Latent Dirichlet Allocation

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- 1. Bag-of-words for Text Classification
 - 1. Bernoulli Naiive Bayes
 - 2. Multinoulli Naïve Bayes
- 2. Latent Dirichlet Allocation

Bag-of-words Text Classification

- Document doc to be put into a category
 - Assume doc belongs to a single category
 - E.g., sports, economics
- Bag-of-words model
- Distribution of bag in different categories
- Naiive Bayes model
 - There still are design choices affecting performance

Naiive Bayes Model

$$P(C, X_1, ... X_n) = P(C) \prod_{i=1}^{n} P(X_i \mid C)$$

$$P(C \mid X_{1},...,X_{n}) = \frac{P(C,X_{1},...,X_{n})}{\sum_{c} P(C,X_{1},...,X_{n})}$$

Encoded using a very small number of parameters

Linear in the number of variables

Random Variable Selection

- Remove extraneous characters
 - Such as punctuation marks
- Remove stop words (which are content free)
 - the, and, ...
- Map words to canonical words
 - In pre-defined dictionary ${\mathcal D}$
 - \bullet apples \rightarrow apple
 - used \rightarrow use
 - running \rightarrow run

Two approaches to define features

1. Bernoulli Naiive Bayes model

- Binary attribute (Feature) X_i indicates whether $w_i \in \mathcal{D}$ appears in doc
 - Not how many times it appears in doc

```
n = No. of words in \mathcal{D}; Val(X_i) \mathbf{\epsilon}\{0,1\}
```

2. Multinomial Naiive Bayes model

- Attributes describe specific sequence of words
 - Attribute X_i indicates which \mathcal{D} -word appears in i^{th} pos
 - Thus each X_i takes one of many values, one for each possible word

n =No. of positions in doc, $Val(X_i) \in \mathcal{D}$

Class

Parameters for Two approaches

- Bernoulli Naiive Bayes: X_i is binary
 - Learn frequency over a document of
 each dictionary word over each category C

- We learn a parameter for each (dictionary word, category)
- Multinomial Naiive Bayes: X_i is multi-valued
 - Simplifying assumption: word in position i does not depend on i i.e., $P(X_i=w)$ given the topic is same as $P(X_j=w)$
 - We use parameter sharing between $P(X_i|C)$ and $p(X_j|C)$
 - We need probability of ball appearing in sports
 - No. of parameters is again one for each (dictionary word, category)

Differences between two models

- Distributions are different
 - Two models give rise to different distributions
 - If word w appears in in several positions in doc
 - Bernoulli ignores no. of occcurences
 - Multinomial multiplies P(w|C) several times
 - If P(w|C) is small in one category, probability of the document given the category will decrease
- Role of document length
 - Bernoulli: each document has same no of variables
 - Multinomial: documents of different lengths have different no of random variables
- Plate model makes subtle differences explicit_s

Objects for Plate Models

- Both models have two different kinds of objects: documents and individual words in documents
- Document objects d are associated with attribute T representing the document topic
- However the notion of "word objects" is different in the different models

Bernoulli Naiive Bayes Model

Words correspond to words in a dictionary

- E,g., cat, computer, etc

• Binary attribute A(d,w) for each document d, dictionary word w

- Takes value true if word w appears in document d

- Can model this using pair of intersecting plates
 - One for documents and the other for dictionary words

Multinomial Naiive Bayes Model

- Word objects correspond not to dictionary words but to word positions P within the document
- Thus we have an attribute W of records representing pairs (D,P) where D is a document and P is a position within it
 - Attribute takes values in space of dictionary word p in document d
 - However all generated from same multinomial which depends on topic

Two different Plate Models for Text

Both associate document *d* with Topic *T*

Multinomial Naïve Bayes

Appear(d, w) for document d and word w takes value l if w appears in d

Bernoulli parameter $\beta_{w}[w]$ is different for different words

W(d,p) for document d and position p takes value of dictionary word

Parameter β_{W} is the same for all positions

Parameter Estimation for Text

- In both models
 - Parameter estimated from data
 - Model used for classifying new documents
- Parameters measure prob. of word given topic
 - E.g., "bank" given "economics"
 - Bayesian parameter estimation avoids over-fitting
 - Especially ascribing zero to words not in training set
- With Bayesian estimation
 - can learn naïve Bayes using small corpus
 - Principal advantage of Naïve Bayes
 - More realistic language models are harder

Richer representations

- Can capture finer-grained structure in distribution
 - LDA extends multinomial naiive Bayes model
- As with multinomial naiive Bayes we have a set of topics associated with a set of multinomial distributions $\theta_{\it W}$ over words
 - We do not assume that the entire document is about a single topic
 - Rather a continuous mixture of topics defined using $\theta(d)$

Latent Dirichlet Allocation

- Extends the multinomial naïve Bayes model
- Set of topics associated with set of multinomial distributions $\theta_{\it W}$ over words

Document d is associated with a continuous mixture of topics defined using parameters θ (d)

Parameters selected independently from each document d, from a Dirichlet distribution parameterized for a set of hyper-parameters α

Word in position p of document d is selected by first selecting topic Topic(d,p)=t from mixture θ (d) and then selecting specific dictionary word from Multinomial β , associated with topic t

Summary of plate models for text

Summary of BN Parameter Estimation

- Examined parameter estimation for Bayesian networks
 - When data are complete
- Discussed two approaches
 - MLE and Bayesian