Brandon Thompson

Due: 3/31/21

Dr. Muhammed Abid

Assignment 5: Chapter 10, 11, 12

PROBLEM #1 (15 POINTS):

Use the pumping lemma to show that this language is nonregular:

$$\{a^nb^na^n\} = \{aba, aabbaa, aaabbbaaa, \ldots\}$$
$$\{a^nba^n\} = \{aba, aabaa, aaabaaa, \ldots\}$$
$$\{a^nb^{2n} = \{abb, aabbb, aaabbbbb, \ldots\}$$

SOLUTION:

1. First we assume that L is regular and n is the number of states.

Let $w = a^n b^n a^n$. Thus |w| = 3n > n.

By pumping lemma, let w = xyz, where $|xy| \le n$.

Let $x = a^p, y = a^q, z = a^r b^n a^n$, where $p + q + r = n, p \neq 0, q \neq 0, r \neq 0$.

Let k=2. Then $xy^2z=a^pa^{2q}a^rb^na^n$.

The number of a's is :(p + 2q + r) + n = (p + q + r) + q + n = 2n + q

Hence, $xy^2z = a^{n+q}b^na^n$. Since $q \neq 0, xy^2z$ is not of the form $a^nb^na^n$.

Thus, xy^2z is not in L making L not regular.

2. First we assume that L is regular and n is the number of states.

Let $w = a^n b a^n$. Thus |w| = 2n + 1 > n.

By pumping lemma, let w = xyz, where $|xy| \le n$.

Let $x = a^p, y = a^q, z = a^r b a^n$, where $p + q + r = n, p \neq 0, q \neq 0, r \neq 0$.

Let k = 2. Then $xy^2z = a^pa^{2q}a^rba^n$.

The number of a's is: (q + 2q + r) + n = (p + q + r) + q + n = 2n + q

Hence, $xy^2z = a^{n+q}ba^n$. Since $q \neq 0, xy^2z$ is not of the form a^nba^n .

Thus xy^2z is not in L making L not regular.

3. First we assume that L is regular and n is the number of states.

Let $w = a^n b^{2n}$. Thus $|w| = 3n \ge n$.

By pumping lemma, let w = xyz, where $|xy| \le n$.

Let $x = a^p, y = a^q, z = a^r b^{2n}$, where $p + q + r = n, p \neq 0, q \neq 0, r \neq 0$.

Let k=2. Then $xy^2z=a^pa^{2q}a^rb^{2n}$.

The number of *a*'s is: (q + 2q + r) = (p + q + r) + q = n + q

Hence, $xy^2z = a^{n+q}b^{2n}$. Since $q \neq 0, xy^2z$ is not of the form a^nb^{2n} .

Thus xy^2z is not in L making L not regular.

SOLUTION:

PROBLEM #3 (18 POINTS):

Describe the language generated by the following context free grammar (CFG) in English and regular expressions:

a)
$$S \to SS$$

$$S \to ZZZ$$

$$Z \to bZ$$

$$Z \to Zb$$

$$Z \to a$$

b)
$$S \to aS$$

$$S \to bb$$

c)
$$S \to XYX$$

$$X \to aX$$

$$X \to bX$$

$$X \to \Lambda$$

$$Y \rightarrow bbb$$

SOLUTION:

- a) This CFG can be described as any number of b's with a multiple of 3 a's. Regular Expression: $(b^*ab^*ab^*ab^*)^*$
- b) This CFG can be described as any number of a's followed by two b's. Regular Expression: a*bb
- c) This CFG can be described as any string of a's and b's containing the string bbb. Regular Expression: (a + b)*bbb(a + b)*

PROBLEM #4 (15 POINTS):

Find CFG for the following languages over the alphabet $\Sigma = \{a, b\}$:

- a) All words that have different first and last letters.
- b) All words in which the letter b is never tripled.
- c) All words that do not have substring ab.

SOLUTION:

a)
$$S \to aXb \mid bXa$$

$$X \to aX \mid bX \mid a \mid b \mid \Lambda$$

b)
$$S \rightarrow \Lambda \mid b \mid bb \mid Sa \mid aS \mid Sab \mid Sabb$$

c)
$$S \to \Lambda \mid bS \mid bX \mid X$$

 $X \to aX \mid \Lambda$

Problem #5 (10 points):

Show that the CFG below is ambiguous by finding a word with two distinct syntax trees. Show both syntax trees.

a)
$$S \to Sbb$$

 $S \to Sbbb$
 $S \to b$

b)
$$S \to AA$$

 $A \to AAA|a|bA|Ab$

SOLUTION:

1. The CFG is ambiguous because the word bbbbbb can follow:

\mathbf{Rule}	Application	Result
$Start \rightarrow S$	Start	S
$S \to Sbbb$	\mathbf{S}	\mathbf{Sbbb}
$S \to Sbb$	\mathbf{S} bbb	\mathbf{Sbb} bbb
$S \to b$	${f S}$ bbbbb	b bbbbb
$Start \rightarrow S$	Start	S
$S \to Sbb$	\mathbf{S}	Sbb
$S \to Sbbb$	\mathbf{S} bb	Sbbb bb
$S \to b$	\mathbf{S} bbbbb	b bbbbb

2. The CFG is ambiguous because the word *aba* can follow:

Rule	Application	Result
$Start \rightarrow S$	Start	S
$S \to AA$	\mathbf{S}	$\mathbf{A}\mathbf{A}$
$A \to Ab$	\mathbf{A} A	$\mathbf{A}\mathbf{b}\mathbf{A}$
$A \rightarrow a$	\mathbf{A} bA	\mathbf{a} bA
$A \rightarrow a$	ab A	ab a
$Start \rightarrow S$	Start	S
$S \to AA$	\mathbf{S}	$\mathbf{A}\mathbf{A}$
$A \rightarrow a$	\mathbf{A} A	aA
$A \to bA$	$a\mathbf{A}$	$a\mathbf{b}\mathbf{A}$
$A \rightarrow a$	aba	$ab\mathbf{a}$