

单纯形法的基本思路:

从一个**初始的基本可行解**出发,经过**判断**,如果是最优解,则结束;否则经过**基变换**得到另一个改善的基本可行解,如此一直进行下去,直到找到最优解。

- (1) 确定初始基本可行解
- (2) 最优性检验和解的判别
- (3) 从一个基本可行解转换到相邻的基本可行解

单纯形法解释:

例: max
$$z = 40x_1 + 50x_2$$

s.t. $x_1 + 2x_2 + x_3 = 30$
 $3x_1 + 2x_2 + x_4 = 60$
 $2x_2 + x_5 = 24$
 $x_1, ..., x_5 \ge 0$

解: (1) 确定初始可行解

$$B_1 = (P_3 P_4 P_5) = I$$

$$\begin{cases} z = 0 + 40x_1 + 50x_2 \\ x_3 = 30 - x_1 - 2x_2 \\ x_4 = 60 - 3x_1 - 2x_2 \\ x_5 = 24 - 2x_2 \end{cases}$$

$$\Leftrightarrow x_1 = x_2 = 0$$

$$\mathbf{x}^{(1)} = (0,0,30,60,24)^T, \ z^{(1)} = 0$$

(2) 判定解是否最优

$$z = 0 + 40x_1 + 50x_2$$

当 x_1 从0 / 或 x_2 从0 / 时,z从0 /

∴ **x**⁽¹⁾ 不是最优解

(3) 由一个基可行解 → 另一个基可行解。

$$∵$$
 50 > 40 ∴ 选 x_2 从0 \nearrow , $x_1 = 0$

$$\begin{cases} x_3 = 30 - 2x_2 \ge 0, & x_2 \le \frac{30}{2} \\ x_4 = 60 - 2x_2 \ge 0, & x_2 \le \frac{60}{2} \\ x_5 = 24 - 2x_2 \ge 0, & x_2 \le \frac{24}{2} \end{cases}$$

$$x_2 = \min\left(\frac{30}{2}, \frac{60}{2}, \frac{24}{2}\right) = 12$$

 x_2 进基变量, x_5 出基变量。

$$B_2 = (P_3 P_4 P_2)$$

$$\begin{cases} z = 0 + 40x_1 + 50x_2 & \textcircled{4} \\ x_3 + 2x_2 = 30 - x_1 & \textcircled{1} \\ x_4 + 2x_2 = 60 - 3x_1 & \textcircled{2} \\ 2x_2 = 24 - x_5 & \textcircled{3} \end{cases}$$

③
$$\times \frac{1}{2}$$
, ③代入④式, ①-③, ②-③

$$\begin{cases} z = 600 + 40x_1 - 25x_5 \\ x_3 = 6 - x_1 + x_5 \\ x_4 = 36 - 3x_1 + x_5 \\ x_2 = 12 - \frac{1}{2}x_5 \end{cases}$$

$$x^{(2)} = x_5 = 0$$

$$x^{(2)} = (0,12,6,36,0)^T$$

$$z^{(2)} = 600$$

(2) 判断

∵
$$40 > 0$$
 ∴ $\mathbf{x}^{(2)}$ 不是最优解

(3) ' 选
$$x_1$$
从 0 \nearrow , $x_5 = 0$

$$\begin{cases} x_3 = 6 - x_1 \ge 0 \\ x_4 = 36 - 3x_1 \ge 0 \\ x_2 = 12 \ge 0 \end{cases}$$

$$x_1 = \min\left(\frac{6}{1}, \frac{36}{3}\right) = 6$$

 x_1 进基, x_3 出基。

$$B_3 = (P_1 P_4 P_2)$$

$$\begin{cases} z = 840 - 40x_3 + 15x_5 \\ x_1 = 6 - x_3 + x_5 \\ x_4 = 18 + 3x_3 - 2x_5 \\ x_2 = 12 - \frac{1}{2}x_5 \end{cases}$$

$$x_3 = x_5 = 0$$

$$\mathbf{x}^{(3)} = (6,12,0,18,0)^T, \ z^{(3)} = 840$$

(3) "选
$$x_5$$
从 0 \nearrow , $x_3 = 0$

$$\begin{cases} x_1 = 6 & + x_5 \ge 0 \\ x_4 = 18 & -2x_5 \ge 0 \\ x_2 = 12 - \frac{1}{2}x_5 \ge 0 \end{cases}$$

$$x_5 = \min\left(\frac{18}{2}, \frac{18}{1/2}\right) = 9$$

 x_5 进基, x_4 出基。

$$B_4 = (P_1 P_5 P_2)$$

$$\begin{cases} z = 975 - \frac{35}{2} x_3 - \frac{15}{2} x_4 \\ x_1 = 15 + \frac{1}{2} x_3 - \frac{1}{2} x_4 \\ x_5 = 9 + \frac{3}{2} x_3 - \frac{1}{2} x_4 \\ x_2 = \frac{15}{2} - \frac{3}{4} x_3 + \frac{1}{4} x_4 \end{cases}$$

$$x_3 = x_4 = 0$$

$$\mathbf{x}^{(4)} = \left(15, \frac{15}{2}, 0, 0, 9\right)^T, \ z^{(4)} = 975$$

(1) 确定初始基本可行解

$$\max z = \sum_{j=1}^{n} c_j x_j$$

$$s. t. \sum_{j=1}^{n} x_j P_j = b$$

$$x_j \ge 0 (j = 1, ..., n)$$

一般约束条件的变量系数矩阵中总会存在一个单位矩阵:

$$(P_1, P_2, \dots, P_m) = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \quad \mathbf{x} = (x_1, \dots, x_m, x_{m+1}, \dots, x_n)^T \\ = (b_1, \dots, b_m, 0, \dots, 0)^T$$

(1) 确定初始基本可行解

例如,通过建模得到的一般线性规划模型如下:

$$\max z = 2x_1 - x_2$$

$$s.t. \begin{cases} 3x_1 + 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 12 \\ 2x_1 + 3x_2 \le 6 \\ x_1, x_2 \ge 0 \end{cases} \qquad \max z = 2x_1 - x_2 + 0x_3 + 0x_4 + 0x_5$$

$$\begin{cases} 3x_1 + 5x_2 + x_3 \\ 3x_1 + 5x_2 + x_3 \\ 3x_1 + 3x_2 + 3x_3 \end{cases} = 15$$

$$\max z = 2x_1 - x_2 + 0x_3 + 0x_4 + 0x_5$$

$$s.t. \begin{cases} 3x_1 + 5x_2 + x_3 = 15 \\ 6x_1 + 2x_2 + x_4 = 12 \\ 2x_1 + 3x_2 + x_5 = 6 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

因此, $(0,0,15,12,6)^T$ 是一个初始基本可行解。

(2) 最优性检验和解的判别

将基本可行解 x⁽⁰⁾ 代入目标函数得:

$$z^{(0)} = \sum_{i=1}^{m} c_i x_i^0$$

$$x_B = B^{-1}b - B^{-1}Nx_N$$

 $z = c_B^T B^{-1}b + (c_N^T - c_B^T B^{-1}N)x_N$

(3) 从一个基本可行解转换到相邻的基本可行解

仅变换一个基变量

• 进基变量的确定

根据 $\sigma_k = \max_j \{\sigma_j | \sigma_j > 0\}$,确定 x_k 为进基变量。

• 出基变量的确定

原则是保持解的可行性,也就是说,要使原基本可行解的某一个正分量变为零,同时保持其余分量为非负。

(3) 从一个基本可行解转换到相邻的基本可行解

假设现有基本可行解 $x^{(0)} = (x_1^0, x_2^0, \dots, x_m^0, 0, \dots 0)^T$, 则

$$x_1^0 \mathbf{p}_1 + x_2^0 \mathbf{p}_2 + \dots + x_m^0 \mathbf{p}_m = \mathbf{b}$$

$$\mathbf{p}_k = a_{1k}\mathbf{p}_1 + a_{2k}\mathbf{p}_2 + \dots + a_{mk}\mathbf{p}_m$$

$$(x_1^0 - \theta a_{1k})\mathbf{p}_1 + (x_2^0 - \theta a_{2k})\mathbf{p}_2 + \dots + (x_m^0 - \theta a_{mk})\mathbf{p}_m + \theta \mathbf{p}_k = \mathbf{b}$$

要保证 $\mathbf{x}^{(1)} = (x_1^0 - \theta a_{1k}, x_2^0 - \theta a_{2k}, \dots, x_m^0 - \theta a_{mk}, 0, \dots, \theta, \dots, 0)^T$ 是一个基本可行解, 必须

$$x_i^0 - \theta a_{ik} \ge 0 \implies \theta = \min_i \left\{ \frac{x_i^0}{a_{ik}} \middle| a_{ik} > 0 \right\} = \frac{x_l^0}{a_{lk}}$$

• 旋转运算

 $P_l \longrightarrow P_k$

旋转主元 (Pivot Element)

进行初等变换 形成单位矩阵

第一章 线性规划

4. 单纯形法计算步骤

单纯形法的基本思路

单纯形法的基本思路:

从一个**初始的基本可行解**出发,经过**判断**,如果是最优解,则结束,否则经过**基变换**得到另一个改善的基本可行解,如此一直进行下去,直到找到最优解。

第1步: 求初始基可行解, 列出初始单纯形表。

第2步:最优性检验。

第3步:从一个基可行解转换到相邻的目标函数值更大的

基可行解,列出新的单纯形表。

第4步: 重复第2、3步, 一直到计算结束为止。

单纯形法的基本步骤

为了书写规范和便于计算,对单纯形的计算有一种专门的表格,称为单纯形表。

- 含初始基可行解的单纯形表 —— 初始单纯形表
- 含最优基可行解的单纯形表 —— 最终单纯形表

第1步 - 求初始基可行解,列出初始单纯形表 😈 🎝 🤅 大 🛱 工程管理学院

	\mathcal{C}_j -	→	c_1	• • •	C_{m}	• • •	c_{j}	•••	C_n
C_B	基	b	x_1	• • •	\mathcal{X}_{m}	• • •	x_{j}	• • •	\mathcal{X}_n
c_1	$\langle x_1 \rangle$	b_1	1		0	• • •	a_{1j}	• • •	a_{1n}
c_2	x_2	b_2	0		0	• • •	$\int a_{2j}$	• • •	a_{2n}
:	:	:	:		:		:		:
:	\ :	:	:		:		: /		:
C_m	$\langle x_m \rangle$	b_m	0		1	• • •	$\langle a_{mj} \rangle$	• • •	a_{mn}
/	c_j	Z_j	0	•••	0		$c_j - \sum_{i=1}^m c_i$	a_{ij}	$c_n - \sum_{i=1}^m c_i a_{in}$
甘油	r 트	甘亦.		は古		-	_		
基型	2量	空 义。	里印外		$P_j = a$		$+ a_{2j}P_2 - m + 1,$	$+\cdots+a_{mj}$ \cdots $,n)$	$egin{array}{c c} P_m & \& \& \& & & & & & & \\ \hline & & & & & & & & \\ & & & &$

第2步 - 最优性检验

	c_{j}		c_1	• • •	C_m	• • •	c_{j}	• • •	C_n
C_B	基	b	x_1	• • •	\mathcal{X}_{m}	• • •	x_{j}	• • •	\mathcal{X}_n
c_1	x_1	b_1	1		0	•••	a_{1j}	• • •	a_{1n}
c_2	x_2	b_2	0		0	• • •	a_{2j}	• • •	a_{2n}
:	:	:	:		:		:		:
:	:	:	:		:		:		:
C_m	\mathcal{X}_{m}	$b_{\it m}$	0		1	• • •	a_{mj}	• • •	a_{mn}
	c_j - z_j		0	•••	0	•••	$c_j - \sum_{i=1}^m c_i a_{ij}$	•••	$c_n - \sum_{i=1}^m c_i a_{in}$

- 所有检验数≤ 0,且基变量中不含人工变量时,即为最优解。
- 当表中存在 $c_j z_j > 0$ 时,如有 $P_j \leq 0$,则问题为无界解。
- 如果都不是,下一步……

✓ 确定换入变量和换出变量

- 换入变量 = 进基变量 = Entering Variable
- 根据 $\sigma_k = \max_j \{\sigma_j | \sigma_j > 0\}$,确定 x_k 为换入变量
- 换出变量 = 出基变量 = Leaving Variable
- 按 θ 规则计算,可确定 x_l 为换出变量

$$\theta = \min\left\{\frac{b_i}{a_{ik}} \middle| a_{ik} > 0\right\} = \frac{b_l}{a_{lk}}$$

✓ 旋转运算 Pivoting

以 a_{lk} 为主元素 (pivot number) 进行迭代,得到新的单纯形表。

第3步 - 换基

✓ 旋转运算 Pivoting

	c_{j}	→	c_1 .	c_l	• • •	$C_m \ldots$	c_j	c_k	•••
C_B	基	b	x_1 .	x_l	• • •	x_m	X_j	x_k	•••
c_1	x_1	b_1 - $b_1 \cdot \frac{a_{1k}}{a_{lk}}$	1	$-\frac{a_{1k}}{a_{1k}}$	•••	0	$a_{1j} - a_{1k} \cdot \frac{a_{lj}}{a_{lk}} \cdots$	$\sqrt{0}$	•••
:	:	:	:	lk •		:	i i	:	
c_k	x_k	$\frac{b_l}{a_{lk}}$:		$\frac{1}{a}$	• • •	0	$rac{a_{lj}}{a_{lk}} \qquad \cdots$	1	
:	:	a_{lk}	:	• • • • • • • • • • • • • • • • • • •		:	<i>u_{lk}</i> •	:	2 K
C_m	\mathcal{X}_{m}	b_m - $b_m \cdot \frac{a_{mk}}{a_{lk}}$	0	$-rac{a_{mk}}{a_{lk}}$		1	$a_{mj}-a_{mk}\cdot\frac{a_{lj}}{a_{lk}}$	0	$a_{lk} :$
	c_j - z_j		0 .	$\frac{c_k-z_k}{a_{lk}}$	-	0 .(.c.	$\left(\frac{a_{lj}}{a_{lk}} \left(c_k - z \right) \right)$	(_k) 0	a_{mk}

第4步 - 重复2、3步直到计算结束

例1: 用单纯形法求解线性规划问题

$$\max z = 2x_1 + x_2$$

$$5x_2 \le 15$$

$$6x_1 + 2x_2 \le 24$$

$$x_1 + x_2 \le 5$$

$$x_1, x_2 \ge 0$$

单纯形计算例题

例2: 某航空食品公司利用甲、乙、丙三种原料生产A1、A2、A3和A4四种食品,每月可供应该公司的原料及每种食品可获利情况如下表所示,试求该食品公司每月应如何安排生产计划,才能使总利润最大。

消耗食品原料	A1	A2	A3	A4	毎月原料供 应量(吨)
甲	1	1	2	2	500
乙	0	1	1	3	300
丙	1	2	1	0	200
利润(元/吨)	2000	2500	3000	1500	

解:此问题的线性规划模型为

$$\max z = 2000x_1 + 2500x_2 + 3000x_3 + 1500x_4$$

$$s.t.\begin{cases} x_1 + x_2 + 2x_3 + 2x_4 \le 500 \\ x_2 + x_3 + 3x_4 \le 300 \\ x_1 + 2x_2 + x_3 \le 200 \\ x_i \ge 0 (i = 1, 2, 3, 4) \end{cases}$$

化为标准型:

$$\max z = 2000x_1 + 2500x_2 + 3000x_3 + 1500x_4$$

$$s.t.\begin{cases} x_1 + x_2 + 2x_3 + 2x_4 + x_5 &= 500\\ x_2 + x_3 + 3x_4 &+ x_6 &= 300\\ x_1 + 2x_2 + x_3 &+ x_7 = 200\\ x_i \ge 0 (i = 1, 2, ..., 7) \end{cases}$$

单纯法求解

初始单纯形表

计算 θ

$$\theta = \min\left(\frac{b_i}{a_{ik}}|a_{ik} > 0\right) = \frac{b_l}{a_{lk}}$$

			2000	2500	3000	1500	0	0	0	
$c_{ m B}$	x_{B}	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ
0	x_5	5 00	-11	- B	0	2	1	0	-02	250
0	x_6	300	- Q	-11	0	3	0	1	- 0	300
30000	x_3	200	1	2	1	0	0	0	1	200
-z	0		2000	2500	3000	1500	0	0	0	

非基变量检验数为

$$c_j - \sum_{i=1}^m c_i a_{ij}, \ j = 1, 2, \dots, n$$

检验数判别 换 迭代

重新计算检验数,结果如下页

最终单纯形表

Final Simplex tableau

计算 θ $\theta = \min\left(\frac{b_i}{a_{ik}} | a_{ik} > 0\right) = \frac{b_l}{a_{lk}}$

			2000	2500	3000	1500	0	0	0	
$c_{ m B}$	x_{B}	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7	θ
0	x_5	33.3	-113	-733	0	0	1	-20/3	-423	50
15000	x_4	33.3	-113	-113	0	1	0	113	-113	33.3
3000	x_3	200	1	2	1	0	0	0	1	
-Z	-65	0000	-150000	-3 6 00	0	15000	0	-5000	-3600	

女为 检验数判别

$$-z = -\mathbf{c}^T \mathbf{B} = -\sum_{i=1}^m c_i b_i$$

$$-z = -\mathbf{c}^T \mathbf{B} = -\sum_{i=1}^m c_i b_i$$
 $c_j - \sum_{i=1}^m c_i a_{ij}, j = 1, 2, ..., n$

几种特殊情形的讨论

- 1. 目标函数极小化时解的最优性判别。
 - ✓ 所有检验数 $\sigma_j \geq 0$
- 2. 退化解。

$$\theta = \min_{i} \left\{ \frac{b_i}{a_{ik}} | a_{ik} > 0 \right\}$$

✓ 有时存在两个以上相同的最小值,从而使下一个表的基可行解中出现一个或多个基变量等于零的退化解。

几种特殊情形的讨论

2. 退化解。

例3:
$$\max z = 10x_1 + 12x_2$$

$$\begin{cases} 3x_1 + 4x_2 \le 6 \\ 4x_1 + x_2 \le 2 \\ 3x_1 + 2x_2 \le 3 \\ x_1, x_2 \ge 0 \end{cases} \Rightarrow \begin{cases} 3x_1 + 4x_2 + x_3 = 6 \\ 4x_1 + x_2 + x_4 = 2 \\ 3x_1 + 2x_2 + x_5 = 3 \\ x_1, \dots, x_5 \ge 0 \end{cases}$$

			10	<i>12</i>	0	0	0	
	X _B	b	x_1	x_2	x_3	X_4	x_5	θ_i
0	x_3	6	3	(4)	1	0	0 <	3/2
0	x_4	2	4	1	0	1	0	2/1
0	x_5	3	3	2	0	0	1	3/2
		0	10	<i>12</i>	0	0	0	

()

$$x^* = (0, \frac{3}{2}, 0, \frac{1}{2}, 0)^T$$

$$z_{max} = 18$$

退化解

但是,退化解情形有可能出现迭代计算的死循环!

死循环的例子

min
$$z = -\frac{3}{4}x_1 + 150x_2 - \frac{1}{50}x_3 + 6x_4$$

subject to $\frac{1}{4}x_1 - 60x_2 - \frac{1}{25}x_3 + 9x_4 \le 0$
 $\frac{1}{2}x_1 - 90x_2 - \frac{1}{50}x_3 + 3x_4 \le 0$
 $x_3 \le 1$
 $x_1, x_2, x_3, x_4 \ge 0$

basic	X 1	X2	X3	X4	X5	X ₆	X 7	rhs
- Z	- 3/4	150	-1/50	6	0	0	0	0
X5	1/4	-60	-1/25	9	1	0	0	0
x_6	1/2	-90	-1/50	3	0	1	0	0
X_7	0	0	1	0	0	0	1	1

basic	\mathbf{x}_1	X2	Х3	X4	X5	X6	X 7	rhs
- Z	0	-30	-7/50	33	3	0	0	0
X ₁	1	-240	-4/25	36	4	0	0	0
x_6	0	30	3/50	-15	-2	1	0	0
X_7	0	0	1	0	0	0	1	1

basic	\mathbf{x}_1	X ₂	Х3	X4	X5	X ₆	X 7	rhs
-Z	0	0	-2/25	18	1	1	0	0
X ₁	1	0	8/25	-84	-12	8	0	0
\mathbf{x}_2	0	1	1/500	-1/2	-1/15	1/30	0	0
X7	0	0	1	0	0	0	1	1
basic	X ₁	X ₂	X3	X ₄	X ₅	X ₆	X 7	rhs
-Z	1/4	0	0	-3	-2	3	0	0
X3	25/8	0	1	-525/2	-75/2	25	0	0
\mathbf{x}_2	-1/160	1	0	1/40	1/120	-1/60	0	0
X 7	-25/8	0	0	525/2	75/2	-25	1	1
basic	X ₁	X ₂	X3	X4	X5	X ₆	X7	rhs
-Z	-1/2	120	0	0	-1	1	0	0
X3	-125/2	10500	1	0	50	-150	0	0
X4	-1/4	40	0	1	1/3	-2/3	0	0
X7	125/2	-10500	0	0	-50	150	1	1
basic	X ₁	X ₂	X3	X ₄	X5	X ₆	X7	rhs
-Z	-7/4	330	1/50	0	0	-2	0	0
X5	-5/4	210	1/50	0	1	-3	0	0
X4	1/6	-30	-1/150	1	0	1/3	0	0
X 7	0	0	1	0	0	0	1	1

每一张单纯形 表对应的都是 同一个顶点, 只是基不相同

basic	X 1	X2	Х3	X4	X5	X6	X 7	rhs
-z	-3/4	150	-1/50	6	0	0	0	0
X5	1/4	-60	-1/25	9	1	0	0	0
\mathbf{x}_6	1/2	-90	-1/50	3	0	1	0	0
X 7	0	0	1	0	0	0	1	1

和初始基可行 > 解相同

2. 退化解。

- ✓ 为避免出现计算循环,可采用Bland(1974)准则:
 - (1) 当存在多个 $\sigma_j > 0$ 时,始终选取下标值为最小的变量作为换入变量;
 - (2) 当计算 θ 值出现两个或以上相同的最小比值时, 始终选取下标值为最小的变量作为换出变量;

前例中,在第5张表时我们运用Bland法则,得:

basic	X 1	X2	X3	X4	X5	X ₆	X 7	rhs
-Z	-1/2	120	0	0	-1	1	0	0
X3	-125/2	10500	1	0	50	-150	0	0
X_4	-1/4	40	0	1	1/3	-2/3	0	0
X 7	125/2	-10500	0	0	-50	150	1	1
basic	\mathbf{x}_1	\mathbf{x}_2	X 3	\mathbf{X}_4	X 5	x_6	X 7	rhs
- Z	0	36	0	0	-7/5	11/5	1/125	1/125
X3	0	0	1	0	0	0	1	1
X_4	0	-2	0	1	2/15	-1/15	1/250	1/250
\mathbf{x}_1	1	-168	0	0	-4/5	12/5	2/125	2/125
basic	\mathbf{x}_1	\mathbf{x}_2	X 3	\mathbf{X}_4	X 5	\mathbf{x}_6	X 7	rhs
-Z	0	15	0	21/2	0	3/2	1/20	1/20
X3	0	0	1	0	0	0	1	1
X 5	0	-15	0	15/2	1	-1/2	3/100	3/100
\mathbf{x}_1	1	-180	0	6	0	2	2/50	2/50

3. 无穷多解。

- ✓ 当所有检验数 $\sigma_j \leq 0$ 时,如果对某个非基变量 x_j 有 $\sigma_j = 0$,且可以找到 $\theta > 0$ 。
- ✓ 这表明可以找到另一个顶点(基可行解),其目标 函数值也到达最大。
- ✓ 由于可行域为凸集,所以该两点连线上的点也属于可行域,且目标函数值相等,即有无穷多解。
- ✓ 如果所有非基变量的 σ_i < 0,则LP问题有唯一解。

3. 无穷多解。

例4:
$$\max z = x_1 + 2x_2$$

$$\begin{cases} x_{1} \leq 4 \\ x_{2} \leq 3 \\ x_{1} + 2x_{2} \leq 8 \\ x_{1}, x_{2} \geq 0 \end{cases} \qquad \begin{cases} x_{1} + x_{3} = 4 \\ x_{2} + x_{4} = 3 \\ x_{1} + 2x_{2} + x_{5} = 8 \\ x_{1}, \dots, x_{5} \geq 0 \end{cases}$$

			1	2	0	0	0
\mathbf{c}_{B}	\mathbf{X}_{B}	b	x_1	x_2	x_3	x_4	x_5
0	x_3	4	1	0	1	0	0
0	x_4	3	0	1	0	1	0
0	x_5	8	1	2	0	0	1
		0	1	2	0	0	0

			1	2	0	0	0
\mathbf{c}_{B}	X _B	b	x_1	x_2	x_3	x_4	x_5
0	x_3	2	0	0	1	2	-1
2	x_2	3	0	1	0	1	0
_1	x_1	2	1	0	0	-2	1
		8	0	0	0	(o)	-1

$$\mathbf{x}^{(1)} = (2,3)$$
 $z^{(1)} = 8$

$$\mathbf{x}^{(2)} = (4,2)$$

$$z^{(2)} = 8$$

无穷多解

全部解:
$$\mathbf{x} = \alpha {2 \choose 3} + (1 - \alpha) {4 \choose 2}$$
, $(0 \le \alpha \le 1)$

4. 无界解。

✓ 当表中存在 $\sigma_j > 0$ 时有 $P_j \leq 0$,则问题为无界解。

例5: $\max z = 4x_1 + x_2$

$$\begin{cases}
-x_1 + x_2 \le 2 \\
x_1 - 4x_2 \le 4 \\
x_1 - 2x_2 \le 8
\end{cases} \implies \begin{cases}
-x_1 + x_2 + x_3 = 2 \\
x_1 - 4x_2 + x_4 = 4 \\
x_1 - 2x_2 + x_5 = 8 \\
x_1, \dots, x_5 \ge 0
\end{cases}$$

4. 无界解。

			4	1	0	0	0
\mathbf{c}_{B}	\mathbf{X}_{B}	b	x_1	\boldsymbol{x}_2	x_3	x_4	x_5
0	$\boldsymbol{x_3}$		-1				0
0	x_4	4	1	-4	0	1	0
0	\boldsymbol{x}_{5}	8	1	-2	0	0	1
		0	4	1	0	0	0

			4	1	0	0	0	
c_B	X _B	b	x_1	x_2	x_3	x_4	x_5	
0	x_3	6	0	-3	1	1	0	
4	x_1	4	1	-4	0	1	0	
0	x_5	4	0	2	0	-1	1	
		16		17				

第一章 线性规划

5. 单纯形法的进一步讨论

- 前面的例子中,化为标准形式后约束条件的系数矩阵都 含有单位矩阵,可以作为初始可行基。
- 如果化为标准形式的约束条件的系数矩阵中不存在单位 矩阵呢?
- 如何建立初始单纯形表?

例: max
$$z = -3x_1 + x_3$$

$$\begin{cases} x_1 + x_2 + x_3 \le 4 \\ -2x_1 + x_2 - x_3 \ge 1 \end{cases}$$
s.t.
$$3x_2 + x_3 = 9$$

$$x_1, x_2, x_3 \ge 0$$

$$\max z = -3x_1 + x_3 + 0 x_4 + 0 x_5$$

$$x_1 + x_2 + x_3 + x_4 = 4$$

$$-2x_1 + x_2 - x_3 - x_5 = 1$$

$$3x_2 + x_3 = 9$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

可以添加两列单位 向量 P_6 , P_7 ,连同 约束条件中的向量 P_4 构成单位矩阵。

$$\max z = -3x_1 + x_3 + 0 x_4 + 0 x_5 - M(x_6) - M(x_7)$$

$$= 4$$

$$-2x_1 + x_2 - x_3 - x_5 + x_6 = 1$$

$$3x_2 + x_3 + x_7 = 9$$

$$x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0$$

人工 变量

-*M* 罚因子

最终单纯形表:

			-3	0	1	0	0	-M	-M
C_B	X_{B}	b	x_1	x_2	x_3	X_4	x_5	x_6	\boldsymbol{x}_7
0	X_4	0	0	0	0	1	-1/2	1/2	-1/2
0	x_2	5/2	-1/2	1	0	0	-1/4	1/2 1/4	1/4
1	x_3	3/2	3/2	0	1	0	4/3	-3/4	1/4
			-9/2	0	0	0	-3/4	-M+3/4	-M-1/4

<u>判定无解条件:</u> 当进行到最优表时,仍有人工变量在基中,且 $\neq 0$,则说明原问题无可行解。

$$\max z = 2x_1 + x_2$$

$$s.t. \begin{cases} x_1 + x_2 \le 2 \\ 2x_1 + 2x_2 \ge 6 \\ x_1, x_2 \ge 0 \end{cases}$$

$$\max z = 2x_1 + x_2 + 0x_3 + 0x_4 - Mx_5$$

$$\begin{cases} x_1 + x_2 + x_3 &= 2\\ 2x_1 + 2x_2 & -x_4 + x_5 &= 6\\ x_1, x_2, x_3, x_4, x_5 \geq 0 \end{cases}$$

			2	1	0	0	-M
\mathbf{c}_{B}	\mathbf{x}_{B}	b	x_1	x_2	x_3	X_4	x_5
0	x_3	2	1	1	1	0	0
-M	x_5	6	2	2	0	-1	1
	c_j - z_j	j	2+2M	1+2M	0	-M	0
2	x_1	2	1	1	1	0	0
-M	x_5	2	0	0	-2	-1	1
	c_j - z	j	0	-1	-2-2M	-M	0

5.3 两阶段法

- 大M是一个很大的数, 但计算机处理时取多大呢?
- 两阶段法不用确定*M*具体值,可用于计算机求解。
- 第一阶段: 先求解一个目标函数中只包含人工变量的 线性规划问题, 判断其有否可行解:
 - 当人工变量取值为0时,这时的最优解就是原线性规划问题的一个基可行解;
 - 如果最优解的基变量中含有非零的人工变量,则原线性规划问题 无可行解。
- 第二阶段:有可行解时去掉人工变量再求解。

5.3 两阶段法

$$\max z = -3x_1 + x_3 + 0 x_4 + 0 x_5$$

$$x_1 + x_2 + x_3 + x_4 = 4$$

$$-2x_1 + x_2 - x_3 - x_5 = 1$$

$$3x_2 + x_3 = 9$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

$$\max z = -3x_1 + x_3 + 0 x_4 + 0 x_5 - M x_6 - M x_7$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 & = 4 \\ -2x_1 + x_2 - x_3 - x_5 + x_6 & = 1 \\ 3x_2 + x_3 + x_7 & = 9 \\ x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0 \end{cases}$$

5.3 两阶段法

$$\max z = -3x_1 + x_3 + 0 x_4 + 0 x_5 - M x_6 - M x_7$$

第一阶段的线性规划问题:

min
$$z = x_6 + x_7$$
 (max $z = -x_6 - x_7$)
$$\begin{cases}
x_1 + x_2 + x_3 + x_4 & = 4 \\
-2x_1 + x_2 - x_3 - x_5 + x_6 & = 1 \\
3x_2 + x_3 + x_7 & = 9 \\
x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0
\end{cases}$$

第二阶段去除人工变量,目标函数回归到:

$$\max z = -3x_1 + x_3 + 0 x_4 + 0 x_5$$

从第一个阶段的最后一张单纯形表出发,继续用单纯形法计算。

单纯形法全流程回顾

