

sci-hub

to open science

Google Scholar Help

Birrell, N. D.; Davies, P. C. W. (1982). Quantum Fields in Curved Space || Quantum field theory in curved spacetime., 10.1017/CBO9780511622632(3), 36–88. doi:10.1017/cbo9780511622632.005

url to share this paper: https://www.sci-hub.wf/

An interview with Sci-Hub Founder Alexandra Elbakyan Who exactly should pay for academic research

Enter →

updates on Sci-Hub Community

point X:

$$y^{\alpha}_{x} \rightarrow y^{\prime \alpha}_{x} = \Lambda^{\alpha}_{\beta}(X) y_{x}^{\beta}. \tag{3.169}$$

In this case, V^{α}_{μ} transforms as a Lorentz contravariant vector

$$V^{\alpha}_{\mu}(X) \to \Lambda^{\alpha}_{\beta}(X)V^{\beta}_{\mu}(X), \tag{3.170}$$

which obviously leaves the metric (3.167) invariant.

If a generally covariant vector A_{μ} is contracted into V_{α}^{μ} , the resulting object

$$A_{\alpha} = V_{\alpha}{}^{\mu}A_{\mu}$$

transforms as a collection of four scalars under general coordinate transformations, while under the local Lorentz transformations (3.169) it behaves as a vector. Thus, by use of vierbeins, one can convert general tensors into local, Lorentz-transforming tensors, shifting the additional spacetime dependence into the vierbeins.

If expression (3.159) is written schematically as $D(\Lambda)\psi$, where ψ is a tensor field, then the derivative of ψ , $\partial_{\alpha}\psi$, will also be a tensor field in Minkowski space. Under Lorentz transformations, $\partial_{\alpha}\psi$ will become $\Lambda_{\alpha}^{\ \beta}D(\Lambda)\partial_{\beta}\psi$. When passing to curved spacetime, we wish to generalize the derivative ∂_{α} to a covariant derivative ∇_{α} , but retaining this simple transformation property for arbitrary local Lorentz transformations at each spacetime point:

$$\nabla_{\alpha}\psi \to \Lambda_{\alpha}^{\beta}(x)D(\Lambda(x))\nabla_{\beta}\psi(x). \tag{3.171}$$

This may be achieved by defining

$$\nabla_{\alpha} = V_{\alpha}^{\ \mu} (\partial_{\mu} + \Gamma_{\mu}) \tag{3.172}$$

where the connection

$$\Gamma_{\mu}(x) = \frac{1}{2} \Sigma^{\alpha\beta} V_{\alpha}^{\nu}(x) \left(\nabla_{\mu} V_{\beta\nu}(x) \right), \tag{3.173}$$

 $\Sigma^{\alpha\beta}$ being the generator of the Lorentz group associated with the particular representation $D(\Lambda)$ under which ψ transforms, and $V_{\beta\nu} = g_{\mu\nu} V_{\beta}^{\mu}$.

The utility of the property (3.171) is that any function of ψ and $\nabla_{\alpha}\psi$ that is a scalar under Lorentz transformations in Minkowski space, remains a scalar under local changes in the vierbein, as well as under general coordinate transformations. Thus, the Lagrangian of the field may be generalized to curved spacetime by replacing all derivatives ∂_{α} by ∇_{α} and contracting all vectors, tensors, etc. into *n*-beins $(A_{\alpha} \to V_{\alpha}^{\mu} A_{\mu}, \text{ etc.})$.