Paradigmas de Programación

Resolución lógica

1er cuatrimestre de 2024 Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Breve introducción a Prolog

Resolución para lógica proposicional

Resolución para lógica de primer orden

Ejemplo — genealogía del panteón mitológico griego

```
padre(cronos, zeus).
padre(zeus, atenea).
padre(zeus, hefesto).
padre(zeus, ares).
abuelo(X, Y) :- padre(X, Z), padre(Z, Y).
 ?- padre(zeus, atenea).
                           ?- abuelo(cronos, X).
 >> true.
                           >> X = atenea ;
 ?- padre(zeus, cronos).
                           >> X = hefesto ;
 >> false.
                           >> X = ares.
 ?- abuelo(X, atenea). ?- abuelo(X, Y).
 >> X = cronos.
                           >> X = cronos, Y = atenea ;
 ?- abuelo(X, zeus).
                           >> X = cronos, Y = hefesto;
 >> false.
                           >> X = cronos, Y = ares.
```

Prolog opera con **términos de primer orden**:

```
X Y succ(succ(zero)) bin(I, R, D) ...
```

Las **fórmulas atómicas** son de la forma $pred(t_1, ..., t_n)$:

Un programa es un conjunto de **reglas**. Cada regla es de la forma:

$$\sigma := \tau_1, \ldots, \tau_n.$$
 Ej.: abuelo(X, Y) :- padre(X, Z), padre(Z, Y).

donde $\sigma, \tau_1, \ldots, \tau_n$ son fórmulas atómicas.

Las reglas en las que n = 0 se llaman **hechos** y se escriben:

$$\sigma$$
. Ej.: padre(zeus, ares).

Las reglas tienen la siguiente interpretación lógica:

$$\forall X_1 \ldots \forall X_k . ((\tau_1 \wedge \ldots \wedge \tau_n) \Rightarrow \sigma)$$

donde X_1, \ldots, X_k son todas las variables libres de las fórmulas.

$$\mathsf{Ej.:} \ \forall \mathtt{X.} \ \forall \mathtt{Y.} \ \forall \mathtt{Z.} \ \big(\big(\mathtt{padre}(\mathtt{X}, \ \mathtt{Z}) \ \land \ \mathtt{padre}(\mathtt{Z}, \ \mathtt{Y}) \big) \Rightarrow \mathtt{abuelo}(\mathtt{X}, \ \mathtt{Y}) \big)$$

Una consulta es de la forma:

?-
$$\sigma_1$$
, ..., σ_n
Ej.: ?- abuelo(X, ares).

Las consultas tienen la siguiente interpretación lógica:

$$\exists X_1 \ldots \exists X_k . (\sigma_1 \wedge \ldots \wedge \sigma_n)$$

donde X_1, \ldots, X_k son todas las variables libres de las fórmulas.

El entorno de Prolog busca demostrar la fórmula τ de la consulta. En realidad busca *refutar* $\neg \tau$.

La búsqueda de la refutación se basa en el **método de resolución**.

Breve introducción a Prolog

Resolución para lógica proposicional

Resolución para lógica de primer orden

Resolución para lógica proposicional

Entrada: una fórmula σ de la lógica proposicional. Salida: un booleano que indica si σ es válida.

Método de resolución

- 1. Escribir $\neg \sigma$ como un conjunto \mathcal{C} de **cláusulas**. (Pasar a *forma clausal*).
- Buscar una refutación de C.
 Una refutación de C es una derivación de C ⊢ ⊥.

Si se encuentra una refutación de \mathcal{C} :

Vale $\neg \sigma \vdash \bot$. Es decir, $\neg \sigma$ es insatisfactible/contradicción. Luego vale $\vdash \sigma$. Es decir, σ es válida/tautología.

Si no se encuentra una refutación de C:

No vale $\neg \sigma \vdash \bot$. Es decir, σ es satisfactible. Luego no vale $\vdash \sigma$. Es decir, σ no es válida.

Una fórmula se pasa a forma clausal aplicando las siguientes reglas. Todas las reglas transforman la fórmula en otra equivalente.

Paso 1. Deshacerse del conectivo "⇒":

$$\sigma \Rightarrow \tau \longrightarrow \neg \sigma \lor \tau$$

La fórmula resultante sólo usa los conectivos $\{\neg, \lor, \land\}$.

Paso 2. Empujar el conectivo "¬" hacia adentro:

$$\neg(\sigma \wedge \tau) \longrightarrow \neg\sigma \vee \neg\tau
\neg(\sigma \vee \tau) \longrightarrow \neg\sigma \wedge \neg\tau
\neg\neg\sigma \longrightarrow \sigma$$

La fórmula resultante está en forma normal negada (NNF):

$$\sigma_{\mathrm{nnf}} ::= \mathbf{P} \mid \neg \mathbf{P} \mid \sigma_{\mathrm{nnf}} \wedge \sigma_{\mathrm{nnf}} \mid \sigma_{\mathrm{nnf}} \vee \sigma_{\mathrm{nnf}}$$

Paso 3. Distribuir \vee sobre \wedge :

$$\begin{array}{ccc}
\sigma \lor (\tau \land \rho) & \longrightarrow & (\sigma \lor \tau) \land (\sigma \lor \rho) \\
(\sigma \land \tau) \lor \rho & \longrightarrow & (\sigma \lor \rho) \land (\tau \lor \rho)
\end{array}$$

La fórmula resultante está en **forma normal conjuntiva** (CNF). Una fórmula en CNF es conjunción de disyunciones de literales (asumiendo que permitimos asociar libremente \land y \lor):

Fórmulas en CNF
$$\sigma_{\mathrm{cnf}} ::= (\kappa_1 \wedge \kappa_2 \wedge \ldots \wedge \kappa_n)$$

Cláusulas $\kappa ::= (\ell_1 \vee \ell_2 \vee \ldots \vee \ell_m)$
Literales $\ell ::= \mathbf{P} \mid \neg \mathbf{P}$

Por último, usando el hecho de que la disyunción (\lor) es:

asociativa
$$\begin{array}{ccc} \sigma \vee (\tau \vee \rho) & \Longleftrightarrow & (\sigma \vee \tau) \vee \rho \\ \text{conmutativa} & \sigma \vee \tau & \Longleftrightarrow & \tau \vee \sigma \\ \text{idempotente} & \sigma \vee \sigma & \Longleftrightarrow & \sigma \end{array}$$

notamos una cláusula (disyunción de literales) como un conjunto:

$$(\ell_1 \lor \ell_2 \lor \ldots \lor \ell_n)$$
 se nota $\{\ell_1, \ell_2, \ldots, \ell_n\}$

Análogamente, usando el hecho de que la conjunción (\land) es asociativa, conmutativa e idempotente notamos una conjunción de cláusulas como un conjunto:

$$(\kappa_1 \wedge \kappa_2 \wedge \ldots \wedge \kappa_n)$$
 se nota $\{\kappa_1, \kappa_2, \ldots, \kappa_n\}$

Resumen — pasaje a forma clausal

- 1. Reescribir \Rightarrow usando \neg y \lor .
- 2. Pasar a f.n. negada, empujando ¬ hacia adentro.
- 3. Pasar a f.n. conjuntiva, distribuyendo \vee sobre \wedge .

Ejemplo — pasaje a forma clausal

Queremos ver que $\sigma \equiv (((\mathbf{P} \Rightarrow (\mathbf{Q} \land \mathbf{R})) \land \mathbf{P}) \Rightarrow \mathbf{Q})$ es válida. Primero la negamos: $\neg \sigma \equiv \neg(((\mathbf{P} \Rightarrow (\mathbf{Q} \land \mathbf{R})) \land \mathbf{P}) \Rightarrow \mathbf{Q})$. Pasamos $\neg \sigma$ a forma clausal:

$$\neg(((P \Rightarrow (Q \land R)) \land P) \Rightarrow Q)$$

$$\rightarrow \neg(\neg((\neg P \lor (Q \land R)) \land P) \lor Q)$$

$$\rightarrow (\neg\neg((\neg P \lor (Q \land R)) \land P) \land \neg Q)$$

$$\rightarrow (((\neg P \lor (Q \land R)) \land P) \land \neg Q)$$

$$\rightarrow (((\neg P \lor Q) \land (\neg P \lor R)) \land P) \land \neg Q)$$

$$\rightarrow (\neg P \lor Q) \land (\neg P \lor R) \land P \land \neg Q$$

La forma clausal es:

$$\mathcal{C} = \{ \{ \neg \textbf{P}, \textbf{Q} \}, \{ \neg \textbf{P}, \textbf{R} \}, \{ \textbf{P} \}, \{ \neg \textbf{Q} \} \}$$

Refutación

Una vez obtenido un conjunto de cláusulas $C = \{\kappa_1, \dots, \kappa_n\}$, se busca una **refutación**, es decir, una demostración de $C \vdash \bot$.

El método de refutación se basa en la siguiente regla de deducción:

Regla de resolución

$$\frac{\mathbf{P} \vee \ell_1 \vee \ldots \vee \ell_n \quad \neg \mathbf{P} \vee \ell'_1 \vee \ldots \vee \ell'_m}{\ell_1 \vee \ldots \vee \ell_n \vee \ell'_1 \vee \ldots \vee \ell'_m}$$

Escrita con notación de cláusulas:

$$\frac{\{\mathbf{P},\ell_1,\ldots,\ell_n\} \quad \{\neg \mathbf{P},\ell'_1,\ldots,\ell'_m\}}{\{\ell_1,\ldots,\ell_n,\ell'_1,\ldots,\ell'_m\}}$$

La conclusión se llama la resolvente de las premisas.

Refutación

Entrada: un conjunto de cláusulas $C_0 = \{\kappa_1, \dots, \kappa_n\}$.

Salida: SAT/INSAT indicando si C_0 es insatisfactible $(C_0 \vdash \bot)$.

Algoritmo de refutación

Sea $\mathcal{C}:=\mathcal{C}_0$. Repetir mientras sea posible:

- 1. Si $\{\}\in\mathcal{C}$, devolver INSAT.
- 2. Elegir dos cláusulas $\kappa, \kappa' \in \mathcal{C}$, tales que:

$$\begin{split} &\kappa = \{\mathbf{P}, \ell_1, \dots, \ell_n\} \\ &\kappa' = \{\neg \mathbf{P}, \ell'_1, \dots, \ell'_m\} \\ &\text{La resolvente } \rho = \{\ell_1, \dots, \ell_n, \ell'_1, \dots, \ell'_m\} \text{ no está en } \mathcal{C}. \end{split}$$

Si no es posible, devolver SAT.

3. Tomar $\mathcal{C} := \mathcal{C} \cup \{\rho\}$ y volver al paso 1.

Refutación

Ejemplo — método de resolución

Queremos demostrar $\sigma \equiv (((\mathbf{P} \Rightarrow (\mathbf{Q} \wedge \mathbf{R})) \wedge \mathbf{P}) \Rightarrow \mathbf{Q}).$

Equivalentemente, veamos que $\neg \sigma \vdash \bot$.

La forma clausal de $\neg \sigma$ era:

$$\mathcal{C} = \{\underbrace{\{\neg P, Q\}}_{1}, \underbrace{\{\neg P, R\}}_{2}, \underbrace{\{P\}}_{3}, \underbrace{\{\neg Q\}}_{4}\}$$

- ▶ De $\boxed{1}$ y $\boxed{3}$ obtenemos la resolvente $\boxed{5} = \{\mathbf{Q}\}.$
- ▶ De 4 y 5 obtenemos la resolvente { }.
- Luego $C \vdash \bot$. Luego $\neg \sigma \vdash \bot$. Luego $\vdash \sigma$.

Corrección del método de resolución proposicional

Teorema (corrección del pasaje a forma clausal)

Dada una fórmula σ :

- 1. El pasaje a forma clausal termina.
- 2. El conjunto de cláusulas C obtenido es equivalente a σ . Es decir, $\vdash \sigma \iff C$.

Corrección del método de resolución proposicional

Teorema (corrección del algoritmo de refutación)

Dado un conjunto de cláusulas C_0 :

- 1. El algoritmo de refutación termina.
- 2. El algoritmo retorna INSAT si y sólo si $C_0 \vdash \bot$.

Ideas de la demostración:

- 1. Si en C_0 aparecen n literales distintos, se pueden formar 2^n cláusulas posibles. Cada paso agrega una cláusula. Luego el algoritmo no puede tomar más de de 2^n pasos.
- $2.(\Rightarrow)$. El algoritmo preserva el invariante de que para cada cláusula $\kappa \in \mathcal{C}$ se tiene que $\mathcal{C}_0 \vdash \kappa$. La observación clave es que si $\kappa, \kappa' \in \mathcal{C}$ y ρ es la resolvente, entonces $\kappa, \kappa' \vdash \rho$.
- $2.(\Leftarrow)$. Más difícil. Se puede probar por inducción en el número de variables proposicionales que aparecen en \mathcal{C}_0 .

Ver Handbook of Proof Theory. Samuel R. Buss (editor). Elsevier, 1998. Sección 2.6.

Breve introducción a Prolog

Resolución para lógica proposicional

Resolución para lógica de primer orden

Resolución para lógica de primer orden

Entrada: una fórmula σ de la lógica de primer orden.

Salida: un booleano indicando si σ es válida.

Si σ es válida, el método siempre termina.

Si σ no es válida, el método puede no terminar.

Método de resolución de primer orden (Procedimiento de semi-decisión)

- 1. Escribir $\neg \sigma$ como un conjunto \mathcal{C} de **cláusulas**.
- 2. Buscar una **refutación** de C. Si existe alguna refutación, el método encuentra alguna.
 - Si no existe una refutación, el método puede "colgarse".

Una fórmula se pasa a forma clausal aplicando las siguientes reglas. Paso 1. Deshacerse del conectivo " \Rightarrow ":

$$\sigma \Rightarrow \tau \rightarrow \neg \sigma \lor \tau$$

La fórmula resultante sólo usa los conectivos $\{\neg, \lor, \land, \lor, \exists\}$. Paso 2. Empujar el conectivo "¬" hacia adentro:

$$\begin{array}{cccc}
\neg(\sigma \wedge \tau) & \longrightarrow & \neg \sigma \vee \neg \tau \\
\neg(\sigma \vee \tau) & \longrightarrow & \neg \sigma \wedge \neg \tau \\
\neg \neg \sigma & \longrightarrow & \sigma \\
\neg \forall X. \sigma & \longrightarrow & \exists X. \neg \sigma \\
\neg \exists X. \sigma & \longrightarrow & \forall X. \neg \sigma
\end{array}$$

La fórmula resultante está en forma normal negada (NNF):

$$\begin{array}{ll} \sigma_{\mathrm{nnf}} & ::= & \mathsf{P}(t_1, \dots t_n) \mid \neg \mathsf{P}(t_1, \dots t_n) \mid \sigma_{\mathrm{nnf}} \wedge \sigma_{\mathrm{nnf}} \mid \sigma_{\mathrm{nnf}} \vee \sigma_{\mathrm{nnf}} \\ \mid & \forall \mathsf{X}. \ \sigma_{\mathrm{nnf}} \mid \exists \mathsf{X}. \ \sigma_{\mathrm{nnf}} \end{array}$$

Paso 3. Extraer los cuantificadores (" \forall/\exists ") hacia afuera. Se asume siempre $X \notin fv(\tau)$:

Todas las reglas transforman la fórmula en otra equivalente.

La fórmula resultante está en forma normal prenexa:

$$\sigma_{\text{pre}} ::= \mathcal{Q}_1 \mathbf{X}_1. \, \mathcal{Q}_2 \mathbf{X}_2. \, \dots \, \mathcal{Q}_n \mathbf{X}_n. \, \tau$$

donde cada \mathcal{Q}_i es un cuantificador $\{\forall,\exists\}$ y τ representa una fórmula en NNF libre de cuantificadores.

Paso 4. Deshacerse de los cuantificadores existenciales (∃). Para ello se usa la siguiente técnica de Herbrand y Skolem:

- ¿Cómo eliminamos los ∃ sin cambiar la satisfactibilidad?
- Introducimos "testigos" para ellos.
 - Todo cuantificador existencial se instancia en una constante o función de skolem.
 - ► Ejemplo: $\exists x.P(x)$ se skolemiza a P(c) donde c es una nueva constante que se agrega al lenguaje de primer orden.
 - Estas funciones y constantes se suelen conocer como parámetros.

Skolemización

Cada ocurrencia de una subfórmula

$$\exists x.B$$

en A se reemplaza por

$$B\{x:=f(x_1,\ldots,x_n)\}$$

donde:

- •{•:=•} es la operación usual de Sustitución (sustituir todas las ocurrencias libres de una variable en una expresión fórmula o término - por otra expresión).
- ▶ f es un símbolo de función nuevo y las $x_1, ..., x_n$ son las variables de las que depende x en B.
- ▶ Si $\exists x.B$ forma parte de una fórmula mayor, x solo depende de las variables libres de B (por ejemplo, en $\forall z. \forall y. \exists x. P(y, x)$ la x depende de y).

Forma normal de Skolem

- Sea A una sentencia rectificada en forma normal negada:
 - Una fórmula está rectificada si todos sus cuantificadores ligan variables distintas entre sí, y a la vez distintas de todas las variables libres.
- Reemplazar sucesivamente cada ocurrencia de una subfórmula de la forma $\exists X.B$ en A por $B\{X := f_X(y_1, \dots, y_m)\}$ donde:
 - $ightharpoonup fv(B) = \{x, y_1, \dots, y_m\}.$
 - Como A está rectificada, cada f_x es única.
 - ightharpoonup Caso especial (m=0): Se utiliza una constante (o símbolo de función de aridad 0) c_x .
 - $\exists X.B$ se reemplaza por $B\{X:=c_X\}$

Ejemplos

Considerar la fórmula

$$\forall x. \left(P(a) \vee \exists y. (Q(y) \wedge \forall z. (P(y,z) \vee \exists u. Q(x,u))) \right) \vee \exists w. Q(w)$$

La forma normal de Skolem es:

$$\forall x. (P(a) \lor (Q(g(x)) \land \forall z. (P(g(x), z) \lor Q(x, f(x))))) \lor Q(c)$$

Ejemplos

Considere la sentencia:

$$\forall x. \exists y. \exists z. R(x, y, z)$$

- 1. Alternativa 1 (rojo, azul)
 - 1.1 $\forall x. \exists y. \exists z. R(x, y, z)$
 - 1.2 $\forall x. \exists z. R(x, f(x), z)$
 - 1.3 $\forall x.R(x, f(x), g(x))$
- 2. Alternativa 2 (azul, rojo)
 - 2.1 $\forall x. \exists y. \exists z. R(x, y, z)$
 - 2.2 $\forall x. \exists y. R(x, y, h(x, y))$
 - 2.3 $\forall x.R(x,k(x),h(x,k(x)))$
- 3. La skolemización no es determinística.
- Es mejor skolemizar de afuera hacia adentro.

La Skolemización preserva la **satisfactibilidad**. Pero no siempre produce fórmulas equivalentes. Es decir **no preserva la validez**.

Ejemplo — la Skolemización no preserva la validez

$$\underbrace{\exists X. \left(\mathbf{P}(0) \Rightarrow \mathbf{P}(X) \right)}_{\text{válida}} \qquad \underbrace{\mathbf{P}(0) \Rightarrow \mathbf{P}(c)}_{\text{inválida}}$$

Dada una fórmula en forma normal prenexa y **cerrada**, se aplica la regla:

$$\forall \mathtt{X}_1. \ldots \forall \mathtt{X}_n. \, \exists \mathtt{Y}. \, \sigma \quad \Longrightarrow \quad \forall \mathtt{X}_1. \ldots \forall \mathtt{X}_n. \, \sigma \{ \mathtt{Y} := \mathtt{f}(\mathtt{X}_1, \ldots, \mathtt{X}_n) \}$$

donde f es un símbolo de función nuevo de aridad $n \ge 0$.

Forma normal de Skolem:

$$\sigma_{Sk} ::= \forall X_1 X_2 \dots X_n \cdot \tau$$

donde au representa una fórmula en NNF libre de cuantificadores.

Paso 5. Dada una fórmula en forma normal de Skolem:

$$\forall X_1 X_2 \dots X_n . \tau$$
 (τ libre de cuantificadores)

se pasa au a forma normal conjuntiva usando las reglas ya vistas:

$$\begin{array}{ccc} \sigma \vee (\tau \wedge \rho) & \longrightarrow & (\sigma \vee \tau) \wedge (\sigma \vee \rho) \\ (\sigma \wedge \tau) \vee \rho & \longrightarrow & (\sigma \vee \rho) \wedge (\tau \vee \rho) \end{array}$$

El resultado es una fórmula de la forma:

$$\forall \mathtt{X}_1 \dots \mathtt{X}_n . \left(\begin{array}{c} (\ell_1^{(1)} \vee \dots \vee \ell_{m_1}^{(1)}) \\ \wedge (\ell_1^{(2)} \vee \dots \vee \ell_{m_2}^{(2)}) \\ \dots \\ \wedge (\ell_1^{(k)} \vee \dots \vee \ell_{m_k}^{(k)}) \end{array} \right)$$

Paso 6. Empujar los cuantificadores universales hacia adentro:

$$\forall \mathbf{X}_{1} \dots \mathbf{X}_{n} . \begin{pmatrix} (\ell_{1}^{(1)} \vee \dots \vee \ell_{m_{1}}^{(1)}) \\ \wedge (\ell_{1}^{(2)} \vee \dots \vee \ell_{m_{2}}^{(2)}) \\ \dots \\ \wedge (\ell_{1}^{(k)} \vee \dots \vee \ell_{m_{k}}^{(k)}) \end{pmatrix} \longrightarrow \begin{pmatrix} \forall \mathbf{X}_{1} \dots \mathbf{X}_{n} . (\ell_{1}^{(1)} \vee \dots \vee \ell_{m_{1}}^{(1)}) \\ \wedge \forall \mathbf{X}_{1} \dots \mathbf{X}_{n} . (\ell_{1}^{(2)} \vee \dots \vee \ell_{m_{2}}^{(2)}) \\ \dots \\ \wedge \forall \mathbf{X}_{1} \dots \mathbf{X}_{n} . (\ell_{1}^{(k)} \vee \dots \vee \ell_{m_{k}}^{(k)}) \end{pmatrix}$$

Por último la **forma clausal** es:

$$\left\{ \begin{array}{l} \{\ell_1^{(1)}, \dots, \ell_{m_1}^{(1)}\}, \\ \{\ell_1^{(2)}, \dots, \ell_{m_2}^{(2)}\}, \\ \vdots \\ \{\ell_1^{(k)}, \dots, \ell_{m_k}^{(k)}\} \end{array} \right\}$$

Resumen — pasaje a forma clausal en lógica de primer orden

- 1. Reescribir \Rightarrow usando \neg y \lor .
- 2. Pasar a f.n. negada, empujando ¬ hacia adentro.
- 3. Pasar a f.n. prenexa, extrayendo \forall , \exists hacia afuera.
- 4. Pasar a f.n. de Skolem, Skolemizando los existenciales.
- 5. Pasar a f.n. conjuntiva, distribuyendo \vee sobre \wedge .
- 6. Empujar los cuantificadores hacia adentro de las conjunciones.

Cada paso produce una fórmula equivalente, excepto la Skolemización que sólo preserva satisfactibilidad.

Ejemplo — pasaje a forma clausal

Queremos ver que $\sigma \equiv \exists X. (\forall Y. \mathbf{P}(X, Y) \Rightarrow \forall Y. \mathbf{P}(Y, X))$ es válida. Primero la negamos: $\neg \sigma \equiv \neg \exists X. (\forall Y. \mathbf{P}(X, Y) \Rightarrow \forall Y. \mathbf{P}(Y, X))$.

Pasamos $\neg \sigma$ a forma clausal:

$$\neg\exists X. (\forall Y. P(X, Y) \Rightarrow \forall Y. P(Y, X))$$

$$\rightarrow \neg\exists X. (\neg \forall Y. P(X, Y) \lor \forall Y. P(Y, X))$$

$$\rightarrow \forall X. \neg(\neg \forall Y. P(X, Y) \lor \forall Y. P(Y, X))$$

$$\rightarrow \forall X. (\neg \neg \forall Y. P(X, Y) \land \neg \forall Y. P(Y, X))$$

$$\rightarrow \forall X. (\forall Y. P(X, Y) \land \exists Y. \neg P(Y, X))$$

$$\rightarrow \forall X. \exists Y. (\forall Y. P(X, Y) \land \neg P(Y, X))$$

$$\rightarrow \forall X. \exists Y. \forall Z. (P(X, Z) \land \neg P(Y, X))$$

$$\rightarrow \forall X. \forall Z. (P(X, Z) \land \neg P(f(X), X))$$

$$\rightarrow \forall X. \forall Z. P(X, Z) \land \forall X. \forall Z. \neg P(f(X), X)$$

La forma clausal es:

$$\{\{\textbf{P}(\textbf{X},\textbf{Z})\}, \{\neg\textbf{P}(\textbf{f}(\textbf{X}),\textbf{X})\}\} \equiv \{\{\textbf{P}(\textbf{X},\textbf{Y})\}, \{\neg\textbf{P}(\textbf{f}(\textbf{Z}),\textbf{Z})\}\}$$

Una vez obtenido un conjunto de cláusulas $C = \{\kappa_1, \dots, \kappa_n\}$, se busca una **refutación**, es decir, una demostración de $C \vdash \bot$.

Recordemos la regla de resolución proposicional:

$$\frac{\{\mathbf{P},\ell_1,\ldots,\ell_n\}\quad \{\neg \mathbf{P},\ell_1',\ldots,\ell_m'\}}{\{\ell_1,\ldots,\ell_n,\ell_1',\ldots,\ell_m'\}}$$

Queremos adaptarla a lógica de primer orden.

En lugar de una variable proposicional P vamos a tener una fórmula atómica $P(t_1, \ldots, t_n)$. P Podemos escribir la regla así?:

$$\frac{\{\mathsf{P}(t_1,\ldots,t_n),\ell_1,\ldots,\ell_n\}\quad \{\neg\mathsf{P}(t_1,\ldots,t_n),\ell_1',\ldots,\ell_m'\}}{\{\ell_1,\ldots,\ell_n,\ell_1',\ldots,\ell_m'\}}$$

Consideremos la fórmula:

$$\forall X. \mathbf{P}(X) \land \neg \mathbf{P}(0)$$

Debería ser refutable, pues es insatisfactible. Su forma clausal consta de dos cláusulas:

$$\{\mathbf{P}(X)\} \quad \{\neg \mathbf{P}(0)\}$$

La regla de resolución propuesta no aplica pues $P(X) \neq P(0)$.

Los términos no necesariamente tienen que ser iguales. Relajamos la regla para permitir que sean **unificables**.

La regla de resolución de primer orden es:

$$\begin{cases} \{\sigma_1, \dots, \sigma_p, \ell_1, \dots, \ell_n\} & \{\neg \tau_1, \dots, \neg \tau_q, \ell'_1, \dots, \ell'_m\} \\ \mathbf{S} = \mathsf{mgu}(\{\sigma_1 \stackrel{?}{=} \sigma_2 \stackrel{?}{=} \dots \stackrel{?}{=} \sigma_p \stackrel{?}{=} \tau_1 \stackrel{?}{=} \tau_2 \stackrel{?}{=} \dots \stackrel{?}{=} \tau_q\}) \\ \mathbf{S}(\{\ell_1, \dots, \ell_n, \ell'_1, \dots, \ell'_m\}) \end{cases}$$

$$\mathsf{con} \ p > 0 \ \mathsf{y} \ q > 0.$$

Se asume implícitamente que las cláusulas están renombradas de tal modo que $\{\sigma_1,\ldots,\sigma_p,\ell_1,\ldots,\ell_n\}$ y $\{\neg\tau_1,\ldots,\neg\tau_q,\ell'_1,\ldots,\ell'_m\}$ no tienen variables en común.

El algoritmo de refutación se adapta sin mayores cambios. Se usa la nueva regla de resolución para calcular la resolvente.

Ejemplo — método de resolución

Queremos demostrar $\sigma \equiv \exists X. (\forall Y. P(X, Y) \Rightarrow \forall Y. P(Y, X)).$

Equivalentemente, veamos que $\neg \sigma \vdash \bot$.

La forma clausal de $\neg \sigma$ era:

$$\mathcal{C} = \{\underbrace{\{\textbf{P}(\textbf{X},\textbf{Y})\}}_{\boxed{1}},\underbrace{\{\neg \textbf{P}(\textbf{f}(\textbf{Z}),\textbf{Z})\}}_{\boxed{2}}\}$$

▶ De 1 y 2 calculamos $\mathbf{mgu}(\mathbf{P}(X,Y) \stackrel{?}{=} \mathbf{P}(\mathbf{f}(Z),Z)) = \{X := \mathbf{f}(Z), Y := Z\}$ y se obtiene la resolvente $\{\}$.

Resolución binaria

Considerar la siguiente variante de la regla de resolución:

$$\frac{\{\sigma, \ell_1, \dots, \ell_n\} \quad \{\neg \tau, \ell'_1, \dots, \ell'_m\} \quad \mathbf{S} = \mathsf{mgu}(\{\sigma \stackrel{?}{=} \tau\})}{\mathbf{S}(\{\ell_1, \dots, \ell_n, \ell'_1, \dots, \ell'_m\})}$$

No es completa.

Ejemplo

 $\{\{P(X), P(Y)\}, \{\neg P(Z), \neg P(W)\}\}\$ es insatisfactible.

No es posible alcanzar la cláusula vacía $\{\,\}$ con resolución binaria.

Corrección del método de resolución de primer orden

Teorema (corrección del pasaje a forma clausal)

Dada una fórmula σ :

- 1. El pasaje a forma clausal termina.
- 2. El conjunto de cláusulas $\mathcal C$ obtenido es equisatisfactible a σ . Es decir, σ es sat. si y sólo si $\mathcal C$ es sat..

Corrección del método de resolución de primer orden

Teorema (corrección del algoritmo de refutación)

Dado un conjunto de cláusulas C_0 :

- 1. Si $C_0 \vdash \bot$, existe una manera de elegir las cláusulas tal que el algoritmo de refutación termina.
- 2. El algoritmo retorna INSAT si y sólo si $C_0 \vdash \bot$.

Si $C_0 \nvdash \bot$, no hay garantía de terminación.

Resolución de primer orden

Ejemplo — no terminación

La siguiente fórmula σ no es válida:

$$\forall \mathtt{X}. \left(\mathbf{P}(\mathtt{succ}(\mathtt{X})) \Rightarrow \mathbf{P}(\mathtt{X}) \right) \Rightarrow \mathbf{P}(\mathtt{0})$$

Tratemos de probar que es válida usando el método de resolución. Para ello pasamos $\neg \sigma$ a forma clausal:

$$\{\underbrace{\{\neg \textbf{P}(\texttt{succ}(\textbf{X})), \textbf{P}(\textbf{X})\}}_{\boxed{1}}, \underbrace{\{\neg \textbf{P}(\textbf{0})\}}_{\boxed{2}}\}$$

- ▶ De $\boxed{1}$ y $\boxed{2}$ obtenemos $\boxed{3} = \{\neg P(succ(0))\}.$
- ▶ De $\boxed{1}$ y $\boxed{3}$ obtenemos $\boxed{4} = \{\neg P(succ(succ(0)))\}.$
- ▶ De $\boxed{1}$ y $\boxed{4}$ obtenemos $\boxed{5} = \{\neg P(succ(succ(succ(0))))\}.$

. . .