¿Y AHORA?

AXIOMAS DE VON NEWMAN

A0. Existe un conjunto tal que $\forall x, x \notin A$

A1. Si x = y y además $x \in A$ entonces $y \in A$

A2. Sea P(x) un enunciado de x que puede expresarse enteramente por los símbolos \in , \land , $\mbox{\sc M}, \sim$, $\mbox{\sc V}, \mbox{\sc J}, \rightarrow$ corchetes y variables x, y, z, A, B, C,.... Entonces existe una Clase C que consiste en todos los elementos x que satisfacen P(x).

A3. Cada subclase de un conjunto es un conjunto

A4. Si A y B son conjuntos entonces {A, B} es un conjunto

A5. Si $\mathcal A$ es un conjunto de conjuntos, entonces $\bigcup_{A\in\mathcal A}A$ es un conjunto

A6. Si A es un conjunto, el conjunto potencia es conjunto.

NOTA IMPORTANTE

lase

Una Clase denota una colección excesivam clase pero no toda clase es un conjunto.

En esta teoría el conjunto vacío es el que no tiene elementos y existe una Clase

class

Sea G una gráfica.

• El dominio de G es el conjunto

 $domG = \{x | \exists y \ tal \ que \ (x, y) \in G\}$

• El Rango de G es el conjunto

 $ranG = \{y | \exists x \ tal \ que \ (x, y) \in G\}$

1. Sean G,H,J gráficas, entonces a. $(G^{-1})^{-1}=G$ b. $(G\circ H)^{-1}=H^{-1}\circ G^{-1}$

$$a. (x_1 y) \in (6^{-1})^{-1} \Leftrightarrow (y, x) \in 6^{-1} \Leftrightarrow$$

$$\Leftrightarrow (x_1y) \in G$$

$$(x_1y)e(G^1)^{-1} \Leftrightarrow (x_1y)eG$$

$$\cdots \left(G_{-1} \right)_{-1} = G$$

2. Sean G, H gráficas, entonces b. $dom(G \circ H) \subseteq domH$

1. Sean G,H,J gráficas, entonces a. $(G^{-1})^{-1}=G$ b. $(G\circ H)^{-1}=H^{-1}\circ G^{-1}$

b. (x₁y)∈(6°+) (>> (y,x)∈ (60H) <>> 句于2 g (Y12) 6 H 4 $(2_1x) \in G \iff J2 \ni (2_1y) \in \overline{H}'$ 4 (x,2)66 \ \ 337 (x,3=6 + (2,y) = + 4

2. Sean G, H gráficas, entonces

b. $dom(G \circ H) \subseteq domH$

2. Sean G, H gráficas, entonces

a. $domG = ranG^{-1}$

b. $dom(G \circ H) \subseteq domH$

a. × ∈ domG ⇔ Jy > (xy) ∈ G ⇔ $\Leftrightarrow \exists y \ni (y,x) \in G^{-1} \Leftrightarrow x \in Ran G^{-1}$: x & dom6 > x & rang' dom 6 = ran 6

2. Sean G, H gráficas, entonces

a. $domG = ranG^{-1}$ b. $dom(G \circ H) \subseteq domH$

b. x ∈ dam (60H) > Jy + (x,y) ∈ 60H ⇒ Jy,2 > (x,2)∈H & (2,y)∈G > $J_{29}(x_{12})\in H \Rightarrow x \in dom H$: x & dom (60 H) > X & dom H dom 6 of a dom th