1. (89-3) 在下列等式中, 正确的结果是

(A)
$$\int f'(x)dx = f(x). + C$$

(B)
$$\int df(x) = f(x)$$
. $+ \subset$

(C)
$$\frac{d}{dx} \int f(x) dx = f(x)$$
.

(D)
$$d \int f(x) dx = f(x). dx$$

2. (90-2) 设函数 f(x) 在 $(-\infty, +\infty)$ 上连续,则 $d(\int f(x)dx)$ 等于

(A)
$$f(x)$$
.

(B)
$$f(x)dx$$
.

(C)
$$f(x) + C$$
. (D) $f'(x)dx$.

(D)
$$f'(x)dx$$

$$\int f(x) dx$$
; $f(x)$
 $d F(x) = f(x) dx$
 $f(x) = f(x)$

3. (01-1;2) 设函数 f(x) 在定义域内可导, y = f(x) 的图形如图所示,

则导函数 y = f'(x) 的图形为

4. (97-3) 若函数
$$f(x) = \frac{1}{1+x^2} + \sqrt{1-x^2} \int_0^1 f(x) dx$$
,则 $\int_0^1 f(x) dx = \frac{1}{1+x^2} + \sqrt{1-x^2} \int_0^1 f(x) dx$

5. (98-1)
$$\vec{x} \lim_{n \to \infty} \left(\frac{\sin \frac{\pi}{n}}{n+1} + \frac{\sin \frac{2\pi}{n}}{n+\frac{1}{2}} + \dots + \frac{\sin \pi}{n+\frac{1}{n}} \right)$$

6. (04-2)
$$\lim_{n \to \infty} \ln \sqrt[n]{\left(1 + \frac{1}{n}\right)^2 \left(1 + \frac{2}{n}\right)^2 \cdots \left(1 + \frac{n}{n}\right)^2}$$
 等于
(A) $\int_{1}^{2} \ln^2 x dx$. (B) $2\int_{1}^{2} \ln x dx$.

(C)
$$2\int_{1}^{2} \ln(1+x)dx$$
. (D) $\int_{1}^{2} \ln^{2}(1+x)dx$.

- (A) $I_1 > I_2 > 1$. (B) $1 > I_1 > I_2$.
- (C) $I_2 > I_1 > 1$. (D) $1 > I_2 > I_1$.

5.
$$(98-1)$$
 $\Re \lim_{n\to\infty} \left(\frac{\sin\frac{\pi}{n}}{n+1} + \frac{\sin\frac{2\pi}{n}}{n+\frac{1}{2}} + \dots + \frac{\sin\pi}{n+\frac{1}{n}}\right)$.

6. $(04-2)$ $\lim_{n\to\infty} \ln^n \sqrt{\left(1+\frac{1}{n}\right)^2 \left(1+\frac{2}{n}\right)^2 \cdots \left(1+\frac{n}{n}\right)^2}$ \$\frac{1}{2} \tag{5} \tag{7} \tag{1} \tag{1}

$$\frac{1}{2} f(x) = \tan x - x \qquad [x \in [0, \frac{1}{4}]]$$

$$f(x) > \sec x - | = \tan x > 0$$

$$f(0) = 0. \Rightarrow \tan x > x$$

$$\Rightarrow \frac{\tan x}{x} > 1. \qquad \frac{x}{\tan x} < |$$

$$\Rightarrow I_1 > I_2$$

$$I_2 < |$$