Small Test Exact Solution Spousal Shocks

This is the example vignette for function: snw_vfi_main_bisec_vec from the PriOptiSNW Package. This function solves for policy function with vectorized bisection. Small Solution Analysis, husband 5 shocks, wife 3 shocks.

Test SNW_VFI_MAIN Defaults Small

Call the function with default parameters.

```
mp_param = snw_mp_param('default_small53');
[V VFI,ap VFI,cons VFI,mp valpol more] = snw vfi main bisec vec(mp param);
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:18 of 17, time-this-age:0.058874
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:17 of 17, time-this-age:0.059673
SNW VFI MAIN BISEC VEC: Finished Age Group:16 of 17, time-this-age:0.059922
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:15 of 17, time-this-age:0.062184
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:14 of 17, time-this-age:0.057978
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:13 of 17, time-this-age:0.059396
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:12 of 17, time-this-age:0.061417
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:11 of 17, time-this-age:0.058985
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:10 of 17, time-this-age:0.05982
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:9 of 17, time-this-age:0.07028
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:8 of 17, time-this-age:0.06746
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:7 of 17, time-this-age:0.059236
SNW VFI MAIN BISEC VEC: Finished Age Group:6 of 17, time-this-age:0.069577
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:5 of 17, time-this-age:0.068207
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:4 of 17, time-this-age:0.060701
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:3 of 17, time-this-age:0.059637
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:2 of 17, time-this-age:0.062462
SNW_VFI_MAIN_BISEC_VEC: Finished Age Group:1 of 17, time-this-age:0.0598
Completed SNW_VFI_MAIN_BISEC_VEC;SNW_MP_PARAM=default_small53;SNW_MP_CONTROL=default_base;time=1.1532
```

Small Param Results Define Frames

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
% Grids:
age_grid = [19, 22:5:97, 100];
agrid = mp_param('agrid')';
eta_H_grid = mp_param('eta_H_grid')';
eta_S_grid = mp_param('eta_S_grid')';
ar_st_eta_HS_grid = string(cellstr([num2str(eta_H_grid', 'hz=%3.2f;'), num2str(eta_S_grid', 'watedu_grid = [0,1];
marry_grid = [0,1];
kids_grid = (1:1:mp_param('n_kidsgrid'))';
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
cl_mp_datasetdesc = {};
cl_mp_datasetdesc{1} = containers.Map({'name', 'labval'}, {'age', age_grid});
cl_mp_datasetdesc{2} = containers.Map({'name', 'labval'}, {'savings', agrid});
cl_mp_datasetdesc{3} = containers.Map({'name', 'labval'}, {'eta', 1:length(eta_H_grid)});
cl_mp_datasetdesc{4} = containers.Map({'name', 'labval'}, {'edu', edu_grid});
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

Analyze Savings and Shocks

First, analyze Savings Levels and Shocks, Aggregate Over All Others, and do various other calculations.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('it_legend_select') = 9; % how many shock legends to show
mp_support_graph('cl_colors') = 'jet';
```

MEAN(VAL(A,Z)), MEAN(AP(A,Z)), MEAN(C(A,Z))

Tabulate value and policies along savings and shocks:

xxx MEAN(AP(A,Z)) xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

mean_eta_1

savings

group

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [1,4,5,6,3,2];
% Value Function
tb_az_v = ff_summ_nd_array("MEAN(VAL(A,Z))", V_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, ar
group
              savings
                         mean_eta_1
                                       mean_eta_2
                                                     mean_eta_3
                                                                   mean_eta_4
                                                                                 mean_eta_5
                                                                                               mean_eta_6
                                                                                                             mean_e
     1
                            -20.307
                                         -10.285
                                                       -5.0527
                                                                    -2.1772
                                                                                  -0.66137
                                                                                                -17.128
                           -19.558
                                         -10.063
      2
            0.0097656
                                                       -4.9312
                                                                    -2.0759
                                                                                   -0.5645
                                                                                                  -16.7
                                                                                                               -8.7
                                         -8.8768
     3
             0.078125
                            -16.259
                                                       -4.2806
                                                                    -1.5512
                                                                                 -0.069704
                                                                                                -14.621
                                                                                                               -7.9
                                                                    -0.8157
     4
              0.26367
                            -12.127
                                          -7.062
                                                        -3.289
                                                                                   0.59457
                                                                                                -11.347
                                                                                                               -6.5
      5
                                          -5.145
                                                                    -0.1528
                                                                                                -7.9072
                0.625
                            -8.3166
                                                       -2.2609
                                                                                    1.1414
                                                                                                               -4.8
     6
               1.2207
                           -5.2004
                                         -3.3395
                                                       -1.2735
                                                                      0.417
                                                                                    1.5609
                                                                                                -4.9697
                                                                                                               -3.1
     7
               2.1094
                            -2.8448
                                         -1.7849
                                                      -0.39262
                                                                    0.91448
                                                                                    1.8837
                                                                                                -2.7126
                                                                                                               -1.6
     8
               3.3496
                           -1.1351
                                        -0.53317
                                                         0.368
                                                                     1.3497
                                                                                    2.1394
                                                                                                -1.0585
                                                                                                              -0.46
     9
                    5
                          0.088433
                                         0.43451
                                                        1.0071
                                                                     1.7212
                                                                                    2.3505
                                                                                                 0.1334
                                                                                                               0.47
                                                                     2.0348
     10
               7.1191
                           0.96365
                                          1.1669
                                                        1.5292
                                                                                    2.5311
                                                                                                0.99051
                                                                                                                1.1
               9.7656
                            1.5949
                                          1.7173
                                                                     2.3007
                                                                                    2.6878
                                                                                                 1.6112
     11
                                                         1.948
                            2.0558
     12
               12.998
                                          2.1316
                                                        2.2803
                                                                     2.5253
                                                                                    2.8229
                                                                                                  2.066
                                                                                                                 2.
     13
               16.875
                             2.397
                                          2.4453
                                                        2.5427
                                                                     2.7131
                                                                                     2.939
                                                                                                 2.4035
                                                                                                                 2.
     14
               21.455
                            2.6533
                                          2.6848
                                                        2.7497
                                                                      2.869
                                                                                    3.0391
                                                                                                 2.6576
                                                                                                                2.6
     15
               26.797
                            2.8488
                                          2.8698
                                                        2.9139
                                                                      2.998
                                                                                    3.1258
                                                                                                 2.8517
                                                                                                                2.8
               32.959
     16
                            2.9999
                                          3.0142
                                                        3.0447
                                                                     3.1047
                                                                                    3.2007
                                                                                                 3.0019
                                                                                                                3.6
     17
                   40
                            3.1182
                                          3.1282
                                                        3.1496
                                                                     3.1929
                                                                                    3.2653
                                                                                                 3.1196
                                                                                                                3.1
               47.979
     18
                            3.2119
                                           3.219
                                                                     3.2659
                                                                                    3.3208
                                                                                                 3.2129
                                                        3.2343
               56.953
     19
                             3.287
                                          3.2921
                                                        3.3033
                                                                     3.3266
                                                                                    3.3685
                                                                                                 3.2876
     20
               66.982
                            3.3477
                                          3.3515
                                                        3.3597
                                                                     3.3772
                                                                                    3.4093
                                                                                                 3.3482
     21
               78.125
                            3.3974
                                          3.4002
                                                        3.4064
                                                                     3.4196
                                                                                    3.4444
                                                                                                 3.3978
     22
               90.439
                            3.4384
                                          3.4405
                                                        3.4452
                                                                     3.4553
                                                                                    3.4746
                                                                                                 3.4386
     23
               103.98
                            3.4724
                                          3.4741
                                                        3.4776
                                                                     3.4854
                                                                                    3.5006
                                                                                                 3.4726
                                                                                                                3.4
     24
               118.82
                             3.501
                                          3.5022
                                                         3.505
                                                                     3.5111
                                                                                    3.5231
                                                                                                 3.5012
                                                                                                                3.5
     25
                                                                                                                3.5
                  135
                            3.5251
                                          3.5261
                                                        3.5282
                                                                      3.533
                                                                                    3.5426
                                                                                                 3.5252
% Aprime Choice
tb_az_ap = ff_summ_nd_array("MEAN(AP(A,Z))", ap_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, a
```

mean_eta_3

mean_eta_4

mean_eta_5

mean_eta_6

mean_e

mean_eta_2

1	0	2.7511e-05	0.0015443	0.029727	0.16652	0.75086	0.0035167	0.0042
2	0.0097656	0.00054711	0.0027834	0.031634	0.16984	0.75642	0.0051139	0.0066
3	0.078125	0.015731	0.018652	0.049638	0.19667	0.79532	0.036331	0.035
4	0.26367	0.093357	0.0908	0.12387	0.2854	0.9063	0.14147	0.1
5	0.625	0.31381	0.31997	0.35088	0.51766	1.1457	0.38798	0.39
6	1.2207	0.74541	0.7447	0.78537	0.95128	1.5671	0.82632	0.84
7	2.1094	1.4161	1.4196	1.4616	1.6183	2.2194	1.5017	1.5
8	3.3496	2.3637	2.3696	2.4109	2.5645	3.1433	2.4459	2.4
9	5	3.6292	3.6363	3.678	3.8404	4.3795	3.7121	3.7
10	7.1191	5.2766	5.2846	5.326	5.4907	5.9774	5.3608	5
11	9.7656	7.3022	7.3101	7.3505	7.5158	7.9941	7.3941	7.4
12	12.998	9.7443	9.7504	9.7888	9.9552	10.482	9.823	9.
13	16.875	12.756	12.762	12.797	12.958	13.553	12.833	12.
14	21.455	16.326	16.33	16.365	16.512	17.127	16.414	16.
15	26.797	20.39	20.392	20.419	20.557	21.172	20.476	20.
16	32.959	25.075	25.082	25.112	25.235	25.829	25.163	25.
17	40	30.452	30.46	30.499	30.623	31.182	30.53	30.
18	47.979	36.549	36.557	36.599	36.745	37.265	36.623	36.
19	56.953	43.56	43.567	43.602	43.748	44.27	43.634	43.
20	66.982	51.366	51.375	51.418	51.556	52.091	51.446	51.
21	78.125	59.653	59.661	59.707	59.864	60.396	59.747	59.
22	90.439	69.009	69.015	69.057	69.216	69.764	69.089	69.
23	103.98	79.499	79.505	79.547	79.696	80.26	79.579	79.
24	118.82	90.869	90.876	90.918	91.063	91.614	90.945	90.
25	135	103.22	103.22	103.26	103.41	103.95	103.3	103

% Consumption Choices

tb_az_c = ff_summ_nd_array("MEAN(C(A,Z))", cons_VFI, true, ["mean"], 4, 1, cl_mp_datasetdesc, a

group 	savings	mean_eta_1	mean_eta_2	mean_eta_3	mean_eta_4	mean_eta_5	mean_eta_6	mea
1	0	0.17596	0.2993	0.5664	1.1423	2.3148	0.30691	0
2	0.0097656	0.18702	0.30957	0.57594	1.1504	2.3206	0.31683	0
3	0.078125	0.25285	0.37423	0.63806	1.2035	2.3616	0.36625	0
4	0.26367	0.39479	0.52047	0.78122	1.3316	2.4672	0.47974	6
5	0.625	0.60083	0.71594	0.97718	1.5213	2.6493	0.65823	6
6	1.2207	0.87005	0.9899	1.2392	1.7827	2.9223	0.91891	
7	2.1094	1.2414	1.355	1.6005	2.1515	3.305	1.2838	
8	3.3496	1.7441	1.8535	2.0975	2.6496	3.8243	1.7883	
9	5	2.4043	2.5112	2.7528	3.2942	4.5075	2.4465	
10	7.1191	3.2256	3.3306	3.571	4.1085	5.3729	3.2656	
11	9.7656	4.2795	4.3841	4.6243	5.1596	6.4314	4.3112	
12	12.998	5.596	5.7019	5.9433	6.4763	7.6989	5.6405	
13	16.875	7.0899	7.1954	7.4401	7.977	9.1305	7.1353	
14	21.455	8.8406	8.9481	9.1919	9.7431	10.875	8.8751	
15	26.797	10.982	11.091	11.342	11.901	13.033	11.017	
16	32.959	13.452	13.557	13.805	14.378	15.531	13.487	
17	40	16.251	16.354	16.593	17.165	18.352	16.296	
18	47.979	19.418	19.521	19.756	20.307	21.532	19.465	
19	56.953	22.826	22.93	23.172	23.723	24.945	22.874	
20	66.982	26.663	26.765	27	27.557	28.767	26.705	
21	78.125	31.312	31.414	31.646	32.184	33.397	31.34	
22	90.439	36.251	36.355	36.591	37.128	38.324	36.293	
23	103.98	41.485	41.589	41.825	42.372	43.552	41.526	
24	118.82	47.334	47.438	47.674	48.224	49.417	47.38	
25	135	53.768	53.874	54.112	54.659	55.86	53.813	

Graph Mean Values:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(value(a,z)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(value(a,z))'};
ff_graph_grid((tb_az_v{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Savings Choices:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(APRIME(a,z)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(APRIME(a,z))'};
ff_graph_grid((tb_az_ap{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Graph Mean Consumption:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(a,z)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(C(a,z))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```


Analyze Kids and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["k0M0", "K1M0", "K2M0", "k0M1", "K1M1", "K2M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = { 'o', 'd', 's', 'o', 'd', 's'};
mp_support_graph('cl_colors') = {'red', 'red', 'red', 'blue', 'blue', 'blue'};
```

MEAN(VAL(KM,J)), MEAN(AP(KM,J)), MEAN(C(KM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,4,1,6,5];
% Value Function
tb_az_v = ff_summ_nd_array("MEAN(VAL(KM,J))", V_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc, a
group
           kids
                  marry
                          mean_age_19
                                       mean_age_22
                                                    mean_age_27
                                                                  mean_age_32
                                                                               mean_age_37
                                                                                            mean_age_42
     1
            1
                    0
                             1.4699
                                          1.7485
                                                       1.9344
                                                                    1.9907
                                                                                 1.9652
                                                                                               1.8837
     2
            2
                    0
                           -0.020723
                                         0.46111
                                                      0.83504
                                                                    1.0389
                                                                                 1.1397
                                                                                               1.1609
     3
            3
                    0
                            -0.77111
                                        -0.30145
                                                     0.081934
                                                                   0.30157
                                                                                 0.41928
                                                                                              0.46457
     4
            1
                    1
                             2.7247
                                          2.8812
                                                       2.9832
                                                                    2.9923
                                                                                 2.9362
                                                                                               2.8303
     5
            2
                    1
                             1.8762
                                          2.1212
                                                       2.3182
                                                                    2.4103
                                                                                 2.4302
                                                                                               2.3894
                             1.4732
                                          1.7023
                                                       1.8951
                                                                    1.9893
                                                                                 2.0142
                                                                                               1.9854
% Aprime Choice
tb_az_ap = ff_summ_nd_array("MEAN(AP(KM,J))", ap_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
group
           kids
                                       mean age 22
                                                    mean age 27
                                                                  mean age 32
                                                                               mean age 37
                                                                                            mean age 42
                  marry
                          mean_age_19
                            34.929
                                         34.724
                                                      34.662
                                                                    34.55
                                                                                 34.357
                                                                                              34.071
     1
            1
                    0
     2
            2
                    0
                             34.6
                                         34.331
                                                      34.195
                                                                    33.99
                                                                                 33.687
                                                                                              33.279
     3
            3
                    0
                            34.185
                                         33.965
                                                      33.873
                                                                                 33.421
                                                                                              33.026
                                                                     33.7
     4
            1
                                                                   35.722
                                                                                              35.486
                    1
                            35.711
                                         35.608
                                                      35.696
                                                                                 35.654
     5
            2
                            35.365
                                                       35.28
                                                                   35.238
                                                                                 35.095
                                                                                              34.842
                    1
                                         35.243
     6
            3
                    1
                             34.9
                                         34.807
                                                      34.856
                                                                   34.829
                                                                                 34.694
                                                                                              34.439
% Consumption Choices
```

```
tb_az_c = ff_summ_nd_array("MEAN(C(KM,J))", cons_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
```

XXX	MEAN(C(KM,J))		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX							
	group	kids 	marry	mean_age_19 	mean_age_22 	mean_age_27 	mean_age_32	mean_age_37	mean_age_42	
	1	1	0	6.8551	7.1756	7.502	7.8205	8.1483	8.5053	
	2	2	0	7.1843	7.5683	7.9695	8.3802	8.8184	9.2974	
	3	3	0	7.5997	7.934	8.2911	8.6703	9.0841	9.5509	
	4	1	1	7.8017	8.1851	8.5662	8.9367	9.3167	9.7217	
	5	2	1	7.8815	8.2584	8.6593	9.0691	9.4965	9.9609	
	6	3	1	8.1632	8.4941	8.8603	9.2345	9.6357	10.084	
	U		_	0.1052	0.7771	0.0005	7.2343	2.0337	10.0	

Graph Mean Values:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(value(KM,J)), a=age, z=kids+marry'};
mp_support_graph('cl_st_ytitle') = {'MEAN(value(KM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Savings Choices:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(APRIME(KM,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(APRIME(KM,J))'};
ff_graph_grid((tb_az_ap{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(KM,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(C(KM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Analyze Education and Marriage and Age

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

MEAN(VAL(EKM,J)), MEAN(AP(EKM,J)), MEAN(C(EKM,J))

Tabulate value and policies:

```
% Set
 % NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
 ar_permute = [2,3,6,1,4,5];
 % Value Function
 tb_az_v = ff_summ_nd_array("MEAN(VAL(EKM,J))", V_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
 group
             edu
                   marry
                           mean_age_19
                                         mean_age_22
                                                       mean_age_27
                                                                    mean_age_32
                                                                                  mean_age_37
                                                                                               mean_age_42
      1
              0
                     0
                            -0.19018
                                           0.16944
                                                        0.46325
                                                                      0.63924
                                                                                   0.73534
                                                                                                 0.76637
       2
              1
                     0
                             0.64221
                                           1.1027
                                                         1.4377
                                                                      1.5815
                                                                                    1.6141
                                                                                                  1.5731
                              1.7253
       3
                     1
                                            1.9221
                                                         2.0804
                                                                       2.1589
                                                                                    2.1772
                                                                                                  2.1432
       4
                              2.3242
                                            2.5478
                                                         2.7173
                                                                        2.769
                                                                                    2.7432
                                                                                                  2.6602
 % Aprime Choice
 tb az ap = ff summ nd array("MEAN(AP(EKM,J))", ap VFI, true, ["mean"], 3, 1, cl mp datasetdesc
 group
             edu
                   marry
                           mean_age_19
                                         mean_age_22
                                                       mean_age_27
                                                                    mean_age_32
                                                                                  mean_age_37
                                                                                               mean_age_42
       1
              0
                     0
                              34.68
                                           34.441
                                                        34.268
                                                                      34.044
                                                                                   33.748
                                                                                                 33.368
       2
              1
                     0
                             34.463
                                           34.238
                                                        34.218
                                                                      34.116
                                                                                   33.895
                                                                                                 33.549
       3
                                                                                   34.928
                     1
                             35.361
                                           35.231
                                                        35.189
                                                                      35.094
                                                                                                 34.679
                     1
                              35.29
                                           35.207
                                                        35.366
                                                                      35.432
                                                                                   35.368
                                                                                                 35.166
 % Consumption Choices
 tb_az_c = ff_summ_nd_array("MEAN(C(EKM,J))", cons_VFI, true, ["mean"], 3, 1, cl_mp_datasetdesc,
 xxx MEAN(C(EKM,J))
                    XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
     group
             edu
                   marry
                           mean_age_19
                                         mean_age_22
                                                       mean_age_27
                                                                    mean_age_32
                                                                                  mean_age_37
                                                                                               mean_age_42
      1
              0
                     0
                             7.1043
                                           7.4114
                                                        7.7391
                                                                      8.0887
                                                                                   8.4765
                                                                                                 8.9169
      2
              1
                     0
                             7.3218
                                           7.7071
                                                        8.1025
                                                                      8.492
                                                                                   8.8907
                                                                                                 9.3189
      3
                              7.761
                                                                      8.7662
                                                                                   9.1545
                                                                                                 9.5892
              0
                     1
                                           8.0772
                                                        8.4119
      4
              1
                             8.1365
                                           8.5478
                                                        8.9787
                                                                       9.394
                                                                                   9.8115
                                                                                                 10.255
                     1
Graph Mean Values:
 mp support graph('cl st graph title') = {'MEAN(value(EM,J)), a=age, z=kids+marry'};
```

```
mp_support_graph('cl_st_graph_title') = {'MEAN(value(EM,J)), a=age, z=kids+marry'};
mp_support_graph('cl_st_ytitle') = {'MEAN(value(EM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Savings Choices:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(APRIME(EK,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(APRIME(EK,J))'};
ff_graph_grid((tb_az_ap{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


Graph Mean Consumption:

```
mp_support_graph('cl_st_graph_title') = {'MEAN(C(EK,J)), a=x, z=color'};
mp_support_graph('cl_st_ytitle') = {'MEAN(C(EK,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```


