Домашнее задание 19

Ткачев Андрей, группа 166

16 февраля 2017 г.

Задача 1. Здесь и далее для упрощения восприятия будем строить схему не для $f:\{0,1\}^{\binom{n}{2}} \to \{0,1\}$, а для $f:\{0,1\}^{n^2} \to \{0,1\}$, т.е. схему принимающую на вход матрицу смежности задающую граф (т.е. вход будет содержать дублирующиеся данные, т.к. матрица смежности обычного графа симметрична относительно главной диагонали). Тогда вход схемы — переменные x_{ij} , где $x_{ij} = 1$, если вершины i и j соединены ребром, и $x_{ij} = 0$ в противном случае.

Матрица смежности графа, содержащего изоолированные вершины, примечательна тем, что одна из ее строк — нулевая. Действительно, в изолированную вершину *i* ребра не ведут, а значит и строка *i* нулевая (верно и обратное: если есть нулевая строка, то есть и изолированная вершина). Т.е. нам необходимо узнать, есть ли в матрице нулевая строка. Схема, которая это делает:

Под \vee_n здесь понимается подсхема из каскада дизъюнкций размера n-1, который вычисляет конъюнкцию n аргументов.

Размер данной схемы $n^2 + (n-1)^2 + n + (n-1) = O(n^2)$.

Задача 2. Пусть вершины i, j, k графа G образуют треугольник. Тогда в матрице смежности графа G в ячейках a_{ij}, a_{ik}, a_{kj} должны стоять единицы. Получается, для того чтобы проверить, есть ли в графе треугольник или нет, необходимо всего лишь узнать есть ли три такие переменные x_{ij}, x_{ik}, x_{kj} на входе, что $i \neq j \neq k \neq i$ и $x_{ij} = x_{ik} = x_{kj}$. Тогда схема будет вычислять формулу $\neg \lor_{i < j < k \leq n} (x_{ij} \land x_{ik} \land x_{kj})$.

В виде рисунка данная схема выглядит грамоздко, потому довольствуемся ее словесным описанием: каждые два элемента в строке i, начиная с элемента i+1 (небольшая оптимизация, использующая то, что матрица симетрическая) соединены конъюнкцией между собой, а также с третьим аргументом, стоящем в столбце с индексом второго из множителей и строке с номером первого множителя; все такие блоки конъюнкий объединяются дизъюнкцией, а потом от итоговой дизъюнкции вычислсяется отрицание. Таким образом, если в графе есть трегуольник, то существуют i < j < k (просто упорядоченные номера вершин), для которых конъюнкция истинна, а значит и дизъюнкция истинна, значит результат схемы — отрицание истины. И наоборот, если треугольников нет, то в любом из слагаемых найдется хотябы один множитель ноль, а значит и дизъюнкция ложна, а схема вычислила истину. Размер схемы пропорционален числу троек чисел $1 \le i < j < k \le n$, которых не больше $\binom{n}{3}$, т.е. размер схемы $O(n^3)$.

Задача 3. Вспомним признак существования эйлерового цикла в связном графе G(V, E), |V| = n: граф эйлеров, когда он связен и степени всех его вершин четны. Таким образом, нам необходимо построить схему, определяющую связен ли граф, и проверяющую четность степеней вершин.

По марице смежности четность вершины i проверяется легко: в i-ой строке стоит четное число единиц, а значит сумма \oplus всех элементов строки равна 0. Значит, чтобы проверить, является ли i-ая вершина четной, необходимо n-1 элементов сложения \oplus (получается из базисных функций: двух конъюнкций, двух отрицаний и дизъюнкции). Тогда степени всех вершин четны, когда результат всех таких каскадов \oplus (по одному каскаду из n-1 эл-та \oplus на строку)

равен единице. Проверка последнего осуществляется за n-1 конъюнкцию. Т.е. проверка степеней на «эйлеровость» требует $n(n-1)+n-1=O(n^2)$ элементов.

Проверка графа на связность осуществляется путем возведения матрицы смежности в степень n-1 при помощи булева умножения матриц. Элемент булева произведения матриц A и B есть $(A \times B)_{ij} = \vee_k (A_{ik} \wedge B_{kj})$. Согласно теореме о возведнии матрицы смежности в степень k, элемент A^k_{ij} равен 1, когда существует маршрут из вершины i в вершину j длины k, и 0 — в противном случае. Значит звершины i есть хоть какой-то путь в вершину j, означает, что $\vee n-1_{k=1}A^k_{ij}=1$. Значит граф связен, когда $\wedge_{j=1}^{n-1}\vee_{k=1}^{n-1}A^k_{1j}=1$ (т.е. существует маршрут, а значит и путь, из вершины 1 в любую другую; максимальная длина пути n-1). Произведение матриц, осущевтсляется через реализацаю формулы привиденной выше — за n^2 конъюнкций и $(n-1)^2$ дизъюнкцию, т.е. за $O(n^2)$ элементов. Тогда возведение в степень n-1 будет стоит $O(n^3)$ элементов схемы (т.е. каждый новый результат — произведение последней вычесленной матрицы и начальной). Проверка же на связность с уже возведенными матрицами осуществляется за $(n-1)^2$ дизъюнкицю и n-1 конъюнкцию, т.е. за $O(n^2)$ элементов. Значит, проверка на связность + возведение в степени матрицы смежноси обойдется в $O(n^3)$ элементов.

Тогда результат работы схемы является конъюнкция результата проверки на четность и результата проверки на связность.

Задача 4. Отметим, что условие не совсем верно. Так, например, функцию $f = x \wedge \bar{x}$ невозможно записать только конъюнкцией и дизъюнкцией, хотя она монотонна (ибо констатнта). Поэтому несколько ослабим утверждение задачи: докажем не для всех монотонных, а ддя монотонных, не константных функций.

Пусть есть монотонная функция f. Пусть она принемает значение 1 на наборе \vec{x}_i . Рассмотрим функцию $g_{x_i} = \wedge_{x \in \vec{x}_i} x$. Поймем, что $\forall \vec{x}_0 \geq \vec{x}_i$: $g_{x_i}(\vec{x}_0) = g_{x_i}(\vec{x}_i) = f(\vec{x}_i) = 1$, значит для любых наборов $x_1, \ldots x_n : g_{(x_1, \ldots, x_n)} \leq f(x_1, \ldots, x_n)$. Рассмотрим тогда функцию $f_0 = \bigvee_{f(\vec{x})=1} g_{\vec{x}}$. Заметим, что f_0 истинна на тех наборах, на которых истинна f и если f_0 истинна на каком-то наборе \vec{x}_0 , то сущесвует такое слагаемое $g_{\vec{x}_1}$, что $\vec{x}_0 \geq \vec{x}_1$, а значит, $f(\vec{x}_1) \geq f(\vec{x}_0) = 1$ по построению $g_{\vec{x}_0}$. Значит $f_0 = f$, так как наборы на которых они принимают значение 1 совпадают.

Покажем, теперь, что f_0 записывается схемой с $O(n2^n)$ элементами. Максимальное число слагаемых в f_0 равно $\binom{n}{2}+\binom{n}{3}+\ldots+\binom{n}{n}=2^n-1$, значит дизъюнкций не больше 2^n . В каждом слагаемом не более n переменных, а значит и конъюнкций в слагаемом не больше n, значит размер схемы не более $n+2^n-1+n(2^n-1)=O(n2^n)$.

Задача 5. Оценим сверху число различных схем размером не более $s \ge n$. В базисе $\{\oplus, \cdot, 1\}$ схема является последовательностью функций, каждая из которых есть либо одна из переменных (которых не более $n \le s$), либо одна из базисных функций, примененна не более чем к двум предыдущим элементам схемы.

Закодируем каждую схему двоичным числом, длиной $s(3+2(\lfloor log_2n\rfloor+1))$ бит (3 бита на кодирование типа элемента схемы — одна из 3-х базисных фукнций, переменная или «ничего» (длина схемы может быть и меньше s); каждый элемент схемы кодируется $\lfloor log_2n\rfloor+1$ битами — своим порядковым номером, значит для базисных функций от двух переменных там будет лежать два числа, для переменных там будет лежать номер переменной, для всего остального — например нули).

Данное кодирование инъективно: разным схемам соответствуют разные коды. Значит схем размера s не больше, чем таких последовательностей, т.е. не более, чем $2^{s(3+2(\lfloor log_2n\rfloor+1))} \leq 2^{s(2s+5)} = O(2^{s^2})$. При $s=n^{100}$ получаем, что схем размера не больше $n^{100}-O(2^{n^{200}})$.

Всего функций размера $n-2^{2^n}$. Но заметим, что $\lim_{n\to\infty}\frac{C_0\cdot n^{200}}{C_1\cdot 2^n}=0$ (C — некоторые константы), значит для достаточно больших n число различных функций превосходит число схем размера n^{100} , т.е. есть функция, которая не вычислима схемой размера n^{100} или меньше.