Descrição da equipe PinguimBots - Categoria Very Small Size Soccer 2020

Alan Carlos Junior Rossetto², Christian Cardoso Gressler¹, Frederico Bueno da Silva Schaun¹, Gilberto Kreisler Franco Neto¹, Guibson Souza dos Santos¹, Larissa de Vargas da Silva¹, Leonardo Camargo Jorge Fetter Bordignon¹, Leonardo da Silva Avila¹, Lucas Coutinho Freitas¹, Marcelo Schiller de Azevedo³, Marco Aurélio Justiniano Alkimim¹, Paulo Roberto Ferreira Jr.², Pedro Henrique Diehl¹, Vitor Leitzke Braga¹, Vivian Domingues Mattos¹

Resumo—Este TDP descreve brevemente a equipe e apresenta as ferramentas e técnicas utilizadas para a construção de um time de robôs para a categoria Very Small Size Soccer (VSSS). É apresentado como foi organizado e estruturado o código desenvolvido pela equipe, as ferramentas e técnicas utilizadas. Bem como uma descrição dos componentes eletrônicos utilizados e a estrutura física dos robôs que foi desenvolvido pela equipe. Por não ter a competição fisicamente, devida à pandemia, também é explicado o processo de integração com o simulador.

I. INTRODUÇÃO

O PinguimBots é uma equipe multidisciplinar composta por entusiastas e aqueles que desejam se engajar na área da robótica móvel. Alunos estes dos cursos de Ciência da Computação, Engenharia de Computação, Engenharia de Controle e Automação, Engenharia Eletrônica, Jornalismo e Design Digital. Os membros da equipe foram divididos por áreas buscando uma maior produtividade, sendo elas visão computacional, estrutura, eletrônica, controle e mídias sociais. A integração é feita através da constante comunicação entre os membros das diversas áreas, tanto por reuniões ordinárias quanto informalmente durante o processo de trabalho.

A área da visão computacional é a área responsável pela criação de uma interface amigável de comunicação bem como pela extração de informações do campo durante o jogo e compor esses dados para que possam ser processados posteriormente pelos processos de tomada de decisão da estratégia e controle.

A área de controle é responsável por desenvolver as técnicas que irão processar os dados obtidos para o controle da velocidade linear e angular do robô para uma correta execução de trajetória estipulada pelo modulo de estratégia.

A área da eletrônica é responsável pela confecção do circuito eletrônico, selecionar e manipular os componentes eletrônicos, assim garantindo o correto funcionamento do robô.

A área de estrutura é a responsável pelo desenvolvimento de todo o esqueleto do robô, garantido que cumpra com as regras de medidas estabelecidas pelo edital e ao mesmo tempo garantir a disposição do espaço para que caibam todos os componentes eletrônicos.

A área de mídias sociais é a responsável por divulgar a equipe nas redes sociais e atraindo patrocinadores para apoiarem a equipe, sendo tão importante quanto as outras áreas.

A VSSS é uma categoria que possibilita essa integração de diversas áreas, pela diversidade de conhecimento a ser aplicado para o desenvolvimento de todos os componentes necessários para se ter um time competitivo, proporcionando a aplicação prática do que é visto em sala de aula.

Para um jogo da categoria VSSS, cada time possui uma câmera que é posicionada a aproximadamente 2 metros acima do campo (Figura 1). É a partir dessa câmera que serão extraídos todos os dados necessários como a posição dos robôs e da bola no campo e que serão usados para a definição da estratégia a ser usada.

Figura 1. Posicionamento das câmeras no campo

O código da equipe foi dividido em módulos para facilitar a abstração e organização, sendo eles: visão, estratégia, controle e comunicação. Para isso foi utilizado a linguagem de programação C++, por sua característica performática e de fácil organização.

O modulo de visão extrai os dados do campo através da biblioteca de processamento de imagens OpenCV. Esses dados são organizados em uma estrutura e enviados para o módulo de estratégia, que irá definir qual o movimento cada robô deverá executar com base na organização dos componentes do campo. Após, o modulo de estratégia se comunica com o de controle, que define a direção e a velocidade angular e linear correspondente a estratégia escolhida. Por fim, o modulo de comunicação é responsável por codificar essas informação e transmitir via modulo sem fio para cada robô.

A estrutura desenvolvida pela equipe foi pensada para fazer o melhor uso possível do espaço disponível para a organização dos componentes eletrônicos, bem como ser resistente a eventuais impactos durante o jogo.

¹Graduandos na Universidade Federal de Pelotas, membros do PinguimBots da Universidade Federal de Pelotas (UFPel), Pelotas. Rio Grande do Sul, Brasil.

²Professor do CDTec na Universidade Federal de Pelotas.

³Professor do IF-Sul de Camaquã.

Esse ano, devido à pandemia, não haverá competição física, sendo a modalidade transferida temporariamente para um meio online e se tornando uma competição simulada. Dessa forma será utilizado apenas a estratégia desenvolvida pela equipe, pois os dados que seriam extraídos pela visão são fornecidos diretamente pelo simulador. Portanto, também é apresentado uma seção sobre a integração com o simulador.

II. SISTEMAS DE SOFTWARE

O desenvolvimento do sistema de software foi todo feito em C++ por ser uma linguagem que proporciona alta performance e permite uma maior organização, mantendo a simplicidade do projeto devido ao nível de abstração oferecido. Optamos pela separação em módulos para tirar proveito dessa abstração fornecida.

Para o processamento de imagens e desenvolvimento de uma interface gráfica foi escolhido a biblioteca OpenCV. Esta é uma biblioteca de licença BSD que proporciona uma infraestrutura comum para visão computacional[9]. A escolha dessa biblioteca pra trabalho foi devido a larga documentação disponível livremente na internet por causa da sua grande comunidade, tornando simples conseguir suporte, e também a sua robustez, fator oriundo de sua longa trajetória. Ademais, possui uma API de fácil manipulação com uma vasta gama de funcionalidades embutida, o que facilita o desenvolvimento.

A. Visão

O sistema de visão computacional tem integração direta com o módulo de interface gráfica, que foi desenvolvido usando o HighGUI, biblioteca inclusa no OpenCV que foi desenvolvida principalmente para a depuração. A escolha desta foi devido à sua simplicidade e comunicação direta com a OpenCV, visto que, embora limitada, sirva o escopo do projeto, produzindo um tempo de desenvolvimento reduzido além de menor acoplamento.

A interface gráfica compreende os processos de calibragem, de visualização dos processos internos do módulo de visão e de sinalização de início e final de partida, funcionalidade que é de implementação relativamente trivial devido à simplicidade de biblioteca.

Durante o processo de calibragem será armazenado as cores dos robôs do nosso time, do time adversário e da bola, bem como é feito o mapeamento do campo.

No decorrer do jogo as imagens são capturadas, através de funções fornecidas pelo OpenCV, e então tratadas para remoção de ruídos. Após, as imagens são processadas, sendo feito inicialmente um *threshold* com as cores previamente armazenadas para então ser extraído as coordenadas no plano cartesiano de cada componente móvel em campo e compostas em uma estrutura de dados e então enviada para o módulo de controle.

B. Controle

Ao receber a estrutura composta das coordenadas cartesianas, o módulo de controle as transforma para o sistema de coordenadas polares [8], obtendo assim o ângulo do robô, que é um indicativo de sua direção, e a distância em linha reta até a bola

A partir do processamento desses dados cria-se um modelo cinemático com o controle de Lyapunov[6][7], o qual permite estabelecer relações matemáticas entre os atuadores e as grandezas controláveis, garantindo uma estabilidade mesmo quando as relações entre as grandezas são não lineares. Dessa forma, controlamos a trajetória do robô até a bola e, quando em posse da bola, até o gol.

C. Estratégia

A estratégia consiste em dividir as tarefas de goleiro, defensor e atacante entre os três robôs [10]. Nesta divisão existem tarefas fixas e flexíveis, onde a única fixa é a do goleiro, e esta será atribuída ao mesmo robô do início ao fim. O comportamento dos outros dois será feito com base em critérios que podem ser diretamente medidos.

Dessa forma, o robô que estiver mais próximo da bola será o atacante, já o outro será o defensor juntamente com o goleiro. As estratégias da defesa e do goleiro se baseiam na orientação da reta que os conecta com a posição atual da bola. Já o atacante terá sua orientação a partir da reta que conecta a bola ao gol.

D. Comunicação

No final do processo o modulo de comunicação envia esses dados através de comunicação serial para um Arduíno para este fazer a transmissão via wifi, utilizando um módulo NRF, para os robôs em campo.

III. SISTEMA MECÂNICO

O sistema mecânico compreende a estrutura do robô desenvolvida e os componentes eletrônicos utilizados. Neste processo foram antes definidos os componentes a ser utilizados, para a partir de simulações com suas medidas, ser definido a estrutura.

A. Componentes Eletrônicos

A equipe realizou diversos testes antes de decidirmos quais seriam as melhores opções para utilizarmos no projeto. Após algumas simulações segue a descrição dos principais componentes eletrônicos e suas funções no projeto.

 Motor: É o componente que em conjunto com as rodas permite o deslocamento do protótipo. Em nosso desenvolvimento utilizamos um par de motores Pololu HP com caixa de redução, esse modelo se adequou às nossas necessidades por possuir um tamanho pequeno e grande torque devido a ter incluso a caixa de redução e possuir tensão nominal de 6V.

Figura 2. Motor - Pololu HP[3]

• Ponte H-TB6612FNG: Para ser feito o controle dos motores é necessário o uso de uma ponte H. Ela determina o sentido de rotação de cada um dos motores.O TB6612FNG pode controlar até dois motores CC a uma corrente constante de 1,2A (pico de 3,2A). Dois sinais de entrada (IN1 e IN2) podem ser usados para controlar o motor em um dos quatro modos de funcionamento - CW, CCW, freio-rápido e parada. As duas saídas dos motores (A e B) podem ser controladas separadamente, a velocidade de cada motor é controlada via um sinal PWM com frequência de até 100kHz

Figura 3. Ponte H-TB6612FNG[5]

 Arduíno nano: Este componente é a base de controle do nosso protótipo, um microcontrolador Atmel. O modelo de Arduíno que utilizamos é o Arduíno Nano, ele possui 8 portas analógicas, 14 digitas e destas digitais 6 podem ser utilizadas como PWM (Pulse Width Modulation), quatro desses pinos são utilizados para o controle dos motores no módulo da ponte H L298 e outros seis pinos são utilizados para o controle do módulo wifi.

Figura 4. Arduíno Nano[1]

 Modulo wifi-NRF24L01: Um módulo wifi é responsável por realizar a comunicação externa do protótipo, para esse fim utilizamos o NRF24L01. Nosso módulo possui 6 pinos de controle e comunicação de dados, além de 2 para alimentação. Seu alcance pode chegar a 10 metros em ambientes internos e 50 metros em campo aberto.

Figura 5. wifi - NRF24L01[4]

 Bateria de 7,4V: Para que todo o hardware do protótipo funcionar ao longo de uma partida utilizamos uma bateria do tipo LiPo (líthio-polímero). A vantagem desse tipo de bateria para nosso uso específico é o ganho com o espaço, pois ela é pequena e comporta dentro do protótipo, ela é uma bateria de 7,4V e 1000mAh.

Figura 6. Bateria 7,4V[2]

B. Estrutura

A estrutura, desenhada no software Inventor, foi pensada para obter melhor desempenho, qualidade e estabilidade. Feita de modo a proteger todos os componentes internos e a parte eletrônica. Utilizando o material ABS por ser resistente a impactos e de fácil acesso.

Foram feitos cortes nas partes frontal do robô para ter um melhor desempenho na posse de bola dos robôs evitando que ela escape para as laterais com a variação da aceleração e direção, consequentemente possuindo um maior domínio sobre a bola.

Outro ponto positivo é o chassi do robô possuir uma pequena distância do chão, logo não há grande variação de altura trazendo maior estabilidade em seus movimentos.

Figura 7. Projeto da estrutura no inventor

C. Rodas

Desenvolvemos as rodas - que juntamente com os motores permitem o deslocamento do protótipo - com o intuito de ter maior estabilidade e aperfeiçoamento do movimento, pois os modelos prontos não se mostraram eficientes. Foram impressas duas rodas e no chanfro do aro foi colocado uma borracha para obter maior aderência com o chão.

Figura 8. Projeto da roda no inventor

IV. COMPETIÇÃO SIMULADA

Para a competição simulada foram definidos dois softwares: o FIRASim que é o simulador e de onde virão os dados para a estratégia e o ssl-client, responsável pelo recebimento dos dados do campo e envio dos novos comando de execução para os jogadores em campo. Portanto, foi tirado proveito da estrutura de código já apresentada no ssl-client. A partir do recebimento dos pacotes pela comunicação o mesmo é enviado para um módulo responsável por extrair os dados do pacote e fazer a análise estratégica, gerando as próximas posições que cada jogador assumirá no próximo movimento. As posições são enviadas para outro módulo que irá calcular qual a velocidade que cada roda de cada jogador assumirá para chegar corretamente a próxima posição. Um terceiro módulo é responsável por receber esses dados e enviar de volta para o simulador.

V. Conclusão

O trabalho aqui apresentado tem por objetivo demonstrar o projeto de um time de robôs autônomos. Visamos a construção de um time de baixo custo, mas ainda assim competitivo através da utilização de ferramentas de alta performance e da implementação de técnicas bem estabelecidas, tendo em vista o alto nível dos outro competidores.

REFERÊNCIAS

- [1] Arduino Nano. https://www.filipeflop.com/produto/placa-nano-v3-0-cabo-usb-para-arduino/. Acessado: 16/06/2019.
- [2] Bateria 7.4V. http://www.eletrodrones.com.br/10a07a/bateria-7-4v-2500mah-para-drone-syma-x8w-x8g-x8hw-x8hg-explorer-ydtech-alta-ca Acessado: 16/06/2019.
- [3] Motor Polulu HP. https://www.pololu.com/product/999. Acessado: 16/06/2019.
- [4] NRF24L01. https://produto.mercadolivre.com.br/ MLB-960136302-modulo-nrf24l01-rf-transceptor-ism-24ghz-pic-arduino-_ JM. Acessado: 16/06/2019.
- [5] Ponte H-L298N. https://www.curtocircuito.com.br/modulo-driver-ponte-h-1298n.html. Acessado: 16/06/2019.
- [6] Gabriel Antonio de Araujo Ribeiro; Lívia Chaves Paravidino. Controle de robôs móveis para futebol de robôs. Acessado: 16/06/2019.
- [7] Celso de Sousa Júnior; Elder Moreira Hemerly. Controle de robôs móveis utilizando o modelo cinemático. Acessado: 16/06/2019.
- [8] Walter F. Lages; Elder M. Hemerly. Controle em coordenadas polares de robôs móveis com rodas. Acessado: 16/06/2019.
- [9] OpenCV. https://opencv.org/about/. Acessado: 16/06/2019.
- [10] Silas F. R. Alves; Renê Pegoraro; Humberto Ferasoli Filho; Marco A. C. Caldeira; Wilson M. Yonezawa. Carrossel Caipira O time de futebol de robôs da UNESP de Bauru. Acessado: 16/06/2019.