Lecture 14: Chapter 3 Part 2

Dynamic Programming CS3310

1	2	3
5	5	6

What size matrix results from this multiplication?

How many elementary multiplications take place?

1	2	3
5	5	6

29	35	41	38
74	89	104	83

When we multiply a 2×3 matrix by a 3×4 matrix, the result is a 2×4 matrix.

It takes 3 elementary multiplications to compute each value in the resulting matrix.

1	2	3
5	5	6

7	8	9	1
2	3	4	5
6	7	8	9

When we multiply a 2×3 matrix by a 3×4 matrix, the result is a 2×4 matrix.

It takes 3 elementary multiplications to compute each value in the resulting matrix.

i.e.
$$1 \times 7 + 2 \times 2 + 3 \times 6 = 29$$

1	2	3
5	5	6

29	35	41	38
74	89	104	83

It takes 3 elementary multiplications to compute each value in the resulting matrix.

• There are 8 values in the final product (2×4) .

×

- Each value requires 3 multiplications to acquire.
- Therefore, the number of elementary multiplications is $2 \times 4 \times 3 = 24$

Multiplying an $i \times j$ matrix by a $j \times k$ matrix requires

• $i \times j \times k$ elementary multiplications.

Consider the multiplying of the following four matrices of various dimensions:

$$A \times B \times C \times D$$

 $20 \times 2 \quad 2 \times 30 \quad 30 \times 12 \quad 12 \times 8$

• In what order do we have to multiply these matrices?

Consider the multiplying of the following four matrices of various dimensions:

$$A \times B \times C \times D$$

 $20 \times 2 \quad 2 \times 30 \quad 30 \times 12 \quad 12 \times 8$

- **Note**: matrix multiplication is associative.
 - i.e. The order in which we multiply them produces the same result:
 - A(B(CD)) = (AB)(CD) = A((BC)D), etc
- There are *five* ways to multiply four matrices.
- However, the order in which they are multiplied can greatly affect the # of elementary multiplications performed.

A B C D
$$20 \times 2 + 2 \times 30 + 30 \times 12 + 12 \times 8$$

Let's calculate how many elementary multiplications A(B(CD)) takes:

- \rightarrow A(B(CD))
- Multiply C × D first.
 - \circ 30 × 12 × 8 elementary multiplications
 - \circ Results in a 30 \times 8 matrix, E

A B E
$$20 \times 2 \quad 2 \times 30 \quad 30 \times 8$$

Let's calculate how many elementary multiplications A(B(CD)) takes:

- \rightarrow A(BE)
- Multiply C × D first.
 - \circ 30 × 12 × 8 elementary multiplications
 - \circ Results in a 30 \times 8 matrix, E
- Multiply B × E next.
 - \circ 2 × 30 × 8 elementary multiplications
 - \circ Results in a 2 × 8 matrix, F

A F
$$20 \times 2 \quad 2 \times 8$$

Let's calculate how many elementary multiplications A(B(CD)) takes:

- > AF
- Multiply C × D first.
 - \circ 30 × 12 × 8 elementary multiplications
 - \circ Results in a 30 \times 8 matrix, E
- Multiply B × E next.
 - \circ 2 × 30 × 8 elementary multiplications
 - \circ Results in a 2 \times 8 matrix, F
- Multiply A × F last.
 - \circ 20 × 2 × 8 elementary multiplications
 - \circ Results in a 20 \times 8 matrix

We end up with $(30 \times 12 \times 8) + (2 \times 30 \times 8) + (20 \times 2 \times 8)$ or **3,680** elementary multiplications.

$$A \times B \times C \times D$$

 $20 \times 2 \quad 2 \times 30 \quad 30 \times 12 \quad 12 \times 8$

Multiplying the arrays in different orders results in a different # of multiplications.

$$A(B(CD)) = (30 \times 12 \times 8) + (2 \times 30 \times 8) + (20 \times 2 \times 8) = 3,680$$

$$(AB)(CD) = (20 \times 2 \times 30) + (30 \times 12 \times 8) + (20 \times 30 \times 8) = 8,880$$

$$A((BC)D) = (2 \times 30 \times 12) + (2 \times 12 \times 8) + (20 \times 2 \times 8) = 1,232$$

$$((AB)C)D = (20 \times 2 \times 30) + (20 \times 30 \times 12) + (20 \times 12 \times 8) = 10,320$$

$$(A(BC))D = (2 \times 30 \times 12) + (20 \times 2 \times 12) + (20 \times 12 \times 8) = 3,120$$

The third order is clearly optimal.

- Suppose we want to multiply *n* matrices as efficiently as possible.
 - We want an algorithm that determines the optimal multiplication order.
- This optimal order depends on the dimensions of each matrix.
 - Therefore, we pass the dimensions of each matrix to the algorithm.
- A brute-force algorithm considers every possible order and chooses the minimum, as we previously did.

We can instead use dynamic programming to solve this problem much more efficiently!

- We will use a two dimensional array M to construct our solution:
 - $M[i][j] = \min \# \text{ of multiplications to multiply } A_i \text{ through } A_j, \text{ if } i < j$
 - $\circ \quad \mathbf{M}[i][i] = 0$

- When we multiply the $(k-1)_{st}$ matrix, A_{k-1} by the kth matrix, A_k , the number of columns in A_{k-1} must equal the number of rows in A_k .
 - \circ Therefore, we can let d_0 be the number of rows in A_1 and d_1 be the number of columns in A_1
 - \circ i.e. d_{k-1} is the number of rows in A_k and d_k is the number of columns in A_k

Suppose we have the following matrices:

$$A_1 \times A_2 \times A_3 \times A_4 \times A_5 \times A_6$$
 $5 \times 2 \quad 2 \times 3 \quad 3 \times 4 \quad 4 \times 6 \quad 6 \times 7 \quad 7 \times 8$
 $d_0 \quad d_1 \quad d_1 \quad d_2 \quad d_2 \quad d_3 \quad d_3 \quad d_4 \quad d_4 \quad d_5 \quad d_5 \quad d_6$

To multiply A_4 , A_5 , and A_6 , there are two possible orders:

Suppose we have the following matrices:

$$A_1 \times A_2 \times A_3 \times A_4 \times A_5 \times A_6$$
 $5 \times 2 \quad 2 \times 3 \quad 3 \times 4 \quad 4 \times 6 \quad 6 \times 7 \quad 7 \times 8$
 $d_0 \quad d_1 \quad d_1 \quad d_2 \quad d_2 \quad d_3 \quad d_3 \quad d_4 \quad d_4 \quad d_5 \quad d_5 \quad d_6$

To multiply A_4 , A_5 , and A_6 , there are two possible orders:

$$(A_4A_5)A_6 = (d_3 \times d_4 \times d_5) + (d_3 \times d_5 \times d_6)$$

$$= 4 \times 6 \times 7 + 4 \times 7 \times 8 = 392$$

$$A_4(A_5A_6) = (d_4 \times d_5 \times d_6) + (d_3 \times d_4 \times d_6)$$

$$= 6 \times 7 \times 8 + 4 \times 6 \times 8 = 528$$

$$\therefore$$
 M[4][6] = min (392, 528) = 392

The optimal order for multiplying six matrices must be one of these:

- 1. $A_1(A_2A_3A_4A_5A_6)$
- 2. $(A_1A_2)(A_3A_4A_5A_6)$
- 3. $(A_1A_2A_3)(A_4A_5A_6)$
- 4. $(A_1A_2A_3A_4)(A_5A_6)$
- 5. $(A_1A_2A_3A_4A_5)A_6$

The matrices in each set of parentheses are multiplied according to their optimal order

• i.e. in ordering 1, the optimal ordering for $A_2A_3A_4A_5A_6$ is determined using the same algorithm before its result is multiplied by A_1 .

The following equation calculates the cost of multiplying matrix 1 through 2 plus the cost of multiplying matrices 3 through 6 plus the cost of multiplying the two resulting matrices.

• $M[1][2] + M[3][6] + d_0d_2d_6$

This equation can be written more generally:

• $M[1][k] + M[k+1][6] + d_0d_kd_6$

:
$$M[1][6] = \min_{\substack{1 < k < 5}} M[1][k] + M[k+1][6] + d_0 d_k d_6$$

i.e.
$$min (M[1][1] + M[2][6] + d_0d_1d_6,$$

 $M[1][2] + M[3][6] + d_0d_2d_6,$
 $M[1][3] + M[4][6] + d_0d_3d_6,$
 $M[1][4] + M[5][6] + d_0d_4d_6,$
 $M[1][5] + M[6][6] + d_0d_5d_6)$

$$M[1][6] = \min_{\substack{1 \le k \le 5}} \min(M[1][k] + M[k+1][6] + d_0 d_k d_6)$$

- We also need to find optimal orderings for subsets of the problem (i.e. M[3][5], etc).
 - Therefore, the equation can be written even *more* generally:

$$M[i][j] = \min_{i \leq k \leq j-1} (M[i][k] + M[k+1][j] + d_{i-1}d_kd_j)$$

- A divide-and-conquer algorithm based on this property is exponential time.
- A dynamic programming algorithm is much more efficient.

<u>Algorithm Overview</u>:

- Set all entries in the main diagonal to 0.
 - i.e. M[1][1], M[2][2] etc. are 0 since it takes 0 multiplications to multiply A_i through A_i
- Compute the entries in the next diagonal above it.
 - o i.e. M[1][2], M[2][3], etc.
- Compute the entries in the next diagonal above the previous one.
 - o i.e. M[1][3], M[2][4], etc.
- Continue in this manner until we compute M[1][j].
 - This index will contain the minimum # of elementary multiplications required to multiply the matrices 1 through j (i.e. all matrices)

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

$$d_0 = 5$$
 $d_1 = 2$ $d_2 = 3$ $d_3 = 4$ $d_4 = 6$ $d_5 = 7$ $d_6 = 8$

$$M[i][i] = 0$$
 for $1 \le i \le 6$

	1	2	3	4	5	6
1	0					
2		0				
3			0			
4				0		
5					0	
6						0

$$d_0 = 5$$
 $d_1 = 2$ $d_2 = 3$ $d_3 = 4$ $d_4 = 6$ $d_5 = 7$ $d_6 = 8$

$$M[1][2] =$$

$$d_0 = 5$$
 $d_1 = 2$ $d_2 = 3$ $d_3 = 4$ $d_4 = 6$ $d_5 = 7$ $d_6 = 8$

Compute diagonal 1

$$M[1][2] = \min_{\substack{l \le k \le 1}} (M[1][k] + M[k+1][2] + d_0 d_k d_2)$$

$$= M[1][1] + M[2][2] + d_0d_1d_2$$

$$= 0 + 0 + 5 \times 2 \times 3 = 30$$

➤ M[2][3], M[3][4], M[4][5], and M[5][6] are computed in the same way.

$$d_0 = 5$$
 $d_1 = 2$ $d_2 = 3$ $d_3 = 4$ $d_4 = 6$ $d_5 = 7$ $d_6 = 8$

Compute diagonal 2

$$M[1][3] = \min_{\substack{1 \le k \le 2}} \min(M[1][k] + M[k+1][3] + d_0 d_k d_3)$$

=
$$min (M[1][1] + M[2][3] + d_0d_1d_3,$$

 $M[1][2] + M[3][3] + d_0d_2d_3)$

$$= min (0 + 24 + 5 \times 2 \times 4, 30 + 0 + 5 \times 3 \times 4)$$

= 64

➤ M[2][4], M[3][5], and M[4][6] are computed in the same way.

$$d_0 = 5$$
 $d_1 = 2$ $d_2 = 3$ $d_3 = 4$ $d_4 = 6$ $d_5 = 7$ $d_6 = 8$

Di	agonal	2				
	1	2	3	4	5	6
1	0	30	64			
2		0	24	72		
3			0	72	198	
4				0	168	392
5					0	336
6						0

$$M[1][4] =$$

$$d_0 = 5$$
 $d_1 = 2$ $d_2 = 3$ $d_3 = 4$ $d_4 = 6$ $d_5 = 7$ $d_6 = 8$

$$M[1][4] = \underset{l \le k \le 3}{minimum} \quad (M[1][k] + M[k+1][4] + d_0 d_k d_4)$$

$$= min \quad (M[1][1] + M[2][4] + d_0 d_1 d_4,$$

$$M[1][2] + M[3][4] + d_0 d_2 d_4,$$

$$M[1][3] + M[4][4] + d_0 d_3 d_4)$$

$$= min \quad (0 + 72 + 5 \times 2 \times 6,$$

$$30 + 72 + 5 \times 3 \times 6,$$

$$64 + 0 + 5 \times 4 \times 6)$$

$$= 132$$

$$d_0 = 5$$
 $d_1 = 2$ $d_2 = 3$ $d_3 = 4$ $d_4 = 6$ $d_5 = 7$ $d_6 = 8$

Compute diagonal 4

M[1][5] =

$$M[1][5] = \underset{l \le k \le 4}{minimum} (M[1][k] + M[k + 1][5] + d_0 d_k d_5)$$

$$= min (M[1][1] + M[2][5] + d_0 d_1 d_5,$$

$$M[1][2] + M[3][5] + d_0 d_2 d_5,$$

$$M[1][3] + M[4][5] + d_0 d_3 d_5,$$

$$M[1][4] + M[5][5] + d_0 d_4 d_5)$$

$$= min (0 + 156 + 5 \times 2 \times 7,$$

$$30 + 198 + 5 \times 3 \times 7,$$

$$64 + 168 + 5 \times 4 \times 7,$$

$$132 + 0 + 5 \times 6 \times 7) = \mathbf{226}$$

1 _ 5	_1	_ 2	<i>_1</i> _	_ 2	1.	_ 1	1 _	- 6	1 _	7	1 -	_ 0
$d_0 = 5$	a_1	<i>- 2</i>	a_2 -	- 3	a_3	- 4	a_4 -	- 0	a_5 –	/	a_6 -	- 8

Diagonal 4							
				_			
	1	2	3	4	5	6	
1	0	30	64	132	226		
2		0	24	72	156	268	
3			0	72	198	366	
4				0	168	392	
5					0	336	
6						0	

Compute diagonal 5

M[1][6] =

	Diagonal 5					
	1	2	3	4	5	6
1	0	30	64	132	226	
2		0	24	72	156	268
3			0	72	198	366
4				0	168	392
5					0	336
6						0

$$M[1][6] = \underset{1 \le k \le 5}{\textit{minimum}} \quad (M[1][k] + M[k+1][6] + d_0 d_k d_6)$$

$$= \min (M[1][1] + M[2][6] + d_0 d_1 d_6,$$

$$M[1][2] + M[3][6] + d_0 d_2 d_6,$$

$$M[1][3] + M[4][6] + d_0 d_3 d_6,$$

$$M[1][4] + M[5][6] + d_0 d_4 d_6$$

$$M[1][5] + M[6][6] + d_0 d_5 d_6)$$

$$= \min (0 + 268 + 5 \times 2 \times 8,$$

$$30 + 366 + 5 \times 3 \times 8,$$

$$64 + 392 + 5 \times 4 \times 8,$$

$$132 + 336 + 5 \times 6 \times 8,$$

$$226 + 0 + 5 \times 7 \times 8) = \mathbf{348} \text{ (final answer)}$$

	Diagonal 5					
	1	2	3	4	5	6
1	0	30	64	132	226	348
2		0	24	72	156	268
3			0	72	198	366
4				0	168	392
5					0	336
6						0

$$d_0 = 5$$
 $d_1 = 2$ $d_2 = 3$ $d_3 = 4$ $d_4 = 6$ $d_5 = 7$ $d_6 = 8$

Problem: Determine the minimum # of elementary multiplications needed to multiply *n* matrices and a multiplication order that produces that number.

Inputs: The # of matrices n, and an array of integers d, indexed from 0 to n, where d[i - 1] \times d[i] is the dimension of the ith matrix.

Outputs: minmult, the minimum # of elementary multiplications needed to multiply the n matrices; a two-dimensional array P from which the optimal order can be obtained. P has its rows indexed from 1 to n - 1 and its columns indexed from 1 to n. P[i][j] is the point where matrices i through j are split in an optimal order for multiplying i through j.

For example, P[1][5] = 4 would mean that $(A_1A_2A_3A_4)A_5$ is the optimal way to multiply matrices A_1 through A_5

```
int minmult (int n, const int d[], index P[][])
          int M[1...n][1...n]
          for (index i = 1; i <= n; i++)</pre>
                                  // initialize first diagonal to 0
                    M[i][i] = 0;
          for (index diagonal = 1; diagonal <= n - 1; diagonal++)</pre>
                    for (index i = 1; i <= n - diagonal; i++)</pre>
                               j = i + diagonal;
                          \min M[i][j] = (M[i][k] + M[k + 1][j] + d[i - 1] * d[k] *
                        i \leq k \leq j-1
d[j]);
               P[i][j] = a value of k that gave the minimum;
          return M[1][n];
```

The optimal order can be obtained from the array P.

• P[2][5] = 4 indicates that the optimal order for multiplying A_2 through A_5 has the following factorization: $(A_2A_3A_4)A_5$

	1	2	3	4	5	6
1	9	1	1	1	1	1
2			2	3	4	5
3				3	4	5
4					4	5
5						5

We can find the top-level factorization by visiting P[1][n]

- n = 6, P[1][6] = 1• $A_1(A_2A_3A_4A_5A_6)$
- Next we determine the factorization of multiplying A_2 A_6 :

$$\circ$$
 P[2][6] = 5

$$\circ (A_2A_3A_4A_5)A_6$$

- We now have $A_1((A_2A_3A_4A_5)A_6)$
- To determine the factorization of A_2 A_5 :

$$\circ$$
 P[2][5] = 4

$$\circ$$
 $(A_2A_3A_4)A_5$

$$\circ$$
 P[2][4] = 3

$$\circ \quad (A_2A_3)A_4)$$

• Final: $A_1((((A_2A_3)A_4)A_5)A_6)$

	1	2	3	4	5	6
1	7	1	1	1	1	1
2			2	3	4	5
3				3	4	5
4					4	5
5						5

In-Class Exercise

Find the optimal order, and its cost, for evaluating the product of the following matrices:

$$A_1 \times A_2 \times A_3 \times A_4 \times A_5$$

 $10 \times 4 \quad 4 \times 5 \quad 5 \times 20 \quad 20 \times 2 \quad 2 \times 50$

Show the final arrays M and P.

$$M[i][j] = \min_{i \leq k \leq j-1} (M[i][k] + M[k+1][j] + d_{i-1}d_kd_j)$$

P[i][j] = the value of k when M[i][j] is chosen