Algorytmy numeryczne

Zadanie 2 Dawid Bińkuś & Oskar Bir & Mateusz Małecki grupa 1 tester-programista

11 Listopad 2018

1 Operacje na macierzach

Sprawozdanie prezentuje analizę wydajności i poprawności implementacji algorytmu eliminacji Gaussa, dla losowej macierzy kwadratowej A i wektora B w układzie liniowym $A \cdot X = B$. Zaimplementowano następujące warianty algorytmu:

G: bez wyboru elementu podstawowego,

PG: z częściowym wyborem elementu podstawowego,

FG: z peanym wyborem elementu podstawowego.

Dodatkowo, obliczenia zostały wykonane, używając trzech różny typów reprezentujących liczbę rzeczywistą:

TF: typ pojedynczej precyzji: **float**TD: typ podwójnej precyzji: **double**

TC: własna implementacja, przechowująca liczbę w postaci ułamka liczb całkowitych: fraction

Jako współczynniki macierzy A oraz wektora X zostały wylosowane liczby zmiennoprzecinkowe z przedziału: $\{\frac{-2^{16}}{2^{16}}, \frac{2^{16}-1}{2^{16}}\}$ Następnie wektor B został wyliczony wedługo wzoru $B = A \cdot X$. Macierz A i wektor B zostają podane jako parametry do rozwiązania układu równań, wektor X zaś pozostawiamy jako rozwiązanie wzorcowe, za pomocą którego obliczamy błąd wykonanego algorytmu.

Program do realizacji testów został wykonany w języku Java. Typ danych TC został zaimplementowany za pomocą wbudowanego typu całkowitego BigInteger. Testy zostały wykonane na macierzach o rozmiarze $\{10, 20, ..., 800\}$ (float,double) $\{10, 20, ..., 150\}$ (fraction) w ilości prób malejącej, wraz z wykonywaniem testów na coraz to większych macierzach. Wyniki zostały zagregowane za pomocą średniej arytmetycznej.

2 Analiza hipotez

Rozważmy następujące wykresy (Rysunek
1) Prezentują one błąd bezwzględny wartości w skali logarytmicznej (chyba że jest pod
ane inaczej), wyliczonej za pomocą wcześniej wspomnianych algorytmów wobec wektora wzorcowego X.

Część z nich prezentuje również czas wykonania algorytmu podany w milisekundach.

2.1 Związek czasu wykonywania z wariantem algorytmu eliminacji Gaussa

Hipoteza 1 Dla dowolnego ustalone rozmiaru macierzy czas działania metody Gaussa w kolejnych wersjach (G,PG,FG) rośnie.

Przeanalizujmy wykresy 1a oraz 1d. Zaprezentowano na nich porównanie czasu wykonania w zależności od wybranego typu danych oraz wariantu algorytmu. Niezależnie od typu danych można zauważyć pewną tendencję.

Po pierwsze, wraz z wzrostem rozmiaru macierzy użytej do rozwiązania układu równań, można zauważyć znaczący wzrost czasu wykonywania dla wariantu FG względem wariantów G i PG. Wykonując operacje na małych macierzach proces rozwiązywania nie jest na tyle skomplikowany by w jakikolwiek sposób wpływać na wydajność. Drugą interesującą rzeczą natomiast jest, brak znaczących różnic między wariantem G i PG. By bardziej uwidocznić to zjawisko przeanalizujmy wykres 1c, który prezentuje różnicę między cześciowym wyborem elementu podstawowego a brakiem wyboru w przypadku typu danych float. Wynikają z niego dwie rzeczy: różnica między wykonywaniem tych dwóch argumentów jest praktycznie nieznacząca (zaledwie kilka milisekund). Drugą rzeczą jest natomiast fakt, że wariant PG zdaje się być nieznacznie wolniejszy od wariantu G (Wraz z wzrostem rozmiaru macierzy okazuje sie w niektorych wypadkach nawet wydajniejszy niz standardowy algorytm Gaussa)

Rysunek 1: Wykresy reprezentujące błąd bezwzględny oraz czas wykonania dla różnych typów danych oraz różnych wariantów algorytmu

2.2 Związek błędu obliczeń z wariantem algorytmu eliminacji Gaussa

Hipoteza 2 Dla dowolnego ustalonego rozmiaru macierzy błąd uzyskanego wyniku metody Gaussa w kolejnych wersjach (G,PG,FG) maleje.

Wniosek 2 Coś...

2.3 Poprawność własnej arytmetyki

Hipoteza 3 Użycie własnej arytmetyki na ułamkach zapewnia bezbłędne wyniki niezależnie od wariantu metody Gaussa i rozmiaru macierzy.

Wniosek 3 Coś...

3 Pytania

3.1 Dokładność obliczeń (typ podwójnej precyzji)

Pytanie 1 Jak zależy dokładnośc obliczeń (błąd) od rozmiaru macierzy dla dwóch wybranych przez Ciebie wariantów metody Gaussa gdy obliczenia prowadzone są na typie podwójnej precyzji (TD)?

3.2 Zależność czasu działania algorytmu od rozmiaru macierzy oraz typu

Pytanie 2 Jak przy wybranym przez Ciebie wariancie metody Gaussa zależy czas działania algorytmu od rozmiaru macierzy i różnych typów?

4 Wydajność implementacji

Zadanie 1 Podaj czasy rozwiązania układu równań uzyskane dla macierzy o rozmiarze 500 dla 9 testowanych wariantów.

5 Podział pracy

Dawid Bińkuś	Oskar Bir	Mateusz Małecki
Struktura projektu	Ten też coś robił	A ten to w ogóle bardzo dużo
Przygotowanie sprawozdania	Coś	Coś
Implementacja algorytmu Gaussa w wariantach PG i FG	Coś	Coś