Totes les respostes de l'examen han de ser raonades

- 1. (a) Doneu el coeficient del monomi $x^{10}y^3z^4$ a $(2x + xy + zx)^{10}$.
 - (b) Calculeu el nombre de particions del conjunt [2008] en 2007 parts.
 - (c) Doneu la funció generadora ordinària de la successió $(a_n)_{n\geq 0}$ definida per:

$$a_n = \begin{cases} (-2)^{n/3}, & \text{si } n \equiv 0 \pmod{3}; \\ 0, & \text{si } n \equiv 1 \pmod{3}; \\ 1, & \text{si } n \equiv 2 \pmod{3}. \end{cases}$$

- (d) Existeix algun graf connex amb radi 3 i diàmetre 7?
- (e) Doneu el nombre de grafs diferents amb conjunt de vèrtexs [5] que contenen el cicle 123451.
- (f) Calculeu el nombre d'arbres diferents amb conjunt de vèrtexs [6] i seqüència de graus 3,3,1,1,1,1.

[3 punts: cada apartat val 0,5]

2. Calculeu el nombre de paraules de longitud n en l'alfabet $\{0, 1, 2, 3, 4\}$ tals que la suma de les xifres és un nombre parell.

[2 punts]

- 3. Sigui G un graf bipartit no nul d'ordre $n \geq 2$.
 - (a) Proveu que si $n \geq 5$, aleshores G^c no és bipartit.
 - (b) Proveu que si n és senar, llavors G no és regular.
 - (c) Suposem que a més G és hamiltonià i n = 8. Si el graf té almenys 3 vèrtexs de grau 2, almenys 3 de grau 3 i almenys un de grau 4, quina és la seqüència de graus? Doneu-ne un exemple.

[2 punts: l'apartat c val 1 punt, la resta 0,5]

- 4. Sigui $f(X) = X^3 + 2X + 1 \in \mathbb{F}_3[X]$.
 - (a) Calculeu l'invers de $\alpha^2 + 2\alpha + 1$ a $\mathbb{F}_3[X]/(X^3 + 2X + 1)$, on $\alpha = \overline{X}$.
 - (b) Demostreu que f(X) és irreductible a $\mathbb{F}_3[X]$. Doneu el nombre d'elements del cos $\mathbb{F}_3[X]/(X^3+2X+1)$. A partir d'ara $\mathbb{F}_q=\mathbb{F}_3[X]/(X^3+2X+1)$ i $\alpha=\overline{X}$.
 - (c) Calculeu α^k per $k \in [13]$ a \mathbb{F}_q . Proveu que α és un element primitiu.
 - (d) Resoleu l'equació $T^2 (\alpha + \alpha^2)T + \alpha^3 = 0$ a \mathbb{F}_q .
 - (e) Calculeu la suma de tots els elements del cos \mathbb{F}_q .

[3 punts: l'apartat c val 1 punt, la resta 0,5]

- $\bullet\,$ Temps: de 8:00 a 11:00 hores.
- La solució i les notes es penjaran al Racó el 25 de gener.
- La revisió es farà el dimecres 30 de gener de 11:30 a 12:30 hores a l'aula A4101, Campus Nord.

Exercici 1

(a) Doneu el coeficient del monomi $x^{10}y^3z^4$ a $(2x+xy+zx)^{10}$.

Solució: Pel teorema del binomi

$$(2x + xy + zx)^{10} = \sum_{\substack{0 \le i, j, k \le 10 \\ i+j+k=10}} {10 \choose i, j, k} (2x)^i (xy)^j (zx)^k = \sum_{\substack{0 \le i, j, k \le 10 \\ i+j+k=10}} {10 \choose i, j, k} 2^i x^{i+j+k} y^j z^k.$$

El monomi $x^{10}y^3z^4$ s'obté per als valors $i+j+k=10,\ j=3$ i k=4. Per tant, el coeficient és $\binom{10}{3,3,4}2^3=\frac{10!}{3!\,3!\,4!}2^3=33600$.

(b) Calculeu el nombre de particions del conjunt [2008] en 2007 parts.

Solució: El nombre de particions d'un conjunt ve donat pel nombre de Stirling $\binom{2008}{2007} = \binom{2008}{2} = 2\,015\,028$. Una altra manera de calcular $\binom{2008}{2007}$: aplicar la relació recurrent $\binom{n}{k} = \binom{n-1}{k-1} + k \binom{n-1}{k}$, $2 \le k \le n$, i $\binom{n}{n} = 1$. Així:

(c) Doneu la funció generadora ordinària de la successió $(a_n)_{n\geq 0}$ definida per:

$$a_n = \begin{cases} (-2)^{n/3}, & \text{si } n \equiv 0 \pmod{3}; \\ 0, & \text{si } n \equiv 1 \pmod{3}; \\ 1, & \text{si } n \equiv 2 \pmod{3}. \end{cases}$$

Solució: Explícitament, és la successió

$$(a_n)_n = ((-2)^0, 0, 1, (-2)^1, 0, 1, (-2)^2, 0, 1, (-2)^3, 0, 1, (-2)^4, \dots),$$

la qual es pot descompondre en la suma

$$(a_n)_n = ((-2)^0, 0, 0, (-2)^1, 0, 0, (-2)^2, 0, 0, (-2)^3, \dots) + (0, 0, 1, 0, 0, 1, 0, 0, 1, \dots).$$

Partint ara del fet que $(1,1,1,1,...) \stackrel{fgo}{\longleftrightarrow} 1/(1-x)$, tenim que

$$\begin{array}{cccc} (1,0,0,1,0,0,1,0,0,1,\ldots) & \stackrel{fgo}{\longleftrightarrow} & \frac{1}{1-x^3} \\ (0,0,1,0,0,1,0,0,1,0,0,1,\ldots) & \stackrel{fgo}{\longleftrightarrow} & \frac{x^2}{1-x^3} \\ ((-2)^0,(-2)^1,(-2)^2,(-2)^3,\ldots) & \stackrel{fgo}{\longleftrightarrow} & \frac{1}{1+2x} \\ ((-2)^0,0,0,(-2)^1,0,0,(-2)^2,0,0,(-2)^3,\ldots) & \stackrel{fgo}{\longleftrightarrow} & \frac{1}{1+2x^3} \\ \end{array}$$

Per tant, la funció generadora buscada és

$$(a_n)_n \stackrel{fgo}{\longleftrightarrow} \frac{x^2}{1-x^3} + \frac{1}{1+2x^3}.$$

(d) Existeix algun graf connex amb radi 3 i diàmetre 7?

Solució: En qualsevol graf G es compleix que $R(G) \leq D(G) \leq 2R(G)$, si R(G) i D(G) denoten el radi i el diàmetre, respectivament, de G. Com que això no es compleix quan el radi és 3 i el diàmetre 7, un tal graf no pot existir.

- (e) Doneu el nombre de grafs diferents amb conjunt de vèrtexs [5] que contenen el cicle 123451. Solució: De les $\binom{5}{2} = 10$ arestes possibles del graf, les 5 arestes del cicle 123451 són del graf, i les 5 arestes restants poden ser o no ser del graf. És a dir, hi ha $2^5 = 32$ grafs diferents.
- (f) Calculeu el nombre d'arbres diferents amb conjunt de vèrtexs [6] i seqüència de graus 3,3,1,1,1,1. Solució: Equival a comptar totes les seqüències de Prüfer d'arbres amb aquestes condicions. Si els vèrtexs de grau 3 són a i b, la seqüència de Prüfer de l'arbre conté dues vegades a i dues vegades b. Podem triar els vèrtexs a i b de $\binom{6}{2} = 15$ maneres, i hi ha $\binom{4}{2,2} = 6$ permutacions dels elements a, a, b, b. Per tant, n'hi ha $15 \times 6 = 90$.

Exercici 2 Calculeu el nombre de paraules de longitud n en l'alfabet $\{0, 1, 2, 3, 4\}$ tals que la suma de les xifres és un nombre parell.

Solució: Denotem P_n el conjunt de paraules del tipus indicat i per a_n el seu cardinal $(n \ge 1)$. Tenim la partició

$$P_n = P_n(p) \bigsqcup P_n(s),$$

on $P_n(p)$ són les paraules de P_n acabades en un nombre parell i $P_n(s)$ les acabades en un senar. Ara, d'una banda, si l'última xifra és un parell, vol dir que la suma de les n-1 primeres també ha de ser parella. Per tant, el cardinal de $P_n(p)$ és tres vegades el cardinal de P_{n-1} , i.e., $3a_{n-1}$ (tres vegades perquè la darrera xifra pot ser 0, 2 o 4). D'altra banda, si l'última xifra és un senar, és que la suma de les n-1 primeres xifres també és senar. Per tant, el cardinal de $P_n(s)$ és dues vegades el del conjunt S_{n-1} de paraules de longitud n-1 tals que les xifres sumen un senar (dues vegades perquè la darrera xifra pot ser 1 o 3). Calculem el cardinal de S_{n-1} usant aleshores que el total de paraules de longitud n-1 en l'alfabet indicat, que és 5^{n-1} , és la suma $|P_{n-1}| + |S_{n-1}|$. En definitiva, tenim que

$$a_n = |P_n| = |P_n(p)| + |P_n(s)| = 3|P_{n-1}| + 2 \cdot (5^{n-1} - |P_{n-1}|) = a_{n-1} + 2 \cdot 5^{n-1}, \quad n \ge 2.$$

Es tracta d'una recurrència lineal d'ordre 1 a coeficients constants amb condició inicial $a_1 = 3$. La funció generadora del terme independent és

$$(2 \cdot 5^{n-1})_{n \ge 1} = (2 \cdot 5^n)_{n \ge 0} \stackrel{fgo}{\longleftrightarrow} \frac{2}{1 - 5x}.$$

El polinomi característic de la recurrència homogènia és c(x) = x - 1. Per tant, la funció generadora de $(a_n)_{n \ge 1}$ és de la forma

$$A(x) = \frac{A + x\frac{2}{1 - 5x}}{1 - x} = \frac{a(1 - 5x) + 2x}{(1 - x)(1 - 5x)},$$

on A és una certa constant. Per la forma del denominador deduïm que el terme general de la successió buscada és de la forma

$$a_n = M + N \cdot 5^n$$
,

per a certes constants M, N que cal determinar a partir de les condicions inicials $a_1 = 3$ i $a_2 = 13$. Imposant aquestes condicions, s'obté el sistema

$$3 = M + 5N,$$
 $13 = M + 25N,$

que resolt dóna M = N = 1/2. Per tant, $a_n = \frac{1}{2}(1+5^n)$.

Exercici 3 Sigui G un graf bipartit no nul d'ordre $n \geq 2$.

(a) Proveu que si $n \geq 5$, aleshores G^c no és bipartit.

Solució: En tot aquest exercici considerarem que el conjunt de vèrtexs de G és $V = V_1 \cup V_2$, amb $V_1 \cap V_2 = \emptyset$, $|V_1| = r \ge 1$ i $|V_2| = s \ge 1$, de forma que totes les arestes tenen un extrem a V_1 i l'altre a V_2 .

Pel principi de les caselles algun dels dos conjunts V_1 , V_2 té almenys 3 vèrtexs. Aquests vèrtexs són dos a dos no adjacents en G, i per tant són adjacents dos a dos en G^C . És a dir, G^C no és bipartit perquè conté un cicle de longitud 3, senar.

(b) Proveu que si n és senar, llavors G no és regular.

Solució: Suposem que el graf és d-regular. Per ser bipartit, tota aresta té exactament un extrem a V_1 , i per tant la mida m del graf és el nombre d'arestes incidents als vèrtexs de V_1 , és a dir m=dr. Anàlogament, m=ds. Per tant dr=ds. Per ser el graf no nul, $d\neq 0$, i per tant, r=s. L'ordre del graf seria, doncs, n=r+s=2r, parell, que és una contradicció, ja que l'ordre és senar per hipòtesi.

(c) Suposem que a més G és hamiltonià i n=8. Si el graf té almenys 3 vèrtexs de grau 2, almenys 3 de grau 3 i almenys un de grau 4, quina és la seqüència de graus? Doneu-ne un exemple.

Solució: Per ser G hamiltonià, tots els vèrtexs tenen grau almenys 2. A més, si el graf és bipartit i hamiltonià, els conjunts V_1 i V_2 tenen el mateix nombre de vèrtexs, 4 en aquest cas, ja que el cicle passa alternativament per un vèrtex de V_1 i un de V_2 . Per tant, els vèrtexs tenen grau com a molt 4. El graf té almenys 4 vèrtexs de grau parell i 3 de grau senar, per tant el grau del vèrtex restant ha de ser senar, ja que tot graf té un nombre parell de vèrtexs de grau senar. És a dir, el grau del vèrtex restant ha de ser 3, i la seqüència de graus és 4, 3, 3, 3, 3, 2, 2, 2.

Per a construir un graf amb aquesta seqüència de graus, observem que el graf té mida 11 i $|V_1| = |V_2| = 4$. Fem primer un cicle que passi pels 8 vèrtexs, és a dir, passarà alternativament pels vèrtexs de V_1 i de V_2 . Suposem ara que $u \in V_1$ és el vèrtex de grau 4. Llavors u és adjacent als 4 vèrtexs de V_2 . D'aquesta manera ja tenim 8+2=10 arestes de G. Finalment afegim una aresta que uneixi un vèrtex de grau 2 de V_1 amb un vèrtex de grau 2 de V_2 , no adjacents de moment, i ja tenim el graf demanat:

Exercici 4 Sigui $f(X) = X^3 + 2X + 1 \in \mathbb{F}_3[X]$.

(a) Calculeu l'invers de $\alpha^2 + 2\alpha + 1$ a $\mathbb{F}_3[X]/(X^3 + 2X + 1)$, on $\alpha = \overline{X}$.

Solució: Aplicant l'algorisme d'Euclides a f(X) i $X^2 + 2X + 1$ es troba la Identitat de Bezout per aquest dos polinomis.

k	0	1	2	3
s_k	0	1	2X + 2	$2X^2 + 2$
t_k	1	0	1	X+2
q_k		X+1	2X+1	
r_k	$X^3 + 2X + 1$	$X^2 + 2X + 1$	2X	1

Així $f(X)(X+2) + (X^2+2X+1)(2X^2+2) = 1$ i, per tant, l'invers de $\alpha^2 + 2\alpha + 1$ a $\mathbb{F}_3[X]/(X^3+2X+1)$ és $2\alpha^2 + 2$.

(b) Demostreu que f(X) és irreductible a $\mathbb{F}_3[X]$. Doneu el nombre d'elements del cos $\mathbb{F}_3[X]/(X^3+2X+1)$. A partir d'ara $\mathbb{F}_q = \mathbb{F}_3[X]/(X^3+2X+1)$ i $\alpha = \overline{X}$.

Solució: Un polinomi de grau 3 és irreductible si, i només si, no té arrels. Atès que f(0) = f(1) = f(2) = 1, el polinomi $f(x) = X^3 + 2X + 1$ és irreductible a $\mathbb{F}_3[X]$. Per tant, $\mathbb{F}_q = \mathbb{F}_3[X]/(X^3 + 2X + 1)$ és un cos de $q = 3^3 = 27$ elements.

(c) Calculeu α^k per $k \in [13]$ a \mathbb{F}_q . Proveu que α és un element primitiu.

Solució: Si $f(X) = X^3 + 2X + 1$, llavors $\alpha^3 = \alpha + 2$ a \mathbb{F}_q . Càlcul de les potències:

k	α^k	k	α^k		,,,	α^k
1	α	6	$\alpha^2 + \alpha + 1$		11	$\alpha^2 + \alpha + 2$
2	α^2	7	$\alpha^2 + 2\alpha + 2$	1	12	$\alpha^2 + 2$
3	$\alpha + 2$	8	$2\alpha^2 + 2$	1	13	2
4	$\alpha^2 + 2\alpha$	9	$\alpha + 1$			
5	$2\alpha^2 + \alpha + 2$	10	$\alpha^2 + \alpha$			

Per tal que α sigui primitiu el seu ordre ha de ser $3^3-1=26$, és a dir, cap potència α^k , amb $1 \le k \le 25$, pot donar 1. Com que l'ordre de qualsevol element de \mathbb{F}_{27}^* és un divisor de 26, només cal comprovar que $\alpha^k \ne 1$ per a k=1,2 i 13. Els elements α i α^2 són diferents de 1 ja que el polinomi amb el que fem el quocient té grau 3, i $\alpha^{13}=2\ne 1$, per tant, α és un element primitiu.

(d) Resoleu l'equació $T^2 - (\alpha + \alpha^2)T + \alpha^3 = 0$ a \mathbb{F}_q .

Solució: L'equació té solució si el discriminant $D = (\alpha + \alpha^2)^2 - 4\alpha^3$ és un quadrat. Fent operacions i mirant la taula:

$$(\alpha + \alpha^2)^2 - 4\alpha^3 = \alpha^2 + 2\alpha^3 + \alpha^4 - \alpha^3 = 2\alpha^2 + 2 = \alpha^8$$

Per tant, D és un quadrat d'arrels α^4 i $-\alpha^4$. Les solucions de l'equació són $(\alpha + \alpha^2 \pm \alpha^4)2^{-1}$. Com que $2 \cdot 2 = 1$, $2^{-1} = 2$ (o bé, $2 = \alpha^{13}$, $2^{-1} = \alpha^{26-13} = \alpha^{13}$) i les arrels són

$$x_1 = (\alpha + \alpha^2 + \alpha^2 + 2\alpha)2 = \alpha^2$$

 $x_2 = (\alpha + \alpha^2 - \alpha^2 - 2\alpha)2 = \alpha$.

(e) Calculeu la suma de tots els elements del cos \mathbb{F}_q .

Solució: Els elements de \mathbb{F}_{27}^* es poden expressar com a potències de l'element primitiu α , així:

$$\sum_{\beta \in \mathbb{F}_q} \beta = 0 + \sum_{i=1}^{26} \alpha^i = \frac{\alpha^{26} \alpha - \alpha}{\alpha - 1} = 0,$$

usant que $\alpha^{q-1}=1$ i la fórmula de la suma d'una progressió geomètrica.

Una altra manera. S'observa que $\alpha^i = \alpha^{13}\alpha^{i-13} = 2\alpha^{i-13}$, per a tot $i, 14 \le i \le 26$. Aleshores:

$$\sum_{\beta \in \mathbb{F}_q} \beta = 0 + \sum_{i=1}^{13} \alpha^i + \sum_{i=14}^{26} \alpha^i = \sum_{i=1}^{13} \alpha^i + \sum_{i=14}^{26} 2\alpha^{i-13} = \sum_{i=1}^{13} \alpha^i + 2\sum_{k=1}^{13} \alpha^k = \sum_{i=1}^{13} \alpha^i - \sum_{k=1}^{13} \alpha^k = 0$$

Una altra manera. Atès que cap element de \mathbb{F}_{27}^* és igual al seu oposat ($\beta = -\beta \Leftrightarrow 2\beta = 0 \Leftrightarrow \beta = 0$), a la suma dels 27 elements de \mathbb{F}_{27} un summand és el zero, i la resta summands es poden aparellar cadascun amb el seu oposat. Aleshores, el resultat és 0.

Una altra manera. També es pot fer escrivint els 27 elements de \mathbb{F}_{27} i calculant directament la seva suma.