

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

51) International Patent Classification 5:		(11) International Publication Number	r: WO 93/0120
C07H 21/04, C07K 15/00, 15/28 C12N 1/00, 5/10, 9/12 C12N 15/00, C12Q 1/48, 1/68	A1	(43) International Publication Date:	21 January 1993 (21.01.9)
21) International Application Number: PCT/	US92/05	665 (81) Designated States: CA, JP, I	European patent (AT, BE, CI
22) International Filing Date: 1 July 19	92 (01.07.	DĔ, DK, ES, FR, GB, G	R, II, LU, MC, NL, SE).
30) Priority data: 728,783 3 July 1991 (03.07.91)		Published With international search r	eport. ·
71) Applicant: THE SALK INSTITUTE FOR BI- STUDIES [US/US]; 10010 North Torrey Pir Jolla, CA 92037 (US).	OLOGIC. nes Road,	AL La	
72) Inventor: HOEKSTRA, Merl, F.; 583 Roci Leucadia, CA 92024 (US).	kport Coi	ırt,	•
4) Agents: WETHERELL, John, R., Jr. et al.; Sp. Jubas & Lubitz, 1880 Century Park East, St. Angeles, CA 90067 (US).	ensley Ho ite 500, I	orn os	
e e		·	
		•	
A) Tido TVDOSINE KINASE			
4) Title: TYROSINE KINASE			
7) Abstract Tyrosine kinase mutant and wild-type genes	useful in s	creening compositions which may affe	ct DNA double-strand breal
7) Abstract Tyrosine kinase mutant and wild-type genes	useful in s	creening compositions which may affe	ct DNA double-strand break
7) Abstract Tyrosine kinase mutant and wild-type genes	useful in s	creening compositions which may affe	ct DNA double-strand breal
7) Abstract Tyrosine kinase mutant and wild-type genes	useful in s	creening compositions which may affe	ct DNA double-strand breal
Abstract Tyrosine kinase mutant and wild-type genes	useful in s	creening compositions which may affe	ect DNA double-strand breat
Abstract Tyrosine kinase mutant and wild-type genes	useful in s	creening compositions which may affe	ect DNA double-strand breat
7) Abstract Tyrosine kinase mutant and wild-type genes	useful in s	creening compositions which may affe	ct DNA double-strand brea
') Abstract Tyrosine kinase mutant and wild-type genes	useful in s	creening compositions which may affe	ct DNA double-strand break
7) Abstract Tyrosine kinase mutant and wild-type genes	useful in s	creening compositions which may affe	ct DNA double-strand breal
7) Abstract Tyrosine kinase mutant and wild-type genes	useful in s	creening compositions which may affe	ct DNA double-strand breal
4) Title: TYROSINE KINASE 7) Abstract Tyrosine kinase mutant and wild-type genes pair activity.	useful in s	creening compositions which may affe	ect DNA double-strand break
7) Abstract Tyrosine kinase mutant and wild-type genes	useful in s	creening compositions which may affe	ect DNA double-strand break
7) Abstract Tyrosine kinase mutant and wild-type genes	useful in s	creening compositions which may affe	ect DNA double-strand breal

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

-1-1	cations under the 1011	FI	l-inland	MI	Mali Mongoha
ΑT	Austria	FR	France	MN	Mauritania
AU BB	Australia Barbinios	GA	Gabon	MR MW	Malawi
BE	Belgium	GB	United Kingdom	NI.	Netherlands
_	Burkina Faso	GN	Guinea	NO	Norway
BF		GR	Greece	PL	Poland
BC	Bulgaria	HU	Hungary	RO	Romania
BJ	Benin	1E	Ireland	RU	Russian Federation
BR	Brazil	ıΤ	Italy	SD	Sudan
CA	Canada	JP	Japan	SE	Sweden
CF	Central African Republic	KP	Democratic People's Republic	SN	Senegal
CG	Congo	•	of Korea	SU	Soviet Union
CH	Switzerland	KR	Republic of Korea	TD	Chad
CI	Colc d'Ivoire	Ll	Liechtenstein	TG	Togo
CM	('ameroun	LK	Sri Lanka		United States of America
CS	Czechoslovakia	LU	Luxembourg	US	Office Series of
DE	(jermany	MC	Monaco		
DK	Denmark	MG	Madagascar		
ES	Spain	MO			

1.

TYROSINE KINASE

BACKGROUND OF THE INVENTION

1. Field of The Invention

This invention relates generally to the molecular cloning of genes which can be used in toxicity assays and, specifically, to the isolation of a mammalian DNA recombination and repair gene which can be used in an assay to screen various compositions which affect DNA repair.

2. Related Art

5

10

15

20

Chromosomes experience single-stranded or double-stranded breaks as a result of energy-rich radiation, chemical agents, as well as spontaneous breaks occurring during replication among others. Although genes present in the chromosomes undergo continuous damage, repair, exchange, transposition, and splicing, certain enzymes protect or restore the specific base sequences of the chromosome.

The repair of DNA damage is a complex process that involves the coordination of a large number of gene products. This complexity is in part dependent upon both the form of DNA damage and cell cycle progression. For example, in response to ultraviolet (UV) irradiation, cells can employ photoreactivation or excision repair functions to correct genetic lesions. The repair of strand breaks, such as those created by X-rays, can proceed through recombinational mechanisms. For many forms of DNA damage, the cell is induced to arrest in the G2 phase of the cell cycle. During this G2 arrest, lesions are repaired to ensure chromosomal integrity prior to mitotic segregation.

10

15

20

25

Since the transfer of genetic information from generation to generation is dependent on the integrity of DNA, it is important to identify those gene products which affect or regulate genetic recombination and repair. Through the use of organisms with specific genetic mutations, the normal functional gene can be obtained, molecularly cloned, and the gene products studied.

Phenotypic complementation, as a way of identifying homologous normal functional genes, is widely used. For example, the human homologue of the yeast cell cycle control gene, cdc 2, was cloned by expressing a human cDNA library in *Schizosaccharomyces pombe* and selecting those clones which could complement a mutation in the yeast cdc 2 gene (Lee, et al., *Nature*, 327:31, 1987). A mammalian gene capable of reverting the heat shock sensitivity of the RAS2^{val19} gene of yeast, has also been cloned by using complementation (Colicelli, et al., *Proc.Nat'l.Acad.Sci. USA*, 86:3599, 1989). A rat brain cDNA library was used to clone a mammalian cDNA that can complement the loss of growth control associated with the activated RAS2 gene in yeast. The gene, DPD (dunce-like phosphodiesterase), encodes a high-affinity CAMP phosphodiesterase.

In eukaryotes such as Saccharomyces cerevisiae, genetic studies have defined repair-deficient mutants which have allowed the identification of more than 30 radiation-sensitive (RAD) mutants (Haynes, et al., in Molecular Biology of the Yeast Saccharomyces, pp. 371, 1981; J. Game in Yeast Genetics: Fundamental and Applied Aspects, pp. 109, 1983). These mutants can be grouped into three classes depending upon their sensitivities. These classes broadly define excision-repair, error-prone repair, and recombinational-repair functions. The molecular characterization of yeast RAD genes has increased the understanding of the enzymatic machinery involved in excision repair, as well as the arrest of cell division by DNA damage.

10

15

20

25

The understanding of RAD genes and their expression products has become increasingly important as research continues to develop more effective therapeutic compositions. Often these new compositions appear quite effective against a particular disease condition, such as certain tumors, but prove to be too toxic for *in vivo* therapy in an animal having the disease. Indeed, these compositions can actually increase the likelihood of mutagenesis.

Most agents that are mutagenic or carcinogenic are in themselves unreactive, but are broken down to reactive intermediates *in vivo*. It is these reactive intermediates which interact with DNA to produce a mutation. This event is thought to be the initial step in chemical carcinogenesis. Mutations in a large number of genes affect the cellular response to agents that damage DNA. In all likelihood, many of these mutated genes encode enzymes that participate in DNA repair systems. Consequently, when the repair system is compromised, the cells become extremely sensitive to toxic agents. Although the DNA may revert to normal when DNA repair mechanisms operate successfully, the failure of such mechanisms can result in a transformed tumor cell which continues to proliferate.

Although there are currently available tests to determine the toxicity or mutagenicity of chemical agents and compositions, there are limitations in both laboratory screening procedures and animal toxicity tests. These limitations include extrapolating laboratory data from animals to humans. There is often a large measure of uncertainty when attempting to correlate the results obtained in laboratory animals with effects in human subjects. In most cases, doses of the test drug have been used in the animal which are too high to be safely administered to humans. In addition, some types of toxicity can be detected if the drug is administered in a particular species, yet may be missed if the experiment is not done in the correct animal

WO 93/01205 PCT/US92/05565

species. Moreover, many currently available laboratory tests are incapable of detecting certain types of toxic manifestations which occur in man.

Drugs are also routinely tested for their mutagenic potential using microorganisms in the screening assay. The popular test developed by Ames and colleagues (Ames, et al., Mutat. Res.:31, 347, 1975) uses Salmonella typhimurium containing a mutant gene for histidine synthesis. This bacterial strain cannot grow in a histidine deficient medium unless a reverse mutation is induced by exposure to a particular agent. The Ames test is rapid and sensitive, however, its usefulness in predicting carcinogenic or mutagenic potential of chemical substances in human is unclear.

5

10

15

In summary, limitations and uncertainties of existing laboratory tests fail to provide an accurate method of examining the effects of a composition on DNA integrity. In view of this, a considerable need exists for screening methodologies which are inexpensive, rapid, and contain the relevant gene from the animal which is to be treated with the composition. Such methods provide a direct assay to determine if a composition interferes with the DNA repair system of a cell.

SUMMARY OF THE INVENTION

The present invention arose from the discovery of a novel protein which is involved in repair of DNA strand breaks. Although this protein has kinase activity, it is the only kinase known to promote repair of DNA strand breaks occurring at a specific nucleotide sequence and allow normal mitotic recombination. The identification of the normal, or "wild-type", protein kinase was made possible by the isolation of a yeast mutant (hm25) defective in repairing DNA strand breaks, but still capable of promoting normal mitotic recombination. The wild-type gene (HRR25) was isolated by screening a DNA library for nucleotide sequences which could restore the ability to repair DNA breaks.

5

10

15

A major advantage of the present invention is that it now enables identification of functionally analogous wild-type proteins from other species, especially humans. The identification of such foreign protein provides the further advantage of allowing their use in a screening method designed to examine the effect of various compositions on the DNA break repair promoting activity of the foreign protein.

WO 93/01205 PCT/US92/05565

6.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1(A) shows the nucleotide and amino acid sequence of the *HRR25* gene. The locations of the prolines and glutamines at the C-terminus are indicated by asterisks and the limits of homology to the protein kinase catalytic domain are shown by arrows. (B) shows the protein kinase homology represented by a shaded region while the P/Q rich region is indicated by cross hatching.

5

10

15

20

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention relates to a DNA recombination and repair gene which can be used in an assay system to examine the effects of various compositions on DNA integrity. The invention also provides a DNA sequence encoding a polypeptide which promotes normal mitotic recombination, but is defective in tyrosine kinase activity and essentially unable to repair DNA strand breaks. This defective DNA sequence is highly useful for identifying other DNA sequences which encode proteins with functional tyrosine kinase activity. These functional sequences, which can be characterized by their ability to restore DNA strand breaks, permit the screening of compositions to determine whether a particular composition has an effect on the restoration of such repair activity. In addition, the present invention relates to the polypeptide encoded by the defective DNA sequence, as well as the polypeptide encoded by the functional wild-type DNA.

In order to identify a DNA sequence encoding a polypeptide with tyrosine kinase activity, a method is provided whereby a DNA library is screened for nucleotide sequences capable of restoring DNA strand break repair in a mutant lacking such activity. A method is further provided for identifying a composition which affects the activity of a mammalian polypeptide having tyrosine kinase activity, wherein the polypeptide is capable of restoring DNA double-strand break repair activity in a mutant lacking such activity.

WO 93/01205 PCT/US92/05565

8.

In general, the defective protein kinase can be characterized by its ability to promote normal mitotic recombination, while being essentially unable to repair DNA double-strand break including that which occurs at the cleavage site:

5

10

CAACAG GTTGTC

breaks without undue experimentation.

The DNA double-strand breaks which the defective protein kinase is essentially unable to repair can be induced by various means, including endonucleases, x-rays, or radiomimetic agents including alkylating agents. Preferred endonucleases are those which recognize the same nucleotide cleavage site as endonuclease HO. Radiomimetic alkylating agents having methylmethane sulfonate activity are preferred. Those of skill in the art will be able to identify other agents which induce the appropriate DNA strand

15

20

25

The present invention specifically discloses mutants sensitive to continuous expression of the DNA double-strand endonuclease *HO*, which codes for a 65 kDa site-specific endonuclease that initiates mating type interconversion (Kostriken, *et al.*, *Cold Spring Harbor Symp.Quant.Biol.*, <u>49</u>:89, 1984). These mutants are important to understanding the functions involved in recognizing and repairing damaged chromosomes. This invention also discloses a yeast wild-type DNA recombination and repair gene called *HRR25* (*HO* and/or radiation repair). Homozygous mutant strains, *hrr25-1*, are sensitive to methylmethane sulfonate and X-rays, but not UV irradiation. The wild-type gene encodes a novel protein kinase, homologous to other serine/threonine kinases, which appears critical in activation of DNA repair functions by phosphorylation.

10

15

20

25

The *HRR25* kinase is important for normal cell growth, nuclear segregation, DNA repair and meiosis, and deletion of *HRR25* results in cell cycle defects. These phenotypes, coupled with the sequence similarities between the *HRR25* kinase and the *Raf/c-mos* protein kinase subgroup suggest that *HRR25* might play a similar role in *S. cerevisiae* growth and development. The defects in DNA strand break repair and the aberrant growth properties revealed by mutations in *HRR25* kinase, expands the role that protein kinases may play and places *HRR25* in a functional category of proteins associated with DNA metabolism.

The development of specific DNA sequences encoding protein kinase polypeptides of the invention can be accomplished using a variety of techniques. For example, methods which can be employed include (1) isolation of a double-stranded DNA sequence from the genomic DNA of the eukaryote; (2) chemical synthesis of a DNA sequence to provide the necessary codons for the polypeptide of interest; and (3) *in vitro* synthesis of a double stranded DNA sequence by reverse transcription of mRNA isolated from a eukaryotic donor cell. In the latter case, a double stranded DNA complement of mRNA is eventually formed which is generally referred to as cDNA.

The novel DNA sequences of the invention include all sequences useful in providing for expression in prokaryotic or eukaryotic host cells of polypeptides which exhibit the functional characteristics of the novel protein kinase of the invention. These DNA sequences comprise: (a) the DNA sequences as set forth in Figure 1 or their complementary strands; (b) DNA sequences which encode an amino acid sequence with at least about 35% homology in the protein kinase domain with the amino acid sequences encoded by the DNA sequences defined in (a) or fragments thereof; and (c) DNA sequences defined in (a) and (b) above. Specifically embraced in (b) are genomic DNA sequences which encode allelic variant forms. Part (c)

10

15

20

25

specifically embraces the manufacture of DNA sequences which encode fragments of the protein kinase and analogs of the protein kinase wherein the DNA sequences thereof may incorporate codons which facilitate translation of mRNA. Also included in part (c) are DNA sequences which are degenerate as a result of the genetic code.

Since the DNA sequence of the invention encodes essentially the entire protein kinase molecule, it is now a routine matter to prepare, subclone, and express smaller polypeptide fragments of DNA from this or a corresponding DNA sequence. The term "polypeptide" denotes any sequence of amino acids having the characteristic activity of the mutant or wild-type protein kinase of the invention, wherein the sequence of amino acids is encoded by all or part of the DNA sequences of the invention.

The polypeptide resulting from expression of the DNA sequence of the invention can be further characterized as being free from association with other eukaryotic polypeptides or other contaminants which might otherwise be associated with the protein kinase in its natural cellular environment.

Isolation and purification of microbially expressed polypeptides provided by the invention may be by conventional means including, preparative chromatographic separations and immunological separations involving monoclonal and/or polyclonal antibody preparation.

In general, expression vectors useful in the present invention contain a promotor sequence which facilitates the efficient transcription of the inserted eukaryotic genetic sequence. The expression vector typically contains an origin of replication, a promoter, and a terminator, as well as specific genes which are capable of providing phenotypic selection of the transformed cells. The transformed hosts can be grown in fermentors and cultured according to techniques known in the art to achieve optimal cell growth. The

10

15

20

25

polypeptides of the invention can then be isolated from the growth medium, cellular lysates, or cellular membrane fractions.

The DNA sequences of the present invention can be expressed *in vivo* in either prokaryotes or eukaryotes. Methods of expressing DNA sequences containing eukaryotic coding sequences in prokaryotes are well known in the art. Biologically functional viral and plasmid DNA vectors used to incorporate DNA sequences of the invention, for expression and replication in the host cell are well known in the art. For example, DNA can be inserted in yeast using appropriate vectors and introducing the product into the host cells. Various shuttle vectors for the expression of foreign genes in yeast have been reported (Heinemann, *et al.*, *Nature*, <u>340</u>:205, 1989; Rose, *et al.*, *Gene*, <u>60</u>:237, 1987). Those of skill in the art will know of appropriate techniques for obtaining gene expression in both prokaryotes and eukaryotes, or can readily ascertain such techniques, without undue experimentation.

Hosts include microbial, yeast and mammalian host organisms. Thus, the term "host" is meant to include not only prokaryotes, but also such eukaryotes such as yeast, filamentous fungi, as well as plant and animal cells which can replicate and express an intron-free DNA sequence of the invention. The term also includes any progeny of the subject cell. It is understood that not all progeny are identical to the parental cell since there may be mutations that occur at replication. However, such progeny are included when the terms above are used.

Transformation with recombinant DNA may be carried out by conventional techniques well known to those skilled in the art. Where the host is prokaryotic, such as *E. coli*, competent cells which are capable of DNA uptake can be prepared from cells harvested after exponential growth phase and subsequently treated by the CaCl₂ method using procedures well

10

15

20

25

known in the art. Alternatively, MgCl₂ or RbCl could be used in the reaction. Transformation can also be performed after forming a protoplast of the host cell.

Where the host is a eukaryote, various methods of DNA transfer can be used. These include transfection of DNA by calcium phosphate-precipitates, conventional mechanical procedures such as microinjection, insertion of a plasmid encased in liposomes, spheroplast electroporation, salt mediated transformation of unicellular organisms or the use of virus vectors.

Analysis of eukaryotic DNA has been greatly simplified since eukaryotic DNA can be cloned in prokaryotes using vectors well known in the art. Such cloned sequences can be obtained easily in large amounts and can be altered in vivo by bacterial genetic techniques and in vitro by specific enzyme modifications. To determine the effects of these experimentally induced changes on the function and expression of eukaryotic genes, the rearranged sequences must be taken out of the bacteria in which they were cloned and reintroduced into a eukaryotic organism. Since there are still many functions in eukaryotic cells which are absent in prokaryotes, (e.g., localization of ATP-generating systems to mitochondria, association of DNA with histones, mitosis and meiosis, and differentiation of cells), the genetic control of such functions must be assessed in a eukaryotic environment. Cloning genes from other eukaryotes in yeast has been useful for analyzing the cloned eukaryotic genes as well as other yeast genes. A number of different yeast vectors have been constructed for this purpose. All vectors replicate in E. coli, which is important for amplification of the vector DNA. All vectors contain markers, e.g., LEU 2, HIS 3, URA 3, that can be selected easily in yeast. In addition, these vectors also carry antibiotic resistance markers for use in E. coli.

10

15

Many strategies for cloning human homologues of known yeast genes are known in the art. These include, but are not limited to: 1) low stringency hybridization to detect shared nucleotide sequences; 2) antibody screening of expression libraries to detect shared structural features; and 3) complementation of mutants to detect genes with similar functions.

For purposes of the present invention, protein kinases which are homologous can be identified by structural as well as functional similarity. Structural similarity can be determined, for example, by assessing amino acid homology or by screening with antibody, especially a monoclonal antibody, which recognizes a unique epitope present on the protein kinases of the invention. When amino acid homology is used as criteria to establish structural similarity, those amino acid sequences which have homology of at least about 35% in the protein kinase domain are considered to be essentially the same as the amino acid sequences of the invention.

When homologous amino acid sequences are evaluated based on functional characteristics, then a homologous amino acid sequence is considered equivalent to the amino acid sequence of the invention when the homologous sequence is essentially unable to repair (in the case of the repair defective mutant gene) or able to repair (in the case of the natural gene), DNA double-strand breaks, including that which occurs at a nucleotide cleavage site

CAACAG GTTGTC

25

20

and when the homologous amino acid sequence allows normal mitotic recombination.

This invention preferably uses the functional screening method whereby genes are cloned from plasmid libraries by complementation of a recessive

10

15

20

25

marker. A recipient strain such as *Saccharomyces cerevisiae* is constructed that carries a recessive mutation in the gene of interest. This strain is then transformed with a plasmid, for example, pYES2 (Invitrogen, San Diego, CA) containing the wild-type genomic DNA or cDNA. The clone carrying the gene of interest can then be selected by replica plating to a medium that distinguishes mutant from wild-type phenotypes for the gene of interest. The plasmid can then be extracted from the clone and the DNA studied. Several yeast vectors allow the application of complementation systems to go beyond isolation of yeast genes. Genes from a wide variety of species can be isolated using these vectors. In such systems, DNA sequences from any source are cloned into a vector and can be screened directly in yeast for activities that will complement specific yeast mutations.

In a preferred embodiment, the present invention uses a mutation in yeast, the hrr25 mutation, which was identified by sensitivity to DNA double-strand breaks induced by the HO endonuclease. The genomic DNA which complements this mutation was isolated by transforming the hrr25 strain with a DNA library and subsequently screening for methylmethane sulfonate (MMS) resistance. Alternately, functional genes from a variety of mammalian species can now be cloned using the system described.

Yeast genes can be cloned by a variety of techniques, including use of purified RNA as hybridization probes, differential hybridization of regulated RNA transcripts, antibody screening, transposon mutagenesis, cross suppression of mutant phenotypes, cross hybridization with heterologous cDNA or oligonucleotide probes, as well as by complementation in *E. coli*.

Minor modifications of the primary amino acid sequence may result in proteins which have substantially equivalent or enhanced activity as compared to the sequence set forth in Figure 1. The modifications may be deliberate, as by site-directed mutagenesis, or may be spontaneous by

10

15

20

HRR25 producing organisms. All of these modifications are included in the invention as long as HRR25 activity is retained. Substitution of an aspartic acid residue for a glycine acid residue at position 151 in the sequence shown in FIGURE 1 identifies the mutant *hrr25*.

Antibodies provided by the present invention are immunoreactive with the mutant polypeptides and/or the naturally occurring protein kinase. Antibody which consist essentially of numerous monoclonal antibodies with different epitopic specificities, as well as distinct monoclonal antibody preparations are provided. Monoclonal antibody is made from antigen containing fragments of the polypeptide by methods well known in the art (Kohler,G. et al., Nature 256:495, 1975; Current Protocols in Molecular Biology, Ausubel, F. et al., ed.,1989).

The invention also discloses a method for identifying a composition which affects the activity of a polypeptide having tyrosine kinase activity. The polypeptide is capable of restoring DNA double-strand break repair activity in host cells containing the *hrr25* gene. The composition and the polypeptide are incubated in combination with host cells for a period of time and under conditions sufficient to allow the components to interact, then subsequently monitoring the change in tyrosine kinase activity, for example, by decreased repair of DNA double-strand breaks. The DNA strand breaks are induced, for example, by a radiomimetic agent, such as methylmethane sulfonate, x-rays, or by endonuclease like *HO*. Other means of inducing double-strand breaks that are well known in the art may be employed as well.

The following examples are intended to illustrate but not limit the invention. While they are typical of those that might be used, other procedures known to those skilled in the art may alternatively be used.

16.

EXAMPLE 1

ISOLATION OF hrr25

S. cerevisiae strain K264-5B (MATa ho ura3 can1^R tyr1 his7 lys2 ade5 met13 trp5 leu1 ade5) was employed for the mutant isolation. The yeast were transformed according to standard procedures with a URA3-based integrating plasmid that contained a GAL1,10-regulated HO endonuclease and a transformant was mutagenized to approximately 50% survival with ethyl methanesulfonate (EMS), as described (Current Protocols in Molecular Biology, supra). The culture was spread onto glycerol-containing rich medium (YPG, to avoid petites), colonies were allowed to form at 30°C, and plates were replicated to glucose (HO repressing) and galactose (HO inducing) media. Mutants were identified by their inability to grow on Approximately 200 mutants were chosen for initial galactose. characterization and 62 maintained the gal- phenotype through repeated single colony purification. Among these, many were not complemented by various gal mutants. The remainder (25 mutants) were surveyed for overlapping DNA repair defects by determining sensitivity to ultraviolet (UV) irradiation and to methyl methane sulfonate (MMS). This screening method identified five alleles of known rad mutations and one new mutation. This new mutation hrr25-1 (HO and/or radiation repair), presented severe defects and was studied further.

A recessive DNA repair defect is conferred by *hrr25-1* that includes sensitivity to MMS. *Hrr25-1* strains also show sensitivity at 5-20 Krad X-irradiation similar to that observed with mutations in the radiation repair genes *RAD50* and *RAD52* (Cole, et al., *Mol.Cell.Biol.*, 9:3101, 1989). The *hrr25-1* strains are no more sensitive to UV irradiation than wild type and are not temperature sensitive for growth at 37°C. Unlike hypo- and hyper-rec rad mutants which have several of the *hrr25-1* phenotypes, *hrr25-1* strains

25

5

10

15

20

undergo normal mitotic recombination (Cole, et al., Mol.Cell.Biol., 9:3101, 1989). Spontaneous gene conversion and crossing-over were the same for homozygous hrr25-1 and wild type strains. However, HRR25 is required for the correct completion of meiosis. The hrr25-1 homozygotes showed less than 1% spores (tetranucleate cells) under conditions that produced 75-80% spores in an isogenic wild type strain. The hrr25-1 mutation could be complemented by a number of radiation sensitive mutations (rad6, 50, 52, 54, and 57) that present some of the hrr25 phenotypes, suggesting that hrr25-1 is a newly uncovered rad-like mutation and not one of these previously described genes. These results also indicate that HRR25 plays a role in DNA repair and meiosis, but is not specifically required for the repair of spontaneous mitotic lesions by recombination.

EXAMPLE 2

ISOLATION OF HRR25

15

5

10

The HRR25 gene was obtained by complementing for MMS sensitivity using a yeast genomic library constructed in the plasmid YCp50 (Rose, et al., Gene, 60:237, 1987). An hrr25-1 strain, MHML 3-36d (ura3 hrr25), was transformed by standard methods (Nickoloff, et al., J.Mol.Biol., 207:527, 1989) to uracil prototrophy, transformants were amplified on media without uracil and replicated to media containing 0.01% MMS. Among 1200 identified. resistant isolate was sinale MMS transformants. а Complementation for MMS sensitivity was found to segregate with the plasmid as determined by methods known in the art.

20

A 12 kb genomic fragment was identified and complementing activity was localized to a 3.1 kb BamHI-SalI fragment by transposon mutagenesis and subcloning. This region complemented DNA repair defects as well as meiotic deficiencies. Gene targeting experiments linked this cloned region

25

10

15

20

25

to hrr25-1. Transposon insertion mutations within the BamHI-SalI fragment replaced into the cognate HRR25 genomic locus did not complement hrr25-1 for MMS sensitivity, whereas adjacent chromosomal insertions outside the complementing region segregated in repulsion when crossed against hrr25-1.

Mini-Tn10LUK transposons (Huisman, et al., Genetics, 116:191, 1987) were used to delineate the approximate location of HRR25 on the 12 kb BamHI-Sall fragment. Insertions located to the left hand 9 kb (of the 12 kb genomic fragment) did not inactivate complementation of hrr25-1 MMS resistance compared with the un-mutagenized plasmid. Two insertions, located near an EcoRV site in the right hand 2 kb inactivated complementation. HRR25 complementation activity was localized to a 3.4 kb Sall fragment. Approximately 300 bp of this fragment (right hand side of the 12 kb) were part of the pBR322 tetracycline resistance gene (between the BamHI site of pBR322-based YCp50). The HRR25 open reading frame spans an internal region across an EcoRV site and two Bg/II sites within the right terminal 3 kb.

The DNA sequence of the 3.1 kb fragment revealed a centrally located open reading frame of 1482 nucleotide. A transposon insertion mutation in this open reading frame inactivated *HRR25* complementation whereas insertions elsewhere in the 12 kb clone did not affect *HRR25* complementation. Transposon-mediated disruption of *HRR25* also revealed several phenotypes not seen with *hrr25-1*. As expected, a Tn10-based LUK transposon insertion (Huisman, et al., Genetics, 116:191, 1987) into the middle of plasmid-borne *HRR25* coding region inactivated complementation for MMS sensitivity. Transplacement of this insertion into the genomic *HRR25* gene revealed a severe growth defect in addition to MMS sensitivity and meiotic inviability. This severe growth defect was not observed with *hrr25-1* strains. Wild type *HRR25* strains doubled in rich media at 30°C every 80-90 minutes whereas

10

15

20

25

isogenic hrr25::LUK strains and hrr25\(\Delta\) doubled every 9-12 hours. hrr25-1 had a doubling time of 2-4 hours.

To determine whether the mutant phenotypes revealed by the hm::LUK disruption allele represent a null phenotype, the entire HRR25 coding sequence was deleted. Briefly, deletion of the HRR25 coding sequence employed a hisG::URA3::hisG cassette (Alani, et al., Genetics, 116:541, 1988). The 3.1 kb HRR25 Sall fragment was cloned into pBluescript (Stratagene, La Jolla, CA). This plasmid was digested with Bg/II and the two Bg/II fragments that span the entire HRR25 gene and its flanking sequences were deleted. Into this deletion was introduced the 3.8kb BamHI-Bg/II hisG::URA3::hisG fragment from pNKY51 to create the hrr25a allele. Sall digestion yielded a linearized fragment that deleted the entire HRR25 locus. Yeast carrying the deletion-disruption allele (hrr25a) showed phenotypes identical to those with the hrr25::LUK allele for all properties examined, including MMS sensitivity, slow growth, and the sporulation defect, indicating that wild-type HRR25 protein is associated with these processes and that the hrr25::LUK allele does not indirectly interfere with DNA repair, growth or sporulation. In direct parallel comparisons, the hrr25::LUK and hrr25∆ alleles behaved identically.

Yeast strain MFH14 (MATa/MATa ura3/ura3) was transformed with Bg/II-linearized YCp50-HRR25::LUK to uracil prototrophy, heterozygous disruption of HRR25 was verified by Southern blot analysis, the diploid was sporulated by starvation for nitrogen and fermentable carbon source, tetrads dissected and cells allowed to germinate at 30°C for 7 days. After a normal germination period of 2 days, the severe growth defect of hrr25::LUK suggested that the deletion of HRR25 was lethal. However, microscopic examination of segregants revealed that hrr25::LUK germinating cells grew slowly and in every case examined (20/20 tetrads), slow growth, MMS sensitivity, and uracil prototrophy co-segregated. A color variation was seen

10

15

20

25

seen with diploid MFH14 segregants, due to mutations in adenine biosynthesis. MFH14 is ade5/ADE5 ade2/ade2. An ade5/ade2 strain was white, while an ADE5/ade2 strain was red.

EXAMPLE 3

SEQUENCE AND STRUCTURE OF THE HRR25 GENE

DNA sequencing of both strands of the *HRR25* gene was done by unidirectional deletions employing Sequenase (USB, Cleveland, OH) and Exo-Meth (Stratagene, La Jolla, CA) procedures as described by the manufacturers. Figure 1A, shows the location of the prolines and glutamines at the C-terminus as indicated by asterisks, and the limits of homology to protein kinase catalytic domains. Figure 1B shows a schematic representation of the structure of *HRR25*. The protein kinase homology is represented by a shaded region while the P/Q rich region is indicated by cross-hatchings. The mutant, *hrr25*, can be distinguished from *HRR25* by one amino acid substitution. At position 151, an aspartic acid is substituted for glycine.

The predicted translation product of *HRR25* revealed an unexpected feature for a *rad*-like DNA repair function. *HRR25* contains the hallmark signatures of sequence homology with the catalytic domain of serine/threonine protein kinase superfamily members (Hanks, *et al.*, *Science*, <u>241</u>:42, 1988). For comparison, the *HRR25* translation product was aligned with the catalytic domains for two subgroups of yeast protein kinases, the *CDC28/cdc2* group and the *KSS1/FUS3* group. Located between amino acids 15 and 30 is a region that contains the conserved GXGXXG region. Just C-terminal to this region is a conserved lysine and glutamic acid present in most known kinases. These regions are thought to function in the nucleotide binding

10

15

20

25

and phosphotransfer steps of the kinase reaction (Hanks, et al., Science, 241:42,1988). Between amino acid residues 120 to 150 are regions containing the HRD and DFG motifs, also found in most protein kinase family members. In addition, sequence examination of all known serine/threonine kinases indicates that HRR25 shares some additional similarities with the Raf/PKS/mos subgroup (Hanks, et al., Science, 241:42, 1988). The strongest homologies can be found in areas around the GXGXXG, DFG, and DXXSXG conserved regions in protein kinase catalytic domains.

The functional relevance of the observed sequence similarity between *HRR25* and protein kinases was studied by altering specific residues within the *HRR25* kinase domain and examining the phenotypic consequences of these changes. A lysine at position 38 (Lys ³⁸) was mutated to an arginine residue by site directed mutagenesis, by methods known in the art. The mutagenic oligonucleotide was:

5'-CCTGATCGATTCCAGCCTGATCGCTACTTCTTCACCACT-3'.

Lys³⁸ in *HRR25* corresponds to the lysine found in all known protein kinases, and this subdomain is involved in ATP binding. Mutations at the conserved lysine in protein kinases such as *v-src*, *v-mos*, and *DBF2* inactivate these proteins. The mutant hm25-Lys³⁸ allele was incapable of complementing hm25-1, hm25::LUK, and hm25 alleles for all properties examined, an indication that the *HRR25* kinase domain is required for *in vivo* function of *HRR25*.

The predicted *HRR25* translation product has a number of notable features outside the region of homology to protein kinase catalytic domains. For example, the last 100 amino acids is proline and glutamine rich, containing 50 of these residues. Other proteins with regions rich in these two amino

acids include the transcription factors Sp1, jun, and HAP2, steroid hormone receptors, the S. pombe ran1 kinase, and mak-male germ cell-associated kinase (Courey, et al., Cell, 55:887, 1988; Bohmann, et al., Science, 238:1386, 1987; Roussou, et al., Mol.Cell.Biol., 8:2132, 1988; Arriza, et al., Science, 237:268, 1987; Matsushime, et al., Mol.Cell.Biol., 10:2261, 1990). In the case of Sp1 and jun, the proline-glutamine regions are involved in transactivation, whereas the P/Q region in the human mineralocorticoid receptor is thought to serve as an intramolecular bridge. This prolineglutamine region in HRR25 might function as a structural feature for substrate interaction, or for subcellular localization. Also, the glutamine richness of this region is similar to the opa or M-repeat seen in the Drosophila and Xenopus Notch/Xotch proteins (Wharton, et al., Cell, 40:55, 1985; Coffman, et al., Science, 249:1438, 1990). The function of the opa repeat is not certain, but it is found in several Drosophila genes. Lastly, the sequence TKKQKY at the C-terminal end of the region homologous to protein kinases is similar to the nuclear localizing signal of SV40 large T antigen and yeast histone H2B (Silver, et al., J.Cell.Biol., 109:983, 1989; Moreland, et al., Mol.Cell.Biol., 7:4048, 1987).

EXAMPLE 4

20

25

5

10

15

MICROSCOPIC ANALYSIS OF GERMINATING AND PROLIFERATING hrr25 CELLS

Photomicrographs of *HRR25* and *hrr25::LUK* colonies were taken after germination on rich medium. An MFH14 *hrr25::LUK* heterozygous transformant was dissected onto a thin film of YPD rich medium on a sterilized microscope slide and segregants were allowed to germinate under a coverslip by incubating the slide in a moist 30°C chamber. Photographs of colonies were taken after 2 days of growth. Phase contrast and DAPI staining of proliferating *HRR25*_{\(\Delta\)} and *hrr25::LUK* cells were compared. Cells

10

15

20

were inoculated into YPD mois medium and grown at 30°C to a mid-log density of 1-3 X 10⁷ cells/ml, briefly sonicated to disrupt clumps, fixed with formaldehyde, and stained with DAPI (Williamson, et al., Meth.Cell.Biol., 12:335, 1975). Many cells with hrr25::LUK lacked DAPI stainable nuclei.

Microscopic examination of germinating and actively growing mid-log phase hrr25::LUK cells revealed aberrant cellular morphologies. Transposon disruption of HRR25 resulted in large cells, and 25-40% of cells were DAPI nuclear staining (Williamson, et al., filamentous or extended. Meth.Cell.Biol., 12:335, 1975) of mid-log populations showed that orderly cell cycle progression in hrr25 mutants was lost. There were a large number of cells lacking DAPI-stainable nuclei which, by single cell manipulations proved to be inviable. Consistent with this nuclear segregation defect, the plating efficiency of hrr25::LUK haploids was also reduced to 75-80% of wild type. However, this reduction in plating efficiency is insufficient to account for the severe growth rate reduction. Plating efficiency was measured from mid-log phase cells by comparing the efficiency of colony formation on rich medium relative to the total number of cells determined by hemocytometer count. Cell populations were analyzed for DNA content distribution by flow cytometric analysis following staining with propidium iodide as described (Hutter, et al. J.Gen.Microbiol., 113:369, 1979). Cell sorting analysis showed that a large number of the cells in a haploid hrr25::LUK population were delayed in the cell cycle and exhibited G2 DNA content, but the population was not arrested uniformly in the cell cycle.

10

15

20

EXAMPLE 5

SEQUENCE COMPARISON OF HRR25 WITH CDC28, K\$\$1, AND RAF1

The predicted translation product of *HRR25* was compared with the catalytic domains of several members of the serine/threonine protein kinase superfamily. Initial sequence comparisons employed the UWGCG programs (Devereux, et al., Nuc.Acids.Res., 12:387, 1984), whereas subgroup comparisons used the methods of Hanks, et al., supra. *HRR25* contains all eleven subdomains described by Hanks, et al., supra. Structurally similar groupings were compared in the sequence comparisons. These included nonpolar chain R groups, aromatic or ring-containing R groups, small R groups with near neutral polarity, acidic R groups, uncharged polar R groups, and basic polar R groups.

CDC28 and KSS1 represent members of two subgroups of serine/threonine protein kinases in yeast. CDC28 is involved in cell cycle regulation while KSS1 acts in the regulation of the yeast mating pathway. HRR25 shows 21% identity and 41% similarity to CDC28 and 19% identity and 43% similarity to KSS1. HRR25 shows highest similarity to members of the Raf1/PKS/Mos family of protein kinases. Through the catalytic domain, HRR25 shows 30% identity and 49% similarity to Raf1.

SUMMARY OF SEQUENCES

Sequence I.D. No. 1 is the nucleic acid sequence (and the deduced amino acid sequence) of a genomic fragment encoding a yeast-derived tyrosine kinase of the present invention.

Sequence I.D. No. 2 is the deduced amino acid sequence of a yeast-derived tyrosine of the present invention.

26.

SEQUENCE LISTING

N:

- (i) APPLICANT: Hoekstra, Merl F.
- (ii) TITLE OF INVENTION: TYROSINE KINASE
- 5 (iii) NUMBER OF SEQUENCES: 2
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Spensley Horn Jubas & Lubitz
 - (B) STREET: 4225 Executive Square, Suite 1400
- 10 (C) CITY: La Jolla
 - (D) STATE: CA
 - (E) COUNTRY: USA
 - (F) ZIP: 92037

(v) COMPUTER READABLE FORM:

- 15 (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) CURRENT APPLICATION DATA:

20 (A) APPLICATION NUMBER: US

- (B) FILING DATE: 03-JUL-1991
- (C) CLASSIFICATION:

PCT/US92/05565

27.

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Wetherell Ph.D., John R.
- (B) REGISTRATION NUMBER: 13,678
- (C) REFERENCE/DOCKET NUMBER: PD-1318

(ix) TELECOMMUNICATION INFORMATION: 5

(A) TELEPHONE: (619) 455-5100

(B) TELEFAX: (619) 455-5110

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3098 base pairs 10

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

15 (vii) IMMEDIATE SOURCE:

(B) CLONE: Tyrosine Kinase

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 879..2364

WO 93/01205 PCT/US92/05565

28.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

	GTCGACTCGC	CAATCACCAA	GTTCTTATCC	CACATCCGAC	CAGTGTCTGA	GTCATGGTTT	60
	ACCACCACCA	TACCATCGCT	GGTCATTTGT	AAATCCGTTT	CTATTACATC	AGCACCTGCT	120
	GCATAAGCCT	TCTCAAATGC	TAGTAGCGTA	TTTTCAGGAT	ATCTTGCTTT	AAAAGCTCTG	180
5	TGGCCCACAA	TTTCAACCAT	CCTCGTGTCC	TTGTTGTTAT	CTTACACTTC	TTATTTATCA	240
	ATAACACTAG	TAACATCAAC	AACACCAATT	TTATATCTCC	CTTAATTGTA	TACTAAAAGA	300
	TCTAAACCAA	TTCGGTATTG	TCCTCGATAC	GGCATGCGTA	TAAAGAGATA	TAATTAAAAG	360
	AGGTTATAGT	CACGTGATGC	AGATTACCCG	CAACAGTACC	ACAAAATGGA	TACCATCTAA	420
	TTGCTATAAA	AGGCTCCTAT	ATACGAATAA	CTACCACTGG	ATCGACGATT	ATTTCGTGGC	480
10	AATCATATAC	CACTGTGAAG	AGTTACTGCA	ACTCTCGCTT	TGTTTCAACG	CTTCTTCCCG	540
	TCTGTGTATT	TACTACTAAT	AGGCAGCCCA	CGTTTGAATT	TCTTTTTTC	TGGAGAATTT	600
	TTGGTGCAAC	GAGGAAAAGG	AGACGAAGAA	AAAAAGTTGA	AACACGACCA	CATATATGGA	660
	ACGTGGTTGA	AATACAAAGA	GAAGAAAGGT	TCGACACTCG	AGGAAAGCAT	TTGGTGGTGA	720
	AAACACATCT	TAGTAGCATC	TTTAAACCTC	TGTTGGGTAC	TTAGAAAAAT	ATTTCCAGAC	780
15	TTCAAGGATA	AAAAAAGTCG	AAAAGTTACG	ACATATTCGA	CCAAAAAAA	AAACCAAAAA	840

	GAA	AAGA	TAT .	ATTT.	ATAG	AA A	GGAT.	ACAT"	T AA	AAAG	AG A	TG G	AC T	ra a	GA G	ΓA	893
											M	et A	sp L	eu A	rg V	al	
												1				5	
	GGA	AGG	AAA	TTT	CGT	ATT	GGC	AGG	AAG	ATT	GGG	AGT	GGT	TCC	TTT	GGT	941
5	Gly	Arg	Lys	Phe	Arg	Ile	Gly	Arg	Lys	Ile	Gly	Ser	Gly	Ser	Phe	Gly	
					10					15					20		
	GAC	ATT	TAC	CAC	GGC	ACG	AAC	TTA	ATT	AGT	GGT	GAA	GAA	GTA	GCC	ATC	989
	Asp	Ile	Tyr	His	Gly	Thr	Asn	Leu	Ile	Ser	Gly	Glu	Glu	Val	Ala	Ile	
				25					30					35			
10	AAG	CTG	GAA	TCG	ATC	AGG	TCC	AGA	CAT	CCT	CAA	TTG	GAC	TAT	GAG	TCC	1037
	Lys	Leu	Glu	Ser	Ile	Arg	Ser	Arg	His	Pro	Gln	Leu	Asp	Tyr	Glu	Ser	
			40					45					50	•			÷
	CGC	GTC	TAC	AGA	TAC	TTA	AGC	GGT	GGT	GTG	GGA	ATC	CCG	ŢŢĊ	ATC	AGA	1085
	Arg	Val	Tyr	Arg	Tyr	Leu	Ser	Gly	Gly	Val	Gly	Ile	Pro	Phe	Ile	Arg	
15		55					60					65					
	TGG	TTT	GGC	AGA	GAG	GGT	GAA	TAT	AAT	GCT	ATG	GTC	ATC	GAT	CTT	CTA	1133
	Trp	Phe	Gly	Arg	Glu	Gly	Glu	Tyr	Asn	Ala	Met	Val	Ile	Asp	Leu	Leu	
	70					75					80					85	
	GGC	CCA	TCT	TTG	GAA	GAT	TTA	TTC	AAC	TAC	TGT	CAC	AGA	AGG	TTC	TCC	1181
20	Gly	Pro	Ser	Leu	Glu	Asp	Leu	Phe	Asn	Tyr	Cys	His	Arg	Arg	Phe	Ser	
					90					95					100		
	TTT	AAG	ACG	GTT	ATC	ATG	CTG	GCT	TTG	CAA	ATG	TTT	TGC	CGT	ATT	CAG	1229
	Phe	Lys	Thr	Val	Ile	Met	Leu	Ala	Leu	Gln	Met	Phe	Cys	Arg	Ile	Gln	
				105					110					115			

WO 93/01205 PCT/US92/05565

30.

	TAT ATA CAT GGA Tyr Ile His Gly 120	A AGG TCG TTC Arg Ser Phe	ATT CAT AG	GA GAT ATC AAA CCA GAC AAC 12 eg Asp Ile Lys Pro Asp Asn 130	77
5	TTT TTA ATG GGG Phe Leu Met Gly 135	G GTA GGA CGC y Val Gly Arg 140	, Arg Gly Se	GC ACC GTT CAT GTT ATT GAT 13 er Thr Val His Val Ile Asp 145	325
	TTC GGT CTA TCA Phe Gly Leu Ser	A AAG AAA TAG r Lys Lys Tym 155	C CGA GAT TT	TC AAC ACA CAT CGT CAT ATT 13 he Asn Thr His Arg His Ile 160 165	373
10	CCT TAC AGG GA	G AAC AAG TC u Asn Lys Se 170	r Leu Thr G	GT ACA GCT CGT TAT GCA AGT 1. Thy Thr Ala Arg Tyr Ala Ser 180	421
15	GTC AAT ACG CA	s Leu Gly Il	A GAG CAA A e Glu Gln S 190	AGT AGA AGA GAT GAC TTA GAA 1 Ser Arg Arg Asp Asp Leu Glu 195	.469
	TCA CTA GGT TA	AT GTC TTG AT	C TAT TIT T e Tyr Phe C	TGT AAG GGT TCT TTG CCA TGG 1 Cys Lys Gly Ser Leu Pro Trp 210	L517
20	CAG GGT TTG A Gln Gly Leu L 215	ys Ala Thr Ti	CC AAG AAA C nr Lys Lys C 20	CAA AAG TAT GAT CGT ATC ATG Gln Lys Tyr Asp Arg Ile Met 225	1565
	GAA AAG AAA T Glu Lys Lys L 230	TA AAC GTT A eu Asn Val S 235	GC GTG GAA A	ACT CTA TGT TCA GGT TTA CCA Thr Leu Cys Ser Gly Leu Pro 240 245	1613

31.

	TTA	GAG	TTT	CAA	GAA	TAT	ATG	GCT	TAC	TGT	AAG	AAT	TTG	AAA	TTC	GAT	1661
	Leu	Glu	Phe	Gln	Glu	Tyr	Met	Ala	Tyr	Cys	Lys	Asn	Leu	Lys	Phe	Asp	
					250					255			•		260		
	GAG	AAG	CCA	GAT	TAT	TTG	TTC	TTG	GCA	AGC	CTG	TTT	AAA	GAT	CTG	AGT	1709
5	Glu	Lys	Pro	Asp	Tyr	Leu	Phe	Leu	Ala	Arg	Leu	Phe	Lys	Asp	Leu	Ser	
				265					270					275			
	ATT	AAA	CTA	GAG	TAT	CAC	AAC	GAC	CAC	TTG	TTC	GAT	TGG	ACA	ATG	TTG	1757
			Leu														
		-,, -	280		,			285					290			•	•
10	ССТ	TAC	ACA	AAG	GCG	ATG	GTG	GAG	AAG	CAA	AGG	GAC	CTC	CTC	ATC	GAA	1805
.0			Thr														
	nr g	295	1111	D) 3			300		-,-			305					
	•	233					300										
		CCT	GAT	ידיר	44C	GCA	ΔΔΤ	AGC	ААТ	GCA	GCA	AGT	GCA	AGT	AAC	AGC	1853
			Asp														
45	_	GIY	Asp	Leu	ASII		nsn	261	กอแ	AIG	320	001				325	
15	310					315					320						
					m om	~	A CT	ጥጥር	A A C	A A C	ለ ጥጥ	A A A	стс	ΤΤΔ	GCC	ATG	1901
			AAC														
	Thr	Asp	Asn	Lys		GIU	inr	rne	ASTI		116	Lys	Leu	Leu	340		
					330					335					340		
						_								CAC	A A A	CAT	1949
			TTC														1,747
20	Lys	Lys	Phe	Pro	Thr	His	Phe	His	Tyr	Tyr	Lys	Asn	GLu		Lys	HIS	
				345					350					355			
																.02	1007
			TCA														1997
	Asn	Pro	Ser	Pro	Glu	Glu	Ile	Lys	Gln	Gln	Thr	Ile	Leu	Asn	Asn	Asn	
			360					365					370				

					77.T.A	CCA	CAC	CAA	ττα	ттс	AAC	GCA	CTA	GAT	AAA	GGT	2045
												Ala					
	Ala		Ser	Ser	Leu	110	380	014				385		•	-		
		375					300										
	۸۳۲	GΔΔ	AAC	ፐፐር	AGA	CAA	CAG	CAG	CCG	CAG	CAG	CAG	GTC	CAA	AGT	TCG	2093
5	MAT	Glu	Asn	Leu	Arg	Gln	Gln	Gln	Pro	Gln	Gln	Gln	Val	Gln	Ser	Ser	
3	390	010			0	395					400					405	
	370																
	CAG	CCA	CAA	CCA	CAG	CCC	CAA	CAG	CTA	CAG	CAG	CAA	CCA	AAT	GGC	CAA	2141
	Gln	Pro	Gln	Pro	Gln	Pro	Gln	Gln	Leu	Gln	Gln	Gln	Pro	Asn	Gly	Gln	
	01				410					415					420		
10	AGA	CCA	AAT	TAT	TAT	CCT	GAA	CCG	TTA	CTA	CAG	CAG	CAA	CAA	AGA	GAT	2189
	Arg	Pro	Asn	Tyr	Tyr	Pro	Glu	Pro	Leu	Leu	Gln	Gln	Gln	Gln	Arg	Asp	
				425					430					435			
	TCT	CAG	GAG	CAA	CAG	CAG	CAA	GTT	CCG	ATG	GCT	ACA	ACC	AGG	GCT	ACT	2237
,	Ser	Gln	Glu	Gln	Gln	Gln	Gln	Val	Pro	Met	Ala	Thr	Thr	Arg	Ala	Thr	
15			440					445					450				
																	2205
	CAG	TAT	CCC	CCA	CAA	ATA	AAC	AGC	AAT	AAT	TTT	AAT	ACT	AAT	CAA	GCA	2285
	Gln	Tyr	Pro	Pro	Gln	Ile	Asn	Ser	Asn	Asn	Phe			Asn	Gln	Ala	
		455					460)				465					
																C. T	2333
	TCT	GTA	CCT	CCA	CAA	ATG	AGA	TCT	AAT	CCA	CAA	CAG	CCG	CCT	CAA	GAT	2333
20	Ser	Val	Pro	Pro	Gln	Met	Arg	Ser	Asn	Pro			Pro	Pro	GIT	Asp	
	470					475					480)				485	
												- ·		m m		. ^ ^ ^ C	2384
											GC	AACA	TATA	T TC	o I GP	AAAC	2,04
	Lys	Pro	Ala	Gly	Gln	Ser	Ile	Tr	Leu								
					490	ı				495)						

	GCACAAAAAT	AAACATATGT	ATATATAGAC	ATACACACAC	ACATATATAT	ATATATATTA	2444
	TTATTATTAT	TTACATATAC	GTACACACAA	TTCCATATCG	AGTTAATATA	TACAATTCTG	2504
	GCCTTCTTAC	CTAAAAAGAT	GATAGCTAAA	AGAACCACTT	TTTTTATGCA	TTTTTTTCTT	2564
	CGGGAAGGAA	ATTAAGGGGG	AGCGGAGCAC	CTCTTGGCCA	ATTTGTTTTT	TTTTTATGTA	2624
5	ATAAAGGGCT	AACGATCGAA	GATCAATCAC	GAATATTGGA	CGGTTTTAAA	GGAGGGCCTC	2684
	TGAGAAGACA	GCATCAATTC	GTATTTTCGA	TAATTAACTT	GCCTTATAGT	GTCTGATTAG	2744
	GAAACAATCA	CGAGACGATA	ACGACGGAAT	ACCAAGGAAG	TTTGTGCAAA	TATACAGCCG	2804
	GCACAAACAG	CAGCTTCACT	CAGGTTAACT	CACATACTGT	TGAAAATTGT	CGGTATGGAA	2864
	TTCGTTGCAG	AAAGGGCTCA	GCCAGTTGGT	CAAACAATCC	AGCAGCAAAA	TGTTAATACT	2924
10	TACGGGCAAG	GCGTCCTACA	ACCGCATCAT	GATTTACAGC	AGCGACAACA	ACAACAACAG	2984
	CAGCGTCAGC	ATCAACAACT	GCTGACGTCT	CAGTTGCCCC	AGAAATCTCT	CGTATCCAAA	3044
	GGCAAATATA	CACTACATGA	CTTCCAGATT	ATGAGAACGC	TTGGTACTGG	ATCC	3098

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

15

(A) LENGTH: 495 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

WO 93/01205 PCT/US92/05565

34.

(ii)	MOLECULE	TYPE:	protein
------	----------	-------	---------

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Asp Leu Arg Val Gly Arg Lys Phe Arg Ile Gly Arg Lys Ile Gly

1 5 10 15

5 Ser Gly Ser Phe Gly Asp Ile Tyr His Gly Thr Asn Leu Ile Ser Gly 20 25 30

Glu Glu Val Ala Ile Lys Leu Glu Ser Ile Arg Ser Arg His Pro Gln
35 40 45

Leu Asp Tyr Glu Ser Arg Val Tyr Arg Tyr Leu Ser Gly Gly Val Gly

50 55 60

Ile Pro Phe Ile Arg Trp Phe Gly Arg Glu Gly Glu Tyr Asn Ala Met
65 70 75 80

Val Ile Asp Leu Leu Gly Pro Ser Leu Glu Asp Leu Phe Asn Tyr Cys
85 90 95

His Arg Arg Phe Ser Phe Lys Thr Val Ile Met Leu Ala Leu Gln Met
100 105 110

Phe Cys Arg Ile Gln Tyr Ile His Gly Arg Ser Phe Ile His Arg Asp 115 120 125

Ile Lys Pro Asp Asn Phe Leu Met Gly Val Gly Arg Arg Gly Ser Thr

135 140

	Val 145	His	Val	Ile	Asp	Phe 150	Gly	Leu	Ser	Lys	Lys 155	Tyr	Arg	Asp	Phe	Asn 160
	Thr	His	Arg	His	Ile 165	Pro	Tyr	Arg	Glu	Asn 170	Lys	Ser	Leu	Thr	Gly 175	Thr
5	Ala	Arg	Tyr	Ala 180	Ser	Val	Asn	Thr	His 185	Leu	Gly	Ile	Glu	Gln 190	Ser	Arg
	Arg	Asp	Asp 195	Leu	Glu	Ser	Leu	Gly 200	Tyr	Val	Leu	Ile	Tyr 205	Phe	Cys	Lys
10	Gly	Ser 210	Leu	Pro	Trp	Gln	Gly 215	Leu	Lys	Ala	Thr	Thr 220	Lys	Lys 	Gln	Lys
	Tyr 225	Asp	Arg	Ile	Met	Glu 230	Lys	Lys	Leu	Asn	Val 235	Ser	Val	Glu	Thr	Leu 240
	Cys	Ser	Gly	Leu	Pro 245	Leu	Glu	Phe	Gln	Glu 250	Tyr	Met	Ala	Tyr	Cys 255	Lys
15	Asn	Leu	Lys	Phe 260	Asp	Glu	Lys	Pro	Asp 265	Tyr	Leu 	Phe	Leu	Ala 270	Arg	Leu
	Phe	Lys	Asp 275	Leu	Ser	Ile	Lys	Leu 280	Glu	Tyr	His	Asn	Asp 285	His	Leu	Phe
20	Asp	Trp 290	Thr	Met	Leu	Arg	Tyr 295	Thr	Lys	Ala	Met	Val 300	Glu	Lys	Gln	Arg

	Asp 305	Leu	Leu	Ile	Glu	Lys 310	Gly	Asp	Leu	Asn	Ala 315	Asn	Ser	Asn	Ala	Ala 320
	Ser	Ala	Ser	Asn	Ser 325	Thr	Asp	Asn	Lys	Ser 330	Glu	Thr	Phe	Asn	Lys 335	Ile
5	Lys	Leu	Leu	Ala 340	Met	Lys	Lys	Phe	Pro 345	Thr	His	Phe	His	Tyr 350	Tyr	Lys
	Asn	Glu	Asp 355	Lys	His	Asn	Pro	Ser 360	Pro	Glu	Glu	Ile	Lys 365	Gln	Gln	Thr
10	Ile	Leu 370	Asn	Asn	Asn	Ala	Ala 3 75	Ser	Ser	Leu	Pro	Glu 380	Glu	Leu	Leu	Asn
	Ala 385	Leu	Asp	Lys	Gly	Met 390	Glu	Asn	Leu	Arg	Gln 395	Gln	Gln	Pro	Gln	Gln 400
	Gln	Val	Gln	Ser	Ser 405	Gln	Pro	Gln	Pro	Gln 410		Gln	Gln	Leu	Gln 415	Gln
15	Gln	Pro	Asn	Gly 420		Arg	Pro	Asn	Tyr 425		Pro	Glu	Pro	Leu 430	Leu	Gln
	Gln	Gln	Gln 435		Asp	Ser	Gln	Glu 440		Gln	Gln	Gln	Val 445	Pro	Met	Ala
20	Thr	Thr 450		Ala	Thr	Gln	Tyr 455		Pro	Glr	ı Ile	Asn 460		Asn	Asn	Phe

37.

Asn Thr Asn Gln Ala Ser Val Pro Pro Gln Met Arg Ser Asn Pro Gln 465 470 475 480

Gln Pro Pro Gln Asp Lys Pro Ala Gly Gln Ser Ile Trp Leu * 485 490 495 ·

38.

The invention now being fully described, it will be apparent to one of ordinary skill in the art that various changes and modifications can be made without departing from the spirit or scope of the invention.

5

CLAIMS

- 1. A DNA sequence encoding a polypeptide with defective tyrosine kinase activity, wherein the polypeptide is characterized as:
 - (a) promoting normal mitotic recombination; and
 - (b) being essentially unable to repair a DNA double-strand break which occurs at the cleavage site:

CAACÁG GTTGTC

- 2. The DNA sequence of claim 1, wherein the break is induced by an endonuclease.
- 3. The DNA sequence of claim 2, wherein the endonuclease is HO.
- 4. The DNA sequence of claim 1, selected from the group consisting of:
 - (a) cDNA having a nucleotide sequence derived from the genomic coding region of the polypeptide;
 - (b) DNA sequences encoding an amino acid sequence having at least about 35% homology in the protein kinase domain with the amino acid sequence encoded by the cDNA of (a); and
 - (c) DNA sequences which are degenerate as a result of the genetic code with respect to the DNA sequences of (a) and (b).

- 5. The DNA sequence of claim 1 which is hrr25 gene.
- 6. The DNA sequence of claim 1, wherein the DNA sequence is derived from a yeast.
- 7. A host cell containing the DNA sequence of claim 1.
- 8. The host cell of claim 7 wherein the DNA sequence is introduced by transformation or transfection.
- A biologically functional plasmid or viral DNA vector comprising the DNA sequence of claim 1.
- 10. A functional polypeptide encoded by all or a portion of the DNA sequence of claim 1.
- 11. A polypeptide with defective tyrosine kinase activity, wherein the polypeptide is characterized as:
 - (a) promoting normal mitotic recombination, and
 - (b) being essentially unable to repair a DNA double-strand break including those which occur at the cleavage site:

CAACAG GTTGTC

12. The polypeptide of claim 11, wherein the break is induced by an endonuclease.

- 13. The polypeptide of claim 12, wherein the endonuclease is HO.
- 14. An antibody to the polypeptide of claim 11.
- 15. The antibody of claim 14, which is a monoclonal antibody.
- 16. An antibody to the polypeptide of claim 10.
- 17. The antibody of claim 16, which is a monoclonal antibody.
- 18. A method of identifying DNA encoding functional polypeptide with tyrosine kinase activity capable of restoring DNA double-strand break repair activity in the host of claim 6, which comprises:
 - (a) screening a library of DNA for sequences capable of producing the polypeptide; and
 - (b) identifying DNA encoding polypeptide capable of restoring double-strand break activity.
- 19. The method of claim 18, wherein the DNA is mammalian DNA.
- 20. The method of claim 19, wherein the mammalian DNA is human DNA.
- 21. The method of claim 18, wherein the screening detects structural similarities between members of the DNA library or expression products thereof and the screening means.
- 22. The method of claim 21, wherein the screening means are based on nucleic acid structure or antigenic structure.

23. The method of claim 18, wherein the screening detects functional similarities between the expression products of the DNA library and the tyrosine kinase activity of the host.

42.

- 24. The method of claim 23, wherein the functional similarities are detected by complementation.
- 25. The method of claim 24, wherein the complementation measures restoration of resistance to a DNA double-strand break.
- 26. The method of claim 25, wherein the DNA double-strand break is induced by a radiomimetic alkylating agent.
- 27. The method of claim 26, wherein the radiomimetic alkylating agent has methylmethane sulfonate activity.
- 28. The method of claim 27, wherein the agent is methylmethane sulfonate.
- The method of claim 25, wherein the DNA double-strand break is induced by an endonuclease.
- 30. The method of claim 29, wherein the endonuclease is HO.
- 31. The method of claim 25, wherein the DNA double-strand break is X-ray induced.
- 32. The method of claim 18, wherein the host is a yeast.
- 33. The method of claim 32, wherein the yeast is a member of the genus Saccharomyces.

- 34. The method of claim 33, wherein the yeast is Saccharomyces cerevisiae.
- 35. An isolated DNA sequence encoding a polypeptide with tyrosine kinase activity, wherein the polypeptide is capable of restoring DNA double-strand break repair activity in the host of claim 6.
- 36. The DNA sequence of claim 35, selected from the group consisting of:
 - (a) cDNA having a nucleotide sequence derived from the genomic coding region of the polypeptide;
 - (b) DNA sequences encoding an amino acid sequence having atleast about 35% homology in the protein kinase domain with the amino acid sequence encoded by the cDNA of (a); and
 - (c) DNA sequences which are degenerate as a result of the genetic code with respect to the DNA sequences of (a) and (b).
- 37. The DNA sequence of claim 35, which is a mammalian DNA.

- 38. The mammalian DNA sequence of claim 37, which is a human DNA.
- 39. An isolated DNA sequence identified by the method of claim 18.
- 40. An isolated polypeptide capable of restoring DNA double-strand break repair activity in the host of claim 6 or functional fragments thereof, wherein the polypeptide is free from other polypeptides with which it is associated in nature.

- 41. An isolated polypeptide encoded by all or a functional portion of the DNA sequence of claim 35.
- 42. The polypeptide of claim 40, which is a mammalian polypeptide.
- 43. The mammalian polypeptide of claim 42, which is a human polypeptide.
- 44. An antibody to the polypeptide of claim 40.
- 45. The antibody of claim 44, which is a monoclonal antibody.
- 46. An antibody to the polypeptide of claim 41.
- 47. The antibody of claim 46, which is a monoclonal antibody.
- 48. A method for identifying a composition which affects the activity of a mammalian polypeptide having tyrosine kinase activity, wherein the polypeptide is capable of restoring DNA double-strand break repair activity in the host of claim 6, the method comprising:

(a) incubating components comprising the composition and the mammalian polypeptide in the presence of the host, wherein the incubating is carried out for a period of time and under conditions sufficient to allow the components to interact; and

measuring the change in tyrosine kinase activity caused by the

10

(b)

- system.
- 49. The method of claim 48, wherein the change in step (b) correlates with decreased repair of DNA double-strand breaks.

- 50. The method of claim 49, wherein the DNA double-strand break is induced by a radiomimetic alkylating agent.
- 51. The method of claim 50, wherein the radiomimetic alkylating agent has methylmethane sulfonate activity.
- 52. The method of claim 51, wherein the agent is methylmethane sulfonate.
- 53. The method of claim 49, wherein the DNA double-strand break is induced by an endonuclease.
- 54. The method of claim 53, wherein the endonuclease is HO.
- 55. The method of claim 49, wherein the DNA double-strand break is X-ray induced.
- 56. The method of claim 48, wherein the affect of the molecule is to inhibit the polypeptide.
- 57. The method of claim 48, wherein the mammalian polypeptide is a human polypeptide.

KARTI 340/ SEVRILS (KRUELDSFU) YUNUNMUG"————UVAYINJULNYVDFIFEUE UAFRNEVAJUKTI —K	HRR25 CDC28 K991 RAF1 RAF1 RAF1 RAF1 RAF1
	 HRR25 CDC28 K991 RAF1

SUBSTITUTE SHEET

FIG. 1

PCT/US92/05565

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US92/05565

A. CLA	SSIFICATION OF SUBJECT MATTER							
	Please See Extra Sheet. 435/6, 15, 194, 240.1, 252.3, 320.1; 530/387.1, 388	3.26: 536/27						
According to	International Patent Classification (IPC) or to both	national classification and IPC						
B. FIEL	DS SEARCHED							
Minimum do	ocumentation searched (classification system followed	by classification symbols)						
U.S. : 4	435/6, 7.4, 15, 194, 240.1, 252.3, 320.1; 530/300, 3	350, 387.1, 388.26; 536/27						
Documentati	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched					
		•						
Pl '- 1	ata base consulted during the international search (na	me of data have and subsectionable	search terms used)					
	Extra Sheet.	me of data base and, where practicable,	scaren iennis uses/					
Picase See	Extra Silect.							
c. Doc	UMENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.					
X Y	Journal of Cellular Biochemistry, Supplement 15A, gene product from yeast associated with the repair kinase, page 156, entire document.	issued 1991, M.F. Hoekstra et al, "A of damaged DNA encodes a protein	<u>1-13.35-41</u> 14-34, 42-57					
Y	S.L. Berger et al., "Methods in Enzymology", Volu Press (N.Y.), pages vi-x, entire document.	me 152, published 1987 by Academic	18-34, 42-43					
Y	"Methods in Enzymology", Volume 70, published 1 49-70, entire document.	1980 by Academic Press (N.Y.), pages 14-17, 44-47						
Y	Biochemical and Biophysical Research Communical July 1990, D.C. Gaudette et al, "Effect of geni U46619-induced phosphoinositide phosphorylation especially pages 239-240.	stein, a tyrosine kinase inhibitor, on	48-57					
X Furt	Buted in the continuation of Box C	. See patent family annex.						
		"T" later document published after the inte	ernational filing date or priority					
'A' de	rement defailing the general state of the art which is not considered be part of particular relevance	date and not in conflict with the applic principle or theory underlying the inv	ation but cited to understand the ention					
"E" can	riler document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered.	e claimed invention cannot be red to involve an inventive map					
	current which may throw doubts on priority claim(s) or which is ad to establish the publication date of another citation or other	when the document is taken alone "Y" document of particular relevance: the	a alabara la constitue amanas ha					
-	scial reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive combined with one or more other suc-	stop when the document is					
	customent referring to an oral disclosure, use, exhibition or other	being obvious to a person skilled in t						
	cument published prior to the international filing date but later than priority date claimed	'&' document member of the same peters	family					
	actual completion of the international search	Date of mailing of the international se 1 0 AUG 1992	arch report					
31 July 19	992	۵ .	11//					
Name and	mailing address of the ISA/	Authorized officer						
Box PCT	n, D.C. 20231	GABRIELE E. BUGAISKY	The work					
•	io, NOT APPLICABLE	Telephone No. (703) 308-4201						

Form PCT/ISA/210 (second sheet)(July 1992)+

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US92/05565

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.					
A	Science, Volume 241, issued 01 July 1988, S.K. Hanks et al. :The protein kinase family: Conserved features and deduced Phylogeny of the catalytic domains, pages 42-52, entire document.	1-57					
		·					
		-					

INTERNATIONAL SEARCH REPORT

International application No. PCT/US92/05565

	1
A. CLASSIFICATION OF SUBJECT MATTER: IPC (5):	
C07H 21/04; C07K 15/00, 15/28; C12N 1/00, 5/10, 9/12, 15/00; C12Q 1/48, 1/68	
B. FIELDS SEARCHED Electronic data bases consulted (Name of data base and where practicable terms used):	
Sequence Databases: Geneseq, Genbank/EMBL, PIR, SwissProt; APS; Dialog: Medline, Biosis, Embase, Biotech. Abs.	
search terms: tyrosine kinase, ligase, ligation, recombination, repair, HO, endonuclease, nuclease, AU=Hoesktra, complement?, screen?, library, complementation, HHR, yeast, saccharomyces, enzyme, antibod?, monoclonal, DT=review, agonist, antagonist, inhibit?, activity	
·	