EXERCISES FROM HARTSHORNE

VINCENT TRAN

Contents

1

1. Chapter 1

1.1. Affine Varieties	1
1. Chapter 1	
1.1. Affine Varieties. Exercises	
Exercise 1.1.1 (1.1). (1) Let Y be the plane curve $y = x^2$ (i.e., Y is the zero set of t $f = y - x^2$). Show that $A(Y)$ is isomorphic to a polynomial ring in one variable over	
<i>Proof.</i> We have that $I(y-x^2)=(y-x^2)$, so $A(Y)=k[x,y]/(y-x^2)$, which is obvious to $k[x]$.	usly isomorphic
(2) Let Z be the plane curve $xy = 1$. Show that $A(Z)$ is not isomorphic to a polynom variable over k .	ial ring in one
<i>Proof.</i> We want to show that $A(Z) = k[x,y]/(xy-1) \not\cong k[x]$. Suppose FTSOC that isomorphism $f: A(Z) \to k[x]$. Then $f(xy) = f(1) = 1 = f(x)f(y)$ gives us that Similarly, we can see that $f(kx)$ are also distinct units. As k is a field, $f(k)$ is a field. The only subfield of $k[x]$ is k , so $f(k) = k$. But $f(x) = k$ don't have bijectivity.	f(x) is a unit.
(3) Let f be any irreducible quadratic polynomial in $k[x, y]$, and let W be the conic define that $A(W)$ is isomorphic to $A(Y)$ or $A(Z)$. Which one is it when?	and by f . Show
Proof. By Proposition 1.7, $\dim W = \operatorname{height} I(W) \Longrightarrow \operatorname{by} \operatorname{Proposition} 1.8 \operatorname{A} \dim W + \operatorname{div} 2$. As dimension is non-negative, there are three possibilities for $\dim W$. It can't be 2 because these correspond to maximal ideals, and maximal ideals here $(x-a,y-b)$, which isn't principal. If it is 1, then $\dim k[x,y]/I(W)=1$ and thus $A(W)=k[x,y]/I(W)\cong k[f]$ by transcendence degree. This corresponds to the Y case. If it is 0, then $\dim k[x,y]/I(W)=2$ and thus $A(W)=k[x,y]/I(W)\cong k[f,g]$ by transcendence degree. This corresponds to the Z case, as $k(Z)\cong k[x,x^{-1}]$.	are of the form y definition of
Exercise 1.1.2 (1.2). The Twisted Cubic Curve. Let $Y \subseteq A^3$ be the set $Y = \{(t, t^2, t^3) t \in Y \text{ is an affine variety of dimension 1. Find generators for the ideal } I(Y)$. SHow that $A(Y)$ to a polynomial ring in one variable over k . We say that Y is given by the parametric $x = t, y = t^2, z = t^3$.) is isomorphic
<i>Proof.</i> Y is an affine variety because it is closed due to being $Z(y-x^2,z-x^3)$ and irreducible out $(k[x,y,z]/I(Y)=k[x])$. It is dimension 1 because height $I(Y)+\dim k[x,y,z]/\mathfrak{p}=\dim 1+2=3$ by Proposition 1.8A. The generators are $y-x^2,z-x^3$ and $A(Y)\cong k[x]$.	

1

Exercise 1.1.3 (1.3). Let Y be the algebraic set in A^3 defined by the two polynomials $x^2 - yz$ and xz - x.

Show that Y is a union of three irreducible components. Describe them and find their prime ideals.

Proof. We can see that $Z(x^2-yz,xz-x)=Z(x^2-yz,x)\cup Z(x^2-yz,z-1)$ because k is an integral domain. Then $Z(x^2-yz,x)=Z(yz,x)=Z(y,x)\cup Z(z,x)$, both of which are irreducible by quotienting out. Finally, we can see that $Z(x^2-yz,z-1)=Z(x^2-y,z-1)$, which is irreducible by quotienting out. Thus $Z(x^2-yz,xz-x)=Z(x,y)\cup Z(x,z)\cup Z(x^2-y,z-1)$.

Exercise 1.1.4 (1.4). Let Y be the algebraic set in A^3 with $A \times A$ in the natural way, show that the Zariski topology on A^2 is not the product topology of the Zariski topologies on the two copies of A^1 .

Proof. In the Zariski topology, we can see that Z(xy) is

Exercise 1.1.5 (1.5). Show that a k-algebra B is isomorphic to the affine coordinate ring of some algebraic set in A^n , for some n, if and only if B is a finitely generated k-algebra with no nilpotent elements.

Exercise 1.1.6 (1.6). Any nonempty open subset of an irreducible topological space is dense and irreducible. If Y is a subsut of a topological space X, which is irreducible in its induced topology, then the closure \overline{Y} is also irreducible.