Project 01

ECE 317

Kai Brooks

Electrical and Computer Engineering Portland State University 2019-10-15

Contents

1	Ove	erview	1					
2	Circuit 1							
	2.1	Circuit Diagram	1					
		Output						
		Analysis						
3	Cir	cuit 2	4					
	3.1	Circuit Diagram	4					
		Output						
		Analysis						
4	Cir	cuit 3	6					
	4.1	Circuit Diagram	6					
		Analysis						

1 Overview

The purpose of this lab is to understand the fundamental usage of PECS and determine how variations in switching frequency, clocks, and pulse width modulator affect various parts of electric circuits.

2 Circuit 1

2.1 Circuit Diagram

Figure 1: Circuit

Figure 2: Simulation Parameters

2.2 Output

Figure 3: Full waveform

Figure 4: Zoomed waveform

Figure 5: Comparative waveform

2.3 Analysis

Peak Amplitude	Period	Pulse Width	Duty Ratio	
10V	$10\mu\mathrm{s}$	$4\mu \mathrm{s}$	0.4	

Table 1: Circuit 1 calculations

f

Question

Taking the above plots into consideration, explain why you would expect to get the steady state value you found above?

Answer

$$V_{SS} = V_{peak} \cdot Duty Ratio$$
 (1)

It is expected to get the steady state above as the peak voltage is 10V and the duty ratio is 0.4.

3 Circuit 2

3.1 Circuit Diagram

Figure 6: Sawtooth wave circuit

Figure 7: Simulation Parameters

3.2 Output

Figure 8: Comparative waveform

3.3 Analysis

Peak Amplitude	Period
2V	$200\mu \mathrm{s}$

Table 2: Circuit 2 calculations

Question

Given that $K_1 = -1$, what other factors in the circuit determines the peak amplitude and why?

Answer

The value of K_3 , as the cap charge is negative in the summing equation, when the value exceeds K_3 the circuit generates a clock signal and the cap discharges.

4 Circuit 3

4.1 Circuit Diagram

Figure 9: Circuit (adjusted)

4.2 Analysis

	Switching	Duty	Peak-to-	Steady	Peak-to-
	Frequency	Ratio	peak	\mathbf{State}	peak
			${\bf Input}$	${f Average}$	Output
			Voltage to	\mathbf{Output}	Voltage
			${f Filter}$	$\mathbf{Voltage}$	Ripple
Circuit 1	100kHz	0.4	10V	4V	$540\mu\mathrm{V}$
Circuit 3	40kHz	0.5	10V	5V	$3.5 \mathrm{mV}$

Table 3: Comparative omnibus

Question

Explain the differences seen in the peak-to-peak ripple voltage values between Circuit 3 and Circuit 1. Are they in line with your expectations? Why?

Answer

$$K_1(V_{P1}) + K_3 < 0 (2)$$

The ripple is smaller in circuit 3 because the capacitor is being charged and discharged more frequently. This results in a smaller ripple voltage as seen in the above plots.