Fahrzeugmechatronik II Beobachterentwurf

Prof. Dr.-Ing. Steffen Müller M.Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Beobachterentwurf Problem und Lösungsansatz

Eine Zustandsrückführung erlaubt eine weitgehend freie Gestaltung der dynamischen Eigenschaften des Regelkreises. Vorausgesetzt wird aber, dass alle Zustände zu jedem Zeitpunkt bekannt sind.

Die Zustände sind meist nicht vollständig messbar, da

- der messtechnischer Aufwand zu hoch oder
- die Messgröße gar nicht kontinuierlich während des Prozesses messbar ist.

Mit einem Schätzwert $\hat{\mathbf{x}}(t)$ für den Zustand $\mathbf{x}(t)$ könnte eine Zustandsrückführung $\mathbf{u}(t) = -\mathbf{K}\hat{\mathbf{x}}(t)$ realisiert werden.

Beobachterentwurf Problem und Lösungsansatz

Beobachter rekonstruieren den Zustand aus dem Verlauf der Eingangs- und Ausgangsgrößen. Hierdurch lassen sich z.B. Zustandsrückführungen ohne die Messung aller Zustände realisieren oder Zustände bzw. Störgrößen beobachten.

Es werden behandelt:

- Lösungsweg für den Beobachterentwurf
- Realisierung von Zustandsrückführungen mit Beobachter

Beobachterentwurf Lösungsweg

Einfachster Lösungsweg

Allgemeine Beobachterstruktur

Luenberger Beobachter Struktur des Beobachters

Luenberger Beobachter Konvergenz des Beobachters

Satz 8.1 (Beobachter)

Für den Beobachtungsfehler

$$\boldsymbol{e}(t) = \boldsymbol{x}(t) - \hat{\boldsymbol{x}}(t)$$

eines Luenbergerbeobachters gilt die Beziehung

$$\lim_{t \to \infty} \|\boldsymbol{e}(t)\| = 0$$

für beliebige Anfangszustände des Systems und des Beobachters genau dann, wenn alle Eigenwerte der Matrix (A-LC) negativen Realteil haben.

Seite 7

Luenberger Beobachter Wahl der Rückführmatrix L

Seite 8

Luenberger Beobachter Nebenbetrachtung: Duales System

Luenberger Beobachter Duales Entwurfsproblem

- ➤ Die Eigenwerte von (A-LC) können durch eine geeignete Wahl von L genau dann beliebig verschoben werden, wenn das System (A,C) vollständig beobachtbar ist.
- Damit der Beobachtungsfehler schneller abklingt als das Übergangsverhalten des zu beobachtenden Systems, müssen die Eigenwerte möglichst weit links in der komplexen Ebene platziert werden.
- Soll eine Zustandsrückführung K realisiert werden, wählt man die Beobachtereigenwerte im Vergleich zu den Eigenwerten der Matrix (A-BK)

Luenberger Beobachter mit Zust.-rückführung Realisierung einer Zustandsrückführung

Seite 11

Luenberger Beobachter mit Zust.-rückführung Beschreibung des Regelkreises

Seite 12

Luenberger Beobachter mit Zust.-rückführung Ermittlung der K-Matrix - Separationstheorem

Satz 8.2 (Separationstheorem)

Die Eigenwerte des Regelkreises, in dem eine Zustandsrückführung mit einem Beobachter realisiert ist, setzen sich aus den Eigenwerten der Matrix A - BK, die einen Regelkreis mit Zustandsrückführung und ohne Beobachter beschreibt, und den Eigenwerten der Systemmatrix A - LC des Beobachters zusammen.

Seite 13

Luenberger Beobachter mit Zust.-rückführung E/A-Verhalten für Regelkreis mit Beobachter

Luenberger Beobachter mit Zust.-rückführung Entwurfsverfahren für RK mit Beobachter

Entwurfsverfahren 8.1 Entwurf einer Zustandsrückführung und eines Beobachters

Gegeben: Regelstrecke $(oldsymbol{A}, oldsymbol{B}, oldsymbol{C})$, Güteforderungen

- 1. Es wird überprüft, dass die Regelstrecke vollständig steuerbar und beobachtbar ist.
- 2. Mit bekannten Verfahren wird eine Zustandsrückführung

$$\boldsymbol{u}(t) = -\boldsymbol{K}\boldsymbol{x}(t) + \boldsymbol{V}\boldsymbol{w}(t)$$

entworfen, mit der die an den Regelkreis gestellten Güteforderungen erfüllt sind (vgl. z. B. die Algorithmen 6.1 auf S. 239 und 7.1 auf S. 301).

- 3. Anhand der Eigenwerte der Matrix A BK werden die Beobachtereigenwerte festgelegt.
- 4. Mit einem Verfahren zur Polverschiebung wird für die vorgegebenen Beobachtereigenwerte die Rückführmatrix L entworfen. Dabei wird z. B. das Entwurfsverfahren 6.1 auf S. 239 auf das duale System mit den Matrizen A' und B' angewendet, um L' zu berechnen.
- 5. Das Verhalten des geschlossenen Kreises wird anhand von Simulationsuntersuchungen bewertet.

Ergebnis: Zustandsrückführung, Beobachter.

Seite 15

Luenberger Beobachter mit Zust.-rückführung Wahl der Beobachtereigenwerte

Man wählt die Beobachtereigenwerte $\lambda_{\mathrm{B}i}$ so aus, dass sie in der linken komplexen Halbebene deutlich links von den Eigenwerten der Regelstrecke bzw. des geschlossenen Kreises liegen. Der Betrag der Realteile soll 2 bis 6 mal so groß sein wie der Betrag der Realteile der dominierenden Eigenwerte, wobei der kleinere Faktor für großes Messrauschen gilt.

Bei dieser Wahl klingen die Eigenvorgänge des Beobachters zwei- bis sechsmal so schnell ab wie die Eigenvorgänge der Strecke bzw. des Regelkreises. Die durch die Zustandsrückführung erzeugten Eigenwerte der Matrix A-BK sind deshalb für das Regelkreisverhalten mit Beobachter maßgebend.

Seite 16

Vielen Dank für Ihre Aufmerksamkeit!