

DIALOG(R)File 345:Inpadoc/Fam.& Legal Stat

(c) 2004 EPO. All rts. reserv.

18698305

Basic Patent (No, Kind, Date): US 20030045043 AA 20030306 < No. of Patents: 003>

Display device (English)

Patent Assignee: SEMICONDUCTOR ENERGY LAB (US)

Author (Inventor): KOYAMA JUN (JP)

National Class: *438200000;

IPC: *H01L-021/8238;

Language of Document: English

Patent Family:

Patent No Kind Date Applic No Kind Date

CN 1407796 A 20030402 CN 2002141487 A 20020830 JP 2003076315 A2 20030314 JP 2001263018 A 20010831

US 20030045043 AA 20030306 US 230000 A 20020828 (BASIC)

Priority Data (No,Kind,Date):

JP 2001263018 A 20010831

DIALOG(R)File 347:JAPlO

(c) 2004 JPO & JAPIO. All rts. reserv.

07582472 **lmage available**

DISPLAY DEVICE

PUB. NO.:

2003-076315 [JP 2003076315 A]

PUBLISHED:

March 14, 2003 (20030314)

INVENTOR(s): KOYAMA JUN

APPLICANT(s): SEMICONDUCTOR ENERGY LAB CO LTD

APPL. NO.:

2001-263018 [JP 2001263018]

FILED:

August 31, 2001 (20010831)

INTL CLASS:

G09G-003/20; G02F-001/133; G02F-001/1368; G09F-009/00;

G09F-009/30; G09G-003/30; G09G-003/36; H01L-029/786;

H04N-005/66

ABSTRACT

PROBLEM TO BE SOLVED: To provide a display device in which longitudinal and lateral display switching of a screen is possible without using a frame memory.

SOLUTION: The device is provided with a source signal line driving circuit 102, a first gate signal line driving circuit 103 and a second gate signal line driving circuit 104. The scanning direction of the circuit 103 is made orthogonal to the scanning direction of the circuit 102 and the scanning direction of the circuit 104 is made perpendicular to the scanning direction of the circuit 103. During a normal display, vertical scanning of the screen is conducted by the circuit 103. Video signals are displayed along the scanning direction of the circuit 103. On the other hand, when the longitudinal and lateral display is to be switched, the vertical scanning of the screen is conducted by the circuit 104. The video signals are displayed along the scanning direction of the circuit 104.

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2003-76315

(P2003-76315A) (43)公開日 平成15年3月14日(2003.3.14)

(51) Int. Cl	, 7	識別記号		FΙ				₹ - 73-}°	(参考)
G09G		680		G09G	3/20	680	G	2H092	
	.,	624				624	В	2H093	
		660				660	F	5C006	
G02F	1/133	550		G02F	1/133	550		5C058	
	1/1368				1/1368		5C080		
	•		審査請求	未請求	請求項の数8	OL	(全18	頁) 最終頁	頁に続く

(22)出願日 平成13年8月31日(2001.8.31)

(71)出願人 000153878

株式会社半導体エネルギー研究所

神奈川県厚木市長谷398番地

(72) 発明者 小山 潤

神奈川県厚木市長谷398番地 株式会社半

導体エネルギー研究所内

最終頁に続く

(54) 【発明の名称】表示装置

(57) 【要約】

【課題】 フレームメモリを使用することなく画面の縦横表示の切替が可能な表示装置を提供する。

【解決手段】 ソース信号線駆動回路102と、第1のゲート信号線駆動回路103と、第2のゲート信号線駆動回路103と、第1のゲート信号線駆動回路103の走査方向は、ソース信号線駆動回路102の走査方向と垂直をなし、第2のゲート信号線駆動回路103の走査方向と垂直をなす。通常表示の際は、第1のゲート信号線駆動回路103によって行う。映像は、第1のゲート信号線の走査方向103に従った方向で表示される。一方、縦横表示を切り替える際には、画面の垂直走査は第2のゲート信号線即回路104によって行う。映像は、第2のゲート信号線104の走査方向に従った方向で表示される。

【特許請求の範囲】

【請求項1】ソース信号線駆動回路と、第1のゲート信 号線駆動回路と、第2のゲート信号線駆動回路と、複数 の画素とを有する表示装置であって、

前記ソース信号線駆動回路と、前記第1のゲート信号線 駆動回路と、前記第2のゲート信号線駆動回路と、前記 複数の画案とはいずれも同一基板上に形成され、

前記第1のゲート信号線駆動回路の走査方向と、前記第 2のゲート信号線駆動回路の走査方向とが直交すること を特徴とする表示装置。

【請求項2】ソース信号線駆動回路と、第1のゲート信 号線駆動回路と、第2のゲート信号線駆動回路と、複数 の画素とを有する表示装置であって、

前記ソース信号線駆動回路と、前記第1のゲート信号線 駆動回路と、前記第2のゲート信号線駆動回路と、前記 複数の画案とはいずれも同一基板上に形成され、

前記複数の画素は、ソース信号線と、第1のゲート信号 線と、前記第1のゲート信号線に直交する第2のゲート 信号線と、第1のトランジスタと、第2のトランジスタ とを有し、

前記第1のトランジスタのゲート電極は、前記第1のゲ ート信号線と電気的に接続され、入力電極は、前記ソー ス信号線と電気的に接続され、出力電極は、前記第2の トランジスタの入力電極と電気的に接続され、

前記第2のトランジスタのゲート電極は、前記第2のゲ ート信号線と電気的に接続されていることを特徴とする 表示装置。

【請求項3】請求項1もしくは請求項2において、

第1の表示を行う際には、前記ソース信号線駆動回路の 駆動周波数は、第1のゲート信号線駆動回路の駆動周波 30 数よりも髙く、

第2の表示を行う際には、前記ソース信号線駆動回路の 駆動周波数は、第1のゲート信号線駆動回路の駆動周波 数よりも低いことを特徴とする表示装置。

【請求項4】第1のソース信号線駆動回路と、第2のソ ース信号線駆動回路と、第1のゲート信号線駆動回路 と、第2のゲート信号線駆動回路と、複数の画素とを有 する表示装置であって、

前記第1のソース信号線駆動回路と、前記第2のソース 信号線駆動回路と、前記第1のゲート信号線駆動回路 と、前記第2のゲート信号線駆動回路と、前記複数の画 素とはいずれも同一基板上に形成され、

前記第1のゲート信号線駆動回路の走査方向と、前記第 2のゲート信号線駆動回路の走査方向とが直交すること を特徴とする表示装置。

【請求項5】第1のソース信号線駆動回路と、第2のソ ース信号線駆動回路と、第1のソース信号線駆動回路 と、第2のゲート信号線駆動回路と、複数の画素とを有 する表示装置であって、

前記第1のソース信号線駆動回路と、前記第2のソース 50 【0003】さらに最近の技術として、画案を構成する

信号線駆動回路と、前記第1のゲート信号線駆動回路 と、前記第2のゲート信号線駆動回路と、前記複数の画 素とはいずれも同一基板上に形成され、

前記複数の画案は、第1のソース信号線と、第2のソー ス信号線と、第1のゲート信号線と、前記第1のゲート 信号線に直交する第2のゲート信号線と、第1のトラン ジスタと、第2のトランジスタとを有し、

前記第1のトランジスタのゲート電極は、前記第1のゲ ート信号線と電気的に接続され、入力電極は前記第1の 10 ソース信号線と電気的に接続され、

前記第2のトランジスタのゲート電極は、前記第2のゲ ート信号線と電気的に接続され、入力電極は前配第2の ソース信号線と電気的に接続されていることを特徴とす る表示装置。

【請求項6】請求項1乃至請求項5のいずれか1項にお いて、

第1の表示を行う際には、映像は前記第1のゲート信号 線駆動回路の走査方向に従った向きで表示され、

第2の表示を行う際には、映像は前記第2のゲート信号 20 線駆動回路の走査方向に従った向きで表示されることを 特徴とする表示装置。

【請求項7】請求項1乃至請求項6のいずれか1項にお いて、

前記複数の画案はそれぞれ、液晶素子もしくは発光素子 を有することを特徴とする表示装置。

【請求項8】請求項1乃至請求項7のいずれか1項に記 載の表示装置を用いることを特徴とする電子機器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、液晶素子、もしく はエレクトロルミネッセンス素子(EL素子)を始めとす る発光索子を用いて画素部を構成した表示装置および、 そのような表示装置を表示部に用いた電子機器に関す る。特に、画素部と、画素部を駆動するための駆動回路 とを同一の絶縁表面上に形成してなる表示装置および、 そのような表示装置を表示部に用いた電子機器に関す る。

[0002]

【従来の技術】近年、ガラス基板等の絶縁体上に半導体 40 薄膜を形成した表示装置、特に薄膜トランジスタ(以 下、TFTと表記)を用いた電子回路が各分野で使用さ れている。特に、表示装置において使用されることが多 く、LCD(液晶ディスプレイ)を始めとするアクティブ マトリクス型表示装置は、多くの製品に利用され、普及 している。TFTを使用したアクティブマトリクス型表 示装置は、マトリクス状に配置された数十万から数百万 の画素を有し、各画素に配置されたTFTによって各画 素の電荷を制御することによって映像の表示を行ってい

画案TFTの他に、画案部の周辺領域にTFTを用いて 駆動回路を基板上に同時形成するポリシリコンTFTに 関する技術が発展してきており、装置の小型化、低消費 電力化に大いに貢献し、それに伴って、近年その応用分 野の拡大が著しいモバイル情報端末の表示部等に、表示 装置は不可欠なデバイスとなってきている。

【0004】一般的な表示装置の例を図2(A)に示す。図2(A)は、絶縁体上に画素部と駆動回路とが一体形成された液晶表示装置の例である。基板200上の中央部に、画素部201が配置され、画素部201の周辺には、ソース信号線駆動回路202、ゲート信号線駆動回路203は画素部201の左右は、ゲート信号線駆動回路203は画素部201の左右両側に対称配置されているが、これは片側のみの配置であっても良い。ただし、回路の動作の信頼性や効率等を考えると、図2(A)のように対称配置とするのが好ましい。

【0005】ソース信号線駆動回路202およびゲート信号線駆動回路203に入力される信号は、外部より、フレキシブルプリント基板(Flexible Print Circuit: FPC)204を介して供給される。

【0006】対向基板210には、対向電極等が形成され、シール剤205を介して、ある空隙をもって基板201と貼り合わされる。その後、あらかじめ用意してある注入口より、基板201と対向基板210との空隙に液晶材料を注入し、注入口は封止剤206によって密閉される。

【0007】画素部201は、図2(B)に示すように、m本のソース信号線とn本のゲート信号線とが直交配置されている。図2(B)においては、m本のソース信号線 30と、n本のゲート信号線とを有している。ソース信号線とゲート信号線の交点にあたる場所(220)に、図2(C)に示すような画素が形成されている。ソース信号線221、ゲート信号線222、画素TFT223、液晶素子224、保持容量225、対向電極226からなる。ここでは、画素数はm×n画素である。

【0008】図5を参照し、表示装置の動作について簡単に説明する。一般に、画面のちらつき(フリッカと呼ばれる)が人間の眼に認識されないためには、1秒間に60回程度、画面の描画が行われる。ここで、501で 40示される期間、すなわち画面を1回描画するのに要する期間を、1フレーム期間と呼ぶ(図5(A))。

【0009】1フレーム期間においては、1行目から順にゲート信号線の選択が行われる。1行あたりの選択期間504を水平期間と表記する。最終行(n行目)の選択が終了するまでの期間503を、ライン走査期間と表記する。その後、垂直帰線期間503を挟んで、次のフレーム期間で同様の操作が行われる(図5(B))。

【0010】1水平期間においては、選択されている行 あり、720で示さの画案に、ソース信号線より順に映像信号の書き込みが 50 リング期間である。

行われる。この期間505を、ドットサンプリング期間と表記する。1つの画素に映像信号を書き込むのに要する期間507を、1ドットサンプリング期間と表記する。1行分の画素において映像信号の書き込みが完了すると、水平帰線期間506を挟んで、次の水平期間で同様の操作が行われる(図5(C))。

【0011】次に、回路の具体的な動作について説明する。図6(A)は、表示装置のソース信号線駆動回路の一構成例であり、フリップフロップ回路601(FF)を複数段用いてなるシフトレジスタ602、NAND603、パッファ604、サンプリングスイッチ605を有している。

【0012】動作の説明に際し、図6(B)を参照する。シフトレジスタ602は、クロック信号(CK)、クロック反転信号(CKb)およびスタートパルス(SP)にしたがって、それぞれ1段目から順次パルスを出力する。

【0013】シフトレジスタ602から出力されたパルスが隣接段で重なりを持つ場合は、NAND603に入力されて、隣接段で重なりを持たないパルスとされる。 20 その後、NAND出力はパッファ604を通り、サンプリングパルスとなる。

【0014】サンプリングパルスがサンプリングスイッチ605に入力されると、サンプリングスイッチ605がONし、その間、映像信号(Video)の電位が、サンプリングスイッチに接続されているソース信号線に充電される。同時に、ゲート信号線が選択されている行の、前述のソース信号線に接続されている1画素に書き込まれる。図6(B)において、610で示される期間が、1ドットサンプリング期間である。

【0015】続いて、図7(A)に示すゲート信号線駆動 回路について説明する。シフトレジスタ〜バッファ間 は、ソース信号線駆動回路とほぼ同様であり、フリップ フロップ701を複数段用いてなるシフトレジスタ702、NAND703、パッファ704を有する。

【0016】動作の説明に際し、図7(B)を参照する。シフトレジスタ702は、ソース信号線駆動回路と同様に、クロック信号(CK)、クロック反転信号(CKb)およびスタートバルス(SP)にしたがって、それぞれ1段目から順次パルスを出力する。

【0017】シフトレジスタ702から出力されたパルスが隣接段で重なりを持つ場合は、NAND703に入力されて、隣接段で重なりを持たないパルスとされる。その後、NAND出力はバッファ704を通り、ゲート信号線選択パルスとなる。

【0018】ゲート信号線選択パルスが入力されている行においては、前述のようにソース信号線に書き込まれる映像信号が、それぞれの画案に書き込まれる。図7(B)において、710で示される期間が、1水平期間であり、720で示される期間が、前述の1ドットサンプリング期間である。

【0019】ところで、表示装置は、装置に設置された 方向に固定されて使用される場合が一般的であるが、パ ーソナルコンピュータ等のように、その用途が多機能化 している場合、ある用途においては横長なレイアウト で、またある用途においては縦長なレイアウトで表示装 置を用いたい場合がある。このような場合、図3(A)に 示すように、表示装置の筐体を90°回転させた状態で 表示させる方法がある。

【0020】アクティブマトリクス型表示装置の画素部 は、図2(B)に示すように、m×n個の画案がマトリク 10 ス状に整列しており、映像信号の書き込みは、座標 (1, 1)の画案から順に、(1, 2)、(1, 3)、(1, 4)と行われ、(1, m)に達したところで1水平周期が 完了する。これをn回繰り返し、最終的に座標(m, n) の画素への書き込みが完了すると、1画面の書き込みが 完了する。

【0021】再び、図3(A)に戻る。横長表示(左)と縦 長表示(右)の場合、最初に書き込みが行われる座標 (1, 1)の画素は、それぞれ301、302で示され る。図3(A)に示すように、横長表示と縦長表示におい 20 て、同様の画面の表示を行う場合を考えると、映像信号 の入力が横長表示に対応したものであるとき、その入力 の順序は、左上→右上→・・・→右下の順であるが、こ の映像信号を用いて縦長表示を行う場合、表示装置自体 の書き込みの順序は変わらないため、映像信号の入力の 順序を、右上→右下→・・・左下の順としなければなら ない。

【0022】しかし、表示装置の縦横表示の切り替え は、フレキシブルに行えることが好ましいため、その都 ではない。そこで、フレームメモリを用いて、映像信号 を一旦メモリに記憶して読み出しを行うことによって表

【0023】フレームメモリは、各画素の映像信号を各 メモリセルごとに記憶しているため、書き込みの順序に 関係なく、任意のアドレスからの読み出しが可能であ る。フレームメモリに一旦書き込まれた映像信号の読み 出しの順序を変えることによって、前述の縦横表示の切 り替えを行うことが出来る。

【0024】1フレーム分の映像信号を記憶するフレー 40 ムメモリは、図3(B)に示すようにそれぞれの記憶回路 がアドレスで管理される。よって、映像信号が入力され ると、(1, 1)(2, 1)···(m, 1)、(1, 2) $(2, 2) \cdot \cdot \cdot (m, 2), \cdot \cdot \cdot , (1, n)(2, n) \cdot$ ··(m, n)の順に儘き込まれ、横長表示の場合は書き 込まれた順序と同じ順序で読み出される。

【0025】一方、縦長表示の場合、図3(A)のように 表示したい場合には、(m, 1)(m, 2)・・・(m, $n), (m-1, 1)(m-2, 2) \cdot \cdot \cdot (m-1, n),$ ・・・、(1, 1)(1, 2)・・・(1, n)の順に読み出 50 示と表記する。

される。

【0026】また、フレームメモリは、図4(A)に示す ように、一般的には少なくとも2フレーム分設けられ、 一方のフレームメモリに審き込みを行っている間は、他 のフレームメモリから読み出しを行い、画面の表示を行

【0027】このようにすると、表示装置は通常駆動の ままで、画面の縦横切り替えを行うことが出来る。ただ し、この方法のみによって正常に画面表示が行えるの は、m=n、すなわち縦横の画素数が等しいときに限ら れる。画面の縦横の画案数が異なる表示装置において縦 横の表示変換を行う場合は、フォーマット変換を必要と する。

【0028】映像信号は、図4(B)の[i]に示すよう に、1行目の1画素~m画素に書き込まれる映像信号、 2行目の1画素~m画素に書き込まれる映像信号、・・ ・とn本分が集まった構成となっている。この場合、横 m×縦n画素に対応している。これを縦横の表示切り替 えを行うには、図002(B)の[ii]に示すように、横n ×縦m画素に対応した形に変換する必要がある。これを フォーマット変換という。フォーマット変換自体は公知 技術を用いて行えばよいので、その詳細は省略する。 [0029]

【発明が解決しようとする課題】最近、携帯電話等の小 型携帯端末においても、様々なソフトウェアが供給さ れ、1つの機器における用途が多様化する傾向にあるた め、前述のような縦横表示の切り替え技術が重要とな

【0030】しかし、フレームメモリは表示装置とは別 度異なるフォーマットの映像信号を用意するのは効率的 30 に、外付けで用意されるのが一般的である。つまり部品 点数が増加することとなる。小型携帯端末は、近年特に その小型化が進んでいるため、現状のサイズの端末に、 外付けのフレームメモリをさらに追加することは困難で ある。よって従来の方法で縦横表示の切り替えを行うこ とは、小型携帯端末向けには望ましくないといえる。 【0031】本発明は前述の課題をかがみ見てなされた ものであり、フレームメモリ等の追加をすることなく、 縦横の表示切り替えが可能な表示装置を提供するもので

[0032]

ある。

【課題を解決するための手段】本発明の表示装置は、ソ ース信号線駆動回路と、第1のゲート信号線駆動回路 と、第2のゲート信号線駆動回路とを有する。ここで、 第2のゲート信号線の走査方向は、第1のゲート信号線 駆動回路の走査方向と直交する。

【0033】ここで、走査方向とは、それぞれの駆動回 路が制御する信号線の並びに直交する方向であるとす る。また、通常表示を第1の表示と表記し、これに対 し、画面の縦横を切り替えて表示する場合を、第2の表 【0034】通常表示の際は、画面の垂直走査は第1のゲート信号線駆動回路によって行う。映像は、第1のゲート信号線の走査方向に従った向きで表示される。一方、第2の表示の際には、画面の垂直走査は第2のゲート信号線駆動回路によって行う。映像は、第2のゲート信号線の走査方向に従った向きで表示される。

【0035】本発明の構成を以下に記す。

【0036】本発明の表示装置は、ソース信号線駆動回路と、第1のゲート信号線駆動回路と、第2のゲート信号線駆動回路と、複数の画素とを有する表示装置であっ 10 て、前記ソース信号線駆動回路と、前記第1のゲート信号線駆動回路と、前記複数の画素とはいずれも同一基板上に形成され、前記第1のゲート信号線駆動回路の走査方向と、前記第2のゲート信号線駆動回路の走査方向とが直交することを特徴としている。

【0037】本発明の表示装置は、ソース信号線駆動回 路と、第1のゲート信号線駆動回路と、第2のゲート信 号線駆動回路と、複数の画素とを有する表示装置であっ て、前記ソース信号線駆動回路と、前記第1のゲート信 20 号線駆動回路と、前記第2のゲート信号線駆動回路と、 前記複数の画素とはいずれも同一基板上に形成され、前 記複数の画素は、ソース信号線と、第1のゲート信号線 と、前記第1のゲート信号線に直交する第2のゲート信 号線と、第1のトランジスタと、第2のトランジスタと . を有し、前記第1のトランジスタのゲート電極は、前記 第1のゲート信号線と電気的に接続され、入力電極は、 前記ソース信号線と電気的に接続され、出力電極は、前 記第2のトランジスタの入力電極と電気的に接続され、 前記第2のトランジスタのゲート電極は、前記第2のゲ 30 ート信号線と電気的に接続されていることを特徴として いる。

【0038】上記の本発明の表示装置は、第1の表示を行う際には、前記ソース信号線駆動回路の駆動周波数は、第1のゲート信号線駆動回路の駆動周波数よりも高く、第2の表示を行う際には、前記ソース信号線駆動回路の駆動局波数は、第1のゲート信号線駆動回路の駆動周波数よりも低いことを特徴としている。

【0039】本発明の表示装置は、第1のソース信号線 駆動回路と、第2のソース信号線駆動回路と、第1のゲ 40 ート信号線駆動回路と、第2のゲート信号線駆動回路 と、複数の画素とを有する表示装置であって、前記第1 のソース信号線駆動回路と、前記第2のソース信号線駆動回路と、前記第1のゲート信号線駆動回路と、前記第 2のゲート信号線駆動回路と、前記複数の画素とはいずれも同一基板上に形成され、前記第1のゲート信号線駆動回路の走査方向と、前記第2のゲート信号線駆動回路の走査方向とが直交することを特徴としている。

[0040] 本発明の表示装置は、第1のソース信号線 OFFが制御される。第2の画案TFT115のゲー 駆動回路と、第2のソース信号線駆動回路と、第1のソ 50 電極は、第2のゲート信号線113と電気的に接続さ

一ス信号線駆動回路と、第2のゲート信号線駆動回路と、複数の画案とを有する表示装置であって、前記第1のソース信号線駆動回路と、前記第2のソース信号線駆動回路と、前記第1のゲート信号線駆動回路と、前記第2のゲート信号線駆動回路と、前記複数の画案とはいずれも同一基板上に形成され、前記複数の画案は、第1のソース信号線と、第2のソース信号線と、第1のゲート信号線と、第1のゲート信号線と、第1のトランジスタのゲート電極は、前記第1のゲート信号線と電気的に接続され、入力電極は前記第1のソース信号線と電気的に接続され、前記第2のトランジスタのゲート電極は、前記第2のゲート信号線と電気的に接続され、入力電極は前記第2のゲート信号線と電気的に接続され、入力電極は前記第2のソース信号線と電気的に接続されていることを特徴としている。

【0041】本発明の表示装置は、請求項1乃至請求項4のいずれか1項において、第1の表示を行う際には、映像は前記第1のゲート信号線駆動回路の走査方向に従った向きで表示され、第2の表示を行う際には、映像は前記第2のゲート信号線駆動回路の走査方向に従った向きで表示されることを特徴としている。

【0042】以上の点によって、画面の縦横を切り替える際に、異なるゲート信号線駆動回路を用いて垂直走査を行うことにより、フレームメモリを用いることなく画面の縦横切り替えを可能とする。

【0043】本発明の表示装置は、請求項1乃至請求項6のいずれか1項において、前記複数の画素はそれぞれ、液晶素子もしくは発光素子を有することを特徴としている。

【0044】本発明の表示装置を用いて、液晶ディスプレイ、ELディスプレイ、携帯情報端末、あるいは携帯電話等の電子機器が提供される。

[0045]

【発明の実施の形態】図1(A)は、本発明の一実施形態を示したものである。基板100上には、画素部105、ソース信号線駆動回路102、第1のゲート信号線駆動回路103、および第2のゲート信号線駆動回路104が形成されている。

【0046】画素部105において、101で示される部分を1画素とし、詳細な回路構成を図1(B)に示す。1画素は、ソース信号線111、第1のゲート信号線112、第2のゲート信号線113、第1の画素TFT114、第2の画案TFT115、液晶素子116、保持容量117、対向電極118を有している。

【0047】第1の画案TFT114のゲート電極は、第1のゲート信号線112と電気的に接続され、第1のゲート信号線112に入力されるパルスによってON、OFFが制御される。第2の画案TFT115のゲート電極は、第2のゲート信号線113と電気的に接続さ

れ、第2のゲート信号線113に入力されるパルスによってON、OFFが制御される。

【0048】ソース信号線111より入力される映像信号は、第1の画案TFT114、および第2の画案TFT115が共にONのときに画案に入力され、保持容量117において電荷が保持される。

【0049】回路の動作について説明する。なお、本明 細書においては、画素数をm×n画素としているが、映像信号のフォーマット変換についてはその手段を問わないので、説明を簡単にするため、フォーマット変換を必 10 要としないようにm=nとした場合を例に挙げて説明する。図1およひ図8を参照する。

【0050】第1の表示、すなわち通常表示を行う場合、第2のゲート信号線駆動回路は、第2の画案TFT 115が全画面にわたってONとなるようにしておく。これにより、画素は第1の画案TFTのON、OFFのみによって制御される。あとは、ソース信号線駆動回路と第1のゲート信号線駆動回路とを従来と同様に駆動することによって映像の表示を行う。図8(A)に示すように、画素の書き込みの順序は、(1,1)(2,1)・・・(m,1)、(1,2)(2,2)・・・(m,2)、・・・、(1,n)(2,n)・・・(m,n)となる。

【0051】次に、第2の表示、すなわち画面の縦横を切り替えた場合について説明する。図8(B)は、図8(A)を時計回りに 90° 回転させた様子を示している。本発明の表示装置は、フレームメモリを用いないため、映像信号の入力順序は変えない。よって、図8(B)に示す状態での画素への書き込みの順序は、 $(1, n)(1, n-1) \cdot \cdot \cdot (1, 1)$ 、 $(2, n)(2, n-1) \cdot \cdot \cdot (2, 1)$ 、 $\cdot \cdot \cdot \cdot \cdot (m, n)(m, n-1) \cdot \cdot \cdot \cdot (m, 1)$ となる。

【0052】よって、第2の表示を行っている間は、ソ ース信号線駆動回路は通常よりも低速で駆動し、1水平 期間づつサンプリングパルスを出力する。これにより、 サンプリングスイッチは1水平期間の間開きつづけてい るので、ソース信号線1本ごとに、1水平期間分の映像 信号が連続的に書き込まれていく。一方。第1のゲート 信号線駆動回路は、通常よりも高速に駆動し、1ドット サンプリング期間づつ、ゲート信号線選択パルスを出力 する。これにより、各画案では、1ドットサンプリング 40 期間だけ第1の画案TFTがONし、そのときの映像信 号が書き込まれる。また、第2のゲート信号線駆動回路 は、ソース信号線駆動回路と同様の動作をする。つま り、ソース信号線駆動回路からサンプリングパルスが出 カされて、ある列のソース信号線に映像信号が入力され ているとき、その列の第2のゲート信号線が選択され、 選択された第2のゲート信号線に接続されている第2の 画案TFTは全てONとなることにより、その列にのみ 映像信号の書き込みが許可される。

【0053】以上の動作により、前述のような順序で、

映像信号の画案への書き込みを行うことが出来る。よって、従来必須とされてきたフレームメモリを用いることなく、表示装置の縦横表示切り替えが可能となり、結果として装置全体の部品点数を削減し、小型化が可能となるため、携帯端末等に容易に応用することが出来る。 【0054】

10

【実施例】以下に、本発明の実施例について記載する。 【0055】[実施例1]実施形態にて示した方法で縦横 表示切り替えを行う場合、第1のゲート信号線駆動回路 の走査方向に注目する。通常表示の場合、図8(A)に示 したように、第1のゲート信号線駆動回路は、1行目か らn行目までのゲート信号線を順に選択、走査してい く。これに対して、縦横を切り替えた場合には、図8 (B)に示したように、第1のゲート信号線駆動回路は、 逆にn行目から1行目までのゲート信号線駆動回路は、 逆にn行目から1行目までのゲート信号線を順に選択、 走査していく。よって、縦横表示切り替えの際は、第1 のゲート信号線駆動回路の走査方向の切り替えが必要と なる。

【0056】図9に、走査方向切り替え回路を追加した 駆動回路の構成を示す。フリップフロップ901を複数 段用いてなるシフトレジスタ902、NAND904、パッファ905に関しては、図7(A)に示した従来例と 同様である。走査方向切り替え回路903には、走査方向切り替え信号(UD)、走査方向切り替え信号(UD)がH、走査方向切り替え反転信号(UD)がH、走査方向切り替え信号(UD)がLのとき、ゲート信号線の選択は、G、G、・・・、G。の順であり、 走査方向切り替え信号(UD)がL、走査方向切り替え反転信号(UD)がL、走査方向切り替え反 転信号(UD)がHのとき、ゲート信号線の選択は、G 、、G・・・・G、の順となる。

【0057】なお、本発明を実施するにあたり、その駆動回路の構成は図6、図7、図9等の構成には限定しない。例えば、シフトレジスタの代わりにデコーダを用いた場合等においても、本発明は実施が可能である。

【0058】[実施例2]本実施例では、実施形態とは異なる方法で、簡単に縦横表示の切り替えを行う場合の例を示す。

【0059】図12(A)に表示装置の構成を示す。基板1200上に画案部1206が形成され、さらに第1のソース信号線駆動回路1202、第1のゲート信号線駆動回路1204、第2のゲート信号線駆動回路1205が形成されている。ここで、第1のソース信号線駆動回路の走査方向と、第2のソース信号線駆動回路の走査方向とは互いに垂直をなす。また、第1のゲート信号線駆動回路の走査方向とは互いに垂直をなす。また、第1のゲート信号線駆動回路の走査方向とは互いに垂直をなす。

【0060】画案部1206において、1201で示される部分が1画案であり、その構成を図12(B)に示 50 す。1画素は、第1のソース信号線1211、第1のゲ ート信号線1212、第2のソース信号線1213、第 2のゲート信号線1214、第1の画案TFT121 5、第2の画案TFT1216、液晶案子1217、保 持容畳1218、対向電極1219を有する。

11

【0061】本実施例の場合、ソース信号線、ゲート信 号線、画素TFTをそれぞれ2つづつ有するため、液晶 素子に映像信号を書き込む経路が独立して2系統ある。 第1の表示、すなわち通常表示を行う際には例えば、通 常表示の場合には第1のソース信号線駆動回路、第1の ゲート信号線駆動回路を動作させることによって第1の 10 画素TFTを制御し、第1のソース信号線1211に入 力される映像信号を画案に書き込む。このとき、第2の ソース信号線駆動回路、第2のゲート信号線駆動回路 は、いずれも動作しないようにしておく。

【0062】一方、第2の表示、すなわち画面の縦横を 切り替える際には、第2のソース信号線駆動回路、第2 のゲート信号線駆動回路を動作させることによって第2 の画素TFTを制御し、第2のソース信号線1213に 入力される映像信号を画素に書き込む。このとき、第1 は、いずれも動作しないようにしておく。

【0063】このように、1画素を2組の駆動回路を交 互に用いて制御することにより、容易に縦横の表示切り 替えが可能である。

【0064】[実施例3]本発明は、実施形態にて示した 液晶表示装置のみならず、EL表示装置を始めとする発 光装置においても実施が可能である。 図11にその構成 を示す。

【0065】基板1100に、画索部1105、ソース 信号線駆動回路1102、第1のゲート信号線駆動回路 30 法について説明する。 1103、第2のゲート信号線駆動回路1104が形成 されている点は、図1に示した液晶表示装置の場合と同 様である。さらに、EL素子に電流を供給するためのE L用電源1106が外部よりFPCを介して入力され る。

【0066】図11(A)において、1101で示された 1画素についての構成を図11(B)に示す。1画素は、 ソース信号線1111、第1のゲート信号線1112、 第3のゲート信号線1113、第1のスイッチング用T FT1114、第2のスイッチング用TFT1115、 EL駆動用TFT1116、EL素子1117、保持容 量1118、電流供給線1119を有する。

【0067】第1のスイッチング用TFT1114のゲ ート電極は、第1のゲート信号線1112と電気的に接 続され、第1のゲート信号線1112に入力されるパル スによってON、OFFが制御される。第2のスイッチ ング用TFT1115のゲート電極は、第2のゲート信 号線1113と電気的に接続され、第2のゲート信号線 1113に入力されるパルスによってON、OFFが制 御される。

【0068】ソース信号線1111より入力される映像 信号は、第1のスイッチング用TFT1114、および・ 第2のスイッチング用TFT1115が共にONのとき に、EL駆動用TFT1116のゲート電極に入力さ れ、保持容量1118において電荷が保持される。

【0069】駆動タイミング等については、実施形態と 同様のアナログ点順次駆動で良いので、ここでは説明を 省略する。

【0070】[実施例4]高解像度、大画面の表示装置に おいては、一定期間内により多くの画案を駆動する必要 がある。従来の駆動方法では駆動周波数が高くなるた め、分割駆動が採用される場合が多い。

【0071】図14は、分割駆動を行う場合のソース信 号線駆動回路の構成例を示しており、フリップフロップ 1401を複数段用いてなるシフトレジスタ1402、 NAND1403、パッファ1404、サンプリングス イッチ1405等を有する。

【0072】図6に示した回路は、1つのサンプリング パルスによって1度に1画素への映像信号の書き込みが のソース信号線駆動回路、第1のゲート信号線駆動回路 20 行われるのに対し、図14に示した回路は、映像信号を 並列に4本入力し、1つのサンプリングパルスによって 1度に4画素への映像信号の書き込みを行う。このよう にすると、画素数が同じ従来の表示装置と比較して、ソ ース信号線駆動回路の駆動周波数を(1/分割数)に抑え ることが出来る。図14の場合は、4点同時サンプリン グを行うので、分割数は4分割であり、ソース信号線駆 動回路の駆動周波数を1/4に抑えることが出来る。

> 【0073】本実施例においては、このような分割駆動 を行う表示装置において、縦横表示の切り替えを行う方

> 【0074】図15を参照する。図15(A)は、4分割 駆動を行うソース信号線駆動回路を有する表示装置の、 通常表示時の書き込み順序を示している。 4 本のビデオ 信号線から、同時に4画素分のサンプリングを行い、最 初のサンプリングパルスで(1, 1)(2, 1)(3, 1) (4. 1)の4画素に同時に書き込まれる。続いて、次の サンプリングパルスで(5, 1)(6, 1)(7, 1)(8, 1)の4画素に同時に書き込まれる。

【0075】よって、各ビデオ信号線(Video1~ 40 Video4)に入力される映像信号の入力順序は図1 5(C)に示すようになる。

[0076] 図15(B)は、図15(A)に示した表示装 置の縦横表示を切り替えた場合の書き込み順序を示して いる。通常表示の場合、横方向に並んだ4点で同時サン プリングが行われるのに対し、縦横を切り替えた場合、 縦方向に並んだ4点で同時サンプリングが行われる。

【0077】通常表示の場合、最初に同時に書き込まれ る画素は、(1, 1)(2, 1)(3, 1)(4, 1)の4画素 であったが、縦横を切り替えた場合、最初に同時に書き 50 込まれる画案は、(1, n)(2, n)(3, n)(4, n)の

4 画案である。

【0078】このとき、それら4画素に書き込まれるべ き映像信号は、通常表示の場合に(1, 1)(1, 2) (1, 3)(1, 4)の4画素に書き込まれるべき映像信号 である。

【0079】よって、縦横の表示を切り替える場合、各 ピデオ信号線(Video1~Video4)に入力され る映像信号の入力順序は図15(D)に示すようになる。

【0080】この場合、4水平周期分の映像信号の並べ 替えを行う手順が必要なため、4水平周期分の映像信号 10 を記憶するメモリを必要とするが、従来のようにフレー ムメモリを必要とする場合と比較しても、その記憶容量 は極めて小さくて済む。

【0081】以上のようにして、分割駆動を行う表示装 置においても、本発明を実施することが可能である。

【0082】[実施例5]本実施例においては、同一基板 上に画素部および画素部の周辺に設ける駆動回路のTF T(Nチャネル型TFT及びPチャネル型TFT)を同時 に作製する方法について詳細に説明する。

【0083】図16を参照する。まず、基板5001上 20 に下地絶縁膜5002を形成し、結晶構造を有する第1 の半導体膜を得た後、所望の形状にエッチング処理して 島状に分離された半導体層5003~5006を形成す る。

【0084】本実施例においては、基板5001として . ガラス基板(#1737基板)を用い、下地絶縁膜500 2としては、プラズマCVD法で成膜温度400[℃]、 原料ガスSiH、NH、NOから作製される酸化窒 化シリコン膜5002a(組成比Si=32[%]、O=. 27[%]、N=24[%]、H=17[%])を50[nm](好 30 ましくは10~200[nm])形成する。次いで、表面を オゾン水で洗浄した後、表面の酸化膜を希フッ酸(1/ 100希釈)で除去する。次いでプラズマCVD法で成 膜温度400[℃]、原料ガスSiH。、N。Oから作製さ れる酸化窒化水素化シリコン膜5002b(組成比Si = 3 2 [%], O = 5 9 [%], N = 7 [%], H = 2 [%]を100[nm](好ましくは50~200[nm])の厚さに積 **層形成し、さらに大気解放せずにプラズマCVD法で成** 膜温度300[℃]、成膜ガスSiH,で非晶質構造を有 [nm]の厚さ(好ましくは25~80[nm])で形成する。

【0085】本実施例では下地膜5002を2層構造と して示したが、前記絶縁膜の単層膜または2層以上積層 させた構造として形成しても良い。また、半導体膜の材 料に限定はないが、好ましくはシリコンまたはシリコン ゲルマニウム(Si, Ge, , (X=0.0001~0.0 2))合金などを用い、公知の手段(スパッタ法、LPC VD法、またはプラズマCVD法等)により形成すれば よい。また、プラズマCVD装置は、枚葉式の装置でも よいし、バッチ式の装置でもよい。また、同一の成膜室 50 光)には波長400[nm]以下のエキシマレーザー光や、

で大気に触れることなく下地絶縁膜と半導体膜とを連続 成膜してもよい。

14

【0086】次いで、非晶質構造を有する半導体膜の表 面を洗浄した後、オゾン水で表面に約2[nm]のごく薄い 酸化膜(図示せず)を形成する。次いで、TFTのしきい 値を制御するために微量な不純物元素(ポロンまたはリ ン)のドーピングを行う。ここでは、ジボラン(B, H,) を質量分離しないでプラズマ励起したイオンドープ法を 用い、ドーピング条件を加速電圧15[kV]、ジボランを 水素で1[%]に希釈したガス流量30[sccm]、ドーズ量 2×10¹¹ [atoms/cm²]で非晶質シリコン膜にポロンを 添加した。

【0087】次いで、重量換算で10[ppm]のニッケル を含む酢酸ニッケル塩溶液をスピナーで塗布する。塗布 に代えてスパッタ法でニッケル元素を全面に散布する方 法を用いてもよい。

【0088】次いで、加熱処理を行い結晶化させて結晶 構造を有する半導体膜を形成する。この加熱処理は、電 気炉の熱処理または強光の照射を用いればよい。電気炉 の熱処理で行う場合は、500[℃]~650[℃]で4~ 24時間で行えばよい。ここでは脱水素化のための熱処 理(500[℃]、1時間)の後、結晶化のための熱処理 (550[℃]、4時間)を行って結晶構造を有するシリコ ン膜を得る。なお、ここでは炉を用いた熱処理を用いて 結晶化を行ったが、ランプアニール装置で結晶化を行っ てもよい。なお、ここではシリコンの結晶化を助長する 金属元素としてニッケルを用いた結晶化技術を用いた が、他の公知の結晶化技術、例えば固相成長法やレーザ ー結晶化法を用いてもよい。

【0089】次いで、結晶構造を有するシリコン膜表面 の酸化膜を希フッ酸等で除去した後、結晶化率を高め、 結晶粒内に残される欠陥を補修するための第1のレーザ 一光(XeC1:波長308[nm])の照射を大気中、また は酸素努囲気中で行う。レーザー光には波長400[nm] 以下のエキシマレーザー光や、YAGレーザーの第2高 調波、第3高調波、またはCWレーザーを用いる。いず れにしても、繰り返し周波数10~1000[Hz]程度の パルスレーザー光を用い、当該レーザー光を光学系にて 100~500[mJ/cm²]に集光し、90~95[%]のオ する半導体膜(ここではアモルファスシリコン膜)を54 40 ーバーラップ率をもって照射し、シリコン膜表面を走査 させればよい。ここでは、繰り返し周波数30Hz、エ ネルギー密度393[m]/cm']で第1のレーザー光の照射 を大気中で行う。なお、大気中、または酸素雰囲気中で 行うため、第1のレーザー光の照射により表面に酸化膜 が形成される。

> 【0090】次いで、第1のレーザー光の照射により形 成された酸化膜を希フッ酸で除去した後、第2のレーザ 一光の照射を窒素雰囲気、或いは真空中で行い、半導体 膜表面を平坦化する。このレーザー光(第2のレーザー

15

【0091】また、本実施例では第2のレーザー光の照射を全面に行ったが、オフ電流の低減は、画素部のTFTに特に効果があるため、少なくとも画素部のみに選択 10的に照射する工程としてもよい。また、1回のレーザー照射のみによる処理であっても良い。

【0092】次いで、オゾン水で表面を120秒処理して合計 $1\sim5$ [nm]の酸化膜からなるバリア層(図示せず)を形成する。

【0093】次いで、パリア層上にスパッタ法にてゲッタリングサイトとなるアルゴン元素を含む非晶質シリコン膜を膜厚150[nm]で形成する。本実施例のスパッタ法による成膜条件は、成膜圧力を0.3[Pa]とし、ガス(Ar)流量を50[sccm]とし、成膜パワーを3[km]とし、基板温度を150[$^{\circ}$ C]とする。なお、上記条件での非晶質シリコン膜に含まれるアルゴン元素の原子濃度は、 $3\times10^{\circ\circ}\sim6\times10^{\circ\circ}$ [atoms/cm]、酸素の原子濃度は $1\times10^{\circ\circ}\sim3\times10^{\circ\circ}$ [atoms/cm]である。その後、ランプアニール装置を用いて650[$^{\circ}$ C]、3分の熱処理を行いゲッタリングする。

【0094】次いで、バリア層をエッチングストッパーとして、ゲッタリングサイトであるアルゴン元素を含む 非晶質シリコン膜を選択的に除去した後、バリア層を希フッ酸で選択的に除去する。なお、ゲッタリングの際、ニッケルは酸素濃度の高い領域に移動しやすい傾向があるため、酸化膜からなるバリア層をゲッタリング後に除去することが望ましい。

【0095】次いで、得られた結晶構造を有するシリコン膜(ポリシリコン膜とも呼ばれる)の表面にオゾン水で薄い酸化膜を形成した後、レジストからなるマスクを形成し、所望の形状にエッチング処理して島状に分離された半導体層5003~5006を形成する。半導体層を形成した後、レジストからなるマスクを除去する。

【0096】次いで、フッ酸を含むエッチャントで酸化 40 膜を除去すると同時にシリコン膜の表面を洗浄した後、ゲート絶縁膜5007となる珪素を主成分とする絶縁膜を形成する。本実施例では、プラズマCVD法により115[nm]の厚さで酸化窒化シリコン膜(組成比Si=32[%]、O=59[%]、N=7[%]、H=2[%])で形成する。

【0097】次いで、ゲート絶縁膜5007上に膜厚2 ガス流量比を30/30[sccm]とし、1.0[Pa]の圧0~100[nm]の第1の導電膜5008と、膜厚100 でコイル型の電極に500[W]のRF(13.56[MH~400[nm]の第2の導電膜5009とを積層形成す z])電力を投入してプラズマを生成して約30秒程度のる。本実施例では、ゲート絶縁膜5007上に膜厚50 50 エッチングを行った。基板側(試料ステージ)にも20

[nm]の窒化タンタル(TaN)膜、膜厚370[nm]のタン グステン(W)膜を順次積層する(図16(A))。

【0098】第1の導電膜及び第2の導電膜を形成する 導電性材料としてはTa、W、Ti、Mo、Al、Cu から選ばれた元素、または前記元素を主成分とする合金 材料もしくは化合物材料で形成する。また、第1の導電 膜及び第2の導電膜としてリン等の不純物元素をドーピ ングした多結晶シリコン膜に代表される半導体膜や、A gPdCu合金を用いてもよい。また、2層構造に限定 されず、例えば、膜厚50[nm]のタングステン膜、膜厚 500[nm]のアルミニウムとシリコンの合金(A1-S i)膜、膜厚30[nm]の窒化チタン膜を順次積層した3 層構造としてもよい。また、3層構造とする場合、第1 の導電膜のタングステンに代えて窒化タングステンを用 いてもよいし、第2の導電膜のアルミニウムとシリコン の合金(A 1 - S i) 膜に代えてアルミニウムとチタンの 合金膜(Al-Ti)を用いてもよいし、第3の導電膜の 窒化チタン膜に代えてチタン膜を用いてもよい。また、 単層構造であってもよい。

20 【0099】次に、図16(B)に示すように光露光工程によりレジストからなるマスク5010を形成し、ゲート電極及び配線を形成するための第1のエッチング処理を行う。第1のエッチング処理では第1及び第2のエッチング条件で行う。エッチングには1CP(Inductively Coupled Plasma:誘導結合型プラズマ)エッチング法を用いると良い。ICPエッチング法を用い、エッチング条件(コイル型の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極温度等)を適宜調節することによって所望のテーパー形状に膜をエッチングすることができる。なお、エッチング用ガスとしては、Cl,、BCl,、SiCl,、CCl,などを代表とする塩素系ガスまたはCF,、SF,、NF,などを代表とするフッ素系ガス、またはO,を適宜用いることができる。

【0100】本実施例では、基板側(試料ステージ)にも150[W]のRF(13.56[MHz])電力を投入し、実質的に負の自己パイアス電圧を印加する。この第1のエッチング条件によりW膜をエッチングして第1の導電層の端部をテーパー形状とする。第1のエッチング条件でのWに対するエッチング速度は200.39[nm/min]であり、TaNに対するエッチング速度は80.32[nm/min]であり、TaNに対するWの選択比は約2.5である。また、この第1のエッチング条件によって、Wのテーパー角は、約26°となる。この後、レジストからなるで、よッチング用ガスにCF・とCl・とを用い、それぞれのガス流量比を30/30[sccm]とし、1.0[Pa]の圧力でコイル型の電極に500[W]のRF(13.56[MHz])電力を投入してプラズマを生成して約30秒程度のエッチングを行った。基板側(試料ステージ)にも20

[W]のRF(13.56[MH2])電力を投入し、実質的に負の自己パイアス電圧を印加する。CF,とC1,を混合した第2のエッチング条件ではW膜及びTaN膜とも同程度にエッチングされる。第2のエッチング条件でのWに対するエッチング速度は58.97[nm/min]、TaNに対するエッチング速度は66.43[nm/min]である。なお、ゲート絶縁膜上に残渣を残すことなくエッチングするためには、10~20[%]程度の割合でエッチング時間を増加させると良い。

【0101】上記第1のエッチング処理では、レジスト 10 からなるマスクの形状を適したものとすることにより、基板側に印加するバイアス電圧の効果により第1の導電 層及び第2の導電層の端部がテーパー形状となる。このテーパー部の角度は15~45°とすればよい。

【0102】こうして、第1のエッチング処理により第1の導電層と第2の導電層から成る第1の形状の導電層5011~5016(第1の導電層5011a~5016aと第2の導電層5011b~5016b)を形成する。ゲート絶縁膜となる絶縁膜5007において、第1の形状の導電層5011~5016で覆われない領域は2010~20[nm]程度エッチングされて薄くなる。

【0103】次いで、レジストからなるマスクを除去せ ずに第2のエッチング処理を行う。ここでは、エッチン グ用ガスにSF,とC1,とO,とを用い、それぞれのガ ス流量比を24/12/24[sccm]とし、1.3[Pa]の 圧力でコイル型の電極に700[W]のRF(13.56 [MHz])電力を投入してプラズマを生成してエッチングを 25秒行った。基板側(試料ステージ)にも10[W]のR F(13.56[MHz])電力を投入し、実質的に負の自己 バイアス電圧を印加する。第2のエッチング処理でのW 30 に対するエッチング速度は227. 3[nm/min]、TaN に対するエッチング速度は32.1[nm/min]であり、T aNに対するWの選択比は7.1であり、ゲート絶縁膜 5007であるSiONに対するエッチング速度は3 3. 7 [nm/min] であり、SiONに対するWの選択比は 6.83である。このようにエッチングガス用ガスにS F. を用いた場合、ゲート絶縁膜5007との選択比が 高いので膜減りを抑えることができる。本実施例ではゲ ート絶縁膜5007において約8[nm]しか膜減りが起き ない。

【0104】この第2のエッチング処理によりWのテーパー角は70°となった。この第2のエッチング処理により第2の形状の導電層5017~5022を形成する。このとき、第1の導電層はほとんどエッチングされず、第1の導電層5017a~5022aは、第1の導電層5011a~5016aとほぼ同一サイズである。実際には第2のエッチング処理によって、第1の導電層の幅は、第2のエッチング処理前に比べて約0.3[μ메程度、即ち線幅全体で0.6[μ메程度後退する場合

もあるがほとんどサイズに変化がない。

18

【0105】また、2層構造に代えて、膜厚50[nm]の タングステン膜、膜厚500[nm]のアルミニウムとシリ コンの合金(Al-Si)膜、膜厚30[nm]の窒化チタン 膜を順次積層した3層構造とした場合、第1のエッチン グ処理の第1のエッチング条件としては、BCl,とC 1,とO,とを原料ガスに用い、それぞれのガス流量比を 65/10/5[sccm]とし、基板側(試料ステージ)に3 00[W]のRF(13.56[MHz])電力を投入し、1. 2 [Pa] の圧力でコイル型の電極に 4 5 0 [W] の R F (1 3. 56 [MH2])電力を投入してプラズマを生成して11 7秒のエッチングを行えばよく、第1のエッチング処理 の第2のエッチング条件としては、CF, とC1, とO, とを用い、それぞれのガス流量比を25/25/10[s ccm]とし、基板側(試料ステージ)にも20[W]のRF (13.56[MHz])電力を投入し、1.0[Pa]の圧力で コイル型の電極に500[W]のRF(13.56[MHz]) 電力を投入してプラズマを生成して約30秒程度のエッ チングを行えばよく、第2のエッチング処理としてはB C1, とC1, を用い、それぞれのガス流量比を20/6 0 [sccm]とし、基板側(試料ステージ)には100 [W]の RF(13.56[MHz])電力を投入し、1.2[Pa]の圧 カでコイル型の電極に600[W]のRF(13.56[MH 2])電力を投入してプラズマを生成してエッチングを行 えばよい。

【0106】次いで、レジストからなるマスクを除去した後、第1のドーピング処理を行って図16(D)の状態を得る。ドーピング処理はイオンドープ法、もしくはイオン注入法で行えば良い。イオンドープ法の条件はドー30 ズ量を1.5×10''[atoms/cm']とし、加速電圧を60~100[keV]として行う。N型を付与する不純物元素として、典型的にはリン(P)または砒素(As)を用いる。この場合、第1の導電層及び第2の導電層5017~5021がN型を付与する不純物元素に対するマスクとなり、自己整合的に第1の不純物領域5023~5026には1×10''~1×10''[atoms/cm']の濃度範囲でN型を付与する不純物元素を添加する。ここでは、第1の不純物領域と同じ濃度範囲の領域をN--領域とも40呼ぶ。

【0107】なお、本実施例ではレジストからなるマスクを除去した後、第1のドーピング処理を行ったが、レジストからなるマスクを除去せずに第1のドーピング処理を行ってもよい。

【0108】次いで、図17(A)に示すようにレジストからなるマスク5027を形成し第2のドーピング処理を行う。第2のドーピング処理におけるイオンドープ法の条件はドーズ量を1.5×10''[atoms/cm']とし、加速電圧を60~100[keV]としてリン(P)をドーピングする。ここでは、第2の導電層5017b~502

1 bをマスクとして各半導体層に不純物領域が自己整合 的に形成される。勿論、マスク5027で覆われた領域 には添加されない。こうして、第2の不純物領域502 8、5029と、第3の不純物領域5030が形成され る。第2の不純物領域5028、5029には1×10 ²⁰~1×10²⁰ [aloms/cm³]の濃度範囲でN型を付与す る不純物元素を添加されている。ここでは、第2の不純 物領域と同じ濃度範囲の領域をN'領域とも呼ぶ。

【0109】また、第3の不純物領域は第1の導電層5 017aにより第2の不純物領域よりも低濃度に形成さ 10 れ、1×10''~1×10''[atoms/cm']の濃度範囲で N型を付与する不純物元素を添加されることになる。な お、第3の不純物領域は、テーパー形状である第1の導 電層5017aの部分を通過させてドーピングを行うた め、テーパー部の端部に向かって不純物濃度が増加する 濃度勾配を有している。ここでは、第3の不純物領域と 同じ濃度範囲の領域をN^{*}領域とも呼ぶ。また、マスク 5027で覆われた領域5031は、第2のドーピング 処理で不純物元素が添加されず、第1の不純物領域がそ のまま残される。

【0110】次いで、レジストからなるマスク5027 を除去した後、新たにレジストからなるマスク5032 を形成して図17(B)に示すように第3のドーピング処 理を行う。

【0111】駆動回路において、上記第3のドーピング 処理により、Pチャネル型TFTを形成する半導体層お よび保持容量を形成する半導体層にP型の導電型を付与 する不純物元素が添加された第4の不純物領域503 3、5034及び第5の不純物領域5035、5036 を形成する。

【0112】また、第4の不純物領域5033、503 4には1×10'0~1×10'1 [atoms/cm]の濃度範囲 でP型を付与する不純物元素が添加されるようにする。 尚、第4の不純物領域5033、5034は、当初は先 の工程でリン(P)が添加された領域(n--領域)となって いるが、P型を付与する不純物元素の濃度がその1.5 ~3倍添加されていて導電型はP型となっている。ここ では、第4の不純物領域と同じ濃度範囲の領域をP'領 域とも呼ぶ。

6は第2の導電層5018a、5021aのテーパー部 と重なる領域に形成されるものであり、1×10'゚~1 ×10'° [atoms/cm]の濃度範囲でP型を付与する不純 物元素が添加されるようにする。ここでは、第5の不純 物領域と同じ濃度範囲の領域をP・領域とも呼ぶ。

【0114】以上までの工程でそれぞれの半導体層にN 型またはP型の導電型を有する不純物領域が形成され なる。また、導電層5021は画素部において保持容量 は画素部においてソース信号線を形成する。

【0115】次いで、ほぼ全面を覆う絶縁膜(図示せず) を形成する。本実施例では、プラズマCVD法により膜 厚50[nm]の酸化シリコン膜を形成した。勿論、この絶 **緑膜は酸化シリコン膜に限定されるものでなく、他のシ** リコンを含む絶縁膜を単層または積層構造として用いて も良い。

【0116】次いで、それぞれの半導体層に添加された 不純物元素を活性化処理する工程を行う。この活性化工 程は、ランプ光源を用いたラピッドサーマルアニール法 (RTA法)、或いはYAGレーザーまたはエキシマレー ザーを裏面から照射する方法、或いは炉を用いた熱処 理、或いはこれらの方法のうち、いずれかと組み合わせ た方法によって行う。

[0117] また、本実施例では、上記活性化の前に絶 縁膜を形成した例を示したが、上記活性化を行った後、 絶縁膜を形成する工程としてもよい。

【0118】次いで、窒化シリコン膜からなる第1の層 間絶縁膜5037を形成して熱処理(300~550・ 20 [℃]で1~12時間の熱処理)を行い、半導体層を水素 化する工程を行う(図17(C))。この工程は第1の層間 絶縁膜5037に含まれる水素により半導体層のダング リングポンドを終端する工程である。酸化シリコン膜か らなる絶縁膜(図示しない)の存在に関係なく半導体層を 水素化することができる。ただし、第2の導電層として アルミニウムを主成分とする材料を用いている場合に は、水素化する工程において第2の導電層が耐え得る熱 処理条件とすることが重要である。水素化の他の手段と して、プラズマ水素化(プラズマにより励起された水素 30 を用いる)を行っても良い。

【0119】次いで、第1の層間絶縁膜5037上に有 機絶縁物材料から成る第2の層間絶縁膜5038を形成 する。本実施例では膜厚1. 6[μm]のアクリル樹脂膜 を形成する。次いで、各電極もしくは不純物領域に達す るコンタクトホールを開口する。本実施例では複数のエ ッチング処理を順次行う。本実施例では第1の層間絶縁 膜5037をエッチングストッパーとして第2の層間絶 縁膜5038をエッチングした後、絶縁膜(図示しない) をエッチングストッパーとして第1の層間絶縁膜503 【0113】また、第5の不純物領域5035、503 40 7をエッチングしてから絶縁膜(図示しない)をエッチン

> 【0120】その後、Al、Ti、Mo、Wなどを用い て配線及び画素電極を形成する。これらの電極及び画素 電極の材料は、AIまたはAgを主成分とする膜、また はそれらの積層膜等で反射性に優れた材料を用いること が望ましい。こうして、配線5039~5042、画素 電極5043、ゲート信号線5044が形成される。

【0121】以上の様にして、Nチャネル型TFT、P チャネル型TFTを有する駆動回路と、Nチャネル型T を形成する一方の電極となる。さらに、導電層5022 50 FTからなる画案TFT、保持容畳とを有する画案部と を同一基板上に形成することができる(図 1 7 (D))。本明細書中ではこのような基板を便宜上アクティブマトリクス基板と呼ぶ。

【0122】図17(D)に示したアクティブマトリクス 基板において、Nチャネル型TFTは2種類の構造を有している。1つは、駆動回路のNチャネル型TFTに見られるような、ゲート電極に重なる第3の不純物領域を 有するGOLD構造、もう1つは、画素TFTに見られるような、ゲート電極に重ならない第1の不純物領域を 有するLDD構造である。

【0123】前者は、ホットキャリア劣化等の抑制に有効な構造であり、特に動作に信頼性が求められる箇所に適している。後者は、オフ電流のリーク低減に有効な構造であり、負のバイアス電圧が印加される機会の多い回路や、画素部を制御する回路等に適している。

【0124】一方、対向基板5045を用意する。対向 基板側には、透明導電膜でなる対向電極5046を形成 する。

【0125】続いて、アクティブマトリクス基板および 対向基板に、それぞれ配向膜5047、5048を形成20 し、ラピング処理を行う。なお、本実施例においては、 配向膜5048をアクティブマトリクス基板側に形成する前に、アクリル樹脂等の有機樹脂膜を用いて、基板間の空隙を確保するための柱状スペーサ(図示せず)を所望の位置に形成した。また、柱状スペーサに代えて、球状のスペーサを基板全面に散布しても良い。

【0126】そして、画素部と駆動回路が形成されたアクティブマトリクス基板と対向基板とをシール材(図示せず)で貼り合わせる。シール材にはフィラーが混入されていて、このフィラーと柱状スペーサによって均一な 30 空隙を持って2枚の基板が貼り合わせられる。その後、両基板間の空隙に液晶材料5049を注入し、封止剤(図示せず)によって完全に封止する。液晶材料5049には公知の液晶材料を用いれば良い。そして、必要があれば、アクティブマトリクス基板または対向基板を所望の形状に分断する。さらに、公知の技術を用いて偏光板等を適宜設けた。そして、公知の技術を用いてFPCを貼り付ける。このようにして図18(A)に示すアクティブマトリクス型液晶表示装置が完成する。

【0127】なお、本実施例においては液晶表示装置の 40 作製方法について説明したが、特に本発明を液晶表示装置のみへの用途に限定するものではない。EL素子等を用いた発光装置を作製する際にも、アクティブマトリクス基板の作製は、図16~図17に示した本実施例の方法に従えば良い。以後、アクティブマトリクス基板上に陽極、正孔輸送層、発光層、電子注入層、陰極等でなるEL素子を形成すれば、アクティブマトリクス型の発光装置を作製することが出来る。

【0128】[実施例6]本発明は、様々な電子機器に用 駆動する際いられている表示装置の作製に適用が可能である。この 50 【図11】

ような電子機器には、ディスプレイ装置、携帯情報端末 (電子手帳、モバイルコンピュータ、携帯電話等)、携帯 電話等が挙げられる。それらの一例を図13に示す。

【0129】図13(A)は液晶ディスプレイもしくはE Lディスプレイであり、筐体3001、支持台300 2、表示部3003等を有している。本発明は表示部3 001に適用が可能である。また、このような卓上据付 型のディスプレイにおいて縦横表示切り替えを行う場合 には、支持台3002への筐体3001の取り付け部に 10 回転機構を設け、筐体3001自体を回転可能にすると 良い。

【0130】図13(B)は、携帯情報端末であり、本体3031、スタイラス3032、表示部3033、操作ポタン3034、外部インターフェイス3035等を有している。本発明は表示部3033に適用が可能である。

[0131] 図13(C)は、携帯電話であり、本体3061、音声出力部3062、音声入力部3063、表示部3064、操作ボタン3065、アンテナ3066等を有している。本発明は表示部3064に適用が可能である。

【0132】なお、本実施例に示した例はごく一例であり、これらの用途に限定するものではないことを付記する。

【発明の効果】本発明により、画面表示の縦横切り替えをフレームメモリ等を用いることなく容易に行うことが可能な表示装置の提供が可能となる。よって、部品点数の限られる小型携帯端末等にも、容易に適用が可能となる。

0 【図面の簡単な説明】

【図1】 本発明の一実施形態を示す図。

【図2】 従来用いられている表示装置の概要を示す 図。

【図3】 縦横表示の切り替えの様子を説明する図。

【図4】 縦横表示の切り替えにフレームメモリを用いる場合の処理の流れ、およびフォーマット変換について示す図。

【図5】 表示装置を駆動する際のタイミングについて説明する図。

【図6】 ソース信号線駆動回路の構成およびタイミングチャートを示す図。

【図7】 ゲート信号線駆動回路の構成およびタイミングチャートを示す図。

【図8】 通常表示と縦横切り替え表示における、映像信号のむき込み順を説明する図。

【図9】 走査方向切り替え回路を有するゲート信号 線駆動回路の構成を示す図。

【図10】 縦横表示を切り替えた場合に表示装置を 駆動する際のタイミングについて説明する図。

| 【図11】 本発明をEL表示装置に適用する場合の

構成を示す図。

【図12】 本発明の一実施例である、独立した2組の駆動回路を有する表示装置の構成を示す図。

【図13】 本発明の適用が可能な電子機器の一例を示す図。

【図14】 分割駆動を行う場合のソース信号線駆動 回路の構成を示す図。

【図15】 分割駆動を行う表示装置において本発明

を実施する場合の表示と映像信号の入力順序について説 明する図。

【図16】 アクティブマトリクス型液晶表示装置の作製工程例を示す図。

【図17】 アクティブマトリクス型液晶表示装置の作製工程例を示す図。

【図18】 アクティブマトリクス型液晶表示装置の作製工程例を示す図。

[図1]

[図5]

(A)

FPC 20A

[図2]

[図9]

901: アナナブスロップ 902: シフトレジスタ 903: 全主方向切着回路 904: NAND 905: パップア

【図17】

【図18】

フロントページの続き

(51) Int. Cl. ⁷		識別記号	FΙ		,	テーマコード(参考)
G 0 9 F	9/00	3 4 8	G 0 9 F	9/00	3 4 8 C	5 C 0 9 4
	9/30	3 3 8		9/30	3 3 8	5 F 1 1 0
G 0 9 G	3/30		G 0 9 G	3/30	J	5 G 4 3 5
	3/36			3/36		
H01L	29/786		H 0 4 N	5/66	102B	
H 0 4 N	5/66	1 0 2	H 0 1 L	29/78	6 1 2 B	

Fターム(参考) 2H092 JA24 JB42 MA43 NA25 PA06 2H093 NA16 NC22 NC34 NC40 ND49 ND57 NE07 5C006 AB05 AF22 BB14 BB16 BC02 BC03 BC06 BC20 5C058 AA09 AA12 AB01 AB06 BA01 BA03 BA35 BB17 5C080 AA06 AA10 BB05 DD21 EE23 FF11 JJ01 JJ02 JJ04 JJ06 KK07 KK47 5C094 AA15 BA03 BA43 CA19 DB01 DB04 EA04 EA07 EB02 5F110 AA30 BB02 BB04 CC02 DD02 DD15 DD17 EE01 EE02 EE03 EE04 EE06 EE09 EE14 EE15 EE23 FF04 FF30 FF35 GG01 GG02 GG13 GG25 GG32 GG34 GG43 GG45 GG47 GG51 GG58 HJ01 HJ04 HJ12 HJ23 HL02 HL03 HL04 HM15 NN03 NN05 NN23 NN24 NN27 NN35 NN72 NN73 NN78 PP01 PP02 PP03 PP04 PP05 PP10 PP13 PP29 PP34 PP35 QQ04 QQ09 QQ11 QQ23 QQ25 QQ28

5G435 AA18 BB05 BB12 CC09 EE33

EE37 GG21