Projet MiRitH

Maxime Coute

Jules Magois

30 janvier 2025

1 Explication générale de la signature

- 1.1 Problème MinRank
- 1.2 Authentification zero-knowledge utilisant MPC-in-thehead
- 1.3 Fiat-Shamir pour obtenir une signature

1.4 Sécurité

Soient:

- 1. N le nombre total de parties,
- 2. τ le nombre de tours effectués.

La probabilité qu'un faux signataire arrive à une signature correcte est proportionnelle à $N^{-\tau}.$

La taille d'une signature (en nombre de bits) est proportionnelle à τ .

On peut donc faire différents choix de N et τ en fonction de nos besoins :

- N petit et τ élevé pour générer rapidement une signature de grande taille,
- N grand et τ faible pour générer une signature courte.

2 Proposition de structure du code

- 1. un fichier field_arithmetics.c pour l'addition et la multiplication sur GF(16),
- 2. un fichier constants.c contenant les constantes utiles pour tous les autres fichiers :
 - la définition du corps GF_16
 - quelques paramètres de signature standards
 - les tables d'addition et de multiplication dans GF_16
- 3. un fichier matrix.c pour gérer les opérations sur les matrices :
 - allocation de mémoire
 - libération de mémoire
 - addition de deux (ou une liste de) matrices

- multiplication de deux matrices
- 4. un fichier key_generation.c pour générer la clé,
- 5. un fichier party.c qui implémente les calculs de chaque partie,
- 6. un fichier main.c qui implémente la signature.

3 Bibliothèques utilisées

- 1. gmp pour la génération de nombres aléatoires,
- 2. openss1 pour l'utilisation du hash Keccak.