『基本統計学』(第3版) 練習問題解答

第1章解答 (問題は 13 ~ 14 ページ)

1.1 ①

階級値	階級境界値	度数	相対度数	累積度数	累積相対度数
44.5	$39.5 \sim 49.5$	2	0.10	2	0.10
54.5	$49.5 \sim 59.5$	5	0.25	7	0.35
64.5	$59.5 \sim 69.5$	8	0.40	15	0.75
74.5	$69.5 \sim 79.5$	3	0.15	18	0.90
84.5	$79.5 \sim 89.5$	2	0.10	20	1.00
合 計		20	1.00		

2

1.2 ①

階級値	階級境界値	度数	相対度数	累積度数	累積相対度数
-16.5	$-20.5 \sim -12.5$	2	0.10	2	0.10
-8.5	$-12.5 \sim -4.5$	3	0.15	5	0.25
-0.5	$-4.5 \sim 3.5$	6	0.30	11	0.55
7.5	$3.5 \sim 11.5$	6	0.30	17	0.85
15.5	$11.5 \sim 19.5$	3	0.15	20	1.00
合 計		20	1.00		

2

1.3 ①

階級値	階級境界值	度数	相対度数	累積度数	累積相対度数
-9.05	$-10.05 \sim -8.05$	0	0.0000	0	0.0000
-7.05	$-8.05 \sim -6.05$	0	0.0000	0	0.0000
-5.05	$-6.05 \sim -4.05$	4	0.1111	4	0.1111
-3.05	$-4.05 \sim -2.05$	8	0.2222	12	0.3333
-1.05	$-2.05 \sim -0.05$	8	0.2222	20	0.5556
0.95	$-0.05 \sim 1.95$	11	0.3056	31	0.8611
2.95	$1.95 \sim 3.95$	4	0.1111	35	0.9722
4.95	$3.95 \sim 5.95$	1	0.0278	36	1.0000
6.95	$5.95 \sim 7.95$	0	0.0000	36	1.0000
8.95	$7.95 \sim 9.95$	0	0.0000	36	1.0000
	合 計	36	1.0000		

2

1.4 ① 125, ② 375, ③ 625, ④ 875, ⑤ 1125, ⑥ 1375, ⑦ 0.0331, ⑧ 0.2758, ⑨ 0.3463, ⑩ 0.2133, ⑪ 0.0946, ⑫ 0.0369, ⑬ 137, ⑭ 1280, ⑮ 2715, ⑯ 3599, ⑰ 3991, ⑱ 4144, ⑲ 0.0331, ⑳ 0.3089, ㉑ 0.6552, ㉑ 0.8685, ② 0.9631, ② 1.0000, ⑤ 4144, ⑤ 1.0000

(問題は 26 ~ 27 ページ) 第2章解答

- **2.1** ① E市 326 万円、F市 644 万円。② 範囲: E市 330、F市 470。分 散: E 市 12384、F 市 19884。標準偏差: E 市 111.283、F 市 141.011。③ E 市の 700 万円の標準化変量の値は 3.361. F 市の 1000 万円のそれは 2.525。E 市の700万円の所得の世帯のほうがより上位の所得階層にいる。 ④ E市と F 市の変動係数は、それぞれ 0.341, 0.219、変動係数で比較すると E 市のほうが ばらつきがある。
- 2.2 実質国民総生産の対前年度比は、552221.8/542249.0=1.01839. 572618.1/ 552221.8=1.03693、574707.3/572618.1=1.00365。対前年度比の算術平均は (1.01839+1.03693+1.00365)/3=1.01966, 幾何平均は $\sqrt[3]{574707.3/542249.0}$ =1.01957。わずかに算術平均のほうが大きい。
- **2.3** 平均: $\overline{z} = \frac{1}{n} \sum_{i=1}^{n} z_i = \frac{1}{n} \sum_{i=1}^{n} (x_i \overline{x})/s = \frac{1}{ns} \left(\sum_{i=1}^{n} x_i n\overline{x} \right) = 0$, 分散: $\frac{1}{n}\sum_{i=1}^{n}(z_i-\overline{z})^2=\frac{1}{n}\sum_{i=1}^{n}z_i^2=\frac{1}{n}\sum_{i=1}^{n}(x_i-\overline{x})^2/s^2=s^2/s^2=1$, 標準
- 2.4 各国の通貨は、それぞれの通貨単位ではかられているから、所得の分布 の散らばり具合を変動係数で比較すればよい。
- **2.5** (2.2) と (2.12) から計算する。平均 $\overline{x}=(1/n)\sum\limits_{i=1}^k f_i m_i=\frac{1}{207}(1 imes 1)$ $(-9.05) +3 \times (-7.05) +12 \times (-5.05) +29 \times (-3.05) +53 \times (-1.05) +65 \times$ $0.95 + 33 \times 2.95 + 9 \times 4.95 + 1 \times 6.95 + 1 \times 8.95 = -0.07415$ 。分散 $s^2 =$ (1/n) $\sum_{i=1}^{k} f_i(m_i - \overline{x})^2 = (1/n) \sum_{i=1}^{k} f_i m_i^2 - \overline{x}^2 = \frac{1}{207} (1 \times (-9.05)^2 + 3 \times (-7.05)^2)$ $^{i=1}$ $^$ $+9 \times 4.95^{2} + 1 \times 6.95^{2} + 1 \times 8.95^{2}$) $-(-0.07415)^{2} = 7.53082$ 。標準偏差 $s = \sqrt{7.53082} = 2.74423$

2.6 表 1.6 の階級値は上から、100、225、275、325、375、425、475、525、575、625、675、725、775、850、950、1125、1375、2000 で、対応する相対度数はそれぞれ、0.0101、0.0220、0.0281、0.0426、0.0543、0.0719、0.0707、0.0679、0.0707、0.0709、0.0604、0.0660、0.0524、0.0850、0.0695、0.0918、0.0358、0.0297 となる。平均 $\overline{x} = \sum_{i=1}^k m_i (f_i/n) = 100 \times 0.0101 + 225 \times 0.0220 + 275 \times 0.0281 + 325 \times 0.0426 + 375 \times 0.0543 + 425 \times 0.0719 + 475 \times 0.0707 + 525 \times 0.0679 + 575 \times 0.0707 + 625 \times 0.0709 + 675 \times 0.0604 + 725 \times 0.0660 + 775 \times 0.0524 + 850 \times 0.0850 + 950 \times 0.0695 + 1125 \times 0.0918 + 1375 \times 0.0358 + 2000 \times 0.0297 = 712、分散 <math>s^2 = \sum_{i=1}^k (m_i - \overline{x})^2 (f_i/n) = \sum_{i=1}^k m_i^2 (f_i/n) - \overline{x}^2 = 100^2 \times 0.0101 + 225^2 \times 0.0220 + 275^2 \times 0.0281 + 325^2 \times 0.0426 + 375^2 \times 0.0543 + 425^2 \times 0.0719 + 475^2 \times 0.0707 + 525^2 \times 0.0679 + 575^2 \times 0.0707 + 625^2 \times 0.0709 + 675^2 \times 0.0604 + 725^2 \times 0.0660 + 775^2 \times 0.0524 + 850^2 \times 0.0850 + 950^2 \times 0.0695 + 1125^2 \times 0.0918 + 1375^2 \times 0.0358 + 2000^2 \times 0.0297 - 712^2 = 127744$,標準偏差 $s = \sqrt{127744} = 357.4$

2.7

階級境	界値	m_i	f_i	$m_i f_i$	$m_i - \overline{x}$	$(m_i - \overline{x})^2$	$(m_i - \overline{x})^2 f_i$
$-20.5 \sim$	-12.5	-16.5	2	-33.0	-18	324	648
-12.5 \sim	-4.5	-8.5	3	-25.5	-10	100	300
$-4.5 \sim$	3.5	-0.5	6	-3.0	-2	4	24
$3.5 \sim$	11.5	7.5	6	45.0	6	36	216
$11.5 \sim$	19.5	15.5	3	46.5	14	196	588
		合計	20	30.0			1776

$$\overline{x} = \frac{1}{k} \sum_{i=1}^{n} m_i f_i = \frac{30}{20} = 1.5, \ s^2 = \frac{1}{k} \sum_{i=1}^{n} (m_i - \overline{x})^2 f_i = \frac{1776}{20} = 88.8$$

2.8 ①
$$\overline{x} = \sum_{i=1}^{k} m_i(f_i/n) = 125 \times 0.0331 + 375 \times 0.2758 + 625 \times 0.3463$$

+875×0.2133+1125×0.0946+1375×0.0369 = 667.8。② $s^2 = \sum_{i=1}^{k} m_i^2(f_i/n)$
- $\overline{x}^2 = 125^2 \times 0.0331 + 375^2 \times 0.2758 + 625^2 \times 0.3463 + 875^2 \times 0.2133$
+1125² × 0.0946 +1375² × 0.0369 -667.8² = 81418.16。③ 625。④ $s = \sqrt{81418.16} = 285.34$ 。

2.9 ①
$$\overline{x} = (47 + 61 + 77 + 74 + 60 + 43)/6 = 60.33$$
, ② $s^2 = (47^2 + 61^2 + 77^2 + 74^2 + 60^2 + 43^2)/6 - 60^2 - 6 \times 60.33^2 = 157.6$, ③ $(61 + 60)/2 = 60.5$, ④ $s = \sqrt{157.6} = 12.6$

2.10

	x_i	$x_i - \overline{x}$	$(x_i - \overline{x})^2$	x_i^2
	28	3	9	784
	23	- 2	4	529
	26	1	1	676
	27	2	4	729
	21	- 4	16	441
合計	125	0	34	3159

$$\overline{x} = 125/5 = 25$$
, $s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 = \frac{34}{5} = 6.8$, $s = 2.608$, 中央値は 26 (参考: $s^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \overline{x}^2 = 3159/5 - 25^2 = 6.8$)

2.11 ①
$$(1+2+3)/3=2$$
,② $(3+4+2)/3=3$,③ $(1^2+2^2+3^2)/3-2^2=2/3$,④ $(3^2+4^2+2^2)/3-3^2=2/3$,⑤ $(1\times 3+2\times 4+3\times 2)/3-2\times 3=-1/3$,⑥ $\frac{-1/3}{\sqrt{2/3}\sqrt{2/3}}=-0.5$,⑦ 負の相関

2.12

	x_i	y_i	$x_i - \overline{x}$	$y_i - \overline{y}$	$(x_i - \overline{x})^2$	$(y_i - \overline{y})^2$	$(x_i - \overline{x})(y_i - \overline{y})$
	- 2	4	- 2	2	4	4	- 4
	- 1	1	- 1	- 1	1	1	1
	0	0	0	- 2	0	4	0
	1	1	1	- 1	1	1	- 1
	2	4	2	2	4	4	4
合計	0	10	0	0	10	14	0

$$\overline{x}=0$$
, $\overline{y}=2$, $s_x^2=10/5=2$, $s_y^2=14/5=2.8$, $s_{xy}=0$ から, $r=s_{xy}/(s_xs_y)=0/\sqrt{2\times 2.8}=0$

第3章解答 (問題は 43 ~ 44 ページ)

3.1 $A = \{$ 男子が生まれる確率 $\}$ $A^c = \{$ 女子が生まれる確率 $\}$ とすると $P(A) = P(A^c) = 1/2$ 。よって、男子が生まれる確率は P(A) = 1/2、一姫二 太郎となる確率は $P(A_1^c \cap A_2) = P(A_1^c)P(A_2) = 1/4$ 。 ただし,添え字の 1,2 は 1 人目の子供,2 人目の子供を表すものとする。

- **3.2** $N = n(A) + n(A^c)$ の両辺を N で割れば (3.9) が得られる。また, $n(A) \le n(B)$ の両辺を N で割れば (3.10) が得られる。
- 3.3 $A_1 = \{20 \, \text{代}\}, \ A_2 = \{30 \, \text{代}\}, \ A_3 = \{40 \, \text{代}\}, \ B_1 = \{ 余暇そのものを楽しむ}, \ B_2 = \{ 家族の絆を深める}, \ B_3 = \{ 心身の疲労回復}, \ B_4 = \{ 友人との人間関係の充実} とする。このとき,<math>P(A_1) = 0.3, \ P(A_2) = 0.5, \ P(A_3) = 0.2 \ となる。① <math>P(B_2 \cap A_2) = P(B_2|A_2)P(A_2) = 0.35 \times 0.5 = 0.175,$ ② $B_1 \ と B_3 \ \text{は排反であることに注意すると,} P(A_3 \cap (B_1 \cup B_3)) = P(B_1 \cup B_3|A_3)P(A_3) = (P(B_1|A_3) + P(B_3|A_3))P(A_3) = 0.54 \times 0.2 = 0.108,$ ③ $P((A_1 \cap B_4) \cup (A_2 \cap B_3)) = P(B_4 \cap A_1) + P(B_3 \cap A_2) = 0.066 + 0.115 = 0.181,$ ④ $B_1 \ \text{を所与としたときの} \ A_1 \ \text{の確率が求める確率であり,} P(A_1|B_1) = P(A_1 \cap B_1)/P(B_1) \ となる。ここで,分子は P(A_1 \cap B_1) = P(B_1|A_1)P(A_1) = 0.123 \ となる。A_1, \ A_2, \ A_3 \ \text{は互いに排反なので,分母は } P(B_1) = P((B_1 \cap A_1) \cup (B_1 \cap A_2) \cup (B_1 \cap A_3)) = P(B_1 \cap A_1) + P(B_1 \cap A_2) + P(B_1 \cap A_3) \ となる。 P(B_1 \cap A_1) \ \text{と同様にして,} P(B_1 \cap A_2) = 0.165, \ P(B_1 \cap A_3) = 0.054 \ \text{となるので,} P(A_1|B_1) = 0.123/(0.123 + 0.165 + 0.054) = 0.360$
- **3.4** ① $A \cup B = \{1, 2, 3, 4, 8\}$, ② $A \cap B = \{2, 3\}$, ③ $A B = \{1, 4\}$, ④ $A \cap A^c = \phi$
- **3.5** ① $A = \{2,4,6\}$ なので P(A) = 1/2, ② $B = \{3,6\}$ なので P(B) = 1/3, ③ $A \cup B = \{2,3,4,6\}$ なので $P(A \cup B) = 2/3$, ④ $A \cap B = \{6\}$ なので $P(A \cap B) = 1/6$
- **3.6** ① P(E) = 300/(300 + 200) = 0.6, ② P(J) = 200/(300 + 200) = 0.4, ③ P(M|E) = 30/100 = 0.3, ④ P(M|J) = 20/100 = 0.2, ⑤ $P((E \cup J) \cap M) = P(M) = (0.3 \times 300 + 0.2 \times 200)/500 = 0.26$, ⑥ $P((E \cup J) \cap M^c) = 1 P((E \cup J) \cap M) = 0.74$, ⑦ $P((E \cap J) \cup M) = P(M) = 0.26$, ⑧ $P((E \cap J) \cup M^c) = 1 P((E \cap J) \cup M) = 0.74$, ⑨ P(E|M) = 9/13 = 0.692, ⑩ P(J|M) = 4/13 = 0.308

第4章解答 (問題は 64 ~ 70 ページ)

4.1 X のとる値は $X=2, 3, \dots, 12$ で確率はそれぞれ 1/36, 2/36, 3/36, 4/36, 5/36, 6/36, 5/36, 4/36, 3/36, 2/36, 1/36 (合計 = 1)

4.2 定理 4.3 の証明: E[aX + b] = aE[X] + b を用いて, V(aX + b) = $E[(aX + b - E[aX + b])^2] = E[(a(X - E[X]))^2] = E[a^2(X - E[X])^2] =$ $a^2 E[(X - E[X])^2] = a^2 V(X)$ 。 定理 4.4 の証明: $Z = (X - \mu)/\sigma$ より、 $E[Z] = E[(X - \mu)/\sigma] = (E[X] - \mu)/\sigma = 0, V(Z) = E[(Z - E[Z])^2] =$ $E[Z^2] = E[((X - \mu)/\sigma)^2] = E[(X - \mu)^2]/\sigma^2 = \sigma^2/\sigma^2 = 1$

4.3 E[X] = 7, V(X) = 35/6, E[Y] = 3E[X] + 5 = 26, $V(Y) = 3^2V(X) =$ 52.5

4.4

			統 計 学							
		A	В	С	F	計				
経	A	0.05	0.06	0.07	0.12	0.30				
済	В	0.02	0.10	0.14	0.14	0.40				
	С	0.02	0.01	0.05	0.12	0.20				
史	F	0.01	0.03	0.04	0.02	0.10				
言	t	0.10	0.20	0.30	0.40	1				

4.5 ① f(0) = 1/8 = 0.125, ② f(1) = 3/8 = 0.375, ③ f(2) = 3/8 = 0.3750.375, **4** f(3) = 1/8 = 0.125, **5** f(4) = 0, **6** F(-1) = 0, **7** F(1.9) = 0f(0) + f(1) = 0.5, **8** F(2) = f(0) + f(1) + f(2) = 0.875, **9** F(5) = 0.875f(0) + f(1) + f(2) + f(3) = 1

4.6 ①
$$P(X = 2) = \int_{2}^{2} f(x) dx = 0$$

$$P(2 < X < 5) = P(X < 5) - P(X < 2) = F(5) - F(2)$$

4.7 ①
$$\mathrm{E}[X] = 3 \times 0.2 + 5 \times 0.8 = 4.6$$
, ② $\mathrm{V}(X) = (3^2 \times 0.2 + 5^2 \times 0.8) - 4.6^2 = 0.64$, ③ $\sqrt{\mathrm{V}(X)} = \sqrt{0.64} = 0.8$, ④ $\mathrm{E}[Y] = 0.5\mathrm{E}[X] + 3 = 0.5 \times 4.6 + 3 = 5.3$, ⑤ $\mathrm{V}(Y) = 0.5^2 \mathrm{V}[X] = 0.16$, ⑥ $\sqrt{\mathrm{V}(Y)} = \sqrt{0.16} = 0.4$

4.8 ①
$$1 - (0.2 + 0.1 + 0.4) = 0.3$$
, ② 2, ③ 4, ④ $0.2 + 0.3 = 0.5$,

⑤
$$0.1 + 0.4 = 0.5$$
, **⑥** 0 , **⑦** 1 , **⑧** $0.2 + 0.1 = 0.3$, **⑨** $0.3 + 0.4 = 0.7$

4.9 ①
$$1-(0.2+0.2+0.5) = 0.1$$
, ② $E[X] = 2\times(0.2+0.2) + 4\times(0.1+0.5) = 3.2$, $E[Y] = 0\times(0.2+0.1) + 1\times(0.2+0.5) = 0.7$, $Cov(X,Y) = E[XY] - E[X]E[Y] = 2\times0\times0.2 + 2\times1\times0.2 + 4\times0\times0.1 + 4\times1\times0.5 - 3.2\times0.7 = 2.4 - 2.24 = 0.16$, ③ $V(X) = 2^2\times(0.2+0.2) + 4^2\times(0.1+0.5) - 3.2^2 = 0.96$, $V(Y) = 0^2\times(0.2+0.1) + 1^2\times(0.2+0.5) - 0.7^2 = 0.21$, $\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{V(X)}\sqrt{V(Y)}} = \frac{0.16}{\sqrt{0.96}\sqrt{0.21}} = 0.356$, ④ $P(Y = 0|X = 4) = 0.1/(0.1 + 0.5) = 1/6$, ⑤ $P(Y = 1|X = 4) = 0.5/(0.1 + 0.5) = 5/6$, ⑥ $E[X + Y] = 0.5$

E[X]+E[Y] = 3.2+0.7 = 3.9, $\nabla V(X+Y) = V(X)+2Cov(X,Y)+X(Y) = 0.96 + 2 \times 0.16 + 0.21 = 1.49$

4.10 ① E[X+Y] = E[X] + E[Y] = 3 + 2 = 5, ② $\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sqrt{V(X)}\sqrt{V(Y)}}$ \$\frac{\pi}{\sqrt{0.5}} \cdot \frac{\text{Cov}(X,Y)}{\sqrt{4\sqrt{1}}} \pi^2 \text{Cov}(X,Y) = 1\$, ③ $Cov(X,Y) = E[XY] - E[X]E[Y] \pi^2 \text{S} \text{E}[XY] = 10 + 2 \times 4 = 18$, ④ <math>V(X) = E[X^2] - (E[X])^2 = 11 - 3^2 = 2$, ⑤ Cov(X,Y) = E[XY] - E[X]E[Y] = E[X]E[Y] - E[X]E[Y] = 0, ⑥ $Cov(X,Y) = E[XY] - E[X]E[Y] = 20 - 7 \times 8 = -36$, ⑦ V(X+Y) = V(X) + V(Y) = 8

4.11 ① $E[\overline{X}] = E[X_1 + \dots + X_5]/5 = (E[X_1] + \dots + E[X_5])/5 = (3 + \dots + 3)/5 = 3$, ② $V(\overline{X}) = V(X_1 + \dots + X_5)/5^2 = (V(X_1) + \dots + V(X_5))/5^2 = (5 + \dots + 5)/5^2 = 1$

4.12 $E[X] = 0 \times 0.4 + 2 \times 0.1 + 5 \times 0.2 + 9 \times 0.3 = 3.9, V(X) = E[X^2] - (E[X])^2 = 0^2 \times 0.4 + 2^2 \times 0.1 + 5^2 \times 0.2 + 9^2 \times 0.3 - 3.9^2 = 14.49$ 4.13 $E[X] = 0 \times p + 1 \times 2p^2 + 2 \times 3p + 3 \times 3p^2 = 11p^2 + 6p, V(X) = E[X^2] - (E[X])^2 = 0^2 \times p + 1^2 \times 2p^2 + 2^2 \times 3p + 3^2 \times 3p^2 - (11p^2 + 6p)^2 = (29p^2 + 12p) - (11p^2 + 6p)^2,$ 確率の和は1であるので、 $p + 2p^2 + 3p + 3p^2 = 1$ から、 $5p^2 + 4p - 1 = (5p - 1)(p + 1) = 0$ 。よって、p = 1/5 または p = -1。 $0 \le p \le 1$ から p = 1/5 = 0.2。これを、 $E[X] \ge V(X)$ に代入すると、 $E[X] = 11 \times 0.2^2 + 6 \times 0.2 = 1.64$, $V(X) = (29 \times 0.2^2 + 12 \times 0.2) - 1.64^2 = 0.8704$

4.14 ① $\int_0^1 f(x) dx = 1$ から、 $\int_0^1 f(x) dx = \int_0^1 a(1-x) dx = a \left[x-x^2/2\right]_0^1 = a(1-1/2) = a/2 = 1$ 。 よって、a=2、② $E[X] = \int_0^1 x f(x) dx = 2 \int_0^1 (x-x^2) dx = 2 \left[x^2/2-x^3/3\right]_0^1 = 2(1/2-1/3) = 1/3$, $E[X^2] = \int_0^1 x^2 f(x) dx = 2 \int_0^1 (x^2-x^3) dx = 2 \left[x^3/3-x^4/4\right]_0^1 = 2(1/3-1/4) = 1/6$ から $V(X) = E[X^2] - (E[X])^2 = 1/6 - (1/3)^2 = 1/18$,③ x < 0 のとき F(x) = 0.0, $0 \le x < 1$ のとき $F(x) = P(X \le x) = \int_0^x f(t) dt = \int_0^x 2(1-t) dt = 2[t-t^2/2]_0^x = 2x-x^2$, $1 \le x$ のとき F(x) = 1.0,④ 中央値を m とすると, $P(X \le m) = P(X > m) = 1/2$ から, $P(X \le m) = 2m-m^2 = 1/2$ 。この方程式を解くと, $m = (2 \pm \sqrt{4-2})/2 = (2 \pm \sqrt{2})/2 = 1 \pm \sqrt{2}/2$ を得る。 $0 \le m \le 1$ から $m = 1 - \sqrt{2}/2 = 0.293$

4.15 ① $P(X = 3) = {}_{4}C_{3}0.7^{3}0.3^{1} = 0.4116$, ② $P(2 \le X \le 3) = P(X = 3)$

$$(2) + P(X = 3) = {}_{4}C_{2}0.7^{2}0.3^{2} + {}_{4}C_{3}0.7^{3}0.3^{1} = 0.2646 + 0.4116 = 0.6762,$$

3
$$P(X \le 3) = 1 - P(X = 4) = 1 - {}_{4}C_{4}0.7^{4}0.3^{0} = 0.7599$$

4.16 ①
$$0.1 + 0.2 + a + 0.3 + 0.1 + 0.2 = a + 0.9 = 1$$
 \mathring{n} , \mathring{b} , $a = 0.1$,

2

X	1	2	3	P(X=x)
1	0.1	0.2	0.1	0.4
2	0.3	0.1	0.2	0.6
P(Y=y)	0.4	0.3	0.3	1.0

例えば、P(X=1,Y=1)=0.1 であるが P(X=1)P(Y=1)=0.16 であるので独立ではない。

③
$$E[X] = \sum_{x=1}^{2} xP(X=x) = 1 \times 0.4 + 2 \times 0.6 = 1.6, \ E[X^2] = \sum_{x=1}^{2} x^2 P(X=x) = 1^2 \times 0.4 + 2^2 \times 0.6 = 2.8, \ V(X) = E[X^2] - (E[X])^2 = 2.8 - 1.6^2 = 0.24,$$

4

Y	1	2	3
P(Y X=1)	0.25	0.5	0.25

 $\mathrm{E}[Y|X=1]=1\times0.25+2\times0.5+3\times0.25=2,\ \mathrm{E}[Y^2|X=1]=1^2\times0.25+2^2\times0.5+3^2\times0.25=4.5,\ \mathrm{V}(Y|X=1)=\mathrm{E}[Y^2|X=1]-(\mathrm{E}[Y|X=1])^2=4.5-2^2=0.5,$

5

X	Y	P(X=x,Y=y)	Z = 2X + Y
1	1	0.1	3
1	2	0.2	4
1	3	0.1	5
2	1	0.3	5
2	2	0.1	6
2	3	0.2	7

から,Zの確率分布は次のようになる。

Z	3	4	5	6	7
P(Z=z)	0.1	0.2	0.4	0.1	0.2

$$\begin{split} & \mathrm{E}[Z] = 3 \times 0.1 + 4 \times 0.2 + 5 \times 0.4 + 6 \times 0.1 + 7 \times 0.2 = 5.1, \ \mathrm{E}[Z^2] = \\ & 3^2 \times 0.1 + 4^2 \times 0.2 + 5^2 \times 0.4 + 6^2 \times 0.1 + 7^2 \times 0.2 = 27.5, \ \mathrm{V}(Z) = \\ & \mathrm{E}[Z^2] - (\mathrm{E}[Z])^2 = 27.5 - 5.1^2 = 1.49 \end{split}$$

4.17 ①
$$c = 1 - 0.3 - 0.4 = 0.3$$
, ② $\mu_x = E[X] = -1 \times 0.3 + 1 \times 0.4 + 4 \times 0.3 = 1.3$, ③ $V(X) = (-1)^2 \times 0.3 + 1^2 \times 0.4 + 4^2 \times 0.3 - 1.3^2 = 3.81$, ④ $\mu_y = E[Y] = 2 \times 1.3 + 5 = 7.6$, ⑤ $V[Y] = 2^2 \times 3.81 = 15.24$, ⑥ $Cov(X,Y) = E[XY] - \mu_x \mu_y = E[X(2X+5)] - \mu_x \mu_y = 2E[X^2] + 5E[X] - \mu_x \mu_y = 2 \times ((-1)^2 \times 0.3 + 1^2 \times 0.4 + 4^2 \times 0.3) + 5 \times 1.3 - 1.3 \times 7.6 = 7.62$, ⑦ $\frac{Cov(X,Y)}{\sqrt{V(X)V(Y)}} = \frac{7.62}{\sqrt{3.81 \times 15.24}} = 1$

4.18 ① a = 1 - (0.1 + 0.0 + 0.1 + 0.2 + 0.1 + 0.1 + 0.0 + 0.3) = 0.1

2

	-1	0	1	Y のとる値	-1	0	1
そのときの確率	0.3	0.2	0.5	そのときの確率	0.2	0.4	0.4

③ $P(X=x_i,Y=y_j)=P(X=x_i)P(Y=y_j)$ ならば X と Y は統計的に独立。例えば,P(X=-1,Y=-1)=0.1, $P(X=-1)P(Y=-1)=0.3\times0.2=0.06$ なので, $P(X=-1,Y=-1) \neq P(X=-1)P(Y=-1)$ となる。したがって,X と Y は独立でない。

④ $P(X^2=0,Y^2=0)=P(X=0,Y=0)=0.1,\ P(X^2=0,Y^2=1)=P(X=0,Y=-1)+P(X=0,Y=1)=0.1,\ P(X^2=1,Y^2=0)=P(X=-1,Y=0)+P(X=1,Y=0)=0.3,\ P(X^2=1,Y^2=1)=P(X=1,Y=1)+P(X=1,Y=-1)+P(X=-1,Y=1)+P(X=-1,Y=1)+P(X=-1,Y=1)=0.5$ となる。表にすると下記のとおりとなる。

X^2 Y^2	0	1
0	0.1	0.1
1	0.3	0.5

⑤ $E[X^2Y^2] = 0 \times 0 \times 0.1 + 0 \times 1 \times 0.1 + 1 \times 0 \times 0.3 + 1 \times 1 \times 0.5 = 0.5$, $E[X^2] = 0 \times (0.1 + 0.1) + 1 \times (0.3 + 0.5) = 0.8$, $E[Y^2] = 0 \times (0.1 + 0.3) + 1 \times (0.1 + 0.5) = 0.6$, $Cov(X^2, Y^2) = E[X^2Y^2] - E[X^2]E[Y^2] = 0.5 - 0.8 \times 0.6 = 0.02$

4.19 ① $E[X] = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{6} + 5 \times \frac{1}{6} + 6 \times \frac{1}{6} = 7/2,$ $E[X^2] = 1^2 \times \frac{1}{6} + 2^2 \times \frac{1}{6} + 3^2 \times \frac{1}{6} + 4^2 \times \frac{1}{6} + 5^2 \times \frac{1}{6} + 6^2 \times \frac{1}{6} = 91/6,$ $V(X) = E[X^2] - (E[X])^2 = 91/6 - 49/4 = 35/12$ 2

X	1	2	3	4	5	6
1	0	0	1/6	0	0	1/6
2	1/6	1/6	0	1/6	1/6	0

3

Y ² のとる値	1	4
そのときの確率	1/3	2/3

$$E[Y^2] = 1 \times 1/3 + 4 \times 2/3 = 3$$

$$\begin{array}{l} \textcircled{4} \quad \mathrm{E}[X] = 7/2, \quad \mathrm{E}[Y] = 1 \times 1/3 + 2 \times 2/3 = 5/3, \quad \mathrm{V}(X) = 35/12, \quad \mathrm{V}(Y) = \\ \mathrm{E}[Y^2] - (\mathrm{E}[Y])^2 = 3 - 25/9 = 2/9, \quad \mathrm{Cov}(X,Y) = \mathrm{E}[XY] - \mathrm{E}[X]\mathrm{E}[Y] = 1 \times 3 \times \\ 1/6 + 1 \times 6 \times 1/6 + 2 \times 1 \times 1/6 + 2 \times 2 \times 1/6 + 2 \times 4 \times 1/6 + 2 \times 5 \times 1/6 - (7/2)(5/3) = \\ -1/3 \quad \text{for}, \quad \rho(X,Y) = \frac{\mathrm{Cov}(X,Y)}{\sqrt{\mathrm{V}(X)\mathrm{V}(Y)}} = \frac{-1/3}{\sqrt{(35/12)(2/9)}} = -\sqrt{6/35} \end{array}$$

4.20 ①
$$\mu = E[X] = \sum_{x} xP(X=x) = 1 \times \frac{1}{6} + 0 \times \frac{5}{6} = \frac{1}{6}, V(X) = \sum_{x} (x-\mu)^2 P(X=x) = \sum_{x} x^2 P(X=x) - \mu^2 = 1^2 \times \frac{1}{6} + 0^2 \times \frac{5}{6} - (\frac{1}{6})^2 = \frac{5}{36},$$
 ②

x_1	x_2	x_3	$f(x_1, x_2, x_3)$	y
0	0	0	$\left(\frac{1}{6}\right)^0 \left(\frac{5}{6}\right)^3 = \frac{125}{216}$	0
0	0	1	$\left(\frac{1}{6}\right)^1 \left(\frac{5}{6}\right)^2 = \frac{25}{216}$	1
0	1	0	$\left(\frac{1}{6}\right)^1 \left(\frac{5}{6}\right)^2 = \frac{25}{216}$	1
0	1	1	$\left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^1 = \frac{5}{216}$	2
1	0	0	$\left(\frac{1}{6}\right)^1 \left(\frac{5}{6}\right)^2 = \frac{25}{216}$	1
1	0	1	$\left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^1 = \frac{5}{216}$	2
1	1	0	$\left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^1 = \frac{5}{216}$	2
1	1	1	$\left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^0 = \frac{1}{216}$	3

よって、 X_1 と Y の同時確率分布 $f(x_1, y)$ は、

X_1	0	1	2	3
0	$\frac{125}{216}$	$\frac{50}{216}$	$\frac{5}{216}$	0
1	0	$\frac{25}{216}$	$\frac{10}{216}$	$\frac{1}{216}$

となる。

y	0	1	2	3
$f(y X_1=1)$	0	$\frac{25}{36}$	$\frac{10}{36}$	$\frac{1}{36}$

よって, $\mathrm{E}[Y|X_1=1]$ は, $\mathrm{E}[Y|X_1=1]=\sum_y y f(y|x_1=1)=0\times 0+1\times \frac{25}{36}+2\times \frac{10}{36}+3\times \frac{1}{36}=\frac{4}{3}$

- **4.21** $E[X_1 + X_2] = E[X_1] + E[X_2] = 2 + 3 = 5$, $V(X_1 + X_2) = V(X_1) + 2Cov(X_1, X_2) + V(X_2) = 1 + 2 \times 2 + 5 = 10$
- **4.22** $\mathrm{E}[\hat{\sigma}^2] = \frac{1}{n} \mathrm{E}[\sum_{i=1}^n (X_i \overline{X})^2] = \frac{1}{n} \mathrm{E}[\sum_{i=1}^n \left((X_i \mu) (\overline{X} \mu) \right)^2] = \frac{1}{n} \mathrm{E}[\sum_{i=1}^n \left((X_i \mu)^2 2(\overline{X} \mu)(X_i \mu) + (\overline{X} \mu)^2 \right)] = \frac{1}{n} \mathrm{E}[\sum_{i=1}^n (X_i \mu)^2 n(\overline{X} \mu)^2] = \frac{1}{n} \sum_{i=1}^n \mathrm{E}[(X_i \mu)^2] \mathrm{E}[(\overline{X} \mu)^2] = \sigma^2 \frac{\sigma^2}{n} = \frac{n-1}{n} \sigma^2$
- **4.23** $\mu = E[X] = 1 \times 0.2 + 0 \times 0.8 = 0.2$, $\sigma^2 = V(X) = (1 0.2)^2 \times 0.2 + (0 0.2)^2 \times 0.8 = 0.16$, $E[(X \mu)^3] = (1 0.2)^3 \times 0.2 + (0 0.2)^3 \times 0.8 = 0.096$, $Uth^3 > T$, $E[(X \mu)^3]/\sigma^3 = 0.096/0.16^{3/2} = 1.5$
- **4.24** ① 確率関数は $f(x) = P(X = x) = {}_3C_x 0.5^3$ となる。すなわち、P(X = 0) = 1/8,P(X = 1) = 3/8,P(X = 2) = 3/8,P(X = 3) = 1/8 である。 $E[X] = 0 \times 1/8 + 1 \times 3/8 + 2 \times 3/8 + 3 \times 1/8 = 1.5$, $V(X) = 0^2 \times 1/8 + 1^2 \times 3/8 + 2^2 \times 3/8 + 3^2 \times 1/8 1.5^2 = 0.75$,

2 a f(2) = 3/8, **b** f(2.5) = 0, **c** F(-0.1) = 0, **d** F(2.99) = 0f(0) + f(1) + f(2) = 7/8,

(3)

X	0	1	2	3
-1	0	3/8	0	1/8
1	1/8	0	3/8	0

- ② $Cov(X, Y) = E[XY] E[X]E[Y], E[XY] = (-1) \times 1 \times 3/8 + (-1) \times 3 \times 3/8 + (-1) \times$ $1/8 + 1 \times 0 \times 1/8 + 1 \times 2 \times 3/8 = 0$, E[X] = 3/2, V(X) = 3/4, E[Y] = 0, $V(Y) = (-1)^2 \times 1/2 + 1^2 \times 1/2 - 0^2 = 1$, Cov(X, Y) = E[XY] - E[X]E[Y] = 1 $0-3/2 \times 0 = 0$ なので、 $\rho(X,Y) = 0$
- **4.25** c = 1 0.1 0.2 0.1 = 0.6, $E[X] = 1 \times 0.1 + 2 \times 0.6 + 5 \times 0.2 + 9 \times 0.1 =$ 3.2, $V(X) = 1^2 \times 0.1 + 2^2 \times 0.6 + 5^2 \times 0.2 + 9^2 \times 0.1 - 3.2^2 = 5.36$, $X \oslash$ モードは 2, X のメディアンは 2, $Prob(X \le 2.1) = 0.1 + 0.6 = 0.7$

第5章解答 (問題は 79 ~ 81 ページ)

- **5.1** ① 0.0582, ② 0.9099, ③ 0.5895, ④ 0.2437, ⑤ 0.3980
- **5.2** $X \sim N(2,9)$ から $Z = (X-2)/3 \sim N(0,1)$ となることに注意して、① 0.1151, **2** 0.9962, **3** 0.4452, **4** 0.3159, **5** 0.2579
- **5.3** $X \sim N(10, 4^2)$ から $Z = (X 10)/4 \sim N(0, 1)$ 。よって、P(X > 12) =P(Z > 0.5) = 0.3085 となり、求める学生数は 0.3085×1200 (人) = 370.2 (人)。四捨五入して370人。
- **5.4** $X \sim N(70, 12^2)$ から $Z = (X 70)/12 \sim N(0, 1)$ 。最低得点を x_0 とす ると、 $P(X < x_0) = P(Z < (x_0 - 70)/12) = 0.33$ を満たす x_0 を求めればよ い。付表 1 より、P(Z < -0.44) = 0.33 であるので、 $(x_0 - 70)/12 = -0.44$ を解くと $x_0 = 64.72$ となる。四捨五入して 65 点。
- **5.5** 体重を X で表すと、題意から $X \sim N(4400, 469^2)$ 。 10 パーセンタイル値を x_1 , 90 パーセンタイル値を x_2 で表すと $P(X \le x_1) = 0.1$, $P(X \le x_2) = 0.9$ を満たす x_1 と x_2 を求めればよい。 $Z=(X-4400)/469 \sim N(0,1)$ とすると、 $P(Z \le (x_1 - 4400)/469) = P(Z \le -1.28) = 0.1, P(Z \le (x_2 - 4400)/469) =$

 $P(Z \le 1.28) = 0.9$ を解いて、 $x_1 = 3800$ g、 $x_2 = 5000$ g となる。同様にして、身長の 10 パーセンタイル値は 52 cm、90 パーセンタイル値は 57 cm

5.6 ①
$$P(Z > 0) = 0.5$$
, ② $P(Z < -2.22) = P(Z > 2.22) = 0.0132$, ③ $P(Z = 1.0) = 0$, ④ $P(-0.3 < Z < 0.5) = 1 - P(Z > 0.5) - P(Z < -0.3)$ $= 1 - P(Z > 0.5) - P(Z > 0.3) = 1 - 0.3085 - 0.3821 = 0.3094$

5.7 ①
$$P(X > 2) = P((X + 2)/4 > 1) = P(Z > 1) = 0.1587$$
, ② $P(X < -2) = P((X + 2)/4 > 0) = P(Z > 0) = 0.5$, ③ $P(-3 < X < 1) = P(-0.25 < (X + 2)/4 < 0.75) = P(-0.25 < Z < 0.75) = 1 - P(Z > 0.75) - P(Z < -0.25) = 1 - P(Z > 0.75) - P(Z > 0.25) = 1 - 0.2266 - 0.4013 = 0.3721$, ④ $P(|X| < 0.4) = P(-0.4 < X < 0.4) = P(0.4 < (X + 2)/4 < 0.6) = P(0.4 < Z < 0.6) = P(Z > 0.4) - P(Z > 0.6) = 0.3446 - 0.2743 = 0.0703$

5.8 ①
$$P(|X| < x) = P(-x < X < x) = P((-x-3)/5 < (X-3)/5 < (x-3)/5) = P((-x-3)/5 < Z < (x-3)/5) = 1 - P(Z > (x-3)/5) - P(Z < (-x-3)/5) = 1 - P(Z > (x-3)/5) - P(Z > (x+3)/5)$$

x	(x-3)/5	P(Z > (x-3)/5)	(x+3)/5	P(Z > (x+3)/5)	1 - P(Z > (x-3)/5)
					-P(Z>(x+3)/5)
9.4	1.28	0.1003	2.48	0.0066	0.8931
9.5	1.30	0.0968	2.50	0.0062	0.8970
9.6	1.32	0.0934	2.52	0.0059	0.9007
9.7	1.34	0.0901	2.54	0.0055	0.9044

x=9.6 のときが最も 0.9 に近い。 ① P(X< x)=P((X-3)/5<(x-3)/5)=P(Z<(x-3)/5)=P(Z<-1.96)=0.025 なので (x-3)/5=-1.96 により x=-6.8

$$\begin{array}{lll} \textbf{5.9} & X \sim \text{N}(5,2^2), & Z = (X-5)/2 \sim \text{N}(0,1), & \textcircled{D} \ \text{P}(X \geqq 4) = \text{P}((X-5)/2 \trianglerighteq (4-5)/2) = \text{P}(Z \trianglerighteq -0.5) = 0.6915, & \textcircled{D} \ \text{P}(X \leqq 5) = \text{P}((X-5)/2 \leqq (5-5)/2) = \text{P}(Z \leqq 0) = 0.5, & \textcircled{D} \ \text{P}(X \leqq 3) = \text{P}((X-5)/2 \leqq (3-5)/2) = \\ \text{P}(Z \leqq -1) = 0.1587, & \textcircled{D} \ \text{P}(3.5 \leqq X \leqq 4.5) = \text{P}((3.5-5)/2 \leqq (X-5)/2 \leqq (4.5-5)/2) = \text{P}(-0.75 \leqq Z \leqq -0.25) = 0.4013 - 0.2266 = 0.1747, \\ & \textcircled{D} \ \text{P}(|X-4| > 0.5) = \text{P}(X-4 > 0.5, \ X-4 < -0.5) = \text{P}(X > 4.5, \ X < 3.5) = \text{P}(X > 4.5) + \text{P}(X < 3.5) = \text{P}(Z > (4.5-5)/2) + \text{P}(Z < (3.5-5)/2) = \text{P}(Z > -0.25) + \text{P}(Z < -0.75) = 1 - 0.1747 = 0.8253 \\ \end{array}$$

5.10 ①
$$X \sim N(68, 8^2)$$
 から、 $P(X < 60) = P((X - 68)/8 < (60 - 68)/8) = $P(Z < -1) = 0.1587$ となり、約 15.9 % が不合格となる。②$

 $P(X \ge 78) = P((X - 68)/8 \ge (78 - 68)/8) = P(Z \ge 1.25) = 0.1057 \text{ the},$ 上位約 10.6% 以内にいるといえる。③ $P(X \ge x_0) = 0.05, P((X - 68)/8) \ge$ $(x_0 - 68)/8$ = 0.05 となる。標準正規分布表から、上側確率が 0.05 になる点 を求めると、 $z_{0.05} = 1.6449$ であるので、方程式 $(x_0 - 68)/8 = 1.6449$ を解く と、 $x_0 = 81.1592$ となるので、上位 5% 以内に入るには、82 点が必要である。 **5.11** $X \sim N(3,5^2)$ なので、 $P(\frac{X-3}{5} \le \frac{x-3}{5}) = 0.1$ となる。Z = 0.5 $\frac{X-3}{5}\sim {
m N}(0,1), \ {
m P}(Z\leq z)=0.1$ となる z を求める。ただし, $z=\frac{x-3}{5}$ である。巻末の正規分布表から ${
m P}(Z\leq -1.2816)=0.1$ となるので,-1.2816=0.1 $\frac{x-3}{5}$, t\$\$\tan 5\$, x = -3.408**5.12** ① P(0.0 < Z < 2.0) = P(Z > 0.0) - P(Z > 2.0) = 0.5000 - 0.0228= 0.4772, ② $E[W] = E[X] + \frac{1}{3}E[Y] = 0.0 + 1.0 = 1.0$, $V(W) = V(X) + \frac{1}{3}E[Y] = 0.0 + 1.0 = 1.0$ $\frac{1}{9}$ V(Y) = 1.0 + 3.0 = 4.0, したがって, $W \sim N(1.0, 4.0)$, ③ $Z = \frac{W-1.0}{2.0} \sim$ N(0,1), したがって P(|W-1.0| > 2.0) = P(W-1.0 < -2.0, W-1.0 > 0) $\begin{array}{l} 2.0) = \mathrm{P}(W < -1.0) + \mathrm{P}(W > 3.0) = \mathrm{P}(\frac{W - 1.0}{2.0} < \frac{-1.0 - 1.0}{2.0}) + \mathrm{P}(\frac{3.0 - 1.0}{2.0} < \frac{W - 1.0}{2.0}) \\ = \mathrm{P}(Z < -1.0) + \mathrm{P}(Z > 1.0) = 2\mathrm{P}(Z > 1.0) = 2 \times 0.1587 = 0.3174 \end{array}$ **5.13** P(X > Y) = P(X - Y > 0) なので X - Y の分布を求める。 $X \sim$ $N(0,11/25), Y \sim N(-1,1)$ で独立なので、 $X-Y \sim N(1,36/25)$ となる。したがって、 $\frac{X-Y-1}{\sqrt{36/25}} \sim N(0,1), \ P(X-Y>0) = P(\frac{X-Y-1}{\sqrt{36/25}} > \frac{-1}{\sqrt{36/25}}) = P(Z>-5/6) = 1-0.2033 = 0.7967$

第6章解答 (問題は 100 ~ 103 ページ)

- 適切とはいえない。奨学金をもらうには、父親の所得に上限があるのが 普通であるから、奨学金をもらっている学生の父親の所得に基づく標本平均は、 母平均を過小推定する可能性がある。
- 6.2 母平均 7, 母分散 26, 標本平均の平均は (6.4) から 7, 標本平均の分散は (6.7) から 26/9。また、((4-3)/(4-1))(26/3)=26/9 となり (6.7) を満たす。
- **6.3** ① 標本平均を \overline{X} をすると $\overline{X} \sim N(480, 320^2/64)$ 。標準化の公式から $Z = (\overline{X} - 480)/(320/\sqrt{64}) \sim N(0,1)_{\circ} \text{ is T}, P(450 \leq \overline{X} \leq 500) =$ $P(-0.75Z \le 0.5) = 0.4649$, 2 $P(\overline{X} \ge 520) = P(Z \ge (520 - 480)/(320/\sqrt{n}))$ ≤ 0.05 となるような n を求めればよい。標準正規分布表から $\mathrm{P}(Z \geqq 1.6449) =$

- 0.05 であるので $(520-480)/(320/\sqrt{n}) \ge 1.6449$ を n について解くと $n \ge 173.1645$ 。必要な標本の大きさは n=174
- **6.4** 標本標準偏差を S とすると, $P(S \ge 400) \le 0.05$ となるような n を求めればよい。 $(n-1)S^2/320^2$ が自由度 n-1 のカイ 2 乗分布に従うので, $P((n-1)S^2/320^2 \ge (n-1)400^2/320^2) \le 0.05$ を満たす n が求める標本数である。解析的には解けないので,n に関して逐次代入を行う。n=21 のとき, $20\times 400^2/320^2 = 31.25$ であり,カイ 2 乗分布表から $P(20S^2/320^2 \ge \chi_{0.05}^2(20)) = 0.05$ を満たす $\chi_{0.05}^2(20)$ は 31.41 であるので $P(20S^2/320 \ge 31.25)$ > $P(20S^2/320 \ge 31.41) = 0.05$ 。同様にして n=22 のとき $P(21S^2/320 \ge 32.81) < 0.05$ 。よって必要な標本の大きさは n=22
- **6.5** $P(S_1^2/S_2^2 \ge 2.5) \le 0.05$ となるような第 2 の標本の大きさ (n) を求めればよい。 S_1^2/S_2^2 は自由度 (8,n-1) の F 分布に従うので,問題 6.4 と同様に n を逐次代入すると,n-1=18 のとき $P(S_1^2/S_2^2 \ge 2.5) > 0.05$,n-1=19 のとき $P(S_1^2/S_2^2 \ge 2.5) < 0.05$ となる。よって,必要な標本の大きさは n=20
- **6.6** ① x = 15.09, ② x = 2.70, ③ P(x < X < 28.85) = P(X > x) P(X > 28.85) = P(X > x) 0.025 = 0.925 なので x = 7.96
- 6.7 ① 中心極限定理 $(\overline{X} \mathrm{E}[\overline{X}])/\sqrt{\mathrm{V}(\overline{X})} = (\overline{X} 1)/\sqrt{2/2500} \longrightarrow \mathrm{N}(0,1)$ なので $\mathrm{N}(0,1)$, ② $\mathrm{P}(\overline{X} < x) = \mathrm{P}((\overline{X} 1)/\sqrt{(2/2500)} < (x 1)/\sqrt{(2/2500)}) = \mathrm{P}(Z < -1.96) = 0.025$ なので $(x 1)/\sqrt{(2/2500)} = -1.96$ により x = 0.94456, ③ $\mathrm{P}(0.98 < \overline{X} < 1.05) = \mathrm{P}((0.98 1)/\sqrt{(2/2500)} < (\overline{X} 1)/\sqrt{(2/2500)} < (1.05 1)/\sqrt{(2/2500)}) = \mathrm{P}(-0.71 < Z < 1.77) = 1 \mathrm{P}(Z > 0.71) \mathrm{P}(Z > 1.77) = 1 0.2389 0.0384 = 0.7227$
- **6.8** ① $\mathrm{E}[\overline{X}] = \mathrm{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}\mathrm{E}[X_{i}] = \frac{1}{9}\sum_{i=1}^{9}3 = 3,$ ② $\mathrm{V}(\overline{X}) = \mathrm{V}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \left(\frac{1}{n}\right)^{2}\sum_{i=1}^{n}\mathrm{V}(X_{i}) = \left(\frac{1}{9}\right)^{2}\sum_{i=1}^{9}25 = \frac{25}{9},$ ③ $\mathrm{P}(\overline{X}<0) = \mathrm{P}((\overline{X}-3)/\sqrt{25/9} < -3/\sqrt{25/9}) = \mathrm{P}(Z<-1.8) = \mathrm{P}(Z>1.8) = 0.0359,$ ④ $\mathrm{P}(\overline{X}>x) = \mathrm{P}((\overline{X}-3)/\sqrt{25/9} > (x-3)/\sqrt{25/9}),$ $\mathrm{P}(Z>1.282) = 0.1$ なので $(x-3)/\sqrt{25/9} = 1.282$ から x=5.137
- **6.9** ① x = 3.365, ② x = -2.262, ③ x = -2.120, ④ x = -2.015, ⑤ P(0.0 < X) = 0.5, ⑥ P(-1.35 < X) = 0.9
- **6.10** ① $N(\mu, \sigma^2)$, ② $N(\mu, \sigma^2/n)$, ③ N(0, 1/n), ④ $\chi^2(n)$, ⑤ $\chi^2(n-1)$, ⑥ N(0, 1), ⑦ t(n-1), ⑧ $\chi^2(1)$
- **6.11** $X_i \sim N(35, 10^2) \text{ the}, \overline{X} \sim N(35, (10/\sqrt{25})^2) = N(35, 2^2)_{\circ} \textcircled{1} P(\overline{X})$

- ≥ 34.6) = P($(\overline{X} 35)/2 \geq (34.6 35)/2$) = P($Z \geq -0.2$) = 1 0.4207 = 0.5793, **2** $P(\overline{X} \le 34.2) = P((\overline{X} - 35)/2 \le (34.2 - 35)/2) = P(Z \le 34.2) = P(Z$ -0.4) = 0.3446, (3) $P(34 \le \overline{X} \le 35.5) = P((34 - 35)/2 \le (\overline{X} - 35)/2$ $\leq (35.5 - 35)/2) = P(-0.5 \leq Z \leq 0.25) = 1 - (0.3085 + 0.4013) = 0.2902$
- **6.12** $X \sim N(\mu, 7.2^2), n = 81 \text{ h}.6, \overline{X} \sim N(\mu, (7.2/\sqrt{81})^2) = N(\mu, 0.8^2)$ となり、 $P(|\overline{X} - \mu| > 1) = P(\overline{X} - \mu > 1, \overline{X} - \mu < -1) = P(\overline{X} - \mu > 1, \overline{X} - \mu < -1)$ 1) + P($\overline{X} - \mu < -1$) = P(($\overline{X} - \mu$)/0.8 > 1/0.8) + P(($\overline{X} - \mu$)/0.8 < -1/0.8) = P(Z > 1.25) + P(Z < -1.25) = 2 × 0.1057 = 0.2114
- **6.13** ① $X \sim N(\mu, 4.2^2)$, n = 36 the, $\overline{X} \sim N(\mu, (4.2/\sqrt{36})^2) = N(\mu, 0.7^2)$ となり、 $P(|(\overline{X} - \mu)/0.7| < 1.96) = 0.95$ 、 $P(|\overline{X} - \mu| < 1.96 \times 0.7) = P(|\overline{X} - \mu| < 1.96 \times 0.7)$ $|\mu| < 1.372) = 0.95$ となり、確率 0.95 で最大誤差は 1.372 分である(誤差が 1.372 分以上になる確率は 0.05)。② $P(|\overline{X}-\mu|<1)=0.95$ となる n を求める。 $P(|\overline{X} - \mu|/(\sigma/\sqrt{n}) < 1.96) = 0.95, \ P(|\overline{X} - \mu| < 1.96\sigma/\sqrt{n}) = 0.95 \ \text{h.s.},$ $1.96(\sigma/\sqrt{n})=1$ と置いて、方程式を解くと、 $\sqrt{n}=1.96\sigma$ となり、 $\sigma=4.2$ を代 入すると、 $n = (1.96 \times 4.2)^2 = 67.77$ 。したがって、68 個の標本が必要である。
- **6.14** $P(118 \le X \le 125) = P(118 \frac{720}{6} \le X \frac{720}{6} \le 125 \frac{720}{6}) = P(\frac{118 \frac{720}{6}}{\sqrt{720\frac{1}{6}\frac{5}{6}}} \le \frac{X \frac{720}{6}}{\sqrt{720\frac{1}{6}\frac{5}{6}}} \le \frac{125 \frac{720}{6}}{\sqrt{720\frac{1}{6}\frac{5}{6}}} = P(-0.2 \le \frac{X \frac{720}{6}}{\sqrt{720\frac{1}{6}\frac{5}{6}}} \le 0.5) = 1 0.4207 0.3085 = 0.2708$
- **6.15** $X \sim t(8)$ のとき, $P(X \le x) = 0.05$ となる x は −1.8595 である。 すなわ ち, $P(3X+2\leq -1.8595\times 3+2)=0.05$ なので, $y=-1.8595\times 3+2=-3.5785$

第7章解答 (問題は 122 ~ 126 ページ)

- 7.1 信頼係数 0.9 と 0.95 の信頼区間は、(7.213, 9.187)、(7.024, 9.376)
- **7.2** 信頼係数 0.9 と 0.95 の信頼区間は、それぞれ、(8.634, 12.366)、(8.213. 12.787)
- **7.3** 信頼係数 $0.9 \ge 0.95$ の信頼区間は、それぞれ、 $(712-1.6449\times357.4/\sqrt{4271},$ $712+1.6449\times357.4/\sqrt{4271}$) = (703.0, 721.0), (712-1.9600×357.4/ $\sqrt{4271}$, $712 + 1.9600 \times 357.4/\sqrt{4271} = (701.3, 722.7)$
- **7.4** 標本平均と標本標準偏差は、それぞれ、 $\overline{x} = -0.125$. $s^2 = 2.3913^2$ 。信 頼係数 $0.9 \ge 0.95$ の信頼区間は、それぞれ、 $(-0.125 - 1.7959 \times 2.3913/\sqrt{12}$ 、

- $-0.125 + 1.7959 \times 2.3913/\sqrt{12}$) = (-1.365, 1.115), $(-0.125 2.2010 \times 2.3913/\sqrt{12}, -0.125 + 2.2010 \times 2.3913/\sqrt{12})$ = (-1.644, 1.394)
- **7.5** 信頼係数 $0.9 \ge 0.95$ の信頼区間は、それぞれ、(1.565, 6.740)、(1.405, 8.063)
- **7.6** $((n-1)s^2/\chi^2_{\alpha/2}(n-1), (n-1)s^2/\chi^2_{1-\alpha/2}(n-1))$, n=12, $s^2=2.3913$, なので,信頼係数 0.9 と 0.95 の信頼区間は,それぞれ,

 $(11 \times 2.3913^2/19.68, 11 \times 2.3913^2/4.57) = (3.196, 13.764),$

 $(11 \times 2.3913^2/21.92, 11 \times 2.3913^2/3.82) = (2.870, 16.466)$

- **7.7** 信頼係数 $0.9 \ge 0.95$ の信頼区間は、それぞれ、(0.593, 0.747)、(0.578, 0.762)
- **7.8** ① $L = \lambda^{-n} \exp(-\sum_{i=1}^{n} \frac{x_i}{\lambda})$, ② L の対数をとり λ で微分してゼロと置くと $-\frac{n}{\lambda} + \sum_{i=1}^{n} \frac{x_i}{\lambda^2} = 0$ 。これを λ について解くと $\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$
- **7.9** ① $E[\overline{X}] = E[(1/3)X_1 + (1/3)X_2 + (1/3)X_3] = (1/3)E[X_1] + (1/3)E[X_2] + (1/3)E[X_3] = \mu$, ② $E[\widetilde{X}] = E[(1/6)X_1 + (1/2)X_2 + (1/3)X_3] = (1/6)E[X_1] + (1/2)E[X_2] + (1/3)E[X_3] = \mu$, ③ $E[\widehat{X}] = E[(1/2)X_1 + (1/4)X_2 + (1/5)X_3] = (1/2)E[X_1] + (1/4)E[X_2] + (1/5)E[X_3] = (19/20)\mu$.
- + $(1/3)^2 V(X_3) = (1/3)\sigma^2$, $(V(\widetilde{X}) = V((1/6)X_1 + (1/2)X_2 + (1/3)X_3)$ = $(1/6)^2 V(X_1) + (1/2)^2 V(X_2) + (1/3)^2 V(X_3) = (7/18)\sigma^2$
- 7.10 ① $\mathrm{E}[\overline{X}] = \mu$ なので \bigcirc , ② $\mathrm{E}[\widetilde{X}] = \mu$ なので \bigcirc , ③ $\mathrm{E}[\widehat{X}] \neq \mu$ なので \times , ④ $\mathrm{V}(\overline{X}) < \mathrm{V}(\widetilde{X})$ なので \times , ⑤ $\sum\limits_{i=1}^{3} \omega_i = 1$ を満たす $\sum\limits_{i=1}^{3} \omega_i X_i$ は μ の不偏推定量となるので \bigcirc , ⑥ 不偏推定量の中で最も小さな分散となる推定量が有効推定量なので \bigcirc
- 7.11 ① $E[S^2]=\sigma^2$ なので $E[S^{*2}]=((n-1)/n)\sigma^2 \neq \sigma^2$ により ×, ② $E[S^2]=\sigma^2$ なので ○
- 7.12 ① $\overline{X} \sim N(\mu, 3^2/25)$ なので $(\overline{X} \mu)/\sqrt{3^2/25} \sim N(0, 1)$, ② $P(|\overline{X} \mu|/\sqrt{3^2/25} < z_{0.005}) = 0.99$ なので $(\overline{x} z_{0.005}\sqrt{3^2/25}, \overline{x} + z_{0.005}\sqrt{3^2/25}) = (8.05 2.5758\sqrt{3^2/25}, 8.05 + 2.5758\sqrt{3^2/25}) = (6.50452, 9.59548)$
- 7.13 ① $\overline{X} \sim N(\mu, \sigma^2/12)$ なので $(\overline{X} \mu)/\sqrt{\sigma^2/12} \sim N(0, 1)$ により $(\overline{X} \mu)/\sqrt{S^2/12} \sim t(11)$, ② $P(|\overline{X} \mu|/\sqrt{S^2/12} < t_{0.05}(11)) = 0.90$ なので $(\overline{x} t_{0.05}(11)\sqrt{s^2/12}, \overline{x} + t_{0.05}(11)\sqrt{s^2/12}) = (12.6 1.7959\sqrt{9/12}, 12.6 + 1.7959\sqrt{9/12}) = (11.045, 14.155)$

- **7.14** ① $\overline{X} \sim N(\mu, \sigma^2/400)$ なので $(\overline{X} \mu)/\sqrt{\sigma^2/400} \sim N(0, 1)$ によ $\sqrt[9]{(X-\mu)/\sqrt{S^2/400}} \sim t(399) = N(0,1), \ 2 P(|X-\mu|/\sqrt{S^2/400} < 1)$ $z_{0.025}$) = 0.95 なので $(\overline{x} - z_{0.025} \sqrt{s^2/400}, \overline{x} + z_{0.025} \sqrt{s^2/400}) = (2.56 - 1.5)$ $1.960\sqrt{4^2/400}$, $2.56 + 1.960\sqrt{4^2/400}$) = (2.168, 2.952)
- **7.15** ① $(n-1)S^2/\sigma^2 \sim \chi^2(15)$, ② $P(\chi^2_{0.95}(15) < (n-1)S^2/\sigma^2 < \chi^2_{0.05}(15))$ $= P(7.26 < 15 \times S^2/\sigma^2 < 25.00) = 0.90 \text{ }$ 7.26) = $(15 \times 1.44/25.00, 15 \times 1.44/7.26) = (0.864, 2.975)$
- **7.16** ① $\overline{X} \sim N(\mu, \sigma^2/4)$ なので, $(\overline{X} \mu)/\sqrt{\sigma^2/4} \sim N(0,1)$ により, $(\overline{X} - \mu)/\sqrt{S^2/4} \sim t(3), \ \ 2 \ P(|\overline{X} - \mu|/\sqrt{S^2/4} < t_{0.05}(3)) = 0.90 \ \text{tor},$ $(\overline{x} - t_{0.05}(3)\sqrt{s^2/4}, \ \overline{x} + t_{0.05}(3)\sqrt{s^2/4}), \ \overline{x} = (3.9 + 1.1 + 0.1 + 0.5)/4 =$ $1.4, s^2 = (1/3)(3.9^2 + 1.1^2 + 0.1^2 + 0.5^2 - 4 \times 1.4^2) = 2.947 \text{ KLB},$ $(1.4 - 2.3534\sqrt{2.947/4}, 1.4 + 2.3534\sqrt{2.947/4}) = (-0.62, 3.42)$
- **7.17** ① $(\hat{p}-p)/\sqrt{\hat{p}(1-\hat{p})/n} \sim N(0,1)$, ② $P(|\hat{p}-p|/\sqrt{\hat{p}(1-\hat{p})/n} < n)$ $z_{0.025}) = 0.95 \text{ } \text{ } \text{ } \text{CC}, \text{ } (\hat{p} - z_{0.025} \sqrt{\hat{p}(1-\hat{p})/n}, \hat{p} + z_{0.025} \sqrt{\hat{p}(1-\hat{p})/n}) =$ $(0.345 - 1.960\sqrt{0.345(1 - 0.345)/536}, 0.345 + 1.960\sqrt{0.345(1 - 0.345)/536})$ により、信頼区間の上限は 0.385、3 信頼区間の下限は 0.305
- **7.18** ① $E[Y] = E[aX_1 + bX_2] = aE[X_1] + bE[X_2] = a\mu + b\mu = (a+b)\mu$ を得る。よって、Y が不偏推定量である条件は、a+b=1 である。 ② V(Y)= $E[(aX_1 + (1-a)X_2 - \mu)^2] = E[(a(X_1 - \mu) + (1-a)(X_2 - \mu))^2] = a^2 E[(X_1 - \mu)^2]$ $|\mu|^2 + (1-a)^2 \mathbb{E}[(X_2 - \mu)^2] = \sigma^2 (a^2 + (1-a)^2)$ を得る。分散を最小にする a を求めるために、分散を a で微分すると、 $dV(Y)/da = \sigma^2(2a - 2(1-a)) =$ $\sigma^2(4a-2)$ となる。dV(Y)/da=0 を解くと、a=b=1/2 を得る。
- **7.19** $\overline{x} \pm z_{\alpha/2} \, \sigma/\sqrt{n}$, $\overline{x} = 61.2$, $\sigma = 5$, n = 49,

90%: $61.2 \pm 1.6449 \times 5/\sqrt{49}$ \$\tag{60.025, 62.375}

95%: $61.2 \pm 1.9600 \times 5/\sqrt{49}$ \$\text{\$\sigma}\$, (59.80, 62.60)

7.20 $((n-1)s^2/\chi^2_{\alpha/2}(n-1), (n-1)s^2/\chi^2_{1-\alpha/2}(n-1)), n=15, s^2=$ 3.6,

90%: $(14 \times 3.6/23.68, 14 \times 3.6/6.57) = (2.128, 7.671),$

95%: $(14 \times 3.6/26.12, 14 \times 3.6/5.63) = (1.930, 8.952)$

7.21 $\overline{x} \pm t_{\alpha/2}(15)s/\sqrt{n}$, $\overline{x} = 10.2$, $s^2 = 8.4$ (s = 2.8982), n = 16,

90%: $10.2 \pm 1.7531 \times 2.8982/\sqrt{16}$ \$\text{to}\$\tag{6.930, }11.470)

95%: $10.2 \pm 2.1314 \times 2.8982/\sqrt{16}$ \$\text{to}\$\tag{(8.656, 11.744)}

7.22 $\hat{p} \pm z_{\alpha/2} \sqrt{\hat{p}\hat{q}/n}$, $\hat{p} = 45/300 = 0.15$, n = 300,

90% : $0.15 \pm 1.6449 \times \sqrt{0.15 \times 0.85/300}$ なので, (0.116, 0.184) 95% : $0.15 \pm 1.9600 \times \sqrt{0.15 \times 0.85/300}$ なので, (0.110, 0.190)

- **7.23** ① $\frac{5}{4}\mu$, ② $\frac{5}{9}\sigma^2$, ③ $\overline{X} \succeq \widetilde{X}$, ④ \overline{X} , ⑤ $\frac{1}{9}\sigma^2$
- **7.24** Z は X, Y の線形関数である。Z = aX + bY + c が μ の不偏推定量なので, $\mu = \mathrm{E}[Z] = \mathrm{E}[aX + bY + c] = a\mathrm{E}[X] + b\mathrm{E}[Y] + c = (a+b)\mu + c$ となる。すなわち,a+b=1,c=0 でなければならない。

代入すると,Z=aX+(1-a)Y となり,最小分散となる a を求める。 $V(Z)=a^2V(X)+(1-a)^2V(Y)=\sigma^2(2a^2-2a+1)=2\sigma^2(a-\frac{1}{2})^2+\frac{1}{2}\sigma^2$ となる。 $a=\frac{1}{2}$ で V(Z) は最小になる。よって, μ の最良線形不偏推定量は $Z=\frac{1}{2}X+\frac{1}{2}Y$ となる。

7.25 $(45 - 2.5758\sqrt{2^2/81}, 45 + 2.5758\sqrt{2^2/81}) = (44.4276, 45.5724)$

第8章解答 (問題は 155 ~ 162 ページ)

- **8.1** $H_0: \mu=120,\ H_1: \mu>120$ とする。 $\alpha=0.01$ では, $\overline{x}=135<143$ だから H_0 を採択。 $\alpha=0.05$ では, $\overline{x}<136$ だから H_0 を採択。 $\alpha=0.1$ では, $\overline{x}>132$ だから H_0 を棄却。
- 8.2 $\beta = P(\overline{X} < 136|H_1) = P((\overline{X} \mu_1)/(\sigma/\sqrt{n}) < (136 140)/(20/2)) = P(Z_n < -0.4) = 0.34$ 。 $\alpha = 0.01$ のときは, $\beta = P(Z_n < (143 140)/(20/2)) = P(Z_n < 0.3) = 0.62$ 。 したがって, β はより大きくなる。
- **8.3** ① |t|=5.67 であるから, $\mu=740$ は棄却される。|t|=1.67 であるから, $\mu=630$ は採択される。|t|=2.33 であるから, $\mu=690$ は棄却される。② μ の 95% 信頼区間は (623,687) である。 $H_0:\mu=630$ という仮説だけ
- **8.4** 東京都の平均床面積を μ とし, $H_0: \mu \ge 80.9$, $H_1: \mu < 80.9$ と置いて, H_0 を検定する.5% の有意水準では, $\overline{x}=62.5<80.9-1.6449(18/10)=77.9$ 。よって, H_0 を棄却。1% の有意水準でも H_0 が棄却されることを確かめよ。
- **8.5** ① 日本の年平均成長率を μ_J , 米国の年平均成長率を μ_U とする。 H_0 : $\mu_J = \mu_U$, $H_1: \mu_J \neq \mu_U$ を検定する。データから, $n_1 = n_2 = 11$, $\overline{x}_J =$

- 1.218, $\overline{x}_U = 3.055$, $s_J^2 = (38.14 11 \times 1.218^2)/10 = 2.182$, $s_U^2 = (117.10 1.218^2)/10 = 2.182$ 11×3.055^2)/10 = 1.444 となる。1% の有意水準では、 $|\bar{x}_I - \bar{x}_{IJ}| = 1.837 >$ $z_{0.005}\sqrt{2.182/11+1.444/11}=2.5758\times0.574=1.48$ 。よって、 H_0 を棄却。 日米の成長率の平均値の間に有意な差がある。
- ② $H_0: \mu_J \ge \mu_U, H_1: \mu_J < \mu_U$ 5% の有意水準では、 $\bar{x}_J \bar{x}_U =$ $-1.837 < -1.6449 \times 0.574 = -0.944$, よって、 H_0 を棄却。日本の成長率の 平均のほうが米国のそれより低いといえる。
- **8.6** 下水道総人口普及率を p とし、仮説を $H_0: p = 0.727$ (または、 $p \le$ 0.727)、 $H_1: p > 0.727$ と立てる。 $\hat{p} = 7500/10000 = 0.75$ を z に代入して、 $z = (0.75 - 0.727) / \sqrt{0.727 \times 0.273 / 10000} = 5.16$, $z_{0.01} = 2.3263$ thb, 明らかに $z=5.16>z_{0.01}$ が成立する。1% の有意水準で、この都市の普及率 が全国のものより高いと判断される。
- **8.7** ① \bigcirc , ② \times , ③ \times , ④ \bigcirc
- **8.8** ① $H_0: \mu = 90, \ ② \ (\overline{x} \mu_0) / \sqrt{\sigma^2/n} = (101 90) / \sqrt{10^2/4} = 2.2,$ **③ ③**、**④** $2.2 > z_{0.025} = 1.960$ なので棄却、**⑤** $2.2 < z_{0.005} = 2.576$ なので 採択される。
- **8.9** ① $H_0: p = 0.5, H_1: p < 0.5,$ ② $(0.41 0.5)/\sqrt{0.5(1 0.5)/100} =$ -1.8, ③ N(0,1), ④ $-1.8 < -z_{0.05} = -1.645$ なので ○
- **8.10** ① $H_0: \mu = 3.5, H_1: \mu < 3.5,$ ② $(1.218 3.5)/\sqrt{2.812/11} =$ -5.12, **3** t(10), **4** $-5.12 < -t_{0.01}(10) = -2.7638$ なので \bigcirc
- **8.11** ① $H_0: \mu = 3.5, H_1: \mu \neq 3.5, ② (2.9 3.5)/\sqrt{2^2/25} = -1.5, ③$ $N(0,1), \quad \textcircled{4} \quad -1.5 > -z_{0.025} = -1.96 \quad \texttt{for} \quad \bigcirc$
- **8.12** ① $|642 637|/\sqrt{361/289 + 961/225} = 2.13$, ② N(0,1), ③ 2.13 < $z_{0.005} = 2.576 \text{ } \text{coc} \times$
- **8.13** ① $z = (\overline{x} \mu_0)/(\sigma/\sqrt{n}), \ \overline{x} = 20, \ n = 36 \ \text{\hat{x}} \text{$\hat{\sigma}$}, \ z = (20 1)$ $(18)/(7/\sqrt{36}) = 1.714 > 1.645 = z_{0.05}$ 。よって、 H_0 は棄却される。② z = $1.714 < 2.326 \ (= z_{0.01})$ から、 H_0 は採択される。 ③ 母集団分布 $N(\mu, \sigma^2)$ での有意水準 α の検定の棄却域は $P((\overline{X} - \mu_0)/(\sigma/\sqrt{n}) > z_{\alpha}) = P(\overline{X} >$ $\mu_0 + z_{\alpha} \sigma / \sqrt{n} = \alpha$ から、 $\overline{X} > \mu_0 + z_{\alpha} \sigma / \sqrt{n}$ を得る。 $\mu_0 = 18$ 、 $\sigma = 7$ 、 n=36, $z_{0.05}=1.645$, $z_{0.01}=2.326$ を代入すると、有意水準 0.05 および 0.01 の検定の棄却域は,
 - 0.05: $\overline{X} > 18 + 1.645 \times 7/\sqrt{36} = 19.92$
 - $0.01: \overline{X} > 18 + 2.326 \times 7/\sqrt{36} = 20.71$

検定力は、帰無仮説が正しくない(対立仮説が正しい)ときに、帰無仮説を棄却する確率であるので、対立仮説のもとで、 \overline{X} が棄却域に入る確率を求めればよい。有意水準が 0.05 のときの検定力は $P(\overline{X}>19.92)=P((\overline{X}-22)/(7/\sqrt{36})>(19.92-22)/(7/\sqrt{36}))=P(Z>-1.78)=0.9625$ となる。また、有意水準が 0.01 のときの検定力は $P(\overline{X}>20.71)=P((\overline{X}-22)/(7/\sqrt{36})>(20.71-22)/(7/\sqrt{36}))=P(Z>-1.11)=0.8665$

- **8.14** ① $\overline{x}=87,\ s=7,\ n=12,\ \overline{x}\pm t_{\alpha/2}s/\sqrt{n}=87\pm 2.201\times 7/\sqrt{12}$ から、 (82.552、91.448)。② $H_0:\mu=83,\ H_1:\mu>83,\ t=(\overline{x}-83)/(7/\sqrt{12})=(87-83)/(7/\sqrt{12})=1.979>1.796=t_{0.05}(11)$ 。よって、 H_0 は棄却され、寿命は延びたといえる。
- 8.15 $H_0: \mu_1 = \mu_2, H_1: \mu_1 \neq \mu_2$ について、 $Z = (\overline{X}_1 \overline{X}_2)/\sqrt{S_1^2/n_1 + S_2^2/n_2}$ $\sim N(0,1)$ となる。 $\overline{x}_1 = 33$ 、 $s_1^2 = 10$ 、 $n_1 = 160$ 、 $\overline{x}_2 = 33.6$ 、 $s_2^2 = 12$ 、 $n_2 = 180$ 、 $\alpha = 0.05$ 、 $z = (33 33.6)/\sqrt{10/160 + 12/180} = -0.6/0.359 = -1.671 > -1.96 = -z_{0.025}$ なので、 H_0 は採択される。
- **8.16** $H_0: p=1/6~(=0.167), \ H_1: p>1/6~について、<math>\hat{p}=54/240=0.225, \ \alpha=0.01, \ z=(\hat{p}-0.167)/\sqrt{0.167\times0.833/240}=(0.225-0.167)/0.0241=2.407>2.326=z_{0.01}$ なので、 H_0 は棄却され、6 の目は出やすいといえる。
- **8.17** $H_0: p=0.7,\ H_1: p<0.7$ について, $\hat{p}=2070/3000=0.69$, $\alpha=0.05,\ z=(\hat{p}-0.7)/\sqrt{0.7\times0.3/3000}=(0.69-0.7)/0.00837=-1.195>-1.645=-z_{0.05}$ なので, H_0 は採択され,70% より少ないとはいえない。
- 8.18 $H_0: \mu=60, H_1: \mu \neq 60$ について、 $\overline{x}=(59+56+62+61+57)/5=295/5=59, s^2=((59-59)^2+(56-59)^2+(62-59)^2+(61-59)^2+(57-59)^2)/4=(0+9+9+4+4)/4=26/4=6.5, s=2.55, \alpha=0.05, t=(\overline{x}-\mu_0)/(s/\sqrt{n})=(59-60)/(2.55/\sqrt{5})=-1/1.14=-0.877>-2.776=-t_{0.025}(4)$ なので、 H_0 は採択され、裁断機が正常でないとはいえない。
- **8.19** ① $\frac{2.5-2}{\sqrt{4/16}} = 1$, ② $t_{0.025}(15) = 2.1314$, ③ 採択する。
- **8.20** ① $\frac{2.5-2}{\sqrt{4/100}} = 2.5$, ② $t_{0.025}(90) = 1.9867$, $t_{0.025}(100) = 1.9840$ なので, $t_{0.025}(99)$ は 1.9840 より小さいがかなり近い値をとる。③ 棄却する。
- **8.21** ① $\frac{13-15}{\sqrt{4.5^2/16}} = -1.7778$, ② $t_{0.05}(15) = 1.7531$, ③ 棄却する。
- **8.22** ① $\frac{0.51-0.5}{\sqrt{0.5(1-0.5)/10000}} = 2$, ② $z_{0.01} = 2.3263$, ③ 採択する。

- 8.23 ① $\frac{1}{2}(5+6)=5.5$, ② $\frac{1}{10}(8+6+9+6+4+3+1+4+5+7)=5.3$, ③ $\frac{1}{10-1}((8-5.3)^2+(6-5.3)^2+(9-5.3)^2+(6-5.3)^2+(4-5.3)^2+(3-5.3)^2+(1-5.3)^2+(4-5.3)^2+(5-5.3)^2+(7-5.3)^2)=\frac{1}{10-1}(8^2+6^2+9^2+6^2+4^2+3^2+1^2+4^2+5^2+7^2-10\times5.3^2)=5.789$, ④ $(5.3-2.2622\sqrt{5.789/10},5.3+2.2622\sqrt{5.789/10})=(3.58,7.02)$, ⑤ $\frac{5.3-7}{\sqrt{5.789/10}}=-2.234$, ⑥ $t_{0.05}(9)=1.8331$, ⑦ 棄却する。
- 8.24 ① 定理 6.3 より、 $(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$ なので、 $P\left(\chi^2_{1-\alpha/2}(n-1) < (n-1)S^2/\sigma^2 < \chi^2_{\alpha/2}(n-1)\right) = 1-\alpha$ となる。 $\alpha=0.05$ 、n=20、 $\chi^2_{1-\alpha/2}(n-1)=8.91$ 、 $\chi^2_{\alpha/2}(n-1)=32.85$ 、したがって、 $P\left(19S^2/32.85 < \sigma^2 < 19S^2/8.91\right) = 0.95$ となるので、 σ^2 の信頼係数 0.95 の信頼区間は $(19s^2/32.85, 19s^2/8.91) = (121.46, 447.81)$ 、② 帰無仮説のもとで、 $19S^2/190 \sim \chi^2(19)$ なので、検定統計値は $19s^2/190 = 21$ となる。この値と、 $\chi^2_{0.025}(19) = 32.85$ 、 $\chi^2_{0.975}(19) = 8.91$ を比較する。8.91 < 21 < 32.85 なので、帰無仮説を棄却できない。
- 8.25 ① 標本平均: $\overline{x}=(11+3+4+1+5+4+3+8+6)/9=5$,標本分散: $s^2=((11-5)^2+(3-5)^2+(4-5)^2+(1-5)^2+(5-5)^2+(4-5)^2+(3-5)^2+(8-5)^2+(6-5)^2)/8=9$,② $Z_n=\sqrt{n}(\overline{X}-\mu)/\sigma$ は,標準正規分布 N(0,1) に従う。このとき,信頼係数 0.95 ($\alpha=0.05$) に対する $z_{0.025}$ の値は正規分布表より 1.96 である。 $\overline{x}=5$, n=9, $s^2=9$, $\sigma^2=2.25=1.5^2$ であるので,信頼限界は, $\overline{x}\pm z_{\alpha/2}\sigma/\sqrt{n}=5\pm1.96\times1.5/3=5\pm0.98$ から計算すると,4.02 および 5.98 となる。したがって,信頼係数 0.95 の信頼区間は(4.02, 5.98)である。③ $T_n=\sqrt{n}(\overline{X}-\mu)/S$ は,自由度 n-1 の t 分布に従う。ここで自由度8(=9-1)なので,信頼係数 0.95($\alpha=0.05$)に対する $t_{\alpha/2}(8)$ の値は t 分布表より 2.306 である。 $\overline{x}=5$, n=9, $s^2=9=3^2$ であるので,信頼限界は, $\overline{x}\pm t_{\alpha/2}(8)s/\sqrt{n}=5\pm2.306\times3/3=5\pm2.306$ から計算すると,2.694 および 7.306 となる。したがって,信頼係数 0.95 の信頼区間は,(2.694, 7.306) である。④ H_0 の棄却域は $\overline{X}>6+z_{0.05}\sqrt{2.25/9}=6+1.645 <math>\times$ 0.5 =6.823。よって,検出力は H_1 のもとで $P(\overline{X}>6.823)=P(\frac{\overline{X}-7}{\sqrt{2.25/9}}>\frac{6.823-7}{\sqrt{2.25/9}})=P(Z>-0.36)=1-P(Z>0.36)=1-0.3594=0.64$

 $n\overline{x}^2)=\frac{1}{15}(316-16\times 4^2)=4$, ② $\sqrt{n}(\overline{X}-\mu)/S\sim t(n-1)$, $t_{0.025}(15)=2.1314$ から, $P(-2.1314<\sqrt{n}(\overline{X}-\mu)/S<2.1314)=0.95$, すなわち, $P(\overline{X}-2.1314\times S/\sqrt{n}<\mu<\overline{X}+2.1314\times S/\sqrt{n})=0.95$ となる。したがって, $(\overline{x}-2.1314\times S/\sqrt{n},\overline{x}+2.1314\times S/\sqrt{n})=(4-2.1314\times 2/\sqrt{16},4+2.1314\times 2/\sqrt{16})=(2.9343,5.0657)$,③ 帰無仮説のもとで $\sqrt{n}(\overline{X}-3)/S\sim t(n-1)$ となる。 $t_{0.05}(15)=1.7531<\sqrt{n}(\overline{x}-3)/s=4(4-3)/2=2$ なので,帰無仮説を有意水準 5% で棄却する。④ $(n-1)S^2/\sigma^2\sim\chi^2(n-1)$ なので,帰無仮説のもとで $(n-1)S^2/5\sim\chi^2(n-1)$ となる。 $\chi^2_{0.95}(15)=7.26<(n-1)s^2/5=15\times4/5=12$ となり,帰無仮説を採択する。

第9章解答 (問題は 187 ~ 191 ページ)

$$\mathbf{9.1} \quad r = \sum_{t=1}^{n} (X_t - \overline{X})(Y_t - \overline{Y}) \bigg/ \sqrt{\sum_{t=1}^{n} (X_t - \overline{X})^2 \sum_{t=1}^{n} (Y_t - \overline{Y})^2} = \left(\sum_{t=1}^{n} (X_t - \overline{X})^2 - \overline{X}\right)$$

$$(Y_t - \overline{Y}) \bigg/ \sum_{t=1}^{n} (X_t - \overline{X})^2 \right) \times \sqrt{\sum_{t=1}^{n} (X_t - \overline{X})^2 \bigg/ \sum_{t=1}^{n} (Y_t - \overline{Y})^2} =$$

$$\hat{\beta} \sqrt{\sum_{t=1}^{n} (X_t - \overline{X})^2 \bigg/ \sum_{t=1}^{n} (Y_t - \overline{Y})^2}$$

(注) (2.16) より $r=s_{xy}/(s_xs_y)$ で, (9.9) は $\hat{\beta}=s_{xy}/s_x^2$ だから, $r=\hat{\beta}(s_x/s_y)$ となると考えてもよい。

9.2
$$\sum_{t=1}^{n} (Y_t - \overline{Y})^2 = \sum_{t=1}^{n} ((Y_t - \hat{Y}_t) + (\hat{Y}_t - \overline{Y}))^2 = \sum_{t=1}^{n} e_t^2 + 2 \sum_{t=1}^{n} e_t (\hat{Y}_t - \overline{Y}) + \sum_{t=1}^{n} (\hat{Y}_t - \overline{Y})^2$$

$$\sum_{t=1}^{n} (\hat{Y}_t - \overline{Y})^2$$

$$\sum_{t=1}^{n} e_t = 0, \quad \sum_{t=1}^{n} e_t X_t = 0$$

$$\sum_{t=1}^{n} e_t \hat{X}_t = 0$$

$$\sum_{t=1}^{n} e_t (\hat{X}_t - \overline{Y}) = (\hat{X}_t - \overline{Y})$$

$$\sum_{t=1}^{n} e_t \hat{X}_t = 0$$

$$\sum_{t=1}^{n} e_t X_t = 0$$

$$\sum_{t=1}^{n} e_t \hat{X}_t = 0$$

- 9.3 ① $\hat{\alpha}=0.5$, $\hat{\beta}=0.9$, ② $s^2=0.486$, ③ $Se(\hat{\alpha})=0.506$, $Se(\hat{\beta})=0.090$, ④ $\hat{\alpha}$ と $\hat{\beta}$ の t 値は, それぞれ, 0.988, 10.0, よって, $H_0:\alpha=0$ は有意水準 5% で採択, $H_0:\beta=0$ は有意水準 1% で棄却。(5) $R^2=0.935$
- 9.4 $H_0: \beta=1$ を検定するための検定統計量は $(\hat{\beta}-1)/Se(\hat{\beta})$ であり、これ

は自由度 n-2 の t 分布に従う。 $\hat{\beta}=0.8$ であり $\hat{\beta}$ の t 値は $\hat{\beta}/Se(\hat{\beta})=2.5$ であるので, $Se(\hat{\beta})=0.32$ よって, $(\hat{\beta}-1)/Se(\hat{\beta})=-0.625$ となるので, $H_0:\beta=1$ は有意水準 5% で採択される。

9.5 ① $\log X_t = x_t$, $\log Y_t = y_t$ と再定義する。 $\overline{x} = 6.08$, $\overline{y} = 5.46$, $\sum_t x_t y_t = 930.08$, $\sum_t x_t^2 = 1036.64$, $\sum_t x_t y_t - n\overline{xy} = 0.3498$, $\sum_t x_t^2 - n\overline{x}^2 = 1.0941$, $\hat{\beta} = 0.3498/1.0941 = 0.320$, $\hat{\alpha} = 3.516$, ② $s^2 = 0.007922$, ③ $Se(\hat{\alpha}) = 0.5177$, $Se(\hat{\beta}) = 0.0851$, ④ $\hat{\alpha}$ と $\hat{\beta}$ の t 値は,それぞれ,6.79,3.76。 $H_0: \alpha = 0$ および $H_0: \beta = 0$ はともに有意水準 1% で棄却,⑤ $R^2 = 0.3519$

得られた結果の意味について: β の最小 2 乗推定値が 0.320(すなわち,原油輸入量の GDP 弾力性が 0.320)であるので,GDP が 1% 上昇したとき,原油輸入量は 0.320% 増えることになる。推定値が 1 より小さいということは,原油は GDP の増減(すなわち,景気)にあまり左右されない財ということを意味する。

9.6

\overline{t}	Y_t	X_t	X_t^2	X_tY_t	Y_t^2	\hat{Y}_t	e_t	e_t^2
1	4	3	9	12	16	4	0	0
2	1	- 1	1	- 1	1	0	1	1
3	0	0	0	0	0	1	- 1	1
4	1	1	1	1	1	2	- 1	1
5	4	2	4	8	16	3	1	1
合計	10	5	15	20	34		0	4

なので、 $\overline{X}=1$ 、 $\overline{Y}=2$ が得られる。

$$\hat{\mathbb{D}} \hat{\beta} = \frac{\sum_{t=1}^{n} X_{t} Y_{t} - n \overline{XY}}{\sum_{t=1}^{n} X_{t}^{2} - n \overline{X}^{2}} = \frac{20 - 5 \times 1 \times 2}{15 - 5 \times 1 \times 1} = 1, \hat{\alpha} = \overline{Y} - \hat{\beta} \overline{X} = 2 - 1 \times 1 = 1,$$

②
$$R^2 = 1 - \frac{\sum\limits_{t=1}^{n} e_t^2}{\sum\limits_{t=1}^{n} Y_t^2 - n\overline{Y}^2} = 1 - \frac{4}{34 - 5 \times 2^2} = \frac{5}{7} = 0.714$$
, ③ $s^2 = \frac{5}{100}$

$$\frac{1}{n-2} \sum_{t=1}^{n} e_t^2 = \frac{4}{5-2} = \frac{4}{3}, \quad \textcircled{4} \quad Se(\hat{\beta}) = \sqrt{\frac{s^2}{\sum_{t=1}^{n} X_t^2 - n\overline{X}^2}} = \sqrt{\frac{4/3}{15 - 5 \times 1^2}} = \sqrt{\frac{1}{15 - 5 \times 1^2}} = \sqrt{\frac{1}{15$$

$$\sqrt{\frac{2}{15}} = 0.365, \quad Se(\hat{\alpha}) = \sqrt{s^2 \left(\frac{1}{n} + \frac{\overline{X}^2}{\sum\limits_{t=1}^n X_t^2 - n\overline{X}^2}\right)} = \sqrt{\frac{4}{3} \left(\frac{1}{5} + \frac{1^2}{15 - 5 \times 1^2}\right)}$$

$$= \sqrt{\frac{2}{5}} = 0.632, \quad \$ t_{0.025}(5-2) = 3.182 \text{ ϖ}$$
 α については $(\hat{\alpha} - t_{0.025}(n-2) \times Se(\hat{\alpha}), \quad \alpha$ については $(\hat{\alpha} - t_{0.025}(n-2) \times Se(\hat{\alpha}), \quad \alpha$ については $(\hat{\beta} - t_{0.025}(n-2) \times Se(\hat{\beta}), \quad \beta + t_{0.025}(n-2) \times Se(\hat{\beta}), \quad \beta + t_{0.025}(n-2) \times Se(\hat{\beta})) = (1 - 3.182 \times \sqrt{2/15}, \quad 1 + 3.182 \times \sqrt{2/15}) = (-0.16, 2.16),$

$$\$ n = 5, \quad s^2 = 4/3, \quad \chi_{0.005}(5-2) = 12.84, \quad \chi_{0.995}(5-2) = 0.0717 \text{ ϖ}$$
 $((n-2)s^2/\chi_{0.005}(n-2), \quad (n-2)s^2/\chi_{0.995}(n-2)) = (4/12.84, \quad 4/0.0717)$

$$= (0.312, 55.79), \quad \$ n \equiv \hbar$$
 $n = 6/8$ $n = 6/$

9.7 ① $x_i = X_i - \overline{X}$, $y_i = Y_i - \overline{Y}$ と置くと, $\hat{\beta}$ は, (9.9) から,

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2} = \beta + \frac{\sum_{i=1}^{n} x_i u_i}{\sum_{i=1}^{n} x_i^2} = \beta + \sum_{i=1}^{n} w_i u_i$$

ただし、
$$w_i = x_i / \sum_{i=1}^n x_i^2$$
 である。 $\sum_{i=1}^n x_i = 0$ なので $\sum_{i=1}^n w_i = 0$ となる。
$$\mathrm{E}[\hat{\beta}] = \mathrm{E}[\beta + \sum_{i=1}^n w_i u_i] = \beta + \sum_{i=1}^n w_i \mathrm{E}[u_i] = \beta$$

$$\mathrm{V}(\hat{\beta}) = \mathrm{V}(\beta + \sum_{i=1}^n w_i u_i) = \mathrm{V}(\sum_{i=1}^n w_i u_i) = \sum_{i=1}^n \mathrm{V}(w_i u_i) = \sum_{i=1}^n w_i^2 \mathrm{V}(u_i) = \sigma^2 \sum_{i=1}^n w_i^2 = \sigma^2 / \sum_{i=1}^n x_i^2, \ 2 \ \text{つ目の等式は定理 } 4.3, \ 3 \ \text{つ目の等式は定理 } 4.8, \ 4$$
 つ目の等式は定理 4.3 による。また、 $\sum_{i=1}^n w_i^2 = 1 / \sum_{i=1}^n x_i^2$ に注意。

② $(\hat{\beta}-\beta)/Se(\hat{\beta})\sim t(n-2)$ なので、帰無仮説のもとで $(\hat{\beta}-1)/Se(\hat{\beta})\sim t(n-2)$ となる。 $(\hat{\beta}-1)/Se(\hat{\beta})=(4.5-1)/2=1.75>t_{0.05}(18)=1.7341$ なので、有意水準 5% で帰無仮説を棄却する。

9.8

$$\begin{split} \hat{\beta}_0 &= \overline{Y} - \hat{\beta}_1 \overline{X} = 0.5 - 2.0 \times 2.0 = -3.5 \\ \mathbf{②} \ s &= \sqrt{\frac{5}{8}} = \sqrt{\frac{10}{16}} = \frac{\sqrt{10}}{4} \\ Se(\hat{\beta}_1) &= \frac{s}{\sqrt{\sum_i (X_i - \overline{X})^2}} = \frac{s}{\sqrt{\sum_i X_i^2 - n \overline{X}^2}} = \frac{\sqrt{10}/4}{\sqrt{10}} = 0.25 \\ t &= |\frac{2.0}{0.25}| = 8.0 > t_{0.05}(8) = 1.8595 \\ t &= |\frac{2.0 - 1.0}{0.25}| = 4.0 > t_{0.10}(8) = 1.3968 \\ したがって、いずれの帰無仮説も有意水準 10% で棄却される。 \end{split}$$

第 10 章解答 (問題は 217 ~ 219 ページ)

$$\mathbf{10.1} \quad \overline{R}^2 = 1 - \frac{\sum_{t=1}^n e_t^2/(n-k)}{(\sum_{t=1}^n Y_t^2 - n\overline{Y}^2)/(n-1)} = 1 - \frac{4/(5-2)}{(34-5\times 2^2)/(5-1)} = \frac{13}{21} = 0.619$$

$$DW = \frac{\sum_{t=2}^n (e_t - e_{t-1})^2}{\sum_{t=1}^n e_t^2} = \frac{(0-1)^2 + (1-(-1))^2 + ((-1)-(-1))^2 + ((-1)-1)^2}{4} = 9/4 = 2.25$$

10.2 ① 理論的には、 β_1 は正、 γ_1 は負となるはずである。その理由は、設備 投資は需要見込みと金利要因の関数と考えられる。需要見込みが増えると企業 はものを作るため投資を増やす。ここでは需要見込みを国内総支出と考えてい る。金利が低いと銀行からお金を借りやすくなるため投資は増える。したがっ T, $\beta_1 > 0$, $\gamma_1 < 0$ となるはずである。

②
$$ullet$$
 ⓐ Y_t が 1 ⑤ 円 増えるとき、⑥ I_t が eta_1 ⑥ 円 増える。

ullet ullet ullet ullet が 1 ullet ullet 増えるとき, llet ullet ullet が γ_1 ullet γ_1 ullet ullet ullet 増える。 ③ R^2 \overline{R}^2 は推定式の当てはまりを示す尺度で、0 と 1 との間の値をとり、 1に近ければ当てはまりはよく、0に近ければ当てはまりは悪いということに なる。ここでは、0.8539、0.8422と推定式の当てはまりが非常にいいとはい えないが、特に悪いともいえない。DW は誤差項の系列相関があるかないかを示し、0 と 4 の間の値をとり、0 に近いと正の系列相関、4 に近いと負の系列相関、2 前後のとき系列相関なしと判定される。ここでは、DW=0.3082 となり、検定を行うと、n=28、k'=k-1=2 のとき dl=1.255 なので、0.3082 < dl なので、明らかに正の系列相関があると判定される。

④ $H_0: \beta_1=0$, $H_1: \beta_1 \neq 0$ の検定によると, t 値は 5.978 で, 両側検定 のときの自由度 25 の t 分布の 2.5 % 点 2.0595 より大きいので, H_0 を棄却できる。よって,国内総支出が増えると投資が増えるということがいえる(正の影響)。また, $H_0: \gamma_1=0$, $H_1: \gamma_1 \neq 0$ の検定によると,t 値は絶対値で 0.378 なので,両側検定のときの自由度 25 の t 分布の 2.5 % 点 2.0595 より大きいので, H_0 を棄却できない。よって,利子率が増えると投資が増えるか減るか判定できない(正か負か判断できない)。

⑤ r_t の係数推定値がプラスで理論どおりではない。DW が 0.3082 と低く, 誤差項に正の系列相関があると判定される。

10.3 ① ullet ② Y_t が 1 ⑤ % 増えるとき, ② I_t が β_2 ② % 増える。

- e r_t が 1 f % 増えるとき、e I_t が $100 \times \gamma_2$ f % 増える。
- ② 本問の定式化が前問のものより現実的である。それぞれの係数の符号条件が理論どおりになっていて正しく、仮説検定によって、 $t_{0.025}(25) = 2.0595 < 7.06$ より、 $\beta_2 \neq 0$ が判定される。したがって、 $\beta_2 > 0$ が統計的にも得られる。しかし、 $\gamma_2 = 0$ を棄却できないので、 γ_2 の符号を判定することはできない。
- ③ DW が 0.2778 と低いので、誤差項の系列相関を考慮に入れて推定し直すべきである。
- **10.4** ① $(\hat{\beta}_0 \beta_0)/Se(\hat{\beta}_0) \sim t(n-2)$, n=7 なので,帰無仮説のもとで $\hat{\beta}_0/Se(\hat{\beta}_0) \sim t(5)$ となる。 $5/\sqrt{4} = 2.5 < t_{0.025}(5) = 2.5706$ なので,帰無仮説を棄却できない。
- ② $(\hat{\beta}_1 \beta_1)/Se(\hat{\beta}_1) \sim t(n-2)$, n=7 なので、帰無仮説のもとで $(\hat{\beta}_1 1)/Se(\hat{\beta}_1) \sim t(5)$ となる。 $(3-1)/\sqrt{1.0} = 2 < t_{0.05}(5) = 2.0150$ なので、帰無仮説を棄却できない。

第 11 章解答 (問題は 247 ~ 249 ページ)

- 11.1 ① 時系列分析を用い、消費系列が生成された確率過程を特定化し、推定し、それに基づき予測を行う。② 消費と所得のデータ系列から消費関数を推定し、それに基づき予測を行う。③ 消費関数の特定化において、所得変数を可処分所得として捉え、税を明示的に考慮する。そして、その消費関数を推定すれば、予測とともに減税の効果も分析できる。
- **11.2** 2月(バレンタイン・デー)に上昇し夏季に落ちこみ,再び 12月(クリスマス)に上昇するという季節パターンが見られる。(11.3) に基づいて計算された季節調整済み系列は表 6 に示されている。

	表 6								
2007年1月		2008年1月	366.0	2009年1月	375.4				
2 月		2 月	366.6	2 月	376.0				
3 月		3 月	368.6	3 月	375.7				
4 月		4 月	370.7	4 月	375.3				
5 月		5 月	373.5	5月	375.3				
6 月		6 月	375.2	6 月	375.5				
7 月	357.7	7 月	375.8	7月					
8 月	363.3	8月	373.8	8月					
9 月	367.5	9 月	373.3	9月					
10 月	365.8	10 月	375.1	10 月					
11 月	364.6	11 月	376.2	11 月					
12 月	365.8	12 月	376.0	12 月					

チョコレートへの支出(原系列と季節調整値)

11.3 2007 年 7 月を 1 とし、2009 年 6 月を 24 とする傾向変数 (t) を作り、季節調整済み平均チョコレート消費額 (CHOCO $_t$) に回帰させた結果は次のとおり。

CHOCO_t =
$$362.87 + 0.6653 t$$
, $\overline{R}^2 = 0.7787$
(345.6) (9.053)

- () 内は t 値, \overline{R}^2 は自由度修正済み決定係数。正のトレンドが観察される (1 年間に約 $0.665 \times 12 = 7.98$ 円支出が増える)。
- 11.4 2次関数によるトレンドを当てはめた結果は次のとおり。

GDP_t =
$$257646 + 18524 t - 300.4 t^2$$
, $\overline{R}^2 = 0.9747$
(32.14) (15.04) (-7.54)

ただし、GDP $_t$: 実質国内総生産、t: 1980 年を 1 として 2008 年を 29 とする傾向変数、() 内は t 値、 \overline{R}^2 は自由度修正済み決定係数。

原系列から傾向変動部分を差し引いた系列 (e_t) は

$$e_t = GDP_t - 257646 - 18524 t + 300.4 t^2$$

により求められる。その結果は、表7に与えられている。

	表 7			(単位	1:10 億円)
1980	8505.4	1990	22308.3	2000	-11053.8
1981	2760.5	1991	25565.6	2001	-15732.9
1982	-4258.2	1992	18337.5	2002	-19417.0
1983	-11305.7	1993	8721.5	2003	-16678.6
1984	-13036.7	1994	2940.5	2004	-6418.3
1985	-7374.0	1995	2588.8	2005	562.6
1986	-12067.0	1996	6629.5	2006	8906.9
1987	-11276.6	1997	6318.0	2007	19846.4
1988	2130.3	1998	-11336.9	2008	11892.8
1989	10910.5	1999	-18836.0		

強い循環変動が観察される。

- 11.5 $X_t = 0.7X_{t-1} + u_t = 0.7(0.7X_{t-2} + u_{t-1}) + u_t = 0.7^2X_{t-2} + u_t + 0.7u_{t-1}$ となる。以下同様の方法で X_{t-2} , X_{t-3} , \cdots を逐次消去していくと $X_t = u_t + 0.7u_{t-1} + 0.7^2u_{t-2} + 0.7^3u_{t-3} + \cdots = \sum_{i=0}^{\infty} 0.7^iu_{t-i}$ 。したがって、平均: $\mathrm{E}[X_t] = \sum_{i=0}^{\infty} 0.7^i\mathrm{E}[u_{t-i}] = 0$,(自己)分散: $\phi(0) = \mathrm{E}[(X_t 0)^2] = \mathrm{E}[X_t^2] = (1 + 0.7^2 + 0.7^4 + 0.7^6 + \cdots) \cdot 1 = 1/(1 0.7^2)$,自己共分散: $\phi(s) = \mathrm{Cov}(X_t, X_{t-s}) = \mathrm{E}[X_t X_{t-s}] = (0.7^s + 0.7^{s+2} + 0.7^{s+4} + \cdots) \cdot 1 = 0.7^s (1 + 0.7^2 + 0.7^4 \cdots) \cdot 1 = 0.7^s / (1 0.7^2)$,自己相関: $\rho(s) = \phi(s)/\phi(0) = 0.7^s$
- 11.6 平均: $E[X_t] = 2$,(自己) 分散: $\phi(0) = E[(X_t 2)^2] = E[(u_t + 0.8u_{t-1} 0.3u_{t-2})^2] = (1 + 0.8^2 + 0.3^2) \times 1 = 1.73$,自己共分散: $\phi(1) = Cov(X_t, X_{t-1}) = E[(X_t 2)(X_{t-1} 2)] = E[(u_t + 0.8u_{t-1} 0.3u_{t-2})(u_{t-1} + 0.8u_{t-2} 0.3u_{t-3})] = 0.8 0.3 \cdot 0.8 = 0.8 \cdot 0.7 = 0.56$, $\phi(2) = Cov(X_t, X_{t-2}) = E[(X_t 2)(X_{t-2} 2)] = E[(u_t + 0.8u_{t-1} 0.3u_{t-2})(u_{t-2} + 0.8u_{t-3} 0.3u_{t-4})] = -0.3$, $s \ge 3$ については $\phi(s) = 0$,自己相関: $\rho(1) = 0.56/1.73 = 0.3237$, $\rho(2) = -0.3/1.73 = -0.1734$, $s \ge 3$ については $\rho(s) = 0$