Threat Modeling

AmherstSec Feb 2021

Matthew Coles @coles_matthewj Izar Tarandach @izar_t

About Us

Izar Tarandach

- Principal Security Architect/Engineer
- Doing the security thing since the 90's
- Currently focusing on modern SDLC's

Matthew Coles

- Product Security Leader, Architect, Engineer
- Enabling and influencing security for physical devices and the ecosystems that enable them

Collaborators and colleagues since 2010

Co-authored "Threat Modeling: A Practical Guide For Development Teams", O'Reilly, 2020

Members of the Threat Modeling Manifesto Working Group, https://threatmodelingmanifesto.org

Agenda

Fundamentals

Methods

Demo

We enjoy interactive presentations, so we include plenty of time for questions.

Relationships

Understanding Risk

Security

confidentiality

Who are you? Prove it to me. What do you want to do? I'll keep a record. identification authentication authorization audit

2 doors are better than 1. Super or user? Power is out. Don't move! We have rules! They are meant to be followed! defense in depth least privilege fail secure complete mediation

Let me check my toolbox...

My spell components are secret!

Does this look funny to you?
123456isnotastrongpassword.

All text. No code here.

encryption hashing complexity checks execution prevention

integrity

availability

Modeling

Analysis

STRIDE

Spoofing

Tampering

Repudiation

Information Disclosure

Denial of Service

Escalation of Privilege

Security focused

LINDDUN

Linkability

Identifiability

Non-repudiation

Detectability

Disclosure of Information

Unawareness

Non-compliance

Privacy focused

CTM

Continuous

Threat

Modeling

An approach geared towards Agile practitioners

Uses IFTTT-lists for threats and remediations

"Threat Model Every Story"

TARA

Threat

Assessment &

Remediation

Analysis

Focus on Assets vs adversary Tactics, Techniques, and Procedures (TTPs)

Uses catalogs for TTPs and Countermeasures

Starts with a Model to Analyze

Spreadsheet Based

"Threat modeling is analyzing representations of a system to highlight concerns about security and privacy characteristics."

Working group consisted of 15 experienced threat modeling practitioners, theorists and academics

5 values

4 principles

5 positive patterns

4 anti-patterns

Behind-the-Scenes

https://podcast.securityjourney.com/the-threat-modeling-manifesto-part-1/

https://podcast.securityjourney.com/the-threat-modeling-manifesto-part-2/

Values

A culture of finding and fixing design issues checkbox c

People and collaboration processes, methodologies, and tools

A journey of understanding over a security or privacy snapshot

Doing threat modeling talking about it

Continuous refinement a single delivery

Principles

- The best use of threat modeling is to *improve* the security and privacy of a system through early and frequent analysis.
- Threat modeling must *align* with an organization's development practices and follow design changes in iterations that are each scoped to manageable portions of the system.
- The outcomes of threat modeling are *meaningful* when they are *of value* to stakeholders.
- *Dialog* is key to establishing the common understandings that lead to value, while documents record those understandings, and enable measurement.

Patterns

Systemic Approach

Apply knowledge in a structured way.

Informed Creativity

Use the force, or at least craft AND science.

Varied Viewpoints

Cross-functional collaboration is key.

Useful Toolkit

Use tools that improve productivity.

Theory into Practice

Use field-tested techniques modified by local needs.

Hero Threat Modeler

Anyone can threat model.

Admiration for the Problem

Beware analysis-paralysis. Find solutions.

Tendency to Overfocus

There is more to threat modeling than adversaries and assets.

Perfect Representation

There is no single ideal view.

Making of pytm

```
Schema
          Element
                      type
                      name
           purpose
                     role
           exposes...
          privileges
                      uses...
          contains...
```

```
Rules
           Weakness w =
     (target.type == Process &&
      target.privileges == "root" &&
      len(target.exposes) > 0
     (target.exposes.port == 80 &&
      source_data.is_hci()
```

```
Engine
     Loader
     Parser
          Sequenc
er
          Analyzer
          Renderer
          Calculato
```

Demo - using pytm

- 1. Define the components of the model and their relationships (dataflows)
- 2. Generate a dataflow diagram or a sequence diagram
- 3. Annotate the components with their attributes
- 4. Generate a report with the threats identified as a function of component and dataflow attributes

```
#!/usr/bin/env python3
```

```
from pytm import (
    TM, Actor, Boundary, Classification, Data,
    Dataflow, Datastore, Process, Server
)
```

```
tm = TM("TM Demo v0.0.1")
```

• • •

tm.process()

```
tm = TM("TM Demo v0.0.1")
user = Actor("Customer")
client = Process("Client/GUI")
server = Server("Server")
db = Datastore("Database")
tm.process()
```

```
db = Datastore("Database")
interact = Dataflow(user, client, "Customer accesses the system")
enterData = Dataflow(client, server, "Customer data")
saveData = Dataflow(server, db, "Customer data, processed")
loadData = Dataflow(db, server, "Load processed data")
editData = Dataflow(server, client, "Return query results")
present = Dataflow(client, user, "Present data to customer")
tm.process()
```



```
tm = TM("TM Demo v0.0.1")
publicBoundary = Boundary("Uncontrolled by us")
protectedBoundary = Boundary("Controlled by us")
user = Actor("Customer")
user.inBoundary = publicBoundary
client = Process("Client/GUI")
client.inBoundary = publicBoundary
server = Server("Server")
server.inBoundary = protectedBoundary
db = Datastore("Database")
db.inBoundary = protectedBoundary
```



```
server.OS = "Ubuntu"
server.isHardened = True
server.sanitizesInput = False
server.encodesOutput = True
server.authorizesSource = False
db.OS = "CentOS"
db.isHardened = False
db.isSQL = True
db.inScope = True
db.maxClassification = Classification.RESTRICTED
enterData.protocol = "HTTP"
enterData.dstPort = 80
enterData.data = "New items to be stored, in JSON format"
saveData.protocol = "MySQL"
saveData.dstPort = 3306
saveData.data = "MySQL insert statements, all literals"
tm.process()
```

```
izar > Src > pytm > docs > m template.ed > @ we Potential Threats
 Ezar Tarandach, 6 months ago | 4 authors (avhady and others)
 ## Potential Threats
 &nbsp:
  
 |{findings:repeat:
 <details>
   <summary> {{item.id}} -- {{item.description}
   }</summary>
   <h6> Targeted Element </h6>
    {{item.target}} 
   <h6> Severity </h6> avhadp, a year ago * Modific
   {{item.severity}}
   <h6>Example Instances</h6>
   {{item.example}}
   <h6>Mitigations</h6>
   {(item.mitigations)}
   <h6>References</h6>
   {{item.references}}
    
    
    
 </details>
```

Potential Threats

```
|{findings:repeat:
▼ {{item.id}} -- {{item.description}}
Targeted Element
{{item.target}}
Severity
{{item.severity}}
Example Instances
{{item.example}}
Mitigations
{{item.mitigations}}
Deferences
```

Dataflow Diagram - Level 0 DFD

Dataflows

Name	From	То	Data	Protocol	Port
Customer accesses the system	Customer	Client/GUI	0		-1
Customer data	Client/GUI	Server	New items to be stored, in JSON format	HTTP	80
Customer data, processed	Server	Database	MySQL insert statements, all literals	MySQL	3306
Load processed data	Database	Server	0		-1
Return query results	Server	Client/GUI	0		-1
Present data to customer	Client/GUI	Customer	0		-1

Data Dictionary

Name	Description	Classification
New items to be stored, in JSON format		PUBLIC
MySQL insert statements, all literals		PUBLIC

Potential Threats

- INP02 Overflow Buffers
- AA01 Authentication Abuse/ByPass
- DE02 Double Encoding
- AC01 Privilege Abuse
- INP07 Buffer Manipulation
- DO01 Flooding
- DO02 Excessive Allocation
- INP05 Format String Injection
- INP12 Client-side Injection-induced Buffer Overflow
- INP13 Command Delimiters

Targeted Element

Client/GUI

Severity

Medium

Example Instances

An adversary that has previously obtained unauthorized access to certain device resources, uses that access to obtain information such as location and network information.

Mitigations

Use strong authentication and authorization mechanisms. A proven protocol is OAuth 2.0, which enables a third-party application to obtain limited access to an API.

References

https://capec.mitre.org/data/definitions/122.html, http://cwe.mitre.org/data/definitions/732.html, http://cwe.mitre.org/data/definitions/269.html

Questions?

THANK YOU!

Resources

- The Threat Modeling Manifesto https://threatmodelingmanifesto.org
- "Threat Modeling: A Practical Guide for Development Teams" https://amzn.to/39G7qIX
- pytm https://github.com/izar/pytm
- "Autodesk Continuous Threat Modeling", https://github.com/Autodesk/continuous-threat-modeling
- Adam Shostack's "Threat Modeling: Designing for Security", https://amzn.to/2NhRy1x
- Brook Schoenfields' "Securing Systems", https://amzn.to/3iq7Y3f
- SAFECode's "Tactical Threat Modeling", <u>https://bit.ly/3bRB8au</u>

