

INTRODUCTION:

- > THE SUCCESS OF ANY RETAIL STORE DEPENDS UPON ITS SALES. MORE THE SALES MADE, MORE IS THE REVENUE. WITH A GOOD CUSTOMER SERVICE AND CARE, THE CUSTOMER TOO ENJOYS A GOOD SHOPPING EXPERIENCE.
- THIS WILL LEAD TO MORE IN-FLOW OF CUSTOMERS, OPENING MORE STORE BRANCHES ACROSS A CITY / COUNTRY.
- > STORE OWNERS RELY HEAVILY ON PAST DATA TO PREDICT FUTURE SALES. MANY MEDIUM TO LARGE STORES IMPLEMENT THIS KIND OF ANALYTICS TO UNDERSTAND TRENDS

OBJECTIVE:

> TO HELP THE STORE OWNERS BY ANALYSING PAST DATA OBSERVATIONS AND PROVIDING FUTURE SALES PREDICTIONS

FEATURE	DATA TYPE	DESCRIPTION		
Item_identifier	Character	Unique Product ID		
ltem_weight	Numeric	Weight of the product		
Item_Fat_Content	Numeric	Total fat content in the product		
ltem_Visibility	Numeric	How visible is the product in the store		
ltem_Type	Categorical	Product category of the selected product		
Item_MRP	Numeri	Product cost		
Outlet_Establishm ent_Year	Numeric	The year when the store was opened		
Outlet_Size	Categorical	Size of the store		
Outlet_Location_T ype	Categorical	Location type where the store is located		
Outlet_Type	Categorical	The type of store		
ltem_Outlet_Sales	Numeric	Sales made by the store outlet		

>DATA PRE-PROCESSING

- ➤ 40% MISSING VALUES PRESENT IN SALES COLUMN
- > THE IMPUTATION OF MISSING VALUE IS DONE BY MICE(MULTIPLE IMPUTATION BY CHAINED EQUATIONS)

> UNIVARIANT ANALYSIS

BELOW PLOTS SHOWS THE DISTRIBUTION OF NUMERICAL AND CATEGORICAL FEATURES IN THE DATASET

> BIVARIANT ANALYSIS

> CORRELATION WITH RESPECT TO EACH FEATURE

DISTRIBUTION OF SALES IN DIFFERENT ASPECTS LIKE FAT CONTENT PRODUCTS, OUTLET SIZE, OUTLET LOCATION TYPE AND OUTLET TYPE

HERE WE CAN SEE HOW SALES RELATED WRT MRP AND OUTLET TYPE

HERE WE CAN SEE HOW SALES RELATED WITH VISIBILITY OF THE PRODUCTS

> HERE WE CAN SEE HOW SALES RELATED WITH RESPECT TO OUTLET LOCATION TYPE AND OUTLET TYPE

> HERE WE CAN SEE HOW SALES RELATED WITH RESPECT TO OUTLET LOCATION TYPE AND OUTLET SIZE

>FEATURE ENGINEERING

> FEATURE TRANFORMATION

- TO TRANSFORM ALL THE FEATURES INTO NUMERICAL DATATYPE
- LABEL ENCODING TECHNIQUE IS USED FOR FEATURE TRANSFORMATION

> FEATURE SCALING

- TO GET ALL THE FEATURE INTO SIMILAR RANGE
- IN THIS PROJECT THE STANDARDIZATION SCALING TECHNIQUE IS USED BECAUSE THE DATA HAS OUTLIERS AND THE NORMALIZATION IS SENSITIVE TO THE OUTLIERS

> FEATURE SELECTION

 LESS FEATURES ARE AVAILABLE IN THE DATASET AND ALL ARE RELEVANT FEATURES SO NO NEED TO PERFORM FEATURE SELECTION

> SPLITTING TECHNIQUE

KFOLD TECHNIQUE IS USED IN THIS PROJECT

>MODEL BUILDING

> EDA OBSERVATIONS

- THE DEPENDENT COLUMN IS CONTINUOUS
- THE OUTLIERS ARE PRESENT IN THE INDEPENDENT FEATURES AS WELL AS DEPENDENT FEATURE
- THE BIAS IS LESS AND VARIANCE IS MORE

> ALGORITHM SELECTION

- THE ALGORITHM SHOULD BE REGRESSOR
- CAPABLE OF HANDLING OUTLIERS
- CAPABLE OF MINIMIZING THE VARIANCE
- WE CAN TAKE RANDOM FOREST ALGORITHM WHICH HAS ALL THE CAPABILITIES TO GET BETTER
 PERFORMANCE TO COMPARE WITH OTHER ALGORITHMS LINEAR REGRESSION AND DECISION TREE
 REGRESSOR ALGORITHMS ARE SELECTED

> MODEL PERFORMANCE AND EVALUATION RESULTS

FROM THE TABLE WE CAN CONCLUDE THAT RANDOM FOREST REGRESSOR IS SHOWING GOOD PERFORMANCE COMPARED TO ALL OTHER ALGORITHMS

ALGORITHMS	TRAIN	TEST	MSE	RMSE
LINEAR REGRESSION	0.54	0.54	975617.63	987.73
DECISION TREE REGRESSOR	0.52	0.53	975617.63	987.73
RANDON FOREST REGRESSOR	0.61	0.59	864243.28	929.65

THE PLOT SHOWS THE ACTUAL AND PREDICTED DATA POINTS WE CAN SEE THE ERROR IS MORE BETWEEN THE DATA POINTS

> CONCLUSION

- > THE LOW FAT PRODUCTS SHOULD BE AVAILABLE IN THE STOCK
- > THE VISIBILITY OF THE PRODUCT SHOULD BE LESS
- MORE SALES ARE IN THE LOCATION TYPE OF TIER 3
- > MORE SALES ARE IN THE HIGH OUTLET SIZE
- ➤ MORE SALES ARE IN THE SUPERMARKET TYPE 3 OUTLET TYPE
- > THE RANDOMFORESTREGRESSOR IS GIVING GOOD PERFORMANCE WITHOUT OVERFITTING AND UNDERFITTING
- > THE PREDICTIONS ARE GOOD BUT NOT HIGHLY ACCURATE

THANK YOU