IT-5001 (CBGS)

B.E. V Semester

Examination, December 2017

Choice Based Grading System (CBGS) Theory of Computation

Time: Three Hours

Maximum Marks: 70

www.rgpvonline.com

www.rgpvonline.com

Attempt any five questions.

www.rgpvonline.com

www.rgpvonline.com

ii) All questions carry equal marks

1. a) Construct a DFA equivalent to an NDFA whose transition table is defined by

State	a	Ор
q_0	9,90	q_{2}, q_{3}
q_1	APO Y	q_3
q_2	.93	q_2
q3	-	-

- Construct a DFA accepting all strings w over {0, 1} such that the number of is in w is 3 mod 4.
- Prove (1+00*1)+(1+00*1) (0+10*1)*(0+10*1)= 0*1(0+10*1)*.
 - Write the identities of regular expression?
- 3. Construct a context free grammars to generate the following:
 - $0^{m}1^{m}$ $m \ge 0$
 - 0^m1^n $1 \le m \le n$
 - iii) 0m1n2r m = n
 - iv) 0^l1^m2ⁿ l+m=n

TT-5001 (CRGS) www.rgpvonline.com

www.rgpvonline.com

DTO

www.rgpvonline.com

www.rgpvonline.com

http://www.a2zsubjects.com

[2]

4. Construct a minimum state automation equivalent to a given automation M whose transition table is defined below:

State	Input		
	a	b	
$\rightarrow q_0$	q_0	q_3	
q_1	q_2	q_5	
q_2	q_3	q_4	
q_3	q_0	q_5	
\mathbf{q}_4	q_0	q_6	
q_5	q_1	q_4	^
(q_6)	q_1	q_3	de
a) Let Ghe	the gran	nmar	CO

a) Let G be the grammar

 $S \rightarrow OB|IA, A \rightarrow O|OS|IAA, B \rightarrow I|IS|OBB$ For the string 00110101 Find

- LMD
- ii) RMD
- iii) Parse tree
- If G is the Grammars \rightarrow SbSla show that G is ambiguous. 7
- Define a PDA? Construct a PDA a equivalent to the following context free grammar S → OBB, B → OS IS O. Test whether 0104 is in N(A).
- Construct a PDA for the following language
 - i) aⁿbⁿ n≥0
- ii) aⁿ b²ⁿ n≥1
- Explain P and NP type of problem? Write any three example of P or NP type problem?
 - Describe decidable and undecidable problem? Explain Halting problem.
- Write a short notes (any three):
 - Turing machine
 - Universal Turing machine
 - NPDA and DPDA
 - Closure property of regular grammar

IT-5001 (CBGS) www.rgpvonline.com

www.rgpvonline.com

www.rgpvonline.com

14

www.rgpvonline.com