MotherBoard Failure Prediction

Hemanth V

Hemanth.v1016@gmail.com

Overview

- MotherBoard (MB) is a critical component of a computer system
- Failure of MB will lead to system not booting
- MB replacement is a costly affair for the companies
- Hence it is important to predict if MB will fail and take preventive steps

Data Set Available

- Data from systems and MB are collected by companies
- Various events generated for a specific system are pushed to cloud database
- Events include Battery, SPI Flash, FAN, thermal, processor etc
- These events are available for systems where MB had to be replaced
- Similar set of events are available where MB was not replaced

Goal of MB Model

- Determine the hidden relation between events which could cause MB failure which might not be obvious
- Determine if any additional events are required
- Create a model to predict with high accuracy the likelihood of MB failure

Challenges: Are the events available sufficient to accurately predict MB failure

Data Analysis

• Data columns (total 61 columns):

•	# (Column	Non-Null Coun	t Dtype
•				
•	0 <i>A</i>	Audio	691 non-null	float64
•	1 (Cables	12374 non-null	float64
•	2 (Charger	10638 non-null	float64
•	3 (CPU Fan	484 non-null	float64
•	4 [Dell_Monitor_IR	2 non-null	float64
•	5 [Disk 1	12646 non-null	float64
•	6 [Disk 2	2212 non-null	float64
•	7 [Disk 3	30 non-null	float64
•	8 [Disk 4	6 non-null	float64
•	9 F	ailSafeEC_1	2772 non-null	float64
•	10	FailSafeEC_2	5 non-null	float64

DataFrame Shape (25358, 61)

Output Variable in Column 60

60 Dispatch 25358 non-null int64

Heatmap Analysis for features

Heatmap Analysis for features

Heatmap Analysis for features

Histogram for features with high correlation

Histogram for features with high correlation

Model 1 : LDA + LG

- Goal to use Dimensionality reduction and Logistic Regression
- All NaN replaced with zero in dataframe
- Data set is split for train, test in the ratio of 80,20
- Standard scalar applied to both train and test dataset
- Data is transformed with LDA
- Transformed data fitted into Logistic Regression Model
- Metrics calculated for the model

Model 1: LDA + LG

F1 Score (average=macro) 0.4448410991217211

Precision Score (average=macro) 0.6337369227994227

Model 1: XGBOOST

- XGBOOST one of the popular models
- All NaN replaced with zero in dataframe
- Data set is split for train, test in the ratio of 80,20
- Training data is fed into XGBClassifier
- Hyper parameters used
 - objective='binary:logistic', n_estimators=100, seed=123
- Metrics calculated for the model

Model 2: XGBOOST

F1 Score (average=macro) 0.5303832359422089

Precision Score (average=macro) 0.6175666869700573

Model 3: LASSO + LG

- Goal is to do feature selection using LASSO and then feed into logistic regression model
- Feature selection done using SelectFromModel function
- 48 input features were selected out of 60
- Selected feature are fit into logistic regression model
- Model parameters calculated

Model 3: LASSO + LG

F1 Score (average=macro) 0.4341923512182133

Precision Score (average=macro) 0.609965404142517

Conclusion

F1 Score (average=macro) 0.792239093757532

Precision Score (average=macro) 0.6632364810330912

Conclusion

- All models considered behave similarly
- Model able to predict MB replacement not required class with high precision and recall
- Current events not sufficient to predict the other class accurately

Actual Positive : Class 0, No MB replacement required Actual Negative: Class 1, MB replacement required

	Predicted Positive 0	Predicted Negative 1
Actual Positive 0	TP	FN Recall very high, hence FN low
Actual Negative 1	FP	TN