Data Analytics & Machine Learning Using Python

Session: 10 June 2020

Data Visualization using Seaborn

- Seaborn is an open source, licensed python library providing high level API for visualiazing the data using Python Programming Language
- · Seaborn helps resolving two major problems faced by Matplotlib
 - Default Matplotlib Parameters
 - Working with DataFrames

Important Features of Seaborn

- · Visualizing Univariate and Bivariate data
- · Visualizing Linear regression models
- Plotting statistical Time-Series Data
- · Seaborn works well with Numpy & Pandas Data Structures
- · It has built in themes for styling matplotlib graphics

```
In [1]: # importing Libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

```
In [5]: print(sb.get_dataset_names(),end=" ")
```

C:\Users\Shashank Shekhar\Anaconda3\lib\site-packages\seaborn\utils.py:384: UserWarning: No parser was explicitly specified, so I'm using the best available HTML parser for this system ("lxml"). Th is usually isn't a problem, but if you run this code on another system, or in a different virtual environment, it may use a different parser and behave differently.

The code that caused this warning is on line 384 of the file C:\Users\Shashank Shekhar\Anaconda3\l ib\site-packages\seaborn\utils.py. To get rid of this warning, pass the additional argument 'featu res="lxml"' to the BeautifulSoup constructor.

```
gh_list = BeautifulSoup(http)
['anscombe', 'attention', 'brain_networks', 'car_crashes', 'diamonds', 'dots', 'exercise', 'flight
s', 'fmri', 'gammas', 'geyser', 'iris', 'mpg', 'planets', 'tips', 'titanic']
```

```
In [14]: data = pd.read_csv('titanic.csv')
data.head(10)
```

Out[14]:		survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	aliv
	0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	NaN	Southampton	n
	1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	С	Cherbourg	ye
	2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	NaN	Southampton	ye
	3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	С	C Southampton	
	4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	NaN	Southampton	n
	5	0	3	male	NaN	0	0	8.4583	Q	Third	man	True	NaN	Queenstown	n
	6	0	1	male	54.0	0	0	51.8625	S	First	man	True	Е	Southampton	n
	7	0	3	male	2.0	3	1	21.0750	S	Third	child	False	NaN	Southampton	n
	8	1	3	female	27.0	0	2	11.1333	S	Third	woman	False	NaN	aN Southampton	
	9	1	2	female	14.0	1	0	30.0708	С	Second	child	False	NaN	Cherbourg	ye

```
In [15]: sb.countplot(data['survived'])
   plt.title("No of Survived Passengers")
   plt.xlabel('Survival')
   plt.ylabel('Count')
   plt.show()
```


In [27]: 3survive = sb.countplot(x = 'pclass', hue = 'survived', palette = 'Set3', data = data)
 survive.set(title = 'Passenger status (Survived/Died) against Passenger Class', xlabel = 'Passenger
 plt.legend(loc='upper right')
 plt.show()


```
In [3]: # Loading tips data
tips=sns.load_dataset('tips')
tips
```

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

```
In [30]: # bar graph plot 1
sns.barplot(x='day',y='tip',data=tips)
```

Out[30]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1af66fa88>


```
In [138]: # bar graph plot 2
    sns.barplot(x='day',y='total_bill',data=tips)
    plt.xlabel('Days')
    plt.ylabel('Total Bill')
    plt.xticks(rotation=90)
```

Out[138]: (array([0, 1, 2, 3]), <a list of 4 Text xticklabel objects>)


```
In [38]: # bar graph with hue and palette
sns.barplot(x='day',y='tip',hue='sex',data=tips,palette='Set2')
```

Out[38]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1af8e64c8>


```
In [39]: sns.barplot?
```

```
In [49]: # bar graph with hue_smoker and palette
sns.barplot(x='day',y='total_bill',data=tips,hue='smoker',palette='Blues')
```

Out[49]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1af46ce08>


```
In [50]: # horizontal bar plot
sns.barplot(x='total_bill',y='day',data=tips,palette='spring')
```

Out[50]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1aebabcc8>


```
In [60]: # bar plot order
sns.barplot(x='day',y='total_bill',data=tips,palette='OrRd',order=['Sat','Thur','Fri','Sun'])
```

Out[60]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b0bc1b08>


```
In [61]: sns.barplot?
```

```
In [63]: # bar plot median in place of mean
from numpy import median
sns.barplot(x='day',y='total_bill',data=tips,estimator=median)
```

Out[63]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b0c36208>


```
In [67]: # new bar plot smoker & tip and palette
sns.barplot(x='smoker',y='tip',data=tips,estimator=median,hue='sex',palette='coolwarm')
```

Out[67]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b0ce0388>


```
In [6]: # bar plot with attribute CI
sns.barplot(x='smoker',y='tip',data=tips,ci=0)
```

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x1e09cd87988>


```
In [104]: # bar plot with capsize
sns.barplot(x='day',y='total_bill',data=tips,palette='spring',capsize=1)
```

Out[104]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b2aaf4c8>


```
In [80]: # bar plot with capsize & hue
sns.barplot(x='day',y='total_bill',data=tips,palette='spring',capsize=0,hue='sex')
```

Out[80]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b11a3fc8>


```
In [10]: # new bar plot with size and tip
sns.barplot(x='size',y='tip',data=tips,palette='Spectral',capsize=0)
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x1e09cfcb488>


```
In [83]: # bar plot with color instead of palette
sns.barplot(x='size',y='tip',data=tips,color='green',capsize=0)
```

Out[83]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b131ecc8>


```
In [88]: # bar plot with saturation
sns.barplot(x='size',y='tip',data=tips,color='red',capsize=2,saturation=0.6)
```

Out[88]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b1632308>

Dist Plot

```
In [89]: #num=np.random.randn(150)
```

In [96]: tips

0	$\Gamma \cap C $	١.
UHT	1 9h	٠,

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

```
In [115]: sns.distplot?
```

```
In [97]: # dist plotting
    sns.set_style('darkgrid')
    sns.distplot(tips['total_bill'])
```

Out[97]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b2786108>


```
In [111]: # dist plot with different color
sns.distplot(tips['total_bill'],color='red')
```

Out[111]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b2c1b148>


```
In [100]: # dist plot with name on x-axis
label_x=pd.Series(tips['total_bill'],name='Total Bill')
```

In [101]: # plot dist plot
sns.distplot(label_x)

Out[101]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b2993d48>

In [112]: # dist plot with vertical
sns.distplot(label_x, vertical=True)

Out[112]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b2deba08>

In [113]: # dist plot with hist
sns.distplot(label_x,hist=False)

Out[113]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b2e84248>

In [114]: # dist plot with rug
sns.distplot(label_x, rug=True, hist=False)

Out[114]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b2e48e48>

Box Plot

In [116]: # load tips
tips

Out[116]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

In [117]: tips.head()

Out[117]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24 59	3 61	Female	No	Sun	Dinner	4

```
In [118]: # horizontal box plot for size
sns.boxplot(x=tips['size'])
```

Out[118]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b2f74788>


```
In [119]: # box plot for total_bill
sns.boxplot(x=tips['total_bill'])
```

Out[119]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b2fb0448>


```
In [120]: # box plot for 2 variable
sns.boxplot(x='sex',y='total_bill',data=tips)
```

Out[120]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b302ae88>


```
In [122]: sns.boxplot(x='day',y='total_bill',data=tips)
```

Out[122]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b30c7d88>


```
In [125]: # box plot with hue
sns.boxplot(x='day',y='total_bill',data=tips, hue='sex',palette='husl')
```

Out[125]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b4245788>


```
In [126]: sns.boxplot(x='day',y='total_bill',data=tips, hue='smoker',palette='coolwarm')
```

Out[126]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b43294c8>


```
In [127]: # box plot with hue=time
sns.boxplot(x='day',y='total_bill',data=tips, hue='time',palette='coolwarm')
```

Out[127]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b4415608>

In [130]: # Load Iris dataset iris=sns.load_dataset('iris') iris.head()

Out[130]:

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	14	0.2	setosa

```
In [137]: # plot box
plt.figure(figsize=(10,7))
    sns.boxplot(data=iris,palette='coolwarm')
    plt.xticks(rotation=45)
    plt.xlabel('Iris Lenght')
    plt.ylabel('Actual Length')
    plt.title('Length of Petal and Sepal')
```

Out[137]: Text(0.5, 1.0, 'Length of Petal and Sepal')


```
In [134]: # box plot with orient
sns.boxplot(data=iris,palette='coolwarm',orient='horizontal')
```

Out[134]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b465ff48>


```
In [142]: #tips data and swarm plot
sns.boxplot(x='day',y='total_bill',data=tips,palette='husl')
sns.swarmplot(x='day',y='total_bill',data=tips,color='1')
```

Out[142]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b4d05d48>

Strip Plot

```
In [144]: sns.stripplot(x=tips['tip'],color='green')
```

Out[144]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b4e0ec48>


```
In [145]: sns.stripplot(x=tips['total_bill'])
```

Out[145]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b4df6f08>


```
In [156]: # strip plot for 2 variables
sns.stripplot(x='day',y='total_bill',data=tips,jitter=1)
```

Out[156]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b6156ec8>


```
In [163]: # horizontal strip plot
    sns.stripplot(x='total_bill',y='day',data=tips,linewidth=0.5)
    plt.xlabel='Total'
    plt.ylabel='Days'
    plt.title("Days Vs Total Bill Scattering")
    plt.yticks(rotation=45)
    plt.legend()
```

No handles with labels found to put in legend.

Out[163]: <matplotlib.legend.Legend at 0x1e1b6339508>


```
In [11]: # stripplot with hue
sns.stripplot(x='day',y='total_bill',data=tips,hue='sex',jitter='0.9')
plt.legend(loc='upper right')
```

Out[11]: <matplotlib.legend.Legend at 0x1e09d06dec8>

Violin Plot

```
In [173]: sns.violinplot(x=tips['tip'])
```

Out[173]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b8faaac8>

In [172]: tips.head()

Out[172]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

In [174]: sns.violinplot(x='size',y='total_bill',data=tips)

Out[174]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b903c288>

In [180]: sns.violinplot(x='day',y='total_bill',data=tips,order=['Thur','Sun','Sat','Fri'],hue='sex',palette=

Out[180]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b9235cc8>

In [181]: sns.violinplot(x='day',y='total_bill',data=tips,hue='sex',palette='RdPu',split=True)

Out[181]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b91ef808>

In [186]: sns.violinplot(x='day',y='total_bill',hue='sex',inner='quartile',data=tips,scale='count',split=True)

Out[186]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b8c35308>

In [187]: sns.violinplot(x='day',y='total_bill',hue='sex',inner='stick',data=tips,scale='count',split=True)

Out[187]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b8e06288>

KDE - Kernel Density Estimation

In [188]: mean=[0,0] cov=[[0.2,0],[0,3]]

In [199]: x_axis,y_axis=np.random.multivariate_normal(mean,cov,size=40).T

In [201]: sns.kdeplot(x_axis,color='green',shade=True)

Out[201]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b6f8c788>

In [205]: sns.kdeplot(x_axis,y_axis,shade=True,color='purple')

Out[205]: <matplotlib.axes._subplots.AxesSubplot at 0x1e1b8f29fc8>

In []: