Resumen Física: Segundo Parcial

Agustín Curto

Práctico 1: Cinemática

• Velocidad media: $\overline{v} = \frac{\Delta x}{\Delta t}$

• Aceleración media: $\overline{a} = \frac{\Delta v}{\Delta t}$

Ecuaciones de movimiento:

• Posición: $x(t) = x_0 + v_0 t +$ • Velocidad: $v(t) = v_0 + at$

• Aceleración: a = cte

Práctico 2: Movimiento en el plano

• Trayectoria: y(x).

Ecuaciones de movimiento:

• Posición: $\vec{r}(t) = x(t)\hat{i} + y(t)\hat{j}$

• Velocidad: $\vec{v}(t) = v_x(t)\hat{i} + v_y(t)\hat{j}$

• Aceleración: $\vec{a}(t) = a_x(t)\hat{i} + a_y(t)\hat{j}$

Práctico 3: Movimiento circular

 $v = |\vec{v}|$

• Aceleración: $\vec{a} = \vec{a_c} + \vec{a_t}$ donde:

 $-\vec{a_c} = \frac{v^2}{r}$

 $- |\vec{a_c}| = r\gamma = r\frac{d\omega}{dt} = r\ddot{\theta}$

 $-\vec{a_t} = \frac{d\vec{v_t}}{dt}$

 $- |\vec{a_t}| = r\omega^2 = r\dot{\theta^2}$

• Velocidad angular: $\omega = \frac{v}{r} \left[\frac{rad}{sec} \right]$

• Velocidad tangencial: $v_t = \omega r \left[\frac{mts}{sec} \right]$

• Período: $T = \frac{2\pi}{\omega}$

• Frecuencia: $f = \frac{1}{T}$

• Perímetro: $P = 2\pi r$

Ecuaciones de movimiento en coordenadas polares:

 $\hat{r} = \neg \hat{n}, \, \hat{\theta} = \hat{t}. \, \, \dot{r} = \frac{dr}{dt}, \, \dot{\theta} = \frac{d\theta}{dt} = \omega.$

• Posición: $\vec{r}(t) = r(t)\hat{r}$

• Velocidad: $\vec{v}(t) = \dot{r}(t)\hat{r} + r(t)\dot{\theta}(t)\hat{\theta}$

• Aceleración: $\vec{a}(t) = (\ddot{r}(t) - r(t)\dot{\theta}^2(t))\hat{r} + (r(t)\ddot{\theta}(t) + 2\dot{r}(t)\dot{\theta}(t))\hat{\theta}$

Práctico 4: Dinámica

• Leves de Newton:

1. $\sum_{i} \vec{F}_{i} = 0 \Rightarrow \vec{a} = 0 \text{ y } \vec{v} = cte$

2. $\vec{F} = m\vec{a} \Rightarrow \sum \vec{F} = m\vec{a}$

• Fuerza gravitacional: $\vec{P} = m\vec{g}$

• Fuerza de rozamiento: $|\vec{F_R}| = \mu |\vec{N}|$

• Fuerza centrípeta: $\vec{F_c} = m\vec{a_c}$

- Resortes: $F = k_e \Delta x$
 - En paralelo: $k_e = \sum_i k_i$

– En serie: $k_e = \frac{1}{\sum_i \frac{1}{k_e}}$

Práctico 5: Trabajo y Energía

- Trabajo: $[W] = \left[\frac{N}{m}\right] = [J] (Joules)$
 - $-W = \int_{P_i}^{P_f} \vec{F} d\vec{s}$
 - $-W = F\Delta x$
- Energía Cinética: $K = \frac{1}{2} m v^2$, [K] = [J]
- Energía Potencial: U = mgh, [U] = [J]
- Teorema de Energía-Trabajo:
 - $F\Delta x = \frac{1}{2}mv_f^2 \frac{1}{2}mv_i^2$

• Conservación de la Energía:

$$E_{inicial} = E_{final}$$

$$K_i + U_i = K_f + U_f$$

- Potencia: $[P] = \left[\frac{J}{s}\right] = [W] (Watt)$
 - Potencia media: $\overline{P} = \frac{W}{\Delta t}$
 - Potencia instantanea: $\vec{P} = \frac{dT}{dt} = \vec{F} \cdot \vec{v}$

Práctico 6: Momento Lineal, Angular y de Torsión

- Momento lineal: $\vec{p} = m\vec{v}$ $[\vec{p}] = [\frac{kg \, m}{s}]$
- Momento angular: $\vec{L} = \vec{r} \times \vec{p}$ $[\vec{L}] = [\frac{Kg \ m^2}{s}]$
- Impulso: $\vec{J} = \Delta \vec{p} = \int_{t1}^{t2} \vec{F} dt$ $[\vec{p}] = [\frac{kg \ m}{s}]$
- Centro de masa: $\vec{r}_{CM} = \frac{m_1}{m_1 + m_2} \vec{r}_1 + \frac{m_2}{m_1 + m_2} \vec{r}_2$
- Choque plástico:
 - Se conserva el momento
 - No se conserva la energía
- Choque elástico:

- Se conserva el momento
- Se conserva la energía
- \bullet Conservación del momento lineal: $\vec{p_i} = \vec{p_v}$
- Conservación de la energía: $\frac{1}{2}m_iv_i^2 = \frac{1}{2}m_fv_f^2$
- Energía cinética rotacional: $K = \frac{1}{2}I\omega^2$ $I = mr^2 \text{ (Momento de Inercia) } [I] = [Kg \ m^2]$
- Momento de torsión (Torque):

$$\vec{\tau} = \vec{r} \times \vec{F} = \vec{r} \times (m\vec{a}) \qquad [\vec{\tau}] = J$$

Práctico 7: Oscilaciones

- Ley de Hooke: $\vec{F} = k\Delta \vec{x}$
- Trabajo realizado para estirar un resorte: $W_e = \frac{1}{2}k(\Delta l)^2$
- Oscilador Armónico Simple:
 - Posición: $x(t) = A\cos(\omega t + \phi)$
 - Velocidad: $v(t) = -\omega A \sin(\omega t + \phi)$
 - Aceleración: $a(t) = -\omega^2 A \cos(\omega t + \phi)$
 - Frecuencia angular: $\omega = \sqrt{\frac{k}{m}}$
 - Período del movimiento: $T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$
 - Frecuencia: $f = \frac{1}{T} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$
 - Valores máximos:

- $* x_{max} = A$
- $v_{max} = \omega A$
- $* a_{max} = \omega^2 A$
- Energía: $E = \frac{1}{2}kA^2$
- Velocidad en función de la posición:

$$v(x) = \pm \omega \sqrt{A^2 - x^2}$$

• Oscilador Amortiguado

$$-x(t) = Ae^{\frac{-b}{2m}t}\cos(\omega t)$$

$$-\omega = \sqrt{\frac{k}{m} - \left(\frac{b}{2m}\right)^2} = \sqrt{\omega_0 - \alpha^2}$$

- Tipos de amortiguamiento:

* Subamortiguado: $\omega_0 > \alpha$

* Sobreamortiguado: $\omega_0 < \alpha$

* Críticamente Amortiguado: $\omega_0 = \alpha$

• Oscilaciones forzadas

$$-x(t) = A\cos(\omega t + \phi)$$

$$-v(t) = -\omega A \sin(\omega t + \phi)$$

$$-x(t) = A\cos(\omega t + \phi) \qquad -v(t) = -\omega A\sin(\omega t + \phi) \qquad -a(t) = -\omega^2 A\cos(\omega t + \phi)$$

Práctico 8: Calor

• Celsius, Farenheit y Kelvin:

$$-T_C = T_K - 273.15$$

$$-T_F = \frac{9}{5}T_C + 32$$

• Expansión térmica. α , coeficiente de expanción.

- 1D:
$$\Delta L = \alpha L_i \Delta T$$

$$-2D: \Delta A = 2\alpha A_i \Delta T$$

$$-3D: \Delta V = 3\alpha V_i \Delta T$$

• Calor: $Q = C\Delta T = cm\Delta T$ [Q] = J.

• Calorias-Joules: 1[cal] = 4.186[J]

• Calor latente: $Q = L\Delta m$

– Fusión: $Q=L_F\Delta m,$ para el agua: $L_F=80[\frac{cal}{gr}]$

— Vaporización: $Q = L_V \Delta m$, para el agua: $L_V = 540 \left[\frac{cal}{gr}\right]$

• Transferencia de calor:

Práctico 9: Electroestática