第八章 数-模和模-数转换

一、A/D转换器的基本原理蕌

将时间和幅度连续的模拟量转换成时间和幅度离散的数字量,一般步骤为:

取样 武 量化 武 编码

1. 取样定理 (sample)

取样频率fs必须大于等于输入模拟信号包含的最高频率

$$f_{\text{imax}}$$
的两倍,即: $f_{\text{S}} \geq 2f_{\text{i(max)}}$

$$f_{\rm S} \geq 2 f_{\rm i(max)}$$

2. 量化和编码

- □ 将取样电压表示为最小数量单位(A)的整数倍—量化
- □将量化结果用代码表示出来—编码(包含多少个量化台阶△)
- □ 当采样电压不能被Δ整除时— 量化误差

A/D转换器电路实现

2. 并联比较型A/D

寄存器:由七个D触发器构成。在时钟脉冲*CLK*的作用下,将比较结果暂时寄存,以供编码用。 蕌

编码器:将比较器送来的七位二进制码转换成三位二进制代码 d_2 、 d_1 、 d_0 。

编码网络的逻辑关系为

$$d_{2} = Q_{4}$$

$$d_{1} = Q_{6} + Q'_{4}Q_{2}$$

$$d_{0} = Q_{7} + Q'_{6}Q_{5} + Q'_{4}Q_{3} + Q'_{2}Q_{1}$$

编码表

v _I 输入范 围	Q_7	Q_6	Q_5	Q_4	Q_3	Q_2	Q_1	d_2	d_1	d_0
$(0 \sim \frac{1}{15})V_{\text{REF}}$ $1 3$	0	0	0	0	0	0	0	0	0	0
$\frac{(\frac{1}{15} \sim \frac{1}{15})V_{\text{REF}}}{3}$	U	0	0	0	0	0	1	0	0	1
$(\frac{15}{15} \sim \frac{15}{15})V_{\text{REF}}$ $\frac{5}{7}$	0	0	0	0	0		1	0	1	0
$ \frac{(\overline{15} \sim \overline{15})V_{REF}}{7} $	0	0	0	0	İ	1	1	0	1	1
$ \frac{(\overline{15} \sim \overline{15})V_{REF}}{9} $	0	0	0		1	1	1		0	0
$(\frac{15}{15} \sim \frac{15}{15})V_{REF}$	0	0	1		1	1	1	1	0	1
$ \frac{(\overline{15} \sim \overline{15})V_{REF}}{13} $	0		1		1	1	1	1	1	0
$(\frac{15}{15} \sim 1)V_{\text{REF}}$	1	1	1		1	1	1		1	1

K图化简,或直接观察 ≺

$$d_2 = Q_4$$

$$d_1 = Q_6 + Q'_4 Q_2$$

$$d_0 = Q_7 + Q'_6 Q_5 + Q'_4 Q_3 + Q'_2 Q_1$$

例,假设模拟输入 v_{I} =3.8V, V_{REF} =8V。当模拟输入 v_{I} =3.8V加到各级比较器时,由于

$$\frac{7}{15}V_{REF} = 3.7V$$

$$\frac{9}{15}V_{REF} = 4.8V$$

$$V_{I} = 3.8V$$

因此,比较器的输出 $C_7\sim C_1$ 为0001111。在时钟脉冲作用下,比较器的输出存入寄存器,经编码网络输出A/D转换结果: $d_2d_1d_0=100$ 。

电路特点:

- 1) 快, CLK触发信号到达到输出 稳定建立只需几十纳秒
- 2) 电路规模大,n位需要2ⁿ-1个 比较器,触发器
- 3) 精度受参考电压、分压网络 等因素影响

3. 反馈比较型A/D----计数型

基本原理:取一个"D"加到DAC上,得到模拟输出电压,将该值与输入电压比较,如两者不等,则调整D的大小,到相等为止,则D为所求值。

1. 起始状态: 计数器清零, $v_L = 0$

 $2.v_{L} = 1$,转换开始

V_I>0, V_O=0,→V_B=H 计数器开始计数,

直到 $v_0 = v_1$, $V_B = L$ 。此时计数器的值即为所求的输出数字信号

转换时间:

4. 反馈比较型A/D---逐次逼近型

全部比较后, V_i 与 V_o 仍然不等, 差值<量化误差,

ADC 位数越多,结果越精确

转换时间:

3位: 5个CLK

n位: (n+2)个CLK

! 电路不太复杂

! 较快

第1次比较: 令Q₇=1, DAC后若V_i>V₀,→C=1, 说明把V_i量化成10000000太小, 保留Q₇=1

第2次比较: 令 $Q_6=1$, DAC后若 $V_i < V_0$, $\rightarrow C=0$, 说明把 V_i 量化成11000000太大, 修改 $Q_6=0$

第3次比较: 令 $Q_5=1$, DAC后若 $V_i>V_0$, $\to C=1$, 说明把 V_i 量化成10100000太小, 修改 $Q_5=1$

第8次比较: 令Q₀=1, DAC后若V_i>V₀,→C=1, 说明把V_i量化成10110011太小, 修改Q₀=1

5、双积分型A/D转换器(V-T变换型) (间接转换)

1.起始状态: 计数器清零

 $2.v_{L} = 1$,转换开始(S_0 断开)

第一步, $S_1 \rightarrow v_1$,积分器

作固定时间Ti的积分

 T_1 期间 v_1 不变

$$v_{O} = \frac{1}{C} \int_{0}^{T_{I}} -\frac{v_{I}}{R} dt = -\frac{T_{I}}{RC} v_{I}$$

$$\therefore v_{O} \propto v_{I}$$

第二步: $S_1 \rightarrow -V_{REF}$

积分器作反相积分,至 $v_0 = 0$

$$v_{\rm O} = \frac{1}{C} \int_0^{T_2} \frac{V_{\rm REF}}{R} dt - \frac{v_{\rm I}}{RC} T_1 = 0$$

$$\frac{V_{\text{REF}}}{RC}T_2 = \frac{v_{\text{I}}}{RC}T_1 \Rightarrow T_2 = \frac{T_1}{V_{\text{REF}}}v_{\text{I}}$$

$$T_2 = \frac{V_I}{V_{REF}} T_1$$

由于T₁,V_{REF}为定值,所以 V₁ 越大,T₂ 越大,计数值越大

若 T_1 时间段内计数器能数 2^n 个时钟 $T_1 = 2^n T_{CLK}$

则 T₂ 时间段内计数值为

计数值
$$D = \frac{V_I}{V_{REF}} 2^n$$
 (11.3.7) 要求 $V_{I} < V_{REF}$ page537

计数器输出

$$D = N_2 = \frac{V_I}{V_{REF}} 2^n$$

电路实现

若
$$T_1 = 2^n T_C$$
, $D = \frac{2^n}{V_{\text{REF}}} v_{\text{I}}$

4、V-F变换型A/D转换器(间接转换)

2.2 ADC的转换精度与转换速度

1) 转换精度

转换精度一般用分辨率和转换误差来描述。

分辨率以输出二进制数的位数来描述(满量程输入的1/2n)

例,A/D转换器的输出为10位二进制数,最大输入信号为5V,那么这个A/D转换器的分辨率为 5V/2¹⁰=4.88 mV。

2) 转换速度: 取决于电路结构类型

练习

- 1模数转换的步骤是 ()、()、()。
- **2**一双积分型A/D转换器,计数位长为8位, 若 V_{REF} =12V,当输入信号 V_{I} =8.44V时,则输出的二进制数为(10110100)。
- 3. 当输入模拟电压最大值为+5V时,若采用8位ADC,则其分辨率为(19.53mV)。

作业

8.16, 8.17