92586 Computational Linguistics

Lesson 5. Naïve Bayes

Alberto Barrón-Cedeño

Alma Mater Studiorum-Università di Bologna a.barron@unibo.it @_albarron_

11/03/2021

► BoW representation ► One rule-based sentiment analyser Naïve Bayes

► Pre-processing (e.g., tokenisation, stemming, stopwording)

Previously

Table of Contents

Naïve Bayes

Training a Machine Learning Model

- 1. Introduced in the IR community by Maron (1961)
- 2. First machine learning approach
- 3. It is a **supervised** model
- 4. It applies Bayes' theorem with strong (naïve) independence assumptions between the features
 - ► they are independent
 - ► they contribute "the same"

Let us take it easy

Machine Learning

"the scientific study of algorithms and statistical models that computer systems use to perform a specific task **without using explicit instructions**, relying on patterns and inference instead"

Machine Learning

A change of paradigm

From hand-crafted rules.

To training

Diagrams borrowed from L. Moroney's Introduction to TensorFlow for Artificial Intelligence, Machine Learning, and Deep Learning

Supervised vs Unsupervised

Supervised The algorithms build a mathematical model of a set of data including. . .

- **▶** the inputs
- **▶** desired outputs

Unsupervised The algorithms take a set of data that contains...

- **▶** only inputs
- ...and find structure in the data

https://en.wikipedia.org/wiki/Machine_learning

A conditional probability model

Given an instance represented by a vector

$$\mathbf{x} = (x_1, \dots, x_n) \tag{1}$$

representing *n* independent features $x_1, x_2, x_3, \ldots, x_{n-2}, x_{n-1}, x_n$ *n* could be |V| (the size of the vocabulary)

The model assigns the instance the probability

$$p(C_k \mid \mathbf{x}) = p(C_k \mid x_1, \dots, x_n)$$
 (2)

for each of the k possible outcomes C_k

where $C_k = \{c_1, \ldots, c_k\}$

From

https://en.wikipedia.org/wiki/Naive_Bayes_classifier

Naïve Bayes

Going deeper (assuming a binary classifier)

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})}$$
 (5)

 $posterior \ probability = \frac{class \ prior \ probability \times likelihood}{predictor \ prior \ probability}$

 $p(C \mid \mathbf{x})$ Posterior probability of the class given the input¹

if p > 0.5:
 class = positive
else:
 class = negative

 $^1\mbox{Symbol}\mid\mbox{means}$ "given": the probability of the class given the representation vector

Naïve Bayes'

Using Bayes' Theorem

The conditional probability $p(C_k \mid x_1, \dots, x_n)$ can be decomposed as

$$p(C_k \mid \mathbf{x}) = \frac{p(C_k) \ p(\mathbf{x} \mid C_k)}{p(\mathbf{x})}$$
(3)

How to read this

$$posterior = \frac{prior \times likelihood}{evidence}$$

But p(x) does not depend on the class (it's constant!):

$$p(C_k \mid \mathbf{x}) = p(C_k) \ p(\mathbf{x} \mid C_k) \tag{4}$$

From

https://en.wikipedia.org/wiki/Naive_Bayes_classifier

Naïve Bayes

Going deeper (assuming a binary classifier)

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})} \tag{6}$$

$$posterior\ probability = \frac{class\ prior\ probability \times likelihood}{predictor\ prior\ probability}$$

p(C) Class **prior** probability How many **positive** instances I have seen (during training)?

Going deeper (assuming a binary classifier)

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})} \tag{7}$$

 $posterior \ probability = \frac{class \ prior \ probability \times likelihood}{predictor \ prior \ probability}$

 $p(\mathbf{x} \mid C)$ Likelihood The probability of the document given the class

Naïve Bayes

A toy example: Should I grab a beer from the bar today?

One single factor: zona

(get ready for some of the densest slides I have ever made!)

Rough Idea

- ► The value of a particular feature is **independent** of the value of any other feature, given the class variable
- ► All features contribute the same to the classification
- ► It tries to find keywords in a set of documents that are predictive of the target (output) variable
- ► The internal coefficients will try to map tokens to scores
- ► Same as VADER, but without manually-created rules the machine will estimate them!

From (Lane et al., 2019, p. 65-68)

Naïve Bayes

A toy example: Should I grab a beer from the bar today?

Computing all the

Dataset		
Zona	4	
	yes	
	yes	
	no	
	yes	
	no	
	no	
	yes	
	no	
	no	

Computing **all** the probabilities by "counting"

Frequency table

Zona yes no

3 2

4 0

2 3

Likelihood table

Zona yes no

3/9 2/5

0/5

3/5

Adapted from http://www.saedsayad.com/naive_bayesian.htm

A toy example: Should I grab a beer from the bar today?

Likelihood table

	4	
Zona	yes	no
 	3/9 ¹	2/5
	4/9	0/5
	2/9	3/5
	9/14 ²	5/14

$$p(x \mid c) = p(\mid yes) = 3/9 = 0.33$$

 $p(c) = p(yes) = 9/14 = 0.64$

$$p(x) = p(>) = 5/14 = 0.36$$

What is the Naïve Bayes' probability of **yes** if :?

$$p(c \mid x) = p(c)p(x \mid c)/p(x)$$

 $p(yes \mid \sim) = p(yes)p(\sim \mid yes)/p(\sim)$
 $p(yes \mid \sim) = 0.64 * 0.33/0.36$
 $p(yes \mid \sim) = 0.59$

Adapted from http://www.saedsayad.com/naive_bayesian.htm

Naïve Bayes

A toy example: Should I grab a beer from the bar today?

Considering more data

Zona	Temp	Humidity	Windy	T
	hot	high	false	no
	hot	high	true	no
	hot	high	false	yes
	mild	high	false	yes
	cool	normal	false	yes
	cool	normal	true	no
	cool	normal	true	yes
	mild	high	false	no
	cool	normal	false	yes
	mild	normal	false	yes
	mild	normal	true	yes
	mild	high	true	yes
	hot	normal	false	yes
	mild	high	true	no

Adapted from http://www.saedsayad.com/naive_bayesian.htm

Naïve Bayes

A toy example: Should I grab a beer from the bar today?

If... | let's do it **!**!

Naïve Bayes

A toy example: Should I grab a beer from the bar today?

Frequency tables

Likelihood tables

Zona	yes	no
	3	2
	4	0
	2	3

Humid	yes	no
high	3	4
normal	6	1

Temp	yes	no
hot	2	2
mild	4	2
cool	3	1
100		

Windy	yes	no
false	6	2
true	3	3

Zona	yes	no
	3/9	2/5
	4/9	0/5
	2/9	3/5

Humid	yes	no
high	3/9	4/5
normal	6/9	1/5

Temp	yes	no
hot	2/9	2/5
mild	4/9	2/5
cool	3/9	1/5

Windy	yes	no
false	6/9	2/5
true	3/9	3/5

Adapted from http://www.saedsayad.com/naive_bayesian.htm

Likelihood tables

Zona	yes	no
~	3/9	2/5
	4/9	0/5
	2/9	3/5

Humid	yes	no
high	3/9	4/5
normal	6/9	1/5

Temp	yes	no
hot	2/9	2/5
mild	4/9	2/5
cool	3/9	1/5

Windy	yes	no
false	6/9	2/5
true	3/9	3/5

$$p(\text{yes} \mid x) = \frac{p(\text{yes})p(\text{iool} \mid \text{yes})p(\text{high} \mid \text{yes})p(\text{true} \mid \text{yes})}{p(\text{iool})p(\text{high})p(\text{true})}$$

$$= \frac{9/14 \times 2/9 \times 3/9 \times 3/9 \times 3/9}{5/14 \times 4/14 \times 7/14 \times 6/14}$$

$$= 0.00529/0.02811 = 0.188 \sim 0.2 \text{ no } \blacksquare$$

Adapted from http://www.saedsayad.com/naive_bayesian.htm

Naïve Bayes

Back to the math

$$p(c \mid \mathbf{x}) \propto p(c)p(\mathbf{x} \mid c) \tag{11}$$

But \mathbf{x} is a vector

$$p(c \mid x_1 \dots x_n) \propto p(c)p(x_1 \mid c) \times p(x_2 \mid c) \times \dots \times p(x_n \mid c)$$
 (12)

Eq.(12) can be rewritten as

$$p(c \mid x_1 \dots x_n) \propto p(c) \prod_{i=1}^n p(x_i \mid c)$$
 (13)

Naïve Bayes

Back to the math...

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})}$$
(8)

The probability p(x) is constant for any given input!

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})} \tag{9}$$

$$p(c \mid \mathbf{x}) \propto p(c)p(\mathbf{x} \mid c)$$
 (10)

Naïve Bayes

The classification process

Back to the toy example

$$p(\text{yes} \mid x) \propto p(\text{yes})p(\text{|} \mid \text{yes})p(\text{cool} \mid \text{yes})p(\text{high} \mid \text{yes})p(\text{true} \mid \text{yes})$$

 $\propto 9/14 \times 2/9 \times 3/9 \times 3/9 \times 3/9$
 $\propto 0.00529 \text{ not a probability!}$

Classification: the maximum for all the classes

$$c \propto \arg\max_{c} p(c) \prod_{i=1}^{n} p(x_i \mid c)$$
 (14)

```
compute p(yes|x)
compute p(no|x)
if p(yes|x) > p(no|x):
    yes
else:
    no
```

Training a Machine Learning Model

The dataset

Option 1 You use a corpus created by somebody else

Option 2 You build your own corpus

- (a) You have/hire experts to do it
- (b) You engage non-experts through gamification
- (c) You hire non-experts through explicit crowdsourcing
- (d) There are many other ways to get annotated data

The dataset

We need a bunch of documents with their associated class

kind	examples
binary	{positive, negative}
	{0, 1}
	{-1, 1}
multiclass	{positive, neutral, negative}
	{0,1,2}

In our case, we need the positivity sentiment:

Let us go and build a classifier with a corpus built by Hutto and Gilbert $(2014)^2$

For this, you have to download and install the software companion of NLP in Action:

https://github.com/totalgood/nlpia

²http://comp.social.gatech.edu/papers/icwsm14.vader.hutto.pdf

What I did on OsX I use pipenv³ \$ pipenv install --skip-lock nlpia On Github they explain how to install it with conda or pip if you plan to contribute to the project 3https://pipenv.readthedocs.io/en/latest/

References

Hutto, C. and E. Gilbert

2014. VADER:A parsimonious rule-based model for sentiment analysis of social media text. In *Eighth International Conference on Weblogs and Social Media (ICWSM-14)*, Ann Arbor, MI.

Lane, H., C. Howard, and H. Hapkem 2019. *Natural Language Processing in Action*. Shelter Island, NY: Manning Publication Co.

Maron, M.

1961. Automatic indexing: An experimental inquiry. *Journal of the ACM*, 8:404–417.