Compilers

Simon Hua

June 2021

Contents

o Introduction

1 Introduction

Compilers

1954 IBM develops the 704 software > hardware "Speedcoding"

- 10-20x slower
- 300 bytes = 30% memory
- Interpreters

$$\begin{array}{ccc} & \text{on-line} \\ \text{program} & \longrightarrow & \\ & \boxed{I} & \longrightarrow & \text{Output} \\ \text{Data} & \longrightarrow & \end{array}$$

FORTRAN 1(Formulas Translated) 1954-1957 1958 50% program in FORTRAN 1

2 Structure of Compiler

5 phases

- 1. Lexical Analysis: divides program text into "words" or "tokens".
- 2. Parsing: diagramming sentences.
- 3. Semantic Analysis: try to understand "meaning". (hard)
 Compilers perform limited senmantic analysis to catch inconsistencies.

 → Programming Languages define strict rules to avoid such ambiguities.

- 4. Optimization: Antomatically modify prgrams so that they
 - \rightarrow Run faster
 - \rightarrow Use less space
 - \rightarrow Reduce power consumption...
- 5. Code Generation(Code Gen)
 - → Produces assembly code.(usually)
 - → A translation int another language.(Analgous to human translation)

FORTRAN 1:	L	P	S O	CG
MODERN: L	P	S	O	CG

3 The Economy of Programming Languages

Question

1. Why are there so many Programming Languages?

Application domians have distinctive / conflicting needs.

Scientific Computing	 → Good Float Points → Good Arrays → Parallelism 	FORTRAN
Business Application	 → Persistence → Report Generation → Data Analysis 	SQL
Scientific Computing	ightarrow Control of Resources $ ightarrow$ Real TimeConstraints	C/C++

2. Why are there new programming languages?

Claim: **Programmer training** is the dominant cost for a Programming Languages

- (a) widely-used Languages are slow to change.
- (b) Easy to start a new language. → Productivity > Training Cost
- (c) Languages adopted to fill a void.

New languages tend to looks like old languages because of the Claim \rightarrow Reducing programming training, like Java vs C++.

3. What is a good programming languages?
There is no universally accepted metric for language design.

O

The Cool Programming Language

1 Cool Overview