

ISO-OSI

Prof. Franco Callegati

http://deisnet.deis.unibo.it

Sistemi chiusi

- Tutte le reti di calcolatori della prima generazione nascono e si evolvono come sistemi chiusi
 - nel mondo dell'Informatica
 - tutti i componenti della rete devono essere dello stesso costruttore (captivity),
 - nel mondo delle Telecomunicazioni
 - una rete specializzata per ogni servizio.
- Questo crea incompatibilità, ponendo ostacoli alla comunicazione:
 - a causa della diversità delle reti gli apparati non riescono ad interpretare i segnali degli altri,
 - anche se i calcolatori riescono a connettersi non riescono a colloquiare perché parlano linguaggi diversi,
 - i programmi applicativi non riescono ad operare in ambiente distribuito.

ISO-OSI

- A partire dal 1976 la ISO ha dato il via a lavori per giungere ad una serie di standard unificati per la realizzazione di reti di calcolatori aperte.
- La ISO ha per prima cosa proposto un modello di riferimento
 - Open System Interconnection Reference Model (OSI-RM)
 - È diventato standard internazionale nel 1983 (ISO 7498).
 - È basato sul concetto centrale di una architettura a strati.
- L'architettura a strati ha alcuni grandi vantaggi:
 - scompone il problema in sottoproblemi più semplici da trattare,
 - rende i vari livelli indipendenti,
 - definendo solamente servizi e interfacce, livelli diversi possono essere sviluppati da enti diversi.

Sistemi aperti

- Obiettivo:
 - Realizzare una rete di calcolatori in cui qualunque terminale comunica con qualunque fornitore di servizi mediante qualunque rete.
- Per realizzare un sistema aperto è necessario stabilire delle regole comuni :
 - Sono necessari degli standard
- Tutte le soluzione proposte hanno in comune un'architettura a strati

Cosa definisce?

Le definizioni contenute nell'OSI coinvolgono tre livelli di astrazione:

- Modello di riferimento:
 - schema concettuale
 - numero degli strati coinvolti
 - definizione generale delle funzioni degli strati e delle relazioni fra di essi.
- Definizione dei servizi:
 - definizione astratta di ciò che viene fornito da uno strato.
- Specifiche di protocolli ed interfacce:
 - descrizione di come viene fornito un servizio da uno strato.

Modello di riferimento

- Architettura a 7 strati, numerati dal basso verso l'alto da 1 a 7
 - gli strati 1, 2, 3 sono detti lower o network oriented layers
 - gli strati 5, 6, 7 sono detti upper o application oriented layers
 - Lo strato 4 funge da raccordo fra gli upper e lower layers
 - si possono avere funzione di ripetizione (*relay*) ai livelli 1, 2, 3, che si dice operano link-by-link
 - gli strati dal 4 in su operano solo end-to-end

Entità, interfacce, protocolli

- Entità ogni elemento attivo in uno strato, identificata da un nome simbolico (title)
 - Nello strato N-esimo possono essere attive una o più entità
- Protocollo: regole di dialogo fra entità dello stesso livello
- Interfaccia: regole di dialogo fra entità di livelli adiacenti

Trasferimento dei dati

- N-Protocol Data Unit (PDU): dati trasferiti fra entità di strato N
- N-Service Data Unit (SDU): dati passati allo strato N dallo strato N+1
- N-Service Access Point (SAP): indirizzo di identificazione del flusso dati fra N+1 ed N
- N-Protocol Control Information (PCI): informazioni aggiuntive per il controllo del dialogo a livello N
- Encapsulation: N-PDU = N-PCI+ N-SDU

Flusso delle informazioni

Uso dei SAP

- Un'entità di strato N può servire più (N)-SAP contemporaneamente.
- Un utilizzatore di strato N può servirsi di più (N)-SAP contemporaneamente

- Non è permesso connettere più (N)-user allo stesso (N)-SAP
 - Si genererebbe ambiguità sulla provenienza/destinazione dei dati
 - Ad ogni indirizzo deve essere univocamente associato un nome

Modalità di Servizio

- Una modalità di fornire un servizio si dice Connection Oriented quando si stabilisce una connessione:
 - Connessione = associazione logica fra due o più sistemi al fine di trasferire informazioni
 - Il processo di comunicazione si compone normalmente di tre fasi
 - *instaurazione* della connessione, tramite lo scambio di opportune informazioni iniziali,
 - trasferimento dei dati veri e propri,
 - chiusura della connessione.
- Qualora i dati vengano trasferiti senza prima stabilire una connessione si parla si servizio Connectionless
 - Per ogni accesso al servizio vengono fornite tutte le informazioni necessarie per il trasferimento dei dati
 - Ogni unità di dati viene trasferita in modo indipendente dalle altre

Modalità di dialogo

Confermato

 Prevede esplicita conferma da parte del destinatario

Non confermato

 Non prevede alcuna conferma

Parzialmente confermato

 La richiesta viene confermata dal serviceprovider

Segmentazione e riassemblamento

- E' possibile dividere il contenuto di una SDU in una o più PDU
 - La suddivisione si dice segmentazione e la ricostruzione si dice riassemblamento
 - (E' possibile anche accorpare più SDU in una PDU)
- Tipicamente la segmentazione serve per conformarsi a limitazioni sulla lunghezza massima dei messaggi

Multiplazione e Splitting

Multiplazione

- più connessioni di strato N
 vengono mappate in una
 di strato N-1
- L'obiettivo è la condivisione delle risorse

Splitting

- È duale alla multiplazione
- Aumenta la flessibilità e la velocità di trasferimento dei dati

Strato 1: fisico

- Scopo dello strato fisico è quello di attivare, mantenere e disattivare la connessione fisica fra due entità di strato 2.
- Specifica le modalità di invio dei singoli bit sul mezzo di fisico di trasmissione
- Per fare questo deve specificare le caratteristiche:
 - meccaniche:
 - forma di prese e spine, numero di contatti,
 - elettriche:
 - voltaggio e caratteristiche elettriche dei segnali associati all'interfaccia,
 - funzionali:
 - significato dei vari segnali,
 - procedurali:
 - combinazioni e sequenze dei segnali all'interfaccia necessarie al fine di regolarne il funzionamento.

Strato 2: linea

- Lo strato di linea deve
 - attivare, mantenere e disattivare la connessione fisica fra due entità di strato 3;
 - rendere affidabile il collegamento fra i nodi di rete
- Le funzioni tipicamente svolte dallo strato 2 sono le seguenti:
 - strutturazione del flusso di dati in unità di dialogo, denominati trame o frames;
 - controllo e gestione degli errori di trasmissione;
 - controllo di flusso;
 - controllo di sequenza.

Strato 3: rete

- Scopo dello strato di rete è di far giungere le unità di informazione, dette pacchetti (packets), al destinatario scegliendo la strada attraverso la rete
- Si occupa dunque del problema della commutazione
 - Nelle reti di calcolatori si usa la commutazione di pacchetto e la funzione svolta dallo strato 3 viene detta routing
- Occorre un modo per individuare i destinatari: è necessario uno schema di indirizzi.
 - In una rete globale lo schema di indirizzi deve essere universale.
- Si sono sviluppate reti parziali, ora denominate sottoreti e per arrivare ad una rete unica occorre definire un protocollo di interconnessione di reti

Strato 4: trasporto

- Scopo dello strato di trasporto è fornire un canale sicuro end-to-end, svincolando gli strati superiori da tutti i problemi di rete
- Una tipica funzione è adattare la dimensione dei frammenti forniti dagli strati superiori (files) a quella richiesta dalle reti (pacchetti):
 - funzione di Pacchettizzazione (fragmenting/reassembling)
- Può avere molte altre funzioni fra cui
 - controllo dell'errore,
 - controllo di flusso,
 - gestione di dati prioritari, ecc..
- Non tutti le applicazioni hanno bisogno delle stesse funzioni,
 - Si possono definire diverse Classi di transporto

Strato 5: sessione

- Suddivide il dialogo fra le applicazioni in unità logiche (dette appunto sessioni),
 - Una sessione deve essere identificata, eventualmente interrotta e ripresa per fare fronte a vari eventi catastrofici: perdita di dati, caduta della linea, momentaneo crash di uno dei due interlocutori...
- Permette la chiusura ordinata (soft) del dialogo
 - Garanzia che tutti i dati trasmessi siano arrivati a destinazione
- Per fare le sue funzione introduce dei punti di sincronizzazione
- Anche gli strati di sessione hanno molte funzionalità e possono essere più o meno completi a seconda delle richieste

Strato 6: presentazione

- Adatta il formato (sintassi) dei dati usato dagli interlocutori preservandone il significato (semantica)
- Ogni interlocutore ha una sua Sintassi locale e durante il dialogo bisogna concordare una Sintassi di trasferimento
- E' stato definito un linguaggio detto Abstract Sintax Notation 1 (ASN 1) per descrivere e negoziare le sintassi

Strato 7: applicazione

- Lo strato di Applicazione è l'utente della rete e pertanto non deve offrire servizi a nessuno
 - Rappresenta il programma applicativo (Applicazione)
 che per svolgere i suoi compiti ha bisogno di comunicare con altre applicazioni remote
- Le applicazioni non possono essere standardizzate completamente:
 - ISO ha cominciato a standardizzare dei moduli applicativi denominati Application Service Element (ASE) su richiesta di gruppi di utenti interessati

Trasporto e interconnessione

- Se si vuole una rete universale diffusa ed unica a livello mondiale
 - Lo strato di transporto deve essere unico
 - Parte dello strato di rete (internetworking) <u>deve essere</u> <u>unico</u>
- OSI definisce i protocolli che devono essere adottati da tutti i computer per creare una rete aperta universale
 - II Protocollo IP (ISO 8473)
 - II Protocollo di Trasporto (ISO 8073)

Effetti della diffusione di Internet

- Mentre il modello di riferimento è stato universalmente adottato come modo di organizzare le architetture dei protocolli, il protocollo IP di OSI ed il Transport non hanno avuto successo
- La causa è stata la diffusione di Internet e del suo protocollo, il TCP/IP
- TCP è un protocollo di Transport e IP è il protocollo di interconnessione di reti, incompatibili ed in concorrenza con quelli di OSI
- TCP/IP non si occupa dei protocolli degli strati inferiori che possono essere progettati usando le regole di OSI
- L'architettura TCP/IP non usa gli strati di Sessione e Presentazione ma si interfaccia direttamente con l'Applicazione

Modello di riferimento TCP/IP

OSI	TCP/IP	Protocolli
Application	Application	HTTP, TELNET, FTP, SMTP, POP, DNS, SNMP
Presentation		
Session		
Transport	Transport	TCP, UDP
Network	Network	IP, ICMP, IGMP, ARP, RARP
Data Link	Link	ETHERNET, IEEE 802, HDLC, PPP
Physical		