MA 528 Exercise Set 3

Dane Johnson

September 27, 2021

Chapter 6 Construction of a Probability Measure

Chapter 7 Construction of a Probability Measure on \mathbb{R}

Exercise 7.1

Let $(A_n)_{n\geq 1}$ be any sequence of pairwise disjoint events and P a probability. Show that $\lim_{n\to\infty} P(A_n) = 0$.

Answer: Since $P(A_i) \geq 0$ for each i the sequence $s_n = \sum_{i=1}^n P(A_i) = P(\bigcup_{i=1}^n A_i) \leq 1$ is a nonnegative sequence bounded that is bounded above 1 and is therefore convergent. This means the series $\lim_{n\to\infty} s_n = \sum_{i=1}^{\infty} P(A_i)$ is a convergent series, which implies $\lim_{n\to\infty} P(A_n) = 0$.

Exercise 7.6

Show that the maximum of the Lognormal density occurs at $x = e^{\mu}e^{-\sigma^2}$.

Answer: The Lognormal distribution with parameters μ, σ^2 $(-\infty < \mu < \infty, 0 < \sigma^2 < \infty)$ is

$$f(x) = \begin{cases} \frac{1}{x} g_{\mu,\sigma^2}(\log x) & x > 0\\ 0 & x \le 0 \end{cases},$$

where $g_{\mu,\sigma^2}(z) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(z-\mu)^2/(2\sigma^2)}$ is the normal distribution with parameters μ,σ^2 . Fix the parameters μ,σ^2 and let $g(z) = g_{\mu,\sigma^2}(z)$, $\alpha = 1/(\sqrt{2\pi}\sigma)$. Since g > 0, f(x) > 0 for x > 0. So the maximum of f on \mathbb{R} is the maximum of f on $(0,\infty)$.

$$0 = f'(x) = -\frac{1}{x^2}g(\log x) + \frac{1}{x^2}g'(\log x)$$
$$g(\log x) = g'(\log x)$$
$$\alpha e^{-(\log x - \mu)^2/(2\sigma^2)} = \alpha e^{-(z - \mu)^2/(2\sigma^2)} \frac{\mu - \log x}{\sigma^2}$$
$$1 = \frac{\mu - \log x}{\sigma^2}$$
$$\log x = \mu - \sigma^2$$
$$x = e^{\mu}e^{-\sigma^2}$$

Since g > 0, $\lim_{z \to \pm \infty} g(z) = 0$, and that there is only on critical point of f, conclude that this value of x must maximize f(x).

Exercise 7.11

Let $P(A) = \int_{-\infty}^{\infty} 1_A(x) f(x) dx$ for a nonnegative function f with $\int_{-\infty}^{\infty} f(x) dx = 1$. Let $A = \{x_0\}$, a singleton (that is, the set A consists of one single point on the real line). Show that A is a Borel set and also a null set (that is, P(A) = 0).

Answer: We can write A as

$$(x_0 - 1, x_0] \cap [x_0, x_0 + 1)$$
$$(x_0 - 1, x_0] = \bigcap_{n=1}^{\infty} (x_0 - 1, x_0 + 1/n), \quad [x_0, x_0 + 1) = \bigcap_{n=1}^{\infty} (x_0 - 1/n, x_0)$$

This shows that A can be written as the intersection of two Borel sets, which must also be a Borel set and

$$P(A) = \int_{-\infty}^{\infty} 1_{\{x_0\}}(x) f(x) dx = \int_{x_0}^{x_0} f(x) dx = 0.$$

Exercise 7.14

Let $(A_i)_{i\geq 1}$ be a sequence of null sets. Show that $B=\bigcup_{i=1}^{\infty}A_i$ is also a null set.

Answer: For each A_i , there is a $B_i \in \mathcal{A}$ (the σ -algebra on Ω) such that $A_i \subset B_i$ and $P(B_i) = 0$. Let $B' = \bigcup_{i=1}^{\infty} B_i$. Then $B \subset B'$ and $0 \le P(B') \le \sum_{i=1}^{\infty} P(B_i) = 0$. This shows that P(B') = 0 and therefore B is a null set for P.

Exercise 7.15

Let X be a r.v. defined on a countable Probability space. Suppose $E\{|X|\}=0$. Show that X=0 except possibly on a null set. Is it possible to conclude, in general, that X=0 everywhere (i.e., for all ω)?

Answer: If $0 = E\{|X|\} = \sum_{\omega \in \Omega} |X(\omega)| P(\{\omega\})$ implies that for each ω either $|X(\omega)| = 0$ of $P(\{\omega\}) = 0$. If $|X(\omega)| = 0$ for all ω we are done. Otherwise let B be the union of all singletons $\{\omega\}$ such that $P(\{\omega\}) = 0$. Since Ω is countable, this is either a finite or countably infinite union. By the previous exercise, B is also a null set. It is not possible to conclude that X = 0 everywhere.

Exercise 7.16

Let F be a distribution function. Show that in general F can have an infinite number of jump discontinuities, but that there can be at most countably many.

Answer: Since F is right continuous the set of discontinuities of F is the set $D = \{x : F(x-) \neq F(x+)\} = \{x : F(x-) < F(x)\}$. For each $x \in D$, select one $q_x \in \mathbb{Q}$ such that $F(x-) < q_x < F(x)$. If $x, y \in D$ with $x \neq y$ we may assume x < y without loss of generality. Since F is nondecreasing, $q_x < F(x) \leq F(y-) < q_y$ so $q_x \neq q_y$. This means $r: D \to \mathbb{Q}$ defined by $r(x) = q_x$ is injective. Since \mathbb{Q} is countable, $r(D) \subseteq \mathbb{Q}$ must also be countable. But then since r is injective conclude that D must be countable.

Exercise 7.17

Suppose a distribution function F is given by

$$F(x) = \frac{1}{4} \mathbf{1}_{[0,\infty)} + \frac{1}{2} \mathbf{1}_{[1,\infty)} + \frac{1}{4} \mathbf{1}_{[2,\infty)}.$$

Let P be given by $P((-\infty, x]) = F(x)$. Then find the probabilities of the following events:

a)
$$A = \left(-\frac{1}{2}, \frac{1}{2}\right)$$

- b) $B = \left(-\frac{1}{2}, \frac{3}{2}\right)$
- c) $C = (\frac{2}{3}, \frac{5}{2})$
- d) D = [0, 2)
- e) $E = (3, \infty)$.

Answer:

a)
$$P(A) = F(\frac{1}{2}) - F(-\frac{1}{2}) = \frac{1}{4} - 0 = \frac{1}{4}$$
.

b)
$$P(B) = F(\frac{3}{2} -) - F(-\frac{1}{2}) = \frac{3}{4} - 0 = \frac{3}{4}$$
.

c)
$$P(C) = F(\frac{5}{2} -) - F(-\frac{2}{3}) = 1 - \frac{1}{4} = \frac{3}{4}$$
.

d)
$$P(D) = F(2-) - F(0-) = \frac{3}{4} - 0 = \frac{3}{4}$$
.

e)
$$P(E) = (\lim_{x \to \infty} F(x)) - F(3) = 1 - 1 = 0.$$

Exercise 7.18

Suppose a function F is given by

$$F(x) = \sum_{i=1}^{\infty} \frac{1}{2^i} 1_{\left[\frac{1}{i}, \infty\right)}.$$

Show that F is a distribution on \mathbb{R} . Let us define P by $P((-\infty, x]) = F(x)$. Find the probabilities of the following events:

- a) $A = [1, \infty)$
- b) $B = [\frac{1}{10}, \infty)$
- c) $C = \{0\}$
- d) $D = [0, \frac{1}{2})$
- e) $E = (-\infty, 0)$
- f) $G=(0,\infty)$

Answer: F(x) = 0 for $-\infty < x \le 0$ and F(x) = 1 for $1 \le x < \infty$. For 0 < x < 1, F has the form of a step function with infinitely many steps of decreasing length and altitude. We have $F(x) = \frac{1}{n}$ on each interval [1/n, 1/(n-1)] for $n = 2, 3, \ldots$. That is F(x) = 1/2 on $1/2 \le x < 1$, F(x) = 1/3 on $1/3 \le x < 1/2$, and so on. Using this information we can show that F is a distribution.

- 1. Since $1_{[1/i,\infty)}(x)=0$ for all i whenever $x\leq 0$, we have F(x)=0 for any $x\leq 0$. Then $\lim_{x\to -\infty}F(x)=0$. Since $1_{[1/i,\infty)}(x)=1$ for all i whenever $x\geq 1$, we have $F(x)=\sum_{i=1}^{\infty}1/2^i=1$ for any $x\geq 1$. Then $\lim_{x\to \infty}F(x)=1$.
- 2. Suppose x < y. Since $1_{[1/i,\infty)}(x) \le 1_{[1/i,\infty)}(y)$ for each i = 1, 2, ...,

$$F(x) = \sum_{i=1}^{\infty} \frac{1}{2^i} 1_{[1/i,\infty)}(x) \le \sum_{i=1}^{\infty} \frac{1}{2^i} 1_{[1/i,\infty)}(y) = F(x).$$

- 3. Since F(y) = 1 for all $y \ge 1$, we have $\lim_{y \downarrow x} F(y) = \lim_{y \downarrow x} 1 = 1 = F(x)$ for all $x \ge 1$. Since F(y) = 0 for all $y \le 0$ we have $\lim_{y \downarrow x} F(x) = 0 = F(x)$ for all x < 0. This is because if $y \downarrow x$ for x < 0 the sequence of y values approaching x must eventually be negative. For 0 < x < 1 consider that x must be in the interval [1/n, 1/(n-1)) for some $n \ge 2$. Since F(x) is constant on each such interval (with $F(x) = \sum_{i=n}^{\infty} \frac{1}{2^i}$), there must exist an interval $(x, x + \epsilon)$ on which F(y) = F(x) for all $y \in (x, x + \epsilon)$. Thus $\lim_{y \downarrow x} F(y) = F(x)$. Finally consider x = 0. We have F(0) = 0 but F(y) > 0 for all y > 0. However, by the previous observation we see that for $y \in (0, 1)$ there exists some positive integer n = 1 such that $y \in [1/n, 1/(n-1))$ so that $F(y) = \sum_{i=n}^{\infty} \frac{1}{2^i}$. As $y \downarrow 0$, $n \to \infty$. We sum an increasingly smaller tail of the geometric series, whose terms tend to 0. Thus $F(y) \downarrow 0 = F(x)$ and F(x) is right continuous at x = 0.
- a) $P(A) = (\lim_{x \to \infty} F(x)) F(1-) = 1 \frac{1}{2} = \frac{1}{2}$.
- b) $P(B) = 1 F\left(\frac{1}{10} \right) = 1 \frac{1}{11} = \frac{10}{11}$.
- c) P(C) = P([0,0]) = F(0) F(0-) = 0 0 = 0.
- d) $P(D) = F(\frac{1}{2} -) F(0 -) = \frac{1}{3} 0 = \frac{1}{3}$
- e) $P(E) = F(0-) \lim_{x \to -\infty} F(x) = 0 0 = 0.$
- f) $P(G) = (\lim_{x \to \infty} F(x)) F(0) = 1 0 = 1.$