Lecture7: MOSFET, theshold voltage

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Review

- The MOSFET has three terminals.
 - The gate current, I_G , is zero. (Isolated by the dielectric material)
 - Source current (I_S) + drain current (I_D) = 0
 - Source is connected to the GND.
 - The gate-to-source voltage (V_{GS}) and drain-to-source voltage (V_{DS}) are variables.
- Therefore, we want to know

$$I_D(V_{GS}, V_{DS})$$

Oxide capacitance

- A problem from "General Physics" cource
 - Consider a dielectric layer (whose thickness is d) sandwiched by two parallel metal plates.
 - A voltage difference, V, is applied.
 - The area of the plates is A.
 - The charges are +Q and -Q, respectively.
 - By applying the Gauss law,

$$Q = \epsilon |\mathbf{E}| A = \epsilon \frac{V}{d} A$$

Therefore, the capacitance per unit area becomes

$$C = \frac{\epsilon}{d}$$

The same problem in this course!

$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$$

Difference?

Threshold behavior

- The semiconductor region can provide negative charges by two ways.
- When the gate voltage is smaller than the theshold voltage (V_{TH}), the negative charge is provided by removal of holes from the interface. → Depletion
- When the gate voltage is larger than V_{TH}, the additional negative charge is provided by the mobile electrons. → Inversion

Electron charge density

- When $V_{GS} < V_{TH}$,
 - The electron charge density vanishes.

$$Q_{elec} = 0$$

- When $V_{GS} > V_{TH}$,
 - The electron charge density is proportional to $V_{GS} V_{TH}$.

$$Q_{elec} = C_{ox}(V_{GS} - V_{TH})$$

- (Here, Q_{elec} and C_{ox} are quantites per unit area.)

Homework#4 (1)

- Due: 09:00, April 2
- Write a program, which reads a netlist file.
 - From the netlist file, determine the total number of unknown variables, N.
 - For each circuit element with two terminals, assign 4 variables. The first one is I_1 . The second one is I_2 . The third one is V_1 . The fourth one is V_2 .
 - For each circuit node (including the ground), assign 1 variable. It is the node voltage.
 - Build a $N \times 1$ vector, x. Each entry has its own meaning.
 - The first four entries are $[I_1 \ I_2 \ V_1 \ V_2]^T$ of the first element.
 - The next four entries are $[I_1 \ I_2 \ V_1 \ V_2]^T$ of the second element.
 - It is repeated until all elements are considered.
 - The last entries are for the node voltages.

Homework#4 (2)

(Continued)

- For example, consider a simple circuit with two circuit elements (a voltage source and a resistor) and two circuit nodes (0 and in).
- Then, N = 10. Also the vector is given as $x = \begin{bmatrix} I_1^V & I_2^V & V_1^V & V_2^V & I_1^R & I_2^R & V_1^R & V_2^R & V_0 & V_{in} \end{bmatrix}^T$.
- Entries for the terminal currents are 1.
- Entries for the terminal voltages are 2.
- Entries for ther circuit nodes are 3.
- In the above example, $x = [1 \ 1 \ 2 \ 2 \ 1 \ 1 \ 2 \ 2 \ 3 \ 3]^T$.
- The program prints out the vector, x.

Homework#4 (3)

- Solve the following problems of the mid-term exam in 2017.
 - P17
 - P18
 - P19
 - P20
 - P21
 - P22
 - P23
 - P24