Simple Logistic Regression

SDS 291

4/6/2020

We have data from each state (n=50) on their average income, education (% high school, % college, and % advanced degrees completed), political leaning from a 2015 Gallup poll and whether President Trump won that state (1=Win) or not (0=Did not Win) in the 2016 election.

library(Stat2Data)
data("Election16")

Income and Election Outcome

Income

Plots

Below are two plots exploring the relationship between income and President Trump winning that state. They are depicting the same pattern; the right "jitters" the data to spread the points out. (Note for the right plot, there aren't *actually* values >1 and <0, that's just a function of the actual data being spread out).

Income

1. Which is the easier graph to understand? Why?
2. What do you conclude from the plot about the relationship between income and the 2016 election results?

Logistic Model

```
Let's fit a logistic regression model to these data: log(\frac{\pi}{1-\pi}) = \beta_0 + \beta_1 X_1
m0<-glm(TrumpWin~Income, data=Election16, family="binomial")</pre>
summary(m0)
##
## Call:
## glm(formula = TrumpWin ~ Income, family = "binomial", data = Election16)
## Deviance Residuals:
##
       Min
                  1Q
                       Median
                                     3Q
                                             Max
                       0.4074
## -2.2049 -0.7510
                                0.6566
                                          2.5000
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.118e+01 3.076e+00
                                        3.635 0.000277 ***
              -1.967e-04 5.582e-05 -3.523 0.000426 ***
## Income
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 67.301 on 49 degrees of freedom
## Residual deviance: 45.923 on 48 degrees of freedom
## AIC: 49.923
##
## Number of Fisher Scoring iterations: 5
We can write this fitted model as log(odds) = 11.18 + -0.0001967Income
```

Let's use Income in \$1,000s to make the interpretation a little easier. Then we re-fit a logistic regression model.

```
Election16<-Election16 %>% mutate(Income1000s = Income/1000)
m1<-glm(TrumpWin~Income1000s, data=Election16, family="binomial")
summary(m1)
##
## Call:
## glm(formula = TrumpWin ~ Income1000s, family = "binomial", data = Election16)
## Deviance Residuals:
                      Median
                                   3Q
                                           Max
      Min
                 1Q
## -2.2049 -0.7510
                      0.4074
                                        2.5000
                               0.6566
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 11.18186
                           3.07576
                                     3.635 0.000277 ***
## Income1000s -0.19668
                           0.05582 -3.523 0.000426 ***
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 67.301 on 49 degrees of freedom
## Residual deviance: 45.923 on 48 degrees of freedom
## AIC: 49.923
##
```

3. Write the fitted regression model equation using the output above.

Number of Fisher Scoring iterations: 5

4. What is the direction and magnitude of the relationship between the average income and whether Pres. Trump won that state?

5. Calculate the $\log(\text{odds})$ (the book calls this the Empirical Logit), the odds, and the probability of President Trump winning for each of the following income levels. As a reminder, you can calculate each from the same output.

Log(odds):

$$log(odds) = \beta_0 + \beta_1 X_1$$

Odds:

$$Odds = e^{\beta_0 + \beta_1 X_1}$$

Probability:

$$\pi = \frac{odds}{1 + odds} = \frac{e^{\beta_0 + \beta_1 X_1}}{1 + e^{\beta_0 + \beta_1 X_1}}$$

 $\underline{ \text{Income} } \hspace{0.2in} \$40,000 \hspace{0.2in} \$50,000 \hspace{0.2in} \$51,000 \hspace{0.2in} \$55,000 \hspace{0.2in} \$60,000 \hspace{0.2in} \$61,000 \hspace{0.2in} \$70,000$

Log(odds)

 ${\rm Odds}$

Probability

6. Plot the values on each of the three plots below.

6a. Log(odds)

6b. Odds

6c. Probability

7. What is the ratio of odds for President Trump winning a state?
7a. Calculate the ratio the odds of a (theoretical) state with $$51,000$ average income to a state with $$50,000$ average income.
with \$50,000 dverage income.
7b. Calculate the ratio the odds of a (theoretical) state with $$61,000$ average income to a state with $$60,000$ average income.
7c. Calculate the OR from the model $(OR = e^{\beta_1})$. Interpret the odds ratio in a sentence.
The edicative the out from the model (one of the outer ratio in a sentence)
7d. Did you get the same values from each approach (7a-7c)? Why or why not?

8. Specify your hypotheses and conduct a test of whether the relationship between average income and President Trump winning a state is statistically signficant at the $\alpha=0.05$ level.
9. Calculate the 95% Confidence Interval for the odds ratio of each additional \$1,000 of average income and of Pres Trump winning that state. $t^*=1.96$
Extra Practice Create a binary variable of whether that state had above or below the national average rate of bachelors degree holders (35.6%) and repeat the steps above in R.
(Hint : Remember how to create a binary variable? See the IPUMS in-class exercise for examples of when you've done this before)