Análisis Exploratorio de Datos

Camilo Esteban Núñez Fernández

INF396 - Introducción a la Ciencia de Datos Departamento de Informática

2025-03-14

Fast Intro

I.I > EDA: Exploratory Data Analysis

John Wilder Tukey

Boxplots, Fast Fourier
 Transform (FFT), Cooley–Tukey
 FFT algorithm ...

 Exploratory Data Analysis. 1977. Addison-Wesley

 Data Analysis and Regression: A Second Course in Statistics. 1977 (+ Frederick Mosteller). Addison-Wesley.

I.I \triangleright EDA: Exploratory Data Analysis

- El Análisis Exploratorio de Datos es un enfoque que emplea diversas técnicas para:
 - Maximizar la comprensión de un conjunto de datos
 - Extraer variables importantes
 - Detectar valores outliers y anomalías
 - Verificar supuestos subyacentes
 - Determinar configuraciones óptimas de factores para modelar los datos
- La mayoría de las técnicas aplicadas en EDA son gráficas, con ciertas técnicas cuantitativas.

I.I \triangleright EDA: Exploratory Data Analysis

¿En qué se diferencia de otros análisis estadísticos?

- Tres enfoques principales: (I) Clásico, (II) Bayesiano, (III)
 Exploratorio (EDA)
- Clásico: Asume un modelo a priori. Flujo:
 Problema → Datos → Modelo → Análisis → Conclusiones
- **Bayesiano**: Incorpora conocimiento experto (prior). Flujo: Problema \to Datos \to Modelo \to Prior \to Análisis \to Conclusiones
- Exploratorio (EDA): Análisis sin modelo previo para determinar el modelo adecuado. Flujo:
 - $\mathsf{Problema} \to \mathsf{Datos} \to \mathsf{Análisis} \to \mathsf{Modelo} \to \mathsf{Conclusiones}$

Por donde comenzar?

$I.II \triangleright Por donde comenzar?$

Formula tus preguntas o requisitos!

- Útil para guiar el proceso exploratorio.
- Útil para reducir el espacio de búsqueda.
- Acota tus caminos de exploración.

Preguntas sencillas y concisas pueden darte una rápida reducción en la dimensionalidad de los datos !

I.II ⊳ Formulación de preguntas

	country	year	sex	age	suicides_no	population	suicides_100k_pop	country_year	hdi_for_year	gdp_for_year	gdp_per_capita	generation
16488	Mauritius	2010	female	35-54 years	8	184083	4.35	Mauritius2010	0.756	10,003,670,690	8587	Generation X
18712	Paraguay	2000	female	15-24 years	23	521651	4.41	Paraguay2000	0.623	8,195,993,231	1782	Generation X
22671	Singapore	2007	female	35-54 years	46	608800	7.56	Singapore2007	NaN	179,981,288,567	53098	Boomers
24669	Sweden	2012	male	55-74 years	256	1074267	23.83	Sweden2012	0.904	543,880,647,757	60776	Boomers
21566	Saint Lucia	2009	female	35-54 years	0	23037	0.00	Saint Lucia2009	NaN	1,262,973,407	7902	Boomers
25106	Thailand	1998	female	55-74 years	142	3595775	3.95	Thailand1998	NaN	113,675,706,127	2005	Silent
22790	Slovakia	1993	female	55-74 years	36	491822	7.32	Slovakia1993	NaN	16,452,201,101	3334	Silent
716	Argentina	1995	female	15-24 years	101	3053300	3.31	Argentina1995	0.731	258,031,750,000	8232	Generation X
23069	Slovenia	1997	female	15-24 years	5	144100	3.47	Slovenia1997	NaN	20,749,140,606	11014	Generation X
10881	Guatemala	2000	male	5-14 years	5	1621778	0.31	Guatemala2000	0.552	19,288,827,159	1977	Millenials

- Iteración 0: ¿Es la tasa de suicidios mayor en América del Sur que en América del Norte?
- Iteración 1: ¿Es la tasa de suicidios por cada 100K hab. mayor en USA que en Chile para la década del 2000?

Estadística Descriptiva

II ⊳ Estadística Descriptiva

- Busca resumir y describir características importantes en los datos.
- Podemos encontrar dos representaciones clásicas:
 - Representaciones Numéricas: Medidas de tendencias y dispersión.
 - 2 Representaciones Gráficas: Histogramas, Scatter plots, Boxplots, etc.

Medidas de Tendencias

- Moda
- Media Muestral
- Mediana Muestral

Medidas de Dispersión

- Rango
- Indice de Variación
- Varianza Muestral
- Desviación Estándar Muestral
- **Five-Number Summary**: Clásico reporte cuantitativo que incluye, Q_1 (percentil 25), Q_2 (percentil 50, mediana), Q_3 (percentil 75), máximo, mínimo.

Nota sobre la Desviación Estándar (σ)

- σ mide la dispersión alrededor de la **media**(μ), por lo que solo debe usarse cuando la media sea la medida de tendencia central elegida.
- Si $\sigma = 0$ solo, entonces no hay dispersión (todas las observaciones tienen el mismo valor).
- Tanto la varianza como la desviación estándar tienen buena escalabilidad en bases de datos grandes.

Por estas propiedades, σ es un indicador confiable de la dispersión de un conjunto de datos. (Ej. clásico: Análisis de varianza (ANOVA))


```
1 import statsmodels.stats as ss
1 ss.descriptivestats.describe(pdf suicide rates,
                                     stats=["range", "coef var", "std", "mode", "mean", "median", "max", "min", "percentiles"]).T
                      range coef_var
                                                    mode mode_freq
                                                                                                                                                25%
                                                                                                                                                          50%
                                                                                                                                                                     75%
           year 3.100000e+01 0.004232 8.469055e+00
                                                                                  2002.000 2.016000e+03 1985.000
                                                                                                                                                                  2008.000
                                                                                                                                                                             2013.000 2.014000e+03 2.015000e+03
     suicides no 2,233800e+04 3,718644 9,020479e+02
                                                            0.153882 2.425744e+02
                                                                                    25.000 2.233800e+04
                                                                                                                                      0.000
                                                                                                                                                                   131.000
                                                                                                                                                                               496.000 1.050050e+03 3.993670e+03
     population 4.380494e+07 2.120443 3.911779e+06 24000.000
                                                            0.000719 1.844794e+06
                                                                                                                                                                1486143.250
suicides 100k pop 2.249700e+02 1.479507 1.896151e+01
                                                    0.000
                                                                                     5.990 2.249700e+02
                                                                                                                  0.00000
                                                                                                                            0.000
                                                                                                                                      0.000
                                                                                                                                               0.920
                                                                                                                                                          5.990
                                                                                                                                                                    16.620
                                                                                                                                                                               33.291 5.053050e+01 9.157100e+01
                                                            0.153882 1.281610e+01
     hdi for year 4.610000e-01 0.120225 9.336671e-02
                                                                                                                  0.56326
                                                                                                                                                                                0.897 9.120000e-01 9.323700e-01
  odp per capita 1,261010e+05 1,119830 1,888758e+04 1299,000
                                                            0.001294 1.686646e+04
                                                                                  9372.000 1.263520e+05 251.000
                                                                                                                476.00000
                                                                                                                          935.000
                                                                                                                                   1524.000
                                                                                                                                                       9372.000
                                                                                                                                                                 24874.000
                                                                                                                                                                            43487.000 5.429400e+04 8.963400e+04
1 "nobs", "missing", "mean", "std err", "ci", "ci", "std", "iqr",
2 "igr normal", "mad", "mad normal", "coef var", "range", "max",
3 "min", "skew", "kurtosis", "jarque bera", "mode", "freq",
4 "median", "percentiles", "distinct", "top", "freq"
```

1 from skimpy import skim

II.II ⊳ Estadística Descriptiva - Rep. Gráficas

¡Considera lo siguiente!

- Visualizar tus datos mediante gráficos puede facilitar la comprensión de sus propiedades, la detección de patrones y la identificación de estrategias de modelado adecuadas para responder a tus preguntas.
- Los gráficos también pueden servir como una herramienta de depuración (*debugging*) para validar tu análisis descriptivo.
- Es importante diferenciar un gráfico exploratorio de un gráfico final.
 Los gráficos exploratorios ayudan a inspeccionar los datos en las primeras etapas del análisis, mientras que los gráficos finales están diseñados para comunicar claramente los resultados.
- En un gráfico final, prioriza la claridad y la precisión en la comunicación de tus hallazgos.

II.II > Estadística Descriptiva - Visualización: Barplot

- Representa la frecuencia de las categorías en un conjunto de datos.
- Ideal para visualizar datos categóricos y comparar distribuciones.
- Se puede usar tanto para conteo directo como para representar valores agregados (por ejemplo, ventas promedio por categoría).
- La altura de cada barra refleja la cantidad o proporción de cada categoría.

II.II > Estadística Descriptiva - Visualización: Histograma

- Muestra la distribución empírica de todos los datos del conjunto.
- Nos ayuda a identificar:
 - Asimetrías estadísticas (skewness)
 - Simetrías
 - Multi-modalidad

II.II > Estadística Descriptiva - Visualización: Histograma

Asimetría a la Derecha

- Representa la tendencia central y la dispersión del conjunto de datos.
- Considera los cuartiles: Q_1 (percentil 25), Q_2 (percentil 50, mediana) y Q_3 (percentil 75), además de los valores máximo y mínimo.
- Permite identificar valores atípicos (outliers) que se encuentran más allá de la bulk data (zona central de los datos).

Statistical Computing and Graphic

Violin Plots: A Box Plot-Density Trace Synergism

Jerry L. Hintze & Ray D. Nelson
Pages 181-184 | Received 01 Feb 1997, Published online: 22 Mar 2012

 Combina un Boxplot con una traza de densidad (métodos de smoothed histogram como KDE).

- Boxplot:
- Traza de Densidad:

Ejemplo 1

Consideremos dos clusters con las siguiente distribución respectivamente: Cluster $1 \sim \mathcal{N}(\mu_1 = 30, \Sigma = 3)$ y Cluster $2 \sim \mathcal{N}(\mu_2 = 60, \Sigma = 3)$.

Ejemplo 1

Consideremos dos clusters con las siguiente distribución respectivamente: Cluster $1 \sim \mathcal{N}(\mu_1 = 30, \Sigma = 3)$ y Cluster $2 \sim \mathcal{N}(\mu_2 = 60, \Sigma = 3)$.

Ejemplo 1

Consideremos dos clusters con las siguiente distribución respectivamente: Cluster $1 \sim \mathcal{N}(\mu_1 = 30, \Sigma = 3)$ y Cluster $2 \sim \mathcal{N}(\mu_2 = 60, \Sigma = 3)$.

¿Qué diferencias hay con un Boxplot?

- Entrega un mejor entendimiento respecto a la forma de la distribución de los datos.
- Muestra la existencias de clústeres.
- Resalta los peaks, valles y bumps de la distribución.

Ejemplo 2

Consideremos los siguientes tres samples de 10.000 elementos cada uno:

- Sample $1 \sim \mathcal{N}(\mu = 30, \Sigma = 5) + \mathcal{N}(\mu = 60, \Sigma = 5)$
- Sample 2 $\sim \mathcal{N}(\mu = 50, \Sigma = 5)$
- Sample 3 $\sim \mathcal{U}(\min = 20, \max = 60)$

Comparación de distribuciones: Uniforme, Multimodal y Normal

Pre-Procesamiento de Datos

III ⊳ Calidad de los Datos

¿Por qué es importante la calidad de los datos?

- Buscamos que nuestros datos tengan las siguientes características:
 - Precisión (Accuracy)
 - Completitud (Completeness)
 - Consistencia (Consistency)
- Los pasos más comunes para el preprocesamiento son:
 - Data Cleaning: Manejo de valores faltantes, ruido y outliers
 - Data Integration: Combinación de múltiples fuentes

III.I ⊳ Data Cleaning

- La limpieza de los datos busca corregir datos faltantes, suavizar el ruido en los datos, o simplemente identificar o remover inconsistencias como los outliers.
- Consideremos los siguientes escenarios clásicos:
 - Noisy Data
 - Missing Values

III.I ▷ Data Cleaning - Noisy Data

- El ruido en los datos (noise) es un error aleatorio dentro de estos.
- Las Visualizaciones de estadística descriptiva suelen identificarlo, por ejemplo en los boxplot o violin plots.
- Para eliminarlo, debes 'suavizar' los datos (smoothing process).
- La técnica mas popular de suavizamiento es Binning:
 - Dividir los datos ordenados en 'bins' (o 'buckets')
 - Reemplazar los valores originales dentro de cada bin por un valor representativo
 - Los reemplazos pueden ser utilizando: media (smoothing by bin means), mediana (smoothing by bin medians), min-max ((smoothing by bin boundaries).

III.I ▷ Data Cleaning - Noisy Data

Ejemplo 3 - Binning

Consideremos la siguiente distribución de datos:

```
 \begin{array}{l} x \, = \, np.\,linspace \, (0\,,\ 10\,,\ 100) \\ y \, = \, np.\,sin \, (x) \, + \, np.\,random\,.\,normal \, (0\,,\ 0.3\,,\ 100) \\ \end{array}
```

III.I ▷ Data Cleaning - Noisy Data

Comparación de Técnicas de Binning para Datos Ruidosos

III.I ▷ Data Cleaning - Noisy Data

Comparación de Técnicas de Binning para Datos Ruidosos

Ejemplo 4 data = { 'Nombre': ['Ana', 'Carlos', 'Beatriz', 'David', 'Elena', None], 'Edad': [25, np.nan, 32, 28, None, 40], 'Puntuacion': [85, 92, None, 78, 88, np.nan], 'Departamento': ['Ventas', None, 'IT', 'IT', 'Ventas', 'HR'] }

- Los missing values suelen verse reflejada en aquellos valores None o np.nan que vemos en los datsets.
- Importante! No siempre los missing values implican un error
 → e.g. Preguntas opcionales en encuestas.

¿Que alternativas tenemos?

- Ignorar los registros con *missing values*. No es efectivo, a menos que el feature tengo demasiados missing values.
- Rellenar los valores faltantes de manera manual. Costoso en tiempo y recursos.
 - Usar una constante para identificar los missing values, como 'Missing', -1, 0, 'Unknown' → No siempre es 'foolproof'.
- Imputación de valores:
 - Usar una medida de tendencia central, como Mean Imputation o Median Imputation. Para datos distribuidos normalmente (simétricos), usar la media. Para datos asimétricos (skewed data), usar la mediana.
 - Usar los 'valores más probables'. Por medio de una regresión, o usando inferencia bayesiana.

Imputación de valores

- Problema: Inyección de sesgo estadístico en los datos (Data Bias).
- Alternativas actuales → k-Nearest Neighbors Imputation: los missing values son imputados por valores más cercanos de acuerdo a una métrica de similaridad respecto a patrones en el dataset.

Ejemplo 5 - sklearn.impute.SimpleImputer - Mean - Axis 0

```
Datos originales:
[[ 1. 2. nan]
[ 4. nan 6.]
[ 7. 8. 9.]
[nan 11. 12.]]

Datos imputados con la media:
[[ 1. 2. 9.]
[ 4. 7. 6.]
[ 7. 8. 9.]
[ 4. 11. 12.]]

Valores usados para la imputacion (medias):
[4. 7. 9.]
```

Ejemplo 6 - sklearn.impute.SimpleImputer - Median - Axis 0

```
Datos originales:
[[ 10. 20. nan]
[ 40. nan 60.]
[ 70. 80. 90.]
[ nan 110. 120.]]

Datos imputados con la mediana:
[[ 10. 20. 90.]
[ 40. 80. 60.]
[ 70. 80. 90.]
[ 40. 110. 120.]]

Valores usados para la imputacion (medianas):
[40. 80. 90.]
```

Ejemplo 7 - sklearn.impute.KNNImputer - k=2 - Axis 0

Datos originales con valores faltantes: nan 6. nan 8. 16. Datos despues de la imputacion KNN:

- 16.11

III.II ⊳ Data Integration

- Caso típico: fusión de múltiples fuentes de datos en un único conjunto.
- Problemas frecuentes en la integración:
 - Redundancia: Ocurre cuando un dato puede derivarse de otros atributos.
 - Inconsistencia: Puede surgir como consecuencia de redundancias en los datos.
- Detección de redundancias mediante análisis de correlación:
 - **Test de correlación** χ^2 : Para variables nominales/categóricas.
 - Coeficiente de correlación y covarianza: Para variables numéricas.

III.II \triangleright Data Integration - Test de correlación χ^2

- Supongamos que buscamos la correlación entre dos atributos A y B, nominales, de un dataset.
- A tiene c valores distintos $a_1, a_2, ..., a_c$, mientras que B tiene r valores distintos $b_1, b_2, ..., b_r$.
- Definimos la **tabla de contingencia** como la matriz de c columnas y r filas, tal que (A_i, B_j) denote **frecuencia observada combinada** de que el atributo a_i de A tome el valor de ocurrencia del atributo b_i de B.

Definición

Dada una tabla de contingencia con r filas y c columnas, el valor del test de correlación χ^2 es:

$$\chi^2 = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}$$

donde:

- o_{ij} = Valor observado en la celda (i,j), **frecuencia observada** del evento (A_i,B_j) .
- $e_{ij} = \frac{\text{Total fila } i \times \text{Total columna } j}{\text{Gran total}}$ y es la frecuencia esperada del evento (A_i, B_j) .
- Grados de libertad: (r-1)(c-1)

III.II \triangleright Data Integration - Test de correlación χ^2

El Test de correlación χ^2 tiene por hipótesis que A y B son **independientes**, osea que no están correlacionados entre ellos.

Ejemplo 8 - scipy.stats. chi2_contingency

```
        Pop Rock
        Clasica Jazz

        Secundaria
        45
        30
        25
        10

        Pregrado
        20
        40
        30
        20

        Maestria
        10
        15
        35
        40

        Doctorado
        5
        10
        20
        35
```

Tabla de Contingencia Observada (o_{ii}):

Resultados del Test:

Estadistico chi-square: 86.6467408190

Valor-p: 0.0000000000 Grados de libertad: 9

Tabla de Valores Esperados (e_{ij}):
Pop Rock Clasica Jazz

 Secundaria
 22.56
 26.79
 31.03
 29.62

 Pregrado
 22.56
 26.79
 31.03
 29.62

 Maestria
 20.51
 24.36
 28.21
 26.92

 Doctorado
 14.36
 17.05
 19.74
 18.85

Interpretacion:

Rechazamos HO (p=0.0000 < 0.05). Existe relacion significativa entre nivel educativo y preferencia musical.

III.II ▷ Data Integration - Covarianza

 Buscamos evaluar cómo varían conjuntamente dos atributos numéricos A y B respecto a sus medias.

Definición

Dadas dos variables numéricas A y B, con n observaciones cada una, la **covarianza** se define como:

$$Cov(A, B) = \frac{1}{n} \sum_{i=1}^{n} (A_i - \bar{A})(B_i - \bar{B})$$

- A_i y B_i : Valores individuales de las variables A y B.
- ullet $ar{A}$ y $ar{B}$: Medias muestrales de A y B, respectivamente.
- n: Número de observaciones.
- Covarianza > 0: Relación directa (ambas variables tienden a aumentar o disminuir juntas).
- Covarianza < 0: Relación inversa (una aumenta mientras la otra disminuye).
- Covarianza = 0: No hay relación lineal (puede haber independencia o una relación no lineal).

III.II ▷ Data Integration - Covarianza

Relación entre Horas de Estudio y Calificaciones

III.II > Data Integration - Coeficiente de Correlación

- Conocido como Pearson correlation coefficient o Pearson's product moment coefficient.
- Buscamos evaluar la correlación entres dos atributos numéricos A y B de un dataset.

Definición

El coeficiente de correlación r_{AB} se define como:

$$r_{AB} = \frac{\text{Cov}(A, B)}{\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (A_i - \bar{A})(B_i - \bar{B})}{\sqrt{\sum_{i=1}^{n} (A_i - \bar{A})^2} \sqrt{\sum_{i=1}^{n} (B_i - \bar{B})^2}}$$

donde:

- \bullet \bar{A} y \bar{B} son las medias muestrales
- Cov(A, B) es la covarianza entre A y B
- σ_A , σ_B son las desviaciones estándar

III.II > Data Integration - Coeficiente de Correlación

Propiedades

- $-1 < r_{AB} < 1$
- $r_{AB} = 1$: Correlación lineal positiva perfecta
- $r_{AB} = -1$: Correlación lineal negativa perfecta
- $r_{AB} = 0$: No hay correlación lineal

Ejemplo 9

```
x1 = np.linspace(0, 10, 50)

y1 = 2 * x1 + np.random.normal(0, 2, size=len(x1))

x2 = np.linspace(0, 10, 50)

y2 = np.random.normal(0, 5, size=len(x2))
```

III.II > Data Integration - Coeficiente de Correlación

El Coeficiente de Correlación tiene por hipótesis que A y B son independientes, osea que no están correlacionados entre ellos.1

Ejemplo de correlación de Pearson

- Fuerte correlación (r=0.95, p=0.000, Rechaza Ha)
- Sin correlación (r=-0.10, p=0.474. No se rechaza Ho)

¹Rechazamos con p - value < 0.05.