

General Guidelines: (credits. 5(050) dx)

1) keep jourself nuted where you wish to say something

* (Every tutorial)

(3) When you wish to say something -> Directly unmute and Speak

(4.) If you think I made a mistake unmute and tell

case 1

case 2

You correct me and I dear any misconception
Save me the arised and he continue
embarassment

Everyone Benefits

(5.) Also, it is encouraged that after unmuting, you start with This is Eyour name>'.
[Not necessary but gives an offline flair to this online Tut]

(6) If you feel your doubt is a small danification, put it in the chat some benevolent soul may answer it there for you.

[I will read the chat intermittently]

Apologies in advance for bad handwriting spelling miskates)

S. Tutonial 1

(03-08-2020)

Recap Topology

Open set 1 A set $U \subset G$ 1s open if for every $Z_0 \in U$ ($\exists S > 0$) s.t $B_S(Z_0) \subset U$

 $B_8(z_0) =$ $z \in C$: $|z-z_0| < \delta$ Closed set A set $V \subset C$ is closed if $C \setminus V$

path connected: A subset PCC is said to be

path connected if for every Z_1, Z_2 Continuous for

i $[0,1] \rightarrow P$ st $S(0) = Z_1$ and $S(1) = Z_2$

Differentiation:

A function $f: \Omega \rightarrow C$ is said to be (complex) differentiable at $z_0 \in \Omega$ if $\lim_{z\to z_0} f(z) - f(z_0)$ exists $|z-z_0| = |z-z_0|$

Cauchy Remann Egns

Va = Vy

L

Vy = - Vx

$$f(x) \in \mathbb{R}[x]$$

$$f(20) = 0 \qquad \text{Given}$$

$$f(x) = a_0 + a_1 x + \dots + a_n x^n$$

$$= a_0 + a_1 x + \dots + a_n x^n$$

$$= a_0 + a_1 x + \dots + a_n x^n$$

$$f(x_0) = a_0 + a_1 x + \dots + a_n x^n$$

$$f(x_0) = a_0 + a_1 x + \dots + a_n x^n$$

$$0 = f(x_0)$$

$$0$$

2. Show that a non-constant polynomial $f(z_1, z_2)$ in complex variables z_1 and z_2 and with complex coefficients has infinitely many roots (in \mathbb{C}^2). (Assume FTA)

(Lemma)

FTA => non com+ant-complex yoly f(x)

FTA = non compant complex you fact J fan = (2-26) z(n) Clair Complex polynomial for E ([x] with degree = n
has exactly (n) roots Proof. By Induction dy(f) = 1Base case $f(m) = a_0 + a_1 \times \implies 1$ noof 0 = ao + and $\Rightarrow x = -a_0/a_1 \left[1 \text{ root}\right]$ Inductive type fair - dez en has n soots $T(x) \Rightarrow T(x+i)$ deg(f) = n + 0Then by FTA, $f(n) = (x-x_0)g(n)$ deg(g) = n $\chi = \chi_0$ or $g(\chi) = 0$ Country roots with multiplicity! 1 + n (Inductive My) V+1 - 2004z [] $f(z_1, z_2) = \sum_{k=0}^{n} \int_{\mathbb{R}^n} \frac{\operatorname{coeft}}{z_1}$ (Assume z, fixed) $P_n(z_1) \neq 0$ Choose $z_1 \in C$ $P_n(z_1) \neq 0$ Also we know I infinite zi=xe Such that (n(2,) \$0)

93)

3. Show that the complex plane minus a countable set is path-connected.

Fact. (- 11 path connected

Fact. (- 11 path connected

Consider zo and z₁ ∈ (
$$\frac{2}{5}$$
)

 $f: [0,1] \longrightarrow \text{Straight line Joining zo}, z1$
 $g: [0,1] \longrightarrow \text{Straight line Joining zo}, z1$
 $f: [0,1] \longrightarrow \text{Straight line Joining zo}, z1$
 $g: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$
 $f: [0,1] \longrightarrow \text{Seni, crimian aric joing } z0, z1$

 $I_{+} \quad \lambda_{1} \neq \lambda_{2} \implies \delta_{\lambda_{1}}(t) \neq \delta_{\lambda_{2}}(t)$

Froof Assume
$$\delta_{x_1} = \delta_{x_2}$$

$$\lambda_1 \left\{ (1-\lambda_1) \right\} \left\{ (1-\lambda_2) \right\} \left\{ ($$

4. Check for real differentiability and holomorphicity:

1.
$$f(z) = c$$

2.
$$f(z) = z$$

3.
$$f(z) = z^n, n \in \mathbb{Z}$$

4.
$$f(z) = \operatorname{Re}(z)$$

5.
$$f(z) = |z|$$

6.
$$f(z) = |z|^2$$

7.
$$f(z) = \bar{z}$$

8.
$$f(z) = \begin{cases} \frac{z}{\bar{z}} & \text{if } z \neq 0\\ 0 & \text{if } z = 0. \end{cases}$$

 $\Lambda < 0$

claim defined C\203 and to is diff (why?) /f is diff for n>0 case 4.) f(2) = Re(Z) fcx+iy) = x + 02 u(x,y) = x V(x,y) = 0A dearly of is real diff Un = 1 Vy = 0 dealy un x Vy > Not holomorphic $5) \qquad f(z) = |z|$ $f(x+y) = \sqrt{x^2 + y^2} + O2$ 4(n/y) = \(\frac{x^2+y^2}{}\) \(\frac{1}{n/y}\) = 0 on $\mathbb{R}^2 \setminus \{(0,0)\}$ The part al derivatives of a exist and are continuous = Real diff every shore except (0,0) =) f is real diff in set (20) $Un \neq 0$ Vy = 0 $4n \neq vy$ 7) $f(2) = \overline{2}$ f(n+2y) = x-iy- u(ng) = x -v(ng) = -y CRegns UR = 1 Vy = -1 $un \neq Vy$

1st Tutorial Page 8

>> Not holomorphic anywhere Ir it possible to have f(2) such that f is holo nowhere but f(f(z)) is holo everywhere $f(2) = \begin{cases} \frac{z}{2} & z \neq 0 \\ 0 & z = 0 \end{cases}$ 2+iy (x+iy) x-iy (x+iy) f (14 m) = $= \frac{\chi^2 - y^2 + 2\pi y^2}{\chi^2 + y^2}$ $= \left(\frac{\chi^2 - y^2}{\chi^2 + y^2}\right) + \left(\frac{2\chi y}{\chi^2 + y^2}\right) V$ $U(x,y) = \frac{z^2 - y^2}{x^2 + y^2} \qquad V(x,y) = \frac{22y}{x^2 + y^2}$ Real dift (Recall MA102) (Hhyl.) => Both u, u are not continuous at (0,0) All other cares p. der. exist and are continuous For everywhere except 0 ((\203) Cheek CR equations $U_{x} = \frac{(x^{2}+y^{2})^{2}}{(x^{2}+y^{2})^{2}} = \frac{4xy^{2}}{(x^{2}+y^{2})^{2}}$ $\sqrt{y} = (x^2 + y^2) 2x - (2xy)(2y) = 2x^3 - 2xy^2$

$$2x^{3} - 2ny^{2} = 4xy^{2}$$

$$\chi^{3} = 3xy^{2} \qquad \Longrightarrow \qquad (\chi = 0)$$

$$u_{y} = -\frac{4x^{2}y}{(x^{2}+y^{2})^{2}} \qquad \frac{\sqrt{x} = 2y^{3} - 2x^{2}y}{(x^{2}+y^{2})^{2}}$$

$$= -\frac{(y=0)}{(y=0)}$$

$$\Rightarrow \chi=0, y=0 \Rightarrow z=0 \Rightarrow ($$

Edit! This was done after the tutorial ended.

$$U = \frac{x^2 - y^2}{x^2 + y^2} \qquad V = \frac{2xy}{x^2 + y^2}$$

$$U_{x} = \frac{(x^{2}+y^{2}) 2x - (x^{2}-y^{2})(2x)}{(x^{2}+y^{2})^{2}} = \frac{4xy^{2}}{(x^{2}+y^{2})^{2}}$$

$$V_{y} = \frac{(x^{2}+y^{2})^{2} \times - (2xy)(2y)}{(x^{2}+y^{2})^{2}} = \frac{2x^{3}-2xy^{2}}{(x^{2}+y^{2})^{2}}$$

$$y = \frac{(x^2+y^2)(2y) - (x^2-y^2)(2y)}{(x^2+y^2)^2} = \frac{-4x^2y}{(x^2+y^2)^2}$$

$$V_{x} = \frac{(x^{2}4y^{2})^{2}y^{2} - (2xy)(2x)}{(x^{2}4y^{2})^{2}} = \frac{2y^{3} - 2x^{2}y}{(x^{2}+y^{2})^{2}}$$

$$CR' 1 \Rightarrow U_{xx} = V_{y}$$

$$\Leftrightarrow 4xy^{2} = 2x^{3} - 2xy^{2}$$

$$\Leftrightarrow 3xy^{2} = x^{3} \Rightarrow x = 0$$

CR·2 => Uy = -Vx

y=0 (I was correct)

But at z=0, Not Real diff

-> Molomorphic Nowhere