VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta informačních technologií

Elektronika pro informační technologie 2023/2024

> Rostislav Ludvík (xludvir00) 16.12.2023

Příklad č.1 Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu postupného zjednodušování obvodu.

sk.	U ₁ [V]	U ₂ [V]	$R_1[\Omega]$	R ₂ [Ω]	R ₃ [Ω]	R ₄ [Ω]	R ₅ [Ω]	R ₆ [Ω]	R ₇ [Ω]	R ₈ [Ω]
G	130	60	380	420	330	440	450	650	410	375

Řešení:

1) Zjednodušíme obvod spojením rezistorů R₅ a R₆ (paralelně), R₇ a R₈ (sériově)

2) Transfigurujeme trojúhelník na hvězdu (rezistory R₃ R₄ R₅₆)

3) Zjednodušíme obvod spojením rezistorů R₁ a R_C (sériově), R₂ a R_A (sériově)

4) Zjednodušíme obvod spojením rezistorů R_{1C} a R_{2A} (paralelně)

5) Zjednodušíme obvod spojením rezistorů R_{1C2A} a R_B A R₇₈ (sériově)

6) Určíme proud I, protékající zjednodušeným el. Obvodem, zdroje sjednotíme

$$I = \frac{U_1 + U_2}{R_{1C2AB78}} = \frac{8875622}{49140125}A$$

7) Zpětně určíme napětí U_{R1C2A} pomocí proudu I

$$U_{\text{R1C2A}} = R_{\text{1C2A}} * I = \frac{1027542756984}{22398068975} = 45,8764 V$$

8) Určíme napětí U_{R2}

$$U_{\text{R1C2A}} = U_{\text{R1C}} = U_{\text{R2A}}$$

rezistory R_{1C} a R_{2A} jsou zapojeny paralelně, tudíž je na nich stejné napětí

$$\frac{U_{R2}}{U_{RA}} = \frac{R_2}{R_A} = \frac{15953}{5324} = 2,9964$$

poměrem 1 : 2,9964 rozdělíme napětí U_{R2A} mezi U_{R2} a U_{RA}

$$U_{R2} = U_{R2A} * \frac{2,9964}{3,9964} = 34,39697 \approx 34,3970 V$$

9) Určíme proud I_{R2}

$$I_{R2} = \frac{U_{R2}}{R_2} = 0,0818976 \approx 0,0819 A$$

Příklad č.2Stanovte napětí UR6 a proud IR6. Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1[\Omega]$	$R_2[\Omega]$	R ₃ [Ω]	R ₄ [Ω]	R ₅ [Ω]	$R_6[\Omega]$
G	180	250	315	615	180	460	120

Řešení:

1) Zkratujeme zdroj napětí U a odstraníme zátěž R₆, dále zjednodušujeme na Thévenivův teorém

2) Obvod zjednodušíme spojením rezistorů R₂ a R₃ (sériově)

$$R_{23} = R_2 + R_3 = 930 \,\Omega$$

3) Obvod zjednodušíme spojením rezistorů R₁ a R₂₃ (paralelně)

4) Obvod zjednodušíme spojením rezistorů R₁₂₃ a R₄ (sériově)

$$R_{1234}=R_{123}+R_4=\frac{22245}{59}\;\Omega$$

5) Obvod zjednodušíme spojením rezistorů R₁₂₃₄ a R₅ (paralelně)

$$R_{12345} = \frac{R_{1234} \cdot R_5}{R_{1234} + R_5} = \frac{2046540}{9877} \approx 207,2026 \,\Omega$$

$$R_{12345} = R_i$$

6) Zpětně určíme R_{EKV} (sériově R₂ a R₃), (sériově R₄ a R₅), (paralelně R₂₃ a R₄₅), (sériově R₁ a R₂₃₄₅)

$$R_{EKV} = R_1 + \frac{(R_2 + R_3) * (R_4 + R_5)}{R_2 + R_3 + R_4 + R_5} = \frac{98770}{157} \approx 629,1083 \,\Omega$$

7) Dále určíme pomocný proud I_x

$$I_X = \frac{U}{R_{EKV}} = \frac{2826}{9877} \approx 0,2861 A$$

8) Určíme U_{R45} a I_{R45}

$$U_{R45} = U - I_x * R_1 = \frac{1071360}{9877} \approx 108,4702 V$$

$$I_{R45} = \frac{U_{R45}}{R_4 + R_5} = \frac{1674}{9877} \approx 0,1695 A$$

9) Určíme vnitřní napětí U_i

$$U_i = I_{R45} * R_5 = \frac{770040}{9877} \approx 77,9630 V$$

10) Nakonec pomocí ekvivalentního obvodu určíme I_{R6} a U_{R6}

$$I_{R6} = \frac{U_i}{R_i + R_6} = \frac{12834}{53863} \approx 0,2383 A$$

$$U_{R6} = I_{R6} * R_6 = \frac{1540080}{53863} \approx 28,5926 V$$

Příklad č.3

Stanovte napětí U_{R4} a proud I_{R4}. Použijte metodu uzlových napětí (U_A, U_B, U_C).

Řešení:

1) Sestavení rovnic pro uzlová napětí UA, UB, UC a převedení na matici

$$\begin{pmatrix} -\frac{1}{R_1} - \frac{1}{R_2} & \frac{1}{R_2} & 0 \\ \frac{1}{R_2} & -\frac{1}{R_2} - \frac{1}{R_3} & \frac{1}{R_3} \\ 0 & \frac{1}{R_3} & -\frac{1}{R_3} - \frac{1}{R_4} - \frac{1}{R_5} \end{pmatrix} * \begin{pmatrix} -I_1 \\ -I_2 \\ I_2 - \frac{U}{R_5} \end{pmatrix} = \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix}$$

Výpočet inverzní odporové matice vynásobenou proudovou maticí v matlabu

$$U_A = 64,4308 \text{ V}$$

$$U_B = 90,4924 \text{ V}$$

$$U_C = 76,8348 \text{ V}$$

2) Určení napětí U_{R4} a proudu I_{R4}

$$U_{R4} = U_C = 76,8348 \text{ V}$$

$$I_{R4} = \frac{U_{R4}}{R_4} = 2,1343 A$$

Příklad č.4

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{L2} = U_{L2} \cdot \sin(2\pi f t + \varphi_{L2})$ určete $|U_{L2}|$ a φ_{L2} . Použijte metodu smyčkových proudů. Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \pi / 2\omega)$.

sk.	U ₁ [V]	U ₂ [V]	$R_1[\Omega]$	R ₂ [Ω]	L ₁ [mH]	L ₂ [mH]	C ₁ [μF]	C ₂ [μF]	f [Hz]
G	5	5	13	12	140	60	160	80	60

Řešení:

1) Převedeme hodnoty ze zadání na základní jednotky určíme úhlovou rychlost ω určíme impedance cívek a kondenzátorů

$$L_1 = 140 \text{ mH} = 0.140 \text{ H}$$

$$L_2 = 60 \text{ mH} = 0,060 \text{ H}$$

$$C_1 = 160 \mu F = 160 * 10^{-6} F$$

$$C_2 = 80 \mu F = 80 * 10^{-6} F$$

$$\omega = 2\pi f = 376,99112 \text{ rad * s}^{-1}$$

$$Z_{L1} = j\omega L_1 = 52,7788 j\Omega$$

$$Z_{L2} = j\omega L_2 = 22,6195 j\Omega$$

$$Z_{C1} = -\frac{j}{\omega c_1} = -16,5786 \text{ j}\Omega$$

$$Z_{C2} = -\frac{j}{\omega c_2} = -33,1573 \text{ j}\Omega$$

2) Převedeme vztahy ze zadání

$$u_1 = U * \sin(2\pi f t) = U * \sin(\frac{\omega \pi}{2\omega}) = U * \sin(\frac{\pi}{2}) = U * 1 = U_1 = 5V$$

 $u_2 = U * \sin(2\pi f t) = U * \sin(\frac{\omega \pi}{2\omega}) = U * \sin(\frac{\pi}{2}) = U * 1 = U_2 = 5V$

3) Označíme si smyčkové proudy a sestavíme pro ně rovnice, které převedeme na matici

$$I_A: I_A * (Z_{C1} + R_1 + Z_{L2}) - I_B * (Z_{L2}) - I_C * (Z_{C1} + R_1) = -u_1$$

$$I_B$$
: - I_A * (Z_{L2}) + I_B * $(Z_{L2} + R_2 + Z_{C2})$ - I_C * (R_2) = - U_2

$$I_C$$
: - I_A * $(Z_{C1} + R_1) - I_B$ * $(R_2) + I_C$ * $(Z_{C1} + Z_{L1} + R_2 + R_1) = 0$

$$\begin{pmatrix} Z_{C1} + R_1 + Z_{L2} & -Z_{L2} & -Z_{C1} - R_1 \\ -Z_{L2} & Z_{L2} + R_2 + Z_{C2} & -R_2 \\ -Z_{C1} - R_1 & -R_2 & Z_{C1} + Z_{L1} + R_2 + R_1 \end{pmatrix} * \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} -2 \\ -3 \\ 0 \end{pmatrix}$$

Náročný výpočet přes inverzní matici v matlabu

$$I_A = -0.12891022 + j \ 0.03539431 \ A$$

$$I_B = 0.10670694 - j 0.20682512 A$$

$$I_C = -0.20519540 + j 0.05633960 A$$

$$I_{L2} = I_A - I_B = 0.1289 - j0.0354 - 0.1067 + j0.2068 = 0.0222 + j0.1714 A$$

4) Určíme $|U_{L2}|$ a φ_{L2}

$$u_{L2} = Z_{L2} * I_{L2} = 5,9526 + j7,0551$$

$$|U_{L2}| = \sqrt{Re(u_{L2})^2 + Im(u_{L2})^2} = 9,2308 V$$

$$\varphi_{L2} = \arctan \frac{Im(u_{L2})}{Re(u_{L2})} = \arctan \frac{7,0551}{5,9526} = 49,8443^{\circ}$$

Příklad č.5

V obvodu na obrázku níže v čase t = O[s] sepne spínač S. Sestavte diferenciální rovnici popisující chovaní obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_c = f(t)$. Proveďte kontrolu vypočtu dosazením do sestavené diferenciální rovnice.

Řešení

Příklad	Skupina	Výsledky
1	G	$U_{R2} = 34,3970 V, I_{R2} = 0,0819 A$
2	G	$U_{R6} = 28,5926 V, \qquad I_{R6} = 0,2383 A$
3	F	$U_{R4} = 76,8348 V, \qquad I_{R4} = 2,1343 A$
4	G	$ U_{L2} = 9,2308 \text{ V}, \qquad \phi_{L2} = 49,8443^{\circ}$
5	G	