МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДАНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Московский государственный технический

университет имени Н.Э. Баумана»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>ФН</u>

КАФЕДРА «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И МАТЕМАТИЧЕСКАЯ ФИЗИКА»

Направление: Математика и компьютерные науки

Дисциплина: Теория вероятности и математическая статистика

Домашняя работа №2

Группа: ФН11-53Б

Вариант №15

Студент: Пунегов Д.Е.

Преподаватель: Облакова Т.В.

Задача 2. Моделирование и обработка выборки из дискретного закона распределения.

Задание.

- 1. Для данного n смоделируйте выборку из биномиального закона распределения: $P(\xi = j) = p_j = C_k^j p^j (1-p)^{k-j}, j = \overline{0,k}$.
- 2. Для полученной выборки постройте статистический ряд. Найдите эмпирическую функцию распределения $\hat{F}_n(x)$. Постройте на одном рисунке графики F(x) и $\hat{F}_n(x)$. Вычислите статистику Колмогорова.
- 3. Вычислите выборочное среднее и выборочную дисперсию и сравните с истинными значениями этих характеристик.

Данные задачи 2

4 =	4.0	0.5	470
15	1)	().5	170
1		0,0	1,0

Моделирование и обработка выборки из дискретного закона распределения.

- 1. Для данного п смоделируйте выборку из биномиального закона распределения
- 1.1 Загружаем все нужные библиотеки

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import Markdown as md
from IPython.display import display, Math, Latex
import math

pd.set_option('display.max_rows', 20)
```

1.2 Задание начальных данных

```
In [2]: k = 12
p = 0.5
n = 170

def partial_sums(iterable):
    total = 0
    for i in iterable:
        total += i
        yield total
```

1.3 Генерация выборки

Вероятность: [0.00024414, 0.00292969, 0.01611328, 0.05371094, 0.12084961, 0.19335938, 0.22558594, 0.19335938, 0.12084961, 0.05371094, 0.01611328, 0.00292 969, 0.00024414]
Накопленная вероятность: [0.00024414, 0.00317383, 0.01928711, 0.07299805, 0.19384766, 0.38720704, 0.61279298, 0.80615236, 0.92700197, 0.98071291, 0.99682 619, 0.99975588, 1.00000002]

	619,	0.999/5588, 1	•
3]:		Случайные числ	ıa
	0	0.91361	1
	1	0.10635	8
	2	0.93484	10
	3	0.80826	2
	4	0.53295	3
			_
	165	0.31041	9
	166	0.05656	6
	167	0.75335	7
	168	0.26151	5
	169	0.57693	1
	170 rd	ows × 1 columns	S

```
df = pd.DataFrame()
num_collection = pd.DataFrame(('Выборка': counter))
df('Значения СВ'] = list(range(k + 1))
counter = dict(Counter(counter))
for i in range(k + 1):
    if i not in counter:
        counter[i] = 0
quantities = [pair[i] for pair in sorted(counter.items())]
if len(quantities) < k + 1:
    quantities.insert(0, 0)
df['Частоты'] = quantities
df['Относительные частоты'] = df['Частоты'] / n
df['Накопленные частоты'] = list(partial_sums(df['Относительные частоты']))
num_collection
            0
        1 4
            2
        3
            4
                             5
         165
         166
         167
         168
         169
        170 rows × 1 columns
[5]: df
                Значения СВ Частоты Относительные частоты Накопленные частоты
                                 0
                                         0
           0
                                                                          0.000000
                                                                                                                     0.000000
                             1 1
                                                              0.005882
                                                                                                       0.005882
         1
           2
                                2 4
                                                                               0.023529
                                                                                                                     0.029412
                             3 10
                                                                                                              0.088235
```

0.058824

0.094118

0.188235

0.188235

7 43 0.252941 0.811765

0.182353

0.558824

0.370588

3 4

5

6

4 16

6 32

5 32

8	8	18	0.105882	0.917647
9	9	10	0.058824	0.976471
10	10	3	0.017647	0.994118
11	11	1	0.005882	1.000000
12	12	0	0.000000	1.000000

2. Эмпирическая и теоретическая функция распределения

```
[6]:

plt.figure(figsize=(10,6))

plt.step([-1, 0, *(df['Значения СВ'] + 1)], [0, 0, *df['Накопленные частоты']], color = 'darkgreen', label='Эмпирическая F')

plt.step([-1, 0, *(df['Значения СВ'] + 1)], [0, 0] + kum, color = 'cyan', label='Теоретическая F', linestyle='dashed')

plt.legend(loc="upper left")
```

[6]. <matplotlib.legend.Legend at 0x1910096c2b0>

3. Статистика Колмогорова

```
[7]: md('$$\delta = sup(|F(z) - \overset{{\land}}{{F}}_{{}}(z)|) = {}$$'.format('\{{{}}}'.format(n), max(abs(df['Накопленные частоты'] - kum))))
```

 $\delta = sup(|F(z) - \hat{F}_{170}(z)|) = 0.053969450588235324$

4. Вывод

Полученная статистика Колмогорова достаточно маленькая, что говорит нам о том, что полученная нами выборка взята из нашего исходного закона распределения.