Universitatea Tehnică a Moldovei

Programul de master

 $\it Stiința\ Datelor$

Modele matematice și optimizări Raport Laborator 3

Elaborat:

masterandul gr. ŞD-241M Sîrbu Valentina

Problema de strategie pură

Avem o matrice de payoff pentru doi jucători, reprezentată de o matrice 5×3 . Obiectivul este de a determina strategiile pure optime pentru ambii jucători.

Definiția problemei în limbaj natural

Doi jucători participă la un joc strategic, unde fiecare jucător are mai multe strategii posibile. Rezultatul fiecărei combinații de strategii este determinat de o matrice de payoff, în care fiecare element reprezintă câștigul sau pierderea asociată jucătorilor pentru strategia respectivă.

Obiectivul este de a găsi strategiile pure care maximizează câștigul minim pentru Jucătorul 1 și minimizează pierderile maxime pentru Jucătorul 2, conform unei abordări conservatoare.

Modelul matematic al problemei

Se consideră următoarele:

• Matricea de payoff este dată de:

$$payoff_matrix = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 0 & -3 \\ -2 & 1 & 5 \\ 3 & 1 & 6 \\ 1 & -2 & 4 \end{bmatrix}$$

• Strategia optimă pentru **Jucătorul 1** este determinată prin maximizarea valorii minime pe rânduri:

Strategia Jucătorului 1 =
$$\underset{i}{\operatorname{argmax}} \left(\underset{j}{\min} \; \operatorname{payoff_matrix}_{ij} \right)$$

• Strategia optimă pentru **Jucătorul 2** este determinată prin minimizarea valorii maxime pe coloane:

Strategia Jucătorului 2 =
$$\mathop{\rm argmin}_j \left(\max_i \text{payoff_matrix}_{ij} \right)$$

Algoritm pentru determinarea strategiilor pure

Codul Python care implementează acest model este:

```
import numpy as np
# Matricea de payoff (5x3)
payoff_matrix = np.array([
```

	P2 S1	P2 S2	P2 S3	Binary Choice	Row Min	Value	Maxmin
P1 S1	3	-1	2	C	-1	0	1
P1 S2	4	0	-3	C	-3	0	
P1 S3	-2	1	5	C	-2	0	
P1 S4	3	1	6	1	. 1	1	
P1 S5	1	-2	4	C	-2	0	
				Sum			
				1			
Binary Choice	0	1	0	1			
Col Max	4	1	6				
Value	0	1	0				
Minmax	1						

```
[3, -1, 2],
    [4, 0, -3],
    [-2, 1, 5],
    [3, 1, 6],
    [1, -2, 4]
])
# Determinarea strategiilor pure
def find_pure_strategy(matrix):
    # Jucătorul 1: Maximizarea minimului pe rânduri
    row_min = np.min(matrix, axis=1)
    player1_best = np.argmax(row_min)
    # Jucătorul 2: Minimizarea maximului pe coloane
    col_max = np.max(matrix, axis=0)
    player2_best = np.argmin(col_max)
    return player1_best, player2_best
player1_strategy, player2_strategy = find_pure_strategy(payoff_matrix)
print("Soluția pentru strategii pure:")
print(f"Jucătorul 1 alege strategia: {player1_strategy + 1}")
print(f"Jucătorul 2 alege strategia: {player2_strategy + 1}")
```

Pure Strategy Solution: Player 1 chooses strategy: 4 Player 2 chooses strategy: 2

Analiza rezultatelor

Rezultatele obținute în urma rulării algoritmului și utilizării Solver-ului sunt următoarele:

• Jucătorul 1:

- Strategia aleasă este **strategia 4** (rândul 4 din matricea de payoff).
- Alegerea acestei strategii maximizează câștigul minim posibil pentru Jucătorul 1, conform criteriului maximin.

• Jucătorul 2:

- Strategia aleasă este **strategia 2** (coloana 2 din matricea de payoff).
- Alegerea acestei strategii minimizează pierderea maximă posibilă pentru Jucătorul 2, conform criteriului minimax.

Raport Solver pentru Jucătorul 1

- Solver Engine: Simplex LP
- Soluție găsită: Toate constrângerile și condițiile de optimalitate au fost satisfăcute.
- Timp de executie: 0.022 secunde
- Valoare finală a obiectivului (Maxim): P1_S1_Maxmin = 1
- Alegere strategie (variabile decizie):
 - $-G_6 = 1$ (Strategia 4 aleasă)
 - Toate celelalte variabile binare sunt 0.

Raport Solver pentru Jucătorul 2

- Solver Engine: Simplex LP
- Soluție găsită: Toate constrângerile și condițiile de optimalitate au fost satisfăcute.
- Timp de execuție: 0.016 secunde
- Valoare finală a obiectivului (Minim): $Minmax_P2_S1 = 1$
- Alegere strategie (variabile decizie):
 - $-D_{11} = 1$ (Strategia 2 aleasă)
 - Toate celelalte variabile binare sunt 0.

WPS Office Answer Report

Worksheet: [Pure Strategy Game.xlsx]Game Setup

Report Created: 1/28/2025 4:44:58 PM

Result: Solver found a solution. All constraints and optimality conditions are satisfied.

Solver Engine

Engine: Simplex LP

Solution Time: 0.022 Seconds.

Iterations: 4 Subproblem: 0

Solver Options

Max Time Unlimited, Iterations Unlimited, Use Automatic Scaling

Max Subproblems Unlimited, Max Integer Solutions Unlimited, Integer Tolerance1%, Assume NonNegative

Objective Cell (Max)

Cell	Name	Original Value	Final Value
\$J\$3	P1 S1 Maxmin	0	1

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$G\$3	P1 S1 Binary Choice	0	0	Binary
\$G\$4	P1 S2 Binary Choice	0	0	Binary
\$G\$5	P1 S3 Binary Choice	0	0	Binary
\$G\$6	P1 S4 Binary Choice	0	1	Binary
\$G\$7	P1 S5 Binary Choice	0	0	Binary

Constraints

Cell		Name	Cell Value	Formula	Status	Slack
\$G\$10	Sum			1 \$G\$10=1	Binding	0
\$G\$3=Binar	у					
\$G\$4=Binar	у					
\$G\$5=Binar	у					
\$G\$6=Binar	у					
\$G\$7=Binar	у					

Interpretarea soluției/Concluzie

Rezultatul final indică echilibrul strategiilor pure al jocului, unde:

- Jucătorul 1 adoptă strategia care îi garantează un câștig minim maximizat.
- Jucătorul 2 adoptă strategia care îi garantează o pierdere maximă minimizată.

Aceasta confirmă că soluția este conformă cu principiile teoriei jocurilor pentru strategii pure. Timpul mic de execuție și numărul redus de iterații demonstrează eficiența metodei utilizate.

WPS Office Answer Report

Worksheet: [Pure_Strategy_Game.xlsx]Game Setup

Report Created: 1/28/2025 5:8:16 PM

Result: Solver found a solution. All constraints and optimality conditions are satisfied.

Solver Engine

Engine: Simplex LP

Solution Time: 0.016 Seconds. Iterations: 4 Subproblem: 0

Solver Options

Max Time Unlimited, Iterations Unlimited, Use Automatic Scaling

Max Subproblems Unlimited, Max Integer Solutions Unlimited, Integer Tolerance1%, Assume NonNegative

Objective Cell (Mir	<u>ı)</u>	
---------------------	-----------	--

Cell	Name	Original Value	Final Value
\$C\$14	Minmax P2 S1	0	1

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$C\$11	Binary Choice P2 S1	0	0	Binary
\$D\$11	Binary Choice P2 S2	0	1	Binary
\$E\$11	Binary Choice P2 S3	0	0	Binary

Constraints

Cell	Name	Cell Value	Formula	Status	Slack
\$G\$11	Binary Choice Sum		1 \$G\$11=1	Binding	0
\$C\$11=Binary					
\$D\$11=Binary					
\$E\$11=Binary					

Problema de strategii mixte

Definiția problemei în limbaj natural

Se consideră o matrice de payoff modificată, care descrie câștigurile și pierderile pentru doi jucători, astfel:

$$M = \begin{bmatrix} 4.2 & -5 & 6.7 \\ 1.13 & 5.1 & -1.6 \\ -2.86 & 4.1 & 3.13 \\ 2.85 & -4.7 & 7.5 \\ 8.55 & 0.9 & -4.2 \end{bmatrix}$$

Obiectivul este să determinăm strategiile mixte optime pentru cei doi jucători folosind programarea liniară. Pentru a face matricea pozitivă (cerință necesară în metodele utilizate), se adaugă o constantă $c = \max(M)$ tuturor elementelor matricei M.

		P2 S1	P2 S2	P2 S3		min	maxmin				
	P1 S1	4.2	-5	6.7		-5	-1.6				
	P1 S2	1.13	5.1	-1.6		-1.6					
	P1 S3	-2.86	4.1	3.13		-2.86					
	P1 S4	2.85	-4.7	7.5		-4.7					
	P1 S5	8.55	0.9	-4.2		-4.2					
	max	8.55	5.1	7.5							
	minmax	5.1									
								I take			
minimizam	transpusa						x	probabilitate	produs		
	4.2	1.13	-2.86	2.85	8.55		0.196092101	0.327874519	1	>=	1
	-5	5.1	4.1	-4.7	0.9		0.332348773	0.555701597	1	>=	1
	6.7	-1.6	3.13	7.5	-4.2		0.069629699	0.116423884	1	>=	1
							0	0			
							0	0			
						nr str	0.598070573				
						V	1.672043476				
maximizam	matricea						У	probabilitate	produs		
	4.2	-5	6.7				0.180929044	0.302521227	1	<=	1
	1.13	5.1	-1.6				0.21835472	0.365098586	1	<=	1
	-2.86	4.1	3.13				0.198786809	0.332380187	1	<=	1
	2.85	-4.7	7.5						0.980281654	<=	1
	8.55	0.9	-4.2			nr str	0.598070573		0.908557976	<=	1
						v	1.672043476				

Modelul matematic al problemei

Jucătorul A (maximizare):

- \bullet Variabilele de decizie: x_1, x_2, \dots, x_n (strategiile mixte ale Jucătorului A).
- \bullet Funcția obiectiv: Maximizarea valorii $v_A.$
- Constrângeri:

$$x_1+x_2+\ldots+x_n=1$$
 (strategii mixte)
$$v_A+\sum_{i=1}^n M_{ij}x_i\geq 0,\quad \forall j \qquad \text{(inegalitățile de payoff)}$$

$$x_i\geq 0,\quad \forall i.$$

Jucătorul B (minimizare):

- Variabilele de decizie: y_1, y_2, \dots, y_m (strategiile mixte ale Jucătorului B).
- Funcția obiectiv: Minimizarea valorii v_B .
- $\bullet \;$ Constrângeri:

$$y_1+y_2+\ldots+y_m=1$$
 (strategii mixte)
$$v_B-\sum_{j=1}^m M_{ij}y_j\leq 0,\quad \forall i \qquad \text{(inegalitățile de payoff)}$$
 $y_j\geq 0,\quad \forall j.$

Algoritm pentru determinarea strategiilor mixte

Codul Python utilizează biblioteca scipy.optimize.linprog pentru a rezolva problema. Rezultatele obținute sunt următoarele:

• Strategia mixtă a Jucătorului A:

Strategia_A =
$$[x_1, x_2, \dots, x_n] = \{x_1, x_2, x_3, x_4, x_5\}$$

unde valorile exacte sunt:

$$x_1 = \text{val}, \quad x_2 = \text{val}, \quad x_3 = \text{val}, \quad x_4 = \text{val}, \quad x_5 = \text{val}.$$

• Strategia mixtă a Jucătorului B:

Strategia_B =
$$[y_1, y_2, ..., y_m] = \{y_1, y_2, y_3\}$$

unde valorile exacte sunt:

$$y_1 = \text{val}, \quad y_2 = \text{val}, \quad y_3 = \text{val}.$$

• Valoarea jocului (v):

$$v_A = v_B = \text{valoarea jocului}.$$

```
      Rezultatele jocului:

      Strategia mixtă a jucătorului A: [0.32787452 0.5557016 0.11642388 0. 0. ]

      Strategia mixtă a jucătorului B: [0.30252123 0.36509859 0.33238019]
```

Analiza rezultatelor

Rezultatele indică faptul că:

- Jucătorul A utilizează o strategie mixtă formată din ponderile x_i , care maximizează câștigul său minim posibil.
- Jucătorul B utilizează o strategie mixtă formată din ponderile y_j , care minimizează pierderea sa maximă posibilă.
- Valoarea jocului $v_A = v_B$ confirmă echilibrul Nash pentru strategii mixte în acest joc.

Aceste rezultate sunt în conformitate cu teoria jocurilor și optimizarea liniară.

WPS Office Answer Report Worksheet: [Pure_Strategy_Game.xlsx]Mixt Report Created: 1/28/2025 7:38:14 PM Result: Solver found a solution. All constraints and optimality conditions are satisfied. Solver Engine Engine: Simplex LP Solution Time: 0.043 Seconds Iterations: 6 Subproblem: 0 Solver Options Max Time Unlimited, Iterations Unlimited, Use Automatic Scaling Max Subproblems Unlimited, Max Integer Solutions Unlimited, Integer Tolerance1%, Solve Without Integer Constraints, Assume NonNegative Objective Cell (Min) Cell Name Original Value Final Value 5 0.598070573 Variable Cells Cell Name Original Value Final Value 0.196092101 Contin \$H\$15 x 1 0.332348773 Contin \$H\$16 x 1 0.069629699 Contin \$H\$17 x 0 Contin \$H\$18 x 0 Contin Constraints Cell Name Cell Value Formula 1 \$J\$14>=\$L\$14 Binding \$J\$14 product \$J\$15 product 1 \$J\$15>=\$L\$15 Binding \$J\$16 product 1 \$J\$16>=\$L\$16 Binding 0.196092101 \$H\$14>=0 Not Binding 0.196092101 SH\$15 x 0.332348773 \$H\$15>=0 Not Binding 0.332348773 Not Binding 0.069629699 0.069629699 \$H\$16>=0 \$H\$16 x 0 \$H\$17>=0 Binding \$H\$17 x

Rezultatele obținute

\$H\$18 x

• Strategia mixtă a Jucătorului A:

0 \$H\$18>=0

Binding

Strategia_A =
$$[x_1, x_2, x_3, x_4, x_5] = [0.3279, 0.5557, 0.1164, 0, 0]$$

Aceasta indică faptul că:

- Jucătorul A atribuie o probabilitate de 32.79% strategiei 1.
- Jucătorul A atribuie o probabilitate de 55.57% strategiei 2.
- Jucătorul A atribuie o probabilitate de 11.64% strategiei 3.
- Strategiile 4 și 5 nu sunt utilizate (probabilitate 0).

• Strategia mixtă a Jucătorului B:

Strategia_B =
$$[y_1, y_2, y_3]$$
 = $[0.3025, 0.3651, 0.3324]$

Aceasta indică faptul că:

- Jucătorul B atribuie o probabilitate de 30.25% strategiei 1.
- Jucătorul B atribuie o probabilitate de 36.51% strategiei 2.

WPS Office Answer Report Worksheet: [Pure_Strategy_Game.xlsx]Mixt Report Created: 1/28/2025 7:46:22 PM Result: Solver found a solution. All constraints and optimality conditions are satisfied. Solver Engine Engine: Simplex LP Solution Time: 0.018 Seconds Iterations: 5 Subproblem: 0 Solver Options Max Time Unlimited, Iterations Unlimited, Use Automatic Scaling Max Subproblems Unlimited, Max Integer Solutions Unlimited, Integer Tolerance1%, Solve Without Integer Constraints, Assume NonNegative Objective Cell (Max) Original Value Final Value Cell Name 3 0.598070573 \$H\$29 nrstry Variable Cells Cell Integer Name Original Value Final Value \$H\$25 y 1 0.180929044 Contin \$H\$26 y 0.21835472 Contin \$H\$27 y 1 0.198786809 Contin Constraints Cell Formula Status \$J\$25 produs 1 \$J\$25<=\$L\$25 Binding \$J\$26 produs 1 \$J\$26<=\$L\$26 Binding \$J\$27 produs 1 \$J\$27<=\$L\$27 Binding \$J\$28 produs 0.980281654 \$J\$28<=\$L\$28 Not Binding 0.019718346 \$J\$29 nr str produs 0.908557976 \$J\$29<=\$L\$29 Not Binding 0.091442024 0.180929044 \$H\$25>=0 \$H\$25 y Not Binding 0.180929044 \$H\$26 y 0.21835472 \$H\$26>=0 Not Binding 0.21835472 \$H\$27 y 0.198786809 \$H\$27>=0 Not Binding 0.198786809

- Jucătorul B atribuie o probabilitate de 33.24% strategiei 3.

• Valoarea jocului:

$$v = 0.5981$$

Aceasta reprezintă câștigul minim garantat pentru Jucătorul A și pierderea maximă limitată pentru Jucătorul B în cadrul echilibrului Nash.

Interpretarea soluției/Concluzie

- Jucătorul A își maximizează câștigul minim alegând predominant strategiile 1 și 2, utilizând strategia 3 într-o proporție mai mică, și eliminând complet strategiile 4 și 5.
- Jucătorul B își minimizează pierderea maximă distribuind probabilitățile între toate cele trei strategii disponibile într-un mod echilibrat.
- ullet Echilibrul Nash este obținut, iar valoarea jocului v=0.5981 indică stabilitatea strategiilor mixte pentru ambii jucători.

Rezultatele confirmă că metoda de programare liniară este adecvată pentru a găsi soluții optime în jocuri de strategie mixtă. Fiecare jucător își atinge obiectivul strategic conform principiilor teoriei jocurilor, iar valoarea jocului reflectă stabilitatea acestui echilibru.