

CNPJ: 17.358.703/0001-99 - **I.E.** 712.057.230.110

Rua Itaici, 130 - Jd. Itajaí - Várzea Paulista / SP - CEP. 13224-250

Laboratório de Calibração ER Analítica

Certificado de Calibração nº

016168_01

1. Dados do Cliente

Empresa:	Companhia de Saneamento Básico do Estado de São Paulo				
Endereço:	R. Paulo Setúbal, 19 - Vila Adyana - São Jo	sé dos Campos	/SP		
Cidade:	São José dos Campos	Estado:	SP	Cep:	12245460
Contratante:	Companhia de Saneamento Básico do Esta	ado de São Pau	lo		

2. Dados do Equipamento

Instrumento:	Espectrofotômetro
Modelo:	DR5000
Fabricante:	Hach

Capacidade:	190 - 1100 nm
№ de Série:	1215392
Identificação:	1434361

3. Condições Ambientais

Temperatura (°C)	
19,54 ± 0,6 °C	

Umidade Relativa (%ur)
48,9 ± 1,8 % ur

4. Informações da Calibração

Técnico Executor:	Guilherme Silva	Data da Calibração:	20/04/2022
Signatário Autorizado:	Wellington Barbosa	Data da Emissão:	20/04/2022
Local da Calibração:	Laboratório - FQ		

5. Rastreabilidade dos Padrões

Código do Padrão	Descrição do Padrão	Orgão Calibrador	Certificado de Calibração	Data da Calibração	Validade da Calibração
1001A03TH - T	Termômetro Ambiente	Visomes	LV02172-36534-20-R0	15/10/2020	15/10/2022
I001A03TH - H	Higrômetro Ambiente	Visomes	LV02172-36534-20-R0	15/10/2020	15/10/2022
I001A03TE	Termometro Digital	Visomes	LV02172-36458-20-R0	14/10/2020	14/10/2022
I001A03FH	Filtro Óptico de Hólmio	Starna	84768	11/06/2021	11/06/2022
I001A03FD	Filtro Óptico de Didmio	Starna	84767	11/06/2020	11/06/2022
I001A03VS	Filtro de Densidade Neutra	Starna	85592	15/07/2020	15/07/2022
I001A03UV	Solução de Dicromato de Potássio	Starna	84766	11/06/2020	11/06/2022

Laboratório Acreditado ISO/IEC 17025.

CNPJ: 17.358.703/0001-99 - **I.E.** 712.057.230.110

Rua Itaici, 130 - Jd. Itajaí - Várzea Paulista / SP - CEP. 13224-250

Certificado de Calibração nº

016168_01

6. Resultados da Calibração para Comprimento de Onda - Filtro Holmio / Didmio

Laboratório de Calibração ER Analítica

Temperatura do	Compartimento de Amosti	ra: 20,65 ± 0,2	°C	Resolução: 0,1 nm	
(VR) Valor de Referência (nm)	(VMO) Valor Médio do Objeto (nm)	(T) Tendência (VMO-VR) (nm)	(U) Incerteza Expandida (nm)	Fator de Abragência (k)	Graus de Liberdade Efetivos (Veff)
279,4	279,4	0,0	0,2 nm	2,00	Infinito
361,0	361,1	0,1	0,2 nm	2,00	Infinito
446,1	446,0	-0,1	0,2 nm	2,00	Infinito
528,8	528,8	0,0	0,2 nm	2,00	Infinito
585,3	585,4	0,1	0,2 nm	2,00	Infinito
684,5	684,5	0,0	0,2 nm	2,00	Infinito
740,2	740,0	-0,2	0,2 nm	2,00	Infinito
748,5	748,4	-0,1	0,2 nm	2,07	40,00
807,0	807,0	0,0	0,2 nm	2,00	Infinito
879,3	879,4	0,1	0,2 nm	2,00	Infinito

CNPJ: 17.358.703/0001-99 - **I.E.** 712.057.230.110

Rua Itaici, 130 - Jd. Itajaí - Várzea Paulista / SP - CEP. 13224-250

Certificado de Calibração nº

016168_01

7. Resultados da Calibração para Escala Fotométrica - Região Visivel

Laboratório de Calibração ER Analítica

0,001 abs	Resolução:	21,05 ± 0,2 °C	Temperatura do Compartimento de Amostra:
-----------	------------	----------------	--

Filtro Padrão de 10% Transmitância				
Valor de Referência (abs)	Valor Médio do Objeto (abs)	Tendência (VMO-VR) (abs)		
0,9867	0,984	-0,003		
0,9313	0,930	-0,001		
0,9829	0,984	0,001		
1,0902	1,092	0,002		
1,0753	1,075	0,000		
Incerteza Expandida (abs)				
Fator de Abragência (k)				
Graus de Liberdade Efetivos (veff) Infinito				
	Valor de Referência (abs) 0,9867 0,9313 0,9829 1,0902 1,0753 Incerteza	Valor de Referência (abs) (abs		

	Filtro Padrão de 20% Transmitância				
Comp. Onda (nm)	Valor de Referência (abs)	Valor Médio do Objeto (abs)	Tendência (VMO-VR) (abs)		
440	0,7060	0,707	0,001		
465	0,6667	0,669	0,002		
546	0,7027	0,704	0,001		
590	0,7783	0,779	0,001		
635	0,7677	0,767	-0,001		
	Incerteza Expandida (abs)				
	Fator de Abragência (k)				
	Graus de Liberdade Efetivos (Veff)				

	Filtro Padrão de 30% Transmitância					
Comp. Onda (nm)	Valor de Referência (abs)	Valor Médio do Objeto (abs)	Tendência (VMO-VR) (abs)			
440	0,5588	0,556	-0,003			
465	0,5212	0,520	-0,001			
546	0,5226	0,521	-0,002			
590	0,5566	0,556	-0,001			
635	0,5643	0,562	-0,002			
	0,004					
Fator de Abragência (k)			2,00			
Graus de Liberdade Efetivos (veff)			Infinito			

Laboratório Acreditado ISO/IEC 17025.

CNPJ: 17.358.703/0001-99 - **I.E.** 712.057.230.110

Rua Itaici, 130 - Jd. Itajaí - Várzea Paulista / SP - CEP. 13224-250

Certificado de Calibração nº

016168_01

0,000

Laboratório de Calibração ER Analítica

8. Resultados da Calibração p	para Escaia Fotometrica -	Regiao Ultra Violeta
-------------------------------	---------------------------	----------------------

Temperatura do Compartimento de Amostra:	20,15 ± 0,7 °C	Resolução:	0,001 abs	
		-		

350

Comp. Onda (nm)	Valor de Referência (abs)	Valor Médio do Objeto (abs)	Tendência (VMO-VR) (abs)
235	0,2490	0,250	0,001
257	0,2853	0,285	0,000
313	0,0971	0,099	0,002
350	0,2116	0,210	-0,002
Incerteza Expandida (abs)		0.04	

Solução Padrão com Concentração de 20 mg/ml

0,04	Incerteza Expandida (abs)
2,00	Fator de Abragência (k)
Infinito	Graus de Liberdade Efetivos (veff)

Comp. Onda (nm)	Valor de Referência (abs)	Valor Médio do Objeto (abs)	Tendência (VMO-VR) (abs)
235	0,4915	0,495	0,004
257	0,5725	0,574	0,001
313	0,1919	0,194	0,002

Solução Padrão com Concentração de 40 mg/ml

Incerteza Expandida (abs)	0,04
Fator de Abragência (k)	2,00
Graus de Liberdade Efetivos (veff)	Infinito

0,426

0,4264

Solução Padrão com Concentração de 60 mg/ml			
Comp. Onda (nm)	Valor de Referência (abs)	Valor Médio do Objeto (abs)	Tendência (VMO-VR) (abs)
235	0,7398	0,743	0,003
257	0,8607	0,863	0,002
313	0,2877	0,290	0,002
350	0,6394	0,637	-0,002
Incerteza Expandida (abs) 0,041			0,041
Fator de Abragência (k) 2,00			2,00

Graus de Liberdade Efetivos (**Veff**)

S	Solução Padrão com Concentração de 80 mg/ml		
Comp. Onda (nm)	Valor de Referência (abs)	Valor Médio do Objeto (abs)	Tendência (VMO-VR) (abs)
235	1,0014	1,006	0,005
257	1,1583	1,160	0,002
313	0,3896	0,395	0,005
350	0,8572	0,851	-0,006
	Incerteza Expandida (abs) 0,041		
Fator de Abragência (k) 2,0			2,00
	Graus de Liberdade Efetivos (Veff) Infinito		

Infinito

CNPJ: 17.358.703/0001-99 - I.E. 712.057.230.110

Rua Itaici, 130 - Jd. Itajaí - Várzea Paulista / SP - CEP. 13224-250

Certificado de Calibração nº

016168_01

Laboratório de Calibração ER Analítica

Continuação item 8.

Solução Padrão com Concentração de 100 mg/ml			
Comp. Onda (nm)	Valor de Referência (abs)	Valor Médio do Objeto (abs)	Tendência (VMO-VR) (abs)
235	1,2542	1,260	0,006
257	1,4545	1,459	0,005
313	0,4866	0,492	0,005
350	1,0742	1,067	-0,007
Incerteza Expandida (abs) 0,041			0,041
Fator de Abragência (k) 2,00			2,00
Graus de Liberdade Efetivos (veff) Infinito			Infinito

9. Procedimento da Calibração

O instrumento foi calibrado por comparação conforme descrito a seguir:

O item 6, foi calibrado em escala de comprimento de onda do instrumento com um Filtros Padrão de Óxido de Hólmio e Didmio nos pontos indicados e expressada a média de três leituras como resultado para cada ponto.

Item 7, foi calibrado com Filtros Ópticos de Densidade Neutra na região visível na escala de absorbância, sendo o resultado expresso, a média de três leituras.

Item 8, foi calibrado com Filtros Ópticos de Dicromato de Potássio na escala de absorbância, sendo o resultado expresso, a média de três leituras. Para todos os itens a referência utilizada foi o ar.

10. Informações Complementares

- 1 Foi utilizada a norma ASTM E 925 como referência.
- 2 Tendência = Valor Médio do Objeto -Valor do Referência.
- 3 A incerteza expandida de medição relatada é baseada em uma incerteza padrão combinada, multiplicada por um fator de abrangência k, para um nível da confiança de aproximadamente 95%. Veff = grau de liberdade efetivo.
- 4 O presente certificado refere-se exclusivamente ao instrumento calibrado.
- 5 É proibida a reprodução parcial deste certificado, sem prévia autorização do laboratório.
- 6 Este certificado atende aos requisitos de acreditação pela Cgcre/Inmetro que avaliou a competência do laboratório e avaliou a rastreabilidade a padrões nacionais de medida.

11. Observações	
Nenhuma.	
12. Responsável	
	Wellington Barbosa
	Weilington Barbosa

Signatário Autorizado

Laboratório Acreditado ISO/IEC 17025.