

(10) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

(12) **Offenlegungsschrift**
(10) **DE 102 10 899 A 1**

(5) Int. Cl. 7:
G 02 B 13/24

DE 102 10 899 A 1

(21) Aktenzeichen: 102 10 899.4
(22) Anmeldetag: 8. 3. 2002
(43) Offenlegungstag: 18. 9. 2003

- (71) Anmelder:
Carl Zeiss SMT AG, 73447 Oberkochen, DE
(74) Vertreter:
Patentanwälte Ruff, Wilhelm, Beier, Dauster & Partner, 70174 Stuttgart

- (72) Erfinder:
Rostalski, Hans-Jürgen, 13086 Berlin, DE; Ulrich, Wilhelm, 73434 Aalen, DE
(56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:
US 45 09 852
US 44 80 910
EP 11 39 138 A1
WO200 2/09 10 78 1
SWITKES,M.,ROTHSCHILD,M.: Immersion lithography
at 157 nm. In: J.Vac. Sci.Technol.B 19(6),Nov./Dec.2001,S.2353-2356;;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (54) Refraktives Projektionsobjektiv für Immersions-Lithographie

(57) Ein für die Immersions-Mikrolithographie geeignetes, rein refraktives Projektionsobjektiv ist als Ein-Taillen-System mit fünf Linsengruppen ausgelegt, bei dem eine erste Linsengruppe mit negativer Brechkraft, eine zweite Linsengruppe mit positiver Brechkraft, eine dritte Linsengruppe mit negativer Brechkraft, eine vierte Linsengruppe mit positiver Brechkraft und eine fünfte Linsengruppe mit positiver Brechkraft vorgesehen sind. Die Systemblende liegt im Bereich maximaler Strahldurchmesser zwischen der vierten und der fünften Linsengruppe. Ausführungsformen erfindungsgemäßer Projektionsobjektive erreichen eine sehr hohe numerische Apertur $NA > 1$ bei großem Bildfeld und zeichnen sich durch guten optischen Korrektionszustand und moderate Baugröße aus. Bei Verwendung von Immersionsfluiden zwischen Projektionsobjektiv und Substrat sind bei Arbeitswellenlängen unterhalb 200 nm Strukturbreiten deutlich unter 100 nm auflösbar.

DE 102 10 899 A 1

- [0001] Die Erfindung bezieht sich auf ein refraktives Projektionsobjektiv zur Abbildung eines in einer Objektebene des Projektionsobjektivs angeordneten Musters in eine Bildebene des Projektionsobjektivs mit Hilfe eines Immersionsmediums, welches zwischen einem letzten optischen Element des Projektionsobjektivs und der Bildebene angeordnet ist.
- [0002] Photolithographische Projektionsobjektive werden seit mehreren Jahrzehnten zur Herstellung von Halbleiterbauelementen und anderen fein strukturierten Bauteilen verwendet. Sie dienen dazu, Muster von Photomasken oder Strichplatten, die nachfolgend auch als Masken oder Retikel bezeichnet werden, auf einen mit einer lichtempfindlichen Schicht beschichteten Gegenstand mit höchster Auflösung in verkleinerndem Maßstab zu projizieren.
- [0003] Zur Erzeugung immer feinerer Strukturen in der Größenordnung von 100 nm oder darunter tragen vor allem drei parallel verlaufende Entwicklungen bei. Erstens wird versucht, die bildseitige numerische Apertur (NA) der Projektionsobjektive über die derzeit üblichen Werte hinaus in den Bereich von $NA = 0,8$ oder darüber zu vergrößern. Zweitens werden immer kürzere Wellenlängen von Ultraviolettlicht verwendet, vorzugsweise Wellenlängen von weniger als 260 nm, beispielsweise 248 nm, 193 nm, 157 nm oder darunter. Schließlich werden noch andere Maßnahmen zur Auflösungsvergrößerung genutzt, beispielsweise phasenschiebende Masken und/oder schräge Beleuchtung.
- [0004] Es gibt auch schon Ansätze, die erzielbare Auflösung dadurch zu verbessern, dass in den Raum zwischen dem letzten optischen Element des Projektionsobjektives und dem Substrat ein Immersionsmedium mit hohem Brechungskoeffizienten eingebracht wird. Diese Technik wird hier als Immersions-Lithographie bezeichnet. Durch Einbringung des Immersionsmediums ergibt sich eine effektive Wellenlänge
- $$\lambda_{\text{eff}} = \lambda_0/n$$
- wobei λ_0 die Vakuum-Arbeitswellenlänge und n der Brechungskoeffizient des Immersionsmediums ist. Daraus ergeben sich eine Auflösung
- $$R = k_1(\lambda_{\text{eff}}/\text{NA}_0)$$
- und eine Schärfentiefe (depth of focus, DOF)
- $$\text{DOF} = \pm k_2(\lambda_{\text{eff}}/\text{NA}_0^2),$$
- wobei $\text{NA}_0 = \sin\Theta_0$, die "trockene" numerische Apertur und Θ_0 der halbe Öffnungswinkel des Objektives ist. Die empirischen Konstanten k_1 und k_2 sind prozessabhängig.
- [0005] Die theoretischen Vorteile der Immersions-Lithographie liegen in der Verringerung der effektiven Arbeitswellenlänge und der damit verbesserten Auflösung. Dies kann bei unveränderter Vakuum-Wellenlänge erreicht werden, so dass für die entsprechende Wellenlänge etablierte Techniken zur Lichterzeugung, zur Wahl von optischen Materialien, zur Beschichtungstechnik etc. weitgehend unverändert übernommen werden können. Allerdings sind Maßnahmen zur Bereitstellung von Projektionsobjektiven mit höchsten numerischen Aperturen im Bereich von $NA = 1$ oder darüber erforderlich. Weiterhin müssen geeignete Immersionsmedien verfügbar sein.
- [0006] In dem Artikel "Immersion Lithography at 157 nm" von M. Switkes und M. Rothschild, J. Vac. Sci. Technol. B 19(6), Nov./Dec. 2001, Seiten 1 ff werden Immersionsflüssigkeiten auf Basis von Perfluorpolyethern (PFPE) vorgestellt, welche für 157 nm Arbeitswellenlänge ausreichend transparent und mit einigen derzeit in der Mikrolithographie verwendeten Photoresist-Materialien kompatibel sind. Eine getestete Immersionsflüssigkeit hat bei 157 nm einen Brechungskoeffizienten $n = 1,37$. In der Veröffentlichung ist auch ein mit Kalziumfluorid-Elementen und Silizium-Spiegeln arbeitendes, linsenfreies, optisches System zur Immersions-Interferenz-Lithographie dargestellt, welches bei einer numerischen Apertur von $NA = 0,86$ die Abbildung von 60 nm-Strukturen und darunter ermöglichen soll. Das optische System dürfte für den Einsatz in der Serienproduktion von Halbleitern oder dergleichen nicht geeignet sein.
- [0007] Die Patentschrift US 5,610,683 (entsprechend EP 0 605 103) beschreibt eine für die Immersions-Lithographie vorgesehene Projektionsbelichtungsanlage mit Einrichtungen zur Einbringung von Immersionsfluid zwischen dem Projektionsobjektiv und dem Substrat. Es ist kein Design für die Projektionsoptik angegeben.
- [0008] Im US-Patent US 5,900,354 wird vorgeschlagen, bei der Immersions-Lithographie als Immersionsmedium ein super-kritisches Fluid zu verwenden, beispielsweise Xenongas. Es ist kein Design für ein geeignetes Projektionsobjektiv gezeigt.
- [0009] Der Erfindung liegt die Aufgabe zugrunde, ein für die Immersions-Lithographie geeignetes, refraktives Projektionsobjektiv zu schaffen, welches bei moderater Baugröße eine für die Immersions-Lithographie geeignete hohe numerische Apertur, ein für den praktischen Einsatz in Wafersteppern oder Waferscannern ausreichend großes Bildfeld sowie guten Korrektionszustand aufweist.
- [0010] Diese Aufgabe wird gelöst durch ein Projektionsobjektiv mit den Merkmalen von Anspruch 1. Vorteilhafte Weiterbildungen sind in den abhängigen Ansprüchen angegeben. Der Wortlaut sämtlicher Ansprüche wird durch Bezugnahme zum Inhalt der Beschreibung gemacht.
- [0011] Gemäß einem Aspekt der Erfindung hat ein refraktives Projektionsobjektiv zur Abbildung eines in einer Objektebene des Projektionsobjektivs angeordneten Musters in die Bildebene des Projektionsobjektivs mit Hilfe eines Immersionsmediums, welches zwischen einem letzten optischen Element des Projektionsobjektivs und der Bildebene angeordnet ist,
- eine auf die Bildebene folgende erste Linsengruppe mit negativer Brechkraft;
- eine darauffolgende zweite Linsengruppe mit positiver Brechkraft;
- eine darauffolgende dritte Linsengruppe mit negativer Brechkraft;
- eine darauffolgende vierte Linsengruppe mit positiver Brechkraft;

DE 102 10 899 A 1

eine darauffolgende fünfte Linsengruppe mit positiver Brechkraft; sowie eine Systemblende, die im Bereich maximaler Strahldurchmesser zwischen der vierten Linsengruppe und der fünften Linsengruppe angeordnet ist.

[0012] Diese Brechkraftverteilung ergibt ein Projektionsobjektiv mit zwei Bäuchen und einer dazwischenliegenden Taille, wodurch eine gute Korrektur der Bildfeldwölbung erreicht wird. Die Systemblende sitzt im Bereich größter Strahldurchmesser des der Bildebene nächsten Bauches, wobei am Ort der Systemblende vorzugsweise mindestens 90% oder 95% des maximalen Strahldurchmessers im bildnahen Bauch vorliegen. Bei gewissen Ausführungsformen kann die Systemblende zwischen einer bildnahen Ebene maximalen Strahldurchmessers und der Bildebene liegen und somit in einem Bereich, in dem der durchleuchtete Durchmesser des Objektivs zur Bildebene schon abnimmt. Dies ist ein wesentlicher Unterschied zu herkömmlichen, refraktiven Projektionsobjektiven, bei denen die Systemblende objektseitig in größerem Abstand vor dem Bereich maximaler Strahldurchmesser im bildnahen Bauch liegt.

[0013] Die Konstruktion ermöglicht bildseitige numerische Aperturen $NA \geq 0.9$, wobei bei bevorzugten Ausführungsformen $NA = 1.1$ oder darüber erzielbar ist. Bevorzugte Projektionsobjektive sind an ein Immersionsfluid angepasst, welches bei der Arbeitswellenlänge einen Brechungsindex $n > 1.3$ hat. Hierdurch kann eine Verringerung der effektiven Arbeitswellenlänge um 30% oder mehr gegenüber Systemen ohne Immersion geschaffen werden.

[0014] Vorteilhafterweise kann das Projektionsobjektiv so ausgelegt sein, dass der von dem Immersionsmedium auszufüllende Raum eine derart geringe axiale Dicke hat, dass Transmissionsverluste im Immersionsmedium nicht mehr als 10 bis 20% der eindringenden Lichtintensität betragen. Günstig sind daher bildseitige Arbeitsabstände von weniger als 200 μm insbesondere weniger als 100 μm . Da andererseits ein Berührungskontakt zwischen dem letzten optischen Element und der Substratoberfläche vermieden werden soll, sollte eine untere Grenze des Arbeitsabstandes von 10 bis 20 μm nicht unterschritten werden. Bei geeignet transparenten Immersionsmedien sind auch größere Arbeitsabstände im Bereich von einem oder mehreren Millimetern möglich.

[0015] Bevorzugte Projektionsobjektive zeichnen sich durch eine Anzahl günstiger konstruktiver und optischer Merkmale aus, die alleine oder in Kombination für die Eignung des Objektivs als Immersionsobjektiv förderlich sind.

[0016] Beispielsweise kann es günstig sein, wenn die Brechkräfte der Linsengruppen beidseits der Systemblende die gleiche Größenordnung haben. Insbesondere kann vorgesehen sein, dass ein Verhältnis zwischen der Brennweite der vierten Linsengruppe und der Brennweite der fünften Linsengruppe zwischen ca. 0,9 und ca. 1,1 liegt. Ebenfalls günstig kann es sein, wenn die Brennweiten bzw. Brechkräfte der objektnahen und der bildnahen Linsengruppen betragsmäßig ähnlich sind. Insbesondere kann ein Verhältnis der Beträge der Brennweiten der ersten Linsengruppe und der fünften Linsengruppe zwischen ca. 0,7 und ca. 1,3, vorzugsweise zwischen ca. 0,9 und 1,1 liegen. Für die Erzeugung einer hohen bildseitigen numerischen Apertur kann es weiterhin günstig sein, wenn eine starke positive Brechkraft im bildnahen Bereich konzentriert ist. Bei bevorzugten Ausführungsformen ist ein Verhältnis zwischen der Baulänge des Projektionsobjektivs und der Brennweite der auf die Systemblende folgenden fünften Linsengruppe größer als fünf, insbesondere größer als sechs, sieben oder sogar acht. Als Baulänge wird hier der axiale Abstand zwischen Objektebene und Bildebene bezeichnet.

[0017] Für die Erzielung eines guten Korrekturzustandes ist bei bevorzugten Ausführungsformen vorgesehen, dass die erste Linsengruppe mindestens eine asphärische Fläche enthält. Günstigerweise können hier sogar mehrere Asphären z. B. zwei vorgesehen sein. Asphären in diesem Bereich tragen besonders wirksam zur Korrektion von Verzeichnung und Astigmatismus bei. Für die Korrektion von Koma und Astigmatismus ist es weiterhin günstig, wenn die im Bereich der Taille liegende dritte Linsengruppe mindestens eine asphärische Fläche aufweist, wobei mehrere Asphären, z. B. zwei Asphären, bevorzugt sind. Bei bevorzugten Ausführungsformen ist in jeder Linsengruppe mindestens eine Asphäre vorgesehen, um eine Feineinstellung des Korrekturzustandes des Projektionsobjektivs zu erleichtern. Im Hinblick auf einfache Herstellung der Linsen sollte die Zahl der Asphären begrenzt sein, beispielsweise auf weniger als neun oder weniger als sieben, wie bei einer bevorzugten Ausführungsform.

[0018] Die günstigen Abbildungseigenschaften erfundsgemäßer Projektionsobjektive, insbesondere der gute Korrekturzustand bei höchster numerischer Apertur, werden durch einige Besonderheiten bei Art und Anordnung der verwendeten Linsen gefördert. Beispielsweise ist es günstig, wenn im Nahbereich der Objektebene, insbesondere in der ersten Linsengruppe, mindestens eine zur Objektebene konvexe Meniskuslinse mit negativer Brechkraft angeordnet ist. Diese Linse, die beispielsweise die dritte Linse des Objektivs bilden kann, begünstigt die Korrektion von tangentialem Astigmatismus.

[0019] Die zweite Linsengruppe hat auf ihrer der Objektebene zugewandten Seite vorzugsweise mindestens eine, insbesondere mehrere zur Objektebene konkave Meniskuslinsen mit positiver Brechkraft. Diese treten vorzugsweise in Kombination mit mindestens einer, vorzugsweise mehreren zur Objektebene konvexen Meniskuslinsen mit positiver Brechkraft an der der Bildebene zugewandten Seite der zweiten Linsengruppe auf. Günstigerweise liegt zwischen den Meniskus- oder Meniskengruppen gegensinniger Durchbiegung mindestens eine bikonvexe Positivlinse. Dadurch kann in der zweiten Linsengruppe eine Abfolge mindestens einer zur Objektebene konkaven Positiv-Meniskuslinse, einer bikonvexen Positivlinse und mindestens einer zur Bildebene konkaven Positiv-Meniskuslinse gebildet sein. Diese Abfolge von Linsen im Bereich größer Strahldurchmesser des ersten Bauches ist günstig für eine starke "Verbiegung" des Hauptstrahles in diesem Bereich bei gleichzeitig niedrigen Flächenbelastungen der optischen Flächen. Dies ist günstig für geringe Gesamtaberrationen des Projektionsobjektivs. Eine günstige Flächenbelastung im Sinne dieser Anmeldung ist dann gegeben, wenn die Inzidenzwinkel der auf eine optische Fläche treffenden Strahlen möglichst gering sind und einen kritischen Grenzwert nicht überschreiten. Als Inzidenzwinkel wird hier der Winkel zwischen der Auftreffrichtung eines Strahls auf eine optische Fläche und der Flächennormalen der optischen Fläche am Auftreffpunkt des Strahles bezeichnet. Je geringer die Inzidenzwinkel und entsprechend je geringer die Flächenbelastung ist, desto einfacher ist die Entwicklung geeigneter Anti-Reflexbeschichtungen und desto größer ist die Toleranz des Designs gegen die Justierung.

[0020] Der Bereich engster Einschnürung des Strahls wird als Taille bezeichnet. Die im Bereich der Taille liegende dritte Linsengruppe hat die Aufgabe, die hinter dem ersten Bauch konvergierende Strahlung mit geringst möglichen Abberationen wieder aufzuweiten. Hierzu ist es günstig, wenn die dritte Linsengruppe nur Linsen mit negativer Brechkraft

aufweist. Als besonders vorteilhaft hat sich herausgestellt, wenn die dritte Linsengruppe in Bezug auf eine innerhalb der dritten Linsengruppe liegende Symmetrieebene einen im wesentlichen symmetrischen Aufbau hat. Dieser zeichnet sich insbesondere dadurch aus, dass objektseitig und bildseitig der Symmetrieebene einander zugeordnete Linsen gleichen Typs angeordnet sind. Die Symmetrie der Linsentypen erstreckt sich bevorzugt auch in den angrenzenden Bereich der zweiten und der vierten Linsengruppe, so dass bevorzugt ein der dritten Linsengruppe zugewandter Austrittsbereich der zweiten Linsengruppe und ein der dritten Linsengruppe folgender Eintrittsbereich der vierten Linsengruppe im wesentlichen symmetrisch zu der innerhalb der dritten Linsengruppe liegenden Symmetrieebene aufgebaut sein können. Eine symmetrische Anordnung von Negativ- und Positiv-Meniskuslinsen wird bei den Ausführungsformen noch näher erläutert. Die Symmetrie ist förderlich für eine geringe Flächenbelastung der Linsen bei geringen Aberrationen.

[0021] Im Bereich unmittelbar vor der Systemblende, d. h. in der vierten Linsengruppe, ist vorzugsweise mindestens ein Doublett mit einer bikonvexen Positivlinse und einer bildwärts folgenden meniskusförmigen Negativlinse mit objektwärts konkaven Linsenflächen vorgesehen. Besonders günstig sind Ausführungsformen mit zwei solcher Doublets, die unmittelbar aufeinander folgen können. Zwischen den Linsen des Doublets ist jeweils eine zur Bildebene konvexe, positive Luftlinse angeordnet. Derartige Doublets aus sammelnder Bikonvexlinse und zerstreuendem Meniskus wirken sich positiv auf den Korrekturzustand aus und können den Abberationen entgegen wirken, die durch Linsen mit starker, positiver Brechkraft hinter der Systemblende eingeführt werden. Weiterhin kann es günstig sein, im objektseitigen Eintrittsbereich der vierten Linsengruppe mindestens eine objektwärts konkave Meniskuslinse mit positiver Brechkraft anzutragen, um die aus der Taille kommende Strahlung bei geringer Flächenbelastung zu sammeln.

[0022] Zur Erzielung höchster numerischer Aperturen ist es vorteilhaft, wenn die fünfte Linsengruppe ausschließlich Positivlinsen hat. Es können z. B. vier oder mehr Positivlinsen zwischen Aperturblende und Bildebene angeordnet sein. Dabei sind günstige Flächenbelastungen dann erzielbar, wenn in der fünften Linsengruppe mindestens eine bildwärts konkav Meniskuslinse mit positiver Brechkraft vorgesehen ist. Insbesondere können zwei oder mehr solcher Linsen vorgesehen sein. Das letzte optische Element wird bevorzugt durch eine Plankonvexlinse gebildet, die eine vorzugsweise sphärische Eintrittsfläche und eine im wesentlichen ebene Austrittsfläche hat. Hierdurch kann einerseits eine gute Korrektur von sphärischer Abberation und Koma erreicht werden und andererseits ist eine im wesentlichen ebene Austrittsfläche günstig für die Immersions-Lithographie. Bei bevorzugten Ausführungsformen ist die Plankonvexlinse nicht-hemisphärisch, wobei der Mittelpunkt der sphärischen Fläche außerhalb der Linsen liegt. Abgeschnittene Halbkugellinsen dieser Art können eine reduzierte Empfindlichkeit gegen Schwankungen des Arbeitsabstandes ergeben.

[0023] Durch Anwendung einiger oder aller dieser Designprinzipien ist es bei bevorzugten Ausführungsformen gelungen, die Flächenbelastung der Linsen so gering zu halten, dass trotz einer Apertur von mehr als $NA = 0,9$ oder 1 an keiner der optischen Flächen Einfallsinkel auftreten, deren Sinus größer als ca. 90% oder sogar ca. 85% der bildseitigen numerischen Apertur ist, was die Entspiegelung der Linsen und die Objektivjustage vereinfacht.

[0024] Bei bevorzugten Ausführungsformen bestehen alle Linsen des Projektionsobjektives aus dem gleichen Material. Als Material kann beispielsweise bei Arbeitswellenlängen von 193 nm synthetisches Quarzglas und bei Arbeitswellenlängen von 157 nm Kalziumfluorid verwendet werden. Die Verwendung nur einer Materialsorte erleichtert die Herstellung und ermöglicht eine einfache Anpassung des Objektivdesigns an andere Wellenlängen. Es ist auch möglich, mehrere Materialsorten zu kombinieren, um beispielsweise die Korrektur von Farbfehlern zu unterstützen. Auch der Einsatz anderer UV-transparenter Materialien wie BaF_2 , NaF , LiF , SrF , MgF_2 oder dergleichen ist möglich.

[0025] Die vorstehenden und weiteren Merkmale gehen außer aus den Ansprüchen auch aus der Beschreibung und den Zeichnungen hervor, wobei die einzelnen Merkmale jeweils für sich alleine oder zu mehreren in Form von Unterkombinationen bei Ausführungsformen der Erfindung und auf anderen Gebieten verwirklicht sein und vorteilhafte sowie für sich schutzfähige Ausführungen darstellen können. Es zeigen:

[0026] Fig. 1 ist ein Linsenschnitt durch eine erste Ausführungsform eines refraktiven Projektionsobjektivs, dass für 193 nm Arbeitswellenlänge ausgelegt ist;

[0027] Fig. 2 ist ein Linsenschnitt durch eine zweite Ausführungsform eines Projektionsobjektivs, das für 193 nm Arbeitswellenlänge ausgelegt ist;

[0028] Fig. 3 ist ein Linsenschnitt durch eine dritte Ausführungsform eines Projektionsobjektivs, welches für 157 nm Arbeitswellenlänge ausgelegt ist; und

[0029] Fig. 4 ist ein Linsenschnitt durch eine vierte Ausführungsform eines Projektionsobjektivs, welches für 193 nm Arbeitswellenlänge ausgelegt ist.

[0030] Bei der folgenden Beschreibung bevorzugter Ausführungsformen bezeichnet der Begriff "optische Achse" eine gerade Linie durch die Krümmungsmittelpunkte der optischen Komponenten. Richtungen und Abstände werden als bildseitig oder bildwärts beschrieben, wenn sie in Richtung der Bildebene bzw. des dort befindlichen, zu belichtenden Substrats gerichtet sind und als objektseitig bzw. objektwärts, wenn sie in Bezug auf die optische Achse zum Objekt gerichtet sind. Das Objekt ist in den Beispielen eine Maske (Retikel) mit dem Muster einer integrierten Schaltung, es kann sich aber auch um ein anderes Musters, beispielsweise eines Gitters handeln. Das Bild wird in den Beispielen auf einem als Substrat dienenden, mit einer Photoresistschicht dienenden Wafer gebildet, jedoch sind auch andere Substrate möglich, beispielsweise Elemente für Flüssigkristallanzeigen oder Substrate für optische Gitter. Die angegebenen Brennweiten sind Brennweiten bezüglich Luft.

[0031] Im folgenden werden identische oder einander entsprechende Merkmale der verschiedenen Ausführungsformen aus Gründen der Übersichtlichkeit mit den gleichen Bezugszeichen bezeichnet.

[0032] Anhand Fig. 1 wird ein typischer Aufbau einer Ausführungsform eines erfundungsgemäßen, rein refraktiven Reduktionsobjektivs 1 gezeigt. Es dient dazu, bei nahezu homogener Immersion in einer Objektebene 2 angeordnetes Muster eines Retikels oder dergleichen in eine Bildebene 3 in reduziertem Maßstab abzubilden, beispielsweise im Maßstab 5 : 1. Es handelt sich um ein rotationssymmetrisches Ein-Taillesystem mit fünf Linsengruppen, die entlang der senkrecht auf Objektebene und Bildebene stehenden optischen Achse 4 angeordnet sind und einen objektseitigen Bauch 6, einen bildseitigen Bauch 8 und eine dazwischen liegende Taille 7 bilden. Die auf die Bildebene 2 folgende erste Linsengruppe LG1 hat negative Brechkraft und eine Brennweite von -166 mm. Eine darauf folgende zweite Linsengruppe LG2

DE 102 10 899 A 1

hat positive Brechkraft mit einer Brennweite von 121 mm. Eine darauf folgende dritte Linsengruppe LG3 hat negative Brechkraft und eine Brennweite von -33 mm. Eine darauf folgende vierte Linsengruppe LG4 hat positive Brechkraft mit einer Brennweite von 166 mm, welche somit betragsmäßig der Brennweite der ersten Linsengruppe entspricht. Eine darauf folgende fünfte Linsengruppe LG5 hat positive Brechkraft und eine Brennweite von 170 mm, was in der Größenordnung der Brennweite der vierten Linsengruppe und betragsmäßig der ersten Linsengruppe LG1 liegt. Zwischen der vierten Linsengruppe LG4 und der fünften Linsengruppe LG5 ist im bildnahen Bereich maximaler Strahl durchmesser, d. h. ini zweiten Bauch 8 des Objektivs, die Systemblende 5 angeordnet.

[0033] Die auf die Objektebene 2 folgende erste Linsengruppe LG1 ist im wesentlichen zuständig für die Aufweitung der Lichtbündel in den ersten Bauch 6 hinein. Sie umfasst drei Linsen 11, 12, 13 mit negativer Brechkraft, wobei die erste Linse 11 und die zweite Linse 12 als bikonvexe Negativlinsen gestaltet sind. Die dritte Linsen 13 ist ein zerstreuender Meniskus, bei dem als Besonderheit die konkave Seite nicht zum Objekt 2, sondern zur Bildebene 3 gerichtet ist. Diese Anordnung ist sehr günstig für die Korrektion des tangentialen Astigmatismus. Im übrigen enthält die erste Linsengruppe zwei Asphären, nämlich die Eintrittsseiten der zweiten und der dritten Linse. Die Asphären haben einen positiven Einfluss auf die sehr gute Korrektion der Verzeichnung und des Astigmatismus.

[0034] Die zweite Linsengruppe LG2 besteht aus vier dem Retikel bzw. der Objektebene 2 mit ihrer konkaven Seite zugewandten sammelnden Menisken 14, 15, 16, 17, einer bikonvexen Positivlinse 18 und zwei mit ihrer konkaven Seite den Wafer bzw. der Bildebene 3 zugewandten sammelnden Menisken 19, 20. Dieser Aufbau, bei dem die Krümmungen der Meniskusflächen objektseitig und bildseitig der Bikonvexlinse 18 gegensinnig mit von einander abgewandten Konkavflächen verlaufen, gewährleistet kleine Flächenbelastungen für die Menisken und die Positivlinse 18 und somit geringe Abberationen. Die bikonkave Luftpipeline zwischen der bikonvexen Positivlinse 18 und der folgenden Meniskuslinse 19 hat mit ihrer starken astigmatischen Unterkorrektur einen günstigen Einfluss auf das Ausbalancieren des Astigmatismus im vorderen Teil des Systems vor der Taille 7.

[0035] Die dritte Linsengruppe LG3 besteht ausschließlich aus zerstreuenden Linsen, nämlich einer Negativ-Meniskuslinse 21 mit bildseitigen Konkavflächen, einer darauf folgenden bikonkaven Negativlinse 22, einer weiteren darauf folgenden bikonkaven Negativlinse und einer darauffolgenden Negativ-Meniskuslinse 24 mit objektseitigen Konkavflächen. Diese vier Linsen sind bezüglich einer zwischen den Linsen 22 und 23 liegenden Symmetrieebene 9 hinsichtlich Linsentyp (Meniskuslinse oder Bikonkavlinse) und Krümmungsrichtung der optischen Flächen spiegelsymmetrisch aufgebaut. Zusammen mit den letzten beiden Linsen 19, 20 der zweiten Linsengruppe und den ersten beiden Linsen 25, 26 der darauffolgenden vierten Linsengruppe LG4 ist eine Reihenfolge von zwei sammelnden Menisken 19, 20 und einem zerstreuenden Meniskus 21 gegeben, die alle drei der Taille bzw. der Symmetrieebene 9 zugewandte, konkave Flächen haben. In entgegengesetzter, gespiegelter Richtung, d. h. auf der Bildseite der Symmetrieebene 9, folgen auf die beiden bikonkaven Negativlinsen 22, 23 in der Taille, also auf den Bereich kleinster Durchmesser, wieder ein zerstreuender Meniskus 24 und zwei sammelnde Menisken 25, 26 der vierten Linsengruppe. Dieser zur Symmetrieebene 9 spiegelsymmetrische Aufbau unterstützt eine geringe Anspannung bzw. eine geringe Flächenbelastung der optischen Flächen und damit geringe Abberationen.

[0036] Die dritte Linsengruppe enthält mit der Austrittsfläche der kleinsten Linse 22 und der Austrittsfläche der Negativ-Meniskuslinse 24 zwei Asphären, die wesentlich zur Korrektion der Koma und des Astigmatismus beitragen.

[0037] Die vierte Linsengruppe LG4 umfasst an ihrer Eintrittsseite zwei zur Objektebene konkave Positiv-Meniskuslinsen 25, 26, auf die zwei Doublets 27, 28 sowie 29, 30 folgen. Jedes der Doublets hat objektseitig eine sammelnde Bikonvexlinse 27 bzw. 29 und dahinter einen zerstreuenden Meniskus 28 bzw. 30, deren konkave Flächen zur Objektebene zeigen. Die beiden sphärisch stark überkorrigierten, zerstreuenden Menisken 28 ($f = -728$ mm) und 30 ($f = -981$ mm) wirken den stark unterkorrigierenden, sammelnden Linsen der hinter der Systemblende 5 folgenden fünften Linsengruppe LG5 entgegen. Die Kombination der sammelnden Bikonvexlinse und des zerstreuenden Meniskus innerhalb eines Doublets wirkt sich sehr positiv auf die Korrektion von Bildfehlern im Bereich des zweiten Bauches 8 aus. Die beiden Menisken 28, 30, insbesondere der dicke Meniskus 28, wirken mit ihrer starken Überkorrektur des tangentialen Astigmatismus der Unterkorrektur in der fünften Linsengruppe LG5 entgegen.

[0038] Die hinter der Systemblende 5 liegende fünfte Linsengruppe LG5 ist im wesentlichen für die Erzeugung der hohen numerischen Apertur verantwortlich. Dazu sind ausschließlich sammelnde Linsen vorgesehen, nämlich eine im Bereich der Systemblende 5 angeordnete Positiv-Meniskuslinse 31 mit bildwärts konkaven Flächen, eine darauf folgende bikonvexe Positivlinse 32 mit schwach gekrümmter Eintrittsseite und stärker gekrümmter Austrittsseite, eine darauf folgende Positiv-Meniskuslinse 33 mit bildwärts konkaven Flächen, eine weitere Positiv-Meniskuslinse 34 ebenfalls mit bildwärts konkaven Flächen sowie eine abschließende Plankonvexlinse 35 mit einer sphärischen Eintrittsseite und einer ebenen Austrittsseite. Die Positivlinsen 31, 32, 33 und 34 sind sphärisch stark unterkorrigiert und betreffend der Koma überkorrigiert. Die Korrektion der sphärischen Abberation und der Koma wird bei diesem Design somit im wesentlichen im Zusammenhang mit der Gestaltung der vor der Systemblende 5 liegenden vierten Linsengruppe LG4 realisiert, die einen entsprechenden Vorhalt dieser Abberationen schafft. Somit sind die vierte Linsengruppe LG4 und die fünfte Linsengruppe LG5 in Kombination für die Erzielung eines guten Korrektionszustandes der sphärischen Abberation und von Koma zuständig. Eine asphärische Fläche auf der Eintrittsseite der Bikonvexlinse 27 des ersten Doublets unterstützt wesentlich die Korrektion der sphärischen Abberation und der Koma. Eine in der Nähe der Systemblende 5 angeordnete asphärische Fläche auf der Austrittsseite der objektwärts konvexen Positiv-Meniskuslinse 31 am Eingang der fünften Linsengruppe LG5 korrigiert vorrangig Abberationen höherer Ordnung und trägt dabei wesentlich zum Einstellen eines guten Abberationskomromisses bei. Einen ebenfalls positiven Einfluss auf die Korrektion von Öffnungsfehlern und Koma hat die sphärische, konvexe Eintrittsfläche der Plankonvexlinse 35. Diese ist sphärisch überkorrigiert und betreffs Koma unterkorrigiert.

[0039] Das System hat einen bildseitigen Arbeitsabstand von ca. 8,4 mm, der durch eine Immersionsflüssigkeit 10 ausgefüllt werden kann. Als Immersionsflüssigkeit kann bei 193 nm beispielsweise deionisiertes Wasser (Brechungsindex $n = 1,47$) oder eine andere geeignete transparente Flüssigkeit verwendet werden.

[0040] Der Korrektionszustand des optischen Systems 1 ist ausgezeichnet. Alle Abberationen sind korrigiert. Der

[0040] Die Wettbewerbsfähigung ist mit 4 nm sehr gering. Die Verzeichnung liegt für alle Flächenpunkte im Bereich unterhalb von 1 nm. Damit ist ein Projektionsobjektiv geschaffen, das bei einer Arbeitswellenlänge von 193 nm arbeitet, mit Hilfe konventioneller Techniken für Linsenherstellung und Beschichtung hergestellt werden kann und eine Auflösung von Strukturen deutlich unterhalb 100 nm erlaubt.

5 [0041] Durch den Einsatz einer homogenen Immersion ist der beschriebene Aufbau grundsätzlich auch zur Nahfeld-Lithographie geeignet. Hierzu ist die abschließende Plankonvexlinse 35 mit der Immersionsschicht 10 zu einer Linse zusammenzufassen, die z. B. aus synthetischem Quarzglas bestehen kann. Um eine Einkopplung von ausreichend Lichtenergie des evaneszenten Feldes zu ermöglichen, sollte in diesem Fall der Arbeitsabstand zwischen der Austrittsfläche des Projektionsobjektivs und der Bildebene im Bereich von 100 nm oder darunter liegen.

10 [0042] In Tabelle 1 ist die Spezifikation des Designs in bekannter Weise in tabellarischer Form zusammengefasst. Dabei gibt Spalte 1 die Nummer einer brechenden oder auf andere Weise ausgezeichneten Fläche, Spalte 2 den Radius r der Fläche (in mm), Spalte 3 den als Dicke bezeichneten Abstand d der Fläche zur nachfolgenden Fläche (in nm), Spalte 4 das Material der optischen Komponenten und Spalte 5 die Brechzahl bzw. den Brechungsindex des Materials des Bau-15 elementes an, welches der Eintrittsfläche folgt. In Spalte 6 sind die nutzbaren, freien Radien bzw. der halbe freie Durchmesser der Linsen (in nm) angegeben.

15 [0043] Bei der Ausführungsform sind sechs der Flächen, nämlich die Flächen 4, 6, 15, 29, 34 und 44 asphärisch. Tabelle 2 gibt die entsprechenden Asphärenwerte an, wobei sich die asphärischen Flächen nach folgender Vorschrift berechnen:

20 $p(h) = [(1/r)h^2]/(1 + \text{SQRT}(1 - (1 + K)(1/r)^2h^2)] + C1 \cdot h^4 + C2 \cdot h^6 + \dots$

[0044] Dabei gibt der Kehrwert (1/r) des Radius die Flächenkrümmung und h den Abstand eines Flächenpunktes von der optischen Achse an. Somit gibt p(h) die sogenannten Pfeilhöhe, d. h. den Abstand des Flächenpunktes vom Flächenscheitel in z-Richtung, d. h. in Richtung der optischen Achse. Die Konstanten K, C1, C2, ... sind in Tabelle 2 wiedergegeben.

25 [0045] Das mit Hilfe dieser Angaben reproduzierbare optische System 1 ist für eine Arbeitswellenlänge von ca. 193 nm ausgelegt, bei der das für alle Linsen verwendete, synthetische Quarzglas einen Brechungsindex n = 1,56029 hat. Die bildseitige numerische Apertur beträgt 1,1. Das System ist auf einen Brechungsindex des Immersionsmediums 10 von n = 1,56 angepasst, der eine nahezu ideal Einkopplung des Lichtes in die Immersionsschicht 10 erlaubt. Das Objektiv hat eine Baulänge (Abstand zwischen Bildebene und Objektebene) von 1162 mm. Bei einer Bildgröße von 22 mm wird ein Lichtleitwert (Produkt aus numerischer Apertur und Bildgröße) von 24,1 mm erreicht.

30 [0046] Anhand von Fig. 2 wird eine Variante des in Fig. 1 gezeigten Projektionsobjektivs erläutert. Linsen bzw. Linsengruppen gleichen Typs bzw. gleicher Funktion werden aus Gründen der Übersichtlichkeit mit gleichen Bezugszeichen bezeichnet. Das System 1' ist für eine Brechzahl des Immersionsmediums von n = 1,37 optimiert, was einem aus der Literatur bekannt gewordenen Wert für die Brechzahl eines Immersionsfluides auf Basis von Perfluorpolyether (PFPE) bei (157 nm) entspricht.

35 [0047] Ein Unterschied zum Design gemäß Fig. 1 besteht in der vierten und der fünften Linsengruppe. In LG4 ist die dicke Meniskuslinse 28 des ersten Doublets in Fig. 1 aufgespalten in eine objektseitige, bikonkav Negativlinse 28' mit einer nur schwach gekrümmten Austrittsseite und eine nachfolgende biconvexe Positivlinse 28'' mit einer entsprechend 40 nur schwach gekrümmten Eintrittsseite. Diese Aufspaltung vermindert weiter die Flächenbelastung der optischen Flächen in diesem Bereich. Im Luftraum zwischen den nachfolgenden Linsen 29, 30 vor der objektwärts, konkaven Eintrittsfläche des Meniskus 30 verläuft der Randstrahl der Abbildung konvergent. In der fünften Linsengruppe LG5 sind die beim Design in Fig. 1 getrennten, eintrittsseitigen Linsen 31, 32 hinter der Systemblende 5 zu einer einzigen, biconvexen Positivlinse 32' zusammengefasst. Diese liegt mit Abstand hinter der Systemblende 5, die besonders gut zugänglich ist. Eine weitere Besonderheit besteht darin, dass die Systemblende 5 zwischen einer bildnahen Ebene maximalen Strahldurchmessers und der Bildebene 3 hegt, also dort, wo der durchstrahlte Durchmesser der Linsen zur Bildebene hin bereits abnimmt. Die anderen Linsen entsprechen hinsichtlich Typ und Reihenfolge der Linsen gleicher Bezugszeichen in Fig. 1. Auch bei diesem Design bestehen alle Linsen aus synthetischem Quarzglas. Die Spezifikation dieses Designs in der beschriebenen Notation ist in Tabellen 3 und 4 angegeben.

45 [0048] In Fig. 3 ist eine für eine Arbeitswellenlänge von 157 nm ausgelegte dritte Ausführungsform eines Projektionsobjektivs 1" gezeigt, deren Spezifikation in Tabelle 5 und 6 angegeben ist. An der Abfolge und der Art der Linsen ist zu erkennen, dass das Design auf dem anhand von Fig. 1 und 2 erläuterten Designprinzip beruht, so dass für Linsen bzw. Linsengruppen entsprechender Funktion die gleichen Bezugszeichen verwendet werden. Wie bei der Ausführungsform gemäß Fig. 1 ist vor der ersten, bikonkaven Negativlinse 11 des Objektivs kein weiteres optisches Element angeordnet.

50 [0049] Wie bei der Ausführungsform gemäß Fig. 2 ist in der vierten Linsengruppe LG4 die in Fig. 1 noch einstückige, dicke Meniskuslinse 28 aufgespalten in eine bikonkave Negativlinse 28' und eine unmittelbar folgende biconvexe Positivlinse 28''. Ebenfalls wie bei der Ausführungsform gemäß Fig. 2 wird die Funktion der eintrittsseitigen Linsen 31, 32 der Ausführungsform gemäß Fig. 1 durch eine einzige, biconvexe Positivlinse 32' übernommen, welche die Strahlzusammenführung zur Bildebene hin einleitet. Ähnlich wie bei der Ausführungsform gemäß Fig. 2 liegt die Systemblende 5 innerhalb des zweiten Bauches 8 hinter dem Bereich maximalen Strahldurchmessers, also dort, wo der Strahldurchmesser zu Bildebene bereits wieder abnimmt.

55 [0050] Als Brechzahl für das Immersionsmedium ist n = 1,37 angesetzt, was einem aus der Literatur bekannt gewordenen Wert für eine bei 157 nm ausreichend transparente Immersionsflüssigkeit auf Basis von PFPE entspricht. Der bildseitige Arbeitsabstand ist auf ca. 50 µm eingestellt, was im praktischen Einsatz der Dicke der Immersionsschicht entspricht. Es ist davon auszugehen, dass geeignete Immersionsflüssigkeiten bei dieser geringen Dicke noch hohe Transmissionswerte von mehr als 90% aufweisen, so dass im Bereich der Immersion nur vernachlässigbare, geringe Transmissionsverluste auftreten, was für die Erzielung eines ausreichenden Waferdurchsatzes günstig ist. Mit diesem rein refraktiven, mit konventionellen Mitteln realisierbaren Projektionsobjektiv hervorragenden Korrekturzustandes sind Struktur-

breiten von weniger als 70 nm auflösbar.

[0050] Die Tabellen 7 und 8 zeigen die Spezifikation einer bildlich nicht dargestellten Ausführungsform eines Projektionsobjektivs, welches aus der Ausführungsform gemäß Fig. 3 abgeleitet ist und sich von dieser im wesentlichen dadurch unterscheidet, dass die dortige, objektwärts konkave, dicke Meniskuslinse 17 durch eine dünnere, in gleicher Richtung gekrümmte Meniskuslinse ersetzt ist. Ein Vergleich von Tabellen 5 und 6 zeigt, dass hierdurch eine noch kompaktere Bauweise mit geringeren Linsendurchmessern und geringerer Baulänge bei unverändert guten optischen Eigenschaften möglich ist. 5

[0051] In Fig. 4 ist eine für eine Arbeitswellenlänge von 193 nm ausgelegte vierte Ausführungsform eines Projektionsobjektivs 1" gezeigt, deren Spezifikation in Tabellen 9 und 10 angegeben ist. Diese Ausführungsform hat einen Abbildungsmaßstab von 4 : 1 und eine bildseitige numerische Apertur NA = 0.9. Ein Vergleich zu den übrigen Ausführungsformen zeigt, dass bei gleichem optischen Grundprinzip weniger Linsenmaterial benötigt wird. Es sind nur 23 anstatt 25 Linsen, wie bei den anderen Ausführungsformen, erforderlich, außerdem sind die mittleren und maximalen Linsendurchmesser kleiner als bei den vorhergehenden Ausführungsformen. Insbesondere sind in der zweiten Linsengruppe LG2 nur drei objektwärts konkave Menisken 14, 15, 16 vorgesehen, eine den Menisken 17 der anderen Ausführungsformen entsprechende Linse fehlt. In der vierten Linsengruppe LG4 ist im Unterschied zu den anderen Ausführungsformen nur ein Doublet 27, 28 vorgesehen, so dass auch in dieser Linsengruppe eine Linse eingespart wird. Der symmetrische Aufbau der dritten Linsengruppe LG3 und der daran angrenzenden Linsenpaar 19, 20 der zweiten Linsengruppe und 25, 26 der vierten Linsengruppe entspricht demjenigen der anderen Ausführungsformen. Die Ausführungsform gemäß Fig. 4 bestätigt, dass auch Lösungen für größere Abbildungsmaßstäbe und größere Felder im Rahmen der Erfindung konstruktiv günstig realisiert werden können. 10

[0052] Der Korrektionszustand aller gezeigten Ausführungsformen ist ausgezeichnet. Alle Aberrationen sind korrigiert. Der maximale RMS-Wert der Wellenfrontdeformation ist sehr gering und liegt bei den Ausführungsformen gemäß Fig. 1 und 2 unterhalb 4,5 mλ, bei der Ausführungsform gemäß Tabellen 7 und 8 unterhalb 6,5 mλ und bei der Ausführungsform gemäß Fig. 4 unterhalb 5,2 mλ. Die Verzeichnung liegt bei allen Systemen für alle Feldpunkte im Bereich unterhalb von 1 nm. 20

[0053] Anhand der Beispiele ist für den Fachmann erkennbar, dass zahlreiche Abwandlungen der Designs im Rahmen der Erfindung möglich sind. Beispielsweise können einzelne Linsen in zwei oder mehr gesonderte Linsen aufgespalten werden oder es können getrennte Linsen zu einer einzigen Linse im wesentlichen gleicher Funktion zusammengefasst werden. 25

[0054] Es sind auch Ausführungsformen mit zwei oder mehr Linsenmaterialien möglich. Beispielsweise kann bei Ausführungsformen für 193 nm eine Kombination von Linsen aus synthetischem Quarzglas und Kalziumfluorid vorgesehen sein, um die chromatische Korrektion zu erleichtern und um in Bereichen großer Strahlungsenergiedichten durch Platzierung von Kalziumfluoridlinsen Brechzahländerungen aufgrund von Compaction zu vermeiden. Auch der Einsatz anderer, für das verwendete Ultravioletlicht transparenter Materialien wie Bariumfluorid, Natriumfluorid, Lithiumfluorid, Strontiumfluorid, Magnesiumfluorid oder dergleichen ist möglich. 30

[0055] Unter Nutzung wesentlicher Gestaltungsmerkmale der hier dargestellten Ausführungsformen, insbesondere im bildnahen Bereich des zweiten Bauches und der Aperturblende, können auch katadioptrische Systeme für die Immersions-Lithographie aufgebaut werden. 35

[0056] Die anhand verschiedener Ausführungsbeispiele erläuterte technische Lehre der Erfindung zeigt, dass eine Reihe von konstruktiven Randbedingungen berücksichtigt werden sollten, wenn ein für die Immersions-Lithographie geeignetes optisches System, insbesondere ein solches mit kompakter Bauweise, konstruiert werden soll. Die folgenden Merkmale können einzeln oder in Kombination förderlich sein. Günstig sind Immersionsobjektive, bei denen der Bildfelddurchmesser größer als ca. 1%, insbesondere größer als ca. 1,5% der Baulänge ist. Günstige Lichtleitwerte (Produkt aus Bildfelddurchmesser und numerischer Apertur) liegen im Bereich oberhalb von 1%, insbesondere oberhalb von 2% der Baulänge. Günstig sind vier oder mehr Sammellinsen zwischen Aperturblende und Bildebene, wobei in diesem Bereich vorzugsweise nur Sammellinsen vorgesehen sind. In der zweiten Linsengruppe sind vorzugsweise mehr als vier, fünf oder sechs aufeinander folgende Sammellinsen günstig. Dabei sind vorzugsweise im Eintrittsbereich der zweiten Linsengruppe zwei oder mehr sammelnde Menisken mit objektseitiger Konkavfläche und am Ende der zweiten Linsengruppe zwei oder mehr sammelnde Menisken mit bildwärts konkaven Flächen günstig. Im Bereich des ersten Bauches bzw. der zweiten Linsengruppe ist eine starke Strahlaufweitung förderlich, bei der der maximale Strahldurchmesser vorzugsweise mehr als das 1,8-fache, insbesondere mehr als das 2-fach des Objektfelddurchmessers beträgt. Der maximale Linsendurchmesser in der zweiten Linsengruppe kann etwa das Doppelte des minimalen freien Linsendurchmessers der dritten Linsengruppe im Bereich der Einschnürung betragen. Der maximale Linsendurchmesser im der Einschnürung nachfolgenden zweiten Bauch liegt bevorzugt in der gleichen Größenordnung und kann insbesondere größer als das Doppelte des minimalen freien Durchmessers in dritten Linsengruppe betragen. Im Bereich der dritten Linsengruppe, d. h. im Bereich der Taille des Systems, stehen sich bevorzugt zwei konvexe Flächen direkt gegenüber und werden von zwei im gleichen Sinne gekrümmten Flächen eingeschlossen. Auch die jeweils objektwärts und bildwärts anschließenden Linsen sind vorzugsweise in dieser Weise symmetrisch ausgebildet und angeordnet. 40

[0057] Es können besondere Linsenverteilungen günstig sein. Insbesondere ist es günstig, wenn deutlich mehr Linsen vor der Systemblende liegen als hinter der Blende. Bevorzugt beträgt die Zahl der Linsen vor der Blende mindestens das Vierfache, insbesondere mehr als das Fünffache der Zahl der Linsen hinter der Systemblende. Zwischen dem Bereich engster Einschürung und der Systemblende bzw. Aperturblende sind bevorzugt fünf oder mehr Sammellinsen angeordnet, der axiale Abstand zwischen dem Bereich engster Einschürung und der außergewöhnlich bildnah angeordneten Aperturblende beträgt günstigerweise mindestens 26%, gegebenenfalls mehr als 30% oder 35% der Baulänge der Projektionsobjektive. 45

[0058] Weitere Besonderheiten betreffenden den Verlauf und die Verhältnisse zwischen Hauptstrahlen und Randstrahlen der Abbildung. Als Hauptstrahl wird hier ein Strahl bezeichnet, der von einem Randpunkt des Objektfeldes parallel oder im spitzen Winkel zur optischen Achse verläuft und die optische Achse im Bereich der Systemblende schneidet. Ein 50

kanalstrahl im Sinne der vorliegenden Anmerkung führt von der Mitte des Objektfeldes zum Rand der Aperturblende. Der senkrechte Abstand dieser Strahlen zur optischen Achse ergibt die entsprechende Strahlhöhe. Es kann günstig sein, wenn die Hauptstrahlhöhe dem Betrag nach bis zum Ende der zweiten Linsengruppe größer ist als die Randstrahlhöhe, wobei sich dieses Verhältnis vorzugsweise erst im Bereich der dritten Linsengruppe umkehrt. Die maximale Randstrahlhöhe beträgt vorzugsweise mehr als das Doppelte, insbesondere mehr als das 2,3-bis 2,5-fache der Randstrahlhöhe im Bereich der engsten Einschürfung innerhalb der dritten Linsengruppe. Günstig ist es, wenn der Durchmesser des Randstrahles im Bereich zwischen vierter und fünfter Linsengruppe, d. h. im Bereich der Systemblende klein gehalten wird. Dies entspricht einer möglichst kleinen Brennweite der der Systemblende folgenden fünften Linsengruppe. Die Brennweite der fünften Linsengruppe ist vorzugsweise kleiner als 15%, insbesondere kleiner als 10% der Baulänge. Bevorzugte Systeme sind doppeltelezentrisch, so dass der Hauptstrahl sowohl auf der Objektebene als auch auf der Bildebene im wesentlichen senkrecht steht. Bei bevorzugten Systemen sollte der vom Objektfeld kommende Hauptstrahl noch nach mindestens fünf Linsen einen divergenten Verlauf haben, also einen Verlauf mit noch steigender Hauptstrahlhöhe weg von der optischen Achse. Günstig ist weiterhin, wenn der Sinus des maximalen Hauptstrahldivergenzwinkels im objektnahen Objektivbereich mehr als 50% der objektseitigen numerischen Apertur beträgt. Im objektnahen Bereich, in welchem die Randstrahlhöhe größer als die Hauptstrahlhöhe ist, sind vorzugsweise mehrere asphärische Flächen vorgesehen, um einen günstigen Korrekturzustand zu fördern.

[0059] Die Erfindung betrifft auch eine Projektionsbelichtungsanlage für die Mikrolithographie, die sich dadurch auszeichnet, dass sie ein refraktives Projektionsobjektiv gemäß der Erfindung enthält. Die Projektionsbelichtungsanlage hat vorzugsweise auch Einrichtungen, um zwischen der letzten optischen Fläche des Projektionsobjektivs und dem zu belichtenden Substrat ein Immersionsmedium, beispielsweise eine Flüssigkeit geeigneter Brechzahl, einzubringen und zu halten. Umfasst ist auch ein Verfahren zur Herstellung von Halbleiterbauelementen und anderen fein strukturierten Bauteilen, bei dem ein Bild eines in der Objektebene eines Projektionsobjektives angeordneten Musters im Bereich der Bildebene abgebildet wird, wobei ein zwischen dem Projektionsobjektiv und dem zu belichtenden Substrat angeordnetes, für Licht der Arbeitswellenlänge transparentes Immersionsmedium durchstrahlt wird.

25

30

35

40

45

50

55

60

65

DE 102 10 899 A 1

Tabelle 1

FLAECHE	RADIEN	DICKEN	GLAESER	BRECHZAHL 193.304 nm	1/2 FREIER DURCHMESSER
0	0.000000000	21.980160000			55.000
1	0.000000000	5.669665462			59.973
2	-697.373131352	8.830738819	SIO2	1.56028900	60.658
3	317.877790816	13.366856184			63.806
4	-389.517361474AS	8.018967568	SIO2	1.56028900	65.103
5	684.978717634	23.693566944			70.051
6	612.579041806AS	13.565039007	SIO2	1.56028900	86.338
7	315.238108546	24.050777166			92.585
8	-636.903175512	64.776862854	SIO2	1.56028900	95.153
9	-304.036729565	1.000000000			120.585
10	-942.407223581	39.153776761	SIO2	1.56028900	130.798
11	-317.623154272	1.312033169			137.817
12	-856.579360710	53.698176363	SIO2	1.56028900	145.587
13	-222.120764338	1.000000000			148.413
14	-365.979641333	16.565547178	SIO2	1.56028900	148.696
15	-300.375347712	1.000000000			150.000
16	622.472470310	44.791302453	SIO2	1.56028900	146.389
17	-556.306013695	1.020913522			145.384
18	135.290972565	40.672419816	SIO2	1.56028900	113.552
19	140.238400611	1.007703555			99.382
20	128.146489274	33.605830320	SIO2	1.56028900	97.047
21	178.381821741	21.387336106			87.913
22	764.210626300	8.040530767	SIO2	1.56028900	85.346
23	81.619567541	55.111180427			66.098
24	-324.577506735	8.010204876	SIO2	1.56028900	63.499
25	133.065440504AS	29.116630876			62.507
26	-275.984572757	12.121405585	SIO2	1.56028900	63.961
27	2685.503343355	41.843073620			68.171
28	-83.024363434	9.316662930	SIO2	1.56028900	69.398
29	-271.500870518AS	7.122879020			90.369
30	-234.082816820	34.813633391	SIO2	1.56028900	93.111
31	-128.679213398	1.375380851			98.648
32	-371.070689222	40.964768288	SIO2	1.56028900	112.720
33	-158.555144143	2.142646331			116.033
34	844.565103125AS	42.656894678	SIO2	1.56028900	123.022
35	-293.770426726	28.164927093			123.344
36	-170.081620687	40.277028630	SIO2	1.56028900	122.713
37	-316.315520485	10.983607028			137.139
38	623.625571533	56.798798505	SIO2	1.56028900	143.361
39	-379.372716473	20.156323351			143.139
40	-246.931005408	18.587257168	SIO2	1.56028900	142.262
41	-460.148730828	16.465394474			145.978
42	0.000000000	-15.465394474			144.329
43	506.946830874	18.875460558	SIO2	1.56028900	144.915
44	1011.956468931AS	22.938981004			144.124
45	1760.701259607	42.739861927	SIO2	1.56028900	143.914
46	-371.926449461	1.361397272			143.620
47	194.244261542	42.532993341	SIO2	1.56028900	120.019
48	689.962205932	1.126753967			114.927
49	109.590774593	34.378356865	SIO2	1.56028900	88.972
50	156.823775540	1.072372528			79.549
51	118.692607848	80.000000000	SIO2	1.56028900	73.749
52	0.000000000	8.436241391	Immersion	1.56000000	19.439
53	0.000000000	0.000000000			11.000

60

65

ASPHÆRISCHE KONSTANTEN

FLAECHE NR. 4

5 K 0.0000
 C1 2.13047921e-007
 C2 -3.57933301e-011
 10 C3 2.93263063e-015
 C4 -4.61461071e-019
 C5 2.76861570e-023
 C6 1.62740830e-027
 C7 -3.43732853e-031
 15 C8 0.00000000e+000
 C9 0.00000000e+000

FLAECHE NR. 44

K 0.0000
 C1 -5.18910040e-009
 C2 3.51025484e-013
 C3 -5.47716488e-018
 C4 4.43561455e-023
 C5 3.42844064e-028
 C6 -1.97724021e-032
 C7 2.22456117e-037
 C8 0.00000000e+000
 C9 0.00000000e+000

FLAECHE NR. 6

20 K 0.0000
 C1 -1.14265623e-007
 C2 2.02166625e-011
 C3 -1.76403105e-015
 C4 2.36305340e-019
 25 C5 -2.55314839e-023
 C6 1.35459868e-027
 C7 -2.70730236e-032
 C8 0.00000000e+000
 C9 0.00000000e+000

FLAECHE NR. 25

30 K 0.0000
 C1 -9.78914413e-008
 C2 -4.33168283e-012
 35 C3 -8.01001563e-017
 C4 -1.31611936e-019
 C5 6.54175176e-023
 C6 -1.37293557e-026
 C7 1.58764578e-030
 40 C8 0.00000000e+000
 C9 0.00000000e+000

FLAECHE NR. 29

45 K 0.0000
 C1 2.99497807e-008
 C2 -3.1631943e-012
 C3 -9.61008384e-017
 C4 2.05647555e-020
 50 C5 -2.56167018e-024
 C6 1.74121022e-028
 C7 -7.59802684e-033
 C8 0.00000000e+000
 C9 0.00000000e+000

FLAECHE NR. 34

55 K 0.0000
 C1 -5.83593306e-009
 C2 -4.08253893e-015
 60 C3 -3.40928951e-018
 C4 1.36166433e-022
 C5 -1.03090955e-026
 C6 4.02018916e-031
 C7 -9.89543799e-036
 65 C8 0.00000000e+000
 C9 0.00000000e+000

DE 102 10 899 A 1

Tabelle 3

FLAECHE	RADIEN	DICKEN	GLAESER	BRECHZAHL ???.?? nm	1/2 FREIER DURCHMESSER
0	0.000000000	21.980160000	L710	0.99998200	55.000
1	0.000000000	6.228362492	L710	0.99998200	59.974
2	-603.070624671	9.913063455	SIO2HL	1.56028900	60.690
3	280.916333783	13.300217883	HE193	0.99971200	64.385
4	-461.660931347AS	8.000000000	SIO2HL	1.56028900	65.798
5	681.261406487	25.180533824	HE193	0.99971200	70.487
6	421.796712825AS	13.410028997	SIO2HL	1.56028900	89.920
7	306.236502978	23.641854301	HE193	0.99971200	95.293
8	-881.743075988	64.144962259	SIO2HL	1.56028900	97.777
9	-397.616228787	1.032715830	HE193	0.99971200	123.195
10	-1049.995266970	39.473283137	SIO2HL	1.56028900	130.947
11	-286.549348161	2.251083978	HE193	0.99971200	136.447
12	-659.273684770	52.089256568	SIO2HL	1.56028900	143.894
13	-209.207390137	1.008491553	HE193	0.99971200	146.415
14	-565.795559961	15.829681399	SIO2HL	1.56028900	145.408
15	-410.848668817	1.000000613	HE193	0.99971200	146.045
16	809.207497255	37.599045382	SIO2HL	1.56028900	142.424
17	-599.260287529AS	1.000000015	HE193	0.99971200	141.453
18	136.304287826	42.528385200	SIO2HL	1.56028900	113.454
19	157.516637917	1.000000000	HE193	0.99971200	101.084
20	126.013978931	34.051407776	SIO2HL	1.56028900	96.007
21	157.519818688	23.594259229	HE193	0.99971200	84.914
22	795.455608357	9.039828932	SIO2HL	1.56028900	82.369
23	78.918295718	38.235934318	HE193	0.99971200	63.551
24	-647.136797738	8.000000184	SIO2HL	1.56028900	63.056
25	148.158813477AS	32.440106724	HE193	0.99971200	61.484
26	-187.858636028	9.960377452	SIO2HL	1.56028900	62.472
27	1367.448704100	41.007582498	HE193	0.99971200	66.716
28	-87.255013445	8.475217865	SIO2HL	1.56028900	68.713
29	-396.760639119AS	6.473681900	HE193	0.99971200	88.202
30	-317.095597644	34.300021646	SIO2HL	1.56028900	90.935
31	-136.816156215	1.956487291	HE193	0.99971200	96.054
32	-384.621022314	38.250891268	SIO2HL	1.56028900	107.862
33	-158.063116797	1.000000006	HE193	0.99971200	111.057
34	807.690134078AS	41.496271568	SIO2HL	1.56028900	117.589
35	-280.885163902	25.354810908	HE193	0.99971200	117.901
36	-166.502630134	9.238823967	SIO2HL	1.56028900	117.263
37	988.468038668	6.683211723	HE193	0.99971200	131.802
38	1106.583200370	44.085972378	SIO2HL	1.56028900	134.587
39	-353.437766566	1.000000005	HE193	0.99971200	136.483
40	445.824457242	52.624318854	SIO2HL	1.56028900	142.739
41	-460.556866224AS	26.188809880	HE193	0.99971200	142.372
42	-248.318425801	36.706472180	SIO2HL	1.56028900	141.622
43	-340.049722714AS	16.312593082	HE193	0.99971200	146.673
44	0.000000000	12.926710616	HE193	0.99971200	142.237
45	1026.963905660	42.907368082	SIO2HL	1.56028900	142.523
46	-417.465602619	1.875432853	HE193	0.99971200	142.184
47	189.031074062	41.889218814	SIO2HL	1.56028900	121.251
48	698.095904580AS	1.076370948	HE193	0.99971200	117.434
49	109.988479121	34.053123871	SIO2HL	1.56028900	91.356
50	167.347263939	1.034746212	HE193	0.99971200	84.177
51	123.915863411	79.999373259	SIO2HL	1.56028900	77.713
52	0.000000000	10.366030727	IMMERS	1.37000000	25.089
53	0.000000000	0.000000000		1.00000000	55.000

60

65

DE 102 10 899 A 1

Tabelle 4

ASPHAERISCHE KONSTANTEN

	FLAECHE NR. 4	FLAECHE NR. 34
5	K 0.0000	K 0.0000
	C1 2.26522214e-007	C1 -4.23637017e-009
	C2 -3.59236651e-011	C2 -3.29710303e-014
	C3 2.92133725e-015	C3 -3.52756803e-018
	C4 -3.77696824e-019	C4 -4.13266120e-023
	C5 7.96388858e-024	C5 -2.18653880e-027
	C6 3.91988385e-027	C6 2.27691141e-031
	C7 -4.54711324e-031	C7 -8.70596013e-036
	C8 0.00000000e+000	C8 0.00000000e+000
10	C9 0.00000000e+000	C9 0.00000000e+000
	FLAECHE NR. 6	FLAECHE NR. 41
20	K 0.0000	K 0.0000
	C1 -1.19063117e-007	C1 3.45855942e-009
	C2 1.94138266e-011	C2 5.47566277e-014
	C3 -1.81962009e-015	C3 -3.85610770e-018
	C4 2.25193097e-019	C4 2.74041138e-023
	C5 -2.25566558e-023	C5 1.86632362e-027
	C6 1.19237134e-027	C6 -3.44742394e-032
	C7 -2.51584924e-032	C7 3.29571792e-038
	C8 0.00000000e+000	C8 0.00000000e+000
25	C9 0.00000000e+000	C9 0.00000000e+000
	FLAECHE NR. 17	FLAECHE NR. 43
30	K 0.0000	K 0.0000
	C1 1.74375723e-011	C1 -3.55873802e-010
	C2 -2.04139734e-014	C2 9.63322458e-014
	C3 7.67666306e-019	C3 -7.64415866e-019
	C4 -1.93715606e-023	C4 2.00153471e-023
	C5 1.92834024e-027	C5 -1.98329358e-027
	C6 -7.02565837e-032	C6 5.52524526e-032
	C7 1.14576119e-036	C7 -4.80876507e-037
	C8 0.00000000e+000	C8 0.00000000e+000
35	C9 0.00000000e+000	C9 0.00000000e+000
	FLAECHE NR. 25	FLAECHE NR. 48
40	K 0.0000	K 0.0000
	C1 -6.99705361e-008	C1 -2.25289484e-009
	C2 -3.25537639e-012	C2 2.62711822e-013
	C3 -2.93013408e-016	C3 3.12883195e-018
	C4 -9.17751598e-020	C4 -2.96009757e-022
	C5 4.34261555e-023	C5 1.93969203e-026
	C6 -1.01901896e-026	C6 -7.02702044e-031
	C7 1.42841266e-030	C7 1.40339412e-035
	C8 0.00000000e+000	C8 0.00000000e+000
45	C9 0.00000000e+000	C9 0.00000000e+000
	FLAECHE NR. 29	FLAECHE NR. 48
50	K 0.0000	K 0.0000
	C1 3.01668174e-008	C1 -2.25289484e-009
	C2 -4.16186211e-012	C2 2.62711822e-013
	C3 -2.18017649e-017	C3 3.12883195e-018
	C4 1.39690846e-020	C4 -2.96009757e-022
	C5 -1.51163159e-024	C5 1.93969203e-026
	C6 6.56920089e-029	C6 -7.02702044e-031
	C7 -3.15414270e-033	C7 1.40339412e-035
	C8 0.00000000e+000	C8 0.00000000e+000
55	C9 0.00000000e+000	C9 0.00000000e+000

DE 102 10 899 A 1

Tabelle 5

FLAECHE	RADIEN	DICKEN	GLAESER	BRECHZAHL ???.?? nm	1/2 FREIER DURCHMESSER
0	0.000000000	21.980160000	L710	1.00000000	55.000
1	0.000000000	5.821199992	L710	1.00000000	59.973
2	-653.380153342	10.709637537	CAF2HL	1.55848720	60.652
3	234.866815378	14.192447066	HE193	1.00000000	64.672
4	-541.443785623AS	8.069018137	CAF2HL	1.55848720	66.216
5	809.887192810	22.060952617	HE193	1.00000000	70.663
6	437.017712375AS	16.925405940	CAF2HL	1.55848720	88.269
7	315.047933823	22.322216303	HE193	1.00000000	94.661
8	-1055.166104070	68.241607282	CAF2HL	1.55848720	97.341
9	-440.417777767	1.950157109	HE193	1.00000000	124.495
10	-833.235756565	45.202998015	CAF2HL	1.55848720	130.520
11	-248.097167968	6.967867993	HE193	1.00000000	136.785
12	-667.629333865	58.527118374	CAF2HL	1.55848720	147.021
13	-230.265801432	1.000000000	HE193	1.00000000	152.069
14	-635.989091493	52.889533957	CAF2HL	1.55848720	151.782
15	-420.897980530	1.000000000	HE193	1.00000000	155.231
16	682.574050518	42.965469096	CAF2HL	1.55848720	150.819
17	-650.602325928AS	1.000000000	HE193	1.00000000	149.697
18	143.909393739	39.312156678	CAF2HL	1.55848720	117.562
19	170.361039751	1.000000000	HE193	1.00000000	106.663
20	127.368697185	33.064705940	CAF2HL	1.55848720	99.558
21	149.757517850	27.658696477	HE193	1.00000000	88.267
22	893.404652749	8.000000000	CAF2HL	1.55848720	85.687
23	85.474739309	42.082501866	HE193	1.00000000	67.021
24	-554.412838287	8.000000000	CAF2HL	1.55848720	65.854
25	133.887772925AS	36.097576773	HE193	1.00000000	63.605
26	-202.032636775	8.000000000	CAF2HL	1.55848720	64.919
27	1368.827229050	39.670298843	HE193	1.00000000	68.993
28	-87.722719327	8.150939605	CAF2HL	1.55848720	70.057
29	-341.867554503AS	7.243142706	HE193	1.00000000	89.680
30	-270.393973321	34.812062471	CAF2HL	1.55848720	92.272
31	-131.925970131	1.000000000	HE193	1.00000000	97.490
32	-356.379287278	37.218470508	CAF2HL	1.55848720	109.741
33	-160.486739217	1.000000000	HE193	1.00000000	113.010
34	728.417353927AS	44.411516365	CAF2HL	1.55848720	121.086
35	-285.991760803	26.777077207	HE193	1.00000000	121.404
36	-169.413078236	8.000000000	CAF2HL	1.55848720	120.698
37	1233.439177430	5.704973599	HE193	1.00000000	45
38	1968.954811160	42.925033480	CAF2HL	1.55848720	135.519
39	-334.436426428	1.000000000	HE193	1.00000000	136.862
40	448.482885926	53.515273929	CAF2HL	1.55848720	138.799
41	-481.778223591AS	38.864604302	HE193	1.00000000	145.983
42	-257.207339099	39.651511432	CAF2HL	1.55848720	145.641
43	-352.351244424AS	8.074724759	HE193	1.00000000	141.395
44	0.000000000	8.135112666	HE193	1.00000000	146.219
45	1571.538613070	41.393617207	CAF2HL	1.55848720	142.806
46	-395.530190939	4.955628551	HE193	1.00000000	143.060
47	189.594554041	44.893603417	CAF2HL	1.55848720	142.883
48	737.400220721AS	1.254530428	HE193	1.00000000	122.058
49	113.971025132	34.168140572	CAF2HL	1.55848720	117.739
50	186.560340242	1.000000000	HE193	1.00000000	91.979
51	124.935012572	92.227373544	CAF2HL	1.55848720	85.029
52	0.000000000	0.050000026	IMMERS	1.37000000	76.952
53	0.000000000	0.000000000		1.00000000	11.068
					55
					11.000

60

65

ASPHAERISCHE KONSTANTEN

	FLAECHE NR.	4	FLAECHE NR.	34
10	K	7.3905	K	1.5440
	C1	2.19490389e-007	C1	-3.43367330e-009
	C2	-3.18478613e-011	C2	-1.34450662e-014
	C3	2.65699241e-015	C3	-2.29266384e-018
	C4	-3.54396715e-019	C4	9.75729876e-023
	C5	1.30925174e-023	C5	-1.35202712e-026
	C6	2.26447806e-027	C6	8.80518329e-031
	C7	-2.54478129e-031	C7	-2.65068179e-035
	C8	0.00000000e+000	C8	0.00000000e+000
15	C9	0.00000000e+000	C9	0.00000000e+000
	FLAECHE NR.	6	FLAECHE NR.	41
20	K	0.6253	K	0.0872
	C1	-1.14294859e-007	C1	3.26909809e-009
	C2	1.87842380e-011	C2	7.76009100e-014
	C3	-1.79164088e-015	C3	-3.82550397e-018
	C4	2.34304280e-019	C4	2.28007850e-023
	C5	-2.31194499e-023	C5	-2.34153651e-028
	C6	1.12536497e-027	C6	1.34376005e-032
	C7	-2.03074756e-032	C7	-1.01621932e-036
	C8	0.00000000e+000	C8	0.00000000e+000
30	C9	0.00000000e+000	C9	0.00000000e+000
	FLAECHE NR.	17	FLAECHE NR.	43
35	K	0.7878	K	0.0312
	C1	-3.05430457e-010	C1	-4.99867832e-010
	C2	-4.89773138e-014	C2	1.15316140e-013
	C3	1.06923190e-018	C3	-1.41640795e-018
	C4	-1.47516954e-023	C4	7.05365641e-023
	C5	1.34357246e-027	C5	-2.43649494e-027
	C6	-5.23906240e-032	C6	6.83361566e-032
	C7	8.17069597e-037	C7	-6.25588420e-037
	C8	0.00000000e+000	C8	0.00000000e+000
40	C9	0.00000000e+000	C9	0.00000000e+000
	FLAECHE NR.	25	FLAECHE NR.	48
45	K	0.0013	K	-1.8716
	C1	-6.90183181e-008	C1	-4.01414746e-009
	C2	-2.08803493e-012	C2	1.94301708e-013
	C3	-3.48958288e-016	C3	4.07775084e-018
	C4	-3.58451964e-020	C4	-4.70574709e-022
	C5	2.16254654e-023	C5	2.42642656e-026
	C6	-3.98801026e-027	C6	-8.38949812e-031
	C7	6.60002235e-031	C7	1.38189311e-035
	C8	0.00000000e+000	C8	0.00000000e+000
55	C9	0.00000000e+000	C9	0.00000000e+000
	FLAECHE NR.	29	FLAECHE NR.	
60	K	-0.0334		
	C1	3.02609727e-008		
	C2	-3.89225347e-012		
	C3	-2.10302538e-017		
	C4	1.38850354e-020		
	C5	-1.75136022e-024		
	C6	9.45164389e-029		
	C7	-4.34831621e-033		
	C8	0.00000000e+000		
65	C9	0.00000000e+000		

DE 102 10 899 A 1

Tabelle 7

FLAECHE	RADIEN	DICKEN	GLAESER	BRECHZAHL 157.6 nm	1/2 FREIER DURCHMESSER
0	0.000000000	21.980160000			55.000
1	0.000000000	5.694922030			59.974
2	-683.877082960	8.000016965	CAF2HL	1.55848720	60.653
3	241.884516194	13.492175419			64.060
4	-561.327374916AS	8.000000000	CAF2HL	1.55848720	65.556
5	699.454774317	23.282413511			69.867
6	400.792577467AS	11.762291230	CAF2HL	1.55848720	88.232
7	293.294615517	22.385188600			92.839
8	-1055.962319550	71.454892862	CAF2HL	1.55848720	95.242
9	-483.111728442	2.387928569			124.181
10	-967.495111648	48.847817148	CAF2HL	1.55848720	130.362
11	-235.898512938	5.659224997			136.444
12	-579.940954244	54.879651202	CAF2HL	1.55848720	145.324
13	-221.837621898	1.000000000			149.602
14	-775.372223325	15.081823940	CAF2HL	1.55848720	147.807
15	-525.919868017	1.000000000			148.157
16	660.3025511324	38.720317303	CAF2HL	1.55848720	144.440
17	-732.467949129AS	1.000000000			143.303
18	147.955956945	38.541140120	CAF2HL	1.55848720	116.315
19	174.954421407	1.000000000			105.360
20	118.333525649	33.404122786	CAF2HL	1.55848720	96.491
21	140.216192098	28.013496674			85.972
22	788.027919344	8.457239690	CAF2HL	1.55848720	83.494
23	83.038332631	41.178404325			65.374
24	-597.396381251	8.000000000	CAF2HL	1.55848720	64.284
25	136.956016017AS	31.536496068			62.327
26	-200.199292002	8.000000000	CAF2HL	1.55848720	63.210
27	1850.730497800	43.442178500			66.958
28	-86.362069271	8.210360232	CAF2HL	1.55848720	69.385
29	-360.179450570AS	7.567422592			89.255
30	-280.601605332	34.872981631	CAF2HL	1.55848720	92.027
31	-132.713962995	1.004709559			97.215
32	-361.662148157	37.722697596	CAF2HL	1.55848720	109.325
33	-159.165877620	1.000000000			112.571
34	750.946018427AS	43.541363913	CAF2HL	1.55848720	120.144
35	-285.806553705	25.930047100			120.440
36	-169.581349559	8.030377840	CAF2HL	1.55848720	119.789
37	1077.110485570	5.682989489			134.185
38	1605.653205960	43.332820801	CAF2HL	1.55848720	135.539
39	-333.794563037	1.000000000			137.425
40	448.584289713	52.027765048	CAF2HL	1.55848720	144.043
41	-487.266144069AS	37.362834300			143.681
42	-256.080121302	40.279714930	CAF2HL	1.55848720	139.838
43	-353.759022671AS	7.564240001			144.656
44	0.000000000	10.832272687			141.334
45	1499.148900820	42.690870531	CAF2HL	1.55848720	141.660
46	-394.545474104	2.390581943			141.445
47	188.988736298	43.117430646	CAF2HL	1.55848720	121.630
48	731.593986095AS	1.000000000			117.999
49	114.385993039	33.926813476	CAF2HL	1.55848720	92.421
50	184.018639075	1.000000000			85.485
51	123.357013160	93.333990149	CAF2HL	1.55848720	77.332
52	0.000000000	0.050000000	Immersion	1.370000000	11.068
53	0.000000000	0.000000000			11.000

60

65

ASPHAERISCHE KONSTANTEN

	FLAECHE NR.	4	FLAECHE NR.	34
5	K	2.4096	K	1.5943
	C1	2.24623581e-007	C1	-3.41875063e-009
	C2	-3.32717029e-011	C2	-1.06207572e-014
	C3	2.75311747e-015	C3	-2.75870187e-018
	C4	-3.79340993e-019	C4	1.25443795e-022
	C5	1.61861324e-023	C5	-1.53842992e-026
	C6	2.15578277e-027	C6	9.81335165e-031
	C7	-2.81811737e-031	C7	-2.88557010e-035
	C8	0.00000000e+000	C8	0.00000000e+000
15	C9	0.00000000e+000	C9	0.00000000e+000
	FLAECHE NR.	6	FLAECHE NR.	41
20	K	1.5259	K	0.1099
	C1	-1.12174954e-007	C1	3.24105758e-009
	C2	1.85234618e-011	C2	7.37348572e-014
	C3	-1.79384980e-015	C3	-3.58460435e-018
	C4	2.32576675e-019	C4	2.55537441e-023
	C5	-2.32368876e-023	C5	-1.78486202e-028
	C6	1.17478944e-027	C6	1.62622698e-032
	C7	-2.27644098e-032	C7	-1.16103266e-036
	C8	0.00000000e+000	C8	0.00000000e+000
30	C9	0.00000000e+000	C9	0.00000000e+000
	FLAECHE NR.	17	FLAECHE NR.	43
35	K	1.0238	K	0.0331
	C1	-4.04184504e-010	C1	-4.94661761e-010
	C2	-5.52221230e-014	C2	1.09503739e-013
	C3	1.07792813e-018	C3	-1.45124835e-018
	C4	-9.68577933e-024	C4	6.84809756e-023
	C5	1.93184487e-027	C5	-2.60450711e-027
	C6	-7.97233584e-032	C6	7.57276741e-032
	C7	1.33745628e-036	C7	-7.11474674e-037
	C8	0.00000000e+000	C8	0.00000000e+000
40	C9	0.00000000e+000	C9	0.00000000e+000
	FLAECHE NR.	25	FLAECHE NR.	48
45	K	0.0096	K	-1.8262
	C1	-6.73670580e-008	C1	-4.00081230e-009
	C2	-2.66011173e-012	C2	1.92491101e-013
	C3	-4.29260639e-016	C3	3.74976393e-018
	C4	-8.53658144e-020	C4	-4.50566284e-022
	C5	3.61027613e-023	C5	2.41249474e-026
	C6	-7.30829628e-027	C6	-8.61661412e-031
	C7	1.01538199e-030	C7	1.44171993e-035
	C8	0.00000000e+000	C8	0.00000000e+000
55	C9	0.00000000e+000	C9	0.00000000e+000
	FLAECHE NR.	29	FLAECHE NR.	
60	K	-0.2765		
	C1	3.11338863e-008		
	C2	-4.09777758e-012		
	C3	-6.25856384e-018		
	C4	1.47181039e-020		
	C5	-1.67738576e-024		
	C6	7.46976419e-029		
	C7	-2.84782511e-033		
	C8	0.00000000e+000		
65	C9	0.00000000e+000		

DE 102 10 899 A 1

Tabelle 9

FLAECHE	RADIEN	DICKEN	GLAESER	BRECHZAHL 193.368 nm	1/2 FREIER DURCHMESSER
0	0.000000000	21.980160000		1.000000000	56.080
1	0.000000000	3.246888384	L710	0.99998200	61.197
2	-7758.872975441	8.000000000	SIO2HL	1.56028900	61.896
3	359.789183967	7.529172915	HE193	0.99971200	63.992
4	-1890.369849282AS	8.000000000	SIO2HL	1.56028900	65.078
5	268.213281606	15.157771412	HE193	0.99971200	68.460
6	3183.174654849AS	8.000000000	SIO2HL	1.56028900	72.301
7	542.737427921	25.228019508	HE193	0.99971200	76.281
8	-190.186659474	54.303344531	SIO2HL	1.56028900	78.244
9	-200.972554549	1.000000000	HE193	0.99971200	102.934
10	-1181.739114120	41.618091168	SIO2HL	1.56028900	116.315
11	-200.599781289	1.000000000	HE193	0.99971200	119.335
12	-345.801617038	34.756009233	SIO2HL	1.56028900	122.895
13	-183.035949037	1.000000000	HE193	0.99971200	125.001
14	468.598304219	28.888366130	SIO2HL	1.56028900	119.583
15	-1579.330378954AS	1.000000000	HE193	0.99971200	118.410
16	130.622577421	25.607493426	SIO2HL	1.56028900	101.535
17	167.6637555864	1.000000000	HE193	0.99971200	96.903
18	109.515012627	33.485629573	SIO2HL	1.56028900	88.871
19	139.897752069	27.284753341	HE193	0.99971200	79.284
20	8434.054206242	8.000000000	SIO2HL	1.56028900	76.872
21	75.280373304	30.508120723	HE193	0.99971200	60.167
22	712.917049547	8.000000000	SIO2HL	1.56028900	59.980
23	137.047990149AS	41.376149828	HE193	0.99971200	58.756
24	-120.168111858	8.000000000	SIO2HL	1.56028900	60.070
25	-335.689995101	26.955101014	HE193	0.99971200	64.725
26	-86.294324443	8.405631441	SIO2HL	1.56028900	65.622
27	-401.221976575AS	6.791819241	HE193	0.99971200	82.386
28	-295.528316934	33.017957091	SIO2HL	1.56028900	84.761
29	-156.211920894	1.000000000	HE193	0.99971200	93.276
30	-268.979127216	33.049041389	SIO2HL	1.56028900	99.716
31	-143.116329961	1.000000000	HE193	0.99971200	103.445
32	472.893981029AS	41.687451272	SIO2HL	1.56028900	115.709
33	-346.217421641	22.889302349	HE193	0.99971200	116.094
34	-187.601096847	12.645469238	SIO2HL	1.56028900	115.710
35	-359.852656461	1.000000000	HE193	0.99971200	121.777
36	722.017664882	60.459509481	SIO2HL	1.56028900	125.218
37	-1816.432711581AS	24.260458335	HE193	0.99971200	125.322
38	2199.280274610	24.178147653	SIO2HL	1.56028900	124.815
39	-1512.556721835	8.000000000	HE193	0.99971200	124.440
40	0.000000000	14.309578556	HE193	0.99971200	123.088
41	1738.196399601	39.559449287	SIO2HL	1.56028900	124.310
42	-429.627570104AS	1.000000000	HE193	0.99971200	124.575
43	179.589102742	59.687793359	SIO2HL	1.56028900	115.507
44	589.027987143AS	10.530033379	HE193	0.99971200	105.186
45	136.621156961	53.097791469	SIO2HL	1.56028900	89.320
46	137.713831680	1.000000000	HE193	0.99971200	67.001
47	93.326477153	90.505495277	SIO2HL	1.56028900	62.339
48	0.000000000	1.000000545	IMMERS	1.560000000	14.735
49	0.000000000	0.000000000		1.000000000	14.020

55

60

65

DE 102 10 899 A 1

Tabelle 10

ASPHAERISCHE KONSTANTEN

	FLAECHE NR.	4	FLAECHE NR.	32
5	K	0.0000	K	0.0000
	C1	2.81531001e-007	C1	-2.59168418e-009
	C2	-3.99703415e-011	C2	-8.93760219e-014
	C3	2.76850090e-015	C3	-4.25486946e-018
	C4	-4.54887122e-019	C4	3.13097668e-022
	C5	-5.66904777e-024	C5	-1.87333640e-026
	C6	5.03662466e-027	C6	1.28572875e-030
	C7	-4.52060360e-031	C7	-3.94471730e-035
	C8	0.00000000e+000	C8	0.00000000e+000
15	C9	0.00000000e+000	C9	0.00000000e+000
20	FLAECHE NR.	6	FLAECHE NR.	37
	K	0.0000	K	0.0000
	C1	-1.16706261e-007	C1	3.92265908e-009
	C2	2.00348321e-011	C2	5.90432031e-014
	C3	-1.51130378e-015	C3	-4.61273256e-018
	C4	3.09660955e-019	C4	5.09437288e-023
	C5	-1.78658993e-023		
	C6	3.15835636e-027)
25	C7	-4.23595936e-031		
	C8	0.00000000e+000		
	C9	0.00000000e+000		
30	FLAECHE NR.	15		
	K	0.0000		
	C1	-9.37924970e-010		
	C2	-2.58161066e-013		
	C3	-5.12306559e-018		
	C4	1.80598481e-022		
	C5	3.60539800e-027		
	C6	3.85878819e-031		
	C7	-3.50550744e-037		
35	C8	0.00000000e+000		
	C9	0.00000000e+000		
40	FLAECHE NR.	23		
	K	0.0000		
	C1	-9.05676602e-008		
	C2	-7.64727914e-013		
	C3	-9.31867049e-016		
	C4	9.20035750e-020		
	C5	-9.15433014e-023		
	C6	1.32736186e-026		
	C7	-9.23872382e-031		
45	C8	0.00000000e+000		
	C9	0.00000000e+000		
50	FLAECHE NR.	27		
	K	0.0000		
	C1	2.51819254e-008		
	C2	-4.37829106e-012		
	C3	2.68987386e-017		
	C4	1.45024261e-020		
	C5	-1.31152094e-024		
	C6	1.04857156e-030		
	C7	-9.21174949e-034		
55	C8	0.00000000e+000		
	C9	0.00000000e+000		

DE 102 10 899 A 1

Patentansprüche

1. Refraktives Projektionsobjektiv zur Abbildung einer in einer Objektebene des Projektionsobjektivs angeordneten Musters in eine Bildebene des Projektionsobjektivs mit Hilfe eines Immersionsmediums, welches zwischen einem letzten optischen Element des Projektionsobjektivs und der Bildebene angeordnet ist, mit:
 - einer auf die Bildebene folgenden ersten Linsengruppe (LG1) mit negativer Brechkraft;
 - einer auf die erste Linsengruppe folgende zweite Linsengruppe (LG2) mit positiver Brechkraft;
 - einer auf die zweite Linsengruppe folgende dritte Linsengruppe (LG3) mit negativer Brechkraft;
 - einer auf die dritte Linsengruppe folgende vierte Linsengruppe (LG4) mit positiver Brechkraft;
 - einer auf die vierte Linsengruppe folgende fünfte Linsengruppe (LG5) mit positiver Brechkraft; sowie10
einer Systemblende (5), die im Bereich maximaler Strahldurchmesser zwischen der vierten und der fünften Linsengruppe angeordnet ist.
2. Projektionsobjektiv nach Anspruch 1, bei dem die Systemblende (5) zwischen einer bildnahen Ebene maximalen Strahldurchmessers und der Bildebene (3) liegt.
3. Projektionsobjektiv nach Anspruch 1 oder 2, das eine bildseitige numerische Apertur $NA \geq 0,9$ hat, wobei die bildseitige numerische Apertur vorzugsweise mindestens $NA = 1,0$ beträgt.
4. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, wobei das Projektionsobjektiv an ein Immersionsmedium (10) angepasst ist, welches bei der Arbeitswellenlänge einen Brechungsindex $n > 1,3$ hat.
5. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, wobei das Projektionsobjektiv einen bildseitigen Arbeitsabstand zwischen ca. $10\text{ }\mu\text{m}$ und ca. $200\text{ }\mu\text{m}$ hat, insbesondere zwischen ca. $20\text{ }\mu\text{m}$ und ca. $100\text{ }\mu\text{m}$.
6. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem ein Verhältnis zwischen der Brennweite der vierten Linsengruppe (LG4) und der Brennweite der fünften Linsengruppe (LG5) zwischen ca. 0,9 und ca. 1,1 liegt.
7. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem ein Verhältnis der Beträge der Brennweiten der ersten Linsengruppe (LG1) und der fünften Linsengruppe (LG5) zwischen ca. 0,7 und ca. 1,3, insbesondere zwischen ca. 0,9 und ca. 1,1 liegt.
8. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem ein Verhältnis zwischen der Baulänge des Projektionsobjektivs und der Brennweite der fünften Linsengruppe (LG5) größer als fünf, vorzugsweise größer als sechs, insbesondere größer als acht ist.
9. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem die erste Linsengruppe (LG1) mindestens eine asphärische Fläche enthält, wobei in der ersten Linsengruppe vorzugsweise zwei asphärische Flächen vorgesehen sind.
10. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem in der dritten Linsengruppe (LG3) mindestens eine asphärische Fläche vorgesehen ist, wobei vorzugsweise zwei asphärische Flächen vorgesehen sind.
11. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem in jeder Linsengruppe mindestens eine asphärische Fläche angeordnet ist und/oder bei dem nicht mehr als neun asphärische Flächen vorgesehen sind, wobei vorzugsweise weniger als sieben asphärische Flächen vorgesehen sind.
12. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem im Nahbereich der Objektebene (2), insbesondere innerhalb der ersten Linsengruppe (LG1), mindestens eine zur Objektebene konvexe Meniskuslinse (13) mit negativer Brechkraft angeordnet ist.
13. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem die zweite Linsengruppe mindestens vier, vorzugsweise mindestens fünf oder sechs aufeinander folgende Linsen (14 bis 20) mit positiver Brechkraft aufweist.
14. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem die zweite Linsengruppe (LG2) auf einer der Objektebene (2) zugewandten Eintrittsseite mindestens eine, vorzugsweise mehrere zur Objektebene konvake Meniskuslinsen (14, 15, 16, 17) mit positiver Brechkraft aufweist und/oder wobei die zweite Linsengruppe an der der Bildebene zugewandten Austrittsseite mindestens eine, vorzugsweise mehrere zur Objektebene konvexe Meniskuslinsen (19, 20) mit positiver Brechkraft aufweist.
15. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem die zweite Linsengruppe (LG2) in dieser Reihenfolge mindestens eine zur Objektebene konkave Meniskuslinse (14, 15, 16, 17) mit positiver Brechkraft, eine bikonvexe Positivlinse (18) und mindestens eine zur Bildebene konkave Meniskuslinse (19, 20) mit positiver Brechkraft aufweist.
16. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem die dritte Linsengruppe (LG3) nur Linsen (21, 22, 23, 24) mit negativer Brechkraft aufweist.
17. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem die dritte Linsengruppe (LG3) in Bezug auf eine innerhalb der dritten Linsengruppe liegende Symmetrieebene (9) einen im wesentlichen symmetrischen Aufbau hat und/oder bei dem sich in der dritten Linsengruppe (LG3) zwei gegenüberliegend gekrümmte, konkave Flächen direkt gegenüberstehen und von zwei konkav zueinander stehenden konkaven Flächen umschlossen sind.
18. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem ein der dritten Linsengruppe (LG3) zugewandter Austrittsbereich der zweiten Linsengruppe (LG2) und ein der dritten Linsengruppe folgender Eintrittsbereich der vierten Linsengruppe (LG4) im wesentlichen symmetrisch zu einer innerhalb der dritten Linsengruppe liegenden Symmetrieebene (9) ausgebildet sind.
19. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem die vierte Linsengruppe (LG4) mindestens ein Doublett (27, 28, 29, 30) mit einer bikonvexen Positivlinse (27, 29) und einer nachfolgenden Negativ-Meniskuslinse (28, 30) mit objektwärts konvexen Linsenflächen aufweist, wobei vorzugsweise mindestens zwei Doublets vorgesehen sind.
20. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem die vierte Linsengruppe (LG4) in einem objektseitigen Eintrittsbereich mindestens eine zur Objektebene (2) konkave Meniskuslinse (25, 26) mit posi-

DE 102 10 899 A 1

tiver Brechkraft aufweist, wobei vorzugsweise aufeinanderfolgend mehrere derartige Meniskuslinsen vorgesehen sind.

5 21. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem der Sinus des maximalen Einfallswinkels der auf optische Flächen auffallenden Strahlung weniger als 90%, insbesondere weniger als 85% der bildseitigen numerischen Apertur beträgt.

22. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem die fünfte Linsengruppe (LG5) ausschließlich Linsen mit positiver Brechkraft aufweist.

10 23. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem die fünfte Linsengruppe mindestens vier Positivlinsen (31 bis 35) hat.

24. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem die fünfte Linsengruppe (LG5) mindestens eine Meniskuslinse (33, 34) mit positiver Brechkraft und bildwärts konkaven Linsenflächen aufweist.

15 25. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem die fünfte Linsengruppe (LG5) als letztes optisches Element eine Plankonvexlinse (35) aufweist, die vorzugsweise eine sphärische Eintrittsfläche und ein im wesentlichen ebene Austrittsfläche hat.

26. Projektionsobjektiv nach Anspruch 25, bei dem die Plankonvexlinse (35) nicht-hemisphärisch ausgebildet ist.

27. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem alle Linsen aus dem gleichen Material bestehen, wobei vorzugsweise als Linsenmaterial für 193 nm Arbeitswellenlänge synthetisches Quarzglas und/oder als Linsenmaterial für 157 nm Wellenlänge Kalziumfluorid verwendet wird.

28. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, wobei es sich um ein Ein-Taillen-System mit einem objektnahen Bauch (6), einem bildnahen Bauch (8) und einer dazwischenliegenden Taille (7) handelt.

20 29. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem der Bildfelddurchmesser mehr als 10 mm beträgt, insbesondere mehr als 20 mm und/oder bei dem der Bildfelddurchmesser mehr als 1,0%, insbesondere mehr als 1,5% der Baulänge beträgt.

30. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem der Lichtleitwert mehr als ca. 1%, insbesondere mehr als ca. 2% der Baulänge beträgt.

31. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem vor der Systemblende (5) deutlich mehr Linsen angeordnet sind als hinter der Systemblende, vorzugsweise mindestens viermal so viele.

32. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem zwischen der Taille und der Systemblende (5) mindestens fünf Linsen mit positiver Brechkraft angeordnet sind.

33. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem bei dem ein Abstand zwischen der Taille und der Systemblende mindestens 26% der Baulänge beträgt, vorzugsweise mehr als 30% der Baulänge.

34. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem eine maximale Randstrahlhöhe mindestens doppelt so groß ist wie die Randstrahlhöhe am Ort der engsten Einschnürung.

35. Projektionsbelichtungsanlage für die Mikrolithographie, gekennzeichnet durch ein refraktives Projektionsobjektiv (1, 1', 1'') gemäß einem der vorhergehenden Ansprüche.

36. Verfahren zur Herstellung von Halbleiterbauelementen und anderen fein strukturierten Bauteilen mit folgenden Schritten:

Bereitstellung einer Maske mit einem vorgegebenen Muster;

Beleuchtung der Maske mit Ultravioletlicht einer vorgegebenen Wellenlänge;

40 Projektion eines Bildes des Musters auf ein im Bereich der Bildebene eines Projektionsobjektivs angeordnetes, lichtempfindliches Substrat mit Hilfe eines Projektionsobjektivs gemäß einem der vorhergehenden Ansprüche 1 bis 34;

wobei bei der Projektion ein zwischen einer letzten optischen Fläche des Projektionsobjektives und dem Substrat angeordnetes Immersionsmedium durchstrahlt wird.

45

Hierzu 4 Seite(n) Zeichnungen

50

55

60

65

Fig. 2

Fig. 3

Fig. 4