

Pracownia fizyczna zdalna Instytut Fizyki – Centrum Naukowo-Dydaktyczne

STRONA TYTUŁOWA

TYTUŁ: PFZ - Wyznaczenie wartości przyspieszenia ziemskiego metodą spadku swobodnego

Wydział	MS	Kierunek	Informatyka
Nr grupy	2D	Rok akademicki	2020/2021
Rok studiów	1	Semestr	II

Oświadczam, ze niniejsze sprawozdanie jest całkowicie moim/naszym dziełem, ze żaden z fragmentów sprawozdania nie jest zapożyczony z cudzej pracy. Oświadczam, ze jestem świadoma/świadom odpowiedzialności karnej za naruszenie praw autorskich osób trzecich.

L.P.	Imię i nazwisko
1.	Julia Żurawlow
2.	
3.	

Data pomiarów	6.06.2021
---------------	-----------

Ocena poprawności elementów sprawozdania

data oceny	wstęp i cel ćwiczenia	struktura sprawozdania	obliczenia	rachunek niepewności	wykres	zapis końcowy	wnioski
						•	

Pracownia fizyczna zdalna Instytut Fizyki – Centrum Naukowo-Dydaktyczne

KARTA POMIAROWA

TYTUŁ: PFZ - Wyznaczenie wartości przyspieszenia ziemskiego metodą spadku swobodnego

Wydział	MS	Kierunek	Informatyka
Nr grupy	2D	Rok akademicki	2020/2021
Rok studiów	1	Semestr	II

L.P.	Imię i nazwisko
1.	Julia Żurawlow
2.	
3.	

Ocena/liczba punktów	
za przygotowanie do ćwiczenia	

TABELE POMIAROWE

Pomiary		
Lp.	h1 [m]	t1 [s]
1	0,74	0,381
2	0,741	0,389
3	0,741	0,371
4	0,743	0,374
5	0,74	0,386
6	0,739	0,372
7	0,74	0,377
8	0,74	0,387

Pomiary		
Lp.	h3 [m]	t3 [s]
1	0,91	0,433
2	0,91	0,428
3	0,91	0,432
4	0,911	0,424
5	0,911	0,425
6	0,913	0,44
7	0,912	0,438
8	0,91	0,226

Pomiary		
Lp.	h2 [m]	t2 [s]
1	0,481	0,317
2	0,482	0,313
3	0,48	0,328
4	0,481	0,326
5	0,479	0,315
6	0,48	0,322
7	0,48	0,313
8	0,481	0,323

	Pomiary		
Lp.	h4 [m]	t3 [s]	
1	1,32	0,512	
2	1,321	0,522	
3	1,321	0,429	
4	1,32	0,511	
5	1,322	0,526	
6	1,323	0,519	
7	1,32	0,521	
8	1,321	0,528	

	Pomiary		
Lp.	h5 [m]	t5 [s]	
1	1,75	0,586	
2	1,75	0,583	
3	1,752	0,581	
4	1,748	0,596	
5	1,75	0,592	
6	1,751	0,596	
7	1,75	0,591	
8	1,752	0,594	

Stanowisko pomiarowe

Wstęp teoretyczny

Spadek swobodny jest to fizyczne pojęcie, które opisuje ruch ciała, które na początku znajdowało się w spoczynku i w reakcji na siłę grawitacji zaczęło się poruszać (spadać).

Spadek ten jest ruchem jednostajnie przyspieszonym, więc możemy stosować wzory na przyspieszenie:

$$S = \frac{g \cdot t^2}{2}$$

g – przyspieszenie ziemskie ≈ 9,81 [m/s2]

t – czas [s]

s – droga (wysokość) [m]

Opracowanie wyników pomiarów

1. Obliczam wartości średnie wysokości h_śr oraz odpowiadających im czasów t_śr^2:

lp.	h_śr [m]	t_śr^2 [s]
1	0,741	0,144
2	0,481	0,102
3	0,911	0,186
4	1,32	0,259
5	1,75	0,348

2. Obliczam odchylenia standardowe wartości średnich u(h_śr) oraz u(t_śr^2):

$$u(h_{sr}) = V((suma kwadratów(hn-h_{sr})/n-1) [m]$$

 $u(t_{sr}) = V((suma kwadratów(tn-t_{sr})/n-1)) [s]$

	u(h_śr)	
lp.	[m]	u(t_śr^2) [s]
1	0,00129	0,0058
2	0,00100	0,0041
3	0,00121	0,0056
4	0,00115	0,0358
5	0,00140	0,2854

3. Obliczam niepewności całkowite uc(h śr) oraz uc(t śr), wykorzystując wzory:

$$u_c(h_{sr}) = \sqrt{[u(h_{sr})]^2 + \frac{(\Delta t)^2}{3K}}$$

$$u_c(t_{\rm fr}) = \sqrt{[u(t_{\rm fr})]^2 + \tfrac{(\Delta t)^2}{3N}}$$

gdzie:

Δh, Δt - oznaczają rozdzielczości (działkę elementarną) pomiaru odpowiednio wysokości i czasu spadku swobodnego,

K – liczba pomiarów wysokości h,

N to liczba pomiarów czasów t spadku swobodnego w jednej serii pomiarowej

lp.	uc(h_śr) [m]	uc(t_śr) [s]	
1	0,0016	0,0077	
2	0,0014	0,0064	
3	0,0016	0,0066	
4	0,0015	0,0064	
5	0,0017	0,24	

4. Sporządzam wykres przedstawiający zależność t^2śr = f(h_śr):

5. Wykorzystując metodę regresji liniowej, wyliczam współczynnik a oraz jego niepewność u(a):

Regresja liniowa			
a [s^2/m]	0,19	0,0055	b [s^2]
u(a) [s^2/m]	0,0047	0,0053	u(b) [s^2]

6. Wyznaczam wartość przyspieszenia ziemskiego g:

$$g = \frac{2}{a}$$
 [m/s²]

gdzie:

a - współczynnik kierunkowy dopasowanej prostej

$$g = 10,29 \text{ m/s}^2$$

7. Obliczam niepewność przyspieszenia ziemskiego u(g) na podstawie niepewności współczynnika kierunkowego prostej u(a), korzystając z prawa propagacji niepewności:

$$u(g) = \sqrt{(g \cdot \frac{u(a)}{a})^2 [\text{m/s}^2]}$$

 $u(g) = 0.25 \text{ m/s}^2$

8. Porównuję wyznaczoną wartość g z wartością tablicową przyspieszenia ziemskiego g_t W tym celu sprawdzam, czy spełniona jest relacja:

$$|g-g|t| < U(g) [m/s^2]$$

gdzie:

U(g) - niepewność rozszerzona obliczana według wzoru:

$$U(q) = k \cdot u(q) [m/s^2]$$

Przyjmuję wartość bezwymiarowego współczynnika rozszerzenia k=2 oraz tablicową wartość przyspieszenia ziemskiego g $t=9,81 \text{ m/s}^2$.

g-g_t < U(g) [m/s ²]		
g - g_t [m/s ²]	U(g) [m/s ²]	
0,48	0,50	

Wnioski

Otrzymałam wartość przyspieszenia ziemskiego g= 10,29 m/s 2 oraz jej niepewność u(g)= 0,249 m/s 2 .

Po wykonaniu testu zgodności, stwierdzam, że spełniona jest relacja $|g - g_t| < U(g)$, ponieważ 0,48 m/s² jest mniejsze niż 0,50 m/s². Otrzymany wynik jest zgodny z wartością tablicową.

Wyliczona za pomocą pomiarów wartość przyspieszenia ziemskiego różni się od tablicowej, na co wpływ mogły mieć niedokładne pomiary w warunkach domowych: nierówne materiały, niepożądane odgłosy.

Bibliografia

https://www.naukowiec.org/wiedza/fizyka/spadek-swobodny_633.html