13.3: Arc Length in Space

Length of smooth curve $\vec{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ $(a \le t \le b)$

$$L = \int_a^b \sqrt{\left(rac{dx}{dt}
ight)^2 + \left(rac{dy}{dt}
ight)^2 + \left(rac{dz}{dt}
ight)^2} \, dt = \int_a^b \|ec{v}\| \, dt$$

(Derives from $ds^2=dx^2+dy^2+dz^2$)

Arc Length Parameter: Function s that finds directed distance along curve starting from $P(t_0)$ to some point P(t)

$$s(t) = \int_{t_0}^t \sqrt{\left(rac{dx}{d au}
ight)^2 + \left(rac{dy}{d au}
ight)^2 + \left(rac{dz}{d au}
ight)^2} \, d au = \int_{t_0}^t \|ec{v}\| \, d au$$

Speed:

$$ext{speed} = rac{ds}{dt} = \| ec{v}(t) \|$$

Unit Tangent Vector

· The unit tangent vector tangent to the curve

$$ec{T}(t) = rac{ec{r}'(t)}{\|ec{r}'(t)\|} = rac{ec{v}(t)}{\|ec{v}(t)\|} = rac{dec{r}/dt}{ds/dt}$$

The unit tangent vector is in the same direction as $\vec{r}'(t) = \vec{v}(t)$, but normalized.

13.4: Curvature

If \vec{T} is a unit vector of a smooth curve, the **curvature** function of the curve is

$$\kappa = \left\| rac{dec{T}}{ds}
ight\|$$

The curvature measures how much of a failure of a curve is at being a straight line.

For smooth curve \vec{r}_i curvature can be written as scalar function:

$$\kappa = \left\|rac{dec{T}/dt}{ds/dt}
ight\| = rac{\|ec{T}'(t)\|}{\|ec{v}(t)\|}$$

(related: Additional Formula for Curvature)

In the blue curve, the curvature at the point is related to circle that best fit curve at that point.

Circle of Curvature

The **circle of curvature** (or **osculating circle**) at point P on plane curve (2D) where $\kappa \neq 0$ is the circle of the curve that

- 1. is tangent to curve at P
- 2. has the same curvature the curve has at P
- 3. has center that lies toward the concave side of the curve

The **radius of curvature** at point P is $\rho = \frac{1}{\kappa}$.

- Straight lines: curvature is constantly 0
- Circle of radius r: Curvature is constantly $\frac{1}{r}$.

Principal Normal Vector

If $\vec{T}(t)$ is unit tangent vector and $\vec{T}'(t) = 0$, then unit tangent vector does not change direction.

If $\vec{T}'(t) \neq 0$, then the **principal normal vector** is defined as

$$ec{N}(t) = rac{ec{T}'(t)}{\|ec{T}'(t)\|}$$

The principal normal vector is the unit vector normal to $\vec{T}(t)$ that points into the curve.

TNB Frame

Binormal vector: $ec{B}(t) = ec{T}(t) imes ec{N}(t)$

TNB frame / Frenet frame: The three vectors \vec{T} , \vec{N} , \vec{B}

Planes

• Osculating plane: Plane between \vec{T} and \vec{N} (normal is \vec{B})

• Normal plane: Plane between \vec{N} and \vec{B} (normal is \vec{T})

• Rectifying plane: Plane between \vec{T} and \vec{B} (normal is \vec{N})

13.5: Tangential & Normal Components of Acceleration

How do we write \vec{a} as components of the tangential and normal vectors? In other words, how do we find a_T and a_N in:

$$ec{a}(t) = ec{N}(t) a_N + ec{T}(t) a_T$$

Definitions

Tangential component of acceleration:

$$a_T = rac{d^2 s}{dt^2} = rac{d}{dt} \| ec{v} \|$$

- Only dependent on change of speed of object
- If speed is constant, $a_T=0$ and acceleration is directed entirely towards center of curvature

Normal component of acceleration:

$$a_N = \|ec{T}'(t)\|rac{ds}{dt} = \kappaigg(rac{ds}{dt}igg)^2 = \kappa \|ec{v}\|^2$$

It may also be simpler to use $a_N = \sqrt{\|a\|^2 - a_T^2}$ to avoid having to calculate curvature.

Why?

Given position function $\vec{r}(t)$,

$$egin{aligned} ec{T}(t) &= rac{ec{v}(t)}{ds/dt} \ ec{v}(t) &= ec{T}(t)rac{ds}{dt} \ ec{a}(t) &= rac{dec{v}}{dt} &= ec{T}'(t)rac{ds}{dt} + ec{T}(t)rac{d^2s}{dt^2} \end{aligned}$$

Since
$$ec{N}(t)=rac{ec{T}'(t)}{\|ec{T}'(t)\|}$$
 ,

$$egin{aligned} ec{N}(t) \| ec{T}'(t) \| &= ec{T}'(t) \ ec{a}(t) &= ec{N}(t) \| ec{T}'(t) \| rac{ds}{dt} + ec{T}(t) rac{d^2s}{dt^2} \end{aligned}$$

Curvature and Torsion

Torsion

The torsion is a measure of how much of a failure a curve is at being planar.

Let $\vec{B} = \vec{T} \times \vec{N}$. Then, torsion is defined as:

$$au = -rac{dec{B}}{ds}\cdotec{N}$$

There is a more commonly used formula to calculate torsion:

$$au = rac{egin{array}{cccc} \cdots & ec{r}' & \cdots \ \cdots & ec{r}'' & \cdots \ \cdots & ec{r}''' & \cdots \ \hline \|ec{v} imes ec{a}\|^2 \end{array}$$

This formula is "derived in more advanced texts" (according to the textbook), so no explanation here.

Additional Formula for Curvature

$$egin{aligned} ec{T}\cdotec{a} &= a_T(ec{T}\cdotec{T}) + a_N(ec{T}\cdotec{N}) = a_T \ \|ec{T} imesec{a}\| &= \|a_T(ec{T} imesec{T})\| + \|a_N(ec{T} imesec{N})\| = \|a_Nec{B}\| = a_N \end{aligned}$$

(An alternative way of thinking about it is $\vec{T} \cdot \vec{a}$ is the projection of \vec{a} onto \vec{v} , and cross-prod is the projection onto the perpendicular.)

Therefore:

$$egin{align} a_T &= rac{ec{v} \cdot ec{a}}{ds/dt} \ a_N &= rac{\|ec{v} imes ec{a}\|}{ds/dt} = \kappa igg(rac{ds}{dt}igg)^2 \ \kappa &= rac{\|ec{v} imes ec{a}\|}{(ds/dt)^3} \ \end{dcases}$$

Note: This formula for κ is typically **a lot easier** computationally than the formula involving T(t).

#module1 #week3