Final Exam

Program:

Computer Science

Course Name:

Compilers

Course Code: Instructor(s):

CS419 Dr. Amin Allam Date:

27/6/2021

Duration:

Total Marks:

2 hours 60 marks

تعليمات هامة:

• حيازة التلوفون المحمول مفتوحا داخل لجنة الأمتحان يعتبر حالة غش تستوجب العقاب وإذا كان ضرورى الدخول بالمحمول فيوضع مغلقا في الحقانب

 لا يسمح بدخول سماعة الأذن أو البلوتوث. • لايسم بدخول أي كتب أو ملازم أو أوراق داخل اللجنة والمخالفة تعتبر حالة غش.

• Exam consists of 40 multiple-choice questions in 6 pages. Each question weights 1.5 marks.

· Record in the bubble sheet exactly ONE answer for each question.

⇒ For questions 1 to 6, consider the subset construction algorithm to convert the following NFA to DFA Qa (without minimization). Let T(s,a)=r means that there exists a direct transition (edge) in the NFA that starts from state s and ends at state r having the label a. The possible transition labels are $\{a, b, m\}$.

The NFA consists of 8 nodes (labelled from 0 to 7) and the following 9 transitions:

 $T(0,\varepsilon) = 1, T(0,\varepsilon) = 4, T(1,a) = 2, T(2,m) = 3, T(4,\varepsilon) = 5,$

 $T(4,\varepsilon) = 6$, T(5,a) = 7, T(6,b) = 7, $T(7,\varepsilon) = 0$.

The start state of the NFA is 0 and the accepting state is 3.

1 The start state of the resulting DFA is the ε -closure of state 0 in the original NFA, which is:

A {0} B {0,1} C {0,1,2} D {0,1,4} E {0,1,4,5,6}

2 The following state belongs to the resulting DFA:

✓ 3 The following state belongs to the resulting DFA:

A $\{0,1,2,3,4,5,6\}$ B $\{1,2,3,4,5,6,7\}$ C $\{0,1,2,3,5,6,7\}$ D $\{0,1,2,4,5,6,7\}$ E $\{0,1,2,3,4,5,7\}$

/ 4 The following state belongs to the resulting DFA:

(A) {0,1,4,5,6,7} (B) {1,2,4,5,6,7} (C) {0,1,2,3,5,6} (D) {1,2,3,5,6,7} (E) {0,1,3,4,5,7}

5 The number of transitions (edges) labelled a in the resulting DFA (without including transitions to or from the hidden error state) is:

A1 B 21 C 3 D 4 E 5

6 The number of transitions (edges) labelled b in the resulting DFA (without including transitions to or from the hidden error state) is:

E 5 C 3 D 4 B 2

	CO III ON PROPERTY OF
\bigcirc For questions 7 to 12, consider the DFA minimization algorithm construct an equivalent DFA with the minimum number of states. Let a direct transition (edge) in the DFA that starts from state s and end possible transition labels are $\{a,b\}$. • The original DFA consists of 5 nodes (labelled from 0 to 4) and the $T(0,a) = 1$, $T(0,b) = 2$, $T(1,a) = 1$, $T(1,b) = 3$, $T(2,a) = 1$, $T(2,a) = 1$, $T(3,b) = 3$, $T(3,a) = 1$, $T(3,b) = 3$, $T(3,b)$	following 8 transitions: (a,b) = 2, $T(3,b) = 4$, $T(4,b)$
The number of states in the resulting DFA is: The number of states in the resulting DFA is: A 1 B 2 C 3 4 E 5 A 1 B 2 C 3 D 4 E 5 The following original DFA states are combined to form one states are combined to form o	te in the resulting DFA:
A {0} B {0,1} Log (0,2) Lo	te in the resulting DFA:
10 The following original DFA states at [3] A {2,3} B {2,4} C {2,3,4} D {3,4} (3) The number of transitions (edges) labelled a in the resulting D	FA (without including trans
or from the hidden error state) is:	
A 1 B 2 C 3 D 4 E 5 A 1 B 2 C 3 D 4 E 5	FA (Without including dans
6 9 0 2 b 3 b 3 b	
b	
accept that	
non a prinzi 3	0
G1 4- (0,2)-01
G2 (0, 1,20) b	(b)
Gy 375	(3) P
.)	

For questions 13 to 18, consider the following BNF grammar which consists of 5 tokens \Rightarrow For questions and 4 non-terminals $\{E, T, H, Y\}$. Assume that a \$ exists after the last input token. The start symbol is E: E = { ... (11+1) $E \rightarrow TH$ H = {+, =3 ($H \to +E \mid \varepsilon$ $T \to (E) \mid \text{int } Y$ $Y \rightarrow \times T \mid \varepsilon$ T= (, ; n+ 3 13 The set First(E) consists exactly of: C { int } (, int } 7= {x, E} $\mathbb{E} \{ (, \text{int}, \varepsilon) \}$ 14 The set First(H) consists exactly of: $A\{\varepsilon\}$ $B\{+\}$ $C\{\times\}$ $B\{+,\varepsilon\}$ $E\{+,\times,\varepsilon\}$ 15 The set Follow(E) consists exactly of: E= {\$,)} B()) C(\$) (1),\$ E { + ,) , \$ } H= E& [] 16 The set Follow(H) consists exactly of: T= \ +, \(\mathcal{E}, \pm \) } B()) C(\$) D(),\$} $E\{+,),\$\}$ 17 The set Follow(T) consists exactly of: C {\$} D {),\$} E {+,),\$} Y= }+, t,) { 18 The set Follow(Y) consists exactly of: C { \$ } E {+,),\$} D {),\$}

First (E) = 2 (, int }

First (E) = 2 (, int }

First (H) = 2 + 1 = 3

Fallow (E) = 3 + 3

Fallow (H) = 3 + 3

Follow (H) = 3 + 3

Follow (T) = 2 + 3

Follow (T) = 2 + 3

75.74

During LL(1) parsing, if the stack top is T and the current input token is (, the action T pop(T), push((), push(T), push(()) T pop(T), push(()), push(T), push(()) T push(()), push(T) T pop(T) T push(()), push(T) T push(T) pu

During LL(1) parsing, if the stack top is T and the current input token is), the action $Gen \neq falle$ A pop(T), push((), push(E), push())

B pop(T), push()), push(E), push()C push(int), push(Y)D pop(T)E flag an error

)E(
int
E

y

x

y-> xy

T

For questions 27 to 33, consider SLR(1) bottom-up parsing of the following BNF grammar which consists of 3 tokens $\{a, b, c\}$ and 3 non-terminals $\{S, X, Y\}$. The start symbol is S. $S \to X \mid Cb \qquad X \to a X b \mid Y \qquad Y \to C$ In order to perform SLR(1) bottom-up parsing, the DFA of LR(0) items must be constructed. T(s,a) = r means there is a transition that starts from state s and ends at state r having the label a. Let T(0,X) = 1, T(0,c) = 2, T(0,a) = 3, T(0,Y) = 4, T(2,b) = 5, T(3,X) = 6, T(3,c) = 7, T(6,b) = 8.From the above BNF grammar, the start state (State 0) of the DFA is: $S \rightarrow \bullet X$, $S \rightarrow \bullet cb$, $X \rightarrow \bullet aXb$, $X \rightarrow \bullet Y$, $Y \rightarrow \bullet c$ State 1 of the above DFA is the following LR(0) item: $BS \to X \bullet BS \to \bullet X \quad CS \to X \bullet , S \to \bullet cb , X \to \bullet aXb , X \to \bullet Y , Y \to \bullet c$ $DX \rightarrow aXb$, $X \rightarrow Y$ $ES \rightarrow \varepsilon$ State 2 of the above DFA is the following LR(0) item: $AS \rightarrow \bullet c$ $BS \rightarrow c \bullet b$, $Y \rightarrow c \bullet$ $CS \rightarrow c \bullet b$, $X \rightarrow \bullet aXb$, $X \rightarrow \bullet Y$, $Y \rightarrow c \bullet$ $DS \rightarrow c \cdot b$ $ES \rightarrow \cdot X$, $S \rightarrow c \cdot b$, $X \rightarrow \cdot aXb$, $X \rightarrow \cdot Y$, $Y \rightarrow c \cdot c$ 29 State 3 of the above DFA is the following LR(0) item: $AX \rightarrow a \cdot X b$, $X \rightarrow a \times X b$, $X \rightarrow Y$ $BX \rightarrow a \cdot X b$, $X \rightarrow Y \cdot Y \rightarrow C$ $CX \rightarrow a \cdot Xb$ $DX \rightarrow a \cdot Xb$, $X \rightarrow a \times Xb$, $X \rightarrow Y$, $Y \rightarrow C$ $ES \rightarrow \bullet X$, $S \rightarrow \bullet cb$, $X \rightarrow a \bullet Xb$, $X \rightarrow \bullet Y$, $Y \rightarrow \bullet c$ 30 State 4 of the above DFA is the following LR(0) item: $DX \rightarrow aXb$, $X \rightarrow Y \rightarrow EX \rightarrow Y$, $Y \rightarrow c$ 31 State 5 of the above DFA is the following LR(0) item: $E S \rightarrow cb \cdot E S \rightarrow \cdot X , S \rightarrow cb \cdot , X \rightarrow \cdot aXb , X \rightarrow \cdot Y , Y \rightarrow c \cdot X \rightarrow cb \cdot$ |32| T(3, Y) =C 2 D 3 E 4 follow (x) = {b, \$ } A 0 B 1 33 T(3,a) =· Callow (4) = & \$; b} C 2 D 3 E 4 A 0 B 1

the following BNF grammar (the same
Qd \Rightarrow For questions 34 to 40, consider $SLR(1)$ bottom-up parsing of the following BNF grammar (the same grammar of the previous question) which consists of 3 tokens $\{a, b, c\}$ and 3 non-terminals $\{S, X, Y\}$. The start symbol is S .
$S \to X \mid cb$ $X \to a X b \mid Y$ $Y \to c$ Assume a \$ exists after the last input token. Assume push() and pop() operations are applied to the parsing stack. The first step in the $SLR(1)$ bottom-up parsing is to construct the DFA of $LR(0)$ items, parsing stack. The first step in the $SLR(1)$ bottom-up parsing is to construct the DFA of $LR(0)$ items, parsing stack. The first step in the starts from state s and ends at state r having the label a . Let
State 0 of the DFA is: $S \rightarrow \cdot X$, $S \rightarrow \cdot cb$, $X \rightarrow \cdot aXb$,
The first step in the $SLR(1)$ bottom-up parsing of the above E . A push(S) B push(X) C push(Y) push(0) E push(ε) A push(S) B push(X) C push(Y) push(0) E push(ε)
A push(S) B push(X) C push(Y) push(0) E push(y) 35 During $SLR(1)$ parsing, if the stack top is 0 and the current input token is a, the following is done A push(a) and remove the current input token B pop(0) and remove the current input token C pop(0), push(a) and remove the current input token D flag an error Push(a), push(3) and remove the current input token
36 During SLR(1) parsing, if the stack top is 2 and the current input token is \$ (no more input), the
A pop(2), pop(c), push(X), push(1) B pop(2), pop(c), push(X), push(2) C pop(2), pop(\$\frac{1}{2}\$), and remove the current input token f D flag an error f pop(2), pop(c), push(Y), push(4)
During $SLR(1)$ parsing, if the stack top is 6 and the current input token is b, the following is done push(b), push(8) and remove the current input token B pop(6) and remove the current input token C push(b) and remove the current input token D flag an error E pop(6), pop(X), pop(3), pop(a), push(X), push(4)
During $SLR(1)$ parsing, if the stack top is 6 and the current input token is a, the following is done in A push(a), push(8) and remove the current input token B pop(6) and remove the current input token D flag an error D push(a) and remove the current input token D flag an error D pop(6), pop(X), pop(3), pop(a), push(X), push(4)
During $SLR(1)$ parsing, if the stack top is 7 and the current input token is b, the following is don A pop(7), pop(c), push(Y), push(3) B pop(7), pop(c), push(Y), push(4) C pop(7), pop(b), and remove the current input token D flag an error E pop(7), pop(c), push(X), push(6)
During $SLR(1)$ parsing, if the stack top is 8 and the current input token is a , the following is dor A pop(8), pop(X), pop(a), push(X) B pop(8), pop(3), pop(6), pop(a), push(X), push(4) C pop(8), pop(b), and remove the current input token D flag an error E pop(8), pop(X), pop(6), pop(a), push(X), push(7)