BUSINESS CASE PRESENTATION

OUR CURRENT GOALS

- Solve customer complaints regarding delivery times.
- Assess drivers' performance and behaviour.
- Use the information obtained to yield higher productivity and improve customer satisfaction.

GENERAL OVERVIEW

A recollection of our main observations

4,172 parcels delivered in one day

3,342 customers

we delivered to in one day

95.2%

delivery success rate

MAIN OBSERVATIONS

Early vs. On Time

Early orders do not often mean failed orders, but they could still be negatively affecting customer satisfaction

Early vs. Late

There are significantly more early orders than late orders, which means customers could be more often unhappy due to early delivery

Productivity

Productivity heavily varies among drivers. There is low consistency in this metric which affects the overall productivity

Shift Length

Whilst shift length is highly varied, it does not seem to have any correlation to the driver's productivity

Success Rate

Whilst the overall success rate is pretty high, only a few drivers are responsible for most failed deliveries.

Relative Productivity

Relative productivity (orders/hour delivered compared to the average) is a great metric to measure a driver's performance

BEST PERFORMERS

A look into our best drivers

SUCCESS RATE

Driver	Orders Delivered	Productivity (Orders/Hour)	Relative Productivity
Leena Byers	20	46	638%
Adolph Nottingham	71	14	192%
Lorilee Thrasher	109	13	177%

B

WORST PERFORMERS

A look into the drivers that need more attention

SUCCESS RATE

Driver	Orders Attempted	Orders Failed	Success Rate
Noah Niver	23	9	61%
Ramona Dvorak	106	35	67%
Julio Chapin	122	40	67%

PRODUCTIVITY

Driver	Parcels Delivered	Productivity (Parcels/Hour)	Relative Productivity
Velvet Homeyer	21	2.9	30%
Terence Sheely	33	4.2	43%
Olivia Hux	37	7.1	73%

PUNCTUALITY

Driver	Orders Attempted	Early Orders	Late Orders
Winter Dannenberg	18	67%	O%
Jewell Santillan	39	54%	O%
Tobias Flagler	12	8%	33%

RECOMMENDATIONS

A concise proposal on what actions to take

The variability of driver productivity is too large and needs to be standardized

ACTION PLAN PROPOSAL

Reduce early and late orders

By emphasising the importance of punctuality, adjusting drivers' schedules to fit their productivity and thus avoid both early or late deliveries.

Improve the delivery success rate

By improving drivers' punctuality and delivery strategies.

Increase individual driver productivity

By reinforcing good performance, encouraging low performers to improve, and monitoring the overall execution by implementing improved data analysis metrics.

WHAT'S NEXT?

Improvements in our data analysis

KPI CHART TO MEASURE INDIVIDUAL PERFORMANCE

We are working toward creating an accessible individual report for each driver to easily measure their performance using selected KPIs displayed in a radar chart.

Relative Productivity per Parcel

COMPARÉ DRIVERS TO ONE ANOTHER

Likewise, we will also be able to use the KPI radar charts to compare one driver to another, or to compare a given driver to the average in order to highlight his/her strengths and weaknesses.

NEXT MOVES FOR THE DATA TEAM

Thresholds of Success

Add metrics to our analysis to quickly assess drivers' performance by defining 2 threshold, one for good performance and one that indicates improvement is needed

Scheduling AI Program

Build a machine learning program that helps better plan each driver's schedule based on their performance regarding speed and punctuality (the Al would infer each driver's pattern and adjust its recommendation)

Thank you for your time

Reach out to us for more detailed information!