Sammanfatning av SI1121 Termodynamik

Yashar Honarmandi

17 oktober 2017

Sammanfattning

Denna samanfattning samlar kanske centrala ekvationer användt i KTH:s kurs SI1121 Termodynamik någon gång. Den inkluderar även lite snygg information om enheter.

Innehåll

1	Enh	neter	1			
2	Konstanter					
3	Ekv	Ekvationer				
	3.1	Allmänna ekvationer	2			
	3.2	Gaser	2			

1 Enheter

Enheterna i denna tabell kan vara bra att ha när man ska göra dimensionsanalys.

Storhet	SI-enhet	Uttryck i fundamentala enheter
Kraft	N	$ m kgms^{-2}$
Energi	J	$ m kgm^2s^{-2}$
Tryck	Pa	${\rm kg}{\rm m}^{-1}{\rm s}^{-2}$

2 Konstanter

 ${\bf I}$ följande tabell finns konstanter som kommer användas när ekvationer diskuteras.

Konstant	Symbol	Värde
Allmäna gaskonstanten	R	$8.3145\mathrm{JK^{-1}mol^{-1}}$
Avogadros tal	$N_{ m A}$	$6.02214 \times 10^{23} \mathrm{mol}^{-1}$
Boltzmanns konstant	k	$1.38065 \times 10^{-23} \mathrm{JK^{-1}}$

3 Ekvationer

3.1 Allmänna ekvationer

Konversion mellan m, ν och N

$$\nu = \frac{m}{M} = \frac{N}{N_{\rm A}}$$

M är gasens molara massa, massan per mol partiklar. Flera relationer kan härledas vid att använda $R=N_{\rm A}k$.

Täthet

$$\rho = \frac{m}{V}$$

Tätheten av en substans kan även definieras som

$$\rho = \frac{N}{V}$$

3.2 Gaser

Ideala gaslagen

$$pV = \nu RT = NkT$$

p är gasens tryck, V är gasens volym, T är gasens temperatur, N är antalet partiklar i gasen och ν är antalet mol partiklar i gasen.

van der Waals' tillståndsekvation

$$p = \frac{NkT}{V - Nb} - a\left(\frac{N}{V}\right)^{2}$$
$$\left(p + \frac{a_{0}}{v^{2}}\right)(v - b_{0}) = RT$$

Dessa är båda ekvivalenta versioner av van der Waals' tillståndsekvation, var man introduserar $a_0 = aN_{\rm A}^2$, $b_0 = bN_{\rm A}$ och

 $v=\frac{V}{\nu}.$ a innehåller information om växelverkan mellan partiklarna och b innehåller information om partiklarnas volym.

Maxwell-Boltzmann-

fördelingen Partiklarna i en ideal gas har olik fart. Antalet partiklar med en given fart v per volym är fördelad enligt

$$n(v) = Cv^2 e^{-\frac{mv^2}{2kT}}$$

var m är en partikels massa. Vi krävjer att fördelingen är normaliserad, dvs.

$$\int_0^\infty \mathrm{d}v \, n(v) = \frac{N}{V}$$

som ger

$$K = 4\pi n \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}}$$

Från detta kan man hitta en mest sannolik fart $v_{\rm p}$, en förväntad fart < v> och en RMS-fart $v_{\rm RMS}$. Dessa är

$$v_{\rm p} = \sqrt{\frac{2kT}{m}}$$

$$\langle v \rangle = \sqrt{\frac{8kT}{\pi m}}$$

$$v_{\rm p} = \sqrt{\langle v^2 \rangle} = \sqrt{\frac{3kT}{m}}$$