



### Introdução à Programação Estrutura de Decisão ou Seleção

#### Estruturas de Seleção

São estruturas de controle de fluxo, que executam um ou vários comandos se a condição testada for verdadeira ou se for falsa.

Permitem a tomada de decisão sobre qual o caminho a ser escolhido, de acordo com o resultado de uma expressão lógica.



#### Estrutura de Decisão ou Seleção

Os comandos de decisão ou desvio fazem parte das técnicas de programação que conduzem a estruturas de programas que não são totalmente seqüenciais.

Existem três formas básicas desse tipo de estrutura:

Simples, Composta e Múltipla Escolha.



#### Estrutura de Decisão ou Seleção

A classificação das estruturas de decisão são feitas de acordo com o número de condições que devem ser testadas para que se decida qual o caminho a ser seguido.

#### Existem 3 tipos de estruturas de decisão:

- Estrutura de Decisão Simples
  - (Se ... então)
- Estrutura de Decisão Composta
  - (Se ... então ... senão)
- Estrutura de Decisão Múltipla do Tipo Escolha
  - (Escolha ... Caso ... Senão)



### Introdução à Programação Estrutura de Decisão ou Seleção

### Estrutura de Decisão Simples

se condição verdadeira então

sequência de comandos

fim se



### Introdução à Programação Estrutura de Decisão ou Seleção

### Estrutura de Decisão Composta

É representada por dois caminhos, sendo que um comando avalia se o valor for *true* executar uma ação, ou se o valor for *false* executar outra ação.

se condição então
seqüência de comando
senão
seqüência de comando
fim se



#### Estrutura de Decisão ou Seleção

#### Estrutura de Decisão Se's Aninhados

Em algumas aplicações, uma das alternativas de uma estrutura Se-então-senão pode envolver outras decisões.

Quando isso ocorre, dizemos que houve aninhamento de Se's. se condição então

<u>se</u> condição <u>então</u>

<u>se</u> condição <u>então</u>

seqüência de comando

<u>fimse</u>

<u>senão</u>

<u>se</u> condição <u>então</u>

sequência de comando

**fimse** 

fim se



#### Estrutura de Decisão ou Seleção

```
SE < condição > ENTÃO
      SE < condição > ENTÃO
             <instruções para condição verdadeira>
      SENAO
             <instruções para condição falsa>
      FIM SE
SENAO
      SE < condição > ENTÃO
             <instruções para condição verdadeira>
      SENAO
             <instruções para condição falsa>
      FIM SE
FIM SE
```



Exemplo 1 – Se's Aninhados

```
Declaração
Algoritmo_reajuste_salario
                                                     de Variáveis
Declare novo_salario, salario: real;
novo salario \leftarrow 0;
                                              Entrada de
  escreva("Informe o salário: ");
                                                Dados
  leia (salario);
  se (salario < 500) então
       novo salario ← salario *1.15;
                                                       Estrutura
  senão
                                                       de Decisão
       se (salario < = 1.000) então
            novo_salario ← salario *1.10;
        senão
               novo salario ← salario *1.05;
                                                        Saída de
                                                         Dados
        fimse
   fimse
  escreva("O novo salário é: ", novo_salario);
FimAlgoritmo.
```



#### Exemplo 2 – Se's Aninhados

```
Algoritmo Num
Declare A, B: inteiro;
    escreva(" entre com 1º numero");
    leia(A);
    escreva(" entre com 2º numero");
    leia(B);
    se (A > B) então
       escreva("O maior é", A);
    senão
       se (A = B) então
               escreva("São iguais");
        senão
               escreva("O maior é", B);
       fimse
    fimse
FimAlgoritmo
```

Algoritmo que lê dois números e escreve o maior.



#### Exemplo 3 – Se's Aninhados

```
Algoritmo Num;
Declare N, M, D: real;
M \leftarrow 0; D \leftarrow 0;
   escreva("Informe um número: ");
   leia(N);
   se (N >= 0) então
         se (N > 10) então
            M \leftarrow N/2;
            escreva("Sua metade é:", M);
         senão
            D ← N*2;
            escreva("Seu dobro é:", D);
        fimse
   senão
         N \leftarrow N * (-1);
         escreva("O valor de N é: ", N);
   fimse
FimAlgoritmo.
```

Crie um algoritmo para verificar se um número é positivo e maior que 10;

- se for maior escreva sua metade, se for menor escreva seu dobro.

se for negativo
 multiplique por (-1) e
 escreva seu valor.



#### Exemplo 4 – Se's Aninhados

```
Algoritmo pos_neg_nulo;
                                     Algoritmo pos_neg_nulo;
Declare num : real;
                                     Declare num : real;
 escreva("Informe o número");
                                      escreva("Informe o número");
 leia(num);
                                      leia(num);
 se( num > 0 ) então
                                      se( num > 0 ) então
    escreva("Positivo");
                                         escreva("Positivo");
 senão se( num < 0 ) então
                                      fimse
           escreva("Negativo");
                                      se( num < 0 ) então
                                         escreva("Negativo");
        senão
               escreva("Nulo");
                                      fimse
                                      se(num = 0 ) então
        fimse
                                        escreva("Nulo");
 fimse
                                      fimse
FimAlgoritmo.
                                     FimAlgoritmo.
```



#### NDAÇÃO CENTRO DE ANÁLISE. PESQUISA EXERCÍCIO DE FIXAÇÃO COM SE'S Aninhados

P1 – Escreva um programa que leia um número de dois dígitos e calcule sua metade; verifique se o resultado é par e escreva a mensagem "a metade do número é par", senão escreva "a metade do número é ímpar":

P2 – Escreva um programa que leia um número e imprimir a raiz quadrada do número caso ele seja positivo > 10 e o quadrado do número caso ele seja positivo > 20 e a mensagem "Não é válido" caso seja negativo.

P3 – Escreva um programa que leia três números (suponha valores diferentes) e imprimí-los em ordem crescentes:



#### Exercício de Fixação com SE's Aninhados

P4 – Faça um algoritmo que leia os valores de A, B e C e faça a seguinte operação de acordo com os valores de cada um deles (não se esqueça de imprimir o resultado):

· Se A for o major: B + C

Se B for o maior: A \* C

· Se C for o maior: A - B

P5 – Criar um algoritmo que leia quatro valores inteiros e imprimir seu maior número. (suponha números diferentes):

P6 – Criar um algoritmo que leia a idade de uma pessoa e informar: Se é maior de idade (>= 18); Se é menor de idade; Se é maior de 65 anos:



#### Exercício de Fixação com SE's Aninhados

- P7 Um comerciante comprou um produto e quer vendê-lo com um lucro de 45% se o valor da compra for menor que R\$ 20,00; caso contrário, o lucro será de 30%. Entrar com o valor do produto e imprimir o valor da venda:
- P8 Criar um algoritmo para entrar com três números e descobrir sua ordem e armazena-los em três variáveis com os seguintes nomes: maior, intermediário e menor (suponha três números diferentes):
- P9 Criar um algoritmo que leia a idade de uma pessoa e informar a sua classe eleitoral:

Não eleitor (abaixo de 16 anos); Eleitor obrigatório (entre 18 e 65 anos); Eleitor facultativo (maior de 65 anos):

