

I claim:

1. A method for the preparation of H₂O₂ wherein,
H₂O₂ is produced by a first reaction, electrolysis converting H₂SO₄ into H₂ and H₂S₂O₈ and then a second reaction, said H₂S₂O₈ formed in first reaction, is reacted with H₂O in a second reaction to form H₂O₂ and H₂SO₄ and wherein,
at least one of: the separation of said H₂ from said H₂S₂O₈, the separation of said H₂ from a mixture of said H₂S₂O₈ and said H₂SO₄, the separation of said H₂O₂ from said H₂SO₄, the separation of said H₂O₂ from said H₂S₂O₈, the separation of said H₂O₂ and water from said H₂SO₄, the separation of said H₂O₂ from a mixture of said H₂SO₄ and said H₂S₂O₈, the separation of said H₂SO₄ from said H₂S₂O₈ and any combination therein is performed with a membrane.
2. The method of claim 1, wherein the first reaction does not go to completion and wherein,
a mixture of H₂SO₄ and H₂S₂O₈ is reacted with H₂O in the second reaction.
3. The method of claim 1, wherein said membrane is constructed of organic materials.
4. The method of claim 1, wherein said membrane is constructed of inorganic materials.
5. The method of claim 1, wherein said H₂SO₄ in the second reaction is recycled to the first reaction.
6. The method of claim 1, wherein said electrolysis is performed across an electrically charged conductive membrane.
7. The method of claim 1, wherein said electrolysis is performed with electrodes.

8. The method of claim 7, wherein said electrodes are made of at least one of: zirconium, hastelloy, ceramic and titanium.

9. The method of claim 1, wherein at least one of the separation processes is performed with distillation.

5 10. The method of claim 9, wherein said distillation separates H₂ from at least one of H₂SO₄ and H₂S₂O₈.

11. The method of claim 9, wherein said distillation separates H₂O₂ from at least one of H₂SO₄ and H₂S₂O₈.

10 12. The method of claim 9, wherein said distillation separates H₂O from at least one of H₂SO₄ and H₂S₂O₈.

13. The method of claim 1, wherein said second reaction contains an excess of said H₂O, wherein an aqueous concentration of said H₂O₂ is generated.

14. The method of claim 1, wherein H₂O is added to said H₂O₂ from said second reaction.

15 15. The method of claim 1, wherein there is no vehicular transportation of said H₂O₂.

16. The method of claim 1, wherein said H₂ produced in the first reaction is utilized in a fuel cell to generate electricity.

17. The method of claim 16, wherein at least a portion of said electricity is used for the electrolytic conversion of H₂SO₄ into H₂ and H₂S₂O₈.

20 18. A process of H₂O₂ production wherein, H₂O₂ is produced by a first reaction, electrolysis converting H₂SO₄ into H₂ and H₂S₂O₈ and then a second reaction, said H₂S₂O₈ formed in first reaction, is reacted with H₂O in a second reaction to form H₂O₂ and H₂SO₄ and wherein,

at least one of: the separation of said H₂ from said H₂S₂O₈, the separation of said H₂ from a mixture of said H₂S₂O₈ and said H₂SO₄, the separation of said H₂O₂ from said H₂SO₄, the separation of said H₂O₂ from said H₂S₂O₈, the separation of said H₂O₂ and water from said H₂SO₄, the separation of said H₂O₂ from a mixture of said H₂SO₄ and said H₂S₂O₈, the separation of said H₂SO₄ from said H₂S₂O₈ and any combination therein is performed with a

5 membrane.

19. The process of claim 18, wherein the first reaction does not go to completion and wherein,

a mixture of H₂SO₄ and H₂S₂O₈ is reacted with H₂O in the second reaction.

10 20. The process of claim 18, wherein said membrane is constructed of organic materials.

21. The process of claim 18, wherein said membrane is constructed of inorganic materials.

22. The process of claim 18, wherein said H₂SO₄ in the second reaction is recycled to

15 the first reaction.

23. The process of claim 18, wherein said electrolysis is performed across an electrically charged conductive membrane.

24. The process of claim 18, wherein said electrolysis is performed with electrodes.

25. The process of claim 24, wherein said electrodes are made of at least one of:

20 zirconium, hastelloy, ceramic and titanium.

26. The process of claim 18, wherein at least one of the separation processes is performed with distillation.

27. The process of claim 26, wherein said distillation separates H₂ from at least one of H₂SO₄ and H₂S₂O₈.

28. The process of claim 26, wherein said distillation separates H₂O₂ from at least one of H₂SO₄ and H₂S₂O₈.

5 29. The process of claim 26, wherein said distillation separates H₂O from at least one of H₂SO₄ and H₂S₂O₈.

30. The method of claim 18, wherein said second reaction contains an excess of said H₂O, wherein an aqueous concentration of said H₂O₂ is generated.

10 31. The process of claim 18, wherein H₂O is added to said H₂O₂ from said second reaction.

32. The process of claim 18, wherein there is no vehicular transportation of said H₂O₂.

33. The process of claim 18, wherein said H₂ produced in the first reaction is utilized in a fuel cell to generate electricity.

15 34. The process of claim 33, wherein at least a portion of said electricity is used for the electrolytic conversion of H₂SO₄ into H₂ and H₂S₂O₈.