Midterm Presentation:

Risk Properties in Sparse Precision Matrix Estimation

Addison J. Hu Statistics 490 o1 March 2017

Outline

- 1. Graphical Models & Multivariate Gaussian
- 2. Pairwise Inference for Entrywise Recovery of Σ^{-1}
- 3. Risk Bounds for Entrywise Recovery in $\|\cdot\|_{\infty}$
- 4. Next Steps

BACKGROUND

Graphical Models

- Graphical models provide a framework within which to consider dependence structure within a group of variables.
- In doing so, we may relax the i.i.d. assumption and still perform inference feasibly.
- Examples:
 - Facebook users graph
 - Gene interaction networks

Markov Random Fields

- Consider a graph G = (V, E), and a corresponding set of random variables $\{X_i\}_{i=1}^{|V|}$, where the random variables are indexed by $u \in V$.
- **Pairwise Markov property:** $X_u \perp \!\!\! \perp X_v | X_{V \setminus \{u,v\}}$ for any two non-adjacency nodes u, v.
- Local Markov property: $X_u \perp \!\!\! \perp X_{V \setminus \operatorname{cl}(u)} | X_{\operatorname{nb}(u)}$ for any node v.
- Inference is easy when the edges are known; but is more interesting when they are unknown.

Example: Hub and Spoke Model

Γ1	0	0	1	0 0 0 1 1 0	0	0
0	1	0	1	0	0	0
0	0	1	1	0	0	0
1	1	1	1	1	1	1
0	0	0	1	1	0	0
0	0	0	1	0	1	0
0	0	0	1	0	0	1

Multivariate Gaussian

Suppose $X \sim \mathcal{N}(\mu, \Sigma)$. Its density function is given by:

$$p(\mathbf{x}) = (2\pi)^{-\frac{\rho}{2}} |\Sigma|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \Sigma^{-1}(\mathbf{x} - \mu)\right\}$$

- Closure properties:
 - Sum of independent Gaussian random variables is Gaussian.
 - Marginal of a joint Gaussian distribution is Gaussian.
 - Condition of a joint Gaussian distribution is Gaussian.
- The sparsity pattern of Σ^{-1} concides with the adjacency matrix of the associated MRF.

Multivariate Gaussian, cont.

– Closure under marginalization: Suppose $A \subset V$. Then

$$\Sigma_A = (\Sigma_{ij})_{i \in A, j \in A}$$

- Closure under conditioning: Suppose A, B ⊂ V, $A \cup B = V$, $A \cap B = \emptyset$. Then:

$$(\Omega_A)^{-1} = \Sigma_{A|B}$$
$$(\Sigma_A)^{-1} = \Omega_{A|B}$$

Precision Matrix Estimation

Maximum Likelihood Estimation

Assume $\mu = 0$. Then the maximum likelihood estimation problem is:

$$\begin{array}{ll} \underset{\Sigma}{\text{maximize}} & -\log \det |\Sigma| - \langle \hat{\Sigma}, \Sigma^{-1} \rangle \\ \text{subject to} & \Sigma \succeq 0 \end{array}$$

- Maximum Likelihood Estimate given by $\hat{\Sigma} = \frac{1}{n} \mathbf{X}^{\top} \mathbf{X}$.
- Idea: $\hat{\Omega} = \hat{\Sigma}^{-1}$.
- Issues:
 - Invertibility & Conditioning
 - Noise & Sparsity

Graphical Lasso

To encourage sparsity, Tibshirani *et al* proposed imposing an entrywise ℓ_1 penalty on Ω .

$\max_{\Omega} \operatorname{maximize}$	$\log \det \Omega - \langle \hat{\Sigma}, \Omega \rangle - \rho \left\ \Omega \right\ _1$
subject to	$\Omega \succeq 0$

Asymptotic Normal Thresholding (ANT)

- Goal: Obtain entrywise estimates $\hat{\omega}_{ij}$ of Ω that are asymptotically norm and minimax, and then threshold to enforce sparsity.
- Idea: For each pair $A = \{i, j\}$, regress the variables X_i, X_j on all other variables:

$$\mathbf{X}_A = \mathbf{X}_{A^c}\beta + \epsilon_A$$

where ϵ_A is a noise term, distributed normally with mean zero, and which are independent of \mathbf{X}_{A^c} .

- Rationale: $\Omega_{A,A}^{-1} \triangleq \Theta_{A,A} \triangleq \Sigma_{A|A^c} = \text{var}(X_A|X_{A^c}) = \text{var}(\epsilon_A)$. Errors give entries of precision matrix.

Oracle MLE

- Suppose we could draw from the distribution of ϵ_A directly. How would we estimate $\Omega_{A,A}$?
- The maximum likelihood estimator in this case is:

$$\Theta_{A,A}^{ora} = (\theta_{kl}^{ora})_{k,l \in A} = \frac{\epsilon_A^{\top} \epsilon_A}{n}$$

where we call Θ^{ora} the *oracle* MLE covariance estimates.

 The corresponding oracle MLE precision estimates are then given by:

$$\Omega_{A,A}^{ora} = (\omega_{kl}^{ora})_{k,l \in A} = (\Theta_{A,A}^{ora})^{-1}$$

Residual Estimates

- In practice, we only observe **X**, so we must estimate ϵ_A .
- Suppose we have an adequate estimates of the regression weights $\hat{\beta}$. Then:

$$\hat{\epsilon}_A = \mathbf{X}_A - \mathbf{X}_{A^c} \hat{\beta}$$

- Consequently:

$$\hat{\Theta}_{A,A} = \frac{\hat{\epsilon}_A^{\top} \hat{\epsilon}_A}{n}$$

$$\hat{\Omega}_{A,A} = \hat{\Theta}_{A,A}^{-1}$$

Scaled Lasso Estimator

For each $m \in A = \{i, j\}$, perform the optimization:

$$\left\{\hat{\beta}_{m}, \hat{\theta}_{mm}^{1/2}\right\} = \arg\min_{\substack{b \in \mathbf{R}^{p-2}, \\ \sigma \in \mathbf{R}^{+}}} \left\{ \frac{\left\|\mathbf{X}_{m} - \mathbf{X}_{A^{c}}b\right\|^{2}}{2n\sigma} + \frac{\sigma}{2} + \lambda \sum_{k \in A^{c}} \frac{\left\|\mathbf{X}_{k}\right\|}{\sqrt{n}} |b_{k}| \right\}$$

Intuitively, the scaling factor on the ℓ_1 penalty implicitly standardizes the design vector to length \sqrt{n} such that the ℓ_1 penalty is applied to the new coefficients $\frac{\|\mathbf{X}_k\|}{\sqrt{n}}b_k$.

Risk Bounds in $\|\cdot\|_{\infty}$

Minimaxity

Recall that we call an estimator δ^* *minimax* if it achieves the minimax risk:

$$\sup_{\theta \in \Theta} \textit{R}(\delta^*, \theta) = \inf_{\delta} \sup_{\theta \in \Theta} \textit{R}(\delta, \theta) \triangleq \text{minimax risk}$$

where $R(\delta, \theta)$ is a risk function:

$$R(\delta, \theta) \triangleq \mathbf{E}_{X|\theta} \ \ell(\delta(X), \theta)$$

Parameter Space Construction

We consider the following parameter space for $\lambda > 0$:

$$\mathcal{G}^* = \left\{ \Omega : s_{\lambda}(\Omega) \le s, M^{-1} \le \lambda_{\min}(\Omega) \le \lambda_{\max}(\Omega) \le M \right\}$$

where

$$s_{\lambda} = s_{\lambda}(\Omega) = \max_{j} \sum_{i \neq j} \min \left\{ 1, \frac{|\omega_{ij}|}{\lambda} \right\}$$

for
$$\Omega = (\omega_{ij})_{1 \leq i,j \leq p}$$
.

The authors take λ on the order $\sqrt{\frac{\log p}{n}}$ in this paper.

Risk Upper Bound

- A risk upper bound on an estimator gives a guarantee on its worst case performance.
- The ANT estimator achieves, for some constants C_2 , C_3 , the following bounds in probability:

$$\max_{\Omega \in \mathcal{G}^*(M,s,\lambda)} \max_{1 \leq i \leq j \leq p} \mathbf{P} \left\{ |\hat{\omega}_{ij} - \omega_{ij}| > C_2 \max \left\{ s \frac{\log p}{n}, \sqrt{\frac{1}{n}} \right\} \right\} \leq \varepsilon_0$$

$$\max_{\Omega \in \mathcal{G}^*(M,s,\lambda)} \mathbf{P} \left\{ \left\| \hat{\Omega} - \Omega \right\|_{\infty} > C_3 \max \left\{ s \frac{\log p}{n}, \sqrt{\frac{\log p}{n}} \right\} \right\} = o(p^{-\delta+3})$$

Risk Upper Bound: Oracle Inequalities

First, we bound the distance from the estimator to the oracle MLEs. There exist constants C_1 , C_1' such that:

$$\max_{A:A=\{i,j\}} \mathbf{P} \left\{ \left\| \hat{\Theta}_{A,A} - \Theta_{A,A}^{ora} \right\|_{\infty} > C_1 s \frac{\log p}{n} \right\} \le o(p^{-\delta+1})$$

and

$$\max_{A:A=\{i,j\}} \mathbf{P} \left\{ \left\| \hat{\Omega}_{A,A} - \Omega_{A,A}^{ora} \right\|_{\infty} > C_1' s \frac{\log p}{n} \right\} \le o(p^{-\delta+1})$$

Risk Upper Bound: Coupling Argument

- Denote $\kappa_{ij} = \sqrt{n} \frac{\omega_{ij}^{ora} \omega_{ij}}{\sqrt{\omega_{ii}\omega_{jj} + \omega_{ij}^2}}.$
- Under suitable conditions (KMT Inequality), κ_{ij} behaves roughly like a standard normal random variable.
- This gives a bound in probability on the deviation of ω_{ij}^{ora} from the true ω_{ij} :

$$\mathbf{P}\left\{|\omega_{ij}^{ora} - \omega_{ij}| > C_4 \sqrt{\frac{1}{n}}\right\} \le \frac{3}{4}\epsilon$$

- A similar argument gives:

$$\mathbf{P}\left\{\left\|\hat{\Omega}_{A,A} - \Omega_{A,A}\right\|_{\infty} > C_5 \sqrt{\frac{\log p}{n}}\right\} = o(p^{-\delta})$$

Risk Lower Bound

Suppose $\{X^{(i)}\}_{i=1}^n \stackrel{\text{iid}}{\sim} \mathcal{N}(0,\Omega), \Omega \in \mathcal{G}_0(M,k_{n,p})$. An application of Le Cam's method yields the following minimax lower bounds:

$$\begin{split} &\inf_{\hat{\omega}_{ij}} \sup_{\mathcal{G}(M,k_{n,p})} \mathbf{P} \left\{ |\hat{\omega}_{ij} - \omega_{ij}| > \max \left\{ C_1 \frac{k_{n,p} \log p}{n}, C_2 \sqrt{\frac{1}{n}} \right\} \right\} > c_1 > 0 \\ &\inf_{\hat{\Omega}} \sup_{\mathcal{G}(M,k_{n,p})} \mathbf{P} \left\{ \left\| \hat{\Omega} - \Omega \right\|_{\infty} > \max \left\{ C_1 \frac{k_{n,p} \log p}{n}, C_2 \sqrt{\frac{\log}{n}} \right\} \right\} > c_2 > 0 \end{split}$$

Le Cam's Two-Point Argument

- 1. Insight: Maximum of set bounded below by (weighted) average.
- 2. Method: Construct a subparameter space $\Omega_L \in \mathcal{G}$, find the average risk over subparameter space.

Example: Suppose probability distributions P_1, P_2 parameterized by θ_1, θ_2 , respectively.

$$\begin{split} \sup_{\theta \in \Theta} \mathbf{E}_{X|\theta} (\delta(X) - \theta)^2 &\geq \frac{1}{2} \left[\mathbf{E}_{X|\theta_1} (\delta(X) - \theta_1)^2 + \mathbf{E}_{X|\theta_2} (\delta(X) - \theta_2)^2 \right] \\ &= \cdots \\ &\geq (\theta_1 - \theta_2)^2 \int \min\{p_1, p_2\} \, \mathrm{d}\, \mu(x) \end{split}$$

Balancing act between maximizing $d(\theta_1, \theta_2)$ versus $||P_1 \wedge P_2||$.

NEXT STEPS