## FYZIKÁLNÍ PRAKTIKUM I FJFI ČVUT v Praze

Úloha #7

Rozšíření rozsahu miliampérmetru a voltmetru.

Cejchování kompenzátorem.

Datum měření: 4.10.2013 Skupina: 7

Jméno: David Roesel Kroužek: ZS 5

Spolupracovala: Tereza Schönfeldová Klasifikace:



# Část I

# Cejchování kompenzátorem

# 1 Pracovní úkoly

- 1. Pomocí kompenzátoru ocejchujte stupnici voltmetru (cejchujte v celém rozsahu stupnice). Pro 10 naměřených hodnot sestrojte kalibrační křivku a vyneste ji do grafu.
- 2. Pomocí kompenzátoru ocejchujte stupnici miliampérmetru (cejchujte v celém rozsahu stupnice). Pro 10 naměřených hodnot sestrojte kalibrační křivku a vyneste ji do grafu.

# 2 Vypracování

## 2.1 Použité přístroje

Miliampérmetr, voltmetr, 0-20V zdroj, 1,5V akumulátor, reostaty 115  $\Omega$  a 23200  $\Omega$ , vodiče, odporový normál 100  $\Omega$ , technický kompenzátor QTK Metra, Westonův normální článek, teploměr.

## 2.2 Teoretický úvod

### 2.2.1 Kompenzátor

Pro co nejpřesnější měření elektromotorického napětí stejnosměrných zdrojů je vhodné použít kompenzační metodu. Využívá se při ní faktu, že je snazší přesně určit, kdy je napětí v dané části obvodu nulové, než určovat jeho absolutní nenulovou velikost. Další výhodou kompenzátorů je, že nezatěžují zdroj proudem a nemění tak jeho napětovou charakteristiku.

Na obrázku 2 je znázorněno principiální schéma zapojení kompenzátoru. Referenční napětí značíme U, neznámé pak  $U_x$ . Obvodem protéká proud podle toho jak moc se od sebe tyto dvě napětí liší. Velikost výchylky v takovém případě sledujeme na galvanometru G. Když nastavíme U tak, aby se rovnalo  $U_x$ , nebude galvanometru ukazovat nic a říkáme, že je  $U_x$  vykompenzováno napětím U. K měření využíváme kompenzátor METRA typu QTK po zkonzultování detailního návodu v dokumentu [3].

Schéma zapojení kompenzátoru do obvodu je vidět na obrázku 1. Písmenem A je na něm vyznačen pomocný obvod, zatímco označení B nese obvod měřený. Oba obvody jsou vzájemně provázány skrze potenciometr  $R_1$ . V momentu, kdy se nám podaří dostat jezdce do takové polohy, aby napětí na něm U bylo rovno napětí měřeného zdroje  $U_m$ , přestane obvodem B protékat proud a výchylka na galvanometru bude nulová. Proud v obvodu A v tu chvíli přestane ovlivňovat obvod B a vzhledem k vyrovnání obou napětí bude platit:

$$RI_p = U = U_m, (1)$$

kde R je odpor na jezdci. Velikost proudu  $I_p$  se určuje nepřímo, pomocí Westonova normálního článku, který zapojíme na místo napětí  $U_m$ , které chceme změřit. Pakliže vykompenzujeme napětí tohoto článku (označíme ho  $U_N$ , jeho odpor pak  $R_N$ ), bude platit :

$$R_N I_p = U_N, \qquad U_m = \frac{R}{R_N} U_N \tag{2}$$

Musíme si však stále dávat pozor, aby se proud  $I_p$  pokud možno vůbec neměnil. Pro napětí  $U_N$  Westonova normálního článku platí vztah

$$U_n = U_{20} - 4.06 \cdot 10^{-5} (t - 20) - 0.95 \cdot 10^{-6} (t - 20)^2 + 1 \cdot 10^{-8} (t - 20)^3 \text{ V},$$
(3)

kde  $U_{20} = 1,01865$  V jak se ostatně můžeme dočíst v dokumentu [3], kde je Westonův článek popsán do větších detailů.



Obr. 1: Schéma zapojení kompenzátoru



Obr. 2: Principiální schéma zapojení kompenzátoru

## 2.2.2 Cejchování voltmetru

Na obrázku 3 vidíme, že se cejchování provádí pomocí reostatu  $R_1$ , kterým vkládáme na svorky voltmetru V různé stejnosměrné napětí, a kompenzátoru, pomocí kterého určíme jeho správnou hodnotu  $U_k$ . Tu následně porovnáme s hodnotou  $U_v$  odečtenou z proměřovaného voltmetru.

## 2.2.3 Cejchování miliampérmetru

Zapojení pro tento úkol je znázorněno na obrázku 4. Přes změny na reostatu R měníme proud  $I_a$ , který prochází odporovým normálem  $R_n$ . Na něm vzniká úbytek napětí  $U_k$  a to změříme opět za použití kompenzátoru. Vlastní hodnotu proudu pak určíme podle rovnice 4 a porovnáme ji s hodnotou odečtenou z miliampérmetru A.



Obr. 3: Schéma zapojení při cejchování voltmetru [2].





Obr. 4: Schéma zapojení při cejchování miliampérmetru [2].

## 2.3 Postup měření

#### 2.3.1 Kompenzátor

První věc, kterou jsme museli začít, byla kalibrace kompenzátoru pomocí Westonova normálního článku. Tuto kalibraci jsme během experimentu provedli vícekrát vzhledem ke změně teploty v místnosti (viz rovnice 3). Celý postup jsme museli provádět s maximální opatrností, jelikož je Westonův článek velmi křehký. Nejdříve jsme napětí z něj přivedli na svorky označené  $U_N$ , pak na kompenzátoru nastavili co nejpřesněji hodnotu napětí článku pro danou teplotu a zapnuli vnitřní zdroj. Následně bylo zapotřebí nastavit kompenzátor tak, aby byla výchylka galvanometru nulová a pomocný proud měl hodnotu přesně 1 mA. Teplota v místnosti během měření postupně rostla z 18  $^{\circ}$ C na 22  $^{\circ}$ C.

Se zkalibrovaným kompenzátorem pak probíhá měření následovně:

- 1. Nastavíme kompenzátor tak, aby měřil na svorkách  $U_x$  ve vhodném rozsahu.
- 2. Napětí, které chceme změřit připojíme k těmto svorkám a nastavíme předpokládanou hodnotu napětí.
- 3. Zapneme vnitřní zdroj a rychlým vychýlením páčky do směru hrubě zjistíme, jak velká je odchylka na galvanometru a jakým směrem.

- 4. Podle této výchylky vhodně upravíme napětí vnitřního zdroje kompenzátoru.
- 5. V momentu, kdy bude výchylka téměř nepozorovatelná, začneme páčky vychylovat ve směru *jemně* (na druhou stranu).
- 6. Jemným upravováním napětí vnitřního zdroje kompenzátoru opět dosáhneme nulové výchylky.
- 7. Napětí nastavené na kompenzátoru vynásobíme podle aktuálního rozsahu a zaznamenáme.

### 2.3.2 Cejchování voltmetru

Schéma zapojení pro tuto část postupu je znázorněno na obrázku 3. Zdroj  $U_z$  měl v našem případě stejnosměrné napětí 10 V a kompenzátor jsme nastavili na rozsah 15 V. Přes reostat R 115  $\Omega$  jsme nastavovali napětí  $U_v$  na svorkách voltmetru a to po zaznamenání porovnávali s hodnotou napětí  $U_k$ , kterou ukazoval kompenzátor. Podle získaných hodnot obou napětí jsme pak sestrojili kalibrační křivku.

#### 2.3.3 Cejchování miliampérmetru

Obvod jsme zapojili dle obrázku 4, za zdroj U nám sloužil akumulátor o hodnotě napětí 1,5 V a kompenzátor jsme nastavili na rozsah 1500 mV. Ke změně napětí na odporovém normálu  $U_k$  (měřeného kompenzátorem) slouží reostat R 23200  $\Omega$ . Pomocí tohoto napětí a rovnice 4 pak dopočítáme proud  $I_k$ , který porovnáme s proudem  $I_a$  odečteným na cejchovaném miliampérmetru. Podle získaných hodnot obou proudů sestrojíme kalibrační křivku.

## 2.4 Naměřené hodnoty

Naměřené hodnoty jsou vyneseny v tabulkách 1 a 2. V grafech 7 a 5 vidíme naměřené hodnoty při cejchování obou přístrojů, kalibrační křivky každého z nich pak v grafech 6 a 8.

| $U_k$ [V] | $U_v$ [V] | $\Delta U$ [V] | $\Delta U_r$ [%] |
|-----------|-----------|----------------|------------------|
| 0,987     | 1,0       | -0,013         | 1,30             |
| 1,971     | 2,0       | -0,029         | 1,45             |
| 2,966     | 3,0       | -0,034         | 1,13             |
| 3,904     | 4,0       | -0,096         | 2,40             |
| 4,922     | 5,0       | -0,078         | 1,56             |
| 5,905     | 6,0       | -0,095         | 1,58             |
| 6,894     | 7,0       | -0,106         | 1,51             |
| 7,873     | 8,0       | -0,127         | 1,59             |
| 8,816     | 9,0       | -0,184         | 2,04             |
| 9,753     | 10,0      | -0,247         | 2,47             |

Tab. 1: Cejchování voltmetru.  $U_k$  je hodnota napětí změřená kompenzátorem,  $U_v$  hodnota odečtená na voltmetru,  $\Delta U$  rozdíl obou napětí,  $\Delta U_r$  relativní rozdíl těchto napětí v procentech (vztaženo k  $U_v$ ).

#### 2.5 Diskuse

#### 2.5.1 Cejchování voltmetru

Velikost odchylek dosahovala maximálně desetin voltu, což odpovídá jednotkám procent měřeného napětí. Pro toto měření jsme využívali na kompenzátoru rozsahu 15 V, což vedlo k menší přesnosti měření, vzhledem k tomu, že se galvanometr v blízkosti přesné hodnoty vychyloval jen velmi málo a bylo ji tak těžší dobře určit.



Obr. 5: Graf hodnot naměřených při cejchování voltmetru. Výsledky jsme proložili lineární regresí, které využíváme pro diskusi výsledků v druhé části.





Obr. 7: Graf hodnot naměřených při cejchování ampérmetru. Výsledky jsme opět proložili lineární regresí.



Obr. 8: Graf kalibrační křivky voltmetru. U jednoho z bodů se může jednat o chybu, přerušovaná čára naznačuje jak by kalibrační křivka vypadala v případě, že bychom ho z uvažovaných hodnot vyřadili.

| $U_k [mV]$ | $I_k$ [mA] | $I_a$ [mA] | $\Delta I [\mathrm{mA}]$ | $\Delta I_r$ [%] |
|------------|------------|------------|--------------------------|------------------|
| 7,0        | 0,070      | 0,080      | -0,010                   | 12,50            |
| 14,3       | 0,143      | 0,160      | -0,017                   | 10,63            |
| 22,2       | 0,222      | 0,240      | -0,018                   | 7,50             |
| 32,1       | 0,321      | 0,320      | 0,001                    | 0,31             |
| 37,9       | 0,379      | 0,400      | -0,021                   | 5,25             |
| 45,9       | 0,459      | 0,480      | -0,021                   | 4,38             |
| 54,0       | 0,540      | 0,560      | -0,020                   | 3,57             |
| 58,9       | 0,589      | 0,620      | -0,031                   | 5,00             |
| 67,4       | 0,674      | 0,700      | -0,026                   | 3,71             |
| 75,3       | 0,753      | 0,780      | -0,027                   | 3,46             |

Tab. 2: Cejchování ampérmetru.  $U_k$  je hodnota napětí změřená kompenzátorem,  $I_k$  z ní dopočítaná hodnota proudu,  $I_a$  hodnota odečtená na miliampérmetru,  $\Delta I$  rozdíl obou proudů,  $\Delta I_r$  relativní rozdíl těchto proudů v procentech (vztaženo k  $I_a$ ).

#### 2.5.2 Cejchování miliampérmetru

Velikost odchylek dosahovala maximálně desetin miliampéru, což při měření nižších hodnot proudu odpovídá až 12,5 procentům měřeného proudu, zatímco u vyšších hodnot jde o méně než 4 procenta. Potvrdilo se tedy, že větší přesnosti při měření s ampérmetrem dosáhneme, pokud se na něm hodnoty pohybují v poslední třetině stupnice. Jedna z hodnot je znatelně odlišná od ostatních a je možné, že se jedná o chybu měření. Na kalibrační křivce je vyznačeno, jak by vypadala v případě, že bychom brali bod jako chybný. Pro proložení lineární regresí jsme však brali měření jako správné. Pro další závěry by bylo potřeba měření provést vícekrát a s větší hustotou bodů.

## 3 Závěr

Pomocí kompenzátoru METRA typu QTK jsme ocejchovali stupnici miliampérmetru a voltmetru v celém rozsahu a pro 10 naměřených hodnot jsme sestrojili a vynesli do grafu kalibrační křivku. Naměřené hodnoty jsme proložili lineární regresí, které využijeme pro diskusi v druhé části.

## 4 Použitá literatura

## Reference

- [1] Kolektiv KF, Návod k úloze: Rozšíření rozsahu Miliampérmetru a voltmetru. Cejchování kompenzátorem. [Online], [cit. 9. února 2014] http://praktikum.fjfi.cvut.cz/pluginfile.php/119/mod\_resource/content/6/07rozsireni\_v1.pdf
- [2] Kolektiv autorů, *Repozitář zdrojů k praktiku* [Online], podle [1] [cit. 9. února 2014] https://github.com/roesel/praktika
- [3] Kolektiv KF, *Návody k přístrojům* [Online], [cit. 9. února 2014] http://praktikum.fjfi.cvut.cz/documents/chybynav/navody-o.pdf

# Část II

# Rozšíření rozsahu miliampérmetru a voltmetru

# 5 Pracovní úkoly

- 1. V přípravě odvoďte vztah pro rozšíření rozsahu voltmetru n-krát.
- 2. Rozšiřte rozsah miliampérmetru dvakrát a určete jeho vnitřní odpor. Měření proveďte pro 10 různých nastavení obvodu, t.j. pro 10 různých proudů.
- 3. Rozšiřte rozsah voltmetru dvakrát a určete jeho vnitřní odpor. Měření proveďte pro 10 různých nastavení obvodu, t.j. pro 10 různých napětí.
- 4. Při zpracování výsledků z měření vnitřních odporů vezměte v úvahu výsledky získané cejchováním stupnic voltmetru a miliampérmetru a proveďte korekci naměřených hodnot. Diskutujte rozdíl mezi výsledkem získaným bez korekce a s korekcí.

## 6 Vypracování

## 6.1 Použité přístroje

Miliampérmetr, voltmetr, 0-20V zdroj, odporová dekáda, reostaty 115  $\Omega$  a 23200  $\Omega$ , dva vypínače, vodiče.

## 6.2 Teoretický úvod

Chceme-li měřit proud či napětí, jsme vždy omezováni rozsahem stupnice daného aparátu a hodí se nám ho rozšířit nejen pro zabránění přetížení přístroje. Toho dosáhneme pomocí přídavného rezistoru, jehož hodnota závisí na tom, jaké změny rozsahu chceme dosáhnout a jakým vnitřním odporem disponuje náš přístroj.

#### 6.2.1 Rozšíření rozsahu miliampérmetru

Měříme-li vyšší proudy, než na které nám stačí stupnice, využíváme tzv. bočníku - odporu o konkrétní hodnotě, který zapojíme paralelně k ampérmetru tak jako na obrázku 9.

Zajímá nás, jaká je hodnota bočníku  $R_b$ . K dispozici máme dvě nastavení obvodu. Bude-li klíč  $K_2$  vypnutý, poteče ampérmetrem proud  $I_1$ . Zapneme-li klíč  $K_2$ , bude ampérmetrem procházet proud  $I_2$  a pro rozšíření rozsahu n-krát bude platit

$$\frac{I_1}{I_2} = n. (5)$$

Vypneme-li klíč  $K_2$ , bude proud protékající oběma ampérmetry stejný a bude platit

$$\frac{U}{R+R_0} = I_1,\tag{6}$$

kde  $R_0$  je vnitřní odpor ampérmetru A a R je vnitřní odpor zdroje. Dále budou při dostatečně velkém odporu R platit následující vztahy

$$\frac{I_2}{I_b} = \frac{R_b}{R_0}, \qquad I_1 = I_2 + I_b, \qquad \frac{I_b}{I_2} = \frac{I_1}{I_2} - 1 = n - 1,$$
(7)

ze kterých získáváme pro odpor  $bočníku R_b$ 



Obr. 9: Schéma zapojení při rozšiřování rozsahu miliampérmetru [3].

$$R_b = \frac{I_2}{I_b} R_0 = \frac{R_0}{\frac{I_b}{I_2}} = \frac{R_0}{n-1}.$$
 (8)

### 6.2.2 Rozšíření rozsahu voltmetru

Měříme-li vyšší napětí, než na které nám stačí stupnice, využíváme tzv. *předřadného odporu* o konkrétní hodnotě, který zapojíme sériově s voltmetrem tak jako na obrázku 10.



Obr. 10: Schéma zapojení při rozšiřování rozsahu voltmetru [3].

Zajímá nás, jaká je hodnota předřadného odporu  $R_p$ . K dispozici máme opět dvě nastavení obvodu. Bude-li klíč  $K_2$  v poloze 1, poteče voltmetrem proud  $I_v$  a podle Ohmova zákona bude za předpokladu dostatečně malého odporu R platit

$$I_v = \frac{U_v}{R_0} = \frac{U}{R_0 + R_p} = \frac{U - U_v}{R_p},\tag{9}$$

kde U je napětí mezi body A a B,  $U_v$  napětí na voltmetru a  $R_0$  jeho vnitřní odpor. Chceme-li rozšířit rozsah voltmetru n-krát, musí zároveň platit

$$\frac{U}{U_n} = n \tag{10}$$

a odtud dostáváme finální hodnotu předřadného odporu Rp jako

$$R_p = \frac{R_0(U - U_v)}{U_v} = R_0(n - 1). \tag{11}$$

#### 6.2.3 Statistické zpracování

Pro statistické zpracování využíváme aritmetického průměru:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{12}$$

jehož chybu spočítáme jako

$$\sigma_0 = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (x_i - \overline{x})^2},$$
(13)

kde  $x_i$  jsou jednotlivé naměřené hodnoty, n je počet měření,  $\overline{x}$  aritmetický průměr a  $\sigma_0$  jeho chyba [2].

## 6.3 Postup měření

#### 6.3.1 Rozšíření rozsahu miliampérmetru

Schéma zapojení pro tuto část postupu je znázorněno na obrázku 9. Zdroj měl v našem případě stejnosměrné napětí 10 V a jako rezistor R nám sloužil reostat  $23200 \Omega$  jehož jezdec dovoloval v krajní poloze dosáhnout téměř přesně maxima stupnice miliampérmetru. Jako bočník jsme použili odporovou dekádu a postupovali pro každou hodnotu odporu R následovně:

- 1. S vypnutým vypínačem  $K_2$  nastavíme na reostatu takový odpor, aby byla ručička ampérmetru za první třetinou stupnice na dobře čitelné hodnotě  $I_1$ , kterou zaznamenáme.
- 2. Vypínač  $K_2$  zapneme a na dekádě nastavíme takový odpor, aby miliampérmetr ukazoval proud  $I_2$  o velikosti jedné poloviny předchozí hodnoty  $I_1$ . Odpor nastavený na dekádě zaznamenáme.
- 3. Tento postup opakujeme pro 10 různých hodnot proudu posunem jezdce na reostatu.

#### 6.3.2 Rozšíření rozsahu voltmetru

Obvod jsme zapojili dle obrázku 10, zdroj měl v našem případě stejnosměrné napětí 10 V a jako rezistor R jsme opět použili reostat 115  $\Omega$ . Jako předřadný odpor jsme použili odporovou dekádu a postupovali pro každou hodnotu odporu R následovně:

- 1. S vypínačem  $K_2$  v poloze 1 nastavíme na reostatu takový odpor, aby byla ručička voltmetru za první třetinou stupnice na dobře čitelné hodnotě  $U_1$ , kterou zaznamenáme.
- 2. Vypínač  $K_2$  přepneme do polohy 2 a na dekádě nastavíme takový odpor, aby voltmetr ukazoval napětí  $U_2$  o velikosti jedné poloviny předchozí hodnoty  $U_1$ . Odpor nastavený na dekádě zaznamenáme.
- 3. Tento postup opakujeme pro 10 různých hodnot napětí posunem jezdce na reostatu.

| $I_1[mA]$ | $I_2[mA]$ | $I_{1k}[mA]$          | $I_{2k}[mA]$ | $n_k[-]$        | $R_b[\Omega]$   | $R_{0k}[\Omega]$ |
|-----------|-----------|-----------------------|--------------|-----------------|-----------------|------------------|
| 0,80      | 0,40      | 0,77                  | 0,38         | 2,0184          | 102,6           | 104,5            |
| 0,82      | 0,41      | 0,79                  | 0,39         | 2,0179          | 104,4           | 106,3            |
| 0,84      | 0,42      | 0,81                  | 0,40         | 2,0175          | 103,2           | 105,0            |
| 0,86      | 0,43      | 0,83                  | 0,41         | 2,0171          | 105,6           | 107,4            |
| 0,88      | 0,44      | 0,85                  | 0,42         | 2,0167          | 106,5           | 108,3            |
| 0,90      | 0,45      | 0,87                  | 0,43         | 2,0163          | 104,8           | 106,5            |
| 0,92      | 0,46      | 0,89                  | 0,44         | 2,0159          | 105,9           | 107,6            |
| 0,94      | 0,47      | 0,90                  | 0,45         | 2,0156          | 106,3           | 108,0            |
| 0,96      | 0,48      | 0,92                  | 0,46         | 2,0153          | 104,5           | 106,1            |
| 0,98      | 0,49      | 0,94                  | 0,47         | 2,0149          | 106,2           | 107,8            |
|           |           | Výsledné hodnoty [2]: |              | $105,0 \pm 0,4$ | $106,7 \pm 0,4$ |                  |

Tab. 3: Dvojnásobné rozšíření rozsahu miliampérmetru.  $I_1$  je hodnota z miliampérmetru při původním rozsahu,  $I_2$  pak při rozšíření.  $I_{1k}$  a  $I_{2k}$  jsou ty samé hodnoty po korekci podle regresní křivky z první části ( $I_{xk} = 0.97I_x - 0.007$ ), n koeficient zvýšení rozsahu spočítaný pomocí korigovaných proudů,  $R_b$  odpor bočníku a  $R_{0k}$  zkorigovaná hodnota vnitřního odporu miliampérmetru.

## 6.4 Naměřené hodnoty

Naměřené hodnoty jsou v tabulkách 3 a 4.

## 6.5 Diskuse

Úspěšně jsme dvakrát rozšířili rozsah miliampérmetru a dostali jsme hodnotu  $R_{0A}=(105,0\pm0,4)~\Omega$ , po zkorigování pak  $R_{0Ak}=(106,7\pm0,4)~\Omega$ . Nerozšířovali jsme přesně dvakrát a korigované rozšířovací faktory n jsou vyneseny v tabulce 3.

Dále jsme úspěšně dvakrát rozšířili rozsah voltmetru a dostali jsme hodnotu  $R_{0V} = (4010\pm30)~\Omega$ , po zkorigování pak  $R_{0Ak} = (4030\pm30)~\Omega$ . Nerozšířovali jsme přesně dvakrát a korigované rozšířovací faktory n jsou v tomto případě vyneseny v tabulce 4.

Statistická chyba nám nevyšla příliš velká a ve skutečnosti bude asi o trochu větší. V některých případech bylo určení poloviny dílku na stupnici problematické a v případě opakování experimentu bychom se měli snažit nastavovat takové hodnoty, aby se ručička kryla s libovolnou ryskou na stupnici. Při zvětšování rozsahu voltmetru pak nemělo smysl nastavovat na odporové dekádě jednotky a desetiny  $\Omega$ , jelikož se na voltmetru nijak neprojevovali. S přesnějším voltmetrem bychom mohli využít přesnost dekády a dostat přesnější výsledek.

Korekce podle cejchování z první části rozhodně má smysl. Dala by se ještě zpřesnit tím, že bychom udělali při cejchování více měření a zpřesnili tak její lineární proložení. Další možností na zlepšení korekce by bylo ocejchování odporové dekády, které se nám z důvodu problémů s kompenzátorem nepodařilo provést.

Systematické chyby pak mohly nastat u zapojení odporových normálů, jejichž kontakty s vodiči nebyly příliš pevné a podle polohy vodiče nejspíš měnily odpor. Díky absenci funkčních kontrolních ampérmetrů navíc nebylo možné sledovat, zda je během měření v obvodu konstantní proud/napětí. V tomto směru by se dalo měření také značně zpřesnit.

### 6.6 Závěr

Rozšířili jsme dvakrát rozsah miliampérmetru a voltmetru a určili vnitřní odpory  $R_0$  obou přístrojů. Měření jsme provedli pro 10 různých nastavení obvodu. Vnitřní odpor proměřovaného miliampérmetru nám vyšel  $R_{0Ak} = (106.7 \pm 0.4) \Omega$ , pro vnitřní odpor voltmetru jsme dostali  $R_{0Vk} = (4030 \pm 30) \Omega$ .

| $U_1$ [V] | $U_2$ [V] | $U_{1k}$ [V]          | $U_{2k}$ [V] | $n_k$ [-]     | $R_p [\Omega]$ | $R0k \ [\Omega]$ |
|-----------|-----------|-----------------------|--------------|---------------|----------------|------------------|
| 6,0       | 3,00      | 5,89                  | 2,95         | 1,993         | 3840           | 3866             |
| 7,0       | 3,50      | 6,87                  | 3,44         | 1,994         | 4040           | 4064             |
| 8,0       | 4,00      | 7,84                  | 3,93         | 1,995         | 3960           | 3980             |
| 8,6       | 4,30      | 8,43                  | 4,23         | 1,995         | 4000           | 4019             |
| 9,1       | 4,55      | 8,92                  | 4,47         | 1,996         | 4100           | 4118             |
| 9,5       | 4,75      | 9,31                  | 4,67         | 1,996         | 4080           | 4098             |
| 8,2       | 4,10      | 8,04                  | 4,03         | 1,995         | 3900           | 3919             |
| 7,5       | 3,75      | 7,36                  | 3,69         | 1,995         | 4100           | 4122             |
| 8,8       | 4,40      | 8,63                  | 4,32         | 1,995         | 4050           | 4069             |
| 7,8       | 3,90      | 7,65                  | 3,83         | 1,995         | 4000           | 4021             |
|           |           | Výsledné hodnoty [2]: |              | $4010 \pm 30$ | $4030 \pm 30$  |                  |

Tab. 4: Dvojnásobné rozšíření rozsahu voltmetru.  $U_1$  je hodnota z voltmetru při původním rozsahu,  $U_2$  pak při rozšíření.  $U_{1k}$  a  $U_{2k}$  jsou ty samé hodnoty po korekci podle regresní křivky z první části ( $U_{xk} = 0.978U_x - 0.02$ ), n koeficient zvýšení rozsahu spočítaný pomocí korigovaných napětí,  $R_p$  odpor předřadného odporu a  $R_{0k}$  zkorigovaná hodnota vnitřního odporu voltmetru.

## 7 Použitá literatura

- [1] Kolektiv KF, Návod k úloze: Rozšíření rozsahu Miliampérmetru a voltmetru. Cejchování kompenzátorem. [Online], [cit. 9. února 2014] http://praktikum.fjfi.cvut.cz/pluginfile.php/119/mod\_resource/content/6/07rozsireni\_v1.pdf
- [2] Kolektiv KF, *Chyby měření* [Online], [cit. 9. února 2014] http://praktikum.fjfi.cvut.cz/documents/chybynav/chyby-o.pdf
- [3] Kolektiv autorů, *Repozitář zdrojů k praktiku* [Online], podle [1] [cit. 9. února 2014] https://github.com/roesel/praktika

# 8 Pracovní papíry

Domácí příprava.