

Study Of Active Learning Algorithms

Kanupriya Jain Institut Polytechnique de Paris

Supervisor:

Prof. Christophe Denis

LPSM, Sorbonne Université

- **▶** Binary Classification
- ► Supervised Classification Setting
- ► Classical Methods
- ► Active Learning
- ► Formal Statement
- Numerical Experiments
 Synthetic Dataset
 Non-Synthetic Dataset(Stroke Prediction)
- ▶ Conclusion
- ▶ References

1 Binary Classification

Definition

It is a supervised learning algorithm that categorizes the new observations into one of two classes. We will particularly focus on 1-0 classification where the output is either 1 or 0.

Examples:

- **Spam Detection:** Classifying emails as spam (1) or not spam (0).
- **Medical Diagnosis:** Determining if a patient has a certain disease (1) or not (0).
- **Sentiment Analysis:** Assessing whether a review is positive (1) or negative (0).

Types Of classifier Algorithms

1 Binary Classification

Linear Classifiers:

- Logistic Regression
- Support Vector Machines (having kernel="linear")
- Stochastic Gradient Descent(SGD) Classifier

Non-Linear Classifiers:

- K-Nearest Neighbours
- Decision Tree Classification
- Random Forest

- **▶** Binary Classification
- ► Supervised Classification Setting
- ► Classical Methods
- ► Active Learning
- ► Formal Statement
- Numerical Experiments
 Synthetic Dataset
 Non-Synthetic Dataset(Stroke Prediction)
- ▶ Conclusion
- ▶ References

Supervised Classification Setting (1/3)

2 Supervised Classification Setting

- ullet Observation : (X,Y) where $X\in\mathcal{X}=\mathbb{R}^d$ (Instance Space) and $Y\in\mathcal{Y}=\{0,1\}$
- Classifier : $f: \mathbb{R}^d \to \{0, 1\}$
- Risk : $R(f) = \mathbb{P}(f(X) \neq Y)$
- Bayes Classifier : $f^* \in \operatorname{arg\,min}_f R(f)$
- Bayes Risk : $\mathcal{R}^* = \inf_f R(f)$
- $\eta(x) = \mathbb{P}(Y = 1|X = x)$
- The Bayes classifier and Bayes risk in our case are given by

$$f^*(x) = 1_{\{\eta(x) \geq \frac{1}{2}\}}$$
 and $\mathcal{R}^* = \mathbb{E}[\min\{\eta(X), 1 - \eta(X)\}]$

5/38

- 1. **Data:** i.i.d. sample $(X_1, Y_1), \ldots, (X_n, Y_n)$ from an unknown probability distribution.
- 2. **Objective**: To find a map from *Instance Space* \mathcal{X} to set of outputs $\mathcal{Y} = \{0,1\}$ called the *label space*.

Notations:

- $\mathcal{G}_{\Theta} = \{f_{\theta} : \theta \in \Theta\}$, set of classifiers of the form $f_{\theta} = 1_{\{\eta_{\theta}(x) \geq \frac{1}{2}\}}$
- ullet The loss function that we will consider is $\ell(y,z)=1_{\{y
 eq z\}}$
- We can observe that

$$\mathcal{R}^* = \mathcal{R}(f^*) = 1 - \mathbb{E}[g^*(X)]$$

where $g^*(.) = max\{\eta(.), 1 - \eta(.)\}$ is called the *score function*.

Supervised Classification Setting (3/3)

2 Supervised Classification Setting

- Parametric class of regression functions $\mathcal{F} = \{\eta_{\theta} : \theta \in \Theta\}$
- Emperical Risk Minimizer is defined as

$$\hat{ heta}_n \in rg \min_{ heta \in \Theta} \hat{\mathcal{R}}_n(f_{ heta}) \;\; ext{ where } \hat{\mathcal{R}}_n(f_{ heta}) = rac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{f_{ heta}(imes_i)
eq y_i\}}$$

and its oracle counterpart is defined as

$$\theta^* \in \arg\min_{\theta \in \Theta} \mathcal{R}(f_\theta) \text{ where } \mathcal{R}(f_\theta) = \mathbb{E}[\mathbb{1}_{\{f_\theta(\mathcal{X}) \neq \mathcal{Y}\}}]$$

- **▶** Binary Classification
- ► Supervised Classification Setting
- ► Classical Methods
- ► Active Learning
- ► Formal Statement
- Numerical Experiments
 Synthetic Dataset
 Non-Synthetic Dataset(Stroke Prediction)
- ▶ Conclusion
- ▶ References

Emperical Risk Minimization (1/2)

3 Classical Methods

Let $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ be *i.i.d.* data points.

Assumptions:

- Θ , the class of parameters admits an ϵ -cover Θ_{ϵ} .
- ullet We assume that the Bayes predictor $f^*=f_{ heta^*}\in \mathcal{G}_{\Theta}.$
- ullet We also assume that the $\hat{ heta} \in \Theta_{\epsilon}$
- Lipschitz Condition For any x, $||\eta_{\theta}(x) \eta_{\theta'}(x)|| \le ||\theta \theta'|| \, ||x||$
- Compactness $\mathcal{X} \subset \overline{B}(0,R)$

Theorem

For the above supervised learning setting, assumptions and ERM the following inequality is satisfied

$$\mathbb{E}[R(f_{\widehat{ heta}}) - R(f^*)] \leq O\left(\sqrt{rac{\log(2|\Theta_{\epsilon}|)}{n}} + \epsilon
ight)$$

Remark:

- If $\Theta \subset \mathbb{R}^M$ and is compact, then $|\Theta_\epsilon| \leq c \left(\frac{1}{\epsilon}\right)^M$
- The case discussed above is not used in practice due to our choice of non-convex loss function.

- **▶** Binary Classification
- ► Supervised Classification Setting
- ► Classical Methods
- ► Active Learning
- ► Formal Statement
- Numerical Experiments
 Synthetic Dataset
 Non-Synthetic Dataset(Stroke Prediction)
- ▶ Conclusion
- ▶ References

Introduction

4 Active Learning

Definition

Active Learning aims to reduce the number of labeled data required for training and selecting the data which needs to be labeled.

Active Learning Framework:

Motivation and Strategies

4 Active Learning

Motivation:

- Acquiring labeled data can be costly and time-consuming.
- In many domains, such as medical imaging or legal document analysis, expert labeling is required, increasing costs.

Sampling Strategies:

- 1. **Stream based Sampling:** An active learning technique for training models on continuous data streams, where each sample is sequentially evaluated for labeling.
- 2. **Pool based Sampling:** It begins with a large pool of unlabeled data and then ranks all samples in the pool and then selects the best ones to query.

Disagreement Region

4 Active Learning

One of the key principles of active learning is to identify at each step the region of the instance space where the label requests should be made, called *Uncertain Region*, also known as *Disagreement Region*

Ways to find Uncertain Region :

- 1. Uncertainty Sampling
- 2. Query By Committee (QBC)
- 3. Rejection

4 Active Learning

Uncertainty Sampling

- This algorithm involves identifying and ranking unlabeled data points where the model's predictions are least confident, calculated by $|\eta(x) 0.5|$.
- The instances with the smallest margins are the most informative and are selected for querying

4 Active Learning

4 Active Learning

Query By Committee (QBC)

- In this approach, a committee of models is trained on the current labeled dataset, each representing different hypotheses.
- The models vote on the labeling of query candidates (unlabeled examples).
 Instances where the committee disagrees are considered the most informative.

Query By Committee (QBC)

4 Active Learning

Rejection

- In this learning method instead of simply assigning a class label to every instance it encounters, the model may choose to "reject" predicting a label for instances where its confidence falls below a certain threshold.
- It has valuable in applications like medical diagnosis, where an incorrect prediction can have serious consequences.

- **▶** Binary Classification
- ► Supervised Classification Setting
- ► Classical Methods
- ► Active Learning
- ► Formal Statement
- Numerical Experiments
 Synthetic Dataset
 Non-Synthetic Dataset(Stroke Prediction)
- ▶ Conclusion
- ▶ References

Active Learning Strategy in a nutshell : budget N

- $M_0 \geq 1$, training initial estimator $\hat{\eta}_0$ on $B = M_0$ points and $A_0 = \mathcal{X}$
- while $B \leq N$
 - 1. $I \leftarrow I + 1$ Build new $A_I \subset A_{I-1}$
 - 2. Sample (X_i, Y_i) , $i = 1, ..., M_l$ s.t $X_i \sim \pi(\cdot | A_l)$ and build $\hat{\eta}_l$
 - 3. Update $\hat{\eta} = \sum_{j=0}^{I-1} \hat{\eta}_j \mathbb{1}_{\{A_j \setminus A_{j+1}\}} + \hat{\eta}_I \mathbb{1}_{A_I}$
 - 4. $B \leftarrow B + M_I$

- We take our initial uncertain region as $A_0 = \mathcal{X} = [0,1]^d$. We will use the score function as $g(x) = \max\{\eta(x), 1 \eta(x)\}$
- We also take fixed number of label requests N (called the budget).
- We define a sequence of positive numbers $(\epsilon_k)_{k\geq 0}$ as a sequence of rejection rates and another sequence $(N_k)_{k\geq 0}$ defined as $N_0 = \lfloor \sqrt{N} \rfloor$ and $N_{k+1} = \lfloor c_N N_k \rfloor$ with $c_N > 1$.
- We will construct a sequence of uncertain regions $(A_k)_{k\geq 1}$ and estimators $\hat{\eta}_k$ on A_k .

5 Formal Statement

ALGORITHM

INITIALIZATION PHASE

ITERATION PHASE

- **▶** Binary Classification
- ► Supervised Classification Setting
- ► Classical Methods
- ► Active Learning
- ► Formal Statement
- ► Numerical Experiments
 Synthetic Dataset
 Non-Synthetic Dataset(Stroke Prediction)
- ▶ Conclusion
- ▶ References

6 Numerical Experiments

Accuracy

6 Numerical Experiments

Classifier	N	Active Framework	Passive Framework	Uncertainty Sampling
Logistic Regression	400	0.9186 ± 0.0026	0.9187 ± 0.0027	0.9165 ± 0.0019
SVC	400	0.9165 ± 0.0043	0.9185 ± 0.0023	0.9169 ± 0.0034
Decision Tree	400	0.8734 ± 0.0222	0.8740 ± 0.0111	0.8781 ± 0.0202

Table: Comparison of different classifiers and frameworks.

Accuracy for QBC : $0.9158\,\pm\,0.0046$

Accuracy Vs Budget

6 Numerical Experiments

Accuracy for Non-Synthetic Dataset(Stroke Prediction)

Kanupriya Jain

6 Numerical Experiments

Classifier	N	Active Framework	Passive Framework	Uncertainty Sampling
Logistic Regression	500	0.9508 ± 0.0012	0.9511 ± 0.0004	0.9511 ± 2.220 e- 16
SVC	500	0.9509 ± 0.0008	0.9511 ± 2.220 e-16	0.9511 ± 2.220 e- 16
Decision Tree	500	$\textbf{0.9152}\pm\textbf{0.0141}$	0.9056 ± 0.0097	0.9511 ± 2.220 e-16

Table: Comparison of different classifiers and frameworks.

Accuracy for QBC : $0.9511\,\pm\,2.220\text{e-}16$

Accuracy Vs Budget

6 Numerical Experiments

450

150 200 250

- **▶** Binary Classification
- ► Supervised Classification Setting
- ► Classical Methods
- ► Active Learning
- ► Formal Statement
- Numerical Experiments
 Synthetic Dataset
 Non-Synthetic Dataset(Stroke Prediction)
- ► Conclusion
- ▶ References

7 Conclusion

1. Theoretical:

- Read the research paper Active learning algorithm through the lens of rejection arguments by Christophe Denis, Mohamed Hebiri, Boris Njike, Xavier Siebert (2022).
- $\circ\,$ Proof of the theorem for Empirical Risk Minimization for passive learning framework.

2. Practical:

- Simulated synthetic datasets and studied the results on passive learning framework and compared them with Bayes classifier
- Implementation Of active learning algorithm using rejection method, Query by Committee (QBC), and Uncertainty Sampling from scratch.
- Implementation of the above algorithms on Synthetic and Real Dataset (Stroke Prediction).
- Comparison of the active learning results with passive learning algorithms.

7 Conclusion

1. Theoretical:

- Understand the theoretical part of the paper concerning the bound on the emperical risk.
- o Propose a similar result but in the case of parametric active learning setting

2. Practical:

- o Find new scenario where active learning framework is relevant.
- Comparison of the results of active learning algorithms implemented with already existing active learning libraries online.

- **▶** Binary Classification
- ► Supervised Classification Setting
- ► Classical Methods
- ► Active Learning
- ► Formal Statement
- Numerical Experiments
 Synthetic Dataset
 Non-Synthetic Dataset(Stroke Prediction)
- ▶ Conclusion
- ▶ References

- Christophe Denis, Mohamed Hebiri, Boris Njike, Xavier Siebert (2022) Active learning algorithm through the lens of rejection arguments
- A Probabilistic Theory of Pattern Recognition (1996) by Luc Devroye, Laszlo Gyorfi, Gabor Lugosi
- A quick overview of Active Learning
- Active Learning: Curious Al Algorithms
- Active Learning in Classification Query Strategies
- Dataset : Stroke Prediction Dataset

- Gabriel Stoltz (April 15, 2024) An *Introduction to Machine Learning [Lecture Notes]*, Institut Polytechnique de Paris
- Freund, Y., Seung, H. S., Shamir, E., Tishby, N. (1997). Selective sampling using the query by committee algorithm. Machine Learning, 28, 133–168

The End

Thank you for listening!

