# Some outlierness measures for unsupervised anomaly detection

matthieu.lesnoff@cirad.fr
ChemHouse, Montpellier, 29 April 2025





# Example of 4 outlierness measures

#### PCA

- 1. Score distance (SD)
- 2. Orthogonal distance (OD)

#### KNN Distance-based

- 3. Global
- 4. Local

# 1. SD: Mahalanobis distance between the projection and the center of the score space



2. OD: Euclidean distance between the observation and its projection on the score space

= X-residuals



#### SD/OD can be summarized to a compromise

• 
$$\sqrt{.5 \times \left(\frac{\text{SD}}{\text{cutoff}}\right)^2 + .5 \times \left(\frac{\text{OD}}{\text{cutoff}}\right)^2}$$

• 
$$\sqrt{\frac{\text{SD}}{\text{cutoff}}} \times \frac{\text{OD}}{\text{cutoff}}$$

#### 3. Global KNN Distance-based

#### For each observation

- Find its k nearest neighbors
- Summarize the k distances, e.g. sum or maximum

(estimate of 1 / density)

Angiulli, F., Pizzuti, C., 2005. <a href="https://doi.org/10.1109/TKDE.2005.31">https://doi.org/10.1109/TKDE.2005.31</a>
Angiulli, F. et al. 2006. <a href="https://doi.org/10.1109/TKDE.2006.2">https://doi.org/10.1109/TKDE.2006.2</a>
Campos et al. 2016 <a href="https://doi.org/10.1007/s10618-015-0444-8">https://doi.org/10.1109/TKDE.2006.2</a>
Ramaswamy et al. 2000. <a href="https://doi.org/10.1145/342009.335437">https://doi.org/10.1145/342009.335437</a>



High value  $\Rightarrow$  neighbors are far  $\Rightarrow$  the observation is expected to be isolated

#### 4. Local KNN Distance-based

#### For each observation

- Find its k nearest neighbors
- Summarize the k distances (e.g. sum or maximum) → out1
- For each of the k neighbors
  - find the k nearest neighbors and summarize the k distances
- Average the k summary values → out2
- Outlierness = out1 / out2
- ~ density around the neighbors / density at the observation

#### **Simplified-LOF**

Campos et al. 2016 <a href="https://doi.org/10.1007/s10618-015-0444-8">https://doi.org/10.1007/s10618-015-0444-8</a> Schubert et al. 2014. <a href="https://doi.org/10.1007/s10618-012-0300-z">https://doi.org/10.1007/s10618-012-0300-z</a>



#### Can be computed

- In the X-space,
   or after dimension reduction (PCA, tSNE, UMAP, etc.)
- With different metrics

# Illustrations

- Octane
- Challenge2018

#### Octane dataset

n = 39 NIR spectra of gasoline samples (1102 -1552 nm step 2) Six of the samples contain added alcohol Hubert et al. 2005, Technometrics, 47, 64–79



PCA nlv = 3

Usual



Robust



... Detection with SD is expected to be difficult

SD



# Robust



No detection

OD







Partial detection

#### Global KNN

# X-space, Euclidean, k = 15



Rk: Same if KNN computed from PCA scores since PCA preserves the global distances

# Local KNN

# same parameters



#### Challenge2018 dataset

NIRS data on forages, feed and food used in the challenge of the congress Chemometrics2018 (Paris, January 2018)







For this example: Extract of two of the 10 present categories

- CNG corn gluten n = 356
- SFG sun flower seed n = 272

+ n = 10 fictive outliers



# $PCA \, nlv = 15$ SD



No detection

# PCA nlv = 15 OD



No detection

# Euclidean in X-space, k = 30





⇒ PCA SD/OD are **not always the gold-standard** 

It depends on the configuration of the data

# Which cutoff values? (to automatize detections, etc.)

#### Parametric

But require hypotheses on the outlierness distribution

#### Non parametric

e.g.: Median(Out) + 3 × MAD(Out)

# How to compute?

https://github.com/mlesnoff/Jchemo.jl

#### **Functions**

- occsd
- occod
- occsdod
- outknn
- outlknn

# Jchemo.jl

Chemometrics and machine learning on high-dimensional data with Julia

