Tutorial solutions for Chapter 4

Sometimes there are other correct answers.

- 4.1. (a) **False.** (The empty set \emptyset is by definition a set with no element. In particular, the empty set \emptyset cannot be its element.)
 - (b) **True.** (The empty set \varnothing is a subset of any set by Proposition 4.2.7. In particular, it is a subset of itself.)
 - (c) **True.** (According to the definition of roster notation, the set $\{\emptyset\}$ contains exactly one element \emptyset .)
 - (d) **True.** (The empty set \varnothing is a subset of any set by Proposition 4.2.7. In particular, it is a subset of $\{\varnothing\}$.)
 - (e) **False.** (The empty set \emptyset is an element of $\{\emptyset, 1\}$, but it is not an element of $\{1\}$.)
 - (f) **False.** (According to the definition of roster notation, the set $\{\{1,2\},\{2,3\},4\}$ contains exactly 3 elements: the set $\{1,2\}$, the set $\{2,3\}$, and the number 4; none of these is equal to 1.)
 - (g) **True.** (The set $\{1,2\}$ contains exactly 2 elements: the number 1 and the number 2; both of these are elements of $\{3,2,1\}$.)
 - (h) **True.** (The set $\{3,3,2\}$ contains exactly 2 elements: the number 3 and the number 2; both of these are elements of $\{3,2,1\}$. However, the number 1 is an element of $\{3,2,1\}$ but not an element of $\{3,3,2\}$.)
- 4.2. **Yes**, as shown below.
 - (\subseteq) Let $a \in A$. Use the definition of A to find $n \in \mathbb{Z}$ such that a = 2n + 1. Then a = 2(n+1) 1. As $n \in \mathbb{Z}$, we know $n+1 \in \mathbb{Z}$. So $a \in B$ by the definition of B.
 - (⊇) Let $b \in B$. Use the definition of B to find $n \in \mathbb{Z}$ such that a = 2n 1. Then b = 2(n 1) + 1. As $n \in \mathbb{Z}$, we know $n 1 \in \mathbb{Z}$. So $b \in A$ by the definition of A.

Hence A = B by the definition of set equality.

4.3. $\mathcal{P}(\mathcal{P}(\varnothing)) = \{\varnothing, \{\varnothing\}\}.$

Explanations. We know \varnothing is a subset of \varnothing by Proposition 4.2.7. If A is a nonempty set, then A has an element and thus A cannot be a subset of \varnothing which by definition has no element. So the only subset of \varnothing is \varnothing . This tells us $\mathcal{P}(\varnothing) = \{\varnothing\}$.

Now $\{\emptyset\}$ has exactly 1 element, namely the empty set \emptyset . In constructing a subset of $\{\emptyset\}$, one can choose to take this element of $\{\emptyset\}$ or not, giving two results \emptyset and $\{\emptyset\}$. No other set can be a subset of $\{\emptyset\}$. So

$$\mathcal{P}(\mathcal{P}(\varnothing)) = \mathcal{P}(\{\varnothing\}) = \{\varnothing, \{\varnothing\}\}.$$

4.4. (a) $\{6, 8, 10, 12\}$.

Explanation. The elements of this set are exactly the elements of U that are even.

(b)
$$\{-7, -6, -5, \dots, 7\}$$
.

Explanation.

$$\begin{split} &\{m-n:m,n\in U\}\\ &=\{5-5,5-6,\ldots,5-12,6-5,6-6,\ldots,6-12,\ldots,12-5,12-6,\ldots,12-12\}\\ &=\{0,-1,\ldots,-7,1,0,\ldots,-6,\ldots,7,6,\ldots,0\}\\ &=\{-7,-6,-5,\ldots,7\}. \end{split}$$

(c) $\{-5, -4, -3, -2, -1, 0\}$.

Explanation. The elements of this set are exactly the integers n for which $-5 \le n \le 5$ is true but $1 \le n \le 10$ is false.

(d) $\{6, 8, 10, 12\}$.

Explanation. $\overline{\{5,7,9\} \cup \{9,11\}} = \overline{\{5,7,9,11\}} = \{6,8,10,12\}$, in a context where U is the universal set.

- 4.5. (a) $A \setminus B = \{1, 9\}$ and $B \setminus A = \{2, 6, 8, 10, 12, 14\}$. So $A \triangle B = \{1, 2, 6, 8, 9, 10, 12, 14\}$.
 - (b) Compare the following truth tables.

$z \in A$	$z \in B$	$z \in A \setminus B$	$z \in B \setminus A$	$z \in A \triangle B$
\overline{T}	Τ	F	F	F
${ m T}$	\mathbf{F}	T	\mathbf{F}	$ \mathbf{T} $
\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	$ \mathbf{T} $
\mathbf{F}	\mathbf{F}	F	\mathbf{F}	F
$z \in A$	$z \in B$	$z \in A \cup B$	$z\in A\cap B$	$z \in (A \cup B) \setminus (A \cap B)$
$\frac{z \in A}{\mathrm{T}}$	$z \in B$	$z \in A \cup B$	$z \in A \cap B$	$z \in (A \cup B) \setminus (A \cap B)$
	Т		Т	F

Since the last columns of the two tables are the same, we conclude that $A \triangle B = (A \cup B) \setminus (A \cap B)$.

Alternatively, one may use the set identities in the context where we have a universal set U.

 $A \triangle B$

$$= (A \setminus B) \cup (B \setminus A) \qquad \qquad \text{by the definition of } \triangle;$$

$$=(A \cap \overline{B}) \cup (B \cap \overline{A})$$
 by the set identity on set difference;

$$= \left((A \cap \overline{B}) \cup B \right) \cap \left((A \cap \overline{B}) \cup \overline{A} \right) \qquad \qquad \text{by distributivity};$$

$$= (A \cup B) \cap (\overline{B} \cup B) \cap (A \cup \overline{A}) \cap (\overline{B} \cup \overline{A})$$
 by distributivity;

$$=(A\cup B)\cap U\cap U\cap (\overline{B}\cup \overline{A})$$
 by the set identity on complement;

$$=(A \cup B) \cap U \cap U \cap (\overline{B \cap A})$$
 by De Morgan's Laws;

$$=(A \cup B) \cap (\overline{B \cap A})$$
 as U is the identity for \cap ;

$$=(A \cup B) \cap (\overline{A \cap B})$$
 as \cap is commutative;

$$=(A \cup B) \setminus (A \cap B)$$
 by the set identity on set difference.

Another way to proceed in propositional logic as follows: for every object z,

$$z \in A \triangle B$$

$$\Leftrightarrow z \in (A \setminus B) \cup (B \setminus A)$$
 by the definition of \triangle ;

$$\Leftrightarrow$$
 $(z \in A \land z \notin B) \lor (z \in B \land z \notin A)$ by the definition of \cup, \cap, \setminus ;

$$\Leftrightarrow \quad ((z \in A \land z \notin B) \lor z \in B) \land ((z \in A \land z \notin B) \lor z \notin A)$$

by distributivity;

$$\Leftrightarrow \quad (z \in A \lor z \in B) \land (z \not\in B \lor z \in B) \land (z \in A \lor z \not\in A) \land (z \not\in B \lor z \not\in A)$$

by distributivity;

$$\Leftrightarrow$$
 $(z \in A \lor z \in B) \land (z \notin B \lor z \notin A)$ by the logical identities

on negation and identities;

$$\Rightarrow$$
 $(z \in A \lor z \in B) \land \neg (z \in B \land z \in A)$ by De Morgan's Laws;

$$\Leftrightarrow \quad z \in (A \cup B) \setminus (B \cap A) \qquad \qquad \text{by the definition of } \cup, \cap, \setminus.$$

4.6. (\Rightarrow) Assume $A \subseteq B$. We want to show $A \cup B = B$. We already know $B \subseteq A \cup B$ from Example 4.3.9(2). So it remains to show $A \cup B \cup B$.

Take $z \in A \cup B$. Then $z \in A$ or $z \in B$ by the definition of \cup .

- If $z \in A$, then $z \in B$ by our assumption that $A \subseteq B$.
- If $z \in B$, then of course $z \in B$.

So $z \in B$ in all cases, as required.

(\Leftarrow) Assume $A \cup B = B$. We want to show $A \subseteq B$. Take any $z \in A$. This implies $z \in A \cup B$ in view of Example 4.3.9(2). Thus $z \in B$ since $A \cup B = B$ by assumption, as required. □

Alternative proof for \Leftarrow . Assume $A \cup B = B$. Then Example 4.3.9(1) tells us $A \subseteq A \cup B = B$.

- 4.7. $P_1(A, \mathcal{C}_1)$ is **false** because $9 \in A$ that is not in any $S \in \mathcal{C}_1$.
 - $P_2(A, \mathcal{C}_1)$ is **true** because no distinct elements $S_1, S_2 \in \mathcal{C}_1$ have a nonempty intersection, as one can verify exhaustively.
 - $P_1(A, \mathcal{C}_2)$ is **true** because every $x \in A$ is in some $S \in \mathcal{C}_2$, as one can verify exhaustively.
 - $P_2(A, \mathcal{C}_2)$ is **false** because $\{6, 7, 8\}$ and $\{8, 9\}$ are distinct elements of \mathcal{C}_2 that have a nonempty intersection $\{8\}$.

Additional comment. Note that $P_2(A, \mathcal{C})$ is equivalent to

$$\forall x \in A \ \forall S_1, S_2 \in \mathscr{C} \ (x \in S_1 \land x \in S_2 \Rightarrow S_1 = S_2).$$

So the conjunction of $P_1(A, \mathcal{C})$ and $P_2(A, \mathcal{C})$ can be expressed as

$$\forall x \in A \ \exists ! S \in \mathscr{C} \ x \in S.$$

4.8. Fix sets A_0, A_1, A_2, \ldots Let P(n) be the predicate " $\overline{A_0 \cup A_1 \cup \ldots A_n} = \overline{A_0} \cap \overline{A_1} \cap \cdots \cap \overline{A_n}$ " over \mathbb{Z}^+ .

(Base step) P(1) is true because $\overline{A_0 \cup A_1} = \overline{A_0} \cap \overline{A_1}$ by De Morgan's Laws.

(Induction step) Let $k \in \mathbb{Z}^+$ such that P(k) is true, i.e., that $\overline{A_0 \cup A_1 \cup \cdots \cup A_k} = \overline{A_0 \cap \overline{A_1} \cap \cdots \cap \overline{A_k}}$. Then

$$\overline{A_0 \cup A_1 \cup \cdots \cup A_k \cup A_{k+1}}$$

$$= \overline{A_0 \cup A_1 \cup \cdots \cup A_k} \cap \overline{A_{k+1}}$$
 by De Morgan's Laws;
$$= \overline{A_0} \cap \overline{A_1} \cap \cdots \cap \overline{A_k} \cap \overline{A_{k+1}}$$
 by the induction hypothesis.

This shows P(k+1) is true.

Hence $\forall n \in \mathbb{Z}^+$ P(n) is true by MI.

Alternative solution. Let P(n) be the predicate

$$\overline{A_0 \cup A_1 \cup \dots A_n} = \overline{A_0} \cap \overline{A_1} \cap \dots \cap \overline{A_n}$$
 for all sets A_0, A_1, \dots, A_n

over \mathbb{Z}^+ .

(Base step) P(1) is true because $\overline{A_0 \cup A_1} = \overline{A_0} \cap \overline{A_1}$ by De Morgan's Laws.

(Induction step) Let $k \in \mathbb{Z}^+$ such that P(k) is true, i.e., that $\overline{A_0 \cup A_1 \cup \cdots \cup A_k} = \overline{A_0 \cap \overline{A_1} \cap \cdots \cap \overline{A_k}}$ for all sets A_0, A_1, \ldots, A_k . For all sets $B_0, B_1, \ldots, B_{k+1}$,

$$\overline{B_0 \cup B_1 \cup \dots \cup B_k \cup B_{k+1}} \\
= \overline{B_0} \cap \overline{B_1} \cap \dots \cap \overline{B_k \cup B_{k+1}} \\
= \overline{B_0} \cap \overline{B_1} \cap \dots \cap \overline{B_k} \cap \overline{B_{k+1}}$$
by the induction hypothesis;
by De Morgan's Laws.

This shows P(k+1) is true.

Hence $\forall n \in \mathbb{Z}^+$ P(n) is true by MI.

Additional comment. In the first proof above, it does not matter much whether we put the universal quantifier for A_0, A_1, A_2, \ldots into P(n) or not. This is *not* true in the alternative proof.

Extra exercises

4.9. If $x \in A_0 \cap B_0 = (A \setminus B) \cap B$, then $x \in A \setminus B$ and $x \in B$ by the definition of \cap , and so $x \notin B$ and $x \in B$, which is not possible. Therefore, the set $A_0 \cap B_0$ cannot have any element, and hence it must be equal to \emptyset by Theorem 4.1.18.

We know $A_0 \cup B_0 = A \cup B$ because for every object z,

$$z \in A_0 \cup B_0$$

 $\Leftrightarrow z \in (A \setminus B) \cup B$ by the definitions of A_0 and B_0 ;
 $\Leftrightarrow (z \in A \land z \notin B) \lor z \in B$ by the definition of \backslash and \cup ;
 $\Leftrightarrow (z \in A \lor z \in B) \land (z \notin B \lor z \in B)$ by the Distributive Laws;
 $\Leftrightarrow z \in A \lor z \in B$ by the logical identities on negation and identities;
 $\Leftrightarrow z \in A \cup B$ by the definition of \cup .

Additional comment. If we are in a context with a universal set U, then we can

proceed alternatively as follows:

$$A_0 \cap B_0 = (A \setminus B) \cap B$$
 by the definition of A_0 and B_0 ;
 $= (A \cap \overline{B}) \cap B$ by the set identity on set difference;
 $= A \cap \varnothing$ by the set identity on the complement;
 $= \varnothing$ as \varnothing is an identity for \cap ;
 $A_0 \cup B_0 = (A \setminus B) \cup B$ by the definition of A_0 and B_0 ;
 $= (A \cap \overline{B}) \cup B$ by the set identity on set difference;
 $= (A \cup B) \cap (\overline{B} \cup B)$ by the Distributive Laws;
 $= (A \cup B) \cup U$ by the set identities on the complements;
 $= A \cup B$ as U is an identity for \cup .

4.10. (\Rightarrow) Assume $A \subseteq B$. We want to show $A \cap B = A$. We already know $A \cap B \subseteq A$ from Example 4.3.9(1). So it remains to show $A \cap B \supseteq A$.

Take $z \in A$. Then $z \in B$ by our assumption that $A \subseteq B$. So $z \in A \cap B$ by the definition of \cap , as required.

(\Leftarrow) Assume $A \cap B = A$. We want to show $A \subseteq B$. Take any $z \in A$. This implies $z \in A \cap B$ as $A \cap B = A$ by assumption. Recall from Example 4.3.9(1) that $A \cap B \subseteq B$. So $z \in B$, as required. □

Alternative proof for \Leftarrow . Assume $A \cap B = A$. Then $A = A \cap B \subseteq B$ by Example 4.3.9(1).

Another alternative proof. In view of Tutorial Exercise 4.6, it suffices to show that $A \cup B = B$ if and only if $A \cap B = A$.

 (\Rightarrow) Assume $A \cup B = B$. Then

$$A \cap B = A \cap (A \cup B)$$
 by assumption;
= A by the Absorption Law.

 (\Leftarrow) Assume $A \cap B = A$. Then

$$A \cup B = (A \cap B) \cup B$$
 by assumption;
$$= B$$
 by the Absorption Law. \square

4.11. • $\bigcap_{i=0}^{n} A_i = \{1\} = A_0.$

Explanation. Note that $A_0 \subseteq A_1 \subseteq \cdots \subseteq A_n$. So

$$\bigcap_{i=0}^{n} A_i = A_0 \cap A_1 \cap A_2 \cap A_3 \cap \dots \cap A_n \quad \text{by the definition of } \bigcap_{i=0}^{n} A_i;$$

$$= A_0 \cap A_2 \cap A_3 \cap \dots \cap A_n \quad \text{by Extra Exercise 4.10, as } A_0 \subseteq A_1;$$

$$= A_0 \cap A_3 \cap \dots \cap A_n \quad \text{by Extra Exercise 4.10, as } A_0 \subseteq A_2;$$

$$= A_0 \cap \dots \cap A_n \quad \text{by Extra Exercise 4.10, as } A_0 \subseteq A_3;$$

$$= \dots = A_0 \cap A_n \quad \text{by Extra Exercise 4.10, as } A_0 \subseteq A_n.$$

• $\bigcap_{i=0}^{\infty} A_i = \{1\} = A_0.$

Explanation. (\subseteq) Let $z \in \bigcap_{i=0}^{\infty} A_i$. Then $z \in A_i$ for each $i \in \mathbb{N}$ by the definition of $\bigcap_{i=0}^{\infty} A_i$. In particular, we know $z \in A_0$.

(\supseteq) Note that every element of A_0 is an element of A_i , for every $i \in \mathbb{N}$. This means every element of A_0 is an element of $\bigcap_{i=0}^{\infty} A_i$ according to the definition of $\bigcap_{i=0}^{\infty} A_i$. So $A_0 \subseteq \bigcap_{i=0}^{\infty} A_i$.

• $\bigcup_{i=0}^{n} A_i = \{x \in \mathbb{Q} : \frac{1}{n+1} \le x \le n+1\} = A_n$. **Explanation.** Note that $A_0 \subseteq A_1 \subseteq \cdots \subseteq A_n$. So

$$\bigcup_{i=0}^n A_i = A_0 \cup A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n \quad \text{by the definition of } \bigcup_{i=0}^n A_i;$$

$$= A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n \quad \text{by Extra Exercise 4.6, as } A_0 \subseteq A_1;$$

$$= A_2 \cup A_3 \cup \dots \cup A_n \quad \text{by Extra Exercise 4.6, as } A_0 \subseteq A_2;$$

$$= A_3 \cup \dots \cup A_n \quad \text{by Extra Exercise 4.6, as } A_0 \subseteq A_3;$$

$$= \dots = A_{n-1} \cup A_n \quad \text{by Extra Exercise 4.6, as } A_0 \subseteq A_n.$$

 $\bullet \bigcup_{i=0}^{\infty} A_i = \{x \in \mathbb{Q} : x > 0\}.$

Explanation. (\subseteq) Let $z \in \bigcup_{i=0}^{\infty} A_i$. Use the definition of $\bigcup_{i=0}^{\infty} A_i$ to find $i \in \mathbb{N}$ such that $z \in A_i$. According to the definition of A_i , this means $\frac{1}{i+1} \leq z \leq i+1$. Thus $z \geqslant \frac{1}{i+1} > 0$ as $i+1 \geqslant 0+1>0$. So $z \in \{x \in \mathbb{Q} : x > 0\}$.

(\supseteq) Let $z \in \{x \in \mathbb{Q} : x > 0\}$. Then x > 0. Use the Archimedean property of \mathbb{R} to find $j \in \mathbb{N}$ such that j > z - 1 and $j > \frac{1}{z} - 1$. Now $\frac{1}{j+1} \leqslant z \leqslant j+1$, and thus $z \in A_j$. This implies $z \in \bigcup_{i=0}^{\infty} A_i$.

Note. Our definition of the A_i 's does not cover the A_{∞} case: if we try to substitute ∞ into i, then we face expressions such as $\frac{1}{\infty+1}$ and $\infty+1$, which do not have commonly accepted meanings.

Moral. It is possible that an infinite intersection or union reaches its true value *only* after infinitely many steps; thus *no* finite number of steps suffices to reveal the true answer in general. There is a gap between "arbitrarily large finite" and "infinite".