# SISO control design:

In this task we're going to design 3 SISO controllers for our 6-DOF vehicle model. The controllers are:

- Altitude (ie: Z) control
- YAW angle control
- PITCH angle control (NB: the ROLL controller will be identical)

The design requirements for this task are:

| Label            | Variable to be controlled      | STEP response<br>90% Rise time<br>(secs) | Gain<br>margin<br>(dB) |
|------------------|--------------------------------|------------------------------------------|------------------------|
| Altitude control | Y_ze (m)                       | 2.5                                      | 60                     |
|                  | Y_ze_dot (m/sec)               | 0.3                                      | 60                     |
| Yaw control      | Y_phi_yaw (rad)                | 1.5                                      | 60                     |
|                  | Y_phi_dot_yaw_rate (rad/s)     | 0.25                                     | 60                     |
| Pitch control    | Y_theta_pitch (rad)            | 0.5                                      | 60                     |
|                  | Y_theta_dot_pitch_rate (rad/s) | 0.25                                     | 60                     |

Bradley Horton: 01-Jun-2016, bradley.horton@mathworks.com.au

#### **Prerequisite:**

Before commencing this task you need to run the **bh\_task\_find\_trim\_and\_linearise.mlx** script to create required variables (eg: transfer function objects) that are used in this control design task.

assert(l==exist('sys\_6dof\_lin'), 'you have NOT run the \*\*\*bh\_task\_find\_trim\_and\_linearise\*\*\*')

#### Our SISO controller structure:

For each of these SISO controllers the structure that we'll use will involve 2 proportional controllers configured in a cascade loop. The inner loop is the velocity loop and the outer loop is the position loop. This control structure is shown below:



Note we can also represent this structure as:



To design each controller we'll design the INNER velocity loop controller first, and then we'll design the OUTER positional controller. The linear plants for each of these 3 control design tasks are:

| OUTPUT                 | Transfer<br>Function | INPUT              |
|------------------------|----------------------|--------------------|
| Y_ze_dot               | 1.079/s              | U_f                |
| Y_phi_dot_yaw_rate     | 89.38/s              | U_TQ_phi_yaw_Z     |
| Y_theta_dot_pitch_rate | 171.5/s              | U_TQ_theta_pitch_Y |

Create the 3 linear plant transfer functions:

#### Echo these:

```
[TF_ZEdot_from_Uf, TF_YAWdot_from_UTQ_yaw, TF_PITCHdot_from_UTQ_pitch ]

ans =

From input "U_f" to output "Y_theta_dot_pitch_rate":
1.079
-----
5

From input "U_TQ_phi_yaw_Z" to output "Y_theta_dot_pitch_rate":
89.38
-----
5

From input "U_TQ_theta_pitch_Y" to output "Y_theta_dot_pitch_rate":
171.5
-----
5
Continuous-time transfer function.
```

### Now do the design:

Open the Simulink model bh\_do\_CONTROL\_DESIGN\_via\_PID\_TUNER.slx and consider the subsystem called "INITIAL\_PITCH\_CONTROL\_SYSTEM". Launch the PID tuner app for each of the

green P blocks and design according to the requirements. NOTE: although all of our designs are just "P-controllers", the tuner app is called the "PID tuner" - hey, no big deal!

open system('bh do CONTROL DESIGN via PID TUNER.slx')



And you can repeat this design for the YAW and ALTITUDE controllers. The final designs that I have made are also shown in the bh\_do\_CONTROL\_DESIGN\_via\_PID\_TUNER.slx model, and they are:







## But what about the NON-linear 6-DOF model?

The controllers that we've just designed used a linear approximation of our 6-DOF model. SO we now need to try the controllers with our NON-linear model. Open the model bh\_test\_LINCONT\_on\_NONLIN\_plant.slx and see how the controllers performed - here we apply STEPS and pulses of:

- Ze = 1 (m)
- Pitch = 30 (degrees)
- YAW = 60 (degrees)

