

Fig. 1. Physical parameters of yggX and its gene product. (A) Alignment of YggX homologs. (B) Operon structure of mutY/yggX in E. coli and S. enterica LT2. Promoters were mapped by Gifford and Wallace in E. coli (43).

Fig. 1A

61 RARKYLQQQMERFLFEDGTVEAQGYVP---61 RARKYLQQQMERFLFEDGTVEAQGYVP---61 RARKYLQQQMERFLFEDGTVEAQGVP---61 EHRKLLEQEMVNFLFEGKDVHIEGYTPPEAK
61 DHRQLLEQEMVNFLFEGKDVHIEGYVP----Bpertussis Bparapert Bbronchi A.actin Pmultocida 61 EHRKLLEQEMVNFLFEGKDVHIEGYVP----Hinfluenzae 61 EHRQLIEAEMVNELFEGKDVHIDGYVP---61 DDRKFIEAQMTSELFEGKDVEIEGFVPE---61 EHRKLIEQEMVNELFEGKEVHIEGYTPPAK-61 EHRKLIEQEMVNELFEGKEVHIEGYTPEDKK Hducreyi Sputrefasciens Vcholerae Ecoli 61 EHRKLIEQEMVNELFEGKEVHIEGYTPEDKK 61 EHRKLIEQEMVNELFEGKEVHIEGYTPEDKK 61 EHRKLIEQEMVSELFEGKDVHIEGYTPEDKK 61 EHRKLIEQEMVSELFEGKDVHIEGYTPE---61 EHRKLIEQEMVSELFEGKDVHIEGYTPEDKK O157_H7EDL933 0157 H7 Spara Senteritidis Sdublin 61 EHRKLI EQEMVSELFEGKDVHIEGYTPEDKK 61 EHRKLI EQEMVSELFEGKDVHIEGYPTEDKK 61 EHRKLI EQEMVQELFEGK-----61 EDEKLI EQEMVNELFEGDDVHIAGYTPPSK-StyphiCT18 Styphimurium Kpneumo Ypesits 61 EHRKKIEKYMKLELFK-----61 SHRAFIEEELNKELFERRVAKPEGYIEPD-61 EDRKFLQTEMDKELSGEEYAQAEGYVPPEK61 EDRKFLQAEMDKEFAGEEYAQAEGYVP---61 EDRKFLQQEMDKELSGEDYAKADGYVP----Buchnera Xfastidiosa Psyring Pputida Paeruginosa 61 RAREYLAQQMEQYFFGDGADAVQGYVPQ--61 RAREYLAQQMEQYFFGDGADAVQGYVPQ--61 RAREYLAQQMEQYFFGDGADAVQGYVPQ--61 RARQYLMKQTEKYFFGEGADQASGYVP---61 RARQYLMKQTEKYFFGEGADQASGYVP----Ngonorrhoeae NmeningitB NmeningitA Bmallei Bpseudomallei 61 KSRTFLEKQMEAYFFGDGAQSPEGYVP---61 SARKFLEQEREKELFGGGTSTPQGYVP---61 KARQFLEQEMINELFGTGSEKPAGYTSE---Tferrooxidans Mcapsulatus Cburneti

Fig. 1A (continued)

Fig. 2. Increased levels of YggX protein in $yggX^*$ mutant. Western blot analysis was performed according to Harlow and Lane (59). Proteins were visualized by using alkaline phosphatase conjugated to anti-rabbit secondary antibody (Promega). Lanes A–C were loaded with crude cell-free extracts (1 μ g protein) from strains DM5104, DM5105 ($yggX^*$), and DM5647 (yggX::Gm), respectively. Lane D was loaded with 1 ng purified YggX.

Fig. 3. The $yggX^*$ mutation does not increase MNNG resistance of gshA mutants. Strain LT2 was grown in LB with (\triangle) and without (\triangle) 60 μ M MNNG. Both gshA (\bigcirc) and gshA $yggX^*$ (\bullet) mutant strains were grown in LB with 60 μ M MNNG.

Fig. 4. The $yggX^*$ mutation increases resistance of S. enterica to PQ. (A) Growth of gshA (\bigcirc) and gshA $yggX^*$ (\bullet) mutant strains in LB with 4 μ M PQ. (B) Growth of LT2 (\triangle) and $yggX^*$ (\blacktriangle) strains in LB with 40 μ M PQ.

odmontalitas tetranem kaltalites keretare tre ed 1918 200 filosofi filosofi filosofi anteres estas materiales como el manifestato de 1918 200 filosofi filos

Fig. 5. yggX* does not require soxR to mediate resistance to PQ. Strains LT2 (\spadesuit), soxR (\diamondsuit), and soxR yggX* (\blacktriangledown) were grown in LB with 4.0 μ M PQ.

Fig. 6. Model showing how YggX protects *S. enterica* from oxidative damage. The result of superoxide attack on [Fe-S] clusters is depicted. We hypothesize that YggX is able to block oxidative damage to labile clusters and thus prevent the normal downstream consequences of such oxidation.