Estimating Propensity Scores and Testing Overlap using Support Vector Machines

Ari Boyarsky

Advisor: Prof. Alex Torgovitsky (Department of Economics)

- ► Motivation
 - ▶ Matching methods are common across the social sciences. They are powerful but require strong assumptions, in particular that,

$$\mathbb{E}[Y_0|D=1,X] = \mathbb{E}[Y_0|D=0,X]$$
 (1)

Heckman et al. (1998) and region of common support,

$$S = \operatorname{Supp}(X|D=1) \cap \operatorname{Supp}(X|D=0) \tag{2}$$

▶ Propensity score matching attempts to simplify this. Using p(X) := P[D=1|X] (usually with logistic regression). In this case, overlap requires that,

$$p(X) \in (0,1) \tag{3}$$

Such that treatment outcome is not perfectly predicted.

- ► Heinrich et al. (2010), Harder et al. (2011), Imbens (2014)
- ▶ But, these methods may misidentify overlap (i.e., a nonlinear boundary). This paper provides a test to resolve this issue.

Proposed Methodology

- ▶ If we want to be sure that we have common support we should employ a methodology that maximizes predictive power.
- ▶ Using Support Vector Machines (SVM) with radial basis function kernels allows us to find nonlinear boundaries in a high dimensional space and assess the fit using standard machine learning model estimates. Primal problem,

$$\min_{w} \frac{1}{2} \langle w, w \rangle + C \sum_{i=1}^{N} \xi_{i}$$
 (4a)

s.t.
$$y_i(\langle w, \phi(x_i) \rangle + b) \ge 1 - \xi_i$$
 (4b)

$$\xi_i \ge 0 \quad \forall i = 1, \dots, N$$
 (4c)

$$K(u,v) = \langle \phi(u), \phi(v) \rangle = e^{-\gamma ||u-v||_2^2}$$
 (5)

► K-fold cross validation error to evaluate fit.

Proposed Methodology

• We can also use Platt (1999) transforms to calculate p(X),

$$P(y=1|f_i) = p(x_i) = \frac{1}{1 + exp(Af(x_i) + B)}$$
 (6)

A and B are fit with maximum likelihood estimation using the initial data set,

$$\min_{A,B} - \sum_{i}^{N} \frac{y_i + 1}{2} \log(p(x_i)) + \left(1 - \frac{y_i + 1}{2}\right) \log(1 - p(x_i)) \tag{7}$$

- ▶ We should pay particular attention to observations close to the separating hyperplane i.e. $p(X) \in [0.4, 0.6]$.
 - ► Trade off between within sample accuracy and generality.
- ▶ If we have an imbalanced data set we can use weights to adjust for this (like in LaLonde (1986)).

Simulations of Test Data

Simulational Results: SVM

Table: SVM Overlap Tests of Test Data Sets (A)-(D)

Data Set	(A)	(B)	(C)	(D)
% Fixed Cross Validation Error	0.210	0.196	33.133	16.190
K = 10 CV Accuracy Rate	99.6	100	56.6	74.5
Brier Score	0.0	0.0	0.48	0.17
% Margin (0.1 Width)	0	0	0	5.5
% Margin (0.2 Width)	0	0	80.7	14.5

Kernel	Radial	Radial	Radial	Radial
Gamma	1	2	1	0.01
Cost	32	256	4	4
N	1,000	1,000	1,000	1,000

Note: Fixed Cross Validation Error is computed by cross validating the entire data set against gamma values $\{0.01, 0.1, 0.5, 1, 1.5, 2\}$ and cost parameters $\{4, 8, 16, 32, 64, 128, 256, 512, 1024\}$ using K-fold cross validation error with a fixed test and validation sample.

Simulational Results: Logistic Regression

Simulational Results: Logistic Regression (Higher Order Terms)

Application: LaLonde (1986) Data

- ▶ Dehejia and Wahba (1999) Issues with sample and variable selection (Smith and Todd (2005))
- ► Could there also be issues with overlap?
 - ▶ DW (1999): Compute p(X), assess overlap/trim data to increase overlap, match.
 - ▶ We follow the same procedure but use an SVM.
 - ▶ After trimming such that $p(X) \in (0.05, 1)$ we have only 178 observations, the same specification with logistic regression yields 561 observations.
 - ▶ The data set is unbalanced 118 treated, only 49 control, 146 observations with propensity scores in 0.7-0.72 is suggestive of overlap.
 - ▶ However, we should weight data to address imbalance. So,

$$G(x) = sgn[wf(x) + b] \tag{8}$$

Where w is vector of inverse frequency weights (k = 2 classes),

$$w_j = \frac{n}{kn_j} \tag{9}$$

LaLonde (1986) SVM Results (before weighting)

	(1)
% Cross Validation Error	0.1984
% Margin (0.1 Width)	0
% Margin (0.2 Width)	0

Kernel	Radial
Gamma	0.5
Cost	4
N	178

Note: Training Cross Validation Error is computed by cross validating the entire data set against gamma values {0.01, 0.1, 0.5, 1} and cost parameters {4, 8, 16, 32, 64, 128, 256} using the K-fold cross validation such that we split the data into K subsets, train the SVM on every other subset, train the SVM on every other subset, and compute the average test error for each subset. This specification predicts D using: age, education, no degree, black, married, Hispanic, RE74, RE75, u74, u75, education*RE74.

LaLonde (1986) SVM Results (after weighting)

Note: Applying inverse frequency weighting yields a control weight of 6.816, and a treated weight of 2.831.

So there is overlap, but in a much smaller support than considered by DW (1999). ATT of about 1643.908 matching Imbens (2014).