Hidden Markov Model for the Prediction of Copycat Suicide

Rifat Zahan

PhD Student, CEPHIL Department of Computer Science University of Saskatchewan Saskatoon, SK, CANADA

December 6, 2016

Motivation

- Suicide is one of the leading causes of death worldwide.
- Suicide is associated with significant social, economic and health system cost.
- Suicide can be contagious (copycat).
- Finding the transition to "copycat effect" state can help health-care providers to deliver early-stage counselling support (person or community-based).
- Prediction of such state can help in stopping further suicide in a particular community.

PC: Suicide Prevention Day, Men of Hope

Objective

We aim to predict the copycat suicide state in a particular geographic region using machine learning algorithm.

Dateset

Data Source

Individual mortality record in the U.S. was obtained from CDC (2016) for year 1968-2014.

Information Retrieved

- Date (1972-1988) and Place (5-digit FIPS code) of the suicide.
- Age and Sex of the individual.
- Method used to commit suicide [using ICD8* and ICD9* code].

Data Summary

- Los-Angeles (LA) had the highest counts of suicide among all the counties in California.
 Females, who used drugs/medication to commit suicide.
- Females, who used drugs/medication to commit suicide exhibited an evidence of "copycat effect". Therefore, these cases will be considered as study sample.

Figure 1: Geo-map of the counts of suicide in different states of U.S. during 1972-1978.

- * CDC = Center for Disease Control and Prevention
- ** ICD = International Code for Disease

Algorithm: Hidden Markov Model (HMM)

- Given the counts of total suicide for a given day, HMM can be used to predict whether it is a copycat state or not.
- Observed sequence: counts of suicide in each day.
- Hidden states: Copycat or No-Copycat (limited information).
- Poisson distributed likelihood naturally characterizes arrival process; therefore, we will use Poisson distribution for the HMM.
- Unsupervised learning: Baumen-Welch (BW) algorithm.

Results

Training HMM

Real data was split into 67% training data and 33% test data.

Transition Probability Matrix

Next State

Current State

	Copycat	No-Copycat
Copycat	0.456	0.544
No-Copycat	0.643	0.357

Initial Probabilities

Emission Probabilities

$$\lambda = \left[0.608, 4.926 \times 10^{-05}\right]$$

Model Adequacy Checking

Confusion Matrix: Real Data

Observed		
Copycat	No-Copycat	
=00		

		Copycat	No-Copycat
Predicted	Copycat	590	18
	No-Copycat	540	57

Sensitivity: 0.52; Specificity: 0.76

Confusion Matrix: Synthetic Data

		No-Copycat	Copycat	
Predicted	No-Copycat	224222	21649	
	Copycat	232969	21161	

Sensitivity: 0.49; Specificity: 0.49

Discussion

Strength of the study

 The sensitivity and specificity calculated based on the real data indicates that the model is able to predict the transition of the states moderately well.

Limitation of the study

- Both the real data and the synthetic data exhibited moderate predictive ability.
- The seasonality of the time-series data was not considered here.
- Diversity of Los-Angeles may not represent the true scenario of copycat and non-copycat states.

Future work

- Data will be available in future with reliable information on the occurrence of copycat suicide in a particular community.
- Other Machine Learning algorithm (e.g, Neural Network), can be applied to predict the copycat states.

