<u>Introduction</u>

- Let's learn to design digital circuits, starting with a simple form of circuit:
 - Combinational circuit
 - Outputs depend solely on the <u>present combination</u> of the circuit inputs' values
 - Vs. sequential circuit: Has "memory" that impacts outputs too

Switches

- Electronic switches are the basis of binary digital circuits
 - Electrical terminology
 - Voltage: Difference in electric potential between two points (volts, V)
 - Analogous to water pressure
 - **Resistance**: Tendency of wire to resist current flow (ohms, Ω)
 - Analogous to water pipe diameter
 - Current: Flow of charged particles (amps, A)
 - Analogous to water flow
 - V = I * R (Ohm's Law)
 - -9 V = 1 * 2 ohms
 - -1 = 4.5 A

Switches

- A switch has three parts
 - Source input, and output
 - Current tries to flow from source input to output
 - Control input
 - Voltage that controls whether that current can flow
- The amazing shrinking switch
 - 1930s: Relays
 - 1940s: Vacuum tubes
 - 1950s: Discrete transistor
 - 1960s: Integrated circuits (ICs)
 - Initially just a few transistors on IC
 - Then tens, hundreds, thousands...

The CMOS Transistor

- CMOS transistor
 - Basic switch in modern ICs

CMOS Transistor Analogy

Modern Field Effect Transistor (FET)

 An electric field is applied normal to the surface of the semiconductor (by applying a voltage to an overlying "gate" electrode), to modulate the conductance of the semiconductor

→ Modulate drift current flowing between 2 contacts ("source" and "drain") by varying the voltage on the "geto" electrode

"gate" electrode

N-channel metal-oxidesemiconductor field-effect transistor (NMOSFET)

Boolean Logic Gates Building Blocks for Digital Circuits

(Because Switches are Hard to Work With)

- "Logic gates" are better digital circuit building blocks than switches (transistors)
 - Why?...

Boolean Algebra and its Relation to Digital Circuits

- To understand the benefits of "logic gates" vs. switches, we should first understand Boolean algebra
- "Traditional" algebra
 - Variables represent real numbers (x, y)
 - Operators operate on variables, return real numbers (2.5*x + y 3)

Boolean Algebra

- Variables represent 0 or 1 only
- Operators return 0 or 1 only
- Basic operators
 - AND: a AND b returns 1 only when both a=1 and b=1
 - OR: a OR b returns 1 if either (or both) a=1 or b=1
 - NOT: NOT a returns the opposite of a (1 if a=0, 0 if a=1)

а	b	OR
0	0	0
0	1	1
1	0	1
1	1	1

Boolean Algebra and its Relation to Digital Circuits

- Developed mid-1800's by George Boole to formalize human thought
 - Ex: "I'll go to lunch if Mary goes OR John goes, AND Sally does not go."
 - Let F represent my going to lunch (1 means I go, 0 I don't go)
 - Likewise, m for Mary going, j for John, and s for Sally
 - Then F = (m OR j) AND NOT(s)
 - Nice features
 - Formally evaluate
 - m=1, j=0, s=1 --> F = (1 OR 0) AND NOT(1) = 1 AND 0 = $\mathbf{0}$
 - Formally transform
 - F = (m and NOT(s)) OR (j and NOT(s))
 - » Looks different, but same function
 - » We'll show transformation techniques soon
 - Formally prove
 - Prove that if Sally goes to lunch (s=1), then I don't go (F=0)
 - F = (m OR j) AND NOT(1) = (m OR j) AND 0 = 0

а	b	AND
0	0	0
0	1	0
1	0	0
1	1	1

а	b	OR
0	0	0
0	1	1
1	0	1
1	1	1

а	NOT
0	1
1	0

Evaluating Boolean Equations

- Evaluate the Boolean equation F = (a AND b) OR (c
 AND d) for the given values of variables a, b, c, and d:
 - Q1: a=1, b=1, c=1, d=0.
 - Answer: F = (1 AND 1) OR (1 AND 0) = 1 OR 0 = 1.
 - Q2: a=0, b=1, c=0, d=1.
 - Answer: F = (0 AND 1) OR (0 AND 1) = 0 OR 0 = 0.
 - Q3: a=1, b=1, c=1, d=1.
 - Answer: F = (1 AND 1) OR (1 AND 1) = 1 OR 1 = 1.

а	b	AND
0	0	0
0	1	0
1	0	0
1	1	1

а	b	OR
0	0	0
0	1	1
1	0	1
1	1	1

а	NOT
0	1
1	0

Converting to Boolean Equations

- Convert the following English statements to a Boolean equation
 - Q1. a is 1 and b is 1.
 - Answer: F = a AND b
 - Q2. either of a or b is 1.
 - Answer: F = a OR b
 - Q3. a is 1 and b is 0.
 - Answer: F = a AND NOT(b)

Converting to Boolean Equations

- Q1. A fire sprinkler system should spray water if high heat is sensed and the system is set to enabled.
 - Answer: Let Boolean variable h represent "high heat is sensed," e represent "enabled," and F represent "spraying water." Then an equation is: F = h AND e.
- Q2. A car alarm should sound if the alarm is enabled, and either the car is shaken or the door is opened.
 - Answer: Let a represent "alarm is enabled," s represent "car is shaken," d represent "door is opened," and F represent "alarm sounds." Then an equation is: F = a AND (s OR d).
 - (a) Alternatively, assuming that our door sensor d represents "door is closed" instead of open (meaning d=1 when the door is closed, 0 when open), we obtain the following equation: F = a AND (s OR NOT(d)).

Relating Boolean Algebra to Digital Design

- Implement Boolean operators using transistors
 - Call those implementations logic gates.
 - Lets us build circuits by doing math -powerful concept

Next slides show how these circuits work. Note: The above OR/AND implementations are inefficient; we'll show why, and show better ones,

later.

1 and 0 each actually corresponds to a voltage range

NOT gate

F
1
0

When the input is 0

When the input is 1

More Gates

- NAND: Opposite of AND ("NOT AND")
- NOR: Opposite of OR ("NOT OR")
- XOR: Exactly 1 input is 1, for 2-input XOR. (For more inputs -- odd number of 1s)
- XNOR: Opposite of XOR ("NOT XOR")

- NAND same as AND with power & ground switched
 - nMOS conducts 0s well, but not 1s (reasons beyond our scope) – so NAND is more efficient
- Likewise, NOR same as OR with power/ground switched
- NAND/NOR more common
- AND in CMOS: NAND with NOT
- OR in CMOS: NOR with NOT

Building Circuits Using Gates

motion-in-dark example

- Turn on lamp (F=1) when motion sensed (a=1) and no light (b=0)
- F = a AND NOT(b)
- Build using logic gates, AND and NOT, as shown
- We just built our first digital circuit!

Example: Converting a Boolean Equation to a Circuit of Logic Gates

Start from the output, work back towards the inputs

Q: Convert the following equation to logic gates:
 F = a AND NOT(b OR NOT(c))

More examples

Start from the output, work back towards the inputs

Using gates with more than 2 inputs

Can think of as AND(a,b,c)

Example: Seat Belt Warning Light System

- Design circuit for warning light
- Sensors
 - s=1: seat belt fastened
 - k=1: key inserted
- Capture Boolean equation
 - seat belt not fastened, and key inserted
- Convert equation to circuit
- Timing diagram illustrates circuit behavior
 - We set inputs to any values
 - Output set according to circuit

Inputs

S

W

Outputs

More examples: Seat belt warning light extensions

- Only illuminate warning light if person is in the seat (p=1), and seat belt not fastened and key inserted
- w = p AND NOT(s) AND k

- Given t=1 for 5 seconds after key inserted. Turn on warning light when t=1 (to check that warning lights are working)
- w = (p AND NOT(s) AND k) OR t

Some Gate-Based Circuit Drawing Conventions

Boolean Algebra

- By defining logic gates based on Boolean algebra, we can use algebraic methods to manipulate circuits
- Notation: Writing a AND b, a OR b, NOT(a) is cumbersome
 - Use symbols: a * b (or just ab), a + b, and a'
 - Original: w = (p AND NOT(s) AND k) OR t
 - New: w = ps'k + t
 - Spoken as "w equals p and s prime and k, or t"
 - Or just "w equals p s prime k, or t"
 - s' known as "complement of s"
 - While symbols come from regular algebra, don't say "times" or "plus"
 - "product" and "sum" are OK and commonly used

Boolean algebra precedence, highest precedence first.

Symbol	Name	Description	
()	Parentheses	Evaluate expressions nested in parentheses first	
,	NOT	Evaluate from left to right	
*	AND	Evaluate from left to right	22
+	OR	Evaluate from left to right	23

Boolean Algebra Operator Precedence

- Evaluate the following Boolean equations, assuming a=1, b=1, c=0, d=1.
 - Q1. F = a * b + c.
 - Answer: * has precedence over +, so we evaluate the equation as F = (1 * 1) + 0 = (1) + 0 = 1 + 0 = 1.
 - Q2. F = ab + c.
 - Answer: the problem is identical to the previous problem, using the shorthand notation for *.
 - Q3. F = ab'.
 - Answer: we first evaluate b' because NOT has precedence over AND, resulting in F = 1 * (1') = 1 * (0) = 1 * 0 = 0.
 - Q4. F = (ac)'.
 - Answer: we first evaluate what is inside the parentheses, then we NOT the result, yielding (1*0)' = (0)' = 0' = 1.
 - Q5. F = (a + b') * c + d'.
 - Answer: Inside left parentheses: (1 + (1')) = (1 + (0)) = (1 + 0) = 1. Next, * has precedence over +, yielding (1 * 0) + 1' = (0) + 1'. The NOT has precedence over the OR, giving (0) + (1') = (0) + (0) = 0 + 0 = 0.
 Boolean algebra precedence, highest precedence first.

	Symbol	Name	Description	
(Parentheses	Evaluate expressions nested in parentheses first	st
,		NOT	Evaluate from left to right	
;	*	AND	Evaluate from left to right	24
-	ŀ	OR	Evaluate from left to right	24

Boolean Algebra Terminology

- Example equation: F(a,b,c) = a'bc + abc' + ab + c
- Variable
 - Represents a value (0 or 1)
 - Three variables: a, b, and c

Literal

- Appearance of a variable, in true or complemented form
- Nine literals: a', b, c, a, b, c', a, b, and c

Product term

- Product of literals
- Four product terms: a'bc, abc', ab, c

Sum-of-products

- Equation written as OR of product terms only
- Above equation is in sum-of-products form. "F = (a+b)c + d" is not.

Boolean Algebra Properties

- Commutative
 - a + b = b + a
 - a * b = b * a
- Distributive
 - a*(b+c) = a*b+a*c
 - Can write as: a(b+c) = ab + ac
 - a + (b * c) = (a + b) * (a + c)
 - (This second one is tricky!)
 - Can write as: a+(bc) = (ab)(ac)
- Associative
 - (a + b) + c = a + (b + c)
 - (a * b) * c = a * (b * c)
- Identity
 - -0+a=a+0=a
 - -1*a=a*1=a
- Complement
 - a + a' = 1
 - a * a' = 0
- To prove, just evaluate all possibilities

Example uses of the properties

- Show abc' equivalent to c'ba.
 - Use commutative property:
 - a*b*c' = a*c'*b = c'*a*b = c'*b*a
- Show abc + abc' = ab.
 - Use first distributive property
 - abc + abc' = ab(c+c').
 - Complement property
 - Replace c+c' by 1: ab(c+c') = ab(1).
 - Identity property
 - ab(1) = ab*1 = ab.
- Show x + x'z equivalent to x + z.
 - Second distributive property
 - Replace x+x'z by (x+x')*(x+z).
 - Complement property
 - Replace (x+x') by 1,
 - Identity property
 - replace 1*(x+z) by x+z.

Example that Applies Boolean Algebra Properties

- Want automatic door opener circuit (e.g., for grocery store)
 - Output: f=1 opens door
 - Inputs:
 - p=1: person detected
 - h=1: switch forcing hold open
 - c=1: key forcing closed
 - Want open door when
 - h=1 and c=0, or
 - h=0 and p=1 and c=0
 - Equation: f = hc' + h'pc'

• Can the circuit be simplified?

Example that Applies Boolean Algebra Properties

Found inexpensive chip that computes:

Apply Boolean algebra:

- f = c'hp + c'hp' + c'h'p
- Can we use it for the door opener?
 - Is it the same as f = hc' + h'pc'?

DoorOpener

- Commutative
 - a + b = b + a
 - a * b = b * a
- Distributive

- Associative
 - (a + b) + c = a + (b + c)
 - (a * b) * c = a * (b * c)
- Identity
 - 0 + a = a + 0 = a
 - -1*a=a*1=a
- Complement
 - a + a' = 1
 - a * a' = 0

- f = c'hp + c'hp' + c'h'p
- f = c'h(p + p') + c'h'p (by the distributive property)
- f = c'h(1) + c'h'p (by the complement property)
- f = c'h + c'h'p (by the identity property)
- f = hc' + h'pc' (by the commutative property)

Same! Yes, we can use it.

Boolean Algebra: Additional Properties

- Null elements
 - -a+1=1
 - a * 0 = 0
- Idempotent Law
 - a + a = a
 - a * a = a
- Involution Law
 - (a')' = a
- DeMorgan's Law
 - (a + b)' = a'b'
 - (ab)' = a' + b'
 - Very useful!
- To prove, just evaluate all possibilities

Example Applying DeMorgan's Law

(a + b)' = a'b'(ab)' = a' + b'

Aircraft lavatory sign example

- Behavior
 - Three lavatories, each with sensor (a, b, c), equals 1 if door locked
 - Light "Available" sign (S) if any lavatory available
- Equation and circuit
 - S = a' + b' + c'
 - Transform
 - (abc)' = a'+b'+c' (by DeMorgan's Law)
 - S = (abc)'
 - New circuit

- Alternative: Instead of lighting "Available," light "Occupied"
- Opposite of "Available" function

$$S = a' + b' + c'$$

- So S' = (a' + b' + c')'
 - S' = (a')' * (b')' * (c')'
 (by DeMorgan's Law)
 - S' = a * b * c (by Involution Law)
- Makes intuitive sense
 - Occupied if all doors are locked

Example Applying Properties

Commutative

$$-a + b = b + a$$

 $-a * b = b * a$

Distributive

$$-a * (b + c) = a * b + a * c$$

 $-a + (b * c) = (a + b) * (a + c)$

Associative

$$-(a + b) + c = a + (b + c)$$

 $-(a * b) * c = a * (b * c)$

Identity

$$-0 + a = a + 0 = a$$

 $-1 * a = a * 1 = a$

Complement

$$-a + a' = 1$$

 $-a * a' = 0$

Null elements

$$-a + 1 = 1$$

 $-a * 0 = 0$

Idempotent Law

Involution Law

$$-(a')' = a$$

DeMorgan's Law

$$-(a + b)' = a'b'$$

 $-(ab)' = a' + b'$

 For door opener f = c'(h+p), prove door stays closed (f=0) when c=1

$$- f = c'(h+p)$$

- Let
$$c = 1$$
 (door forced closed)

$$- f = 1'(h+p)$$

$$- f = 0(h+p)$$

$$- f = 0h + 0p$$
 (by the distributive property)

$$- f = 0 + 0$$
 (by the null elements property)

$$- f = 0$$

Complement of a Function

- Commonly want to find complement (inverse) of function F
 - 0 when F is 1; 1 when F is 0
- Use DeMorgan's Law repeatedly
 - Note: DeMorgan's Law defined for more than two variables, e.g.:
 - (a + b + c)' = (abc)'
 - (abc)' = (a' + b' + c')
- Complement of f = w'xy + wx'y'z'
 - f' = (w'xy + wx'y'z')'
 - f' = (w'xy)'(wx'y'z')' (by DeMorgan's Law)
 - f' = (w+x'+y')(w'+x+y+z) (by DeMorgan's Law)
- Can then expand into sum-of-products form

Representations of Boolean Functions

English 1: Foutputs 1 when a is 0 and b is 0, or when a is 0 and b is 1.

- A function can be represented in different ways
 - Above shows seven representations of the same functions F(a,b), using four different methods: English, Equation, Circuit, and Truth Table

Truth Table Representation of Boolean Functions

 Define value of F for each possible combination of input values

2-input function: 4 rows

3-input function: 8 rows

– 4-input function: 16 rows

 Q: Use truth table to define function F(a,b,c) that is 1 when abc is 5 or greater in binary

а	b	F
0	0	
0	1	
1	0	
1	1	
	(a)	

			_
а	b	С	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	
		(b)	

а	b	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

а	b	С	d	F
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	
(c)				

Converting among Representations

- Can convert from any representation to another
- Common conversions
 - Equation to circuit (we did this earlier)
 - Circuit to equation
 - Start at inputs, write expression of each gate output

Converting among Representations

- More common conversions
 - Truth table to equation (which we can then convert to circuit)
 - Easy-just OR each input term that should output 1
 - Equation to truth table
 - Easy—just evaluate equation for each input combination (row)
 - Creating intermediate columns helps

Inputs		Outputs	Term
а	b	F	F = sum of
0	0	1	a'b'
0	1	1	a'b
1	0	0	
1	1	0	

$$F = a'b' + a'b$$

Q: Convert to equation

а	b	С	F	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	ab'c
1	1	0	1	abc'
1	1	1	1	abc

$$F = ab'c + abc' + abc$$
 36

Q: Convert to truth table: F = a'b' + a'b

Inputs				Output
а	b	a' b'	a' b	F
0	0	1	0	1
0	1	0	1	1
1	0	0	0	0
1	1	0	0	0

Example: Converting from Truth Table to Equation

- Parity bit: Extra bit added to data, intended to enable detection of error (a bit changed unintentionally)
 - e.g., errors can occur on wires due to electrical interference
- Even parity: Set parity bit so total number of 1s (data + parity) is even
 - e.g., if data is 001, parity bit is 1
 → 0011 has even number of 1s
- Want equation, but easiest to start from truth table for this example

		Í	•
<u>a</u>	b	c	<u>P</u>
<u>a</u> 0	0	0	0
0	0	1	1
0	1	0	1\\
0	1	1	$0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
1	0	0	1
1	0	1	0
1	1	0	$0 \qquad \Big \Big\rangle$
1	1	1	1 ///
		Conver	t to eqn
P =	a'b'c + a'	bc' + a	b'c' + abc

Example: Converting from Circuit to Truth Table

• First convert to circuit to equation, then equation to table

Inp	uts					Outputs
а	b	С	ab	(ab)'	C'	F
0	0	0	0	1	1	1
0	0	1	0	1	0	0
0	1	0	0	1	1	1
0	1	1	0	1	0	0
1	0	0	0	1	1	1
1	0	1	0	1	0	0
1	1	0	1	0	1	0
1	1	1	1	0	0	0

Standard Representation: Truth Table

- How can we determine if two functions are the same?
 - Recall automatic door example
 - Same as f = hc' + h'pc'?
 - Used algebraic methods
 - But if we failed, does that prove not equal? No.
- Solution: Convert to truth tables
 - Only ONE truth table representation of a given function
 - Standard representation—for given function, only one version in standard form exists

Q: Determine if F=ab+a' is same function as F=a'b'+a'b+ab, by converting each to truth table first

F =	ab + a	a'			a'b' + + ab	
а	b	F		а	b	F
0	0	1		00	0	1
0	1	1	۱ م	WE	1	1
1	0	00	O,	N ₁	0	0
1	1	1	•	1	1	1

Truth Table Canonical Form

• Q: Determine via truth tables whether ab+a' and (a+b)' are equivalent

F =	ab + a	ı		F =	(a+b) ′	
а	b	F		а	b	F
0	0	1		0	0	1
0	1	1		0	1	0
1	0	0		14	0	0
1	1	1	miv ²	letre	1	0
		o 1 Not	a a			

Canonical Form – Sum of Minterms

- Truth tables too big for numerous inputs
- Use standard form of equation instead
 - Known as canonical form
 - Regular algebra: group terms of polynomial by power
 - $ax^2 + bx + c$ $(3x^2 + 4x + 2x^2 + 3 + 1 --> 5x^2 + 4x + 4)$
 - Boolean algebra: create sum of minterms
 - Minterm: product term with every function literal appearing exactly once, in true or complemented form
 - Just multiply-out equation until sum of product terms
 - Then expand each term until all terms are minterms

Q: Determine if F(a,b)=ab+a' is equivalent to F(a,b)=a'b'+a'b+ab, by converting first equation to canonical form (second already is)

```
F = ab+a' (already sum of products)

F = ab + a'(b+b') (expanding term)

F = ab + a'b + a'b' (Equivalent – same three terms as other equation)
```

Canonical Form – Sum of Minterms

 Q: Determine whether the functions G(a,b,c,d,e) = abcd + a'bcde and H(a,b,c,d,e) = abcde + abcde' + a'bcde + a'bcde(a' + c) are equivalent.


```
H = abcde + abcde' + a'bcde + a'bcde(a' + c)
H = abcde + abcde' + a'bcde + a'bcdea' +
a'bcdec
H = abcde + abcde' + a'bcde + a'bcde + a'bcde
H = abcde + abcde' + a'bcde
H = a'bcde + abcde' + abcde
```

Compact Sum of Minterms Representation

- List each minterm as a number
- Number determined from the binary representation of its variables' values
 - a'bcde corresponds to 01111, or 15
 - abcde' corresponds to 11110, or 30
 - abcde corresponds to 11111, or 31
- Thus, H = a'bcde + abcde' + abcde can be written as:
 - $H = \sum m(15,30,31)$
 - "H is the sum of minterms 15, 30, and 31"

Multiple-Output Circuits

- Many circuits have more than one output
- Can give each a separate circuit, or can share gates
- Ex: $F = \underline{ab} + c'$, $G = \underline{ab} + bc$

Option 1: Separate circuits

Option 2: Shared gates

Multiple-Output Example: BCD to 7-Segment Converter

Multiple-Output Example: BCD to 7-Segment Converter

TABLE 2-4 4-bit binary number to seven-segment display truth table

W	х	у	z	a	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1
1	0	1	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	0	0_	0	0	0	0	0

a = w'x'y'z' + w'x'yz' + w'x'yz + w'xy'z + w'xyz' + w'xyz + wx'y'z' + wx'y'z

b = w'x'y'z' + w'x'y'z + w'x'yz' + w'x'yz + w'xy'z' + w'xyz + wx'y'z' + wx'y'z

Combinational Logic Design Process

S	Step	Description
Step 1: Capture behavior	Capture the function	Create a truth table or equations, whichever is most natural for the given problem, to describe the desired behavior of each output of the combinational logic.
Step 2: Convert	2A: Create equations	This substep is only necessary if you captured the function using a truth table instead of equations. Create an equation for each output by ORing all the minterms for that output. Simplify the equations if desired.
to circuit	2B: Implement as a gate-based circuit	For each output, create a circuit corresponding to the output's equation. (Sharing gates among multiple outputs is OK optionally.)

Example: Three 1s Pattern Detector

- Problem: Detect three consecutive 1s in 8-bit input: abcdefgh
 - $00011101 \rightarrow 1$
 - $10101011 \rightarrow 0$
 - **111**10000 → 1
 - Step 1: Capture the function
 - Truth table or equation?
 - Truth table too big: 2^8=256 rows
 - Equation: create terms for each possible case of three consecutive 1s
 - y = abc + bcd + cde + def + efg + fgh
 - Step 2a: Create equation -- already done
 - Step 2b: Implement as a gate-based circuit

Example: Number of 1s Counter

- Problem: Output in binary on two outputs yz the # of 1s on three inputs
 - $010 \to 01$
 - $101 \to 10$
 - $000 \to 00$
 - Step 1: Capture the function
 - Truth table or equation?
 - Truth table is straightforward
 - Step 2a: Create equations
 - y = a'bc + ab'c + abc' + abc
 - z = a'b'c + a'bc' + ab'c' + abc
 - Optional: Let's simplify y:

$$- y = a'bc + ab'c + ab(c' + c) = a'bc + ab'c + ab$$

Step 2b: Implement as a gate-based circuit

	Inputs		(# of 1s)	Out	Outputs		
a	р	С		У	Ζ		
0	0	0	(0)	0	0		
0	0	1	(1)	0	1		
0	1	0	(1)	0	1		
0	1	1	(2)	1	0		
1	0	0	(1)	0	1		
1	0	1	(2)	1	0		
1	1	0	(2)	1	0		
1	1	1	(3)	1	1		

Simplifying Notations

Used in previous circuit

→ Less wiring in drawing

Draw inversion bubble rather than inverter. Or list input as complemented.

Example: Keypad Converter

- Keypad has 7 outputs
 - One per row
 - One per column
- Key press sets one row and one column output to 1
 - Press "5" \rightarrow r2=1, c2=1
- Goal: Convert keypad outputs into 4-bit binary number
 - $-0-9 \rightarrow 0000 \text{ to } 1001$
 - $* \rightarrow 1010, # \rightarrow 1011$
 - nothing pressed: 1111

Example: Keypad Converter

- Step 1: Capture behavior
 - Truth table too big (2⁷ rows); equations not clear either
 - Informal table can help

TABLE 2.7 Informal table for the 12-button keypad to 4-bit code converter.

Button	Sim	nals	4-bit code outputs							
Button	Oili	uaus	W	ж	Y	z				
1	rı	c1	0	0	0	1				
2	rı	c2	0	0	1	0				
3	rı	c3	0	0	1	1				
4	r2	C1	0	1	0	0				
5	r2	c2	0	1	0	1				
6	r2	c3	0	1	1	0				
7	r3	c1	0	1	1					

Button	Si.	nals	4-bit code outputs						
Button	DIE	naus	W	х	У	Z			
8	r3	C2	1	0	0	0			
9	r3	С3	1	0	0	1			
w	r4	Cl	1	0	1	0			
0	r4	C2	0	0	0	0			
#	r4	сЭ	1	0	1	1			
(none)			1	1	1	1			

Step 2b: Implement as circuit (note

52

Example: Sprinkler Controller

- Microprocessor outputs which zone to water (e.g., cba=110 means zone 6) and enables watering (e=1)
- Decoder should set appropriate valve to 1

Equations seem like a natural fit

Step 1: Capture behavior

$$d0 = a'b'c'e$$

$$d1 = a'b'ce$$

$$d2 = a'bc'e$$

$$d3 = a'bce$$

$$d4 = ab'c'e$$

$$d5 = ab'ce$$

$$d6 = abc'e$$

$$d7 = abce$$

Example: Sprinkler Controller

More Gates: Example Uses

- Aircraft lavatory sign example
 - -S = (abc)'
- Detecting all 0s
 Use NOR
- Detecting equality
 - Use XNOR
- Detecting odd # of 1s
 - Use XOR
 - Useful for generating "parity" bit common for detecting errors

Completeness of NAND

- Any Boolean function can be implemented using just NAND gates. Why?
 - Need <u>AND</u>, <u>OR</u>, and <u>NOT</u>
 - NOT: 1-input NAND (or 2-input NAND with inputs tied together)
 - AND: NAND followed by NOT
 - OR: NAND preceded by NOTs

- Thus, NAND is a universal gate
 - Can implement any circuit using just NAND gates
- Likewise for NOR

Number of Possible Boolean Functions

- How many possible functions of 2 variables?
 - 2² rows in truth table, 2 choices for each
 - $-2^{(2^2)} = 2^4 = 16$ possible functions
- N variables
 - 2^N rows
 - 2^(2^N) possible functions

а	b	F	
0	0	0 or 1	2 choices
0	1	0 or 1	2 choices
1	0	0 or 1	2 choices
1	1	0 or 1	2 choices

 $2^4 = 16$ possible functions

а	b	f0	f1	f2	f3	f4	f5	f6	f7	f8	f9	f10	f11	f12	f13	f14	f15
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	,	0	a AND b		О		Q	a XOR b	a OR b	a NOR b	a XNOR b	Õ		σ		a NAND b	~

Decoders and Muxes

- Decoder: Popular combinational logic building block, in addition to logic gates
 - Converts input binary number to one high output
- 2-input decoder: four possible input binary numbers

So has four outputs, one for each possible input binary number

- Internal design
 - AND gate for each output to detect input combination
- Decoder with enable e
 - Outputs all 0 if e=0
 - Regular behavior if e=1
- n-input decoder: 2ⁿ outputs

Decoder Example

- New Year's Eve Countdown Display
 - Microprocessor counts from 59 down to 0 in binary on 6-bit output
 - Want illuminate one of 60 lights for each binary number
 - Use 6x64 decoder
 - 4 outputs unused

Multiplexor (Mux)

- Mux: Another popular combinational building block
 - Routes one of its N data inputs to its one output, based on binary value of select inputs
 - 4 input mux → needs 2 select inputs to indicate which input to route through
 - 8 input mux → 3 select inputs
 - N inputs $\rightarrow \log_2(N)$ selects
 - Like a rail yard switch

Mux Internal Design

Mux Example

- City mayor can set four switches up or down, representing his/her vote on each of four proposals, numbered 0, 1, 2, 3
- City manager can display any such vote on large green/red LED (light) by setting two switches to represent binary 0, 1, 2, or 3

Use 4x1 mux

Muxes Commonly Together – N-bit Mux

- Ex: Two 4-bit inputs, A (a3 a2 a1 a0), and B (b3 b2 b1 b0)
 - 4-bit 2x1 mux (just four 2x1 muxes sharing a select line) can select between A or B

N-bit Mux Example

- Four possible display items
 - Temperature (T), Average miles-per-gallon (A), Instantaneous mpg (I), and Miles remaining (M) – each is 8-bits wide
 - Choose which to display on D using two inputs x and y
 - Pushing button sequences to the next item
 - Use 8-bit 4x1 mux

Additional Considerations Non-Ideal Gate Behavior -- Delay

- Real gates have some delay
 - Outputs don't change immediately after inputs change

Circuit Delay and Critical Path

- Wires also have delay
- Assume gates and wires have delays as shown
- Path delay time for input to affect output
- Critical path path with longest path delay
- Circuit delay delay of critical path

Active Low Inputs

- Data inputs: flow through component (e.g., mux data input)
- Control input: influence component behavior
 - Normally active high 1 causes input to carry out its purpose
 - Active low Instead, 0 causes input to carry out its purpose
 - Example: 2x4 decoder with active low enable
 - 1 disables decoder, 0 enables
 - Drawn using inversion bubble

Schematic Capture and Simulation

Schematic capture

Computer tool for user to capture logic circuit graphically

Simulator

- Computer tool to show what circuit outputs would be for given inputs
 - Outputs commonly displayed as waveform

Summary

- Combinational circuits
 - Circuit whose outputs are function of present inputs
 - No "state"
- Switches: Basic component in digital circuits
- Boolean logic gates: AND, OR, NOT Better building block than switches
 - Enables use of Boolean algebra to design circuits
- Boolean algebra: Uses true/false variables/operators
- Representations of Boolean functions: Can translate among
- Combinational design process: Translate from equation (or table) to circuit through well-defined steps
- More gates: NAND, NOR, XOR, XNOR also useful
- Muxes and decoders: Additional useful combinational building blocks

WHAT IS THE ORIGIN OF GATE DELAY?

Logic gates are *electronic circuits* that process *electrical* signals

Most common signal for logic variable: voltage

Specific voltage ranges correspond to "0" or "1"

Note that the specific voltage range for 0 or 1 depends on "logic family," and in general decreases with succeeding logic generations

INVERTER VOLTAGE WAVEFORMS (TIME FUNCTIONS)

Inverter input is $v_{IN}(t)$, output is $v_{OUT}(t)$

GATE DELAY (PROPAGATION DELAY)

Define τ as the delay required for the output voltage to reach 50% of its final value. In this example we will use 3V logic, so halfway point is 1.5V.

Inverters are designed so that the gate delay is symmetrical (rise and fall)

EFFECT OF PROPAGATION DELAY ON PROCESSOR SPEED

Computer architects would like each system clock cycle to have between 20 and 50 gate delays ... use 35 for calculations

Implication: if clock frequency = 500 MHz clock period = $(5 \times 10^8 \text{ s}^{-1})^{-1}$ Period = $2 \times 10^{-9} \text{s} = 2 \text{ ns}$ (nanoseconds)

Gate delay must be $\tau_D = (1/35) \times \text{Period} = (2 \text{ ns})/35 = 57 \text{ ps (picoseconds)}$

How fast is this? Speed of light: $c = 3 \times 10^8 \text{ m/s}$

Distance traveled in 57 ps is:

$$c \times \tau_D = (3x10^8 \text{m/s})(57x10^{-12s}) = 17 \times 10^{-4} \text{ m} = 1.7 \text{ cm}$$

WHAT DETERMINES GATE DELAY?

The delay is mostly simply the charging of the capacitors at internal nodes.

Logic gates consist of just "CMOS" transistor circuits (CMOS = complementary metal-oxide-semiconductor = NMOS and PMOS FETs Let's recall the FET

Modern Field Effect Transistor (FET)

 An electric field is applied normal to the surface of the semiconductor (by applying a voltage to an overlying "gate" electrode), to modulate the conductance of the semiconductor

→ Modulate drift current flowing between 2 contacts ("source" and "drain") by varying the voltage on the

"gate" electrode

N-channel metal-oxidesemiconductor field-effect transistor (NMOSFET)

Pull-Down and Pull-Up Devices

- In CMOS logic gates, NMOSFETs are used to connect the output to GND, whereas PMOSFETs are used to connect the output to V_{DD} .
 - An NMOSFET functions as a *pull-down device* when it is turned on (gate voltage = V_{DD})
 - A PMOSFET functions as a *pull-up device* when it is turned on (gate voltage = GND)

Controlled Switch Model

Type N controlled switch" means switch is closed if input is high. $(V_G > V_S)$

Type P controlled switch" means switch is closed if input is low. $(V_G \le V_S)$

Now lets combine these switches to make an inverter.

The CMOS Inverter: Current Flow during Switching

CMOS Inverter Power Dissipation due to Direct-Path Current

Note: once the CMOS circuit reaches a steady state there's no more cand hence no more power dissipation!

Energy consumed per switching period:

$$E_{dp} = t_{sc} V_{DD} I_{peak}$$

Controlled Switch Model of Inverter

So if V_{IN} is 2V then S_N is closed and S_P is open. Hence V_{OUT} is zero.

But if V_{IN} is 0V then S_P is closed and S_N is open. Hence V_{OUT} is 2V.

Controlled Switch Model of Inverter

IF V_{IN} is 2V then S_N is closed and S_P is open. Hence V_{OUT} is zero (but driven through resistance R_N).

But if V_{IN} is 0V then S_P is closed and S_N is open. Hence V_{OUT} is 2V (but driven through resistance R_P).

Controlled Switch Model of Inverter – load capacitor charging and discharging takes time

IF there is a capacitance at the output node (there always is) then V_{OUT} responds to a change in V_{IN} with our usual exponential form.

Calculating the Propagation Delay

Model the MOSFET in the ON state as a resistive switch:

Case 1: V_{out} changing from High to Low (input signal changed from Low to High)

Calculating the Propagation Delay (cont'd)

Case 2: V_{out} changing from Low to High (input signal changed from High to Low)

■ PMOSFET(s) connect V_{out} to V_{DD}

Output Capacitance of a Logic Gate

 The output capacitance of a logic gate is comprised of several components:

capacitance"

- "intrinsic → pn-junction and gate-drain capacitance
 - both NMOS and PMOS transistors

- "extrinsic capacitance"
 capacitance of connecting wires
 input capacitances of the fan-out gates

Reminder: Fan-Out

- Typically, the output of a logic gate is connected to the input(s) of one or more logic gates
- The *fan-out* is the number of gates that are connected to the output of the driving gate:

- Fanout leads to increased capacitive load on the driving gate, and therefore more propagation delay
 - The input capacitances of the driven gates sum, and must be charged through the equivalent resistance of the driver

Minimizing Propagation Delay

A fast gate is built by

1. Keeping the output capacitance C_L small

- Minimize the area of drain pn junctions.
- Lay out devices to minimize interconnect capacitance.
- Avoid large fan-out.

2. Decreasing the equivalent resistance of the transistors

- Decrease L (gate length source to drain)
- Increase W (other dimension of gate)
 - ... but this increases pn junction area and hence C_L

3. Increasing V_{DD}

→ trade-off with power consumption & reliability

MOSFET

• A GATE electrode is placed above (electrically insulated from) the silicon surface, and is used to control the resistance between the SOURCE and DRAIN regions

CMOS NAND Gate

Α	В	F
0	0	1
0	1	1
1	0	1
1	1	0

CMOS NOR Gate

Α	В	F
0	0	1
0	1	0
1	0	0
1	1	0

ENERGY AND POWER IN CHARGING/DISCHARGING CAPACITORS – A REVIEW

Capacitor initially uncharged (Q=CV_{DD} at end)

Switch moves @ t=0

Power out of "battery"

$$P = i(t)V_{DD}$$

Energy out of "battery"

$$E = \int_{0}^{\infty} iV_{DD} dt = QV_{DD}$$

$$= CV_{DD}^{2}$$

$$= \int_{0}^{\infty} iV_{C} dt$$

$$= \int_{0}^{\infty} iV_{C} dt$$

$$= \int_{0}^{\infty} iV_{C} dt$$

Power into C

$$P_C = i(t)V_C(t)$$

Energy into C

$$E_{C} = \int_{0}^{\infty} iV_{C}dt$$

$$= \frac{1}{2}CV_{DD}^{2}$$

Power into R

$$P_{R} = [i(t)]^{2} R$$

Energy into R (heat)

This must be difference of E and E_C, i.e. $\frac{1}{2}$ C

ENERGY AND POWER IN CHARGING

Capacitor initially uncharged (Q=CV_{DD} at end)

Switch moves @ t=0

Energy out of "battery"

$$=CV_{DD}^{2}$$

Energy into C

$$= \frac{1}{2} CV_{DD}^2$$

Energy into R (heat)

$$\frac{1}{2}$$
CVDD

In charging a capacitor from a fixed voltage source V_{DD} half the energy from the source is delivered to the capacitor, and half is lost to the charging resistance, independent of the value of R.

ENERGY AND POWER IN CHARGING/<u>DISCHARGING</u> CAPACITORS

Capacitor initially charged (Q=CV_{DD}) and discharges.

Switch moves @ t=0

Power out of battery

Energy out of battery

Power in/out of R

=0

=0

=0

Power out of C

$$P_C = i(t)V_C(t)$$

Energy out of C

$$E_{C} = \int_{1}^{\infty} i V_{C} dt$$

$$= \frac{1}{2} C V_{DD}^{2}$$

Power into R_D

$$P_{R} = [i(t)]^{2} R$$

Energy into R_D (heat)

This must be energy initially in C, i.e.

$$\frac{1}{2}$$
CVDD

ENERGY IN DISCHARGING CAPACITORS

Capacitor initially charged (Q=CV_{DD}) and discharges.

Switch moves @ t=0

Energy out of C

Energy into R_D (heat)

$$= \frac{1}{2} \text{CV}_{DD}^2$$

$$\frac{1}{2}$$
CVDD

When a capacitor is discharged into a resistor the energy originally stored in the capacitor ($1/2\ CV_{DD}^2$) is dissipated as heat in the resistor

CMOS Power Consumption

- The total power consumed by a CMOS circuit is comprised of several components:
 - 1. Dynamic power consumption due to charging and discharging capacitances*:

$$P_{dyn} = C_L V_{DD}^2 f_{0\to 1} = C_{EFF} V_{DD}^2 f$$

 $f_{0 \to 1}$ = frequency of $0 \to 1$ transitions ("switching activity")

f = clock rate (maximum possible event rate)

Effective capacitance C_{EFF} = average capacitance charged every clock cycle

* This is typically by far the dominant component!

Other components of power dissipation are direct current flow during the CMOS switching cycle and leakage in the transistor junctions.

POWER DISSIPATION in DIGITAL CIRCUITS

Each node transition (i.e. charging or discharging) results in a loss of $(1/2)(C)(V_{DD}^2)$ How many transitions occur per second? Well if the node is pulsed up then down at a frequency f (like a clock frequency) then we have 2f dissipation events.

A system of N nodes being pulsed at a frequency f to a signal voltage V_{DD} will dissipate energy equal to (N) (2f)(${}^{1}/_{2}CV_{DD}{}^{2}$) each second

Therefore the average power dissipation is (N) (f)(CV_{DD}^2)

LOGIC POWER DISSIPATION EXAMPLE

Power = (Number of gates) x (Energy per cycle) x (frequency)

$$\mathbf{P} = (\mathbf{N}) (\mathbf{C}\mathbf{V}_{\mathbf{D}\mathbf{D}}^{2}) (\mathbf{f})$$

$$N = 10^7$$
; $V_{DD} = 2 \text{ V}$; node capacitance = 10 fF; $f = 10^9 \text{ s}^{-1} (1 \text{GHz})$

$$P = 400 \text{ W!}$$
 -- a toaster!

Pretty high but realistic

What to do? (N increases, f increases, hmm)

- 1) Lower V_{DD}
- 2) Turn off the clock to the inactive nodes

Clever architecture and design!

Let's define α as the fraction of nodes that are clocked (active). Then we have a new formula for power.

LOGIC POWER DISSIPATION with power mitigation

Power = (Energy per transition) x (Number of gates) x (frequency) x fraction of gates that are active (α) .

$$P = \alpha N CV_{DD}^2 f$$

In the last 5 years V_{DD} has been lowered from 5V to about 1.5V. It cannot go very much lower. But with clever design, we can make α as low as 1 or 10%. That is we do not clock those parts of the chip where there is no computation being made at the moment.

Thus the 400W example becomes 4 to 40W, a manageable range (4W with heat sink, 40W with heat sink plus fan on the chip).

Low-Power Design Techniques

1. Reduce V_{DD}

 \rightarrow quadratic effect on P_{dyn} Example: Reducing V_{DD} from 2.5 V to 1.25 V reduces power dissipation by factor of 4

- Lower bound is set by V_T : V_{DD} should be $>2V_T$

2. Reduce load capacitance

→ Use minimum-sized transistors whenever possible

3. Reduce the switching activity

 involves design considerations at the architecture level (beyond the scope of this class!)