Predicting Future Stock Returns

Mateo, Jay, Adi, Vadym

The Focus

Market benchmark

Analyzed Tech Stocks

The Agenda

Business Objectives

Problem Framing

Goal:

Predict Next Day Returns Data:

2007-2023 Analysis

Focus:

Feature Engineering

Challenge:

Market Volatility & Model Inaccuracy

Strategy:

Utilize LM, XgBoost, Bagging, SVM, Lasso, Random Forest

Previous Work

Bollen, Mao, Zeng (2011)

Twitter **sentiment analysis** for predicting Dow Jones movements, 87.6% accuracy.

Heaton, Polson, Witte (2016)

Financial indicators & unconventional data, Convolutional Neural Networks.

Krauss, Do, Huck (2017)

Used **Deep Neural Networks** and **Random Forests**, achieving Sharpe ratio > 4 (high)

Zhang, Zohren, Roberts (2020)

Analyzed high-frequency trading data, **LSTM** networks.

No publicly available predictors from these papers.

The Data & Scope

21,315

sample

``{r}

25 _v

variables

01/03/07 - 12/07/23

Bands, Beta

timeframe

Dates, daily & future returns, SMA, SD, RSI, Bollinger

Quantmod, TTR, PerformanceAnalytics packages

data features

packages for data retrieval

Incorporated S&P 500 variables: Daily Return, 14-day MA, 30-day MA, RSI

additional data

...

Data Overview

Methodology

1 Test various models

2 Tune parameters where needed

3 Analyze each model on Apple data

4 Apply all models to all other stocks

5 Reevaluate models & Adjust parameters

Models Applied

XGBoost

Efficient for complex data, risk of overfitting.

Linear Regression

Simple, fast, but may oversimplify.

Random Forest

Handles non-linear data, robust to noise.

Bagging

Reduces overfitting, good for noisy data.

SVM

Effective in high-dimensional spaces, kernel-dependent.

Lasso Regression

Performs feature selection, prone to bias.

Findings: Apple Inc

Amazon.com Inc

Bagging (50.35%)

Findings: Amazon.com Inc

Findings: Alphabet Inc Class A

SVM (52.13%)

Findings: Alphabet Inc Class A

Microsoft Corp Findings: Mosset **XGBoost (51.06%)** NASDAQ: MSFT 0.075 -0.050 -0.025 predictedxgb 0.000 --0.025 --0.050 --0.05 0.05 0.00

actualxgb

Microsoft Corp

NASDAQ: MSFT :

NVIDIA Corp

NASDAQ: NVDA:

SVM (52.72%)

NVIDIA Corp

NASDAQ: NVDA:

Overall Model Summaries

Apple Inc

amazon

Amazon.com Inc

NASDAQ: AMZN :

Alphabet

Alphabet Inc Class A

NASDAQ: GOOGL :

Microsoft

Microsoft Corp

NASDAQ: MSFT :

◎ ⊓VIDIA

NVIDIA Corp

NASDAQ: NVDA :

Accuracy								
	Linear	xgboost	Random Forest	Bagging	Lasso	SVM		
AAPL	-	0.4704	0.4882	0.4894	-	0.5177		
AMZN	-	0.4976	0.4976	0.5035	-	0.4669		
GOOG	-	0.4894	0.4752	0.4752	-	0.5213		
MSFT	-	0.5106	0.4941	0.4929	-	0.5083		
NVDA	-	0.4976	0.5000	0.5059	-	0.5272		

Specificity								
	Linear	xgboost	Random Forest	Bagging	Lasso	SVM		
AAPL	-	0.8809	0.8065	0.8561	-	0.0323		
AMZN	-	0.2434	0.4193	0.3952	-	0.2096		
GOOG	-	0.8747	1.0000	1.0000	-	0.2130		
MSFT	-	0.3447	0.9709	0.9636	-	0.2500		
NVDA	-	0.1959	0.1832	0.1908	-	0.0102		

Sensitivity								
	Linear	xgboost	Random Forest	Bagging	Lasso	SVM		
AAPL	-	0.0971	0.1986	0.1558	-	0.9594		
AMZN	-	0.7425	0.5731	0.6079	-	0.7146		
GOOG	-	0.1454	0.0067	0.0067	-	0.7964		
MSFT	-	0.6682	0.0415	0.0461	-	0.7535		
NVDA	-	0.7594	0.7748	0.7792	-	0.9757		

RMSE							
	Linear	xgboost	Random Forest	Bagging	Lasso	SVM	
AAPL	0.0226	0.0314	0.0285	0.0282	0.0444	0.0190	
AMZN	0.0242	0.0271	0.0248	0.0251	0.0466	0.0250	
GOOG	0.0204	0.0290	0.0315	0.0332	0.0421	0.0199	
MSFT	0.0203	0.0213	0.0295	0.0291	0.1044	0.0180	
NVDA	0.0368	0.0419	0.0457	0.0520	0.0737	0.0333	

Similar Conclusions

SVM

Model

72% - 99%

Best Performance - High Accuracy

- Lead to the best performance statistics (accuracy, precision, and recall)
- Outperformed other models, especially for S&P index price movement

Johnson, Jaya. 2023. Machine Learning for Financial Market Forecasting. Master's thesis, Harvard University Division of Continuing Education.

Project Constraints and Potential

Limitations

Future Opportunities

Market Unpredictability

No sentiment analysis or more complex models included.

Model Limitations

Variable Scope

Limited number of variables, tuning complexity

Model Scope

Sentiment Analysis:

Twitter, Bloomberg, Financial Times, The Economist

Advanced ML Models:

Adopt LSTM and Bi-LSTM

Expand Number of Features

Custom Ensemble Model

Thank you!

