Trouth	table	g	Bit wise	Openators
--------	-------	---	----------	-----------

œ	b	4 \$ P	a / P	O ~ P	~9
0	0	0	0	0	•
0	1	0	1	•	1
1	0	0	١	`	0
١	\	1	V	0	0
		1	1	1	1

D	۸ ۱	1 1:
Basic	And	properties

In binary representation, if a number is even, then its least significant bit (LSB) is 0.

Conversely, if a number is odd, then its LSB is 1.

$$\frac{10110}{10110}$$

$$\frac{10110}{10110}$$

$$\frac{10110}{10110}$$

$$\frac{10110}{10110}$$

$$\frac{10110}{10110}$$

$$\frac{10110}{10110}$$

Cummulative Property
Lo Order doesn't change the
Hew.
<u> </u>
alb = bla
anb = bna
Associative Property
Lo grouping descrit impact the overall

(A & B) & C - A & (B & C)
(A 1B) 1 C = A1 (B1C)
(A A B) A C = A A (BAC)

ပ်ပျ	
Evaluate the express	sion: a ^ b ^ a ^ d ^ b
anbna	nd n b
${\mathcal T}$	
ananb	~ P ~ Q
7	
$\frac{\sqrt{a}}{a}$	v p v q
<i>p</i> ~	p v q
<u> </u>) vq
	d
Ques	
	ion: 1 ^ 3 ^ 5 ^ 3 ^ 2 ^ 1 ^ 5
112	<u>^3</u> ^2^\^5
(11.21.2	
1 ^ 2 ^ 2	01 815 N2

0 00002

```
deft shift Operator (<<)
       det's lay we have 8 bit numbers,
       a = 10
01 6=
                      => 20
                      => < < =</p>
      000101000
9463 = 01010000 => 80
a < < 4 = 500000 => 160
    gone
         0100000 => 64
a < 1 5 -
                       overflow,
                     Significant bit
                        40P 10B
              (our brandes)
0 << m = 0* 2m
 1 x x m = gm
```

Right Shift Operator (>>)

Q - 20	->	2 (5 4 3 2 1 0 0 0 0 1 0 1 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ded
۵>> ۱	=/	0 0 0 0 1 0 1 0	c) /c
a>> 5	=>	00000101	=> 5
۵>>3	=>	00000000	=> 2
٧ > > ١	=>		=> 1
9775	=)		<u> </u>

0 > > = -	Q
マンシル ニ	
	27
1>>~=	1
	2~

* Jel !th P!t

1 < < 4

0 p (1<<1) 0 1 0 0 0 0 0

To bet; the bit of a number

Taggle ith hois

5 4 3 2 1 0

xor (1<24) 0 1 0 0 0 0

xop 1<<3 00100

N= N ~ (1<<i)

```
# check bit at fauticular idx.
            543210
        N2 101101
      (1<<4) 0 0 0 0
  And
            00000
           5 4 3 2 1 0
       N= 101101
 1<<3 00 00 00 0
            0000
                       -> mon zella.
         3 (O==((i>>1) 21) $
                11 ith bit in m was unset
           el me &
              11 th wit was sel,
                  しくくろ
N=13-3 1,00
                  (1) 10000000
      1000
                  000000000000000
      1000
                  000000000
                                (1442)
```


Over Count no of set toils in N. N=12, -> 1100 -> Fm -> 2. Approach 1:-ろこし function compbit (10) & an = 0', T.C→ O(1) 7.63000 for (1=0", 1<32", 1++) { if (check bit (n), i) & , are neutere 3 Approach 2: 8 Pit 20 N= 1010 → 10000000 00000000 N>>1 = 1 0 0 0 0 0 1 0 1 10000001

Ones one it but of a no. \overline{u} .

Ones one \overline{u} but of \overline{u} \overline{u} .

- O check it boit
- (3) if tit is set than do not.

Junc usel (0,1) ξ if (shappand) ξ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot (1 < i)$ $\lambda \cdot (0) = 0 \cdot ($

A group of computer scientists is working on a project that involves encoding binary numbers. They need to create a binary number with a specific pattern for their project. The pattern requires A 0's followed by B 1's followed by C 0's. To simplify the process, they need a function that takes A, B, and C as inputs and returns the decimal value of the resulting binary number. Can you help them by writing a function that can solve this problem efficiently?

4= 41 B= 3, C= 5

→ 000011100 ← <u>28 m</u>

e .9

4= 4 B= 3, C= 5

A= 2, B= 4, C= 3

2 6 5 4 3 2 1 9

ous = 0',

for (1=0', i < B', i++) € → 4,

set 8:+ (N, C+i);

N = N ((1 < < i)