TEZĂ LA MATEMATICĂ- SEMESTRUL I

Anul școlar 2015-2016

Clasa a-XII-a

- 1. Se consideră legea de compoziție asociativă "*" definită pe mulțimea numerelor reale prin relația $x*y = \frac{xy}{4} 2x 2y + 24$.
 - a) (5p) Arătați că $x * y = \frac{1}{4}(x-8)(y-8)+8, \forall x, y \in \mathbb{R}$.
 - b) (10p) Aflați simetricul lui $\frac{28}{3}$ în raport cu legea "*".
 - c) (10p) Rezolvați în \mathbb{R} ecuația $\underbrace{x*x*....*x}_{de \ 2016 \ ori} = 12$.
- 2. Fie mulțimea $G = \left\{ A(x) = \begin{pmatrix} 1+3x & 6x & 0 \\ -x & 1-2x & 0 \\ 0 & 0 & 1 \end{pmatrix} | x \in \mathbb{R} \setminus \{-1\} \right\}.$
 - a) (5p) Demonstrați că $A(x) \cdot A(y) = A(xy + x + y), \forall x, y \in \mathbb{R}$.
 - b) (10p) Arătați că G împreună cu operația de înmulțire a matricelor pătratice de ordinul trei formează o structură de grup abelian.
 - c) (10p) Arătați că funcția $f: \mathbb{R}^* \to G$, f(x) = A(x-1) este izomorfism de la grupul (\mathbb{R}^*, \cdot) la grupul (G, \cdot) .
- 3. Se dau funcțiile $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{1}{x\sqrt{x^2+4}}$ si $F:(0,+\infty) \to \mathbb{R}$, $F(x) = \frac{1}{2} \ln \frac{\sqrt{x^2+4}-2}{x}$.
 - a) (10p) Arătați că F este o primitivă a funcției f.
 - b) (5p) Studiați monotonia funcției F.
 - c) (5p) Arătați că $\int_{\sqrt{5}}^{\sqrt{45}} f(x) dx = \ln \sqrt{\frac{5}{3}}$.
- 4. Fie şirul $(I_n)_{n\geq 0}$, unde $I_n = \int_1^2 x \cdot e^{-nx^2} dx$.
 - a) (5p) Calculați I_0 .
 - b) (5p) Demonstrați că șirul $(I_n)_{n\geq 0}$ este descrescător.
 - c) (10p) Aflați limita șirului $(I_n)_{n\geq 0}$.

Nota: Se acorda 10 p din oficiu.

TEZĂ SEMESTRUL I CLASA a XII-a

13.12.2016

- 1. Pe mulțimea numerelor reale se consideră legea de compoziție x * y = x + y + xy. Se notează $G = (-1, \infty)$
 - a) Demonstrați că G este parte stabilă a lui \mathbb{R} în raport cu legea *.
 - b) Demonstrați că (G,*) formează o structură de grup abelian.
 - c) Rezolvați în \mathbb{R} ecuația $\underbrace{x * x * \cdots * x}_{==2018} = 3^{2018} 1$
 - d) Demonstrați că funcția $f: G \to \mathbb{R}$, $f(x) = \ln(x+1)$ este un izomorfism de la grupul (G,*) la grupul $(\mathbb{R},+)$.
 - e) Calculați $1 * \frac{1}{2} * \frac{1}{3} * \cdots * \frac{1}{2017}$
 - f) Demonstrați că $H = \{a^2 1 | a \in \mathbb{Q}^*\}$ este subgrup al grupului (G,*)

2. Fie
$$f: [-2,2] \to \mathbb{R}$$
, $f(x) = \begin{cases} \ln(x^2 + 1) - x + a^2, & x \in [-2,0) \\ 2e^x + x + a, & x \in [0,2] \end{cases}$

- a) Aflați valorile reale ale lui a pentru care f admite primitive.
- b) Arătați că f este integrabilă pentru orice valoare reală a lui a.
- c) Calculați $\int_0^2 f(x)dx$.

3. Fie
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \frac{1}{e^x + e^{-x}}$ și șirul $(I_n)_{n \ge 1}$, $I_n = \int_n^{n+1} f(x) dx$.

- a) Demonstrați că funcția $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \operatorname{arctg}(e^x)$ este o primitivă a funcției f.
- b) Demonstrați că $f(n+1) \le I_n \le f(n)$, $\forall n \in \mathbb{N}^*$.
- c) Calculați limita șirului $(I_n)_{n\geq 1}$.

1a	1b	1c	1d	1e	1f	2a	2b	2c	3a	3b	3c	of	total
7p	10p	7p	10p	7p	7p	10p	100p						
76.1													

TEZĂ SEMESTRUL I AN ȘCOLAR 2017-2018 CLASA A XII-A

05.12.2017

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 110 minute.

Subjectul I (30 puncte)

- (6p) 1. Aflați multimea elementelor simetrizabile din \mathbb{Z}_{24} în raport cu înmulțirea claselor de resturi modulo 24.
- (6p) 2. Calculați $\int \frac{1}{16-x^2} dx$, unde x > 10.
- Aflați $a \in \mathbb{R}$ astfel încât legea să fie comutativă.
- (6p) 4. Fie $f:[0,3] \to \Box$ $f(x) = \begin{cases} 3x^2 1, & \text{daca } x \le 2 \\ 5x + 3, & \text{daca } x > 2 \end{cases}$. Demonstrați că funcția este integrabilă pe [0,3], dar nu admite primitive.
- (6p) **5.** Calculați $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{1-\sin^2 x}{\cos^4 x} dx$.

Subjectul II (30 puncte)

- 1. Pe \mathbb{R} se definește legea de compoziție x * y = 2xy 3x 3y + 6, $\forall x, y \in \mathbb{R}$.
- (6p) a) Demonstrați că $x * y = 2\left(x \frac{3}{2}\right)\left(y \frac{3}{2}\right) + \frac{3}{2}, \forall x, y \in \mathbb{R}.$
- (G_i) **b)** Calculați $\frac{\sqrt[3]{2}}{2} * \frac{\sqrt[3]{3}}{2} * \dots * \frac{\sqrt[3]{2017}}{2}$.
- (6p) c) Aflați elementele simetrizabile din \mathbb{R} , care verifică relația x+2x'=3, unde x' este simetricul lui x în raport cu legea "*".

2. Fie
$$G = \left\{ M(a) = \begin{pmatrix} 1 & 0 & a \\ -a & 1 & \frac{-a^2}{2} \\ 0 & 0 & 1 \end{pmatrix} \middle| a \in \square \right\}.$$

- (6p) a) Demonstrați că G împreună cu înmulțirea matricelor formează o structură de grup abelian.
- (6p) **b**) Arătați că funcția $f: R \to G$, f(x) = M(x) este un izomorfism între grupurile (R,+) și (G,\cdot) .

Subjectul III (30 puncte)

- ?. Fie funcțiile $f,g:(0,+\infty) \to \Box$ $f(x) = \frac{1}{x^2} \ln\left(1 + \frac{1}{x}\right) \operatorname{si} g(x) = \left(1 + \frac{1}{x}\right) \left[1 \ln\left(1 + \frac{1}{x}\right)\right]$
- (6p) a) Demonstrați că g este o primitivă a funcției f.

(6p) **b)** Arătați că
$$\int_{\frac{1}{e^2-1}}^{\frac{1}{e^{-1}}} f(x)dx = e^2$$
.

- (6p) c) Demonstrați că: $g(\sqrt[4]{3}) < g(\sqrt[3]{4})$.
- 2. Fie şirul $(I_n)_{n\geq 1}$, $I_n = \int_0^{\frac{\pi}{4}} x^n \sin x \, dx$, $n \in \mathbb{D}^*$
- (6p) a) Arătați că șirul $(I_n)_{n\geq 1}$ este monoton.
- (6p) **b**) Calculați $\lim_{n\to+\infty} I_n$.

Succes!

Colegiul Național "Grigore Moisil" București

TEZĂ LA MATEMATICĂ - SEMESTRUL I

An scolar 2018-2019

SUBIECTUL I (30p)

- 1) Calculați în grupul $(Z_8,+)$ opusul elementului $\hat{3}+\hat{4}+\hat{6}$.
- 2) Calculați $\int_{2}^{3} \frac{x^2 x + 2}{x} dx$.
- 3) Pe R se definește legea de compoziție $x \circ y = xy 3x 3y + a$, $\forall x, y \in R$. Să se determine $a \in R$ astfel încât legea să admită element neutru.
- 4) Calculați produsul elementelor inversabile din monoidul (Z_{12},\cdot) .
- 5) Să se arate că funcția $f:[0;1] \to R$, $f(x) = \begin{cases} 3x+1 & ,x \in [0,1) \\ 2 & ,x = 1 \end{cases}$ nu admite primitive, dar este integrabilă pe [0;1] și calculați $\int_{0}^{1} f(x) dx$.
- 6) Arătați că funcția $F:(-2;2) \to R$, $F(x) = \frac{x}{2}\sqrt{4-x^2} + 2\arcsin\frac{x}{2}$ este o primitivă a funcției $f:(-2;2) \to R$, $f(x) = \sqrt{4-x^2}$.

SUBIECTUL II (30p)

Pe **R** se definește legea de compoziție asociativă $x \circ y = \frac{1}{10}xy - (x+y) + 20$, $\forall x, y \in R$.

- a) (10p) Demonstrați că $x \circ y = \frac{1}{10} (x-10)(y-10) + 10, \forall x, y \in R$.
- b) (10p) Determinați valorile reale ale lui x pentru care $x \circ x \le \frac{101}{10}$.
- c) (5p) Calculați $\log_2 1 \circ \log_2 2 \circ \cdots \circ \log_2 2018$.
- d) (5p) Aflați elementele simetrizabile care sunt egale cu simetricele lor.

SUBIECTUL III (30p)

Se consideră șirul $(I_n)_{n\geq 0}$, $I_n = \int_{-\infty}^{1} \frac{x^n}{x^2+4} dx$, $\forall n \in \mathbb{N}$.

a) (10p) Calculați I_0 și I_2 .

b) (10p) Arătați că
$$I_{n+2} + 4I_n = \frac{1}{n+1}$$
 , $\forall n \in N$.

- c) (5p) Calculați $\lim_{n\to\infty} I_n$.
- d) (5p) Calculați $\lim_{n\to\infty} (2n+3) \cdot I_{2n+1}$.

Se acordă 10p din oficiu

SUCCES!!!

TEZĂ LA MATEMATICĂ - SEMESTRUL I

An școlar 2019-2020

SUBIECTUL I (30p)

- 1. Calculați produsul elementelor inversabile din monoidul (\mathbb{Z}_9,\cdot) .
- 2. Calculați $\int_{0}^{1} e^{x} (xe^{-x} + 1) dx$.
- 3. Dacă (G, \bot) este un grup cu 2019 elemente, iar $a \in G$ fixat, determinați cardinalul mulțimii M, unde $M = \{a \bot x \mid x \in G\}$.
- **4.** Aflați primitiva funcției $f:(0,+\infty)\to\mathbb{R}$ $f(x)=\frac{x+\sqrt{x}}{\sqrt[3]{x}}$ al cărei grafic conține punctul A(1,1).
- 5. Pe $G = (0, +\infty) \times \mathbb{R}$ definim legea $(a_1, x_1) \circ (a_2, x_2) = (a_1 a_2, a_1 x_2 + x_1)$. Verificați dacă " \circ " este asociativă.
- **6.** Arătați că $f:[0,1] \to \mathbb{R}$ $f(x) = \begin{cases} \frac{1}{x}, & x \in (0,1] \\ 5, & x = 0 \end{cases}$ nu este integrabilă.

SUBIECTUL II (30p)

Pe \mathbb{R} se definește legea de compoziție $x * y = 5xy - 10x - 10y + 22 \quad \forall x, y \in \mathbb{R}$.

- 1. Demonstrați că x * y = 5(x-2)(y-2)+2 oricare ar fi $x, y \in \mathbb{R}$.
- 2. Demonstrați că "* " este operație asociativă.
- 3. Arătați că $\frac{11}{5}$ este elementul neutru al operației "* ".
- 4. Aflați elementele reale, care au simetricele mai mari decat 1.
- 5. Demonstrați că, indiferent de ordinea termenilor, compunerea tuturor elementelor din $H = \left\{ \frac{2k-6}{3-2k} \middle| k \in \mathbb{Z}, \quad |k| < 2019 \right\} \text{ este o constanta.}$
- **6.** Demonstrați ca **nu** există o funcție $f: \mathbb{R} \to \mathbb{R}$ de gradul I, cu proprietatea că $f(x*y) = f(x) \cdot f(y) \quad \forall x, y \in \mathbb{R}$.

SUBIECTUL III (30p)

1. Fie funcția
$$f:(-1,+\infty) \to \mathbb{R}$$
 $f(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \ln(1+x)$.

- a) Calculați $\int_{0}^{1} f(x) + \ln(1+x)dx$.
- b) Arătați că $\int_{0}^{1} \ln(x+1)dx \le \frac{5}{12}$.
- 2. Fie şirul $(I_n)_{n\geq 1}$ $I_n = \int_0^1 \frac{x^n}{x^2 4} dx$, $n \in \mathbb{N}^*$.
 - a) Calculați I_2 .
 - b) Demonstrați că $I_{n+2}-4I_n = \frac{1}{n+1} \quad \forall n \in \mathbb{N}^*$.
 - c) Demonstrați că șirul $\left(I_n\right)_{n\geq 1}$ este monoton crescător.
 - d) Calculați $\lim_{n\to\infty} I_n$.

Se acordă 10p din oficiu

SUCCES!!!