AArch64
Instructions

Index by Encoding

External Registers

MPAMCFG_PRI, MPAM Priority Partition Configuration Register

The MPAMCFG PRI characteristics are:

Purpose

Controls the internal and downstream priority of requests attributed to the PARTID selected by MPAMCFG PART SEL.

MPAMCFG_PRI_s controls the priorities for the Secure PARTID selected by the Secure instance of MPAMCFG_PRI_ns controls the priorities for the Non-secure PARTID selected by the Non-secure instance of MPAMCFG_PRI_rt controls the priorities for the Root PARTID selected by the Root instance of MPAMCFG_PART_SEL. MPAMCFG_PRI_rl controls the priorities for the Realm PARTID selected by the Realm instance of MPAMCFG_PART_SEL.

If <u>MPAMF_IDR</u>.HAS_RIS is 1, the control settings accessed are those of the resource instance currently selected by <u>MPAMCFG_PART_SEL</u>.RIS and the PARTID selected by <u>MPAMCFG_PART_SEL</u>.PARTID_SEL.

Configuration

This register is present only when FEAT_MPAM is implemented and MPAMF_IDR.HAS_PRI_PART == 1. Otherwise, direct accesses to MPAMCFG_PRI are res0.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMCFG_PRI is a 32-bit register.

Field descriptions

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DSPRI

INTPRI

DSPRI, bits [31:16]

Downstream priority.

If <u>MPAMF_PRI_IDR</u>.HAS_DSPRI == 0, bits of this field are res0 as this field is not used.

If <u>MPAMF_PRI_IDR</u>.HAS_DSPRI == 1, this field is a priority value applied to downstream communications from this MSC for transactions of the partition selected by <u>MPAMCFG_PART_SEL</u>.

The implemented width of this field is <u>MPAMF_PRI_IDR</u>.DSPRI_WD bits. If the implemented width is less than the width of this field, the least significant bits are used.

The encoding of priority is 0-as-lowest or 0-as-highest priority according to the value of <u>MPAMF_PRI_IDR</u>.DSPRI_0_IS_LOW.

INTPRI, bits [15:0]

Internal priority.

If <u>MPAMF_PRI_IDR</u>.HAS_INTPRI == 0, bits of this field are res0 as this field is not used.

If <u>MPAMF_PRI_IDR</u>.HAS_INTPRI == 1, this field is a priority value applied internally inside this MSC for transactions of the partition selected by <u>MPAMCFG_PART_SEL</u>.

The implemented width of this field is <u>MPAMF_PRI_IDR</u>.INTPRI_WD bits. If the implemented width is less than the width of this field, the least significant bits are used.

The encoding of priority is 0-as-lowest or 0-as-highest priority according to the value of MPAMF_PRI_IDR. INTPRI_0_IS_LOW.

Accessing MPAMCFG PRI

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in all four address maps:

- MPAMCFG_PRI_s must only be accessible from the Secure MPAM feature page.
- MPAMCFG_PRI_ns must only be accessible from the Non-secure MPAM feature page.
- MPAMCFG_PRI_rt must only be accessible from the Root MPAM feature page.
- MPAMCFG_PRI_rl must only be accessible from the Realm MPAM feature page.

MPAMCFG_PRI_s, MPAMCFG_PRI_ns, MPAMCFG_PRI_rt, and MPAMCFG_PRI_rl must be separate registers:

- The Secure instance (MPAMCFG_PRI_s) accesses the priority partitioning used for Secure PARTIDs.
- The Non-secure instance (MPAMCFG_PRI_ns) accesses the priority partitioning used for Non-secure PARTIDs.

- The Root instance (MPAMCFG_PRI_rt) accesses the priority partitioning used for Root PARTIDs.
- The Realm instance (MPAMCFG_PRI_rl) accesses the priority partitioning used for Realm PARTIDs.

When RIS is implemented, loads and stores to MPAMCFG_PRI access the priority partitioning configuration settings for the priority resource instance selected by MPAMCFG_PART_SEL. PARTID_SEL.

When RIS is not implemented, loads and stores to MPAMCFG_PRI access the priority partitioning configuration settings for the PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL.

When PARTID narrowing is implemented, loads and stores to MPAMCFG_PRI access the priority partitioning configuration settings for the internal PARTID selected by MPAMCFG_PART_SEL.PARTID_SEL, and MPAMCFG_PART_SEL.INTERNAL must be 1.

When PARTID narrowing is not implemented, loads and stores to MPAMCFG_PRI access the priority partitioning configuration settings for the request PARTID selected by MPAMCFG_PART_SEL. INTERNAL must be 0.

MPAMCFG PRI can be accessed through the memory-mapped interfaces:

Component	Frame	Offset	Instance
MPAM	MPAMF_BASE_s	0x0400	MPAMCFG_PRI_s

Accesses on this interface are **RW**.

Component	Frame	Offset	Instance
MPAM	MPAMF_BASE_ns	0x0400	MPAMCFG_PRI_ns

Accesses on this interface are **RW**.

Component	Frame	Offset	Instance
MPAM	MPAMF_BASE_rt	0x0400	MPAMCFG_PRI_rt

When FEAT RME is implemented, accesses on this interface are **RW**.

Component	Frame	Offset	Instance
MPAM	MPAMF_BASE_rl	0x0400	MPAMCFG_PRI_rl

When FEAT RME is implemented, accesses on this interface are **RW**.

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.