Natural Language Processing Assignment 7 Type of Question: MCQ

Number of Questions: 7	Total Marks: (5×1)+(3×2)=10
Question 1: Suppose you have a raw text corpus and you compute word co occurrence matrix from there. Which of the following algorithm(s) can you utilize to learn word representations? (Choose all that apply) [1 mark]	
a. CBOW b. SVD c. PCA d. GloVe	
Answer: a, b, c, d Solution:	
Question 2: What is the method for solving wo and D, find C such that A:B::C:D, using word ve	· · ·
a. $v_c = v_a + (v_b - v_d)$, then use cosine similar $v_c = v_a + (v_d - v_b)$ then do dictionary lookup f	or V _C
c. $v_c = v_d + (v_b - v_a)$ then use cosine similarity $v_c = v_d + (v_a - v_b)$ then do dictionary lookup fe. None of the above	
Answer: e	
Solution: $v_d - v_c = v_b - v_a$	d the closest word of v
$v_c = v_d + v_a - v_b$ then use cosine similarity to fin	======================================
Question 3: What is the value of PMI(we wa) f	or $C(w_0) = 100 \ C(w_0) = 2000 \ C(w_0)$

 w_2) = 64, N = 100000? N: Total number of documents.

 $C(w_i)$: Number of documents, w_i has appeared in.

 $C(w_i, w_j)$: Number of documents where both the words have appeared in. Note: Use base 2 in logarithm. [1 mark]

- a. 4
- b. 5
- c. 6
- d. 5.64

Answer: b

Solution:

$$PMI = \log_2 \frac{64 \times 100000}{100 \times 2000} = 5$$

Question 4: Given two binary word vectors w_1 and w_2 as follows:

 $w_1 = [1010101010]$

 $w_2 = [00111111100]$

Compute the Dice and Jaccard similarity between them. [2 marks]

- a. 6/11, 3/8
- b. 10/11, 5/6
- c. 4/9, 2/7
- d. 5/9, 5/8

Answer: a

$$\label{eq:decomposition} \begin{aligned} \text{Dice coefficient} &= \frac{2 \times 3}{5+6} = \frac{6}{11} \\ \text{Jaccard coefficient} &= \frac{3}{8} \end{aligned}$$

Solution:

Question 5: Consider two probability distributions for two words be p and q. Compute their similarity scores with KL-divergence. **[2mark]** p = [0.20, 0.75, 0.50]

q = [0.90, 0.10, 0.25]

Note: Use base 2 in logarithm.

Answer: c
Solution:

$$\begin{aligned} \text{KL-div}(p,q) &= \sum_{i} p_{i} \log_{2} \frac{p_{i}}{q_{i}} \\ &= 0.2 \log \frac{0.2}{0.9} + 0.75 \log \frac{0.75}{0.1} + 0.5 \log \frac{0.5}{0.25} \\ &\approx 2.246 \\ \text{KL-div}(q,p) &= 0.9 \log \frac{0.9}{0.2} + 0.1 \log \frac{0.1}{0.75} + 0.25 \log \frac{0.25}{0.5} \\ &\approx 1.412 \end{aligned}$$

Question 6: Consider the following word co-occurrence matrix given below. Compute the cosine similarity between

(i) w1 and w2, and (ii) w1 and w3.

[2 mark]

a. 0.773, 0.412

b. 0.881, 0.764

c. 0.665, 0.601

d. 0.897, 0.315

Answer: d Solution:

Question 7: Which of the following statement(s) is/are True? [1 mark]

- a. In structured distributional semantics, co-occurrence statistics are collected using parser extracted relations.
- b. Term mismatch occurs from the word independence assumption during document indexing.
- c. We can use distribution semantic models for query expansion.
- d. Attributional similarity depends on the degree of correspondence between attributes.

Answer: a, b, c, d

Solution: