

Software Defined Radio Developments and Verification for Space Environment on NASA's Communication Navigation, and Networking Testbed (CoNNeCT)

Richard Reinhart

NASA Glenn Research Center, Cleveland, Ohio

Co-Investigators: Thomas Kacpura, Sandra Johnson, James Lux

Wireless Innovation Forum Technical Conference
November 2011

SCAN Testbed

Science & Technology Goals & Objectives

- **INVESTIGATE the APPLICATION of SDRS TO NASA MISSIONS**
 - Mission advantages and development/verification/operations aspects
 - On-Orbit Reconfiguration
 - More process intensive functions within the radio subsystem
- **SDR TECHNOLOGY DEVELOPMENT**
 - SDR Platforms to TRL-7
 - SDR platform hardware & waveform compliant to STRS, Foster Agency adoption
 - Understand/characterize space effects and SDR performance
- **VALIDATE FUTURE MISSION OPERATIONAL CAPABILITIES**
 - Capability representative of future missions
 - Comm data rate, performance, navigation/ GPS, networking/routing
 - Understand SDR performance (reliability, SEE, telemetry, instrumentation)
 - Multiple and simultaneous RF Links (Ka-band, S-band, L-band/GPS)
 - Experimenter sw applications (On-board networking , DTN, routing, and security applications)

Flight System Overview

- Communication System

- SDRs

- 2 S-band SDRs (1 with GPS)
 - 1 Ka-band SDR

- RF

- Ka-band TWTA
 - S-band switch network

- Antennas

- 2 - low gain S-band antennas
 - 1 - L-band GPS antenna
 - Medium gain S-band and Ka-band antenna on antenna pointing subsystem.

- Antenna pointing system.

- Two gimbals
 - Control electronics

- Flight Computer/Avionics

- Flight enclosure provides for thermal control/radiator surface.

Total mass ~746 lb

SCAN Testbed System Architecture

Radio Introduction

- Assess development cost and risk for space SDRs
 - Gain lessons learned for development, verifications, operations
 - Highlight routine on-orbit reconfigurability
- Infuse STRS into radio product lines
 - Assess development cost and risk for STRS compliance
 - Enable multiple providers of STRS radios
- Look to move more functions into the radio (e.g. framing traditionally done in flight computer)
- Leverage existing products to meet NASA needs
 - SDR (tech) developments used cooperative agreements to share cost/risk
- Capability driven by NASA needs, schedule, cost
 - Existing interfaces
 - S-band, Ka-band, GPS (L5)

SDRs are the core of the CONNECT Communication System

STRS SDRs

- Advance STRS/SDR Platforms to TRL-7
- Single standard on SDR and WF

- Compliance verified w/
 - tools
 - inspection
 - observation

JPL/L-3 CE

- L-band receive (GPS)
- S-band SDR
- Tx: 2.2-2.3 GHz, 7W
- Rx: 2.025-2.12 GHz, (6 MHz channels)
- Virtex II, Sparc Processor (100 MIPS) , RTEMs OS, EDAC

General Dynamics

- S-band SDR
- Tx: 2.2-2.3 GHz, 8W
- Rx: 2.025-2.12 GHz (6MHz channels)
- Virtex II, ColdFire Processor (60 MIPS), VxWorks OS, CRAM (Chalcogenide RAM) Memory

Harris

- Ka-band SDR
- Tx: 25.650 GHz, 225 MHz
- Rx: 22.680 Ghz, 50 MHz
- Virtex IV, AiTech-PowerPC Processor (~700 MIPS), DSP (1 GFLOP), VxWorks OS, Scrubbing ASIC
- First Ka-band transceiver
- GSE – Avionics Comm/Telem Simulator

GD SDR Hardware Architecture

JPL SDR Hardware Architecture

MIL-STD-1553B Interface
Commands from Avionics
Telemetry to Avionics

SpaceWire Interface
Forward link data to Avionics
Return link data from Avionics

28 V Primary Power
RF, PA Power Converter

Harris SDR Hardware Architecture

Environmental Verification / Validation Approach

SDR Communications System Tests mixed among Environmental Tests

SDR Verifications: Thermal and Performance

- Plan tests for both application requirements & SDR characterization
- During platform development, require test waveforms for characterizations at system level (and box level)
 - IF interface on the SDR was helpful for JPL SDR system tests
- Thermal
 - Characterize platform aspects, especially when not able to characterize without waveform
 - Vector modulators in JPL SDR
 - Amplifier power (temperature compensating circuits)
 - Analog AGC, digital AGC, NF
 - Ka-band output (TWTA + SDR)
- Performance Test (SDR Applications (Waveforms) – Comm Functions)
 - Minimum Signal Level Tracking/Acquisition Threshold
 - Acquisition Time, False Lock susceptibility
 - Coded and Uncoded BER performance
 - Operating Frequency Control, Frequency Tracking Range
 - Transmitter Output Spectrum/Spectral Mask
 - Carrier Suppression
 - Characterized path from each antenna port to the radio
 - Performance in presence of interring carriers and other PN codes

SDR & Communication System Test

- Tests signaling, modulation, data formatting
- SDR Reconfiguration
- SDR Spacewire data interfaces
- RF paths & TWTA Tests
- Reduces risk for system level tests
- SDR characterization data
- Waveform configurations > 100 (SDR)
- Ground test software matches operations
- Everything rehearsed on EM system
- RF Subsystem did not include antennas

SN Compatibility Test, TDRSS Relay Link

- Demonstrates system in “test as you fly” configuration
- Uncovers incompatibility and configuration issues throughout the system
 - System configurations: 400-500 (SDR, FS antenna, SN)
- Pre-launch performance data
- RF Subsystem did not include antennas

Functionality of typical GD Return Link

SDR Verifications

- Identify early which SDR capability beyond mission requirements to include in requirements set
 - Amplifier characteristics (IF gain, I/Q balance to RF)
 - Temperature characteristics (digital and RF)
 - Trade verifications of essential mission requirements, while characterizing overall performance
- Manage Complexity!
 - Reconfigurable options (coding, framing, data rate, frequency) + mission configurations (payload antenna paths, TDRSS services) == 100's of configurations to manage.
- Changing the culture of verifications for space
 - Unable to test everything on ground before flight
 - Testbed designed to fly new flight configurations with verifications on ground hw only

SDR Development & Verification Conclusions

- SDR Development & Verifications
 - Spend systems engineering time on the SDR itself to separate platform and waveform aspects
 - Provide both platform and waveform requirements
 - Balance mission requirements with potential SDR reprogrammability capability
 - Understand platform performance for future waveform developers
 - Good documentation set
 - Divide test plan between platform and applications (Testbed requirements did not address full capability of radio, but rather concentrated on link functions)
- Experiment Opportunity for Academia and Industry
 - Develop/test applications and concepts – expect experiment call in mid 2012
 - Comm waveform development and operation in space
 - SDR-based mission concepts of operations
 - Networking experiments using avionics as router between SDR nodes
 - GPS-based navigation waveforms
 - Prove out STRS among multiple SDRs in space environment
 - Scheduled for launch in mid 2012

Backup

Experimenter Access Points within CoNNeCT System

★ = Experiment Element (e.g. sw, fw, hw, component)

Experimenters have access to
Flt SDRs, avionics, Gnd SDR, various ground points

SCAN Testbed Flight System Configuration

