

Phenomenology of the minimal B - L extension of the Standard Model

JOÃO PEDRO DIAS RODRIGUES

ANTÓNIO MORAIS

Conteúdo

- 1 Motivação
- 2 Introdução teórica
- 3 O Modelo Padrão
- 4 O Modelo B-L-SM
- 5 Estudo fenomenológico do modelo B-L-SM
- 6 Conclusões

1 – Motivação

1 - Motivação

O modelo padrão é usado para descrever partículas e as suas interações.

1 - Motivação

O modelo padrão é usado para descrever partículas e as suas interações.

Problemas com o modelo padrão

- Massas de neutrinos
- Matéria e energia escura
- Assimetria entre matéria e anti matéria

1 - Motivação

O modelo padrão é usado para descrever partículas e as suas interações.

Problemas com o modelo padrão

- Massas de neutrinos
- Matéria e energia escura
- Assimetria entre matéria e anti matéria

Iremos abordar o modelo B-L-SM como uma possível alternativa ao modelo padrão.

2 - Introdução teórica

2.1 - Formalismo

Iremos abordar física de partículas com formalismo lagrangiano,

$$S = \int L dt = \int \mathcal{L} \left(\Phi, \partial_{\mu} \Phi \right) d^{\mu} x$$

pelo principio de mínima ação,

$$\delta S = 0$$

obtemos as equações de Euler-Lagrange,

$$\partial_{\mu} \left(\frac{\partial \mathcal{L}(\Phi, \partial_{\mu} \Phi)}{\partial (\partial_{\mu} \Phi)} \right) - \frac{\partial \mathcal{L}(\Phi, \partial_{\mu} \Phi)}{\partial \Phi} = 0$$

2.2 - Simetria e o Teorema de Noether

Se ao aplicarmos uma transformação continua ao sistema,

$$\phi \rightarrow \phi' = \phi + \delta \phi$$

tal transformação deixa as dinâmicas do sistema invariantes se,

$$\mathcal{L}(\Phi, \partial_{\mu}\Phi) = \mathcal{L}(\Phi', \partial_{\mu}\Phi')$$

Se a transformação for genérica temos uma simetria do sistema, onde através do teorema de Noether temos associada uma corrente e carga conservada.

$$\partial_{\mu}j^{\mu} = 0$$
 $Q = \int_{\text{Todo o espaço}} j^{0}d^{3}x$

2.3 - Quebra espontânea de uma simetria

Introduzindo o Lagrangiano de uma teoria quadrática escalar complexa,

$$\mathcal{L} = (\partial_{\mu}\Phi)^{*}(\partial^{\mu}\Phi) - \mu^{2}(\Phi^{*}\Phi) - \lambda(\Phi^{*}\Phi)^{2}$$

se μ^2 for um parâmetro positivo temos um mínimo em $\Phi=0$

2.3 - Quebra espontânea de uma simetria

No entanto tomando valores negativos para μ^2 muda o mínimo do campo para um valor diferente de zero,

$$|\Phi|_{min} = \sqrt{\frac{-\mu^2}{\lambda}} = v$$

Mudando o campo para o mínimo $\Phi \to \eta(x) + v + i \epsilon(x)$,

2.3 - Quebra espontânea de uma simetria

Expandindo o Lagrangiano,

$$\begin{split} \mathcal{L} &= \frac{1}{2} \partial_{\mu} \epsilon(x) \partial^{\mu} \epsilon(x) + \frac{1}{2} \partial_{\mu} \eta(x) \partial^{\mu} \eta(x) \\ &- \frac{1}{2} (2 \mu^2) \eta^2 - \frac{1}{4} \lambda (\epsilon^2 + \eta^2)^2 - \lambda \nu (\epsilon^2 + \eta^2) \eta \end{split}$$

onde antes tínhamos dois campos reais massivos agora temos apenas um, com massa $2\mu^2$.

3 - O modelo padrão

Os sectores escalar e de Gauge do modelo padrão são,

$$\mathcal{L} = (D_{\mu}H)^{\dagger}(D_{\mu}H) - V(HH^{\dagger}) - \frac{1}{4}F_{\mu\nu}^{i}F^{i,\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}$$

Os sectores escalar e de Gauge do modelo padrão são,

$$\mathcal{L} = (D_{\mu}H)^{\dagger}(D_{\mu}H) - V(HH^{\dagger}) - \frac{1}{4}F_{\mu\nu}^{i}F^{i,\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}$$

Onde o campo de Higgs, H, toma um VEV com a forma,

$$H(x) = \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 \\ v + h \end{pmatrix}$$

Os sectores escalar e de Gauge do modelo padrão são,

$$\mathcal{L} = (D_{\mu}H)^{\dagger}(D_{\mu}H) - V(HH^{\dagger}) - \frac{1}{4}F_{\mu\nu}^{i}F^{i,\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu}$$

Onde o campo de Higgs, H, toma um VEV com a forma,

$$H(x) = \begin{pmatrix} \phi_1 + i\phi_2 \\ \phi_3 + i\phi_4 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 \\ v + h \end{pmatrix}$$

Podemos expandir as derivadas covariantes em volta deste VEV

$$\begin{split} \mathcal{L} &= \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{1}{2} (2 v^2 \lambda) h^2 - \frac{1}{4} F^i_{\mu\nu} F^{i\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \\ &\quad + \frac{1}{8} v^2 g^2 \big(A^1_{\mu} A^{1,\mu} + A^2_{\mu} A^{2,\mu} \big) \\ &\quad + \frac{1}{8} v^2 \big(g^2 A^3_{\mu} A^{3,\mu} + g'^2 B_{\mu} B^{\mu} - 2 g^2 g'^2 A^3_{\mu} B^{\mu} \big) \end{split}$$

$$\begin{split} \mathcal{L} &= \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{1}{2} (2 v^2 \lambda) h^2 - \frac{1}{4} F^i_{\mu\nu} F^{i\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \\ &+ \frac{1}{8} v^2 g^2 \big(A^1_{\mu} A^{1,\mu} + A^2_{\mu} A^{2,\mu} \big) + \frac{1}{8} v^2 \big(g^2 A^3_{\mu} A^{3,\mu} + g'^2 B_{\mu} B^{\mu} - 2 g^2 g'^2 A^3_{\mu} B^{\mu} \big) \end{split}$$

$$\begin{split} \mathcal{L} &= \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{1}{2} (2 v^2 \lambda) h^2 - \frac{1}{4} F^i_{\mu\nu} F^{i\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \\ &+ \frac{1}{8} v^2 g^2 \big(A^1_{\mu} A^{1,\mu} + A^2_{\mu} A^{2,\mu} \big) + \frac{1}{8} v^2 \big(g^2 A^3_{\mu} A^{3,\mu} + g'^2 B_{\mu} B^{\mu} - 2 g^2 g'^2 A^3_{\mu} B^{\mu} \big) \end{split}$$

Rescrevendo este lagrangiano na sua base física, ou seja mudando os campos para,

$$W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} \left(A_{\mu}^{1} \pm i A_{\mu}^{2} \right),$$

$$A_{\mu} = \cos(\theta_{\omega}) B_{\mu} + \sin(\theta_{\omega}) A_{\mu}^{3} \text{ e}$$

$$Z_{\mu} = -\sin(\theta_{\omega}) B_{\mu} + \cos(\theta_{\omega}) A_{\mu}^{3}$$

$$\begin{split} \mathcal{L} &= \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{1}{2} (2 v^2 \lambda) h^2 - \frac{1}{4} F^i_{\mu\nu} F^{i\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} \\ &+ \frac{1}{8} v^2 g^2 \big(A^1_{\mu} A^{1,\mu} + A^2_{\mu} A^{2,\mu} \big) + \frac{1}{8} v^2 \big(g^2 A^3_{\mu} A^{3,\mu} + g'^2 B_{\mu} B^{\mu} - 2 g^2 g'^2 A^3_{\mu} B^{\mu} \big) \end{split}$$

Rescrevendo este lagrangiano na sua base física, ou seja mudando os campos para,

$$W_{\mu}^{\pm} = \frac{1}{\sqrt{2}} \left(A_{\mu}^{1} \pm i A_{\mu}^{2} \right),$$

$$A_{\mu} = \cos(\theta_{\omega}) B_{\mu} + \sin(\theta_{\omega}) A_{\mu}^{3} \text{ e}$$

$$Z_{\mu} = -\sin(\theta_{\omega}) B_{\mu} + \cos(\theta_{\omega}) A_{\mu}^{3}$$

Obtemos alguns termos quadráticos que indicam as seguintes massas,

$$M_Z = \frac{1}{2} v \sqrt{g^2 + g'^2}$$
 e $M_W = \frac{1}{2} v g$

O Lagrangiano do modelo padrão não inclui termos de massa para os leptões, e.g para o eletrão, m^2ee^{\dagger} , onde os campos de Dirac para o eletrão seriam,

$$e = \begin{pmatrix} e_L \\ e_R \end{pmatrix}$$
 $e^{\dagger} = (\overline{e_R} \quad \overline{e_L})$

O Lagrangiano do modelo padrão não inclui termos de massa para os leptões, e.g para o eletrão, m^2ee^{\dagger} , onde os campos de Dirac para o eletrão seriam,

$$e = \begin{pmatrix} e_L \\ e_R \end{pmatrix}$$
 $e^{\dagger} = (\overline{e_R} \quad \overline{e_L})$

ainda para o eletrão teríamos termos de interação,

$$\mathcal{L}_{\psi_e} = y^e \, \overline{L_e} \, H \, e_r + L_e \, H^\dagger \, \overline{e_r}$$

O Lagrangiano do modelo padrão não inclui termos de massa para os leptões, e.g para o eletrão, m^2ee^{\dagger} , onde os campos de Dirac para o eletrão seriam,

$$e = \begin{pmatrix} e_L \\ e_R \end{pmatrix}$$
 $e^{\dagger} = (\overline{e_R} \quad \overline{e_L})$

ainda para o eletrão teríamos termos de interação,

$$\mathcal{L}_{y_e} = y^e \overline{L_e} H e_r + L_e H^{\dagger} \overline{e_r}$$

$$\downarrow^{\text{Adquirindo}} \qquad \qquad \mathcal{L}_{y_e} = y^e v(\overline{e_L} e_R + \overline{e_R} e_L) + y^e h(x)(\overline{e_L} e_R + \overline{e_R} e_L)$$

Isto é equivalente a um termo quadrático de massa,

$$m_e = \sqrt{y^e \ v}$$

O Lagrangiano do modelo padrão não inclui termos de massa para os leptões, e.g para o eletrão, m^2ee^{\dagger} , onde os campos de Dirac para o eletrão seriam,

$$e = \begin{pmatrix} e_L \\ e_R \end{pmatrix}$$
 $e^{\dagger} = (\overline{e_R} \quad \overline{e_L})$

ainda para o eletrão teríamos termos de interação,

$$\mathcal{L}_{y_e} = y^e \overline{L_e} H e_r + L_e H^{\dagger} \overline{e_r}$$

$$\downarrow^{\text{Adquirindo}} \qquad \qquad \mathcal{L}_{y_e} = y^e v(\overline{e_L} e_R + \overline{e_R} e_L) + y^e h(x)(\overline{e_L} e_R + \overline{e_R} e_L)$$

Isto é equivalente a um termo quadrático de massa,

$$m_e = \sqrt{y^e \ v}$$

Os neutrinos não têm termos direitos no modelo padrão não gerando massa para os neutrinos.

3 - O Modelo B-L-SM

No modelo B-L-SM é adicionado

- Um campo real escalar χ
- Um campo de Gauge extra Β^{',μ}
- Uma geração de termos neutrinos direitos a interagir com o campo de Higgs e o novo campo χ

No modelo B-L-SM é adicionado

- Um campo real escalar χ
- Um campo de Gauge extra Β^{',μ}
- Uma geração de termos neutrinos direitos a interagir com o campo de Higgs e o novo campo χ

O sector escalar do modelo é escrito como,

$$\mathcal{L}_{s} = (D^{\mu}H)^{\dagger} (D_{\mu}H) + (D^{\mu}\chi)^{\dagger} (D_{\mu}\chi) - V(H,\chi)$$

No modelo B-L-SM é adicionado

- Um campo real escalar χ
- Um campo de Gauge extra Β',μ
- Uma geração de termos neutrinos direitos a interagir com o campo de Higgs e o novo campo χ

O sector escalar do modelo é escrito como,

$$\mathcal{L}_{s} = (D^{\mu}H)^{\dagger} (D_{\mu}H) + (D^{\mu}\chi)^{\dagger} (D_{\mu}\chi) - V(H,\chi)$$

Onde o potencial é dado por,

$$V(H,\chi) = m^2 H H^{\dagger} + \mu^2 |\chi|^2 + \binom{H H^{\dagger}}{|\chi|^2} \begin{pmatrix} \lambda_1 & \frac{1}{2} \lambda_3 \\ \frac{1}{2} \lambda_3 & \lambda_2 \end{pmatrix} (H H^{\dagger} \quad |\chi|^2)$$

Examinando o potencial,

$$V(H,\chi) = m^2 H H^{\dagger} + \mu^2 |\chi|^2 + \begin{pmatrix} H H^{\dagger} \\ |\chi|^2 \end{pmatrix} \begin{pmatrix} \lambda_1 & \frac{1}{2} \lambda_3 \\ \frac{1}{2} \lambda_3 & \lambda_2 \end{pmatrix} (H H^{\dagger} - |\chi|^2)$$

Dado que os campos H e χ adquirem os seguintes VEVs

$$H = \frac{1}{\sqrt{2}} {0 \choose v + h} , \quad \chi = \frac{x}{\sqrt{2}} + h'$$

Examinando o potencial,

$$V(H,\chi) = m^2 H H^{\dagger} + \mu^2 |\chi|^2 + \begin{pmatrix} H H^{\dagger} \\ |\chi|^2 \end{pmatrix} \begin{pmatrix} \lambda_1 & \frac{1}{2}\lambda_3 \\ \frac{1}{2}\lambda_3 & \lambda_2 \end{pmatrix} (H H^{\dagger} - |\chi|^2)$$

Dado que os campos H e χ adquirem os seguintes VEVs

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h \end{pmatrix} , \quad \chi = \frac{x}{\sqrt{2}} + h'$$

Calculando a matriz de massa obtemos os seguintes estados massivos.

$$\begin{split} m_{h_1}^2 &= \lambda_1 v^2 + \lambda_2 x^2 - \sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2} \\ m_{h_2}^2 &= \lambda_1 v^2 + \lambda_2 x^2 + \sqrt{(\lambda_1 v^2 - \lambda_2 x^2)^2 + (\lambda_3 x v)^2} \end{split}$$

Expandindo os termos de covariantes obtemos,

$$\begin{split} (D^{\mu}H)^{\dagger}\big(D_{\mu}H\big) + (D^{\mu}\chi)^{\dagger}\big(D_{\mu}\chi\big) &= \frac{1}{2}\partial^{\mu}h\partial_{\mu}h + \frac{1}{2}\partial^{\mu}h'\partial_{\mu}h' + \\ \frac{1}{8}(h+v)^{2}\left[g^{2}\big[W_{1}^{\mu}-iW_{2}^{\mu}\big]^{2} + \big(gW_{3}^{\mu}-g_{1}B^{\mu}-\tilde{g}B'^{,\mu}\big)^{2}\right] + \frac{1}{2}(h'+x)^{2}(g_{1}'2B'^{,\mu})^{2} \end{split}$$

Expandindo os termos de covariantes obtemos,

$$\begin{split} (D^{\mu}H)^{\dagger}\big(D_{\mu}H\big) + (D^{\mu}\chi)^{\dagger}\big(D_{\mu}\chi\big) &= \frac{1}{2}\partial^{\mu}h\partial_{\mu}h + \frac{1}{2}\partial^{\mu}h'\partial_{\mu}h' + \\ \frac{1}{8}(h+v)^{2}\left[g^{2}\big[W_{1}^{\mu}-iW_{2}^{\mu}\big]^{2} + \big(gW_{3}^{\mu}-g_{1}B^{\mu}-\tilde{g}B'^{,\mu}\big)^{2}\right] + \frac{1}{2}(h'+x)^{2}(g_{1}'2B'^{,\mu})^{2} \end{split}$$

Diagonalizando este sector obtemos os mesmos termos de massas para os bosões W e o fotão que no modelo padrão, no entanto para os bosões Z e Z' as massas agora são,

$$\mathsf{M}_{Z,Z'} \! = \! \sqrt{g^2 \! + \! g_1^2} \cdot \frac{\mathsf{v}}{2} \left[\frac{1}{2} \! \left(\frac{\widetilde{g^2} \! + \! 16 \binom{\mathsf{x}}{\overline{\mathsf{v}}}^2 g_1'^2}{g^2 \! + \! g_1^2} \! + \! 1 \right) \mp \frac{\widetilde{g}}{\sin(2\gamma') \sqrt{g^2 \! + \! g_1^2}} \right]$$

$$\mathsf{M}_{Z,Z'} = \sqrt{g^2 + g_1^2} \cdot \frac{\mathsf{v}}{2} \left[\frac{1}{2} \left(\frac{\widetilde{g^2} + 16(\frac{\mathsf{x}}{\overline{\mathsf{v}}})^2 g_1'^2}{g^2 + g_1^2} + 1 \right) \mp \frac{\widetilde{g}}{\sin(2\gamma')\sqrt{g^2 + g_1^2}} \right]$$

onde γ' é um angulo de mistura entre os bosões Z que pode ser relacionado com os *couplings* associados aos vários campos de Gauge por,

$$\mathsf{M}_{Z,Z'} = \sqrt{g^2 + g_1^2} \cdot \frac{\mathsf{v}}{2} \left[\frac{1}{2} \left(\frac{\widetilde{g^2} + 16(\frac{\mathsf{x}}{\overline{\mathsf{v}}})^2 g_1'^2}{g^2 + g_1^2} + 1 \right) \mp \frac{\widetilde{g}}{\sin(2\gamma')\sqrt{g^2 + g_1^2}} \right]$$

Se o coeficiente de mistura cinética fosse nulo, tínhamos as massas totalmente independentes. Levando aos termos de massa,

$$M_{Z'} = 2g'_1x,$$
 $M_{Z} = \frac{1}{2}v\sqrt{g^2 + g'^2}$

Devido à escala relativa dos VEVs podemos aproximar a massa do bosão exótico Z' a estes estados desacoplados

$$M_{Z'} \approx 2g_1'x$$

4.3 - Neutrinos direitos no modelo B-L-SM

No modelo B-L-SM o sector de Yukawa inclui os seguintes termos adicionais em relação ao modelo padrão,

$$\mathcal{L}_{y_{\nu_r}} = y_k^{\nu} \, \overline{L}_k \, \nu_R^k \, \widetilde{H} \, - \, y_k^M \overline{\nu_R^c} \nu_R^k \, \chi \, + \, h. \, c.$$

4.3 - Neutrinos direitos no modelo B-L-SM

No modelo B-L-SM o sector de Yukawa inclui os seguintes termos adicionais em relação ao modelo padrão,

$$\mathcal{L}_{y_{\nu_r}} = y_k^{\nu} \, \overline{L}_k \, \nu_R^k \, \widetilde{H} \, - \, y_k^M \overline{\nu_R^c} \nu_R^k \, \chi \, + \, h. \, c.$$

Devido aos VEV's de ambos os campos existe a geração de massa para os novos neutrinos direitos e esquerdos através do mecanismo see-saw,

$$\mathcal{L}_{y_{\nu_r}} = (\nu_L \quad \nu_R) \begin{pmatrix} 0 & m_D \\ m_D & M \end{pmatrix} \begin{pmatrix} \overline{\nu_L} \\ \overline{\nu_R} \end{pmatrix}$$

4.3 - Neutrinos direitos no modelo B-L-SM

No modelo B-L-SM o sector de Yukawa inclui os seguintes termos adicionais em relação ao modelo padrão,

$$\mathcal{L}_{y_{\nu_r}} = y_k^{\nu} \, \overline{L}_k \, \nu_R^k \, \widetilde{H} \, - \, y_k^M \overline{\nu_R^c} \nu_R^k \, \chi \, + \, h. \, c.$$

Devido aos VEV's de ambos os campos existe a geração de massa para os novos neutrinos direitos e esquerdos através do mecanismo see-saw,

$$\mathcal{L}_{y_{\nu_r}} = (\nu_L \quad \nu_R) \begin{pmatrix} 0 & m_D \\ m_D & M \end{pmatrix} \begin{pmatrix} \overline{\nu_L} \\ \overline{\nu_R} \end{pmatrix}$$

Onde $M=\sqrt{2}y^Mx$ e $m_D=\frac{y^\nu}{\sqrt{2}}v$. Diagonalizando este sistema para uma base física com neutrinos leves e pesados em vez de esquerdos e direitos cujos campos de Dirac indicam valores de massa,

$$m_{\nu_l} pprox \frac{m_D^2}{M} \qquad m_{\nu_h} pprox M$$

5 – Estudo fenomenológico do modelo B-L-SM

5.1 - Parametrização teórica

Tivemos como primeiro objetivo testar o modelo ao longo de uma parametrização da massa do bosão de Higgs em *tree level*.

5.2 - Scan segundo uma parametrização

Feito um Scan alongo desta folha o que observamos é:

- Correções quânticas já têm um efeito considerável.
- Ambos os gráficos são mapas de cor de massa.
- O primeiro gráfico pode ser interpretado também como mapa de contraste associado ao efeito das correções quânticas.

5.3 - Uma primeira seleção de pontos

Selecionado os dados que mais se aproximam da massa observada,

- Revela uma zona densa de pontos que aparenta descrever um plano.
- Indica que pode ainda ser uma forma cónica.

5.4 - Scans aleatórios

Feitos scans de completamente aleatórios com correções quânticas adicionais e uma nova seleção.
Observamos ainda os mesmos comportamentos para ambas as massas.

5.5 - Limites de exclusão

Destes selecionados foi calculado os limites de exclusão do sector escalar, Excluímos da nossa analise imediatamente todos os pontos que se encontram dentro da zona de exclusão.

5.6 - Compatibilidade do sector de Higgs

Estudamos também a probabilidade destes pontos não excluídos descreverem os estados observados do sector de Higgs através do programa HiggsSingals.

Massa do Higgs Prime [GeV]

4000

3500

5.7 - Bissecções do gráfico de probabilidade

Para melhor visualização foi feita uma projeção do gráfico de pontos aceites segundo pares de eixos.

λ1

5.8 - Limites associados ao bosão Z'

Model	Lower limits on					
	ee		$\mu\mu$		l l	
Z'_{B-L}	obs	exp	obs	exp	obs	exp
	4.0	4.0	3.6	3.6	4.2	4.1

Tendo em conta estes constrangimentos experimentais uma observação rápida da expressão associada a massa do novo bosão de Gauge simplificada,

$$M_{Z'} \approx 2g_1' x$$
,

significando que o acoplamento de Gauge "prime" para o caso estudado tem o valor mínimo de $g'_{1_{min}} pprox 2$

6 - Conclusões e trabalho futuro

- O que fizemos neste projeto foi estudar as falhas do modelo padrão e explorar uma alternativa o modelo B-L-SM, focamo-nos principalmente no sector de Higgs
- A nossa analise deste modelo aparenta mostrar que se encontra quase excluído ou descoberto existindo condições para as quais este é provável descrever os estados observados do Higgs.
- Não foi possível estudar os neutrinos devido a constrangimentos de tempo
- Este modelo continua com incoesistências experimentais, como assimetria matéria-antimatéria e matéria escura, um esforço tem que vir a ser feito para o completar.