Titre : Conversion de puissance électromécanique

Présentée par : Thibault Chastel Rapport écrit par : Emmanuelle Martinot

Date: 06/12/2018 Correcteur:

Bibliographie de la leçon :			
Titre	Auteurs	Éditeur	Année

Plan détaillé

Niveau choisi pour la leçon: PSI

<u>Pré-requis</u>:

Electromagnétisme

Induction

Mécanique de 1ere année

- I. Principe de la conversion de puissance électromécanique
 - 1) Rails de Laplace en mode générateur

Calcul du flux de B Fem Force de Laplace

Equation électrique EE

Equation mécanique EM

2) Bilan de puissance

EE x i(t)

 $EM \times v(t)$

Terme de couplage : Bavi

P(force de traction) => Bilan de puissance

Pfem + Plaplace = 0 relation fondamentale de la conversion depuissance

électromécanique

II. Moteur à courant continu

1)Structure et principe de fonctionnement : sur slide Description du MCC: rotor, stator, collecteur

2) Couple électromagnétique et fem d'induction : slide schéma de travail

Calcul du couple C = phi0 x i(t)

Fem=phi0x omega (la vitesse de rotation)

U) phi0xomega + Ri

Manip du MCC:

Calculer pour une masse donner la vitesse de rotation en calculant la vitesse de remontée de la masse : on mesure le temps de remontée d'une masse sur une distance donnée. U = 7 V

On trace : omega = f(u)

On en déduit la résistance du moteur et on la compare à la valeur donnée par le

fabricant.

Rendement: 80%?!

III. <u>Moteur synchrone</u>

1) Champ magnétique

Analogie avec la boussole : comment la faire tourner tout le temps dans le meme sens : bobinages orthogonaux...

2) Moteur synchrone (slide du moteur)

Stator, rotor

Calcul du couple électromagnétique : slide : décomposition de l'énergie électromagnétique

Au tableau détail du couple : Gamma = dEm/dthetar

<Gammaem> non nul si w = Omega condition de synchronisme

Slide: qualités / inconvénients du moteur synchrone par rapport au moteur MCC

Conclusion: ouverture sur le moteur asynchrone

Questions posées par l'enseignant

- Expliciter le risque de décrochage ?
- Pourquoi s'il y a synchronisme, on se retrouverait dans une situation où l'on tourne plus ou moins vite ?
- MS: Comment est fabriqué le rotor?
- D'où vient le courant ?
- Pfem + Plaplace = 0 : vrai dans le cas général ?
- C'est quoi la force de Laplace?
- En quoi vient-elle de la force de Lorentz?
- Flaplace : motrice ou résistive ?
- Quand elle est résistive, qu'a-t-on gagné? la puissance de la fem
- Quand elle est motrice, quel est le prix à payer ? l'énergie qu'on fournit, la fcem
- Pmeca = pelec ? erreur de signe!
- Autre facon de calculer e ? loi de Lenz
- Manip: incertitudes sur omega?
- Comment réduire les incertitudes ? utiliser une caméra mais trop long pour le temps de la leçon.
- Critique par rapport à la valeur de R obtenue ?
- Le modèle peut il être améliorer ?
 - Comment a été mesuré le rayon du rotor ? au pied à coulisse. Incertitude sur le rayon négligeable ?
- Chi square réduit ? = 0,25 c'est bien ? entre 0 et 10 c'est bien au-delà on est dans les choux (si le chi2 a été calculé avec des incertitudes).
- Pourquoi on prend du triphasé?

Commentaires donnés par l'enseignant

TB: Voix qui porte bien et diction claire

Autre choix de plan : pourquoi pas aller plus à fond dans

l'un des moteurs/ à l'autre, c'est un choix

MCC: une petite conclusion sur les formules fem et couple pour qu'elles soient vraies dans le cas

général, pas seulement pour un modèle de spire carrée

MS: loi à retenir est caractéristique couple(alpha)

Machine asynchrone: HORS programme

Prendre le temps de décrtre les paramètres du schéma des rails de laplace

Le triphasé : plus économique à transporter donc c'est plus économique d'utiliser un moteur

asynchrone

Tracer les incertitudes sur le graphe!

Partie réservée au correcteur

<u>Avis sur le plan présenté</u> OK

Concepts clés de la leçon

Conversion électromécanique P_fem <-> P_Laplace non compris Sinon ok sur les moteurs et les calculs clés, mais savoir passer du cas simple du modèle à une spire au cas général de la machine réelle

Concepts secondaires mais intéressants

Quelques connaissances pour les éléments technos liés au moteur

Expériences possibles (en particulier pour l'agrégation docteur)

Rendement la MCC (mais plus intéressant de faire e(omega)) Rendement/caractéristique de la MAS si leçon hors programme CPGE

Points délicats dans la leçon

Comprendre fondamentalement l'induction, le lien avec Laplace et les conversions de puissance entre ces quantités

Bibliographie conseillée

Bons livres de PSI, un bouquin/site web plus techno