Biostatistics Week XI

Ege Ülgen, MD, PhD

15 December 2022

General Assumptions of Parametric Tests

- The population(s) are normally distributed
- The selected sample is representative of general population

Assessing Normality

- Inspecting the **histogram** of the variable
- Quantile-quantile plots
- Shapiro-Wilk test
 - p > 0.05 indicates normal distribution
- •

Inspecting Histogram

Positively Skewed Distribution

Quantile-Quantile Plots

 A tool for comparing the empirical distribution of data to the theoretical distribution

$$\Phi\left(\frac{i-0.5}{n}\right)$$
 vs. sorted data values (where *i* is the rank)

Quantile-Quantile Plots

Normal Distribution

70 9 Sample Quantiles 50 40 30 20 Theoretical Quantiles

Positively Skewed Distribution

Shapiro-Wilk Test of Normality

A confirmatory tool for checking the normal distribution assumption

- H₀: the population is normally distributed
- H₁: the population is not normally distributed

$$W = \frac{(\sum_{i=1}^{n} a_i x_{(i)})^2}{\sum_{i=1}^{n} (x_i - \bar{X})^2}$$

 $x_{(i)}$: the ith order statistic, i.e., the ith-smallest number in the sample a_i : see reference

Non-parametric Tests

- Often used when assumptions of parametric tests are not met
- Robust with respect to the distribution of data
- Less assumptions
 - e.g., they do not depend on the assumption of normality
- Less statistical power compared to parametric tests
 - Higher risk of type II errors (e.g., high probability of accepting there is no difference between the groups where there is a difference)

Non-parametric Tests

- χ² test
- Wilcoxon rank-sum test (Mann–Whitney U test) ~ Independent samples t-test
- Kruskal-Wallis test ~ one-way ANOVA
- Mood's Median Test ~ one-way ANOVA
- Friedman test ~ two-way ANOVA
- Spearman's rank correlation test ~ Pearson correlation test

• ...

Multiple Testing

	Decision		
H _o	Fail to reject	Reject	
True	Correct decision	Type I Error α	
False	Type II Error B	Correct decision	

Multiple Testing - Example

- A typical microarray experiment might result in performing 10000 separate hypothesis tests
- If we use a standard p-value cut-off of 0.05, we'd expect **500** genes to be deemed "significant" by chance

Multiple Testing

- P(making a type I error) = α
- P(not making a type I error) = 1α
- P(not making a type I error in m tests) = $(1 \alpha)^m$
- P(making at least 1 type I error in m tests) = $1 (1 \alpha)^m$

Multiple Testing

Correcting for Multiple Testing

- Controlling the Type I error rate
 - V = number of false positives out of all tests

Approaches to Control Type I Error Rate (V)

- Per comparison error rate (PCER)
- Per-family error rate (PFER)
- Family-wise error rate (FWER)
- False discovery rate (FDR)
- Positive false discovery rate (pFDR)

Family-wise Error Rate (FWER) Methods

- Bonferroni correction (single-step adjustment)
 - Rejects any hypothesis with p-value $\leq \alpha/m$

$$\widetilde{p_j} = \min(p_j \times m, 1)$$

• If we want to have an experiment wide Type I error rate of 0.05 when we perform 10,000 hypothesis tests, we'd need a p-value of $0.05/10000 = 5 \times 10^{-6}$ to declare significance

Family-wise Error Rate (FWER) Methods

Holm's method (Sequential adjustments)

$$\widetilde{p_j} = \min[1, p_j \times (m - j + 1)]$$

e.g.,
$$m = 1000$$

$$\begin{split} \tilde{p}_1 &= 1000 p_1, \\ \tilde{p}_2 &= 999 p_2, \\ \dots, \\ \tilde{p}_m &= 1 p_m \end{split}$$

Family-wise Error Rate (FWER) Methods

 FWER is appropriate when you want to guard against ANY false positives

False Discovery Rate (FDR)

- Benjamini & Hochberg
 - To control FDR at level δ :
 - 1. Order the unadjusted p values in ascending order: $p_1 < ... < p_m$
 - 2. Find the test with the highest rank j for which:

$$p_j \le \frac{j}{m} \delta$$

3. Declare the tests of rank 1, ..., j as significant

B&H FDR – Example

Controlling the FDR at δ = 0.05

Rank (j)	P-value	(j/m)× δ	Reject H ₀ ?
1	0.0008	0.005	1
2	0.009	0.010	1
3	0.165	0.015	0
4	0.205	0.020	0
5	0.396	0.025	0
6	0.450	0.030	0
7	0.641	0.035	0
8	0.781	0.040	0
9	0.900	0.045	0
10	0.993	0.050	0

Additional Reading

Noble WS. How does multiple testing correction work? Nat Biotechnol. 2009 Dec;27(12):1135–7: https://www.nature.com/articles/nbt1209-1135

Brief Summary

- Normality of a variable can be assessed using
 - Histogram
 - Q-Q plot
 - Shapiro-Wilk test
- Non-parametric tests have fewer assumptions but also have less statistical power compared to parametric tests
- Commonly used methods for multiple testing correction include:
 - Bonferroni correction
 - Holm's method
 - Benjamini and Hochberg's FDR