Université de Blida1 2019-2020 Département :MI

Exercice 1

Dans un groupe de 20 personnes, 10 lisent au moins la revue A, 8 lisent au moins la revue B et 3 lisent les 2 revues. Combien d'échantillons différents peut-on choisir si l'échantillon doit être formé :

- 1) de cinq personnes lisant au moins une revue ?
- 2) de trois personnes lisant la revue A, et de deux personnes lisant la revue B, chacune d'entre elles ne lisant qu'une seule revue ?
- 3) de cinq personnes, dont trois au moins lisent la revue A?

Exercice 2

Soit A l'ensemble des nombres à 4 chiffres . Déterminer le nombre d'éléments des ensembles suivants :1) A . 2) A_1 , ensemble des nombres de A ayant 5 chiffres différents. 3) A_2 , ensemble des nombres pairs de A. 4) A_3 , ensemble des nombres multiple de 5.

Exercice 3

- a) 4 personnes sont dans un ascenseur à 5 étages. Quelle est le nombre de possibilités où :a) les 4 personnes s'arrêtent à des étages différents ? b) 2 personnes et 2 seulement s'arrêtent au même étage.
- b) Quel est le nombre de groupes de six personnes que l'on peut former avec 4 garçons et 6 filles si l'on veut qu'ils contiennent obligatoirement 2 garçons : donnés? Seulement ? Au moins ?
- c) On souhaite ranger sur une étagère 3 livres de mathématique (distincts), 5 livres de physique(distincts), et 2 livres de chimie (distincts). De combien de façons peut-on effectuer ce rangement a) Si l'on n'impose aucune condition. b) Si les livres doivent être rangés ensemble par matières.c) Si seuls les livres de chimie doivent être rangés ensemble.
- d) Lorsqu'on jette 10 fois de suite une pièce de monnaie, combien de séquences différentes sont possibles? Parmi celles-ci, combien contiennent exactement 1 fois pile ? 4 fois pile ?

Exercice 4

Un enfant colorie cinq cases numérotées de 1 à 5 et dispose de 8 couleurs qu'il utilise au hasard. Combien de dessins peut-il réaliser ? Combien de dessins peut-il réaliser s'il n'utilise pas deux fois la même couleur ? Combien de dessins peut-il réaliser, s'il décide de n'utiliser que 2 couleurs, l'une trois fois et l'autre 2fois ?

Exercice 5

Une boîte contient 8 cubes : 1 gros rouge et 3 petits rouges, 2 gros verts et 1 petit vert, 1 petit jaune. Un enfant choisit au hasard et simultanément 3 cubes de la boîte.

- 1. Quel est le nombre de tirages possibles ?
- 2. Quel est le nombre de tirages de 3 cubes qui correspondent aux situations suivantes :
 - a) Obtenir des cubes de couleurs différentes. b) Obtenir au plus un petit cube.
 - c. Il y a parmi les trois cubes, au moins un rouge.

June 15, 2020

DENOMBREMENT

Correction d'exercices de la série III

Ahmed Boukerboub

Sâad Dahlab University USDB

Department of Mathematics and Informatics

Blida 1, Algeria

Exercice 1:

1/ Problème du cardnal d'une partie de $E \subset \Omega = 20$ personnes. Notons par :

$$cardA = |A| = 10$$

Les personnes qui lisent au moins la revue A .et pour B.

$$|B| = 8$$

les personnes qui lisent au moins la revue B, mais on a 3 personnes lisent les deux revues c'est-à-dire

$$|A \cap B| = 3,$$

donc il suffit d'appliquer le principe fondamental:

$$|E| = |A \cup B| = |A| + |B| - |A \cap B| = 10 + 10 - 3 = 15$$

qui lisent au moins une revue .de plus ce tirage est considéré comme un tirage simultané donc c'est une combinaison et on doit choisir 5 parmi 15. Donc

$$N = C_{15}^5 = \frac{15!}{5!(15-5)!} = \frac{15!}{5!(10)!} = \frac{15.14.13.12.11}{5.4.3.2.1} = 3003 \text{ possibilit\'es}.$$

2/ Comme on a 3 personnes qui lisent les deux revues donc on a 7 pesonnes qui lisent la revue A, on doit donc choisir 3 parmi 7 (toujours tirage simultané) $N_1 = C_7^3$ et 5 personnes qui lisent la revue B, on doit donc choisir 2 parmi 5, $N_2 = C_5^2$. Donc

$$N = N_1.N_2 = C_7^3.C_5^2 = 35.10 = 350.$$

3/ Les possibilités existantes sont : 3 ou 4 ou 5. Donc soit 3 personnes qui lisent la revue A et 2 parmi 10 (ne la lient pas) $N_1 = C_{10}^3.C_{10}^2$ ou 4 personnes qui lisent la revue A et 1 parmi 10 (ne la lit pas) $N_2 = C_{10}^4.C_{10}^1$ ou 5 personnes qui lisent la revue A. $N_3 = C_{10}^5.C_{10}^0$ Doù

$$N = N_1 + N_2 + N_3 = C_{10}^3 \cdot C_{10}^2 + C_{10}^4 \cdot C_{10}^1 + C_{10}^5 \cdot C_{10}^0 = 7752.$$

En cas de besoin veuillez me contacter sur mon e-mail : bkbb_hmd@yahoo.fr

Exercice 2:

1/Un nombre à 4 chiffres ne commence pas par 0, donc c'est un tirage avec remise et d'après le principe général

$$N = 9.10.10.10 = 9.(10)^3 = 90000$$

2/ De même un ensemble à 5 chiffres cette fois ci sont différents c'est-à-dire un tirage sont remise et

$$|A_1| = 9.9.8.7.6 = 27216$$

3/ Si A est un ensemble à 5 chiffres différents, A2 : ensemble des nombres pairs de A c'est-à-dire qu'un nombre de A_2 se termine soit par 0 ou 2 ou 4 ou 6 ou 8. Donc

$$|A_1| = 9.10.10.10.1 + 9.10.10.10.1 + 9.10.10.10.1 + 9.10.10.10.1 + 9.10.10.10.1 + 9.10.10.10.1 = 45000.$$

Le dernier chiffre a une seule possibilié. L'ensemble des nombres impairs de A c'est-à- dire qu'un nombre de A_2 se termine soit par 1 ou 3 ou 5 ou7ou 9

$$|A_2| = 9.10.10.10.1 + 9.10.10.10.1 + 9.10.10.10.1 + 9.10.10.10.1 + 9.10.10.10.1 + 9.10.10.10.1 = 45000$$

4/ Un nombre est un multible de 5 si son dernier chiffre est un 0 ou 5. Donc

$$|A_3| = 9.10.10.10.1 + 9.10.10.10.1 = 9.10.10.10.2 = 18000$$

Exercice 3:

Ι

a/ Si les 4 personnes s'arrêtent à des étages différents c'est-à-dire l'orde compte sans remise la première personne a 5 possibilités la deuxième 4 la troisième 3 la quatrième personne 3, d'où

$$N = 5.4.3.2 = 120$$
 possibilités

b/ les deux et seulement 2 s'arrêtent au même étage

$$N = 5.4.3 = 60$$
 possibilités

(2 personnes ont 5 possibilités et la troisième 4 possibilités et la quatrième 3).

II

Le choix de garcons obligatoirement donné signfié qu'il ya une possibilité de choisir deux garçons au départ (pistonnés!!!) et on choisit 4 parmi 8 restants (tirage simultané) C_8^4 d'où

$$N = 1.C_8^4 = \frac{8!}{4!.4!} = 70.$$

Deux seulement signifié qu'il faut choisir 2 parmi 4 garçons et les 4 filles c'est-à-dire parmi 6

$$N = C_4^2 \cdot C_6^4 = 6.3.5 = 90.$$

Au "moins" on passe au complémentaire en général (preque sûrement!!), alors le nombre total sans restriction est $N=C_{10}^4$ et la négation d'au moins deux garçons c'est soit un garçon $(C_4^1.C_6^5)$ ou zéro garçon $(C_4^0.C_6^6)$ ainsi donc

$$N = C_{10}^4 - \left(C_4^1 C_6^5 + C_4^0 C_6^6\right) = 185.$$

III

On a 3 M; 5 Ph et 2 Ch

a) sans condition n=3+5+2=10 . C'est une permutation de 10 éléments sans répétiton et

$$N = 10!$$
.

b) Par matière (chacun sa race!)

$$N = 3!.3!5!2!$$

. Je m'explique:

- le premier 3! c'est la permutation des trois matières,
- le deuxième 3! c'est la permutation des livres de maths,
- le 5! la permutation des livres de physique,
- le 2! de chimie.
- c) Si les livres de chimie doivent être ensemble on a

$$N = 9!.2!$$

- le 9! c'est les 3 livres de maths + les 5 de physique + le bloc (1) de chimie,
- le 2! c'est la permutation des livres de chimie entre eux.

Exercice 4:

1- Combien de dessins peut-il réaliser?

$$N = n^p = 8^5$$
 tirage avec remise

2- Combien de dessins peut i-il réaliser s'il n'utilise pas deux fois la même couleur? Tirage sans remise (arrangement) 5 parmi 8. Donc

$$A_5^8 = \frac{8!}{5!} = 8.7.6$$

3- Combien de dessins peut-il réaliser, s'il décide de n'utiliser que 2 couleurs, l'une trois fois et l'autre deux fois?.

On choisit 2 couleur parmi 8 (tirage simultané) c'est une combinaison $n_1 = C_8^2 = \frac{8!}{2!.6!}$ et une permutation avec répétition des 3

couleurs identiques et 2 autres identiques $n_2 = \frac{5!}{3!2!}$ et

enfin $n_3 = 2!$ (purmutation entre les couleurs). D'où

$$N = n_1 \cdot n_2 \cdot n_3 = \frac{8!}{2! \cdot 6!} \cdot \frac{5!}{3! \cdot 2!} \cdot 2!.$$

Exercice 5:

Ι

Le nombre total de tirages simultanés l'ordre n'important pas ici, le nombre de combinaisons de 3 cubes parmi les 8 disponibles. Soit : $N = C_8^3$. L'univers associé à l'expérience comporte donc 56 éléments. Comme précisé, la boîte contient 8 cubes et le tirage d'un cube ne dépend ni de sa taille, ni de sa couleur. **II**

- a/ Dans un tirage, obtenir des cubes de couleurs différentes, nécéssairement on a : 1 cuber ouge, 1 cube vert et 1 cube jaune
- Il y a C_4^1 possibilités pour le cube rouge ;
- Il y a C_3^1 possibilités pour le cube vert ;

• Il n'y a qu'une possibilité pour le cube jaune $C_1^1=1$ L'ensemble A comporte donc 4 .3 .1 = 12 éléments :

$$|A| = 12$$

b/ Soit maintenant l'événement B : « Obtenir au plus un petit cube ». On peut écrire B sous la forme d'une réunion de deux événements incompatibles :

- B_1 : « Obtenir aucun petit cube »
- B_2 : « Obtenir exactement un petit cube » avec

$$B = B_1 \cup B_2 \quad \text{et} B_1 \cap B_2 = \emptyset.$$

Les deux évenements sont incompatibles donc

$$|B_1 \cup B_2| \cdot = |B_1| + |B_2|$$

La boîte comporte 3 gros cubes et 5 petits cubes. Il n'y a qu'une seule possibilité de n'obtenir aucun petit cube puisqu'il convient alors d'obtenir les 3 gros cubes!

On a donc:

$$|B_1| = 1.$$

Evaluons maintenant $|B_2|$. Donc il y a C_5^1 possibilités pour ce petit cube et C_3^2 pour deux gros parmi 3, donc

$$|B_2| = 5.3$$
et $N = 15 + 1 = 16$ possibilités.

b/ Au "moins" on passe au complémentaire

$$N = \Omega - |\text{pas de rouge}| = 56 - (C_3^3 + C_3^3 C_1^1) = 52 \text{possibilités}.$$

EXERCICE1 Dans cet exercice l'ordre n'est pas important et la répétition n'est pas permise .

On peut schématiser la situation comme suit :

On cherche ici le cardinal d'un ensemble dans

les différents cas cités :

- 1. $|A_1| = C_{15}^5$ (Il suffit de choisir les 5 personnes parmi les 15 et ce pour assurer la lecture d'au moins une des 3 revues)
- 2. $|A_2| = C_7^3 * C_5^2$
- 3. $|A_3| = C_{10}^3 * C_{10}^2 + C_{10}^4 * C_{10}^1 + C_{10}^5 * C_{10}^0$ (3 lisant la revue A ou 4 ou 5)

EXERCICE 2 En prenant les chiffres de 0 à 9. Dans tous les cas on prend tous les chiffres sauf le 0, pour le premier cas :

- 1. $|A_1| = 9 * 10^3$ nombres possibles
- 2. $|A_2| = 9 * 9 * 8 * 7 = 9 * A_9^3$ (ayant 4 chiffres différents)
- 3. $|A_3| = 9 * 10^2 * 5$ (il ya 5 chiffres possibles dans la case d'unités : 0,2,4,6,8)
- 4. $|A_4| = 9 * 10^2 * 2$ (il ya 2 chiffres possibles dans la dernière case d'unités : 0,5)

EXERCICE 3

- a) Il ya A_5^4 possibilités pour que les 4 personnes s'arrêtent à des étages différents (5*4*3*2 façons possibles) / Pour le deuxième cas on doit d'abord choisir les 2 personnes parmi 4 qui peuvent prendre 1 étage de 5, le cas restant est d'attribuer deux étages différents aux 2 personnes qui restent), ce qui donne $C_4^2 A_5^1 C_2^2 A_4^2$ manières possibles.
- b) Il ya $C_2^2 C_8^4$ groupes possibles (2 garçons déjà choisis) / $C_4^2 C_6^4$ (seulement 2 garçons) groupes possibles / $C_4^2 C_6^4 + C_4^3 C_6^3 + C_4^4 C_6^2$ (2 garçons ou 3 ou 4) groupes possibles.

c) 10! (la permutation des 10 revues) / 3! 5! 2! 3! (la permutation des livres de chaque matière, ainsi que celle des 3 matières) / 2! 9! (ici on considère les livres de chimie comme étant 1 seul)

d) Pièce de monnaie : {pile,face} , il ya 2^{10} (une 10-listes) séquences possibles / $\frac{10!}{9!}$ (une permutation avec répétition) / $\frac{10!}{4!6!}$ (une permutation avec répétition).

EXERCICE 4

 $N_1=8^5$ (une 5-listes) dessins possibles. (l'enfant peut choisir à chaque fois une des 8

 $N_2 = 8 * 7 * 6 * 5 * 4 = A_8^5$ (Les couleurs sont différentes : l'ordre des couleurs est important, et pas de répétition)

 $N_3=C_8^2 rac{5!}{3!2!}*2!$ (l'enfant va d'abord choisir 2 couleurs parmi 8 . Une permutation avec répétition est considérée aprés, et cela en prenant compte l'ordre des 2 couleurs).

EXERCICE 5 (tirage simultané de p cubes parmi n)

- 1. C_8^3
- 2. $C_4^1 * C_3^1 * C_1^1$
- 3. $C_5^1 * C_3^2 + C_5^0 * C_3^3$ (1 petit cube ou 0 petit cube) 4. $C_4^1 * C_4^2 + C_4^2 * C_4^1 + C_4^3 * C_4^0$ (1 cube rouge ou 2 ou 3).

 $C_n^k = \frac{n!}{(n-k)!k!}, \quad A_n^k = \frac{n!}{(n-k)!}$ Pour les calculs rappelons que :

Université Saad Dahleb BLIDA Faculté des sciences/ Dept. de M.I. Proba-Stat. Raouti M. N.

Série N° 1 : Analyse combinatoire

Exo1

On considère les chiffres: 1, 2, 3, 4, 5, 6 et 7. Combien y'a t'il de nombres entiers à trois chiffres formés de ces chiffres et qui vérifient les conditions suivantes?

Année: 2019-2020

- 1. au total (sans restriction)
- 2. ne comportant pas le chiffre "2"
- 3. ayant des chiffres différents.
- 4. les nombres formés sont: pairs, impairs, multiples de 5.
- 5. la somme des chiffres du nombre est est inférieur ou égale à 6.
- 6. formés de deux chiffres impairs et un chiffre pair.

Exo2

- i) A un examen on demande de répondre à seulement 6 questions sur 10. Combien y a-t-il de choix différents possibles?
- ii) Un examen est composé de 3 sections de 6 questions chacune. Si un élève doit répondre à 2 questions par section, combien a-t-il de choix différents possibles?
- iii) Un contremaître a 4 différentes tâches à accomplir, pour chacune desquelles il lui faut un ouvrier. S'il dispose de 12 ouvriers, de combien de façons peut-il confier les 4 tâches?
- iv) Combien de groupes de six personnes peut-on former avec 4 garçons et 6 filles si on veut que le groupe contienne: a. exactement deux garçons? b. deux garçons donnés? c.deux garçons au moins?
- v) Losqu'on jette une pièce de monnaie 6 fois de suite, combien de séquences différentes sont possibles? Parmi celles-ci, combien contiennent: 1 fois pile? 4 fois pile? au moins 2 piles?

Exo3

Un enfant colorie cinq cases numérotés de 1 à 5 et dispose de 8 couleurs qu'il utilise au hasard.

- Combien de déssins peut-il réaliser?
- Combien de dessins peut-il réaliser s'il n'utilise pas deux fois la même couleur?
- Combien de dessins peut-il réaliser, s'il décide de n'utiliser que 2 couleurs, l'une trois fois et l'autre 2 fois?

Exo4

Dans une urne se trouvent six boules blanches numérotées de 1 à 6 et cinq boules rouges numérotées de 1 à 5. On extrait simultanément quatre boules de l'urne.

- 1° Quel est le nombre de tirages possibles?
- 2° Quel est le nombre de tirages de 4 boules qui correspondent au situations suivantes :
- a) les quatre boules sont blanches.
- b) Il y a, parmi les quatre boules, au moins une boule rouge.
- c) Parmi les quatre boules, il y a exactement une boule blanche et exactement une boule numérotée 3.

Exo5

Avec les lettres du mot CONSEIL, combien de mots différents de 7 lettres peut-on former

- a) au total?
- b) si les voyelles doivent être ensemble?
- c) si les voyelles doivent être ensemble de même que les consonnes?
- d) si les lettres C et S ne doivent jamais être voisines?
- e) si le C doit être à la première ou à la seconde position du mot?