Section B.1 – Sets

B.1-1 Draw Venn diagrams that illustrate the first of the distributive laws (B.1).

B.1-2 Prove the generalization of DeMorgan's laws to any finite collection of sets:

$$\overline{A_1 \cap A_2 \cap \dots \cap A_n} = \overline{A_1} \cup \overline{A_2} \cup \dots \cup \overline{A_n},$$
$$\overline{A_1 \cup A_2 \cup \dots \cup A_n} = \overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_n}.$$

The base case, which occurs when n = 2, is given (from the text book). Now, lets assume it holds for n and show that it also holds for n + 1.

For the first DeMongan's law, we have

$$\overline{A_1 \cap A_2 \cap \dots \cap A_n \cap A_{n+1}} = \overline{(A_1 \cap A_2 \cap \dots \cap A_n) \cap A_{n+1}}$$

$$= \overline{(A_1 \cap A_2 \cap \dots \cap A_n)} \cup \overline{A_{n+1}}$$

$$= \overline{(A_1 \cup \overline{A_2} \cup \dots \cup \overline{A_n})} \cup \overline{A_{n+1}}$$

$$= \overline{A_1} \cup \overline{A_2} \cup \dots \cup \overline{A_n} \cup \overline{A_{n+1}}.$$

For the second DeMongan's law, we have

$$\overline{A_1 \cup A_2 \cup \dots \cup A_n \cup A_{n+1}} = \overline{(A_1 \cup A_2 \cup \dots \cup A_n) \cup A_{n+1}} \\
= \overline{(A_1 \cup A_2 \cup \dots \cup A_n)} \cap \overline{A_{n+1}} \\
= \overline{(A_1 \cap \overline{A_2} \cap \dots \cap \overline{A_n}) \cap \overline{A_{n+1}}} \\
= \overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_n} \cap \overline{A_{n+1}}.$$

B.1-3 (*) Prove the generalization of equation (B.3), which is called the *principle of inclusion and exclusion*:

$$|A_1 \cup A_2 \cup \dots \cup A_n| =$$

$$|A_1| + |A_2| + \dots + |A_n|$$

$$-|A_1 \cap A_2| - |A_1 \cap A_3| - \dots \qquad \text{(all pairs)}$$

$$+|A_1 \cap A_2 \cap A_3| + \dots \qquad \text{(all triples)}$$

$$\vdots$$

$$+(-1)^{n-1}|A_1 \cap A_2 \cap \dots \cap A_n|.$$

Skipped.

B.1-4 Show that the set of odd natural numbers is countable.

Let \mathbb{O} denote the set of odd natural numbers.

The function f(n) = 2n + 1 is a 1-1 correspondence from \mathbb{N} to \mathbb{O} . Thus, \mathbb{O} is countable.

B.1-5 Show that for any finite set S, the power set 2^{S} has $2^{|S|}$ elements (that is, there are $2^{|S|}$ distinct subsets of S).

For the base case, consider a set with a single element x. We have

$$2^{\{x\}} = \{\emptyset, \{x\}\},\$$

which shows that the power set of a set with a single element has cardinality $2^1 = 2$.

Let $C(\cdot)$ denote the cardinality of a power set. Let S be a set of size n. Lets assume that the power set of S has cardinality $C(S) = 2^{|S|} = 2^n$. Now, let S' be the set S with one additional element x, such that |S'| = n + 1. The power set of S' will consist of all sets in the power set of S plus all those same sets again, with the element x added. Thus, we have

$$C(S') = 2 \cdot C(S) = 2 \cdot 2^n = 2^{n+1}.$$

B.1-6 Give an inductive definition for an n-tuple by extending the set-theoretic definition for an ordered pair.

$$(a) = \{a\}$$

$$(a,b) = \{a, \{a,b\}\}$$

$$(a,b,c) = \{a, \{a,b\}, \{a,b,c\}\}$$

$$(a_1,a_2,\ldots,a_n) = (a_1,a_2,\ldots,a_{n-1}) \cup \{a_1,a_2,\ldots,a_n\}$$

Section B.2 – Relations

B.2-1 Prove that the subset relation " \subset " on all subsets of \mathbb{Z} is a partial order but not a total order.

Let $\mathbb S$ denote all the subsets of $\mathbb Z$. Let $A=\{1\}$, $B=\{2\}$ be two subsets of $\mathbb Z$. We have $A\not\subseteq B$ and $B\not\subseteq A$. Thus, the subset relation " \subseteq " on $\mathbb S\times\mathbb S$ is not a total relation and therefore is not a total order.

For the relation \subseteq on $\mathbb S$ be a partial order, the following properties needs to hold: (1) reflexivity, (2) antisymmetry, (3) transitivity. Since $A \subseteq A$, for all $A \in \mathbb S$, the relation " \subseteq " on $\mathbb S \times \mathbb S$ is reflexive. To be antisymmetric, we need to show that if $A \subseteq B$ and $B \subseteq A$, then A = B, for all $A, B \in \mathbb S$. Since $A \subseteq B$, for all $a \in A$ we have $a \in B$ and since $B \subseteq A$, for all $b \in B$ we have $b \in A$. Thus, A = B and the relation " \subseteq " on $\mathbb S \times \mathbb S$ is antisymmetric. To be transitive, we need to show that if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$, for all $A, B, C \in \mathbb S$. So let $a \in A$. Since $A \subseteq B$, we have $a \in B$. Since $a \in B$ and $B \subseteq C$, we have $a \in C$. Thus, $A \subseteq C$ and the relation " \subseteq " on $\mathbb S \times \mathbb S$ is transitive.

B.2-2 Show that for any positive integer n, the relation "equivalent modulo n" is an equivalence relation on the integers. (We say that $a \equiv b \pmod{n}$ if there exists an integer q such that a - b = qn.) Into what equivalence classes does this relation partition the integers?

To the relation "equivalent modulo n" be an equivalent relation on $\mathbb{Z} \times \mathbb{Z}$, the following needs to hold:

- (a) $a \equiv a \pmod{n}$, for all $a, n \in \mathbb{Z}$ (reflexivity)
- (b) $a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$, for all $a, b, n \in \mathbb{Z}$ (symmetry)
- (c) $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ implies $a \equiv c \pmod{n}$, for all $a, b, c, n \in \mathbb{Z}$ (transitivity)

For the reflexivity property, we have that a - a = qn holds directly for q = 0.

For the symmetry property, we have that a-b=pn implies b-a=qn holds directly for q=-p.

For the transitivity property, we have that a-b=pn and b-c=qn implies a-c=rn holds for r=p+q, since

$$(a - b) + (b - c) = pn + qn \rightarrow a - c = (p + q)n.$$

- B.2-3 Give examples of relations that are
 - a. reflexive and symmetric but not transitive,
 - b. reflexive and transitive but not symmetric,
 - c. symmetric and transitive but not reflexive.
 - (a) The relation "is neighbor of" is reflexive (one is neighbor of himself) and symmetric (a "is neighbor of" b imply b "is neighbor of" a), but not transitive (a "is neighbor of" b and b "is neighbor of" b does not imply a "is neighbor of" b.
 - (b) The relation " \leq " is reflexive $(a \leq a)$ and transitive $(a \leq b \text{ and } b \leq c \text{ imply } a \leq c)$, but not symmetric $(a \leq b \text{ does not imply } b \leq a)$.
 - (c) Consider the relation " $a+b>\infty$ " on $\mathbb{Z}\times\mathbb{Z}$. This relation is empty. However, it is symmetric ($a\ R\ b$ imply $b\ R\ a$) and transitive ($a\ R\ b$ and $b\ R\ c$ imply $a\ R\ c$), but not reflexive since for no $a\in\mathbb{Z}$ is it the case that $a\ R\ a$.
- B.2-4 Let S be a finite set, and let R be an equivalence relation on $S \times S$. Show that if in addition R is antisymmetric, then the equivalence classes of S with respect to R are singletons.

For every $a, b \in S$ such that a R b, by symmetry b R a, and by antisymmetry a = a. Thus, $[a] = \{b \in S : a R b\} = \{a\}$ for all $a \in S$, which implies that the equivalence classes are singletons.

B.2-5 Professor Narcissus claims that if a relation R is symmetric and transitive, then it is also reflexive. He offers the following proof. By symmetry, a R b implies b R a. Transitivity, therefore, implies a R a. Is the professor correct?

No. This is only true for relations that for every a there is b such that a R b, by symmetry b R a, and by transitivity a R a. For instance, an empty relation (like the one from Question B.2-3, item (c)) are symmetric and transitive, but not reflexive.