Hellsten – Linja-aho – Mauno – Mäkinen – Piiroinen – Sottinen . . .

Avoin matikka 1

Kirja on työn alla!

MAA1 – Funktiot ja yhtälöt

Sisältö

1 Esipuhe 3

I Lukualueet

4	
2	Luonnolliset luvut 5
3	Joukko-oppia 6
4	Logiikkaa 7
5	Kokonaisluvut 8
6	Kokonaislukujen aritmetiikkaa 9
7	Jaollisuus & tekijät 10
8	Rationaaliluvut ja laskusäännöt 11
9	Potenssisäännöt & murtolausekkeiden
	sieventämistä 12
10	Juuret 13
11	Murtopotenssi 14
12	Irrationaaliluvut 15
13	Reaaliluvut 16
14	Kompleksiluvut 17
15	Kertaustiivistelmä 18
II	Funktiot ja yhtälöt
" 19	Tanktiot ja yhtäiöt
16	Funktio 20
17	Erilaisia funktioita 21
18	Yhtälöiden teoriaa 22
19	Yleinen potenssi ja potenssiyhtälö 23
20	Kertaustiivistelmä 24
20	NCI (dustilvistellila 27

SISÄLTÖ 3

111	Lukualueet
25	
21	Luonnolliset luvut 26
22	Joukko-oppia <i>27</i>
23	Logiikkaa 28
24	Kokonaisluvut 29
25	Kokonaislukujen aritmetiikkaa 30
26	Jaollisuus & tekijät 31
27	Rationaaliluvut ja laskusäännöt 32
28	Potenssisäännöt & murtolausekkeiden
	sieventämistä 33
29	Juuret 34
30	Murtopotenssi 35
31	Irrationaaliluvut 36
32	Reaaliluvut <i>37</i>
33	Kompleksiluvut 38
34	Kertaustiivistelmä 39
IV	Sovelluksia
40	
35	Verrannollisuus 41
36	Verrannollisuus: sovelluksia 42
37	Prosenttilaskentaa - perustilanteet 43
38	Prosenttiyhtälöitä ja sovelluksia 44
39	Kertaustiivistelmä 45
W	Kortaus ja harjoituskokoita
<i>v</i> 46	Kertaus ja harjoituskokeita
	Verrannollisuus 47
TU	valiallivilisuus 7/

Luku 1 Esipuhe

Lorem ipsum...

Teoreema 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singularities $\alpha_1, \alpha_2, \ldots, \alpha_m$. If γ is a closed rectifiable curve in G which does not pass through any of the points α_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) Res(f; a_k).$$

Another nice theorem from complex analysis is

Teoreema 2 (Maximum Modulus). Let G be a bounded open set in \mathbb{C} and suppose that f is a continuous function on G^- which is analytic in G. Then

$$\max\{|f(z)|:z\in G^-\}=\max\{|f(z)|:z\in\partial G\}.$$

Osa I Lukualueet

Luku 2 Luonnolliset luvut

Luku 3 Joukko-oppia

Luku 4 Logiikkaa

Luku 5 Kokonaisluvut

Luku 6 Kokonaislukujen aritmetiikkaa

Luku 7 Jaollisuus & tekijät

Luku 8 Rationaaliluvut ja laskusäännöt

Luku 9 Potenssisäännöt & murtolausekkeiden sieventämistä

Luku 10 Juuret

Luku 11 Murtopotenssi

Luku 12 Irrationaaliluvut

Luku 13 Reaaliluvut

Luku 14 Kompleksiluvut

Luku 15 Kertaustiivistelmä

Osa II Funktiot ja yhtälöt

Luku 16 Funktio

Luku 17 Erilaisia funktioita

Luku 18 Yhtälöiden teoriaa

Luku 19 Yleinen potenssi ja potenssiyhtälö

Luku 20 Kertaustiivistelmä

Osa III Lukualueet

Luku 21 Luonnolliset luvut

Luku 22 Joukko-oppia

Luku 23 Logiikkaa

Luku 24 Kokonaisluvut

Luku 25 Kokonaislukujen aritmetiikkaa

Luku 26 Jaollisuus & tekijät

Luku 27 Rationaaliluvut ja laskusäännöt

Luku 28 Potenssisäännöt & murtolausekkeiden sieventämistä

Luku 29 Juuret

Luku 30 Murtopotenssi

Luku 31 Irrationaaliluvut

Luku 32 Reaaliluvut

Luku 33 Kompleksiluvut

Luku 34 Kertaustiivistelmä

Osa IV Sovelluksia

Luku 35 Verrannollisuus

Luku 36 Verrannollisuus: sovelluksia

Luku 37 Prosenttilaskentaa - perustilanteet

Luku 38 Prosenttiyhtälöitä ja sovelluksia

Luku 39 Kertaustiivistelmä

Osa V Kertaus ja harjoituskokeita

Luku 40 Verrannollisuus

Kertausosio (teoria ja esimerkit) Kertaustehtäväsarjoja Harjoituskokeita "Näihin pystyt jo" -yo-tehtäviä (myös lyhyestä) "Näihin pystyt jo" -pääsykoetehtäviä (moooonilta eri aloilta! kauppatieteellinen, tradenomi (jos löytyy), kansantaloustiede, arkkitehtuuri, DI-haku, AMK tekniikan alat, fysiikka, tilastotiede, ...) Vastauksia ja ratkaisuja Suomi-ruotsienglanti-sanasto ja hakemisto symbolitaulukko