QUI016 - Química Geral: Teste 2 (Módulo 5)			Pontuação ↓
Data: 17/06/2025	Questões: 1	Pontos totais: 2	
Matrícula:	Nome:		

Instruções:

- 1. Justifique a sua resposta. Respostas sem racioncínio não serão consideradas!
- 2. Entregue a reposta manuscrita com essa folha anexa.
- 1. (2 pontos) Considere os dados de ponto de ebulição dispostos na **Tabela 1**.

Tabela 1: Temperaturas de ebulição $(T_{\rm eb}/^{\circ}{\rm C})$ de alguns compostos químicos e suas massas molares $(M/{\rm g}\,{\rm mol}^{-1})$.

Substância	$M/\mathrm{g}\mathrm{mol}^{-1}$	$T_{\rm eb}/^{\circ}{\rm C}$
HCl	36,5	-84,8
${ m H_2O}$	18,0	100,0
Ne	20,2	-246,1

- (i) Coloque os compostos em ordem crescente de $T_{\rm eb}$, (ii) identifique as forças intermoleculares mais representativas para cada composto e as ordene de forma crescente em energia. Então, assinale a alternativa que melhor reflete as informações.
 - A. (i) $T_{\rm eb}$ (H₂O) $< T_{\rm eb}$ (Ne) $< T_{\rm eb}$ (HCl) e (ii) HCl (London) < Ne (dipolo-dipolo) < H₂O (ligação de hidrogênio);
 - B. (i) $T_{\rm eb}$ (Ne) < $T_{\rm eb}$ (H₂O) < $T_{\rm eb}$ (HCl) e (ii) Ne (ion-dipolo) < HCl (dipolo-dipolo) < H₂O (ligação de hidrogênio);
 - C. (i) $T_{\rm eb}$ (Ne) $< T_{\rm eb}$ (HCl) $< T_{\rm eb}$ (H₂O) e (ii) Ne (London) < HCl (dipolo-dipolo) < H₂O (ligação de hidrogênio);
 - D. (i) $T_{\rm eb}$ (Ne) < $T_{\rm eb}$ (HCl) < $T_{\rm eb}$ (H₂O) e (ii) Ne (London) < HCl (ligação de hidrogênio) < H₂O (dipolo-dipolo).