Assignment 1

problem 3

3) We are given with the data of tumour volume V mm^3 and T number of years until death.

Let V denote the volume of the tumour in mm^3 and $\hat{\lambda}$ denote the observed rate of death (persons/year).

Given it was observed a linear relation between $\hat{\lambda}$ and $V \Rightarrow \hat{\lambda} = \theta_0 + \theta_1 V$ Applying exponential distribution with parameter $\hat{\lambda}$ to find survial time \Rightarrow $P(X=t) = \hat{\lambda}e^{-\hat{\lambda}t}$

Likelihood function: It is definited as the function $L(\theta_0,\theta_1) = \Pi \operatorname{Prob}(T|\hat{T})$, where \hat{T} is the computed from exponential distribution

$$L(\theta_0, \theta_1) = \prod_i (\theta_0 + \theta_1 V_i) e^{-(\theta_0 + \theta_1 V_i)T_i}$$

In order to find the maximum vaue of this function, we need to find the values of θ_0 and θ_1 which would give maximum value for the above function. This is done by setting $\nabla L = 0$ and evaluating for θ_0, θ_1 .

Loss based on maximum likelihood: It is defined as $-\log(\mathcal{L}(\theta_0, \theta_1))$ Loss = $-\log(\Pi_i \ (\theta_0 + \theta_1 V_i) e^{-(\theta_0 + \theta_1 V_i) T_i})$

$$Loss = [\Sigma_i(\theta_0 + \theta_1 V_i)T_i - log(\theta_0 + \theta_1 V_i)]$$

Empirical Risk (R): It is defined the loss averaged over the data set.

$$R = 1/N \Sigma_i((\theta_0 + \theta_1 V_i)T_i - log(\theta_0 + \theta_1 V_i))$$