

SC2001/CE2101/ CZ2101: Algorithm Design and Analysis

Union-Find Programs and Kruskal's Algorithm

Instructor: Assoc. Prof. ZHANG Hanwang

Courtesy of Dr. Ke Yiping, Kelly's slides

Contents

- Dynamic Equivalence Relations
 - Three basic operations
- Union-Find Programs
 - Improve algorithms step by step
 - QuickFind
 - QuickUnion
 - Weighted QuickUnion with Path Compression (WQUPC)
- Kruskal's Algorithm
 - Pseudocode
 - Correctness
 - Complexity

Learning Objectives

At the end of this lecture, students should be able to:

- Understand the concept of dynamic equivalence relations
- Understand and analyze various union-find programs
- Solve minimum spanning tree (MST) problem using Kruskal's algorithm
- Prove the correctness of Kruskal's algorithm

Dynamic Equivalence Relations

Dynamic Equivalence Relations

- An equivalence relation R on a set S is a binary relation, such that for every a, b, and c in S:
 - Reflexivity: R(a, a)
 - Symmetry: if R(a, b), then R(b, a)
 - Transitivity: if R(a, b) and R(b, c), then R(a, c)
- Dynamic equivalence relation: the equivalence relation will change with a number of operations
- Given a set of N objects in S, define three operations:
 - Initialize the objects
 - Connect two objects: add them into relation R
 - Is there a path connecting two objects?

Running Example

- Initialize 8 objects: 0, ..., 7
- Connect 4 and 5
- Connect 1 and 2
- Connect 6 and 3
- Connect 0 and 4
- Are 1 and 7 connected? *
- Are 0 and 5 connected?
- Connect 2 and 6
- Connect 3 and 7
- Are 1 and 7 connected? ✓

A Larger Example

- Are the two big dots connected?
- Yes
- 63 components

Applications

- Friends in a social network
- Webpages on the Internet
- Statements in a Python program
- Computers in a computer network
- Transistors in a computer chip

Challenges

- Dynamics:
 - Operations may be intermixed.
- Number of operations M can be huge.
- Number of objects N can be huge.
- Goal: design efficient data structure

Union-Find Programs

Union-Find

- Equivalence class: connected components
- Three operations to implement the dynamic equivalence relation
 - find(p): which component does an object p belong to?
 - connected(p, q): are two objects p and q connected?
 - union(p, q): connect p and q (compute the union of their components)

Union-Find APIs

A class defined for union-find (in Java)

```
public class UF

UF(int N)

initialize union-find data structure with N singleton objects (0 to N-1)

void union(int p, int q)

add connection between p and q

int find(int p)

component identifier for p (0 to N-1)

boolean connected(int p, int q)

are p and q in the same component?
```

```
public boolean connected(int p, int q)
{ return find(p) == find(q); }

1-line implementation of connected()
```


QuickFind Algorithm

QuickFind [Eager Approach]

- Data structure:
 - Integer array id[] of length N
 - Interpretation: id[p] is the ID of the component that p belongs to

QuickFind Functions

- find(p): what is the id of p?
 - id[6] = 0; id[1] = 1

- connected(p, q): do p and q have the same id?
 - 6 and 1 are not connected
- union(p, q): change all entries whose id equals id[p] to id[q] $id[x] \leftarrow id[q], \forall x. \ id[x] = id[p]$
 - union(6, 1)

- \bigcirc

- **(5)**

- id

union(4, 3)

$$id[x] \leftarrow id[3], \forall x. \ id[x] = id[4]$$

- **(5)**

id

union(3, 8)

$$id[x] \leftarrow id[8], \forall x. \ id[x] = id[3]$$

- \bigcirc

- (5)
- **(6)**

 $\overline{7}$

id

union(6, 5)

$$id[x] \leftarrow id[5], \forall x. \ id[x] = id[6]$$

- \bigcirc

(5)—**(6)**

 $\overline{7}$

id

union(9, 4)

$$id[x] \leftarrow id[4], \forall x. \ id[x] = id[9]$$

6 7 8

id

union(2, 1)

$$id[x] \leftarrow id[1], \forall x. \ id[x] = id[2]$$

(0)

3 4

1 2 3 4 5 6 7 8 9

5

5

id

connected(8, 9)

connected(5, 0)

union(5, 0)

$$id[x] \leftarrow id[0], \forall x. \ id[x] = id[5]$$

QuickFind Implementation (Java)

```
public class QuickFindUF
   private int[] id;
   public QuickFindUF(int N)
      id = new int[N];
                                                             set id of each object to itself
      for (int i = 0; i < N; i++)
                                                             (N array accesses)
      id[i] = i;
                                                             return the id of p
   public int find(int p)
                                                             (1 array access)
   { return id[p]; }
   public void union(int p, int q)
      int pid = id[p];
      int qid = id[q];
                                                             change all entries with id[p] to id[q]
      for (int i = 0; i < id.length; i++)
                                                             (at most 2N + 2 array accesses)
          if (id[i] == pid) id[i] = qid;
```


QuickFind - Time Complexity

Measured by: number of array accesses (read or write)

Algorithm	Initialization	union	find	connected
QuickFind	O(N)	O(N)	O(1)	O(1)

- union() is too expensive:
 - For N union operations on N objects, it takes O(N²) time.

Quadratic is not scalable

- Rough standard (in 2020)
 - 10¹¹ operations per second
 - 10¹¹ words of main memory (400GB)
 - Access all words in ~1 second
- Huge problem for QuickFind
 - 10¹¹ union operations on 10¹¹ objects
 - QuickFind takes more than 10²² operations.
 - 3000+ years to complete!
- Quadratic algorithms don't scale with technology
 - We need better algorithms!

QuickUnion Algorithm

QuickUnion [Lazy Approach]

- Data structure:
 - Integer array id[] of length N
 - Interpretation: id[p] is the parent of p
 - Root of p is id[id[id[...id[i]...]]]: component ID
 - Keep id-ing until the value doesn't change (cycles?)

			2							
id[]	0	1	9	4	9	6	6	7	8	9

QuickUnion Functions

- find(p):
 - what is the root of p?
- connected(p, q):
 - do p and q have the same root?
- union(p, q):
 - set the id of p's root to the id of q's root.

$$id[root(p)] \leftarrow root(q)$$

E.g., union(3, 5)

3 4 5 6

6 id

union(4, 3)

 $id[root(4)] \leftarrow root(3)$

- 0
- 1
- 2
- 3
- **(4)**
- **(5)**
- **6**
- 7
- 8

0 1 2 3 4 5 6 7 8 9 id 0 1 2 3 3 5 6 7 8 9

union(3, 8)

 $id[root(3)] \leftarrow root(8)$

- 0
- 1
- 2

- **(5)**
- 6
- 7

id	0	1	2	8	3	5	6	7	8	9
		_	_					_		

union(6, 5)

0

1

(2)

 $id[root(6)] \leftarrow root(5)$

union(9, 4)

0

1

2

 $id[root(9)] \leftarrow root(4)$

0 1 2 3 4 5 6 7 8 9 id 0 1 2 8 3 5 5 7 8 8

union(2, 1)

0

2

 $id[root(2)] \leftarrow root(1)$

QuickUnion Demo

connected(8, 9) ✓

QuickUnion Demo

connected(5, 4) *

QuickUnion Demo

union(5, 0)

 $id[root(5)] \leftarrow root(0)$

QuickUnion Implementation (Java)

```
public class OuickUnionUF
   private int[] id;
   public QuickUnionUF(int N)
                                                                set id of each object to itself
       id = new int[N];
       for (int i = 0; i < N; i++) id[i] = i;
                                                                (N array accesses)
   public int find(int i)
       while (i != id[i]) i = id[i];
                                                                chase parent pointers until reach roof
                                                                (depth of i array accesses)
       return i;
   public void union(int p, int q)
       int i = find(p);
                                                                change root of p to point to root of q
       int j = find(q);
                                                                (depth of p and q array accesses)
       id[i] = j;
```


QuickUnion - Time Complexity

Measured by: number of array accesses (read or write)

Algorithm	Initialization	union	find	connected	
QuickFind	O(N)	O(N)	O(1)	O(1)	
QuickUnion	O(N)	O(N)	O(N)	O(N)	worst case

• QuickFind:

- union() is too expensive.
- Trees are flat, but need many id updates to keep them flat

QuickUnion:

- Trees can be tall.
- find() and connected() are too expensive.

WQUPC Algorithm

1. Weighted QuickUnion

Idea:

- Modify QuickUnion to avoid tall trees.
- Keep track of size of each tree (number of objects).
- Balance by linking root of smaller tree to root of larger tree.
- Other alternatives: ?

When performing union() operations

QuickUnion

Weighted QuickUnion

3 4 5 6

6 id

union(4, 3)

- 1 2 3 4 5 6 7

			2							
id	0	1	2	4	4	5	6	7	8	9

union(3, 8)

(8)

Weighting makes 8 point to 4

id 0 1 2 3 4 5 6 7 8 9

id 0 1 2 4 4 5 6 7 8 9

union(6, 5)

union(9, 4)

 $^{(9)}$

Weighting makes 9 point to 4

id

1

2

4

L

4

6

6

7

4

4

union(2, 1)

union(5, 0)

Weighting makes 0 point to 6

QuickUnion vs Weighted QuickUnion

On 100 objects, 88 union operations

Weighted QuickUnion

Weighted QuickUnion Implementation

- Data structure:
 - Extra array sz[i] to count no. of objects in the tree rooted at i.
- find() and connect()
 - Same as QuickUnion
- union(p,q)
 - Make smaller tree lower
 - Update the array sz[]

Weighted QuickUnion - Time Complexity

- Running time depends on the depth of a node.
- Proposition. Depth of any node x is at most log₂N.
- Proof:
 - What causes the depth of a node x to increase?
 - Increases by 1 when tree T₁ containing x is merged into another tree T₂
 - Size of the tree containing x at least doubles since |T₂| ≥ |T₁|
 - Size of the tree containing x can double at most log₂N times. (?)

Weighted QuickUnion - Time Complexity

- Running time depends on the depth of a node.
- Proposition. Depth of any node x is at most log₂N.

Algorithm	Initialization	union	find	connected
QuickFind	O(N)	O(N)	O(1)	O(1)
QuickUnion	O(N)	O(N)	O(N)	O(N)
Weighted QuickUnion	O(N)	O(log N)	O(log N)	O(log N)

- Stop here??
 - No, easy to improve further.

- Idea: When performing find(), compress the paths!!
 - Right after computing the root of p, set the id[] of each node on the path to that root

Idea: When performing find(), compress the paths!!

Idea: When performing find(), compress the paths!!

Idea: When performing find(), compress the paths!!

• Idea: When performing find(), compress the paths!!

WQUPC Implementation (Java)

- Two-pass implementation
 - Add second loop to find() to set the id[] of each examined node to the root. (As in previous example)
- Simpler one-pass variant (path halving)
 - Make every other node in path point to its grandparent

```
public int find(int i)
{
    while (i != id[i])
    {
       id[i] = id[id[i]];
       i = id[i];
    }
    return i;
}
```

In practice: keeps tree almost completely flat

WQUPC: Time Complexity

Proposition. [Hopcroft-Ulman, Tarjan] Starting from an empty data structure, any sequence of M union-find ops on N objects makes $\leq c(N+M\lg^*N)$ array accesses.

- Analysis can be improved to $N + M \alpha(M, N)$.
- · Simple algorithm with fascinating mathematics.

N	lg* N	
1	0	
2	1	
4	2	
16	3	
65536	4	
265536	5	
iterated lg function		

[Fredman-Saks] No linear-time algorithm exists.

diffair Carto in oar time algorithm oxides

- WQUPC:
 - In theory: not quite linear
 - In practice: linear

$$\log^* n := egin{cases} 0 & ext{if } n \leq 1; \ 1 + \log^* (\log n) & ext{if } n > 1 \end{cases}$$

Summary: Union-Find

- Weighted QuickUnion (w/wo path compression) makes it possible to solve problems that could not otherwise be addressed.
- Complexity for M union-find operations on N objects

Algorithms	Worst-Case Time
QuickFind	M N
QuickUnion	M N
Weighted QuickUnion	N + M logN
Weighted QuickUnion with Path Compression	N + M log*N

- [10¹¹ unions with 10¹¹ objects]
 - WQUPC reduces time from 3000 years to 6 seconds
 - Supercomputer won't help much; good algorithm makes it feasible!

Kruskal's Algorithm

Kruskal's Algorithm

- To compute the minimum spanning tree (MST)
- Uses the greedy strategy
- Main Idea:
 - Consider edges in increasing order of weight
 - Add next edge to tree T unless it would create a cycle

edge	weight
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

edge	weight
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

edge	weight
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

edge	weight
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

edge	weight
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

edge	weight
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

edge	weight
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

edge	weight
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

edge	weight
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

edge	weight
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

edge	weight
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

edge	weight
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

edge	weight
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

edge	weight
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

Graph edges in weight increasing order

N-1 edges Done!

edge	weight
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

Kruskal's Algorithm: Correctness

- Proposition. [Kruskal 1956] Kruskal's algorithm correctly computes the MST.
- Proof by contradiction:
 - Suppose the tree T produced by Kruskal's is not an MST, i.e., it doesn't satisfy the MST property.
 - There is some edge u-v not in T such that adding u-v creates a cycle, in which some other edge x-y has weight W(x-y) > W(u-v).
 - As W(x-y) > W(u-v), edge x-y must be processed after edge u-v in Kruskal's.
 - At the time when *u-v* is processed, it must be added into *T* because it doesn't form a cycle.
 - This contradicts that u-v is not in T.

Kruskal's Algorithm: Implementation

- Challenge:
 - How to check if adding an edge v-w to tree T will create a cycle?
- Possible solutions:
 - DFS: run DFS from v to check if it could reach w in T.
 - Union-find: connected(v, w) = ?

O(log* |V|)

Kruskal's Algorithm: Implementation

- Use the union-find data structure:
 - Use the id array to keep track of connected components in T.
 - If connected(v, w) = TRUE, then adding v-w will create a cycle.
 - Else, add v-w to T by calling union(v, w).

Case 1: adding v-w creates a cycle

Case 2: add v-w to T and merge sets containing v and w

Kruskal's Algorithm: Implementation (Java)

```
public class KruskalMST
   private Queue<Edge> mst = new Queue<Edge>();
   public KruskalMST(EdgeWeightedGraph G)
                                                                     build priority queue
                                                                     (or sort)
      MinPQ<Edge> pg = new MinPQ<Edge>(G.edges()); O(|E|)
                                                        O(|V|)
      UF uf = new UF(G.V()):
      while (!pq.isEmpty() && mst.size() < G.V()-1)</pre>
                                             O(|E| \log |E|) \downarrow
         Edge e = pq.delMin();
                                                                     greedily add edges to MST
         int v = e.either(), w = e.other(v);
         if (!uf.connected(v, w))
                                             O(|E| log*|V|)←
                                                                     edge v-w does not create cycle
             uf.union(v, w):
                                             O(|V| log*|V|)
                                                                     merge sets
             mst.enqueue(e);
                                                                     add edge to MST
                                             O(|V|)
                                Overall: O(|E| log|E|)
   public Iterable<Edge> edges()
      return mst; }
```


Kruskal's Algorithm: Summary

- Kruskal's algorithm finds the minimum spanning trees in weighted graphs
- It is a greedy algorithm.
- It uses the union-find data structure for efficient implementation.
- Its time complexity is O(|E| log|E|).