Obliczenia Naukowe Lista 3 Laboratoria

Piotr Szyma 25 listopada 2017

1.1 Opis problemu

Zadanie polegało na zaimplementowaniu algorytmu rozwiązującego równanie f(x) = 0 METODĄ BISEKCJI.

1.2 Pseudokod

```
Dane: f, a, b, \delta, \epsilon
Wynik: x, f(x), i, err
u \leftarrow f(a); v \leftarrow f(b)
e \leftarrow b - a
if sgn(u) = sgn(v) then
| return (0, 0, 0, 1);
end
while true do
    i = i + 1
    e \leftarrow \frac{e}{2}
    c \leftarrow \tilde{a} + e
    w \leftarrow f(c)
    if |e| < \delta or |w| < \epsilon then
     | return (w, f(x), i, 0);
     end
    if sgn(w) \neq sgn(u) then
     b \leftarrow c; v \leftarrow w
     \mathbf{else}
     a \leftarrow c; u \leftarrow w
    end
\mathbf{end}
```

1.3 Implementacja

Moja implementacja algorytmu w języku Julia znajduje się w module MyModule znajdującym się w pliku załączonym do tego sprawozdania.

2.1 Opis problemu

Zadanie polegało na zaimplementowaniu algorytmu rozwiązującego równanie f(x) = 0 METODĄ STYCZNYCH.

2.2 Pseudokod

```
\begin{array}{l} \mathbf{Dane:} \ f, x_0, M, \delta, \epsilon \\ \mathbf{Wynik:} \ x, f(x), i, err \\ v \leftarrow f(x_0); \\ \mathbf{if} \ |v| < \epsilon \ \mathbf{then} \\ | \ \ \mathrm{return} \ (0, \, 0, \, 0, \, 1); \\ \mathbf{end} \\ \mathbf{do} \\ | \ \ k + = 1 \\ | \ x_1 \leftarrow x_0 - \frac{v}{f'(x_0)} \\ | \ \ v \leftarrow f(x_1) \\ | \ \ \mathbf{if} \ |x_1 - x_0| < \delta \ or \ |v| < \epsilon \ \mathbf{then} \\ | \ \ \ \mathrm{return} \ (x_1, v, i, 0); \\ | \ \ \mathbf{end} \\ | \ \ x_0 \leftarrow x_1 \\ \mathbf{while} \ k < M; \end{array}
```

2.3 Implementacja

Moja implementacja algorytmu w języku Julia znajduje się w module MyModule znajdującym się w pliku załączonym do tego sprawozdania.

3.1 Opis problemu

Zadanie polegało na zaimplementowaniu algorytmu rozwiązującego równanie f(x)=0 METODĄ SIECZNYCH.

3.2 Pseudokod

```
\begin{array}{l} \mathbf{Dane:} \ f, a, b, M, \delta, \epsilon \\ \mathbf{Wynik:} \ x, f(x), i, err \\ f_a \leftarrow f(a); \ f_b \leftarrow f(b) \\ \mathbf{do} \\ & | \ k \leftarrow k+1 \\ & | \ \mathbf{if} \ |f_a| > |f_b| \ \mathbf{then} \\ & | \ a \leftrightarrow b; \ f(a) \leftrightarrow f(b) \\ & \mathbf{end} \\ & s \leftarrow \frac{b-a}{f_b-f_a} \\ & b \leftarrow a; \ f_b \leftarrow f_a \\ & a \leftarrow a - f_a * s \\ & | \ \mathbf{if} \ |b-a| < \delta \lor |f_a| < \epsilon \ \mathbf{then} \\ & | \ \ \mathrm{return} \ (a, f_a, k, 0); \\ & \mathbf{end} \\ & \mathbf{while} \ k < M; \\ & \mathrm{return} \ (a, f_a, M, 1); \end{array}
```

3.3 Implementacja

Moja implementacja algorytmu w języku Julia znajduje się w module MyModule znajdującym się w pliku załączonym do tego sprawozdania.

4.1 Opis problemu

Zadanie polegało na wyznaczeniu pierwiastka równania $\sin x - (\frac{1}{2}x)^2 = 0$ przy pomocy wcześniej zaprogramowanych metod, z parametrami odpowiednio:

- 1. dla metody bisekcji z przedziałem [1.5, 2], $\delta = \frac{1}{2}*10^{-5}$, $\epsilon = \frac{1}{2}*10^{-5}$
- 2. dla metody stycznych z $x_0=1.5,\,\delta=\frac{1}{2}*10^{-5},\,\epsilon=\frac{1}{2}*10^{-5}$
- 3. dla metody siecznych z $x_0=1,\,x_1=2,\,\delta=\frac{1}{2}*10^{-5},\,\epsilon=\frac{1}{2}*10^{-5}$

4.2 Rozwiązanie

Wykorzystując funkcje zaimplementowane w module MyModule wyliczyłem pierwiastki za pomocą tych trzech algorytmów.

4.3 Wynik

Wyniki zestawiłem w tabeli poniżej:

Metoda	x	f(x)	i	err
Bisekcja	1.9337539672851562	-2.7027680138402843e-7	16	0
Stycznych	1.933753779789742	-2.2423316314856834e-8	4	0
Siecznych	1.933753644474301	1.564525129449379e-7	4	0

5.1 Opis problemu

Zadanie polegało na znalazieniu wartości zmiennej x, dla której przecinają się wykresy funkcji f(x)=3x i $g(x)=e^x$. Wymagana dokładność obliczeń to $\delta=10^{-4}$, $\epsilon=10^{-4}$

5.2 Rozwiązanie

W celu wyznaczenia takiego punktu, tj. pary (x,y), zestawiłem ze sobą te funkcje, tj. $f(x)=g(x)\Rightarrow 3x=e^x\Rightarrow 3x-e^x=0$ i przeanalizowalem nowopowstałą funkcję, tj. $h(x)=3x-e^x$. Za pomocą biblioteki matplotlib wygenerowałem wykres tej funkcji. Z analizy wykresu doszedłem do tego, że funkcja ta ma dwa miejsca zerowe, jedno wśród argumentów z zakresu $x\in(0.0,1.0)$ oraz drugie z zakresu $x\in(1.0,2.0)$. W związku z zaobserowanymi własnościami funkcji h(x) za pomocą funkcji mbisekcji odnalazłem miejsca zerowe z dokładnością wymaganą w treści zadania.

Rysunek 1: Wykres $g(x) = 3x - e^x$

5.3 Wynik

Wyniki zestawiłem w tabeli poniżej:

Przedział	x	f(x)	i	err
(0.0, 1.0)	0.619140625	9.066320343276146e-5	9	0
(0.1, 2.0)	1.5120849609375	7.618578602741621e-5	13	0

6.1 Opis problemu

Celem tego zadania było znalezienie miejsc zerowych funkcji $f_1(x)=e^{1-x}-1$ oraz $f_2(x)=xe^{-x}$ za pomocą wcześniej zaimplementowanych metod przy dokładności $\delta=10^{-5},\ \epsilon=10^{-5}$. Dobrać odpowiednio przedział i przybliżenie początkowe.

6.2 Rozwiązanie

Na samym początku, dla ułatwienia zadania, za pomocą biblioteki matplotlib wygenerowałem wykresy funkcji $f_1(x)$ oraz $f_2(x)$.

Rysunek 2: Wykres $f_1(x) = e^{1-x} - 1$

Z analizy wykresu (Rysunek 2) zaobserwowałem, że poszukiwane miejsce zerowe znajduje się w przedziale $x \in [0.0, 2.0]$, ponadto

Rysunek 3: Wykres $f_2(x) = xe^{-x}$

Z obserwacji wykresów wywnioskowałem, że dla pierwszej

6.3 Wynik

Wyniki zestawiłem w tabeli poniżej:

Przedział	x	f(x)	i	err
(0.0, 1.0)	0.619140625	9.066320343276146e-5	9	0
(0.1, 2.0)	1.5120849609375	7.618578602741621e-5	13	0