ODPOWIEDZI I SCHEMAT PUNKTOWANIA – ZESTAW NR 1 POZIOM PODSTAWOWY

Nr zadania	Nr czynności	Etapy rozwiązania zadania	Liczba punktów	Uwagi
	1.1	Obliczenie wyróżnika oraz pierwiastków trójmianu $y = 2x^2 - 53x + 260$: $\Delta = 729$, $x_1 = 6\frac{1}{2}$, $x_1 = 20$.	1	
1	1.2	Zapisanie zbioru rozwiązań nierówności: $x \in \left(6\frac{1}{2}, 20\right)$.	1	Zbiór rozwiązań nierówności może być zaznaczony na wykresie.
	1.3	Wypisanie wszystkich liczb całkowitych, które spełniają nierówność: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19.	1	 Zdający może ustalić liczby całkowite, które spełniają nierówność na podstawie sporządzonego wykresu. Przyznajemy punkt, gdy zdający zapisze, np. 7, 8, 9,, 19.
2	2.1	Zapisanie wielomianu w postaci sumy iloczynów, w których występuje ten sam czynnik, np: $W(x) = x^2(x+2) - 9(x+2)$.	1	
	2.2	Zapisanie wielomianu w postaci $W(x) = (x-3)(x+3)(x+2)$ i podanie wszystkich jego pierwiastków: $x = -3$, $x = -2$, $x = 3$.	1	
	2.3	Zapisanie wielomianu $P(x)$ w postaci rozwiniętej: $P(x) = x^3 + 2x^2 - 9x - 18.$	1	
	2.4	Wyciągnięcie wniosku dotyczącego równości wielomianów: Wielomiany $W(x)$ i $P(x)$ są równe.	1	Punkt przyznajemy za wniosek konsekwentny do uzyskanej postaci wielomianu $P(x)$.
	2.5	Podanie metody pozwalającej ustalić znak wielomianu $W(x)$ dla $x > \sqrt{10}$, np. poprzez analizę znaków czynników występujących w rozkładzie wielomianu.	1	Akceptujemy uzasadnienie poprzez rozwiązanie nierówności.
	2.6	Wykazanie nierówności, np. $x^3 + 2x^2 - 9x - 18 > 0$ $x \in (-3, -2) \cup (3, \infty)$ i zapisanie, że $\sqrt{10} > 3$.	1	

		Supowieuzi i senemui punktowania - pozioni poc	isterii o	
	2.1	II sposób rozwiązania (czynność 2.1, 2.2): Znalezienie jednego z pierwiastków i wykonanie dzielenia, np. $(x^3 + 2x^2 - 9x - 18): (x - 3) = x^2 + 5x + 6$.	1	
	2.2	Wyznaczenie pozostałych pierwiastków: $x = -3$, $x = -2$.	1	Wyznaczanie pierwiastków wielomianu może się odbywać dowolną, znaną zdającemu metodą, np. zastosowanie twierdzenia Bezouta, schematu Hornera.
	3.1	Obliczenie liczby wszystkich możliwych kodów PIN: 9999 lub 10^4-1 .	1	Punkt przyznajemy także wtedy, gdy liczba 9999 pojawia się tylko w mianowniku ułamka przedstawiającego prawdopodobieństwo.
3	3.2	Obliczenie liczby wszystkich kodów o różnych cyfrach: 5040.	1	Punkt przyznajemy także wtedy, gdy liczba 5040 jest przedstawiona jako iloczyn 10·9·8·7, oraz wtedy, gdy liczba pojawia się tylko w liczniku ułamka przedstawiającego prawdopodobieństwo.
	3.3	Obliczenie prawdopodobieństwa i zapisanie go w postaci ułamka nieskracalnego: $\frac{560}{1111}$.	1	
	4.1	a) 4.	1	
4	4.2	b) 2005.	1	
	4.3	c) 6.	1	
	5.1	Obliczenie różnicy pól P_2 i P_1 kół o promieniach odpowiednio 41 m i 40 m: $P_2 - P_1 = \pi \cdot 41^2 - \pi \cdot 40^2 = 81\pi$.	1	Zdający, obliczając P_1 i P_2 , może podać wartości przybliżone.
5	5.2	Zapisanie właściwego ilorazu: $\frac{P_2 - P_1}{P_1} \cdot 100\%$.	1	Może też być wyznaczony stosunek $\frac{P_2}{P_1} = \frac{1681}{1600} = 1,050625.$
	5.3	Obliczenie szukanego procentu: $\frac{81}{16}\%$ lub $5\frac{1}{16}\%$ lub $5,0625\%$.	1	Uznajemy również wynik zaokrąglony do 1%: 5%.

	6.1	Uzupełnienie tabeli: $a_3 = 2$, $a_4 = 0$, $a_5 = 3$, $a_{2005} = 1003$, $a_{2006} = 0$, $a_{2007} = 1004$, $a_{2008} = 0$.	1	Wystarczy, że zdający poprawnie obliczy $a_3 = 2$, $a_4 = 0$, $a_5 = 3$.
	6.2	Zapisanie wartości wyrażenia: $ \left(a_{2005} \right)^{a_{2006}} \cdot \left(a_{2006} \right)^{a_{2007}} \cdot \left(a_{2007} \right)^{a_{2008}} = 0. $	1	Wystarczy, że zdający poprawnie ustali wartości poszczególnych czynników, np. 1·0·1.
6	6.3	Stwierdzenie, że ciąg $(a_1, a_3, a_5,, a_{2007})$ jest arytmetyczny: np. $a_1 = 1$, $r = 1$, albo stwierdzenie, że wyrazy pierwszy, trzeci, piąty itd. to kolejne wyrazy ciągu arytmetycznego.	1	
	6.4	Określenie liczby wyrazów ciągu $(a_1, a_3, a_5,, a_{2007})$: $n = 1004$.	1	Jeśli zdający źle ustali liczbę wyrazów ciągu $(a_1, a_3, a_5,, a_{2007})$, to nie otrzymuje punktu także w czynności 6.5.
	6.5	Zastosowanie wzoru na sumę 1004 początkowych wyrazów ciągu arytmetycznego i obliczenie sumy 2008 początkowych wyrazów ciągu (a_n) : $\frac{1+1004}{2} \cdot 1004 = 504510$.	1	Jeśli zdający stosuje bezpośrednio wzór $1+2++n=\frac{n(n+1)}{2}$ dla $n=1004$, to otrzymuje wszystkie punkty za czynności 6.3, 6.4, 6.5.
	7.1	Podanie wysokości z jakiej został rzucony kamień: $h(0) = 10$ m.	1	
7	7.2	Obliczenie odciętej wierzchołka paraboli i zapisanie odpowiedzi: $t_w = \frac{1}{2}$, np. "po upływie pół sekundy".	1	
	7.3	Obliczenie największej wysokości na jaką wzniesie się kamień: $h_{\text{max}}\left(\frac{1}{2}\right) = 11,25 \text{ m}.$	1	Zdający może pominąć jednostki.

Оироwiedzi i schemai punktowania – poziom podsiawowy						
		Narysowanie wykresu funkcji g.				
8	8.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1			
	8.2	Obliczenie największej wartości funkcji g w przedziale $\langle 21,31 \rangle$: $g(21) = 2\frac{1}{7}$.	1			
	8.3	Zapisanie równania: $\frac{3}{x} + 2 = 0$.	1			
	8.4	Rozwiązanie równania i sformułowanie odpowiedzi: $x = -\frac{3}{2}$, o $\frac{3}{2}$ jednostki w prawo (albo o $\frac{3}{2}$ wzdłuż osi Ox).	1	Jeśli zdający bez obliczeń poda poprawnie, o ile należy przesunąć wykres, to otrzymuje punkt także w czynności 8.3.		
9	9.1	I sposób rozwiązania: Zapisanie założenie, że trójkąt <i>ABR</i> jest podstawą, a odcinek <i>CR</i> jest wysokością danego ostrosłupa <i>ABRC</i> .	1			
	9.2	Obliczenie pola podstawy: $P_p = \frac{1}{2} \text{m}^2$.	1			

		Γ		
	9.3	Obliczenie objętości ostrosłupa: $V = \frac{1}{3} \cdot \frac{1}{2} \cdot 1 = \frac{1}{6} \text{ m}^3$.	1	Zdający może pominąć jednostki. Jeśli zdający zapisze, że objętość ostrosłupa jest równa $\frac{1}{6}$ m³, bo jest to naroże sześcianu o krawędzi 1 m, to przyznajemy punkty w czynnościach 9.1, 9.2, 9.3.
	9.4	Podanie wyniku zaokrąglonego do 0,01 m 3 : $V = 0,17$ m 3 .	1	
	9.1	II sposób rozwiązania: Podstawą ostrosłupa $ABCR$ jest trójkąt równoboczny ABC , którego krawędź podstawy ma długość $\sqrt{2}$. Obliczenie pola podstawy ostrosłupa: $P_p = \frac{\sqrt{3}}{2} \mathrm{m}^2$.	1	
	9.2	Obliczenie wysokości <i>H</i> ostrosłupa: $H = \sqrt{1^2 - \left(\frac{\sqrt{6}}{3}\right)^2} = \frac{\sqrt{3}}{3} \text{ m}.$	1	
	9.3	Obliczenie objętości ostrosłupa: $V = \frac{1}{3} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{3} = \frac{1}{6} \text{ m}^3.$	1	
	9.4	Podanie wyniku zaokrąglonego do 0,01 m ³ : $V = 0,17$ m ³ .	1	
10	10.1	Wyznaczenie równania prostej <i>AB</i> : $y = \frac{1}{2}x + 2$ lub $x - 2y + 4 = 0$.	1	
	10.2	Zbadanie położenia punktu K względem prostej AB : $\frac{1}{2} \cdot 36 + 2 = 20 < 21.$	1	Jeśli zdający jedynie sprawdza, czy punkty K i L należą do prostej AB, to: w czynności 10.2 otrzymuje 1 pkt, a
	10.3	Zbadanie położenia punktu L względem prostej AB : $\frac{1}{2} \cdot (-37) + 2 = -16 \frac{1}{2} < -15.$	1	w czynności 10.3 nie otrzymuje punktu. Np.: $\frac{1}{2} \cdot 36 + 2 = 20 \neq 21$, $\frac{1}{2} \cdot (-37) + 2 = -16 \frac{1}{2} \neq -15$.

		r r r r r r r r r r r r r r r r r r r		
	10.4	Podanie wniosku: Punkty K i L leżą po tej samej stronie prostej AB .	1	Nie przyznajemy punktu za wniosek (nawet poprawny), jeśli nie jest uzasadniony, np. brak czynności 10.2, 10.3 lub podobnego rozumowania. Przyznajemy punkt za wniosek konsekwentny do otrzymanych rezultatów.
	11.1	Obliczenie długości skośnej krawędzi konstrukcji: $10\sqrt{5}$ cm .	1	Zdający może podać wartość przybliżoną: np. 22,36 cm albo 22,4 cm.
	11.2	Obliczenie sumy pól powierzchni ścian, które są trapezami: $2 \cdot \frac{(40+30) \cdot 20}{2} = 1400 \text{cm}^2$.	1	
11	11.3	Obliczenie sumy pół powierzchni ścian będących prostokątami: $20 \cdot 20 + 20 \cdot 40 + 20 \cdot 30 + 20 \cdot 10\sqrt{5} = 1800 + 200\sqrt{5} \text{ cm}^2$.	1	Akceptujemy wynik: 2247cm^2 lub 2248cm^2 , o ile w czynności 11.1 zdający przyjął zaokrąglenie $10\sqrt{5} \approx 22,4$.
	11.4	Podanie wyniku z żądanym zaokrągleniem: $P = 200(16 + \sqrt{5}) \approx 3647 \text{ cm}^2$.	1	Akceptujemy wynik 3648. Zdający może pominąć jednostki.
12	12.1	I sposób rozwiązania: Wykorzystanie zależności między sinusem i cosinusem tego samego kąta i zapisanie wyrażeń w postaciach: $tg\alpha \cdot \sqrt{1-\cos^2\beta} + \sin\alpha = tg\alpha \cdot \sin\beta + \sin\alpha,$ $tg\beta \cdot \sqrt{1-\cos^2\alpha} + \sin\beta = tg\beta \cdot \sin\alpha + \sin\beta.$	1	
	12.2	Wykorzystanie zależności między tangensem, sinusem i cosinusem tego samego kąta i zapisanie wyrażeń w postaci: $tg\alpha \cdot \sin\beta + \sin\alpha = 2\sin\alpha$, $tg\beta \cdot \sin\alpha + \sin\beta = 2\sin\beta$.	1	
	12.3	Obliczenie wartości wyrażeń: $tg\alpha \cdot \sqrt{1-\cos^2\beta} + \sin\alpha = 2\sin\alpha = \frac{10}{13},$ $tg\beta \cdot \sqrt{1-\cos^2\alpha} + \sin\beta = 2\sin\beta = \frac{24}{13}.$	1	

		Supovicusi i senemui pinimovama posiom pous		
	12.4	Porównanie liczb $\frac{10}{13}$ i $\frac{24}{13}$ i sformułowanie odpowiedzi: $\frac{10}{13} < \frac{24}{13}$, drugie wyrażenie.	1	Jeżeli zdający nie wykonuje obliczeń, a stwierdzi jedynie, że sinus większego z kątów ostrych trójkąta jest większy i zapisze $2\sin\beta > 2\sin\alpha$, to otrzymuje punkt także za czynność 12.3.
	12.1	II sposób rozwiązania: Wykorzystanie definicji funkcji trygonometrycznych kąta ostrego i zapisanie potrzebnych wartości funkcji kąta α : $\sin \alpha = \frac{5}{13}$, $\cos \alpha = \frac{12}{13}$, $tg\alpha = \frac{5}{12}$.	1	Punkt otrzymuje zdający, który popełni co najwyżej jeden błąd.
	12.2	Wykorzystanie definicji funkcji trygonometrycznych kąta ostrego i zapisanie potrzebnych wartości funkcji kąta β : $\sin\beta = \frac{12}{13}, \cos\beta = \frac{5}{13}, \operatorname{tg}\beta = \frac{12}{5}.$	1	Punkt otrzymuje zdający, który popełni co najwyżej jeden błąd.
	12.3	Obliczenie wartości wyrażeń: $tg\alpha \cdot \sqrt{1-\cos^2\beta} + \sin\alpha = \frac{10}{13}, \ tg\beta \cdot \sqrt{1-\cos^2\alpha} + \sin\beta = \frac{24}{13}.$	1	
	12.4	Porównanie liczb $\frac{10}{13}$ i $\frac{24}{13}$ i sformułowanie odpowiedzi: $\frac{10}{13} < \frac{24}{13}$, drugie wyrażenie ma większą wartość.	1	
	13.1	Obliczenie średniej arytmetycznej liczby sprzedanych biletów: $\bar{x} = 5$.	1	
13	13.2	Przedstawienie metody obliczenia wariancji lub odchylenia standardowego, np.: $\frac{1(5-2)^2 + 4(5-3)^2 + 1(5-4)^2 + 1(5-5)^2 + 2(5-6)^2 + 2(5-8)^2 + 1(5-9)^2}{12}.$	1	Wystarczy, że zdający poprawnie podstawi dane do wzoru na wariancję lub odchylenie standardowe.
	13.3	Obliczenie odchylenia standardowego: $\sqrt{\frac{31}{6}} \approx 2,27$.	1	
	13.4	Podanie godzin, w których liczba sprzedanych biletów nie była typowa: 5:00 – 6:00, 7:00 – 8:00, 8:00 – 9:00, 15:00 – 16:00.	1	Zdający może podać też 5:00 – 6:00, 7:00 – 9:00, 15:00 – 16:00.