Algoritem potisni-povišaj za iskanje maksimalnega pretoka

Marcel Čampa Mentor: Sergio Cabello

Fakulteta za matematiko in fiziko

10. maj 2017

Osnovne definicije

Definicija 1 *Graf* G *je par množic* G = (V, E), *kjer je G množica vozlišč grafa,* E *pa je množica povezav grafa* G.

Definicija 2 Naj bo G = (V, E) graf. **Omrežje** na grafu G je par (G, c), kjer je $c: V \times V \to \mathbb{R}_+ \cup \{\infty\}$ **funkcija prepustnosti**, ki vsaki povezavi (u, v) priredi njeno prepustnost c(u, v). Prepustnost $c(u, v) = \infty$ natanko tedaj, ko prepustnost povezave ni omejena.

Rekli bomo še, da c(u, v) = 0 natanko tedaj, ko povezava ne obstaja.

Definicija 3 Naj bo G = (V, E) graf in (G, c) omrežje na grafu G. **Pretočno omrežje** na omrežju (G, c) je četverica (G, c, s, t), kjer je $s \in V$ začetno vozlišče pretočnega omrežja, rečemo mu **izvir**, $t \in V$ pa končno vozlišče pretočnega omrežja, ki mu pravimo **ponor**.

Ponavadi pišemo pretočno omrežje kar kot G = (V, E, s, t). Pri tem namreč privzemamo, da imamo neko funkcijo prepustnosti c.

Definicija 4 *Psevdopretok* je funkcija $f: V \times V \to \mathbb{R}$, ki zadošča pogojema

- 1. Za vsaki vozlišči $u, v \in V$ velja f(u, v) = -f(v, u).
- 2. Za vsaki vozlišči $u, v \in V$ velja $f(u, v) \le c(u, v)$, kjer je c funkcija prepustnosti.

Definicija 5 Funkcija presežka za psevdopretok f je funkcija $e_f \colon V \to \mathbb{R}$, definirana z $e_f(u) = \sum_{v \in V} f(v, u)$. Če je $e_f(u) > 0$, pravimo, da je u **v** presežku.

Definicija 6 Residualna prepustnost povezave glede na trenuten psevdopretok f je funkcija $c_f: V \times V \to \mathbb{R}_+$, definirana kot razlika prepustnosti povezave in trenutnega toka preko nje. Velja torej $c_f(u,v) = c(u,v) - f(u,v)$.

Definicija 7 *Predpretok* f je tak psevdopretok, v katerem za vsak $v \in V \setminus \{S\}$ velja, da je neto tok, ki priteče v vozlišče v, nenegativen, torej da velja $e_f(v) \ge 0$.

Definicija 8 *Pretok* f *je tak psevdopretok, v katerem za vsak* $v \in V \setminus \{s,t\}$ *velja, da je neto tok, ki priteče v vozlišče v, enak nič, torej da velja* $e_f(v) = 0$.

Definicija 9 *Vrednost pretoka* f *je tok, ki vstopa v ponor t. Označimo ga z* |f|. *Velja torej* $|f| = e_f(t)$.

Definicija 10 Maksimalni pretok je pretok f, za katerega velja

$$|f|=\max_{f_i}|f_i|.$$

Algoritem potisni-povišaj

Intuicija...

```
POVIŠAJ (11)
1 // Vozlišče u povišamo, če je e(u) > 0 in
2 // za vsak v iz V, (u,v) v E_f, velja h(u) \le h(v).
3 h(u) = min\{h(v) : (u,v) v E f\} + 1
POTISNI (u. v)
1 // Potisnemo lahko, če je e(u) > 0
2 // c(u,v) > 0 in h(u) = h(v) + 1.
3 delta = min{ e(u), c(u,v) - f(u,v) }
4 ČE (u,v) v E, POTEM
5
       f(u,v) += delta
6 DRUGAČE f(v,u) -= delta
7 	 e(u) -= delta
8 	 e(v) += delta
```

```
INICIALIZIRAJ PREDPRETOK(G,s)
    // V grafu G si izberemo vozlišče s
2 // in inicializiramo predtok.
3 ZA vsak v v V(G)
        h(v) = 0
5
        e(v) = 0
   ZA vsak (u,v) v E(G)
        f(u,v) = 0
8
    h(s) = |V|
    ZA vsak v, za katerega obstaja (s,v) v E(G)
10
        f(s,v) = c(s,v)
        e(v) = f(s,v)
11
```

POTISNI-POVIŠAJ(G,s)

- 1 INICIALIZIRAJ_PREDPRETOK(G,s)
- 2 DOKLER obstaja mogoča operacija POTISNI ali POVIŠAJ
- 3 izvedi mogočo operacijo

Pravilnost delovanja algoritma in časovna zahtevnost

Lema 1 Naj bo G=(V,E) pretočno omrežje, $f:V\times V\to \mathbb{N}_0$ predpretok v G in $h:V\to \mathbb{N}_0$ višinska funkcija. Potem za vsaki vozlišči $u,v\in V$ velja, da če je h(u)>h(v)+1, potem povezava (u,v) ni v residualnem omrežju.

Lema 2 Naj bo G = (V, E, s, t) pretočno omrežje, f predpretok, h višinska funkcija in $e \colon V \to \mathbb{N}_0$ funkcija, ki za vsako vozlišče pove, kolikšen je v njem presežek toka. Če ima vozlišče $u \in V$ presežek toka, torej e(u) > 0, potem lahko na tem vozlišču opravimo ali operacijo potisni ali operacijo povišaj.

Lema 3 Med izvajanjem programa POTISNI-POVIŠAJ velja za vsako vozlišče $u \in V$, da se h(u) nikoli ne zmanjša. Še več, vsakič, ko na u opravimo povišanje, se njegova višina poveča za vsaj ena.

Lema 4 *Med izvajanjem programa POTISNI-POVIŠAJ h vedno zadrži lastnosti višinske funkcije.*

Lema 5 Naj bo G = (V, E, s, t) pretočno omrežje, f predpretok v G in h višinska funkcija na V. Potem ne obstaja pot od s do t v residualnem omrežju G_f .

Izrek 1 Naj bo G = (V, E, s, t) pretočno omrežje. Če poženemo algoritem POTISNI-POVIŠAJ na pretočnem omrežju G in se ustavi, potem je predpretok f, ki ga algoritem vrne, enak maksimalnemu toku skozi pretočno omrežje G.

Lema 6 Naj bo G = (V, E, s, t) pretočno omrežje in f predpretok v G. Potem za vsako vozlišče $x \in V$, ki je v presežku, obstaja enostavna pot od x do s v residualnem omrežju G_f .

Lema 7 Naj bo G = (V, E, s, t) pretočno omrežje. Na koncu izvajanja algoritma POTISNI-POVISAJ na G, za vsak $u \in V$ velja $h(u) \leq 2|V| - 1$.

Posledica 1 Naj bo G=(V,E,s,t) pretočno omrežje. Potem je število operacij POVISAJ med izvajanjem algoritma POTISNI_POVISAJ manjše od $2|V|^2$.

Lema 8 Naj bo G = (V, E, s, t) pretočno omrežje. Potem je število operacij POTISNI, ki ne zasičijo povezave, med izvajanjem algoritma POTISNI_POVISAJ manjše od 2|V||E|.

Lema 9 Naj bo G = (V, E, s, t) pretočno omrežje. Potem je število operacij POTISNI, ki ne zasičijo povezave, med izvajanjem algoritma POTISNI_POVISAJ manjše od $4|V|^2(|V|+|E|)$.

Izrek 2 Algoritem POTISNI_POVISAJ med izvajanjem naredi $\mathcal{O}(V^2E)$ osnovnih operacij.

Eliminacija ekip v baseballu

Literatura

- R. J. Wilson, J. J. Watkins, *Uvod v teorijo grafov*, Knjižnica Sigma št. 63, DMFA-založništvo, 1997.
- T. H. Cormen, C. E. Leiserson, R. L. Rivest in C. Stein, *Introduction to Algorithms*, MIT Press, Massachusetts, 2009.
- Kevin Wayne, Baseball Elimination, dostopno na: https://www.cs.princeton.edu/~wayne/papers/baseball_talk.pdf, zadnji dostop: 10. maj 2017.
- UC Davis, End of Season Elimination: Details, dostopno na: https://www.youtube.com/watch?v=TiTHIPPatFw, zadnji dostop: 10. maj 2017.