

Lab 7

R. Ferrero, E. Giusto Politecnico di Torino

Dipartimento di Automatica e Informatica (DAUIN)

Torino - Italy

This work is licensed under the Creative Commons (CC BY-SA) License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/

Exercise

- Write a program in ARM assembly language in order to multiply two matrices.
- The first matrix is made by N rows and M columns.
- The second matrix is made by M rows and P columns.
- The resulting matrix is made by N rows and P columns.
- All martrices are made by signed numbers expressed on a word.
- N, M, P are constants, to be defined with EQU.

Declaration of matrices

 The first two matrices are defined as constant in a READONLY memory area.

 The third matrix has to be allocated in a DATA READWRITE area.

Matrix multiplication

- Let a_{ik} be the element at row i and column k
 of matrix A
- Let b_{kj} be the element at row k and column j
 of matrix B
- The product of matrices A and B generates a matrix C which elements are:

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Example 1

$$N = 3$$
, $M = 4$, $P = 2$

$$A = \begin{pmatrix} 4 & -3 & 5 & 1 \\ 3 & -5 & 0 & 11 \\ -5 & 12 & 4 & -5 \end{pmatrix} \qquad B = \begin{pmatrix} -2 & 3 \\ 5 & -1 \\ 4 & 3 \\ 0 & -7 \end{pmatrix}$$

$$B = \begin{pmatrix} -2 & 3 \\ 5 & -1 \\ 4 & 3 \\ 9 & -7 \end{pmatrix}$$

$$C = \begin{pmatrix} 6 & 23 \\ 68 & -63 \\ 41 & 20 \end{pmatrix}$$

Overflow handling

- Intermediate sums have to be calculated on two words.
- At the end of a row*column multiplication, check the most significant word of the partial sum.
- In case of overflow, it is required to store as result the maximum number (positive or negative, depending on the overflow) expressable on a single word.

Overflow conditions

- If one of the following conditions is true, the result is not representable on a word.
 - The most significant word is different from 0 or from 0xFFFFFFF
 - The most significant word is equal to 0 or 0xFFFFFFF, but the most significant bit of the least significant word is different from the bits of the most significant word.

Example 2: matrix A

- N = 4, M = 7, P = 5
- All numbers are in hexadecimal

A =

/00000BB8	000036B0	FFFFC568	00002328	00006590	FFFF30F8	00001388\
00015BA8	000013498	00000BB8	000059D8	00014820	FFFFE890	FFFF8AD0
0000A7F8	FFFFF448	00014438	00006978	FFFFDCD8	0000C350	00006D60
\FFFEA840	0000A028	00017AE8	FFFE6DA8	00010D88	00009858	FFFFDCD8/

Example 2: matrix B

		B =		
/00009088	FFFE7578	0	0000E290	FFFFB1E0\
00002328	00012110	00016F30	FFFFF060	0000E678
FFFFA628	00015F90	FFFECF50	00003E80	FFFFF060
0	FFFF0DD0	00014FF0	00004E20	00015BA8
00002328	00014FF0	00006D60	0	FFFF7B30
00014050	00001388	000084D0	FFFFADF8	000003E8 /
\00011170	FFFEFA48	00002328	00014050	000036B0 [/]

Example 2: matrix C

C =80000000 1B7A4D40 7FFFFFF 5E3C2540 2D4CAE00` 7D1C32C0 7FFFFFF 7FFFFFF 7FFFFFF 6164DC80 7FFFFFFF 7FFFFFF BA5279C0 80000000 6A372980 80000000 8D05CBC0 7FFFFFF 80000000 80000000

Example 2: calculation of $c_{1,3}$

- 1. 00000BB8 * 00000000 =00000000 00000000 Partial result: 000000000 00000000
- 2. 000036B0 * 00016F30 = 00000000 4E709100 Partial result: 00000000 4E709100
- 3. FFFFC568 * FFFECF50=00000000 45BCC880 Partial result: 00000000 942D5980
- 4. 00002328 * 00014FF0 = 00000000 2E224D80 Partial result: 00000000 C24FA700

Example 2: calculation of $c_{1,3}$

- 5. 00006590 * 00006D60 = 00000000 2B646600 Partial result : 00000000 EDB40D00
- 6. FFFF30F8 * 000084D0=FFFFFFF 9497A980 Partial result : 00000000 824BB680
- 7. 00001388 * 00002328 = 00000000 02AEA540 Partial result : 00000000 84FA5BC0
- The result is not representable on a single word because the first bit of the least significant word is different from the bits of the most significant word.
- $c_{1,3} = 7FFFFFFF$

Example 2: calculation of $c_{2,1}$

- 1. 00015BA8 * 00009088 = 000000000 C4473140 Partial result: 000000000 C4473140
- 2. 000013498 * 00002328 = 00000000 2A60FFC0 Partial result : 00000000 EEA83100
- 3. 00000BB8 * FFFFA628=FFFFFFF FBE324C0 Partial result : 00000000 EA8B55C0
- 4. 000059D8 * 00000000 = 00000000 00000000 Partial result : 00000000 EA8B55C0

Example 2: calculation of $c_{2,1}$

- 5. 00014820 * 00002328 = 00000000 2D0FA500 Partial result : 00000001 179AFAC0
- 6. FFFFE890 * 00014050=FFFFFFF E2ACAD00 Partial result : 00000000 FA47A7C0
- 7. FFFF8AD0 * 00011170 =FFFFFFF 82D48B00 Partial result : 00000000 7D1C32C0
- Despite the fact that at step 5 the partial result is on 2 words, the final result is representable on a single one.

Example 2: calculation of $c_{1,1}$

- 00015BA8 * FFFE7578=FFFFFFD E836BEC0
 Partial result : FFFFFFD E836BEC0
- 2. 000013498 * 00012110 = 00000001 5C72E180 Partial result : FFFFFFF 44A9A040
- 3. 00000BB8 * 00015F90= 00000000 1017DF80 Partial result : FFFFFFF 54C17FC0
- 4. 000059D8 * FFFF0DD0=FFFFFFF AB00F780 Partial result : FFFFFFF FFC27740

Example 2: calculation of $c_{1,1}$

- 5. 00014820 * 00014FF0 = 00000001 AE957E00 Partial result : 00000000 AE57F540
- 6. FFFFE890 * 00001388=FFFFFFFF FE363C80 Partial result : 00000000 AC8E31C0
- 7. FFFF8AD0 * FFFEFA48=00000000 77CE2A80 Partial result: 00000001 245C5C40
- The result is not representable on a single word, because the most significant word is different from 0 and from FFFFFFF.
- $C_{1,1} = 7FFFFFFF$