PSALTer results panel

 $0^+\mathcal{H}^{\parallel}$ 0^+f^{\parallel} 0^+f^{\perp} $0^-\mathcal{H}^{\parallel}$

 $S = \iiint \left(\frac{1}{6}\left(-4t_{3}^{2}\mathcal{A}_{\alpha}^{\alpha_{i}}\right) \mathcal{A}_{\beta}^{\theta_{i}} + 6\mathcal{A}_{\alpha}^{\alpha_{i}} \mathcal{A}_{\alpha\beta}^{\theta_{i}} + 8t_{3}^{2}\mathcal{A}_{\alpha\beta}^{\theta_{i}} \partial_{\beta}f^{\alpha_{i}} - 6r_{3}^{2}\partial_{\beta}\mathcal{A}_{\beta\beta}^{\theta_{i}} \partial_{\beta}f^{\alpha_{i}} - 8t_{3}^{2}\mathcal{A}_{\beta\beta}^{\theta_{i}} \partial_{\beta}f^{\alpha_{i}} - 4t_{3}^{2}\partial_{\beta}f^{\alpha_{i}} \partial_{\beta}f^{\alpha_{i}} - 4r_{3}^{2}\partial_{\beta}\mathcal{A}_{\alpha\beta}^{\theta_{i}} \partial_{\beta}f^{\alpha_{i}} - 4r_{2}^{2}\partial_{\beta}\mathcal{A}_{\alpha\beta_{i}} \partial_{\beta}f^{\alpha_{i}} - 4r_{2}^{2}\partial_{\beta}f^{\alpha_{i}} \partial_{$

Wave operator

${}^{0,^{+}}\mathcal{A}^{\parallel}$ †	t. 3	-i √2 k	t. 0	0										
0.+ <i>f</i> †	$i\sqrt{2} kt$.	$2k^2t$.	0	0										
$0.^{+}f^{\perp}$ †	0	0	0	0										
^{0.} Æ [∥] †	0	0	0	$k^2 r_{.} + t_{.}$	$^{1^+}_{\cdot}\mathcal{H}^{\parallel}_{~lphaeta}$	$^{1^+}\mathcal{F}^{\scriptscriptstyle\perp}_{lphaeta}$	$1.^+f^{\parallel}_{\alpha\beta}$	${}^1\mathcal{H}^{\parallel}{}_{lpha}$	$^{1}\mathcal{H}_{\ lpha}^{\perp}$	$^{1}f^{\parallel}_{\alpha}$	$\frac{1}{2}f^{\perp}_{\alpha}$			
					$\frac{1}{6} (9 k^2 r_1 + 4 t_2)$				0	0	0			
				$\overset{1}{\cdot}^{+}\mathcal{A}^{\scriptscriptstyle \perp} \dagger^{lphaeta}$	$\frac{\sqrt{2} t_{2}}{3}$	t. 2 3	$\frac{ikt.}{\frac{2}{3}}$	0	0	0	0			
					$-\frac{1}{3}i\sqrt{2}kt.$	$-\frac{1}{3}ikt$.		0	0	0	0			
				$^{1}\mathcal{A}^{\parallel}\dagger^{lpha}$	0	0	0	$\frac{2t}{3}$	$-\frac{\sqrt{2}\ t}{3}$	0	$-\frac{2}{3}ikt$.			
				$^{1}\mathcal{F}^{\perp}\dagger^{\alpha}$	0	0	0	$-\frac{\sqrt{2}\ t_{\frac{3}{3}}}{3}$	t. 3 3	0	$\frac{1}{3}i\sqrt{2}kt.$			
				$1 f^{\parallel} + \alpha$	0	0	0	0	0	0	0			
				$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	$\frac{2ikt.}{3}$	$-\frac{1}{3}i\sqrt{2}kt.$	0	$\frac{2k^2t}{3}$	$^{2^{+}}\mathcal{A}^{\parallel}_{\alpha\beta}$	$2^+ f^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}\mathcal{A}^{\parallel}$ † $^{\alpha\beta}$	$-\frac{3k^2r}{2}$	0	0
											$\overset{2^+}{\cdot}f^{\parallel} \dagger^{\alpha\beta}$	0	0	0
											$2^{-}\mathcal{A}^{\parallel} \dagger^{\alpha\beta\chi}$	0	0	0

Saturated propagator

	σ^{\parallel}	$^{\circ}$. $^{\circ}$	$\cdot \cdot \tau^{\perp}$	$^{\circ}$. $\sigma^{\scriptscriptstyle{\parallel}}$										
^{0,+} σ [∥] †	$\frac{1}{(1+2k^2)^2t.}_{3}$	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t}.$	0	0										
0.+ τ∥ †	$\frac{i \sqrt{2} k}{(1+2 k^2)^2 t}$	$\frac{2 k^2}{(1+2 k^2)^2 t.}$	0	0										
0.+ τ +	0	0	0	0										
⁰ σ †	0	0	0	$\frac{1}{k^2 r. + t.}$	$\overset{1,^{+}}{\cdot}\sigma^{\parallel}{}_{\alpha\beta}$	$\frac{1}{\cdot}^{+}\sigma^{\perp}_{\alpha\beta}$	$1.^+\tau^{\parallel}{}_{\alpha\beta}$	$^{1}\sigma^{\parallel}{}_{lpha}$	$\frac{1}{2}\sigma_{\alpha}^{\perp}$	$1^{-}\tau^{\parallel}_{\alpha}$	$1 \tau_{\alpha}$			
				$^{1^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{2}{3k^2r.}$	$-\frac{2\sqrt{2}}{3k^2r_1+3k^4r_3}$	$-\frac{2 i \sqrt{2}}{3 k r. + 3 k^3 r.}$	0	0	0	0			
				$1.^+\sigma^{\perp}$ †	$-\frac{2\sqrt{2}}{3k^2r.+3k^4r.}_{3}$	$\frac{9 k^2 r. + 4 t.}{3 2}$ $\frac{3 (k+k^3)^2 r. t.}{3 2}$	3 2		0	0	0			
				$1.^+ \tau^{\parallel} \uparrow^{\alpha\beta}$	$\frac{2i\sqrt{2}}{3kr.+3k^3r.}$	$-\frac{i(9k^2r.+4t.)}{3k(1+k^2)^2r.t.}$	$\frac{9 k^2 r. + 4 t.}{3 2}$ $3 (1+k^2)^2 r. t.$ 3 2	0	0	0	0			
				$\frac{1}{2}\sigma^{\parallel} \uparrow^{\alpha}$	0	0	0	$\frac{6}{(3+2k^2)^2t.}$	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_{.3}}$	0	$-\frac{6 i k}{(3+2 k^2)^2 t}$			
				$\frac{1}{2}\sigma^{\perp}\uparrow^{\alpha}$		0		$-\frac{3\sqrt{2}}{(3+2k^2)^2t.}$	$\frac{3}{(3+2k^2)^2t_3}$	0	$\frac{3i\sqrt{2}k}{(3+2k^2)^2t_{.3}}$			
				$1^{-}\tau^{\parallel} + \alpha$	0	0			0		0			
				$1 \tau^{\perp} \tau^{\alpha}$	0	0	0	$\frac{6ik}{(3+2k^2)^2t}.$	$-\frac{3i\sqrt{2}k}{(3+2k^2)^2t}$	0	$\frac{6 k^2}{(3+2 k^2)^2 t}.$	2. ⁺ σ αβ	2 . τ αβ	$2^{-}\sigma^{\parallel}_{\alpha\beta\chi}$
											$2^+\sigma^{\parallel} + \alpha^{\alpha\beta}$	3	0	0
											$^{2^+}\tau^{\parallel}\dagger^{\alpha\beta}$	0	0	0
											$e^{-\sigma^{\parallel}}$	0	0	0

Source constraints

Spin-parity form	Covariant form	Multiplicities			
0. r == 0	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1			
$-2 i k^{0^{+}} \sigma^{\parallel} + 0^{+} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2 \partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1			
$-i k \cdot 1 \cdot \sigma^{\parallel^{\alpha}} + 1 \cdot \tau^{\perp^{\alpha}} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta}_{\ \beta}^{\ \chi}+\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\sigma^{\beta\alpha}_{\ \beta}$	3			
$1 \cdot \tau^{\parallel \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3			
$\frac{1 \cdot \sigma^{\parallel^{\alpha}} + 2 \cdot 1 \cdot \sigma^{\perp^{\alpha}} == 0}{1 \cdot \sigma^{\parallel^{\alpha}} + 2 \cdot 1 \cdot \sigma^{\perp^{\alpha}} == 0}$	$\partial_{\chi}\partial^{\alpha}\sigma^{\beta}_{\ \beta}{}^{\chi} + \partial_{\chi}\partial^{\chi}\sigma^{\beta\alpha}_{\ \beta} = 3 \partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3			
$\overline{i k 1^+_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^+_{\cdot} \tau^{\parallel}^{\alpha\beta}} == 0$	$\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta} + 2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3			
$\frac{2 \cdot \sigma^{\parallel^{\alpha\beta\chi}}}{2 \cdot \sigma^{\parallel^{\alpha\beta\chi}}} == 0$	$3\partial_{\epsilon}\partial_{\delta}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon} + 3\partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\alpha}\sigma^{\delta\beta}_{\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\alpha\chi\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\chi\alpha\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\lambda}\sigma^{\alpha\beta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\partial_{\epsilon}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial_{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^{\mu}\partial^$	5			
	$ 3 \ \eta^{\beta\chi} \ \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\alpha} \sigma^{\delta}_{\ \ \delta} + 3 \ \eta^{\alpha\chi} \ \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\delta\beta\varepsilon} + 3 \ \eta^{\beta\chi} \ \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\varepsilon} \sigma^{\delta\alpha}_{\ \ \delta} = \\ 3 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta\alpha\varepsilon} + 3 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta\alpha}_{\ \ \delta} + 2 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta\chi\delta} + 4 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi\beta\delta} + \\ 4 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi\beta\delta} + 4 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi\beta\delta} + \\ 4 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi\beta\delta} + 4 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi\beta\delta} + \\ 4 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi\beta\delta} + \\ 4 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi\beta\delta} + \\ 4 \ \partial_{\varepsilon} \partial^{\varepsilon} \partial_{\delta} \partial^{\alpha} \partial^{\gamma} \partial^{\gamma$				
	$2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\delta\beta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\alpha\beta\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\beta\alpha\chi} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\chi\alpha\beta} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\beta}\sigma^{\delta}_{\delta} + 3\eta^{\beta\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial_{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\delta}\sigma^{\delta\alpha}_{\delta}$				
$2^+_{\cdot} \tau^{\parallel^{\alpha\beta}} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} = 0$	5			
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\beta\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}+3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+2\eta^{\alpha\beta}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\tau(\Delta+\mathcal{K})^{\chi}_{\chi}$				
Total expected gauge generators:					

Massive spectrum

Massive particle

Pole residue:	$\left \frac{1}{r_{\cdot}} > 0 \right $
Square mass:	$-\frac{\frac{t}{2}}{\frac{r}{2}} > 0$
Spin:	0
Parity:	Odd

Massless spectrum

(No particles)

Unitarity conditions

r. < 0 && t. > 0