What do we really need

Image perception beyond classification

• Format 1: semantic segmentation

Image perception beyond classification

Format 2: object detection

Image perception beyond classification

• Format 3: instance segmentation

Panoptic segmentation

Different approaches for "things" and "stuff"

Answering the "where" question

- Semantic segmentation:
 - Faster / easier than instance segmentation
 - Allows "complete" explanation
 - Merges instances
 - Suitable for "staff" and "things"
- Object detection
 - Faster / easier than instance segmentation
 - Distinguishes instances
 - Inaccurate for some classes
 - Incomplete
 - Suitable for "things"
- Instance / Panoptic segmentation
 - Complete
 - Distinguish instances
 - Accurate
 - Harder / slower

(b) semantic segmentation

(d) panoptic segmentation

Detection vs classification

Detection is harder than classification:

- Localization errors
- Huge class disbalance
- Variation in scale and aspect ratio's
- Tricky occlusions, including "intra"-occlusions

Intersection-over-Union measure

Common criterion for correct boxes:

Intersection / Union > threshold threshold – 0.5 or 0.7+

Average precision

- AP@T AP with T as threshold on iou
- mAP averaging over all classes
- AP@0.5:0.95 averaging over different thresholds on iou

Double detection

• Double detection of the same object is penalized as false positive

Non-maximum suppression

Input: set of detections ({Bi, si})

- 1) Sort in the descending order of si
- 2) For i = 1 to N
- 3) Pick the bounding box i
- 4) Suppress all subsequent boxes with IoU > T

Soft-NMS

Input: set of detections ($\{B_i, s_i\}$)

- 1) Sort in the descending order of s_i
- 2) For i = 1 to N
- 3) Pick the bounding box i
- 4) Update s_j for all subsequent boxes with IoU > T
- 5) Reorder boxes according to updated s_j

Option 1:
$$s_i = \begin{cases} s_i, & \text{iou}(\mathcal{M}, b_i) < N_t \\ s_i(1 - \text{iou}(\mathcal{M}, b_i)), & \text{iou}(\mathcal{M}, b_i) \ge N_t \end{cases},$$

Option 2:
$$s_i = s_i e^{-\frac{\mathrm{iou}(\mathcal{M}, b_i)^2}{\sigma}}, \forall b_i \notin \mathcal{D}$$

Soft-NMS

Method	Training data	Testing data	AP 0.5:0.95	AP @ 0.5	AP small	AP medium	AP large	Recall @ 10	Recall @ 100
R-FCN [16]	train+val35k	test-dev	31.1	52.5	14.4	34.9	43.0	42.1	43.6
R-FCN + S-NMS G	train+val35k	test-dev	32.4	53.4	15.2	36.1	44.3	46.9	52.0
R-FCN + S-NMS L	train+val35k	test-dev	32.2	53.4	15.1	36.0	44.1	46.0	51.0
F-RCNN [24]	train+val35k	test-dev	24.4	45.7	7.9	26.6	37.2	36.1	37.1
F-RCNN + S-NMS G	train+val35k	test-dev	25.5	46.6	8.8	27.9	38.5	41.2	45.3
F-RCNN + S-NMS L	train+val35k	test-dev	25.5	46.7	8.8	27.9	38.3	40.9	45.5
D-RFCN [3]	trainval	test-dev	37.4	59.6	17.8	40.6	51.4	46.9	48.3
D-RFCN S-NMS G	trainval	test-dev	38.4	60.1	18.5	41.6	52.5	50.5	53.8
D-RFCN + MST	trainval	test-dev	39.8	62.4	22.6	42.3	52.2	50.5	52.9
D-RFCN + MST + S-NMS G	trainval	test-dev	40.9	62.8	23.3	43.6	53.3	54.7	60.4

Table 1. Results on MS-COCO test-dev set for R-FCN, D-RFCN and Faster-RCNN (F-RCNN) which use NMS as baseline and our proposed Soft-NMS method. G denotes Gaussian weighting and L denotes linear weighting. MST denotes multi-scale testing.

Multi-class detection

 Lots of research is going towards object detection for a large number of classes

General ideas for object detection

- Sliding-window: use binary classification to classify every possible subwindow (infeasible with DL)
- Region proposal: pick a subset of prospective regions and score them with a binary classifier
- Bounding box regression: predict the coordinates of the boxes as realvalued variables

R-CNN framework

R-CNN: Regions with CNN features

- Use an external box proposal method
- Fine-tune the ConvNet to score proposal

Example source of external proposals

 Graph-based hierarchical segmentation based on maximum-spanning trees

Fast R-CNN

Processing lots of overlapping boxes is inefficient

Faster R-CNN

 Key novelty: the proposals come from "sparse sliding window search"

Region Proposal Network

- Two types of heads:
 - Anchor classification
 - Regression on encoded box parameters:

$$t_{\rm x} = (x - x_{\rm a})/w_{\rm a}, \quad t_{\rm y} = (y - y_{\rm a})/h_{\rm a},$$

 $t_{\rm w} = \log(w/w_{\rm a}), \quad t_{\rm h} = \log(h/h_{\rm a}),$

- Anchors:
 - Different scale (3 scales in paper)
 - Different aspect ratio (3 aspect ratios in the paper)
- Gt assignment based on IoU

Extension for Instance Segmentation

Mask R-CNN: adding mask prediction

- Masks for different classes are predicted and scored independently (decoupling classification and segmentation)
- Top-down approach to instance segmentation

Mask R-CNN results

DensePose: closer loop at people

DensePose: format

[Guler et al. "DensePose: Dense Human Pose Estimation In The Wild", CVPR 2018]

DensePose: example annotations

DensePose: prediction

DensePose

[Guler et al. "DensePose: Dense Human Pose Estimation In The Wild", CVPR 2018]

SSD: Single-shot detector

- 1. One-stage detection: united model for region proposal and classification
- 2. Anchor boxes on different scales

Examples: SSD detection

RetinaNet: improving one-shot detection

• Fixing neural architecture (better processing to small objects)

RetinaNet: improving one-shot detection

 New box classification loss (better for background boxes classification)

$$FL(p,y) = \begin{cases} -\alpha(1-p)^{\gamma} \log p, & \text{if } y = 1\\ -p^{\gamma} \log(1-p), & \text{otherwise.} \end{cases}$$

 α = 0.25, γ = 2 used in practice

EfficientDet

- Better backbone
- Combination of top-down and bottom-up streams with skip-connections

FCOS detector

- At each pixel predicting:
 - C binary labels
 - Offsets
 - Smaller boxes have priority for offsets

FCOS detector

FCOS losses

• Loss:

$$egin{aligned} L(\{m{p}_{x,y}\}, \{m{t}_{x,y}\}) &= rac{1}{N_{ ext{pos}}} \sum_{x,y} L_{ ext{cls}}(m{p}_{x,y}, c^*_{x,y}) \\ &+ rac{\lambda}{N_{ ext{pos}}} \sum_{x,y} \mathbb{1}_{\{c^*_{x,y} > 0\}} L_{ ext{reg}}(m{t}_{x,y}, m{t}^*_{x,y}), \end{aligned}$$

• Centerness:

centerness* =
$$\sqrt{\frac{\min(l^*, r^*)}{\max(l^*, r^*)} \times \frac{\min(t^*, b^*)}{\max(t^*, b^*)}}$$
.

• GloU:

$$GIoU = IoU - \frac{|C \setminus (A \cup B)|}{|C|}$$
 $IoU = \frac{|A \cap B|}{|A \cup B|}$

 $\|.\|_{1} = 9.07$ IoU = 0.59GIoU = 0.59

IoU = 0.66GIoU = 0.62