Министерство образования Республики Беларусь Учреждение образования «Брестский государственный технический университет» Кафедра ИИТ

Лабораторная работа №1 за III семестр

по дисциплине: "Метады и алгоритмы принятия решений" Тема: "Линейная искусственная нейронная сеть. Правило Видроу-Хоффа"

> Выполнил: студент 2 курса группы ПО-4 (1) Галанин П. И.

Проверил: ст. преподаватель Крощенко А. А.

Лабораторная работа №1

Тема: "Линейная искусственная нейронная сеть. Правило Видроу-Хоффа".

Цель: "Изучить обучение и функционирование линейной ИНС при решении задач прогнозирования".

Ход работы:

Вариант 5

Листинг: "main.py"

```
import math
   import random
   import matplotlib.pyplot as plt
   def print_headTable():
    print("| %20s | %20s | %20s | %20s |" % (
6
      "y[]",
      "Эталонное значение",
9
      "Полученное значение",
      "Отклонение"
10
    ))
11
    print("| %16s | %16s | %16s | %16s |" % (
12
      " ----",
13
      " _ _ _ _ _ " ,
14
      " _ _ _ _ _ " ,
15
      " _ _ _ _ _ "
16
    ))
17
18
19
  a = 1
20
  b = 9
21
  d = 0.5
  L = 4
22
23
24
  alpha = 0.5
  Em = 1e-6
```

_								
					ЛР.ПО4.190333			
Изм	Лист	№ докум.	Подп.	Дата				
Pa3	раб.	Галанин			Лабораторная работа №1	Лит.	Лист	Листов
Πp	ЭΒ.	Крощенко			Линейная искусственная	Л	2	7
					ē .			
H.	контр.	Крощенко			нейронная сеть. Правило		БрΓТ	'У
y_{TI}	3.				Видроу-Хоффа		_	

```
26
27
   w = []
28
   for i in range(L):
29
     w.append(random.random() * 0.02 - 0.01)
30
     print("w[%d] = %lf" % (i, w[i]))
31
32
  T = 0.5
33
34
   m = 30
35
   m2 = 15
36
37
   print("a = %d" % a)
38
   print("b = %d" % b)
   print("d = %f" % d)
39
40
   print("L = %d" % L)
   print("T = %f" % T)
41
   print("alpha = %f" % a)
42
   print("Em = %f" % Em)
43
   print("m = %d" % m)
44
   print("m2 = %d" % m2)
45
46
47
   e = []
   for i in range(m + m2):
48
     step = 0.1
49
50
     x = step * i
51
     e.append(a * math.sin(b * x) + d)
52
   print("|%20s|%20s|" % ("Eras", "E"))
53
   print("|%20s|%20s|" % (
54
     "----",
55
56
     " _ _ _ _ _ "
57
   ))
   eras = 0
58
   while 1:
59
     E = 0
60
     for i in range (m - L):
61
62
       y1 = 0
63
       for j in range(L):
64
         y1 += w[j] * e[i + j]
```

Изм	Лист	№ докум.	Подп.	Дата

```
65
        y1 -= T
66
67
        for j in range(L):
68
          w[j] -= alpha * (y1 - e[i + L]) * e[i + j]
69
70
        T += alpha * (y1 - e[i + L])
71
72
        E += 0.5 * math.pow((y1 - e[i + L]), 2)
 73
        eras += 1
 74
      plt.plot(eras, E, 'o-m') # moчκu на графике
75
 76
77
      print("|%20d|%20f|" % (eras, E))
 78
79
      if E < Em:
80
        break
81
82
    print("\nEras %d\n" % eras)
83
84
    print("Результаты обучение:")
85
    print_headTable()
86
87
    trainingSample = []
88
89
    for i in range(m):
90
      trainingSample.append(0)
91
92
      for j in range(L):
93
        trainingSample[i] += w[j] * e[j + i]
94
95
      trainingSample[i] -= T
96
      print("| %20d | %20lf | %20lf | %20lf |" % (
97
98
        i,
99
        e[i + L],
100
        trainingSample[i],
        e[i + L] - trainingSample[i]
101
102
      ))
103
```

Изм	Лист	№ докум.	Подп.	Дата

```
print("Результаты прогнозирование:")
104
105
    print_headTable()
106
107
    for i in range(m2):
108
      trainingSample.append(0)
109
110
      for j in range(L):
111
        trainingSample[i + m] += w[j] * e[m - L + j + i]
112
113
      trainingSample[i + m] -= T
114
      print("| %20d | %20lf | %20lf | %20lf |" % (
115
116
        i + m,
        e[i + m],
117
118
        trainingSample[i + m],
        e[i + m] - trainingSample[i + m]
119
120
      ))
121
122
    plt.show()
```

				·
Изм	Лист	№ докум.	Подп.	Дата

```
Листинг: "Консольный вывод"
  w[0] = -0.005536
  w[1] = 0.006455
  w[2] = 0.004817
  w[3] = 0.003425
  a = 1
  b = 9
  d = 0.50000
  L = 4
  T = 0.500000
10
  alpha = 1.000000
11
  Em = 0.000001
12
  m = 30
13
  m2 = 15
14
                Eras
15
                 26
                       36.568512
16
17
                 52
                            0.043920
18
                 78
                             0.000273
19
                 104
                             0.000000
20
21
  Eras 104
22
23
  Результаты обучение:
         у[] | Эталонное значение | Полученное значение | Отклонение |
24
25
       -----|
                                           0.057473 |
                              0.057480
                  0 |
                                                                   0.000006
^{26}
27
                               -0.477530
                                                 -0.477534
                                                -0.272765
28
                              -0.272764
                                                                   0.000000
29
                                                0.516815
                                                                  -0.000001
                               0.516814
30
                               1.293668
                                                 1.293667
                                                                   0.000000
31
                               1.469890
                                                 1.469886
                                                                   0.000004
                               0.912118
                                                 0.912112
                                                                   0.000007
33
                               0.042464
                                                 0.042458
                                                                   0.000006
34
                   8 |
                               -0.480936
                                                -0.480940
                                                                   0.000003
35
                                                 -0.261984
                   9
                               -0.261984
                                                                    0.000000
36
                  10
                                0.533623
                                                  0.533624
                                                                    -0.000001
                  11
                               1.303784
                                                 1.303784
                                                                    0.000000
38
                               1.465658
                                                 1.465654
                                                                    0.000004
                  12
                  13
                               0.896741
39
                                                 0.896734
                                                                   0.000007
40
                               0.027578
                                                 0.027572
                                                                   0.000006
                              -0.484065
                                                 -0.484068
                                                                   0.000003
42
                  16
                              -0.250987
                                                -0.250987
                                                                   -0.000000
                  17
43
                               0.550423
                                                 0.550424
                                                                   -0.000001
                  18
                               1.313674
                                                 1.313673
                                                                   0.000001
44
45
                  19
                               1.461153
                                                 1.461149
                                                                    0.000004
46
                  20
                               0.881250
                                                 0.881244
                                                                    0.000007
                                                 0.012819
47
                  21
                               0.012825
                                                                    0.000006
48
                  22
                               -0.486916
                                                 -0.486919
                                                                    0.000003
49
                  23
                               -0.239779
                                                -0.239779
                                                                   -0.000000
50
                  24
                               0.567208
                                                 0.567209
                                                                   -0.000001
                  25
                               1.323333
                                                 1.323332
                                                                   0.000001
                                                 1.456372
52
                  26
                               1.456376
                                                                    0.000004
                  27
                               0.865653
                                                 0.865646
53
                                                                    0.000007
54
                  28
                               -0.001789
                                                 -0.001796
                                                                    0.000006
                               -0.489487
                                                 -0.489490
                                                                    0.000003
                  29
56
  Результаты прогнозирование:
57
                у[] | Эталонное значение | Полученное значение |
                                                                  Отклонение
                                                                               Лист
                                     \Pi P.\Pi O 4.190333-...
```

 $N_{\overline{o}}$ докум.

Подп.

Дата

Лист

59	3	0 1	.456376	1.456372	0.000004
60	3	1 0	.865653	0.865646	0.000007
61	3	2 -0	.001789 -	0.001796	0.000006
62	3	3 -0	.489487 -	0.489490	0.000003
63	3	4 -0	.228361 -	0.228361	-0.000000
64	3	5 0	.583974	0.583976	-0.000001
65	3	6 1	.332759	1.332759	0.000001
66	3	7 1	.451329	1.451325	0.000004
67	3	8 0	.849951	0.849945	0.000007
68	3	9 -0	.016262	0.016268	0.000006
69	4	- 0	.491779 -	0.491782	0.000003
70	4	1 -0	.216737 -	0.216737	-0.000000
71	4	2 0	.600717	0.600718	-0.000001
72	4	3 1	.341951	1.341950	0.000001
73	4	4 1	.446013	1.446008	0.000004

График изменения ошибки изображен на рисунке 1 (стр. 7).

Рисунок 1 – График изменения ошибки

Вывод: "Изучили обучение и функционирование линейной ИНС при решении задач прогнозирования".

Изм	Лист	№ докум.	Подп.	Дата