Linear Algebra

- Vector Spaces -

Jinsun Park

Visual Intelligence and Perception Lab., CSE, PNU

Vector Spaces

Euclidean Vector Space \mathbb{R}^n

- A vector space is a set whose elements (i.e., vectors) may be added together (addition) and multiplied by scalars (scalar multiplication)
 - ex) Euclidean Vector Spaces \mathbb{R}^n
- Example: Euclidean Vector Space R²
 - A nonzero vector $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ can be associated with the directed line segment in the xy-plane

Euclidean Vector Space \mathbb{R}^n

■ Example: Euclidean Vector Space \mathbb{R}^2

$$x_1 = 4$$
 $x_2 = 3$ length $d = 5$
 $d = \sqrt{x_1^2 + x_2^2}$

Length of a vector

Euclidean Vector Space \mathbb{R}^n

• Example: Euclidean Vector Spaces \mathbb{R}^2 and \mathbb{R}^3

Vector Space $\mathbb{R}^{m \times n}$

- Let $\mathbb{R}^{m \times n}$ denote the set of all $m \times n$ matrices with real entries
- If $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ and $B = (b_{ij}) \in \mathbb{R}^{m \times n}$,
 - The sum A + B is defined to be the $m \times n$ matrix $C = (c_{ij})$ where $c_{ij} = a_{ij} + b_{ij}$
 - Given a scalar α , αA is defined to be the $m \times n$ matrix whose (i,j) entries is αa_{ij}
- With $m \times n$ matrices and two operations (i.e., addition and scalar multiplication) on the set $\mathbb{R}^{m \times n}$, we can define a mathematical system

Vector Space Axioms

- Let V be a set on which the operations of addition and scalar multiplication are defined
 - Each pair of elements $x, y \in V$ is associated with a unique element $x + y \in V$
 - Each element $x \in V$ and each scalar α are associated with a unique element $\alpha x \in V$
- The set V together with the operations of addition and scalar multiplication is said to form a vector space if the following axioms are satisfied:

A1.
$$x + y = y + x$$
 for any $x, y \in V$

A2.
$$(x + y) + z = x + (y + z)$$
 for any $x, y, z \in V$

- A3. There exists an element $\mathbf{0} \in V$ such that $x + \mathbf{0} = x$ for each $x \in V$
- A4. For each $x \in V$, there exists an element $-x \in V$ such that x + (-x) = 0
- A5. $\alpha(x + y) = \alpha x + \alpha y$ for each scalar α and any $x, y \in V$
- A6. $(\alpha + \beta)x = \alpha x + \beta x$ for any scalars α, β and any $x \in V$
- A7. $(\alpha\beta)x = \alpha(\beta x)$ for any scalars α, β and any $x \in V$
- A8. 1x = x for all $x \in V$

Vector Space Axioms

- A vector space over a *field* $F(=\mathbb{R})$ is a non-empty set V together with two binary operations that satisfy the following axioms (Field: **)
 - The elements of V are called *vectors*, and the elements of F are called *scalars*

A1.
$$x + y = y + x$$
 for any $x, y \in V$

(Commutativity of vector addition)

A2.
$$(x + y) + z = x + (y + z)$$
 for any $x, y, z \in V$

(Associativity of vector addition)

A3. There exists an element $\mathbf{0} \in V$ such that $x + \mathbf{0} = x$ for each $x \in V$

(Identity element of vector addition)

A4. For each $x \in V$, there exists an element $-x \in V$ such that x + (-x) = 0

(Inverse elements of vector addition)

A5. $\alpha(x + y) = \alpha x + \alpha y$ for each scalar α and any $x, y \in V$

(Distributivity of scalar multiplication with respect to vector addition)

A6. $(\alpha + \beta)x = \alpha x + \beta x$ for any scalars α, β and any $x \in V$ **Vector Addition** Field Addition

(Distributivity of scalar multiplication with respect to field addition)

A7. $(\alpha\beta)x = \alpha(\beta x)$ for any scalars α, β and any $x \in V$ **Multiplication** Multiplication A8. 1x = x for all $x \in V$

(Compatibility of scalar multiplication with field multiplication)

(Identity element of scalar multiplication)

Vector Space Axioms

Closure properties of the two operations

C1. If $x \in V$ and α is a scalar, then $\alpha x \in V$

C2. If $x, y \in V$, then $x + y \in V$

Example

$$W = \{(a, 1) \mid a \text{ is real}\}$$

$$(3,1) + (5,1) =$$

Vector Space C[a, b]

- Let C[a,b] denote the set of all real-valued functions that are defined and continuous on the closed interval [a,b]
 - The universal set is a set of functions, therefore, vectors are the functions in C[a,b]
- The sum f + g of two functions in C[a, b] is defined as follows:

$$(f+g)(x) = f(x) + g(x)$$
 for all $x \in [a,b]$

• If f is a function in C[a,b] and α is a real number, αf is defined as follows:

$$(\alpha f)(x) = \alpha f(x)$$
 for all $x \in [a, b]$

- Proof
 - A1. (f + g)(x) = (g + f)(x) for every $x \in [a, b]$
 - A3. z(x) = 0 for all $x \in [a, b]$

Vector Space P_n

• Let P_n denote the set of all polynomials of degree less than n

$$(p+q)(x) = p(x) + q(x)$$

$$(\alpha p)(x) = \alpha p(x)$$

Vector Spaces

- Proof
 - A3. $z(x) = 0x^{n-1} + \cdots + 0x + 0$

Additional Properties of Vector Spaces

- If V is a vector space and x is any element of V:
 - i) 0x = 0
 - ii) x + y = 0 implies that y = -x (*i.e.*, the additive inverse of x is unique)
 - iii) (-1)x = -x
- Proof

It follows from axioms A6 and A8 that

$$\mathbf{x} = 1\mathbf{x} = (1+0)\mathbf{x} = 1\mathbf{x} + 0\mathbf{x} = \mathbf{x} + 0\mathbf{x}$$

Thus,

$$-x + x = -x + (x + 0x) = (-x + x) + 0x$$

 $0 = 0 + 0x = 0x$

To prove (ii), suppose that $\mathbf{x} + \mathbf{y} = \mathbf{0}$. Then

$$-x = -x + 0 = -x + (x + y)$$

Therefore,

$$-x = (-x+x) + y = 0 + y = y$$

Finally, to prove (iii), note that

$$\mathbf{0} = 0\mathbf{x} = (1 + (-1))\mathbf{x} = 1\mathbf{x} + (-1)\mathbf{x}$$

Thus

$$\mathbf{x} + (-1)\mathbf{x} = \mathbf{0}$$

and it follows from part (ii) that

$$(-1)\mathbf{x} = -\mathbf{x}$$

Exercises

12. Let R^+ denote the set of positive real numbers. Define the operations of scalar multiplication \circ by

 $\alpha \circ x = x^{\alpha}$ for each $x \in R^+$ and for any real number α

Define the operation of addition \oplus by

$$x \oplus y = x \cdot y$$
 for all $x, y \in R^+$

Is R^+ a vector space with these operations?

ex)
$$-3 \circ \frac{1}{2} = \left(\frac{1}{2}\right)^{-3} = 8$$
, $2 \oplus 5 = 2 \cdot 5 = 10$

13

- Given a vector space V, it is possible to form another vector space by taking a subset S of V and using the operations of V
- The set S must be closed under the operations of V
- Example
 - S is a subset of \mathbb{R}^2

$$S = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \middle| x_2 = 2x_1 \right\}$$

i) Addition

ii) Scalar Multiplication

- If S is a nonempty subset of a vector space V, and S satisfies the conditions
 - i) $\alpha x \in S$ whenever $x \in S$ for any scalar α

(Closed under scalar multiplication)

ii) $x + y \in S$ whenever $x \in S$ and $y \in S$

(Closed under addition)

then S is said to be a subspace of V

- Every subspace of a vector space is a vector space
- Remarks
 - In a vector space V, $\{0\}$ and V are subspaces of V. All other subspaces are referred to as proper subspaces. $\{0\}$ is the zero subspace
 - Every subspace must contain the zero vector, therefore, we can verity that S is nonempty by showing that $\mathbf{0} \in S$

Ex 4. Let $S = \{A \in \mathbb{R}^{2 \times 2} \mid a_{12} = -a_{21}\}$. The set S is nonempty, since O (the zero matrix) is in S.

Subspaces

(i) If $A \in S$, then A must be of the form

$$A = \left[\begin{array}{cc} a & b \\ -b & c \end{array} \right]$$

and hence

$$\alpha A = \left(\begin{array}{cc} \alpha a & \alpha b \\ -\alpha b & \alpha c \end{array} \right)$$

Since the (2, 1) entry of αA is the negative of the (1, 2) entry, $\alpha A \in S$.

(ii) If $A, B \in S$, then they must be of the form

$$A = \left(\begin{array}{cc} a & b \\ -b & c \end{array} \right) \quad \text{and} \quad B = \left(\begin{array}{cc} d & e \\ -e & f \end{array} \right)$$

It follows that

$$A + B = \left(\begin{array}{cc} a+d & b+e \\ -(b+e) & c+f \end{array} \right)$$

Hence, $A + B \in S$.

- Ex 5. Let S be the set of all polynomials of degree less than n with the property that p(0) = 0. The set is nonempty since it contains the zero polynomial. We claim that S is a subspace of P_n
- (i) if $p(x) \in S$ and α is a scalar, then

$$\alpha p(0) = \alpha \cdot 0 = 0$$

and hence $\alpha p \in S$; and

(ii) if p(x) and q(x) are elements of S, then

$$(p+q)(0) = p(0) + q(0) = 0 + 0 = 0$$

and hence $p + q \in S$.

Ex 6. Let $C^n[a,b]$ be the set of all functions f that have a continuous n-th derivative on [a,b]. Verify that $C^n[a,b]$ is a subspace of C[a,b]

Subspaces

The Null Space of a Matrix

■ Let A be an $m \times n$ matrix. Let N(A) denote the set of all solutions to the homogeneous system Ax = 0

$$N(A) = \{ \boldsymbol{x} \in \mathbb{R}^n \mid A\boldsymbol{x} = \boldsymbol{0} \}$$

- N(A) is a subspace of \mathbb{R}^n and $\mathbf{0} \in N(A)$, thus, N(A) is nonempty
 - i) Scalar Multiplication

$$A(\alpha x) = \alpha A x = \alpha 0 = 0$$
 $\therefore \alpha x \in N(A)$

ii) Addition

$$A(x + y) = Ax + Ay = \mathbf{0} + \mathbf{0} = \mathbf{0} \qquad \therefore x + y \in N(A)$$

- The set of all solutions of the homogeneous system Ax = 0 forms a subspace of \mathbb{R}^n
- The subspace N(A) is called the *null space* of A

The Null Space of a Matrix

Ex 9. Determine N(A) if

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix}$$

Using Gauss–Jordan reduction to solve Ax = 0, we obtain

The reduced row echelon form involves two free variables, x_3 and x_4 :

$$x_1 = x_3 - x_4$$

$$x_2 = -2x_3 + x_4$$

Thus, if we set $x_3 = \alpha$ and $x_4 = \beta$, then

$$\mathbf{x} = \begin{bmatrix} \alpha - \beta \\ -2\alpha + \beta \\ \alpha \\ \beta \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

is a solution of $A\mathbf{x} = \mathbf{0}$. The vector space N(A) consists of all vectors of the form

$$\alpha \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

20

where α and β are scalars.

The Span of a Set of Vectors

• Let v_1, v_2, \dots, v_n be vectors in a vector space V. A sum of the form $\alpha_1 v_1 + \alpha_2 v_2 \dots + \alpha_n v_n$, where $\alpha_1, \dots, \alpha_n$ are scalars, is called a *linear combination* of v_1, v_2, \dots, v_n

Subspaces

- The set of all linear combinations of v_1, v_2, \cdots, v_n is called the span of v_1, v_2, \cdots, v_n
- The span of v_1, v_2, \dots, v_n will be denoted by $Span(v_1, v_2, \dots, v_n)$
- Ex 10.

In \mathbb{R}^3 , the span of \mathbf{e}_1 and \mathbf{e}_2 is the set of all vectors of the form

$$\alpha \mathbf{e}_1 + \beta \mathbf{e}_2 = \begin{bmatrix} \alpha \\ \beta \\ 0 \end{bmatrix}$$

The reader may verify that $Span(\mathbf{e}_1, \mathbf{e}_2)$ is a subspace of \mathbb{R}^3 . The subspace can be interpreted geometrically as the set of all vectors in 3-space that lie in the x_1x_2 -plane (see Figure 3.2.1). The span of \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 is the set of all vectors of the form

$$\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \alpha_3 \mathbf{e}_3 = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$$

Span $(\mathbf{e}_1, \mathbf{e}_2)$

The Span of a Set of Vectors

• If v_1, v_2, \dots, v_n are elements of a vector space V, then $Span(v_1, v_2, \dots, v_n)$ is a subspace of V

- Proof
 - The $Span(v_1, v_2, \dots, v_n)$ must be closed under the addition and scalar multiplication

Let β be a scalar and let $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_n \mathbf{v}_n$ be an arbitrary element of $\mathrm{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$. Since

$$\beta \mathbf{v} = (\beta \alpha_1) \mathbf{v}_1 + (\beta \alpha_2) \mathbf{v}_2 + \dots + (\beta \alpha_n) \mathbf{v}_n$$

it follows that $\beta \mathbf{v} \in \operatorname{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$. Next, we must show that any sum of elements of $\operatorname{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$ is in $\operatorname{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$. Let $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$ and $\mathbf{w} = \beta_1 \mathbf{v}_1 + \dots + \beta_n \mathbf{v}_n$. Then

$$\mathbf{v} + \mathbf{w} = (\alpha_1 + \beta_1)\mathbf{v}_1 + \dots + (\alpha_n + \beta_n)\mathbf{v}_n \in \mathrm{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$$

Therefore, Span($\mathbf{v}_1, \ldots, \mathbf{v}_n$) is a subspace of V.

- Let v_1, v_2, \dots, v_n be vectors in a vector space V. We say that the subspace $Span(v_1, \dots, v_n)$ is spanned by v_1, \dots, v_n
- The set $\{v_1, v_2, \dots, v_n\}$ is a *spanning set* for V if and only if every vector in V can be written as a linear combination of v_1, v_2, \dots, v_n
- Ex) Euclidean space \mathbb{R}^2

$$\boldsymbol{x} = a\boldsymbol{e}_1 + b\boldsymbol{e}_2 = \begin{bmatrix} a \\ b \end{bmatrix}$$

- Any vector $x \in \mathbb{R}^2$ can be represented as a linear combination of e_1 and e_2
- $\{e_1, e_2\}$ is a spanning set for \mathbb{R}^2

Terminal point of first vector (1, 0) Terminal point of second vector (0, 1) Target point (2, 3)

 $c_2 = 3$

Science and Engineering

• Ex) Euclidean space \mathbb{R}^2

$$v_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad x = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

• $\{v_1, v_2\}$ is a spanning set for \mathbb{R}^2

24

Subspaces

- Ex) Euclidean spaces \mathbb{R}^2 and \mathbb{R}^3
 - A single nonzero vector x cannot span \mathbb{R}^2
 - Two nonzero vectors x and y cannot span \mathbb{R}^3 (Note: $y \neq \alpha x$)

Subspaces

Ex 11. Which of the following are spanning sets for \mathbb{R}^3 ?

(b)
$$\{(1,1,1)^T, (1,1,0)^T, (1,0,0)^T\}$$

For part (b), we must determine whether it is possible to find constants α_1 , α_2 , and α_3 such that

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

This leads to the system of equations

$$\alpha_1 + \alpha_2 + \alpha_3 = a$$

$$\alpha_1 + \alpha_2 = b$$

$$\alpha_1 = c$$

Since the coefficient matrix of the system is nonsingular, the system has a unique solution. In fact, we find that

$$\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} c \\ b - c \\ a - b \end{bmatrix}$$

Thus,

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = c \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + (b - c) \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + (a - b) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

so the three vectors span \mathbb{R}^3 .

26

Linear Systems Revisited

- Let S be the solution set to a consistent $m \times n$ linear system Ax = b
 - If b = 0, then S = N(A), and consequently, the solution set forms a subspace of \mathbb{R}^n
 - If $b \neq 0$, one can find a particular solution x_0 , then it is possible to represent any solution vector in terms of x_0 and a vector $z \in N(A)$

Let $A\mathbf{x} = \mathbf{b}$ be a consistent linear system and let \mathbf{x}_0 be a particular solution to the system. If there is another solution \mathbf{x}_1 to the system, then the difference vector $\mathbf{z} = \mathbf{x}_1 - \mathbf{x}_0$ must be in N(A) since

$$A\mathbf{z} = A\mathbf{x}_1 - A\mathbf{x}_0 = \mathbf{b} - \mathbf{b} = \mathbf{0}$$

Thus, if there is a second solution, it must be of the form $\mathbf{x}_1 = \mathbf{x}_0 + \mathbf{z}$, where $\mathbf{z} \in N(A)$.

In general, if \mathbf{x}_0 is a particular solution to $A\mathbf{x} = \mathbf{b}$ and \mathbf{z} is any vector in N(A), then setting $\mathbf{y} = \mathbf{x}_0 + \mathbf{z}$, we have

$$A\mathbf{y} = A\mathbf{x}_0 + A\mathbf{z} = \mathbf{b} + \mathbf{0} = \mathbf{b}$$

So $\mathbf{y} = \mathbf{x}_0 + \mathbf{z}$ must also be a solution to the system $A\mathbf{x} = \mathbf{b}$.

• If the linear system Ax = b is consistent and x_0 is a particular solution, then a vector y will also be a solution if and only if $y = x_0 + z$, where $z \in N(A)$

Exercises

13. Given

$$x_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \quad x_2 = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}, \quad x = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}, \quad y = \begin{bmatrix} -1 \\ 2 \\ -3 \end{bmatrix}$$

(a) Is $x \in Span(x_1, x_2)$?

(b) Is $y \in Span(x_1, x_2)$?

Linear Independence

Minimal Spanning Set

- It is desirable to find a minimal spanning set that is a spanning set with no unnecessary elements (i.e., all the elements in the set are needed to span the vector space)
- Example

$$x_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \qquad x_2 = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}, \qquad x_3 = \begin{bmatrix} -1 \\ 3 \\ 8 \end{bmatrix}$$

$$x_1 = -\frac{2}{3}x_2 + \frac{1}{3}x_3$$
, $x_2 = -\frac{3}{2}x_1 + \frac{1}{2}x_3$, $x_3 = 3x_1 + 2x_2$

$$S = Span(x_1, x_2, x_3) = Span(x_1, x_2) = Span(x_2, x_3) = Span(x_1, x_3)$$

Linear Independence

Minimal Spanning Set

- If v_1, v_2, \cdots, v_n span a vector space V and one of these vectors can be written as a linear combination of the other n-1 vectors, then those n-1 vectors span V
- Given n vectors v_1, v_2, \cdots, v_n , it is possible to write one of the vectors as a linear combination of the other n-1 vectors if and only if there exist scalars c_1, \dots, c_n , not all zero, such that

$$c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \dots + c_n \boldsymbol{v}_n = \mathbf{0}$$

Proof of (I) Suppose that \mathbf{v}_n can be written as a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{n-1}$; that is.

$$\mathbf{v}_n = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + \dots + \beta_{n-1} \mathbf{v}_{n-1}$$

Let \mathbf{v} be any element of V. Since

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_{n-1} \mathbf{v}_{n-1} + \alpha_n \mathbf{v}_n$$

$$= \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_{n-1} \mathbf{v}_{n-1} + \alpha_n (\beta_1 \mathbf{v}_1 + \dots + \beta_{n-1} \mathbf{v}_{n-1})$$

$$= (\alpha_1 + \alpha_n \beta_1) \mathbf{v}_1 + (\alpha_2 + \alpha_n \beta_2) \mathbf{v}_2 + \dots + (\alpha_{n-1} + \alpha_n \beta_{n-1}) \mathbf{v}_{n-1}$$

Thus, any vector v in V can be written as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{n-1}$, and hence these vectors span V.

Suppose that one of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$, say \mathbf{v}_n , can be written as a linear combination of the others; that is,

$$\mathbf{v}_n = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_{n-1} \mathbf{v}_{n-1}$$

Subtracting \mathbf{v}_n from both sides of this equation, we get

$$\alpha_1\mathbf{v}_1 + \alpha_2\mathbf{v}_2 + \cdots + \alpha_{n-1}\mathbf{v}_{n-1} - \mathbf{v}_n = \mathbf{0}$$

If we set $c_i = \alpha_i$ for i = 1, ..., n - 1, and set $c_n = -1$, then

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n = \mathbf{0}$$

Conversely, if

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n = \mathbf{0}$$

and at least one of the c_i 's, say c_n , is nonzero, then

31

$$\mathbf{v}_n = \frac{-c_1}{c_n} \mathbf{v}_1 + \frac{-c_2}{c_n} \mathbf{v}_2 + \dots + \frac{-c_{n-1}}{c_n} \mathbf{v}_{n-1}$$

Linear Independence

• The vectors v_1, v_2, \cdots, v_n in a vector space V are said to be *linearly independent* if

$$c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \dots + c_n \boldsymbol{v}_n = \mathbf{0}$$

implies that all the scalars c_1, \dots, c_n must equal 0

- If $\{v_1, v_2, \dots, v_n\}$ is a minimal spanning set, then v_1, v_2, \dots, v_n are linearly independent
- A minimal spanning set is called a basis
- The vectors v_1, v_2, \dots, v_n in a vector space V are said to be *linearly dependent* if there exists scalars c_1, c_2, \dots, c_n , not all zero, such that

$$c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \dots + c_n \boldsymbol{v}_n = \mathbf{0}$$

• If the *only* way the linear combination $c_1v_1 + c_2v_2 + \cdots + c_nv_n$ can equal to the zero vector is for all the scalars c_1, c_2, \cdots, c_n to be 0, then v_1, v_2, \cdots, v_n are linearly independent

Geometric Interpretation

• If $x, y \in \mathbb{R}^2$ (or \mathbb{R}^3) are linearly dependent, then $c_1x + c_2y = 0$ where c_1 and c_2 are not both 0

Linear Independence

Theorems and Examples

- Let x_1, x_2, \dots, x_n be n vectors in \mathbb{R}^n and let $X = (x_1, \dots, x_n)$. The vectors x_1, x_2, \dots, x_n will be linearly dependent if and only if X is singular
- Proof

The equation

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \cdots + c_n\mathbf{x}_n = \mathbf{0}$$

can be rewritten as a matrix equation

$$X\mathbf{c} = \mathbf{0}$$

This equation will have a nontrivial solution if and only if X is singular. Thus, $\mathbf{x}_1, \ldots, \mathbf{x}_n$ will be linearly dependent if and only if X is singular.

■ Ex 5. Determine whether the following vectors are linearly dependent or not

$$(4,2,3)^T$$
, $(2,3,1)^T$, $(2,-5,3)^T$

Theorems and Examples

• Let v_1, v_2, \dots, v_n be vectors in a vector space V. A vector $v \in Span(v_1, \dots, v_n)$ can be written uniquely as a linear combination of v_1, \dots, v_n if and only if v_1, \dots, v_n are linearly independent

Proof

If $\mathbf{v} \in \operatorname{Span}(\mathbf{v}_1, \dots, \mathbf{v}_n)$, then \mathbf{v} can be written as a linear combination

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n \tag{5}$$

Suppose that v can also be expressed as a linear combination

$$\mathbf{v} = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + \dots + \beta_n \mathbf{v}_n \tag{6}$$

We will show that, if $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent, then $\beta_i = \alpha_i, i = 1, \dots, n$, and if $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly dependent, then it is possible to choose the β_i 's different from the α_i 's.

If $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent, then subtracting (6) from (5) yields

$$(\alpha_1 - \beta_1)\mathbf{v}_1 + (\alpha_2 - \beta_2)\mathbf{v}_2 + \dots + (\alpha_n - \beta_n)\mathbf{v}_n = \mathbf{0}$$
 (7)

By the linear independence of $\mathbf{v}_1, \dots, \mathbf{v}_n$, the coefficients of (7) must all be 0. Hence,

$$\alpha_1 = \beta_1, \ \alpha_2 = \beta_2, \ldots, \ \alpha_n = \beta_n$$

Thus, the representation (5) is unique when $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly independent.

On the other hand, if $\mathbf{v}_1, \dots, \mathbf{v}_n$ are linearly dependent, then there exist c_1, \dots, c_n not all 0, such that

$$\mathbf{0} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n \tag{8}$$

Now if we set

$$\beta_1 = \alpha_1 + c_1, \ \beta_2 = \alpha_2 + c_2, \dots, \ \beta_n = \alpha_n + c_n$$

then, adding (5) and (8), we get

$$\mathbf{v} = (\alpha_1 + c_1)\mathbf{v}_1 + (\alpha_2 + c_2)\mathbf{v}_2 + \dots + (\alpha_n + c_n)\mathbf{v}_n$$

= $\beta_1\mathbf{v}_1 + \beta_2\mathbf{v}_2 + \dots + \beta_n\mathbf{v}_n$

Since the c_i 's are not all $0, \beta_i \neq \alpha_i$ for at least one value of i. Thus, if $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are linearly dependent, the representation of a vector as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_n$ is not unique.

Vector Space of Functions

• The Vector Space P_n

To test whether the following polynomials p_1, p_2, \ldots, p_k are linearly independent in P_n , we set

$$c_1 p_1 + c_2 p_2 + \dots + c_k p_k = z \tag{9}$$

where z represents the zero polynomial; that is,

$$z(x) = 0x^{n-1} + 0x^{n-2} + \dots + 0x + 0$$

If the polynomial on the left-hand side of equation (9) is rewritten in the form $a_1x^{n-1} + a_2x^{n-2} + \cdots + a_{n-1}x + a_n$, then, since two polynomials are equal if and only if their coefficients are equal, it follows that the coefficients a_i must all be 0. But each of the a_i 's is a linear combination of the c_j 's. This leads to a homogeneous linear system with unknowns c_1, c_2, \cdots, c_k . If the system has only the trivial solution, the polynomials are linearly independent; otherwise, they are linearly dependent.

■ Ex 7.

To test whether the vectors

Grouping terms by powers of x, we get

$$p_1(x) = x^2 - 2x + 3$$
, $p_2(x) = 2x^2 + x + 8$, $p_3(x) = x^2 + 8x + 7$ $(c_1 + 2c_2 + c_3)x^2 + (-2c_1 + c_2 + 8c_3)x + (3c_1 + 8c_2 + 7c_3) = 0x^2 + 0x + 0$

are linearly independent, set

Equating coefficients leads to the system

$$c_1 p_1(x) + c_2 p_2(x) + c_3 p_3(x) = 0x^2 + 0x + 0$$

$$c_1 + 2c_2 + c_3 = 0$$

$$-2c_1 + c_2 + 8c_3 = 0$$

$$3c_1 + 8c_2 + 7c_3 = 0$$

The coefficient matrix for this system is singular and hence there are nontrivial solutions. Therefore, p_1 , p_2 , and p_3 are linearly dependent.

Exercises

16. Let A be an $m \times n$ matrix. Show that if A has linearly independent columns, then $N(A) = \{0\}$ (Hint: For any $x \in \mathbb{R}^n$, $Ax = x_1 a_1 + x_2 a_2 + \cdots + x_n a_n$)