

FEATURES

 The AO3400 is the N-Channel logic enhancement mode power field effect transistor is produced using high cell density, DMOS trench technology.

This high-density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage application such as cellular phone and notebook computer power management and other batter powered circuits where high side switching.

AO3400 N-Channel MOSFET

Maximum ratings (T_a=25℃ unless otherwise noted)

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	30	V
Gate-Source Voltage	V_{GS}	±12	V
Continuous Drain Current	I _D	5.8	Α
Drain Current-Pulsed (note 1)	I _{DM}	30	Α
Power Dissipation	P_D	350	mW
Thermal Resistance from Junction to Ambient (note 2)	$R_{\theta JA}$	357	°C/W
Junction Temperature	TJ	150	°C
Storage Temperature	T _{STG}	-55~+150	°C

AO3400

Electrical Characteristics (TA=25°C, unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit			
Off Characteristics									
Drain-source breakdown voltage	V(BR) DSS	V _G S = 0V, I _D =250µA	30			V			
Zero gate voltage drain current	IDSS	V _{DS} =24V,V _{GS} = 0V			1	μA			
Gate-source leakage current	Igss	V _{GS} =±12V, V _{DS} = 0V			±100	nA			
On characteristics									
Drain-source on-resistance (note 3)	RDS(on)	V _{GS} =10V, I _D =5.8A			35	mΩ			
		V _{GS} =4.5V, I _D =5A			40	mΩ			
		V _{GS} =2.5V,I _D =4A			52	mΩ			
Forward tranconductance	grs	V _{DS} =5V, I _D =5A	8			S			
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250μA	0.7		1.4	V			
Dynamic Characteristics (note 4,5)									
Input capacitance	Ciss				1050	pF			
Output capacitance	Coss	V _{DS} =15V,V _{GS} =0V,f =1MHz		99		pF			
Reverse transfer capacitance	Crss			77		pF			
Gate resistance	Rg	V _{DS} =0V,V _{GS} =0V,f =1MHz			3.6	Ω			
Switching Characteristics (note 4,5)									
Turn-on delay time	td(on)				5	ns			
Turn-on rise time	tr	V _{GS} =10V,V _{DS} =15V,			7	ns			
Turn-off delay time	td(off)	R_L =2.7 Ω , R_{GEN} =3 Ω			40	ns			
Turn-off fall time	tf				6	ns			
Drain-source diode characteristics and maximum ratings									
Diode forward voltage (note 3)	V_{SD}	I _S =1A,V _{GS} =0V			1	V			

Note:

- 1. Repetitive Rating : Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t < 5 sec.
- 3. Pulse Test : Pulse Width≤300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production testing.

AO3400 Typical Characteristics

AO3400 Typical Characteristics

Figure 11: Normalized Maximum Transient Thermal Impedance