# COS 597D Project - Mobile vs Traditional Web Tracking (FourthPartyMobile)

Marcela Melara, Christian Eubank and Diego Perez Botero {melara, cge, diegop}@princeton.edu

#### **ABSTRACT**

INSERT ABSTRACT HERE??

### **Categories and Subject Descriptors**

H.3.5 [Information Systems]: Information Storage and Retrieval—Web-based services; K.4.1 [Computing Milieux]: Computers and Society—Privacy

#### **General Terms**

Documentation, Measurement, Security

## **Keywords**

FourthParty, Web crawling, cookies, privacy policy, ...

#### 1. INTRODUCTION

We wish to automate the detection of third-party tracking mechanisms while browsing the web on a mobile device. To this end, we will adopt the FourthParty¹ project's approach and instrument a popular open-source mobile browser (i.e. Firefox) to be used as an enhanced web crawler. This enables us to log realistic end-user interactions (e.g. execution of embedded scripts) as opposed to just downloading each web page's static content, which is what traditional web crawlers do.

The mobile web crawler is not our main objective for this project, but rather the tool that we will use to collect valuable information in order to conduct our comparison between the Mobile and Traditional third-party tracking ecosystems and their practices.

#### 2. BACKGROUND AND MOTIVATION

#### 3. RELATED WORK

MARCELA

#### 4. IMPLEMENTATION

DIEGO

#### 4.1 Challenges

Mobile application development poses a variety of challenges that will need to be addressed for a mobile web crawler to be materialized:

- Mobile devices have limited amounts of RAM, so applications should not rely on large data structures stored in main memory.
- Security permissions in mobile devices are strict, which means that writing data into persistent memory is not always an option.
- Processing power in mobile devices is limited, so computationally intensive procedures, such as parsing a
  web page, should be delegated to an external entity.
- Mobile network bandwidth is a limited resource, so large data transfers should be avoided.
- Battery life must be preserved as much as possible by a mobile application if it is being aimed towards the general public.

#### 4.2 Mobile Web Crawler's Architecture

FourthPartyMobile's architecture (see Figure 1) delegates most of the computation and storage to a supporting server, limiting the mobile deviceâĂŹs responsibilities to fetching one website at a time and generating a log of its latest interactions (e.g. cookies, javascript, embedded HTTP objects). The crawling plugin running on the mobile device sends the interaction log corresponding to the website being visited in the form of SQL statements to the crawling backend running on a server. This way, the amount of state kept in the mobile deviceâĂŹs main memory is minimal and the crawl database, which can be several Megabytes in size, is generated by the supporting server's side.

#### 4.3 Prototype

We took advantage of the fact that the FourthParty<sup>2</sup> project is open-source. After analyzing its codebase, we ported its core functionality over to support Android-based mobile devices, such as smartphones and tablets. FourthPartyMobile is implemented in Java and Javascript, leveraging both the Android SDK and the Mozilla Add-On SDK. Persistent storage is fully compliant with FourthParty's SQLite database schema. Thus, we provide a standardized representation for traditional and mobile crawls, which facilitates data analysis. Our Crawling Backend is written in java with a SQLite JDBC library that supports Mac OS, Linux and Windows, so it should be fully multi-platform. It also supports concurrency, so multiple crawls can be recorded simultaneously.

<sup>&</sup>lt;sup>1</sup>http://www.fourthparty.info

<sup>&</sup>lt;sup>2</sup>http://www.fourthparty.info



Figure 1: Prototype's Runtime Interactions.

# 5. METHODOLOGY

DIEGO

# 6. DATA ANALYSIS

# 6.1 Main Players

CHRIS

Three types of players: advertisers, content providers, and third-party content providers (embedded in sites)

# **6.2** Cookie/Javascript Pervasiveness

CHRIS

By website category (e.g. porn, news, etc) and by domain (e.g. com, net, etc)

# 6.3 Desktop vs Mobile Tracking

ALL OF US

# 6.4 Physical vs Emulated Devices

DIEGO

# 6.5 Privacy Policy Case Study

MARCELA

LinkedIn (social network), CNN (news) and Amazon (ecommerce)

# 7. CONCLUSIONS AND FUTURE WORK

#### 8. REFERENCES