Homework 1: Labor Economics

Dhananjay Ghei

December 3, 2018

1 Preliminary analysis

1.	Visit 1	the BHPS	website	and fa	amiliarise	yourself	with	the	basic	structure	and	contents	of the	BHPS
	data.	What feat	ures mal	ke it a	suitable	data set	for th	ne es	$_{ m timat}$	ion of the	${\rm BM}$	model?		

- 2. Open the file and answer the following questions:
 - (a) What is the sample size? What is the sex ratio in the sample?
 - (b) What is the sample unemployment rate? What is the sample unemployment rate of men? Of women? Or workers in each education category?
 - (c) What proportion of initial spells are right-censored? Answer the same question for each type of first spell (job or unemployment spell).
- 3. Construct the initial (spell-1) cross-sectional CDF (G) and density of log wages logw1. Produce the plots of these two objects.
- 4. Create a variable categorising logw1 into 25 bins (ie, percentiles 1-4, 5-8,9-12,...,97-100) and a variable containing the mean spell-1 duration (spelldur1) within each of these 25 bins. Plot those mean durations against the wage percentiles. Is this consistent with the BM model?
- 5. Explain how one can obtain a non-parametric estimate of the wage sampling distribution F from the data. Construct this non-parametric estimate, and plot it on the same graph as G. Is this consistent with the theory? What else can you say about the estimate of F?

2 Estimation

1. Write code for the MLE estimation of the BM model following the two-step protocol of Bontemps, Robin and Van den Berg (1999).

2.	Write code for computing the standard errors of the estimates δ , λ_0 and λ_1 , explaining the assump-
	tions upon which those standard errors rely.

3. The file BM_data_simulated.csv contains artificial data resulting from a simulation of 5,000 workers behaving according to the BM model with parameters $\delta = 0.01$, $\lambda_0 = 0.1$, $\lambda_1 = 0.05$ (monthly values). Run your ML estimation routine on the simulated data, and check that your estimates against the true parameter values.

3 Playing around with the model

- 2. Construct kernel density estimates of the cross-section distribution of wages g(w) and of the sampling distribution f(w). Plot both densities on the same graph.
- 3. Construct the distribution of firm productivity that rationalises the observed wage distribution within the BM model. Plot firm productivity against wages, and against the cross-section CDF of wages G(w). Do you notice anything wrong?
- 4. Looking at the predicted profit rate of high-productivity firms, what else can you say about the BM model?