

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 October 2003 (09.10.2003)

PCT

(10) International Publication Number
WO 03/082360 A1

(51) International Patent Classification⁷: A61L 24/04,
24/00, 27/50, 27/16, 31/14, 31/04, A61K 9/16

Wendy [US/US]; 2 Ware Street, Apt. 306, Cambridge,
MA 02138 (US). BUISER, Marcia [US/US]; 480 Belmont
Street, Apt. #2, Watertown, MA 02472 (US). MANGIN,
Stephan [US/US]; 381 Eliot Street, Apt. #3, Ashland, MA
01721 (US).

(21) International Application Number: PCT/US03/09691

(74) Agent: GAGEL, John, L.; Fish & Richardson P.C., 225
Franklin Street, Boston, MA 02110 (US).

(22) International Filing Date: 28 March 2003 (28.03.2003)

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN,
YU, ZA, ZM, ZW.

(25) Filing Language: English

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(26) Publication Language: English

[Continued on next page]

(30) Priority Data:

10/109,966 29 March 2002 (29.03.2002) US
10/116,330 4 April 2002 (04.04.2002) US
10/232,265 30 August 2002 (30.08.2002) US

(71) Applicant (*for all designated States except US*): SCIMED
LIFE SYSTEMS, INC. [US/US]; One SciMed Place,
Maple Grove, MN 55311-1566 (US).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): LANPHERE, Janel
[US/US]; 125 Dana Avenue, Apt.#2, Hyde Park, MA
02136 (US). MCKENNA, Erin [US/US]; 39 Bay State
Road, Apt.#4F, Boston, MA 02215 (US). NAIMARK,

(54) Title: DRUG DELIVERY PARTICLE

WO 03/082360 A1

(57) Abstract: A drug delivery particle including a reservoir region having primarily large pores and a metering region. The particle can be highly spherical.

Best Available Copy

Published:

- *with international search report*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

DRUG DELIVERY PARTICLE

TECHNICAL FIELD

This invention relates to a drug delivery particle.

5

BACKGROUND

Therapeutic agents can be delivered systemically, for example, by injection through the vascular system or oral ingestion, or they can be applied directly to a site where treatment is desired. It is also often desirable that the therapeutic agent be delivered at desired dosages for an extended period of time.

10

SUMMARY

In a first aspect, the invention features a drug delivery device which includes a substantially spherical polymer particle having an internal reservoir region including relatively large pores containing therapeutic agent and a metering region substantially surrounding the reservoir region and having fewer relatively large pores.

15

In another aspect, the invention features a method of manufacturing a drug delivery particle by generating drops. For example, the method can include generating drops of a base polymer and a gelling compound, and combining the particles with a therapeutic agent.

20

In another aspect, the invention features a method of delivering a therapeutic agent to a patient. The method includes administering to a patient a substantially spherical polymer particle. The particle includes polyvinyl alcohol, and has an interior region having relatively large pores, a surface region having fewer relatively large pores, and a therapeutic agent carried by the particle.

Embodiments may include one or more of the following. The particle comprises PVA. The PVA is 1,3 diol acetalized. The polymer is modified by graft polymerization. The particle includes a polysaccharide. The polysaccharide is alginate. The particle has a coating of polymer. The coating is erodable. The coating covers a drug disposed on the surface of the particle. The therapeutic agent is effective for treatment of cancer. The particle has a sphericity of about 90% or more. The particle has a diameter of about 1 cm or less. The device is a collection of particles.

Embodiments may also include one or more of the following. The method includes reacting the base polymer and removing the gelling compound. The method includes drying the particle and exposing the dried particle to therapeutic agent. The method includes combining therapeutic agent prior to generating said drops. The gelling compound is a polysaccharide. The gelling compound is alginate. The method includes contacting the drops with a gelling agent. The method the gelling agent is a divalent agent. The base polymer is PVA. The method includes reacting the PVA by acetalization. The PVA has a molecular weight of about 75,000 g/mole or greater. The method includes modifying the viscosity of the base polymer and gelling compound prior to forming said drops. The method includes modifying the viscosity by heating. The method includes forming said drops by vibratory nebulization.

Embodiments may also include one or more of the following. The administration is by percutaneous injection. The administration is by a catheter. The therapeutic agent is effective treatment of uterine fibroids. Particles are delivered directly into a tissue mass. Particles are delivered through a body lumen, e.g., a vasicular lumen. The particles can be used in embolic applications.

Embodiment may include one or more of the following advantages. A sustained, controlled-dosage release of therapeutic agents can be effected by a substantially spherical agent-containing particle that includes a reservoir region in its interior and a metering region surrounding the reservoir region which controls the release of the agent from the particle.

Other features, objects and advantages follow. For example, features of the particles, including sizes, pore profiles, compressibility, sphericity, and composition and the methods for making and administering, follow and can be found in USSN _____ [01194/442001].

DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic illustrating administration of drug delivery particles;
FIG. 2 is a cross-sectional schematic illustrating release of drug from a particle;
FIG. 3A is a light micrograph of a collection of particles, while Fig. 3B is a scanning election microscope (SEM) photograph of a particle surface and FIGS. 3C – 15 3E are cross-sections of particles.

FIG. 4A is a schematic of the manufacture of a particle while Fig. 4B is an enlarged schematic of region A in FIG. 4A.

FIG. 5 is a photograph of gel-stabilized drops;

FIG. 6 is a graph of particles in uniformity.

5

DETAILED DESCRIPTION

Structure

Referring to FIG. 1, a drug delivery composition 10 is injected using a syringe 12 with a needle 14 that is used to puncture the skin 16 and extend into the liver 18. The tip of the needle 20 is disposed within the tissue mass of the liver near and/or 10 within a tumorous malignancy 22. The composition 10 includes a carrier fluid which carries drug delivery particles 24. The particles can be positioned about the lesion 22. In alternative embodiments, the particles can be delivered through the vasculature, e.g., by a catheter inserted into the hepatic artery. Another application includes treatment of uterine fibroids as described in USSN __ [01194/442001], supra.

15 Referring particularly to FIG. 2, the particles are substantially spherical and include an interior reservoir region 26 which is characterized by relatively large pores 27 and a metering region 28 which is characterized by relatively small pores 29. The large pores 27 in the reservoir region hold a supply of a therapeutic agent, such as a tumor-toxic agent, which diffuses through interpore passageways into the metering 20 region and is released from the surface 30 of the particle (arrows 32) to expose adjacent tissue. The porous structure of a particle is believed to create a therapeutic agent concentration gradient from relatively high therapeutic concentration in the reservoir region to lower concentrations in the metering region. The relative size of the pores in the regions and the relative thickness of the metering region control the rate of elution 25 of therapeutic agent from the particle. The substantially spherical shape of the particle contributes to symmetric elution in all directions. In addition, the relatively uniform thickness of the metering region surrounding the reservoir region enhances uniformity of elution dosage.

The particles are substantially formed of a highly water-insoluble, high 30 molecular weight polymer. As will be discussed further below, a preferred polymer is high molecular weight polyvinyl alcohol (PVA) that has been acetalized. Preferably,

the embolic particles are substantially pure intrachain 1,3 acetalized PVA and substantially free of animal derived residue such as collagen. In embodiments, the particles include a minor amount, e.g. less than about 0.2 weight %, of alginate or another polysaccharide or gelling material. The particle may also include an optional 5 coating 33. The coating erodes in the body, e.g. on contact with body fluid, as will be discussed below.

Referring to FIG. 3A, the particles have a substantially uniform shape and size. Referring to FIG. 3B, each particle has a well-defined outer spherical surface including relatively small, randomly located pores. Referring to FIGS. 3C – 3E, SEM images of 10 cross-sections through the particle, the body defines pores which provide metering of therapeutic agent release, as well as compressibility and other properties.

In embodiments, the small pore region near the periphery of the embolic particle is relatively stiff and incompressible, which enhances resistance to shear forces and abrasion. In addition, the variable pore size profile produces a symmetric 15 compressibility and, it is believed, a compressibility profile such that the particles are relatively easily compressed from a maximum, at rest diameter to a smaller, compressed first diameter but compression to even smaller diameter requires substantially greater force. A variable compressibility profile is believed to be due to the presence of a relative weak, collapsible inter-pore wall structure in the center region 20 where the pores are large, and a stiffer inter-pore wall structure near the surface of the particle, where the pores are more numerous and relatively small. The variable pore size profile also is believed to enhance elastic recovery after compression. The pore structure also influences the density of the embolic particles and the rate of therapeutic agent and body fluid uptake.

25 The particles can be delivered through a syringe or a catheter. The size of the lumen of the syringe or the catheter can be larger than the particle diameter to reduce compression of the particles during delivery, which can eject therapeutic agent from the particle prematurely. While compression can result in release of therapeutic agent, the metering region can retard substantial release under low compression force. In 30 embodiments, the particles are compressed during delivery in order to use a delivery device that has a small diameter to reduce patient trauma or more accurately position the particles about a lesion. The carrier fluid in which the particles are suspended can include therapeutic agent so that upon recovery to normal diameter, the agent is drawn

into the pores of the particle. For example, the particles can be delivered through a catheter having a lumen area that is smaller, e.g. 50% smaller or less, than the uncompressed cross-sectional area of the particles. The compression force is provided indirectly by increasing the pressure applied to the carrier fluid by pressing the syringe plunger. The particles are relatively easily compressed to diameters sufficient for delivery into the body. The robust, rigid surface region resists abrasion when the embolic particles contact hard surfaces such as syringe surfaces, hard plastic or metal stopcock surfaces, and the catheter lumen wall (e.g. Teflon) during delivery. Once in the body, the particles recover to original diameter for efficient transport in the carrier and body fluid stream. At the point of occlusion, the particles can again compress as they aggregate in an occlusion region. The particles form a dense occluding mass. The compression in the body is limited and the number of embolic particles needed to occlude a given diameter may be reduced. The particles can also be delivered directly into a tissue mass where reexpansion to a larger diameter firmly lodges the particle into the tissue.

In embodiments, the particles have a diameter in the range of 1 cm or less, e.g., 5 mm to 1 mm or less, e.g., about 1200 microns or less, and about 10 microns or more, e.g. about 400 microns or more and the pores are about 50 or 35 to 0.01 micron.

Preferably, the particles are classified in size ranges of about 500-700 microns, about 20 700-900 microns, or about 900-1200 microns. The particles have a mean diameter in approximately the middle of the range and variance of about 20% or less, e.g. 15% or 10% or less.

Referring specifically to FIG. 3C, the particles can be considered to include a center region, C, from the center of the particle to a radius of about $r/3$, a body region, B, from about $r/3$ to about $2r/3$ and a surface region, S, from $2r/3$ to r . The regions can be characterized by the relative size of the pores and the number of pores of given sizes. In embodiments, the center region has a greater number of relatively large pores than the body region and the surface region. The large pores are in the range of about 20 micron or more, e.g. 30 micron or more, or in the range of about 20 to 35 micron. The body region has a greater number of intermediate size pores than the surface region. The intermediate size pores are in the range of about 5 to 18 micron. In embodiments, the regions may also have different densities, with the density of the

surface region being greater than the density of the body region, and the density of the body region being greater than the density of the center region.

The size of the pores in each of the regions can also be characterized by a distribution. In embodiments, the predominant pore size(s) in the center region being 5 greater than the predominant pore size(s) in the body region and the predominant pore size(s) in the body region is greater than the predominant pore size(s) in the surface region. In embodiments, in the predominant pore size in the center region is 20 micron or more, e.g. 30 microns or more, or in the range of about 20 to 35 microns. The predominant pore size in the body region is about 18 micron or less, e.g. about 15 10 micron or less, or in the range of about 18 to 2 micron. The pores in the surface region are preferably predominantly less than about 1 micron, e.g. about 0.1 to 0.01 micron.

In embodiments, the predominant pore size in the body region is about 50 to 70% of the pore size in the center region and the pore size in the surface region is about 10% or less, e.g. about 2% of the pore size in the body region. The size of the pores on 15 the outer surface of the particle is predominantly in the range of about 1 micron or less, e.g. about 0.1 or 0.01 micron. In embodiments, the surface and/or surface region is substantially free of pores having a diameter larger than about 10 micron or larger than about 1 micron. In embodiments, the predominant pore size is in the region 0.8 or 0.9r to r is about 1 micron or less, e.g. 0.5 to 0.1 micron or less. The region from the center 20 of the particle to 0.8 or 0.9r has pores of about 10 micron or greater and/or has a predominant pore size of about 2 to 35 micron. In embodiments, the predominant pore size in the region 0.8 or 0.9r to r is about 5% or less, e.g. 1% or 0.3% or less than the predominant pore size in the region from the center to 0.9r. the largest pores in the 25 particles can have a size in the range of 1% or 5% or 10% or more of the particle diameter.

The size of the pores can be measured by viewing a cross-section as in Fig. 3C. For irregularly shaped pores, the maximum visible cross-section is used. The predominant pore size(s) can be found by measuring the size of the visible pores and plotting the number of pores as a function of size. The predominant pore size(s) are the 30 sizes that are about the maximum in the distribution. In Fig. 3C, the SEM was taken on wet particles including absorbed saline, which were frozen in liquid nitrogen and sectioned. (Fig. 3B was taken prior to sectioning.) In Figs. 3D and 3E, the particle was freeze-dried prior to sectioning and SEM analysis.

The density of the particles is such that they are readily suspended in the carrier fluid such as a mixture of saline and contrast solution and remain suspended during delivery. In embodiments, the density is in about 1.1 - 1.4g/cm³. For suspension in a saline-contrast solution, the density is about 1.2 - 1.3g/cm³. The sphericity after 5 compression in a catheter to about 50% or more of their cross-sectional area is about 0.90 or 0.95 or greater. In embodiments, the particles can be manually compressed, essentially flattened, while wet to less than 50% of original diameter and then, upon exposure to fluid, regain a sphericity of about 0.9 or more. The carrier fluid can be a pharmaceutically acceptable carrier such as saline or contrast agent or therapeutic agent 10 or a combination of these carriers. The particles or composition can be sterilized.

Manufacture

Referring to FIG. 4, a system for producing particles includes a flow controller 300, a drop generator 310, a gelling vessel 320, a reactor vessel 330, a gel dissolution chamber 340, a filter 350, a supply of therapeutic agent 360, a particle drying chamber 15 370, and a particle rehydrator vessel 380. The flow controller 300 delivers polymer solutions to a viscosity controller 305, which heats the solution to reduce viscosity prior to delivery to the drop generator 310. The drop generator 310 forms and directs drops into a gelling vessel 320, where drops are stabilized by gel formation. The gel-stabilized drops are transferred from the gelling vessel 320 to reactor vessel 330 where 20 the polymer in the gel-stabilized drops are reacted forming precursor particles. The precursor particles are transferred to a gel dissolution chamber 340, where the gel is dissolved. The particles are then filtered in a filter 350 to remove debris, sterilized, and packaged as a composition including the particles. As will be discussed below, the therapeutic agent can be incorporated into the particles at various stages. In the 25 embodiment illustrated, after filtering, the particles can be dried in a chamber 370, e.g. under vacuum (e.g., by lyophilization) with or without heat application or air dried with or without heat, e.g., at room temperature. The dried particles are then rehydrated in a vessel 380 which includes therapeutic agent. In the rehydration process, the therapeutic agent is drawn into the particles through the pore structure. The particles can then be 30 packed in a solution of therapeutic agent. The particles can be mixed with saline or contrast agent at the time of administration.

A base polymer and a gelling precursor are dissolved in water and mixed. The mixture is introduced to a high pressure pumping apparatus, such as a syringe pump (e.g., model PHD4400, Harvard Apparatus, Holliston, MA). Examples of base polymers include polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, poly vinyl sulfonate, carboxymethyl cellulose, hydroxyethyl cellulose, substituted cellulose, polyacrylamide, polyethylene glycol, polyamides, polyureas, polyurethanes, polyester, polyethers, polystyrene, polysaccharide, polylactic acid, polyethylene, polymethylmethacrylate and copolymers or mixtures thereof. A preferred polymer is polyvinyl alcohol. The polyvinyl alcohol, in particular, is hydrolyzed in the range of 80 to 99%. The weight average molecular weight of the base polymer can be in the range of 9000 to 186,000, 85,000 to 146,000 or 89,000 to 98,000. Gelling precursors include, for example, alginates, alginate salts, xanthan gums, natural gum, agar, agarose, chitosan, carrageenan, fucoidan, furcellaran, laminaran, hypnea, eucheuma, gum arabic, gum ghatti, gum karaya, gum tragacanth, hyalauronic acid, locust beam gum, arabinogalactan, pectin, amylopectin, other water soluble polysaccharides and other ionically crosslinkable polymers. A particular gelling precursor is sodium alginate. A preferred sodium alginate is high guluronic acid, stem-derived alginate (e.g. about 50 or 60% or more guluronic acid with a low viscosity e.g. about 20 to 80 cps at 20°C) which produces a high tensile, robust gel. High molecular weight PVA is dissolved in water by heating, typically above about 70°C, while alginates can be dissolved at room temperature. The PVA can be dissolved by mixing PVA and alginate together in a vessel which is heated to autoclave temperature (about 121°C). Alternatively, the PVA can be disposed in water and heated and the alginate subsequently added at room temperature to avoid exposing the alginate to high temperature. Heat can also be applied by microwave application. For PVA/alginate, the mixture is typically about 7.5 to 8.5%, e.g. about 8% by weight PVA and about 1.5 to 2.5%, e.g. about 2%, by weight alginate.

Referring to FIG. 4B, the viscosity controller 305 is a heat exchanger circulating water at a predetermined temperature about the flow tubing between the pump and drop generator. The mixture of base polymer and gelling precursor flows into the viscosity controller 305, where the mixture is heated so that its viscosity is lowered to a level for efficient formation of very small drops. For a high molecular weight PVA/alginate solution, the temperature of the circulating water is less than about 75°C and more than

about 60°C, for example, 65°C which maintains the mixture at a viscosity of 90-200 centipoise. For spherical particles, the viscosity of the drops is maintained so they are captured in the gelling vessel without splintering or cojoining which can create irregular, fibrous particles. In other embodiments, the flow controller and/or the drop 5 generator can be placed in a temperature-controlled chamber, e.g. an oven, or a heat tape wrap, to maintain a desired viscosity.

The drop generator 310 generates substantially spherical drops of predetermined diameter by forcing a stream of the mixture of base polymer and gelling precursor through a nozzle which is subject to a periodic disturbance to break up the jet stream 10 into drops. The jet stream can be broken into drops by vibratory action generated for example, by an electrostatic or piezoelectric element. The drop size is controlled by controlling the flow rate, viscosity, amplitude, and frequency at which the element is driven. Lower flow rates and higher frequencies produce smaller drops. A suitable electrostatic drop generator 310 is available from NISCO Engineering, model NISCO 15 Encapsulation unit VAR D, Zurich, Switzerland. In embodiments, the frequency is in the range of about 0.1 to 0.8 kHz. The flow rate through the droplet generator is in the range of about 1 to 12 mL per minute. The drop generator can include charging the drops after formation such that mutual repulsion between drops prevents drop 20 aggregation as they travel from the generator to the gelling vessels. Charging may be achieved by, e.g. an electrostatic charging device such as a charged ring positioned downstream of the nozzle.

Drops of the base polymer and gelling precursor mixture are captured in the gelling vessel 320. The gelling vessel 320 contains a gelling agent which interacts with the gelling precursor to stabilize drops by forming a stable gel. Suitable gelling agents 25 include, for example, a divalent cation such as alkali metal salt, alkaline earth metal salt or a transition metal salt that can ionically crosslink with the gelling agent. An inorganic salt, for example, a calcium, barium, zinc or magnesium salt can be used as a gelling agent. In embodiments, particularly those using an alginate gelling precursor, a suitable gelling agent is calcium chloride. The calcium cations have an affinity for 30 carboxylic groups in the gelling precursor. The cations complex with carboxylic groups in the gelling precursor resulting in encapsulation of the base polymer in a matrix of gelling precursor.

Referring to FIG. 5, a photo-image of the gelled particles, the gelling agent is in an amount selected in accordance with the desired properties of the particles. A pore structure in the center of the particle forms in the gelling stage. The concentration of the gelling agent can control void formation in the embolic particle, thereby controlling
5 the porosity gradient in the embolic particle. Adding non-gelling ions, for example, sodium ions, to the gelling solution can limit the porosity gradient, resulting in a more uniform intermediate porosity throughout the particle. In this manner the thickness and pore profile of the metering region can be controlled. In embodiments, the gelling agent is, for example, 0.01-10 weight percent, 1-5 weight percent or 2 weight percent in
10 deionized water.

Following drop stabilization, the gelling solution is decanted from the solid drops and the stabilized drops are transferred to the reactor vessel 330. In the reactor vessel 330, the stabilized drops are reacted to produce precursor particles. The reactor vessel includes an agent that chemically reacts with the base polymer, e.g. to cause
15 crosslinking between polymer chains and/or within a polymer chain. The agent diffuses into the stabilized drops from the surface of the particle in a gradient which, it is believed, provides more crosslinking near the surface of the stabilized drop compared to the body and center of the drop. Reaction is greatest at the surface of the drop, providing a stiff, abrasion resistant exterior. For polyvinyl alcohol, for example, the
20 vessel 330 includes aldehydes, such as formaldehyde, glyoxal, benzaldehyde, aterephthalaldehyde, succinaldehyde and glutaraldehyde for the acetalization of polyvinyl alcohol. The vessel 330 also includes an acid, for example, strong acids such as sulfuric acid, hydrochloric acid, nitric acid and weak acids such as acetic acid, formic acid and phosphoric acid. In embodiments, the reaction is primarily a 1,3
25 acetalization:

This intra-chain acetalization reaction can be carried out with relatively low probability of inter-chain crosslinking as described in John G. Pritchard "Poly(Vinyl Alcohol) Basic Properties And Uses (Polymer Monograph, vol. 4) (see p. 93-97),

10 Gordon and Breach, Science Publishers LTD., London, 1970, the entire contents of which is hereby incorporated by reference. Some OH groups along a polymer chain may remain unconverted since the reaction proceeds in a random fashion and there will be left over OH groups that do not react with adjacent groups.

Adjusting the amount of aldehyde and acid used, reaction time and reaction

15 temperature can control the degree of acetalization. In embodiments, the reaction time
is e.g., 5 minutes to 1 hour, 10 to 40 minutes or 20 minutes. The reaction temperature
can be 25°C to 150°C or 75°C to 130°C or 65°C. The reactor vessel is placed in a
water bath fitted with a orbital motion mixer. The crosslinked precursor particles are
washed several times with deionized water to neutralize the particles and remove any
20 residual acidic solution.

The precursor particles are transferred to the dissolution chamber 340 to remove the gelling precursor, e.g. by an ion exchange reaction. In embodiments, sodium alginate is removed by ion exchange with a solution of sodium hexa-metaphosphate (EM Science). The solution can include, for example, ethylenediaminetetraacetic acid (EDTA), citric acid, other acids and phosphates. The concentration of the sodium hexa-metaphosphate can be, for example, 1-20 weight %, 1-10 weight % or 5 weight % in deionized water. Residual gelling precursor, for example, sodium alginate, can be determined by an assay for detection of uronic acids in, for example, alginates containing mannuronic and guluronic acid residues. Residual alginate, for example, may be present in the range of about 20-35% by weight prior to rinsing and in the range of about 0.01-0.5% or 0.1-0.3% or 0.18% in the particles after rinsing for 30 minutes in water at about 23°C.

The particles are filtered through filter 350 to remove residual debris. Particles of 500 to 700 microns are filtered through a sieve of 710 microns and then a sieve of 300 microns. Particles of 700 to 900 microns are filtered through a sieve of 1000 microns and then a sieve of 500 microns. Particles of 900 to 1200 microns are filtered 5 through a sieve of 1180 microns and then a sieve of 710 microns.

The filtered particles are sterilized by a low temperature technique such as e-beam irradiation, and packaged, typically about 1 to 5 ml of particles in about 5 to 10 ml saline. In embodiments, electron beam irradiation can be used to pharmaceutically sterilize the particles to reduce bioburden. In e-beam sterilization, an electron beam is 10 accelerated using magnetic and electric fields, and focused into a beam of energy. This resultant beam can be scanned by means of an electromagnet to produce a "curtain" of accelerated electrons. The accelerated electron beam penetrates the collection of embolic particles to confer upon them electrons which destroy bacteria and mold to sterilize and reduce the bioburden in the embolic particles. Electron beam sterilization 15 can be carried out by sterilization vendors such as Titan Scan, Lima, Ohio.

The therapeutic agent can be incorporated in the particle at various stages. As discussed above, the agent may be added to the particle after particle formation. For example, the particle can be dried and rehydrated with the therapeutic agent or a solution including the therapeutic agent. Alternatively, the therapeutic agent can be 20 added during particle formation. For example, the agent can be mixed with PVA and alginate upstream of droplet formation or after droplet formation in the gelling vessel, reaction vessel, or dissolution chamber or in a separate step after any of these stages. The particles may also be used to deliver therapeutic agent at the stabilized drop stage without cross-linking the base polymer or at the precursor particle stage with 25 crosslinked base polymer with or without removing the gelling precursor or gelling agent. Alternatively, the therapeutic agent can be provided only to the surface and/or metering region, e.g., by coating particle, without including substantial amounts of agent in the interior portions of the particle, e.g., the reservoir region.

The particles can be coated to include high concentration of therapeutic agent 30 on their surface. The agent on the surface can release an initial dosage of agent while agent in the body of the particle provides a prolonged dosage over the extended period of time. The agent on the surface can be the same or different from the agent in the body of the particle. The agent on the surface can be applied by exposing the particle

to a high concentration solution of the agent. The agent coated particle can include another coating over the surface the therapeutic agent, e.g., a degradable polymer which erodes when the particle is administered or meters drug out flow from the surface, e.g., by providing a porous membrane. The coating can delay an initial burst of drug

5 release. The coating can be applied by dipping or spraying the particle. The erodable polymer could be a polysaccharide, such as an alginate. Suitable material for alginate coatings are described in Edwards-Levy Biomaterials 1999, Nov 20 (21) 2069-84; J. Microencapsol. 1999 May-June 16(3); 291-301; and Takka et al. J. Microencapsol. 1999 May-June 16(3), 275-90. Other erodable coatings include water soluable

10 polymers such as polyvinyl alcohol, e.g., that has not been cross-linked. Other coatings include biodegradeable poly DL-lactide-poly ethylene glycol (PELA) discussed in Zhou et al. J. Control Release 2001 Jul. 10; 75;(1-2):27-36 or gelatin as discussed in Huang et al. Int. J. Pharm 1995 May 10 182(1):93-100. Other coatings include hydrogels such as polyacrylic acid, haluronic acid, gelatin, or carboxymethyl cellulose.

15 Other coatings include polyethylene glycols (PEG), chitosan, polyesters such as polycaproloctones, and poly(de-lactic coglycolic acid (PLGA). Suitable coatings of these types are discussed in J. Control Release, vol. 78, 1-3, 17 Jan. 2002, pp. 15-24. The coatings can include therapeutic agent or be substantially free of therapeutic agent. The therapeutic agent in the coating can be the same or different as an agent on a

20 surface layer of the particle and/or within the particle. A polymer coating, e.g. an erodable coating, can be applied to the particle surface in cases where a high concentration of drug has not been applied to the particle surface. The fluoroscopic visibility of the particle can be enhanced by incorporating a highly radiopaque material such as a metal, e.g. tantalum or platinum into the polymer matrix of the particle or the

25 coating

The particles can be modified by chemical or physical modifications that affect attachment and/or release of the therapeutic agent, the visibility of the particles, or their shape. For example, the polymer of the particle can be modified by graft polymerization to, for example, provide a reactive side chain. A therapeutic agent is attached covelantly or ionically to the reactive moiety of the graft polymer. A polymer that is grafted to the particle can be further polymerized to influence polymer chain length to create a molecular level morphology or vary hydrophobicity. Suitable graft polymers include polymers with carboxylic acid, anhydride, or aceto-acetyl groups

which can be grafted to, e.g. PVA side groups modified to provide acrylic acids. Graft polymerization is discussed in Biomaterials, 2002 Feb. 23 (3) 863-71 and "Polyvinyl Alcohol Developments," Ed. C.A. Finch, John Wiley, 1992 (see especially sections 6.2.3 and 7.3.1). Suitable graft polymers also include peptides that include cell binding domains. Examples are discussed in Hubbell, Biomacromolecules, 2002, vol. 3, 710-23. Species capable of cell membrane penetrations e.g. polyluecine oligomer can be attached to the particle to enhance cell attachment. Targeting ligonds such as galactos can be introduced onto the surface of a particle. Galactos attachment onto polymers is discussed in Biotechnology Bioengineering, 2002 April 5 (78) 1-10. The grafted segment can be provided with reactive moieties such as amines, carboxylic acids or thiols to which therapeutic agent can be attached. The moieties can be used to modify the hydrophobic/hydrophilic and catonic/anionic nature of the particle surface. An example of a polymer that can be grafted is poly(vinyl alcohol)-graft-poly(lactic-co-glycolic acid) to produce brush-like branched polyesters for enhancing protein release, as discussed in Frauke-Pistel et al. J. Control Release 2001 May 18; 73(1):7-20.

Particle charged and hydrophobicity can be modified by grafting. For example, a negatively charged hydrophilic backbone poly (2-sulfobutyl vinyl alcohol)-g-poly(lactide-co-glycolide) is described in Jung et al. J. Control Release 2000 Jul 3; 67(2-3):157-69.

The polymer of the particle can also be modified by, e.g. block copolymerization to provide reactive moieties for graft polymerization and/or for direct therapeutic agent attachment. The polymer can also be modified to provide reactive groups at specific sites. For example, hydroxyl groups of PVA can be modified to provide more reactive sites, such as e.g. amines, carboxylic acids, or thiols.

Release kinetics can also be modified by controlling crosslinking. Techniques for crosslinking PVA and controlling release kinetics are discussed in Kim et al. Pharmaceutical Research, vol. 9, No. 1 (1992); Cosmetic and Pharm. App. For Polymers, Aug. 1990 p.709-14; and Polymer Mater. Sci. Eng. (1990) vol. 63, p. 64-7. Crosslinking is also described in A.R. Bachtsi and C. Kiparissides Journal of Microencapsulation, 1995, vol. 12 part 1, p. 23-35; Tobata et al. J. Control Release vol. 50, part 1-3, p. 123-133; and Orenti et al., Arch. Pharm (Weinheim) 2000 Dec: 333 (12), 421-4 and Sappimath et al., J.Biomat. Sci. Polym. Ed. 2000j 11(i); 27-43.

The shape of the particles can be modified by physical deformation followed by crosslinking as described in USSN 10/116,330 filed April 14, 2002, the entire contents of which is incorporated herein by reference. The particles can be coated on or incorporated into other medical devices, such as implantable devices including stents, 5 embolization coils, arterial filters, artificial heart valves, catheters, and balloons such as angioplasty balloons. Other medical delivery includes wound dressings.

Therapeutic Agents and Use

Therapeutic agents include materials that are biologically active to treat physiological condition. The agent can be active in release from the particle to tissue or 10 active as it resides in the particle and is exposed to tissue or body fluid in communication with the particle.

The term "therapeutic agent" includes one or more "therapeutic agents" or "drugs". The terms "therapeutic agents" and "drugs" are used interchangeably and include pharmaceutically active compounds, nucleic acids with and without carrier 15 vectors such as lipids, compacting agents (such as histones), virus (such as adenovirus, adeno-associated virus, retrovirus, lentivirus and a-virus), polymers, hyaluronic acid, gene therapies, proteins, cells, stem cells and the like, or combinations thereof, with or without targeting sequences.

Specific examples of therapeutic agents include, for example, pharmaceutically 20 active compounds, proteins, cells, stem cells, oligonucleotides, ribozymes, antisense oligonucleotides, DNA compacting agents, gene/vector systems (i.e., any vehicle that allows for the uptake and expression of nucleic acids), nucleic acids (including, for example, recombinant nucleic acids; naked DNA, cDNA, RNA; genomic DNA, cDNA or RNA in a noninfectious vector or in a viral vector and which further may have 25 attached peptide targeting sequences; antisense nucleic acid (RNA or DNA); and DNA chimeras which include gene sequences and encoding for ferry proteins such as membrane translocating sequences ("MTS") and herpes simplex virus-1 ("VP22")), and viral, liposomes and cationic and anionic polymers and neutral polymers that are selected from a number of types depending on the desired application. Non-limiting 30 examples of virus vectors or vectors derived from viral sources include adenoviral vectors, herpes simplex vectors, papilloma vectors, adeno-associated vectors, retroviral vectors, and the like. Non-limiting examples of biologically active solutes include anti-

thrombogenic agents such as heparin, heparin derivatives, urokinase, and PPACK (dextrophenylalanine proline arginine chloromethylketone); antioxidants such as probucol and retinoic acid; angiogenic and anti-angiogenic agents and factors; agents blocking smooth muscle cell proliferation such as rapamycin, angiopeptin, and

5 monoclonal antibodies capable of blocking smooth muscle cell proliferation; anti-inflammatory agents such as dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, acetyl salicylic acid, and mesalamine; calcium entry blockers such as verapamil, diltiazem and nifedipine; antineoplastic/antiproliferative/anti-mitotic agents such as paclitaxel, 5-fluorouracil, methotrexate, doxorubicin, daunorubicin,

10 cyclosporine, cisplatin, vinblastine, vincristine, epothilones, endostatin, angiostatin and thymidine kinase inhibitors; antimicrobials such as triclosan, dephalosporins, aminoglycosides, and nitrofurantoin; anesthetic agents such as lidocaine, bupivacaine, and ropivacaine; nitric oxide (NO) donors such as lisidomine, molsidomine, L-arginine, NO-protein adducts, NO-carbohydrate adducts, polymeric or oligomeric NO adducts;

15 anti-coagulants such as D-Phe-Pro-Arg chloromethyl ketone, an RGD peptide-containing compound, heparine, antithrombin compounds, platelet receptor antagonists, anti-thrombin antibodies, anti-platelet receptor antibodies, enoxaparin, hirudin, Warafin sodium, Dicumarol, aspirin, prostaglandin inhibitors, platelet inhibitors and tick antiplatelet factors; vascular cell growth promoters such as growth factors, growth

20 factor receptor antagonists, transcriptional activators, and translational promoters; vascular cell growth inhibitors such as growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an

25 antibody and a cytotoxin; cholesterol-lowering agents; vasodilating agents; agents which interfere with endogenous vasoactive mechanisms; survival genes which protect against cell death, such as anti-apoptotic Bcl-2 family factors and Akt kinase; and combinations thereof. Cells can be of human origin (autologous or allogenic) or from an animal source (xenogeneic), genetically engineered if desired to deliver

30 proteins of interest at the injection site. The delivery mediated is formulated as needed to maintain cell function and viability. Any modifications are routinely made by one skilled in the art.

Useful polynucleotide sequences include DNA or RNA sequences having a therapeutic effect after being taken up by a cell. Examples of therapeutic polynucleotides include anti-sense DNA and RNA; DNA coding for an anti-sense RNA; or DNA coding for tRNA or rRNA to replace defective or deficient endogenous molecules. The polynucleotides can also code for therapeutic proteins or polypeptides. A polypeptide is understood to be any translation product of a polynucleotide regardless of size, and whether glycosylated or not. Therapeutic proteins and polypeptides include as primary example, those proteins or polypeptides that can compensate for defective or deficient species in an animal, or those that act through toxic effects to limit or remove harmful cells from the body. In addition, the polypeptides or proteins that can be injected, or whose DNA can be incorporated, include without limitation, angiogenic factors and other molecules competent to induce angiogenesis, including acidic and basic fibroblast growth factors, vascular endothelial growth factor, hif-1, epidermal growth factor, transforming growth factor α and β , platelet-derived endothelial growth factor, platelet-derived growth factor, tumor necrosis factor α , hepatocyte growth factor and insulin like growth factor; growth factors; cell cycle inhibitors including CDK inhibitors, anti-restenosis agents, including p15, p16, p18, p19, p21, p27, p53, p57, Rb, nFkB and E2F decoys, thymidine kinase ("TK) and combinations thereof and other agents useful for interfering with cell proliferation, including agents for treating malignancies; and combinations thereof. Still other useful factors, which can be provided as polypeptides or as DNA encoding these polypeptides, include monocyte chemoattractant protein ("MCP-1"), and the family of bone morphogenic proteins ("BMP's"). The known proteins include BMP-2, BMP-3, BMP-4, BMP-5, BMP-6 (Vgr-1), BMP-7 (OP-1), BMP-8, BMP-9, BMP-10, BMP-11, BMP-12, BMP-13, BMP-14, BMP-15, and BMP-16. These dimeric proteins can be provided as homodimers, heterodimers, or combinations thereof, alone or together with other molecules. Alternatively, or in addition, molecules capable of inducing an upstream or downstream effect of a BMP can be provided. Such molecules include any of the "hedgehog" proteins, or the DNA's encoding them.

Therapeutic agents include one or more of the following therapeutic agents: cells, stem cells, virus, protein, drug, enzymes, or combinations thereof.

Organs and tissues that may be treated include any mammalian tissue or organ, whether injected *in vivo* or *ex vivo*. Non-limiting examples include heart, lung, brain,

liver, skeletal muscle, smooth muscle, kidney, bladder, intestines, stomach, pancreas, ovary, prostate, eye, tumors, cartilage and bone.

Other examples of therapeutic agents include the following.

Immunologic species such as antigens captured from specific cell lines (e.g.

- 5 cancerous) can be absorbed/adsorbed or attached to surface of a particle, which can then be injected at the targeted cell mass, tissue or organ, e.g. a cancer site, to begin an immunologic reaction/cascade/response. Examples include HuRx, and DCVax from Northwest BioTherapeutics Inc., Bothell, Washington. An antigen or genetically engineered molecule can also be used. For example, anti-EGF receptor antibodies
- 10 which help lengthen the time chemotherapy can be used as a treatment for colorectal cancer can be used. Examples include Cetuximab from ImClone Systems, New York, New York. Antibodies or receptors, genetically engineered or not, can also be used. Monoclonal antibodies to cells of blood vessels interact in the angiogenesis cascade, which is important for the growth of tumors can be used.
- 15 Radioactive molecules for radiopacity and/or treatment for cancer may be absorbed/adsorbed or attached to the surface of PVA particulates. Examples include radioactive materials such as iodine (131), gold or ytterbium.

Proteins required for signaling pathways may be absorbed/adsorbed or attached to the surface of the particulate including antibodies, antigens, monoclonal antibodies,

- 20 proteins found on cancer cells, proteins found on diseased cells in any system, proteins found on normal, nondiseased state cells in any system, or others. Signaling pathways of interest include pathways for cell regeneration, for cell death, for angiogenesis, for cell growth, for chronic heart failure, for cell differentiation or others. Suitable proteins include platelet derived growth factor BB as described in Bourke, 2002 Society for
- 25 Biomaterials 28th Annual Meeting Transactions, page 144. Another particular therapeutic agent is vascular endothelial growth factor (VEGF) for enhancing endothelialization as described in J. Control Release, 2001, May 14, 14:72(1-3):101-13.

Complete whole cells, pieces of cells, genetically engineered cells or cells made of components of more than one organism may be attached to the surface of the

- 30 particulate. Treatment includes diabetes or any disease caused by the cells of that organ lacking in producing a specific hormone/protein/organic molecule, cancer or Alzheimer's disease or diseases caused by the cells producing an incorrect product that is not in their function to create.

Antimicrobial coatings could coat the surface of the PVA particulate to aid in lessening infection/immunologic response to the presence of these products in the body. Coatings include the use of zinc, silver, iodine, triclosan and/or ciprofloxacin in a resin/polymer such as polyurethane.

5 Antigrowth drugs for cancer treatment may be absorbed/adsorbed or attached to the surface of the particle. Examples include Herceptin and Gleevec from Genetech and Novartis respectively. Small molecule chemotherapy drugs for targeted cancer treatment. Examples include, Ethiodol, Doxorubicin, Cisplatin and Mitomycin-C.

Particular therapeutic agents for treatment of liver tumors include agents used in
10 chemoembolization, such as carboplatin, cisplatin, doxorubicin, mytomycin and ethiodol, as discussed in Jean-Francois Geschwind, Dimitri Artemov et al., Journal of Vascular Interventional Radiology (2000) 11:1245-1255; Dheeraj Rajan, Michael Soulen et al, Journal of Vascular Interventional Radiology (2001) 12:187-193; and Leung, Goin and Sickies et al., Journal of Vascular Interventional Radiology (2001)
15 12:321-326. A particular tumor-toxic agent e.g. for liver treatment is paclitaxol, available from Bristol-Meyers Squib, New York, New York.

Particular therapeutic agents useful for treatment of uterine fibroid tumors include nonsteroidal anti-inflammatory medication, oral contraceptives, progestins, and gonadotrophin-releasing hormone agonists which may cause fibroid tumors to shrink as
20 described in Levy et al., Journal of Women's Imaging 2(4):168-175, 2000. Other therapeutic agents for uterine fibroid shrinkage include lupron, as discussed in Lipman, Appl. Radiol. 29(7):15-20, 2000.

Therapeutic agent may also include agents which bind to specific biological environments. The agents could, for example be placed on the exterior of the particle
25 to make the particle targetable. The particles can be used for oral or topical administration as well as percutaneous administration. The particles can be used in chemoembolization in which drug is injected to a site and the particles are used to embolize the vasculature. The particles can include the same or a different agent or no agent. The particles can be used in combination with hydrogel based aneurysm
30 embolization systems as described in Cruise et al., 2002, Society for Biomaterials 28th Annual Meeting Transactions, page 203. Other applications include drug delivery for treatment of aneurisms, coronary artery disease, restenosis and benign prostatic hyperplasia, e.g. in combination with medical devices such as stents.

Example

Particles are manufactured from an aqueous solution containing 8 weight % of polyvinyl alcohol, 99+% hydrolyzed, average M_w 89,000-120,000 (ALDRICH) and 2 weight% of gelling precursor, sodium alginate, PRONOVA UPLVG, (FMC BioPolymer, Princeton, NJ) in deionized water and the mixture is heated to about 121° C. The solution has a viscosity of about 310 centipoise at room temperature and a viscosity of about 160 cps at 65°C. Using a syringe pump (Harvard Apparatus), the mixture is fed to drop generator (Nisco Engineering). Drops are directed into a gelling vessel containing 2 weight % of calcium chloride in deionized water and stirred with a stirring bar. The calcium chloride solution is decanted within about three minutes to avoid substantial leaching of the polyvinyl alcohol from the drops into the solution. The drops are added to the reaction vessel containing a solution of 4% by weight of formaldehyde (37 wt% in methanol) and 20% by weight sulfuric acid (95-98% concentrated). The reaction solution is stirred at 65°C for 20 minutes. Precursor particles are rinsed with deionized water (3 X 300 mL) to remove residual acidic solution. The sodium alginate is substantially removed by soaking the precursor particles in a solution of 5 weight % of sodium hexa-methaphosphate in deionized water for 0.5 hour. The solution is rinsed in deionized water to remove residual phosphate and alginate. The particles are filtered by sieving, as discussed above, placed in saline (USP 0.9% NaCl) and followed by irradiation sterilization.

Particles were produced at the nozzle diameters, nozzle frequencies and flow rates (amplitude about 80% of maximum) described in Table I.

25

TABLE 1

Bead Size (microns)	Nozzle Diameter (microns)	Frequency (kHz)	Flow Rate (mL/min)	Density (g/mL)	Sphericity	Suspendability (minutes)
500-700	150	0.45	4	-	0.92	3
700-900	200	0.21	5	1.265	0.94	5
900-1200	300	0.22	10	-	0.95	6

Suspendability is measured at room temperature by mixing a solution of 2 ml of particles in 5 ml of saline and 5 ml of contrast solution (Omnipaque 300, Nycomed,

Buckinghamshire, UK) and observing the time for about 50% of the particles to enter suspension, i.e. not sink to the bottom or float to the top of a container (about 10 ml, 25 mm dia vial). Suspendability provides a practical measure of how long the particles will remain suspended in use. (Omnipaque is an aqueous solution of Iohexol, N,N.-Bis (2,3-dihydroxypropyl)-T-[N-(2,3-dihydroxypropyl)-acetamide]-2,4,6-trilodo-isophthalamide; Omnipaque 300 contains 647 mg of iohexol equivalent to 300 mg of organic iodine per ml. The specific gravity of 1.349 at 37° C and an absolute viscosity 11.8 cp at 20° C.) The particles remain in suspension for about 2-3 minutes.

Particle size uniformity and sphericity is measured using a Beckman Coulter 10 RapidVUE Image Analyzer version 2.06 (Beckman Coulter, Miami, FL). Briefly, the RapidVUE takes an image of continuous-tone (gray-scale) form and converts it to a digital form through the process of sampling and quantization. The system software identifies and measures particles in an image in the form of a fiber, rod or sphere. Sphericity computation and other statistical definitions are in Appendix A, attached, 15 which is a page from the RapidVUE operating manual.

Referring to FIG. 5, particle size uniformity is illustrated for particles 700 – 900 micron. The x-axis is the particle diameter. The y-axis is the volume normalized percentage of particle at each particle size. The total volume of particles detected is computed and the volume of the particles at each diameter is divided by the total 20 volume. The embolic particles have distribution of particle sizes with variance of less than about ± 15%.

The particles can be dried by lyophilization at -20 to 20°C and a pressure of about 75 mtorr for about 30 to 70 hours. The dried particles can be rehydrated by exposure to liquid. Exposure to contrast solution indicates that rehydration achieves 25 entry of fluid throughout the particle.

The entire contents of all publications and patent documents referenced herein is incorporated herein by reference.

Still further enhancements are in the following claims.

WHAT IS CLAIMED IS:

1. A drug delivery device comprising:
a substantially spherical polymer particle having an internal reservoir region including relatively large pores containing therapeutic agent and a metering region substantially surrounding the reservoir region having fewer relatively large pores.
2. The claim of claim 1 wherein the particle comprises PVA.
3. The device of claim 2 wherein the PVA is 1,3 diol acetalized.
4. The device of claim 1 wherein the polymer is modified by graft polymerization.
5. The device of claim 3 wherein the particle comprises a polysaccharide.
6. The device of claim 4 wherein the polysaccharide is alginate.
7. The device of claim 1 including a coating of polymer.
8. The device of claim 7 wherein the coating is erodable.
9. The device of claim 7 including a therapeutic agent on the surface of the particle.
10. The device of claim 1 wherein the therapeutic agent is effective for the treatment of cancer.
11. The device of claim 1 wherein the particle has a sphericity of about 80% or more.
12. The device of claim 1 wherein the particle has a diameter of about 1 cm or less.
13. The device of claim 1 comprising a collection of particles.

14. The device of claim 1 wherein the therapeutic agent is an anti-cancer agent.
15. A method of manufacturing a drug delivery particle including an interior region with relatively large pores and a surface region with fewer large pores, comprising:
 - generating drops comprising a base polymer and a gelling compound;
 - and
 - combining the particles with a therapeutic agent.
16. The method of claim 15 comprising reacting the base polymer and removing the gelling compound.
17. The method of claim 16 comprising drying the particle and exposing the dried particle to therapeutic agent.
18. The method of claim 15 comprising combining therapeutic agent prior to generating said drops.
19. The method of claim 15 wherein the gelling compound is a polysaccharide.
20. The method of claim 19 wherein the gelling compound is alginate.
21. The method of claim 15 comprising contacting the drops with a gelling agent.
22. The method of claim 21 wherein the gelling agent is a divalent agent.
23. The method of claim 15 wherein base polymer is PVA.
24. The method of claim 23 comprising reacting the PVA by acetalization.

25. The method of claim 23 wherein the PVA has a molecular weight of about 75,000 g/mole or greater.
26. The method of claim 15 comprising modifying the viscosity of the base polymer and gelling compound prior to forming said drops.
27. The method of claim 26 comprising modifying the viscosity by heating.
28. The method of claim 15 comprising forming said drops by vibratory nebulization.
29. The method of claim 15 wherein the therapeutic agent is an anti-cancer agent.
30. A method of delivering a therapeutic agent to a patient comprising administering to a patient a substantially spherical polymer particle, the particle comprising polyvinyl alcohol, and including an interior region having relatively large pores and a surface region having fewer relatively large pores and a therapeutic agent carried by the particle.
31. The delivery method of claim 30 wherein the method of administration is by percutaneous injection
32. The delivery method of claim 30 wherein the method of administration is by a catheter.
33. The delivery method of claim 30 for treatment of uterine fibroids.
34. The delivery method of claim 30 for treatment of a cancerous lesion.

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 3D

FIG. 3E

FIG. 4A

FIG. 4B

FIG. 5

ECA DIAMETER DIFFERENTIAL VOLUME
600.0 - 1400.0 MICRONS

TOTAL COUNT 958
MEAN 810.7 MICRONS
STANDARD DEVIATION 102.4 MICRONS
COEFFICIENT OF VARIANCE 12.63%
HARMONIC MEAN 800.4 MICRONS
MODE 783.6 MICRONS
SKEWNESS 2.26
10% 730.2 MICRONS
25% 755.2 MICRONS
50% 785.8 MICRONS
75% 816.4 MICRONS
90% 954.1 MICRONS
100% 1000.00%
PERCENT OF TOTAL

FIG. 6

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/US 03/09691

A. CLASSIFICATION OF SUBJECT MATTER				
IPC 7	A61L24/04	A61L24/00	A61L27/50	A61L27/16
	A61L31/04	A61K9/16		A61L31/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7	A61L	A61K	A61F
-------	------	------	------

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2001/051670 A1 (ASF AW BRUKTAWIT T ET AL) 13 December 2001 (2001-12-13) page 8; claims ---	1-34
X	DATABASE WPI Section Ch, Week 199808 Derwent Publications Ltd., London, GB; Class A14, AN 1998-082801 XP002250507 & JP 09 316271 A (KURARAY CO LTD), 9 December 1997 (1997-12-09) abstract ---	1-34
X	DE 100 26 620 A (QUELLE GERHARD) 7 March 2002 (2002-03-07) claims ---	1,7-14
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- *&* document member of the same patent family

Date of the actual completion of the international search

7 August 2003

Date of mailing of the international search report

22/08/2003

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

ESPINOSA, M

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/US 03/09691

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 730 847 A (MENLO CARE INC) 11 September 1996 (1996-09-11) claims; figures ----	1-34
A	WO 01 70291 A (BIOSPHERE MEDICAL INC) 27 September 2001 (2001-09-27) claims ----	1-34
A	EP 0 402 031 A (AMERICAN MED SYST) 12 December 1990 (1990-12-12) claims ----	1-34
A	US 5 571 182 A (ERSEK ROBERT A ET AL) 5 November 1996 (1996-11-05) claims; figures -----	1-34

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 03/09691

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

Although claims 30-34 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this International application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int	lational Application No
PCT/US 03/09691	

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 2001051670	A1 13-12-2001	AU	4360301 A	24-09-2001
		AU	4361601 A	24-09-2001
		AU	4566001 A	24-09-2001
		CA	2402773 A1	20-09-2001
		CA	2402774 A1	20-09-2001
		CA	2403218 A1	20-09-2001
		EP	1263801 A1	11-12-2002
		EP	1263802 A1	11-12-2002
		EP	1263803 A1	11-12-2002
		WO	0168720 A1	20-09-2001
		WO	0168721 A1	20-09-2001
		WO	0168722 A1	20-09-2001
		US	2001036451 A1	01-11-2001
		US	2001056301 A1	27-12-2001
JP 9316271	A 09-12-1997	NONE		
DE 10026620	A 07-03-2002	DE	10026620 A1	07-03-2002
		DE	10126246 A1	05-12-2002
EP 0730847	A 11-09-1996	EP	0730847 A1	11-09-1996
		DE	69521025 D1	28-06-2001
		DE	69521025 T2	04-10-2001
		ES	2161825 T3	16-12-2001
WO 0170291	A 27-09-2001	AU	4750801 A	03-10-2001
		EP	1267956 A2	02-01-2003
		WO	0170291 A2	27-09-2001
EP 0402031	A 12-12-1990	US	5007940 A	16-04-1991
		CA	2018448 A1	09-12-1990
		DE	69005031 D1	20-01-1994
		DE	69005031 T2	21-04-1994
		EP	0402031 A2	12-12-1990
		JP	1839949 C	25-04-1994
		JP	3030771 A	08-02-1991
		JP	5053507 B	10-08-1993
		US	5116387 A	26-05-1992
		US	5158573 A	27-10-1992
US 5571182	A 05-11-1996	US	5258028 A	02-11-1993
		DE	3941023 A1	13-06-1990
		GB	2227176 A ,B	25-07-1990
		JP	2243160 A	27-09-1990
		JP	2694372 B2	24-12-1997
		NL	8903049 A ,B,	02-07-1990

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.