AGT – Algoritmos

Introdução e conceitos básicos

Prof. Allan Rodrigo Leite

Organização básica de um computador

Processador

Memória principal

Canal de comunicação

Memória secundária

Dispositivos de entrada

Dispositivos de saída

Processador

- Principal componente de um computador
- Executa sequências de operações muito simples e precisas
 - Sempre uma por vez
- Velocidade é medida em ciclos
 - Um 17 é capaz de executar cerca de 112.000.000.000 operações matemáticas por segundo

Memória principal

- Também chamada de RAM (Random Access Memory)
- É a unidade encarregada de armazenar os programas e dados que estão sendo processados
- Considerada um meio temporário de armazenamento de dados, pois os dados são mantidos somente durante o tempo em que o programa estiver em execução
- É na memória principal que o processador armazenados resultados de cada uma das operações que ele realiza

Memória secundária

- Pode ser composta por vários dispositivos capazes de armazenar grandes quantidades de dados e programas
- É um tipo de memória não-volátil, teoricamente permanente
 - Porém, em geral o acesso é mais lento
- Um programa armazenado em memória secundária precisa ser carregado na memória principal antes de ser executado

Hierarquia de memória

Hierarquia de memória

Dispositivos de entrada

- São os recursos ou componentes que permitem que o usuário forneça dados para o computador
- Nesta disciplina, o dispositivo de entrada de dados utilizado nos programas desenvolvidos será o teclado

Dispositivos de saída

- São os recursos ou componentes que permitem que o computador forneça dados para o usuário
- Nesta disciplina, o dispositivo de saída de dados utilizado nos programas desenvolvidos será o monitor

Canal de comunicação

- A comunicação entre os dispositivos é realizada através de diferentes tipos de cabos e barramentos que, em geral, transmitem um sinal contínuo
- Dados são transmitidos utilizando apenas dois estados possíveis
 - Ausência ou presença do sinal a cada instante

- BIT (Blnary DigiT) Dígito binário
 - Menor unidade de informação que armazena somente um valor 0 ou 1
- Byte (Binary TErm) Termo binário
 - Conjunto de 8 bits, com o qual pode-se representar os números, as letras, os sinais de pontuação, etc.
- Palavra (Word)
 - É a quantidade de bits que a CPU processa por vez
 - Nos computadores atuais, são comuns palavras de 32 ou 64 bits

Unidades	Usual	Informática
Kilo (K)	10 ³	2 ¹⁰ bytes
Mega (M)	10 ⁶	2 ²⁰ bytes
Giga (G)	10 ⁹	2 ³⁰ bytes
Tera (T)	1012	2 ⁴⁰ bytes

Qual a capacidade exata de bits que um pen-drive de 8GB possui? $8GB = 8 * 2^{30} * 8 = 68719476736$ bits

Representação de uma memória de 1KB

Endereço	Byte							
0								
1								
2	0	1	0	0	0	0	0	1
•••								
1023								

- No byte com endereço 2 está armazenado o código binário que representa o caractere A
- O processador acessa o conteúdo de um byte a partir do endereço deste byte

• Os computadores apenas operam com bytes e palavras

- Todo dado armazenado e processado é um conjunto de bits e bytes
 - Letras, dígitos e símbolos
 - Cores, ícones, figuras e fotos
 - Textos, músicas e vídeos

Tabela ASCII

padrões para letras, dígitos e símbolos

ASCII control characters				ASCII printable characters					Extended ASCII characters								
00	NULL	(Null character)		32	space	64	@	96	`	128	Ç	160	á	192	L	224	Ó
01	SOH	(Start of Header)		33	!	65	Α	97	а	129	ü	161	ĺ	193	Τ.	225	ß
02	STX	(Start of Text)		34	"	66	В	98	b	130	é	162	Ó	194	Т	226	Ô
03	ETX	(End of Text)		35	#	67	С	99	С	131	â	163	ú	195	-	227	Ò
04	EOT	(End of Trans.)		36	\$	68	D	100	d	132	ä	164	ñ	196	_	228	ő
05	ENQ	(Enquiry)		37	%	69	E	101	е	133	à	165	Ñ	197	+	229	Õ
06	ACK	(Acknowledgement)		38	&	70	F	102	f	134	å	166	a	198	ã	230	μ
07	BEL	(Bell)		39	•	71	G	103	g	135	ç	167	0	199	Ã	231	þ
08	BS	(Backspace)		40	(72	Н	104	h	136	ê	168	ડ	200	L	232	Þ
09	HT	(Horizontal Tab)		41)	73	- 1	105	i	137	ë	169	®	201	1	233	Ú
10	LF	(Line feed)		42	*	74	J	106	j	138	è	170	7	202	쁘	234	Q.
11	VT	(Vertical Tab)		43	+	75	K	107	k	139	ï	171	1/2	203	Ŧ	235	Ù
12	FF	(Form feed)		44	,	76	L	108	- 1	140	î	172	1/4	204	ŀ	236	Ý
13	CR	(Carriage return)		45	-	77	М	109	m	141	ì	173	i	205	=	237	Ý
14	SO	(Shift Out)		46		78	N	110	n	142	Ä	174	«	206	#	238	
15	SI	(Shift In)		47	I	79	0	111	0	143	Ą	175	»	207	п	239	,
16	DLE	(Data link escape)		48	0	80	P	112	р	144	É	176		208	ð	240	=
17	DC1	(Device control 1)		49	1	81	Q	113	q	145	æ	177	-	209	Đ	241	±
18	DC2	(Device control 2)		50	2	82	R	114	r	146	Æ	178		210	Ê	242	=
19	DC3	(Device control 3)		51	3	83	S	115	S	147	ô	179		211	Ë	243	37/4
20	DC4	(Device control 4)		52	4	84	Т	116	t	148	Ö	180	ţ	212	È	244	¶
21	NAK	(Negative acknowl.)		53	5	85	U	117	u	149	Ò	181	À	213	ļ	245	§
22	SYN	(Synchronous idle)		54	6	86	V	118	V	150	û	182	Â	214	ļ	246	÷
23	ETB	(End of trans. block)		55	7	87	W	119	w	151	ù	183	Α	215	Î	247	
24	CAN	(Cancel)		56	8	88	X	120	X	152	ÿ	184	©	216	Ţ	248	°
25	EM	(End of medium)		57	9	89	Y	121	У	153	Ö	185	1	217	7	249	
26	SUB	(Substitute)		58	:	90	Z	122	Z	154	Ü	186		218	Г	250	
27	ESC	(Escape)		59	;	91	_[123	{	155	Ø	187	7	219		251	1
28	FS	(File separator)		60	<	92	1	124	Ţ	156	£	188	7	220		252	3
29	GS	(Group separator)		61	=	93]	125	}	157	Ø	189	¢	221		253	2
30	RS	(Record separator)		62	>	94	^	126	~	158	×	190	¥	222		254	
31	US	(Unit separator)		63	?	95	-			159	f	191	٦	223	_	255	nbsp
127	DEL	(Delete)															

Bits, bytes e programas

- Computador é capaz de executar diferentes programas, desenvolvidos com finalidades distintas
 - Processador de texto
 - Planilha eletrônica
 - Calculadora
 - Navegador
 - Etc.

- Cada programa é executado por meio de um arquivo executável
 - Este arquivo executável contém as instruções que compõem o programa

Bits, bytes e programas

- Um arquivo executável é composto por milhares de instruções simples definidas através de sequências de 0 e 1
- A linguagem que representa a estrutura de um arquivo executável é denominada linguagem de máquina

Linguagens de máquina

• A linguagem de máquina é a que o computador é capaz de entender e executar as instruções pré-definidas

 Por se tratar de uma sequência muito grande de 0 e 1, programar em linguagem de máquina é uma tarefa extremamente difícil

Instruções de máquina

- Operações básicas que podem ser executadas pelo hardware de forma eficiente:
 - Operações de processamento de dados
 - Operações matemáticas
 - Operações lógicas
 - Acessar variáveis ou estruturas de dados
 - Transferir dados da memória principal para o processador
 - Transferir bytes da entrada e saída para memória principal
 - Controlar a sequência (fluxo) do programa
 - Realizar desvios condicionais e incondicionais

Instruções de máquina

Formato geral de instruções

Opcode	Operandos
•	· •

- *Opcode* ou código de operação
 - Sequência de bits que identifica unicamente cada operação a ser realizada pelo processador
- Operandos
 - Podem ter 0, 1, 2 ou 3 campos de bits
 - Dependendo do *opcode*, determina onde estão os dados utilizados na operação
 - Registrador ou endereço de memória depende do modo de endereçamento

Linguagens de programação

- Instruções em linguagens de programação (linguagens de alto nível) são escritas de forma muito mais clara e legível para o programador
 - Contudo, este tipo de linguagem a máquina não entende
- Linguagens de programação
 - É necessário traduzir o programa para a linguagem binária que o processador consiga entender
 - Em outras palavras, um programa executável

Tradutor

 O desenvolvedor escreve um programa em uma linguagem de programação

- Um programa específico é utilizado para traduzir as instruções definidas em linguagem de programação
 - Estes programas são chamados de compiladores
 - O resultado é um programa em linguagem de montagem

Tradutor

- Nesta disciplina
 - Linguagem de programação: C
 - Código fonte: arquivos com extensão .c
 - Tradutor: compilador C (GCC)
 - Traduzir → compilar
- Para que o processo de tradução seja possível, é necessário que o compilador consiga identificar cada instrução no código fonte
 - Assim, o programador precisa seguir uma séries de regras ao utilizar uma linguagem de programação

Execução de programas

- O processador é um dispositivo que opera em ciclos
 - Cada ciclo executa uma instrução que corresponde a pequenas tarefas executadas sobre operandos
- Representação de um ciclo de operação:

Análise léxica

- Decompõe o programa fonte em seus elementos individuais distintos
 - Comandos, operadores, variáveis
- Verifica se estes elementos estão de acordo com as regras da linguagem

Análise sintática

- Conjunto de regras que definem como uma linguagem pode ser utilizada
- O desenvolvedor precisa seguir estas regras ao escrever as instruções dos programas para que o compilador possa interpretá-las e traduzi-las

Análise semântica

- Cada instrução tem uma finalidade bem específica
- A combinação de instruções tem um significado lógico
 - Uma sequência de instruções colabora de forma parcial para os objetivos do programa sejam alcançados durante a execução

- Análise sintática
 - Se o desenvolvedor comete um erro de sintaxe, o compilador interrompe o processo de tradução e indica a linha do arquivo onde o erro ocorreu
 - Nestes casos o arquivo executável não é gerado
 - Exemplos de erros de sintaxe
 - Palavras com erros de grafia
 - Parênteses ou aspas que não fecham
 - Ausência de vírgulas, pontos ou ponto e vírgula

- Análise semântica
 - Se o programa gerado não cumpre totalmente seus objetivos, o programa provavelmente contém erros de lógica
 - É comum um programa funcionar corretamente na maioria das vezes e apresentar um erro de lógica só em condições muito específicas
 - Erros de lógica não são apontados pelo compilador
 - Encontrá-los é uma tarefa do desenvolvedor
 - Estes erros costumam ser difíceis de encontrar

Qual o erro de lógica na sequência de instruções do programa abaixo?

- 1. Solicite ao usuário do programa que digite o número de pontos do **time 1** (este valor será chamado de **pt1**)
- 2. Solicite ao usuário do programa que digite o número de pontos do **time 2** (este valor será chamado de **pt2**)

```
SE pt1 > pt2:

Exibe "Time 1 venceu"

SENÃO

Exibe "Time 2 venceu"
```

 Para o desenvolvimento de programas, estes dois aspectos estão sempre presentes

Sintaxe

• É necessário conhecer a linguagem de programação e suas regras para ser possível construir programas

Semântica

 É necessário conhecer a finalidade de cada instrução da linguagem e, principalmente, é necessário saber combinar estas finalidades isoladas para alcançar o objetivo do programa

Montagem

- O montador realiza a tradução de um programa em linguagem de montagem (assembly) para linguagem binária
 - Realiza a análise léxica, sintática e semântica do código fonte
 - Substitui códigos de operações simbólicos por valores numéricos
 - Substituir nomes simbólicos de endereços por valores numéricos
 - Converter valores de constantes para binários
 - Reservar espaço de memória para armazenamento de instruções e dados

Modelo de Von Neumann

- Ciclo de instrução
 - Busca a próxima instrução
 - Decodifica (identifica) a instrução
 - Executa a instrução
 - Executa uma sequência de suboperações equivalente do que foi solicitado
 - Exemplo: buscar os dados, realizar a função solicitada ou guardar o resultado
 - Repete o ciclo

• Instruções são interpretadas

Paradigmas de programação

 No desenvolvimento de um programa, o desenvolvedor utiliza um modo de raciocínio pouco comum em outras áreas do conhecimento

Encontrar uma estruturação que contemple instruções para resolver um determinado problema

Um paradigma de programação fornece e determina um raciocínio sobre a estruturação e execução de um programa

Algoritmos

- Algoritmo
 - Sequência de instruções que resolve um determinado problema

- Programa
 - Algoritmo escrito em uma linguagem de programação específica
 - Um algoritmo que pode ser executado em um computador
- Paradigma de programação
 - Raciocínio utilizado para criar um algoritmo

Algoritmos

- Detalhes sobre algoritmos
 - Sequência de instruções bem definidas
 - Pode receber ou gerar informações
 - Dados de entrada e saída
 - Tem um início e fim bem definidos
 - Processo finito, sempre termina
 - Cumpre um propósito específico
- Na maioria das vezes, elaborar o algoritmo para resolver um problema é o maior desafio na programação
 - Embora algoritmos já façam parte do dia-a-dia das pessoas, elaborar algoritmos de forma sistemática é uma atividade muito pouco exercitada

Algoritmos

Treino de corrida para iniciantes

- 1. Caminhe por 5 minutos em ritmo lento
- 2. Repita 5 vezes a seguinte sequência
 - Corra por 30 segundos em um ritmo em que você respire com dificuldade
 - Caminhe por 60 segundos
- 3. No final, caminhe por 5 minutos em ritmo lento

Pontos importantes

- A ordem das instruções é significativa
- Dificilmente existe um único algoritmo para resolver um problema

Vamos elaborar um algoritmo para trocar uma lâmpada em um quarto vazio, assumindo que:

- Existe uma escada disponível
- Existe uma lâmpada nova disponível
- Está de dia

Um senhor está em uma das margens de um rio com

- Uma raposa
- Um saco de milho
- Uma dúzia de galinhas

O senhor precisa atravessar e dispõe de uma canoa que suporta seu peso e uma de suas cargas

- O senhor não pode deixar a raposa sozinha com as galinhas em uma das margens
- Também não pode deixar as galinhas sozinhas com o milho

Que instruções podemos definir para o senhor atravessar o rio?

Travessia do rio

- 1. Atravesse com as galinhas (se levasse a raposa, as galinhas ficariam com o milhos e se levasse o milho, a raposa ficaria com as galinhas)
- 2. Deixe as galinhas e retorne sozinho
- 3. Atravesse com a raposa
- 4. Deixe a raposa e retorne com as galinhas (as galinhas não poderiam ficar com a raposa)
- 5. Deixe as galinhas e atravesse com o milho (não adiantaria voltar com as galinhas)
- 6. Deixe o milho e retorne sozinho
- 7. Atravesse com as galinhas

- Ao longo da disciplina, vamos resolver
 - Problemas matemáticos
 - Média aritmética
 - Raízes de uma equação de segundo grau
 - Operação em matrizes
 - Questões genéticas de leitura, armazenamento ou processamento de dados
 - Encontrar dados de uma pessoa
 - Atualizar o saldo de uma conta bancária
 - Puzzles
 - Resolver problemas lógicos
 - Encontrar uma sequência de ações

Formas de representação

- Formas de representação de algoritmos mais conhecidas
 - Descrição narrativa
 - Fluxograma tradicional
 - Diagrama de Chapin
 - Pseudolinguagem

Descrição narrativa

- Nesta forma de representação, os algoritmos são expressos diretamente em linguagem natural
 - Deve ser usada com cuidado pois o uso da linguagem natural pode dar margem a má interpretação, ambiguidades ou imprecisões

Troca de um pneu furado

- 1. Afrouxe ligeiramente as porcas das rodas
- 2. Suspenda o carro
- 3. Retire as porcas e o pneu
- 4. Coloque o pneu reserva

- 5. Aperte ligeiramente as porcas
- 6. Abaixe o carro
- 7. Aperte completamente as porcas

Fluxograma

- Representação gráfica de algoritmos, onde cada forma geométrica representa uma instrução em específico
- Objetiva facilitar o entendimento das ideias e fluxos de dados contidas no algoritmo

Fluxograma

Fluxograma para calcular a média de um aluno

- Desenhar o fluxograma pode ser uma tarefa difícil dependendo da complexidade do algoritmo
- Modificar ou corrigir o algoritmo, depois de desenhado o fluxograma, pode ser trabalhoso também

Diagrama de Chapin

- Variação do fluxograma tradicional que permite uma visão hierárquica e estruturada da lógica do programa
 - Criado por Ned Chapin

- Possui os mesmos pontos de atenção de um fluxograma tradicional
 - Representar o diagrama também pode ser difícil, especialmente quando há muitas instruções alinhadas

Pseudolinguagem

- Representação de algoritmos, também conhecida como pseudocódigo, português estruturado ou portugol
 - Rica em detalhes e assemelha-se à forma que os programas são escritos
- A tradução do pseudocódigo de um algoritmo para uma linguagem de programação é praticamente direta e intuitiva

Pseudolinguagem

Pseudocódigo para calculo da média de um aluno

```
principal {
   real n1, n2, media;
   leia(n1, n2);
   media \leftarrow (n1 + n2) / 2;
   se (media >= 6) {
      imprima("Aprovado");
   } senão {
      imprima("Reprovado");
```

Exercícios

- Utilizando um jarro de 5 litros, um jarro de 3 litros e uma fonte de água, elabore um algoritmo para obter exatamente 4 litros d'água
 - Os jarros não possuem marcação de capacidade
- Você possui 8 esferas de tamanho idêntico, sendo que apenas uma delas tem peso superior às outras
 - Utilizando uma balança de dois pratos, faça um algoritmo para encontrar a esfera com peso diferente sabendo que a balança só pode ser usada duas vezes

AGT – Algoritmos

Introdução e conceitos básicos

Prof. Allan Rodrigo Leite