CS4246 / CS5446

Tutorial Week 9

Muhammad Rizki Maulana

rizki@u.nus.edu

First

(a) Assume that actions L is more likely to succeed than not, and similarly action S is also more likely to succeed than not. What is the optimal policy π^* ?

(a) Assume that actions L is more likely to succeed than not, and similarly action S is also more likely to succeed than not. What is the optimal policy π^* ?

$$\pi^*(A) = L.$$

$$T(A, L, A) = 3/7$$
 $U^{\pi^*}(A) = R(A) + \gamma \left(T(A, L, A) U^{\pi^*}(A) + T(A, L, B) U^{\pi^*}(B) \right)$

$$U^{\pi^*}(A) = R(A) + \gamma \left(T(A, L, A) \ U^{\pi^*}(A) + T(A, L, B) \ U^{\pi^*}(B) \right)$$
$$U^{\pi^*}(A) = -0.1 + 0.5 \times (3/7 \times U^{\pi^*}(A) + 4/7 \times 1)$$

$$U^{\pi^*}(A) = R(A) + \gamma \left(T(A, L, A) \ U^{\pi^*}(A) + T(A, L, B) \ U^{\pi^*}(B) \right)$$

$$U^{\pi^*}(A) = -0.1 + 0.5 \times (3/7 \times U^{\pi^*}(A) + 4/7 \times 1)$$

$$11/14 \times U^{\pi^*}(A) = -0.1 + 4/14$$

$$U^{\pi^*}(A) = R(A) + \gamma \left(T(A, L, A) \ U^{\pi^*}(A) + T(A, L, B) \ U^{\pi^*}(B) \right)$$

$$U^{\pi^*}(A) = -0.1 + 0.5 \times (3/7 \times U^{\pi^*}(A) + 4/7 \times 1)$$

$$11/14 \times U^{\pi^*}(A) = -0.1 + 4/14$$

$$U^{\pi^*}(A) = 26/110 = 0.2364.$$

AA

AB

AA
$$U^{\pi^*}(A) \leftarrow U^{\pi^*}(A) + \alpha(R(A) + \gamma U^{\pi^*}(A) - U^{\pi^*}(A))$$

AB

AA
$$U^{\pi^*}(A) \leftarrow U^{\pi^*}(A) + \alpha(R(A) + \gamma U^{\pi^*}(A) - U^{\pi^*}(A))$$

= $-0.1 + 0.5 \times (-0.1 + 0.5 \times -0.1 - (-0.1)) = -0.125$

AB

AA
$$U^{\pi^*}(A) \leftarrow U^{\pi^*}(A) + \alpha(R(A) + \gamma U^{\pi^*}(A) - U^{\pi^*}(A))$$

= $-0.1 + 0.5 \times (-0.1 + 0.5 \times -0.1 - (-0.1)) = -0.125$

AB
$$U^{\pi^*}(A) \leftarrow U^{\pi^*}(A) + \alpha(R(A) + \gamma U^{\pi^*}(B) - U^{\pi^*}(A))$$

AA
$$U^{\pi^*}(A) \leftarrow U^{\pi^*}(A) + \alpha(R(A) + \gamma U^{\pi^*}(A) - U^{\pi^*}(A))$$

= $-0.1 + 0.5 \times (-0.1 + 0.5 \times -0.1 - (-0.1)) = -0.125$

AB
$$U^{\pi^*}(A) \leftarrow U^{\pi^*}(A) + \alpha(R(A) + \gamma U^{\pi^*}(B) - U^{\pi^*}(A))$$

= $-0.125 + 0.5 \times (-0.1 + 0.5 \times 1 - (-0.125)) = 0.1375$

Second

Q	s_1	s_2
a_1	0	0
a_2	0	0

$$Q(s, a) \leftarrow Q(s, a) + \alpha(R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a))$$

Q	s_1	s_2
a_1	0	0
a_2	0	0

$$Q(s,a) \leftarrow Q(s,a) + \alpha (\underbrace{R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a)}_{a'})$$
 Target

Q	s_1	s_2
a_1	0	0
a_2	0	0

$$Q(s,a) \leftarrow Q(s,a) + \alpha(\underbrace{R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a)}_{\text{Target}})$$
(a) $s_1, R(s_1) = -10, a_1, s_1$

Q	s_1	s_2
a_1	0	0
a_2	0	0

\sim		1	
		37	\sim $^{\prime}$
	ue		-11

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a))$$
(a) $s_1, R(s_1) = -10, a_1, s_1$ $Q(s_1,a_1) \leftarrow 0 + 0.5(-10 + 0.5 \max(0,0) - 0)$

$$= -5$$

Q	s_1	s_2
a_1	0	0
a_2	0	0
- /		

Q	s_1	s_2
a_1	-5	0
a_2	0	0

$$Q(s,a) \leftarrow Q(s,a) + \alpha (R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

The Q-value entries in the Q-table are initialized to zero. Let
$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

(a) $S_1, R(s_1) = -10, a_1, s_1$
 $Q(s_1, a_1) \leftarrow 0 + 0.5(-10 + 0.5 \max(0, 0) - 0) = -5$

(b)
$$s_1, R(s_1) = -10, a_2, s_2$$

Q	s_1	s_2
a_1	0	0
a_2	0	0

Q	s_1	s_2
a_1	-5	0
a_2	0	0

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a))$$
(a) $s_1, R(s_1) = -10, a_1, s_1$

$$Q(s_1,a_1) \leftarrow 0 + 0.5(-10 + 0.5 \max(0,0) - 0)$$

$$= -5$$

(b)
$$s_1, R(s_1) = -10, a_2, s_2$$
 $Q(s_1, a_2) \leftarrow 0 + 0.5(-10 + 0.5 \max(0, 0) - 0)$
= -5

Q	s_1	s_2
a_1	0	0
a_2	0	0

a_1	-5	0
a_2	0	0
- /		

Q	s_1	s_2
a_1	-5	0
a_2	-5	0

$$Q(s,a) \leftarrow Q(s,a) + \alpha (\widetilde{R}(s) + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

(a)
$$s_1, R(s_1) = -10, a_1, s_1$$
 $Q(s_1, a_1) \leftarrow 0 + 0.5(-10 + 0.5 \max(0, 0) - 0)$ $= -5$

(b)
$$s_1, R(s_1) = -10, a_2, s_2$$
 $Q(s_1, a_2) \leftarrow 0 + 0.5(-10 + 0.5 \max(0, 0) - 0)$
= -5

(c)
$$s_2$$
, $R(s_2) = 20$, a_1 , s_1

Q	s_1	s_2
a_1	0	0
a_2	0	0

Q	s_1	s_2
a_1	-5	0
a_2	0	0

\overline{Q}	s_1	s_2
a_1	-5	0
a_2	-5	0

$$Q(s,a) \leftarrow Q(s,a) + \alpha (\widetilde{R}(s) + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

The Q-value entries in the Q-table are initialized to zero. Error
$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a))$$
(a) $s_1, R(s_1) = -10, a_1, s_1$ $Q(s_1, a_1) \leftarrow 0 + 0.5(-10 + 0.5 \max(0, 0) - 0)$ $= -5$

(b)
$$s_1, R(s_1) = -10, a_2, s_2$$
 $Q(s_1, a_2) \leftarrow 0 + 0.5(-10 + 0.5 \max(0, 0) - 0)$
= -5

(c)
$$s_2, R(s_2) = 20, a_1, s_1$$
 $Q(s_2, a_1) \leftarrow 0 + 0.5(20 + 0.5 \max(-5, -5) - 0)$
= 8.75

Q	s_1	s_2
a_1	()	0
~	0	0
- /		

Q	s_1	s_2
a_1	-5	0
a_2	0	()

Q	s_1	s_2
a_1	-5	0
a_2	-5	0

\overline{Q}	s_1	s_2
a_1	-5	8.75
a_2	-5	0

$$Q(s,a) \leftarrow Q(s,a) + \alpha (R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

(a)
$$s_1, R(s_1) = -10, a_1, s_1$$
 $Q(s_1, a_1) \leftarrow 0 + 0.5(-10 + 0.5 \max(0, 0) - 0)$ $= -5$

(b)
$$s_1, R(s_1) = -10, a_2, s_2$$
 $Q(s_1, a_2) \leftarrow 0 + 0.5(-10 + 0.5 \max(0, 0) - 0) = -5$

(c)
$$s_2, R(s_2) = 20, a_1, s_1$$
 $Q(s_2, a_1) \leftarrow 0 + 0.5(20 + 0.5 \max(-5, -5) - 0)$
= 8.75

(d)
$$s_1, R(s_1) = -10, a_2, s_2$$

Q	s_1	s_2
a_1	0	0
a_2	0	0

Q	s_1	s_2
a_1	-5	0
a_2	0	0

Q	s_1	s_2
a_1	-5	0
a_2	-5	0

Q	s_1	s_2
a_1	-5	8.75
a_2	-5	0

$$Q(s,a) \leftarrow Q(s,a) + \alpha (R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

(a)
$$s_1, R(s_1) = -10, a_1, s_1$$
 Target $Q(s_1, a_1) \leftarrow 0 + 0.5(-10 + 0.5 \max(0, 0) - 0) = -5$

(b)
$$s_1, R(s_1) = -10, a_2, s_2$$
 $Q(s_1, a_2) \leftarrow 0 + 0.5(-10 + 0.5 \max(0, 0) - 0)$
= -5

(c)
$$s_2$$
, $R(s_2) = 20$, a_1 , s_1 $Q(s_2, a_1) \leftarrow 0 + 0.5(20 + 0.5 \max(-5, -5) - 0) = 8.75$

(d)
$$s_1, R(s_1) = -10, a_2, s_2$$
 $Q(s_1, a_2) \leftarrow -5 + 0.5(-10 + 0.5 \max(8.75, 0) - (-5))$
= -5.3125

$$egin{array}{c|c|c|c} Q & s_1 & s_2 \\ \hline a_1 & -5 & 8.75 \\ \hline a_2 & -5 & 0 \\ \hline \end{array}$$

Q	s_1	s_2
a_1	-5	8.75
a_2	-5.3125	0

Third

Consider using SARSA and Q-learning to learn a policy in an MDP with two states s_1 and s_2 and two actions a and b. Assume that $\gamma=0.8$ and $\alpha=0.2$, and that the current values of Q are:

Q	s_1	s_2
a	2	4
b	2	2

Consider using SARSA and Q-learning to learn a policy in an MDP with two states s_1 and s_2 and two actions a and b. Assume that $\gamma=0.8$ and $\alpha=0.2$, and that the current values of Q are:

Q	s_1	s_2
a	2	4
b	2	2

Suppose that, when we were in state s_1 , we took action b, received reward 1 and moved to state s_2 and take action b there. Which item of the Q-table will change and what is the new value? Compute for both SARSA and Q-learning.

Consider using SARSA and Q-learning to learn a policy in an MDP with two states s_1 and s_2 and two actions a and b. Assume that $\gamma=0.8$ and $\alpha=0.2$, and that the current values of Q are:

Q	s_1	s_2
a	2	4
b	2	2

Suppose that, when we were in state s_1 , we took action b, received reward 1 and moved to state s_2 and take action b there. Which item of the Q-table will change and what is the new value? Compute for both SARSA and Q-learning.

R=1

Consider using SARSA and Q-learning to learn a policy in an MDP with two states s_1 and s_2 and two actions a and b. Assume that $\gamma=0.8$ and $\alpha=0.2$, and that the current values of Q are:

Q	s_1	s_2
a	2	4
b	2	2

Suppose that, when we were in state s_1 , we took action b, received reward 1 and moved to state s_2 and take action b there. Which item of the Q-table will change and what is the new value? Compute for both SARSA and Q-learning.

Q-Learning:

$$Q(s, a) \leftarrow Q(s, a) + \alpha(R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a))$$

Consider using SARSA and Q-learning to learn a policy in an MDP with two states s_1 and s_2 and two actions a and b. Assume that $\gamma=0.8$ and $\alpha=0.2$, and that the current values of Q are:

Q	s_1	s_2
a	2	4
b	2	2

Suppose that, when we were in state s_1 , we took action b, received reward 1 and moved to state s_2 and take action b there. Which item of the Q-table will change and what is the new value? Compute for both SARSA and Q-learning.

R=1

Q-Learning:

$$Q(s, a) \leftarrow Q(s, a) + \alpha(R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a))$$

SARSA:

$$Q(s, a) \leftarrow Q(s, a) + \alpha(R(s) + \gamma)$$
 $Q(s', a') - Q(s, a)$

Question

Consider using SARSA and Q-learning to learn a policy in an MDP with two states s_1 and s_2 and two actions a and b. Assume that $\gamma=0.8$ and $\alpha=0.2$, and that the current values of Q are:

Q	s_1	s_2
a	2	4
b	2	2

Suppose that, when we were in state s_1 , we took action b, received reward 1 and moved to state s_2 and take action b there. Which item of the Q-table will change and what is the new value? Compute for both SARSA and Q-learning.

 $Q(s_1, b)$ is the affected entry.

Q-Learning:

$$Q(s, a) \leftarrow Q(s, a) + \alpha(R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a))$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \gamma \qquad Q(s',a') - Q(s,a))$$

Consider using SARSA and Q-learning to learn a policy in an MDP with two states s_1 and s_2 and two actions a and b. Assume that $\gamma=0.8$ and $\alpha=0.2$, and that the current values of Q are:

\overline{Q}	s_1	s_2
a	2	4
b	2	2

Suppose that, when we were in state s_1 , we took action b, received reward 1 and moved to state s_2 and take action b there. Which item of the Q-table will change and what is the new value? Compute for both SARSA and Q-learning.

 $Q(s_1, b)$ is the affected entry.

For SARSA,

Q-Learning:

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \gamma \qquad Q(s',a') - Q(s,a))$$

Consider using SARSA and Q-learning to learn a policy in an MDP with two states s_1 and s_2 and two actions a and b. Assume that $\gamma=0.8$ and $\alpha=0.2$, and that the current values of Q are:

Suppose that, when we were in state s_1 , we took action b, received reward 1 and moved to state s_2 and take action b there. Which item of the Q-table will change and what is the new value? Compute for both SARSA and Q-learning.

 $Q(s_1, b)$ is the affected entry.

For SARSA,

Q-Learning:

$$Q(s, a) \leftarrow Q(s, a) + \alpha(R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a))$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \gamma \qquad \quad Q(s',a') - Q(s,a))$$

$$Q(s_1, b) \leftarrow Q(s_1, b) + \alpha(R(s_1) + \gamma Q(s_2, b) - Q(s_1, b))$$

= 2 + 0.2 \times (1 + 0.8 \times 2 - 2) = 2.12

Consider using SARSA and Q-learning to learn a policy in an MDP with two states s_1 and s_2 and two actions a and b. Assume that $\gamma = 0.8$ and $\alpha = 0.2$, and that the current values of Q are:

Suppose that, when we were in state s_1 , we took action b, received reward 1 and moved to state s_2 and take action b there. Which item of the Q-table will change and what is the new value? Compute for both SARSA and Q-learning.

For SARSA,

Q-Learning:

$$Q(s, a) \leftarrow Q(s, a) + \alpha(R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a))$$

SARSA:

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \gamma \qquad \quad Q(s',a') - Q(s,a))$$

$$Q(s_1, b) \leftarrow Q(s_1, b) + \alpha(R(s_1) + \gamma Q(s_2, b) - Q(s_1, b))$$

= 2 + 0.2 \times (1 + 0.8 \times 2 - 2) = 2.12

For Q-learning,

Consider using SARSA and Q-learning to learn a policy in an MDP with two states s_1 and s_2 and two actions a and b. Assume that $\gamma=0.8$ and $\alpha=0.2$, and that the current values of Q are:

Suppose that, when we were in state s_1 , we took action b, received reward 1 and moved to state s_2 and take action b there. Which item of the Q-table will change and what is the new value? Compute for both SARSA and Q-learning.

For SARSA,

$$Q(s_1, b) \leftarrow Q(s_1, b) + \alpha(R(s_1) + \gamma Q(s_2, b) - Q(s_1, b))$$

= 2 + 0.2 \times (1 + 0.8 \times 2 - 2) = 2.12

For Q-learning,

$$b \rightarrow s2$$

R=1

Q-Learning:

$$Q(s, a) \leftarrow Q(s, a) + \alpha(R(s) + \gamma \max_{a'} Q(s', a') - Q(s, a))$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha(R(s) + \gamma \qquad Q(s',a') - Q(s,a))$$

$$Q(s_1, b) \leftarrow Q(s_1, b) + \alpha(R(s_1) + \gamma \max_{u \in \{a, b\}} Q(s_2, u) - Q(s_1, b))$$

= 2 + 0.2 \times (1 + 0.8 \times 4 - 2) = 2.44

Question?

<EOF>