CoMM: a collaborative mixed model to dissecting genetic contributions to complex traits by leveraging regulatory information

Jin Liu

2021-09-02

Introduction

This vignette provides an introduction to the CoMM package. R package CoMM implements CoMM, a collaborative mixed model to dissecting genetic contributions to complex traits by leveraging regulatory information. The package can be installed with the command:

library(devtools)

```
install github("gordonliu810822/CoMM")
```

The package can be loaded with the command:

```
library("CoMM")
```

Fit CoMM using simulated data

We first generate genotype data using function genRawGeno:

```
library(mvtnorm)
L = 1; M = 100; rho =0.5
n1 = 350; n2 = 5000;
maf = runif(M,0.05,0.5)
X = genRawGeno(maf, L, M, rho, n1 + n2);
```

Then, effect sizes are generated from standard Gaussian distribution with sparse structure:

```
beta_prop = 0.2;
b = numeric(M);
m = M * beta_prop;
b[sample(M,m)] = rnorm(m);
```

Subsequently, the gene expression y is generated by controlling cellular heritability at prespecified level (h2y):

```
h2y = 0.05;

b0 = 6;

y0 <- X%*%b + b0;

y <- y0 + (as.vector(var(y0)*(1-h2y)/h2y))^0.5*rnorm(n1+n2);
```

Finally, the phenotype data is generated as the generative model of CoMM with a prespecified trait heritability (h2) as:

```
h2 = 0.001;

y1 <- y[1:n1]

X1 <- X[1:n1,]

y2 <- y0[(n1+1):(n1+n2)]

X2 <- X[(n1+1):(n1+n2),]
```

```
alpha0 <- 3
alpha <- 0.3
sz2 <- var(y2*alpha) * ((1-h2)/h2)
z <- alpha0 + y2*alpha + rnorm(n2,0,sqrt(sz2))</pre>
```

The genotype data X1 and X2 are normalized as

```
y = y1;
mean.x1 = apply(X1,2,mean);
x1m = sweep(X1,2,mean.x1);
std.x1 = apply(x1m,2,sd)
x1p = sweep(x1m,2,std.x1,"/");
x1p = x1p/sqrt(dim(x1p)[2])

mean.x2 = apply(X2,2,mean);
x2m = sweep(X2,2,mean.x2);
std.x2 = apply(x2m,2,sd)
x2p = sweep(x2m,2,std.x2,"/");
x2p = x2p/sqrt(dim(x2p)[2])
w2 = matrix(rep(1,n2),ncol=1);
w1 = matrix(rep(1,n1),ncol=1);
```

Initilize the parameters by using linear mixed model (function lmm_pxem , LMM implemented (n < p) using PX-EM algorithm, function lmm_pxem2 , LMM implemented (n > p)):

```
fm0 = lmm_pxem2(y, w1,x1p, 100)
sigma2beta =fm0$sigma2beta;
sigma2y =fm0$sigma2y;
beta0 = fm0$beta0;
```

Fit CoMM w/ and w/o constraint that alpha = 0 as

```
fmHa = CoMM_covar_pxem(y, z, x1p, x2p, w1, w2,constr = 0);
fmH0 = CoMM_covar_pxem(y, z, x1p, x2p, w1, w2,constr = 1);
loglikHa = max(fmHa$loglik,na.rm=T)
loglikH0 = max(fmH0$loglik,na.rm=T)
tstat = 2 * (loglikHa - loglikH0);
pval = pchisq(tstat,1,lower.tail=F)
alpha_hat = fmHa$alpha
```

Fit CoMM using GWAS and eQTL data

The example of running CoMM using GWAS and eQTL data in plink binary format

```
file1 = "1000G.EUR.QC.1";
file2 = "NFBC_filter_mph10";
file3 = "Geuvadis_gene_expression_qn.txt";
file4 = "";
file5 = "pc5_NFBC_filter_mph10.txt";
whichPheno = 1;
bw = 500000;
```

Here, file1 is the prefix for eQTL genotype data in plink binary format, file2 is the GWAS data in plink binary format, file3 is the gene expression file with extended name, file4 and file5 are covariates file for eQTL and GWAS data, respectively. Then run fm = CoMM_testing_run(file1,file2,file3, file4,file5,

whichPheno, bw);. For gene expression file, it must have the following format (rows for genes and columns for individuais and note that it must be tab delimited):

lower	up	genetype1	genetype2	TargetID	Chr	HG00105	HG00115
59783540	59843484	lincRNA	PART1	ENSG00000152931.6	5	0.5126086	0.7089508
48128225	48148330	protein_coding	UPP1	ENSG00000183696.9	7	1.4118007	-
							0.0135644
57846106	57853063	protein_coding	INHBE	ENSG00000139269.2	12	0.5755268	-
							1.0162217
116054583	116164515	protein_coding	AFAP1L2	ENSG00000169129.8	10	1.1117776	0.0407033
22157909	22396763	protein_coding	RAPGEF5	ENSG00000136237.1	27	0.2831573	-
							0.1772559
11700964	11743303	lincRNA	RP11-	ENSG00000247157.2	12	0.2550282	-
			434C1.1				0.2831573

To make 'CoMM' further speeding, we implement multiple thread version of 'CoMM' by just run fm = CoMM_testing_run_mt(file1,file2,file3, file4,file5, whichPheno, bw, coreNum); where coreNum = 24 is the number of cores in your CPU.

Figures

The following data and codes are used to produce one of the figures in the Yang et al. (2018).

```
dat_rej = dat[[3]];
dat_rej$h2z=paste("",dat_rej$h2,sep="")
dat_rej$Power = dat_rej$rej_prop
dat_rej$Sparsity = dat_rej$beta_prop
dat_rej$sd_rej = as.numeric(as.character(dat_rej$sd_rej))
dat_rej = dat_rej[dat_rej$Method!="2-stage:AUDI",]
library(plyr)
dat_rej$Method=revalue(dat_rej$Method, c("AUDI"="CoMM"))
dat_rej$Method=revalue(dat_rej$Method, c("2-stage:Ridge"="PrediXcan:Ridge"))
dat rej$Method=revalue(dat rej$Method, c("2-stage:Enet"="PrediXcan:Enet"))
dat_rej$Method=droplevels(dat_rej$Method)
rho = 0.5; n2 = 8000;
t1e_rej = dat_rej[dat_rej$RhoX==rho&dat_rej$n2==n2,]
t1e_rej$h2z = factor(t1e_rej$h2z)
t1e_rej$h2y = factor(t1e_rej$h2y)
t1e_rej$Sparsity = factor(t1e_rej$Sparsity)
t1e_rej$n2 = factor(t1e_rej$n2)
t1e_rej$Method <- ordered(t1e_rej$Method, levels = c("CoMM", "PrediXcan:Ridge", "PrediXcan:Enet", "SKAT"))
t1e_rej$Power = as.numeric(as.character((t1e_rej$Power)))
t1e_rej$h2y2 \leftarrow factor(t1e_rej$h2y, labels = c("h[C]^2==0.01", "h[C]^2==0.03",
                      "h[C]^2==0.05", "h[C]^2==0.07", "h[C]^2==0.09"))
t1e_rej_h^2z^2 \leftarrow factor(t1e_rej_h^2z, labels = c("h[T]^2==0", "h[T]^2==0.001",
                      "h[T]^2==0.002", "h[T]^2==0.003"))
library(ggplot2)
ggplot(t1e_rej, aes(x = Sparsity, y = Power,fill = Method))+
  geom_bar(stat="identity", position=position_dodge())+
```


Corrections for CoMMs (Yang et al.)

In Algorithm 1 (in the supplementary document), the Reduction-step should be $\left(\sigma_u^{(t+1)}\right)^2 = \left(\gamma^{(t+1)}\right)^2 \left(\sigma_u^{(t+1)}\right)^2$.

Fit CoMM_S2 using simulated data

We first generate genotype data using function genRawGeno:

```
library(mvtnorm)
set.seed(1000)
L = 1; M = 100; rho =0.5
n1 = 400; n2 = 5000; n3 = 400;
maf = runif(M, min = 0.05, max = 0.5);
X = genRawGeno(maf, L, M, rho, n1 + n2);
X3 = genRawGeno(maf, L, M, rho, n3)
```

Then, effect sizes are generated from standard Gaussian distribution with sparse structure:

```
beta_prop = 0.2;
b = numeric(M);
m = M * beta_prop;
b[sample(M,m)] = rnorm(m);
```

Subsequently, the gene expression y is generated by controlling cellular heritability at prespecified level (h2y):

```
h2y = 0.05;

b0 = 6;

y0 <- X%*%b + b0;

y <- y0 + (as.vector(var(y0)*(1-h2y)/h2y))^0.5*rnorm(n1+n2);
```

Finally, the phenotype data is generated as the generative model of CoMM with a prespecified trait heritability (h2) as:

```
h2 = 0.001;

y1 <- y[1:n1]

X1 <- X[1:n1,]

y2 <- y0[(n1+1):(n1+n2)]

X2 <- X[(n1+1):(n1+n2),]

alpha0 <- 3

alpha <- 0.3

sz2 <- var(y2*alpha) * ((1-h2)/h2)

z <- alpha0 + y2*alpha + rnorm(n2,0,sqrt(sz2))
```

The genotype data X1, X2 and X3 are centered as

```
y = y1;
mean.x1 = apply(X1,2,mean);
x1p = sweep(X1,2,mean.x1);

mean.x2 = apply(X2,2,mean);
x2p = sweep(X2,2,mean.x2);

mean.x3 = apply(X3,2,mean);
x3p = sweep(X3,2,mean.x3);

w = matrix(rep(1,n1),ncol=1);
```

The summary statistics are generated from GWAS individual data

```
hatmu = matrix(0, M, 1)
hats = matrix(0, M, 1)

for (m in 1:M){
  fm = lm(z~1+x2p[,m]);
  hatmu[m] = summary(fm)$coefficients[2,1]
  hats[m] = summary(fm)$coefficients[2,2];
}
```

The correlation matrix reflecting LD information is estimated using reference panel

```
lam = 0.8
sumx3p = apply(x3p*x3p, 2, sum)
R = matrix(0, M, M);
for (i1 in 1:M){
   for (j1 in 1:M){
      R[i1,j1] = t(x3p[,i1])%*%x3p[,j1]/sqrt(sumx3p[i1]*sumx3p[j1])
   }
}
R = R*lam + (1 - lam)*diag(M)
```

The likelihood ratio test is implemented

```
opts = list(max_iter = 10000, dispF = 1, display_gap = 10, epsStopLogLik = 1e-5, fix_alphag = 0);
opts1 = list(max_iter = 10000, dispF = 1, display_gap = 10, epsStopLogLik = 1e-5, fix_alphag = 1);
fmHa = CoMM_S2(x1p, y, w, hatmu, hats, R, opts, px);
#> ***Iteration******Fnew*****Fold*******Diff***
      1.0000e+01 -1.1037e+03 -1.1037e+03 1.4388e-02
#> ***Iteration******Fnew*****Fold******Diff***
      2.0000e+01 -1.1036e+03 -1.1036e+03 3.4670e-05
fmHO = CoMM_S2(x1p, y, w, hatmu, hats, R, opts1, px);
#> ***Iteration******Fnew*****Fold*******Diff***
     1.0000e+01 -1.1048e+03 -1.1048e+03 2.9406e-03
stat = 2*(fmHa$LRLB - fmHO$LRLB)
pval = pchisq(stat, 1, lower.tail = F)
str(fmHa)
#> List of 7
#> $ vardist_mu: num [1:100, 1] -0.0127 -0.0902 0.015 0.0462 0.0315 ...
#> $ sigma2mu : num 0.0459
#> $ alphag
              : num 0.736
#> $ sigma2beta: num 0.0658
#> $ sigma2y : num 69.6
#> $ LRLB
              : num -1161
#> $ Lq
               : num [1, 1:23] -1273 -1109 -1105 -1104 -1104 ...
str(fmH0)
#> List of 7
#> $ vardist_mu: num [1:100, 1] -0.02838 0.00194 -0.03273 -0.07739 -0.05696 ...
#> $ sigma2mu : num 0.0469
#> $ alphaq
               : num 0
#> $ sigma2beta: num 0.0658
#> $ sigma2y : num 69.6
#> $ LRLB
               : num -1162
#> $ Lq
               : num [1, 1:19] -1274 -1110 -1106 -1105 -1105 ...
print(stat)
#> [1] 2.532153
print(pval)
#> [1] 0.1115479
```

The output of CoMM_S2 is a list with 7 variables, mean of variational distribution vardist_mu, variance component sigma2mu, gene effect size alphag, variance component sigma2y, calibrated ELBO LRLB, original ELBO Lq.

Fit CoMM_S2 using GWAS and eQTL data

The example of running CoMM_S2 using GWAS summary statistics and eQTL data in plink binary format

```
file1 = "1000G.EUR.QC.1";
file2 = "NFBC_beta_se_TG.txt"
file3 = "1000G_chr_all";
file4 = "Geuvadis_gene_expression_qn.txt";
file5 = "";
bw = 500000;
lam = 0.95;
coreNum = 24;
```

Here, file1 is the prefix for eQTL genotype data in plink binary format, file2 is the GWAS summary data, file3 is the prefix for reference panel data in plink binary format, file4 is the gene expression file with extended name, file5 are covariates file for eQTL data. bw is the number of downstream and upstream SNPs that are considered as cis-SNP within a gene. lam is the shirnkage intensify for reference panel. coreNum is the number of cores in parallel. Then run fm = CoMM_S2_testing(file1, file2, file3, file4, file5, bw, lam);. For GWAS summary data file, it must have the following format (note that it must be tab delimited):

SNP	chr	BP	A1	A2	beta	se
rs3094315	1	752566	G	A	-0.0122	0.0294
rs3128117	1	944564	\mathbf{C}	${\rm T}$	-0.0208	0.0278
rs1891906	1	950243	\mathbf{C}	A	-0.0264	0.0260
rs2710888	1	959842	${ m T}$	\mathbf{C}	-0.0439	0.0297
rs4970393	1	962606	G	A	-0.0252	0.0233
$\mathrm{rs}7526076$	1	998395	A	G	-0.0512	0.0229
rs4075116	1	1003629	\mathbf{C}	Τ	-0.0497	0.0220
rs3934834	1	1005806	\mathbf{T}	\mathbf{C}	0.0364	0.0256
rs3766192	1	1017197	\mathbf{C}	Τ	-0.0116	0.0178
$\mathrm{rs}3766191$	1	1017587	\mathbf{T}	\mathbf{C}	0.0318	0.0262

To make 'CoMM_S2' further speeding, we implement multiple thread version of 'CoMM_S2' by just run fm = CoMM_S2_paral_testing(file1, file2, file3, file4, file5, bw, lam, coreNum);

Figures

The following data and codes are used to produce the barplot of power

```
library(ggplot2)
library(colorspace)
bp2 <- ggplot(pval2, aes(x=Sparsity, y=Power, fill=Method)) +</pre>
             geom_bar(stat="identity", position=position_dodge()) +
             facet_grid(h2~hc, scales = "free", labeller = label_parsed) +
             theme(strip.text.x = element text(size=12, color="black",
                                                                                                                               face="bold"),
                                 strip.text.y = element_text(size=12, color="black",
                                                                                                                               face="bold"),
                                 plot.title = element_text(size=20, face = "bold", hjust=0.5),
                                 axis.title.x = element_text(size=8, face = "bold"),
                                 axis.text.x = element_text(size=8, face = "bold"),
                                 axis.title.y = element_blank(),
                                 axis.text.y = element_text(size=15, face = "bold"),
                                 legend.position="bottom",
                                 legend.title=element_text(size=15),
                                 legend.text=element_text(size=15))
      colours<-rainbow_hcl(3, start = 0, end = 300)</pre>
      bp2 = bp2 + scale_fill_manual(values=colours, labels=expression("CoMM-S"^2, "S-PrediXcan:Ridge", "S-Ridge", "S-R
bp2
```


Method

Fit CoMM_S4 using simulated data

We first generate genotype data using function genRawGeno:

```
library(mvtnorm)
set.seed(1000)
L = 1; M = 100; rho = 0.5
n1 = 5000; n2 = 5000; n3 = 400; n4 = 400;
maf = runif(M, min = 0.05, max = 0.5);
X = genRawGeno(maf, L, M, rho, n1 + n2);
X3 = genRawGeno(maf, L, M, rho, n3);
X4 = genRawGeno(maf, L, M, rho, n4)
```

Then, the vector of effect size is generated from standard Gaussian distribution with sparse structure:

```
beta_prop = 0.2;
b = numeric(M);
m = M * beta_prop;
b[sample(M,m)] = rnorm(m);
```

Subsequently, the gene expression y is generated by controlling cellular heritability at prespecified level (h2y):

```
h2y = 0.05;
b0 = 6;
v0 <- X%*%b + b0;
y \leftarrow y0 + (as.vector(var(y0)*(1-h2y)/h2y))^0.5*rnorm(n1+n2);
```

Finally, the phenotype data is generated as the generative model of CoMM with a prespecified trait heritability (h2) as:

```
h2 = 0.001;
y1 <- y[1:n1]
X1 \leftarrow X[1:n1,]
y2 \leftarrow y0[(n1+1):(n1+n2)]
```

```
X2 <- X[(n1+1):(n1+n2),]
alpha0 <- 3
alpha <- 0.3
sz2 <- var(y2*alpha) * ((1-h2)/h2)
z <- alpha0 + y2*alpha + rnorm(n2,0,sqrt(sz2))</pre>
```

The genotype data X1, X2 and X3 are centered as

```
y = y1;
mean.x1 = apply(X1,2,mean);
x1p = sweep(X1,2,mean.x1);

mean.x2 = apply(X2,2,mean);
x2p = sweep(X2,2,mean.x2);

mean.x3 = apply(X3,2,mean);
x3p = sweep(X3,2,mean.x3);

mean.x4 = apply(X4,2,mean);
x4p = sweep(X4,2,mean.x4);
```

The summary statistics are generated from eQTL and GWAS individual data

```
hatmu = matrix(0, M, 1)
hats = matrix(0, M, 1)

for (m in 1:M){
    fm = lm(y-1+x2p[,m]);
    hatmu[m] = summary(fm)$coefficients[2,1];
    hats[m] = summary(fm)$coefficients[2,2];
}

hatmu2 = matrix(0, M, 1)
hats2 = matrix(0, M, 1)

for (m in 1:M){
    fm = lm(z-1+x2p[,m]);
    hatmu2[m] = summary(fm)$coefficients[2,1];
    hats2[m] = summary(fm)$coefficients[2,2];
}
```

The correlation matrix reflecting LD information is estimated using reference panel

```
lam = 0.8
sumx3p = apply(x3p*x3p, 2, sum)
R = matrix(0, M, M);
for (i1 in 1:M){
    for (j1 in 1:M){
        R[i1,j1] = t(x3p[,i1])%*%x3p[,j1]/sqrt(sumx3p[i1]*sumx3p[j1])
    }
}
R = R*lam + (1 - lam)*diag(M)

sumx4p = apply(x4p*x4p, 2, sum)
R2 = matrix(0, M, M);
```

```
for (i1 in 1:M){
  for (j1 in 1:M){
   R2[i1,j1] = t(x4p[,i1])%*%x4p[,j1]/sqrt(sumx4p[i1]*sumx4p[j1])
}
R2 = R2*lam + (1 - lam)*diag(M)
The likelihood ratio test is implemented
px = 1
opts = list(max_iter = 10000, dispF = 1, display_gap = 10, epsStopLogLik = 1e-5, fix_alphag = 0);
opts1 = list(max_iter = 10000, dispF = 1, display_gap = 10, epsStopLogLik = 1e-5, fix_alphag = 1);
zscore = hatmu/hats
zscore2 = hatmu2/hats2
fmHa = CoMM_S4(zscore, zscore2, R, R2, opts, px);
#> ***Iteration******Fnew*****Fold******Diff***
     10.0000 -49.9045 -49.9073
                                 0.0027
#> ***Iteration******Fnew*****Fold********Diff***
     2.0000e+01 -4.9900e+01 -4.9900e+01 4.0855e-05
fmH0 = CoMM_S4(zscore, zscore2, R, R2, opts1, px);
#> ***Iteration******Fnew*****Fold*******Diff***
      10.0000 -50.0588 -50.0732
                                  0.0144
#> ***Iteration******Fnew*****Fold*******Diff***
     20.0000 -50.0112 -50.0130
                                 0.0017
#> ***Iteration******Fnew*****Fold*******Diff***
      30.0000 -50.0030 -50.0034
                                   0.0004
#> ***Iteration******Fnew*****Fold*******Diff***
     40.0000 -50.0009 -50.0010 0.0001
#> ***Iteration******Fnew*****Fold*******Diff***
     5.0000e+01 -5.0000e+01 -5.0000e+01
                                           3.2494e-05
#> ***Iteration******Fnew*****Fold*******Diff***
     6.0000e+01 -5.0000e+01 -5.0000e+01 9.5248e-06
stat = 2*(fmHa$LRLB - fmHO$LRLB)
pval = pchisq(stat, 1, lower.tail = F)
str(fmHa)
#> List of 5
#> $ vardist_mu: num [1:100, 1] -0.00298 0.01132 0.11214 0.07152 -0.02412 ...
#> $ sigma2mu : num [1, 1] 0.0279
#> $ alphag
             : num -0.936
#> $ Lq
               : num [1, 1:25] -54.3 -51 -50.3 -50.1 -50 ...
#> $ LRLB
              : num -49.9
str(fmH0)
#> List of 5
#> $ vardist_mu: num [1:100, 1] -1.02e-05 6.16e-06 3.74e-05 1.80e-05 -2.40e-05 ...
#> $ sigma2mu : num [1, 1] 2.32e-05
#> $ alphaq
             : num 0
#> $ Lq
               : num [1, 1:60] -54.8 -51.4 -50.6 -50.4 -50.2 ...
#> $ LRLB
              : num -50
print(stat)
#> [1] 0.2349252
print(pval)
```

```
#> [1] 0.6278957
```

The output of CoMM_S4 is a list with 5 variables, mean of variational distribution vardist_mu, variance component sigma2mu, gene effect size alphag, calibrated ELBO LRLB, original ELBO Lq.

Fit CoMM S4 using eQTL and GWAS summary statistics

The example of running CoMM_S4 using eQTL summary statistics and GWAS summary statistics

```
stringname1 = "cis-eQTLs_full_chr1_1-100000.txt";
stringname2 = "NFBC_ph1_beta_se.txt"
stringname3 = "all_chr_1000G";
stringname4 = "cis-eQTLs_full_chr1";
stringname5 = "all_chr_1000G";
px = 1
lam = 0.95;
coreNum = 24;
```

Here, the parameter stringname1 is the eQTL summary statistics. The parameter stringname2 is the GWAS summary statistics whose format is the same as the GWAS summary statistics of the input file for model CoMM_S2. The parameter stringname3 is the prefix for reference panel of eQTL in plink binary format. The parameter stringname4 is the prefix for the file to complement additional information of SNPs in eQTL summary statistics file, it has the same format as bim file used in plink software. The parameter stringname5 is the prefix for the reference panel of GWAS in plink binary format. The parameter px is a logical value (1 or 0) indicating whether to use parameter expansion to accerate algorithm. The parameter lam is the shrinkage intensity for the reference panel. The parameter coreNum is the number of cores in parallel. Then run fm = CoMM_S4_testing(stringname1, stringname2, stringname3, stringname4, stringname5, px, lam);

For the eQTL summary data file, it requires to have the following two formats (note that it must be tab delimited):

SNP	Gene	beta	se
rs201725126	ENSG00000227232	0.6142857	0.6780778
rs200579949	ENSG00000227232	-0.7585898	0.0453431
rs75454623	ENSG00000227232	0.2414931	0.4935305
rs199856693	ENSG00000170113	0.5050623	0.2252596
rs78601809	ENSG00000170113	1.5409776	0.7169221
rs200482301	ENSG00000170113	0.2524854	0.2358414
rs140337953	ENSG00000140157	0.5835819	0.2434627
rs200943160	ENSG00000140157	0.0126301	0.6551085
rs116400033	ENSG00000140157	0.8584214	1.7336470
rs61999471	ENSG00000140157	-0.3483619	1.8034719

or

SNP	Gene	zscore	constant
rs201725126	ENSG00000227232	-0.3778055	1
rs200579949	ENSG00000227232	-0.2706801	1
rs75454623	ENSG00000227232	0.7614850	1
rs199856693	ENSG00000170113	-0.0505628	1
rs78601809	ENSG00000170113	1.3861256	1
rs200482301	ENSG00000170113	-1.2418526	1
rs140337953	ENSG00000140157	0.6853001	1

SNP	Gene	zscore	constant
rs200943160	ENSG00000140157	-0.3329476	1
rs116400033	ENSG00000140157	1.1296831	1
rs61999471	ENSG00000140157	1.3348775	1

Note that the constant in the second format must be equal to 1. Although it seems that these two formats are different, they both have the same statistics zscore. As a matter of fact, we only require the zscore in the model rather than beta and standard error. Here, we provide these two formats to be in line with the input file of the model CoMM_S2. Similarly, the beta and se column in the GWAS summary statistics file can also be replaced with zscore and constant. At last, the corresponding file with all the information of SNPs in eQTL summary file is

$\overline{V1}$	V2	V3	V4	V5	V6
1	rs201725126	169844515	169844515	G	\overline{T}
1	rs200579949	169794359	169794359	G	A
1	rs75454623	169766298	169766298	Τ	G
1	rs199856693	169794025	169794025	${ m T}$	\mathbf{C}
1	rs78601809	169851159	169851159	A	G
1	rs200482301	169759370	169759370	A	G
1	rs140337953	169921175	169921175	G	A
1	rs200943160	169858192	169858192	A	G
1	rs116400033	169851731	169851731	A	G
1	rs61999471	169860473	169860473	G	A

One point we have to explain is that this file must contain all the SNP information of eQTL summary statistics. Furthermore, to speed up model 'CoMM_S4', we implement multiple threads version of 'CoMM_S4' by just running fm = CoMM_S4_testing_mt(stringname1, stringname2, stringname3, stringname4, stringname5, px, lam, coreNum);

CoMM: a unified function to dissect genetic contributions to complex traits by leveraging regulatory information

The general form of CoMM is CoMM(Model, file1, file2, file3, file4, file5, file6, Cov1, Cov2, R1, R2, whCol, bw, lam, paral, coreNum). In fact, The function CoMM is the combination of CoMM_testing_run, CoMM_S2_testing and CoMM_S4_testing to facilitate the usage of these functions. Firstly, we describe the parameters used in the function CoMM in detail.

Model

The type of model specified by the user. It is a character which has four values, "Individual", "Summary", "Trans" and "Shared". "Individual" stands for the model using both individual-level transcriptome and GWAS dataset. "Summary" stands for the model using individual-level transcriptome but summary-level GWAS dataset. "Trans" stands for the model using both summary-level transcriptome and GWAS dataset with different reference panels. "Shared" stands for the model using both summary-level transcriptome and GWAS dataset with the same reference panel. The default value is "Individual".

file1

The prefix for eQTL genotype file with plink format (bim, bed, fam). The parameter file1 must be specified when the parameter Model takes value "Individual" or "Summary". In other scenarios, the parameter file1 will be ignored.

file2

The gene expression file with full name. The parameter file2 must be specified when the parameter Model takes value "Individual" or "Summary". But in other scenarios, the parameter file2 will be ignored. For the gene expression file, it must have the following format (rows for genes and note that it must be tab delimited):

lower	up	genetype1	${\tt genetype2}$	TargetID	Chr	HG00105	HG00115
59783540	59843484	lincRNA	PART1	ENSG000001529	31.6 5	0.5126086	0.7089508
48128225	48148330	protein_coding	UPP1	ENSG000001836	96.9 7	1.4118007	-
							0.0135644
57846106	57853063	protein_coding	INHBE	ENSG000001392	$269.2\ 12$	0.5755268	-
							1.0162217
116054583	116164515	protein_coding	AFAP1L2	ENSG000001691	29.8 10	1.1117776	0.0407033
22157909	22396763	protein_coding	RAPGEF5	ENSG000001362	237.127	0.2831573	-
							0.1772559
11700964	11743303	lincRNA	RP11-	ENSG000002471	57.2 12	0.2550282	-
			434C1.1				0.2831573

file3

The prefix for GWAS genotype and phenotype file with plink format (bim, bed, fam). The parameter file3 must be specified when the parameter Model takes value "Individual". But in other scenarios, the parameter file3 will be ignored.

file4

The summary-level transcriptome dataset. The parameter file4 must be specified when the parameter Model takes value "Trans" or "Shared". But in other scenarios, the parameter file4 will be ignored. For summary-level transcriptome data file, it must have the following format (note that it must be tab delimited):

SNP	Gene	beta	se
rs201725126	ENSG00000227232	0.6142857	0.6780778
rs200579949	ENSG00000227232	-0.7585898	0.0453431
rs75454623	ENSG00000227232	0.2414931	0.4935305
rs199856693	ENSG00000170113	0.5050623	0.2252596
rs78601809	ENSG00000170113	1.5409776	0.7169221
rs200482301	ENSG00000170113	0.2524854	0.2358414
rs140337953	ENSG00000140157	0.5835819	0.2434627
rs200943160	ENSG00000140157	0.0126301	0.6551085
rs116400033	ENSG00000140157	0.8584214	1.7336470
rs61999471	ENSG00000140157	-0.3483619	1.8034719

file5

The prefix for the complementary summary-level transcriptome data file with suffix ".fam", which have complete information of SNP used in file4. For example, the file can be named as "cis-eQTLs_full_chr1.fam". The parameter file5 must be specified when the parameter Model takes value "Trans" or "Shared". But in other scenarios, the parameter file5 will be ignored. For the complementary summary-level transcriptome data file, it must have the following format (note that it must be tab delimited):

V	1	V2	V3	V4	V5	V6
	1	rs201725126	169844515	169844515	G	T
	1	rs200579949	169794359	169794359	G	A
	1	rs75454623	169766298	169766298	\mathbf{T}	G

$\overline{\mathrm{V1}}$	V2	V3	V4	V5	V6
1	rs199856693	169794025	169794025	T	
1	rs78601809	169851159	169851159	A	G
1	rs200482301	169759370	169759370	A	G
1	rs140337953	169921175	169921175	G	A
1	rs200943160	169858192	169858192	A	G
1	rs116400033	169851731	169851731	A	G
1	rs61999471	169860473	169860473	G	A

file6

The summary-level GWAS dataset. The parameter file6 must be specified when the parameter Model takes value "Summary", "Trans" or "Shared". But in other scenarios, the parameter file6 will be ignored. For the summary-level GWAS data file, it must have the following format (note that it must be tab delimited):

SNP	chr	BP	A1	A2	beta	se
rs3094315	1	752566	G	A	-0.0122	0.0294
rs3128117	1	944564	\mathbf{C}	\mathbf{T}	-0.0208	0.0278
rs1891906	1	950243	\mathbf{C}	A	-0.0264	0.0260
rs2710888	1	959842	${ m T}$	\mathbf{C}	-0.0439	0.0297
rs4970393	1	962606	G	A	-0.0252	0.0233
$\mathrm{rs}7526076$	1	998395	A	G	-0.0512	0.0229
rs4075116	1	1003629	\mathbf{C}	\mathbf{T}	-0.0497	0.0220
rs3934834	1	1005806	\mathbf{T}	\mathbf{C}	0.0364	0.0256
rs3766192	1	1017197	\mathbf{C}	\mathbf{T}	-0.0116	0.0178
rs3766191	1	1017587	\mathbf{T}	\mathbf{C}	0.0318	0.0262

Cov1

The covariates of transcriptome dataset. It is meaningful when the parameter Model takes value "Individual" or "Summary". For other values, it can be ignored.

Cov2

The covariates of GWAS dataset. It is meaningful when the parameter Model takes value "Individual". For other values, it can be ignored.

R1

The prefix for the reference panel corresponding to transcriptome dataset with plink format (bim, bed, fam). When the parameter Model takes value "Shared", both the correlation matrix for eQTL and GWAS are estimated by R1. It is meaningful when the parameter Model is "Trans" or "Shared". In other scenarios, it can be ignored.

R2

The prefix for the reference panel corresponding to GWAS dataset with plink format (bim, bed, fam). It is meaningful when the parameter Model takes value "Summary" or "Trans". In other scenarios, it can be ignored.

whCol

Specify which column of phenotype in the fam file is adopted. For example, when whCol = 2, the 2-th column of fam file is adopted as the phenotype. The default value is 1. It is meaningful when the parameter Model takes value "Individual". Otherwise, it will be ignored.

bw

The number of downstream and upstream SNPs that are considered as cis-SNP within a gene. The default value is 500000. This parameter is meaningful when the parameter Model takes value "Individual" or "Summary". For other values "Trans" and "Shared", it can be ignored.

lam

The shrinkage intensity to estimate the correlation matrix. For example, when lam = 0.95, R1 = 0.95R + 0.05I. The default value is 0.95.

paral

The logical value to specify whether the program run in parallel. The default value is F.

coreNum

The number of cores used when the program run in parallel. The default value is 1. The parameter is meaningful when the parameter paral takes logical value T. Otherwise, it will be ignored.

Examples

```
file1 = "1000G.EUR.QC";
file2 = "Geuvadis_gene_expression.txt";
file3 = "NFBC_filter_mph10";
file4 = "cis-eQTLs_full_chr1_1-100000.txt";
file5 = "cis-eQTLs_full_chr1";
file6 = "NFBC_ph1_beta_se.txt";
R1 = "all_chr_1000G";
R2 = "NFBC_filter_mph10_400";
whCol = 1;
bw = 500000;
lam = 0.95;
paral = T;
coreNum = 24;
```

When we want to fit CoMM using individual-level transcriptome and GWAS data, we run

```
obj <- CoMM(Model = "Individual", file1 = file1, file2 = file2, file3 = file3, whCol = whCol, bw = bw)
```

We can also run in parallel

```
obj <- CoMM(Model = "Individual", file1 = file1, file2 = file2, file3 = file3, whCol = whCol, bw = bw,
```

When we can only access to the individual-level transcriptome dataset and the summary-level GWAS dataset. In addition, we have the dataset "NFBC_filter_mph10_400" as the reference panel. Then we can run

```
obj <- CoMM(Model = "Summary", file1 = file1, file2 = file2, file6 = file6, R2 = R2, bw =bw)
```

We can also run in parallel

```
obj <- CoMM(Model = "Summary", file1 = file1, file2 = file2, file6 = file6, R2 = R2, bw =bw, paral = pa
```

Moreover, we can also specify the shrinkage intensity

```
obj <- CoMM(Model = "Summary", file1 = file1, file2 = file2, file6 = file6, R2 = R2, bw =bw, lam = lam,
```

When we both have the summary-level transcriptome dataset and GWAS dataset. In addition, we adopt the binary plink files "all_chr_1000G" and "NFBC_filter_mph10_400" as the reference panel for transcriptome and GWAS datasets, respectively

```
obj <- CoMM(Model = "Trans", file4 = file4, file5 = file5, file6 = file6, R1 = R1, R2 = R2)
```

In this setting, we can also specify the shrinkage intensity and run in parallel

```
obj <- CoMM(Model = "Trans", file4 = file4, file5 = file5, file6 = file6, R1 = R1, R2 = R2, lam = lam,
```

When we both have the summary-level transcriptome dataset and GWAS dataset which share the same dataset "all_chr_1000G" as the reference panel. We run

```
obj <- CoMM(Model = "Shared", file4 = file4, file5 = file5, file6 = file6, R1 = R1)
```

Similarly, we we can specify the shrinkage intensity and run in parallel

```
obj <- CoMM(Model = "Shared", file4 = file4, file5 = file5, file6 = file6, R1 = R1, lam = lam, paral = j
```