# SUBESPACIOS (C,A)-INV Y SUBESPACIOS DE NO OBSERVABILIDAD

Aplicación en el diagnóstico de faltas

Héctor Daniel flores león



- A GEOMETRIC APPROACH TO FAILURE DETECTION AND IDENTIFICATION IN LINEAR SYSTEMS MASSOUMNIA
- CONTROLLED AND CONDITIONED INVARIANTS IN LINEAR SYSTEM THEORY BASILE & MARRO
- LINEAR MULTIVARIABLE CONTROL: A GEOMETRIC APPROACH WONHAM



# PRELIMINATES

# MAPEOS Y SUBESPACIOS

**\$** Sea  $C: \mathcal{X} \to \mathcal{Y}$  un mapeo lineal

O Normalmente se denota la imagen de un mapeo arbitrario  $\mathcal{C}$  por  $\mathcal{C}$ .

• La imagen de C es el subespacio

$$Im(C) := \{ y : y \in \mathcal{Y} \& \exists x \in \mathcal{X}, y = Cx \} \subseteq \mathcal{Y}$$

• El Kernel de C es el subespacio

$$ker(C) := \{ x : x \in \mathcal{X}, Cx = 0 \} \subseteq \mathcal{X}$$

• Si  $\mathcal{R} \subseteq \mathcal{X}$ ,  $C\mathcal{R}$  denota la imagen de  $\mathcal{R}$  bajo C. Se define como

$$C\mathcal{R} \coloneqq \{ y : y \in \mathcal{Y} \& \exists x \in \mathcal{R}, y = Cx \} \subseteq \mathcal{Y}$$

• Si  $S \subseteq \mathcal{Y}$ ,  $C^{-1}S$  denota la imagen inversa de S bajo C. Se define como

$$C^{-1}\mathcal{S} \coloneqq \{ \ x : x \in \mathcal{X} \ \& \ Cx \in \mathcal{S} \ \} \subseteq \mathcal{X}$$



## MAPEOS Y SUBESPACIOS

- Decimos que el mapeo  $\mathcal{C}$  es <u>sobrevectivo</u> (épico) si  $Im(\mathcal{C}) = \mathcal{Y}$ .
  - Entonces C tiene rango pleno por filas.
  - Existe la inversa derecha de  $C^{-r}$  tal que  $CC^{-r} = I$ .
- Decimos que el mapeo C es <u>invectivo</u> (mónico) si Ker(C) = 0.
  - Entonces C tiene rango pleno por columnas.
  - Existe la inversa izquierda  $C^{-l}$  tal que  $C^{-l}C = I$ .



# APLICACIÓN EN ECUACIONES MATRICIALES LINEALES

Considere las siguientes ecuaciones matriciales lineales, donde se desea encontrar solución para X

### BX = C

- $B: \mathbb{R}^m \to \mathbb{R}^n$ ,  $X: \mathbb{R}^l \to \mathbb{R}^m$ ,  $C: \mathbb{R}^l \to \mathbb{R}^n$ .
- Para que exista solución, cada columna de C debe de ser una combinación lineal de las columnas de B.
- Es decir, existe solución ssi  $Im(C) \subseteq Im(B)$ .
- Por lo tanto, existe solución si B es épica, ya que se tendría que  $Im(C) \subseteq \mathbb{R}^n = Im(B)$ .

### XB = C

- $B: \mathbb{R}^m \to \mathbb{R}^n, X: \mathbb{R}^n \to \mathbb{R}^l, C: \mathbb{R}^m \to \mathbb{R}^l$ .
- Existe solución para X ssi  $Ker(B) \subseteq Ker(C)$ . ¿Cómo se llega a esta conclusión? (Utilizar conceptos de espacio dual y aniquiladores)
- Por lo tanto, existe solución si B es mónica, ya que se tendría que  $0 = Ker(B) \subseteq Ker(C)$ .



En estos casos, sabemos que al menos existe una solución!



# MAPEOS Y SUBESPACIOS

### Mapeo de inserción:

- Sea  $\mathcal{V} \subseteq \mathcal{X}$ ,  $d(\mathcal{V}) = k$ . Como  $\mathcal{V}$  puede ser considerado en sí mismo un espacio vectorial de dimensión k, un vector  $v \in \mathcal{V}$  puede ser representado como un elemento de  $\mathcal{V}$  o de  $\mathcal{X}$ .
- Sea  $\{v_1, \dots, v_k\}$  una base de  $\mathcal{V}$  y  $\{x_1, \dots, x_n\}$  una base de  $\mathcal{X}$ .

Entonces cada  $v_i$  puede ser representado como

$$v_j = \sum_{i=1}^n v_{ij} x_i, \qquad j \in \{1, ..., k\}$$

• La matriz  $[v_{ij}]$  de  $n \times k$  determina un mapeo único  $V: \mathcal{V} \to \mathcal{X}$ . Llamamos mapeo de inserción de  $\mathcal{V}$  en  $\mathcal{X}$  a este mapeo. Claramente V es mónica.

Sea  $\mathcal{V} \subseteq \mathcal{X}$  con mapeo de inserción

$$V: \mathcal{V} \to \mathcal{X}$$

y sea  $Im(C) \subseteq \mathcal{W} \subseteq \mathcal{Y}$  con mapeo de inserción  $W: \mathcal{W} \to \mathcal{Y}$ 





# EJEMPLO

- 1. Sea  $\mathcal{V} = span \left\{ \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix} \right\}$ , calcule el mapeo de insersión  $V: \mathcal{V} \to \mathcal{X}$  considerando la base canónica.

  - $V = \begin{bmatrix} 1 & 0 \\ 2 & 3 \\ 0 & 1 \end{bmatrix}$
  - $v = \begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\mathcal{V}} \in \mathcal{V} \to x = Vv = \begin{bmatrix} 1 \\ 8 \\ 2 \end{bmatrix}_{\mathcal{X}}$

Puede verse que el mapeo de insersión es una herramienta útil para la representación numérica de un subespacio. 2. Sea  $\mathcal{V} = span \begin{Bmatrix} \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \end{Bmatrix} \subseteq \mathcal{X}$ , y sea  $\mathcal{C}: \mathcal{X} \to \mathcal{Y}$  el mapeo representado por  $\mathcal{C} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 2 \end{bmatrix}$ . Calcule el mapeo de insersión  $\mathcal{V}: \mathcal{V} \to \mathcal{X}$ , el mapeo de restricción de  $\mathcal{C}$  respecto a  $\mathcal{V}(\mathcal{C}: \mathcal{V})$  y compruebe que la imagen bajo  $\mathcal{C}$  es la misma para el vector  $x = \begin{bmatrix} 1 \\ 2 \\ 5 \end{bmatrix}_{\mathcal{V}} \subseteq \mathcal{V}$  (Considere la base canónica).

Realizar de tarea.



# ESPACIO DUAL Y ANIQUILADORES

### **Espacio Dual:**

- Sea  $\mathcal{X} \in \mathbb{R}^n$  un espacio vectorial. Se denota el conjunto de todos los funcionales lineales  $x': \mathcal{X} \to \mathbb{R}$  por  $\mathcal{X}'$ .
- El conjunto de los funcionales lineales es un espacio vectorial bajo los reales con las definiciones

$$(x'_1 + x'_2)x \coloneqq x'_1x + x'_2x; \quad x_i \in \mathcal{X}', x \in \mathcal{X}$$

$$(cx'_1)x \coloneqq c(x'_1x); \qquad x_1 \in \mathcal{X}', c \in \mathbb{R}$$

- El espacio vectorial  $\underline{\mathcal{X}}'$  es llamado el espacio dual de  $\underline{\mathcal{X}}$ .
- Si  $C: \mathcal{X} \to \mathcal{Y}$ , el mapeo dual  $C': \mathcal{Y}' \to \mathcal{X}'$  puede representarse como  $C' = C^T$ .
- ❖ Si  $\{x_1, ..., x_n\}$  es una base de  $\mathcal{X}$ , la base dual correspondiente de  $\mathcal{X}'$  es el conjunto único  $\{x_1', ..., x_n'\}$  ⊆  $\mathcal{X}'$  tal que  $x_i'x_j = \delta_{ij}$ , donde  $\delta_{ij}$  es la delta de Kronecker.

### Ejemplo:

$$span(X) = \{ [3 \ 0 \ -1]^T, [0 \ 2 \ 1]^T, [1 \ -1 \ 0]^T \},$$
  
Entonces  
 $span(X') = \{x'_1, x'_2, x'_3\},$  donde  
 $x'_1 = [0.2 \ 0.2 \ -0.4],$   
 $x'_2 = [0.2 \ 0.2 \ 0.6],$   
 $x'_3 = [0.4 \ -0.6 \ 1.2].$ 



# ESPACIO DUAL Y ANIQUILADORES

### Aniquilador de un subespacio:

• Sea  $S \subseteq X$ . El aniquilador de S se denota  $S^{\perp}$  y se define como

$$S^{\perp} := \{ x' : x'S = 0, x' \in \mathcal{X}' \} \subseteq \mathcal{X}'$$

Sea  $C: \mathcal{X} \to \mathcal{Y}$ , sean además  $S_1, S_2 \subseteq \mathcal{X}$  y  $\mathcal{R} \subseteq \mathcal{Y}$ . Algunas relaciones de aniquiladores son:

- $0^{\perp} = \mathcal{X}'$
- $\mathcal{X}^{\perp} = 0$
- $(S_1 + S_2)^{\perp} = S_1^{\perp} \cap S_2^{\perp}$
- $(S_1 \cap S_2)^{\perp} = S_1^{\perp} + S_2^{\perp}$
- $S_1 \subseteq S_2 \iff S_2^{\perp} \subseteq S_1^{\perp}$
- $(\mathcal{S}_1^{\perp})^{\perp} = \mathcal{S}_1$
- $(Im(C))^{\perp} = Ker(C')$
- $(Ker(C))^{\perp} = Im(C')$
- $CS \subseteq \mathcal{R} \iff C'\mathcal{R}^{\perp} \subseteq S^{\perp}$

Sean  $A: \mathcal{X} \to \mathcal{X}, \mathcal{S}, \mathcal{R} \subseteq \mathcal{X}$ . Sean además  $R: \mathcal{R} \to \mathcal{X}$  y  $S: \mathcal{S} \to \mathcal{X}$  mapeos de inserción y  $R^{\perp}(S^{\perp})$  soluciones de máximo rango de  $R^{\perp}R = 0$  ( $S^{\perp}S = 0$ ). Entonces

- $\mathcal{R} + \mathcal{S} = Im[R \ S]$
- $\mathcal{R} \cap \mathcal{S} = Ker \begin{bmatrix} R^{\perp} \\ S^{\perp} \end{bmatrix}$
- $A^{-1}\mathcal{R} = Ker[R^{\perp}A]$



# SISTEMA COCIENTE

### **Espacio cociente:**

- Sea  $S \subseteq X$ . Los vectores  $x, y \in X$  son <u>equivalentes módulo</u> S si  $x y \in S$ .
- La equivalencia módulo S es una relación de equivalencia (reflexiva, simétrica y transitiva), y cada vector  $x \in \mathcal{X}$  tiene asociado consigo una <u>clase de equivalencia</u> w definida como
  - ❖ Se cumple que

$$d(\mathcal{X}/\mathcal{S}) = d(\mathcal{X}) - d(\mathcal{S})$$

El mapeo  $P: \mathcal{X} \to \mathcal{X}/\mathcal{S}$  tal que w = Px es llamado la <u>proyección</u> <u>canónica</u> de  $\mathcal{X}$  en  $\mathcal{X}/\mathcal{S}$ .

• 
$$P$$
 es épica, y  $Ker(P) = S$ 



El conjunto de todas las clases de equivalencia forman un espacio vectorial lineal, llamado el *espacio cociente* X/S.



# SISTEMA COCIENTE

• Considere el sistema lineal, donde  $X \in \mathbb{R}^n$ ,  $U \in \mathbb{R}^m$ ,  $Y \in \mathbb{R}^p$ .

$$\dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t).$$

• Sea  $S \subseteq \mathcal{X}$  un subespacio A-invariante  $(AS \subseteq S)$  con d(S) = k, y sea  $P: \mathcal{X} \to \mathcal{X}/S$ .



❖ La tripleta  $(C_0, A_0, B_0)$  conforma el sistema cociente respecto a S, donde  $C_0 = CP^{-r}$ ,  $A_0 = PAP^{-r}$ ,  $B_0 = PB$ 

• Si  $\{s_1, ..., s_k\}$  es una base de S y  $\{r_1, ..., r_j\}$  es una base de R tal que  $S \oplus R = X$ , entonces en la base  $\{s_1, ..., s_k, r_1, ..., r_j\}$  para X la matriz R tiene la forma

$$A = \begin{bmatrix} A_1 & A_3 \\ 0 & A_2 \end{bmatrix}$$

en donde  $A_1 = A$ : S y  $A_2 = A$ : X/S.

$$\square$$
  $\sigma(A) = \sigma(A:S) \uplus \sigma(A:X/S).$ 

- Si  $S = \langle Ker(C)|A \rangle$ , entonces el par  $(C_0, A_0)$  es observable!
- $\circ$  Si (C, A) es observable, entonces el par (CS, A: S) es observable!



### **Definición:**

■ Sea  $A: \mathcal{X} \to \mathcal{X}$  y  $C: \mathcal{X} \to \mathcal{Y}$ . Un subespacio  $\mathcal{W} \subseteq \mathcal{X}$  es (C, A)-invariante si existe un mapeo de <u>invección de salida</u>  $D: \mathcal{Y} \to \mathcal{X}$  tal que

$$(A + DC)W \subseteq W$$



• Sin embargo, conociendo el modelo del sistema, los subespacios (C, A)-invariantes son muy útiles a la hora de modificar las dinámicas de un observador del sistema.



### Caracterización del mapeo $D: \mathcal{Y} \to \mathcal{X}$

- El conjunto de mapeos D tal que  $(A + DC)W \subseteq W$  se denota por  $\underline{D}(W)$ .
- Sea  $\mathcal{W}$  un subespacio (C,A)-inv donde  $W: \mathcal{W} \to \mathcal{X}$  es su mapeo de inserción y sea P la solución de máximo rango de PW = 0. Entonces  $D \in \underline{D}(\mathcal{W})$  si y sólo si

$$P(A+DC)W=0$$

• Se tiene que  $\underline{\mathbf{D}}(\mathcal{W}) \neq \emptyset$ 

Notar que todo subespacio A-invariante es también (C, A)-invariante!

Esto se puede comprobar simplemente eligiendo D = 0.

- Sea W tal que  $AW \subseteq W$ .
- $(A + 0C)W = AW \subseteq W$ .



### Lema:

• Un subespacio  $\mathcal{W}$  es (C, A)-invariante si y sólo si

$$A(\mathcal{W} \cap Ker(C)) \subseteq \mathcal{W}$$

(si) Suponemos que  $A(\mathcal{W} \cap Ker(C)) \subseteq \mathcal{W}$ : Sea  $\{w_1, ..., w_k, w_{k+1}, ..., w_r\}$  una base de  $\mathcal{W}$  tal que  $span(w_1, ..., w_k) = \mathcal{W} \cap Ker(C)$ . Entonces  $Aw_i = s_i \quad (i \in \mathbf{k})$  para algún  $s_i \in \mathcal{W}$ . Además  $(A + DC)w_i = s_i \quad (i \in \mathbf{k})$  para cualquier D ya que  $w_i \in Ker(C)$ . Sea  $Aw_j = x_j \quad (k+1 \le j \le r)$  para algún  $x_j \in \mathcal{X}$ , y sea D solución de  $DC[w_{k+1} \quad ... \quad w_r] = -[x_{k+1} \quad ... \quad x_r]$ 

Entonces  $(A + DC)w_i = s_i \ (i \in r)$  donde  $s_i \in \mathcal{W}$ .

(sólo si) Suponemos que  $\mathcal{W}$  es (C,A)-inv: Sea  $\mathcal{W}$  (C,A)-inv, y sea  $\{w_i, i \in k\}$ una base para  $\mathcal{W} \cap Ker(C)$ . Por hipótesis,  $(A+DC)\mathcal{W} \subseteq \mathcal{W}$ , por lo que  $(A+DC)w_i \in \mathcal{W}$ . Pero  $Cw_i = 0$ , por lo que  $Aw_i \in \mathcal{W}$ . Se tiene entonces que  $A(\mathcal{W} \cap Ker(C)) \subseteq \mathcal{W}$ .



### Otras propiedades de los subespacios (C, A)-invariantes:

- Del lema anterior, se tiene que cualquier  $D_0$  tal que  $D_0Cw_j = -x_j + y_j \ (k+1 \le j \le p)$ , para cualquier  $y_j \in \mathcal{W}$ , es también miembro de  $\underline{D}(\mathcal{W})$ .
  - Por lo tanto, si  $D \in \underline{D}(W)$ , se tiene que también  $D_0 \in \underline{D}(W)$  si

$$(D - D_0)CW \subseteq W \qquad \longrightarrow \qquad \begin{vmatrix} D \\ \mathbf{d} \end{vmatrix}$$

D y  $D_0$  son "amigas" de W.

- $\mathcal{W}$  es (C, A)-inv si y sólo si  $\mathcal{W}$  es  $(C, A + D_0C)$ -inv para cualquier mapeo arbitrario  $D_0$ .
- $\mathcal{W}$  es (C, A)-invariante si y sólo si  $\mathcal{W}^{\perp}$  es (A', C')-invariante.

Demostración de tarea (Utilizar conceptos de (A,B)-inv y de aniquiladores)

• La intersección de dos subespacios (C, A)-invariantes es (C, A)-invariante.



### Ínfimo subespacio (C, A)-invariante que contiene a $\mathcal{E} \subseteq \mathcal{X}$ :

• Sea  $\mathcal{E} \subseteq \mathcal{X}$ . El conjunto de subespacios  $(\mathcal{C}, A)$ -inv que contienen a  $\mathcal{E}$  se denota por  $\mathcal{W}(\mathcal{E})$ 

- El conjunto de todos los subespacios (C, A)-inv en  $\mathcal{X}$  se escribe como  $\underline{\mathcal{W}}(0)$ .
- Al ser cerrado bajo la intersección de subespacios,  $\underline{\mathcal{W}}(\mathcal{E})$  contiene un elemento ínfimo, denotado como

$$\mathcal{W}^*(\mathcal{E}) \coloneqq \inf \underline{\mathcal{W}}(\mathcal{E})$$

### Algoritmo CAISA ((C, A)-invariant subspace algorithm)

• Sea  $\mathcal{E} \subseteq \mathcal{X}$  y  $\mathcal{W}^* := \inf \underline{\mathcal{W}}(\mathcal{E})$ . Entonces  $\mathcal{W}^*$  coincide con el último término de la secuencia siquiente:

$$\mathcal{W}_0 = \mathcal{E},$$
 (Solución matricial  $\mathcal{W}_i = \mathcal{E} + A(\mathcal{W}_{i-1} \cap Ker(C)), \quad (i = 1, ..., k)$  de tarea)

donde el valor de  $k \leq n-1$  es determinado por la condición  $\mathcal{W}_{k+1} = \mathcal{W}_k$ .



de tarea)

### Observador de una transformación del estado utilizando subespacios (C, A)-inv:

Considere el observador de Luenberger

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) + D_0(\hat{y}(t) - y(t)),$$

$$\dot{\hat{y}}(t) = C\hat{x}(t).$$

De acuerdo al sistema lineal

$$\dot{x}(t) = Ax(t) + Bu(t) + Ld(t),$$
  
$$y(t) = Cx(t).$$

y sea  $\mathcal{W} := \inf \underline{\mathcal{W}}(\mathcal{L}), P: \mathcal{X} \to \mathcal{X}/\mathcal{W}, D_0 \in \underline{D}(\mathcal{W})$ 

### Tenemos que

$$\dot{\hat{x}} = A\hat{x} + Bu + D_0\hat{y} - D_0y, 
= A\hat{x} + Bu + D_0C\hat{x} - D_0y, 
= (A + D_0C)\hat{x} + Bu - D_0y, 
= A_0\hat{x} + Bu - D_0y,$$

En las dinámicas del observador, W es  $(A + D_0C)$ -invariante!

En el sistema cociente, con z = Px, tenemos:

$$P^{-r}\dot{\hat{z}} = A_0 P^{-r} \hat{z} + Bu - D_0 y,$$
  

$$\dot{\hat{z}} = P A_0 P^{-r} \hat{z} + P Bu - P D_0 y,$$
  

$$\hat{g} = C P^{-r} \hat{z}.$$

$$\dot{\hat{z}} = F\hat{z} + Gu - Ey,$$

$$\hat{g} = M\hat{z}.$$



### Continuación:

• Podemos ver que, las dinámicas del error  $e(t) = \hat{z}(t) - Px(t) = \hat{z}(t) - z(t)$ ,

$$\dot{e} = \dot{\hat{z}} - P\dot{x},$$

$$= PA_0P^{-r}\hat{z} + PBu - PD_0y - PAx - PBu - PLd.$$

PL = 0, ya que  $\mathcal{L} \subseteq \mathcal{W}$ , con lo que

$$\dot{e} = PA_{0}P^{-r}\hat{z} - PD_{0}y - PAx,$$

$$= PA_{0}P^{-r}\hat{z} - PD_{0}Cx - PAx,$$

$$= PA_{0}P^{-r}\hat{z} - P(A + D_{0}C)x,$$

$$= PA_{0}P^{-r}\hat{z} - P(A + D_{0}C)x,$$

$$= PA_{0}P^{-r}\hat{z} - P(A + D_{0}C)P^{-r}z,$$

$$= PA_{0}P^{-r}(\hat{z} - z),$$

$$= PA_{0}P^{-r}e,$$

$$= Fe.$$

- Podemos notar que se hizo un observador que no es afectado por la perturbación d(t).
- Sin embargo, para que el error tienda a cero cuando el error de observación inicial es diferente de cero, las dinámicas de  $(A + D_0: \mathcal{X}/\mathcal{W})$  deben de ser estables.
- $\circ$  Esto normalmente no es posible con utilizar simplemente subespacios (C, A)-invariantes.

### Tarea:

• Calcular  $\mathcal{W}:=\inf \underline{\mathcal{W}}(\mathcal{L})$ ,  $P:\mathcal{X}\to\mathcal{X}/\mathcal{W}$ ,  $D_0\in\underline{D}(\mathcal{W})$  para el sistema lineal con matrices

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & -3 & 0 \\ -1 & 0 & -1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \qquad C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad L = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

• Diseñar un observador del sistema bajo la entrada desconocida Ld(t) de la forma

$$\dot{\hat{z}} = F\hat{z} + Gu - Ey,$$
 $\hat{g} = M\hat{z}.$ 

• Simular el sistema con su observador, estableciendo el error de observación inicial igual a cero, y después diferente de cero. Comparar. (Considere d(t) como una señal cuadrada, simulando una perturbación intermitente de valor constante).

¿El sistema cociente (F, G, M) es observable? ¿Qué implica esto?

