

Sentence Embeddings for

Interpretable Dialog Modeling?

Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction

Sergio Burdisso¹, Srikanth Madikeri^{1,2}, and Petr Motlicek^{1,3}

¹ Idiap Research Institute, Martigny, Switzerland; ² University of Zurich, Zurich, Switzerland; ³ BUT, Brno, Czech Republic

Exploring the underexplored terrain of automatically extracting dialog flows from collections of conversations...

Highlights

- Dialog2Flow embeddings: we introduce and release, to the best of our knowledge, the first sentence embedding model pre-trained specifically for dialog flow extraction.
- Soft Contrastive Loss: we introduce a novel *soft* contrastive loss that leverages label semantics to guide the representation learning process, outperforming standard supervised contrastive loss.
- Dataset: we consolidate 20 task-oriented dialog (TOD) datasets to create, and release, a unified TOD dataset with standardized annotation for 3.4 million utterances across 52 domains.

Proposed soft-contrastive loss

$$\ell_i^{soft} = -\sum_{j=1}^{N} \frac{e^{\delta(y_i, y_j)/\tau'}}{\sum_{k=1}^{N} e^{\frac{\delta(y_i, y_k)}{\tau'}}} \log \frac{e^{\mathbf{z}_i \cdot \mathbf{z}_j^+/\tau}}{\sum_{k=1}^{N} e^{\frac{\mathbf{z}_i \cdot \mathbf{z}_k^+}{\tau}}}$$

where $\delta(y_i,y_j)$ is a semantic similarity measure between labels y_i and y_j , and τ' is a temperature parameter controlling the "softness" of labels.

Original supervised contrastive loss:

Table 5: Top-10 retrieved utterances on SpokenWOZ for the query "your phone please" with action label [request phone_number]. Errors are highlighted in red with wrong action marked as: ■[inform phone_number]; ♣[inform plate_number]; ♣[request id_number]; ★[request name]; ♥[request plate_number]; □[request phone].

Dialog Flow Extraction

Avg. Similarity Across Domains (#pred.steps / #ref.steps)

