

Disciplina: Avaliação de Desempenho de Sistemas

Aula 10 – Experimentação ou Aferição

Prof. JVictor - jvictor@unifesspa.edu.br

Técnicas para Avaliação de Desempenho:

- Técnicas de Aferição:
 - Protótipos, Benchmarks e Monitores
- Técnicas de Modelagem:
 - Solução Analítica e por Simulação

Muitas vezes o alto nível de abstrações usadas na avaliação de desempenho via modelagem não permite que o sistema seja retratado de forma fidedigna. Dependendo do contexto, esse grau de precisão tem importância fundamental, o que pode exigir o uso de outra técnica como a experimentação ou aferição.

Técnicas de Avaliação de Desempenho

AFERIÇÃO

- Medidas no próprio sistema
- Sistema deve existir e estar disponível
- Experimentação restrita
- Muito cuidado com aquisição dos dados

Técnicas de Aferição

- Construção de Protótipos
- Sistema em Projeto
- Benchmarks
- Comparação entre Sistemas
- Avaliar partes específicas de um Sistema
- Monitores ou Coleta de Dados
- Avaliar um Sistema ou partes dele

Construção de Protótipos

Versão simplificada de um sistema computacional que contém apenas características relevantes para a análise do sistema

Construção de Protótipos

- uma implementação simplificada do sistema real;
- abstração das características essenciais;
- sistemas em fase de projeto;
- produz resultados com boa precisão;
- recomendado para verificação do projeto final;
- problema: custo e alterações.

Construção de Protótipos

- 1) Analisar se o sistema é um bom candidato a prototipação
- Viabilidade da prototipação do sistema;
- Custo
- Dificuldades em alterar o protótipo
- 2) Delimitar e conhecer perfeitamente os domínios funcionais e comportamentais do sistema
- Definir o objetivo da avaliação baseando-se nos objetivos do projeto
- Abstrair as características essenciais
- Verificar a possibilidade de obter os dados necessários para a avaliação do protótipo

8

Construção de Protótipos

- 3) Desenvolver o protótipo
- Software
- Hardware
- 4) Testar e Validar o protótipo
- Garantir que as simplificações feitas não afetaram a precisão do protótipo
- 5) Coletar e Analisar os dados do protótipo
- Definir a estratégia de coleta de dados no protótipo
- Definir os dados a serem coletados

Construção de Protótipos

Concluindo.....

- Ótima opção para verificação de projetos
- Bom para alguns tipos de sistemas
- Custo pode ser um problema
- Flexibilidade não é ponto forte!

Coleta de Dados - Monitores

Ferramenta para observar as atividades de um sistema coletando as características relevantes para a análise do sistema

Coleta de Dados - Monitores

Avaliar o Desempenho e Identificar Pontos Críticos

- Objetivos:
- Determinar partes mais utilizadas
- Determinar gargalos
- Ajustar Parâmetros
- Caracterizar Carga de Trabalho
- Determinar Parâmetros para modelos

Coleta de Dados - Monitores

- oferece os melhores resultados;
- problema central ⇒ interfere com o sistema e o sistema TEM de existir!
- Dois tipos básicos de abordagens:
 - Monitores de Software e de Hardware.

Monitores

Formas de Implementação

Define o nível em que o monitor será implementado:

- 1. Hardware
- 2. Software

Monitores

Hardware

- monitor de hardware que é conectado com o sistema (observador silencioso)
- não interfere no funcionamento normal do sistema medido
- captura eventos rápidos
- apresenta dificuldades em fazer medidas em nível de software
- técnica cara

Monitores

Software

Vantagens:

- generalidade
- flexibilidade
- para medidas em nível de programas
- clock virtual

Desvantagens:

- ele pode interferir com o normal funcionamento do sistema
- não captura eventos que ocorrem rapidamente

Comparação de Monitores de HW x SW

Critério	Hardware	Software
Domínio	Eventos de Hardware	Eventos de SO e Software
Taxa de Entrada	Alta (10 ⁵ / Seg)	Depende do proc.
Resolução	Nanosegundos	Milisegundos
Conhecimento Necessário	Hardwarre	Software
Capacidade de Armazenamento	Limitada pelo armazenamento disp.	Limitada pela sobrecarga
Largura de Entrada	Obtém vários dados simultâneos	Único processador – um evento

Comparação de Monitores de HW x SW

Critério	Hardware	Software
Sobrecarga	Nenhuma	Variável - <5%
Portabilidade	Grande	Pequena
Erros	Mais fácil de ocorrer	Raro
Custo	Alto	Baixo
Disponibilidade	Grande- mesmo com crash	Para durante crash
Flexibilidade	Baixa	Alta

Monitores

Concluindo....

- Podem gerar resultados bastante confiáveis.
- O sistema deve existir e estar disponível.
- Cuidado com a interferência do Monitor nos resultados
- Dois tipos básicos de abordagens:
- Monitores de Software e de Hardware.

Técnicas de Aferição

Problema

- Protótipos
- Monitores

Como comparar com outros sistemas?

Técnicas de Aferição

Benchmarks

- Instrumento fixo, que permite comparar uma medida (mark - marca) a um padrão preestabelecido
- Deve-se ter um ponto de observação (bench banco)
- Ponto fixo ou referência para comparações

Benchmarks – Exemplo TERMÔMETRO

Benchmarks

 $T = 36,5^{\circ}$

Normal

Termômetro

T = 38° Febre!!!

Benchmarks

Benchmarks - Computação

Programa escrito em linguagem de alto nível, representativo de uma classe de aplicações, utilizado para medir o desempenho de um dado sistema ou para comparar diferentes sistemas

Benchmarks

- Abordagem muito utilizada para a avaliação de desempenho por aferição
- Exemplo

Qual a diferença entre um i5 e um i7?

Qual a influência no desempenho??

i5	i7
2 ou 4 núcleos	4 ou 6 núcleos
Não possui Hyper- threading	possui Hyper-threading – 2 núcleos lógicos para cada físico
DMI - Direct Media Interface (taxa de transferência ~2Gb/s)	QPI - Quick Path Interconnect (taxa de transferência >4,8Gb/s)
Quantidade de canais para acesso a memória – 2 (acessa 2 pentes ao mesmo tempo)	Quantidade de canais para acesso a memória – 3 (acessa 3 pentes ao mesmo tempo)

Benchmarks

Concluindo....

Benchmarks podem ser utilizados para verificar diversos tipos de sistemas ...

- -Servidores Web,
- -Banco de dados,
- -Processadores,
- -Redes de comunicação

Benchmarks

sendo utilizados com diferentes objetivos...

- Codificação de vídeo e edição de imagens,
- Jogos,
- Processamento intensivo,
- Processamento de textos, etc.

Técnicas de Aferição: RESUMO

Trabalho 3ª Avaliação

Com os mesmos grupos do último trabalho, fazer:

- Pesquisa por uma ferramenta de monitoração (NENHUM GRUPO DEVE REPETIR A MESMA FERRAMENTA !!!)
- Preparar uma apresentação de 15 a 20 minutos contendo:
 - Objetivo do monitor, Variáveis de resposta,
 Mecanismo de visualização de dados, Forma de Implementação, e Exemplo de utilização
- Data: 14/12/2021