Date: 04/29/20

Assignment: Section 4.4 Homework

1. Find the vector \mathbf{x} determined by the given coordinate vector $[\mathbf{x}]_B$ and the given basis B.

$$B = \left\{ \begin{bmatrix} -3 \\ 2 \end{bmatrix}, \begin{bmatrix} 5 \\ -4 \end{bmatrix} \right\}, [\mathbf{x}]_B = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} & & 13 & & \\ & & -12 & & \end{bmatrix}$$

(Simplify your answers.)

2. Find the vector \mathbf{x} determined by the given coordinate vector $[\mathbf{x}]_B$ and the given basis B.

$$B = \left\{ \begin{bmatrix} -5 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -4 \\ -2 \end{bmatrix} \right\}, \begin{bmatrix} \mathbf{x} \end{bmatrix}_B = \begin{bmatrix} 2 \\ 1 \\ -3 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} -15 \\ 14 \\ 3 \end{bmatrix}$$

(Simplify your answers.)

3. Find the vector \mathbf{x} determined by the given coordinate vector $[\mathbf{x}]_B$ and the given basis B.

$$B = \left\{ \begin{bmatrix} -2\\1\\5 \end{bmatrix}, \begin{bmatrix} 2\\0\\-1 \end{bmatrix}, \begin{bmatrix} 5\\-2\\-5 \end{bmatrix} \right\}, [\mathbf{x}]_B = \begin{bmatrix} 3\\-2\\-3 \end{bmatrix}$$

(Simplify your answers.)

4. Find the coordinate vector $[\mathbf{x}]_B$ of \mathbf{x} relative to the given basis $B = \{\mathbf{b}_1, \mathbf{b}_2\}$.

$$\mathbf{b}_1 = \begin{bmatrix} -4 \\ -5 \end{bmatrix}, \ \mathbf{b}_2 = \begin{bmatrix} -2 \\ -1 \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$$

$$[\mathbf{x}]_B = \begin{bmatrix} & -2 & \\ & & 2 & \end{bmatrix}$$

(Simplify your answers.)

5. Find the coordinate vector $[\mathbf{x}]_B$ of \mathbf{x} relative to the given basis $B = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$.

$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ -1 \\ -4 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 4 \\ -3 \\ -16 \end{bmatrix}, \mathbf{b}_3 = \begin{bmatrix} 2 \\ -2 \\ 6 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} 7 \\ -6 \\ 0 \end{bmatrix}$$

$$[\mathbf{x}]_B = \begin{bmatrix} & & -1 \\ & & 1 \\ & & 2 \end{bmatrix}$$

(Simplify your answers.)

6. Find the coordinate vector $[\mathbf{x}]_B$ of \mathbf{x} relative to the given basis $B = \{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$.

$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} 2 \\ -2 \\ 6 \end{bmatrix}, \mathbf{b}_3 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} -4 \\ 2 \\ -10 \end{bmatrix}$$

$$[\mathbf{x}]_B = \begin{bmatrix} & -1 & \\ & -1 & \\ & -1 & \end{bmatrix}$$

(Simplify your answers.)

7. Find the change-of-coordinates matrix from ${\it B}$ to the standard basis in \mathbb{R}^2 .

$$B = \left\{ \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \begin{bmatrix} -2 \\ 4 \end{bmatrix} \right\}$$

$$P_B = \begin{bmatrix} 2 & -2 \\ 5 & 4 \end{bmatrix}$$

8. Use an inverse matrix to find $[\mathbf{x}]_B$ for the given \mathbf{x} and B.

$$B = \left\{ \begin{bmatrix} 3 \\ -5 \end{bmatrix}, \begin{bmatrix} -4 \\ 7 \end{bmatrix} \right\}, \mathbf{x} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -13 \\ -9 \end{bmatrix}$$

9. The set $B = \{1 + t^2, 2t - t^2, 1 + t + t^2\}$ is a basis for \mathbb{P}_2 . Find the coordinate vector of $\mathbf{p}(t) = -5 + 8t - 10t^2$ relative to B.

$$[\mathbf{p}]_B = \begin{bmatrix} -3 \\ 5 \\ -2 \end{bmatrix}$$

(Simplify your answers.)

10.	Mark each statement true or false. Justify each answer. Unless otherwise stated, B is a basis for a vector space V. a. If B is the standard basis for \mathbb{R}^n , then the B-coordinate vector of an \mathbf{x} in \mathbb{R}^n is \mathbf{x} itself. b. The correspondence $[\mathbf{x}]_{B} \mapsto \mathbf{x}$ is called the coordinate mapping.
	c. In some cases, a plane in \mathbb{R}^3 can be isomorphic to \mathbb{R}^2 .
	a. If B is the standard basis for \mathbb{R}^n , then the B-coordinate vector of an x in \mathbb{R}^n is x itself. Choose the correct answer below.
	\bigcirc A. The statement is true. The standard basis consists of the columns of the n×n identity matrix. So $[\mathbf{x}]_B = \mathbf{e}_1 + \cdots + \mathbf{e}_n$
	B. The statement is true. The standard basis consists of the columns of the $n \times n$ identity matrix. So $[\mathbf{x}]_B = x_1 \mathbf{e}_1 + \cdots$
	\bigcirc C. The statement is false. If B is the standard basis for \mathbb{R}^n , then the B-coordinate vector is the inverse of x .
	\bigcirc D. The statement is false. If B is the standard basis for \mathbb{R}^n , then the B-coordinate vector does not exist.
	b. The correspondence $[\mathbf{x}]_{B} \mapsto \mathbf{x}$ is called the coordinate mapping. Choose the correct answer below.
	$\textcircled{*}$ A. The statement is false. By the definition, the correspondence $\mathbf{x} \mapsto [\mathbf{x}]_{B}$ is called the coordinate mapping.
	○ B. The statement is true because B is linearly dependent.
	\bigcirc C. The statement is true. By the definition, the correspondence $[\mathbf{x}]_{B} \mapsto \mathbf{x}$ is called the coordinate mapping.
	D. The statement is false because B is linearly dependent.
	c. In some cases, a plane in \mathbb{R}^3 can be isomorphic to \mathbb{R}^2 . Choose the correct answer below.
	○ A. The statement is false. A plane cannot be isomorphic to a line.
	○ B. The statement is false. A space cannot be isomorphic to a plane.
	$^{\circ}$ C. The statement is true. A plane in \mathbb{R}^3 that passes through the origin is isomorphic to \mathbb{R}^2 .
	\bigcirc D. The statement is true. A plane in \mathbb{R}^3 that passes through any point except the origin is isomorphic to \mathbb{R}^2 .
	The vectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 3 \\ -8 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$ span \mathbb{R}^2 but do not form a basis. Find two different ways to express
_	$\begin{bmatrix} -10 \\ 28 \end{bmatrix}$ as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 .
	Write $\begin{bmatrix} -10\\28 \end{bmatrix}$ as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 when the coefficient of \mathbf{v}_3 is 0.
	$\begin{bmatrix} -10 \\ 28 \end{bmatrix} = \begin{pmatrix} 2 \\ \end{pmatrix} \mathbf{v}_1 + \begin{pmatrix} -4 \\ \end{pmatrix} \mathbf{v}_2$
	Write $\begin{bmatrix} -10\\28 \end{bmatrix}$ as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 when the coefficient of \mathbf{v}_3 is 1.
	$\begin{bmatrix} -10 \\ 28 \end{bmatrix} = \begin{pmatrix} 7 \\ \end{pmatrix} \mathbf{v}_1 + \begin{pmatrix} -5 \\ \end{pmatrix} \mathbf{v}_2 + \mathbf{v}_3$

_

Let B	= $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Which of the following statements are true? Select all that apply.
□ ✓ Δ	. By the Unique Representation Theorem, for each ${\bf x}$ in V, there exists a unique set of scalars ${\bf c}_1, \dots, {\bf c}_n$ such that ${\bf x}$
	By the definition of a basis, $\mathbf{b}_1, \dots, \mathbf{b}_n$ are in V.
	By the definition of a basis, $\mathbf{b}_1, \dots, \mathbf{b}_n$ are linearly dependent.
D.	By the definition of an isomorphism, V is isomorphic to \mathbb{R}^{n+1} .
	$\mathbf{b}_1, \dots, \mathbf{b}_n$ are in V and since for each \mathbf{x} in V, there exists a unique set of scalars $\mathbf{c}_1, \dots, \mathbf{c}_n$ such that $\mathbf{b}_1 + \cdot \cdot \cdot + \mathbf{c}_n \mathbf{b}_n$, what is true of each \mathbf{b}_k for $k = 1, \dots, n$?
(A.	. $\mathbf{b}_{k} = c_{1}\mathbf{b}_{1} + \cdot \cdot \cdot + c_{k-1}\mathbf{b}_{k-1} + c_{k+1}\mathbf{b}_{k+1} + \cdot \cdot \cdot + c_{n}\mathbf{b}_{n}$ for some unique set of scalars $c_{1}, \dots, c_{k-1}, c_{k+1}, \dots, c_{k+1}$
() В.	$. \mathbf{b}_{k} = \mathbf{b}_{1} + \bullet \bullet \bullet + \mathbf{b}_{k}$
ℰ C.	. $\mathbf{b}_k = c_1 \mathbf{b}_1 + \cdot \cdot \cdot + c_n \mathbf{b}_n$ for some unique set of scalars c_1, \dots, c_n
	ite the expression for \mathbf{b}_k given that the scalars $\mathbf{c}_1, \dots, \mathbf{c}_n$ are unique by the Unique Representation Theorem. se the correct answer below.

 $\mathbf{A.} \quad \mathbf{b_k} = \mathbf{c_1} \mathbf{b_1} + \cdots + \mathbf{c_n} \mathbf{b_n} = \mathbf{c_1} \mathbf{b_1} + \cdots + \mathbf{c_n} \mathbf{b_n}$

B.
$$\mathbf{b}_{k} = c_{1}\mathbf{b}_{1} + \cdot \cdot \cdot + c_{n}\mathbf{b}_{n} = 1 \cdot \mathbf{b}_{1} + \cdot \cdot \cdot + 0 \cdot \mathbf{b}_{k} + \cdot \cdot \cdot + 1 \cdot \mathbf{b}_{n}$$

C.
$$\mathbf{b}_{k} = c_{1}\mathbf{b}_{1} + \cdot \cdot \cdot + c_{n}\mathbf{b}_{n} = 0 \cdot \mathbf{b}_{1} + \cdot \cdot \cdot + 1 \cdot \mathbf{b}_{k} + \cdot \cdot \cdot + 0 \cdot \mathbf{b}_{n}$$

Thus, the coordinate vector $[\mathbf{b}_k]_B$ of \mathbf{b}_k is \mathbf{e}_k , or the kth column of the n×n identity matrix.

13. Suppose $\{\mathbf{v}_1, \dots, \mathbf{v}_5\}$ is a linearly dependent spanning set for a vector space V. Show that each \mathbf{w} in V can be expressed in more than one way as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_5$. [Hint: Let $\mathbf{w} = \mathbf{k}_1 \mathbf{v}_1 + \cdots + \mathbf{k}_5 \mathbf{v}_5$ be an arbitrary vector in V. Use the linear dependence of $\{\mathbf{v}_1, \dots, \mathbf{v}_5\}$ to produce another representation of \mathbf{w} as a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_5$.]

Let $\mathbf{w} = \mathbf{k}_1 \mathbf{v}_1 + \mathbf{v}_1 + \mathbf{v}_5 \mathbf{v}_5$ be an arbitrary vector in V. Since the set $\{\mathbf{v}_1, \dots, \mathbf{v}_5\}$ is linearly dependent, there exist scalars $\mathbf{c}_1, \dots, \mathbf{c}_5$, not all zero, such that $\mathbf{0} = \mathbf{c}_1 \mathbf{v}_1 + \mathbf{v}_5 + \mathbf{c}_5 \mathbf{v}_5$.

Add $\mathbf{w} = k_1 \mathbf{v}_1 + \cdots + k_5 \mathbf{v}_5$ and $\mathbf{0} = c_1 \mathbf{v}_1 + \cdots + c_5 \mathbf{v}_5$. Choose the correct answer below.

- **A.** $\mathbf{w} + \mathbf{0} = (k_1 + c_1) \mathbf{v}_1 + \cdots + (k_5 + c_5) \mathbf{v}_5$
- **B.** $\mathbf{w} + \mathbf{0} = (k_5 + c_1) \mathbf{v}_1 + \cdots + (k_1 + c_5) \mathbf{v}_5$
- **C.** $\mathbf{w} + \mathbf{0} = (k_5 + c_5) \mathbf{v}_1 + \cdots + (k_1 + c_1) \mathbf{v}_5$
- **D.** $\mathbf{w} + \mathbf{0} = (k_1 + c_5)\mathbf{v}_1 + \cdots + (k_5 + c_1)\mathbf{v}_5$

What conclusion can be drawn from the statements above?

- \bigcirc **A.** None of the weights in $\mathbf{w} + \mathbf{0} = \mathbf{w} = (k_1 + c_1)\mathbf{v}_1 + \cdots + (k_5 + c_5)\mathbf{v}_5$ are equal to the corresponding weights in \mathbf{w}
- **B.** All of the weights in $\mathbf{w} + \mathbf{0} = \mathbf{w} = (k_1 + c_1)\mathbf{v}_1 + \cdots + (k_5 + c_5)\mathbf{v}_5$ are equal to the corresponding weights in $\mathbf{w} = \mathbf{k}$
- **C.** At least one of the weights in $\mathbf{w} + \mathbf{0} = \mathbf{w} = (k_1 + c_1)\mathbf{v}_1 + \cdots + (k_5 + c_5)\mathbf{v}_5$ differs from the corresponding weight

Thus, each ${\bf w}$ in V can be expressed in more than one way as a linear combination of ${\bf v}_1, \dots, {\bf v}_5$.

14.	If B is the standard basis of the space \mathbb{P}_3 of polynomials, then let $B = \{1, t, t^2, t^3\}$. Use coordinate vectors to test the linear independence of the set of polynomials below. Explain your work.
	$1 - 8t^2 - t^3$, $t + 3t^3$, $1 + t - 8t^2$
	Write the coordinate vector for the polynomial $1 - 8t^2 - t^3$.
	(
	Write the coordinate vector for the polynomial t + 3t ³ .
	(
	Write the coordinate vector for the polynomial $1 + t - 8t^2$.
	(

To test the linear independence of the set of polynomials, row reduce the matrix which is formed by making each coordinate vector a column of the matrix. If possible, write the matrix in reduced echelon form.

Are the polynomials linearly independent?

- O A. Since the matrix has a pivot in each column, its columns (and thus the given polynomials) are linearly independent
- OB. Since the matrix has a pivot in each column, its columns (and thus the given polynomials) are not linearly independ
- Oc. Since the matrix does not have a pivot in each column, its columns (and thus the given polynomials) are linearly in
- O. Since the matrix does not have a pivot in each column, its columns (and thus the given polynomials) are not linear
- 15. Let B be the standard basis of the space \mathbb{P}_2 of polynomials. Use coordinate vectors to test whether the following set of polynomials span \mathbb{P}_2 . Justify your conclusion.

$$1 - 3t + 2t^2$$
, $-4 + 9t - 2t^2$, $-1 + 4t^2$, $+3t - 6t^2$

Does the set of polynomials span \mathbb{P}_2 ?

- A. No; since the matrix whose columns are the B-coordinate vectors of each polynomial does not have a pivot positic
- B. No; since the matrix whose columns are the *B*-coordinate vectors of each polynomial does not have a pivot positic
- C. Yes; since the matrix whose columns are the *B*-coordinate vectors of each polynomial has a pivot position in each
- O. Yes; since the matrix whose columns are the *B*-coordinate vectors of each polynomial has a pivot position in each