II. kolo kategorie Z8

Z8-II-1

Andělka, Barča, Honzík, Vláďa a Matyáš se zúčastnili soutěže v hodu vlaštovkou. Každý házel jednou a součet délek jejich hodů byl 41 metrů. Matyáš hodil nejméně, což bylo o 90 cm méně než hodila Andělka, a ta hodila o 60 cm méně než Vláďa. Honzík hodil nejdál a trefil se vlaštovkou do pásky označující celé metry. Pokud by soutěžili pouze Matyáš, Vláďa a Andělka, průměrná délka hodu by byla o 20 cm kratší.

Určete délky hodů všech jmenovaných dětí.

(L. Dedková)

Možné řešení. Označíme si délky hodů v metrech počátečními písmeny soutěžících. (Všechny následující výsledky jsou také v metrech a tuto jednotku ve výpočtech neuvádíme.) Součet délek všech jejich hodů byl 41 metrů,

$$a + b + h + v + m = 41, (1)$$

a průměrná délka jejich hodů byla:

$$\frac{a+b+h+v+m}{5} = 8,2.$$

Pokud by soutěžili pouze Matyáš, Vláďa a Andělka, průměrná délka hodu by byla o 20 cm kratší, tzn. přesně 8 m:

$$\frac{a+v+m}{3} = 8.$$

Po úpravě dostáváme:

$$a + v + m = 24. \tag{2}$$

Ze zadání víme, že Matyáš hodil nejméně, což bylo o 90 cm méně, než hodila Andělka, a ta hodila o 60 cm méně než Vláďa:

$$a = m + 0.9, \quad v = a + 0.6 = m + 1.5.$$
 (3)

Dosazením do rovnice (2) dostáváme:

$$m + 0.9 + m + 1.5 + m = 24,$$

 $m = 7.2.$

Dosazením do rovnic (3) dopočteme délky hodů Andělky a Vládi:

$$a = 7.2 + 0.9 = 8.1, \quad v = 7.2 + 1.5 = 8.7.$$

Podle rovnice (2) nahradíme v rovnici (1) součet a+v+m číslem 24, upravíme a získáme rovnici:

$$b + h = 17.$$

Ze zadání dále víme, že Honzík hodil nejdál a trefil se vlaštovkou do pásky označující celé metry. Porovnáním se zatím nejdelším vypočteným hodem zjišťujeme, že Honzík hodil aspoň 9 metrů. Kdyby Honzík hodil právě 9 metrů, Barča by hodila 17-9=8 metrů. Kdyby Honzík hodil 10 metrů (nebo více), hodila by Barča 7 metrů (nebo méně). To však není možné, protože nejméně ze všech hodil Matyáš. Úloha má tedy jednoznačné řešení, a to

$$a = 8.1, \quad b = 8, \quad h = 9, \quad v = 8.7, \quad m = 7.2.$$

Hodnocení. 2 body za zjištění, že a+v+m=24; 2 body za vypočtení délek hodů Andělky, Vládi a Matyáše; 2 body za vypočtení délek hodů Barči a Honzy včetně zdůvodnění, že jde o jediné řešení.

Z8-II-2

Je dán čtyřúhelník ABCD, viz obrázek. Bod T_1 je těžištěm trojúhelníku BCD, bod T_2 je těžištěm trojúhelníku ABD a body T_1 a T_2 leží na úsečce AC. Délka úsečky T_1T_2 je $3\,\mathrm{cm}$ a bod D má od úsečky AC vzdálenost $3\,\mathrm{cm}$.

Určete obsah čtyřúhelníku ABCD.

(E. Patáková)

Možné řešení. Označme E průsečík úhlopříček čtyřúhelníku ABCD. Body T_1 a T_2 jsou těžišti trojúhelníků BCD a ABD, úsečky CE a AE jsou tedy těžnicemi v těchto trojúhelnících, a proto je bod E středem úsečky BD. Protože |DE| = |EB|, jsou si rovny obsahy trojúhelníků DEC a EBC a také obsahy trojúhelníků DEA a EBA. Odtud plyne, že trojúhelníky ACD a ACB mají stejný obsah. Ze zadání známe velikost výšky trojúhelníku ACD z vrcholu D, k vyjádření jeho obsahu potřebujeme určit délku úsečky AC.

Z vlastností těžišť víme, že

$$|CE| = 3 \cdot |T_1E|, \quad |AE| = 3 \cdot |T_2E|.$$

Velikost úsečky AC je

$$|AC| = |AE| + |EC| = 3 \cdot (|T_2E| + |ET_1|) = 3 \cdot |T_2T_1| = 3 \cdot 3 = 9 \text{ (cm)}.$$

Velikost výšky trojúhelníku ACD z vrcholu D je 3 cm, obsah trojúhelníku je tedy roven

$$S_{ACD} = \frac{9 \cdot 3}{2} = \frac{27}{2} \, (\text{cm}^2).$$

Obsah čtyřúhelníku ABCD je roven

$$S_{ABCD} = 2 \cdot S_{ACD} = 27 \,(\text{cm}^2).$$

Hodnocení. 3 body za určení délky úsečky AC; 2 body za zdůvodnění rovnosti obsahů trojúhelníků ACD a ACB; 1 bod za určení hledaného obsahu.

Z8-II-3

Ve městě rekordů a kuriozit postavili pyramidu z kostek. V horní vrstvě je jedna kostka a počty kostek v jednotlivých vrstvách se směrem dolů zvětšují vždy o dvě (několik horních vrstev stavby je znázorněno na obrázku).

První, tedy nejspodnější vrstva má černou barvu, druhá šedou, třetí bílou, čtvrtá opět černou, pátá šedou, šestá bílou a takto se barvy pravidelně střídají až k horní vrstvě.

Určete, kolik má pyramida vrstev, pokud víte, že černých kostek je použito o 55 více než bílých. (L. Šimůnek)

Možné řešení. V prvních třech vrstvách odpočítaných odspoda je počet černých kostek o 4 větší než počet bílých. Tvrzení platí i pro každou další trojici vrstev s černými kostkami vespod. V zadání není uvedeno,

- a) zda lze stavbu rozdělit beze zbytku na takové trojice,
- b) zda je nad horní trojicí ještě jedna vrstva, a sice černá,
- c) zda jsou nad horní trojicí ještě dvě vrstvy, černá a šedá.

V případě a) by rozdíl mezi počty černých a bílých kostek musel být násobkem čtyř, v případě b) by tento rozdíl musel být násobkem čtyř zvětšeným o jedna a v případě c) by musel být násobkem čtyř zvětšeným o tři.

Pokud zadaný rozdíl 55 vydělíme 4, dostaneme 13 a zbytek 3. Odtud vidíme, že z uvedených možností platí c). Pyramida má celkem $13 \cdot 3 + 2 = 41$ vrstev.

Jiné řešení. Řešení rozdělíme na tři části. V části a) budeme předpokládat, že vrchní vrstva je bílá, v části b), že vrchní vrstva je černá, a v části c), že vrchní vrstva je šedá. V každé části řešení budeme do tabulky postupně přidávat zvětšující se vrstvy. Zadání uvádí, že největší vrstva je černá, proto u každé černé vrstvy zaznamenáme rozdíl mezi

počty černých a bílých kostek v dosud zapsaných vrstvách. Tabulku přestaneme vypisovat, jakmile bude tento rozdíl roven 55 nebo bude větší.

a) Horní kostka bílá:

vrstva shora	1	2	3	4	5	6	 37	38	39	40	41	42
kostek ve vrstvě	1	3	5	7	9	11	 73	75	77	79	81	83
barva	b	š	č	b	š	č	 b	š	č	b	š	č
rozdíl			4			8			52			56

b) Horní kostka černá:

vrstva shora	1	2	3	4	5	6	7	 38	39	40	41	42	43
kostek ve vrstvě	1	3	5	7	9	11	13	 75	77	79	81	83	85
barva	č	b	š	č	b	š	č	 b	š	č	b	š	č
rozdíl	1			5			9			53			57

c) Horní kostka šedá:

vrstva shora	1	2	3	4	5	6	7	8	 36	37	38	39	40	41
kostek ve vrstvě	1	3	5	7	9	11	13	15	 71	73	75	77	79	81
barva	š	č	b	š	č	b	š	č	 b	š	č	b	š	č
rozdíl		3			7			11			51			55

K rozdílu 55 jsme došli pouze v tabulce c), podle které má stavba 41 vrstev.

Hodnocení. 2+2 body za vyloučení možností a) a b); 2 body za správný počet vrstev.