Arquitetura de Redes Avançadas 2015 Project

Professor:

Paulo Salvador <u>salvador@ua.pt;</u>

- A detailed report, with all engineering options, relevant configurations and deployment tests, must be submitted until the deadline in PDF format via elearning.ua.pt.
- All engineering choices must have a valid justification.

Scenario description:

- Assume that you are the engineer responsible for the network of ISP X with AS 9:345 (depicted above).
- AS9:345 has two peering relations: (i) with ISP L (AS34419) via Porto and Lisboa, and (ii) with ISP S (AS8657) via Lisboa. ISP X is a non-transit AS.
- ISP X has two corporate clients (A and B), to which provides IP interconnectivity and a VoIP service with PSTN interconnectivity.
- Corporate client A has two branches, one in Aveiro and another in Faro, connection is provided using Router EmpA1 and Router EmpA2, respectively.
- Corporate client B, has a single location in Aveiro, however corporate client B is a private BGP autonomous system.
- ISP S provides PSTN interconnection through SIP Proxy 2.
- ISP L provides interconnection to Internet Core.

• ISPs and Corporate clients have the following IPv4 and IPv6 IP networks:

1		
ISP X - core and point-to-point links	192.172.100.0/25 10.1.0.0/16	2001:192:100::/48
ISP X - netX1	192.172.100.128/25	2001:192:101::/48
Corporate client A	80.172.100.128/25 10.1.0.0/16	2001:80:100::/48
Corporate client B	81.84.100.0/24 10.1.0.0/16	2001:81:100:/48
ISP L - netL1	82.84.100.0/24	2001:82:100::/48
ISP L - netL2	82.84.200.0/24	2001:82:200::/48
ISP S - netS1	200.1.100.0/24	2001:200:100::/48
BGP peering links	4.20.20.0/26	2001:420::/60

Deployment requirements:

Basic mechanisms and BGP (10 points)

- Provide full IPv4 and IPv6 between ISP X clients and Internet Core, according to scenario constrains (above) and ISP networking good practices.
- Implement the following routing constrains:
 - IP traffic towards Internet should be <u>preferably</u> routed via ISP S (Lisboa).
 - IP traffic towards netL1 and netL2, should be <u>preferably</u> routed via Porto from Aveiro, and via Lisboa from Faro.
 - IP traffic for remote SIP proxy 2 (to network netS1) should be routed <u>only</u> via Lisboa using the direct peering link to ISP S.

MPLS (7 points)

- Deploy (within ISP X) MPLS tunnels for SIP traffic (where relevant) with a 1Mbps reservation each.
- Deploy a MPLS VPN for Corporate client A (interconnecting Aveiro and Faro branches).

VoIP - SIP (3 points)

■ Deploy a VoIP - SIP service for all ISP X corporate clients. The service provides VoIP connectivity (through ISP proxy 1) between internal clients and forwards all other calls (including PSTN numbers) to ISP S SIP proxy. The assign (PSTN compatible) telephone numbers are: for Corporate client A 2341000xx and 2891001xx, and for Corporate client B 2341002xx. Note: Only SIP proxy 1 configurations/behavior will be evaluated.

Extra:

- Deploy a CDN routing service (Conditional DNS) for corporate clients. (1 point)
- Deploy a security service to Corporate client B (Firewall between router Aveiro and router EmpB). (1 point)
- Any other relevant ISP service...

Demonstration notes:

- During demonstration, if necessary due to lack of computational resources, some routers may be turned off (where/when irrelevant to mechanisms being shown).
- NAT/PAT is not required.
- To test SIP deployment just make SIP proxy 2 "answer" all calls forwarded towards him as a simple client.