Worksheet: Section 2.3 day one (Limit Laws)

1. Fill in the blanks below.

Assume a and c are fixed constants. Also, assume $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist.

(a)
$$\lim_{x \to a} c =$$

(b)
$$\lim_{x \to a} x =$$

Sum Law

(c)
$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} \frac{f(x) + \lim_{x \to a} g(x)}{x \to a}$$

- i. What do the rules above imply about $\lim_{x\to 12}(x+\pi)$? $\lim_{x \to \infty} (x+\pi) = x+12$
- (d) $\lim_{x\to a} (f(x) g(x)) = \lim_{x\to a} \frac{f(x) \lim_{x\to a} g(x)}{x\to a}$ Difference Low
- (e) $\lim_{x\to a} cf(x) = \frac{c \lim_{x\to a} f(x)}{c}$ Constant Multiple Law
 - i. What do the rules above imply about $\lim_{x \to 0} 2x + 3$?

- $\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) = \lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) = \lim_{x \to a} f(x)g(x) = \lim_{x \to$
- (g) $\lim_{x\to a} x^n = \underline{\mathbf{a}^{\mathsf{N}}}$ provided $\underline{\mathbf{N}}$ is a positive integer
- (h) $\lim_{x\to a} (f(x))^n = \underbrace{\lim_{x\to a} f(x)^n}_{x\to a}$ provided $\underbrace{\lim_{x\to a} (f(x))^n}_{x\to a}$
- (i) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ provided $\lim_{x \to a} \frac{g(x) \neq 0}{\lim_{x \to a} g(x)}$
- (j) $\lim_{x \to a} \sqrt[n]{x} =$ provided h is a positive integer if h is even, then a 20
- (k) $\lim_{x \to a} \sqrt[n]{f(x)} = \frac{\sqrt{f(x)}}{\sqrt{f(x)}}$ provided $\frac{k}{k}$ is even, then $\frac{k}{k}$ in $\frac{k}{k}$

2. If
$$\lim_{x \to \sqrt{2}} f(x) = 8$$
 and $\lim_{x \to \sqrt{2}} g(x) = e^2$, then evaluate

$$\lim_{x \to \sqrt{2}} \left(\frac{g(x)}{(3 - f(x))^2} + 2\sqrt{g(x)} \right) = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + \lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + 2\lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + 2\lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + 2\lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + 2\lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + 2\lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + 2\lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + 2\lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + 2\lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + 2\lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + 2\lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + 2\lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + 2\lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + 2\lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + 2\lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + 2\lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + 2\lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + 2\lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} \frac{g(x)}{(3 - f(x))^2} + 2\lim_{x \to \sqrt{2}} 2\sqrt{g(x)} = \lim_{x \to \sqrt{2}} 2\sqrt{g(x)}$$

3. Use the previous rules to evaluate (a) and explain why you cannot use the rules to evaluate (b).

(a)
$$\lim_{w \to -\frac{1}{2}} \frac{2w+1}{w^3} = \frac{\lim_{w \to -\frac{1}{2}} (2w+1)}{\lim_{w \to -\frac{1}{2}} w^3} = \frac{2 \cdot (\frac{1}{2}) + 1}{-\frac{1}{8}} = \frac{0}{-\frac{1}{8}} = 0$$
. Since $\lim_{w \to -\frac{1}{2}} w^3 = (-\frac{1}{2})^3 = \frac{1}{8} \pm 0$, then we are oblaved to use a Quotient Law.

(b)
$$\lim_{t \to 1} \frac{t^2 + t - 2}{t^2 - 1} \neq \frac{\lim_{t \to 1} (t^2 + t - 2)}{\lim_{t \to 1} (t^2 - 1)}$$

Since $\lim_{t\to 2} (t^2-1) = 1-1=0$, we are not allowed to use a quotient law.

4. (One more super-useful rule!) If f(x) = g(x) when $x \neq a$, then $\lim_{x \to a} f(x) \equiv \lim_{x \to a} g(x)$ provided the limits exist. Use this rule and what you know about zeros of polynomials to evaluate

$$\lim_{t \to 1} \frac{t^2 + t - 2}{t^2 - 1} \quad \text{Let} \quad f(t) = \frac{t^2 + t - 2}{t^2 - 1} . \quad \text{Then Down}(f) = |R| \{ \frac{t}{2} \}.$$

$$\text{Now let} \quad g(t) = \frac{t^2 + t - 2}{t^2 - 1} = \frac{(t + 2)(t - 1)}{(t + 1)(t + 1)} = \frac{t + 2}{t + 1} .$$

$$\text{Then Down}(g) = |R| \{ -1 \}.$$

Hence, we see that g(t) = f(t) except x = 1.

UAF Calculus 1 Then we have

 $\lim_{t \to 1} \frac{t^2 + t - 2}{t^2 - 1} = \lim_{t \to 1} \frac{t + 2}{t + 1} = \frac{3}{2}$

§Spring 2021

