十. 时间序列 (Matlab)

1. 读取数据

全国GDP值2000-2020年数据如下:

年份	GDP (亿元)	年份	GDP (亿元)
2000	100280	2011	487940
2001	110863	2012	538580
2002	121717	2013	592963
2003	137422	2014	641280
2004	161840	2015	685992
2005	187318	2016	740065
2006	319438	2017	820754
2007	270092	2018	900309
2008	319144	2019	990865
2009	348517	2020	1015986
2010	412119		

y=[100280 110863 121717 137422 161840 187318 319438 270092 319144 348517 412119
487940 538580 592963 641280 685992 740065 820754 900309 990865 1015986];
data=y;

2. 指数平滑预测

2.1 一次指数平滑

对本时刻观察值和本时刻预测值赋予不同的权重,求得下一时刻预测值。对数据进行归一化处理,其他按比例运算,在第一次指数平滑中,选取a=0.01、0.2和0.3,长度lenA=21,得到结果:

```
lenD=length(data);
a=[0.01 0.2 0.3 ];
lenA=length(a);
y1(1,1:lenA)=(data(1)+data(2))/2;
for i=2:lenD
y1(i,:)=a*data(i-1)+(1-a).*y1(i-1);
end
y1
next=a*data(lenD)+(1-a).*y1(lenD,:)
```

```
next =

1.0e+05 *

1.7859  4.6531  5.9218
```

2.2 二次指数平滑

先得到归一化数据st1,根据二次指数平滑方法公式进行运算得到预测结果,与原始数据st1对比可见我国的GDP整体呈现上升趋势

```
clc,clear
y=[100280 110863 121717 137422 161840 187318 319438 270092 319144 348517 412119
487940 538580 592963 641280 685992 740065 820754 900309 990865 1015986];
data=y;
lenD=length(data);
a=0.3;
st1(1)=data(1);
st2(2)=data(1);

for i=2:lenD
st1(i)=a*data(i)+(1-a).*st1(i-1);
st2(i)=a*st1(i)+(1-a).*st2(i-1);
end
b1=2*st1-st2
b2=a/(1-a)*(st1-st2)
y2=b1+b2
```


2.3 三次指数平滑

给定平滑系数,利用三次指数平滑的计算公式预测未来T期的值。最后引入均方差概念来判断平滑系数 是否准确

```
yt=[100280 110863 121717 137422 161840 187318 319438 270092 319144 348517 412119
487940 538580 592963 641280 685992 740065 820754 900309 990865 1015986];
n=length(yt);
alpha=0.3; st1_0=mean(yt(1:3)); st2_0=st1_0; st3_0=st1_0;
st1(1)=alpha*yt(1)+(1-alpha)*st1_0;
```

```
st2(1)=alpha*st1(1)+(1-alpha)*st2_0;
st3(1)=alpha*st2(1)+(1-alpha)*st3_0;
for i=2:n
 st1(i)=alpha*yt(i)+(1-alpha)*st1(i-1);
 st2(i)=alpha*st1(i)+(1-alpha)*st2(i-1);
 st3(i)=alpha*st2(i)+(1-alpha)*st3(i-1);
xlswrite('touzi.xls',[st1',st2',st3'])
st1=[st1_0,st1];st2=[st2_0,st2];st3=[st3_0,st3];
a=3*st1-3*st2+st3;
b=0.5*alpha/(1-alpha)^2*((6-5*alpha)*st1-2*(5-4*alpha)*st2+(4-3*alpha)*st3);
c=0.5*alpha^2/(1-alpha)^2*(st1-2*st2+st3);
yh=a+b+c;
xlswrite('touzi.xls',yh','Sheet1','D1')
plot(1:n,yt,'*',1:n,yh(1:n),'0')
legend('Real','Predict')
coe=[c(n+1),b(n+1),a(n+1)];
yh1=polyval(coe,2)
yh2=polyval(coe,3)
yh3=polyval(coe,4)
yh4=polyval(coe,5)
yh5=polyval(coe,6)
```

由三次指数平滑运算我们可以得到预测结果,可见2021年GDP达到最高值,然后在2022年出现下降趋势,再在往后的四年持续稳定增加

年份	2021	2022	2023	2024	2025
GDP	1.828e+06	1.2615e+06	1.3426e+06	1.4261e+06	1.5120e+06