Project Overview

Project Overview: Human Activity Recognition using Sensor Data

1. Project Title

Al-Powered Physical Activity Monitoring with LSTM, GRU, and 3D CNN

2. Objective

The main objective of this project is to classify human physical activities (such as Walking, Sitting, Jogging, Upstairs, Downstairs) using time-series data collected from smartphone accelerometer and gyroscope sensors.

Applications:

- Fitness tracking
- Health monitoring
- Early detection of sedentary behavior risks
- Smart wearable applications
- 3. Datasets Used
- WISDM v1.1 Dataset (public dataset with sensor readings across multiple activities)
- 4. Methods and Models Implemented
- Data Preprocessing:
- Download and clean raw data
- Merge accelerometer and gyroscope data
- Handle missing values

Project Overview

- Normalize features (Min-Max Scaling)

- Create sliding windows for sequential input

- Encode labels

- Models Built:

- LSTM (Original, Reduced, Bidirectional) - GRU - 3D CNN - Model Improvements: - EarlyStopping and ReduceLROnPlateau callbacks - Balanced dataset - Hyperparameter tuning 5. Evaluation Metrics - Accuracy - Loss - Classification Report - Confusion Matrix - True vs Predicted Activity Distributions 6. Key Results - LSTM models captured sequential patterns effectively - GRU models performed well with lower complexity - 3D CNN showed moderate performance

Project Overview

- Bidirectional LSTM achieved the highest accuracy

7. Final Outcome

Built an AI system capable of recognizing physical activities accurately across various models, with documentation for future students.

8. Future Work

- Explore Transformer models for time series
- Apply self-supervised learning methods
- Deploy models to mobile and wearable devices