# Exploratory data analysis for Predicting Hospital Readmissions

Youliang Yu Nov. 11, 2016

```
library(caret)
## Loading required package: lattice
## Loading required package: ggplot2
library(data.table)
cat("load data")
## load data
train <- fread('data/Challenge_1_Training.csv',header =TRUE,stringsAsFactors = FALSE,na.strings=c("?","</pre>
## readimitted
## [1] ">30" NA
                    "<30"
## There are NA labels involved, remove them first.
## check fraction of patients get admitted >30 days
## [1] 0.756036
## About 3 quarters, no problem.
## Check levels for each variables since most variables are discrete.
##
                        race
                                                gender
                                                                             age
##
                                    admission_type_id discharge_disposition_id
##
                      weight
##
                          10
##
        admission_source_id
                                     time_in_hospital
                                                                     payer_code
##
                                                                              17
##
          medical_specialty
                                   num_lab_procedures
                                                                 num_procedures
##
##
            num_medications
                                    number_outpatient
                                                               number_emergency
##
##
           number_inpatient
                                                diag_1
                                                                          diag_2
##
                          21
```

16

number\_diagnoses

max\_glu\_serum

diag\_3

570

##

##

| ## | A1Cresult                | metformin               | repaglinide            |
|----|--------------------------|-------------------------|------------------------|
| ## | 4                        | 4                       | 4                      |
| ## | nateglinide              | chlorpropamide          | glimepiride            |
| ## | 4                        | 3                       | 4                      |
| ## | acetohexamide            | glipizide               | glyburide              |
| ## | 2                        | 4                       | 4                      |
| ## | tolbutamide              | pioglitazone            | rosiglitazone          |
| ## | 2                        | 4                       | 4                      |
| ## | acarbose                 | miglitol                | troglitazone           |
| ## | 3                        | 4                       | 2                      |
| ## | tolazamide               | examide                 | citoglipton            |
| ## | 2                        | 1                       | 1                      |
| ## | insulin                  | glyburide.metformin     | glipizide.metformin    |
| ## | 4                        | 2                       | 2                      |
| ## | glimepiride.pioglitazone | metformin.rosiglitazone | metformin.pioglitazone |
| ## | 1                        | 1                       | 1                      |
| ## | change                   | diabetesMed             | readmitted             |
| ## | 2                        | 2                       | 2                      |

## Diagnosis 1/2/3 in train intersect with test set since only 500 out of 800/900 appears in train...

#### ## check NA fraction in each var

| ## | race                                | gender                  | age                                |
|----|-------------------------------------|-------------------------|------------------------------------|
| ## | 1.51385762                          | 0.0000000               | 0.0000000                          |
| ## | weight                              | admission_type_id       | ${\tt discharge\_disposition\_id}$ |
| ## | 96.09890536                         | 0.0000000               | 0.00000000                         |
| ## | admission_source_id                 | time_in_hospital        | payer_code                         |
| ## | 0.00000000                          | 0.00000000              | 39.33312631                        |
| ## | medical_specialty                   | num_lab_procedures      | num_procedures                     |
| ## | 51.59149134                         | 0.0000000               | 0.0000000                          |
| ## | ${\tt num\_medications}$            | number_outpatient       | number_emergency                   |
| ## | 0.0000000                           | 0.0000000               | 0.0000000                          |
| ## | number_inpatient                    | diag_1                  | diag_2                             |
| ## | 0.00000000                          | 0.01552674              | 0.17855757                         |
| ## | diag_3                              | number_diagnoses        | ${\tt max\_glu\_serum}$            |
| ## | 0.85008928                          | 0.00000000              | 94.46859716                        |
| ## | A1Cresult                           | metformin               | repaglinide                        |
| ## | 83.85994876                         | 81.65126931             | 98.30370313                        |
| ## | nateglinide                         | chlorpropamide          | glimepiride                        |
| ## | 99.21978107                         | 99.91460290             | 94.72090676                        |
| ## | acetohexamide                       | glipizide               | glyburide                          |
| ## | 99.99611831                         | 86.66252620             | 89.70188650                        |
| ## | tolbutamide                         | pioglitazone            | rosiglitazone                      |
| ## | 99.99223663                         | 92.21333747             | 93.39337008                        |
| ## | acarbose                            | miglitol                | troglitazone                       |
| ## | 99.62347644                         | 99.94177471             | 99.99223663                        |
| ## | tolazamide                          | examide                 | citoglipton                        |
| ## | 99.97670988                         | 100.00000000            | 100.00000000                       |
| ## | insulin                             | glyburide.metformin     | glipizide.metformin                |
| ## | 44.06102011                         | 99.32846829             | 99.98059157                        |
| ## | <pre>glimepiride.pioglitazone</pre> | metformin.rosiglitazone | metformin.pioglitazone             |
| ## | 100.00000000                        | 100.00000000            | 100.00000000                       |

## For almost all 24 features for medications, over 90% of them are NAs, 6 of them gives 100% NAs, each

## Visualize other features







### payer\_code Count

# 

### medical\_specialty Count



# num\_lab\_procedures Count



num\_procedures Count







## number\_emergency Count



# number\_inpatient Count



#### number\_diagnoses Count

### max\_glu\_serum Count





#### **A1Cresult Count**

#### change Count





## Notice 'change' is a contant feature, there are several other features are constant, shouldn't be he

## Also, no noticable feature surpress target-mean significantly

## try visualization using tSNE, replace variables with target-mean

## t-Distributed Stochastic Neighbor Embedding(tsne) is a dimensionality reduction technique that maps ## low dimensional space(usually 2 or 3) such that distribution of distances between training samples s

```
## Read the 25762 x 42 data matrix successfully!
```

## Using no\_dims = 2, perplexity = 30.000000, and theta = 0.500000

## Computing input similarities...

## Normalizing input...

## Building tree...

## - point 0 of 25762

# - point 10000 of 25762

## - point 20000 of 25762

## Done in 16.00 seconds (sparsity = 0.004785)!

## Learning embedding...

## Iteration 50: error is 108.993345 (50 iterations in 25.58 seconds)

## Iteration 100: error is 108.790515 (50 iterations in 33.45 seconds)

## Iteration 150: error is 92.150367 (50 iterations in 23.05 seconds)

## Iteration 200: error is 88.327358 (50 iterations in 21.74 seconds)

## Iteration 250: error is 87.125481 (50 iterations in 21.83 seconds)

## Iteration 300: error is 3.733740 (50 iterations in 21.56 seconds)

## Iteration 350: error is 3.342363 (50 iterations in 21.48 seconds)

## Iteration 400: error is 3.103327 (50 iterations in 22.47 seconds) ## Iteration 450: error is 2.933514 (50 iterations in 22.75 seconds)

## Iteration 500: error is 2.802670 (50 iterations in 23.02 seconds)

```
## Iteration 550: error is 2.697601 (50 iterations in 22.03 seconds)
## Iteration 600: error is 2.610497 (50 iterations in 22.86 seconds)
## Iteration 650: error is 2.536751 (50 iterations in 21.81 seconds)
## Iteration 700: error is 2.473012 (50 iterations in 22.01 seconds)
## Iteration 750: error is 2.417086 (50 iterations in 21.99 seconds)
## Iteration 800: error is 2.368043 (50 iterations in 23.02 seconds)
## Fitting performed in 370.65 seconds.
```



## On this 2D clustering pic, one could hardly see much of the 2 classes separable, indicating the targ
## Will dig more on the relation between target and features, probably non-linear