Chapter 9: Some Applications of Trigonometry

★ What is this chapter about?

- You'll learn how trigonometry helps us in real life, like:
 - Finding height of buildings/towers
 - Calculating **distance** across rivers or roads
 - Using angle of elevation and angle of depression

New Terms

- 1. Line of Sight: Line from the observer's eye to the object being seen
- 2. Angle of Elevation:
 - + When the object is **above horizontal level** (you look **up**)
 - > Formed between horizontal line and line of sight
- 3. Angle of Depression:
 - When the object is **below horizontal level** (you look **down**)
 - > Formed between horizontal line and line of sight

How to Apply Trigonometry?

Use right-angled triangle concepts to solve problems using these formulas:

 $\tan \theta$ = Opposite / Adjacent

 $\sin \theta$ = Opposite / Hypotenuse

 $\cos \theta$ = Adjacent / Hypotenuse

Choose the correct ratio based on known and unknown sides.

Common Diagrams You May See

- Triangle formed by tower/building, ground, and line of sight
- Observer is either:
 - o Standing on the ground
 - o On a building
 - On a bridge looking down (depression)

🗾 Example Formulas Used

- Height of tower:
- $\tan \theta = \text{height / distance from foot}$
- \Rightarrow height = distance × tan θ
- Length of ladder or rope (hypotenuse):
- $\sin \theta = \text{height / length}$
- \Rightarrow length = height / sin θ
- Distance between objects:
- $\tan \theta = \text{height / distance}$
- \Rightarrow distance = height / tan θ

Most Important Concepts from Examples

- Find height using angle of elevation and distance
- Find length of ladder/rope using angle & height
- • Use **angle of depression** when object is **below** observer
- Combine two triangles when two angles or two heights are involved
- Convert answers to decimal using:
- √3 ≈ 1.732
- √2 ≈ 1.414

Formulas to Remember

 $\tan \theta = \text{Opposite} / \text{Adjacent}$

 $\sin \theta = \text{Opposite} / \text{Hypotenuse}$

 $\cos \theta$ = Adjacent / Hypotenuse

Previous Year Question Pattern

Type of Question	Frequency
Find height using angle and distance	****
Use two angles (e.g., 30° & 45°) to find unknown	***
Angle of depression problems (lighthouse, bridge)	***
Two slides/ropes with different angles	***

Summary

- Line of sight = line from eye to object
- Angle of elevation = look **up**
- Angle of depression = look **down**
- Use **trigonometric ratios** in right triangles to find heights, lengths, and distances