Санкт-Петербургский Государственный Университет Факультет Прикладной Математики и Процессов Управления

Отчет о практической работе №2 "СОЗДАНИЕ ПРОГРАММЫ ДЛЯ МОДЕЛИРОВАНИЯ СИСТЕМ РАСПОЗНАВАНИЯ ЛЮДЕЙ ПО ЛИЦАМ" в рамках курса "Прикладные задачи построения современных вычислительных систем"

> Выполнил студент группы 18.Б11-пу Костоломов Никита Александрович

Оглавление

Цель работы	3
Тестовые данные	4
Подбор параметров	5
Histogram	5
Немодифицированные лица	5
Лица в масках	6
Деидентифицированные лица	7
Scale	8
Немодифицированные лица	8
Лица в масках	9
Деидентифицированные лица	10
Gradient	11
Немодифицированные лица	11
Лица в масках	12
Деидентифицированные лица	13
DFT	14
Немодифицированные лица	14
Лица в масках	15
Деидентифицированные лица	16
DCT	17
Немодифицированные лица	17
Лица в масках	18
Деидентифицированные лица	19
Выводы	19
Тестирование классификатора	20
Histogram	20
Немодифицированные изображения	20
Лица в масках	21
Деидентифицированные лица	22
Gradient	22
Немодифицированные лица	23
Лица в масках	24
Деидентифицированные лица	25
Scale	26
Немодифицированные лица	26
Лица в масках	27
Деидентифицированные лица	28
DFT	29
Немодифицированные лица	29
Лица в масках	30
Деидентифицированные лица	31

Заключение	47
Деидентифицированные лица	44
Лица в маске	40
Немодифицированные лица	36
Параллельная система	36
Выводы	35
Деидентифицированные лица	34
Лица в масках	33
Немодифицированные лица	32
DCT	32

Цель работы

Целью данной работы является реализация классификатора для распознавания лиц по критерию минимума расстояний, проведение анализа зависимости точности классификации изображений от параметров функции преобразований, проведение тестирования реализованного классификатора и реализация классификатора, основанного на принципе голосований.

Также в ходе работы необходимо реализовать и использовать функции:

- Гистограмма яркости
- DFT
- DCT
- Scale
- Градиент

Тестовые данные

В качестве тестовых данных были отобраны фотографии лиц под разными углами. Данные были отобраны из датасета, который доступен по ссылке: https://git-disl.github.io/GTDLBench/datasets/att_face_dataset/. Также на лица были наложены медицинские маски, проведена процедура деидентификации. Примеры тестовых данных представлены на Рис. 1 – 3

Рис. 1 - Пример тестовых данных

Рис. 2 - Пример тестовых данных в масках

Рис. 3 - Пример тестовых данных, прошедших процедуру деидентификации

Подбор параметров

На данном этапе необходимо подобрать такие параметры к функциям преобразований, чтобы точность классификатора была максимальной.

Histogram

Не модифицированные лица

Исследование, проведенное с не модифицированными лицами показало, что наилучший параметр для метода гистограммы равен 19. Зависимость точности классификатора от параметра продемонстрирована на Рис. 4.

Рис. 4 - Зависимость точности классификатора от параметра для метода histogram, не модифицированные лица

Поиск лучшего параметра для метода histogram в случае с лицами в масках равен 15. (Рис. 5).

Best score: 0.7518518518518519 Parameter: 15 Dependence of accuracy on parameter value 0.75 0.74 0.73 0.72 0.71 0.70 0.69 0.68 0.67 20 30 60 10 40 50 param

Рис. 5 - Зависимость точности классификатора от параметра для метода histogram, лица в масках

Запуск классификатора на основе метода гистограммы с разными параметрами показал, что наилучшие значение параметра для работы с деидентифицированными изображениями равно 13. (Рис. 6).

Рис. 6 - Зависимость точности классификатора от параметра для метода histogram, деидентифицированные лица

Scale

Не модифицированные лица

Последовательный запуск классификатора с различными параметрами для метода scale показал, что лучшее значение параметра для работы с не модифицированными лицами равно 2 (Рис. 7).

Рис. 7 - Зависимость точности классификатора от параметра для метода scale,не модифицированные лица

Последовательный запуск классификатора с различными параметрами для метода scale показал, что лучшее значение параметра для работы с лицами в масках равно 7 (Рис. 8).

Рис. 8 - Зависимость точности классификатора от параметра для метода scale, лица в масках

Последовательный запуск классификатора с различными параметрами для метода scale показал, что лучшее значение параметра для работы с деидентифицированными лицами равно 7 (Рис. 9).

Best score: 0.85 Parameter: 7 Dependence of accuracy on parameter value 0.850 0.845 0.840 0.835 0.830 0.825 2 3 4 5 8 6 7 9

Рис. 9 - Зависимость точности классификатора от параметра для метода scale, деидентифицированные лица

param

Gradient

Немодифицированные лица

Запуск классификатора на основе метода gradient с различными параметрами показал, что наилучшие значение параметра для работы с немодифицированными изображениями равно 7. (Рис. 10).

Best score: 0.678125
Parameter: 7
Dependence of accuracy on parameter value

Рис. 10 - Зависимость точности классификатора от параметра для метода gradient, немодифицированные лица

Запуск классификатора на основе метода gradient с различными параметрами показал, что наилучшие значение параметра для работы с лицами в масках равно 16 (Рис. 11).

Best score: 0.6370370370370371 Parameter: 16 Dopperdone Dependence of accuracy on parameter value 0.64 0.62 0.60 0.58 0.56 0.54 0.52 10 12 14 16 18 6 8 20 param

Рис. 11 - Зависимость точности классификатора от параметра для метода gradient, лица в масках

Запуск классификатора на основе метода gradient с различными параметрами показал, что наилучшие значение параметра для работы с деидентифицированными изображениями равно 6. (Рис. 12)

Best score: 0.7714285714285715 Parameter: 6 Dependence of accuracy on parameter value 0.77 0.76 0.75 score 0.74 0.73 0.72 10 12 14 16 18 20 4 6 8 param

Рис. 12 - Зависимость точности классификатора от параметра для метода gradient, деидентифицированные лица

DFT

Не модифицированные лица

Исследование, проведенное с не модифицированными лицами показало, что наилучший параметр для метода DFT равен 26. Зависимость точности классификатора от параметра продемонстрирована на Рис. 13.

Рис. 13 - Зависимость точности классификатора от параметра для DFT, не модифицированные лица

Исследование, проведенное с лицами в масках, показало, что наилучший параметр для метода DFT равен 19. Зависимость точности классификатора от параметра продемонстрирована на Рис. 14.

Best score: 0.6259259259259259 Parameter: 19

Dependence of accuracy on parameter value

Рис. 14 - Зависимость точности классификатора от параметра для DFT, лица в масках

Исследование, проведенное с лицами в масках, показало, что наилучший параметр для метода DFT равен 19. Зависимость точности классификатора от параметра продемонстрирована на Рис. 15.

Best score: 0.7714285714285715 Parameter: 25

Dependence of accuracy on parameter value

Рис. 15 - Зависимость точности классификатора от параметра для DFT, деидентифицированные лица

DCT

Не модифицированные лица

Поиск лучшего параметра для DCT в случае не модифицированными лицами равен 15. (Рис. 16).

Best score: 0.715625 Parameter: 15 Dependence of accuracy on parameter value 0.72 0.70 0.68 0.66 9.04 2005 0.62 0.60 0.58 0.56 15 20 25 10 30 param

Рис. 16 - Зависимость точности классификатора от параметра для DCT, не модифицированные лица

17).

Поиск лучшего параметра для DCT в случае с лицами в масках равен 8. (Рис.

Рис. 17 - Зависимость точности классификатора от параметра для DCT, лица в масках

Поиск лучшего параметра для DCT в случае с деидентифицированными лицами равен 7. (Рис. 18).

Best score: 0.8107142857142857
Parameter: 7

Dependence of accuracy on parameter value

0.81

0.80

0.79

0.77

0.76

0.75

10

15

20

25

30

Рис. 18 - Зависимость точности классификатора от параметра для DCT, деидентифицированные лица

param

Выводы

Оптимальные параметры для методов приведены в таблице 1.

	Немодифицирован ные лица	Лица в масках	Деидентифицирова нные лица
Histogram	19	15	13
Scale	2	7	7
Gradient	7	16	6
DFT	26	19	25
DCT	15	8	7

Тестирование классификатора

Подобрав оптимальные параметры для методов, проведем тесты классификатора на тестовых выборках.

Histogram

Проведем тестирование классификатора на основе метода histogram с оптимальным параметром, размер обучающей выборки равен 10.

Не модифицированные изображения

Точность работы классификатора равна 1, что эквивалентно требуемому значению.

Рис. 19 - Результаты работы классификатора, используются не модифицированные изображения, параметр для метода равен 19

Точность работы классификатора равна 0.975, что близко к требуемому значению (Рис. 20).

Рис. 20 - Результаты работы классификатора, используются изображения лиц в масках, параметр для метода равен 15

Точность работы классификатора равна 1, что эквивалентно требуемому значению (Рис. 21).

Рис. 21 - Результаты работы классификатора, используются деидентифицированные лица людей, параметр для метода равен 13

Gradient

Проведем тестирование классификатора на основе метода gradient с оптимальным параметром, размер обучающей выборки равен 10.

Не модифицированные лица

Точность работы классификатора равна 0.95, что близко к требуемому значению (Рис. 22).

Рис. 22 - Результаты работы классификатора, используются не модифицированные лица людей, параметр для метода равен 7

Точность работы классификатора равна 0.85, что недостаточно близко к требуемому значению (Рис. 23).

Рис. 23 - Результаты работы классификатора, используются лица людей в масках, параметр для метода равен 16

Точность работы классификатора равна 0.975, что близко к требуемому значению (Рис. 24).

Рис. 24 - Результаты работы классификатора, используются деидентифицированные лица, параметр для метода равен 6

Scale

Не модифицированные лица

Точность работы классификатора равна 0.975, что близко к требуемому значению (Рис. 25).

Рис. 25 - Результаты работы классификатора, используются не модифицированные лица, параметр для метода равен 2

Точность работы классификатора равна 0.95, что близко к требуемому значению (Рис. 26).

Рис. 26 - Результаты работы классификатора, используются лица в масках, параметр для метода равен 7

Точность работы классификатора равна 0.975, что близко к требуемому значению (Рис. 27).

Рис. 27 - Результаты работы классификатора, используются деидентифицированные лица, параметр для метода равен 7

DFT

Не модифицированные лица

Точность работы классификатора равна 0.9, что близко к требуемому значению (Рис. 28).

Рис. 28 - Результаты работы классификатора, используются не модифицированные лица, параметр для метода равен 26

Точность работы классификатора равна 0.85, что недостаточно близко к требуемому значению (Рис. 29).

Рис. 29 - Результаты работы классификатора, используются лица в масках, параметр для метода равен 19

Точность работы классификатора равна 0.9, что близко к требуемому значению (Рис. 30).

Рис. 30 - Результаты работы классификатора, используются деидентифицированные лица, параметр для метода равен 25

DCT

Не модифицированные лица

Точность работы классификатора равна 0.975, что близко к требуемому значению (Рис. 31).

Рис. 31 - Результаты работы классификатора, используются неизмененные лица, параметр для метода равен 26

Точность работы классификатора равна 0.95, что близко к требуемому значению (Рис. 32).

Рис. 32 - Результаты работы классификатора, используются неизмененные лица, параметр для метода равен 8

Точность работы классификатора равна 0.95, что близко к требуемому значению (Рис. 33).

Рис. 33 - Результаты работы классификатора, используются неизмененные лица, параметр для метода равен 7

Выводы

Точность классификатора с использованием различных методов представлена в таблице 2.

	Немодифицирован ные лица	Лица в масках	Деидентифицирова нные лица
Histogram	1	0.975	1
Gradient	0.95	0.85	0.975
Scale	0.975	0.95	0.975
DFT	0.9	0.85	0.9
DCT	0.975	0.95	0.95

Таблица 2 - Результаты экспериментов

Параллельная система

На основе реализованных методов был создан классификатор, состоящий из простых систем, работающий по принципу голосования. С его помощью было рассмотрено оптимальное количество изображений для обучающей выборки на одном человеке, используя оптимальные параметры, полученных на предыдущих этапах.

Не модифицированные лица

В результате данного исследования выяснилось, что оптимальное количество изображений для обучающей выборки равно 5. Результаты экспериментов представлены на Рис. 34 – 39.

Рис. 34 - число изображений в обучающей выборке равно 1, точность равна 0.6972

Рис. 35 - число изображений в обучающей выборке равно 2, точность равна 0.8093

Рис. 36 - число изображений в обучающей выборке равно 3, точность равна 0.828

Рис. 37 - число изображений в обучающей выборке равно 4, точность равна 0.9167

Рис. 33 - число изображений в обучающей выборке равно 5, точность равна 0.945

Best score: 0.95

Рис. 38 - число изображений в обучающей выборке равно 6, наилучшая точность равна 0.95

Best score: 0.9528301886792453 Parallel System Stats 1.00 0.98 0.96 Accuracy 0.94 0.92 0.90 0.88 0.86 Ó 40 60 80 100 20 120 Quantity of images

Рис. 39 - число изображений в обучающей выборке равно 7, наилучшая точность равна 0.9528

Лица в маске

В результате данного исследования выяснилось, что оптимальное количество изображений для обучающей выборки равно 3. Результаты экспериментов представлены на Рис. 40 – 45.

Рис. 40 - число изображений в обучающей выборке равно 1, точность равна 0.7774

Рис. 41 - число изображений в обучающей выборке равно 2, точность равна 0.863

Рис. 42 - число изображений в обучающей выборке равно 3, точность равна 0.9

Рис. 43 - число изображений в обучающей выборке равно 4, точность равна 0.9053

Рис. 44 - число изображений в обучающей выборке равно 5, точность равна 0.92

Рис. 45 - число изображений в обучающей выборке равно 6, точность равна 0.98

Деидентифицированные лица

В результате исследования выяснилось, что оптимальное количество изображений для обучающей выборки равно 4. Результаты представлены на Рис. 46 - 49.

Рис. 46 - число изображений в обучающей выборке равно 1, точность равна 0.81

Рис. 47 - число изображений в обучающей выборке равно 2, точность равна 0.9188

Рис. 48 - число изображений в обучающей выборке равно 3, точность равна 0.9393

Description (1.000 - 0.995 - 0.995 - 0.985 - 0.985 - 0.975 - 0

Рис. 49 - число изображений в обучающей выборке равно 4, точность равна 0.975

Quantity of images

Заключение

В ходе данной работы были реализованы 5 функций преобразований, классификатор, основывающийся на одном из этих методов, а также классификатор, работающий по принципу голосований. Для каждой функции найдены оптимальные параметры. Для каждого типа изображений (не модифицированное, в маске, деидентифицированное) были подобраны оптимальные размеры обучающей выборки.