CLAIMS

1. A method for treating a subject with an allergic condition, said method comprising administering to the subject a therapeutically effective amount of a pharmaceutical composition comprising a compound of formula (I) below:

10

5

wherein:

is hydrogen, azido, halogen, C₁₋₅ alkoxy, hydroxy, C₁₋₅ alkyl, C₂₋₅ alkenyl, cyano, nitro, R⁷R⁸N, C ₂₋₈ acyl, R⁹OC=O, R¹⁰R¹¹NC=O, or R¹⁰R¹¹NSO₂; or R¹ is taken together with W as described below;

15 R² is hydrogen, halogen, C₁₋₅ alkoxy, C₁₋₅ alkyl, C₂₋₅ alkenyl, C₁₋₅ haloalkyl, cyano, or R⁴⁸R⁴⁹N; alternatively, R¹ and R² can be taken together to form an optionally substituted 5- to 7- membered carbocyclic or heterocyclic ring, which ring may be unsaturated or aromatic;

20 each of R³ and R⁴ is independently hydrogen or C₁₋₅ alkyl;

each of R⁵ and R⁶ is independently hydrogen, C₁₋₅ alkyl, C₂₋₅ alkenyl, C₁₋₅ alkoxy, C₁₋₅ alkylthio, halogen, or a 4-7 membered carbocyclyl or heterocyclyl;

alternatively, R⁵ and R⁶ can be taken together to form an optionally substituted
5- to 7- membered carbocyclic or heterocyclic ring, which ring may be
unsaturated or aromatic, and may be optionally substituted with between
one and three substituents independently selected from halo, cyano,
amino, nitro, R⁴⁰, R⁴⁰O-, R⁴⁰S-, R⁴⁰O(C ₁₋₅ alkylene)-, R⁴⁰O(C=O)-,

10

20

25

 $R^{40}(C=O)-,\ R^{40}(C=S)-,\ R^{40}(C=O)O-,\ R^{40}O(C=O)(C=O)-,\ R^{40}SO_2,$ $NHR^{62}(C=NH)-,\ NHR^{62}SO_2-,\ and\ NHR^{62}(C=O)-;$

- Is H, C $_{1.5}$ alkyl, C $_{2.5}$ alkenyl, phenyl, benzyl, phenethyl, C $_{1.5}$ heterocyclyl, (C $_{1.5}$ heterocyclyl)C $_{1.5}$ alkylene, amino, or mono- or di(C $_{1.5}$ alkyl)amino, or R⁵⁸OR⁵⁹-, wherein R⁵⁸ is H, C $_{1.5}$ alkyl, C $_{2.5}$ alkenyl, phenyl, benzyl, phenethyl, C $_{1.5}$ heterocyclyl, or (C $_{1.5}$ heterocyclyl)C $_{1.6}$ alkylene and R⁵⁹ is C $_{1.5}$ alkylene, phenylene, or divalent C $_{1.5}$ heterocyclyl; and
- R⁶² can be H in addition to the values for R⁴⁰;
- R^7 is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, naphthyl, C_{1-5} heterocyclyl, C_{2-8} acyl, aroyl, $R^{27}OC=O$, $R^{28}R^{29}NC=O$, $R^{27}SO$, $R^{27}SO_2$, or $R^{28}R^{29}NSO_2$;
- R⁸ is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, or C₁₋₅ heterocyclyl; alternatively, R⁷ and R⁸ can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;
- 15 R⁹ is C₁₋₅ alkyl, phenyl, naphthyl, or C ₁₋₅ heterocyclyl;
 - R²¹ is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, naphthyl, C_{1-5} heterocyclyl, C_{2-8} acyl, aroyl, R³⁰OC=O, R³¹R³²NC=O, R³⁰SO, R³⁰SO₂, or R³¹R³²NSO₂;
 - R²² is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, or C₁₋₅ heterocyclyl; alternatively, R²¹ and R²²can be taken together to form an optionally substituted 4- to 7-membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;
 - each of R^{23} , R^{26} , R^{27} , R^{30} , R^{33} , R^{44} , R^{45} , and R^{50} is C_{1-5} alkyl, phenyl, naphthyl, or C_{1-5} heterocyclyl;
 - is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, naphthyl, C ₁₋₅ heterocyclyl, C ₂₋₈ acyl, aroyl, R³³OC=O, R³⁴R³⁵NC=O, R³³SO, R³³SO₂, or R³⁴R³⁵NSO₂;
 - R²⁵ is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, or C₁₋₅ heterocyclyl; alternatively, R²⁴ and R²⁵ can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;
- each of R¹⁰ and R¹¹ is independently hydrogen, C₁₋₅ alkyl, C₂₋₅ alkenyl, phenyl, or C₁₋₅ heterocyclyl; alternatively, R¹⁰ and R¹¹ or can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be

10

15

20

30

saturated, unsaturated or aromatic;

- each of R²⁸, R²⁹, R³¹, R³², R³⁴, R³⁵, R⁴⁶, R⁴⁷, R⁵¹ and R⁵² is independently hydrogen, C_{1.5} alkyl, phenyl, or C_{1.5} heterocyclyl; alternatively, R²⁸ and R²⁹, R³¹ and R³², R³⁴ and R³⁵, R⁴⁶ and R⁴⁷, or R⁵¹ and R⁵², independently, can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;
- n is 1 or 2;
- represents C_{3-6} alkenediyl or C_{3-6} alkanediyl, optionally substituted with hydroxy, halogen, C_{1-5} alkyl, C_{1-5} alkoxy, oxo, hydroximino, CO_2R^{60} , $R^{60}R^{61}NCO_2$, (L)-C ₁₋₄ alkylene-, (L)-C₁₋₅ alkoxy, N₃, or [(L)-C ₁₋₅ alkylene]amino;
- each of R⁶⁰ and R⁶¹ is independently hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, benzyl, phenethyl, or C₁₋₅ heterocyclyl; alternatively R⁶⁰ and R⁶¹, can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;
- is amino, mono- or di- $C_{1.5}$ alkylamino, pyrrolidinyl, morpholinyl, piperidinyl homopiperidinyl, or piperazinyl, where available ring nitrogens may be optionally substituted with $C_{1.5}$ alkyl, benzyl, $C_{2.5}$ acyl, $C_{1.5}$ alkylsulfonyl or $C_{1.5}$ alkyloxycarbonyl;
- X is nitrogen or R¹²C;
- Y is nitrogen or R¹³C;
- Z is nitrogen or R¹⁴C;
- is hydrogen, halogen, C₁₋₅ alkoxy, C₁₋₅ alkyl, C₂₋₅ alkenyl, cyano, nitro, R²¹R²²N, C₂₋₈ acyl, C₁₋₅ haloalkyl, C₁₋₅ heterocyclyl, (C₁₋₅ heterocyclyl)C₁₋₅ alkylene, R²³OC=O, R²³O(C=O)NH-, R²³SO, R²²NHCO-, R²²NH(C=O)NH-, R²³(C₁₋₄ alkylene)NHCO-, R²³SO₂, or R²³SO₂NH-;
 - is hydrogen, halogen, $C_{1.5}$ alkoxy, $C_{1.5}$ alkyl, $C_{2.5}$ alkenyl, cyano, nitro, $R^{42}R^{43}N$, $C_{2.8}$ acyl, $C_{1.5}$ haloalkyl, $C_{1.5}$ heterocyclyl, $(C_{1.5}$ heterocyclyl) $C_{1.5}$ alkylene, $R^{44}OC=O$, $R^{44}O(C=O)NH-$, $R^{44}SO$, $R^{43}NHCO-$, $R^{43}NH(C=O)NH-$, $R^{44}(C_{1.4}$ alkylene)NHCO-, $R^{44}SO_2$, or $R^{44}SO_2NH-$;
 - R¹⁴ is hydrogen, halogen, C_{1-5} alkoxy, C_{1-5} alkyl, C_{2-5} alkenyl, cyano, nitro, $R^{24}R^{25}N$, C_{2-8} acyl, C_{1-5} haloalkyl, C_{1-5} heterocyclyl, (C_{1-5} heterocyclyl) C_{1-5}

10

15

20

alkylene, R²⁶OC=O, R²⁶O(C=O)NH-, R²⁶SO, R²⁵NHCO-, R²⁵NH(C=O)NH-, R²⁶(C $_{1-4}$ alkylene)NHCO-, R²⁶SO $_2$, or R²⁶SO $_2$ NH-; alternatively, R¹² and R¹³ or R¹² and R² or R¹³ and R¹⁴ can be taken together to form an optionally substituted 5- to 6- membered carbocyclic or heterocyclic ring, which ring may be unsaturated or aromatic;

represents a monocyclic or bicyclic aryl or heteroaryl ring, optionally substituted with between 1 and 3 substituents selected from halogen, C₁₋₅ alkoxy, C₁₋₅ alkyl, C₂₋₅ alkenyl, cyano, azido, nitro, R¹⁵R¹⁶N, R¹⁷SO₂, R¹⁷SO, R¹⁷OC=O, R¹⁵R¹⁶NC=O, C₁₋₅ haloalkyl, C₁₋₅ haloalkoxy, C₁₋₅ haloalkylthio, and C₁₋₅ alkylthio;

R¹⁵ is hydrogen, C_{1-5} alkyl, C_{3-5} alkenyl, phenyl, benzyl, C_{1-5} heterocyclyl, C_{2-8} acyl, aroyl, R⁵³OC=O, R⁵⁴R⁵⁵NC=O, R⁵³SO, R⁵³SO₂, or R⁵⁴R⁵⁵NSO₂;

R¹⁶ is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, benzyl, or C₁₋₅ heterocyclyl; alternatively, R¹⁵ and R¹⁶ can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;

each of R^{17} and R^{53} is C_{1-5} alkyl, phenyl, or C_{1-5} heterocyclyl;

each of R^{54} and R^{55} is independently hydrogen, C_{1-5} alkyl, C_{2-5} alkenyl, phenyl, benzyl, or C_{1-5} heterocyclyl;

alternatively, R⁵⁴ and R⁵⁵ can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;

W represents SO₂, C=O, CHR²⁰, or a covalent bond; or W and R¹, taken together with the 6-membered ring to which they are both attached, form one of the following two formulae:

$$(I)(a) \qquad \qquad (I)(b)$$

20

30

1

wherein X_a is O, S, or N; and X_b is O, S or SO_2 ;

- R²⁰ is hydrogen, C_{1.5} alkyl, phenyl, benzyl, naphthyl, or C_{1.5} heterocyclyl;
- R⁴² is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, naphthyl, C ₁₋₅ heterocyclyl, C ₂₋₈ acyl, aroyl, R⁴⁵OC=O, R⁴⁶R⁴⁷NC=O, R⁴⁵SO, R⁴⁵SO₂, or R⁴⁶R⁴⁷NSO₂;
- is hydrogen, C_{1.5} alkyl, C_{3.5} alkenyl, phenyl, or C_{1.5} heterocyclyl; alternatively, R⁴² and R⁴³can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic;
 - R⁴⁴ is C_{1.5} alkyl, C_{2.5} alkenyl, phenyl, naphthyl, or C_{1.5} heterocyclyl;
- 10 R⁴⁸ is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, naphthyl, C ₁₋₅ heterocyclyl, C ₂₋₈ acyl, aroyl, R⁵⁰OC=O, R⁵¹R⁵²NC=O, R⁵⁰SO, R⁵⁰SO₂, or R⁵¹R⁵²NSO₂;
 - R⁴⁹ is hydrogen, C₁₋₅ alkyl, C₃₋₅ alkenyl, phenyl, or C₁₋₅ heterocyclyl; alternatively, R⁴⁸ and R⁴⁹ can be taken together to form an optionally substituted 4- to 7- membered heterocyclic ring, which ring may be saturated, unsaturated or aromatic; and
 - wherein each of the above hydrocarbyl or heterocarbyl groups, unless otherwise indicated, and in addition to any specified substituents, is optionally and independently substituted with between 1 and 3 substituents selected from methyl, halomethyl, hydroxymethyl, halo, hydroxy, amino, nitro, cyano, C ₁₋₅ alkyl, C ₁₋₅ alkoxy, -COOH, C ₂₋₆ acyl, [di(C ₁₋₄ alkyl)amino]C ₂₋₅ alkylene, [di(C ₁₋₄ alkyl)amino] C ₂₋₅ alkyl-NH-CO-, and C ₁₋₅ haloalkoxy;
- or a pharmaceutically acceptable salt, ester, or amide thereof.
 - 2. A method of claim 1, wherein each of R^3 and R^4 is hydrogen; Ar represents a six membered ring, optionally substituted with between 1 and 2 substituents selected from halogen, C_{1-5} alkyl, cyano, nitro, $R^{15}R^{16}N$, CF_3 and OCF_3 ; R^{12} is hydrogen, $R^{23}SO_1$ or $R^{23}SO_2$; R^{13} is hydrogen, $R^{44}SO_2$; R^{14} is hydrogen, halogen, C_{1-5} alkoxy, C_{1-5} alkyl, cyano, nitro, or $R^{24}R^{25}N$; and G is C_3 alkanediyl, optionally substituted with hydroxy, (L)- C_{1-5} alkyloxy-, or (L)- C_{1-5} alkylamino.

10

15

- 3. A method of claim 2, wherein Ar is phenyl.
- 4. A method of claim 1, wherein said compound is selected from:

1-[4-(2-Amino-6-chloro-phenyl)-piperazin-1-yl]-3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propan-2-ol;

1-[3-Chloro-2-(4-{3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-phenyl]-3-methyl-urea;

1-[3-Chloro-2-(4-{2-hydroxy-3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-phenyl]-3-methyl-urea;

3-Amino-2-(4-{2-hydroxy-3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-benzoic acid methyl ester;

3-Chloro-2-(4-{3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-phenylamine;

1-[2-(4-{3-[3-(4-Bromo-phenyl)-5-methanesulfonyl-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-2-hydroxy-propyl}-piperazin-1-yl)-3-chloro-phenyl]-3-methyl-urea;

and 1-{3-[4-(2-Chloro-6-methanesulfonylamino-phenyl)-piperazin-1-yl]-propyl}-3-(4-trifluoromethyl-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-carboxylic acid amide .

25

20

A method of claim 1, wherein said compound is selected from:
 [3-Chloro-2-(4-{3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-phenyl]-carbamic acid methyl ester;

30 1-[3-(4-Benzo[d]isothiazol-3-yl-piperazin-1-yl)-propyl]-3-(4-bromo-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-carboxylic acid amide;

2-(4-{3-[5-Acetyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-2-hydroxy-propyl}-piperazin-1-yl)-3-nitro-benzoic

10

15

20

25

30

acid methyl ester;

1-[4-(2-Chloro-6-nitro-phenyl)-piperazin-1-yl]-3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propan-2-ol;

2-(4-{2-Hydroxy-3-[3-(4-iodo-phenyl)-5-methanesulfonyl-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-benzonitrile; 3-(4-Bromo-phenyl)-1-{3-[4-(2-nitro-phenyl)-piperazin-1-yl]-propyl}-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-carboxylic acid amide;

2-(4-{3-[5-Acetyl-3-(4-iodo-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-2-hydroxy-propyl}-piperazin-1-yl)-benzonitrile;

2-(4-{3-[3-(4-Chloro-3-methyl-phenyl)-5-methanesulfonyl-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-2-hydroxy-propyl}-piperazin-1-yl)-benzonitrile;

1-(3-(4-Chloro-3-methyl-phenyl)-1-{3-[4-(2,4-dimethyl-phenyl)-piperazin-1-yl]-2-hydroxy-propyl}-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl)-ethanone;

1-{3-[4-(3,5-Dichloro-pyridin-4-yl)-piperazin-1-yl]-propyl}-5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine;

2-(4-{3-[5-Methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-benzonitrile;

N-[3-Chloro-2-(4-{3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-phenyl]-methanesulfonamide;

3-(3,4-Dichloro-phenyl)-1-{3-[4-(2-nitro-phenyl)-piperazin-1-yl]-propyl}-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-carboxylic acid amide;

and 3-(4-Chloro-3-methyl-phenyl)-1-{3-[4-(2-cyano-phenyl)-piperazin-1-yl]-2-hydroxy-propyl}-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-carboxylic acid amide.

6. A method of claim 1, wherein said compound is selected from: 1-(3-(4-Chloro-phenyl)-1-{3-[4-(2-fluoro-phenyl)-piperazin-1-yl]-propyl}-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl)-ethanone;

- 1-{3-(4-Chloro-phenyl)-1-[2-hydroxy-3-(4-o-tolyl-piperazin-1-yl)-propyl]-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl}-ethanone;
- 1-{3-(4-Chloro-phenyl)-1-[2-methoxy-3-(4-o-tolyl-piperazin-1-yl)-propyl]-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl}-ethanone;
- 1-[1-{2-Hydroxy-3-[4-(2-hydroxy-phenyl)-piperazin-1-yl]-propyl}-3-(4-iodo-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl]-ethanone;
 1-[1-[2-Hydroxy-3-(4-o-tolyl-piperazin-1-yl)-propyl]-3-(4-trifluoromethyl-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl]-ethanone;
 - 2-(4-{3-[5-Acetyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-
- c]pyridin-1-yl]-2-hydroxy-propyl}-piperazin-1-yl)-benzonitrile;
- 1-[3-(3,4-Dichloro-phenyl)-pyrazol-1-yl]-3-(4-o-tolyl-piperazin-1-yl)-propan-2-ol;
 - 1-[1-[2-(2-Piperazin-1-yl-ethylamino)-3-(4-o-tolyl-piperazin-1-yl)-propyl]-3-(4-
 - trifluoromethyl-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl]-ethanone;
 - 1-{3-[4-(2-Cyano-phenyl)-piperazin-1-yl]-2-hydroxy-propyl}-3-(4-iodo-phenyl)-
- 15 1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-carboxylic acid tert-butyl ester;
 - 1-{3-[4-(2-Cyano-phenyl)-piperazin-1-yl]-2-hydroxy-propyl}-3-(4-iodo-phenyl)-
 - 1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-carboxylic acid amide;
 - Carbamic acid 1-[5-carbamoyl-3-(4-iodo-phenyl)-4,5,6,7-tetrahydro-
 - pyrazolo[4,3-c]pyridin-1-ylmethyl]-2-[4-(2-cyano-phenyl)-piperazin-1-yl]-ethyl
- 20 ester;
 - 1-{3-(3-Amino-4-chloro-phenyl)-1-[2-hydroxy-3-(4-o-tolyl-piperazin-1-yl)-propyl]-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl}-ethanone;
 - (*R*)-1-(3-(4-Bromo-phenyl)-1-{3-[4-(5-chloro-2-methyl-phenyl)-piperazin-1-yl]-2-hydroxy-propyl}-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl)-ethanone;
- 2-(4-{3-[5-Acetyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-2-fluoro-propyl}-piperazin-1-yl)-benzonitrile; (3-(4-Chloro-3-methyl-phenyl)-1-{3-[4-(2-cyano-phenyl)-piperazin-1-yl]-2-hydroxy-propyl}-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl)-oxo-acetic acid
 - methyl ester;
- 5-Methanesulfonyl-1-{3-[4-(2-nitro-phenyl)-piperazin-1-yl]-propyl}-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine; 1-[3-Chloro-2-(4-{3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-phenyl]-urea;

25

30

- 1-{3-[4-(2-Chloro-6-methanesulfonylamino-phenyl)-piperazin-1-yl]-propyl}-3-(4-trifluoromethyl-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-sulfonic acid amide;
- N-[3-Chloro-2-(4-{2-hydroxy-3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-
- 5 4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-phenyl]-methanesulfonamide;
 - 1-[4-(2,6-Dinitro-phenyl)-piperazin-1-yl]-3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propan-2-ol;
- 2-(4-{2-Hydroxy-3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-3-methanesulfonylamino-benzoic acid methyl ester;
 - 1-{3-[4-(1,1-Dioxo-1H-1l6-benzo[d]isothiazol-3-yl)-piperazin-1-yl]-propyl}-5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-1H-
- pyrazolo[4,3-c]pyridine;
 - 1-[1-{3-[4-(6-Chloro-benzothiazol-2-yl)-piperazin-1-yl]-2-hydroxy-propyl}-3-(4-trifluoromethyl-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl]-ethanone; and
 - 1-[1-[3-(4-Benzo[d]isoxazol-3-yl-piperazin-1-yl)-2-hydroxy-propyl]-3-(4-trifluoromethyl-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-5-yl]-ethanone.
 - 7. A method of claim 1, wherein said compound is selected from: N-[3-Chloro-2-(4-{2-hydroxy-3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-phenyl]-methanesulfonamide;
 - 1-[3-(4-Benzo[d]isothiazol-3-yl-piperazin-1-yl)-propyl]-3-(4-bromo-phenyl)-1,4,6,7-tetrahydro-pyrazolo[4,3-c]pyridine-5-carboxylic acid amide; and
 - 1-[3-Chloro-2-(4-{2-hydroxy-3-[5-methanesulfonyl-3-(4-trifluoromethyl-phenyl)-4,5,6,7-tetrahydro-pyrazolo[4,3-c]pyridin-1-yl]-propyl}-piperazin-1-yl)-phenyl]-3-methyl-urea.

8. A method of claim 1, wherein said pharmaceutical composition is formulated in a dosage amount appropriate for the treatment of an allergic condition.