WHAT IS CLAIMED IS:

- 1. An isolated polynucleotide comprising a member selected from the group consisting of:
- (a) a polynucleotide encoding the polypeptide comprising amino acid 1 to amino acid 158 as set forth in SEQ ID NO:2;
- (b) a polynocleotide which encodes a mature , polypeptide encoded by the DNA contained in ATCC Deposit No. 97129;
- (c) a polynucleotide capable of hybridizing to and which is at least 70% identical to the polynucleotide of (a) or (b); and
- (d) a polynucleotide fragment of the polynucleotide of (a), (b) or (c).
- 2. The polynucleotide of Claim 1 wherein the polynucleotide is DNA.
- 3. The polynucleotide of Claim 2 which encodes the polypeptide comprising amino acid 1 to 158 of SEQ ID NO:2.
- An isolated polynucleotide having at least 10 base pairs which hybridizes to and which has at least 70% identity to a member selected from the group consisting of:
- (a) RNA transcribed from a human gene, said gene including DNA having at least a 90% identity to the DNA selected from the group consisting of SEQ ID NO:1; and

 (b) DNA corresponding to the RNA of (a).
- 5. A vector containing the DNA of Claim 2.
- 6. A host cell genetically engineered with the vector of Claim 5.

- 7. A process for producing a polypeptide comprising: expressing from the host cell of Claim 6 the polypeptide encoded by said DNA.
- 8. A process for producing dells capable of expressing a polypeptide comprising genetically engineering cells with the vector of Claim 5.
- 9. A polypertide encoded by the polynucleotide of claim 1 and comprising a member selected from the group consisting of (i) a polypeptide having the deduced amino acid sequence of SEQ ID NO:2 and fragments, analogs and derivatives thereof; and (ii) a polypeptide encoded by the cDNA of ATCC Deposit No. 97129 and fragments, analogs and derivatives of said polypeptide.
- 10. An agonist for the polypeptide of claim 9.
- 11. An antagonist against the polypeptide of claim 9.
- 12. A method for the treatment of a patient having need to inhibit a colon specific gene protein comprising: administering to the patient a the apeutically effective amount of the antagonist of Claim 11.
- 13. The method of claim 12 wherein the antagonist is a polypeptide and the therapeutically effective amount of the antagonist is administered by providing to the patient DNA encoding said polypeptide and expressing said polypeptide in vivo.
- 14. A method for the treatment of a patient having need of a colon specific gene protein comprising: administering to the patient a therapeutically effective amount of the polypeptide of claim 9.

- 15. The method of claim 14 wherein the therapeutically effective amount of the polypeptide is administered by providing to the patient DNA encoding said polypeptide and expressing said polypeptide in vivo.
- 16. A process of screening compounds to identify antagonists to the polypeptide of claim 9, said process comprising:

combining the polypeptide with elements which undergo simultaneous oxidation and reduction in the presence of the compound to be screened under conditions favorable to an oxidation reduction reaction; and

determining the ability of the compound to inhibit the reaction

17. A process for diagnosing a disorder of the colon in a host comprising:

determining transcription of a human gene in a sample derived from non-colon tissue of a host, said gene having a coding portion which includes DNA having at least 90% identity to DNA selected from the group consisting of the DNA of SEQ ID NO:1, whereby said transcription indicates a disorder of the colon in the host.

- 18. The process of claim 17 wherein transcription is determined by detecting the presence of an altered level of RNA transcribed from said human gene.
- 19. The process of claim 17 wherein transcription is determined by detecting the presence of an altered level of DNA complementary to the RNA transcribed from said human gene.

20. The process of claim 17 wherein transcription is determined by detecting the presence of an altered level of an expression product of said human gene.

ADD B Add 2