Numerical Analysis

Final Project

Jan Kretschmann

Comparing Interpolation Methods

- Description and Example Data Set
- Interpolating Known Functions
- Comparing Errors
- Conclusion

Methods of Interpolation

- Linear Interpolation
- Lagrange Interpolation
- Neville's Method
- Divided Differences
- Cubic Splines

Example Data Set

x	0	3	5	8	13
У	75	77	80	74	72

Linear Interpolation

- Straight Line through 2 points
 - y = mx + b
- Piecewise vs Non-Piecewise

Linear Interpolation

```
In [5]: def piecewise linear interpolation value(data, x):
             # Find appropriate indices for the dataset
             index = np.where(data[:,0] \Rightarrow x)[0][0]
             return linear fct(x, data[index-1], data[index])
        def linear_interpolation_value(data, x):
             return linear fct(x, data[0], data[-1])
        def linear_fct(x, p1, p2):
             m = (p2[1] - p1[1])/(p2[0] - p1[0])
             b = p1[1] - p1[0]*m
             return m*x + b
```

Lagrange Interpolation

Algebraic Polynomial fitting every Point

•
$$L_{n,k}(x) = \frac{(x-x_0)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)}{(x_k-x_0)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)}$$

- $L_{n,k}(x_i) = 0 \ \forall i \neq k \ \text{and} \ L_{n,k}(x_k) = 1$
- $\bullet P_n(x) = \sum_{k=1}^n f(x_k) L_{n,k}(x)$
- Problem: numerically instable!

Lagrange Interpolation

```
In [3]: def lagrange_polynomial_value(data, x):
    res = 0
    for i in range(len(data)):
        res += data[i, 1]*L(i, x, data)
    return res

def L(n, x, data):
    numerator = reduce(lambda a, b: a*b, [x - data[i,0] for i in range(len(data)) if i is not n])
    denominator = reduce(lambda a, b: a*b, [data[n, 0] - data[i, 0] for i in range(len(data)) if i is not n])
    return numerator/denominator
```

Lagrange Interpolation

Divided Differences (Newton)

- Successively generated Polynomial
 - $P_n(x) = f[x_0] + f[x_0, x_1](x x_0) + f[x_0, ..., x_k](x x_0) ... (x x_k)$
 - With $f[x_i, x_{i+1}] = \frac{f(x_{i+1}) f(x_i)}{x_{i+1} x_i}$ and $f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] f[x_i, x_{i+1}]}{x_{i+2} x_i}$
- "Divided Differences" as coefficients

Divided Differences

```
In [7]: def newton_divided_differences(data, x):
    F = divided_differences(data)
    res = F[0]
    for i in range(1, len(F)):
        mult = reduce(lambda a, b: a*b, [x - data[j, 0] for j in range(i)])
        res += F[i]*mult
    return res

def divided_differences(data):
    coefficients = np.empty((len(data), len(data)))
    coefficients[:, 0] = data[:, 1]
    for i in range(1, len(data)):
        for j in range(1, i+1):
            coefficients[i, j] = (coefficients[i, j-1] - coefficients[i-1, j-1])/(data[i, 0] - data[i-j, 0])
    return np.diag(coefficients)
```

Divided Differences

Neville's Method

Iterative Generation of Interpolation Polynomial

•
$$P(x) = \frac{(x-x_j)P_{0,1,\dots,j-1,j+1,\dots k}(x)-(x-x_i)P_{0,1,\dots,i-1,i+1,\dots,k}(x)}{x_i-x_j}$$

Easiest to implement

Neville's Method

```
In [9]: def neville_interpolation(data, x):
    Q = np.empty((len(data), len(data)))
    Q[:, 0] = data[:, 1]
    for i in range(1, len(data)):
        for j in range(1, i+1):
            Q[i, j] = ((x - data[i-j, 0])*Q[i, j-1] - (x - data[i, 0])*Q[i-1, j-1])/(data[i, 0] - data[i-j, 0])
    return Q[-1, -1]
```

Neville's Method

Cubic Splines

- Piecewise defined => non algbebraic
- Cubic Function for each interval $[x_i, x_{i+1}]$
- Numerically Stable
- Most complex implementation

```
def find index spline(data, x):
    # Find the interval which x is in \Rightarrow the piece of the piecewise defined cubic to use
    index1 = np.where(data[:, 0] <= x)[0][-1]
    index2 = np.where(data[:, 0] >= x)[0][0]
    return int((index1+index2)/2)
def cubic spline value(data, x):
    a, b, c, d = cubic_spline(data)
    index = find_index_spline(data, x)
    return a[index] + b[index]*(x - data[index, 0]) + c[index]*(x - data[index, 0])**2 + d[index]*(x - data[index, 0])**3
def cubic_spline(data):
    a = np.empty(len(data))
    b = np.empty(len(data))
    c = np.empty(len(data))
    d = np.empty(len(data))
    a = data[:, 1]
    h = np.empty(len(data)-1)
    for i in range(len(h)):
        h[i] = data[i+1, 0] - data[i, 0]
    alpha = np.empty(len(data)-1)
    for i in range(1, len(data)-1):
        alpha[i] = 3/h[i] * (a[i+1] - a[i]) - 3/h[i-1] * (a[i] - a[i-1])
   l = np.empty(len(data)+1)
    mu = np.empty(len(data)+1)
    z = np.empty(len(data)+1)
    1[0] = 1
    mu[0] = 0
    z[0] = 0
    for i in range(1, len(data)-1):
        l[i] = 2*(data[i+1, 0] - data[i-1, 0]) - h[i-1]*mu[i-1]
        mu[i] = h[i]/l[i]
        z[i] = (alpha[i] - h[i-1]*z[i-1])/l[i]
   1[-1] = 1
    z[-1] = 0
    c[-1] = 0
    for j in range(len(data)-2, -1, -1):
        c[j] = z[j] - mu[j]*c[j+1]
        b[j] = (a[j+1] - a[j])/h[j] - h[j]*(c[j+1] + 2*c[j])/3
        d[j] = (c[j+1] - c[j])/(3*h[j])
    return a, b, c, d
```

Cubic Splines

- Examining Interpolation Methods on
 - $f(x) = e^x$
 - $f(x) = \sin(x)$
 - f(x) = x
 - $f(x) = x^4$

•
$$f(x) = e^x$$

•
$$f(x) = \sin(x)$$

Comparing Errors

- Large roundoff error => Instability
- For unknown f: Cross Validation

le12

-0.2

-0.4

-0.6

-0.8

Lagrange Interpolation

Comparing Errors

Cross Validation Results

Method	Total Error	
Linear (PW)	8.2	
Lagrange	17.39	
Newton	17.39	
Neville	17.39	
Spline	12.98	

Piecewise Linear Interpolation works best in this example

• But: not always!

Errors for Known Functions

- Comparing interpolated value to actual value
- Example: $f(x) = \sin(x)$
 - Lagrange/Newton/Neville has lowest error

Method	Error	
Linear (PW)	1.5349	
Lagrange	0.0021	
Newton	0.0021	
Neville	0.0021	
Spline	0.0969	

Stability

• Lagrange instable → so what? Increase number of nodes to see!

Conclusion

- No Method is always the best
- Lagrange unstable for large n