

Deep Learning

Machine Learning Fundamentals

Tuesday 30th April

Dr. Nicholas Cummins

Emotional Car Reviews

Annotation

Lukas Stappen: lukas.stappen@informatik.uni-augsburg.de, stappen@ieee.org

Alice Barid: alice.baird@informatik.uni-augsburg.de

EmCaR: Emotional Car Reviews

Call-for-Students:

We want to study the interaction between objects and emotions - And we want you!

Easy work! Watching videos and estimate speaker emotions using a Joystick.

Flexible work! 1. Annotator training for ~2 h at university

2. You can watch and annotate the videos everywhere (at home,

during breaks, ...)

Payment! ~ 9.5 - 11.5 € per hour (netto, rates depending on degree)

~ 600 - 1.500 € in total (depends on total no of annotators)

Sign-up/ Contact lukas.stappen@informatik.uni-augsburg.de, stappen@ieee.org

alice.baird@informatik.uni-augsburg.de

or quick form:

https://docs.google.com/forms/d/e/1FAlpQLScSTX-jiLlJyFjU3j

ogAHv42NAGkk6 DCQDghhKDWtA964 gA/viewform

Requirements

- English speaking (native, stays abroad preferred)

- a few free hours over the next 2-3 months

Further: Students familiar with the data set will be able to write their project, bachelor or master thesis on highly interesting **deep learning topics**.

Summer Semester 2019

Deep Learning

VALENCE

Deep Learning

- A subfield of machine learning
- Concerned with artificial neural networks
 - Algorithms inspired by the structure and function of the brain
- Performs clustering, classification & predictive analysis
 - Clustering or grouping is the detection of similarities in data
 - Classification is the assignment of data instances into two or more discrete output values
 - Predictive analysis or regression is the assignment of data instances onto a continuous scale

Image Source https://pixabay.com/

- Empirical learning
 - When you base a decision on existing data
 - Example:
 - It is Friday night, you have ordered a pizza and will be delivered in approximately 30 minutes, but it is often late
 - Your friend has messaged, can you pick him up?
 - The round trip is 35 minutes
 - Can you make it back in time for your pizza?

Image Source https://pixabav.com/

Empirical learning

Can you make it back in time for your pizza?

- Solution
 - Build a statistical model using previous delivery experiences
 - You have ordered a pizza at your current address 8 times
 - It was late four times (with a 40-minute delivery time)
 - There is a 50% chance the pizza will be late
 - However, we have not taken all variables in account

Image Source https://pixabay.com/

- Empirical learning
 - Need to consider all relevant information:
 - Dependent variable y
 - What we wish to predict, i.e., pizza delivery time
 - Independent variable *X*
 - Factors which affect the dependent variable
 - » In our example: days of the week
 - We want to model the relationship between independent variable(s) and the dependent variable
 - 3 out of 4 late deliveries have been on Mondays
 - Other information could include traffic conditions

Empirical learning

Decision Tree Model

There is a 25% chance your pizza will be late

Image Source: iStock/dane_mar

Empirical learning

- How do we do this in computational analysis?
 - Collect *labelled* data
 - E.g. collect data from individuals with a particular health condition
 - » Depression, Bipolar, Parkinson's, Austism,
 - *Clean* data to remove unwanted erroneous factors
 - E.g., speech samples recorded with a bad microphone
 - Extracted *relevant information* from the signal
 - Raw speech signals are highly complex
 - Feature extraction, information reduction
 - Choose a *machine learning algorithm*, train and validate it
 - Identify suitable model settings and operating parameters

What are features?

- The representation of the data presented to the machine learning algorithm
- Each feature can be thought of as a single piece of information the algorithm can use when making a decision
- Typically hundreds or thousands of such pieces of information are concatenated together to form a feature vector
- The role of the machine learning algorithm is to identify patterns from a collection of feature vectors

What is machine learning?

- Creation of (robust) models to cluster/predict/classify a particular output (y) from a selected independent variables (X - features) from a dataset
 - Primarily concerned with the identification of patterns within (large amounts of) data
 - Machine learning algorithms are used to perform the process of pattern identification via an iterative process
 - Learning phase: the algorithm optimises its parameters with the goal of improving (recognition) performance on a particular task

Lecture Outline

- Linear Algebra
- Probability
- Differential Calculus
- Machine Learning Fundamentals
- Generalisation
- Gradient Descent
- Summary

Lecture Outline

- Linear Algebra
- Probability
- Differential Calculus
- Machine Learning Fundamentals
- Generalisation
- Gradient Descent
- Summary

Why Linear Algebra?

- It is a key foundation to the field of machine learning
 - Present from notations used to describe the operation of algorithms to the implementation of algorithms in code
- Also needed to understanding the calculus and statistics used in machine learning
- Enables a deeper intuition in algorithms
 - Implement algorithms from scratch
 - Devise new algorithms

Scalar

A one-dimensional vector, i.e. 1 x 1

Vector

- A single-dimensional array of numbers
- i.e. 1 x m

Matrix

- A two-dimensional array of numbers
- An $m \times n$ matrix has m rows and n columns

Tensor

A multidimensional array of numbers

Norm of a vector

- The norm is a measure of magnitude
 - The l^p norm is given by:

$$l^p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$$

- Machine learning generally uses the l^1 and l^2 norms
 - ullet The least squares cost function is the l^2 norm of an error vector
 - Norm of a parameter vector can be used in regularization

Norm of a vector

 $-l^1$ norm example

$$v = \begin{bmatrix} 1 \\ -4 \\ 5 \end{bmatrix}, ||v||_1 = |1| + |-4| + |5| = 10$$

 $-l^2$ norm example

$$v = \begin{bmatrix} 1 \\ -4 \\ 5 \end{bmatrix}, ||v||_2 = \sqrt{|1|^2 + |-4|^2 + |5|^2} = \sqrt{42}$$

Dot product

– The dot product of two vectors, $v_1 \in \mathbb{R}^{n \times 1}$ and $v_2 \in \mathbb{R}^{n \times 1}$, is the sum of the product of the corresponding elements:

$$v_1 \cdot v_2 = v_1^T v_2 = v_2^T v_1 = v_{1_1} v_{2_1} + v_{1_2} v_{2_2} + \dots + v_{1_n} v_{2_n} = \sum_{k=1}^n v_{1_k} v_{2_k}$$

Dot product

– Example:

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, v_2 = \begin{bmatrix} 3 \\ 5 \\ -1 \end{bmatrix}$$

$$v_1 \cdot v_2 = v_1^T v_2 = 1 \times 3 + 2 \times 5 - 3 \times 1 = 10$$

Why is the dot product important?

 The dot product encodes information about the angle between two vectors

$$\boldsymbol{v}_1 \cdot \boldsymbol{v}_1 = \|\boldsymbol{v}_1\| \|\boldsymbol{v}_1\| \cos \theta$$

$$\theta = \arccos\left(\frac{\boldsymbol{v}_1 \cdot \boldsymbol{v}_1}{\|\boldsymbol{v}_1\| \|\boldsymbol{v}_1\|}\right)$$

Why is the dot product important?

$$\cos 0 = 1$$
 $\begin{array}{c} \bullet \\ b \\ a \end{array}$

Dot product is positive

- The dot product measures how similar two vectors are

Matrix multiplication

– For $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$ to be multipliable n must equal p and the resulting matrix is $C \in \mathbb{R}^{m \times q}$

$$C_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$$

$$\forall \ i \in \{1,2,\ldots,m\}$$

$$\forall j \{1,2,...,q\}$$

Matrix multiplication

– Example:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}, C = A \times B$$

$$C_{11} = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 5 \\ 7 \end{bmatrix}$$
, $1 \times 5 + 2 \times 7 = 19$, $C_{12} = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ 8 \end{bmatrix}$, $1 \times 6 + 2 \times 8 = 22$

$$C_{21} = \begin{bmatrix} 3 & 4 \end{bmatrix} \begin{bmatrix} 5 \\ 7 \end{bmatrix}$$
, $3 \times 5 + 4 \times 7 = 43$, $C_{22} = \begin{bmatrix} 3 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ 8 \end{bmatrix}$, $3 \times 6 + 4 \times 8 = 50$

$$C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$

Matrix transpose

- The transpose of a matrix $A \in \mathbb{R}^{m \times n}$ is generally represented as $A^T \in \mathbb{R}^{n \times m}$
- This is performed by transposing the column vectors as row vectors

$$a'_{ji}=a_{i,j}, \forall \ i \in \{1,2,\ldots,m\}, \ \forall \ j \ \{1,2,\ldots,n\}$$
 where $a'_{ji} \in A^T$ and $a_{i,j} \in A$

Matrix transpose

– Examples:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
then $A^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 4 & 3 \\ 8 & 2 & 6 \\ 7 & 8 & 3 \\ 4 & 9 & 6 \\ 7 & 8 & 1 \end{bmatrix}$$
then $A^T = \begin{bmatrix} 1 & 8 & 7 & 4 & 7 \\ 4 & 2 & 8 & 9 & 8 \\ 3 & 6 & 3 & 6 & 1 \end{bmatrix}$

• Linear independence

- A vector is said to be linearly dependent on other vectors if it can be expressed as the linear combination of other vectors.
 - Given a set of vectors $v_i \in \mathbb{R}^{n \times 1}$ and a set of scalars a_i

$$[\boldsymbol{v}_1, \boldsymbol{v}_1, \dots, \boldsymbol{v}_n] \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = 0$$

ullet Then the set of vectors $oldsymbol{v}_i$ is said to be linear independent

Rank of a matrix

- The rank of a matrix is the number of linearly independent column vectors or row vectors
- Example:

$$A = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 & 7 \\ 3 & 7 & 10 \end{bmatrix}$$

$$\begin{bmatrix}1\\2\\3\end{bmatrix}\text{ and }\begin{bmatrix}3\\5\\7\end{bmatrix}$$
 are linearly independent

$$\begin{bmatrix} 4 \\ 7 \\ 10 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix}$$

Therefore:
$$rank(A) = 2$$

Rank of a matrix

- Why rank is important in machine learning?
 - When the rank of a square matrix $A \in \mathbb{R}^{n \times n}$ is n, it is said to be full rank
 - A singular matrix has an undefined matrix inverse and zero determinant.
 - Advanced techniques such as Singular-Value Decomposition have to be used to determine a pseudo-inverse of a singular matrix

Determinant of a matrix

- The determinant of a square matrix $A \in \mathbb{R}^{n \times n}$ is a number denoted by |A| or $\det(A)$ and is given by:

$$det(A) = \pm \prod a_{1j_i} a_{2j_2}, \dots, a_{nj_n}$$

– where the column indices $j_1, j_2,..., j_n$ are taken from the set $\{1, 2, ..., n\}$, with no repetitions allowed. The plus (minus) sign is taken if the permutation $(j_1, j_2,..., j_n)$ is even (odd)

Determinant of a matrix

– Examples:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}(a_{22}a_{33} - a_{32}a_{23}) - a_{21}(a_{12}a_{33} - a_{32}a_{13}) + a_{31}(a_{12}a_{23} - a_{22}a_{13})$$

Inverse of a matrix

– For a square matrix $A \in \mathbb{R}^{n \times n}$, the inverse is denoted as A^{-1} and produces the identity when multiplied by A

$$AA^{-1} = A^{-1}A$$

$$A^{-1} = \frac{(cofactor\ matrix\ of\ A)^T}{\det(A)}$$

- Cofactor for $a_{i,j} = (-1)^{i-j} d_{ij}$
 - ullet Where d_{ij} is the determinate of the matrix formed by deleting row i and column j from A

Inverse of a matrix

Examples

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{a_{11} \times a_{22} - a_{21} \times a_{12}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

$$\begin{bmatrix} 4 & 7 \\ 2 & 6 \end{bmatrix}^{-1} = \frac{1}{4 \times 6 - 2 \times 7} \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 0.6 & -0.7 \\ -0.2 & 0.4 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}^{-1} = \frac{1}{3 \times 8 - 6 \times 4} \begin{bmatrix} 8 & -4 \\ -6 & 3 \end{bmatrix} \rightarrow \text{inverse does not exist}$$

• Eigenvectors and eigenvalues

- When a matrix $A \in \mathbb{R}^{n \times n}$ works on a vector $x \in \mathbb{R}^{n \times 1}$ the resulting vector is $Ax \in \mathbb{R}^{n \times 1}$
 - Generally the magnitude and direction of Ax differs from x
- However,
 - When Ax has the same (or directly opposite) direction of x the resulting vectors is known as an *eigenvector*
 - The magnitude by which that vector gets stretched is known as the eigenvalue

• Eigenvectors and eigenvalues

$$Av = \lambda v$$

- $Av = \lambda v$
- $(A \lambda I) = 0$
- $A \lambda I$ is singular
- $det(A \lambda I) = 0$

Eigenvectors and eigenvalues

Example

Find eigenvalues of:
$$A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}$$

$$|\lambda I - A| = \begin{bmatrix} \lambda - 2 & 12 \\ -1 & \lambda + 5 \end{bmatrix} = (\lambda - 2)(\lambda + 5) + 12$$
$$= \lambda^2 + 3\lambda + 2 = (\lambda + 1)(\lambda + 2)$$

Therefore, eigenvalues of A are -1, -2

Positive semi-definite and positive definite

- A square matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite
 - If for any non-zero vector the $x \in \mathbb{R}^{n \times 1} \to x^T A x \ge 0$
 - All eigenvalues should be non-negative
- A square matrix $A \in \mathbb{R}^{n \times n}$ is positive definite
 - If for any non-zero vector the $x \in \mathbb{R}^{n \times 1} \to x^T A x > 0$
 - All eigenvalues should be positive

Lecture Outline

- Linear Algebra
- Probability
- Differential Calculus
- Machine Learning Fundamentals
- Generalisation
- Gradient Descent
- Summary

Image Source https://pixabay.com/

Why probability?

- Machine learning must always deal with uncertain quantities
- Laws of probability govern how a machine learning algorithm should reason
 - We design machine learning algorithms to approximate expressions derived from probability theory
- Analyse the behaviour of a proposed approach

Definitions

- Experiment: any process of observation
- Random experiment: An experiment in which the outcomes cannot be precisely predicted
- Sample space: set of all possible outcomes
- Probability measure P: an assignment of a number
 between 0 and 1 to a particular event in the sample space

P(A): the probability that an event A will occur

$$0 \le P(A) \le 1$$

Rules of Probability

- Intersection of events
 - The probability that Events A and B occur, denoted $P(A \cap B)$
- Mutually exclusive events
 - Cannot occur at the same time i.e. $P(A \cap B) = 0$
- Union of events
 - The probability that events A or B occur, denoted $P(A \cup B)$
- Conditional probability
 - The probability that Event A occurs, given that Event B has occurred
 - Denoted P(A|B)

Rules of probability

Rule of multiplication

$$P(A \cap B) = P(A) P(B|A)$$

$$= P(B)P(A|B)$$

• Note, $P(A \cap B)$ is denoted as P(AB)

- Rule of addition

$$\bullet \ P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Rules of probability

- Chain rule of probability
 - Extension of the rule of multiplication

$$\begin{split} P(A_1 A_2 A_3 \dots A_n) &= P(A_1) P(A_2 | A_1) P(A_3 | A_1 A_2) P(A_n | A_1 A_2 A_3 \dots A_{n-1}) \\ &= P(A_1) \prod_{i=2}^n P(A_i | A_1 A_2 A_3 \dots A_{n-1}) \end{split}$$

- Mutually exclusive events P(AB) = 0

$$P(A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n) = P(A_1) + P(A_2) + P(A_3) + \dots + P(A_n)$$

$$= \sum_{i=1}^{n} P(A_i)$$

- Rules of probability
 - Independence of events

$$P(AB) = P(A)P(B)$$

- Bayes' rule
 - From multiplication rule

$$P(AB) = P(A)P(B|A) = P(B)P(A|B)$$

• Therefore

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

Random experiment

- An experiment or a process for which the outcome cannot be predicted with absolute certainty
 - However, we have knowledge of the sample space, the set of all possible outcomes

Random variable

- Individual outcomes of a random experiment
 - A function that maps the outcomes of random experiment (the samples space) to a subset of real numers (i.e. \mathbb{R}).
 - E.g. A random variable can be used to describe the process of rolling a fair die and the possible outcomes $\{1, 2, 3, 4, 5, 6\}$

Probability Mass Function (PMF)

- Let X be a random variable with domain D
- The probability mass function is then defined as the probability that X is equal to some value x

$$\sum_{x \in D} P(X = x) = 1$$

- To be a PMF, P must satisfy
 - P must be the sets of all possible states of X
 - $0 \le P(X) \le 1$
 - $\bullet \sum_{x \in D} P(X) = 1$

Expectation

– The average value that some function takes when x is drawn from P

$$\mathbb{E}_{x \sim P}[f(x)] = \mu = \sum_{x} P(x)f(x)$$

Variance

 Variation in different sample values of x when drawn from its probability distribution

$$Var[f(x)] = \sigma^2 = \mathbb{E}[f(x) - \mathbb{E}[f(x)]^2]$$

Covariance

Measure joint variability between two random variables

$$Cov(f(x), g(y)) = \mathbb{E}[(f(x) - \mathbb{E}[f(x)])(g(x) - \mathbb{E}[g(x)])]$$

Random processes

- A collection of random variables defined over a common PMF
 - Consider a random process η with N observed values
 - Mean

- Mean-Square
 - The 'power' of the process
- Variance

$$\mu_{\eta} = \frac{1}{N} \sum_{n=0}^{N-1} \eta(n)$$

$$MS_{\eta} = \frac{1}{N} \sum_{n=0}^{N-1} (\eta(n))^2$$

$$\sigma_{\eta}^{2} = \frac{1}{N} \sum_{n=0}^{N-1} (\eta(n) - \mu_{\eta})^{2}$$

Image Source: https://www.vocal.com

Random signal

- When the values of a random process η form a time series
 - Also known as a stochastic process
- Denoted $\eta(t)$
- Key properties
 - μ_{η} represents the DC component
 - DC component is the amplitude signal fluctuates around
 - Assumed to be zero for random noise
 - MS_{η} represents the average power
 - If μ_{η} is zero $\sigma_{\eta}^2 = MS_{\eta}$

Information Theory

- Quantifying how much information is present in a signal
 - Likely events should have low information content
 - Likely events are uninformative
 - Less likely events should have higher information content
 - Unlikely events are more informative

$$I(x) = -logP(x)$$

- Entropy:
$$H(x) = E_{x \sim P}[I(x)] = -E_{x \sim P}[logP(x)]$$

Distribution of expected information

Lecture Outline

- Linear Algebra
- Probability
- Differential Calculus
- Machine Learning Fundamentals
- Generalisation
- Gradient Descent
- Summary

- A good understanding of calculus is essential for machine learning
 - Machine learning models are (normally) a function of several variables
 - In building a model we generally need to compute a cost function, we derive the models that best explain the training data by optimising this cost function
 - Optimisation refers to the task of minimising (or maximising) a function f(x)

Maxima and Minima of Functions

 Building machine-learning models relies on iteratively minimising a cost function

Rules for locating maxima/minima

- 1st order derivative is zero
- Maxima: 2nd order derivative is *less* than zero
- Minima: 2nd order derivative is *greater* than zero
- Point of inflection: 2nd order derivative equals zero

• Derivative of a function f(t)

 Rate of change of a quantity represented by a function with respect to another quantity on which the function is dependent on.

$$\frac{df}{dt} = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$$

• Derivative of a function f(t)

f(x)	f'(x)	f(x)	f'(x)
x^n	nx^{n-1}	e^x	e^x
$\ln(x)$	1/x	$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$	tan(x)	$\sec^2(x)$
$\cot(x)$	$-\csc^2(x)$	sec(x)	$\sec(x)\tan(x)$
cosec(x)	$-\operatorname{cosec}(x)\operatorname{cot}(x)$	$\tan^{-1}(x)$	$1/(1+x^2)$
$\sin^{-1}(x)$	$1/\sqrt{1-x^2} \text{ for } x <1$	$\cos^{-1}(x)$	$-1/\sqrt{1-x^2} \text{ for } x <1$
sinh(x)	$\cosh(x)$	$\cosh(x)$	$\sinh(x)$
tanh(x)	$\operatorname{sech}^2(x)$	$\coth(x)$	$-\operatorname{cosech}^2(x)$
$\operatorname{sech}(x)$	$-\mathrm{sech}(x)\tanh(x)$	$\operatorname{cosech}(x)$	$-\operatorname{cosech}(x)\operatorname{coth}(x)$
$\sinh^{-1}(x)$	$1/\sqrt{x^2+1}$	$ \cosh^{-1}(x) $	$1/\sqrt{x^2-1} \text{ for } x>1$
$\tanh^{-1}(x)$	$1/(1-x^2) \text{ for } x < 1$	$\coth^{-1}(x)$	$-1/(x^2-1)$ for $ x >1$

Product Rule

- If f(x) and g(x) are differentiable on x then:

$$(f \cdot g)'(x) = f(x)g'(x) + g(x)f'(x)$$

Chain Rule

- If f(x) and g(x) are differentiable on x

$$(f \circ g)'(x) = f'(g(x))g'(x)$$

- If y = g(u) and u = g(x) the derivative of y is

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

• Partial derivatives z = f(x, y)

$$\frac{\partial z}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

$$\frac{\partial z}{\partial y} = \lim_{h \to 0} \frac{f(y+h,x) - f(x,y)}{h}$$

$$\frac{\partial z}{\partial y} = \lim_{h \to 0} \frac{f(y+h,x) - f(x,y)}{h}$$

Successive Partial Derivatives

$$\frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial^2 z}{\partial y \partial x}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial^2 z}{\partial x \partial y}$$

• Note that if the second derivatives are continuous, $\frac{\partial^2 z}{\partial v \partial x} = \frac{\partial^2 z}{\partial x \partial y}$

Gradient of a function

Vector of first order partial derivatives

$$f(\mathbf{x}), \text{ where } \mathbf{x} = [x_1, x_2, ..., x_n]^T \epsilon \mathbb{R}^{n \times 1}$$
 Then,
$$\nabla f(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n}\right]^T$$

 The gradient is important in machine-learning algorithms when we try to maximize or minimize cost functions with respect to the model parameters,

- Hessian Matrix of a function
 - Matrix of second order partial derivatives
 - Useful in optimisation problems
 - Especially when cost function is non linear

For a function:
$$f(x, y, z)$$
:
$$Hf(x, y, z) = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial x \partial z} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} & \frac{\partial^2 f}{\partial y \partial z} \\ \frac{\partial^2 f}{\partial z \partial x} & \frac{\partial^2 f}{\partial z \partial y} & \frac{\partial^2 f}{\partial z^2} \end{bmatrix}$$

Convex Function

- Convex Set D
 - Given any two points x and y belonging to set D all points joining the straight line from x to y must also belong to set D

Convex Function

- A function f(x) defined on a convex set D:
 - A straight line joining any two points in the function lies above or on the graph of the function

$$f(tx - (1 - t)y) \le tf(tx) + (1 - t)f(y)$$
 $\forall x, y \in D, \ \forall \ t \in [0,1]$

Convex Function

- Properties
 - For a convex function that is twice continuously differentiable,
 - The Hessian matrix should be positive semi-definite
 - Has the local minima as the global minima
- Many machine learning modes are built by minimising a given cost function
 - Given the above properties convex cost functions are preferable
 - The global minima is obtainable through optimisation

Taylor Expansion

– We can approximate a point on a curve at x = a + h by the corresponding point on the tangent

$$f(a+h) = f(a) + hf'(a)$$

For h close to 0, this is a good approximation

Taylor Expansion

 Any function can be expressed as an infinite sum by considering the value of the function, and its derivatives, at a specific point

$$f(x+h) = f(x) + hf'(x) + \frac{1}{2!}h^2f''(x) + \frac{1}{3!}h^3f'''(x) + \dots + \frac{1}{n!}h^nf^n(x)$$

- Note:
 - When f(x) is constant, all derivatives are zero and f(x)=f(x+h)
 - When f(x) is linear, f(x + h) = f(x) + hf'(x)

Taylor Expansion

– For multivariate functions around the point $x \in \mathbb{R}^{n \times 1}$:

$$f(x + \Delta x) = f(x) + \Delta x^{T} \nabla f(x) + \Delta x^{T} \nabla^{2} f(x) \Delta x + \cdots$$

- Note:
 - Δx^T is the gradient vector
 - $\nabla^2 f(x)$ is the hessian matrix
 - In machine learning, we generally don't expand beyond the second order as calculating the higher order terms is too cost intensive

Lecture Outline

- Linear Algebra
- Probability
- Differential Calculus
- Machine Learning Fundamentals
- Generalisation
- Gradient Descent
- Summary

Machine Learning

- The application of statistical learning techniques to automatically identify patterns in data
- Start by defining a domain \mathcal{D} :

$$\mathcal{D} = \{\mathcal{X}, P(X)\}$$

- Where:
 - \mathcal{X} denotes a feature space
 - X denotes a set of feature vectors i.e., $X = \{x_1, x_2, ..., x_n\} \in \mathcal{X}$
 - \mathcal{X} is a d dimensional feature space i.e., $\mathbf{x} = \{x_1, x_2, ..., x_d\}^T$
 - P(X) denotes a marginal probability distribution i.e., the distribution of X in X

Machine Learning

- Next we define a generic analysis task \mathcal{F} :

$$\mathcal{F} = \{\mathcal{Y}, f(\cdot)\}$$

- Where:
 - *y* denotes a label space
 - f denotes a predictive function or a conditional probability P(Y|X)
- Note, a database normally consist of two parts: features and labels
 - The feature vectors $X = \{x_1, x_2, ..., x_n\} \in \mathcal{X}$
 - The corresponding labels $Y = \{y_1, y_2, \dots, y_n\} \in \mathcal{Y}$

Machine Learning

- The goal of ${\mathcal F}$ is to learn the robust predictive function $f(\cdot)$
 - ullet A mapping from the feature space ${\mathcal X}$ to the label space ${\mathcal Y}$

$$\chi \xrightarrow{f(\cdot)} y$$

ullet Given a test sample (unknown label), the learnt function maps the feature vector $oldsymbol{x}_*$ onto a specific label $oldsymbol{y}_*$

$$\boldsymbol{y}_* = f(\boldsymbol{x}_*)$$

Supervised learning

Learn a model from labels

Unsupervised learning

Discover labels from the model

Machine learning algorithms

- Used to perform the process of pattern identification
 - Iterative techniques to find a set of optimal model parameters via the minimisation of a *cost function*
 - A **cost function** is a measure of how incorrect a model is in terms of its ability to estimate the relationship between \mathcal{X} and \mathcal{Y}

Machine learning algorithms

- Set of algorithms that can built mathematical models of data
- Two main classes of machine learning algorithms:
 - **Discriminative Models:** Algorithms that directly learn a decision function from training data

$$\chi \xrightarrow{f(\cdot)} y$$

• **Generative Models:** Algorithms that estimate the joint probability function between the features and the label, detection is then based on Bayes Rule

Discriminative Models

- Learn the (hard or soft) decision
 boundary between classes of interest
- Assume some functional form for p(Y|X)
- Estimate parameters for functional representation directly from training data

Advantages

- Directly learn core decision objective
- Higher accuracies with limited training samples

Discriminative Models

- Examples of discriminative models:
 - Random Forest
 - K-Nearest Neighbours
 - Support Vector Machines
 - Neural Networks
 - Deep Learning

Generative Models

– Model the joint probability function p(X,Y) between the label and the features

- Assume some functional form for p(X|Y) and p(Y) and estimate their parameters directly using the training data
- Use Bayes Rule to calculate p(Y|X)

Advantages

- Generative assumption helps prevent overfitting
- Detect changes is testing data distribution
 - Potential to update models accordingly

Generative Models

- Model the joint probability function p(X,Y) between the label and the features
- However, we want to model p(Y|X)
 - Conditional Probability Definition

$$p(X|Y) = \frac{p(X,Y)}{p(Y)}$$

Bayes Rule

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

- Generative models often based on the concept of clustering
 - The process of grouping together sets of feature vectors
 - It generate partitions consisting of cohesive groups or clusters from a given collection of vectors
 - Feature vectors with similar (statistical)
 properties are grouped together while
 feature vectors with different properties
 are placed in separate groups

Clustering

Clustering: the basic idea

 The distance between any two points belonging to the same cluster is smaller than that between any two points belonging to different clusters.

Lecture Outline

- Linear Algebra
- Probability
- Differential Calculus
- Machine Learning Fundamentals
- Generalisation
- Gradient Descent
- Summary

Aim

 Minimize/maximise a cost function of the model parameters given the data by using different optimization techniques.

Solution

- Set the derivative or gradient of the cost function to zero and solve for the model parameters
- Not always possible
 - All solutions might not have a closed-form solution
 - The closed-form solution might be computationally expensive
 - A need for iterative methods for complex optimization problems

Generalisation of a supervised model

- In machine learning we want to minimise both the training error and the generalization error
 - The iterative process of training a machine learning algorithm minimises the training error
 - The difference between the actual and predicted label values in the training data,
 the subset of data instances used in the optimisation process
 - Introduces issues relating to the statistical concept of *sampling error*
 - As the number of data samples used in training is finite, therefore it cannot not include all members of the population of interest
 - There is a need to ensure the generalisability of a model
 - The model's ability to adequately label new test data samples
 - » Data **not used** during the training/optimisation phase
 - The generalization error is the error on these new data instances

• Training phase – minimise training errors

Generalisation Errors

- Underfitting the model is too simple
 - The model has high bias and lacks sensitivity to the variation in data
- Overfitting the model is too complex
 - Model attempts to account for all the variation in the training data

Bias and Variance Errors

- Bias: on average, how much are do the predicted values differ from the actual values
- Variance: how different will the predictions of the model be using different samples taken from the same population

Minimising Generalisation errors

- A trade-off of between bias and variance errors and the effect of model complexity
 - Increase in model complexity results in an initial decreases in generalisation error due to a decrease in model bias
 - As model becomes more complex generalisation errors increases due an increase in model variance

Data Partitioning

- System must generalise well to unseen data
- Use 3 non-overlapping partitions

TRAIN learn the model 60% of data

VALID test the model 20% of data

feature set
normalisation
machine learning parameters

Test model trained with best configuration found on TRAIN+VALID

TEST: evaluate system 20% of data

Data partitioning

- Large dataset: percentage split
 - TRAIN 60%, VALID 20%, TEST 20%
- Small dataset: cross-validation training
 - Randomise speaker ID or instances
 - Divide dataset into *k* equal folds
 - Train on all (k-1) folds and validate on fold k
 - Repeat the procedure k times to cover all the data

Lecture Outline

- Linear Algebra
- Probability
- Differential Calculus
- Machine Learning Fundamentals
- Generalisation
- Gradient Descent
- Summary

Gradient Descent Algorithms

- Arguably the most widely used optimisation technique
- Iterative solution
 - Uses the negative gradient of the cost function to determine the direction they parameters need updating

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla C(\theta^{(t)})$$

Gradient Descent Algorithms

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla C(\theta^{(t)})$$

- $-\eta$ is the learning rate
- A constant that defines the size of the gradient descent step
- Size is important:
 - To large and the update function might oscillate over the minima
 - To small and convergence is slow

Big learning rate

Small learning rate

Source: https://towardsdatascience.com/

Multivariate Gradient Descent Algorithms

- Lets consider a cost function $C(\theta)$ where $\theta \in \mathbb{R}^{n \times 1}$
- At every iteration we want to update θ to $\theta + \Delta \theta$ such that $C(\theta + \Delta \theta)$ is less than $C(\theta)$
- Achieved by assuming linearity and using a *Taylor series expansion* we get:

$$C(\theta + \Delta\theta) = C(\theta) + \Delta\theta^T \nabla C(\theta)$$

- Need to choose $\Delta\theta$ such that $C(\theta + \Delta\theta)$ is less than $C(\theta)$

Multivariate Gradient Descent Algorithms

• Need to choose $\Delta\theta$ such that $C(\theta + \Delta\theta)$ is less than $C(\theta)$

$$C(\theta + \Delta\theta) = C(\theta) + \Delta\theta^T \nabla C(\theta)$$

– To get the minimum value of the dot product $\Delta \theta^T \nabla C(\theta)$, the direction of $\Delta \theta$ should be the opposite of $\nabla C(\theta)$

$$\Delta\theta \propto -\nabla C(\theta)$$
 Hence
$$\Delta\theta = -\eta \nabla C(\theta)$$

$$\theta + \Delta\theta = \theta - \eta \nabla C(\theta)$$

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla C(\theta^{(t)})$$

Gradient Descent strategies

- Batch gradient descent

 Computes the gradient of the cost function with respect to the entire training dataset

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla C(\theta^{(t)})$$

 Performs a parameter update on each training example

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla C(\theta^{(t)}; x^{(i)}; y^{(i)})$$

- Mini-Batch

 Performs an update for every mini-batch of n training examples

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla C(\theta^{(t)}; x^{(i:i+n)}; y^{(i:i+n)})$$

Gradient Descent strategies

- Batch gradient descent
 - Computational heavy, smoothest trajectory to convergence, should converge
- Stochastic gradient descent (SGD)
 - Computational light, noisy convergence trajectory, may not converge
- Mini-Batch
 - Trade-off between above methods
 - Batching adds noise to learning process which can improve generalisation

- Batch gradient descent
- Mini-batch gradient Descent
- Stochastic gradient descent

Source: https://towardsdatascience.com/

94

Lecture Outline

- Linear Algebra
- Probability
- Differential Calculus
- Machine Learning Fundamentals
- Generalisation
- Gradient Descent
- Summary

Summary

Machine Learning, the basic idea

- Minimise the cost function of the model parameters given the data by using different optimization techniques
 - Set the derivative or gradient of the cost function to zero and solve for the model parameters
- Not always possible
 - A need for iterative methods for complex optimization problems

Solution must be generalisable

- The model must be able to robustly label *new* data samples
- In machine learning we want to minimise both the training error and the generalization error
 - Training and Testing phase

Minimising Generalisation errors

- A trade-off of between bias and variance errors and the effect of model complexity
 - Increase in model complexity results in an initial decreases in generalisation error due to a decrease in model bias
 - As model becomes more complex generalisation errors increases due an increase in model variance

Summary

Generalisation Errors

- Underfitting the model is too simple
 - The model has high bias and lacks sensitivity to the variation in data
- Overfitting the model is too complex
 - Model attempts to account for all the variation in the training data

Summary

Gradient Descent Algorithms

 Iterative solution which uses the negative gradient of the cost function to determine the direction they parameters need updating

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla C(\theta^{(t)})$$

where η is the learning rate

Gradient Descent strategies

- Batch gradient descent
- Stochastic gradient descent (SGD)
- Mini-Batch