Sparse Temporal Spanners with Low Stretch

D. Bilò, G. D'Angelo, L. Gualà, S. Leucci and M. Rossi

University of Rome "Tor Vergata"

Gran Sasso Science
Institute

u-v temporal path: u-v path of non-decreasing time-labels

Temporal spanner:

a subgraph \mathcal{H} of \mathcal{G} that preserves pairwise temporal connectivity

Temporal spanner:

a subgraph \mathcal{H} of \mathcal{G} that preserves pairwise temporal connectivity

Kempe et al. [STOC'00]: find temporal spanners of small size (#of edges)

Lower Bound of $\Omega(n^2)$

Upper Bound of O(n log n) for temporal cliques

only preserves reachability

no guarantees on the distances

Upper Bound of O(n log n) for temporal cliques

Temporal spanner with stretch α :

a subgraph \mathcal{H} of \mathcal{G} such that for every pair of vertices u and v $dist_{\mathcal{H}}(u,v) \leq \alpha \ dist_{\mathcal{G}}(u,v)$

Our results I: cliques

Our results II: general graphs

Lower Bound of $\Omega(n^2)$

Our results II: single-source spanners for general graphs

a subgraph \mathcal{H} of \mathcal{G} such that for every vertex v $dist_{\mathcal{H}}(s,v) \leq \alpha \ dist_{\mathcal{G}}(s,v)$

UB: stretch:
$$1+\varepsilon$$
 size: $O\left(n\frac{\log^4 n}{\log(1+\varepsilon)}\right)$

LB: size $\Omega(n^2)$ for stretch 1

lifetime: number \mathcal{L} of distinct time-labels

Axiotis and Fotakis
ICALP 2016

Lower Bound of $\Omega(n^2)$

Cliques

$$\alpha = 2$$

$$\mathcal{L}=2$$
 $O(n \log n)$

Cliques

$$\alpha = 2$$
 $\alpha = 3$

$$\mathcal{L}=2$$
 $O(n \log n)$

$$\mathcal{L}=3 \qquad \Omega(n^2) \qquad O(n \log n)$$

Cliques

 $\alpha = 2$ $\alpha = 3$

 $\mathcal{L}=2$ $O(n \log n)$

 $\mathcal{L}=3 \qquad \Omega(n^2) \qquad O(n \log n)$

 \mathcal{L} $O(2^{L}n \log n)$

Cliques

$$\alpha = 2$$
 $\alpha = 3$

$$L=2$$
 $O(n \log n)$

$$\mathcal{L}=3 \qquad \Omega(n^2) \qquad O(n \log n)$$

 \mathcal{L} $O(2^{L}n \log n)$

General graphs

an α -spanner of size an α -spanner of size O(Lf(n)) for static graphs for temporal graphs of lifetime

Cliques

$$\alpha = 2$$
 $\alpha = 3$

$$\mathcal{L}=2$$
 $O(n \log n)$

$$\mathcal{L}=3 \qquad \Omega(n^2) \qquad O(n \log n)$$

 \mathcal{L} $O(2^{L}n \log n)$

General graphs

an α -spanner of size an α -spanner of size O(Lf(n)) for static graphs for temporal graphs of lifetime

temporal spanner of stretch log n and size $o(n^2)$ for any temporal graph o lifetime L=o(n)

Cliques

$$\alpha = 2$$
 $\alpha = 3$

$$L=2$$
 $O(n \log n)$

$$\mathcal{L}=3 \qquad \Omega(n^2) \qquad O(n \log n)$$

$$\mathcal{L}$$
 $O(2^{L}n \log n)$

General graphs

an
$$\alpha$$
-spanner of size an α -spanner of size $O(Lf(n))$ for static graphs for temporal graphs of lifetime

temporal spanner of stretch log n and size $o(n^2)$ for any temporal graph o lifetime L=o(n)

size $\Omega(n^2)$ for general graph with $L=\Theta(n)$

Our results I: cliques

for every $u \in V$

time-labels

for every $u \in V$

- # red edges $O(n^{3/2})^{\sim}$

compute a hitting set \Re of S_u 's

Lemma:
$$|\mathcal{R}| = O\left(\frac{n}{|\mathcal{S}_u|}\right) = O\left(\frac{n}{n^{1/2}}\right) = O(n^{1/2})$$

H= red edges

H= red edges

case: $v = z(\chi)$

H= red edges

case: $v = z(\chi)$

H= red edges

case: $v \in S_{z(x)}$

H= red edges

case: $v \in S_{z(x)}$

$$\mathcal{H}=$$
 red edges $+$ blue edges \sim - $\#$ blue edges $O(n^{3/2})$

case: $v \in V \setminus S_{z(x)}$

$$\mathcal{H}=$$
 red edges $+$ blue edges \sim - $\#$ blue edges $O(n^{3/2})$

case: $v \in V \setminus S_{z(x)}$

$$\mathcal{H}=$$
 red edges $+$ blue edges \sim - $\#$ blue edges $O(n^{3/2})$

 $\mathit{case} \colon v {\in} \, \mathcal{V} {\setminus} \mathcal{S}_{z(x)}$

 $\mathcal{H}= \begin{tabular}{ll} red edges & + blue edges & + green edges \\ \hline - \# \ green \ edges \ O(n^{3/2}) & \hline \end{tabular}$

 \mathcal{H} is a 3-spanner of size $O(n^{3/2})$

Our results I: cliques

for every $u \in V$

for every $u \in V$

- # red edges $O(n^{4/3})^{\sim}$

compute a hitting set $\mathcal{R}_{i,u}$ of $\mathcal{S}_{i,u}$'s

Lemma:
$$|\mathcal{R}_{1}| = O\left(\frac{n}{|\mathcal{S}_{1,u}|}\right) = O\left(\frac{n}{n^{1/3}}\right) = O(n^{2/3})$$

compute a second-level hitting set R of

$$\mathcal{H}=$$
 red edges $+$ purple edges \sim $O(n^{4/3})$

for any $v \in V$

case: $v = z_1(x)$ *or* $v = z_2(y)$

for any $v \in V$

case: $v = z_1(x)$ *or* $v = z_2(y)$

for any $v \in V$

 $case: v \in \mathcal{S}_{1,z_1(\chi)}$

for any $v \in V$

 $case: v \in S \quad or v \in S \quad S_{2,z_2(y)}$

 $case: v \in S \underset{1,z_2(y)}{or} v \in S \underset{2,z_2(y)}{or} v \in S$

Selected open problems

Cliques

3-spanner

$$\Omega(n^{1+\epsilon})$$
 vs $O(n)$

Beyond Cliques

Thanks for your attention!