XX Летняя Физическая Школа. 10 класс.

Занятия по разбору задач из теории.

Заряды. Закон Кулона.

1	Как, имея электрический заряд, получить заряд другого знака?
2	Когда А подносят к В, они отталкиваются. Когда В подносят к С, они тоже отталкиваются. Какие из следующих утверждений верны? (а) А и С заряжены одноимённо; (б) А и С заряжены разноимённо; (в) все три объекта заряжены одноимённо; (г) один из объектов не заряжен; (д) не хватает информации.
3	Когда А подносят к В, они притягиваются. Когда В подносят к С, они отталкиваются. Какие из следующих утверждений верны? (а) А и С заряжены одноимённо; (б) А и С заряжены разноимённо; (в) все три объекта заряжены одноимённо; (г) один из объектов не заряжен; (д) не хватает информации.
4	Электрический диполь состоит из двух зарядов q и $-q$, находящихся на расстоянии $2a$ друг от друга. Найдите электрическое поле диполя на серединном перпендикуляре к отрезку, соединяющему заряды. Как ведёт себя поле, если точка наблюдения находится очень далеко от диполя?
5	Тонкое кольцо радиуса R заряжено зарядом $Q > 0$. Найдите электрическое поле на оси, проходящей через центр кольца и перпендикулярной к его плоскости. Каким будет поле вдалеке от кольца? Каким будет поле в центре кольца?

В условиях предыдущей задачи: в центре кольца поместили небольшой заряд q < 0. Затем его немного отклонили вдоль оси на расстояние $x \ll R$. Что будет происходить с зарядом?

Указание. Напомним, что уравнение движения для грузика на пружинке выглядит так: ma + kx = 0. При этом грузик на пружинке совершает колебания с периодом $T = 2\pi \sqrt{m/k}$.

6

Силовые линии. Теорема Гаусса.

Непроводящая сплошная сфера радиуса R заряжена равномерно с плотностью ρ (любой кусочек сферы объёмом V имеет заряд $q=\rho V$). С помощью закона Гаусса посчитайте электрическое поле:

6

- в точке P снаружи сферы;
- ullet в точке P внутри сферы.

-

(теорема Ирншоу) Говорят, что система находится в устойчивом равновесии, если при попытке вывести её из равновесия на систему начинает действовать возвращающая сила. Докажите, что заряд во внешнем электрическом поле не может находиться в устойчивом равновесии (при условии отсутствия сил другой природы — например, гравитационных). Указание: попробуйте сместить заряд из положения равновесия и посмотреть, что получится.

Потенциал.

Две проводящие сферы радиусами r_1 и r_2 находятся на значительном расстоянии друг от друга. Их соединяют длинным проводом. Сферы равномерно заряжены. Найдите отношение электрических полей на поверхностях сфер. Что будет с полем на сфере радиуса r_2 , если $r_2 \rightarrow 0$?

Докажите, что энергия взаимодействия системы N неподвижных зарядов q_1, \ldots, q_N выражается формулой

$$W = \frac{1}{2} \sum_{i=1}^{N} q_i \varphi_i,$$

9 где φ_i — потенциал поля, создаваемый всеми зарядами, кроме i-го, в той точке где находится i-й заряд:

$$\varphi_i = k \sum_{j=1}^{N-1} \frac{q_j}{r_i - r_j}.$$

Указание. Это можно сделать по индукции.

Конденсаторы.

6

Во сколько раз изменится ёмкость плоского конденсатора, если поместить его в плоскую металлическую коробку? Расстояние от обкладок до стенок коробки равно расстоянию между обкладками.

Метод изображений.

1	Заряд q поднесли на расстояние a к бесконечной проводящей плоскости. Найдите плотность поверхностных зарядов σ на плоскости.	
2	(«Заряд наказан!») Найдите силу, действующую на точечный заряд q , помещённый на биссектрису прямого двугранного угла между двумя проводящими плоскостями. Расстояние между зарядом q и вершиной двугранного угла равно a .	
3	Найдите силу взаимодействия заряда q и изолированной проводящей незаряженной сферы радиуса R . Заряд находится на расстоянии L от центра сферы.	
4	То же, что в предыдущей задаче, но сфера заряжена зарядом Q . При каком Q сила взаимодействия обратится в ноль?	