Lab. de Circuitos Eletrônicos Analógicos - Exp. 06

VERIFICAÇÃO DA RESPOSTA EM FREQÜÊNCIA DE UM AMPLIFICADOR (APLICAÇÃO DO TEOREMA DAS CONSTANTES DE TEMPO)

Vídeo-Aula de Apoio:

https://www.youtube.com/watch?v=6ioQ8r_1aqo https://www.youtube.com/watch?v=XjBq4-Be0t4

Figura 1

PRÉ-LABORATÓRIO:

- 1) Inicie o projeto especificando (I_{CQ} , V_{CEQ}) = (5mA, 10V) e RC = 2k Ω . Projete a etapa amplificadora da Figura 1 de maneira que v_o/v_I = -5 em médias frequências (MF). Em MF os capacitores C_B , C_C e C_E podem ser considerados curto-circuitos e os capacitores C_F , C_μ e C_π considerados circuitos abertos. Assuma β_{548} = 300. Calcule o ganho AC em médias frequências e verifique que, se g_mR_{EI} >>1, o ganho torna-se dependente de uma razão de resistores e independente de parâmetros do transistor.
- 2) A partir do Teorema das Constantes de Tempo e das resistencias equivalentes vistas pelos terminais do capacitor em questão, determine C_B , C_C e C_E para que se tenha a frequência de corte inferior $f_i \approx 100 Hz$.

Resposta: (valores comerciais) $C_B=1.0\mu F$, $C_C=0.4\mu F$ e $C_E=3.3\mu F$.

3) Determine C_F para que se obtenha a frequência de corte superior $f_s \approx 100 kHz$. O objetivo de C_F é criar um polo dominante em altas frequências. Diminuindo-se (f_s) , pode-se medir essa frequência (frequência de corte superior) com melhor precisão usando-se os equipamentos disponíveis no laboratório. Calcule C_μ e C_π a partir dos dados $(C_{ob}$ e $f_T)$ do fabricante, encontrados no datasheet dos transistores a serem utilizados

Resposta: C_F (valor comercial) = 270 ou 330nF. $C_{\mu} \cong 2.5$ pF, $C_{\pi} \cong 150$ pF

4) Calcular R_{in} e R_{out} em MF. Determinar o quadripolo equivalente para pequenos sinais em MF do amplificador.

PARTE EXPERIMENTAL:

- 5) Meça o ponto de operação e compare com o de projeto.
- 6) Meça as impedâncias R_{in} e R_{out} em médias frequências.
- 7) Levante a resposta de magnitude e de fase do amplificador (Diagramas de Bode). Comece a partir da faixa plana. Esboce os diagramas no laboratório. Analise as quedas dB/dec am baixas e altas frequências e, se houver inconsistência, refaça as medidas necessárias. Documente as formas de onda nas diferentes frequências.

8) Responda às questões:

- ✓ Qual a técnica mais conveniente de se encontrar a faixa plana?
- ✓ Qual a técnica mais conveniente de fazer as medidas de R_{in} e R_{out}? Note que as constantes de tempo do circuito (e consequentemente f_i e f_s) se modificam quando se utiliza essa técnica de medida. Logo é necessário verificar se ainda estamos trabalhando na faixa plana.