

⑨ 日本国特許庁 (JP)

⑩ 特許出願公開

⑪ 公開特許公報 (A) 昭61-69002

⑫ Int.Cl.

G 02 B 3/00
7/11
G 03 B 17/12

識別記号

厅内整理番号

7448-2H
N-7448-2H
7610-2H

⑬ 公開 昭和61年(1986)4月9日

⑭ 発明の名称 二焦点カメラのレンズ位置情報伝達装置

⑮ 特願 昭59-191272

⑯ 出願 昭59(1984)9月12日

⑰ 発明者 若林 夷 横浜市中区山元町5丁目204

⑱ 出願人 日本光学工業株式会社 東京都千代田区丸の内3丁目2番3号

⑲ 代理人 弁理士 渡辺 隆男

明細書

1. 発明の名称

二焦点カメラのレンズ位置情報伝達装置

2. 特許請求の範囲

主光学系のみにより撮影を行う第1の状態と前記主光学系の前記第1状態における至近距離位置を超える光軸方向の移動に応じて副光学系を付加して撮影を行う第2の状態に焦点距離を切换え可能な撮影レンズを有するカメラにおいて、前記主光学系の光軸方向の移動に応じて回動して撮影距離連続装置に連動する回転部材と、少なくとも前記第1の状態における前記主光学系の光軸方向の移動を前記回転部材の回転運動に変換する第1レバー手段と、少なくとも前記第2の状態における前記主光学系の光軸方向の移動を前記回転部材の回転運動に変換する第2レバー手段と、前記主光学系と一緒に光軸に沿って移動し、且つ前記両レバー手段に係合して前記両レバー手段をそれぞれ変位させる連携手段とから成り、前記主光学系が前記第1の状態における至近距離位置を超えて操

り出されたときに前記第1レバー手段が前記連携手段との連動を断って前記回転部材の回動を中断し、前記主光学系がさらに所定量操り出されたときに、前記第2レバー手段が前記連携手段に連動して前記回転部材を引き続き回動させる如く構成したことを特徴とする二焦点カメラのレンズ位置情報伝達装置。

3. 発明の詳細な説明

[発明の技術分野]

本発明は、カメラのレンズ位置情報伝達装置、特に、単独にて撮影可能な主光学系を撮影光軸上で移動させると共に、その主光学系の移動に応じて副光学系を撮影光軸上に挿入することにより、撮影レンズが少なくとも二種類の異なる焦点距離に切り換えられるよう構成された二焦点カメラにおけるレンズ位置情報伝達装置に関する。

[発明の背景]

一般に撮影レンズは、被写体までの距離に応じて撮影光軸上を前後して距離調節をなし得るよう構成されている。この場合、撮影レンズの抽出

し量は、移動するレンズの焦点距離と被写体までの距離によって決定される。その露出量は、レンズ鏡筒に設けられた距離目盛により示され、あるいは伝達機構を介してカメラファインダー内に被写体距離やゾーンマークとして表示される。また、距離計（自動距離検出装置を含む。）を備えたカメラの場合には、撮影レンズの光軸上での位置情報は伝達機構を介して距離計に伝達され、その距離計を動作させるように構成されている。また、フラッシュマッチ校り装置を備えたカメラにおいては、伝達機構を介して検出された撮影レンズの露出量から撮影距離を求め、その撮影距離とフラッシュガイドナンバー（G.N）とに応じた絞り値が演算器によって演算され、その演算された絞り値に基づいて絞りが自動的に制御されるよう構成されている。

上記の如く、撮影レンズの撮影光路上での移動は、カメラ側に伝達されるが、その際の撮影レンズの位置（所定の焦点面からの距離）は、そのときの撮影レンズの焦点距離情報と、撮影距離情報

れ、既に公知である。

しかし乍、この公知の二焦点カメラにおいては、副光学を挿入するために主光学系を移動する焦点距離切換用の主光学系露出機構と、距離調節のための主光学系露出機構とが、全く別個に構成されている。その為、主光学系の露出機構が複雑となる欠点が有る。さらに、焦点調節の際に絞りは固定のままに置かれるので、充分近距離まで撮影範囲を拡大し得ない欠点が有る。

さらに、上記公知の二焦点カメラにおいては、副光学系が付加された後も主光学系のみが移動して距離調節を行つよう構成されている。従って副光学系が主光学系と共に移動して自動焦点調節を行うよう構成されたカメラにおいては、副光学系が挿入されない状態における自動焦点調節しか行い得ない欠点がある。

また、上記公知の自動焦点調節装置を備えた二焦点カメラでは、主光学系側から伝達されるレンズ位置情報には、焦点距離の変化情報は含まれていない。従って、焦点距離の切換えによって生じ

との双方を含んでいる。

一方、撮影レンズの焦点距離を少なくとも長短二種類に切り換えるために、単独に撮影可能な主光学系を撮影光軸に沿つて移動させると共に、その移動に連動して副光学系を撮影光軸上に挿入する如く構成されたいわゆる二焦点カメラが、例えば特開昭52-76919号、特開昭54-33027号などの公開特許公報によって公知である。これ等公知の二焦点カメラにおいては、いずれも、副光学系が撮影光軸上に挿入された後も、主光学系のみが距離調節のために移動し、しかも主光学系の後方に設けられた絞りは、距離調節の際には固定のままで前後に移動しないよう構成されている。従つて、主光学系の露出量を大きくするとその絞りのために画面周辺における撮影光量が不足し光量ムラを生じる恐れが有るので、近距離側での撮影領域が制限される欠点が有る。

また、主光学系に連動する自動焦点調節装置を備えた二焦点カメラも、例えば特開昭58-202431号等の公開特許公報によって開示さ

る絞り値（下値）の変化を補正するためには、焦点距離交換のための主光学系または副光学系の移動に連動して絞り口径を変化させる連動機構をさらに追加しなければならない。さらにまた、フラッシュマッチ装置を上記公知の二焦点カメラに付加する場合にも、焦点距離情報の伝達装置を別に付加する必要があり、レンズ移動伝達装置の構成が複雑になる欠点が有る。

[発明の目的]

本発明は、上記従来の二焦点カメラの欠点を解決し、撮影レンズの光軸上での位置に基づき、各焦点距離に応じた精密な撮影距離情報を正確に伝達すると共に変換される焦点距離情報を極めて効率よく伝達し、しかも所要スペースを小さくし得るレンズ位置情報伝達装置を提供することを目的とする。

[発明の概要]

上記の目的を達成するために本発明は、繰り出される主光学系の光軸上での位置（焦点面からの距離）が、そのときの撮影レンズの焦点距離情報

と被写体距離情報との双方を含んでいることに着目し、主光学系の光軸方向の移動に応じて回動して撮影距離関連装置に連動する回転部材と、主光学系のみにより撮影を行う少なくとも第1の状態における主光学系の移動をその回転部材の回転運動に変換する第1レバー手段と、副光学系を付加して撮影を行う少なくとも第2の状態における主光学系の移動をその回転部材の回転運動に変換する第2レバー手段と、主光学系と一緒に光軸に沿って移動し且つ前記の両レバー手段に係合して両レバー手段をそれぞれ変位させる係合手段とを設け、主光学系が第1の状態における至近距離位置を超えて繰り出されたときに第1レバー手段は係合手段との連動を断って回転部材の回動を中断し、前記主光学系がさらに所定量繰り出されたときに、前記第2レバー手段が前記係合手段に連動して前記回転部材を引き続き回動させる如く構成することを技術的要点とするものである。

【実施例】

以下、本発明の実施例を添付の図面に基づいて

さらに、その前面突出部1Aの内側には、開口1aを遮閉するための防塵カバー8が開閉可能に設けられている。その防塵カバー8は、カメラ本体1の上部に設けられた焦点距離選択レバー9によって開閉される。

この焦点距離選択レバー9は、第2図に示す如く、主光学系4を保持する主レンズ枠3が繰り込まれた広角撮影域にあるときは、第4図のカメラの上面図に示す如く、指標9Aがカメラ本体1の上面に付された広角記号「W」に対向し、第3図に示す如く主レンズ枠3が繰り出された望遠撮影域にあるときは、指標9Aが望遠記号「T」に対向するよう、任意に設定し得る如く構成されている。また、焦点距離選択レバー9の指標9Aが記号「OFF」を指示するよう回転すると、主光学系4の前面を防塵カバー8が覆うように構成されている。

また一方、焦点距離選択レバー9には、カメラ本体1の固定部に設けられた導体ランドCd₁、Cd₂にそれぞれ接触する摺動接片Br₁、Br₂が述

詳しく説明する。

第1図は本発明の実施例の斜視図、第2図および第3図は第1図の実施例を組み込んだ可変焦点カメラの縦断面図で、第2図は副光学系が撮影光路外に退出している状態、第3図は副光学系が撮影光路内に挿入された状態を示す。

第1図および第2図において、カメラ本体1内のフィルム開口2の前面には、後で詳しく述べられる台板10が移動可能に設けられている。その台板10は、ほぼ中央に開口10aを有し、開口10aの前面に固設された主レンズ枠3に撮影レンズを構成する主光学系4が保持されている。副光学系5は移動レンズ枠6内に保持され、第2図の広角状態においては、撮影光路外の退避位置に置かれ、望遠状態においては第3図に示す如く撮影光軸上に挿入されるよう構成されている。また、主光学系4と台板10との間に絞り兼用シャッタ7が設けられ、主光学系4と一緒に光軸上を移動する。

カメラ本体1の前面突出部1Aには、主レンズ枠3の先端部が通過し得る開口1aが設けられ、

動して変位する如く設けられ、長い帯状の導体ランドCd₁と摺動接片Br₁とでスイッチSw₁が構成され、短い導体ランドCd₂と摺動接片Br₂とでスイッチSw₂が構成されている。スイッチSw₁は、焦点距離選択レバー9が広角記号Wおよび望遠記号Tの位置にあるときにONとなり、記号「OFF」位置に変位するとOFFとなる。また、スイッチSw₂は、焦点距離選択レバー9が望遠記号Tの位置にあるときのみONとなり、他のW記号およびOFF記号の位置ではOFFとなる。この2個のスイッチSw₁およびSw₂は、主光学系4および副光学系5を変位させるためのモータH(第1図および第2図参照)の回転を制御する如く構成されている。

第5図は、台板10および移動レンズ枠6を駆動する駆動機構を示すために、台板10を裏面から見た斜視図である。モータ11は台板10の上部裏面に固定され、そのモータ11の回転軸の両端にはペベルギヤ12a、12bが第5図に示す如くに固定されている。一方のペベルギヤ12a

にはペベルギヤ13aが噛み合い、そのペベルギヤ13aは、一体に形成された平歯車14と共に台板10に回転可能に軸支されている。平歯車14と噛み合う第1駆動歯車15は台板10に回転可能に支持され、その中心に設けられた雌リードねじに、カメラ本体1の固定部に固定され、且つ光軸方向に伸びた第1送りねじ16が螺合している。

また、ペベルギヤ13aと一体の平歯車14は歯車列17を介して第2駆動歯車18と噛み合っている。この第2駆動歯車18も第1駆動歯車15と同様に台板10上に回転可能に支持され、その中心に設けられた雌リードねじに、カメラ本体1の固定部に固定され、且つ光軸方向に伸びた第2送りねじ19が螺合している。第1駆動歯車15と第2駆動歯車18とは回転数が互いに等しくなるように構成され、また、第1送りねじ16と第2送りねじ19のねじのリードも等しくなるようにならかに形成されている。従って、モータ11が回転し、第1駆動歯車15と第2駆動歯車18とが

柄部6Aの一端は、台板10に設けられた固定軸28にカムギヤ26と共に回転可能に支持され、圧縮コイルばね29により正面カム27のカム面に圧接するよう付勢されている。

台板10には、移動レンズ枠6の突出部6Bに係合して移動レンズ枠6の移動を保止する保止部材30aおよび30bが固定している。その突出部6Bが保止部材30aに当接すると剛光学系5は第2図および第5図の実線にて示す如く退避位置に置かれ、突出部6Bが保止部材30bに当接すると、第3図および第5図の鎖線にて示す如く、剛光学系5は撮影光軸上に置かれる。

カムギヤ26の正面カム27は、第6図のカム展開図に示す如く、回転角が0から θ_1 にかけて揚程が0で変化しない第1平坦区間A₁と、 θ_1 から θ_2 にかけて揚程が0から b_1 まで直線的に増加する第1斜面区間Bと、 θ_2 から θ_3 にかけて揚程が b_1 で変化しない第2平坦区間Cと、 θ_3 から θ_4 にかけて揚程が b_1 から0まで直線的に減少する第2斜面区間Dと、 θ_4 から 360° まで揚程が0で変化しない

回転すると、台板10は第1送りねじ16および第2送りねじ19に沿って撮影光軸上を前後に移動可能である。

また、台板10の裏面には第5図に示す如く、光軸方向に長く伸びた連動支柱20が突出して設けられ、この連動支柱20の先端部に設けられた貫通孔21と台板10に設けられた貫通孔22(第1図参照)とを、カメラ本体1の固定部に固定され且つ光軸方向に伸びた案内軸23が貫通している。連動支柱20と案内軸23とにより、台板10は、光軸に対して垂直に保持され、モータ11の回転に応じて光軸に沿って前後に平行移動するよう構成されている。

モータ11の回転軸に設けられた他方のペベルギヤ12bにはペベルギヤ13bが噛み合い、このペベルギヤ13bと一体に形成された平歯車24は減速ギヤ列25を介してカムギヤ26に噛み合っている。このカムギヤ26の表面には正面カム27が形成されている。一方、剛光学系5を保持する移動レンズ枠6は柄部6Aを有し、この

第3平坦区間A₂とからなる。

移動レンズ枠6の柄部6Aが第1平坦区間A₁または第3平坦区間A₂に係合しているときは、剛光学系5は退避位置(第2図)または撮影光軸上の位置(第3図)に在り、移動レンズ枠6の突出小筒6Cが台板10に設けられた円孔10bまたは開口10a内に挿入されて置かれる。従って、移動レンズ枠6の柄部6Aがその平坦区間A₁、A₂で係合している間は、正面カム27が回転しても、それぞれの位置に静止して置かれる。正面カム27が正転または逆転して柄部6Cが第1斜面区間Bまたは第2斜面区間Dのカム面に接し、上昇すると、移動レンズ枠6は光軸方向に移動し、突出小筒6Cが円孔10bまたは開口10aから脱出し、台板10の裏面に沿って角 α だけ正面カム27と共に回転する。さらに第2平坦区間Cを乗り越えて、第2斜面区間Dまたは第1斜面区間Bのカム面に沿って柄部6Aがばね29の付勢によって下降すると、保止部材30bまたは30aに沿って第5図中で左方へ移動レンズ枠6は移

動し、第3図の望遠位置または第2図の広角位置にて停止する如く構成されている。

なお、ペベルギヤ13aおよび平歯車14乃至第2送りねじ19をもって、主光学系変位機構が構成される。またペベルギヤ13bおよび平歯車24乃至圧縮コイルばね29をもって副光学系変位機構が構成される。

主光学系4と副光学系5とを変位させる光学系変位機構は上記の如く構成されているので、OFF位置に置かれた焦点距離選択レバー9を広角記号Wの位置まで回転すると、図示されない連動機構を介して防塵カバー8が開くと共に、スイッチSw₂が第4図に示す如くON状態となる。この位置では主光学系4のみが第2図に示す如く撮影光軸上に置かれ、台板10は最も右方へ繰り込んだ広角撮影域における無限遠位置に置かれる。レリーズ釦Bt(第4図参照)を押下すると、モータ11が回転し、台板10は第2図中で左方へ繰り出され、広角撮影域での距離調節がなされる。その際被写体までの距離は、後述の距離検出装置によつ

て検出され、モータ12が制御される。またこの場合、カムギヤ26がモータ11の回転に応じて回転し、正面カム27は第1平坦区間A₁内で距離調節範囲W(第6図参照)だけ回転するが、移動レンズ枠6は、台板10に対して光軸方向にも、またこれに直角な方向にも相対変位しない。

次に、焦点距離選択レバー9を広角位置Wから望遠位置Tに切り換えると、スイッチSw₂がONとなるので、モータ12が回転し、台板10は、広角撮影域での至近距離位置を超えて第2図中で左方へ繰り出され、望遠撮影域における無限遠位置にて停止する。その間に、カムギヤ26と共に正面カム27が第5図中で反時計方向に回転し、移動レンズ枠6の柄部6Aが第6図中で、第1平坦区間A₁を超え第1斜面区間Bのカム面に係合すると、移動レンズ枠6は圧縮コイルばね29の付勢力に抗して固定軸28に沿って第5図中で右方へ変位し、揚程h₁より少し手前で移動レンズ枠6の突出小筒6Cが円孔10bから脱出する。すると、カムギヤ26の反時計方向の回転により、

節がなされる。

次に、上記の台板10に連動する距離検出装置および距離信号発生装置の連動機構の構成について説明する。

第1図において、台板10の裏面から光軸方向に突出して設けられた連動支柱20の一端には、側面と上面とにそれぞれ第1係合突起20Aおよび第2係合突起20Bが突設され、第1係合突起20Aには広角用連動レバー31の一方の腕31Aが係合している。また、第2係合突起20Bは、台板10が望遠撮影域へ移動する途中で望遠用連動レバー32の一方の腕32Aと係合するよう構成されている。広角用連動レバー31は、ピン軸33によって軸支され、ねじりコイルばね34により反時計方向に回動するよう付勢され、さらに、その回動は制限ピン35によって阻止されている。望遠用連動レバー32は、ピン軸36によって軸支され、ねじりコイルばね37によって時計方向に回動可能に付勢され、また、その回動は制限ピン38によって制限される。さらに、広

上記の望遠状態において、レリーズ釦Btを押下すると、再びモータ11が回転し、台板10が第3図中で左方繰り出され望遠撮影域での距離調

角用連動レバー 3 1 および望遠用連動レバー 3 2 の他方の腕 3 1 B , 3 2 B の自由端は、それぞれ第 1 連動ピン 3 9 および第 2 連動ピン 4 0 が取設されている。連動ピン 3 9 および 4 0 と係合する回動レバー 4 1 は、回転軸 4 2 の一端に取設され、ねじりコイルばね 4 3 により第 1 図中で時計方向に回動可能に付勢されている。

第 1 連動ピン 3 9 は、第 7 図に示す如く、回動レバー 4 1 の第 1 接合部 4 1 a と係合し、広角用連動レバー 3 1 の反時計方向の回動により、第 1 係接部 4 1 a を押圧してねじりコイルばね 4 3 の付勢力に抗して回動レバー 4 1 を反時計方向に回動させる。また第 2 連動ピン 4 0 と係合可能を回動レバー 4 1 の第 2 係接部 4 1 b は、広角用連動レバー 3 1 の他方の腕 3 1 B が反時計方向に回転して第 7 図中で制限ピン 3 8 に当接したとき、ピン軸 3 6 を中心に旋回する連動ピン 4 0 の旋回軌道上に位置するように構成されている。なお、前記の連動支柱 2 0 , 第 1 係合突起 2 0 A , 第 2 係合突起 2 0 B をもって連携手段が構成され、前記

レンズ L_1 を通して、2 個の光検出ダイオード SPD_1 , SPD_2 より成る受光素子 4 9 によって受光される。カムレバー 4 5 , 発光素子 4 8 , 投光レンズ L_1 , 受光レンズ L_2 および受光素子 4 9 をもって測角方式の距離検出装置が構成される。なお、測距される被写体は、投光レンズ L_1 と受光レンズ L_2 との間に設けられた対物レンズ F_1 と接眼レンズ F_2 とから成るファインダー光学系によって観察される。

第 8 図は、第 1 図に示された測角方式の距離検出装置の原理図である。受光素子 4 9 は、2 個の光検出ダイオード SPD_1 と SPD_2 との境界線 BL が受光レンズ L_2 の光軸と交差するよう配置され、また、発光素子 4 8 は先ず、受光レンズ L_2 の光軸に平行する投光レンズの光軸上の基準位置に置かれ。この場合、発光素子 4 8 から発したスポット光は、投光レンズ L_1 を通して集光され、ファインダー視野のほぼ中央に在る被写体 B 上の点 b_1 の位置に光スポットを作る。その点 b_1 における光スポットの反射光は、受光レンズ L_2 を通して

広角用連動レバー 3 1 と第 1 連動ピン 3 9 とで第 1 レバー手段が、また前記望遠用連動レバー 3 2 と第 2 連動ピン 4 0 とで第 2 レバー手段が構成される。

回動レバー 4 1 の自由端には、カムレバー 4 5 に係合する摺動ピン 4 4 が取設されている。そのカムレバー 4 5 は、一端をピン軸 4 6 によって支持され、ねじりコイルばね 4 7 により常時時計方向に付勢されている。また、カムレバー 4 5 は、自由端側に折曲げ部 4 5 a を有し、その折曲げ部 4 5 a の先端には赤外発光ダイオード (IRED) のような発光素子 4 8 が設けられている。さらに、カムレバー 4 5 は、摺動ピン 4 4 との係接面に広角用カム 4 5 A , 発光素子復帰用カム 4 5 B および望遠用カム 4 5 C が第 7 図に示すように連続して形成されている。

発光素子 4 8 による赤外スポット光は、カムレバー 4 5 を回転可能に支持するピン軸 4 6 の軸線上に設けられた投光レンズ L_1 を通して投射され、被写体から反射される赤外スポット光は、受光レ

一方の光検出ダイオード SPD_1 上の点 C_1 に光スポットを作る。このような状態では、まだ被写体距離は検出されず、撮影レンズは、広角撮影域あるいは望遠撮影域における無限遠位置に置かれる。次に、撮影レンズが無限遠位置から繰り出されると、その繰出し量に応じて発光素子 4 8 は投光レンズ L_1 の中心 0 のまわりを時計方向に回動する。これにより、被写体 B 上の点 b_1 にある光スポットは点 b_1 に向って移動する。被写体 B 上の光スポットが受光レンズ L_2 の光軸上の点 b_2 に達すると、その光スポットの反射光は受光レンズ L_2 を通して受光され、2 個の光検出ダイオード SPD_1 と SPD_2 との境界線 BL 上の点 C_2 に反射スポットが作られる。従って、一方の SPD_1 の出力と他方の SPD_2 の出力とが等しくなり、合焦位置が検出される。この受光素子 4 9 の検出信号により図示されないモータ制御回路が作動し、モータ 1 1 は停止し、距離調節が自動的になされる。

いま、投光レンズ L_1 から被写体までの距離を R , 投光レンズ L_1 と受光レンズ L_2 との間隔を基

放長)をD、発光素子28の旋回角(すなわちカムレバー45の回転角)を θ_1 とすれば、被写体Bまでの距離Rによって求められる。

$$R = D / \tan \theta_1 \quad \dots \dots \dots \quad (1)$$

また一方、撮影レンズの焦点距離をf、撮影距離をR₀、撮影レンズの無限遠位置からの締出し量をAとし、AがRに比して充分小さいものとする。

$$A = f^2 / R_0 \quad \dots \dots \dots \quad (2)$$

の関係がある。

ここで、R ≠ R₀とすると、式(1)と(2)から次の式が得られる。

$$A = f^2 \cdot \tan \theta_1 / D \quad \dots \dots \dots \quad (3)$$

すなわち、撮影レンズの締出し量Aは、その撮影レンズの焦点距離の二乗と発光素子の移動量tan θ_1 に比例する。ところが、tan θ_1 は式(1)から明らかのように撮影レンズの焦点距離fには無関係

体になって広角用速動レバー31および望遠用速動レバー32によって回動変位させられる。

第9図は、焦点距離信号および撮影距離信号を出力する、コードバーン51と摺動ブラシ52とを含むエンコーダー54の拡大平面図である。第9図において、コードバーン51A、51B、51Cとコモンバーン51Dとの間を摺動ブラシ52によってON、OFFすることにより、このコードバーンは3ビットコードを形成している。記号W1～W8は広角状態での摺動ブラシ52のステップ、記号T4～T8は望遠状態での摺動ブラシ52のステップの位置を示す。バーン51Eは、広角・望遠の識別バーンである。摺動ブラシ52の変位によるコードバーン51の示す撮影距離に対応するコードを次の付表に示す。

に、被写体までの距離Rによって定まる。従って、撮影レンズの焦点距離の変化に応じて距離調節のための台板10の締出し量は変える必要があるが、同じ撮影距離に対する発光素子48の変位量は、焦点距離の変化に拘らず等しくなければならない。

また一方、撮影レンズの締出し量Aは、式(2)からわかるように撮影距離R₀と撮影レンズの焦点距離fとの情報を含んでいる。従って、撮影レンズの焦点距離を切換える二焦点カメラに例えればフラッシュマッチ装置を設ける場合には、二種類の異なる焦点距離に応じた絞り値を基準としてさらにその絞り口径が撮影距離に応じて絞られるように、撮影レンズの移動に応じて絞りを制御する必要がある。

第1図において、一端に回動レバー41が固定された回転軸42の他端には腕50が固定され、カメラ本体1の固定部に設けられた基板53上のコードバーン51上を摺動する摺動ブラシ52は、その腕50の一端に固定されている。

従って、摺動ブラシ52は回動レバー41と一緒に

付 表

焦点 距離	ステップ	撮影 距離 (m)	コード			
			a (31A)	b (31B)	c (31C)	d (31E)
広 角 (短 焦 点)	W1	0.4	ON	ON	ON	
	W2	0.6		ON	ON	
	W3	1.1		ON		
	W4	1.6	ON	ON		
	W5	2.4	ON			
	W6	4				
	W7	8			ON	
	W8	∞	ON		ON	
望 遠 (長 焦 点)	T4	1.6	ON	ON		ON
	T5	2.4	ON			ON
	T6	4				ON
	T7	8			ON	ON
	T8	∞	ON		ON	ON

注：—コード欄ブランクはOFFを示す

なお、腕50、パターン51、摺動ブラシ52および基板53をもってエンコーダー54が構成される。回転軸42の回転はエンコーダー54によりコード化され、上記付表に示すa, b, cおよびdのコードは第10図に示すディコーダー55によって読み取られ、これに対応するアナログ出力がディコーダー55から制御回路56に出力され、その制御回路56を介して、そのときの撮影距離が表示装置57に表示される。また、制御回路56によってアナログ出力は電流に変換され、閃光器の使用時のフラッシュスイッチBswのONにあり、校り装置7に制御信号を送り、エンコーダー54の出力信号に基づく撮影距離と、そのときの撮影レンズの焦点距離とに応じた適正な校り開口が設定される。なお、撮影完了後は、フィルム巻上げに応じて、台板10、発光素子48および摺動ブラシ52は、それぞれ無限位置に戻される。

次に、上記実施例における発光素子48および摺動ブラシ52を動かす連動機構の動作について、

の第1係合突起20Aにねじりコイルばね34の付勢力により圧接されている。また、その広角レバー31に植設された第1連動ピン39は、回動レバー41の第1係接部41aと係合し、回動レバー41に植設された摺動ピン44は、カムレバー45の広角用カム45Aの基部の無限遠位置で第11図に示す如く接している。この状態においては、発光素子48は第8図中で実線にて示す如く投光レンズL1の光軸上に置かれ、また、エンコーダー54の摺動ブラシ52は第9図中でステップW8の位置に置かれている。

上記の広角撮影準備完了状態において、ファインダー視野中央の中距離にある被写体をとらえ、レリーズ钮B1を押すと、モータ11が回転を開始し、台板10は第1図中で左方へ繰り出される。この台板10の移動により、連動支柱20も左方へ移動し、第1係合突起20Aに係合する広角用連動レバー31は、ねじりコイルばね34の付勢力により第1係合突起20Aの第11図中で左方への移動に追従して、ピン軸33を中心に反

広角撮影域での距離調節、焦点距離交換、および広角撮影域での距離調節の3つの場合に大別して詳しく説明する。

第11図乃至第14図は連動機構の動作説明図で、第11図は台板10が広角撮影域の無限遠位置に在るとき、第12図は台板10が広角撮影域の至近距離位置まで繰り出されたときの平面図で、第13図は台板10が望遠撮影域の無限遠位置に在るときの平面図、第14図は台板10が望遠撮影域の至近距離位置まで繰り出されたときの平面図である。

先ず、主光学系4のみによる広角状態における距離調節動作について説明する。

焦点距離選択レバー9を第4図中でOFF位置から広角位置Wまで回動すると、スイッチSw1がONとなり、電源回路がON状態となり、同時に防塵カバー8が開かれる。このとき、台板10は第1図および第2図に示す如く広角撮影域の無限遠位置に在り、広角用連動レバー31の一方の腕31Aの先端は、第11図に示す如く連動支柱20

時計方向に回動する。

その広角用連動レバー31の反時計方向の回動により、第1連動ピン39は、回動レバー41の第1係接部41aを第11図中で右方へ押圧し、回動レバー41をねじりコイルばね43の付勢力に抗して回転軸42を中心て反時計方向に回動させる。この回動レバー41の反時計方向の回動により、摺動ピン44は回転軸42のまわりに反時計方向に旋回する。

摺動ピン44が第11図中で反時計方向に旋回すると、カムレバー45は、ねじりコイルばね47の付勢力により広角用カム45のカム形状に従って摺動ピン44の動きに追従し、ピン軸46を中心て時計方向に回転し、発光素子48を第8図中で点線にて示すよう時に時計方向に変位させる。従って、被写体は発光素子48が発する光スポットにより走査される。至近距離位置にある被写体からの反射スポットが受光素子49の中央の境界線BL上の点C₁に達すると、その受光素子49の発する出力信号に基づいて、図示されない距離調

節制御回路が動作して、モータ11への給電を断ち、モータ11の回転を停止させる。このとき、光スポットによって照射された被写体に合焦する位置まで主光学系4は台板10と共に繰り出され、その位置に停止し、自動距離調節が完了する。

この場合、回動レバー41の回転は、回転軸42を介して、エンコーダー54の摺動ブラシ52に伝えられ、摺動ブラシ52が回動レバー41と一緒に回動して第9図中でステップW8の位置からステップW1の位置に向って回動変位する。その摺動ブラシ52の回転角は、台板10の無限遠位置からの繰り出し量に対応するので、台板10が繰り出された位置に対応する被写体までの距離信号がエンコーダー54からデジタル的に出力される。その出力信号は、第10図に示す如くディコーダー55および制御回路56を介して被写体距離またはゾーンマークの形で表示装置57に表示される。また、もし闪光器を使用する場合には、フラッシュスイッチBswのONにより、制御

カムレバー45はねじリコイルばね47の付勢力により時計方向に回動し、第12図に示すように発光素子48を投光レンズL1の光軸に対して θ_{WN} だけ時計方向に変位させる。

この発光素子48の回動変位により、発光素子48から投射され、至近距離の被写体にて反射された反射スポットは、第8図中で受光素子49の境界線BLに到達する。そこで受光素子49は反射スポット検出信号を出力するので、その出力信号に応じてモータ11は回転を停止し、そのとき、主光学系4は至近距離合焦位置に置かれる。またこのとき、回動レバー41と一緒に回動するエンコーダー54の摺動ブラシ52は、ステップW8の位置からステップW1の位置までコードバターン51上を摺動し、前掲の付表に示す至近距離(例えば0.4m)に対応するコード信号を出力する。

上記の如くして、広角状態における距離調節が無限遠から至近距離までの範囲内で行われる。

次に、焦点距離切換えの際の運動機構の動作に

回路は、エンコーダー54の出力信号(距離信号と焦点距離信号)とに基づいて校り装置7を制御し、適正な校り経が自動設定される。

至近距離にある被写体を撮影する場合には、その被写体にカメラを向けてリリーズ釦Btを押すと、台板10と共に運動支柱20が第12図中で2点鏡頭の位置(無限遠位置)から41だけ繰り出され、実線で示す至近距離位置に達する。この場合、広角用運動レバー31は、ねじリコイルばね34の付勢力により第1係合突起20Aに追従して反時計方向に回動し、台板10が至近距離位置に達したときに、第12図に示す如く制限ピン38に当接して停止する。また、広角用運動レバー31の反時計方向の回動により、その広角用運動レバー31に植設された第1運動ピン39は、回動レバー41をねじリコイルばね43の付勢力に抗して反時計方向に回動し、回動レバー41に植設された摺動ピン44をカムレバー45の広角用カム45Aの第12図中で右端部まで角 α だけ回動させる。この摺動ピン44の移動に応じて

ついて説明する。

第4図において焦点距離選択レバー9を広角位置(W)から望遠位置(T)に切り換えるか、あるいはOFF位置から広角位置(W)を超えて直接望遠位置(T)に切り換えると、スイッチSw1とSw2とが共にONとなり、リリーズ釦Btを押すこと無しにモータ11が回転し、台板10は広角撮影域の無限遠位置から至近距離位置を超えて繰り出される。台板10と共に運動支柱20が広角撮影域の至近距離位置に達すると、広角用運動レバー31は制限ピン38に当接して反時計方向の回動を停止し、第1運動ピン39に係合する回動レバー41は、摺動ピン44が広角用カム45Aの至近距離位置に接した状態の第12図に示す位置で回動を一旦停止する。この回動レバー41の回動により、回動レバー41の第2係接部41bは、望遠用運動レバー32に植設された第2運動ピン40の旋回軌道上に挿入される。

台板10と共に運動支柱20が広角撮影域の至近距離位置を超えて第12図中で左方へ繰り出さ

れると、速動支柱 20 の第 1 係合突起 20A は広角用速動レバー 31 の一方の腕 31A の先端部から離れる。台板 10 と共に速動支柱 20 が d_1 だけ左方へ繰り出されると、第 2 係合突起 20B が望遠用速動レバー 32 の一方の腕 32A の先端部に当接して望遠用速動レバー 32 を反時計方向に回動させる。さらに台板 10 が第 13 図中で d_2 だけ繰り出されると、望遠用速動レバー 32 に植設された第 2 速動ビン 40 は回動レバー 41 の第 2 係接部 41b に当接する。台板 10 が広角撮影域の至近距離位置を超えた後、望遠用速動レバー 32 の第 2 速動ビン 40 が第 2 係接部 41b に当接するまで d_2 ($= d_1 + d_3$) だけ移動する区間では、台板 10 の移動は回動レバー 41 に伝達されない。第 2 速動ビン 40 が第 2 係接部 41b に当接した後、引き続き台板 10 が d_4 だけ繰り出されると、回動レバー 41 は第 2 速動ビン 40 に押されて再び反時計方向に移動する。この回動レバー 41 の再回動により、摺動ビン 44 は第 12 図の位置（第 13 図中 2 点鎖線で示す位置）から反時計方

子 48 を投光レンズ L₁ の光軸上の原位置に復帰させる。

また、上記の焦点距離切換えの終期の台板 10 の移動に応じてわずかに回動する回動レバー 41 に速動してエンコーダー 54 の摺動ブラシ 52 は、第 9 図中でステップ W1 の位置からステップ T8 の位置まで摺動する。このステップ T8においては、摺動ブラシ 52 がバターン 51E にも接触するので、エンコーダー 54 は無限速信号の他に焦点距離識別信号を制御回路 56（第 10 図参照）に出力する。この焦点距離識別信号を受けた制御回路は、切り換えられる二種の焦点距離に対して同一の F 値となるように、絞り開口を制御する。ただし閃光器を使用する場合には、無限速位置信号により絞りは開放絞りになるように制御される。

次に、望遠撮影域における距離調節動作について説明する。

焦点距離選択レバー 9 を望遠位置 T（第 4 図参照）に設定し、撮影レンズが第 3 図に示すように主光学系 4 と副光学系 5 との合成焦点距離に切り

向に角 α だけ回動して、復帰用カム 45B に保持し、カムレバー 45 をねじりコイルばね 47 の付勢力に抗して反時計方向に回動させる。

第 13 図に示す如く、摺動ビン 44 が復帰用カム 45B を乗り越えて望遠用カム 45C の無限遠位置に達したとき、すなわち台板 10 が速動支柱 20 と一緒に d_4 だけ移動して望遠撮影域の無限遠位置に達したとき、その台板 10 の移動に連動する図示されないスイッチ装置によりモータ 11 への給電が断たれ、モータ 11 は回転を停止し台板 10 も同時にその位置で停止する。

台板 10 が上記の広角撮影域の至近距離位置を超えて望遠撮影域の無限遠位置に達するまでの間に、前述の如く副光学系 5 が歯車速動機構を介して主光学系 4 の後方の撮影光軸上に挿入され、主光学系 4 単独の焦点距離より長の合取焦点距離に切り換えられる。また、台板 10 が上記の焦点距離切換えのために光軸方向に長い距離 ($d_1 + d_4$) を移動している間に、回動レバー 41 は、第 13 図に示す如くわずかに角 α だけ回動して発光素

換えられ、台板 10 が望遠撮影域の無限遠位置に停止した後、レリーズ紐 B₁ を押すと、再びモータ 11 が回転して距離調節のためにさらに繰り出される。この場合、速動支柱 20 が第 13 図に実線にて示す無限遠位置から左方へ移動すると、望遠用速動レバー 32 が反時計方向に回転する。従って第 2 速動ビン 40 は回動レバー 41 の第 2 係接部 41b を右方へ押圧し、ねじりコイルばね 43 の付勢力に抗して回動レバー 41 と共に摺動ビン 44 を回転軸 42 のまわりに反時計方向に回動させる。この摺動ビン 44 の回動に応じて、カムレバー 45 は望遠用カム 45C のカム形状に従って時計方向にねじりコイルばね 47 の付勢力により回動し、発光素子 48 をビン軸 46 を中心として時計方向に変位させる。

この発光素子 48 の回動変位によって光スポット走査が行われ、広角状態における距離検出と同様に、望遠状態での距離検出が行われる。もし、被写体が至近距離位置にある場合には、第 14 図に示す如く速動支柱 20 は d_4 だけ繰り出され、摺

動ピン44は、回動レバー41と共に角 α だけ回動して実線で示す位置まで変位する。その際、発光素子48は、投光レンズLの光軸に対して角 θ_{IN} だけ傾き、至近距離の検出がなされたときにモーター11は回転を停止し、距離調節が完了する。

一方、上記の望遠状態における距離調節の際の回動レバー41の回動は、回転軸42を介してエンコーダー54に伝えられ、摺動ブラシ52はコードパターン51上を第9図中でステップT8からステップT4まで摺動し、前述の付表に示された無限遠(∞)から至近距離(1.6m)までの被写体距離に応じたコード信号を出力する。

第15図は、上記の台板10の移動量(すなわち速動支柱20の移動量) δ と、発光素子48の変位角(すなわちカムレバー45の回転角) θ 、およびエンコーダー摺動ブラシ52の変位角(すなわち回動レバー41の回転角)との関係を示す線図である。

台板10の最も奥に挿入された位置は、広角状態

したステップW1の位置に置かれる。

さらに引き続き台板10が繰り出されると、望遠用速動レバー32の第2速動ピン40に押されて回動レバー41は再び反時計方向に回動し、発光素子48を原位置まで復帰させ、台板10は、 δ_1 だけ繰り出されたとき、望遠撮影域Dの無限遠位置C点に達する。この復帰領域Cでは回動レバー41は α_1 だけ回動し、エンコーダー摺動ブラシ52はステップT8の位置に達する。

台板10が、望遠撮影域の無限遠位置C点から至近距離位置d点まで、さらに繰り出されると、回動レバー41は望遠用速動レバー32の第2速動ピン40に押されて α_2 だけ回動し、エンコーダー摺動ブラシ52はステップT4の位置まで摺動する。また、発光素子48は θ_{IN} だけ変位する。この望遠撮影域Dにおいても、台板10のC点からの繰り出し量に応じて、発光素子48およびエンコーダー摺動ブラシ52は変位する。

上記の実施例においては、距離検出装置(48, 49)が、モーター11を制御する自動焦点調節

での無限遠位置であり、この無限遠位置を0として第15図の横軸には撮影光軸に沿って移動する台板10の移動量 δ がとられている。台板10が δ_1 だけ繰り出されて広角撮影域Aの至近距離位置d点に達すると、広角用速動レバー31の第1速動ピン39に押されて回動レバー41は α_1 だけ反時計方向に回動する。この広角撮影域Aにおいては、発光素子48の変位角 θ とエンコーダー摺動ブラシ52の変位角 δ とは共に台板の繰り出し量 δ に応じて増加する。

台板10が広角撮影域の至近距離位置d点を超えて繰り出されると、広角用速動レバー31の回動が制限ピン38によって阻止されるので、回動レバー41は静止状態に置かれ、その静止状態は台板10が δ_1 だけ繰り出され、望遠用速動レバー32の第2速動ピン40が回動レバー41の第2係接部41bに当接するb点まで継続する。この静止領域Bでは、発光素子48は広角撮影域での至近距離に対応する変位角 θ_{IN} のままに置かれ、またエンコーダー摺動ブラシ52も α_1 だけ回動

装置を備える二焦点カメラについて述べたが、反射スポットが受光素子49の境界線BLに達したときに、ファインダー内に合焦を表示するランプが点灯するように構成すれば、撮影レンズの焦点距離の切換および距離調節を手動にて行うようにしてもよい。また、自動焦点調節装置を備えていない二焦点カメラでは、回動レバー45に従動するカムレバー45の自由端に指標を設け、撮影距離を示す例えばファインダー視野内のゾーンマークをその指標が指示するように構成してもよい。

なお、上記の実施例は、望遠撮影域において副光学系は主光学系と共に移動して距離調節を行なうよう構成されているが、副光学系が撮影光軸上に挿入された後も、主光学系のみが繰り出されて距離調節を行なう従来公知の二焦点カメラにも本発明を適用し得ることは勿論である。

[発明の効果]

上記の如く本発明によれば、主光学系の移動区間の両端部分の距離調節区間のうち一方の広角撮影域では第1レバー手段31, 39によって、主

た他方の広角撮影域では第2レバー手段32、40が主光学系4に連動して、撮影距離に関係する距離表示装置や距離検出装置45~48または撮影距離信号出力装置54の如き撮影距離関連装置を作動させる回動レバー(回転部材)41を回転させ、焦点距離を変えるための中間移動区間ににおいては、その回動レバー41の回転を中断するよう構成し、その間に、回動レバー41を回動する第1レバー手段と第2レバー手段との連動の切換えを行なうよう構成したから、主光学系4のみにより撮影を行う第1の状態(広角)での撮影域と副光学系5を付加して撮影を行う第2の状態(望遠)での撮影域では回転レバー41の回転角を拡大することにより精密な距離信号を撮影距離関連装置に送ることができ、また焦点距離を切り換える中間域では、無駄な動作が無いので移動部分のスペースを節約できる。さらに、実施例に示す如く距離信号取り出し用コードパターンと発光素子との回転角を回動部材41の回転によって決定するようすれば、両者の相対的ズレによる誤

差を少なくできる効果がある。さらに、本発明によれば、各レバー手段は切り換えられる焦点距離に基づいて移動し回動レバーを回動させてるので、焦点距離の切換えに応じて距離調節のための露出量が変わる撮影レンズにおいても正確に撮影距離情報を伝達することができる効果がある。

4. 図面の簡単な説明

第1図は本発明の実施例を示す斜視図、第2図および第3図は第1図の実施例を組み込んだ二焦点カメラの縦断面図で、第2図は主光学系のみによつて撮影を行う第1の状態(広角)、第3図は副光学系を追加して撮影を行う第2の状態(望遠)を示し、第4図は第2図のカメラの一部破断上面図、第5図は第1図における台板を裏側から見た斜視図、第6図は第5図における正面カムのカム曲線図、第7図は第1図の実施例のレバー連動機構部の拡大平面図、第8図は第1図における距離検出装置の原理説明図、第9図は第1図におけるエンコーダー部の拡大平面図、第10図は第1図の実施例をフラッシュマッチング装置に適用し

た場合の絞り決定回路図、第11図乃至第14図は第1図の実施例におけるレバー連動機構の動作説明図で、第11図で台板が広角撮影域の無限遠位置に在るとき、第12図は台板が広角撮影域の至近距離位置に在るとき、第13図は台板が望遠撮影域の無限遠位置に在るとき、第14図は台板が望遠撮影域の至近距離位置にあるときの平面図で、第15図は第1図における実施例における台板の露出量と発光素子並びにエンコーダー振動ブラシの変位角との関係を示す線図である。

[主要部分の符号の説明]

- 1 カメラ本体
- 4 主光学系 (撮影レンズ)
- 5 副光学系
- 20 連動支柱
- 20A 第1係合突起 } (連携手段)
- 20B 第2係合突起
- 31 広角用連動レバー (第1レバー手段)
- 39 第1連動ピン

- 32 望遠用連動レバー
- 40 第2連動ピン
- 41 回動レバー(回転部材)
- 45 カムレバー
- 48 発光素子 } (距離検出装置)
- 49 受光素子 } (撮影距離関連装置)
- 54 エンコーダー

出願人 日本光学工業株式会社

代理人 渡辺隆男

第 1 図

第 2 図

第3回

第4回

第 5 図

第6回

第7図

第 9 図

第10回

第十一圖

第12図

