

STATISTICAL PROGRAMMING FOR BUSINESS ANALYTICS

ASSIGNMENT NO.7

SUBMITTED BY:

TANAY BHALERAO

U47707491

APRIL 3, 2015
UNIVERSITY OF SOUTH FLORIDA
Management Information Systems

Homework for Chapter 9

1. Refer to the GRADES data. Suppose that the instructor of the class wants to see if students performed at consistent levels during the semester. There would be a problem with the grading procedure if, for example, students who earned high grades at the beginning of the semester tended to have lower grades toward the end of the semester, or if students who performed well in one week performed poorly the next week. One way to evaluate this consistency numerically is to use a split-half reliability coefficient. Choose one way to divide the 13 homework grades into two groups: one with seven assignments, one with six assignments. For example, you may choose to divide the assignment into early and late assignments, odd-number and even-number assignments, or a randomly chosen group of seven and the remaining six assignments. Then calculate the correlation between the total of the first group of assignments and the total of the second group of assignments. Typically, for a grading procedure to be considered 'reliable', this correlation should be 0.7 or higher. Would you conclude that the grading policy is reliable from your calculations?

```
LIBNAME tan "\\Client\C$\Users\Tanay\Documents\Sem2\BusinessAnalytics\";
DATA tan.GRADES;
INFILE '\\Client\C$\Users\Tanay\Documents\Sem2\BusinessAnalytics\grades.txt';
INPUT ID 1-4 G1 6 G2 7 G3 8 G4 9 G5 10 G6 11 G7 12 G8 13 G9 14 G10 15 G11 16
G12 17 G13 18;
    Group1 = G1+G2+G3+G4+G5+G6+G7;
    Group2 = G8+G9+G10+G11+G12+G13;
RUN;

PROC CORR DATA=tan.GRADES;
    Title "Consistency in Grades";
    Var Group1 Group2;
RUN;
```


The correlation between group1 and group 2 is 0.17112 which is less than 0.7. Hence the grading policies <u>cannot</u> be considered reliable.

2. I was trying out a new bread recipe the other day. I spilled something on the recipe booklet, and I can't read how much flour I'm supposed to use in the recipe. I do know that I need to use 1 cup of water, 2 tablespoons of oil, 2 tablespoons of sugar, 1 ½ teaspoons of salt, and 2 ¼ teaspoons of yeast.

Help me out. Refer to BREAD data. Find the least-squares regression equation to predict flour amounts from water, oil, sugar, salt, and yeast, and use that equation to estimate how much flour I need in my recipe. Make sure that SAS prints the estimated amount of flour needed.

```
DATA tan.Bread;
INFILE '\Client\C$\Users\Tanay\Documents\Sem2\BusinessAnalytics\bread.txt'
LRECL=200 dlm = ',' firstobs = 3;
INPUT dough $ water oil sugar salt dry milk flour yeast wheat oregano eggs;
RUN;
PROC REG DATA=tan.Bread OUTEST = Flour score;
TITLE "Regression Scores";
flour m : MODEL flour = water oil sugar salt yeast;
RUN;
DATA new_ingre;
INPUT water oil sugar salt yeast;
DATALINES;
1 2 2 1.5 2.25
RUN;
PROC SCORE DATA=new ingre SCORE=Flour score TYPE=parms NOSTD PREDICT
OUT=Flour predict;
VAR water oil sugar salt yeast;
PROC PRINT DATA=Flour predict;
TITLE "PREDICTION FOR FLOUR QUANTITY";
     RUN;
```

Obs	water	oil	sugar	salt	yeast	flour_m
1	1	2	2	1.5	2.25	3.17483

3. Refer to the USEDCARS data. Calculate the regression line to predict the price of a used car based on the year in which it was manufactured. Obtain the residuals from this regression model, and use the PROC UNIVARIATE to examine their distribution. In the PROC UNIVARIATE output, identify the largest five and smallest five residuals by the name of the used car dealer. Do the residuals appear to be normally distributed, as we assume when conducting the t- and F-tests?

```
DATA tan. USEDCARS;
      INFILE
'\\Client\C$\Users\Tanay\Documents\Sem2\BusinessAnalytics\usedcars.txt'
FIRSTOBS=2 OBS=51;
      INPUT Year 1-2 Manufacturer $ 9-23 Model $ 24-37 Miles $ 38-48 Price $
49-60 Dealer $ 61-86;
      Price d = INPUT(Price, comma9.);
RUN;
PROC REG DATA=tan.USEDCARS;
      TITLE "Car Price Prediction";
      MODEL Price d=Year;
      OUTPUT OUT= USEDCARS R residual= N ;
RUN;
PROC UNIVARIATE DATA=USEDCARS R PLOT NORMAL;
ID Dealer;
VAR _N_;
RUN;
```


The UNIVARIATE Procedure Variable: _N_ (Residual)

Moments					
N	50	Sum Weights	50		
Mean	0	Sum Observations	0		
Std Deviation	4887.47996	Variance	23887480.3		
Skewness	1.99219857	Kurtosis	5.54907769		
Uncorrected SS	1170485556	Corrected SS	1170 4855 58		
Coeff Variation		Std Error Mean	691.194044		

Basic Statistical Measures				
Location Variability				
Mean	0.00	Std Deviation	4887	
Median	-1038.04	Variance	23887460	
Mode	-424.30	Range	25955	
		Interguartile Range	4209	

Tests for Location: Mu0=0					
Test	Statistic		p Val	lue	
Student's t	t	0	Pr > t	1.0000	
Sign	M	-7	Pr>= M	0.0849	
Signed Rank	s	-125.5	Pr>= S	0.2293	

Tests for Normality					
Test	St	atistic	p Value		
Shapiro-Wilk	w	0.830873	Pr < W	<0.0001	
Kolmogorov-Smirnov	D	0.185588	Pr > D	<0.0100	
Cramer-von Mises	W-Sq	0.351074	Pr > W-Sq	<0.0050	
Anderson-Darling	A-Sq	2.072583	Pr > A-Sq	<0.0050	

Extreme Observations						
	Lowest		Highest			
Value	Dealer	Obs	Value	Dealer	Obs	
-5604.85	Magic Imports	41	6579.70	Santa Fe Ford	48	
-5371.12	Budget Car Sales	27	6601.06	Tomlinson Motor Company	42	
-5144.67	Bush Gator	22	9515.51	Taylor Volvo	39	
-4984.49	Bush Gator	37	12515.51	Gatorland Toyota	14	
-4665.04	Magic Imports	47	20350.15	Kraft Motorcar	10	

The residuals are not normally distributed as seen from the plots. Also the difference between mean and median is large which again conforms that the residuals are not normally distributed.

4. Refer to the HANKS data. During Tom Hanks's career, he has played both humorous and dramatic roles. Over time, has he increasingly accepted serious roles over lighter ones? To see if this is true, find the correlations of the length of the movie, the drama rating, and the humor rating with year. (The ratings are ordinal, so the correlations of year with humor and drama must not be interpreted too rigidly. Instead, they give a rough indication of positive or negative trends with time.)

```
DATA tan.Hanks;
    INFILE
'\Client\C$\Users\Tanay\Documents\Sem2\BusinessAnalytics\Hanks.txt' FIRSTOBS
= 2;
    INPUT Title $ 1-25 Year 26-30 Length 34-37 MPAA $ 42-47 Action 50-52
Drama 58-60 Humor 66-68 Sex 74 Violence 81-83 Suspense 90 Offbeat 98;
RUN;
PROC CORR DATA = tan.Hanks;
    TITLE "TRENDS WITH TIME";
    VAR Length Drama Humor;
```

RUN;

5. Chapter 9: 9.4, 9.10

9.4

```
DATA LIBRARY;
INPUT Books Student Enrollment Highest Degree Area;
Log Area = Log(Area);
If Highest Degree in (1 2 3) then do;
MA = (Highest Degree EQ 2);
PhD = (Highest Degree EQ 3);
END;
DATALINES;
4 5 3 20
      3
        40
10 40 3 100
1 4 2 50
.5 2 1 300
  8 1 400
  30 3 40
 20 2 200
4
  10 2
1 12 1 100
PROC REG DATA = LIBRARY;
TITLE "Estimate number of books";
MODEL Books = Student Enrollment MA PhD Log Area / SELECTION = Forward;
```

RUN;

Variable MA Entered: R-Square = 0.9864 and C(p) = 5.0000

Analysis of Variance							
Source	Sum of Mean DF Squares Square F Value Pr > F						
Model	4	86.03915	21.50979	90.69	<.0001		
Error	5	1.18585	0.23717				
Corrected Total	9	87.22500					

Variable	Parameter Estimate		Type II SS	F Value	Pr > F
Intercept	-2.91829	0.94453	2.26404	9.55	0.0272
Student_Enrollment	0.13128	0.01635	15.29338	64.48	0.0005
MA	1.35800	0.52811	1.58823	6.61	0.0499
PhD	4.54244	0.58785	15.17852	63.99	0.0005
Log_Area	0.57483	0.17335	2.60614	10.99	0.0211

Bounds on condition number: 3.263, 37.165

All variables have been entered into the model.

	Summary of Forward Selection								
Step	Variable Entered	Number Varsin	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F		
1	Student_Enrollment	1	0.7428	0.7428	88.5868	23.11	0.0013		
2	PhD	2	0.2129	0.9557	12.2968	33.63	0.0007		
3	Log_Area	3	0.0127	0.9684	9.6123	2.42	0.1708		
4	MA	4	0.0180	0.9864	5.0000	6.61	0.0499		

Model Fit Statistics					
Criterion	Intercept Only	Intercept and Covariates			
AIC	2774.589	1946.815			
SC	2780.190	1974.819			
-2 Log L	2772.589	1936.815			

Testing Global Null Hypothesis: BETA=0					
Test	Chi-Square	DF	Pr > ChiSq		
Likelihood Ratio	835.7741	4	<.0001		
Score	696.0588	4	<.0001		
Wald	490.5215	4	<.0001		

Type 3 Analysis of Effects						
Effect	ect DF Chi-Square Pr > Chi Sq					
SMOKING	1	277.2260	<.0001			
ASBESTOS	1	232.7040	<.0001			
SES	2	27.5915	<.0001			

Analysis of Maximum Likelihood Estimates								
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept		1	-0.9494	0.1179	64.7902	<.0001		
SMOKING		1	2.2050	0.1324	277.2280	<.0001		
ASBESTOS		1	2.5608	0.1679	232.7040	<.0001		
SES	1-Low	1	0.1275	0.1484	0.7381	0.3903		
SES	3-High	1	-0.5203	0.1431	13.2191	0.0003		

Odds Ratio Estimates							
Effect	Point Estimate	95% Wald Confidence Limits					
SMOKING	9.070	6.997	11.758				
ASBESTOS	12.944	9.315	17.988				
SES 1-Low vs 2-Medium	1.138	0.849	1.519				
SES 3-High vs 2-Medium	0.594	0.449	0.787				

Association of Predicted Probabilities and Observed Responses							
Percent Concordant	78.7	Somers D	0.685				
Percent Discordant	12.1	Gamma	0.733				
Percent Tied	9.2	Tau-a	0.333				
Pairs	1000000	С	0.833				