Corrigé de l'évaluation

Exercice 1 (8 points)

Résoudre les inéquations suivantes :

1.
$$5x - 2 > 8x + 31$$

2.
$$(2x+1)(3x-2) \ge 0$$

3.
$$\frac{-5x-2}{-7x+8} \geqslant 0$$

Corrigé de l'exercice 1

1.
$$5x-2>8x+31$$
 \Leftrightarrow $-3x>33$ \Leftrightarrow $x<-11$

$$\mathcal{S}_1 =]-\infty \; ; \; -11[$$

2.
$$(2x+1)(3x-2) \ge 0$$

On a le tableau de signes suivant :

x	$-\infty$		$-\frac{1}{2}$		$\frac{2}{3}$		$+\infty$
signe de $2x + 1$		_	0	+		+	
signe de $3x-2$		_		_	0	+	
signe de $(2x+1)(3x-2)$		+	0	_	0	+	

$$\mathrm{D'où}\; \mathcal{S}_2 = \left] - \infty \; ; \; -\frac{1}{2} \right] \cup \left[\frac{2}{3} \; ; \; + \infty \right[.$$

3.
$$\frac{-5x-2}{-7x+8} \geqslant 0$$

On a le tableau de signes suivant :

x	$-\infty$		$-\frac{2}{5}$		$\frac{8}{7}$		$+\infty$
signe de $-5x-2$		+	0	_		_	
signe de $-7x + 8$		+		+	0	_	
signe de $\frac{-5x-2}{-7x+8}$		+	0	_		+	

$$\mathrm{D'où}\; \mathcal{S}_3 = \left] -\infty\; ;\; -\frac{2}{5} \right] \cup \left] \frac{8}{7}\; ;\; +\infty \right[$$

Exercice 2 (8 points)

- 1. Donner sans justifier les équations des droites (d_1) et (d_2) .
- 2. On considère f_1 et f_2 les fonctions représentées par (d_1) et (d_2) .

Résoudre graphiquement $f_1(x) = f_2(x)$.

3. On considère la fonction affine f telle que f(1)=6 et

Déterminer par le calcul une expression algébrique de f.

Corrigé de l'exercice 2

1.
$$(d_1): y = -\frac{1}{3}x + 2$$
 et $(d_2): y = \frac{2}{7}x - 3$.

- **2.** La solution de l'équation $f_1(x) = f_2(x)$ est l'abscisse du point d'intersection des droites (d_1) et (d_2) , soit 8.
- 3. f est affine. Il existe donc deux réels m et p tels que pour tout $x \in \mathbb{R}, \ f(x) = mx + p$.

Déterminons m:

$$m = \frac{f(7) - f(1)}{7 - 1}$$
$$= \frac{1 - 6}{6}$$
$$= -\frac{5}{6}$$

Déterminons p:

$$f(1) = 6 \quad \Leftrightarrow \quad -\frac{5}{6} \times 1 + p = 6$$

$$\Leftrightarrow \quad p = 6 + \frac{5}{6}$$

$$\Leftrightarrow \quad p = \frac{41}{6}$$

D'où pour tout $x \in \mathbf{R}, f(x) = -\frac{5}{6}x + p$. D'où pour tout $x \in \mathbf{R}, f(x) = -\frac{5}{6}x + \frac{41}{6}$.

4. On cherche à vérifier si f(-10) = 65.

$$f(-10) = -\frac{5}{6} \times (-10) + \frac{41}{6}$$
$$= \frac{50}{6} + \frac{41}{6}$$
$$= \frac{91}{6}$$
$$\neq \frac{390}{6} = 65$$

les coordonnées de K ne sont pas solution de l'équation de (d) donc K n'appartient pas à (d).

Exercice 3 (8 points)

- 1. Démontrer que, pour tout x réel différent de 5, $\frac{x}{2x-10}-2=\frac{-3x+20}{2x-10}$. En déduire les solutions de $\frac{x}{2x-10}\geqslant 2$.
- 2. Résoudre l'inéquation $\frac{1-4x}{x-3} < 4$.

Corrigé de l'exercice 3

1. Soit $x \in \mathbb{R} \setminus \{5\}$.

$$\begin{split} \frac{x}{2x-10} - 2 &= \frac{x}{2x-10} - \frac{2(2x-10)}{2x-10} \\ &= \frac{x}{2x-10} - \frac{4x-20}{2x-10} \\ &= \frac{x-(4x-20)}{2x-10} \\ &= \frac{x-4x+20}{2x-10} \\ &= \frac{-3x+20}{2x-10} \end{split}$$

On a donc:

$$\frac{x}{2x-10} \geqslant 2 \quad \Leftrightarrow \quad \frac{x}{2x-10} - 2 \geqslant 0$$
$$\Leftrightarrow \quad \frac{-3x+20}{2x-10} \geqslant 0$$

On peut donc écrire le tableau de signes :

x	$-\infty$ 5 $\frac{20}{3}$ $+\infty$
signe de $-3x + 20$	+ + 0 -
signe de $2x - 10$	- 0 + +
signe de $\frac{-3x+20}{2x-10}$	- + 0 -

D'où
$$\mathcal{S}_1=\left]5\;;\; \frac{20}{3}\right].$$

2. Soit $x \in \mathbb{R} \setminus \{3\}$.

$$\frac{1-4x}{x-3} < 4 \quad \Leftrightarrow \quad \frac{1-4x}{x-3} - 4 < 0$$

$$\Leftrightarrow \quad \frac{1-4x}{x-3} - \frac{4(x-3)}{x-3} < 0$$

$$\Leftrightarrow \quad \frac{1-4x}{x-3} - \frac{4x-12}{x-3} < 0$$

$$\Leftrightarrow \quad \frac{1-4x-(4x-12)}{x-3} < 0$$

$$\Leftrightarrow \quad \frac{1-4x-4x+12}{x-3} < 0$$

$$\Leftrightarrow \quad \frac{-8x+13}{x-3} < 0$$

On peut donc écrire le tableau de signes :

x	$-\infty$ $\frac{13}{8}$ 3 $+\infty$
signe de $-8x + 13$	+ 0
signe de $x-3$	0 +
signe de $\frac{-8x+13}{x-3}$	- 0 + -

$$\label{eq:definition} \mathrm{D'où}\; \mathcal{S}_2 = \left] -\infty\; ;\; \frac{13}{8} \right[\; \cup \;]3\; ;\; +\infty[.$$

Exercice 4 (2 points + 4 points bonus)

Soit f une fonction affine définie pour tout $x \in \mathbf{R}$ par f(x) = mx + p. On appelle f^2 la fonction définie pour tout $x \in \mathbf{R}$ par $f^2(x) = f(f(x))$. On généralise cette notation pour $n \in \mathbf{N}$: pour tout $x \in \mathbf{R}$, $f^{n+1}(x) = f(f^n(x))$ et $f^0(x) = x$.

- **1.** Vérifier que pour n=1, n=2 et n=3, les fonctions f^n sont affines.
- 2. Quelle conjecture peut-on faire sur le taux d'accroissement et l'ordonnée à l'origine de f^n pour $n \in \mathbb{N}^*$?
- 3. Déterminer une fonction affine f vérifiant la propriété suivante : « Il existe un entier n>1 tel que $f^n(x)=2048x-2047$.