Question 6

Teng Long

February 10, 2017

proposition: the only prime triple is 3, 5, 7.

proof: we prove by contradiction. and make use of the conclusion of last Question.

1. Assume there exists another prime triple, say, n, n+2, n+4. where n is odd and $n \neq 3$.

- 2. Using the conclusion of Q5, that means, at least one of n, n+2, n+4 has factor 3.
- 3. As $n \neq 3$, therefore one of n, n+2, n+4 has factor 3.
- 4. some number has a factor 3. means either it is nor a prime or it is 3.
- 4.1. If this number is n. n = 3 contradiction to $n \neq 3$
- 4.2. If this number is n+2. Either n+2 is not prime, contradiction, or $n+2=3 \Rightarrow n=1, 1$ is not prime. contradiction.
- 4.3. If this number is n+4 . Either n+4 is not prime, contradiction, or $n+4=3 \Rightarrow n=-1$, -1 is not prime. contradiction.
- 5. That means under any circumstance, one of n, n + 2, n + 4 will always not be prime number.
 - 6. By contradiction there is not another prime triple other than 3,5,7.

conclusion: we proved that the only prime triple is 3,5,7 by contradiction.