MATH 265 HW7

Hanzhang Yin

Oct/18/2024

Question 1

(a)

Proof. Let x > 1 and $y \in \mathbb{Q}$. We aim to show that x^y is the l.u.b of the set

$$E(x,y) = \{x^t | t < y, t \in \mathbb{Q}\}\$$

1. Upper Bound:

For any $t \in \mathbb{Q}$ with t < y, given x > 1, x^t is increasing in t, we have:

$$x^t < x^y$$

Therefore, x^y is an upper bound of E(x,y)

2. Least Upper Bound (Supremum):

Suppose there exists a real number $M < x^y$ that is also an upper bound of E(x,y) Since $x^y - M > 0$, set $\epsilon = x^y - M$.

Noting that rationals are dense in \mathbb{R} , there exists $t \in \mathbb{Q}$ s.t.

$$y - \delta < t < y$$

Where $\delta > 0$ is small enough to ensure $x^y - x^t < \epsilon$. Then:

$$x^t > x^y - \epsilon = M$$

This contradict the assumption that M is an upper bound of E(x,y). Therefore, no number less than x^y can be an upper bound of E(x,y), so x^y is the supremum of E(x,y).

(b)

Proof. To show boundness, we need to show there exists an upper bound and lower bound in E(x,y), when $y \in \mathbb{R}$

- 1. Upper bound: Since $x^t < x^y$ for all t < y, x^y is an upper bound of E(x, y)
- 2. Lower Bound: And we know that $x^t > 0$ for all t by given definition. Therefore, E(x, y) is bounded below.

Hence E(x,y) is bounded.

(c)

Proof. To proof $x^{y+z} = x^y x^z$, we need to validate two directions:

1. First we need to show $x^{y+z} \leq x^y x^z$: Let $t \in \mathbb{Q}$ with t < y + z. Since \mathbb{Q} is dense in \mathbb{R} , there exists $t_1, t_2 \in \mathbb{Q}$ s.t.:

$$t_1 < y$$
; $t_2 < z$; $t = t_1 + t_2$

Then:

$$x^t = x^{t_1 + t_2} = x^{t_1} x^{t_2} < x^y x^z$$

Therefore, every element x^t of $E(x, y + z) \le x^y x^z$ Thus:

$$x^{y+z} = \sup E(x, y+z) \le x^y x^z$$

2. Then we need to show $x^{y+z} \ge x^y x^z$: For any $\epsilon > 0$, choost $t_1, t_2 \in \mathbb{Q}$ s.t.:

$$y - \epsilon < t_1 < y$$
, $z - \epsilon < t_2 < z$

Then $t_1 + t_2 < y + z$, so $t_1 + t_2 \in E(x, y + z)$ Compute:

$$x^{t_1}x^{t_2} = x^{t_1+t_2} < x^{y+z}$$

Since $t_1 \to y$ and $t_2 \to z$, $x^{t_1} \to x^y$ and $x^{t_2} \to x^z$.

Therefore:

$$x^{y+z} \ge \lim_{t_1 \to y^-} \lim_{t_2 \to z^-} x^{t_1} x^{t_2} = x^y x^z - \delta$$

where δ can be made arbitrarily small. Thus:

$$x^{y+z} > x^y x^z$$

Combining both inequalities, we get $x^{y+z} = x^y x^z$

The property $x^{y+z} = x^y x^z$ implies that the function $f(y) = x^y$ is **injective** because it ensures that equal outputs correspond to equal inputs. Specifically by definition, if $f(y_1) = f(y_2)$, then $x^{y_1} = x^{y_2}$. Using the exponential property, we have $x^{y_1-y_2} = 1$. Since x > 1 and the exponential function x^t is strictly increasing, the equation $x^t = 1$ holds only when t = 0. Therefore, $y_1 - y_2 = 0$, which means $y_1 = y_2$. This shows that f is injective because no two different inputs produce the same output.

Question 2

Proof. The following proof follows the given proof outline:

Step i: For any $n \in \mathbb{N}, x-1 \ge n(x^{\frac{1}{n}}-1)$

Recall Bernoulli's inequality, it states that for any real number $r \geq 1$ and $s \geq -1$:

$$(1+s)^r \ge 1 + rs$$

Let $s = x^{\frac{1}{n}} - 1$ (NOTE: s > 0 as x > 1) and r = n:

$$(1+x^{\frac{1}{n}}-1)^n \ge 1+n(x^{\frac{1}{n}}-1)$$

$$\Rightarrow x \ge 1 + n(x^{\frac{1}{n}} - 1) \Rightarrow x - 1 \ge n(x^{\frac{1}{n}} - 1)$$

Step ii: If t > 1 and $n \in \mathbb{N}$ s.t. $n > \frac{x-1}{t-1}$, then $x^{\frac{1}{n}} < t$.

From step i, we get:

$$x^{\frac{1}{n}} - 1 \le \frac{x - 1}{n}$$

If $n > \frac{x-1}{t-1}$, then:

$$\frac{x-1}{n} < t - 1$$

Therefore,

$$x^{\frac{1}{n}} - 1 < t - 1 \Longrightarrow x^{\frac{1}{n}} < t$$

Step iii: If $y \in \mathbb{R}$ and $x^y < z$, then there exists $n \in \mathbb{N}$ s.t. $x^{y+\frac{1}{n}} < z$: Set $t = \frac{x^y}{z}$, note $\frac{x^y}{z} > 1$ by definition. Again using step ii, choose $n \in \mathbb{N}$ s.t.:

$$n > \frac{x-1}{t-1}$$

Then $x^{\frac{1}{n}} < t$, recall question 1(c) and multiply x^y on both side, we can get:

$$x^{y+\frac{1}{n}} = x^y \cdot x^{\frac{1}{n}} < x^y \cdot t = z$$

Step iv: If $y \in \mathbb{R}$ and $x^y > z$, then there exists $n \in \mathbb{N}$ s.t. $x^{y+\frac{1}{n}} > z$: Set $t = \frac{z}{x^y}$, note $\frac{z}{x^y} > 1$ by definition. Again using step ii, choose $n \in \mathbb{N}$ s.t.:

$$n > \frac{x-1}{t-1}$$

Then $x^{\frac{1}{n}} < t$, so $x^{-\frac{1}{n}} = \frac{1}{x^{\frac{1}{n}}} > \frac{1}{n}$. Recall question 1(c) and multiply x^y on both side, we can get:

$$x^{y-\frac{1}{n}} = x^y \cdot x^{-\frac{1}{n}} < x^y \cdot \frac{1}{t} = z$$

Step v: Define $A(z) = \{w \in \mathbb{R} | x^w < z\}$. Let $y = \sup A(z)$. then $x^y = z$ First, since $x^w \to 0$, as $w \to -\infty$ and $x^w \to \infty$, as $w \to \infty$, there exist real numbers w s.t. $x^w < z$.

The set A(z) is bounded above because $x^w \geq z$ for sufficiently large w.

Suppose $x^y < z$: by step (iii), there exists n s.t. $x^{y+\frac{1}{n}} < z$, contradicting the fact that $y = \sup A(z)$.

Similarly, suppose $x^y > z$: by step (iv), there exists n s.t. $x^{y-\frac{1}{n}} > z$, but $y-\frac{1}{n} < y$, again contradicting the fact that $y=\sup A(z)$ (i.e. y is l.u.b). Consequently, neither $x^y < z$ not $x^y > x$ is possible; thus, $x^y = z$.

Question 3

By analyzed several terms of the given sequence, likely it is increasing and should converges to 2.

Proof. For the given sequence, we can define it recusively:

$$a_1 = \sqrt{2}, \ a_{n+1} = \sqrt{2a_n}, \ for \ n \ge 1$$

Then we can set an induction to prove this sequence is increasing. I.e. We will prove $a_n < a_{n+1}$ for all $n \ge 1$ Base Case (n = 1):

$$a_1 = \sqrt{2}, \ a_2 = \sqrt{2a_1} = \sqrt{2\sqrt{2}}$$

Noticing that $a_1, a_2 > 0$, and $a_1^2 = 2, a_2^2 = 2\sqrt{2}$, so:

$$2 < 2\sqrt{2} \Leftrightarrow a_1^2 < a_2^2 \Rightarrow a_1 < a_2$$

Inductive steps:

Assume $a_n < a_{n+1}$ for some $n \ge 1$. We need to show $a_{n+1} < a_{n+2}$. Noticing, a_{n+1} and a_{n+2} can be deonte as:

$$a_{n+1} = \sqrt{2a_n}, \ a_{n+2} = \sqrt{2a_{n+1}}$$

Then, since $a_n > 0$, $\forall n \in \mathbb{N}$:

$$\sqrt{2a_n} < \sqrt{2a_{n+1}} \Leftrightarrow 2a_n < 2a_{n+1} \Leftrightarrow a_n < a_{n+1}$$

Hence, by our induction hypothesis, $a_{n+1} < a_{n+2}$. Therefore by induction, sequence $\{a_n\}$ is increasing.

Then, we need to show that (a_n) is bounded above. I.e., we will prove by induction that $a_n < 2$ for all n > 1

Base Case (n = 1):

$$a_1 = \sqrt{2} < 2$$

Inductive Step:

Assume $a_n < 2$ for some $n \ge 1$, we need to show $a_{n+1} < 2$:

From our previous definition, $a_{n+1} = \sqrt{2a_n}$. Since $a_n < 2$, we have $2a_n < 2 \times 2 = 4$, hence:

$$a_{n+1} = \sqrt{2a_n} < \sqrt{4} = 2$$

By induction again, $a_n < 2$ for all n > 1.

Since $\{a_n\}$ is increasing and bounded above by 2, by MCT, $\{a_n\}$ converges to some limit L s.t. $L \leq 2$

Let $L = \lim_{n \to \infty} a_n$. Taking limit both sides of the recursive formula:

$$L = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{2a_n} = \sqrt{2L}$$

Then:

$$L = \sqrt{2L} \Longrightarrow L^2 = 2L \Longrightarrow L^2 - 2L = 0 \Longrightarrow L(L-2) = 0$$

So L=0,2, and since $a_n>0$, limit $L\geq \sqrt{2}>0$. so L=2. Lastly, the limit found for the given sequence is:

$$\lim_{n \to \infty} a_n = 2$$