CS 341: Algorithms

Douglas R. Stinson

David R. Cheriton School of Computer Science University of Waterloo

Winter, 2015

- **1** Course Information
- 2 Introduction
- 3 Divide-and-Conquer Algorithms
- Greedy Algorithms
- 5 Dynamic Programming Algorithms
- **6** Graph Algorithms
- Intractability and Undecidability

Table of Contents

- Intractability and Undecidability
 - Decision Problems
 - The Complexity Class P
 - Decision, Optimal Value and Optimization Problems
 - The Complexity Class NP
 - Reductions
 - NP-completeness and NP-complete Problems
 - Undecidability

Decision Problems

Decision Problem: Given a problem instance I, answer a certain question "yes" or "no".

Problem Instance: Input for the specified problem.

Problem Solution: Correct answer ("yes" or "no") for the specified problem instance. I is a ves-instance if the correct answer for the instance I is "yes". I is a **no-instance** if the correct answer for the instance I is "no".

Size of a problem instance: Size(I) is the number of bits required to specify (or encode) the instance I.

CS 341 Winter, 2015 166 / 191

The Complexity Class P

Algorithm Solving a Decision Problem: An algorithm A is said to solve a decision problem Π provided that A finds the correct answer ("yes" or "no") for every instance I of Π in finite time.

Polynomial-time Algorithm: An algorithm A for a decision problem Π is said to be a polynomial-time algorithm provided that the complexity of A is $O(n^k)$, where k is a positive integer and n = Size(I).

The Complexity Class P denotes the set of all decision problems that have polynomial-time algorithms solving them. We write $\Pi \in P$ if the decision problem Π is in the complexity class P.

CS 341 Winter, 2015 167 / 191

Cycles in Graphs

Problem

Cycle

Instance: An undirected graph G = (V, E).

Question: Does G contain a cycle?

Problem

Hamiltonian Cycle

Instance: An undirected graph G = (V, E).

Question: Does G contain a hamiltonian cycle?

A hamiltonian cycle is a cycle that passes through every vertex in ${\cal V}$ exactly once.

D.R. Stinson (SCS) CS 341 Winter, 2015 168 / 191

Knapsack Problems

Problem

0-1 Knapsack-Dec

```
Instance: a list of profits, P = [p_1, \ldots, p_n]; a list of weights, W = [w_1, \ldots, w_n]; a capacity, M; and a target profit, T. Question: Is there an n-tuple [x_1, x_2, \ldots, x_n] \in \{0, 1\}^n such that \sum w_i x_i < M and \sum p_i x_i > T?
```

Problem

Rational Knapsack-Dec

Instance: a list of profits, $P = [p_1, \ldots, p_n]$; a list of weights, $W = [w_1, \ldots, w_n]$; a capacity, M; and a target profit, T. Question: Is there an n-tuple $[x_1, x_2, \ldots, x_n] \in [0, 1]^n$ such that

 $\sum w_i x_i \leq M$ and $\sum p_i x_i \geq T$?

D.R. Stinson (SCS) CS 341 Winter, 2015 169 / 191

Polynomial-time Turing Reductions

Suppose Π_1 and Π_2 are problems (not necessarily decision problems). A (hypothetical) algorithm $\mathbf{A_2}$ to solve Π_2 is called an **oracle** for Π_2 .

Suppose that A is an algorithm that solves Π_1 , assuming the existence of an oracle A_2 for Π_2 . (A_2 is used as a subroutine within the algorithm A.)

Then we say that **A** is a **Turing reduction** from Π_1 to Π_2 , denoted $\Pi_1 \leq^T \Pi_2$.

A Turing reduction $\bf A$ is a polynomial-time Turing reduction if the running time of $\bf A$ is polynomial, under the assumption that the oracle $\bf A_2$ has unit cost running time.

If there is a polynomial-time Turing reduction from Π_1 to Π_2 , we write $\Pi_1 \leq_P^T \Pi_2$.

Informally: Existence of a polynomial-time Turing reduction means that if we can solve Π_2 in polynomial time, then we can solve Π_1 in polynomial time.

D.R. Stinson (SCS) CS 341 Winter, 2015 170 / 191

Travelling Salesperson Problems

Problem

TSP-Optimization

Instance: A graph G and edge weights $w: E \to \mathbb{Z}^+$.

Find: A hamiltonian cycle H in G such that $w(H) = \sum_{e \in H} w(e)$ is minimized.

Problem

TSP-Optimal Value

Instance: A graph G and edge weights $w: E \to \mathbb{Z}^+$.

Find: The minimum T such that there exists a hamiltonian cycle H in G

with w(H) = T.

Problem

TSP-Decision

Instance: A graph G, edge weights $w: E \to \mathbb{Z}^+$, and a target T.

Question: Does there exist a hamiltonian cycle H in G with $w(H) \leq T$?

D.R. Stinson (SCS) CS 341 Winter, 2015 171 / 191

TSP-Optimal Value $\leq_{\mathcal{D}}^T$ **TSP-Dec**

```
Algorithm: TSP-OptimalValue-Solver(G, w)
 external TSP-Dec-Solver
 hi \leftarrow \sum_{e \in E} w(e)
  lo \leftarrow 0
 if not TSP-Dec-Solver(G, w, hi) then return (\infty)
 while hi > lo
    \mathbf{do} \ \begin{cases} mid \leftarrow \left \lfloor \frac{hi + lo}{2} \right \rfloor \\ \mathbf{if} \ TSP\text{-}Dec\text{-}Solver(G, w, mid) \\ \mathbf{then} \ hi \leftarrow mid \\ \mathbf{else} \ lo \leftarrow mid + 1 \end{cases}
  return (hi)
```

D.R. Stinson (SCS) CS 341 Winter, 2015 172 / 191

TSP-Optimization $\leq_{\mathcal{D}}^T$ **TSP-Dec**

```
Algorithm: TSP-Optimization-Solver(G = (V, E), w)
external TSP-OptimalValue-Solver, TSP-Dec-Solver
T^* \leftarrow TSP-OptimalValue-Solver(G, w)
if T^* = \infty then return ("no hamiltonian cycle exists")
w_0 \leftarrow w
H \leftarrow \emptyset
 for all e \in E
 return (H)
```

D.R. Stinson (SCS) CS 341 Winter, 2015 173 / 191

Certificates

Certificate: Informally, a certificate for a yes-instance I is some "extra information" C which makes it easy to **verify** that I is a yes-instance.

Certificate Verification Algorithm: Suppose that Ver is an algorithm that verifies certificates for yes-instances. Then Ver(I,C) outputs "yes" if I is a yes-instance and C is a valid certificate for I. If Ver(I,C) outputs "no", then either I is a no-instance, or I is a yes-instance and C is an invalid certificate.

Polynomial-time Certificate Verification Algorithm: A certificate verification algorithm Ver is a polynomial-time certificate verification algorithm if the complexity of Ver is $O(n^k)$, where k is a positive integer and n = Size(I).

The Complexity Class NP

Certificate Verification Algorithm for a Decision Problem: A certificate verification algorithm Ver is said to solve a decision problem Π provided that

- for every yes-instance I, there exists a certificate C such that Ver(I,C) outputs "yes".
- for every no-instance I and for every certificate C, Ver(I,C) outputs "no".

The Complexity Class NP denotes the set of all decision problems that have polynomial-time certificate verification algorithms solving them. We write $\Pi \in NP$ if the decision problem Π is in the complexity class NP.

Finding Certificates vs Verifying Certificates: It is not required to be able to find a certificate C for a yes-instance in polynomial time in order to say that a decision problem $\Pi \in NP$

D.R. Stinson (SCS) CS 341 Winter, 2015 175 / 191

Certificate Verification Algorithm for Hamiltonian Cycle

A certificate consists of an n-tuple, $X = [x_1, \ldots, x_n]$, that might be a hamiltonian cycle for a given graph G = (V, E) (where n = |V|).

```
Algorithm: Hamiltonian Cycle Certificate Verification(G,X) flag \leftarrow true Used \leftarrow \{x_1\} j \leftarrow 2 while (j \leq n) and flag \begin{cases} flag \leftarrow (x_j \not\in Used) \text{ and } (\{x_{j-1}, x_j\} \in E) \\ \text{if } (j=n) \text{ then } flag \leftarrow flag \text{ and } (\{x_n, x_1\} \in E) \\ Used \leftarrow Used \cup \{x_j\} \end{cases} return (flag)
```

D.R. Stinson (SCS) CS 341 Winter, 2015 176 / 191

Polynomial-time Reductions

For a decision problem Π , let $\mathcal{I}(\Pi)$ denote the set of all instances of Π . Let $\mathcal{I}_{ves}(\Pi)$ and $\mathcal{I}_{no}(\Pi)$ denote the set of all yes-instances and no-instances (respectively) of Π .

Suppose that Π_1 and Π_2 are decision problems. We say that there is a polynomial-time reduction (AKA polynomial transformation) from Π_1 to Π_2 (denoted $\Pi_1 \leq_P \Pi_2$) if there exists a function $f: \mathcal{I}(\Pi_1) \to \mathcal{I}(\Pi_2)$ such that the following properties are satisfied:

- f(I) is computable in polynomial time (as a function of size (I), where $I \in \mathcal{I}(\Pi_1)$)
- if $I \in \mathcal{I}_{\mathbf{ves}}(\Pi_1)$, then $f(I) \in \mathcal{I}_{\mathbf{ves}}(\Pi_2)$
- if $I \in \mathcal{I}_{\mathbf{no}}(\Pi_1)$, then $f(I) \in \mathcal{I}_{\mathbf{no}}(\Pi_2)$

CS 341 Winter, 2015 177 / 191

Two Graph Theory Decision Problems

Problem

Clique

Instance: An undirected graph G = (V, E) and an integer k, where $1 \le k \le |V|$.

Question: Does G contain a clique of size $\geq k$? (A clique is a subset of vertices $W \subseteq V$ such that $uv \in E$ for all $u, v \in W$, $u \neq v$.)

Problem

Vertex Cover

Instance: An undirected graph G=(V,E) and an integer k, where $1 \le k \le |V|$.

Question: Does G contain a vertex cover of size $\leq k$? (A vertex cover is a subset of vertices $W \subseteq V$ such that $\{u,v\} \cap W \neq \emptyset$ for all edges $uv \in E$.)

D.R. Stinson (SCS) CS 341 Winter, 2015 178 / 191

Clique \leq_P Vertex-Cover

Suppose that I=(G,k) is an instance of **Clique**, where G=(V,E), $V=\{v_1,\ldots,v_n\}$ and $1\leq k\leq n$.

Construct an instance $f(I)=(H,\ell)$ of Vertex Cover, where H=(V,F), $\ell=n-k$ and

$$v_i v_j \in F \Leftrightarrow v_i v_j \notin E$$
.

H is called the **complement** of G, because every edge of G is a non-edge of H and every non-edge of G is an edge of H.

D.R. Stinson (SCS) CS 341 Winter, 2015 179 / 191

Properties of Polynomial-time Reductions

Suppose that Π_1,Π_2,\ldots are decision problems.

Theorem

If $\Pi_1 \leq_P \Pi_2$ and $\Pi_2 \in P$, then $\Pi_1 \in P$.

Theorem

 $\Pi_1 <_P \Pi_2$ and $\Pi_2 <_P \Pi_3$, then $\Pi_1 <_P \Pi_3$.

D.R. Stinson (SCS) CS 341 Winter, 2015 180 / 191

The Complexity Class NPC

The complexity class NPC denotes the set of all decision problems Π that satisfy the following two properties:

- $\Pi \in NP$
- For all $\Pi' \in NP$, $\Pi' \leq_P \Pi$.

NPC is an abbreviation for NP-complete.

Theorem

If $P \cap NPC \neq \emptyset$, then P = NP.

Satisfiability and the Cook-Levin Theorem

Problem

CNF-Satisfiability

Instance: A boolean formula F in n boolean variables x_1, \ldots, x_n , such that F is the **conjunction** (logical "and") of m clauses, where each clause is the **disjunction** (logical "or") of literals. (A literal is a boolean variable or its negation.)

Question: Is there a truth assignment such that F evaluates to true?

Theorem

CNF-Satisfiability \in *NPC*.

Proving Problems NP-complete

Now, given any NP-complete problem, say Π_1 , other problems in NP can be proven to be NP-complete via polynomial reductions from Π_1 , as stated in the following theorem:

Theorem

Suppose that the following conditions are satisfied:

- $\Pi_1 \in NPC$,
- $\Pi_1 \leq_P \Pi_2$, and
- $\Pi_2 \in NP$.

Then $\Pi_2 \in NPC$.

More Satisfiability Problems

Problem

3-CNF-Satisfiability

Instance: A boolean formula F in n boolean variables, such that F is the conjunction of m clauses, where each clause is the disjunction of exactly three literals.

Question: Is there a truth assignment such that F evaluates to true?

Problem

2-CNF-Satisfiability

Instance: A boolean formula F in n boolean variables, such that F is the conjunction of m clauses, where each clause is the disjunction of exactly two literals.

Question: Is there a truth assignment such that F evaluates to true?

3-CNF-Satisfiability \in *NPC*, while **2-CNF-Satisfiability** \in *P*.

D.R. Stinson (SCS) CS 341 Winter, 2015 184 / 191

CNF-Satisfiability \leq_P **3-CNF-Satisfiability**

Suppose that (X, \mathcal{C}) is an instance of **CNF-SAT**, where $X = \{x_1, \dots, x_n\}$ and $\mathcal{C} = \{C_1, \dots, C_m\}$. For each C_j , do the following:

case 1 If $|C_j| = 1$, say $C_j = \{z\}$, construct four clauses

$$\{z,a,b\},\{z,a,\overline{b}\},\{z,\overline{a},b\},\{z,\overline{a},\overline{b}\}.$$

case 2 If $|C_j| = 2$, say $C_j = \{z_1, z_2\}$, construct two clauses

$$\{z_1, z_2, c\}, \{z_1, z_2, \overline{c}\}.$$

case 3 If $|C_j| = 3$, then leave C_j unchanged.

case 4 If $|C_j| \ge 4$, say $C_j = \{z_1, z_2, \dots, z_k\}$, then construct k-2 new clauses

$$\{z_1, z_2, d_1\}, \{\overline{d_1}, z_3, d_2\}, \{\overline{d_2}, z_4, d_3\}, \dots, \{\overline{d_{k-4}}, z_{k-2}, d_{k-3}\}, \{\overline{d_{k-3}}, z_{k-1}, z_k\}.$$

D.R. Stinson (SCS) CS 341 Winter, 2015 185 / 191

3-CNF-Satisfiability \leq_P Clique

Let I be the instance of **3-CNF-SAT** consisting of n variables, x_1, \ldots, x_n , and m clauses, C_1, \ldots, C_m . Let $C_i = \{z_1^i, z_2^i, z_3^i\}$, $1 \le i \le m$.

Define f(I) = (G, k), where G = (V, E) according to the following rules:

- $V = \{v_j^i : 1 \le i \le m, 1 \le j \le n\}$,
- $v^i_j v^{i'}_{j'} \in E$ if and only if $i \neq i'$ and $z^i_j \neq \overline{z^{i'}_{j'}}$, and
- \bullet k=m.

Subset Sum

Problem

Subset Sum

Instance: A list of sizes $S = [s_1, ..., s_n]$; and a target sum, T. These are all positive integers.

Question: Does there exist a subset $J \subseteq \{1, ..., n\}$ such that

$$\sum_{i \in J} s_i = T?$$

D.R. Stinson (SCS) CS 341 Winter, 2015 187 / 191

Vertex Cover <_P **Subset Sum**

Suppose I = (G, k), where G = (V, E), |V| = n, |E| = m and $1 \le k \le n$. Suppose $V = \{v_1, \dots, v_n\}$ and $E = \{e_0, \dots, e_{m-1}\}$. For $1 \le i \le n$, 0 < i < m - 1. let

$$c_{ij} = \begin{cases} 1 & \text{if } e_j \text{ is incident with } v_i \\ 0 & \text{otherwise.} \end{cases}$$

Define n+m sizes and a target sum W as follows:

$$a_{i} = 10^{m} + \sum_{j=0}^{m-1} c_{ij} 10^{j} \quad (1 \le i \le n)$$

$$b_{j} = 10^{j} \quad (0 \le j \le m - 1)$$

$$W = k \cdot 10^{m} + \sum_{j=0}^{m-1} 2 \cdot 10^{j}$$

Then define $f(I) = (a_1, \dots, a_n, b_0, \dots, b_{m-1}, W)$.

CS 341 Winter, 2015 188 / 191

Reductions among NP-complete Problems (summary)

In the above diagram, arrows denote polynomial reductions.

D.R. Stinson (SCS) CS 341 Winter, 2015 189 / 191

Undecidable Problems

A decision problem Π is **undecidable** if there does not exist an algorithm that solves Π .

If Π is undecidable, then for every algorithm A, there exists at least one instance $I \in \mathcal{I}(\Pi)$ such that A(I) does not find the correct answer ("yes" or "no") in finite time.

Problem

Halting

Instance: A computer program A and input x for the program A.

Question: When program A is executed with input x, will it halt in

finite time?

Undecidability of the Halting Problem

Suppose that *Halt* is a program that solves the **Halting Problem**. Consider the following algorithm *Strange*.

What happens when we run Strange(Strange)?

D.R. Stinson (SCS) CS 341 Winter, 2015 191 / 191