Week 7November 3, 2020

•	•	-
Exe	rcise	Ι.

- 1. Show that 5x is $o(x^2)$.
- 2. Show that $2x^2$ is not $o(x^2)$.
- 3. Show that 1/x is o(x).
- 4. Show that if f(x) is o(g(x)), then f(x) is O(g(x)).

Exercise 2. Which function below grows fastest when n goes to infinity?

- $\bigcirc (\log_3(33))^{n-3}$
- \bigcirc 3ⁿ
- $\bigcap n^{3\log_3(n)}$
- $\bigcap n^3 \log_3(n)$

Exercise 3. Consider the two statements below, where c and k are constants with $k \geq 2$:

$$n^k$$
 is $O(k^n)$ $(\log n)^k e^{(c+o(1))(\log n)^{1/3}(\log(\log(n)))^{2/3}}$ is $e^{(c+o(1))(\log n)^{1/3}(\log(\log(n)))^{2/3}}$

- O They are both False.
- Only the first is True.
- Only the second is True.
- O They are both True.

Exercise 4. Let f be arbitrary functions from \mathbb{N} to $\mathbb{R}_{>0}$.

Let g_1, g_2 be two functions from N to $\mathbb{R}_{>0}$ such that g_1 and g_2 are both $\Theta(f)$.

- 1. Show that the function $g_1 + g_2$ is $\Theta(f)$ or provide a counterexample.
- 2. Show that the function g_1g_2 is $\Theta(f^2)$ or provide a counterexample.

Let g_3, g_4 be two functions from N to R such that g_3 and g_4 are both $\Theta(f)$.

- 3. Show that the function $g_3 + g_4$ is $\Theta(f)$ or provide a counterexample.
- 4. Show that the function g_3g_4 is $\Theta(f^2)$ or provide a counterexample.

Let g be a function from N to $\mathbb{R}_{>0}$ such that g is O(f).

5. Show that 2^g is $O(2^f)$, or provide a counterexample.

Exercise 5. Consider the two statements below, where k and ℓ are constants with $k > \ell \ge 2$ and $m \to \infty$:

$$\log_m(k)$$
 is $\Theta(\log_m(\ell))$ $k^{\log_\ell(m)}$ is $O(\ell^{\log_k(m)})$.

- O They are both false.
- Only the first is true.
- Only the second is true.
- O They are both true.

Little-o. Let f and g be two functions from \mathbf{R} to \mathbf{R} . We say that "f is little-oh of g" and write "f(x) is o(g(x))" if:

$$\forall C \; \exists k \; \text{such that} \; \forall x > k \; |f(x)| < C|g(x)|$$

where the domain for C, k, and x is $\mathbf{R}_{>0}$ (correcting the \mathbf{R} that was there before). Said differently, for every constant C there exist a constant k such that |f(x)| < C|g(x)| for all x > k. If g(x) is nonzero, the little-o relation is equivalent to

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$$

Exercise 6. Consider the following two statements:

$$(f \text{ is } o(f))$$
 and $(f \text{ is } o(g) \text{ implies } f \text{ is } O(g))$.

- Only the second is true.
- O They are both false.
- Only the first is true.
- O They are both true.

Exercise 7. Given the two statements below, where d > 0 is an integer constant and a_i for all $i \in \mathbf{Z}$ are positive integers with $\max_{i \in \mathbf{Z}}(a_i) = D$ for a constant D > 0,

$$\sum_{i=0}^{n} a_i i^d \text{ is } \Theta(n^{d+1}) \qquad \qquad \sum_{i=0}^{d} a_i n^i \text{ is } \Theta(n^d)$$

- O They are both true.
- Only the first is true.
- Only the second is true.
- O They are both false.

Exercise 8. Construct two functions f and g from \mathbb{N} to $\mathbb{R}_{>0}$ such that f is not O(g) and g is not O(f) or prove that such functions are impossible to find.

Exercise 9. Consider the following algorithm, which takes as input a sequence of n integers $a_1, a_2, ..., a_n$ and produces as output a matrix $M = \{m_{ij}\}$ where m_{ij} is the minimum term in the sequence of integers $a_i, a_{i+1}, ..., a_j$ for $j \ge i$ and $m_{ij} = 0$ otherwise.

```
initializ \mathbf{M} so that m_{ij}=a_i if j\geq i and m_{ij}=0 otherwise for i:=1 to n for j:=i+1 to n for k:=i+1 to j m_{ij}:=\min(m_{ij},a_k) return \mathbf{M}=\{m_{ij}\} \{m_{ij} is the minimum term of a_i,a_{i+1},...,a_j\}
```

- 1. Show that this algorithm uses $O(n^3)$ comparisons to compute the matrix M.
- 2. Show that this algorithm uses $\Omega(n^3)$ comparisons to compute the matrix M. Using this fact and part (a), conclude that the algorithms uses $\Theta(n^3)$ comparisons.

Exercise 10. What is the largest n for which one can solve within a minute using an algorithm that requires f(n) bit operations, where each bit operation is carried out in 10^{-12} seconds, with these functions f(n)?

- a. log n
- b. 1,000,000n
- c. n^2