- 3. Первый способ можем выполнить замену всех вхождений символа B в каждом правиле, заменив его 2^k новыми правилами при условии что B входило k раз в исходное правило. После этого правило $B \to D$ можно исключить, если в грамматике есть правила $D \to D$, исключить их. Если в списке правил есть одинаковые правила, исключить их. Также важно отметить, что нетерминал B не должен быть начальным нетерминалом. Если он таковым является, то в правиле $B \to D$ можно выполнить замену края. Второй способ замена края. В правиле B -> D будем заменять D на правые части правил, у которых в левой части находится D, а само правило B -> D удалим.
- 4. Наличие ε -правил и цепных правил может привести к ухудшению времени работы алгоритма (в худшем случае экспоненциально) и привести к циклам. Так например для следующей грамматики с цепными правилами:
- $1. A \rightarrow B$
- $2. B \rightarrow A$
- $3. B \rightarrow b$

После выполнения алгоритма придём к грамматике следующего вида:

- $1. A \rightarrow B$
- $2. B \rightarrow B$
- 3. $B \rightarrow b$

$$1. A \rightarrow B$$

- $2. B \rightarrow bB'$
- $3. B' \rightarrow B'$
- 4. $B' \rightarrow \varepsilon$

В итоге после преобразований получили саморекурсивное правило 3. При наличии ε -правил также рискуем получить правило, подобное $B \to B$, которое приведёт к зацикливанию или несоответствию грамматики условию, например:

- 1. $A \rightarrow \varepsilon$
- $2. B \rightarrow AB$
- 3. $B \rightarrow b$

1.
$$A \to \varepsilon$$

- $2. B \rightarrow B$
- 3. $B \rightarrow b$

1.
$$A \to \varepsilon$$

- $2.\:B\to bB'$
- $3. B' \rightarrow B'$
- 4. $B' \rightarrow \varepsilon$

Для грамматики G_1 можно применить алгоритм, так как подобных случаев возникнуть не может, однако для гарантированной работы алгоритма необходимо избавляться от ε - и цепных правил.

- 5. Грамматика неэквивалентна, так как начального нетерминал Т нет. Исправил.
- 6. Были допущены ошибки при выполнении 1 пункта, также была выполнена замена на неодиночный нетерминал, там где требовался одиночный. Исправил.

- 7. Правила грамматики в НФГ содержат только правила вида $A \to t \alpha$, где t терминал, а α цепочка нетерминалов, возможно пустая. Нет. Исправил.
- 8. Для правила вида $A \to B\alpha$, где B нетерминал, α цепочка терминалов и нетерминалов, возможно пустая, выполним замену и левую факторизацию. Если хоть одно из получившихся правил содержит правую часть $B\alpha$ алгоритм зациклился. Иначе продолжаем выполнять замену и левую факторизацию для правил и отслеживаем появление $B\alpha$ в правой части новых правил.
 - 9. Исправил.
- 10. Символ D в правилах 1, 2 занимает крайнюю правую позицию. В правиле 3 нет. Символ b в правилах 3, 4, 5 занимает крайнюю правую позицию. В правиле 5 нет. Исправил.