Statistics Foundation

Multiple Linear Regression

Module Goals

After completing this module, you should be able to:

- Apply multiple regression analysis to business decisionmaking situations
- Analyze and interpret the computer output for a multiple regression model
- Perform a hypothesis test for all regression coefficients or for a subset of coefficients
- Fit and interpret nonlinear regression models
- Incorporate qualitative variables into the regression model by using dummy variables
- Discuss model specification and analyze residuals

The Multiple Regression Model

Idea: Examine the linear relationship between 1 dependent (Y) & 2 or more independent variables (X_i)

Multiple Regression Model with k Independent Variables:

Y-intercept Population slopes Random Error
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + K + \beta_k X_k + \epsilon$$

Multiple Regression Equation

The coefficients of the multiple regression model are estimated using sample data

Multiple regression equation with k independent variables:

Estimated (or predicted) value of y
$$\hat{y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + K + b_k x_{ki}$$

Multiple Regression Equation

Standard Multiple Regression Assumptions

- The values x_i and the error terms ε_i are independent
- The error terms are random variables with mean 0 and a constant variance, σ^2 .

$$E[\epsilon_i] = 0$$
 and $E[\epsilon_i^2] = \sigma^2$ for $(i = 1, K, n)$

(The constant variance property is called homoscedasticity)

Standard Multiple Regression Assumptions

(continued)

The random error terms, ε_i , are not correlated with one another, so that

$$E[\varepsilon_i \varepsilon_j] = 0$$
 for all $i \neq j$

It is not possible to find a set of numbers, c_0, c_1, \ldots, c_k , such that

$$c_0 + c_1 x_{1i} + c_2 x_{2i} + K + c_K x_{Ki} = 0$$

(This is the property of no linear relation for the X_i 's)

Example: 2 Independent Variables

 A distributor of frozen desert pies wants to evaluate factors thought to influence demand

Dependent variable: Pie sales (units per week)

Data is collected for 15 weeks

Pie Sales Example

Week	Pie Sales	Price (\$)	Advertising (\$100s)
1	350	5.50	3.3
2	460	7.50	3.3
3	350	8.00	3.0
4	430	8.00	4.5
5	350	6.80	3.0
6	380	7.50	4.0
7	430	4.50	3.0
8	470	6.40	3.7
9	450	7.00	3.5
10	490	5.00	4.0
11	340	7.20	3.5
12	300	7.90	3.2
13	440	5.90	4.0
14	450	5.00	3.5
15	300	7.00	2.7

Multiple regression equation:

$$\widehat{\text{Sales}} = b_0 + b_1 \text{ (Price)} + b_2 \text{ (Advertising)}$$

Estimating a Multiple Linear Regression Equation

- Excel will be used to generate the coefficients and measures of goodness of fit for multiple regression
- Excel:
 - Tools / Data Analysis... / Regression
- PHStat:
 - —PHStat / Regression / Multiple Regression...

Multiple Regression Output

Regression St	tatistics					
Multiple R	0.72213				(Sir)	
R Square	0.52148				(3.3)	
Adjusted R Square	0.44172					
Standard Error	47.46341	Salos - 306	526 - 24 0	75/Dri co)	+ 74.131(Adv	orticina)
Observations	15	1		73(FIICE)	+ 74.131(Auv	ertisirig)
ANOVA	df	ss	MS	F	Significance F	•
Regression	2	29460.027	14730.013	6.53861	0.01201	•
Residual	12	27033.306	2252.776			
Total	14	56493.333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

The Multiple Regression Equation

Sales = 306.526 - 24.975(Price) + 74.131(Advertising)

where

Sales is in number of pies per week

Price is in \$

Advertising is in \$100's.

b₁ = -24.975: sales will decrease, on average, by 24.975 pies per week for each \$1 increase in selling price, net of the effects of changes due to advertising

b₂ = **74.131**: sales will increase, on average, by 74.131 pies per week for each \$100 increase in advertising, net of the effects of changes due to price

Coefficient of Determination, R²

 Reports the proportion of total variation in y explained by all x variables taken together

$$R^{2} = \frac{SSR}{SST} = \frac{\text{regression sum of squares}}{\text{total sum of squares}}$$

This is the ratio of the explained variability to total sample variability

Coefficient of Determination, R²

Regression S	tatistics					oontinacaj
Multiple R	0.72213	$R^2 = \frac{S}{S}$	SR 294	460.0	.52148	J. W.
R Square	0.52148	$R = \frac{1}{S}$	= ST 564	—— = 493.3	:.52146	
Adjusted R Square	0.44172	*				
Standard Error	47.46341	/			on in pie sa	
Observations	15		explained advertising	•	riation in pri	ce and
ANOVA	df	ss	MS	F	Significance F	_
Regression	2	29460.027	14730.013	6.53861	0.01201	1
Residual	12	27033.306	2252.776			
Total	14	56493.333				_
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

Estimation of Error Variance

Consider the population regression model

$$Y_{i} = \beta_{0} + \beta_{1} x_{1i} + \beta_{2} x_{2i} + \Lambda + \beta_{K} x_{Ki} + \epsilon_{i}$$

The unbiased estimate of the variance of the errors is

$$s_e^2 = \frac{\sum_{i=1}^n e_i^2}{n-K-1} = \frac{SSE}{n-K-1}$$

where
$$\mathbf{e}_{i} = \mathbf{y}_{i} - \hat{\mathbf{y}}_{i}$$

 The square root of the variance, s_e, is called the standard error of the estimate

Standard Error, s_e

Regression S	tatistics					
Multiple R	0.72213				(gir	
R Square	0.52148	$s_e = 47$.463		3.3	
Adjusted R Square	0.44172	The		a of this :	valua	
Standard Error	47.46341		magnitud			
Observations	15		be compa		•	
		ave	rage y valu	ıe		
ANOVA	df	SS	MS	F	Significance F	
Regression	2	29460.027	14730.013	6.53861	0.01201	•
Residual	12	27033.306	2252.776			
Total	14	56493.333				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888

Adjusted Coefficient of Determination, $\overline{\mathbb{R}}^2$

- R² never decreases when a new X variable is added to the model, even if the new variable is not an important predictor variable
 - This can be a disadvantage when comparing models

- What is the net effect of adding a new variable?
 - We lose a degree of freedom when a new X variable is added
 - Did the new X variable add enough explanatory power to offset the loss of one degree of freedom?

Adjusted Coefficient of Determination, $\overline{\mathbb{R}}^2$

(continued)

 Used to correct for the fact that adding non-relevant independent variables will still reduce the error sum of squares

$$\overline{R}^2 = 1 - \frac{SSE/(n-K-1)}{SST/(n-1)}$$

(where n = sample size, K = number of independent variables)

- Adjusted R² provides a better comparison between multiple regression models with different numbers of independent variables
- Penalize excessive use of unimportant independent variables
- Smaller than R²

Adjusted Coefficient of Determination, \overline{R}^2

Regression S	tatistics			1		Jarra William Control		
Multiple R	0.72213	$\overline{R}^2 = 4$	44172		(
R Square	0.52148		11112]		nin -		
Adjusted R Square	0.44172 /	44.2% of the	e variation i	n pie sale	s is explained	by the		
Standard Error	47.46341	variation in price and advertising, taking into accoun						
Observations	15	the sample s	size and nu	mber of in	dependent vai	riables		
ANOVA	df	ss	MS	F	Significance F			
Regression	2	29460.027	14730.013	6.53861	0.01201			
Residual	12	27033.306	2252.776					
Total	14	56493.333						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95		
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.464		
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.373		
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.708		

Coefficient of Multiple Correlation

 The coefficient of multiple correlation is the correlation between the predicted value and the observed value of the dependent variable

$$R = r(\hat{y}, y) = \sqrt{R^2}$$

- Is the square root of the multiple coefficient of determination
- Used as another measure of the strength of the linear relationship between the dependent variable and the independent variables
- Comparable to the correlation between Y and X in simple regression

Evaluating Individual Regression Coefficients

- Use t-tests for individual coefficients
- Shows if a specific independent variable is conditionally important
- Hypotheses:
 - H₀: β_i = 0 (no linear relationship)
 - H₁: $β_j ≠ 0$ (linear relationship does exist between x_i and y)

Evaluating Individual Regression Coefficients

(continued)

```
H_0: \beta_i = 0 (no linear relationship)
```

 H_1 : $\beta_i \neq 0$ (linear relationship does exist between x_i and y)

Test Statistic:

$$t = \frac{b_j - 0}{S_{b_j}}$$

where,
$$(df = n - k - 1)$$

Evaluating Individual Regression Coefficients

(continued)

Regression S	tatistics	t-value for	Drigo is to	2 206	with n	June 11 to 1	
Multiple R	0.72213		t-value for Price is t = -2.306, with p-				
R Square	0.52148	value .0398	value .0398				
Adjusted R Square	0.44172						
Standard Error	47.46341	t-value for					
Observations	15	p-value .01	45	+			
ANOVA	df	SS	MS	F	Significance F		
Regression	2	29460.027	14730.013	6.53861	0.01201		
Residual	12	27033.306	2252.776				
Total	14	56493.333					
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	
Intercept	306.52619	114.25389	2.68285	0.01993	57.58835	555.46404	
Price	-24.97509	10.83213	-2.30565	0.03979	-48.57626	-1.37392	
Advertising	74.13096	25.96732	2.85478	0.01449	17.55303	130.70888	

Example: Evaluating Individual Regression Coefficients

d.f. = 15-2-1 = 12
d.f. = 15-2-1 = 12 α = .05

 $t_{12,.025} = 2.1788$

	Coefficients	Standard Error	t Stat	P-value
Price	-24.97509	10.83213	-2.30565	0.03979
Advertising	74.13096	25.96732	2.85478	0.01449

The test statistic for each variable falls in the rejection region (p-values < .05)

Decision:

Reject H₀ for each variable

Conclusion:

There is evidence that both Price and Advertising affect pie sales at $\alpha = .05$

Confidence Interval Estimate for the Slope

Confidence interval limits for the population slope β_i

	Coefficients	Standard Error
Intercept	306.52619	114.25389
Price	-24.97509	10.83213
Advertising	74.13096	25.96732

Here, t has
$$(15-2-1)=12$$
 d.f.

Example: Form a 95% confidence interval for the effect of changes in price (x_1) on pie sales:

So the interval is $-48.576 < \beta_1 < -1.374$

Confidence Interval Estimate for the Slope

Confidence interval for the population slope β_i

	Coefficients	Standard Error		Lower 95%	Upper 95%
Intercept	306.52619	114.25389		57.58835	<u>555.46404</u>
Price	-24.97509	10.83213		-48.57626	-1.37392
Advertising	74.13096	25.96732	•••	17.55303	130.70888

Example: Excel output also reports these interval endpoints:

Weekly sales are estimated to be reduced by between 1.37 to 48.58 pies for each increase of \$1 in the selling price

Test on All Coefficients

- F-Test for Overall Significance of the Model
- Shows if there is a linear relationship between all of the X variables considered together and Y
- Use F test statistic
- Hypotheses:

```
H_0: \beta_1 = \beta_2 = ... = \beta_k = 0 (no linear relationship)
```

 H_1 : at least one $\beta_i \neq 0$ (at least one independent variable affects Y)

F-Test for Overall Significance

Test statistic:

$$F = \frac{MSR}{s_e^2} = \frac{SSR/K}{SSE/(n-K-1)}$$

where F has k (numerator) and (n - K - 1) (denominator) degrees of freedom

The decision rule is

Reject
$$H_0$$
 if $F > F_{k,n-K-1,\alpha}$

F-Test for Overall Significance

Regression Statistics Multiple R 0.72213 MSR 14730.0 R Square 0.52148 = 6.5386**Adjusted R Square** 0.44172 MSE 2252.8 **Standard Error** 47.46341 With 2 and 12 degrees of P-value for **Observations** 15 freedom the F-Test **ANOVA** df Significance F SS MS F Regression 2 29460.027 14730.013 6.53861 0.01201 Residual 12 27033.306 2252.776 14 Total 56493.333 Coefficients Standard Error P-value Lower 95% Upper 95% t Stat Intercept 306.52619 114.25389 2.68285 0.01993 57.58835 555.46404 **Price** -24.97509 10.83213 0.03979 -48.57626 -1.37392 -2.30565

25.96732

2.85478

0.01449

17.55303

Advertising

74.13096

130.70888

F-Test for Overall Significance

(continued

Test Statistic:

$$F = \frac{MSR}{MSE} = 6.5386$$

Decision:

Since F test statistic is in the rejection region (p-value < .05), reject H₀

Conclusion:

There is evidence that at least one independent variable affects Y

Tests on a Subset of **Regression Coefficients**

Consider a multiple regression model involving variables x_i and z_i , and the null hypothesis that the z variable coefficients are all zero:

$$y_i = \beta_0 + \beta_1 x_{1i} + \Lambda + \beta_K x_{Ki} + \alpha_1 z_{1i} + \Lambda \alpha_r z_{ri} + \epsilon_i$$

$$H_0: \alpha_1 = \alpha_2 = \Lambda = \alpha_r = 0$$

 $H_0: \alpha_1 = \alpha_2 = \Lambda = \alpha_r = 0$ $H_1:$ at least one of $\alpha_j \neq 0$ (j = 1,..., r)

Tests on a Subset of Regression Coefficients

(continued)

- Goal: compare the error sum of squares for the complete model with the error sum of squares for the restricted model
 - First run a regression for the complete model and obtain SSE
 - Next run a restricted regression that excludes the z variables (the number of variables excluded is r) and obtain the restricted error sum of squares SSE(r)
 - Compute the F statistic and apply the decision rule for a significance level $\,\alpha$

Reject H₀ if
$$F = \frac{(SSE(r) - SSE)/r}{s_e^2} > F_{r,n-K-r-1,\alpha}$$

Prediction

Given a population regression model

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \Lambda + \beta_K x_{Ki} + \epsilon_i$$
 (i = 1,2,K,n)

then given a new observation of a data point

$$(x_{1,n+1}, x_{2,n+1}, \ldots, x_{K,n+1})$$

the best linear unbiased forecast of y_{n+1} is

$$\hat{y}_{n+1} = b_0 + b_1 x_{1,n+1} + b_2 x_{2,n+1} + \Lambda + b_K x_{K,n+1}$$

It is risky to forecast for new X values outside the range of the data used to estimate the model coefficients, because we do not have data to support that the linear model extends beyond the observed range.

Using The Equation to Make Predictions

Predict sales for a week in which the selling price is \$5.50 and advertising is \$350:

Sales =
$$306.526 - 24.975(Price) + 74.131(Advertising)$$

= $306.526 - 24.975(5.50) + 74.131(3.5)$
= 428.62
Note that Advertising is in \$100's, so \$350 means that $X_2 = 3.5$

Predictions in PHStat

PHStat | regression | multiple regression ...

Check the "confidence and prediction interval estimates" box

Predictions in PHStat

Confidence and Prediction Estimate Intervals 3 Data Confidence Level 95% 5.5 3.5 Price given value Input values Advertising given value 2.178813 20 It Statistic Predicted v value 21 Predicted Y (YHat) 428.6216 22 For Average Predicted Y (Yhat) Confidence interval for the mean y 24 Interval Half Width 37.50306 value, given these x's Confidence Interval Lower Limit 391,1185 Confidence Interval Upper Limit 466.1246 27 For Individual Response Y 29 Interval Half Width Prediction interval for an individual y 110.0041 30 Prediction Interval Lower Limit 318.6174 value, given these x's 538.6257 31 Prediction Interval Upper Limit

Residuals in Multiple Regression

Two variable model

Nonlinear Regression Models

- The relationship between the dependent variable and an independent variable may not be linear
- Can review the scatter diagram to check for non-linear relationships
- Example: Quadratic model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \varepsilon$$

The second independent variable is the square of the first variable

Quadratic Regression Model

Model form:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{1i}^{2} + \epsilon_{i}$$

where:

 β_0 = Y intercept

 β_1 = regression coefficient for linear effect of X on Y

 β_2 = regression coefficient for quadratic effect on Y

 ε_i = random error in Y for observation i

Linear vs. Nonlinear Fit

Quadratic Regression Model

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{1i}^{2} + \epsilon_{i}$$

Quadratic models may be considered when the scatter diagram takes on one of the following shapes:

 β_1 = the coefficient of the linear term β_2 = the coefficient of the squared term

Testing for Significance: Quadratic Effect

- Testing the Quadratic Effect
 - Compare the linear regression estimate

$$\hat{y} = b_0 + b_1 x_1$$

with quadratic regression estimate

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_1^2$$

Hypotheses

 H_0 : $\beta_2 = 0$ (The quadratic term does not improve the model)

 H_1 : $\beta_2 \neq 0$ (The quadratic term improves the model)

Testing for Significance: Quadratic Effect

(continued)

- Testing the Quadratic Effect Hypotheses
 - H_0 : $\beta_2 = 0$ (The quadratic term does not improve the model)
 - H_1 : $\beta_2 \neq 0$ (The quadratic term improves the model)
- The test statistic is

$$t = \frac{b_2 - \beta_2}{s_{b_2}}$$

$$d.f.=n-3$$

where:

b₂ = squared term slope coefficient

 β_2 = hypothesized slope (zero)

 $S_b = standard error of the slope$

Testing for Significance: Quadratic Effect

(continued)

Testing the Quadratic Effect

Compare R² from simple regression to

- R² from the quadratic model
- If R² from the quadratic model is larger than R² from the simple model, then the quadratic model is a better model

Example: Quadratic Model

	Filter
Purity	Time
3	1
7	2
8	3
15	5
22	7
33	8
40	10
54	12
67	13
70	14
78	15
85	15
87	16
99	17

Purity increases as filter time increases:

Example: Quadratic Model

(continued)

Simple regression results:

373.57904

$$y = -11.283 + 5.985$$
 Time

	Coefficients	Standard Error	t Stat	P-value
Intercept	-11.28267	3.46805	-3.25332	0.00691
Time	5.98520	0.30966	19.32819	2.078E-10

Significance F
2.0778E-10

Regression Statistics	
R Square	0.96888
Adjusted R Square	0.96628
Standard Error	6.15997

t statistic, F statistic, and R² are all high, but the residuals are not random:

Example: Quadratic Model

(continued)

• Quadratic regression results:

$$\hat{y} = 1.539 + 1.565 \text{ Time} + 0.245 \text{ (Time)}^2$$

	Coefficients	Standard Error	t Stat	P-value
Intercept	1.53870	2.24465	0.68550	0.50722
Time	1.56496	0.60179	2.60052	0.02467
Time-squared	0.24516	0.03258	7.52406	1.165E-05

Regression Statistics	
R Square	0.99494
Adjusted R Square	0.99402
Standard Error	2.59513

F	Significance F
1080.7330	2.368E-13

The quadratic term is significant and improves the model: \overline{R}^2 is higher and s_e is lower, residuals are now random

The Log Transformation

The Multiplicative Model:

Original multiplicative model

$$Y = \beta_0 X_1^{\beta_1} X_2^{\beta_2} \epsilon$$

Transformed multiplicative model

$$\log(Y) = \log(\beta_0) + \beta_1 \log(X_1) + \beta_2 \log(X_2) + \log(\epsilon)$$

Interpretation of coefficients

For the multiplicative model:

$$\log Y_i = \log \beta_0 + \beta_1 \log X_{1i} + \log \epsilon_i$$

- When both dependent and independent variables are logged:
 - The coefficient of the independent variable X_k can be interpreted as a 1 percent change in X_k leads to an estimated b_k percentage change in the average value of Y
 - $\overline{}$ b_k is the elasticity of Y with respect to a change in X_k

Dummy Variables

- A dummy variable is a categorical independent variable with two levels:
 - yes or no, on or off, male or female
 - recorded as 0 or 1
- Regression intercepts are different if the variable is significant
- Assumes equal slopes for other variables
- If more than two levels, the number of dummy variables needed is (number of levels 1)

Dummy Variable Example

$$|\hat{y} = b_0 + b_1 x_1 + b_2 x_2|$$

Let:

y = Pie Sales

 x_1 = Price

 x_2 = Holiday (x_2 = 1 if a holiday occurred during the week) (x_2 = 0 if there was no holiday that week)

Dummy Variable Example

Interpreting the Dummy Variable Coefficient

Example:

Sales: number of pies sold per week

Price: pie price in \$

Holiday: $\begin{cases} 1 & \text{If a holiday occurred during the week} \\ 0 & \text{If no holiday occurred} \end{cases}$

 b_2 = 15: on average, sales were 15 pies greater in weeks with a holiday than in weeks without a holiday, given the same price

Multiple Regression Assumptions

Errors (residuals) from the regression model:

$$e_i = (y_i - y_i)$$

Assumptions:

- The errors are normally distributed
- Errors have a constant variance
- The model errors are independent

Analysis of Residuals in Multiple Regression

- These residual plots are used in multiple regression:
 - Residuals vs. \hat{y}_i
 - Residuals vs. x_{1i}
 - $\overline{}$ Residuals vs. x_{2i}
 - Residuals vs. time (if time series data)

Use the residual plots to check for violations of regression assumptions

Outliers

- Least squares method is concerned with minimizing the sum of the squared error, any training point that has a dependent value that differs a lot from the rest of the data will have a disproportionately large effect on the resulting constants that are being solved for.
- Due to the squaring effect of least squares, a person in our training set whose height is mispredicted by four inches will contribute sixteen times more error to the summed of squared errors that is being minimized than someone whose height is mis-predicted by one inch.
- That means that the more abnormal a training point's dependent value is, the more it will alter the least squares solution.
- If the outlier is sufficiently bad, the value of all the points besides the outlier will be almost completely ignored merely so that the outlier's value can be predicted accurately.

Outliers

Here we see a plot of sample training data set (in purple) together with an outlier point (in green):

Outliers

Below we have a plot of the old least squares solution (in blue) prior to adding the outlier point to our training set, and the new least squares solution (in green) which is attained after the outlier is added:

Outlier we added dramatically distorts the least squares solution and hence will lead to much less accurate predictions

Non-Linearities

All linear regression methods (including, of course, least squares regression), suffer from the major drawback that in reality most systems are not linear.

Real world relationships tend to be more complicated than simple lines or planes, meaning that even with an infinite number of training points (and hence perfect information about what the optimal choice of plane is) linear methods will often fail to do a good job at making predictions

Notice that the least squares solution line does a terrible job of modelling the training points.

Multi-collinearity

Multi-collinearity is a statistical phenomenon in which multiple independent variables show high correlation between each other. In other words, the variables used to predict the independent one are too inter-related.

Multi-collinearity has different causes: one of the most common is the inclusion of variables that result from mathematical operations between two or more of the other variables in the model,

e.g. net profit, which is computed by deducting total expenses from total revenues. Also, if the same kind of variable is used for the model, collinearity will always appear e.g. if you are measuring sales in both units and monetary figures the variable has the same kind.

Heteroscedasticity

Heteroscedasticity refers to the circumstance in which the variability of a variable is unequal across the range of values of a second variable that predicts it.

A scatterplot of these variables will often create a cone-like shape, as the scatter (or variability) of the dependent variable (DV) widens or narrows as the value of the independent variable (IV) increases. The inverse of heteroscedasticity is homoscedasticity, which indicates that a DV's variability is equal across values of an IV.

Heteroscedasticity produces a distinctive fan or cone shape in residual plots. To check for heteroscedasticity, we need to assess the residuals by fitted value plots specifically. Typically, the pattern for heteroscedasticity is that as the fitted values increases, the variance of the residuals also increases.

Heteroscedasticity

You can see an example of this cone shaped pattern in the residuals by fitted value plot below. Note how the vertical range of the residuals increases as the fitted values increases.

Heteroscedasticity

- While heteroscedasticity does not cause bias in the coefficient estimates, it does make them less precise. Lower precision increases the likelihood that the coefficient estimates are further from the correct population value.
- Heteroscedasticity tends to produce p-values that are smaller than they should be. This effect occurs because heteroscedasticity increases the variance of the coefficient estimates but the OLS procedure does not detect this increase. Consequently, OLS calculates the t-values and F-values using an underestimated amount of variance. This problem can lead you to conclude that a model term is statistically significant when it is actually not significant.

Outliers

Outliers can have a dramatic impact on linear regression. It can change the model equation completely i.e. bad prediction or estimation.

Scatter plot + Linear equation with and without outlier

Impact of Outliers

Outliers can drastically change the results of the data analysis and statistical modelling.

There are numerous unfavourable impacts of outliers in the data set:

- It increases the error variance and reduces the power of statistical tests
- If the outliers are non-randomly distributed, they can decrease normality
- They can bias or influence estimates that may be of substantive interest
- They can also impact the basic assumption of Regression, ANOVA and other statistical model assumptions.

How to detect Outliers?

Most commonly used method to detect outliers is visualization. We can use various visualization methods, like Box-plot, Histogram, Scatter Plot.

Thumb rules to detect outliers:

- Any value, which is beyond the range of -1.5 x IQR to 1.5 x IQR
- Use capping methods. Any value which out of range of 5th and 95th percentile can be considered as outlier
- Data points, three or more standard deviation away from mean are considered outlier
- Outlier detection is merely a special case of the examination of data for influential data points and it also depends on the business understanding
- Bivariate and multivariate outliers are typically measured using either an index of influence or leverage, or distance. Popular indices such as Mahalanobis' distance and Cook's D are frequently used to detect outliers.

How to remove Outliers?

Deleting observations: We delete outlier values if it is due to data entry error, data processing error or outlier observations are very small in numbers. We can also use trimming at both ends to remove outliers.

Transforming and binning values: Transforming variables can also eliminate outliers. Natural log of a value reduces the variation caused by extreme values. Binning is also a form of variable transformation. Decision Tree algorithm allows to deal with outliers well due to binning of variable. We can also use the process of assigning weights to different observations.

How to remove Outliers?

Variable Transformation, LOG

How to remove Outliers?

Imputing:

Like imputation of missing values, we can also impute outliers. We can use mean, median, mode imputation methods. Before imputing values, we should analyse if it is natural outlier or artificial. If it is artificial, we can go with imputing values. We can also use statistical model to predict values of outlier observation and after that we can impute it with predicted values.

Thank You