

planetmath.org

Math for the people, by the people.

dependence relation

Canonical name DependenceRelation
Date of creation 2013-03-22 14:19:25
Last modified on 2013-03-22 14:19:25

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 9

Author CWoo (3771)
Entry type Definition
Classification msc 03E20
Classification msc 05B35

Related topic LinearIndependence Related topic AlgebraicallyDependent

Related topic Matroid

Related topic AxiomatizationOfDependence

Let X be a set. A (binary) relation \prec between an element a of X and a subset S of X is called a *dependence relation*, written $a \prec S$, when the following conditions are satisfied:

- 1. if $a \in S$, then $a \prec S$;
- 2. if $a \prec S$, then there is a finite subset S_0 of S, such that $a \prec S_0$;
- 3. if T is a subset of X such that $b \in S$ implies $b \prec T$, then $a \prec S$ implies $a \prec T$;
- 4. if $a \prec S$ but $a \not\prec S \{b\}$ for some $b \in S$, then $b \prec (S \{b\}) \cup \{a\}$.

Given a dependence relation \prec on X, a subset S of X is said to be independent if $a \not\prec S - \{a\}$ for all $a \in S$. If $S \subseteq T$, then S is said to span T if $t \prec S$ for every $t \in T$. S is said to be a basis of X if S is independent and S spans X.

Remark. If X is a non-empty set with a dependence relation \prec , then X always has a basis with respect to \prec . Furthermore, any two of X have the same cardinality.

Examples:

- Let V be a vector space over a field F. The relation \prec , defined by $v \prec S$ if v is in the subspace S, is a dependence relation. This is equivalent to the definition of http://planetmath.org/LinearIndependencelinear dependence.
- Let K be a field extension of F. Define \prec by $\alpha \prec S$ if α is algebraic over F(S). Then \prec is a dependence relation. This is equivalent to the definition of algebraic dependence.