

- Theorem 1: For every DFA A there exists a regular expression R such that L(R)=L(A)
- Theorem 2: For every regular expression R there exists an ε-NFA E such that L(E)=L(R)

- אחת השיטות לייצוג (תיאור) של שפות פורמליות היא ע"י ביטוי רגולרי.
 - לכל ביטוי רגולרי (ב"ר)מתאימה שפה רגולרית.
 - בהינתן אלפבית סופי ביטוי רגולרי מעל האלפבית Σ מוגדר בצורה
 הרקורסיבית הבאה:

- . וכל איבר ב- Σ הוא ביטוי רגולרי.
- . אם $(\alpha \cup \beta)$ ביטוים רגולריים אז גם $(\alpha \cup \beta)$ ביטוי רגולרי. α, β
 - . ביטוי רגולריים אז גם $(\alpha\cdot\beta)$ ביטוי רגולריים אז α,β ביטוי רגולרי.

כמו כן

(השפה הריקה)
$$L(r)=\varnothing$$
 משמעו $r=\varnothing$.1

.(שפה בעלת מלה אחת)
$$L(r) = \{\sigma\}$$
 משמעו $r = \sigma$.2

$$L(r) = L(r_1) \cup L(r_2)$$
 משמער $r = (r_1 \cup r_2)$.3

$$L(r) = L(r_1) \cdot L(r_2) = \{w_1 w_2 : w_1 \in L(r_1), w_2 \in L(r_2)\}$$
 משמער $r = (r_1 \cdot r_2)$.4

$$L(r) = (L(r_1))^* = \{w_1 w_2 \cdots w_k : \forall i = 1 \dots k : w_i \in L(r_1)\}$$
 משמער $r = (r_1^*)$.5

. שפה המילה המילה אחת והיא מילה עלב, שפה המכילה $L(r^*) = \{ \varepsilon \}$ אזי $r = \varnothing$ שימו לב, אם שימו לב, אם אזי

, היא שפה רגולרית \Leftrightarrow ניתנת לתיאור ע"י ביטוי רגולרי L \Leftrightarrow כלומר, קיים ביטוי רגולרי r כך ש ביטוי רגולרי.

דוגמאות לביטויים רגולריים:

הביטוי הרגולרי	השפה אותה הוא מייצג	משמעות
a+b	{a,b}	השפה המוגדרת היא קבוצת בת 2 מילים a b
(a+b)·(a+b)	{aa,ab,ba,bb}	כיוון שלשרשור יש עדיפות גבוהה יותר מאופרטור "או" , השפה המוגדרת מכילה מילים שהם שרשור של 2 אותיות.
a*	{€,a,aa,aaa,}	השפה המתקבלת היא השפה המכילה את כל המילים שמתקבלות ע"י שרשור של 0 או יותר פעמים של a
(a+b)*	{a, b, ab, aaab, bbb, baabab, ϵ }	b שפת כל המילים שיש בהן a או

(Thompson's Algorithm) בניית אוטומט NFA מביטוי רגולרי

דוגמה 1

: נתון ביטוי רגולרי הבא

0* 1 | 1* 0

בנה אוטומט NFA לפי NFA בנה אוטומט עבור ביטוי רגולרי הנ"ל.

בניית אוטומט NFA בניית אוטומט ●

$$0*1+1*0$$
 : נתבונן בביטוי רגולרי הבא $r=0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+1*0$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+10$
 $0*1+1$

r=1

שאלה 1

: נתון ביטוי רגולרי הבא

 $(ab \mid ba)^* \mid bb$

בנה אוטומט NFA לפי NFA בנה אוטומט עבור ביטוי רגולרי הנ"ל.

 $(ab \mid ba)^* \mid bb$

שאלה 2

 $\{0,1\}$ כתוב ביטוי רגולרי עבור השפות הבאות מעל

1.
$$L = \{ w \mid w = 0X0, X \in \Sigma^* \}$$

2.
$$L = \{ w \mid \#1(w) \ge 5 \}$$

3.
$$L = \{ w \mid \#1(w) \ge 2 \text{ AND } \#0(w) \le 1 \}$$

1. $0(0|1)^*0$

שאלה 2

3. $111^* | 1^*(011|101|110)1^*$

L = { w | #1(w)
$$\geq$$
 2 AND #0(w) \leq 1 }

שאלה 3

 $\{0,1\}$ מעל ה - א"ב L מעל ה

$$L = \{ w \mid w = 0^m 1^n, m \% 2 = 1, n \% 2 = 0 \}$$

 $oldsymbol{\mathsf{L}}$ א. בנה אוטומט סופי דטרמיניסטי המקבל את השפה

 $oldsymbol{L}$ ב. כתוב ביטוי רגולרי עבור השפה

$$0(00)^*(11)^*$$

שאלה 4

:{a,b} מעל ה - א"ב L מעל ה

$$L = \{ w \mid w = a^n b^m, (m + n) \% 2 = 0 \}$$

 \perp כתוב ביטוי רגולרי עבור השפה

שאלה 4

$$(aa)^*(bb)^* \mid (aa)^*a(bb)^*b$$

?

שאלה 5

כתוב ביטוי רגולרי עבור חיתוך, איחוד ושרשור של שתי שפות הבאות מעל האייב $\{\ 0,\ 1\ \}$:

```
L_A = \{ W \mid W = 11X, X \in \Sigma^* \}
L_B = \{ W \mid W = y00, y \in \Sigma^* \}
```

1. $r(L_A \cap L_B)$ 2. $r(L_A \cup L_B)$ 3. $r(L_A \bullet L_B)$

5 שאלה

1.
$$r(L_A \cap L_B) = 11(1|0)^*00$$

2.
$$r(L_A \cup L_B) = (11(1|0)^*) | ((1|0)^*00)$$

3. r(
$$L_A \cdot L_B$$
) = $11(1|0)^*00$

$$L_A = \{ W \mid W = 11X, X \in \Sigma^* \}$$

$$L_B = \{ W \mid W = y00, y \in \Sigma^* \}$$

שאלה 6

בכל סעיף של שאלה זו 4 טענות. בכל טענה עליך להסביר מדוע היא נכונה או לא נכונה.

: יהיה M האוטומט DFA המוגדר ע"י התרשים הבא

$$L(M) = (\{a,b\}\{a\})^* \{a,b\}\{b\} \cdot (\{ba\} \cup \{ab\} \cup (\{a^2\}(\{a,b\}\{a\})^* \{b\})^*)$$

$$L(M) = \{a,b\}\{b\} \cdot (\{ba\} \cup \{a,b\} \cup \{a^2\}\{a,b\}\{b\})^*$$

$$L(M) \subseteq \{a,b\}\{b\} \cdot (\{ba\} \cup \{a,b\} \cup \{a^2\}\{a,b\}\{b\})^*$$

אף תשובה אינה נכונה.

שאלה 6

תשובה: ד

אולם, $bbbba \in L(M)$ מתקיים כי bbbba אולם, עבור המילה אינו נכון. למשל, עבור המילה

$$bbbba \notin (\{a,b\}\{a\})^*\{a,b\}\{b\}\cdot (\{ba\}\cup \{ab\}\cup (\{a^2\}(\{a,b\}\{a\})^*\{b\})^*)$$

, אולם, $aaab \in L(M)$ מתקיים כי aaab מתקיים, למשל, עבור המילה

$$aaab \notin \{a,b\} \{b\} \cdot (\{ba\} \cup \{a,b\} \cup \{a^2\} \{a,b\} \{b\})^*$$

שאלה 7

: נתון אוטומט סופי דטרמיניסטי 🗚 הבא

$$\Sigma = \{ a, b \}$$

 $oldsymbol{\mathsf{A}}$ א. בנה אוטומט סופי לא *דטרמיניסטי* שקול לאוטומט סופי לא *דטרמיניסטי*.

. M ב. כתוב ביטוי רגולרי עבור האוטומט

שאלה 7

ב.

(a|b)*abb