Sequences and series 3G

1 **a**
$$u_{n+1} = u_n + 3, u_1 = 1$$

$$n=1$$
 \Rightarrow $u_2 = u_1 + 3 = 1 + 3 = 4$
 $n=2$ \Rightarrow $u_3 = u_2 + 3 = 4 + 3 = 7$
 $n=3$ \Rightarrow $u_4 = u_3 + 3 = 7 + 3 = 10$

Terms are 1, 4, 7, 10, ...

b
$$u_{n+1} = u_n - 5, u_1 = 9$$

$$n=1$$
 \Rightarrow $u_2 = u_1 - 5 = 9 - 5 = 4$
 $n=2$ \Rightarrow $u_3 = u_2 - 5 = 4 - 5 = -1$
 $n=3$ \Rightarrow $u_4 = u_3 - 5 = -1 - 5 = -6$

Terms are $9, 4, -1, -6, \dots$

$$u_{n+1} = 2u_n, u_1 = 3$$

$$n=1$$
 $\Rightarrow u_2 = 2u_1 = 2 \times 3 = 6$
 $n=2$ $\Rightarrow u_3 = 2u_2 = 2 \times 6 = 12$
 $n=3$ $\Rightarrow u_4 = 2u_3 = 2 \times 12 = 24$

Terms are 3, 6, 12, 24, ...

d
$$u_{n+1} = 2u_n + 1, u_1 = 2$$

$$n=1$$
 \Rightarrow $u_2 = 2u_1 + 1 = 2 \times 2 + 1 = 5$
 $n=2$ \Rightarrow $u_3 = 2u_2 + 1 = 2 \times 5 + 1 = 11$
 $n=3$ \Rightarrow $u_4 = 2u_3 + 1 = 2 \times 11 + 1 = 23$

Terms are 2, 5, 11, 23, ...

$$\mathbf{e} \quad u_{n+1} = \frac{u_n}{2}, u_1 = 10$$

$$n=1$$
 \Rightarrow $u_2 = \frac{u_1}{2} = \frac{10}{2} = 5$

$$n=2 \implies u_3 = \frac{u_2}{2} = \frac{5}{2} = 2.5$$

$$n=3 \implies u_4 = \frac{u_3}{2} = \frac{2.5}{2} = 1.25$$

Terms are 10, 5, 2.5, 1.25, ...

$$\mathbf{f}$$
 $u_{n+1} = (u_n)^2 - 1, u_1 = 2$

$$n=1 \implies u_2 = (u_1)^2 - 1 = 2^2 - 1 = 4 - 1 = 3$$

$$n=2 \implies u_3 = (u_2)^2 - 1 = 3^2 - 1 = 9 - 1 = 8$$

$$n=3 \implies u_4 = (u_3)^2 - 1 = 8^2 - 1 = 64 - 1 = 63$$

Terms are 2, 3, 8, 63, ...

2 a
$$3 \rightarrow 5 \rightarrow 7 \rightarrow 9 \dots$$

$$u_{n+1} = u_n + 2, u_1 = 3$$

b
$$20 \rightarrow 17 \rightarrow 14 \rightarrow 11...$$

$$u_{n+1} = u_n - 3$$
, $u_1 = 20$

$$c \quad 1 \xrightarrow{\times 2} 2 \xrightarrow{\times 2} 4 \xrightarrow{\times 2} 8 \dots$$

$$u_{n+1} = 2 \times u_n, u_1 = 1$$

d
$$100 \rightarrow 25 \rightarrow 6.25 \rightarrow 1.5625...$$

$$u_{n+1} = \frac{u_n}{4}, \quad u_1 = 100$$

2 e
$$1 \xrightarrow[\times(-1)]{} 1 \xrightarrow[\times(-1)]{} 1 \xrightarrow[\times(-1)]{} -1 \dots$$

$$u_{n+1} = (-1) \times u_n, u_1 = 1$$

$$\mathbf{f} \quad 3 \xrightarrow{\times 2+1} 7 \xrightarrow{\times 2+1} 15 \xrightarrow{\times 2+1} 31 \dots$$

$$u_{n+1} = 2u_n + 1, u_1 = 3$$

$$g \quad 0 \to 1 \to 2 \to 5 \to 26 \dots$$

$$u_{n+1}=(u_n)^2+1, u_1=0$$

h
$$26 \xrightarrow{}_{+2 \div 2} 14 \xrightarrow{}_{+2 \div 2} 8 \xrightarrow{}_{+2 \div 2} 5 \xrightarrow{}_{+2 \div 2} 3.5 \dots$$

$$u_{n+1} = \frac{u_n + 2}{2}, \quad u_1 = 26$$

3 **a**
$$u_n = 2n - 1$$
.

Substituting n = 1, 2, 3 and 4 gives

$$u_1 = 1 \xrightarrow{+2} u_2 = 3 \xrightarrow{+2} u_3 = 5 \xrightarrow{+2} u_4 = 7$$

Recurrence formula is

$$u_{n+1} = u_n + 2$$
, $u_1 = 1$.

b
$$u_n = 3n + 2$$
. Substituting $n = 1, 2, 3$ and 4 gives

$$u_1 = 5 \xrightarrow[+3]{} u_2 = 8 \xrightarrow[+3]{} u_3 = 11 \xrightarrow[+3]{} u_4 = 14$$

Recurrence formula is

$$u_{n+1} = u_n + 3$$
, $u_1 = 5$.

c
$$u_n = n + 2$$
. Substituting $n = 1, 2, 3$ and 4 gives

$$u_1 = 3 \xrightarrow{+1} u_2 = 4 \xrightarrow{+1} u_3 = 5 \xrightarrow{+1} u_4 = 6$$

Recurrence formula is

$$u_{n+1} = u_n + 1, u_1 = 3.$$

d
$$u_n = \frac{n+1}{2}$$
. Substituting $n = 1, 2, 3$ and 4 gives

$$u_1 = 1 \xrightarrow{\frac{1}{2}} u_2 = \frac{3}{2} \xrightarrow{\frac{1}{2}} u_3 = 2 \xrightarrow{\frac{1}{2}} u_4 = \frac{5}{2}$$

Recurrence formula is

$$u_{n+1} = u_n + \frac{1}{2}, u_1 = 1.$$

e
$$u_n = n^2$$
. Substituting $n = 1, 2, 3$ and 4:

$$u_1 = 1 \xrightarrow{+3} u_2 = 4 \xrightarrow{+5} u_3 = 9 \xrightarrow{+7} u_4 = 16$$

Differences are

$$2 \times 1 + 1, 2 \times 2 + 1, 2 \times 3 + 1$$

$$u_{n+1} = u_n + 2n + 1, u_1 = 1.$$

f
$$u_n = 3^n - 1$$

$$u_1 = 3^1 - 1 = 2$$

$$u_2 = 3^2 - 1 = 8$$

$$u_3 = 3^3 - 1 = 26$$

$$u_4 = 3^4 - 1 = 80$$

$$u_{n+1} = 3u_n + 2$$
, $u_1 = 2$

4 a
$$u_{n+1} = ku_n + 2$$
,
 $u_1 = 3$
 $u_2 = ku_1 + 2$

= 3k + 2

b
$$u_3 = ku_2 + 2$$

= $k(3k + 2) + 2$
= $3k^2 + 2k + 2$

- 4 c $u_3 = 42$, so $3k^2 + 2k + 2 = 42$ $3k^2 + 2k - 40 = 0$ (k+4)(3k-10) = 0So k = -4 or $k = \frac{10}{3}$
- 5 $u_{n+1} = pu_n + q$ $u_1 = 2$ $u_2 = 2p + q = -1$, so q = -2p - 1 $u_3 = p(2p + q) + q = 2p^2 + pq + q = 11$ $2p^2 + p(-2p - 1) - 2p - 1 = 11$ $2p^2 - 2p^2 - p - 2p - 1 = 11$ -3p = 12 p = -4 q = -2(-4) - 1 = 7p = -4 and q = 7
- 6 a $x_{n+1} = x_n(p-3x_n)$ $x_1 = 2$ $x_2 = 2(p-3 \times 2) = 2p-12$ $x_3 = (2p-12)(p-3(2p-12))$ = (2p-12)(-5p+36) $= -10p^2 + 132p - 432$
 - **b** $-10p^2 + 132p 432 = -288$ $-10p^2 + 132p - 144 = 0$ $5p^2 - 66p + 72 = 0$ (5p - 6)(p - 12) = 0 $p = \frac{6}{5}$ or p = 12As p is an integer, p = 12
 - \mathbf{c} $x_4 = -288(12 3(-288)) = -252288$
- 7 **a** $a_1 = k$ $a_2 = 4k + 5$ $a_3 = 4(4k + 5) + 5 = 16k + 25$
 - **b** $a_4 = 4(16k + 25) + 5 = 64k + 105$ $\sum_{r=1}^{4} a_r = k + 4k + 5 + 16k + 25 + 64k + 105$ = 85k + 135 = 5(17k + 27)Therefore, $\sum_{r=1}^{4} a_r$ is a multiple of 5.