

컴퓨터 알고리즘

알고리즘 분석

2018. 3. 11. 천지영

알고리즘 분석

□ 분석 방법

- $lue{}$ Every-case time complexity: T(n)
 - Only depending on input size
 - Input values와는 무관하게 결과 값은 항상 일정
- Worst-case time complexity: W(n)
 - Depending on <u>input size</u> and <u>input values</u>
 - 기본 연산이 수행되는 횟수가 최대인 경우 선택
- $lue{}$ Average-case time complexity: A(n)
 - Depending on <u>input size</u> and <u>input values</u>
 - 기본 연산이 수행되는 기대치(평균)
 - Each input에 대해서 probability assignment 가능
 - 일반적으로 최악의 경우보다 계산이 복잡
- $lue{}$ Best-case time complexity: B(n)
 - Depending on <u>input size</u> and <u>input values</u>
 - 기본 연산이 수행되는 횟수가 최소인 경우 선택

Add Array Items

addition

$$-T(n) = n$$

```
number sum (int n, const number S[])
{
  index i;
  number result;

  result = 0;
  for (i = 1; i <= n; i++)
    result = result + S[i];
  return result;
}</pre>
```

Sequential Search

□ 비교연산

$$-W(n)=n$$

$$- B(n) = 1$$

$$- A(n) = \frac{n+1}{2}$$

차수 표기법

- Let T(n) of algorithm A = $0.01n^2$ and T(n) of algorithm B = 100n. Which one is better?
 - B is not always better than A
 - 예를 들어, n이 100 이하라면 알고리즘 A가 시간이 적게 걸리고, n이 10000 이상이라면 알고리즘 B가 시간이 적게 걸림
 - $-0.01n^2 > 100n \rightarrow n > 10,000$
- □ 어떤 알고리즘이 효율적인지 결정하기 위한 measure가 있어야 하지 않나?
 - \rightarrow 일반적으로, 입력 크기 n이 매우 커진다고 가정하고 비교함

n	$0.1n^2$	$0.1n^2 + n + 100$	
10	10	120	
20	40	160	
50	250	400	
100	1,000	1,200	
1,000	100,000	101,100	

→ 결국 이차항이 이 함수의 값을 지배함

□ 복잡도 부류

■ $\Theta(1)$ 상수 시간 (Constant time)

■ Θ(logn) 로그(대수) 시간 (Logarithmic time)

■ $\Theta(n)$ 선형 시간 (Linear time)

■ Θ(nlogn) 로그 선형 시간 (Log-linear time)

■ $\Theta(n^2)$ 제곱 시간 (Quadratic time)

■ Θ(n³) 세제곱 시간 (Cubic time)

□ Θ(2ⁿ) 지수 시간 (Exponential time)

Growth rates

□ 실행 시간

n	$f(n) = \lg n$	f(n) = n	$f(n) = n \lg n$	$f(n) = n^2$	$f(n) = n^3$	$f(n) = 2^n$
10	0.003 μs*	$0.01~\mu s$	$0.033~\mu s$	$0.10~\mu s$	$1.0~\mu s$	1 μs
20	$0.004~\mu s$	$0.02~\mu s$	$0.086~\mu s$	$0.40~\mu s$	$8.0~\mu s$	1 ms^{\dagger}
30	$0.005 \ \mu s$	$0.03~\mu s$	$0.147~\mu s$	$0.90~\mu s$	$27.0~\mu s$	1 s
40	$0.005 \ \mu s$	$0.04~\mu s$	$0.213~\mu s$	$1.60~\mu s$	$64.0~\mu s$	18.3 min
50	$0.006~\mu s$	$0.05~\mu s$	$0.282~\mu s$	$2.50~\mu s$	125.0 μs	13 days
10^{2}	$0.007 \ \mu s$	$0.10~\mu s$	$0.664~\mu s$	$10.00 \ \mu s$	$1.0 \mathrm{ms}$	$4 \times 10^{13} \text{ years}$
10^{3}	$0.010 \ \mu s$	$1.00~\mu s$	$9.966~\mu s$	$1.00~\mathrm{ms}$	1.0 s	
104	$0.013~\mu s$	$10.00~\mu s$	$130.000 \ \mu s$	100.00 ms	16.7 min	
10^{5}	$0.017~\mu s$	$0.10 \mathrm{ms}$	1.670 ms	$10.00 \ s$	11.6 days	
10 ⁶	$0.020~\mu s$	1.00 ms	19.930 ms	$16.70 \min$	31.7 years	
107	$0.023~\mu s$	0.01 s	2.660 s	1.16 days	31,709 years	
10 ⁸	$0.027~\mu s$	0.10 s	$2.660 \mathrm{\ s}$	$115.70 \; \mathrm{days}$	3.17×10^7 years	
10 ⁹	$0.030 \ \mu s$	1.00 s	29.900 s	31.70 years		

^{*1} $\mu s = 10^{-6}$ second.

 $^{^{\}dagger}1 \text{ ms} = 10^{-3} \text{ second.}$

차수 표기법: *0*(Big-Oh)-표기

□ O(Big-Oh)-표기

■ 정의: $n \ge n_0$ 인 모든 n에 대해서 $g(n) \le c \times f(n)$ 을 만족하는 상수 c와 n_0 가 존재하면, $g(n) \in O(f(n))$ 이다.

■ g(n)이 비록 cf(n)보다 위에서 시작하지만 어느 시점이 되면 cf(n)보다 밑으로 내려간다.

$$n^2 + 10n \le 2n^2, n \ge 10$$

 $n^2 + 10n \in O(n^2)$

차수 표기법: *0*(Big-Oh)-표기

\Box O(f(n))

- g(n)이 $O(n^2)$ 이고 g(n)이 어떤 알고리즘의 시간 복잡도이면 그 알고리즘의 실행시간은 이차함수와 같거나 좋다는 것을 의미한다.
- 점근적 증가율이 f(n)을 넘지 않는 모든 함수들의 집합, 함수의 점근적 상한
- $5n^2 + 4n = O(n^2)$, $7n = O(n^2)$, $2n\log n + 3n = O(n^2)$ - $g(n) \in O(f(n))$ 을 관행적으로 g(n) = O(f(n))이라고 쓴다.

ullet Describe T(n) as tight as possible

- □ $n\log n + 5n = O(n\log n)$ 인데 굳이 $O(n^2)$ 으로 쓸 필요 없음
- Tight하지 않은 만큼 정보의 손실이 발생 가능

차수 표기법: *0*(Big-Oh)-표기

- - Proof: $c = 6, n_0 = 1$ 로 잡으면, $n \ge n_0$ 에 대하여 $5n^2 \le 6n^2$ 이다. 즉 정의를 만족하는 c와 n_0 가 존재한다.
- □ $5n^2 + 3 = O(n^2)$ 임을 보여라.
 - Proof: $c = 6, n_0 = 2$ 로 잡으면, $n \ge n_0$ 에 대하여 $5n^2 + 3 \le 6n^2$ 이다. 즉 정의를 만족하는 c와 n_0 가 존재한다.
- \square $n^3 \in O(n^2)$?
 - **□** $n \ge n_0$ 인 모든 n에 대해서 $n^3 \le c \times n^2$ 이 성립하는 c와 n_0 값은 존재하지 않는다. 즉, 양변을 n^2 으로 나누면, $n \le c$ 가 되는데 c를 아무리 크게 잡더라도 그 보다 더 큰 n이 존재한다.
- ✓ O(f(n))은 최고차 항의 차수가 f(n)과 일치하거나 더 작은 함수들의 집합

차수 표기법: Ω (Big-Omega)-표기

- ロ Ω(Big-Omega)- 표기
 - 정의: $n \ge n_0$ 인 모든 n에 대해서 $g(n) \ge c \times f(n)$ 을 만족하는 상수 c와 n_0 가 존재하면, $g(n) \in \Omega(f(n))$ 이다.

g(n)이Ω(n²)이고g(n)이 어떤
 알고리즘의 시간복잡도이면
 그알고리즘의 실행시간은 이차함수와
 같거나 좋을 수 없다는 것을 의미한다.

차수 표기법: Ω (Big-Omega)-표기

- \square $\Omega(f(n))$
 - 적어도 f(n)의 비율로 증가하는 함수들의 집합
 - □ 함수의 점근적 하한
 - n^2 , $3n^2 50$, $5n^3 + 15$, $2n^2 \log n + 1$, $n^2 + \sqrt{n} = \Omega(n^2)$
- $□ 5n^2 = \Omega(n^2) 임을 보여라.$
 - Proof: $c = 4, n_0 = 1$ 로 잡으면, $n \ge n_0$ 에 대하여 $4n^2 \le 5n^2$ 이다. 즉 정의를 만족하는 c와 n_0 가 존재한다.
- - Proof: $c = 1, n_0 = 1$ 로 잡으면, $n \ge n_0$ 에 대하여 $n^2 \le 5n^2 + 3$ 이다. 즉 정의를 만족하는 c와 n_0 가 존재한다.
- $\checkmark \Omega(f(n))$ 은 최고차 항의 차수가 f(n)과 같거나 그보다 큰 함수들의 집합

차수 표기법: Ω (Big-Omega)-표기

\square $n \in \Omega(n^2)$?

■ Proof by contradiction: $n \in \Omega(n^2)$ 이라고 가정하면 $n \ge n_0$ 인 모든 n에 대해서, $n \ge c \times n^2$ 이 성립하는 실수 c와 n_0 가 존재한다. 위의 부등식의 양변을 cn으로 나누면 $\frac{1}{c} \ge n$ 가 된다. 그러나 이 부등식은 절대로 성립할 수 없다. 따라서 위의 가정은 모순이다.

차수 표기법: ⊕(Theta)-표기

\Box $\Theta(f(n))$

- 정의: $n \ge n_0$ 인 모든 n에 대해서 $c \times f(n) \le g(n) \le d \times f(n)$ 이 성립하는 실수 c와 d, 그리고 n_0 가 존재하면 $g(n) \in \Theta(f(n))$ 이다.
- 점근적 증가율이 f(n)과 일치하는 모든 함수들의 집합
- n^2 , $3n^2 50$, $7n^2 + 15$, $2n^2 + 3n\log n$, $n^2 + \sqrt{n} = \Theta(n^2)$

차수 표기법: ⊕(Theta)-표기

- - Proof: 앞의 예제들에서 $5n^2 = O(n^2)$ 와 $5n^2 = \Omega(n^2)$ 임을 각각 증명하였다. 그러므로 $5n^2 = \Theta(n^2)$ 이다.
- - Proof: 앞의 예제들에서 $5n^2 + 3 = O(n^2)$ 와 $5n^2 + 3 = \Omega(n^2)$ 임을 각각 증명하였다. 그러므로 $5n^2 + 3 = \Theta(n^2)$ 이다.
- $\checkmark \Theta(f(n))$ 은 최고차 항의 차수가 f(n)과 일치하는 함수들의 집합

로피탈의 법칙을 이용한 효율성 비교

□ 로피탈의 법칙 (L'Hôspital's Rule)

□ 로피탈의 법칙을 이용한 알고리즘의 효율성 비교

- 최악의 경우 시간 복잡도가 각각 $W_C(n)=\Theta(\sqrt{n})$, $W_D(n)=\Theta(\log_2 n)$ 인 알고리즘 C와 D의 효율성 비교
 - -n 값에 따른 \sqrt{n} 과 $\log_2 n$ 값의 변화

n	16	64	256	1,024	4,096	
\sqrt{n}	4	8	16	32	64	•••
$\log_2 n$	4	6	8	10	12	•••

$$-\lim_{n\to\infty}W_C(n)=\lim_{n\to\infty}W_D(n)=\infty$$

-
$$W'_{C}(n) = (\sqrt{n})' = \frac{1}{2}n^{\frac{1}{2}-1} = \frac{1}{2\sqrt{n}}$$

$$- W'_D(n) = (\log_2 n)' = \frac{1}{n \ln 2}$$

$$-\lim_{n\to\infty}\frac{W_C(n)}{W_D(n)}=\lim_{n\to\infty}\frac{\sqrt{n}}{\log_2 n}=\lim_{n\to\infty}\frac{n\ln 2}{2\sqrt{n}}=\lim_{n\to\infty}\frac{\sqrt{n}\ln 2}{2}=\infty$$

- 따라서 $\log_2 n$ 이 \sqrt{n} 보다 더 효율적이다.

Thank you!

