Binary Commutative Polymorphisms of Core Triads

Michael Wernthaler

December 31, 2020

Contents

1	TODO Task 1					
	1.1 Proof					
	1.2 Notes					
2	DONE Task 2: Arc-Consistency procedure					
	2.1 Notes					
3	DONE Task 3					
	3.1 Pseudo-Algorithm					
	3.2 Notes					
	3.2.1 Algorithm					
	3.2.2 Misc					
	3.2.3 Observations					
	3.2.4 Optimizations					
4	TODO Task 4					
	4.1 Notes					
5	Deprecated					
	5.1 Task 1					
•	Questions					
7	Program					
	7.1 Flags					

8	Todo			
	8.1	TODO Think of a german title	8	

1 TODO Task 1

We need to prove the following lemma:

Lemma 1. Let \mathbb{T} be a finite tree. The following are equivalent:

- 1. \mathbb{T} is a core
- 2. $End(\mathbb{T}) = \{id\}$
- 3. $AC_{\mathbb{T}}(\mathbb{T})$ terminates with L(v) = v for all vertices v of \mathbb{T}

1.1 Proof

- \square "1. \Longrightarrow 2." Let \mathbb{T} be a core. We claim that $End(\mathbb{T}) = \{id\}$. In contradiction to our claim, let's assume there is another **homomorphism/automorphism?** $h \in End(\mathbb{T})$ with $h \neq id$. Since \mathbb{T} is a core, h must be bijective. But then there has to be at least one vertex v such that $\mathbb{T} = v(\xi_1, ..., \xi_k)$ and $\xi_a \to \xi_b$ for at least one pair $\xi_a, \xi_b\}$. **TODO:** But why must there be such a vertex? We then construct a nonbijective endomorphism h' of \mathbb{T} by taking h on ξ_a . For every other component we define h' as id.
- \boxtimes "2. \Longrightarrow 1." If $End(\mathbb{T}) = id$ then the only homomorphism $h: \mathbb{T} \to \mathbb{T}$ is id. id is an automorphism, hence \mathbb{T} must be a core.
- \square "2. \Longrightarrow 3." **TODO** ... we can assume that AC solves $CSP(\mathbb{T})$. So if $AC_{\mathbb{T}}(\mathbb{T})$ derives L(v) such that it contains another vertex $u \neq v$, there must be a homomorphism $h: \mathbb{T} \to \mathbb{T}$ such that h(v) = u. **TODO** Why must there be such a homomorphism? However, we know that $End(\mathbb{T}) = \{id\}$, so L(v) can not contain such a vertex u, but only v. Hence $L(v) = \{v\}$.
- \boxtimes "3. \Longrightarrow 2." It's obvious, that always $\{id\} \subseteq End(\mathbb{T})$. Since $AC_{\mathbb{T}}(\mathbb{T})$ derived L(v) = v for all vertices v of \mathbb{T} we know there can't be another homomorphism h for which $h(v) \neq v$, hence $End(\mathbb{T}) = \{id\}$.

1.2 Notes

- Undirected trees are always homomorphically equivalent to a path of length 1
- Proposed by Florian:
 - 1. There must be a leaf u on which f is not the identity.
 - 2. the (unique shortest) path from u to f(u) maps to the (unique shortest) path from f(u) to f(f(u))
 - 3. (simple case) if f(f(u)) = u then there is a vertex v on this path such that f(v) = v
 - 4. (in general) take the orbit of u and the paths in between, this gives a subtree, TODO show existence of v with f(v) = v in this subtree
 - 5. cut \mathbb{T} at v into pieces
 - 6. on the components containing u take f on other components take the identity, this gives a noninjective endomorphism

2 DONE Task 2: Arc-Consistency procedure

Implement the arc-consistency procedure such that your algorithm runs in linear time in the size of the input.

Algorithm 1: $AC_{\mathbb{T}}$ (\mathbb{T} is a triad)

1 Input: digraph \mathbb{G} , initial lists $L: G \mapsto P(T)$ Output: Is there a homomorphism $h: \mathbb{G} \mapsto \mathbb{T}$ such that $h(v) \in L(v)$ for all $v \in G$

```
Algorithm 2: Algorithm for finding core triads
Input: An unsigned integer m
Output: A list of all core triads whose arms each have a length \leq m
// Finding a list of RCAs
pathlist \leftarrow [];
foreach path p with length(p) \leq m do
    if ACR_p(p) didn't derive L(v) \neq v for any vertex v then
     \lfloor put p in pathlist
// Assembling the RCAs to core triads
triadlist \leftarrow [];
foreach \{p_1, p_2\} in pathlist do
    if ACR_{p_1p_2}(p_1p_2) derived L(v) \neq v for some vertex v then
        Drop the pair and cache the two indices;
foreach triad \mathbb{T} = \{p_1, p_2, p_3\} do
    if \mathbb{T} contains a cached index pair then
     Drop \mathbb{T} and continue;
    if AC_{\mathbb{T}}(\mathbb{T}) didn't derive L(v) \neq v for some vertex v then
     Put \mathbb{T} in triadlist;
return triadlist
```

2.1 Notes

- Can we optimize AC for paths?
- Done by implementing AC-3 for graphs

3 DONE Task 3

Write an algorithm that enumerates all core triads up to a fixed path-length.

3.1 Pseudo-Algorithm

Algorithm 2 displays the pseudo-code of the entire core triad generation.

3.2 Notes

3.2.1 Algorithm

- ACR names a "pre-coloured" Arc-Consistency Procedure that precolors the root r that has degree 3 with $L(r) = \{r\}$
- Running AC on a path, doesn't gain helpful information about the triad

$AC \rightarrow id$	no statement possible
$ACR \rightarrow id$	no statement possible
$AC \not\rightarrow id$	no statement possible
$ACR \nrightarrow id$	triad cannot be a core

- "100" serves as an example for a path, where AC doesn't derive only id, however ("100","11","00") is still a core
- Only if ACR does not derive only id, we can drop the path

3.2.2 Misc

- We need a section in the beginning to explain notation in context of triads, e.g. $(p_1p_2p_3)$
- "Rooted core arm" (RCA) names an arm a for which $ACR_a(a)$ did derive $L(v) = \{v\}$ for every vertex v

3.2.3 Observations

- If maxlength(p) = n then number of possible paths is $\sum_{i=1}^{n} 2^{i}$
- Let $\theta=(p_1p_2p_3)$ be a core triad, then there's no $\{p_a,p_b\}$ such that $p_a\to p_b$
- A triad with two identical arms is obviously not a core triad
- A triad with an arm that is not a RCA can't be a core triad

3.2.4 Optimizations

- We could derive sister triads, e.g. ("01","0","11") from ("10","1","00")
- We could optimize arc consistency for endomorphisms (don't check for emtpy lists)

4 TODO Task 4

Write an algorithm that enumerates all core triads that do not have a commutative polymorphism up to a fixed path-length. For every triad mathbbT there is a unique homomorphism

4.1 Notes

5 Deprecated

5.1 Task 1

 \boxtimes "3. \Longrightarrow 1." If $AC_{\mathbb{T}}(\mathbb{T})$ terminates with L(v) = v for all vertices v of \mathbb{T} , we know that, if there was a homomorphism $h: \mathbb{T} \to \mathbb{T}$, h would map each vertex v to itself. We see that h is obviously an automorphism, hence \mathbb{T} must be a core.

6 Questions

7 Program

7.1 Flags

- \bullet -**v** be verbose
- -l NUM max arm length of triad
- -p NAME polymorphism to check
- -s save triads to file

8 Todo

8.1 TODO Think of a german title

Kommutative Polymorphismen auf Core Triads