HANDOUT 13

JIASU WANG

Diagonalizable, eigenvector basis, (algebraic/geometric) multiplicity, similar
Matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.
Exercise1: What are the eigenvalues of A and their algebraic multiplicities if A is

$$\left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right]$$

 $\bullet\,$ How to diagonalize matrix

similar to the following diagonal matrix?

Exercise2: Is the following matrix diagonalizable? If so, diagonalize it.

$$\left[\begin{array}{ccc} 2 & 0 & 0 \\ 1 & 3 & 0 \\ 1 & 0 & 3 \end{array}\right]$$

Exercise3: Determine if the following matrices are diagonalizable. Determine also if they are similar.

1

(1)
$$\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$
 and $\begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$.

(2)
$$\begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$$
 and
$$\begin{bmatrix} -1 & 3 \\ -4 & 6 \end{bmatrix}$$
.

• Complex eigenvalue: The roots of characteristic equation can be complex.

Exercise4: Find the eigenvalues of the following matrix, as well as the corresponding matrix

$$\left[\begin{array}{cc} 1 & -2 \\ 4 & 5 \end{array}\right]$$

• Eigenvalue and eigenvector of linear transformation.

Exercise5: Let $A = \begin{bmatrix} 1 & 3 & 2 \\ 1 & 3 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ and $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation such

that T(x) = Ax. Consider vector $v = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$. Find T(v). Is v an eigenvector of A? If so, what is the associated eigenvalue?

what is the appointed eigenvalue.

• Matrix of a linear transformation Given a linear transformation $T: V \to V$ and vector space V with basis $\mathcal{B} = \{b_1, b_2, \dots, b_n\}$. For any $x \in V$, if $x = r_1b_1 + r_2b_2 + \dots + r_nb_n$, then

$$[x]_{\mathcal{B}} = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix}, \quad [T(x)]_{\mathcal{B}} = [[T(b_1)]_{\mathcal{B}} \quad [T(b_2)]_{\mathcal{B}} \quad \cdots \quad [T(b_n)]_{\mathcal{B}}][x]_{\mathcal{B}}.$$

Exercise6: (Geometric interpretation of similar matrices) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $T(e_1) = e_1 - e_2, T(e_2) = e_1 + e_2$.

- (1) Find the matrix T_B of T under the basis $B = \{e_1, e_2\}$.
- (2) Find the matrix T_C of T under the basis $C = \{e_1, e_1 + e_2\}$.
- (3) Find the change of coordinate matrix from B to C, i.e., a matrix A such that the coordinate of a vector under basis B is the coordinate of the vector under basis B, left multiplied by the matrix A.
- (4) Show that $T_B = AT_CA^{-1}$.

 \bullet Linear transformation on \mathcal{RR}^n and matrix similarity

Exercise7: Find the \mathcal{B} -matrix for the transformation $x \to Ax$ when $\mathcal{B} = \{b_1, b_2, b_3\}$

$$A = \begin{bmatrix} -14 & 4 & -14 \\ -33 & 9 & -31 \\ 11 & -4 & 11 \end{bmatrix}, \quad b_1 = \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix}, \quad b_2 = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}, \quad b_3 = \begin{bmatrix} -1 \\ -2 \\ 0 \end{bmatrix}$$

• Some problems about eigenvalues

Exercise8:Let $T: V \to V$ be a linear transformation with $\dim V = n$.

- (1) Show that if T is not onto, then it has an eigenvector.
- (2) Show that $\lambda \in \mathbb{R}$ is an eigenvalue for T if and only if $\operatorname{rank}(T \lambda I) < n$.