Solution Examen EMD PL 2022/2023

Exercice 1

1) Les variables de décision et leurs coûts

- x1 : nombre de postes radio construits et fournis durant la semaine 1 cx1: 20 €, donc le profit est 20-5=15€
- x2 : nombre de postes radio construits et fournis durant la semaine 2 cx2: 18 €, €, donc le profit est 18-5=13€
- x2 : nombre de postes radio construits et fournis durant la semaine 3 cx3: 16 €, €, donc le profit est 16-5=11€
- x4 : nombre de postes radio construits et fournis durant la semaine 4 cx4: 14 €, le profit est 14-5=9€
- x5: le nombre d'ouvriers expérimentés affectés au montage durant la semaine 1 cx5=200 €
- x6: le nombre d'ouvriers expérimentés affectés au montage durant la semaine 2 cx6=200 €
- x7: le nombre d'ouvriers expérimentés affectés au montage durant la semaine 3 cx7=200 €
- x8: le nombre d'ouvriers expérimentés affectés au montage durant la semaine 4 cx8=200 €
- x9: le nombre d'ouvriers expérimentés instructeurs durant la semaine 1 cx9=200 €
- x10: le nombre d'ouvriers expérimentés instructeurs durant la semaine 2 cx10=200 €
- x11 : le nombre d'ouvriers expérimentés instructeurs durant la semaine 3 cx11=200 €
- x12: le nombre de stagiaires instruits durant la semaine 1 cx12=100 €
- x13: le nombre de stagiaires instruits durant la semaine 2 cx13=100 €
- x14: le nombre de stagiaires instruits durant la semaine 3 cx14=100 €
- x15: le nombre d'ouvriers expérimentés inactifs durant la semaine 2 cx15=200 €
- x16: le nombre d'ouvriers expérimentés inactifs durant la semaine 3 cx16=200 €
- x17: le nombre d'ouvriers expérimentés inactifs durant la semaine 4 cx17=200 €

2) Les contraintes d'optimisation

- $50x5 x1 \ge 0$
- $50x6 x2 \ge 0$
- $\bullet \quad 50x7 x3 \ge 0$
- $50x8 x4 \ge 0$
- $3x9 x12 \ge 0$
- $3x10 x13 \ge 0$
- $3x11 x14 \ge 0$
- $x5 + x9 \le 40$
- 40 + x12 x6 x10 x15 = 0
- 40 + x12 + x13 x7 x14 x16 = 0
- 40 + x12 + x13 + x14 x8 x17 = 0
- $x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14 \ge 0$

3) PL

$$Max Z = 15x1 + 13x2 + 11x3 + 9x4 - 200x5 - 200x6 - 200x7 - 200x8 - 200x9 - 200x10 - 200x11 - 200x15 - 200x16 - 200x17 - 100x12 - 100x13 - 100x14 (2 Pts) Sujet à:$$

$$x1 + x2 + x3 + x4 \le 20000$$
 (0.25 Pt)

$$50x5 - x1 \ge 0$$
 (0.25 Pt)

$$50x6 - x2 \ge 0$$
 (0.25 Pt)

$$50x7 - x3 \ge 0$$
 (0.25 Pt)

$$50x8 - x4 \ge 0$$
 (0.25 Pt)

$$3x9 - x12 \ge 0$$
 (0.25 Pt)

$$3x10 - x13 \ge 0$$
 (0.25 Pt)

$$3x11 - x14 \ge 0$$
 (0.25 Pt)

$$x5 + x9 \le 40$$
 (0.25 Pt)

$$40 + x12 - x6 - x10 - x15 = 0$$
 (0.25 Pt)

$$40 + x12 + x13 - x7 - x14 - x16 = 0$$
 (0.25 Pt)

$$40 + x12 + x13 + x14 - x8 - x17 = 0$$
 (0.25 Pt)

$$x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17 \ge 0$$

Exercice 2

- 1. **Type**: Programme d'optimisation non linéaire (PNL) (0.5 Pt)
- 2. Nombre de variables de décision (NBVD) = n+m (0.5 Pt)
- 3. Nombre de contraintes fonctionnelles (NBCF) = 2m (0.5 Pt)
- 4. **Degré de liberté** (DL) = n+m-m = n (0.5 Pt)
- 5. PL équivalent : (1 Pt)

$$\max Z = \sum_{i=1}^{n} c_i x_i + \sum_{i=n+1}^{n+m} \log|c_i| x_i$$

Suiet à :

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_j + x_{n+i} = b_{i1}, i = 1, 2, ..., m$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} x_j - x_{n+i} \ge b_{i2}, i = 1, 2, ..., m$$

$$x_j \ge 0, \qquad j = 1, 2, ..., n$$

$$x_i \in \mathbb{R}, \qquad j = n + 1, n + 2, ..., n + m$$

6. Mise sous forme standard du PL résultant : (1 Pt)

$$\mathbf{Max} \ \mathbf{Z} = \sum_{i=1}^{n} c_i \ x_i + \sum_{i=n+1}^{n+m} \log|c_i| \ (x_i^+ - x_i^-)$$

Sujet à :

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}x_{j} + x_{n+i}^{+} - x_{n+i}^{-} = b_{i1}, i = 1, 2, ..., m$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} -a_{ij}x_{j} + x_{n+i}^{+} - x_{n+i}^{-} + e_{k} = -b_{i2}, i = 1, 2, ..., m$$

$$x_{j} \ge 0, \qquad j = 1, 2, ..., n,$$

$$x_{n+i}^{+}, x_{n+i}^{-} \ge 0, \qquad i = 1, 2, ..., m$$

$$e_{k} \ge 0, k = 1, 2, ..., m$$

$$\begin{aligned} &\textit{Min W} = \sum_{i=1}^m b_{i1} \, y_i - \sum_{i=1}^m b_{i2} \, y_{n+i} \\ &\textit{Sujet } \, \grave{\mathbf{a}} : \\ &\sum_{k=1}^m \sum_{i=1}^m a_{ij} (y_k - y_{n+k}) \geq c_j, j = 1, 2, ..., n \\ &n \sum_{k=1}^m (y_k - y_{n+k}) = \log |c_i|, i = 1, 2, ..., m \\ &y_k \in \mathbb{R}, \, y_{n+k} \geq 0, \qquad k = 1, 2, ..., m \end{aligned}$$

Exercice 3

<u>1)</u>

- PL n'a aucune solution réalisable \Rightarrow la région réalisable définie par le triangle OAB est vide, i.e., T et S vérifient l'inégalité, Sx1 + Tx2 > 1, par exemple, $S = \frac{k_1}{x_1}$, $T = \frac{k_2}{x_2}$, k_1 , $k_2 \in \mathbb{R}$, $x1 \neq 0$, $x2 \neq 0$, $k_1 + k_2 > 1$. (1 Pt)
- PL a une solution optimale \Rightarrow la région réalisable définie par le triangle OAB est bornée, i.e., $\frac{1}{S} > 0$ et $\frac{1}{T} > 0$, donc S > 0 et T > 0. (1 Pt)
- PL a une fonction objectif non majorée \Rightarrow la région réalisable définie par le triangle OAB est non bornée, i.e., $S \le 0$ ou $T \le 0$. (1 Pt)

2)

Mise du PL sous forme standard

Min
$$z = x1 + x2$$

Sujet à:
 $x1 - x2 + x3 = 1$
 $-x1 + 2x2 + x4 = 2$
 $x1, x2, x3, x4 \ge 0$

	Tal	Tableau 0 (01 Pt)							
		c_i	1	1	0	0	Solution de		
x_i : var sortante	C _B	Variable de base	x_1	x_2	x_3	x_4	base $X_B = B^{-1}.b$	Quotients	
	1	x_1	1	0	2	1	4	4/2=2	←Min
	1	x_2	0	1	1	1	3	3/1=3	
		C_i - Z_i	0	0	-3	-2	Z=7		

Tableau 1 (1 Pt)								
	c_i	1 1		0	0	Colution do		
C _B	Variable de base	x_1	x_2	x_3	<i>X</i> ₄	Solution de base $X_B = B^{-1}.b$	Quotients	
0	x_3	1/2	0	1	1/2	2	2÷1/2=4	
1	x_2	-1/2	1	0	1/2	1	1÷1/2=2	← I
	C_i - Z_i	3/2	0	0	-1/2	Z=1		
		•		•	Î		•	
				x ₄ : var	iable er	ntrante		

Tableau 2 (1 Pt) 0 c_i Solution de base Variable $\mathbf{C}_{\mathbf{B}}$ $X_B=B^{-1}.b$ x_1 x_2 x_3 x_4 de base 1 -1 1 0 x_3 2 2 0 x_4 -1

0

La solution optimale est $X^* = (x1^*, x2^*)^T = (0,0)^T, Z^* = 0.$

Exercice 4

x₂: var sortante

Tableau (1 Pt)

0

0

 C_j - Z_j

	Chantier A	Chantier B	Chantier C	Fournitures
Usine 1	4	3	8	700
Usine 2	7	5	9	500
Usine 3	4	5	5	300
Demandes	500	500	500	Total: 1500

0

Z=0

Solution Initiale réalisable avec la méthode Nord-Ouest (1 Pt)

	Chantier A	Chantier B	Chantier C	Fournitures
Usine 1	500	200		700
Usine 2		300	200	500
Usine 3			300	300
Demandes	500	500	500	Total: 1500

Donc, la solution initiale réalisable est x11=500, x12=200, x22=300, x23=200, x33=300, x13=x21=x31=x32=0

Le coût correspondant à cette solution est $Z = 4 \times 500 + 3 \times 200 + 5 \times 300 + 200 \times 9 =$ 7400

Solution optimale avec la méthode du simplexe

• On calcule les coûts duaux : $c_{ij} = u_i + v_j$

$$u1 + v1 = 4 \Rightarrow v1 = 4$$

$$u1 + v2 = 3 \Rightarrow v2 = 3$$

$$u2 + v2 = 5 \Rightarrow u2 = 2$$

$$u2 + v3 = 9 \Rightarrow v3 = 7$$

$$u3 + v3 = 5 \Rightarrow u3 = -2$$

o Pour toutes les cases hors-bases $\{(1,3),(2,1),(3,1),(3,2)\}$, on évalue la quantité : $\Delta z = c_{ij}$ $u_i - v_i$

$$\Delta z_{13} = c_{13} - u_1 - v_3 = 8 - 0 - 7 = 1$$

 $\Delta z_{21} = c_{21} - u_2 - v_1 = 7 - 2 - 4 = 1$

$$\Delta z_{31} = c_{31} - u_3 - v_1 = 4 - (-2) - 4 = 2$$

$$\Delta z_{32} = c_{32} - u_3 - v_2 = 5 - (-2) - 3 = 4$$

$$\circ \quad \text{Tous les } \Delta z \ge 0 \Rightarrow \text{La solution initiale est optimale}$$

	Chantier A	Chantier B	Chantier C	Fournitures	u_i
Usine 1	500 4	200	(1)	700	u1=0
Usine 2	(1) 7	300 5	200 9	500	<i>u2=2</i>
Usine 3	(2) 4	(4) 5	300 5	300	<i>u3=-2</i>
Demandes	500	500	500	Total: 1500	
v_i	v1=4	v2=3	<i>v3</i> =7		

(2 Pts)