Section 3.5 - Curve Sketching (Summary)

Example

Given
$$f(x) = -x^3 + 3x^2 + 9x - 27$$

Solution

$$f'(x) = -3x^2 + 6x + 9 = 0$$
$$\Rightarrow x = -1, 3$$

$$f''(x) = -6x + 6 = 0$$
$$\Rightarrow -x + 1 = 0 \Rightarrow \boxed{x = 1}$$

	f	f'	f"		
(-∞, -1)		_	+	Decreasing, Concave up	
x = -1	-32	0	+	Relative Min	
(-1, 1)		+	+	Increasing, Concave up	
<i>x</i> = 1	-16	+	0	Point of Inflection	
(1, 3)		+	_	Increasing, Concave down	
x = 3	0	0	_	Relative Max	
(3, ∞)		_	_	Decreasing, Concave down	

Example

Given
$$f(x) = \frac{x^2}{x-1}$$

Solution

Vertical Asymptote: x = 1

$$f'(x) = \frac{2x(x-1) - x^2}{(x-1)^2}$$

$$= \frac{2x^2 - 2x - x^2}{(x-1)^2}$$

$$= \frac{x^2 - 2x}{(x-1)^2}$$

$$= \frac{x(x-2)}{(x-1)^2} = 0$$

$$\Rightarrow x = 0, 2$$

$$f'' = \left(\frac{x^2 - 2x}{(x-1)^2}\right)'$$

$$= \frac{(2x-2)(x-1)^2 - 2(x^2 - 2x)(x-1)}{(x-1)^4}$$

$$= \frac{(x-1)\left[(2x-2)(x-1) - 2(x^2 - 2x)\right]}{(x-1)^4}$$

$$= \frac{2x^2 - 2x - 2x + 2 - 2x^2 + 4x}{(x-1)^3}$$

$$= \frac{2}{(x-1)^3}$$

	f	f'	f"		
$(-\infty, 0)$		+	_	Increasing, Concave down	
x = 0	0	0	_	RMAX	
(0, 1)		_	_	Decreasing, Concave down	
x = 1	Undef.	Undef.	Undef.	Vertical Asymptote	
(1, 2)		_	+	Decreasing, Concave up	
x = 2	4	0	+	RMIN	
$(2,\infty)$		+	+	Increasing, Concave up	

Example

Graph
$$f(x) = \frac{\ln x}{x^2}$$

Solution

Domain: x > 0

$$f'(x) = \frac{\frac{1}{x}x^2 - 2x \ln x}{x^4}$$

$$= \frac{x(1 - 2\ln x)}{x^4}$$

$$= \frac{1 - 2\ln x}{x^3} = 0$$

$$\Rightarrow 1 - 2\ln x = 0$$

$$\ln x = \frac{1}{2} \Rightarrow |x| = e^{1/2} \approx 1.65|$$

$$f(1.65) = \frac{\ln 1.65}{1.65^2} = 0.18$$

$$(1.65, 0.18)$$

$$f''(x) = \left(\frac{1 - 2\ln x}{x^3}\right)'$$

$$= \frac{-2\frac{1}{x}x^3 - 3x^2(1 - 2\ln x)}{x^6}$$

$$= \frac{x^2(-2 - 3 + 6\ln x)}{x^6}$$

$$= \frac{-5 + 6\ln x}{x^4} = 0$$

$$-5 + 6\ln x = 0$$

$$\ln x = \frac{5}{6} \Rightarrow |x = e^{5/6} \approx 2.3|$$

$$f(2.3) = \frac{\ln 1.65}{1.65^2} = 0.16$$

$$(2.3, 0.16)$$

∞	1.65		2.3	∞	
f'(1) >	0	f'(2) < 0		f'(3) < 0	
Increas	ing	Decreasing		Decreasing	
f"(1) <	< 0	f''(2) < 0		f''(3) > 0	
Downwo	ard	Downward		Upward	

Exercises Section 3.5 - Curve Sketching

Graph

1.
$$f(x) = x^4 - 4x^3 + 5$$

$$2. \quad f(x) = \frac{x^2 + 1}{x^2 - 1}$$

3.
$$f(x) = 2x^{3/2} - 6x^{1/2}$$