# Lecture 23: Likelihood ratio tests

Ciaran Evans

### Course logistics

- ▶ HW 6 due today, HW 7 on course website
- ► Exam 1 done (woo!)
- Exam 2 plan: released on April 4, due April 11
  - ► Focus on convergence, hypothesis testing, maybe confidence intervals
  - Would cover HW 5 HW 8

## Last time: binary classification and classification error

Consider data (X,Y) with  $X\in\mathbb{R}^d$  and  $Y\in\{0,1\}.$  Fit a model to estimate

$$p(x) = P(Y = 1|X = x)$$

Our binary predictions are

$$\widehat{Y} = \begin{cases} 1 & p(x) \ge h \\ 0 & p(x) < h \end{cases}$$

The **classification error** is given by  $P(\hat{Y} \neq Y)$ .

**Result:** For any binary classifier, h = 0.5 minimizes classification error.

| Changing the threshold Threshold of 0.7: | d Tri         | ndeoff: |       | , spec? | 19  |
|------------------------------------------|---------------|---------|-------|---------|-----|
|                                          |               | Actual  |       | sens:   | 154 |
|                                          |               | Y = 0   | Y = 1 | 32/G    | 290 |
| Predicted                                | $\hat{Y} = 0$ | 412     | 136   |         |     |

Threshold of 0.3:

|           |                 | Actual |     |  |  |
|-----------|-----------------|--------|-----|--|--|
|           |                 | Y = 0  | Y=1 |  |  |
| Predicted | -               |        | 49  |  |  |
|           | $\widehat{Y}=1$ | 115    | 241 |  |  |

sens: 241)

Spec: 412

154



## Binary classification vs. hypothesis testing

- Both binary classification and hypothesis testing involve deciding between two options
- ► Error metrics for both involve looking at correct decisions, false positives (type I errors), false negatives (type II errors)

**Question:** How do binary classification and hypothesis testing differ?

## Binary classification vs. hypothesis testing

#### Binary classification:

- Can use training data to estimate performance and so choose a threshold
- Thresholds are chosen to maximize some combination of sensitivity and specificity

#### Hypothesis testing:

- Conceptually a two-step approach: control type I error, then hope to have good power (i.e., don't consider tests which have high type I error)
- Only see one test result; don't get to estimate type I error or power from a single test
- Want theoretical guarantees that (if assumptions are met) type I error can be controlled at desired level

## Binary classification vs. hypothesis testing

- Usual approach to binary classification: maximize some combination of sensitivity and specificity
- Neyman-Pearson classification<sup>1</sup>: control probability of false positives (1 - specificity) at desired level, then try to maximize sensitivity

**Question:** Why might you choose one of these approaches over the other?

<sup>&</sup>lt;sup>1</sup>Scott, C., & Nowak, R. (2005). A Neyman-Pearson approach to statistical learning. *IEEE Transactions on Information Theory*, 51(11), 3806-3819.

## Previously: Neyman-Pearson test

**Example:** Let  $X_1, ..., X_n \stackrel{iid}{\sim} Exponential(\theta)$ , with pdf  $f(x|\theta) = \theta e^{-\theta x}$ . We want to test

$$H_0: \theta = \theta_0$$
  $H_A: \theta = \theta_1$ ,

where  $\theta_1 < \theta_0$ . The Neyman-Pearson test rejects when

$$\frac{L(\theta_1|\mathbf{X})}{L(\theta_0|\mathbf{X})} > k.$$

Question: What should I do if I want to test the hypotheses

$$H_0: \theta = \theta_0$$
  $H_A: \theta \neq \theta_0$ 

#### Likelihood ratio test

Let  $X_1, ..., X_n$  be a sample from a distribution with parameter  $\theta \in \mathbb{R}^d$ . We wish to test  $H_0: \theta \in \Theta_0$  vs.  $H_A: \theta \in \Theta_1$ .

The **likelihood ratio test** (LRT) rejects  $H_0$  when

The likelihood ratio test (LRT) rejects 
$$H_0$$
 when 
$$\sup_{\theta \in \Theta_1} L(\theta|\mathbf{X}) = \sup_{\theta \in \Theta_1} L(\theta|\mathbf{X}) > k,$$
 where  $k$  is chosen such that  $\sup_{\theta \in \Theta_0} \beta_{LR}(\theta) \leq \alpha$ .  $\subseteq$  catrol type I

 $\theta \in \Theta_0$ o the

## Example

Let  $X_1, ..., X_n \stackrel{iid}{\sim} Exponential(\theta)$ , with pdf  $f(x|\theta) = \theta e^{-\theta x}$ . We want to test

$$H_0: \theta = \theta_0 \qquad H_A: \theta \neq \theta_0$$

$$\frac{\partial \varphi}{\partial \theta} = \frac{\partial \varphi}{\partial \theta}$$

### Example

Let  $X_1,...,X_n \stackrel{iid}{\sim} Exponential(\theta)$ , with pdf  $f(x|\theta) = \theta e^{-\theta x}$ . We want to test

want to test 
$$H_0: \theta = \theta_0 \qquad H_A: \theta \neq \theta_0$$

$$\text{Reject : } f \qquad (\Theta_0 \, \overline{X})^{-n} \exp \left\{ \Theta_0 \, n \, \overline{X} - n \right\} \qquad \Rightarrow \qquad K$$

$$= 7 \qquad -n \log \left( \Theta_0 \, \overline{X} \right) + n \Theta_0 \, \overline{X} - n \qquad > \log \left( \mu \right)$$

$$= 9 \qquad \Theta_0 \, \overline{X} - \log \left( \Theta_0 \, \overline{X} \right) \qquad > \qquad \frac{\log \left( \mu \right)}{n} + 1$$



## Example: linear regression with normal data

Suppose we observe  $(X_1, Y_1), ..., (X_n, Y_n)$ , where  $Y_i = \beta^T X_i + \varepsilon_i$  and  $\varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$ . Partition  $\beta = (\beta_{(1)}, \beta_{(2)})^T$ . We wish to test  $H_0: \beta_{(2)} = 0$  vs.  $H_A: \beta_{(2)} \neq 0$ .