Отчет по лабораторной работе №5

Дисциплина: архитектура компьютера

Бизев Никита Владимирович

Содержание

1	Цель работы	4			
2	Задание	5			
3	3 Теоретическое введение				
4	Выполнение лабораторной работы 4.1 Основы работы с mc	8 8 10 14			
5	Выводы	21			
6	Список литературы	22			

Список иллюстраций

4.1	Открытый тс	8
4.2	Перемещение между директориями	9
4.3	Создание каталога	9
4.4	Создание файла	0
4.5	Открытие файла для редактирования	. 1
4.6	Редактирование файла	1
4.7		2
4.8	Компиляция файла и передача на обработку компоновщику 1	.3
4.9	Исполнение файла	4
4.10	Скачанный файл	. 5
4.11	Копирование файла	.5
		6
		7
		8
4.15	Отредактированный файл	9
		9

1 Цель работы

Целью данной лабораторной работы является приобретение практических навыков работы в Midnight Commander, освоение инструкций языка ассемблера mov и int.

2 Задание

- 1. Основы работы с тс
- 2. Структура программы на языке ассемблера NASM
- 3. Подключение внешнего файла

3 Теоретическое введение

Midnight Commander (или просто mc) — это программа, которая позволяет просматривать структуру каталогов и выполнять основные операции по управлению файловой системой, т.е. тс является файловым менеджером. Midnight Commander позволяет сделать работу с файлами более удобной и наглядной. Программа на языке ассемблера NASM, как правило, состоит из трёх секций: секция кода программы (SECTION .text), секция инициированных (известных во время компиляции) данных (SECTION .data) и секция неинициализированных данных (тех, под которые во время компиляции только отводится память, а значение присваивается в ходе выполнения программы) (SECTION .bss). Для объявления инициированных данных в секции .data используются директивы DB, DW, DD, DQ и DT, которые резервируют память и указывают, какие значения должны храниться в этой памяти: - DB (define byte) — определяет переменную размером в 1 байт; - DW (define word) — определяет переменную размеров в 2 байта (слово); - DD (define double word) — определяет переменную размером в 4 байта (двойное слово); - DO (define quad word) — определяет переменную размером в 8 байт (учетве-рённое слово); - DT (define ten bytes) — определяет переменную размером в 10 байт. Директивы используются для объявления простых переменных и для объявления массивов. Для определения строк принято использовать директиву DB в связи с особенностями хранения данных в оперативной памяти. Инструкция языка ассемблера mov предназначена для дублирования данных источника в приёмнике.

mov dst, src

Здесь операнд dst — приёмник, а src — источник. В качестве операнда могут выступать регистры (register), ячейки памяти (memory) и непосредственные значения (const). Инструкция языка ассемблера intпредназначена для вызова прерывания с указанным номером.

int n

Здесь n— номер прерывания, принадлежащий диапазону 0–255. При программировании в Linux с использованием вызовов ядра sys_calls n=80h (принято задавать в шестнадцатеричной системе счисления).

4 Выполнение лабораторной работы

4.1 Основы работы с тс

Открываю Midnight Commander, введя в терминал mc (рис. [4.1]).

Рис. 4.1: Открытый тс

Перехожу в каталог ~/work/study/2023-2024/Архитектура Компьютера/arch-pc, используя файловый менеджер mc (рис. [4.2])

Рис. 4.2: Перемещение между директориями

С помощью функциональной клавиши F7 создаю каталог lab5 (рис. [4.3]).

Рис. 4.3: Создание каталога

В строке ввода прописываю команду touch lab5-1.asm, чтобы создать файл, в

котором буду работать (рис. [4.4]).

Рис. 4.4: Создание файла

4.2 Структура программы на языке ассемблера NASM

С помощью функциональной клавиши F4 открываю созданный файл для редактирования в текстовом редакторе (рис. [4.5]).

Рис. 4.5: Открытие файла для редактирования

Ввожу в файл код программы для запроса строки у пользователя (рис. [4.6]).

```
mc [nvbizev@nvbizev]:~/work/study/2023-2024/Архитектура... 🔍 🗏
   .4/Архитектура компьютера/study 2023-2024 arh-pc/labs/lab05/lab5-1.asm *
         .data ; Секц<mark>и</mark>я инициированных данных
         'Введите строку:',10 ; сообщение плюс
  символ перевода строки
            Ş-msg ; Длина переменной 'msg'
         .bss ; Секция не инициированных данных
           80 ; Буфер размером 80 байт
52 Демидова А. В.
Архитектура ЭВМ
 ----- Текст программы
       .text ; Код программы
_start ; Начало программы
        ; Точка входа в программу
mov ecx,msg ; Адрес строки 'msg' в 'ecx'
mov edx,msgLen ; Размер строки 'msg' в 'edx'
int 80h; Вызов ядра
                                                           Выполнить ^C Позиция
Выровнять ^/ К строке
                            ^W Поиск
^\ Замена
                                          ^K Вырезать
^U Вставить
              ^О Записать
^R ЧитФайл
   Справка
   Выход
                 ЧитФайл
                               Замена
                                                           Выровнять
                                                                         К строке
```

Рис. 4.6: Редактирование файла

Открываю файл в текстовом редакторе для проверки. (рис. [4.7]).

```
| Coxpand | Co
```

Рис. 4.7: Открытие файла для просмотра

Транслирую текст программы файла в объектный файл командой nasm -f elf lab5-1.asm. Создался объектный файл lab5-1.o. Выполняю компоновку объектного файла с помощью команды ld -m elf_i386 -o lab5-1 lab5-1.o (рис. [4.8]). Создался исполняемый файл lab6-1.

Рис. 4.8: Компиляция файла и передача на обработку компоновщику

Запускаю исполняемый файл. Программа выводит строку "Введите строку:" и ждет ввода с клавиатуры, я ввожу свои ФИО, на этом программа заканчивает свою работу (рис. [4.9]).

Рис. 4.9: Исполнение файла

4.3 Подключение внешнего файла

Скачиваю файл in_out.asm со страницы курса в ТУИС. (рис. [4.10]).

Левая панель	Файл	Команд	ца	Нас
<23-2024_ar	h-pc/labs	/lab05	[^]>	_< -
.и Имя	Размер	Время г	правки	. И
<i>/</i>	-BBEPX-	янв 29	09:58	//.
/presentation	4096	янв 25	23:46	//.
/report	4096	янв 25	23:46	//.
in_out.asm	3942	янв 29	09:58	//.
*lab5-1	8744	янв 29	09:57	//.
lab5-1.asm	2096	янв 29	09:57	//.
lab5-1.o	752	янв 29	09:57	//.
				/.

Рис. 4.10: Скачанный файл

С помощью функциональной клавиши F5 копирую файл in_out.asm в созданный каталог lab05 (рис. [4.11]).

Рис. 4.11: Копирование файла

С помощью функциональной клавиши F5 копирую файл lab5-1 в тот же каталог, но с другим именем, для этого в появившемся окне mc прописываю имя для копии файла (рис. [4.12]).

Рис. 4.12: Копирование файла

Изменяю содержимое файла lab5-2.asm во встроенном редакторе. (рис. [4.13]), чтобы в программе использовались подпрограммы из внешнего файла in_out.asm.

Рис. 4.13: Редактирование файла

Транслирую текст программы файла в объектный файл командой nasm -f elf lab5-2.asm. Создался объектный файл lab5-2.o. Выполняю компоновку объектного файла с помощью команды ld -m elf_i386 -o lab5-2 lab5-2.o Создался исполняемый файл lab5-2. Запускаю исполняемый файл. (рис. [4.14])

Рис. 4.14: Исполнение файла

Открываю файл lab5-2.asm для редактирования в текстовом редакторе функциональной клавишей F4. Изменяю в нем подпрограмму sprintLF на sprint. Сохраняю изменения и открываю файл для просмотра, чтобы проверить сохранение действий (рис. [4.15]).

Рис. 4.15: Отредактированный файл

Снова транслирую файл, выполняю компоновку созданного объектного файла, запускаю новый исполняемый файл (рис. [4.16]).

Рис. 4.16: Исполнение файла

Разница между первым исполняемым файлом lab5-2 и вторым lab5-2-2 в том, что запуск первого запрашивает ввод с новой строки, а программа, которая исполняется при запуске второго, запрашивает ввод без переноса на новую строку, потому что в этом заключается различие между подпрограммами sprintLF и sprint.

5 Выводы

При выполнении данной лабораторной работы я приобрел практические навыки работы в Midnight Commander, а также освоила инструкции языка ассемблера mov и int.

6 Список литературы