- **1.1** Sei K ein Körper, und sei $m \in K$. Zeigen Sie:
- (a) Die Matrizen der Form A bilden einen kommutativen Unterring L_m von $M(2 \times 2, K)$.

$$A = \left\{ \left(\begin{array}{cc} a & b \\ mb & a \end{array} \right) \right\}$$

Als Teilmenge gilt Assoziativität, Distributivität und Kommutativität für + automatisch. Bleibt zu zeigen, dass L_m abgeschlossen ist unter + und \cdot , und die Kommutativität von \cdot in L_m :

$$\begin{pmatrix} a & b \\ mb & a \end{pmatrix} \cdot \begin{pmatrix} c & d \\ md & c \end{pmatrix} = \begin{pmatrix} ac + bdm & bc + ad \\ m(bc + ad) & ac + bdm \end{pmatrix} \in A$$

$$\begin{pmatrix} a & b \\ mb & a \end{pmatrix} + \begin{pmatrix} c & d \\ md & c \end{pmatrix} = \begin{pmatrix} a + c & b + d \\ m(b + d) & a + c \end{pmatrix} \in A$$

$$\begin{pmatrix} c & d \\ md & c \end{pmatrix} \cdot \begin{pmatrix} a & b \\ mb & a \end{pmatrix} = \begin{pmatrix} ac + bdm & bc + ad \\ m(bc + ad) & ac + bdm \end{pmatrix} = \begin{pmatrix} a & b \\ mb & a \end{pmatrix} \cdot \begin{pmatrix} c & d \\ md & c \end{pmatrix}$$

- (b) L_m ist genau dann ein Körper, wenn m kein Quadrat in K ist.
- (c) Ist L_m ein Körper und $K = \mathbb{F}_p$ mit einer ungeraden Primzahl p, so gilt $L_m \stackrel{\sim}{=} \mathbb{F}_{p^2}$.