Aplikace lineární algebry v kombinatorice

prof. RNDr. Jan Kratochvíl, CSc.

8. února 2021

Obsah

1	Maticovy popis grafu, det, kostry	2
2	Sudo-lichomesta, 2-vzdalenost mnozin bodu	3
3	Sudo-sudomesta, Prostor cyklu grafu	6
4	Seiduv switching	8
5	Spekrum grafu, Moorovy grafy	12
6	Silne regularni grafy, propletani vl cisel	13
7	Odhady pomoci spektra	17
8	Shannonova kapacita	22
9	Samoopravne a perfektni kody, Lloydova veta	25

1 Maticovy popis grafu, det, kostry

Definice 1.1. Matice sousednosti grafu G

Věta 1.2 (Pocet sledu). Pro kazdy graf G a kazde prirozene cislo k obsahuje k-ta mocnina matice sousednosti A pocty sledu delky k mezi vrcholy grafu G, konkretne $(A^k)_{a,b} = \#$ sledu delky k mezi a - b v G.

Důkaz. Indukci podle k.

- 1. k = 0, sledy delky 0, neboli u u. Coz odpovida dle definice $A^0 = I$.
- 2. k = 1. Sled je prave hrana.
- 3. indukcni krok:

$$(A^{k+1})_{a,b} = (A^k * A)_{a,b} = \sum_{w \in V} (A^k)_{a,w} * A_{w,b} =$$

na pozice (w,b) je 1 pokud existuje takova hrana, jinak 0. Proto

$$= \sum_{w,bw \in E} (A^k)_{a,w} =$$

Dle I.P. se rovna poctu sledu delky k mezi a-w. Pak mezi vrcholy a-w existuje sled delky k. Rozdelime sledy dle konecneho vrcholu, ktery je soused b. Kazdy z techto sledu jednoznacne prodlouzime na sled delky (k+1) do vrcholu b. Z toho predchozi soucet je prave # pocet sledu delky (k+1) mezi a-b.

Definice 1.3. $L_G^{(n)}$ se dostane tak, ze vyskrtneme n-ty radek a slopec z Laplaceove matice. **Lemma 1.4.**

$$\forall w \subseteq E, |w| = n - 1 : det((D_G^{(u)})_w) = \begin{cases} 0 & pro(V, w) \neq tree \\ \pm 1 & pro(V, w) = tree \end{cases}$$

 $D\mathring{u}kaz$. 1) Necht $w \subseteq E$ je kostra. Pak je stromem \Rightarrow ma list v_1 . Premistime radek odpovidajiici v_1 do prvniho radku. Necht e_1 je hrana $v_1 - v_t$. Dame ji do prvniho sloupce. Pak na pozice (0,0) je ± 1 . Taky prvni radek je $(\pm 1,0,...0)$ protoze vrhol je list.

Odtranime v_1 , necht v_2 je dalsi list a e_2 jeho hrana. Pak druhy radek je $(??,\pm 1,0,...0)$. Tak pokracujeme dal.

Muze se ale stat, ze dalsi vrhol je u ktery jsme zrovna odstranili. Pouzijeme tvrzeni, ze strom ma aspon 2 listy. Pak muzeme vzit nejaky dalsi vrhol. Po ukonceni premistovani dostaneme ± 1 na diagonale. Nad diagonalou same $0 \Rightarrow det = \pm 1$. Premistenim jsme menili znamenko det. Ale $det^2 = 1$.

2) Mame graf $w \subseteq E, |w| = |V| - 1$ ktery neni strom \Rightarrow neni souvisly \Rightarrow ma aspon 2 komponenty souvislosti. $V = V_1 \dot{\cup} V_2$. BUNO $u \in V_2$. Pak z V_1 do V_2 nevede zadna hrana, cast matice je 0. Pak soucet radku odpovidajici $V_1, E(V_2)$ a $V_2, E(V_1)$ je $0 \Rightarrow$ rakdy jsou LZ a det je 0.

Věta 1.5 (Pocet koster).
$$det(L_G^{(n)}) = \# koster \ grafu \ G$$

 $D\mathring{u}kaz$. Vezmeme matice incidence I_G (jenom 2 jednicky ve sloupci, v radku # 1 je deg(v)), v kazdem jejim sloupci nahradime jednu jednicku hodnotou (-1). Vyslednou matici oznacme D_G .

 $I_G*I_G^T=$ skal. soucin radku i, j. Na diagonale deg(v),mimo diag. 1 pro hrany, 0 - nehrany. Zmenime prave jednu 1ku ve kazdem sloupci na -1 (tim dostaneme orient. graf).

$$D_g * D_G^T = L_G$$

Rovnost plati protoze skalarni soucin stejneho radku da deg(v) jelikoz -1*-1=1. Pokud nasobime ruzne radky, prislusne vrcholy nejsou spojene hranou - 0. Jinak maji prave 1 spolecnou pozici a dostaneme -1*1=-1.

Pak $det(L_G^{(u)})$ spocitame jako $det(D_G^{(u)}*(D_G^{(u)})^T)$ Pouzijeme Cauchy-Benet formulu (det souciny obdelnikovych matic)

$$det(A*B) = \sum_{\substack{w \subseteq 1, 2, \dots, n \\ |w| = k}} detA_w * detB^w$$

Kde A_w jsou n sloupcu matice A, B^w - n radku matice B.

$$detL_G^{(u)} = \sum_{\substack{w \subseteq E \\ |w| = n-1}} det(D_G^{(u)}) * (D_G^{(u)})^T =$$

Pro kazdou matici $det A = det A^T$, pak

$$= \sum_{\substack{w \subseteq E \\ |w|=n-1}} \det(D_G^{(u)})^2$$

Kostra musi mit (n-1) vrcholu; v det se divame na vsechny podmoziny hran |w|=n-1. Ptame se jestli je strom. Proto suma nehore je prave

$$\sum_{\substack{w \\ (V,w)je \ kostra}} 1$$

Coz je # koster G

2 Sudo-lichomesta, 2-vzdalenost mnozin bodu

Lemma 2.1. $det(S_1 + b_1, S_2 + b_2, ..., S_k + b_k) = det(S + B), S_i, b_i \in T^k \text{ kde } S_i, b_i \text{ jsou sloupce}$ matic S, B, ide specitat jako:

$$det(S_1 + b_1, S_2 + b_2, ..., S_k + b_k) = det(S_1, S_2 + b_2, ..., S_K + b_K) + det(b_1, S_2 + b_2, ..., S_K + b_K)$$

Pak linearita v 2. slozce atd.

$$det(S+B) = \sum_{w \subseteq [k]} det(S^w T)$$

 $kde\ S^w\ znamena,\ ze\ jsme\ vzali\ sloupce\ odpovidajici\ indexum\ v\ w.\ Ostatni\ sloupce\ jsou\ z\ T.$

Věta 2.2 (skoro dizjunktni systemy mnozin). Necht $A_1,...,A_k$ jsou ruzne $\subseteq [n]$, $|A_i \cap A_j| = 1, i \neq j \Rightarrow k \leq n$

 $D\mathring{u}kaz$. Necht A-matice incidence $\{A_i\}$. Radek odpovida prvcim, sloupec - mnozinam. Na pozice $(r,s)=1 \Rightarrow$ prvek r lezi v mnozine A_s .

Vezmeme $A^T * A$ nad \mathbb{R} . Pak ve vysledne matice na pozice (r,s) je $|A_r \cap A_s|$. Jelikoz pruniky jsou 1-prvkove, mame matici 1-cek. Na diagonale jsou $|A_i|$ velikosti mnozin.

$$k = rank(A^T A) \le rank A \le n \Rightarrow k \le n$$

Tvrdime, ze $det(A^TA \neq 0)$. Pak matice je regularni a rank = k. BUNO

$$|A_i| = a_i, a_1 \le a_2 \le \dots \le a_k$$

Mame matici, kde na diagonale jsou velikosti mnozin, jinak 1.

Nahledneme $a_2 \ge 2$. Jinak pokud $a_1 = a_2 \Rightarrow \exists x \in A_1 \cap A_2 \Rightarrow A_1 = A_2 = \{x\}$.

Necht J je matice jednicek. Matici A muzeme napsat jako $J + I * (a_i - 1)$ kde $(a_i - 1)$ je na diagonale. Pouzijeme vlastnost det jako multilinearni formy, viz lemma 2.1. Pokud vezmeme 2 sloupce z J, tak det bude 0. Takze zbyvaji det kde je jeden sloupec z S, zbytek z J.

$$det(S+J) = det(S) + \sum_{i}^{k} J^{i}S =$$

Determinanty matic J^iS kde z J je pouze i-ty sloupec lze spocitat rozvojem dle i-ho radku kde je pouze 1 jednicka.

$$= \prod_{1}^{k} (a_i - 1) + \prod_{2}^{k} (a_i - 1) + \sum_{i=2}^{k} \frac{\prod_{1}^{k} (a_i - 1)}{a_j - 2}$$

Kde 2. produkt mame protoze a_1 se muze rovnat 1, zbytek jsou vetsi. Prvni \prod je ≥ 0 , druhy $\prod > 0$ protoze od $i=2, a_i \geq 2$. \sum je zlomek kladnych clenu, takze $\sum \geq 0$. Dohromady det(J+S)>0

Věta 2.3 (sudo-lichomesta). Necht $A_1,...,A_k$ jsou $ruzne \subseteq [n], |A_i| = 1 \mod 2 \ \forall i, |A_i \cap A_j| \equiv 0 \mod 2, i \neq j \Rightarrow k \leq n$

 $D\mathring{u}kaz$. Vezmeme matice incidence jako v predchozi vete. Uvazme matici A^T*A nad \mathbb{Z}_2 . Pak na diagonale jsou mohutnosti mnozin = 1 mod 2, mimo diagonalu pruniky = 0 mod 2. Neboli $A^T*A = I \Rightarrow rank = k$. Pak jako minule:

$$k = rank(A^T A) \le rank A \le n \Rightarrow k \le n$$

Definice 2.4. Mnozina bodu v \mathbb{R}^n je s-vzdalenostni pokud vzajemne vzdalenostni bodu nabyvaji celkem nejvyse s hodnot.

Pozorování 2.5. 1-vzdalenostni mnoziny jsou simplexy. Zobecneni rovnostranneho \triangle do vyssich dimenzi. Indukci dokazeme, ze $m_1(n) = n + 1$. Pri prechodu do vyssi dimenze existuje prace jeden bod ktery muzeme pouzit. Proces podobny kompaktizace topologickeho prostoru.

Věta 2.6 (2-vzdalenostni mnoz). Necht $m_s(n)$ znaci pocet bodu s-vzdalenostni mnoz v \mathbb{R}^n , pak:

$$\binom{n+1}{2} \le m_2(n) \le 1/2 * (n+1)(n+4)$$

Důkaz. 1) Dolni odhad

Vezmeme vektory, ktere maji prave 2 jednicky, jinak 0. Takovych mame $\binom{n}{2}$.

Pokud 2 vektoru maji 1 spolecnou pozice, $d(x,y) = \sqrt{2}$. Jinak pokud maji 2 spolecne pozice, tak d(x,y) = 2. Vzdalenost pocitame jako kanonickou Euklidovou normu.

$$m_2(n) \ge \binom{n}{2}$$

Zesilime dolni odhad: premistime se do \mathbb{R}^{n+1} . Jelikoz $\sum_{i=1}^{n+1} x_i = 2$, body jsou v nadrovine dimenzi \mathbb{R}^n kterou lze vzorit do \mathbb{R}^n . Pak:

$$m_2(n) \ge \binom{n+1}{2}$$

2) Horni odhad

Mame body $A_1, A_2, ..., A_t$. $A_i = (a_{i,1}, a_{i,2}, ..., a_{i,n}) \in \mathbb{R}^n$. Oznacme vzdalenosti $k \neq m \in \mathbb{R}$. Definujme funkce $F : \mathbb{R}^n \times \mathbb{R}^n \to R$, $F(x,y) = (d(x,y)^2 - m^2) * (d(x,y)^2 - k^2)$. Pokud je vzdalenost $m \vee k \Rightarrow F = 0$.

Pak $f_i(x), f_i(x) = F(x, A_i)$. Castecne dosazeni. Tyto funkce jsou v V.P. funkci z \mathbb{R}^n . Tvrdime ze $\{f_i(x)\}$ jsou LN. Pokud dosadime 2 ruzne prvky do f_i tak dostaneme 0 dle definice zobrazeni F. Pro stejny bod $f_i = a^2b^2 \neq 0$.

$$\sum_{i=1}^{t} f_i * x_i = 0, x_i \in R, 0 = nulova \ funkce$$

Podivame se na tuto funkce (lin kombinace funkci) v nejakem bode A_i .

$$\forall j (\sum_{1}^{t} f_i * x_i)(A_j) = \sum_{1}^{t} f_i * x_i(A_j) = x_j a^2 b^2 = 0 \Rightarrow x_j = 0$$

Neboli funkce jsou LN. Jejich pocet je omezen podprostorem funkci nad \mathbb{R}^n ve kterem zijou.

$$f_i(x) = (d(x, A_i)^2 - m^2) * (d(x, A_i)^2 - k^2) = ((\sum_{j=0}^{t} (x_j - a_{i,j})^2 - a^2) * ((\sum_{j=0}^{t} (x_j - a_$$

 f_i jsou polynomu stupne 4. # polynomu dle dimenze:

- 1. k = 0 konstantni = 1.
- 2. k = 1 je n.
- 3. k = 2 je $\binom{n}{2}$ pro ruzna x_i, x_j a n pro x_i^2 .
- 4. k = 3 $\binom{n}{3}$ pro ruzna x_i, x_j, x_k . Pro $x_i^2 x_j = n(n-1)$ a n pro x_i^2 .
- 5. k = 4 podobne

Nase funkce jsou z podprostoru polynomu deg = 4. Zvolme vhodnou bazi.

$$U = \langle 1, x_i, x_i * x_j, x_i^2, (\sum x_j^2) x_i, (\sum x_j^2)^2 \rangle \forall i, j$$

Dostaneme $dim(U)=1+n(lin)+n(kv)+n(kv*lin)+\binom{n}{2}(lin2)+1=2+3n+1/2n(n-1)=1/2(4+5+n^2)$. Generator $\sum x_j^2$ nepotrebujeme protoze je lin komvinaci x_j^2 .

3 Sudo-sudomesta, Prostor cyklu grafu

Věta 3.1 (Sudo-sudomesta). Necht $A_1,...,A_k$ jsou $ruzne \subseteq [n], |A_i| = 0 \mod 2 \ \forall i, |A_i \cap A_i| \equiv 0 \mod 2, i \neq j \Rightarrow k \leq 2^{\lfloor \frac{n}{2} \rfloor}$

 $D\mathring{u}kaz.$ Udelame bijekci mnozina \to charakteristicky vektor. Pak lin kombinace je taky sudo-sudomesto. Dal

$$\langle A_i, A_j \rangle = \sum_{x \in X} (A_i)_x (A_j)_x = \sum_{x \in A_i \cap A_j} 1 = |A_i \cap A_j| \mod 2$$

$$\langle A_i, A_i \rangle = |A_i|$$

Pak $\langle A_i, A_j \rangle = 0 \mod 2$. Vezmeme $m = \sum b_i A_i$, tak

$$\langle A_i, m \rangle = \langle A_i, \sum b_i A_i \rangle = \sum b_i \langle A_i, A_j \rangle = 0$$

$$\langle m, m \rangle = \langle \sum b_i A_i, m \rangle = \sum b_i \langle A_i, m \rangle = 0$$

Z toho maximalni (vzhledem k inkluzi) system tvorici sudo-sudomesto je nutne podpostor.

$$\forall x \in M \forall y \in M \langle x, y \rangle = 0 \Rightarrow \forall x \in M : x \in M^{\perp} \Rightarrow M \subseteq M^{\perp}$$

$$\langle M \rangle \subseteq M^{\perp} \Rightarrow dim M \leq dim M^{\perp} = n - dim M \Rightarrow dim \langle M \rangle \leq \lfloor n/2 \rfloor \Rightarrow dim M \leq \lfloor n/2 \rfloor$$

Odhad je tesny: spojime body do 2
jic tvorici rozdklad X. Pak mnoziny budou vsechny mozne podm
noziny obsahujici 2ce. Je jich $2^{\lfloor n/2 \rfloor}$

Definice 3.2. Uvazme bijekci mezi napnutym podgrafem H a jeho charakteristickym vektorem. Mnozina vsech napnutych podgrafu ν_G tvori V.P. nad \mathbb{Z}_2 , scitani vektoru odpovida symmetricke diferenci mnoziny hran.

Definice 3.3. Mnozina napnutych podgrafu je Eulerovska pokud $\forall u \in V, deg(u) = 0$ mod 2. Znacime ξ_G . Pak β_G je mnozina elementarnich rezu, t.j. $B_A = (V, \{xy : x \in A, y \in V \setminus A, xy \in E\}), A \subseteq V$.

Věta 3.4 (Eulerovske grafy). ξ_G, β_G jsou V.P. podprostory ν_G . Plati $\xi_G^{\perp} = \beta_G \wedge \beta_G^{\perp} = \xi_G$. Pokud navic je graf souvisly, $dim(\beta_G) = |V| - 1 \wedge dim(\xi_G) = |E| - |V| + 1$.

 $D\mathring{u}kaz$. 1) Nasobeni skalarem je automaticky splneno, protoze teleso je \mathbb{Z}_2 .

- 2) $H_1 + H_2 = (V_1, E(H_1) \div E(H_2))$. Taky patri do V.P.
- 3) Ukazeme $\forall H_1, H_2 \in \xi_G : H_1 + H_2 \in \xi_G$. Zvolme vrchol u, necht $deg_{H_1}u = 2k, deg_{H_2}u = 2l$, taky h je pocet spolecnych hran obou podgrafu.

$$deg_{H_1+H_2}u = 2k - h + 2l - h = 2k + 2l - 2h \equiv 0 \mod 2$$

Soucet 2 Eulerovskych grafu je Eulerovsky graf.

4) Ukazeme $\forall A, Z \subseteq V(G) : B_A + B_Z \in \beta_G$.

Z obrazku prezijou pouze hrany vedouci z A-Z do $V-(Z\cup A)$, hrany z A-Z do $Z\cap A$, hrany $(Z\cap A)$ do Z-A a hrany ze Z-A do $V-(Z\cup A)$. Ostatni byly ve 2 rezich. Zustane rez $B_{A\div Z}, A\div Z=(A-Z)\cup (Z-A)$.

$$B_A + B_Z = B_{A - Z}$$

Tvrdime ze $B_G = \langle B_{\{u\}}, u \in V \rangle$. Prostor el. rezu je generovany hvezdami. Protoze

$$B_A = \sum_{u \in A} B_{\{u\}}$$

Hrany uvnitr A se smazou sym. diferenci, hrany vedouci ven z A, ktere nejsou spolecne zustanou.

5) G souvisly $\Rightarrow dim B_G = |V| - 1$. Nahledneme ze secteni vsech hvezd dava \emptyset graf. Neboli kazda hrana patri ke 2 hvezdam.

Zafixujeme vrchol u, secteme hvezdy krome u. $\sum_{a\neq u} B_{\{a\}} = \emptyset - B_{\{u\}} = \emptyset$ Pokud vezmeme vsechny krome 1 hvezdy, tak jsou LN a generuji vsechny rezy. Z toho $\Rightarrow dim B_G = |V| - 1$.

Pozorovani:

$$\forall H \subseteq V : H \in \xi_G \iff \langle H, B_A \rangle = 0 \ \forall B_A \in B_G \iff \langle H, B_{\{u\}} \rangle = 0 \ \forall u \in V$$

Uvazme hvezdu $B_{\{u\}}$ a $deg_H u = 0 \mod 2$. Pak symmetricka diference smaze prave sudy pocet hran z hvezdy a nove pocet hran je taky sudy.

$$\forall u \in V : \langle H, B_{\{u\}} \rangle = 0 \iff deg_H u \equiv 0 \mod 2$$

$$\operatorname{Pak} \, \forall H \subseteq V : H \in \xi_G \iff H \in \beta_G \Rightarrow \xi_G^\perp = (\beta_G)^\perp = \beta_G \Rightarrow \dim(\xi_G) = |E| - |V| + 1$$

Lemma 3.5. $M \subseteq \mathbb{Z}_2^n : \bar{1} \in \langle M \rangle + M^{\perp}$.

 $D\mathring{u}kaz. \ \forall x \in M \cup M^{\perp}: \langle x, x \rangle = 0. \ \text{Nad} \ \mathbb{Z}_2 \ \text{ale} \ \langle x, x \rangle = \langle x, \overline{1} \rangle. \ \text{Pak}$

$$x \perp \bar{1} \Rightarrow \bar{1} \in (M \cap M^{\perp})^{\perp} = M^{\perp} + (M^{\perp})^{\perp} = M^{\perp} + M$$

Věta 3.6 (Rozklad na 2 Eulerovske podgrafy). $\forall G \exists V_1 \dot{\cup} V_2 = V(G), G[V_i] \text{ je Eulerovsky.}$

 $D\mathring{u}kaz$. 1) Uvazme $M=\xi_G$ v tvrzeni z lemmatu. $\bar{1}=G$, ma vsechny hrany $\Rightarrow \bar{1}\in \xi_G+\xi_G^{\perp}=\xi_G+\beta_G$.

$$\forall G: \exists A \subseteq V(G), \exists H \in \xi_G: G = H + B_A$$

Tento rozdklad je dizjunktni, takze mame 2 Eulerovske podgrafy a mezi nimi elementarni rez. Pokud rez smazeme, graf je sjednoceni dvou Eulerovskych podgrafu.

4 Seiduv switching

Definice 4.1. Necht V je V.P nad T. Linearni forma je lin zobrazeni $f: V \to T$. Pak linearni formy tvori V.P. nad T. Znacime V^* a je tzv. dualni prostor k V.

Definice 4.2. Necht $B = \{b_1, b_2, ..., b_n\}$ je baze V, pak $B^* = \{f_1, f_2, ..., f_n\}$ je dualni baze, pokud formy jsou dane predpisem:

$$f_i(b_j) = \begin{cases} 1 & \text{pro } i = j \\ 0 & \text{pro } jinak \end{cases}$$

Definice 4.3. Necht A,B jsou V.P nad T, dimA = n, dimB = k. Necht $\varphi : A \to B$ homomorf. Pak dualni homomorf k φ je zobrazeni $\varphi^* : B^* \to A^*$ dane predpisem:

$$\forall f \in B^* \ \forall u \in A : (\varphi^*(f))(u) = f(\varphi(u))$$

Věta 4.4 (Matice dualniho homomorf(BD)). Matice dualniho homomorf vzhledem k dualnim bazim je transponovanout matici k matici primarniho homomorf.

$$_{C^*}[\varphi^*]_{B^*} = (_B[\varphi]_C)^T$$

 $D\mathring{u}kaz$. Matice zobrazeni linearni formy z prostoru $f:V\to T$ je

$$_{B}[f]_{k} = (f(b_{1}), f(b_{2}), ..., f(b_{n}))$$

Mame homomorf $\phi: V \to W$, pak linearni formy $h: W \to T$.

Dualni homomorf $\phi^*: W^* \to V^*$ je definovan:

$$\phi^*(f)(u) = f(\phi(u))$$

Jelikoz lin formy jsou n-tice, tak $dim(V) = dim(V^*)$. Matice ϕ je $_B[\phi]_C \in T^{k \times n}$. Matice ϕ^* je $_{C^*}[\phi^*]_{B^*} \in T^{n \times k}$. Veta rika, ze

$$_{C^*}[\varphi^*]_{B^*} = (_B[\varphi]_C)^T$$

Definice 4.5. Faktorprostor: faktorizace dle podprostoru W prostoru V (podgrupa). V/W jsou mnoziny $\forall u \in Vu + W$. Pak i faktorprostor je V.P vuci operacim:

$$(u+W)+(a+W)=(u+a)W, \lambda\cdot(u+W)=(\lambda\cdot u)+W$$

Plati: dim(V/W) = dimV - dimW.

Věta 4.6 (Izomorfismus faktorprostoru). Necht $V = T^n$ a necht W je podprostor. Pak

$$V/W^{\perp} \sim W^*$$

 $D\mathring{u}kaz$.

Pak izomorf ϕ je definovan:

$$\phi(v + W^{\perp}) = \langle v, \cdot \rangle$$

Udelali jsme linearni formu z bilinearni??

Pokud dosadime promennou:

$$\forall x \in W : \phi(v + W^{\perp})(x) = \langle v, x \rangle$$

Chceme aby ϕ bylo korektne definovane a splnovalo vlastnosti izomorf:

- 1) korektnost definice
- 2) lin zobrazeni
- 3) proste
- 4) na

Dukaz:

1) $a \in v + W^{\perp} \iff a = v + b, b \in W^{\perp}$. Pak

$$\langle a, x \rangle = \langle v + b, x \rangle = \langle v, x \rangle + \langle b, x \rangle$$

Protoze $x \in W \Rightarrow \langle b, x \rangle = 0 \Rightarrow \langle v, x \rangle = \langle a, x \rangle$.

- 2) Skalarni soucin je bilinearni forma, z toho ϕ je linearni zobrazeni.
- 3) Necht $\phi(v+W^{\perp})=0 \Rightarrow \forall x \in W: \langle v,x \rangle=0 \Rightarrow v \in W^{\perp} \Rightarrow v+W^{\perp}=\bar{0}+W^{\perp}$. Takze v kernelu je pouze W^{\perp} .

4) Nahledneme z dimenzi.

$$Im(\phi) \le W^* \wedge dim(Im(\phi)) = dim(V/W^{\perp})$$

Rovnost dimenzi plati protoze zobrazeni je proste.

$$dim(Im(\phi)) = dim(V) - dim(W^{\perp}) = dim(V) - (dim(V) - dim(W)) = dim(W) = dim(W^*)$$

Z LA $Im(\phi)$ je vnoreny podpostor stejne dimenzi jako nadprostor \Rightarrow jsou stejne.

Věta 4.7 (Burnsidovo lemma(BD)).

Lemma 4.8. Necht grupa G provadi akci na mnozine M, grupa H na N. Necht $\varphi: M \to N$ bijekce.

$$ifg \in G, h \in H, \forall m \in M : h\varphi(m) = \varphi(gm) \Rightarrow |G_g| = |H_h|$$

 $D\mathring{u}kaz.$ Prvky v M_g jsou gm=m. Prvky v N_h jsou hn=n. Kvuli bijekci n lze jednoznacne vyjadrit jako:

$$n = \varphi(m) = \varphi(\varphi^{-1}(n))$$

Pak

$$h\varphi(m) = \varphi(m)$$

Diagram komutuje

$$\varphi(gm) = \varphi(m)$$

 φ je bijekce, takze proste $\Rightarrow gm = m$. Dohromady # hn = n je totez jako # gm = m. \square

Definice 4.9. Seiduv switching vymeni vsechny hrany a nehrany vychazejici z $u \in V$. Ostatni vrcholy a hrany beze zmen. Grafy $G \sim G' \iff G'$ lze ziskat z G postupnym prepinanim vrholu.

Poznámka 4.10.

$$G \sim G' \iff \exists A \subseteq V(G) : G' = S(G, A)$$

kde S(G,A) je switch cele podmoziny. Hrany mezi A a zbytkem se prohodi.

Poznámka 4.11. Dva grafy na stejne mnozine vrcholu jsou Seidelovsky ekv \iff jsou ve stejne tride faktorizace V_{K_V}/β_{K_V} . Proto je trid ekvivalence tolik, kolik je Eulerovských grafu na dane mnozine vrcholu.

Věta 4.12 (Pocet neiz trid Seide switching). Počet neizomorfních tříd ekvivalence při Seidelově switchingu na n vrcholech je roven počtu Eulerovských grafů na n vrcholech.

Důkaz. Pro licha n, oznacme

$${A = \{u | deg_G(u) \equiv 1 \mod 2\}, |A| \equiv 0 \mod 2}$$

Udelame switch mnoziny A: (G, A). Vezmeme vrchol $u \in V \setminus A$ Pak $deg_G(u) = a + b$, kde a je pocet hran mimo A, b je pocet hran vedoucich do A. Po switchu:

$$deg_{S(G,A)}(u) = a + |A| - b = deg_G(u) - 2b - |A| \equiv 0 \mod 2$$

Vezmeme vrchol $u \in A, deg_G(u) = c + d$, kde c jsou hrany v A, d hrany mimo A. Po switchu:

$$deg_{S(G,A)}(u) = c + |V \setminus A| - d = c + d - 2d + |V| - |A|$$

Kde (c+d) je liche, |V| je liche, |A| je sude. Dohromady sude.

Takze kazdy graf lze preswitchovat na Eulerovský graf. Preswitcheni Eulerovskeho grafu se zmeni na neeulerovsky. V kazdem switching tride je 1 Eulerovský graf.

Pro n sude. Necht K je V.P. vsechn grafu na dane mnozine vrcholu, B je prostor el. rezu na uplnem grafu, ξ prostor Eulerovských grafu.

$$\beta = \xi^{\perp} \Rightarrow \xi^* \simeq K/B$$

Prvky ν/B jsou prave tridy ekvivalence dle Seidelovem switchingu. Chceme zjistit pocet orbit akci grupy S(V).

Tvrdime ze diagram komutuje. Necht $G \in \nu$

$$\bar{\sigma}_B(G+B) \to \sigma(G) + B, \phi(\sigma(G)+B) \to \langle \bar{\sigma}(G), \cdot \rangle \in \xi^*$$

 $\phi(G+B) \to \langle G, \cdot \rangle \in \xi^*, (\bar{\sigma}^{-1})^*(\langle G, \cdot \rangle)$

Tvrdime ze posledni prvky ve dvou radcich jsou stejne.

$$\forall X \in \xi : \langle \bar{\sigma}(G)(X) \rangle = (\bar{\sigma}^{-1})^* (\langle G, \cdot \rangle) = \langle G, (\bar{\sigma}^{-1})(G) \rangle$$

Leva cast

$$\langle \bar{\sigma}(G)(X)\rangle = |\{e|e \in E(\bar{\sigma} \cap E(X))\}$$

Prava cast

$$\langle G, (\bar{\sigma}^{-1})(G) \rangle = |\{e|e \in E(G) \cap (\bar{\sigma}^{-1})(X)\}$$

Z toho diagram komutuje.

Pak dle Burnsidova lemmatu: # orbit ν/B pri akci $S(\nu) = \frac{1}{n!} \sum |(\nu/B)_{\sigma}|$.

Taky # orbit ξ^* pri akci $S(V) = \frac{1}{n!} \sum |(\xi^*)_{\sigma}| = \frac{1}{n!} \sum |(\nu/B)_{\sigma^{-1}}|$. Zbyva dokazat, ze # orbit je stejny i pro ξ misto ξ^* .

5 Spekrum grafu, Moorovy grafy

Definice 5.1. Necht G je r-regularni graf obvodu vetsiho nez 4 (nema ani \triangle ani kruznice delky 4). Pak $|V(G)| \ge r^2 + 1$.

Definice 5.2. Moorovy grafy splnuji definice nahore, ale navic $|V(G)| = r^2 + 1$.

Věta 5.3 (Moorovy grafy). Moorovy grafy existuji pro r = 1, 2, 3, 7, pravdepodobne r = 57. Pro zadne jine r neexistuji.

 $D\mathring{u}kaz$. 1) r = 1, cesta delky 2

- 2) r = 2, kruznice delky 5
- 3) r = 3 Petersenuv graf
- 4) r = 7 Homan, Singleton graf

Ostatni r, necht G je Mooruv graf, na $n=r^2+1$ vrcholech. Vezmeme matice sousednosti. A^2 ma pocet sledu delky 2 mezi vrcholu a-b. Na diagonale mame r, mimo diagonalu je 0 pokud mezi a-b v puvodnim grafu vedla hrana. Naopak A^2 bude mit 1, pokud mezi a-b nevedla hrana v G.

$$A^{2} = rI + (J - I - A) \Rightarrow A^{2} = (r - 1)I + J - A \Rightarrow A^{2} + A - (r - 1)I = J$$

Vezmeme polynom $P(x) = x^2 + x - (r - 1)$. Pokud by $\lambda \in Sp(A) \Rightarrow \lambda^2 + \lambda - (r - 1) \in Sp(A) = Sp(J)$.

J ma (n-1) nasobne vlasne cislo $\lambda=0$. Posledni vl. cislo je n. Pak

$$\lambda^2 + \lambda - (r - 1) = 0 \lor n$$

r-regularni graf ma nejvetsi vl. cislo r. Dosadime r do rovnice. $r^2 + r - (r - 1) = r^2 + 1 = n$. Ostatni jsou nulove.

$$\lambda_{1,2} = 1/2 * (-1 \pm \sqrt{1 + 4(r - 1)}) = 1/2 * (-1 \pm \sqrt{4r - 3})$$

Pak $Sp(A) = \{r, \lambda_1^{m_1}, \lambda_2^{m_2}\}$. Ze spektra J vime $m_1 + m_2 = n - 1 = r^2$. Taky

$$\sum \lambda_i = tr(A) = 0 \Rightarrow r + m_1 \lambda_1 + m_2 \lambda_2 = 0$$

Vyresime system 2 rovnic o 2 neznamych. Necht

$$s = \sqrt{4r - 3}, s^2 = 4r - 3, r = 1/4 * (s^2 + 3)$$

$$r + -1/2(m_1 + m_2) + s/2(m_1 - m_2) = 0 \land m_1 + m_2 = r^2 \Rightarrow r - 1/2r^2 + s/2(m_1 - m_2) = 0$$

- 1) Necht $s \notin Q \Rightarrow s/2 \notin Q \land r \in N \Rightarrow m_1 = m_2 \Rightarrow r^2 2r = 0 \Rightarrow r = 2$. Pro 2 mame takovy graf.
- 2) Jinak $s \in \mathbb{N} \Rightarrow 1/4(s^2+3) (1/4(s^2+3))^2 * 1/2 + s/2(m_1 m_2) = 0$. Vynasobime 32.

$$8(s^2+3) - (s^2+3)^2 + 16s(m_1 - m_2) = 0$$

Podivame se jako na polynom s: $24 - 9 - s^4 + (...)s = 0$.

$$s^4 + s(...) - 15 = 0 \Rightarrow s|15 \Rightarrow s = \{1, 3, 5, 15\} \Rightarrow r = \{1, 3, 7, 58\}$$

6 Silne regularni grafy, propletani vl cisel

Definice 6.1. Silne regularni je graf pokud neni uplny (trivialni pripad) a $\exists d, e, f \in \mathbb{N}$: $\forall v \in V \ deg(v) = d$. Kazde 2 sousedni vrcholy maji e spolecnych sousedu (2 vrcholy lezi v e \triangle), kazde 2 nesousedni vrcholy maji f spolecnych sousedu ($\exists f$ cest delky 2).

Věta 6.2 (Silne regularni grafy (nebude u zkousky)). Je-li G silne regularni s parametry d, e, f, pak nastava jedna z 2 moznosti:

- f = e+1, d = 2f, |V(G)| = 2d+1 nebo
- $\exists s \in \mathbb{N} : s^2 = (e f)^2 4(f d) \land \frac{d}{2fs}((d 1 + f e)(s + f e) 2f) \in \mathbb{N}.$

 $D\mathring{u}kaz$. Necht A je matice sousednosti G, n = |V(G)|, uvazme A^2 . Na diagonale jsou stupne d, mimo diagonalu pokud v A byla 1 - zmeni se na e, 0 se zmeni na f.

$$\vec{A} = \begin{pmatrix} d & e & f \\ e & d & f \\ f & d & d \end{pmatrix}$$

$$A^{2} = dI + eA + (J - I - A)f \Rightarrow A^{2} + (f - e)A + (f - d)I = fJ$$

Dosadime vl. cislo $\lambda \in Sp(A)$.

$$\lambda^2 + (f - e)\lambda + (f - d) \in Sp(fJ) = \{f * n, 0^{(n-1)}\}\$$

d odpovida vl. vektoru $\bar{1}$ u A, u J vl. vektoru $\bar{1}$ odpovida n. Dosadime d:

$$d^{2} + (f - e)d + f - d = fn \Rightarrow d(d - e - 1) = f(n - d - 1)$$

Zafixujme nejaky vrchol $x \in V$. Kolik \exists indukovanych cest delky 2:

$$|\{(x,a)|xa,ab\in E(G)\land xb\notin E(g)\}|$$

Mame d zpusobu zvolit souseda x, pak vrchol a ma d sousedu, e jsou spolecne s x, x taky patri mezi sousedy. Dostaneme d(d-e-1). Na druhou stranu z pohledu vrcholu b. X ma (n-d-1) nesousedu, pak vrchol a je mezi f sousedu (x,b). Dostaneme f(n-d-1). Pro $\lambda \in Sp(A) \setminus \{d\}$ zbyva 0:

$$\lambda^{2} + (f - e)\lambda + f - d = 0 \Rightarrow \lambda_{1,2} = \frac{e - f \pm \sqrt{(e - f)^{2} - 4(f - d)}}{2}$$

Oznacme $D = \sqrt{(e-f)^2 - 4(f-d)}$. Pak $\lambda_1 = 1/2(e-f+s), p$ krat a $\lambda_2 = 1/2(e-f-s), q$ krat.

Z nasobnosti vl. cisel

$$1+p+q=n$$

$$a+p\lambda_1+q\lambda_2=tr(A)=0$$

$$tr(A^2)=\sum \lambda_i^2=nd \Rightarrow d^2+p\lambda_1^2+q\lambda_2^2=nd$$

Vyresime soustavu 3 rovnic o 3 neznamych. Dosadime hodnoty λ_1, λ_2 do 2. rovnici:

$$d+1/2p(e-d+s)+1/2q(e-f-s)=0 \Rightarrow d+1/2(p+q)(e-f)+1/2(p-q)s=0$$

Nastavaji 2 pripady:

1) $s \notin \mathbb{Q} \Rightarrow$ posledni scitanec je iracionalni a nutne p = q = 1/2(n-1).

$$d+1/2(n-1)(e-f) = 0 \Rightarrow \frac{2d}{n-1} = (f-e)$$

Pak stupen vrcholu $d \leq (n-1)$

$$\frac{2d}{n-1} = (f-e) \le \frac{2(n-1)}{2} = 2$$

Pokud $(f-e)=2\Rightarrow d=n-1\Rightarrow G=K_n$ coz jsme vyloucili definici. Jinak

$$(f-e) = 1 \land n = 2d+1$$

Pracujme s 3. rovnici:

$$d^{2} + 1/2(n-1) * 1/4(e-f+s)^{2} + 1/2(n-1) * 1/4(e-f-s)^{2} = nd$$

dosadime (e-f) = -1.

$$d^{2} + 1/2(n-1) * 1/4(s-1)^{2} + 1/2(n-1) * 1/4(-1-s)^{2} = nd$$

$$8d^{2} + (n-1)(s^{2} - 2s + 1) + (n-1)(s^{2} + 2s + 1) = 8nd$$

$$8d^{2} + (n-1)(s^{2} - 2s + 1 + s^{2} + 2s + 1) = 8nd$$

$$8d^{2} + (n-1)(2s^{2} + 2) = 8nd$$

$$4d^{2} + (n-1)(s^{2} + 1) = 4nd$$

Dosadime n = 2d - 1

$$4d^{2} + 2d(s^{2} + 1) = 4(2d + 1)d$$
$$2d + (s^{2} + 1) = 2(2d + 1)$$

Pak $s^2 = 1 + 4(d - f)$

$$2d+2+4d-4f = 4d+2$$
$$2d = 4f \Rightarrow d = 2f$$

2) Jinak $s \in \mathbb{Z}$ Dosadime do 2. a 3. rovnice n, vyresime pro p,q.

$$d+1/2p(e-d+s)+1/2q(e-f-s)=0$$

$$d^2+1/2(n-1)*1/4(e-f+s)^2+1/2(n-1)*1/4(e-f-s)^2=(1+q+p)d$$

Zbavime se jmenovatele a roznasobime kvadraty v 3.

$$p(e-d+s) + 1/2q(e-f-s) = 2d$$
$$p((e-f+s)^2 - 4d) + q((e-f-s)^2 - 4d) = 4d(1-d)$$

Spocitame p,q pomoci determinantu

Dolni determinant

$$(e-f+s)((e-f-s)^2-4d)-(e-f-s)((e-f+s)^2-4d) = (e-f+s)(e-f-s)(e-f-s-e+f-s)+4d(e+f-s+e-f-s) = ((e-f)^2-s^2)(-2s)+4d(-2s) = (-2s)((e-f)^2+4d-s^2)$$

Dosadime $s^2 = (e - f)^2 + 4(d - f)$.

$$(-2s)((e-f)^2 + 4d - (e-f)^2 + 4(d-f)) = -8fs$$

Horni determinant:

2 houts later...

$$p = \frac{d((d-1+f-e)(s+f-e)-2f)}{2fs} \in \mathbb{Z}$$

Věta 6.3 (Friendship theorem). Necht v grafu G maji kazde 2 ruzne vrcholy prave 1 spol. souseda. Pak G obsahuje vrchol, ktery sousedi se vsemi ostatnimi vrcholy grafu.

 $D\mathring{u}kaz$. Pokud plati $e = f = 1 \Rightarrow \exists v \in V$ ktery sousedi se vsemi ostatnimi vrcholy. Necht $N_G(u)$ je mnozina sousedu $u \in V$. Vezmeme mnozinovy system $\{N_G(u)|u \in V\}$. Pak prunik dvou mnozin je jednoprvkovy.

$$\forall a \neq b : |N_G(a) \cap N_G(b)| = 1$$

Taky z obrazku

$$\forall a \neq b \; \exists ! N_G(w) : a, b \in N_G(w)$$

Coz je skoro konecna projektivna rovina KPR. Chybi 3. axiom. Rozebereme 2 pripady: 1) 3. axiom plati $\Rightarrow \{N_G\}$ je KPR. Pak

$$\forall a |N_G(a)| = m + 1 = deg(a)$$

 $n = |V(G)| = m^2 + m + 1$

Z cehoz G je silne regularni s parametry $d=m+1 \wedge e=f=1$. Prvni pripad nastat nemuze kvuli podmince na e=f=1. Neboli 2 pripad:

$$p=\frac{d((d-1+f-e)(s+f-e)-2f)}{2fs}\in\mathbb{Z}$$

$$(e-f)^2-4(f-d)=s^2\wedge e=f=1\Rightarrow s=2\sqrt{m}=2t$$

Dosadime

$$p = \frac{t^2 + 1}{4t}((t^2 * 2t) - 2) = \frac{(t^2 + 1)(t^3 - 1)}{2t} \notin N : t > 1$$

Pripad $t = 1 \Rightarrow m = 1$ neni zajimavy protoze KPR radu 1 je \triangle .

2) 3. axiom neplati $\Rightarrow \{N_G\}$ z teorie KPR bud vsechno lezi na 1 primce nebo jeden vrchol samostatne a zbytek na primce. Pak ten sampstatny vrchol je hledany soused vsech:

$$\exists a : N_G(a) = V(G) \setminus \{a\}$$

Věta 6.4 (vl cisla Hermitovske matice(BD)). Necht $A \in \mathbb{C}^{n \times n}$ je Hermitovska, $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ jeji vl. cisla. Necht $b_1, b_2, ..., b_n \in \mathbb{C}^n$ je ortonormalni baze vl vektoru. $Pak \ pro \ k = 1, 2, ..., n \ plati$

$$x^*Ax \ge \lambda_k x^* x \forall x \in \langle \{b_1, b_2, ..., b_k\} \rangle$$
$$x^*Ax \le \lambda_k x^* x \forall x \in \langle \{b_k, b_{k+1}, ..., b_n\} \rangle$$

Věta 6.5 (Propletani vl cisel). Necht $A \in \mathbb{C}^{n \times n}$ je Hermitovska, $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ jeji vl. cisla. Necht B je hlavni podmatice radu $k \times k$ (vznikne vynechanim (n-k) radky), Necht $b_1, b_2, ..., b_n \in \mathbb{C}^n$ jsou vl cisla matice B. Pak plati

$$\lambda_i \ge b_i \ge \lambda_{i+n-k}$$

 $D\mathring{u}kaz$. Nejprve se podivame na pripad vynechani i-ho radku. Necht B ma ortonormalni baze $y_1, y_2, ..., y_{n-1} \in \mathbb{C}^{n-1}$. Vnorime tyto vektory do \mathbb{C}^n tak, ze na pozici i-1 vlozime 0. Oznacime je z(y). Pak

$$z^*(y)Az(y) = y^*By$$

Uvazme 3 mnoziny, j je libovolne

$$S_{1} = \langle \{x_{j}, x_{j+1}, ..., x_{n}\} \rangle$$

$$S_{2} = \langle \{y_{1}, y_{2}, ..., y_{j}\} \rangle$$

$$S_{3} = \{z(y) : y \in S_{2}\}$$

$$dimS_{1} = n - j + 1$$

$$dimS_{3} = dimS_{2} = j$$

$$dimS_{1} + dimS_{3} = n + 1 > dim(S_{1} + S_{2})$$

Z toho $dim(S_1 \cap S_2) > 0 \Rightarrow \exists l \neq 0 : l \in S_1 \cap S_2$. Podivame se na

$$l \in S_1 \Rightarrow l^*Al \ge \lambda_j l^*l$$

$$l \in S_3, y \in S_2, l = z(y) : l^*Al = y^*By \ge b_j yy^* = b_j l^*l \ge \lambda_j l^*l$$

$$\lambda_j l^*l \ge b_j l^*l \Rightarrow \lambda_j \ge b_j$$

Ted dokazeme $b_j \ge \lambda_{j+1}$

$$S_{1} = \langle \{x_{1}, x_{2}, ..., x_{j+1}\} \rangle$$

$$S_{2} = \langle \{y_{j}, y_{j+1}, ..., y_{n-1}\} \rangle$$

$$S_{3} = \{z(y) : y \in S_{2}\}$$

$$dimS_{1} = j + 1$$

$$dimS_{3} = dimS_{2} = n - j$$

$$dimS_{1} + dimS_{3} = n + 1 > dim(S_{1} + S_{2})$$

$$l \in S_1 \Rightarrow l^*Al \ge \lambda_{j+1}l^*l$$

$$l \in S_3, y \in S_2, l = z(y) : l^*Al = y^*By \le b_jyy^* = b_jl^*l \ge \lambda_jl^*l$$

$$\lambda_jl^*l \ge b_jl^*l \Rightarrow \lambda_{j+1} \le b_j$$

Ted pro obecne k.

Z obrazku

$$\lambda_i \ge k_i \ge \lambda_{i+k}, i = 1, 2, ..., n-k$$

Věta 6.6 (Nezav mnozina a vl cisla). Necht G je graf o n vrcholech s vl cisly $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$. Pak

$$\alpha(G) \leq \min\{|\{i: \lambda_i \leq 0\}|, |\{i: \lambda_i \geq 0\}|\}$$

 $D\mathring{u}kaz$. Necht $W \subseteq V(G)$ je nezav mnozina velkosti α . Matice sousednosti teto mnoziny je nulova $\alpha \times \alpha$. Taky je to hlavne podmatice A_G . Proto jeji vl. cisle (nuly) propletaji vl cisla G. Z toho

$$\lambda_{\alpha} \ge 0 \ge \lambda_{n-\alpha+1}$$

7 Odhady pomoci spektra

Věta 7.1 (Propletani A). Necht $A \in \mathbb{C}^{n \times n}$ Hermitovska. $S \in \mathbb{C}^{m \times n}$ takova, ze $S^*S = I$. Potom vl cisla S^*AS propletaji vl cisla matice A.

 $D\mathring{u}kaz$. Radky matice S jako vektory v \mathbb{C}^n lze rozsirit na ortonormalní baze \mathbb{C}^n (Gram-Schmidt z LA). Sestavime z ni matici T, necht

$$R = \begin{pmatrix} S \\ T \end{pmatrix}$$

Pak $RR^* = I$ a

$$RAR^* = \begin{pmatrix} SAS^* & SAT^* \\ TAS^* & TAT^* \end{pmatrix}$$

Pak SAS^* je hlavni podmatice RAR^* , a vl cisla SAS^* propletaji vl cisla RAR^* . Pritom $Sp(RAR^*) = Sp(A)$ z LA, protoze matice jsou podobne.

Věta 7.2 (Propletani B). Necht:

$$\begin{pmatrix} A_{11} & A_{12} & \dots & A_{1m} \\ A_{21} & A_{22} & \dots & A_{2m} \\ \dots & \dots & \dots & \dots \\ A_{m1} & A_{m2} & \dots & A_{mm} \end{pmatrix}.$$

Je Hermitovska matice v blokovem tvaru. $A_{ij} \in \mathbb{C}^{m_i \times n_j}$. $\sum_{i=1}^m n_i = n$.

Pak necht $B \in \mathbb{C}^{m \times m}$ je matice jejiz prvky $b_{ij} = \frac{\sum_{a \in A_{ij}} a}{n_i}$ jsou prumerne radkove soucty bloky A. Potom vl cisla B propletaji vl cisla A.

 $D\mathring{u}kaz$. Vezmeme matici $P \in \{0,1\}^{m \times n}$. Bude rozdelena do bloku velikosti $n_i, i = 1, 2, ..., n_m$. V kazdem radku 1ky jsou v bloku i, jinak nuly.

Potom PP^T je diagonalni matice D protoze jednicky jsou na ruznych pozicich. Sk. soucin dvou ruznych radku je 0. Na diagonale je norma i-ho radku $= n_i$.

Pouzijeme matici P abychom dostali radkove soucty matici A:

V matici PA dostaneme sloupcovy soucet po blocich. Pak v matici PAP^T dostaneme soucty vsech prvku v blocich.

Pro rovnost s matici B jeste potrebujeme vydelit n_i . Na coz pouzijeme D^{-1} ktera ma na diagonale $\frac{1}{n_i}$.

$$B = D^{-1}PAP^{T}$$

Necht $S = D^{-1/2}P$. S je realna matice, pro niz plati

$$SS^T = D^{-1/2}PP^T(D^{-1/2})^T = D^{-1/2}DD^{-1/2} = E$$

Dle Vety o propletani A 7.1, vl. cisla SAS^T propletaji vl
 cisla A.

$$SAS^{T} = D^{-1/2}PAP^{T}(D^{-1/2})^{T} = D^{-1/2}DBD^{-1/2} = D^{1/2}BD^{-1/2}$$

Pak SAS^T a Bjsou podobne \Rightarrow maji stejny spektrum.

$$Sp(SAS^T) = Sp(B)$$

Věta 7.3 (Nezav mnoz v d-regularnim). Necht G je d-regularni graf o n vrcholech s vl cisly $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ }. Pak

$$\alpha(G) \le n \frac{-\lambda_n}{d - \lambda_n}$$

Důkaz. Necht A je matice sousednosti grafu G.

$$Sp(A) = \{\lambda_1 = d \ge \lambda_2 \ge \dots \ge \lambda_n\}$$
$$Sp(J) = \{n, 0^{n-1}\}$$

Matice A, J komutuji ⇒ maji spolecnou ortonormalni baze.

$$\exists X : X^*X = E, X^*AX = \Lambda_A$$

Kde Λ_A je diagonalni matice s vl. cisly na diagonale, rozmíštěné dle uspořadaní. Podobně pro J:

$$X^*AX = \Lambda_J, (\Lambda_J)_{1,1} = n$$

Z věty o ortonormalní bazi vl. vektor přislušný největšímu vl. číslu je nezaporný. Ostatní maji zaporné složky. Pak vektor $\bar{1}$ je prislusny nejvetsimu vlastnimu cislu A - d. Taky odpovida vl cislu n matice J.

Uvazme matici:

$$C = A - \frac{1}{n}(d - \lambda_n)J$$

Jeji vl. čísla jsou lin. kombinace vl. čísel A, J.

$$X^*CX = X^*(A - \frac{1}{n}(d - \lambda_n)J)X = X^*AX - \frac{1}{n}(d - \lambda_n)X^*JX = \Lambda_A - \Lambda_K = \Lambda_C$$

Kde $(\Lambda_K)_{1,1} = d - \lambda_n$, jinak 0. Z toho Λ_C ma na diagonale $\{\lambda_n, \lambda_2, ..., \lambda_n\}$. Odtud λ_n je největší vl. číslo matice C.

Necht $W \subseteq V(G)$ je nezav. mnoz G, $|W| = \alpha(G)$. Pak matice A, po seskupeni radku odpovidajicich W, ma nulovou hlavni podmatice odpovidajici W. Z toho matice C ma na techto pozicich $-\frac{1}{n}(d-\lambda_n)$. Taky je to hlavni podmatice.

Vl. cisla matice $-\frac{1}{n}(d-\lambda_n)J$ propletaji vl. cisla matice C.

$$Sp\left(-\frac{1}{n}(d-\lambda_n)J\right) = \{0^{\alpha-1}, \alpha * -\frac{1}{n}(d-\lambda_n)\}$$

Z vety o propletani:

$$\alpha(G) * -\frac{1}{n}(d - \lambda_n) \ge \lambda_n \Rightarrow \alpha(G) \le n \frac{-\lambda_n}{d - \lambda_n}$$

Důsledek 7.4. Necht G je d-regularni graf o n vrcholech s vl cisly $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$ }. Pak

 $\chi(G) \ge 1 + \frac{\lambda_1}{|\lambda_n|}$

Plyne z toho, ze $\chi(G) \ge \frac{n}{\alpha(G)}$. Barveni grafu je rozlozeni ne $\chi(G)$ nezavislych mnozin. Kazda z nich ma velikost $\chi(G)/\alpha(G)$. Kombinaci dvou nerovnosti dostaneme tvrzeni.

Věta 7.5 (Polomer spektra grafu). Necht G je graf o n vrcholech s vl cisly $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$ }. Pak

$$\Delta(G) \ge \lambda_1 \ge deg_{avg}(G)$$

 $Kde \ \Delta(G) \ je \ max \ deg \ grafu.$

 $D\mathring{u}kaz$. 1) Nerovnost $\Delta(G) \geq \lambda_1$. Doplnime G na Δ -regularni graf H tak, aby G byl jeho indukovany podgraf. Pak vl. cisla G propletaji vl cisla H. $\lambda_{max}(H) = \Delta \Rightarrow \Delta(G) \geq \lambda_1$. 2) Nerovnost $\lambda_1 \geq deg_{avg}(G)$. Vezmeme matice sousednosti A, predstavime ji jako matici s 1 blokem. Pak matice prumernych radkovych souctu je $B = deg_{avg}(G)$ jednoprvkova. Dle Vety o propletani B 7.2, $Sp(B) = \{deg_{avg}(G)\}$ propleta spektrum A $\Rightarrow \lambda_1 \geq deg_{avg}(G)$.

Věta 7.6 (Barevnost libovolneho grafu). Necht G je graf o n vrcholech s vl cisly $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$. Pak

$$\chi(G) \le 1 + \lambda_1$$

 $D\mathring{u}kaz$. Necht H je χ -kriticky indukovany podgraf grafu G. Minimalni stupen vrcholu v χ -kritickem grafu je aspon $\chi - 1$. Oznacme jeho největší vl cislo jako h_1 . Z vety o propletani plyne $\lambda_1 \geq h_1$. Z vety polomeru spektra 7.5 dostavame

$$h_1 \ge deg_{avg}(H) \ge \delta(H) \ge \chi - 1 \Rightarrow \lambda_1 \ge \chi - 1$$

Věta 7.7 (Nezav mnoz v libovolnem grafu). Necht G je graf o n vrcholech s vl cisly $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ }. Pak

$$\alpha(G) \le n \frac{-\lambda_1 \lambda_n}{\sigma^2(G) - \lambda_1 \lambda_n}$$

 $D\mathring{u}kaz.$ Necht $W\subseteq V(G)$ je nezav. mnoz G
, $|W|=\alpha(G).$ Rozdelime matice A dle W a $V\setminus W.$

Pouzijeme Vetu o propletani B 7.2.

$$B = \begin{pmatrix} 0 & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

Pak $Sp(B) = \{h_1 \ge h_2\}$ propleta Sp(A) = Sp(G).

Dal vime, ze pocet hran mezi W a $v \setminus W$ se rovna

$$\alpha b_{12} = (n - \alpha)b_{21} \Rightarrow b_{21} = \frac{\alpha}{n - \alpha}b_{12}$$

Z LA soucin vl cisel je determinant:

$$h_1 h_2 = det(B) = -b_{12} \cdot b_{21} = b_{12}^2 \cdot \frac{\alpha}{n - \alpha}$$

Z propletani:

$$\lambda_1 \ge h_1 \ge h_2 \ge \lambda_n \Rightarrow -h_2 \le -\lambda_n \Rightarrow -h_1 h_2 \le -\lambda_1 \lambda_n$$

Protoze vsichni sousede vrcholu z W jsou z $V(G) \setminus W \Rightarrow b_{12} \geq \delta(G)$.

$$-\delta^{2}(G)\frac{\alpha}{n-\alpha} \leq -\lambda_{1}\lambda_{n}$$
$$-\delta^{2}(G)\alpha \leq (n-\alpha)*(-\lambda_{1}\lambda_{n})$$
$$\alpha(\delta^{2}(G)-\lambda_{1}\lambda_{n}) \leq n(-\lambda_{1}\lambda_{n})$$
$$\alpha(G) \leq n\frac{-\lambda_{1}\lambda_{n}}{\sigma^{2}(G)-\lambda_{1}\lambda_{n}}$$

Věta 7.8 (Barevnost souvisleho grafu). Necht G je souvisly graf o n vrcholech s vl cisly $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ }. Pak

 $\chi(G) \ge 1 + \frac{\lambda_1}{|\lambda_n|}$

Veta je analogicka dusledku vety 1, zesiluje ji pro souvisle grafy.

 $D\mathring{u}kaz$. Obarvime graf pomoci χ barev. Necht x je realny vl. vektor prislusny vl. cislu λ_1 (Existuje dle Frobeniove vety). Ze souvislosti $x_i > 0 \forall i$. Sestavime matici $P \in \mathbb{R}^{\chi \times n}$.

$$P_{ij} = \begin{cases} x_j & \text{pro } j \in W \\ 0 & \text{pro } j \notin W \end{cases}$$

Pak $PP^T = D$ je diagonalni matice, na diagonale $\sum_{u \in W_j} x_u^2 > 0$. Necht $S = D^{-1/2}P$. Protoze

$$SS^T = D^{-1/2}PP^T(D^{-1/2})^T = D^{-1/2}DD^{-1/2} = I$$

Dle Vety o propletani A 7.1, vl. cisla SAS^T propletaji vl
 cisla A. Necht vl cisla SAS^T jsou $\{h_1, h_2, ..., h_\chi\}$. Ma na diagonale same nuly, z toho

$$\sum_{0}^{\chi} h_i = 0$$

Dal

$$SAS^{T}D^{1/2} \cdot \bar{1} = SAP^{T}D^{-1/2}D^{1/2} \cdot \bar{1} = SAP^{T}\bar{1}$$

$$P^T \cdot \bar{1} = x \Rightarrow SAP^T \bar{1} = SAx = \lambda_1 Sx = \lambda_1 D^{-1/2} PP^T \bar{1} = \lambda_1 D^{-1/2} D\bar{1} = \lambda_1 D^{1/2} \bar{1}$$

Dostavame

$$SAS^TD^{1/2} \cdot \bar{1} = \lambda_1 D^{1/2} \bar{1} \Rightarrow \lambda_1 \in Sp(SAS^T)$$

Ale taky odpovida nenulovemu realnemu vl. vektoru, takze $\lambda_1 = h_1$. Pouzijeme propletani

$$h_1 = \lambda_1 \ge h_2 \ge \dots \ge h_\chi \ge \lambda_n \land \sum h_i = 0 \Rightarrow -\lambda_1 = h_1 = -\sum_{i=1}^{\chi} h_i$$

Pouzijeme horni odhad pro soucet pres # scitancu krat min hodnota (λ_n) .

$$-\lambda_1 = h_1 = -\sum_{i=1}^{\chi} h_i \ge (\chi - 1)(-\lambda_n)$$

Po uprave

$$\chi(G) \ge 1 + \frac{\lambda_1}{|\lambda_n|}$$

8 Shannonova kapacita

Definice 8.1. Necht A je abcda, $A = \{a, e, o, h, g\}$. Pak sestavime graf $G_A = (A, \{xy | x \sim y\})$. Kde ekvivalence znamena, ze x je snadno zameni za y.

Pak by slo vzit nezavislou mnozinu a pouzivat jen tyto symboly. Zbylo by hodne malo symbolu.

Lepe - dohodneme se na pevne delce. Vezmeme $C \subseteq A^n$. Pak bezpecny kod bude pouzivat pouze slova z C. Dal sestavime G_{A^n} graf zamenitelnosti pro A^n .

Pozorování 8.2. 2 slova jsou zamenitelna \iff maji na i-te pozice stejne pismeno nebo zamenitelne. Presne odpovida uplnemu soucinu grafu.

Definice 8.3. Pro grafy G, H definujme uplny soucin grafu jako graf

$$G \boxtimes H = (V(G) \times V(H), \{(a,b)(x,y) : (a = x \vee ax \in E(G)) \land (b = y \vee by \in E(H))\})$$

Kde vrcholy a,x jsou z grafu G, b,y z grafu H. Taky definujme $G^n = G \boxtimes G \boxtimes ... \boxtimes G$.

Definice 8.4. Shannonova kapacita grafu G:

$$\Theta(G) = \sup_k \sqrt[k]{\alpha(G^k)}, \forall k$$

Pozorování 8.5.

$$\forall G\Theta(G) \geq \alpha(G)$$

Pokud v grafu je nezav mnozina $B \subseteq V(G), |B| = \alpha(G)$. Pak B^k je taky nezav mnozina. Z toho

 $\sqrt[k]{\alpha(G^k)} \ge \sqrt[k]{\alpha(B^k)} = \sqrt[k]{\alpha^k(G)} = \alpha(G)$

Pozorování 8.6. Necht $\sigma(G) = \chi(-G)$. Coz je minimalni pocet uplnych podgrafu pokryvajícich mnoz grafu. Pak

$$\Theta(G) \le \sigma(G)$$

Protoze $K_n \boxtimes K_m = K_{mn}$. Soucin uplnych je uplny graf, jina moznost neni (jsou tam vsechny hrany). Takze

$$\sigma(G^k) \leq \sigma^k(G) \Rightarrow \sqrt[k]{\sigma(G^k)} \leq \sigma(G) \Rightarrow \Theta(G) \leq \sigma(G)$$

Pozorování 8.7. G je perfektni graf $\Rightarrow \sigma(G) = \alpha(G)$. Pak

$$\alpha(G) \le \Theta(G) \le \sigma(G) = \alpha(G)$$

Definice 8.8. Lovascova ortonormalni reprezentace grafu je zobrazeni $f: V \to \mathbb{R}^d$ splnujici:

- $||f(u)|| = \langle f(u), f(u) \rangle = 1 \forall u \in V$ a
- $\langle f(a), f(b) \rangle = 0 \forall a \neq b \land ab \notin E(G).$

Pak velikost reprezentace je:

$$||f|| = \inf_{c:||c||=1} \max_{a \in V} \frac{1}{\langle c, f(a) \rangle^2}$$

Příklad 8.9. Pro graf ktery nema zadny vrchol potrebujeme system vzajemne \perp vektoru velikosti V(G), neboli prostor dimenze V(G).

Pro uplny graf staci volit vektory stejneho smeru nebo dokonce stejne.

Definice 8.10. Lovascova dzeta funkce grafu G:

$$\vartheta(G) = \inf_{f} ||f||$$

Chceme pro nejakou reprezentace najit takovy jedn vektor c, ktery minimalizuje hodnotu $\langle c, f(u) \rangle^2$.

Příklad 8.11. Pro uplny graf zvolime reprezentaci ktera se sklada ze stejnych vektoru, c vezmeme ve stejnem smeru. Pak vsechny skalarni souciny jsou 1. Z toho

$$\vartheta(K_n) < 1$$

Definice 8.12. Rukojet reprezentace f je vektor c (jedn vektor), pro ktery f nabyva minima. Infimum v def velikosti ortonormalni reprezentace se nabyva, protoze f = f(c) je spojita a zdola omezena.

V definici staci uvazovat omezenou dimenzi, napr $d \leq |V(G)|$.

Infimum v dev dzeta funce se taky nabyva, protoze ||f|| je spojita funkce f. Pak

$$\vartheta(G) = \min_{f} \min_{c:||c||=1} \max_{u \in V} \frac{1}{\langle c, f(a) \rangle^2}$$

Úmluva 8.13. Muze se stat, ze rukojet je vektor kolmy na nejaky z vektoru f. Pak $\vartheta(G) = \infty$. Budeme se ale takovym rukojetim vyhybat. Vsechny vektory reprezentace lezi v nadrovine, je jich konecne mnoho.

Lemma 8.14. $\forall G : \alpha(G) \leq \vartheta(G)$.

 $D\mathring{u}kaz$. Necht G je graf, a mame optimalni repr. f s rukojeti c. $||f|| = \vartheta(G)$. Taky $W \subseteq V(G)$ je nezav mnozina:

$$\alpha(G) = |W|$$

Vektory reprezentujici W jsou na sebe kolme. Muzeme je doplnit na ortonormalni baze B prostoru \mathbb{R}^d . Pak rukojet muzeme napsat jako lin. konbinace pomoci vektoru z B:

$$c = \sum_{b \in B} \langle c, a \rangle \cdot b$$

Dal c je jedn. vektor:

$$1 = \langle c, c \rangle = \langle \sum_{v} \langle c, v \rangle, \sum_{v} \langle c, v \rangle \rangle = \sum_{u} \sum_{v} \langle c, u \rangle \langle c, v \rangle \langle u, v \rangle$$

vektory u, v jsou z ortonormalni baze, takze pro $u \neq v$ je soucet nula, jinak misto posledniho sk souciny tam bude 1. Pak dostaneme soucet vlevo, ktery je vetsi nez suma pro vektory reprezentace nezav mnoziny.

$$\sum_{b \in B} \langle c, b \rangle^2 \ge \sum_{u \in W} \langle c, f(u) \rangle^2$$

Nahledneme ze velikost sk. soucinu je omezena maximumem pro vsechny vrcholy, coz je prave $\vartheta(G)$.

$$\forall a \in V(G) : \frac{1}{\langle c, f(a) \rangle^2} \le \vartheta(G) \Rightarrow \langle c, f(a) \rangle^2 \ge \frac{1}{\vartheta(G)}$$

$$\sum_{u \in W} \langle c, f(u) \rangle^2 \ge \sum_{a \in W} \frac{1}{\vartheta(G)}$$

Scitame pres velikost nezavisle mnoziny, dostaneme $\frac{\alpha(G)}{\vartheta(G)}$ Dohromady

$$1 = ||c|| \ge \frac{\alpha(G)}{\vartheta(G)} \Rightarrow \vartheta(G) \ge \alpha(G)$$

Lemma 8.15. $\forall G, \forall H : \vartheta(G \boxtimes H) \leq \vartheta(G) \cdot \vartheta(H)$. Taky

$$\forall G \forall k \in \mathbb{N} : \vartheta(G^k) \leq \vartheta^k(G)$$

 $D\mathring{u}kaz$. Necht f je optimalni ortonormalni repr
. G s rukojeti c. Podobne g pro H s rukojeti d. Uvazme tenzorovy souci
n $f\circ g$ jako ortonormalni reprezentace soucinu grafu.

$$(u,v) \in V(G \boxtimes H), (f \circ g)(u,v) = (f(u) \circ g(v)) = (f(u)_i g(v)_j)_{i,j}, i = 1,2,...,n_1; j = 1,2,...,n_2$$

Vezmeme $(u, v), (u', v') : (uu' \notin E(G) \land u \neq u') \lor (vv' \notin E(H) \land v \neq v')$. Pak

$$\langle f(u) \circ g(v), f(u') \circ g(v') \rangle = \langle f(u), f(u') \rangle \cdot \langle g(v), g(v') \rangle$$

Pak bud jeden sk soucin je 0 nebo druhy z volby vrcholu. Takze

$$\langle f(u), f(u') \rangle \cdot \langle g(v), g(v') \rangle = 0$$

Pak rukojet pro $G \boxtimes H$ bude $c \circ d$. Pak

$$||f \circ g|| \leq \max_{u,v} \frac{1}{\langle c \circ d, f(u) \circ f(v) \rangle^2} = \max \frac{1}{\langle c, f(u) \rangle^2 \cdot \langle d, g(v) \rangle^2}$$

Max je dvou funci je mensi nez soucin max dvou funkci:

$$\max \frac{1}{\langle c, f(u) \rangle^2 \cdot \langle d, g(v) \rangle^2} \leq \max_u \frac{1}{\langle c, f(u) \rangle^2} \max_v \frac{1}{\langle d, g(v) \rangle^2} = \vartheta(G) * \vartheta(H)$$

Lemma 8.16. $\forall G : \Theta(G) \leq \vartheta(G)$.

Důkaz.

$$\Theta(G) = \sup_k \sqrt[k]{\alpha(G^k)} \leq \sup_k \sqrt[k]{\vartheta(G^k)} \leq \sup_k \sqrt[k]{\vartheta^k(G)} = \vartheta(G)$$

Věta 8.17 (Shannonova kapacita C_5). $\Theta(C_5) = \sqrt{5}$.

Důkaz. Vime $\alpha(C_5^2) = 5 \Rightarrow \vartheta(C_5) \geq \sqrt{5}$. Ukazeme $\vartheta(C_5) \leq \sqrt{5}$. Z toho

$$\sqrt{5} \le \Theta(C_5) \le \vartheta(C_5) \le \sqrt{5}$$

Odkud plati i rovnost.

Pro dukaz staci uvazit ortonormalni reprezentaci C_5 ktera se jmenuje Lovascovuv destnik.

9 Samoopravne a perfektni kody, Lloydova veta

Definice 9.1. Necht A je konecna mnozina (abcda), q = |A|. Na mnozine slov $w \in A^n, |w| = n$ definujme Hammingovu metriku jako pocet pismen ve kterych se lisi

$$d_H(x,y) = |\{i : x_i \neq y_i\}|$$

Libovolnou $C \subseteq A^n$ nezyvame kodem delky n nad abcdeou o q symbolech. C opravuje t chyb, pokud

$$d_H(x,y) > 2t+1$$

Pozorování 9.2. Pokud vezmeme graf vsech slov delky n, hrany povedou mezi 2 slova ktere se lisi presne v 1 souradnice. Pak grafova vzdalenost je prave Hammingova metrika. Na druhou stranu tento graf je n-ta kartezska mocnina grafu o q vrcholech. Kod C opravuje t chyb ⇔ okoli kodovych slov o polomeru t jsou po 2 dizjunktni.

Pozorování 9.3. Kartezsky hrana \times hrana je \square .

Definice 9.4.

$$\Gamma(n,q) = (A^n, \{xy : d_H(x,y) = 1\}) = K_q^n$$

Poznámka 9.5. Pokud kod C opravuje t chyb, pak

$$|C| \le \frac{q^n}{\sum_0^t \binom{n}{i} (q-1)^i}$$

Vezmeme okoli bodu x polomeru t:

$$|N_{\Gamma}(x)| = 1 + n(q-1) + \dots =$$

Kde 1 je vrchol sam, pak mame n pozic na kazde muze dojit k(q-1) chybam.

$$= \frac{q^n}{\sum_0^t \binom{n}{i} (q-1)^i}$$

binom odpovida zpusobum zvolit pismeno. $(q-1)^i$ je pocet chyb. Pak nerovnice pro velikost C je # vsech slov deleno velikosti okoli.

Definice 9.6. Kod je t-perfektni, prave kdyz |C| > 1, C opravuje t chyb a nastava rovnost.

$$|C| = \frac{q^n}{\sum_0^t \binom{n}{i} (q-1)^i}$$

Cely graf je pokryty okoli o polomeru t. Vyuzivaji beze zbytku cely graf (kodova slova).

Poznámka 9.7. Perfektni kody skoro neexistuji.

Pozorování 9.8. pro $q=p^r$, C je t-perfektni kod delky n.

$$|C| = \frac{q^n}{\sum_{0}^{t} \binom{n}{i} (q-1)^i} \in \mathbb{Z}$$

Pak suma v jmenovateli deli $q^n=p^{rm}$. Takze i suma je mocnina p. Dokazeme ze suma se rovna $q^l, l \in \mathbb{N}$.

Důkaz.

$$\sum_{i=0}^{t} \binom{n}{i} (q-1)^{i} = q^{a} p^{b} = p^{ra+b}, 0 \ge b < r$$

Upravime sumu

$$\begin{split} 1 + \sum_{1}^{t} \binom{n}{i} (q-1)^{i} &= p^{ra+b} \\ (q-1) \sum_{1}^{t} \binom{n}{i} (q-1)^{i-1} &= p^{ra+b} - 1 \\ \sum_{1}^{t} \binom{n}{i} (q-1)^{i-1} &= \frac{q^{a}p^{b} - 1}{q-1} = \frac{q^{a}p^{b} - p^{b} + p^{b} - 1}{q-1} = p^{b} \frac{q^{a} - 1}{q-1} + \frac{p^{b} - 1}{p^{r} - 1} \end{split}$$

Pak $\frac{q^a-1}{q-1} \in \mathbb{Z}$ jako soucet geom rady. Druhy zlomek ale $\in (0,1)$. Coz dava dohromady cele cislo pouze b=0.

Věta 9.9 (Hammingovy kody). Necht $q = p^r$. Pak 1-perfektni kod delky n nad abcdou o 1 symbolech existuje $\iff n = \frac{q^k - 1}{q - 1}, k \in \mathbb{N}$. Coz dostaneme dosazenim t = 1 do rovnice minuleho pozorovaji:

$$1 + n(q-1) = q^k \Rightarrow n = \frac{q^k - 1}{q - 1}$$

Necht $C \subseteq \mathbb{Z}_q^n$. Sestavime matici $H \in \mathbb{Z}_q^{k \times n}$ tak, aby sloupce byly po 2 lin. nezavisle. V kazde slozce muzeme vzit q^k symbolu. Nulovy vektor pouzivat nemuzeme. Dohromady (q^k-1) vektoru. Vezmeme nejaky vektor, linearne zavisle s nim jsou jeho nasobky skalarem krome 0 - (q-1). Proto

$$n = \frac{q^k - 1}{q - 1}$$

Podivame se na $Ker(H) \subseteq \mathbb{Z}_q^n$. Vime

$$\dim(Ker(H)) = n - rank(H) = n - k$$

Tvrdime, ze v jadru jsou vektory ktere maji vzdalenost aspon 3. Pokud by existovali vektory vzdalenosti 2. Jejich rozdil $\in Ker(H)$. Dostali bychom vektor v ktery ma nejvyse 2 nenulove souradnice. Po vynasobeni Hy dostali bychom lin. kombinace 2 vektoru ktere jsou dle volby lin. nezavisle.

$$|C| = q^{n-k} = \frac{q^n}{q^k} = \frac{q^n}{1 + n(q-1)}$$

Důkaz. П

Věta 9.10 (Prvociselne perf. kody(BD)). pro $q = p^r$ neexistuji perfektni kody jinych parametru nez Hammingovy, Golayovy (a opakovaci kod s parametry q = 2, n = 2t + 1, ktery je povazovan za trivialni).

Věta 9.11 (Prvociselne perf. kody $t \ge 3$ (BD)). pro $q = p^r$ neexistuji zadne t-perfektni $kody \ opravujici \ t > 3 \ chyb.$

Věta 9.12 (Lloyd). Pokud existuje t-perfektní kod delky n nad abcedou o g symbolech, pak polynom:

$$L_t(x) = \sum_{j=0}^{t} = (-1)^j (q-1)^{t-j} {x-1 \choose j} {n-x \choose t-j}$$

ma t ruznych kladnych celociselnych korenu mensich nez n. Je to polynom stupne t. Myslenka dukazu: najdeme 2 koreny od sebe vzdalene min nez 1. Pak nemuzou byt celociselne.

 $Pro\ t = 1,2\ umime\ koreny\ najit,\ takze\ Lloydova\ veta\ je\ prilis\ slaba.$

Důkaz. TODO predn 9 od 34:00

Lemma 9.13.

Důkaz.