[Revisit] Training to Inference Framework

Shuvo, Md Maruf Hossain, Syed Kamrul Islam, Jianlin Cheng, and Bashir I. Morshed. "Efficient acceleration of deep learning inference on resource-constrained edge devices: A review." Proceedings of the IEEE 111, no. 1 (2022): 42-91.

Tool for End→End Edge Computing

(Software) Tools for Edge Analytics

ProtoNN - light weight (<16kB) k-nearest neighbors (kNN)

Bonsai – light weight (<2 kB) Regressor

Gupta, Chirag, Arun Sai Suggala, Ankit Goyal, Harsha Vardhan Simhadri, Bhargavi Paranjape, Ashish Kumar, Saurabh Goyal, Raghavendra Udupa, Manik Varma, and Prateek Jain. "Protonn: Compressed and accurate knn for resource-scarce devices." In International conference on machine learning, pp. 1331-1340. PMLR, 2017.

Kumar, Ashish, Saurabh Goyal, and Manik Varma. "Resource-efficient machine learning in 2 kb ram for the internet of things." In International conference on machine learning, pp. 1935-1944. PMLR, 2017. https://github.com/Microsoft/EdgeML/wiki/Algorithms

(Software) Tools for Edge Analytics

MicroPython puts an implementation of Python 3.x on a microcontroller or embedded system

ONNX makes it easier to access hardware optimizations

TensorFlow Lite, a mobile library for deploying models on mobile, microcontrollers and other edge devices

ExecuTorch is an end-to-end solution for enabling on-device inference capabilities across mobile and edge devices including wearables, embedded devices and microcontrollers.

(Software) Tools for Edge Computing

Software for Edge Inference	Supported Frameworks	Supported Edge Devices
Intel OpenVINO Toolkit	Caffe, TensorFlow, ONNX	Intel® CPU, Integrated Graphics, Neural Compute Stick 2, Movidius™ VPUs, and FPGAs
Matlab Deep Learning HDL Toolbox	Kerns, TensorFlow	Xilinx Zynq®-7000 ZC706, UltraScale+TM MPSoC ZCU102, Intel Arria® IO SoC
XCUBE-AI	Keras, TensorFlow Lite, ONNX standard format	STM32 Arm® Cortex®-M-based MCU
AMD (XILINX) DNNDK	Caffe and TensorFlow	Xilinx® Zynq®-7000 and Zynq UltraScale+™ MPSoC
NVIDIA TensorRT	TensorFlow, MATLAB, ONNX	Tesla P4, Tesla VI00, Drive PX2, Jetson TX2, NVIDIA DLA
CEVA Deep Neural Network (CONN)	Caffe, TensorFlow, ONNX	CEVA-XM Vision Processor, NeuPro, and SensPro
Qualcomm® Neural Processing SDK	Caffe/Caffe2, TensorFlow ONNX	Qualcomm® Snapdragon mobile chips (Hexagon™ DSPs, AdrenoTM GPUs, Kryo™ CPUs)
Cadence Stratus HLS	TensorFlow, Caffe	RTL/FPGA
Embedded Learning Library (ELL)	Microsoft CNTK, Darknet, ONNX	Raspberry Pi, Arduino, micro:bit

Edge Fleet Management

Challenges/Opportunities for Edge Computing

- ✓ Adaptability to Data Heterogeneity
 - Robustness to sensing environments → Edge specific augmentations
- ✓ Automatic Mapping of DL to Hardware
 - ☐ Available tools for mapping are less efficient (Edge Impulse is playing a role here)
- ✓ Developing Benchmarks
 - ☐ Proper benchmark datasets and models are required
- ✓ Automatic, Joint, and Edge Aware Compression
 - ☐ Developing an automatic compression technique
- ✓ Algorithm–Hardware Codesign
 - Neural Accelerators to Handle Sparsity
- ✓ Neural Architecture Search for Edge Inference
 - □ NN architecture tuned to specific hardware (e.g., ProxylessNAS is an option)
- ✓ Training on the Edge
- ✓ Increased Demand of Communication Resources
- ✓ Explainability in Edge Inference

Shuvo, Md Maruf Hossain, Syed Kamrul Islam, Jianlin Cheng, and Bashir I. Morshed. "Efficient acceleration of deep learning inference on resource-constrained edge devices: A review." Proceedings of the IEEE 111, no. 1 (2022): 42-91.

8

Future of Edge Computing - Edge Al

Xu, Dianlei, Tong Li, Yong Li, Xiang Su, Sasu Tarkoma, Tao Jiang, Jon Crowcroft, and Pan Hui. "Edge intelligence: Empowering intelligence to the edge of network." Proceedings of the IEEE 109, no. 11 (2021): 1778-1837.

Future of Edge Computing – Edge-Cloud Learning

Cloud-based Federated Learning

Edge-based Federated Learning

Hierarchical Federated Learning

Xu, Dianlei, Tong Li, Yong Li, Xiang Su, Sasu Tarkoma, Tao Jiang, Jon Crowcroft, and Pan Hui. "Edge intelligence: Empowering intelligence to the edge of network." Proceedings of the IEEE 109, no. 11 (2021): 1778-1837.

Summary

- Edge computing and analytics is a key component in the future of AI
- Hardware Architectures, Software Frameworks and Communication Technologies are key to the success of Edge AI

Contact: mahesh.panicker@singaporetech.edu.sg