ΓΟCT 2.759-82

Группа Т52

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ. ЭЛЕМЕНТЫ АНАЛОГОВОЙ ТЕХНИКИ

Unified system for design documentation. Graphic designations in diagrams. Elements of analogue technique

MKC 01.080.40 31.180

Дата введения 1983-07-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Государственным комитетом СССР по стандартам

РАЗРАБОТЧИКИ

- С.С.Борушек, Т.Н.Гуськова, С.П.Корнеева, А.Н.Наголкин, Ф.Р.Кушнеров, Ю.М.Кацовский, Н.А.Кононова, А.М.Михайлов, Л.С.Огненко, А.А.Волков, Л.З.Канищева
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 22.04.82 N 1619
 - 3. Стандарт полностью соответствует СТ СЭВ 3336-81
 - 4. ВВЕДЕН ВПЕРВЫЕ
 - 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта
ΓΟCT 2.708-81	1.6
ГОСТ 2.721-74	1.7, табл.1
ΓΟCT 2.743-91	1.1

6. ИЗДАНИЕ (ноябрь 2004 г.) с Изменением N 1, утвержденным в апреле 1987 г. (ИУС 7-87)

Настоящий стандарт устанавливает общие принципы построения условных графических обозначений элементов аналоговой техники в схемах, выполняемых вручную или автоматизированным способом, во всех отраслях промышленности.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Условные графические обозначения (УГО) аналоговых элементов должны соответствовать требованиям ГОСТ 2.743 и настоящего стандарта.

- 1.2. Условное графическое обозначение аналогового элемента должно иметь форму прямоугольника. УГО содержит основное поле и может содержать одно или два дополнительных поля, которые располагают на противоположных сторонах основного поля.
 - 1.3. Размеры УГО определяются:

количеством входных и выходных линий;

количеством строк информации в основном и дополнительном полях;

количеством знаков, помещаемых в одной строке;

наличием дополнительных полей;

размером шрифта.

- 1.4. В основном поле УГО на первой строке помещают обозначение функции, выполняемой аналоговым элементом, состоящее из букв латинского алфавита, цифр и специальных знаков, записанных без пробела.
- 1.5. Для обозначения сложной функции элемента допускается построение обозначения, составленного из более простых обозначений функций. Например, обозначение функции интегрирующего усилителя состоит из символов интегрирования и усиления:

- 1.6. Дополнительные данные по ГОСТ 2.708 помещают в основном поле УГО под обозначением функции со следующей строки в последовательности, установленной указанным стандартом.
 - 1.7. Обозначение аналоговых и цифровых сигналов приведено в табл.1.

Таблица 1

Наименование	Обозначение		
Аналоговый сигнал	По ГОСТ 2.721		
Цифровой сигнал	По ГОСТ 2.721		

(Измененная редакция, Изм. N 1).

- 1.8. Входы аналогового элемента изображают с левой стороны, выходы с правой стороны прямоугольника. Допускается другая ориентация УГО, при которой входы располагают сверху, а выходы снизу.
 - 1.9. Выводы элементов могут быть обозначены указателями и метками.

Указатели изображают на линии контура или около линии контура УГО на линии связи.

Метки образуют из прописных букв латинского алфавита, арабских цифр и специальных знаков и помещают в дополнительных полях.

1.9.1. Применяют следующие обозначения указателей выводов:

1.9.2. Обозначения основных меток выводов приведены в табл.2.

Таблица 2

Наименование	Обозначение
1. Начальное значение интегрирования	I
2. Установка начального значения	S
3. Установка в состояние "0"	R
4. Установка в исходное состояние (сброс)	SR
5. Поддержание текущей величины сигнала	Н
6. Строб, такт	C
7. Пуск	ST
8. Балансировка (коррекция "0")	NC
9. Коррекция частотная	FC
10. Питание от источника напряжения	U
Допускается:	
перед буквой ${\it U}$ проставлять номинал напряжения, при	
этом вместо буквы U использовать букву V , после буквы U	
проставлять поясняющую информацию, например:	и
указатель питания цифровой части элемента	$U^{\#}$
указатель питания аналоговой части элемента	$U \cap$ или $U \wedge$
признак информационного питания	UD
11. Общий вывод (общее обозначение):	OV
для аналоговой части элемента	$OV \cap$ ИЛИ $OV \wedge$
для цифровой части элемента	0V#

- 1.10. На линиях связи или в их разрыве допускается указывать обозначение и характеристику сигнала.
- 1.11. Обозначения, приведенные в табл.1, могут быть применены для указания аналогового и цифрового элемента или сигнала.

Для указания элементов приведенные обозначения помещают после символа функции в той же самой строке.

Для указания сигналов приведенные обозначения помещают после обозначения или характеристики сигнала, например:

обозначение # проставляют после числа двоичных разрядов;

обозначение \cap или Λ проставляют после характеристики сигнала: синусоиды, пилы.

2. ОБОЗНАЧЕНИЕ ФУНКЦИЙ

2.1. Обозначение основных функций, выполняемых аналоговыми элементами, приведено в табл.3.

Таблица 3

Наименование	Обозначение		
1. Общее обозначение функции	$F(X1, X2XN)$ или $f(x_1, x_2x_n)$		
	NA.V		
2. Выбор максимальной переменной	MAX или max		
3. Выбор минимальной переменной	MIN или min		
4. Генерирование	G		
5. Детектирование	DK		
6. Деление	X:Y или $x:y$		
7. Деление частоты	$_{:FR}$ или $_{:fr}$		
8. Дифференцирование	DIDT ИЛИ dIdt		
9. Зона нечувствительности			
10. Извлечение корня	$X\!\uparrow_{0,5}$ или $X\!\!\wedge_{0,5}$ или \sqrt{x}		
11. Интегрирование	_{INT} или ∫		
12. Насыщение	_		
13. Логарифмирование	LOG или log		
14. Образование модуля	X или $ x $		
15. Переключение, коммутирование (ключ, коммутатор):	SW		
замыкание	_{SWM} или/		
размыкание	_{SWB} или		
переключение	SWT ИЛИ		

ΙIp	именяется с 01.07.1983	
	16. Показательная функция	$_{X}\!\uparrow_{Y}$ или $_{X\! \wedge \! Y}$ или $_{x}$
	17. Пороговый элемент	$_{T\!H}$ или $oxdot$, или $_{\bigcirc}$ -
	18. Преобразование	
		,
	Примечание. Буквы $_{X}$ и $_{Y}$ могут быть заменены	
	обозначениями представляемой информации,	
	например напряжением, частотой, длительностью импульса и т.д.	
	7	
	19. Сравнение (компаратор, схемы сравнения)	= =
	20. Суммирование	$_{SM}$ или $_{\Sigma}$
	21. Тригонометрические функции, например	$_{ m SIN}$ или sin
(синус	
	22. Умножение	<i>хү</i> или <i>ху</i>
	23. Умножение - деление	XY∶Z ИЛИ xy∶z
	24. Экспонента	ЕХР или ехр
	25. Блок постоянного запаздывания	<i>D</i> ⊥ или ⊢—
	26. Блок переменного запаздывания	_{DLV} или ⊬
	27. Воспроизведение коэффициентов	K
	28. Многофункциональное преобразование	MF
	29. Фильтрация	FF
	30. Формирование	F
	31. Усиление	> или ⊳
	32. Преобразование цифро-аналоговое	#/ _A
	33. Преобразование аналого-цифровое	<u>∧</u> /#
	34. Запоминание аналоговой величины	$_{M\cap}$ или $_{M\wedge}$
- 1	Элемент слежения и хранения)	292 1 1 292 7 1

2.2. Для обозначения функций аналоговых элементов могут быть использованы обозначения функций элементов по ГОСТ 2.743. Например, наборы нелогических элементов обозначают:

резисторов * $_{\mathcal{R}}$ конденсаторов * $_{\mathcal{C}}$ и др.

3. ПРИМЕРЫ ОБОЗНАЧЕНИЯ АНАЛОГОВЫХ ЭЛЕМЕНТОВ

3.1. УГО аналоговых элементов приведены в табл.4.

Таблица 4

Наименование	Обозначение
1. Усилитель	

Общее обозначение

 W_1 до W_n - весовые коэффициенты

 m_1 до m_k - коэффициенты усиления

Коэффициент усиления записывают в УГО устройства напротив линии каждого выхода, за исключением цифрового. При наличии одного коэффициента для всего устройства знак m может быть заменен абсолютной величиной. Если m=1, то цифра 1 может быть опущена

$$u_i = mm_1 \cdot f(W_1 \cdot a_1, W_2 \cdot a_2, ..., W_n \cdot a_n)$$
,

где
$$i = 1, 2, ..., k$$
;

 mW_i - коэффициент передачи по i входу.

С коэффициентом усиления 10000 и двумя выходами.

1.1. Усилитель операционный

Примечание. Если коэффициент усиления достаточно высок, а значение его точной величины не имеет значения, то допускается его не проставлять, либо проставить знак $_{\infty}$ или букву $_{M}$, например $_{\triangleright}$ $_{M}$

1.2. Усилитель инвертирующий (инвертор) с коэффициентом усиления 1

$$u = -1a$$

1.3. Усилитель с двумя выходами, верхний неинвертирующий с усилением 2, нижний инвертирующий с усилением 3

1.4. Усилитель суммирующий

$$u = -10(0.1a + 0.1b + 0.2c + 0.5d + 1.0e) =$$

= -(a + b + 2c + 5d + 10e)

1.5. Усилитель интегрирующий (интегратор)

Если
$$f = 1$$
, $g = 0$, $h = 0$, то

$$u = -80[c_{t=0} + \int\limits_{0}^{t} (2a + 3b)dt]$$

Примечание. Идентификаторы сигналов (Λ и #) могут быть опущены, если это не приведет к непониманию

1.6. Усилитель дифференцирующий

$$u = 5\frac{d}{dt}(a + 4b)$$

1.7. Усилитель логарифмирующий

$$u = -\log(-a + 2b)$$

2. Функциональный преобразователь

 x_1, \dots, x_n являются аргументами функции, каждый из них может быть заменен соответствующей меткой, если такая замена не приведет к неясности

 $f(x_1,...,x_n)$ заменяют соответствующим обозначением функции, выполняемой преобразователем

2.1. Перемножитель с коэффициентом передачи χ

$$u = -Kab$$

2.2. Делите	ЛЬ	и	=	$\frac{a}{h}$
-------------	----	---	---	---------------

Примечание. Символ "/" не должен использоваться для указания деления

2.3. Преобразователь для моделирования функции синуса

$$u = \sin x$$

3. Преобразователь координат

Общее обозначение

3.1. Преобразователь координат полярных в прямоугольные

$$u_1 = a \cdot \cos b$$

$$u_2 = a \cdot \sin b$$

4. Преобразователь сигналов

Общее обозначение

4.1. Преобразователь аналого-цифровой

Электронный текст документа подготовлен АО "Кодекс" и сверен по: официальное издание ЕСКД. Обозначения условные графические в схемах: Сб. ГОСТов. - М.: ИПК Издательство стандартов, 2005