PRÁCTICO 2: RELACIONES Y FUNCIONES

Definiciones

Decimos que una relación R en A es asimétrica si $(a, a') \in R \Rightarrow (a', a) \notin R$. Decimos que una relación R en A es irreflexiva si $(a, a) \notin R$ para todo $a \in A$. Dada una relación R en A, la relación complementaria es $\bar{R} = \{(a, a') : (a, a') \notin R\}$.

RELACIONES

Ejercicio 1 Sea A un conjunto con |A|=n, Sea $R\subseteq A\times A$ una relación y M una matriz de relación para R. Demostrar que:

- R es reflexiva sí y solo sí $I_n \leq M$
- R es simétrica sí y solo sí $M = M^T$
- $\blacksquare \ R$ es transitiva sí y solo sí $M^2 \leq M$

Ejercicio 2 Se consideran en en $A = \{4, 3, 2, 1\}$ las siguientes relaciones

A.
$$R_1 = \{(1,1), (2,1), (1,2), (2,2), (3,3), (4,3), (3,4), (4,4)\},\$$

B.
$$R_2 = \{(2,1), (3,1), (4,1), (3,2), (4,2), (4,3)\},\$$

C.
$$R_3 = \{(3,1), (1,1), (1,3), (2,1), (3,3), (4,4)\},\$$

D.
$$R_4 = \emptyset$$
,

E.
$$R_5 = A \times A$$
.

- i) Representarlas mediante un digrafo.
- ii) Determinar cuál(es) de las siguientes propiedades se verifican
 - reflexiva,
 - simétrica,
 - antisimétrica,
 - transitiva.
- iii) Determinar si alguna de ellas es relación de orden o de equivalencia. En caso de ser relación de orden dibujar el Diagrama de Hasse y en caso de ser relación de equivalencia determinar el conjunto cociente A/R.

Ejercicio 3 ¿Toda relación asimétrica es antisimetrica? ¿Toda relación antisimetrica es asimétrica?

Ejercicio 4 Definamos la relación \equiv en $\mathbb Z$, llamada congruencia módulo 2 de la siguiente forma:

$$a \equiv b \Leftrightarrow a - b$$
 es divisible entre 2.

- A. Probar que \equiv es una relación de equivalencia.
- B. Hallar A/\equiv .

Ejercicio 5 Definamos la relación \equiv en \mathbb{Z} , llamada congruencia módulo 3 de la siguiente forma:

$$a \equiv b \Leftrightarrow a - b$$
 es divisible entre 3.

- A. Probar que \equiv es una relación de equivalencia.
- B. Hallar A/\equiv .

Ejercicio 6 Sea $X = \{a, b, c\}$ y $A = \mathcal{P}(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}$. Consideremos en A la relación de inclusión, es decir, $R = \{(Y, Z) : Y \subset Z\}$. Probar que R es una relación de orden y dibujar el diagrama de Hasse. ¿es una relación de orden total? Estudiar la existencia de elementos maximales, minimales, máximo y mínimo.

Ejercicio 7 Consideremos en $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ la relación "divide a", es decir,

$$R = \{(a, b) : a \text{ divide a } b\}.$$

Probar que es una relación de orden y dibujar el diagrama de Hasse. ¿es una relación de orden total? Estudiar la existencia de elementos maximales, minimales, máximo y mínimo.

Ejercicio 8 Sea R una relación de equivalencia sobre $A = \{1, 2, 3\}$. Sabiendo que el conjunto cociente A/R tiene un único elemento, defina R por extensión, represente la matriz de la relación y dibuje su digrafo. Repita lo realizado sabiendo que A/R tiene tres elementos. ¿Cuántas relaciones posibles hay si A/R tiene dos elementos?

Ejercicio 9 Pruebe que si R es simétrica entonces $R = R^{-1}$.

Ejercicio 10 Pruebe que si R es reflexiva entonces R^{-1} es reflexiva y \bar{R} es irreflexiva.

Ejercicio 11 Sea la relación R de orden parcial en $\{a, b, c, d, e, f, g, h\}$ tal que la matriz de relación (generada tomando los elementos en el orden escrito) es:

$$M = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Determinar si es un orden total, hallar un elemento maximal, un elemento minimal, determinar si tiene máximo y/o mínimo, y determinar si es un retículo.