

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Фундаментальные науки	
КАФЕДРА	Прикладная математика	

ОТЧЕТ *К ЛАБОРАТОРНОЙ РАБОТЕ НА ТЕМУ*:

Методы численного решения интегральных уравнений Вариант 1

Студент	Φ H2-61B	_	Н.О. Акиньшин
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Студент	ФН2-61Б		А.С. Джагарян
	(Группа)	(Подпись, дата)	(И.О. Фамилия)

ОГЛАВЛЕНИЕ 2

Оглавление

1.	Контрольные вопросы	3
2.	Порядки	6
3.	Результаты	8
4	Лополнительные вопросы	14

1. Контрольные вопросы

1) При выполнении каких условий интегральное уравнение Фредгольма 2-го рода имеет решение? В каком случае решение является единственным?

Ответ. Если K(x,s) и f(x) являются кусочно-непрерывными или удовлетворяют

$$\int_a^b \int_a^b |K(x,s)|^2 dx ds < \infty \int_a^b |f(x)|^2 dx < \infty$$

и ядро K(x,s) вещественно и симметрично, то существует хотя бы одна собственная функция соответствующей задачи Штурма-Лиувилля для некоторого собственного значения, при этом если λ из определения интегрального уравнения Фредгольма 2-го рода

$$u(x) - \lambda \int_{a}^{b} K(x,s)u(s)ds = f(x)$$

не равно собственному значению задачи Штурма-Лиувилля, то уравнение имеет единственное решение.

2) Можно ли привести матрицу СЛАУ, получающуюся при использовании метода квадратур, к симметричному виду в случае, если ядро интегрального уравнения является симметричным, т. е. K(x,s) = K(s,x)?

Ответ. При использовании метода квадратур требуется решать систему уравнений вида

$$y_i - \lambda \sum_{k=0}^{N} a_k^N K(x_i, s_k) y_k = f(x_i)$$

Используем формулу трапеций, тогда матрица системы имеет вид

$$\begin{pmatrix} 1 - \frac{\lambda h}{2} K(x_0, s_0) & -\lambda h K(x_0, s_1) & -\lambda h K(x_0, s_2) & \cdots & -\frac{\lambda h}{2} K(x_0, s_N) \\ -\frac{\lambda h}{2} K(x_1, s_0) & 1 - \lambda h K(x_1, s_1) & -\lambda h K(x_1, s_2) & \cdots & -\frac{\lambda h}{2} K(x_1, s_N) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\frac{\lambda h}{2} K(x_N, s_0) & -\lambda h K(x_N, s_1) & -\lambda h K(x_N, s_2) & \cdots & 1 - \frac{\lambda h}{2} K(x_N, s_N) \end{pmatrix}$$

Из матрицы видно, что даже при симметрии ядра K симметрия матрицы достигаться не будет т.к. есть множитель 1/2. Например $a_12 \neq a_21$

 Предложите способ контроля точности результата вычислений при использовании метода квадратур.

Ответ. Пусть есть численное решения I_h , которое получено методом квадратур порядка p, тогда погрешность на сетке Ω_h z_h можно представить в виде

$$z_h = O(h^p) = Ch^p$$

При этом при уменьшении шага сетки получим

$$z_{h/2} = O((h/2)^p) = C(h/2)^p$$

Т.к. $z_h = I^* - I_h$ и $z_{h/2} = I^* - I_{h/2},$ то вычитая одно из другого получим

$$I_h - I_{h/2} = Ch^p (1 - \frac{1}{2^p})$$

Тогда точность на сетке Ω_h будет равна

$$z_h = \frac{I_h - I_{h/2}}{(1 - \frac{1}{2^p})}$$

4) Оцените возможность и эффективность применения методов квадратур, простой итерации и замены ядра при решении интегральных уравнений Вольтерры 2-го рода

Ответ. Интегральное уравнение Вольтерра 2-ро рода

$$u(x) - \lambda \int_{a}^{x} K(x, s)u(s)ds = f(x)$$

1. Метод квадратур

Получим систему

$$y_i - \lambda \sum_{k=0}^{i} a_k^N K(x_i, s_k) y_k = f(x_i)$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ -\frac{\lambda h}{2}K(x_1, s_0) & 1 - \frac{\lambda h}{2}K(x_1, s_1) & 0 & 0 & \dots & 0 \\ -\frac{\lambda h}{2}K(x_2, s_0) & -\lambda hK(x_2, s_1) & 1 - \frac{\lambda h}{2}K(x_2, s_2) & 0 & \dots & 0 \\ -\frac{\lambda h}{2}K(x_3, s_0) & -\lambda hK(x_3, s_1) & -\lambda hK(x_3, s_2) & 1 - \frac{\lambda h}{2}K(x_3, s_3) & \dots & 0 \\ -\frac{\lambda h}{2}K(x_N, s_0) & -\lambda hK(x_N, s_1) & -\lambda hK(x_N, s_2) & -\lambda hK(x_N, s_2) & \dots & 1 - \frac{\lambda h}{2}K(x_N, s_N) \end{pmatrix}$$

Матрица в отличии от Фрдегольма 2po poда является нижне треугольной, что облегчает решение СЛАУ. Можно воспользоваться обратным ходом Гаусса и получить $O(n^2)$ операций где n – количество узлов в сетке.

2. Метод Простой итерации

Можно реализовать аналогично уравнению Фредгольма 2ро рода

$$u^{(k+1)}(x) = f(x) + \lambda \int_{a}^{x} K(x,s)u^{(k)}(s)ds$$

Для перехода на следующую итерацию потребуется вычислять интеграл. Используем формулу трапеций. В уравнении Фредгольма 2-ро рода требуется $2n*n=2n^2$ операций для перехода на следующую итерацию. В уравнении Вольтерра 2-ро рода потребуется

$$\sum_{i=0}^{n} 2i = n(1+n)$$

что меньше чем в уравнении Фредгольма 2ро рода

3. с вырожденным ядром

$$K(x,s) = \sum_{i=1}^{m} \phi_i(x)\psi(s)$$

Подставим представление в уравнение Вольтерра 2-ро рода

$$u(x) - \lambda \sum_{i=1}^{m} \phi_i(x) \cdot \int_a^x \psi_i(s) u(s) ds = f(x)$$

Введем обозначения

$$\int_{a}^{x} \psi_{i}(s)u(s)ds = C_{i}(x)$$

Тогда решение представляется в виде

$$u(x) = \lambda \sum_{i=1}^{m} \phi_i(x) C_i(x) + f(x)$$

Требуется найти функции $C_i(x)$

Подставляя данное представление в исходное уравнение получаем

$$\sum_{i=1}^{m} [C_i(x) - \int_a^x \psi_i(s)(f(s) + \lambda \sum_{j=1}^{m} C_j(x)\phi_j(s))ds]\phi_i(x) = 0$$

Далее в случаи Фредгольма 2ро рода получалось воспользоваться независимостью функции $\psi_i(x)$, однако здесь так не получиться поскольку коэффициенты являются функции зависящие от x. Поэтому метод разделения ядер не применим в случае уравнение Вольтерра 2-ро рода

5) Что называют резольвентой ядра интегрального уравнения?

Ответ. Рассмотрим интегральное уравнение

$$u(x) - \lambda \int_{a}^{b} K(x,s)u(s)ds = f(x)$$

Для его ядра K(x,s) резольвентой называют такую функцию $R(x,s,\lambda)$:

$$u(x) = f(x) + \lambda \int_{a}^{b} R(x, s, \lambda) f(s) ds$$

6) Почему замену ядра интегрального уравнения вырожденным предпочтительнее осуществлять путем разложения по многочленам Чебышева, а не по формуле Тейлора?

Ответ.

- 1. Многочлены Чебышева минимизируют погрешность на всем отрезке сходимости, в отличии от Формулы Тейлора, которая гарантирует сходимость лишь в окрестности раскладываемой точки т.е. Формула Тейлора является своего рода экстраполяцией нашей функции, а экстраполяция обладает плохими свойствами. В отличии от разложение Чебышева.
- 2.При разложении в формулу Тейлора могут возникать осциляции на концах отрезка. Чебышевское же приближение избегает такого эффекта.
- 7) Какие вы можете предложить методы решения переопределенной системы (5.13), (5.17) помимо введения дополнительно переменной \mathbb{R} ?

Ответ. Получается переопределенная система

$$\begin{cases} \mathbf{n} \cdot \sum_{j=1}^{N} \mathbf{Q}(\mathbf{k_i}, \mathbf{c_j}) g_j \Delta l_j = f(\mathbf{k_i}) \\ \sum_{j=1}^{N} g_j \Delta l_j = 0 \end{cases}$$

В силу того, что число неизвестных меньше, чем число уравнений, то не существует решения, которое удовлетворяло бы этой системе, при условии, что её ранг равен N+1. Тогда решение этой системы можно приблизить, например, с помощью метода наименьших квадратов. Обозначим матрицу коэффициентов системы за A, \mathbf{b} - вектор правой части Тогда будем искать решение следующей задачи поиска безусловного минимума

$$(A\mathbf{g} - \mathbf{b})^T (A\mathbf{g} - \mathbf{b}) \to \min_{\mathbf{g} \in \mathbb{R}^N}$$

То есть происходит поиск такого приближения \mathbf{g} , что данное приближение удовлетворяет условия минимума сумме квадратов отклонений. Известно, что решение такой задачи можно найти аналитически

$$\mathbf{g} = (A^T A)^{-1} A^T \mathbf{g}$$

2. Порядки 6

2. Порядки

Таблица 1. Порядок аппроксимации для метода квадратур с использованием метода трапеций

Количество точек	Порядок
10	1.99782
20	1.99945
40	1.99986
80	1.99997
160	1.99999

Таблица 2. Зависимость погрешности от количества членов разложения

Кол-во членов разл.	Погрешность
2	0.148054
3	0.0440627
4	0.0105949
5	0.00208607
6	0.000344697
7	4.89523e-05
8	6.09131e-06
9	6.73798e-07
10	6.65161e-08
11	5.35044e-09
12	6.04542e-10

2. Порядки 7

Таблица 3. Зависимость погрешности от количества итераций

Кол-во итераций	Погрешность
1	0.110833
2	0.036574
3	0.0117899
4	0.00351821
5	0.000757536
6	0.000163839
7	0.000471348
8	0.000573979
9	0.000608232
10	0.000619664
11	0.00062348
12	0.000624753
13	0.000625178
14	0.00062532
15	0.000625367
16	0.000625383
17	0.000625388
18	0.00062539
19	0.000625391
20	0.000625391

Рис. 1. Зависимость погрешности от числа итерация для метода простой итерации

3. Результаты 8

3. Результаты

Рис. 2. Пример 1 для метода простой итерации

Рис. 3. Пример 2 для метода простой итерации

9

Рис. 4. Пример 1 для метода квадратур

Рис. 5. Погрешность примера 1

Рис. 6. Пример 2 для метода квадратур

Рис. 7. Погрешность примера 2

Рис. 8. Пример 1 для метода разложения ядра

Рис. 9. Пример 2 для метода разложения ядра

Рис. 10. Пример для сингулярного уравнения

Рис. 11. Вариант 1. Метод квадратур, правая часть 1

3. Результаты 13

Рис. 12. Разница решений для задания по вариантам

Рис. 13. Вариант 1. Метод квадратур, правая часть 2

Рис. 14. Погрешность решения варианта 1 при правой части 2

Рис. 15. Зависимость R от числа точек на контуре

4. Дополнительные вопросы

1) Что такое альтернатива Фредгольма?

Ответ. Для вполне непрерывного оператора $A \in \mathcal{L}(X)$, где X– банахово пространство, число собственных значений конечно либо счетно. Все собственные значения можно представить в

виде конечной или бесконечной последовательности $\{\lambda_n\}$, причем

$$|\lambda_1| \geqslant |\lambda_2| \geqslant \ldots \geqslant |\lambda_n| \geqslant \ldots$$

Если последовательность бесконечна, то $\lambda_n \to 0$ при $n \to \infty$.

2) Свойства полинома Чебышева

Ответ.

Пусть $T_n(x)$ – полином Чебышева первого рода. Тогда справедливы следующие свойства

- (a) При четном n полином T_n является четной функцией, а при нечетном нечетной.
- (b) Если $x \in [-1, 1]$, то справедлива формула

$$T_n(x) = \cos(n \arccos x)$$

- (c) При $n\geqslant 1$ T_n имеет n корней $x_k\in\mathbb{R}:x_k\in[-1,1]$
- (d) Среди всех многочленов фиксированной степени $n \geqslant 1$ со старшим коэффициентом равным 1, наименьшее уклонение от нуля равное 2^{1-n} имеет многочлен $\tilde{T}_n(x) = 2^{1-n}T_n(x)$, то есть справедливо

$$\max_{x \in [-1,1]} |P_n(x)| = \tilde{T}_n(x)$$

3) Сходимость метода простой итерации

Ответ. 1)Для уравнения Фредгольма 2-ро рода метод последовательных приближений имеет вид

$$u_{n+1}(x) = f(x) + \lambda \int_a^b K(x,\xi)u_n(\xi)d\xi$$

уравнение Фредгольмо 2ро рода имеет вид

$$u(x) = f(x) + \lambda \int_{a}^{b} K(x, \xi) u(\xi) d\xi$$

Вычтем одно из другого и введем погрешность

$$z_{n+1}(x) = u_{n+1}(x) - u(x) = \lambda \int_a^b K(x,\xi) z_n(\xi) d\xi$$

Тогда оценим норму

$$||z_{n+1}(x)||_C \le |\lambda|(b-a)||K(x,\xi)||_C||z_n(x)||_C = q||z_n(x)||_C$$

где $q = |\lambda|(b-a)||K(x,\xi)||_C$.

Если q < 1, то итерации сходятся равномерно по x, причем сходимость линейная

2)Для уравнение Вольтерра

$$z_{n+1}(x) = u_{n+1}(x) - u(x) = \lambda \int_{a}^{x} K(x,\xi) z_n(\xi) d\xi$$

$$z_1(x) = \lambda \int_a^x K(x,\xi) z_0(\xi) d\xi \leqslant |\lambda| \cdot ||K(x,\xi)||_C \cdot ||z_0||_C \int_a^x d\xi = |\lambda| \cdot ||K(x,\xi)||_C ||z_0||_C (x-a)$$

$$z_2(x) = \lambda \int_a^x K(x,\xi)z_1(\xi)d\xi \leqslant (\lambda \cdot ||K(x,\xi)||_C)^2 ||z_0||_C \int_a^x (\xi - a)d\xi = (\lambda \cdot ||K(x,\xi)||_C)^2 ||z_0||_C \frac{(x-a)^2}{2}$$

$$z_{n+1}(x) \leq ||z_0||_C (|\lambda| \cdot ||K(x,\xi)||_C)^n \cdot \frac{(x-a)^n}{n!}$$

Тогда норма оценивается

$$||z_{n+1}(x)||_C \leq (|\lambda| \cdot ||K(x,\xi)||_C)^n \cdot \frac{(b-a)^n}{n!} ||z_0||_C$$

Тогда метод сходится равномерно по λ и по β , если $\alpha = |\lambda| \cdot |K(x,\xi)|_C < 1$. за счет факториала

4) Как получить симметричную матрицу?

Ответ.

$$u(x) - \lambda \int_{a}^{b} K(x,s)u(s)ds = f(x)$$

Дробим интеграл на куски и получаем

$$u(x) - \lambda \sum_{k=0}^{N-1} \int_{s_k}^{s_{k+1}} K(x, s) u(s) ds = f(x)$$

Аппроксимируем интеграл формулой левых прямоугольников

$$\int_{x_i}^{x_{i+1}} K(x,s)u(s)ds = K(x,s_k)u(s_k)h$$

Получаем СЛАУ

$$y_i - \lambda \sum_{k=0}^{N-1} K(x_i, s_k) y_k h = f(x_i)$$

Матрица данной СЛАУ имеет вид

$$\begin{pmatrix} 1 - \lambda h K(x_0, s_0) & -\lambda h K(x_0, s_1) & -\lambda h K(x_0, s_2) & \cdots & 0 \\ -\lambda h K(x_1, s_0) & 1 - \lambda h K(x_1, s_1) & -\lambda h K(x_1, s_2) & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\lambda h K(x_N, s_0) & -\lambda h K(x_N, s_1) & -\lambda h K(x_N, s_2) & \cdots & 1 \end{pmatrix}$$

Видно, что при помощи левых либо правых прямоугольников получается не симметричная матрица.

Однако можно последнее уравнение при i=N аппроксимировать на всем отрезке правым прямоугольником

т.е.

$$u(x_N) - \lambda K(x_N, s_N)u(x_N)(b-a) = f(x_N)$$

$$y_N - \lambda K(x_N, s_N) y_N(b-a) = f(x_N)$$

Тогда матрица СЛАУ будет иметь вид

$$\begin{pmatrix} 1 - \lambda h K(x_0, s_0) & -\lambda h K(x_0, s_1) & -\lambda h K(x_0, s_2) & \cdots & 0 \\ -\lambda h K(x_1, s_0) & 1 - \lambda h K(x_1, s_1) & -\lambda h K(x_1, s_2) & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 - \lambda K(x_N, s_N)(b - a) \end{pmatrix}$$

Тогда матрица при симметричном ядре будет симметричной.