Contents

- Lecture 2
 - Sequences
 - series

same as in the real case...

An infinite sequence of complex numbers indexed by natural numbers is called a *sequence*.

Eg: $\{1/n\}$, $\{z^n\}$.

A subset of a sequence indexed by a strictly increasing sequence of natural numbers is called a *subsequence*.

Eg: $\{1/2n\}$ is a subsequence of $\{1/n\}$.

A sequence $\{z_n\}$ is said to *converge to a limit* z if $z_n \to z$ as $n \to \infty$.

Given an $\epsilon > 0$ there is a N > 0 such that $|z_n - z| < \epsilon$ for all n > N.

Eg: $\{1/n\}$ converges to 0.

 $\{z_n\}$ converges to z if and only if $\{Re(z_n)\}$ and $\{Im(z_n)\}$ converge to Re(z) and Im(z), respectively.

A sequence $\{z_n\}$ is a *Cauchy sequence* if "given an $\epsilon > 0$ there is a N > 0 such that $|z_n - z_m| < \epsilon$ for all n, m > N."

Every Cauchy sequence in \mathbb{C} converges in \mathbb{C} (why?).

Remark: A sequence $z_n \to z$ then the real sequence $|z_n|$ converges to |z|.

Determine if the following sequence converge or diverge (i.e., does not converge):

• $\{1/n\}$

A sequence $\{z_n\}$ is a *Cauchy sequence* if "given an $\epsilon > 0$ there is a N > 0 such that $|z_n - z_m| < \epsilon$ for all n, m > N."

Every Cauchy sequence in \mathbb{C} converges in \mathbb{C} (why?).

Remark: A sequence $z_n \to z$ then the real sequence $|z_n|$ converges to |z|.

Determine if the following sequence converge or diverge (*i.*e., does not converge):

- $\{1/n\}$
- $\{i^n\}$

A sequence $\{z_n\}$ is a *Cauchy sequence* if "given an $\epsilon > 0$ there is a N > 0 such that $|z_n - z_m| < \epsilon$ for all n, m > N."

Every Cauchy sequence in \mathbb{C} converges in \mathbb{C} (why?).

Remark: A sequence $z_n \to z$ then the real sequence $|z_n|$ converges to |z|.

Determine if the following sequence converge or diverge (*i.*e., does not converge):

- $\{1/n\}$
- $\{i^n\}$

Given a sequence of complex numbers $\{z_n\}$, an infinite sum of the form $\sum_{n=0}^{\infty} z_n$ is called a *series*.

Eg: $\sum_{n=0}^{\infty} 1/n$

Partial sums of a series: Given a series $\sum_{n=0}^{\infty} z_n$ the k-th partial sum s_k is given by $\sum_{n=0}^{k} z_n$.

A series is said to converge to a limit s if the sequence of partial sums $\{s_k\}$ converges to s.

Eg: $\sum_{n=0}^{\infty} 1/(2^n) = 2$.

- $\sum_{n=0}^{\infty} z_n$ converges if and only if $\sum_{n=0}^{\infty} Re(z_n)$ and $\sum_{n=0}^{\infty} Im(z_n)$ converges.
- $\sum_{n=0}^{k} z_n \pm \sum_{n=0}^{k} w_n = \sum_{n=0}^{k} (z_n \pm w_n);$ $c \sum_{n=0}^{k} z_n = \sum_{n=0}^{k} cz_n.$

Necessary condition for convergence of a series

If $\sum_{n=0}^{\infty} z_n$ converges then $\{z_n\}$ is a null sequence.

ullet Comparison test: If $\sum_{n=0}^k |w_n|$ converges and $|z_n| \leq |w_n|$ for all n > N for some fixed N, then $\sum_{n=0}^{k} z_n$ also converges.

Ratio Test: For a series $\sum_{n=0}^{k} z_n$ if the sequence of ratios $|a_{n+1}/a_n|$ has a limit I. Then $\int_{n=0}^k z_n \text{ converges absolutely if } I < 1;$

- - ii $\sum_{n=0}^{k} z_n$ diverges if l > 1;
 - iii if l=1 then the series may or may not converge.

Root Test: For a series $\sum_{n=0}^{k} z_n$ let the $\lim \sup_{n \to \infty} \sqrt[n]{|a_n|}$ be I. Then

- i $\sum_{n=0}^{k} z_n$ converges absolutely if l < 1;
 - ii $\sum_{n=0}^{k} z_n$ diverges if l > 1;
 - iii if l=1 then the series may or may not converge.