Robust Flame Frequency Response Identification via a Multi-Fidelity Approach

S. Guo, C. F. Silva, W. Polifke

CM⁴P, Porto, Portugal, 2019

Combustion instability threatens the stable operation of a gas turbine

Combustion instability threatens the stable operation of a gas turbine

Combustion instability threatens the stable operation of a gas turbine

Flame frequency response plays a key role in investigating combustion instability

Merk, 2018^[2]

Flame frequency response plays a key role in investigating combustion instability

$$F(\omega) = \frac{Q'(\omega)/Q}{u'(\omega)/\bar{u}}$$

Merk, 2018^[2]

Flame frequency response plays a key role in investigating combustion instability

[2] M. Merk, W. Polifke, R. Gaudron, M. Gatti, C. Mirat, T. Schuller., 2018, AIAA Journal.

Flame frequency response can be derived from CFD simulations

Broadband forcing provides complete frequency response but with uncertainty

Broadband forcing provides complete frequency response but with uncertainty

Broadband forcing provides complete frequency response but with uncertainty

Broadband forcing provides complete frequency response but with uncertainty

Broadband forcing provides complete frequency response but with uncertainty

Low-fidelity

→ A few frequencies

Low-fidelity

→ A few frequencies

High-fidelity

Low-fidelity

→ A few frequencies

High-fidelity

Low-fidelity

- Motivation
- Multi-fidelity Gaussian Process

- Motivation
- Multi-fidelity Gaussian Process
 - → How to aggregate different fidelities?

- Motivation
- Multi-fidelity Gaussian Process
 - → How to aggregate different fidelities?
 - → How to combine uncertainties from individual fidelities?

- Motivation
- Multi-fidelity Gaussian Process
 - → How to aggregate different fidelities?
 - → How to combine uncertainties from individual fidelities?
- Case study
 - → Set-up
 - → Results & Discussions

- Motivation
- Multi-fidelity Gaussian Process
 - → How to aggregate different fidelities?
 - > How to combine uncertainties from individual fidelities?
- Case study
 - → Set-up
 - → Results & Discussions
- ☐ Conclusion & Outlook

- Motivation
- Multi-fidelity Gaussian Process
 - → How to aggregate different fidelities?
 - > How to combine uncertainties from individual fidelities?
- Case study
 - → Set-up
 - → Results & Discussions
- ☐ Conclusion & Outlook

Prior

$$f(x) \sim \mathcal{GP}(\beta, k(x, x'))$$

Prior

$$f(x) \sim \mathcal{GP}(\beta, k(x, x'))$$

$$\beta$$
: Constant

Prior

$$f(x) \sim \mathcal{GP}(\beta, k(x, x'))$$

$$\beta$$
: Constant

$$k(x,x') = \sigma^2 \exp(-\theta |x-x'|^2)$$
 : Kernel

Prior

Data

$$f(x) \sim \mathcal{GP}(\beta, k(x, x'))$$

 β : Constant

$$k(x, x') = \sigma^2 \exp(-\theta |x - x'|^2)$$
 : Kernel

Prior

Data

Posterior

$$f(x) \sim \mathcal{GP}(\beta, k(x, x'))$$

$$f^*(x) \sim \mathcal{GP}(m^*(x), k^*(x, x'))$$

 β : Constant

$$k(x,x') = \sigma^2 \exp(-\theta |x-x'|^2)$$
 : Kernel

Multi-fidelity Gaussian Process uses low-fidelity results as its global trend

$$f(x) \sim \mathcal{GP}(\mathsf{LoFi}(x), k(x, x')) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad f^*(x) \sim \mathcal{GP}(m^*(x), k^*(x, x'))$$

Data

$$k(x, x') = \sigma^2 \exp(-\theta |x - x'|^2)$$
 : Kernel

Prior

Posterior

Low-Fidelity

High-Fidelity

Presentation Overview

- Motivation
- ☐ Multi-fidelity Gaussian Process
 - → How to aggregate different fidelities?
 - → How to combine uncertainties from individual fidelities?
- Case study
 - → Set-up
 - → Results & Discussions
- ☐ Conclusion & Outlook

Premixed swirl burner

Guo et al. | CM⁴P, Porto, Portugal

We start with a short broadband results and harmonic results at several frequencies

For gain, multi-fidelity approach yields a more globally accurate prediction

For gain, multi-fidelity approach yields a more globally accurate prediction

For gain, multi-fidelity approach yields more robust uncertainty estimation

For phase, predictions made by both methods have similar accuracy

For phase, predictions made by multi-fidelity approach has less uncertainty

Overall, multi-fidelity approach yields globally more accurate and robust flame frequency response identification

Root mean square error is used to assess the prediction accuracy

$$\text{RMSE} = \frac{\sqrt{\frac{1}{500} \sum_{i=1}^{500} (\hat{y}_i - y_i^{ref})}}{\text{range}(y^{ref})}$$

Lg-Likelihood is used to assess the prediction robustness

Number and location of harmonic excitations have direct impact on the performance of multi-fidelity approach

Number and location of harmonic excitations have direct impact on the performance of multi-fidelity approach

In future study:

a. Impact of noise level?

In future study:

- a. Impact of noise level?
- b. Intelligent frequency selection for harmonic excitations?

In future study:

- a. Impact of noise level?
- b. Intelligent frequency selection for harmonic excitations?
- c. Extend to identify frequency response of other dynamic systems?

