ISA 444: Business Forecasting

08: Forecasting Environment

Fadel M. Megahed, PhD

Professor Farmer School of Business Miami University

- fmegahed
- ✓ fmegahed@miamioh.edu
- ? Automated Scheduler for Office Hours

Quick Refresher of Last Class

- Explain the differences between wide vs. long format
- ✓ Use seaborn to plot multiple time-series
- Convert a data set to Nixtla's long format (unique_id, ds, y)
- ✓ Use UtilsForecast to visualize multiple series

Learning Objectives for Today's Class

- Install and import Nixtla's libraries (StatsForecast, MLForecast, NeuralForecast, UtilsForecast, and TimeGPT) for forecasting
- Distinguish fixed window from rolling-origin
- Introduce forecast accuracy metrics (MAE, MAPE, RMSE)

The Nixtlaverse Open-Source Forecasting Libraries

Nixtla's Forecasting Libraries

Nixtla's Forecasting Libraries

Nixtla provides **several open-source Python libraries** (and a closed source **TimeGPT** tool accessible via API calls) for **scalable forecasting tasks**. These libraries are **relatively** easy to use and can be integrated into your future forecasting workflows:

- StatsForecast Fast & scalable statistical models (ARIMA, ETS, etc.).
- MLForecast Machine learning-based forecasting (e.g., XGBoost, LightGBM).
- NeuralForecast Deep learning models for time series (e.g., NBEATS, NHITS, and TFT).
- UtilsForecast Utility functions for plotting, evaluation, etc.
- TimeGPT an AI transformer-powered forecasting API that requires minimal tuning.

These libraries enable forecasting at scale, which you will need in practice.

Fixed Window vs. Rolling-Origin

The Fixed Window Evaluation Approach

- **Fixed Window** is the simplest approach to splitting your time series data into a training and a testing/holdout set.
- The goal is to train your model on the training set and evaluate its performance on the testing set (the last k observations in the data).
 - Note that this is quite different than traditional machine learning applications for cross sectional data.
- The evaluation on the testing/holdout set can serve two purposes:
 - Model Evaluation: Assess the model's performance on unseen data (since it is not used during training, and hence acts as a proxy for the model's performance on future data).
 - Model Selection: Compare the performance of different models to select the best one.
 - Note that using this approach for model selection is reasonable if your models do not involve hyperparameter tuning (otherwise, you may overfit to the testing set).

The Fixed Window Evaluation Approach

Retail Trade Sales (RSXFS): Train-Test Split (Test set is often set to a multiple of the period)

The Rolling-Origin Evaluation Approach

- Rolling-Origin Evaluation is a method for splitting time series data into training and testing sets where the testing sets move forward over time.
- The goal is to train the model on a subset of past observations and evaluate its performance on a future testing set at multiple time steps.
- The key difference from a fixed window approach is that the testing set shifts forward, allowing for multiple evaluations:
 - The training set may expand (expanding window) or remain fixed (rolling window).
 - This ensures that model performance is assessed across different points in time.
 - It reduces sensitivity to the initial split point and provides a more robust evaluation of model performance over time.

Expanding Window Evaluation (By 1 Month)

Expanding Window Approach for Time Series Forecasting (Training window expands by 1 month at a time)

Expanding Window Evaluation (By 12 Month)

Expanding Window Approach for Time Series Forecasting (Training window expands by 12 months at a time)

Rolling Non-Expanding Window Evaluation

Sliding Window Approach for Time Series Forecasting (Fixed 10-year training window slides by 12 months)

Cross Validation within the Nixtlaverse

Perform time series cross-validation

Once the <code>StatsForecast</code> object has been instantiated, we can use the <code>cross_validation</code> method, which takes the following arguments:

- df : training data frame with StatsForecast format
- h (int): represents the h steps into the future that will be forecasted
- step_size (int): step size between each window, meaning how often do you want to run
 the forecasting process.
- n_windows (int): number of windows used for cross-validation, meaning the number of forecasting processes in the past you want to evaluate.

For this particular example, we'll use 3 windows of 24 hours.

```
cv_df = sf.cross_validation(
    df = df,
    h = 24,
    step_size = 24,
    n_windows = 3
)
```

The cv_df object is a new data frame that includes the following columns:

- unique_id : series identifier
- ds: datestamp or temporal index
- cutoff: the last datestamp or temporal index for the n_windows.
- y : true value

■ On this page
 Introduction
 Install libraries
 Load and explore the data
 Train model
 Perform time series cross-validation
 Evaluate results
 References

Activity: The cross_validation Method

'oss_validation method from Nixtla implements:

Non-Expanding Rolling Window

Recap of Fixed vs. Rolling-Origin

Fixed Window:

- Simplest approach to splitting data into training and testing sets.
- Testing set is fixed and does not move forward over time.
- Provides a single evaluation of model performance.

• Rolling-Origin:

- Testing set moves forward over time.
- Training set may expand or remain fixed.
- Provides multiple evaluations of model performance.
- Reduces sensitivity to the initial split point.
- More robust evaluation of model performance over time.

Recap of Fixed vs. Rolling-Origin

- In practice, the **rolling-origin approach is preferred** for time series forecasting tasks since it mimics the real-world scenario of forecasting future data points. The choice of:
 - Expanding vs. Rolling Window,
 - Window Size, and
 - Step Size depends on the specific forecasting task and the data at hand.

Forecast Accuracy Metrics

Model Performance Evaluation in the Nixtlaverse

```
from utilsforecast.losses import *
```

evaluate

Source: Nixtla's UtilsForecast Evaluation Documentation

Model Performance Evaluation in the Nixtlaverse (Cont.)

	Туре	Default	Details
df	AnyDFType		Forecasts to evaluate. Must have id_col, time_col, target_col and models' predictions.
metrics	List		Functions with arguments df, models, id_col, target_col and optionally train_df.
models	Optional	None	Names of the models to evaluate. If None will use every column in the dataframe after removing id, time and target.
train_df	Optional	None	Training set. Used to evaluate metrics such as mase.
level	Optional	None	Prediction interval levels. Used to compute losses that rely on quantiles.
id_col	str	unique_id	Column that identifies each serie.
time_col	str	ds	Column that identifies each timestep, its values can be timestamps or integers.
target_col	str	У	Column that contains the target.
agg_fn	Optional	None	Statistic to compute on the scores by id to reduce them to a single number.
Returns	AnyDFType		Metrics with one row per (id, metric) combination and one column per model. If agg_fn is not None, there is only one row per metric.

Source: Nixtla's UtilsForecast Evaluation Documentation

Losses

The most important train signal is the forecast error, which is the difference between the observed value y_{τ} and the prediction \hat{y}_{τ} , at time y_{τ} :

$$e_ au = y_ au - \hat{y}_ au \qquad au \in \{t+1,\ldots,t+H\}$$

The train loss summarizes the forecast errors in different evaluation metrics.

Source: Nixtla's UtilsForecast Losses Documentation

Scale-Dependent Errors: mae

MAE measures the relative prediction accuracy by averaging the absolute deviations between forecasts and actual values.

$$ext{MAE}(y_{ au}, {\hat{y}}_{ au}) = rac{1}{H} \sum_{ au=t+1}^{t+H} |y_{ au} - {\hat{y}}_{ au}|$$

- Interpretation: Provides a straightforward measure of forecast accuracy; lower MAE indicates better performance.
- Characteristic: Does not penalize larger errors more than smaller ones; treats all errors equally.

Source: Nixtla's UtilsForecast Losses Documentation

Scale-Dependent Errors: rmse

RMSE is the square root of the average of the squared differences between forecasts and actual values.

$$ext{RMSE}(y_ au, \hat{y}_ au) = \sqrt{rac{1}{H} \sum_{ au=t+1}^{t+H} (y_ au - \hat{y}_ au)^2}$$

- Interpretation: Emphasizes larger errors due to squaring; useful when large errors are particularly undesirable.
- Characteristic: Penalizes large errors more than MAE (i.e., more sensitive to ourliers compared to MAE).

Source: Nixtla's UtilsForecast Losses Documentation 23 / 27

Percentage Errors: mape

MAPE calculates the average absolute error as a percentage of actual values.

$$ext{MAPE}(y_{ au}, \hat{y}_{ au}) = rac{1}{H} \sum_{ au=t+1}^{t+H} \left| rac{y_{ au} - \hat{y}_{ au}}{y_{ au}}
ight|$$

Interpretation: Expresses forecast accuracy as a percentage; lower MAPE indicates better performance.

Characteristic: Can be misleading if actual values are close to zero, leading to extremely high MAPE values.

Source: Nixtla's UtilsForecast Losses Documentation

Recap

Summary of Main Points

By now, you should be able to do the following:

- Install and import Nixtla's libraries (StatsForecast, MLForecast, NeuralForecast, UtilsForecast, and TimeGPT) for forecasting
- Distinguish fixed window from rolling-origin
- Introduce forecast accuracy metrics (MAE, MAPE, RMSE)

Review and Clarification

- Class Notes: Take some time to revisit your class notes for key insights and concepts.
- Zoom Recording: The recording of today's class will be made available on Canvas approximately 3-4 hours after the session ends.
- Questions: Please don't hesitate to ask for clarification on any topics discussed in class. It's crucial not to let questions accumulate.