2.2 Probability Mass Functions

Definition

The **probability mass function (pmf)** of a discrete random variable X is a function $p_X:\mathbb{R}\to [0,1]$ defined by:

$$p_X(x) = P(X = x)$$

for each x in the range of X, denoted R_X , where R_X has a finite or countable infinite number of values.

- $\bullet \;$ Capital X will denote a random variable.
- ullet Lowercase x will denote a specific numeric value.

Calculation of the pmf

For each possible value x of X:

- 1. Collect all the possible outcomes that give rise to the event $\{X = x\}$.
- 2. Add their probabilities to obtain $p_X(x)$.

Visualization of pmf calculation

Calculating a pmf

Simple example

Suppose we toss a fair coin twice in a row and count the number of heads.

$$p_X(x) = \left\{ egin{array}{ll} rac{1}{4} & ext{if } x = 0 \ rac{1}{2} & ext{if } x = 1 \ rac{1}{4} & ext{if } x = 2. \end{array}
ight.$$

Properties of pmfs

The pmf of a random variable X, $p_X(x)$, satisfies the following properties:

- $p_X(x) \geq 0$ for all x
- $ullet \sum_{x\in R_X} p_X(x) = 1$, where R_X is the range of X .
- ullet If $A\subset R_X$, then $P(A)=\sum_{x\in A}p_X(x)$.

E.g., continuing our simple coin flipping example,

$$P(X>0)=p_X(1)+p_X(2)=rac{1}{4}+rac{1}{2}=rac{3}{4}.$$

Visualizing a binomial pmf

The pmf of a binomial random variable

Visualizing a geometric pmf

The pmf of a geometric random variable

Visualizing a Poisson pmf

The pmf of a Poisson random variable