

Lecture 4: Kirchhoff's Laws

ELEC1111 Electrical and Telecommunications Engineering

Never Stand Still

Faculty of Engineering

School of Electrical Engineering and Telecommunications

CONTENTS

- 1. Introduction
- 2. Nodes, Branches, and Loops
- 3. Kirchhoff's Current Law
- 4. Kirchhoff's Voltage Law
- 5. KVL & KCL Examples

1. Introduction

Why?

To determine voltages and currents at any point in the circuit.

How?

- To simplify the circuit as much as possible, e.g. series and parallel resistors, voltage division, sources in series & parallel, etc.
- Element laws, such as Ohm's law, relate terminal voltages and currents of individual elements.
- Circuit laws (Kirchhoff's laws) relate the voltages and currents shared at the interconnections of elements

2. Nodes, Branches, Loops, Meshes

- ✓ A branch represents a single element such as a voltage source or a resistor. Wire connectors are assumed to have zero resistance.
- ✓ A node is the point of connection between two or more branches.
- ✓ All leads attached to a node are considered as part of that node.
- ✓ In moving from one node to another, if no node was encountered more than once, then the set of node and elements that we passed through is defined as a path.
- ✓ A loop is any closed path in a circuit.
- ✓ A mesh is a loop that contains no other loop.

A circuit containing 3 nodes and 5 branches

2. Nodes, Branches, Loops, Meshes

Example

Original circuit

Equivalent circuit

Nodes =
Branches =
Meshes =

3. Kirchhoff's Current Law (KCL)

✓ KCL: The algebraic sum of currents into a node (or closed boundary) at any instant is zero. (That is, charge cannot accumulate at a node)

✓ **KCL** (restatement): At any node (junction) in an <u>electrical circuit</u>, the sum of <u>currents</u> flowing into that node is equal to the sum of currents flowing out of that node or equivalently

3. Kirchhoff's Current Law (KCL)

Example

We can consider the whole enclosed area as one "node".

- ✓ KVL: The algebraic sum of voltages around any closed path is zero.
- ✓ One method: Move around the closed path in a clockwise direction and write down the voltage of each element using the sign on the first (or second) terminal encountered.

- ✓ Total amount of energy gained per unit charge are equal to the amount of energy lost per unit charge (energy and charge are both conserved)
- ✓ Key first label all the voltages and currents on the diagram

The Single Loop Circuit

- ✓ Circuit: circuits elements connected in series to form a single loop.
- ✓ What:- determine the current, voltage (and power) associated with each element.
- √ Steps:-
 - 1. Assign current direction (e.g. clockwise)
 - Label all voltages (prefer passive convention)
 - 3. Apply KVL
 - 4. Apply Ohm's law to resistors
 - 5. Solve for current
 - 6. Solve for *v*, *p* for any element

Example

$$-V_a + V_1 + V_b + V_2 + V_3 = 0$$

 $V_1 = IR_1$; $V_2 = IR_2$; $V_3 = IR_3$
 $V_a - V_b = I(R_1 + R_2 + R_3)$

$$I = \frac{V_a - V_b}{R_1 + R_2 + R_3}$$

Voltage & Power?

Example 3

Example 3

Example 4: In the following circuit, find the value of I_1 , I_2 , V_a , V_b and validate the power conservation condition of the circuit.

Example 4: In the following circuits, find the resistance R_{AB} between A and B.

Example 4 (cont.): In the following circuits, find the resistance R_{AB} between A and B.

Example 5: In the following circuit, $V_1=10V$, $V_2=5V$, $R_1=2\Omega$, $R_2=R_3=5\Omega$, find currents I_1 , I_2 , I_3 and voltage V_a . Validate the power conservation condition.

Example 6: Find the current i_1 , i_2 , i_3 , i_4 in the following circuit

From "Fundamentals of Electric Circuits", Alexander and Sadiku, McGraw-Hill

Example 7: Calculate V_o and I_o in the below circuit

From "Fundamentals of Electric Circuits", Alexander and Sadiku, McGraw-Hill

Example 8: Calculate *i* and V_o in the below circuit

From "Fundamentals of Electric Circuits", Alexander and Sadiku, McGraw-Hill

Example 8: Find R_{eq} and i_o in the following circuit

From "Fundamentals of Electric Circuits", Alexander and Sadiku, McGraw-Hill

