БОБРУЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНО-ЭКОНОМИЧЕСКИЙ КОЛЛЕДЖ

Рассмотрено на заседании цикловой комиссии общепрофессиональных и специальных дисциплин

Протокол №	OT	Председатель
Протокол №	ОТ	Председатель
Протокол №	ОТ	Председатель
Протокол №	ОТ	Председатель
Протокол №	OT	Председатель

Дисциплина

«Теория вероятностей и математическая статистика»

Задания для проведения практической работы №10

НАИМЕНОВАНИЕ РАБОТЫ: Вычисление числовых характеристик двумерных случайных величин. **ЦЕЛЬ РАБОТЫ:** сформировать умения и навыки по вычислению числовых характеристик двумерной случайной величины.

МЕСТО ВЫПОЛНЕНИЯ РАБОТЫ: Аудитория.

ДИДАКТИЧЕСКОЕ И МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ: Счетная техника.

ТЕХНИКА БЕЗОПАСНОСТИ И ПОЖАРНАЯ БЕЗОПАСНОСТЬ НА РАБОЧЕМ МЕСТЕ: Общая.

ПОСЛЕДОВАТЕЛЬНОСТЬ ВЫПОЛНЕНИЯ РАБОТЫ:

1. Внеурочная подготовка

Подготовиться к практическому занятию, повторив следующие теоретические вопросы:

- 1.1. Понятие о системе нескольких случайных величин.
- 1.2. Закон распределения вероятностей дискретной двумерной случайной величины.
- 1.3. Функция распределения двумерной случайной величины.
- 1.4. Плотность непрерывной двумерной случайной величины.

2. Работа в аудитории

2.1. Решение типового задания

Задание. Передается сообщение кораблем "SOS". Этот сигнал может быть принят одной радиостанцией независимо от другой. Вероятность того, что сигнал принят первой радиостанцией, составляет 0,75; вероятность того, что сигнал принят второй радиостанцией, равна 0,65. Найти закон распределения двумерной случайной величины, характеризующей прием сигнала двумя радиостанциями.

Решение:

Пусть случайные величины X и Y — количество сигналов, принятых первой и второй радиостанцией соответственно. Они принимают одно из состояний — «сигнал принят» (1) или «сигнал не принят» (0). $P(1;1) = 0.65 \cdot 0.75 = 0.4875$;

$$P(1;0) = 0.65 \cdot (1 - 0.75) = 0.65 \cdot 0.25 = 0.1625;$$

$$P(0;1) = (1 - 0.65) \cdot 0.75 = 0.2625;$$

$$P(0;0) = (1-0.65)(1-0.75) = 0.35 \cdot 0.25 = 0.0875.$$

X	1	0
1	0,4875	0,1625
0	0,2625	(0,0875

<u>Проверка</u>: 0,4875 + 0,1625 + 0,2625 + 0,0875 = 1.

2.2. Выполните задания

Уровень І

Задание №1. Установить является ли данное распределение законом распределения вероятностей двумерной случайной величины:

Вариант	N	'n	1
рариант	J	צו	1

y X	0	1	4	10
1	0,05	0,03	0,02	0,08
2	0,06	0,04	0,01	0,1
3	0,1	0,11	0,07	0,07
4	0,04	0,09	0,05	0,09

Вариант №3

У	0,5	1	1,5	3
1	0,08	0,11	0,1	0,01
2	0,02	0,13	0,02	0,06
3	0,01	0,08	0,09	0,06
4	0,06	0,05	0,09	0,03

Вариант №5

y	0	1	4	10
1	0,04	0,01	0,04	0,03
2	0,06	0,04	0,01	0,1
3	0,13	0,12	0,05	0,07
4	0,1	0,09	0,04	0,08

Вариант №7

y	0,5	1	1,5	3
1	0,12	0,11	0,09	0,01
2	0,02	0,11	0,02	0,06
3	0,02	0,06	0,09	0,06
6	0,06	0,05	0,09	0,03

Вариант №9

	- ·· F · · · - ·				
y X	0	1	4	10	
1	0,01	0,03	0,02	0,08	
2	0,08	0,03	0,01	0,1	
3	0,1	0,15	0,07	0,07	
4	0,04	0,09	0,05	0,05	

Вариант №11

yX	0,5	1	1,5	3
1	0,03	0,01	0,04	0,03
2	0,06	0,04	0,02	0,1
3	0,11	0,13	0,05	0,07
4	0,1	0,09	0,04	0,08

Вариант №13

yX	0	1	4	10
1	0,05	0,08	0,02	0,08
2	0,03	0,04	0,04	0,1
3	0,1	0,11	0,07	0,04
4	0,04	0,06	0,05	0,09

Вариант №2

y X	1	2	3	5
1	0,02	0,07	0,02	0,07
2	0,02	0,13	0,02	0,06
3	0,06	0,01	0,12	0,1
4	0,06	0,11	0,07	0,06

Вариант №4

y X	2	4	5	8
1	0,06	0,08	0,09	0,01
2	0,02	0,01	0,01	0,1
3	0,02	0,06	0,03	0,07
5	0,06	0,09	0,04	0,04

Вариант №6

y X	1	2	3	5
1	0,04	0,07	0,06	0,05
2	0,02	0,13	0,02	0,06
3	0,08	0,01	0,09	0,09
4	0,06	0,11	0,05	0,06

Вариант №8

y X	2	4	5	8
1	0,15	0,06	0,09	0,1
2	0,02	0,01	0,03	0,1
3	0,07	0,06	0,03	0,07
5	0,06	0,09	0,04	0,04

Вариант №10

y	1	2	3	5
1	0,04	0,07	0,03	0,07
2	0,02	0,14	0,02	0,04
3	0,11	0,01	0,11	0,1
4	0,06	0,11	0,03	0,04

Вариант №12

y X	2	4	5	8
1	0,06	0,08	0,09	0,05
2	0,04	0,08	0,03	0,1
3	0,02	0,06	0,05	0,07
4	0,07	0,09	0,05	0,04

Вариант №14

y	1	2	3	5
1	0,14	0,11	0,09	0,01
2	0,02	0,15	0,02	0,04
3	0,02	0,06	0,1	0,06
4	0,04	0,03	0,09	0,03

Вариант №15

y	0,5	1	1,5	3
1	0,07	0,12	0,1	0,01
2	0,03	0,13	0,02	0,06
3	0,04	0,08	0,07	0,06
4	0,06	0,05	0,09	0,03

Задание №2. Задано распределение вероятностей дискретной двумерной случайной величины. Найти законы распределения составляющих X u Y.

n	78.0	4
вариан	T .N	<u>0</u>

y X	0	1	2	3
10	0,05	0,08	0,16	0,06
11	0,06	0,08	0,09	0,01
12	0,02	0,01	0	0,1
13	0,07	0,13	0,02	0,06

Вариант №3

y X	2	6	7	9
0	0,02	0,13	0,02	0,06
1	0,06	0,11	0,02	0,1
2	0,06	0,11	0,07	0,06
3	0,02	0,07	0,02	0,07

Вариант №5

У	1	2	5	8
3	0,02	0,08	0,17	0,06
4	0,03	0,07	0,09	0,09
5	0,02	0,01	0	0,1
6	0,07	0,11	0,02	0,06

Вариант №7

y	2	6	7	9
0	0,08	0,11	0,05	0,06
1	0,06	0,12	0,02	0,05
2	0,03	0,11	0,07	0,06
3	0,02	0,07	0,02	0,07

Вариант №9

y X	0	1	2	3
10	0,01	0,09	0,14	0,09
11	0,03	0	0,09	0,09
12	0,04	0,04	0,11	0,08
13	0,07	0,04	0,02	0,06

Вариант №11

y X	2	6	7	9
0	0,04	0,18	0,02	0,06
1	0,06	0,14	0,02	0,06
2	0,04	0,11	0,05	0,06
3	0,02	0,05	0,02	0,07
3	0,02	0,05	0,02	0,07

Вариант №2

X y	-2	0	3	4
0,1	0,01	0,08	0,09	0,06
0,2	0,06	0,05	0,09	0,03
0,3	0,08	0,11	0,1	0,01
0,4	0,02	0,13	0,02	0,06

Вариант №4

y	-2	-1	0	1
-2	0,05	0,03	0,02	0,08
-1	0,06	0,04	0	0,1
0	0,1	0,11	0,07	0,07
1	0,04	0,09	0,05	0,09

Вариант №6

X y	-1	0	1	2
0,5	0,01	0,08	0,06	0,07
0,6	0,07	0,07	0,09	0,03
0,7	0,1	0,11	0	0,01
0,8	0,02	0,13	0,02	0,13

Вариант №8

yX	-2	-1	0	1
-2	0,1	0,03	0,02	0,05
-1	0,02	0,04	0,15	0,1
0	0,1	0,06	0,07	0,07
1	0,02	0,03	0,05	0,09

Вариант №10

y X	-2	0	3	4
0,1	0,07	0,08	0,04	0,01
0,2	0,06	0,05	0,09	0,03
0,3	0,04	0,17	0,1	0,05
0,4	0,06	0,13	0,01	0,01

Вариант №12

y X	-2	-1	0	1
-2	0,03	0,03	0,04	0,08
-1	0,07	0,04	0	0,1
0	0,08	0,15	0,09	0,07
1	0,04	0,09	0,03	0,06

Вариант №13

y X	0	1	2	3
1	0,07	0,08	0,16	0,04
2	0,05	0,04	0,09	0,01
3	0,02	0,01	0,08	0,1
6	0,04	0,13	0,02	0,06

Вариант №14

y X	-2	0	3	4
0,1	0,03	0,08	0,05	0,06
0,2	0,06	0,06	0,09	0,07
0,3	0,09	0,12	0,04	0,01
0,4	0,02	0,11	0,05	0,06

Вариант №15

y X	2	6	7	9
0	0,02	0,17	0,02	0,02
1	0,06	0,01	0,05	0,1
2	0,08	0,11	0,07	0,06
3	0,04	0,07	0,03	0,09

Уровень I I

Задание №3. Передается сообщение кораблем "SOS". Этот сигнал может быть принят одной радиостанцией независимо от другой. Вероятность того, что сигнал принят первой радиостанцией, составляет p_1 ; вероятность того, что сигнал принят второй радиостанцией, равна p_2 . Найти закон распределения двумерной случайной величины, характеризующей прием сигнала двумя радиостанциями.

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
p_1	0,85	0,72	0,94	0,75	0,81	0,75	0,95	0,75	0,92	0,78	0,88	0,79	0,91	0,74	0,82
p_2	0,97	0,85	0,65	0,65	0,75	0,95	0,65	0,82	0,64	0,64	0,96	0,75	0,85	0,95	0,93

Задание №4. Найти вероятность попадания случайной точки (X, Y) в прямоугольник, ограниченный прямыми $x = x_1$, $x = x_2$, $y = y_1$, $y = y_2$, если известна функция распределения

прямыми
$$x=x_1$$
 , $x=x_2$, $y=y_1$, $y=y_2$, если известна функция распределения
$$F(x,y)=\begin{cases} 1-2^{-x}-2^{-y}+2^{-x-y} & npu\ x\geq 0\ u\ y\geq 0,\\ 0 & npu\ x<0\ u\ y<0. \end{cases}$$

№	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
x_I	1	2	2	3	1	2	1	3	4	1	2	4	2	3	1
x_2	2	4	4	5	3	5	2	4	5	5	3	6	4	4	3
y_1	3	2	1	1	3	1	2	1	2	2	1	2	1	1	2
<i>y</i> ₂	5	3	3	4	5	4	4	4	3	3	3	3	2	3	4

<u>Уровень III (при выполнении задания значение N соответствует номеру варианта)</u>

Задание №5. Задана функция распределения двумерной случайной величины. Найти двумерную плотность вероятности системы.

Четные варианты	$F(x,y) = \begin{cases} 1 - N^{-x} - N^{-y} + N^{-x-y}, \\ 0, \end{cases}$	$npu x \ge 0 \ u y \ge 0,$ $npu x < 0 \ u y < 0.$
Нечетные варианты	$F(x,y) = \begin{cases} (1 - e^{-Nx})(1 - e^{-Nx}), \\ 0, \end{cases}$	$npu x \ge 0 \ u \ y \ge 0,$ $npu x < 0 \ u \ y < 0.$

Методические указания:

Плотностью совместного распределения вероятностей (двумерной плотностью вероятности) непрерывной двумерной случайной величины называют вторую смешанную производную от функции распределения:

$$p(x,y) = \frac{\partial^2 F}{\partial x \partial y}.$$

<u>Уровень IV</u> (при выполнении задания значение N соответствует номеру варианта)

Задание №6. Задана двумерная плотность вероятности системы случайных величин (X, Y). Найти функцию распределения системы.

$$p(x,y) = \frac{N}{\pi^2(N^2 + x^2)((N-10)^2 + y^2)}.$$

Методические указания:

Функцию распределения необходимо рассчитать по формуле:

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} p(x,y) dx dy.$$

Контрольные вопросы:

- 1. Что такое двумерная случайная величина?
- 2. В каком виде можно записать закон распределения дискретной двумерной случайной величины?
- 3. Как определяется плотность распределении двумерной случайной величины?
- 4. Как можно вычесть вероятность попадания значений двумерной случайной величины в заданный прямоугольник?

Литература

Гмурман, В. Е. Теория вероятностей и математическая статистика: Учеб. пособие для вузов/В. Е. Гмурман. — 9-е изд., стер. — М.: Высш. шк., 2003. — с.155 – 161.

Преподаватель В.П. Кошелева