Complexidade de Algoritmos

Paulino Ng

2020-03-20

Plano da aula

Esta aula apresenta as funções típicas de complexidade de algoritmos. Para tanto começamos com uma rápida revisão matemática.

- 1. Revisão Matemática: Séries
- 2. Conjuntos
- 3. Funções

Revisão matemática: Séries

Somatória de séries finitas. Seja a sequência: $a_0, a_1, \ldots, a_{n-1}$:

Série aritmética:

$$a_i = a_0 + i.d \longrightarrow \sum_{i=0}^{n-1} a_i = \frac{1}{2}n(a_0 + a_{n-1}) = \frac{1}{2}(2a_0 + (n-1)d)$$

- Exemplos:
 - $1+1+\ldots+1=n$
 - $1+2+\ldots+n=\frac{1}{2}n(n+1)$
 - $1+3+\ldots+(2n-1)=n^2$
- Série geométrica: $a_i = a_0 r^i \longrightarrow \sum_{i=0}^{n-1} a_i = \frac{a_0 (1-r^n)}{1-r} = \frac{a_0 r a_{n-1}}{1-r}$
 - $ightharpoonup a_0 + a_0 \cdot r + a_0 \cdot r^2 + \ldots = \frac{a}{1-r} \quad \text{para} 1 \le r \le 1$
 - Exemplos:

 - $1 + \frac{1}{2} + \frac{1}{4} + \ldots = 2$

Séries importantes

$$1^2 + 2^2 + 3^2 + \ldots + n^2 = \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{2i-1} = \frac{\pi}{4}$$

•
$$e^n = 1 + n + \frac{n^2}{2!} + \frac{n^3}{3!} + \dots = \sum_{i=0}^{\infty} \frac{n^i}{i!}$$

$$a^n = e^{n \ln a} = 1 + n \ln a + \frac{(n \ln a)^2}{2!} + \frac{(n \ln a)^3}{3!} + \dots$$

Conjuntos

- Um conjunto é uma coleção de objetos distinguíveis que são chamados de membros, ou elementos do conjunto.
- Se x é um objeto membro de um conjunto S, podemos escrever: $x \in S$.
- Se x não é um objeto membro de um conjunto S, podemos escrever: $x \notin S$.
- Dois conjuntos são iguais se ambos têm os mesmos elementos: $\{1,2,3,1\} = \{2,1,3\} = \{1,2,3\}$
- Algumas notações de conjuntos:
 - $ightharpoonup \emptyset$: **conjunto vazio**, conjunto sem nenhum membro
 - $ightharpoonup \mathbb{Z}$: conjunto dos **números inteiros**, $\{\ldots,-1,0,1,\ldots\}$
 - ▶ \mathbb{N} : conjunto dos **números naturais**, $\{0, 1, 2, ...\}^1$
 - R: conjunto dos **números reais**.
 - C: conjunto dos números complexos.

¹Autores mais antigos não consideram 0 como parte dos naturais.

Relações entre Conjuntos

- Se todos os elementos de um conjunto A também fazem parte de um conjunto B, A é dito ser um subconjunto de B. Denotado por: A ⊆ B ou B ⊇ A.
- ▶ Se além de A ser um subconjunto de B, $A \neq B$, A é um subconjunto próprio de B: $A \subset B$ (A está contido em B), ou $B \supset A$ (B contem A).
 - Propriedades:
 - 1. $A \subset B \in B \subset C \Rightarrow A \subset C$
 - 2. \emptyset é subconjunto de qualquer conjunto A: $\emptyset \subseteq A$
 - ightharpoonup $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{R} \subset \mathbb{C}$

Operações com Conjuntos

- ▶ Intersecção: $A \cap B = \{x | x \in A \text{ e } x \in B\}$
- ▶ União: $A \cup B = \{x | x \in A \text{ ou } x \in B\}$
- ▶ **Diferença**: $A B = \{x | x \in A \text{ e } x \notin B\}$

Propriedades

- $ightharpoonup A \cap \emptyset = \emptyset$
- $ightharpoonup A \cup \emptyset = A$
- $ightharpoonup A \cap A = A$
- $ightharpoonup A \cup A = A$

Mais Propriedades

- Comutativa
 - \triangleright $A \cap B = B \cap A$
 - \triangleright $A \cup B = B \cup A$
- Associativa
 - $ightharpoonup A \cap (B \cap C) = (A \cap B) \cap C = A \cap B \cap C$
 - $\triangleright A \cup (B \cup C) = (A \cup B) \cup C = A \cup B \cup C$
- Distributiva
 - $ightharpoonup A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - $ightharpoonup A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- ► Absorção
 - $ightharpoonup A \cap (A \cup B) = A$
 - $ightharpoonup A \cup (A \cap B) = A$
- Leis de De Morgan
 - ► $A (B \cap C) = (A B) \cup (A C)$
 - $A (B \cup C) = (A B) \cap (A C)$

Complemento e Partições

Seja um conjunto que contem todos os outros (ou pelo menos os de interesse), U, chamado de conjunto universo, o complemento de um conjunto é definido como:

$$\overline{A} = U - A = \{x | x \in U \text{ e } x \notin A\}.$$

- $ightharpoonup \overline{\overline{A}} = A; \qquad A \cap \overline{A} = \emptyset; \qquad A \cup \overline{A} = U$
- ▶ Leis de De Morgan: $\overline{B \cap C} = \overline{B} \cup \overline{C}$; $\overline{B \cup C} = \overline{B} \cap \overline{C}$
- Exemplo: Se \mathbb{N} é o conjunto universo e $A = \{x | x \in par\}$, então $B = \{x | x \in impar\}$ é o complemento de A
- ▶ Dois conjuntos A e B são **disjuntos** se $A \cap B = \emptyset$.
- Uma coleção $S = S_i$ de conjuntos não vazios forma uma partição de S se:
 - ▶ os conjuntos são disjuntos dois-a-dois, isto é, $S_i, S_j \in S$ e $i \neq j \Rightarrow S_i \cap S_j = \emptyset$ e
 - ▶ a união deles é S, isto é, $S = \bigcup_{S_i \in S} S_i$.
 - Exemplo: Seja $A = \{a, b, c, d\}$, uma partição de A é $P = \{\{a\}, \{b, d\}, \{c\}\}$

Cardinalidade

- O número de elementos de um conjunto é a cardinalidade dele, denotada por: |S|.
 - ightharpoonup Exemplo: $|\{a, \{a\}, \{\{a\}\}\}\}| = 3$
 - ightharpoonup Exemplo: $|\emptyset| = 0$
 - ightharpoonup Exemplo: $|\mathbb{N}|=\infty$
- ▶ Georg Cantor foi um dos primeiros matemáticos a "contar" conjuntos infinitos, o conjunto dos naturais, \mathbb{N} , tem cardinalidade \aleph_0 (alef-0), a mesma dos inteiros(!?). \mathbb{R} têm cardinalidade \aleph_1 (alef-1). Quando um conjunto infinito pode ter todos os seus elementos mapeados um-a-um em \mathbb{N} , o conjunto é contável. \mathbb{R} é incontável.
- Propriedades
 - ► Para A e B finitos:

$$|A \cup B| = |A| + |B| - |A \cup B| \Rightarrow |A \cup B| \le |A| + |B|$$

- $ightharpoonup A \subseteq B \Rightarrow |A| \leq |B|$
- ▶ $|A \cup B| = |A| + |B| \Leftrightarrow A \in B \text{ são disjuntos.}$

Produto Cartesiano (JOIN em SQL)

O produto cartesiano do conjunto A com o conjunto B é o conjunto formado pelos pares ordenados de cada elemento do conjunto A com cada elemento do conjunto B:

$$A \times B = \{(a, b) | a \in A \in b \in B\}$$

- Exemplo:
 - ${a,b} \times {a,b,c} = {(a,a),(a,b),(a,c),(b,a),(b,b),(b,c)}$
- $|A \times B| = |A|.|B|$
- Espaço bidimensional, plano: $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$
- **E**spaço tridimensional, 3-D: $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$

Funções

- A seguir vamos listar algumas funções que aparecem na análise de complexidade de algoritmos:
 - ightharpoonup f(n) = c, onde c é uma constante.
 - ▶ f(n) = n, função identidade; função linear: f(n) = an + b, onde $a \in b$ são constantes.
 - $f(n) = n^2$, função quadrado; função quadrática: $f(n) = a_2 n^2 + a_1 n + a_0$, onde a_2, a_1 e a_0 são constantes.
 - $f(n) = a_m n^m + a_{m-1} n^{m-1} + \ldots + a_1 n + a_0$, função polinomial.
 - $f(n) = \sqrt{n}$, função raiz quadrada.
 - ▶ $f(n) = \log n$, função logarítmica na base 10; $\log_e n = \ln n$, logaritmo natural; $\log_2 n = \lg n$, logaritmo na base 2.
 - $f(n) = a^n = \underbrace{a.a....a}_{a}$, função exponencial.
 - $f(n) = n! = 1.2....n = \prod_{i=1}^{n} i$, função fatorial
- Exercício: plote o gráfico destas funções para $n \in [1, 10]$

Análise das Funções

- Estas funções crescem de maneiras diferentes. Na análise de algoritmos, estas funções aparecem como funções de complexidade do algoritmo.
- ► Uma função de complexidade, em geral, é uma aproximação do comportamento de gastos de um, ou mais, recurso computacional (normalmente o tempo).
- ➤ O maior interesse neste tipo de análise é para o que acontece quando o n (tamanho da entrada) aumenta.
- Estamos preocupados em saber se conseguiremos resolver um problema de grande tamanho com o algoritmo.
- ▶ De maneira geral, a nossa análise não se preocupa com problemas pequenos. Observe que o melhor algoritmo para problemas grandes pode não ser o melhor algoritmo para pequenos problemas. Mas, na solução de um problema grande, podem aparecer pequenos problemas que devem ser resolvidos muitas vezes e em alguns casos pode ser melhor usar o algoritmo menos bom para grandes problemas.
- ► As funções listadas estão em ordem de aumento para grandes