Problem Set 2

Submission:

Thursday, 02/17/2022, until 1 PM, to be uploaded on the NYU Brightspace course homepage.

1. Convergence in probability and in distribution

[4 Points]

- (a) Consider a sequence $(X_n)_{n\geq 1}$ of random variables with $\mathbf{P}[X_n=n^{\alpha}]=\frac{1}{n}$ and $\mathbf{P}[X_n=0]=1-\frac{1}{n}$ for every $n\in\mathbb{N}$. For which $\alpha\in\mathbb{R}$ does one have $X_n\xrightarrow[n\to\infty]{\mathbf{P}}0$, and for which does one have $X_n\xrightarrow[n\to\infty]{d}0$? For which ones does one have $\mathbf{E}[X_n]\xrightarrow[n\to\infty]{}0$?
- (b) Suppose that $(X_n)_{n\geq 1}$ is an i.i.d. sequence of Ber(p)-distributed random variables. Determine the quantity a in

$$\frac{1}{n} \sum_{i=1}^{n} \exp(X_i) \xrightarrow[n \to \infty]{\mathbf{P}} a.$$

(c) Suppose that $(X_n)_{n\geq 1}$ is an i.i.d. sequence of random variables with $\mathbf{E}[X_1]=0$ and $\mathrm{Var}[X_1]=\sigma^2\in(0,\infty)$. Argue in detail, why

$$\frac{1}{\log(n)\sqrt{n}} \sum_{i=1}^{n} X_i \xrightarrow[n \to \infty]{\mathbf{P}} 0.$$

Hint: Use the properties of convergence in probability / in distribution from the notes.

2. Some applications of the central limit theorem

[4 Points]

(a) Let $(X_n)_{n\geq 1}$ be a sequence of i.i.d. $\mathcal{U}(\{1,2,3,4\})$ distributed random variables. Consider the expression

$$Z_n = \log\left(\frac{1}{n}\sum_{i=1}^n X_i\right).$$

Find the approximate distribution of Z_n for large n.

Hint: Use the δ -method.

(b) Suppose that the number of goals in a soccer match is Poisson-distributed with mean 3. Assume also that during a season, there are n=300 matches. Use the central limit theorem to find the approximate probability for the event that during a season, there are at least 860 goals, but less than 930 goals in total. You may assume that the numbers of goals in different matches are independent.

3. Asymptotic normality of the t-statistics

[4 Points]

In this problem, we study the t-statistics, which is defined as follows: Let $X_1, ..., X_n$ be i.i.d. real random variables with $\mathbf{E}[X_1] = \mu$, and $\mathrm{Var}[X_1] = \sigma^2 \in (0, \infty)$. The t-statistics is

$$T_{n-1} = \frac{\overline{X}_n - \mu}{S_n / \sqrt{n}}, \qquad \textit{where } \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i, \ S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

The goal of this problem is to show step-by-step that $T_{n-1} \xrightarrow[n \to \infty]{d} \mathcal{N}(0,1)$.

- (a) First argue that one can write $\sum_{i=1}^n (X_i \overline{X}_n)^2$ as $\sum_{i=1}^n X_i^2 (\overline{X}_n)^2$.
- (b) Show that $\frac{1}{n}\sum_{i=1}^n(X_i-\overline{X}_n)^2$ converges in probability to σ^2 . Hint : Apply the weak law of large numbers to both $\frac{1}{n}\sum_{i=1}^nX_i^2$ and to \overline{X}_n . Then use the continuous mapping theorem and the fact that if $Y_n\xrightarrow[n\to\infty]{\mathbf{P}}Y$ and $Z_n\xrightarrow[n\to\infty]{\mathbf{P}}Z$, also $Y_n+Z_n\xrightarrow[n\to\infty]{\mathbf{P}}Y+Z$.
- (c) Conclude from (b) that $S_n^2 \xrightarrow[n \to \infty]{\mathbf{P}} \sigma^2$. Use the continuous mapping theorem *again* to argue that $\frac{1}{S_n} \xrightarrow[n \to \infty]{\mathbf{P}} \frac{1}{\sigma}$.
- (d) Finally use Slutsky's theorem and the central limit theorem to conclude that $T_{n-1} \xrightarrow[n \to \infty]{d} \mathcal{N}(0,1)$.

Hint: Note that $T_{n-1} = \sqrt{n} \frac{\overline{X}_n - \mu}{\sigma} \cdot \frac{\sigma}{S_n}$.

- 4. **(R exercise) Simulating the central limit theorem and law of large numbers** [4 Points] This problem illustrates the central limit theorem and the law of large numbers using simulations of random variables. You can use the software R, which can be found via http://cran.r-project.org/.
 - (a) Consider first i.i.d. random variables $X_1,...,X_n$ with $X_1 \sim Pois(\lambda)$ with $\lambda > 0$.
 - (i) Formulate the law of large numbers and the central limit theorem explicitly for this situation.
 - (ii) To illustrate part (i), simulate M=5000 times the expression in the central limit theorem that converges towards the standard normal distribution $\mathcal{N}(0,1)$, for the fixed parameter $\lambda=\frac{1}{2}$, but for different n, namely $n\in\{5,10,100,1000\}$. Plot the respective histogram and the probability density function of $\mathcal{N}(0,1)$. What do you observe?
 - (iii) Now plot a histogram of the average \overline{X}_n for $n \in \{5, 10, 100, 1000\}$ and M = 5000 repetitions. What do you observe?
 - (b) A random variable X is (standard) Cauchy-distributed if its law has density $f_X(x) = \frac{1}{\pi(1+x^2)}$. Repeat the simulations from (a), part (iii) but with i.i.d. Cauchy-distributed random variables $X_1, ..., X_n$. What do you observe? How can this difference be explained?

Hints:

- rpois() generates a Poisson-distributed random variable with a chosen parameter λ .
- reauchy() generates a Cauchy-distributed random variable.
- pnorm() gives the values of the cumulative distribution function, and dnorm() the values of the probability density function of a normal distribution with chosen parameters μ and σ (not σ^2).
- hist() plots a histogram. Use freq =FALSE for a normalized histogram.
- To compare the histogram to the density of a normal distribution, use the command curve() in the form curve(dnorm(x,...), add=TRUE).
- mean() calculates the mean of a vector, sqrt() the square-root of a number.
- With function() you can define a new function in R.
- You can find details for every R-command by putting a ? in front for the respective function (for instance ?hist).