CHEM 191

Module 4

Structures and reactions of biological molecules

Lecture 1

Introduction to Biological Molecules and Functional Groups

Lecturers: Dr Andrea Vernall

Dr Eng Wui Tan

andrea.vernall@otago.ac.nz ewtan@chemistry.otago.ac.nz

1

Module 4 Lecture 1 Learning objectives

- Be able to distinguish and name functional groups covered in this lecture
- Describe and compare the properties of these functional groups (developed in more depth throughout the module)
 - know the oxidation products of different classes of alcohols.
 - understand the difference in reactivity of amines and amides.
- · Appreciate the importance of molecular shape for biological activity

Textbook 'Chemistry: The Central Science' **15**th **edition** *Referral to specific pages given throughout lecture slides*

What are 'biological molecules'?

- Chemical compounds found in living organisms
- Are 'organic', which in chemistry means containing carbon
- In addition to carbon, may contain hydrogen, oxygen, nitrogen, phosphorus, sulfur, and additional minor elements.

There are four major classes of biological molecules:

- Carbohydrates
- Nucleic acids
- Proteins
- Lipids

These often large molecules are necessary for life. Each is an important component of a cell and performs a wide array of functions.

3

Functional groups and shape of biological molecules

The chemistry of biological molecules is dominated by two key factors:

Functional group chemistry

- The properties and reactivity of a large biological molecule can be attributed to the chemistry of the functional group(s) it contains
- This lecture recaps/introduces the functional groups important in biological molecules

Molecular shape

- Is very important in terms of biological function and recognition
- Developed further throughout module 4

These factors are *linked* – **functional groups** can influence overall **shape** and **shape** can influence the reactivity of functional groups.

Δ

Functional groups and shape of biological molecules - example

Coenzyme A (CoA)

Coenzymes help enzymes catalyse reactions, for example the biosynthesis of fatty acids

5

Functional groups and shape of biological molecules - example

Coenzyme A (CoA)

Coenzymes help enzymes catalyse reactions, for example the biosynthesis of fatty acids

Alcohols

• R-OH, 'hydroxyl' where R = sp³ hybridised carbon

NOT an alcohol

• Low molecular weight alcohols are soluble in water due to hydrogen bonding

- Undergo nucleophilic substitution reactions (module 3)
- · Can be oxidised
- Form esters with carboxylic acids (lecture 5)

7

Oxidation of alcohols

3 classes of alcohols behave differently with oxidising agents.

- Primary (1°) oxidised to aldehydes then to carboxylic acids
- Secondary (2°) oxidised to ketones
- Tertiary alcohols (3°) not readily oxidised

Oxidation and reduction in living systems

- Living systems don't use laboratory chemicals to do oxidations
- Usually done using enzymes, e.g. ethanol is enzymatically oxidised to ethanal in the liver, the oxidant is a coenzyme called NAD⁺

The reaction is represented as:

NADH is also used as a coenzyme by other enzymes to achieve reverse process (i.e. reduction reactions)

9

Amines and amides

The distinction between amines and amides is important.

Amines are significantly basic and nucleophilic:

$$R-NH_2 + H_2O \implies R-NH_3 + HO$$
:

Amides are not appreciably basic or nucleophilic

- An amide has a C=O next to the nitrogen.
- The C=O bond is polar and withdraws the nitrogen lone pair of electrons away from the nitrogen, shown here in a resonance diagram +

$$\begin{array}{ccccc}
 & & & & \downarrow \\
 & & \downarrow$$

Amides can act as **electrophiles** and react with nucleophiles such as water under harsh conditions but are not very reactive and are quite resistant to hydrolysis

more details about this later in the module....

Vancomycin

- An antibiotic isolated from soil organism Streptomyces orientalis
- · Very effective against penicillin resistant bacteria

Contains both amides and amines.....

Has 9 nitrogen atoms.
Identify the two amine

groups

11

Vancomycin

- An antibiotic isolated from soil organism Streptomyces orientalis
- Very effective against penicillin resistant bacteria

• Contains both amides and amines.....

Red N are amines
Pink groups are amides

Can you also identify the alcohols?

Thiols and disulfides

- Important reaction in protein chemistry oxidation of a thiol leads to a disulfide
- Formation of disulfides can 'link' peptide chain together, "disulfide bridge", important for peptide/protein shape

This can be achieved with quite mild oxidants $-e.g. O_2$.

The reverse reaction can also be achieved using mild reducing agents

H₂N COOH Chain A

Disulfides in insulin

13

Phosphorus containing functional groups

 $\rm H_3PO_4$ forms a series of phosphate esters where the OH groups are successively replaced by OR groups from alcohols

Phosphoric acid, phosphate monoesters and phosphate diesters are **strong acids** and are generally **ionised at physiological pH**. Thus, they are usually represented in ionic form.

Example of a phosphate - DNA and RNA

Phosphate groups can:

- Help to solubilise compounds in water
- Are quite resistant to hydrolysis by water
 (-ve charge repels incoming nucleophiles)
- Backbone is connected by phosphodiesters

Figure 31.28
Page 1441

Figure 31.28
Page 1441

Figure 31.28
Page 1441

We will discuss DNA and RNA in lecture 9

15

Example of a diphosphate - NAD+

Phosphate units may combine, with the loss of water, to form di- or triphosphates NAD+ has a <u>diphosphate</u> unit:

Biological recognition

The interaction between small molecules and large biomolecules (e.g. enzymes) is important in living systems

Small molecules often fit into larger biomolecule 'pockets' like a 'hand in a glove'

Figure 31.26 Page 1433 The shape and chirality of small molecules and large biomolecules are governed by

 Functional groups, polar and non-polar interactions, H-bonds, avoidance of steric clashes, rigid/planar backbones and framework

17

* Homework *

Give structures for the products of the following reactions:

$$\begin{array}{ccc}
OH & \xrightarrow{K_2CrO_7} & ? \\
& & & \\
OH & \xrightarrow{K_2CrO_7} & ? \\
& & & \\
OH & \xrightarrow{K_2CrO_7} & ? \\
& & & \\
& & & \\
\end{array}$$

Nitrogen containing functional groups

Common in biological chemistry:

Functional group	General Structure	Example	In this module
amine	H H R" R'N' H R'N' R' R'N' R' 1° 2° 3°	H H_3C^N CH_2CH_3 a 2° amine	Lectures 6 – 8, amino acids, peptides
amide	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	H_3C C N H H H H H	Lectures 6 – 8, amino acids, peptides
imine	C=N ^R	H CH ₂ CH ₃ C=N H ₃ C	Lecture 2, vision
Aromatic amines	Many different types – ring sizes and nitrogen positions. E.g. the nucleobases purine and pyrimidine .		Lectures 8-9, DNA and RNA

19

Sulfur containing functional groups

Common in biological chemistry:

Functional group	General formula	Example		
Thiol	R-SH	H ₃ C-SH Methane thiol (very smelly)		
Sulfide	R-S-R'	H ₃ C-S-CH ₃ Dimethyl sulfide (smelly) Dead horse water lily		
Disulfide	R-S-S-R'	H ₃ C-S-S-CH ₃		

R = alkyl (hydrocarbon based group)

Oxygen containing functional groups

Functional Group	General formula	Example	Name	In this module
Alcohol	R-OH	CH₃OH	methanol	Common in biological molecules
Ether	R-0-R'	CH ₃ OCH ₂ CH ₃	methyl ethyl ether	Rare in biological molecules
Hemiacetal	R-O-C-OH	CH₃OCH₂OH		Lectures 3 and 4, carbohydrates
Acetal	R-O-C-OR	CH ₃ OCH ₂ OCH ₃		Lectures 3 and 4, carbohydrates
Aldehyde	O R-C-H	О Н ₃ С-С-Н	Ethanal (acetaldehyde)	Lectures 2 -4, addition reactions, incl. carbohydrate chemistry
Ketone	O R-C-R'	H ₃ C-C-CH ₃	Propan one (acetone)	Lectures 2-4, addition reactions, incl. carbohydrate chemistry
Carboxylic acid	O R-C-OH	О Н ₃ С-С-ОН	Ethanoic acid (acetic acid)	Lectures 5-7, substitution reactions of derivatives, lipids, amino acids
Ester	O R-C-OR'	H ₃ C-C-OCH ₂ CH ₃	Ethyl ethanoate	Lectures 5-7, lipids, amino acids

R = alkyl (hydrocarbon) group