Introduction to Seq2Seq Modeling

Bill Watson

S&P Global

November 22, 2019

What are Sequence to Sequence Models?

Common Applications for Seq2Seq Models

- Machine Translation
- ► Speech Recognition
- ► Text Summarization

Encoder-Decoder Architecture

Overview: Encoders and Decoders

- ▶ We have 2 sub-networks: an **Encoder** and a **Decoder**
- Encoders
 - Give the source sentence meaning
- Decoders
 - Given the source sentence, emit a variable-length sequence
- We will discuss how to connect the two for joint training

Overview: Encoders and Decoders

- ► Encapsulation allows for flexible design choices:
 - Embeddings
 - Pre-trained
 - DIY
 - Recurrent Layer
 - ► Type
 - Depth
 - Directionality

What makes an Encoder?

What makes a Decoder?

Word Embeddings: Practical Considerations

Recap: Word Embeddings

Recap: Pretrained Word Embeddings

- Co-occurence Matrix
- ► Pointwise Mutal Information
- SVD Co-occurence
- Ngram
- CBOW, Skip Gram
- ▶ GloVe
- Sentence Embeddings: ELMo

DIY Embeddings

▶ We can always train our own!

Special Tokens for Sequence Modeling

- ▶ PAD → Padding / Masking
- ► UNK → Unkown words
- ► SOS → Start of Sentence
- ► EOS → End of Sentence

Mangaging the Vocab Size

- Languages are unevely distributed
- lacktriangle Many rare words, names ightarrow inflates the size of the vocabulary
- ▶ Problem:
 - ► Large embedding matricies for source, target language
 - Large output layers for prediction and softmax
- Naive Solution: Limit the vocab size to most frequent

Morphology, Compounding, and Transliteration

► Morphological Analysis

tweet, tweets, tweeted, tweeting, retweet, . . .

- Compund Splitting
 - ▶ homework → home work
 - ▶ website → web site
- ► Names, Places, Proper Nouns
 - ► Hoboken, Baltimore, Obama, Michelle
 - Can do Transliteration

Handling Numbers

▶ Do we really need to encode every number? NO!

I pay 950.00 in May 2007 > I pay 2007 in May 950.00

Handling Numbers

Do we really need to encode every number? NO!

I pay 950.00 in May 2007 > I pay 2007 in May 950.00

Solution 1: Replace with a NUM token, but

I pay NUM in May NUM = I pay NUM in May NUM

Handling Numbers

▶ Do we really need to encode every number? NO!I pay 950.00 in May 2007 > I pay 2007 in May 950.00

Solution 1: Replace with a NUM token, butI pay NUM in May NUM = I pay NUM in May NUM

- Solution 2: Replace each digit with a unique symbol, e.g. 5
 I pay 555.55 in May 5555 > I pay 5555 in May 555.55
- ► This reduces the need for embeddings, when we can simply do transliteration

Factored Decomposition

Backoff

Character Models

BPE Subwords

Modeling Recurrent Relations

Recap: Recurrent Layers

Vanilla RNNs

$$h_t = anh \left(\overbrace{W_{ih} x_t + b_{ih}}^{input} + \underbrace{W_{hh} h_{t-1} + b_{hh}}_{hidden}
ight)$$

- \blacktriangleright h_t is the hidden state at time t
- \triangleright x_t is the input at time t
- $ightharpoonup h_{t-1}$ is the previous hidden state
- \blacktriangleright h_0 is initialized to 0

Long Short Term Memory (LSTM)

$$\mathsf{Gates} \rightarrow \left\{ \begin{array}{l} i_t = \sigma(W_{ii} x_t + b_{ii} + W_{hi} h_{t-1} + b_{hi}) \\ f_t = \sigma(W_{if} x_t + b_{if} + W_{hf} h_{t-1} + b_{hf}) \\ o_t = \sigma(W_{io} x_t + b_{io} + W_{ho} h_{t-1} + b_{ho}) \\ g_t = \mathsf{tanh}(W_{ig} x_t + b_{ig} + W_{hg} h_{t-1} + b_{hg}) \end{array} \right.$$

$$\mathsf{Outputs} \rightarrow \left\{ \begin{array}{l} c_t = f_t * c_{t-1} + i_t * g_t \\ h_t = o_t * \mathsf{tanh}(c_t) \end{array} \right.$$

- \triangleright h_t is the hidden state at time t
- c_t is the cell state at time t
- \triangleright x_t is the input at time t

Gated Recurrent Units (GRU)

$$\mathsf{Gates} \to \left\{ \begin{array}{l} r_t = \sigma(W_{ir} x_t + b_{ir} + W_{hr} h_{(t-1)} + b_{hr}) \\ z_t = \sigma(W_{iz} x_t + b_{iz} + W_{hz} h_{(t-1)} + b_{hz}) \\ n_t = \mathsf{tanh}(W_{in} x_t + b_{in} + r_t * (W_{hn} h_{(t-1)} + b_{hn})) \end{array} \right.$$

$$\mathsf{Outputs} \to \left\{ \begin{array}{l} h_t = (1 - z_t) * n_t + z_t * h_{(t-1)} \end{array} \right.$$

- \blacktriangleright h_t is the hidden state at time t
- x_t is the input at time t
- $ightharpoonup h_{t-1}$ is the previous hidden state
- \blacktriangleright h_0 is initialized to 0

Aside: Different Perspective on Deep Recurrent Models

Aside: Dimensionality of Inputs and Outputs

Туре	RNN	LSTM	GRU
ln	B, L, H_{in}	B, L, H_{in}	B, L, H_{in}
h_{t-1} c_{t-1}	$B, N_L \cdot N_D, H_{out}$	$B, N_L \cdot N_D, H_{out}$ $B, N_L \cdot N_D, H_{out}$	$B, N_L \cdot N_D, H_{out}$
h_t	$B, N_L \cdot N_D, H_{out}$	$\begin{array}{ c c c c }\hline B, N_L \cdot N_D, H_{out}\\ B, N_L \cdot N_D, H_{out}\end{array}$	$B, N_L \cdot N_D, H_{out}$
Out	$B, L, N_D \cdot H_{out}$	$B, L, N_D \cdot H_{out}$	$B, L, N_D \cdot H_{out}$

- ▶ B is the batch size
- L is the sequence length
- \triangleright N_D is the number of directions
- \triangleright N_L is the number of layers
- ► *H_{in}*, *H_{out}* are the input and hidden size

Aside: The Influence of Padding in RNNs

Right to Left Sequence Modeling

- ► So far, we've only seen Left to Right Sequencing
- ▶ Why not Right to Left?

Bidirectional Sequence Modeling

- ▶ Why not both directions?
- ▶ We concatenate the results of each direction together

Putting together an Encoder

The Components of an Encoder

Figure: Model Architecture for Encoder.

Putting together an Decoder

The Components of a Decoder

Figure: Decoder with No Attention.

Connecting the Encoder

Figure: Model Architecture Overview for Encoder-Decoder.

Decoder Inference: Making Predictions

Teacher Forcing

Training Considerations

Increasing Throughput through Batching

- ▶ We can pad sentences of different lengths to increase batch size
- While also minimizing the use of padding
- Matrix Operations are faster

Cross Entropy and Label Smoothing

$$loss(\mathbf{x}_i, y_i) = -\underbrace{x_{y_i}}_{maximize} + \underbrace{\log \sum_{j} \exp x_j}_{j}$$

- Softmax and Cross-Entropy loss assign all the probability mass to a single word
 - LogSumExp is minimized on confidient predictions
- Solution: smooth the distribution

Cross Entropy and Label Smoothing

Softmax

$$p(y_i) = \frac{\exp x_{y_i}}{\sum_j \exp x_j}$$

Smoothed Softmax with Temperature T

$$p(y_i) = \frac{\exp(x_{y_i}/T)}{\sum_{j} \exp(x_{j}/T)}$$

▶ As $T \to \infty$, the distribution is smoother

Visualizing Temperature

Masked Loss

Decoding: Making better Translations

Beam Search

Monte Carlo Beam Search

Ensembling

Reranking

Tools, References, and Further Reading

Refrences & Further Reading

► Machine Learning: A Probabilistic Perspective by Kevin Murphy