



# Skript Grundlagen der Analysis, Topologie, Geometrie

Mitschrift der Vorlesung "Grundlagen der Analysis, Topologie, Geometrie" von Prof. Dr. Arthur Bartels

Jannes Bantje

2. Juni 2014

Erstellt mit X<sub>3</sub>LET<sub>E</sub>X

## **Inhaltsverzeichnis**

| ı | Topo | ologische Räume                                                             | 1 |
|---|------|-----------------------------------------------------------------------------|---|
|   | 1.1  | Definition: Metrischer Raum                                                 | 1 |
|   | 1.2  | Definition: Norm auf einem $\mathbb{R}$ -Vektorraum                         | 1 |
|   | 1.3  | Beispiel: Normen auf $\mathbb{R}^n$                                         | 1 |
|   | 1.4  | Beispiele für Metriken                                                      | 1 |
|   | 1.5  | Definition: Isometrie und Stetigkeit                                        | 2 |
|   | 1.6  | Definition: offene Teilmenge                                                | 2 |
|   | 1.7  | Lemma: Charakterisierung von Stetigkeit über offene Mengen                  | 2 |
|   | 1.8  | Definition: Topologischer Raum                                              | 2 |
|   | 1.9  |                                                                             | 2 |
|   | 1.10 |                                                                             | 2 |
|   | 1.11 | Lemma: Kompositionen stetiger Abbildungen sind stetig                       | 3 |
|   | 1.12 | Definition: Homöomorphismus                                                 | 3 |
|   | 1.13 | Beispiele für homöomorphe Mengen                                            | 3 |
|   | 1.14 | Definition: Basis der Topologie                                             | 3 |
|   | 1.15 | 1 0                                                                         | 3 |
|   | 1.16 | Proposition: Bedingung, dass eine Familie von Teilmengen eine Topologie ist | 3 |
|   | 1.17 | Bemerkung: Eindeutigkeit von Proposition 1.16                               | 4 |
|   | 1.18 | Beispiel: Topologie der punktweisen bzw. gleichmäßigen Konvergenz           | 4 |
|   | 1.19 | Definition: Inneres, Abschluss und Rand                                     | 4 |
|   | 1.20 | Bemerkung: Gleichungen für Inneres, Abschluss und Rand                      | 4 |
|   | 1.21 | Definition: Umgebung                                                        | 4 |
|   | 1.22 |                                                                             | 5 |
|   | 1.23 | Definition: topologische Mannigfaltigkeit                                   | 5 |



| 2 Konstruktion topologischer Räume |      | truktion topologischer Räume                                                        | 6  |  |  |
|------------------------------------|------|-------------------------------------------------------------------------------------|----|--|--|
|                                    | 2.1  | Definition: Spurtopologie                                                           | 6  |  |  |
|                                    | 2.2  | Bemerkung: Stetigkeit durch Verknüpfung mit Inklusion                               | 6  |  |  |
|                                    | 2.3  | Definition: Produkttopologie                                                        | 6  |  |  |
|                                    | 2.4  | Definition: Produkttopologie mit unendlichen vielen Faktoren                        | 6  |  |  |
|                                    | 2.5  | Bemerkung zur Stetigkeit der Projektionen und Stetigkeit im Produktraum             | 6  |  |  |
|                                    | 2.6  | Bemerkung zur üblichen Topologie auf $\mathbb{R}^n$                                 | 6  |  |  |
|                                    | 2.7  | Beispiel: Torus                                                                     | 7  |  |  |
|                                    | 2.8  | Definition: Homotopie und homotop                                                   | 7  |  |  |
|                                    | 2.9  | Definition: Quotiententopologie                                                     | 7  |  |  |
|                                    | 2.10 | Beispiele zur Quotiententopologie                                                   | 7  |  |  |
| 3                                  | Konv | vergenz                                                                             | 9  |  |  |
|                                    | 3.1  | Definition: Konvergenz in topologischen Räumen                                      | ç  |  |  |
|                                    | 3.2  | Lemma (Eindeutigkeit von Grenzwerten)                                               | ç  |  |  |
|                                    | 3.3  | Definition: Gerichtete Menge                                                        | ç  |  |  |
|                                    | 3.4  | Definition: Netz und Konvergenz bezüglich eines Netzes                              | ç  |  |  |
|                                    | 3.5  | Lemma (Eindeutigkeit von Grenzwerten)                                               | 10 |  |  |
|                                    | 3.6  | Definition: Teilnetz                                                                | 10 |  |  |
|                                    |      |                                                                                     |    |  |  |
| 4                                  |      | pakte Räume                                                                         | 11 |  |  |
|                                    | 4.1  | Definition: Offene Überdeckung und Teilüberdeckung                                  | 11 |  |  |
|                                    | 4.2  | Definition: Kompaktheit                                                             | 11 |  |  |
|                                    | 4.3  | Definition: Endliche Durchschnittseigenschaft                                       | 11 |  |  |
|                                    | 4.4  | Lemma: Äquivalenz zur Kompaktheit eines Hausdorffraumes                             | 11 |  |  |
|                                    | 4.5  | Satz: Charakterisierung von Kompaktheit durch konvergente Teilnetze                 | 11 |  |  |
|                                    | 4.6  | Bemerkung zu Kompaktheit in metrischen Räumen                                       | 12 |  |  |
|                                    | 4.7  | Satz von Tychonov                                                                   | 12 |  |  |
|                                    | 4.8  | Beispiel: Metrik auf dem Produkt metrischer Räume, die Produkttopologie induziert . | 13 |  |  |
|                                    | 4.9  | Definition: Netze immer wieder und schließlich in $A$                               | 13 |  |  |
|                                    | 4.10 | Definition: Universelles Netz                                                       | 13 |  |  |
|                                    | 4.11 | Lemma: Universelle Netze konvergieren in kompakten Räumen                           | 13 |  |  |
|                                    | 4.12 | Proposition: Jedes Netzt besitzt universelles Teilnetz                              | 14 |  |  |
|                                    | 4.13 | Definition: Vektorraum der beschränkten Abbildungen                                 | 14 |  |  |
|                                    | 4.14 | Satz (Mittelbarkeit von $\mathbb{Z}$ )                                              | 14 |  |  |
| 5                                  | Kom  | paktifizierungen                                                                    | 16 |  |  |
|                                    |      | Definition: Kompaktifizierung                                                       | 16 |  |  |
|                                    | 5.2  | Beispiele für Kompaktifizierungen                                                   | 16 |  |  |
|                                    | 5.3  | Definition: lokalkompakt                                                            | 16 |  |  |
|                                    | 5.4  | Bespiele für lokalkompakte Hausdorffräume                                           | 16 |  |  |
|                                    | 5.5  | Proposition: Offene Teilmengen kompakter Räume sind lokalkompakt                    | 16 |  |  |
|                                    | 5.6  | Definition: Einpunktkompaktifizierung (EPK)                                         | 17 |  |  |
|                                    | 5.7  | Proposition über Eigenschaften der Einpunktkompaktifizierung                        | 17 |  |  |
|                                    | 5.8  | Frage nach Fortsetzungen stetiger Funktionen in der Einpunktkompaktifizierung       | 17 |  |  |
|                                    | 5.9  | Definition: Eigentliche stetige Abbildung                                           | 18 |  |  |
|                                    | 5.10 | Satz: Charakterisierung von eigentlichen stetigen Abbildungen                       | 18 |  |  |
| 6                                  | Der  | Approximationssatz von Stone-Weierstraß                                             | 19 |  |  |
| -                                  | 6.1  | Definition: Verschwinden stetiger Funktionen im Unendlichen                         | 19 |  |  |
|                                    | 6.2  | Definition: $\mathcal{B} \subseteq C_0(X)$ trennt $x, y \in X$ streng               | 19 |  |  |
|                                    | 6.3  | Satz (Stone-Weierstraß)                                                             | 19 |  |  |
|                                    |      | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                             |    |  |  |

| Inhaltsverzeichnis



|    | 6.4          | Satz von Dini                                                                                                     | 20         |
|----|--------------|-------------------------------------------------------------------------------------------------------------------|------------|
|    | 6.5          | Lemma 1: Folge reeller Polynome, die gleichmäßig gegen Wurzelfunktion konvergiert .                               | 20         |
|    | 6.6          | Bemerkung: Komposition mit Polynomen ist auch der Algebra                                                         | 21         |
|    | 6.7          | Lemma 2: Betrag von $f \in \mathcal{A}$ liegt in $\bar{\mathcal{A}}$                                              | 21         |
|    | 6.8          | Bemerkung: $\max, \min$ von Funktionen aus $\mathcal A$ liegen in $\bar{\mathcal A}$                              | 21         |
|    | 6.9          | Lemma 3: Existenz von $f \in \mathcal{A}$ mit $f(x) = \alpha$ , $f(y) = \beta$ , wenn $\mathcal{A}$ streng trennt | 21         |
| 7  | Metr         | isierbarkeit                                                                                                      | 22         |
|    | 7.1          | Definition: Metrisierbar                                                                                          | 22         |
|    | 7.2          | Definition: Normaler Hausdorffraum                                                                                | 22         |
|    | 7.3          | Satz (Urysohn)                                                                                                    | 22         |
|    | 7.4          | Urysohns Lemma                                                                                                    | 23         |
| 8  | 7usai        | mmenhängende topologische Räume                                                                                   | 24         |
| •  | 8.1          | Definition: Zusammenhängender, wegzusammenhängender topologischer Raum                                            | 24         |
|    | 8.2          | Bemerkungen zu zusammenhängenden und wegzusammenhängenden Räumen                                                  | 24         |
|    | 8.3          | Beispiele zu (weg-)zusammenhängenden Räumen                                                                       | 24         |
|    | 8.4          | Satz (Topologische Invarianz der Dimension)                                                                       | 25         |
| 9  | D:- [        | *                                                                                                                 | 24         |
| y  |              | Fundamentalgruppe                                                                                                 | 26         |
|    | 9.1          | Definition: Einfach zusammenhängender topologischer Raum                                                          | 26         |
|    | 9.2<br>9.3   | Bemerkungen zu einfach zusammenhängenden Räumen                                                                   | 26<br>26   |
|    | 9.3          | Definition: Homotopie zwischen Wegen                                                                              | 26         |
|    | 9.4          | Lemma: Charakterisierung von einfach zusammenhängend über Schleifen                                               | 26         |
|    | 9.5          | Notation: Konstante Schleife                                                                                      | 20         |
|    | 9.7          | Definition: Kompositionsweg                                                                                       | 27         |
|    | 9.8          | Lemma: Eigenschaften des Kompositionsweg als Verknüpfung                                                          | 27         |
|    | 9.9          | Korollar: Gruppenstruktur auf der Menge der Homotopieklassen von Schleifen                                        | 27         |
|    | 9.10         | Definition: Fundamentalgruppe                                                                                     | 27         |
|    | 9.11         | Bemerkung: Isomorphie zwischen Fundamentalgruppen                                                                 | 28         |
| 40 | D: ,         | AP 1 11                                                                                                           |            |
| 10 |              | Vindungszahl                                                                                                      | 29         |
|    | 10.1         | Frage nach der Gruppenstruktur von Fundamentalgruppen                                                             |            |
|    | 10.2         | Proposition: Hebung eines Weges auf $S^1$ nach $\mathbb R$                                                        |            |
|    | 10.3<br>10.4 | Definition: Windungszahl                                                                                          |            |
|    | 10.4         |                                                                                                                   | 30         |
|    | 10.5         | Beispiele für Überlagerungen                                                                                      | 30         |
|    | 10.7         | Definition: Hebung                                                                                                | 30         |
|    | 10.8         | Homotopiehebungssatz                                                                                              | 30         |
| 11 | Indu-        | zierte Abbildungen                                                                                                | 32         |
|    | 11.1         | Lemma: Gruppenhom. zwischen Fundamentalgruppen durch induzierte Abbildung                                         | 32         |
|    | 11.2         | Definition: Induzierte Abbildung                                                                                  | 32         |
|    | 11.3         | Definition: Punktierter Raum, punktierte Abbildung und punktiert homotop                                          | 32         |
|    | 11.4         | Proposition (Homotopieinvarianz von $\pi_1$ )                                                                     | 32         |
|    | 11.5         | Definition: Homotopieäquivalent und zusammenziehbar                                                               | 32         |
|    | 11.6         | Beispiele für Homotopieäquivalenzen und zusammenziehbare Räume                                                    | 33         |
|    | 11.7         | Korollar: Die induzierte Abbildung einer Homotopieäquivalenz ist ein Isomorphismus.                               | 33         |
|    | 11.8         | Fixpunktsatz von Brouwer                                                                                          | 33         |
|    | 11.9         | Proposition: Induzierte Abbildung von $f: S^1 \to S^1, z \mapsto z^n$                                             | 34         |
|    |              | p                                                                                                                 | <b>-</b> . |



|     | 11.10  | Lemma: Konstruktion einer punktierten Homotopie aus einer nicht punktierten | 35 |
|-----|--------|-----------------------------------------------------------------------------|----|
|     | 11.11  | Hauptsatz der Algebra                                                       | 35 |
| 12  | Eigen  | tlich diskontinuierliche Wirkungen                                          | 36 |
|     | 12.1   | Definition: Eigentlich diskontinuierliche Wirkung                           | 36 |
|     | 12.2   | Lemma: edk-Wirkungen definieren Überlagerungen                              | 36 |
|     | 12.3   | Beispiele für edk-Wirkungen                                                 | 36 |
|     | 12.4   | Satz: Zusammenhang der Fundamentalgruppe mit einer edk-Wirkung              | 37 |
|     | 12.5   | Bemerkung                                                                   | 37 |
|     | 12.6   | Definition: Decktransformation                                              | 38 |
|     | 12.7   | Lemma                                                                       | 38 |
|     | 12.8   | Bemerkung                                                                   | 38 |
|     | 12.9   | Definition                                                                  | 38 |
|     | 12.10  | Proposition                                                                 | 38 |
| Ind | lex    |                                                                             | Α  |
| Ab  | bildun | gsverzeichnis                                                               | С  |

**IV**Inhaltsverzeichnis



## 1 Topologische Räume

### 1.1 Definition

Ein **metrischer Raum** (X,d) ist eine Menge X mit einer Abbildung  $d:X\times X\to [0,\infty)$  mit folgenden Eigenschaften:

(i) 
$$\forall x, y \in X : d(x, y) = d(y, x)$$

(ii) 
$$\forall x, y \in X : d(x, y) = 0 \iff x = y$$

(iii) 
$$\forall x, y, z \in X : d(x, z) \leq d(x, y) + d(y, z)$$

(Dreiecksungleichung)

## 1.2 Definition

Sei V ein  $\mathbb{R}$ -Vektorraum. Eine **Norm** auf V ist eine Abbildung  $\|.\|:V\to [0,\infty)$  mit folgenden Eigenschaften:

(i) 
$$\forall v \in V, \lambda \in \mathbb{R} : ||\lambda \cdot v|| = |\lambda| \cdot ||v||$$

(ii) 
$$\forall v, w \in V : ||v + w|| \le ||v|| + ||w||$$

(Dreiecksungleichung)

(iii) 
$$\forall v \in V : ||v|| = 0 \iff v = 0$$

Durch d(v, w) := ||v - w|| erhalten wir eine Metrik auf V.

## 1.3 Beispiel

Auf  $\mathbb{R}^n$  gibt es verschiedene Normen und damit auch verschiedene Metriken: Für  $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$ 

(i) 
$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

(ii) 
$$||x||_1 = \sum_{i=1}^n |x_i|$$

(iii) 
$$||x||_{\infty} = \max\{|x_i| | i = 1, \dots, n\}$$

## 1.4 Beispiele

(i)

$$S^1 := \{z \in \mathbb{C} \,|\, |z| = 1\}$$

$$\operatorname{mit}\, d(z,z') := \min\bigl\{|\theta|\, \big|\, \theta \in \mathbb{R} : z = e^{i\theta}z'\bigr\}$$

- (ii) Ist X ein metrischer Raum und A eine Teilmenge von X, so wird A durch die Einschränkung der Metrik auf A zu einem metrischen Raum. Wir sagen dann A ist ein Unterraum von X.
- (iii) Sei X eine beliebige Menge. Durch

$$d(x,y) := \begin{cases} 0, & \text{falls } x = y \\ 1, & \text{falls } x \neq y \end{cases}$$

wir auf X eine Metrik (die **diskrete Metrik**) definiert.

(iv) Sei p eine Primzahl. Jedes  $x \neq 0 \in \mathbb{Q}$  lässt sich eindeutig schreiben als  $x = \frac{a}{b}p^n$  mit  $n, a, b \in \mathbb{Z}, b \neq 0$  und a, b, p paarweise teilerfremd. Dann heißt

$$|x|_p := p^{-n}$$

der p-adische Betrag von x,  $(|0|_p:=0)$ . Durch  $d_p(x,y):=|x-y|_p$  erhält man die p-adische Metrik auf  $\mathbb Q$ .

1 Topologische Räume



## 1.5 Definition

Seien  $(X, d_X)$  und  $(Y, d_Y)$  zwei metrische Räume. Eine Abbildung  $f: X \to Y$  heißt eine **Isometrie**, falls gilt:

$$\forall x, x' \in X : d_Y(f(x), f(x')) = d_X(x, x')$$

f heißt **stetig**, falls für alle  $x_0 \in X$  gilt:

$$\forall \varepsilon > 0 : \exists \delta > 0 : d_X(x, x_0) < \delta \Longrightarrow d_Y(f(x), f(x_0)) < \varepsilon$$

#### 1.6 Definition

Eine Teilmenge U eines metrischen Raums X heißt **offen**, falls gilt

$$\forall x \in U \exists \delta > 0 \text{ mit } B_{\delta}(x) = \{ y \in X \mid d(x, y) < \delta \} \subseteq U$$

## 1.7 Lemma

Sei  $f: X \to Y$  eine Abbildung zwischen metrischen Räumen. Dann sind äquivalent:

- (i) f ist stetig
- (ii) Urbilder (unter f) offener Mengen in Y sind offen in X. ( $\forall U \subseteq Y$  offen ist  $f^{-1}(U) \subseteq X$  offen)

#### **Beweis**

Analysis II. □

#### 1.8 Definition

Ein **topologischer Raum**  $(X, \mathcal{O})$  ist eine Menge X zusammen mit einer Familie  $\mathcal{O}$  von Teilmengen von X so dass gilt:

- (i)  $\emptyset, X \in \mathcal{O}$
- (ii)  $U, V \in \mathcal{O} \Longrightarrow U \cap V \in \mathcal{O}$
- (iii) Ist I eine Indexmenge und  $U_i \in \mathcal{O}$  für  $i \in I$ , so gilt  $\bigcup_{i \in I} U_i \in \mathcal{O}$ .

 $\mathcal O$  heißt dann eine **Topologie** auf X.  $U\subseteq X$  heißt **offen**, falls  $U\in \mathcal O.$   $A\subseteq X$  heißt **abgeschlossen**, falls  $X\setminus A$  offen ist.

#### 1.9 Beispiele

- (i) Jeder metrische Raum wird durch  $\mathcal{O} := \{U \subseteq X \mid U \text{ ist offen}\}$  zu einem topologischen Raum.
- (ii) Sei X eine beliebige Menge.
  - (i) Die grobe Topologie ist  $\mathcal{O}_{grob} := \{\emptyset, X\}$
  - (ii) Die diskrete Topologie ist  $\mathcal{O}_{\mathsf{diskret}} := \mathcal{P}(X)$
  - (iii) Die **koendliche Topologie** ist  $\mathcal{O}_{\mathsf{koendl.}} := \{U \subseteq X \mid X \setminus U \text{ endlich}\} \cup \{\emptyset\}$

#### 1.10 Definition

Eine Abbildung  $f:X\to Y$  zwischen topologischen Räumen heißt **stetig**, wenn Urbilder von offener Mengen offen sind.

2



### 1.11 Lemma

Seien  $f: X \to Y$ ,  $g: Y \to Z$  stetige Abbildungen. Dann ist auch  $g \circ f: X \to Z$  stetig.

#### **Beweis**

Sei 
$$U \subseteq Z$$
 offen. Dann ist  $g^{-1}(U) \subseteq Y$  offen, da  $g$  stetig ist. Da auch  $f$  stetig ist, gilt  $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) \subseteq X$  offen.  $\square$ 

#### 1.12 Definition

Seien X,Y topologische Räume. Eine bijektive stetige Abbildung  $f:X\to Y$  heißt ein **Homöomorphismus**, falls auch ihre Umkehrabbildung  $f^{-1}:Y\to X$  stetig ist.

Gibt es einen solchen Homöomorphismus, so heißen X und Y homöomorph und wir schreiben  $X\cong Y$ , andernfalls  $X\not\cong Y$ .

## 1.13 Beispiel

(i) 
$$(0,1)\cong(0,\infty)\cong(-\infty,0)\cong\mathbb{R}$$
 (einfach)

(ii) 
$$(0,1) \not\cong [0,1) \not\cong [0,1] \not\cong (0,1)$$
 (Übung)

(iii) 
$$\mathbb{R}^n \cong \mathbb{R}^m \iff n = m$$
 (schwer)

### 1.14 Definition

Sei X ein topologischer Raum. Eine Familie  $\mathcal{U}$  von offenen Teilmengen von X heißt eine **Basis der Topologie**, falls für jede Teilmenge  $W \subseteq X$  äquivalent sind:

(1) W ist offen

(2) 
$$\forall x \in W : \exists U \in \mathcal{U} \text{ mit } x \in U \subseteq W \iff W = \bigcup_{\substack{u \in \mathcal{U} \\ u \subseteq W}} u$$

Man sagt X erfüllt das **zweite Abzählbarkeitsaxiom**, falls X eine abzählbare Basis der Topologie besitzt.

## 1.15 Beispiel

Sei X ein metrischer Raum. Dann ist  $\{B_\delta(x)\,|\,x\in X,\delta>0\}$  eine Basis der Topologie von X. Gibt es eine abzählbare dichte Teilmenge  $X_0\subseteq X$ , so ist  $\{B_{1/n}(x)\,|\,x\in X_0,n\in\mathbb{N}\}$  eine abzählbare Basis der Topologie von X und X erfüllt das zweite Abzählbarkeitsaxiom.

#### 1.16 Proposition

Sei X eine Menge und  $\mathcal{U}$  eine Familie von Teilmengen von X mit  $X = \bigcup_{U \in \mathcal{U}} U$ . Dann ist  $\mathcal{U}$  genau dann die Basis einer Topologie  $\mathcal{O}$  auf X, wenn  $\mathcal{U}$  folgende Bedingungen erfüllt:

$$\forall U, V \in \mathcal{U} : \forall x \in U \cap V : \exists W \in \mathcal{U} \text{ mit } x \in W \subseteq U \cap V \tag{*}$$

### **Beweis**

Sei  $\mathcal U$  die Basis der Topologie  $\mathcal O$  und  $U,V\in\mathcal U.\Rightarrow U,V$  offen, also ist auch  $U\cap V$  offen. Da  $\mathcal U$  eine Basis der Topologie ist, gibt es zu jedem  $x\in U\cap V$  ein  $W\in\mathcal U$  mit  $x\in W\subseteq U\cap V$ . Daher gilt  $(\star)$  Sei umgekehrt  $(\star)$  erfüllt. Definiere  $\mathcal O$  durch

$$W \in \mathcal{O} : \iff \forall x \in W : \exists U \in \mathcal{U} : x \in U \subseteq W.$$

1 Topologische Räume 3



Dann  $\emptyset \in \mathcal{O}$ . Wegen  $X = \bigcup_{U \in \mathcal{U}} U$  gilt auch  $X \in \mathcal{O}$ . Weiter ist  $\mathcal{O}$  unter Vereinigungen abgeschlossen. Seien  $W_1, W_2 \in \mathcal{O}$ . Sei  $x \in W_1 \cap W_2$ . Dann gilt

$$x \in W_1, W_1 \text{ offen } \Rightarrow \exists U_1 \in \mathcal{U} : x \in U_1 \subseteq W_1$$
  
 $x \in W_2, W_2 \text{ offen } \Rightarrow \exists U_2 \in \mathcal{U} : x \in U_2 \subseteq W_2$ 

Also  $x \in U_1 \cap U_2$ . Mit  $(\star)$  folgt:  $\exists W \in \mathcal{U} \text{ mit } x \in W \subseteq U_1 \cap U_2 \subseteq W_1 \cap W_2$ .

## 1.17 Bemerkung

Die Topologie  $\mathcal O$  in der Proposition 1.16 wird eindeutig durch  $\mathcal U$  bestimmt.

## 1.18 Beispiel

• Sei  $\mathbb{R}^{\mathbb{N}}$  der  $\mathbb{R}$ -Vektorraum aller reellen Folgen. Für  $\delta>0$ ,  $n\in\mathbb{N}$ ,  $\alpha_1,\ldots,\alpha_n\in\mathbb{R}$  sei

$$U_{n,\delta,\alpha_1,\ldots,\alpha_n} := \{(x_i)_{i\in\mathbb{N}} \mid |x_i - \alpha_i| < \delta \text{ für } i = 1,\ldots,n\}$$

Dann erfüllt  $\mathcal{U} := U_{n,\delta,\alpha_1,...,\alpha_n}$  die Bedingung  $(\star)$  und ist die Basis der **Topologie der punktweisen Konvergenz**.

• Sei  $\mathcal{C}(\mathbb{R},\mathbb{R})$  der  $\mathbb{R}$ -Vektorraum aller stetigen Abbildungen. Zu  $[a,b]\subset\mathbb{R}$ ,  $\delta>0$ ,  $g:[a,b]\to\mathbb{R}$  stetig sei

$$U_{a,b,\delta,g} := \big\{ f : \mathbb{R} \to \mathbb{R} \text{ stetig} \, \big| \, \forall t \in [a,b] : \big| f(t) - g(t) \big| < \delta \big\}.$$

Dann erfüllt  $\mathcal{U}:=\{U_{a,b,\delta,g}\}$   $(\star)$  und ist die Basis der **Topologie der gleichmäßigen Konvergenz** auf kompakten Intervallen.

## 1.19 Definition

Sei Y eine Teilmenge eines topologischen Raums X.

$$\label{eq:Y} \begin{split} \mathring{Y} &:= \{ y \in Y \,|\, \exists U \subseteq X \text{ offen mit } y \in U \subseteq Y \} \text{ heißt das Innere von } Y \\ \overline{Y} &:= \{ x \in X \,|\, \forall U \subseteq X \text{ offen mit } x \in U : U \cap Y \neq \emptyset \} \text{ heißt Abschluss von } Y \\ \partial Y &:= \overline{Y} \setminus \mathring{Y} \text{ heißt der Rand von } Y. \end{split}$$

## 1.20 Bemerkung

1) 
$$\mathring{Y} = X \setminus (\overline{X \setminus Y}), \overline{Y} = X \setminus (X \setminus Y)^{\circ}$$

2) 
$$\mathring{Y} = \bigcup_{\substack{U \subseteq Y \\ U \text{ offen}}} U \text{ ist offen}$$

3) 
$$\overline{Y} = \bigcap_{\substack{A\supseteq Y \ A \text{ abgeschlossen}}} A$$
 ist abgeschlossen

4) 
$$\partial Y = \overline{Y} \setminus \mathring{Y}$$
 ist abgeschlossen.

#### 1.21 Definition

Sei X ein topologischer Raum,  $x \in X$ .  $V \subseteq X$  heißt eine **Umgebung** von x, falls es  $U \subseteq X$  offen gibt mit  $x \in U \subseteq V$ . Ist V offen, so heißt V eine **offene Umgebung** von x.

4



## 1.22 Definition

Ein topologischer Raum X heißt **hausdorffsch** (oder eine **Hausdorffraum**), falls es zu jedem Paar  $x,y\in X, x\neq y$  offene Umgebungen U von x und V von y gibt mit  $U\cap V=\emptyset$ . Bsp:

- Metrische Räume sind hausdorffsch.
- Ist  $|X| \geq 2$  so ist  $(X, \mathcal{O}_{\mathrm{grob}})$  nicht hausdorffsch.

## 1.23 Definition

Ein Hausdorffraum M, der das zweite Abzählbarkeitsaxiom erfüllt, heißt eine **topologische Mannigfaltigkeit** der Dimension n (oder eine n-Mannigfaltigkeit), falls er lokal homöomorph zum  $\mathbb{R}^n$  ist; d.h.  $\forall x \in M \exists$  offene Umgebung U von x mit  $U \cong \mathbb{R}^n$ .

1 Topologische Räume 5



## 2 Konstruktion topologischer Räume

## 2.1 Definition

Sei X ein topologischer Raum und  $A\subseteq X$  eine Teilmenge. Die **Spurtopologie** auf A besteht aus allen Teilmengen von A der Form  $A\cap U$  mit  $U\subseteq X$  offen. Mit dieser Topologie heißt A ein Unterraum von X.

**Achtung:**  $U \subseteq A$  offen  $\not\Rightarrow U \subseteq X$  offen!

## 2.2 Bemerkung

Sei  $i: A \to X$  die Inklusion.

- (i) i ist stetig.
- (ii) Ist Y ein weiterer topologischer Raum und  $f:Y\to A$  eine Abbildung. Dann gilt:

$$f$$
 stetig  $\iff i \circ f: Y \to X$  ist stetig

### 2.3 Definition

Seien X,Y topologische Räume. Eine Basis für die **Produkttopologie** auf  $X \times Y$  ist

$$\mathcal{U} := \{ U \times V \mid U \subseteq X \text{ offen }, V \subseteq Y \text{ offen} \}.$$

### 2.4 Definition

Seien  $X_i$  für  $i \in I$  topologische Räume. Die Produkttopologie auf ihrem Produkt

$$\prod_{i \in I} X_i = \{ (x_i)_{i \in I} \, | \, x_i \in X_i \}$$

hat als Basis alle Mengen der Form  $\prod_{i \in I} U_i$  mit

- 1)  $U_i \subseteq X_i$  ist offen
- 2) Für fast alle i ist  $U_i = X_i$ .

## 2.5 Bemerkung

Seien  $p_j:\prod_{i\in I}X_i\to X_j$  die Projektionen.

- (i) Die  $p_i$  sind stetig.
- (ii) Ist Y ein weiterer topologischer Raum und  $f:Y\to\prod_{i\in I}X_i$  eine Abbildung, so gilt: f ist stetig  $\iff \forall j$  ist  $f_j:=p_j\circ f$  stetig.

## 2.6 Bemerkung

Die übliche Topologie auf  $\mathbb{R}^n=\prod_{i=1}^n\mathbb{R}$  stimmt mit der Produkttopologie überein.



## 2.7 Beispiel



Abbildung 1: Der Torus  $T^2$ , Quelle  $\Box$ 

$$T^n:=\underbrace{S^1\times\ldots\times S^1}_n=\prod_{i=1}^nS1$$
 heißt der  $n$ -Torus. Der  $n$ -Torus ist eine  $n$ -Mannigfaltigkeit.

## 2.8 Definition

Seien X und Y topologische Räume und  $(f_t)_{t \in [0,1]}$  eine Familie von stetigen Abbildungen  $f_t: X \to Y$ . Wir sagen, dass die  $f_t$  stetig von t abhängen, falls

$$H: X \times [0,1] \to Y \text{ mit } H(x,t) = f_t(x)$$

stetig bezüglich der Produkttopologie ist. In diesem Fall heißen  $f_0$  und  $f_1$  homotop und H eine Homotopie zwischen  $f_0$  und  $f_1$ .

#### **Beispiel**

Je zwei Abbildungen  $f,g:X\to\mathbb{R}^n$  sind homotop; eine Homotopie wird gegeben durch  $H(x,t):=(1-t)\cdot f(x)+t\cdot g(x)$ . Wir werden später sehen, dass  $\mathrm{id}:S^1\to S^1$  nicht homotop zu einer konstanten Abbildung ist.

#### 2.9 Definition

Sei X ein topologischer Raum, M eine Menge und  $q:X\to M$  eine surjektive Abbildung. Die offenen Mengen der **Quotiententopologie** auf M (bezüglich q) sind alle  $U\subseteq M$  für die  $q^{-1}(U)\subseteq X$  offen ist.

#### Bemerkung

- (i)  $q: X \to M$  ist stetig.
- (ii) Ist Y ein weiterer topologischer Raum und  $f:M\to Y$  eine Abbildung, so gilt

$$f$$
 ist stetig  $\iff f \circ q$  ist stetig

## Bemerkung

Sei  $\sim$  eine Äquivalenzrelation auf dem topologischen Raum X. Dann ist die Äquivalenzklassenabbildung  $q:X\to X/\sim$ ,  $x\mapsto [x]_\sim$  surjektiv. Insbesondere wird  $X/\sim$  durch die Quotiententopologie zu einem topologischen Raum.

## 2.10 Beispiele

$$X = [0, 1] \times [0, 1]$$
: Definiere



"Zusammenkleben" der Seiten (i)  $(s,t) \sim (s',t') :\Leftrightarrow (s=s' \text{ und } t=t') \text{ oder } (s=0,s'=1,t=t').$  Dann



Möbiusband: Verdrehen und dann Zusammenkleben (ii)  $(s,t) \sim (s',t') :\Leftrightarrow (s=s' \text{ und } t=t') \text{ oder } (s=0,s'=1 \text{ und } t=1-t').$  Dann



Abbildung 2: Möbius-Band, Quelle

(iii) Sei  $\mathbb{R}P^n$  die Menge aller 1-dimensionalen Unterräume des  $\mathbb{R}^{n+1}$ . Wir erhalten eine surjektive Abbildung

$$q: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}P^n , \quad q(v) := \langle v \rangle >$$

 $\mathbb{R}P^n$  mit der Quotiententopologie bezüglich q heißt der **reell projektive Raum** der Dimension n. Er ist eine n-Mannigfaltigkeit.

(iv) Betrachte auf  $\mathbb R$  die Relation  $x\sim y:\Leftrightarrow x-y\in\mathbb Q$ . Der Raum der Äquivalenzklassen bezeichnen wir mit  $\mathbb R/\mathbb Q$ . Dann ist  $\mathbb R/\mathbb Q$  mit der Quotiententopologie nicht hausdorffsch, obwohl  $\mathbb R$  natürlich hausdorffsch ist.

(Übung: Die Quotiententopologie auf  $\mathbb{R}/\mathbb{Q}$  ist die grobe Topologie.)

(v) Sei  $f:X\to X$  eine stetige Abbildung. Betrachte auf  $X\times [0,1]$  die Äquivalenzrelation

$$(x,t) \sim (x',t') :\Leftrightarrow (x=x' \text{ und } t=t') \text{ oder } (t=0,t'=1 \text{ und } x'=f(x))$$

Der Quotient  $T_f := X \times [0,1]/_{\sim}$  heißt der **Abbildungstorus** von f.



## 3 Konvergenz

#### 3.1 Definition

Sei X ein topologischer Raum und  $(x_n)_{n\in\mathbb{N}}$  eine Folge in X. Dann sagen wir  $(x_n)_{n\in\mathbb{N}}$  konvergiert gegen  $x\in X$ , falls gilt: Zu jeder offenen Umgebung V von x, gibt es  $N\in\mathbb{N}$ , sodass  $x_n\in V$  für alle  $n\geq N$ . Wir schreiben dann  $x_n\to x$  oder  $x_n\xrightarrow{n\to\infty} x$ . x heißt ein Grenzwert von  $(x_n)_{n\in\mathbb{N}}$ .

#### Bemerkung

Bezüglich der groben Topologie ist jeder Punkt Grenzwert jeder Folge.

#### **Beispiel**

Betrachte die Topologie der gleichmäßigen Konvergenz auf kompakten Teilmengen auf dem Raum  $\mathcal{C}(\mathbb{R},\mathbb{R})$ . Dann gilt für Folgen  $(f_n)_{n\in\mathbb{N}}$  von stetigen Abbildungen  $f_n\in\mathcal{C}(\mathbb{R},\mathbb{R})$ 

$$f_n \to f \iff \forall a < b \text{ konvergiert } f_n|_{[a,b]} \to f_{[a,b]} \text{ gleichmäßig.}$$

## 3.2 Lemma (Eindeutigkeit von Grenzwerten)

Sei X hausdorffsch. Gilt  $x_n \to x$  und  $x_n \to y$ , so folgt x = y.

#### **Beweis**

Übung!

## 3.3 Definition

Eine nichtleere Menge  $\Lambda$  mit einer Relation " $\leq$ " heißt **gerichtet**, falls gilt

(i) 
$$\forall \lambda \in \Lambda : \lambda \leq \lambda$$

(ii) 
$$\forall \lambda_1, \lambda_2, \lambda_3 \in \Lambda : \lambda_1 \leq \lambda_2 \wedge \lambda_2 \leq \lambda_3 \Rightarrow \lambda_1 \leq \lambda_3$$
 (transitiv)

(iii) 
$$\forall \lambda_1, \lambda_2 \in \Lambda : \exists \mu : \lambda_1 \leq \mu \wedge \lambda_2 \leq \mu$$

## 3.4 Definition

Sei X ein topologischer Raum. Ein **Netz**  $(x_{\lambda})_{\lambda \in \Lambda}$  in X besteht aus einer gerichteten Menge  $\Lambda$  und Elementen  $x_{\lambda} \in X$  für  $\lambda \in \Lambda$ . Für  $x \in X$  sagen wir  $(x_{\lambda})_{\lambda \in \Lambda}$  konvergiert gegen x, falls gilt:

$$\forall \ \mathsf{Umgebungen} \ U \ \mathsf{von} \ x: \exists \lambda_0 \in \Lambda: \forall \lambda \in \Lambda \ \mathsf{mit} \ \lambda \geq \lambda_0 \ \mathsf{gilt} \ x_\lambda \in U$$

Wir schreiben dann  $x_{\lambda} \xrightarrow{\lambda \to \infty} x$  oder  $x_{\lambda} \to x$ .

#### **Beispiel**

Sei X ein topologischer Raum und  $x \in X$ . Dann ist  $\Lambda := \{U \mid U \text{ ist offene Umgebung von } x\}$  gerichtet bezüglich

$$U \leq V :\Leftrightarrow V \subseteq U$$

Ist nun  $x_U \in U$  für alle  $U \in \Lambda$  so  $x_U \to x$ .

3 Konvergenz



## 3.5 Lemma (Eindeutigkeit von Grenzwerten)

Sei X hausdorffsch. Gilt  $x_{\lambda} \to x$  und  $x_{\lambda} \to y$ , so folgt x = y.

#### **Beweis**

Angenommen  $x \neq y$ . Da X hausdorffsch ist existiert eine Umgebung U von x und V von y mit  $U \cap V = \emptyset$ 

$$x_{\lambda} \to x \Rightarrow \exists \lambda_U : x_{\lambda} \in U : \forall \lambda \geq \lambda_U$$
  
 $x_{\lambda} \to y \Rightarrow \exists \lambda_V : x_{\lambda} \in V : \forall \lambda \geq \lambda_V$ 

Sei nun  $\mu \in \Lambda$  mit  $\mu \geq \lambda_U$ ,  $\mu \geq \lambda_V$ . Dann folgt  $x_\mu \in U \cap V = \emptyset$   $\not$ 

## 3.6 Definition

Sei  $(x_{\lambda})_{\lambda \in \Lambda}$  ein Netz in X. Ein **Teilnetz** von  $(x_{\lambda})_{\lambda \in \Lambda}$  ist eine gerichtete Menge  $\Lambda'$  mit einer Abbildung  $f: \Lambda' \to \Lambda$ , so dass gilt

i) 
$$\lambda_1' \leq \lambda_2' \Rightarrow f(\lambda_1') \leq f(\lambda_2')$$
 ( $f \text{ erhält } \leq$ )

ii) 
$$\forall \lambda \in \Lambda : \exists \lambda' \in \Lambda' \text{ mit } \lambda \leq f(\lambda')$$
 (f ist kofinal)

Oft schreiben wir  $\left(x_{f(\lambda')}\right)_{\lambda'\in\Lambda'}$  für ein Teilnetz.

## **Bemerkung**

Ein Teilnetz einer Folge ist nicht notwendig eine Teilfolge.

10 3 Konvergenz



## 4 Kompakte Räume

## 4.1 Definition

Eine Familie  $\mathcal{U}$  von offenen Teilmengen von X heißt eine **offene Überdeckung**, falls

$$\bigcup_{U\in\mathcal{U}}U=X.$$

 $\mathcal{V}\subseteq\mathcal{U}$  heißt eine **Teilüberdeckung**, falls immer noch  $X\subseteq\bigcup_{V\in\mathcal{V}}V.$ 

## 4.2 Definition

Ein topologischer Hausdorffraum X heißt **kompakt**, wenn jede offene Überdeckung von X eine endliche Teilüberdeckung besitzt.

#### 4.3 Definition

Eine Familie  $\mathcal A$  von abgeschlossenen Teilmengen von X hat die **endliche Durchschnittseigenschaft**, wenn für jedes  $\mathcal A_0\subseteq\mathcal A$  mit  $|\mathcal A_0|<\infty$  gilt

$$\bigcap_{A\in\mathcal{A}_0}A\neq\emptyset.$$

#### 4.4 Lemma

Sei X ein Hausdorffraum. Dann ist X genau dann kompakt, wenn gilt: Hat eine Familie  $\mathcal A$  von abgeschlossenen Teilmengen von X die endliche Durchschnittseigenschaft, so gilt

$$\bigcap_{A \in \mathcal{A}} A \neq \emptyset$$

#### **Beweis**

Ist  $\mathcal{U}$  eine Familie von offenen Teilmengen, so ist  $\mathcal{A}:=\{X\setminus U\,|\,U\in\mathcal{U}\}$  eine Familie von abgeschlossenen Teilmengen. Ist umgekehrt  $\mathcal{A}$  eine Familie von abgeschlossenen Teilmengen, so ist

$$\mathcal{U} := \{ X \setminus A \mid A \in \mathcal{A} \}$$

eine Familie von offenen Teilmengen. Dann gilt:

- $\mathcal U$  hat eine endliche Teilüberdeckung  $\iff \mathcal A$  hat nicht die endliche Durchschnittseigenschaft.
- $\mathcal{U}$  ist eine Überdeckung  $\iff \bigcap_{A \in \mathcal{A}} A = \emptyset$ .

#### 4.5 Satz

Sei X ein Hausdorffraum. Dann sind äquivalent:

- 1) X ist kompakt.
- 2) Jedes Netz in X besitzt ein konvergentes Teilnetz.



#### **Beweis**

"1)  $\Rightarrow$  2)": Sei  $(x_{\lambda})_{{\lambda} \in {\Lambda}}$  ein Netz in X. Für  ${\lambda} \in {\Lambda}$  sei  $A_{\lambda} := \overline{\{x_{{\lambda}'} \mid {\lambda}' \geq {\lambda}\}}$ .

Behauptung(\*):  $\mathcal{A} := \{A_{\lambda} \mid \lambda \in \Lambda\}$  hat die endliche Durchschnittseigenschaft. Sei  $\mathcal{A}_0 \subseteq \mathcal{A}$  endlich, also  $\mathcal{A}_0=\{A_\lambda\,|\,\lambda\in\Lambda_0\}$  für ein  $\Lambda_0\subseteq\Lambda$  endlich. Da  $\Lambda$  gerichtet ist, gibt es  $\lambda\in\Lambda$  mit  $\lambda\geq\mu$ für alle  $\mu \in \Lambda_0$ . Es folgt  $x_{\lambda} \in \{x_{\lambda'} \mid \lambda' \geq \mu\}$  für alle  $\mu \in \Lambda_0$ . Insbesondere folgt aus

$$x_{\lambda} \in \bigcap_{\mu \in \Lambda_0} A_{\mu}$$

Da X kompakt ist, folgt aus  $(\star)$ 

$$\bigcap_{\lambda \in \Lambda} A_{\lambda} \neq \emptyset.$$

Wähle  $x\in\bigcap_{\lambda\in\Lambda}A_\lambda$ . Sei  $\mathcal U$  die Menge aller offenen Umgebungen von x. Sei

$$\Lambda_{\mathcal{U}} := \{ (\lambda, U) \mid \lambda \in \Lambda, x_{\lambda} \in U \in \mathcal{U} \}$$

Durch  $(\lambda, U) \leq (\lambda', U') : \Leftrightarrow \lambda \leq \lambda'$  und  $U \supseteq U'$  wird  $\Lambda_{\mathcal{U}}$  zu einer gerichteten Menge: Sei  $(\lambda_1, U_1)$ und  $(\lambda_2, U_2) \in \Lambda_{\mathcal{U}}$ . Sei  $U := U_1 \cap U_2$ . Wähle  $\lambda \in \Lambda$  mit  $\lambda \geq \lambda_1$  und  $\lambda \geq \lambda_2$ . Da  $x \in A_{\lambda} = \Lambda$  $\overline{\{x_{\lambda'} \mid \lambda' \geq \lambda\}}$  gibt es  $\lambda' \geq \lambda$  mit  $x_{\lambda'} \in U$ . Also  $(\lambda', U) \in \Lambda_{\mathcal{U}}$  und  $(\lambda_1, U_1)$ ,  $(\lambda_2, U_2) \leq (\lambda', U)$ . Mit  $x_{(\lambda,U)} = x_{\lambda}$  ist  $(x_{\lambda,U})_{(\lambda,U)\in\Lambda_U}$  das gesuchte Teilnetz.

"2)  $\Rightarrow$  1)": Sei  ${\mathcal A}$  eine Familie von abgeschlossenen Teilmengen mit der endlichen Durchschnittseigenschaft. Sei  $\Lambda := \{ A_0 \subseteq A \mid A_0 \text{ ist endlich} \}$ .  $\Lambda$  ist gerichtet bezüglich  $A_0 \subseteq A_1 : \Leftrightarrow A_0 \subseteq A_1$ . Zu  $A_0 \in \Lambda$  wähle

$$x_{\mathcal{A}_0} \in \bigcap_{A \in \mathcal{A}_0} A \neq \emptyset$$

Sei nun  $(x_{f(\lambda)})_{\lambda \in \Lambda'}$  mit  $f: \Lambda' \to \Lambda$  ein konvergentes Teilnetz von  $(x_{A_0})_{A_0 \in \Lambda}$ . Sei x der Grenzwert von  $(x_{f(\lambda')})_{\lambda' \in \Lambda'}$ .

Behauptung:  $x\in\bigcap_{A\in\mathcal{A}_0}A$ . Sei  $A\in\mathcal{A}_0$  und  $U=X\setminus A$ . Angenommen  $x\in U$ . Da U eine offene Umgebung von x ist und  $x_{f(\lambda')} o x$  gilt, gibt es  $\lambda'_0 \in \Lambda$  mit  $x_{f(\lambda')} \in U$  für alle  $\lambda' \geq \lambda'_0$ . Zu  $\{A\} \in \Lambda$  gibt es  $\mu \in \Lambda'$ mit  $f(\mu) \geq \{A\}$ . Da  $\Lambda'$  gerichtet ist, gibt es  $\mu' \geq \mu$  und  $\mu' \geq \lambda'_0$ . Es folgt  $A \in f(\mu')$  und damit  $x_{f(\mu')} \in A$ , aber andererseits  $x_{f(\mu')} \in U = X \setminus A$ , da  $\mu' \geq \lambda'_0 \not$ 

## 4.6 Bemerkung

Sei X ein metrischer Raum. Dann sind äguivalent:

- 1) X ist kompakt.
- 2) Jede Folge in X besitzt eine konvergente Teilfolge.

## 4.7 Satz von Tychonov

Sei  $(X_i)_{i\in I}$  eine Familie von kompakten topologischen Räumen. Dann ist auch  $X\coloneqq\prod_{i\in I}X_i$  kompakt.

(unter Benutzung der nachfolgenden Punkte)

Ist  $(x_{\lambda})_{\lambda \in \Lambda}$  ein Netz in  $\prod_i X_i$ , so besitzt dieses Netz ein universelles Teilnetz  $(x_{f(\mu)})_{\mu \in \Lambda'}$ . Für jedes iist dann  $p_i(x_{f(\mu)})_{\mu\in\Lambda'}$  ein universelles Netz in  $X_i$  und nach dem Lemma 4.11 könvergent. Daher ist  $(x_{f(\mu)})_{\mu \in \Lambda'}$  bezüglich der Produkttopologie konvergent



## 4.8 Beispiel

Seien  $(X_i, d_i)_{i \in \mathbb{N}}$  kompakte metrische Räume. Dann gibt es eine Metrik d auf  $\prod X_i$ , so dass die zugehörige Topologie die Produkttopologie ist. (Übung)

#### Beweis

Sei  $p_j:\prod_i X_i \to X_j$  die Projektion auf den j-ten Faktor. Sei  $(x_n)_{n\in\mathbb{N}}$  eine Folge in  $\prod_i X_i$ . Wähle induktiv  $\mathbb{N}=N_0\supseteq N_1\supseteq N_2\supseteq\dots$  mit

- (i)  $|N_i| = \infty$
- (ii)  $(p_i(x_n))_{n \in N_i}$  ist eine konvergente Folge in  $X_i$ .

(Dies ist möglich, da  $X_i$  kompakt ist.) Wähle nun  $n_k \in N_k$  induktiv, so dass  $n_k > n_{k-1}$ . Dann ist  $(x_{n_k})_{k \in \mathbb{N}}$  eine Teilfolge von  $(x_n)_{n \in \mathbb{N}}$ . Für  $i \in \mathbb{N}$  ist  $\left(p_i(x_{n_k})\right)_{k \in \mathbb{N}, k \geq i}$  eine Teilfolge der konvergenten Folge  $(p_i(x_n))_{n \in N_i}$  und daher konvergent. Damit konvergiert auch  $(p_i(x_{n_k}))_{k \in \mathbb{N}}$  für jedes i. Daher konvergiert  $(x_{n_k})_{k \in \mathbb{N}}$  punktweise, also in der Produkttopologie (Übung).

### 4.9 Definition

Sei  $(x_{\lambda})_{\lambda \in \Lambda}$  ein Netz in X und  $A \subseteq X$ . Wir sagen  $(x_{\lambda})_{\lambda \in \Lambda}$  ist **immer wieder in** A, falls gilt:

$$\forall \lambda \in \Lambda: \exists \mu \in \Lambda \text{ mit } \mu \geq \lambda \text{ und } x_\mu \in A$$

Wir sagen  $(x_{\lambda})_{\lambda \in \Lambda}$  ist **schließlich in** A, falls gilt

$$\exists \lambda \in \Lambda : \forall \mu \in \Lambda \text{ mit } \mu \geq \lambda \text{ gilt } x_{\mu} \in A$$

#### Bemerkung

 $x_{\lambda} \to X \iff \text{Für jede Umgebung } U \text{ von } x \text{ ist } x_{\lambda} \text{ schlie} \text{ slich in } U.$ 

#### 4.10 Definition

Ein Netz  $(x_{\lambda})_{\lambda \in \Lambda}$  in X heißt **universell**, falls für jede Teilmenge  $A \subseteq X$  gilt: Entweder ist  $(x_{\lambda})_{\lambda \in \Lambda}$  schließlich in A oder schließlich in  $X \setminus A$ .

#### Bemerkung

- Ist  $(x_{\lambda})_{\lambda \in \Lambda}$  universell und immer wieder in A, dann ist  $(x_{\lambda})_{\lambda \in \Lambda}$  schließlich in A.
- Ist  $(x_{\lambda})_{{\lambda} \in {\Lambda}}$  ein universelles Netz in X und  $f: X \to Y$  eine Abbildung, so ist auch  $(f(x_{\lambda}))_{{\lambda} \in {\Lambda}}$  ein universelles Netz in Y.

#### 4.11 Lemma

Ist X kompakt und  $(x_{\lambda})_{{\lambda} \in {\Lambda}}$  ein universelles Netz in X, so konvergiert  $(x_{\lambda})_{{\lambda} \in {\Lambda}}$  in X.

#### **Beweis**

Sei X kompakt und  $(x_\lambda)_{\lambda\in\Lambda}$  ein universelles Netz in X. Angenommen  $(x_\lambda)_{\lambda\in\Lambda}$  konvergiert nicht in X. Dann gibt es zu jedem  $x\in X$  genau eine offene Umgebung  $U_x$  von x, so dass  $(x_\lambda)_{\lambda\in\Lambda}$  nicht schließlich in  $U_x$  ist. Da  $(x_\lambda)_{\lambda\in\Lambda}$  universell ist, ist  $(x_\lambda)_{\lambda\in\Lambda}$  schließlich in  $X\setminus U_x$ . Da  $X=\bigcup_{x\in X}U_x$  und X kompakt ist, gibt es  $x_1,\ldots,x_k\in X$  mit  $X=U_{x_1}\cup\ldots\cup U_{x_k}$ . Für jedes  $i\in\{1,\ldots,k\}$  sei  $\lambda_i\in\Lambda$  mit  $x_\mu\in X\setminus U_{x_i}$  für  $\mu\geq\lambda_i$ . Sei nun  $\mu\in\Lambda$  mit  $\mu\geq\lambda_i$  für  $i=1,\ldots,k$ . Es folgt

$$x_{\mu} \in \bigcap_{i=1}^{k} (X \setminus U_{x_i}) = X \setminus \left(\bigcup_{i=1}^{k} U_{x_i}\right) = X \setminus X = \emptyset \ \ \sharp$$



## 4.12 Proposition

Jedes Netz besitzt ein universelles Teilnetz.

#### **Beweis**

Sei  $(x_{\lambda})_{\lambda \in \Lambda}$  ein Netz in X. Sei

$$\mathfrak{M} := \left\{ \mathfrak{B} \subseteq \mathcal{P}(X) \,\middle|\, \begin{array}{ll} (1) & B \in \mathfrak{B} \Rightarrow (x_{\lambda})_{\lambda \in \Lambda} \text{ ist immer wieder in } B \\ (2) & B, B' \in \mathfrak{B} \Rightarrow B \cap B' \in \mathfrak{B} \end{array} \right\}$$

Dann ist  $\{X\}\in\mathfrak{M}$ , insbesondere  $\mathfrak{M}
eq\emptyset$ . Ist  $\mathfrak{M}_0\subseteq\mathfrak{M}$  mit

$$\mathfrak{B},\mathfrak{B}'\in\mathfrak{M}_0\Rightarrow\mathfrak{B}\subseteq(B)'$$
 oder  $\mathfrak{B}'\subseteq\mathfrak{B}$ 

so gilt  $\bigcup_{\mathfrak{B}\in\mathfrak{M}_{\circ}}\mathfrak{B}\in\mathfrak{M}$ . Nach dem Zornschen Lemma enthält  $\mathfrak{M}$  ein maximales Element  $\mathfrak{B}$ . Da  $\mathfrak{B}$  maximal ist, ist  $X\in\mathfrak{B}$ . Sei

$$\Lambda' := \{ (B, \lambda) \mid B \in \mathfrak{B}, \lambda \in \Lambda, x_{\lambda} \in B \}.$$

 $\mathsf{Durch}\; (B,\lambda) \leq (B',\lambda') :\Leftrightarrow B \supseteq B', \lambda \leq \lambda' \; \mathsf{wird} \; \Lambda' \; \mathsf{gerichtet.}$ 

Behauptung:  $(x_{\lambda})_{(B,\lambda)\in\Lambda'}$  ist universell.

#### Hilfssatz

Sei  $(x_{\lambda})_{(B,\lambda)\in\Lambda'}$  immer wieder in S. Dann gilt  $S\in\mathfrak{B}$ .

Beweis: Wir zeigen:  $\mathfrak{B}^+ := \mathfrak{B} \cup \{S \cap B \mid B \in \mathfrak{B}\} \in \mathfrak{M}$ . Da  $\mathfrak{B}$  maximal ist und  $\mathfrak{B} \subseteq \mathfrak{B}^+$  folgt  $\mathfrak{B} = \mathfrak{B}^+$  und  $S \in \mathfrak{B}^+ = \mathfrak{B}$ . Offenbar erfüllt  $\mathfrak{B}^+$  (2). Es bleibt (1) zu zeigen.

Da  $\mathfrak{B}\in\mathfrak{M}$  bleibt zu zeigen:  $\forall B\in\mathfrak{B}$  ist  $(x_{\lambda})_{(\lambda\in\Lambda}$  immer wieder in  $B\cap S$ . Sei  $\lambda\in\Lambda$ . Gesucht ist nun  $\mu\geq\lambda$  mit  $x_{\mu}\in B\cap S$ . Da  $B\in\mathfrak{B}\in\mathfrak{M}$  gibt es  $\lambda'\in\Lambda$ ,  $\lambda'\geq\lambda$  mit  $x_{\lambda'}\in B$ . Also  $(B,\lambda')\in\Lambda'$ . Da  $(x_{\lambda})_{(B,\lambda)\in\Lambda'}$  immer wieder in S ist, gibt es

$$\Lambda' \ni (A, \mu) \ge (B, \lambda')$$

mit  $x_{\mu} \in S$ . Da  $(A, \mu) \in \Lambda'$  ist  $x_{\mu} \in A \subseteq B$ . Sei  $S \subseteq X$ . Ist  $(x_{\lambda})_{(B,\lambda) \in \Lambda'}$  weder schließlich in S noch schließlich in  $X \setminus S$ , so ist  $(x_{\lambda})_{(B,\lambda) \in \Lambda'}$  immer wieder in S und immer wieder in  $X \setminus S$ . Mit dem Hilfssatz folgt  $S, X \setminus S \in \mathfrak{B} \Rightarrow \emptyset = S \cap (X \setminus S) \in \mathfrak{B} \not$ 

#### 4.13 Definition

Sei  $\ell^{\infty}(\mathbb{Z})$  der  $\mathbb{R}$ -Vektorraum aller beschränkten Abbildungen  $f: \mathbb{Z} \to \mathbb{R}$ .

$$||f||_{\infty} := \sup\{|f(n)| | n \in \mathbb{Z}\}$$

ist eine Norm auf  $\ell^{\infty}(\mathbb{Z})$ .

### 4.14 Satz (Mittelbarkeit von Z)

Es gibt eine Abbildung  $M:\ell^{\infty}(\mathbb{Z})\to\mathbb{R}$  mit

- a) M ist  $\mathbb{R}$ -linear
- b) M ist positiv:  $f \ge 0 \Rightarrow M(f) \ge 0$
- c) M(1) = 1 für  $1: \mathbb{Z} \to \mathbb{R}$  mit 1(n) = 1 für alle  $n \in \mathbb{Z}$



d) M ist  $\mathbb{Z}$ -invariant: Für  $f \in \ell^{\infty}(\mathbb{Z})$  sei  $Tf \in \ell^{\infty}(\mathbb{Z})$  mit (Tf)(n) = f(n+1), dann gilt M(f) = M(Tf).

#### **Beweis**

Sei  $\mathfrak{M}:=\{M:\ell^{\infty}(\mathbb{Z})\to\mathbb{R}\,|\,M$  erfüllt a), b), c) $\}$ . Sei  $M_n\in\mathfrak{M}$  mit  $M_n(f)=\frac{1}{n+1}\sum_{i=0}^n f(i)$ . Dann gilt für  $f\in\ell^{\infty}(\mathbb{Z})$ 

$$M_n(f) = M_n(Tf) = \frac{1}{n+1} \sum_{i=0}^n f(i) - Tf(i) = \frac{1}{n+1} \sum_{i=0}^n (f(i) - f(i+1))$$
$$= \frac{1}{n+1} (f(0) - f(n+1))$$

Es folgt  $|M_n(f)-M_n(Tf)|\leq \frac{2\cdot \|f\|_\infty}{n+1}$ . Wir konstruieren nun eine kompakte Topologie auf  $\mathfrak{M}$ , dann können wir anschließend ein konvergentes Teilnetz der Folge  $(M_n)_{n\in\mathbb{N}}$  betrachten. Sei

$$X := \prod_{f \in \ell^{\infty}(\mathbb{Z})} \left[ - \|f\|_{\infty}, \|f\|_{\infty} \right]$$

Aus a), b), c) folgt für  $f \in \ell^{\infty}(\mathbb{Z})$ ,  $M \in \mathfrak{M}$   $M(f) \in [-\|f\|_{\infty}, \|f\|_{\infty}]$ . Mittels

$$\mathfrak{M} \ni M \mapsto \big(M(f)\big)_{f \in \ell^{\infty}(\mathbb{Z})} \in X$$

wird  $\mathfrak M$  zu einem abgeschlossenen Unterraum von X.  $\mathfrak M$  ist kompakt bezüglich der Produkttopologie auf X, also bezüglich punktweiser Konvergenz.

Sei nun  $\alpha:\Lambda\to\mathbb{N}$ , sodass  $M_{\alpha(\lambda)}\to M\in\mathfrak{M}$  (existiert da  $\mathfrak{M}$  kompakt). Es folgt

$$\forall f \in \ell^{\infty}(\mathbb{Z}) : M_{\alpha(\lambda)}(f) \to M(f)$$

Wegen  $M_{\alpha(\lambda)}(f) - M_{\alpha(\lambda)}(Tf) \xrightarrow{\lambda \to \infty} M(f) - M(Tf)$  und

$$\left| M_{\alpha(\lambda)}(f) - M_{\alpha(\lambda)}(Tf) \right| \le \frac{2 \cdot \|f\|_{\infty}}{\alpha(\lambda) + 1} \to 0$$

folgt M(f) = M(Tf) für alle  $f \in \ell^{\infty}(\mathbb{Z})$ .



## 5 Kompaktifizierungen

#### 5.1 Definition

Sei X ein topologischer Raum. Ein kompakter Raum  $\overline{X}$  heißt eine **Kompaktifizierung** von X, falls er X als offenen, dichten Unterraum enthält. (Oft heißt  $\partial X := \overline{X} \setminus X$  der Rand der Kompaktifizierung)

## 5.2 Beispiele

- (i)  $(-1,1) \subseteq [-1,1]$
- (ii)  $\mathring{D}^n:=\{x\in\mathbb{R}^n\,|\,\|x\|_2<1\}\subseteq D^n=\{x\in\mathbb{R}^n\,|\,\|x\|_2\leq 1\}. \text{ Für }n=2\text{:}$



$$\partial D^n = S^{n-1} := \{ x \in \mathbb{R}^n \, | \, \|x\|_2 = 1 \}$$

(iii)  $f:\mathbb{R}^n o\mathring{D}^n$ ,  $f(x):=rac{x}{1+\|x\|_2}$  ist ein Homöomorphismus. Daher können wir  $\mathbb{R}^n$  zu

$$\overline{\mathbb{R}^n} := \mathbb{R}^n \dot{\cup} (S^{n-1} \times \{\infty\}) \cong D^n$$

kompaktifizieren.

(iv) Definiere auf  $\mathbb{R}^n \cup \{\infty\}$  folgende Topologie

$$\mathcal{O} := \{U \,|\, U \subseteq \mathbb{R}^n \text{ ist offen}\} \cup \{U \cup \{\infty\} \,|\, U \subseteq \mathbb{R}^n \text{ offen und } \exists R > 0 : \mathbb{R}^n \setminus B_R(0) \subseteq U\}$$

Dann ist  $\mathbb{R}^n \cup \{\infty\}$  eine weitere Kompaktifizierung von  $\mathbb{R}^n$ . Übung:  $\mathbb{R}^n \cup \{\infty\} \cong S^n$ 

#### 5.3 Definition

Ein Hausdorffraum X heißt **lokalkompakt**, wenn für jedes  $x \in X$  und jede offene Umgebung U von x eine kompakte Umgebung K von x existiert mit  $K \subseteq U$ .

## 5.4 Beispiel

- (i)  $\mathbb{R}^n$  ist lokalkompakt: Sei  $x \in \mathbb{R}^n$  und  $U \subseteq \mathbb{R}^n$  eine offene Umgebung von x. U offen  $\Rightarrow \exists \varepsilon > 0$  mit  $B_{\varepsilon}(x) \subseteq U$ . Es folgt  $\overline{B_{\varepsilon/2}}(x) \subseteq B_{\varepsilon}(x) \subseteq U$ . Dann ist  $\overline{B_{\varepsilon/2}}(x)$  eine kompakte Umgebung von x, die in U liegt.
- (ii) Topologische Mannigfaltigkeiten sind lokalkompakt.
- (iii) Offene Teilräume von lokalkompakten Räumen sind lokalkompakt.

## 5.5 Proposition

Sei K kompakt und  $W\subseteq K$  offen. Dann ist W lokalkompakt. Insbesondere sind kompakte Räume auch lokalkompakt.

#### **Beweis**

Sei  $x \in W$  und U eine offene Umgebung von x in W. K Hausdorff  $\Rightarrow \forall y \in K \setminus U$  gibt es offene Umgebungen  $V_y$  von y und  $W_y$  von x mit  $V_y \cap W_y = \emptyset$ . Dann ist  $\{V_y \mid y \in K \setminus U\}$  eine offene Überdeckung von  $K \setminus U$ . Da mit K auch  $K \setminus U$  kompakt ist, gibt es  $Y_0 \subseteq K \setminus U$  endlich mit

$$K \setminus U \subseteq \bigcup_{y \in Y_0} V_y$$

16



Nun ist  $L:=K\setminus\bigcup_{y\in Y_0}V_y$  kompakt. Da  $\bigcap_{y\in Y_0}W_y\cap U$  offen ist und  $\left(\bigcap_{y\in Y_0}W_y\right)\cap U\subseteq L$  ist L eine Umgebung von x.

#### 5.6 Definition

Sei X lokalkompakt. Die **Einpunktkompaktifizierung** (EPK) von X ist  $\mathrm{EPK}(X) := X \cup \{\infty\}$  mit der folgenden Topologie:

$$U\subseteq X\cup\{\infty\}$$
 offen  $:\Leftrightarrow U\subseteq X$  ist offen oder  $U=(X\setminus K)\cup\{\infty\}$  mit  $K\subseteq X$  kompakt

## 5.7 Proposition

EPK(X) ist kompakt. Ist X nicht kompakt, so ist EPK(X) eine Kompaktifizierung von X.

#### **Beweis**

Sei  $\mathcal U$  eine offene Überdeckung von  $\mathrm{EPK}(X)$ . Sei  $U_0 \in \mathcal U$  mit  $\infty \in U_0$ . Dann existiert  $K \subseteq X$  kompakt mit  $U_0 = (X \setminus K) \cup \{\infty\}$ . Da K kompakt ist, gibt es  $U_1, \dots, U_n \in \mathcal U$  mit  $K \subseteq U_1 \cup \dots \cup U_n$ . Dann ist  $U_0, U_1, \dots, U_n$  eine endliche Teilüberdeckung von  $\mathrm{EPK}(X)$ .

Zu zeigen:  $\mathrm{EPK}(X)$  ist Hausdorff. Seien  $x,y\in\mathrm{EPK}(X), x\neq y$ . Gilt  $x\neq\infty\neq y$  so gibt es  $U,V\subseteq X$  mit  $x\in U,y\in V$  und  $U\cap V=\emptyset$ , da X hausdorffsch ist. Nach Definition sind dann U,V auch offen in  $\mathrm{EPK}(X)$ . Andernfalls sei o.B.d.A.  $x=\infty$ . Da X lokalkompakt ist, gibt es eine Umgebung K von Y mit  $K\subseteq X$  kompakt. Dann sind  $U:=\mathring{K}$  und  $V:=(X\setminus K)\cup\{\infty\}$  disjunkte offene Umgebungen von X und Y.

Insgesamt gezeigt:  $\mathrm{EPK}(X)$  ist kompakt. Sei X nicht kompakt. Ist U eine Umgebung von  $\infty \in \mathrm{EPK}(X)$ , so gibt es  $K \subseteq X$  kompakt mit  $U = (X \setminus K) \cup \{\infty\}$ . Dann ist  $U \cap X = X \setminus K$ . Da X nicht kompakt ist, ist  $X \neq K$ , also  $X \setminus K \neq \emptyset$ . Daher hat jede Umgebung von  $\infty \in \mathrm{EPK}(X)$  einen nicht-trivialen Schnitt mit X. Also ist  $X \subseteq \mathrm{EPK}(X)$  dicht.  $\square$ 

## 5.8 Frage

Sei  $f:X\to Y$  stetig, X,Y lokalkompakt. Gibt es dann eine stetige Fortsetzung  $\overline{f}:\mathrm{EPK}(X)\to\mathrm{EPK}(Y)$  mit  $\overline{f}(\infty)=\infty$ ?

## **Beispiel**

(i)  $f: \mathbb{R} \to \mathbb{R}$ ,  $f(x) \equiv 0$ . Dann ist  $\overline{f}: \mathrm{EPK}(\mathbb{R}) \to \mathrm{EPK}(\mathbb{R})$  mit

$$\overline{f}(x) = \begin{cases} f(x) = 0, & \text{falls } x \in \mathbb{R} \\ \infty, & \text{falls } x = \infty \end{cases}$$

sicher nicht stetig. Natürlich ist aber  $\tilde{f}: \mathrm{EPK}(\mathbb{R}) \to \mathrm{EPK}(\mathbb{R})$  mit  $\tilde{f}(x) = 0 \ \forall x \in \mathrm{EPK}(\mathbb{R})$  stetig.

(ii)  $f: \mathbb{R} \to \mathbb{R}$  mit

$$f(x) = \begin{cases} 1, & \text{falls } x \ge 1 \\ x, & \text{falls } x \in [0, 1] \\ 0, & \text{falls } x \le 0 \end{cases}$$

Dann gibt es keine stetige Fortsetzung  $\overline{f}:\mathrm{EPK}(\mathbb{R})\to\mathrm{EPK}(\mathbb{R})$ , denn die Folge  $x_n=n$  konvergiert in  $\mathrm{EPK}(\mathbb{R})$  gegen  $\infty$ . Da  $f(x_n)=1$   $\forall n$  müsste  $\overline{f}(\infty)=1$  sein. Die Folge  $y_n=-n$  konvergiert in  $\mathrm{EPK}(\mathbb{R})$  auch gegen  $\infty$ . Da  $f(y_n)=0$   $\forall n$  müsste  $\overline{f}(\infty)=0$  sein  $\not$  .

5 Kompaktifizierungen 17



## 5.9 Definition

Seien X und Y lokalkompakt. Eine stetige Abbildung  $f:X\to Y$  heißt **eigentlich**, wenn für jede kompakte Teilmenge  $K\subseteq Y$  auch  $f^{-1}(K)\subseteq X$  kompakt ist.

## 5.10 Satz

Seien X,Y lokalkompakt und  $f:X\to Y$  stetig. Dann sind äquivalent:

- (1) f ist eigentlich
- (2)  $\overline{f}: \mathrm{EPK}(X) \to \mathrm{EPK}(Y)$  mit

$$\overline{f}(x) = \begin{cases} f(x), & \text{falls } x \in X \\ \infty, & \text{falls } x = \infty \end{cases}$$

ist stetig

#### **Beweis**

- "(1) $\Rightarrow$ (2)": Sei  $U\subseteq \mathrm{EPK}(Y)$  offen. Ist  $\infty\not\in U$ , so ist  $\bar{f}^{-1}(U)=f^{-1}(U)$  offen, da f stetig ist. Ist  $\infty\in U$ , so gibt es  $K\subseteq Y$  mit  $U=(X\setminus K)\cup\{\infty\}$ . Da f eigentlich ist, ist auch  $L:=f^{-1}(K)\subseteq X$  kompakt und  $\bar{f}^{-1}(U)=(X\setminus L)\cup\{\infty\}$  ist offen in  $\mathrm{EPK}(X)$ .
- "(2) $\Rightarrow$ (1)": Sei  $K\subseteq Y$  kompakt. Dann ist  $U=(Y\setminus K)\cup\{\infty\}\subseteq Y$  offen. Da $\bar{f}$  stetig ist, ist auch  $\bar{f}^{-1}(U)=\big(X\setminus f^{-1}(K)\big)\cup\{\infty\}$  offen. Damit ist  $f^{-1}(K)\subseteq X$  kompakt.

18 5 Kompaktifizierungen



## 6 Der Approximationssatz von Stone-Weierstraß

#### 6.1 Definition

Sei X ein lokalkompakter Raum. Eine stetige Funktion  $f:X\to\mathbb{R}$  verschwindet im Unendlichen, falls für jedes  $\varepsilon>0$ 

$$K_{\varepsilon} := \{ x \in X \mid |f(x)| \ge \varepsilon \}$$

kompakt ist. Die **Algebra** aller solchen Funktionen bezeichnen wir mit  $C_0(X)$  und für  $f \in C_0(X)$  setzen wir

$$\|f\|_{\infty} \coloneqq \sup_{x \in X} |f(x)| = \max_{x \in X} |f(x)|$$

 $\|.\|_{\infty}$  ist eine Norm auf  $C_0(X)$ .

### **Bemerkung**

$$f:X\to\mathbb{R} \text{ liegt in } C_0(X) \iff \overline{f}:\mathrm{EPK}(X)\to\mathbb{R} \text{ mit } \overline{f}(x)=\begin{cases} f(x), & \text{ falls } x\in X\\ 0, & \text{ falls } x=\infty \end{cases} \text{ ist stetig.}$$

#### 6.2 Definition

Sei  $\mathcal{B} \subseteq C_0(X)$ . Wir sagen, dass  $\mathcal{B}$  die Punkte von X streng trennt, falls es zu  $x,y \in X, x \neq y$  ein  $f \in \mathcal{B}$  gibt mit  $0 \neq f(x) \neq f(y) \neq 0$ .

## Bemerkung

Sei  $\mathcal{A} \subseteq C_0(X)$  eine Unteralgebra. Gilt

a) 
$$\forall x, y \in X : \exists f \in \mathcal{A} : f(x) \neq f(y)$$

b) 
$$\forall x \in X : \exists g \in \mathcal{A} : g(x) \neq 0$$

so trennt  $\mathcal A$  die Punkte von X streng.

#### Beispie

Sei  $[a,b]\subseteq\mathbb{R}$  ein kompaktes Intervall. Sei  $\mathcal{A}:=\{x\mapsto p(x)\,|\,p\in R[t]\}\subseteq C_0([a,b])$ . Dann trennt  $\mathcal{A}$  die Punkte von [a,b] streng.

#### 6.3 Satz (Stone-Weierstraß)

Sei X ein lokalkompakter Raum und sei  $\mathcal{A} \subseteq C_0(X)$  eine Unteralgebra, die die Punkte von X streng trennt. Dann ist  $\mathcal{A} \subseteq C_0(X)$  dicht bezüglich  $\|.\|_{\infty}$ .

## Beweis (mit Lemma 1, 2, 3)

Sei  $h\in C_0(X)$  beliebig. Sei  $\varepsilon>0$  beliebig. Zu zeigen:  $\exists f\in \bar{\mathcal{A}}: \|f-h\|_\infty<\varepsilon$ 

**Schritt 1:** Wir konstruieren für  $y \in X$   $f_y \in \bar{\mathcal{A}}$  mit

a) 
$$f_y(y) = h(y)$$

b) 
$$f_u(z) \ge h(z) - \varepsilon$$
 für alle  $z \in X$ 

Zu  $x \in X$  gibt es nach Lemma 3 (6.9)  $g_x \in \mathcal{A}$  mit

$$g_x(y) = h(y)$$
 und  $g_x(x) = h(x)$ .

Sei  $U_x:=\{z\in X\,|\,g_x(z)>h(z)-\varepsilon\}$ . Da  $g_x$  und h stetig sind, ist  $U_x$  offen. Da  $g_x$  und h in  $\infty$  verschwinden, ist  $X\setminus U_x$  kompakt. Wegen  $g_x(x)=h(x)$  ist  $x\in U_x$ . Zu festem  $x\in X$  gibt es



dann  $x_2, \ldots, x_k$  mit  $X \setminus U_{x_1} \subseteq \bigcup_{i=2}^k U_{x_i}$ . Dann gilt auch

$$X \subseteq \bigcup_{i=2}^{k} U_{x_i}$$

 $f_y:=\max\{g_{x_1},\ldots,g_{x_k}\}$  ist die gesuchte Funktion. Wegen Lemma 2 (6.7) bzw. der Bemerkung 6.8 gilt  $f_y\in \bar{\mathcal{A}}$ .

**Schritt 2:** Konstruktion von f. Zu  $y \in X$  sei  $V_y := \{z \in X \mid f_y(z) < h(z) + \varepsilon\}$ . Wieder ist  $V_y$  offen,  $X \setminus V_y$  kompakt und  $y \in V_y$ . Also gibt es wieder  $y_1, \ldots, y_l$  mit  $X = \bigcup_{i=1}^l V_{y_i}$ . Für  $f := \min\{f_{y_1}, \ldots, f_{y_l}\}$  gilt dann

$$h(z) - f(z) = \max_{i} h(z) - f_{y_i}(z) < \varepsilon$$

da  $f_{y_i}(z) \ge h(z) - \varepsilon \stackrel{\text{a)}}{\Rightarrow} h(z) - f_{y_i}(z) \le \varepsilon$  für jedes i. Weiter gilt

$$f(z) - h(z) = \min_{i} f_{y_i}(z) - h(z) < \varepsilon$$

nach Definition der  $V_{u_i}$ . Also  $||f - h||_{\infty} < \varepsilon$ .

### 6.4 Satz von Dini

Sei  $(f_n:[0,1]\to\mathbb{R})_{n\in\mathbb{N}}$  eine punktweise monoton wachsende Folge stetiger Funktionen, die punktweise gegen die stetige Funktion f konvergiert. Dann  $f_n\to f$  gleichmäßig, d.h.  $\|f_n-f\|_\infty\to 0$ .

#### **Beweis**

Sei  $\varepsilon > 0$ . Zu jedem  $t \in [0,1]$  gibt es  $n_t$  mit

$$\forall n \ge n_t : f(t) \ge f_n(t) \ge f_{n_t}(t) \ge f(t) - \varepsilon.$$

Da f und  $f_{n_t}$  stetig sind, ist  $U_t:=\{s\in[0,1]\,|\,f(s)-f_{n_t}(s)<\varepsilon\}$  offen. Da [0,1] kompakt ist, gibt es  $t_0,\ldots,t_k\in[0,1]$  mit

$$[0,1] = U_{t_0} \cup \ldots \cup U_{t_k}$$

Für alle  $n \ge \max\{n_{t_0}, \dots, n_{t_k}\}$  folgt  $||f_n - f||_{\infty} \le \varepsilon$ .

## 6.5 Lemma 1

Sei  $g(t)=\sqrt{t}$  für  $t\in[0,1]$ . Es gibt eine Folge  $(p_n)_{n\in\mathbb{N}}$  von reellen Polynomen so dass  $p_n\to g$  gleichmäßig auf [0,1] und  $p_n(0)=0$ .

#### **Beweis**

Sei  $p_0 \equiv 0$  und für n > 0

$$p_{n+1}(t) := p_n(t) - \frac{1}{2} \cdot (p_n(t)^2 - t)$$

Dann  $p_n(0)=0$ . Per Induktion nach n zeigen wir:  $0 \le p_n(t) \le \sqrt{t}$  für alle  $t \in [0,1]$ 

$$n = 0 \checkmark$$

 $n \mapsto n+1$ 

$$p_{n+1}(t) - \sqrt{t} = p_n(t) - \sqrt{t} - \frac{1}{2} \left( p_n(t)^2 - t \right) = \left( p_n(t) - \sqrt{t} \right) - \frac{1}{2} \left( p_n(t) - \sqrt{t} \right) \left( p_n(t) + \sqrt{t} \right)$$

$$= \underbrace{\left( p_n(t) - \sqrt{t} \right)}_{\leq 0} \underbrace{\left( 1 - \frac{1}{2} \underbrace{\left( p_n(t) + \sqrt{t} \right)}_{\text{IV}: \leq 2\sqrt{t}} \right)}_{> 0}$$



Also  $p_{n+1}(t) - \sqrt{t} \le 0$ . Es folgt, dass  $p_n(t)$  monoton wachsend ist für jedes t. Wegen  $p_n(t) \le \sqrt{t}$  existiert  $\lim_{n \to \infty} p_n(t)$  für  $t \in [0,1]$ . Es folgt

$$0 = \lim_{n \to \infty} p_{n+1}(t) - \lim_{n \to \infty} p_n(t) = \lim_{n \to \infty} \left( p_{n+1}(t) - p_n(t) \right) = \lim_{n \to \infty} -\frac{1}{2} \left( p_n(t)^2 - t \right)$$
$$= -\frac{1}{2} \left( \left( \lim_{n \to \infty} p_n(t) \right)^2 - t \right)$$

 $\Rightarrow \lim_{n o \infty} p_n(t) = \sqrt{t}$ . Mit Dini (6.4) folgt  $p_n o g$  gleichmäßig.

## 6.6 Bemerkung

Sei  $\mathcal{A}\subseteq C_0(X)$  eine Algebra. Ist  $p\in\mathbb{R}[t]$  ein Polynom mit p(0)=0 und  $f\in\mathcal{A}$ , so liegt auch  $p\circ f\in\mathcal{A}$ :  $p=\sum_{i=1}^n a_it^i$ . Denn

$$p(f(t)) = \sum_{i=1}^{n} a_i f(t)^i = \left(\sum_{i=1}^{n} a_i f^i\right)(t) \in \mathcal{A}.$$

## 6.7 Lemma 2

Sei X lokalkompakt,  $\mathcal{A} \subseteq C_0(X)$  eine Unteralgebra. Dann gilt:  $f \in A \Rightarrow |f| \in \bar{\mathcal{A}}$   $(\bar{\mathcal{A}} := \text{Abschluss von } \mathcal{A} \text{ bezüglich } \|.\|_{\infty})$ 

#### **Beweis**

Sei  $f \in \mathcal{A}$ . O.B.d.A. sei  $f(X) \subseteq [-1,1]$ . Dann  $f(x)^2 \in [0,1]$  für alle  $x \in X$ . Seien die  $p_n$  die Polynome aus Lemma 1 (6.5). Dann

$$\left| p_n(f(x)^2) - \sqrt{f(x)^2} \right| = \left| p_n(f(x)^2) - |f(x)| \right| \xrightarrow{n \to \infty} 0$$

gleichmäßig in  $x \in X$ . Es folgt  $\left\|p_n(f^2) - |f|\right\|_{\infty} \to 0$ . Wegen  $f \in \mathcal{A}$  gilt  $f^2 \in \mathcal{A}$  und nach 6.6  $p_n(f^2) \in \mathcal{A}$ . Also  $|f| \in \bar{\mathcal{A}}$ .

## 6.8 Bemerkung

(i) Für  $f, g \in \mathcal{A}$  liegen

$$\max(f,g) = \frac{1}{2} \big( f + g + |f - g| \big) \quad , \quad \min(f,g) = \frac{1}{2} \big( f + g - |f - g| \big) \in \bar{\mathcal{A}}$$

(ii) Wegen  $\bar{\mathcal{A}} = \bar{\bar{\mathcal{A}}}$  gilt auch  $f, g \in \bar{\mathcal{A}} \Rightarrow \min(f, g), \max(f, g) \in \bar{\mathcal{A}}$ .

### 6.9 Lemma 3

Sei X lokalkompakt,  $\mathcal{A} \subseteq C_0(X)$  eine Unteralgebra, die die Punkte von X streng trennt. Zu  $x,y \in X$ ,  $x \neq y$ ,  $\alpha, \beta \in \mathbb{R}$  gibt es dann  $f \in \mathcal{A}$  mit  $f(x) = \alpha, f(y) = \beta$ .

#### **Beweis**

Es gibt  $g \in \mathcal{A}$  mit  $0 \neq g(x) \neq g(y) \neq 0$ . Ansatz: Für  $\lambda, \mu \in \mathbb{R}$  betrachte  $f := \lambda g + \mu g^2$ .

$$\begin{array}{l} f(x) = \alpha \\ f(y) = \beta \end{array} \iff \begin{array}{l} g(x)\lambda + g(x)^2\mu = \alpha \\ g(y)\lambda + g(y)^2\mu = \beta \end{array}$$

Da

$$\det \begin{pmatrix} g(x) & g(x)^2 \\ g(y) & g(y)^2 \end{pmatrix} = g(x)g(y)^2 - g(y)g(x)^2 = g(x)g(y)(g(y) - g(x)) \neq 0$$

gibt es  $\lambda, \mu \in \mathbb{R}$ , sodass das Gleichungssystem eine Lösung hat.



## 7 Metrisierbarkeit

#### 7.1 Definition

Ein topologischer Raum X heißt **metrisierbar**, wenn es eine Metrik auf X gibt, so dass die zugehörige Topologie die Topologie von X ist.

#### Bemerkung

Ist X metrisierbar, so gibt es für jedes  $x \in X$  eine abzählbare Umgebungsbasis  $\mathcal{U}_x$  bei x, also eine abzählbare Menge von offenen Umgebungen von x, sodass jede Umgebung von x eine Menge aus  $\mathcal{U}_x$  enthält.

### **Beispiel**

$$(X,\mathcal{O}_{\mathrm{dis}}) \text{ ist metrisierbar: } d_{\mathrm{dis}}(x,y) := \begin{cases} 1, & \text{ falls } x \neq y \\ 0, & \text{ sonst} \end{cases}$$

### 7.2 Definition

Ein topologischer Hausdorffraum X heißt **normal**, wenn er die folgende Trennungseigenschaft hat: Sind  $A,B\subseteq X$  abgeschlossen mit  $A\cap B=\emptyset$ , so gibt es  $U,V\subseteq X$  offen mit  $A\subseteq U$ ,  $B\subseteq V$  mit  $U\cap V=\emptyset$ .

#### **Bemerkung**

Metrisierbare Räume sind normal.

(Übung)

## 7.3 Satz (Urysohn)

Sei X ein normaler Raum, der das zweite Abzählbarkeitsaxiom erfüllt (1.14). Dann ist X metrisierbar.

#### Beweis (mit Urysohns Lemma, 7.4)

Sei  $\mathcal U$  eine abzählbare Basis der Topologie von X. Da X normal ist, gibt es zu jedem Paar  $U,V\in\mathcal U$  mit  $\overline U\subseteq V$  (also  $\overline U\cap X\setminus V=\emptyset$ ) eine stetige Funktion  $f_{U,V}:X\to [0,1]$  mit  $f_{U,V}(x)=0$  für  $x\in \overline U$  und  $f_{U,V}(y)=1$  für  $y\not\in V$  (7.4). Da  $\mathcal U$  abzählbar ist, ist das abzählbare Produkt

$$Z := \prod_{\substack{U,V \in \mathcal{U} \\ \overline{U} \subset V}} [0,1]$$

metrisierbar (Übung, Blatt 4). Wir definieren  $F:X\to Z$  durch

$$F(x) := \left( f_{U,V}(x) \right)_{\substack{U,V \in \mathcal{U} \\ \overline{U} \subseteq V}}$$

Da die  $f_{U,V}$  stetig sind, ist F bezüglich der Produkttopologie auf Z auch stetig. Es bleibt zu zeigen:  $F:X\to F(X)\subseteq Z$  ist ein Homöomorphismus.

Sind  $x,y\in X$  mit  $x\neq y$ , so gibt es  $U,V\in \mathcal{U}$  mit  $\overline{U}\subseteq V$ ,  $x\in U$ ,  $y\not\in V$ . Daher gilt  $f_{U,V}(x)=0\neq 1=f_{U,V}(y)$ . Insbesondere ist F injektiv; durch Einschränkung auf das Bild also bijektiv. Es genügt nun zu zeigen, dass F offene Mengen von X auf offene Mengen in F(X) abbildet. Sei  $W\subseteq X$  offen, sei  $x\in W$ . Wir müssen eine offene Menge  $O\subseteq Z$  finden mit  $F(x)\in O$  und  $F^{-1}(O)\subseteq W$ .

Behauptung:  $\exists U_0 \in \mathcal{U} \text{ mit } x \in U_0, \overline{U_0} \subseteq W.$ 

Sei  $O := \prod_{\overline{U} \subset V} I_{U,V}$  mit

$$I_{U,V} = \begin{cases} [0,1), & \text{falls } U = U_0, V = W \\ [0,1], & \text{sonst} \end{cases}$$

**22** 7 Metrisierbarkeit



Dann ist  $F^{-1}(O)=f_{U_0,W}^{-1}ig([0,1)ig)\subseteq W$  und  $F(x)\in O$ , da  $f_{U_0,W}(x)=0$ .

### Beweis der Behauptung

Da X Hausdorff ist, ist  $\{x\}$  abgeschlossen. Da auch  $X\setminus W$  abgeschlossen ist, gibt es offene mengen  $U_1$  und  $V_1$  mit  $U_1\cap V_1=\emptyset$ ,  $x\in U_1$  und  $X\setminus W\subseteq V_1$ . Insbesondere ist  $\overline{U_1}\subseteq X\setminus V_1\subseteq W$ . Da  $\mathcal U$  eine Basis ist, gibt es  $U_0\in \mathcal U$  mit  $x\in U_0$  und  $U_0\subseteq U_1$ .

## 7.4 Urysohns Lemma

Sei X normal und  $A,B\subseteq X$  abgeschlossen mit  $A\cap B=\emptyset$ . Dann gibt es eine stetige Funktion  $f:X\to [0,1]$  mit f(a)=0 für alle  $a\in A$  und f(b)=1 für alle  $b\in B$ .

#### Reweis

Sei  $U_1 := X \setminus B$ . Da X normal ist, gibt es  $U_0 \subseteq X$  offen mit  $A \subseteq U_0$  und  $U_0 \cap B = \emptyset$ , also  $\overline{U_0} \subseteq U_1$ .  $(A \subseteq U_0 \text{ und } V_0 \supseteq B \text{ mit } U_0 \cap V_0 = \emptyset \Rightarrow \overline{U_0} \cap B = \emptyset \text{ also } \overline{U_0} \subseteq U_1)$  Ebenso finden wir

- $U_{1/2}\subseteq X$  offen mit  $\overline{U_0}\subseteq U_{1/2}$  und  $\overline{U_{1/2}}\subseteq U_1$ ,
- $U_{1/4}, U_{3/4} \subseteq X$  offen mit  $\overline{U_0} \subseteq U_{1/4}, \overline{U_{1/4}} \subseteq U_{1/2}$  und  $\overline{U_{1/2}} \subseteq U_{3/4}, \overline{U_{3/4}} \subseteq U_1, \dots$

Induktiv finden wir für jedes  $r=\frac{m}{2^n}$  mit  $0\leq m\leq 2^n$  eine offene Menge  $U_r\subseteq X$  so dass gilt:  $\overline{U_r}\subseteq U_s$  für r< s mit  $A\subseteq U_0$  und  $B=X\setminus U_1$ . Sei nun  $f:X\to [0,1]$  definiert durch

$$f(x) = \begin{cases} 1, & \text{falls } x \in B\\ \inf\{r \mid x \in U_r\}, & \text{falls } x \notin B \end{cases}$$

Für  $\alpha \in [0,1]$  ist  $f^{-1} \big( [0,\alpha) \big) = \bigcup_{r < \alpha} U_r$  offen und

$$f^{-1}((\alpha,1]) = \bigcup_{r>\alpha} X \setminus U_r = \bigcup_{r>\alpha} X \setminus \overline{U_r}$$

offen. Damit ergibt sich leicht die Stetigkeit von f.

7 Metrisierbarkeit 23



## 8 Zusammenhängende topologische Räume

#### 8.1 Definition

Sei X ein topologischer Raum.

- (1) X heißt **zusammenhängend**, falls er nicht als die disjunkte Vereinigung von zwei nicht leeren offenen Mengen geschrieben werden kann.
- (2) X heißt **wegzusammenhängend**, falls es zu allen  $x,y\in X$  eine stetige Abbildung  $\omega:[0,1]\to X$  gibt mit  $\omega(0)=x$  und  $\omega(1)=y$ .  $\omega$  heißt dann ein **Weg** von x nach y.
- (3) X heißt **lokal zusammenhängend**, falls es für jedes  $x \in X$  und jede offene Umgebung U von x eine zusammenhängende Umgebung V von x gibt mit  $V \subseteq U$ .
- (4) X heißt **lokal wegzusammenhängend**, falls es für jedes  $x \in X$  und jede offene Umgebung U von x eine wegzusammenhängende Umgebung V von x gibt mit  $V \subseteq U$ .

## 8.2 Bemerkung

- (1)  $\mathbb{R}\setminus\{0\}=(-\infty,0)\cup(0,\infty)$  ist nicht zusammenhängend und auch nicht wegzusammenhängend (ZWS!).
- (2) [0,1] ist zusammenhängend: Angenommen es wäre  $[0,1]=U\cup V$  mit U,V offen,  $U\cap V=\emptyset$ . Dann sind  $U=[0,1]\setminus V$  und  $V=[0,1]\setminus U$  auch abgeschlossen. O.B.d.A. sei  $0\in U$ . Dann liegt inf V sowohl in  $\overline{V}$  als auch in  $\overline{U}$ . Also  $U\cap V=\overline{U}\cap \overline{V}\neq\emptyset$   $\not z$ . Natürlich ist [0,1] auch wegzusammenhängend: Zu  $x,y\in [0,1]$  ist  $\omega:[0,1]\to [0,1]$  mit  $\omega(t)=(1-t)\cdot x+t\cdot y$  ein stetiger Weg von x nach y.
- (3) Ist  $f: X \to Y$  stetig und surjektiv und X zusammenhängend, so ist auch Y zusammenhängend: Ist  $Y = U \dot{\cup} V$ , so ist auch  $X = f^{-1}(U) \dot{\cup} f^{-1}(V)$  und es gilt  $U \neq \emptyset \iff f^{-1}(U) \neq \emptyset$  und  $V \neq \emptyset \iff f^{-1}(V) \neq \emptyset$ .
- (4) Ist X wegzusammenhängend, so ist X auch zusammenhängend: Sei  $X=U\cup V$  mit U,V offen und  $U\neq\emptyset$ ,  $V\neq\emptyset$ . Sei  $x\in U$  und  $y\in V$ . Da X wegzusammenhängend ist, gibt es einen Weg  $\omega:[0,1]\to X$  von x nach y. Dann ist  $[0,1]=\omega^{-1}(U)\cup\omega^{-1}(V)$ . Es ist  $0\in\omega^{-1}(U)$  und  $1\in\omega^{-1}(V)$ . Also  $\omega^{-1}(U)\neq\emptyset\neq\omega^{-1}(V)$ . Da [0,1] nach (1) zusammenhängend ist, ist  $\omega^{-1}(U)\cap\omega^{-1}(V)\neq\emptyset$ . Damit ist auch  $U\cap V\neq\emptyset$ .
- (5) Ist  $f: X \to Y$  ein Homöomorphismus, so gelten:

X wegzusammenhängend  $\iff Y$  wegzusammenhängend X zusammenhängend  $\iff Y$  zusammenhängend

## 8.3 Beispiel

Zeichnung hinzufügen (i) Der sogenannte **Polnische Kreis** PK gegeben durch

$$PK = \left\{ (x,y) \in \mathbb{R}^2 \middle| \begin{array}{ccc} (x \in [-1,1] & \wedge & y = 1) \\ \vee & (x \in \{-1,1\} & \wedge & y \in [0,1]) \\ \vee & (x \in [-1,0] & \wedge & y = 0) \\ \vee & (x = 0 & \wedge & y \in [-1/2,1/2]) \\ \vee & (x \in (0,1] & \wedge & y = 1/2 \cdot \sin(\pi/x)) \end{array} \right\}$$

ist wegzusammenhängend, aber nicht lokal wegzusammenhängend.



(ii) 
$$\left\{(x,y)\in\mathbb{R}^2\left|\begin{array}{ccc}x=0&\wedge&y\in[-1/2,1/2]\\\vee&x\in(0,1]&\wedge&y=1/2\cdot\sin(\pi/x)\end{array}\right.\right\}$$

ist zusammenhängend, aber nicht wegzusammenhängend.



Abbildung 3: Der Polnische Kreis und eine nicht wegzusammenhängende Teilmenge

## 8.4 Satz (Topologische Invarianz der Dimension)

Es gilt:  $\mathbb{R}^n \cong \mathbb{R}^m \iff n = m$ 

## Beweis für n=1

Angenommen es gibt einen Homöomorphismus  $f:\mathbb{R}\to\mathbb{R}^m$  mit  $m\geq 2$ . Durch Einschränkung von f erhalten wir dann auch einen Homöomorphismus  $\mathbb{R}\setminus\{0\}\to\mathbb{R}^m\setminus\{f(0)\}$ . Es ist aber  $\mathbb{R}\setminus\{0\}$  nicht wegzusammenhängend und für  $m\geq 2$ ,  $x\in\mathbb{R}^m$  ist  $\mathbb{R}^m\setminus\{x\}$  wegzusammenhängend  $\not \downarrow$ .

### **Bemerkung**

Eine Variante dieses Arguments kann benutzt werden, um zu zeigen, dass  $\mathbb{R}^n \cong \mathbb{R}^m$  genau dann gilt, wenn n=m. Dafür benötigt man aber höher dimensionale Varianten des Begriffs wegzusammenhängend.



## 9 Die Fundamentalgruppe

#### 9.1 Definition

Ein topologischer Raum X heißt **einfach zusammenhängend**, wenn jede stetige Abbildung  $f:S^1\to X$  eine stetige Fortsetzung  $F:D^2\to X$  besitzt.

#### **Bemerkung**

Ein topologischer Raum X ist genau dann wegzusammenhängend, wenn jede stetige Abbildung  $f: S^0 \to X$  ein stetige Fortsetzung  $F: D^1 \to X$  besitzt.

## 9.2 Bemerkung

(i)  $\mathbb{R}^n$  ist einfach zusammenhängend: Sei  $f: S^1 \to \mathbb{R}^n$  stetig. Definiere  $F: D^2 \to \mathbb{R}^n$  durch:

$$F(t\cdot v):=t\cdot f(v) \qquad \text{ für } t\in [0,1], v\in S^1$$

- (ii) Ist  $X \cong Y$  dann: X einfach zusammenhängend  $\Leftrightarrow Y$  einfach zusammenhängend.
- (iii) Später:  $\mathbb{R}^2 \setminus \{0\}$  ist nicht einfach zusammenhängend.

#### 9.3 Definition

Seien  $\omega_0, \omega_1: [0,1] \to X$  Wege in X. Eine Homotopie mit festen Endpunkten (oder relativ  $\{0,1\}$ ) zwischen  $\omega_0$  und  $\omega_1$  ist eine stetige Abbildung  $H: [0,1] \times [0,1] \to X$ , so dass gilt:

(i) 
$$H(s,0) = \omega_0(s) \ \forall s \in [0,1]$$

(ii) 
$$H(s,1) = \omega_1(s) \ \forall s \in [0,1]$$

(iii) 
$$H(0,t) = \omega_0(0) = \omega_1(0) \ \forall t \in [0,1]$$

(iv) 
$$H(1,t) = \omega_0(1) = \omega_1(1) \ \forall t \in [0,1]$$

Durch

$$\omega_0 \sim \omega_1 :\Leftrightarrow \exists$$
 Homotopie relativ  $\{0,1\}$  zwischen  $\omega_0$  und  $\omega_1$ 

wird eine Äquivalenzrelation auf der Menge aller Wege in X erklärt. Die Äquivalenzklassen heißen **Homotopieklassen**, wir schreiben  $[\omega]$  für die Homotopieklasse von  $\omega$ .

#### 9.4 Definition

Ein Weg  $\omega:[0,1]\to X$  heißt eine **Schleife** in X, falls  $\omega(0)=\omega(1)$ .

#### 9.5 Lemma

X ist genau dann einfach zusammenhängend, wenn jede Schleife in X homotop relativ  $\{0,1\}$  zu einer konstanten Schleife ist.

## **Beweis**

Beweis per Zeichnung:





## 9.6 Notation

Für  $x \in X$  bezeichne  $c_x : [0,1] \to X$  die konstante Schleife bei x;  $c_x(t) = x \ \forall t \in [0,1]$ .

## 9.7 Definition

Seien  $\omega$  und  $\omega'$  Wege in X mit  $\omega(1)=\omega'(0)$ . Dann ist der **Kompositionsweg**  $\omega*\omega':[0,1]\to X$  definiert durch

$$\omega*\omega'(t) = \begin{cases} \omega(2t), & \text{falls } t \in [0,1/2] \\ \omega'(2t-1), & \text{falls } t \in [1/2,1] \end{cases}$$

## 9.8 Lemma

a) Seien  $\omega, \omega', \omega''$  Wege in X mit  $\omega(1) = \omega'(0)$  und  $\omega'(1) = \omega''(0)$ . Dann gilt

$$\left[ (\omega * \omega') * \omega'' \right] = \left[ \omega * (\omega' * \omega'') \right]$$

b) Seien  $\omega_0, \omega_0', \omega_1, \omega_1'$  Wege in X mit  $\omega_0(1) = \omega_0'(0)$ ,  $\omega_1(1) = \omega_1'(0)$  und  $[\omega_0] = [\omega_1]$  und  $[\omega_0'] = [\omega_1']$ . Dann gilt

$$[\omega_0 * \omega_0'] = [\omega_1 * \omega_1']$$

c) Sei  $\omega$  ein Weg in X. Sei  $\overline{\omega}:[0,1]\to X$  der umgekehrte Weg, also  $\overline{\omega}(t):=\omega(1-t)$ . Dann gilt  $[\omega*\overline{\omega}]=[c_{\omega(0)}], [\overline{\omega}*\omega]=[c_{\omega(1)}].$ 

d) Sei  $\omega$  ein Weg in X. Dann gilt

$$[\omega * c_{\omega(1)}] = [\omega]$$

#### Beweis (nur a)

Sei  $\varphi:[0,1]\to[0,1]$  gegeben wie in Abbildung 4 gezeichnet. Dann gilt

$$\Big(\omega*\big(\omega'*\omega''\big)\Big)(s)=\Big(\big(\omega*\omega'\big)*\omega''\Big)(\varphi(s))$$

Die gesuchte Homotopie mit festen Endpunkten wird durch

$$H(s,t) := \left( \left( \omega * \omega' \right) * \omega'' \right) \left( (1-t)s + t\varphi(s) \right)$$

definiert.



Abb. 4: Funktion  $\varphi$  aus dem Beweis zu 9.8

## 9.9 Korollar

Sei X ein topologischer Raum und  $x_0 \in X$  fest. Dann wird

$$\pi_1(X, x_0) := \{ [\omega] \mid \omega \text{ ist eine Schleife in } X \text{ mit } \omega(0) = x_0 \}$$

durch die Komposition von Wegen zu einer Gruppe mit neutralem Element  $e = [c_{x_0}]$ .

### 9.10 Definition

 $\pi_1(X,x_0)$  heißt die **Fundamentalgruppe** von X bezüglich des **Basispunktes**  $x_0$ .

#### Bemerkung

X ist genau dann einfach zusammenhängend, wenn  $\pi_1(X,x_0)$  für alle  $x_0 \in X$  die triviale Gruppe ist.

9 Die Fundamentalgruppe 27



## 9.11 Bemerkung

Sei  $\eta$  ein Weg in X von  $x_1$  nach  $x_0$ . Dann definiert

$$\pi_1(X, x_0) \ni [\omega] \xrightarrow{\operatorname{conj}_{\eta}} [\eta * \omega * \overline{\eta}] \in \pi_1(X, x_1)$$

einen Isomorphismus zwischen  $\pi_1(X,x_0)$  und  $\pi_1(X,x_1)$ . Wir zeigen nur:  $\mathrm{conj}_\eta$  ist ein Gruppenhomomorphismus.

$$\begin{split} \operatorname{conj}_{\eta}([\omega] * [\omega']) &= \operatorname{conj}_{\eta} \left( [\omega * \omega'] \right) = \left[ \left( \eta * (\omega * \omega') \right) * \overline{\eta} \right] \\ \operatorname{conj}_{\eta}([\omega]) \cdot \operatorname{conj}_{\eta}([\omega']) &= \left[ \left( \eta * \omega \right) * \overline{\eta} \right] \cdot \left[ \left( \eta * \omega' \right) * \overline{\eta} \right] = \left[ \left( \left( \eta * \omega \right) * \overline{\eta} \right) * \left( \left( \eta * \omega' \right) * \overline{\eta} \right) \right] \\ &\stackrel{\text{a)}}{=} \left[ \left( \eta * \left( \omega * (\overline{\eta} * \eta) \right) * \omega' \right) * \overline{\eta} \right] \stackrel{\text{c)}}{=} \left[ \left( \eta * \left( (\omega * c_{\omega(1)}) * \omega' \right) \right) * \overline{\eta} \right] \\ &\stackrel{\text{d)}}{=} \left[ \left( \eta * (\omega * \omega') \right) * \overline{\eta} \right] \end{split}$$

Insbesondere hängt der Isomorphismus von  $\pi_1(X,x_0)$  für wegzusammenhängende Räume nicht von der Wahl des Basispunktes ab.

28



## 10 Die Windungszahl

## 10.1 Frage

$$\pi_1(\mathbb{R}^2 \setminus \{0\}, x_0) =? \qquad \pi_1(S^1, x_0) =?$$

## 10.2 Proposition

Sei  $p:\mathbb{R}\to S^1$  definiert durch  $p(t)=e^{2\pi it}$ . Sei  $\omega:[0,1]\to S^1$  stetig und  $t_0\in\mathbb{R}$  mit  $p(t_0)=\omega(0)$ . Dann gibt es eine eindeutige stetige Abbildung.  $\hat{\omega}:[0,1]\to\mathbb{R}$  mit  $\hat{\omega}(0)=t_0$  und  $p\circ\hat{\omega}=\omega$ 

$$\begin{cases} 0 \end{cases} \xrightarrow{b_0} \mathbb{R}$$

$$\downarrow \qquad \qquad \downarrow^{\hat{\omega}} \qquad \qquad \downarrow^p$$

$$[0,1] \xrightarrow{\omega} S^1$$

 $\text{Ist } \eta:[0,1]\to S^1 \text{ mit } [\eta]=[\omega] \text{ und } \hat{\eta}:[0,1]\to \mathbb{R} \text{ mit } \hat{\eta}(0)=t_0\text{, } p\circ\hat{\eta}=\eta \text{ so gilt } \hat{\eta}(1)=\hat{\omega}(1).$ 

#### **Beweis**

Homotopiehebungssatz (später)

## 10.3 Definition

Sei  $\omega:[0,1]\to S^1$  eine Schleife in  $S^1$  mit  $\omega(0)=\omega(1)=1$ . Sei  $\hat\omega:[0,1]\to\mathbb{R}$  mit  $p\circ\hat\omega=\omega$  und  $\hat\omega(0)=0$ . Dann heißt  $\hat\omega(1)\in\mathbb{Z}=p^{-1}(1)$  die **Windungszahl** von  $\omega$ .

## 10.4 Satz

Die Windungszahl definiert einen Isomorphismus  $d:\pi_1(S^1,1)\to\mathbb{Z}$ ,  $[\omega]\mapsto\hat{\omega}(1)$ .

#### **Beweis**

Nach Proposition 10.2 ist d eine wohldefinierte Abbildung.

d ist surjektiv: Sei für  $n \in \mathbb{Z}$   $\hat{\omega}_n : [0,1] \to \mathbb{R}$  mit  $\hat{\omega}_n(t) = t \cdot n$ . Dann ist

$$d([p \circ \hat{\omega}_n]) = \hat{\omega}_n(1) = n$$

d ist Gruppenhomomorphismus: Seien  $\omega,\eta:[0,1]\to S^1$  Schleifen mit  $\omega(0)=\eta(0)=1$ . Sei  $\hat{\omega},\hat{\eta}:[0,1]\to\mathbb{R}$  mit  $\hat{\eta}(0)=0,\hat{\omega}(0)=0$ ,  $p\circ\hat{\omega}=\omega$ ,  $p\circ\hat{\eta}=\eta$ . Also  $d([\omega])=\hat{\omega}(1)$  und  $d([\eta])=\hat{\eta}(1)$ . Sei  $\hat{\eta}_+:[0,1]\to\mathbb{R}$  mit  $\hat{\eta}_+(s)=\hat{\eta}(s)+\hat{\omega}(1)$ . Dann ist  $\hat{\omega}*\hat{\eta}_+$  definiert,  $(\hat{\omega}*\hat{\eta}_+)(0)=0$ ,  $(\hat{\omega}*\hat{\eta}_+)(1)=\hat{\eta}(1)+\hat{\omega}(1)$ . Also

$$d([\omega * \eta]) = (\hat{\omega} * \hat{\eta}_+)(1) = \hat{\eta}(1) + \hat{\omega}(1) = d([\omega]) + d([\eta])$$

d ist injektiv: Sei  $\omega:[0,1]\to S^1$  eine Schleife mit  $d([\omega])=0$ . Dann gibt es  $\hat{\omega}:[0,1]\to\mathbb{R}$  mit  $\hat{\omega}(0)=0=\hat{\omega}(1)$  und  $p\circ\hat{\omega}=\omega$ . Nun ist  $\hat{H}:[0,1]\times[0,1]\to\mathbb{R}$  mit

$$\hat{H}(s,t) := (1-t) \cdot \hat{\omega}(s)$$

eine Homotopie mit festen Endpunkten zwischen  $\hat{\omega}$  und  $c_0$ . Dann ist  $p \circ H$  eine Homotopie mit festen Endpunkten zwischen  $\omega$  und  $c_1$ . Also  $[\omega] = e \in \pi_1(S^1, 1)$ .

10 Die Windungszahl 29



## 10.5 Definition

Eine surjektive stetige Abbildung  $p:\hat{X}\to X$  heißt eine **Überlagerung**, falls es zu jedem  $x\in X$  eine Umgebung U gibt, so dass sich  $p^{-1}(U)$  schreiben lässt als die disjunkte Vereinigung von offenen Mengen  $U_i\subseteq \hat{X}$ , sodass für jedes i die Einschränkung  $p\big|_{U_i}:U_i\to U$  ein Homöomorphismus ist. Eine solche Umgebung U heißt eine **elementare Umgebung**.

## 10.6 Beispiel

- (1)  $p: \mathbb{R} \to S^1$ ,  $t \mapsto e^{2\pi i t}$  ist eine Überlagerung.
- (2)  $p_n:S^1\to S^1$ ,  $z\mapsto z^n$  ist eine Überlagerung.
- (3) Sind  $p:\hat{X}\to X$ ,  $q:\hat{Y}\to Y$  Überlagerungen, so ist  $p\times q:\hat{X}\times \hat{Y}\to X\times Y$  eine Überlagerung. zB:  $R^2\to T^2=S^1\times S^1$

(4) 
$$S^2 \to \mathbb{R}P^2 = S^2/x \sim -x$$
 ist eine Überlagerung. (Übung!)

## 10.7 Definition

Sei  $p:\hat{X}\to X$  eine Überlagerung und  $f:Z\to X$  eine stetige Abbildung. Eine **Hebung** von f (bezüglich p) ist eine stetige Abbildung  $\hat{f}:Z\to\hat{X}$  mit  $p\circ\hat{f}=f$ 



## 10.8 Homotopiehebungssatz

Sei  $\hat{p}:\hat{X}\to X$  eine Überlagerung,  $H:Z\times [0,1]\to X$  eine Homotopie und  $\hat{f}:Z\to \hat{X}$  eine Hebung von  $f=H(-,0):=H\big|_{Z\times \{0\}}.$  Dann gibt es eine eindeutige Hebung von H mit  $\hat{H}(-,0)=\hat{f}$ 

$$Z \times \{0\} \xrightarrow{\hat{f}} \hat{X}$$

$$\downarrow i \qquad \qquad \downarrow p$$

$$Z \times [0,1] \xrightarrow{H} X$$

#### Reweis

Sei  $\mathcal U$  eine Überdeckung von X durch elementare Umgebungen. Wir können  $\mathcal U$  mittels H zurückziehen und erhalten eine offene Überdeckung  $H^{-1}(\mathcal U) := \left\{H^{-1}(U) \,\middle|\, U \in \mathcal U\right\}$  von  $Z \times [0,1]$ . Sei  $z_0 \in Z$ . Da  $\{z_0\} \times [0,1]$  kompakt ist, gibt es  $0 = t_0 < t_1 < \ldots < t_n = 1$  und  $U_1,\ldots,U_n \in \mathcal U$  mit

$$H(\lbrace z_0\rbrace \times [t_i, t_{i+1}]) \subseteq U_i$$

Da die  $U_i$  offen sind gibt es zu jedem i eine offene Umgebung  $V_i$  von  $z_0$  mit  $H\left(V_i \times [t_i, t_{i+1}]\right) \subseteq U_i$ . Sei  $V := \bigcap_{i=1}^n V_i$ , dann  $H\left(V \times [t_i, t_{i+1}]\right) \subseteq U_i$ . Da alle  $U_i$  elementar sind, finden wir induktiv eindeutige Hebungen  $\hat{H}_i^V$  von  $H\big|_{V \times [t_i, t_{i+1}]}$  mit

$$\hat{H}_1^V(-,0) = \hat{f}\big|_V \quad \text{ und } \quad \hat{H}_i^V(-,t_{i-1}) = \hat{H}_{i-1}^V(-,t_{i-1}).$$

30 10 Die Windungszahl



Nun erhalten wir mit  $\hat{H}^V(z,t):=\hat{H}^V_i(z,t)$  für  $z\in V$ ,  $t\in [t_{i-1},t_i]$  eine eindeutige Hebung von  $H\big|_{V\times [0,1]}$  mit  $\hat{H}^V(-,0)=\hat{f}\big|_V$ . Dabei bleibt  $\hat{H}^V$  eindeutig auch wenn wir V verkleinern. Nun finden wir für jedes  $z\in Z$  eine Umgebung  $V_z$  und eine eindeutige Hebung  $\hat{H}^{V_z}$  von  $H\big|_{V_z\times [0,1]}$  mit  $\hat{H}^{V_z}(-,0)=\hat{f}\big|_{V_z}$ . Wegen der Eindeutigkeit gilt

$$\hat{H}^{V_z}(\xi,0) = \hat{H}^{V_{z'}}(\xi,t)$$

 $\text{für } \xi \in V_z \cap V_{z'}. \text{ Daher definiert } \hat{H}(z,t) \coloneqq \hat{H}^{V_z}(z,t) \text{ die gesuchte eindeutige Hebung.} \qquad \square$ 

10 Die Windungszahl



## 11 Induzierte Abbildungen

#### 11.1 Lemma

Sei  $f: X \to Y$  stetig mit  $f(x_0) = y_0$ . Dann definiert  $f_*([\omega]) := [f \circ \omega]$  einen Gruppenhomomorphismus  $f_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$ .

#### **Beweis**

Wir zeigen nur, dass  $f_*$  wohldefiniert ist. Seien  $\omega, \eta:[0,1]\to X$  Schleifen mit  $\omega(0)=x_0=\eta(0)$  und  $[\omega]=[\eta]$ . Dann gibt es eine Homotopie  $H:[0,1]\times[0,1]\to X$  mit festen Endpunkten zwischen  $\omega$  und  $\eta$ . <sup>1</sup> Dann ist  $f\circ H$  eine Homotopie mit festen Endpunkten zwischen  $f\circ\omega$  und  $f\circ\eta$ . Also

$$f_*([\omega]) = [f \circ \omega] = [f \circ \eta] = f_*([\eta]) \text{ in } \pi_1(Y, y_0)$$

#### 11.2 Definition

 $f_*$  heißt die von f **induzierte Abbildung**. Manchmal schreibt man auch  $\pi_1(f)$  für  $f_*$ , um  $f_*$  von anderen induzierten Abbildungen zu unterscheiden.

#### **Bemerkung**

- (i)  $(f \circ g)_* = f_* \circ g_*$
- (ii)  $(id_X)_* = id_{\pi_1(X,x_0)}$

#### 11.3 Definition

Ein topologischer Raum X zusammen mit einem Basispunkt  $x_0 \in X$ ,  $(X,x_0)$  heißt ein **punktierter Raum**. Eine **punktierte Abbildung** zwischen punktierten Räumen  $f:(X,x_0)\to (Y,y_0)$  ist eine stetige Abbildung  $f:X\to Y$  mit  $f(x_0)=y_0$ . Punktierte Abbildungen  $f,g:(X,x_0)\to (Y,y_0)$  heißen **punktiert homotop**, falls es eine Homotopie  $H:X\times [0,1]\to Y$  von f nach g gibt mit  $H(x_0,t)=y_0$   $\forall t\in [0,1]$ .

## 11.4 Proposition (Homotopieinvarianz von $\pi_1$ )

Seien  $f, g: (X, x_0) \to (Y, y_0)$  homotop. Dann gilt

$$f_* = g_* : \pi_1(X, x_0) \to \pi_1(Y, y_0)$$

#### Beweis

Sei H eine Homotopie zwischen f und g. Für  $[\omega] \in \pi_1(X,x_0)$  ist  $H \circ \omega$  eine Homotopie mit festen Endpunkten zwischen  $f \circ \omega$  und  $g \circ \omega$ . Also

$$f_*([\omega]) = [f \circ \omega] = [g \circ \omega] = g_*([\omega])$$

## 11.5 Definition

Seien X,Y topologische Räume. Dann heißen X und Y homotopieäquivalent, falls es stetige Abbildungen  $f:X\to Y,\,g:Y\to X$  gibt, so dass

$$f \circ g \simeq \mathrm{id}_Y \ \mathsf{und} \ g \circ f \simeq \mathrm{id}_X$$

Wir schreiben dann  $X\simeq Y$  oder  $X\xrightarrow{\frac{f}{\simeq}}Y$ . Entsprechendes benutzen wir auch für punktierte Räume. Falls  $X\simeq\{0\}$ , so sagen wir: X ist **zusammenziehbar**.

$$^{-1}H(-,0)=\omega, H(-,1)=\eta, H(t,0)=H(t,1)=x_0$$
 für alle  $t\in[0,1]$ 

 $f \simeq g :\Leftrightarrow f$ homotop zu g



## 11.6 Beispiel

(1)  $S^{n-1}$  ist homotopieäquivalent zu  $\mathbb{R}^n\setminus\{0\}$ : Benutze  $i:S^{n-1}\hookrightarrow\mathbb{R}^n\setminus\{0\}$  die Inklusion und  $p:\mathbb{R}^n\setminus\{0\}\to S^{n-1}$ ,  $v\mapsto \frac{v}{\|v\|}$ . Dann gilt

$$p \circ i = \mathrm{id}_{S^{n-1}}$$
 ,  $i \circ p \simeq \mathrm{id}_{\mathbb{R}^n \setminus \{0\}}$ 

mit der Homotopie  $H(v,t) = t + (1-t) \frac{v}{\|v\|}$ .

(2) Sei  $K \subseteq \mathbb{R}^n$  eine konvexe Teilmenge und  $x_0 \in K$ . Dann ist  $(K, x_0)$  zusammenziehbar:

$$i:(\{x_0\},x_0) \to (K,x_0)$$
 die Inklusion  $p:(K,x_0) \to (\{x_0\},x_0)$  die konstante Abbildung

 $p\circ i=\mathrm{id}_{(\{x_0\},x_0)}$  und  $i\circ p\simeq \mathrm{id}_{(K,x_0)}$  mit der Homotopie  $H(k,t)=t\cdot k+(1-t)x_0$ 

(3) Auch  $X := \mathbb{R}^2 \setminus \{(x,y) \mid x \in (0,\infty), y \in [0,1]\}$  ist kontrahierbar.



Setze  $H := \{(x,y) \mid x \leq 0\}$ . Dann ist  $X \simeq H \simeq \{x_0\}$ 

## 11.7 Korollar

Ist  $f:(X,x_0)\to (Y,y_0)$  eine Homotopieäquivalenz, so ist  $f_*:\pi_1(X,x_0)\to \pi_1(Y,y_0)$  ein Isomorphismus. Insbesondere ist  $\pi_1(X,x_0)=\{1\}$ , falls  $(X,x_0)$  zusammenziehbar ist.

#### **Beweis**

Sei  $g:(Y,y_0)\to (X,x_0)$  eine Homotopieinverse zu f, also  $g\circ f\simeq \mathrm{id}_X$ ,  $f\circ g\simeq \mathrm{id}_Y$ . Dann ist  $g_*=(f_*)^{-1}$  (und  $f_*$  ein Isomorphismus):

$$f_* \circ g_* = (f \circ g)_* = (\mathrm{id}_Y)_* = \mathrm{id}_{\pi_1(Y, y_0)}$$

$$g_* \circ f_* = (g \circ f)_* = (\mathrm{id}_X)_* = \mathrm{id}_{\pi_1(X, x_0)}$$

## 11.8 Fixpunktsatz von Brouwer

Jede stetige Abbildung  $f:D^n\to D^n$  hat einen Fixpunkt.

#### **Beweis**

Für n=1 ist dies eine Folgerung aus dem Zwischenwertsatz.

Angenommen  $f:D^n\to D^n$  hat keinen Fixpunkt, also  $f(x)\neq x$  für alle  $x\in D^n$ . Dann gibt es eine

11 Induzierte Abbildungen 33



stetige Abbildung  $F: D^n \to S^{n-1}$  mit  $F|_{S^{n-1}} = \mathrm{id}_{S^{n-1}}$ . Konstruktion von F



(i) 
$$F(x) = t(x - f(x)) + x$$
,  $t > 0$ 

(ii) 
$$F(x) \in S^{n-1}$$

Sei  $x_0 \in S^{n-1}$ . Wir haben also

$$(S^{n-1}, x_0) \xrightarrow{\operatorname{id}} (S^{n-1}, x_0) \qquad \pi_1(S^{n-1}, x_0) \xrightarrow{\operatorname{(id)}_* = \operatorname{id}} \pi_1(S^{n-1}, x_0)$$

$$\downarrow^i \qquad \qquad \downarrow^{i_*} \qquad \qquad \downarrow^{i$$

Für n=2 ist das zweite Diagramm

$$\mathbb{Z} \xrightarrow{(\mathrm{id})_* = \mathrm{id}} \mathbb{Z}$$

$$\downarrow^{i_*} \qquad F_*$$

$$\{e\}$$

Daher folgt  $id = F_* \circ i_* = triviale$  Abbildung  $\mspace{1mu}$ 

## 11.9 Proposition

Für  $n \in \mathbb{Z}$  sei  $f_n : S^1 \to S^1$ ,  $z \mapsto z^n$ . Dann ist  $(f_n)_* : \pi_1(S^1, 1) \to \pi_1(S^1, 1)$  gegeben durch Multiplikation mit n:

$$(f_n)_*([\omega]) = n \cdot [\omega] \in \pi_1(S^1, 1) = \mathbb{Z}$$

Weiter sind die  $f_n$  paarweise nicht homotop zueinander.

#### **Beweis**

Sei  $p:\mathbb{R}\to S^1$ ,  $t\mapsto e^{2\pi it}$ . Zu jeder Schleife  $\omega:[0,1]\to S^1$  mit  $\omega(0)=\omega(1)=1$  gibt es eine eindeutige Hebung  $\hat{\omega}:[0,1]\to\mathbb{R}$  zu einem Weg mit  $\hat{\omega}(0)=0$ . Der Isomorphismus  $d:\pi_1(S^1,1)\to\mathbb{Z}$  bildet  $[\omega]$  auf  $\hat{\omega}(1)\in\mathbb{Z}\subseteq\mathbb{R}$  ab. Sei  $\hat{f}_n:\mathbb{R}\to\mathbb{R}$ ,  $t\mapsto nt$ . Dann gilt  $p\circ\hat{f}_n=f_n\circ p$  und  $\hat{f}_n(0)=0$ . Ist  $\hat{\omega}$  eine Hebung von  $\omega$ , so ist  $\hat{f}_n\circ\hat{w}$  eine Hebung von  $f_n\circ\omega$ :

$$(\hat{f}_n \circ \omega)(0) = \hat{f}_n(0) = 0$$
$$p \circ \hat{f}_n \circ \hat{\omega} = f_n \circ p \circ \hat{\omega} = f_n \circ \omega$$

Es folgt

$$d([f_n \circ \omega]) = (\hat{f}_n \circ \hat{\omega})(1) = \hat{f}_n(\hat{\omega}(1)) = \hat{f}_n(d[\omega]) = n \cdot d[\omega]$$



Da d ein Isomorphismus ist, folgt die Behauptung.

Mit der Homotopieinvarianz von induzierten Abbildungen folgt, dass die  $f_n:(S^1,1)\to (S^1,1)$  als punktierte Abbildungen nicht punktiert homotop sind. Mit dem nächsten Lemma folgt das die  $f_n$  paarweise nicht homotop sind.

#### 11.10 Lemma

Seien  $f,g:(X,x_0)\to (S^1,1)$  stetig. Sei  $H:X\times [0,1]\to S^1$  eine (unpunktierte) Homotopie zwischen f und g. Dann ist  $\tilde{H}:X\times [0,1]\to S^1$ ,

$$\tilde{H}(x,t) = \frac{H(x,t)}{H(x_0,t)}$$

ein punktierte Homotopie zwischen f und g.

## 11.11 Hauptsatz der Algebra

Jedes Polynom  $p = X^n + a_{n-1}X^{n-1} + \ldots + a_0 \in \mathbb{C}[X]$  von  $\operatorname{grad} f = n \geq 1$  hat eine Nullstelle.

#### **Beweis**

Angenommen p hat keine Nullstelle. In den Übungen haben wir gezeigt, dass dann  $f_n:S^1\to S^1$  homotop zu einer konstanten Abbildung ist. Aus der Proposition 11.9 folgt dann aber n=0.

11 Induzierte Abbildungen 35



## 12 Eigentlich diskontinuierliche Wirkungen

#### 12.1 Definition

Sei G eine Gruppe und X ein topologischer Raum.

- (1) Eine Wirkung  $G \curvearrowright X$  von G auf X ist eine Abbildung  $G \times X \to X$ ,  $(g,x) \mapsto g \cdot x$  so dass
  - Für  $g \in G$  ist  $L_g: X \to X$ ,  $x \mapsto g \cdot x$  stetig.
  - Für  $g, h \in G$  gilt  $g \cdot (h \cdot x) = (g \cdot h) \cdot x$
  - Für das neutrale Element  $e \in G$  gilt  $e \cdot x = x$  für alle  $x \in X$
- (2) Eine Wirkung heißt **frei**, falls  $g \cdot x = x \Rightarrow g = e$
- (3) Eine Wirkung heißt **eigentlich diskontinuierlich** (e.d.k.), falls es zu jedem  $x \in X$  eine Umgebung U von x gibt mit  $gU \cap U = \emptyset$  für alle  $g \in G \setminus \{e\}$ .
- (4) Durch  $x \sim y :\Leftrightarrow \exists g \in G: g \cdot x = y (\Leftrightarrow Gx = Gy)$  wird eine Äquivalenzrelation auf X erklärt. Die Äquivalenzklassen dieser Äquivalenzrelation sind genau die **Bahnen**  $Gx = \{g \cdot x \mid g \in G\}$  der Wirkung. Die Menge der Äquivalenzklassen bezeichnen wir mit  $G \setminus X := X/\sim$ . Durch die Quotiententopologie bezüglich der Quotientenabbildung  $X \to G \setminus X$ ,  $x \mapsto Gx$  wird  $G \setminus X$  zu einem topologischen Raum.

### 12.2 Lemma

Sei  $G \curvearrowright X$  eine e.d.k Wirkung. Dann ist  $p: X \to G \setminus X$ ,  $x \mapsto Gx$  eine Überlagerung.

#### **Beweis**

Offenbar ist p surjektiv und stetig. Sei  $\overline{x}:=Gx\in G\setminus X$ . Sei U eine offene Umgebung von  $x\in X$  für die  $gU\cap U=\emptyset$  für alle  $g\neq e$  ist. Dann ist p(U) eine elementare Umgebung von  $\overline{x}$ , denn

$$p^{-1}\big(p(U)\big) = \bigcup_{g \in G} gU$$

ist die disjunkte Vereinigung der gU,  $g \in G$ .

## 12.3 Beispiel

(1)  $\mathbb{Z}^n \curvearrowright \mathbb{R}^n$  mit  $z \cdot x := x + z$  ist eine e.d.k. Wirkung: Ist  $\varepsilon < \frac{1}{2}$  so gilt

$$B_{\varepsilon}(x) \cap B_{\varepsilon}(x) + z = B_{\varepsilon}(x) \cap B_{\varepsilon}(x+z) = \emptyset$$

für alle  $x\in\mathbb{R}^n$ ,  $z\in\mathbb{Z}^n$ . Da  $\mathbb{Z}\backslash\mathbb{R}\cong S^1$  folgt  $\mathbb{Z}^n\backslash\mathbb{R}^n=(\mathbb{Z}\backslash\mathbb{R})^n=(S^1)^n=T^n$ . Wir erhalten eine Überlagerung  $\mathbb{R}^n\to T^n$ .

(2) Sei  $\mathbb{Z}/2=\{e,\tau\}$ . Durch  $\tau\cdot v:=-v$  erhalten wir eine e.d.k. Wirkung  $\mathbb{Z}/2\curvearrowright S^n$ . Dann gilt

$$\mathbb{Z}/2\backslash S^n\cong \mathbb{R}P^n$$

Wir erhalten eine Überlagerung  $S^n \to \mathbb{R}P^n$ .

(3) Zu  $m,n\in\mathbb{Z}$  sei  $f_{n,m}:\mathbb{R}^2\to\mathbb{R}^2$  mit  $f_{n,m}(x,y)=(x+h,(-1)^ny+m)$ . Dann ist

$$G := \{ f_{n,m} \mid n, m \in \mathbb{Z} \}$$



eine Gruppe bezüglich der Verknüpfung von Abbildungen.  $f_{n,m} \circ f_{n',m'} = f_{n+n',m+(-1)^n m'}$ . Die kanonische Wirkung von G auf  $\mathbb{R}^2$   $f_{n,m} \cdot x := f_{n,m}(x)$  ist e.d.k., da

$$f_{n,m}(U_{\varepsilon}(x)) \cap f_{n',m'}(U_{\varepsilon}(x)) = \emptyset$$

für  $(n,m) \neq (n',m')$  und  $\varepsilon < \frac{1}{2}$ . Der Quotient  $G \setminus \mathbb{R}^2 =: K$  heißt die **Kleinsche Flasche**. Wir erhalten eine Wirkung  $\mathbb{R}^2 \to K$ . Übung:  $K \cong T_{S^1 \to S^1}$ 



Abbildung 5: Kleinsche Flasche, Quelle 🗹

## 12.4 Satz

Sei X wegzusammenhängend und einfach zusammenhängend. Sei  $G \curvearrowright X$  eine e.d.k. Wirkung. Für jedes  $\overline{x}_0 \in G \backslash X$  ist dann

$$\pi_1(G\backslash X, \overline{x}_0) \cong G.$$

#### **Beweis**

Sei  $x_0 \in X$  ein Urbild von  $\overline{x}_0$ , also  $\overline{x}_0 = G \cdot x_0$ . Zu jeder Schleife  $\omega : [0,1] \to G \backslash X$  mit  $\omega(0) = \omega(1) = \overline{x}_0$  gibt es eine Hebung  $\hat{\omega} : [0,1] \to X$  mit  $\hat{\omega}(0) = x_0$ . Hier heben wir bezüglich der Überlagerung  $p: X \to G \backslash X$ ,  $x \mapsto Gx$ , also  $p \circ \hat{\omega} = \omega$ .

Da  $p(\hat{\omega}(1)) = \omega(1) = \overline{x}_0$  folgt  $\omega(1) \in p^{-1}(\overline{x}_0) = G \cdot x_0$ . Es gibt also  $g_{\omega} \in G$  mit  $g_{\omega} \cdot x_0 = \hat{\omega}(1)$ . Wie im Fall der Überlagerung  $\mathbb{R} \to S^1$  zeigt man mit Hilfe des Homotopiehebungssatzes, dass  $[\omega] \mapsto g_{\omega}$  ein Gruppenhomomorphismus  $\varphi : \pi_1(G \setminus X, \overline{x}_0) \to G$  definiert.

Surjektivität von  $\varphi$ : Sei  $g \in G$ . Sei  $\hat{\omega}:[0,1] \to X$  ein Weg von  $x_0$  nach  $g \cdot x_0$  (Solch ein Weg gibt es, da X wegzusammenhängend ist). Dann ist  $\hat{\omega}$  die Hebung von  $\omega:=p\circ\hat{\omega}$  und es folgt  $\varphi([\omega])=g_\omega=g$ , da  $\hat{\omega}(1)=g\cdot x_0$ . Also  $g\in \mathrm{Im}\,\varphi$ .

Injektivität von  $\varphi$ : Sei  $\omega:[0,1]\to G\backslash X$  eine Schleife und  $\omega(0)=\omega(1)=x_0$  für die  $\varphi([\omega])=e$ . Sei  $\hat{\omega}:[0,1]\to X$  die Hebung von  $\omega$  mit  $\hat{\omega}(0)=x_0$ . Da  $\varphi([\omega])=e$  gilt  $\hat{\omega}(1)=x_0$ ,  $\hat{\omega}$  ist also eine Schleife in X. Da X einfach zusammenhängend ist, ist  $[\hat{\omega}]=e\in\pi_1(X,x_0)$ . Es folgt

$$[\omega] = [p \circ \hat{\omega}] = p_*[\hat{\omega}] = p_*(e) = e.$$

## 12.5 Bemerkung

Für  $n \geq 1$  ist  $S^n$  wegzusammenhängend. Für  $n \geq 2$  ist  $S^n$  einfach zusammenhängend. (einfache Übung) (weniger einfache Übung)

Nach Satz 12.4 ist daher  $\pi_1(\mathbb{R}P^n, x_0) = \mathbb{Z}/2$  für  $n \geq 2$ . Es folgt  $\mathbb{R}P^n \not\cong S^n$  für  $n \geq 2$ . (Andererseits ist  $\mathbb{R}P^1 \cong S^1$ .)



## 12.6 Definition

Sei  $p:\hat{X}\to X$  eine Überlagerung. Eine **Decktransformation** von p ist ein Homöomorphismus  $f:\hat{X}\to\hat{X}$ , sodass  $p\circ f=p$ . Die Decktransformationen von p bilden eine Gruppe  $\Delta(p)$ . Diese Gruppe wirkt in kanonischer Wiese auf  $\hat{X}$ .

#### 12.7 Lemma

Sei  $p:\hat{X}\to X$  eine Überdeckung wobei  $\hat{X}$  wegzusammenhängend ist. Dann ist die Wirkung der Decktransformationsgruppe  $\Delta(p)$  auf  $\hat{X}$  eigentlich diskontinuierlich.

#### Beweis

Wir zeigen zunächst, dass die Wirkung frei ist. Sei  $f \in \Delta(p)$  und  $x \in \hat{X}$  mit f(x) = x. Zu zeigen:  $f = \operatorname{id}_{\hat{X}}$ . Sei  $y \in \hat{X}$  und  $\hat{\omega} : [0,1] \to \hat{X}$  ein Weg von x nach y. Dann sind  $\hat{\omega}$  und  $f \circ \hat{\omega}$  zwei Hebungen von  $\omega := p \circ \hat{\omega}$ . Da  $\hat{\omega}(0) = x = f(x) = f \circ \hat{\omega}(0)$  folgt mit der Eindeutigkeit im Homotopiehebungssatz  $\hat{\omega} = f \circ \hat{\omega}$  und insbesondere y = f(y). Da y beliebig war, ist  $f = \operatorname{id}_{\hat{X}}$ .

Wir können nun zeigen, dass die Wirkung eigentlich diskontinuierlich ist. Sei  $x\in \hat{X}$ . Sei U eine elementare Umgebung von p(x). Dann ist  $p^{-1}(U)$  die disjunkte Vereinigung von offenen Mengen V,  $V\in \mathcal{V}$  von denen jede homöomorph auf U abgebildet wird. Sei  $V_0\in \mathcal{V}$  mit  $x\in V_0$ . Sei  $f\in \Delta(p)$ ,  $f\neq \mathrm{id}$ . Für  $y\in V_0$  gilt dann p(f(y))=p(y),  $f(y)\neq y$  folgt  $f(y)\not\in V_0$ . Andernfalls wäre  $p\big|_{V_0}$  nicht injektiv. Daher  $f(V_0)\cap V_0=\emptyset$ .

## 12.8 Bemerkung

Sei  $p:\hat{X}\to X$  eine Überlagerung wobei  $\hat{X}$  wegzusammenhängend ist. Sei  $H\le \Delta(p)$  eine Untergruppe. Dann ist auch die Wirkung  $H\curvearrowright \hat{X}$  eigentlich diskontinuierlich und die Quotientenabbildung  $q:\hat{X}\to H\backslash \hat{X}$  eine Überlagerung. Weiter ist  $q':H\backslash \hat{X}\to X$  mit q'(Hx):=p(x) stetig, da  $q'\circ q=p$  stetig ist. Ist  $U\subseteq X$  elementar für p, so ist U auch elementar für q'.q' ist also auch eine Überlagerung. Insgesamt haben wir also jeder Untergruppe von  $\Delta(p)$  eine Überlagerung  $H\backslash \hat{X}$  zugeordnet, die zwischen  $\hat{X}$  und X liegt.

$$\hat{X} \xrightarrow{p} X$$

$$\downarrow^{q} \qquad \qquad \downarrow^{q'}$$

$$H \backslash \hat{X}$$

#### 12.9 Definition

Sei  $p: \hat{X} \to X$  eine Überlagerung. Für  $x \in X$  wirkt dann  $\Delta(p)$  auf  $p^{-1}(x)$ . Die Überlagerung heißt **normal**, falls diese Wirkung transitiv ist, d.h. falls es zu  $\hat{x}, \hat{y} \in p^{-1}(x)$  immer  $f \in \Delta(p)$  gibt mit  $f(\hat{x}) = \hat{y}$ .

## 12.10 Proposition

Sei  $\hat{X} \xrightarrow{p} X$  eine normale Überlagerung wobei  $\hat{X}$  wegzusammenhängend ist. Dann ist die Abbildung  $q': \Delta(p)\backslash X \to X$ ,  $q'(\Delta(p)x) = p(x)$  ein Homöomorphismus.

#### Rowais

Wir haben schon gesehen, dass q' eine Überlagerung ist. unabhängig davon ob p normal ist. Ist p normal, so ist q' bijektive Überlagerung und daher Homöomorphismus.



## Index

| Die Seitenzahlen sind mit Hyperlinks zu den entsprechenden Seiten versehen, also anklickbar 🖒 | Netz, 9<br>universell, 13                                                                                                |  |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                               | Norm, 1                                                                                                                  |  |
| Abbildungstorus, 8 abgeschlossen, 2 Abschluss von $Y$ , 4 Algebra, 19                         | offen, 2<br>offene Umgebung, 4<br>offene Überdeckung, 11                                                                 |  |
| Bahn, 36<br>Basis der Topologie, 3<br>Basispunkt, 27                                          | p-adischer Betrag, 1<br>Polnischer Kreis, 24<br>Produkttopologie, 6<br>punktierte Abbildung, 32                          |  |
| Decktransformation, 38<br>diskrete Metrik, 1                                                  | Quotiententopologie, 7                                                                                                   |  |
| eigentliche Abbildung, 18<br>Einpunktkompaktifizierung, 17                                    | Rand, 4 reell projektive Raum, 8                                                                                         |  |
| elementare Umgebung, 30<br>endliche Durchschnittseigenschaft, 11                              | Schleife, 26<br>schließlich in, 13                                                                                       |  |
| Fundamentalgruppe, 27                                                                         | Spurtopologie, 6<br>stetig, 2                                                                                            |  |
| gerichtete Menge, 9                                                                           | Teilnetz, 10                                                                                                             |  |
| Hausdorffraum, 5<br>normal, 22<br>hausdorffsch, 5<br>Hebung, 30                               | Teilüberdeckung, 11<br>Topologie, 2<br>diskrete, 2<br>grobe, 2<br>koendliche, 2                                          |  |
| homotop, 7<br>punktiert, 32<br>Homotopie, 7                                                   | Topologie der gleichmäßigen Konvergenz, 4<br>Topologie der punktweisen Konvergenz, 4<br>topologische Mannigfaltigkeit, 5 |  |
| Homotopieklassen, 26<br>homotopieäquivalent, 32<br>homöomorph, 3                              | topologischer Raum, 2<br>lokal wegzusammenhängend, 24                                                                    |  |
| Homöomorphismus, 3                                                                            | lokal zusammenhängend, 24 einfach zusammenhängend, 26                                                                    |  |
| immer wieder in, 13<br>induzierte Abbildung, 32<br>Innere, 4                                  | punktiert, 32<br>wegzusammenhängend, 24<br>zusammenhängend, 24                                                           |  |
| Isometrie, 2                                                                                  | Umgebung, 4                                                                                                              |  |
| Kleinsche Flasche, 37<br>kompakt, 11                                                          | verschwindende Funktion, 19                                                                                              |  |
| Kompaktifizierung, 16                                                                         | Weg, 24                                                                                                                  |  |
| Kompositionsweg, 27                                                                           | Windungszahl, 29<br>Wirkung                                                                                              |  |
| lokalkompakt, 16                                                                              | eigentlich diskontinuierlich, 36<br>frei, 36                                                                             |  |
| metrischer Raum, 1                                                                            |                                                                                                                          |  |
| metrisierbar, 22                                                                              | zusammenziehbar, 32                                                                                                      |  |

Index



zweites Abzählbarkeitsaxiom, 3

Überlagerung, 30 normal, 38

B



## Abbildungsverzeichnis

| 1 Der Torus $T^2$ , Quelle $oldsymbol{G}$                      | •        |
|----------------------------------------------------------------|----------|
| 2 Möbius-Band, Quelle♂♂                                        | 1        |
| 3 Der Polnische Kreis und eine nicht wegzusammenhängende Teilr | menge 25 |
| 4 Funktion $\varphi$ aus dem Beweis zu 9.8                     | 2        |
| 5 Kleinsche Flasche. Ouelle 🗹 🖸                                | 3'       |

Abbildungsverzeichnis