UENF

Universidade Estadual do Norte Fluminense Darcy Ribeiro

Curso: Ciência de Computação Data: 17/.09./2020

Prova: P1 Período: 1º

Disciplina: Lógica Matemática

Professor: Fermín A. Tang

Turno: Diurno

Nome do Aluno: Matrícula: Matrícula:

1. (1,4 Pontos) Responda o seguinte:

i) Defina o conceito de argumento lógico.

[1,0 ponto]

ii) Ilustre o conceito com um exemplo original.

[0,4 ponto]

Resposta1.-

- i) O argumento lógico é uma estrutura formada por um conjunto de premissas e uma conclusão. Tanto as premissas quanto a conclusão são proposições que podem assumir valores verdadeiro e falso. O argumento estabelece uma relação entre as premissas e a conclusão de forma que assumindo que as premissas sejam verdadeiras é possível concluir que a conclusão é verdadeira.
- ii) O exemplo deve indicar as premissas e a conclusão. Possuir estrutura que garanta que a conclusão é derivada das premissas.
- 2. **(2,5 Pontos)** Dada a seguinte proposição:

$$\big(p \vee (q \to \neg r)\big) \wedge (\neg p \vee r \longleftrightarrow \neg q)$$

- i) Elabore a **tabela-verdade** usando o método da sua preferência. [2,0 ponto]
- ii) Com base na tabela-verdade, classifique a proposição como tautologia, contradição ou contingência. Justifique.
 [0,5 ponto]

Resposta2.-

i) Elaborando a tabela-verdade temos:

				Α	В		L		D	
p	q	r	$\neg r$	$(q \rightarrow \neg r)$	$p \lor A$	$\neg p$	$\neg p \lor r$	$\neg q$	$C \leftrightarrow \neg q$	$B \wedge D$
V	V	V	F	F	V	F	V	F	F	F
V	٧	F	٧	V	V	F	F	F	V	V
V	F	V	F	V	V	F	V	٧	V	V
V	F	F	V	V	V	F	F	٧	F	F
F	٧	V	F	F	F	V	V	F	F	F
F	V	F	V	V	V	V	V	F	F	F
F	F	V	F	V	V	V	V	V	V	V
F	F	F	V	V	V	V	V	V	V	V

- ii) A proposição é uma contingência uma vez que pode assumir tanto valores lógicos verdadeiros quanto falsos.
- 3. (2,1 Pontos) Use as propriedades da álgebra proposicional, indicando as propriedades utilizadas, para:
 - i) Simplificar a proposição $\neg(p \lor q) \lor (\neg p \land q)$ [0,7 ponto]
 - ii) Demonstrar a equivalência $(p \rightarrow q) \land (p \rightarrow r) \Leftrightarrow p \rightarrow q \land r$ [0,7 ponto]
 - iii) Mostre usando tabela-verdade que a sua simplificação é equivalente ao original [0,7 ponto]

Resposta3.-

i) A proposição:
$$\neg (p \lor q) \lor (\neg p \land q) \Leftrightarrow (\neg p \land \neg q) \lor (\neg p \land q)$$
 (De Morgan)

$$\Leftrightarrow \neg p \land (\neg q \lor q)$$
 (Distributiva)

$$\Leftrightarrow \neg p \land T \qquad \qquad \text{(Def. Operador V)} \\ \Leftrightarrow \neg p \qquad \qquad \text{(Identidade)}$$

$$\Rightarrow \neg p$$
 (Identidade)

ii) A proposição:
$$(p \to q) \land (p \to r) \Leftrightarrow (\neg p \lor q) \land (\neg p \lor r)$$
 (Equiv. Condicional)

$$\Leftrightarrow \neg p \lor (q \land r)$$
 (Distributiva)

$$\Leftrightarrow p \to (q \land r)$$
 (Equiv. Condicional)

iii) Elaborando a tabela-verdade, observamos a equivalência entre:

$$\neg (p \lor q) \lor (\neg p \land q) \Leftrightarrow \neg p$$

p	q	$p \lor q$	$\neg(p \lor q)$	$\neg p$	$(\neg p \land q)$	$\neg(p \lor q) \lor (\neg p \land q)$
V	V	V	F	F	F	F
V	F	V	F	F	F	F
F	V	V	F	V	V	V
F	F	F	V	V	F	V

4. (2,0 Pontos) Use a definição do conectivo ↑ de Scheffer e as propriedades da álgebra proposicional para demonstrar:

i)
$$\neg p \Leftrightarrow (p \uparrow p)$$
 [0,5 ponto]

ii)
$$(p \lor q) \Leftrightarrow (p \uparrow p) \uparrow (q \uparrow q)$$
 [0,5 ponto]

iii)
$$(p \to q) \Leftrightarrow p \uparrow (q \uparrow q)$$
 [1,0 ponto]

Indique as definições e propriedades utilizadas.

Resposta4.-

iv) Por definição do conectivo \uparrow de Scheffer é: $(p \uparrow q) \Leftrightarrow \neg p \lor \neg q$

Demonstra-se que:
$$\neg p \Leftrightarrow \neg p \lor \neg p$$
 (Idempotência)

$$\Leftrightarrow (p \uparrow p)$$
 (Conectivo \uparrow de Scheffer)

v) Demonstra-se que: $(p \lor q) \Leftrightarrow (\neg \neg p \lor \neg \neg q)$ (Dupla Negação)

$$\Leftrightarrow (\neg p \uparrow \neg q) \qquad \qquad \text{(Conectivo } \uparrow \text{ de Scheffer)}$$

$$\Leftrightarrow$$
 $((p \uparrow p) \uparrow (q \uparrow q))$ (Equiv. da $\neg p \in \neg q$)

vi) Demonstra-se que: $(p \rightarrow q) \Leftrightarrow (\neg p \lor q)$ (Equiv. da Condicional)

$$\Leftrightarrow (p \uparrow \neg q)$$
 (Conectivo \uparrow de Scheffer)

$$\Leftrightarrow$$
 $(p \uparrow (q \uparrow q))$ (Equiv. da $\neg q$ em Scheffer)

5. (2,0 Pontos) Dada a seguinte formula:

$$p \rightarrow (p \rightarrow \neg r) \leftrightarrow q \lor r$$

i) Determine a forma normal disjuntiva (FND). Mostre o procedimento.

[1,0 ponto]

ii) Converta a fórmula na notação posfixa. Mostre o procedimento.

[1,0 ponto]

Resposta5.-

i) Para calcular a forma normal disjuntiva (FND) podemos usar a tabelaverdade.

				Α	В	L	
p	q	r	$\neg r$	$(p \rightarrow \neg r)$	$p \to A$	$q \vee r$	$B \leftrightarrow C$
V	V	V	F	F	F	V	F
V	V	F	V	V	V	V	V
V	F	V	F	F	F	V	F
V	F	F	V	V	V	F	F
F	V	V	F	V	V	V	V
F	V	F	V	V	V	V	V
F	F	V	F	V	V	V	V
F	F	F	V	V	V	F	F

Identificamos as linhas em que a proposição é verdadeira e construímos um termo para cada linha na forma de conjunção.

$$(p \land q \land \neg r), (\neg p \land q \land r), (\neg p \land q \land \neg r), (\neg p \land \neg q \land r)$$

Finalmente, juntamos os termos mediante uma disjunção.

$$(p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land r)$$

ii) Mostra-se a conversão da expressão para o formato posfixo por substituição seguindo a precedência das operações.

$$\begin{array}{ll} p \to (p \to \neg r) \leftrightarrow q \lor r \\ p \to (p \to r \neg) \leftrightarrow q \lor r \\ p \to (pr \neg \to) \leftrightarrow qr \lor \\ p pr \neg \to \to qr \lor \\ p pr \neg \to \to qr \lor \\ \end{array} \qquad \begin{array}{ll} \text{(Substituiu } \neg r \text{)} \\ \text{(Substituiu } (p \to r \neg) \in q \lor r \text{)} \\ \text{(Substituiu } p \to (pr \neg \to) \text{)} \\ \text{(Substituiu a expressão} \leftrightarrow) \\ \end{array}$$