Axis/Angle Representation

Special Orthogonal Matrices

$${R \in \mathbb{R}^{3 \times 3} \mid R^T R = R R^T = I, \det R = 1}$$

Special Orthogonal group in 3 dimensions

- \bullet Coordinates for SO(3)
 - 1 Rotation matrices
 - 2 Euler angles
 - 3 Axis angle parameterization
 - 4 Exponential coordinates
 - 5 Quaternions

Euler's Theorem

Rotations

Any displacement of a rigid body such that a point on the rigid body, say O, remains fixed, is equivalent to a rotation about a fixed axis through the point O.

Rotation with O fixed

Proof of Euler's Theorem

$$\mathbf{q} = R\mathbf{p}$$

Is there a point **p** that maps onto itself?

If there were such a point **p** ...

$$\mathbf{p} = R\mathbf{p}$$

Solve eigenvalue problem Verify $\lambda=1$ is

$$R\mathbf{p} = \lambda \mathbf{p}$$

Verify $\lambda=1$ is an eigenvalue for any R

How does one find the rotation matrix for a general axis and angle of rotation?

Note we already know the answer if the axis of rotation is one of the coordinate axes.

1-1 correspondence between any 3×1 vector and a 3×3 skew symmetric matrix

For any vector **b**

$$\mathbf{a} \times \mathbf{b} = \mathbf{A}_{3x3} \mathbf{b}$$

linear operator

Notation

A

a^

 $\hat{\mathbf{a}}$

Axis/Angle to Rotation Matrix

Rotation of a generic vector p about u through ϕ

$$Rp = p\cos\phi + uu^{T}(1-\cos\phi)p + \hat{u}p\sin\phi$$

Axis of rotation

u

Rotation angle

 ϕ

Rodrigues' formula

$$Rot(u,\phi) = I\cos\phi + uu^{T}(1-\cos\phi) + \hat{u}\sin\phi$$

- 1. Set u to be a unit vector along x (or y or z). Verify result is the same as $Rot(x, \phi)$.
- 2. Is the (axis, angle) to rotation matrix map *onto*? 1-1?

Image from wikipedia

 $Rot(u, \phi)$ and $Rot(-u, 2\pi - \phi)$? restrict ϕ to the interval $[0,\pi]$?

Axis/Angle to Rotation Matrix

Rotation of a generic vector p about u through ϕ

$$Rp = p\cos\phi + uu^{T}(1-\cos\phi)p + \hat{u}p\sin\phi$$

Axis of rotation

u

Rotation angle

Rodrigues' formula

$$Rot(u,\phi) = I\cos\phi + uu^{T}(1-\cos\phi) + \hat{u}\sin\phi$$

Lets extract the axis and the angle from the rotation matrix, R

Verify

$$\cos \phi = \frac{\tau - 1}{2}$$
 $\hat{u} = \frac{1}{2 \sin \phi} (R - R^T)$ (*u*, without solving for eigenvector)

- 1. (axis, angle) to rotation matrix map is many to 1
- 2. restricting angle to the interval $[0,\pi]$ makes it 1-1 except for

$$\tau = 3$$

$$\Rightarrow \phi = 0$$

$$au=3$$
 \Rightarrow $\phi=0$ \Rightarrow no unique axis

$$\tau =$$

$$-1 \Rightarrow \phi = \pi$$

