Aula 10: Tabela Hash – Parte 2

DCC405-Estrutura de Dados II

Prof. Me. Acauan C. Ribeiro

Roteiro da Aula

- Contextualização
- Conceitos principais
- Função Hash
 - Escolha da Função
 - Métodos para mapeamento de compressão
- Evitando e tratando colisões
 - Hashing universal
 - Fator de Carga
 - Endereçamento aberto
 - Hashing duplo
 - Encadeamento
- Análise da Busca usando Hashing

DCC405-ED II | Tabela Hash 2/22

Aula Passada...

- Vimos a Tabela Hash Encadeamento Externo
 - Que utiliza uma estrutura de dados auxiliar (externa) para tratar as colisões.

DCC405-ED || | Tabela Hash 3/22

Tabela Hash – Função Hash

- Como escolher a melhor função? h():
 - rápida de computar,
 - distribui chaves de maneira uniforme pela tabela,
 - minimiza colisões.

Cautela ao lidar com chaves não-inteiras

• pensar em formas de mapear para um interalo discreto

DCC405-ED II | Tabela Hash 4/22

Função Hash — de chaves a índices

$$h: k \to \text{int},$$
 (1)

mapeamento de código, k é uma chave e int um número inteiro, caso a chave seja de tipo não-inteiro.

$$c: \mathsf{int} \to [0, m-1] \,, \tag{2}$$

mapeamento de compressão de um inteiro a um intervalo.

DCC405-ED II | Tabela Hash 5/22

Função Hash – Tipos de Função

- Método da Divisão
- Método da Multiplicação
- Hash Duplo (Double Hashing)

DCC405-ED II | Tabela Hash 6/22

Função Hash - Método da Divisão

• $h(k) = k \mod m$, com chave k e m o tamanho da tabela.

DCC405-ED II | Tabela Hash 7/22

Função Hash - Método da Divisão

- $h(k) = k \mod m$, com chave k e m o tamanho da tabela.
- Como escolher m?
- $\mathbf{m} = \mathbf{b}^{e}$ (inadequado base elevado a certo expoente)
 - todas as chaves com final igual serão mapeadas para o mesmo local.
 - Ex.: se potência de 2, gera os e bits menos significativos de k.

DCC405-ED II | Tabela Hash 8/22

Função Hash - Método da Divisão

- $h(k) = k \mod m$, com chave k e m o tamanho da tabela.
- Como escolher m?
- $\mathbf{m} = \mathbf{b}^{e}$ (inadequado base elevado a certo expoente)
 - todas as chaves com final igual serão mapeadas para o mesmo local.
 - Ex.: se potência de 2, gera os e bits menos significativos de k.
- m primo (mais adequado)
 - ajuda a distribuir uniformemente as chaves.
 - o produto de um primo com outro número tem maior chance de ser único, pois o primo é usado para compor esse número.

DCC405-ED II | Tabela Hash 9/22

Função Hash – Número Primo

- Sedgewick:
 - computar potência de 2 próxima do m desejado
 - definir m como o número primo imediatamente abaixo da potência

 Fazer exemplo para n = 200.. qual seria o melhor m?

	,	
k	2^k	m
7	128	127
8	256	251
9	512	509
10	1024	1021
11	2048	2039
12	4096	4093
13	8192	8191
14	16384	16381
15	32768	32749
16	65536	65521
17	131072	131071
18	262144	262139

DCC405-ED II | Tabela Hash 10/22

Função Hash – Método da Multiplicação

- $h(k) = \lfloor m([k \cdot A] \mod 1) \rfloor$
- k é a chave, m o tamanho da tabela e A \in [0, 1]
 - 1. mapear $[0, k_{max}] \rightarrow A \times [0, k_{max}]$
 - 2. tomar a parte fracionária (mod 1).
 - 3. mapear para [0, m 1].

Função Hash – Método da Multiplicação

- $h(k) = \lfloor m([k \cdot A] \mod 1) \rfloor$
- k é a chave, m o tamanho da tabela e A \in [0, 1]
 - 1. mapear $[0, k_{max}] \rightarrow A \times [0, k_{max}]$
 - 2. tomar a parte fracionária (mod 1).
 - 3. mapear para [0, m 1].

Fazer exemplo

$$-m = 16$$
 , $k = 13$ e $A = 0.5$

1)
$$[k*A] \rightarrow 13 * 0.5 = 6.5$$

2)
$$6.5 \mod 1 = 0.5$$

$$-3)[16*0,5] = 8$$

Função Hash – Método da Multiplicação

- $h(k) = \lfloor m(\lfloor k \cdot A \rfloor \mod 1) \rfloor$
- k é a chave, m o tamanho da tabela e $A \in [0, 1]$
 - 1. mapear $[0, k_{max}] \rightarrow A \times [0, k_{max}]$
 - 2. tomar a parte fracionária (mod 1).
 - 3. mapear para [0, m 1].

Fazer exemplo

- m = 16 , k = 13 e A = 0,5 1) $[k*A] \rightarrow 13*0,5 = 6,5$ 2) 6,5 mod 1 = 0,5 - 3) |16*0.5| = 8

- Escolha de m deixa de ser crítica
- Escolha ótima de A depende dos dados.
- Knuth: o conjugado da razão áurea (Fibonacci hashing):

$$A = \frac{\sqrt{5} - 1}{2} = 0,6180339887 \cdots \tag{3}$$

DCC405-ED II | Tabela Hash 13/22

Quando as chaves não forem inteiras?

- Integer cast: para tipos numéricos de 32 bits ou menos, reinterpretar os bits como um inteiro.
- Soma de componentes: para numeros de mais de 32 bits (long ou double), soma ponderada dos componentes de 32 bits.
 - a ponderação deve minimizar o overflow
 - porque pode ser ruim para string (código ASCII)?

DCC405-ED II | Tabela Hash 14/22

Quando as chaves não forem inteiras?

- Integer cast: para tipos numéricos de 32 bits ou menos, reinterpretar os bits como um inteiro.
- Soma de componentes: para numeros de mais de 32 bits (long ou double), soma ponderada dos componentes de 32 bits.
 - a ponderação deve minimizar o overflow
 - porque pode ser ruim para string (código ASCII)?

Exemplo: abc

abc =

DCC405-ED II | Tabela Hash 15/22

Quando as chaves não forem inteiras?

- Acumulação polinomial: combinar caracteres (ASCII or Unicode) como coeficientes de um polinômio.
 - computar o polinômio com a regra de Horner, para um valor fixo x:

$$a_0 + x (a_1 + x (a_2 + \cdots + x (a_{n-2} + x a_{n-1}) \cdots))$$
 (4)

 Cormen et al: a escolha de x = 33,37,39 ou 41 gera no máximo 6 colisões em um vocabulário de 50.000 palavras em inglês — obtido empiricamente).

DCC405-ED II | Tabela Hash 16/22

Mapeamento de Hash: Strings (1/3)

 Considenado caracteres ASCII (entre 0 e 255), uma string é uma representação em base 256 de um número.

```
Código (1)
  int hash(char *v, int M) {
    int i, h = v[0];
    for (i = 1; v[i] != '\0'; i++)
        h = h * 256 + v[i];
    return h % M;
}
```

DCC405-ED II | Tabela Hash 17/22

Mapeamento de Hash: Strings (2/3)

- Base não precisa ser relacionada à tabela ASCII (256)
- Ex: usar número primo (251) e tirar o resto da divisão para evitar overflow:

```
Código (2)
  int hash(char *v, int M) {
    int i, h = v[0];
    for (i = 1; v[i] != '\0'; i++)
        h = (h * 251 + v[i]) % M;
    return h;
}
```

DCC405-ED II | Tabela Hash 18/22

Mapeamento de Hash: Strings (3/3)

- Em Java, o hash code de uma String é:
- 31 foi escolhido por ser primo e porque 31 * i == (i << 5) i.

```
Código (3)

int hash(char *v, int M) {
   int i, h = v[0];
   for (i = 1; v[i] != '\0'; i++)
        h += (v[i]*31^(M-i));
   return h;
}
```

DCC405-ED II | Tabela Hash 19/22

Hashing duplo (double hashing / rehashing)

- Usar duas funções hash: $h_1()$ e $h_2()$.
 - $h_1(k)$ será a primeira posição da tabela a ser verificada.
 - $h_2(k)$ determina o <u>deslocamento</u> usado quando procurado por k.
 - para o caso em que $h_2(k) = 1$, temos o método de sondagem linear (overflow progressivo).
- Se m é primo, todas as posições da tabela serão eventualmente examinadas
- Hashing duplo possui vantagens e desvantagens em comum com a sondagem linear. No entanto, ameniza o agrupamento em aplicações onde isso ocorre com mais frequência por outros métodos.

DCC405-ED II | Tabela Hash 20/22

Hashing duplo (inserção)

```
int doublehashing_insert (T, k) {
   if (isFull(T)) {
      return -1;
   }
   sonda = h1(k);
   desloc= h2(k);
   while (T[sonda] != NULL) {
      sonda = (sonda+desloc) % m;
   }
   T[sonda] = k;
```

DCC405-ED II | Tabela Hash 21/22

Hashing duplo - Exemplo

- $h_1(k) = k \mod 13$.
- $h_2(k) = 1 + (k \mod 7)$.
- Inserir as chaves: 18, 41, 22, 44, 59, 32, 31, 73.
- A função $h_2()$ acima é, em geral, definida como $h_2(k) = 1 + (k \mod m')$, onde m' é geralmente escolhido como um valor ligeiramente menor do que m.
- Cada par $(h_1(k), h_2(k))$ gera uma sequência de sondagem distinta. Como resultado, o hash duplo pode ter desempenho muito mais próximo do constante.

DCC405-ED II | Tabela Hash 22/22