

CNN Garbage Classification

This presentation explores the application of Convolutional Neural Networks (CNNs) for garbage classification. We'll discuss the importance of garbage classification, how CNNs can be used to identify different types of waste, and the challenges and future directions of this technology.

Why garbage classification matters

- Waste Management

 Efficient waste

 management systems rely

 on accurate sorting and
 recycling.
- Protection

 Improper waste disposal leads to pollution and environmental damage.

Public Health

Environmental

Recycling and reuse of materials conserve natural resources and reduce landfill waste.

Proper garbage classification helps prevent the spread of disease and improves public health.

How CNN helps classify garbage

Image Recognition

CNNs excel at identifying patterns and features in images.

They can extract relevant features from garbage images.

Categorization

CNNs can classify garbage into different categories.

This enables automated sorting and recycling processes.

Real-Time Applications

CNNs can be deployed in real-time systems for garbage classification.

This can assist in intelligent waste management solutions.

Dataset collection and preprocessing

Data Collection

Gathering a large and diverse dataset of garbage images.

Data Cleaning

Removing irrelevant images or images with poor quality.

Data Augmentation

Expanding the dataset by creating variations of existing images.

_____ Data Labeling

Assigning labels to each image indicating its category.

Convoluttionin.ne,Nee siatwclK™

Model architecture and training

Model Selection

Choosing an appropriate CNN architecture for the task.

Hyperparameter Tuning

Optimizing model parameters to improve performance.

Training Process

Feeding the model with labeled data and adjusting its parameters.

Evaluation metrics and results

Metric	Value
Accuracy	92%
Precision	90%
Recall	95%
F1-score	93%

Visualizing model predictions

Plastic

The model correctly identifies the plastic bottle.

Paper

The model correctly identifies the paper cup.

Food Waste

The model correctly identifies the food waste.

Challenges and limitations

Data Bias

The model may be biased towards specific types of garbage.

Computational Cost

Training and deploying CNNs can be computationally expensive.

Occlusion and Clutter

The model may struggle with images containing occlusions or clutter.

CNN giarge callsssication CNNragee callssication

Future improvements and roadmap

Larger Datasets

Collect more data to improve model generalization.

Model Optimization

Experiment with different CNN architectures and hyperparameters.

Cloud Deployment

Deploy the model on a cloud platform for scalability and accessibility.

Integration with Robotics

Integrate the model with robotic systems

THANKYOU

AKHILA M (22CS004)

CHANTHURU S R (22CSO13)

DHILIP M (22CSO24)

HANUSHREE M (22CSO29)

MOHANA PRASATH G (22CS050)