

## CS5340 Uncertainty Modeling in Al

Lecture 11: Planning and Inference

"How to Act in an Uncertain World"

Asst. Prof. Harold Soh

AY 2023/24

Semester 2

# Course Schedule (Tentative)

| Week | Date   | Lecture Topic                                             | Tutorial                            |
|------|--------|-----------------------------------------------------------|-------------------------------------|
| 1    | 16 Jan | Introduction to Uncertainty Modeling + Probability Basics | Introduction-                       |
| 2    | 23 Jan | Simple Probabilistic Models                               | Introduction and Probability Basics |
| 3    | 30 Jan | Bayesian networks (Directed graphical models)             | More Basic Probability              |
| 4    | 6 Feb  | Markov random Fields (Undirected graphical models)        | DGM modelling and d-separation      |
| 5    | 13 Feb | Variable elimination and belief propagation               | MRF + Sum/Max Product               |
| 6    | 20 Feb | Factor graphs                                             | Quiz 1                              |
| -    | -      | RECESS WEEK                                               |                                     |
| 7    | 5 Mar  | Mixture Models and Expectation Maximization (EM)          | Linear Gaussian Models              |
| 8    | 12 Mar | Hidden Markov Models (HMM)                                | Probabilistic PCA                   |
| 9    | 19 Mar | Monte-Carlo Inference (Sampling)                          | Linear Gaussian Dynamical Systems   |
| 10   | 26 Mar | Variational Inference                                     | MCMC + Langevin Dynamics            |
| 11   | 2 Apr  | Inference and Decision-Making (optional)                  | Diffusion Models + Sequential VAEs  |
| 12   | 9 Apr  | Gaussian Processes (optional)                             | Quiz 2                              |
| 13   | 16 Apr | Closing Lecture                                           | Project Presentations               |



#### CS5340 in a nutshell

CS5340 is about how to "represent" and "reason" with uncertainty in a computer.



#### **Representation**: The *language* is

probability and probabilistic graphical models (PGM).

The language is used to model problems.

#### Reasoning: We use learning and

inference algorithms to answer questions.

e.g., Belief-propagation/sumproduct, MCMC, and variational Bayes



#### Disclaimer: An introduction

- Condenses part of a robotics / reinforcement learning course
- Focus: Key Ideas and Techniques
- We will **not** be able to:
  - Delve into theory
  - All variants of the shown methods

#### Selected Sources:

- Probabilistic Robotics, Chapters 14 and 15
- Reinforcement Learning: An Introduction, Chapters 3 and 4
- UC Berkeley CS287 Lecture 5, and CS294-112 Lecture 10
  - https://people.eecs.berkeley.edu/~pabbeel/cs287-fa19/
  - http://rail.eecs.berkeley.edu/deeprlcourse-fa18/
- "Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review", Sergei Levine, 2018, <a href="https://arxiv.org/abs/1805.00909">https://arxiv.org/abs/1805.00909</a>
  - UC Berkeley CS285 Lecture 14 and 15





### Markov Decision Processes

Probabilistic Model and Problem Setup

# Our setup





CS5340 :: Harold Soh

6

### Model of the environment



$$S_{t+1} \perp S_{t-1} \mid S_t$$

"Markov Assumption"



### Model of the environment



$$S_{t+1} \perp S_{t-1} \mid S_t$$

"Markov Assumption"



#### Model of the environment



"Fully Observable"

$$S_{t+1} \perp S_{t-1} \mid S_t$$

"Markov Assumption"



## Markov Decision process (MDP)

- A tuple  $(S, U, T, R, \gamma)$ 
  - States S
  - Actions/Controls U
  - Transitions T(s', u, s) = p(s'|u, s)  $S_{t-1}$
  - Reward R(s, u)
  - Discount  $\gamma$  where  $0 \le \gamma \le 1$



$$T(s', u, s) = p(s'|u, s)$$

 $U_{t-1}$ 

- Actions are generated by *policy*  $u = \pi(s)$
- Can also have reward functions R(s) or R(s', u, s)
  - **Exercise:** draw the reward node in the graph above.



 $S_{t+1}$ 

#### Problem Definition

• Goal: Given MDP  $(S, U, T, R, \gamma)$ 



• Find the optimal policy  $\pi^*(s)$  that maximizes the expected discounted sum of rewards:

$$\arg\max_{\pi} \mathbb{E}_{\tau} \left[ \sum_{t=0}^{T-1} \gamma^{t} R(s_{t}, u = \pi(s_{t})) \right]$$

NUS National University of Singapore School of Computing H = T - 1 is the "planning horizon",  $\tau$  is a r.v. representing trajectories of length H



# Solving MDPs

Value and Policy Iteration

## Solution via dynamic programming

Key idea: Recursively compute the utility of actions/controls

To begin, assume:

- finite state space
- finite action space
- finite planning horizon.
- Two methods:



- Value Iteration
- Policy iteration



## Grid World Example

Discount factor of 0.9 Can move UP, DOWN, LEFT or RIGHT Action success probability of 0.8.





14



• Value function  $V_k^{\pi}(s)$ : how "good" it is for an agent following policy  $\pi$  to be in state s given k steps remaining:

$$V_k^{\pi}(s) = \mathbb{E}_{\tau|s} \left[ \sum_{t=0}^{k-1} \gamma^t R(s_t, u = \pi(s_t)) \right]$$
 for all  $s \in S$ 



#### Example:

If k = 1, 1 time step left,  $V_1^{\pi}(s) = R(s, \pi(s))$ 

If k = 2, 2 time steps left,  $V_2^{\pi}(s)$ ?

• Value function  $V_k^{\pi}(s)$ : how "good" it is for an agent following policy  $\pi$  to be in state s given k steps remaining:

$$V_k^{\pi}(s) = \mathbb{E}_{\tau|s}\left[\sum_{t=0}^{k-1} \gamma^t R\left(s_t, u = \pi(s_t)\right)\right]$$
 for all  $s \in S$ 



#### Example:

If k = 1, 1 time step left,  $V_1^{\pi}(s) = R(s, \pi(s))$ 

If k = 2, 2 time steps left,

$$V_2^{\pi}(s) = R(s,\pi(s)) + \gamma \sum_{s'} p(s'|s,\pi(s))R(s',\pi(s))$$

$$0.9$$

• Value function  $V_k^{\pi}(s)$ : how "good" it is for an agent following policy  $\pi$  to be in state s given k steps remaining:

$$V_k^{\pi}(s) = \mathbb{E}_{\tau|s}\left[\sum_{t=0}^{k-1} \gamma^t R(s_t, u = \pi(s_t))\right]$$
 for all  $s \in S$ 

• Let's rewrite:

$$V_k^{\pi}(s) = \mathbb{E}_{\tau|s} \left[ \sum_{t=0}^{k-1} \gamma^t R(s_t, \pi(s_t)) \right]$$

$$= R(s, \pi(s)) + \sum_{s'} p(s'|s, \pi(s)) \gamma \mathbb{E}_{\tau|s'} \left[ \sum_{l=0}^{k-2} \gamma^l R(s_l, \pi(s_l)) \right]$$

$$= R(s, \pi(s)) + \gamma \sum_{s'} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$
Immediate
Reward
Future Rewards



• Value function  $V_k^{\pi}(s)$ : how "good" it is for an agent following policy  $\pi$  to be in state s given k steps remaining:

$$V_k^{\pi}(s) = \mathbb{E}_{\tau|s}\left[\sum_{t=0}^{k-1} \gamma^t R(s_t, u = \pi(s_t))\right]$$
 for all  $s \in S$ 

• Let's rewrite:

$$V_k^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$

"Bellman update or Bellman backup"



## Optimal value function

• Value function under a policy  $\pi$ 

$$V_k^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$

• Optimal Value function:

$$V_k^*(s) = \max_{\mathbf{u}} R(s, u) + \gamma \sum_{s'} p(s'|s, u) V_{k-1}^*(s')$$

Optimal Policy:

$$\pi_k^*(s) = \underset{u}{\operatorname{argmax}} \ R(s, u) + \gamma \sum_{s'} p(s'|s, u) V_{k-1}^*(s')$$



### Value iteration (finite horizon)

$$V_k^*(s) = \max_{\mathbf{u}} R(s, u) + \gamma \sum_{s'} p(s'|s, u) V_{k-1}^*(s')$$

Initialize 
$$V_0^*(s) = 0$$
 for all  $s \in S$ 

For  $k = 0, ..., T - 1$ 

For all  $s \in S$ 

$$V_{k+1}^*(s) = \max_{u} R(s, u) + \gamma \sum_{s'} p(s'|s, u) V_k^*(s')$$

$$\pi_{k+1}^*(s) = \underset{u}{\operatorname{argmax}} R(s, u) + \gamma \sum_{s'} p(s'|s, u) V_k^*(s')$$

US Should some a standard solution of the standa



# Jupyter notebook

Discount factor of 0.9 Can move UP, DOWN, LEFT or RIGHT Action success probability of 0.8.





## Value iteration (infinite horizon)

- If the planning horizon  $H = \infty$ ,
- The following equation holds for the optimal value function:

$$V^{*}(s) = \max_{u} R(s, u) + \gamma \sum_{s'} p(s'|s, u)V^{*}(s')$$

"Bellman optimality equation"

 Only a single value function (compare against finite horizon case) for all time steps.



## Value iteration (infinite horizon)

$$V^{*}(s) = \max_{u} R(s, u) + \gamma \sum_{s'} p(s'|s, u)V^{*}(s')$$

Initialize  $V^*(s) = 0$  for all  $s \in S$ 

While not converged

For all  $s \in S$ 

$$V^{*}(s) = \max_{u} R(s, u) + \gamma \sum_{s'} p(s'|s, u) V^{*}(s')$$

Compute policy:

$$\pi^*(s) = \underset{\mathbf{u}}{\operatorname{argmax}} R(s, u) + \gamma \sum_{s'} p(s'|s, u) V^*(s')$$



Value iteration converges to  $V^*$  for the discounted infinite horizon problem.

## Solution via dynamic programming

Key idea: Recursively compute the utility of actions/controls

To begin, assume:

- finite state space
- finite action space
- finite planning horizon.
- Two methods:
- Value Iteration





### Policy evaluation

Recall the value of a policy in the finite horizon case:

$$V_k^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$

• The infinite horizon case:

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} p(s'|s, \pi(s)) V^{\pi}(s')$$



## Policy improvement

- How can we improve a given policy  $\pi$ ?
- Key Idea: Choose a control u in current time step, and follow  $\pi$  thereafter
- Define:

$$Q^{\pi}(s, u) = R(s, u) + \gamma \sum_{s'} p(s'|s, u) V^{\pi}(s')$$

• **Policy Improvement Theorem:** Given deterministic policies  $\pi$  and  $\pi'$  s.t.

$$\forall s \in S \quad Q^{\pi}(s, \pi'(s)) \ge V^{\pi}(s)$$

Then

$$\forall s \in S \ V^{\pi'}(s) \ge V^{\pi}(s)$$



## Policy improvement

• Choose a greedy policy  $\pi'$ 

$$\pi'(s) = \operatorname{argmax}_{u} Q^{\pi}(s, u)$$

$$= \operatorname{argmax}_{u} R(s, u) + \gamma \sum_{s'} p(s'|s, u) V^{\pi}(s')$$
one-step lookahead
(based on  $V^{\pi}$ )

Intuition: takes action that is best after one-step lookahead



### Policy iteration

Policy iteration is guaranteed to converge. At convergence, the policy and value function are both optimal.

**Evaluation** Improvement

$$\pi_0 \xrightarrow{E} V^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} V^{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} \dots \xrightarrow{I} \pi^* \xrightarrow{E} V^*$$

- Policy Evaluation (E)
  - Iterate until convergence:

$$V_k^{\pi_i}(s) = R(s, \pi_i(s)) + \gamma \sum_{s'} p(s'|s, \pi_i(s)) V_{k-1}^{\pi_i}(s')$$

- Policy Improvement (I)
  - Compute:

$$\pi_{i+1}(s) = \operatorname{argmax}_{u} R(s, u) + \gamma \sum_{s'} p(s'|s, u) V^{\pi_{i}}(s')$$

Repeat E and I until convergence



## Generalized policy iteration



Image from: Introduction to Reinforcement learning, Chapter 4.



### To Explore: Extensions

- Large/Continuous State Spaces
- Partial Observability
- Large/Continuous Action Spaces
- Partially-Specified or Mis-specified Models
- Function approximation



## Partially-observable MDP (POMDP)

- A tuple (*S*, *U*, *T*, *R*, *Z*, *O*, γ)
  - States S
  - Actions/Controls U
  - Transitions T(s', u, s) = p(s'|u, s)
  - Reward R(s, u)
  - Observations Z
  - Observation function O(z,s) = p(z|s)
  - Discount  $\gamma$
- Variants: also can have O(z, s, u) = p(z|s, u)





### Solving POMDPs: methods

#### Exact Methods:

- Value Iteration
- Enumeration Algorithm [Monahan, 82]
- One-pass [Sondik, 71]
- Witness [Litmann et al., 94]
- Incremental Pruning [Zhang and Liu, 96]

#### Approximate solutions:

- Point-based Value Iteration (PBVI) [Pinneau, Gordon, Thrun, 2003]
- SARSOP [Kurniawati, Hsu, & Lee. 2008].
- Partially Observable Monte-Carlo Planning (POMCP) [Silver & Veness, 2010]
- DESPOT [Somani, Ye, Hsu, & Lee, 2013].



#### **POMCP**

- Based on Monte-Carlo Tree Search (MCTS)
- More info in:
- [Browne et al, 2012]
  - https://core.ac.uk/down load/pdf/9589938.pdf
- [Silver & Veness, 2010]:
  - https://papers.nips.cc/p aper/4031-monte-carloplanning-in-largepomdps



33





# Linear Quadratic Regulator

Control for Linear Dynamical Systems with Quadratic Cost

# Markov Decision process (MDP)



#### What if $s \in S$ is **continuous**?



# The problem



 $s_0$ 



**Starting point** 



# The problem







CS5340 :: Harold Soh

37

## Continuous state spaces



#### **Additional Assumptions:**

Linear System:

$$s_{t+1} = As_t + Bu_t$$

Quadratic Cost ("negative reward")

$$g(s_t, u_t) = s_t^{\mathsf{T}} Q s_t + u_t^{\mathsf{T}} R u_t$$

#### where:

- Q > 0 and R > 0
  - Q and R are symmetric Positive Definite (PD)



$$T(s', u, s) = p(s'|u, s)$$

Reminder: **Positive Definite:** a square matrix  $X \in \mathbb{R}^{d \times d}$  is PD iff  $\forall z \in \mathbb{R}^d$ , if  $z \neq 0$ , t then  $z^{\mathsf{T}}Xz > 0$ .



38

## Linear quadratic regulator

#### **Additional Assumptions:**

Linear System:

$$s_{t+1} = As_t + Bu_t$$

Quadratic Cost ("negative reward")

$$g(s_t, u_t) = s_t^{\mathsf{T}} Q s_t + u_t^{\mathsf{T}} R u_t$$

where:

$$Q > 0$$
 and  $R > 0$ 

 Q and R are symmetric Positive Definite (PD)

- **Key idea:** To obtain policy, apply value iteration to this setting.
- Will see:
  - Assumptions keep things tractable.



## Linear Quadratic Regulator

Value iteration (in terms of "cost to go" *J*):

$$J_{i+1}(s) = \min_{u} g(s,u) + \sum_{s'} p(s'|s,u)J_i(s')$$

For LQR, substitute in our assumptions:

$$J_{i+1}(s) = \min_{u} s^{\mathsf{T}} Q s + u^{\mathsf{T}} R u + J_{i} (A s + B u)$$



### Value iteration solution

Initialize  $P_0 = 0$ 

```
For i = 1,2,3,...,H ("backward pass") K_i = -(R + B^{\mathsf{T}} P_{i-1} B)^{-1} B^{\mathsf{T}} P_{i-1} A P_i = Q + K_i^{\mathsf{T}} R K_i + (A + B K_i)^{\mathsf{T}} P_{i-1} (A + B K_i)
```

Optimal policy for i-step horizon:  $\pi_i(s) = K_i s$ Cost-to-go:  $J_i(s) = s^{\mathsf{T}} P_i s$ 

For 
$$t = 0,1,2,3,...,H-1$$
 ("forward pass")
$$u_t = \pi_{H-t}(s_t) = K_{H-t}s_t$$

$$s_{t+1} = f(s_t, u_t)$$



## Apply value iteration to LQR

$$J_{i+1}(s) = \min_{u} s^{\mathsf{T}} Q s + u^{\mathsf{T}} R u + J_{i} (A s + B u)$$

Let 
$$J_0(s) = s^{\mathsf{T}} P_0 s$$

Let's write down  $J_1$ :

$$J_{1}(s) = \min_{u} s^{\mathsf{T}} Q s + u^{\mathsf{T}} R u + J_{0} (A s + B u)$$
  
=  $\min_{u} s^{\mathsf{T}} Q s + u^{\mathsf{T}} R u + (A s + B u)^{\mathsf{T}} P_{0} (A s + B u)$ 

How can we solve this minimization problem?



## Apply value iteration to LQR - (1)

$$J_{i+1}(s) = \min_{u} s_{t}^{\mathsf{T}} Q s_{t} + u_{t}^{\mathsf{T}} R u_{t} + J_{i} (A s_{t} + B u_{t})$$

Let 
$$J_0(s) = s^{\mathsf{T}} P_0 s$$

Let's write down  $J_1$ :

$$J_{1}(s) = \min_{u} s^{\mathsf{T}} Q s + u^{\mathsf{T}} R u + J_{0}(A s + B u)$$
  
=  $\min_{u} s^{\mathsf{T}} Q s + u^{\mathsf{T}} R u + (A s + B u)^{\mathsf{T}} P_{0}(A s + B u)$ 

Set gradient wrt u equal to zero

$$\nabla_{u} \left[ s^{\mathsf{T}} Q s + u^{\mathsf{T}} R u + (A s + B u)^{\mathsf{T}} P_{0} (A s + B u) \right] = 0$$

Solving for *u*:

$$u = -(R + B^{\mathsf{T}} P_0 B)^{-1} B^{\mathsf{T}} P_0 A s$$



## Apply value iteration to LQR - (2)

$$J_{i+1}(s) = \min_{u} s_t^{\top} Q s_t + u_t^{\top} R u_t + J_i (A s_t + B u_t)$$

$$J_1(s) = \min_{u} s^{\mathsf{T}} Q s + u^{\mathsf{T}} R u + (A s + B u)^{\mathsf{T}} P_0 (A s + B u)$$

Substitute 
$$u = K_1 s$$
 into  $J_1(s)$ :
$$J_1(s) = s^{\mathsf{T}} P_1 s$$

$$J_0(s) = s^{\mathsf{T}} P_0 s$$

where

$$P_1 = Q + K_1^{\mathsf{T}} R K_1 + (A + B K_1)^{\mathsf{T}} P_0 (A + B K_1)$$
$$K_1 = -(R + B^{\mathsf{T}} P_0 B)^{-1} B^{\mathsf{T}} P_0 A$$

What can we notice about the form of  $J_1$ ?

Same quadratic form as  $J_0 = s^{\mathsf{T}} P_0 s$ . Can repeat process for  $J_2, J_3, ...$ 



### Value iteration solution

Initialize  $P_0 = 0$ 

```
For i = 1,2,3,...,H ("backward pass") K_i = -(R + B^{\mathsf{T}} P_{i-1} B)^{-1} B^{\mathsf{T}} P_{i-1} A P_i = Q + K_i^{\mathsf{T}} R K_i + (A + B K_i)^{\mathsf{T}} P_{i-1} (A + B K_i)
```

Optimal policy for i-step horizon:  $\pi_i(s) = K_i s$ Cost-to-go:  $J_i(s) = s^{\mathsf{T}} P_i s$ 

For 
$$t = 0,1,2,3,...,H-1$$
 ("forward pass")
$$u_t = \pi_{H-t}(s_t) = K_{H-t}s_t$$

$$s_{t+1} = f(s_t, u_t)$$



## Extensions to Basic LQR

- Affine transitions:  $s_{t+1} = As_t + Bu_t + c$
- Linear Stochastic dynamics:  $s_{t+1} = As_t + Bu_t + \epsilon_t$  where  $\epsilon_t \sim p(v)$ 
  - $w_t$  has zero mean and independent.
  - Linear Quadratic Gaussian (LQG)  $\epsilon_t \sim \mathcal{N}(v|0, \sigma_n^2)$
- Observation functions:  $y_t = Ds_t + b$
- Linear Time-Varying (LTV) systems:  $s_{t+1} = A_t s_t + B_t u_t$
- Non-linear systems with nonlinear cost
- Trajectory following for non-linear systems
- Bounded controls
- etc.



## Linear time varying (LTV) systems

Linear Time Varying System:

$$s_{t+1} = \underbrace{A_t s_t + B_t u_t}_{g(s_t, u_t)}$$
$$g(s_t, u_t) = s_t^{\mathsf{T}} \underbrace{Q_t s_t + u_t^{\mathsf{T}} R_t u_t}_{t}$$

#### Similar solution:

Initialize  $P_0 = 0$ 

For i = 1,2,3,...,H ("backward pass")

$$K_{i} = -(R_{H-i} + B_{H-i}^{\mathsf{T}} P_{i-1} B_{H-i})^{-1} B_{H-i}^{\mathsf{T}} P_{i-1} A_{H-i}$$

$$P_{i} = Q_{H-i} + K_{i}^{\mathsf{T}} R_{H-i} K_{i} + (A_{H-i} + B_{H-i} K_{i})^{\mathsf{T}} P_{i-1} (A_{H-i} + B_{H-i} K_{i})$$

Optimal policy for *i*-step horizon:  $\pi(s) = K_i s$ 

Cost-to-go:  $J_i(s) = s^{\mathsf{T}} P_i s$ 

Do "forward pass"



## Non-Linear Transition Systems

Nonlinear System:

$$s_{t+1} = f(s_t, u_t)$$

Use Taylor expansions to linearize around  $\hat{s}$  and  $\hat{u}$ 

$$s_{t+1} \approx f(\hat{s}, \hat{u}) + \frac{\partial f}{\partial s}(\hat{s}, \hat{u})(s_t - \hat{s}) + \frac{\partial f}{\partial u}(\hat{s}, \hat{u})(u_t - \hat{u})^{\frac{-10}{-10} - \frac{8}{0} - \frac{6}{0} - \frac{4}{0} - \frac{2}{0}})$$

So, 
$$s_{t+1} - \hat{s}_{t+1} \approx A(s_t - \hat{s}) + B(u_t - \hat{u})$$

Define 
$$z_t = s_t - \hat{s}$$
 and  $v_t = u_t - \hat{u}$ 

$$z_{t+1} = Az_t + Bv_t$$
$$g(z_t, u_t) = z_t^{\mathsf{T}} Q z_t + v_t^{\mathsf{T}} R v_t$$



Can use standard LQR! **Exercise:** Have to transform from  $v_t$  to  $u_t$ . How?



### Non-linear transition and cost

#### Nonlinear System:

$$\min_{u_{0:H}} \sum_{t} g(s_t, u_t) \text{ such that } s_{t+1} = f(s_t, u_t)$$

#### How can we solve this?

#### **Key Idea:**

- Iteratively approximate (f,g) and run LQR to solve for optimal policy
- Approximate dynamics f using 1<sup>st</sup> order Taylor expansion (linear)
- Approximate cost g using  $2^{nd}$  order Taylor expansion (quadratic)



## Iterative LQR: overview

#### Iterative LQR (iLQR)

Initialize policy  $\pi^0$ 

For i = 0,1,2,...

Execute  $\pi^i$  with  $f(s_t^i, u_t^i)$  to get sequence  $(s_t^i, u_t^i)_{0:H} = (s_0^i, u_0^i), (s_1^i, u_1^i), \dots, (s_H^i, u_H^i)$ 

Approximate f with 1st order Taylor expansion around  $(s_t^i, u_t^i)_{0:H}$ 

Approximate g with 2<sup>nd</sup> order Taylor expansion  $\left(s_t^i, u_t^i\right)_{0:H}$ 

Compute LQR using approximate system to get  $\pi^{i+1}$ 



## LQR/iLQR: more information

- [Li and Todorov, 2004] <a href="https://homes.cs.washington.edu/~todorov/papers/LiICINCO04.pdf">https://homes.cs.washington.edu/~todorov/papers/LiICINCO04.pdf</a>
- Peter Abeel's CS287 Lecture 5: <a href="https://people.eecs.berkeley.edu/~pabbeel/cs287-fa19/">https://people.eecs.berkeley.edu/~pabbeel/cs287-fa19/</a>
- Florian Shkurti's Lecture 2: <a href="http://www.cs.toronto.edu/~florian/courses/imitation\_learning/lectures/Lecture2.pdf">http://www.cs.toronto.edu/~florian/courses/imitation\_learning/lectures/Lecture2.pdf</a>
- Katerina Fragkiadaki iLQR slides: https://katefvision.github.io/katefSlides/RECITATIONtrajectoryoptimization katef.pdf
- iLQR tutorial (Stanford): <a href="http://roboticexplorationlab.org/papers/iLQR\_Tutorial.pdf">http://roboticexplorationlab.org/papers/iLQR\_Tutorial.pdf</a>



## To explore: Embed-to-Control (E2C)



Figure 1: The information flow in the E2C model. From left to right, we encode and decode an image  $\mathbf{x}_t$  with the networks  $h_{\phi}^{\text{enc}}$  and  $h_{\theta}^{\text{dec}}$ , where we use the latent code  $\mathbf{z}_t$  for the transition step. The  $h_{\psi}^{\text{trans}}$  network computes the local matrices  $\mathbf{A}_t, \mathbf{B}_t, \mathbf{o}_t$  with which we can predict  $\hat{\mathbf{z}}_{t+1}$  from  $\mathbf{z}_t$  and  $\mathbf{u}_t$ . Similarity to the encoding  $\mathbf{z}_{t+1}$  is enforced by a KL divergence on their distributions and reconstruction is again performed by  $h_{\theta}^{\text{dec}}$ .

Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, Martin Riedmiller https://arxiv.org/abs/1506.07365





# Inference and Control

Bridging Probabilistic Inference and Control – A First Step

### Take Note:

- Assumptions (for simplicity of exposition):
  - Finite-time horizon
  - Discount factor  $\gamma = 1$



# Inference v.s. planning/control



Our goal is to calculate  $p(X_F|X_E)$  for arbitrary subsets E and F.

Our goal is to find the optimal policy  $\pi^*(s)$ 



## High Level Structure



- A Probabilistic Graphical Model (PGM) for Control
  - Performing inference to obtain a policy
    - Backward Messages
  - "Structured" variational inference to obtain a constrained policy



CS5340 :: Harold Soh

60

### Model of the environment



"Fully Observable"

$$S_{t+1} \perp S_{t-1} \mid S_t$$

"Markov Assumption"



# Optimality variables

$$p(O_t = 1 | s_t, u_t) = \exp(r(s_t, u_t))$$
 where  $r(s_t, u_t) \le 0$ 





## Optimality variables

$$p(O_t = 1 | s_t, u_t) = \exp(r(s_t, u_t))$$
 where  $r(s_t, u_t) \le 0$ 



 $p(u_t|s_t)$  "Prior Policy"; assume Uniform.



## Unnormalized Posterior over trajectories

Condition on  $O_t = 1$  for all  $t \in \{1, ..., T\}$ 

$$p(\tau|O_{1:T}) \propto p(\tau, O_{1:T}) = p(s_1) \prod_{t=1}^{T} p(O_t = 1|s_t, u_t) p(s_{t+1}|s_t, u_t)$$

Since 
$$p(O_t = 1 | s_t, u_t) = \exp(r(s_t, u_t))$$
  

$$p(\tau | O_{1:T}) \propto p(s_1) \prod_{t=1}^{T} \exp(r(s_t, u_t)) p(s_{t+1} | s_t, u_t)$$

Grouping,

$$p(\tau|O_{1:T}) \propto \left[p(s_1) \prod_{t=1}^{T} p(s_{t+1}|s_t, u_t)\right] \exp\left(\sum_{t=1}^{T} r(s_t, u_t)\right)$$



## Unnormalized Posterior over trajectories

$$p(\tau|O_{1:T}) \propto \left[ p(s_1) \prod_{t=1}^T p(s_{t+1}|s_t, u_t) \right] \exp \left( \sum_{t=1}^T r(s_t, u_t) \right)$$
Probability of trajectory according to dynamics
Exponential of Total Reward along trajectory

**Question:** Consider the case of *deterministic* dynamics. What does the equation above reduce to?



## Unnormalized Posterior over trajectories



Special case of deterministic dynamics. For planning, we set  $p(s_1) = \delta(s_1)$  and perform MAP inference.



## Obtaining the policy as inference

- Show: Obtain optimal policy  $p(u_t|s_t, O_{t:T})$  using inference
  - Note: drop explicit notation  $O_{t:T} = 1$
- Apply Sum-Product / Belief-Propagation algorithm



# Sum-product algorithm

- Goal: Compute  $p(u_t|s_t, O_{t:T})$
- In HMMs, remember the Forward-Backward Algorithm





## Backward messages

Goal: Compute  $p(u_t|s_t, O_{t:T})$ 

Define the backward message:

$$\beta_t(s_t, u_t) = p(O_{t:T}|s_t, u_t)$$

Then,

$$\beta_t(s_t) = p(O_{t:T}|s_t) = \sum_{u_t} p(O_{t:T}|s_t, u_t) p(u_t|s_t)$$

$$= \sum_{u_t} \beta_t(s_t, u_t) p(u_t|s_t)$$
Action prior(not policy)
Assume Uniform

 $\beta_t(s_t, u_t)$   $\beta_t(s_t)$ 





## Backward messages

$$\beta_t(s_t, u_t) = p(O_{t:T}|s_t, u_t)$$
$$\beta_t(s_t) = p(O_{t:T}|s_t)$$

Goal: Compute  $p(u_t|s_t, O_{t:T})$ 

$$p(u_t|s_t, O_{t:T}) = \frac{p(s_t, u_t|O_{t:T})}{p(s_t|O_{t:T})}$$

$$= \frac{p(O_{t:T}|s_t, u_t)p(u_t|s_t)p(s_t)}{p(O_{t:T}|s_t)p(s_t)}$$

$$= \frac{p(O_{t:T}|S_t, u_t)p(s_t)}{p(O_{t:T}|S_t)|U|p(s_t)}$$

$$\propto \frac{p(O_{t:T}|s_t, u_t)}{p(O_{t:T}|s_t)}$$
$$= \frac{\beta_t(s_t, u_t)}{\beta_t(s_t)}$$

(conditional probability)

(Bayes Rule)

(since 
$$p(u_t|s_t) = \frac{1}{|U|}$$
)





## Backward messages



• Can be computed recursively:

Can be computed recursively: 
$$\beta_t(s_t,u_t) = p(O_{t:T}|s_t,u_t)$$
 
$$= \sum_{s_{t+1},u_{t+1}} p(O_{t:T},s_{t+1},u_{t+1}|s_t,u_t) \quad \text{(introduce } s_{t+1},u_{t+1} \text{ and marginalize})$$
 
$$= \sum_{s_{t+1},u_{t+1}} p(O_{t:T}|s_{t+1},u_{t+1},s_t,u_t) p(s_{t+1},u_{t+1}|s_t,u_t) \quad \text{(chain rule)}$$
 
$$= \sum_{s_{t+1},u_{t+1}} p(O_t,O_{t+1:T}|s_{t+1},u_{t+1},s_t,u_t) p(s_{t+1},u_{t+1}|s_t,u_t) \quad \text{(split } O_{t:T})$$
 
$$= \sum_{s_{t+1},u_{t+1}} p(O_{t+1:T}|s_{t+1},u_{t+1},s_t,u_t,O_t) p(O_t|s_{t+1},u_{t+1},s_t,u_t) p(s_{t+1},u_{t+1}|s_t,u_t) \quad \text{(chain rule)}$$
 
$$= \sum_{s_{t+1},u_{t+1}} p(O_{t+1:T}|s_{t+1},u_{t+1}) p(O_t|s_t,u_t) p(s_{t+1},u_{t+1}|s_t,u_t) \quad \text{(conditional independence)}$$
 
$$= \sum_{s_{t+1},u_{t+1}} \beta_{t+1}(s_{t+1},u_{t+1}) p(O_t|s_t,u_t) p(u_{t+1}|s_{t+1}) p(s_{t+1}|s_t,u_t)$$
 
$$= p(O_t|s_t,u_t) \mathbb{E}_{s_{t+1}} \sim p(s_{t+1}|s_t,u_t) [\beta_{t+1}(s_{t+1})]$$



## Factor Tree Sum-Product Algorithm

```
3. \nu\text{-Distribute}(i,s) // distribute messages from root to leaves \begin{array}{c} \nu\text{-SendMessage}(i,s) \\ \hline \text{for } j \in \mathcal{N}(s) \backslash i \\ \hline \nu\text{-Distribute}(s,j) \end{array} Message from variable node X_i to the factor node f_s: \nu\text{-SendMessage}(i,s) \qquad \qquad \nu \text{-SendMessage}(i,s) \\ \hline \mu\text{-Distribute}(s,i) \\ \mu\text{-SendMessage}(s,i) \\ \text{for } t \in \mathcal{N}(i) \backslash s \\ \hline \rightarrow \nu\text{-Distribute}(i,t) \end{array} Message from factor node f_s to the variable node X_i: \mu\text{-SendMessage}(s,i) \qquad \qquad \mu_{si}(x_i) = \sum_{x_{\mathcal{N}(s) \backslash i}} \left( f_s(x_{\mathcal{N}(s)}) \prod_{j \in \mathcal{N}(s) \backslash i} \nu_{js}(x_j) \right)
```

```
4. Compute Marginal (i) // compute marginal probability p(x_i) \propto \nu_{is}(x_i) \mu_{si}(x_i)
```



### **Easier Derivation**

#### Backward Message according to factor graph

$$\beta_t(z_t)$$

$$= \sum_{z_{t+1}} f(z_{t+1}, z_t) \beta_{t+1}(z_{t+1})$$

$$= \sum_{z_{t+1}} p(O_t|s_t, u_t) p(s_{t+1}, u_{t+1}|s_t, u_t) \beta_{t+1}(z_{t+1})$$

$$= p(O_t|s_t, u_t) \sum_{s_{t+1}, u_{t+1}} p(s_{t+1}, u_{t+1}|s_t, u_t) \beta_{t+1}(z_{t+1})$$

$$= p(O_t|s_t,u_t) \sum_{s_{t+1},u_{t+1}} p(u_{t+1}|s_{t+1}) p(s_{t+1}|s_t,u_t) \beta_{t+1}(z_{t+1})$$

$$= p(O_t|s_t, u_t) \mathbb{E}_{s_{t+1} \sim p(s_{t+1}|s_t, u_t)} [\beta_{t+1}(s_{t+1})]$$





$$z_t = (s_t, u_t)$$
  
 
$$f(z_t, z_{t+1}) = p(s_{t+1}, u_{t+1} | s_t, u_t) p(O_t | s_t, u_t)$$



## Backward pass



for 
$$t = T - 1, T - 2, ..., 1$$
 
$$\beta_t(s_t, u_t) = p(O_t | s_t, u_t) \mathbb{E}_{s_{t+1} \sim p(s_{t+1} | s_t, u_t)} [\beta_{t+1}(s_{t+1})]$$
 
$$\beta_t(s_t) = \mathbb{E}_{u_t \sim p(u_t | s_t)} [\beta_t(s_t, u_t)]$$

**Exercise:** What is  $\beta_T(s_T)$  ?



## Obtaining the policy as inference

- Show: Obtain optimal policy  $p(u_t|s_t, O_{t:T})$  using inference
  - Note: drop explicit notation  $O_{t:T} = 1$
- Summary:

for 
$$t = T, T - 1, ..., 1$$
  
Compute messages  $\beta_t(s_t, u_t)$  and  $\beta_t(s_t)$   
Compute  $p(u_t|s_t, O_{t:T}) \propto \frac{\beta_t(s_t, u_t)}{\beta_t(s_t)}$ 

#### But what is the intuition?



## Value and Q-function

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s'} p(s'|s, \pi(s)) V^{\pi}(s')$$

$$Q^{\pi}(s,u) = R(s,u) + \gamma \sum_{s'} p(s'|s,u)V^{\pi}(s')$$

"Bellman update or Bellman backup"



#### Value iteration (finite horizon)

$$V_k^*(s) = \max_{\mathbf{u}} R(s, u) + \gamma \sum_{s'} p(s'|s, u) V_{k-1}^*(s')$$

Initialize 
$$V_0^*(s) = 0$$
 for all  $s \in S$   
For  $k = 0, ..., T - 1$   
For all  $s \in S$   

$$V_{k+1}^*(s) = \max_{\mathbf{u}} R(s, \mathbf{u}) + \gamma \sum_{s'} p(s'|s, \mathbf{u}) V_k^*(s')$$

$$\pi_{k+1}^*(s) = \underset{\mathbf{u}}{\operatorname{argmax}} R(s, \mathbf{u}) + \gamma \sum_{s'} p(s'|s, \mathbf{u}) V_k^*(s')$$



#### Intuition

Recall:  $\beta_t(s_t) = \mathbb{E}_{p(u_t|s_t)}[\beta_t(s_t, u_t)]$ 

Define "Soft" Value and Q functions:

$$\hat{V}(s_t) = \log \beta_t(s_t)$$

$$\hat{Q}(s_t, u_t) = \log \beta_t(s_t, u_t)$$

Consider:

$$\widehat{V}(s_t) = \log \beta_t(s_t) = \log \mathbb{E}_{p(u_t|S_t)}[\beta_t(s_t, u_t)]$$

$$= \log \mathbb{E}_{p(u_t|S_t)}[\exp \widehat{Q}(s_t, u_t)]$$

 $(\log \sum \exp(x))$  Operates like a "soft" maximization)

When  $\hat{Q}(s_t, u_t)$  is large, then

$$\widehat{V}(s_t) = \log \mathbb{E}_{p(u_t|S_t)}[\exp \widehat{Q}(s_t, u_t)] \approx \max_{u_t} \widehat{Q}(s_t, u_t) + c$$



#### Intuition: Relationship to Bellman Backup

#### Recall:

$$\beta_{t}(s_{t}, u_{t}) = \sum_{s_{t+1}, u_{t+1}} \beta_{t+1}(s_{t+1}, u_{t+1}) p(O_{t}|s_{t}, u_{t}) p(u_{t+1}|s_{t+1}) p(s_{t+1}|s_{t}, u_{t})$$

$$= \sum_{s_{t+1}} \beta_{t+1}(s_{t+1}) p(O_{t}|s_{t}, u_{t}) p(s_{t+1}|s_{t}, u_{t})$$

#### If we consider **deterministic dynamics**:

$$\begin{split} \widehat{Q}(s_{t}, u_{t}) &= \log \beta_{t}(s_{t}, u_{t}) = \log \sum_{s_{t+1}} \beta_{t+1}(s_{t+1}) p(O_{t}|s_{t}, u_{t}) p(s_{t+1}|s_{t}, u_{t}) \\ &= \log \beta_{t+1}(s_{t+1}) p(O_{t}|s_{t}, u_{t}) \text{ (why?)} \\ &= \log \beta_{t+1} + \log p(O_{t}|s_{t}, u_{t}) \\ &= \widehat{V}(s_{t+1}) + r(s_{t}, u_{t}) \\ &= r(s_{t}, u_{t}) + \widehat{V}(s_{t+1}) \end{split}$$



#### Intuition: Relationship to Bellman Backup

#### Recall:

$$\beta_{t}(s_{t+1}, u_{t+1})$$

$$= \sum_{s_{t+1}, u_{t+1}} \beta_{t+1}(s_{t+1}, u_{t+1}) p(O_{t}|s_{t}, u_{t}) p(u_{t+1}|s_{t+1}) p(s_{t+1}|s_{t}, u_{t})$$

$$= \sum_{s_{t+1}} \beta_{t+1}(s_{t+1}) p(O_{t}|s_{t}, u_{t}) p(s_{t+1}|s_{t}, u_{t})$$

If we consider **deterministic dynamics**:

$$\widehat{Q}(s_t, u_t) = r(s_t, u_t) + \widehat{V}(s_{t+1})$$

Compare to Bellman Backup

$$Q^{\pi}(s,u) = r(s,u) + \gamma \sum_{s'} p(s'|s,u) V^{\pi}(s')$$
$$= r(s,u) + V^{\pi}(s') \text{ (for } \gamma = 1 \text{ and det. dynamics)}$$



### Intuition: Relationship to Bellman Backup

If we consider **stochastic dynamics**:

$$\hat{Q}(s_t, u_t) = \log \beta_t(s_t, u_t) = 
\log \sum_{s_{t+1}} \beta_{t+1}(s_{t+1}) p(O_t|s_t, u_t) p(s_{t+1}|s_t, u_t) 
= \log p(O_t|s_t, u_t) + \log \sum_{s_{t+1}} \beta_{t+1}(s_{t+1}) p(s_{t+1}|s_t, u_t) 
= r(s_t, u_t) + \log \mathbb{E}_{s_{t+1} \sim p(s_{t+1}|s_t, u_t)} [\exp \hat{V}(s_{t+1})]$$
(pot of

"Risk seeking behavior"

(not good!)

Compare to Bellman Backup:

$$\begin{split} Q^{\pi}(s,u) &= r(s,u) + \gamma \sum_{s'} p(s'|s,u) V^{\pi}(s') \\ &= r(s,u) + \mathbb{E}_{s_{t+1} \sim p(s_{t+1}|s_t,u_t)} [V^{\pi}(s_{t+1})] \end{split}$$



# Wait.. What happened?





#### Backward messages

$$\beta_t(s_t, u_t) = p(O_{t:T}|s_t, u_t)$$
$$\beta_t(s_t) = p(O_{t:T}|s_t)$$

Goal: Compute  $p(u_t|s_t, O_{t:T})$ 

$$p(u_t|s_t, O_{t:T}) = \frac{p(s_t, u_t|O_{t:T})}{p(s_t|O_{t:T})}$$

$$= \frac{p(O_{t:T}|s_t, u_t)p(u_t|s_t)p(s_t)}{p(O_{t:T}|s_t)p(s_t)}$$

$$= \frac{p(O_{t:T}|s_t, u_t)p(s_t)}{p(O_{t:T}|s_t)|U|p(s_t)}$$

$$\propto \frac{p(O_{t:T}|s_t, u_t)}{p(O_{t:T}|s_t)}$$

$$= \frac{\beta_t(s_t, u_t)}{\beta_t(s_t)}$$

(conditional probability)

(Bayes Rule)

(since 
$$p(u_t|s_t) = \frac{1}{|U|}$$
)



#### Wait.. What happened?

- The inference problem involves  $p(s_{1:T}, u_{1:T} | O_{1:T})$ 
  - "Given you obtained high reward, what was the probability of states and actions?"
- We obtained:
- The **policy**  $p(u_t|s_t, O_{1:T})$ 
  - "Given you obtained high reward, what was your action probability?"
- The state distributions  $p(s_{t+1}|s_t, u_t, O_{1:T})$ 
  - "Given you obtained high reward, what was your transition probability?"
  - Problem:  $p(s_{t+1}|s_t, u_t, O_{1:T}) \neq p(s_{t+1}|s_t, u_t)$



#### Example



- Numbers drawn randomly from 1 to 100 with replacement.
- What is the probability of 7 given the first number drawn was 12?
  - 1/100
- Given that I know you won the lottery, what is the probability of 7 given that the first number was 12?
  - 1/2

# Winning Lottery Numbers:

- 42, 32, 43
- 12, 7, 6
- 12, 3, 5



#### Wait.. What happened?

- The **policy**  $p(u_t|s_t, O_{1:T})$ 
  - "Given you obtained high reward, what was your action probability?"
- The state distributions  $p(s_{t+1}|s_t, u_t, O_{1:T})$ 
  - "Given you obtained high reward, what was your transition probability?"
  - Problem:  $p(s_{t+1}|s_t, u_t, O_{1:T}) \neq p(s_{t+1}|s_t, a_t)$
- What we actually want:

"Given you have obtained high reward and your transition probability did not change, what was your action probability?"





#### Inference and Control

Structured Variational Inference

#### High-Level Structure

- A Probabilistic Graphical Model (PGM) for Control
  - Performing inference to obtain a policy
    - Backward Messages

• "Structured" variational inference to obtain a constrained policy



#### Fix using approximate inference

Approximate trajectory distribution,  $p(\tau)$  where  $\tau = (s_{1:T}, u_{1:T})$ 

$$p(\tau) = \left[ p(s_1) \prod_{t=1}^{T} p(s_{t+1}|s_t, u_t) \right] \exp\left( \sum_{t=1}^{T} r(s_t, u_t) \right)$$

with the distribution

$$q(\tau) = q(s_1) \prod_{t=1}^{T} q(s_{t+1}|s_t, u_t) q(u_t|s_t)$$
This is our policy!

Don't want the agent to "control" the dynamics so, fix:

$$q(s_1) = p(s_1)$$

$$q(s_{t+1}|s_t, u_t) = p(s_{t+1}|s_t, u_t)$$



## P and Q in pictures

$$q(\tau) = p(s_1) \prod_{t=1}^{T} p(s_{t+1}|s_t, u_t) q(u_t|s_t)$$











$$\begin{split} \log p(O_{1:T}) &= \log \sum_{S_{1:T}} \sum_{u_{1:T}} p(O_{1:T}, s_{1:T}, u_{1:T}) \\ &= \log \sum_{S_{1:T}} \sum_{u_{1:T}} p(O_{1:T}, s_{1:T}, u_{1:T}) \frac{q(s_{1:T}, u_{1:T})}{q(s_{1:T}, u_{1:T})} \\ &= \log \mathbb{E}_{q(s_{1:T}, u_{1:T})} \left[ \frac{p(O_{1:T}, s_{1:T}, u_{1:T})}{q(s_{1:T}, u_{1:T})} \right] \\ &\geq \mathbb{E}_{q(s_{1:T}, u_{1:T})} \left[ \log \frac{p(O_{1:T}, s_{1:T}, u_{1:T})}{q(s_{1:T}, u_{1:T})} \right] \\ &= \mathbb{E}_{q(s_{1:T}, u_{1:T})} \left[ \log p(O_{1:T}, s_{1:T}, u_{1:T}) \right] - \mathbb{E}_{q(s_{1:T}, u_{1:T})} \left[ \log q(s_{1:T}, u_{1:T}) \right] \end{split}$$



$$\mathcal{L}(q) = \mathbb{E}_{q(s_{1:T}, u_{1:T})} \left[ \log \frac{p(O_{1:T}, s_{1:T}, u_{1:T})}{q(s_{1:T}, u_{1:T})} \right]$$



$$\mathcal{L}(q) = \mathbb{E}_{q(s_{1:T}, u_{1:T})} \left[ \log \frac{p(O_{1:T}, s_{1:T}, u_{1:T})}{q(s_{1:T}, u_{1:T})} \right]$$

Substituting p and q,

$$\mathcal{L}(q)$$

$$= \mathbb{E}_{q(s_{1:T},u_{1:T})} \left[ \log \frac{[p(s_1) \prod_{t=1}^T p(s_{t+1}|s_t,u_t)] \exp(\sum_{t=1}^T r(s_t,u_t))}{p(s_1) \prod_{t=1}^T p(s_{t+1}|s_t,u_t) q_{\theta}(u_t|s_t)} \right]$$

So,

$$\mathcal{L}(q) = \mathbb{E}_{q(s_{1:T}, u_{1:T})} \left[ \sum_{t=1}^{T} r(s_t, u_t) - \log q(u_t | s_t) \right]$$



$$\mathcal{L}(q) = \mathbb{E}_{q(s_{1:T}, u_{1:T})} [\sum_{t=1}^{T} r(s_t, u_t) - \log q(u_t | s_t)]$$

$$= \sum_{t} \mathbb{E}_{q(s_t, u_t)}[r(s_t, u_t)] - \mathbb{E}_{q(s_t)q(u_t|s_t)}[\log q(u_t|s_t)]$$

$$= \sum_{t} \mathbb{E}_{q(s_t, u_t)}[r(s_t, u_t)] + \mathbb{E}_{q(s_t)}[\mathbb{H}[q(u_t \mid s_t)]]$$



$$\max_{q_{\theta}} \mathcal{L}(q) = \max_{q_{\theta}} \sum_{t} \mathbb{E}_{q(s_{t}, u_{t})} [r(s_{t}, u_{t})] + \mathbb{E}_{q(s_{t})} [\mathbb{H}[q(u_{t} | s_{t})]]$$
Action Entropy

- Maximizing the above yields the correct policy
  - Doesn't have "risk-seeking" behavior
  - Can apply other structural constraints
    - "Maximum Entropy" RL



### the update messages

Using the Variational approach, the backward messages are:

$$\hat{V}_t(s_t) = \log \sum \exp \hat{Q}_t(s_t, u_t)$$

$$\hat{Q}_t(s_t, u_t) = r(s_t, u_t) + \mathbb{E}[\hat{V}_{t+1}(s_{t+1})]$$

$$q(u_t|s_t) = \exp(\hat{Q}_t(s_t, u_t) - \hat{V}_t(s_t))$$

#### **Compare with:**

- $\hat{Q}(s_t,u_t)=r(s_t,u_t)+\log\mathbb{E}_{s_{t+1}\sim p(s_{t+1}|s_t,u_t)}\big[\exp\hat{V}(s_{t+1})\big]$  (standard inference, risk-seeking)  $Q^\pi(s,u)=r(s,u)+\mathbb{E}_{s_{t+1}\sim p(s_{t+1}|s_t,u_t)}\big[V^\pi(s_{t+1})\big]$



## Summary



- A PGM for *control* via *inference*
- A variational solution for inference



Learning rewards from an expert

• "If we use, to achieve our purposes, a mechanical agency with whose operation we cannot interfere effectively . . . we had better be quite sure that the purpose put into the machine is the purpose which we really desire."

• - Norbert Wiener, 1960



# Learning rewards from an expert





## Democratizing robot programming





Image Credit: <a href="https://ai.googleblog.com/2016/10/how-robots-can-acquire-new-skills-from.html">https://ai.googleblog.com/2016/10/how-robots-can-acquire-new-skills-from.html</a>

#### Image credit:

https://www.popsci.com/scitech/article/2008-04/why-grandma-may-get-coolest-robot-block/



### Inverse reinforcement learning

- Reinforcement learning
- Given:
  - MDP  $(S, U, T, r, \gamma)$
- Goal:
  - Obtain/Learn  $\pi^*(s)$

# *Inverse* Reinforcement learning

#### Given:

- MDP\r  $(S, U, T, \gamma)$
- Dataset of trajectories  $D = \{\tau_i\}$  sampled from  $\pi^*(\tau)$

#### Goal:

•Obtain/Learn  $r_{\psi}(s,u)$ 

Variants: Sometimes, no transitions T



# Can we use our graphical model?





#### Can we use our graphical model?



**Goal:** Learn  $\psi$  via maximum likelihood estimation (MLE)



#### Maximum likelihood estimation

**Goal:** 
$$\psi^* = \arg \max_{\psi} \log p(D|\psi) = \arg \max_{\psi} \sum_{i} r_{\psi}(\tau_i) - \log Z_{\psi}$$

We need to maximize:  $\frac{1}{N}\sum_i r_{\psi}(\tau_i) - \log Z_{\psi}$ 

How to maximize?

$$\nabla_{\psi} L = \frac{1}{N} \sum_{i} \nabla_{\psi} r_{\psi}(\tau_{i}) - \log \nabla_{\psi} Z_{\psi}$$

$$= \mathbb{E}_{\tau \sim \pi^*} [\nabla_{\psi} r_{\psi}(\tau)] - \mathbb{E}_{\tau \sim p(\tau|O_{1:T},\psi)} [\nabla_{\psi} r_{\psi}(\tau)]$$

Estimate with Expert
Trajectories

Compute using soft optimal policy under current reward

