- 1. We know that the VC dimension of a set of lines in 2D is 3. What is the VC dimension of a set of planes in 3D?
 - $1.1 \ 3+1 = 4$ $1.2 \ 2+2 = 2$
 - $1.2 \times 12 = 2$ $1.3 \times 12 = 2$
 - 1.4 Remains the same. i.e., 3
 - 1.5 None of the above

Ans A urlhttp://work.caltech.edu/slides/slides07.pdf proves that VC dimension for linear perceptron in \mathbb{R}^d is d+1

Make the necessary minimal changes (if any required) and rewrite as true sentences in the space provided. Avoid changing the words in bold.

A Single Layer Perceptron can solve ExOR problem. FIB A multi layer perceptron can solve ExOR problem.

3. We know that $tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$. What is the derivative of tanh(x)

$$3.1 1 + \tanh(x)$$

3.2
$$1 - \tanh^2(x)$$

3.3
$$tanh(x)(1 - tanh(x))$$

- 3.4 $1 + \tanh^2(x)$
- 3.5 None of the above

Ans: B

4. Make the necessary minimal changes (if any required) and rewrite as true sentences in the space provided. Avoid changing the words in bold.

Backpropagation algorithm can guarantee (always find) the optimal solution/weights for a Multilayer Perceptron.

FIB Backpropagation algorithm can not guarantee (always find) the optimal solution/weights for a Multilayer Perceptron.

(MLP loss functions are non-convex in general)

(MLP loss functions are non-convex in general)

5. An MLP has two inputs, two hidden layers of 3 neurons each and an output of two neurons. All the neurons have biases.

The number of weights (or learnable parameters) is:

- 5.1 24
- 5.2 21
- 5.3 29
- **5.4** 37
- 5.5 None of the above

Ans: C 3*(2+1) + 3*(3+1) + 2*(3+1)