USAAVRADCOM-TR-81-D-21B

ADA111106

ADVANCED CONCEPTS FOR COMPOSITE STRUCTURE JOINTS AND ATTACHMENT FITTINGS

Volume II - Design Guide

J. V. Alexander and R. H. Messinger Hughes Helicopters Division of Summa Corporation Culver City, CA 90230

November 1981

Final Report for Period July 1977 - February 1981

Approved for public release; distribution unlimited.

Prepared for

Copy (..... conditions no permit fully legible reproduction

APPLIED TECHNOLOGY LABORATORY

U. S. ARMY RESEARCH AND TECHNOLOGY LABORATORIES (AVRADCOM)

Fort Eustis, Va. 23604

APPLIED TECHNOLOGY LABORATORY POSITION STATEMENT

This report consists of two volumes and identifies all design considerations, testing, and cost analysis pertinent to composite joints and fittings attachments. The approach used in this program was to identify generic types of joints and fittings applicable to helicopter composite primary structures; the design emphasized reliability and cost effectiveness. The technology developed in this program has been incorporated in the design of new major composite components such as tail sections, and the foundation for future R&D work has been laid.

Mr. Nick Calapodas of the Aeronautical Technology Division served as project engineer for this effort.

DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS GE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFC-RE COMPLETING FORM			
1. REPORT NUMBER 2. GOVT	ACCESSION NO. J. RECIPIENT'S CATALOG NUMBER			
USAAVRADCOM-TR-81-D-21B Ap-	4111 106			
4. TITLE (and Subtitio)	5. TYPE OF REPORT & PERIOD COVERED			
ADVANCED CONCEPTS FOR COMPOS				
STRUCTURE JOINTS AND ATTACHME	NT Jul 1977 - Feb 1981 6. PERFORMING ORG. REPORT NUMBER			
FITTINGS - VOLUME II: Design Guide	HH 80-402			
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(s)			
J. V. Alexander and R. H. Messinger	DAAJ02-77-C-0076			
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Hughes Helicopters, Inc.	62209A IL262209AH76			
Centinela and Teale Streets	00 228 EK			
Culver City, California 90230				
11. CONTROLLING OFFICE NAME AND ADDRESS Applied Technology Laboratory	12. REPORT DATE November 1981			
U.S. Army Research and Technology	13. NUMBER OF PAGES			
Laboratories (AVRADCOM), Fort Eusti-	3, 272			
Virginia 23604	18. SECURITY CLASS. (of this report)			
14. MONITORING AGENCY NAME A ADDRESSII dillerent from Con	Unclassified			
	154. DECLASSIFICATION/POWNGRADING			
is. DISTRIBUTION STATEMENT (of this Report)				
Approved for public release; distributio				
18. SUPPLEMENTARY NOTES Volume II of a two-volume report.				
19. KEY WORDS (Continue on reverse side if necessary and identify i	sy block number)			
Attachment Fittings Fabrication	Nondestructive Inspection			
Composite Fittings Helicopters	Strength			
Design Joints	Weight			
Wet Filament Winding				
The purpose of this program was to develop the technology of applying fiber-reinforced composite materials to helicopter joinus and attachment fittings that permit disassembly of major components. A generic design methodology approach was used to make the data developed applicable to ongoing and future helicopter programs.				

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

1 F

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Enforce)

A detail design, analysis, and testing program was carried out on the three joint and fitting concepts selected: wrapped tension fittings, gear box attachment fittings, and seat attachment fittings.

The scope of the study included analytical design tools, including finite element computer analysis; fabrication techniques, with special emphasis on weight and cost effectiveness considerations; structural integrity testing, including static, dynamic, failsafe/safe-life, and ballistic tolerance considerations; and nondestructive inspection (NDI) techniques.

This volume contains the analytical and experimental results of the laminated angle bracket study and the Design Guide, which covers each type of joint or fitting tested.

SUMMARY

This report was prepared by Hughes Helicopters, Inc. (HHI), Culver City, California 90230, for the Applied Technology Laboratory, U.S. Army Research and Technology Laboratories (AVRADCOM), Fort Eustis, Virginia 23604, under Contract DAAJ02-77-C-0076.

The purpose of this program was to develop the necessary methodology for applying fiber-reinforced composite materials to helicopter joint and attachment fitting designs that permit disassembly of major components.

For this program, primary joints and fittings representative of highperformance helicopters (the YAH-64 in particular) were selected for evaluation. A generic design methodology approach was used to make the data that was developed applicable to ongoing and future helicopter programs.

The objective of this program was to develop basic concepts for competitive helicopter joints and fittings using composite materials. These materials must be capable of being readily integrated into composite components and attached to other components, both composite and metal, such that the weight and cost effectiveness of the advanced composite component is an improvement over the baseline metallic component alternatives.

All detail design and fabrication aspects of the three advanced composite joint and fitting types that were fabricated and tested during this contracted effort are documented in this report, along with the analytical and experimental results of the laminated angle bracket study.

TABLE OF CONTENTS

	Page
SUMMARY	3
LIST OF ILLUSTRATIONS	8
LIST OF TABLES	12
INTRODUCTION	14
DESIGN PROPERTIES	19
Composite Allowables	19 21
DRAWING PREPARATION	24
Ply Orientation	24 24
FUSELAGE-TAILBOOM JOINT (TYPE A)	27
Design Criteria	27 29 29
SPAR BOX-RIB JOINT (TYPE D)	31
Design Criteria	31 31
	33

TABLE OF CONTENTS (CONT)

		Page
COI	PILOT SEAT FITTING (TYPE K)	35
	Design Criteria	35 35 37
INS	PECTION METHODS	38
COS	ST/WEIGHT TRADE STUDY	39
FIN	ITE ELEMENT ANALYSIS	41
	Angle Bracket Model	41 41
BIB	LIOGRAPHY	52
API	PENDIXES	
A	COMPOSITE MATERIAL ALLOWABLES	53
В	ANGLE BRACKET STUDY	69
С	C-1 MODEL PREPROCESSOR PROGRAM LISTING	123
D	C-1 PREPROCESSOR FLOWCHART	138
E	C-1 MODEL PREPROCESSOR PROGRAM OUTPUT	144
F	C-1 MODEL PREPROCESSOR PROGRAM BULK DATA LISTING	162
G	C-1 PLOT RUN DATA DECK SETUP AND UNDEFORMED PLOTS	168
Н	C-1 SOLUTION RUN OUTPUT	173
I	C-2 MODEL PREPROCESSOR PROGRAM LISTING	190

TABLE OF CONTENTS (CONT)

•		Page
J	C-2 PREPROCESSOR FLOWCHART	192
K	C-2 MODEL PREPROCESSOR PROGRAM OUTPUT	195
Ĺ	C-2 PLOT RUN OUTPUT AND UNDEFORMED PLOTS	198
M	SINGLE STRIP NASTRAN OUTPUT	216
N	ACRONYM DEFINITIONS	241
0	STRESS ANALYSIS	242

LIST OF ILLUSTRATIONS

Figure		Page
1	Fuselage-Tailboom Joint	15
2	Spar Box-Rib Joint	16
3	Copilot Seat Fitting	17
4	Joint and Fitting Design Flowchart	18
5	Fiber Orientation	21
6	Angle Joint Allowable Loads	22
7	Fiber Orientation Reference Axis	24
8	Stacking Sequence	25
9	Ply Sequence Schematic	26
10	Final Detail Design: Type A	28
11	Manufacturing Steps: Type A	30
12	Final Detail Design: Type D	32
13	Manufacturing Steps: Type D	34
14	Final Detail Design: Type K	36
15	Manufacturing Steps: Type K	37
16	Break-Even Partitioning of Composite Fittings	39
17	Cost vs Weight Relationship of Composite Fittings	40

LIST OF ILLUSTRATIONS (CONT)

Figure		Page
18	Typical Laminated Angle Bracket	42
19	NASTRAN Model C-1	43
20	NASTRAN Model C-2	44
21	Normalized Shear Stress vs Bracket Angle and Width	45
22	NASTRAN Model of Joint Type A (Top View)	46
23	NASTRAN Model of Joint Type A (Side View)	47
24	NASTRAN Model of Joint Type D (Top View)	48
25	NASTRAN Model of Joint Type D (Side View)	49
26	NASTRAN Model of Joint Type K (Front and Side Views)	50
27	NASTRAN Model of Joint K (Internal Loads)	51
B-1	"Bathtub" Tension Fitting	69
B-2	Turning the Corner	71
B-3	Internal Loads in the Corner Region	73
B-4	Laminate Geometry	74
B-5	Angle Bracket Subdivision	76
B-6	Single-Layer Model	77
B-7	Two-Stage Computer Analysis Flowchart	79
B-8	C-1 Coordinate Systems	81
B - 9	Grid Point and Element ID Numbers	83

LIST OF ILLUSTRATIONS (CONT)

Figure		Page
B-10	C-1 Boundary Conditions	88
B-11	Rotation of Axis	90
B-12	Load Conditions	91
B-13	Sample Input Data for Multilayer C-1 Model Preprocessor Run	94
B-14	Critical Strip Model	96
B-15	Sample Ten-Strip Model	98
B-16	Tangential Stress Versus Bend Angle Along the Centerline Strip: Uniform Tension Load Case	99
B-17	Tangential Stress Versus Angle Width: Uniform Tension Load Case	100
B-18	Interlaminar Shear Stress Versus Bend Angle: Uniform Tension Load Case	101
B-19	Interlaminar Shear Stress Versus Angle Width: Uniform Tension Load Case	102
B-20	Normal Stress Versus Bend Angle: Uniform Tension Load Case	103
B-21	Normal Stress Versus Angle Width: Uniform Tension Load Case	104
B-22	Laminated Centerline Strip of the Ten-Strip Test Model	105
B-23	Interlaminar Shear Stress Versus Bend Angle: Uniform Tension Load Case	106
B-24	Interlaminar Shear Stress Through the Laminaie Thickness at θ = 5 and 75 degrees: Uniform Tension Load Case	107

LIST OF ILLUSTRATIONS (CONT)

Figure		Page
B-25	Normal Stress Along the Bend Angle: Uniform Tension Load Case	108
B-26	Normal Stress Through the Laminate Thickness at θ = 5 and 75 degrees: Uniform Tension Load Case	109
B-27	Interlaminar Shear Stress Versus Bend Angle: Uniform Clockwise Couple Load Case	. 110
B-28	Normal Stress Versus Bend Angle: Uniform Clockwise Couple Load Case	111
B-29	Tangential Stress Versus Bend Angle for Varying Thickness-to-Bend Radius Ratios: Uniform Tension Load Case	113
B-30	Tangential Stress Versus Bend Angle for Varying Stacking Sequences: Uniform Tension Load Case	114
B-31	Interlaminar Shear Stress Versus Bend Angle for Varying Thickness-to-Bend Radius Ratios: Uniform Tension Load Case	115
B-32	Interlaminar Shear Stress Versus Bend Angle for Varying Stacking Sequences: Uniform Tension Load Case	116
B-33	Four Stacking Sequences	117
B-34	Interlaminar Shear Stress for Varying Stacking Sequences Through the Laminate Thickness	117
B-35	Test Setup	120
B-36	Fracture Progression in Typical Composite Angle	121
B-37	Ultimate Allowable Loads Versus Thickness	122

LIST OF TABLES

Table		Page	
1	Sample Stacking Sequence	25	₽,
A-1	Graphite Composite Properties	55	
A-2	Graphite Moduli (VF = 0.55)	56	4.
A-3	Graphite Moduli (VF = 0.60)	57	
A-4	Graphite Strength Allowables (VF = 0.55)	58	
A-5	Graphite Strength Allowables (VF = 0.60)	59	
A-6	Graphite Poisson's Ratio and Thermal Expansion (VF = 0.55)	60	
A-7	Graphite Poisson's Ratio and Thermal Expansion (VF = 0.60)	61	
A-8	Kevlar 49 Composite Properties	62	
A-9	Kevlar 49 Moduli (VF = 0,55)	63	
A-10	Kevlar 49 Moduli (VF = 0,60)	64	
A-11	Kevlar 49 Strength Allowables (VF = 0.55)	65	
A-12	Kevlar 49 Strength Allowables (VF = 0.60)	66	•
A-13	Kevlar 49 Poisson's Ratio and Thermal Expansion (VF = 0.55)	67	•
A-14	Kevlar 49 Poisson's Ratio and Thermal Expansion (VF = 0.60)	68	

LIST OF TABLES (CONT)

<u>Table</u>		Page
B-1	Input Parameter Names	86
B-2	Parametric Analysis	112
B-3	Angle Tension Test Specimens	119

INTRODUCTION

The purpose of this design guide is to document all detail design and fabrication aspects of three advanced composite joint and fitting types that were investigated under the Advanced Concepts for Composite Structure Joints and Attachment Fittings Program (Contract DAAJ02-77-C-0076). The three joint and fitting types analyzed are:

- a. Type A Fuselage-Tailboom Joint (Figure 1)
- b. Type D Spar Box-Rib Joint (Figure 2)
- c. Type K Copilot Seat Fitting (Figure 3)

The steps involved in the design, fabrication, and testing of the three joint and fitting types are illustrated in flowchart form in Figure 4. During the initial screening and evaluation phase of the program, the configurations and critical applied loads of the metal baseline joints were identified. Design concepts, composite materials, and fabrication methods selected according to structural efficiency, cost, and weight considerations were incorporated into the preliminary design drawings. Preliminary hand analyses of the joints were then carried out using conservative design allowables obtained from the existing data base.

A small number of each joint and fitting type were fabricated for tool proofing and subsequent testing by nondestructive methods (hammer tapping and harmonic analysis). Each joint and fitting was then tested statically, and Types A and D were also fatigue tested. The results of these experiments were compared with the analytical predictions discussed in Volume I of this report.

A cost effectiveness study was carried out to relate cost and weight differences between the composite joints and their baseline metal counterparts.

Finite element modeling consisted of a NASTRAN analysis to determine critical interlaminar shear properties in the radius of a general angle bracket, and NASTRAN models were prepared for each individual joint.

The experience and data gained from fabrication, testing, and modeling of these joints were used to finalize the detail design drawings. Accessibility, simplicity, environmental protection, weight, cost, and interchangeability were the factors weighed most heavily.

Figure 1. Fuselage-Tailboom Joint

Figure 2. Spar Box-Rib Joint

Figure 3. Copilot Seat Fitting

Figure 4. Joint and Fitting Design Flowchart

DESIGN PROPERTIES

The composite material allowables and angle properties in this report are given for Kevlar 49 aramid fiber and Thornel T300 graphite fiber impregnated with an epoxy resin system obtained from Applied Plastics Co., Inc. (2434 resin/2347 hardener). These materials have been qualified to HHI material specifications.

Either the wet filament winding or hand layup technique can be used according to HHI process specifications. The cure cycle for this resin system is:

- a. 4 hr at 140°F ±10°F
- b. 2 hr at 170°F ±10°F
- c. $2 \text{ hr at } 250^{\circ} \text{ F} \pm 10^{\circ} \text{ F}$

COMPOSITE ALLOWABLES

The graphite and Kevlar composite allowables used in the design analyses of the joints were developed during previous work using advanced composite materials and are reproduced in Appendix A. Laminate moduli, strength, and other physical property values are given as a function of fiber angle for fiber volume ratios of 0.55 and 0.60. The laminates are constructed of symmetric angle plied layers of $\pm \alpha$ (alpha) orientation. Fiber, resin, and composite input data terms are defined as:

- AF (AR) = Fiber (resin) coefficient of thermal expansion, in./in./°F
 - AFT = Fiber transverse coefficient of thermal expansion, in./in./°F
- EF (ER) = Fiber (resin) elastic modulus, psi
 - EFT Fiber transverse elastic modulus, psi

Goodall, R.E., ADVANCED TECHNOLOGY HELICOPTER LANDING GEAR, Hughes Helicopters, Division of Summa Corporation; USAAMRDL Technical Report 77-27, Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia, April 1977.

FCU = Fiber or composite ultimate compressive strength, psi

FSU = Resin ultimate shear strength, psi

FTU = Fiber or composite ultimate tensile strength, psi

GF = Fiber shear modulus, psi

RHO = Composite density, lb/ft³

RHOF (RHOR) = Fiber (resin) density, 1b/ft³

UF (UR) = Fiber (resin) Poisson's ratio (dimensionless)

VF (VR) = Fiber (resin) volume, percent

WF (WR) = Fiber (resin) weight, percent

Composite properties are abbreviated as follows:

ALPHA = Fiber angle, deg

AX = Coefficient of thermal expansion, X direction, in. /in. /°F

AY = Coefficient of thermal expansion, Y direction, in./in./°F

EX = Elastic modulus, X direction, psi

EY = Elastic modulus, Y direction, psi

FXCU = Ultimate compressive strength, X direction, psi

FXTU = Ultimate tensile strength, X direction, psi

FXY = Ultimate shear strength, psi

FYCU = Ultimate compressive strength, Y direction, psi

FYTU = Ultimate tensile strength, Y direction, psi

GXY = Shear modulus, psi

Fiber orientation with respect to the longitudinal (X) and transverse(Y) directions of the composite component is defined in Figure 5. The longitudinal direction is usually aligned with the primary load path of the component.

Figure 5. Fiber Orientation

The rule of mixtures method can be used with the property tables given in Appendix A to determine the laminate properties of any one type of fiber. For example, in a $(0/\pm45/90)_s$ graphite laminate with VF = 0.55, the longitudinal (X direction) elastic modulus is

EX (laminate) =
$$\frac{2(18.91 \times 10^6) + 4(2.039 \times 10^6) + 2(9.106 \times 10^5)}{8}$$
$$= 5.975 \times 10^6 \text{ psi}$$

ANGLE ALLOWABLES

The simple turn-the-corner angle design shown at the bottom of Figure 6 can be used in many cases in which composite components must be capable of disassembly. One-inch-wide T300 graphite, Kevlar 49, E-glass, and

Figure 6. Angle Joint Allowable Loads

S-glass angle joints with repetitions of the (0/±45/90) layup sequence were fabricated and tested to defermine their allowable ultimate strengths. Preliminary results of these tests are given below:

- a. The corners of thinner angles straighten out elastically for a distance of up to two or three times their initial radii. Next the matrix fails in delamination, and finally the fibers fracture at ultimate load.
- b. The concept of yield strength being two-thirds of ultimate strength is not transferable from metals to composites. Permanent set may occur anywhere from 75 percent (thin angles) to 90 percent of ultimate strength (thicker angles).
- c. Thick sections are more ductile than thin ones.

d. Allowable load versus thickness in composite angles is shown in Figure 6 for an eccentricity of 0.5 inch. Composite angles of varying eccentricity and thickness must be tested before nomographs similar to those already well-established for aluminum can be developed.

DRAWING PREPARATION

A number of common industry practices are used in the detail design drawings to describe the composite components of the three joint and fitting types.

PLY ORIENTATION

The reference fiber orientation of a composite component is shown in Figure 7. The 0-degree direction is defined as the longitudinal, lengthwise, or major load direction of the component.

Figure 7. Fiber Orientation Reference Axis

STACKING SEQUENCE

The stacking sequence of any number of plies can be represented by giving the orientation of each ply or group of plies, separated by slashes, braces, and brackets according to a conventional system of notation. The stacking sequence of Detail 5 of Joint Type K is shown in Figure 8 as an example.

A stacking sequence table such as the one shown in Table 1 can be placed on the engineering drawing to help organize the stacking sequence and orientation of any relatively complex composite component.

A large-scale schematic detail of the component should be provided along with the stacking sequence table. In the cross section shown in Figure 9, each ply is drawn and appropriately identified so that ply dropoffs can be clearly defined. The minimum distance between ply dropoffs is 0.2 inch. The maximum thickness of each dropoff is 0.030 inch, which is approximately equivalent to two plies of fabric.

Figure 8. Stacking Sequence

TABLE 1. SAMPLE STACKING SEQUENCE

PLY NO.	PLY ORIENTATION	MATERIAL	PLY THICKNESS	
P1	±45	7 3	0.0135	
P2	±45		0.0135	
P3	0		0.007	
P4	0			
P5	0			
P6	0			
P7	0			
P8	0		0.007	
P9	±45		0.0135	
P10	0		0.007	
P11	0			
P12	0			
P13	0			
P14	0			
P15	0		0.007	
P16	±45		0.0135	
P17	±45	7 8	C.0135	

NOTE: 7 AND 8 REFER TO THE GENERAL NOTES ON THE ENGINEERING DRAWING IN QUESTION

Figure 9. Ply Sequence Schematic

FUSELAGE-TAILBOOM JOINT (TYPE A)

Joint Type A represents the attachment of a composite helicopter tailboom to a forward fuselage. This tension bolt design includes steel fittings within a graphite/Kevlar hybrid channel, which is joined to the graphite/Kevlar hybrid skins of the sandwich structure.

The composite fuselage-tailboom joint incorporates design concepts and manufacturing techniques to minimize weight and cost while efficiently carrying ultimate loads. The final detail design of the test panel that incorporates this joint is shown in Figure 10.

DESIGN CRITERIA

The process of evaluating and comparing numerous design concepts and carrying out the final detail design was controlled by the following criteria:

- a. Loads Flight condition loads transferred across the fuselagetailboom joint must be efficiently carried by either a tension bolt fitting or shear splice. The tension bolt concept was chosen to permit direct interchangeability with an existing metal tailboom.
- b. Accessibility Given the tension bolt concept, the composite tailboom should be attached from the outside. Access holes must therefore be provided in the skin or other integral fitting.
- c. Simplicity The wet-filament-winding/cocuring fabrication process eliminates much time and effort normally spent in secondary bonding or mechanical fastening of precured parts. Wet filament winding is especially applicable to fabrication of cylindrical structures such as tailbooms.
- d. Environmental protection Exterior helicopter components such as fuselage-tailboom joints are designed for improved environmental resistance in accordance with established HHI process specifications. External steel parts such as the -3 fitting are plated by various methods approved for aircraft structures. Nonmetallic external parts such as the -9 inner or -11 outer skins are primed before they are painted according to specification.

Figure 10. Final Detail Design: Type A

STRESS ANALYSIS

In the hand stress analysis of Joint Type A, the following loads and stresses were determined:

- a. Critical ultimate loads due to crashworthiness conditions
- b. Local -5 channel reaction load intensities in tension and compression
- c. Fiber stresses in ±15° graphite and ±45° Kevlar
- d. Shear stresses between the -5 channel and the outer facesheet
- e. Lamina strains
- f. Honeycomb sandwich buckling and wrinkling
- g. Bending of the -3 fitting

FABRICATION METHODS

Joint Type A was fabricated to simulate the methods used to fabricate a composite tailboom, and so the inner and outer skins and the 0° plies of the -5 channel were fabricated using the wet filament winding method. The -5 channel was laid up manually on a male tool, using the 0° plies mentioned above and the ±45° Kevlar fabric, and then staged in a vacuum bag. The channel was trimmed, assembled with honeycomb core, and cocured with the skins. Pressure during cure was provided by hoop-wound filaments (90°) rather than by vacuum bag or autoclave to avoid collapsing the mandrel. No film adhesive was used because the skins were wound with sufficient resin to create filleting in the core. The fabrication sequence is shown in Figure 11.

Figure 11. Manufacturing Steps: Type A

SPAR BOX-RIB JOINT (TYPE D)

The composite spar box-rib joint was designed to replace its metal equivalent in a helicopter vertical stabilizer. This joint includes a rib that secures the attach fittings and carries the shear induced by coupled applied loads from the tail rotor. In addition, corner spar caps are cocured into the sandwich box structure to carry longitudinal bending loads. The detail drawing of Joint Type D is shown in Figure 12.

DESIGN CRITERIA

Detail design of the final concept was controlled by the following criteria:

- a. Loads Critical tension and compression loads from the tail rotor strike condition that are applied to the fittings must be transferred through the rib to the box structure in shear. The rib provides stability to the metal fittings.
- b. Cost Wet filament winding was chosen as the fabrication method to minimize the cost of the spar box structure. The fitting design was simplified to minimize machining and assembly costs.
- c. Environmental protection The gearbox attach fitting includes two internal 4140 steel fittings that require a finish system for bonding and environmental protection, and the external graphite/epoxy skin of a composite vertical stabilizer spar is primed and painted, both in accordance with approved aircraft process specifications.

STRESS ANALYSIS

In the hand stress analysis of Joint Type D, the following were determined:

- a. Critical loads at the tail rotor gearbox attachment fittings
- b. Section properties
- c. Internal forces (shear flows in spar box walls and internal ribs)
- d. Shear tear-out of lug through composite skins

Figure 12. Final Detail Design: Type D

- e. Shear between steel fitting and graphite rib
- f. Rib stability

FABRICATION METHODS

Fabrication of Joint Type D simulated the methods to be used during production. The plies for the four -17 spar caps were wet filament wound on a drum mandrel, cut into patterns, and laid up on a male tool. Each part was staged under vacuum and trimmed before final assembly. The -5 internal rib was laid up with graphite fabric over a foam core and staged in a female die mold. The rib was then assembled into the spar mandrel prior to winding of the inner skin. Honeycomb core was placed on the mandrel, and then the outer skin was wound. These fabrication steps are shown in Figure 13.

Figure 13. Manufacturing Steps: Type D

COPILOT SEAT FITTING (TYPE K)

The copilot seat fitting design, derived from the metal seat attachment fitting design, utilizes the turn-the-corner angle concept to carry (mainly) tension loads. The final design drawing is shown in Figure 14.

DESIGN CRITERIA

Detail design of the final concept was controlled by the following criteria:

- a. Configuration The substitution of composite materials for metals was the primary change in this design because the seat fitting configuration and its location could not be changed significantly. Space limitations also limited the design alternatives.
- b. Loads Interlaminar shear stress in the corner of the composite angles due to lug pullout loads was an omnipresent factor during the design phase.
- c. Cost Manual layup of fabric provided the most cost-effective fabrication technique. Wet filament winding of the plies could not be justified due to the low material requirement.
- d. Environmental protection Since the copilot seat fitting is inside the helicopter, no finish is required.

STRESS ANALYSIS

The composite layup sequence was determined by lug shearout stresses in the following stress analysis procedure:

- a. Critical vertical, horizontal, and lateral applied loads
- b. Internal loads and bolt reactions
- c. Composite tensile stresses, allowing for bolt hole concentration factors
- d. Composite angle strength (see Figure 6)
- e. Lug bearing and shearout stresses

Figure 14. Final Detail Design: Type K

FABRICATION METHODS

Joint Type K was fabricated by laying up preimpregnated graphite fabric on four aluminum blocks; these were then assembled for cocuring. Three fittings were cut and trimmed from the cured assembly, and bushings were installed. The fabrication process is shown in Figure 15.

· · mare letolar

Figure 15. Manufacturing Steps: Type K

INSPECTION METHODS

In manufacturing these joints and fittings, as many components as possible are cocured during a single cycle. While this method of assembly has significant advantages from a manufacturing standpoint, it makes it impossible to individually inspect the various components that make up an assembly. The types of defects that can degrade the performance of composite structures are:

a. Delaminations

- b. Unbonded areas
- c. Porosity or voids
- d. Resin-rich or resin-starved areas
- e. Geometry of internal details
- f. Thick bondlines
- g. Position and bond of metal inserts
- h. Foreign object inclusions

The importance of these defects varies with their size and location in relation to the size and geometry of the particular joint or fitting design in which they occur. Assurance that the finished part has been fabricated free of internal defects and has the proper internal geometry can only be obtained using nondestructive inspection techniques.

These techniques include the hammer tapping method, in which a small hammer is used to tap the surface of the composite component. The flat sound produced by tapping over an unbonded area or void is easily detected, even by an untrained ear, and an experienced inspector can readily determine and mark the boundaries of the unbonded area or void. Subsequent tapping can determine the growth of an unbonded area if it occurs.

The Shurtronics harmonic bond tester operates by physically transmitting high-frequency vibrations into bonded materials and monitoring the resulting acoustical response with a small hand-held transducer. The instrument is calibrated with a sample specimen of the same materials and layup as the part under examination, with known defects built in for reference. With the instrument calibrated for a known density and thickness, a reduction in local thickness caused by an unbonded area or other defect results in an amplitude or phase change in the received signal. Liquid coupling is not required for testing, and the probe can easily be used in any position.

COST/WEIGHT TRADE STUDY

The cost effectiveness of each composite fitting design was measured by considering the individual weight reductions afforded by switching to composites and the cost increments vis-a-vis the metal baseline. To differentiate between cost effective and cost ineffective designs, the cost differences and the weight reductions were plotted in Figure 16. The population of cost-vs-efficiency points is divided into two domains by the cost effectiveness break-even lines, with cost-effective designs residing above and to the left of the lines. Cost-effective designs possess features that add value (in the form of weight reduction) that more than offsets the extra expense. The slope of the break-even line is determined by the value of eliminating a pound of structure from a helicopter without altering its structural performance.

The cost of saving weight can also be portrayed by plotting part weight versus total cost (Figure 17).

The relationship between the cost and weight of composite fittings implies that the total cost per pound is \$174 for Joint Type D, \$329 for Type A, and \$593 for Type K. The \$300-per-pound line is added to the graph for comparison.

Figure 16. Break-Even Partitioning of Composite Fittings

Figure 17. Cost vs Weight Relationship of Composite Fittings

FINITE ELEMENT ANALYSES

ANGLE BRACKET MODEL

Finite element models C-1 and C-2 were developed to predict the interlaminar shear present in the radius of an angle (Figure 18). Using the half-symmetrical C-1 model (Figure 19), variations in washer diameter, washer distance from the bend, lamina orientation, lamina thickness, and bend radius-to-thickness ratio can be investigated. Using the C-2 one-strip model, variations in stacking sequence can be analyzed (Figure 20).

To minimize computer costs, the analysis was conducted in two stages. The bracket was first analyzed as a single-layer (solid laminate), multistrip structure (C-1 model) to identify the critical strip and the corresponding boundary conditions. In the second stage of the analysis, the critical strip was further divided into many discrete layers (C-2 model), to represent the actual laminated structure, and analyzed in terms of the boundary conditions obtained from the C-1 model to identify interlaminar stresses.

It is possible to conduct many parametric analyses using the C-1 and C-2 models. Figure 21 shows the relationship between normalized shear stress (defined as interlaminar shear stress τ_{xy} divided by net tension stress σ_0) and the width of the angle bracket. It should be noted that, since the interlaminar shear stress in composite components ranges from 1,000 to 5,000 pounds per square inch, the net tension stress is limited to $\tau_{xy}/2.5$, or 400 to 2,000 pounds per square inch. Actual test results, however, indicate higher allowables.

INDIVIDUAL JOINT MODELS

NASTRAN models were developed for Joint Types A, D, and K. Instead of developing one three-dimensional model for each type, a pair of two-dimensional models was constructed to minimize development time. The models for Joint Types A, D, and K are shown in Figures 22 through 27. Orthotropic plates, with appropriate mechanical properties, are used in all instances.

Figure 18. Typical Laminated Angle Bracket

Figure 19. NASTRAN Model C-1

Figure 20. NASTRAN Model C-2

Figure 21. Normalized Shear Stress vs Bracket Angle and Width

مرهد بالمحتادة

Figure 22. NASTRAN Model of Joint Type A (Top View)

A SANTANIA SANTANIA

SECTION B-B OF DRAWING No. 430-009 (Figure 10)

SECTION A-A OF DRAWING No. 430-009 (Figure 10)

Figure 23. NASTRAN Model of Joint Type A (Side View)

Figure 24. NASTRAN Model of Joint Type D (Top View)

Figure 25. NASTRAN Model of Joint Type D (Side View)

Figure 26. NASTRAN Model of Joint Type K (Front and Side Views)

Figure 27. NASTRAN Model of Joint Type K (Internal Loads)

BIBLIOGRAPHY

Advanced Composite Design Guide, AFFDL-DG-76-9, Volumes I and II, Wright-Patterson Air Force Base, Ohio, July 1973.

Engineering Design Handbook: Joining of Advanced Composites, DARCOM-P-706-316, U.S. Army Materiel Development and Readiness Command, Alexandria, Virginia, March 1978.

Jones, R.M., "Mechanics of Composite Materials," Scripta, Washington, D. C., 1975.

APPENDIX A

COMPOSITE MATERIAL ALLOWABLES

The graphite and Kevlar composite allowables used in the design analyses documented in this report are given in Tables A-1 through A-14. Laminate moduli, strength, and other physical property values are given as a function of fiber angle for fiber volumes of 0.55 and 0.60. Fiber, resin, and composite input data terms are defined as:

AF (AR) = Fiber (resin) coefficient of thermal expansion, in. /in. /°F

AFT = Fiber transverse coefficient of thermal expansion, in./in./°F

EF (ER) = Fiber (resin) elastic modulus, psi

EFT = Fiber transverse elastic modulus, psi

FCU = Fiber or composite ultimate compressive strength, psi

FSU = Resin ultimate shear strength, psi

FTU = Fiber or composite ultimate tensile strength, psi

GF = Fiber shear modulus, psi

RHO = Composite density, lb/ft³

RHOF (RHOR) = Fiber (resin) density, lb/ft³

UF (UR) = Fiber (resin) Poisson's ratio (dimensionless)

VF (VR) = Fiber (resin) volume, percent

WF (WR) = Fiber (resin) weight, percent

Composite properties are abbreviated as follows:

ALPHA = Fiber angle, deg

AX = Coefficient of thermal expansion, X direction, in. /in. /°F

AY = Coefficient of thermal expansion, Y direction, in. /in. /°F

EX = Elastic modulus, X direction, psi

EY = Elastic modulus, Y direction, psi

FXCU = Ultimate compressive strength, X direction, psi

FXTU = Ultimate tensile strength, X direction, psi

FXY = Ultimate shear strength, psi

FYCU = Ultimate compressive strength, Y direction, psi

FYTU = Ultimate tensile strength, Y direction, psi

GXY = Shear modulus, psi

UXY = Poisson's ratio, perpendicular to X direction
 (dimensionless)

UYX = Poisson's ratio, perpendicular to Y direction
 (dimensionless)

TABLE A-1. GRAPHITE COMPOSITE PROPERTIES

FIBER PRO	FIBER PROPERTIES RESIN PROPERTIES		COMPOSITE PROPERTIES	
VF = 0,5500 WF = 0,6536 RHOF = 0,0636 FTU = 325000,0 FCU = 215000,0 UF = 0,2200	EF = 3, 400E+07 EFT = 1, 300E+06 GF = 3, 500E+06 AF = -2, 400E-07 AFT = 2, 960E-06	VR = 0, 4500 WR = 0, 3464 RHUF = 0, 0412 FSU = 8000, 0	ER = 4,700E+05 AR = 4,000E-05 UR = 0,3500	RHO = 0, 0535 FTU = 178750, 0 FCU = 118250, 0 FSU = 8000, 0
		RESIN PROPERTIES		
FIBER PRO	PERTIES	RESIN PI	ROPERTIES	COMPOSITE PROPERTIES

TABLE A-2. GRAPHITE MODULI (VF = 0.55)

ALPHA	EX	EY	GXY
0,00	1,891E+07	9, 108E+05	5,665E+05
1,00	1,890E+07	9, 107E+05	5, 717E+05
2,00	1,886E+07	9, 111E+05	5,873E+05
3,00	1.879E+07	9, 119E+05	6, 133E+05
4.00	1,869E+07	9, 129E+05	6, 494E+05
5,00	1.856E+07	9, 143E+05	6, 956E+05
6,00	1.839E+07	9, 160E+05	7,515E+05
7, 00	1,819E+07	9, 180E+05	8, 170E+05
8, 00	1,795E+07	9, 204E+05	8, 91 7E + 05
9,00	1.767E+07	9, 231E+05	9, 753E+05
10,00	1, 734E+07	9, 263E+05	1,067E+06
11,00	1, 697E+07	9. 299E+05	1, 167E+06
12,00	1,655E+07	9, 339E+05	1, 275E+06
13, 00	1,609E+07	9, 385E+05	1,389E+06
14,00	1,559E+07	9, 435E+05	1,510E+06
15,00	1.504E+07	9, 492E+05	1, 637E+06
16,00	1.445E+07	9,555E+05	1, 769E+06
17,00	1.383E+07	9,624E+05	1,905E+06
18,00	1,319E+07	9, 701E+05	2, 045E+06
19,00	1, 253E+07	9, 786E+05	2, 189E+06
20,00	1.185E+07	9, 880E+05	2, 335E+06
21,00	1, 117E+07	9, 984E+05	2, 483E+06
22,00	1, 049E+07	1,010E+06	2, 632E+06
23,00	9, 826E+06	1, 022E+06	2, 781E+06
24,00	9, 175E+06	1.036E+06	2, 930E+06
25,00	8,547E+06	1,051E+06	3, 078E+06
26,00	7.844E+06	1,068E+06	3, 224E+06
27,00	7, 371E+06	1,087E+06	3, 388E+06
28, 00	6,830E+06	1,107E+06	3,508E+06
29, 00	6,323E+06	1. 130E+06	3, 645E+06
30,00	5,849E+06	1,154E+06	3, 777E+06
31,00	5,410E+06	1, 181E+06	3,903E+06
32,00	5,004E+06	1,211E+06	4, 024E+06
33,00	4, 630E+06	1, 244E+06	4, 139E+06
34, 00	4. 286E+06	1, 281E+ 06	4, 246E+06
35,00	3. 972E+06	1.321E+06	4,346E+06
36, 00	3.685E+06	1.365E+06	4.438E+06
37, 00	3,424E+06	1.414E+06	4,522E+06
38,00	3, 187E+06	1.468E+06	4.596E+06
39, 00	2. 971F+06	1,527E+06	4, 662E+06
40,00	2, 775E+06	1.593E+06	4, 718E+06
41,00	2.697E+06	1.665E+06	4.764E+06
42, 00	2.436E+06	1.745E+06	4,800£+06
43, 00	2, 291E+06	1.834E+06	4,826E+06
44,00	2.159E+06	1,932E+06	4.842E+06
45,00	2.039E+06	2. 048E + 06	4.847E+06

TABLE A-3. GRAPHITE MODULI (VF = 0.60)

ALPHA	EX	EY	GXY
0,00	2.059E+07	9, 451E+05	6.343E+05
1,00	2, 057E+07	9. 453E+05	6. 400E +05
2, 00	2. 053E+07	9. 439E+05	6. 569E+05
3,00	2, 045E+07	9. 470E+05	6.850E+05
4.00	2. 035E+07	9, 485E+05	7. 242E+05
5.00	2. 020E+07	9, 504E+05	7. 742E+05
6.00	2, 002E+07	9. 528E+05	8. 348E+05
7, 00	1. 980E+07	9, 556E+05	9. 058E+05
8.00	1. 954E+07	9. 590E+05	9, 887E+05
9.00	1. 924E+07	9. 628E+05	1. 077E+06
10,00	1. 838E+07	9, 672E+05	1, 177E+06
11,00	1.848E+07	9. 722E+05	1, 205E+06
12, 00	1.802E+07	9. 778E+05	1. 402E+06
13.00	1. 752E+07	9. 840E+05	1. 526E+06
14.00	1.698E+07	9. 989E+05	1, 657E+06
15, 00	1,637E+07	9, 985E+05	1. 794E+06
16,00	1,573E+07	1. 002E+06	1. 937E+06
17, 00	1, 906E+07	1. 016E+06	2, 065E+06
18,00	1. 435E+07	1,026E+06	2, 237E+06
19,00	1.363E+07	1, 038E+06	2,392E+06
20,00	1, 290E+07	1. 058E+06	2,551E+06
21,00	1,216E+07	1, 063E+06	2,711E+06
22, 00	1, 143E+07	1. 078E+06	2.873E+06
23, 00	1, 071E+07	1, 094E+06	3.834E+06
24.00	1,001E+07	1, 112E+06	3, 196E+06
25, 00	9, 332E+06	1, 131E+06	3, 356E+06
26, 00	8, 687E+06	1, 152E+06	3,515E+06
27, 00	8, 066E+06	1, 175E+06	3,670E+06
28,00	7. 484E+06	1, 200E+06	3.822E+06
29, 00	6. 937E+06	1, 227E+06	3. 970E+06
30,00	6, 427E+06	1,257E+06	4, 113E+06
31,00	5. 957E+06	1, 290E ÷06	4, 250E+06
32, 00	5.514E+06	1,326F.+06	4.381E+06
33, 00	5, 110E+06	1,366£+06	4.505E+06
34.00	4.778E+06	1. 409E+06	4, 622E+06
35, 00	4, 398E+06	1. 456E+06	4, 738E+06
36,00	4. 086E+06	1,508E+06	4.830E+06
37, 00	3.801E+06	1. 565E+06	4, 920E +06
38,00	3.542E+06	1.627E+06	5. 001E+06
39, 00	3,306E+06	1.696E+06	5.072E+06
40,00	3.091E+06	1. 771E+06	5. 133E+06
41,00	2,895E+06	1.854E+06	5, 183E+06
42,00	2.718E+06	1.845E+06	5.222E+06
43, 00	2.556E+06	2. 045E+06	5. 250E +06
44,00	2.409E+06	2, 155E+06	5.267E+06
45, 00	2,276E+06	2,276E+06	5,273E+06

TABLE A-4 GRAPHITE STRENGTH ALLOWABLES (VF = 0.55)

ALPHA	FXTU	FYTU	FXCU	FYCU	FXY
0,00	178750,0	0, 0	118250,0	5673.3	4408, 0
1.00	178296, 6	6.5	118173.7	5674.2	4676, 8
2,00	176949, 2	26.1	117942.9	5677.0	4968.8
3,00	174744,6	58.8	117551.5	5681.7	5286, 4
4,00	171741,7	104.7	116990.0	5688.4	5631.7
5,00	168017,3	163.8	116245.3	5697.1	6007.3
6,00	183661,7	236, 3	115301.9	5707.8	6415.6
7, 00	158773, 6	322.3	114142.1	5720.7	6859, 3
8,00	153454, 8	422, 1	112747.4	5735.9	7341.1
9,00	147806, 4	535, 7	111099.6	5753.5	7863, 5
10,00	141924.5	663,5	109182,3	5773, 6	8429.4
11.00	135898.0	805,6	106982,1	5796.4	9041.2
12,00	129806, 1	962.5	104490.5	5822, 2	9701.4
12, 09 13, 0	123718,0	1134, 4	101705,1	5851.1	10412,3
14,00	117691.9	1321.7	98630, 9	5883.3	11175, 9
15,00	111775.8	1524, 7	95281.4	5919, 2	11993, 7
16,00	106807,8	1744.0	91678,4	5959.1	12866, 8
17,00	100417,4	1979, 9	87852.4	6003.3	13796, 0
18,00	95025,9	2233, 0	83841.0	6052, 2	14780, 9
19,00	89848,3	2503.9	79688, 1	6106.3	15820, 9
20,00	84893.6	2793, 2	75441.5	6165.9	16914, 2
21,00	80166,4	3101.4	71150,6	6231,6	18058, 1
22,00	75667.3	3429.3	66864.8	6304, 1	19248.9
23,00	71394, 2	3777.7	62630, 6	6383.9	20481,8
24,00	67342,5	4147.4	58490.4	6471.8	21750, 9
25,00	63505,9	4539, 2	54480, 7	6568, 6	23049, 1
26,00	59877.0	4954.1	50631,9	6675,1	24368, 6
27,00	56447.3	5393.0	46967.4	6792.4	25700, 1
28, 00	53208, 2	5857, 2	43504.1	6921.5	27033.9
29,00	50150,4	6347,6	40252.5	7063, 7	28359.4
30,00	47264,6	6865,6	37217.8	7220, 2	29665.7
41,00	44541.9	7412.5	34400, 0	7392.7	30941.7
32, 00	41973, 1	7989.7	31795.8	7582.6	32176, 2
33,00	39549.6	8598.7	29398.5	7792.0	33358, 7
34, 00	37262.9	9241.3	27199, 2	8022.7	34479.0
35,00	35105.2	9919.1	25187.4	8277.1	35527.9
36,00	33068,6	10634.0	23351.6	8557.8	36497.2
37.00	31146.0	11388.1	21680, 0	8867.4	37379.6
38,00	29330,5	12183,6	20160.5	9209. 2	38169, 2
39,00	27615.7	13022.7	18781.1	9586.5	38861.1
40,00	25995.5	13908.0	17530,3	10003.3	39451.7
41,00	24464, 1	14842.1	16397.0	10463.7	39937.9
42,00	23016.3	15828.0	15371.0	10972,5	40317.8
43.00	21647.1	16868.7	14442.5	11534.9	40590.0
44, 00	20351.8	17967.5	13602.5	12156.5	40753.6
45,00	19126.0	19127.9	12842.7	12843.9	40808.2

TABLE A-5. GRAPHITE STRENGTH ALLOWABLES (VF = 0.60)

ALPHA	FXTU	FYTU	FXCU	FYCU	FXY
0.60	195000.0	0.0	129000.0	5902.6	4928.4
1.00	194519.1	7.3	128917.1	5903.9	5228, 6
2,00	193089.4	29.3	128666,3	5907.9	5554.8
3,00	190748.9	68.0	128240, 7	5914.6	5906.8
4,00	187558, 2	117.4	127629,4	5924.0	6289.6
5,00	183597.0	183.8	126617.8	5936, 3	6704.9
6,00	178958.5	265, 1	125788.1	5951.4	7155,5
7,00	173745.4	361.6	124520, 7	5969.5	7644.1
8,00	163264.0	473.5	122994.9	5990, 7	8173.6
9.00	162020.2	601.6	121190.4	6015, 1	8746.9
10,00	155715.4	744.3	119089.3	6043, 0	9366, 8
11.00	149243.4	903, 6	116677.2	6074.5	10036, 2
12,00	142688.9	1079.8	113945.3	6109.8	10757.9
13,00	136125.9	1272.5	110892.0	6149, 2	11534.1
14.00	129617.5	1482.6	107524.1	6192, 9	12367, 2
15.00	123216.8	1710.3	103857.6	6241.3	13259, 0
16,00	116963.3	1956, 2	99918.1	6294.6	14210, 7
17.00	118892.3	2220, 7	95740,1	6353, 4	15223, 2
18, 00	105027,2	2504,5	91366.3	6418.0	16296, 3
19.00	99385.5	2808. 2	86845.3	6488, 8	17429, 2
20,00	93978,6	3132,5	82229, 6	6566.5	18620, 1
21.00	88811.0	3478.0	77573.4	6651,6	19866, 2
22,00	83886, 2	3845.6	72929.5	6744, 6	21163, 2
23,00	79202, 2	4236, 0	68348.0	6846, 4	22506, 2
24, 00	74755.1	4650, 3	63873.5	6957.8	23888, 4
25,00	70538,9	5089.3	59544.5	7079.5	25302, 2
26,00	66546.1	5554.0	55392.2	7212,6	26738, 6
27.00	62768.5	6045, 7	51440.8	7358, 2	28187, 7
28,00	59196.9	6565.5	47707,1	7517.3	29638.5
29,00	55821.9	7114, 7	44201.3	7691.4	31079.4
30,00	52633,8	7694.7	40928, 2	7881.8	32498.3
31,00	49623.1	8306, 9	37887,1	8090, 2	33883.0
32,00	46780.3	8952.9	35073.8	8318.4	35221.3
33,00	44096, 2	9634.5	32480, 9	8568, 3	36501.7
34,00	41561.7	10353.3	30098.6	8842. 1	37713, 1
35,00	39168.4	11111.5	27915.6	9142. 2	38845.8
36,00	36908.0	11911.1	25919.7	9471.4	39890. 9
37.00	34772.8	12754.2	24098.1	9832, 6	40841.1
38,00	32755.4	13643.3	22438, 2	10229, 1	41690, 1
39,00	30848.7	14581.1	20927.3	10664, 6	42433.1
40,00	29046.2	15570, 1	19553.3	11143.2	43066.4
41.00	27341.8	16613.4	18304.6	11669.3	43587. 2
42,00	25729.7	17714, 1	17170, 2	12247. 9	43993.8
43,00	24204.3	18875.7	16140.1	12884.6	44284.9
44.00	22760,6	20101.7	15204.8	13585.3	44459.7
45.00	21393.9	21396, 1	14355.4	14356, 7	44518.0

TABLE A-6. GRAPHITE POISSON'S RATIO AND THERMAL EXPANSION (VF = 0.55)

ALPHA	UXY	UYX	AX	AY
0, 00	0, 2785	0, 0)34	2. 100E-07	1,716E-05
1,00	0. 2841	0, 0137	2, 055E-07	1.716E-05
2,00	0, 3009	0, 0145	1. 919E-07	1,713E-05
3, 00	0.3287	0, 0160	1, 692E-07	1.709E-05
4, 00	0, 3872	0, 0179	1.377E-07	1.704E-05
5.00	0, 4160	0, 205	9.739E-08	1.696E-05
6,00	0. 4745	0, 0236	4, 847E-08	1.687E-05
7,00	0.5420	0, 0274	-8, 815E-09	1.677E-05
8, 00	0, 6176	0, 0317	-7. 420E-08	1.664E-05
9. 00	0,7001	0, 0366	-1. 47 4E-07	1, 650E-05
10, 00	0,7883	0, 0421	-2. 279E-07	1. 635E-05
11, 00	0, 8806	0, 0483	-3, 154E-07	1.617E-05
12, 00	0. 9754	Ú, U550	-4. 094E-07	1, 598E-05
13,00	1, 0709	0, 0625	-5, 093E-07	1.576E-05
14, 00	1, 1663	0, 0785	-6, 143E-07	1, 553E-05
15, 00	1, 2569	0, 0793	-7, 239E-07	1, 528E-05
16, 00	1, 3427	0. 0888	-8, 37 1E-07	1. 502E-05
17.00	1, 4223	0. 989	-9, 531E-07	1. 473E-05
18, 00	1, 4936	0, 1099	-1, 07 1E-06	1. 442E-05
19, 00	1, 5554	0, 1215	-1, 189E-06	1. 409E-05
20, 00	1, 6068	0, 1340	-1, 307E-06	1. 374E-05
21, 00	1,6472	0, 1340	-1, 423E-06	1, 337E-05
22, 00	1, 6762	0. 1613	-1, 425E-06	1, 298E-05
23, 00	1, 6941	0, 1763	-1, 643E-06	1, 257E-05
24, 00	1,7011	0, 1703	-1,744E-06	1, 214E-05
25. 00	1, 6978	0, 1921	-1, 836E-06	1, 214c-05
26, 00	1, 6852	0, 2266	-1, 938E-06	
27, 00	1, 6640	0, 2453	-1, 988E-06	1, 122E-05 1, 074E-05
28, 00	1, 6354	0, 2651		
29, 00		0, 2859	-2, 043E-06	1, 023E-05
	1,6004		-2, 082E-06	9.711E-06
30,00	1,5601	0.3078	-2, 103E-06	9. 176E-06
31.00	1,5154	0, 3309	-2, 102E-06	8, 627E-06
32, 00 33, 00	1, 4572	0, 3552	-2, 079E-06 -2, 031E-06	8, 068E-06
	1.4165	0, 3808		7. 499E · 06
34, 00	1,3640	0, 4076	-1, 956E-06	6, 923E-06
35, 00	1,3103	0, 4357	-1, 852E-06	6, 343E-06
36, 00	1, 2561	0, 4653	-1.718E-06	5.761E-06
37, 00	1, 2017	0, 4962	-1,553E-06	5. 181E-06
38, 00	1, 1477	0, 5287	-1,354E-06	4, 605E-06
39, 00	1. 0944	0, 5627	-1, 122E-06	4, 037E-06
40, 00	1. 0428	0, 5982	-8, 562E-07	3, 480E-06
41,00	0, 9907	0, 6353	-5. 562E-07	2, 938E-06
42, 00	0, 9408	0, 6740	-2, 227E-07	2. 412E-06
43, 00	0, 3923	0,7144	1. 437E-07	1, 907E-06
44, 00	0, 0454	0,7564	5. 417E-07	1. 425E-06
45, 00	0, 8001	0, 8001	9. 698E-07	9, 691E-07

The state of the s

TABLE A-7. GRAPHITE POISSON'S RATIO AND THERMAL EXPANSION (VF = 0.60)

ALPHA	UXY	UYX	AX	AY
0, 00	0, 2720	0, 0125	1, 275E-07	1, 575E-05
1, 00	0, 2779	0, 0128	1, 233E-07	1, 574E-05
2, 00	0, 2954	0, 0136	1, 106E-07	1, 572E-05
3, 00	0, 3243	0, 0150	9. 004E-08	1, 568E-05
4, 00	0.3844	0.0170	6. 113E-08	1, 562E-05
5, 00	0, 4152	0, 0195	2. 421E-08	1, 554E-05
6, 00	0, 4760	0, 0226	-2, 052E-08	1, 545E-05
7.00	0, 5460	0, 0263	-7, 283E-08	1. 534E-05
8, 00	0, 6243	0, 0306	-1, 324E-07	1, 521E-05
9, 00	0,7098	0, 0355	-1. 990E-07	1, 507E-05
10, 00	0, 8005	0, 0410	-2, 721E-07	1, 491E-05
11,00	0, 8954	0, 0471	-3. 513E-07	1, 471E-05
12, 00	0, 9926	0, 0539	-4, 361E-07	1, 473E-05
13, 00	1, 0901	0, 0612	-5, 260E-07	1, 432E-05
14, 00	1, 1059	0, 0693	-6. 202E-07	1. 409E-05
15, 00	1, 2732	0, 0780	-7. 181E-07	1. 404E-05
16 00	1, 3649	0, 0874	-8, 188E-07	1, 364E-05
17,00	1. 4444	0, 0975		
13, 00	1, 5151		-9, 215E-07	1, 328E-05
19, 00	1, 5759	0, 1083 0, 1199	-1, 025E-06	1, 298E-05
20, 00			-1, 129E-06	1, 265E-05
	1, 6257	0, 1323	-1, 232E-06	1, 231E-05
21,00	1, 6642	0, 1455	-1, 332E-06	1, 195E-05
22, 00	1, 6912	0, 1595	- 1, 429E-06	1, 158E-05
23, 00	1, 7868	0, 1743	-1,520E-06	1, 118E-05
24, 00	1,7115	0, 1901	-1, 605E-06	1, 077E-05
25, 00	1,7059	0, 2067	-1, 683E-06	1.035E-05
26, 00	1, 6911	0, 2243	-1,750€-06	9, 905E-06
27, 00	1,6679	0, 2429	-1, 806E-06	9, 449E-06
28, 00	1, 6374	0, 2625	-1, 850E-06	8, 981E-06
29, 00	1, 6007	0, 2832	-1, 878E-06	8, 50 i £-06
30, 00	1, 5589	0, 3050	-1, 890E-06	8, 010E-06
31, 00	1,5129	0, 3279	-1, 884E-06	7,511E-06
32, 00	1, 4637	0, 3520	-1, 858E-06	7, 005E-06
33, 00	1, 4121	0, 3774	-1, 811E-06	6, 493E-06
34, 00	1, 3589	0, 4040	-1,741E-06	5, 979E-06
35, 00	1, 3047	0, 4828	-1.646E-06	5. 463E-06
36, 00	1, 2500	0, 4614	-1,526E-06	4. 950E-06
37,00	1, 1954	0, 4921	-1, 379E-06	4, 440E-06
38, 00	1, 1413	0, 5243	-1, 205E-06	3. 936E-06
39, 00	1, 0878	0, 5581	-1, 002E-06	3, 442E-06
40, 00	1, 0354	0 5934	-7.719E-07	2, 958E-06
41,00	0, 9842	0, 6363	-5, 129E-07	2, 489E-06
42.00	0, 9744	0, 6688	-2. 258E-07	2, 036E-06
43,00	0, 8861	0,7089	8, 896E-08	1, 602E-06
44, 00	0, 8393	0,7568	4, 304E-07	1, 188E-06
45, 00	0,7942	0,7843	7.975E-07	7, 969E-07

TABLE A-8. KEVLAR 49 COMPOSITE PROPERTIES

FIBER PROPERTIES		RESIN PROPERTIE	s	COMPOSITE PROPERTIES
VF = 0,5500 WF = 0,6085 RHOF = 0,0524 FTU = 325000,0 FCU = 70000,0 UF = 0,2200	EF = 1, 900E+07 EFT = 1, 000E+06 GF = 3, 000E+05 AF = -3, 440E-06 AFT = 3, 000E-05	VR = 0, 4500 WR = 0, 3915 RHOR = 0, 0412 FSU = 8000, 0	ER = 4,700E+05 AR = 4,800E-05 UR = 0,3500	RHO = 0, 0474 FTU = 178750, 0 FCU = 38500, 0 FSU = 8000, 0
FIBER PROPERTIES		RES IN PROPERTIES	S	COMPOSITE PROPERTIES
VF = 0,6000 WF = 0,6561 RHOF = 0,0524 FTU = 325000,0 FCU = 70000,0 UF = 0,2200	EF = 1, 900E + 07 EFT = 1, 000E + 06 GF = 3, 000E + 05 AF = 3, 440E - 06 AFT = 3, 000E - 05	VR = 0, 4000 WR = 0, 3439 RHOR = 0, 0412 FSU = 8, 000, 0	ER = 4,700E+05 AR = 4,000C-05 UR = 0,3500	RHO = 0, 0479 FTU = 195000, 0 FCU = 42000, 0 FSU = 8000, 0

TABLE A-9. KEVLAR 49 MODULI (VF = 0.55)

ALPHA	EX	EY	GXY
0.00	1.066E+07	7.847E+05	2. 349E+05
1,00	1. 065E+07	7, 845E+05	2. 380E +05
2, 00	1.563E+07	7.840E+05	2. 472E+05
3.00	1,859E+07	7, 830E+05	2. 626E+05
4.00	1. 053E+07	7. 817E+05	2.840E+05
5, 00	1, 046E+07	7. 800E+05	3, 113E+05
6.00	1. 037E+07	7, 779E+05	3. 444E+05
7, 00	1, 026E+07	7. 755E+05	3. 832E+05
8.00	1. 012E+07	7. 727E+05	4. 274E+05
9, 00	9. 968E+06	7. 696E+05	4. 768E +05
10, 00	9, 791E+06	7. 561E+05	5. 312E+05
11, 00	9. 589E+06	7. 623E+05	5. 904E+05
12, 00	9. 364E+06	7. 582E+05	6. 540E+05
13, 00	9, 113E+06	7. 538E+05	7, 217E+05
14,00	8. 838E+06	7. 491E+05	7. 932E+05
15, 00	8, 538E+06	7. 441E+05	8. 682E+05
16.00	8, 215E+06	7 389E+05	9. 483E+05
17, 00	7. 871E+06	7. 335E+05	1. 027E+06
18.00	7 509E+06		1. 027E+06
19, 00	7. 131E+06	7. 279E+05 7. 221E+05	
20, 00	6. 741E+06	7. 162E+05	1 195E+06
	l l	1	1. 282E+06
21, 00	6. 343E+06	7, 1025+05	1. 3695+06
22, 00	5. 942E+06	7. 042E+05	1. 457E+06
23, 00	5. 541E +06	6. 983E+05	1.546E+06
24.00	5, 145E+06	6. 924E+05	1, 634E+06
25, 00	4. 758E +06	6. 867E+05	1. 721E+06
26, 00	4, 384E+06	6, 812E+05	1, 808E+06
27. 00	4. 025E+06	6. 761E+05	1.893E+06
28, 00	3 685E+06	6. 714E+05	1. 976E+06
29, 00	3. 365E+06	6. 674E+05	2. 057E+06
30, 00	3 066E+06	6, 640E+05	2, 135E+06
31, 00	2.790E+06	6. 614E+05	2.210E+06
32, 00	2,535E+06	6, 599E+05	2.281E+06
33, 00	2.303E+06	6. 597E+05	2.349E+06
34,00	2, 092E+06	6, 608E+05	2. 413E+06
35, 00	1. 902E+06	6, 537E+05	2. 472E+05
36, 00	1. 732E+06	6, 686E+05	2.526E+0 ^c
37. 00	1.580E+06	6. 758E+05	2.576E · 06
38, 00	1. 445E+06	6, 857E +05	2. 620E +0o
39, 00	1, 326E+06	6. 987E+05	2,659E+06
40, 00	1.221E+06	7. 152E+05	2, 692E+06
41.00	1. 130E+06	7, 358E+05	2,719E+06
42, 00	1. 050E +06	7. 610E+05	2. 740E+06
43, 00	9 813E+05	7. 915E+05	2.756E+06
44,00	9, 219E+05	8,279E+05	2.765E+06
45, 00	8,711E+05	8. 712E+05	2,768E+06

TABLE A-10. KEVLAR 49 MODULI (VF = 0.60)

ALPHA	EX	EY	GXY
0, 00	1, 159E+07	8, 053E+05	2, 412E+05
1. 00	1, 158E+07	8, 051E+05	2, 445E +05
2, 00	1, 155E+07	8, 045E+05	2, 546E+05
3, 00	1. 151E+07	8, 036E+05	2. 713E+05
4,00	1. 145E +07	8. 022E+05	2,947E+05
5, 00	1. 137E+07	8. 005E+05	3, 245E+05
6. 00	1. 127E+07	7. 983E+05	3. 606E+05
7, 00	1. 114E+07	7. 958E+05	4. 029E+05
8.00	1, 100E+07	7. 930E+05	4. 511E+05
9, 60	1. 083E+07	7. 898E+05	5. 050E+05
10,00	1, 083E+07	7 862E+05	5. 644E+05
11.00	1, 0412+07	7, 823E+05	
12.00	0. 106E+07	7, 782E+05	6, 289E +05
13.00	9. 886E+06		6, 983E+05
14, 00	9.5812+06	7 735E+05	7, 721E+05
	1	7, 687E+05	8. 582E+05
15, 00	9. 249E+06	7. 636E+05	9, 319E+05
16, 00	8.891E+06	7. 553E+05	1. 017E+06
17.00	8.509E+06	7, 527E+05	1. 105E+06
18.00	8. 107E+06	7. 469E+05	1, 196E+06
19.00	7. 688E +06	7. 410E+05	1. 288E+06
20, 00	7. 256E+06	7. 349E+05	1. 303E+06
21.00	6. £16E+06	7. 288E+05	1, 478E+06
22, 00	6. 373E+06	7, 226E+05	1.575E+06
23, 00	5. 9322+06	7. 165E+05	1.671E+06
24, 00	5. 497E+06	7, 105E+05	1, 767E+06
25, 00	5, 073E+06	7, 046E+05	1.863E+06
26, 00	4. 664E+06	6, 990E+05	1. 957E+06
27, 00	4. 273E+06	6, 938E+05	2. G50E ÷06
28, 00	3. 903E+06	6, 893E+05	2. 140E+06
29, 00	3,556E+06	6, 848E+05	2.228E+06
30, 00	3. 233E+06	6.813E+05	2.314E+06
31, 00	2. 935E+06	6. 787E+05	2. 395E+06
32, 00	2.662E+06	6. 772E+05	2, 4735 Úo
33, 00	2. 413E+06	6. 769E+05	2.547E+06
34, 00	2, 188E+06	6. 782E+05	2.617E+06
35, 00	1, 986E+06	6, 812E+05	2. 681E ÷06
36, 00	1.805E+06	6, 864E+05	2.740E+06
37, 00	1.644E+06	6, 939E+05	2.794E+06
38, 00	1,501E+06	7. 042E+05	2.843E+06
39, 00	1.375E+06	7. 177E+05	2.885E+06
40, 00	1.265E+06	7. 349E+05	2. 921E+06
41, 00	1, 169E+06	7,563C+05	2, 9515+06
42, 00	1.085E+06	7, 826E+05	2. 974E+06
43, 00	1, 013E+06	8, 143E+05	2, 991E+06
44, 00	9, 506E+05	8, 524E+05	3, 0015+06
45, 00	8, 975E+05	8. 975E+05	3, 0045+06
			2, 33, 30

TABLE A-11. KEVLAR 49 STRENGTH ALLOWABLES (VF = 0.55)

			EVOL	5)(0))	ΓVV
ALPHA	FXTU	FYTU	FXCU	FYCU	FXY
0,00	178750, 0	0.0	38500.0	2818.7	1413,4
1,00	178134, 2	4.8	38474.8	2818.0	1498.5
2,00	176310.4	19.2	38398, 7	2816.1	1596.7
3.00	173347.7	43.3	38270, 3	2812.7	1709.5
4,00	169353.7	77.0	38087.3	2808, 1	1838.6
5,00	164465.9	120.5	37846.7	2802, 2	1985.6
6,00	158839.9	173.9	37544.7	2795.0	2152.4
7,00	152638,8	237.2	37176.8	2786.5	2340, 7
8.00	146023.3	310,6	36738.3	2776.7	2552.3
9,00	139143.7	394.3	36224, 1	2765.8	2789.0
10,00	132134,6	488.5	35629. 2	2753.6	3052, 2
11,00	125111.4	593.3	34949.3	2740,3	3343.6
12,00	118169, 7	708.9	34180.4	2726, 0	3664.3
13.00	111385, 2	835.7	33320.0	2710,5	4015.3
14.00	104815.7	974.0	32367.0	2694, 1	4397, 2
15,00	98502, 7	1123.9	31322, 3	2676.7	4810, 2
16,00	92473, 9	1286.0	30188.9	2658.5	5253, 8
17,00	86746, 1	1460.5	28972,5	2639, 6	5727.2
18,00	81326, 6	1647, 8	27681.1	2620, 0	6228, 8
19,00	76215, 9	1848,5	26325.4	2599.9	6756,5
20,00	71409, 1	2062, 9	24918.4	2579,3	7307,5
21,00	66897.6	2291,6	23474.7	2558,6	7878.3
22,00	62669, 8	2535,1	22010, 3	2537,8	8465, 0
23, 00	58712.6	2794.1	20541.8	2517,1	9063, 1
24,00	55011.8	3069, 2	19085,8	2496.8	9667, 8
25,00	51552,6	3361.1	17657, 8	2477.2	10273.9
26, 00	48320,3	3670, 6	16272, 2	2458.4	10876,3
27, 00	45300,4	3998.4	14941.5	2441.0	11469, 6
28, 00	42478, 7	4345.6	13675.9	2425.2	12048.9
29.00	39841.8	4712.9	12483.3	2411.5	12609.5
30,00	37376.9	5101.4	11369, 1	2400.4	13147.0
31.00	35071.8	5512.3	10336, 7	2392.5	13657.5
32,00	32915, 2	5946.6	9387.3	2388.3	14138.0
33,00	30896,5	6405.8	8520.4	2388.7	14585.9
34,00	29006,0	6891.1	7734.0	2394.4	14999.0
35.00	27234,3	7404.1	7025.0	2406.4	15376, 2
36,00	25573,0	7946.3	6389, 4	2425.7	15716.5
37.00	24014.4	8519.4	5822, 7	2453.6	16019.5
38.00	22551,1	9125.4	5320, 1	2491.2	16285.2
39.00	21176.5	9766.3	4876.4	2540.3	16513.9
40.00	19884.3	10444.2	4486. 7	2602.4	16706.1
41.00	18669.0	11161.4	4146.0	2679.4	16862.3
42.00	17525.2	11920, 6	3849.7	2773.6	16983.0
43.00	16448.1	12724.4	3593.2	2887.2	17068.8
44.00	15433.3	13575.9	3372.4	3022.9	17120.1
45.00	14476.7	14478, 2	3183.4	3183.7	17137.2

TABLE A-12. KEVLAR 49 STRENGTH ALLOWABLES (VF = 0.60)

ALPHA	FXTU	FYTU	FXCU	FYCU	řΧΥ
0.00	0.0	0.0	42000, 0	2904, 8	1460, 9
1,00	194288.9	4.9	41972.5	2904.1	1550, 0
2,00	192184.6	19.8	41889.3	2902.1	1652, 9
3,00	188771.6	44.6	41748.9	2898.6	1771.3
4,00	184181.1	79.3	41548.7	2893.8	1906, 9
5,00	178579.5	124. 2	41284.9	2887.7	2061,8
6,00	172154.1	179.2	40953.1	2880.3	2237,6
7, 00	165099.2	244.4	40548.1	2871.5	2436,5
8,00	157604.1	320, 1	40064.4	2861.4	2660,5
9,00	149843, 9	406, 4	39496.0	2850, 1	2911,3
10,00	141973,1	503.4	38837, 2	2837.6	3191.0
11,00	134122,3	611.4	36002.6	2823.0	3501.3
12,00	126397.4	730, 6	37227.9	2809.0	3843,5
13, 90	118880, 9	861.4	36270, 2	2793.0	4219.0
14.00	111633,6	1003, 9	35200, 1	2776.0	4628.5
15,00	104898.0	1158.5	34042.9	2758, 1	5072,4
16,00	98100,8	1325.6	32778.4	2739.3	5550,5
17,00	91856.4	1505,6	31421, 2	2719.7	6062,1
18,00	85969, 1	1698, 8	29981.1	2699.4	6605.7
19,00	80435.8	1905,8	28470, 6	2678.6	7179.0
20,00	75248,0	2127.0	26904.9	2657,4	7779.4
21,00	70393.1	2362, 9	25301.0	2636.0	8403.0
22, 00	65856,3	2614, 3	23677,4	2614.4	9045.8
23,00	61620, 7	2881,6	22653, 1	2593.0	9702,8
24,00	57669.2	3165,6	20446.6	2572,1	10368.8
25,00	53984, 0	3467, 0	18875.6	2551.7	11038.0
26,00	50547.7	3786,5	17355,8	2532,3	11704.6
27,00	47343,6	4125, 2	15900, 6	2514.3	12362, 7
28, 00	44355, 2	4483, 8	14521.0	2497.9	13006, 6
29, 00	41567.4	4863, 3	13225, 1	2483, 7	13630.6
30,00	38965.5	5264, 9	12018, 3	2472, 2	14229.9
31.00	36536, 0	5689, 7	10903.5	2464, 0	14800, 1
32,00	34266, 2	6138, 8	9881.5	2459, 7	15337, 2
33,00	32144.4	6613, 8	8950, 9	2460, 1	15838, 2
34, 00	30159.6	7115, 9	8109, 2	2466.1	16300, 7
35,00	28301.7	7646.8	7352, 2	2478.5	16723,1
36,00	26561.6	8208.2	6675.4	2498.6	17104.3
37,00	24930,5	8801.8	6073.4	2527.6	17443.7
38.00	23400.7	9429, 7	5540.5	2566.8	17741.4
39.00	21964.8	10093.9	5071.2	2617.8	17997.5
40,00	20616.3	10796, 8	4659.7	2682,5	18212.7
41.00	19348, 9	11540, 8	4300, 6	2762, 9	18387.5
42.00	18156.9	12328, 7	3988, 8	2861.1	18522.6
43.00	17035.3	13163.4	3719.3	2979.7	18618.7
44.00	15979.3	14047.9	3487. 6	3121.6	18676, 0
45,00	14984, 3	14985.9	3289, 6	3289, 9	18695.1

TABLE A-13. KEVLAR 49 POISSON'S RATIO AND THERMAL EXPANSION (VF = 0.55)

ALPHA	UXY	UYX	AX	AY
0, 00	0, 2785	0, 205	-2, 578E-06	2, 844E-05
1,00	0, 2824	0, 208	-2, 587E-06	2, 843E-05
2,00	0, 2942	0, 217	-2, 613E-06	2.843E-05
3,00	0,3138	0, 232	-2, 656E-06	2, 841E-05
4, 00	0,3410	0, 0253	-2,716E-06	2.840E-05
5,00	0,3757	0, 0280	-2.794E-06	2, 838E-05
6, 00	0, 4178	0, 0313	-2, 889E-06	2, 835E-05
7, 00	û, 4668	0, 0353	-3, 002E-06	2, 831E-05
8, 60	0, 5224	0, 0399	-3, 132E-06	2, 827E-05
9, 00	0, 5841	0, 0451	-3, 279E-06	2, 822E-05
10, 00	0 6513	0,0510	-3, 445E-06	2, 816E-05
11,00	0, 7233	0, 0575	-3, 627E-06	2, 809E-05
12.00	0.7991	0, 0647	-3, 828E-06	2, 802E-05
13. 00	0, 8777	0, 0726	-4, 045E-06	2, 792E-05
14, 00	0, 9580	0, 0812	-4, 280E-06	2, 782E-05
15, 00	1, 0387	0, 0905	-4, 532E-06	2,770E-05
16, 00	1. 1184	0, 1006	-4, 800E-06	2,756E-05
17.00	1, 1958	0, 1114	-5, 085E-06	2,739E-05
18, 00	1, 2694	0, 1230	-5, 384E-06	2,721E-05
19, (0	1 3379	Q 1355	-5. 698E-06	2,700E-5
20.01	1, 4001	0, 1487	-6, 024E-06	2, 676E-05
21.00	1, 4547	0, 1467 0, 1629	-6, 361E-06	
22, 00	1.5010	0, 1779	-6, 707E-06	2, 649E-05
22, 00 23 , 00	1, 5383	0, 1779	-7, 059E-06	2.618E-05
24,00	1, 5662	0, 2108	-7, 039E-06	2, 582E-05
24, 00 25, 00	1, 5845	0, 2287	-7, 413E-06 -7, 767E-06	2, 542E-05 2, 497E-05
	1, 5934	0, 2476	-8, 114E-06	
26, 00 27, 00	1, 5932	0, 2676	-8, 449E-06	2, 446E-05
	1, 5845		-8, 764E-06	2,388E-05
28, 00		0, 2887		2, 323E-05
29, 00	1,5679	0,3109	-9. 052E-06	2 251E-05
30, 00	1, 5442	0, 3344	-9, 304E-06	2, 170€-05
31.00	1,5142	0, 3590	-9, 507E-06	2, 07 9E-05
32,00	1. 4789	0 3850	-9 652E-06	1. 97 9E-05
33,00	1, 4392	0, 4122	-9 723E-06	1, 869E-05
34,00	1, 3957	0, 4408	-9.708E-06	1,749E-05
35,00	1.3495	0, 4708	-9, 591E-06	1, 618E-05
36,00	1, 3011	0, 5023	-9, 557E-06	1, 477E-05
37,00	1. 2513	0, 5352	-8, 992E ·06	1, 325E-5
38, 00	1, 2006	0, 5697	-8, 483E-06	1, 165E-05
39, 00	1 1495	0,6056	-7, 820E-06	9, 969E-06
40, 00	1, 0984	0, 6432	-6, 995E-06	8, 228E-06
41.00	1. 0477	0, 6823	-6, 005E-06	6. 448E-06
42.00	0, 9978	0,7230	-4, 852E-06	4, 654E-06
43,00	0, 9487	0, 7652	-3, 546E-06	2 874E-06
44.00	0,9008	0, 8090	-2, 098E-06	1, 136E-06
45.00	0, 8542	0, 8543	-5. 289E-07	-5.316E-07

TABLE A-14. KEVLAR 49 POISSON'S RATIO AND THERMAL EXPANSION (VF = 0.60)

0, 00 1, 00 2, 00 3, 00 4, 00 5, 00 6, 00 7, 00 8, 00 9, 00 10, 00 11, 00 12, 00 13, 00	0, 2720 0 2762 0, 2887 0, 3095 0, 3384 0, 3734 0, 4201 0, 4722 0, 5313	0, 0189 0, 0192 0, 201 0, 0216 0, 0237 0, 0264 0, 0298 0, 0337	-2, 735E-06 -2, 744E-06 -2, 770E-06 -2, 813E-06 -2, 874E-06 -2, 952E-06	2 821E-05 2, 820E-05 2, 620E-05 2, 819E-05 2, 817E-05 2, 815E-05
1, 00 2, 00 3, 00 4, 00 5, 00 6, 00 7, 00 8, 00 9, 00 10, 00 11, 00 12, 00 13, 00	0 2762 0, 2887 0, 3095 0, 3384 0, 3734 0, 4201 0, 4722 0, 5313	0, 0192 0, 201 0, 0216 0, 0237 0, 0264 0, 0298	-2. 744E-06 -2. 770E-06 -2. 813E-06 -2. 874E-06 -2. 952E-06	2, 620E-05 2, 819E-05 2, 817E-05
2, 00 3, 00 4, 00 5, 00 6, 00 7, 00 8, 00 9, 00 10, 00 11, 00 12, 00 13, 00	0, 2887 0, 3095 0, 3384 0, 3734 0, 4201 0, 4722 0, 5313	0, 201 0, 0216 0, 0237 0, 0264 0, 0298	-2, 770E-06 -2, 813E-06 -2, 874E-06 -2, 952E-06	2, 819E-05 2, 817E-05
3, 00 4, 00 5, 00 6, 00 7, 00 8, 00 9, 00 10, 00 11, 00 12, 00 13, 00	0, 3095 0, 3384 0, 3734 0, 4201 0, 4722 0, 5313	0, 0216 0, 0237 0, 0264 0, 0298	-2, 813E-06 -2, 874E-06 -2, 952E-06	2, 819E-05 2, 817E-05
4, 00 5, 00 6, 00 7, 00 8, 00 9, 00 10, 00 11, 00 12, 00 13, 00	0, 3384 0, 3734 0, 4201 0, 4722 0, 5313	0, 0237 0, 0264 0, 0298	-2, 874E-06 -2, 952E-06	2.817E-05
5, 00 6, 00 7, 00 8, 00 9, 00 10, 00 11, 00 12, 00 13, 00	0, 3734 0, 4201 0, 4722 0, 5313	0. 0264 0. 0298	-2, 952E-06	
6, 00 7, 00 8, 00 9, 00 10, 00 11, 00 12, 00 13, 00	0, 4201 0, 4722 0, 5313	0, 0298		
7, 00 8, 00 9, 00 10, 00 11, 00 12, 00 13, 00	0, 4722 0, 5313		-3. 047E-06	2, 812E-05
8, 00 9, 00 10, 00 11, 00 12, 00 13, 00	0, 5313	11 1155/	-3. 160E-06	2, 808E-05
9, 00 10, 00 11, 00 12, 00 13, 00		0, 0383	-3. 291E-06	2. 804E-05
10, 00 11, 00 12, 00 13, 00	0, 5969	0, 0435	-3, 439E-06	2.799E-05
11. 00 12. 00 13. 00	0.6683	0. 0494	-3, 605E-06	2.794E-05
12, 00 13, 00	0.7447	0. 0559	-3. 768E-06	2.787E-05
13, 00	0, 8251	0, 0632	-3. 989E-06	2,779E-05
	0, 9084	0, 0032	-4, 208E-06	2.770E-05
14.00			-4. 444E-06	2,760E-05
14,00	0, 9933	0. 0797		
15, 00	1, 0784	0, 0890	-4, 697E-06	2.748E-05
16, 00	1, 1623	0, 991	-4, 967E-06	2.734E-05
17, 00	1, 2434	0 1100	-5, 253E-06	2,718E-05
18, 00	1, 3203	0, 1216	-5. 554E-06	2.699E-05
19,00	1, 3914	0, 1341	-5, 870E-06	2, 679E-05
20, 00	1, 4554	0, 1474	-6, 198E -06	2, 655E-05
21, 00	1,5113	0, 1616	-6, 538E-06	2, CL3E-05
22, 00	1, 5580	0, 1767	-6, 887E-06	2, 597E-05
23, 00	1, 5951	0, 1927	-7. 242E-06	2, 562E-05
24 00	1 6220	0, 2097	-7. 601E-06	2. 522E-05
25 00	1 6387	0, 2276	-7. 958E-06	2. 477E-05
26,00	1, 6455	0, 2466	-8 310E-06	2, 426E-05
27 00	1, 6428	0, 2667	-8, 650E-06	2, 368E-05
28, 00	1, 6312	0, 2880	-8, 971E-06	2, 303E-05
29, 00	1,6115	0, 3103	-9. 265E-06	2, 231E-05
30,00	1,5846	0, 3339	-9 . 523F06	2. 150E-05
31,00	1, 5514	0, 3587	-9. 733E-06	2, 060E-05
32,00	1,5129	0, 3849	-9. 884E-06	1, 960E-05
33.00	, 1, 4700	0, 4123	-9, 963E-06	1, 850€-05
3 4. (%)	1, 4235	0, 4412	-9, 954E-06	1.729E-05
35, 00	1, 3744	0, 4715	-9. 844E 06	1,598E-05
36,00	1, 3234	0, 5032	-9. 616E-06	1. 456E-05
37.00	1, 2711	0, 5365	-9, 257E-06	1,305F-05
38, 00	1, 2181	0, 5714	-8, 753E-06	1. 144E-05
39, 00	1, 1649	0, 6078	-8. 093E-06	9.751E-06
40, 00	1, 1120	0, 6459	-7.271E-06	8, 003E -06
41,00	1, 0596	0, 6856	-6, 281E-06	6, 215E-06
42, 00	1,0081	0,7270	-5, 128E-06	4. 413E-06
43, 00	0, 9577	0.7700	-3, 819E-06	2. 625E-06
44.00	0, 9085	0, 8146	-2, 367E-06	3. 792E-07
45, 00	0, 8609	0, 8609	-7, 920E-07	-7. 947E-07

APPENDIX B

ANGLE BRACKET STUDY

Tension fittings, frequently referred to as "bathtub" fittings (Figure B-1), provide an effective method of transferring axial load across removable helicopter joints. This type of fitting is commonly fabricated from metals whose strength and stiffness are essentially the same in all directions (i. e., they are isotropic and homogeneous).

Figure B-1. "Bathtub" Tension Fitting

The design and fabrication of similar fittings from reinforced composites present several problems that do not arise in the design of metal fittings:

- The strength and stiffness of composite materials depend on fiber orientation.
- The bearing and shear strengths of composites are low in comparison with their unidirectional tensile strength and the tensile strength of metals.

- The three-dimensional state of stress that exists in composite fittings complicates the analysis of these structures.
- The failure modes of composites are different from those of metals.

A major problem in designing attachment fittings using reinforced composites is "turning the corner." A simple example is the bolted angle bracket shown in Figure B-2. In bolted angle brackets, a tension load applied to one leg of the angle is reacted by a shear load in the other leg. As a result of the inherent eccentricity, a bending moment is present in both legs and, in particular, in the radius of the angle. In composites, the transfer of the load from tension in one leg to shear in the other and the transfer of the bending moment around the corner limit the strength of the fitting because composites possess nonuniform properties. The situation is complicated by several discontinuities:

- The tension bolt-washer interface
- The turn-the-corner problem
- The load distribution around the hole
- The material behavior

This problem had to be solved in order to design effective composite tension fittings. An analytical solution was required, along with experimental data to verify the accuracy of the analysis.

METHODOLOGY

The nature of the stress field in the corner of an angle bracket was investigated using several theoretical methods including classical two-dimensional thin laminate theory, thick laminated plate theory, and cylindrical shell theory. Results obtained using the two-dimensional classical theory were comparable with parametric study results obtained using finite element models C-1 and C-2.

P_O = APPLIED TENSION LOAD

M_O = MOMENT DUE TO ECCENTRICITY e

Figure B-2. Turning the Corner

When a pure axial tension load is applied to an angle bracket (Figure B-3), the internal axial, shear, and moment loads vary as a function of the bend angle θ . These loads are simply:

$$N_{\theta} = N_{0} \cos \theta$$

$$S_{\theta} = N_{0} \sin \theta$$

$$M_{\theta} = N_{0} \overline{R} (1 - \cos \theta)$$

where the distance to the center of the laminate is $\overline{R} = R_0 + t/2$. At high values of θ , the shear and moment loads will create critical interlaminar shear and transverse tensile stresses. These effects will be discussed with the NASTRAN results.

The reduced stiffnesses of an orthotropic lamina in a flat composite plate are:

$$Q_{11} = \frac{E_1}{1 - v_{12} v_{21}}$$

$$Q_{12} = \frac{v_{12} E_2}{1 - v_{12} v_{21}} = \frac{v_{21} E_1}{1 - v_{12} v_{21}}$$

$$Q_{22} = \frac{E_2}{1 - v_{12} v_{21}}$$

$$Q_{66} = G_{12}$$

where

 $E_1, E_2 = Young's moduli in one and two directions, respectively$

v_{ij} = Poisson's ratio for transverse strain in the j-direction when stressed in the i-direction

G₁₂ = shear modulus in the 1-2 plane

Figure B-3. Internal Loads in the Corner Region

Laminated bending stiffnesses are defined as

$$D_{ij} = \frac{1}{3} \sum_{k=1}^{N} (\overline{Q}_{ij})_k (h_k^3 - h_{k-1}^3)$$

where Q_{ij} are the reduced stiffnesses when transformed to a rotated x-y axis and h_k is defined in Figure B-4.

Figure B-4. Laminate Geometry

The normalized tangential stress in the corner of an angle bracket is

$$\frac{\sigma_{\theta}^{k}}{\sigma_{0}} = \left\{ \frac{t\left(R_{0} + t/2\right)\left[1 - \cos\theta\right]\left(h_{k} + t_{k}/2\right)}{D_{\theta\theta}} + \frac{\cos\theta}{Q_{\theta\theta}} \right\} Q_{\theta\theta}^{k}$$

where $D_{\theta\theta}$ and $Q_{\theta\theta}$ are equal to D_{11} and Q_{11} , respectively, and $\sigma_0 = N_0/t$. At θ equal to 0 degrees, there is no bending stress component, as expected.

Similarly, the normalized interlaminar shear stress in the corner region was evaluated as

$$\frac{\tau_{r\theta}}{\sigma_0} = \frac{t \sin \theta}{2G_{r\theta}} \left[\left(t/2 \right)^2 - \left(h_k + t_k/2 \right)^2 \right] G_{r\theta}^k$$

where $G_{r\theta}$ is the laminate shear modulus using the radial coordinate system. Given a particular lamina, the value of $\tau_{r\theta}^{k}/\sigma_0$ varies as a function of $\sin\theta$.

Despite the relative simplicity of these equations, the results show excellent agreement with results obtained using the NASTRAN C-1 and C-2 preprocessor models developed for this contracted effort.

FINITE ELEMENT MODEL

Modeling Considerations

- The finite element model of the angle bracket to be investigated was designed in accordance with the following considerations:
 - Since the geometry of the bracket fitting and the applied loads are both symmetrical, it is necessary to analyze only half of the bracket, using appropriate boundary constraints.
 - To avoid using a dense mesh and yet obtain reliable results in critical parts of the bracket (parts with high stress/strain gradients), higher-order isoparametric solid elements (HEXA, PENTA) are employed.
 - For modeling purposes, the bracket is subdivided into four parts (Figure B-5) such that each part can be independently provided with a mesh size appropriate to its stress/strain gradients.
 - The mesh size for each bracket part is chosen so as to lend itself to automatic resolution into discrete strips and automatic numbering by appropriate preprocessors.
 - To obtain the magnitude of the interlaminar stresses, several layers of elements are provided across the thickness of the bracket to represent the actual laminated construction.
 - The bracket is subdivided along its width into a reasonable number of uniform strips such that it is convenient to identify critical zones and, when desirable, possible to extract and subject individual strips to detailed interlaminar analysis (Figure B-6).

Figure B-5. Angle Bracket Subdivision

Figure B-6. Single-Layer Model

Preprocessors

To minimize computer cost, it was decided to develop two FORTRAN preprocessor programs (C-1 and C-2) capable of automatically forming the finite element meshes for a given bracket and generating the associated Bulk Data decks (Figure B-7).

In the first stage of the analysis, the C-1 preprocessor idealizes the whole (half-symmetrical) bracket into either a single- or a multilayer model with a given number of strips across the width of the bracket. A full model NASTRAN can then be conducted.

The C-2 preprocessor simply extracts that part of the C-1 model output that is associated with a specific critical strip so that a single strip NASTRAN can be conducted.

Parametric studies can be run using either the output of the full model NASTRAN analysis after a C-1 run or the output of the single strip NASTRAN after a C-2 run.

Note that a separate C-1 run is made for the specific multilayer construction of the angle in question before the second stage of the analysis (the C-2 run) is conducted.

Step-by-Step NASTRAN Procedure

The step? involved in determining the magnitude of the interlaminar stresses in any given composite bracket by this two-stage procedure are as follows:

- List the dimensions of the bracket, the dimensions of the elements for all four regions, and the equivalent solid laminate material properties.
- Execute the C-1 preprocessor model, entering the above information as input, to obtain the bulk data for a single-layer, multistrip model run.
- Supplement the C-1 output with appropriate Executive Control and Case Control decks and the required additional Bulk Data cards to make a data check and plot run with identification numbers for grid points and elements.
- Modify the above deck to conduct the full model NASTRAN for the solid laminate bracket.

Figure B-7. Two-Stage Computer Analysis Flowchart

- Examine the results to identify regions of high stress/strain gradients and select the critical strip to investigate interlaminar behavior.
- Rerun the C-1 preprocessor model for a multilayered mesh that represents the actual laminated construction.
- Execute the C-2 preprocessor model to extract the multilayer bulk data for the critical strip, using the results of the second C-1 model run as input.
- Supplement the C-2 output with the necessary Executive Control, Case Control, and Bulk Data cards to make a data check and plot run with elements and grid points labeled.
- Modify the above deck to perform the final single strip NASTRAN to obtain interlaminar stress results within the critical strip.

FULL MODEL C-1 PREPROCESSOR

The C-l preprocessor first analyzes the portion of the bracket to the left of the centerline of the washer and then, in a similar manner, the portion to the right of the centerline up to the tangent line where the bend starts. Particular care is taken to ensure that the grid points accurately trace the circular washer circumference and that the appropriate wedge-shaped elements (PENTAs) are provided in combination with the solid (HEXA) elements near the circumference. The cylindrical part of the bracket is then modeled using diverging HEXA elements and, finally, the loaded leg (Part 4) is idealized using the rectangular HEXA elements.

The program is capable of modeling up to 25 layers across the thickness of the bracket.

Coordinate Systems

In order to locate the grid points, to obtain a printout of node displacements along desired directions, and to account for specific material orientations, five coordinate systems are employed (Figure B-8). These coordinate systems are defined by NASTRAN CORD2 Bulk Data cards, and their ID numbers are appropriately referenced when the related GRID and PSOLID cards are input. These five coordinate systems are:

• The basic rectangular coordinate system, with its origin placed directly below the left rear corner of the angle such that the xyz

LOCAL CYLINDRICAL COORDINATE

SYSTEM ② USED TO LOCATE GRID POINTS
ON CYLINDRICAL PART OF BRACKET

THREE LOCAL COORDINATE SYSTEMS USED TO DEFINE ANISOTROPIC MATERIAL PROPERTIES OF SOLID ELEMENTS THAT CONSTITUTE PAPTS 1 AND 2 ③ , PART 3 ④ , AND PART 4 ⑤

Figure B-8. C-1 Coordinate Systems

coordinates of all grid points have positive values. The grid points of all the flat regions (Parts 1, 2, and 4) are located with reference to this system, which is directed by an appropriate entry in Field 3 of the GRID card. The displacements, degrees of freedom, and constraints at all grid points are also defined with reference to this basic coordinate system by making a corresponding entry in Field 7 of the appropriate GRID cards.

- A local cylindrical coordinate system (defined with reference to the basic system described above) used for locating the grid points on the cylindrical part of the bracket. Field 3 of the corresponding GRID cards defines this system.
- Three local coordinate systems (also established with reference to the basic system) used to define the anisotropic material properties of the solid elements constituting Parts 1 and 2, Part 3, and Part 4, respectively, of the bracket. Systems 3 and 5, which are rectangular, correspond to the flat parts, and System 4, which is cylindrical, pertains to the curved part.

These systems are referenced on the appropriate PSOLID card, which in turn references the corresponding MAT9 card. The orientation of these systems was selected such that Direction 1 is consistently normal to and radiating out of all elements of the bracket. All laminae composing the bracket are thus parallel to Plane 2-3 of the related material coordinate system at all locations. This orientation, which is dictated by the geometry of the cylindrical part, allows the material properties of any continuous lamina to be defined in a consistent manner.

The NASTRAN program prints out the element stresses in directions parallel to the corresponding material coordinate systems.

Grid Point and Element Numbering Schemes

The C-1 preprocessor model lays out the mesh and assigns identification numbers for the grid points and elements at the top and bottom of each layer, as illustrated (for a single-layer model) in Figure B-9. First, the grid points on the bottom surface of Part 1 are numbered, starting from the washer centerline and proceeding in a sweeping fashion in the -x direction toward the free edge. The numbers are assigned consecutively, starting with 1. The program then moves to the top surface (in the +y direction), increments the ID numbers by 10,000, and assigns grid point IDs in the same manner as for the bottom surface.

Figure B-9. Grid Point and Element ID Numbers

For models with more than one layer, the program moves up one layer at a time until it reaches the top surface. The elements for Part 1 are numbered following the same general directions as for the grid point numbering.

After the grid points and elements of Part 1 have been numbered, the program provides grid point IDs for the bottom surface of Part 2, starting with number 1001 and moving from the washer centerline to the tangent line. The numbers of the nodes one layer higher are incremented by 10,000, and the element IDs start with 11,001.

The grid points for Parts 3 and 4 are given numbers consecutive with those assigned to Part 2. The element numbers for Part 3 start with 2001 and those for Part 4 start with 3001.

The ID numbers given to grid points near the washer should be carefully noted because that area is numbered according to a modified scheme to account for the circular boundary and the wedge-shaped elements required to model it.

C-1 Input Data

The user essentially specifies the basic dimensions of the bracket and the desired fineness of the mesh by giving the number of divisions along the three axes for each of the four parts of the bracket. The required input parameters are defined as:

Width (W) = Width of the modeled half-symmetrical bracket, which remains uniform over all four parts.

 $\Delta_{\rm w}$ = Typical element dimension in the width direction, also uniform over all four parts.

Thickness (T_i) = Thickness of the ith lamina, entered as T(1), (T2),..., T(n), starting from the bottom.

Layers = Number of laminae making up the total thickness. Up to 25 layers may be specified (Default = 1).

D_{ew} = Distance from the free transverse edge to the center of the washer defining the limits of Part 1.

 $\Delta_{\rm ew}$ = Typical element dimension in the $D_{\rm ew}$ direction. Along with $\Delta_{\rm w}$, this parameter establishes the mesh density in Part 1.

- R_{w} = Radius of washer or circular opening in the model.
- D_{wt} = Distance from the center of the washer to the tangent line defining the limits of Part 2.
- Δ_{wt} = Typical element dimension in the D_{wt} direction. Along with Δ_{w} , this parameter establishes the mesh density in Part 2.
- R_b = Inside radius of the cylindrical part (bend radius).
- Δ_{θ} = Typical angle (in degrees) subtended by the radial faces of the converging elements of the cylindrical part.

 Along with Δ_{w} , this parameter establishes the mesh density in Part 3.
- D_{lt} = Distance from the transverse loaded edge to the closest tangent line. This parameter defines the limits of Part 4.
- Δ_{lt} = Typical element dimension in the D_{lt} direction. Along with Δ_{w} , this parameter establishes the mesh density in Part 4.
- Tolerance = This parameter controls the element dimensions while fitting the elements in around the circumference of the washer. It defines the minimum length to which the side of an element may be reduced, or the maximum length to which an element may be increased to meet the circular boundary.

Actual data input to the C-1 preprocessor consists of the names of the parameter3 (Table B-1) and their respective values, entered in free format and in free order. Lines 898 through 901 of the program listing, presented as Appendix C, constitute an example of user data input (this example corresponds to the bracket illustrated in Figure B-9). An echo of the input parameters is printed along with the run cutput.

A comprehensive flow chart showing the sequence of program operations is given in Appendix D.

TABLE B-1. INPUT PARAMETER NAMES

Input Parameters	Parameter Names
Width	WIDTH
$\Delta_{ m w}$	DELTAX
Thickness T(i)	T(i)
Layers	LAYERS
$\mathtt{D_{ew}}$	HT2
$\Delta_{ m ew}$	DELTY2
$R_{\mathbf{w}}$	RADIUS
D_{wt}	LEGX1
$\Delta_{ m wt}$	DELTAY
R _b	BEND
$\Delta_{m{ heta}}$	DELTAT
$\mathtt{D_{lt}}$	LEGY
$\Delta_{ m lt}$	DELTAZ
Tolerance	TOLER

Job Control Statements

The first part of the C-1 model JCL (job control list) is a command to execute FORTRAN programs, and the second part specifies the disposition of the output (save or dispose). The JCL for the source program listing shown in Appendix C is valid for the IBM 360/370 computer. Lines 1 and 2 show the user ID and the Execute FORTRAN command. Lines 895 through 897 specify that Tape Unit 7 be saved and catalogued on on-line disk pack WYLBUR. Tape Unit 7 contains the NASTRAN Bulk Data card images, which are to be used for the subsequent stress analysis run.

Typical C-1 Output

The program produces three types of output: an echo of the input parameters, error messages, and the Bulk Data cards CHEXA, CPENTA, GRID, and CORD2C, printed in 8-column NASTRAN format. The first two types of output are written on Tape Unit 6 and are printed along with the preprocessor run, and the bulk data is written on Tape Unit 7 and saved on an on-line disk pack to be supplemented with additional data for the subsequent NASTRAN run. Appendix E shows the C-1 model preprocessor program output, and Appendix F presents the bulk data generated by the program.

FULL MODEL NASTRAN

To conduct a full model NASTRAN, the Bulk Data cards generated by the C-l preprocessor model must be supplemented by appropriate Executive Control, Case Control, and Bulk Data cards defining the boundary conditions, material properties, and loading.

Boundary Conditions

Figure B-10 shows the constraints imposed on the bracket:

- The top edge of the free transverse side is restrained from motion in the vertical direction (U2 = 0).
- The washer boundary (circular opening) is assumed to be rigidly constrained (U1 = U2 = U3 = 0) along both the top and the bottom edges.
- Since only half the bracket is modeled (because of structural and loading symmetry), appropriate boundary conditions (U3 = 0) are imposed on all grid points along the face of symmetry.

All these constraints are effected by including additional SPC1 cards in the Bulk Data deck and the corresponding SPC card in the Case Control deck. Since HEXA and PENTA elements relate only to the translational degrees of freedom (1, 2, and 3), the GRDSET card is used to constrain all the rotational degrees of freedom (4, 5, and 6) and thus prevent the singularity problem.

CONSTRAINED AT CENTERLINE FOR SYMMETRY

WASHER BOUNDARY FIXED

EDGE CONSTRAINED NORMALLY

Figure B-10. C-1 Boundary Conditions

Material Properties

The bracket construction is defined by including PSOLID and MAT9 cards in the Bulk Data deck. The appropriate material coordinate system is input on the PSOLID card, and a symmetric 6 by 6 material property matrix G_{ij} is input on the MAT9 card to define the anisotropic properties of the solid, isoparametric elements. For the laminated bracket, the G_{ij} matrix is defined as

where

$$v = 1 - v_{12} v_{21} - v_{23} v_{32} - v_{31} v_{13} - 2 v_{12} v_{23} v_{31}$$

for the kth lamina

$$\left[\overline{G}^{k}\right] = \left[T^{k}\right]^{l} \left[G^{k}\right] \left[T^{k}\right]$$

where

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & m^2 & n^2 & 0 & 2mn & 0 \\ 0 & n^2 & m^2 & 0 & -2mn & 0 \\ 0 & 0 & 0 & m & 0 & -n \\ 0 & -mn & mn & 0 & (m^2 - n^2) & 0 \\ 0 & 0 & 0 & n & 0 & m \end{bmatrix}$$

and

$$m = \cos \theta$$

$$n = \sin \theta$$

where the transformation matrix T^k for the kth lamina define a rotation about the x axis as illustrated in Figure B-11.

Figure B-11. Rotation of Axis

Applied Loads

Two load conditions were imposed on the C-1 bracket model:

- A uniformly distributed tension load across the loaded transverse edge (Figure B-12a)
- A uniformly distributed clockwise couple across the edge to compensate for eccentric tensile loads (Figure B-12b)

Figure B-12. Load Conditions

These loads are applied by including FORCE cards in the Bulk Data deck and the corresponding LOAD cards in the Case Control deck.

Bandwidth (Wavefront) Optimization

It is advisable, especially for large models, to employ a bandwidth or wavefront minimization subroutine to make optimal use of computer resources. With the MSC NASTRAN program, this is accomplished by using a NASTRAN preprocessor card (parameter PREOPT = 1).

C-1 Data Check and Plot Run

Before making a solution run, it is desirable to examine the preprocessorproduced finite element model by making a data check and plot run using several carefully selected points. Appendix G shows the NASTRAN data deck setup for making a data check and plot run and the undeformed structure plots produced.

Care should be taken to save the plot files by inputting the proper job control statements.

NASTRAN C-1 Solution Run

To make a NASTRAN solution run, the following cards must be added to the Bulk Data deck generated by the C-I preprocessor:

- NASTRAN wavefront optimization card (PREOPT = 1)
- Executive Control deck
- Case Control deck
- Additional Bulk Data cards:
 - CORD2R cards to define the material coordinate systems
 - GRDSET cards to constrain the redundant degrees of freedom (4, 5, and 6)
 - FORCE cards for the two loading cases
 - MAT9 material properties cards
 - PSOLID cards for the various groups of solid elements
 - SPC1 cards to impose the necessary boundary conditions
 - ENDDATA card

The printout from a NASTRAN solution run, including an echo of the completed input data decks, is presented in Appendix H. This output corresponds to the bracket model shown in Figure B-9.

SINGLE STRIP C-2 PREPROCESSOR

The C-2 model preprocessor was developed to postprocess the data generated by the C-1 preprocessor model. Its function is to extract the bulk data for a particular strip out of the multilayered full bracket model.

The user specifies the sequence number of the desired strip (parameter ISTRIP), starting from the free edge, and the total number of strips (parameter ISTRPS) that comprise the bracket model. The grid point and element ID numbers previously assigned are retained for the C-2 run.

The program reads the C-1 bulk data generated for the full bracket model and identifies and outputs the GRID, CHEXA, and CPENTA cards (the CORD2R cards are also extracted) for all layers belonging to the desired strip, which terminates at the washer opening. The corresponding part of the model on the other side of the washer opening is assumed to have no significant influence on the results because the washer is assumed to completely restrain the bracket along its circular boundary.

The C-2 model preprocessor program consists of approximately 120 FORTPAN statements (see Appendix I for the program listing). A detailed flowchart that explains the logic and sequence of program operations is presented in Appendix J.

Figure B-13 illustrates the "multilayer" input data required for the separate C-1 run necessary to produce the major input data for the C-2 preprocessor model.

Job Control Statements

The C-2 model preprocessor has a two-part JCL similar to that of the C-1 preprocessor. The first part contains the user ID and the Execute FORTRAN command, and the second part specifies the disposition of the output (save or dispose). The C-2 JCL also manages two tape units: Unit 1 (input) contains, in card format, the bulk data generated by the C-1 preprocessor for the full (multilayer, multistrip) bracket model, and Unit 2 (output) stores the bulk data extracted for the critical strip and later outputs it for NASTRAN analysis. Lines 113 through 116 of the program listing (Appendix I) show some of the job control statements, and line 117 specifies the desired strip number and the total number of strips in the bracket model. On-line disk pack WYLBUR is employed to read the specified Bulk Data cards and write the selected Data cards.

The program designates Tape Units 5 and 6 as the current input and output units, in the usual fashion.

Typical C-2 Output

This program produces two types of output: an echo of the input parameters, which is written on Tape Unit 6 and printed along with the preprocessor run, and Bulk Data cards CHEXA, CPENTA, GRID, and CORD2C, printed in typical 8-column NASTRAN format. (Note that the program assigns a PID (property ID) value of 1, 2, or 3 on the CHEXA and CPENTA cards for the bottom layer and increments by 10 for each subsequent layer above.) This bulk data is written on Tape Unit 2 (input) and saved on on-line disk pack

&PARAMS

T(1) = 0.01, T(2) = 0.01, T(3) = 0.01, T(4) = 0.01, T(5) = 0.01, T(6) = 0.01, T(7) = 0.005, T(8) = 0.01, T(9) = 0.01, T(10) = .01, T(11) = .01, T(12) = .01, T(13) = .01, LAYERS = 13, WIDTH = 0.5, HT2 = 0.4, RADIUS = 0.25, DELTY2 = 0.20, LEGX1 = 0.27, DELTAY = 0.09, BEND = 0.125, DELTAT = 15.0, LEGY = 0.17, DELTAZ = 0.17, DELTAX = 0.1, TOLER = 0.015 & END

NOTES:

- 1. COLUMN 1 MUST BE BLANK FOR ALL PARAM CARDS.
- 2. &PARAMS IS ENTERED IN COLUMNS 2-8 AND &END IN COLUMNS 2-5.
- 3. THE VALUES OF PARAMETERS HAVE FORMAT F8.4; THUS, THERE SHOULD BE NO MORE THAN THREE DIGITS TO THE LEFT OF THE DECIMAL AND NO MORE THAN FOUR DIGITS TO THE RIGHT.
- 4. ALL 13 PARAMETERS AND ONE THICKNESS PER LAYER MUST BE SPECIFIED; THE DEFAULT VALUE FOR LAYERS EQUALS 1.

Figure B-13. Sample Input Data for Multilayer C-1 Model Preprocessor Run

WYLBUR, as previously described, and additional data is appended for the subsequent NASTRAN run. The program listing and output are shown in Appendix K.

"!NGLE STRIP NASTRAN

In order to conduct a single strip NASTRAN, the Bulk Data cards generated by the C-2 model preprocessor must be supplemented with suitable Executive Control and Case Control decks and Bulk Data cards that define the boundary conditions and material properties.

Boundary Conditions

Three types of boundary conditions must be imposed:

- The grid points lying on the exposed surfaces (top and bottom) must be subjected to the same constraints as they were during the C-1 model analysis. These constraints are effected by including the appropriate SPC (or SPC1) and GRDSET cards.
- The rest of the grid points on exposed surfaces, which were unconstrained during the C-1 model analysis, are subjected to the same finite displacements (T1, T2, T3) as during the corresponding C-1 model analysis. This condition is effected by including the appropriate SPC cards.
- The interior grid points newly produced by the multilayered construction are interlinked to the exterior grid points by continuous RSPLINE elements along all the straight lines across the thickness of the bracket. It was assumed that RSPLINE elements would provide a more realistic boundary condition for the single strip analysis (than MPC or RBE elements), and the few test runs carried out confirmed this assumption.

Note that no loads need be applied for this analysis; the model is deformed under the influence of displacement boundary conditions.

Material Froperties

The number of MAT9 cards required equals the number of types of layers that comprise the angle bracket. The number of PSOLID cards required equals the number of sets of PID values assigned to the various CHEXA and CPENTA elements by the C-1 preprocessor program. Three groups of PID values corresponding to three parts of the angle bracket are shown in Figure B-14.

Figure B-14. Critical Strip Model

Dummy Elements

Since all grid points in the single strip model are subjected to either a single- or multipoint constraint, NASTRAN would be unable to initiate execution without a valid A-SET matrix. Three CBAR elements are input to define the additional grid points required.

C-2 Data Check and Plot Run

The output produced by a NASTRAN data check and plot run and the undeformed plots produced are shown in Appendix L.

NASTRAN C-2 Solution Run

To conduct a NASTRAN solution run, the bulk data generated by the C-2 model preprocessor must be supplemented with the following cards:

- NASTRAN wavefront optimization card (PREOPT = 1)
- Executive Control deck
- Case Control deck
- Additional Bulk Data cards:
 - CORD2R cards to define the material coordinate systems
 - GRDSET cards to constrain the redundant degrees of freedom (4, 5, and 6)
 - Additional GRID, CBAR, PBAR, and MAT1 cards to provide for the required dummy elements
 - MAT9 material properties cards
 - PSOLID cards for the various groups of solid elements
 - SPC, SPC1, and RSPLINE cards to impose the necessary boundary conditions
 - ENDDATA card

Part of the printout from a NASTRAN C-2 solution run, including an echo of the completed input data checks, is presented in Appendix M. This example corresponds to the angle bracket shown in Figure B-9.

NASTRAN RESULTS

Throughout this study T300 graphite/5208 epoxy was used for the test case. The stacking sequence $\left[0_{\#}/45_{\#}/0_{\#}\right]$ was used, where the symbol # stands for crossplied fabric. Two load cases were examined: a uniform tension load and a uniform clockwise couple. The sample ten-strip model executed by the NASTRAN plotter is shown in Figure B-15. The following geometries were used:

T; = thickness of the ith lamina (0.14 inch TYP)

R_b = bend radius (0.125 inch)

R = washer radius (0.219 inch)

D_{wt} = distance from the center of the washer to the tangent line (0.249 inch)

D_{ew} = distance from the free transverse edge to the center of the washer (0.40 inch)

D_{lt} = distance from the transverse loaded edge to the closest tangent line (0.249 inch)

Width = width of the modeled half-symmetrical bracket (1.0 inch)

Figure B-15. Sample Ten-Strip Model

Using the C-1 model preprocessor, the NASTRAN data output from the uniform tension load case was plotted in such a way that it could easily be compared with data derived from mathematical theory.

In Figure B-16 the targential stress σ_y/σ_0 is plotted versus bend angle along the centerline strip; it is most critical at the inner surface and its gradient peaks at θ = 75 to 85 degrees. Interlaminar shear stress is also expected to be most critical at this location. (All stresses plotted in these figures have been normalized.)

Figure B-16. Tangential Stress Versus Bend Angle
Along the Centerline Strip: Uniform
Tension Load Case

In Figure B-17 this same stress is plotted versus angle width at θ = 85 degrees (angle of maximum stress). This stress and its gradient (slope) appear to peak at the inner surface and closest to the centerline of the angle.

Figure B-17. Tangential Stress Versus Angle Width: Uniform Tension Load Case

In Figure B-18 the interlaminar shear stress τ_{xy}/σ_0 is plotted versus bend angle. The shear stress reaches a maximum at $\theta = 85$ to 90 degrees and remains relatively constant across the thickness of the laminate as evidenced by the positive correlation of the curves.

Figure B-18. Interlaminar Shear Stress Versus Bend Angle: Uniform Tension Load Case

In Figure B-19 this same stress is plotted versus angle width at the angles indicated. At θ = 5 degrees, the stress is maximum at the edge of the angle and decreases toward the centerline. At all other angles, the stress increases to a maximum at the centerline. The transverse shear strength τ_{xz} is directly proportional to the interlaminar shear strength.

ar - Ar es de Sas

Figure B-19. Interlaminar Shear Stress Versus Angle Width: Uniform Tension Load Case

The normal stress (normal to the laminate surface) $\sigma_{\rm X}/\sigma_0$ is plotted versus bend angle in Figure B-20. In general, this is a compression field; however, at bend angles up to $\theta=15$ degrees a low-magnitude tension field is present near the centerline of the angle (Figure B-21). Interlaminar tension can only occur in the flat area between the applied load and the bend angle, acting perpendicular to the applied load.

Figure B-20. Normal Stress Versus Bend Angle: Uniform Tension Load Case

Up to this point the C-1 model has been used to study the displacement/load distribution by measuring the stresses and their gradients. In reducing the data, the study was focused on the areas of primary interest, the locations at which a delamination could begin.

Figure B-21. Normal Stress Versus Angle Width: Uniform Tension Load Case

To determine the magnitude of the interlaminar stresses, a C-2 run was executed on the centerline strip of the ten-strip test model (see Figure C-22). Interlaminar stress analyses can be carried out on any layer or, in some cases, the entire model can be analyzed layer by layer. In some instances more than one lamina of the same type with the same orientation are lumped together into a single layer to reduce computer costs.

Figure B-22. Laminated Centerline Strip of the Ten-Strip Test Model

The interlaminar shear stress τ_{xy}/σ_0 along the bend angle is shown for all nine laminae in Figure B-23. The lamina nearest the inner surface is identified as L0, the next is L1, and the lamina nearest the outer surface is L8. Zero-degree crossplied fabric laminae are represented by the even numbers (and zero), and the 45-degree crossplied fabric laminae are represented by the odd numbers. The interlaminar shear stress peaks between the L0 and L1 laminae at $\theta = 75$ degrees.

$$\left(\frac{\tau_{xy}}{\sigma_0}\right)^{\text{L0, L1}} = \left[\left(\frac{\tau_{xy}}{\sigma_0}\right)^{\text{L0}} + \left(\frac{\tau_{xy}}{\sigma_0}\right)^{\text{L1}}\right] / 2$$

$$\left(\frac{\tau_{xy}}{\sigma_0}\right)^{L0}$$
 = $\left[5.40 + 3.64\right]/2 = 4.52$

Figure B-23. Interlaminar Shear Stress Versus Bend Angle: Uniform Tension Load Case

In Figure B-24 the interlaminar shear stress through the laminate thickness is shown at θ = 5 and 75 degrees. These stresses are very nearly equal at the outer surface.

£,

Figure B-24. Interlaminar Shear Stress Through the Laminate Thickness at θ = 5 and 75 degrees: Uniform Tension Load Case

Normal stress along the bend angle is shown in Figure B-25. This stress is chiefly in compression, but it is in tension up to about θ = 15 degrees. In the flat region up to θ = 0 degrees, this stress is maximum and is

$$\left(\frac{\sigma_{x}}{\sigma_{0}}\right) = 0.1333$$

Figure B-25. Normal Stress Along the Bend Angle: Uniform Tension Load Case

Normal stress along the centerline strip is shown at $\theta = 5$ and 75 degrees in Figure B-26. At $\theta = 5$ degrees this stress is an interlaminar tension with a magnitude of approximately 0.05.

Figure B-26. Normal Stress Through the Laminate Thickness at 0 = 5 and 75 degrees: Uniform Tension Load Case

Uniform clockwise couple load cases were also run using the C-2 preprocessor model. Interlaminar shear stresses are plotted versus bend angle in Figure B-27. This stress, which peaks at θ = 0 to 5 degrees, has a magnitude of

$$\left(\frac{\tau_{xy}}{\sigma_0}\right)^{L0, L1} = \left(0.446 + 1.580\right)/2 = 1.013$$

Figure B-27. Interlaminar Shear Stress Versus Bend Angle: Uniform Clockwise Couple Load Case

Normal stress is plotted versus bend angle in Figure B-28. This stress, a compression field, is rather uniform all along the bend angle.

Figure B-28. Normal Stress Versus Bend Angle: Uniform Clockwise Couple Load Case

PARAMETRIC STUDIES

Parametric studies were conducted using the C-1 preprocessor model to determine the influence of various design parameters (Table B-2). The finite element model used for these studies varied somewhat from that described previously; five strips were used instead of ten. This coarser grid gave results comparable with those obtained using the ten-strip model, at one-fourth the cost in computer time.

The parametric study was based on the behavior of the in-plane tangential stress gradient $\partial \sigma_y/\partial(r\theta)$ and the interlaminar shear stress τ_{xy} , which determines interlaminar shear stress recovery. Tangential stress σ_y/σ_0 is plotted versus bend angle for varying thickness-to-bend radius ratios in Figure B-29. It can be seen that the tangential stress gradient decreases with increasing thickness-to-bend radius ratio; therefore, the larger the laminate thickness and the lower the bend radius, the smaller the interlaminar shear stress.

TABLE B-2. PARAMETRIC ANALYSIS

Run Numbe r	Bend Radius, inch	Thickness, inch	Washer Radius, inch	Stacking Sequence	D _{lw} , inch	D _{wt} ' inch	Δθ, degrees	D _{et} , inch
1	0,25	0,125	0,25	[0 ₁₇ /±45 ₈]	0.4	0,27	[5 	0,51
2	0.50							
3	0,125		0,219	[0 _# /45 _# /0 _#] ₃		0,249		0, 249
4			0,25	[0 _# /45 _# /0 _#] ₃		0.27		0.51 I
5		0,25						
6		0.50						
7		0.125		[0 ₉ /±45 ₁₆]				
8				$\begin{bmatrix} 0_9/\pm 45_{16} \end{bmatrix}$ $\begin{bmatrix} 0_{13}/\pm 45_{12} \end{bmatrix}$				
9				[0]				
10				[±45]			<u> </u>	

Figure B-29. Tangential Stress Versus Bend Angle for Varying Thickness-to-Bend Radius Ratios: Uniform Tension Load Case

Tangential stress is plotted versus bend angle for varying stacking sequences (with all laminae 0.125 inch thick) in Figure B-30. This stress and its gradient peak at the inner surface (θ = 75 to 85 degrees). The slope of the gradient is lowest for a 0-degree laminate and highest for a ± 45 -degree laminate; however, tangential stress itself is highest for a 0-degree laminate. All other stacking sequences fall in between the extremes. A laminate may be chosen based on these curves, but the minimum thickness for a given application may depend on other, more important criteria.

Figure B-30. Tangential Stress Versus Bend Angle for Varying Stacking Sequences:
Uniform Tension Load Case

Interlaminar shear stress is plotted versus bend angle as a function of thickness-to-bend radius ratio in Figure B-31. At a bend angle of 90 degrees, this stress decreases with increasing thickness-to-bend radius ratio. For a ratio of 1, the stress varies linearly along the bend angle and, up to about 77 degrees, is the highest shown (note that the gradient is minimal at 77 degrees). For most design purposes, therefore, the thickness-to-bend radius ratio should be as high as possible.

Figure B-31. Interlaminar Shear Stress Versus Bend Angle for Varying Thickness-to-Bend Radius Ratios:
Uniform Tension Load Case

Interlaminar shear stress τ_{xy}/σ_0 is plotted versus bend angle in Figure B-32. For bend angles between 0 and 77 degrees, the shear stress is highest for a 0-degree laminate and lowest for a ±45-degree laminate, with the 0/±45 degree laminates falling in between. For bend angles between 77 and 85 degrees, the order reverses such that the peak shear stress, which occurs at θ = 85 degrees, is highest for a ±45-degree laminate and lowest for a 0-degree laminate.

For the $\begin{bmatrix}0_{13}/\pm45_{12}\end{bmatrix}$ laminate, which corresponds to the quasi-isotropic larginate, the interlaminar shear stress gradient is constant throughout the range.

Figure B-32. Interlaminar Shear Stress Versus Bend Angle for Varying Stacking Sequences: Uniform Tension Load Case

A C-2 model analysis was performed to determine the influence of the lamina stacking sequence on interlaminar stresses. The model consisted of a 25-ply laminate of T300 graphite/5208 epoxy. The critical strip, which was extracted from the previous ten-strip C-1 model, was 0.1 inch wide. Four stacking sequences were studied (Figure B-33).

Interlaminar shear stress is plotted across the laminate thickness for the four stacking sequences in Figure B-34. Interlaminar shear stress is independent of the stacking sequence over most of the laminate thickness; in fact the only discernible difference among the four stacking sequences occurs near the outer surface, where Sequence 3 appears to show a slightly lower stress value.

Figure B-33. Four Stacking Sequences

Figure B-34. Interlaminar Shear Stress for Varying Stacking Sequences Through the Laminate Thickness

To verify the importance of the type of laminae used (fabric or tape), a comparison was made between the four configurations shown in Figure B-33 and a [0#/45#/0#] laminate. The fabric laminate coincides with the others for laminates between 0.5 and 0.65 inch thick; however, for all other thicknesses it is subjected to much higher interlaminar shear stress levels. This indicates that the choice of material would be tape.

It should be noted, however, that mixing is very important in keeping the stresses uniformly distributed throughout the laminate thickness. Stress gradients are highly sensitive to induced singularities due to any severe change in laminae properties within a laminate.

EXPERIMENTAL TESTS

The graphite, Kevlar 49, S-glass, and E-glass composite angle specimens described in Table B-3 were fabricated and tested after 3 to 4 days in the normal laboratory environment. The tension test setup for these 1-inch-wide specimens is shown in Figure B-35.

Both incipient local matrix failure by delamination in the outer plies of the corner region and ultimate filament fracture were recorded. Initial matrix delaminations were audible and were measured as sudden changes in the slope of the load-deflection curve. These changes of slope were recorded in two ways:

- Displacement from top of grip to mid-bolt head (Delta 1)
- Test machine head travel (Delta 2)

As shown in Figure B-35, Delta 2 readings have more than twice the magnitude of the Delta 1 readings in the elastic range. Delta 1 readings were recorded continuously and automatically, and Delta 2 readings were taken (from the gauges) every 20 pounds for the -1, -3, and -5 specimens and every 40 pounds for the -2, -4, and -6 specimens.

The typical sequence of events in fracture failures is illustrated in Figure B-36. The corners of thinner angles straighten out elastically for a distance of up to two or three times their initial radii. Next the matrix fails in delamination, and finally the fibers fracture at ultimate load.

TABLE B-3. ANGLE TENSION TEST SPECIMENS

Cured Thickness, inch	0.078	0.205	0.085	0.124	0.084	0.156
Stacking Sequence	[(0/90)/(±45)/(0/90)] ₃	[(0/90)/(±45)/(0/90)] ₅	Same as 1	Same as 2	Same as 1	Same as 2
Ply Thickness, inch	0.0125	0.014	0.0095	0.009	0.0095	0.010
Supplier Designation	Hexcel F3T-584, Gr/F-250	Narmco Rigidite, T300/5208	Hexcel 181, Kevlar 49/F-155	Narmco 281; Kevlar 49/5208	Hexcel 181, S2-glass/F-155	Narmco 7781, E-glass/5208
Fiber Type	Graphite	Graphite	Kevlar 49	Kevlar 49	S-gíass	E-glass
Quantity Made	8	&	8	ω	∞	∞
Panel No.	ī	8	ĸ	4,	w	9

NAS 1103 OR NAS 1223-4 OR EQUIVALENT NO. 10-32 HEX HEAD BOLTS WITH 10 10 12-INCH GRIP; NAS 671-10 OR NAS 1021 OR EQUIVALENT PLAIN HEX NUTS TO BE TORQUED TO 26 IN.-LB

FIGERGLASS, GRAPHITE/EPOXY, TEFLON, OR TEDLAR WASHER, 0.2-INCH ID, 1/2- TO 3/4-INCH OD IN 2 PLACES, 1/32- TO 3/32-INCH THICK NAS 620 OR EQUIVALENT NO.10 ID STEEL PLAIN WASHER, TYP OF 2 PLACES [2]

1/4-20 OR 1/4-28 BOLT AND NUT, TORQUED TO 3/4 OF ALLOWABLE, TYP OF [67]

PLACES 5

PLAIN STEEL WASHER 6 FIBERGLASS, GRAPHITE/ /EPOXY, OR GLASS/TEFLON WASHER

Test Setup Figure B-35.

Figure B-36. Fracture Progression in Typical Composite Angle

The concept of yield strength being two-thirds of ultimate strength is not transferable from metals to composites. Permanent set may occur anywhere from 75 percent (thin angles) to 90 percent of ultimate strength (thicker angles).

Thick sections are more ductile than thin ones.

Allowable load versus thickness in composite angles is shown in Figure B-37 for an eccentricity of 0.5 inch. A similar curve for 2024-T3 aluminum has been added for comparison. With respect to angle allowables, only graphite is similar to aluminum.

Figure B-37. Ultimate Allowable Loads Versus Thickness

APPENDIX C

C-1 MODEL PREPROCESSOR PROGRAM LISTING

```
1. // JDB (900004,,048),PRE91278,CLASS=B ____
 2. //STEP1 EXEC FORTHCLG
           DIMENSION LAST(1000).ICUR(1000).IG(8)
 З.
           REAL+8 LEGX1 , LEGY , WIDTH, RADIUS , DELTAY, DELTAX, T(26) , TOLER , X, Y(26) ,
 4.
 5.
          *PION4, XSAVE, YSAVE, ANGLE, DIST, XLAST, YLAST, DELTAT, YY, XX, DELTY2,
          *BEND.THETA.Z (26).DELTAZ.R(26).HT2,XMDD1.XXMDD.XMDD(26).
          PYMOD(26).ZMOD.ZMOD2(26),THMOD.LEGX.LEGXP1.LEGY
 7.
           NAMELIST /PARAMS/ LEGX1.LEGY.WIDTH.RADIUS.DELTAX.DELTAY.T.
 8.
          *TOLER.DELTAT.BEND.DELTAZ.LAYERS.
 9.
          *DELTY2.HT2
10.
           DATA IGRID/1/,JGRID/10001/,ICDNT/0/,JCUR/0/,JLAST/0/,IEL/1/
11.
           DATA LEGXI.LEGY.WIDTH.RADIUS.DELTAX.DELTAY.TOLER/740.0/
12.
13.
           DATA 1/26+0.0/
            DATA DELTAT.BEND/2+0.0/.DELTAZ/0.0/.LAYERS/0/.DELTY2/0.0/
14.
           CATA HT2/0.0/
15.
16. C
17. C
18. C
         THIS PROGH IS FOR GENERATING BULK DATA FOR THE FULL BRACKET
         AND IS CALLED PRE-PROCESSOR FOR C1 HODEL
19. C
20. C
21. C
           READ IN PARAMETERS
           READ(5,PARAMS)
22.
            IF (LAYERS.EO.O)LAYERS.1
23.
24. C
           ECHO PARAMETERS
           WRITE(6,8)LEGXI.LEGY.WIDTH.RADIUS.DELTAY.DELTAX.DELTAI.BEND.
25.
26.
          *TOLER, DELTAZ, LAYERS, DELTYZ, HTZ
         & FORMAT(')PARAMETER ECHD',/, 'OLEGX) = '.T13,F8.4,/,
27.
          * LEGY= ':Tl3.F8.4./. WIDTH= '.

* LEGY= ':Tl3.F8.4./. WIDTH= '.

*Tl3.F8.4/. RADIUS= ':Tl3.F8.4./. DELTA-Y= ':Tl3.F8.4./.

* DELTA-X= ':Tl3.F8.4./. DELTA-T= ':Tl3.F8.4./' BEND= ':Tl3.F8.4./

*/O' TOLERANCE= ':F8.4./. DELTA-Z=':Tl3.F8.4./. HEIGHT2='.

*F8.4./. LAYERS=':Tl3.18./. DELTAY2=':Tl3.F8.4./. HEIGHT2='.
28.
29.
30.
31.
32.
          *T13.F8.4)
33.
           CO 996 I=1.LAYERS
HRITE(6.997) I.T(1)
34.
35.
           FORMAT( LAYER-1.12. THICKNESS=1.F8.4)
36. 997
37. 998
           CONTINUE
         1 FORMAT( GRID .18.8X.3F8.4)
38.
           IF(LAYERS.GT.25)GD TO 900
39.
40. C
            INITIALIZE CONSTANTS
           LAYERG=LAYERS+1
41.
42.
           2(1)=LEGY+BEND
           DD 35 1=2.LAYERG
2(1)=2(1-1)+T(1-1)
43. .
44.
        35 CONTINUE
45.
           IEND2=0
46.
47.
           PION4=3.14159/4.
48.
           IPSOL=1
49. C
50. C
           GENERATE PIECE BEFORE FIRST PIECE(MODEL CHANGE 5/8/78)
51. C
52. C
53. C
54. C
           START AT THE LOWER LEFTHAND CORNER
55. C
           THEN MOVE TO THE RIGHT UNTIL WE HIT THE CUTOUT
56. C
           Y(1)=0.0
57.
      430 X=WIDTH
58.
```

THE STANDARD OF THE STANDARD O

```
GENERATE FAR LEFT GRID POINT
 59. C
 60.
           YY=-Y(1)
 61. C
          TRANSFORMING FROM DRIGINAL TO MODIFIED RECT COORD SYSTEM
 62.
           XXMOD=YY+HT2
 63.
           YMOD(1)=Z(1)
 64.
           ZMDD=X
           WRITE(7.1) IGRID. XXMDD. YMOD(1). ZMOD
 65.
           DD 495 I=2.LAYERG
 66.
 67.
           YMOD(1)=Z(1)
           WRITE(7,1) JGRID, XXHOD, YHOD(1), ZHOD
 68.
 69.
           JGRID=JGRID+10000
       495 CONTINUE
 70.
 71. C
           STORE GRID ID
           JCUR=JCUR+1
 72.
 73.
           ICUR (JCUR) = IGR ID
           INCREMENT GRID ID ......
 74. C
 75.
           IGRID=IGRID+1
 76.
           JGRID=IGRID+10000
 77. C
           MOVE TO THE LEFT
 78.
       490 X=X-DELTAX
 79. C
           SAVE X AND Y
 80. _ _
           XSAVE=X
           YSAVE=Y(1)
 81.
           IF(Y(1).E0.0.0)XX=X
 82.
 83. C
           ARE WE PAST THE 45?
           ANGLE=DATAN(Y(1)/X)
 84.
 85.
           IF(ANGLE.GT.PIDN4)GD TO 540
         PELON THE 45
FIND DISTANCE FROM CUTOUT
 86. C
 87. C
           IF (Y(1).GT.RADIUS)GO TO 550
 .88
           DIST*X-DSQRT(RADIUS*+2-Y(1)**2)
ARE WE WITHIN TOLERANCE FROM THE CUTOUT
 89.
 90. C
 91.
           IF(DIST.LE.TOLER)GD TO 480
 92.
           GD TD 550
 93. C
           ABOVE THE 45
      540 IF(X.GT.RADIUS)GO TO 550
DIST=Y(1)-DSORT(RADIUS+*2-X**2)
 94.
 95 .
 96.
           IF(DIST.LE.TOLERIGO TO 560
 97.
           NOT AT THE CUTOUT YEY SO GENERATE NORMAL GRID POINT
. 98.
          TRANSFORMING FROM ORIGINAL TO MODIFIED RECT COORD SYSTEM
 99. C
           XXMDD=YY+HT2
100.
101.
           YMDD(1)=2(1)
102.
           ZMDD=X
103.
           WRITE(7.1) IGRID.XXPDD.YMOD(1).ZMOD
104.
           DD 555 1=2.LAYERG_____
105.
           YMDD(1)=Z(1)
           WRITE(7,1)JGRID.XXMOD.YMOD(1).ZMOD
106.
107.
           JGR ID=JGR ID+ 10000
108.
           CONTINUE
109. C
           STORE GRID ID
110.
           JCUR=JCUR+1
           ICUR (JCUR) = IGR ID
111.
112. C
           INCREMENT GRID ID'S
           IGRID=IGRID+1
113.
111.
           JGRID=IGRID+10000
115. C
           IF THIS IS THE FIRST LINE OF GRIDS, DON'T GENERATE CONNECTIONS
           IF(Y(1).EQ.0.0)GD_TD 490_
1.6.
           MAKE SURE WE HAVE A POINT NEXT TO THIS ONE
117. C
           IF (JCUR.GT.JLAST) GD TO 560
118.
119. C
           GENERATE QUAD ELEMENT
```

```
FIRST SET UP GRID POINT ORDER
120. C
      590 IG(1)=ICUR(JCUR)
121.
122.
           IG(2)=ICUR(JCUR-1)
123.
           IG(3)=LAST(JCUR-1)__
           IG(4)=LAST(JCUR)
124.
           IG(5)=IG(1)+10000
125.
126.
           16(6)=16(2)+10000
           16(7)=16(3)+10000
127.
128.
           IG(8) "IG(4)+10000
           JEL=IEL
129. . . ..
           JPSOL=IPSOL
130.
           DO 565 J=1.LAYERS
131.
           DU 565 J=1.LAYEK5
1F(J.EQ.1) GO TO 567
132.
           133.
134.
           JPSOL=JPSOL+10
           DD 566 K=1.8_
135.
           IG(K)=IG(K)+10000
136.
      566 CONTINUE
137.
           PUNCH CONNECTION CARD
138. C
      567 HRITE(7.2) JEL. JPSDL, (IG(1), I=1.6), ICONT
139.
           INCREMENT CONTINUATION FIELD
140. C
141.
           JCONT=1CONT ...
142.
           ICONT=ICONT+1
           PUNCH CONTINUATION OF CONNECTION CARD
143. C
144.
           WRITE(7,3) JCONT, IG(7), IG(8)
145.
      565 CONTINUE
146. C
           INCREMENT ELEMENT ID
147.
           1EL = 1EL+1
           KEEP GOING TILL WE HIT THE CUTOUT
148. C
149.
           GD TD 490
           IF WE DON'T HAVE A POINT NEXT TO THIS ONE PUT ONE ON THE CURVE
150. C
151.
      58C YY=-DSGRT(FADIUS++2-X++2)
          TRANSFORMING FROM ORIGINAL TO HODIFIED RECT COORD SYSTEM
152. C
           XXHOD=YY+HT2...__
153.
154.
           YMOD(1)=2(1)
155.
           ZMOD=X
           WRITE(7,1) IGRID, XXHOD, YMOD(1), ZHOD
156.
157.
           DD 585 I=2.LAYERG
           YMOD(1)=2(1)
158.
           WRITE(7,1) JGRID, XXHOD, YMOD(1), ZHOD_____
159.
           JGRID=JGRID+10000
160.
161.
      585 CONTINUE
162. C
           STORE GRID ID
163.
           JLAST=JLAST+1
           LAST (JLAST)= IGRID
164.
           INCREMENT GRID ID
165. C
166.
           IGRID=IGRID+1
167.
           JGRID=IGRID+10000
           GD TD 590
168.
169. C
           WE'VE HIT THE CUTDUT. SO GENERATE
A GRID POINT ON THE CURVE OF THE CUTDUT
WE'RE ABOVE THE 45. SO HOVE IN THE Y-DIRECTION
170. C
171. C
172. C
      560 Y(1)=DSQRT (RADIUS++2-X++2)
173.
           GO TO 570
HE'RE BELOW THE 45 SO MOVE IN THE X-DIRECTION
174.
175. C
176.
      480 X=DSQRT(RADIUS++2-Y(1)++2)
177.
      570 YY=-Y(1)
          TRANSFORMING FROM ORIGINAL TO MODIFIED RECT COORD SYSTEM
178. C
           XXMOD=YY+HT2
179.
           YMOD(1)=Z(1)
180.
```

```
181.
            WRITE(7,1) IGRID. XXMOD. YMOD(1). ZMOD
182.
163.
            DD 575 1=2.LAYERG
            YMOD(1)=Z(1)
184.
            WRITE (7,1) JGRID, XXHOD, YMOD (1), ZMOD
165.
            JGRID=JGRID+10000
186.
        575 CONTINUS
167.
188. C
            STORE GRID ID
            JCUR=JCUR+1
189.
            ICUR(JCUR)=IGRID
190.
            INCREMENT GRID ID'S
191. C
            JGRID=1GRID+10000
192.
193.
            IF THIS IS THE FIRST LINE OF GRIDS, DON'T GENERATE CONNECTIONS
194. C
            IF(Y(1).E0.0.0)GD TD 530
OID WE CROSS A LINE OF GRIDS?
195.
196. C
197.
            IF (XSAVE.NE. XLAST) GO TO 500
            WE DIDN'T CROSS A LINE OF GRIDS SO
198. C
            GENERATE A QUAD ELEMENT
199. C
            FIRST SET UP THE GRID ORDER
200. C
201.
            IG(1)=ICUR(JCUR)
            IG(2) = ICUR (JCUR-1)...
202.
203.
            IG(3)=LAST(JCUR-1)
204.
            1G(4)=LAST(JCUR)
205.
            16(5)=16(1)+10000
206.
            IG(6)=1G(2)+10000
            16(7)=16(3)+10000
207.
            16(8)=16(4)+10000____
208.
209.
            JEL - IEL
            JPSOL = IPSOL
210.
211.
            90 576 J=1.LAYERS
            1F(J.EQ.1)GD TD 578
212.
213.
            JPSOL=JPSOL+10
            JEL=JEL+10000
214.
            DO 577 K-1.8
215.
            IG(K)=IG(K)+10000
216.
217.
            CONTINUE
            PUNCH CONNECTION CARD
218. C
           WRITE (7.2) JEL, JPSOL, (1G(1), 1=1.6), 1CONT
219.
            INCREMENT CONTINUATION FIELD
220. C
221.
            JCONT = ICONT
            ICONT = ICONT+1
222.
223. C
            PUNCH CONTINUATION OF CONNECTION CARD
224.
            WRITE(7,3) JCONT.16(7),16(8)
225.
       576 CONTINUE
            INCREMENT ELEMENT TO
226. C
227.
            IEL=IEL+1
            GD TO 530
228.
229. C
           HE CROSSED A LINE OF GRIE'S SO HE NEED A TRIANGULAR ELEMENT INSTEAD OF A QUAG ELEMENT FIRST SET UP THE GRID ORDER
230. C
231. C
232. C
       500 1G(1)=1CUR(JCUR-1)
1G(2)=LAST(JCUR-1)
233.
234.
235.
            IG(3)=ICUR(JCUR)
            16(4)=16(1)+10000
236.
            16(5)=16(2)+10000
237.
            1G(6)=1G(3)+10000____
238.
239.
            JEL = IEL
            JPSOL = IPSOL
240.
           00 505 J=1.LAYERS
241.
```

and the second s

The second of the second

```
IF(J.EG.1) 60 TO 507
242.
          JPSDL=JPSDL+10
243.
          JEL = JEL + 10000
244.
          DD 506 K=1.6
245.
          DD 506 K=1.6
16(K)=16(K)+10000
      PUNCH CONNECTION CARD

507 WRITE(7,4) JEL. JPSOL.(IG(I).I=1.6)

4 FORMAT('CPENTA '.818)

505 CONTINUE
246.
247.
248. C
249.
250.
251.
          INCREMENT ELEMENT ID
252. C
253.
          IEL=IEL+1
      SAVE LAST X AND Y VALUES
530 YLAST=YSAVE
XLAST=XSAVE
254. C
255.
          XLAST=XSAVE
256.
          NOW MOVE CURRENT GRIDS TO LAST GRIDS
257. C
          DD 510 1-1.JCUR
258.
          LAST(1)=1CUR(1)
259.
      510 CONTINUE
260.
          JLAST=JCUR
261.
          RESET CURRENT GRID COUNTER
262. C
      JCUR=0 MOVE UP A LINE
IF(ANGLE.GT.PION4)Y(1)=YSAVE
263. .
264. C
265.
       Y(1)=Y(1)+DELTY2

ARE HE AT THE TOP OF THE CUTOUT?

IF(Y(1).LT.(RADIUS+YOLER))GO TO 430

START GOING UP IN THE Y-DIRECTION UNTIL HE HIT THE TOP

START AT THE LEFT EDGE
266.
267. C
268.
269. C
270. C
          Y(1)=Y(1)-DELTY2
271.
272.
          GD TO 475
      420 X-NIDTH
273.
          GENERATE NEXT LINE OF GRID POINTS
274. C
275.
          IEND70 .....
      440 77=-7(1)
276.
         TRANSFORMING FROM ORIGINAL TO MODIFIED RECT COORD SYSTEM
277. C
278.
          XXHDD=YY+HT2
          YMDD(1)=2(1)
279.
          ZHOD=X
280.
          WRITE(7,1) IGRIO, XXHOD, YMDD.(1), 2MOD_______
281.
          00 445 1=2.LAYERG
282.
          YMOD(1)=2(1)
283.
          WRITE(7.1) JGRID. XXMOD. YMOD(1). ZMOD
284.
          JGRID=JGRID+10000
285.
      445 CONTINUE
286.
267. C
          SAVE GRID 10'S FOR ELEMENT CONNECTIONS
288.
          JCUR = JCUR+1
          ICUR(JCUR)=IGRID
          INCREMENT GRID ID'S
289.
290. C
291.
          IGRID=IGRID+1
          JGRID=IGRID+10C00
292.
          293. C
294.
295. C
296.
      451 X=X-DELTAX
          IF(X.GY.TOLER)GD TO 440
297.
          PAKE SURE WE GET THE RIGHT EDGE
298. C
       1F(1END.EQ.11GO TO 450
299.
          X=0.0
300.
301.
          1END=1
          GD TD 440
302.
```

```
303. C
            GENERATE ELEMENT CONNECTIONS
304. C
305. C
       .450, DD 460 1:2 JLAST
306.
            FIRST SET UP THE GRID POINT ORDER
307. C
            IG(1)=1CUR(1)
308.
309.
            IG(2)=ICUR(I-1)
310.
            1G(3)=LAST(1-1)
311.
            1G(4)=LAST(1)
            IG(5)=IG(1)+10,000
312.
313.
            16(6)=16(2)+10000
            IG(7)=IG(3)+10000.
314.
            IG(8)=IG(4)+10000
315.
316.
            JEL-IEL
            JPSOL=IPSOL
317.
            DO 455 K=1.LAYERS
15(K.EQ.1) GO TO 457
318.
319.
            JEL = JEL+10000
320.
            JPSQL=JPSQL+10
321.
            DD 456 L=1,8
322.
            IG(L)=1G(L)+10000
323.
324.
       456 CONTINUE
            PUNCH CONNECTION CARD
325. C
       457 WRITE(7.2) JEL. JPSOL; (IG(J).J=1.6). ICONT
324.
            INCREMENT CONTINUATION FIELD
327. C
            JCDNT=ICONT
328.
329.
            1CONT=1CONT+1
          PUNCH CONTINUATION OF CONNECTION CARD WRITE(7.3) JCONT. 16(7). 16(8)
2 FORMAT(*CHEXA *.818. *.*17)
330. C.
331.
332.
          3 FORMAT( ++ .17.218)
333.
       455 CONTINUE
334.
            INCREMENT ELEMENT ID
335. C
336.
            IEL . IEL+1
       460 CONTINUE
337.
338. C
            MOVE CURRENT LINE OF GRIDS TO LAST LINE
            DO 470 I=1.JCUR
LAST(1)=1CUR(1)
339.
340.
341.
       470 CONTINUE
       ... JLAST=JCUR
342.
            MAKE CURRENT LINE EMPTY
343. C
344.
            JCUR=0
           MOVE UP A LINE
Y(1)=Y(1)+DELTY2
345. C
346.
            HAVE WE HIT THE TOP YET?
347. C
348.
            1F(Y(1).LT.(HT2-TDLER))GD_TD_420___
            IF(1END2.EG.1)GD TO 600
349.
350.
            IEND2=1
351.
            Y(1)=HT2
            60 TO 420
352.
            IF HE DON'T HAVE A POINT NEXT TO THIS ONE PUT ONE ON THE CURVE
353. C
354.
       452 YY=-DSQRT(PADIUS++2-X++2)
           TRANSFORMING FROM ORIGINAL TO MODIFIED RECT COURD SYSTEM
355. C
            XXMOD=YY+HT2
356.
357.
            YMOD(1)=2(1)
            ZMDD=X
358.
            WRITE(7.11 GRID.XXMOD.YMOD(1).ZMOD
359.
            DO 453 1=2.LAYERG
360.
            YMOD(1)=2(1)
361.
            WRITE(7.1) JGRID. XXHOD. YMOD(1). ZMOD
362.
            JGRID=JGRID+10000
363.
```

A CONTRACTOR OF THE PROPERTY O

```
364.
       453 CONTINUE
365. C
           STORE GRID ID
           JLAST=JLAST+1
366.
           LAST(JLAST)=IGRID
367.
368. C
           INCREMENT GRID ID
369.
           IGRID=IGRID+1
370%
           JGRID=IGRID+10000
371.
           GD TO 451
372.
       600 IGRID=(IGRID/1000+1)*1000+1
373.
          JGRID=IGRID+10000_
374.
           IEL=(IEL/1000+1)+1000+1
           XLAST=XX
375.
376.
           IEND2=0
377.
378.
379.
          GENERATE FIRST PIECE WITH CUTOUT IN IT
380.
381.
362.
363.
           START AT THE LOHER LEFTHAND CORNER
384.
           THEN MOVE TO THE RIGHT UNTIL WE HIT THE CUTOUT
385.
           Y(1)=DELJAY_. ....
386.
        30 X=WIDTH
387.
           GENERATE FAR LEFT GRID POINT
          TRANSFORMING FROM ORIGINAL TO MODIFIED RECT COORD SYSTEM
388.
389.
           XMOD(1)=Y(1)+HT2
390.
           YMDD(1)=Z(1)
391.
           ZHDD=X
392.
           WRITE (7.1) 1GRID. XMCD (1) . YMOD (1) . ZMOD
393.
           DD 95 1=2.LAYERG
394.
           YMOD(1)=2(1)
395.
           WRITE(7.1)JGRID.XMOD(1).YMOD(1).ZMOD
396.
           JGRID=JGRID+10000
397.
        95 CONTINUE
           STORE GRID ID
398. C
399.
           JCUR=JCUR+1
400.
           ICUR (JCUR) = I GR ID
           IF FIRST LINE OF GRIDS PICK UP GRID . FOR LAST LINE
401. C
402.
           IF(Y(1).EQ.DELTAY)LAST(JCUR)=HOD(IGRID,1000)
           IF(Y(1).EO.DELTAY)JLAST=JCUR
403.
           INCREMENT GRID ID
404. C
           IGRID=IGRID+1
405.
           JGRID=IGRID+10000
406.
          MOVE TO THE LEFT X=X-DELTAX
407. C
408.
409. C
           SAVE X AND Y
           XSAVE=X
410.
           YSAVE=Y(1)
411.
           ARE WE PAST THE 45?
412. C
           ANGLE-DATAN(Y(1)/X)
413.
           IF(ANGLE.GT.PION4)GD TD 140
414.
415. C
           BELOW THE 45
416. C
           FIND DISTANCE FROM CUTOUT
           IF(Y(1).GT.RADIUS)GO TO 150
417.
           CIST=X-DSQRT (RAD1US++2-Y(1)++2)
418.
           ARE WE WITHIN TOLERANCE FROM THE CUTOUT
419. C
420.
           IF(DIST.LE.TOLER)GD TO BO
421.
           GD TO 150
           ABOVE THE 45
422. C
423.
       140
           IF (X.GT.RADIUS)GD TO 150
           DIST=Y(1)..DSQRT(RADIUS++2-X++2)
424.
```

```
IF(DIST.LE.TOLER)GC TO 160
425.
426. C
          NOT AT THE CUTOUT YET SO GENERATE NORMAL GRID POINT
         TRANSFORMING FRO. ORIGINAL TO MODIFIED RECT COORD SYSTEM
427. C
      150 XMOD(1)=Y(1)+HT2 ...
428.
           YMDD(1)=Z(1)
425.
430.
           ZMDD=X
          WRITE(7.1) IGRID, XMOD(1), YMOD(1), ZMOD
431.
          DO 155 I=2.LAYERG
432.
           YMDD(1)=2(1)
433.
          HRITE(7,1) JGRID, XHOD(1), YHOD(1), ZHOD
434.
435.
           JGRID=JGRID+10000
          CONTINUE
436.
437. C
           STORE GRID ID
           JCUR=JCUR+1
438.
           ICUR(JCUR) = IGRID
439.
           440. C
441.
           IF (Y(1).EQ.DEL TAY) JLAST=JCUR
442.
           INCREMENT GRID ID+S
443. C
444.
           IGRID=IGRID+1
           JGRID=IGRID+10000
445.
          MAKE SURE WE HAVE A POINT NEXT TO THIS ONE
446 . .C
           IF(JCUR.GT.JLAST)GO 70 180
447.
           GENERATE QUAD ELEMENT
FIRST SET UP GRID PDINT DRDER
448. C
       190 IG(1)=LAST(JEUR)
450.
451.
           IG(2)=LAST(JCUR-1)
           IG(3)=ICUR(JCUR:1)_
452.
           IG(4)=1CUR(JCUR)
453.
           1G(5)=1G(1)+10000
1G(6)=1G(2)+10000
454.
455.
456.
           16(7)=16(3)+10000
           16(8)=16(4)+10000
457.
458.
           JEL-1EL
459.
           JPSOL - IPSOL
           00 165 J=1.LAYERS
460.
           1F(J.E0.1) GO TO 167
461.
           JEL=JEL+10000
462.
           JPSOL=JPSOL+10
463.
464 .
           DD 166 K=1.8.
           16(K)=16(K)+10000
465.
466.
       166 CONTINUE
467. C
           PUNCH CONNECTION CARD
          hRITE(7.2) JEL. JPSOL. (3G(1).1=1.6).1CONT
468.
469. C
           INCREMENT CONTINUATION FIELD
           JCONT-1CONT
470. .
471.
           ICONT=ICONT+1
472. C
           PUNCH CONTINUATION OF CONNECTION CARD
           HRITE (7.3) JCDNT.1G (7).1G(8)
473.
       165 CONTINUE
474.
475. C
           INCREMENT ELEMENT ID
476.
           JEL=IEL+1.
           KEEP GDING TILL HE HIT THE CUTOUT
477. C
478.
           GD TD 90
           IF WE DON'T HAVE A POINT NEXT TO THIS ONE PUT ONE ON THE CURVE
477. C
480.
       180 YY=+DSQRT(RADIUS++2-X++2)
          TRANSFORMING FROM ORIGINAL TO HODIFIED RECT COORD SYSTEM
481. C
           XXHOD=YY+HT2
482.
           YMOD(1)=2(1)
483.
           ZMDD=X
464.
```

WRITE(7.1) IGRID.XXMOD.YMOD(1).ZMOD

485.

```
DD 185 I=2.LAYERG
486.
              YMOD(1)=Z(1)
487.
             WRITE (7.1) JGRID. XXHOD. YMOD (1). ZMOD
488.
489.
              JGR ID=JGRID+10000____
490.
             CONTINUE
491. C
             STORE GRID ID
492:
              JLAST=JLAST+1
493.
             LAST(JLAST)=IGRID
494. C
              INCREMENT GRID ID
             JGRID=1GRID+1
495.
496.
             JGRID=IGRID+10000
             GD TO 190
497.
498.
             WE'VE HIT THE CUTOUT: SO GENERATE .
A GRID POINT ON THE CURVE OF THE CUTOUT NE'RE ABOVE THE 45. SO MOVE IN THE Y-DIRECTION.
499.
500.
501._C
             Y(1)=DSQRT (RAD JUS##2-X##2)
        160
502.
503.
              GD TD 170.
         NE'RE BELOW THE 45 SO MOVE IN THE X-DIRECTION BO X-DSQRT(RADIUS+2-Y(1)++2).
504.
505.
            TRANSFORMING FROM DRIGINAL TO MODIFIED RECT COURD SYSTEM
506.
507 ...
        _170 XMOD(1)=Y(1)+HT2_
508.
              YHOD(1)=2(1)
             ZMOD=X
509.
             WRITE(7.1) 1GR10. XHOD(1), YHOD(1). ZHOD
510.
511.
             DD 175 I=2.LAYERG
512.
              YMD0(1)=2(1)
             WRITE(7.1) JGRID. XMOD.(1) . YMOD.(1) . ZHOD_
513._
514.
             JGRID=JGRID+10000
             CONTINUE
515.
516. C
             STORE GRID ID
              JCUR=JEUR+1
517.
518.
              ICUR (JCUR) = IGR ID
             IF FIRST LINE OF GRIDS, PICK UP GRID # FOR LAST LINE IF (Y(1) . EQ. DEL TAY) LAST (JCUR) = MOD(1GRID. 1000)
519.
520.
              IF (Y(1).EO.DELTAY) JLAST = JCUR
521.
             INCREMENT GRID ID'S
522.
             IGRID=IGRID+1
523.
              JGR 1D=1GR1D+10000
524.
             DID HE CROSS A LINE OF GRIDS?
1F(XSAVE.NE.XLAST)GO TO 100
525.
526.
             HE DIDN'T CROSS A LINE OF GRIDS SD
527.
             GENERATE A QUAD ELEMENT
FIRST SET UP THE GRID ORDER
528.
529.
             IG(1)=LAST (JCUR)
530.
             IG(2)=LAST(JCUR-1)
531.
              IG(3)=ICUR(JCUR-1)
532.
533.
             IG(4) = ICUR(JCUR)
              16(5)+16(1)+10000
534.
              16(6)=16(2)+10000
535.
              16(7)=16(3)+10000
536.
537.
              16(8)=16(4)+10000
             JEL = IEL
538.
             JPSOL=1PSOL
539.
             DD 176 J=1.LAYERS
540.
541.
             IF(J.EQ.1)GD TO 178
              JPSOL=JPSOL+10
542.
              JEL = JEL + 10000
543.
             DD 177 K=1.8
544.
              IG(K)=IG(K)+10000
545.
        177 CONTINUE
546.
```

```
547.
             PUNCH CONNECTION CARD
      C
        178 WRITE(7,2) JEL, JPSOL, (IG(1), I=1,6), ICONT
548.
549.
             INCREMENT CONTINUATION FIELD
             JCDNT=ICONT
550 . .
             ICONT=ICONT+1
551.
             PUNCH CONTINUATION OF CONNECTION CARD
552.
             WRITE(7,3)JCONT.IG(7).IG(8)
553.
554.
        176 CONTINUE
             INCREMENT ELÉMENT ID
555.
             IEL=IEL+1
556.
557.
             GD TD 130
558.
            HE CROSSED A LINE OF GRIDS SO WE NEED A TRIANGULAR ELEMENT INSTEAD OF A QUAD ELEMENT FIRST SET UP THE GRID ORDER
559.
      Č
560.
561.
        100 IG(1)=LAST(JCUR-1)
562.
563.
             16(2)=1CUR(JCUR-1)
             IG(3)=ICUR(JCUR)
564.
             IG(4)=IG(1)+10000
565.
             1G(5)=1G(2)+10000
1G(6)=1G(3)+10000
566.
567.
             JEL . IEL
568.
             JPSOL-IPSOL
569.
             DD 105 J-1.LAYERS
570.
             IF(J.E0.1) GO TO 107
571.
57Ż.
             JPSOL=JPSOL+10
             JEL=JEL+10000
573.
574.
             DD 106 K=1,6
             16(K)=16(K)+10000
575.
576.
         106 CONTINUE
             PUNCH CONNECTION CARD
577.
        107 WRITE(7,4) JEL, JPSOL, (IG(1),1-1,6)
578.
579.
         105 CONTINUE
580.
             INCREMENT ELEMENT 10 __
             IEL-IEL+1
SAVE LAST X AND Y VALUES
581 .
582.
        130 YLAST-YSAVE
583.
             XLAST=XSAVE
584.
585.
             NON MOVE CURRENT GRIDS TO LAST GRIDS
             DO 110 I=1.JCUR_
LAST(1)=1CUR(I)
586.
587.
         110 CONTINUE
588.
589.
             JLAST=JCUR
             RESET CURRENT GRID COUNTER
590.
591.
             JCUR=C
592.
             HOVE UP A LINE
             IF (ANGLE .GT .PI ON4) Y(1) -YSAVE
593.
594.
             Y(1)=Y(1)+DELTAY
             ARE WE AT THE TOP OF THE CUTOUT?
JF(Y(1).LT.(RADIUS+TOLER))GO TO 30
595.
596.
             START GOING UP IN THE Y-DIRECTION UNTIL HE HIT THE TOP
597.
598.
599.
             Y(1)=Y(1)-DELTAY
             GD TD 75
600.
601.
         HTGIN=X OS
             GENERATE NEXT LINE OF GRID POINTS
602.
603.
             IEND=0
604.
            TRANSFORMING FROM ORIGINAL TO HODIFIED RECT COORD SYSTEM
          40 XHOD(1)=Y(1)+HT2
605.
606.
             YMDD(1)=2(1)
             ZMOD=X
60:.
```

```
WRITE(7.1) IGRID. XMOD(1). YMDD(1). ZMOD
608.
            DO 45 1=2.LAYERG
609.
            YMOD(1)=2(1)
610.
            WRITE(7,1)JGRID,XMDD(1),YMOD(1),ZMDD
611.
            JGRID=JGRID+10000
612.
613.
         45 CONTINUE
            SAVE GRID ID'S FOR ELEMENT CONNECTIONS
614. C
615.
            JCUR=JCUR+1
                            V 4 h 2 MW 5 MM
            ICUR(JCUR)=IGRID
616.
617.
            INCREMENT GRID ID'S
            IGRID=IGRID+1
618.
619.
            :GRID=IGRID+10000 .
            SEE IF THERE IS A POINT NEXT TO THIS ONE IF JCUR.GT.JLAST)GO TO 52
620. C
621.
            IF IJCUR-GT-JLAST)GD TO 52
MOVE TO THE RIGHT ONE INCREMENT AND REPEAT
622. C
         51 X=X-DELTAX
623.
            IF(X.GT.TOLER) GO TO 40
MAKE SURE WE GET THE RIGHT EDGE .
1F(1END.E0.1) GO TO 50
624.
625. C
626 .
627.
            X=0.0
628.
            IEND=1
629.
            GD.JD 40.....
630. C
631. C
            GENERATE ELEMENT CONNECTIONS ____.
632. C
633.
         50 DD 60 1=2.JLAST.
            FIRST SET UP THE GRID POINT ORDER
634. C
635.
            16(1)=LAST(1)_____
636.
            19(2)=LAST(1-1)
            IG(3)=ICUR(1-1)
637.
638.
            IG(4)=1CUR(1)
639.
            16(5)=16(1)+10000
            1G(6)=1G(2)+10000
640.
641.
            16(7)=16(3)+10000_
            16(8)=16(4)+10000
642.
643.
            JEL = IEL
            JPSOL = IPSOL
644.
           DO 55 K=1.LAYERS
IF(K.EQ.1) GO TO 57
.JEL=JEL+10000
646.
6474.
648.
            JPSOL=JPSOL+10
649.
            DD 56 L=1.8
        16(L) 416(L) +10000
56 CONTINUE
650.
651.
            PUNCH CONNECTION CARD
652. C
        57 WRITE (7.2) JEL. JPSOL. (IG(J).Jel.6). ICONY INCREMENT CONTINUATION FIELD
653.
654. C
            JCONT=1CONT
655.
656 .
            ICONT=ICONT+1
            PUNCH CONTINUATION OF CONNECTION CARD
657. C
658,
            hRITE(7.3)JCDNT.1G(7).1G(8)
       __ 55 CONTINUE
659.
            INCREMENT ELEMENT ID
660. C
            IEL = IEL+1
661.
         60 CONTINUE
662.
663. C
            POVE CURRENT LINE OF GRIDS TO LAST LINE
            DO 70 1=1.JCUR
664.
            LAST(1)=ICUR(1)
665.
        70 CONTINUE
666.
667.
            JLAST=JCUR
            MAKE CURRENT LINE EMPTY
668. C
```

STATE OF THE PROPERTY OF THE P

```
669.
            JCUR=0
670. C
            MOVE UP A LINE
           Y(1)=Y(1)+DELTAY
671.
           HAVE WE HIT, THE TOP YET?
IF(Y(1).LT.(LEGX)-TOLER))GO TO 20
672.
673.
            IF( 1END2.EQ. 1) GD TD 200 ....
674.
675.
            Y(1)=LEGX1
676.
677.
            GD TD 20
            IF WE DON'T HAVE A POINT NEXT TO THIS ONE PUT ONE OF THE CURVE
678.
679.
        52 YY=+DSQRT(RADIUS++2-X++2)
           TRANSFORMING FROM ORIGINAL TO MODIFIED RECT COORD SYSTEM
680.
           STH-YY=DOHXX
681.
682.
            YMDD(1)=2(1)
683.
            ZMDD=X
684.
           WRITE(7.1) IGRID, XXMOD, YMOD(1), 2MOD
685.
           DO 53 1-2.LAYERG
           AH00(1)=5(1)
686,
           HRITE(7.1) JGRID, XXHOD, YHOD(1), ZHOD
687.
            JGR 1D=JGR 1D+10000 _____
686.
        53 CONTINUE
689.
690. C.
           STORE_GRID ID
691.
            JLAST=JLAST+1
692.
           LAST(JLAST)=IGRID
            INCREMENT GRID ID
693. C
694.
            IGRID=IGRID+1
695.
            JGRID=IGRID+30000
           GO TO 51____
696.
697.
698. C
699.
           END OF FIRST PIECE
700.
701.
702. C
703. C
           GENERATE THE 90-DEGREE BEND
704.
           FIRST ESTABLISH'A CYLINDRICAL CO-ORDINATE SYSTEM
705. C
706.
       200 X=0.0
707.
            LEGX=HT2+LEGX1
708.
           LEGXP1-LEGX+1.
           LEGY-LEGY
709.
710.
           WRITE (7.201) LEGY.LEGY.LEGY.LEGY.ICOST
711.
       201 FORHAT('CORD2C ',5X.'100',8X.2F8.4.5X.'0.0',2F8.4.5X.'1.0+'.
          +17)
712.
713.
            JCONT = 1 CONT
714.
            ICONT = ICONT + 1
715.
            HRITE (7, 202) JC ONT, LEGXP 1, LEGY
716.
       202 FORMAT(1+1,17,2F8.4.5X.10.01)
           SET INITIAL VALUES
1PSOL=1PSOL+1
717. C
718.
           R(1)=BEND
719.
           DO 205 1+2.LAYERG
R(1)=R(1-1)+T(1-1)
720.
721.
       205 CONTINUE
722.
723.
           THETA = DELTA?
724.
           IEL=((IEL/1600)+1)*1000+1
725.
           IEND2=0
726.
       250 1END+0
           Z(1)=C.0
727.
728. C
          TRANSFORMING FROM ORIGINAL TO MODIFIED CYLINDRICAL COORD SYSTEM
       220 THMUD=90.-THETA
729.
```

```
ZMDD2(1)=WIDTH-Z(1)
730.
           WRITE (7,203) IGRID, R(1), THMOD, ZMOD2(1)
731.
       203 FORMAT('GRID '.18.5X.'100'.3F8.4)
732.
     00 225 I=2,LAYERG
WRITE (7,203) JGRID,R(1),THMOD,ZM902(1)
733.
734.
735.
           JGRID=JGRID+10000
       225 CONTINUE
736.
737.
           JCUR=JCUR+1
           ICUR(JCUR) = IGR ID
738.
     ____1GRID=1GRID+1
739.
           JGR 10=1GR 10+10000
740.
           IF(Z(1).LT.(WIDTH-TOLER))GD TD 220
MAKE SURE ME GET THE EDGE
IF(JEND.EG.1)GD TD 210
741.
742.
743. C
744.
           Z(1)=W10TH
745.
746.
           IEND=1
      GENERATE CONNECTIONS

210 DD 230 1=2.JCUR

SET UP THE GRID POINT ORDER

IG(1)=LAST(1)

IG(2)=LAST(1-1)

IG(3)=ICUR(1-1)
747.
748. C
749.
750. C
751.
752.
           16(3)=1CUR(1-1)
753.
754.
           16(4)=1CUR(1)
755.
           16(5)=16(1)+10000
16(6)=16(2)+10000
756.
           16(7)=16(3)+10000____
16(8)=16(4)+10000
757.
758.
759.
           JEL-IEL
           JPSOL-IPSOL
760.
           00 215 K=1 .LAYERS
           1F(K.EQ.1)GD TO 217
JEL=JEL+10000
761.
762.
           JEL = JEL + 10000 _______
763.
           00 216 L-1.8
764.
765.
           IG(L)=IG(L)+10000
766.
       216 CONTINUE
PUNCH CONNECTION CARD
217 WRITE (7.2) JEL. JPSOL. (IG(J) 91=1.6), ICONT
767.
768. C
769.
770. C
           INCREMENT CONTINUATION
           JCONT=1CONT
771.
772.
           ICONT=1CONT+1
           PUNCH CONTINUATION OF CONNECTION CARD
773. C
           hRITE(7.3)JCDNT.IG(7).IG(8)
774.
775.
       215 CONTINUE
           INCREMENT ELEMENT 10
776. C
777.
           IEL=IEL+1
       230 CONTINUE
778.
           MOVE CURRENT GRIDS TO LAST GRIDS DO 240 I=1.JCUR
779. C
780.
           LAST(I)=ICUR(I)
781.
782.
       240 CONTINUE
783.
           JLAST=JCUR
784.
           JCUR=0
785. C
            INCREMENT ANGLE
786.
            THETA=THETA+DELTAT
           IF(THETA.LT.89.9995)GD TO 250
787.
788.
           IF( IEND2 . EQ . 1) GD TD 241
789.
           IEND2-1
           THETA=90.
790.
```

7.

ì.

ţ

TO A SECRETARY WAS A TO THE

```
791.
          60 TO 250
792. C
793. C
          END OF 90 DEGREE BEND
794. C
795.
796.
          START OF BOTTOM PIECE(NO CUTOUT)
797.
798.
799.
800.
          INITIALIZE CONSTANTS
      241 IEL=((IEL/1000)+1)+1000+1
801.
802.
          IEND2=0
803.
          IPSOL=IPSOL+1
          Y(1)=LEGX1+BEND
804.
          DO 245 I=2.LAYERG
805.
          Y(1)=Y(1-1)+T(1-1)
806.
807.
      245 CONTINUE
          START GOING DOWN IN THE 2-DIRECTION UNTIL WE HIT THE BOTTOM _____
808. C
809. C
          Z(1)=LEGY-DELTAZ
810.
      320 X=NIDTH
811.
          GENERATE NEXT LINE OF GRID POINTS
812.
813.
          IEND=0
         TRANSFORMING FROM ORIGINAL TO MODIFIED RECT COORD SYSTEM
814.
815.
      340 XHDD(1)=Y(1)+HT2
816.
          YMOD(1)=2(1)
817.
          ZHDD=X
          WRITE(7,1) | GRID, XMOD(1), YMDD(1), ZMOD
818.
          DD 345 1=2.LAYERG
819.
          STH+(1)Y=(1)GONK
820.
821.
          WRITE(7.1) JGRID. XMOD(1). YMOD(1). ZMOD
          JGRID=JGRID+10000
822.
                           . -
823.
      345 CONTINUE
824. C
         . SAVE GRID 10'S FOR ELEMENT CONNECTIONS
          JCUR=JCUR+1
825.
826.
          ICUR (JCUR) = IGR ID
          INCREMENT GRID ID'S
827. C
          JGR ID=1GR1D+10000
828.
829.
          MOVE TO THE RIGHT DNE INCREMENT AND REPEAT
830. C
831.
          IF(X.GT.TOLER)GO TO 340
MAKE SURE NE GET THE RIGHT EDGE
832.
833. C
834.
          IF(IEND.E0.1)GO TO 350
835.
          X=0.0
836.
          GD TO 340
          IEND=1
837.
838.
839.
          GENERATE ELEMENT CONNECTIONS
840. C
841.
      350 DO 360 I=2.JLAST
842. C
        FIRST SET UP THE GRID POINT ORDER
843.
          IG(1)=LAST(1)
844.
          IG(2)=LAST(1-1)
          16(3)=1CUR(1-1)
845.
          16(4) = 1CUR(1)
846.
847.
          1G(5)=1G(1)+10000
          IG(6)=IG(2)+10000__
848.
          16(7)=16(3)+10000
849.
850.
          IG(8)=IG(4)+10000
          JEL = IEL
851.
```

```
JPSOL=1PSOL
852.
            DO 355 K=1.LAYERS
853.
354.
            IF(K.EQ.1)GD TO 357
           JEL=JEL+10000
855.
856.
            JPSOL=JPSOL+10
            DD 356 L=1.8
1G(L)=1G(L)+10000
857.
858.
       356 CONTINUE
859.
            PUNCH CONNECTION CARD
860. C
JCDNT=ICONT
863.
            ICONT=ICONT+1
864.
            PUNCH CONTINUATION OF CONNECTION CARD
865. C
            WRITE(7,3) JCONT. 16(7), 16(8)
866.
867.
       _355 CONTINUE_
            INCREMENT ELEMENT ID
868. C
869.
            IEL = IEL+1
870.
       360 CONTINUE
            MOVE CURRENT LINE OF GRIDS TO LAST LINE
871.
872.
            DD 370 I=1.JCUR
            LAST(I) !ICURJI)..
873.
       370 CONTINUE
874.
875.
            JLAST=JCUR
            MAKE CURRENT LINE SMPTY
876. C
877.
            JCUR=0
            MOVE UP A LINE
878. C
           Z(1)=Z(1)-DELTAZ
HAVE HE HIT THE BOTTOM YET?
IF(Z(1).GT.TOLER)GO TO 320
879.
880. C
881.
            IF( IEND2 . EQ. 1) GD TD 120
882.
883.
            IEND2=1
            Z(1)=0.0
884.
           GO TO 320 WHEN
885.
886. C
            SO DUMP THE BUFFER
887. C
888.
       120 ENDFILE 7
            AND GET THE HELL DUT
889. C
890.
            STOP
       900 WRITE(6,901)
891.
       901 FORMAT( -- -- ERROR -- TOO MANY LAYERS SPECIFIED )
892.
893.
            STOP
894.
            END
895. //GD.FT07F001 DD DSN=CN900004.SSS.C18BLKXF.UNIT=WYLBUR.DISP=(.CATLG), 896. // SPACE=(TRK.(10.10).RLSE).DCF=(RECFM=FB.LRECL=80.BLKSIZE=3120) } JCL
897. //GD.SYSIN DD *
      EPARAMS LEGX1=0.27.LEGY=0.51.WIDTH=0.5.RADIUS=0.25.DELTAY=0.09.
898.
        DELTAX=0.1.TOLER=0.015.DELTAT=15.0.BEND=0.125.
899.
                                                                              INPUT
        T(1)=0.125.
900.
                                                                              DATA
        DELTAZ=0.17.LAYERS=1.DELTY2=0.1330.HT2=0.4
901.
902.
      EEND
```

(ALSO SEE FIGURE B-13)

APPENDIX D

C-1 PREPROCESSOR FLOWCHART

C-1 PREPROCESSOR

APPENDIX E

C-1 MODEL PREPROCESSOR PROGRAM OUTPUT

```
LEVEL 21.8 ( JUN 74 )
                                                 DS/360 FORTRAN H
      COMPILER OPTIONS - NAME = MAIN.OPT=01.LINECNT=56.SIZE=0000K.
                            SOURCE, EBCDIC, NOLIST, NODECK, LOAD, MAP, NOEDIT, NOID, XREF
ISN 0002
                  DIMENSION LAST(1000).ICUR(1000).IG(8)
                  REAL+8 LEGX1, LEGY, WIDTH, RADIUS, DELTAY, DELTAX, T(26), TOLER, X, Y(26)
ISN 0003
                 #PION4.xSave.ySave.angle.DIST.xLast.yLast.deltat.yy.xx.delty2.
#EEND.THETA.Z(26).DELTAZ.R(26).HT2.xMOD1.xxMOD.xMOD(26).
#YMDD(26).ZMOD.ZMOD2(26).THMOD.LEGX.LEGXP1.LEGY
ISN 0004
               ... NAMELIST /PARAMS/_LEGX1.LEGY.HIDTH.RADIUS.DELTAX.DELTAY.T...
                 *TOLER, DEL TAT, BEND, DELTAZ, LAYERS,
                 *DELTY2,HT2
ISN 0005
                  DATA IGRID/1/,JGRID/10001/,ICONT/0/,JCUR/0/,JLAST/0/,IEL/1/
ISN 0006
                  DATA LEGX1.LEGY, WIDTH, RADIUS, DELTAX, DELTAY, TOLER/7+0.0/
                  DATA T/26*0.0/
ISN 0007
ISN 0008
                  DATA DELTAT.BEND/2+0.0/.DELTAZ/0.0/.LAYERS/0/.DELTYZ/0.0/.
ISN 0009
                  DATA HT2/0.0/
                THIS PROGM IS FOR GENERATING BULK DATA FOR THE FULL BRACKET
           Č
                AND IS CALLED PRE-PROCESSOR FOR C1 MODEL
                  READ IN PARAMETERS
ISN 0010
                  READ(5.PARAMS)
ISN 0011
                  IF (LAYERS .EQ. 0) LAYERS=1
                  ECHO PARAMETERS
ISN 0013
                  WRITE(6.8)LEGX1.LEGY.WIDTH.RADIUS.DELTAY.DELTAX.DELTAT.BEND.
                 *TOLER.DELTAZ.LAYERS,DELTY2,HT2_
                & FORMAT( 'IPARAMETER ECHO'. /, 'OLEGX1 = '.T13.F8.4./.
ISN 0014
                 +' LEGY= '.T13.F8.4./. WIDTH= '.
                 *T13.F8.4/.' RADIUS= '.T13.F8.4./.' DELTA-Y= '.T13.F6.4./.
                 * DELTA-X= ',113.Fe.4./,' DELTA-T= ',113.F8.4./' BEND=',113.F8.
*/, TOLERANCE= '.FO.4./,' DELTA-Z=',113.
                 #F8.4./.! LAYERS=1.713.18./.! DELTAY2=1.713.F8.4./.! HEIGHT2=1.
                 +T13,F8.4}
                  DD 998 1=1.LAYERS
ISN 0015
                  WRITE(6.997) 1.T(1)
FORMAT( LAYER-1.12. THICKNESS=1.F8.4)
ISN 0016
ISN 0017
           957
1SN 0018
                  CONTINUE
           998
              1 FORMAT ( GRID ... 18.8X .31 IF (LAYERS .GT . 25) GO TO 900
1SN 0019
                                     1,18,8x,3F8.4) _
ISN 0020
                  INITIALIZE CONSTANTS
15N 0022
                  LAYERG=LAYERS+1
15N 0023
                  Z(1)=LEGY+BEND
1SN 0024
                  DD 35 I=2.LAYERG
                  2(1)=2(1-1)+7(1-1)
1SN 0025
15N 0026
              35 CONTINUE
                  1ENG2=0
35N 0027
                  PIDN4-3-14159/4.
ISN 0028
ISN 0029
                  IPSOL=1
                  GENERATE PIECE BEFORE FIRST PIECE (HODEL CHANGE 5/6/78)
           CCC
```

145

```
STORE GRID ID
          C
1SN 0075
                JCUR=JCUR+1
                ICUR (JCUR)=IGRID
1SN 0076
                INCREMENT GRID ID'S
ISN 0077
                IGRID=IGRID+1
                JGRID=1GRID+10000
ISN 0078
                IF THIS IS THE FIRST LINE OF GRIDS. DON'T GENERATE CONNECTIONS
                IF(Y(1).EG.O.O)GD TO 490 MAKE SURE HE HAVE A POINT NEXT TO THIS ONE
ISN 0079
ISN 0081
                IF(JCUR.GT.JLAST)GD TD 580
                GENERATE QUAD ELEMENT
                FIRST SET UP GRID POINT ORDER
            590 IG(1)=ICUR(JCUR)
ISN 0083
ISN 0084
                IG(2)=ICUR(JCUR-1)
ISN 0085
                16(3)=LAST(JCUR-1)
                1G(4)=LAST(JCUR)
15N 0086
ISN 0087
                15(5)=16(1)+10000
ISN COBB
                16(6)=16(2)+10000
                16(7)=16(3)+10000
1SN 0089
ISN 0090
                IG(8)=IG(4)+10000
ISN 0091
                JEL=IEL
ISN 0092
                JPSOL = IPSOL
                DO 565 J=1.LAYERS
ISN 0093
ISN 0094
                1F(J.EQ.1) GD TO 567
ISN 0096
                JEL=JEL+10000
                JPSOL=JPSOL+10
15N 0097
15N 0098
                DD 566 K=1.8
ISN 0099
                1G(K)=1G(K)+10000
            566 CONTINUE
ISN 0100
                PUNCH CONNECTION CARD
15N 0101
            567 WRITE(7,2)JEL,JPSOL,(IG(1),1=1,6),1CONT
                INCREMENT CONTINUATION FIELD
                JCONT=1CONT
ISN 0102
15N 0103
                ICONT = ICONT+1
                                                                                               10
                PUNCH CONTINUATION OF CONNECTION CARD
                WRITE(7.3)JCDAT.1G(7).1G(8)
ISN 0104
ISN 0105
               CONTINUE
                INCREMENT ELEMENT ID ____
ISN 0106
                IEL=1EL+1
                KEEP GOING TILL WE HIT THE CUTOUT
ISN 0107
                GD TD 490
                IF WE DON'T HAVE A POINT NEXT TO THIS ONE PUT ONE ON THE CURVE
ISN 0108
            580 YY=-DSQRT (RAD IUS+#2-X+#2)
               TRANSFORMING FROM ORIGINAL TO MODIFIED RECT COORD SYSTEM
                XXHOD=YY+HT2
ISN 0109
                YMOD(1)=2(1)
ISN 0110
ISN 0111
                ZHOD=X
                WRITE(7,1) IGR ID.XXMOD.YMOD(1).ZMOD
15N 0112
                DO 585 1=2.LAYERG
ISN 0113
ISN 0114
                YMOD(1)=2(1)
                HRITE(7.1)JGF 13.XXHOD.YHOO(1).ZHOD
ISN 0115
                JGRID=JGRID+10000
ISN 0116
1SN 0117
                CONTINUE
                STORE GRID ID
```

```
ISN 0118
                 JLAST=JLAST+1
                 LAST(JLAST) = IGRID
ISN 0119
                 INCREMENT GRID ID
ISN 0120
                  IGRID=IGRID+1
15N 0121
                 JGRID=IGRID+10000
ISN 0122
                 GD TD 590
              ME'VE HIT THE CUTOUT, SD GENERATE
A GRID POINT ON THE CURVE OF THE CUTOUT
NE'RE ABOVE THE 45. SO MOVE IN THE Y-DIRECTION
             560 Y(1) *DSQRT(RADIUS**2-X**2)
ISN 0123
ISN 0124
                 GO TO 570
                 WE'RE BELOW THE 45 SO MOVE IN THE X-DIRECTION
             480 X=DSQRT (RADIUS++2-Y(1)++2)
ISN 0125
15N 0126
             570 YY=-Y(1)
                TRANSFORMING FROM ORIGINAL TO MODIFIED RECT COORD SYSTEM
ISN 0127
                 XXMOD=YY+HT2
ISN 0128
                 YMOD(1)=2(1)
ISN 0129
                 ZHOD=X
                 WRITE(7,1)IGRID,XXMDD,YMOD(1),ZMDD__.
ISN 0130
                 DD 575 I=2.LAYERG
ISN 0131
                 YMOD(1)=2(1)
ISN 0132
                 WRITE(7.1)JGRID.XXMDD.YMOD(1).ZMDD
ISN 0133
                 JGRID=JGRID+10000
15H 0134
ISN 0135
             575 CONTINUE
                 STORE GRID ID
ISN 0136
                 JCUR=JCUR+1
ISN 0137
                  ICUR(JCUR)=IGRID
                 INCREMENT GRID ID'S
ISN 0138
                 IGRID=IGRID+1
                 JGRID=1GRID+10000
15N 0139
                 IF THIS IS THE FIRST, LINE OF GRIDS, DON'T GENERATE, CONNECTIONS
                 IF(Y(1).EQ.O.C)GD TO 530
ISN 0140
                 DID WE CROSS A LINE OF GRIDS?
1F(XSAVE.NE.XLAST)GD TO 500
ISN 0142
                 NE DIDN'T CROSS A LINE OF GRIDS SO
                 GENERATE A QUAD ELEMENT
FIRST SET UP THE GRID DRDER
                 IG(1)=ICUR(JCUR)
ISN 0144
ISN 0145
                 IG(2)=1CUR(JCUR-1)
1SN 0146
                 1G(3)=LAST(JCUR-1)
                 16(4)=LAST(JCUR)
ISN 0147
                 16(5)=16(1)+10000
1SN 0148
ISN 0149
                 16(6)=16(2)+16000
15N 0150
                 16(7)=16(3)+10000
                 16(8)=16(4)+10000
ISN 0151
ISN 0152
                 JEL-IEL
                 JPSOL = IPSOL
1SN 0153
                 DD 576 J=1.LAYERS
1SN 0154
                 1F(J.E0.1)GO TO 578___
ISN 0155
                 JPSOL=JPSOL+10
ISN 0157
ISN 0158
                 JEL=JEL+10000
ISN 0159
                 DD 577 K=1.8
                 16(K)=16(K)+10000
ISN 0160
```

```
577 CONTINUE
ISN 0161
                 PUNCH CONNECTION CARD
                 WRITE (7.2) JEL .JPSOL . (1G(1) .1=1.6) . ICONT
ISN 0162
                 INCREMENT CONTINUATION FIELD
                 JCONT = 1 CONT
ISN 0163
ISN 0164
                 1CONT = ICONT+1
                 PUNCH CONTINUATION OF CONNECTION CARD
ISN 0165
                 WRITE (7,3) JCONT, IG (7), IG (8)
             576 CONTINUE
ISN 0166
                 INCREMENT ELEMENT .ID
                 IEL-IEL+1
ISN 0167
                 GO TO 530
ISN 0168
               ... HE. CROSSED A LINE_DF_GRIDS SO HE NEED A TRIANGULAR
                 ELEMENT INSTEAD OF A QUAD ELEMENT
                 FIRST SET, UP THE GRID ORDER
             500 IG(1)=ICUR(JCUR-1)
ISN 0169
15N 0170
                  (C(2)=LAST(JCUR-1)
                  16(3) ICURIJCUR)
ISN 0171
                 16(4) LIG(1)+10000
1G(5)+16(2)+10000
ISN 0172
ISN 0173
                 16(5)=16(3)+10000
ISN 0174
                 JEL-1EL
ISN 0175
                 JPSOL = IPSOL
ISN 0176
                 DD 505 J=1.LAYERS
1F(J.E0.1)_GD_TD_507
ISN 0177
ISN 0178
                 JPSOL=JPSOL+10
ISN 0130
                  JEL=JEL+10000
ISN 0181
                 DO 506 K=1,6
ISN 0182
                 IG(K)=IG(K)+10000
ISN 0183
ISN 0184
             506 CONTINUE
                 PUNCH CONNECTION CARD
ISN 0185
             507 WRITE (7.4) JEL . JPSDL . (16(1) . 1=1.6)
               4 FORMAT( CPENTA .. 818)
ISN 0186
ISN 0167
             505 CONTINUE
                 INCREMENT ELEMENT ID
ISN 0188
                 IEL=IEL+1
                 SAVE LAST X AND Y VALUES
ISN 0189
             530 YLAST YSAVE
ISN 0190
                 XLAST = X SA VE
                 NOW MOVE CURRENT GRIDS TO LAST GRIDS DO 510 1=1.JCUR
ISN 0191
                 LAST(1)=1CUR(1)
ISN 0192
             510 CONTINUE
ISN 0193
ISN 0194
                 JLAST =JCUR
                 RESET CURRENT CRID COUNTER
ISN 0195
                 JCUR=0
                 MOVE UP A LINE
                 IF (ANGLE. GT.PIDH4) Y(1)=YSAVE
ISN 0196
                 Y(1) - Y(1) + DEL TY2
1SN 0198
                 ARE HE AT THE TOP OF THE CUYDUT?
                 IF(Y(1).LT.(RADIUS+TOLER))GO TO 430
START GOING UP IN THE Y-DIRECTION UNTIL WE HIT THE TOP
ISN 0199
                 START AT THE LEFT EDGE
```

```
Y(1)=Y(1)-DELTY2
ISN 0201
                GD TD 475...
ISN 0202
ISN 0203
            420 X=WIDTH
                GENERATE NEXT LINE OF GRID POINTS
ISN 0204
                IEND=0
            440 YY=-Y(1)
ISN 0205
               TRANSFORMING FROM ORIGINAL TO MODIFIED RECT COORD SYSTEM
              XXMOD=YY+HT2
ISN 0206
                YMOD(1) = Z(1)
ISN 0207
15N 0208
                WRITE(7,1)IGRID.XXMOD.YMOD(1).ZMOD
15N 0209
ISN 0210
ISN 0211
                DO 445 I=2.LAYERG ....
                YMOD(1)=2(1)
                WRITE(7.1)JGRID.XXHOD.YHOD(1).ZHOD
ISN 0212
15N 0213
                JGR 1D=JGR 1D+10000
            445 CONTINUE
15H 0214
                SAVE GRID ID'S FUR ELEMENT CONNECTIONS
                JCUR=JCUR+1
ISN 0215
ISN 0216
                1CUR(JCUR)=IGRID
                INCREMENT GRID ID'S
ISN 0217
                IGRID-IGRID+1
                JGR 1D=1GR 1D+10000
15N 0218
                SEE IF THERE IS A POINT NEXT TO THIS ONE
ISN 0219
                IF (JCUR.GT.JLAST)GU TO 452
                MOVE TO THE RIGHT ONE INCREMENT AND REPEAT
            45) X=X-DELTAX
1F(X.GT.TOLER)GD TO 440
ISN 0221
15N 0222
                MAKE SURE WE GET THE RIGHT EDGE
                IF(IEND.EQ.1)G0 TO 450
ISN 0224
                X=0.0
15N 0226
ISN 0227
ISN 0228
                IEND-1
                GD TO 440
                GENERATE ELEMENT CONNECTIONS
ISN 0229
            450 DD 460 I=2.JLAST
                FIRST SET UP THE GRID POINT ORDER
ISN 0230
                1G(2)=1CUR(1-1)
ISN 0231
ISN 0232
                16(3)=LAST(1-1)
                16(4) -LAST(1)
1SN 0233
ISN 0234
ISN 0235
                16(5)=16(1)+10000
                16(6)=16(2)+10000
                16(7)=16(3)+10000
ISN 0236
                16(8)=16(4)+1C000
ISN 0237
ISN 0238
                JEL=1EL
ISN 0239
                JPSOL = 1 PSOL
                DO 455 K=1.LAYERS
IF(K.EQ.1) GO TO 457
ISN 0240
ISN 0241
                JEL=JEL+10000
1SN 0243
15N 0244
                JPSOL=JPSOL+10
ISN 0245
                DD 456 L=1.8
                IG(L)=IG(L)+10000
ISN 0246
            456 CONTINUE
ISN 0247
```

```
PUNCH CONNECTION CARD
            457 WRITE (7,2) JEL , JPSOL , (IG(J) , J=1,6), ICONT
1SN 0248
                INCREMENT CONTINUATION FIELD
ISN 0249
                JCONT=ICONT
ISN 0250
                ICONT=ICONT+1
                PUNCH CONTINUATION OF CONNECTION CARD
                WRITE(7.3)JCONT.IG(7).IG(8)
ISN 0251
ISN 0252
          3 FORMAT( *+ *, 17, 218)
ISN 0253
ISN 0254
            455 CONTINUE
                INCREMENT ELEMENT ID
1SN 0255
                IEL=IEL+1
            460 CONTINUE
15N 0256
                MOVE CURRENT LINE OF GRIDS TO LAST LINE DD 470 1-1.JCUR
ISN 0257
15N 0258
                LAST(1)=1CUR(1)
ISN 0259
            470 CONTINUE
ISN 0260
                JLAST = JCUR
                MAKE CURRENT LINE EMPTY
                JCUR=0 ____.
ISN 0261.
            MOVE UP A LINE
475 Y(1)=Y(1)+DELTY2
ISN 0262
                HAVE WE HIT THE TOP YET?
IF(Y(1)-LT-(HT2-TOLER))GD TO 420
ISN 0263
ISN 0265
                1F(1END2.EQ.1 1GO TO 600
ISN 0267_.
                .IEND2 =1.
ISN 0268
                Y(1)=HT2
ISN 0269
                GD TD 420
                IF HE DON'T HAVE A POINT NEXT TO THIS ONE PUT ONE ON THE CURVE
ISN 0270
            452 YY=-DS9RT (RAD IUS+2-X+2)
               TRANSFORMING FROM ORIGINAL TO MODIFIED RECT COORD SYSTEM
ISN 0271
           .. _ .STH+YY=DDHXX. _ ..
ISN 0272
                YMOD(1)=2(1)
ISH 0273
                ZMOD=X
                WRITE (7.1) IGR ID . XXMOD . YMDD (1) . ZMOD
15N 0274
                DD 453 1=2.LAYERG
ISN 0275
                YMDD(1)=Z(1)
ISN 0276
ISH 0277
                WRITE (7.1) JGR ID . XXMOD. YMOD.(1) . ZMOD......
ISN 0278
                JGR10=JGR10+10000
ISN 0279
            453 CONTINUE
                STORE GRID ID
15N 0280
                JLAST=JLAST+1
ISN 0281
                LAST(JLAST)=1GRID
                15N 0282
                167.10=16R1D+1
ISN 0283
                JGRID=IGR1D+10000
ISN 0284
                GD TD 451
ISN 0285
               1GRID=(1GRID/1000+1)+1000+1
ISN 0286
                JGR1D=1GR1D+10000
                1EL=(IEL/1000+1)+1000+1
ISN 0287
ISN 0288
                XLAST=XX
ISN 0289
                IEND2=0
```

Ċ

```
GENERATE FIRST PIECE WITH CUTOUT IN IT
                START AT THE LOWER LEFTHAND CORNER
                THEN MOVE TO THE RIGHT UNTIL HE HIT THE CUTOUT
ISN 0290
                Y(1)=DELTAY
           _3Q_XENIDTH_
ISN 0291 __
               GENERATE FAR LEFT GRID POINT
               TRANSFORMING FROM ORIGINAL TO MODIFIED RECT COORD SYSTEM
                XMOD(1) = Y(1) + HT2
1SN 0292
ISN 0293
                YMOD(1)=2(1)
ISN 0294
                ZMOD=X
ISN 0295 ..... WRITE (7,1), IGRID, XMOD(1), YMOD(1), ZMOD
                DO 95 I=2.LAYERG
ISN 0296
15N 0297
                YMOD(1)=2(1)
                HRITE(7.1)JGRID.XHOD(1).YHOD(1).ZHOD
ISN 0298
ISN 0299
                ISN 0300
             95 CONTINUE
          C .___ STORE_GRID_ID_
ISN 0301
                JCUR=JCUR+1
                ICUR(JCUR)=IGRID
1SN 0302
                IF FIRST LINE OF GRIDS PICK UP GRID # FOR LAST LINE
IF(Y(1).EQ.DELTAY)LAST(JCUR)=HOD(IGRID,1000)
IF(Y(1).EQ.DELTAY)JLAST=JCUR
ISN 0303
ISN 0305
           INCREMENT GRID ID
15N 0307
                IGRID=IGRID+1
                JGR ID = 1 GR ID + 1 0000
15N 0308
                HOVE TO THE LEFT
             90 X=X-DELTAX
ISN 0309
                SAVE X AND Y
          C
              XSAVE=X
ISN 0310 _____
                YSAVE=Y(1)
1SN 0311
                ARE HE PAST THE 45?
ANGLE-DATAN(Y(1)/X)
ISN 0312
                IF (ANGLE.GT.PION4)GO TO 140
ISN 0313
                BELFW THE 45
            FIND DISTANCE FROM CUTOUT
IF(Y(1).GT.RADIUS)GO TO 150
                DIST=X-DSQRT(RADIUS==2-Y(1)==2)
ISN 0315
ISN 0317
                ARE WE WITHIN TOLERANCE FROM THE CUTOUT IF(DIST.LE.TOLER)GO TO 80
ISN 0318
               GO TO 150
ABOVE THE 45
ISN 0320
            140 1F (X.GT.RADIUS) 60 TO 150
ISN 0321
15N 0323
                DIST=Y(1)-DSQRT(RADIUS+2-X+2)
                IF(DIST.LE.TOLER)GD TO 160
15N 0324
               NOT AT THE CUTOUT YET SO GENERATE NORMAL GRID POINT TRANSFORMING FROM ORIGINAL TO MODIFIED RECT COORD SYSTEM
ISN 0326 __ 150 XMOD(1)=Y(1)+HT2
                YMOD(1)=2(1)
ISN 0327
ISN 0328
                ZHOD=X
                HRITE(7,1)1GRID.XMOD(1).YMOD(1).ZMOD
ISN 0329
                DO 155 1=2.LAYERG
ISN 0330
```

```
ISN 0331
               YMOD(1)=2(1)
             WRITE(7,1)JGRID,XMOD(11,YMOD(1),ZMOD
1SN 0332
ISN 0333
               JGRID=JGRID+10000
         155 CONTINUE
1SN 0334
               STORE GRID ID
ISN 0335
               JCUR=JCUR+1
               ICUR(JCUR)=IGRID
1SN 0336
               IF FIRST LINE OF GRIDS, PICK UP GRID # FOR LAST LINE IF (Y(1) .EQ.DELTAY)LAST (JCUR) = HOD (IGRID, 1000)
ISN 0337
ISN 0339
               IF(Y(1).EQ.DELTAY)JLAST=JCUR
               INCREMENT GRID ID'S
ISN 0341
               IGRID=IGRID+1
ISN 0342
               JGR ID=16R ID+10000
               MAKE SURE WE HAVE A POINT NEXT TO THIS DNE IF (JCUR.GT.JLAST) GD TO 180
ISN 0343
               GENERATE QUAD ELEMENT
               FIRST SET UP GRID POINT ORDER
ISN 0345
         190 IG(1)=LAST(JCUR)
15N 0346
               IG(2)=LAST(JCUR-1)
               IG(3) = ICUR(JCUR-1)
ISN 0347
               IG(4)=ICUR(JCUR)
1SN 0348
               16(5)=16(1)+10000 ....
1SN 0349
               IG(6)=IG(2)+10000
ISN 0350
               1G(7)=1G(3)+1C000
ISN 0351
               IG(8)=IG(4)+10000
ISN 0352
ISN 0353
              JEL-IEL
               JPSOL + 1 PSOL
ISN 0354
              DO 165 J=1.LAYERS
IF(J.E0.1) GD TO 167
ISN 0355
ISN 0356
               JEL = JEL +1 0000
ISN 0358
ISN 0359
               JPSOL = JPSOL + 10
ISN 0360
              DO 166 K=1.8
ISN 0361
               16(K) =16(K)+10000
ISN 0362 166 CONTINUE
               PUNCH CONNECTION CARD
ISN 0363 167 WRITE(7.2)JEL.JPSOL.(IG(1).1=1.6).1CONT
               INCREMENT CONTINUATION FIELD
15N 0364
               JCONT = I CONT
ISN 0365
               ICONT=ICONT+1
              PUNCH CONTINUATION OF CONNECTION CARD
               WRITE(7,3)JCONT.1G(7).1G(8)
ISN 0366
          165 CONTINUE
ISN 0367
               INCREMENT ELEMENT ID
ISN 0368
               IEL=IEL+1
               KEEP GOING TILL WE HIT THE CUTOUT
ISN 0369
               GD TD 90
               IF HE DON'T HAVE A POINT NEXT TO THIS ONE PUT ONE ON THE CURVE
         180 YY=+DSQRT (RAD IUS++2-X++2)
ISN 0370
             TRANSFORMING FROM ORIGINAL TO MODIFIED RECT COORD SYSTEM
              XXMOD=YY+HT2
ISN 0371
15N 0372
               YMOD(1)=Z(1)
ISN 0373
               ZMOD=X
               WRITE (7.1) IGRID. XXMOD. YMOD(1), ZMOD
ISN 0374
              DO 185 1=2.LAYERG
ISN 0375
```

```
ISN 0376
                YHOD(1)=Z(1)
                WRITE (7,1) JGR ID, XXMOD, YMOD (1), ZMOD
ISN 0377
ISN 0378
                JGRID = JGR ID+1 0000
            185 CONTINUE
ISN 0379
                STORE GRID ID
                JLAST=JLAST+1
ISN 0380
                LAST(JLAST)=IGRID
ISN 0381
                INCREMENT GRID_ID
ISN 0382
                IGRID = IGR ID+1
ISN 0383
                JGRID=1GR ID+10000
ISN 0384
                GD TD 190
                HE'VE HIT THE CUTOUT, SO GENERATE
                A GRID POINT ON THE CURVE OF THE CUTDUT
                WE'RE ABOVE THE 45. SO HOVE IN THE Y-DIRECTION
ISN 0385
            160 Y(1)=DSQRT(RADIUS++2-X++2)
ISN 0386
                GD TD 170
                WE'RE BELOW THE 45 SO MOVE IN THE X-DIRECTION
             80 X=DSQRT(RAD1US++2-Y(1)++2)
ISN 0387
               TRANSFORMING FROM ORIGINAL TO MODIFIED RECT COORD SYSTEM
            170 XHOD(1)=Y(1)+HT2
ISN 0388
1SN 0389
                YMOD(1)=2(1)
                ZHDD=X
ISN 0390
                HRITE(7.1) IGRID. XMOD(1). YMDD(1). ZMOD
ISN 0391
                DO 175 1=2.LAYERG
ISN 0392
                YMOD(1)=Z(1)
ISN 0393
                HRITE (7.1) JGRID. XHOD(1). YHOD(1). ZHOD
ISN 0394
                JGRID=JGRID+10000
ISN 0395
ISN 0396
            175 CONTINUE
                STORE GRID ID
ISN 0397
                JCUR=JCUR+1
                ICUR(JCUR)=IGRID_
ISN 0398
                IF FIRST LINE OF GRIDS. PICK UP GRID # FOR LAST LINE
                IF(Y()).EQ.DELTAY)LAST(JCUR)=MDD(1GR1D,1000)
ISN 0399
                IF(Y(1).EQ.DELTAY)JLASY=JCUR
ISN 0401
                INCREMENT GRID ID'S
1SN 0403
                IGRID=IGRID+1
15N 0404
                JGR 1D=1GR 10+10000.
                DID WE CROSS A LINE OF GRIDS?
                IF(XSAVE.NE.XLAST)GO TO 100
ISN 0405
                HE DIDN'T CROSS.A LINE OF GRIDS SO
                GENERATE A QUAD ELEMENT
                FIRST SET UP THE GRID ORDER
                IG(1)=LAST(JCUR)
ISN 0407
ISN 0408
                IG(2)=LAST(JCUR-1)
ISN 0409
                IG(3)=ICUR(JCUR-1)
                IG(4)=ICUR(JCUR)
15N 0410
ISN 0411
                16(5)=16(1)+10000
                16(6)=16(2)+10000
ISN 0412
                IG(7)=1G(3)+1C00Q
15N 0413
ISN 0414
                IG(8)=IG(4)+10000
ISN
    0415
                JEL=1EL
ISN 0416
                JPSOL = 1PSOL
ISN 0417
                DD 176 J=1.LAYERS
```

```
1F(J.EQ.1)GD TD 178
ISN 0418
ISN 0420
                 JPSDL=JPSDL+10
                 JEL=JEL+10000
ISN 0421
                 DD 177 K=1.8
ISN 0422
                 IG(K) = IG(K)+10000
ISN 0423
ISN 0424
             177 CONTINUE
                 PUNCH CONNECTION CARD
                 WRITE (7.2) JEL , JPSOL , (16(1), 1=1,6), 1CONT
JSN_0425
                 INCREMENT CONTINUATION FIELD
ISN 0426
                 JCONT=1CONY
                 ICONT = ICONT+1
ISN 0427
                 PUNCH CONTINUATION OF CONNECTION CARD
ISN 0428
                 WRITE (7,3) JCONT, IG (7), IG(8)
            .. 176. CONTINUE
ISN 0429 ...
                 INCREMENT ELEPENT ID
ISN 0430
                 IEL=IEL+1
ISN 0431
                 GD TD 130
                 NE CROSSED À LINE OF GRIDS SO NE NEED À TRIANGULAR
ELEMENT INSTEAD OF A QUAD ELEMENT
                 FIRST SET UP THE GRID ORDER
             100 IG(1)=LAST(JCUR-1)_
15N 0432
                 IG(2)=ICUR(JCUR-1)
ISN 0433
ISN 0434
                 1G(3)=ICUR(JCUR)
ISN 0435
                 16(4)=16(1)+10000
                 16(5)=16(2)+10000
JSN. 0436.
15N 0437
                 16(6)=16(3)+10000
15N 0438
                 JEL-IEL
                 JPSOL = IPSOL
ISN 0439
ISN 0440
                 DO 105 J=1.LAYERS
                 IF(J.EQ.1) GD TD 107
ISN 0441
                 JPSOL = JPSOL +10_
ISN 0443
ISN 0444
                 JEL = JEL +1 0000
ISN 0445
                 DD 106 K=1.6
                 16(K)=16(K)+10000
ISN 0446
ISN 0447
             106 CONTINUE
                 PUNCH CONNECTION CARD
             107 WRITE (7,4) JEL, JPSQL, (1G(1), 1=1,6)____
. ISN, 0448
ISN 0449
             105 CONTINUE
                 INCREMENT ELEMENT ID
1SN 0450
                 IEL=IEL+1
                 SAVE LAST X AND Y VALUES
ISN 0451
             130 YLAST=YSAVE
ISN 0452
               _XLAST =X SAVE
                 NOW MOVE CURRENT GRIDS TO LAST GRIDS
                 DD 110 I=1.JCUR
1SN 0453
                 LAST(1)=1CUR(1)
ISN 0454
ISN 0455
             110 CONTINUE
ISN 0456
                 JLAST = JCUR
                 RESET CURRENT GRID COUNTER
1SN 0457
                 JCUR=0
                 MOVE UP A LINE
                 IF (ANGLE. GT.PION4)Y(1)=YSAVE
ISN 0458
ISN 0460
                 Y(1)=Y(1)+DELTAY
```

```
ARE WE AT THE TOP OF THE CUTOUT? IF(Y(1).LT.(RADIUS+TOLER))GD TO 30
ISN 0461
                START GOING UP IN THE Y-DIRECTION UNTIL WE HIT THE TOP
                START AT THE LEFT EDGE
ISN 0463
                Y(1)=Y(1)-DELTAY
                GD TO 75
ISN 0464
ISN 0465
             20 X=WIDTH
                GENERATE NEXT LINE OF GRID POINTS
ISN 0466
               TRANSFORMING FROM ORIGINAL TO MODIFIED RECT COURD SYSTEM
ISN 0467
             40 XHDD(1)=Y(1)+HT2
ISN 0468
                YMOD(1)=Z(1)
                ZMOD=X
ISN 0469
                HRITE(7,1)]GRID,XMOD(1),YMOD(1),ZMOD
DD 45 I=2,LAYERG
YMOD(1)=Z(1)
ISN 0470
ISN 0471
ISN 0472
                WRITE (7,1) JGRID, XHOD(1), YHOD(1), ZHOD
ISN 0473
                JGRID=JGRID+10000
ISN 0474
ISN 0475
             45 CONTINUE
                SAVE GRID ID'S FOR ELEMENT CONNECTIONS
15N 0476
                JCUR=JCUR+1
1SN 0477
                ICUR(JCUR)=IGRID
                INCREMENT GRID ID'S
                IGRID=IGRID+1
ISN 0478
                JGRID=IGRID+10000
ISN 0479
                15N 0480
                MOVE TO THE RIGHT ONE INCREMENT AND REPEAT
             51 X=X-DELTAX
ISN 0482
                IF(X.GT.TOLER)GO TO 40 HAKE SURE WE GET THE RIGHT EDGE
ISN 0463
                1F(1END . EQ. 1) 60 TO 50
15N 0485
15N 0487
                X=0.0
                IEND=1
ISN 0468
ISN 0489
                GD TO 40
                GENERATE ELEMENT CONNECTIONS
             50 DO 60 1=2.JLAST
FIRST SET UP THE GRID POINT DROER
ÎSN 0490
                16(1)=LAST(1)
ISN 0491
15N 0492
                IG(2)=LAST(1-1)
ISN 0493
                IG(3) = ICUR(I-1)
ISN 0494
                IG(4)=1CUR(1)
ISN 0495
                16(5)=16(1)+10000
ISN 0496
                IG(6)=IG(2)+10000
ISN 0497
                IG(7)=IG(3)+10000
                16(8)=16(4)+10000
15N 0498
ISN 0499
                JEL=1EL
ISN 0500
                JPSOL = IPSOL
                DO 55 K=1 .LAYERS
1SN 0501
ISN 0502
                IF(K.EQ.1) GO TO 57
ISN 0504
                JEL=JEL+10000
ISN 0505
                JPSOL = JPSOL + 10
```

```
ISN 0506
                 DD 56 L=1.8
ISN 0507
                 16(L)=16(L)+10000
1SN 0508
             56 CONTINUE
                 PUNCH CONNECTION CARD
             57 WRITE (7.2) JEL . JPSOL . (IG(J) . J=1.6) . ICONT
ISN 0509
                 INCREMENT CONTINUATION FIELD
ISN 0510
                 JCONT = I CONT
                 ICONT=ICONT+1
ISN 0511
                 PUNCH CONTINUATION OF CONNECTION CARD
ISN 0512
                 WRITE(7.3)JCONT, IG(7), IG(8)
ISN 0513
             55 CONTINUE
                 INCREMENT ELEMENT ID
ISN 0514
                 IEL=IEL+1
             60 CONTINUE
ISN 0515
                 MOVE CURRENT LINE OF GRIDS TO LAST LINE
                 DD 70 I=1.JCUR
ISN 0516
                 LAST(1)=1CUR(1)
ISN 0517
ISN 0518
             70 CONTINUE
ISN 0519
                 JLAST=JCUR
                MAKE CURRENT, LINE EMPTY,
ISN 0520
                 JCUR=0
                 MOVE UP A LINE
ISN 0521
             75 Y(1)=Y(1)+DELTAY
                HAVE WE HIT THE TOP YET?
IF(Y(1).LT.(LEGX1-TOLER))GD TO 20
ISN 0522
1SN 0524
                . JF ( IEND2.EQ. 1 )GD_TQ_200 _____
ISN 0526
                 IEND2=1
ISN 0527
                 Y(1)=LEGX1
ISN 0528
                 GD TD 20
                 IF HE DON'T HAVE A POINT NEXT TO THIS ONE PUT ONE ON THE CURVE
             52 YY-+DSQRT (RAD 1US++2-X++2)
ISN 0529
             .. TRANSFORMING FROM DRIGINAL TO MODIFIED RECT COORD SYSTEM
ISN 0530
                 XXHOD=YY+HT2
ISN 0531
                 YMDD(1)=2(1)
ISN 0532
                ZHOD=X
                 WRITE (7.1) IGR ID. XXMOD, YMOD(1). ZMOD
1SN 0533
ISN 0534
                DO 53 I+2.LAYERG
                YHOD(1)=Z(1)
ISN 0535
ISN 0536
                 WRITE (7.1) JGR ID. XXHOD. YHOD (1). ZHOD
                JGRID=JGRID+10000
ISN 0537
ISN 0538
             53 CONTINUE
                STORE GRID ID
ISN 0539
                 JLAST=JLAST+1
                LAST(JLAST) = I GRID __
ISN 0540
                 INCREMENT GRID ID
ISN 0541
                 IGRID=IGRID+1
ISN 0542
                 JGR ID = I GR ID + 1 0000
1SN 0543
                GD TO 51
                END OF FIRST PIECE
```

8 50 1 36 1 30

```
GENERATE THE 90-DEGREE BEND
          C
                 FIRST ESTABLISH A CYLINDRICAL CO-DRDINATE SYSTEM
ISN 0544
             200 X=0.0
                 LEGX=HT2+LEGX1
ISN 0545
ISN 0546
                 LEGXP1=LEGX+1.
                 LEGY=LEGY
ISN 0547
             HRITE(7,201)LEGX,LEGY,LEGX,LEGY,ICONT 201 FORMAT('CORD2C',5X,'100',8X,2F8.4,5X,'0.0',2F8.4,5X,'1.0+',
ISN, 0548
ISN 0549
                 JCONT = I CONT
ISN 0550
ISN 0551
                 ICONT=ICONT+1
            WRITE(7,202)JCONT,LEGXP1,LEGY
202 FORMAT(1+1,17,2F8,4,5X,10,0)
ISN 0552
_ISN 0553_
                 SET INITIAL VALUES
ISN 0554
                 IPSOL=1PSOL+1
ISN 0555
                 R(1)=BEND
                 DO 205 1=2.LAYERG
1SN 0556
                 R(I)=R(I-1)+T(I-1)
ISN 0557
ISN 0558
            205 CONTINUE THETA-DELTAT
ISN 0559
                 IEL=((IEL/1000)+1)*1000+1
ISN 0560
ISN 0561
                 IEND2=0
ISN 0562
             250 JEND=0
1SN 0563
                 2(1)=0.0
                TRANSFORMING FROM DRIGINAL TO HODIFIED CYLINDRICAL COURD SYSTEM
ISN 0564
             220 THMOD=90.-THETA
                 ZMOD2(1)=WIOTH-Z(1)
ISN 0565
                 WRITE(7,203)1GRID.R(1).THMDD.ZMDD2(1)
ISN 0566
                                  '.18.5X,'100',3F8.4}
ISN 0567
             203 FORMAT( GRID
                 DO 225 1=2.LAYERG
ISN 0568
                _ WRITE(7.203) JGRID.R(1), THMOD.ZHOD2(1)
ISN 0569
                 JGR ID=JGR ID+10000
 ISN 0570
             225 CONTINUE
ISN 0571
ISN 0572
                 JCUR=JCUR+1
                 ICUR(JCUR)=IGRID
 ISN 0573
                 IGR ID = 1 GR 10+1
ISN 0574
                 JGRID=1GRID+10000
ISN 0575
                 Z(1)=2(1)+DELTAX
ISN 0576
                 IF(2(1).LT.(WIDTH-TOLER))GD TD 220
1SN 0577
                 MAKE SURE WE GET THE EDGE
1F(IEND.EQ.1)GD TO 210
ISN 0579
ISN 0561
                 Z(1)=WIDTH
              __ IEND=1
ISN 0582
                 60 TO 220
ISN 0583
                 GENERATE CONNECTIONS
             210 DD 230 1=2.JCUR
SET UP THE GRID POINT ORDER
ISN 0584
 ISN 0585
                 16(1)=LAST(1)
                _ 16(2)=LAST(1-1)
ISN 0586
                 16(3)=1CUR(1-1)
ISN 0587
                 1G(4)=ICUR(1)
ISN 0588
ISN 0589
                 16(5)=16(1)+10000
                 16(6)=16(2)+10000
 ISN 0590
```

```
1G(7)=1G(3)+10000
ISN 0591
ISN 0592
                 IG(8)=IG(4)+10000
                 JEL=1EU
ISN 0593
                 JPSOL=1PSOL
ISN 0594
                 DD 215 K=1.LAYERS
ISN 0595
                 1F(K.EQ.1)GO TO 217
ISN 0596
ISN 0598
                 JEL=JEL+10000
                 JPSOL=JPSOL+10
ISN 0599
ISN 0600
                 DD 216 L=1.8
                 16(L)=16(L)+10000 .____
ISN 0601
            216 CONTINUE
ISN 0602
                 PUNCH CONNECTION CARD
            217 WRITE (7.2) JEL. JPSOL. (IG(J). J=1.6), ICONT INCREMENT CONTINUATION
ISN 0603
                 JCDNT = 1 CONT
15N 0604
15N 0605
                 1CONT-1CONT+1
                 PUNCH CONTINUATION OF CONNECTION CARD
                 HRITE (7,3) JCONT, 16(7) . 16(8)
ISN 0606
             215 CONTINUE
15N 0607
                 INCREMENT ELEMENT 10_
15N 0608
                 IEL=IEL+1
             230 CONTINUE
ISN 0609
                 MOVE CURRENT GRIDS TO LAST GRIDS
                 DD 240 1=1.JCUR
15N 0610
ISN 0611
                 LAST(1)=ICUR(I)
15N 0612
             240 CONTINUE
ISN 0613
                 JLAST=JCUR
ISN 0614
                 JCUR=0
                 INCREMENT ANGLE
                 THETA-THETA-DELTAT
1F(THETA-LT-89.9995)GD TD 250
ISN 0615
ISN 0616
                 IF ( IEND 2 . EQ . 1 ) GO TO 241
ISN 0618
ISN 0620
                 IEND2=1
ISN 0621
                 THETA-90.
                 GD TD 250
ISN 0622
                 END OF 90 DEGREE SEND
                 START OF BOTTOM PIECE(NO CUTOUT)
                 INITIALIZE CONSTANTS
             241 IEL=((IEL/1000)+1)+1000+1
ISN 0623
                 IEND2=0
ISN 0624
                 IPSOL = IPSOL +1
ISN 0625
                 Y(1)=LEGX1+BEND
ISN 0625
15N 0627
                 DO 245 1=2.LAYERG
                 Y(1)=Y(1-1)+Y(1-1)
ISN 0628
15N 0629
             245 CONTINUE
                 START GOING DOWN IN THE 2-DIRECTION UNTIL HE HIT THE BOTTOM
                 START AT THE LEFT ECGE 2(1)+LEGY-DELTAZ
ISN 0630
```

```
ISN 0631
           320 X=WIDTH
        C ... GENERATE NEXT LINE OF GRID POINTS
ISN 0632
               IEND=0
              TRANSFORMING FROM DRIGINAL TO MODIFIED RECT COORD SYSTEM
           340 XHDD(1)=Y(1)+HT2
ISN 0633
ISN 0634
               YMOD(1)=Z(1)
15N 0635
               ZMDD=X
               WRITE (7-1) IGR 10 , XMOD(1) , YMOD(1) , ZMOD
1SN 0636
               DD 345 1=2.LAYERG
ISN 0637
               XMDD(1)=Y(1)+HT2
ISN 0638
               WRITE (7.1) JGRID . XHOD(1) . YHOD(1) . ZHOD
ISN 0639
               JGRID=JGRID+10000 _ .
ISN 0640
           345 CONTINUE
ISN 0641
               SAVE GRID 1015 FOR ELEMENT CONNECTIONS
ISN 0642
                JCUR=JCUR+1
                ICUR(JCUR)=IGRID
ISN 0643
                INCREMENT GRID ID'S
ISN 0644
               IGRID=IGRID+1
ISN 0645
               JGR ID=1 GR ID+10000
               MOVE TO THE RIGHT ONE INCREMENT AND REPEAT. ...
15N 0646
               X=X-DELTAX
               IF(X.GT.TOLER)GD TO 340
MAKE SURE WE GET THE RIGHT EDGE
IF(IEND.EQ.1)GD TO 350
ISN 0647
ISN 0649
               X=0.0
ISN 0651
ISN 0652
               IEND+1
ISN 0653
               GD TO 340
               GENERATE ELEMENT CONNECTIONS
           350 DD 360 1=2.JLAST
ISN 0654
           ... FIRST SET UP THE GRID POINT ORDER
               16(1)=LAST(1)
15N 0655
                1G(2)=LAST(1-1)
ISN 0656
ISN 0657
               16(3) =1CUR(1-1)
                IG(4) = ICUR(1)
ISN 0658
ISN 0659
               16(5)=16(1)+10000
              . 16(6)=16(2)+10000
ISN 0660 ._
15N 0661
               16(7) *16(3)+10000
ISN 0662
               IG(8)=IG(4)+10000_
               JEL-IEL
ISN 0663
               JPSQL = 1 PSQL
ISN 0664
               00 355 K=1.LAYERS
ISN 0665
              ISN 0666.
ISN 0668
               JEL=JEL+10000
               JPSOL = JPSOL + 10
ISN 0669
               DD 356 L=1.6
ISN 0670
                1G(L)=1G(L)+10000
ISN 0671
           356 CONTINUE
ISN 0672
           PUNCH CONNECTION CARD

357 WRITE(7.2)JEL.JPSOL.(IG(J).J=1.6).ICONT
ISN 0673
                INCREMENT CONTINUATION FIELD
ISN 0674
                JCONT = I CONT
1SN 0675
                ICONT=ICONT+1
```

		C	PUNCH CONTINUATION OF CONNECTION CARD
1 51	0676		WRITE (7,3) JCONT . 1G(7) . 1G(8)
	0677		CONTINUE
•			INCREMENT ELEMENT ID
I S	0678		IEL=IEL+1
	0679		CONTINUE
• •		c	MOVE CURRENT LINE OF GRIDS TO LAST LINE
1 51	0840		DD 370 J=1.JCUR
			LAST(1)=1CUR(1)
			CONTINUE
	0683		JLAST-JCUR
			MAKE CURRENT LINE EMPTY
151	0684	•	JCUR#0
	. 0007	•	MOVE, UP_A.LINE
			Z(1)=Z(1)=DELTAZ
131	. 0000		
1 2 1	1 0686		IF(2(1).GT.TOLER)GD TO 320
			TELLENDS EN 1 120 TO 130
			JF(IEND2-E0-1)GD TO 120
			IEND2=1
151	0691		2(1)=0.0
151	0692	_	
		Ç	WERE DONE WHEN
		C	SD DUMP THE BUFFER
151	0693		ENOFILE 7
		C	AND GET THE HELL DUT
I SI	1 0694.		STOP
121	0695	900	WRITE(6.901)
151	0696	901	FORMAT("- *** ERROR*** TOO MANY LAYERS SPECIFIED")
151	0697		STOP
	0698		END

PARAMETER ECHO	, ,
LEGX1= 0.270	·
LEGY= 0.510	0
WIDTH= 0.500	
RADIUS= 0.250	
DELTA-Y= 0.090	0
DELTA-X= 0.100	0
DELTA-T= 15.000	
BEND=0.125	0
TOLERANCE= 0.015	
DELTA-Z= 0.170	0
LAYERS=	1
DELTAY2- 0.133	0
HEIGHT2= 0.400	0
LAYER- 1 THICKNESS	a

APPENDIX F

C-1 MODEL PREPROCESSOR PROGRAM BULK DATA LISTING

TELK LATA CINEKATIN LY C-1 FREFRUCESSOR

1.	6811		1		0.4666	0.1350	6.2(00				
2.	6616		16061		3.4600	0.7606	0.5000				
3.	GRID		2		0.4600	C+6 350	0.4600				
4.	GF10		10002		0.4000	0.7660	0.4606				
5.	6416		3		0.4000	0.6350	0.3000				
ι.	0516		16-303		0.4000	0.7600	0036.3				
7.	CRID		4		0.400	0.6350	0.2500				
ь.	CRIP		16004		0.4000	0.7600	0.2100				
9.	GK1D		5		0.2670	0.6350	0.5000				
10.	GRID		16005		0.2670	0.7600	C.5000				
11.	6416		6		0.2670	0.6350	C.4600				
12.	6614		10006		0.2670	C. 7600	0.4000				
13.	CHL X A		1	1	Ł	5	1	2	16006	10005+	0
14.	•	ú	10001	10002	•		•	-			•
15.	6k] ()		7		0.2670	0.6350	6.3000				
10.	CK16		1(007		0.2670	6.7600	0.3600				
17.	CHE XA		2	1	7	٤	5	3	16007	10006+	1
16.	•	1	10002	10063			•	_	• • • • • •		•
15.	6616		8		0.2670	0.6350	0.2117				
50.	6611)		10:008		0.2670	0.7600	0.2117				
21.	CHI > A		3	1	8	7	3	4	10006	10007+	2
26.	•	5	10003	10004					*****		•
23.	GKID		4		0.1340	0.6350	0.5000				
¿4.	6610		10004		0.1346	0.7660	0.5000				
۷5.	GRID		10		0.1340	0.6350	0.4000				
26.	GRID		10010		0.1340	0.7600	0.4000				
27.	GRID		11		0.1340	0.6350	0.3000				
26.	GRIU		10011		0.1340	6.7600	C.3600				
29.	OFID		12		0.1340	0.6350	0.2000				
30.	GRIO		10012		0.1340	0.7600	0.2000				
31.	CRID		13		0.1340	0.6350	6.1000				
32.	CKIP		16013		0.1340	6.7660	0.1000				
33,	GRID		14		0.1709	0.6350	0.1000				
34.	CKID		10014		0.1709	C.76CO	0.1000				
35.	GF 1()		15		0.1340	0.6350	0.0				
30.	PETU		10015		0.1340	0.76UG	6.0				
37.	CKIL		16		0.15(0	0.6350	0.0				
3t.	GPIU		10016		0.15(0	0.7600	0.0				
39.	Cht X &		4	1	10	ç	5	6	16610	10009+	3
40.	•	3	10005	10006							
41.	AKJIEJ		5	1	11	10	6	7	10011	10010+	4
45.	•	4	10005	10067							
43.	CHEXA		6	1	12	11	7	6	10015	10011+	5
44.	•	٠	16007	10008							
45.	CHEXA		7	1	13	12	8	14	10013	10012+	6
46.	4.154	Ł	10068	10014							
47.	CHEXA	•-	8	1	15	13	14	16	10015	10013+	7
40.	4 030	7	16014	10016							
45.	6810		17		4.6	0.6350	C. FLOC				
56.	CPID		10017		0.0	0.7600	0.5000				
51.	0K1[:		16		0.0	0.6350	0.4000				
50. 50.	6416		10016		0.0	6.7660	C.4CCC				
	6610		19		0.0	0.6350	C.3C00				
• 4 .	UKIG		16019		0.0	0.7600	0.3666				
55. ! L.	6816 6836		20		0.0	0.6350	0.2600				
	6816 6616		10056		0.0	0.7600	0.2000				
57. 50.	661E 661t		21 10021		3.0	0.6356	0.1000				
- L: 4	Vr 11		11.021		0.0	C . 74.00	6.1006				

11 B

				0.0		0.0					
59.	GRID	22		0.0	0.7600	0.0		14010	10017+	8	
60.	GF I U	10055	1	18	17	9	10	10018	1001.	_	
61.	CHEXA	9	-	•••	•				100184	9	
62.	ė e	10009	10010	19	18	10	11	10019	10018+	•	
	CHEXA	10	1	17	••	•				10	
63.	9	10010	10011			11	12	10020	10019+	10	
64.	CHEXA	11	1	\$0	15	••	•••				
65.		10011	10012				13	10021	10020+	11	
66.	10	12	1	21	20	12	13		• • • •		
67.	CHEXA		10013					10022	10021+	12	
68.	+ 11	10015	1 (1)	72	21	13	15	10055			
64.	CHEXA	13	•	• •							
70.	• 17	10013	10015	2.4900	0.6350	0.5000					
71.	GRIP	1001			0.7600	0.5000					
72.	GRID	11001		0.4900	0.6350	0.4000					
	GRID	1002		0.4900		0.4000				• •	
73.	0190	11002		0.4900	0.7600	1601	1002	10002	10001+	13	
74.		1001	1	2	1	1001					
75,	CHE X A	11001	11002								
76.	• 13	1003		0.4900	0.6350	0.3600					
77.	GRIO			0.4900	0.7600	0.3000		10003	10002+	14	
76.	GRIU	11003	•	3	2	1002	1003	1000	10000	•	
79.	CHE X #	1002	1	•	•						
80.	. 14	11005	11003	0.4900	0.6350	0.2332					
	GRID	1004			0.7600	0.2332				15	
61.	GRID	11004		0.4950	3	1003	1004	16004	10003+	13	
82.		1003	1	4	,	1000	•••				
83.	CHEXA		11004								
64.		1005	•	0.5800	0.6350	0.5000					
65.	GRID			0.5960	0.7600	0.5000					
86.	GRID	11005		0.5800	0.6350	C.4C00					
87.	URID	1006		0.5800	0.7600	C.4C00			11001+	16	
88.	GRID	11006		1002	1001	1005	300V	11605	11001		
89.	CHF X A	1004	1	1001	••••						
90.	16	11005	11004	0.5800	0.6350	0.3000					
91.	GRIP	1007								17	
	GRID	11007		0.5800			1007	11003	11005+	• •	
92.	CHEYA	1005	1		1002	••••					
93.	1	7 11006	11007		0 4380	0.2000					
94.	GRID	1006		0.5800							
95.		11008		0.5800	0.7600		100B	11004	11003+	16	
96.	6110	1006	1	1004	1003	1007	.000	• • • •			
97.	CHEXA		1 100F								
46.	+ 1		• -	0.6291	0.6350						
99.	GRIL	1000		0.6291		0.1000		11008	11009		
100.	6610	11009				1009	11004	11100			
101.	CPENTA	1007		0.670							
102.	GFIF	1010		0.670							
	CFID	11010	•								
103.	GRID	1011	l	0.670							
104.	6610	1101	1	0.670							
105 •	GRID	101	•	0.670							
106.		1101		0.670							
107.	GPID	101		0.670	0 0.435				•		A STATE
100.	Chib			0.670	6 C. 760				•		
109.	GRIP	1101		0.670		0 0.1000					
110.	68.10	101		0.670		0 6.1600					
iii.	CFIC	1101		0.670							
112.	0110	101									
	1130	1101	•	0.670							
113.	GRIT	101	6	0.650						19	
114.	GF 10	1101		0.650			101	11006	11005+	47	
115.	CHEXE	100		1 100	ee 100		• • • •			**	
116.		16 1101		11		. 1/11	1917	1100	7 11006+	50	
117.	•	100		1 10	67 IU	06 1(11	* * * *				
lit.	CI-F X V			-							
11c.	•	\$6 1101	•••								

的,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人 第一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就

120.	4.6 3163	1310	1	16(1	1667	1012	1013	11(6	11007+	21
121.	+ 21	11012	11013							
122.	CHE X A	1011	1	1009	1008	1613	1014	11669	11008+	22
123.	+ 22	11013	11014							
124.	CHI X A	1012	1	1016	1009	1014	1015	11616	11009+	23
125.	+ 23	11014	11015							
12t.	COFUSC	100		0.6760	0.5100	(.0	0.6700	0.5100	1.0+	24
127.	+ 24	1.4700	0.5100	0.0						
120.	GKIC	1017	100	0.1250	75.0000	0.5000				
129.	CkID	11017	160	0.2500	75.0000	0.5000				
136.	GRID	1016	160	0.1250	75.0000	0.4600				
131.	GRIU	11016	100	0.2500	75.0000	0.4060	•			
132.	GRID	1019	100	0.1250	75.0000	0.3660				
133.	GPID	11019	100	0.2500	75.0000	0.3600				
134.	GRID	1020	166	0.1250	75.0000	0.2000				
135.	CF 10	11020	160	0.2500	75.0000	0.2600				
136.	GK 1 ()	1021	100	0.1250	75.0000	0.1000				
137.	GFID	11021	100	0.2500	75.0000	C.1CCO				
138.	GK 1 ()	1055	100	0.1250	75.0000	C.U				
134.	UKID	11022	100	0.2560	75.0600	0.0				
160.	CHE X A	2001	2	1.411	1010	1017	1018	11011	11610+	25
141.	+ 25	11017	11018							
142.	CHEXA	2002	3	1012	1011	1616	1019	11012	11611+	26
143.	+ 26	11018	11015							
144.	CHEXA	2003	ż	1013	1012	1019	1020	11013	11012+	27
195.	+ 27	11019	11026							
140.	CHEXA	2004	2	1014	1013	1020	1021	11014	11613+	26
147.	4 24	11020	11021							• •
146.	CHEXA	2005	2	1015	1014	1021	1022	11015	11014+	29
149.	+ 29	11021	11022							
160.	GRIP	1023	100	0.1250	60.6000	0.5000				
151.	GRIL	11023	100	0.2500	60.0000	6.5000				
152.	GKID	1024	166	0.1250	60.0000	0.4000				
153.	GK 10	11024	100	0.2500	60.0000	0.4000				
154.	GKID	1025	100	0.1250	60.0000	0.3000				
155.	GKID	11025	100	0.2500	60.000	C.3GCO				
156.	GF1ti	1026	100	0.1250	60.000	0.2000				
157.	GRIU	11056	100	0.2560	60.0000	3.2600				
158.	GRIU	1027	100	0.1250	£C.C000	6.1600				
159.	GKIÐ	11027	100	0.2500	60.0660	0.1000				
lev.	GRID	1028	100	0.1250	60.0000	0.0				
161.	CRID	11028	100	0.2500	60.CC00	0.0				
102.	CHEXA	5006	2	1016	1017	1023	1024	11016	11017+	30
163.	• 30	11023	11024							
104.	CHEXA	2007	2	1019	1016	1024	1025	11019	11018+	31
165.	+ 31	11024	11025							
ice.	CHE X &	200F	5	1020	1019	1625	1026	11050	11019+	32
167.	• 32	11025	11026							
166.	CHEXA	2009	2	1621	1020	1056	1027	11021	11020+	33
109.	÷ ?3	11056	11027							
170.	CHEXA	2010	5	1055	1021	1027	1058	11022	11021+	34
171.	• 34	11027	11036							
172.	CEID	1029	100		45.0000	0.5000				
173.	CKIT.	11029	100		45.0000	0.5000				
174.	CKID	1030	100		45.COCO	C.4000				
175.	GRID	11030	100		45.0000	0.4606				
176.	GNID	1031	100		45.0000	0.3000				
177.	GK 1D	11031	160		45.0000	0.3000				
178.	CFIG	1032	160		45.0000	0.2000				
179.	C# 10	11032	100		45.0000	0.2000				
lbu.	6410	1033	166	0.1250	45,0000	6.1600				

161.	GK10	11033	100	0.2500	45.0000	0.1000				
162.	GRID	1034	100	0.1250	45.C000	0.0				
183.	GKIL	11034	100	0.2500	45.0000	0.0		11026	11023+	35
	CHEXA	2011	2	1024	1023	1029	1030	11024	11052	••
184.	♦ 35	11029	11030						116.264	36
165.		2012	2	1025	1024	1030	1031	11025	11024+	50
166.	CHEX A 36	11030	11021	•						37
167.		2013	2	1026	1025	1031	1032	11026	11025+	31
188.	CHEXA	11031	11032	••••						
169.	+ 37	2014	2	1077	1026	1032	1033	11027	11026+	38
190.	CHE XV		11033	•••	•					
191.	+ 38	11032	2	1078	1027	1033	1034	11028	11027+	39
192.	CHEXA	2015	11034		• - • ·					
193.	+ 39	11033	160	0.1250	30.0000	0.5000				
194.	GRIU	1035		0.15.0	30.0000	0.5000				
195 •	GRID	11035	100	0.2500	30.0000	0.4000				
196.	GRID	1036	100	0.12.0	30.0000	0.4000				
197.	CRIT,	11036	100		30.0000	0.3000				
198.	GRIU	1037	100		30.0000	0.3000				
199.	GRID	11037	100			0.2000				
200.	GB10	1038	100	0.12.0	30.0000	0.2000				
201.	GRID	11038	100	0.2500	30.0000	0.1000				
202.	GR1D	1039	100	0.1250	30.0000	0.1000				
203.	GRID	11039	100	0.2500	30.0000	0.0				
204.	GRID	1040	100	0.15-0	30,0000					
205.	GRID	11040	100		30.0000	0.0	1036	11030	11029+	40
206.	CHEXA	2016	2	1030	1029	1035	1030		••••	
207.	+ 40	11035	11036			1021	1037	11031	11030+	41
208.	CHEXA	2017	2	1031	1030	1036	1031	11031		
209.	+ 41	11036	11037				1076	11032	11031+	42
210.	CHEXA	2018	2	1032	1031	1037	1038	11032		_
211.	4 42	11037	11036				1030	11033	11032+	43
212.	CHEXA	2019	2	1033	1032	103R	1039	11033		
	43	11038	11039					11036	11033+	44
213.	CHEXA	2020	2	1034	1033	1039	1040	11034	110224	• • •
	44	11039	11040							
215.	9139	1041	100	0.1250	15.0000	0.000				
216.	URIO	11041	100	0.2560	15.0000	C . : C C C				
217.	0130	1042	100	0.1250	15.0000	0.4000				
218.	GF10	11042	100	0.2500	15.C000	0.4000				
214.	GRID	1043	100	0.1250	15.0000	0.3000				
220.	6R10	11043	ico	0.2500	15,000	0.3600				
221.		1044	100	0.1250	15.0000	6.5000				
555.	GRID	11044	100	0.2500	15.0000	0.2000				
223.	GRID	1045	100	0.1240	15.0000	C.1C00				
224.	6k16	11045	100	0.2500	15.0000	0.1000				
225.	GRID	1046	100		15.0000	0.0				
226.	6k10	11046	100		15.0000	(.0			110751	45
227.	6810	2021	2			1641	1042	11036	11035+	45
226.	CHEXA		11042		-					44
229.	+ 45	11041	2		1036	1642	1043	11037	11036+	46
230.	CHEXA	2022	11043	-						
231.	46	11042	2		1(37	1(43	1344	11636	11037+	47
232.	CHEXA	2023	11044		• • • • •	* * * *				
233.	+ 47				1 1036	1(44	1045	11039	11038+	48
234.	CHEXA	2024	7 1 1064			• • •	•			
235.	+ 48	11044	11045		0 1039	1045	1046	11040	11039+	49
236.	CHEXA	2025				• • •				
237.	+ 49		11046		0.0	0.5000				
238.	GK 1D	1047	10		•	(,,(00				
239.	6116	11047	100			0.4000				
240.	CF10	1048	100			(,4(00				
241.	1140	11048	100	0.250	D (.(6.4101				

246.	(+16	1046	160	9.1266	0.0	(.3666				
243.	1110	11049	160	3.25(0	i.i	6.3600				
	68.11	1050	100	3.1210	Cit	(.2600				
244.		11050	100	0.2560	0.6	C.2600				
245.	C+ 10		166	0.1250	0.0	L.1600				
246.	PK10	1051			0.0	(.1000				
247.	OF IL	11051	106	0.2500						
248.	0410	1052	100	0.1250	0.0	0.0				
249.	P#1L	11052	100	0.2500	6.0	0.0	10/6	11043	116614	50
55 U •	CHEXA	202¢	2	1042	1041	1647	1048	11042	11041+	20
251.	+ 50	11047	11048							4.1
252.	CHLXA	2027	2	1043	1042	1048	1049	11043	11042+	51
253.	+ 51	11048	11049							
254.	CHE XA	2028	4	1044	1043	1049	1050	11044	11043+	52
: 55.	+ + ;	11049	11050							
256.	CHEXA	2029	2	1045	1044	1050	1051	11045	11044+	53
257.	+ 53	11050	11041							
250.	CHEXA	0103	ž	1046	1045	1651	1052	11046	11045+	54
259.	14	11051	11052	•						
260.	01140	1053	•••••	0.7950	0.3400	0.5000				
	6K16	11053		0.9200	0.3400	0.5000				
261.		1054		0.7950	0.3400	0.4600				
262.	6410			0.9200	0.3400	0.4000				
263.	GK1D	11054		0.7450	0.3400	0.3000				
264.	GF 1 F	1055				0.3000				
265.	GP1U	11055		0.9200	0.3400					
266.	CKID	1056		0.7950	0.3400	0.2000				
267.	CF 11)	11056		0.9200	2.3400	0.2000				
266.	6K1D	1057		0.7950	0.3400	0.1000				
269.	GK1D	11057		0.9200	0.3400	0.1000				
270.	6K10	1058		0.7950	0.3400	0.0				
271.	6RID	11056		0.9260	0.3466	0.0				
272.	CHLXA	3001	3	1046	1047	1053	1054	11648	11047+	55
273.	• 15	11053	11054							
274.	CHE XA	3002	3	1049	1048	1054	1055	11049	11048+	50
275.	+ 56	11054	11055							
276.	CHEXA	3003	3	1050	1049	1655	1056	11050	11049+	57
277.	• • • 7	11055	11056	•						
270.	CHE XA	3004	3	1051	1656	1655	1057	1:051	11050+	58
279.	* **	11056	11057		• • • •	*				
200.	CHEXA	3005	3	1052	1651	1017	1058	11052	11051+	59
261.	• • • • •	11057	11056			• • •	• • • •	• • • • •		
	•	1059	11070	0.7950	0.1700	C.5CC0				
262.	6k16	11059		0.9260	0.1760	0.5000				
263.	CKIE	1060		0.7950	0.1700	0.4000				
264.	6810			0.9200	0.1700	6.4660				
265.	6610	11060			0.1700	6.3660				
žre.	5k l ti	1061		0.7950						
21: 7.	0k10	11061		0.9200	0.1700	0.3000				
さいしゅ	0110	1062		0.7950	0.1700	0.2660				
267.	6410	11005		0.9200	0.1766	0.2000				
246.	6616	1063		0.7950	0.1700	C.1(00				
251.	6810	11063		0.9260	0.1760	C.1000				
292.	bk Hi	1064		0.7950	0.1706	0.0				
263.	CKIN	11064		0.5266	6.1700	0.0				
294.	CHI X A	300t	3	104.4	1653	1659	1060	110:5	11053+	£O
295.	+ 16	11059	1166							
296.	CHI XA	3007	3	1655	1054	1660	1061	11055	11654+	e i
267.	+ (1	11360	11061							
250.	CHERA	3008	3	16.6	1055	1661	1065	11056	11655+	62
296	+ (2	11961	11061							
366.	CHEXA	3004	د د	16:7	1056	1665	1063	11057	11056+	63
361.	+ (3	11062	11063							
30.	CHENA	3010		1658	1057	1063	1064	11056	11657+	64
	**** ** M									

さいり 。	•	(4	1100.	31664							
304.	61.11		1900		0.75*(0.6	6.5000				
out.	GF 11:		11056		0.9200	(, 0	0.1100				
301 .	6F11)		1006		0.74+0	0.0	6.4600				
361.	6610		11056		0.9200	6.6	0.4000				
3(:.	6+16,		1907		0.7910	L.C	6.3666				
364.	6616		11067		0.9266	6.6	6.3000				
310.	0F 11:		1066		0.79fC	G.C	C.2000				
311.	CFIL		11066		0.9260	6.6	6.2600				
312.	CE LO		1069		0.7950	0.0	0.1600				
313.	0110		11069		0.9200	0.0	0.1000				
314.	6610		1070		0.7950	0.0	C.C				
315.	6410		11070		0.9200	č.i	0.0				
316.	CHÍ X A		3011	3	1060	1059	1165	1066	11060	11059+	£5
317.	•	£ 5	11055	11044	•	•		••••			U
318.	Cht X A		3012	د	1061	1060	1066	1067	11061	11060+	66
319.	•	66	1106£	11067			••••		•••••		CU
320.	(HE)A		3013	3	1065	1061	1067	1068	11062	11061+	67
311.	•	17	11067	11666		• • • •	• • • •			*****	٠,
322.	LHEXA		3014	3	1663	1662	1668	1069	11063	-11062+	68
362.	•	er	110at	11(69			****	••••		•••••	CO
324.	CHEXA		3015	3	1664	1063	1649	1070	11064	11063+	وع
365.	•	19	11069	11076			, , , , ,	,,,,			Cy

APPENDIX G

C-1 PLOT RUN DATA DECK SETUP AND UNDEDORMED PLOTS

•	// JDB (900004,,048,300)+PLDTG14,CLASS=C
3.	//RUN EXEC NAST46.PTAPE=WYLBUR.PLOT=WYL302.
2.	// PLOTDSN='CX900004 .SSS .PLOTC14',PLOTPGH=PLOT936,
3.	// W1=1,KDN360=12K,PBUF=141,FBUFF=400,R=299K
7.	10 MODELCI, PLOTCIA
	SOL 24
·- 7 •	DIAG 8.14
٥.	ALTER 23 \$
.7•	EXIT \$
	ENDALTER
	CEND
	TITLE PRE-PROCESSOR . PRODUCED-GEOMETRY-(MODEL C14)
. 12.	OUTPUT (PLOT)
17.	PLOTTER NASTRAN MODEL 0.0
17.	SET 1 = 1 THRU 1072 EXCLUDE GRID POINTS 10001 THRU 11083
16.	SET 2 = 2001 THRU 2090
18:	SET 3 = 3001 THRU 3050
20.	
	\$ PLOT MESH .1
22.	
	AXES Y .X . MZ
	VIEW QQQ.
	PTITLE PART I WITH WASHERS TOP VIEW
	FIND SCALE SET 1 DRIGIN 1
	PLOT SET 1 ORIGIN 1 LABEL ELEMENTS
	PLOT SET 1 ORIGIN 1 LABEL GRIDS
29.	
• • •	AXES Z.X.Y
	VIEW 0.,0.,0.
	PTITLE-FULL BRACKET: VIEW 0.0.0
	FIND SCALE SET 4 DRIGIN 6
34.	PLOT SET 4 DRIGIN 6
35.	
36.	S PLOT MESHES 1.11. AND III
	•
	AXES 2.X.Y
39.	VIEW -10.,20.,-30.
40.	PTITLE=FULL BRACKET: 3-D VIEW -10.2030
	FIND SCALE SET 4 ORIGIN 5
42.	PLOT SET 4 DRIGIN 5
43.	BEGIN BULK
	· · · · · · · · · · · · · · · · · · ·
	•
	(DITY CAMA)
	(BULK CATA)
	•
	•
	•
	ENDDATA

10P VIEW - WESH I WITH WASHER

~*****		~**************	++ 40 80cm ±:<	~*±±±±±±±=<
			~ ≈ 0000.25<	**************************************
				>
		mz<	€	-d<
	NEC .	6077 %	vnæ≪	41 <
~m±<	≽⊞⊅∾	~~I<	₩₩₩	α±∢

PRE-PROCESSOR PREDUCED BULK D.IA

UNDEFORMED SHAPE

PRE-FRUCESSOR PRODUCED BULK DATA

UNDEFORMED SHAPE

3 47. 1. 11. AH2 111 . 8. P. B. VIFW

PRE-PROTEIN - PROPRETO BULK DATA

THEFTORMED SHAPE

172

APPENDIX H C-1 SOLUTION RUN OUTPUT

N A S T R A N

MSC ~ 46

VERSIEN MAR 11, 1978

18H 360-37C SERISS

MCUEL 65

RACTEAN SYSTEM PARAPELER ELFU

SEI IL PEEK 3, 343m NAS 3KAN OV UV (

HASTMAN PREFUPTAL

PELITURES 1. 1238 NAPIKAN 2/11/38

HASTRAN BRECUTIVE CUNTRUL CECA LINU

ID ADCUMPST MUDEECTN
SUL 24
TIME 60
DIAG 8:14
DIAG 22
CENU

CASE CONTROL DELK ECHO

		S	UKIE	8 E L	; L K	0 4 1 4	£ L n u			
CARD		•		•						
CUUNT	. 1 ., 2	٤	4	5	••	6 7	8	5		10 .
1-	CHLXA 1	1	٤	5	1	i	10006	10005	٠	0
2-	 01 COO1 	10005								
3-	CHE XA 2	1	7	6	₹	ż	10001	10000	•	1
4-	110002	10003								_
5-	CHEXA 3	1	b	7	j	4	10009	10007	•	2
D :-	+ 210003 CHEXA 4	1004	10	4	5	ŧ	10010	10004	٠	3
N) 8-	• 310005	icoor	14	,	,	·	10010	1000	•	,
ÿ.	CHENA 5	1	11	10	6	7	10011	10010	•	4
1¢-	+ 41000t	10007		••		•		••••		
11-	CHEXA 6	1	12	11	7	8 .	10015.	10011		5
15-	\$10007	10008								
13-	CHEXA ?	1	13	12	ŧ	14	10013	10012	٠	6
14.	+ 61000F	10014		1.5			10015	10013	٠	,
15- 16-	CHEXA 8	10016	15	13	14	16	10015	10013	•	7
17-	CHEXA 9	i	18	17	9	10 '	10018	10017	٠	ę
ià-	+ B10009	10010	*-	• •	•	•••	*****	••••		•
19-	CHEXA 10	1	19	18	10	11	10014	10018	•	9
30+	4 410010	10011								
31-	CHE NA 11	1	50	15	11	12	10050	10019	٠	10
33.	1010011	10015		30				10010		11
23-	CHEXA 12	10013	21	50	12	13 -	10051	10050	•	**
25-	CHEXA 13	1	55	21	13	15	10022	10021	•	12
26-	1210013	icers	•••		• • •	•••				• • •
21-	CHEAA 1001	1	ę	1	1001	1003	10002	10001	•	13
28-	1311001	11005								
29-	CHEXY 1005	1	3	2	1005	1CC3	. 10003	10005	•	14
36-	1411002	11001			1003	1000	10004	10003		
31- 32-	CHE XA 1003	11004	4	3	1003	1004	10064	10003	٠	15
33-	CHENA 1004	1.004	1002	1001	1005	100e	11005	11001	•	16
34.	1611055	· 11006	,,,,,	••••	,,,,,					•••
35-	CHEXA 1005	1	1003	1002	1006	1007	11003	11002	•	17
36-	1711006	11667								
3]-	CHERA 1006	1	1024	1003	1001	100#	11004	11663	•	18
36-	1 1411003	11008	1004	1004	1010	1011	11004	11006		
39- 40-	CHEXA 1008	11011	1006	1005	1010	1011	11006	11005	٠	19
41-	CHEAA 1009	1	1007	1006	1011	101 2	11007	11006	•	20
42-	2011011	1015	,,,,,	,,,,,			*****		-	•••
43-	LHEXA 1010	1	1006	1001	1012	1013	11068	11007	٠	51
44-	• 2111012	11013								
45-	CHENA 1011	1	1009	100#	1013	1614	11009	1100#	٠	55
46-	4 5511013	11014	1014	1000	1011	1016	11014			44
47• 48•	CHEXA 1012	11015	1016	1005	1014	1015	11016	11004	٠	52
45-	CHENA 2001	11012	1011	1010	1617	1016	11011	11010	•	53
50-	2511017	11018		,,,,		,.,5		••••	-	••
-										

•			\$ 11	K T t t		LK DA	I A L	LHU			
	CARU LUUNT	. 1 2	3	4	1011	1016	16157	11012	11011	•;	10 .
	51-	CHEXA 2002	2 11014	1012					11012	٠	21
	52- 53-	CHE XA 2003		1013	1015	1014	1050	11013	11012	•	
	54-	. 2711019	1105C	1014	1013	1020	1021	11014	1:013	٠	59
-	55-	CHEXA 2004	11021					11015	11014		29
	56- 57-	CHE XA 2005	2	1015	1014	1021	1055	11013	,,,,,	-	
	54-	2911021	11055	1018	1017	1023	1024	11018	11017	٠	30
	59-	CHEXA 2006	11024	1010				11019	11018	٠	31
	61-	CHEXA 2007	5	1614	1018	1024	1035	11013	11014	-	
	65-	1111024	111122	1050	1019	1035	1026	11050	11019	٠	35
	63-	◆ 3511052 4 3511055	11026					11021	11020	•	33
	64- 65-	CHEXA 2009	3	1051	1050	1056	1053	ffort			
	66-	3311056	11053	1025	1021	1027	1026	11055	11021	٠	34
*	67-	CHEXY , 5010	11026	1000				11024	11023	•	35
	68- 69-	CHERA 2011	2	1024	1057	1029	1010	11024			
	. 70-	+ 3511029	11030	1025	1024	1636	1631	11025	11024	•	36
	11-	(HEXA 2012 4 3011030	11031	1013				11026	11025	- •	37
	. 13.	CHEXA . 5013	2	1056	1025	1031	1035	11070		·	
	74-	• 3111031	11035	1651	1036	1032	1633	11027	11050	•	38
	75-	CHEXA 3014	2 11033	1011				11628	11027	٠	39
	76 - 77-	CHERA 2015	2	1050	1033	1033	1034	finte	11021		
	10-	4 3911033	11034	1030	1658	1035	1036	11030	11029	٠	40
	. 39-	CHE XA 2016	11036	1030				11041	11030		41
	#1-	CHEXA 2017	\$	1031	1030	1036	1023	11031	11030	·	
	82-	433,030	11031	1034	1031	1037	1038	11015	11031	•	42
	63-	CHE::- 2018	11038	1035					11032	•	43
	84- 85-	CHEXA 2019	2	1033	1035	1038	1039	11013	11036	•	
	86-	4311036	11035	1034	1033	1039	1040	11034	11033	•	44
	67-	• 4431035 (HFXW 5050	11040						11035		45
	88- 89-	CHERA 2031	3	4016	1015	1041	1645	11036	11035	·	
	90-	4511041	11043	1037	1036	1042	1043	11037	11036	٠	46 -
•	91-	\$\$02 AK 3H3	11043					1101	11017	•	47
	93. 93.	CHEXA 5051	5	1016	1011	1043	1044	11016			
	94-	4711043		1039	1038	1044	1045	11039	11031	•	48
	45-	CHEXA 2024 • 4011044	11045	•		-		11040	11639		49
	96-	CHE NA 2025	3	1640	1 C 3 4	1045	1046	11040			
	96-	. 4911045		1045	1041	1047	1044	11042	11041	•	50
	99-	4505 AKJH)	2 11048		•- **	• • • •					
	100-	7 2033077	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								

WHICH STREET

12 1

a result of the second of the

			5	0 K 1 L	L B L	L × D	4 1 A	E C H U			
• • • • • • • • • • • • • • • • • • • •	CAKD		•	, .		• • •	- , -				
	CLUNI	. 1 ., 2	3	4	5	6	7	8	4		10 .
	101-	CHEXA 2027	e e	1043	1042	1040	1045	11043	11042	•	51
	105-	• 5111048	11049								
	103-	CHEXA 505P	2	1044	1043	1044	1050	11044	11043	•	25
	104-	5211049	11020								
	105-	CHEXA 2029	3	1045	1044	1 020	1051	11045	11044	•	53
	106- 107-	+ 5311050 CHEXA 2030	ไปเรา	1044	1045	1051	1052	11044	11045		6.6
	108-	5411051	11025	1646	1043	1031	1032	11046	11045	•	54
•	109-	CHEXA 3001	3	1048	1047	1053	1054	11046	11047	٠	55
	110-	5511053	1:654				,,,,			•	•
• • • • •	111-	CHE XA 3002	3	1049	1648	1054	1055	11049	11048	• • •	~ 56
	112-	• 5611054	11055		• • • • •	*	• • • •	•••	• • • • •		
	113-	CHE NA 3003	3	1050	1945	1055	1056	11050	11049	•	57
	114-	• 5711055	11056								
	115-	CHERA 3004	3	1051	1030	1056	1057	11051	11050	•	58
	116-	• 5011056	11057								
	. 113-	CHEXA 3005	3	1052	1051	1057	1058	11052	11051	. •	59
	114-	5911057	1105#	104	1063	1.640	1040		11043		4.0
	114- 120-	CHEXA 3006 + 6011059	3 11060	1054	1053	1059	1000	11054	11053	٠	60
	12	CHEXA 3007	3	1055	1654	106C	1061	11055	11054	٠	£1
	152-	0301110	11061	.033				11000	11034	•	• • •
-	123-	CHEXA 3008	3	1056	1055	1061	1065.	11056	11055	٠	68
	124-	• 6211061	11063	****		••••		*****	••••		• •
	125-	CHEXA 3009	3	1057	1096	1 C 6 2	1063	11057	11056	٠	ė s
	124-	• 6311062	11063								
	15:-	CHE XA 3010	3	7028	1057	1063	1064	11050	11057	•	64
	136-	• 6411063	11064								
	153-	CHEXA 3011.	' 3	1060	1055	1065	1606	11060	11059	•	65
	130-	+ 6511065	.1166	10.1		1044	10.3	110-1	11040		
	131• 132•	(HEXA 3012 + 6611066	3 11027	1001	1696	1066	1001	11001	11060	٠	66
	133-	+ 6611066 CHEXA 3013	2 1041	1063	1041	10e7	1066	11062	11061	٠	67
	134-	6711067	1:06#				1000	*****	11001	•	• • •
	135-	CHERA 3014	3	10£3	1065	1668	1065	11063	11062	٠	69
	136-	. 6811068	11065		****	••••		*****	*****		
	137-	LHERA 3015	3	1064	1063	1069	10.0	11004	11063	•	64
	138-	+ 6911069	11070								
	137-	COF33C 100		. 6 300	.5100	.0	.6760	.5100	1.0	•	24
	146-	\$41.67CC	.5100	٠٥	_			_	_		.
	141-	CORDER 50		.0	.76	0.0	٠.	.76	•1	+Ç1	CKDSB
	142-	• '0802R .0	• •	0.0	100	1000	1100		11006		
	143- 144-	COOF AINSES FUNCE 1	1065	1 u 0 4 0	1000	1004	11004	11008	11005		
	145-	FURCE 1	1065	ŏ	-5.0	.0	1.0	.0			
	140-	FORCE 1	1065	č	-5.0	Ċ	i.c	• :0			
	163-	FORCE 1	1068	ŏ	-5.0	٥	1.0	. 0			
	148.	FURCE 1	1069	ŏ	-5.0	.0	i.c				
	144-	FORCE 1	1070	Č	-2.50	.0	1.0	. 0			
	150-	taker 5	11065	0	.5.50	, c	1.0	.0			

12 B

			\$ 1	U # 1 E		. K U	ATA	ECHU			
CARC											
CHUNT	. 1		3	4	5	6	7	8	••	9	10 .
151-	FLKCE	2	11066	٥	-5.0	. C	1.0	.0			
152-	FURCE	2	11067	C	-5.0	.0	1.0	.0			
153-	FURCE	2	11068	C	-5.C	.0	1.0	.0			
154-	FORCE	5	11069	0	-5.C	.0	1.0	• C			
155-	FORCE	5	11070	C	-2.5	.0	1.0	.0			
156-	CKUSI T							456			
151-	CRID	1		.4000	.6350	.5000					
158-	GRID	2		.4000	.6350	.4000					
159-	CHID	3		.4000	.6350	.3000					}
160-	GRID	4		.4600	0	.2500					•
161-	GRID	5		.2667	0 0 6 6 6	.5000					-
163-	CKIC	6		.2667	. 6 150	. 4C00					
163-	GRID	7		.2667	. 6350	.3000					
164-	GRID	ė		. 2667	. 6350	.2115				•	
165-	GRID	9		.1334	.635G	.5000					
100-	GRID	10		.1334	.6350	.4000					
167-	CRID	ii	٠	1334	.6350	.3000		-			
164-	UHID	iż		.1334	.6350	.2000					
169-	GRID	13		.1334	04150	.1000					
170-	CRID	14		.1709	. 6 350	.1000					
171-	CHID	15		.1334	.6350	.0					
172-	GRID	16		1100	.0250	.0					
173-	CRID	17		,0	,63±C	.5000	** *			•	
174-	CRID	iė		.6	0466.	,4C00					
175-	GRID	19		. ŏ	.6350	,3000					
176-	GRID	ŠÓ		.0	.6350	.2000					
111-	GRID	žĭ		. 6	.6350	.1000					
178-	CHID	55		, 0	.6350	.0					
179-	CRID	1001		.4400	.6350	.5000					
100-	GHIU	1002		.4900	.6350	.4000					
lal-	CHID	1003		4500	. 6 350	. 1000					
102-	GRID	1004		4960	.6350	.2332					
โยวัจ	GRIU	1005		5600	.6350	.5000					
184-	CKID	1006		.5660	.6350	4000					
185-	CRIU	1007		.5800	.6350	.3000					
166-	GRID	1000		.5840	. + 350	.2000				•	
107-	GHID	1009		.6271	.6350	.1000					
188-	CHIO	1010			. 6350	.:000					
105-	CHIU	ioii		6100		.4CC0					
190-	UKID	1017		.6700	.6350	. 3000					
191-	CRID	10. 3		.6700	.6350	.5000					
192.	CHID	10.4		.6700	. e 15 C	.1009					
1934	GHIU	1015		.6700	. 6 150	.0					
194-	CRID	1016		. 6500	.6.50	.0					
175-	GRID	1017	100	.1250	75.C000						
176-	GRID	1018	100	1250	15.0000						
191-	CHID	1019	100	,1250	79.0000						
198-	GKID	1050	160	.1250	75.0000						
169-	GRID	1021	100	.1250	75.0000						
260-	GKIU	1055	100	.125C	15.0010						

			5	URILL	8 L L (L D .	1 1	A	٤	Ç t	1 0						
LAKD								7			8		4		10		
CUUNI	. 1		3		5		• •	•	•	•	٠	•••	-	• •	•		
201-	CHID	1057	100	.1250	60.0000												
202-	GRID	1024	100	.1250	60.0000												
203-	GHID	1052	ICC	.1250	60.0000												
204-	CKID	1050	100	.1250	60.0000											•	
∠05•	CHID	1027	100	,1250	60.0000												
206-	CRID	1050	100	.125C .1250	45.0000												
261-	CRID	1029	100	.1250	45.0000												
508-	CRID	1030	100	.1250	45.0000												
∠09 -	GKID	1031	100	1250	45.0000	.2000											
510-	CHID	1033	100	,1250	45.0000		-				•	_					
511-	CRID	1033	100	.1250	45.000C	.0											
212-	CHID	1035	100	.1250	30,0000	,5000											
513-	GRID	1036	ico	.1250	30.0000	,4000											
214-	CKID	1637	100	1250	30,000												
215*	GRIU	1036	100	.1250	30.0000	.2000										•	
216-	CRID	1039	100	,1250	30,0000	,1000											
217 - 218-	CKIU	1040	100	.1250	30.000												
219-	CRIU	1041	100	.1250	15.0000	.5000											
550-	CRIO	1042	100	.125C	15,0000	.4000											
221-	GHID	1043	100	.1250	19.0000												
222-	GKID	1044	100	.1250	15.0000	.2000		-	-				•				
223-	GRID	1045	100	.1250	15.0000	.1000											
724-	GRID	1046	100	.1250	15.0000	.5000											
625-	CKID	1047	100	.1250	, ç , 0	.4000											
226-	CRID	1048	100	.1250	ċċ	.3000											
221-	GRIU	1049	100	.1250 .1256	;ŏ	.5000										_	
55A~	CRID	1050	100	.1250	ič	.1000					•		-	••			
229-	CRID	1051	100	,1250	. 6	. (
230-	CRID	1052	tua	7450	.3400	,5000											
231-	CRID	1053 1054		7950	.3400	.4000											
535-	CHIO	1055		. 1950	.3400	.3000											
233-	CHID	1056		1750	.3400	.2000											
234-	CRID	1057		, 1950	.3400	.1000											
235+	CRIU	1056		.7550	.3400	.0											
236- 237-	CHIU	1054		. 7450	. 1700	.5000											
238-	CHIU	1060		, 1950	.1100	.4000											
274-	CHIU	1001		. 3450	.1100	.3000											
240-	CHID	1062		.7950	.1700	.2000					-						
241-	CRID	1063		,1550	.1700	.1000											
242-	CKID	1064		.7450	.1100	.5000	١										
243-	GKID	1065		.7950	. c 3.	.4000											
244-	GRID	000		.7950 .7950	 3.	.3000											
245-	CKÍD	1067		.7950	.0	,2000									_		
240-	CR I D	1068		7950	.0	.1000			•	•			•	,	•		
241-	CRID	1069		7950	.ŏ	.0											
240-	CKID	1070		.4000	.7460	.5000)										
249-	CKID	10005		.4000	.7600	.400											
250-	CKID	10001		• • •													

			3	0 4 1 6	t BOF	. K D	AIA	t (. H U				
CARC													
COUNT	. 1	2	3	4	>	6	• •	7 .	. 8	 9		10	
251-	GKIU	10003		.4000	. 1600	.3000						•	•
252-	CHID	10004		.4000	. 1600	.2500							
253-	CHID	10005		.2667	.1400	.5000							
254-	GRIU	10006		.2667	1600	4000							
255-	GRID	10007		.2667	.7600	.3000							
256-	CRID	10006		.2667	. 1600	.2115							
257-	CR LD	10009		.1334	. 76 CC	.5000							
256-	GRID	10010		.1334	. 7600	.4000							
259•	CHID	10011		.1334	. 1600	.3000							
260 -	GRID	10015		. 1334	.7600	.2000							
261-	GR 10	10013		.1334	.7600	.1000						-	
262-	CRID	10014		.1709	.7600	.1000							
263-	.K 1 D	10015	•	.1334	.7600	.0							
264-	910	10016		.1500	.7600	. 0							
265-	LRID	10017		.0	.7600	5000							
366-	61 10	10018		.0	.7600	.4000							
267-	GRID	10019		ŏ	.7600	.3000			•				
268-	GRIL	10050		č	.7600	.2000							
269-	GHIU	10021		:0	.7600	.1000							
270-	GRID	10025		ŏ	.7600	.0							
271-	CRID	11001											
				.4900	.7660	.5000							
212-	GRID	11005		4900	.1600	.4000							
213-	GRID	11003		.4900	.7600	3000							
234-	CHIL	11004		.4900	. 1600	2335							
215	GR 10	11005		.5800	. 1600	.5000							
510-	CHIO	11006		.5800	.1:00	.4000							
2111-	GRID	11001		.5000	11600	.3000							
270-	GRID	11008		.5600	.7400	.2000							
279-	GRIC	11009	•	.6291	.7600	.1000							
5 P C -	GRID	11010		.6700	. 3600	.5000							
261-	GRID	11011		.6100	. 1600	.4000							
285-	CRID .	11015		.6700	.7460	.3000							
263-	CKID	11013		. 6 700	. 1600	.2000							
284-	CRID	11014		.6700	.7600	.1000							
285-	CRID	11015		.6700	.7600	.0							
ibt-	CRID	11016		.6500	.7600	.0							
661-	CHID	11017	100	.2500	75.0000						١		
284-	CHID	11016	100	.2500	79.0000	4000							
284-	CHID	11019	100	.2500	75.0000								
290-	GRID	11050	100	.2:00	15.0000								
291-	CRID	11021	100	.2500	75.0000								
242-	CKIU	11055	ico	.2500	15.0000								
293-	GHID	11023	100	.2500	66.600								
694-	GRID	11024	100	.2500	60.0000								
245-	GRID	11025	100	.2500	*C 2020								
296-	CKID	11036	100	.2500	60.0000								
297-	GRID	11027	100	.2500	60.0000								
298-	GKID	11058	100	.2500	60.0000								
299•	CRID	11029	100	.2500	45.0000								
300-													
300-	CKID	11030	100	. 2500	49.0000	.4600							

			S Q	KILD	出し L	K U A	1 A E	Сн	Ü			
CARD												
CLUNI	. 1	2	3	4	5	6	7	• •	8 .	. 4	10	•
101-	GRID	11031	100	.2500	45.0000	.3000						
302-	CR 10	11032	100	.2500	45.000	.2000						
303-	GRID	11033	100	.2500	45.0000	.1000						
304-	GRID	11034	100	. 2500	45.0000	.0						
** 305+	GRID	11035	100	.2500	30.0000							
306-	GRID	11036	100	. 2500	30.0000	.4000						
307-	GRID	11037	100	.2500	3C.C000							
308-	GRID	11038	100	.2500	30.0000	.2000						
309-	GRID	11039	100	.2500	3C.C000	.1000						
310-	GRID	11040	100	.2500	30.0000	.0						
311-	CRID	11041	100	.2500	15.0000	.5000						
312-	GRID	11042	100	. 2500	15.0000							
313-	GRID	11043	100	.2500	15.0000	.3000						
314-	GRID	11044	100	.2500	15.0000							
315-	GRID	11045	100	,2500	15.000							
316-	GRID	11046	100	.2500	15.0000							
317-	GRID	11047	100	.2500	.0	.5000						
318-	GRIU	11048	100	.2500	, ö	.4000						
319-	GRID	11049	100	.2500	.0	.3000						
320-	GRID	11050	100	.2500	.c	.2000						
321-	GRID	11051	100	.2500	, ċ	.1000						
322-	GRIU	11052	100	.2500	.0	.0						
323	GRID	11053		.9200	:3400	.5000		••				•
324~	CRIC	11054		.9200	.3400	.4000						
325-	GHID	11055		. 4200	.34CO	.3000						
326 -	GRID	11056		.9200	.3400	.2000						
327-	GRID	11057		. 4200	.3400	.1000						
168-	GRID	11658		,9200	.3400	.0						
329-	CKID	11059	• •	.9200	.1700	.5000	-					
- 08t	CR I D	11060		.9200	.1700	.4000						
331-	GRID	11061		.9200	.1700	.3000						
332-	GRID	11065		.9200	.1300	.3000						
333-	CHID	11063		.9200	.1700	.1000						
334-	CKID	11064		.9200	.1700	. C						
335-	CHID	11065		.9200	.0	.5000						
336-	CRID	11066		.9200	٠٥.	.4000						
337-	CRID	11067		.5200	.0	.3000						
338-	GRID	11068		.9200	٠,٢	.3000						
139-	CHID	11069		.9200	٠0	.1000						
340-	CHID	11070		.9200	, C	٠٥						
341-	HAT9	100	1,792+6	4,682.5	4,558+5	.0	.0	•0		1,414+7		
342- 343-		2.794+6	•0	٠٥		4,104 16	.0	•0	•	, С	ELASSC	4
344-	PSUL ID	6.35015	. C	.0	2.472.6	•0	6.160+5					
345-	PSOL 10	1	100	50 100								
345-	PSUL 10	3	100 100	0								
347-	SEULP	i	43	3	46	3	30	4	٠,	18		
348-	3E UUP	5	42	ί	41	7	26	3		4		
349-	SEUGP	9	37	10	36	iı	55	12		17		
-066	SEGGP	ís	ĩi –	14	5	19	ï	iė)		
			• •	••	•	• •	•	••	•	•		

			۵.	UKIEL	ьt	LK UA	TALE	CHU				
LARC							. 7	. 8	., y .	. 1	0 .	
CUUNT	. 1	2	3		5		19 '	\$0	15			
351-	SEULP	'i7	31	18	3.8	19	47	1002	44			
352-	SE ULP	21	12	5.5	g.	1005	55	1006	57			
353-	SEUCH	1003	51	1004	55	1005	63	1010	61			
354-	SEQCH	1007	59	1008	61	1013	13	1014	75			
155-	SEUGP	1011	Į. 9	1013	11	1017	47	1018	88			
156-	SEUGP	1015	76	1016	64 83	1021	ëi	1055	75			
151-	SE UGP	1019	65	1020	94	1025	55	1026	97			
358-	SEQCP	1023	91	1024	ioc	1029	103	1030	105			
334-	SEUGP	1027	99	1035 1058	169	1033	115	1034	111			
-00t	SEUGP	1031	107	1036	126	1037	122 ***	1038	119	-		
361- "	SEQGP	1035	123	1040	iii	1041	127	1042	129			
165-	SEULP	1039	117	1044	133	1045	135	1046	136			
-6 6t	SEUGP	1043	131 146	1048	141	1049	145	1050	143			
364-	SEGGP	1047	141	1052	135	1051	161	1054	164			
165-	SEOGP	1051	159	1056	150	1057	155	1058	155			
36 6-	SEUGP	1055	165	1060	169	1061	174	1065	18C			
367-	SEUCP	1059	176	1064	isi	1065	103	1066	170			
368-	SEUCP	1063 1067	175	1068	119	1069	184	1070	1			
169-	SLUCK	10001	44	10005	45	10003	29	10004	27			
370-	SEACH	10005	39	10006	40	10007	25	1000#	23			
371-	3E 4GP 3E 4GP	10009	35	10010	36	10011	51	10015	18			•
315-	ZEOCH	10013	13	10014	6	10015	\$	10016	4			
373+	SEGUP	10017	33	10018	34	10019	50	10050	16			
374-	SEUGP	10021	14	10055	10	11001	48	11002	50			
375-	SE QG.	11003	52	11004	54	11005	56	11006	5 B 6 B			
376-	SEGGP	11007	60	11008	65	11009	85	11010	77			
311- 318-	SEQUE	11011	70	11015	15	11013	14	11014	96			
379-	SEGGP	11015	78	11016	66	11011	85	11018	BC.			
300-	SEGUP	11019	86	11040	84	11651	u á	11050	90			
101-	SEQUE	11053	45	11054	5.3	11035	46	11030	104			
382-	SEUGH	11027	101	11058	105	11056	104 113	11034	114			
٠٤٥٤	SEULP	11031	108	11033	110	11033	121	11038	120			
384-	SEULP	11035	124	11036	125	11013	128	11042	130			
365-	SEQUP	11039	_ 118	11040	116	11041	137	11046	130			
186-	75466	11043	132	1 044	134	11045	iśė	11050	144			
-586	SEUCH	11047	149	11040	150	11053	162	11054	163			
384-	se qup	11051	142	11025	140 151	11057	156	11058	153			
389-	SEUGP	11055	160	11056	iii	iiosi	173	11062	161			
140-	SEUCP	11059	166	1106C 11064	154	11065	168	11066	172 -			
291-	SECCP	11063	. 133	11064	102	11069	143	11030	2			
775-	ZEOCP	11067	176	10017	IHKL	10055	•					
193-	SPCI	9	3	15	55							
394-	SPC 1	9	3	1015	1022	1058	1634	1040	1046			
345-	SPCI	9	3	1052	1056	1064	1036					
196-	SPCI	9	3	10015	1002	2	•					
397-	SPC 1	3	3	11015	110	2 11624	11034	11040	11046			
398-	59C1	4	š	11052	1105		11010					
344-	SPCI	3	123	4	e	14	16					
400-	16.7	•	,	•								

terrutif pracket mode the treate of mate most full street by a 12%, 1 4,100

SEFTEMBER 1. 1970 NASTRAN 3/11/78

SGIAL COUNTS 403

*** USEN INFONPATION MESSAGE 1035 FOR DATA BLOCK - KEL "

*e.2282216E-13

```
NASTRAN SULRLE PROGRAP CUMPILATIUN
UMAF-DHAP INSTRUCTION
  VD.
               BELIN
                                           NO. 24 LINEAR STATIC ANALYSIS 7 JUN 1976 :
     1 2
                                          NG. 24 LINEAR STATE AND TO SAVE 5
//DIAGON//47 8
GG-APPEND/PGG-APPEND/UGV-APPEND 8
//V-N-CAROND/O 8
               PARAM
               FILE
     4 FILE
5 SETVAL
               SETVAL
                                           //Y.N.PUDS/1/Y.N.NUMUD/-1 4
               SETVAL
                                            //v.n.nukgcx/1 $
                                           //v.n.nomcgx/1 $
GECM1,GEUM2,/GPL,EGEXIN,GPD1,CSTM,BGPD1,S1L/S,K.LUSET/G/S,N.
               SETVAL
               GPI
                                           HOGPOT &
                                           REERRINCGPCT &
    10
               COND
                                          GEOM2.ECEXIN/ECT & PCOB//PRES///Vin.JUMPPLUT &
               GP2
PAKAHL
    11
    12
    13
               CUND
                                            P1.JLPPPLO1 &
               PARAM
                                            //DIAGUIF//47 8
                                          GEUM: LLT, LPT, SIL, EGEXIN, BGPOT/PECT, PSIL, PEGIN, PBGPOT/S, N, NHBDY/C, Y, MESH*NO $
EGEXIN, PEGIN/NHBDY/ECT, PECT/NHBDY/BGPOT, PBGPOT/NHBDY/ SIL, PSIL/
    15
               PLINBUY
   16 EGULY
                                          PCDB.PECIN.PECI/PLISEIX.PLIPAR.GPSEIS.ELSEIS/S.N.NSIL/ S.A.
   17 PLISET
                                           JUMPPLOT & -- PLIPAR, GPSETS, ELSETS &
               LHKPNT
                                           PLISETX// 1
//v.h.pLIFLG/1 / v.h.pF1LE/0 1
               PRIFSG
    20
               SETVAL
                                          P1.JUMPPLC1 &
PL1PAR, LPSE1S, ELSETS, CASECC, PBGPD1, PEQIN, PSIL, LECT, ./PLOT#1/
HSIL/LUSET/S, N, JUMPPLQ1/S, N, PLTFLG/S, N, PFILE &
   21
               LUND
           PLUT
    23
               PRINSG
                                           PLOTXI//S
                                          PI $
//UIAGUN//47 $
GEUM3,EGENZ/SET,ETT/O/V.N.NUGRAV/O $
   24
               LAGEL
               PARAM
    36
               6+3
               CUND
                                           LHODS HODS &
                                            IELTIEPT. BGPUT. SILIETT. CSTM/EST. . GET. GPECT. / Y. A. LUSET/O/ S.M.
               TAL.
                                          NUSIMP/1/S.N.NOGENL/S.N.GENEL & LSKPEHG.NCSIMP &
              CUND
                                            //UIAGUFF//47 $
               PARAM
                                          EST.CSTP.MPT.DIT.GEBM2.../KELM.KUICT.MELM.MUICT../S.N.MOKGGR/
S.N.MCGK/O///C.Y.COUPMASS &
RELM.KDICT &
MELM.MUICT &
    31 EMG
   32
               CHEPAT
               LHKPNT
    ٤٤
            PARAH
                                            //DIAGON//47 $
    15
               PURCE
                                           KUGA/NUKGGX $
               CUNU
                                          LEMAK, NLKGGX $
UPECT, KDICT, KELM, BGPDT, SIL, LSTM/KGGX, &
    36
    37
              EMA
               LADEL
                                           LEMAK &
               PURGE
                                           MGGX/NOPGGA $
  40
            COND
                                           LHODS.NOMGGA &
                                           GPECT.HUICT.HELM.BGPUT.SIL.CSIM/MGGX./-1/C.Y.WIMASS-1. $
  41
              EMA
            LABEL
                                           LHODS &
                    COMMETT BRACKET POULL CTO (PHASE 2) HALLS FOLLOWING
                                                                                                                                                                                         Stiltmith /, 1970 hashan 3/11/14
                                                                                                                                         S DISFERENT ALT
                                                                                                                                                     ...
                                                                                                                                                                              - 6 -
                                           -1-
                                                                     -2-
                                                                                               - 3-
                                                                                                                          ...
                                                                                                                                                                                                         • } •
                                                                                                                                                                                                                                    ...
                                                                                                                                                                                                                                                              -4-
                                                                                                                                                                                                                                                                                      -10-
                                 1044-4

1042-5

1104-5

1105-4

1105-6

1105-6

1005-6

1006-6

11061-6

11062-5

11062-5
                                                            1044-5
1004-6
11004-6
11005-5
1105-5
1005-5
1005-6
1001-6
11023-5
1002-6
                                                                                      104-6
110-3
110-6-3
110-6-3
110-6-6
10-5-6
110-6-6
110-6-6
110-8-6
110-8-6
                                                                                                                110-1-5
110-1-5
110-1-6
110-1-6
110-1-6
110-1-6
110-1-6
110-1-6
110-1-6
110-1-6
110-1-6
                                                                                                                                           11645-3
11041-6
1054-5
1051-4
1053-6
1165-3
11661-3
11061-4
1061-4
1061-4
                                                                                                                                                                     11049-6
11048-4
1056-6
1057-5
1056-6
11059-6
11065-6
11066-6
1067-3
1063-6
                                                                                                                                                                                               1046-4
11040-3
110-0-3
1057-6
1055-4
11053-5
1066-4
1106-4
1068-4
11068-5
                                                                                                                                                                                                                          1040-1
11040-6
11050-4
1105-5
1105-6
1105-6
1106-6
1106-6
1106-6
1106-6
                                                                                                                                                                                                                                                    164-6
106-3
1105-5
1105-5
105-6
1105-5
1060-6
1101-4
1106-5
1060-6
                                                                                                                                                                                                                                                                              1047-4 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 1160-6 • 116
```

EPSILONS LANCER THAN.OOT ARE FLACUED WITH ASSENTING

51#### ENEHGT 4.4432953E-03 6.4542449E-0#

SUBCCH 3

			0 1 S P L	ACENEAI	V E C 1 0	h	•
1 INLUS	U. 17F	£ 11	12	13	K)	R2	R3
701117	1 6		-1.922596E-05	1.375301E-C5	0.0	c.o	C.0
	i č		-2.212649E-05	3.4465488-07	0.0	0.0	0,0
	. G		-0.1062916-06	-7.495612L-06	0.0	0.0	C.0
	Š		0.0	0.0	č. o	0.0	0.0
-	ŠĞ		2.213701E-05	9.6151176-06	0.0	. 0.0	0.0
	6 G		1.1624736-05	8.852112E-07	0.0	0.0	0.0
	7 G		6.7293946-06	-4.12074CE-06	0.0	0.0	C.O
	à G		0.0	0.0	C.C	0.0	0.0
	9 6	-1.5268346-05	2.0163356-05	3.0642466-06	0.0	0.0	0.0
1	Q G	-1.1176988-05	1.2203416-05	-4.0390576-07	C.O	0.0	0.0
1			6.296521E-06	-2.158332L-06	0.0	0.0	0.0
1			2.408457E-06	-1.742417E-06	Ç.O	0.0	0.0
1			1.371654E-08	1.218012E-C8	0.0	0.C	0.0
1			0.0	0.0	0.0	0.0	0.0
1			-1.136C30E-07	0.0	0.0	0.0	C.O
1			0.0	0.0	0.0	0.0	0.0
· · · · 1			1.477626E-05	-2.242826E-66	0.0	C.C .	0.0
1			8.5168056-06	-4.11637Ct-06	ç.o	0.0	0.0
1			4.8082276-06	-4.637925E-06	0.0	0.0	C.0
. 3			2.017201E-06	-3.531405E-06	0.C	0.0	0.0
2			3.533740E-07	-1.8341256-06	0.0	0.0	Ç.Ç
			-4.025042E-07	0.0	0.0	0.0	0.0
. 100			-8.529247E-05	1.617774E-C5	. 0.0	0.0	· C.0
100			-8.0921868-05	-2.3711536-07	ç.o	0.0	0.0
100			-4.C38590F-05	-6.9218596-06	0.0	0.0	C.0
100			0.0	0.0	Ç.0	0.0	0.0
100			-1.974152t-04	1.7379241-05	0.0	0.0	0.0
100			-1.8732906-04	7.909036-07	0.0	0.0	0.0
100			-1.365205E-04	-5.489569E-C6 -5.643479E-06	0.0	. 0.0	Ç.0
100			-5.talél1£-65	0.0	0.0	0.0	0.C 0.O
100			-3.53915££-C4		C. 0	0.0 0.0	0.0
ioi			-3.3856788-04	1.605513E-05 3.281252E-06	0.0	0.0	0.0
ioi			-2.893244E-04	-2.4453158-06	0.0	0.0	0.0
			-2:110353E-04	-2.321525E-C6	0.0	. 0.0	0.0
181	4 6		-1.083612E-04	1.521442E-06	0.0	0.0	0.0
101			-4.139509g-05	0.0	0.0	0.0	č. ö
			0.0	0.0	c.0	0.0	0.0
1 381	ìš		-4.2276646-04	1:3438621-05	0.0	0.0	0.0
ioi			-4.C46147E-04	2,4356226-06	č.6	0.0	0.0
101			-3.617792E-04	-1.515945E ·06	0.0	0.0	0.0
102			-3.013732E-04	5.35676CE-07	0.0	0.0	0.0
1 102			-2.364539E-04	1.9535984-06	0.0	0.0	C. 0
102	2 G	-7.886355E-05	-2.083195E-04	0.0	C.C	0.0	0.0
iŏz	š G	-1.802627E-04	-5.033557E-04	8.4672108-06	0.0	0.0	Č.0
102	4 6	-1.801268E-04	-4.8783776-04	8.6158361-07	0.0	0.0	0.0
105	5 G	-1.856797E-04	-4.576812E-04	-2.074052E-C6	0.0	0.0	C.C
105			-4.2144078-04	-5.9767766-07	0.0	0.0	0.0
102			-3.887110g-04	7.217008E-07	0.0	0.0	0.0
102	8 . G	-1.7051805-04	-3.750655E-04	0.0	0.0	0.0	0.0
,		•••••••		•			

Pulmi lu. 17Pt			FUKCE	5 6F 51N	666-961	NI C	NSTRALNI	
Pull 10						e t	K4	
4 G 5.1/250/E100 -4.1250/IE-01 7.308902E-01 0.0 0.0 0.0 0.0 1.4	PUINT 10.	ITPE					0.0	
### ### ### #### #####################			5.7426076+00				c.a	
14	8		2.1C0468E+00					
16	14				4.224254E+02			
16			0.0	4 4373735-03	4.160161E-02			
1004 G 2.5267446.01 4.8443956.00 0.0 0.0 0.0 0.0 0.0 1005 G 3.644696E-01 1.451339E-01 9.21197E-00 0.0 0.0 0.0 0.0 0.0 1013 G 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0					1.5671576-01			
1005 C 3.644696E-01 1.451339E-01 9.271973E-00 0.					A.53C153E+00			
1015 G						0.0		
1016 G						0.0		
10122				7.3604156400	1.6705146+00	C.G		
1028 G					1.1983046+00	. 0.0		
1034 G					5.1653101-Cl	0.0		
1040 G 0.0 0.0 1.11753E-C1 0.0 0.0 0.0 1.01753E-C1 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.					2.3C8506E-01			
1040					1.177553E-Cl			
1052 G 0.0 0.0 3.448168E-01 0.0 0.0 0.0 0.0 1058		Ÿ			8.6090ACF-05			
1058		ž			2.4481686-01			
1064 G 0.0 0.0 1.1423315-CC 0.0 0.0 0.0 0.0 1.00000 G -3.2375935+00 4.9199935-01 -2.438415+0C 0.0 0.0 0.0 0.0 0.0 1.00000 G -3.2375935+00 4.9199935-01 -2.488415+0C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0					5.762325E-01			
1070 G		č			1.1423436+66			
10004		č						
1000H								
10014				-3.9477726-01				
10015			-1.471238t-01	-8.755267E-02	3.6496898-01			
10016			0.0	- 0.0				
10017			-1.162912E-01					
10018 G			0.0					
10019 C								0.0
10020 G 0.0				-5.7H32Y3E-01				
1002 G		Ğ						
10022 G		Ğ	0.0		0.0	2.7		0.0
11004 G -2.128593E+01 5.6281UE+00 -1.2900NfE+C1 0.0 0.0 C.0 11009 G -3.978900E+01 1.38660E+01 -1.2900NfE+C1 0.0 0.0 0.0 0.0 11019 G 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0								
11009 G -3.978900E+01 1.38688EFF01 1.38688EFF01 0.0			-2.128593E+01	5.C63610E+00				
1019 G					2 24 22506 400		0.0	
1016			0.0	0.0	-3 1313346400			
11022								
11034 G 0.0 0.0 -9.046102E-01 C.0 0.0 0.0 11034 G 0.0 0.0 -9.147555E-02 0.C 0.0 0.0 11040 G 0.0 0.0 4.75334E-01 0.0 0.0 0.0 11046 G 0.0 C.0 1.396664E-00 0.0 0.0 0.0 11052 G 0.0 C.0 2.027456E-00 0.0 0.0 0.0	11055						0.0	
11034 G 0.0 0.0 -5.1475555-02 0.C 0.0 0.0 11040 G 0.0 0.0 4.7535345-01 0.0 0.0 0.0 11046 G 0.0 0.0 1.3966645-02 0.0 0.0 0.0 11052 G 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	11028					c.a	0.0	
11040	11034						0.0	
11046 G 0.0 C.O 1.396664E-CO 0.0 C.O 0.0 D.O 0.0	11040	G					0.0	
11052 6 0.0 - 0.0 2.0274566.00 0.0 0.0		Ģ						
		Ģ			2.027456E+00		0.0	
11038 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	- 11058	G	0.0			č.o	0.0	ç.ç
11064 6 0.0 0.0 1.461586400 0.0 0.0		-					0.0	0.0
11070 6 0.0 0.0 1.3613436400 0.0	11070	G	u. c	V.V	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

The state of

SUBCUP 3

									10000	•
	s	1 ×		٨					H L A A 3	
ELEPENI-ID	CURNEN GR IU-IU		HDKMALCENTE	k an	L CORNER PLINT SHEAR	\$1×1	PRINCIPAL	LIN. LOSINES -ABC-	MEAN PRESIURE	OCTANEURAL SHEAR
1	304	P41	12 8 CF							
	CENTER	7	+3.724564E+00 10+344661.0+ 00+3615180.3	12	1.1486721.01		-1.6771521+02	13 C.81 0.57-0.15 17-0.57 0.82 0.08 17-0.17-0.02-0.95	3.1492206+01	1.1564981 +02
	•	¥	-5.267e1ce+01 -2.311857e+03 -1.4147421+02	12			-2.3267216+03	LB 1.40 0.06-D.04 LT-C.06 1.00-0.05 LZ-C.03-0.06-1.00	8.3533126+03	1.0>>2671-03
	•	7	-5.3462718+01 -7.3956666+03 -1.3937506+63	11	-1.2362138+02 1.2338426+02 4.3073286+00		-2.309494[+03	13 1.00 0.05-0.03 14-0.06 1.00-0.06 12-0.33-0.06-1.00	6.3063456+02	1.0461041403
	1		-1.5023381+01 -2.1048311+03 5.0025441+01	11	1.2136426.02	¥	-2.1105636+63	12-0.36 C.06-0.43 17 0.07 1.66 0.03 13 C.93-0.05-0.36	7.0994266+02	1.0391016+03
	\$		*c.036137E+01 *C.3666E+03 *C.3666E+03	11	1.2334421402		-2.1905156+63	13-0.36 0.06-0.93 17 0.07 1.00 0.04 13 0.93-0.05-0.37	1.1456626+03	1.0463401+63
	10066	1 1 2	1.2430266.01	11	-1.3377391+G2 -3.5424814G4 4.3073484GG	Å	\$. 4245C3E+C1	LB-C.06 1.00 0.07 LT 1.00 0.06-0.05 LZ-0.05 0.02-1.00	-1.6141661-02	4.1351411.07
	10005	1 1	10+4+0110¢.5 13+1+10¢¢0.5 50+1¢048*5.1	11		ŧ	1.7406336 +01	13-0.01 1.00 0.02 17 1.00 0.06-0.05 12-6.05 0.02-1.00	•7.349592E+0?	9.4336301+02
	10001	٧	10+3656700.0		-1.00+23#1+63		-3.0202044.01	L3-0.06 0.43-0.90 E7 1.00 0.67-6.04 E2-6.00 0.00 0.43	**.>**.>*********	\$,3646451408
	10003	7	10+1046160.5 C0+1086160.5 00+161860.6	11	-1.004//#107		-2.671458E+C1	ta-6.07 0.52-0.05 ty 1.00 0.00-0.03 tz-0.08 0.05	*6.8435681-02	1.6251131.467
2	50.	r 4 1	C: 0 GP							
	LINILK		-v.3yCte41-01 -v.3yCte41-01 -v.3yCte41-01	11	5.446 3406 103		-1.5874361 107	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	E.941358E+00	1.1444931.07
	1		-1.751711-01	11	-1.1452751+02 -0.1612131+02 10+16140cc.t		-1.70+2454 .63	13-0.01 0.07-1.00 17 0.10 0.75 0.06 13 0.75-0.30-0.03	5.6419786+02	#.C518V6L+02

SUBCUM 3

									SUBCUR	3
	•	i k		4			socto	ELENEN 7 \$	I H E # #)	
ECEMENI-10	CLRNER GRIU-ID				CORNER POINT			nik. CO21462	MEAN PRESSURE	OL TANE UKAL SHE AK
		Y	-1.0720578+01 -2.4214936+03 -3.0251426+02	45	-1.3377351+07 4.9712131+02 3.5509121+01		-6.27373#E+C1 -2.54006#E+C3 -1.919223E+02	14 1.00 0.00 0.04 14-0.05 0.97-0.22 12 0.05-0.22-0.97	1.3157576+02	1.138>981+03
	3	A A	-4.546347£+01 -2.339235£+03	17 76 21	-1.3377356-02 -1.9712136-02 -4.7610736-61	*	1.444321E+C1 -2.454370E+G3 -1.346109E+G2	LR 0.78 0.05-0.62 LY-0.17 C.98-0.14 LZ-0.60-0.21-0.77	i->e1545E+05	1.1318141.03
	3	ĭ	-1.431859E+02 -1.426875E+01 -1.461544E+03	17 17	-1.1452758+02	•	1.76eC35E+02 -1.621990E+C3	13-C.36 0.06-0.92	4,4717656+02	0.002551E+02
	10067	i	-1.0322001-01	įi At	-1.1492796+07	Č	1.5794291403	13-0.08-0.29-0.38	-5.3643585+02	7.3751901+02
		3	1.166040E+02		3.5505128+01		2.008833E+C1		-8.43/4486+02	1.0310334.03
	10001	\$ A	4.65ccu26.01 2.21361CE.03 2.63666662	57 45 14	50.3551656.C- 50.356366.C- 10.3516066.C	į	2.296701E+C3 3.747794E+01 1.895615E+05	17 0.06 1.00-0.06 17 0.08 0.05-0.19 12-0.19-0.07-0.98	-4.4	***************************************
• •	10003	X T	6.004906E+01 8.467555 8.467656 8.46766	77 77	-1.3377356+02 -3.4618636+02 -4.7616736+03		2.308813E+C3 2.3052C1E+01 2.357512E+02	L1-0.05 0.93 0.37 L7 0.98 0.12-0.15 L2-C.19 0.35-0.92	-8.5655216+02	1.0305028-03
	10003	1 1 2	3.289232E+01 1.438442E+03 1.335595E+02	17 72 21	-1.1452751+02 -3.8818436+02 -4.761073E+01		1.388718E+03 -4.737268E+03 1.036026E+03	13-0.06 0.71 0.7C LY 0.96 0.22-0.14 LZ-0.26 0.67-0.70	************	1.302>376+02
	50 •	-	65 # 6P	•						
-	CLHIER	1 7	10-3076501.1- 10-32056501 1.8721336	4 Y 1 Z 2 Z	10-10-14-01-0- 10-16-10-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	å 8 6	1.430720E+G2 -9.7844V0E+G1 1.175837E+01	L3-0.28-0.45-0.85 LY 0.80-0.60 0.06 L2 0.53 0.66-0.53	-1.8407816+01	10+3566648.8
	٠	Ą	1.2141191.01	17 72 21	8.986147E+CC 7.778462E+02 5.823712E+01	A B	1.5038636.03	11 C.02-0.11-0.99 17 G.89-0.45 G.07 12 O.46 G.89-0.09	-3.0044052+03	8./J#906E+G?
***	7	2 7	-4.6450666+01	17 17	-1.11#2071+07	4	-8.517363E+01 -2.49#20#E+03	LS C.97 O.04 O.25	\$,04305356.03	1.1735#9[+03
	3	1	-1.110446103 -2.113404103	17 17	7.3005746+C1 -1.3801346+O3 6.3856496+O3		-1.49360#E+C2 -1.679C19E+O1	11 0.25-0.48-0.85 11 0.74 0.64-0.33 17-0.18 0.89-0.42	1.01410#1+03	1.1284321.03
		ž	-1.10>/>16+00	}}	-3.2785681.01 -7.1485601.00	ć	+3.6347731+62	13-6.01 6.08-1.00	-2.5442688 +62	1.4484191-02
		}	**************************************	11	1.4215141.02	ć	-5.54718ct +6.5 -4.6145.5t+00	LY 0.10-0.43-0.05		
COMPUSIF COUPLE O	######################################	-LUL	i 130 (PM&)(2) 36 11 16 16 18 18 18 18 18 18 18 18 18 18 18 18				SLFI	LPFL + 1, 1970 P	11188h 3/11/76	PAUL 151
									SUBLIA	
	5.1		3315 18	v		6 L I				
titmini-iu	CUANTA CH 10-10	. •			t tusnin point			UI#. CUSINES	PE AN PRESSERE	GE TANEURAL SHEAR
1001			(3 0 64							
•••		1	3.1024met +01 6.001411t+02 1.111412E+02	11	-1.101555101 -1.31155106 -1.613Cent+C1	4	2.37431#E+01	13-0.02 0.44 0.33 17 C.48 0.04-0.36 13-0.21 C.32-0.42	-2.7611896+02	3.1201701-03
	1004	;	10.1644661.6-	11	-5.240 2626 · CO 3.906 2626 · O2 9.915 2566 · OC	4	-5./1.67/6.C1 -2.29##+66+C3 -2.0911/56+C2	13 1.00 0.66 0.05	0.510288t +02	1.0220171+05
	1000	7	-c.411+70t 101 -2.21+293t +03	11	->2137#+01 3.502926+03	ŧ	-5.4046316+0C	11 0.46 c.C2-6.24 17-0.07 0.96-C.18	0.30000it+C?	1.0364441403
	1009	<i>t</i>	**.15***56**01 **.15***56**01	23	10-13164-01 9-33164-07 10-3516-07		-5.1300.0E.C2 -5.705177E.C1 -2.250055E.03	L3 1.00-0.01-0.06	\$.5502##E+02	1.0228271+05
	11004	1	2.855626666	## ##	-1.0035438+01		-2.041749140.6	13-0.01 1.00-0.05	*6.3322316*02	\$. \$ 151562.*6 <i>c</i>
		}	3.0471416.03	11	*3.951C651+62 *.915256E+6C	¢	5.8167376+61	17 0.50-2.05-0.20		

The state of the s

5.855(731:01 NY 5.55031et:0C A 2.2180201:03 tA 0.01 1.00 0.05 -8.332231E*02 2.130338:03 14 -3.5510051:02 t 5.865521E*01 t1 6.98 0.00-6.22 3.00-6.3

5.1651676.03 12 -5.4717716.13 2.145166.03 12 -3.9516856.03 3.1336456.02 22 -4.4427866.03

11009

A 2.2275651:03 (a-C.02 0.% C.34 8 6.4468345:01 (4 0.58 C.05-0.18 C 2.5343918:02 (2-0.20 C.33-0.%

SUBCOM 3

ELEPENT STRAIN ENERGIES

***************************************		chi sikain		
SUNCASE • HEXA		 TUTAL ENERGY OF ALL TUTAL ENERGY OF ALL 	. ELEMENTS IN PHUBLEM •	2.125516E-02 2.125516E-02
			•	
tltt	IENT-10	STRAIN-EXERUT	PERCENT OF TOTAL	
, .	1	1.247151E-04	0.5868	
	2	1.1516926-04	0.5418	
	3	6.2408856-05	0.2955	
		4.8076406-05	0.2262	
	5	3.0564786-05 1.1530786-05	0.1439 0.0542	
	ş	8.1886768-07	0.0039	
	ģ	2.0406116-05	0.0960	
	10	8.9057008-06	0.0419	
	iī	3,4631251-06	0.0163	
	iż	1.1767056-06	0.0055	
	13	4.212168E-07	0.0020	
A support Addition of the second of the seco	1001	1.4164148-04		
	1005	1.8513626-04	0.8713	
	1003	2.4365458-04	1 .463	
•	1004	1.7686846-04	0.8321	
	1005	2.565645E-04	1.2165	
	1006	7.8634341-04	3.7090	
	1008	" 1.812274E-04	0.8526	•
	1009	3.0651046-04	1.4439	
	1010	8.4469752.04	3.9713	
	1011	2.241107E-03 2.344876E-03	10.6379	
	5001	1.059914E-04	0.4987	
	2002	1.6553746-04	0.7786	
	2003	4.3265856-04	2,0357	
	2004	1.3628226-03	6.4117	
	2005	2.7178396-03	12.7867	
	2006	9.6762836-05	0.4552	
	2007	1.5521826-04	0.7363	
• •	3 CO 6	3.6501768-04	1.7361	•
	5009	9.200566-04	4.3264	
	5010	1.5610336-63	7.3442	
	2011	6.921771E-05	0.3257	
	5015	1.1608336-04	0.5461	
	2013	2.5139966-04	1.1020	
	2014 2015	5.15>271E-04 7.845804E-04	2.4442 3.6931	
	2016	4.40451#6-05	0.2072	
	2017	7.0264656-05	0.1540	
	2016	1.5056446-04	0.7084	
	2019	2.64629CE-34	1,2450	
	5 C S O	3.598582E-04	1.6432	
	2021	3.2353216-05	0.1054	
	5055	3.9475586-05	0.1857	
	2023	7.2350166-05	0.3404	
	2024	1.1118228-04	0.5231	
	2025	1.3766176-04	0.6417	
——————————————————————————————————————	5 C S P	8.443447E-06	0.0391	

Si	ı	E	t	r

			6 K 1 U P U					
FL 1H1-10	LLLMEHI-IL	SOURCE	11	12		*1	#2	
11005	3004	MERA	6.944552E-L2	2.44t12mt +00	-4.5716416-01	6.0	0.0	0.0
11062	3013	HEZA	-5.4521616-02	-2.3479606+00	4.2454761-61	0.0	0.0	6.0
11603	3014	HERA	3.714627E-C2			0.0	č.ŏ	6.6
11005	***	PIDTALSO		-3.90tC#4E-13		č.ŏ	0.0	ç.ö
1			11000000 11	***********	************	•••		i
11063	400¥	HEZA	-1.9725416-02	3.9314466.00	4.12/4951-01	0.0	0.0	0.0
11063	3010	MEZÁ	4.42144#6-63	3.447740E+CO		0.0	6.0	(,c
lices	3014	MERA	-3.728447E-C2			0.0	0.0	0.0
11063	3015	+[14	1.2744406-03	-2.5333256+60	-4.3713461-01	C.O	0.0	0.0
11063		OTAL SO	5.4307258-14	*-2.586820E-13	-8.1254458-14	. 0.0	9:0	0.0
11064		F-OF-SPC	0.0	0.0	-1.2571361 460	0.0	c.0	0.0
11064	3010	HERL	1.2461941-03	2.49#36***00	4.1010101-01	č. o	č.č	6.6
11044	3015	PEKA	-1.2567846-02	-2 . >98369E + CO	6.3m#301t-01	č. č	0.0	0.0
11364	••••	STUTAL SO	5.1005708-14	-3.9527146-15	-1.6334166-14	0.0	0.0	ŏ.ŏ
11605		APP-LOAD	0.0	-2.4555986 +00	0.0	0.0	c.o	6.0
11005	1011	ME 3 A	1.4274711-14	2.49555#1+00	-4.4468921-15	0.0	0.0	0.0
11665	••••	ATUTAL SO	1.6226711-16				0.0	
11111		,.,.,	!!'!!'''!!!	à raiit toot - 1 é	-4-44CBASE-12		",	. 0.0
11066		APP-LOAD	0.0	-4.9999986 +00	0.0	0.0	c.0	0.0
11066	. 3011	HEXA ,	-3.4213716-65	2.5756618400	1-114145E-61	0.0	0.0	0.6
11066	3015	PESA	29-3125129-65	2 .42041#E+00	-1.1791438-01	Ç r Ö	0.0	0.0
_11066		41014F24	7:4104198-14	-> * 5 - 5 - 5 - 5 -	` - • • • • • • • • • • • • • • • • • •	6:6	6·0 ·· -	_ 0.0
11067		APP-LUAD	0.0	-4.5999%91+00	c.0	0.0	c.0	0.0
11567	3015	HERA	-5.7243746-62	2.3955458+00	3.4/09448-01	0.0	0.0	0.6
11061	3013	réad	5.7243766+02	2.4004548 +60		6.0	0.0	0.0
11667	-	*101ALS*	4-0105051-14	7.4284546-34	3.444361-16	0.0	0.0	0.0
11068		4FF-LU4D	0.0	**. 4717778 . 00	0.0	0.0	6.0	0.0
1164	3013	HERA	-4.23JEANE -02	2.5485616+00	\$.4465 15L + O1	0.0	ŏ.ŏ	0.0
11000	3014	PERA	20-1000165.0	2.4310376 +60	-5.4885241-01	0.0	0.0	0.0
11000	• •	PTOTAL SO		-1.4878996-14	1.1612111.14	6.6	0.0	0.0
11064		APP-LGAD	0.0	-4.4555451 -00	c.0	0.0	0.0	0.0
11069	3014	PERA	-3.2146566-63	2.5206626.00	4.4675446-01	č.o	3.6	0.0
11049	3015	44.34	2.2146346+02	2.4713376 400	-4.4476844-01	6.6	6.6	0.0
1100		· TOTAL S.	4.2905701-14		2.4103276-14	6.3	6.6	6.0
11670		ANDALOAD		-3 (866)				
11070		#PP+LUAU #+DF+5PC	0.0	-2.4955446+00		0.0	0.0	0.0
		LAME 435C	6.0	0.0	• 7. C330488 • G1	8.8	0.0	0.6

APPENDIX I

The same of the sa

C-2 MODEL PREPROCESSOR PROGRAM LISTING

```
1. // JCE (C8C6C6..C4E).C22FREC2.CLASS=E
 2. //STEF1 EXEC FORTHCLG.FC=180K
           EIMENSION ICARC(2C).IGRIC(2).IZERG(2).ICHEXA(2).IGRIDS(4CCC)
 Э.
           INTEGEF#2 NGFIDS.31.14
           LATA 1GRIC/'GF 10 1.1 1/.1ZERC/' C.1.101/.1CDRD/'CDRC'/,
 5.
          +1CHEXA/'CHEX', '1'/, NGRIE 5/4/, 11/1/, 14/4/
 7.
           EGUIVALENCE (1GRIDS(1).102).(1GRIDS(2).161).(1GRIDS(3).103).
          +(1GK1CS(4),1G4)
 ŧ.
         FEAD(5,2)1STF1F,1STRPS
2 FORMAT(213)
 ċ.
10.
11. C
        THIS FROOM IS FOR EXTRACTING BULK DATA FOR A PARTICULAR STRIF
FROM THE WHOLE FRACKET MULTILAYER BULK DATA. I.E. DETAINING
12. C
13. C
14. C
        C2 MCDEL BULK CATA FROM PREPROCESSOR PRODUCED C1 BULK DECK
15. C
16. C
        ECHO STRIP DATA
17.
           FFITE(6.6) ISTRIP. ISTRPS
        16.
19.
           IF(ISTRIP.LE.1.GF.ISTRIP.GT.ISTRPS)STOP 99
20.
       1C REAC(1,1)1CAFC
21.
22.
        1 FDFFAT(2044)
23.
           IF(ICARD(1). NE. IGRID(1). GR. ICARD(2). NE. IGPID(2))GD TC 10
24.
           IF (ICAFD(11) . NE. IZERD(1) . OR . ICAFD(12) . NE. IZERD(2))GC 76 1C
25.
           CALL CICON(1C4RD(3).1.8.1.1TOF)
           IF(ITCF.LE.1COC.GF.ITDP.GT.100CC)GD TD :C
žt.
           110F2*1T0F-1
żê٠
       26 FE46(1.1)1CAFE
29.
3(.
           IF (ICAFD(1). NE. ICHEXA(1). OR. ICAFD(2). NE. ICHEXA(2))GG TC 2C
          CALL CICON(ICART(7),1,8,1,161)
31.
          CALL CICON(IC/PE(5).1.8.1.162)
32.
          CALL CICON(ICARD(11).1.6.1.153)
33.
          CALL CICON(IC4 RC (13) . 1 . 6 . 1 . 164 )
34.
         IF (ITCF.NE.161.4NC.ITOP.NE.162.ANC.ITOP.NE.163.AND. +ITOP.NE.164)CC TC 20
35.
30.
          IF (ITCF2.NE. 161.4NL.ITOF2.NE.1G2.AND.ITCP2.NE.IG3.AND.
37.
it.
         +ITCF2.hE.164160 TO 20
39.
          CALL CICON(ICARC(3),1,8,1,1ELE)
40.
          IFIKST=0
           1447=5CCC
41.
       40 BRITE(2.1)1C4FD
46.
43.
          FLAD(1,1)1CAFE
44.
          WF1TE (2.1) 104F C
45.
          DD 45 Jal.70
       46 FEAD(1.1.ENC=90)ICARD
46.
47.
          IF(ICARD(1).NE.ICHEX4(1).OR.ICARD(2).NE.ICHEXA(2))GC TC 46
48.
          CALL CICON(ICARD(3),1,8,1,1)
          IFI1.LT.1000CIGE TE 30
49.
          IF(MCC(1,10000).NF.IELE)60 TD 30
50.
51.
          FRITE(2.1)ICARD
52.
          FEAC(1.1)ICAFC
53.
          PE 1 TE (2.1) 1C 4 F C
54.
          6C TO 45
55.
       45 CONTINUE
56.
          ELLt eed
57.
       EC TELE = TELE + ISTR PS
           IF IEST = 1
58.
       25 FEAT (1.1.END=40) ICAPD
59.
```

The second second

```
éC.
            IF(ICAFD(1).NE.ICHEXA(1).DR.ICARD(2).NE.ICHEXA(2))GC TC 35
 el.
            CALL CICON(ICARC(3).1.8.1.1)
            IF ( I. GT. IMAX.AND. I.LT. ICCCCIGO TO EC
 62.
 £3.
         36 IF (1.NE. IELE) GO TC 35
            IF (IFIFST. NE.C)CC 10 37
 £4.
            CALL CICON(ICARC(7).1.E.1.1)
 £5.
            NGRICS=NCRIUS+1
 to.
 £7.
            16 105 (NGR 105) +1
 tt.
            CALL CICON(ICART(13).1.8.1.1)
 eç,
            NGF 105 = NGF 105+1
 70.
            IGRICS(NGFICS)=1
 71.
            CC TC 40
 72.
         37 CALL CICON(ICARC(11),1,6,1,1)
 73.
            ACF ICE = NGF ICE+1
            16 10 5 (NGF 17 5) +1
 74.
            CALL CICON(ICARE (13).1.E.1.1)
 75.
 7ć.
            AGRIDS - NGF 10 5+ 1
 77.
            IGRIDS(NGRIDS) =1
 7t.
            CC 10 40
         TO TELE = IMAX+ ISTR IF
 79.
 ti.
            IPEX=IPAX+1CCC
            IFIFST+1
 ٤1.
 ٤2.
            (C TO 36
 £3.
        SC FEHINE 1
 E4.
            bblTE(6.3)NGF1DS.(1GRIDS(L).L=1.NGR1CS)
          3 FCFFAT(*1*.15.2X.(1517./1)
 ٤5.
            CALL 250RT2(16F1(5.NGR105.14.11.14)
 te.
 £7.
            AFITE (6.3) AGFICS. (IGRIDS(L).L=1.NGRICS)
            EC 94 1-1. NGRICS
 £6.
 fċ.
            IF(1.NE.1)60 TO 94
 ۶ć.
        $1 $EAL(1.1.END=$3)1C4RD
        44 IFIICARD(1).EG.ICOFDIGD TO 60
 91.
 çî.
            IF (ICAFD(1). FE. IGF 10(1). CF. ICAFD(2). NE. IGKID(2))GD TO $1
 93.
            CALL CICON(ICARD(3).1.6.1.J)
            IF (J. NE. 1GRICS (1)) (D TD C)
 94.
           PETTERS. TITCERT
 44 .
           [C 52 J=1.70
 St.
 97.
           E4E(1,1,ENC=93)1C4RD
 94.
            1F(1C4FD(1).NE.1CK1D(1).DR.1C4FC(2).NE.1GP1D(2))GD TD 59
 94.
            CALL CICON (ICARC(3).1.8.1.K)
            IFIK.LT.1CCOCIGE TL 99
ice.
101.
           PELLE 15 11 1CTE E
        42 CCNTINUE
102.
163.
           5761 999
        CC PETTETS . TITCELD
164.
105.
           J4401(1.1)1C4FC
           # 17E (2.1) 1C4F C
ice.
107.
           GE 70 91
        SS CONTINUE
100.
169.
        43 ENCFILE 2
116.
           STCF
111.
           EKC
112. /#
113. //CD.FTC1FOC1 DC DSN=CNOED6G6.CVT.C22ELKMS.D1SF=SHR
114. //CD.FTCZFCC1 DD DSN=CNCEO6C6.CVT.CZZBLKSS.UNIT=bYLBUR.DISP=1.CATLC).
115. //
            SFACE=(TRK.(5.5).FLSE).CCE=(RECFM=FE.LRECL=80.BLKS12E=312C)
116. //GC.5YSIN ED *
117. 00 05
116. /*
```

APPENDIX J
C-2 PREPROCESSOR FLOWCHART

13 F

where the second that the same with the

C-2 PREPROCESSOR

APPENDIX K

. . .

C-2 MODEL PREPROCESSOR PROGRAM OUTPUT

```
LS/3et FUFTHAN H
LEVEL Ziet ( Jun /4 )
      COMPLERE CHILAS - NAME - MEIN-CHI-CI-LINECNI-50, SIZE=CCOOK.
                          SOURCE . ELCLIC . NILIST . NOLECR . LCAD , MAP. NUEL IT, NUIL . X+ F+
  ISN COCE
                  EIMENSIEN ICAPDIZOI.IGFIDIZI, IZERDIZI, ICHEXAIZI, IGKIDS(4CCC)
15% 50C3
15% 3664
                  1: TEGEF #2 NG+165.11.14
                  LATE IGHTE/'GRID'.' '/.IZERU/' C.'.'O'/.ICURU/'CORD'/.
                 +1LHERA/*CHEX*,*A*/,*GF1L5/4/,13/1/,14/4/
                  E-LIVALENCE (IGHIDS(1).162), (IGNIDS(2).161), (IGNIDS(3).163),
 156 6665
                 +(1Gk1US(4)+1(4)
  ISN COCE
                  + £AU(5.2)151+1P.1514P5
ISN CLUT
                ¿ FURMATICES)
                THIS PROOF IS FOR EXTRACTING BUCK DATA FOR A PARTICULAR STRAFFER THE PROOF BRACKET PUBLILAYER BUCK DATA, 1.6. CRIAINING
                CZ MCZEL BULK LATA FROM PREPROCESSOR PALDUCEU CI BULK DECK
                ECHO STRIF DATA
                  INTEREST ISTRIPTION
  ISK COCE
  150 1564
                E FERMATICIASTRIP DATA ECHLIONISTRIP NO. = 1.120.16./.
                 ** TETAL STRIPS = 1,720,16)
                  IF(15T41+.LE.1.DA.15THIP.GT.15TAPS)STCP 99
 121' G01C
 15N 6512
               16 FEAD(1.3)164FD
 15N CO13
                1 FURMAT (2084)
                  IFIICARDIED. NE. IGRICIED. GP. ICARDIED. NE. IGRILIEDE TO EC
 75N (U14
 150 CO18
                  IFIILAFEILLIAN.RE.IZEFEILLIA.UR.ICARUILZIARE.IZERUIZIAGO IL 16
                  LALL CICUN(ICARU(3).1.E.1.17UP)
             TELITEFILE . 1000. UR . 1701 . 67 . 10000 160 TE '10"
 15N C019
                  110F2=110P-1
 15N CC21
  15N CC22
              20 FEAULT-131CALL
                  IF(ICARC(I).NE.ICHE)/(I).CR.ICAFD(2).NE.ICHENA(2))SD TC 20
  15N 2023
 15h LC25
                  CLLL CICUNCICARULINALIE 1.1611
                  CALL CICUNCICARD(9) . 1 . E . 1 . 162)
 15h Cuże
 15h cc:7
                  (ALL C100N(1CARD(11).1.8.1.763)
                  LALL CICONIICARUITSI. 1.E.1.1641
 15h CG2E
                  IF (ITOF.NE. IG).AND. ITUF.AZ. IGZ.ANC. ITCP. NE. 163.AND.
 ISN CO24
                 +11JP. WE. 16416C TL 2C
                  1-1110-2.NE.161.ANL.1TU-2.NE.1G2.ANL.11U-2.NE.1G3.AND.
 ISN Cisi
                 +110P2.NE.164)60 10 26
                  CALL CICONCICARDIST. 1.F.1. TELE)
 15N 7733
 15h (( #
                  1F1+57=0
 15N 1035
15N 2036
                  1MAX=2CCO
               40 FKITE (2.1) 10/FJ
 156 6001
                 +623(1.1)16486
 15% 0034
                  + KITE ( ... 1116 4 K )
 15h CC2c
                  Lu 45 J=1.76
              46 KEAULI.I.ENE + 9011CAFL
 15N 6646
                  IF (ICARCIT). NE. ICHEXALITI. CH. ICARLIZI. NB. ICHEXALZITGO TL 46
 15N UG41
 15N 0043
                  CILL C1CGN(1C4RC(3),1,6,1,1)
                  1+(1.L1.10000 16L 16 30
 151. 6144
 15% LC46
                  IF(MUCII.106(G).NE.1ELEIGL 10 30
 15N C04F
                  HEITE 12.111CAKD
 ISA COAS
                  KEAD(1.1)1CAFL
 ISN LUSC
                  F411F(2.1)1C4KU
                  GC 1E 45
 15% 0051
              45 CUNTINUE
 154 6552
```

```
15% C053
 754 C054"
           30 IELE=IELE+ISTRPS
 15N (055
               IFIRST=1
 15h 605t
           35 FEAULT , 1 . ENU = 9011C4FU
 75N C057
               IF(ICARC(I):NE.IGHEAL(I).DR.ICARD(Z):NE.ICHEAA(Z))GO TC 35
 15h 6054
               CALL CICUMICARD(3),1,6,1,1)
 ISN 2060
ISN 2062
               IF(1.G7.1MAX.AND.1.L7.1C000)GD TG 50
           36 TELTINE . IELE 160 TO 35
               IF(IFIRST.NE.CIGU TC 37
 ISN CÖÉ4
               CALL CICUNCICARUETI.I.B.1.1)
 151. GODE
 ISL COLT
               NGRIDS=NGF125+1
 151. (Get
               164195(NGK1L5)=1
     JULG
               LALL CICUM(164AU(13).1.8.1.1)
 Si.
- 15h t076
               HGRIDS=NGRIGS+1
 15h 2071
               164105(NGP165)=1
 15N CU72
               60 10 4C .
 "15h TC73
              CALL CICGNIICARD(111).1.8.1.1)
               NGK 1US = NGR 1US+1
 15h 5074
 ISN CC75
               IGRIDSINGEIUSI=1
TSN COTE
               CALL CICENTICARDINGS, 1.E.1.I)"
 15N C077
               NGRIUS=NGK1US+1
 15N 6076
               IGKIUS(NGRIUS)=1
"15K C079
               GU 18 40
           SC TELE-THAX-15741P
 15" 0016
 116 0061
               9991+KAMI+KAMI
.... 12N .C085
               IFIRST+1
 15% 0663
               60 10 3e
 ISN CC64
           YC KENINU 1
 ISN COPE
               LRITE(L.3)NCF105.(1GR1C5(L).L=1.NGR1C5)
             3 FCRMAT("1",15,2),(1517,/))
 ISN CORE
               CALL ZSOPTZ(1GRIUS-NGKILS-14-11-14)
 ISN CCE7
 TEN COPE
               FRITE(6.3)NGRIDS.(IGKIDS(L).L=1.NGRIDS)
 15N COFF
               LU 99 1-1.NGF 105
 15h CCYC
               1F11.NE.11GL TO 94
 124 COAS
           91 FEAD(1.1.END=93)1CAFU
 15N 0093
            94 IF(ICARD(I).EG.ICORD)UU TU 60
 15N C095
               IF(ICARD(1).NE.IGRID(1)).CR.ICARD(2).NE.IGRID(2))6C IC 91
 75N
     0097
               CALL CICON(ICARD(3).1,8,1,J)
 15N COSE
               IFIJ.ME.IGRILS(1))GC TO 91
 ISA CLOC
               PETTETS.TITCARD
               DC 92 J=1.70
 15h C101
               KEAC(1,1,END=43)1CAFD
 15N C1C2
 15%
     6163
               IFIICAMLIADANE.IGNALIADAUN.ILARLIADAPE.IGNADIZIDEE TU 44
               CALL CICUNITICARDIBLIANDIA
 ISN CICE
  ISA
     LICE
               IF(K.LT.)COCCIGC TL 99
  ISA CLUP
               PRITEIS . TITLERD
 ISN CLOS
            92 CLNTINUE
 15h C116
               510P 959
           &C BETTE (2.1) ICARD
 15% C111
 ISN CLIZ
               REAU(1.1)ICAKU
 15h C113
               wx116(2.1)1(4k)
  15h C114
               66 10 91
 15A U115
           44 CUNTINUE
 15% Clie
           43 ENUFILE 2
```

15N C117 510P

STRIP DATE FORL

STRIP NG. . TOTAL STRIPS

1.4-

C. STATE OF THE PROPERTY OF

- second street of the second street of the second

APPENDIX L

C-2 PLOT RUN OUTPUT AND UNDEFORMED PLOTS

1 CHURT 25, 1976 HASTEAN 3/11/78

NASTEAN CLICOTTYL CENTRUL DEER CONT

in inference to the sure of the lambda of the control of the contr

POSEL 12.2 LUMARE OF ENTERED CARREST CINESE LA CARRESTA CARRESTA CARRESTA CONTRACTOR CON

TERRET 251 1976 NASIKAN SYLLYTU

*/

3

CASE CHAIPEL BLCK LUBU

```
LANU
                                                         THE CHURCH CONTROL OF THE CHIPCAL SINIP SUBTRICE OF THE CHIPCAL SINIP SUBTRICES OF THE CHIPCAL SINIP
Cuunt
                                                          PLUSTIA RESTARNA PLUST DAD SCOT SECTOR SECTO
                                                               I PELL STOR WITH DE THE STRIP
                                                            WIEN G., G., C.
PITTLE PRINTS 1, II, AND 111 - U, C. C. TEN
FIRE STAFF SET & UNION 6
PURE SET & UNION 6
    14121111
                                                                I PEUL MESNES TATE, AND THE
                                                               ARES 7.2.1
VIEW -10.,20.,-30.
FILLIE-MESHES 1.11. AND 111 -10.20.-30 VIEW
FIND STATE SEL 4 DRIGIN 5
FUUL SEL 4 DRIGIN 5
       50
14
       41
       24
                                                                    I PEUT UNI LAVER DE THE STREET
       24
                                                                AND TIRTY
VIEW -10-120-1-3C.
PITTLE - 3-D VIEW UP DAY LAYER DE THE SIMÍP
FIND SCALL SET 3 DRIGHT?
PLUI SET 3 DRIGHT ?
PLUI SET 3 DRIGHT ? LAPRE ELLMANS
PLUI SET 3 DRIGHT ? LAPRE LUMINS
       21
           30
           11
         32
                                                                    BEUIL BULK
                                                                TUTAL CHUNT: 465
```

*** USEK INTURPATION MESSAGE 201, BULK DATA NUT SURTED, ASSIST MILL RE-UPDER UECK.

			וואט	և ԵՆ	L N D	A 1 A	t L H II			
LAKU		•	Urit							
LUUNI	. 1 2	د	4	5		1	8	4	• •	10 .
1-	\$101 AK 903	i -	1016	1167	1(19	1015	11016	11609	- ;	299
ž-	1 , 5911014	11015	•	•	• • • •	• • • •	* ;			• • •
3-	CHEXA 2005	\$	1015	1014	1024	1055	11015	11614	•	365
4-	14011021	11022								
5-	CHE A & 2018		1672	1021	1621	1666	11022	11051	•	430
6 -	• 43511027	11620								
1-	CHERA 2015	2	1070	1021	10 11	1034	1 jušu	11051	•	445
b-	• 49511033	11034								
9=	CHEAN 5050	\$	1034	1033	1014	1046	11034	11033	•	560
10-	• 56011039	11040								
117	CHEAN SUSS	7	1040	1039	1045	1046	11040	11039	• •	. 952
12- 13-	+ 67511045 CHI 27 2036	11046	1046	1.165	1051	1052	11046	11045		640
14-	1 14011051	โบเรา	4070	1045	1021	1025	11040	11043	•	070
19-	CHI AA BUUS	3	1052	1651	1657	1058	11052	11051	٠	155
16-	15511057	11058	*****		.031	.030			•	1
17-	CHE AK 11012	ii	11016	11009	11014	11015	21016	\$100¥	* +	300
la-	1 30021014	21015						- •		
14-	4002 AA JH)	12	11615	11014	11021	11022	21015	21014	•	dot
50-	12012036 •	51055				•				
51-	(11FX4 15010	12	11022	11051	11051	11076	51055	51051	•	431
55-	43121027	\$102n								
23-	CH 34 12015	12	11059	11027	11013	11034	51054	21021	•	440
24-	+ 4462103.3	\$1034	1 1 1 1 1 1 1	11/11	11644	* * * * * * * * * * * * * * * * * * * *	41444			
26-	14026 + 50121035	17 21040	11034	11675	11014	11040	\$1034	51017	٠	201
21-	CHEAN 15052	16	11040	11039	11045	11046	21040	21034	٠	626
30-	• 62621045	21046	11070		11043	*****	21010	61437	•	0.0
29-	CHE AA 12030	12	11646	11645	13051	11052	21046	21045	•	691
30-	69131051	21052	••••	*****	• • • • • • • • • • • • • • • • • • • •		,			
11-	CHI #A 13005	13	11027	11051	11657	1 tubb	51325	21051	٠	150
32-	15021057	2105H	•	•	• 1		•			
5.A-	CHEXY 51015	51	21 16	21709	21014	21015	31016	31004	•	101
34-	+ 30131014	31012								
35-	CHEXA 24065	5.5	51012	51014	51051	51055	31015	31014	٠	367
16-	1 36/310/1	31055								
17-	(10) XA 22010	<i>48</i>	elcei	21021	21621	511154	11055	21051	٠	432
3b-	. 12621011	31056	414.34	21021	11014	110.44	4301	434.44		444
19 - 40-	CHFAA 2.015 • 49731:33	22 31034	\$16\$E	21021	21033	51024	3105H	21051	•	491
41-	CHENA 22026	22	21634	21033	21039	21640	11014	31031	٠	562
42-	* " " " * * * * * * * * * * * * * * * *	31040		,	.,03,		31031	3.03.	•	,,,,
43-	CHEAR . 22025	66	21646	21039	21045	21646	21945	41014	•	150
44-	+ 62731045	31044							-	
45-	JEUSS AKINJ	20	£1046	21647	21001	21052	31046	\$1045	•	540
46-	1 69231051	うりしかと								
47-	CHEXT 53062	23	11152	21051	51021	51028	11025	3:051	٠	757
48-	15731057	31656								
49-	CHEAR 31012	31	21016	11609	31614	21015	41010	41009	٠	302
50-	1 30241014	41015								

٠.	1	1 1	 15 14 1	11 A	1 A	1 6 11 0

LAKU		•								
CLUNI	. 1 ., .,	,	4	5	6	7	., н	., 4		10 .
51-	CHLXX 32065	36	31015	31014	31071	310.00	41015	41614	•	368
52-	+ 30841021	41026		••••		••••				
٠,٠	CHE 37 32016	32	21026	11021	31167	alueb	41022	41021	•	433
114-	+ 43341061	41028								
55-	CHERA JEUIS	32	31624	11021	31633	311.14	41020	41027	•	498
56 -	+ 45841033	41634								
>1-	3505C 344t)	36	11014	11011	31 C 19	.11046	41034	41033	•	201
- 11 C	• 51341035	41040								
24.	CHEAR 34085	36	31640	11014	11245	31646	41043	41039	•	624
60-	1 1/2841045	416.46								
61-	7£03£ 44 H1	35	31641	31045	11(2)	21055	41046	41045	٠	693
63-	• 69341051	41052								
63-	CHI 74 33005	33	3165.	11651	2)(2)	16015	41056	41051	٠	158
64-	15841057	41658								
しか・	2101 × 41013	41	41616	41004	41014	4101:	21010	21002	•	101
66-	+101¢tut •	Piore	41015	41014	41021	41022	. L. 1.11 L.	51014	٠	461
67- 68-	(HERA 42005 1 20151021	42	41015	41014	41021	41055	21012	21014	•	307
64-	1 36951071 CHERA 47010	51022 42	41022	41021	41021	41678	21044	21051	٠	434
70-	43451027	51028	41066	41421	41061	41010	since	21021	•	737
11-	UIII XA 42015	42	41626	41027	41013	41034	21058	51021	•	499
}¿-	44451033	51034	4,000	*****	11035	-,004	,,,,,	*****	•	100
73-	UESS 45050	42	41034	41033	41039	41040	51034	51033	•	564
14-	• 56451039	51040		.,		•				
75-	CHE AA 42025	42	41646	41039	41045	41046	51040	51034	•	624
76-	. 62951045	51046				· ·			•	
11-	tint XA 42036	42	41046	41045	41051	41056	>1040	51045	•	644
14-	1 (7451051	21025								
14-	CHI PA 43005	43	41652	41051	41651	411156	21025	21021	•	154
40-	15951057	51056								
n) -	CHE XA 51012	51	21016	> 1 Cu4	51014	21012	01010	C100A	•	104
65-	30461014	61012								
u3-	CHERA 52005	52	21012	>1 C14	21051	21055	91012	61014	•	270
ነነፋ - ዘታ •	(HLXA 52016	\$5 \$1055	51022	51021	51821	51026	61055	61051	٠	435
HU-	1 43561027	(1058	21675	3.021	111.51	21050	01315	01021	•	433
117-	CHLAA SZOIS	52	\$1021	21021	51011	51034	oluca	61021	•	500
pt-	• 50361033	11634	, , , ,	,,,,,,	,,,,,,	3,231	••••		•	,,,
64.	LIII AA 52020	52	51634	21011	51639	51646	41010	61033	٠	205
90-	• \$6061034	£ 1440						.,		
91-	CHE #4 52025	52	5104C	51014	51645	51046	61040	61039	•	630
92-	• (306)045	61046								
71-	UEUS 44 1113	. 15	: 1646	21645	21021	りまひかと	61045	41045	•	645
44-	1401061	61025								
75.	CHEAA , 53008	53	21025	1001	21021	21028	01056	01021	•	160
46-	16061057	61058								
91-	CIII XK 61015	11	rjoit	61009	c1014	61015	31014	11009	•	405
98-	+ 305/1014	71015					43444	414.12		
99* 100*	\$1053 A4 III	224.24	(1015	01014	61651	bluce	11012	11014	•	211
100-	• 3/1/1021	11055								

			5 (3 K 1 L		LK U	AIA	LLHU			,
** * * **	CARD				,	•		• • •	- •		
	CUUNT	, 1 ., 2	3	44	5	6		٠. ٥	•• 9	• •	10
	101-	CHEXA 65010	62	61055	01051	0)(21	PIOSP	11055	31051	•	436
	102-	• 43671027 CHEXA 62015	71028 62	61059	61021	414.44	61034	110cm	11021		501
	10.5- 104-	+ 501/1033	71034	01050	91051	61(11	61034	11050	11061	•	30.
	105-	CHE XA 62020	- 6.2	~61634	61C33	- 61039 -	~61040 °	71034-	71033		566
	106-	+ 50671039	71040	••••	*****		• • • • • •				
	107-	CHE XA 62025	62	61040	61019	61045	61046	11040	71039	•	631
•	108-	+ 63171045	71046	w 1-1 n				. ~ ~ ~ ~ ~ ~ ~ ~			
	109-	CHF 14 65030	65	61046	61045	61051	91025	11046	11045	•	649
	. 110	+ 69671051	71052								
	111-	CHEXA 63005	71058	£1025.	75015	01001	810PB _	71052	71051	•	761
	113-	CHE NA 71012	71	31016	11009	/1014	(1015	84016	#1089	•	40E
4 4 TF	114-	30681014"	81015	!!!!!		:::::.					
	115-	CHEXA 72005	15	71015	71614	71041	71022	#101>	81014	•	312
	116-	+ 37281021	\$1055	<u> </u>							
	117-	CHEXY 15010_	72	71055	1051	71027	1058_	A1055	RJ057_		,37
	118-	4 43761027	87058	31646	***	12033	11034	#105P	81051		504
	119-	CHEXA 72015	77 81036 -	71058	11041	[{!!!	(1034	1060			anš .
	151-	CHEXA 72020	72	71034	11033	71019	71040	#1034	81013	٠	567
	122+	+ 56741039	81040	,	,,,,,,	,,,,,,	100.0			,	
* # **** * * # 2111	. 153	"CHEXA" 72025	72	71040	1634		-71046-	B1040-	R103A	\$ ···	635
	124-	4 63281045	81046								
	125-	CHEXA 72030	_ ??	71046	71045	71051	11052	#1046	61045		651
,	124- """	69781051	81025		31461	21.45.2	33.054	#1059	H1051		343
	127- 128-	CHEXA 73005	. 81058 . 33	31025	11021	710>7	. 11058	#1025	#10>1	•	762
-	129- "	CHEXA . 81012.	· 61	- 81016	81009	-81014-	-81015-	91016	9100y -	3	30/
	130-	• #C791014	1015		••••		-,,,,,				
	131-	CHEXA H2005	85	81015	81914	81051	81022	41015	41014	•	est
** ***	132	• 37391021	81055							··· •	
	134-	CHEXA BSO10	£ 2	M1055	#1051	11351	#105a	41055	A1051	٠	438
wa mm	134- 135-	+ 43841051 CHEXA B2015	™ 85,0\$# ··		B1027	81037	- 81034-	91028	9 1027-	,	- 503
	136-	* 50391033	91014	81058.	81051	0103.	01034	41050	71021	•	303
	137-	CHEXA BEOSO	82	81034	81033	81014	61040	91034	91044		568
•	118-	• 56891039"	* 91047"		• • • • •		# 1 4 J			• •	
	139-	CHENY 85052	8.5	#1040	#107A	#1045	#104¢	93040	41014	•	tto
	140-	+ ,63391045	91046								
	141-	CHE NA H2030		_R104P.	~~`B1045~	81621	81025	91046 ··	~91045		- 69B
	142-	• 67841021	83025	#10	H1061	#10b2	H 1 116 H	91052	41061		163
	143- 144-	+ /6391057	4102 8	njoss	91021	R1021	81028	71036	" Ainai	•	. ""
	145-	CHERA 41012	91	91016	91009	91014	91015	101016	161009	•	308
	140-	. 300101014	101015					,			
	147-	CHERA 92005"	92	~ 91015	91014	_41051	81055_	_101012	~ 101014	• "	374
	148-	· >/4101021	101055								
	144-	CHERA 92010	92	41000	41057	A1051	71058	101055	iotosi	•	439
	150-	+ 439101027	101058			•			- •	•	-

	CARU		. SOKIED BULK DAIA ECHU
	COUNT	* * * * * * * * * * * * * * * * * * * *	3 4 5 6 / 8 9 10
	151-	CHEXA 92015	42
	152+ "	+ 504101033	101934
	153-	CHLXA 92020	92 + 61010 + 61010 00100 41010 41010 41010
	154-	+ 569101039	
	155-	CHE XA 92025 "	92 91040 91039 91045 91046 101040 101039 + 634
	150-	+ 634101045	101046
	15/-		92 91046 91045 91051 91052 101046 101045 + 699
	154-	• 699101061	1010>2
	124-	CHE XA 93005	93 91052 41051 91017 40019 50010 + 744
	300-	+ 764101057	101058
	191-	CHEXY 101035.	1010 101016 101004 10101 101016 111016 111010 0 304
	162-	+ 309111614	111015
	163-	CHERA 102065	102 101015 101014 101014 101024 111015 111014 + 375
** >**** *** * * * *	164-	· 375111021"	nf f f VV demana ne ne angle analah de ang g g g - rent ng anggaran n tanggarantanggaranggaranggaranggaranggarang
	165-	CHE AA 102010	102 101022 101021 101027 101020 111022 111021 + 440
	166-	+ 440111027	102 101022 101021 101027 101020 111022 111021 + 440
	~i&7	CHEXA 102015	102 101025 101027 101033 101034 111028 111027 • 505
	168-	+ 505111033	11104
	164-	CHEXA 105050	102 101034 101033 101039 101040 111034 111033 • 570
i	170-	+ " 570111034"	
*	171-	CHEXY 105052	102 101040 101039 101045 101046 111040 111039 + 635
	172-	1 435111045	141046
	173-	_CHF XY10503W_	102 101046 101045 101091 101052 111046 111045 + 700
	174-	• 700111051	111052
	175-	CHE XA 103005	103 101052 101051 101051 101051 111052 111051 + 765
• , • • • • •	174- "","	+ ""765111057"	111088 Andreas and resident and
	177-	CHEXA 111012	111 1 111010 111000 111014 111019 151010 151000 + 310
	178-	+ 310121014	121019
	179	CHE XA 112005"	112 111015 111014 111021 111022 121015 121014 . 376
	180-	376121021	121022
	101-	CHE XA 112010	
M9 1 1	185- 4		115 111055 111051 111051 111058 151057 151051 •
,		441151057	
	183	CHEXA 115012	115 111050 111051 111031 111034 151050 151051 + 200
	184-	506121033	
	185-	CHEXY 115050_	115 111034 111035 111034 111040 121034 121033 4 571
	186-	• 571121039	121040
	167-	CHENY 115052	112 111040 111049 1111045 111040 121040 121040 + 0.00111
** * ****	1984	· '" 636121045"	\$ 151049 and any and are the state of
	149-	CHERA 112030	112 1:1046 111045 111051 111052 121046 121045 + 701
	190-	• 701121051	121052
*********	191- "	CHEXA "113005"	113 111652 11051 11057 111057 121052 121051 766
	192-	1 766121057	121000
	193-	CHE NA 121012	121 121014 121009 121014 121015 131016 131009 + 311
•	194-	* 311131014"	131012.
	195-	CHE XA 122005	
	196-	1 377131521	131055 151012 151014 151051 151055 131012 131014 4 314
	147-		
		CHE NA	122 121022 121021 121027 121027 131022 131022 131021 442
	198-	442131027	131028
	199-	CHE XA 1221 15	155 151058 151051 151033 151034 141058 131051 + 201
	200-	• 507131033	131034

			5 U K 1 t	0 0011		L H U	
•	LARD		• • • •				
	COUNT	. 1 2	3 4		. 6 7	8 Y	10 .
	201 -	CHERA 172020		4 141022	121939 121648	13/634 13/033	+ 514
	505-	• 272131037					•
	503-	CHEXY 155052		0 141039	151042 151040	131040 131034	+ 631
	304-	+ 63713104				T 4 14 4 3 4 2 77 8 6 4 6 4 7	
	205-	CHE XA 122030		6 121045	121051 121052	131046 131045	702
	206-	103131051				141051 141051	. 14.4
	201-	CHE # 123005		3 191621	isińaj jetnam	131055 131021	161
	309- 308-	+ 767131057				1300 1 6	+ 312
	210-	+ 3121.6700	.6700 0, 1700	.1700	.0 ,6700	.1700 1.0	v 316
	211-	CP10 1009			.1000		
	212-	CK 10 1014	.0016		.1000		
	213-	CH 10 1015	.6700		.0		
	214-	GN10 1014			.0		
	219-	CHID 1051	100 ,1250				
	216-	CHID 1055	100 ,1250				
	217-	CRID 1027-	1250		:1000		
	210-	EK10 1026	100 .1450				
	219 -	CK1D 1033	100 .1250		.1000		
	. \$50- 🔬 .	. CHID 1034	100			é-man-mandades varia-	
	5514	CHID 1039	100			, . .	
	555-	LKID 1040	1001340				
	5534.	CR 1D 1045	100 1250				
	224-	CK 10 1046	100 41250		•0		
	345-	CK10 1051	100 .1250		.1000		
	554	GHID 1052		المدمدة فأبلام	O . to minderman		
	227 - 228-	GHID 1097 CHID 1058	, 1950		1000	•	
	229	CHID - 11004	1950	:3050	1000		
	430-	CHIU 11014	.6700		.1600		
	(11-	CHID 11015	.0016.		.0		
• •	332-	CHID - 11019.				س. د شود در نهمه الكسفامونين	
	433-	CHID 11021	100 ,1350			,	
•	234-	CHID 11055	100 ,1350	79.0000		1 1	
	· 235• · · ·	CHID 11027-	· 100 · 1350				
	- 415	CKID 1105#	160 .1350		, G		
	237-	CKID 11033	100 .1356		. 1000		
• • •	\$38	CKID . 11034.	.100 13:0				
	514-	CHID 11035.	100 .1350			•	
	340-	CKID 11040	100				
	341-	CHID " 11045"	1001350				
	3484	CKID 11046	100 .1350		,0		
	24.j-	Chib 11051	100 .1350		,1000	-	
*	2444	CHID 11095	100		0	,	
	245• 246•	CRID 11057 CRID 11050	.4050		.000		
	247-	CKID 21009			1000		· • · · · · · · · · ·
	240-	CKID 21014	.6101		1000		
	244-	CKID 21015	.6166		.0		
-	450-	CKID \$1016					
			, 5500	10100	•		

	•						
			ž Ö i	KILU	ROFI	<u>. U A I A</u>	A EUHU
	CARU	_					3
	CUUNT	1 .		• •		. 6	/ 8 9 10 .
	251-					1030	
	252-				75:0000		
	253-				0.0000		
	254-					, (
	255-				45:0000°		
	256-					.0	
	257 -					1000	
	258-						
	259-	CRID 2	21045 100			.1000	
	260-	CKID :				. 0	
	. 591-,	CR10 - 2	21051 - 100	1450	0	1000	
	262-	CRID 2	21052 100	.1450	.0	.0	
	263-	CHID 2	21057	.0150	٠ .	1000	
,	264- ' "	CRID '2	31698 cm + 2-4 4 km.	:B150	4.000	0	A description of the state of t
	265-	CHID				1000	• • •
	2664					1000	2. 2. 3. 4.20
	267	CRID	31015	6700			
	258-					0	
	269-			1550	0000.		
	. 330		11739"F7 TIAN FT TOWN	14477	15,0000		March and the free that the second se
	271+		1027 100			1000	
	272-		1028 . 100	1550	0.0000		A SAME AND
	273		31033-1-100-1-11-	1550	5,0000		
	274-				0000		
	215-					1000	
	. 516					0	and the color of the second
	217-					1000	A.
	278-					0	
	- 279=				6-0004	1000	<u>aanka kiibantii aankii waxaa aa aa kii ka </u>
	280-					0	
	281-					1000	
IN FRANCE I THE PERSONNEL STREET			31057				-
	. 595 - 4		الشنائلتيد مست 1008	4201		1000	
	283• '						•
	284-					1000	
	285-					0	
	\$80-					.0	
	287-				.0000		
•	268-					,0,	
	399-					1000 `.	
	390-					٥	· · · · · · · · · · · · · · · · · · ·
	.591-					1000	
	545-					0	
	293-					1000	
	394					0	The state of the s
	295-				5.0000 .	1000	•;
	296 -				\$,0000 ,	0	
	297-					1000-	
	248-					0	
	294-					1000	
	300-	CKID 4	1058 " ";	6320 :	0-,	0	A. Indian or and and and and and the first of the part of

MODEL C2.2 (PHASE 2) 13 LAYER CREITCAL SIFTE

				3 U K 1 Ł	u Bulk	CDAI	А ЕЦНЦ
	CARD			• • • • •		. = "	
	COUNT	. 1		3 4	5	. 6	. / 8 9 10 .
	301-	GRIU	51069	.6291	. 1450 .	1000	
.,	302-	GHID	51014	6700	3450	1000	# 11 F1
	303-	GRID	51015 .	.6700		0	
	304-	CKID	51016	.6500		0	
	305-	GRID	51021 100		75.0000		A SERVICE AND A SERVICE OF PERSONNELS AND PROPERTY AND A SERVICE AND A S
	106-	GRID	51022 100		15.0000 .	0	
	307-	CKID	51027 160		60.0000 .		
	308-	GRID	51026 100	-11750		0	
	J04-	GHID	51033 100		45.0000 .	1000	
	310-	GKIU	b1034 100		45.0000 .	0	
	- 311	CKID -	51039 100	.1756	30.0000	1000	
	115-	GKIU	51040 100		30.0000 .	,0	
	313-	GKID	51045 100			1000	
• • • • • •	· 314- ~ · ·	GRIU	51046 100		" 15,0000 :	9	hand the property of the same and a second deposition of the same as the second
	3130	CHID	51051 100			1000	•
	316+	GKID	<u> </u>			0	
	317-	CRID	51057	8450		1000	
	318 -	CKID	51058	.8450		.0	
	119-	GRID	01009	.6241		1000	
	350	CKID	. 91914	.6700		1000	
	3514	CKID	61015	.6700		,0	•
	322-	CHID	. 61016	.6500		0 .	<u> </u>
	. 153	CHID	91051100			1000	
	334+	CRID	91055 100	.1850	15.0000 .		
	325-	LKID	61027 100	.1850	60.0000.		
	. 359	CRID	, 91058100	1850	80:0000.		
	327-	GKID .	61633 " 100	1850	49.0000		1.
	328	GRID	. 1034 . 100	.1850	49,0000		
	329	CRIU	61039 - 100		30.0000		
	130-	GKID	61040 100	.1850	30.0000 .		
	131-	CRID	61045 100	.1850	15.0000 .		
	335	GRID "	41048 - 100			0	
	333°	CHID .	61051 , 100	.1850		1000	
	334"	GRIU	61052 100	1550		0	
	335-	GRID	61057	. 6550		1000	
	337-	CKID	61058 71065	.8550		0	
	338- ' "	CRID "		.6241		1000	the name of particular definition of the contract of the contr
	339-		71014			1000	
	340-	CKID	71015	.6700			•
• • • •	341-	CRID	71021100	1900	75.0000		
	342-	CKID	11055 100	.1500	15.0000 .		
	343-	GRID	71027 100	.1900	60.0000 .		
, ,,	344-	GRID	71028 - 100		60.0000		distributed and the second
	345-	GKID	71033 100	1900	45.0000		
	346-	CKID	71034 100	.1900	45.0000		
	347-	CRID	71039 - 100	;1900	- 30:0000-:		
	348-	CKID	31040 10U	.1900	10.0000 .		
	349-	CKID	71045 100	.1906	15.0000 .		
	350-	GRID	71046 100	1900	15.0000		. Inc. were his number of continues to a
	-		100	,,,,,,	1410000	▼	

THE PARTY OF THE P

	CARO		•	токії в	ñοř	ķ υ	АТА ЕСНО
			,				
	COUNT					6	/ 8 9 10 .
	351-		105) 100	.1900	.0	.1(00	
	352-		1055 100	.1900	.0	.0	
	353-		1057	.8600		.1000	
•	354-		1058	8600		.0	
	355-		1009	-:6291		:1000	
	156-		1014	.6700		.1000	
	3,1-		015	.6700	. 100	.0	
	356-		1016	. 6500		.0	1
	359-		021 100	.2000	15.0000		
	360-		1055 100	,2000	73.0000		
	361-		027 100	.2000	_66:00000_		*****
	705-		028 100	.2000	60.0000	.0	
	363 -	CKID BI	033 100	.2060	45.0000	.1000	
· · ·	364	CR10 81	034 '**100 "	5000 ئىسىنى	45,0000-	.0	. It is that that the second point of the state of the second se
	165-	CHID 81	039 100	.2000	30.0000		4 ,
	366-		040 100	.2000	10.0000	.0	.
	367-		045 100	7.2000	-15.0000-		
	368-		046 100	.2000	15.0000		
	364-		051 100	.2000		.1000	
•	370-		052 m 100 m				and the same of the same and th
			057	.8700		1000	, , , , , , , , , , , , , , , , , , ,
	372-		058	8700	.0		
	373		019	: 6291		- 000 T	
	314-		014	.6700		.1000	
	175-		015	.6700		.0	
	376 "		219.4.		-3800		the stack house the different administration and section as the transfer of the section of the s
	377-		021 100	2100	75.0000		
	378-		022 100.	2100			Silver No.
•	379		027 100-		79,0000 		
	300-						
			V58 100	.2100	60.0000		
	381-		03.1 100	.2100	45.0000		
	385-,		634100	5100	45.0000-		
	383-		036 100	.2100	30.0000		•
	384-		040 . 100	.2100	30.0000		
	385- " "'		045 170		12.0000		
	306-		046 100	.2100	15.0000		
	10 1-		0.1 100	.2100		.1000	
	368-		0:5 100 .	100		.0	American Company of the same o
	364-		057	,8800		,1000	•
	340-		058	, ,6800		.0	
	391-		1009			:1000 ~	
	345-		1014	.6700	. J400 .	.1000	
	343-		1015	.6700	. 1500	. 0	
	344- :		1019	.6500		٠٥.	THE PERSON NAMED AND POST OF THE PERSON OF T
	345-		1021 100	00 د 2.	15.0000	.1000	·
	196-		1055 100	.2200	15,0000	. C	
•	347-	CRID 10	1027 100	.2200	60.0000	:1000 -	
	198-	CHID 10	1026 100	.2200	60.0000		
	3+4-	CKID 10	1033 100	.2200	45.0000		
	407- "	CKID 10	1034 100 ***	77712200	49.0000		the control of the design defined on the control of
							, ,

	CARD				
	COUNT			5 6 1 U	9 . 10 .
	401-	CRID 10103		30:00001000	
	402-	CRID 10104		30:0000 70'	,
	403-	GRID 10104		15.0000 .1000	
N 400	404-	CRID 10104		15.00000	أحيث أحجمت ومجيد
	' 405 - " '	CKID -10105		.0 .0	•
	407-	CRID 1010:		.0 .0 .1000	
	408~ .	CRID 1010		· 10	
	409-	GRIU 11100		4000 1000	
	410-	GRID 11101		4000 , 1000	
	- 411	CRID 1110		.40000	
	412-	GRID 11101		.400 .0	
	413-	GRID .11102		75.0000 .1000	
• • • • •	* * 414- * **	GRID "1110	2" 100"""":2300"	\$5:0000-20	يحصب دروسسارسي سودو
	415- '	GR10 . 11102	7 100 2300	•0,0000, 1000	
	416-	GR 10 . 11102		- 40:0000 . io	A MARKET AND A STATE OF
	··· 417- ····	~ ~ GRIO ~~~`IIIU;	3 - 100 230q-	4530000711000	
	418-	GRID 11103		45.0000 .0	
4	419-	GKIU 11103		30.0000 ,1000	
	ىمىنى -450 ك	CKID Z1104	س300 £غينينيد£\$300 س.	<u> </u>	
	· 421-	. CKID - 11104		15,0000 .1000	3.35
	422		6 100 (1) 2300	19:000 00 0000:01	<u> </u>
		CRID TILO		1000	, , , , , , , , , , , , , , , , , , , ,
	424-	GRIU 1110:		.0 .0	
	425-	Ck1D 1110	7	1000	
	. 426-, 717	77 CRID. 277 1110	-0006 this call	4100	144 C. L. C.
•	427- 428-	GRID 12100 , GRID 12101		A BARRA BRAND WAR S. P. AF STREET BRANKS	·
	-429	- GRID 12101	5 6700	4100 1000	<u> </u>
	430-	GRID 12101		.1100 .0	
	431-	CKID .12102		75.0000 .1000	
,-	432	" GRIOTT 12101		سنجيش فيترافي خطران والمراء وحياه ومنابي والمراورة والمراورة والمراورة	
	433-	CRID 12102		40.0000 11000 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3, 7, 7
	434+	GRIO - 12102		40.0000 0	e.
	435- ··	GRIU 12103		45,0000 1000	
	436-	CKID 12103		45.00000	
	437-	GR 0 12103		30.0000 .1000	
	438	"" " GR 1J" " " 12104	0.2100 412 2400.	30:0000 -: 0 - : : : : : : : : : : : : :	مؤتسفت معمصمها بدعفسأيه
	439~	CR 10 12104		19,0000 1000	
	440- '	GRID' 12104		19.0000 .0	
	~ 441- ***	GRID 12105	1-100		
	442-	CKID 12105	2 100 ,2400	.0	
	443-	GRID .12105	7 , 9100	.0 (.3000)	
	* 444- ~~~	CK 10 1510		مراق المنافر ا	شيفه فاعسب بمصماحة ومست
	445-	CKID . 13100		.4200 \1000 · · · · · · · · · · · · · · · · · ·	, ,
	446-	GRID 13101		.4200 .1000	
	447-	GRID *** 13101		-:4300,	
	446-	CKIU 13101		.4200/0	
**. *	449-	CK10 13102		15.0000 .1000	
	450- 1	GRID' 13102	2 .100 " " "42500"	سىمىسىمۇرىدىلىدىلىدىدىدىدىدىدىدىدىدىدىدىدىدىدىدى	

REPORT CASE (CHEST SEED TO DESCRIPTION OF PROPERTY PROPERTY.

1 CILLIA 25 + 1976 HASTRAN 3/11/78

			1	١ د		. ı	i	Į.	t	ţ;	L	k.	\mathbf{n}	A	ŧ	A		Ł	ι	н	U							
CAND																												
CBOGT	. 1	r	• •	*	٠.		4								•		1	•	•		ឋ	• •	4	/ D = "	10	J	•	
451-	64.16	15164	160			ć:			66.1				100												•			
47>-	UKID	131660	100		•	4:1	((I		60.0																			
٠٤٠٠-	LKID	121(22	-100				Lŀ		45.0				110															
454-	しんした	1311.24	110			. 2			49.1										•									
44.5-	68 L0	131639	106			25	G, G,		10.U	:00	Ú	. I o	ÚŲ															
456-	CKID	151(40	100			25	1.1		33.0																			
451-	6840	131645	11.0			25			15.0				JÜ															
456-	しんしい	131(46	100			25	(()		15.0	(10	Û	. U																
459-	GETU	131(51	160			25			• C			. 1 (uo															
~ 6.61-	CK 115	131625	100			21	ut		.0			. 0																
461-	(Î.1)	131027				46	(·U		ζu			. 10	00													-		
462-	UK10	131656				42	υù		. С			. (,																
	(અમાર્મ	Δ																										

VAL 25 A 4

TUTAL COUNTS 462

mburt (253 Trans) of a carre celler. See ju C24pre-Philoceson a conditional male

```
n kadskan syn bog bensord boom to kalluş
omapyare instruction
    'nÚ.
            1- PEGIN
2- PARAM
                                                                                     3 FILE
                             SLIVAL
                                                                                           77V.n.CARDIDIZO 1
                                                                                        4.1-Vanding 14.1/2/1994 4.1/2/19
            6 STIVAL
7 STIVAL
B STIVAL
                                                                                            //V.N.NUKGGA/1 4
            B SITIV
                                                                                            //v.li.mamchx/1-4
                                                                                          LEUNTTGEUNT, ZÖPÜ, LOCATR, GPOT, CSTM, NGPLŢ, STLZS, N. LUSETZOZS, N.,
NNGPDT-S
        10
                              Child
                                                                                           KEEKK (http://it.
       11
                              CÍ A
PAPANL
                                                                                          CLUBA APORATRAFUL A
PUBBANPRUSAAAAAAAAAAAA 4
                                                                                         SUPPLACE AND PARTY AND PAR
                               Clan
                               PAPAR:
      14
                              PL INSUY
                                                                                          EGETIL'SE SIN'SUSSELL SELLINGUMANCHALSERS (SEZELZ) SER SELL SZEN'S RÉTEN E CHARACTER LE SELLEN ESTEN SELL SELLEN ESTEN SELLEN SELLEN ESTEN SELLEN SELL
       16 .14617
       17
                             PLISCI
                                                                                        JUPPELOTAS

PETPAK, GPST 15, ELSETS $

PETST IAVA T

77 V TEPETPE G71. 7 VETSPETET /G S-

PT, JUMPPLOT 1
                              LHYAN).
        19
                               PFINSG
       20
                                 SI TÝAL
        žĩ
                               LLIND
                                                                                          22.
                               PLUT
      23
23
                               FRIMSU.
                                                                                          PLUIX1//4
                               LAIT
      24 25 4 77 16
                              LALLL
                                                                                           PIS
                                                                                           AMIARMINA A
                                                                                           GERMATERIAL CHIMENSELT OF TIVEN AND CHANGE &
                               413
                                                                                         ANDIAOBEENAL CONTROL OF THE LANGE OF THE PROPERTY OF THE PROPE
                               Child
                                  141.
    .29
                              Chini
                              . PAKAN
                                                                                      //DIAGUTE//97 %
ESTICSTM:PHT:UIT:OLUKE::/ALLH:ADICT:RELE:ADICT::/S:N:NUKUGA/
SIN:HUMGGA/O//C;Y:CUUFFASS %
RELM:KUICT !
MLTM:MUICT !
//DIAGUD//67 %
       11
                              Łtil
      33
25
                              CHKPHI
                            CHAPAT
       34
35
                            PARAM
                                                                                          KLEAZHUKUĞA 1.
      36 37 39 40
                               CHIAD
                                                                                           LERAF MUKUGA $
                                                                                          GPECTACHECT OF CENTER FOR DELICATION AS LENAN &
                              114
                                 Label
                                                                                          FEGANICHECK 1.
                               THIFTE
                                 Litte
                                                                                            GPLC1.HULC1.FELD.BUPD1.51L.C5TM/MCGX./-)/C.TiwlKA55*1. $
                               4.13
```

and the standard of the standard standard of the standard standard

RULL CZ., IIIASE ZE EFERÉEF CREEKE SIFEF CZ-PRE-PROCESSOR FROMERIC FOLE DATA

14 (64) - 25. 1976 - NASIKAN 3/11/7

MESSAULS FROM THE PUBL MUDULE

PLUTIER DATA

7,7

THE POLLUMING PLUIS APE FOR A NATIFET PLUITER

PARENE TE PAPER TYPE . VELLUM

Pth 1 % SIZE 1, BLACK HI 16 2 = SIZE 1, BLACK Pth 3 = SIZE 1, BLACK Pth 4 = SIZE 1, HEACK

ENGINEERING DATA

INTRODUCTION PROJECTION OF G.O. BETA OF U.O. ALPHA OF U.C., ARLS OF OR SYMMETRIC SCALE (INSECT-IN-PLOT STATE) OF A 41964PLOT

uktotn e - 20 • 2.4947726.01; 70 • -4.(000476-01 (Inche)

LIST OF PLUIS

PLUI I UNILFLAMED SHAPE.

REGAL CO.2 (Press .) to take to the total title to the Co-PKI-PMHOLOGICAL PRODUCTION AND ALLA MAIN

111111 29, 1976 HASIKAN 3/11/78

MESSACES FROM THE PEUT MUDICE

PESTTER DATA

THE FULLWARD PEUTS ARE FUR A NASIPET PEUTTER

PIPER SIZE . 21.3 4 20.0. PAPER TYPE . VELLER

Fin 1 - 514t 1, deach ten 2 - 514t 1, heach tin 3 - 514t 1, heach tin 4 - 514t 1, beach

ENGINEERING UATA

UNIMUGRAPHIC PRUJECTIUN
RUTATIUNS (DECRES) - GAPMA = -10.00, BETA = 20.00, ALPMA = -30.00, AJES = *2.*A.*Y. SYMMETRIC
SCALE (DBJECT-TU-PLUT S12E) = 3.645515E*01

PLOT 2 UNDEFLAMED SHAPE

```
to Print des tinde of total the test the test of the
```

CCIDEL 2545 1976 HASINAN 3/11/18

FESSAGES TRUE INC. PROF. MIGUELE

PEUTTER DATA

THE PULLBATEG PERTS AND THE A NASSPET PERTIES

PAPER SIZE . 20.0 A 20.0. PAPER TYPE, . VELLUR

111 1 - 5121 1, HEALT 1114 2 - 5121 1, HEALT 1116 3 - 5121 1, HEALT 1116 4 - 5121 1, HEALT

ENGINE BRING HATA

INTRODUCATION PROJECTION
RUTATIONS (DECREES) - CARMA - +10.00, DÉTA - 20.00, ALPRA - -30.00, AR.S - +2.+R.+Y. STPPEIRIC
SCALE (OBJECT-10-PLOT SIZE) - 5.25/930: -01

LIST OF PLUIS

PEUL 3 UNGEFIRMED SHAPE

```
MODEL CZ., GRASE OF LYTAYLE CRITICAL STEP CZ-PEL-PROGUSTON TRODUCT OUTF DATA
```

111101K 25, 1976 NASIRAN 3/11/78

BEASELS FROM THE PERF MUDULE

PLUTTIR DATA

THE PUBLISHING PUBLS ARE PUR"A NASIPET PUBLISH

PAILE SIZE . 20-0 A 20-0. PAPER TYPE . VELLUM

Ptr. 1 - 512t 1, III.ALR 111. 2 - 512t 1, III.ALR Ptr. 3 - 512t 1, III.ALR 111. 4 - 512t 1, III.ALR

ENGINIENING BAIA

ur trideraprite predection Relations (decrees) - campa - -10.00, beta - 20.00, alpha - -10.00, are - -2.00, are - -2.00, stry -

EIST OF PERIS

PLOT 4 UNDEFORMED SHAPE

. examinative subsection

MODEL C2.2 (PHASE 2) 13 LAYER CRITICAL STRIP C2-PRE-PROCESSOR PRODUCED BULK DATA UNDEFORMED SHAPE

2 WESHES I.II. AND III -18.28.-38 VIEW

MODEL C2.2 (PHASE 2) 13 LAYER CRITICAL SYRIP C2-PRE-PROCESSOR PRODUCED BULK DATA UNDEFORMED SHAPE

33-D VIEW OF ONE LAYER OF THE STRIP

MODEL C2.2 (PHASE 2) 13 'AYER CRITICAL STRIP C2-PRE-PROCESSOR PRODUCED BULK DATA UNDEFORMED SHAPE

MODEL CZ-Z (PHASE Z) DE LA BULK DATA
UNDEFORMED SHAPE

APPENDIX M SINGLE STRIP NASTRAN OUTPUT

MSC - 46

VIKSILA PAK 11. 1978

IBM 36C-370 SEKIES

KUDEL 65

MC1411 20, 1970 NASIKAN 3/11/16

NASIKAN EXECULIVE LUKINDE LIEK ELHU

IU CCCSISCC, STRESSES SUL 24 Time 29 UIAG B.14 UIAG CC CENU

Adding the same.

```
LASE
                                                                                                                                                                                                                                            LUNIKUL DECK ECHU
  CARD
   CUUNT
                                                        TITLE . COPPOSITE BRACKET MODEL CC.2 (STACK SED 2, PRASE 2) SUBTITLE . UNE STRIP ALUNG STR LINE with 13 UNECUAL LAYERS
                                                      $ UNLIKE MODEL CT KON, LUADS ARE NOW APPLIED AS & SUBCASES & WITH CORRESPONDING FOUNDARY CONDITIONS
                                                                                                           1014, 1015, 1021, 1022, 1021, 1028, 1033, 1034, 1039, 1040, 1045, 1040, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1051, 1058, 1051, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1058, 1051, 1051, 1058, 1051, 1051, 1058, 1051, 1051, 1058, 1051, 1051, 1058, 1051, 1051, 1058, 1051, 1051, 1058, 1051, 1051, 1058, 1051, 1051, 1051, 1051, 1051, 1058, 1051, 1051, 1058, 1051, 1051, 1058, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1058, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 1051, 
ULUAU • ALL
UISPL • ALL
SPLPUNCE • ALL
ESE • ALL
GPPUNCE • 1
                                                      SUUCASE 1
                                                                                LANEL . UNIFURM PULL, RSPLIRE FLEMS USED FUR PARADULIC DISIN
SPC . 20. BUISPL BUS FRUM CL RUN, SUBLUM 3 . HASMER . STM BUS
                                                    Subtable describe thore, kortine eing oben für fakab olden Spt. • 21 Buispl bis fruk Cl kun, Sublüm 4 • Mashem • oth bis begin bulk
```

		5	0 K 1 L	บ ย เ	L K . D .	A 1 A	LLHU			
LAND										
CHUNT	. 1	3	4	>	6	1	h	y	• •	10 .
1-	LBAK 1	•	25 l	1651	1052			4		
4-	CBAK 2	•	254	1625	1621			4		
3-	LBAK 3	Ŀ	<i>(</i> 51	156	1021			2		
4 -	CHEXA 1012	1	1015	1002	1014	1012	11010	11004	•	544
5-	• 29911014	11015								
6-	CHEXA 2005	ż	1012	1014	1021	1022	11012	11014	•	COL
1-	12011695	11055								
b-	CHEXA 2010	3	1022	1051	1051	1058	11055	11051	•	430
y-	+ 43011027	11050								
10-	CHERA 2015	2	1058	1551	1011	1034	11058	11051	٠	445
11-	• • • • • • • • • • • • • • • • • • • •	11034								
14-	CHERA 2020	2	1634	1033	1034	1040	11034	11033	•	560
13-	\$ 56011039	11040		1.4.	100			110.46		4.45
14-	CHL JA 2025	, , , , , , , , , , , , , , , , , , ,	1040	1634	1045	1046	11040	.11034	•	645
15-	02511045	11040	1046	1045	1051	1025	11046	11045	٠	640
16- 17-	CHERA 2010 • 65011651	11052	1070	1043	1031	1932	11010	11043	•	970
10-	CHEAA 3005	3	1052	1151	1051	1026	11025	11051	•	155
14-	15511057	11058	,,,,	,,,,		.070			•	
20-	CHERA 11012	11	11016	11009	11014	11015	\$1016	\$1004	•	300
21-	30021014	21015			••••	.,.,,				
¿¿-	CHERA 12005	14	11015	11014	11051	11022	41015	21014	•	401
23-	1 2017997	21022		••••				••••		•••
24-	CHEAR 1501C	12	11622	11021	11021	11028	61066	41041	•	431
45-	1 43121027	21026	*****	*****	••••					
26-	CHERA 12015	12	11026	11021	11033	11034	21079	11021	•	440
61-	49621033	21034	• • • • •			• • • •				
64-	CHERA 15020	16	11034	11613	11034	11046	21034	51077	•	201
24-	• 56141034	21040								
30-	CHEAA 14025	12	11646	IICAA .	11045	11046	21040	51078	•	666
11-	• 62621045	21046								
32-	CHERA 12036	12	11646	11045	11001	11025	21046	21045	•	641
33-	• 64151021	\$1025								
34-	CHLAA 13005	13	11655	,1021	11651	11056	21025	41021	•	126
15-	15621057	\$1028	_							
10 -	CHEAA 21012	51	51010	51404	21614	51012	11010	21004	•	101
à 1-	• 30131014	21012								
30-	CHEAN SYUGE	35	21015	41614	51051	51055	31012	21014	•	161
14-	+ 36/310/1	31055								
40-	CHERA SCOTO"		21122	21051	21021	51018	31022	31051	٠	436
41-	43231027	31059	cluch	15015	21015	430.44		21051		441
43- 43-	(HERA 22015 • 59/11814	54	21020	21621	21013	41024	31050	31051	٠	471
44+	€ € € € € € € € € € € € € € € € € € €	31U34	£1015	(101)	21039	21040	11034	31033	٠	564
45-	4 56531034	33040			* 1037	*****	3.034	3.033	•	702
40-	(HEAA 24025	36040	21046	41017	£1045	21646	31040	21034	•	661
41-	• 62/31045	31648		,		21070	2010		•	•••
40-	16022 AX 3H)	22	21046	61643	11001	41054	31046	31145	•	696
77-	69631021	11652	••••							
50-	CHERA 23UGS	23	21052	41651	21657	21656	11052	11051	•	151
	3,,,,,,,	••	• • • • •			3.00		•	•	

1:

		5	U K 1 t	t bu	LK U	AIA	LLHU			
LAKU										
CUUNI	. 1 }	ک و د	•• 4	>	6	•• (8	4	• •	10 .
21-	1 15731057	31028								
>2-	CHEXA 71015	31	21010	11107	21014	31015	41010	41004	•	302
53-	10141014	41015								
54-	CHEXA 32005	32	71012	11014	21051	21055	41012	41014	. *	364
55-	+ 36841021	41055							_	
>6-	CHEXA 35010	32.	31055	11051	31071	11050	41022	41051	•	433
51-	4 43341027	41620	440.00	4111.4		4 8 4 1 4 4				4.414
58-	CHENA JEUIS	36	71058	31021	21022	31034	41058	41021	•	478
54- 60-	+ 49841033 CHLAA 32020	41034	31034	11015	41049	31040	41034	41033	•	563
61-	CHLAA 32020 + 56341034	41040	21024	31033	21039	31040	41034	41033	•	203
64-	CHLXA JZUZS	36	31040	41634	31645	31046	41040	41034	٠	648
-10	• 62841045	41040	3.440	3.037	3,013	3,010	1.010	11031	•	***
64-	CHL XA 32036	32	31046	41045	31051	31025	41046	41045	•	643
65-	64341051	41052		*****		•••••	****	,,,,,		•••
66=	CHERA 33005	33	31052	11051	1105/	41058	41052	41051	٠	758
61-	15841057	41056								
68-	CHERA 41012	41	41016	41009	41614	41015	21010	21007	٠	دناد
64-	+ 30351014	51015								
70-	CHERA 42005	42	41615	41014	41041	41055	21012	51014	•	YOL
11-	1501021	21055			*					
12-	CHERA 42010	42	41022	41021	41621	#105#	21055	21051	•	434
13-	1 43421051	21058								
14-	CHE AA 42015.	42	41026	41021	41033	41034	21059	21041	٠	444
15-	• 44451033	51034								
16-	CHEXA 42020	42	41034	41011	41034	41040	51034	21077	•	>04
11-	+ +56451039	21040	•							
16-	CHEMA 42025	42	41040	41034	41045	41446	21040	21012	•	644
74-	• 62951045	51046								
#O-	CHE XA 42030	42	41646	41045	41651	41023	21040	51045	•	644
#1-	1 69451021	21025							_	
8%-	CHERA 43005	4.3	41025	41051	41051	41028	, 21025	PIOPI	•	154
83-	+ 15951051	51058		53000						404
84- 85-	CHERA 51012	51	21019	2100A	21014	21012	91019	PINNA	٠	304
86-	CHEAA 54005	25. 61012	51615	51014	51021	21055	61015	61014	٠	310
67-	1 201901	£1055	31013	21014	21051	21055	01013	01014	•	310
86-	CHERA SCOLO	25	. 21045	21051	51027	51028	61055	61021	•	435
87-	4 4 4 3 5 6 1 0 2 7	61058	2.046	,,,,,,	31061	21010	0.000	•	•	700
¥ú+	CHERA 52015	>2	51026	21021	51033	51034	01028	15016	•	500
91-	££U1400¢ •	61034	,,,,,	*****		****	*****	••••	•	,,,,
92-	CHENA PSUSO	54	51034	51033	51034	51040	61034	61033	•	262
43-	4 5656	61040						- • • • •	-	
94-	CHEXA 52725	54	51040	51015	51045	51046	61440	61079	•	634
45-	4.010010	61040								
46-	CHERA 52030	58	51046	51045	21021	. 51056	01440	61045	•	645
97-	• 69561051	61052		· · · · ·						
78-	CHERA 53005	5'5	51052	21021	5105/	51056	61056	91021	•	160
44-	• /6061057	61058								

				i Bu	ŁK U	A 1 A				
LAKU		•	nviř				FLHU			
COUNT	. 1 2	3	4	5	6	1	8	4		10 .
101-	305/1014	31012	••	•• •	•• •	•• •		••	••	
102-	CHE ZA 62005	62	61015	61014	61021	61022	/1015	/1014	•	3/1
103-	+ 37171021	71022	******	••••	J. 1-1.		*****	,,,,,	-	•••
104-	CHERA 62010	62	61022	61021	62021	61048	11022	11021	•	436
105-	436/1027	71026		••••						
106-	CHERA 62015	62	61026	61627	61633	61034	.11028	11021	•	501
107-	+ 50171033	71034							•	
108-	CHERA 6202D	65	01034	61633	61634	61040	11034	11033	•	>40
104-	+ 566/1039	11040								
110-	CHEMA PSUSP	62	61040	61034	61445	61649	11040	11637	•	631
111-	+63171045	71046				•				
112-	CHEXA PSOAD	63	61046	61045	61051	61025	11046	11045	•	649
113-	+ 64671051	11056								
114-	CHERA 63005	0.5	£1025	91021	16710	61058	11025	11021	•	161
115-	161/1057	11056								
110-	CHENY 11015	71	11016	VICOA	11014	11072	#1010	PIGGA	•	100
117-	+ 30681014	61012								
118-	CHENA 12005	76	11012	11014	11021	11055	81012	*1014	•	316
114-	4 37581051	61055	44							
120-	CHENA 14010	78	11755	11031	11621	11058	#1055	#1051	•	431
755-	+ 43/81027 CHEXA 72015	25 81058	11058	11021	11011	44044	M 8 45 414	****	٠	-04
123-	+ 50281033	81034	11050	11051	11033	11034	#105#	R1051	•	205
124-	CHE XA 72020	76	11034	11611	11034	/1040	#1034	61033	•	36/
125-	1 56181039	61040	11034	11073	11437	11040	41034	4.033	•	,.,
126-	CHENA 72 25	72	71040	11014	11045	/1040	81040	81039	٠	634
127-	63281045	81046	10070	*****	*****		4.010		•	***
120-	CHENA 72030	72	/1046	11045	/1051	11452		41045	•	671
129-	4 64781051	61052	*****	*****		,,,,,,		*****		•••
130-	CHEAA /3005	73	11052	11021	11051	11050	#1U52	14014	•	164
131-	1 76241057	#105#								
142-	CHERA MIOIS	81	#101¢	#100¥	H1G14	41015	AIUIP	41004	•	301
111-	• 30791014	41015								
134-	CHEXA M2U05	44	81012	#1014	11041	#1055	A1012	41014	•	213
135-	• 3/391021	A1055								
136-	CHERA #2010	78	#1055	#1051	81651	#105p	21055	AIOSI	•	438
131-	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A . 05A								
138-	CHENY RSOID	Hè	#105#	#1051	micii	41034	AIOSA	41051		503
134-	+ >01A1033	91034								
140-	CHENY MANSO	64	#1034	41033	#1014	#1040	41014	41011	٠	>64
141-	54891039	91040					** * ** * * *	4. 8 4. 444		
146-	CHERA BZUZS	#4	91040	RICIA	#1045	R1044	A1040	A101A	٠	611
143-	4 43391045	91046	41644	41615	M 1 () 5 1		44 \$ 44 4	4. 4 414 5		****
144-	CHEXA #2030	62 71052	81046	41642	#1021	PINPS	91046	41042	٠	648
140-	CHERA MIDDE	41025	01052	81051	B105/	#1//6#	41054	A1021	٠	163
147-	1 76391057	4102R	91435	4.031	81441	P1028	41034	*1031	•	107
148-	CHE XA 91012	91	41016	71607	91014	41015	101010	101004	٠	404
149-	• 3001U1014	101015	*****	*****	,,,,,	*****			•	300
150-	CHERA 92005	42	41015	41014	41051	91022	101012	101014	٠	314
		7-	*****	*****	*****				•	•••

		5	U K] Ł I		. K U .	A 1 A	LLHU			
CARU										
CUUNI	. 1	3	4	5	6	1	B	., 4	• •	10 .
151-	• 3/4101021	101022								
152-	CHERA 92016	92	41026	A1051	A1055	A1058	101055	101051	•	434
153-	1 20101651	101026								
1540	CHEXA ASO12	45	41048	41051	41011	71634	101058	101051	٠	504
155-	* 504101033	1(1634								
156-	CHEXA 92020	46	41034	41011	41014	41040	101034	tenini	•	>64
151-	• 204101034	101040								
158-	CHEXA 45052	45	91040	A107A	41045	41046	101040	101034	•	460
154-	• 634101045	101046								
160-	CHERA 92036	96	41046	41645	A10-1	71052	101046	101045	٠	644
161-	• 649101051	101625	4.1.05.1					14.146.1		
162-	COULY AK JHJ	93	21025	41021	A1021	71056	Infnas	101021	•	164
101-	CHEXW 101033	101058 101	14.1034	hr 3.30m	14 1016		111000	111000		44114
164- 165-	\$10101 AK4#1	111015	101019	101004	161014	101615	111010	111007	٠	304
100-	CHERA 102065	105	101015	161014	161021	101022	111015	111014	٠	315
107-	* 312111631	111022					*****	*****	•	717
104-	CHE NA 102010	162	101022	101021	101027	101026	111022	111021	٠	440
164-	440111627	111028	******				******		•	• • • •
1/0-	CHEAA 102015	102	101026	101027	101033	101034	111048	111021	٠	505
171-	+ >0>111033	111034	******		******		*****	*****		• • • •
112-	CHEXA 105050	102	101034	101033	161039	101046	111034	111033	٠	514
1/3-	+ 570111039	111640								
1/4-	CHEXA 104052	105	101040	101074	101045	101046	111040	111037	•	cto
175-	• 635111645	111046								
116-	CHEXA 105030	104	101046	101045	101021	101025	111046	111045	•	100
1/7-	+ 100111051	111025								
1/6-	CHENY 107002	103	101025	101021	101021	101628	111052	111021	٠	165
1/9-	165111051	1110>								
140-	CHEXA 111012	111	111016	11100A	111014	111012	151010	151004	٠	110
185- 181-	+ 110121014 CHERA 112065	1/1015	111015	111014	111021	111022	141615	171014	•	316
143-	1 230151051	121022	111019	******	******	******	161013	******	•	210
184-	CHERA 112010	114	111022	111021	111027	111660	121022	141041	٠	441
145-	441121027	121028	******	******		*****			•	***
106-	CHE NA 112015	114	111026	111621	111033	111634	121028	141041	٠	506
107-	+ 506121633	121034	*****	*****	*****			*****		
100-	CHEAT 115050	115	111034	111033	111039	111040	121034	121433	٠	571
187-	• 5/1121030	121040								
140-	CHENA 115052	115	:11046	111037	11145	111046	141640	141034	٠	610
141-	• 636121045	121046								
144-	CHENY 115070	115	111046	1110->	111021	111175	151040	141045	٠	101
143-	101121051	151025								
144-	CHEAA 1130L5	113	111025	111021	111051	1111728	151025	141021	٠	100
145-	100121057	151028	1 1101					h . h . her:		
141-	CHEXA 121012	131015	151016	151000	121014	151012	111010	111002	٠	211
148-	CHEAA 122005	131012	121015	121014	121021	121022	131015	131024	٠	311
144-	130151166	121022	46 1013	** ****		*****	131013		•	311
200-	CHENA 152010	122	141044	121021	121021	121046	131055	131061	٠	444
				******			4-1-0		-	

			2 H		60 L	K U A	1 A 1				
LAND											
501- 10041	1 1	2131627	131060	4	•• 5	6	/	8	· •.	• •	10 .
505-	CHEXA	122015	144	121028	121021	121433	121034	131059	131021	•	507
203-		7131033	131034			111033	111034	131060	131021	•	301
204-	CHEXA	122620	122	121034	141033	121039	121040	131634	131633	•	516
205-		2131639	131040				,,,,,,			•	-16
206-	CHEXA	122025	142	121046	121034	121045	121046	131640	111014	•	631
201-		7131045	131046		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		******			-	•••
208-	CHEZA	122030	122	121046	121045	141051	121025	131046	131045	٠	102
209-		1111021	131052								
210-	CHERA	123005	123	121052	141051	141051	121058	131052	131027	٠	101
211-	. 16	7131057	131056								
212-	CURDIC	100		.6700	.1700	.0	.6/00	.1/40	1.0	•	312
213-	. 31.	21.6700	.1100	.0							
214-	CURUZR	5 (*		. 0	.5	.0	.0	.5	• 1	+44	**ロペ*
215-	+COMP5#	.0	• 6	.0							
510-	CKDZFJ					_		456			
411-	CKID	451	100	.05	•0	• 1					
218-	CHIL	255	160	.05	•0	•0					
219-	CKID	1009		.6241	. 2720	.1000					
550-	CKID	1014		.6700	. 6420	.1000					
221-	CKID	1015		.6700	.4950	•¢					
223-	CHID	1017	100	.6500	.2950 15.0000	•0					
264-	CKIU	1055	100	.1250	15.0000						
225 -	CHID	1027	100	.1250	66.0000						
226-	CKIU	1026	160	1250	00000						
227-	CHIU	1033	100	.1250	45.0000						
558-	GRID	1034	100	.1250	45.0000						
554-	CHIL	1039	100	11250	0000.01						
230-	CHID	3040	100	.1250	00000 Ot						
231-	CKIU	1045	100	.1250	15.0000						
332-	CKID	1046	100	.1250	15.0000	•0					
213-	CHID	1051	100	.1250	•0	.1000					
234-	CKID	1025	100	. iżsu	.ŭ	. u					
532-	CHID	1021		. 1450	•0	.1000					
430-	CKID	1028		. 1450	• •	.0					
231-	CKIU	11004		16541	. 1650	.1000					
<38-	CKID	11014		.6100	. 1050	·1000					
63 9 -	CKID	11015		.biuu	. 1050	•0					
241"	CKID	11016	100	.6500	.1050	.0					
242-	CKIU	11055	100	.1350	15.0000						
643-	LKIU	11023	100.	.1350	£0.L000						
244-	CKIU	11026	100	.1350	60.0000						
745-	CKID	11033	100	.1350	45.0000						
246-	CHID	11034	100	.1350	45.0000						
241-	CKID	11039	100	.1356	30.0000						
248-	SKID	11040	100	1356	10.0000						
649-	CKID	\$1045	100	1150	15.2000						
250-	CHILD	11046	100	1350	15.0600						
						•					

				۵	UK	1 6	L	ŧ	ė u	L	ĸ	U	A	A		t (LH	U				
LAKU				-				-														
CUUNT	. 1	2	• •	3	• •	4			5		• •	6			1	•		병	 ,	7	 10	
251-	CHID	11051	100			1356		. C				000										
525-	CKID	11052	160		.1	350		.0			.0											
253-	GRID	11057				1050		.e			.1	000										
254-	CK+D	11056			. 8	1056		.0			. 0											
とうちゃ	CKIU	21065			, t	145		. : 1	150		.1	UUU										
256 -	UKIN	21014			. 6	700		. 11	らむ		.10	UUU										
651-	CRIU	21015			.t	700		. 41	ئادا		.0											
25b-	CKID	21016			. 6	500		. 11	150		.C											
259-	CKID	51051	100		.1	450		15.	.40	Ųΰ	. 10	000										
260-	6K1U	51055	100		. 1	450		17.	.00	ÜÜ	. (
301-	CRID	21027	100		• 1	450		60.	UU.	ÜÜ	.10	000										
264-	CKIU	51054	100			450		66.	, ou	UÜ	.0											
203-	CKID	21033	110			450		45.	. GL	ÚÜ	.10	CUU										
264-	GKIU	21034	100			450		45.														
302-	CKID	51032	100			456		JU.	UU,	UÜ	. 10	uuu										
266-	CKID	21046	100		. 1	450		10.	UU.	00	.0											
261-	CKIU	21045	100			450		15.	.00	ŲĈ	.10	000										
208-	CKIB	21046	100			450		15.	, cu	UÜ	.0											
204-	CKID	\$1021	100		• 1	450		.0			.10	CUU										
210-	CRID	21025	100			450		· C			٠0											
2/1-	CHID	11051			• H	1156		.0			. 10	UUU										
2/2-	CKID	51026				120		• U			•0											
213-	CKID	31004				541						UUU										
214-	CHIU	31014				100		. 16				UUU										
215-	UKID	11015				100		. 36			٠v											
210-	CKIN	31016				500		. 12			.0											
211-	CKID	31051	100			250		15.				000										
2 <u>1</u> 0 -	CKID	31055	100			550		is.														
274-	CKID	31327	100			220					- 10	UUU										
\$80-	CKID	31059	100			550		60.														
201-	CHID	11033	100			220					-10	UUU										
545-	CHIU	31034	100			220		45.														
243-	CKID	31039	160			550					.10	600										
284-	CKID	31040	100			220		JU.			•0											
542-	CRID	31045	100			550					.) (UUU										
466-	CRID	31046	100			550		15.	·UU	UU												
583-	CRID	11051	100			>>0		.0				000										
48#-	GRID	31058	100			556		.0			.0											
29U-	CKIC	31057				250		•0				OUU										
	GKID	31056				250					•0											
241-	LKIU	41009 41014				241		. 3 3				LUÚ										
494 -	CKIU					100						UUQ										
243- 234-	CKID	41015				100					'n											
242-		41016	100			200		. 22			-0	ann										
248-	6K10	41022				450		15.			.10	900										
540 -	GKID	41027	100			444		60.			.10	200										
590-	CKID	41026	100			65U		60.														
299-	CKID	41055	100			とうし					.11	.610										
200-	CKID	41034	100			650		45.														
200-	0.10	41034	100		• •	J)U		736	-	v	••											

SURIED BULK DAIA ELHU		# U L K	UAIA	FFH
-----------------------	--	---------	------	-----

			•	•											
LAKU		,	٠, غ	4	5	. 6	• •	- 1	• •	R	• •	7	• •	10	•
CUUNT	1	41039	ຳເບັ	1650	30.0000	. 1000									
301-	6810	41040	100	,1656	10.6000	.0									
305-	GHID	41045	110	.1650	15.0000	. 1000									
303-	CKIU	43046	100	.1650	15.0000	.0									
104-	GKIU	41051	100	1650	·u	.1000									
102-	GKID	41056	100	,1650	3.	.0									
306-	CKID	41057		.8350	.0	.1000									
101-	CKID	41056		.6350		.0									
10#-	CKID	21002		16541	. 1450	.1600									
304-	CKID	51014		.0100	.3450	.1000									
310-	CKIU	51015		.6700	. 3450	. 0									
311-	GKIU	21016		. 6500	. 1450	.0									
715-	CKIU	21051	.100	.1750	15.0000	.1000									
313-	GRID	21055	100	1750	15.0000	.0									
314-	CHIU	51027	100	1170	60.0000	.1000									
115.	CKIU	2105#	100	.1/50	00.0000	.u									
110-	CKID	51033	100	.1750	45.0000	.1000									
317-	CHID	51034	100	,1750	45.0000										
318-	CKID	51034	100	.1750	10.0000	.1000									
714-	CKIU	51040	100	.1750	0000.ct	.0									
340-	CKIO	51045	100	.1750	15.0000	.1000									
361-	CHID	51046	100	.1750	15.0000	.U									
355-	GKID	51051	100	.1750	.c	.1000									
343-	GKIU	21025	100	.1750	.0	.0									
324-	GRID	51057		.8450	. 0	.1000									
325-	CRIU	51058		.9450	. 0	.0									
326-	CKIU	61004		.6291	. 1550	.1000									
321-	GKIU	61014			ucct.	.1000									
320-	CKID	61015		.6700	ucet.	. 0									
324-	CKIU	61016		.6500	. 1550	.0									
331-	CRIU	41051	100	.1450	15.0000										
331-	GKIU	£1055	140	,1650	15.0000	.0									
333-	GRIU	61027	100	.1850	.0,000										
334-	CKIÜ	61026	100	.1450	•0.0000	•0									
135-	GRIŬ	61033	100	,1650	45,0000										
336-	CKIU	61034	100	.1650	45.0000	.0									
111-	GKIU	61039	100	.1620	10.0000										
33d-	GRID	61040	100	.1650	30.0000										
334-	LKIU	41045		.1450											
140-	GRID	61046	100	.1450											
341-	GHIU	61051	100	. 1820		. 1000	r								
342-	CKID	61052	100	.1850		•0									
343-	GKIU	61057		,6550		.1000	,								
344-	CKIU	61054		. 8550		•0									
345-	LHID	/1004		.6541		.1000									
340-	CRID	/1014	L.	700		· j coc	,								
341-	CKIU	11015		,6100		•0									
348-	CKIU	31016	•	,6500		.0									
349-	CKID	/1021	100	,3500			,								
350-	LKIU	11055		,1400	15.6000	, , 0									
474-		• - / • -													

15 F

\$

۵	U	ĸ	1	Ł	ħ		B	U	L	Ķ		U	•	'	•		٠	٠	••	_	
---	---	---	---	---	---	--	---	---	---	---	--	---	---	---	---	--	---	---	----	---	--

CARD					., 5 .,	. 6		- (• •	H	• •	y	• •	10	٠
CUUNT	, 1		. د	14.15	66.0000		••								
351-	CKID	11051	100	.1900	61.0000	Ü									
152-	CHID	1105P	100	.1900	45.0000	1000									
153-	CKID	11033	100	.1900	45.1000	٥									
154"	CKIU	11034	100	.1900	30,0000	1000									
355-	CKIU	11034	100	.1900	36.0000	. ù									
156-	CKIU	3104C	160	.1900		1000									
351-	CKID	11045	100	.1400		.0									
358-	rkid	11046	100	.1400	.c	1640									
154-	CHID	11021	100	.1400	.č	.0									
360-	CHID	31023	100	, 84.00	Ü	.1000									
361-	CKIU	11057		.8600	Č	.0									
165-	GRIU	11059		.6241	1166	.1000									
*****	CKID	61009		.6700	3100	. 1000									
-40t	CKID	61014		.6700	. 3 100	i.									
365-	CHID	41012		.6500	. 100	.0									
366 -	CHID	#101c	100	.2000	15.0000										
361-	CKID	P1051	100	.2000	15,0000	.0									
36 8 -	CHID	01035		.2000	00000	.1000									
304-	CKIU	#1053	160 180	.2000	60.0000	.0									
110-	CKID	#105#	100	.2000	45,0000	.1000									
371-	CKID	#1033		.2000	45.0000	.0									
-514	CHID	61034	100	.2000	16.0000	.1600									
373-	CKIU	81034	100	.2000	30.0000	.0									
314-	CKID	#104C	100	.2000	15.0000	.1000									
712-	CHIL	41045	100	.2000	15.0000	.0									
316-	CHID	#104¢	100	.2000	.6	.1000									
-111	CHID	81053	100	.2600	ï	٠,0									
314-	CHID	81025	100	. 6700	Ü	.1000									
317-	CHID	#1057 #105E		. 6700	, c	. U									
JM Q-	CHID	41002		1450.	. 1640	. 1000									
- 1 dt	CHIU	41014		.0100	uuat,	.1646	i								
JH6-	CKIU	41015		.6100	Oust.	۰.0									
14.1-	CRIB	41016		.6500	.1400	.0									
344-	LHID	41051	100	.2100	75.0000	·itot)								
J#5-	CKID	41055	100	.2100	15.0000										
180-	CKIU	41066	iio	.2100	60.0060	1 . 1000	į.								
381-	CKIU	41058	100	.2100	60.4000	• 6									
jku-	CKID	41033	100	.2100	45.0000	, 'Icai	,								
349 - 346-	GINS	91034	100	.2100	45.0000										
340-	CKIU	41034	100		10,000		,		•						
345-	CKID	41040	100	.2100) .U									
373-	CHIU	41045	tuu	*\$\$00		i .jeu	U								
373-	CKIU	91046	100	.2100			n								
377- 370-	GRID	91051	110	.2100		. 100	u								
340-	CKID	41025	110	.2100		.160									
391 -	CHIU	41057		.8806		.,,,,									
346-	CHIL	41056		.8500		. 100									
744-	CKIP	10100		.6271		.icu	ň								
400-	LHIP	10101	4	.6100	44.0		•								
744	••														

CAKU				• • •			• "	-			• •	•					
COUNT	. 1	ż		٠. د	4	5	• •	6		1	••	성	• •	y		10	
401-	CKID	101615	••		100	. 35(0	٠, ٥	-	• •	•	•••	•	• •	•	•••	•••	•
402-	GRIU	101016			500	.1900	.0										
403-	GKIU	101621	160		200	15.000		.34									
404-	GKIU	101022	166		200	15.600											
405-	GRID	101027	100		200	66.600		000									
406-	GRID	101028	100		200	60.000											
401-	CKIU	101627	100		200	45.000		טטנ									
438-	CKIN	101034	100		200	45.0000											
404-	GHIU	101039	100		200	10.000		000									
410-	GRIU '	101040	100		200	30.000											
411-	CKID	101645	100		200	15.000	.10	100									
412-	CKIU	101144	100		200	15.000											
413-	CHIU	101011	100	. 2	200	.c	.10	000									
414-	CKIU	101052	100		200	.0	. 0										
415-	CKID	101057			460	.0	.10	UU									
416-	CKIU	101656			400		. 0										
41/-	CKID	111609		.6	241	.4000	.10	UUU									
418-	CKID	111014		.6	700	.4000	.10	000									
417-	GKIU	111015		.6	700	.4600	0,										
420-	CK 1D	111016			UU	.4000	. 0										
421-	CKID	111051	100		300	15.000		100									
422-	GKID	111055	100		UU	15.000											
423-	CKID	111027	100		300	*******	.11	UQ									
424-	CKID	111658	100		300	40.0000											
445-	CKIU	111033	100		ivi	45.0000	.10	000									
446-	CKIN	111634	100		100	45.0000											
427-	CKID	111034	ļuo		300	10.000		100									
424-	CKID	111040	juu		400	10.000											
424-	CHID	111045	100		300	15.000		100									
430-	GRID	111046	100		JUU	15.0000											
431-	CKIU	111051	100			• C	.10	:00									
436-	CHIU	111025	100	.2		٠,٢	٠,٠										
433-	CHID	111657			UU	•0	.10	UQ									
434-	CKID	111056		. 99		•6	.0										
-ct.) -ot.p.	CKID	151064		,0		.4100	.10										
431-	GKID	121614			100	.4106	.10	UU									
-414-	ŭŔ i D	121015		40	100 100	.4100	.0										
434-	CRID	121021	100		100	.4100 35.0000	.0										
440-	GRID	121022	100		100	15.0000											
441-	CHIU	121027	ico		100	60.0000		na.									
442-	CHID	151058	100	. 24		60.0000											
443-	CRID	121033	100			45.0000		an									
444-	GRID	121634	100		UU	45.0000		40									
445-	GRID	121039	160			10.000		۵۵									
446-	CKIU	121040	ioo			0.0000		~~									
441-	CKIU	121045	100		·UU	15.0000		uu									
446-	CHID	121646	100	.24		וטטטנ. כו		~									
444-	CHIU	121011	100				.10	00									
450-	CHID	121052	100			Ü											
				•••		••											

226

15 B

			5 0	KILL	8 G L	K U A	I A L	Lnu		
CARU			•		•					
COUN I			. 3		•.• 5	6		6	4	10 .
451-	GKIU	121051		.4100	٠.٢	.1000				
454-	GKID	15102P		.9100	.c	٠.				
453-	GKIU	121009		.6541	.4200	. 1000				
454-	CKID	131014		.6706	.4200	.1000				
455-	CHIU	131012		.6766	.4206	٠,٥				
450-	GRID	131016		.6500	.4200	.u				
451-	CKIU	141021	100	.2500	15.0000					
458-	CKID	131055	100	.2500	15.0000					
454-	CKID	131047	100	.2500	.0.000					
460-	CKID	13105#	100	.2500	60.0000					
401-	GKID	131033	100	.2500	45.0000					
464-	CKIU	131034	100	.2500						
463-	GKIU	131634	100	.2500	10.0000	.1.00				
464-	CKID	131040	100	.2500	30.0000	•0				
465-	CKID	131645	100	.2500						
460-	CKIU	131646	100	.2500	15.666					
461-	EKID	141051	100	.2500	.0	.1000				
404.	CKIU	Scott	100	.2500	•0	•0				
469-	CRID	131657		.9200	. 0	.1000				
4/0-	FHID	191028		. 9200	• •	•0				
4/1-	MAIL	Y	3.45	1.45	0.0	4.			4 1 4 4 4 4 4	A A A A D D A A
412-	HAIY	1	3,19200	4.720.5	4,35713	• • • • • • • • •	'n	.0	2.11011	EL ASUUJ
4/3- 474-	41 4 5001		•0		• 6	1,144.4	.0	.0	.0	Frazons
4/5-	47 7005	2	1.172.0	.0	4.640.5	.0	6.000+>	.4	6.00516	
4/6-	4577421		.0	.0	.6	4.404.6	.0 .0		.0	ELASASZ
411-	1645452		.0	.ŭ	5.40/14	.0	6.25015	•0	••	
470-	PEAK	6	i	.01	.01	.01	.01			
414-	PSULIU	ī	ĭ	50	•••	•••				
480-	PSULIU	į	i	100						
401-	PSULID	3	i	Ü						
482-	PSULID	ī.	į	50						
403-	PSUL ID	iż	į	100						
484-	PSULIU	is	ž	Ü						
485-	PSULID	ä	ĭ	ŠÚ						
486-	PSULID	25		ìùu						
481-	PSUL LU	23	1	Ü						
488-	PSULIU	31	ž	ŠU						
489-	PSULID	32	5 5 5	100						
490-	PSULID	33	Ž	Ü						
443-	PSUL 10	41		÷0						
442-	+SUL III	46	1	100						
443-	Panl in	43	1	L						
494-		51	1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50						
445-	PSULID	>2	2	100						
440-		>3	2	O						
491-		61	1	5U						
444-		64	1	lub						
499-		63	1 2	t.						
500-	PSHLID	11	3	50						

and in the said the said of the said

			١.	U K 1	EU	LK				
CARD						•	, .			
CUUNT	. 1	2	3		4 5	••	6 7	8	4	10 .
201-	PSUL IU	72	2	106		•••	• • • •		•• •	10 .
502-	PSOL10	73	2	i						
504-	PSULID	81	1	50						
504-	PSULID	42	i	100						
505-	PSULID	8.5	i	i						
206-	PSULID	91	ž	ĖO						
507-	PSULID	42	5 5	100						
508-	PSULID.	43	ž	Ü						
509-	PSULID	101	ĭ	50.						
510-	PSULIU	102	i	100						
511-	PSULIU	103	i	i						
>12-	PSULIU	111		50						
513-	PSULID	iiż	2	100						
514-	PSULIU	113	5 5 5	6						
515-	PSUL IU	121	Ĭ	50						
516-	PSULIU	155	i	100						
511-	PSUL IN	123	i	ú						
514-	KSPLINE		i.0	1014	11014	163	41016			
519-	+5001	123	41014	123	51014	125	21014	143	21014	+5003
520-	+5101	123	#1014	123	vičis	151	61014	123	/1014	+2101
>21-	+5201	123	121014	123	131014	163	101614	152	111014	+>401
255-	KSPLINE		1.0	iuis	11015	12	-1015		4444	
563-		12	41015	12	21012		41015	14	31012	15004
526-	15102	iż	#1015	15	71015	15	61015	16	/1015	12105
525-		12	141015	iż	civiti	**	101015	14	111012	*> <uz< th=""></uz<>
526-	HSPLINE		1.0	1021	11051	121				
561-		123	41021	153	21051		41041	143	31051	*>014
548-		123	91051	123	51021	157	61031	163	11051	.2103
524-		123	121021	ies	131061	163	IFIFSI	157	111051	+5203
530-		5004	1.0	1022	11026	14	4341.4			
531-		12	41022	15.	51622	15	eluce	14	21055	+5004
>12-		12	91044	12	41655	15	61055	15	11066	+2104
533-		iż	121022	iż	111625	16	101035	14	111055	15204
514-		2005	1.0	iūzi	11051	121				
535-		123	41021	123	21051	123	1501	163	21051	•5005
-466		123	61651	123	41651	1.3	61021	143	11021	2102
531-		123	121021	153	111021		101651	157	111041	>40>
934-		5004	1.0	1024	11020	12	4 8 4 5 164		4 4 4 4 4 4 4 4	
-416		12	41024	12	21658	12	\$102 8	14	31050	*>000
340-		iż	#105A	iż	41058	15	61026	14	11028	>100
341-		iż	121025	iż	131026	14	101659	14	111058	2507
542-		2007	1.0	ius	11633	123	21633			
343-		122	41033	163	21023	153		163	31033	15007
544-		123	41033	123	41677	123	61033	163	11033	2101
545-		123	121011	ižš	111033	11.3	101011	157	111011	2401
546-		500b	1.0	1034	11614		410.46		20.00.00	
541-		12	41635	12	21074	15	41014	14	31034	15008
548-		iż	21014	12	91CJ4	15	61014	iš	11034	2100
>44-		ič	161034	iż	11111	••	101634	14	111034	2408
556-	KSPLINE !		1.0	1034	11034	123	41450			
	*********		•••	1254	11034	163	41034	163	21034	*>007

\$

		Sυ	h 1 t		K U-1				
CAND									
CUUNT	. 1 4	3	4	., 5	••	•• !	0	•• 4	10
551-	15009 123	41034	153	21014	123	61034	123	11034	2107
シンとー	15104 123	61034	153	21 C3A	153	101634	153	111034	2507
>>3-	•950A 753	151037	153	111017					
554-	KSPLINE 5016	1.0	1040	11640	12	21040	15	31040	+>010
555-	*5010 12	41040	12	51040	12	61040	15	11040	>110
556"	15110 12	81040	15	51C40	12	101646	14	111440	2510
55 1-	15210 12	121040	15	131440					
>>4~	HSPLINE DOLL	1.0	1045	11045	123	21045	163	21045	+2011
>>9-	+>011 123	41045	123	51645	123	1.1045	143	11045	2111
560-	15111 123	81045	153	41645	123	101642	164	11145	2411
561-	1551 153	141045	143	131645	_		_		
204-	MIPLINE SULL	1.0	1040	11646	12	51040	14	31040	+5012
-t <i>ac</i>	15016 16	41046	14	31046	12	61046	14	11046	2115
264-	12115	41046	12	41046	15	101046	13	111446	2412
565-	15 21241	141046	15	131446					
200-	KIPLINE SUIS	1.0	1051	11051	123	51021	143	14015	.2017
561-	+5013 143	41021	152	21021	157	61051	153	11021	2113
568-	15113 123	81051	163	41021	123	101621	143	111021	2613
564-	15213 123	151021	143	111021					
510-	KSPLINE SUI4	1.0	1025	11625	15	21056	14	11025	+>014
571-	+5014 12	41052	12	>1 C>2	13	61452	14	11025	>114
214-	15114 12	81025	12	41625	12	101624	12	111025	2614
5/3-	+5214 12	151025	15	131052					
5/4-	KSPLINE 5015	. 1.0	105/	11657	153	11021	163	15021	*>01>
5/5-	+5015 121	41051	123	21021	123	61057	123	11021	>11>
>70-	15115 123	81057	123	41021	123	101021	153	111051	つくりつ
511-	151 61561	141057	123	131057					
5/4-	HSPLINE SUIS	1.0	1058	11656	12	\$102F	14	7102#	.>010
574-	+5016 12	41058	15	>10>#	13	6.205#	12	11028	2110
540-	15116 14	おろりつか	15	41658	13	101028	14	111020	2516
541-	15210 12	151020	12	131050					
>42-	SEULP 251	1	257	6	1004	17	1014	20	
363-	7FOCH 1012	11	1010	30	1051	15	1055	30	
584-	250t 4JB3C	13	1050	14	1034	11	1034	16	
545-	SEACH JOTA	¥	1040	10	3645	1	1046	₩	
586-	SEULP 1U51	5	1025	•	1021	3	まのシャ	4	
561-	SEULP 31009	21	11014	45	11615	63	11010	42	
584-	2FACh 11051	25	11055	40	11051	21	1105#	44	
>44-	5tur 11033	54	11034	10	11014	31	11040	32	
540-	SEULP 11U45	33	11040	34	116>1	15	11025	36	
541-	SEULY 11057	31	11656	36	\$1004	34	21014	46	
245-	SEULP 21015	41	41010	40	41041	43 .	51455	44	
>43-	250Ch 51053	45	51650	40	21633	41	21034	48	
544-	SEGEP 21039	49	21040	50	21045	54	31040	36	
>4>-	SEUCP 21051	53	11052	34	41C21	>>	\$102#	20	
596-	SEGGF 31009	51	31014	ac .	11615	>9	11010	50	
591-	SEQUP 31021	61	31055	64	11027	6.5	71058	6.4	
598-	SEQUP 31033	65	31034	• 6	31634	61	31040	£ B	
599-	SEQUP 31045	64	31046	10	11001	11	21025	17	
600-	SEULP 31051	73	11058	15	41634	15	41014	16	

						K 11	ALA	t C n U					
LAKB						, ,							
LUUNI	. 1		••	3 4	>	6	••	/ ·· •		y			
£01-	SLUGP	41015	11	41616	16	41021	17	41066		7	••	10	•
£02-	SEUGP	41027	61	41028	95	41033	ذ ه	41034					
603-	SEUCP	41039	65	41040	86	41045	61	41046	54				
604-	SEULP	41051	84	41652	YU	41651	Ÿį		88				
1.05-	SERGH	21009	43	\$1614	76	21015	45	41958	72				
600-	SEULP	51021	97	51622	78	51061	77	21010	94				
603-	SLUUF	51013	101	51034	102	51037		2105#	100				
608-	SLUCP	51045	105	51046	106	51051	101	21040	104				
604-	SEULP	51057	109	51054	110	61009		21025	168				
610-	SEOUP	61015	114	61016	112	61021	111	61014	114				
611-	SEUCP	61027	117	61620	lie	61011	115	61022	110				
614-	SEULP	61034	izi	61640	144		117	61034	150				
613-	SLUGP	61051	145	61054	140	1045	163	61046	124				
614-	SEULP	71009	129	71014	112		151	91028	156				
615-	SEGLP	71023	133	11055	134	/1015	131	11016	130				
616-	SEULP	(1033	137	11034	130	11011	13>	11920	136				
61/-	36664	71045	141	11046	142	71051	114	11040	140				
-18-	SEUGP	11057	145	11656	146	#1C03		11025	344				
614-	SEULP	81015	149	91016	140	01041	147	W1014	150				
-053	SEUCH	41057	153	#101#	154	#1033		41055	156				
661-	SEULP	W1039	157	31040	150	#1045	155	#1034	156				
065-	SEULP	#1051	iai	91025	162	#1057	154	81046	100				
657-	SEGUP	91009	145	71014	ieu	41012	163	#105#	104				
664-	SEULP	41051	164	41033	110	71051	161	41010	100				
645-	SEULP	91033	1/3	71034	114	71037		31059	112				
626-	Stuce	91045	iii	41046	110	91051	1/2	31040	1 16				
627-	SEULP	91057	ini	71058	162	101004		41025	100				
628-	SEULP	101015	100	101016		161021	103	101014	100				
664-	SEULP	101047		101026	176	101033	ivi	101055	100				
-111	SEULP	101034	19.	101040		101045	145	101049	145				
-123	SEULP	101651	171	101054	190	10102:	177		3 76				
-513	Stucp	111609	201	11:014		111015	203	111016	200				
-116	SEULP	111621	205	1110.2		111027	201	111028	202				
-240	SEUGP	111033	209	111034		111039	211		209				
615-	SEULP	111045	213	111046		111051	<i>(</i> 1)	111025	414				
636-	Seuly	11105/	211	111056		121004	219	121014	216				
631 -	Seulp	151012	263	141016		131051	iii	151055	668				
しきねー	SEULP	121027	231	450151		121033	233	121036	234				
634-	Stulp	121039	234	121040		121045	643	121046					
640-	SEQCP	141051	247	141054		121051	444	141020	244 270				
643-	st ult	131069	261	131014		131015	623	etuiti	255				
642-	SEULP	121051	264	131062		131061	133	111668	234				
643-	SEULP	131633	221	131034		131034	241	131000	242				
644-	2 t UCP	131045	245	131046		141051	251	131056	656				
645-	it ult	121051	255	111658	254		•••	131436					
640-	SPC	å.	1014	i	-4.346-5	1614	6	-1.006-					
641-	SPC	i	1014	š	1.52E-0	, - • •	•	- 11006	•				
548-	SPL	1	1015	i	-4.10t-5	ei ei		-4.146-					
644-	SPC	ı	1021	i	-7.0/E-5		÷	** . 10t -					
650-	SPL	1	1051	š	1.756-6	•	•		•				

\$

			5 U	A I E	L BULK U	AIA	FLHU			
CAKU										
CHUNT	. 1	••	2 3 .	. 4	5 6	• •	1 #	9	10	•
651-	SPC	1	1055	1	-1.076-51022	2	ーと・しはヒーツ			
652-	SPC	1	1027	1	-1./4E-4102/		-J.87E-4			
653-	SPL	i	1027	٤	1.241-1					
654-	SPL	ì	1026	1	-1./1t-41U2W	Z	J./5t-4			
675*	SPL	i	1033	i	-2.146-41633	Ž	->.U4E-4			
656-	SHC	ì	16.3	š	-1.01L-L	-				
651-	SPC	í	1034	i.	-2./81-41034	Ł	-4.701-4			
658-	SPC	í	1039	i	-1.85L-4103Y	ž	-2.456-4			
659-	SPC	· i	1039	Š	•4.501-6	•				
660-	SPL	i	1040	Ĭ	-3.921-41040	4	->.846-4			
001-	SPC	i	1045	ì	-4.916-41045	ě	-6.301-4			
-500	SPL	í	1045	ذ	-1.JUE-6	•	******			
-600	ŠPČ	i	1046	ĭ	-5.001-41046	4	-6.281-4			
664-	SPC	i	1051	ř	-2.416-41051	ž	-0.456-4			
005-	SPL	i	1051	ž	-1.261-6	•	•••••			
006-	ŠPČ	i	1052	ĭ	-5.88t-41L52	4	-0.432-4			
10/-	ŠPČ	i	1627	ĭ	-1.001-1105/	ž	-0.5UE-4			
668-	SPC	i	1057	ž	-3.6/6-6	•				
664-	SPC	i	1450	ĭ	-1.01E-31054	Z	-6.546-4			
670-	ŠPČ	i	131014	ĭ	4.48E-5 131014	ž	-1.526-4			
671-	SPL	i	131014	i	5. MUE + 6	•	******			
6/2-	SPC	i	131015	ĭ	2.426-5 131015	2	-1.10k-4			
613-	SPL	i	131051	i	3.44E-5 131UZ1	ž	-J.58E-4			
614-	SPC	i	131021	š	6.81t-6	•	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
L/3-	SPC	i	131022	ĭ	4.951-5 131022	ż	-1.112-4			
616-	ŠĖČ	ĭ	131027	i	1.5/6-5 13102/	نے	-5.436-4			
671-	SPC	ĭ		ذ	1. 136-0	-				
678-	SPC	i		ĺ	1.50t-6 131020	2	-5.JUE-4			
614-	SPC	i	131033	1	-4.336-5131033	3	-1.142-4			
£#U-	SPL	1	131033	3	-4.846-6					
- [1	SPC	ì	131034	1	-1.016-4131034	4.	-/.llk-4			
442-	SPL	i	131034	1	+t.43t-4131U34	2	-8.51E-4			
	SPE	ì	111014	3	-1.061-5					
464-	SPL	i	131040	ì	-4.516-4131040	2	0.406-4			
682-	SPL	ı	131045	1	-4.176-4131045	4	· -4.31E-4			
£#4-	SPC	1	111045	3	ー】・ケンヒーン		•			
LB] -	246	1	111646	1	-4.216-4131046	3	-4.616-4			
644-	SPC	1	141051	1	1401614-41216.	2	-4.605-4			
C#4-	SPC	•	131021	3	-1.5lt->					
640-	SPC	ı	131025	ì	->.446-4131452	3	・ソ・コノヒ・ リ			
041-	SPC	1	121021	ì	-1.006-3131051	4	-4. 10E-4			
645-	SPC	ı	121051	3	-1.36k-5					
647-	SPL	1	141050	1	-1.016-3131050	6	-4.146-4			
644-	SPC	3		l	-1.146-51014	4	-4.11E-0			
647-	SEC	3	* - * -	3	4.40k-0					
646-	SPC	\$	1015	l.	->.>AF-0101>	6	4.U3k-6			
641-	SPL	8		ì	-5.354-21041	4	-1.10E->			
648-	SPL	š	,	3	4.41t-0					
644-	SPC	3	10.5	ŀ	-1.451->1655	ę	-4.562-0			
700-	SPL	Z	1027	ı	-4-116-21051	ě	-3.1/6-5			

ž

			5 (JKIL		LA U	AIA	ECHU				
LAKU												
CDUH 1	. 1	• •	7 3	4	>	6	1	8	• •	y	10	•
101-	SPL	Z	1021	3	1.656-	٥						
102-	SHL	2	FOSH	1	-3.74k	-つしいより	Ł	-2.998	:-5			
103-	SPC	2	1033	1	-t.65t	-516.33	•	-4.948	:-5			
104-	SPC	2	1033	3	1.2/1-	b						
105-	SPL	2	1034	1	-6.566	-51034	2	-4.861	-5			
706-	SPC	2	1034	i	-1.UUE		Ž	-0.461	-			
101-	246	2	1039	3	8.15t-	1						
104-	SPC	2	1040	1	-1.01t		2	-6.408	-5			
104-	SPC	2	1045	i	-1.40t	-41045	ě	-1.231				
/10-	SPC	2	1045	٤	1.4UL-		-	****	-			
711-	SPC	ž	1046	ĭ	-1.4UL		2	-1.211	- 5			
712-	SHL	Ž	1051	i	-1.4ct		4	-1.181				
713-	SPC	ě	1051	j	8.64L-		-					
114-	SPC	ž	1652	ĭ	-1.4/6		ż	-1.151	. • 5			
115-	SPL	ž	1057	ì	-4.91E		ž	-4.126				
116-	SPC	ž	1057	3	2.11t-		•	*****	•			
117-	SHL	ž	1050	7	-4.946		2	-4.106	• 5			
110-	SPL		131014	i		3 131014	-	-1. /UE				
114-	SPC	5	131014	j	-1.10t		•		. •			
120-	SPE	ž	131015	ī		. 131015	2	-1.645	• • •			
141-	SPL	ž	131021	i		131021		-5.146				
122-	SPC	į	131021	٤	-1.0/E		•	71146	, - 🛩			
123-	ŠŁĹ	ž	131022	7		1 1 1 0 2 2		-4. HBt				
124-	SPL	ž	131027	i		131021	_	-4.U/E				
135-	SPC	ż	131021	j	-1./0E		•	- ,,,,,,				
126-	346	ž	13105#	i		. 13105#		-8.696	- 5			
141-	SPE	ž	131033	i		6131033		-1.406				
12u-	SPE	ž	131013	i	· ¿ . ¿¿Ł		•	- 11.406	•			
124-	SPL	ž	131036	ĭ		.6131034	2	-1.346				
130-	Sři	ż	131039	•		4401414		-1.446				
111-	SPE	Ž	131039	j	-/.Hbt		•	- , , , , ,	•			
732-	ŠÝČ	Š	131040	ĭ		.2131040	2	-1.47E	- 4			
133-	ŠPĽ	ž	131045	i		.4131045		-2.JUE				
134-	ŠPČ	ž	131045	j	-3.316		•		•			
735-	ŠÝĽ	ž	131046	ĭ		4131046		-2.JUE				
116-	SPL	5	141051	i		4131051		-2.516				
131-	SHC	;	131051	į	-1.556		•					
134-	SPC	•	scolei	ĭ		4131052	4	-4.54k	- 6			
139-	SPČ	ž	151057	i		4111057		-2.836				
140-	SPL "	ž	131057	ذ			•		•			
141-	ŠPČ	ž	131050	ĭ		4131058		-2.83E	*4			
142-	SPCI	iv	3	1015	1655	1038	1034	1040	1046			
143-	SPLI	iý	š	1052	1058		••••	••••	••••			
144-	SPCI	İŸ	š	11015	11022	11628	11034	11040	1104	•		
145-	SPLI	iv	š	11056	11056		••••		••••	•		
146"	SPLI	ĬŸ	.3	41015	41622	21020	21034	41040	2104			
141-	SPCI	ĬÝ	Ë	\$1056	21C2H	3	••••			-		
148-	SPCI	iv	٤	31015	\$1022	3102B	31034	31040	3104	b		
144-	SPCI	19	š	11057	11058					-		
750-	SPLI	19	3	41015	41022	41028	41034	41040	4104	•		

				SUKIEL		. K U /	A I A	ELHU			
CAKU											
CUUNI	. 1	• •	¿	3 4	5	6	7	8	5	. 10	
151-	SPLI	14	3	41052	41056						
752-	SPC1	19	3	,51015	21055	21058	21014	51040	51045		
153-	SPCI	14	3	51052	51C58		. •				
154-	SPCI	ĬŸ	3	61015	91C55	61058	61034	61040	61040		
755-	SPCI	19	3	61655	01670	- -					
156-	SPLI	19	Š	/1015	11022	111:28	/1034	11040	71946		
151-	SPC1	19	3	(1052	11056						
758-	SPCI	19	3	61015	#1C55	#1C5#	81034	81040	61046		
154-	SPCI	19	3	81052	BICSB		-	-			
160-	SPLI	19	3	91015	41022	A1058	71034	91040	41046		
761-	SPLI	19	3	91052	91 C5#						
162-	SPCI	19	3	101015	101025	161058	101034	101040	161046		
161-	SPLÍ	19	3	101052	101058						
764-	SPLI	14	3	111015	111055	111158	111034	111040	111040		
765-	SPCI	19	3	111052	111158						
766-	SPCI	19	Š	151015	121022	121028	121034	121040	121040		
767-	SPEI	14	3	141025	121058						
164-	SPCI	14	3	131015	191022	131058	131034	131040	131446		
164-	SPLI	19	j	SCULLE	111058						
170-	SPC 3	14	125	1009	1616						
771-	SPLI	14	123	11604	11016						
172-	SPU i	14	123	21004	51C1F						
173-	SPCI	19	123	41004	41016						
114-	24C F	14	123	41004	41016						
115-	SPCI	17	163	21007	51G: b						
7/6-	SPLI	14	123	61004	61610						
1/7-	SPC 1	14	113	11007	11016						
114-	SPL 1	14	123	#1004	#101P						
114-	SPC 1	14	123	41004	41016						
/40-	SPLI	14	163	101004	101010						
191-	SPLI	14	173	111009	111010						
185-	SPCI	14	123	131004	151019						
783-	SPC1	14	123	400161	131016						
764-	SPCAUU	20	1	14							
745-	SPCADU ENUUATA	31	5	19							

1014L -00H1- 785

Ì

Quantities and production of

Ť.

```
NASIKAN SUURCE PRUGRAH LUMPILATIUN UMAP-DMAP INSTRUCTION .
 NÜ.
      BEGIN
                 NU. 24 LINEAR STATIC ANALYSIS 7 JUN 1976 1
     PARAM
FILE
                 //DIAGUN//47 &
GM-SAVE / KNN-SAVE / MNN-SAVE &
     FILE
                 GG-APPEND/PGG-APPEND/UGV-APPEND $
     SETVAL
SETVAL
SETVAL
                 //V.N.CARUNG/O $
//V.N.HUU5/1/V.N.NUHUU/-1 $
                 //V.N.NUKGGA/1 4
                 //V.h.humGUX/1 &
                 GEUMT GEUMZ, /GPE, EQEXIN, GPDT, CSIM, BCPDT, STE/S, M, COSET/U/S, N.
      641
                 NULPDI &
 10
11
12
13
      LUNU
                 KEEKKINGGPUT S
     UP2
PARAML
                 GEUM2.EGEXIA/ECI S
PCUB//PRES///V.N.JUMPPEUI S
      CUND
                 P1.JUMPPLOT &
      PAFAH
                 //UIAUOFF//47 $
                 GEURZ.ECT.EPT.SIL.EGEXIN.BCPUT/PECT.PSIL.PEGIN.PBGPUT/S.N. NHBUT/C.T.PESN-NU $
      PLTHBUY
                 FREX IN . MEDINANHADASECT ' MECINWHANA NACHAT ' MACHATAWAA SIC' MSIC'
 16
      FULIA
                 NHLUY &
 17
    PLISET
                 PLUB, PEGIN, PECT/PETSETA, PETPAR, GPSETS, ELSETS/S, M, MSTE/ S.M.
                 JUMPPLUI $
PLIPAK.GPSEIS.ELSEIS $
 19
      CHRPNE
     PP 1MSG
SETVAL
                 PL1541X// $
                 //v.n.pliflg/1 / v.n.prile/0 & Pi,Jumpplu &
 51
51
      LUND
                 PLIPAK.GPSEIS.ELSEIS.CASECC.PBGPUI.PEQIM.PSIL..ECI.. 'PLUIXI/
     PLUT
                 NSIL/LUSET/S.N.JUMPPLUT/S.N.PLTPLG/S.N.PFILE & PLUTX1//8
 23
24
25
     PRINSL
                 PI 8

//HIAUUN//47 8

GLUMS/EUERIA/GEUMZ/SLISETT/O/V.A.MULKAV/O 8
     LABEL
     FARAN
GP3
CUNU
 26 27 24
                 LHUUS, MUUS &
                 .ECI.EPI.BUPUI.SIL.EII.CSIM/ESI..GEI.GPECI./Y.N.LUSEI/U/
NUSIMP/I/S.N.NUGLML/S.N.GENEL 8
LSKPEHG.NGSIMP 8
      IAL.
 30
30
29
     LUNU
                 PARAM
ENL
     CHRPNI
CHRPNI
PARAM
                 KELM, KUILT &
 12
24
24
24
26
16
17
18
                 HELMINUICT &
//DIAGUN//47 &
     PURGE
                 KLUZ/NUKLGZ S
      LUNU
                 LEMAR . NUKGLA &
                 GPECTIKUICTIKEEMINGPUTISILIESTM/KGGA. A
     EHA
                 LEMAR &
      LAbtL
 19
      PURGE
                 HULX/HUHULA &
                 LMUDS.NUMGER & GPECT.MDICT.MEEM.BGPD1.SIL.CSIM/MGGR./-I/C.T.WIMASS-1. &
     LUNU
 41
     LKA
      LAFEL
```

CUMPUSITE BRACKET HUDEL CZ.2 (STACK SEQ 2, PHASE 2) UNE STRIP ALUNG STR LINE WITH 13 UNEQUAL LAYERS

A DISPLACEMENT SET

-1- -2- -3- -4- -5- -6- -1- -8- -9- -80-

COMPUSITE HEACEST MIDIS (2.2 ISTACE SEC 2, FRASE 2) UNE STRIP ALUMO SYM LINC WITH 15 UNICIDE CATERS

Little Medican avit to 40114

DISPLACEMENT SET

THE USER INFORMATION NESSAGE 3035 FOR DATA BEDEK. REE

3

1

LDAD SLU. NU. EPSILUN SIKAIN ENEMLY EPSILLNS LAPUEN INAN.UUI AKE PLAUEU BIIR ASIEKISAS 2 -1777/018041-16 4.3485531-01 COMPUSITE MMALKET MOUTE C2.2 ISTACK SEQ 2, PHASE 2) ONE STRIF ALONG SYM LINE MITH 13 UNEQUAL LAYERS

UNIFORM PULL. REPLINE ELEMS USED FOR PARABOLIC DISTR

SUBCASE 1

			01571	ACEMENI	V E C 1 U K		
PUINT IU.	1446	11	12	13	k1	k2	k3
551	``G	-5.8449786-04	-6.4454201-04	-1.2588536-06	C. U	U.U	U.U
252	Ğ	-5.8450156-04	-6.4345731-04	· 145288E-09	0.0	0.0	0.0
1009	Ğ	0.0	0.0	U. C	0.0	0.0	Ü.Ü
1014	ĭ	-4.340000L-05	-1.C8C000E-04	1.5144446-06	0.0	0.0	0.0
1015	Ğ	-2.1000001-05	-4.140LUOE-05	0.0	C.0	0.0	0.0
1016	ŭ	0.4	0.0	U.0	6.0	U.U	0.0
1051	ŭ	-9.0699991 -05	-2.360000E-04	1.9499996-06	0.0	0.0	0.0
1022	Ğ	-7.684999t-05	-2.060000t-04	0.0	0.0	0.0	0.0
1027	ŭ	-1.740000t -04	-3.885499L-04	1.2200LCt-01	0.0	0.0	0.0
1028	Ğ	-1.710000E-04	-3.14999nt-04	U.O	0.0	0.0	0.0
1033	Ū	-2.140000t-04	-5.035999E-04	-1.629995L-06	0.0	0.0	0.0
1034	Ğ	-2.179998t -U4	-4.9/9998E-04	0.6	C.0	0.0	0.0
1639	Ü	-1.8499996 -04	-5.8495981-04	-2.5CUUUOL-U6	0.0	0.0	0.0
1040	Ü	-1.920000t-04	-5.8199981-04	0.0	0.0	0.0	0.0
1045	Ğ	-4.9099981-04	-6.2999998-04	-3.3C00C0t-Ub	C.0	0.0	0.0
1046	Ğ	-4.999998t-04	-6.274449E-04	0.0	0.0	0.0	0.0
1651	Ğ	-5.8099981-04	-6.4499981-04	-1.2544556-06	0.0	0.0	0.0
1052	ĭ	-5.814448t-04	-6.4244486-04	0.0	6.0	0.0	0.0
1057	ŭ	-4.595555 -04	-6.5999991-04	-1.6644446-00	0.0	0.0	Ŭ.Ŭ
1058	Ğ	-1.010000t-03	-6.5494491-04	U.C	0.0	0.0	0.0
11004	Ğ	0.0	0.0	0.0	0.0	ŭ.ŭ	0.0
11014	Ğ	-4.1796871-05	-1.115200E-04	1.5411426-06	0.0	0.0	0.0
11015	ĭ	-2.01/8446-05	-4./36/98E-05	0.0	0.0	0.0	0.0
11016	ŭ	0.0	0.0	0.0	0.0	0.0	0.0
11621	Ğ	-8.9224601-05	-2.4292/31-04	5.0383356-06	0.0	0.0	0.0
11022	Ğ	-7.796641E-05	-2.1549786-04	0.0	0.0	0.0	u.u
11027	Ü	-1.7174261-04	-3.438915F-04	1.4032161-01	0.0	0.0	
1102	č	-1.69144CE-U4	-3.802238E-04	0.0	0.0	0.0	0.0
11033	Ü	-2.71/75bt-04	-2.8022386-04	-1.0997218-00	0.0		0.0
11034	i	-2.758952E-04	->.U298401-04	0.6	0.0	0.0 0.0	0.0
11034	ŭ		-5.4014446-04		0.0		0.0
11040	. 6	-3.824554E-04 -3.89466E-04	-5.8710391-04	-2.6412251-00	0.0	0.0	0.0
11045	ŭ					0.0	0.0
11046	ĭ	-4.848591L-04	-6.334516E-04	-3.47443/1-06	U.O	3.0	0.0
11051	ĭ	-5.4044756-04	-6.507/51E-04	-3.47-/651-06	0.0	0.0	0.0
11052	ŭ	-5.6777756-04	-6.4H7U64E-U4			0.0	0.0
11057	Ğ			0.0	0.0	0.0	0.0
11054	Ğ	-4.5444436-04	+0-457434E-04	-3.8504861-06	0.0	0.0	0.0
	ü	-j.010000f-03	-6.6472528-04	0.0	0.0	0.0	0.0
\$1004	Ğ	0.C -3.734#74E-05	0.0	0.0	c.u	0.0	0.0
21014	Ü.		-1.150400E-04	1.617045F-00	0.0	0.0	0.0
21015 21016		-1.7878405-02	-5.333601E-05	0.0	0.0	0.0	0.0
	Ļ	0.0	0.0	5.6	0.0	0.0	0.0
15015	i G	-#-553398-05	-2.513321E-04	2.283435E-06	0.0	0.0	0,0
51051 51051	ü	-1.216063t-05	-2.24301Ct-04	0.0	0.0	0.0	0.0
	Ğ	-1.62/4531-04	-4.0261401-04	1.9115136-01	0.0	0.0	0.0
5/05#		-1.608035E-04	-3.8414201-04	0.0	0.0	0.0	0.0
21033	ts G	-2.6316491-04	-5.2031/8k-04	-1.3413ACF-00	3.0	0.0	0.0
21034		-2.6750126-04	-5.1425848-04	0.6	0.0	0.0	0.0
21039	6	-3,/605081-04	-6.0370/5t-04	-1.055145F-06	0.0	0.0	0.0
21640	ı	-3.8310891-04	-6.6056411-04	0.0	0.0	0.0	0.0

CORPUSTIE BRACKLI MUDEL CZ.2 (5'ACF SLQ 2, PHASE 2) UNE STRIP ALUNG SYM LINE MITH 13 UNICUAL LAYERS

UNIFORM POLL. RSPLINE ELEMS USED FOR PARABULIC DISTN

ţ

1

PARCAPE 1

		FUKCE	5 UF 51	N G L E - P U 1	N 1 C U N S	1 K & 1 K I	
PUINT TO.	ITPE	11	12	13	k1	K2	Kå
251	, , i =	o.u	0.0	u.u	-1.9525581+00	-1.0061081-02	1.4644181+00
252	ŭ	0.0	0.0	Ü.Ü	-1.4525586 100	-J. JJ1241t-05	-1.464418E+UU
1009	Ğ	6.92448/1+00	1.01964/1400	2.#15616E-U1	6.0	0.0	U. U
1014	Ğ	-8.5938261-01	-1.175184E+00	-2.5332226+00	-3.23//UBE-UZ	0.6	0.U45841E-U4
1015	Ğ	8.5666561-01	6.137/34E-01	6.2634191-01	C.O	0.0	4.824886E-02
1016	Ğ	6.592603L+00	9.519511E-01	3.280184E-01	6.0	0.0	U.U
1021	Ū	-3.235127E+00	-8.454262E-01	-1.831/aCE+CO	-1.133581L-04	4.64516/1-03	6.345388E-UZ
1622	Ü	-3.360303£+00	-1,422837E-01	4.215069L-01	0.0	U.U	1.1551381-02
1027	Ü	-3.011029E+00	-1.3/4071E-01	-4.160/286-U1	-4./146081-03	2.1220141-03	6.98450BE-02
1020	Ğ	-3.560824E+00	5.264440E-01	1.4634631-01	0.0	0.0	8.424664E-02
1033	Ü	-1.3446741+00	3.0838011-01	-3.575627t-U1	1.1/20/41-04	-1.1/21141-04	4.642190E-02
1034	6	-1.4645681+00	1.0315216+00	5.4580C3E-UZ	0.0	0.0	6.8U3632E-U2
1639	ı	-8.6704911-01	6.4775156-01	-1.2746741-01	8.161157E-05	-1.4138651-04	4.2811261-02
1043	ü	-1.0589696+00	1.0114671+00	-1.4666U5E-U2	0.0	0.0	5.433124E-02
1645	Ü	-4.623004E-01	8.5971026-01	8.22/8816-04	-2.17263/E-U5	8.1J85UUL-U5	3.4/6006E-02
1046	Ü	-1.6650561-01	1.4548071+00	-5.9144156-02	0.0	0.0	5.56564E-UZ
1051	L	4 , 264554 t =01	-3.8009/21:01	50-3tc4830.Y-	0.0	-1.341/171-03	1.5444531+00
1625	Ł	-1.0110301-01	4.0826126+01	-1.0356341-01	C.0	4,06444226-03	-1.360413E+00
1051	4	10-4172286.2	-5.3043484400	3.4448826-02	6.0	->.582104t-U4	1.0476041-02
1058	Ü	-4.153257£-02	-1.8436281+00	-1.4365246-01	0.0	U.U .	と・1147546-02
11009	ı	6.443345F+00	7.3046431-01	1.4833331-03	C. 0	0.0	0.0
11015	L	0.0	0.0	6.401141F-01	0.0	0.0	0.0
11016	Ü	7.2022346+00	6,170155E-01	10-34L6058.8	0.0	0,0	0.0
11055	Ü	0.0	0.0	0.901310F-01	0.0	0.0	0.0
1105#	6	0.0	0.0	4.00/12EE-01	0.0	0.0	0.0
11034	Ü	0.0	0.0	5.1214146-01	0.0	0.0	0.0
11040	G	0.0	0.0	4.1755648-05	Ç.0	0.0	0.0
11046	G	0.0	0.0	1.4761356-02	0.0	0.0	0.0
11025	G	0.0	0.0	-4.463040t-UZ	0.0	0.0	0.0
11058	Ğ	0.0	0.0	-3.630A7 SF-05	0.0	0.0	0.0
21009	ن	6.111043F +00	7.265/646-01	-2.2305166-02	c.0	0.0	0.0
21015	Ģ	0.0	0.0	6.1: /8436-01	0.0	0.0	0.0
\$1016	ب	6.2691701+00	8.4449656-01	8.104614F-01	0.0	0.0	0.0
\$1055	Ú	0.0	0.0	9.590105F-01	0.0	0.0	0.0
21028 21634	Ü	0.0	0.0	3.7352011-01	0.0	0.0	0.0
21040	ŭ	0.0	0.0	2.05/0/71-01	0.0	0.0	0.0
21646	Ü	0.0	0.0	9.25/49GE-02 2.204135E-02	C.Q O.O	0.0	0.0 0.0
21025	ĭ	0.0	0.0	-2.3558651-02	6.0	0.0	0.0
21058	Ğ	0.0	0.0	-1.15401AF-05	0.0	0.0	0.0
31669	ŭ	5.483076E+00	7.1003181-01	-1.5444631-07	0.0	0.0	0.0
31015	ĭ	0.0	0.0	4.8868156-01	0.0	0.0	0.0
31016	Ğ	5.3913581100	6.6166/4E-01	10-1800086-01	0.0	0.0	0.0
31655	Ğ	0.0	6.0	4.638/831-01	0.0	0.0	0.0
31026	Ğ	0.0	0.0	2.6394276-01	6.0	0.0	0.0
31034	Ğ	0.0	0.0	1.4253246-01	0.0	0.u	0.0
31040	Ğ	0.0	ί.ŏ	6.7026321-02	0.0	0.0	0.0
31646	ŭ	0.0	0.0	1.9729211-02	1.0	0.0	0.0
31625	Ü	0.0	6.0	4.4016;36-03	6.0	0.0	0.0
31058	Ġ	0.0	0.0	4.458520F-01	0.0	0.0	0.0

COPPOSITE MEACHED MONEY CO.C ESTACE STO C. PHASE C.) ONE STEEP ALLING STM LINE WITH 13 UNLOUGH LATERS

HETHER CO, 1970 MASIRAN STEETS

UNIFORM PULL, REPRINT TEEMS USED FOR PARABURIC DISTR.

ELEMENT SET 347 343 344 4161 34-465 34

COMPOSITE INFOREST MINES CO.C (STACE SEE OF PRASE C). Die Stelf Acomo STP Cine with 13 onested carens

Ittinte co. 1976 NASIRAN S/11/18

UNIFORM PLEE, ASPERTA ELEMS USED FOR FARACULES BISTA

300C43E 1

CHIPDAP PLEE, ASPERAL ELLAS USED IN TANACUSES DESIR								anacast 1				
	,	1 *		ħ.	6-L-8-8-8-E-1				N L & & J			
ttement-to	410+10 01-01x3		MURMAL		ALLAN APPRIL G	3 1×1	**************************************	uin, tusints -48t-	PRE 3 SURE	UL I ANEUKAL SHEAK		
1014	500	MAI	is bur									
	LINIER	,	-4.1001406102	41	1.7740171 +03	٠	-3.3146606+02	18-1.54-0.01-0.81	1.0445 (06+03	1.0105166.404		
		*	** . 1 4445 PE + U4	11	1.7510121.02		-4.2114534464	LT-0.04 1.00-0.08				
		Ł		i i	*3.4866486103			14 c.mi-c.ul-u.5v				
	1016			27	1.4202661.403		-1.5505146102	11 0.10-0.01-0.65	1.1312131403	1.0301026+34		
				74	1.7041541106			LT 4.04 1.06-0.05				
		1	-4.00130-01-07	11	-2.4516648167	Ĺ	-1,3501541.04	11-0.65-0.01-0.16				
	1004		*4.4022001102	41	1.646 (438 103		-1.1140044.07	13 0.11-0.05-0.63	1.1839696103	1.0404361.00		
			-4.2361-36104		1.2144646107			LT U.US 1.00-6.09				
		ı	-4.4662018106	13	-3.2231686462			11-6.63-0.01-0.11				
	1014	A	-1.123/461+63	41	1.607//11.003	٠	-1.0131062404	12-1.54-0.08-0.84	8.UV18J6E+UJ	1.0306316404		
		1	.4.4514566104	16	1.2444411402		**********	17-0.04 1.00-0.01				
		6	-0.3246408104	12	-4.01628 18.463	L	-1.2419316-03	11 0.44-0.01-0.54				
	1015		-1.5540115.03	11	1.411/101.103	4	-5.8674178102	12-0.38-0.01-0.96	8. calubet +U3	1.0133516+04		
			+4+3641456+6+	11	1.2052686.6			17-6.02 1.06-0.08				
		ł	.1.40/8836.005	2.1	+3,1445671.163	·	-1.6145651.03	11 6.92-6.01-0.38				
	11016		-4.7539146106		1.4202001.03			L\$ 0.10-0.01-0.65	1.4303286+03	4.4110016403		
			.1.1340246104	16	1.4036044.03			f j c.us 1.uu-o.us				
		ł	-4.6961398163	12	-3.45766.46.63	£	-1.1341418.65	13-0.33-0.01-0.18				
	11005		-4.1466131.02		1.6461436463			L1 U. 11-U.UT-U.43	1.4456 336 +03	1.00/6/46 +04		
			-4-1213Fiftene		1.2140151.00			11 0.06 1.00-0.08				
		4	1335688168	43	-3.27316.06	•	-1.202604844	14-6.63-0.01-6.18				
	11614		-1.1045326403	11	1.64///11 +65		-1.4017836166	13-0.54-0.08-0.84	1.0057636.03	4.4445146 403		
			**.1640>>6*04		1.2354146162			L1.0.04 1.00-0.01				
		ŧ	-1.151#316+05	12	-4.610/016.67	·	-1.614514.4.3	11 0.81-0.01-0.51				
	11015		-1.5373(36103	71	1.411/001103	٨	*5.6516816107	14-0.30-0.01-0.92	1.4545466.03	9.110055t 101		
			1614#1E+04	11	1.2234211.62			11-6.02 1.06-6.01				
		ş	-1.1464825.01	43	-3.1495616162	Ĺ	-1.373/756,67	11 0.45-0.01-0.34				
\$00>	100	MAI	C: 0 GF									
	CENTER		-1.4403651-03		enternitive			12-0.45-0.14-0.00	1.0000000	4.5018636 •03		
			+0.95 36 5E +04	14	6.440:001.01			11-0-06 0-44-0-11				
		ı	-0.441/1251-03	11	-4.875.701 107	ι	-1.2245241113	11 0.87-6.01-0.46				
	1015		-2.1665366103		3.2081616.63			13-0.24-0.15-0.45	A-138551F+03	1.0001551 *0*		
			-2.3645226404		6.5101.01.01			13-0.04 0.44-1.14				
			+1.0125211103	11	• 6 . U3/ 18 3 L • C c	Ł	-/. INE(UBI 41.3	17 6.46-6.01-0.28				

ULTURE 26, 1978 MASIKAN 3/11/18

CUMPUSTIE DRACKET MUDEL CZ.Z (STACK STO Z, PHASE Z) UNE STRIP ALGNG STM LINE MITH 13 UNECUAL LAYERS UNIFURM PULL. KSPLINE ELEMS USED FUR PARABULIC DISTR

3.

SUBCASE 1

ELEMENT STRAIN ENERGIES

,												
ELEMENT-TYPE . HEXA		▼ 1 0	IAL	. ENERGY	UF	ALL	ELEMENIS	IN	PKUBLEM		•	1.183874F-04
SUBCASE	1	1 li	I AL	ENERGY	UF	ALL	ELEMEN15	114	5E1	-1	•	1.1838241-02

FFFWFW1-1D	SIKAIN-ENLKGY	PERCENT OF TOTAL
1012	4.1565266-04	1.00c.t
2005	5.6301996-04	4.1559
2010	4.056862E-04	1.4280
2015	2,2541151-04	1.4041
2020	1.4666146-04	4952.1
2025	9.2600126-05	0.7839
2030	5.2839416-05	0.4463
3005	2.1482936-04	1.8147
11612	1.6255731-04	1.3136
12005	2.66C6U/t-04	4.4415
12010	2.17115/6-04	1.8340
12015	1.1734651-04	0.4415
12020	6.8414376-65	0.5//9
12075	3.3724586-05	0.4860
12030	1.102/701-05	0.0444
13005	4.420405E-05	0.3134
\$1015	2.4214816-04	2.4643
25002	3.3991216-04	5.8178
\$5010	1.4756301-04	1.66##
55012	7.6684431-05	U.64 /8
\$5050	2.4643346-05	0.6561
55052	4.4002876-00	0.0144
25010	3.0323116-06	0.0324
23005	1.5440286-05	0.1304
31015	1.1501846-64	0.4110
32005	1.5614661-04	1.3188
32010	9.670311E-05	0.0164
32015	3.4757028-05	0.2936
35050	4.8271465-06	0.0830
35052	7.6405426-01	0.0066
32030	3.154135E-C6	0.0317
33005	1.9148/91-05	0.1018
41012	1.3163338-04	1.1626
42005	1.43705# - 94	1.61.39
47010	7.22444UL-U5 1.434U65E-U5	t018.0
42015	3.0704101-00	0.0311
42020 42025	4.2360312-00	0.0311
42030	1.5964071-05	0.6356
43605	7.12151/1-05	0.6016
21015	4.4(364)-US	0.7521
52005	1.0423521-04	0.000
52010	4,5944536-05	0.4219
54015	1.2155438-05	0.1077
52020	1.6903116-06	0.110.0
52025	4./126646-00	0.0358
52040	1./568486-05	0.1484
53005	6.4199112-05	0.7112
61012	4.6310346-05	0.4001

COPPUSITE BEATRET MEDIC CO. & ISTACA SEW C. PHASE CT UNE STATP ALLOW STM LINE WITH IS UNIQUEL EATERS billbuth dea 1976 Habiban 3/11/76

ELUCANISE CULPEE. HEPLINE ELPS USED FUR PARAB DISTA

SUBCASE 2

			CHIO PL	INT FURE		. t		
POINT-10	LLEPENI-IU	SUURLE	11	14	13	14	*4	A.J
131040	144040	HEAA	11-4vet465.3	3.3043376-01	*6.36///86-03	6.0	4.6	U. U
131040	144425	MERA	1.05/4101 -16	-1.0414466 +00	-1.61/6151-0/	0.0	0.0	U.O
131040 -		+1014634	1.6756961.00	-1.0426786+00	#1-11001E-E	0.0	0.0	30-1111-06
131045		1-01-376	1.3544161-61	-7.0145661-01	+.1 /0001t -01	-1.1525/86563	4.2631516-03	¿.>!4>>3L+62
131045	144045	HE A A	4.6/10031-61	1.1164446-06	1.8546861-04		V.0	U.O
111645	142010	MERA	4.6/30041-01	-1:06/1.06 100	3.1616561-63	t.J	0.0	0.0
121645		*1U14L5*	1.6144021 +00	-2.0634118-00	4.2046161-01	-1.1424/46-03	4.2031511-03	30-160016.5
131446		++U+-3+C	1.5/24021-01	-1.4643761-01	4.1736641-44	u.u	0,0	2.3145146-C2
131046	1220.5	MERA	4.1214141-61	1.4113446-04	-1.1230251-02	U. U	U.U	0.0
131646	144030	nt 34	4.4367561-61	-1.0336106.00	-1.0016531-16	4.0	0.0	ù.ŭ
131146		*101412*	1.1107631.460	-1.4656101 100	-4.3621141-14	0.0	0,0	20-143141-05
131021		+-U+-2PL	1.0/08611-01	-1.0414131100	8.8558131-01		4.5064361-03	1.4746031-62
131651	122030	MERA	1.9309291-61	-1.114451-01	-3.46/8141-63	ŭ.ŭ	U.U	0.0
131051	121005	HL ZA	-4.7957141-61	-4.4166441 100	-2.9626622-64	i.u	Ľ.Ď	0.0
isitsi	11,000	*101415*	-1.4403151-12	->. /886012 100	10-1644566.0	ŭ.ŭ	6.5064361-03	1.4140056-01
Latuar		1+41-546	1.0030851-01	-1.3525186.000	4.3970071-07	· · ·	0.6	1.4100041704
131654	144030	HE JA	1.49/0114-61	-0.4463618-06		0, 3	U.U	0.0
131052	141005	MLAA	*4.1021341-11	-4.441.661.100	-1.1554066-07	0.0	0.0	0.0
171625	,,,,,,	*1UTAL >*	-1.4419041-6-	-6.6463466 100	-1-1168911-15	0.0	0.0	1.4100046-64
131157		1 - 41 - 51 C	-1.2230411-11	-4.4151111	6.V1r3yst-01	U.U	1.4814516-03	V. 47/0186 *G/
lallos)	123665	HL BA	.5.50V/20L-L2	-4.033-614.00	-3.86 (9511-02	0.0	0.0	0.0
121021		•101113•	-1.1020131-61	-1.5333136100	6.5516061-61	0.0	1,4914916-03	v.4946188-04
131456		+-1+-1+6	**.}>34*>**	-4.0318/16100	3.0134646-66	0	4.0	**********
13105#	143005	PERA	*3.4355416-62	-2.1161648 100	10-10-10-06	U.U	Ü.Ö	6.6
131,50	. 40	*101465*	•1.4]#YUBE-L]	-7.99/9911 100	**********	ŭ.ŭ	6.0	70-345AA5-05

APPENDIX N

ACRONYM DEFINITIONS

1.	AFFDL	-	Air Force Flight Dynamics Laboratory
2.	AFML	-	Air Force Materials Laboratory
3.	AGARD	-	Advisory Group for Aerospace Research and Development (NATO)
4.	AHS	-	American Helicopter Society
5.	AIAA		American Institute for Aeronautics and Astronautics
6.	ASTM	-	American Society for Testing and Materials
7.	DTIC	-	Defense Technical Information Center
8.	GIDEP	-	Government Industry Data Exchange Program
9.	NASA	-	National Aeronautics and Space Administration
10.	NATO	-	North Atlantic Treaty Organization
11.	SAMPE	-	Society for the Advancement of Materials and Proces Engineering
2.	STAR	-	Scientific and Technical Aerospace Report
3.	TAB	-	Technical Abstract Bulletin
4,	USAAMRDL	~	U.S. Army Air Mobility Research and Development

15. USAMMRC - U.S. Army Materials and Mechanics Research Center

3.

APPENDIX O

STRESS ANALYSIS

REPORT TITLE	REPORT NO.								
Advanced									
PREPARED BY		CHECKED BY	MODEL NO.						
APC	9/2/80		[
SUBJECT									
Composite Joint Test, Panel "A"									

INTRODUCTION

This report summarizes the static and fatigue strengths of the joint and fitting test specimens.

Section 1 covers the wrapped Tension Fitting (Tailboom-to-Fuselage Attachment), Type A.

Section 2 covers the Gearbox Attachment Fitting, Type D.

Section 3 covers the Seat Attachment Fitting, Type K.

Static and fatigue analyses are included for types A and D. No fatigue analysis was included for type K since only static tests were conducted. Loading conditions used for analysis are identical to the baseline metal part loads.

The purpose of the program was to study the feasibility of constructing such joints and fittings and predicting the static and fatigue strength of the fittings for application to future aircraft.

•
_

REFERENCES

- 1.0 K.L. Reifsnider and K.N. Louraitis; Fatigue of Filamentary Composite Materials, ASTM Special Technical Publication 636, 1977.
- 2.0 Advanced Composite Design Guide, 3rd Rev., 1977.

REPORT TITLE	REPORT NO.							
Advanced	Concepts for Composite :	oints and Fittings						
PREPARED BY	9/2/80 CH	CKED BY	MODEL NO.					
SUBJECT Composite Joint Test Panel "A"								

DISCUSSION /

The design of a composite tailboom-to-fuselage attachment was investigated. The geometry of the joint and the load levels correspond to those of the YAH-64 helicopter. The test specimen was designed to withstand the maximum static loads experienced by the metal tailboom (crashworthiness condition). Fatigue endurance limits (E.L.) were then determined.

REPORT TITLE

ADVANCE D CONCEPTS

PREPARED BY

B. J. SPENCER REPORT NO. CONCEPTS FOR COMPOSITE LOWITS & FITTINGS MODEL NO. SUBJECT COMPOSITE Rev A TEST PANEL A __lo1~ T DNGNO 430-009

REPORT TITLE
ADVANCED CONCEPTS FOR COMPOSITE LOWIS & FITTINGS REPORT NO. MODEL NO. PREPARED BY B. J. SPENCEK SUBJECT COMISS. TE JOINT TEST AWEL A Rev A DWG No 430-009 CHANNEL -5 (.50 /.5 265° EN) t=.176 LAMINATE 16/2 1/05 Blisfors MAX CONFRESSION CAO ENTENSITY = 10064 1/2 } ADJACENT TO MAX TENSION COAD INTENSITY = 7752 1/2 } ENTOUT STREES IN O'GR 10064 - 114000 PS1 Knock down factor due to small radius <u>7752</u> = 88100 PSI Predicted ton? = 195 = 2x11400 x.75= 22,800 # failure 1d 3 87.1 ALLOVALES Oin = 129000 PS Of - 195000 151 V1 = .60 0° TSON GRAPHITE LOND BETWEEN CHANNEL & OUTER PATESTEET MAX NX = 14800 = 1233 1/2 PER FACE SHEET 50% OF THIS LEDD IS SHEALED INTO CHANNEL IN . SIN famor = 1233 Psi

PREPARED BY & J. SENCER CHECKED BY REPORT TITLE REPORT NO. MODEL NO. SUBJECT COMPOSITE JOINT TEST PANEL A Rev A DWG No 430-009 LAMINA STRAINS NX = -14800 = -2467 % FACE SHEETS ARE (±45° KEV, ±5° GR) & 61 - .044 $\begin{bmatrix} c_{x} \\ c_{y} \\ \vdots \\ s_{xy} \end{bmatrix} = \begin{bmatrix} \frac{1}{2.77} & -\frac{1967}{8.77} & 0 \\ -\frac{1967}{8.77} & \frac{1}{1.84} & 0 \\ 0 & 0 & \frac{1}{2.4} \end{bmatrix} \times \begin{bmatrix} -28000 \\ -3274 \\ 3089 \\ 0 \end{bmatrix} = \begin{bmatrix} -3274 \\ 3089 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 6_1 \\ 6_2 \\ \end{bmatrix} = \begin{bmatrix} .5 & .5 & -1 \\ .5 & .5 & 1 \\ \end{bmatrix} \times \begin{bmatrix} -32/4 \\ 3089 \\ 0 \end{bmatrix} = \begin{bmatrix} -63 \\ -43 \\ -3152 \end{bmatrix}$

A STANDARD CONTRACTOR

REPORT TITLE

ADVANCED CONCERTS FOR CONVOSITE JOINTS & STETIMES

PREPARED BY

CHECKED BY REPORT NO. PREPARED BY B.J. STENCER MODEL NO. SUBJECT COMPOSITE JOINT TEST PANEL Res A DWG No 430-009 FITTWE - 3 MATZ - STEEL HT 160 +51 SECTION TRIROUGH 1/2 D.A this $B.M. = \frac{7752(.833)}{2} + \frac{1824(.833)}{2} + \frac{1824(.25)}{2} = 421710^{-12}$ fts = 6M = 6-4217 = 169000 PSi F6 = 240000 Pri

PREFORT TITLE

Advanced Concepts for Composite Joints & Fittings

PREPARED BY

8/27/30 CHECKED BY

MODEL NO.

SUBJECT Composite Joint Test Panel "A"

Fatique alloumbles

1

Shown below is coupon test data for ±115° Kevlar lepoxy

STATISTICAL ANALYSIS OF THE ± 45° CROSS PLY KEVLAR-49 EPOXY IN TENSION-TENSION FATIGUE.

SPEC. No.	N ' CYCLES C FAILURE	CYCLIC STRESS @ FAILURE	S.* cycuc stress @ 5x 10 ⁷ N	(\$ - \$\)2 \(\cdot \(\gamma\)^2 \(\sigma\)
- 4	51,810	5625	4175	0.625
- 5	2.5//5×10°	4662	9612	169.744
- 17	2.2365 x 106	4131	4072	16.384
- 18	2.1538×10	4001	3940	67.600
	<u> </u>	Σ	16,799	25 4 , 353

MEAN ENDURANCE LIMIT, $\overline{S} = \frac{16,799}{4} \approx 4200$ PSJ

UNBIASED STANDARD DEVIATION,
$$G_{00} = \sqrt{\frac{\sum[(S-S_{00})^{2}]}{\gamma_{1}-1}} =$$

$$=\sqrt{\frac{254,353}{4-1}} = 291.177$$

$$5 - 3G_{ug} = 4200 - 3(291.177) = 3326 PSI$$

* Specimon EL.

TO A STREET,

REPORT TITLE

Adamired Concepts for Composite Joints & Fillings

PREPARED BY

APC

SUBJECT

Composite Joint Test Panel "A"

Fatigue Allowables REPORT NO. MODEL NO. Rev'A" FXTU = 17370 psi > Keulan Fef ted dala Fxcu= 10500 psi > =450 CCIVI. F.L. = 10.5 x 3326 = 2007 ps 1

Advanced Concepts for Composite Joints & Fittings
PREPARED BY

Companie Jonit Tost, Pome Graphite Fatique Allowables

Ref. Fatique of Filaniantary Composite Materials ASTIN Special Techanical Publication 636 By KL Reifsnider and KN Louroitis, 1777

Notes

 \mathcal{I}

- The maximum fatigue atress S is normalized with respect to the static strength &s.
- Test material was unidirectional graphite/epoxy T300/5208 with a nominal fiber content of 70 percent by volume.
- 3., Stress Ratio = .10

Review of the curve above indicates that the allowable maximum fatigue atress can be taken as 60 percent of the ultimate static strength (for a stress ratio = .10).

For Veren Flux: 195, 600 psi

1950000 .6 x .75 v .80 v .45 = 31,600 ps 1 6° Ten

scatter For Relia

Form tool die for +25° the old tou to old over rateo is about .30 125 x.3 x 31600 = 6000 ps 1 compression E.L. for ± 15° graphite 200 to 150 is duction

Predicted }= (2007 + 6000) (OH4×11.7) = 4100

REPORT NO. Advanced Concepts for Composite Joints & Fittings
PREPARED BY

CHECKED BY MODEL NO. SUBJECT CO M. POSIT. Joint Test Parisl "A Assumed cheers to bolt bond length - Hole for access to bolt is 1" wids 1.28 - Stl Fitting 3" long View A

TD" section fitting, falgre converte for face - slit bound=6(3+3)x225 = 8100 Pg 20.15 For the &= 2x3'co= 16200# mox fatique ld Predicted }= 16200 - 105x16200 = 7695# All 11

W BINGS WAR

i	REPORT TITLE		REPORT NO.
	Advanced Concepts for Composit	te Joints and Fittings	
İ	PREPARED BY	CHECKED BY	MODEL NO.
	APC 9/2/80		
	SUBJECT		
i	Composite Joint Test Section I)	

DISCUSSION

The design of a composite vertical stabilizer/tail rotor gearbox attachment for the YAH-64 helicopter was investigated. The test specimen was designed to meet the static load requirements of the metal vertical stabilizer (blade strike condition). Fatigue endurance limits (E.L.) were then determined.

REPORT NO. REPORT TITLE ComPosiTE TAIL SECTION STRESS ANALYSIS CHECKED BY PREPARED BY MODEL NO. B.J. SPENER SUBJECT Re: A STANSILIZES VEETR AL % GENKBOK 20402

The state of the s

9

17 F

- 1 The

REPORT TITLE

ADVAILCED CONCEPTS FOL COMPOSITE JOINTS & FTC.S.

PREPARED BY & I CAENTER CHECKED BY REPORT NO. PREPARED BY E.J. SPENCER MODEL NO. SUBJECT COMFOSITE JOINT TEST SECTION Rev A DN9 No 430-007

258

ġ,

(

17 B REPORT TITLE
ADMINICED CONFERTS FOR CONFORMS SENTER FOR: REPORT NO PREPARED BY SI STEVERY MODEL NO. SUBJECT COMPOSITE JOINT TEST SECTION D Rev A ons No 430-007 SHEAR TEAR OUT cous 90° STCIE 7/8 DIA $\frac{f_{c_{\psi}} \cdot \frac{5808}{2!(10.1875).34}}{2!(10.1875).34} = 15200 PSI$ 30% 145 Ms. = 15500 -/ =

Advanced Concepts for Composite Johns and Fittings
PREPARED BY
CHECKED BY REPORT NO MODEL NO SUBJECT Corposite Joint Tost Section D Lap Shr Allewolle GRAPHITE/EPOXY Adherenda: Gr/Ep [0/±45/90] - St, Ti Adhesive: Shell 951 ($G_a = 75 \text{ Ksi}, F_a^{eu} = 5, 5 \text{ Ksi}$) ta = 0.002-0.005 inch See Figure 2, 4, 1-18 (Reference) F (Ksi) ALLOWABLE STRENGTH CURVES. SINGLE-LAP SHEAR JOINT Gr/Ep-TO-STEEL OR TITANIUM, SHELL 951 Ref 2

PREPORT TITLE
Advanced Concepts for Composite Joints & Fittings

PREPARED BY
APC

SUBJECT Composite Joint Test Section D

RED-A

Steel Fitting to Composite; Bond Fatigue Analysis

Room Ter	Estimated sperature Allowable rnating Stress 1-1000 Adhesive	e
	Adhere	Ratio: 0.10 nd: 2024 T-3 . Clad Aluminum 2 Hours 350° F 25 psi
Length of Lap	Allowable	Number Or Stress Cycles
.50 ln.	241 psi	107
1.00 in.	190 psi	107
4.00 in.	109 psi	107

The above table shows allowable alternating stress for various lap-Jonit lengths.

Data given in the Advanced Composite Design Guide for 0.5" lap joint is reduced by the following factor 109 = .45 . . Its assumed that at 10° cycles the curve is flat.

Est Landing Landy

PREPARED BY O 1 COLLEGE CHECKED BY PREPARED BY L J STENCEL MODEL NO. SUBJECT COMPOSITE LOINT TEST SECTION D Rev A DWG No 430-007 BOND ATTAINMENT OF FTG (-3) TO GR CHANNEL (-5) LILO STOR 160451 Bono AKEA = (2x1.5+1.3) 7 = 3010. MAX LOAD - 16600 Alekayê bino Sikisi = 16600 - 550 psi For a lap shear joint 7" long $\frac{\pm a}{\pm} = \frac{.005}{.10} = .05$ Predict a fulsie } = 1.16 x 3300 Ref pg 20.17

SO ART WITH ME

DEBURY TITLE 1 - 1 C - 1 T it 3 E HILIGS	REPORT NO.
PREPORT TITLE Advanced Concepts for Composite Joints & Fittings PREPARED BY 8/25/80 CHECKED BY	MODEL NO.
PREPARED BY 8/25/80 CHECKED BY SUBJECT 1 T 1 Toct Section D	Rav A
SUBJECT SIMPOSITE Joint Test Section D Steel Fitting to Composite, Bond Fatique	Ana.
Graphile / Epoxy	8/25/30 d Composite Design Guide (Ref 2) 225 psi 10 10

ţ

REPORT TITLE		REPORT NO.		
Advanced Conc	epts for Compos	ite Joints and Fittings		
PREPARED BY APC	9/2/80	CHECKED BY	MODEL NO.	
SUBJECT YAN-64 Upper	Co-Pilots Seat	Fitting		
		,		
DISCUSSION	•			

A composite seat attachment fitting was designed to investigate the feasability of fabricating such a part using advanced composite materials. The fitting was designed for the YAH-64 loads (crashworthiness/condition).

266

LALDAND TR

REPORT TITLE LAUREPTS FOR COMPOSITE JOINTS & FITTINGS REPORT NO. Arsa MODEL NO. SUBJECT CO-PILOT'S SEAT FITTING YAH UPPER DWG NO. 4-30-010 UP 139 * (TYP) UP LATERAL FWD 10 Φ 3/16" 512 ъф. 1/4" OIA BOLTS 220 KS1 (8) BOLTS (2) .4979 " O 5. 9938# 1.78" 1570 392 # (TYP) 1110# CHANNEL ANGLE BEARING BLDCK -1.0" Lou! LOAL PATHS THE 14" DIA (220 KSI) BOLTS IN THE CHANNEL CARRY ALL THE VERTICAL AND FWO LOADS. THE FIBERS OF THE CHANNEL WRAP AROUND THE BEARING BLOCK, THUS ENSURING AN EFFECTIVE MECHANICAL LOCK OF THE FITTING TO THE BACK-UP STRUCTURE. 2., THE "I'L" DIA. BOLTS WITH THE ANGLES CARRY THE LATERAL LUAD.

į

4

THE WAY IN

C . FARSONELL LAND

PREPORT TITLE

1 ADMICED CONCEPTS FOR COMPOSITE JOINTS & FIHINGS

PREPARED BY

D. MANCILL

REPORT NO.

REPORT NO.

REPORT NO.

REPORT NO.

SUBJECT

YAH-64 UPPER CO. PILOT'S SEAT FITTING

DWG NO 4-30-010

REACTIONS

$$R_{0} = \frac{(9936 \cdot \times 1.0) - 1110}{1.78} = 4959$$

$$R_{\odot} = \frac{(9938 \times .78) + 1110}{1.78} = 4979^{\#}$$

CONSERVATIVELY ASSUME ONLY BOLTS 3 THRU & CARRY THE LATERAL LOAD.

$$R_{3-6} = \frac{.1570 \times 1.0}{2 \times 1.94} = 404*$$

OPEN-HOLE ALLOWABLE

 $\frac{W}{D} = \frac{1.24}{.25} = 4.96$

ALLOWABLE GROSS

Fx = 21500 PSI

REPORT TITLE	REPORT NO.
Advanced Concepts for Composite Jants & Fittings	MODEL NO.
D. MANCILL	
SUBJECT	
YAH-64 UPPER CO-PILOT SEAT FITTING	
CHANNEL CONT'D.	DWG NO 430-010
$S_{\pm} = \frac{P}{A} = \frac{2489}{1.24 \times .098} = 20500 P$	21
M.	$S_{1} = \frac{21500}{20500} - 1 = \pm .01$
TEN	SION FAILURE AROUND HOL
1/4" DIA BOLTS	
PAPPUSD = 4974#	
PALLOWABLE = 7530* (220 HS) REF MIL-	BOLT) HDBK-SC, PAGE 8-78
M.S.=	$=\frac{7530}{4974}-1\cong 0.51$
ANGLE (GRAPHITE/EPOXY) COMPOSITE ANGLE TEST RESULTS FIGURE 8 ALLOWABLE LOAD VS. THICKNESS IN COMPOSITE ANGLES GRAPHITE/EPOXY FABRIC FIBERGLASS/EPOXY MEVLAR/EPOXY	2570 0° 2570 90° 5070 ±45° PARNIEO = 404# THICKNESS OF ANGLE = .084° PALLOWABLE = 400 " M.S. = 400 -1 = +.00

)

Ì

REPORT TITLE	, 1 <i>1</i>	REPORT NO.
Volumeed Concepts for Con	uposite Joints à Fittings	A vs9
PREPARED BY	CHECKED BY	MODEL NO.
D. MANCILL		

SUBJECT
YAH-64 UPPER CO-PILOT SEAT FITTING

LUG ANALYSIS

DWG NO 430-010

$$\frac{0}{1} = .50 = 2.78$$

$$\frac{e}{D} = \frac{.82}{.50} = 1.64$$

1-OR DOUBLE SHEAR JOINT FOR BO,000 PSI

CHECK LUG SHEAROUT STRENGTH

$$f^{50} = \frac{P}{2t(e-P_2)} = \frac{5000}{2x.L82(.82-.25)} = 24/00 PSI$$

FOR 50% ±45" = 25,000 PSI

$$M.S. = \frac{25000}{24100} - 1 = +.04$$

SHEAROUT

CHECK NET TENSION STRENGTH

NET TENSION
$$f_{\pm} = \frac{5000}{.182(1.64 - .50)} = 24100 \text{ PSI}$$

E =
$$7.20 \times 10^{+6}$$
 Et = $\frac{2410}{7.2 \times 10^{+6}}$ = 3350×10^{-6}

$$MS = \frac{4000}{3350} - 1 = +.20$$
HET TENSON