Placement Pizzeria Paris

PREDICTION OF THE BEST LOCATION TO OPEN A PIZZERIA IN PARIS

1. INTRODUCTION

1.1 Context

1.2 Problem

1.1 Context

Paris

44.896 restaurant

people eat one meal on 5 outside

every restaurant should has 9.6 clients for each meal on the global scope of Paris, but certain neighborhood are more interessting than others to open a restaurant.

1.2 Problem

It is almost impossible to have no concurrence in a big city when we open a restaurant, especially a pizzeria

each blue point represents a pizzeria, the red circle is a pizzeria that open just a few years ago, and which got a phenomenal success, maybe we can explain this success by the fact that there is a large portion of the city with no pizzeria and a large population in this area.

Starting in the best zone can just speed up the sucess process and touch more people quicker even if the quality matter.

1. DATA

2.1 Strategies

2.2 Data structure

We will take a 200m range for each location, we have 2622 possible areas

2.2 Data structure

Here are the features that we will use

The density of population in the area
The number of pizzerias in a 500m range
The number of other restaurants in a 300m range
The presence of tourist places in a 1km range
The number of stores in a 300m range
Price per square meter of the district

3.Methodology.

3.1 Data collection

3.2 Method

3.3 Algorithm

3.1 Data collection

3.2 Method

For target variable to estimate the number of clients of a restaurants, we will use the number of comments, it is not a very good metrics but we don't have acess to the premium foursquare API, which have a metrics to estimate the number of clients per day.

The best 30% of the score will define the threshold, we will then calculate the score for each neighborhood, if it is above the threshold then the neighborhood will be defined as being interesting.

3.3 Algorithm

The variable that we want to predict is a continous value so we will use a regression technique

3.3 Algorithm

Red point: Training Set Blue points: Prediction

4. Results

4.1 Data cleaning (correlation analysis)

4.2 Model results

4.1 Data cleaning (correlation analysis)

1	0.29	0.46	0.23	0.26	0.098	0.26
0.29	1	0.48	0.19	0.19	-0.033	0.085
0.46	0.48	1	0.39	0.39	-0.11	0.23
0.23	0.19	0.39	1	0.71	-0.57	0.17
0.26	0.19	0.39	0.71	1	-0.55	0.22
0.098	-0.033	-0.11	-0.57	-0.55	1	-0.015
0.26	0.085	0.23	0.17	0.22	-0.015	1

Really bad correlation (Population density)

4.1 Data cleaning (correlation analysis)

4.2 Model results

Here is the map with all of the good neighborhood to open a Pizzeria (score > 6 for the threshold)

