SED in latitude stripes, $b \in (6^{\circ}, 10^{\circ})$ $\downarrow \ell \in (-10^{\circ}, 0^{\circ})$ $\downarrow \qquad \qquad \qquad \qquad \qquad \ell \in (0^{\circ}, 10^{\circ})$ -- PL: $\gamma = 2.38$, $-\log L = -6946.37$, $\frac{\chi^2}{\text{d.o.f.}} = 2.38$ -- PL: $\gamma = 2.04$, $-\log L = -6771.41$, $\frac{\chi^2}{\text{d.o.f.}} = 30.02$ 10⁻⁴ IC: $\gamma = 2.19$, $-\log L = -6940.54$, $\frac{\chi^2}{\text{d.o.f.}} = 2.96$... IC: $\gamma = 1.77$, $-\log L = -6788.60$, $\frac{\chi^2}{\text{d.o.f.}} = 14.29$ $\begin{array}{lll} \textbf{-} \cdot & \pi^0 \colon \gamma = 2.42, -\mathrm{log}L = -6945.60, \frac{\chi^2}{\mathrm{d.o.f.}} = 2.40 & \textbf{-} \cdot & \pi^0 \colon \gamma = 2.13, -\mathrm{log}L = -6786.72, \frac{\chi^2}{\mathrm{d.o.f.}} = 14.56 \\ & \mathrm{LogPar} \colon \alpha = 0.30, \beta = 0.00, & \mathrm{LogPar} \colon \alpha = nan, \beta = nan, \end{array}$ Logran. $\alpha = nan, \beta$ $-\log L = nan, \frac{\chi^2}{\text{d.o.f.}} = nan$ $-\log L = -6529.96$, $\frac{\chi^2}{\text{d.o.f.}} = 112.88$ 10⁻⁵ 10⁻⁶ 10⁻⁷ 10⁻⁸ 10⁰ 10¹ 10³ 10²

E [GeV]