Association rules

Data Mining Laboratory

Ewa Figielska

Affinity analysis

- Affinity analysis is the study of attributes or characteristics that "go together."
- Methods for affinity analysis (also known as market basket analysis) seek to uncover associations among attributes.
- Association rules take the form:

"If antecedent, then consequent,"

along with a measure of the **support** and **confidence** associated with the rule.

Example.

A particular supermarket may find that of the 1000 customers shopping on a Thursday night, 200 bought diapers, and 50 of them bought beer.

The association rule is:

"If buy diapers, then buy beer,"

with a support of 50/1000 = 5% and a confidence of 50/200 = 25%.

Examples of association tasks

- Examining the proportion of children whose parents read to them who are themselves good readers
- Predicting degradation in telecommunications networks
- Finding out which items in a supermarket are purchased together, and which items are never purchased together
- Determining the proportion of cases in which a new drug will exhibit dangerous side effects

Problems with creating association rules

- The number of possible association rules grows exponentially with the number of attributes.
- If there are k attributes (limited o to binary attributes, buy beer = yes, buy beer = no) there are on the order of $k2^{k-1}$ possible association rules.
- Example.

For three items a, b, c, there are $3 \cdot 2^2 = 12$ rules

Rule #		Rule #	
1	a -> b	7	a, b -> c
2	a -> c	8	a, c -> b
3	b -> a	9	b, c -> a
4	b -> c	10	a -> b, c
5	c -> a	11	b -> a,c
6	c -> b	12	c -> a, b

- Typically there may be thousands of binary attributes (buy beer? buy popcorn? buy milk? buy bread? etc.)
- Example.

Suppose that a tiny store has 100 different items, and a customer could either buy or not buy any combination of those 100 items. So, there are $100 \cdot 2^{99} \cong 6.4 \cdot 10^{31}$ possible association rules.

The a priori algorithm for mining association rules takes advantage of structure within the rules themselves to reduce the search problem to a more manageable size.

Example. Data representation.

• Set *I* of 7 items: bread, butter, cheese, honey, milk, sugar and tea.

transaction #	bread	butter	cheese	honey	milk	sugar	tea
1	0	0	1	1	1	0	0
2	1	0	0	1	0	1	0
3	0	1	0	1	0	1	1
4	0	1	0	1	1	0	1
5	1	1	1	0	0	0	0
6	1	1	0	0	0	1	1
7	0	0	0	1	0	0	1
8	0	0	1	0	1	0	1
9	1	1	0	0	0	1	0
10	0	1	0	1	0	0	0
11	0	1	1	0	1	1	0
12	1	1	0	0	0	1	0
13	1	1	0	1	0	1	0
14	0	1	1	1	1	0	1

Tabular data format

Support, confidence

- Let D be the set of transactions.
- Each transaction T in D represents a set of items contained in I (I is the set of items).
- Suppose that we have a particular set of items A (e.g. butter and sugar), and another set of items B (e.g. bread). An association rule takes the form:

if A, then B (i.e.
$$A \Rightarrow B$$
),

where the **antecedent** A and the **consequent** B are proper subsets of I, and A and B are mutually exclusive.

• The support, s, for a particular association rule $A \Rightarrow B$:

$$s = P(A \cap B) = \frac{\text{number of transactions containing both } A \text{ and } B}{\text{total number of transactions}}$$

• The confidence, c, of the association rule $A \Rightarrow B$ is a measure of the accuracy of the rule:

$$c = P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{\text{number of transactions containing both } A \text{ and } B}{\text{number of transactions containing } A}$$

Strong rules = rules which meet or surpass certain minimum support and confidence criteria.

Frequent itemsets.

- An itemset is a set of items contained in I.
- The k-itemset is an itemset containing k items.
- The itemset frequency is the number of transactions that contain the particular itemset.
- A **frequent itemset** is an itemset that occurs at least a certain minimum number of times, having itemset frequency $\geq \Phi$.
- The itemsets that occur Φ and more than Φ times are said to be **frequent**.
- The set of frequent k-itemsets is denoted as F_k .

Mining association rules.

- The mining of association rules from large databases is a two-steps process:
 - 1. Find all frequent itemsets (i.e. find all itemsets with frequency $\geq \Phi$).
 - 2. From the frequent itemsets, generate association rules satisfying the minimum support and confidence conditions.

A PRIORI PROPERTY

If an itemset Z is not frequent then for any item A, $Z \cup A$ will not be frequent.

The a priori algorithm takes advantage of the a priori property to shrink the search space.

Example. Algorithm a priori. Generating frequent itemsets

- Let $\Phi = 4$.
- F_1 is the set of the frequent 1-itemsets; it represents the individual items themselves.

 $F_1 = \{\{bread\}, \{butter\}, \{cheese\}, \{honey\}, \{milk\}, \{sugar\}, \{tea\}\}.$

itemset	count
bread	6
butter	10
cheese	5
honey	8
milk	5
sugar	7
tea	6

- F_2 is the set of the frequent 2-itemsets.
- $F_2 = \{\{bread, butter\}, \{bread, sugar\}, \{butter, honey\}, \{butter, sugar\}, \{butter, tea\}, \{cheese, milk\}, \{honey, tea\}\}.$

itemset	cout	itemset	count
bread, butter	5	cheese, honey	2
bread, cheese	1	cheese, milk	4
bread, honey	2	cheese, sugar	1
bread, milk	0	cheese, tea	2
bread, sugar	5	honey, milk	3
bread, tea	1	honey, sugar	3
butter, cheese	3	honey, tea	4
butter, honey	5	milk, sugar	1
butter, milk	3	milk, tea	3
butter, sugar	6	sugar, tea	2
butter, tea	4		

Example. Generating frequent itemsets

In general, to find F_k , the a priori algorithm:

- constructs a set C_k of candidate k-itemsets by joining F_{k-1} with itself,
 - e.g. C_3 of candidate 3- itemsets is constructed by joining itemstests from F_2 if they have the first 2-1=1 items in common;
 - in general, itemsets from F_n are joined if they have the first n-1 items in common (in alphabetical order).
- prunes C_k using the a priori property;

itemset	cout	itemset	count
bread, butter	5	cheese, honey	2
bread, cheese	1	cheese, milk	4
bread, honey	2	cheese, sugar	1
bread, milk	0	cheese, tea	2
bread, sugar	5	honey, milk	3
bread, tea	1	honey, sugar	3
butter, cheese	3	honey, tea	4
butter, honey	5	milk, sugar	1
butter, milk	3	milk, tea	3
butter, sugar	6	sugar, tea	2
butter, tea	4		

```
F_2 = \{\{bread, butter\}, \{bread, sugar\}, \{butter, honey\}, \{butter, sugar\}, \{butter, tea\}, \{cheese, milk\}, \{honey, tea\}\}.
C_3 = \{\{bread, butter, sugar\}, \{butter, honey, sugar\}, \{butter, honey, tea\}, \{butter, sugar, tea\}\}
```

Pruning C_3 using the a priori property.

- For each itemset t in C_3 , its subsets of size 2 (i.e. k-1) are generated and examined.
- If any of these subsets are not frequent, t cannot be frequent and is therefore pruned.

Pruned itemsets:

- {butter, honey, sugar} because {honey, sugar} is not frequent
- {butter, sugar, tea} because {sugar, tea} is not frequent

The count of the remaining sets is checked:

- {bread, butter, sugar} count = $4 = \Phi$, thus $F_3 = \{bread, butter, sugar\}$
- $\{butter, honey, tea\}$ count = $3 \le \Phi$; this itemset is pruned

Generating association rules

- 1. For each frequent itemset t, generate all subsets of t.
- 2. Let tt represent a nonempty subset of t. Consider the association rule R: $tt \Rightarrow (t tt)$, where (t tt) indicates the set t without tt. Generate R if R fulfills the minimum confidence requirement. Do so for every subset tt of t (note that for simplicity, a single-item consequent is often desired).
- Consider F_3

$$F_3 = \{bread, butter, sugar\}$$

```
The proper subsets of t = \{bread, butter, sugar\}: \{bread\}, \{butter\}, \{sugar\}, \{bread, butter\}, \{bread, sugar\}, \{butter, sugar\}
```

Candidate association rules with two antecedents

- 1. {bread,butter} \Rightarrow {sugar}; s = 4/14 = 28.6%; c = 4/5 = 80%
- 2. {bread,sugar} \Rightarrow {butter}; s = 4/14 = 28.6%; c = 4/5 = 80%
- 3. {butter,sugar} \Rightarrow {bread}; s = 4/14 = 28.6%; c = 4/6 = 66.7%

cout	itemset	count
5	cheese, honey	2
1	cheese, milk	4
2	cheese, sugar	1
0	cheese, tea	2
5	honey, milk	3
1	honey, sugar	3
3	honey, tea	4
5	milk, sugar	1
3	milk, tea	3
6	sugar, tea	2
4		
	5 1 2 0 5 1 3 5 3	5 cheese, honey 1 cheese, milk 2 cheese, sugar 0 cheese, tea 5 honey, milk 1 honey, sugar 3 honey, tea 5 milk, sugar 3 milk, tea 6 sugar, tea

itemset	count	
bread	6	
butter	10	
cheese	5	
honey	8	
milk	5	
sugar	7	
tea	6	

$$s = P(A \cap B)$$
 $c = P(B|A) = \frac{P(A \cap B)}{P(A)}$

Generating association rules

Consider F₂

 $F_2 = \{\{bread, butter\}, \{bread, sugar\}, \{butter, honey\}, \{butter, sugar\}, \{butter, tea\}, \{cheese, milk\}, \{honey, tea\}\}.$

The proper subsets of $t = \{bread, butter\}$: $\{bread\}, \{butter\}$, and so on...

Candidate association rules:

- 1. {bread} \Rightarrow {butter}; s = 5/14 = 35.7%; c = 5/6 = 83.3%
- 2. {butter} \Rightarrow {bread}; s = 5/14 = 35.7 %; c = 5/10 = 50%
- 3. {bread} \Rightarrow {sugar}; s = 5/14 = 35.7%; c = 5/6 = 83.3%
- 4. $\{\text{sugar}\} \Rightarrow \{\text{bread}\}; \ \ \text{s} = 5/14 = 35.7 \%; \ \ \text{c} = 5/7 = 71.4\%$
- 5. {butter} \Rightarrow {honey}; s = 5/14 = 35.7 %; c = 5/10 = 50%
- 6. {honey} \Rightarrow {butter}; s = 5/14 = 35.7 %; c = 5/8 = 62.5%
- 7. {butter} \Rightarrow {sugar}; s = 6/14 = 42.9%; c = 6/10 = 60%
- 8. {sugar} \Rightarrow {butter}; s = 6/14 = 42.9%; c = 6/7 = 85.7%
- 9. {butter} \Rightarrow {tea}; s = 4/14 = 28.6%; c = 4/10 = 40%
- **10.** $\{\text{tea}\} \Rightarrow \{\text{butter}\}; \quad \text{s} = 4/14 = 28.6\%; \quad \text{c} = 4/6 = 66.7\%$
- 11. {cheese} \Rightarrow {milk}; s = 4/14 = 28.6%; c = 4/5 = 80%
- 12. {milk} \Rightarrow {cheese}; s = 4/14 = 28.6%; c = 4/5 = 80%
- **13.** {honey} \Rightarrow {tea}; s = 4/14 = 28.6%; c = 4/8=50%
- **14.** $\{\text{tea}\} \Rightarrow \{\text{honey}\};$ s = 4/14 = 28.6%; c = 4/6 = 66.7%

itemset	count
bread	6
butter	10
cheese	5
honey	8
milk	5
sugar	7
tea	6

itemset	cout	itemset	count
bread, butter	5	cheese, honey	2
bread, cheese	1	cheese, milk	4
bread, honey	2	cheese, sugar	1
bread, milk	0	cheese, tea	2
bread, sugar	5	honey, milk	3
bread, tea	1	honey, sugar	3
butter, cheese	3	honey, tea	4
butter, honey	5	milk, sugar	1
butter, milk	3	milk, tea	3
butter, sugar	6	sugar, tea	2
butter, tea	4		

Example in R language

```
1. install.packages("arules")
2. library(arules)
3. td <- read.transactions('mstore1.csv', sep=',') # read file as
   transactions, usual read.csv() won't do,
                                                                     1 cheese, honey, milk
                                                                     2 bread, honey, sugar
   as it expects equal number of data points
                                                                     3 butter, honey, sugar, tea
   per row
                                                                     4 butter, honey, milk, tea
                                                                     5 bread, butter, cheese
                                                                     6 bread, butter, sugar, tea
                                                                     7 honey, tea
                                                    Data file with
                                                                     8 cheese, milk, tea
                                                                     9 bread, butter, sugar
                                                    transactions
                                                                    10 butter, honey
                                                                    11 butter, cheese, milk, sugar
                                                                    12 bread, butter, sugar
                                                                    13 bread, butter, honey, sugar
                                                                    14 butter, cheese, honey, milk, tea
4. arules <- apriori(td,parameter=list(supp=0.2,conf=.80, minlen=2,
   maxlen=3, target='rules')) # run a priori algorithms
5. inspect (arules)
                       #show the rules
6. inspect (sort (arules, by="confidence", decreasing=TRUE)) #sort the
   rules
                            > inspect(sort(rules, by="confidence", decreasing=TRUE))
                                1hs
                                                                     confidence lift
                                                            support
                            [1] {sugar}
                                               => {butter} 0.4285714 0.8571429 1.200000
                            [2] {bread}
                                               => {sugar} 0.3571429 0.8333333
                                                                               1.666667
                               {bread}
                                               => {butter} 0.3571429 0.8333333
                                                                               1.166667
                               {cheese}
                                               => {milk}
                                                           0.2857143 0.8000000 2.240000
                                {milk}
                                               => {cheese} 0.2857143 0.8000000 2.240000
                            Γ51
                                {bread.sugar}
                                               => {butter} 0.2857143 0.8000000 1.120000
                Output
                               {bread,butter} => {sugar} 0.2857143 0.8000000
                                                                                 1.600000
```

Example using tabular data format

```
1. d<-read.csv("mstore2.csv")</pre>
2. rules<-apriori(d, parameter = list(supp = 0.2, conf=0.80, maxlen=3, target =
    'rules'))
3. inspect(rules)
                                       > inspect(rules)
                                            1hs
                                                                  rhs
                                                                            support confidence lift
                                       [1]
                                            {cheese=y}
                                                               => {milk=y}
                                                                            0.2857143 0.8000000 2.240000
                                       [2]
                                            \{milk=y\}
                                                               => {cheese=y} 0.2857143 0.8000000 2.240000
                                       [3]
                                            {cheese=y}
                                                               => {sugar=n} 0.2857143 0.8000000 1.600000
                                       [4]
                                            {cheese=y}
                                                               => {bread=n} 0.2857143 0.8000000 1.400000
                                       [5]
                                            {milk=y}
                                                               => {sugar=n} 0.2857143 0.8000000 1.600000
                                       [6]
                                            {milk=y}
                                                               => {bread=n} 0.3571429 1.0000000 1.750000
                                                               => {sugar=y} 0.3571429 0.8333333 1.666667
                                       [7]
                                            {bread=y}
                                       [8]
                                            {bread=v}
                                                               => {tea=n}
                                                                            0.3571429 0.8333333 1.458333
                                       [9]
                                            {bread=y}
                                                              => {cheese=n} 0.3571429 0.8333333 1.296296
                                       [10]
                                            {bread=y}
                                                               => {milk=n} 0.4285714 1.0000000 1.555556
                                                            => {butter=y} 0.3571429 0.8333333 1.166667
                                            {bread=y}
                                       [11]
                                       Γ127
                                           {tea=v}
                                                               => {bread=n} 0.3571429 0.8333333 1.458333
   if we are interested in rules with sugar as the consequence
```

- 4. rules_sugar<-apriori(d, parameter=list(supp=0.2, conf = 0.8, maxlen=3),
 appearance = list(default="lhs",rhs="sugar=y")) # lhs left hand sise, rhs
 right hand side of the rule</pre>
- 5. inspect(rules_sugar)