

Precisione in regime permanente

Inseguimento di segnali sinusoidali

- Ricordiamo che la risposta in regime permanente di un sistema asintoticamente stabile ad un ingresso sinusoidale è descritta dalla sua risposta in frequenza
- Facendo riferimento al consueto schema di controllo, si consideri in particolare:

•
$$r(t) = \sin(\omega_0 t)$$
 Riferimento sinusoidale

•
$$W_e(s) = \frac{e(s)}{r(s)} = \frac{K_r}{1 + G_a(s)}$$
 Fdt d'errore, asint. stabile

L'errore di inseguimento in regime permanente è dato dalla risposta di W_e(s) all'ingresso r(t)

Errore dalla risposta in frequenza (2/2)

L'errore di inseguimento in regime permanente è pertanto dato da

$$e_p(t) = E \cdot sin(\omega_0 t + \varphi_e)$$

con

- $E=|W_e(j\omega_0)|$
- $\varphi_e = arg(W_e(j\omega_0))$
- L'errore massimo in modulo in regime permanente risulta pari proprio a E:

$$\mathsf{E} = \left| \frac{\mathsf{K}_{\mathsf{r}}}{1 + \mathsf{G}_{\mathsf{a}}(\mathsf{j}\omega_{\mathsf{0}})} \right|$$

Esempio (1/4)

Si consideri ancora la fdt d'anello:

$$G_{a1}(s) = \frac{10}{s(s+2)(s+4)}$$

che in catena chiusa dà origine al sistema W₁(s), asintoticamente stabile

- Sia $r(t) = sin(ω_0t)$ con (1) $ω_0 = 0.05$ rad/s oppure (2) $ω_0 = 0.5$ rad/s; $K_r = 1$
- L'errore di inseguimento massimo in regime permanente, indicato nei due casi con E₁ e con E₂ rispettivamente, può essere calcolato analiticamente e valutato in simulazione

Esempio (2/4)

Esempio (3/4)

Tenendo conto che

$$W_{e}(j\omega_{0}) = \frac{1}{1 + \frac{10}{j\omega_{0}(j\omega_{0} + 2)(j\omega_{0} + 4)}}$$

si ottiene:

- \bullet E₁ = $|W_e(j0.05)| = 0.04$
- \bullet E₂ = $|W_e(j0.5)| = 0.445$
- Il sistema è in grado di inseguire con buona precisione segnali di riferimento sinusoidali con una pulsazione ω_0 per le quali $G_a(j\omega_0)\gg 1$, ovvero con $\omega_0<0.1$ rad/s

Esempio (4/4)

Precisione in regime permanente

Implicazioni sul progetto del controllore

Precisione con r(t) sinusoidale (1/2)

- Le specifiche di precisione relative all'errore di inseguimento in regime permanente e_p a segnali di riferimento sinusoidali impongono vincoli sull'andamento in frequenza della fdt d'anello
- Per r(t) = $sin(\omega_0 t)$, si ha:

$$\left| e_{p} \right| \leq e_{\text{max}} \Rightarrow \left| \frac{K_{r}}{1 + G_{a}(j\omega_{0})} \right| \leq e_{\text{max}} \Rightarrow \left| G_{a}(j\omega_{0}) \right| \geq G_{\text{min}}$$

Precisione con r(t) sinusoidale (2/2)

- Affinché $|G_a(jω_0)|$ sia sufficientemente elevato, la pulsazione $ω_0$ deve essere piccola rispetto alla $ω_c$ in cui $|G_a(jω_c)| = 1$
- In altre parole, il sistema in catena chiusa potrà inseguire con buona precisione segnali sinusoidali solo se di bassa frequenza
- La pulsazione di cross-over ω_c e la banda passante del sistema ad anello chiuso dovranno essere tali da soddisfare tale requisito

Reiezione di disturbi in regime permanente

Effetti sull'uscita in regime permanente di disturbi sinusoidali

Presenza di disturbi sinusoidali (1/2)

Sotto l'ipotesi di asintotica stabilità del sistema in catena chiusa, l'**effetto di un disturbo** sinusoidale $d_{sin}(t) = D_s \sin(\omega_d t)$ sull'uscita in regime permanente è dato da:

$$y_{p,sin}(t) = Y_{d,p} \cdot sin(\omega_d t + \varphi_d) \dots$$

ove:

• $Y_{d,p} = D_s |W_{d,sin}(j\omega_d)|$

• $\varphi_d = arg(W_{d,sin}(j\omega_d))$

Dalla definizione di risposta in frequenza

essendo $W_{d,sin}(s)$ la fdt tra il disturbo d_{sin} e l'uscita y del sistema

Presenza di disturbi sinusoidali (2/2)

L'effetto massimo in modulo del disturbo sull'uscita in regime permanente risulta pari proprio a

$$\mathbf{Y}_{d,p} = \mathbf{D}_{s} \cdot \left| \mathbf{W}_{d,sin}(\mathbf{j}\omega_{d}) \right|$$

Y_{d,p} è tanto più piccolo (e quindi l'attenuazione del disturbo è tanto più elevata) quanto più piccolo è il modulo di W_{d,sin}(jω) alla pulsazione ω_d del disturbo

Principali casi di interesse (1/3)

Presenza di un disturbo sinusoidale sull'uscita del sistema

$$W_{d,sin}(s) = W_{dy}(s) = \frac{1}{1 + G_a(s)}$$

L'attenuazione è elevata se $G_a(j\omega_d)$ è sufficientemente grande

Principali casi di interesse (1/3)

Presenza di un disturbo sinusoidale sull'uscita del sistema

$$\left(W_{d,sin}(s) = W_{dy}(s) = \frac{1}{1 + G_a(s)}\right)$$

- L'attenuazione è elevata se $G_a(j\omega_d)$ è sufficientemente grande
- Sono ben attenuati disturbi di **bassa frequenza** rispetto alla ω_c di $G_a(j\omega)$ e qualunque disturbo collocato ad una pulsazione ω_d tale per cui $|G_a(j\omega_d)|$ risulti molto elevato

Principali casi di interesse (2/3)

Presenza di un disturbo sinusoidale sul riferimento

$$W_{d,sin}(s) = W_{y}(s) = \frac{G_{a}(s)}{1 + G_{a}(s)}$$

L'attenuazione è elevata se $G_a(j\omega_d)$ è sufficientemente piccolo ($\ll 1$)

Principali casi di interesse (2/3)

Presenza di un disturbo sinusoidale sul riferimento

$$W_{d,sin}(s) = W_{y}(s) = \frac{G_{a}(s)}{1 + G_{a}(s)}$$

- L'attenuazione è elevata se $G_a(j\omega_d)$ è sufficientemente piccolo ($\ll 1$)
- Sono ben attenuati solo disturbi di **alta frequenza** rispetto alla ω_c di $G_a(j\omega)$ e qualunque disturbo collocato ad una pulsazione ω_d tale per cui $|G_a(j\omega_d)|$ risulti molto piccolo

Principali casi di interesse (3/3)

Presenza di un disturbo sinusoidale sulla retroazione

$$\left(W_{d,sin}(s) = -W_{y}(s) = -\frac{G_{a}(s)}{1 + G_{a}(s)}\right)$$

Confrontare con il caso precedente!

Principali casi di interesse (3/3)

Presenza di un disturbo sinusoidale sulla retroazione

$$W_{d,sin}(s) = -W_{y}(s) = -\frac{G_{a}(s)}{1 + G_{a}(s)}$$

L'attenuazione è elevata se $G_a(j\omega_d)$ è sufficientemente piccolo ($\ll 1$)

Principali casi di interesse (3/3)

Presenza di un disturbo sinusoidale sulla retroazione

$$W_{d,sin}(s) = -W_{y}(s) = -\frac{G_{a}(s)}{1 + G_{a}(s)}$$

- L'attenuazione è elevata se $G_a(j\omega_d)$ è sufficientemente piccolo ($\ll 1$)
- Sono ben attenuati solo disturbi di **alta frequenza** rispetto alla ω_c di $G_a(j\omega)$ e qualunque disturbo collocato ad una pulsazione ω_d tale per cui $|G_a(j\omega_d)|$ risulti molto piccolo

Esempio (1/6)

Si consideri il seguente sistema:

con
$$F(s) = \frac{10}{s(s+2)(s+4)}$$
, $K_c = 1.5$
 $d_r(t) = D_r \sin(\omega_{dr}t) = 0.5 \sin(20t)$
 $d_v(t) = D_v \sin(\omega_{dv}t) = 0.2 \sin(0.06t)$

Esempio (2/6)

Esempio (3/6)

Esempio (4/6)

$$W_{dy}(s) = \frac{1}{1 + G_a(s)}$$
$$\left| W_{dy}(j\omega_{dy}) \right| = 32 \cdot 10^{-3}$$

$$Y_{dy,p} = D_y \cdot \left| W_{dy}(j\omega_y) \right| = 6.4 \cdot 10^{-3}$$

Esempio (5/6)

Esempio (6/6)

$$Y_{dr,p} = D_r \cdot |W_{dr}(j\omega_r)| = 9 \cdot 10^{-4}$$

Reiezione di disturbi in regime permanente

Implicazioni sul progetto del controllore

Attenuazione di disturbi sinusoidali (1/2)

Le specifiche sull'attenuazione in regime permanente di disturbi sinusoidali impongono vincoli sull'andamento in frequenza della fdt d'anello

Attenuazione di disturbi sinusoidali (1/2)

- Le specifiche sull'attenuazione in regime permanente di disturbi sinusoidali impongono vincoli sull'andamento in frequenza della fdt d'anello
 - Un disturbo sinusoidale sull'uscita impone che la ω_c (pulsazione di cross-over) sia elevata rispetto alla pulsazione del disturbo e che $|\mathbf{G_a(j\omega_d)}|$ sia sufficientemente grande per avere l'attenuazione richiesta

Attenuazione di disturbi sinusoidali (2/2)

- Un disturbo sinusoidale sul riferimento o sulla retroazione impone che la ω_c sia piccola rispetto alla pulsazione del disturbo e che $|\mathbf{G_a(j\omega_d)}|$ sia sufficientemente piccola per avere l'attenuazione richiesta
- La pulsazione di cross-over ω_c e la banda passante del sistema ad anello chiuso dovranno essere tali da soddisfare tali requisiti