Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-224. Вариант 23

1. Пусть
$$z = \frac{1}{2} + \frac{\sqrt{3}i}{2}$$
. Вычислить значение $\sqrt[4]{z^3}$, для которого число $\frac{\sqrt[4]{z^3}}{\frac{1}{2} + \frac{\sqrt{3}i}{2}}$ имеет аргумент $-\frac{7\pi}{12}$.

2. Решить систему уравнений:

$$\begin{cases} x(-2+7i) + y(-8-3i) = -14-81i \\ x(-3-8i) + y(8-13i) = 14-19i \end{cases}$$

- 3. Найти корни многочлена $x^6 + 5x^5 21x^4 55x^3 + 684x^2 + 450x 6264$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1 = -5 2i$, $x_2 = 3 + 3i$, $x_3 = 3$.
- 4. Даны 3 комплексных числа: 15-2i, -2+18i, -24-24i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = -2 + 2\sqrt{3}i$, $z_2 = -2 2\sqrt{3}i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+4-2i| < 1\\ |arg(z+3-4i)| < \frac{3\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (3, -1, -4), b = (-3, 0, -4), c = (-1, -1, -10). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-7,5,-10) и плоскость P:-30x+14y-32z+460=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(-5, -3, 7), $M_1(-1, 10, -5)$, $M_2(25, -3, -5)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} 9x + 5y - 23z - 277 = 0 \\ 17x - 13y - 13z - 307 = 0 \end{cases} \qquad L_2: \begin{cases} -8x + 18y - 10z + 1982 = 0 \\ x + 10y - 4z + 874 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.