Environmental drivers of macroinvertebrate stability and persistence within the Interior Columbia River Basin, USA

Scott Miller¹, Robert Al-Chochachy², Brett Roper³, Chuck Hawkins⁴, Eric Archer³

¹BLM National Aquatic Monitoring Center, Department of Watershed Sciences, Utah State University

²U.S. Geological Survey

³U.S. Forest Service

⁴Western Center for Monitoring and Assessment, Department of Watershed Sciences, Utah State University

Introduction

- Lotic macroinvertebrates inhabit temporally variable environments
- Primary environmental drivers:
 - Climatic variability
 - o Decadal
 - o Annual
 - o Seasonal
 - Disturbance
 - Press or pulse
 - Natural or anthropogenic

Introduction

- Abiotic/biotic responses
 - Discharge
 - Temperature
 - Substrate
 - Food resources
 - Habitat quantity
- Knowledge of how temporal environmental variability structures assemblage dynamics is poor

Regional-scale assessment

Introduction

- Paucity of interannual and decadal studies
 - Recent decadal-scale studies,
 but limited in geographic scope
- Likely site x year interactions = differential change among sites through time:
 - Climatic patterns
 - Watershed attributes
 - Biological composition

Reference

Disturbed

Introduction: Status and Trend Monitoring

Pervasiveness of trend monitoring:

 75% of the 2022 samples submitted to NAMC (aka the BugLab) for processing in 2009 were attempting to detect temporal trends

Restoration effectiveness monitoring

State monitoring programs

Regional assessments

Introduction: Status and Trend Monitoring

Assumptions:

• Reference conditions are static

Introduction: Status and Trend Monitoring

Assumptions:

- Reference conditions are static
- Accurate variance partitioning:

Research questions

- 1. Does macroinvertebrate persistence (assemblage composition) and stability (relative abundance) differ among sites and years?
- 2. Why do some sites change more than others?
- 3. What components of interannual environmental variability explain macroinvertebrate temporal dynamics?

Methods: Study design

USFS PIBO EM Dataset

- Interior Columbia River
 Basin
- Are current mngt. practices maintaining or improving stream habitat?
- Random sampling of ~300
 6th field HUCs/yr
- 48 randomly selected 'Sentinel' sites/yr
 - 19 Reference
 - 29 Managed

Rotating panel design

	2001	2002	2003	2004	2005	2006	2007	2008	2009
Sentinel Sites	x	x	x	x	x	x	x	x	x
Integrator Sites- 2001-2006	х					х			
Integrator Sites- 2002-2007		х					х		
Integrator Sites 2003-2008			х					х	
Integrator Sites 2004-2009				х					х

Methods: Relevant field measurements

48 Sites sampled from 2001-2008: 311 total sample events

Aquatic macroinvertebrates

2 Surber samples from 4 fast water habitats

Environmental parameters (20 x bankfull)

- Conductivity
- Bankfull width
- Gradient
- Pool frequency
- Substrate
- Bank stability
- Frequency of LWD
- Temperature

Methods: Analytical approach

Characterizing macroinvertebrate temporal dynamics:

- Persistence: continued presence of species through time
 - Bray-Curtis dissimilarity of presence-absence
- **Stability**: Degree of constancy in numbers
 - Bray-Curtis dissimilarity of relative abundance
- Biological condition: RIVPACS model developed from multi-year sampling of >300 reference sites

Methods: Analytical approach

Predictors of macroinvertebrate persistence and stability:

Reach:

- Conductivity
- Bankfull width
- Gradient
- Pool frequency
- Substrate
- Bank stability
- LWD freq.
- Temperature

• *O/E*

Watershed:

- Area
- Elevation
- Stream density
- CaCO₃
- Erosiveness
- % igneous
- % metamorphic
- % sedimentary

Disturbance:

- Road density
- % forested
- % burned
- % grazed

Climatic:

- Temperature
- # frost days
- Precipitation
 - 30 yr avg.
 - 1 month
 - 3 months
 - 12 months

Italicized variables were measured/computed annually

Results: Climatic variability

Results: Reach-scale variability

- When quantified, temporal variability exceeded sampling error
- CV > 25%: Conductivity, D16, D50, Bank stability, % LWD
- Temporal variability consistent between ref. and mngt.

Results: Persistence versus stability

- Strong relationship between persistence and stability
- Stability consistently higher:
 - Contribution of core taxa more consistent than relative abundance of same taxa
 - Persistence more conservative response variable

Does macroinvertebrate persistence (assemblage composition) differ among sites and years?

Results: Persistence compared among sites & years

Significant site and year effect for persistence

Results: Persistence compared among sites & years

Moderate differences between reference and managed sites

Modeling approach: Random forest Response: Avg. macroinvertebrate persistence

Explanatory variables: reach avg., watershed, climatic, disturbance

Avg Temperature Average O/E Elevation Avg LWD 12 Month Precip. **Stream Density Erosiveness** % Igneous Watershed Area CAO Grazing % Metamorphic Fire Avg d_{50} Site type % Sedimentary # Frost days Bank Stability Avg d_{16}

Biological condition as a function of temperature and elevation

NMDS ordination of macroinvertebrate presence/absence

Axis 1

Is the observed year effect ecologically significant?

Results: Is the year effect ecologically significant?

Reference site O/E scores among years

Results: Is the year effect ecologically significant?

Managed site O/E scores among years

Results: Is the year effect ecologically significant?

Difference between reference and managed sites: no year effect $(F_{7,234} = 0.77; p = 0.617)$

What components of interannual environmental variability explain macroinvertebrate temporal dynamics?

Results: Modeling interannual variability

Modeling approach: Random forest

Response: CV macroinvertebrate persistence

Explanatory variables: CV reach and CV climatic variables

Results: Modeling interannual variability

Modeling approach: Random forest

Response: CV macroinvertebrate persistence

Explanatory variables: CV reach and CV climatic variables

Reference: variable importance plot

Results: Modeling interannual variability

Reference: variable importance plot

Results: Characterizing interannual variability

What is the direction or trend of interannual variability?

Time-lag regression Slope = 0.04; t = 4.5; p < 0.001

Conclusions

- Average temporal variability among sites:
 - Significant site and year effect
 - Among site variability related to biological condition (degraded > variable than reference), temperature and elevation
- Implications for accurate status and trend assessments:
 - Reference sites: relatively stable, not as confounded by year effect
 - Managed sites: interannual variability > ability to confounded status assessment
 - Reliability of one-time surveys
 - Based on temporally intensive model

Conclusions

- Env. drivers of interannual variability
 - Differential controls between reference and managed:
 - Natural climatic variability versus reach-scale drivers
 - Climate change implications for reference conditions
- Need for additional analyses attempting to partition variance among multiple sources at large spatial and temporal time frames and/or across stressor gradients