Math 211 (Modern Algebra II), HW# 4,

Spring 2025; Instructor: Sam Hopkins; Due: Wednesday, March 19th

- 1. Let $1 \le k \le n$ be integers. Prove that k is a unit in the ring $\mathbb{Z}/n\mathbb{Z}$ if and only if $\gcd(k,n) = 1$. Conclude that the following quantities are all equal to Euler's totient function $\varphi(n)$:
 - the order of the group of units $(\mathbb{Z}/n\mathbb{Z})^{\times}$;
 - the number of generators of $(\mathbb{Z}/n\mathbb{Z}, +)$;
 - the degree of the *n*th cyclotomic polynomial $\Phi_x(n)$;
 - $[\mathbb{Q}(\omega):\mathbb{Q}]$, where ω is a primitive nth root of unity.
- 2. Let $\Phi_n(x)$ denote the nth cyclotomic polynomial. Prove the following about these $\Phi_n(x)$:
 - (a) If n = p is prime, then $\Phi_p(x) = 1 + x + x^2 + \dots + x^{p-1}$.
 - (b) If n = 2p is twice an odd prime p, then $\Phi_{2p}(x) = \Phi_p(-x)$.
 - (c) If $n = p^k$ is a power of the prime p, then $\Phi_{p^k}(x) = \Phi_p(x^{p^{k-1}})$.
- 3. Let n > 2, and let ω be a primitive nth root of unity. Prove that $[\mathbb{Q}(\omega + \omega^{-1}) : \mathbb{Q}] = \varphi(n)/2$. **Hint:** It suffices to show $[\mathbb{Q}(\omega) : \mathbb{Q}(\omega + \omega^{-1})] = 2$ (why?). To show $[\mathbb{Q}(\omega) : \mathbb{Q}(\omega + \omega^{-1})] \le 2$, find a degree two polynomial $f(x) \in \mathbb{Q}(\omega + \omega^{-1})[x]$ which has ω as a root. To show that $\mathbb{Q}(\omega + \omega^{-1}) \neq \mathbb{Q}(\omega)$, think about which of these are subfields of \mathbb{R} versus \mathbb{C} .
- 4. (a) Let $f(x) = ax^3 + bx^2 + cx + d \in \mathbb{Q}[x]$ be a cubic polynomial (so $a \neq 0$). Show that the polynomial $\frac{1}{a} \cdot f(x \frac{b}{3a})$ has the form $x^3 + px + q$ for $p, q \in \mathbb{Q}$.
 - (b) Let $f(x) = x^3 + px + q \in \mathbb{Q}[x]$ with $p \neq 0$ and $q \neq 0$. Show that any root of f(x) has the form $C \frac{p}{3C}$ where

$$C = \sqrt[3]{\frac{-q}{2} + \sqrt{\frac{q^2}{4} + \frac{p^3}{27}}}.$$

Here we interpret $\sqrt[3]{}$ and $\sqrt{}$ as meaning any cube root and any square root. (This solution to the cubic equation is often called $Cardano's\ formula$.)

(c) Conclude that if $f(x) \in \mathbb{Q}[x]$ is any cubic polynomial, then the splitting field of f(x) is a radical extension of \mathbb{Q} .