가 .

〈국문요약문〉

	본 연구는 토양 및 작물의 상태에 따라 입제비료를 ISO11783				
연구의 목적 및 내용	통신규격을 기반으로 하여 적재적소에 정량 살포되는 시스템 개				
	발을 목적으로 한다.				
	토양 및 직	물의 정보를	획득하기 위하	하여 분광분석	식 토양 유기
	물 측정 장치	의 시작기를	제작하여 토약	양 유기물 측	정 장치 실내
	성능평가를 하였다. 그리고 콩 생육 계측시스템을 개발하여 콩의				
	생육데이터를 취득한 후 이를 이용하여 추정모델을 개발하였다.				
	원심식 변량 시비 시스템 연구에서는 기존에 판매중인 원심식 살				
	포기에 출구위치 조절장치, 시비량 조절장치를 부착하여 개량하였				
	다. 개량한 변량시스템의 제어요인 별로 살포패턴을 분석 Data				
	base를 구축하여 시비량 조절장치와 출구위치 조절장치 제어를 통				
연구개발성과	해 적재적소에 비료를 살포하는 변량 시비 시스템을 개발하였다.				
	제어장치가 장착된 모니터부, 센서봉, 관입 원추로 구성된 관입				
	식 토양 유기물 측정 장치 개발하였다. 측정장치의 크기는				
	250(L)×105(W)×70(H) mm, 센서봉을 포함한 전체 높이는 770				
	mm이다. 콩의 생육을 측정하기 위하여 식생지수 NDVI, GNDVI				
	를 이용한 추정모델 개발하여 회귀분석결과 GNDVI를 이용한 모				
	델이 NDVI를 이용한 모델보다 높은 성능이 나타났다. 건물중을				
	추정한 경우, GNDVI의 정확도를 나타내는 R ² 는 0.740, 정밀도를				
	나타내는 RMSE는 17.5g으로 나타났고, NDVI의 경우, R ² 는				
	0.639, RMSE는 20.56g으로 나타났다. 시비량 조절장치, 출구위치				
	조절장치, GPS를 부착하여 주행속도 및 살포량 변화에 따라 변량				
	시비가 실시되는 장치를 제작하여 살포 균일도 시험결과, 변이계				
	수가 15% 이하로 나타나 균일한 살포가 가능한 것으로 나타났다. 기존 콩 재배의 경우, 시비에 사용되는 비료의 양이 약 20% 감				
연구개발성과의 활용계획 (기대효과)	소가 기대된다. 또한 변량시비기술의 활용으로 처방량의 15% 범				
	위내의 오차로 비료를 살포함으로써 비료의 과다집중으로 인한				
	토양오염 및 작물의 피해 최소화가 될것으로 판단된다. 그리고				
	콩 뿐만 아니라 다른 밭작물에도 적용 가능하여 밭작물 기계화에				
	큰 기여를 할 것으로 예상된다. 이와같이 투입농자재를 절감할				
	수 있는 정밀농업의 기반의 확보로 농업기계 관련 및 농업센서				
	관련 산업의 활성화가 예상된다.				
중심어					
	정밀농업	콩	토양센서	생육계측	변량제어
(5개 이내)					