Time Reversal Cavity

RECEIVE MODE

Stokes Formula: A plane wave approach

One incident plane wave : amplitude 1 :

One reflected wave : R_{12}

One transmitted wave : T_{12}

$$T_{12}T_{21}+R_{12}R_{12}=1$$

$$T_{12}R_{21}+R_{12}T_{12}=0$$

$$R_{12}$$
 T_{12}

The Time-Reversed Situation

$$R_{12}^2 = T_{12}T_{21}$$

 $R_{12} = -R_{21}$

Time Reversal in Pulse Echo mode : 1 target

Iterative Time Reversal on multi target medium

Iterative Time Reversal on multi target medium

Iterative Time Reversal on multi target medium

Iteration 0

Iteration 4

Time reversal and kidney stone destruction

LITHOTRIPSY with TRM

Time reversal and non-destructive testing

transducers array

solid sample

2D Time Reversal Mirror for NDT

Array of 128 transducers 5 MHz central frequency

a flat

depth

Iterative time reversal on titanium alloy

A general approach : Backscattering Operator

(t): transmitted on channel m

k_{lm}(t): received on channel 1.

array of N*N
transmitters
receivers

NxN inter element impulse responses: $k_{lm}(t)$

Transmitted signals: $e_m(t)$

Received signals:

$$\mathbf{r}_l(\mathbf{t}) = \sum_{m=1}^{N} \mathbf{k}_{lm}(\mathbf{t}) \otimes \mathbf{e}_m(\mathbf{t}), \ 1 \le l \le L$$

In the frequency domain

$$R(\omega)=K(\omega)E(\omega)$$

 $E(\omega)$ and $R(\omega)$ vector signals,

 $\mathbf{K}(\omega)$ is the N \times N transfer matrix.

Spatial Reciprocity \Rightarrow $\mathbf{K}(\omega)$ is symmetrical

The Backscattering Time Reversal Operator

Iterations of the Time Reversal Operation

Eigenvectors: waveforms transmitted by the array to focus on each target

D.O.R.T Decomposition of the Time Reversal Operator

Diagonalization of K*K

Hermitian Positive eigenvalues

$$K^*K = V^{-1} \Delta V$$

Invariants of time reversal process

What are these invariants?

1. First invariant : limit of an iterative time reversal process

$$(K^*K)^n E_0 \sim \lambda_1^n V_1$$

2. Other invariants Later ...

Singular Value Decomposition of K

$$\Delta = \Lambda^2$$
, $K = U \Lambda V$

∧ real diagonal matrix of singular valuesU and V are unitary matrices

eigenvalues of $K^*K \iff$ squares of the singular values of K eigenvectors of $K^*K \iff$ columns of V

Remark: You transmit a singular vector V_i

$$\Rightarrow$$
 You receive **K** $V_i = \lambda_i V_i^*$

The scattering medium acts as a time reversal mirror on the singular vectors

D.O.R.T method in practice:

- measure the inter element impulse responses $k_{lm}(t)$
- calculated the SVD of $K(\omega)$ at chosen frequencies
- analysis of singular values and vectors

Singular Value Decomposition of **K** for scatterers

$$K = {}^{t}H C H$$

Each line H_I of H focuses on scatterers i

C diagonal in single scattering process

$$SVD => K = {}^{t}V S V$$

If scatterers ideally resolved \Rightarrow , the lines H_i are orthogonal: Focal spots do not overlap

Unicity of SVD \Rightarrow $\mathbf{V} \rightarrow \mathbf{H}$ and $\mathbf{S} \rightarrow \mathbf{C}$

One scatterer ⇔ one singular vector

Remark: It is not true in general

D. Chambers JASA 109 (6) (2001) Time reversal for a single spherical scatterer

Decomposition of **K** for 2 scatterers

- wire 1
- wire 2

2 eigenvalues values

$$\lambda_i = C_i^2 \left\{ \sum_{n=1}^{N} |H_{in}|^2 \right\}^2 i = 1, 2.$$

2 eigenvectors vectors

$$V_i \approx H_i^*$$
 pour $i = 1,2$.

Echoes of the scatterers after a pulse is emitted by transducer 64

Result of the decomposition at 3.5 Mhz

Eigenvalues

Phase of the first eigenvector and of the second eigenvector

2 Symmetrical Scatterers?

Experiment

 $\lambda \sim 1 \text{ mm}$ Copper wires $\emptyset 0.1 \text{ mm}$

Eigenvectors

$$V_{+} = H_{1} + H_{2}$$
 and $V_{-} = H_{1} - H_{2}$

H₁ response from scatterer 1 to the array

H₂ response from scatterer 2 to the array

Singular values

$$\lambda_{+} = \|\mathbf{H}_{1}\|^{2} + \langle \mathbf{H}_{1} | \mathbf{H}_{2} \rangle$$
 and $\lambda_{-} = \|\mathbf{H}_{1}\|^{2} - \langle \mathbf{H}_{1} | \mathbf{H}_{2} \rangle$

Field produced by transmission of the two eigenvectors.

FIG. 3. Amplitude and phase of the field produced by transmission of the two eigenvectors.

How to put an extended target in resonance with a TRM?

Origin of the Elastic Echo: Lamb waves

tube:

diameter : D = 20 mm thickness e = 0,54 mm

A and B: 2 source point generating lamb waves

 θ : incident angle

 c_0 : sound speed in water

 v_{ϕ} : phase velocity of the generated Lamb wave

Dispersion curve for Lamb Waves

$$d = \frac{Dc_0}{v_{\phi}}$$

d: distance between 2 sources

D: tube diameter

Lamb Waves as TR invariants

FIG. 5. Lamb waves are invariants of the time-reversal process: A wave focused on point A generates a Lamb wave which radiates towards the array from point B. After two successive time-reversal processes of this Lamb wave, the transmitted wave is similar to the first one, consequently this wave is associated to an invariant of the time-reversal process.

Six main eigenvectors and backpropagation

Time reversal on an extended target

Figure 27. Echo of the shell received by the 128 transducers after transmission of a short pulse by the centre element of the array. The first wavefront is the specular echo, the second is the contribution of the S_0 Lamb wave and the third the contribution of the A_0 Lamb wave.

Figure 28. Directivity pattern measured in the plane of the shell after TR of the echo corresponding to the A_0 , S_0 Lamb waves.

Phase velocity deduced from the eigenvectors

For each frequency, the Measurement of d gives the corresponding phase velocity

The cut-off frequency of A_1 provides the thickness of the shell

frequency (MHz)

Partial Wave Decomposition of an extended Cylindrical target target

mode radial distribution

Series of normal modes:

monopole, dipole, quadrupole ...

D. Chambers

Small cylinder limit

In acoustics, the series has **two terms**: R_0 et $2R_1$

$$R_0 \propto \alpha = \frac{\kappa_0}{\lambda + \mu} - 1$$

 $R_0 \propto \alpha = \frac{\kappa_0}{\lambda + \mu} - 1$ \alpha: monopole, compressibility contrast

$$R_1 \propto \beta = 2 \frac{\rho_{fil} - \rho_0}{\rho_{fil} + \rho_0}$$
 β : dipole, density contrast

Reduced TR matrix for a small cylinder:

$$K_{ij}^{réduite}(\omega) = \frac{1}{\sqrt{r_i r_j}} \left(\alpha + \beta \frac{F^2 + \eta_i \eta_j}{r_i r_j} \right)$$
 \Rightarrow **SVD** exact calculation

Small cylinder limit

Normal modes

Projection onto the array (non orthogonal)

 \Rightarrow expression of **K**reduced

$$w_s(\eta_i) = \frac{1}{r_i^{1/2}}$$

$$w_s(\eta_i) = \frac{1}{r_i^{1/2}}$$
 $w_{dx}(\eta_i) = \frac{F}{r_i^{3/2}}$ $w_{dy}(\eta_i) = \frac{\eta_i}{r_i^{3/2}}$

$$w_{dy}\left(\eta_i\right) = \frac{\eta_i}{r_i^{3/2}}$$

Singular values and singular vectors

$$egin{bmatrix} lpha W_{ss} & lpha W_{sx} & 0 \ eta W_{sx} & eta W_{xx} & 0 \ 0 & 0 & eta W_{yy} \end{bmatrix}$$

Diagonalization: 3 singular values

$$\lambda_1 \approx \alpha W_{ss} + \beta W_{xx}$$

$$\lambda_2 = \beta W_{yy}$$

$$\lambda_3 \approx \alpha \beta \frac{W_{ss}W_{xx} - W_{sx}^2}{\alpha W_{ss} + \beta W_{xx}} << \alpha \beta \lambda_1$$

and 3 singular vectors

3 singular values for a unique target

Theoretical singular values

- array aperture 65 mm
- distance array-wire 50 mm
- wire diameter = 0.32 mm

Steel: c_L =5.75 mm/ μ s c_T =3 mm/ μ s ρ = 7.8

Nylon: $c_L=2.6 \text{ mm/}\mu\text{s}$ $c_T=1.1 \text{ mm/}\mu\text{s}$ $\rho=1.1$

Time Reversal in a Waveguide

The Kaleidoscopic Effect: Virtual Transducers

A comparison between the focal spot with and without the waveguide

the pitch is to large: greating labor

D.O.R.T in a waveguide

Diagonalization of the TRO at 1.5 MHz

Backpropagation of the two main eigenvectors

Building temporal eigenvectors

Frequency dependence of the eigenvalues

Imaging in a waveguide

(D.O.R.T. in a wave guide JASA 1999, Mordant & al.)

f = 1.5MHz $\lambda f/2d = 11mm$

An estimate model of the waveguide:

The Green function is estimate with a simple model

A reference is use to optimize the parameters α , d, h

Singular values

Multiple scattering of ultrasound and Random Matrix Theory


```
Diameter: 0.8 \text{ mm}

Density: 19 \text{ tiges / cm}^2
\ell^* 5 \text{ mm}
\ell_a \sim 300 \text{ mm}
D 2.5 \text{ mm}^2/\mu s

5 \text{ mm} < L < 80 \text{ mm}
```

A.Tourin . M. Fink

Recording the Bacscattering Matrix

$$K_{nm}(t) \implies K(\omega) \Longrightarrow K^*K$$

Eigenvalues of the Bacscattering TR operator

Assuming that the entries are complex gaussian uncorrelated random variables, the eigenvalues density of K*K follows:

$$\rho(\lambda) = \frac{2}{\lambda_{\text{max}} \pi} \sqrt{\lambda_{\text{max}} - \lambda} / \sqrt{\lambda}$$

The so-called quarter Circle Law

The fit is better when taking into account a larger spacing between transducers

DORT Analysis in NDT (titanium alloy with defect)

The DORT method in the time domain

Singular values

1er temporal eigenvector $v_{\frac{1}{80}}^{\frac{1}{80}}$

Imaging with DORT method Backpropagation of v₁(t) with Simul-PA

Incoherent Summation of 50 fields, DORT

