Dynamic Combinational Circuits

- Dynamic circuits
 - Charge sharing, charge redistribution
- Domino logic
- np-CMOS (zipper CMOS)

Dynamic Logic

- Dynamic gates use a clocked pMOS pullup
- Two modes: *precharge* and *evaluate*

The Foot

- What if pulldown network is ON during precharge?
- Use series evaluation transistor to prevent fight.

Dynamic Logic

2 phase operation:

• Precharge

• Evaluation

Logical Effort

Inverter

NAND2

NOR2

unfooted

Dynamic Logic

- N+2 transistors for N-input function
 - Better than 2N transistors for complementary static CMOS
 - Comparable to N+1 for ratio-ed logic
- No static power dissipation
 - Better than ratio-ed logic
- Careful design, clock signal Φ needed

Dynamic Logic: Principles

• Precharge

 $\Phi = 0$, *Out* is precharged to V_{DD} by M_p . M_e is turned off, no dc current flows (regardless of input values)

Evaluation

 $\Phi = 1$, M_e is turned on, M_p is turned off. Output is pulled down to zero depending on the values on the inputs. If not, precharged value remains on C_L .

Important: Once *Out* is discharged, it cannot be charged again! Gate input can make only one transition during evaluation

- Minimum clock frequency must be maintained
- Can M_e be eliminated?

Example

- Ratioless
- No Static Power Consumption
- Noise Margins small (NM_I)
- Requires Clock

Dynamic 4 Input NAND Gate

Cascading Dynamic Gates

Internal nodes can only make 0-1 transitions during evaluation period

Monotonicity

- Dynamic gates require monotonically rising inputs
 - during evaluation

$$-0 -> 0$$

$$-0 -> 1$$

$$-1 -> 1$$

- But not 1 -> 0

Monotonicity Woes

- But dynamic gates produce monotonically falling outputs during evaluation
- Illegal for one dynamic gate to drive another!

Reliability Problems — Charge Leakage

- (1) Leakage through reverse-biased diode of the diffusion area
- (2) Subthreshold current from drain to source

Minimum Clock Frequency: > 1 MHz

Leakage

- Dynamic node floats high during evaluation
 - Transistors are leaky $(I_{OFF} \neq 0)$
 - Dynamic value will leak away over time
 - Formerly miliseconds, now nanoseconds!
- Use keeper to hold dynamic node
 - Must be weak enough not to fight evaluation

Charge Sharing (redistribution)

- Assume: during precharge, A and B are 0, C_a is discharged
- During evaluation, B remains 0 and A rises to 1
- Charge stored on C_L is now redistributed over C_L and C_a

$$C_L V_{DD} = C_L V_{out}(t) + C_a V_X$$

$$\begin{aligned} V_{X} &= V_{DD} - V_{t}, \text{ therefore} \\ \delta V_{out}(t) &= V_{out}(t) - V_{DD} = -\frac{C_{a}}{C_{L}} (V_{DD} - V_{t}) \end{aligned}$$

Desirable to keep the voltage drop below threshold of pMOS transistor (why?) \Rightarrow C_a/C_L < 0.2

Charge Sharing

• Dynamic gates suffer from charge sharing

$$V_{x} = V_{Y} = \frac{C_{Y}}{C_{x} + C_{Y}} V_{DD}$$

Charge Redistribution - Solutions

(a) Static bleeder

(b) Precharge of internal nodes

James Morizio

17

Secondary Precharge

- Solution: add secondary precharge transistors
 - Typically need to precharge every other node
- Big load capacitance C_Y helps as well

Domino Gates

- Follow dynamic stage with inverting static gate
 - Dynamic / static pair is called domino gate

Produces monotonic outputs

Domino Logic - Characteristics

- Only non-inverting logic
- Very fast Only 1->0 transitions at input of inverter
- Precharging makes pull-up very fast
- Adding level restorer reduces leakage and charge redistribution problems
- Optimize inverter for fan-out

Domino Optimizations

- Each domino gate triggers next one, like a string of dominos toppling over
- Gates evaluate sequentially but precharge in parallel
- Thus evaluation is more critical than precharge
- HI-skewed static stages can perform logic

Dual-Rail Domino

- Domino only performs noninverting functions:
 - AND, OR but not NAND, NOR, or XOR
- Dual-rail domino solves this problem
 - Takes true and complementary inputs
 - Produces true and complementary outputs

sig_h	sig_l	Meaning
0	0	Precharged
0	1	' 0'
1	0	' 1'
1	1	invalid

Example: AND/NAND

- Given A_h, A_l, B_h, B_l
- Compute $Y_h = A * B, Y_l = (A * B)$
- Pulldown networks are conduction complements

Example: XOR/XNOR

• Sometimes possible to share transistors

Domino Summary

- Domino logic is attractive for high-speed circuits
 - -1.5 2x faster than static CMOS
 - But many challenges:
 - Monotonicity
 - Leakage
 - Charge sharing
 - Noise
- Widely used in high-performance microprocessors

np-CMOS (Zipper CMOS)

- Only 1-0 transitions allowed at inputs of PUN
- Used a lot in the Alpha design

np CMOS Adder

CMOS Circuit Styles - Summary

Style	Ratioed	Static Power	# transistors	Area (μm²)	Propagation Delay (nsec)
Complementary	No	No	8	533	0.61
Pseudo-NMOS	Yes	Yes	5	288	1.49
CPL	No	No	14	800	0.75
Dynamic (NP)	No	No	6	212	0.37

4-input NAND Gate