# Personalised Air Quality Monitoring using Wearable Sensors

STUDENT:

PATRICK BYRNE

ID

22267483

SUPERVISOR:

DR SHIRLEY COYLE

#### Problem Definition

- Air pollution is a global health hazard and contributes to climate change.
- There are stations monitoring air quality in local areas, datasets provided by private companies and commercial products available.
- This project will look to expand on the available data and research to implement an air quality monitor for personal use with the use of wearable sensors.





Air Diag Dublin







#### Project Overview

- The main goal of this project is to use wearable sensors to implement a system design to monitor air quality, to do this:
  - 1. Pollutants affecting Air Quality definition.
  - 2. Scales of representing the data collected.
  - 3. Existing implementations.
  - 4. Initial design and selection of sensors.
  - 5. Experiments curated to be performed.
- Following this the project plan will be discussed.

### 1. Air Quality Pollutants

- Some relevant contaminants:
  - 1. Particulate Matter (PM),
  - 2. Ozone (O3),
  - 3. Volatile Organic Compounds (VOC).



### 2. Air Quality Indicator (AQI)

- Raw data being displayed to a user may result in confusion.
- There are differing standards for AQI to represent contaminants measured.





Poor

Very Poor

Severe

Satisfactory Moderate

Good

#### 3. Existing Implementations

- Commercial products are available from PlumeLabs and Atmotube.
- Research papers varying in methods to design and implement a system.
  - Crude to sophisticated implementations.







4. Initial Design and Sensor Selection

- The goal of the initial design is to breakdown the elements of the project into sections:
  - 1. Measurement Sensors,
  - 2. Low Power Wide Are Network (LPWAN),
  - 3. MCU,
  - Status Indicators,
  - 5. Power Input/Regulation.
- Sensirion SPS30 PM detector.
  - Uses laser scattering technique.





#### 5. Planned Experiments

- Initially use an Arduino to interface with SPS30.
  - 1. Measure background PM.
  - 2. Light a match to create PM.
  - 3. PM reading should jump to indicate interface and sensor is working correctly.
  - 4. Monitor the current using ammeter to gauge power consumption.

#### Personalised Air Quality Monitoring using Wearabe Sensors

| Patrick Byrne                          |      | March |   |   |   | April |   |      |      |      | May  |    |   |   | June |   |   |   | July |   |   |   | August |   |   |   |   |
|----------------------------------------|------|-------|---|---|---|-------|---|------|------|------|------|----|---|---|------|---|---|---|------|---|---|---|--------|---|---|---|---|
| (Schedule week starts on Sunday)  TASK | Week | 1     | 2 | 3 | 4 | 1     | 2 | 3 4  | 4 !  | 5    | 1    | 2  | 3 | 4 | 1    | 2 | 3 | 4 | 1    | 2 | 3 | 4 | 5      | 1 | 2 | 3 | 4 |
| Sensor Design                          |      |       |   |   |   |       |   | Brea | k fo | or E | Exar | ns |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| PM Detector Selection                  |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| PM Interfacing                         |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| Power Demands                          |      |       |   |   |   |       |   |      | Т    |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| LPWAN                                  |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| Selection                              |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| Evaluation                             |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| Power Consumption                      |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| MCU                                    |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| Selection                              |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| Programming Interface                  |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| Interfacing Sensor                     |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| Interfacing with LPWAN                 |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| Power Consumption                      |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| Power                                  |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| Power Usage Estimation                 |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| Power Supply Selection                 |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| Power Delivery                         |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| Component Selection                    |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| System Design                          |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| PCB Design                             |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| PCB Ordering                           |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| PCB Assembly/Testing                   |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| System Testing                         |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
| Report                                 |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |
|                                        |      |       |   |   |   |       |   |      |      |      |      |    |   |   |      |   |   |   |      |   |   |   |        |   |   |   |   |

## Project Plan

#### References

- "Standards for Air Quality Indices in Different Countries (AQI)," Atmotube, 12 5 2021. [Online]. Available: https://atmotube.com/blog/standards -for -air quality indices -in -different -countries aqi#:~:text=Atmotube%20AQS&text=AQS%20scores%2 0air%20quality%20on,5%2C%20and%20PM10.. [Accessed 19 1 2023]
- S. Bernasconi, A. Angelucci and A. Aliverti, "A Scoping Review on Wearable Devices for Environmental Monitoring and Their Application for Health and Wellness," MDPI Sensors, vol. 22, no. 16, p. 5994, 2022.
- M. E. Goodsite, M. S. Johnson and O. Hertel, "Low-Cost Sensors for Indoor and Outdoor Pollution," in Air Pollution Sources, Statistics and Health Effects A volume in the Encyclopedia of Sustainability Science and Technology, Second Edition, New York, Springer, 2021, pp. 423 -455.
- ► EPA, "Air Quality Index for Health," 2021. [Online]. Available: https://airquality.ie/information/air -quality index -for health#:~:text=The %20Environmental%20Protection%20 Agency's%20Air,of%20you%20or%20your%20child.. [Accessed 16 01 2023].
- T. Manglani, A. Srivastava, A. Kumar and R. Sharma, "IoT based Air and Sound Pollution Monitoring System for Smart Environment," in 2022 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, 2022.
- Plume Labs, "Volatile organic compounds (VOCs)," [Online]. Available: https://air.plumelabs.com/learn/en/voc.

- Plume Labs, "Ozone (O3)," [Online]. Available: https://air.plumelabs.com/learn/en/ozone.
- Plume Labs, "Particulate Matter (PM)," [Online]. Available: https://air.plumelabs.com/learn/en/particulate-matter.