

Prueba de progreso 3: detección de carga cognitiva en señales de electroencefalografía. Aplicación de todas las técnicas aprendidas.

2025

Usando un conjunto de datos con grabaciones de señales electroencefalográficas (EEG), entrena y evalúa un modelo predictivo para estimar el nivel de carga cognitiva asociada a cada grabación. Podrás utilizar cualquier técnica aprendida durante la asignatura, justificando bien su uso como siempre. En esta tarea se valorará especialmente la creatividad a la hora de afrontar el problema.

Recomendación: Utiliza una aproximación basada en ventanas deslizantes. El tamaño concreto de las ventanas es tu decisión.

Recomendación 2: Para la extracción de características podéis usar librerías específicas pensadas para trabajar con datos de EEG.

Datos

Debe usarse este conjunto de datos carga cognitiva medida mediante EEG, que contiene grabaciones de un total de 19 personas mientras realizaban el test n-Back y el test de Stroop. Para esta tarea solo haremos uso del subconjunto de datos correspondiente a la prueba n-Back. Esta prueba es ampliamente usada en psicología y neurociencia y presenta una serie de símbolos (números en este caso específico) en orden y la persona participante debe indicar cuándo ha visto uno de esos símbolos n posiciones antes, tal y como marca el ejemplo de la Figura 1.

Durante la prueba se registraron varios eventos que se encuentran almacenados en los ficheros "NBack_s.csv", donde s es el identificador de cada participante individual. La primera columna representa la marca de tiempo en el que ha ocurrido cada evento sincronizada con la grabación de EEG. La segunda y la tercera dan información sobre el tipo de evento según lo indicado en la Tabla 1.

Figura 1: Ejemplo de la prueba n-back con n=2.

Tabla 1: Explicación de los valores de los ficheros "NBack s.csv"

Event Code	Significado	Significado Notes
1	Inicio del test	El valor de n para el test
2	Final del test	El valor de n para el test
3	Número correcto	No incluye información relevante
4	Número incorrecto	No incluye información relevante
5	Número nuevo	El número nuevo que ha aparecido

Por otro lado, están los ficheros "EEG_s.csv", que contienen los datos de las señales como tal. Estas señales, grabadas a 256 Hz, están compuestas por una serie de números que representan el potencial eléctrico capturado por cada electrodo. La primera columna representa el tiempo desde el principio de la grabación y las 16 restantes son cada uno de los canales de la señal correspondientes a cada electrodo. El fichero "channels.csv" contiene una sola fila con el nombre de cada uno de los electrodos en orden. Ese es el nombre utilizado por el sistema 10-20 que sirve para referirse a la posición de los electrodos. Los electrodos usados para este experimento son los que muestran la Figura 2.

Figura 2: Posición de los electrodos del conjunto de datos de acuerdo al sistema 10-20.

Normas y estructura

- Esta tarea se hará individualmente.
- El código deberá estar alojado en un **repositorio git**, ya sea GitHub, GitLab, Codeberg o cualquier otro.
 - Antes de empezar la tarea cada grupo deberá compartir acceso al repositorio donde esté alojado el código al docente, para que este pueda hacer seguimiento de los cambios y avances en el trabajo.
- El envío consistirá en uno (preferible) o varios cuadernos de Jupyer Notebook bien documentados, valorando particularmente el uso combinado de código Python y Markdown.
 - Es **importante** que, aunque esté alojado en un repositorio, mandéis algo en el entregable (por ejemplo un .txt con un enlace al repositorio) para poder evaluar el trabajo.

Evaluación

La valoración final de la prueba está formada por:

- Un 27,5 % perteneciente a la segunda prueba de progreso.
- Un 9% perteneciente a las prácticas de laboratorio.

En total hace un 36,5% del total de la asignatura que podrá ser recuperado si hace falta.

Envío

Deberá entregarse en el campus virtual un enlace a la carpeta del respositorio donde se encuentre el **cuaderno de Jupyter** (fichero .ipynb).

La fecha límite para el envío será el 3 de junio de 2025.