Тема 6. Невизначений інтеграл

Лекція 6.1. Первісна. Невизначений інтеграл, властивості. Таблиця основних формул. Найпростіші способи інтегрування. Заміна змінної у невизначеному інтегралі. Внесення виразу під знак диференціалу. Інтегрування частинами у невизначеному інтегралі.

Первісна. Невизначений інтеграл, властивості

<u>Означення.</u> Функція F(x) називається **первісною** функції f(x) на відрізку [a, b], якщо у будь-якій точці цього відрізка справедливою є рівність:

$$F'(x) = f(x)$$
.

Відмітимо, що первісних для однієї і тієї ж функції може бути нескінченно багато. Усі вони можуть відрізнятися одна від одної на деяке стале число, яке позначимо C.

$$F_1(x) = F_2(x) + C.$$

<u>Означення.</u> **Невизначеним інтнгралом** функції f(x) називається сукупність первісних функцій, які визначені співвідношенням:

$$F(x) + C$$
.

Записується інтеграл у такому вигляді: $\int f(x)dx = F(x) + C$.

Умовою існування невизначеного інтегралу на деякому відрізку ε неперервність функції на цьому відрізку.

Властивості

1.
$$(\int f(x)dx)' = (F(x) + C)' = f(x)$$
.

2.
$$d(\int f(x)dx) = f(x)dx$$
.

$$3. \int dF(x) = F(x) + C.$$

4.
$$\int (u+v-w)dx = \int udx + \int vdx - \int wdx$$
; де u, v, w – деякі функції від x.

5.
$$\int C \cdot f(x) dx = C \cdot \int f(x) dx$$
.

Приклад:

$$\int (x^2 - 2\sin x + 1)dx = \int x^2 dx - 2\int \sin x dx + \int dx = \frac{1}{3}x^3 + 2\cos x + x + C.$$

2. Таблиця основних формул

Інтеграл		Значення		Інтеграл		Значення
1	$\int t g x dx$	-ln cosx	+C	9	$\int e^x dx$	$e^{x} + C$
2	$\int ctgx dx$	ln sinx	+ C	10	$\int \cos x dx$	sinx + C

3	$\int a^x dx$	$\frac{a^x}{\ln a} + C$	11	$\int \sin x dx$	-cosx + C
4	$\int \frac{dx}{a^2 + x^2}$	$\frac{1}{a} \operatorname{arctg} \frac{x}{a} + C$	12	$\int \frac{1}{\cos^2 x} dx$	tgx + C
5	$\int \frac{dx}{x^2 - a^2}$	$\frac{1}{2a} \ln \left \frac{x+a}{x-a} \right + C$	13	$\int \frac{1}{\sin^2 x} dx$	-ctgx + C
6	$\int \frac{dx}{\sqrt{x^2 \pm a^2}}$	$\left \ln \left x + \sqrt{x^2 \pm a^2} \right + C \right $	14	$\int \frac{dx}{\sqrt{a^2 - x^2}}$	$\arcsin \frac{x}{a} + C$
7	$\int x^{\alpha} dx$	$\frac{x^{\alpha+1}}{\alpha+1} + C, \alpha \neq -1$	15	$\int \frac{1}{\cos x} dx$	$\ln \left tg\left(\frac{x}{2} + \frac{\pi}{4}\right) \right + C$
8	$\int \frac{dx}{x}$	$\ln x + C$	16	$\int \frac{1}{\sin x} dx$	$\ln \left tg \frac{x}{2} \right + C$

3. Найпростіші способи інтегрування. Заміна змінної у невизначеному інтегралі. Внесення виразу під знак диференціалу

Метод безпосереднього інтегрування полягає у безпосередньому обчисленні інтегралів за допомогою основних властивостей невизначеного інтеграла і таблиці інтегралів.

Метод заміни змінною (спосіб підстановки)

Теорема. Якщо необхідно знайти інтеграл $\int f(x)dx$, але складно відшукати первісну, то за допомогою заміни $x = \varphi(t)$ і $dx = \varphi'(t)dt$ отримуємо:

$$\int f(x)dx = \int f(\boldsymbol{\varphi}(t))\boldsymbol{\varphi}'(t)dt.$$

<u>Приклад.</u> Знайти невизначений інтеграл $\int \sqrt{\sin x} \cos x dx$.

Зробимо заміну t = sinx, dt = cosxdt.

Отримуємо:
$$\int \sqrt{t} dt = \int t^{1/2} dt = \frac{2}{3} t^{3/2} + C = \frac{2}{3} \sin^{3/2} x + C.$$

4. Інтегрування частинами у невизначеному інтегралі

Спосіб ґрунтується на використанні формули похідної добутку функцій:

$$(uv)'=u'v+v'u,$$

де u і v – деякі функції від x.

В диференціальній формі: d(uv) = udv + vdu.

Проінтегрувавши останню формулу, отримуємо: $\int d(uv) = \int u dv + \int v du$, а враховуючи властивості невизначеного інтегралу:

$$uv = \int u dv + \int v du$$
 afo $\int u dv = uv - \int v du$.

Отримуємо формулу інтегрування за частинами.

Приклад.
$$\int x^2 \sin x dx = \begin{cases} u = x^2; & dv = \sin x dx; \\ du = 2x dx; & v = -\cos x \end{cases} = -x^2 \cos x + \int \cos x \cdot 2x dx =$$

$$= \begin{cases} u = x; & dv = \cos x dx; \\ du = dx; & v = \sin x \end{cases} = -x^2 \cos x + 2[x \sin x - \int \sin x dx] =$$

$$= -x^2 \cos x + 2x \sin x + 2\cos x + C.$$