FACULDADE ANGLO-AMERICANO DE FOZ DO IGUAÇU

JORGE SILVA SILVA MATHEUS

TCC SOBRE JAVA

JORGE SILVA SILVA MATHEUS

TCC SOBRE JAVA

Trabalho de conclusão de curso apresentado como requisito obrigatório para obtenção do título de Bacharel em Ciência da Computação da Faculdade Anglo-Americano de Foz do Iguaçu.

Orientador: Msc. Nome do Orientador

Coorientador: Prof. Esp. Nome do Coorientador

Sobre
Nome, Nome 1 Nome 2 TCC sobre Java / Jorge Silva
Silva Matheus – Foz do Iguaçu, 2016.
 29 p. : il.

Orientador: Msc. Nome do Orientador

- Faculdade Anglo-Americano de Foz do Iguaçu. Curso de Ciência da Computação, 2016.
- 1. Palavra-chave
1. 2. Palavra-chave
2. I. Msc. Nome do Orientador. II. Faculdade Anglo-Americano de Foz do Iguaçu. III. Curso de Ciência da Computação. IV. TCC sobre Java

 CDU

TERMO DE APROVAÇÃO

Jorge Silva Silva Matheus

TCC sobre Java

Trabalho de conclusão de curso apresentado como requisito obrigatório para obtenção do título de Bacharel em Ciência da Computação da Faculdade Anglo-Americano de Foz do Iguaçu, pela seguinte banca examinadora:

Msc. Nome do Orientador Faculdade Anglo-Americano de Foz do Iguaçu (Orientador)

 ${\bf Prof.~Banca~2}$ Faculdade Anglo-Americano de Foz do Iguaçu

Prof. Banca 3 Faculdade Anglo-Americano de Foz do Iguaçu

AGRADECIMENTOS

Primeiramente agradeço a Deus por sua graça e salvação.

À minha família, por terem me proporcionado ...

À ... por me mostrar o caminho da ...

Aos meus grandes amigos....

A todos os professores que fizeram parte desta importante etapa da minha vida.

Aos meus orientadores.....

RESUMO

A rede social \dots

 ${\bf Palavras\text{-}chaves:}\ {\bf Dados.}\ {\bf Data}\ {\bf Mining.}\ {\bf Twitter.}\ {\bf Python.}$

ABSTRACT

The social network \dots

 ${\bf Keywords}:$ Data. Data Mining. Twitter. Python.

LISTA DE ILUSTRAÇÕES

FIGURA 1 -	Etapas do processo de KDD	1
FIGURA 2 -	Exemplo de uma Series	13
FIGURA 3 -	Execução do <i>script</i> para coleta de dados	26

LISTA DE TABELAS

TABELA 1 -	Cronograma	18
TABELA 2 -	Cronograma de execução	18

LISTA DE CÓDIGOS

CÓDIGO 1 –	Acesso à API do Twitter	24
CÓDIGO 2 -	Script coletar-hashtags.py	25

LISTA DE GRÁFICOS

GRAFICO 1	_	Idiomas	que 1	mais	real	izaram	tweets								27	•

LISTA DE ABREVIATURAS

API Application Programming Interface - Interface de Programação de Apli-

cação

BMP Windows Bitmap

CGI Common Gateway Interface - Interface Comum de Entrada¹

CSV Comma-Separated Values - Valores Separados Por Vírgula¹

FTP File Transfer Protocol - Protocolo de Transferência de Arquivos

GIF Graphics Interchange Format - Formato Para Intercâmbio de Gráficos¹

HTTP Hypertext Transfer Protocol - Protocolo de Transferência de Hipertexto

HTTPS Hyper Text Transfer Protocol Secure - Protocolo de Transferência de

Hipertexto Seguro

JPG Joint Photographic Experts Group

PDF Portable Document Format - Formato de Documento Portátil¹

PNG Portable Network Graphics - Rede Portável de Gráficos¹

URL Uniform Resource Locator - Localizador Padrão de Recursos

XHTML eXtensible Hypertext Markup Language - Linguagem de Marcação de

Hipertexto Extensiva

XML eXtensible Markup Language - Linguagem de Marcação Extensiva

YML Yet Another Markup Language - Uma Outra Linguagem de Marcação²

¹ Tradução do autor

Lista de símbolos

Γ	Letra g	grega Gama
-	200100	, roga carrie

- Λ Lambda
- \in Pertence

SUMÁRIO

1	INTRODUÇAO	17
1.1	JUSTIFICATIVA	17
1.2	OBJETIVOS	17
1.2.1	Objetivo Geral	17
1.2.2	Objetivos Específicos	17
1.3	CRONOGRAMA DE ATIVIDADES	17
1.4	ORGANIZAÇÃO DO TRABALHO	19
2	REVISÃO BIBLIOGRÁFICA	20
3	FUNDAMENTAÇÃO TEÓRICA	21
3.1	DESCOBERTA DE CONHECIMENTO EM BASE DE DADOS	
	E DATA MINING	21
4	MATERIAIS E MÉTODOS	23
4.1	TECNOLOGIAS E FERRAMENTAS	23
4.1.1	Bibliotecas da Linguagem Python	23
4.1.1.1	Biblioteca NumPy	23
4.1.1.2	Biblioteca pandas	23
4.1.2	Rede Social Twitter	2 3
4.1.2.1	API do Twitter	24
4.1.2.2	Bibliotecas Para o Consumo de Dados da API do Twitter	24
5	IMPLEMENTAÇÃO DAS TÉCNICAS	25
5.1	COLETA DE DADOS	25
5.2	ANÁLISE DE DADOS	26
6	ANÁLISE DOS RESULTADOS	27
6.1	APRESENTAÇÃO DOS RESULTADOS	27
7	CONCLUSÕES E SUGESTÕES PARA FUTUROS TRABA- LHOS	28
7.1	CONCLUSÕES	28
7.2	SUGESTÕES PARA FUTUROS TRABALHOS	28

REFERÊNCIAS																												6	29
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	_	

1 INTRODUÇÃO

Redes sociais se tornaram um termo comum e uma chave fundamental para o estilo de vida moderno. Hoje em dia,

1.1 JUSTIFICATIVA

A rede social *Twitter* é um excelente ponto de partida para a mineração de dados em redes sociais,

A rede social possui um total de 289 milhões de usuários ativos no mundo inteiro, totalizando 58 milhões de *tweets* por dia (BRAIN, 2016).

1.2 OBJETIVOS

1.2.1 Objetivo Geral

Este trabalho tem como objetivo principal utilizar técnicas e algoritmos de *data* mining, para a análise e mineração de dados provenientes da rede social *Twitter*, utilizando os recursos e bibliotecas que a linguagem de programação Python possui.

1.2.2 Objetivos Específicos

- Identificar os conceitos sobre KDD e data mining;
- Descrever as técnicas de data mining;
- Explorar as funcionalidades das bibliotecas de mineração e visualização da linguagem Python;
- Examinar e utilizar a API da rede social *Twitter* para a coleta de dados;
- Encontrar padrões em dados provenientes do Twitter;
- Compreender e aplicar técnicas para apresentação e visualização de informações geográficas encontradas nos dados coletados;
- Apresentar testes e resultados obtidos da análise e mineração dos dados.

1.3 CRONOGRAMA DE ATIVIDADES

As atividades a serem executadas no decorrer do projeto visando o êxito do mesmo, estão listados a seguir e especificados em meses na Tabela 2:

TABELA 1 – Cronograma

Mês - Ano	08/15	09/15	10/15	11/15	12/15	02/16	03/16	04/16	05/16
Estudo e Pesquisa	Х	Х	Х	Х	Х	Х	Х	Х	
Análise de Requisitos	Х	Х	Х	Х	Х	Х	Х	Х	
Geração do Documento	Х	Х	Х	Х	Х	Х	Х	Х	Х
Implementação				Х	Х	Х	Х	Х	Х
Testes				Х	Х	Х	Х	Х	Х
Elaboração de Artigos			Х	Х	Х			Х	Х
Apresentação de Resultados					Х				Х

FONTE: Autor

- Estudo e Pesquisa: aquisição dos conhecimentos pertinentes e necessários para o desenvolvimento do projeto;
- Análise de Requisitos: levantamento dos requisitos do projeto;
- Geração do Documento: desenvolvimento das documentações para especificação do projeto;
- Implementação: desenvolvimento dos códigos para a análise de dados;
- Testes: execução dos testes que irão garantir a qualidade das informações a serem geradas;
- Elaboração de Artigos: parte do tempo destinado ao projeto será para desenvolver artigos visando a publicação em eventos da área;
- Apresentação de Resultados: etapas destinadas à apresentação dos resultados parciais e finais.

TABELA 2 – Cronograma de execução

Mês - Ano	08/15	09/15	10/15	11/15	12/15	02/16	03/16	04/16	05/16
Estudo e Pesquisa	Х	Х	Х	Х	Х	Х	Х	Х	
Análise de Requisitos	Х	Х	Х	Х	Х	Х	Х	Х	
Geração do Documento	Х	Х	Х	Х	Х	Х	Х	Х	Х
Implementação				Х	Х	Х	Х	Х	Х
Testes				Х	Х	Х	Х	Х	Х
Elaboração de Artigos			Х	Х	Х			Х	Х
Apresentação de Resultados					Х				Х

FONTE: Autor

1.4 ORGANIZAÇÃO DO TRABALHO

Além deste capítulo Tabela 1, este trabalho é composto de mais seis capítulos.

O Capítulo 2 apresenta os trabalhos que são referências para este estudo.

Os fundamentos teóricos, como os conceitos de *data mining* e base para o entendimento do tema proposto, estão descritos no Capítulo 3.

No Capítulo 5 são apresentadas as fases do desenvolvimento

Os resultados obtidos e a apresentação de planilhas e gráficos das soluções desenvolvidas são apresentados no Capítulo 6.

Por fim, a conclusão deste trabalho se dá no Capítulo 7, onde são abordadas e analisadas as dificuldades, além de determinar as possibilidades para trabalhos futuros.

2 REVISÃO BIBLIOGRÁFICA

Alguns trabalhos serviram como ajuda e inspiração para este estudo. Porém durante o período de busca por bibliografias Capítulo 1.

De acordo com Lemos (2003), um dado se transforma em informação

Em seu estudo, Lemos (2003) aborda duas técnicas ...

. . .

O reconhecimento de padrões permite (SILVA; BOSCARIOLI; PERES, 2003). Para o desenvolvimento

3 FUNDAMENTAÇÃO TEÓRICA

A mineração de dados é um assunto totalmente interdisciplinar, ...

3.1 DESCOBERTA DE CONHECIMENTO EM BASE DE DADOS E DATA MINING

Muitas pessoas tratam a mineração de dados ... O processo de KDD é demonstrado através da Figura 1 e, posteriormente, listada como uma sequência interativa e iterativa dos seguintes passos:

FIGURA 1 – Etapas do processo de KDD FONTE: Adaptado de Han et al. (2012)

- 1. Data cleaning (Limpeza de dados);
- 2. Data integration (Integração de dados);
- 3. Data selection (Seleção de dados);
- 4. Data transformation (Transformação de dados);
- 5. Data mining (Mineração de dados);
- 6. Pattern evaluation (Avaliação de padrões);
- 7. Knowledge presentation (Apresentação de conhecimento).

É importante notar que algum dos processos acontecem na mesma etapa: Limpeza e integração; Seleção e transformação; Avaliação e apresentação.

De acordo com Brachman et al. (1996 apud FAYYAD et al., 1996-b), as etapas são interativas

4 MATERIAIS E MÉTODOS

Após a revisão bibliográfica de outros estudos e os fundamentos teóricos necessários

Este capítulo apresenta os materiais e métodos utilizados ...

4.1 TECNOLOGIAS E FERRAMENTAS

Tecnologias e ferramentas para a implementação de *scripts* e utilização dos algoritmos.

4.1.1 Bibliotecas da Linguagem Python

Um dos grandes diferenciais da linguagem Python é o seu enorme conjunto de bibliotecas para soluções de diversos problemas.

4.1.1.1 Biblioteca NumPy

NumPy é o pacote fundamental para computação científica em Python. É o acrônico para $Numerical\ Python$. Esta biblioteca provê:

4.1.1.2 Biblioteca pandas

A biblioteca pandas ... (MCKINNEY, 2013):

Uma simples Series é formado por uma única matriz de dados, conforme a Figura 2.

```
[In [5]: obj = Series([4, 7, -5, 3])

[In [6]: obj
Out[6]:
0    4
1    7
2    -5
3    3
dtype: int64
```

FIGURA 2 – Exemplo de uma Series FONTE: McKinney (2013)

DataFrame representa uma tabela...

4.1.2 Rede Social Twitter

Para definir o que seria ...

4.1.2.1 API do Twitter

Twitteré caracterizado como um serviço \dots

4.1.2.2 Bibliotecas Para o Consumo de Dados da API do Twitter

O acesso a API acontece através da criação

O CÓDIGO 1 exemplifica o consumo da API segundo Tweepy (2009).

CÓDIGO 1 – Acesso à API do Twitter

```
import tweepy
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)

public_tweets = api.home_timeline()
for tweet in public_tweets:
    print tweet.text
```

5 IMPLEMENTAÇÃO DAS TÉCNICAS

Este capítulo tem como finalidade apresentar, com um maior nível de detalhamento as técnicas utilizadas neste trabalho, com o objetivo de se atingir as metas propostas já descritas na Seção 1.2.

5.1 COLETA DE DADOS

Uma característica comentada anteriormente

As primeiras linhas mostradas no CÓDIGO 2 servem para ...

CÓDIGO 2 – Script coletar-hashtags.py

```
1 from tweepy.streaming import StreamListener
2 from tweepy import OAuthHandler
3 from tweepy import Stream
5 access token = "131556934-LrYRiXzAL3QcRyFN0fdN53EDWhNGfZFnVX59NCnT"
 \  \, \text{access} \  \, \text{token} \  \, \text{secret} = \text{"JraMtps5lB98d8XoelAF71KHn8ZQ4nshdoSKiFlTz6OHd"} 
7 consumer key = "P4XZ2GUkeqdhIlQMOredBuW05"
  {\bf consumer\_secret} \ = \ "r5TPb2UcM8bzxq7t5zflRPMHUrCfwNG4GRuVPXypowrpHhTmue"
10
  class StdOutListener(StreamListener):
11
12
13
       def on data(self, data):
           print data
14
           return True
15
16
       def on error (self, status):
17
           print status
18
20
  if name = ' main ':
21
22
       l = StdOutListener()
23
       auth = OAuthHandler(consumer_key, consumer_secret)
24
       auth.set access token (access token, access token secret)
25
       stream = Stream(auth, 1)
26
27
       stream.filter(track=['ImpeachmentDay', 'NaoVaiTerGolpe', 'ForaDilma'←
28
```

...

O comando stdout permite redirecionar a saída do código anterior, no caso a execução do script coletar-hashtags.py, para um novo arquivo ou um arquivo já existente, conforme ilustrado pela Figura 3.

```
scripts git:(master) x
> python coletar-hashtags.py > ../data/coleta-impeachment.json
```

FIGURA 3 — Execução do script para coleta de dados FONTE: Autor

...

5.2 ANÁLISE DE DADOS

Após a coleta dos dados foi gerado, então, um arquivo

6 ANÁLISE DOS RESULTADOS

Este capítulo tem como finalidade apresentar os resultados obtidos através das implementações demonstrados no Capítulo 5.

6.1 APRESENTAÇÃO DOS RESULTADOS

Após o mapeamento das informações do ${\it DataFrame}, \dots$ conjunto de dados coletados, Gráfico 1.

GRÁFICO 1 – Idiomas que mais realizaram tweets FONTE: Elaborado pelo autor

7 CONCLUSÕES E SUGESTÕES PARA FUTUROS TRABALHOS

7.1 CONCLUSÕES

O uso das bibliotecas que Python oferece para a mineração de dados...

- Resgatar o objetivo
- Comentar as ferramentas estudadas
- Comentar as ferramentas utilizadas
- Breve resumo dos resultados
- Pontos positivos e negativos (O fato de não ter o perfil real)

7.2 SUGESTÕES PARA FUTUROS TRABALHOS

REFERÊNCIAS

BRACHMAN, R. J. et al. The process of knowledge discovery in databases. 1996. Acesso em 23 de outubro de 2015. Disponível em: https://www.aaai.org/Papers/Workshops/1994/WS-94-03/WS94-03-001.pdf.

BRAIN, S. **Twitter Statistics**. 2016. Acesso em 20 de abril de 2016. Disponível em: http://www.statisticbrain.com/twitter-statistics/.

FAYYAD, U. et al. Advances in knowledge discovery in data mining. 1996-b.

HAN, J. et al. Data Mining: Concepts and Techniques. [S.l.]: Elsevier, 2012.

LEMOS, E. P. Análise de crédito bancário com o uso de data mining: redes neurais e árvores de decisão. Tese (Doutorado) — Universidade Federal do Paraná, 2003.

MCKINNEY, W. Python for Data Analysis. [S.l.]: O'Reilly, 2013.

SILVA, M. P. da; BOSCARIOLI, C.; PERES, S. M. Análise de logs da web por meio de técnicas de data mining. 2003.

TWEEPY, D. **Biblioteca Tweepy - 3.5.0**. 2009. Acesso em 03 de abril de 2016. Disponível em: http://tweepy.readthedocs.org/en/v3.5.0/index.html.