به نام خدا

پروژه تحلیل سیگنال درس سیگنال ها وسیستم ها استاد: رحمتی

فهرست مطالب

پردازش صوت Audio processing

پردازش تصویر Image processing

Watermark

اميرحسين بلاغي اينالو_4251103

ترم مهر _ 403

پردازش صوت Audio processing

با بارگزاری فایل صوتی audio_1 درون کد مربوطه و انجام عملیاتی با استفاده از کتابخانه ها نمودار Waveform زبر تولید میشود

قسمت سمت راست نمودار صدای زیر و قسمت سمت چپ نمودار صدای بم

شکل موج یا Waveform نمایش گرافیکی تغییرات دامنه یک سیگنال در طول زمان است. نمودار بالا بر حسب زمان و محور عمودی شدت سیگنال صوت رو نشون میده.

نواحی دور از صفر نشان دهنده بخش های بلندتر صدا و نواحی نزدیک به صفر سکوت را نشان می دهد.

با تحلیل شکل موج میتوان الگوهایی را شناسایی کرد که برای تشخیص حروف و کلمات استفاده میشود

نمودار بعدى تحليل طيف فركانسي صدا

در این بخش کد با استفاده از تبدیل فوریه صوت را در حوضه فرکانس برده و نمایش میدهیم.

محور افقی نشان دهنده فرکانس و محور عمودی نشان دهنده شدت یا توان سیگنال در هر فرکانس می باشد(هر چه شدت بالاتر ان فرکانس در سیگنال قوی تر و بلعکس).

در فرکانس های بالاتر شاهد دامنه کمتر هستیم که مفهوم نویز ضعیف را میرساند

تحلیل اسپکتروگرام spectrogram صوت

در این بخش کد ار نمودار اسپکتروگرام استفاده کرده ایم

این نمودار در تحلیل صوت بهتر عمل میکند . چون فرکانسی بر حسب زمان است و شدت رنگ هر فرکانس نشان دهنده شدت ان است (بر حسب دسی بل).

هر کدام از این موج های زمانی ، از بالا به پایین یک فرکانس گام هستند ، پایین ترین گام در فرکانس های پایین پدیدار میشود و بلعکس

Image processing

پردازش تصویر

برای استفاده از تبدیل فوریه روی عکس باید اون رو به حالت grayscale یا خاکستری ببریم.

پس تصویر را بارگزاری میکنیم و از حالت RGBبه خاکستری میبریم و تبدیل فوریه را روی ان اعمال می کنیم

در تصویر FFT SPECTRUM که وسط آن روشن ترین بخش است نشان دهنده اطلاعات کلی تصویر و فرکانس های بالا بین میباشد ، این بخش بیشترین انرژی را دارد. نواحی دورتر فرکانس های بالا را نشان میدهد

با روی هم قرار گرفتن همه این تصاویر تصویر اصلی (خلکستری) بوجود می آید.

Watermark

واترمارک یک علامت یا نشانه ای است که به تصاویر، اسناد، ویدئوها یا فایلهای دیجیتال اضافه میشود تا مالکیت یا منبع آنها را نشان دهد و از کپیبرداری غیرمجاز جلوگیری کند.

واترمارکها معمولاً به صورت نیمه شفاف و در گوشه یا مرکز تصویر قرار می گیرند تا محتوای اصلی را مخدوش نکنند.

برای انجام این پروسه یک فایل صوت را تجزیه کرده و درون جاهای خالی عکس ورودی قرار می دهیم.

خروجی عکس watermark شده و یک فایل صوتی هست که کیفیت آن با فایل اصلی متفاوت است (البته به بزرگی عکس ورودی مربوطه)

فایل audio_4.wav رو درون IMG_2.jpg که عکس بزرگتری است قرار می دهیم . خروجی فایل بالا و exracted_audio_4_IMG_2.wav می باشد .

که در زیر نمودار های تحلیل صوت اصلی و صوت خروجی مقایسه شده است.

audio_4.wav صوت waveform extracted_audio_4_IMG_2 صوت Waveform

audio_4.wav صوت Spectrum extracted_audio_4_IMG_2 صوت Spectrum

audio_4.wav فايل Spectrogram extracted_audio_4_IMG_2 فايل Spectrogram

در هر سه مقایسه مشخصه که مقدار زیادی از اطلاعات صوت اصلی از بین رفته و مقادیر high با تغییر موجود می باشند

حالا اگر همین مراحل را با عکس دیگری انجام دهیم با فایل (IMG_1.wav) نتایج اینگونه میشود Watermark با 1MG_2 (حجم زیاد)

مقایسه این بخش بین خروجی عکس با حجم کم و زیاد است.

نتیجه میگیریم که برای watermark کردن هرچه اندازه تصویر بزرگتر باشد صوت خروجی واضح تر میشود.

این را می توان به وضوح با شنیدن خروجی های

extracted_audio_4_IMG_2

extracted_audio_4_IMG_1 تشخیص داد.