SI231b: Matrix Computations

Lecture 17: QR Iteration for Eigenvalue Computations

Yue Qiu

qiuyue@shanghaitech.edu.cn

School of Information Science and Technology ShanghaiTech University

Nov. 09, 2022

MIT Lab, Yue Qiu SI2SIb: Maxix Computations, Shanghai Tech Nov. 09, 2022

Subspace Iteration \iff QR Iteration

The subspace iteration is equivalent to QR iteration when applied to a full set of vectors (r = n).

Subspace Iteration

$$\mathbf{\underline{Q}}^{(0)} = \mathbf{I}$$

$$\mathbf{Z} = \mathbf{A}\mathbf{\underline{Q}}^{(k-1)}$$

$$\mathbf{Z} = \mathbf{\underline{Q}}^{(k)}\mathbf{R}^{(k)}$$

$$\mathbf{A}^{(k)} = (\mathbf{\underline{Q}}^{(k)})^{T}\mathbf{A}\mathbf{\underline{Q}}^{(k)}$$

QR Iteration

$$\begin{split} \underline{\mathbf{A}}^{(0)} &= \mathbf{A} \\ \mathbf{A}^{(k-1)} &= \mathbf{Q}^{(k)} \mathbf{R}^{(k)} \\ \mathbf{A}^{(k)} &= \mathbf{R}^{(k)} \mathbf{Q}^{(k)} \\ \underline{\mathbf{Q}}^{(k)} &= \mathbf{Q}^{(1)} \mathbf{Q}^{(2)} \cdots \mathbf{Q}^{(k)} \end{split}$$

Subspace Iteration \iff QR Iteration

Theorem [Equivalence of Subspace iteration with QR iteration]

The above subspace iteration and QR iteration generate identical sequences of matrices $\mathbf{R}^{(k)}$, $\mathbf{Q}^{(k)}$, and $\mathbf{A}^{(k)}$ defined by the QR factorization of the k-th power of \mathbf{A}

$$\mathbf{A}^k = \underline{\mathbf{Q}}^{(k)}\underline{\mathbf{R}}^{(k)},$$

with

$$\mathbf{A}^{(k)} = (\underline{\mathbf{Q}}^{(k)})^T \mathbf{A} \underline{\mathbf{Q}}^{(k)},$$

where

$$\underline{\textbf{R}}^{(k)} = \textbf{R}^{(k)} \textbf{R}^{(k-1)} \cdots \textbf{R}^{(1)}$$

Challenges of QR Iteration

For an $n \times n$ matrix **A**, each iteration requires $\mathcal{O}(n^3)$ flops to compute the QR factorization.

▶ too computationally expensive!

Improvement:

Perform a similarity transform \mathbf{A} to obtain a form $\mathbf{A}^{(0)} = (\mathbf{Q}^{(0)})^H \mathbf{A} \mathbf{Q}^{(0)}$

- ightharpoonup the QR decomposition of $\mathbf{A}^{(0)}$ should be computationally cheap
- ▶ $\mathbf{A}^{(k)}$ ($k = 1, 2, \cdots$) should have similar structure with $\mathbf{A}^{(0)}$ so that the QR decomposition at each iteration is computationally cheap

Motivation: perform similarity transform **A** to an upper Hessenberg form (zeros below the first subdiagonal), i.e., $\mathbf{Q}^H \mathbf{A} \mathbf{Q} = \mathbf{H}$ where

Advantage: QR factorization of an upper Hessenberg matrix requires $\mathcal{O}(n^2)$ flops (how?).

▶ by using Givens rotations

QR Iteration with Hessenberg Reduction:

$$\mathbf{A}=\mathbf{Q}^H\mathbf{H}\mathbf{Q}$$
, $\mathbf{A}^{(0)}=\mathbf{H}$, \mathbf{H} is upper Hessenberg for $k=1,\ 2,\ \cdots$
$$\mathbf{Q}^{(k)}\mathbf{R}^{(k)}=\mathbf{A}^{(k-1)} \quad \text{QR factorization of } \mathbf{A}^{(k-1)}$$

$$\mathbf{A}^{(k)}=\mathbf{R}^{(k)}\mathbf{Q}^{(k)}$$
 end

Key: $\mathbf{A}^{(k)}$ is of upper Hessenberg form (how to preserve?)

by using Givens rotations to compute the QR factorization (how to prove?)

Benefit: $\mathcal{O}(n^2)$ flops for QR factorization.

MIT Lab, Yue Qiu

6 / 15

For an $n \times n$ matrix $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}$.

A Naive Try

Let \mathbf{Q}_1 be the Householder reflection matrix that reflects \mathbf{a}_1 to $-\text{sign}(\mathbf{a}_1(1))\|\mathbf{a}_1\|_2\mathbf{e}_1$,

Mission failed!

MIT Lab, Yue Qiu

Less Ambitious Try

Let $\tilde{\mathbf{a}}_1 = \mathbf{A}(2:n,1)$ and $\tilde{\mathbf{Q}}_1$ be the Householder reflection matrix that reflects $\tilde{\mathbf{a}}_1$ to $-\operatorname{sign}(\tilde{\mathbf{a}}_1(1)) \|\tilde{\mathbf{a}}_1\|_2 \mathbf{e}_1$,

where
$$\mathbf{Q}_1 = egin{bmatrix} 1 & & \ & ilde{\mathbf{Q}}_1 \end{bmatrix}$$

Repeat the above procedure to the 2nd column of $\mathbf{Q}_1 \mathbf{A} \mathbf{Q}_1^H \cdots$

Given an $n \times n$ matrix **A**, the following algorithm reduces **A** to an upper Hessenberg form.

Hessenberg Reduction:

```
for k = 1: n - 2

\mathbf{x} = \mathbf{A}(k+1:n, k)

\mathbf{v}_k = \operatorname{sign}(\mathbf{x}(1)) || \mathbf{x} ||_2 \mathbf{e}_1 + \mathbf{x}

\mathbf{v}_k = \frac{\mathbf{v}_k}{||\mathbf{v}_k||_2}

\mathbf{A}(k+1:n,k:n) = \mathbf{A}(k+1:n,k:n) - 2\mathbf{v}_k(\mathbf{v}_k^H \mathbf{A}(k+1:n,k:n))

\mathbf{A}(1:n,k+1:n) = \mathbf{A}(1:n,k+1:n) - 2(\mathbf{A}(1:n,k+1:n)\mathbf{v}_k)\mathbf{v}_k^H

end
```

Failure of QR Iteration

Example:

Consider the following matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\mathbf{A}^{(0)} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{\mathbf{Q}^{(0)}} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\mathbf{R}^{(0)}}$$

$$\mathbf{A}^{(1)} = \mathbf{R}^{(0)} \mathbf{Q}^{(0)} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \mathbf{A}^{(0)}$$

No convergence of $\mathbf{A}^{(k)}$ observed.

To make the QR iteration converge, i.e., $\mathbf{A}^{(k)}$ converge to an upper triangular matrix, **shift** is required.

Shifted QR Iteration

Shifted QR Iteration:

$$\mathbf{A} = \mathbf{Q}^H \mathbf{H} \mathbf{Q}$$
, $\mathbf{A}^{(0)} = \mathbf{H}$, \mathbf{H} is upper Hessenberg for $k=1,\ 2,\ \cdots$
$$\mathbf{Q}^{(k)} \mathbf{R}^{(k)} = \mathbf{A}^{(k-1)} - \mu_k \mathbf{I} \quad \text{QR factorization of } \mathbf{A}^{(k-1)} - \mu_k \mathbf{I}$$

$$\mathbf{A}^{(k)} = \mathbf{R}^{(k)} \mathbf{Q}^{(k)} + \mu_k \mathbf{I}$$
 end

Facts:

- $ightharpoonup A^{(k)}$ has same eigenvalues with **A** (requires a proof)
- \blacktriangleright shift μ_k may differ from iteration to iteration

Shifted QR Iteration

Selection of Shift

- ▶ Raleigh Quotient shift: $\mu_k = \mathbf{A}^{(k-1)}(n, n)$
 - no guarantee on convergence
 - if converged, order of convergence is cubic
- ▶ Wilkinson shift

Denote the lower-rightmost 2×2 matrix of $\mathbf{A}^{(k-1)}$ by

$$\mathbf{B} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

The Wilkinson shift is chosen as the eigenvalue of $\bf B$ that is closer to $\bf d$.

 always converge for Hermitian/real symmetric matrices with cubic convergence rate (quadratic convergence for the worst case)

References

1. J. H. Wilkinson. Global convergence of tridiagonal QR algorithm with origin shifts. Linear Algebra and its Applications, 1(3): 409 – 420, 1968.

Brief Summary

- Power iteration
 - compute the largest eigenvalue in magnitude
 - convergence may be slow if $|\lambda_2|$ is close to $|\lambda_1|$
 - deflation technique (making a nonzero eigenvalue to zero) can be used to compute the second largest eigenvalue im magnititude
 - For real symmetric/Hermitian case, $\mathbf{A} = \mathbf{A} \lambda_1 \mathbf{v}_1 \mathbf{v}_1^H$
 - complicated for unsymmetric/non-Hermitian case, investigate by yourself if interested.
- ► Inverse iteration (with shift)
 - compute the smallest eigenvalue in magnitude
 - when coming with shift $\mu,$ it computes the eigenvalues closest to μ

Brief Summary

Subspace iteration

- A block version of the power iteration, or power iteration applied to a subspace
- compute a few largest eigenpairs in magnititude
- inverse iteration can also be applied in the subspace iteration
- when starting with full space, it coincides with QR iteration.

QR iteration

- compute all eigenvalues/eigenvectors
- to reduce computational complexity, Hessenberg reduction is required before the iteration
- shift is required to obtain convergence

Readings

You are supposed to read

► Gene H. Golub and Charles F. Van Loan. *Matrix Computations*, Johns Hopkins University Press, 2013. 1997.

Chapter 7.3, 8.2, 8.3