Test Tema 5 de Percepción

ETSINF, Universitat Politècnica de València, Mayo de 2022

Apellidos: Nombre:

Profesor: \Box Jorge Civera \boxtimes Carlos Martínez

Cuestiones (0.3 puntos, 10 minutos, con apuntes)

- $\boxed{\mathbf{A}}$ Si dado un parámetro Bernoulli $\hat{\mathbf{p}} = \left(\frac{1}{4} \ \frac{1}{8} \ 1 \ \frac{3}{4}\right)$ estimado sobre 8 muestras se aplica un suavizado por muestra ficticia, el parámetro suavizado resultante es:
 - A) $\tilde{\mathbf{p}} = \left(\frac{3}{10} \, \frac{1}{5} \, \frac{9}{10} \, \frac{7}{10}\right)$
 - B) $\tilde{\mathbf{p}} = (\frac{1}{5} \frac{3}{10} 1 \frac{4}{5})$
 - C) $\tilde{\mathbf{p}} = (\frac{3}{8} \frac{2}{8} \frac{7}{8} \frac{7}{8})$
 - D) $\tilde{\mathbf{p}} = \left(\frac{1}{10} \ 0 \ \frac{4}{5} \ \frac{1}{2}\right)$
- B Dado un problema de clasificación bidimensional en tres clases equiprobables A, B y C, donde las distribuciones condicionadas vienen dadas por multinomiales de parámetros $\mathbf{p}_A = \begin{pmatrix} \frac{1}{5} & \frac{4}{5} \end{pmatrix}$, $\mathbf{p}_B = \begin{pmatrix} \frac{7}{10} & \frac{3}{10} \end{pmatrix}$ y $\mathbf{p}_C = \begin{pmatrix} \frac{2}{5} & \frac{3}{5} \end{pmatrix}$, indica dónde se clasificaría la muestra $\mathbf{x} = (2\ 0)$
 - A) A
 - B) B
 - C) C
 - D) Hay empate

X ANULADA

Dado el conjunto de datos anexo pertenecientes a dos clases A y B, ¿cuál de las siguientes matrices es la matriz de covarianza común?

A)
$$\Sigma = \begin{pmatrix} 0.25 & 0 & 0.5 & 0 \\ 0 & 0.25 & 0 & 0.5 \\ 0.5 & 0 & 1.0 & 0 \\ 0 & 0.5 & 0 & 1 \end{pmatrix}$$

B)
$$\Sigma = \begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \\ 2 & 0 & 4 & 0 \\ 0 & 2 & 0 & 4 \end{pmatrix}$$

C)
$$\Sigma = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$$

D)
$$\Sigma = \begin{pmatrix} 1.25 & 0 \\ 0.0 & 1.25 \end{pmatrix}$$

Test Tema 5 de Percepción

ETSINF, Universitat Politècnica de València, Mayo de 2022

Apellidos: Nombre:

Profesor: \boxtimes Jorge Civera \square Carlos Martínez

Cuestiones (0.3 puntos, 10 minutos, con apuntes)

- D ¿Cuál de los siguientes vectores define correctamente una distribución de probabilidad Bernoulli bidimensional de parámetro **p**?
 - A) $\mathbf{p} = (0.2 \ 0.8)$
 - B) $\mathbf{p} = (0.0 \ 0.0)$
 - C) $\mathbf{p} = (0.9 \ 0.9)$
 - D) Todos los anteriores.
- A Si se tiene el siguiente conjunto de vectores de cuentas de tres clases A, B y C:

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{X}_4	\mathbf{x}_5	\mathbf{x}_6	\mathbf{x}_7	\mathbf{x}_8	\mathbf{x}_9
4	3	2	5	4	1	1	0	2
1	2	3	0	1	4	4	5	3
A	Α	Α	В	В	В	С	С	\overline{C}

Indica los parámetros multinomiales estimados por máxima verosimilitud a partir de esas muestras.

A)
$$\mathbf{p}_A = (\frac{3}{5} \frac{2}{5}), \ \mathbf{p}_B = (\frac{2}{3} \frac{1}{3}), \ \mathbf{p}_C = (\frac{1}{5} \frac{4}{5})$$

B)
$$\mathbf{p}_A = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$
, $\mathbf{p}_B = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$, $\mathbf{p}_C = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$

C)
$$\mathbf{p}_A = \begin{pmatrix} \frac{9}{22} & \frac{6}{23} \end{pmatrix}$$
, $\mathbf{p}_B = \begin{pmatrix} \frac{10}{22} & \frac{5}{23} \end{pmatrix}$, $\mathbf{p}_C = \begin{pmatrix} \frac{3}{22} & \frac{12}{23} \end{pmatrix}$

D)
$$\mathbf{p}_A = \left(\frac{8}{15} \frac{7}{15}\right)$$
, $\mathbf{p}_B = \left(\frac{3}{5} \frac{2}{5}\right)$, $\mathbf{p}_C = \left(\frac{1}{3} \frac{2}{3}\right)$

- $\overline{\mathbb{C}}$ En la definición de la distribución gaussiana general a partir de la gaussiana estandarizada, ¿qué transformación lineal realiza el vector μ ?
 - A) Escalado
 - B) Rotación
 - C) Translación
 - D) Ninguna de las anteriores