1. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{-56}{16x - 72} + 1 = \frac{-56}{16x - 72}$$

- A. $x_1 \in [-5.5, -1.5]$ and $x_2 \in [2.5, 5.5]$
- B. $x \in [-5.5, -1.5]$
- C. $x \in [3.5, 5.5]$
- D. $x_1 \in [4.5, 6.5]$ and $x_2 \in [2.5, 5.5]$
- E. All solutions lead to invalid or complex values in the equation.
- 2. Choose the equation of the function graphed below.

- A. $f(x) = \frac{1}{x-3} 3$
- B. $f(x) = \frac{1}{(x-3)^2} 3$
- C. $f(x) = \frac{-1}{x+3} 3$
- D. $f(x) = \frac{-1}{(x+3)^2} 3$
- E. None of the above

3. Choose the equation of the function graphed below.

A.
$$f(x) = \frac{1}{x-2} - 1$$

B.
$$f(x) = \frac{1}{(x-2)^2} - 1$$

C.
$$f(x) = \frac{-1}{(x+2)^2} - 1$$

D.
$$f(x) = \frac{-1}{x+2} - 1$$

- E. None of the above
- 4. Choose the graph of the equation below.

$$f(x) = \frac{1}{(x+3)^2} - 1$$

A.

С.

E. None of the above.

5. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{-4x}{7x+6} + \frac{-6x^2}{35x^2 - 19x - 42} = \frac{-6}{5x-7}$$

A. $x \in [1.53, 3.65]$

B. All solutions lead to invalid or complex values in the equation.

C. $x \in [0.6, 1.53]$

D. $x_1 \in [-1.34, -0.34]$ and $x_2 \in [-3, 2.7]$

E. $x_1 \in [-1.34, -0.34]$ and $x_2 \in [3, 6.7]$

6. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{4x}{4x+7} + \frac{-2x^2}{-8x^2 + 14x + 49} = \frac{2}{-2x+7}$$

A. $x_1 \in [2.28, 3.46]$ and $x_2 \in [-2, 3]$

B. $x \in [-2.84, -0.99]$

C. $x \in [2.68, 4.19]$

D. $x_1 \in [-2.84, -0.99]$ and $x_2 \in [1.5, 6.5]$

E. All solutions lead to invalid or complex values in the equation.

7. Determine the domain of the function below.

$$f(x) = \frac{6}{16x^2 + 40x + 24}$$

- A. All Real numbers except x = a, where $a \in [-1.67, -1.4]$
- B. All Real numbers except x = a and x = b, where $a \in [-24.11, -23.87]$ and b = [-16.78, -15.56]
- C. All Real numbers except x = a, where $a \in [-24.11, -23.87]$
- D. All Real numbers.
- E. All Real numbers except x=a and x=b, where $a\in[-1.67,-1.4]$ and $b\in[-1.32,-0.74]$

8. Determine the domain of the function below.

$$f(x) = \frac{6}{16x^2 + 8x - 15}$$

- A. All Real numbers except x = a, where $a \in [-23, -19]$
- B. All Real numbers.
- C. All Real numbers except x = a, where $a \in [-4.25, -0.25]$
- D. All Real numbers except x=a and x=b, where $a\in[-23,-19]$ and $b\in[12,13]$
- E. All Real numbers except x=a and x=b, where $a\in[-4.25,-0.25]$ and $b\in[0.75,2.75]$

9. Choose the graph of the equation below.

$$f(x) = \frac{-1}{x - 1} + 2$$

Α.

В.

C.

E. None of the above.

10. Solve the rational equation below. Then, choose the interval(s) that the solution(s) belongs to.

$$\frac{108}{72x - 36} + 1 = \frac{108}{72x - 36}$$

A.
$$x \in [-0.9, -0.2]$$

B.
$$x_1 \in [-0.9, -0.2]$$
 and $x_2 \in [-0.5, 2.5]$

C.
$$x \in [0.5, 2.5]$$

D.
$$x_1 \in [0.2, 1.1]$$
 and $x_2 \in [-0.5, 2.5]$

E. All solutions lead to invalid or complex values in the equation.