EXERCISE - I

SINGLE CORRECT (OBJECTIVE QUESTIONS)

- 1. The area of the region bounded by the curves y = | x - 2 |, x = 1, x = 3 and the x-axis is
- (A) 3
- (B) 2
- (C) 1
- (D) 4
- **2.** The area enclosed between the curve $y = log_e(x + e)$ and the coordinate axes is
- (A) 4
- (B) 3
- (C) 2
- (D) 1
- 3. The area of the figure bounded by the curves $y = \ln x \& y = (\ln x)^2$ is
- (A) e + 1 (B) e 1
- (C) 3 e
- (D) 1
- **4.** The area enclosed by the curves $y=\cos x$, $y=1+\sin 2x$ and $x = \frac{3\pi}{2}$ as x varies from 0 to $\frac{3\pi}{2}$, is
- (A) $\frac{3\pi}{2}$ 2 (B) $\frac{3\pi}{2}$ (C) $2 + \frac{3\pi}{2}$ (D) $1 + \frac{3\pi}{2}$
- 5. Let 'a' be a positive constant number. Consider two curves C_1 : $y = e^x$, C_2 : $y = e^{a-x}$. Let S be the area of the part surrounding by C₁, C₂ and the y-axis, then
- $\underset{a\to 0}{\text{Lim}} \frac{S}{a^2} \text{ equals}$
- (A) 4
- (B) 1/2
- (C) 0
- (D) 1/4
- **6.** Suppose y = f(x) and y = g(x) are two functions whose graphs intersect at the three points (0, 4), (2, 2)and (4, 0) with f(x) > g(x) for 0 < x < 2 and f(x) < g(x)for 2 < x < 4.
- If $\int [f(x)-g(x)]dx=10$ and $\int [g(x)-f(x)]dx=5$, then area
- between two curves for 0 < x < 2, is
- (A)5
- (B) 10
- (C) 15
- (D) 20
- **7.** The area enclosed by the curve $y^2 + x^4 = x^2$ is

- (A) $\frac{2}{3}$ (B) $\frac{4}{3}$ (C) $\frac{8}{3}$ (D) $\frac{10}{3}$
- 8. The area of the region (s) enclosed by the curves $y = x^2$ and $y = \sqrt{|x|}$ is
- (A) 1/3
- (B) 2/3
- (C) 1/6
- (D) 1

- 9. The area of the closed figure bounded by y = x, y = -x & the tangent to the curve $y = \sqrt{x^2 - 5}$
- at the point (3, 2) is (A) 5
 - (B) $2\sqrt{5}$
- (C) 10
- (D) $\frac{5}{3}$
- **10.** The area bounded by the curve $y = xe^{-x}$; xy = 0and x = c where c is the x-coordinate of the curve's inflection point, is
- (A) $1-3e^{-2}$ (B) $1-2e^{-2}$ (C) $1-e^{-2}$

- **11.** The line y = mx bisects the area enclosed by
- the curve y = 1 + 4x x^2 & the line x = 0, $x = \frac{3}{2}$ &
- y = 0. Then the value of m is
- (A) $\frac{13}{6}$ (B) $\frac{6}{13}$ (C) $\frac{3}{2}$
- (D) 4
- **12.** The area bounded by the curves $y = -\sqrt{-x}$ and
- $x = -\sqrt{-y}$ where x, $y \le 0$
- (A) cannot be determined
- (B) is 1/3

- (C) is 2/3
- (D) is same as that of the figure bounded by the curves
- $y = \sqrt{-x}$; $x \le 0$ and $x = \sqrt{-y}$; $y \le 0$
- **13.** If (a, 0); a > 0 is the point where the curve y = sin 2x - $\sqrt{3}$ sinx cuts the x-axis first, A is the area bounded by this part of the curve, the origin and the positive x-axis, then
- (A) $4A + 8 \cos a = 7$
- (B) $4A + 8\sin a = 7$
- (C) $4A 8 \sin a = 7$
- (D) $4A 8 \cos a = 7$
- **14.** Consider two curves $C_1 : y = \frac{1}{y}$ and $C_2 : y = \ell nx$
- on the xy plane. Let D₁ denotes the region surrounded by C_1 , C_2 and the line x = 1 and D_2 denotes the region surrounded by C_1 , C_2 and the line x = a. If $D_1 = D_2$ then the value of 'a'
- (A) $\frac{e}{2}$
- (B) e
- (C) e 1 (D) 2(e 1)

15. The area bounded by the curve y = f(x), the x-axis & the ordinates x = 1 & x = b is $(b - 1) \sin (3b + 4)$. Then f(x) is

- (A) $(x 1) \cos (3x + 4)$
- (B) $\sin (3x + 4)$
- (C) $\sin(3x + 4) + 3(x 1) \cdot \cos(3x + 4)$
- (D) none

16. The area of the region for which $0 < y < 3 - 2x - x^2$ & x > 0 is

(A)
$$\int_{1}^{3} (3-2x-x^2) dx$$

(A)
$$\int_{1}^{3} (3-2x-x^2) dx$$
 (B) $\int_{0}^{3} (3-2x-x^2) dx$

(C)
$$\int_{1}^{1} (3-2x-x^2) dx$$
 (D) $\int_{1}^{3} (3-2x-x^2) dx$

(D)
$$\int_{1}^{3} (3-2x-x^2) dx$$

17. The area bounded by the curves $y = x(1 - \ell nx)$; $x = e^{-1}$ and positive x-axis between $x = e^{-1}$ and x = e is

(A)
$$\left(\frac{e^2 - 4e^{-2}}{5}\right)$$

(A)
$$\left(\frac{e^2 - 4e^{-2}}{5}\right)$$
 (B) $\left(\frac{e^2 - 5e^{-2}}{4}\right)$

(C)
$$\left(\frac{4e^2 - e^{-2}}{5}\right)$$

(C)
$$\left(\frac{4e^2 - e^{-2}}{5}\right)$$
 (D) $\left(\frac{5e^2 - e^{-2}}{4}\right)$

18. The curve $f(x) = Ax^2 + Bx + C$ passes through the point (1, 3) and line 4x + y = 8 is tangent to it at the point (2, 0). The area enclosed by y = f(x), the tangent line and the y-axis is

- (A) $\frac{4}{3}$ (B) $\frac{8}{3}$ (C) $\frac{16}{3}$ (D) $\frac{32}{3}$

19. Let y = g(x) be the inverse of a bijective mapping f: R \rightarrow R f(x) = 3x³ + 2x. The area bounded by graph of g(x), the x-axis and the ordinate at x = 5 is

- (A) $\frac{5}{4}$ (B) $\frac{7}{4}$ (C) $\frac{9}{4}$ (D) $\frac{13}{4}$

20. A function y = f(x) satisfies the differential equation, $\frac{dy}{dx} - y = \cos x - \sin x$, with initial condition that y is bounded when $x \to \infty$. The area enclosed by y = f(x), $y = \cos x$ and the y-axis in the 1st quadrant

- (A) $\sqrt{2}_{-1}$ (B) $\sqrt{2}$ (C) 1
- (D) $\frac{1}{\sqrt{2}}$