Carnegie Mellon University

Motivation

- Wildfires increasing in size, frequency¹ -> need for drone exploration of wildfires
- Smoke from wildfire obstructs drone sensor visibility
- Reduces likelihood of observing targets
- Must account for environmental process model (smoke) in path planning algorithm to effectively explore amidst changing visibility states
- Use ergodic trajectory optimization (ETO)
- Plans trajectories proportional to information distribution in search area

Background

- Multi-Agent ETO
- \circ For an expected information density ϕ , we evaluate the quality of trajectories λ using the *ergodic metric*²:

$$\mathcal{E}(\boldsymbol{\lambda}, \Phi) = \sum_{k \in \mathbb{N}^v} \Lambda_k \left(c_k(\boldsymbol{\lambda}_{0:T-1}) - \int_{\mathcal{S}} \Phi(\boldsymbol{\lambda}) F_k(\boldsymbol{\lambda}) d\boldsymbol{\lambda} \right)^2$$

where c_k are the time-averaged trajectory statistics

$$c_k(t) = \frac{1}{T} \sum_{i=1}^{N} \int_0^T F_k(\lambda_i(t)) dt$$

and F_k is the cosine Fourier transform for the k^{th} mode

- Information Theory
- We calculate the expected information distribution φ as the *shannon entropy*³ H of a sensor measurement D:

$$H(D) = -\sum_{d \in D} P(d, m_s) \log_2 P(d, m_s) \longrightarrow \Phi_t = H(\mathcal{D})$$

where m_s is the sensor model coefficient associated with D

Multi-Agent Ergodic Exploration of Dynamic Environments

Elena Wittemyer ^{1 2}, Ananya Rao 2 ², Howie Choset ²

¹ Yale University

² Carnegie Mellon University

Method

Results

Shannon Entropy: Planning over

Discussion

• Information measure comparison

- Iterations to reach ergodicity:
- 1. Shannon entropy
- 2. Weighted uncertainty
- 3. Uncertainty
- Uncertainty Map Reduction*
- 1. Shannon entropy
- 2. Weighted uncertainty
- 3. Uncertainty
- *Shannon entropy and weighted uncertainty approx. equal when there is no sensor noise

• Exploration method comparison

- Ergodic search static targets:
 - 296% more information than lawnmower
 - 75.4% more information than greedy
- Ergodic search moving targets:
 - 275% more information than lawnmower
 - 51.9% more information than greedy

Future Work

- Use real-world wildfire datasets
 - Generate entropy maps from wildfire images
- Consider heterogeneous multi-agent team allocation
 - Assign exploration objectives on basis of agent capabilities

Acknowledgements

This research project was made possible through funding from the CMU RISS program. I would like to thank Ananya Rao and Howie Choset for their guidance on this project. I would also like to thank Rachel Burcin, John Dolan, and Morgan Grimm for organizing the RISS program.

References

- 1. Westerling, Anthony LeRoy. "Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring." *Philosophical Transactions of the Royal Society B: Biological Sciences* 371.1696 (2016): 20150178.
- 2. Mathew, George, and Igor Mezić. "Metrics for ergodicity and design of ergodic dynamics for multi-agent systems." *Physica D: Nonlinear Phenomena* 240.4-5 (2011): 432-442.
- 3. Candela Garza, Alberto. *Bayesian Models for Science-Driven Robotic Exploration*. Diss. Carnegie Mellon University, 2021.