

ETC3250

Business Analytics

Week 3 Linear regression

7 August 2017

Outline

Week	Topic	Chapter	Lecturer
1	Introduction to business analytics & R	1	Souhaib
2	Statistical learning	2	Souhaib
3	Linear regression for prediction	3	Anastasios
	Flexible regression for prediction	3	David
4	Classification	4,8	Souhaib
5	Classification	4,8	Souhaib
6	Visualization		Souhaib
7	Data wrangling		Souhaib
8	Resampling	5	Souhaib
9	Dimension reduction	6,10	Souhaib
10	Clustering	10	Souhaib
	Semester break		
11	Advanced regression	6	Souhaib
12	Advanced learning methods	8	Souhaib

3. Regression 2/19

Outline

1 Revision: multiple regression

2 Matrix formulation

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \cdots + \beta_p X_{p,i} + e_i.$$

- Each $X_{j,i}$ is numerical and is called a "predictor".
- The coefficients β_1, \ldots, β_p measure the effect of each predictor after taking account of the effect of all other predictors in the model.
- Predictors may be transforms of other predictors. e.g., $X_2 = X_1^2$.
- The model describes a line, plane or hyperplane in the predictors.

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \cdots + \beta_p X_{p,i} + e_i.$$

- Each $X_{i,i}$ is numerical and is called a "predictor".
- The coefficients β_1, \ldots, β_p measure the effect of each predictor after taking account of the effect of all other predictors in the model.
- Predictors may be transforms of other predictors. e.g., $X_2 = X_1^2$.
- The model describes a line, plane or hyperplane in the predictors.

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \cdots + \beta_p X_{p,i} + e_i.$$

- Each $X_{i,i}$ is numerical and is called a "predictor".
- The coefficients β_1, \ldots, β_p measure the effect of each predictor after taking account of the effect of all other predictors in the model.
- Predictors may be transforms of other predictors. e.g., $X_2 = X_1^2$.
- The model describes a line, plane or hyperplane in the predictors.

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \cdots + \beta_p X_{p,i} + e_i.$$

- Each $X_{i,i}$ is numerical and is called a "predictor".
- The coefficients β_1, \ldots, β_p measure the effect of each predictor after taking account of the effect of all other predictors in the model.
- Predictors may be transforms of other predictors. e.g., $X_2 = X_1^2$.
- The model describes a line, plane or hyperplane in the predictors.

- Dummy variables
- OLS
- $= R^2$
- se of coefficients
- residual standard error
- F statistic

- Dummy variables
- OLS
- $=R^2$
- se of coefficients
- residual standard error
- F statistic

- Dummy variables
- OLS
- $\blacksquare R^2$
- se of coefficients
- residual standard error
- F statistic

- Dummy variables
- OLS
- $\blacksquare R^2$
- se of coefficients
- residual standard error
- F statistic

- Dummy variables
- OLS
- $\blacksquare R^2$
- se of coefficients
- residual standard error
- F statistic

- Dummy variables
- OLS
- $\blacksquare R^2$
- se of coefficients
- residual standard error
- F statistic

Important questions

- Is at least one of the predictors useful in predicting the response?
- Do all the predictors help to explain Y, or is only a subset of the predictors useful?
- How well does the model fit the data?
- Given a set of predictor values, what response value should we predict and how accurate is our prediction?

Banks score loan customers based on a lot of personal information. A sample of 500 customers from an Australian bank provided the following information.

Score	Savings	Income	Time current address	Time current job
	\$'000	\$'000	Months	Months
39.40	0.01	111.17	27	8
51.79	0.65	56.40	29	33
32.82	0.75	36.74	2	16
57.31	0.62	55.99	14	7
37.17	4.13	62.04	2	14
33.69	0.00	43.75	7	7
25.56	0.94	79.01	4	11
32.04	0.00	45.41	3	3
41.34	4.26	55.22	16	18
:	:	:	:	:

Banks score loan customers based on a lot of personal information. A sample of 500 customers from an Australian bank provided the following information.

Score	Savings	Income	Time current address	Time current job
	\$'000	\$'000	Months	Months
39.40	0.01	111.17	27	8
51.79	0.65	E6 10	20	33
32.82	0.7 C a	an we u	se only savings, in	come, time 🛭 6
57.31	0.6	addres	s and time employ	red to 7
37.17	4.1			1 4
33.69	_{0.0} pi	redict tr	ne score of a new c	ustomer?
25.56	0.94	/9.01	4	11
32.04	0.00	45.41	3	3
41.34	4.26	55.22	16	18
:	:	:	:	:

- Taking logarithms reduces the skewness in the predictor variables.
- Because of zeros, I used log(x+1).

Proposed model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + e$$

where Y = Credit score, $X_1 = \log \text{ savings}$, $X_2 = \log \text{ income}$, $X_3 = \log \text{ time at current address}$, $X_4 = \log \text{ time in current job}$, e = error.

```
lm(formula = score ~ log.savings + log.income + log.address +
log.employed, data = creditlog)
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|) (Intercept) -0.219 5.231 -0.04 0.9667 log.savings 10.353 0.612 16.90 < 2e-16 log.income 5.052 1.258 4.02 6.8e-05 log.address 2.667 0.434 6.14 1.7e-09 log.employed 1.314 0.409 3.21 0.0014
```

```
Residual standard error: 10.2 on 495 degrees of freedom Multiple R-squared: 0.47, Adjusted R-squared: 0.466 F-statistic: 110 on 4 and 495 DF, p-value: <2e-16
```

Interpreting regression coefficients

- The ideal scenario is when the predictors are uncorrelated.
 - Each coefficient can be interpreted and tested separately.
- Correlations amongst predictors cause problems.
 - The variance of all coefficients tends to increase, sometimes dramatically.
 - Interpretations become hazardous when X_j changes, everything else changes.
 - Predictions still work provided new X values are within the range of training X values.
- Claims of causality should be avoided for observational data.

Interactions

- An interaction occurs when the one variable changes the effect of a second variable. (e.g., spending on radio advertising increases the effectiveness of TV advertising).
- To model an interaction, include the product X_1X_2 in the model in addition to X_1 and X_2 .
- Hierarchy principle: If we include an interaction in a model, we should also include the main effects, even if the p-values associated with their coefficients are not significant. (This is because the interactions are almost impossible to interpret without the main effects.)

Residual patterns

- If a plot of the residuals vs any predictor in the model shows a pattern, then the relationship is nonlinear.
- If a plot of the residuals vs any predictor **not** in the model shows a pattern, then the predictor should be added to the model.
- If a plot of the residuals vs fitted values shows a pattern, then there is heteroscedasticity in the errors. (Could try a transformation.)

Residual patterns

- If a plot of the residuals vs any predictor in the model shows a pattern, then the relationship is nonlinear.
- If a plot of the residuals vs any predictor **not** in the model shows a pattern, then the predictor should be added to the model.
- If a plot of the residuals vs fitted values shows a pattern, then there is heteroscedasticity in the errors. (Could try a transformation.)

Residual patterns

- If a plot of the residuals vs any predictor in the model shows a pattern, then the relationship is nonlinear.
- If a plot of the residuals vs any predictor **not** in the model shows a pattern, then the predictor should be added to the model.
- If a plot of the residuals vs fitted values shows a pattern, then there is heteroscedasticity in the errors. (Could try a transformation.)

Outline

1 Revision: multiple regression

2 Matrix formulation

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \cdots + \beta_p X_{p,i} + e_i.$$

Let
$$\mathbf{Y} = (Y_1, ..., Y_n)'$$
, $\mathbf{e} = (e_1, ..., e_n)'$, $\boldsymbol{\beta} = (\beta_0, ..., \beta_p)'$ and

$$\mathbf{X} = \begin{bmatrix} 1 & X_{1,1} & X_{2,1} & \dots & X_{p,1} \\ 1 & X_{1,2} & X_{2,2} & \dots & X_{p,2} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & X_{1,n} & X_{2,n} & \dots & X_{p,n} \end{bmatrix}.$$

Then

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \cdots + \beta_p X_{p,i} + e_i.$$

Let
$$\mathbf{Y}=(Y_1,\ldots,Y_n)'$$
, $\mathbf{e}=(e_1,\ldots,e_n)'$, $\boldsymbol{\beta}=(\beta_0,\ldots,\beta_p)'$ and

$$m{X} = egin{bmatrix} \mathbf{1} & X_{1,1} & X_{2,1} & \dots & X_{p,1} \\ \mathbf{1} & X_{1,2} & X_{2,2} & \dots & X_{p,2} \\ \vdots & \vdots & \vdots & & \vdots \\ \mathbf{1} & X_{1,n} & X_{2,n} & \dots & X_{p,n} \end{bmatrix}.$$

Then

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$
.

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \cdots + \beta_p X_{p,i} + e_i.$$

Let
$$\mathbf{Y}=(Y_1,\ldots,Y_n)'$$
, $\mathbf{e}=(e_1,\ldots,e_n)'$, $\boldsymbol{\beta}=(\beta_0,\ldots,\beta_p)'$ and

$$m{X} = egin{bmatrix} \mathbf{1} & X_{1,1} & X_{2,1} & \dots & X_{p,1} \\ \mathbf{1} & X_{1,2} & X_{2,2} & \dots & X_{p,2} \\ \vdots & \vdots & \vdots & & \vdots \\ \mathbf{1} & X_{1,n} & X_{2,n} & \dots & X_{p,n} \end{bmatrix}.$$

Then

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$
.

Least squares estimation

Minimize: $(\mathbf{Y} - \mathbf{X}\beta)'(\mathbf{Y} - \mathbf{X}\beta)$

Differentiate wrt β gives

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{Y}$$

(The "normal equation".)

$$\hat{\sigma}^2 = \frac{1}{n - p - 1} (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})' (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$

Note: If you fall for the dummy variable trap, (X'X) is a singular matrix.

Least squares estimation

Minimize: $(\mathbf{Y} - \mathbf{X}\beta)'(\mathbf{Y} - \mathbf{X}\beta)$

Differentiate wrt β gives

$$\hat{oldsymbol{eta}} = (oldsymbol{X}'oldsymbol{X})^{-1}oldsymbol{X}'oldsymbol{Y}$$

(The "normal equation".)

$$\hat{\sigma}^2 = \frac{1}{n-p-1} (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})' (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$

Note: If you fall for the dummy variable trap, (X'X) is a singular matrix.

Least squares estimation

Minimize: $(\mathbf{Y} - \mathbf{X}\beta)'(\mathbf{Y} - \mathbf{X}\beta)$

Differentiate wrt β gives

$$\hat{oldsymbol{eta}} = (oldsymbol{\mathcal{X}}'oldsymbol{\mathcal{X}})^{-1}oldsymbol{\mathcal{X}}'oldsymbol{\mathbf{Y}}$$

(The "normal equation".)

$$\hat{\sigma}^2 = \frac{1}{n-p-1} (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})' (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$

Note: If you fall for the dummy variable trap, (X'X) is a singular matrix.

Least squares estimation

Minimize: $(\mathbf{Y} - \mathbf{X}\beta)'(\mathbf{Y} - \mathbf{X}\beta)$

Differentiate wrt β gives

$$\hat{oldsymbol{eta}} = (oldsymbol{X}'oldsymbol{X})^{-1}oldsymbol{X}'oldsymbol{Y}$$

(The "normal equation".)

$$\hat{\sigma}^2 = \frac{1}{n-p-1} (\mathbf{Y} - \mathbf{X}\hat{eta})' (\mathbf{Y} - \mathbf{X}\hat{eta})$$

Note: If you fall for the dummy variable trap, $(\mathbf{X}'\mathbf{X})$ is a singular matrix.

If the errors are iid and normally distributed, then

$$\mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}).$$

So the likelihood is

$$L = \frac{1}{\sigma^n (2\pi)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})\right)$$

which is maximized when $(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$ is minimized.

So MLE = OLS

If the errors are iid and normally distributed, then

$$\mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}).$$

So the likelihood is

$$L = rac{1}{\sigma^n (2\pi)^{n/2}} \exp\left(-rac{1}{2\sigma^2} (\mathbf{Y} - \mathbf{X}oldsymbol{eta})' (\mathbf{Y} - \mathbf{X}oldsymbol{eta})
ight)$$

which is maximized when $(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$ is minimized.

So MLE = OLS.

If the errors are iid and normally distributed, then

$$\mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}).$$

So the likelihood is

$$L = rac{1}{\sigma^n (2\pi)^{n/2}} \exp\left(-rac{1}{2\sigma^2} (\mathbf{Y} - \mathbf{X}eta)' (\mathbf{Y} - \mathbf{X}eta)
ight)$$

which is maximized when $(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$ is minimized.

So MLE = OLS.

If the errors are iid and normally distributed, then

$$\mathbf{Y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}).$$

So the likelihood is

$$L = rac{1}{\sigma^n (2\pi)^{n/2}} \exp\left(-rac{1}{2\sigma^2} (\mathbf{Y} - \mathbf{X}eta)' (\mathbf{Y} - \mathbf{X}eta)
ight)$$

which is maximized when $(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$ is minimized.

So MLE = OLS.

Optimal predictions

$$\hat{Y}^* = \mathsf{E}(Y^*|oldsymbol{Y},oldsymbol{X},oldsymbol{X}^*) = oldsymbol{X}^*\hat{oldsymbol{eta}} = oldsymbol{X}^*(oldsymbol{X}'oldsymbol{X})^{-1}oldsymbol{X}'oldsymbol{Y}$$

where X^* is a row vector containing the values of the regressors for the predictions (in the same format as X).

Prediction variance

$$Var(Y^*|\boldsymbol{Y},\boldsymbol{X},\boldsymbol{X}^*) = \sigma^2 \left[1 + \boldsymbol{X}^*(\boldsymbol{X}'\boldsymbol{X})^{-1}(\boldsymbol{X}^*)' \right]$$

= 95% prediction intervals assu-

Optimal predictions

$$\hat{Y}^* = \mathsf{E}(Y^*|\boldsymbol{Y},\boldsymbol{X},\boldsymbol{X}^*) = \boldsymbol{X}^*\hat{\boldsymbol{\beta}} = \boldsymbol{X}^*(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{Y}$$

where X^* is a row vector containing the values of the regressors for the predictions (in the same format as X).

Prediction variance

$$\mathsf{Var}(Y^*|oldsymbol{Y},oldsymbol{X},oldsymbol{X}^*) = \sigma^2 \left[1 + oldsymbol{X}^* (oldsymbol{X}'oldsymbol{X})^{-1} (oldsymbol{X}^*)'
ight]$$

This ignores any errors in X

■ 95% prediction intervals assuming normal errors: $\hat{Y}^* \pm 1.96 \sqrt{\text{Var}(Y^* | Y.X.X^*)}$.

Optimal predictions

$$\hat{Y}^* = \mathsf{E}(Y^*|oldsymbol{Y},oldsymbol{X},oldsymbol{X}^*) = oldsymbol{X}^*\hat{oldsymbol{eta}} = oldsymbol{X}^*(oldsymbol{X}'oldsymbol{X})^{-1}oldsymbol{X}'oldsymbol{Y}$$

where X^* is a row vector containing the values of the regressors for the predictions (in the same format as X).

Prediction variance

$$\operatorname{Var}(Y^*|\mathbf{Y},\mathbf{X},\mathbf{X}^*) = \sigma^2 \left[1 + \mathbf{X}^*(\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}^*)'\right]$$

- This ignores any errors in **X***.
- 95% prediction intervals assuming normal errors: $\hat{Y}^* \pm 1.96\sqrt{\text{Var}(Y^*|Y,X,X^*)}$.

Optimal predictions

$$\hat{Y}^* = \mathsf{E}(Y^*|oldsymbol{Y},oldsymbol{X},oldsymbol{X}^*) = oldsymbol{X}^*\hat{eta} = oldsymbol{X}^*(oldsymbol{X}'oldsymbol{X})^{-1}oldsymbol{X}'oldsymbol{Y}$$

where X^* is a row vector containing the values of the regressors for the predictions (in the same format as X).

Prediction variance

$$\operatorname{Var}(Y^*|\mathbf{Y},\mathbf{X},\mathbf{X}^*) = \sigma^2 \left[1 + \mathbf{X}^*(\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}^*)'\right]$$

- This ignores any errors in **X***.
- 95% prediction intervals assuming normal errors: $\hat{Y}^* \pm 1.96 \sqrt{\text{Var}(Y^*|Y,X,X^*)}$.