Paper Presentation

Deep Compositional Question Answering with Neural Module Networks

Reporter: Xuan Chen

Student #82286956

List

- Problems being solved
- Why is it valuable?
- Contributions
- Model architecture
- Experiments
- Conclusions.

Problems being solved

- VQA (visual question answering) model: monolithic network & Neural modular network
- Neural Module Networks (NMNs), is a framework for modular, composable, jointly-trained neural networks. A network model is tailored to each question in the VQA dataset.
- Enhanced interpretability of the network

Why is it valuable?

- There is no single "best network" for all computer vision tasks.
- Thinking of question answering as a highly-multitask learning setting, where each problem instance is associated with a novel task, and the identity of that task is expressed only noisily in language.
- Problem-dependent and dynamic.
- Intuitive, interpretable model, and transparent process.

Main contributions

- It first describes an approach to visual question answering based on neural module networks (NMNs). It answers natural language questions about images using collections of jointly-trained neural "modules", dynamically composed into deep networks based on linguistic structure.
- The NMN performs well on answering object or attribute questions.
- Introduction of SHAPE dataset.

Model architecture

Part 1: Modules

- Three basic data types: images, unnormalized attentions, and labels.
- Form: TYPE [INSTANCE] (ARG1,...)

TYPE: a high-level module type (attention, classification, etc.) of the kind described in this section.

INSTANCE: the particular instance of the model under consideration.

- attend[red]: locates red things
- attend[dog]: locates dogs.

Part 1: Modules

Attention Re-attention

Part 2: From strings to networks

- **Parsing:** Using Stanford Parser, extract grammatical relations between parts of a sentence, and generate abstraction; performs basic lemmatization.
- Layout: Based on specific tasks, converts symbolic representations into modular network structure.

Leaves: attend modules.

Internal nodes: re-attend modules/combine modules.

Root nodes: measure modules for yes/no questions and classify modules for all other questions.

• Generalizations: provide sentences, or even direct query statements like sql.

Sample NMNs for question answering

(a) NMN for answering the question What color is his tie?

(b) NMN for answering the question *Is there a red shape above a circle?*

Experiments

• Results on different datasets: SHAPE dataset(up), VQA dataset(down).

	size 4	size 5	size 6	All
Majority	64.4	62.5	61.7	63.0
VIS+LSTM	71.9	62.5	61.7	65.3
NMN	89.7	92.4	85.2	90.6
NMN (easy)	97.7	91.1	89.7	90.8

	test-dev				test
	Yes/No	Number	Other	All	All
LSTM [2]	78.20	35.7	26.6	48.8	-
VIS+LSTM [2]	78.9	35.2	36.4	53.7	54.1
NMN	69.38	30.7	22.7	42.7	_
NMN+LSTM	77.7	37.2	39.3	54.8	55.1

Correct cases:

Wrong cases:

Conclusion

- Previous work: focus on attention, but the process of question answering can not be explained properly.
- This paper: introduces Neural Module Networks, which is made up with several modular networks. It is customized by every question in VQA dataset (dynamically).
- Generate a more standard neural network → construct models → complex reasoning tasks