta - \lambda)(\cos \theta + \lambda) - \sin^2 \theta = 0$$

$$\Leftrightarrow \quad -(\cos^2 \theta - \lambda^2) - \sin^2 \theta = 0$$

$$\Leftrightarrow \quad \lambda^2 - \underbrace{(\sin^2 \theta + \cos^2 \theta)}_{=1} = 0$$

$$\Leftrightarrow \quad \lambda^2 = 1$$

$$\Leftrightarrow \quad \lambda = \begin{cases} 1 & = \lambda_1 \\ -1 & = \lambda_2 \end{cases}$$

Now that we have our eigenvalues, we can use them to determine the associated eigenvectors, as, remember, they are linked by:

$$(\forall i \in \{1, 2\}), \ \sigma_n |\lambda_i\rangle = \lambda_i |\lambda_i\rangle$$

And so:

$$\sigma_{n}|\lambda_{1}\rangle = \lambda_{1}|\lambda_{1}\rangle \quad \Leftrightarrow \quad \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} \begin{pmatrix} a \\ c \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix}$$

$$\Leftrightarrow \quad \begin{cases} a\cos\theta + c\sin\theta & = a \\ a\sin\theta - c\cos\theta & = c \end{cases}$$

$$\Leftrightarrow \quad \begin{cases} a(\cos\theta - 1) + c\sin\theta & = 0 \\ a\sin\theta + c(-\cos\theta - 1) & = 0 \end{cases}$$

Consider the first equation of this system: we're left with two main choices, depending on whether $\cos \theta = 1$ or not. If it is, let's take $\theta = 0$ for instance, but this would true modulo π , then we must have $\sin \theta = 0$, and the first equations gives us nothing of value. The second then simplifies to c = 0, thus a = 0.

Let's now consider the case where $\cos \theta \neq 1$. The system can be rewritten as:

$$\begin{cases} a &= \frac{-c\sin\theta}{\cos\theta - 1} \\ a\sin\theta + c(-\cos\theta - 1) &= 0 \end{cases}$$

We can inject the first equation in the second to yield:

$$\frac{-c\sin\theta}{\cos\theta - 1}\sin\theta + c(-\cos\theta - 1) = 0 \quad \Leftrightarrow \quad \frac{-c\sin\theta}{\cos\theta - 1}\sin\theta + \frac{\cos\theta - 1}{\cos\theta - 1}c(-\cos\theta - 1) = 0$$

$$\Leftrightarrow \quad \frac{c(-\sin^2\theta - (\cos\theta - 1)(\cos\theta + 1))}{\cos\theta - 1} = 0$$

$$\Rightarrow \quad c(-\sin^2\theta - (\cos^2\theta - 1)) = 0$$

$$\Rightarrow \quad c(-(\sin^2\theta + \cos^2\theta) - 1) = 0$$

$$\Rightarrow \quad c(-(\sin^2\theta + \cos^2\theta) - 1) = 0$$

That's a struggle; we don't seem to be able to extract anything but the trivial solution; maybe there's some trigonometric trick to find the general solution¹⁷).

Instead, let's try to use and understand the authors' hint, which is to look for eigenvectors of the form:

$$\begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$$

¹⁷There definitely is one, see for instance https://www.wolframalpha.com/input?i=diagonalize+%7B%7Bcos+x%2C+sin+x%7D%2C%7Bsin+x%2C-cos+x%7D%7D

Why is this a reasonable choice? Let's start by answering why we need a single parameter α : it corresponds to the single degree of freedom we have in this case. Let's recall the two equivalent ways of counting the number of degree of freedom that were given in subsection 2.5:

1. First, point the apparatus in any direction in the xz-plane (remember for comparison that in subsection 2.5, we were allowed to take a direction in the xyz-space). A single angle is sufficient to encode this single direction (2 were needed in the xyz-space). Furthermore, note that this angle would have has its coordinate in the xz-plane $\cos \alpha$ and $\sin \alpha$, respectively in the x-and z-directions.

Note that we're really capturing *directions*: a point in \mathbb{R}^2 contains too much information, as we want to identify all the points which share the same direction;

2. The second approach was to say that the general form of the spin state in xyz-space was given by a (complex) linear combination $\alpha_u|u\rangle + \alpha_d|d\rangle$. But, recall the definition of $|l\rangle$ and $|r\rangle$, the vectors associated with the x-direction:

$$|r\rangle = \frac{1}{\sqrt{2}}|u\rangle + \frac{1}{\sqrt{2}}|d\rangle; \qquad |l\rangle = \frac{1}{\sqrt{2}}|u\rangle - \frac{1}{\sqrt{2}}|d\rangle$$

They didn't involved complex numbers. We started to need, and have proven in exercise L02E03 that this was mandatory once we had enough constraints to cover the three spatial directions (i.e., when dealing with $|i\rangle$ and $|o\rangle$, after having already established the two other pairs of orthogonal vectors).

That's to say, we don't need complex numbers when we only have two directions, so actually, the general form of a spin in a plane is a *real* linear combination, which cuts down the number of degrees of freedom to 2.

Normalization adds yet another constraint, which cuts us down to a single degree of freedom. But, shouldn't the phase ambiguity brings us to ... zero degree of freedom? What are we missing?

Well, the idea of phase ambiguity was that we could multiply the vectors by a $\exp(i\theta) = \cos\theta + i\sin\theta$, for $\theta \in \mathbb{R}$. But we saw that we actually don't need complex numbers when we're in a 2D-plane, which means $\sin\theta = 0$, and thus forces $\cos\theta = 1$, so the phase ambiguity doesn't impact the number of degrees of freedom.¹⁸

Note that the form of this vector is naturally normalized ($\cos^2 \alpha + \sin^2 \alpha = 1$). Recall that it *must* be normalized because this column vector actually corresponds to:

$$\begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = \cos \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \sin \alpha \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \cos \alpha |u\rangle + \sin \alpha |d\rangle$$

And the square of the magnitude of $\cos \alpha$ encodes the probability for the measured value to correspond to $|u\rangle$ while the square of the magnitude of $\sin \alpha$ encodes the probability of the system to be measured in state $|d\rangle$, and both states are orthogonal: the total probability must be 1.

Alright, let's get to actually finding the eigenvectors associated to our eigenvalues. We can use the same trick as in the previous exercise L03E02.pdf: because of the diagonalization process, we have the following relation:

$$\sigma_{n} = PDP^{-1} \Leftrightarrow \sigma_{n}P = PD(\underbrace{PP^{-1}}_{:=I_{2}}) = PD = P\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\Leftrightarrow \underbrace{\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}}_{=\sigma_{n}} \underbrace{\begin{pmatrix} \cos \alpha & \cos \beta \\ \sin \alpha & \sin \beta \end{pmatrix}}_{=P} = \begin{pmatrix} \cos \alpha & \cos \beta \\ \sin \alpha & \sin \beta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\cos \beta \\ \cos \alpha & -\sin \beta \end{pmatrix}$$

Where the columns of P are the eigenvectors associated to the eigenvalues 1 and -1. Both have the same "form", as previously explained. We could have used the same approach as in the book (see the

¹⁸This feels still a bit hand-wavy as a justification; maybe there's a neater way to express it, either a pure mathematical characterization, or a physical one.

previous exercise), but you'll get with the same (kind?) of system in the end. Let's perform the matrix multiplication on the left and extract two equations from the four we can get by identifying the matrix components:

$$\begin{pmatrix}
\cos\theta\cos\alpha + \sin\theta\sin\alpha & \cos\theta\cos\beta + \sin\theta\sin\beta \\
\sin\theta\cos\alpha - \cos\theta\sin\alpha & \sin\theta\cos\beta - \cos\theta\sin\beta
\end{pmatrix} = \begin{pmatrix}
\cos\alpha & -\cos\beta \\
\cos\alpha & -\sin\beta
\end{pmatrix}$$

$$\Leftrightarrow \begin{cases}
\cos\theta\cos\alpha + \sin\theta\sin\alpha = \cos\alpha \\
\cos\theta\cos\beta + \sin\theta\sin\beta = -\cos\beta
\end{cases}$$

The following trigonometric identities¹⁹:

$$\cos\theta\cos\alpha = \frac{1}{2}(\cos(\theta - \alpha) + \cos(\theta + \alpha)); \qquad \sin\theta\sin\alpha = \frac{1}{2}(\cos(\theta - \alpha) - \cos(\theta + \alpha))$$
$$\cos(\alpha - \pi) = -\cos\alpha$$

Allows us to rewrite the previous system as

$$\Leftrightarrow \begin{cases} \frac{1}{2} \Big((\cos(\theta - \alpha) + \cos(\theta + \alpha)) + \big(\cos(\theta - \alpha) - \cos(\theta + \alpha) \big) \Big) = \cos \alpha \\ \frac{1}{2} \Big((\cos(\theta - \beta) + \cos(\theta + \beta)) + \big(\cos(\theta - \beta) - \cos(\theta + \beta) \big) \Big) = \cos(\beta - \pi) \end{cases}$$
$$\Leftrightarrow \begin{cases} \cos(\theta - \alpha) = \cos \alpha \\ \cos(\theta - \beta) = \cos(\beta - \pi) \end{cases}$$

And with the following identities:

$$\cos(\alpha + \frac{\pi}{2}) = -\sin\alpha; \qquad \sin(\alpha + \frac{\pi}{2}) = \cos\alpha$$

We reach:

$$\Rightarrow \begin{cases} \theta - \alpha = \alpha \\ \theta - \beta = \beta - \pi \end{cases} \Rightarrow \begin{cases} \alpha = \frac{\theta}{2} \\ \beta = \frac{1}{2}(\theta + \pi) \end{cases} \Rightarrow \begin{cases} \left| +1 \right| = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = \begin{pmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{pmatrix} \\ \left| -1 \right| = \begin{pmatrix} \cos \beta \\ \sin \beta \end{pmatrix} = \begin{pmatrix} \cos(\theta/2 + \pi/2) \\ \sin(\theta/2 + \pi/2) \end{pmatrix} = \begin{pmatrix} -\sin(\theta/2) \\ \cos(\theta/2) \end{pmatrix} \end{cases}$$

¹⁹Look around for the proofs if needed; formulas can be found on Wikipedia