66. Dans le plan de Gauss, les images des racines quatrièmes de 4 forment un polygone dont le côté mesure :

1. 2 2.
$$3\sqrt{3}$$
 3. $3\sqrt{2}$ 4. 1 5. $\sqrt{3}$ (M. -90)

67. Si
$$z_1 = 2(\cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3})$$
; $z_2 = 6(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6})$ et

$$z_3 = 3(\cos{\frac{\pi}{4}} + i\sin{\frac{\pi}{4}})$$
 alors l'expression $\frac{z_1 \cdot z_2}{z_3}$ est égale à :

1.
$$4\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$
 3. $4\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$ 5. $4\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$
2. $4\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right)$ 4. $4\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right)$ (M. -90)

68. Une racine de l'équation
$$z^2 + pz + q = 0$$
 est $-2 - 3i$.

Trouver les valeurs de p et q. Le couple (p, q) est :

(M.-90)

(M, -91)

1. z 2.
$$-iz$$
 3. iz 4. $-z$ 5. $i\overline{z}$

69. Si z = 3 + 5i alors -5 + 3i est égal à :

3. $2(\cos 330^{\circ} + i \sin 330^{\circ})$

70. La forme trigonométrique du complexe
$$z = \sqrt{3} - i$$
 est :

$$\frac{1}{\sqrt{2}} (\cos 330^\circ)$$
 is $\sin 330^\circ$ 4 $\frac{1}{\sqrt{2}} (\cos 330^\circ)$

1.
$$\sqrt{2} (\cos 330^{\circ} - i \sin 330^{\circ})$$
 4. $\sqrt{2} (\cos 330^{\circ} + i \sin 330^{\circ})$

11.
$$\sqrt{2} (\cos 330^{\circ} - i \sin 330^{\circ})$$
 4. $\sqrt{2} (\cos 330^{\circ} + i \sin 330^{\circ})$ 5. $-2(\cos 330^{\circ} - i \sin 330^{\circ})$ 5. $-2(\cos 330^{\circ} - i \sin 330^{\circ})$

71. Un nombre complexe z est tel que
$$z = 2$$
 et $z = z + z$; $z = 1$. $1 - 2i$ 2. $1 + i$ 3. $-1 + i$ 4. $2 + i$ 5. i (M.-91)

72.
$$i^{82} + i^{73} =$$
 www.ecoles-rdc.net
1. $-1 + i$ 2. $-1 - i$ 3. $-2i$ 4. 2i 5. 0 (M = 91)

1.
$$-1+i$$
 2. $-1-i$ 3. $-2i$ 4. $2i$ 5. 0 (M.-91)

73. Le complexe
$$z = \frac{3}{1} + \frac{3}{3}$$
 est une racine de l'équation :
1. $13x^2 + 14x + 5 = 0$ 3. $13x^2 - 16x + 5 = 0$ 5. $5x^2 + 14x + 10 = 0$

2.
$$5x^2 - 14x + 13 = 0$$
 4. $13x^2 + 16x + 5 = 0$