Describing datasets

IC152 Lec 12 Feb 2021

The nature of data

- Numerical findings: need to be presented consisely
- Especially needed for large datasets
- Features of the data include:
 - Range
 - Degree of symmetry
 - Concentrated or spread out
 - Where are they concentrated? Etc.
- Univariate or multivariate

An example

2, 2, 0, 0, 5, 8, 3, 4, 1, 0, 0, 7, 1, 7, 1, 5, 4, 0, 4, 0, 1, 8, 9, 7, 0,

1, 7, 2, 5, 5, 4, 3, 3, 0, 0, 2, 5, 1, 3, 0, 1, 0, 2, 4, 5, 0, 5, 7, 5, 1

Data: Number of sick leaves taken by 50 employees, over six weeks

Small dataset

Frequency table

- How many workers had at least one day of sick leave? 50-12 = 38
- How many workers had between 3 and 5 days of sick leave? 4+5+8 = 17
- How many had more than 5 days? 8

Value	Freq		
0	12		
1	8		
2	5		
3	4		
4	5		
5	8		
6	0		
7	5		
8	2		
9	1		

Sum of freq values = N

N is the total number of samples in the data

Value	Freq
0	12
1	8
2	5
3	4
4	5
5	8
6	0
7	5
8	2
9	1

How will you construct this table and make the plot?

Sorting is a common preprocessing operation

Normalized frequency plot

Sometimes normalized frequency is more convenient

Sum of frequency values = 1

Bar plot

Bars rather than lines

Types of bar plots

Pie chart: for non-numerical data Visualization of relative frequency plot

Weapons used in crimes

Grouped data and histograms

213	174	193	196	220	183	194	200
192	200	200	199	178	183	188	193
187	181	193	205	196	211	202	213
216	206	195	191	171	194	184	191
221	212	221	204	204	191	183	227

Data: Blood cholestrol levels

Used when the number of unique values are numerous

Sorted data

171, 174, 178, 181, 183, 183, 183, 184, 187, 188, 191, 191, 191, 192, 193, 193, 193, 194, 194, 195, 196, 196, 199, 200, 200, 200, 202, 204, 204, 205, 206, 211, 212, 213, 213, 216, 220, 221, 221, 227

Class interval contains left-end, but not right-end

Class intervals	Frequency	Relative frequency
170–180	3	$\frac{3}{40} = 0.075$
180–190	7	$\frac{7}{40} = 0.175$
190–200	13	$\frac{13}{40} = 0.325$
200–210	8	$\frac{8}{40} = 0.20$
210–220	5	$\frac{5}{40} = 0.125$
220–230	4	$\frac{4}{40} = 0.10$

Types of histograms

	Number of workers				Percentage of workers	
Blood pressure	Aged 30-40	Aged 50-60		Blood pressure	Aged 30-40	Aged 50-60
Less than 90	3	1		Less than 90	0.12	0.14
90–100	17	2		90–100	0.67	0.27
100–110	118	23		100–110	4.65	3.15
110–120	460	57	Number of	110–120	18.11	7.80
120-130	768	122	samples are	120–130	30.24	16.69
130–140	675	149	unequal	130–140	26.57	20.38
140–150	312	167		140–150	12.28	22.84
150–160	120	73		150–160	4.72	9.99
160–170	45	62		160–170	1.77	8.48
170–180	18	35		170–180	0.71	4.79
180–190	3	20		180–190	0.12	2.74
190–200	1	9		190–200	0.04	1.23
200–210		3		200–210		0.41
210–220		5		210–220		0.68
220–230		2		220–230		0.27
230–240		- 1		230–240		0.14
Total	2540	731		Total	100.00	100.00

Data: blood pressue values for two groups of workers

Relative frequency polygons

BP of older workers seem to be more spread out

1	110	68	16	84	19
2	107	30	17	83	16
3	83	13	18	112	52
4	87	24	19	80	11
5	117	40	20	91	13
6	104	22	21	113	29
7	110	25	22	124	71
8	118	62	23	79	19
9	116	45	24	116	43
10	94	70	25	113	44
11	93	15	26	94	17
12	101	22	27	95	15
13	93	18	28	104	30
14	76	20	29	115	63
15	91	14	30	90	16

Worker i

IQ score x_i

Annual salary y_i

(in units of \$1000)

Is there a relationship between salary and

IQ?

Annual salary y_i

(in units of \$1000)

Data: salary vs IQ for employees

IQ score x_i

Worker i

Can even predict values

Can also see if there are outliers

Data error?

Can only be used for 2D data