L'usage da la calculatrice et du mobile est interdit.

Durée: 1H30

N.B.

- 1- Les réponses doivent être justifiées.
- 2- Les réponses doivent être rédigées dans un seul cahier d'examen.
- 3- Il sera tenu compte de la présentation du cahier d'examen.
- 4- Le barême proposé est approximatif.

Exercice 1: (6 pts)

Soit $n \in \mathbb{N}^*$ et soit le \mathbb{R} - e.v. $M_n(\mathbb{R})$.

- **1-** On dit qu'une matrice $A \in M_n(\mathbb{R})$ est **orthogonale** si elle vérifie : $({}^tA) . A = I_n$. Soit $M \in M_n(\mathbb{R})$ une matrice orthogonale.
 - \mathbf{a} / Donner les valeurs possibles de $\det M$.
 - \mathbf{b} / En déduire que M est inversible puis donner son inverse.
- **2-** Soit $N \in M_n(\mathbb{R})$. Montrer que $({}^tN)$.N est une matrice symétrique et que son déterminant est positif ou nul.
 - **3-** Supposons que n est impair et soit $A \in M_n(\mathbb{R})$ telle que A est antisymétrique. Déterminer det A.

Exercice 2: (14 pts)

Soit la matrice:

$$A_{\alpha} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2 - \alpha & \alpha - 2 & \alpha \end{pmatrix} \in M_3(\mathbb{R}).$$

- 1- a/- Déterminer det A_{α} .
 - **b/-** Pour quelles valeurs de α la matrice A_{α} est-elle inversible?
- **2-** On pose $\alpha = 0$ et soit $f \in End(\mathbb{R}^3)$, $B = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $A_0 = M_B(f)$.
 - $\mathbf{a}/\mathbf{-}$ Déterminer l'endomorphisme f.
 - **b/-** Sans effectuer de calculs dire si rg(f) = 3. Justifier.
- **c/-** Soit $C = (v_1 = (1, 0, 1), v_2 = (1, 1, 0), v_3 = (-1, -1, 1))$ une base de \mathbb{R}^3 . Déterminer la matrice P de passage de B vers C.
 - **d/-** En déduire $A'_0 = M_C(f)$.
 - **e/-** En déduire A_0^n pour tout $n \in \mathbb{N}^*$.

Bon Courage