Lower bounds on the Mertens function M(x) along infinite subsequences for large $x \gg 5.43591 \times 10^{3313040}$

Maxie Dion Schmidt

Georgia Institute of Technology School of Mathematics Department of Number Theory

<u>Last Revised:</u> Monday 25th May, 2020 - Compiled with LATEX2e

Abstract

The Mertens function, $M(x) = \sum_{n \leq x} \mu(n)$, is classically defined to be the summatory function of the Möbius function $\mu(n)$. The Mertens conjecture stating that $|M(x)| < C \cdot \sqrt{x}$ with C > 0 for all $x \geq 1$ has a well-known disproof due to Odlyzko and té Riele given in the early 1980's by computation of non-trivial zeta function zeros in conjunction with integral formulas expressing M(x). It is conjectured and widely believed that $M(x)/\sqrt{x}$ changes sign infinitely often and grows unbounded in the direction of both $\pm \infty$ along subsequences of integers $x \geq 1$. Our proof this property of $|M(x)|/\sqrt{x}$, e.g., showing that

$$\limsup_{x \to \infty} \frac{|M(x)|}{\sqrt{x}} = +\infty,$$

is not based on standard estimates of M(x) we find from Mellin inversion, which are intimately tied to the intricate distribution of the non-trivial zeros of the Riemann zeta function. There is a distinct stylistic flavor and new element of combinatorial analysis peppered in with the standard methods from analytic, additive and elementary number theory. This stylistic tendency distinguishes our methods from other proofs of established upper, rather than lower, bounds on M(x). As explicit lower bounds for M(x) along particular subsequences are not obvious, and are historically ellusive non-trivial features of the function to obtain as we expect sign changes of this function infinitely often, we find this approach to be an effective one.

Keywords and Phrases: Möbius function; Mertens function; summatory function; Dirichlet inverse; Liouville lambda function; prime omega function; prime counting functions; Dirichlet generating function; asymptotic lower bounds; Mertens conjecture.

Primary Math Subject Classifications (2010): 11N37; 11A25; 11N60; and 11N64.

Reference on special notation and other conventions

Symbol Definition

 $\mathbb{E}[f(x)]$ We use the expectation notation $\mathbb{E}[f(x)] = h(x)$ to denote that f has a so-called average order growth rate of h(x). What this means is that $\frac{1}{x}\sum_{n\leq x}f(n)\sim h(x)$, or equivalently that

$$\lim_{x \to \infty} \frac{\frac{1}{x} \sum_{n \leqslant x} f(n)}{h(x)} = 1.$$

 $o(f), O_{\alpha}(g)$ Using standard notation, we write that f = o(g) if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$$

We adapt the stock big-O notation, writing $f = O_{\alpha_1,\dots,\alpha_k}(g)$ for some parameters α_1,\dots,α_k that do not depend on x, if f(x) = O(g(x)) subject only to the upper bounds having an implicit dependence only on x (as usual) and the α_i .

 $C_k(n)$ Auxillary component functions in obtaining asymptotic bounds on $g^{-1}(n)$. These functions are defined for $k \ge 0$ and $n \ge 1$ by the formula

$$C_k(n) := \begin{cases} \varepsilon(n), & \text{if } k = 0; \\ \sum_{d|n} \omega(d) C_{k-1}(n/d), & \text{if } k \geqslant 1. \end{cases}$$

 $[q^n]F(q)$ The coefficient of q^n in the power series expansion of F(q) about zero when F(q) is treated as the ordinary generating function of some sequence, $\{f_n\}_{n\geq 0}$.

DGF Dirichlet generating function. Given a sequence $\{f(n)\}_{n\geq 0}$, its DGF is given by $D_f(s) := \sum_{n\geq 1} f(n)/n^s$ subject to suitable constraints on the real part of the parameter $s \in \mathbb{C}$.

 $\sigma_0(n), d(n)$ The ordinary divisor function, $d(n) := \sum_{d|n} 1$. The arithmetic functions $d(n) \equiv \sigma_0(n)$ for all $n \ge 1$.

 $\varepsilon(n)$ The multiplicative identity with respect to Dirichlet convolution, $\varepsilon(n) = \delta_{n,1}$, defined such that for any arithmetic f we have that $f * \varepsilon = \varepsilon * f = f$ where * denotes Dirichlet convolution (defined below).

f * g The Dirichlet convolution of f and g, $(f * g)(n) := \sum_{d|n} f(d)g(n/d)$, where the sum is taken over the divisors d of n for $n \ge 1$.

 $f^{-1}(n)$ The Dirichlet inverse of f with respect to convolution is defined recursively by $f^{-1}(n) = -\frac{1}{f(1)} \sum_{\substack{d \mid n \\ d > 1}} f(d) f^{-1}(n/d)$ for $n \ge 1$ with $f^{-1}(1) = 1/f(1)$ and exists if

and only if $f(1) \neq 0$. The inverse function, when it exists, is unique and satisfies the characteristic convolution relations providing that $f^{-1} * f = f * f^{-1} = \varepsilon$.

The floor function is defined as $[x] := x - \{x\}$ where $0 \le \{x\} < 1$ denotes the fractional part of $x \in \mathbb{R}$. The corresponding ceiling function [x] denotes the smallest integer $m \ge x$. The floor function is sometimes also written as $[x] \equiv [x]$.

Symbol	Definition
SYMBOL	Demmon

 $g^{-1}(n), G^{-1}(x)$ The Dirichlet inverse function, $g^{-1}(n) = (\omega + 1)^{-1}(n)$ with corresponding summatory function $G^{-1}(x) = \sum_{\alpha=1}^{\infty} e^{-1/\alpha}$ summatory function $G^{-1}(x) := \sum_{n \leq x} g^{-1}(n)$.

The generalized r-order harmonic numbers are defined for $n \ge 1$ by

$$H_n^{(r)} := \sum_{n \geqslant 1} k^{-r}.$$

For $\Re(r) > 1$, these sequences define the convergent partial sums of the Riemann zeta function, $\zeta(r)$. The first-order harmonic numbers, $H_n \equiv H_n^{(1)}$, satisfy the limiting asymptotic relation

$$\lim_{n \to \infty} [H_n - \log(n)] = \gamma,$$

where $\gamma \approx 0.577216$ denotes Euler's gamma constant.

We use the notation $\mathbb{1}, \chi : \mathbb{N} \to \{0,1\}$ to denote indicator, or characteristic $\mathbb{1}_{\mathbb{S}}, \chi_{\operatorname{cond}(x)}$ functions. In paticular, $\mathbb{1}_{\mathbb{S}}(n) = 1$ if and only if $n \in \mathbb{S}$, and $\chi_{\text{cond}}(n) = 1$ if and only if n satisfies the boolean-valued condition cond.

 $\log^m_*(x)$ The iterated logarithm function defined recursively for integers $m \ge 0$ and any x > 0 taken so that the function is non-negative (e.g., with $x \ge e^e$ if m = 2, $x \ge e^{e^e}$ if m = 3, and so on) by

$$\log_*^m(x) := \begin{cases} x, & \text{if } m = 0; \\ \log x, & \text{if } m = 1; \\ \log \left[\log_*^{m-1}(x)\right], & \text{if } m \ge 2. \end{cases}$$

 $[n=k]_{\delta}$ Synonym for $\delta_{n,k}$ which is one if and only if n=k, and is zero otherwise.

 $[cond]_{\delta}$ For a boolean-valued conditions, cond, $[cond]_{\delta}$ evaluates to one precisely when cond is true, and to zero otherwise. This notation is sometimes called Iverson's convention.

The Liouville lambda function, $\lambda(n) := (-1)^{\Omega(n)}$, denotes the parity of $\Omega(n)$, $\lambda(n)$ the number of distinct prime factors of n counting their multiplicity. That is, $\lambda(n) \in \{\pm 1\}$ with $\lambda(n) = +1$ if and only if $\Omega(n) \equiv 0 \mod 2$.

The Möbius function defined such that $\mu^2(n)$ is the indicator function of the $\mu(n)$ squarefree integers, and so that $\mu(n) = (-1)^{\omega(n)}$ whenever n is squarefree, i.e., has no prime power divisors with exponent greater than one.

M(x)The Mertens function is the summatory function over $\mu(n)$ defined for all integers $x \ge 1$ by $M(x) := \sum_{n \le x} \mu(n)$.

The valuation function that extracts the maximal exponent of p in the prime $\nu_p(n)$ factorization of n, e.g., $\nu_p(n) = 0$ if $p \nmid n$ and $\nu_p(n) = \alpha$ if $p^{\alpha} || n (p^{\alpha})$ exactly divides n) for p prime and $n \ge 2$.

 $\omega(n),\Omega(n)$ We define these distinct prime factor counting functions as the strongly additive function $\omega(n) := \sum_{p|n} 1$ and the completely additive function $\Omega(n)$ by $\Omega(n) := \sum_{p^{\alpha}||n} \alpha$. Equivalently, if the factorization of $n \ge 2$ is given by $n := p_1^{\alpha_1} \cdots p_r^{\alpha_r}$, then $\omega(n) = r$ and $\Omega(n) = \alpha_1 + \cdots + \alpha_r$. By convention, we require that $\omega(1) = \Omega(1) = 0.$

Symbol	Definition
$\pi_k(x), \widehat{\pi}_k(x)$	The prime counting function variant $\pi_k(x)$ denotes the number of integers $1 \leq n \leq x$ for $x > 1$ with exactly k distinct prime factors: $\pi_k(x) := \#\{n \leq x : \omega(n) = k\}$. Similarly, the function $\widehat{\pi}_k(x) := \#\{n \leq x : \Omega(n) = k\}$ for $x \geq 2$. Montgomery and Vaughan use the alternate notation of $\sigma_k(x)$, which we intentionally avoid due to conflicting notation with other special arithmetic functions used in this article, in place of $\widehat{\pi}_k(x)$.
$\sum_{p \leqslant x}, \prod_{p \leqslant x}$	Unless otherwise specified by context, we use the index variable p to denote that the summation (product) is to be taken only over prime values within the summation bounds.
P(s)	For complex s with $\Re(s) > 1$, we define the prime zeta function to be the DGF $P(s) = \sum_{p \text{ prime}} p^{-s}$.
$\sigma_{lpha}(n)$	The generalized sum-of-divisors function, $\sigma_{\alpha}(n) := \sum_{d n} d^{\alpha}$, is defined for any $n \ge 1$ and $\alpha \in \mathbb{R}$.
ГиЛ	
$\begin{bmatrix} n \\ k \end{bmatrix}$	The unsigned Stirling numbers of the first kind, $\begin{bmatrix} n \\ k \end{bmatrix} = (-1)^{n-k} \cdot s(n,k)$.
~,≈,≿,≾,»,«	See the first section of the introduction to the article for clarification of the asymptotic notation we employ in the article including precise definitions of our usage of these limiting asymptotic relation symbols.
$\zeta(s)$	The Riemann zeta function, defined by $\zeta(s) := \sum_{n \ge 1} n^{-s}$ when $\Re(s) > 1$, and by analytic continuation to the entire complex plane with the exception of a simple pole at $s = 1$.

1 Preface: Explanations of unconventional notions and preconceptions of asymptotics and notation for asymptotic relations

We exphasize that the next careful explanation of the subtle distinctions to our usage of what we consider to be traditional notation for asymptotic relations are key to understanding our choices of bounding expressions given throughout the article. Thus, to avoid any confusion that may linger as we begin to state our new results and bounds on the functions we work with in this article, we preface the article starting with this section detailing our precise definitions, meanings and assumptions on the uses of certain symbols, operators, and relations. The interpretation of this notation forms the core of how we choose to convey the growth rates of arithmetic functions on their domain of x within this article when x is taken to be very large as $x \to \infty$ [12, cf. §2] [3].

1.1 Average order, similarity and approximation of asymptotic growth rates

1.1.1 Similarity and average order (expectation)

We say that two arithmetic functions A(x), B(x) (with B>0) satisfy the relation $A \sim B$ if

$$\lim_{x \to \infty} \frac{A(x)}{B(x)} = 1.$$

It is sometimes standard to express the average order of an arithmetic function f as $f \sim h$, even when the values of f(n) may actually non-monotonically oscillate in magnitude infinitely often. What the notation $f \sim h$ means when using this notation to express the average order of f is that

$$\frac{1}{x} \cdot \sum_{n \leqslant x} f(n) \sim h(x).$$

For example, in the acceptably classic language of [5] we would normally write that $\Omega(n) \sim \log \log n$, even though technically, $1 \leq \Omega(n) \leq \frac{\log n}{\log 2}$. To be absolutely clear about notation, we intentionally do not re-use the \sim relation by instead writing $\mathbb{E}[f(x)] = h(x)$ (as in expectation of f), or sometimes $\stackrel{\mathbb{E}}{\sim}$ for convenience, to denote that f has a limiting average order growing at the rate of h.

A related conception of f having a so-called *normal order* of g holds whenever

$$f(n) = (1 + o(1))g(n)$$
, a.e., as $n \to \infty$.

1.1.2 Abel summation

The formula we prefer for the Abel summation variant of summation by parts to express finite sums of a product of two functions is stated as follows [1, cf. §4.3] ^A:

Proposition 1.1 (Abel Summation Integral Formula). Suppose that t > 0 is real-valued, and that $A(t) \sim \sum_{n \leq t} a(n)$ for some weighting arithmetic function a(n) with A(t) continuously differentiable on $(0, \infty)$. Furthermore, suppose that $b(n) \sim f(n)$ with f a differentiable function of $n \geq 0$ – that is, f'(t) exists and is smooth for all $t \in (0, \infty)$. Then for $0 \leq y < x$, where we typically assume that the bounds of summation satisfy $x, y \in \mathbb{Z}^+$, we have that

$$\sum_{y < n \leq x} a(n)b(n) \sim A(x)b(x) - A(y)b(y) - \int_{y}^{x} A(t)f'(t)dt.$$

$$\sum_{j=1}^{n-1} u_j \cdot v_j = U_{n-1}v_n + \sum_{j=1}^{n-1} U_j (v_j - v_{j+1}), n \ge 2.$$

^ACompare to the exact formula for summation by parts of any arithmetic functions, u_n, v_n , stated as in [12, §2.10(ii)] for $U_j := u_1 + u_2 + \cdots + u_j$ when $j \ge 1$:

1.1.3 Approximation

We choose to adpot the convention to write that $f(x) \approx g(x)$ if |f(x) - g(x)| = O(1). That is, we write $f(x) \approx g(x)$ to denote that f is approximately equal to g at x modulo at most a small constant difference between the functions when x is large.

1.1.4 Vinogradov's notation for asymptotics

We use the conventional relations $f(x) \gg g(x)$ and $h(x) \ll r(x)$ to symbolically express that we should expect f to be "substantially" larger than g, and respectively h to be "significantly" smaller than r, in asymptotic order (e.g., rate of growth when x is large). In practice, we adopt a somewhat looser definition of these symbols which allows $f \gg g$ and $h \ll r$ provided that there are constants C, D > 0 such that whenever x is sufficiently large we have that $f(x) \geqslant C \cdot g(x)$ and $h(x) \leqslant D \cdot r(x)$. This notation is sometimes called Vinogradov's asymptotic notation.

Another way of expressing our precise meaning of these relations is by writing

$$f \gg g \iff g = O(f),$$

and

$$h \ll r \iff r = \Omega(h),$$

using Knuth's style of big-O (and Landau notation) and big- Ω (Hardy-Littlewood notation) symbols from the language of theoretical computer science.

1.2 Asymptotic expansions and uniformity

Because a subset of the results we cite that are proved in the references provide statements of asymptotic bounds that hold *uniformly* for x large depending on parameters, we need to briefly make precise what our preconceptions are of this terminology. We introduce the notation for asymptotic expansions of a function $f : \mathbb{R} \to \mathbb{R}$ from [12, §2.1(iii)].

1.2.1 Ordinary asymptotic expansions of a function

Let $\sum_n a_n x^{-n}$ denote a formal power series expansion in x where we ignore any necessary conditions to guarantee convergence of the series. For each integer $n \ge 1$, suppose that

$$f(x) = \sum_{s=0}^{n-1} a_s x^{-s} + O(x^{-n}),$$

as $|x| \to \infty$ where this limiting bound holds for $x \in \mathbb{X}$ in some unbounded set $\mathbb{X} \subseteq \mathbb{R}$, \mathbb{C} . When such a bound holds, we say that $\sum_s a_s x^{-s}$ is a *Poincaré asymptotic expansion*, or just asymptotic series expansion, of f(x) as $x \to \infty$ along the fixed set \mathbb{X} . The condition in the previous equation is equivalent to writing

$$f(x) \sim a_0 + a_1 x^{-1} + a_2 x^{-2} + \dots ; x \in \mathbb{X}, \text{ for } |x| \to \infty.$$

The prior two characterizations of an asymptotic expansion for f are also equivalent to the statement that

$$x^n \left(f(x) - \sum_{s=0}^{n-1} a_s x^{-s} \right) \xrightarrow{x \to \infty} a_n.$$

1.2.2 Uniform asymptotic expansions of a function

Let the set X from the definition in the last subsection correspond to a closed sector of the form

$$\mathbb{X} := \{ x \in \mathbb{C} : \alpha \leqslant \arg(x) \leqslant \beta \}.$$

Then we say that the asymptotic property

$$f(x) = \sum_{s=0}^{n-1} a_s x^{-s} + O(x^{-n}),$$

from before holds uniformly with respect to $arg(x) \in [\alpha, \beta]$ as $|x| \to \infty$.

Another useful, important notion of uniform asymptotic bounds is taken with respect to some parameter u (or set of parameters, respectively) that ranges over the point set (point sets, respectively) $u \in \mathbb{U}$. In this case, if we have that the u-parameterized expressions

$$\left| x^n \left(f(u, x) - \sum_{s=0}^{n-1} a_s(u) x^{-s} \right) \right|,$$

are bounded for all integers $n \ge 1$ for $x \in \mathbb{X}$ as $|x| \to \infty$, then we say that the asymptotic expansion of f holds uniformly for $u \in \mathbb{U}$. Now the function $f \equiv f(u,x)$ and the asymptotic series coefficients $a_s(u)$ may have an implicit dependence on the parameter u. If the previous boundedness condition holds for all positive integers n, we write that

$$f(u,x) \sim \sum_{s=0}^{\infty} a_s(u) x^{-s}; x \in \mathbb{X}, \text{ as } |x| \to \infty,$$

and say that this asymptotic expansion, or bound, holds uniformly with respect to $u \in \mathbb{U}$. For u taken outside of \mathbb{U} , the stated bound may fail to be valid even for $x \in \mathbb{X}$ as $|x| \to \infty$.

1.3 Asymptotic densities of subsets of the integers

In the proofs given in Section 8 of the article, we will require a precise notion of the asymptotic density of an infinite set $S \subseteq \mathbb{Z}^+$. When this limit exists, we denote the asymptotic density of S by $\alpha_S \in [0,1]$, defined as follows:

$$\alpha_{\mathcal{S}} := \lim_{x \to \infty} \frac{1}{x} \cdot \# \{ n \leqslant x : n \in \mathcal{S} \}.$$

In other words, if the set S has asymptotic density α_S , then for all sufficiently large x

$$\alpha_{\mathcal{S}} + o(1) \leqslant \frac{1}{x} \cdot \# \{ n \leqslant x : n \in \mathcal{S} \} \leqslant \alpha_{\mathcal{S}} + o(1).$$

When the limit definition of $\alpha_{\mathcal{S}}$ does not exist, or if for some pathology of the way \mathcal{S} is defined, we cannot precisely pin down the limit, we are often interested in sets of bounded asymptotic density. That is, we say that \mathcal{S} has bounded asymptotic density if for all large x there exist constants $0 \leq B \leq C < 1$ such that

$$B + o(1) \le \frac{1}{x} \cdot \# \{ n \le x : n \in \mathcal{S} \} \le C + o(1), \text{ as } x \to \infty.$$

Clearly, finite and bounded subsets of the positive integers have limiting asymptotic density of zero. If the asymptotic density of S is one, and some property P(n) holds for all $n \in S$, then we say that P(n) is true almost everywhere (on the integers), also abbreviated as holding "a.e." on the positive integers as $n \to \infty$.

2 An introduction to the Mertens function

2.1 Definitions

Suppose that $n \ge 2$ is a natural number with factorization into distinct primes given by $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$. We define the *Möebius function* to be the signed indicator function of the squarefree integers as follows:

$$\mu(n) = \begin{cases} 1, & \text{if } n = 1; \\ (-1)^k, & \text{if } \alpha_i = 1, \ \forall 1 \le i \le k; \\ 0, & \text{otherwise.} \end{cases}$$

A crucial role of $\mu(n)$ formed between arithmetic functions convolved with one and inversions of such divisor sums (e.g., Dirichlet convolutions of the form g = f * 1) is known as Möbius inversion:

Theorem 2.1 (Möbius inversion). Suppose that f(n), g(n) are arithmetic functions. Then

$$g(n) = (f * 1)(n) \iff f(n) = (g * \mu)(n), \forall n \geqslant 1.$$

Clearly, a positive integer $n \ge 1$ is *squarefree*, or contains no (prime) divisors which are squares, if and only if $\mu^2(n) = 0$. There are many other known variants and special properties of the Möebius function and its generalizations [14, cf. §2].

The Mertens function, or summatory function of $\mu(n)$, is defined as

$$M(x) = \sum_{n \le x} \mu(n), x \ge 1.$$

The sequence of the oscillatory values of this summatory function begins as [15, A002321]

$$\{M(x)\}_{x\geqslant 1}=\{1,0,-1,-1,-2,-1,-2,-2,-1,-2,-2,-3,-2,-1,-1,-2,-2,-3,-3,-2,-1,-2,-2,\ldots\}$$

A related function which counts the number of squarefree integers than x sums the average order of the Möbius function as [15, A013928]

$$Q(n) = \sum_{n \le x} \mu^2(n) \sim \frac{6x}{\pi^2} + O\left(\sqrt{x}\right).$$

It is known that the asymptotic density of the positively versus negatively weighted sets of squarefree numbers are in fact equal as $x \to \infty$:

$$\mu_{+}(x) = \frac{\#\{1 \leqslant n \leqslant x : \mu(n) = +1\}}{Q(x)} \stackrel{\mathbb{E}}{\sim} \mu_{-}(x) = \frac{\#\{1 \leqslant n \leqslant x : \mu(n) = -1\}}{Q(x)} \xrightarrow{x \to \infty} \frac{3}{\pi^{2}}.$$

The actual local oscillations between the approximate densities of the sets $\mu_{\pm}(x)$ lend an unpredictable nature to the function and characterize the oscillatory sawtooth shaped plot of M(x) when viewed over the positive integers.

2.2 Properties

2.2.1 Exact formulae

The conventional approach to evaluating the behavior of M(x) for large $x \to \infty$ results from a formulation of this summatory function as a predictable exact sum involving x and the non-trivial zeros of the Riemann zeta function for all real x > 0. This formula is expressed given the inverse Mellin transformation over the reciprocal zeta function. In particular, we notice that since

$$\frac{1}{\zeta(s)} = \int_{1}^{\infty} \frac{s \cdot M(x)}{x^{s+1}} dx,$$

we obtain that

$$M(x) = \lim_{T \to \infty} \frac{1}{2\pi i} \int_{T - i\infty}^{T + i\infty} \frac{x^s}{s \cdot \zeta(s)} ds.$$

This representation, along with the standard Euler product representation for the reciprocal zeta function, leads us to the exact expression for M(x) for any real x > 0 given by the next theorem.

Theorem 2.2 (Analytic Formula for M(x)). Assuming the Riemann Hypothesis (RH), we can show that there exists an infinite sequence $\{T_k\}_{k\geqslant 1}$ satisfying $k\leqslant T_k\leqslant k+1$ for each k such that for any real x>0

$$M(x) = \lim_{k \to \infty} \sum_{\substack{\rho: \zeta(\rho) = 0 \\ |\Im(\rho)| < T_k}} \frac{x^{\rho}}{\rho \cdot \zeta'(\rho)} - 2 + \sum_{n \geqslant 1} \frac{(-1)^{n-1}}{n \cdot (2n)! \zeta(2n+1)} \left(\frac{2\pi}{x}\right)^{2n} + \frac{\mu(x)}{2} \left[x \in \mathbb{Z}^+\right]_{\delta}.$$

2.2.2 Upper bounds

A historical unconditional bound on the Mertens function due to Walfisz (1963) states that there is an absolute constant C > 0 such that

$$M(x) \ll x \cdot \exp\left(-C \cdot \log^{3/5}(x)(\log\log x)^{-3/5}\right).$$

Under the assumption of the RH, Soundararajan proved new updated estimates in 2009 bounding M(x) for large x in the following forms [16]:

$$M(x) \ll \sqrt{x} \cdot \exp\left(\log^{1/2}(x)(\log\log x)^{14}\right),$$

$$M(x) = O\left(\sqrt{x} \cdot \exp\left(\log^{1/2}(x)(\log\log x)^{5/2+\epsilon}\right)\right), \ \forall \epsilon > 0.$$

To date, considerably less has been conjectured about explicit lower bounds on |M(x)| along subsequences.

2.3 Conjectures on boundedness and limiting behavior

The RH is equivalent to showing that $M(x) = O\left(x^{1/2+\varepsilon}\right)$ for any $0 < \varepsilon < \frac{1}{2}$. There is a rich history to the original statement of the Mertens conjecture which states that

$$|M(x)| < c \cdot x^{1/2}$$
, some absolute constant $c > 0$.

Mertens conjecture was first verified by Mertens for c=1 and x<10000. Since its beginnings in 1897, the conjecture has been disproven by computation of low-lying zeta function zeros in a famous paper by Odlyzko and té Riele from the early 1980's. Since the truth of the Mertens conjecture would have implied the RH, more recent attempts at bounding M(x) favor determining the rate at which the function $M(x)/\sqrt{x}$ grows without bound towards both $\pm \infty$ along infinite subsequences.

One of the most famous still unanswered questions about the Mertens function concerns whether $|M(x)|/\sqrt{x}$ is in actuality unbounded on the natural numbers. A precise statement of this problem is to produce an affirmative answer whether $\limsup_{x\to\infty} M(x)/\sqrt{x} = +\infty$ and $\liminf_{x\to\infty} M(x)/\sqrt{x} = -\infty$, or equivalently whether there is an infinite subsequence of natural numbers $\{x_1, x_2, x_3, \ldots\}$ such that the magnitude of $M(x_i)x_i^{-1/2}$ grows without bound towards either $\pm\infty$ along the subsequence. We cite that prior to this point it is only known by computation that $[13, cf. \S 4.1]$

$$\limsup_{x \to \infty} \frac{M(x)}{\sqrt{x}} > 1.060 \qquad \text{(now 1.826054)},$$

and

$$\liminf_{x \to \infty} \frac{M(x)}{\sqrt{x}} < -1.009 \qquad \text{(now } -1.837625).$$

Based on work by Odlyzyko and té Riele, it seems probable that each of these limits should evaluate to $\pm \infty$, respectively [11, 8, 9, 6].

Extensive computational evidence has produced a conjecture due to Gonek (among attempts on limiting bounds by others) that in fact the limiting behavior of M(x) satisfies that

$$\limsup_{x \to \infty} \frac{|M(x)|}{\sqrt{x} \cdot (\log \log x)^{5/4}} = O(1).$$

While it seems to be widely believed that $|M(x)|/\sqrt{x}$ tends to $+\infty$ at a logarithmic rate along subsequences, infinitely tending factors such as the $(\log\log x)^{\frac{5}{4}}$ in Gonek's conjecture do not appear to readily fall out of work on bounds for M(x) by existing methods.

3 A summary outline: Listing the core logical steps and critical components to the proof

3.1 Step-by-step overview

We offer an initial brief step-by-step summary overview of the critical components to our proof outlined in the next section of the introduction below that are proved piece-by-piece in the following sections of the article. As the proof methodology is new and relies on non-standard elements compared to more traditional methods of bounding M(x), we hope that this sketch of the logical components to our new argument makes the article easier to parse. The following outline is intended to help the reader see our logic and proof methodology as easily and quickly as possible.

- (1) We prove a matrix inversion formula relating the summatory functions of an arithmetic function f and its Dirichlet inverse f^{-1} (for $f(1) \neq 0$). See Theorem 4.1 in Section 5.
- (2) This crucial step provides us with an exact formula for M(x) in terms of $\pi(x)$, the seemingly unconnected prime counting function, and the Dirichlet inverse of the shifted additive function $g(n) := \omega(n) + 1$. This formula is stated in (1).
- (3) We tighten an updated result from [10, §7] providing uniform asymptotic formulas for the summatory functions, $\hat{\pi}_k(x)$, that indicate the parity of $\lambda(n)$ for $n \leq x$ using expansions of more combinatorially motivated Dirichlet series (see Theorem 4.7). We use this result to sum $\sum_{n \leq x} \lambda(n) f(n)$ for particular non-negative arithmetic functions f when x is large.
- (4) We then turn to the average order asymptotics of the quasi-periodic functions, $g^{-1}(n)$, by estimating this inverse function's limiting asymptotics for large $n \leq x$ as $x \to \infty$ in Section 7. We eventually use these estimates to prove a substantially unique new lower bound formula for the summatory function $G^{-1}(x) := \sum_{n \leq x} g^{-1}(n)$ along prescribed asymptotically large infinite subsequences (see Theorem 9.5).
- (5) We spend some interim time in Section 8 carefully working out a rigorous justification for why the limiting lower bounds we obtain from average order case analysis of certain arithmetic function approximations we define are sufficient to prove the limit supremum corollary below (our primary new significant result established the article).
- (6) When we return to step (2) with our new lower bounds at hand, and bootstrap, we find "magic" in the form of showing the unboundedness of $\frac{|M(x)|}{\sqrt{x}}$ along a very large increasing infinite subsequence of positive natural numbers. What we recover is a quick, and rigorous, proof of Corollary 4.11 given in Section 9.2.

3.2 Diagramatic flowchart of the proof logic with references to results

Flowchart schematic diagram:

The next flowchart diagramed below shows how the seemingly disparate components of the proof are organized. It also indicates how the separate initial "lands" of material and corresponding sets of requisite results forming the connected components to steps \mathcal{A} , \mathcal{B} and \mathcal{C} (as viewed below) combine to form the next core stages of the proof.

Key to the diagram stages:

- **Step A:** Citations and re-statements of existing theorems proved elsewhere: E.g., statements of non-trivial theorems and key results we need that are proved in the references.
 - **A.A** Key results and constructions:
 - Theorem 4.6
 - Theorem 6.1
 - Corollary 6.4
 - The results, lemmas, and facts cited in Section 5.3
 - **A.2** Lower bounds on the Abel summation based formula for $G^{-1}(x)$:
 - Theorem 4.7 (on page 25)
 - Proposition 6.5
 - Theorem 9.5
 - Lemma 9.3
 - Lemma 9.4
- **Step B:** Constructions of an exact formula for M(x): The exact formula we prove uses special arithmetic functions with particularly "nice" properties and bounds.
 - **B.B** Key results and constructions:
 - Corollary 4.3 (follows from Theorem 4.1 proved on page 19)
 - Conjecture 4.4 (to a lesser expository only extent)
 - Proposition 5.1
 - **B.2** Asymptotics for the component functions $g^{-1}(n)$ and $G^{-1}(x)$:
 - Theorem 4.5 (on page 28)
 - Lemma 7.4
 - **B.3** Simplifying formulas for $g^{-1}(n)$ and $G^{-1}(x)$:
 - Corollary 9.2
- **Step C:** A justification for why lower bounds holding on average suffice:
 - Theorem 4.8 (proved on page 31)
 - The lemmas and necessary results we use to build up to a proof that the hypotheses needed to apply the conclusion of Theorem 4.8 are actually regularly attained given in Section 8.2.
- **Step D:** Re-writing the exact formula for M(x): Key interpretations used in formulating the lower bounds based on the re-phrased integral formula.

- Proposition 9.1Theorem 9.5

Step E: The Holy Grail: A big leap two ards proving that $\frac{|M(x)|}{\sqrt{x}}$ is unbounded in the limit supremum sense. – Corollary 4.11 (on page 43)

4 An introduction to our new methodology: A concrete approach to bounding M(x) from below

4.1 Summatory functions over Dirichlet convolutions of arithmetic functions

Theorem 4.1 (Summatory functions of Dirichlet convolutions). Let $f, g: \mathbb{Z}^+ \to \mathbb{C}$ be any arithmetic functions such that $f(1) \neq 0$. Suppose that $F(x) := \sum_{n \leq x} f(n)$ and $H(x) := \sum_{n \leq x} h(n)$ denote the summatory functions of f, g, respectively, and that $F^{-1}(x)$ denotes the summatory function of the Dirichlet inverse $f^{-1}(n)$ of f. Then, letting the counting function $\pi_{f*h}(x)$ be defined as in the first equation below, we have the following equivalent expressions for the summatory function of f*h for integers $x \geq 1$:

$$\pi_{f*h}(x) = \sum_{n \leq x} \sum_{d|n} f(d)h(n/d)$$

$$= \sum_{d \leq x} f(d)H\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$

$$= \sum_{k=1}^{x} H(k) \left[F\left(\left\lfloor \frac{x}{k} \right\rfloor\right) - F\left(\left\lfloor \frac{x}{k+1} \right\rfloor\right)\right].$$

Moreover, we can invert the linear system determining the coefficients of H(k) for $1 \le k \le x$ naturally to express H(x) as a linear combination of the original left-hand-side summatory function as follows:

$$H(x) = \sum_{j=1}^{x} \pi_{f*h}(j) \left[F^{-1} \left(\left\lfloor \frac{x}{j} \right\rfloor \right) - F^{-1} \left(\left\lfloor \frac{x}{j+1} \right\rfloor \right) \right]$$
$$= \sum_{n=1}^{x} f^{-1}(n) \pi_{f*h} \left(\left\lfloor \frac{x}{n} \right\rfloor \right).$$

Corollary 4.2 (Convolutions Arising From Möbius Inversion). Suppose that g is an arithmetic function with $g(1) \neq 0$. Define the summatory function of the convolution of g with μ by $\widetilde{G}(x) := \sum_{n \leq x} (g * \mu)(n)$. Then the Mertens function equals

$$M(x) = \sum_{k=1}^{x} \left(\sum_{j=\left\lfloor \frac{x}{k+1} \right\rfloor + 1}^{\left\lfloor \frac{x}{k} \right\rfloor} g^{-1}(j) \right) \widetilde{G}(k), \forall x \geqslant 1.$$

Corollary 4.3 (A motivating special case). We have exactly that for all $x \ge 1$

$$M(x) = \sum_{k=1}^{x} (\omega + 1)^{-1}(k) \left[\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) + 1 \right]. \tag{1}$$

4.2 Fixing an exact expression for M(x) in terms of strongly additive functions

From this point on, we fix the notation for the Dirichlet invertible function $g(n) := \omega(n) + 1$ and denote its inverse with respect to Dirichlet convolution by $g^{-1}(n) = (\omega + 1)^{-1}(n)$. We can compute the first few terms for the Dirichlet inverse sequence of the arithmetic function $g(n) := \omega(n) + 1$ from Corollary 4.3 numerically for the first few sequence values as

$$\{g^{-1}(n)\}_{n\geqslant 1}=\{1,-2,-2,2,-2,5,-2,-2,2,5,-2,-7,-2,5,5,2,-2,-7,-2,-7,5,5,-2,9,\ldots\}.$$

The sign of these terms is given by $\operatorname{sgn}(g^{-1}(n)) = \frac{g^{-1}(n)}{|g^{-1}(n)|} = \lambda(n)$ (see Proposition 5.1). This useful property is inherited from the distinctly additive nature of the component function $\omega(n)$.

Consider first the following motivating conjecture:

Conjecture 4.4. Suppose that $n \ge 1$ is a squarefree integer. We have the following properties characterizing the Dirichlet inverse function $g^{-1}(n) = (\omega + 1)^{-1}(n)$ over these integers:

- $(A) q^{-1}(1) = 1;$
- (B) $\operatorname{sgn}(g^{-1}(n)) = \mu(n) \equiv \lambda(n);$
- (C) We can write the inverse function at squarefree n as

$$g^{-1}(n) = \sum_{m=0}^{\omega(n)} {\omega(n) \choose m} \cdot m!.$$

We illustrate parts (B)–(C) of this conjecture clearly using Table T.1 given on page 46 of the appendix section.

The realization that the beautiful and remarkably simple form of property (C) in Conjecture 4.4 holds for all squarefree $n \ge 1$ motivates our pursuit of formulas for the inverse functions $g^{-1}(n)$ based on the configuration of the exponents in the prime factorization of any $n \ge 2$.

For natural numbers $n \ge 1, k \ge 0$, let

$$C_k(n) := \begin{cases} \varepsilon(n) = \delta_{n,1}, & \text{if } k = 0; \\ \sum_{d \mid n} \omega(d) C_{k-1}(n/d), & \text{if } k \geqslant 1. \end{cases}$$

We have limiting asymptotics on these functions in terms of n and k within a fixed range depending on n given by the following theorem:

Theorem 4.5 (Asymptotics for the functions $C_k(n)$). For k := 0, we have by definition that $C_0(n) = \delta_{n,1}$. For all sufficiently large n > 1 and any fixed $1 \le k \le \Omega(n)$ taken independently of n, we obtain that the dominant asymptotic term for $C_k(n)$ is given uniformly by

$$\mathbb{E}[C_k(n)] \gg (\log \log n)^{2k-1}$$
, as $n \to \infty$.

Since we have that

$$(g^{-1} * 1)(n) = \lambda(n) \cdot C_{\Omega(n)}(n), \forall n \geqslant 1,$$
(2)

Möbius inversion provides us with an exact divisor sum based expression for $g^{-1}(n)$ (see Lemma 7.4). In light of the fact that (see Proposition 9.1)

$$M(x) \sim G^{-1}(x) - \sum_{k=1}^{x/2} G^{-1}(k) \cdot \frac{x}{k^2 \log(x/k)},$$

the formula in (2) implies that we can establish new finite lower bounds on M(x) along large infinite subsequences by appropriate estimates of the summatory function $G^{-1}(x)$. That is, at least provided that we have suitable estimates of the signedness of the $\lambda(n)$ for $n \leq x$ as $x \to \infty$. The summation methods we employ in Section 7 to weight sums of our arithmetic functions according to the sign of $\lambda(n)$ (or parity of $\Omega(n)$) is also reminiscent of the combinatorially motivated sieve methods in [4, §17].

4.3 Uniform asymptotics from enumerative counting DGFs in Mongomery and Vaughan

Our inspiration for the new bounds found in the last sections of this article allows us to sum non-negative arithmetic functions weighted by the Liouville lambda function, $\lambda(n) = (-1)^{\Omega(n)}$. In particular, it uses a somewhat general hybrid generating function and enumerative DGF method under which we are able to recover "good enough" asymptotics about the summatory functions that encapsulate the parity of $\lambda(n)$ through the summatory tally functions $\hat{\pi}_k(x)$. The precise statement of the theorem that we transform to state these new bounds is re-stated next as Theorem 4.6.

Theorem 4.6 (Montgomery and Vaughan, §7.4). Recall that we have defined

$$\widehat{\pi}_k(x) := \#\{n \leqslant x : \Omega(n) = k\}.$$

For R < 2 we have that

$$\widehat{\pi}_k(x) = \mathcal{G}\left(\frac{k-1}{\log\log x}\right) \frac{x}{\log x} \frac{(\log\log x)^{k-1}}{(k-1)!} \left(1 + O_R\left(\frac{k}{(\log\log x)^2}\right)\right),$$

uniformly for $1 \le k \le R \log \log x$ where

$$\mathcal{G}(z) := \frac{1}{\Gamma(z+1)} \times \prod_{p} \left(1 - \frac{z}{p}\right)^{-1} \left(1 - \frac{1}{p}\right)^{z}, z \geqslant 0.$$

The next theorem, proved carefully in Section 6, is the primary starting point for our new asymptotic lower bounds.

Theorem 4.7 (Generating functions of symmetric functions). We obtain lower bounds of the following form on the function $\mathcal{G}(z)$ from Theorem 4.6 for $A_0 > 0$ an absolute constant, for $C_0(z)$ a strictly linear function only in z, and where we must take $0 \le z < 1$, or equivalently $1 \le k \le \log \log x$ for x large:

$$\mathcal{G}(z) \geqslant A_0 \cdot (1-z)^3 \cdot C_0(z)^z.$$

It suffices to take the components to the bound in the previous equation as

$$A_0 = \frac{2^{9/16} \exp\left(-\frac{55}{4} \log^2(2)\right)}{(3e \log 2)^3 \cdot \Gamma\left(\frac{5}{2}\right)} \approx 3.81296 \times 10^{-6}$$

$$C_0(z) = \frac{4(1-z)}{3e \log 2}.$$

In particular, with $0 \le z \le 1$ and $z \equiv z(k,x) = \frac{k-1}{\log \log x}$, by Theorem 4.6, we have that

$$\widehat{\pi}_k(x) \gg \frac{A_0 \cdot x}{\log x \cdot (\log \log x)^4 \cdot (k-1)!} \cdot \left(\frac{4}{3e \log 2}\right)^{\frac{k}{\log \log x}}.$$

- 4.4 Rigorous proofs justifying that so-called average case lower bounds still recover meaningful asymptotics when viewed as bounds that hold more globally
- 4.4.1 An average-to-global phenomenon for the average case analysis of our new lower bounds

Theorem 4.8. Let the summatory function $G_E^{-1}(x)$ be defined for $x \ge 1$ by

$$G_E^{-1}(x) := \sum_{n \leqslant \log x} \lambda(n) \times \sum_{\substack{d \mid n \\ d > e^e}} (\log d) (\log \log d)^{2\log \log d - 1}.$$

$$\tag{3}$$

If for some respectively minimally and maximally defined absolute constants $B, C \in (0,1)$, we have that as $x \to \infty$

$$B + o(1) \le \frac{1}{x} \cdot \# \{ n \le x : |G^{-1}(n)| - |G_E^{-1}(n)| \le 0 \} \le C + o(1),$$

then there is some $\varepsilon \in (0,1)$ (depending on B,C) with $0 < B - \varepsilon, C + \varepsilon < 1$ such that for all sufficiently large x we have some $x_0 \in [(B - \varepsilon)x, (C + \varepsilon)x]$ such that

$$|G^{-1}(x_0)| \geqslant |G_E^{-1}(x_0)|$$
.

We prove Theorem 4.8, and go on to rigorously justify that its hypotheses are in fact regularly attainable, in Section 8. This result combines to allow us to take lower bounds based on average case estimates of certain arithmetic functions we have defined to approximate $g^{-1}(n)$ and still recover an infinite subsequence along which we can witness the unboundedness in Corollary 4.11 stated below.

4.4.2 A rigorous basis for our intuition

There does not appear to be an easy, nor subtle direct recursion between the distinct g^{-1} values, except through auxiliary function sequences. However, the distribution of distinct sets of prime exponents is fairly regular with $\omega(n)$ and $\Omega(n)$ playing a crucial role in the repitition of common values of $g^{-1}(n)$. The following observation is suggestive of the quasi-periodicity at play with the distinct values of $g^{-1}(n)$ distributed over $n \ge 2$:

Heuristic 4.9 (Symmetry in $g^{-1}(n)$ in the exponents in the prime factorization of n). Suppose that $n_1, n_2 \ge 2$ are such that their factorizations into distinct primes are given by $n_1 = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ and $n_2 = q_1^{\beta_1} \cdots q_r^{\beta_r}$. If $\{\alpha_1, \ldots, \alpha_r\} \equiv \{\beta_1, \ldots, \beta_r\}$ as multisets of prime exponents, then $g^{-1}(n_1) = g^{-1}(n_2)$. For example, g^{-1} has the same values on the squarefree integers with exactly two, three, and so on prime factors (see Table T.1 starting on page 46).

The next remark then makes clear what our intuiton ought suggest about the relation of the actual function values to the average case expectation of $q^{-1}(n)$ for $n \le x$ when x is large.

Remark 4.10 (Essential components of the proof). Given that we have chosen to work with a representation for M(x) that depends critically on the distribution of the values of the additive functions, $\omega(n)$ and $\Omega(n)$, there is substantial intuition involved á priori that suggests our sums over these functions ought behave regularly on average. Thus when it comes to recovering globally regular behavior from an average case analysis of bounds of our new arithmetic functions from below, the choice in stating (1) as it depends on the cannonical additive function examples we have cited is absolutely essential to the success of our proof.

Stated precisely, when we define the function $\Phi(z) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt$, for any real bounding parameter $z \in (-\infty, +\infty)$, we have that [7, §1.7]

$$\#\left\{n \leqslant x : \frac{\omega(n) - \log\log x}{\sqrt{\log\log x}} \leqslant z\right\} = \Phi(z) \cdot x + o(1),$$

and that uniformly for $-Z \le z \le Z$ with respect to any Z > 0 [10, §7.4]

$$\#\left\{3 \leqslant n \leqslant x : \frac{\Omega(n) - \log\log n}{\sqrt{\log\log n}} \leqslant z\right\} = \Phi(z) \cdot x + O_Z\left(\frac{x}{\sqrt{\log\log x}}\right).$$

That is, notably, since we have an Erdös-Kac like theorem for each of $\omega(n)$ and $\Omega(n)$ as above, which when the bounding parameter is set to z := 0, we provably can expect these sums involving the classically "nice" functions to tend towards their average case asymptotic nature infinitely often, and predictably near any large x (cf. Theorem 6.1).

4.5 Cracking the classical unboundedness barrier

In Section 9, we are able to state what forms the culmination of the results we carefully build up to in the proofs established in prior sections of the article. What we eventually obtain at the conclusion of the section is the following important summary corollary that resolves the classical question of the unboundedness of the scaled function Mertens function $|M(x)|/\sqrt{x}$ in the limit supremum sense:

Corollary 4.11 (Unboundedness of the Mertens function scaled by \sqrt{x}). Let $u_0 := e^{2e^{e^2}}$ and define the infinite increasing subsequence, $\{x_{0,n}\}_{n\geqslant 1}$, by $x_{0,n} := e^{2e^{e^2}}$. We have that along the increasing subsequence $\{x_y\}_{y\gg 1}$, where $x_y \in (x_{0,y-1},x_{0,y+1})$ pointwise at each y, for all sufficiently large $y\gg \max(\lceil x_{0,1}\rceil+1,u_0+2)$ the following bound holds:

$$\frac{|M(x_y)|}{\sqrt{x_y}} \gg \frac{(\log\log\sqrt{x_y})^3 \sqrt{\log\log\log\sqrt{x_y}}}{(\log\log\log\log\sqrt{x_y})^{\frac{5}{2}}}, \text{ as } y \to \infty.$$

This is all to say that in establishing the rigorous proof of Corollary 4.11 based on our new methods, we not only show that

$$\limsup_{x \to \infty} \frac{|M(x)|}{\sqrt{x}} = +\infty,$$

but also set a minimal rate (along a large infinite subsequence) at which this form of the scaled Mertens function grows without bound.

5 Preliminary proofs of lemmas and new results

The purpose of this section is to provide proofs and statements of elementary and otherwise well established facts and results. In particular, the proof of Theorem 4.1 allows us to easily justify the formula in (1). This formula is the crucial formulation that constitutes an exact expression for M(x). The indispensible property inherent to the arithmetic functions, $\omega(n)$ and $g^{-1}(n)$, that are used to state the formula are strong additivity, which leads to the sign of the inverse function $g^{-1}(n)$ being given by $\lambda(n)$. Hence the summatory function of $g^{-1}(n)$ is intimately tied to the exact limiting distribution of the values of $\Omega(n)$.

5.1 Establishing the summatory function inversion identities

We will prove Theorem 4.1, a crucial component to our new more combinatorial formulations used to bound M(x) in later sections, using matrix methods before moving on. Related results on summations of Dirichlet convolutions appear in [1, §2.14; §3.10; §3.12; cf. §4.9, p. 95].

Proof of Theorem 4.1. Let h, g be arithmetic functions where $g(1) \neq 0$ necessarily has a Dirichlet inverse. Denote the summatory functions of h and g, respectively, by $H(x) = \sum_{n \leqslant x} h(n)$ and $G(x) = \sum_{n \leqslant x} g(n)$. We define $\pi_{g*h}(x)$ to be the summatory function of the Dirichlet convolution of g with h: g*h. Then we can easily see that the following expansions hold:

$$\pi_{g*h}(x) := \sum_{n=1}^{x} \sum_{d|n} g(n)h(n/d) = \sum_{d=1}^{x} g(d)H\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$
$$= \sum_{i=1}^{x} \left[G\left(\left\lfloor \frac{x}{i} \right\rfloor\right) - G\left(\left\lfloor \frac{x}{i+1} \right\rfloor\right) \right] H(i).$$

We form the matrix of coefficients associated with this system for H(x), and proceed to invert it to express an exact solution for this function over all $x \ge 1$. Let the ordinary (initial, non-inverse) matrix entries be denoted by

$$g_{x,j} := G\left(\left\lfloor \frac{x}{j} \right\rfloor\right) - G\left(\left\lfloor \frac{x}{j+1} \right\rfloor\right) \equiv G_{x,j} - G_{x,j+1}.$$

The matrix we must invert in this problem is lower triangular, with ones on its diagonals – and hence is invertible. Moreover, if we let $\hat{G} := (G_{x,j})$, then this matrix is expressable by an invertible shift operation as

$$(g_{x,j}) = \hat{G}(I - U^T);$$
 $U = (\delta_{i,j+1}), (I - U^T)^{-1} = ([j \le i]_{\delta}).$

Here, U is the $N \times N$ matrix whose $(i,j)^{th}$ entries are defined by $(U)_{i,j} = \delta_{i+1,j}$.

It is a useful fact that if we take successive differences of floor functions, we get non-zero behavior at divisors:

$$G\left(\left\lfloor \frac{x}{j}\right\rfloor\right) - G\left(\left\lfloor \frac{x-1}{j}\right\rfloor\right) = \begin{cases} g\left(\frac{x}{j}\right), & \text{if } j|x; \\ 0, & \text{otherwise.} \end{cases}$$

We use this property to shift the matrix \hat{G} , and then invert the result, to obtain a matrix involving the Dirichlet inverse of g:

$$\left[(I - U^T) \hat{G} \right]^{-1} = \left(g \left(\frac{x}{j} \right) [j|x]_{\delta} \right)^{-1} = \left(g^{-1} \left(\frac{x}{j} \right) [j|x]_{\delta} \right).$$

Now we can express the inverse of the target matrix $(g_{x,j})$ in terms of these Dirichlet inverse functions as follows:

$$(g_{x,j}) = (I - U^T)^{-1} \left(g\left(\frac{x}{j}\right) [j|x]_{\delta} \right) (I - U^T)$$

$$(g_{x,j})^{-1} = (I - U^T)^{-1} \left(g^{-1} \left(\frac{x}{j} \right) [j|x]_{\delta} \right) (I - U^T)$$

$$= \left(\sum_{k=1}^{\left\lfloor \frac{x}{j} \right\rfloor} g^{-1}(k) \right) (I - U^T)$$

$$= \left(\sum_{k=1}^{\left\lfloor \frac{x}{j} \right\rfloor} g^{-1}(k) - \sum_{k=1}^{\left\lfloor \frac{x}{j+1} \right\rfloor} g^{-1}(k) \right).$$

Thus the summatory function H is exactly expressed by the inverse vector product of the form

$$H(x) = \sum_{k=1}^{x} g_{x,k}^{-1} \cdot \pi_{g*h}(k)$$

$$= \sum_{k=1}^{x} \left(\sum_{j=\left\lfloor \frac{x}{k+1} \right\rfloor + 1}^{\left\lfloor \frac{x}{k} \right\rfloor} g^{-1}(j) \right) \cdot \pi_{g*h}(k).\square$$

5.2 Proving the crucial signedness property from the conjecture

Let $\chi_{\mathbb{P}}$ denote the characteristic function of the primes, $\varepsilon(n) = \delta_{n,1}$ be the multiplicative identity with respect to Dirichlet convolution, and denote by $\omega(n)$ the strongly additive function that counts the number of distinct prime factors of n. Then we can easily prove that

$$\chi_{\mathbb{P}} + \varepsilon = (\omega + 1) * \mu. \tag{4}$$

When combined with Corollary 4.2, an immediate consequence of Theorem 4.1, this convolution identity yields the necessary convolution identity that yields the exact formula for M(x) stated in (1) of Corollary 4.3.

The proof of the next proposition is essential to our argument given in later sections. We try to keep the argument brief while sketching all relevant details to rigorously justifying the key parts to the proof of our claim.

Proposition 5.1 (The key signedness property of $g^{-1}(n)$). For the Dirichlet invertible function, $g(n) := \omega(n) + 1$ defined such that g(1) = 1, at any $n \ge 1$, we have that $\operatorname{sgn}(g^{-1}(n)) = \lambda(n)$. The notation for the operation given by $\operatorname{sgn}(h(n)) = \frac{h(n)}{|h(n)| + [h(n) = 0]_{\delta}} \in \{0, \pm 1\}$ denotes the sign of the arithmetic function h at n.

Proof. Recall that $D_f(s) := \sum_{n \ge 1} f(n) n^{-s}$ denotes the Dirichlet generating function (DGF) of any arithmetic function f(n) which is convergent for all $s \in \mathbb{C}$ satisfying $\Re(s) > \sigma_f$. In particular, recall that $D_1(s) = \zeta(s)$, $D_{\mu}(s) = 1/\zeta(s)$ and $D_{\omega}(s) = P(s)\zeta(s)$. Then by (4) and the known property that the DGF of $f^{-1}(n)$ is the reciprocal of the DGF of the original arithmetic function f, for all $\Re(s) > 1$ we have

$$D_{(\omega+1)^{-1}}(s) = \frac{1}{(P(s)+1)\zeta(s)}. (5)$$

It follows that $(\omega + 1)^{-1}(n) = (h^{-1} * \mu)(n)$ when we take $h := \chi_{\mathbb{P}} + 1$. We show that $\operatorname{sgn}(h^{-1}) = \lambda$. From this fact, it follows by inspection that $\operatorname{sgn}(h^{-1} * \mu) = \lambda$. The remainder of the proof fills in the precise details needed to make this intuition precise.

By the standard recurrence relation we used to define the Dirichlet inverse function of any arithmetic function h such that $h(1) = 1 \neq 0$, we have that

$$h^{-1}(n) = \begin{cases} 1, & n = 1; \\ -\sum_{\substack{d \mid n \\ d > 1}} h(d)h^{-1}(n/d), & n \ge 2. \end{cases}$$
 (6)

For $n \ge 2$, the summands in (6) can be simply indexed over the primes p|n. This observation yields that we can inductively expand these sums into nested divisor sums provided the depth of the sums does not exceed the capacity to index summations over the primes dividing n. Namely, notice that for $n \ge 2$

$$h^{-1}(n) = -\sum_{p|n} h^{-1}(n/p), \qquad \text{if } \Omega(n) \ge 1$$

$$= \sum_{p_1|n} \sum_{p_2|\frac{n}{p_1}} h^{-1}\left(\frac{n}{p_1 p_2}\right), \qquad \text{if } \Omega(n) \ge 2$$

$$= -\sum_{p_1|n} \sum_{p_2|\frac{n}{p_1}} \sum_{p_3|\frac{n}{p_1 p_2}} h^{-1}\left(\frac{n}{p_1 p_2 p_3}\right), \qquad \text{if } \Omega(n) \ge 3.$$

Then by induction, again with $h^{-1}(1) = 1$, we obtain by expanding the nested divisor sums as above to their maximal depth as

$$h^{-1}(n) = \lambda(n) \times \sum_{p_1 \mid n} \sum_{p_2 \mid \frac{n}{p_2}} \times \dots \times \sum_{p_{\Omega(n)} \mid \frac{n}{p_1 p_2 \dots p_{\Omega(n)} - 1}} 1, n \ge 2.$$

If for $n \ge 2$ we write the prime factorization of n as $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_{\omega(n)}^{\alpha_{\omega(n)}}$ where the exponents $\alpha_i \ge 1$ are all non-zero for $1 \le i \le \omega(n)$, we can see that

$$h^{-1}(n) \ge \lambda(n) \times 1 \cdot 2 \cdot 3 \cdots \omega(n) = \lambda(n) \times (\omega(n))!, \qquad n \ge 2$$

$$h^{-1}(n) \le \lambda(n) \times (\omega(n))!^{\max(\alpha_1, \alpha_2, \dots, \alpha_{\omega(n)})}, \qquad n \ge 2.$$

In other words, what these bounds show is that for all $n \ge 1$ (with $\lambda(1) = 1$) the following property holds:

$$\operatorname{sgn}(h^{-1}(n)) = \lambda(n). \tag{7}$$

By (7), we immediately have bounding constants $1 \leq C_{1,n}, C_{2,n} < +\infty$ that exist for each $n \geq 1$ so that

$$C_{1,n} \cdot (\lambda * \mu)(n) \leqslant (h^{-1} * \mu)(n) \leqslant C_{2,n} \cdot (\lambda * \mu)(n).$$
(8)

Since both λ, μ are multiplicative, the convolution $\lambda * \mu$ is multiplicative. We know that the values of any multiplicative function are uniquely determined by its action at prime powers. So we can compute that for any prime p and non-negative integer exponents $\alpha \geq 1$ that

$$(\lambda * \mu)(p^{\alpha}) = \sum_{i=0}^{\alpha} \lambda(p^{\alpha-i})\mu(p^{i})$$

$$= \lambda(p^{\alpha}) - \lambda(p^{\alpha-1})$$

$$= (-1)^{\Omega(p^{\alpha})} - (-1)^{\Omega(p^{\alpha-1})} = (-1)^{\alpha} - (-1)^{\alpha-1} = 2\lambda(p^{\alpha}).$$

Then by the multiplicativity of $\lambda(n)$, the previous inequalities derived in (8) are re-stated in the form of

$$2C_{1,n} \cdot \lambda(n) \leqslant h^{-1}(n) \leqslant 2C_{2,n} \cdot \lambda(n).$$

Since the absolute constants $C_{1,n}, C_{2,n}$ are always positive for all $n \ge 1$, we clearly recover the signedness of $g^{-1}(n)$ as $\lambda(n)$.

5.3 Other facts and listings of known limiting asymptotic results we require

Theorem 5.2 (Mertens theorem). For all $x \ge 2$ we have that

$$P_1(x) := \sum_{p \le x} \frac{1}{p} = \log \log x + B + o(1),$$

where $B \approx 0.2614972128476427837554$ is an explicitly defined absolute constant ^A.

Corollary 5.3. We have that for all sufficiently large $x \gg 1$

$$\prod_{p \le x} \left(1 - \frac{1}{p} \right) = \frac{e^{-B}}{\log x} \left(1 + o(1) \right),$$

where the notation for the absolute constant 0 < B < 1 coincides with the definition of Mertens constant from Theorem 5.2. Hence, for any real 1 < z < 2 we obtain that

$$\prod_{p \le x} \left(1 - \frac{1}{p} \right)^z = \frac{e^{-Bz}}{(\log x)^z} \left(1 + o(1) \right)^z \sim \frac{e^{-Bz}}{(\log x)^z}, \text{ as } x \to \infty.$$

Facts 5.4 (Asymptotics for exponential integrals and incomplete gamma functions). The following two variants of the *exponential integral function* are defined by [12, §8.19]

$$\operatorname{Ei}(x) := \int_{-x}^{\infty} \frac{e^{-t}}{t} dt,$$

$$E_1(z) := \int_{1}^{\infty} \frac{e^{-tz}}{t} dt, \Re(z) \geqslant 0,$$

where $\text{Ei}(-kz) = -E_1(kz)$ for real k > 0. We have the following inequalities providing quasi-polynomial upper and lower bounds on $E_1(z)$:

$$1 - \frac{3}{4}z \le E_1(z) - \gamma - \log z \le 1 - \frac{3}{4}z + \frac{11}{36}z^2.$$
(9a)

A related function is the (upper) incomplete gamma function defined by [12, §8.4]

$$\Gamma(s,x) = \int_{x}^{\infty} t^{s-1}e^{-t}dt, \Re(s) > 0.$$

We have the following properties of $\Gamma(s,x)$:

$$\Gamma(s,x) = (s-1)! \cdot e^{-x} \times \sum_{k=0}^{s-1} \frac{x^k}{k!}, s \in \mathbb{Z}^+,$$
 (9b)

$$\Gamma(s,x) \sim x^{s-1} \cdot e^{-x}, |x| \to +\infty.$$
 (9c)

$$B = \gamma + \sum_{m \ge 2} \frac{\mu(m)}{m} \log \left[\zeta(m) \right],$$

where $\gamma \approx 0.577215664902$ is Euler's gamma constant.

^AExactly, we have that the *Mertens constant* is defined by

6 Summing arithmetic functions weighted by $\lambda(n)$

In this section, we re-state a couple of key results proved in [10, §7.4] that we rely on to state and prove Corollary 6.4 stated below. This corollary is important as it shows that (signed) summatory functions over $\hat{\pi}(x)$ capture the dominant asymptotics of the full summatory function formed by taking $1 \le k \le \log_2(x)$ when we truncate and instead sum only up to the uniform bound of $1 \le k \le \log\log x$ guaranteed by applying Theorem 4.6.

We also prove Theorem 4.7 in this section. This key theorem allows us to establish a global minimum we can attain on the function $\mathcal{G}(z)$ from Theorem 4.6 by truncating the formerly stated infinite range of the primes p over which we take a component product in the definition of this function. This in turn implies the uniform lower bounds on $\hat{\pi}_k(x)$ guaranteed by that theorem by a straightforward manipulation of inequalities.

6.1 Discussion: The enumerative DGF result from Montgomery and Vaughan

What the enumeratively-flavored result of Montgomery and Vaughan in Theorem 4.6 allows us to do is get a "good enough" lower bound on sums of positive and asymptotically bounded arithmetic functions weighted by the Liouville lambda function, $\lambda(n) = (-1)^{\Omega(n)}$. For comparison, we already have known, more classical bounds due to Erdös (and earlier) that we can tightly bound [2, 10]

$$\pi_k(x) = (1 + o(1)) \cdot \frac{x}{\log x} \frac{(\log \log x)^{k-1}}{(k-1)!}.$$

We seek to approximate the right-hand-side of $\mathcal{G}(z)$ by only taking the products of the primes $p \leq u$, e.g., indexing the component products only over those primes $p \in \{2, 3, 5, \dots, u\}$ for some minimal upper bound u (with respect to x) as $x \to \infty$.

We also state the following theorems reproduced from [10, §7.4] that handle the relative scarcity of the distribution of the $\Omega(n)$ for $n \leq x$ such that $\Omega(n) > \log \log x$.

Theorem 6.1 (Bounds on exceptional values of $\Omega(n)$ for large n). Let

$$A(x,r) := \# \left\{ n \leqslant x : \Omega(n) \leqslant r \cdot \log \log x \right\},$$

$$B(x,r) := \# \left\{ n \leqslant x : \Omega(n) \geqslant r \cdot \log \log x \right\}.$$

If $0 < r \le 1$ and $x \ge 2$, then

$$A(x,r) \ll x (\log x)^{r-1-r\log r}, \quad as \ x \to \infty.$$

If $1 \le r \le R < 2$ and $x \ge 2$, then

$$B(x,r) \ll_R x \cdot (\log x)^{r-1-r\log r}$$
, as $x \to \infty$.

Theorem 6.2 (Bounds on exceptional values of $\Omega(n)$ for large n, MV 7.21). We have that uniformly

$$\# \{3 \le n \le x : \Omega(n) - \log \log n \le 0\} = \frac{x}{2} + O\left(\frac{x}{\sqrt{\log \log x}}\right).$$

Remark 6.3. The proofs of Theorem 6.1 and Theorem 6.2 are found in Chapter 7 of Montgomery and Vaughan. The key interpretation we need is the result stated in the next corollary. In the previous theorem, the dependence on R, and the necessity of using the conditional relation \ll_R , serves to denote this R as a bounding (maximally limiting) parameter on the input $r \in (1, R)$ to the functions B(x, r). The precise way in which the bound stated in this cited theorem depends on this bounded, indeterminate parameter R can be reviewed for reference in the proof algebra and relations cited in the reference [10, §7]. The role of the parameter R involved in stating the previous theorem is notably important as a scalar factor the upper bound on $k \leq R \log \log x$ in Theorem 4.6 up to which we obtain the valid uniform bounds in x on the asymptotics for $\widehat{\pi}_k(x)$.

We have a discrepancy to work out in so much as we can only form summatory functions over the $\hat{\pi}_k(x)$ for $1 \le k \le R \log \log x$ using the desirable, or "nice", asymptotic formulas guaranteed by Theorem 4.6, even though we can actually have contributions from values distributed throughout the range $1 \le \Omega(n) \le \log_2(n)$. It is then crucial that we can show that the dominant growth of the asymptotic formulas we obtain for these summatory functions is captured by summing only over k in the truncated range where the uniform formulas hold. In particular, we will require a proof that we can discard the terms in the full summatory function asymptotic formulas as negligible (up to at most a constant) for large x when they happen to fall in the limiting exceptional range of $\Omega(n) > R \log \log x$ for $n \le x$.

Corollary 6.4. Using the notation for A(x,r) and B(x,r) from Theorem 6.1, we have that for $\delta > 0$,

$$0 \le \left| \frac{B(x, 1+\delta)}{A(x, 1)} \right| \ll 2$$
, as $\delta \to 0^+, x \to \infty$.

Proof. The lower bound stated above should be clear. To show that the asymptotic upper bound is correct, we compute using Theorem 6.1 and Theorem 6.2 that

$$\left| \frac{B(x, 1+\delta)}{A(x, 1)} \right| \ll \left| \frac{x \cdot (\log x)^{\delta - \delta \log(1+\delta)}}{\widehat{\pi}_1(x) + \widehat{\pi}_2(x) + \frac{x}{2} + O\left(\frac{x}{\sqrt{\log \log x}}\right)} \right|$$

$$\sim \left| \frac{x \cdot (\log x)^{\delta - \delta \log(1+\delta)}}{\frac{x}{\log x} + \frac{x \cdot (\log \log x)}{\log x} + \frac{x}{2} + O\left(\frac{x}{\sqrt{\log \log x}}\right)} \right|$$

$$= \left| \frac{(\log x)^{1+\delta - \delta \log(1+\delta)}}{1 + \log \log x + \frac{\log x}{2} + o(1)} \right|$$

$$\xrightarrow{\delta \to 0^+} \left| \frac{(\log x)}{1 + \log \log x + \frac{\log x}{2} + o(1)} \right|$$

$$\sim 2,$$

as $x \to \infty$. Notice that since $\mathbb{E}[\Omega(n)] = \log \log n + B$ for 0 < B < 1, the absolute constant from Mertens theorem, when we apply this result, when we denote the range of $k > \log \log x$ as holding in the form of $k > (1+\delta) \log \log x$, we can assume that $\delta \to 0^+$ as $x \to \infty$.

We again emphasize that Corollary 6.4 implies that for sums involving $\hat{\pi}_k(x)$ indexed by k, we can capture the dominant asymptotic behavior of these sums by taking k in the truncated range $1 \le k \le \log \log x$, e.g., with $0 \le z < 1$ in Theorem 4.6. This fact will be important when we prove Theorem 9.5 in Section 9 using a sign-weighted summatory function in Abel summation that depends on these functions (see Lemma 9.3).

6.2 The key new results utilizing Theorem 4.6

We will require a handle on partial sums of integer powers of the reciprocal primes as functions of the integral exponent and the upper summation index x. The next corollary is not a triviality as it comes in handy when we take to the next task of proving the bound in Theorem 4.7. The statement of Proposition 6.5 effectively provides a coarse rate in x below which the reciprocal prime sums tend to absolute constants given by the prime zeta function, P(s). We also require the finite-degree polynomial dependence of these bounds on s to simplify the computations in the theorem below.

Proposition 6.5. For real $s \ge 1$, let

$$P_s(x) := \sum_{p \leqslant x} p^{-s}, x \geqslant 2.$$

When s := 1, we have the known bound in Mertens theorem (see Theorem 5.2). For real s > 1, we obtain that

$$P_s(x) \approx E_1((s-1)\log 2) - E_1((s-1)\log x) + o(1).$$

In particular, for all integers $s \ge 2$ there is an absolutely defined bounding function $\gamma_1(s,x)$ such that

$$P_s(x) \leq \gamma_1(s, x) + o(1)$$
, as $x \to \infty$.

It suffices to take the bounding function in the previous equation as

$$\gamma_1(s,x) := -s \log \left(\frac{\log x}{\log 2} \right) + \frac{3}{4} s(s-1) \log(x/2) + \frac{11}{36} s(s-1)^2 \log^2(2).$$

Proof. Let s>1 be real-valued. By Abel summation with the summatory function $A(x)=\pi(x)\sim\frac{x}{\log x}$ and where our target function smooth function $f(t)=t^{-s}$ with $f'(t)=-s\cdot t^{-(s+1)}$ at each fixed s>1, we obtain that

$$P_s(x) = \frac{1}{x^s \cdot \log x} + s \cdot \int_2^x \frac{dt}{t^s \log t}$$

= $E_1((s-1)\log 2) - E_1((s-1)\log x) + o(1), |x| \to \infty.$

Now using the inequalities in Facts 5.4, we obtain that the difference of the exponential integral functions is bounded above and below by

$$\frac{P_s(x)}{s} \ge -\log\left(\frac{\log x}{\log 2}\right) + \frac{3}{4}(s-1)\log(x/2) - \frac{11}{36}(s-1)^2\log^2(x)$$
$$\frac{P_s(x)}{s} \le -\log\left(\frac{\log x}{\log 2}\right) + \frac{3}{4}(s-1)\log(x/2) + \frac{11}{36}(s-1)^2\log^2(2).$$

This completes the proof of the bounds cited above in the statement of this lemma.

Proof of Theorem 4.7. We have that for all integers $0 \le k \le m$

$$[z^k] \prod_{1 \le i \le m} (1 - f(i)z)^{-1} = [z^k] \exp\left(\sum_{j \ge 1} \left(\sum_{i=1}^m f(i)^j\right) \frac{z^j}{j}\right).$$
 (10)

In our case we have that f(i) denotes the i^{th} prime. Hence, summing over all $p \le ux$ in place of $0 \le k \le m$ in the previous formula in tandem with Proposition 6.5, we obtain that the logarithm of the generating function in z obtained when we sum over all $p \le ux$ for some minimal parameter u is given by

$$\log \left[\prod_{p \leqslant ux} \left(1 - \frac{z}{p} \right)^{-1} \right] \geqslant (B + \log \log(ux))z + \sum_{j \geqslant 2} \left[a(ux) + b(ux)(j-1) + c(ux)(j-1)^2 \right] z^j$$

$$= (B + \log \log(ux))z - a(ux) \left(1 + \frac{1}{z-1} + z \right)$$

$$+ b(ux) \left(1 + \frac{2}{z-1} + \frac{1}{(z-1)^2} \right)$$

$$- c(ux) \left(1 + \frac{4}{z-1} + \frac{5}{(z-1)^2} + \frac{2}{(z-1)^3} \right)$$

$$=: \widehat{\mathcal{B}}(u, x; z).$$

In the previous equations, the lower bounds formed by the functions (a, b, c) evaluated at ux are given by the corresponding upper bounds from Proposition 6.5 due to the leading sign on the previous expansions as

$$(a_{\ell}, b_{\ell}, c_{\ell}) := \left(-\log\left(\frac{\log(ux)}{\log 2}\right), \frac{3}{4}\log\left(\frac{ux}{2}\right), \frac{11}{36}\log^2 2\right).$$

Now we make a decision to set the uniform bound parameter to a middle ground value of 1 < R < 2 at $R := \frac{3}{2}$ (practically, to be truncated and taken as though $R \equiv 1$ in sums by the restriction that $z \leq 1$) so that

$$z \equiv z(k, x) = \frac{k}{\log \log x} \in (0, R),$$

for $x \gg 1$ very large. Thus $(z-1)^{-m} \in [(-1)^m, 2^m]$ for integers $m \geqslant 1$, and so we can obtain the lower bound stated below. Namely, these bounds on the signed reciprocals of z-1 lead to an effective bound of the following form:

$$\widehat{\mathcal{B}}(u, x; z) \ge (B + \log \log(ux))z - a(ux)\left(1 + \frac{1}{z - 1} + z\right) + b(ux)\left(1 + \frac{2}{z - 1} + \frac{1}{(z - 1)^2}\right) - 45 \cdot c(ux).$$

Since the function c(ux) is constant, we then also obtain the next bounds.

$$\frac{e^{-Bz}}{(\log(ux))^{z}} \times \exp\left(\widehat{\mathcal{B}}(u,x;z)\right) \geqslant \exp\left(-\frac{55}{4}\log^{2}(2)\right) \times \left(\frac{\log(ux)}{\log 2}\right)^{1+\frac{1}{z-1}+z} \times \left(\frac{ux}{2}\right)^{\frac{3}{4}\left(1+\frac{2}{z-1}+\frac{1}{(z-1)^{2}}\right)} \\
=: \widehat{\mathcal{C}}(u,x;z) \tag{11}$$

Now we need to determine which values of u minimize the expression for the function defined in (11). For this we will use a somewhat limited elementary method from introdutory calculus to determine a global minimum for the products. We can symbolically use Mathematica to see that

$$\left. \frac{\partial}{\partial u} \left[\widehat{\mathcal{C}}(u, x; z) \right] \right|_{u \mapsto u_0} = 0 \implies u_0 \in \left\{ \frac{1}{x}, \frac{1}{x} e^{-\frac{4}{3}(z-1)} \right\}.$$

When we substitute this outstanding parameter value of $u_0 =: \hat{u}_0 \mapsto \frac{1}{x} e^{-\frac{4}{3}(z-1)}$ into the next expression for the second derivative of the same function $\hat{\mathcal{C}}(u, x; z)$ we obtain

$$\frac{\partial^2}{\partial u^2} \left[\widehat{\mathcal{C}}(u, x; z) \right]_{u = \hat{u}_0} = \exp\left(-\frac{55}{4} \log^2(2) \right) x^2 2^{\frac{8z^3 - 27z^2 + 32z - 16}{4(z-1)^2}} 3^{-z + \frac{1}{1-z} + 1} e^{\frac{5z^2 - 16z + 8}{3(z-1)}} \times (1-z)^{z + \frac{1}{z-1} - 2} z^2 \log(2)^{\frac{z^2}{1-z}} > 0,$$

provided that z < 1. The restriction to $0 \le z < 1$ is equivalent to requiring that $1 \le k \le \log \log x$ in Theorem 4.6. This restriction on k to note leads to a minimum value on the partial product, or lower bound, at this $u = \hat{u}_0$ since the second derivative is positive at this critical value for z within this range.

After substitution of $u = \frac{1}{x}e^{-\frac{4}{3}(z-1)}$ into the expression for $\hat{\mathcal{C}}(u,x;z)$ defined above, we have that

$$\widehat{C}(u, x; z) \ge \exp\left(-\frac{55}{4}\log^2(2)\right) \cdot 2^{\frac{9}{16}} \left(\frac{1-z}{3e\log 2}\right)^3 \times \left(\frac{4(1-z)}{3e\log 2}\right)^z.$$

Finally, since $z \equiv z(k,x) = \frac{k}{\log\log x}$ and $k \in [0, R\log\log x)$, we obtain that for small k and $x \gg 1$ large $\Gamma(z+1) \approx 1$, and for k towards the upper range of its interval that $\Gamma(z+1) \approx \Gamma(5/2) = \frac{3}{4}\sqrt{\pi}$. In total, what we get out of these formulas is stated up to accurate constant factor as in the theorem bounds.

7 Bounding the Dirichlet inverse functions, $g^{-1}(n)$, from below on average

This section is essential because we prove key results that allow us to bound the oscillatory Dirichlet inverse functions $g^{-1}(n)$ from the exact formula for M(x) given in (1). Using summation by parts, we eventually show that this formula can be approximated with a clear dependency on the summatory functions $G^{-1}(x)$ of $g^{-1}(n)$ by the integral formula we later state and prove as Proposition 9.1.

The pages of tabular data given as Table T.1 given in the appendix section starting on page 46 are intended to provide clear insight into why we arrived at the convenient approximations to $g^{-1}(n)$ proved in this section. The table offers illustrative numerical data formed by examining the approximate behavior at work here for the asymptotically small order cases of $1 \le n \le 500$ with *Mathematica*.

It happens that Conjecture 4.4 is not the most simple accurate way to express the limiting behavior of the Dirichlet inverse functions $g^{-1}(n)$ we can formulate, though it does capture an important characteristic that is true more globally than just at the squarefree integers $n \ge 1$. Namely, that these functions can be expressed via more simple formulas than inspection of the initial repetitive, quasi-periodic sequence properties in the table might otherwise suggest.

7.1 Definitions and basic properties of key component function sequences

We define the following sequence for integers $n \ge 1, k \ge 0$:

$$C_k(n) := \begin{cases} \varepsilon(n), & \text{if } k = 0; \\ \sum_{d|n} \omega(d) C_{k-1}(n/d), & \text{if } k \geqslant 1. \end{cases}$$
 (12)

The sequence of important semi-diagonals of these functions begins as [15, A008480]

$$\{\lambda(n)\cdot C_{\Omega(n)}(n)\}_{n\geqslant 1}\mapsto \{1,-1,-1,1,-1,2,-1,-1,1,2,-1,-3,-1,2,2,1,-1,-3,-1,-3,2,2,-1,4,1,2,\ldots\}.$$

Remark 7.1 (An effective range of k for fixed large n). Notice that by expanding the recursively-based definition in (12) out to its maximal depth by nested divisor sums, for fixed n, $C_k(n)$ is seen to only ever possibly be non-zero for $k \leq \Omega(n)$. This observation follows from the fact that a minimal condition on the forms of divisors d > 1 of n requires that d have at least a single prime factor. Thus, the effective range of k for fixed n is restricted by the conditions of $C_0(n) = \delta_{n,1}$ and that $C_k(n) = 0$, $\forall k > \Omega(n)$. That is, for all sufficiently large $n \geq 2$, the contributions from summations over $C_k(n)$ are only significant whenever $1 \leq k \leq \Omega(n)$.

Example 7.2 (Special cases of the functions $C_k(n)$ for small k). We cite the following special cases which should be easy enough to see on paper by explicit computation using (12):

$$C_0(n) = \delta_{n,1}$$

$$C_1(n) = \omega(n)$$

$$C_2(n) = d(n) \times \sum_{p|n} \frac{\nu_p(n)}{\nu_p(n) + 1} - \gcd(\Omega(n), \omega(n)).$$

We have an exact recurrence relation between successive $C_k(n)$ values over k of the form given in Lemma 7.3.

7.2 Uniform asymptotics of $C_k(n)$ for large all n and fixed, bounded k

Lemma 7.3 (Recurrence relation between the $C_k(n)$). For $k \ge 2$, we have that

$$C_k(n) = \sum_{p|n} \sum_{d \mid \frac{n}{p^{\nu_p(n)}}} \sum_{i=0}^{\nu_p(n)-1} C_{k-1} \left(d \cdot p^i \right).$$
(13)

Proof. First, we re-write the formula for $C_k(n)$ given directly by the recursion implicit to its definition stated in (12) for $k \ge 2$:

$$C_{k}(n) = \sum_{d|n} \omega(d) C_{k-1}(n/d)$$

$$= \sum_{d|n} \sum_{p|d} C_{k-1}(n/d)$$

$$= \sum_{d|n} \sum_{p|\frac{n}{d}} C_{k-1}(d).$$
(14)

We wish to interchange the inner and outer divisor sums in the last equation. Since $p|\frac{n}{d}$ where d ranges over the divisors of n, the exchanged outer sum should clearly be indexed over p|n.

We claim that in fact $A_n = B_n$ where these two sets are defined for all $n \ge 2$ as follows:

$$A_n := \left\{ d : d|n, p| \frac{n}{d} \right\}$$

$$B_n := \left\{ d \cdot p^i : 0 \le i < \nu_p(n), p|n, d \middle| \frac{n}{p^{\nu_p(n)}} \right\}.$$

The truth of this claim then establishes (13) based on (14). We prove the claim by subset inclusion below. Proof that $A_n \subseteq B_n$. Suppose that d|n and $p|\frac{n}{d}$ with p prime. This implies that $\exists m \in \mathbb{Z}^+$ such that dm = n. The assumptions also imply that $\exists j \in \mathbb{Z}^+$ such that $p = \frac{n}{d} = \frac{n}{\frac{n}{m}} = m$. So p|m which implies that p|n. Since d|n with p|n, clearly there is some $0 \le i < \nu_p(n)$ such that $d = d_0 p^i$ where $d_0 \mid \frac{n}{p^{\nu_p(n)}}$.

Proof that $B_n \subseteq A_n$. First suppose that i=0, let p|n, and suppose that $dp^i=d$ satisfies $d\left|\frac{n}{p^{\nu_p(n)}}\right|$. We have to show that $d\in A_n$. Clearly, as p|n, $\nu_p(n)\geqslant 1$. So $d\left|\frac{n}{p^{\nu_p(n)}}\right|$ implies also that d|n. This assumption also shows that $\exists j\in\mathbb{Z}^+$ with $dj\cdot p^{\nu_p(n)}=n\implies p\cdot \left(jp^{\nu_p(n)-1}\right)=\frac{n}{d}$, or eqivalently that $p|\frac{n}{d}$ since $jp^{\nu_p(n)-1}\in\mathbb{Z}^+$. Now suppose that $1\leqslant i<\nu_p(n),\ p|n$, and that $d\left|\frac{n}{p^{\nu_p(n)}}\right|$. We have to show that $dp^i\in A_n$. Clearly, we have that $\nu_p(n)\geqslant 2$ in this case. The third assumption implies that $\exists j\in\mathbb{Z}^+$ such that $dj\cdot p^{\nu_p(n)}=n$, which in turn implies that $dp^i|n$. Moreover, since $jp^{\nu_p(n)-1-i}\in\mathbb{Z}^+$ here, we get that $p\left|\frac{n}{dp^i}\right|$. Thus, $B_n\subseteq A_n$.

Theorem 4.5 from the introduction is proved next. The theorem makes precise what these formulas already suggest about the main terms of the growth rates of $C_k(n)$ as functions of k, n for limiting cases of n large for fixed k which is bounded in n, but taken as an independent parameter.

Proof of Theorem 4.5. We can see by Example 7.2 that $C_1(n)$ satsfies the formula we must establish when k := 1 since $\mathbb{E}[\omega(n)] = \log \log n$. We prove our bounds by induction on k. In particular, suppose that $k \ge 2$ and let the inductive assumption for all $1 \le m < k$ be that

$$\mathbb{E}[C_m(n)] \geqslant (\log \log n)^{2m-1}.$$

Now we have by the recursive formula in (13) that

$$C_{k}(n) = \sum_{p|n} \sum_{d \mid \frac{n}{p^{\nu_{p}(n)}}} \sum_{i=1}^{\nu_{p}(n)} \log \log (dp^{i})^{2k-3}$$

$$\sim \sum_{p\mid n} \sum_{d \mid \frac{n}{p^{\nu_{p}(n)}}} \left[\int \log \log (dp^{\alpha})^{2k-3} d\alpha \right]_{\alpha=\nu_{p}(n)}^{|\alpha|}.$$
(15)

The inner integral in the previous equation can be evaluated using the limiting asymptotic expansions for the incomplete gamma function stated in Section 5.3. In particular, for p|n and $n \ge 2$ large, we let the parameters assume average order values of

$$\mathbb{E}[\nu_p(n)] = \log \log n, \mathbb{E}[p] = \frac{n}{\log n}.$$

Then we evaluate the integral from above as

$$\int (\log\log(dp^{\alpha}))^{2k-3} d\alpha \sim \alpha \times \log\log(dp^{\alpha})^{2k-3} + \frac{\log d}{\log p} \times \log\log(dp^{\alpha})^{2k-3}$$
$$\gg \alpha \times \log\log(dp^{\alpha})^{2k-3}.$$

We know that the average order of the number of primes p|n is given by $\mathbb{E}[\omega(n)] = \log \log n$, so approximating p as the cited function of n initially allows us to take a factor of $\log \log n$ and remove the outer divisor sum in (15). So we obtain that

$$\mathbb{E}[C_k(n)] \sim (\log \log n)^2 \mathbb{E}\left[\frac{d(n)}{(\nu_p(n)+1)}\right] \times \left[\log \log n + \log \log \log n + \frac{\log d}{\log n \cdot \log \log n} - \frac{\log \log n}{\log n}\right]^{2k+3}$$

$$\sim (\log n) \cdot (\log \log n) \times \left[\log \log n + \log \log \log n + o(1)\right]^{2k-3}$$

$$\sim (\log n) \cdot (\log \log n)^{2k-2}$$

$$\gg (\log \log n)^{2k-1}, \text{ as } n \to \infty.$$

In the previous equation, we have used that the average order of the divisor function, d(n), is given by $\mathbb{E}[d(n)] = \log n$ [12, §27.11]. Thus the claim holds by mathematical induction.

Note that in Section 8 (proof of fact (A)) we show that when $k := \Omega(n)$ depends on n, then

$$\mathbb{E}[C_{\Omega(n)}(n)] \gg (\log n)(\log \log n)^{2\log \log n - 1} \gg \log n \cdot \log \log n.$$

7.3 Relating the auxiliary functions $C_k(n)$ to formulas approximating $g^{-1}(n)$

Lemma 7.4 (An exact formula for $g^{-1}(n)$). For all $n \ge 1$, we have that

$$g^{-1}(n) = \sum_{d|n} \mu(n/d)\lambda(d)C_{\Omega(d)}(d).$$

Proof. We first write out the standard recurrence relation for the Dirichlet inverse of $\omega + 1$ as

$$g^{-1}(n) = -\sum_{\substack{d \mid n \\ d > 1}} (\omega(d) + 1)g^{-1}(n/d) \Longrightarrow$$

$$(g^{-1} * 1)(n) = -(\omega * g^{-1})(n).$$

Now by repeatedly expanding the right-hand-side, and removing corner cases in the nested sums since $\omega(1) = 0$ by convention, we find that

$$(g^{-1} * 1)(n) = (-1)^{\Omega(n)} C_{\Omega(n)}(n) = \lambda(n) C_{\Omega(n)}(n).$$

The statement follows by Möbius inversion applied to each side of the last equation.

Corollary 7.5. For all squarefree integers $n \ge 1$, we have that

$$g^{-1}(n) = \lambda(n) \times \sum_{d|n} C_{\Omega(d)}(d). \tag{16}$$

Proof. Since $g^{-1}(1) = 1$, clearly the claim is true for n = 1. Suppose that $n \ge 2$ and that n is squarefree. Then $n = p_1 p_2 \cdots p_{\omega(n)}$ where p_i is prime for all $1 \le i \le \omega(n)$. So we can transform the exact divisor sum guaranteed for all n in Lemma 7.4 into the following:

$$g^{-1}(n) = \sum_{i=1}^{\omega(n)} \sum_{\substack{d \mid n \\ \omega(d) = i}} (-1)^{\omega(n) - i} (-1)^{i} \cdot C_{\Omega(d)}(d) + \mu(1)\lambda(n)C_{1}(1)$$

$$= \lambda(n) \left[\sum_{i=1}^{\omega(n)} \sum_{\substack{d \mid n \\ \omega(d) = i}} C_{\Omega(d)}(d) + 1 \right]$$

$$= \lambda(n) \times \sum_{\substack{d \mid n \\ \omega(d) = i}} C_{\Omega(d)}(d).$$

The signed computations in the first of the previous equations is justified by noting that $\lambda(n) = (-1)^{\omega(n)}$ whenever n is squarefree, and that for d squarefree with $\omega(d) = i$, $\Omega(d) = i$.

Remark 7.6. In fact, for all $n \ge 2$ as $n \to \infty$ we can prove that

$$\mathbb{E}\left[\frac{\sum\limits_{d|n} C_{\Omega(d)}(d)}{|g^{-1}(n)|}\right] \leqslant 1.$$

A proof of the previous equation is omitted here for brevity. However, this fact is suggestive that we can form effective lower bounds on $g^{-1}(n)$, and hence eventually on its summatory function $G^{-1}(x)$, using an approximation to this inverse function by formula in (16) that holds exactly at all squarefree $n \ge 1$ by Corollary 7.5. The tack assumed in the next results proved below in Section 8 is to implicitly use this formula as a convenient lower bounding approximation for $g^{-1}(n)$ at all $n \ge 1$.

8 A rigorous justification for using so-called average case lower bounds to prove Corollary 4.11

The point of proving the results in this section before moving onto the core results needed in the next section is to provide a rigorous justification for the intuition we sketched in Section 4.4 of the introduction. That is, we expect our arithmetic functions that are closely tied to the additive functions, $\omega(n)$ and $\Omega(n)$, to similarly behave regularly (and infinitely often) in accordance with their values being close to the average case for large x.

What we have established so far, and will establish for $G^{-1}(x)$ in Section 9, are lower bound estimates that hold essentially on average. This means that for limiting cases of x, we need to show that the expected value lower bounds are achieved in asymptotic order predictably often within some small window depending linearly on x that we will determine precisely in this section.

8.1 The proof of our critical theorem

Proof of Theorem 4.8. The result is obtained simply by contradiction. Suppose that x is so large that the inequalities in the hypothesis hold. Also, suppose that

$$|G^{-1}(x_0)| < |G_E^{-1}(x_0)|, \forall x_0 \in [(B - \varepsilon)x, (C + \varepsilon)x].$$
 (17)

We have supposed that the constants $B, C \in (0,1)$ are the tightest possible bounds on the next set as $x \to \infty$. That is, for all sufficiently large x if

$$\mathcal{G}_0(x) := \frac{1}{x} \cdot \# \left\{ n \leqslant x : |G^{-1}(x_0)| - |G_E^{-1}(x_0)| \leqslant 0 \right\},$$

denotes the density at x, then as $x \to \infty$ there is no larger B > 0 such that $B + o(1) \leq \mathcal{G}_0(x)$ and no smaller C < 1 such that $\mathcal{G}_0(x) \leq C + o(1)$. Let $\varepsilon \in (0,1)$ satisfy $0 < B - \varepsilon, C + \varepsilon < 1$. We need to show that such a concrete fixed ε satisfying the conditions in the theorem exists (depending only on B, C).

For $n \ge 1$, we have the disjoint set decomposition of the positive integers $n \le x$ given by

$$\{1 \leqslant n \leqslant x\} = \{1 \leqslant n < (B - \varepsilon)x\} \oplus \{(B - \varepsilon)x \leqslant n \leqslant (C + \varepsilon)x\} \oplus \{(C + \varepsilon)x < n \leqslant x\},\$$

where the three disjoint sets above are respectively denoted in increasing left-to-right order by $\mathcal{D}_i(x)$ for i = 1, 2, 3. The set decomposition in the previous equation yields that as $x \to \infty$, if (17) is true, then

$$\mathcal{G}_{1}(x) := \frac{1}{x} \cdot \# \left\{ n \in \mathcal{D}_{1}(x) : |G^{-1}(x_{0})| - |G_{E}^{-1}(x_{0})| \leq 0 \right\} \in \left[(B - \varepsilon)^{2}, (B - \varepsilon)(C + \varepsilon) \right] + o(1)$$

$$\mathcal{G}_{2}(x) := \frac{1}{x} \cdot \# \left\{ n \in \mathcal{D}_{2}(x) : |G^{-1}(x_{0})| - |G_{E}^{-1}(x_{0})| \leq 0 \right\} = C - B + 2\varepsilon + o(1)$$

$$\mathcal{G}_{3}(x) := \frac{1}{x} \cdot \# \left\{ n \in \mathcal{D}_{3}(x) : |G^{-1}(x_{0})| - |G_{E}^{-1}(x_{0})| \leq 0 \right\} \in \left[(B - \varepsilon) - (B - \varepsilon)(C + \varepsilon), (C + \varepsilon) - (C + \varepsilon)^{2} \right] + o(1).$$

So we obtain that

$$(B-\varepsilon)^2 + C - B + 2\varepsilon + (B-\varepsilon)(1 - C - \varepsilon) + o(1) \leqslant \mathcal{G}_0(x) \leqslant (B-\varepsilon)(C+\varepsilon) + C - B + 2\varepsilon + (C+\varepsilon)(1 - C - \varepsilon) + o(1).$$

We show that we can pick any $\varepsilon > 0$ that satisfies $B - 2\varepsilon < C, 0 < B - \varepsilon < 1, 0 < C + \varepsilon < 1$. In fact, given such a choice of this parameter, we have that

$$C + \varepsilon - \left[(B - \varepsilon)(C + \varepsilon) + C - B + 2\varepsilon + (C + \varepsilon)(1 - C - \varepsilon) \right] = -(C - B - 2\varepsilon)(1 - C - \varepsilon) < 0.$$

This implies a contradiction to the maximality of our bound $C \in (0,1)$. Then we must have that our contrary assumption on x_0 is invalid as $x \to \infty$. Indeed, there is such a fixed $\varepsilon > 0$ and such a $x_0 \in [(B - \varepsilon)x, (C + \varepsilon)x]$ such that $|G^{-1}(x_0)| \ge |G_E^{-1}(x_0)|$ for all sufficiently large x.

Verifying the hypotheses in Theorem 4.8 8.2

Building up to a proof of the necessary hypotheses: Preliminary facts and results 8.2.1

Facts 8.1. To prove the hypotheses assumed by the conclusion of Theorem 4.8, we require the following two facts of our notation for average order:

- (A) $\mathbb{E}[C_{\Omega(n)}(n)] \gg (\log n) \cdot (\log \log n)^{2\mathbb{E}[\Omega(n)]-1} \gg \log n \cdot \log \log n$; and
- **(B)** Let the set C_E be defined by

$$C_E := \left\{ n \geqslant 1 : \mathbb{E}\left[\sum_{\substack{d \mid n}} C_{\Omega(d)}(d)\right] \geqslant \sum_{\substack{d \mid n \\ d > e^e}} (\log d) (\log \log d)^{2\log \log d - 1} \right\}.$$

Then C_E has asymptotic density one.

Proof of fact (A). We utilize Theorem 6.1 to show each of the following as $x \to \infty$:

Find
$$f(A)$$
. We utilize Theorem 6.1 to show each of the following as $x \to \infty$:
$$\frac{1}{x} \cdot \#\{n \le x : \Omega(n) \ge (1+\delta) \log \log x\} \ll (\log x)^{\delta - (1+\delta) \log(1+\delta)} \qquad = o(1), \forall \delta > 0, \delta \approx 0^+$$

$$\frac{1}{x} \cdot \#\{n \le x : \Omega(n) \le (1+\rho) \log \log x\} \ll (\log x)^{\rho - (1+\rho) \log(1+\rho)} \qquad = o(1), \forall \rho > 0, \rho \approx 0^+. \tag{18}$$

The results expanded in (18) show that we can expect the asymptotic density of the $n \leq x$ where $\Omega(n) \not\approx \mathbb{E}[\Omega(n)]$ to be small, and tending to zero as $n \to \infty$. Thus with our result for fixed $1 \le k \le \Omega(n)$ from Theorem 4.5, we can conclude that

$$\mathbb{E}[C_{\Omega(n)}(n)] \gg \frac{1}{n} \sum_{d \leq n} (\log \log d)^{2\Omega(d) - 1}$$
$$\sim (\log n) \cdot (\log \log n)^{2 \log \log n - 1}, \text{ as } n \to \infty,$$

and hence

$$\mathbb{E}[C_{\Omega(n)}(n)] \gg \log n \cdot \log \log n$$
, as $n \to \infty$.

For any fixed m we have integrating by parts that

$$\frac{1}{t} \times \int (\log \log t)^m dt = \frac{1}{t} \left(t \cdot (\log t) (\log \log t)^m - (\log t) (\log \log t)^m \right) + C$$
$$\sim (\log t) (\log \log t)^m.$$

So the claimed two implications follow, one after the other, by a perturbed expansion of the binomial series where

$$\frac{1}{t} \times \int_{e^{e}}^{n} (\log \log t)^{2\log \log t - 1} dt \approx \frac{1}{t} \times \int_{e^{e}}^{n} \frac{(1 + \log \log t)^{2\log \log t}}{\log \log t} dt \\
= \frac{1}{t} \times \int_{e^{e}}^{n} \sum_{s \ge 0} \sum_{k=0}^{s} {s \brack k} (2 \log \log t)^{k} (-1)^{s-k} \times \frac{(\log \log t)^{s-1}}{s!} dt. \square$$

Proof of fact (B). We begin by proving a subclaim (see Remark 8.2 for more generality). Let the set defined by

$$\mathcal{D}_{+} := \{ n \geqslant 1 : d(n) > \log n \},\,$$

have corresponding asymptotic density

$$\alpha_{+} := \lim_{x \to \infty} \frac{1}{x} \cdot \#\{n \leqslant x : n \in \mathcal{D}_{+}\},\$$

assuming this limit exists. We claim that the limit exists and that $\alpha_{+}=0$. To prove this we first note the following precise classical result on the asymptotic tendencies of the summatory function of d(n) [12, §27.11]:

$$\sum_{n \leqslant x} d(n) = x \log x + (2\gamma - 1)x + O(\sqrt{x}). \tag{19}$$

Then we see that as $x \to \infty$, by Abel summation we have that when $\alpha_+^* := \max \left(\alpha_+, \frac{1}{x}\right)$

$$\sum_{\substack{n \leq x \\ n \in \mathcal{D}_+}} \log n \geqslant \sum_{n \leq \alpha_+^* x} \log n$$

$$= (\alpha_+^* x) \cdot \log(\alpha_+^* x) - \int_0^{\alpha_+^* x} dt$$

$$\sim (\alpha_+^* x) \log(\alpha_+^* x).$$

Thus we can bound the summatory function of d(n) for $n \leq x$ as $x \to \infty$ by

$$\sum_{n \leqslant x} d(n) \geqslant \sum_{\substack{n \leqslant x \\ n \notin \mathcal{D}_+}} d(n) + \sum_{\substack{n \leqslant x \\ n \notin \mathcal{D}_+}} \log n$$

$$\gg (1 - \alpha_+^*) x \left(\log x + \log(1 - \alpha_+^*) + 2\gamma - 1\right) + (\alpha_+^* x) \log \left(\alpha_+^* x\right) + O(\sqrt{x}),$$

which can only be true if $\alpha_{+} = 0$ according to the well known formula in (19). By a similar argument reversing inequalities, we can see that indeed that the density $\alpha_{-} = 0$ corresponding to the reversed inequality set is true as well.

We next bound the average order expectations we see in the upper bound of the inequality using the known identity

$$\sum_{n \leqslant x} \sum_{d|n} f(d) = \sum_{d \leqslant x} f(d) \left\lfloor \frac{x}{d} \right\rfloor, x \geqslant 1,$$

and using summation by parts with fact (A):

$$\mathbb{E}\left[\sum_{d|n} C_{\Omega(d)}(d)\right] \sim \sum_{d \leqslant x} \frac{C_{\Omega(d)}(d)}{d}$$

$$\sim \mathbb{E}[C_{\Omega(n)}(n)] + \sum_{d < n} \frac{\mathbb{E}[C_{\Omega(d)}(d)]}{d}$$

$$\gg (\log n) \cdot (\log \log n)^{2\log \log n - 1} + \frac{(\log n)^2}{2} \cdot (\log \log n)^{2\log \log n - 1}.$$
(20)

The rightmost term in the previous equation follows by integration on the monotone non-decreasing summand (for all large enough $d > e^e$) as we justified using a close binomial series approximation in the proof of fact (A). The new part of the result in (20) is calculated according to the following indefinite integral formula when m is fixed and where we approximate the result using the asymptotic formula for the incomplete gamma function from Section 5.3:

$$\int \frac{(\log t)(\log \log t)^m}{t} dt = \frac{(\log t)^2}{2} \times (\log \log t)^m + C.$$

Next, we bound the lower portion of the expected inequality from above to agree at a middleground where the $n \in \mathcal{C}_E$ converges based on (20):

$$\sum_{\substack{d|n\\d>e^e}} (\log d)(\log\log d)^{2\log\log d - 1} \ll \sum_{\substack{d|n\\d>e^e}} (\log d) \cdot (\log\log d)^{2\log\log n - 1}. \tag{21}$$

Consider that for n large, $\forall \lfloor \sqrt{n} \rfloor \leqslant j < n$, we have that $\pi(j) = \pi(\lfloor \sqrt{n} \rfloor)$. This inequality implies that for some p|n, the smallest d|n smaller than n is of the form $d = \frac{n}{p} \leqslant \sqrt{n}$ for some prime divisor p of n. Then we have from (21) that

$$\sum_{\substack{d|n\\d>e^e}} (\log d)(\log\log d)^{2\log\log d - 1} \le (\log n) \cdot (\log\log n)^{2\log\log n - 1} + d(\lfloor \sqrt{n} \rfloor)(\log n)(\log\log n)^{2\log\log n - 1}. \tag{22}$$

As we have shown above, the set of positive integers on which $d(n) > \log n$ has thin asymptotic density $\alpha_+ = 0$. Now what this implies from (22) is that on an infinite set $\mathcal{A}_0 \subseteq \mathcal{C}_E$ of asymptotic density one, we have that

$$\sum_{d|n} \mathbb{E}[C_{\Omega(d)}(d)] \leqslant (\log n) \cdot (\log \log n)^{2\log \log n - 1} + \frac{(\log n)^2}{2} (\log \log n)^{2\log \log n - 1}.$$

Thus by (20) and the previous equation, we have that

$$\mathbb{E}\left[\sum_{d|n} C_{\Omega(d)}(d)\right] \geqslant \sum_{\substack{d|n\\d>e^e}} (\log d) (\log \log d)^{2\log \log d - 1}, \forall n \in \mathcal{A}_0.$$

Since A_0 has limiting density of one, and $A_0 \subseteq C_E$, i.e., the C_E has an asymptotic density at least as great as that of A_0 , we conclude that the limiting density of C_E is also one. That is,

$$\lim_{x \to \infty} \frac{1}{x} \cdot \#\{n \leqslant x : n \in \mathcal{C}_E\} = 1.$$

Remark 8.2. What we have actually argued in less generality for the divisor function case above holds for the average order expectation of positive arithmetic functions in general. That is, suppose that f(n) > 0 for all $n \ge 1$, and that there exists a function F such that

$$\sum_{n \le x} f(n) \sim x \cdot F(x).$$

If $F(x) \to 0$ as $x \to \infty$, then the asymptotic density of the set of large order exeptional values of f is zero:

$$\lim_{x \to \infty} \frac{1}{x} \cdot \#\{n \leqslant x : f(n) > F(n)\} = 0.$$

While we do not prove this result directly here, it is easy enough to see as above by applying Abel summation when F(n) is differentiable with a smooth derivative for all sufficiently large $n \to \infty$.

Facts 8.3. Let the asymptotic densities for the distinct parity of $\Omega(n)$ (sign of $\lambda(n)$) be denoted by

$$\lambda_{+} := \lim_{x \to \infty} \frac{1}{x} \cdot \#\{n \leqslant x : \lambda(n) = +1\}$$

$$\lambda_{-} := \lim_{x \to \infty} \frac{1}{x} \cdot \#\{n \leqslant x : \lambda(n) = -1\}.$$

Then we can prove that both limits exist and $\lambda_{+} = \lambda_{-} = \frac{1}{2}$.

Lemma 8.4 (Bounded expectation of $g^{-1}(n)$). For all large enough n, we have that

$$|\mathbb{E}[g^{-1}(n)]| \ll \mathbb{E}[C_{\Omega(n)}(n)] \left(1 + \frac{\log n}{2}\right), \text{ as } n \to \infty.$$

Proof. Consider that by using Lemma 7.4 we have

$$\left| \frac{1}{x} \sum_{n \leqslant x} g^{-1}(n) \right| = \left| \frac{1}{x} \sum_{n \leqslant x} \sum_{d \mid n} \mu(n/d) \lambda(d) C_{\Omega(d)}(d) \right|$$

$$= \left| \frac{1}{x} \sum_{d \leqslant x} \lambda(d) C_{\Omega(d)}(d) M\left(\frac{x}{d}\right) \right|$$

$$\ll \sum_{d \leqslant x} \frac{C_{\Omega(d)}(d)}{d}$$

$$\sim \mathbb{E}\left[C_{\Omega(x)}(x) \right] \left(1 + \frac{\log x}{2} \right),$$

using the same summation by parts argument as we employed in (20) to prove fact (B). In the previous equations we have used that $|M(x)| \le x$ trivially for all $x \ge 1$.

Notice that since for all $n \ge 2$ $|g^{-1}(n)|$ is minimal at prime powers with $g^{-1}(p^{\alpha}) = (-2)^{\alpha}$ for all primes p and integers $\alpha \ge 1$ (cf. Lemma 7.4), we also have that $\mathbb{E}|g^{-1}(n)| \ge 2$.

Proposition 8.5. Let the set where $G^{-1}(x)$ is non-negative be defined as

$$\mathcal{G}_{+} := \{ n \leqslant x : G^{-1}(x) \geqslant 0 \}.$$

We claim that for all large $x \to \infty$, the density of this set is positive:

$$0 < \frac{1}{x} \cdot \#\{n \leqslant x : n \in \mathcal{G}_+\} < 1.$$

Moreover, if a limiting asymptotic density for \mathcal{G}_+ exists, it does not tend to zero as $x \to \infty$:

$$\lim_{x \to \infty} \frac{1}{x} \cdot \#\{n \leqslant x : n \in \mathcal{G}_+\} \neq 0.$$

Note that the proposition above also implies that the corresponding set \mathcal{G}_{-} over which $G^{-1}(x) < 0$ has positive density for all x sufficiently large, and that this density does not tend to zero as $x \to \infty$. We will prove Proposition 8.5 after we prove Proposition 9.1 in the next section.

8.2.2 The proof that the necessary hypotheses in Theorem 4.8 are attained for all large x

Proof of the hypotheses of Theorem 4.8. Let $G_E^{-1}(x)$ be defined as in (3) of the theorem. We need to find some absolute tight constants $B, C \in (0, 1)$ such that as $x \to \infty$

$$B + o(1) \le \frac{1}{x} \cdot \# \left\{ n \le x : |G^{-1}(n)| - |G_E^{-1}(n)| \le 0 \right\} \le C + o(1).$$
 (23)

Our proof of fact (B) above implies that on the set $n \in \mathcal{C}_E$, which has asymptotic density of one, we have

$$\mathbb{E}\left[\sum_{d|n} C_{\Omega(d)}(d)\right] - |g^{-1}(n)| \geqslant \sum_{\substack{d|n\\d > e^e}} (\log d)(\log \log d)^{2\log \log d - 1} - |g^{-1}(n)|. \tag{24a}$$

Moreover, by Remark 8.2 and Lemma 8.4, for n within a set S_E of asymptotic density also one,

by Remark 8.2 and Lemma 8.4, for
$$n$$
 within a set \mathcal{S}_E of asymptotic density also one,
$$\sum_{\substack{d \mid n \\ d > e^e}} (\log d) (\log \log d)^{2 \log \log d - 1} - |g^{-1}(n)| \geqslant (\log n)^2 \cdot (\log \log n)^{2 \log \log n - 1} - |\mathbb{E}[g^{-1}(n)]|$$

$$\geqslant \left(\frac{\log n}{2} - 1\right) (\log n) (\log \log n)^{2 \log \log n - 1}$$

$$\geqslant 0, \text{ as } n \to \infty.$$

Now we aim to sum the functions $G^{-1}(x)$ and $G_E^{-1}(x)$ weighted by the same signs on the terms at each n that respectively satisfy the following condition:

$$\mathbb{E}\left[\sum_{d|n} C_{\Omega(d)}(d)\right] - |g^{-1}(n)| \geqslant \sum_{\substack{d|n\\d>e^e}} (\log d)(\log\log d)^{2\log\log d - 1} - |g^{-1}(n)| \geqslant 0, \forall n \in \mathcal{C}_E \cap \mathcal{S}_E.$$
 (24b)

Notice that the intersection of the sets $C_E \cap S_E$ also has asymptotic density of one. So (24b) holds for all n on a set of full asymptotic density one (e.g., almost everywhere on the integers).

Since the sign of $g^{-1}(n)$ is $\lambda(n)$ as given by Proposition 5.1, on the set \mathcal{S}_E defined as in (24b), we have that both

$$\sum_{\substack{e^e \leqslant n \leqslant x \\ \lambda(n) = +1}} g^{-1}(n) \leqslant \sum_{\substack{e^e \leqslant n \leqslant x \\ \lambda(n) = +1}} \sum_{\substack{d \mid n}} \mathbb{E}[C_{\Omega(d)}(d)]$$
$$\sum_{\substack{e^e \leqslant n \leqslant x \\ \lambda(n) = -1}} g^{-1}(n) \leqslant -\sum_{\substack{e^e \leqslant n \leqslant x \\ \lambda(n) = -1}} \sum_{\substack{d \mid n}} \mathbb{E}[C_{\Omega(d)}(d)].$$

Hence, we have that almost everywhere on \mathbb{Z}^+ as $x \to \infty$ the following equation is true:

$$G^{-1}(x) \ll \sum_{n \leqslant x} \lambda(n) \sum_{\substack{d \mid n \\ d > e^e}} \mathbb{E}[C_{\Omega(d)}(d)]. \tag{25}$$

Now we notice that the right-hand-side of (25) corresponds to the definition of the function $G_E^{-1}(x)$. Hence, we see that if $G^{-1}(x) \ge 0$ where (25) holds, then also $G_E^{-1}(x) \ge 0$, and so letting

$$\mathcal{A}_E := \left\{ x \geqslant 1 : G^{-1}(x) \leqslant \sum_{n \leqslant x} \lambda(n) \sum_{\substack{d \mid n \\ d > e^e}} (\log d) (\log \log d)^{2 \log \log d - 1} \pm C_0 \land G^{-1}(x) \geqslant 0 \right\},\,$$

for some absolute constant $C_0 \ge 0$, we have that $|G^{-1}(x)| - |G_E^{-1}(x)| \ll 0$, $\forall x \in \mathcal{A}_E$. We still need to show that the density of \mathcal{A}_E in $\{n \le x\}$ can be bounded closely below and above by some $B, C \in (0,1)$ for all large enough $x \to \infty$.

Finally, using Proposition 8.5 and that (25) holds almost everywhere on the sufficiently large positive integers, we can see that there must be some limitingly tight constants $B, C \in (0,1)$ such that there is an infinite set, \mathcal{A}_E , with limiting density bounded between these constants such that the condition $|G^{-1}(x)| - |G_E^{-1}(x)| \ll 0$ holds:

$$B + o(1) \le \frac{1}{x} \cdot \# \{ n \le x : |G^{-1}(n)| - |G_E^{-1}(n)| \mp C_0 \le 0 \} \le C + o(1), \text{ as } x \to \infty.$$

Hence, we have shown that the necessary conditions in hypotheses of Theorem 4.8 can in fact be achieved for all sufficiently large $x \to \infty$.

9 Establishing lower bounds for M(x) along infinite subsequences

9.1 The culmination of what we have done so far

Proposition 9.1. For all sufficiently large x, we have that

$$M(x) \approx G^{-1}(x) - x \cdot \int_{1}^{x/2} \frac{G^{-1}(t)}{t^2 \cdot \log(x/t)} dt,$$
 (26)

where $G^{-1}(x) := \sum_{n \leq x} g^{-1}(n)$ is the summatory function of $g^{-1}(n)$.

Proof. We know by applying Corollary 4.3 that

$$M(x) = \sum_{k=1}^{x} g^{-1}(k)(\pi(x/k) + 1)$$

$$= G^{-1}(x) + \sum_{k=1}^{x} g^{-1}(k)\pi(x/k),$$
(27)

where we can drop the asymptotically unnecessary floored integer-valued arguments to $\pi(x)$ in place of its approximation by the monotone non-decreasing $\pi(x) \sim \frac{x}{\log x}$. Moreover, we can always bound

$$\frac{Ax}{\log x} \le \pi(x) \le \frac{Bx}{\log x},$$

for suitably defined absolute constants, A, B > 0. Therefore the approximation obtained is valid for all x > 1 up to a small constant difference.

What we now require to sum and simplify the right-hand-side summation from (27) is an ordinary summation by parts argument. Namely, we obtain that for sufficiently large $x \ge 2$ A

$$\sum_{k=1}^{x} g^{-1}(k)\pi(x/k) = G^{-1}(x)\pi(1) - \sum_{k=1}^{x-1} G^{-1}(k) \left[\pi\left(\frac{x}{k}\right) - \pi\left(\frac{x}{k+1}\right)\right]$$

$$= -\sum_{k=1}^{x/2} G^{-1}(k) \left[\pi\left(\frac{x}{k}\right) - \pi\left(\frac{x}{k+1}\right)\right]$$

$$\approx -\sum_{k=1}^{x/2} G^{-1}(k) \left[\frac{x}{k \cdot \log(x/k)} - \frac{x}{(k+1) \cdot \log(x/k)}\right]$$

$$\approx -\sum_{k=1}^{x/2} G^{-1}(k) \frac{x}{k^2 \cdot \log(x/k)}.$$

Since for x large enough the summand is monotonic as k ranges in order over $k \in [1, x/2]$, and since the summands in the last equation are smooth functions of k (and x), and also since $G^{-1}(x)$ is a summatory function with jumps at the positive integers, we can approximate M(x) for any finite $x \ge 2$ by

$$M(x) \approx G^{-1}(x) - x \cdot \int_{1}^{x/2} \frac{G^{-1}(t)}{t^2 \cdot \log(x/t)} dt.$$

We will later only use unsigned lower bound approximations to this function in the next theorems so that the signedness of the summatory function term in the integral formula above as $x \to \infty$ is a moot point entirely.

^ASince $\pi(1) = 0$, the actual range of summation corresponds to $k \in [1, \frac{x}{2}]$.

Proof of Proposition 8.5. Suppose to the contrary that

$$\lim_{x \to \infty} \frac{1}{x} \cdot \#\{n \leqslant x : n \in \mathcal{G}_+\} = 0,$$

i.e., that $G^{-1}(x) \leq 0$ almost everywhere for all integers x sufficiently large. We will utilize (27) from Proposition 9.1 to derive a contradiction under this assumption. In particular, assuming the above limiting density is zero, we have that

$$\frac{|M(x)|}{x} \approx \left| \int_{1}^{x/2} \frac{|G^{-1}(t)|}{t^2 \cdot \log(x/t)} - \frac{|G^{-1}(x)|}{x} \right|, \text{ a.e., as } x \to \infty.$$
 (28)

So for sufficiently large $x \to \infty$, for almost every x we have that

$$\frac{|M(x)|}{x} \approx \left| \int_{1}^{x/2} \frac{|\mathbb{E}[g^{-1}(t)]|}{t \cdot \log(x/t)} - |\mathbb{E}[g^{-1}(x)]| \right|. \tag{29}$$

Now for any constant u_0 , both $\int_1^{u_0} \frac{dt}{t^2 \cdot \log(x/t)} = o(1)$ and $|\mathbb{E}[g^{-1}(x)]|$ are of lower order growth than the primary integral contribution in (29) as $x \to \infty$. Therefore, for large enough x

$$\frac{|M(x)|}{x} \sim \left| \int_{e^e}^{x/2} \left(1 + \frac{\log t}{2} \right) \frac{\mathbb{E}[C_{\Omega(t)}(t)]}{t \cdot \log(x/t)} dt \right|. \tag{30}$$

Moreover, for fixed m we have

$$\int_{e^{e}}^{x/2} \left(1 + \frac{\log t}{2} \right) \frac{(\log t)(\log \log t)^{m}}{t \cdot \log(2)} dt \sim \frac{\log^{2}(x)(\log \log x)^{m}}{2 \cdot \log 2} \left(1 + \frac{\log x}{3} \right) \\
\int_{e^{e}}^{x/2} \left(1 + \frac{\log t}{2} \right) \frac{(\log t)(\log \log t)^{m}}{t \cdot \log(x)} dt \sim \frac{\log(x)(\log \log x)^{m}}{2 \cdot \log 2} \left(1 + \frac{\log x}{3} \right).$$
(31)

So using a variant of the binomial series expansion argument we recall from the proof of fact (A) given in Section 8.2.1, we recover from (30) and the integral bounds in (31) that there is a tendency of |M(x)|/x to grow without bound as $x \to \infty$. This property clearly violates the known (trivial) bound that $|M(x)| \le x$ for all $x \ge 1$.

A similarly phrased argument shows the corresponding result is true for the set \mathcal{G}_{-} on which $G^{-1}(x) < 0$. Thus, combined, these two consequences show that the limiting density of \mathcal{G}_{+} is positive, and in particular, that it cannot tend to zero along infinitely many limiting cases as $x \to \infty$.

9.1.1 From the routine: Proofs of a few cut-and-dry results

Corollary 9.2. We have that for sufficiently large x, as $x \to \infty$ that "on average" B

$$\left|G_E^{-1}(x)\right| \gg \left|\hat{L}_0\left(\log\log x\right) \times \sum_{e^e \leqslant n \leqslant \log x} \lambda(n) \cdot \log n \cdot \log\log n\right|,$$

where the function

$$\left| \widehat{L}_0(x) \right| \gg \sqrt{\frac{2}{\pi}} \cdot \frac{A_0}{3e \log 2} \cdot \frac{x}{(\log \log x)^{\frac{5}{2} + \log \log x}},$$

and such that $\operatorname{sgn}(\hat{L}_0(x)) = (-1)^{\lfloor \log \log x \rfloor}$ (as the function is defined inline below).

^BE.g., within a predictably bounded interval around each x sufficiently large. This distinction in the statement is necessary since our limiting lower bounds have so far depended on average order estimates of certain sums and arithmetic functions as $n \to \infty$. We will rely on the results proved in Section 8 to justify that these lower bounds that hold on average can still be reconciled to prove the key corollary in the next subsection using an infinitely tending subsequence defined pointwise within intervals.

Proof. Using the definition in (3), we obtain on average that ^C

$$\begin{aligned} \left| G_E^{-1}(x) \right| &= \left| \sum_{n \leqslant \log x} \lambda(n) \sum_{\substack{d \mid n \\ d > e^e}} (\log d) (\log \log d)^{2 \log \log d - 1} \right| \\ &= \left| \sum_{e^e < d \leqslant \log x} (\log d) (\log \log d)^{2 \log \log d - 1} \times \sum_{n=1}^{\left\lfloor \frac{\log x}{d} \right\rfloor} \lambda(dn) \right| \\ &\gg \left| \sum_{e^e < d \leqslant \log x} \log d \cdot \log \log d \times \sum_{n=1}^{\left\lfloor \frac{\log x}{d} \right\rfloor} \lambda(dn) \right|. \end{aligned}$$

Now we see that by complete additivity of $\Omega(n)$ (multiplicativity of $\lambda(n)$) that

$$\sum_{n=1}^{\left\lfloor \frac{x}{d} \right\rfloor} \lambda(dn) = \sum_{n=1}^{\left\lfloor \frac{x}{d} \right\rfloor} \lambda(d)\lambda(n) = \lambda(d) \sum_{n \leqslant \left\lfloor \frac{x}{d} \right\rfloor} \lambda(n).$$

Using the result proved in Section 6 as (see Theorem 4.7 and Corollary 6.4) we can establish that ^D

$$\left| \sum_{n \le x} \lambda(n) \right| \gg \left| \sum_{k \le \log \log x} (-1)^k \cdot \widehat{\pi}_k(x) \right| =: \left| \widehat{L}_0(x) \right|.$$

For large enough $x \to \infty$ and $e^e \le d \le \log x$, we can easily prove by bounding each function from above and below that

$$\log(x/d) \sim \log x, \log \log(x/d) \sim \log \log x.$$

Then we have that

$$\left| \widehat{L}_0(\log x) \right| \sim \left| \widehat{L}_0(\log \log(x/d)) \right|,$$

for all large $x \to \infty$ whenever $e^e \le d \le \log x$.

We note that the precise formula for the limiting lower bound stated above for $\hat{L}_0(x)$ is computed by symbolic summation in Mathematica using the new bounds on $\hat{\pi}_k(x)$ guaranteed by Theorem 4.7 (and by applying subsequent standard asymptotic estimates to the resulting formulas). We also have from this formula that $|\hat{L}_0(\log x)| \gg |\hat{L}_0(\log \log x)|$. The inner summation in the lower bound stated for $|G_E^{-1}(x)|$ is correctly indexed only for $n \leq \log x$ as the definition of this summatory function depends on $\mathbb{E}[C_{\Omega(n)}(n)]$ for $n \leq x$ where the functions $C_k(n)$ are only non-zero for large $n \geq 1$ when $k \leq \Omega(n) \ll \log x$ (e.g., the upper bound on $\Omega(n)$ is valid up to a constant factor). Finally, even though we have signed terms within an absolute value operation, we still recover the absolute lower bound on $|G_E^{-1}(x)|$ as stated above when we replace $\mathbb{E}[C_{\Omega(d)}(d)] \gg (\log \log d)(\log \log d)^{2\log \log d-1}$ by its lower bound $\log d \cdot \log \log d$ proved in Section 8. The proof of this fact (omitted here) follows along the same lines of the argument used in Lemma 9.4 with few modifications.

Lemma 9.3. Suppose that $f_k(n)$ is a sequence of arithmetic functions such that $f_k(n) > 0$ for all $n > u_0$ and $1 \le k \le \Omega(n)$ where $f_{\Omega(n)}(n) \gg \widehat{\tau}_{\ell}(n)$ as $n \to \infty$. We suppose that the bounding function $\widehat{\tau}_{\ell}(t)$ is a continuously

$$\sum_{n \leqslant x} h(n) \times \sum_{d \mid n} f(d) = \sum_{d \leqslant x} f(d) \times \sum_{n=1}^{\left \lfloor \frac{x}{d} \right \rfloor} h(dn).$$

^CFor any arithmetic functions f, h, we have that $[1, cf. \S 3.10; \S 3.12]$

^DSee the proof of Lemma 9.3 below for a justification of the » bound.

differentiable function of t for all large enough $t \gg u_0$ ^E. We define the λ -sign-scaled summatory function of f as follows:

$$F_{\lambda}(x) := \sum_{u_0 < n \leq \log x} \lambda(n) \cdot f_{\Omega(n)}(n).$$

Let

$$A_{\Omega}^{(\ell)}(t) := \sum_{k=1}^{\lfloor \log \log t \rfloor} (-1)^k \widehat{\pi}_k^{(\ell)}(t),$$

where $\hat{\pi}_k(x) \geqslant \hat{\pi}_k^{(\ell)}(x) \geqslant 0$ for $\hat{\pi}_k^{(\ell)}(t)$ some smooth monotone non-decreasing function of t whenever t sufficiently large. Then we have that on average

$$|F_{\lambda}(x)| \gg \left| A_{\Omega}^{(\ell)}(\log x) \widehat{\tau}_{\ell}(\log x) - \int_{u_0}^{\log x} A_{\Omega}^{(\ell)}(t) \widehat{\tau}_{\ell}'(t) dt \right|.$$

Proof. We can form an accurate $C^1(\mathbb{R})$ approximation by the smoothness of $\widehat{\pi}_k^{(\ell)}(x)$ that allows us to apply the Abel summation formula using the summatory function $A_{\Omega}^{(\ell)}(t)$ for t on any bounded connected subinterval of $[1,\infty)$. The second stated formula for $F_{\lambda}(x)$ above is valid by Abel summation whenever

$$0 \leqslant \left| \frac{\sum\limits_{\log \log t < k \leqslant \frac{\log t}{\log 2}} (-1)^k \widehat{\pi}_k(t)}{A_{\Omega}^{(\ell)}(t)} \right| \leqslant 2, \text{ as } t \to \infty.$$

What the last equation implies is that the asymptotically dominant terms indicating the parity of $\lambda(n)$ are captured up to a constant factor by the terms in the range over k summed by $A_{\Omega}^{(\ell)}(t)$ for sufficiently large $t \to \infty$.

In other words, taking the sum over the summands that defines $A_{\Omega}(x)$ only over the truncated range of $k \in [1, \log \log x]$ does not non-trivially change the limiting asymptotically dominant terms in the lower bound obtained from using this form of the summatory function in conjunction with the Abel summation formula. This property holds even when we should technically index over all $k \in [1, \log_2(x)]$ to obtain an exact formula for the summatory weight function. Using the arguments in Montgomery and Vaughan [10, §7; Thm. 7.20] (see Corollary 6.4), we can see that the assertion above holds in the limit as $t \to \infty$.

The results in Corollary 9.2 and in Lemma 9.3 combine to provide a key formula used in the proof of Theorem 9.5 to bound $G^{-1}(x)$ from below in the average case sense. We require one more sanity check to our approximations used in that proof explored in the next subsection stated in the form of the next lemma. Observe that we now use the superscript and subscript notation of (ℓ) not to denote a formal parameter to the functions we define below, but instead to denote that these functions form *lower bound* (rather than exact) approximations to other forms of the functions without the scripted (ℓ) .

Lemma 9.4. Suppose that $\widehat{\pi}_k(x) \ge \widehat{\pi}_k^{(\ell)}(x) \ge 0$ with $\widehat{\pi}_k^{(\ell)}(x)$ a monotone non-decreasing real-valued function for all sufficiently large x. Let

$$\begin{split} A_{\Omega}^{(\ell)}(x) &:= \sum_{k \leqslant \log \log x} (-1)^k \widehat{\pi}_k^{(\ell)}(x) \\ A_{\Omega}(x) &:= \sum_{k \leqslant \log \log x} (-1)^k \widehat{\pi}_k(x). \end{split}$$

^EWe will require that $\hat{\tau}_{\ell}(t) \in C^1(\mathbb{R})$ when we apply the Abel summation formula in the proof of Theorem 9.5. At this point, it is technically an unnecessary condition that is vacously satisfied by assumption (by requirement) and will importantly need to hold only when we specialize to the actual functions employed to form our new bounds in the theorem proof below.

Then for all sufficiently large x, we have that

$$|A_{\Omega}(x)| \gg |A_{\Omega}^{(\ell)}(x)|.$$

Proof. Given an explicit smooth lower bounding function, $\hat{\pi}_k^{(\ell)}(x)$, we define the similarly smooth and monotone residual terms in approximating $\hat{\pi}_k(x)$ using the following notation:

$$\widehat{\pi}_k(x) = \widehat{\pi}_k^{(\ell)}(x) + \widehat{E}_k(x).$$

Then we can form the ordinary exact form of the summatory function A_{Ω} as

$$|A_{\Omega}(x)| = \left| \sum_{k \leqslant \frac{\log \log x}{2}} \left[\widehat{\pi}_{2k}(x) - \widehat{\pi}_{2k-1}(x) \right] \right|$$

$$\geqslant \left| A_{\Omega}^{(\ell)}(x) - \sum_{k \leqslant \frac{\log \log x}{2}} \widehat{E}_{2k-1}(x) \right|$$

$$\geqslant \left| A_{\Omega}^{(\ell)}(x) \right| - \left| \sum_{k \leqslant \frac{\log \log x}{2}} \widehat{E}_{2k-1}(x) \right|.$$

If the latter sum, denoted

$$ES(x) := \sum_{k \leq \frac{\log \log x}{2}} \hat{E}_{2k-1}(x) \to \infty,$$

as $x \to \infty$, then we can always find some absolute $C_0 > 0$ (by monotonicity) such that $\mathrm{ES}(x) \leqslant C_0 \cdot A_\Omega(x)$. If on the other hand this sum becomes constant as $x \to +\infty$, then we also clearly have another absolute $C_1 > 0$ such that $|A_{\Omega}(x)| \geqslant C_1 \cdot |A_{\Omega}^{(\ell)}(x)|$. In either case, the claimed result holds for all large enough x.

9.1.2 A proof of the key bound from below on $G^{-1}(x)$

The next central theorem is the last key barrier required to prove Corollary 4.11 in the next subsection. For the time being, we will keep track of extraneous positive constants that will be dropped when we prove the corollary.

Theorem 9.5 (Asymptotics and bounds for the summatory functions $G^{-1}(x)$). We define a lower summatory function, $G_{\ell}^{-1}(x)$, to provide bounds on the magnitude of $G_{E}^{-1}(x)$ such that

$$|G_{\ell}^{-1}(x)| \ll |G_{E}^{-1}(x)|,$$

for all sufficiently large $x \ge e^e$ as follows:

$$G_{\ell}^{-1}(x) := \sum_{n \leqslant x} \lambda(n) \times \sum_{\substack{d \mid n \\ d > e^e}} \log d \cdot \log \log d.$$

We have new asymptotic approximations for the lower summatory function where $C_{\ell,1}$ is the absolute constant defined by

$$C_{\ell,1} = \frac{8A_0^2}{9\pi e^2 \log^2(2)} = \frac{256 \cdot 2^{1/8}}{59049 \cdot \pi^2 e^8 \log^8(2)} \exp\left(-\frac{55}{2} \log^2(2)\right) \approx 5.51187 \times 10^{-12}.$$

That is, we obtain the following limiting estimate for the bounding function $G_{\ell}^{-1}(x)$ "on average" as $x \to \infty$:

$$\left|G_{\ell}^{-1}(x)\right| \gg \frac{C_{\ell,1} \cdot (\log x)(\log\log x)^3 \sqrt{\log\log\log x}}{(\log\log\log\log x)^{\frac{5}{2}}}.$$

Proof. Recall from our proof of Corollary 4.7 that a lower bound on the variant prime form counting function, $\hat{\pi}_k(x)$, is given by

$$\widehat{\pi}_k(x) \gg \frac{A_0 \cdot x}{\log x \cdot (\log \log x)^4 \cdot (k-1)!} \cdot \left(\frac{4}{3e \log 2}\right)^{\frac{k}{\log \log x}}, \text{ as } x \to \infty.$$

So we can then form a lower summatory function indicating the signed contributions over the distinct parity of $\Omega(n)$ for all $n \leq x$ as follows by applying (9b) and Stirlings's approximation:

$$\left| A_{\Omega}^{(\ell)}(t) \right| = \left| \sum_{k \leqslant \log \log t} (-1)^k \widehat{\pi}_k(t) \right|$$

$$\gg \sqrt{\frac{2}{\pi}} \cdot \frac{A_0}{3e \log 2} \cdot \frac{t}{(\log \log t)^{\frac{5}{2} + \log \log t}}.$$
(32)

The actual sign on this function is given by $\operatorname{sgn}(A_{\Omega}^{(\ell)}(t)) = (-1)^{\lfloor \log \log t \rfloor}$ (see Lemma 9.4).

By Corollary 4.5 we recover from the bounded main term approximation to $\mathbb{E}[C_{\Omega(n)}(n)]$ proved in Section 8, denoted here by the smooth function $\hat{\tau}_0(t) = \log t \cdot \log \log t$, that

$$\hat{\tau}'_0(t) = \frac{d}{dt} \left[\log t \cdot \log \log t \right] \gg \frac{\log \log t}{t}.$$

As prescribed by Lemma 9.3 and Corollary 9.2, we apply Abel summation to imply that we have

$$G_{\ell}^{-1}(x) = \widehat{L}_0(\log\log x) \left[\widehat{\tau}_0(\log x) A_{\Omega}^{(\ell)}(\log x) - \widehat{\tau}_0'(t) A_{\Omega}^{(\ell)}(t) dt \right]. \tag{33}$$

The inner integral term on the rightmost side of (33) is summed approximately in the form of

$$\int_{u_0}^{\log x} \widehat{\tau}'_0(t) A_{\Omega}^{(\ell)}(t) dt \approx \sum_{k=u_0+1}^{\frac{1}{2}\log\log\log x} \left(I_{\ell} \left(e^{e^{2k+1}} \right) - I_{\ell} \left(e^{e^{2k}} \right) \right) e^{e^{2k}}$$

$$\approx C_0(u_0) + (-1)^{\left\lfloor \frac{\log\log\log x}{2} \right\rfloor} \times \int_{\frac{\log\log\log x}{2} - 1}^{\frac{\log\log\log x}{2}} I_{\ell} \left(e^{e^{2k}} \right) e^{e^{2k}} dk.$$
(34)

We define the integrand function, $I_{\ell}(t) := \hat{\tau}'_0(t) A_{\Omega}^{(\ell)}(t)$, as in the previous equations with some limiting simplifications for the $k \in \left[\frac{\log\log\log x}{2} - 1, \frac{\log\log\log x}{2}\right]$ as

$$I_{\ell}\left(e^{e^{2k}}\right)e^{e^{2k}} \gg \frac{A_0}{3e\sqrt{\pi}\log 2} \cdot \frac{\exp\left(e^{2k}\right)}{2^{2k} \cdot k^{2k+3/2}} =: \hat{I}_{\ell}(k).$$
 (35)

So using the lower bound on the integrand in (35), we find that F

$$\begin{split} \left| \widehat{L}_0(\log \log x) \times \int_{\frac{\log \log \log x}{2} - 1}^{\frac{\log \log \log x}{2} - 1} I_{\ell} \left(e^{e^{2k}} \right) e^{e^{2k}} dk \right| \\ &\approx \left| \widehat{L}_0(\log \log x) \times \left[\widehat{I}_{\ell} \left(\frac{\log \log \log x}{2} \right) - \widehat{I}_{\ell} \left(\frac{\log \log \log x}{2} - 1 \right) \right] \right| \end{split}$$

$$\exp\left(-\log\log\log x \cdot \log\log\log\log x\right) \gg \exp\left(-\left(\log\log\log x\right)^2\right) \gg (\log\log x)^2,$$

and

$$\exp\left(-\log\log\log\log x \cdot \log\log\log\log\log\log x\right) \gg \exp\left(-(\log\log\log\log x)^2\right) \gg (\log\log\log\log x)^2$$
.

^FWe have invoked the simplifications that for sufficiently large x,

It is clear from our prior computations of the growth of $A_{\Omega}^{(\ell)}(x)$ and $\hat{\tau}_0(x)$ that the asymptotically dominant behavior of the bound for $|G_{\ell}^{-1}(x)|$ corresponds the integral term calculated in (36).

To make this observation precise, consider the following expansion for the leading term in the Abel summation formula from (33) for comparison with (36):

$$\left| \hat{L}_{0}(\log \log x) \hat{\tau}_{0}(\log x) A_{\Omega}^{\ell}(\log x) \right| \gg \frac{C_{\ell,1} \cdot (\log x)(\log \log x)^{2}}{(\log \log \log x)^{\frac{3}{2} + \log \log \log x} (\log \log \log \log x)^{\frac{5}{2} + \log \log \log \log x}}$$

$$\gg \frac{C_{\ell,1} \cdot (\log x)(\log \log x)^{4} \sqrt{\log \log \log x}}{(\log \log \log \log x)^{\frac{5}{2}}}.$$

$$(37)$$

We have used the same simplifications noted in the footnote annotated as above in arriving at the limiting lower bound given in the previous equation. \Box

Remark 9.6. A good sign of the correctness of our proof given here is that up to a small rational non-zero constant factor distinction, the two terms in (36) and (37) summed to contribute asymptotic weight to (33) nearly coincide. Such a thin near coincidence of these terms, one of which forms a product and the other a scaled integral, over the same function triplet should be viewed as a rarity of a phenomenon we just happen to capture exactly by our computations in the proof above. Note that the respective leading sign on the two terms contributing weight to the asymptotics of (33) is given by $\pm (-1)^{\lfloor \log \log \log \log x \rfloor + \lfloor \log \log \log \log x \rfloor}$.

9.2 Proof of the unboundedness of the scaled Mertens function along infinite subsequences

What we will have shown in total concluding the proof of Corollary 4.11 below is the classically conjectured unboundedness property of M(x) in the form of

$$\limsup_{x \to \infty} \frac{|M(x)|}{\sqrt{x}} = +\infty.$$

This statement comprises a better than previously known rate of the minimal asymptotic tendencies of $|M(x)|/\sqrt{x}$ towards unboundedness along an infinite subsequence. Note that this result is still a much weaker condition than the RH as stated. Moreover, we must again take time to emphasize that its construction is entirely much differently motivated through the encouraging combinatorial structures and additive functions we have observed in our new formulas.

Now we finally address the main conclusion of our arguments given so far:

Proof of Corollary 4.11. It suffices to take $u_0 = e^{2e^{e^e}} \approx 5.43591 \times 10^{3313040}$. Now, we break up the integral term in Proposition 9.1 over $t \in [u_0, x/2]$ into two pieces: one that is easily bounded from $u_0 \le t \le \sqrt{x}$, and then another that will conveniently give us our slow-growing tendency towards infinity along the subsequence when evaluated using Theorem 9.5. In the next calculations, we assume that $x \mapsto x_y$ is taken along the subsequence taken within the intervals defined above. For sufficiently large y, this subsequence is guaranteed to exist by our proof of Theorem 4.8 using the methods we have developed to establish it and the necessary hypotheses in Section 8.

First, since $\pi(j) = \pi(\lfloor \sqrt{x} \rfloor)$ for all $\lfloor \sqrt{x} \rfloor \leqslant j < x$, we can take the first chunk of the interval of integration and bound it using (26) as

$$-\int_{u_0}^{\sqrt{x}} \frac{2\sqrt{x}}{t^2 \log(x)} |G_{\ell}^{-1}(t)| dt \gg \frac{2}{\log(x)} \cdot \left(\min_{u_0 \leqslant t \leqslant \sqrt{x}} |G_{\ell}^{-1}(t)| \right) = o\left(1\right).$$

The maximum in the previous equation is clearly attained by taking $t := \sqrt{x}$, whereas the minimum extreme value occurs at the constant-valued lower bound of integration at u_0 .

We next have to prove a related bound over the second portion of the interval from $\sqrt{x} \le t \le x/2$ as follows:

$$-\int_{\sqrt{x}}^{x/2} \frac{2x}{t^2 \log(x)} \cdot |G_{\ell}^{-1}(t)| dt \gg \frac{2\sqrt{x}}{\log x} \cdot \left(\min_{\sqrt{x} \leqslant t \leqslant x/2} |G_{\ell}^{-1}(t)|\right)$$
$$= C_{\ell,1} \cdot \sqrt{x} \times \frac{(\log \log \sqrt{x})^3 \sqrt{\log \log \log \sqrt{x}}}{(\log \log \log \log \sqrt{x})^{\frac{5}{2}}} + o(1).$$

Finally, since $G_{\ell}^{-1}(x) = o(\sqrt{x})$, we obtain in total that as $x \to \infty$ along this infinite subsequence, we have

$$|M(x)| \gg C_{\ell,1} \cdot \sqrt{x} \times \frac{(\log \log \sqrt{x})^3 \sqrt{\log \log \log \sqrt{x}}}{(\log \log \log \log \sqrt{x})^{\frac{5}{2}}} + o(1).$$

The absolute constant $C_{\ell,1} > 0$ is defined in the statement of Theorem 9.5 proved in the last subsection.

References

- [1] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, 1976.
- [2] P. Erdös. On the integers having exactly k prime factors. Annals of Mathematics, 40(1):53-66, 1946.
- [3] P. Flajolet and R. Sedgewick. *Analytic Combinatorics*. Cambridge University Press, 2009 (Third printing 2010).
- [4] J. Friendlander and H. Iwaniec. Opera de Cribero. American Mathematical Society, 2010.
- [5] G. H. Hardy and E. M. Wright, editors. An Introduction to the Theory of Numbers. Oxford University Press, 2008 (Sixth Edition).
- [6] G. Hurst. Computations of the Mertens function and improved bounds on the Mertens conjecture. https://arxiv.org/pdf/1610.08551/, 2017.
- [7] H. Iwaniec and E. Kowalski. Analytic Number Theory, volume 53. AMS Colloquium Publications, 2004.
- [8] T. Kotnik and H. té Riele. The Mertens conjecture revisited. *Algorithmic Number Theory*, 7th International Symposium, 2006.
- [9] T. Kotnik and J. van de Lune. On the order of the Mertens function. Exp. Math., 2004.
- [10] H. L. Montgomery and R. C. Vaughan. Multiplicative Number Theory: I. Classical Theory. Cambridge, 2006.
- [11] A. M. Odlyzko and H. J. J. té Riele. Disproof of the Mertens conjecture. *J. REINE ANGEW. MATH*, 1985.
- [12] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark, editors. NIST Handbook of Mathematical Functions. Cambridge University Press, 2010.
- [13] P. Ribenboim. The new book of prime number records. Springer, 1996.
- [14] J. Sándor and B. Crstici. Handbook of Number Theory II. Kluwer Academic Publishers, 2004.
- [15] N. J. A. Sloane. The Online Encyclopedia of Integer Sequences, 2020.
- [16] K. Soundararajan. Partial sums of the Möbius function. Annals of Mathematics, 2009.

T.1 Table: Computations with a signed Dirichlet inverse function and its summatory function

										$\sum_{d n} C_{\Omega(d)}(d)$	1			
n	Primes		Sqfree	PPower	Ŝ		$g^{-1}(n)$	$\lambda(n)\operatorname{sgn}(g^{-1}(n))$	$\lambda(n)g^{-1}(n) - \hat{f}_1(n)$	$\frac{a n}{ g^{-1}(n) }$		$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
1	1^1	-	Y	N	N	-	1	1	0	1.0000000	_	1	1	0
2	2^1	-	Y	Y	N	_	-2	1	0	1.0000000	_	-1	1	-2
3	3^1	-	Y	Y	N	-	-2	1	0	1.0000000	_	-3	1	-4
4	2^{2}	-	N	Y	N	_	2	1	0	1.5000000	_	-1	3	-4
5	5^1	-	Y	Y	N	_	-2	1	0	1.0000000	_	-3	3	-6
6	$2^{1}3^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	2	8	-6
7	7^1	-	Y	Y	N	_	-2	1	0	1.0000000	_	0	8	-8
8	2^{3}	-	N	Y	N	_	-2	1	0	2.0000000	_	-2	8	-10
9	3^2	-	N	Y	N	_	2	1	0	1.5000000	_	0	10	-10
10	$2^{1}5^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	5	15	-10
11	11^1	-	Y	Y	N	_	-2	1	0	1.0000000	_	3	15	-12
12	$2^{2}3^{1}$	-	N	N	Y	_	-7	1	2	1.2857143	_	-4	15	-19
13	13^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	_	-6	15	-21
14	$2^{1}7^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-1	20	-21
15	$3^{1}5^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	4	25	-21
16	2^{4}	-	N	Y	N	_	2	1	0	2.5000000	_	6	27	-21
17	17^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	_	4	27	-23
18	$2^{1}3^{2}$	-	N	N	Y	_	-7	1	2	1.2857143	_	-3	27	-30
19	19^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	_	-5	27	-32
20	$2^{2}5^{1}$	-	N	N	Y	_	-7	1	2	1.2857143	_	-12	27	-39
21	$3^{1}7^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-7	32	-39
22	$2^{1}11^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-2	37	-39
23	23^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	_	-4	37	-41
24	$2^{3}3^{1}$	-	N	N	Y	_	9	1	4	1.5555556	_	5	46	-41
25	5^{2}	-	N	Y	N	_	2	1	0	1.5000000	_	7	48	-41
26	$2^{1}13^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	12	53	-41
27	3^3	_	N	Y	N	_	-2	1	0	2.0000000	_	10	53	-43
28	$2^{2}7^{1}$	-	N	N	Y	_	-7	1	2	1.2857143	_	3	53	-50
29	29^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	_	1	53	-52
30	$2^{1}3^{1}5^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	-15	53	-68
31	31^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	-17	53	-70
32	2^{5}	-	N	Y	N	_	-2	1	0	3.0000000	_	-19	53	-72
33	$3^{1}11^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-14	58	-72
34	$2^{1}17^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-9	63	-72
35	$5^{1}7^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-4	68	-72
36	$2^{2}3^{2}$	-	N	N	Y	-	14	1	9	1.3571429	_	10	82	-72
37	37^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	_	8	82	-74
38	$2^{1}19^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	13	87	-74
39	$3^{1}13^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	18	92	-74
40	$2^{3}5^{1}$	-	N	N	Y	_	9	1	4	1.5555556	-	27	101	-74
41	41^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	-	25	101	-76
42	$2^{1}3^{1}7^{1}$	-	Y	N	N	_	-16	1	0	1.0000000	_	9	101	-92
43	43^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	_	7	101	-94
44	2^211^1	-	N	N	Y	_	-7	1	2	1.2857143	_	0	101	-101
45	$3^{2}5^{1}$	-	N	N	Y	_	-7	1	2	1.2857143	_	-7	101	-108
46	$2^{1}23^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-2	106	-108
47	47^1	-	Y	Y	N	_	-2	1	0	1.0000000	_	-4	106	-110
48	2^43^1	-	N	N	Y	_	-11	1	6	1.8181818	_	-15	106	-121
		-	1			·	1	1			·	•		

Table T.1: Computations of $g^{-1}(n) \equiv (\omega+1)^{-1}(n)$ for $1 \leqslant n \leqslant 500$.

The column labeled Primes provides the prime factorization of each n so that the values of $\omega(n)$ and $\Omega(n)$ are easily extracted. The columns labeled, respectively, Sqfree, PPower and $\bar{\mathbb{S}}$ list inclusion of n in the sets of squarefree integers, prime powers, and the set $\bar{\mathbb{S}}$ that denotes the positive integers n which are neither squarefree nor prime powers. The next two columns provide the explicit values of the inverse function $g^{-1}(n)$ and indicate that the sign of this function at n is given by $\lambda(n)$.

The next column shows the small-ish magnitude differences between the unsigned magnitude of $g^{-1}(n)$ and the summations $\hat{f}_1(n) := \sum_{k \geqslant 0} {\omega(n) \choose k} \cdot k!$. The following column in order shows the ratio of $\sum_{d|n} C_{\Omega(d)}(d)/|g^{-1}(n)|$.

The last three columns show the summatory function of $g^{-1}(n)$, $G^{-1}(x) := \sum_{n \leq x} g^{-1}(n)$, decomposed into its respective positive and negative summatory function components: $G^{-1}(x) = G_+^{-1}(x) + G_-^{-1}(x)$ where $G_+^{-1}(x) > 0$ and $G_-^{-1}(x) < 0$.

49 50			Sqfree	PPower	Ē		$g^{-1}(n)$	$\lambda(n)\operatorname{sgn}(g^{-1}(n))$	$\lambda(n)g^{-1}(n) - \hat{f}_1(n)$	$\frac{\sum\limits_{d\mid n} C_{\Omega(d)}(d)}{ g^{-1}(n) }$		$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
	7^{2}	-	N	Y	N	_	2	1	0	1.5000000	_	-13	108	-121
00	$2^{1}5^{2}$	_	N	N	Y	_	_7	1	2	1.2857143	_	-20	108	-128
51	$3^{1}17^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-15	113	-128
52	$2^{2}13^{1}$	_	N	N	Y	_	_7	1	2	1.2857143	_	-22	113	-125 -135
	53^{1}	_	Y	Y	N	_	$-7 \\ -2$	1	0	1.0000000	_	-22 -24	113	-135 -137
53	$2^{1}3^{3}$				- 1							l		
54		-	N	N	Y	-	9	1	4	1.5555556	-	-15	122	-137
55	$5^{1}11^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	-10	127	-137
56	$2^{3}7^{1}$	-	N	N	Y	-	9	1	4	1.555556	-	-1	136	-137
57	$3^{1}19^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	4	141	-137
58	$2^{1}29^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	9	146	-137
59	59^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	-	7	146	-139
60	$2^23^15^1$	-	N	N	Y	-	30	1	14	1.1666667	-	37	176	-139
61	61^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	-	35	176	-141
62	$2^{1}31^{1}$	-	Y	N	N	-	5	1	0	1.0000000	_	40	181	-141
63	3^27^1	-	N	N	Y	-	-7	1	2	1.2857143	_	33	181	-148
64	2^{6}	_	N	Y	N	_	2	1	0	3.5000000	_	35	183	-148
65	$5^{1}13^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	40	188	-148
66	$2^{1}3^{1}11^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	24	188	-164
67	67^{1}	_	Y	Y	N	_	$-10 \\ -2$	1	0	1.0000000	_	22	188	-164
	$2^{2}17^{1}$											l		
68		-	N	N	Y	-	-7	1	2	1.2857143	_	15	188	-173
69	$3^{1}23^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	20	193	-173
70	$2^{1}5^{1}7^{1}$	-	Y	N	N	-	-16	1	0	1.0000000	_	4	193	-189
71	71^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	-	2	193	-191
72	$2^{3}3^{2}$	-	N	N	Y	-	-23	1	18	1.4782609	-	-21	193	-214
73	73^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	-	-23	193	-216
74	$2^{1}37^{1}$	-	Y	N	N	-	5	1	0	1.0000000	_	-18	198	-216
75	$3^{1}5^{2}$	-	N	N	Y	-	-7	1	2	1.2857143	-	-25	198	-223
76	$2^{2}19^{1}$	-	N	N	Y	-	-7	1	2	1.2857143	_	-32	198	-230
77	7^111^1	_	Y	N	N	_	5	1	0	1.0000000	_	-27	203	-230
78	$2^{1}3^{1}13^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	-43	203	-246
79	79 ¹	_	Y	Y	N	_	-2	1	0	1.0000000	_	-45	203	-248
80	$2^{4}5^{1}$	_	N	N	Y	_	-11	1	6	1.8181818	_	-56	203	-259
81	34	_	N	Y	N	_	2	1	0	2.5000000	_	-54	205	-259
82	$2^{1}41^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-49	210	-259
	83 ¹		Y		- 1									
83	$2^{2}3^{1}7^{1}$	-		Y	N	-	-2	1	0	1.0000000	_	-51	210	-261
84		-	N	N	Y	-	30	1	14	1.1666667	-	-21	240	-261
85	$5^{1}17^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	-16	245	-261
86	$2^{1}43^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	-11	250	-261
87	$3^{1}29^{1}$	-	Y	N	N	-	5	1	0	1.0000000	_	-6	255	-261
88	$2^{3}11^{1}$	-	N	N	Y	-	9	1	4	1.5555556	-	3	264	-261
89	891	-	Y	Y	N	-	-2	1	0	1.0000000	-	1	264	-263
90	$2^{1}3^{2}5^{1}$	-	N	N	Y	-	30	1	14	1.1666667	-	31	294	-263
91	$7^{1}13^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	36	299	-263
92	$2^{2}23^{1}$	-	N	N	Y	-	-7	1	2	1.2857143	-	29	299	-270
93	$3^{1}31^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	34	304	-270
94	$2^{1}47^{1}$	-	Y	N	N	-	5	1	0	1.0000000	_	39	309	-270
95	$5^{1}19^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	44	314	-270
96	$2^{5}3^{1}$	_	N	N	Y	_	13	1	8	2.0769231	_	57	327	-270
97	97^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	55	327	-272
98	$2^{1}7^{2}$	_	N	N	Y	_	$-2 \\ -7$	1	2	1.2857143	_	48	327	-272 -279
99	$3^{2}11^{1}$	_	N	N	Y	_	-7 -7	1	2	1.2857143	_	41	327	-279 -286
	$2^{2}5^{2}$		N N	N N	Y	_		1	9	1.3571429		1		-286 -286
100	101 ¹	-			- 1		14				-	55 52	341	
101	$2^{1}3^{1}17^{1}$	-	Y	Y	N	-	-2 16	1	0	1.0000000	-	53	341	-288
102		-	Y	N	N	-	-16	1	0	1.0000000	-	37	341	-304
103	103^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	-	35	341	-306
104	$2^{3}13^{1}$	-	N	N	Y	-	9	1	4	1.5555556	-	44	350	-306
105	$3^{1}5^{1}7^{1}$	-	Y	N	N	-	-16	1	0	1.0000000	-	28	350	-322
106	$2^{1}53^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	33	355	-322
107	107^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	_	31	355	-324
108	$2^{2}3^{3}$	-	N	N	Y	-	-23	1	18	1.4782609	-	8	355	-347
109	109^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	_	6	355	-349
110	$2^15^111^1$	-	Y	N	N	-	-16	1	0	1.0000000	_	-10	355	-365
111	$3^{1}37^{1}$	_	Y	N	N	-	5	1	0	1.0000000	_	-5	360	-365
112		_	N	N	Y	_	-11	1	6	1.8181818	_	-16	360	-376
113	4	_	Y	Y	N	_	-2	1	0	1.0000000	_	-18	360	-378
114	$2^{1}3^{1}19^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	-34	360	-394
115	$5^{1}23^{1}$	_	Y	N	N	_	-10 5	1	0	1.0000000	_	-34 -29	365	-394 -394
1	$2^{2}29^{1}$					_						1		
116		-	N	N	Y		-7	1	2	1.2857143	-	-36	365	-401
117	$3^{2}13^{1}$	-	N	N	Y	-	-7	1	2	1.2857143	-	-43	365	-408
118	$2^{1}59^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	-38	370	-408
119	$7^{1}17^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	-33	375	-408
120	$2^{3}3^{1}5^{1}$	-	N	N	Y	-	-48	1	32	1.3333333	_	-81	375	-456
121	11^{2}	-	N	Y	N	-	2	1	0	1.5000000	-	-79	377	-456
122	$2^{1}61^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	-74	382	-456
1	3^141^1	-	Y	N	N	-	5	1	0	1.0000000	_	-69	387	-456
123	2^231^1	_	N	N	Y	_	-7	1	2	1.2857143	_	-76	387	-463

]		$\sum\limits_{d\mid n}^{\sum} {C_{\Omega(d)}(d)}$		<u> </u>		
n	Primes		Sqfree	PPower	Ī		$g^{-1}(n)$	$\lambda(n)\operatorname{sgn}(g^{-1}(n))$	$\lambda(n)g^{-1}(n) - \hat{f}_1(n)$	$\frac{d n}{ g^{-1}(n) }$		$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
125	5^{3}	-	N	Y	N	-	-2	1	0	2.0000000	-	-78	387	-465
126	$2^{1}3^{2}7^{1}$	-	N	N	Y	_	30	1	14	1.1666667	-	-48	417	-465
127	127^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	-	-50	417	-467
128	27	-	N	Y	N	-	-2	1	0	4.0000000	-	-52	417	-469
129	$3^{1}43^{1}$ $2^{1}5^{1}13^{1}$	- _	Y	N	N	-	5	1	0	1.0000000	_	-47	422	-469
130	131 ¹	_	Y Y	N Y	N N	_	-16 -2	1 1	0	1.0000000 1.0000000	_	-63 -65	$422 \\ 422$	$-485 \\ -487$
131	$2^{2}3^{1}11^{1}$	_	N	N	Y	_	30	1	14	1.1666667	_	-35	452	-487 -487
133	$7^{1}19^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-30	457	-487
134	$2^{1}67^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-25	462	-487
135	$3^{3}5^{1}$	-	N	N	Y	_	9	1	4	1.5555556	_	-16	471	-487
136	2^317^1	-	N	N	Y	_	9	1	4	1.5555556	-	-7	480	-487
137	137^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	-	-9	480	-489
138	$2^{1}3^{1}23^{1}$	-	Y	N	N	-	-16	1	0	1.0000000	-	-25	480	-505
139	139^1 $2^25^17^1$	-	Y	Y	N	-	-2	1	0	1.0000000	_	-27	480	-507
140	$3^{1}47^{1}$	- -	N	N	Y	_	30	1 1	14	1.1666667	-	3	510	-507
141	$2^{1}71^{1}$	_	Y Y	N N	N N	_	5 5	1	0	1.0000000 1.0000000	_	8 13	515 520	-507 -507
143	$11^{1}13^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	18	525	-507 -507
144	$2^{4}3^{2}$	_	N	N	Y	_	34	1	29	1.6176471	_	52	559	-507
145	$5^{1}29^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	57	564	-507
146	$2^{1}73^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	62	569	-507
147	$3^{1}7^{2}$	-	N	N	Y	_	-7	1	2	1.2857143	_	55	569	-514
148	2^237^1	-	N	N	Y	_	-7	1	2	1.2857143	_	48	569	-521
149	149^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	-	46	569	-523
150	$2^{1}3^{1}5^{2}$	-	N	N	Y	_	30	1	14	1.1666667	-	76	599	-523
151	151 ¹	-	Y	Y	N	-	-2	1	0	1.0000000	-	74	599	-525
152	$2^{3}19^{1}$ $3^{2}17^{1}$	_	N N	N N	Y	_	$9 \\ -7$	1 1	$\frac{4}{2}$	1.5555556	-	83	608	-525
153 154	$2^{1}7^{1}11^{1}$	_	Y	N N	Y N	_	-16	1	0	1.2857143 1.0000000	_	76 60	608 608	-532 -548
155	$5^{1}31^{1}$	_	Y	N	N	_	-10 5	1	0	1.0000000	_	65	613	-548
156	$2^{2}3^{1}13^{1}$	_	N	N	Y	_	30	1	14	1.1666667	_	95	643	-548
157	157^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	93	643	-550
158	$2^{1}79^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	98	648	-550
159	$3^{1}53^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	103	653	-550
160	$2^{5}5^{1}$	-	N	N	Y	-	13	1	8	2.0769231	_	116	666	-550
161	$7^{1}23^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	121	671	-550
162	$2^{1}3^{4}$	-	N	N	Y	-	-11	1	6	1.8181818	-	110	671	-561
163 164	163^{1} $2^{2}41^{1}$	_	Y N	Y N	N Y	_	$-2 \\ -7$	1 1	0 2	1.0000000 1.2857143	_	108 101	671 671	-563 -570
165	$3^{1}5^{1}11^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	85	671	-570 -586
166	$2^{1}83^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	90	676	-586
167	167^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	88	676	-588
168	$2^33^17^1$	-	N	N	Y	_	-48	1	32	1.3333333	_	40	676	-636
169	13^{2}	-	N	Y	N	_	2	1	0	1.5000000	_	42	678	-636
170	$2^{1}5^{1}17^{1}$	-	Y	N	N	-	-16	1	0	1.0000000	_	26	678	-652
171	$3^{2}19^{1}$	-	N	N	Y	_	-7	1	2	1.2857143	-	19	678	-659
172	$2^{2}43^{1}$	-	N	N	Y	-	-7	1	2	1.2857143	-	12	678	-666
173	173^1 $2^13^129^1$	-	Y	Y	N	-	-2 16	1	0	1.0000000	-	10	678	-668
174 175	$5^{2}7^{1}$	_	Y N	N N	N Y	_	$-16 \\ -7$	1 1	$0 \\ 2$	1.0000000 1.2857143	_	-6 -13	678 678	-684 -691
176	$2^{4}11^{1}$	_	N N	N N	Y	_	-1 -11	1	6	1.2857143	_	-13 -24	678	-691 -702
177	$3^{1}59^{1}$	_	Y	N	N	_	-11 5	1	0	1.0000000	_	-24 -19	683	-702 -702
178	$2^{1}89^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-14	688	-702
179	179^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	_	-16	688	-704
180	$2^23^25^1$	-	N	N	Y	_	-74	1	58	1.2162162	-	-90	688	-778
181	181 ¹	-	Y	Y	N	_	-2	1	0	1.0000000	-	-92	688	-780
182	$2^{1}7^{1}13^{1}$	-	Y	N	N	_	-16	1	0	1.0000000	-	-108	688	-796
183	3 ¹ 61 ¹	-	Y	N	N	-	5	1	0	1.0000000	-	-103	693	-796
184	$2^{3}23^{1}$ $5^{1}37^{1}$	-	N	N	Y	-	9	1	4	1.5555556	-	-94	702	-796
185 186	$2^{1}3^{1}31^{1}$	_	Y Y	N N	N N	_	$\frac{5}{-16}$	1 1	0	1.0000000 1.0000000	_	-89 -105	707 707	-796 -812
187	$2 \ 3 \ 31$ $11^{1}17^{1}$	_	Y	N	N	_	-16 5	1	0	1.0000000	_	-105 -100	707	-812 -812
188	$2^{2}47^{1}$	_	N	N	Y	_	_7	1	2	1.2857143	_	-107	712	-812 -819
189	$3^{3}7^{1}$	_	N	N	Y	_	9	1	4	1.5555556	_	-98	721	-819
190	$2^15^119^1$	-	Y	N	N	_	-16	1	0	1.0000000	_	-114	721	-835
191	191^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	-	-116	721	-837
192	$2^{6}3^{1}$	-	N	N	Y	_	-15	1	10	2.3333333	_	-131	721	-852
193	193 ¹	-	Y	Y	N	-	-2	1	0	1.0000000	_	-133	721	-854
194	$2^{1}97^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	-128	726	-854
195	$3^{1}5^{1}13^{1}$	-	Y	N	N	-	-16	1	0	1.0000000	-	-144	726	-870
196	$2^{2}7^{2}$	-	N	N	Y	-	14	1	9	1.3571429	-	-130	740	-870
197 198	197^1 $2^13^211^1$	_	Y N	Y N	N Y	_	$-2 \\ 30$	1 1	$0\\14$	1.0000000	_	-132 -102	$740 \\ 770$	$-872 \\ -872$
198	199 ¹	_	Y Y	N Y	Y N	_	30 -2	1	0	1.1666667 1.0000000	_	-102 -104	770 770	-872 -874
200	$2^{3}5^{2}$	_	N N	Y N	Y	_	-2 -23	1	18	1.4782609	_	-104 -127	770	-874 -897
		ı	1 **		•			· *		02000	1	1		00,

	Dui		Saferra	PPower	Š		$g^{-1}(n)$	\(\n\) agn(1(-\)	$\lambda(n)g^{-1}(n) - \hat{f}_1(n)$	$\sum_{d n} C_{\Omega(d)}(d)$		$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
n	Primes		Sqfree							$ g^{-1}(n) $				
201	$3^{1}67^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-122	775	-897
202	$2^{1}101^{1}$ $7^{1}29^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	-117	780	-897
203	$2^{2}3^{1}17^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-112	785	-897
204	$5^{1}41^{1}$	-	N Y	N N	Y N	_	30 5	1 1	14 0	1.1666667 1.0000000	_	$-82 \\ -77$	815 820	$-897 \\ -897$
206	$2^{1}103^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-77 -72	825	-897
207	$3^{2}23^{1}$	_	N	N	Y	_	_7	1	2	1.2857143	_	-72 -79	825	-904
208	2^413^1	_	N	N	Y	_	-11	1	6	1.8181818	_	-90	825	-915
209	$11^{1}19^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-85	830	-915
210	$2^{1}3^{1}5^{1}7^{1}$	-	Y	N	N	_	65	1	0	1.0000000	_	-20	895	-915
211	211^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	-22	895	-917
212	2^253^1	-	N	N	Y	_	-7	1	2	1.2857143	_	-29	895	-924
213	$3^{1}71^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-24	900	-924
214	$2^{1}107^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-19	905	-924
215	$5^{1}43^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	-14	910	-924
216	$2^{3}3^{3}$	-	N	N	Y	_	46	1	41	1.5000000	_	32	956	-924
217	$7^{1}31^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	37	961	-924
218	$2^{1}109^{1}$ $3^{1}73^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	42	966	-924
219 220	$2^{2}5^{1}11^{1}$	-	Y	N	N Y	_	5	1	0	1.0000000	_	47	971	-924
220	$13^{1}17^{1}$	_	N Y	N N	N	_	30 5	1 1	14 0	1.1666667 1.0000000	_	77 82	1001 1006	-924 -924
221	$2^{1}3^{1}3^{1}$	-	Y	N N	N	_	-16	1	0	1.0000000	_	66	1006	-924 -940
223	23^{1}	_	Y	Y	N	_	-16 -2	1	0	1.0000000	_	64	1006	-940 -942
224	$2^{5}7^{1}$	_	N	N	Y	_	13	1	8	2.0769231	_	77	1019	-942
225	$3^{2}5^{2}$	_	N	N	Y	_	14	1	9	1.3571429	_	91	1033	-942
226	$2^{1}113^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	96	1038	-942
227	227^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	_	94	1038	-944
228	$2^23^119^1$	-	N	N	Y	_	30	1	14	1.1666667	-	124	1068	-944
229	229^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	_	122	1068	-946
230	$2^{1}5^{1}23^{1}$	-	Y	N	N	_	-16	1	0	1.0000000	_	106	1068	-962
231	$3^{1}7^{1}11^{1}$	-	Y	N	N	_	-16	1	0	1.0000000	_	90	1068	-978
232	$2^{3}29^{1}$	-	N	N	Y	_	9	1	4	1.5555556	-	99	1077	-978
233	233^{1} $2^{1}3^{2}13^{1}$	-	Y N	Y N	N Y	_	$-2 \\ 30$	1 1	0	1.0000000	_	97 127	1077	-980
234	$5^{1}47^{1}$	_	Y	N N	N	_	5	1	14 0	1.1666667 1.0000000	_	132	$\frac{1107}{1112}$	-980 -980
236	$2^{2}59^{1}$		N N	N N	Y	_	-7	1	2	1.2857143	_	125	1112	-980 -987
237	$3^{1}79^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	130	1117	-987
238	$2^{1}7^{1}17^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	114	1117	-1003
239	239^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	112	1117	-1005
240	$2^43^15^1$	-	N	N	Y	_	70	1	54	1.5000000	_	182	1187	-1005
241	241^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	_	180	1187	-1007
242	$2^{1}11^{2}$	-	N	N	Y	_	-7	1	2	1.2857143	_	173	1187	-1014
243	3^{5}	-	N	Y	N	_	-2	1	0	3.0000000	_	171	1187	-1016
244	$2^{2}61^{1}$	-	N	N	Y	_	-7	1	2	1.2857143	_	164	1187	-1023
245	$5^{1}7^{2}$	-	N	N	Y	_	-7	1	2	1.2857143	_	157	1187	-1030
246	$2^{1}3^{1}41^{1}$	-	Y	N	N	_	-16	1	0	1.0000000	_	141	1187	-1046
247	$13^{1}19^{1}$ $2^{3}31^{1}$	-	Y N	N N	N Y	_	5 9	1 1	0 4	1.0000000	_	146	1192	-1046
248 249	$3^{1}83^{1}$		Y	N	N	_	5	1	0	1.5555556 1.0000000	_	155 160	1201 1206	-1046 -1046
250	$2^{1}5^{3}$	_	N	N	Y	_	9	1	4	1.5555556	_	169	1215	-1046
251	251^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	167	1215	-1048
252	$2^{2}3^{2}7^{1}$	_	N	N	Y	_	-74	1	58	1.2162162	_	93	1215	-1122
253	$11^{1}23^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	98	1220	-1122
254	2^1127^1	-	Y	N	N	_	5	1	0	1.0000000	-	103	1225	-1122
255	$3^{1}5^{1}17^{1}$	-	Y	N	N	_	-16	1	0	1.0000000	_	87	1225	-1138
256	2 ⁸	-	N	Y	N	-	2	1	0	4.5000000	_	89	1227	-1138
257	257^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	_	87	1227	-1140
258	$2^{1}3^{1}43^{1}$	-	Y	N	N	_	-16	1	0	1.0000000	-	71	1227	-1156
259	$7^{1}37^{1}$ $2^{2}5^{1}13^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	76 106	1232	-1156
260 261	$3^{2}29^{1}$	_	N N	N N	Y Y	_	30 -7	1 1	$\frac{14}{2}$	1.1666667 1.2857143	_	106 99	1262 1262	-1156 -1163
261	$2^{1}131^{1}$	_	Y	N N	N	_	5	1	0	1.0000000	_	104	1262	-1163 -1163
263	263^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	104	1267	-1165 -1165
264	$2^{3}3^{1}11^{1}$	_	N	N	Y	_	-48	1	32	1.3333333	_	54	1267	-1213
265	$5^{1}53^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	59	1272	-1213
266	$2^17^119^1$	_	Y	N	N	_	-16	1	0	1.0000000	_	43	1272	-1229
267	$3^{1}89^{1}$	-	Y	N	N	-	5	1	0	1.0000000	_	48	1277	-1229
268	2^267^1	-	N	N	Y	-	-7	1	2	1.2857143	_	41	1277	-1236
269	269^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	_	39	1277	-1238
270	$2^{1}3^{3}5^{1}$	-	N	N	Y	-	-48	1	32	1.3333333	-	-9	1277	-1286
271	271^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	-	-11	1277	-1288
272	2^417^1	-	N	N	Y	-	-11	1	6	1.8181818	-	-22	1277	-1299
273	$3^{1}7^{1}13^{1}$	-	Y	N	N	_	-16	1	0	1.0000000	-	-38	1277	-1315
274	$2^{1}137^{1}$ $5^{2}11^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	-33	1282	-1315
275 276	$5^{2}11^{4}$ $2^{2}3^{1}23^{1}$	_	N N	N N	Y Y	_	$-7 \\ 30$	1 1	$\frac{2}{14}$	1.2857143	_	$-40 \\ -10$	1282 1312	-1322 -1322
276	$2\ 3\ 23$ 277^1	-	Y	Y	N	_	-2	1	0	1.1666667 1.0000000	_	-10 -12	1312	-1322 -1324
1 211	211	I -	l 1	1	1.4	ı -	_ <u>_</u>	1	3	1.0000000	ı -	-12	1014	-1324

n	Primes		Sqfree	PPower	Ī		$g^{-1}(n)$	$\lambda(n)\operatorname{sgn}(g^{-1}(n))$	$\lambda(n)g^{-1}(n) - \hat{f}_1(n)$	$\frac{\sum\limits_{d\mid n} C_{\Omega(d)}(d)}{\sum\limits_{d\mid n=1}^{N} C_{\Omega(d)}(d)}$		$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
278	2 ¹ 139 ¹	_	Y	N	N	_	5	1	0	$\frac{ g^{-1}(n) }{1.0000000}$	_	-7	1317	-1324
	$3^{2}31^{1}$				Y	l								
279		_	N	N		-	-7	1	2	1.2857143	-	-14	1317	-1331
280	$2^{3}5^{1}7^{1}$	_	N	N	Y	-	-48	1	32	1.3333333	_	-62	1317	-1379
281	281^{1}	_	Y	Y	N	-	-2	1	0	1.0000000	_	-64	1317	-1381
282	$2^{1}3^{1}47^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	-	-80	1317	-1397
283	283^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	-	-82	1317	-1399
284	$2^{2}71^{1}$	_	N	N	Y	_	-7	1	2	1.2857143	_	-89	1317	-1406
285	$3^{1}5^{1}19^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	-105	1317	-1422
	$2^{1}11^{1}13^{1}$	_	Y	N	N	_		1	0		_			
286							-16			1.0000000		-121	1317	-1438
287	$7^{1}41^{1}$	_	Y	N	N	_	5	1	0	1.0000000	-	-116	1322	-1438
288	$2^{5}3^{2}$	_	N	N	Y	-	-47	1	42	1.7659574	-	-163	1322	-1485
289	17^{2}	_	N	Y	N	_	2	1	0	1.5000000	_	-161	1324	-1485
290	$2^{1}5^{1}29^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	-177	1324	-1501
291	$3^{1}97^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-172	1329	-1501
292	$2^{2}73^{1}$	_	N	N	Y	_	-7	1	2	1.2857143	-	-179	1329	-1508
293	293^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	-181	1329	-1510
294	$2^{1}3^{1}7^{2}$	-	N	N	Y	_	30	1	14	1.1666667	_	-151	1359	-1510
295	$5^{1}59^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-146	1364	-1510
296	$2^{3}37^{1}$	_	N	N	Y	_	9	1	4	1.5555556	_	-137	1373	-1510
	$3^{3}11^{1}$										l			
297		_	N	N	Y	-	9	1	4	1.5555556	-	-128	1382	-1510
298	$2^{1}149^{1}$	_	Y	N	N	_	5	1	0	1.0000000	-	-123	1387	-1510
299	$13^{1}23^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-118	1392	-1510
300	$2^23^15^2$	_	N	N	Y	_	-74	1	58	1.2162162	_	-192	1392	-1584
301	$7^{1}43^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-187	1397	-1584
302	$2^{1}151^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-182	1402	-1584
	$3^{1}101^{1}$	_									l			
303			Y	N	N	-	5	1	0	1.0000000	-	-177	1407	-1584
304	2^419^1	_	N	N	Y	-	-11	1	6	1.8181818	-	-188	1407	-1595
305	$5^{1}61^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-183	1412	-1595
306	$2^{1}3^{2}17^{1}$	_	N	N	Y	_	30	1	14	1.1666667	_	-153	1442	-1595
307	307^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	-155	1442	-1597
308	$2^{2}7^{1}11^{1}$	_	N	N	Y	_	30	1	14	1.1666667	_	-125	1472	-1597
	$3^{1}103^{1}$													
309		_	Y	N	N	-	5	1	0	1.0000000	-	-120	1477	-1597
310	$2^{1}5^{1}31^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	-	-136	1477	-1613
311	311^{1}	_	Y	Y	N	-	-2	1	0	1.0000000	-	-138	1477	-1615
312	$2^{3}3^{1}13^{1}$	_	N	N	Y	_	-48	1	32	1.3333333	_	-186	1477	-1663
313	313^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	-188	1477	-1665
314	$2^{1}157^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-183	1482	-1665
	$3^{2}5^{1}7^{1}$													
315		_	N	N	Y	_	30	1	14	1.1666667	-	-153	1512	-1665
316	$2^{2}79^{1}$	_	N	N	Y	_	-7	1	2	1.2857143	-	-160	1512	-1672
317	317^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	_	-162	1512	-1674
318	$2^{1}3^{1}53^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	-178	1512	-1690
319	$11^{1}29^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-173	1517	-1690
320	$2^{6}5^{1}$	_	N	N	Y	_	-15	1	10	2.3333333	_	-188	1517	-1705
321	$3^{1}107^{1}$	_	Y	N	N	-	5	1	0	1.0000000	_	-183	1522	-1705
322	$2^{1}7^{1}23^{1}$	_	Y	N	N	-	-16	1	0	1.0000000	-	-199	1522	-1721
323	$17^{1}19^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	-194	1527	-1721
324	$2^{2}3^{4}$	_	N	N	Y	_	34	1	29	1.6176471	_	-160	1561	-1721
325	5^213^1	_	N	N	Y	_	-7	1	2	1.2857143	_	-167	1561	-1728
326	$2^{1}163^{1}$	_	Y	N	N		5	1	0	1.0000000	_	-162	1566	-1728
						_								
327	$3^{1}109^{1}$	_	Y	N	N	-	5	1	0	1.0000000	-	-157	1571	-1728
328	$2^{3}41^{1}$	_	N	N	Y	-	9	1	4	1.5555556	-	-148	1580	-1728
329	$7^1 47^1$	-	Y	N	N	-	5	1	0	1.0000000	_	-143	1585	-1728
330	$2^{1}3^{1}5^{1}11^{1}$	_	Y	N	N	_	65	1	0	1.0000000	_	-78	1650	-1728
331	331^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	-80	1650	-1730
332	$2^{2}83^{1}$	l _	N	N	Y	_	-2 -7	1	2	1.2857143	_	-87	1650	-1730 -1737
		-												
333	$3^{2}37^{1}$	-	N	N	Y	-	-7	1	2	1.2857143	-	-94	1650	-1744
334	$2^{1}167^{1}$	_	Y	N	N	-	5	1	0	1.0000000	_	-89	1655	-1744
335	$5^{1}67^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	-84	1660	-1744
336	$2^4 3^1 7^1$	_	N	N	Y	_	70	1	54	1.5000000	_	-14	1730	-1744
337	337^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	-16	1730	-1746
338	$2^{1}13^{2}$		N	N	Y		-2 -7	1	2			-10 -23		-1740 -1753
		-				-				1.2857143	-		1730	
339	3 ¹ 113 ¹	_	Y	N	N	-	5	1	0	1.0000000	-	-18	1735	-1753
340	$2^25^117^1$	-	N	N	Y	-	30	1	14	1.1666667	-	12	1765	-1753
341	$11^{1}31^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	17	1770	-1753
342	$2^{1}3^{2}19^{1}$	_	N	N	Y	_	30	1	14	1.1666667	_	47	1800	-1753
343	7^{3}		N	Y	N			1	0	2.0000000				
		1 -				-	-2				-	45	1800	-1755
344	$2^{3}43^{1}$	-	N	N	Y	_	9	1	4	1.5555556	_	54	1809	-1755
345	$3^15^123^1$	-	Y	N	N	-	-16	1	0	1.0000000	-	38	1809	-1771
346	$2^{1}173^{1}$	-	Y	N	N	_	5	1	0	1.0000000	_	43	1814	-1771
347	347^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	41	1814	-1773
	$2^{2}3^{1}29^{1}$		N	N	Y	_		1			_	71		
348		-					30		14	1.1666667			1844	-1773
349	349^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	_	69	1844	-1775
350	$2^{1}5^{2}7^{1}$	_	N	N	Y	_	30	1	14	1.1666667	-	99	1874	-1775

n	Primes		Sqfree	PPower	Ī		$g^{-1}(n)$	$\lambda(n)\operatorname{sgn}(g^{-1}(n))$	$\lambda(n)g^{-1}(n) - \hat{f}_1(n)$	$\frac{\sum\limits_{\substack{d\mid n}} C_{\Omega(d)}(d)}{\sum\limits_{\substack{d\mid a}=1} C_{\Omega(d)}(d)}$		$G^{-1}(n)$	$G_{+}^{-1}(n)$	$G_{-}^{-1}(n)$
351	$3^{3}13^{1}$	_	N	N	Y	_	9	1	4	$\frac{ g^{-1}(n) }{1.5555556}$	-	108	1883	-1775
352	$2^{5}11^{1}$	_	N	N	Y	_	13	1	8	2.0769231	_	121	1896	-1775
353	353^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	-	119	1896	-1777
354	$2^{1}3^{1}59^{1}$	-	Y	N	N	_	-16	1	0	1.0000000	-	103	1896	-1793
355	$5^{1}71^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	108	1901	-1793
356	2^289^1	-	N	N	Y	_	-7	1	2	1.2857143	-	101	1901	-1800
357	$3^17^117^1$	-	Y	N	N	_	-16	1	0	1.0000000	-	85	1901	-1816
358	$2^{1}179^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	90	1906	-1816
359	359^{1}	_	Y	Y	N	-	-2	1	0	1.0000000	-	88	1906	-1818
360	$2^33^25^1$	_	N	N	Y	-	145	1	129	1.3034483	-	233	2051	-1818
361	19^{2}	-	N	Y	N	_	2	1	0	1.5000000	-	235	2053	-1818
362	$2^{1}181^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	240	2058	-1818
363	$3^{1}11^{2}$	-	N	N	Y	-	-7	1	2	1.2857143	-	233	2058	-1825
364	$2^27^113^1$	-	N	N	Y	-	30	1	14	1.1666667	-	263	2088	-1825
365	$5^{1}73^{1}$	_	Y	N	N	_	5	1	0	1.0000000	-	268	2093	-1825
366	$2^{1}3^{1}61^{1}$	_	Y	N	N	-	-16	1	0	1.0000000	-	252	2093	-1841
367	367^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	-	250	2093	-1843
368	$2^{4}23^{1}$	-	N	N	Y	-	-11	1	6	1.8181818	-	239	2093	-1854
369	3^241^1	_	N	N	Y	-	-7	1	2	1.2857143	-	232	2093	-1861
370	$2^{1}5^{1}37^{1}$	_	Y	N	N	-	-16	1	0	1.0000000	-	216	2093	-1877
371	$7^{1}53^{1}$	_	Y	N	N	-	5	1	0	1.0000000	-	221	2098	-1877
372	$2^{2}3^{1}31^{1}$	_	N	N	Y	-	30	1	14	1.1666667	-	251	2128	-1877
373	3731	_	Y	Y	N	-	-2	1	0	1.0000000	-	249	2128	-1879
374	$2^{1}11^{1}17^{1}$	_	Y	N	N	-	-16	1	0	1.0000000	-	233	2128	-1895
375	$3^{1}5^{3}$	_	N	N	Y	-	9	1	4	1.5555556	-	242	2137	-1895
376	$2^{3}47^{1}$	-	N	N	Y	-	9	1	4	1.5555556	-	251	2146	-1895
377	$13^{1}29^{1}$ $2^{1}3^{3}7^{1}$	_	Y	N	N	-	5	1	0	1.0000000	-	256	2151	-1895
378		-	N	N	Y	-	-48	1	32	1.3333333	-	208	2151	-1943
379	379^{1}	_	Y	Y	N	-	-2	1	0	1.0000000	-	206	2151	-1945
380	$2^{2}5^{1}19^{1}$ $3^{1}127^{1}$	_	N	N	Y	-	30	1	14	1.1666667	-	236	2181	-1945
381	$3^{1}127^{1}$ $2^{1}191^{1}$	_	Y	N	N	-	5	1	0	1.0000000	-	241	2186	-1945
382	383 ¹	_	Y Y	N Y	N	-	5	1	0	1.0000000	-	246	2191	-1945
383 384	$2^{7}3^{1}$	_	N N	Y N	N Y	_	$-2 \\ 17$	1 1	0 12	1.0000000	-	244 261	2191	-1947 -1947
	$5^{1}7^{1}11^{1}$	_	Y							2.5882353	-		2208	
385 386	$2^{1}193^{1}$	_	Y	N N	N N	_	-16 5	1 1	0	1.0000000	-	245 250	2208	-1963 -1963
387	$3^{2}43^{1}$	_	N N	N	Y	_	-7	1	2	1.0000000 1.2857143	_	243	$\frac{2213}{2213}$	-1903 -1970
388	$2^{2}97^{1}$	_	N N	N	Y	_	-7 -7	1	2	1.2857143	_	236	2213	-1970 -1977
389	389^{1}	_	Y	Y	N	_	-7 -2	1	0	1.0000000	_	234	2213	-1977 -1979
390	$2^{1}3^{1}5^{1}13^{1}$	_	Y	N	N	_	65	1	0	1.0000000	_	299	2278	-1979 -1979
391	$17^{1}23^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	304	2283	-1979 -1979
392	$2^{3}7^{2}$	_	N	N	Y	_	-23	1	18	1.4782609	_	281	2283	-2002
393	$3^{1}131^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	286	2288	-2002 -2002
394	$2^{1}197^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	291	2293	-2002
395	$5^{1}79^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	296	2298	-2002
396	$2^{2}3^{2}11^{1}$	_	N	N	Y	_	-74	1	58	1.2162162	_	222	2298	-2076
397	397^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	220	2298	-2078
398	$2^{1}199^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	225	2303	-2078
399	$3^{1}7^{1}19^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	209	2303	-2094
400	$2^{4}5^{2}$	_	N	N	Y	_	34	1	29	1.6176471	_	243	2337	-2094
401	401^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	241	2337	-2096
402	$2^{1}3^{1}67^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	225	2337	-2112
403	$13^{1}31^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	230	2342	-2112
404	2^2101^1	_	N	N	Y	_	-7	1	2	1.2857143	_	223	2342	-2119
405	$3^{4}5^{1}$	_	N	N	Y	_	-11	1	6	1.8181818	_	212	2342	-2130
406	$2^{1}7^{1}29^{1}$	-	Y	N	N	_	-16	1	0	1.0000000	-	196	2342	-2146
407	$11^{1}37^{1}$	_	Y	N	N	_	5	1	0	1.0000000	-	201	2347	-2146
408	$2^33^117^1$	_	N	N	Y	_	-48	1	32	1.3333333	-	153	2347	-2194
409	409^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	151	2347	-2196
410	$2^15^141^1$	_	Y	N	N	_	-16	1	0	1.0000000	-	135	2347	-2212
411	3^1137^1	_	Y	N	N	_	5	1	0	1.0000000	-	140	2352	-2212
412	2^2103^1	_	N	N	Y	_	-7	1	2	1.2857143	-	133	2352	-2219
413	$7^{1}59^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	138	2357	-2219
414	$2^{1}3^{2}23^{1}$	_	N	N	Y	_	30	1	14	1.1666667	-	168	2387	-2219
415	$5^{1}83^{1}$	_	Y	N	N	-	5	1	0	1.0000000	-	173	2392	-2219
416	$2^{5}13^{1}$	_	N	N	Y	_	13	1	8	2.0769231	-	186	2405	-2219
417	3^1139^1	-	Y	N	N	_	5	1	0	1.0000000	-	191	2410	-2219
418	$2^{1}11^{1}19^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	-	175	2410	-2235
419	419^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	-	173	2410	-2237
420	$2^23^15^17^1$	_	N	N	Y	_	-155	1	90	1.1032258	-	18	2410	-2392
421	421^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	-	16	2410	-2394
422	2^1211^1	-	Y	N	N	-	5	1	0	1.0000000	-	21	2415	-2394
423	3^247^1	_	N	N	Y	_	-7	1	2	1.2857143	-	14	2415	-2401
424	2^353^1	_	N	N	Y	_	9	1	4	1.5555556	-	23	2424	-2401
	5^217^1		N	N	Y	_	-7							-2408

n	Primes		Sqfree	PPower	Ī		$g^{-1}(n)$		$\lambda(n)g^{-1}(n) - \hat{f}_1(n)$	$\frac{\sum\limits_{d\mid n}C_{\Omega(d)}(d)}{ g^{-1}(n) }$		$G^{-1}(n)$	$G_{+}^{-1}(n)$	G_{-}^{-1} (1
126	$2^{1}3^{1}71^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	-	0	2424	-242
127	$7^{1}61^{1}$	_	Y	N	N	_	5	1	0	1.0000000	-	5	2429	-242
128	2^2107^1	-	N	N	Y	_	-7	1	2	1.2857143	-	-2	2429	-243
129	$3^{1}11^{1}13^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	-	-18	2429	-244
130	$2^{1}5^{1}43^{1}$	-	Y	N	N	_	-16	1	0	1.0000000	-	-34	2429	-246
31	4311	-	Y	Y	N	_	-2	1	0	1.0000000	-	-36	2429	-246
32	$2^{4}3^{3}$	_	N	N	Y	_	-80	1	75	1.5625000	-	-116	2429	-254
33	433^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	-	-118	2429	-254
34	$2^{1}7^{1}31^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	-	-134	2429	-256
35	$3^15^129^1$	_	Y	N	N	_	-16	1	0	1.0000000	-	-150	2429	-257
36	2^2109^1	_	N	N	Y	_	-7	1	2	1.2857143	-	-157	2429	-258
37	$19^{1}23^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	-152	2434	-258
38	$2^{1}3^{1}73^{1}$	-	Y	N	N	_	-16	1	0	1.0000000	-	-168	2434	-260
39	439^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	-	-170	2434	-260
10	$2^35^111^1$	-	N	N	Y	_	-48	1	32	1.3333333	-	-218	2434	-265
11	3^27^2	_	N	N	Y	_	14	1	9	1.3571429	-	-204	2448	-265
12	$2^{1}13^{1}17^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	-	-220	2448	-266
13	443^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	-	-222	2448	-267
44	$2^23^137^1$	_	N	N	Y	_	30	1	14	1.1666667	-	-192	2478	-267
45	$5^{1}89^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-187	2483	-267
16	$2^{1}223^{1}$	_	Y	N	N	_	5	1	0	1.0000000	-	-182	2488	-267
17	3^1149^1	_	Y	N	N	_	5	1	0	1.0000000	_	-177	2493	-267
18	$2^{6}7^{1}$	_	N	N	Y	_	-15	1	10	2.3333333	_	-192	2493	-268
19	449^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	-194	2493	-268
50	$2^{1}3^{2}5^{2}$	_	N	N	Y	_	-74	1	58	1.2162162	_	-268	2493	-276
51	$11^{1}41^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-263	2498	-276
52	2^2113^1	_	N	N	Y	_	-7	1	2	1.2857143	_	-270	2498	-276
53	$3^{1}151^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-265	2503	-276
54	$2^{1}227^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-260	2508	-276
55	$5^{1}7^{1}13^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	-276	2508	-278
66	$2^{3}3^{1}19^{1}$	_	N	N	Y	_	-48	1	32	1.3333333	_	-324	2508	-28
57	457^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	-326	2508	-283
58	$2^{1}229^{1}$	_	Y	N	N	_	5	1	0	1.0000000	_	-321	2513	-283
59	$3^{3}17^{1}$	_	N	N	Y	_	9	1	4	1.5555556	_	-312	2522	-28
50	$2^{2}5^{1}23^{1}$	_	N	N	Y	_	30	1	14	1.1666667	_	-312 -282	2552	-28
31	461^{1}	_	Y	Y	N	_	-2	1	0	1.0000007	_	-282 -284	2552	-283
	$2^{1}3^{1}7^{1}11^{1}$	_	Y	N	N	_			0		_	-284 -219		
32 33	463^{1}	_	Y	Y	N	_	$65 \\ -2$	1 1		1.0000000	_		2617	-283
	$2^{4}29^{1}$		I						0	1.0000000		-221	2617	-283
34	$3^{1}5^{1}31^{1}$	_	N Y	N	Y	_	-11	1	6	1.8181818	-	-232	2617	-284
35	$2^{1}233^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	-	-248	2617	-286
36	$\frac{2}{467^1}$	_	Y	N Y	N N	_	5 -2	1 1	0	1.0000000 1.0000000	- _	-243 -245	2622 2622	-286
37	$2^{2}3^{2}13^{1}$	_	I			_					_			-286
38 39	$7^{1}67^{1}$	_	N Y	N N	Y N	_	-74 5	1 1	58 0	1.2162162	_	-319	2622	-294
	$2^{1}5^{1}47^{1}$		l					1		1.0000000		-314	2627	-294
70	$3^{1}157^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	_	-330	2627	-29
71	$2^{3}59^{1}$		Y	N	N	_	5		0	1.0000000		-325	2632	-29
72		_	N	N	Y	-	9	1	4	1.5555556	-	-316	2641	-29
73	$11^{1}43^{1}$ $2^{1}3^{1}79^{1}$	_	Y	N	N	_	5	1	0	1.0000000	-	-311	2646	-29
74	$5^{2}19^{1}$	_	Y	N	N	_	-16	1	0	1.0000000	-	-327	2646	-29
75 76	$2^{2}7^{1}17^{1}$	_	N	N	Y	_	-7 20	1	2	1.2857143	-	-334	2646	-298
76	$3^{2}53^{1}$	-	N	N	Y	_	30	1	14	1.1666667	-	-304	2676	-298
77		_	N	N	Y	_	-7	1	2	1.2857143	-	-311	2676	-298
78	$2^{1}239^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	-306	2681	-298
9	479 ¹	_	Y	Y	N	_	-2 oc	1	0	1.0000000	-	-308	2681	-298
30	$2^{5}3^{1}5^{1}$	_	N	N	Y	-	-96	1	80	1.6666667	-	-404	2681	-308
31	$13^{1}37^{1}$	-	Y	N	N	_	5	1	0	1.0000000	-	-399	2686	-308
32	$2^{1}241^{1}$ $3^{1}7^{1}23^{1}$	_	Y	N	N	-	5	1	0	1.0000000	-	-394	2691	-308
33		_	Y	N	N	-	-16	1	0	1.0000000	-	-410	2691	-31
34	$2^{2}11^{2}$	_	N	N	Y	_	14	1	9	1.3571429	-	-396	2705	-31
35	$5^{1}97^{1}$	_	Y	N	N	_	5	1	0	1.0000000	-	-391	2710	-310
6	$2^{1}3^{5}$	-	N	N	Y	-	13	1	8	2.0769231	-	-378	2723	-310
37	487^{1}	-	Y	Y	N	_	-2	1	0	1.0000000	-	-380	2723	-310
88	$2^{3}61^{1}$	_	N	N	Y	_	9	1	4	1.555556	-	-371	2732	-310
39	$3^{1}163^{1}$	-	Y	N	N	-	5	1	0	1.0000000	-	-366	2737	-310
90	$2^{1}5^{1}7^{2}$	_	N	N	Y	-	30	1	14	1.1666667	-	-336	2767	-310
91	491^{1}	-	Y	Y	N	-	-2	1	0	1.0000000	-	-338	2767	-310
92	$2^23^141^1$	-	N	N	Y	_	30	1	14	1.1666667	-	-308	2797	-310
93	$17^{1}29^{1}$	_	Y	N	N	_	5	1	0	1.0000000	-	-303	2802	-310
94	$2^{1}13^{1}19^{1}$	-	Y	N	N	-	-16	1	0	1.0000000	-	-319	2802	-312
95	$3^25^111^1$	-	N	N	Y	_	30	1	14	1.1666667	-	-289	2832	-312
96	2^431^1	_	N	N	Y	-	-11	1	6	1.8181818	-	-300	2832	-313
97	7^171^1	-	Y	N	N	-	5	1	0	1.0000000	_	-295	2837	-313
98	$2^{1}3^{1}83^{1}$	-	Y	N	N	_	-16	1	0	1.0000000	_	-311	2837	-314
99	499^{1}	_	Y	Y	N	_	-2	1	0	1.0000000	_	-313	2837	-315
	$2^{2}5^{3}$	1	N	N	Y	_	-23	1	18	1.4782609	_	-336	2837	-317