

Prof. Ben Lee
Oregon State University
School of Electrical Engineering and Computer Science

1

Chapter Goals

- Review basic digital design concepts:
 - Designing basic digital components using logic gates and memory elements:
 - Decoders/encoders, multiplexers, counters, registers, memories, and Arithmetic and Logic Units (ALUs).
- Understand that these digital components represent fundamental building blocks for any digital system, especially processor (microarchitecture) design:
 - Modular design.

Chapter 7: Digital Components

Contents

- 7.1 Introduction
- 7.2 Multiplexers
- 7.3 Decoders
- 7.4 Memory Elements
- 7.5 Registers
- 7.6 Register File

Basic ALU (see Chapter 9)

Chapter 7: Digital Components

3

7.1 Introduction

Chapter 7: Digital Components

Multiplexors

- 2^n data inputs, n control inputs, one output.
- Control signal pattern forms binary index of input connected to output.

 $O = S' \ I_0 \ + S \ I_1$

Chapter 7: Digital Components

Multiplexors (cont.)

- 2:1 MUX: $O = S'I_0 + SI_1$
- 4:1 MUX: $O = S_1'S_0'I_0 + S_1'S_0I_1 + S_1S_0'I_2 + S_1S_0I_3$
- 8:1 MUX: $O = S_2'S_1'S_0'I_0 + S_2'S_1'S_0I_1 + S_2'S_1S_0'I_2 + S_2'S_1S_0I_3 + S_2S_1'S_0'I_4 + S_2S_1'S_0I_5 + S_2S_1S_0'I_6 + S_2S_1S_0I_7$

Chapter 7: Digital Components

9

Cascading Multiplexors

 Large multiplexers implemented by cascading smaller ones.

Chapter 7: Digital Components

2-to-4 Decoder

• Implementing a 2-to-4 decoder

Truth Table

S_1	S_0	O_3	O_2	O_1	O_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0
	0 0 1	S ₁ S ₀ 0 0 0 1 1 0 1 1	0 0 0 0 1 0 1 0 0	0 0 0 0 0 1 0 0 1 0 0 1	0 0 0 0 0 0 0 1 0 0 1 1 0 0 1

We can also implement active low enable

Chapter 7: Digital Components

13

7.4 Memory Elements

Chapter 7: Digital Components

Memory Element: S-R Latch

S R	l Q
0 0	hold
0 1	0
1 0	1
1 1	not allowed

$\overline{S} \overline{R}$	Q
0 0	not allowed
0 1	1
1 0	0
1 1	hold

Chapter 7: Digital Components

