

NATIONAL OPEN UNIVERSITY OF NIGERIA 14-16 AHMADU BELLO WAY, VICTORIA ISLAND LAGOS SCHOOL OF SCIENCE AND TECHNOLOGY MAY/JUNE 2012 EXAMINATION

PHY 308 ELECTRONICS I TIME ALLOWED: 3 Hours

INSTRUCTION: Answer any five questions.

1. (a) (i) What is an amplifier? List the main properties of an amplifier and draw a simple circuit diagram of an ideal amplifier to show the relationship among these properties. 5 marks

(ii) Determine the Voltage, Current and Power Gain of an amplifier that has an input signal of $1\,mA$ at $10\,mV$ and a corresponding output signal of $10\,mA$ at 1V. Also, express all three gains in decibels, (dB). 5 marks

(b) (i) Distinguish between the A and B classes of amplifier. With sketch transfer characteristic curves, show the relationship between the input and the output signals of each class. State an advantage of one class over the other.

5 marks

Series-fed class A large signal amplifier

The figure shown is a circuit diagram for a series-fed class A large signal amplifier. Given $R_{\scriptscriptstyle B}=1\,k\Omega$, $R_{\scriptscriptstyle C}=20\,\Omega$ $V_{\scriptscriptstyle CC}=20\,V$ and $\beta=25$, calculate $V_{\scriptscriptstyle CE}$. 5 marks

- 2. (a) (i) A transistor is a three-terminal device. With suitable diagrams, explain briefly the three main transistor configurations (connection in a practical circuit) for an NPN transistor. 6 marks
- (ii) Show that the current amplification factors α and β are related by the equation $\beta = \frac{\alpha}{1-\alpha}$ where the symbols have the usual meaning 4 marks (b)

Circuit diagram for question 2 b

For the emitter bias circuit shown, calculate the values of $R_{\rm 1}$, $R_{\rm 2}$ and $R_{\rm E}$ to provide a quiescent operating point of $I_{\rm C}=1\,\rm mA~V_{\rm CE}=10\,\rm V$. The transistor used in the circuit is silicon with a d.c. current gain at 1 mA of $h_{\rm FE}=50$. Assume the base-emitter voltage $V_{\rm BE}=16\,\rm V$. 10 marks

- 3. (a) Given I_E = 2.5 mA, h_{fe} = 140, h_{oc} = 20 μ S (μ mho) and h_{ob} = 0.5 μ S, determine:
- (i) The common-emitter hybrid equivalent circuit.

5 marks

(ii) The common-base r_e model marks

5

Circuit diagram for questions 3b

The figure shows an a.c. equivalent circuit of an amplifier. The input and output of the amplifier have values $R_i=5~k\Omega$, $R_o=50~k\Omega$. The open-circuit voltage amplification of the amplifier, A=250. If the signal generator of peak amplitude $V_s=10~mV$ and internal resistance $R_s=600\Omega$ is connected cross the input terminals 1-1' and a load resistance $R_L=10k\Omega$ is connected across the output terminals 2-2', use the equivalent circuit to determine:

(i) peak value of the signal voltage across 1-1',

4 marks (ii) the peak values of the signal output current and signal voltage 4 marks (iii) voltage and current amplification of the stage 2 marks

4 (a) (i) Complete the following table of h-parameter

Parameter	Meaning	Relation	Condition Unit		
h ₁₁			Ohm	Output	shorted
	Reverse voltage gain	$\frac{V_i}{V_o}$	mensionle	ess	di
h ₂₁	Current gain	$\frac{I_o}{I_i}$			
h ₂₂		$\frac{I_o}{V_o}$	Input ope	n	

4 marks

- (ii) List four factors on which the h-parameter depends
- 2 marks
- (b) Given I_E = 2.5 mA, h_{fe} = 140, h_{oc} = 20 μ S (μ mho) and h_{ob} = 0.5 μ S, determine:
- (i) The common-emitter hybrid equivalent circuit
- 8 marks
- (ii) The common-base r_e model
- 6 marks
- 5 (a) (i) Briefly explain the term *operating point* 3 marks
- (ii) Summarize the operation in the cutoff, saturation, and linear regions of the BJT characteristic.

5 marks

(b)

For the emitter bias network shown determine: I_B , I_c , V_{CE} , V_C , V_B , V_B , V_{BC} . 12 marks

- 6(a) (i) What is an oscillator?
- 2 marks
- (ii) Draw the block diagram of the oscillator
- 2 marks
- (iii) Briefly, distinguish between positive and negative feedback as applied to an oscillator. 4 marks
- (b) (i) Draw the circuit diagram for closed-loop non-inverting operational amplifier. 4 marks (ii) For the closed-loop non-inverting operational amplifier, show that $A = \frac{R_i + R_f}{R_i}$, where the A is the voltage gain. $R_i \wedge R_f$ are the resistances in the input and feedback paths respectively. 8 marks

- 7 (a) (i) Explain the usefulness of a rectifier circuit in a dc supply unit 2marks
- (ii) Draw the circuit diagram of the half-wave rectifier circuit and indicate the respective input and output waveforms

7 marks (b) (i) A half-wave rectifier using silicon diode has a secondary emf of $14.14\,V(\mathit{rms})$ with a resistance of $0.2\,\Omega$. The diode has a forward resistance of $0.05\,\Omega$ and a threshold voltage of $0.7\,V$. If load resistance is $10\,\Omega$, determine: dc load current, dc load voltage, voltage regulation and efficiency.

6 marks

(ii)Draw the diagram of the full-wave rectifier circuit using the centre-tapped transformer and briefly explain how it works.

5 marks