Übungsaufgaben zur Vorlesung "Analysis I" Blatt 8

Aufgabe 1. Sei $a_n = \frac{(-1)^n}{\sqrt{n+1}}$, $n \in \mathbb{N}_0$. Zeigen Sie:

- a) Die Reihe $\sum_{n=0}^{\infty} a_n$ ist konvergent.
- b) Das Cauchyprodukt der Reihe $\sum_{n=0}^{\infty} a_n$ mit sich selbst ist divergent.

 Hinweis: Schätzen Sie den Betrag der Beihenglieder der Produktrei

 $\mathit{Hinweis}:$ Schätzen Sie den Betrag der Reihenglieder der Produktreihe nach unten durch 1 ab: $|c_n| \geq 1$

c) Die Reihe $\sum_{n=0}^{\infty} a_n$ konvergiert nicht absolut.

Aufgabe 2. Finden Sie die Konvergenzradien R und bestimmen Sie in b) und c) zusätzlich die Konvergenzbereiche der folgenden Potenzreihen:

a)
$$\sum_{n=0}^{\infty} \frac{n!}{3^{n^2}} x^n$$

b)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}2^n} (x-1)^n$$

c)
$$\sum_{n=1}^{\infty} \frac{x^{(n^2)}}{3^n}$$

Aufgabe 3. Zeigen Sie: Eine Potenzreihe $\sum_{n=0}^{\infty} c_n x^n$ hat genau dann einen positiven Konvergenzradius, wenn es ein M > 0 gibt mit $|c_n| \leq M^n$ für alle $n \in \mathbb{N}$.

Aufgabe 4. Seien $z, w \in \mathbb{C}$. Beweisen Sie:

a)
$$\sin(z + w) = \sin z \cos w + \cos z \sin w$$

 $\cos(z + w) = \cos z \cos w - \sin z \sin w$

 $Bemerkung: \hbox{Diese Behauptungen werden oft } Additions theoreme \hbox{ genannt}.$

b)
$$\cos^2 z + \sin^2 z = 1$$

Abgabe: Bis 13. Dezember vor Vorlesungsbeginn in das Postfach Ihrer Tutorin bzw. Ihres Tutors.

Aufgabe	1			2			3	4		
	a	b	С	a	b	С		a	b	
Punkte	1	3	2	2	2	2	4	2	2	20

1

Präsenzaufgaben

- 1. Berechnen Sie die Summe der Reihe $\sum_{n=1}^{\infty} nq^n$, |q| < 1, indem Sie die geometrische Reihe mit sich selbst multiplizieren.
- 2. Bestimmen Sie die Konvergenzradien R der folgenden Potenzreihen:

a)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n-1}2n+3}{3n^2+4} z^{2n+1}$$

b)
$$\sum_{n=0}^{\infty} \frac{z^n}{a^n + b^n}$$
, $a > 0, b > 0$

c)
$$\sum_{n=1}^{\infty} \left(\frac{3+4i}{3n}\right)^n z^{2n}$$

d)
$$\sum_{n=1}^{\infty} \left(\frac{i+n}{2in}\right)^n z^n$$

3. Finden Sie die Konvergenzradien und die Konvergenzbereiche der folgenden Potenzreihen:

 $b) \sum_{n=1}^{\infty} \frac{1}{n} x^{2^n}$

$$a) \sum_{n=1}^{\infty} \frac{(x-1)^n}{n\sqrt{n}}$$

- 4. Finden Sie $\lim_{n\to\infty} \frac{1}{\sqrt[n]{n!}}$.
- 5. Beweisen Sie folgende Versionen des Wurzel- bzw. des Quotientenkriteriums.
 - a) Gilt $\limsup_{n\to\infty} \sqrt[n]{|a_n|} < 1$ bzw. $\limsup_{n\to\infty} \sqrt[n]{|a_n|} > 1$, so ist die Reihe $\sum_{n=1}^{\infty} a_n$ absolut konvergent bzw. divergent.
 - b) Gilt $\limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| < 1$ bzw. $\liminf_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| > 1$, so ist die Reihe $\sum_{n=1}^{\infty} a_n$ absolut konvergent bzw. divergent.
- 6. Wie viele Reihenglieder muss man aufsummieren, um die Summe der Reihe $\sum_{n=1}^{\infty} \frac{2n}{(n+1)!}$ näherungsweise mit Genauigkeit 10^{-5} auszurechnen.
- 7. Beweisen oder widerlegen Sie: Konvergiert die Reihe $\sum_{n=1}^{\infty} a_n$ und gilt $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$, so konvergiert auch die Reihe $\sum_{n=1}^{\infty} b_n$.

2

8. Beweisen Sie die Identität $\sin z + \sin w = 2\sin\frac{z+w}{2}\cos\frac{z-w}{2}$ für alle $z \in \mathbb{C}$.