

2.3 What is the largest decimal value that can be represented by an 8-bit binary number? A 16-bit number?

(The binary number has maximum value when all bits are 1.)

8-bit gives 2 = 256 values, the max. value is 256-1 = **255**.

16-bit gives 2^{16} = 65536 values, the max. value is 65536 -1 = **65535**.

2.6 Covert these Octal to binary

	Recap:		
(c) 3777 _g	1 octal digit = 3-bit in binary. Octal is used as shorthand for binary		
= 011 111 111 111,	numbers.		
2	Octal Binary		
or 11 111 111 111	digit (3-bit)		
2	0 = 0 0 0		
	1 = 0 0 1		
(e) 165 _e	2 = 0 1 0		
~ ~ ~	3 = 0 1 1		
= 001 110 101	4 = 1 0 0		
	5 = 1 0 1		
or 1 110 101 ₂	6 = 1 1 0		
	7 = 1 1 1		

2.7 Convert these binary to octal

```
(c) 100100001001_{2} (d) 01011011_{2}
= 100 100 001 001_{2} = 001 011 011_{2}
= 4411_{8} = 133_{8}
2.8 List octal sequence 165_{8} to 200_{8}
165, 166, 167, (No 168!)
170, 171, 172, 173, 174, 175, 176, 177, (No 178 nor 180!)
200
```

2.9 When a large decimal number is to be converted to binary, it is sometimes easier to convert it first to octal, and the from octal to binary. Try this procedure for 2313_{10} and compare it with the

```
procedure used in 2.2e.
                                            (decimal --> binary)
    ( decimal --> octal --> binary)
                                             2313 / 2 = 1156 r.1 -
                                             1156 / 2 = 578 r. 0
   2313 / 8 = 289.125 = 289 r. 1
   289
          / 8 =
                  36.125 = 36
                                             578 / 2 = 289 r. 0
                                   r. 1
   36
         / 8 =
                 4.5
                            = 4
                                             289 / 2 = 144 r. 1
                                   r. 4
          / 8 =
                            = 0
                                             144 / 2 =
                                                       72 r. 0
                  0
                                   r. 4
                                             72/2 = 36 \text{ r. } 0
                                             36/2 = 18 \text{ r. } 0
                          In octal: 4 4 1 1
                                             18/2 = 9 r. 0
                                             9/2 = 4 r. 1
                  In binary: 100 100 001 001
                                             4/2 = 2 r. 0
                                             2/2
                                                  = 1 r. 0
                                             1/2
                                                        0 r. 1
                                             In binary: 100100001001,
```

2.11 Covert these Hex to decimal

(c) $37FD_{1}$ = $3 \times 16 + 7 \times 16 + F \times 16 + D \times 16$ Recall: = $3 \times 4096 + 7 \times 256 + 15 \times 16 + 13 \times 1$ = 10, 11, 12, 13, 14, 15 in dec. (d) $ABCD_{1}$ = $A \times 16 + B \times 16 + C \times 16 + D \times 16$ = $10 \times 4096 + 11 \times 256 + 12 \times 16 + 13 \times 1$ = 43981

2.12 Covert these decimal to hex

2.19	Encode	these	decimal	in	BCD

(d)		individual digit in the decimal number is encoded
	into a	4-bit binary number.
	and and and	
	= 0110 0111 0010 0111	2
		4
	(Note : this is different t	rom converting 6727, to binary.)
	,	70