Grupa Ćwicz.	Grupa	Zespół	Data wykonania	Data odbioru		
3	Lab.	1	03.01.2007			
Numer	Temat Ćwiczenia MPI					
Ċwiczenia						
V						
Imiona i Nazwisk	Ocena					
Oboza Jakub, Ormicki Dariusz						

Ćwiczenie polegało na obliczeniu liczby PI przy wykorzystaniu MPI.

Sprzęt:

5 Komputerów o parametrach : Procesor AMD Athlon 64 3200+ (2,2 Ghz)

Pamięc Ram:

1 GB

System Operacyjny:

Linux

W ćwiczeniu utworzyliśmy plik w którym były nazwy maszyn które miały zostać wykorzystane podczas w ćwiczeniu (obliczania liczby Pi)
Po utworzeniu pliku popularnym *nix'owym edytorem tekstu "vi"
umieściliśmy tam nazwy wykorzystanych maszyn:

student105 student84 student96 student106

Bez wpisywania student107 czyli maszyny na której pracowaliśmy.

Wydając polecenie:

\$ /opt/mpich/ch-p4/bin/mpirun -npX -machinefile/home/stud/student/nazwy_maszyn\ /mnt/mpi/TST/cpi/cpi >> log_np..txt

Uruchamialiśmy cały proces obliczania liczby Pi na X procesach z logowaniem do pliku.

Liczba Procesow	Czas Obliczenia Pi	2 proba	3 proba	Srednia
1	38,374149	37,62592	37,89042	37,96349633
2	19,738704	21,244226	19,552662	20,17853067
3	13,7018	13,771364	13,594125	13,68909633
4	10,281765	10,475208	10,566234	10,441069
5	8,745643	8,696979	8,577531	8,673384333
6	7,563144	7,353918	7,277748	7,39827
7	11,725353	11,793473	11,415087	11,64463767
8	10,328188	10,479973	10,369186	10,392449
9	9,523444	9,477215	9,526083	9,508914
10	8,56255	8,767779	8,715144	8,681824333
11	8,007128	8,113746	7,91408	8,011651333
12	10,270622	10,07218	10,465038	10,26928

.

Liczba Procesow	Wykorzystanie Procesora		
1	12.2%		
2	11.8%		
3	15.4%		
4	15.8%		
5	16.1%		
6	15.7%		
7	15.8%		
8	15.6%		
9	15.4%		
10	15.0%		
11	14.5%		
12	14.7%		

Wnioski:

Czas obliczania nie maleje proporcjonalnie do ilości przybywających procesów. Do około 6-7 procesów całe obliczenia wykazują wyśmienitą charakterystykę ponieważ mamy tylko wzrost szybkości, Lecz powyżej 8 tego przyrostu już nie widać a mamy do czynienia wręcz z opóźnieniem względem ilości 6-7. W naszym przypadku widać iż nie opłaca się angażować więcej niż 4 stanowiska ponieważ przy 4 uzyskujemy optimum prędkości i ekonomi.

Średnie użycie procesora wynosiło 14,83% nie było ono ani dużo wyższe ani dużo niższe przy zmianie liczby procesów. Tutaj nie widać wielkich zmian w obciążeniu.

Z tego ćwiczenia widać ze MPI to wydajna metoda tylko wtedy gdy wiemy mniej-więcej jaka jest optymalna liczba procesów dla naszego obliczenia , ponieważ tylko wtedy możemy osiągnąć zysk w czasie.