Projektdokumentation

Projektname: ProductivityGarden

Name Jonas Huber
Matrikelnummer IU14085128
Modul Projekt: Software Engineering

DLMCSPSE01_D

Datum 27.12.2024

Inhalt

1.	Projektbeschreibung	. 2			
2.	Risikomanagement	. 3			
Р	otenzielle Risiken	. 3			
	Technische Risiken	. 3			
	Benutzerbezogene Risiken	.3			
	Sicherheitsrisiken	. 4			
	Projektbezogene Risiken	. 4			
В	ewertungstabelle	.5			
3.	Zeitplanung	.6			
4.	Literaturverzeichnis	.7			
Ab	pildungsverzeichnis				
Abb	Abbildung 1 - Gantt-Diagramm6				

1. Projektbeschreibung

Im modernen Alltag sehen sich Menschen häufig mit der Herausforderung konfrontiert, sich zu konzentrieren und ihre Zeit effektiv zu managen. Studien belegen, dass Gamification einen positiven Einfluss auf Motivation und Produktivität ausübt (Matallaoui, 2016, S. 4). Gamification, auch Spielifizierung genannt, bezeichnet die Anwendung spielerischer Elemente und Mechanismen in einem nicht-spielerischen Kontext, beispielsweise im Bildungsbereich (Huseynli, 2024, S. 45). Die Integration eines flexiblen Pomodoro-Timers, eines klassischen Timers sowie einer Stoppuhr ermöglicht es den Nutzer:innen, ihre produktiven Phasen präzise zu planen und nachzuverfolgen. Dies erfolgt in einer entspannenden und spielerischen Umgebung, wodurch eine nachhaltige Steigerung der Produktivität gefördert und gleichzeitig eine Reduktion von Stress erzielt werden soll. Zur Optimierung des Zeitmanagements besteht die Möglichkeit, die aufgewendete Zeit einzelnen Projekten zuzuweisen.

Ein wesentlicher Bestandteil der Anwendung ist ein Belohnungssystem, bei dem Nutzer:innen für produktive Zeit Punkte sammeln können. Diese Punkte können dazu verwendet werden, virtuelle Gärten mit Pflanzen und Dekorationen zu gestalten. Die Nutzer:innen haben die Möglichkeit, mehrere Gärten anzulegen und individuell anzupassen. Dies fördert nicht nur die Motivation, sondern auch Entspannung und Kreativität

Die Anwendung ist für das Betriebssystem Windows optimiert und bleibt im Hintergrund aktiv, um eine nahtlose Nutzung zu ermöglichen. Die Speicherung sämtlicher Daten erfolgt lokal, um die Privatsphäre der Nutzer:innen zu schützen Die Oberfläche verzichtet auf ablenkende Elemente, um den Nutzer:innen eine ungestörte Konzentration auf das Spielerlebnis und die Produktivität zu ermöglichen. ProductivityGarden ist werbefrei und bietet keinen Zugang zu Paywalls oder Premium-Inhalten.

Im Gegensatz zu herkömmlichen Apps zur Prokrastinationskontrolle richtet sich ProductivityGarden an eine breite Zielgruppe und ist für alle geeignet, die ihr Zeitmanagement verbessern möchten, eine zugleich entspannende und kreative Herangehensweise.

2. Risikomanagement

Potenzielle Risiken

Bei der Risikoanalyse werden potenzielle Risiken identifiziert, deren Eintrittswahrscheinlichkeit und Schadensausmaß bewertet und geeignete Gegenmaßnahmen vorgeschlagen. Die verschiedenen Risiken werden für mehr Übersichtlichkeit in Bereiche kategorisiert.

Technische Risiken

- 1. Leistungsprobleme bei hoher Last oder Datenmengen
 - Beschreibung: Die Anwendung könnte bei intensiver Nutzung oder Speicherung vieler Daten langsam werden, was die Benutzerfreundlichkeit beeinträchtigt.
 - Eintrittswahrscheinlichkeit: Mittel
 - Schadensausmaß: Hoch (Nutzer:innen könnten das Programm frustriert abbrechen)
 - Gegenmaßnahmen:
 - Nutzung performanter Python-Bibliotheken und Implementierung von Optimierungsmöglichkeiten (Recherche benötigt)
 - o Optimierung der Datenbankzugriffe und Minimierung redundanter Prozesse.
 - o Vorab Lasttests durchführen.
- 2. Datenverlust durch unerwartetes Beenden der Anwendung
 - Beschreibung: Fortschritte oder Einstellungen der Nutzer:innen könnten bei einem Absturz verloren gehen.
 - Eintrittswahrscheinlichkeit: Mittel
 - Schadensausmaß: Hoch
 - Gegenmaßnahmen:
 - o Regelmäßige Autosave-Funktion implementieren.
 - o Backup-Mechanismen für kritische Daten einbauen.

Benutzerbezogene Risiken

- 3. Mangelnde Akzeptanz der Benutzeroberfläche
 - Beschreibung: Die minimalistische Oberfläche oder die Visualisierung des virtuellen Gartens könnten als unattraktiv empfunden werden.
 - Eintrittswahrscheinlichkeit: Mittel
 - Schadensausmaß: Mittel
 - Gegenmaßnahmen:
 - o Feedback einholen und iterativ verbessern.
- 4. Fehlende Motivation zur Nutzung durch schlechte Umsetzung der Gamification
 - Beschreibung: Nutzer:innen könnten die Anwendung nicht regelmäßig verwenden, da die Gamification nicht motivierend genug ist.
 - Eintrittswahrscheinlichkeit: Mittel
 - Schadensausmaß: Hoch
 - Gegenmaßnahmen:
 - Belohnungssystem abwechslungsreich gestalten (z. B. freischaltbare Inhalte, Fortschrittsanzeige).
 - Regelmäßige Erfolgserlebnisse integrieren, die den Nutzer:innen einen Nutzen aufzeigen.

Sicherheitsrisiken

- 5. Datenschutzverletzungen
 - Beschreibung: Speicherung personenbezogener Daten könnte Sicherheitslücken enthalten oder DSGVO-Vorgaben nicht vollständig erfüllen.
 - Eintrittswahrscheinlichkeit: Niedrig
 - Schadensausmaß: Sehr hoch (rechtliche Konsequenzen, Vertrauensverlust)
 - Gegenmaßnahmen:
 - o Speicherung ausschließlich lokal durchführen.
 - o Anonyme Datenerfassung sicherstellen.
 - o Code- und Sicherheits-Audits vor Veröffentlichung.

Projektbezogene Risiken

- 6. Zeitüberschreitung oder Nichterfüllung von Anforderungen
 - Beschreibung: Das Projekt könnte mehr Zeit als geplant in Anspruch nehmen oder einige Features könnten nicht rechtzeitig fertiggestellt werden.
 - Eintrittswahrscheinlichkeit: Hoch
 - Schadensausmaß: Hoch
 - Gegenmaßnahmen:
 - o Projektplanung in Milestones aufteilen.
 - o Priorisierung der wichtigsten Features vornehmen.
- 7. Unerwartete technische Schwierigkeiten (z. B. mit Python-Bibliotheken)
 - Beschreibung: Verwendete Bibliotheken könnten Bugs enthalten oder nicht die gewünschten Funktionen bieten.
 - Eintrittswahrscheinlichkeit: Mittel
 - Schadensausmaß: Mittel
 - Gegenmaßnahmen:
 - o Vorab sorgfältige Auswahl der Bibliotheken treffen.
 - o Alternativen evaluieren und Backup-Lösungen bereithalten.

Bewertungstabelle

Tabelle 1 fasst die identifizierten Risiken zusammen, indem sie diese nach Eintrittswahrscheinlichkeit und Schadensausmaß kategorisiert. Auf Basis dieser Bewertung wird die Priorität der Maßnahmen abgeleitet, um die wichtigsten Risiken gezielt zu adressieren.

Risiko	Eintritts- wahrscheinlichkeit	Schadensausmaß	Maßnahmenpriorität
Leistungsprobleme	Mittel	Hoch	Hoch
Datenverlust	Mittel	Hoch	Hoch
Mangelnde Akzeptanz der UI und Visualisierung	Mittel	Mittel	Mittel
Fehlende Nutzungsmotivation	Hoch	Hoch	Hoch
Datenschutzverletzungen	Niedrig	Sehr hoch	Hoch
Nutzer-Manipulation (Cheating)	Mittel	Mittel	Mittel
Zeitüberschreitung	Hoch	Mittel	Hoch
Technische Schwierigkeiten	Mittel	Mittel	Mittel

Tabelle 1 – Risikoanalyse-Bewertungstabelle

3. Zeitplanung

Bei der Zeitplanung sind einige Kriterien zu berücksichtigen. Zum einen ist es schwierig, den Aufwand für die einzelnen Aufgaben im Voraus abzuschätzen, zum anderen ist es schwierig abzuschätzen, wie viel Zeit an welchen Tagen zur Verfügung steht. Daher ist es wichtig, die Zeitplanung so zu gestalten, dass der aktuelle Fortschritt ständig mit den Zielen verglichen werden kann und gegebenenfalls kleine Anpassungen vorgenommen werden können.

Deswegen wird die Projektzeitplanung kontinuierlich mithilfe eines Gantt-Diagramms überwacht, das zugleich zur Fortschrittskontrolle dient. Dieses ist in Abbildung 1 zu sehen.

Abbildung 1 - Gantt-Diagramm

4. Literaturverzeichnis

Huseynli, B., & Uslu, A. (2024). A Qualitative Study on the Definition and Concept of Gamification. Journal of Economic Sciences: Theory & Practice, 81(1), (S. 40–50). https://doi.org/10.61640/jestp.2024.81.01.03

Matallaoui, A., Hanner, N., & Zarnekow, R. (2016). Introduction to Gamification: Foundation and Underlying Theories. In S. Stieglitz, C. Lattemann, S. Robra-Bissantz, R. Zarnekow, & T. Brockmann, *Gamification: Using Game Elements in Serious Contexts* (S. 3–18). Springer International Publishing AG. http://ebookcentral.proquest.com/lib/badhonnef/detail.action?docID=4710247