

වයඹ පළාත් අධනපන දෙපාර්තමේන්තුව

තෙවන වාර පරිසුණය **2020** ගණිතය I

10 ශුේණිය

කාලය පැය 2 යි.

නම/ විභාග අංකය:

- පුශ්න සියල්ලට ම මෙම පතුයේ ම පිළිතුරු සපයන්න.
- A කොටසෙහි සියලුම පුශ්නවල නිවරදි පිළිතුරු සඳහා ලකුණු 02 බැගින් ද, B කොටසෙහි එක් පුශ්නයක නිවැරදි පිළිතුරු සඳහා ලකුණු 10 බැගින් ද හිමිවේ.

A කොටස

- 01. $4.5 \times 4.5 = 20.25$ නම් $\sqrt{20}$ හි අගය පළමු සන්නිකර්ෂණයට සොයන්න.
- 02. මිනිස්සු පස් දෙනෙක් දින තුනක දී කාර්යයකින් $\frac{1}{4}$ ක් නිමකළේ නම් මුළු කාර්ය පුමාණය මිනිස් දින කීයද?
- 03. මෙම කේන්දික ඛණ්ඩයේ පරිමිතිය 25cm ද චාප දිග 11cm නම් එහි අරය සොයන්න.

- 04. පුසාරණය කරන්න. $(2x + 3)^2$
- 05. $oldsymbol{x}$ හි අගය සොයන්න.

- 06. $\mathbf{A} = \{x: x$ යනු ඔත්තේ සංඛ්‍යාවකි. $1 \le x < 10\}$ වේ. මෙම කුලකය අවයව සහිතව ලියන්න.
- 07. විසඳන්න. $\frac{8+x}{5}=2$

08. වාහන ආනයනයේ දී රේගුව විසින් **40%** ක තීරු ගාස්තුවක් අය කරයි. රු. **450 000** ක් වටිනා වාහනයක් සඳහා ගෙවිය යුතු තීරු බද්ද සොයන්න.

09. රූපයේ දැක්වෙන සිලින්ඩරයේ වකු පෘෂ්ඨ කොටස සම්පූර්ණයෙන්ම ආවරණය වනසේ සෘජුකෝණාසුාකාර ලේබලයක් අලවා ඇත. ලේබලයේ දිග හා පළල සොයන්න. (ඇලවුම් වාසි නොසලකන්න.)

 $oldsymbol{x}$ හි අගය සොයන්න.

11. \mathbf{A} හා \mathbf{B} අනෙන්නා වශයෙන් බහිෂ්කාර සිද්ධි දෙකකි. $\mathbf{P}(\mathbf{A}) = \frac{1}{2}$, $\mathbf{P}(\mathbf{B}) = \frac{1}{3}$ නම් $\mathbf{P}(\mathbf{A} \mid \mathbf{B})$ සොයන්න.

12. $\mathbf{v}^2 = \mathbf{u}^2 + 2\mathbf{a}\mathbf{s}$ සූතුයේ \mathbf{a} උක්ත කරන්න.

13. රූපයේ දක්වෙන පිස්මයේ අඳුරුකළ මුහුණතේ වර්ගඵලය **18cm²** නම් පිස්මයේ පරිමාව සොයන්න.

14. පහත තුිකෝණ අතරින් අංගසම තුිකෝණ යුගල තෝරා ඒවා අංගසම වන අවස්ථාව ලියන්න.

- 15. (3,10) හා (0,1) ලක්ෂා හරහා ගමන් කරන රේඛාවේ සමීකරණය සොයන්න.
- 16. **ABCD** චතුරසුය සමාන්තරාසුයකි. හිස්තැන් සම්පූර්ණ කරන්න.

ii) $\mathbf{A}\hat{\mathbf{B}}\mathbf{C} = \dots$

- 17. සාධක සොයන්න. $x^2 + x 20$
- 18. රූපයේ තොරතුරු ඇසුරින්,
 - i) AB හා OX අතර සම්බන්ධය ලියන්න.
 - ii) $\mathbf{A}\mathbf{X} = \mathbf{O}\mathbf{X}$ නම් $\mathbf{A}\mathbf{B}$ ජහායේ දිග සොයන්න.

19. ${f A}$ හා ${f B}$ එකිනෙකට ${f 10m}$ දුරින් පිහිටි ලක්ෂා දෙකකි. ${f A}$ හා ${f B}$ ලක්ෂා දෙකට සමදුරින් ද ${f A}$ ලක්ෂායට ${f 6m}$ ක් දුරින් ද පිහිටි ${f P}$ හා ${f Q}$ ලක්ෂා පථ පිළිබඳ දනුම භාවිතයෙන් ලබා ගන්න.

- $20. \quad 10^{0.3010} = 2$ යන්න ලසු ආකාරයෙන් ලියන්න.
- 21. රූපයේ දී ඇති තොරතුරු ඇසුරින් ${
 m A\^{C}B}$ හි අගය සොයන්න.

- 22. **60 kmh** ¹ ක ඒකාකාර වේගයෙන් ගමන් කරන මෝටර් රථයකට **150km** ක දුරක් ගමන් කිරීමට ගතවන කාලය සොයන්න.
- 23. $6x^2$, $2xy^2$, $10y^2$ යන පදවල කු.පො.ගු. සොයන්න.

24. සංඛාහ වාහප්තියක උපකල්පිත මධානය ලෙස **18** යොදා ගත්විට අපගමන මධානය ලෙස **12.4** ලැබුණි. එම සංඛාහ වාහප්තියේ සැබෑ මධානය සොයන්න.

25. \mathbf{AC} යනු දී ඇති වෘත්තයේ විෂ්කම්භයකි. $\mathbf{D}\mathbf{\hat{A}C}=\mathbf{52}^0$ නම් $\mathbf{D}\mathbf{\hat{B}A}$ සොයන්න.

B කොටස

- (01) ගුවන් යානයකින් පැමිණි මගීන්ගෙන් $\frac{1}{8}$ ක් ඉන්දීය ජාතිකයන්ය. ඉතිරියෙන් $\frac{5}{14}$ ක් යුරෝපීයයන් ය. ඉතිරිය ශී ලාංකිකයන්ය.
 - (i) යුරෝපීයයන් ගණන මුළු පිරිසෙන් කුමන භාගයක් ද?
 - (ii) ශී ලාංකිකයන් ගණන මුළු පිරිසෙන් භාගයක් ලෙස දක්වන්න.
 - (iii) ශී ලාංකිකයන්ගෙන් $\frac{2}{3}$ ක් වූ කාන්තාවන් ගණන 90 කි. ගුවන් යානයේ පැමිණි මුළු මගීන් ගණන කීයද?
 - (iv) විදේශිකයෙකු මෙරටට පැමිණීමේ දී රුපියල් $8\ 000$ ක වීසා ගාස්තුවක් අය කරයි. මෙම ගුවන් යානයෙන් පැමිණි ඉන්දීය ජාතිකන්ගෙන් ලැබුණු මුළු වීසා මුදල සොයන්න.

- (02) පුදර්ශනයක් සඳහා පාසල් භූමිය වාණිජ, කලා, විදාහ අංශ වලට වෙන්කර ඇති ආකාරය ඉහත රූපයෙන් දක්වේ.
 - (i) අර්ධ වෘත්තාකාර භුමි කොටසේ වකු මායිමේ දිග සොයන්න.

(ii) පුදර්ශන භූමියේ පරිමිතිය සොයන්න.

	(iii)	විදහා අංශය සඳහා වෙන්කරන ලද භුමියේ වර්ගඵලය සොයන්න.
	(iv)	කලා අංශය සඳහා වෙන්කර ඇති භූමියේ වර්ගඵලය සොයන්න.
	(v)	කලා හා වාණිජ අංශ භූමි වෙන් කරමින් $28 { m m}^2$ ක පාරක්, මිනුම් දක්වමින් ඉහත රූපයේ ඇඳ දක්වන්න.
(03)		ත අලෙවි කරන වහාපාර ආයතනයක් 2019 වර්ෂයට කාර්තුවකට රුපියල් 6 000 ක වරිපනම් බදු ක් ගෙවයි. පළාත් පාලන ආයතනය වාර්ෂික තක්සේරු වටිනාකමින් 12% ක වරිපනම් බද්දක් අය
	(i)	වාහපාර ආයතනයේ වාර්ෂික තක්සේරු වටිනාකම සොයන්න.
	(ii)	2020 වර්ෂයට වතාපාර ආයතනයේ වාර්ෂික තක්සේරු වටිනාකම පෙර වර්ෂයට වඩා 10% කින් වැඩි විය. 2020 වර්ෂයේ වතාපාර ආයතනයේ තක්සේරු වටිනාකම සොයන්න.
	(iii)	2020 වර්ෂයට මුළු වාර්ෂික වරිපනම් බදු මුදලම පළමු කාර්තුවේ දී ගෙවූ නිසා බදු මුදලින් 15% ක වට්ටමක් ලබාදුනි නම් 2019 හා 2020 වර්ෂ දෙකේම වහාපාර ආයතනය ගෙවූ මුළු වරිපනම් බදු මුදල සොයන්න.

(04) රාධා, යමුතා, ගංඟා, කවීෂා හා චතුරි යන අය ඉතිරි කර ගත් රුපියල් 2 කාසි එකම කැටයකට දමා එක් එක් අය දුමූ කාසි ගණන දක්වීමට අඳින ලද වට පුස්තාරයක් පහත දක්වේ.

(i) යමුනා කැටයට දමූ කාසි ගණන මෙන් දෙගුණයක කාසි ගණනක් රාධා කැටයට දමුවේ නම් රාධාට අයත් කේනදික ඛණ්ඩයේ කේන්දු කෝණය සොයන්න.

(ii) චතුරි කැටයට දමූ කාසි ගණන 10 ක් නම් යමුනා කැටයට දමූ කාසි ගණන සොයන්න.

(iii) කැටයේ ඇති මුළු මුදල කීයද?

(iv) ඊළඟ දිනයේ දී යමුනා රුපියල් 16 ක් ද, රාධා රුපියල් 20 ක් ද වන සේ රුපියල් 2 කාසි කැටයට දමන ලදී. මෙදින එක් එක් අය කැටයට දමූ කාසි ගණන දක්වෙන වට පුස්තාරයේ චතුරිට අයත් කේන්දු කෝණය සොයන්න.

(05) අායතනයක සේවය කරන මුළු ගණන 50 කි. ඉන් 35 දෙනෙක් කාන්තාවන් ය. එක් දිනකදී කුඩ රැගෙන අා ගණන 25 ක් වූ අතර ඉන් 6 දෙනෙක් පිරිමි වූහ.

(i) B කුලකය නම් කරන්න.

(ii) ඉහත දී ඇති තොරතුරු වෙන් රූපයේ දක්වන්න.

(iii) A B කුලකය විස්තර කර ලියන්න.

(iv) කුඩ රැගෙන නො ආ පිරිමි ගණන කීයද?

(v) $n(A \ B')$ සොයන්න.

වයඹ පළාත් අධනපන දෙපාර්තමේන්තුව තෙවන වාර පරීකුෂණය 2020 ගණිතය II

10 ශුේණිය

කාලය පැය 03 යි. මිනිත්තු 10 යි.

නම/ විභාග අංකය:

උපදෙස් :

- ullet $oldsymbol{A}$ කොටසින් පුශ්න $oldsymbol{5}$ ක් ද තෝරාගෙන පුශ්න දහයකට පිළිතුරු සපයන්න.
- සෑම පුශ්නයකටම නිවැරදි පිළිතුරු සඳහා ලකුණු 10 බැගින් හිමිවේ.
- ullet අරය ${f r}$ හා සෘජූ උස ${f h}$ වූ සිලින්ඩරයක පරිමාව ${f v}={f r}^2{f h}$ වේ.

A කොටස

- (01) (a) සිරිසේන මහතා රුපියල් 1 400 000 ක වාර්ෂික ආදායමක් ලබා ඔහුගේ ආදායමෙන් පළමු රුපියල් 500 000 ක් ආදායම් බද්දෙන් නිදහස් ය. ඉතිරි මුදල සඳහා පළමු රුපියල් 500 000 ට 4% ක් ද ඉතිරි මුදල සඳහා 8% ක් ද බැගින් ආදායම් බදු ගෙවිය යුතුයි. ඔහු ගෙවිය යුතු මුළු බදු මුදල සොයන්න.
 - (b) 9% වාර්ෂික සුළු පොළියට රුපියල් $80\ 000$ ක් ණයට ගත් රහීම් අවුරුදු දෙකක දී පොළිය ද සමඟ ණය මුදල ගෙවයි. ඔහු ගෙවන ලද මුළු මුදල සොයන්න.
- (02) $y = 5 x^2$ ශිුතයේ පුස්තාරය ඇඳීමට සකස් කළ අසම්පූර්ණ අගය වගුවක් පහත දැක්වේ.

X	-3	-2	-1	0	1	2	3
У	-4	1	4		4	1	-4

- (i) x හි අගය ශූනා වන විට y හි අගය කීයද?
- (ii) x හා y අක්ෂ දිගේ කුඩා බෙදුම් 10 කින් ඒකක 1 ක් නිරූපණය වන සේ ඉහත ශුිතයේ පුස්තාරය අඳින්න.
- (iii) ශිතය ධනව අඩුවන x හි අගය පුාන්තරය ලියන්න.
- (iv) 5 $x^2 = 0$ සමීකරණයේ මූල සොයන්න.
- (v) ඉහත පුස්තාරය y අක්ෂය ඔස්සේ ඒකක 2 කින් පහළට විස්ථාපනය කළ විට ලැබෙන පුස්තාරයට අදාළ ශුිතයේ සමීකරණය ලියන්න.

(03) අරය 28 cm ක් වූ සිලින්ඩරාකාර බඳුනෙහි 10 cm ක් උසට ජලය පිරී ඇත. එම ජල පරිමාව ඝනකාභ හැඩති බඳුනට පුරවයි.

- (i) සිලින්ඩරාකාර බඳුනෙහි ඇති ජල පරිමාව සොයන්න.
- (ii) ඝනකාභ හැඩති බඳුනේ කොපමණ උසකට ජලය පිරේද?
- (iii) සනකාභ හැඩති බඳුනට තවත් ජලය 360ml ක් දමා මිනිත්තුවකට ලීටර් 5 ක සීසුතාවයකින් ජලය ගලායන නලයකින් එම ජලය ඉවත් කරයි නම් බඳුන සම්පූර්ණයෙන් හිස් කිරීමට ගත වන කාලය සොයන්න.
- (04) (a) පැල අලෙවි මධාාස්ථානයක අඹ පැලයක් රුපියල් 80 ක් ද, පේර පැලයක් රුපියල් 50 ක් ද මිල වේ. සමුදා එයින් අඹ පැළ සහ පේර පැල 20 ක් මිලදී ගත්තාය. ඇයට ඒ සඳහා රුපියල් 1360 ක් වැය විය. ඇය මිලදී ගත් අඹ පැල ගණන x ද, පේර පැල ගණන y ද ලෙස ගෙන සමගාමී සමීකරණ දෙකක් ගොඩ නඟා ඒවා විසඳා අඹ පැල සහ පේර පැල ගණන වෙන වෙනම සොයන්න.
 - (b) 2x 3 < 7 අසමානතාව විසඳා x ට ගත හැකි විශාලම අගය සොයන්න.
- (05) ABC තිකෝණාකාර ආස්තරයෙහි BC හි දිග x cm වේ. AB හි දිග BC හි දිගට වඩා 2cm ක් අඩුය.

- (i) AB හි දිග x ඇසුරින් ලියන්න.
- (ii) ABC ආස්තරයේ වර්ගඵලය $24 {
 m cm}^2$ නම් x ඇසුරෙන් වර්ගජ සමීකරණයක් ගොඩනඟන්න.
- (iii) එම සමීකරණය විසඳා BC පාදයේ දිග සොයන්න.
- (iv) ඒ ඇසුරින් AC පාදයේ දිග සොයන්න.
- (06) ළමා ඇඳුම් අලෙවිසැලක මාසයක් තුළ අලෙවි වූ ගවුම් ගණන පිළිබඳ තොරතුරු පහත වගුවේ දක්වා ඇත.

ගවුම් ගණන	4 - 8	9 - 13	14 - 18	19 - 23	24 - 28	29 - 33
දින ගණන	2	4	10	6	4	4

- (i) මෙම සංඛ්‍යාත ව්‍යාප්තියේ මාත පන්තිය කුමක් ද?
- (ii) දිනක දී අලෙවි වූ මධානා ගවුම් ගණන සොයන්න.
- (iii) අලෙවි කළ සෑම ගවුමකින් ම රු. 180 ක ලාභයක් ලැබුවේ නම් මාසය තුළ දී ලැබේ යයි අපේක්ෂිත අවම ලාභය රු. $91\ 800$ බව පෙන්වන්න.

(07) ෂරීතා ඇයගේ ගෙවත්තෙහි ඇන්තූරියම් මල් පෝච්චි තබා තිබුණේ රූපයේ දක්වෙන ලෙස හරි මැදින් එක් පෝච්චියක් ද ඉන්පසු පළමු රවුමේ පෝච්චි 4 ක් ද, දෙවන රවුමේ පෝච්චි 7 ක් ද ලෙස වෘත්තාකාර රටාවකට ය.

- (i) මෙම රටාවට අනුව තුන්වන රවුමේ ඇති පෝච්චි ගණන කීයද?
- (ii) මෙම රටාවට තබා ඇති පෝච්චි ගණන දක්වෙන සංඛන කුමන ශ්‍රේඪයක පිහිටයි ද?
- (iii) රවුම් 10 ක් වන ලෙස පෝච්චි තබා තිබුණේ නම් 10 වන රවුමේ ඇති පෝච්චි ගණන සූතු භාවිතයෙන් සොයන්න.
- (v) මෙම රටාවේ ඇය තබා ඇති මුළු පෝච්චි ගණන සොයන්න.

- (08) cm/mm පරිමාණයක් සහ කවකටුව භාවිතයෙන් පහත නිර්මාණය කරන්න.
 - (i) AB = 7cm, $BAC = 60^{\circ}$, AC = 5cm වන ABC තිුකෝණය නිර්මාණය කරන්න.
 - (ii) C හරහා AB ට සමාන්තර රේඛාවක් නිර්මාණය කරන්න.
 - (iii) ${
 m CAB}$ හි සමච්ඡේදකය නිර්මාණය කර එය ඉහත සමාන්තර රේඛාව හමුවන ලක්ෂාය ${
 m D}$ ලෙස නම් කරන්න.
 - (iv) D කේන්දුය ලෙස ද, DB අරය ලෙස ද ගෙන වෘත්තය නිර්මාණය කර එහි අරය මැන ලියන්න.
- (09) ABC තිකෝණයෙහි BAC හි විශාලත්වය 40° කි. ABC හා ACB හි සමච්ඡේදක X හි දී හමු වේ. BXCY රොම්බසයකි. හේතු දක්වමින් BYC හි අගය සොයන්න.

(10) AB වෘත්තයේ විෂ්කම්භයකි. PB = BQ වන සේ P හා Q ලක්ෂා වෘත්තය මත පිහිටා ඇත. AB සහ PQ, X හිදී ඡේදනය වී ඇත.

(iii) AQ යා කර AP = AQ බව පෙන්වන්න.

(11) AB සිරස් ගොඩනැගිල්ලක පාමුල (A) සිට 12m ක් දුරින් පිහිටි C නම් ස්ථානයේ සිටින පුදීප් ට ගොඩනැගිල්ලේ මුදුන 40° ක ආරෝහණ කෝණයකින් පෙනේ. ඉහත තොරතුරු දළ සටහනක දක්වා 1:200 පරිමාණයට එහි පරිමාණ රූපයක් ඇඳ ගොඩනැගිල්ලේ උස සොයන්න. (පුදීප්ගේ උස නොසලකන්න.)

(12) වසා ඇති කුඩුවක හා පැටවුන් 5 දෙනෙක් සිටිති. ඔවුන්ගෙන් 3 දෙනෙක් සුදු පාට වන අතර ඉතිරි දෙදෙනො ගුරු පාටය. මලිඳු මෙම කුඩුව විවෘත කරන විට එක් හා පැටවකු පිටතට පැමිණියේය. මලිඳු එම පැටවා අල්ලා කුඩුවට දමා කුඩුව වැසුවේය. ඉන්පසු රජිත පැමිණ කූඩුව අරින විට නැවත එක් පැටවකු පිටතට පැමිණියේ ය.

(i) ඉහත සිදුවීමට අදාල නියැදි අවකාශය කොටු දැලක දක්වන්න.

(ii) වාර දෙකේදීම සුදුපාට හා පැටවකු පිටතට පැමිණීමේ සම්භාවිතාව සොයන්න.

(iii) පළමුව ගුරුපාට පැටවකු ද දෙවන වතාවේ සුදුපාට පැටවකු ද පිටතට පැමිණීමේ සිද්ධිය කොටු දල මත වට කර දක්වන්න.

(iv) මලිඳු කුඩුව විවෘත කරන විට හා පැටියකු පිටතට පැමිණීම දක්වෙන අසම්පූර්ණ රුක් සටහන පහත දක්වේ. එහි හිස්තැන් සම්පූර්ණ කරන්න.

(v) එය පිටපත් කරගෙන රජිත කුඩුව විවෘත කරන විට හා පැටවකු පිටතට පැමිණීම තෙක් රුක් සටහන දීර්ඝකර එක් වතාවකදීවත් ගුරුපාට හා පැටියකු පිටතට පැමිණීමේ සම්භාවිතාව සොයන්න.

සියලුම හිමිකම් ඇවිරියි. / All Rights Reserved, ucation වනම් පළාත් අධ්යාපන වයම් පළාත් අධ්යාපන දෙවර්ගමේ වේ විද්යාප් අත්යාපත් අවස්ථා artiment of Provided කි පළාත් අව වයම් පළාත් අධ්යාපන දෙවර්ගමේ වේ විද්යාප් අත්යාපත් අධ්යාපත් වේ විද්යාපත් අධ්යාපත් අධ	p දෙපාර්තමේන්තුව Department of Provincial Education වයඹ පළාත් අධ්නපන දෙපාර්තමේන්තුව	
විෂයය Subject	විභාග අංකය Index No.	
විභාග ශාලාවෙන් පිටතට ගෙනයාම තහනම. Not to be removed from the Exa	mination Hall.	

I පතුය - A කොටස

01. 4.5 $4.4 \times 4.4 = 19.36$ 01. 02 02. $5 \times 3 \times 4$ 01 $0.8 \times 5 \times 60$ 01. 02 03. $\frac{25-11}{2} = 7 \text{cm}$ 02. 04 04. $4x^2 + 12x + 9$ 05. $x = 40^0$ $2x + 40^0 + 60^0 = 180^0$ 01. 06 06. $A = \{1, 3, 5, 7, 9\}$ 07. $8 + x = 10$ $x = 2$ 08. $\frac{40}{100} \times 450000$ 01. 02 08. $\frac{40}{100} \times 450000$ 01. 02 09. $8 \times 5 \times $	$\begin{array}{c} 4.4 \times 4.4 = 19.36 & 01 \\ 02. 5 \times 3 \times 4 & 01 \\ \hline 03. \frac{25 \cdot 11}{2} = 7 \text{cm} & 01 \\ 04. 4x^2 + 12x + 9 & 05 \\ 2x + 40^0 + 60^0 = 180^0 & 01 \\ 06. A = \{1, 3, 5, 7, 9\} & 0 \\ 07. 8 + x = 10 & 01 \\ x = 2 & 01 \\ 08. \frac{40}{100} \times 450\ 000 & 01 \\ \hline 09. \xi \varpi = 44 \text{cm} & 01 \\ \varpi \varpi \varpi = 20 \text{cm} & 01 \\ 10. x = 125^0 & 01 \\ 11. \frac{1}{2} + \frac{1}{3} & 01 \\ \frac{5}{6} & 01 \\ 12. a = \frac{v^2 \cdot u^2}{2s} & 01 \\ 13. 18 \times 20 & 01 \\ \end{array}$	
02. $5 \times 3 \times 4$ 01 \odot . \odot . \odot . 01 03. $\frac{25-11}{2} = 7 \text{cm}$ 02 04. $4x^2 + 12x + 9$ 02 05. $x = 40^{\circ}$ 02 2x + 40^{\circ} + 60^{\circ} = 180^{\circ} 01 06. $A = \{1, 3, 5, 7, 9\}$ 02 07. $8 + x = 10$ 01 $x = 2$ 01 02 08. $\frac{40}{100} \times 450000$ 01 09. $\frac{1}{3} \times 20$ 01 02. $\frac{1}{2} \times 20$ 01 10. $x = 125^{\circ}$ 02 11. $\frac{1}{2} \times 10^{\circ}$ 01 12. $a = \frac{v^2 - u^2}{2s}$ 02 13. 18×20 01 360cm³ 01 02 14. $PQR \text{ so } XYZ$ 01 $\frac{10 - 1}{3 - 0} = 3$ 01 16. (i) OC 01 (ii) ADC 01 02 17. $(x + 5)(x - 4)$ 02	02. $5 \times 3 \times 4$ 01	02
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	ⓐ. $ξ ∞ 60$ 03. $\frac{25-11}{2} = 7 \text{cm}$ 04. $4x^2 + 12x + 9$ 05. $x = 40^{\circ}$ $2x + 40^{\circ} + 60^{\circ} = 180^{\circ}$ 07. $8 + x = 10$ $x = 2$ 08. $\frac{40}{100} \times 450000$ 09. $ξ ∞ = 44 \text{cm}$ $∞ ⊕ ⊕ = 20 \text{cm}$ 10. $x = 125^{\circ}$ $x = 90 + 35$ 11. $\frac{1}{2} + \frac{1}{3}$ 01 01 01 01 01 01 01 01	
03. $\frac{25-11}{2} = 7 \text{cm}$ 02 04. $4x^2 + 12x + 9$ 02 05. $x = 40^0$ 02 $2x + 40^0 + 60^0 = 180^0$ 01 06. $A = \{1, 3, 5, 7, 9\}$ 02 07. $8 + x = 10$ 01 $x = 2$ 01 02 08. $\frac{40}{100} \times 450000$ 01 02 09. $\frac{2}{5} = 44 \text{cm}$ 01 02 09. $\frac{2}{5} = 20 \text{cm}$ 01 02 10. $x = 125^0$ 02 02 $x = 90 + 35$ 01 01 02 11. $\frac{1}{2} + \frac{1}{3}$ 01 02 12. $a = \frac{v^2 - u^2}{2s}$ 02 02 13. 18×20 01 02 14. $PQR \bowtie XYZ$ 01 02 15. $y = 3x + 1$ 02 $\frac{10 - 1}{3 - 0} = 3$ 01 02 16. (i) OC 01 02 17. $(x + 5)(x - 4)$ 02	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
04. $4x^2 + 12x + 9$ 02 05. $x = 40^{\circ}$ 02 2x + 40^{\circ} + 60^{\circ} = 180^{\circ} 01 06. $A = \{1, 3, 5, 7, 9\}$ 02 07. $8 + x = 10$ 01 $x = 2$ 01 02 08. $\frac{40}{100}$ x 450 000 01 02 09. $\xi = 44$ cm 01 02 10. $x = 125^{\circ}$ 02 02 $x = 90 + 35$ 01 01 11. $\frac{1}{2} + \frac{1}{3}$ 01 02 12. $a = \frac{v^2 - u^2}{2s}$ 02 13. 18×20 01 03 360cm³ 01 02 14. $PQR \approx XYZ$ 01 02 15. $y = 3x + 1$ 02 02 16. (i) OC 01 02 17. $(x + 5)(x - 4)$ 02	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$)2
05. $x = 40^{\circ}$	05. $x = 40^{\circ}$ 01 $2x + 40^{\circ} + 60^{\circ} = 180^{\circ}$ 01 06. $A = \{1, 3, 5, 7, 9\}$ 0 07. $8 + x = 10$ 01 $x = 2$ 01 08. $\frac{40}{100}$ x 450 000 01 09. $\frac{2}{3}$ 0 09. $\frac{2}{3}$ 0 10. $x = 125^{\circ}$ 0 11. $\frac{1}{2} + \frac{1}{3}$ 01 12. $\frac{5}{6}$ 01 13. 18×20 01	02
$2x + 40^{\circ} + 60^{\circ} = 180^{\circ}$ 01 06. $A = \{1, 3, 5, 7, 9\}$ 02 07. $8 + x = 10$ 01 02 08. $\frac{40}{100} \times 450000$ 01 $\sigma_{7} \cdot 180000$ 01 02 09. $\mathfrak{F} = 44 \text{cm}$ 01 $\mathfrak{D} = 90 + 35$ 01 11. $\frac{1}{2} + \frac{1}{3}$ 01 $\frac{5}{6}$ 01 02 12. $a = \frac{v^{2} - u^{2}}{2s}$ 02 13. 18×20 01 360cm ³ 01 02 14. $PQR \approx XYZ$ 01 $\mathfrak{D} = 3x + 1$ 02 $\mathfrak{D} = 3x + 1$ 02 $\mathfrak{D} = 3x + 1$ 02 16. (i) OC 01 17. $(x + 5)(x - 4)$ 02	$2x + 40^{0} + 60^{0} = 180^{0}$ $06. A = \{1, 3, 5, 7, 9\}$ $07. 8 + x = 10$ $x = 2$ $08. \frac{40}{100} \times 45000$ $09. \xi = 44cm$ $e = 20cm$ $10. x = 125^{0}$ $x = 90 + 35$ $11. \frac{1}{2} + \frac{1}{3}$ 01 $12. a = \frac{v^{2} - u^{2}}{2s}$ $13. 18 \times 20$ 01)2
06. $A = \{1, 3, 5, 7, 9\}$ 02 07. $8 + x = 10$ 01 $x = 2$ 01 08. $\frac{40}{100}$ x 450 000 01 0 0 0 0 0 0 0 0 0 0	06. $A = \{1, 3, 5, 7, 9\}$ 0 07. $8 + x = 10$ 01 08. $\frac{40}{100}$ x 450 000 01 07. $180 000$ 01 09. $\xi \varnothing = 44 \text{cm}$ 01 $\varpi \in \mathcal{C} = 20 \text{cm}$ 01 10. $x = 125^{\circ}$ 01 $x = 90 + 35$ 01 11. $\frac{1}{2} + \frac{1}{3}$ 01 12. $a = \frac{v^2 - u^2}{2s}$ 01 13. 18×20 01)2
07. $8 + x = 10$ 01 02 08. $\frac{40}{100}$ x 450 000 01 02 09. $\xi \omega = 44 \text{cm}$ 01 02 10. $x = 125^{\circ}$ 02 $x = 90 + 35$ 01 01 11. $\frac{1}{2}$ + $\frac{1}{3}$ 01 $\frac{5}{6}$ 01 02 12. $a = \frac{v^2 - u^2}{2s}$ 02 13. 18×20 01 360 cm³ 01 02 14. PQR so XYZ 01 sm³.sm³.sps. 01 02 15. $y = 3x + 1$ 02 $\frac{10 - 1}{3 - 0} = 3$ 01 16. (i) OC 01 (ii) ADC 01 02 17. $(x + 5)(x - 4)$ 02	07. $8 + x = 10$ 01 $x = 2$ 01 08. $\frac{40}{100}$ x 450 000 01 09. $\xi \omega = 44$ cm 01 09. $\xi \omega = 20$ cm 01 10. $x = 125^{\circ}$ 01 11. $\frac{1}{2} + \frac{1}{3}$ 01 12. $a = \frac{v^2 - u^2}{2s}$ 01 13. 18×20 01	
$x = 2$ 01 02 08. $\frac{40}{100} \times 450000$ 01 02 09. $\xi \omega = 44 \text{cm}$ 01 02 10. $x = 125^{\circ}$ 02 02 11. $\frac{1}{2} + \frac{1}{3}$ 01 01 12. $a = \frac{v^2 - u^2}{2s}$ 02 13. 18×20 01 02 14. $PQR \bowtie XYZ$ 01 02 15. $y = 3x + 1$ 02 02 16. (i) OC 01 02 17. $(x + 5)(x - 4)$ 02	$x = 2$ 01 $08. \frac{40}{100} \times 450000$ 01 $09. \xi = 44 \text{cm}$ 01 01 01 $09. \chi = 20 \text{cm}$ $10. \chi = 125^{\circ}$ $\chi = 90 + 35$ $11. \frac{1}{2} + \frac{1}{3}$ 01 $12. \alpha = \frac{v^{2} - u^{2}}{2s}$ $13. 18 \times 20$ 01)2
08. $\frac{40}{100}$ x 450 000 01	$08. \frac{40}{100} \times 450\ 000$ 01 $02. 180\ 000$ 01 $09. \ \xi = 44 \text{cm}$ 01 01 01 $10. \ x = 125^{\circ}$ $x = 90 + 35$ 01 $11. \frac{1}{2} + \frac{1}{3}$ 01 $12. \ a = \frac{v^2 - u^2}{2s}$ $13. \ 18 \times 20$ 01	
σ_7 . 180 000 01 02 09. $\sigma_8 = 44 \text{cm}$ 01 02 10. $\sigma_8 = 20 \text{cm}$ 01 02 11. $\sigma_8 = 125^0$ 01 01 02 11. $\sigma_8 = 125^0$ 01 01 02 12. $\sigma_8 = \frac{v^2 - u^2}{2s}$ 02 13. 18 x 20 01 01 02 14. PQR හා XYZ 01 01 02 15. $\sigma_8 = 3x + 1$ 02 $\sigma_8 = 3x + 1$ 02 16. (i) OC 01 02 17. (x + 5) (x - 4) 02		02
99. දිග = 44cm	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
මෙල = 20cm 01 02 10. $x = 125^{\circ}$ 01 11. $\frac{1}{2} + \frac{1}{3}$ 01 12. $a = \frac{v^2 - u^2}{2s}$ 02 13. 18×20 01 14. PQR හා XYZ 01 $= 20$ $= 3$ 01 15. $y = 3x + 1$ 02 16. (i) OC 01 $= 3$ 01 16. (i) OC 01 $= 3$ 01 17. $= 3$ 02	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02
මෙල = 20cm 01 02 10. $x = 125^{\circ}$ 01 11. $\frac{1}{2} + \frac{1}{3}$ 01 12. $a = \frac{v^2 - u^2}{2s}$ 02 13. 18×20 01 14. PQR හා XYZ 01 $= 20$ $= 3$ 01 15. $y = 3x + 1$ 02 16. (i) OC 01 $= 3$ 01 16. (i) OC 01 $= 3$ 01 17. $= 3$ 02	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$x = 90 + 35$ 01 11. $\frac{1}{2} + \frac{1}{3}$ 01 $\frac{5}{6}$ 01 02 12. $a = \frac{v^2 - u^2}{2s}$ 02 13. 18×20 01 01 02 14. $PQR \text{ so } XYZ$ 01 02 15. $y = 3x + 1$ 02 01 02 16. (i) OC 01 02 16. (i) OC 01 02 17. $(x + 5)(x - 4)$ 02	$x = 90 + 35$ $11. \frac{1}{2} + \frac{1}{3}$ 01 01 01 01 0 $12. a = \frac{v^2 - u^2}{2s}$ $13. 18 \times 20$ 01)2
12. $a = \frac{v^2 - u^2}{2s}$ 02 13. 18×20 01 02 14. PQR හා XYZ 01 01 02 15. $y = 3x + 1$ 02 $\frac{10 - 1}{3 - 0} = 3$ 01 16. (i) OC 01 02 17. $(x + 5)(x - 4)$ 02	$ \begin{array}{c cccccccccccccccccccccccccccccccc$)2
12. $a = \frac{v^2 - u^2}{2s}$ 02 13. 18×20 01 02 14. PQR හා XYZ 01 01 02 15. $y = 3x + 1$ 02 $\frac{10 - 1}{3 - 0} = 3$ 01 16. (i) OC 01 02 17. $(x + 5)(x - 4)$ 02	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	
12. $a = \frac{v^2 - u^2}{2s}$ 02 13. 18×20 01 02 14. PQR හා XYZ 01 01 02 15. $y = 3x + 1$ 02 $\frac{10 - 1}{3 - 0} = 3$ 01 16. (i) OC 01 02 17. $(x + 5)(x - 4)$ 02	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	
12. $a = \frac{v^2 - u^2}{2s}$ 02 13. 18×20 01 02 14. PQR හා XYZ 01 01 02 15. $y = 3x + 1$ 02 $\frac{10 - 1}{3 - 0} = 3$ 01 16. (i) OC 01 02 17. $(x + 5)(x - 4)$ 02	$ \begin{array}{c cccccccccccccccccccccccccccccccc$)2
360cm ³ 01 02 14. PQR හා XYZ 01 01 02 15. $y = 3x + 1$ 02 16. (i) OC 01 01 (ii) ADC 01 02 17. $(x + 5)(x - 4)$ 02		02
14. PQR හා XYZ 01 02 15. $y = 3x + 1$ 02 16. (i) OC 01 02 17. $(x + 5)(x - 4)$ 02	360cm^3 01 0	
ෙනර්.මකර්.පා. $01 02$ 15. $y = 3x + 1$ 02 $\frac{10 - 1}{3 - 0} = 3$ 01 16. (i) OC 01 01 02 17. $(x + 5) (x - 4)$ 02]	02
15. $y = 3x + 1$ 02 $\frac{10 - 1}{3 - 0} = 3$ 01 16. (i) OC 01 (ii) ADC 01 02 17. $(x + 5)(x - 4)$ 02	14. PQR හා XYZ 01	
$\frac{10-1}{3-0} = 3$ 01 16. (i) OC (ii) ADC 01 02 17. $(x+5)(x-4)$ 02	කෝ.කෝ.පා.	02
16. (i) OC 01 (ii) ADC 01 02 17. (x + 5) (x - 4) 02	15. $y = 3x + 1$	02
(ii) \hat{ADC} 01 02 17. $(x + 5)(x - 4)$ 02	$\frac{10-1}{3-0} = 3$	
17. $(x+5)(x-4)$ 02		
	(ii) ADC 01 0	02
18. (i) AB 上 OX)2
(ii) 10cm 01 02	(ii) 10cm 01 0)2

w 06	9 0		
19.	නිවැරදි P හා Q ලක්ෂා වලට		02
20.	lg 2 = 0.3010 මෙන්		02
	$\log_{10} 2 = 0.3010$		
21.	$A\hat{C}B = 40^{\circ}$		02
	$A\hat{O}B = 80^{\circ}$	01	
22.	පැය 2 <u>1</u>		02
	150	01	
	60	01	
23.	$30x^2y^2$		02
24.		0.1	02
25	18 + 12.4	01	02
25.	38°		02 50
			30
	I පනුය - B කොටස		
	, ,		
01.	(i) $\left(1 - \frac{1}{8}\right) \times \frac{5}{14}$	01	
	<u>5</u> 16	01	02
	(ii) $1 - \left(\frac{1}{8} + \frac{5}{16}\right)$	01	
	$1 - \frac{7}{16}$	01	
	9 16	01	03
	(iii) $\frac{9}{16}$ $2 = \frac{3}{8}$	01	
	$90 \times \frac{8}{3}$	01	
	240	01	03
	(iv) 240 න් $\frac{1}{8} = 30$	01	
	$30 \times 8000 = 67. 240 000$	01	02
			10
02.	(i) $\frac{22}{7} \times 7$	01	
	22m	01	02
	(ii) 139m		01

	1 22						
	(iii) $\frac{1}{8} \times \frac{22}{7} \times 21 \times 21$	01		05.	(i) කුඩ රැගෙන ආ	01	
	173.25m ²	01	02		(ii) 16	01	
	(iv) $\frac{1}{2}$ x 14 (56 + 40)	0.1			$A \rightarrow \begin{pmatrix} 16 & 19 & 6 \end{pmatrix} \leftarrow \begin{pmatrix} 19 & 6 \\ B & 6 \end{pmatrix}$	01	
	-	01			A 10 19 0 B 6	01 01	04
	672m ²	01	02		, ,	01	04
	498.75m ²	01	03		(iii) {කුඩ රැගෙන ආ කාන්තාවන්}		01
	(v) සෘජුකෝණාසුය ඇඳීමට	01			(iv) 7		02
	පළල 2m දක්වීමට	01	02		(v) 16		02
			10				10
03.	(i) 6000 x 4 = 57. 24 000	01			II පනුය - A කොටස		
	24 000 x 100 12	01			11 0 9 11 0 11 0 11 0 11		
	12 σ _τ . 200 000	01	03	01.	(a) 1 400 000 - 500 000		
		UI	03		ძ ₇ . 900 000	01	
	(ii) $\frac{110}{100}$ x 200 000	01			$\frac{4}{100}$ x 500 000	01	
	ძ. 220 000	01	02		ರ ₇ . 20 000	01	
	12				900 000 - 500 000		
	(iii) $\frac{12}{100}$ x 220 000	01			රු. 400 000	01	
	රු. 26 400	01			8 x 400 000		
	$\frac{85}{100}$ x 26 400	01			රු. 32 000	01	
	ძլ. 22 400	01			20 000 + 32 000		
	24 000 + 22 400 = $\sigma_{\bar{l}}$. 46 400	01	05		o₁. 52 000	01	06
			10		(b) $\frac{9}{100}$ x 80 000 x 2	02	
	()	0.4			ರ ₇ . 14 400	01	
04.		01	0.2		80 000 + 14 400		
	රාධාට 60⁰	01	02		රු. 94 400	01	04
	(ii) $\frac{30 \times 10}{50}$	01					10
	6	01	02	02.	(i) 5		01
	360 x 10	0.1			(ii) නිවැරදිව කුමාංකනය කරන ලද අකෂ	01	
	$(iii) \frac{300 \times 10}{50}$	01			නිවැරදි ලක්ෂා 6 ක්වත් ලකුණු කිරීම	01	
	72	01			සුමට වකුයට	01	03
	72 x 2 = σ _ζ . 144	01	03		(iii) 0 ත් 2.2 ත් අතර		02
	(iv) $8 + 10 + 72 = 90$	01			(iv) -2.2 හා 2.2		02
	$\frac{360 \times 10}{90}$	01			$(v) y = 3 - x^2$		02
	90 40°	01	03				10
		J.	$\frac{3}{10}$				
			(0)				

03.	(i)	$\frac{22}{7}$ x 28 x 28 x 10	01	
		24 640cm ³	01	02
	(ii)	$\frac{22}{7}$ x 28 x 28 x 10 = 35 x 32 x h	02	
		$h = \frac{22 \times 28 \times 28 \times 10 \times 7}{35 \times 32}$	01	
		h = 22cm	01	04
	(iii)	25 000 cm ³	01	
		25 <i>l</i>	02	
		$\frac{25}{5}$ = මිනින්තු 5	01	04
				10
04.	(a)	x + y = 20	01	
		80x + 50y = 1360	01	
		50x + 50y = 1000	01	
		30x = 360	01	
		x = 12	01	
		y = 8	01	
		අඹ පැළ ගණන = 12	01	07
		පේර පැළ ගණන = 8 J	01	
	(b)	2x < 10	01	
		<i>x</i> < 5	01	
		4	01	03
				10
05.		<i>x</i> - 2		01
	(ii)	$\frac{1}{2} x (x - 2) = 24$		02
		$x^2 - 2x - 48 = 0$	01	
		(x - 8)(x + 6) = 0	01	
		x=8 මහර $x=-6$	01	
		BC = 8cm	01	04
	(iv)	AB = 6cm	01	
		$AC^2 = 8^2 + 6^2$	01	
		AC = 10cm	01	03
				10

0.6	() 14 10		0.1
06.		01	01
	(ii) 6, 11, 16, 21, 26, 31	01	
	12, 44, 160, 126, 104, 124 $\sum fx = 570$	01	
		01	
	570 30	01	0.5
	19	01	05
	(iii) $4 \times 2 + 9 \times 4 + 14 \times 10 + 19 \times 6$		
	+ 24 x 4 + 29 x 4	01	
	8 + 36 + 140 + 114 + 96 + 116	01	
	510	01	
	510 x 180	01	04
	ძ _ι . 91 800		
			10
	II පතුය - B කොටස		
07.	(i) 10		01
	(ii) සමාන්තර ශේඪියක		01
	$(iii) T_n = a + (n - 1) d$	01	
	$T_{10} = 4 + 9 \times 3$	01	
	= 31	01	03
	(iv) $S_n = \frac{n}{2} (a+l)$	01	
	$=\frac{10}{2}(4+31)$	01	
	$= 5 \times 35$	01	
	= 175	01	
	175 + 1 = 176	01	05
			10
08.	(i) AB මහ් AC ට	01	
00.	(i) AB 883 AC 8 60° නිර්මාණයට	01	
			02
	නිර්මාණයට	01	03
	(ii) නිවැරදි නිර්මාණයට		02
	(iii) කෝණ සමච්ඡේදකයට	02	
	DΘ	01	03
	(iv) වෘත්තයට	01	
	4.3 <u>+</u> 0.1	01	02
			10
			F

	I						
09.		01		12.	. (i)		02
	$X\hat{B}C = X\hat{C}B$	01					
	$2 \times X \hat{B} C = 2 \times X \hat{C} B$	01			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$\hat{ABC} = \hat{ACB}$	01			변 ₃ + x x x x x 원 ₂ + x x x x x		
	$ABC + ACB + 40^{\circ} = 180^{\circ}$	01			සු † × × × × × × ± සු සු සු සු සු හැ ගැ		
	$\hat{ABC} = \hat{ACB} = 70^{\circ}$	01			E1 E2 E3 -61 -62		
	$\overrightarrow{XBC} = \overrightarrow{XCB} = 35^{\circ}$	01			$\left \begin{array}{cc} (ii) & \frac{9}{25} \end{array} \right $		02
	$BXC = 180^{\circ} - 70^{\circ}$	01			(iii) පිළිතුරට		01
	$\hat{BXC} = \hat{BYC}$	01					
	$B\hat{Y}C = 110^{0}$	01			$(iv) \frac{2}{5}$		01
			10		රජිත (v) මලිඳු 3 ජි		
10.	(i) $\stackrel{\wedge}{PQB} = \stackrel{\wedge}{PAB}$ (එකම ඛණ්ඩයේ කෝණ)	01			$\frac{3}{5}$		
10.	$\hat{PQB} = \hat{QPB}$ (PQB සමද්විපාද නිසා)	01			5 3.	02	
	$\hat{QPB} = \hat{PAB}$ (පුතාකම)		02		3 5 E. B.		
		Λ1			$\frac{2}{5}$ $\sqrt{9}$.		
	(ii) $A\hat{P}B = 90^{\circ}$ (අර්ධ වෘත්තයේ කෝණය) $A\hat{P}X + X\hat{P}B = 90^{\circ}$	01			$\frac{2}{5}$ \text{ \text{ 2}}.		
	$APX + XPB = 90$ $APX + PAX = 90^{\circ}$	01			$\frac{16}{25}$	02	04
	$APX + PAX = 90$ $AXP = 90^{\circ}$	01			23		
		01	0.4				10
	AB 上 PQ		04				
	(iii) APX හා AQX සැලකීමෙන් PX = XQ (AB 上 PQ නිසා)	01					
	$\mathbf{A}\mathbf{X} = \mathbf{A}\mathbf{X}$ (මපාදු පාදය)	01					
	$A\hat{X}P = A\hat{X}Q = 90^{\circ}$	01					
	APX AQX (පා.කෝ.පා.) 01					
	AP = AQ		04				
			10				
11	දළ සටහනට	02					
11.	AC = 6cm ଫ୍ରଞ୍ଚିତ୍ର	02					
	40°	01					
	AB 上 AC क्रहें	01					
	තිුකෝණයට	01					
	AC පරිමාණ දිගට	01					
	5.2cm ± 0.1						
	5.2 x 2	01					
	10.4m + 0.2	01					
			10				