WO 99/50302 PCT/CN98/00052

be used to control the expression of the chimeric proteins disclosed in Section 4.2. include, but are not limited to, the SV40 early promoter region (Bernoist and Chambon, 1981, Nature 290:304-310), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto, et al., 1980, Cell 22:787-797), the herpes thymidine kinase 5 promoter (Wagner et al., 1981, Proc. Natl. Acad. Sci. U.S.A., 78:1441-1445), the regulatory sequences of the metallothionein gene (Brinster et al., 1982, Nature 296:39-42); prokaryotic expression vectors such as the β-lactamase promoter (Villa-Kamaroff, et al., 1978, Proc. Natl. Acad. Sci. U.S.A., 75:3727-3731), the tac promoter (DeBoer, et al., 1983, Proc. Natl. Acad. Sci. U.S.A., 80:21-25); or Trp E promoter (Hall, Invisible 10 Frontiers--The Race to Synthesize a Human Gene, Atlantic Monthly Press, New York, 1987) see also "Useful proteins from recombinant bacteria" in Scientific American, 1980, 242:74-94; promoter elements from yeast or other fungi such as the Gal 4 promoter, the ADC (alcohol dehydrogenase) promoter, PGK (phosphoglycerol kinase) promoter, alkaline phosphatase promoter, and the following animal transcriptional control regions, which 15 exhibit tissue specificity and have been utilized in transgenic animals: elastase I gene control region which is active in pancreatic acinar cells (Swift et al., 1984, Cell 38:639-646; Ornitz et al., 1986, Cold Spring Harbor Symp. Quant. Biol. 50:399-409; MacDonald, 1987, Hepatology 7:425-515); insulin gene control region which is active in pancreatic beta cells (Hanahan, 1985, Nature 315:115-122), immunoglobulin gene control region which is 20 active in lymphoid cells (Grosschedl et al., 1984, Cell 38:647-658; Adames et al., 1985, Nature 318:533-538; Alexander et al., 1987, Mol. Cell. Biol. 7:1436-1444), mouse mammary tumor virus control region which is active in testicular, breast, lymphoid and mast cells (Leder et al., 1986, Cell 45:485-495), albumin gene control region which is active in liver (Pinkert et al., 1987, Genes and Devel. 1:268-276), alpha-fetoprotein gene 25 control region which is active in liver (Krumlauf et al., 1985, Mol. Cell. Biol. 5:1639-1648; Hammer et al., 1987, Science 235:53-58; alpha 1-antitrypsin gene control region which is active in the liver (Kelsey et al., 1987, Genes and Devel. 1:161-171), beta-globin gene control region which is active in myeloid cells (Mogram et al., 1985, Nature 315:338-340; Kollias et al., 1986, Cell 46:89-94), myelin basic protein gene control region which is 30 active in oligodendrocyte cells in the brain (Readhead et al., 1987, Cell 48:703-712), myosin light chain-2 gene control region which is active in skeletal muscle (Sani, 1985, Nature 314:283-286), and gonadotropic releasing hormone gene control region which is

For example, a vector can be used that comprises a promoter operably linked to an nucleic acid encoding the chimeric proteins disclosed in Section 4.2., one or more origins of replication, and, optionally, one or more selectable markers (e.g., an antibiotic

active in the hypothalamus (Mason et al., 1986, Science 234:1372-1378).

WO 99/50302 PCT/CN98/00052

resistance gene).

Expression vectors containing gene inserts encoding the chimeric proteins disclosed in Section 4.2., or fragments, analogues or derivatives thereof, can be identified by three general approaches: (a) nucleic acid hybridization, (b) presence or absence of "marker" 5 gene functions, and (c) expression of inserted sequences. In the first approach, the presence of a gene encoding the chimeric proteins disclosed in Section 4.2. inserted in an expression vector can be detected by nucleic acid hybridization using probes comprising sequences that are homologous to an inserted gene encoding the chimeric proteins disclosed in Section 4.2. In the second approach, the recombinant vector/host system can be 10 identified and selected based upon the presence or absence of certain "marker" gene functions (e.g., thymidine kinase activity, resistance to antibiotics, transformation phenotype, occlusion body formation in baculovirus, etc.) caused by the insertion of a gene encoding the chimeric proteins disclosed in Section 4.2. in the vector. For example, if the gene encoding the chimeric proteins disclosed in Section 4.2. is inserted within the marker 15 gene sequence of the vector, recombinants containing the insert encoding the chimeric proteins disclosed in Section 4.2. can be identified by the absence of the marker gene function. In the third approach, recombinant expression vectors can be identified by assaying the chimeric proteins product expressed by the recombinant. Such assays can be based, for example, on the physical or functional properties of the chimeric proteins 20 disclosed in Section 4.2. in in vitro assay systems, e.g., binding with anti-hGH, or antiinsulin antibody.

Once a particular recombinant DNA molecule is identified and isolated, several methods known in the art may be used to propagate it. Once a suitable host system and growth conditions are established, recombinant expression vectors can be propagated and prepared in quantity. As previously explained, the expression vectors which can be used include, but are not limited to, the following vectors or their derivatives: human or animal viruses such as vaccinia virus or adenovirus; insect viruses such as baculovirus; yeast vectors; bacteriophage vectors (e.g., lambda), and plasmid and cosmid DNA vectors, to name but a few.

In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Expression from certain promoters can be elevated in the presence of certain inducers; thus, expression of the genetically engineered chimeric protein disclosed in Section 4.2. may be controlled. Furthermore, different host cells have characteristic and specific mechanisms for the translational and post-translational processing and modification (e.g., glycosylation, phosphorylation) of proteins. Appropriate cell lines or host systems

can be chosen to ensure the desired modification and processing of the foreign protein expressed. For example, expression in a bacterial system can be used to produce an unglycosylated core protein product. Expression in yeast will produce a glycosylated product. Expression in mammalian cells can be used to ensure "native" glycosylation of a heterologous protein. Furthermore, different vector/host expression systems may effect processing reactions to different extents.

Both cDNA and genomic sequences can be cloned and expressed.

The chimeric protein disclosed in Section 4.2., or fragments, analogues or derivatives thereof, may also be isolated and purified by standard methods including 10 chromatography (e.g., ion exchange, affinity, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins. The functional properties may be evaluated using any suitable assay.

The nucleic acid sequence encoding the chimeric protein disclosed in Section 4.2., or fragments, analogs or derivatives thereof, can be mutated *in vitro* or *in vivo*, to create and/or destroy translation, initiation, and/or termination sequences, or to create variations in coding regions. Any technique for mutagenesis known in the art can be used, including, but not limited to, *in vitro* site-directed mutagenesis (Hutchinson et al., 1978, *J. Biol. Chem.* 253:6551), use of TAB linkers (Pharmacia), mutation-containing PCR primers, *etc.*

20

The experimentation involved in mutagenesis consists primarily of site-directed mutagenesis followed by phenotypic testing of the altered gene product. Some of the more commonly employed site-directed mutagenesis protocols take advantage of vectors that can provide single stranded as well as double stranded DNA, as needed. Generally,

- 25 the mutagenesis protocol with such vectors is as follows. A mutagenic primer, i.e., a primer complementary to the sequence to be changed, but consisting of one or a small number of altered, added, or deleted bases, is synthesized. The primer is extended in vitro by a DNA polymerase and, after some additional manipulations, the now double-stranded DNA is transfected into bacterial cells. Next, by a variety of methods, the
- 30 desired mutated DNA is identified, and the desired protein is purified from clones containing the mutated sequence. For longer sequences, additional cloning steps are often required because long inserts (longer than 2 kilobases) are unstable in those vectors.
 Protocols are known to one skilled in the art and kits for site-directed mutagenesis are widely available from biotechnology supply companies, for example from Amersham Life
- 35 Science, Inc. (Arlington Heights, IL) and Stratagene Cloning Systems (La Jolla, CA).

In addition, the chimeric protein disclosed in Section 4.2., or fragments, analogues