

Performance Variability in Zero-shot Classification

 $\mathsf{Mat}\mathsf{ias}\ \mathsf{Molina}^1$ · $\mathsf{Jorge}\ \mathsf{S}\mathsf{ánchez}^{1,2}$

¹ Universidad Nacional de Córdoba, Argentina. ²CONICET

Motivation

Zero-shot classification (ZSC) is the task of learning predictors for classes not seen during training.

- How much does the ZSC performance vary over different class partitions?
- Is it enough to compare only the precisions to choose between one method or another?

Problem setup

Given a training set

$$\mathcal{D}^{tr} = \{(x_i, y_i) \mid x_i \in \mathcal{X}^{tr}, y_i \in \mathcal{Y}^{tr}\}$$

Goal:

- Learn $f: \mathcal{X} \to \mathcal{Y}$ from \mathcal{D}^{tr}
- Use f to classify images from a different set of categories \mathcal{Y}^{ts} . Where $\mathcal{Y}^{tr} \cap \mathcal{Y}^{ts} = \emptyset$

Variability Problem

Two ZSC methods: SJE and EZSL over 20+ train-test random partitions:

		SUN	CUB	AWA1	AWA2
Avg. acc.	ESZSL	55.90 (1.95)	53.49 (2.10)	69.66 (9.94)	71.10 (10.94)
	SJE	59.16 (2.37)	56.08 (3.03)	68.85 (7.96)	68.84 (11.16)
	p-value	0.000001	0.0012	0.7024	0.5028
Avg.	ESZSL	55.92 (1.94)	53.81 (2.20)	69.34 (9.02)	71.48 (9.54)
per-class	SJE	59.73 (2.17)	56.19 (2.44)	69.48 (8.27)	69.34 (9.63)
acc.	p-value	0.0000005	0.0000024	0.8736	0.1762

Ensemble learning

Ensemble of n ESZSL models trained with a proportion s of the original training set. For n = 90:

	s 0.3	0.5	0.7	0.9	baseline
SUN	55.61 (2.16	6) 56.81 (2.02	2) 56.77 (1.98)	57.03 (1.73)	56.91 (1.63)
CUB	50.89 (2.92	2) 53.45 (2.84	a) 54.39 (2.84)	54.83 (2.72)	54.80 (2.82)
AWA1	`		(9) 69.70 (7.63)		
AWA2	66.90 (3.70	0) 70.39 (4.23	3) 72.16 (4.26)	73.13 (4.52)	73.26(4.81)

- 1 Strong performance variability (less in fine-grained datasets (CUB, SUN)).
- 2 The accuracy difference might bias the selection between the methods:
- 3 p-values (Wilcoxon signed-rank test): for the fine-grained cases we can reject the null hypothesis.
- 1 As the proportion s increases, the result approaches to the baseline.
- 2 The standard deviation may marginally decrease but with a considerable loss in performance (more noticeable in coarse-grained cases)
- 3 The use of ensemble does not lead to an increase on the overall ZSC performance.

Conclusions

- 1 The ZSC task suffers the problem of performance variability w.r.t the class partitions.
- 2 The accuracy difference might bias the selection between one model or another.
- 3 It is important to consider the variability to compare different methods.
- 4 The ensemble learning is not enough to reduce the variability without losing precision.
- **5** As general conclusion, we suggest to incorporate the variability to obrain a more comprehensive evaluation protocol in ZSC.

References

- [1] Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of output embeddings for fine-grained image classification. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2015.
- [2] B. Romera-Paredes and P. Torr. An embarrassingly simple approach to zero-shot learning. In *International Conference on Machine Learning*, pages 2152–2161, 2015.
- Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata. Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly. *IEEE transactions on pattern analysis and machine intelligence*, 2018.