Linear Algebra: solution

• 4.3 Via Gauss elimination or otherwise,

$$\det \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 3 & 1 \\ 1 & 4 & 1 & 1 \end{bmatrix} = -6.$$

Since the column vectors in the second matrix sum to 0, it has linearly dependent columns so the determinant is 0.

• $\underline{4.9}$ If all entries in a matrix are integers, its determinant, as a sum of integers, must be an integer. So both A and A^{-1} are integers. In addition,

$$\det A^{-1} = \frac{\det AA^{-1}}{\det A} = \frac{1}{\det A},$$

so det A must be 1 or -1 to guarantee that $\frac{1}{\det A}$ is an integer. In addition, here det $A = \det A^{-1}$.

- $\underline{4.14}$ One can establish a one-to-one correspondence between the set of even permutations, say E, and the set of odd permutations, say O, of $(1, \ldots, 9)$ by mapping an element e in E to the element o in O. Here o has the same ordering as e except that the last two numbers in e are swapped. Thus the total number of permutations is even and half of them are odd permutations.
- <u>4.15</u>

$$\det(P_1 + P_2) = \det P_1(P_1^T + P_2^T)P_2$$

$$= \det P_1 \det(P_1^T + P_2^T) \det P_2$$

$$= -\det(P_1^T + P_2^T) = -\det(P_1^T + P_2^T)^T$$

$$= -\det(P_1 + P_2),$$

So $\det(P_1 + P_2) = 0$.

• $\underline{4.16}$ If A is 1×1 , $\det A = 2$. If A is 2×2 , $\det A = -1$. Otherwise, $\det A = 0$, since the rows are linearly dependent: the difference between adjacent rows is a constant vector.

1