Mathematical Preliminaries

Dr. Anubha Gupta Deptt. of ECE, IIIT Delhi

Group

A group (G, *) consists of the following:

- (i) A set G
- (ii) A rule or binary operation '*' (set G is closed under this operation) which associates with each pair of elements x and y in G, an element (x * y) in G such that
 - a) This binary operation is associative:

i.e.,
$$x *(y * z) = (x * y) * z$$
 $\forall x, y, z \in G$

$$\forall x, y, z \in G$$

b) There exists an element 'e' called identity of group G $\forall x \in G$ s.t. e * x = x * e = x

c) For every $x \in G$, there exists an element x^{-1} such that

$$x * x^{-1} = e = x^{-1} * x$$

$$\forall x \in G$$

d) If $x * y=y * x \quad \forall x, y \in G$

Commutative group or Abelian group

Examples:

- 1. Set of *n* x *n* invertible matrices with matrix multiplication
- 2. Set of periodic signals with time period T under binary operation '*' = '+'

Field

Group : A field $(F, +, \cdot)$ consists of the following:

- (i) A set F
- (ii) Two binary operations '+' and '.' such that
 - a) (F, +) is an Abelian group
 - b) Define $F^*=F-\{0\}$.

 (F^*, \cdot) is an Abelian group

(c) The multiplication operation distributes over addition:

Left distributive:

$$x.(y+z)=x.y+x.z$$

$$\forall x, y, z \in F$$

Right distributive:

$$(x+y)$$
. $z=x.z+y.z$

$$\forall x, y, z \in F$$

Examples: Check for F = R; F = C; F = Z; F = Q

Vector Space

A set V together with a map

'+':
$$V \times V \longrightarrow V$$

$$(v_1, v_2) \longrightarrow (v_1 + v_2) \text{ called vector addition}$$
 and

'.': $F \times V \rightarrow V$ $(\alpha, v) \rightarrow (\alpha . v)$ called scalar multiplication

is called a *F*-vector space or vector space over the field *F* if the following are satisfied:

(i) (V, +) is an Abelian group

(ii)
$$\alpha \cdot (v_1 + v_2) = \alpha \cdot v_1 + \alpha \cdot v_2$$
 $\forall v_1, v_2 \in V \text{ and } \forall \alpha \in F$
(iii) $(\alpha_1 + \alpha_2) \cdot v = \alpha_1 \cdot v + \alpha_2 \cdot v$ $\forall v \in V \text{ and } \forall \alpha_1, \alpha_2 \in F$

(iv)
$$(\alpha\beta)$$
 . $v = \alpha(\beta v) = \beta(\alpha v)$

 $\forall v \in V \text{ and } \forall \alpha, \beta \in F$

(v)
$$1.v = v$$

 $\forall v \in V$

(vi)
$$\alpha . \theta = \theta$$

 $\forall \alpha \in F$

 $\forall v \in V$

(viii)If $v \neq \boldsymbol{\theta}$, then $\alpha . v = \boldsymbol{\theta}$ implies that $\alpha = 0$.

(ix) If V is a vector space over a field F, then any linear combination of vectors lying in V (with scalars from F) would again lie in V.

Examples:

- 1. Set of periodic signals with the same time period T over the field F = R form a vector space
- 2. Set of finite energy signals over the field F=R form a vector space
- 3. $V_n(F) = n$ -dimensional vector space over the field F

F = R or C

$$= \left\{ \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \right. \quad x_i \in F$$

Metric Space

Definition: Metric is a map

$$d: X \times X \rightarrow R$$

that satisfies the following:

(i)
$$d(x, y) \ge 0$$
 and $d(x, y) = 0$ iff $x = y$ $\forall x, y \in X$
(ii) $d(x, y) = d(y, x)$ $\forall x, y \in X$
(iii) $d(x, y) \le d(x, z) + d(z, y)$ $\forall x, y, z \in X$

This map is called a <u>metric</u> and a set equipped with this map is called a <u>metric space</u> and is denoted by (X, d).

Note that metric is a generalization of the notion of distance.

Examples ????

Norm

Definition:

Let V be a F-vector space. A map

 $\|\cdot\|: V \to R$ is called a <u>norm</u> if it satisfies the following:

(i)
$$||v|| \ge 0$$
 and $||v|| = 0$ iff $v = 0$ $\forall v \in V$

(ii)
$$\|\alpha v\| = \|\alpha\| \|v\|$$
 $\forall v \in V \text{ and } \forall \alpha \in F$

(iii)
$$\|v_1 + v_2\| \le \|v_1\| + \|v_2\| \quad \forall v_1, v_2 \in V$$

A vector space equipped with a norm is called a **normed vector space**.

Example: Let V be a F-vector space equipped with a norm. Prove that $d(v_1, v_2) = \|v_1 - v_2\|$ is a proper metric.

Inner Product

Definition:

Let V be a F-vector space. A map

$$<,>: V \times V \rightarrow F$$

is called an inner product if it satisfies the following:

(i)
$$\langle v, v \rangle \ge 0$$
 and $\langle v, v \rangle = 0$ iff $v=0$ $\forall v \in V$

$$(ii) < v_1, v_2 > = < v_2, v_1 > *$$
 $\forall v_1, v_2 \in V$

- "*' denotes complex conjugate
- (iii) It is linear in the first coordinate.

$$<\alpha_1 v_1 + \alpha_2 v_2, w> = \alpha_1 < v_1, w> + \alpha_2 < v_2, w>$$

 $\forall v_1, v_2, w \in V \text{ and } \forall \alpha_1, \alpha_2 \in F$

(iv) It is conjugate linear in the second coordinate.

$$< v, \alpha_1 w_1 + \alpha_2 w_2 > = \alpha_1 * < v, w_1 > + \alpha_2 * < v, w_2 >$$

 $\forall w_1, w_2, v \in V \text{ and } \forall \alpha_1, \alpha_2 \in F$

Example 1: Define $||v|| = \langle v, v \rangle^{1/2}$. If it is an inner product space, we can define norm and then define metric.

Example 2: Consider $V_n(F)$ where vectors are *n*-tuples of

scalars, i.e.,
$$\mathbf{x} \in V$$
 and $x_i \in F$

Define inner product as: $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^{n} x_i \overline{y}_i$
 $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$

Show that it satisfies all the properties of an inner product.

Linear Independence of Vectors

A set of vectors $\{v_1, v_2, \dots, v_k\}$ in $V_n(F)$ is called linearly independent (LI) if $\sum_{i=1}^k \alpha_i v_i = 0$ implies $\alpha_i = 0$ for all i.

Definition: The number of maximal LI vectors in a vector space V is called the <u>dimension</u> of the vector space and the maximal LI vectors is called a <u>basis</u> for V.

If $\{e_1, e_2, ..., e_n\}$ is a basis for $V_n(F)$, then for any $v \in V$ $v = \sum_{i=1}^{n} \alpha_i e_i \qquad \text{for some } \alpha_i \in F$

Orthonormal Basis

Definition: A set of vectors $\{v_1, v_2,, v_n\}$ belonging to an inner product space V is called <u>orthonormal</u> if

(i)
$$v_i \neq 0$$
 $\forall i$.
(ii) $< v_i, v_j > = 0$ $\forall i \neq j$
(iii) $< v_i, v_j > = 1$ $\forall i = j$

We can also write $\langle v_i, v_j \rangle = \delta_{ij}$.

References

• Linear Algebra by Hoffman and Kunze