Machine Learning II Final Project - Temporal Shift Module Evaluation

Peter Shagnea and Sarvesh Bhagat

Agenda

- Motivation
- Methods
- Data
- Training
- Testing
- Conclusion

Video Understanding - Applications

- Edge /On premise Devices
 - Drone/Surveillance
 - Medical devices
 - Self driving Cars
- Cataloging large databases
 - >10⁵ hours of videos uploaded to youtube daily

Video Understanding - Methods

- Activation function for a video model represented as A ϵ R N×C×T×H×W
 - o N: Batch Size
 - C: Channels
 - T: Temporal Dimension
 - HxW: Pixels

- 2D CNN operates independently over T
 - Relatively efficient but cannot infer temporal order
 - Can be combined w/LSTM, temporal relation network, etc.
- 3D CNN inflates 2D kernels to 3D
 - Computationally intensive, larger number of parameters

Temporal Shift Module

- Developed at MIT
 - "TSM: Temporal Shift Module for Efficient Video Understanding" [ICCV 2019]
- First place on something-something V2 leaderboard
- Computational efficiency comparable to a 2D CNN

(a) The original tensor without shift.

(b) Offline temporal shift (bi-direction).

Temporal Shift Module

- TSM Shifts channels along temporal dimension
 - Shift occurs in residual branch
 - ResNet50 and ResNet101 used here

- Optimal value for shift is ¼ of the channels
- Values can be shifted both forward and backwards in time
 - Online version shifts only backwards

Temporal Shift Module

Dataset Description

- 20BN-SOMETHING-SOMETHING
 V2 is a large, densely labeled
 videoset
 - Much larger than similar datasets

 Videos of humans performing pre-defined actions

- 174 Classes individual actions
 - Additional object notations

Train	Validation	Test	Total
168,193	24,777	27,157	220,847

Sample Data

Label: Trying to pour water into a glass, but missing so it spills next to it

Label: Pulling two ends of a rubber band so that it gets stretched

Training Set-UP

Training Results

Number of epochs = 1

Number of epochs = 10

Test Set Results

- Tested on Resnet 50 and Resnet 101
- Various sampling methods for evaluation
 - Outlined in something-something paper
- Cropping had limited effect on results

Test Set Results - Network Comparison

- Sample size was increased to two clips
 - Two subsets of randomly selected fraes
- Compared Resnet 50 and Resnet 101
- ResNet 101 performs better
 - Leads by small margin
 - May not be worth increase in model size

Test Set Results - Multiple Clips

 Literature suggests loading multiple clips and averaging softmax results

Doubles evaluation time

Minor performance gains (~0.75%)

Conclusions

- TSM enables hardware-efficient video recognition
- Can use a 2D CNN backbone to enable joint spatial-temporal modelling
- Enables low-latency video recognition on edge devices with low cost compared to 3D CNN.

Sources

[1] Lin, Ji, TSM: "Temporal Shift Module for Efficient Video Understanding", *ICCV* 2019, August, 2019

[2] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-ing He.Non-local neural networks.arXiv preprintarXiv:1711.07971, 10, 2017. 1, 2, 5, 6, 7

[3] Raghav Goyal, "The "something something" video database for learning and evaluating visual common sense."

Questions???