Dialectica Categories for the Lambek Calculus

Valeria de Paiva Nuance Communications Harley Eades III Computer Science Augusta University

LFCS 2016

"Why are there no dialectica models or adjoint models for non-commutative linear logic?"

Amsterdam Logic Colloquium 1991

"Valeria de Paiva. <u>A Dialectica model of the Lambek calculus</u>. In 8th Amsterdam Logic Colloquium, 1991."

Computational Linguistics Community

"Can we extend the Lambek Calculus with a modality that does for the structural rule of (exchange) what the modality of course '!' does for the rules of (weakening) and (contraction)."

Morrill et. al

$$\frac{\Gamma_{1} + A}{A \vdash A} \text{ AX} \qquad \frac{\Gamma_{2} \vdash A}{\vdash I} \text{ UR} \qquad \frac{\Gamma_{2} \vdash A}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3} \vdash B} \text{ CUT} \qquad \frac{\Gamma_{1}, \Gamma_{2} \vdash A}{\Gamma_{1}, I, \Gamma_{2} \vdash A} \text{ UL}$$

$$\frac{\Gamma, A, B, \Gamma' \vdash C}{\Gamma, A \otimes B, \Gamma' \vdash C} \text{ TL} \qquad \frac{\Gamma_{1} \vdash A}{\Gamma_{1}, \Gamma_{2} \vdash A \otimes B} \text{ TR}$$

$$\frac{\Gamma_{2} \vdash A}{\Gamma_{1}, A \rightharpoonup B, \Gamma_{2}, \Gamma_{3} \vdash C} \text{ IRL} \qquad \frac{\Gamma_{2} \vdash A}{\Gamma_{1}, \Gamma_{2}, B \leftharpoonup A, \Gamma_{3} \vdash C} \text{ ILL}$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightharpoonup B} \text{ IRR} \qquad \frac{A, \Gamma \vdash B}{\Gamma \vdash B \leftharpoonup A} \text{ ILR}$$

$$\frac{\Gamma, A, B, \Gamma' \vdash C}{\Gamma, A \otimes B, \Gamma' \vdash C} \text{ TL}$$

$$\frac{\Gamma_1 \vdash A \qquad \Gamma_2 \vdash B}{\Gamma_1, \Gamma_2 \vdash A \otimes B} \text{ TR}$$

$$egin{array}{c|c} \hline B dash B & \overline{A} dash A \ \hline B, A dash B \otimes A \ \hline A, B dash B \otimes A \ \hline A \otimes B dash B \otimes A \ \hline \end{array}$$

$$\frac{A, \Gamma \vdash B}{\Gamma \vdash B \leftharpoonup A} \text{ ILR} \qquad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightharpoonup B} \text{ IRR}$$

```
"Elise" has type n
"works" has type s \leftarrow n
"Elise works" has type s
"here" has type s \leftarrow s
"(Elise works) here" has type s
"never" has type (s \leftarrow n) \rightharpoonup (s \leftarrow n)
"Elise (never works)" has type s
```

"and" has type $s \rightarrow (s \leftarrow s)$

But, isn't "and" commutative in English?

$$\frac{\Gamma_1, A, \Gamma_2 \vdash B}{\Gamma_1, \kappa A, \Gamma_2 \vdash B} \stackrel{\text{EL}}{=} \frac{\kappa \Gamma \vdash B}{\kappa \Gamma \vdash \kappa B} \stackrel{\text{ER}}{=}$$

$$\frac{\Gamma_1, A, \kappa B, \Gamma_2 \vdash C}{\Gamma_1, \kappa B, A, \Gamma_2 \vdash C} \to 2$$

$$\frac{\Gamma_1, \kappa A, B, \Gamma_2 \vdash C}{\Gamma_1, B, \kappa A, \Gamma_2 \vdash C} \to 1$$

"and" has type
$$s \rightarrow (s \leftarrow s)$$

"and" has type
$$s \rightarrow (s \leftarrow \kappa s)$$

$$s \rightharpoonup (s \leftharpoonup \kappa s) \Leftrightarrow (\kappa s \otimes s) \rightharpoonup s$$

Original Dialectica Construction

Suppose \mathcal{C} is a monoidal category, and $\Omega \in \mathsf{Obj}(C)$ is a lineale $(\Omega, \multimap, \cdot, \leq, e)$. Then the category $\mathsf{Dial}_{\Omega}(C)$ is defined as follows:

Objects: (U, X, α) where $U, X \in \mathsf{Obj}(C)$ and $\alpha : U \otimes X \longrightarrow \Omega$

Morphisms: $(f, F) : (U, X, \alpha) \longrightarrow (V, Y, \beta)$ where $f \in \text{Hom}_C(U, V)$ and $F \in \text{Hom}_C(Y, X)$ such that:

Dialectica Categories

$$\forall u \in U. \forall y \in Y. \alpha(u, F(y)) \leq_{\Omega} \beta(f(u), y)$$

$$\begin{array}{c|c} U \otimes Y & \xrightarrow{\mathsf{id}_{U} \otimes F} & U \otimes X \\ & | & | & | \\ f \otimes \mathsf{id}_{Y} & \geq_{\Omega} & \overset{\alpha}{\downarrow} \\ V \otimes Y & \xrightarrow{\beta} & \Omega \end{array}$$

Dialectica Categories

- Tull Intuitionistic Linear Logic:
 - Multiplicatives: Tensor and Par
 - O Additives: Products and Coproducts
 - O Modalities: of-course (!) and why-not (?)

Lambek Dialectica Spaces

Suppose $(M, \leq, \circ, e, \rightarrow, \leftarrow)$ is a biclosed poset. Then we define the category of **dialectica Lambek spaces**, $\mathsf{Dial}_M(\mathsf{Set})$, as follows:

Objects: (U, X, α) where $U, X \in \mathsf{Obj}(\mathsf{Set})$ and $\alpha : U \times X \longrightarrow M$

Morphisms: $(f, F) : (U, X, \alpha) \longrightarrow (V, Y, \beta)$ where $f \in \mathsf{Hom}_{\mathsf{Set}}(U, V)$, and $F \in \mathsf{Hom}_{\mathsf{Set}}(Y, X)$ s.t.

$$\forall u \in U. \forall y \in Y. \alpha(u, F(y)) \leq \beta(f(u), y)$$

Lambek Dialectica Spaces: Tensor Product

$$(U, X, \alpha) \otimes (V, Y, \beta) = (U \times V, (V \to X) \times (U \to Y), \alpha \otimes \beta)$$

$$(\alpha \otimes \beta)((u,v),(f,g)) = \alpha(u,f(v)) \circ \beta(g(u),v)$$

Lambek Dialectica Spaces: Internal Homs

$$(V, Y, \beta) \leftarrow (U, X, \alpha) = ((U \rightarrow V) \times (Y \rightarrow X), U \times Y, \alpha \leftarrow \beta)$$

$$(U, X, \alpha) \rightharpoonup (V, Y, \beta) = ((U \rightarrow V) \times (Y \rightarrow X), U \times Y, \alpha \rightharpoonup \beta)$$

$$\mathsf{Hom}(A \otimes B, C) \cong \mathsf{Hom}(A, B \rightharpoonup C)$$

$$\mathsf{Hom}(A \otimes B, C) \cong \mathsf{Hom}(B, C \leftharpoonup A)$$

Lambek Dialectica Spaces: of-course Modality

$$!(U,X,\alpha)=(U,U\to X^*,!\alpha)$$

 $(!\alpha)(u,f)=\alpha(u,x_1)\circ\cdots\circ\alpha(u,x_i)$
where $f(u)=(x_1,\ldots,x_i)$

Lambek Dialectica Spaces: of-course Modality

$$\varepsilon_{!} : !A \longrightarrow A$$

$$\delta_{!} : !A \longrightarrow !!A$$

$$e : !A \longrightarrow I$$

$$d : !A \longrightarrow !A \otimes !A$$

Lambek Dialectica Spaces: exchange Modality

$$\kappa(U, X, \alpha) = (U, X, \kappa\alpha)$$

$$(\kappa\alpha)(u,x) = \kappa(\alpha(u,x))$$

Lambek Dialectica Spaces: exchange Modality

$$\varepsilon_{\kappa} : \kappa A \longrightarrow A$$

$$\delta_{\kappa} : \kappa A \longrightarrow \kappa \kappa A$$

$$\beta L : \kappa A \otimes B \longrightarrow B \otimes \kappa A$$

$$\beta R : A \otimes \kappa B \longrightarrow \kappa B \otimes A$$

Three Lambek Calculi

- Calculus
- Calculus + of-course modality
- Calculus + exchange modality
- O Lambek Calculus + both

Three Lambek Calculi

Type Theories for each:

- strongly normalizing
- Confluent

Agda Dialectica Space Library

https://github.com/heades/dialectica-spaces/tree/Lambek

Thank you!