EYP 1025-1027 Métodos Probabilísticos Clase 18

Profesor: Reinaldo B. Arellano-Valle

Departamento de Estadística Pontificia Universidad Católica de Chile

Contenido I

- Distribuciones condicionales
 - fmp y fdp condicionales
 - Ejemplos
 - Propiedades básicas
 - Esperanza condicional
 - Propiedad importante
 - Ejemplos
 - Propiedades básicas
 - Varianza condicional
 - Ejemplos
 - Propiedad importante
 - Ejemplos
 - Predicción

fmp y fdp condicionales

Dado un un vector aleatorio (X,Y) en (Ω,\mathcal{A},P) , suponga que se desea conocer la distribución de probabilidad condicional de Y cuando se sabe que X=x para algún x en el recorrido de X; es decir, se quiere cacular

$$P(Y \in B|X = x)$$
 para cualquier subconjunto B de números reales.

Ejemplo 1.1

Suponga que se lanza un dado justo dos veces. Si X_1 y X_2 son los puntajes del primer y segundo lanzamiento, respectivamente, defina $X = X_1 + X_2$ e $Y = \min\{X_1, X_2\}$. Note que X e Y son variables aleatorias discretas. Para calcular P(Y = 2|X = 7), considere los eventos $A = \{X = 7\}$ y $B = \{Y = 2\}$. Es claro que P(A) = 6/36 y $P(A \cup B) = 2/36$. Entonces,

$$\begin{split} P(Y=2|X=7) &= P(B|A) = \frac{P(A\cap B)}{P(A)} \\ &= \frac{P(X=7,Y=2)}{P(X=7)} \\ &= \frac{2/36}{6/36} = \frac{1}{3}. \end{split}$$

En general, si (X,Y) es un vector aleaorio discreto, entonces

$$P(Y = y | X = x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$
 si $f_X(x) = P(X = x) > 0$.

Cuando $f_X(x)=P(X=x)=0$, esta probabilidad condicional se puede definir de forma arbitraria, digamos P(Y=y|X=x)=0. Sea, $f_{Y|X=x}(y)=P(Y=y|X=x)$ definida como,

$$(*) \quad f_{Y|X=x}(y) = \begin{cases} \frac{f_{X,Y}(x,y)}{f_X(x)}, & \text{si } f_X(x) > 0, \\ 0, & \text{si no.} \end{cases}$$

Entonces,

(a)
$$0 \le f_{Y|X=x}(y) \le 1$$
 para todo (x, y) ,

$$\text{(b)}\quad \sum_{y\in\mathbb{R}} f_{Y|X=x}(y) = \sum_{y\in\mathbb{R}} \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{\sum_{y\in\mathbb{R}} f_{X,Y}(x,y)}{f_X(x)} = \frac{f_X(x)}{f_X(x)} = 1$$
 para todo x .

Es decir, de (a) y (b) sigue que la función $f_{Y|X=x}(y) = P(Y=y|X=x)$ definida en (*) constituye una fmp en \mathbb{R} , llamada fmp condicional de Y dado X=x.

De forma análoga se define $f_{X|Y=y}(x)=P(X=x|Y=y)$ como la fmp condicional de X dado Y=x.

Además, procediendo de forma relativamente similar, se pueden construir las fdp's condicionales $f_{Y|X=x}(y)$ y $f_{X|Y=y}(x)$ en el caso continuo.

Nota: Para la fmp o fdp condicional de Y dado X=x (X dado Y=y), también se usa la notación f(y|x) (f(x|y)).

Definición 1.1

Sea (X,Y) un vector aleatorio discreto o continuo, con fmp (c.d.) o fdp (c.c.) conjunta $f_{X,Y}(x,y)$ y fmp's (c.d.) o fdp's (c.c.) marginales $f_X(x)$ y $f_Y(y)$. La fmp (c.d.) o fdp (c.c.) condicional de Y dado X=x se define como,

$$f_{Y|X=x}(y) = \begin{cases} \frac{f_{X,Y}(x,y)}{f_X(x)}, & \text{si } f_X(x) > 0, \\ 0, & \text{si no.} \end{cases}$$

Análogamente, fmp (c.d.) o fdp (c.c.) condicional de X dado Y=y se define como,

$$f_{X|Y=y}(x) = \begin{cases} \frac{f_{X,Y}(x,y)}{f_Y(y)}, & \text{si } f_Y(y) > 0, \\ 0, & \text{si no.} \end{cases}$$

Teorema 1.1

La distribución de probabilidad condicional de Y dado X=x, esta dada por,

$$P(Y \in B|X = x) = \begin{cases} \sum_{y \in B} f_{Y|X=x}(y) & \text{c.d.} \\ \int_{y \in B} f_{Y|X=x}(y) dy & \text{c.c.} \end{cases}$$

para todo $B \subset \mathbb{R}$. En particular, la fda condicional de de Y dado X = x, esta dada por,

$$F_{Y|X=x}(y) = P(Y \le y|X=x) = \begin{cases} \sum_{z \le y} f_{Y|X=x}(z) & \text{c.d.} \\ \int_{-\infty}^{y} f_{Y|X=x}(z) dz & \text{c.c.} \end{cases}$$

para todo y.

Nota: La definición y los resultados anteriores son análogos si (X,Y) es un vector aleatorio discreto o continuo, con $X:\Omega\longrightarrow\mathcal{X}\subseteq\mathbb{R}^n$ e $Y:\Omega\longrightarrow\mathcal{Y}\subset\mathbb{R}^m$.

Ejemplos

Ejemplo 1.2

Se extrae al azar una bolita de una urna con N bolitas numeradas del 1 al N. Luego se lanza una moneda tantas veces como lo indica el número de la bolita seleccionada. Sea X el número de la bolita extraída. Si X=x, entonces se lanza la moneda x veces. Si Y es el número caras obtenidas en los x lanzamientos de la moneda, entonces, $Y|X=x\sim Bin(x,p)$, donde p es la probabilidad de obtener cara al lanzar la moneda. Es decir,

$$f_{Y|X=x}(y) = P(Y = y | X = x)$$

$$= \begin{cases} \binom{x}{y} p^y (1-p)^{x-y}, & \text{si } y = 0, 1, \dots, x, \text{ para } x = 1, \dots, N, \\ 0, & \text{si no.} \end{cases}$$

Ejemplos

Ejemplo 1.3

Sean X e Y variables aleatorias continuas con fdp conjunta dada por,

$$f_{X,Y}(x,y) = \begin{cases} 2, & \text{si } x > 0, \ y > 0, \ x + y < 1, \\ 0, & \text{si no.} \end{cases}$$

$$\implies f_X(x) = \begin{cases} \int_0^{1-x} 2dy = 2(1-x), & \text{si } 0 < x < 1, \\ 0, & \text{si no.} \end{cases}$$

Luego,

$$f_{Y|X=x}(y) = \begin{cases} \frac{1}{1-x}, & \text{si } 0 < y < 1-x, \text{ para } 0 < x < 1, \\ 0, & \text{si no.} \end{cases}$$

Note que $Y|X=x\sim U(0,1-x)$ para cada $x\in(0,1).$ Análogamente, se tiene que $X|Y=y\sim U(0,1-y)$ para cada $y\in(0,1).$

Propiedades básicas

- 1) $f_{X,Y}(x,y) = f_{Y|X=x}(y)f_X(x) = f_{X|Y=y}(x)f_Y(y)$ para todo (x,y)
- 2) Si X e Y son variables aleatorias independientes, entonces $f_{Y|X=x}(y)=f_Y(y)$ y $f_{X|Y=y}=f_X(x)$ para todo (x,y)
- 3) Para cada y (fijo), se tiene que $f_{Y\mid X=x}(y)=g(x)$ es una función (no aleatoria) de x definida sobre el recorrido de x

Por ejemplo, si
$$Y|X=x\sim Bin(x,p)$$
, entonces,

$$f_{Y|X=x}=\left(egin{array}{c} x \\ y \end{array}
ight)p^y(1-p)^{x-y}=g(x)$$
 para cada $y=0,1,\ldots,x.$

Similarmente, si
$$Y|X=x\sim U(0,1-x)$$
, entonces $f_{Y|X=x}(y)=1/(1-x)=g(x)$ para cada $y\in (0,1-x)$.

Propiedades básicas

Considere la función aleatoria $g(X) = f_{Y|X}(y)$. Entonces,

$$\mathsf{E}\{g(X)\} = \mathsf{E}\{f_{Y|X}(y)\} = f_Y(y).$$

En efecto. Considere el caso continuo; entonces

$$\begin{split} \mathsf{E}(g(X)) &= \int_{-\infty}^{\infty} g(x) f_X(x) dx \\ &= \int_{-\infty}^{\infty} f_{Y|X=x}(y) f_X(x) dx \\ &= \int_{-\infty}^{\infty} f_{Y,X}(x,y) dx \quad \text{(por la propiedad 1))} \\ &= f_Y(y). \end{split}$$

De aquí, también es inmediato que

$$\mathsf{E}\{P(Y \in B|X)\} = P(Y \in B) \quad \forall \ B \subseteq \mathbb{R}.$$

Esperanza condicional

Definición 1.2

La esperanza condicional de Y dado X=x, provisto que exista, se define como,

$$E(Y|X=x) = \begin{cases} \sum_{y \in \mathbb{R}} y f_{Y|X=x}(y) & \text{c.d.} \\ \int_{-\infty}^{+\infty} y f_{Y|X=x}(y) dy & \text{c.c.} \end{cases}$$

La esperanza condicional de X dado Y=y se define de forma análoga.

Nota: Si Y tiene esperanza finita, entonces la esperanza condicional de Y dado X=x también es finita (con probabilidad 1).

Esperanza condicional

Más generalmente, si g(Y) tiene tiene esperanza finita, entonces la esperanza condicional de g(Y) dado X=x, se define como,

$$\mathsf{E}\{g(Y)|X=x\} = \begin{cases} \sum_{y} g(y) f_{Y|X=x}(y) & \text{c.d.} \\ \int_{-\infty}^{+\infty} g(y) f_{Y|X=x}(y) dy & \text{c.c.} \end{cases}$$

Ejemplo 1.4

1) Si $Y|X = x \sim Bin(x, p)$, entonces

$$E(Y|X = x) = \sum_{y=0}^{x} y \begin{pmatrix} x \\ y \end{pmatrix} p^{y} (1-p)^{x-y} = xp.$$

2) Si $Y|X = x \sim U(0, 1-x)$, entonces

$$E(Y|X=x) = \int_{y=0}^{1-x} y \frac{1}{1-x} dy = \frac{1-x}{2}.$$

Propiedad importante

Se desprende de los ejemplos anteriores que

$$\mathsf{E}(Y|X=x) = h(x)$$
 (función no aleatoria de x)

Sea

$$h(X) = \mathsf{E}(Y|X) \quad (\mathsf{funci\'{o}n} \ \mathsf{aleatoria} \ \mathsf{de} \ X)$$

Teorema 1.2

Ley de probabilidad total para esperanzas. Sean X e Y variables aleatorias definidas en el mismo espacio de probabilidad. Si Y tiene esperanza finita, entonces,

$$E(Y) = E\{E(Y|X)\}.$$

Demostración. Caso continuo: Ya que E(Y|X) = h(X), entonces,

E{E(Y|X)} = E{h(X)}

$$= \int_{-\infty}^{\infty} h(x) f_X(x) dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f_{Y|X=x}(y) dy f_X(x) dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f_{Y|X=x}(y) dy f_X$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f_{Y|X=x}(y) f_X(x) dy dx$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f_{Y|X=x}(y) f_X(x) dy dx$$

$$\begin{split} &= \int_{-\infty}^{\infty} y \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx dy & (f_{Y|X=x}(y) f_X(x) = f_{X,Y}(x,y)) \\ &= \int_{-\infty}^{\infty} y f_Y(y) dy = \mathsf{E}(Y). \end{split}$$

Ejemplos

Ejemplo 1.5

1) Si $Y|X=x\sim Bin(n,p)$, entonces, $\mathrm{E}(Y|X=x)=xp$, de modo que $\mathrm{E}(Y|X)=Xp$; luego,

$$E(Y) = E\{E(Y|X)\} = E(Xp) = E(X)p.$$

Así, si $X \sim P(\lambda)$, entonces $E(X) = \lambda$ y por tanto $E(Y) = \lambda p$.

2) Si $Y|X=x\sim U(0,1-x)$, entonces, $\mathrm{E}(Y|X=x)=(1-x)/2$, de modo que $\mathrm{E}(Y|X)=(1-X)/2$; luego,

$$E(Y) = E\{E(Y|X)\} = E\{(1-X)/2\} = (1-E(X))/2.$$

Así, si
$$f_X(x) = 2(1-x)I_{(0,1)}(x)$$
, entonces

$$E(X) = \int_0^1 2x(1-x)dx = 1/3$$
 y por tanto $E(Y) = 1/3$.

Ejemplo 1.6

Encuesta de Hogares Sean X el número de miembros en un hogar seleccionado aleatoriamente en la encuesta, e Y el número de automóviles de propiedad de dicho hogar.

Los 250 hogares encuestados tienen la misma probabilidad de ser seleccionados, por lo que P(X=x,Y=y) es igual al número de hogares con x miembros e y autos, dividido por 250; estas probabilidades se presentan en la Tabla 1 dada a continuación.

Suponga que el hogar seleccionado tiene X=4 miembros.

La fmp condicional de Y dado X=4 es $f_{Y|X=4}(y)=f_{X,Y}(4,y)/f_X(4)$, y corresponde a los valores de la columna x=4 de la Tabla 1 dividido por $f_X(4)=0.208$, es decir,

$$f_{Y|X=4}(0) = 0.0385,$$
 $f_{Y|X=4}(1) = 0.5769,$
 $f_{Y|X=4}(2) = 0.2885,$ $f_{Y|X=4}(3) = 0.0962.$

Tabla 1 fmp's conjunta, $f_{X,Y}(x,y)$, y marginales, $f_X(x)$ y $f_Y(y)$, de $X \in Y$.

	x										
y	1	2	3	4	5	6	7	8	$f_Y(y)$		
0	0.040	0.028	0.012	0.008	0.008	0.004	0	0	0.100		
1	0.048	0.084	0.100	0.120	0.100	0.060	0.020	0.004	0.536		
2	0.004	0.020	0.040	0.060	0.080	0.044	0.020	0.012	0.280		
3	0	0.008	0.012	0.020	0.020	0.012	0.008	0.004	0.084		
$f_X(x)$	0.092	0.140	0.164	0.208	0.208	0.120	0.048	0.020	1.000		

La media condicional de Y dado X = 4 es,

$$E(Y|X=4) = 0 \times 0.0385 + 1 \times 0.5769 + 2 \times 0.2885 + 3 \times 0.0962 = 1.442$$

Similarmente, podemos calcular $\mathrm{E}(Y|X=x)$ para los ocho valores de x; estos son,

\overline{x}	1	2	3	4	5	6	7	8
E(Y X=x)	0.609	1.057	1.317	1.442	1.538	1.533	1.75	2

La variable aleatoria h(X) que toma el valor 0.609 cuando el hogar muestreado tiene un miembro, toma el valor 1.057 cuando el hogar muestreado tiene dos miembros, y así sucesivamente, es $h(X) = \mathrm{E}(Y|X)$, es decir, la esperanza condicional de Y dado la variable aleatoria X.

Además de la propiedad importante de que $\mathsf{E}\{\mathsf{E}(Y|X)\}=\mathsf{E}(Y)$ (ver Teorema 1.2), la esperanza condicional posee (condicionalmente) todas las propiedades de la esperanza ordinaria, ya que es la media de la distribución condicional. A cotinuación se enuncian sólo algunas de estas propiedades.

- 1) E(aY + b|X = x) = aE(Y|X = x) + b
- 2) $\mathsf{E}\{g(X,Y)|X=x\}=\mathsf{E}\{g(x,Y)|X=x\}$ (principio de sustitución para la esperanza condicional); en particular, $\mathsf{E}(XY|X=x)=x\mathsf{E}(Y|X)$. Además, $\mathsf{E}\{g(X)h(Y)\}=\mathsf{E}[g(X)\mathsf{E}\{h(Y)|X\}]$; por ejemplo, $\mathsf{E}(XY)=\mathsf{E}\{X\mathsf{E}(Y|X)\}$.
- 3) Si X e Y son independientes, entonces la distribución condicional de Y dado X=x coincide con la distribución marginal de Y para todo x, es decir, $P(Y \in B|X=x) = P(Y \in B)$ para todo x y todo B, luego $\mathsf{E}(Y|X=x) = \mathsf{E}(Y)$; del mismo modo se tiene que $\mathsf{E}(X|Y=y) = \mathsf{E}(X)$.

Varianza condicional

Tal como la media condicional, la varianza condicional es simplemente la varianza de la distribución condicional como se define a continuación; por ende también satisface todas las propiedades de la varianza ordinaria.

Definición 1.3

La varianza condicional de Y dado X = x, se define como

$$Var(Y|X = x) = E\{(Y - E(Y|X = x))^{2}|x\}$$

$$= \begin{cases} \sum_{y \in \mathbb{R}} (y - E(Y|X = x))^{2} f_{Y|X = x}(y) & \text{c.d.} \\ \int_{-\infty}^{\infty} (y - E(Y|X = x))^{2} f_{Y|X = x}(y) dy & \text{c.c.} \end{cases}$$

provisto que la esperanza exista.

Tarea: Pruebe que la varianza condicional de Y dado X=x, también puede calcularse como ${\sf Var}(Y|X=x)={\sf E}(Y^2|X=x)-\{{\sf E}(Y|X=x)\}^2.$

Ejemplos

Ejemplo 1.7

1) Si $Y|X=x\sim Bin(n,p)$, entonces, $\mathrm{E}(Y|X=x)=xp$, de modo que $\mathrm{E}(Y|X)=Xp$; luego,

$$Var(Y|X = x) = \sum_{x=0}^{x} (y - xp)^{2} {x \choose y} p^{y} (1 - p)^{x-y} = xp(1 - p).$$

2) Si $Y|X=x\sim U(0,1-x),$ entonces, $\mathrm{E}(Y|X=x)=(1-x)/2;$ luego,

$$Var(Y|X=x) = \int_{y=0}^{1-x} \left(y - \frac{1-x}{2}\right)^2 \frac{1}{1-x} dy = \frac{(1-x)^2}{12}.$$

Propiedad importante

De los ejemplos anteriores se desprende que ${\sf Var}(Y|X=x)=v(x)$ (función no aleatoria), mientras que ${\sf Var}(Y|X)=v(X)$ (función aleatoria)

Teorema 1.3

Ley de probabilidad total para varianzas Sean X e Y variables aleatorias definidas en un mismo espacio de probabilidad. Si $E(Y^2)$ es finita, entonces,

$$Var(Y) = Var\{E(Y|X)\} + E\{Var(Y|X)\}.$$

Demostración 1.1

Se deja como ejercicio para el lector.

Ejemplos

Ejemplo 1.8

Si
$$Y|X=x\sim Bin(n,p),$$
 entonces, $\mathrm{E}(Y|X=x)=xp$ y $\mathrm{Var}(Y|X=x)=xp(1-p);$ luego,

$$Var(Y) = Var\{Xp\} + E\{Xp(1-p)\}$$
$$= p^2 Var(Xp) + p(1-p)E(X)$$

Si
$$X \sim P(\lambda)$$
 entonces $\text{Var}(X) = \text{E}(X) = \lambda$, de modo que $\text{Var}(Y) = \text{E}(Y) = \lambda p$.

Tarea: Pruebe que si $Y|X=x\sim Bin(n,p)$ y $X\sim P(\lambda)$, entonces $Y\sim P(\lambda p)$.

Ejemplo 1.9

Si
$$Y|X = x \sim U(0, 1 - x)$$
, entonces, $E(Y|X = x) = (1 - x)/2$ y $Var(Y|X = x) = (1 - x)^2/12$; luego,

$$Var(Y) = Var\left(\frac{1-X}{2}\right) + E\left\{\frac{(1-X)^2}{12}\right\}$$
$$= \frac{1}{4}Var(X) + \frac{1}{2}E\{(1-X)^2\}.$$

Tarea: Termine el ejemplo para $X \sim f_X(x) = 2(1-x)I_{(0,1)}(x)$.

Variables aleatorias independientes

Ejemplo 1.10

Sea N el número de personas por día que entra a un supermercado.

Sean X_1, \ldots, X_N las cantidades gastadas por cada una de las N personas que ingreso al supermercado durante un determinado día. Suponga que N y X_1, \ldots, X_N son variables aleatorias independientes.

Encuentre la media y la varianza del ingreso total del supermercado durante un día.

Sea $Y = \sum_{i=1}^{N} X_i$ el ingreso diario total del supermercado, donde es N una variable aleatoria con valores en los enteros positivos, mientras que los X_i son variables aletorias continuas con valores positivos. Asuma también que el gasto de cada persona que entra al supermacado durante un día tiene la misma distribución.

- i) Esperanza de Y. Se tiene que E(Y) = E(E(Y|N)), donde $E(Y|N=n) = E(\sum_{i=1}^{N} X_i | N=n) = E(\sum_{i=1}^{n} X_i) = nE(X_1)$; luego,
- E(Y) = E(E(Y|N))= $E(NE(X_1)) = E(N)E(X_1).$
- ii) Varianza de Y. Sabemos que $\begin{aligned} \operatorname{Var}(Y) &= \operatorname{E}[\operatorname{Var}(Y|N)] + \operatorname{Var}[\operatorname{E}(Y|N)]. \text{ Ahora} \\ \operatorname{Var}(Y|N=n) &= \sum_{i=1}^n \operatorname{Var}(X_i) = n \operatorname{Var}(X_1); \text{ luego,} \end{aligned}$

$$Var(Y) = E\{Var(Y|N)\} + Var\{E(Y|N)\}$$

= E(N)Var(X₁) + Var{NE(X₁)}
= E(N)Var(X₁) + Var(N){E(X₁)}².

Tarea: Concluya el ejemplo asumiendo que $N \sim P(\lambda)$ y $X_1 \sim U(0, \theta)$.

Predicción

Considere dos variables aleatorias X e Y con fdp (o fmp) conjunta $f_{X,Y}(x,y)$.

Suponga que después de que se haya observado el valor de X, se debe predecir el valor de Y.

En otras palabras, el valor predicho de ${\cal Y}$ puede depender del valor de ${\cal X}.$

Suponga que este valor predicho h(X) debe elegirse de modo que minimice el error cuadrático medio $\mathsf{E}\{(Y-h(X))^2\}$.

Teorema 1.4

El predictor h(X) que minimiza $\mathrm{E}\{(Y-h(X))^2\}$ es $h(X)=\mathrm{E}(Y|X).$

Tarea: Obtenga $h(x) = \mathsf{E}(Y|X=x)$ cuando (X,Y) tiene distribucion normal bivariada $NB(\mu_X,\mu_Y,\sigma_X^2,\sigma_Y^2,\rho_{XY})$, con $|\rho_{XY}|<1$.