Mecânica dos Sólidos

Mecânica dos Sólidos

Cargas combinadas

Corpo cilíndrico

1 - direção circunferencial

- 1 direção circunferencial
- 2 direção longitudinal

$$\Sigma F_x = 0 \Rightarrow 2 \left[\sigma_1 \left(t \cdot dy\right)\right] - p \left(2r \cdot dy\right) = 0$$

$$\Sigma F_x = 0 \Rightarrow 2 [\sigma_1 (t.dy)] - p (2r.dy) = 0$$

$$\sigma_1 = (p.r/t)$$

$$\Sigma F_x = 0 \Rightarrow 2 [\sigma_1 (t.dy)] - p (2r.dy) = 0$$

$$\sigma_1 = (p.r/t)$$

$$\Sigma F_y = 0 \Rightarrow \sigma_2 (2\pi r \cdot t) - p (\pi r^2) = 0$$

$$\Sigma F_y = 0 \Rightarrow \sigma_2 (2\pi r \cdot t) - p (\pi r^2) = 0$$

$$\sigma_2 = (p.r/2t)$$

$$\Sigma F_y = 0 \Rightarrow \sigma_2 (2\pi r \cdot t) - p (\pi r^2) = 0$$

$$\sigma_2 = (p.r/2t)$$

Fechamento

$$\Sigma F_y = 0 \Rightarrow \sigma_2 (2\pi r \cdot t) - p (\pi r^2) = 0$$

$$\sigma_2 = (p.r/2t)$$

Estado de tensão causado por cargas combinadas

Estado de tensão causado por cargas combinadas

Estado de tensão causado por cargas combinadas

Estado de tensão causado por cargas combinadas

Na dir. 1

Estado de tensão causado por cargas combinadas

Na dir. 1

Estado de tensão causado por cargas combinadas

Na dir. 1 e na dir. 2

Estado de tensão causado por cargas combinadas

Estado de tensão causado por cargas combinadas

Estado de tensão causado por cargas combinadas

Determinar o estado de tensões nos pontos B e C da barra da figura.

$$\sigma = P/A$$

$$\sigma = P/A = -670/(0,10 \times 0,25)$$

$$\sigma = P/A = -670/(0,10 \times 0,25)$$

$$\sigma = -26.800 \text{ N/m}^2$$

$$\sigma_{\text{max}} = \pm \text{Mc/I}$$

b) Tensão causada pelo momento fletor

$$\sigma_{\text{max}} = \pm \text{Mc/I}$$

 $\sigma_{\text{max}} = \pm 100 \text{ / }$ $\sigma_{\text{max}} = \pm 670 \text{ x } (0.25/2) \text{ x } (0.25/2) \text{ / } [(0.10 \text{ x } 0.25/3) \text{ / } 12]$

b) Tensão causada pelo momento fletor

```
\sigma_{\text{max}} = \pm \text{Mc/I}
```

 $\sigma_{\text{max}} = \pm 10.07$ 250 $\sigma_{\text{max}} = \pm 670 \text{ x } (0.25/2) \text{ x } (0.25/2) / [(0.10 \text{ x } 0.25^3) / 12]$

 $\sigma_{\text{max}} = \pm 80.400 \, \text{N/m}^2$

$$\sigma_B = \sigma + \sigma_{max}$$

$$\sigma_B = \sigma + \sigma_{max}$$

$$\sigma_{\rm C} = \sigma - \sigma_{\rm max}$$

$$\sigma_B = \sigma + \sigma_{max}$$

$$\sigma_{\rm C} = \sigma - \sigma_{\rm max}$$

$$\sigma_B = \sigma + \sigma_{max} = -26.800 + 80.400$$

$$\sigma_{\rm C} = \sigma - \sigma_{\rm max}$$

$$\sigma_B = \sigma + \sigma_{max} = -26.800 + 80.400$$

$$\sigma_C = \sigma - \sigma_{max} = -26.800 - 80.400$$

$$\sigma_{B} = \sigma + \sigma_{max} = 53.600 \text{ N/m}^{2}$$
 $\sigma_{C} = \sigma - \sigma_{max} = -107.200 \text{ N/m}^{2}$

$$\sigma_B = \sigma + \sigma_{max} = 53.600 \text{ N/m}^2$$

$$\sigma_{\rm C} = \sigma - \sigma_{\rm max} = -107.200 \, \text{N/m}^2$$

$$\sigma_B = \sigma + \sigma_{max} = 53.600 \text{ N/m}^2$$

$$\sigma_{\rm C} = \sigma - \sigma_{\rm max} = -107.200 \, \text{N/m}^2$$

Determinar o estado de tensões nos pontos B, C e O da barra da figura.

a) Tensão cisalhante causada pela força transversal

a) Tensão cisalhante causada pela força transversal

$$\tau = V/A = 30 \times 10^3 / (\pi \times 0.05^2/4)$$

a) Tensão cisalhante causada pela força transversal

$$\tau = V/A = 30 \times 10^3 / (\pi \times 0.05^2/4)$$

$$\tau = 15,28 \text{ MPa}$$

$$\sigma_{\text{max}} = \pm M_x r / I_{xx}$$

$$\sigma_{\text{max}} = \pm M_x r / I_{xx}$$

$$\sigma_{\text{max}} = \pm 30.10^3.(0,06).(0,025)/(\pi.0,05^4/32)$$

$$\sigma_{\text{max}} = \pm M_x r / I_{xx}$$

$$\sigma_{\text{max}} = \pm 30.10^3.(0,06).(0,025)/(\pi.0,05^4/64)$$

$$\sigma_{\text{max}} = \pm 146,7 \text{ MPa}$$

$$\tau_{\text{max}} = T.r/J_{zz}$$

c) Tensão normal causada pelo momento torsor

$$\tau_{\text{max}} = T.r/J_{zz}$$

$$\tau_{\text{max}} = 1,5.10^3.(0,025)/(\pi.0,05^4/32)$$

c) Tensão normal causada pelo momento torsor

```
\tau_{\text{max}} = Tr/J_{zz}
\tau_{\text{max}} = 1,5.10^3.(0,025)/(\pi.0,05^4/32)
```

 $\tau_{\text{max}} = 61,12 \text{ MPa}$

$$d.1)\tau = V/A$$

d.2)
$$\sigma_{\text{max}} = \pm M_x \cdot r / I_{xx}$$

$$d.1)\tau = V/A$$

d.2)
$$\sigma_{\text{max}} = \pm M_x \cdot r / I_{xx}$$

d.3)
$$\tau_{\text{max}} = T \cdot r / J$$

$$d.1)\tau = V/A$$

d.2)
$$\sigma_{\text{max}} = \pm M_x \cdot r / I_{xx}$$

d.3)
$$\tau_{max} = T.r/J$$

$$d.1)\tau = V/A$$

d.2)
$$\sigma_{\text{max}} = \pm M_x \cdot r / I_{xx}$$

d.3)
$$\tau_{max} = T.r/J$$

$$d.1)\tau = V/A$$

d.2)
$$\sigma_{\text{max}} = \pm M_x \cdot r / I_{xx}$$

d.3)
$$\tau_{max} = T.r/J$$

d.1)
$$\tau = V/A$$

d.2)
$$\sigma_{\text{max}} = \pm M_x \cdot r / I_{xx}$$

d.1)
$$\tau = V/A$$

d.2)
$$\sigma_{\text{max}} = \pm M_x \cdot r / I_{xx}$$

d.1)
$$\tau = V/A$$

d.2)
$$\sigma_{\text{max}} = \pm M_x \cdot r / I_{xx}$$

d.1)
$$\tau = V/A$$

d.2)
$$\sigma_{\text{max}} = \pm M_x \cdot r / I_{xx}$$

d.3)
$$\tau_{max} = T.r/J$$

d.1)
$$\tau = V/A$$

d.2)
$$\sigma_{\text{max}} = \pm M_x \cdot r / I_{xx}$$

d.3)
$$\tau_{max} = T.r/J$$

$$d.1)\tau = V/A$$

d.2)
$$\sigma_{\text{max}} = \pm M_x \cdot r / I_{xx}$$

d.3)
$$\tau_{max} = T.r/J$$

$$d.1)\tau = V/A$$

d.2)
$$\sigma_{\text{max}} = \pm M_x \cdot r / I_{xx}$$

d.3)
$$\tau_{max} = T.r/J$$

