平成26年度 大阪大学基礎工学部編入学試験

[数

学] 試験問題

受	験	番	号	志	望	学	科	٠	コ	_	ス
										学	科
										-	-ス

[数学-1]

問題 1

曲線 C が媒介変数表示 $x=f(s),\,y=g(s),\,s\geq 0$ で表される。ただし $\cosh s=(e^s+e^{-s})/2,\,\sinh s=(e^s-e^{-s})/2$ を用いて

$$f(s) = s - \frac{\sinh s}{\cosh s}$$
$$g(s) = \frac{1}{\cosh s}$$

と定義する. 以下の設問に答えよ.

- (1) 定数 b>0 に対して曲線 C(b) が $x=f(s), y=g(s), 0 \le s \le b$ で表される. C(b) の長さ $\ell(b)$ を求めよ.
- (2) 点 P は時刻 0 で x=f(0), y=g(0) を出発して s が増える方向へ一定の速さで C 上を移動する。時刻 t>0 までに移動した経路の長さを t とする。時刻 t における P の位置を $x=f(\varphi(t))$, $y=g(\varphi(t))$ と表すための関数 $\varphi(t)$ を求めよ。

受	験	番	号	志	望	学	科	•	コ	-	ス
										学	科
										- -	- ス

[数学-2]

問題 2

次の2次曲線(a)について以下の設問に答えよ.

$$5x^2 + 2xy + 5y^2 + c = 0 \cdot \cdot \cdot \cdot (a)$$

- (1) $\mathbf{x} = (x, y)^T$ として、式(a) $\mathbf{e} \mathbf{x}^T A \mathbf{x} + c = 0$ の形で表すときの対称行列 A を示せ、ただし、T は転置を表す、
- (2) 行列 A の固有値を求めよ.
- (3) $P^{-1}AP$ を対角行列にする正則行列Pとそのときの対角行列 $B=P^{-1}AP$ を求めよ、ただし、正則行列の列ベクトルの大きさは1とする.
- (4) $\mathbf{x}' = (x', y')^T$ として設問(3)の正則行列Pを用いて $\mathbf{x} = P\mathbf{x}'$ で式(a)を座標変換して得られる $\mathbf{x}'^T B\mathbf{x}' + c = 0$ の概形を \mathbf{x}' 軸, \mathbf{y}' 軸と共に描け.ただし,c = -12とする.

受	験	番	号	志	望	学	科	コ –	ス
								学	科
								٦-	- 2

[数学-3]

問題3

1から6の目が等確率で出るさいころに関する以下の設問に答えよ.

- (1) 1つのさいころを5回振るとき、ちょうど3種類の目が出る場合は何通りあるかを求めよ.
- (2) 区別のできない5つのさいころを同時に振るとき、ちょうど3種類の目が出る場合は何通りあるかを求めよ.
- (3) さいころを振って3以上の目が出たら4点を,2以下の目が出たら1点を得る.さいころをn回振った時までに得た点数の合計が偶数である確率を P_n とする(ただし,nは0以上の整数とし, P_0 =1とする).このとき,以下の(a)~(c)に答えよ.
 - (a) P₁, P₃を求めよ.
 - (b) P_{n+1} を P_n で表せ.
 - (c) P_nを求めよ.