What is Claimed:

3 adipic acid and azelaic acid.

1	1.	A composition for treating the surface of a ferrous metal, the	
2	composition compris	· · · · · · · · · · · · · · · · · · ·	
-			
3	a)	at least one of aluminum sulfate and an aluminum sulfate	
4		precursor;	
5	b)	at least one of boric acid and a boric acid precursor; and	
6	c)	at least one of a polycarboxylic acid and a polycarboxylic acid	
7		precursor.	
1	. 2.	The composition of claim 1, wherein said at least one of a	
2	polycarboxylic acid and a polycarboxylic acid precursor comprises at least one of		
3	oxalic acid and a wa	ater-soluble salt of oxalic acid.	
1	3.	The composition of claim 2 further comprising a second	
2	polycarboxylic acid,	wherein said second polycarboxylic acid comprises at least one of	
3	adipic acid and azelaic acid.		
1	4.	The composition of claim 1, wherein said at least one of a	
2	polycarboxylic acid	and a polycarboxylic acid precursor comprises at least one of	
3	citric acid and a wat	ter-soluble salt of citric acid.	
1	5.	The composition of claim 4 further comprising a second	
2	polycarboxylic acid,	wherein said second polycarboxylic acid comprises at least one of	

The composition of claim 1 further comprising a polyol.

6.

1

7. The composition of claim 6, wherein said polyol comprises at 1 least one of trimethylolpropane, pentaerythritol, and dipentaerythritol. 2 8. The composition of claim 6, wherein said polyol comprises at 1 least one of trimethylolpropane and pentaerythritol. 2 9. The composition of claim 1 further comprising at least one of L-1 aspartic acid and D-aspartic acid. 2 10. The composition of claim 1 further comprising glutamic acid. 1 11. The composition of claim 1, wherein said aluminum sulfate, said 1 at least one of boric acid and a boric acid precursor, and said at least one of a 2 polycarboxylic acid and a polycarboxylic acid precursor are present in the following 3 amounts: 4 5 a) between about 40 wt.% and about 80 wt.% of aluminum sulfate; 6 b) between about 10 wt.% and about 20 wt.% total of at least one 7 of boric acid and a boric acid precursor; and 8 between about 10 wt.% and about 20 wt.% total of at least one c) of a polycarboxylic acid and a polycarboxylic acid precursor. 10

1	12.	The composition of claim 11 further comprising:
2	d)	between about 5 wt.% and about 10 wt.% of citric acid;
3	e)	between about 2 wt.% and about 5 wt.% of pentaerythritol;
4	f)	between about 2 wt.% and about 5 wt.% of adipic acid; and
5	g)	between about 1 wt.% and about 3 wt.% of L-aspartic acid.
1	13.	A composition for treating the surface of a ferrous metal, the
2	composition compris	ing:
3	a)	between about 50 wt.% and about 70 wt.% of aluminum
4		sulfate;
5	b)	between about 10 wt.% and about 15 wt.% of boric acid;
6	c)	between about 5 wt.% and about 15 wt.% of oxalic acid;
7	d)	between about 2 wt.% and about 7 wt.% of citric acid;
8	e)	between about 2 wt.% and about 7 wt.% of adipic acid;
9	f)	between about 1 wt.% and about 5 wt.% of pentaerythritol;
10	g)	between about 1 wt.% and about 5 wt.% of
11		trimethylolpropane;

between about 0.5 wt.% and about 2 wt.% of azelaic acid; and h) 12 between about 1 wt.% and about 5 wt.% of L-aspartic acid, Di) 13 aspartic acid, or a mixture thereof. 14 14. A method for treating the surface of a ferrous metal, comprising 1 contacting the surface of a ferrous metal with an aqueous mixture comprising: 2 a) aluminum sulfate; 3 b) boric acid; and 4 a polycarboxylic acid. c) 5 The method of claim 14 further comprising bringing said 15. 1 aqueous mixture to a temperature between about 150°F and about 210°F. 2 16. The method of claim 14 wherein the pH of said aqueous mixture 1 is between about 1 and about 4. 17. The method of claim 14, wherein the contacting step comprises 1 contacting the surface of the ferrous metal with the aqueous mixture for a period of 2 time between about 1 minute and about 15 minutes. 3 18. The method of claim 17, wherein said period of time is between 1

about 2 minutes and about 10 minutes.

2

- 19. The method of claim 14, wherein said ferrous metal is a low-
- carbon steel, and wherein the contacting step comprises contacting the surface of the
- ferrous metal with the aqueous mixture at a temperature between about 185°F and
- 4 about 200°F.

1

- 1 20. The method of claim 14, wherein said ferrous metal is a
- 2 medium-carbon steel, and wherein the contacting step comprises contacting the
- 3 surface of the ferrous metal with the aqueous mixture at a temperature between
- 4 about 170°F and about 200°F.
- 1 21. The method of claim 14, wherein said ferrous metal is a high-
- 2 carbon steel, and wherein the contacting step comprises contacting the surface of the
- 3 ferrous metal with the aqueous mixture at a temperature between about 160°F and
- 4 about 200°F.
- 1 22. The method of claim 14, wherein said aqueous mixture further
- 2 comprises at least one of L-aspartic acid and D-aspartic acid.
- 1 23. The method of claim 14, wherein said polycarboxylic acid
- 2 comprises at least one of oxalic acid and citric acid.
- 1 24. The method of claim 14, wherein said aqueous mixture further
- 2 comprises a polyol.
- 1 25. The method of claim 14, wherein said aqueous mixture further
- 2 comprises at least one of adipic acid and azelaic acid.

A ferrous metal treated by the method of claim 14. 26. 1 1 27. An aqueous mixture for treating the surface of a ferrous metal, the mixture comprising: 2 aluminum sulfate; 3 a) boric acid; and b) 4 c) a polycarboxylic acid. 5 28. The aqueous mixture of claim 27 having a pH between about 1 1 and about 4. 2 29. The aqueous mixture of claim 27, wherein said polycarboxylic 1 acid comprises oxalic acid. 2 30. The aqueous mixture of claim 29 further comprising a second 1 polycarboxylic acid, wherein said second polycarboxylic acid comprises at least one of 2 adipic acid and azelaic acid. 3 31. The aqueous mixture of claim 27, wherein said polycarboxylic 1 acid comprises citric acid. 2 32. The aqueous mixture of claim 31 further comprising a second 1 polycarboxylic acid, wherein said second polycarboxylic acid comprises at least one of 2 adipic acid and azelaic acid. 3

33. The aqueous mixture of claim 27 further comprising a polyol. 1 The aqueous mixture of claim 33, wherein said polyol comprises 1 34. at least one of trimethylolpropane, pentaerythritol, and dipentaerythritol. 2 1 35. The aqueous mixture of claim 33, wherein said polyol comprises at least one of trimethylolpropane and pentaerythritol. 2 1 36. The aqueous mixture of claim 27 further comprising at least one of L-aspartic acid and D-aspartic acid. 2 37. The aqueous mixture of claim 27 further comprising glutamic 1 acid. 2 38. 1 The aqueous mixture of claim 27, wherein said aluminum sulfate, said boric acid, and said polycarboxylic acid are present in the following 2 relative amounts, exclusive of added water: 3 4 a) between about 40 wt.% and about 80 wt.% of aluminum 5 sulfate; b) between about 10 wt.% and about 20 wt.% of boric acid and a 6 boric acid; and 7 between about 10 wt.% and about 20 wt.% total of a c) 8 polycarboxylic acid.

The aqueous mixture of claim 38 further comprising:

39.

1

2	d)	between about 5 wt.% and about 10 wt.% of citric acid;
3	e)	between about 2 wt.% and about 5 wt.% of pentaerythritol;
4	f)	between about 2 wt.% and about 5 wt.% of adipic acid; and
5	g)	between about 1 wt.% and about 3 wt.% of L-aspartic acid.
1	40.	An aqueous mixture for treating the surface of a ferrous metal,
2	the composition con	nprising the following materials in the following relative amounts
3	exclusive of added v	vater:
4	a)	between about 50 wt.% and about 70 wt.% of aluminum
5		sulfate;
6	b)	between about 10 wt.% and about 15 wt.% of boric acid;
7	c)	between about 5 wt.% and about 15 wt.% of oxalic acid;
8	d)	between about 2 wt.% and about 7 wt.% of citric acid;
9	e)	between about 2 wt.% and about 7 wt.% of adipic acid;
10	f)	between about 1 wt.% and about 5 wt.% of pentaerythritol;
11	g)	between about 1 wt.% and about 5 wt.% of
12		trimethylolpropane;
13	h)	between about 0.5 wt.% and about 2 wt.% of azelaic acid; and

i) between about 1 wt.% and about 5 wt.% of L-aspartic acid, D-14 aspartic acid, or a mixture thereof. 15 41. A method for making an aqueous mixture for treating the 1 2 surface of a ferrous metal, the method comprising mixing together in any sequence the following materials: 3 a) at least one of aluminum sulfate and an aluminum sulfate 4 precursor; 5 b) at least one of boric acid and a boric acid precursor; 6 at least one of a polycarboxylic acid and a polycarboxylic acid 7 c) precursor; and 8 d) water. 9 42. The method of claim 41 further comprising bringing the pH of 10

the aqueous mixture to between about 1 and about 4.