Announcements

- Homework 8 is due tonight!
- Grade reports posted to WISE dropbox!
 - If we had agreements about giving back some early late days, those have not been factored in yet.
- Read at least part of 5.4 for Wednesday

What do you expect for the direction of $\vec{\mathbf{B}}$ at point P? How about the direction of $d\vec{\mathbf{B}}$ at point P generated **only** by the segment of current $d\vec{\ell}$ in red?

- A. $\vec{\mathbf{B}}$ in the plane of the page, $d\vec{\mathbf{B}}$ in plane of page
- B. $\vec{\mathbf{B}}$ into page, $d\vec{\mathbf{B}}$ into page
- C. $\vec{\mathbf{B}}$ into page, $d\vec{\mathbf{B}}$ out of page
- D. $\vec{\mathbf{B}}$ out of page, $d\vec{\mathbf{B}}$ out of page

What do you expect for the direction of $\vec{\mathbf{B}}$ at point P? How about the direction of $d\vec{\mathbf{B}}$ at point P generated **only** by the segment of current $d\vec{\ell}$ in red?

- A. \vec{B} in the plane of the page, $d\vec{B}$ in plane of page
- B. $\vec{\mathbf{B}}$ into page, $d\vec{\mathbf{B}}$ into page
- C. $\vec{\mathbf{B}}$ into page, $d\vec{\mathbf{B}}$ out of page
- D. $\vec{\mathbf{B}}$ out of page, $d\vec{\mathbf{B}}$ out of page

What is the magnitude of $\frac{d\vec{\ell} \times \hat{\imath}}{\imath^2}$?

- $d\ell\sin\phi$
- A. $\frac{a\ell \sin \phi}{z^2}$ B. $\frac{a d\ell}{z^2}$ C. $\frac{d\ell \sin \phi}{z^2 + a^2}$ D. $\frac{d\ell}{z^2 + a^2}$

- $d\ell\sin\phi$
- A. $\frac{d\ell \sin \phi}{z^2}$ B. $\frac{a d\ell}{z^2}$ C. $\frac{d\ell \sin \phi}{z^2 + a^2}$ D. $\frac{d\ell}{z^2 + a^2}$

Say you have two very long, parallel wires each carrying a current $\vec{\mathcal{I}}_1$ and $\vec{\mathcal{I}}_2$, respectively. In which direction is the force on the wire with current $\vec{\mathcal{I}}_2$?

- B. Left
- C. Right
- D. Out of the page

Say you have two very long, parallel wires each carrying a current $\vec{\mathcal{I}}_1$ and $\vec{\mathcal{I}}_2$, respectively. In which direction is the force on the wire with current $\vec{\mathcal{I}}_2$?

- B. Left
- C. Right
- D. Out of the page

WILLAMETTE UNIVERSITY ELECTROMAGNETICS

What is $\oint \vec{\mathbf{B}} \cdot d\vec{\ell}$ around this purple Amperian loop?

A.
$$\mu_0(\mathcal{I}_2 + \mathcal{I}_1)$$

B.
$$\mu_0(\mathcal{I}_2 - \mathcal{I}_1)$$

C.
$$\mu_0(\mathcal{I}_2\sin\theta+\mathcal{I}_1)$$

D.
$$\mu_0(\mathcal{I}_2\sin\theta-\mathcal{I}_1)$$

WILLAMETTE UNIVERSITY ELECTROMAGNETICS

What is $\oint \vec{\mathbf{B}} \cdot d\vec{\ell}$ around this purple Amperian loop?

A.
$$\mu_0(\mathcal{I}_2 + \mathcal{I}_1)$$

B.
$$\mu_0(\mathcal{I}_2 - \mathcal{I}_1)$$

C.
$$\mu_0(\mathcal{I}_2\sin\theta+\mathcal{I}_1)$$

D.
$$\mu_0(\mathcal{I}_2\sin\theta-\mathcal{I}_1)$$

Rank order $\int \vec{\bf J} \cdot d\vec{\bf A}$ over the blue surfaces where $\vec{\bf J}$ is uniform and traveling left to right.

- A. iii > iv > ii > i
- B. iii > i > ii > iv
- C. i > ii > iii > iv
- D. Something else

Q5

Rank order $\int \vec{\bf J} \cdot d\vec{\bf A}$ over the blue surfaces where $\vec{\bf J}$ is uniform and traveling left to right.

- A. iii > iv > ii > i
- B. iii > i > ii > iv
- C. i > ii > iii > iv
- D. Something else