Elettronica Digitale A.A. 2020-2021

Lezione 26/05/2021

Convertitore Digitale-Analogico (D/A o DAC)

Minima variazione della tensione di uscita

$$V_{LSB} = \frac{V_{REF}}{2^N}$$

Valore massimo della tensione di uscita (tensione di fondo scala)

$$V_{FS} = \frac{2^N - 1}{2^N} V_{REF}$$

Convertitore Digitale-Analogico (D/A o DAC)

Convertitore D/A con resistori a pesi binari

Convertitore D/A con resistori a pesi binari

Convertitore D/A con rete a scala R-2R

Convertitore D/A con rete a scala R-2R

Convertitore D/A con rete a scala R-2R

Convertitore Analogico Digitale (A/D o DAC)

Convertitore Analogico Digitale (A/D o DAC)

Errore di quantizzazione

$$Q_e = v_{in} - D\frac{V_{REF}}{2^N} = v_{in} - DV_{LSB}$$

Convertitore A/D a singola rampa

Si integra una tensione nota e costante e si misura quanto tempo occorre per ottenere in uscita dall'integratore una tensione uguale al segnale che si vuole convertire.

Convertitore A/D a singola rampa

$$v_{c} = -\frac{1}{RC} \int_{0}^{t_{c}} \left(-V_{REF}\right) d\tau = \frac{V_{REF}}{RC} t_{c} = v_{IN} \quad \Rightarrow \quad t_{c} = DT_{ck} = v_{IN} \frac{RC}{V_{REF}} \quad \Rightarrow \quad D = v_{IN} \frac{RC}{V_{REF}} \frac{1}{T_{ck}}$$

$$D = v_{IN} \frac{RC}{V_{REF}} \frac{1}{T_{ck}}$$

Convertitore A/D a doppia rampa

Nel convertitore a doppia rampa vengono fatte due integrazioni. Nella prima integrazione, si parte da zero e si integra la tensione di ingresso v_{IN} per un periodo di tempo pari al fondoscala del contatore, ovvero 2^N cicli di clock. Nella fase successiva, si integra una tensione costante V_{RFF} di segno opposto alla tensione v_{IN} per un intervallo di tempo necessario per far ritornare a zero l'uscita dell'integratore.

Il conteggio eseguito nella seconda fase viene preso come risultato della conversione.

Convertitore A/D a doppia rampa

Convertitore A/D a doppia rampa

FASE 1
$$v_c = \frac{|v_{IN}|}{RC} 2^N T_{ck}$$

FASE 2
$$v_c = \frac{|v_{IN}|}{RC} 2^N T_{ck} - \frac{1}{RC} V_{REF} DT_{ck} = 0$$

$$D = \frac{|v_{IN}|}{RC} \frac{2^N T_{ck}}{V_{REF} T_{ck}} RC$$

$$D = \left| v_{IN} \right| \frac{2^N}{V_{REF}}$$

Convertitore A/D flash

N Bit

2^N Resistenze

 $(2^N - 1)$ Comparatori

Convertitore A/D flash

Convertitore A/D ad approssimazioni successive (SAR)

Convertitore A/D ad approssimazioni successive (SAR)

