Hvordan overleve eksamen i MNF130

Håvard Utne Terland

Universitetet i Bergen

Havard.Terland@student.uib.no

1. Juni, 2018

Plan

Se på oppgaver fra de to forrige eksamenene.

- Formell logikk
- Mengder og funksjoner
- Induksjonsoppgaver
- ► Litt telling (kombinatorikk)
- Relasjoner

Hva jeg *ikke* snakker om: Modulær aritmetikk og primtall, divisjonsalgoritmen, euklids algoritme, grafteori og gramatikker/backus-naur. Oppfordring: Euklids algoritme og Eratosthenes' sil er veldig verdt å lære.

Symbolsk logikk - 1

- ▶ Proposisjoner: P, Q, R, S, T, ... representerer setninger som nødvendigvis er sann eller ikke sann (usann).
- ▶ Vi har symboler \vee, \wedge, \neg og \rightarrow som vi kan bruke.
- Sannhetstabeller: Vi kan manuelt sjekke om en setning er sann, gitt at vi vet om atomene er sann eller ikke.

Symbolsk logikk - Noen viktige begrep

- ▶ $P \equiv Q$ P **ekvivalent** med Q betyr at P er sann nøyaktig når Q er sann og usann nøyaktig når Q er usann. Kan sjekkes i sannhetstabeller, eller med andre regler.
- *Ekstremt* viktig: $P \rightarrow Q \equiv \neg P \lor Q$
- $ightharpoonup \land$, \lor er **kommutativ** og **assosiativ**. For eks får vi

$$P \lor Q \equiv Q \lor P$$

 $(P \land Q) \land R \equiv P \land (Q \land R)$

Noe er en tautologi hvis det i alle rader i sannhetstabellen er T. Kontradiksjon hvis alle rader er F. Logikk

Utsagnslogikk (propositional logic)

Table: \rightarrow er IKKE assosiativ!

1		$(P \to P) \to P$	P o (P o P)
Т		Т	Т
F	T	F	T

Table: \rightarrow er IKKE kommutativ!

Р	Q	P o Q	$Q \rightarrow P$
Т	Т	T	Т
Т	F	F	Т
F	Т	Т	F
F	F	Т	Т

Utsagnslogikk (propositional logic)

Se på V16, 3b): Vis at $[(p \to q) \land p] \to q$ er en tautologi (benytt ekvivalente utrykk).

Predikater

En proposisjon er *konstant*. Ett predikat er en variabel setning; sannhetsverdi avhenger av input P er predikatet, P(x) er enten sann eller usann, avhengig av x.

Kvantorer: \forall , \exists osv.

- ▶ Vi jobber alltid i ett univers. For eksempel \mathbb{N} , eller kanskje noe så enkelt som $\{1,2,3\}$.
- ▶ $\forall x (2x \ge x)$ er sann i universene \mathbb{N} og $\{2,4,6,8,\dots\}$, men ikke om universet er \mathbb{Z}
- ▶ Rekkefølge på kvantorene er *helt essensiell*. For eks, la universet være ℝ: se på disse to:

$$\forall n \exists m(n+m=0), \exists m \forall n(n+m=0)$$

- ▶ La her universet være \mathbb{Z} . Under er noen opppgaver fra **Eksamen V16**
- $ightharpoonup \forall n \exists m (n^2 < m)$
- $\forall n \exists m (n + m = 0)$
- $\triangleright \forall n \forall \exists k (2k = m + n)$
- $\forall a > 0 \forall b > 0 (ab = \gcd(a, b) * lcm(a, b))$

Hva er mengder?

Ikke annet enn en samling av objekter. Grunnleggende mengder:

- ▶ \emptyset den tomme mengden. $|\emptyset| = 0$.
- ▶ $\{\emptyset\}$ mengden som inneholder \emptyset (altså $\emptyset \in \{\emptyset\}$).
- $ightharpoonup \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{N}$ heltall, rasjonelle tall, reelle tall, naturlige tall.
- ▶ Den viktigste ideen; bygg nye mengder fra gamle: $\{x | x \in \mathbb{Q} \land x > 1\}$
- ▶ $A \cup B$ er mengden av ting som ligger i A og/eller i B. Altså, $x \in A \cup B \equiv x \in A \lor x \in B$.

Se på oppgave 2 fra V16

Funksjoner: Injeksjoner, surjeksjoner og bijeksjoner

En funksjon $f:A\to B$ er en "maskin" som tar inn ting i A og spytter ut ting i B.

- 1. Injektiv: Hvis (f(x) = f(y)) så er x = y.
- 2. Surjektiv: Hvis $b \in B$ så finnes det en $a \in A$ hvor f(a) = b.
- 3. Bijektiv: Begge de to over

Se på oppgave 1 fra Eksamen V17.

Induksjon på naturlige tall

Generelt prinsipp for å bevise påstander, ved å utnytte et konsept om størrelse: Begynn med de minste elementene, og jobb oppover.

Noen eksempler av induksjon på naturlige tall:

$$\forall n(n \ge 1 \to 1 + 3 + 5 + 7 + \dots + (2n - 1) = n^2)$$

▶ V17 Oppgave 2 La $f_0 = 0$, $f_1 = 1$ og $f_n = f_{n-1} + f_{n-2}$ når $n \ge 2$. Vis at $f_n \ge (3/2)^{n-1}$ når $n \ge 6$.

Litt telling

V17 Oppgave 5

- Hvor mange bitstrenger med 8 bit har 000 som de tre første bit?
- ▶ Hvor mange bitstrenger med 8 bit har nøyaktig 4 bit som er 1?
- ▶ La A og B være mengder, hvor |A| = 4 = |B| = 10. Hvor mange funksjoner $f: A \rightarrow B$ finnes det?
- ▶ La A og B være mengder, hvor |A| = 4 = |B| = 10. Hvor mange injektive funksjoner $f: A \rightarrow B$ finnes det?
- ▶ La A og B være mengder, hvor |A| = 4 = |B| = 10. Hvor mange surjektive funksjoner $f : A \rightarrow B$ finnes det?

Relasjoner

Vi ser på oppgave 7.1 fra eksamen V17 En **relasjon** R over en mengde A er rett og slett bare en delmengde av $A \times A$. Altså

$$R \subseteq A \times A$$

relasjonen kan være Ø, for eksempel. Den kan ha andre egenskaper:

- Refleksiv
- Symmetrisk
- Transitiv
- ▶ Hvis alle over: Ekvivalenserelasjon