Instructor: Maryam Aliakbarpour

Scriber: Yu-Ching Shen

Lecture 21

1 Weak learning

We discuss weak learning in this lecture. In weak learning, it is sufficient to output a solution whose error is smaller than 1/2.

Definition 1.1 (Weakly learnable). We say a concept class C is weakly learnable if there is an algorithm A and a parameter $\gamma \in (0, 1/2)$ such that for all distribution D and $\delta \in (0, 1)$, the algorithm A receives $m(\delta, C)$ samples and outputs a concept \hat{c} for which we have $\Pr\left[err_{\mathcal{D}}(\hat{c}) \geq \frac{1}{2} - \gamma\right] \leq \delta$.

(The function $err_{\mathcal{D}}(\cdot)$ is defined by $err_{\mathcal{D}}(c) := \mathbf{Pr}_{(x,y)\sim\mathcal{D}}[c(x) \neq y]$.)

Recall that in the previous lectures, the algorithm is required to achieve a "small" error.

Definition 1.2 (Strongly learnable). We say a concept class C is strong learnable if there is an algorithm \mathcal{B} such that for all distribution \mathcal{D} and $\delta \in (0,1)$, the algorithm \mathcal{B} receives $m(\delta, C)$ samples and outputs a concept \hat{c} for which we have $\Pr[err_{\mathcal{D}}(\hat{c}) \geq \varepsilon] \leq \delta$.

Remark 1. If an algorithm outputs a concept $\hat{c} \in \mathcal{C}$, we call it proper learning. On the other hand, if an algorithm outputs a concept which may or may not be in the concept class \mathcal{C} , we call it improper learning. We will see an improper learning algorithm in this lecture.

We can see strong learnability trivially implies weak learnability by choosing $\varepsilon < 1/2 - \gamma$. We are going to show that the opposite direction is also correct. That is, if there is an algorithm \mathcal{A} that learns \mathcal{C} with an error less than $1/2 - \gamma$, then there is an algorithm \mathcal{B} that uses \mathcal{A} to learn \mathcal{C} with an error less than ε . The algorithm \mathcal{B} may use more samples than that are used in \mathcal{A} .

Theorem 2. If a concept class C is weakly learnable, then C is also strongly learnable.

2 Weak learning \Rightarrow strong learning: algorithm

We present the strong learning algorithm \mathcal{B} that uses a weak learning algorithm \mathcal{A} as follows. We consider the concepts whose range is ± 1 .

AdaBoost algorithm:

- 1. Let $S = \{(x_i, y_i)\}_{i=1}^m$ be the training set, and let $\mathcal{D}_1(i) = 1/m$.
- 2. For t = 1, 2, ..., T:
 - 2.1 Run \mathcal{A} on $\mathcal{D}_t(x,y)$. Get output \hat{c}_t . The distribution $\mathcal{D}_t(x,y)$ is defined by

$$\mathcal{D}_t(x,y) = \begin{cases} 0 & \text{if } (x,y) \notin S, \\ \mathcal{D}_t(i) & \text{if } (x,y) = (x_i, y_i). \end{cases}$$

- 2.2 Compute $\varepsilon_t := err_{\mathcal{D}_t}(\hat{c}_t) = 1/2 \gamma_t$.
- 2.3 Compute $\alpha_t := \frac{1}{2} \ln(\frac{1-\varepsilon_t}{\varepsilon_t}) > 0$.
- 2.4 Define $\mathcal{D}_{t+1}(i) := \frac{\mathcal{D}_t(i)e^{-\alpha_t\hat{c}_t(x_i)y_i}}{Z_t}$, where $Z_t = \sum_{i=1}^m \mathcal{D}_t(i)e^{-\alpha_t\hat{c}_t(x_i)y_i}$.
- 3. Output $\hat{c}(\cdot) := \operatorname{sign}(\sum_{t=1}^{T} \alpha_t \hat{c}_t(\cdot))$. The function $\operatorname{sign}(\cdot)$ denotes the sign function.

The number of samples m and the number of iterations T have not been determined yet. In Step 2b, we can calculate ε because \mathcal{D}_t is known. Also, we have that $\gamma_t \geq \gamma$ for all t.

It is the first time in this course that we have seen an algorithm output a concept that may not be in the concept class.

3 The empirical error of the output concept

In the remaining lecture, we are going to compute the empirical error of \hat{c} associated with the sample set S. We have the following result.

Lemma 3.1. Let $e\hat{r}r_S(\hat{c})$ be the empirical error of the output concept \hat{c} defined by $\frac{1}{|S|}\sum_{(x_i,y_i)\in S}\mathbb{1}_{\{\hat{c}(x_i)\neq y_i\}}$, where $\mathbb{1}$ denotes the indicator. It holds that $err_S(\hat{c})\leq e^{-2T\gamma^2}$.

Before proving Lemma 3.1, we first give the following identities and inequalities related to \mathcal{D}_t and Z_t .

Fact 3.2.

$$\mathcal{D}_t(i) = D_1(i) \prod_{t=1}^{t-1} \frac{e^{-\alpha_j \hat{c}_j(x_i)y_i}}{Z_j} = \frac{1}{m} \frac{e^{-\sum_{j=1}^{t-1} \alpha_j \hat{c}_j(x_i)y_j}}{\prod_{j=1}^{t-1} Z_j}.$$
 (1)

Fact 3.3. Let $F(x) := \sum_{j_1}^T \alpha_j \hat{c}_j(x)$. Plug it into Eq. (1) and set i = T + 1. We have

$$\mathcal{D}_{T+1}(i) = \frac{e^{-y_i F(x_i)}}{m \prod_{i=1}^T Z_i}.$$
 (2)

Note that $y_i F(x_i) \leq 0$ corresponds to the event that there is a mislabeling for (x_i, y_i) .

Fact 3.4.

$$\mathbb{1}_{\{y_i F(x_i) \le 0\}} \le e^{-y_i F(x_i)}. \tag{3}$$

Proof. • If $y_i F(x_i) > 0$, then $\mathbb{1}_{\{y_i F(x_i) \le 0\}} = 0$. And we have $0 \le e^a$ for all $a \in \mathbb{R}$.

• If $y_i F(x_i) \leq 0$, then $\mathbb{1}_{\{y_i F(x_i) \leq 0\}} = 1$. And we have $1 \leq e^a$ for all $a \geq 0$.

Fact 3.5. The value of Z_t in terms of error is given by

$$Z_t = e^{\alpha_t} \varepsilon_t + e^{-\alpha_t} (1 - \varepsilon_t) \tag{4}$$

Proof.

$$Z_{t} = \sum_{i \in S} \mathcal{D}_{t}(i)e^{-\alpha_{t}\hat{c}_{t}(x_{i})y_{i}}$$

$$= \sum_{i:y_{i} \neq \hat{c}_{t}(x_{i})} \mathcal{D}_{t}(i)e^{\alpha_{t}} + \sum_{i:y_{i} = \hat{c}_{t}(x_{i})} \mathcal{D}_{t}(i)e^{-\alpha_{t}}$$
(Seperate correct and not correct labeling.)
$$= err_{\mathcal{D}_{t}}(\hat{c}_{t})e^{\alpha_{t}} + (1 - err_{\mathcal{D}_{t}}(\hat{c}_{t}))e^{-\alpha_{t}}$$
(Definition of $err(\cdot)$.)
$$= e^{\alpha_{t}}\varepsilon_{t} + e^{-\alpha_{t}}(1 - \varepsilon_{t})$$
(Reword error.)

Combining the above, we are going to prove Lemma 3.1.

Proof of Lemma 3.1.

$$e\hat{r}r_{S}(\hat{c}) = \frac{1}{|S|} \sum_{i \in S} \mathbb{1}_{\{\hat{c}(x_{i}) \neq y_{i}\}}$$
 (By definition.)
$$= \frac{1}{m} \sum_{i \in S} \mathbb{1}_{\{\hat{s}ign(\sum_{t} \alpha_{t} \hat{c}_{t}) \neq y_{i}\}}$$
 (\$\hat{c}_{t} := \sign(\sum_{t} \alpha_{t} \hat{c}_{t}).\$)
$$= \frac{1}{m} \sum_{i} \mathbb{1}_{\{F(x_{i})y_{i} \leq 0\}}$$
 (Reword mislabeling.)
$$\leq \frac{1}{m} \sum_{i} e^{-y_{i}F(x_{i})}$$
 (By Eq. (3).)
$$\leq \frac{1}{m} \sum_{i} \mathcal{D}_{T+1}(i)m \prod_{j=1}^{T} Z_{j}$$
 (Sum over a distribution = 1.)
$$= \prod_{t=1}^{T} e^{\alpha_{t}} \varepsilon_{t} + e^{-\alpha_{t}}(1 - \varepsilon_{t})$$
 (By Eq. (4).)
$$= \prod_{t=1}^{T} 2\sqrt{\varepsilon_{t}(1 - \varepsilon_{t})}$$
 (By Def. of \$\alpha_{t}\$ in Step 2c.)
$$= \prod_{t=1}^{T} 2\sqrt{(\frac{1}{2} - \gamma_{t}))(1 - \frac{1}{2} + \gamma_{t})}$$
 (By Def. of \$\epsilon_{t}\$ in Step 2b.)
$$= \prod_{t=1}^{T} 2\sqrt{(\frac{1}{4} - \gamma_{t}^{2})} = \prod_{t=1}^{T} \sqrt{(1 - 4\gamma^{2})}$$
 (By 1 - x < e^{-x}.)
$$= e^{-2\sum_{t} \gamma_{t}^{2}}$$
 (By \$\gamma_{t} \ge \gamma_{t}\$)