Parameter Estimation

Eklavya Sharma

Our aim is to find out something about a distribution by observing a sample.

Definition 1 (Sample). For a distribution D, a sample of size n from D is the sequence $[X_1, X_2, \ldots, X_n]$ of n IID random variables, each having distribution D.

Notation: For a random variable X having distribution D and any function g, define $\mathrm{E}(g(D)) := \mathrm{E}(g(X))$. (Hence, $\mathrm{Var}(D) := \mathrm{Var}(X)$.)

1 Bias and Variance of Estimators

Definition 2 (Sample mean and variance). Let $[X_1, \ldots, X_n]$ be a sample.

- 1. The mean of the sample is defined as $\overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$.
- 2. The variance of the sample is defined as $V_X := \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$.
- 3. The standard-deviation of the sample is defined as $S_X := \sqrt{V_X}$.

Theorem 1. Let \overline{X} be the mean of a sample from D. Then $E(\overline{X}) = E(D)$ and $Var(\overline{X}) = Var(D)/n$.

Claim 2. Let \overline{X} and S^2 be the mean and variance, respectively, of sample $[X_1, \ldots, X_n]$. Let a be any random variable (or a constant). Then

$$S^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} (X_{i} - a)^{2} - n(\overline{X} - a)^{2} \right).$$

(Note that setting $a = \overline{X}$ gives the definition of S^2 .)

Theorem 3. Let V be the variance of sample $[X_1, \ldots, X_n]$ from D. Let $\mu := E(D)$ and $\sigma^2 := Var(D)$. Then $E(V) = \sigma^2$ and $Var(V) = \frac{E((D-\mu)^4)}{n} - \frac{\sigma^4(n-3)}{n(n-1)}$.

Proof.

$$E(V) = \frac{1}{n-1} \left(\sum_{i=1}^{n} E((X_i - \mu)^2) - n E((\overline{X} - \mu)^2) \right)$$

$$= \frac{1}{n-1} \left(\sum_{i=1}^{n} Var(X_i) - n Var(\overline{X}) \right) = \sigma^2.$$
(by Claim 2)

The expression for Var(V) is from [6].

2 Distribution of Estimators

Definition 3. Let Z be a random variable and $S := [X_1, X_2, \ldots]$ be an infinite sequence of random variables. We say that S converges to Z if $\lim_{n\to\infty} F_{X_n}(x) = F_Z(x)$ for all $x \in \mathbb{R}$ where F_Z is continuous.

Theorem 4 (Central Limit Theorem). Let X_1, X_2, \ldots be IID randvars having mean μ and variance σ^2 . Let $\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$. Let $Y_n := \sqrt{n/\sigma}(\overline{X}_n - \mu)$. Then $[Y_1, Y_2, \ldots]$ converges to N(0, 1).

Lemma 5 (Scaling normal). Let $X \sim N(\mu, \sigma)$. Then for any constants a and b, $aX + b \sim N(a\mu + b, |b|\sigma)$.

Lemma 6 ([3]). Let X and Y be independent randvars where $X \sim N(\mu_X, \sigma_X)$ and $Y \sim N(\mu_Y, \sigma_Y)$. Then $X + Y \sim N(\mu_X + \mu_Y, \sqrt{\sigma_X^2 + \sigma_Y^2})$.

Theorem 7. Let $[X_1, \ldots, X_n]$ be a sample from $N(\mu, \sigma)$. Let \overline{X} and S^2 be the mean and variance of the sample. Then

- 1. $\overline{X} \sim N(\mu, \sigma/\sqrt{n})$.
- 2. $\frac{n-1}{\sigma^2}S^2 \sim \chi^2(n-1)$.
- 3. \overline{X} and S^2 are independent.

Here $\chi^2(n-1)$ is the Chi-Squared distribution with n-1 degrees of freedom.

Proof. Part 1 follows from Lemmas 5 and 6.

[2] proves parts 2 and 3. Alternatively, [4] proves part 3 and [1] proves part 2. \Box

3 Distribution of Statistical Scores

Definition 4. Let $Z \sim N(0,1)$ and $U \sim \chi^2(r)$ be independent randvars. Let $T := Z/\sqrt{U/r}$. Then T's distribution is called the Student's t distribution with r degrees of freedom.

Lemma 8 (t distribution is symmetric). Let $T \sim t(r)$. Then T and -T have the same distribution.

Proof. Let
$$Z \sim N(0,1)$$
 and $U \sim \chi^2(r)$ be independent randvars and $T := Z/\sqrt{U/r}$.
Then $T \sim t(r)$. Since $-Z \sim N(0,1)$, so $-T = (-Z)/\sqrt{U/r} \sim t(r)$.

Lemma 9 (Implications of symmetry). Let X be a continuous random variable such that X and -X have the same distribution. Then, $\forall x \in \mathbb{R}$, we get $F_X(x) + F_X(-x) = 1$, and $\forall \alpha \in [0,1]$, we get $F_X^{-1}(\alpha) + F_X^{-1}(1-\alpha) = 0$.

Proof.
$$F_X(-x) = F_{-X}(-x) = \Pr(-X \le -x) = \Pr(X \ge x) = 1 - F_X(x)$$
.
Let $x = F_X^{-1}(\alpha)$. Then
$$-F_X^{-1}(1-\alpha) = -F_X^{-1}(1-F_X(x)) = -F_X^{-1}(F_X(-x)) = x = F_X^{-1}(\alpha).$$

Theorem 10. Let \overline{X} and S^2 be the mean and variance of a sample from $N(\mu, \sigma)$. Then

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1).$$

Proof sketch. Use Theorem 7 and
$$\frac{\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)S^2/\sigma^2}{n-1}}} = \frac{\overline{X} - \mu}{S / \sqrt{n}}.$$

4 Distribution of Paired Statistical Scores

Theorem 11. Let \overline{X} and S_X^2 be the mean and variance of a sample $[X_1, \ldots, X_n]$ from distribution $N(\mu_X, \sigma)$. Let \overline{Y} and S_Y^2 be the mean and variance of sample $[Y_1, \ldots, Y_m]$ from distribution $N(\mu_Y, \sigma)$. The two samples are independent. Then for

$$S_p^2 := \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}, \qquad T := \frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}},$$

we have $T \sim t(n+m-2)$. $(S_p^2 \text{ is called pooled sample variance.})$

Proof sketch. $\overline{X}, \overline{Y}, S_X, S_Y$ are independent by Theorem 7.3.

$$\overline{X} \sim N(\mu_X, \sigma/\sqrt{n})$$
 and $\overline{Y} \sim N(\mu_Y, \sigma/\sqrt{m})$ (by Theorem 7.1)
$$\implies \frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{\sigma\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim N(0, 1).$$
 (by Lemmas 5 and 6)

$$(n-1)S_X^2/\sigma^2 \sim \chi^2(n-1)$$
 and $(m-1)S_Y^2/\sigma^2 \sim \chi^2(m-1)$ (by Theorem 7.2)
 $\implies (n+m-2)S_p^2/\sigma^2 \sim \chi^2(n+m-2).$

Lemma 12. For $i \in \{1, ..., k\}$, let $\mathbf{X}_i := [X_{i,1}, ..., X_{i,n_i}]$ be a sample from $N(\mu_i, \sigma_i)$. The samples are independent. Let $a_1, ..., a_k$ be non-negative constants. Let S_i^2 be the variance of \mathbf{X}_i . Let

$$r := \frac{\left(\sum_{i=1}^{k} a_i S_i^2\right)^2}{\sum_{i=1}^{k} \frac{(a_i S_i^2)^2}{n_i - 1}} \qquad \qquad L := \frac{r}{\sum_{i=1}^{k} a_i \sigma_i^2} \sum_{i=1}^{k} a_i S_i^2.$$

Then L is approximately distributed $\chi^2(r)$.

Proof. The meaning of approximate and the 'proof' can be found at [5, 7].

Theorem 13. Let \overline{X} and S_X^2 be the mean and variance of a sample $[X_1, \ldots, X_n]$ from distribution $N(\mu_X, \sigma_X)$. Let \overline{Y} and S_Y^2 be the mean and variance of sample $[Y_1, \ldots, Y_m]$ from distribution $N(\mu_Y, \sigma_Y)$. The samples $[X_1, \ldots, X_n]$ and $[Y_1, \ldots, Y_m]$ are independent. Then for

$$r:=\frac{(S_X^2/n+S_Y^2/m)^2}{\frac{(S_X^2/n)^2}{n-1}+\frac{(S_Y^2/m)^2}{m-1}} \qquad and \qquad T:=\frac{(\overline{X}-\overline{Y})-(\mu_X-\mu_Y)}{\sqrt{S_X^2/n+S_Y^2/m}},$$

T approximately follows t(r).

Proof sketch. $T = Z/(\sqrt{L/r})$, where

$$Z := \frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{\sqrt{\sigma_X^2/n + \sigma_Y^2/m}} \sim N(0, 1), \qquad L := \frac{r}{\sigma_X^2/n + \sigma_Y^2/m} \left(\frac{S_X^2}{n} + \frac{S_Y^2}{m}\right),$$

and L approximately follows $\chi^2(r)$ by Lemma 12.

Definition 5. Let X and Y be independent randvars, where $X \sim \chi^2(u)$ and $Y \sim \chi^2(v)$. Then the distribution of $\frac{X/u}{Y/v}$ is called the F distribution with parameters u and v.

Lemma 14. Let R be an F distribution with parameters u and v. Then R^{-1} is an F distribution with parameters v and u. Furthermore, $\forall x \in \mathbb{R}_{>0}$, we get $F_R(x) + F_{R^{-1}}(x^{-1}) = 1$, and $\forall \alpha \in [0,1]$, we get $F_R^{-1}(\alpha)F_{R^{-1}}^{-1}(1-\alpha) = 1$.

$$\begin{array}{l} \textit{Proof.} \ \ F_{R^{-1}}(x^{-1}) = \Pr(R^{-1} \leq x^{-1}) = \Pr(R \geq x) = 1 - F_R(x). \\ \text{Let} \ \ x := F_R^{-1}(\alpha). \ \ \text{Then} \\ F_{R^{-1}}^{-1}(1-\alpha) = F_{R^{-1}}^{-1}(1-F_R(x)) = F_{R^{-1}}^{-1}(F_{R^{-1}}(x^{-1})) = x^{-1} = 1/F_R^{-1}(\alpha). \end{array}$$

References

- [1] Sampling distribution of sample variance. Penn State STAT 414. URL: https://online.stat.psu.edu/stat414/lesson/26/26.3.
- [2] Show \overline{X} and S^2 are independent. Duke STA 611 Fall 2019 Lecture 12. URL: http://www2.stat.duke.edu/courses/Fall19/sta611.01/Lecture/lec12_mean_var_indep.pdf.
- [3] Sum of normally distributed random variables. Wikipedia. URL: https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables.
- [4] guy. Proof of the independence of the sample mean and sample variance. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/50598.
- [5] DGK. Proof and precise formulation of Welch-Satterthwaite equation. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/3189589.
- [6] user940. Variance of sample variance? Mathematics Stack Exchange, October 2011. URL: https://math.stackexchange.com/q/73080.
- [7] B. L. Welch. The generalization of 'student's' problem when several different population variances are involved. *Biometrika*, 34(1/2):28–35, 1947. doi:10.2307/2332510.