Функции многих переменных.

Область допустимых значений функции двух переменных

Пример 1.

Определить геометрическое место точек области допустимых значений функции двух переменных: $Z = \sqrt{1 - x^2 - y^2}$.

Решение: Выражение, стоящее под знаком квадратного корня должно быть не отрицательным: $1 - x^2 - y^2 \ge 0$, следовательно, $x^2 + y^2 \le 1$.

Ответ: Геометрически область допустимых значений для функции двух переменных $Z=\sqrt{1-x^2-y^2}$ представляет собой круг с радиусом 1.

Пример 2.

Определить геометрическое место точек области допустимых значений функции двух переменных: $Z = \frac{1}{\sqrt{25-x^2-y^2}}$.

Решение: Выражение, стоящее под знаком квадратного корня должно быть положительным: $25 - x^2 - y^2 > 0$, следовательно, $x^2 + y^2 < 25$. **Ответ:** Геометрически область допустимых значений для функции двух переменных $Z = \frac{1}{\sqrt{25 - x^2 - y^2}}$ представляет собой внутреннюю часть круга с радиусом 5.

Пример3.

Определить геометрическое место точек области допустимых значений функции двух переменных: $Z = \frac{7}{\sqrt{25x^2-25+y^2}}$.

Решение: Выражение, стоящее под знаком квадратного корня должно быть положительным: $25x^2 - 25 + y^2 > 0$, тогда, $25x^2 + y^2 > 25$.

Ответ: Геометрически область допустимых значений для функции двух переменных $Z = \frac{7}{\sqrt{25x^2 - 25 + y^2}}$ представляет собой часть плоскости вне эллипса $25x^2 + y^2 = 25$ с полуосями a = 1, b = 5.

Пример 4.

Определить геометрическое место точек области допустимых значений функции двух переменных: $Z = \arcsin(x + y)$

Решение: Выражение, стоящее под знаком обратной тригонометрической функции по абсолютной величине не должно превышать 1:

$$-1 \le x + y \le 1$$
, тогда, $-1 - x \le y \le 1 - x$.

Ответ: Геометрически область допустимых значений для функции двух переменных $Z = \arcsin(x + y)$ представляет собой множество точек плоскости в полосе, ограниченной прямыми y = -1 - x и y = 1 - x.

Пример 5.

Определить геометрическое место точек области допустимых значений функции двух переменных: $Z = ln (x^2 - 3y)$

Решение: Выражение, стоящее под знаком логарифмической функции должно быть положительным: $x^2 - 3y > 0$, $3y < x^2$ тогда, $y < \frac{x^2}{3}$.

Ответ: Геометрически область допустимых значений для функции двух переменных $Z = ln (x^2 - 3y)$

представляет собой множество точек плоскости под параболой $y = \frac{x^2}{3}$. Пример 6.

Определить геометрическое место точек области допустимых значений функции двух переменных: $Z = \sqrt{x^2 + y^2 - 9} + \sqrt{25 - x^2 - y^2}$.

Решение: Выражения, стоящие под знаком квадратного корня должны быть не отрицательными и одновременно должны выполняться условия:

$$\begin{cases} x^2+y^2-9\geq 0 & x^2+y^2\geq 9 \\ 25-x^2-y^2\geq 0 & x^2+y^2\leq 25 \end{cases}$$
 следовательно, область определения функции – кольцо, внутренний радиус которого – 3, а внешний -5.

Ответ: Геометрически область допустимых значений функции двух переменных $Z = \sqrt{x^2 + y^2 - 9} + \sqrt{25 - x^2 - y^2}$.

представляет собой кольцо, внутренний радиус которого -3, а внешний -5.

Примеры для самостоятельной работы:

Определить геометрическое место точек области допустимых значений функции двух переменных:

1.
$$Z = ln (3x^2 - 2y)$$

2.
$$Z = \arcsin(4x + y)$$

1.
$$Z = th (3x^{2} - 2y)$$

2. $Z = \arcsin (4x + y)$
3. $Z = \frac{x+y}{\sqrt{25x^{2} - 25 + y^{2}}}$
4. $Z = \sqrt{9 - x^{2} - y^{2}}$
5. $Z = \frac{x}{\sqrt{25 - x^{2} - y^{2}}}$

4.
$$Z = \sqrt{9 - x^2 - y^2}$$

5.
$$Z = \frac{x}{\sqrt{25 - x^2 - y^2}}$$

6.
$$Z = \ln (\frac{5}{(x+y)})$$

7.
$$Z = \arccos(x + 3y)$$

8.
$$Z = \frac{x-y}{\sqrt{36x^2-36+y^2}}$$

9.
$$Z = \frac{x+y}{\sqrt{16x^2-16+y^2}}$$

7.
$$Z = \arccos(x + 3y)$$

8. $Z = \frac{x - y}{\sqrt{36x^2 - 36 + y^2}}$
9. $Z = \frac{x + y}{\sqrt{16x^2 - 16 + y^2}}$
10. $Z = \frac{x}{\sqrt{81 - x^2 - y^2}}$