# 臺北區 110 學年度第二學期 分科測驗第一次模擬考試

## 化學考科

--作答注意事項--

考試範圍:化學(全)、選修化學Ⅰ~Ⅲ、探究與實作

考試時間:80分鐘

作答方式:

- ●選擇題用 2B 鉛筆在「答題卷」上作答;更正時,應以橡皮擦擦拭,切勿使用修正液(帶)。
- 除題目另有規定外,非選擇題用筆尖較粗之黑色墨水的筆在「答題卷」上作答;更正時,可以使用修正液(帶)。
- 考生須依上述規定劃記或作答,若未依規定而導致答案 難以辨識或評閱時,恐將影響考生成績並傷及權益。
- 答題卷每人一張,不得要求增補。

#### 選擇題計分方式:

- 單選題:每題有 n 個選項,其中只有一個是正確或最適當的選項。各題答對者,得該題的分數;答錯、未作答或劃記多於一個選項者,該題以零分計算。
- 多選題:每題有 n 個選項,其中至少有一個是正確的選項。
  各題之選項獨立判定,所有選項均答對者,得該題全部的分數;答錯 k 個選項者,得該題 n-2k n 的分數;但得分低於零分或所有選項均未作答者,該題以零分計算。

#### 參考資料

說明:下列資料,可供回答問題之參考

-、元素週期表  $(1 \sim 36 號元素)$ 

| 1    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | 2    |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| H    |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | He   |
| 1.0  |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      | 4.0  |
| 3    | 4    |      |      |      |      |      |      |      |      |      |      | 5    | 6    | 7    | 8    | 9    | 10   |
| Li   | Ве   |      |      |      |      |      |      |      |      |      |      | В    | C    | N    | 0    | F    | Ne   |
| 6.9  | 9.0  |      |      |      |      |      |      |      |      |      |      | 10.8 | 12.0 | 14.0 | 16.0 | 19.0 | 20.2 |
| 11   | 12   |      |      |      |      |      |      |      |      |      |      | 13   | 14   | 15   | 16   | 17   | 18   |
| Na   | Mg   |      |      |      |      |      |      |      |      |      |      | Αl   | Si   | Р    | S    | Cl   | Ar   |
| 23.0 | 24.3 |      |      |      |      |      |      |      |      |      |      | 27.0 | 28.1 | 31.0 | 32.1 | 35.5 | 40.0 |
| 19   | 20   | 21   | 22   | 23   | 24   | 25   | 26   | 27   | 28   | 29   | 30   | 31   | 32   | 33   | 34   | 35   | 36   |
| K    | Ca   | Sc   | Ti   | ٧    | Cr   | Mn   | Fe   | Co   | Ni   | Cu   | Zn   | Ga   | Ge   | As   | Se   | Br   | Kr   |
| 39.1 | 40.1 | 45.0 | 47.9 | 50.9 | 52.0 | 54.9 | 55.8 | 58.9 | 58.7 | 63.5 | 65.4 | 69.7 | 72.6 | 74.9 | 79.0 | 79.9 | 83.8 |

二、理想氣體常數 R=0.0820 L atm K<sup>-1</sup> mol<sup>-1</sup>=8.31 J K<sup>-1</sup> mol<sup>-1</sup>



## 祝考試順利

版權所有·翻印必究

### 第壹部分、選擇題(占68分)

一、單選題(占28分)

#### 說明:第1.題至第7.題,每題4分。

- 1. 圖 1 為化學反應的變化情形,黑、白球代表不同的原子,則下列敘述何者錯誤?
  - (A)本反應結束後,容器中共有3種分子存在
  - (B)白球分子為限量試劑
  - (C)反應式可表示為 3X<sub>2</sub>+Y<sub>2</sub> → 2X<sub>3</sub>Y
  - (D)若白球分子量為 10,黑球分子量為 20,則產物分子量為 25
  - (E)本反應屬不完全反應,故產率為 66.7%
- 2. 依圖 2 流程進行離子分離時,沉澱 A、B、C的化學式依序為何?



- (A) CuCl<sub>2</sub> \ MgS \ PbCO<sub>3</sub>
- (C) MgCl<sub>2</sub> · CuS · PbCO<sub>3</sub>
- (E) MgCl<sub>2</sub> · PbS · CuCO<sub>3</sub>

(B) CuCl<sub>2</sub> · PbS · MgCO<sub>3</sub>

圖 1

- (D)  $PbCl_2 \cdot CuS \cdot MgCO_3$
- 3. 甲、乙、丙、丁為四種雙原子分子,其化學鍵鍵能與鍵長的關係如圖 3 所示。根據圖 3 中的數據判斷,甲 ~ 丁依序分別為何?



- (A)  $H_2 \cdot Br_2 \cdot Cl_2 \cdot I_2$
- (C)  $H_2 \cdot Cl_2 \cdot Br_2 \cdot I_2$
- (E)  $H_2 \cdot I_2 \cdot Br_2 \cdot Cl_2$

- (B)  $I_2 \cdot Br_2 \cdot Cl_2 \cdot H_2$
- (D)  $I_2 \cdot Br_2 \cdot H_2 \cdot Cl_2$
- 4. 下列關於 NH<sub>2</sub> 、NH<sub>3</sub> 及 NH<sub>4</sub> <sup>†</sup> 鍵角大小之比較,何者正確?
  - (A)  $NH_4^+ > NH_3 > NH_2^-$

(B)  $NH_2^- = NH_3 = NH_4^+$ 

(C)  $NH_2^- > NH_3 > NH_4^+$ 

(D)  $NH_3 > NH_4^+ > NH_2^-$ 

(E)  $NH_4^+ > NH_2^- > NH_3$ 

5. 已知可逆反應: $aA(g)+bB(g) \rightleftharpoons dD(g)+eE(g)$  已經達平衡。定壓下,若突然升高反應系之溫度,則正、逆反應速率變化如圖 4;定溫下,若突然增大壓力,則如圖 5 之變化。請問下列何者為此反應的反應熱( $\Delta H$ )與係數間之關係?( $r_1$ 、 $r_1$ '為正反應速率, $r_2$ 、 $r_2$ '為逆反應速率)





- (A)  $\Delta H < 0$ ,  $\underline{\square} a + b < d + e$
- (B)  $\Delta$ H < 0 ,  $\exists$  a+b>d+e
- (C)  $\Delta H > 0$ ,  $\exists a+b>d+e$
- (D)  $\Delta H > 0$ ,  $\underline{\mathbb{H}} a + b < d + e$
- (E)  $\Delta H < 0$ ,  $\exists a+b=d+e$

#### 6. 、7. 題為題組

林同學欲探究實驗室內一瓶陳舊氯酸鉀(KClO<sub>3</sub>)試藥的純度,由上課所學得知:氯酸鉀在高溫下可完全分解產生氯化鉀和氧氣,於是取此氯酸鉀試樣  $16\,g$ ,將其加熱分解,以排水集氣法收集氧氣,直到不再有氧氣產生,共收集  $1.23\,L$  的氧氣,此時瓶外水面等於瓶內水面。若實驗時,水的溫度為  $27\,^{\circ}$ C、大氣壓力為  $760\,$ mmHg。依上述實驗數據,試回答下列問題。(已知  $27\,^{\circ}$ C時,水的飽和蒸氣壓為  $30\,$ mmHg,且氧氣的溶解度極小,可忽略不計;式量: KClO<sub>3</sub>=122.5)

 $KC1O_3 - 122.3$ 

- 6. 此實驗共收集多少 mol 的氧氣?
  - (A)  $1.2 \times 10^{-2}$
  - (B)  $2.4 \times 10^{-2}$
  - (C)  $4.8 \times 10^{-2}$
  - (D)  $6 \times 10^{-2}$
  - (E)  $9.6 \times 10^{-2}$
- 7. 此氯酸鉀試藥的純度,最接近下列哪一數值(%)?
  - (A) 24.5
  - (B) 37.5
  - (C)49.0
  - (D) 61.3
  - (E) 73.5

#### 二、多選題(占40分)

說明:第8.題至第17.題,每題4分。

- 8. 光氣(COCl<sub>2</sub>)是一種無色不可燃氣體,因為有劇毒,在第一次世界大戰中用作化學武器, 造成了 85000 人死亡。一氧化碳和氯氣在加熱條件下經活性碳催化可合成光氣。此反應是 可逆反應,其反應式如下: $CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$ 。根據反應式,在定溫、密閉系統下, 可藉由下列哪些方式觀察此反應已經達到平衡?
  - (A) 反應系統的顏色不再改變
  - (B)定壓下,反應系統的體積不再改變
  - (C)反應系統的總質量不再改變
  - (D) CO 的分壓等於 COCl2 的分壓
  - (E) CO 的消耗速率等於 COCI。的牛成速率
- 9. 下列關於反應  $CH_3COOH(aq) + HS^-(aq) \rightleftharpoons H_2S(aq) + CH_3COO^-(aq)$  之敘述,哪些正確?
  - (A) HS<sup>-</sup> 為酸, CH<sub>3</sub>COOH 為鹼
  - (B) H<sub>2</sub>S 為 HS<sup>-</sup> 之共軛酸
  - (C) CH<sub>3</sub>COO<sup>-</sup> 為 CH<sub>3</sub>COOH 之共軛鹼
  - (D)若 H<sub>2</sub>S 較 CH<sub>3</sub>COOH 酸性為弱,則反應趨勢由右到左
  - (E)若 HS<sup>-</sup> 較 CH<sub>3</sub>COO 鹼性為強,則反應趨勢由左到右
- 10. 某主族金屬元素 M 之第一 ~ 第四游離能依序如下:IE₁=713 kJ/mol、IE₂=1442 kJ/mol、 IE<sub>3</sub>=7683 kJ/mol、IE<sub>4</sub>=10558 kJ/mol,且已知該金屬為第三週期元素,則下列關於該金屬 元素的敘述,哪些正確?
  - (A)此元素的價電子位於 N 層
  - (B)該金屬氫氧化物易溶於水
  - (C)基態價電子組態為 3s<sup>2</sup>3p<sup>2</sup>
  - (D)此元素氮化物之化學式為 M<sub>3</sub>N<sub>2</sub>
  - (E)此金屬可以當作環原劑
- 11. 原子與原子之間形成共價鍵時,兩原子的軌域需要互相重疊,而重疊方式會決定共價鍵的 種類為 $\sigma$ 鍵或是 $\pi$ 鍵,以下關於軌域重疊的位向與形成的化學鍵種類,哪些正確?

(A)  $NH_3$  之 N-H 鍵: $\mathfrak{g}$  , $\sigma$  鍵

(B)  $H_2O \ge O - H$  鍵: $Q \bigcirc Q \bigcirc Q$ , $\sigma$  鍵

(C)  $F_2$  之 F-F 鍵: $\{\}\}$ , $\pi$  鍵

(D)  $HCl \ge H-Cl$  鍵: $\bigcirc$  , $\pi$  鍵



- 12. 已知室溫下  $CaSO_4$  的  $K_{sp}=6.0\times10^{-5}$ ,  $SrSO_4$  的  $K_{sp}=4.0\times10^{-7}$ 。室溫下,有一 100 mL 水溶液含有  $2.0\times10^{-3}$  M 的  $Ca^{2+}$  與  $8.0\times10^{-5}$  M 的  $Sr^{2+}$ ,若在此溶液中再加入 100 mL 下列各種 濃度的  $Na_2SO_4(aq)$ ,哪些可使  $Sr^{2+}$  沉澱而不會使  $Ca^{2+}$  沉澱?
  - (A) 0.01 M
  - (B) 0.04 M
  - (C) 0.08 M
  - (D) 0.10 M
  - (E) 0.16 M
- 13. 原子序 19 的鉀,其元素符號為 K,屬於鹼金屬,性質非常活潑,在空氣中會迅速氧化,且與水劇烈反應,產生足夠的熱量以點燃反應中釋放的氫氣,而放出藍紫色的火焰。鉀與氧反應可以生成氧化鉀(K<sub>2</sub>O)、過氧化鉀(K<sub>2</sub>O<sub>2</sub>)及超氧化鉀(KO<sub>2</sub>)三種氧化物;過氧化鉀遇水立即產生氫氧化鉀並放出氧氣,超氧化鉀則可作為醫院、礦井、潛水及高空飛行人員的供氧劑,若將超氧化鉀置於呼吸面罩中,可與二氧化碳反應產生氧氣。下列相關敘述,哪些正確?
  - (A) K 的電子組態為 1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>3d<sup>1</sup>
  - (B)畫線部分的化學反應式: $K_2O_2+H_2O \rightarrow O_2+2KOH$
  - (C)三種氧化物中,最穩定的是過氧化鉀
  - (D)氧化鉀、過氧化鉀及超氧化鉀三種氧化物皆為離子化合物
  - (E)氧化鉀沒有共價鍵,過氧化鉀具有共價鍵
- 14. 由鈉與氯反應生成 NaCl(s),此反應可由以下六個步驟合併而成。又 NaCl 晶體的莫耳生成 熱為-411 kJ/mol,下列敘述哪些正確?
  - (1) Na(s)  $\rightarrow$  Na(g) ,  $\triangle H_1$
  - (2)  $Cl_2(g) \rightarrow 2Cl(g)$ ,  $\Delta H_2$
  - (3) Na(g)  $\rightarrow$  Na<sup>+</sup>(g)+e<sup>-</sup>,  $\triangle$ H<sub>3</sub>
  - (4)  $Cl(g) + e^- \rightarrow Cl^-(g)$ ,  $\Delta H_4$
  - (5)  $Na(g) + Cl(g) \rightarrow Na^{+}(g) + Cl^{-}(g) , \Delta H_5$
  - (6)  $\operatorname{Na}^+(g) + \operatorname{Cl}^-(g) \to \operatorname{NaCl}(s)$ ,  $\Delta H_6$
  - (A)式(1)、(2)皆為吸熱反應, $\Delta H_1 + \Delta H_2 > 0$
  - $(B)\Delta H_5 = \Delta H_3 + \Delta H_4$
  - (C) NaCl 晶體的莫耳生成熱之熱反應式:Na(s)+Cl(g)  $\rightarrow$  NaCl(s), $\Delta$ H=-411 kJ/mol
  - (D) △H<sub>6</sub> 為 NaCl(s) 的晶格能
  - $(E) \Delta H_6 = -411 \Delta H_1 \Delta H_2 \Delta H_3 \Delta H_4$

15. 形狀體積相同的 A、B、C 真空容器中,在室溫下分別加入等質量的乙醚、丙酮、酒精, 封住容器口,達平衡後(容器中皆有殘留液體),各數據以代號列於表 1,下列敘述哪些 正確?

表 1

| 容器 | 物質 | 沸點    | 蒸發速率  | 凝結速率           | 飽和蒸氣壓 | 分子間作用力         |
|----|----|-------|-------|----------------|-------|----------------|
| A  | 乙醚 | 34 ℃  | $X_1$ | $Y_1$          | $Z_1$ | $W_1$          |
| В  | 丙酮 | 56 °C | $X_2$ | $Y_2$          | $Z_2$ | W <sub>2</sub> |
| С  | 酒精 | 78 °C | $X_3$ | Y <sub>3</sub> | $Z_3$ | $W_3$          |

- (A)  $X_1 = Y_1$
- (B)  $X_1 > X_2 > X_3$
- (C)  $Y_1 < Y_2 < Y_3$
- (D)  $Z_1 < Z_2 < Z_3$
- (E)  $W_1 < W_2 < W_3$
- 16. 已知甲~丁四種水溶液之濃度皆為  $0.01 \,\mathrm{m}$ ,甲: $\mathrm{Na_2CO_3}$ 、乙: $\mathrm{CH_3COONH_4}$ 、丙: $\mathrm{CH_3COOH}$ 、丁: $\mathrm{NaOH}$ 。則下列相關敘述,哪些正確?(已知  $\mathrm{H_2CO_3}$  的  $K_{\mathrm{a_1}} = 4.3 \times 10^{-7}$  、 $K_{\mathrm{a_2}} = 5.6 \times 10^{-11}$  ,  $\mathrm{CH_3COOH}$  的  $K_{\mathrm{a}} = 1.8 \times 10^{-5}$  ,  $\mathrm{NH_3}$  的  $K_{\mathrm{b}} = 1.8 \times 10^{-5}$  )
  - (A)同壓下,沸點:甲>丁>乙=丙
  - (B)同壓下,凝固點:丙>乙=丁>甲
  - (C)同溫下,蒸氣壓:甲>乙=丁>丙
  - (D)同溫下,滲透壓:甲>乙=丁>丙
  - (E)同溫下,pH值:丁>甲>乙>丙
- 17. 已知 25 ℃時,純液體甲的飽和蒸氣壓為 50 mmHg,純液體乙的飽和蒸氣壓為 30 mmHg。取 2 mol 的甲液體與 18 mol 的乙液體混合形成理想溶液置於密閉容器中,且溶液上的蒸氣為理想氣體,則下列敘述哪些正確?
  - (A)混合溶液中,甲液體的莫耳分率為 0.2
  - (B)飽和蒸氣中,乙的蒸氣分壓為 27 mmHg
  - (C)若第一次收集液面上之蒸氣,再於另一容器中降溫至氣體完全冷凝成液體,則溶液之甲與乙的分子數比為 27:5
  - (D)承(C),再將溶液加熱至 25 ℃,當達平衡時,所得蒸氣壓大約為 33.1 mmHg
  - (E)不論剛開始溶液中甲濃度多寡,可重複利用蒸發→冷凝步驟數次,便可蒸餾出純度極高的甲液體

圖 6

### 第貳部分、混合題或非選擇題(占32分)

說明:本部分共有4題組,每一子題配分標於題末。限在標示題號作答區內作答。選擇題與「非選擇題作圖部分」使用2B鉛筆作答,更正時,應以橡皮擦擦拭,切勿使用修正液(帶)。非選擇題請由左而右橫式書寫,作答時必須寫出計算過程或理由,否則將酌予扣分。

#### 18.~21. 題為題組

氧氣和臭氧互為同素異形體,皆由氧原子所組成,但它們的性質卻很不相同。氧氣無色、無味,臭氧則有刺激性臭味。臭氧的化學性質比氧氣活潑,氧化力強,因此臭氧可用於飲用水、殺菌及游泳池的消毒等。回答下列問題:

- 18. 請畫出臭氧分子的路易斯結構。(2分)
- 19. 臭氧的中心氧原子之混成軌域為何?(2分)
- 20. 臭氧的鍵級為何?(2分)
- 21. 臭氧的分子形狀為何?分子是否具有極性?(各1分,共2分)

#### 22.~25. 題為題組

粉筆是日常生活中廣為使用的文具,一般用於書寫在黑板上,若某品牌粉筆之成分僅有碳酸鈣和硫酸鈣,喬治欲探究分析粉筆中碳酸鈣的含量,進行以下實驗:

步驟一:取10g粉筆粉末倒入有側管的錐形瓶,並加少許的水,使薊頭漏斗 末端沒入液面以下。

步驟二:再將有刻度的大量筒裝滿水倒立放置於水盆中,連接導管,利用排水 集氣法收集氣體並測量體積,如圖 6。

步驟三:每次由薊頭漏斗頂端加入 2.0 M 鹽酸 10 mL, 充分反應後, 收集到的

CO<sub>2</sub> 氣體體積 (27 °C、1 atm 下) 如表 2。

表 2

| 實驗次數                     | 1   | 2   | 3   | 4  | 5   | 6  |
|--------------------------|-----|-----|-----|----|-----|----|
| 加入鹽酸體積(mL)               | 10  | 10  | 10  | 10 | 10  | 10 |
| CO <sub>2</sub> 氣體體積(mL) | 246 | 246 | 246 | X  | 123 | 0  |

- 22. 根據表 2 數據作圖,橫坐標為加入鹽酸總體積,縱坐標為生成 CO<sub>2</sub> 氣體總體積。(坐標點需連線,2分)
- 23. 列式計算第一次產生 CO<sub>2</sub> 氣體質量。(2分)
- 24. 寫出本實驗的反應式。(2分)
- 25. 下列有關此實驗的敘述,哪些正確?(多選)(2分)
  - (A)第 4 次實驗鹽酸過剩
  - (B) X 為 123 mL
  - (C)第5次實驗時,粉筆中的碳酸鈣完全反應
  - (D)欲使粉筆中的碳酸鈣完全反應,需加入 55 mL 鹽酸
  - (E)粉筆中,碳酸鈣的含量為 45%

#### 26.~29. 題為題組

已知反應式(1)、(2)如下:

$$S_2O_8^{2-}(aq) + 2I^-(aq) \rightarrow 2SO_4^{2-}(aq) + I_2(s) \cdots$$

$$I_2(aq) + 2S_2O_3{}^{2-}(aq) \to 2I^-(aq) + S_4O_6{}^{2-}(aq) \cdot \cdots \cdot \overrightarrow{{\tt rt}}(2)$$

其中, $S_2O_8^{2-}$  的消耗速率可利用加入限量的  $S_2O_3^{2-}$  作為計時劑,因  $S_2O_3^{2-}$  可與式(1)產物  $I_2$  反應,且反應速率極快,所以當  $S_2O_3^{2-}$  消耗完時, $I_2$  就會與原先加入反應液的澱粉指示劑結合而變色,所以藉由測定溶液開始反應到發生變色的時間,便能算出  $S_2O_8^{2-}$  這段時間的平均消耗速率。根據以上反應的特性,於 25  $^{\circ}$  時進行實驗,其實驗數據如表 3 所示。

|      |                                                  |        | 70                                            |       |      |             |  |
|------|--------------------------------------------------|--------|-----------------------------------------------|-------|------|-------------|--|
|      | 0.10 M                                           | 0.20 M | 0.0040 M                                      | 2% 澱粉 | 蒸餾水  | 溶液發生變色      |  |
| 實驗次數 | K <sub>2</sub> S <sub>2</sub> O <sub>8</sub> NaI |        | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | (mL)  |      | 的時間(s)      |  |
|      | (mL)                                             | (mL)   | (mL)                                          |       | (mL) | 日入中共 日] (8) |  |
| 1    | 2.0                                              | 2.0    | 1.0                                           | 1.0   | 4.0  | 80.0        |  |
| 2    | 4.0                                              | 2.0    | 1.0                                           | 1.0   | 2.0  | 40.0        |  |
| 3    | 2.0                                              | 5.0    | 1.0                                           | 1.0   | 1.0  | 32.0        |  |

表 3

根據上述實驗數據,請回答下列問題。

- 26. 請問溶液最後會變成何種顏色? (1分)
- 27.  $S_2O_8^{2-}$  與  $S_2O_3^{2-}$  的消耗速率比為何?(2分)
- 28. 請寫出式(1)的速率定律。(2分)
- 29. 請計算第一次實驗中, $S_2O_8^{2-}$  的平均消耗速率為多少 M/s? (3分)

#### 30.~33. 題為題組

苯甲酸鈉具有抑制細菌、黴菌、酵母等各類微生物繁殖增生的功能,因其很容易溶解在水裡,因此作為防腐劑的應用很廣泛,在食品(如食醋、醬油、肉類、魚類、醃製食品等)、飲料和個人護理用品等中都有苯甲酸鈉防腐劑。25 °C 下,100 mL 0.16 M 苯甲酸鈉( $C_6H_5COONa$ )水溶液中,測得溶液 pH=9,回答下列問題:

- 30. 請解釋苯甲酸鈉  $(C_6H_5COONa)$  水溶液呈鹼性原因。 (2 分)
- 31.  $C_6H_5COOH(aq) \rightleftharpoons C_6H_5COO^-(aq) + H^+(aq)$  的解離常數  $K_a$  為何?(2 分)
- 32. 溶液中, [C<sub>6</sub>H<sub>5</sub>COOH] 為多少 M? (2分)
- 33. 溶液中加入 0.2 M HCl(aq) 100 mL, 最後溶液的 [H<sup>+</sup>] 為多少 M? (2分)