Learning with Fitzpatrick Losses

Seta Rakotomandimby Jean-Philippe Chancelier

Michel De Lara Mathieu Blondel

NeurIPS in Paris — December 5, 2024
Paris

Outline of the presentation

From primal-dual links to primal-dual losses

Primal-dual losses from regularized arg max

Theoretical and experimental results on Fitzpatrick losses

Outline of the presentation

From primal-dual links to primal-dual losses

Primal-dual losses from regularized arg max

Theoretical and experimental results on Fitzpatrick losses

Multiclass classification

Splitting the prediction function in two

Unregularized link: arg max

Unregularized link: arg max

- > How to train this?
- > Which loss?
- > What about the squared loss?

$$\mathbb{R}^k \ni \theta \mapsto \left\| \underset{y' \in \triangle^k}{\mathsf{arg max}} \langle y', \, \theta \rangle - y_t \right\|^2$$

What if we want a convex differentiable loss?

Idea primal-dual loss instead of primal-primal loss

PREDICTION with primal-dual link

TRAINING with primal-dual loss

Properties of the primal dual loss L

$$L(y,\theta) \geq 0$$

- $\blacktriangleright L(y,\theta)$ convex in θ
- > $L(y, \theta)$ differentiable in θ

>

$$L(y,\theta) = 0 \iff LINK(\theta) = y$$

The training optimization problem

- **>** What is given: dataset $(x^i, y^i)_{i \in [N]}$
- > What is chosen before training:
 - \gt class of models $\mathcal G$
 - > link and associated loss L
- > What is trained: model g

$$\min_{\mathbf{g} \in \mathcal{G}} \frac{1}{N} \sum_{i=1}^{N} L(y^{i}, \underline{\mathbf{g}}(x^{i}))$$

Outline of the presentation

From primal-dual links to primal-dual losses

Primal-dual losses from regularized arg max

Theoretical and experimental results on Fitzpatrick losses

Regularized arg max link

> Regularized arg max:

$$abla \Omega^*(\theta) = \underset{y' \in \triangle^k}{\operatorname{arg max}} \langle y', \ \theta \rangle - \Omega(y')$$

where Ω is a strongly convex function

Examples: sparsemax, softmax

Fenchel-Young loss: a natural choice for the loss

[Blondel, Martins, and Niculae, 2020]

> Fenchel-Young (FY) loss associated with $\nabla \Omega^*(\theta)$

$$L_{\Omega \oplus \Omega^*}(y, \theta) = \Omega(y) + \Omega^*(\theta) - \langle y, \theta \rangle$$

Conjugate function $\Omega^*(\theta) := \sup_{y' \in \mathbb{R}^k} \langle y', \theta \rangle - \Omega(y')$, $\forall \theta \in \mathbb{R}^k$

- **>** $L_{Ω⊕Ω*}$ ≥ 0, convex in θ
- $L_{\Omega \oplus \Omega^*}(y,\theta) = 0 \iff y = \nabla \Omega^*(\theta)$

Maximal monotone operator representation

[Burachik and Svaiter, 2002, Burachik and Martínez-Legaz, 2018]

> $\nabla \Omega^*$ is a (maximal) monotone operator

$$\langle \nabla \Omega^*(\theta) - \Omega^*(\theta'), \, \theta - \theta' \rangle \ge 0 \;, \; \forall \theta, \theta' \in \mathbb{R}^k$$

> Smallest convex representation of $\nabla \Omega^*$: the Fitzpatrick function $F[\partial \Omega]$ satisfying

$$F[\partial\Omega](y,\theta) \ge \langle y, \theta \rangle$$
 $F[\partial\Omega](y,\theta) = \langle y, \theta \rangle \iff \nabla\Omega^*(\theta) = y$
 $F[\partial\Omega] \text{ is convex}$

> We define the Fitzpatrick loss

$$L_{F[\partial\Omega]}(y,\theta) = F[\partial\Omega](y,\theta) - \langle y,\theta \rangle$$

New loss: the Fitzpatrick loss

[Fitzpatrick, 1988, Bauschke, McLaren, and Sendov, 2005]

$$L_{F[\partial\Omega]}(y,\theta) = \sup_{(y',\theta')\in\partial\Omega} \langle y'-y,\theta-\theta' \rangle$$

Subdifferential:
$$(y', \theta') \in \partial\Omega \iff \langle y'', \theta' \rangle - \Omega(y'') \leq \langle y', \theta' \rangle - \Omega(y')$$

New loss: the Fitzpatrick loss

$$\mathsf{L}_{\mathsf{F}[\partial\Omega]}(y,\theta) = \sup_{(y',\theta') \in \partial\Omega} \langle y' - y, \theta - \theta' \rangle$$

Fitzpatrick losses are tighter than Fenchel-Young losses

$$0 \leq \underbrace{L_{F[\partial\Omega]}}_{\text{Fitzpatrick}} \leq \underbrace{L_{\Omega \oplus \Omega^*}}_{\text{Fenchel-Young}}$$

New loss: the Fitzpatrick loss

> Fitzpatrick (FP) loss associated with $\nabla \Omega^*(\theta)$

$$L_{F[\partial\Omega]}(y,\theta) = \sup_{(y',\theta')\in\partial\Omega} \langle y'-y,\theta-\theta'\rangle$$

- **>** $L_{F[\partial\Omega]}$ ≥ 0, convex in θ
- $ightharpoonup L_{F[\partial\Omega]}(y,\theta)=0 \Longleftrightarrow y=\nabla\Omega^*(\theta)$

Appendices

Appendix: usual Ω

Identity:
$$\nabla \Omega^*(\theta) = \theta$$
 for $\Omega(y) = \frac{1}{2} \|y\|^2$

Argmax:
$$\nabla \Omega^*(\theta) = \arg\max_{y' \in \triangle^k} \langle y', \theta \rangle$$
 for $\Omega(y) = \iota_{\triangle^k}(y)$

Sparsemax:
$$\nabla \Omega^*(\theta) = P_{\triangle^k}(\theta)$$
 for $\Omega(y) = \frac{1}{2} \|y\|^2 + \iota_{\triangle^k}(y)$

Softmax:
$$\nabla \Omega^*(\theta) = \frac{\exp(\theta)}{\sum_{i=1}^k \exp(\theta_i)}$$
 for $\Omega(y) = \langle y, \log y \rangle + \iota_{\triangle^k}(y)$

$$\iota_{\triangle^k}(y) := \left\{ \begin{array}{l} 0, \text{ if } y \in \triangle^k \\ +\infty, \text{ otherwise} \end{array} \right.$$

Appendix: Sparsemax

> FY sparsemax loss

$$L_{\Omega \oplus \Omega^*}(y, \theta) = \frac{1}{2} ||y - \theta||^2 - \frac{1}{2} ||P_{\triangle^k}(y) - \theta||^2$$

> FP sparsemax loss

$$L_{F[\partial\Omega]} = \|y - \frac{y+\theta}{2}\|^2 - \|P_{\triangle^k}(\frac{y+\theta}{2}) - \frac{y+\theta}{2}\|^2$$

➤ The simplex projection is computed using a sorting algorithm [Martins and Astudillo, 2016].

Appendix: Softmax

> FY logistic loss

$$L_{\Omega \oplus \Omega^*}(y, \theta) = \log \sum_{i=1}^k \exp(\theta_i) + \langle y, \log y \rangle - \langle y, \theta \rangle$$

> FP logistic loss

$$L_{F[\partial\Omega]} = \langle y^* - y, \theta - \log y^* \rangle$$

> Computation of $y^* = y^*(y, \theta)$

$$y_i^{\star} := \begin{cases} e^{-\lambda^{\star}} e^{\theta_i}, & \text{if } y_i = 0 \\ \frac{y_i}{W(y_i e^{\lambda^{\star} - \theta_i})}, & \text{if } y_i > 0 \end{cases}$$

by the **bisection** of $\lambda^* = \lambda^*(y, \theta)$ which is the unique solution of

$$e^{-\lambda^{\star}} \sum_{i: y_i = 0} e^{\theta_i} + \sum_{i: y_i > 0} \frac{y_i}{W(y_i e^{-(\theta_i - \lambda^{\star})})} = 1$$

Outline of the presentation

From primal-dual links to primal-dual losses

Primal-dual losses from regularized arg max

Theoretical and experimental results on Fitzpatrick losses

Theoretical contribution: target dependent FY loss

Theorem

Fitzpatrick losses are FY losses with target dependent Ω_y

$$\underbrace{L_{F[\partial\Omega]}(y,\theta)}_{\text{Fitzpatrick}} = \underbrace{L_{\Omega_y \oplus \Omega_y^*}(y,\theta)}_{\text{"Fenchel-Young"}}$$

Theoretical contribution: target dependent FY loss

Theorem

Fitzpatrick losses are FY losses with target dependent Ω_{ν}

$$\underbrace{L_{F[\partial\Omega]}(y,\theta)}_{\text{Fitzpatrick}} = \underbrace{L_{\Omega_{y} \oplus \Omega_{y}^{*}}(y,\theta)}_{\text{"Fenchel-Young"}}$$

> Target dependent $\Omega_y(y') = \Omega(y') + D_{\Omega}(y, y')$

Generalized Bregman divergence:

$$D_{\Omega}(y,y') = \Omega(y) - \Omega(y') - \sup_{\theta' \in \partial \Omega(y')} \langle y - y', \theta' \rangle,$$

- Σ Ω_y not necessarily strongly convex
- **Surprising news:** for sparsemax and softmax Ω_y is strongly convex

Test performance comparison FY vs FP

Dataset	FY sparsemax	FP sparsemax	FY logistic	FP logistic
Birds	0.531	0.513	0.519	0.522
Cal500	0.035	0.035	0.034	0.034
Delicious	0.051	0.052	0.056	0.055
Ecthr A	0.514	0.514	0.431	0.423
Emotions	0.317	0.318	0.327	0.320
Flags	0.186	0.188	0.184	0.187
Mediamill	0.191	0.203	0.207	0.220
Scene	0.363	0.355	0.344	0.368
Tmc	0.151	0.152	0.161	0.160
Unfair	0.149	0.148	0.157	0.158
Yeast	0.186	0.187	0.183	0.185

Test performance comparison for **label proportion estimation** with LBFGS algorithm

- > FY and FP sparsemax: same computational cost
- > FP logistic higher computational cost than FY logistic

Theoretical contribution: lowerbound on FP loss

Theorem

Lowerbound on Fitzpatrick losses

$$\langle y^{\star} - y, \nabla^2 \Omega(y^{\star})(y^{\star} - y) \rangle \le L_{F[\partial \Omega]}(y, \theta)$$

where
$$y^{\star} - y = \nabla_{\theta} L_{F[\partial\Omega]}(y,\theta)$$

Thank you for your attention!

Thank you for your attention!

- Heinz Bauschke, D. McLaren, and Hristo Sendov. Fitzpatrick functions: Inequalities, examples, and remarks on a problem by S. Fitzpatrick. *Journal of Convex Analysis*, 13, 07 2005.
- Mathieu Blondel, André FT Martins, and Vlad Niculae. Learning with Fenchel-Young losses. *Journal of Machine Learning Research*, 21(35):1–69, 2020.
- Regina S Burachik and Juan E Martínez-Legaz. On Bregman-type distances for convex functions and maximally monotone operators. *Set-Valued and Variational Analysis*, 26:369–384, 2018.
- Regina Sandra Burachik and Benar F Svaiter. Maximal monotone operators, convex functions and a special family of enlargements. *Set-Valued Analysis*, 10:297–316, 2002.
- Simon Fitzpatrick. Representing monotone operators by convex functions. In *Workshop/Miniconference on Functional Analysis and Optimization*, volume 20, pages 59–66. Australian National University, Mathematical Sciences Institute, 1988.

Andre Martins and Ramon Astudillo. From softmax to sparsemax: