Bezpieczeństwo komputerowe

Lista 1

Mateusz Kochanek

30 X 2020

1 Zadanie 1

Opisane poniżej statystyki zostały stworzone na podstawie danych zebranych przez program Wireshark. Dane były zbierane w trybie monitor karty sieciowej, a także bezpośrednio z hostowanej na laptopie sieci bezprzewodowej. Warto zaznaczyć, że przez okoliczności epidemiologiczne wykonanie tego zadania w sposób jaki został opisany na liści było bardzo trudne, dlatego jest to raczej symulacja takich danych. W zadaniu 1.1 pokazuje rekordy z pliku dane1.pcapng, a w zadaniach 1.2-1.5 z pliku data_final.pcapng. W pliku notes.txt są pełne zestawienia zadań 1.3 i 1.4.

1.1 SSID

poszukiwania	SSID
317	*Wildcard*
71	my_som_koksy
35	$\operatorname{GILL}_{-}\operatorname{U}_{-}\operatorname{GAWRONA}$
18	$wlan_autobusy$
17	Delrico
12	UPC243146243
4	Adiuto5
1	AERO 2
8	antek-EXT
4	ASUS
1	Darmowe_Orange_WiFi
6	Galaxy J574E1
1	GOOOO
6	HUAWEI Mate 20 lite
6	KabelBox-2F24
9	moto g(6) play 8968
3	NETIASPOT-5GHz-B12065
3	NETIASPOT-6D1F20
1	Nokia 5
2	$Orange_Swiatlowod_3C90$
4	UPC1721703
6	UPC2484209
1	UPCC2D2C42
3	${ m WiFi_Endoscope}$
8	WLAN-417845

Warto zaznaczyć, że dane do tej sekcji zostały zebrane w trybie monitor. Wireshark zbierał dane z których potem wyfiltrowano probe requesty wraz z wyszukiwanymi

SSID sieci przy użyciu komendy "tshark -r dane1.pcapng -Y 'wlan.fc.type_subtype eq 4' -T fields -e wlan.ssid — sort — uniq -c". Widzimy w zestawieniu sieci i urządzenia jakie znajdują się w okolicy mieszkania, w którym wykonano badanie. Jest też puste pole, oznaczone jako *Wildcard*, które pozwala na dopasowanie do dowolnej nazwy sieci.

1.2 Urządzenia połączone

Tutaj z uwagi na okoliczności zbadano tylko jedną sieć, do której trzeba było zasymulować połączenia. Dane z wiresharka odfiltrowano skryptem "countSources.py — uniq — sort -c". Jest to lista unikalnych adresów MAC jakie były podłączone do sieci. Widać, że z sieci korzystało 5 urządzeń.

ilość DNS-ów	urządzenie
791	"08:d4:6a:ec:60:cb"
18386	"3c:22:fb:c9:b3:5c"
45968	"82:00:0b:3b:17:53"
8367	"a0:88:69:de:04:c7"
2271	"c0:f4:e6:e8:09:7f"

1.3 Strony odwiedzone

Na podstawie zapytań DNS ustalono odwiedzane w trakcie badania strony. Do filtrowania użyto polecenia "tshark -r data_final.pcapng -T fields -Y dns -e dns.qry.name". Poniżej przedstawione są tylko niektóre strony, ponieważ pełne zestawienie jest bardzo długie i znajduje się w pliku notes.txt.

ilość DNS-ów	strona
10	api.github.com
15	github.com
9	runmageddon.pl
3	facebook.com
14	dnd.wizards.com
2	www.wireshark.org
10	www.youtube.com

1.4 Użyte protokoły

Rodzaje protokołów jakie uzyskano z danych za pomocą "tshark -r data_final.pcapng -T fields -e frame.protocols". Pełne zestawienie jest długie, można je znaleźć w pliku notes.txt:

1.5 Lokalizacje

Dzięki zaimportowaniu bazy danych GeoLITE2 do wiresharka udało się znaleźć znaczną ilość krajów do jakich kierowane były zapytania.

ilość zapytań	kraj
146	"United States"
29	"Poland"
11	"Ireland"
6	"France"
5	"Denmark"
5	"Germany"
4	"United Kingdom"
2	"China"
2	"Netherlands"
1	"Canada"
1	"Country"

A także stworzyć mapę lokalizacji:

Rysunek 1: Mapa całego świata

Rysunek 2: Mapa pokazująca Amerykę Północną i Europę

2 Zadanie 2

Napisano prosty program używający pysharka i selenium. Pyshark jest użyty aby przychwycić protokół http z ciasteczkiem, a sterownik selenium dodaje je do naszej przeglądarki. Dzięki temu mamy na czas trwania sesji te same przywileje co osoba która się zalogowała. Testy były przeprowadzane hostując wifi na laptopie i logując się na stronę http://testphp.vulnweb.com/login.php przez komórkę podłączoną do hostowanej sieci.

2.1 Uruchamianie

Aby uruchomić zadanie należy wpisać polecenie "python3 get_session.py", program zacznie wtedy monitorować połączenia, jeżeli złapie połączenie http to wyciągnie z niego cookie i doda do wybranej przeglądarki. Program był stworzony z myślą o przeglądarce firefox wiec potrzebuje webdrivera "geckodriver", a dodatkowo zainstalowanej w systemie paczki selenium. Trzeba też pozwolić wireshark-owi na przychwytywanie pakietów jako zwyczajny użytkownik (nie root).

2.2 Wyniki

Udało się przechwycić ciasteczko i zalogować na konto użytkownika wykorzystując jego sesję.