

Recommender Systems

Factorization Machines

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br

Interaction modeling

	i_1	i_2	i_3	i_4
u_1	5	3	3	
u_2	4			5
u_3		1	2	4

Interaction modeling

Distinct spaces in neighborhood models

- Users as n-dimensional vectors over items
- \circ Items as m-dimensional vectors over users
- Unified space in latent factor models
- \circ Users and items as k-dimensional vectors
- Highly effective in practice!

Interaction modeling

Hard to incorporate additional information

- User features (age, gender, income, ...)
- Item features (description, image, ...)
- Contextual features (location, time, ...)

Ad-hoc adaptations

Handcrafted hypotheses and algorithms

Feature-based modeling

Standard representation via feature vectors

- Categorical features
- Numerical features

Advantages

- Allows modeling any number of variables
- Enables a variety of machine learning approaches

Feature-based modeling

user / item id are categorical features → one-hot encoding

Feature-based modeling

	u_1	u_2	u_3	i_1	i_2	i_3	i_4	y
\mathbf{x}_1^T	1	0	0	1	0	0	0	5
\mathbf{x}_2^T	1	0	0	0	1	0	0	3
\mathbf{x}_3^T	1	0	0	0	0	1	0	3
\mathbf{x}_4^T	0	1	0	1	0	0	0	4
\mathbf{x}_5^T	0	1	0	0	0	0	1	5
\mathbf{x}_6^T	0	0	1	0	1	0	0	1
\mathbf{x}_7^T	0	0	1	0	0	1	0	2
\mathbf{x}_8^T	0	0	1	0	0	0	1	4

Model equation

$$\hat{y}_i = h(\mathbf{x}_i)$$

$$= w_0 + \mathbf{w}^T \mathbf{x}_i$$

$$= w_0 + \sum_{j=1}^p w_j x_{ij}$$

Model equation

$$\hat{y}_i = h(\mathbf{x}_i)$$

$$= w_0 + \mathbf{w}^T \mathbf{x}_i$$

$$= w_0 + \sum_{j=1}^p w_j x_{ij}$$

Model parameters $(\mathcal{O}(p))$

$$v w_0 \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^p$$

Engineered interactions

- \circ CF (u_1, i_1)
- \circ CB (u_1, i_1)
- \circ KB (u_1, i_1)
- 0

Problem: costly!

- Lots of potential interactions
- Mix of art and science

Learned interactions

• e.g. feature crosses

Learned interactions

• e.g. feature crosses

Learned interactions

• e.g. feature crosses

$$\hat{y}_{i} = h(\mathbf{x}_{i})$$

$$= w_{0} + \mathbf{w}^{T} \mathbf{x}_{i}$$

$$+ \mathbf{x}_{i}^{T} \mathbf{W} \mathbf{x}_{i}$$

$$= w_{0} + \sum_{j=1}^{p} w_{j} x_{ij}$$

$$+ \sum_{j=1}^{p} \sum_{k=j+1}^{p} w_{jk} x_{ij} x_{ik}$$

Model equation (degree 2)

$$\hat{y}_{i} = h(\mathbf{x}_{i})$$

$$= w_{0} + \mathbf{w}^{T} \mathbf{x}_{i}$$

$$+ \mathbf{x}_{i}^{T} \mathbf{W} \mathbf{x}_{i}$$

$$= w_{0} + \sum_{j=1}^{p} w_{j} x_{ij}$$

$$+ \sum_{j=1}^{p} \sum_{k=j+1}^{p} w_{jk} x_{ij} x_{ik}$$

Model parameters $(\mathcal{O}(p^2))$

$$w_0 \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^p, \mathbf{W} \in \mathbb{R}^{p \times p}$$

 u_1i_4 previously unseen $\rightarrow w_{11}$ undefined

Overfitting

Many more features $(\mathcal{O}(p^2))$ than instances $(\mathcal{O}(|R|))$

Model will overfit to available training

In practice

$$\circ w_{ui} = \begin{cases} y - w_0 - w_u - w_i & \text{if } \langle u, i, y \rangle \in R \\ \text{undefined} & \text{otherwise} \end{cases}$$

Bridging the gap

Latent factor models (e.g. matrix factorization)

Effective for large categorical domains

Feature-based models (e.g. regression models)

Flexible to allow arbitrary features

How can these advantages be combined?

Model equation (degree 2)

$$\hat{y}_{i} = h(\mathbf{x}_{i})$$

$$= w_{0} + \mathbf{w}^{T} \mathbf{x}_{i}$$

$$+ \mathbf{x}_{i}^{T} \mathbf{V} \mathbf{V}^{T} \mathbf{x}_{i}$$

$$= w_{0} + \sum_{j=1}^{p} w_{j} x_{ij}$$

$$+ \sum_{j=1}^{p} \sum_{k=j+1}^{p} \langle v_{j}, v_{k} \rangle x_{ij} x_{ik}$$

 $v_{24} | v_{34} | v_{44} | v_{54} | v_{64} | v_{74}$

$$\hat{y}_{i} = h(\mathbf{x}_{i})$$

$$= w_{0} + \mathbf{w}^{T} \mathbf{x}_{i}$$

$$+ \mathbf{x}_{i}^{T} \mathbf{V} \mathbf{V}^{T} \mathbf{x}_{i}$$

$$= w_{0} + \sum_{j=1}^{p} w_{j} x_{ij}$$

$$+ \sum_{j=1}^{p} \sum_{k=j+1}^{p} \langle v_{j}, v_{k} \rangle x_{ij} x_{ik}$$

$$\hat{y}_{i} = h(\mathbf{x}_{i})$$

$$= w_{0} + \mathbf{w}^{T} \mathbf{x}_{i}$$

$$+ \mathbf{x}_{i}^{T} \mathbf{V} \mathbf{V}^{T} \mathbf{x}_{i}$$

$$= w_{0} + \sum_{j=1}^{p} w_{j} x_{ij}$$

$$+ \sum_{j=1}^{p} \sum_{k=j+1}^{p} \langle v_{j}, v_{k} \rangle x_{ij} x_{ik}$$

$$\hat{y}_{i} = h(\mathbf{x}_{i})$$

$$= w_{0} + \mathbf{w}^{T} \mathbf{x}_{i}$$

$$+ \mathbf{x}_{i}^{T} \mathbf{V} \mathbf{V}^{T} \mathbf{x}_{i}$$

$$= w_{0} + \sum_{j=1}^{p} w_{j} x_{ij}$$

$$+ \sum_{j=1}^{p} \sum_{k=j+1}^{p} \langle v_{j}, v_{k} \rangle x_{ij} x_{ik}$$

Model equation (degree 2)

$$\hat{y}_{i} = h(\mathbf{x}_{i})$$

$$= w_{0} + \mathbf{w}^{T} \mathbf{x}_{i}$$

$$+ \mathbf{x}_{i}^{T} \mathbf{V} \mathbf{V}^{T} \mathbf{x}_{i}$$

$$= w_{0} + \sum_{j=1}^{p} w_{j} x_{ij}$$

$$+ \sum_{j=1}^{p} \sum_{k=j+1}^{p} \langle v_{j}, v_{k} \rangle x_{ij} x_{ik}$$

 $v_{32} | v_{42} | v_{52} | v_{62} | v_{72}$

 $v_{13} | v_{23} | v_{33} | v_{43} | v_{53} | v_{63} | v_{73}$

 $v_{24} | v_{34} | v_{44} | v_{54} | v_{64} | v_{74}$

Model equation (degree 2)

$$\hat{y}_{i} = h(\mathbf{x}_{i})$$

$$= w_{0} + \mathbf{w}^{T} \mathbf{x}_{i}$$

$$+ \mathbf{x}_{i}^{T} \mathbf{V} \mathbf{V}^{T} \mathbf{x}_{i}$$

$$= w_{0} + \sum_{j=1}^{p} w_{j} x_{ij}$$

$$+ \sum_{j=1}^{p} \sum_{k=j+1}^{p} \langle v_{j}, v_{k} \rangle x_{ij} x_{ik}$$

Model parameters $(\mathcal{O}(pd))$

$$v \in \mathbb{R}^p$$
, $\mathbf{V} \in \mathbb{R}^{p \times d}$

 $v_{24} | v_{34} | v_{44} | v_{54} | v_{64} | v_{74}$

FM vs Poly2

Factorization machines

$$\hat{y}_{i} = h(\mathbf{x}_{i})$$

$$= w_{0} + \mathbf{w}^{T} \mathbf{x}_{i}$$

$$+ \mathbf{x}_{i}^{T} \mathbf{V} \mathbf{V}^{T} \mathbf{x}_{i}$$

$$= w_{0} + \sum_{j=1}^{p} w_{j} x_{ij}$$

$$+ \sum_{j=1}^{p} \sum_{k=j+1}^{p} \langle v_{j}, v_{k} \rangle x_{ij} x_{ik}$$

Model parameters $(\mathcal{O}(pd))$

$$v \in \mathbb{R}^p$$
, $\mathbf{V} \in \mathbb{R}^{p \times d}$

Polynomial regression

$$\hat{y}_i = h(\mathbf{x}_i)$$

$$= w_0 + \mathbf{w}^T \mathbf{x}_i$$

$$+ \mathbf{x}_i^T \mathbf{W} \mathbf{x}_i$$

$$= w_0 + \sum_{j=1}^p w_j x_{ij}$$

$$+ \sum_{j=1}^p \sum_{k=j+1}^p w_{jk} x_{ij} x_{ik}$$

Model parameters $(\mathcal{O}(p^2))$

$$w_0 \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^p, \mathbf{W} \in \mathbb{R}^{p \times p}$$

Flexibility

FMs subsume previous factorization models

e.g. matrix factorization, tensor factorization

FMs are much more flexible

- Handles also non-categorical variables (e.g. context)
- Handles higher-order dependencies (e.g. degree 3+)

No further requirement beyond raw representation

Learning

- L2-regularized regression and classification
- Stochastic gradient descent [Rendle, ICDM 2010]
- Alternating least squares [Rendle, SIGIR 2011]
- Markov chain Monte Carlo [Rendle, TIST 2012]
- L2-regularized ranking (pairwise loss)
- Stochastic gradient descent [Rendle, ICDM 2010]

Efficient prediction

FM trains O(pd) parameters

 \circ Trivial prediction is still $\mathcal{O}(p^2d)$

Simple optimization makes it $\mathcal{O}(pd)$

$$\hat{y} = h(x_i) = w_0 + \sum_{j=1}^p w_j x_{ij}$$

$$+ \frac{1}{2} \sum_{f=1}^d \left(\left(\sum_{j=1}^p v_{jf} x_{ij} \right)^2 - \sum_{j=1}^p v_{jf}^2 x_{ij}^2 \right)$$

Efficient prediction

$$\sum_{j=1}^{p} \sum_{k=j+1}^{p} \langle \mathbf{v}_{j}, \mathbf{v}_{k} \rangle x_{ij} x_{ik}
= \frac{1}{2} \sum_{j=1}^{p} \sum_{k=1}^{p} \langle \mathbf{v}_{j}, \mathbf{v}_{k} \rangle x_{ij} x_{ik} - \frac{1}{2} \sum_{j=1}^{p} \langle \mathbf{v}_{j}, \mathbf{v}_{j} \rangle x_{ij} x_{ij}
= \frac{1}{2} \left(\sum_{j=1}^{p} \sum_{k=1}^{p} \sum_{k=1}^{d} v_{jf} v_{kf} x_{ij} x_{ik} - \sum_{j=1}^{p} \sum_{f=1}^{d} v_{jf} v_{jf} x_{ij} \right)
= \frac{1}{2} \sum_{f=1}^{d} \left(\left(\sum_{j=1}^{p} v_{jf} x_{ij} \right) \left(\sum_{k=1}^{p} v_{kf} x_{ik} \right) - \sum_{j=1}^{p} v_{jf}^{2} x_{ij}^{2} \right)
= \frac{1}{2} \sum_{f=1}^{d} \left(\left(\sum_{j=1}^{p} v_{jf} x_{ij} \right)^{2} - \sum_{j=1}^{p} v_{jf}^{2} x_{ij}^{2} \right)$$

Summary

FMs are flexible

- Easy to leverage raw categorical features
- Easy to incorporate additional features

FMs are effective

Automatic feature interactions via factorization

FMs are efficient

Extensions

Beyond a single latent representation per feature

FFM [Juan, RecSys 2016]

Beyond linear, 2nd order interactions

- DeepFM [Guo, IJCAI 2017]
- xDeepFM [Lian, KDD 2018]

References

Factorization machines

Rendle, ICDM 2010

Factorization models for recommender systems and other applications

Schmidt-Thieme and Rendle, KDD 2012 tutorial

Recommender Systems: The Textbook (Sec. 8.5.2)