5.2 Logarithmic Functions

5.2.1 What are logarithms and logarithmic functions?

- For $b > 0, b \neq 1$ we say $\log_b x = y$ if $x = b^y$.
- The function $f(x) = \log_b x$ is called the logarithmic function with base b.

So, we see that $x = b^{\log_b x}$ for all x in the domain of the logarithmic function.

Notation:

- $\log x$ means $\log_{10} x$
- $\ln x$ means $\log_e x$ —- this is called the **Natural Logarithm**.

Example 1. Evaluate the following:

(a) $\log_2 8$.

Solution: Let $\log_2 8 = x$. So we have $2^x = 8$ which implies that x = 3. Hence, $\log_2 8 = 3$.

 $(b)\log_9 27$

Solution: Let $\log_9 27 = x$. Thus, $9^x = 27 \implies 3^{2x} = 27 \implies 2x = 3 \implies x = \frac{3}{2}$. So, $\log_9 27 = \frac{3}{2}$.

- (c) $\ln e^2 = 2$ (Check yourself!),
- (d) $\ln 1 = 0$ (Check yourself!) this is a very important observation and we will use this often.
- (e) $\ln(-63)$ is undefined as $e^x > 0$ for all real numbers x.

Properties of Logarithmic Functions:

- (1) The domain of \log_b is $(0, \infty)$.
- (2) The range of \log_b is $(-\infty, \infty)$.
- (3) The x-intercept of \log_b is 1 because $b^0 = 1$.
- (4) log_b is continuous.
- (5) \log_b is increasing on $(0, \infty)$ if b > 1 and is decreasing on $(0, \infty)$ if 0 < b < 1.
- (6) Its graph has x = 0 as a vertical asymptote.

Laws of Logarithms: If b, x, and y are positive real numbers and $b \neq 1$, then

- $(1) \log_b(xy) = \log_b(x) + \log_b(y)$
- (2) $\log_b\left(\frac{x}{y}\right) = \log_b(x) \log_b(y)$
- (3) $\log_b(x^y) = y \log_b(x)$.
- (4) $\log_b(1) = 0$
- $(5) \log_b(b) = 1$

Example 2. Rewrite $2 \ln a - 3 \ln b$ as the logarithm of a single quantity.

Solution: $2 \ln a - 3 \ln b = \ln a^2 - \ln b^3 = \ln \left(\frac{a^2}{b^3}\right)$.

Example 3. Expand and simplify $\ln \frac{\sqrt{x}e^x}{(2+x^2)^2}$.

Solution:

$$\ln \frac{\sqrt{x}e^x}{(2+x^2)^2} = \ln(\sqrt{x}) + \ln e^x - \ln(2+x^2)^2$$
$$= \frac{1}{2}\ln x + x \ln e - 2\ln(2+x^2)$$
$$= \frac{1}{2}\ln x + x - 2\ln(2+x^2)$$

5.2.2 Logarithms and Exponentials

Logarithms and exponentials are inverse functions of each other: f, g are inverse functions of each other if $(f \circ g)(x) = x$ for all x in the domain of g; and $(g \circ f)(x) = x$ for all x in the domain of f.

Let $f(x) = \log_b(x)$, $g(x) = b^x$. Then $(f \circ g)(x) = \log_b(b^x) = x \log_b b = x$ for all $x \in (-\infty, \infty)$; $(g \circ f)(x) = b^{\log_b x} = x$ for all $x \in (0, \infty)$.

In particular, we have $\ln e^x = x$ for all $x \in (-\infty, \infty)$; $x = e^{\ln x}$ for all $x \in (0, \infty)$.

Example 4. (a) Solve the equation $5e^{3x} + 3 = 7$. (b) $4\ln(8+x) = 2\ln(16x + 164)$

Solution a:

Solution b:

$$5e^{3x} + 3 = 7$$

$$\implies 5e^{3x} = 4$$

$$\implies e^{3x} = \frac{4}{5}$$

$$\implies 3x = \ln(\frac{4}{5})$$

$$\implies x = \frac{1}{3}\ln(\frac{4}{5})$$

Example 5. Find the domain of $f(x) = \ln x - \ln(2 - x)$.

Solution:

5.4 Derivative of e^x and $\ln x$

We have already discussed the derivative of $e^{f(x)}$. It is $e^{f(x)}f'(x)$.

- $\frac{d}{dx}(\ln|x|) = \frac{1}{x}$ for all $x \in (-\infty, 0) \cup (0, \infty)$.
- $\frac{d}{dx}(\ln x) = \frac{1}{x}$ for all $x \in (0, \infty)$.
- If f is a function that is always positive, then using chain rule, $\frac{d}{dx}(\ln f(x)) = \frac{f'(x)}{f(x)}$.

Example 6. Differentiate $(\ln(x^2+5)^3)^5$. Solution: $5(3\ln(x^2+5))^4 \frac{6x}{x^2+5}$.