13. KOJARZENIE PAR I BLOKOWANIE WIERZCHOŁKÓW

Ogólnie rzecz ujmując, zagadnienie optymalizacji dyskretnej polega na znalezieniu największej (lub najmniejszej) wartości funkcji $g: X \to \mathbb{R}$ na zbiorze skończonym X. Oczywiście można zawsze przejrzeć wszystkie wartości g(x) dla $x \in X$ i wybrać tę największą, ale na ogół, jeżeli zbiór X jest duży, nie jest to dobry pomysł.

Dla zagadnienia 'szukamy $\max_{x \in X} g(x)'$ można czasami rozważyć inne zagadnienie, zwane dualnym postaci $\min_{y \in Y} g^*(y)$, które jest związane z wyjściowym w ten sposób, że $g(x) \leq g^*(y)$ dla dowolnych $x \in X$ i $y \in Y$. Przypuścmy, że znależliśmy takie dualne zagadnienie oraz $g(x_0) = g^*(y_0)$ dla pewnych $x_0 \in X$ oraz $y_0 \in Y$. Wtedy udaje się jednocześnie rozwiązać oba problemy: dla dowolnych $x \in X$, $y \in Y$ mamy

$$g(x) \leqslant g^*(y_0) = g(x_0) \leqslant g^*(y),$$

więc funkcja g przyjmuje największą wartość w x_0 , a funkcja g^* w y_0 przyjmuje wartość najmniejszą. Zastosujemy ten pomysł to problemu 'ile par można skojarzyć w danym grafie dwudzielnym'.

Definicja 13.1. Dla danego grafu dwudzielnego G = (S, T, E), zbiór $B \subseteq S \cup T$ nazywamy zbiorem blokującym jeżeli $B \cap \{s, t\} \neq \emptyset$ dla każdej krawędzi $\{s, t\} \in E$.

Mówiąc obrazowo, każda krawędź w grafie jest zablokowana przez element z B, albo na wierzchołku 'lewym' z S, alno na tym 'prawym' z T.

Lemat 13.2. Jeżeli M jest kojarzeniem par w grafie dwudzielnym G = (S, T, E), a B jest zbiorem blokującym w tym grafie to $|M| \leq |B|$.

Dowód. Każda krawędź z M jest zablokowana przez wierzchołek z B; różne krawędzie z M muszą być blokowane przez różne wierzchołki (co wynika z definicji kojarzenia par); stąd teza.

W ten sposób widzimy, że problem ' znajdź minimalną ilość blokujących wierzchołków' jest dualny do zagadnienia 'znajdź maksymalne kojarzenie par' (oczywiście dla ustalonego grafu dwudzielnego). Jesteśmy gotowi na to, aby udowodnić, że algorytm szukania maksymalnego kojarzenia par w danym grafie dwudzielnym działa prawidłowo.

Twierdzenie 13.3. Niech M bedzie kojarzeniem w grafie G = (S, T, E). Jeżeli algorytm etykietujący nie znajdzie łańcucha alternującego, to M jest maksymalnym kojarzeniem w tym grafie.

Dowód. Rozważmy moment zatrzymania się algorytmu etykietującego: niech $L \subseteq S \cup T$ będzie zbiorem tych wierzchołków, którym nadano etykietę (ang. label). Niech

$$B = (S \setminus L) \cup (L \cap T).$$

Sprawdzimy, że B jest zbiorem blokującym oraz |B| = |M|; na podstawie wcześniejszych rozważań pokaże to, że kojarzenie M jest maksymalne. Poniższe rozważania wygodnie jest

śledzić na rysunku - przykładowy szkic znajduje się na końcu tekstu (ale lepiej zrobić własny). Kluczowe są dwa spostrzeżenia.

- (1) Nie ma w grafie krawędzi $\{s,t\}$, takich że $s \in S \cap L$ i $t \in T \setminus L$ (nie ma połączeń pomiędzy lewą górną częścią i prawą dolną). Istotnie, taka krawędź nie może być w $E \setminus M$ bo wtedy algorytm nadałby etykietę wierzchołkowi t (jako że s ma etykietę). Z drugiej strony, jeśli $\{s,t\} \in M$ to s nie ma etykiety (*) (bo ma parę w kojarzeniu); s musi mieć więc etykietę t_1 dla pewnego $t_1 \in T \cap L$. Wtedy z s wychodzą dwie różne krawędzie należace do M, a to jest sprzeczne z definicją kojarzenia.
- (2) Nie ma w M krawędzi $\{s,t\}$, takich że $s \in S \setminus L$ i $t \in T \cap L$ (nie ma w M połączeń pomiędzy lewą dolną częścią i prawą górną). Istotnie, gdyby taka krawędź była to s dostałby etykietę (t).

Uwaga (1) oznacza bezpośrednio, że B jest zbiorem blokującym; sprawdźmy, że |B| = |M|.

Dla każdego $s \in S \setminus L$ istnieje $t \in T$, taki że $\{s,t\} \in M$ (gdyby s nie miał pary to dostałby etykietę (*). Taki t musi spełniać $t \in T \setminus L$, co wynika z (2). Każdy $t \in T \cap L$ ma parę (inaczej, gdy etykietę dostaje wierzchołek bez pary, otrzymujemy łańcuch alternujący). Z konieczności (patrz (2)) istnieje $s' \in S \cap L$ taki że $\{s',t\} \in M$. Wynika stąd. że różne wierzchołki z B należa do różnych krawędzi z M. Stąd $|B| \leq |M|$ (nierówność w drugą stronę jest zawsze prawdziwa).

Zauważmy, że algorytm jest genialny: podał opis poprawności swojego działania oraz udowodnił poniższe twierdzenie.

Wniosek 13.4 (König & Egervary). W grafie dwudzielnym minimalna liczna blokujących wierzchołków jest równa maksymalnej liczbie skojarzonych par.

14. Twierdzenie Dilworha

Zilustrujemy pomysły z poprzedniego rozdziału innym zagadnieniem. Dla danego zbioru P relację \preceq nazywamy relacją częściowego porządku jeżeli $x \preceq x$, warunki $x \preceq y$ i $y \preceq x$ implikuje x = y oraz $x \preceq x, y \preceq z$ pociąga $x \preceq z$ dla dowolnych $x, y, z \in P$ (czyli relacja \preceq jest zwrotna, słabo antysymetryczmna i przechodnia). Porządki częściowe tym się różnią od liniowego, że pewne elementy mogą być nieporównywalne; $x, y \in P$ sa nieporównywalne, jeżeli nie zachodzi $x \preceq y$ i nie zachodzi $y \preceq x$. Naturalnym przykładem częściowego porządku jest \subseteq (na rodzinie podzbiorów ustalonego zbioru). Inny przykład: dla liczb naturalnych relacja x|y (x dzieli y) jest częściowym porządkiem. Poniżej typowa ilustracja tego porządku na zbiorze wybranych liczb (rys. Michał Korch, MIM UW):

Definicja 14.1. W zbiorze częściowo uporządkowanym (P, \preceq)

- (i) zbiór $C \subseteq P$ nazywamy **łańcuchem**, jeżeli C jest liniowo uporządkowany przez \leq ;
- (ii) zbiór $A\subseteq P$ nazywamy **antyłańcuchem** jeżeli każde dwa różne element z A są nieporównywalne.

W przykładzie powyżej $A=\{4,6,9,5\}$ jet antyłańcuchem; zbiór $C=\{2,4,8,24\}$ jest łańcuchem.

Niech (P, \preceq) będzie skończonym zbiorem częściowo uporządkowanym. Rozważmy zagadnienie, jaka jest maksymalna moc antyłańucha w P oraz dualne do niego zagadnienie, jaka jest minimalna liczba łańcuchów, na jakie można rozłożyć P. W przykładzie obie liczby wynoszą 4, proszę sprawdzić, i to nie jest przypadek. Dualność tych zagadnień wynika stąd, że jeżeli $P = C_1 \cup \ldots C_m$ jest rozkładem na łańcuchy to m ogranicza z góry moc każdego antyłańcucha A w P, jako ze $|A \cap C_i| \leq 1$).

Twierdzenie 14.2 (Dilworth). W skończonym zbiorze częściowo uporządkowanym maksymalna moc antyłańcucha jest równa minimalnej liczbie łańcuchów, na jakie ten zbiór można rozłożyć.

Dowód. Możemy założyć, że nasz zbiór to $P = \{1, 2, ..., n\}$ z daną relacją częściowego porządku \leq . Piszemy oczywiście $x \prec y$ jeżeli $x \leq y$ i $x \neq y$.

Rozważymy zbiór $S = \{s_1, s_2, \dots, s_n\}$ oraz $T = \{t_1, t_2, \dots, t_n\}$ oraz graf dwudzielny G = (S, T, E)' gdzie definiujemy krawędzie z E poprzez warunek

$$\{s_i, t_j\} \in E \iff i \prec j.$$

Idea tej konstrukcji jest taka, że zarówno s_i , jak i t_i reprezentują element i zbioru częściowo uporządkowanego, przy czym s_i służy do zaznaczania, od czego i jest mniejsze, a t_i od czego i jest większe.

Dowód odwoła się do Wniosku 13.4 po sprawdzeniu dwóch faktów.

Teza 1. Jeżeli M jest kojarzeniem par w grafie G to P można rozłożyć na n-|M| łańcuchów.

Istotnie, krawędzie z M jednoznacznie wyznaczają rozkład P na łańcuchy. Na przykład, jeżeli, dla n=4 mamy $M=\{\{1,2\},\{3,4\}\}$ to te pary tworzą rozłączne łańcuchy; jeżeli natomiast $M=\{\{1,2\},\{2,3\}\}$ to łańcuchami są $\{1,2,3\}$ oraz $\{4\}$. Każda skojarzona przez M para automatycznie zmniejsza liczbę potrzebnych łańcuchów o 1; stąd teza.

Teza 2. Jeżeli B jest zbiorem blokującym w grafie G to w P istnieje antyłańcuch mocy $\geq n-|B|$.

Niech
$$B \cap S = \{s_{i_1}, \dots, s_{i_k}\}$$
 i niech $B \cap T = \{t_{i_1}, \dots, t_{i_m}\}$. Wtedy zbiór
$$A = P \setminus (\{i_1, \dots, i_k\} \cup \{j_1, \dots, j_m\})$$

jest antyłańcuchem: różne $i, j \in A$ są nieporównywalne jako że każda relacja między nimi jest zablokowana. Ponadto, $|A| \ge n - (k+m) = n - |B|$.

Z Wniosku 13.4 istnieje kojarzenie M i zbiór blokujący B, takie że |M|=|B|. Na podstawie Tezy 1 i 2 stwierdzamy, że w zbiorze P istnieje antyłańcuch równy co do mocy liczbie łańcuchów, na jakie można P rozłożyć.

Ilustracja do dowodu Twierdzenia 13.3

