Complexité et Calculabilité : TD4

Ensembles dénombrables et programmes LOOP.

4.1 Ensembles dénombrables

Rappels: Une énumération d'un ensemble infini D est une bijection $f: \mathbb{N} \to D$. On a donc $D = \{f(0), f(1), \ldots\}$ et $f(i) \neq f(j)$ pour tout $i \neq j$. Un ensemble D s'appelle de´nombrable s'il peut être énuméré. Il s'appelle au plus de´nombrable s'il est fini ou dénombrable. On s'intéresse surtout aux énumérations calculables: la bijection $f: \mathbb{N} \to D$ doit être calculable. Un tel ensemble D s'appelle de´nombrable de manière effective.

Exercice 4.1

Montrez que si D est un ensemble dénombrable, alors tout sous-ensemble $D' \subseteq D$ est au plus dénombrable.

Exercice 4.2

- 1. Montrez que $\mathbb Z$ est un ensemble dénombrable.
- 2. Montrez que \mathbb{N}^2 est un ensemble dénombrable.
- 3. Montrez que si D et D' sont deux ensembles dénombrables, alors leur produit cartésien $D \times D'$ est un ensemble dénombrable.
- 4. Déduisez-en que si D est un ensemble dénombrable, alors pour tout k, D^k est un ensemble dénombrable.
- 5. On rappelle que $D^* = \bigcup_{k \in \mathbb{N}} D^k$. Peut-on déduire de ce qui précède que si D est dénombrable, alors D^* est dénombrable?

Exercice 4.3

Montrez que les ensembles suivants sont dénombrables (de manière effective) :

- 1. l'ensemble des matrices avec entrées entières.
- 2. l'ensemble Σ^* des mots sur un alphabet (fini) Σ ,
- 3. l'ensemble des programmes C,
- 4. l'ensemble des arbres orientés,
- 5. l'ensemble des graphes orientés.

Exercice 4.4

On considère l'ensemble des suites infinies d'entiers $e : \mathbb{N} \to \mathbb{N}$. On suppose que cet ensemble est dénombrable, et qu'il est donc de la forme $\{e_1, e_2, \cdots\}$.

- 1. On définit la suite f telle que pour tout $n \in \mathbb{N}$, $f(n) = e_n(n) + 1$. Cette suite est-elle une suite d'entiers?
- 2. f peut-elle être l'un des e_n ?
- 3. Qu'en déduisez-vous sur la dénombrabilité de l'ensemble des suites infinies d'entiers?

- 4. Cela contredit-il ce que vous savez sur la dénombrabilité des suites finies d'entiers?
- 5. Utilisez cela pour déterminer si l'ensemble des nombres réels entre 0 et 1 est dénombrable ou non.

4.2 Programmes LOOP

Les programmes que vous aurez à écrire ici ne manipuleront que des entiers positifs ou nuls. Les seules instructions que vous pouvez utiliser (en-dehors des séquences que vous aurez définies), sont les instructions :

- x:=y+c ou x:=c: où c est une constante (0,1,2...), x et y sont des variables (potentiellement la même)
- x:=y-c: avec les mêmes conditions (attention, ceci calcule la différence tronquée, c'est à dire $\max(y-c,0)$).
- LOOP(x) DOPOD: qui exécute exactement x fois les instructions du programme P (indépendamment des changements sur la variable x).

Exercice 4.5

Écrivez deux programmes LOOP qui calculent respectivement les fonctions suivantes et affectent la valeur calculée à res :

$$isPositive(x) = \begin{cases} 1 & \text{si } x > 0, \\ 0 & \text{si } x = 0. \end{cases}$$
 $isZero(x) = \begin{cases} 1 & \text{si } x = 0, \\ 0 & \text{sinon.} \end{cases}$

Exercice 4.6

Soient P,Q deux programmes LOOP. Écrivez un programme LOOP qui simule l'instruction if-then-else :

IF
$$(x > 0)$$
 THEN P ELSE Q FI

Exercice 4.7

Ecrivez un programme LOOP Somme qui calcule la somme de deux entiers x et y.

Exercice 4.8

Écrivez un programme LOOP DiffTr qui calcule la différence tronquée x - y, définie par x - y = x - y si $x \ge y$, et 0 sinon.

Exercice 4.9

Écrivez un programme LOOP Prod qui calcule le produit de deux entiers x et y.

Exercice 4.10

Écrivez un programme LOOP Min qui calcule min(x, y).

Exercice 4.11

Ecrivez un programme LOOP Quotient qui calcule le quotient de la division entière de x par y.

Exercice 4.12

Écrivez un programme LOOP Dec qui calcule le nombre de décimales de la représentation décimale d'un entier. Par exemple Dec(5) = 1, Dec(1548) = 4, Dec(1236987) = 7.

Exercice 4.13

Écrivez un programme LOOP qui simule la séquence d'instructions en C suivante :

```
{ int x = n;
 int prop=1;
 while(x > 0 && prop > 0){
    Q;
    x=x-1;
}}
```

où le programme \mathbb{Q} (codable en LOOP) modifie prop mais pas \mathbb{x} . Pourquoi la variable \mathbb{x} joue-t-elle un rôle important?