Lecture 2 Notes

David Gieseker

October 14, 2020

1 Euclid's Knowledge

Let's first review the division algorithm.

Theorem. Let $a, b \in \mathbb{Z}$ and b > 0. Then, $\exists !q, r \in \mathbb{Z}$ such that a = qb + r where $0 \le r \le b$.

This is the same as what we learned from elementary school. We know that q is the quotient and r is the remainder – and both are unique.

Proof. (existence) Let $S = \{n \in \mathbb{Z} \mid \exists x \in \mathbb{Z}, n = a - bx \geq 0\}$. Suppose that $S \neq \emptyset$ (the elements are potential q's). Then, we can consider 3 different cases:

- 1. If $a \ge 0$, we take x = 0 and $a \in S$.
- 2. If a < 0, we take x = a. Then, n = a ab = a(1 b). But since b > 0 and $b \in \mathbb{Z}$, $n = a(1 b) \ge 0$. Therefore, $a \in S$.

And by the Well-Ordering Property, there is a least element r of S. If we denote its corresponding x to be q, then $r=a-bq\geq 0 \implies a=qb+r$.

Next, we show that $0 \le r < b$. We showed $r \ge 0$ previously. Then assume that $r \ge b$, and thus $0 \le r - b = a - b(q + 1) \in S$. However, r is assumed to be a least element of S, so $r \le r - b$ and $b \le 0$. This is a contradiction, so r < b. \square

Proof. (uniqueness) Assume that quotients and remainders are not unique. Then a = qb + r = q'b + r', where $0 \le r < b, 0 \le r' < b$. If the remainder is not unique, then we can take r > r' without loss of generality. Thus, we have $0 < r - r' \le r < b$. And since $0 \ne q - q' \in \mathbb{Z}$, $|q - q'| \ge 1$. Then from the original equation, we have $r - r' = (q' - q)b \ge b$. This is a contradiction to the prior inequality. Thus, r = r' must hold, and q = q' follows as b > 0.

Definition. Let $d, m \in \mathbb{Z}$ where $d \neq 0$. Then d divides m if $\exists e \in \mathbb{Z}, m = ed$, notated by $d \mid m$.

Definition. Let $m, n \in \mathbb{Z}$. Then, $d \in \mathbb{Z}$ is a greatest common divisor, notated by d = (m, n), of m and n if:

(i) d > 0

- (ii) $d \mid m, d \mid n$
- (iii) if $e \in \mathbb{Z}$ and $e \mid m, e \mid n$, then $e \mid d$.

In other words, d is a divisor of m and n that divides any other common divisors.

Definition. $f \in \mathbb{Z}$ is a \mathbb{Z} linear combination of $m, n \in \mathbb{Z}$ if $\exists x, y \in \mathbb{Z}$ such that f = xm + yn.

Theorem. Let $m, n \in \mathbb{Z}$, and at least one of which is nonzero. Then, d = (m, n) exists, is unique, and is a \mathbb{Z} linear combination of m and n.

Proof. Let's define $S = \{am + bn > 0 \mid a, b \in \mathbb{Z}\}$. Now, we first show that $d \mid m$. S is nonempty, since we can always take a = sgn(m), b = 0 and $am + bn \in S$ must hold. Thus, it must have a least element d. Then by the division algorithm, $\exists q, r \in \mathbb{Z}$ such that m = qd + r and $0 \le r < d$.

$$r = m - qd = m - (am + bn)q = (1 - aq)m - bqn \ge 0$$

Therefore, r is also a \mathbb{Z} linear combination of m and n. However r < d and d is the least element of S, so r = 0 is the only possibility. Therefore, $m = qd \implies d \mid m$. Similarly, $d \mid n$ can be proven with a similar method.

Now, suppose that e is another common divisor of m and n. Thus m = xe and n = ye, so d = (ax + by)e and it follows that e|d. Therefore d = (m, n) by definition, and it is a \mathbb{Z} linear combination of m and n as it is in S.

Proof. (uniqueness) Let d, d' be two GCD's of m and n. Then, d|d' and d'|d must both hold. This is true only when $d = \pm d'$, and since d, d' > 0 they must be equal.