Vietnamese Mathematical Olympiad for High School- & College Students Olympic Toán Học Học Sinh & Sinh Viên Toàn Quốc (VMC)

Nguyễn Quản Bá Hồng*

Ngày 31 tháng 1 năm 2025

Tóm tắt nội dung

This text is a part of the series $Some\ Topics\ in\ Advanced\ STEM\ \ensuremath{\mathfrak{C}}$ Beyond: URL: https://nqbh.github.io/advanced_STEM/.

Latest version:

• Vietnamese Mathematical Olympiad for High School- & College Students (VMC) – Olympic Toán Học Học Sinh & Sinh Viên Toàn Quốc.

PDF: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/VMC/NQBH_VMC.pdf. TEX: URL: https://github.com/NQBH/advanced_STEM_beyond/blob/main/VMC/NQBH_VMC.tex.

Muc luc

1	Preliminaries – Kiến thức chuẩn bị]
	Algebra – Đại Số 2.1 Matrix – Ma trận 2.2 Vector space – Không gian vector	4
	Analysis - Giải Tích 3.1 Sequence - Dãy số 3.2 Integral - Tích phân	4
4	Miscellaneous	4
Tà	i liêu	2

1 Preliminaries – Kiến thức chuẩn bị

Resources - Tài nguyên.

- 1. [Khả09]. Phan Huy Khải. Các Chuyên Đề Số Học Bồi Dưỡng Học Sinh Giỏi Toán Trung Học. Chuyên Đề 2: Số Học & Dãy Số.
- 2. VMS HỘI TOÁN HỌC VIỆT NAM. Kỷ Yếu Kỳ Thi Olympic Toán Học Sinh Viên-Học Sinh Lần 28.
- 3. VMS HỘI TOÁN HỌC VIỆT NAM. Kỷ Yếu Kỳ Thi Olympic Toán Học Sinh Viên-Học Sinh Lần 29. Huế, 2-8.4.2023.

2 Algebra – Đai Số

Resources - Tài nguyên.

- 1. LÊ TUẨN HOA. Đại Số Tuyến Tính Qua Các Ví Du & Bài Tâp.
- 2. [Hưn22]. NGUYỄN HỮU VIỆT HƯNG. Đại Số Tuyến Tính.
- 3. NGÔ VIỆT TRUNG. Giáo Trình Đại Số Tuyến Tính.

^{*}A Scientist & Creative Artist Wannabe. E-mail: nguyenquanbahong@gmail.com. Bến Tre City, Việt Nam.

2.1 Matrix – Ma trận

2.2 Vector space – Không gian vector

Giả sử V, W: 2 không gian vector trên trường \mathbb{F} (see, e.g., [Hun22, Chap. 2, §2: Ánh xạ tuyến tính, pp. 100–110]).

Định nghĩa 1 (Ánh xạ tuyến tính). Ánh xạ $f:V\to W$ được gọi là 1 ánh xạ tuyến tính (hoặc rõ hơn là 1 ánh xạ \mathbb{F} -tuyến tính), $n\acute{e}u$

$$f(\alpha + \beta) = f(\alpha) + f(\beta), \ \forall \alpha, \beta \in V, \tag{1}$$

$$f(a\alpha) = af(\alpha), \ \forall a \in \mathbb{F}.$$
 (2)

Ánh xạ tuyến tính cũng được gọi là đồng cấu tuyến tính, hay đồng cấu cho đơn giản.

2 điều kiện trong định nghĩa ánh xạ tuyến tính ⇔ điều kiện:

$$f(\alpha a + \beta b) = af(\alpha) + bf(\beta), \ \forall \alpha, \beta \in V, \ \forall a, b \in \mathbb{R}.$$
 (3)

Định lý 1 (Tính chất cơ bản của ánh xạ tuyến tính). $Giả sử f: V \to W$ là 1 ánh xạ tuyến tính. Khi đó: (i) f(0) = 0. (ii) $f(-\alpha) = -f(\alpha)$, $\forall \alpha \in V$. (iii)

$$f\left(\sum_{i=1}^{n} a_i \alpha_i\right) = \sum_{i=1}^{n} a_i f(\alpha_i), \ \forall a_i \in \mathbb{F}, \ \forall \alpha_i \in V, \ \forall i = 1, \dots, n.$$

$$(4)$$

Ví dụ 1 (Ánh xạ tuyến tính cơ bản).

- (i) Ánh xạ không $0: V \to W$, $0(\alpha) = 0$, $\forall \alpha \in V$. Thế còn ánh xạ hằng $C: V \to W$, $C(\alpha) = C$, $\forall \alpha \in V$ với $C \in \mathbb{F}$ cho trước?
- (ii) Ánh xạ đồng nhất (identity mapping) $id_V: V \to V$, $id_V(\alpha) = \alpha$, $\forall \alpha \in V$.
- (iii) Đạo hàm hình thức

$$\frac{d}{dX}: \mathbb{F}[X] \to \mathbb{F}[X], \ \frac{d}{dX} \sum_{i=0}^{n} a_i X^i = \sum_{i=1}^{n} i a_i X^{i-1} = \sum_{i=0}^{n-1} (i+1) a_{i+1} X^i.$$
 (5)

(iv) Tích phân hình thức

$$\int dX : \mathbb{F}[X] \to \mathbb{F}[X], \quad \int \sum_{i=0}^{n} a_i X^i dX = \sum_{i=0}^{n} \frac{a_i}{i+1} X^{i+1}. \tag{6}$$

(v) $Gi\mathring{a} s\mathring{u} A = (a_{ij}) \in M(m \times n, \mathbb{F}),$

$$\widetilde{A}: \mathbb{F}^n \to \mathbb{F}^m, \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto A \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$
 (7)

(vi) Các phép chiếu

$$\operatorname{pr}_{i}: V_{1} \times V_{2} \to V_{i}, \ \operatorname{pr}_{i}(v_{1}, v_{2}) = v_{i}, \ \forall i = 1, 2,$$
 (8)

hay tổng quát hơn với $n \in \mathbb{N}$, $n \geq 2$:

$$\operatorname{pr}_{i}: \sum_{i=1}^{n} V_{i} = V_{1} \times V_{2} \times \dots \times V_{n}, \ \operatorname{pr}_{i}(v_{1}, \dots, v_{n}) = v_{i}, \ \forall i = 1, \dots, n.$$

$$(9)$$

See also, e.g., Wikipedia/linear map.

Hạt nhân & ảnh của 1 đồng cấu là 2 không gian vector đặc biệt quan trọng với việc khảo sát đồng cấu đó, see, e.g., [Hưn22, Chap. 2, §3: Hạt nhân & ảnh của đồng cấu, pp. 110–116].

Định nghĩa 2 (Hạt nhân/hạch & ảnh của đồng cấu). $Giả sử f: V \to W$ là 1 đồng cấu.

- (a) $\operatorname{Ker}(f) \coloneqq f^{-1}(0) = \{x \in V | f(x) = 0\} \subset V$ được gọi là hạt nhân (hay hạch) của f. Số chiều của $\operatorname{Ker}(f)$ được gọi là số khuyết của f.
- (b) $\operatorname{Im}(f) := f(V) = \{f(x) | x \in V\} \subset W$ được gọi là ảnh của f. Số chiều của $\operatorname{Im}(f)$ được gọi là hạng của f & được ký hiệu là $\operatorname{rank}(f)$.

Định lý 2 (Diều kiện cầu & đủ để 1 đồng cấu là 1 toàn cấu). $D \hat{o} n g c \hat{a} u f : V \to W \ là 1 toàn c \hat{a} u \Leftrightarrow \operatorname{rank}(f) = \dim W.$

Định lý 3 (Điều kiện cần & đủ để 1 đồng cấu là 1 đơn cấu). Đối với đồng cấu $f: V \to W$ các điều kiện sau là tương đương: (i) f là 1 đơn cấu.

(ii) $Ker(f) = \{0\}.$

- (iii) Ảnh bởi f của mỗi hệ vector độc lập tuyến tính là 1 hệ vector độc lập tuyến tính.
- (iv) Ảnh bởi f của mỗi cơ sở của V là 1 hệ vector độc lập tuyến tính.
- (v) Ảnh bởi f của 1 cơ sở nào đó của V là 1 hệ vector độc lập tuyến tính.
- (vi) rank $(f) = \dim V$.
- 1 (VMC2023A1). Ký hiệu $\mathbb{R}[X]_{2023}$ là \mathbb{R} -không gian vector các đa thức 1 biến với bậc ≤ 2023 . Cho f là ánh xạ đặt tương ứng mỗi đa thức với đạo hàm cấp 2 của nó: $f: \mathbb{R}[X]_{2023} \to \mathbb{R}[X]_{2023}$, $p(X) \mapsto p''(X)$. Đặt $g = f \circ f \circ \cdots \circ f$ (870 lần) là ánh xạ hợp của 870 lần ánh xạ f. (a) Chứng minh g là 1 ánh xạ tuyến tính từ $\mathbb{R}[X]_{2023}$ vào chính nó. (b) Tìm số chiều \mathcal{E} 1 cơ sở của không gian ảnh $\mathrm{Im}\,g$ \mathcal{E} của không gian hạt nhân $\mathrm{Ker}\,g$.

Chứng minh. (a) Có $f(\alpha p(X) + \beta q(X)) = (\alpha p(X) + \beta q(X))'' = \alpha p''(X) + \beta q''(X) = \alpha f(p(X)) + \beta f(q(X)), \forall \alpha, \beta \in \mathbb{R}, \forall p(X), q(X) \in \mathbb{R}[X]_{2023}$, nên ánh xạ f là ánh xạ tuyến tính, nên hợp thành của $n \in \mathbb{N}^*$ lần của ánh xạ f, i.e., $f \circ f \circ \cdots \circ f$ ($n \in \mathbb{R}[X]_{2023}$) vào chính nó. Nói riêng, g là 1 ánh xạ tuyến tính từ $\mathbb{R}[X]_{2023}$ vào chính nó. (b) Ánh của g được sinh bởi các vector $g(1), g(X), \ldots, g(X^{2023})$ (vì $(1, X, X^2, \ldots, X^{2023})$ là 1 cơ sở của khong gian vector $\mathbb{R}[X]_{2023}$ các đa thức p(X) có $\deg p \leq 2023$. Nhận thấy

$$g(X^k) = \begin{cases} 0 & \text{if } k < 1740, \\ k(k-1)\cdots(k-1739)X^{k-1740} & \text{if } k \ge 1740, \end{cases}$$

nên 1 cơ sở của $\operatorname{Im} g$ là $(1, X, X^2, \dots, X^{283})$, nên dim $\operatorname{Im} g = 284$.

Với $p(X) \in \mathbb{R}[X]_{2023}$ bất kỳ, p(X) sẽ có dạng $p(X) = \sum_{i=1}^{2023} a_i X^i = a_0 + a_1 X + a_2 X^2 + \dots + a_{2023} X^{2023}$, thì g(p) có dạng

$$g(p)(X) = \sum_{i=1}^{283} b_i X^i = b_0 + b_1 X + \dots + b_{283} X^{283}.$$

Da thức $p(X) \in \ker g \Leftrightarrow \sum_{i=1}^{283} b_i X^i = 0 \Leftrightarrow a_i = 0, \forall i = 1740, \dots, 2023$, nên 1 cơ sở của $\ker g$ là $(1, X, X^2, \dots, X^{1739})$ & dim $\ker g = 1740$.

- **2** (Mở rộng VMC2023A1). Liệu thay các giả thiết trong VMC2023A1 thì bài toán còn đúng/giải được không? (a) Thay 2023,870 bởi $n,m \in \mathbb{N}^*$. (b) Thay ánh xạ đạo hàm cấp 2 bởi ánh xạ đạo hàm cấp $k \in \mathbb{N}^*$ hoặc tích phân $\int dx$, tích phân bội $k \in \mathbb{N}^*$ $\int \int \cdots \int dx$ (k dấu tích phân).
- **3.** Cho $n \in \mathbb{N}^*$, V là 1 không gian vector, $f: V \to V$ là 1 ánh xạ tuyến tính. Chứng minh $g_n \coloneqq f \circ f \circ \cdots \circ f$ (n lần) cũng là 1 ánh xa tuyến tính từ V vào chính nó.
- 4 (VMC2023A2). (a) 1 thành phố có 2 nhà máy: nhà máy điện (E) & nhà máy nước (W). Để nhà máy (E) sản xuất điện thì nó cần nguyên liệu đầu vào là điện do chính nó sản xuất trước đó & nước của nhà máy (W). Tương tự, để nhà máy (W) sản xuất nước thì nó cần đến nước do chính nó sản xuất cũng như điện của nhà máy (E). Cụ thể:
- Để sản xuất được lượng điện tương đương 1 đồng, nhà máy (E) cần lượng điện tương đương 0.3 đồng mà nó sản xuất được trước đó & lượng nước tương đương 0.1 đồng từ nhà máy (W);
- Để sản xuất được lượng nước tương đương 1 đồng, nhà máy (W) cần lượng điện tương đương 0.2 đồng từ nhà máy (E) & lượng nước tương đương 0.4 đồng do chính nó sản xuất trước đó.

Chính quyền thành phố yêu cầu 2 nhà máy trên cung cấp đến được với người dân lượng điện tương đương 12 tỷ đồng & lương nước tương đương 8 tỷ đồng. Hỏi thực tế mỗi nhà máy cần sản xuất tổng cộng lượng điện & lượng nước tương đương với bao nhiêu tỷ đồng để cung cấp đủ nhu cầu của người dân?

- (b) Cho $A = (a_{ij})_{2\times 2}$ là ma trận thỏa mãn các phần tử đều là số thực không âm & tổng các phần tử trên mỗi cột của A đều < 1. Với $\mathbf{d} = (d_1, d_2)^{\top}$ là 1 vector tùy ý, chứng minh tồn tại duy nhất 1 vector cột $\mathbf{x} = (x_1, x_2)^{\top}$ sao cho $\mathbf{x} = A\mathbf{x} + \mathbf{d}$.
- 5 (VMC2023A3). Cho $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ thỏa $x^4 2x^3 1 = (x \alpha)(x \beta)(x \gamma)(x \delta)$. (a) Chứng minh $\alpha, \beta, \gamma, \delta$ đôi một khác nhau. (b) Chứng minh $\alpha^3, \beta^3, \gamma^3, \delta^3$ đôi một khác nhau. (c) Tính $\alpha^3 + \beta^3 + \gamma^3 + \delta^3$. (d)* Mở rộng bài toán cho các đa thức khác.

Lemma 1 (Điều kiện cần & đủ của nghiệm bội của đa thức). Cho $m, n \in \mathbb{R}, m \le n, P(x) \in \mathbb{R}[x], \deg P = n.$ $x = x_0 \in \mathbb{R}$ là 1 nghiệm bội m của P(x) khi \mathcal{E} chỉ khi $P(x_0) = P'(x_0) = P''(x_0) = \cdots = P^{(m)}(x_0) = 0.$

Chứng minh. Giả sử $x = x_0 \in \mathbb{R}$ là 1 nghiệm bội m của P(x), thì P(x) sẽ có dạng $P(x) = (x - x_0)^m g(x)$ với $g(x) \in \mathbb{R}[x]$, deg $g = \deg P - m = n - m \ge 0$. Tính các đạo hàm $P'(x), P''(x), \ldots, P^{(m)}(x)$ (có thể sử dụng quy tắc Leibniz tổng quát để tính đạo hàm, see, e.g., Wikipedia/general Leibniz rule) để suy ra kết luận.

Hint. (a) Đặt $P(x) = x^4 - 2x^3 - 1$, có $P'(x) = 4x^3 - 6x^2 = 2x^2(2x - 3$ chỉ có 2 nghiệm x = 0 (bội 2) & $x = \frac{3}{2}$ (bội 1), mà $P(0) = -1 \neq 0$, $P(\frac{3}{2}) = -\frac{43}{16} \neq 0$ nên $0, \frac{3}{2}$ đều không phải là nghiệm của P(x), suy ra các nghiệm $\alpha, \beta, \gamma, \delta$ của P(x) là phân biệt. (b)

6 (VMC2023A4). Với mỗi ma trận vuông A có phần tử là các số phức, định nghĩa

$$\sin A = \lim_{k \to \infty} \sum_{n=0}^{k} \frac{(-1)^n}{(2n+1)!} A^{2n+1}.$$
 (10)

(Ở đây ma trận giới hạn có phần tử là giới hạn của phần tử tương ứng của các ma trận tổng $S_k = \sum_{n=0}^k \frac{(-1)^n}{(2n+1)!} A^{2n+1}$. Ma trận giới hạn này luôn tồn tại.) (a) Tìm các phần tử của ma trận $\sin A$ với

$$A = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix} \tag{11}$$

(b) Cho $x,y\in\mathbb{R}$ bất kỳ, tìm các phần tử của ma trận $\sin A$ với

$$A = \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} \tag{12}$$

theo x,y. (c) Tồn tại hay không 1 ma trận vuông A cấp 2 với phần tử là các số thực sao cho

$$\sin A = \begin{pmatrix} 1 & 2023 \\ 0 & 1 \end{pmatrix}? \tag{13}$$

7 (VMC2023A5). Ký hiệu P_n là tập hợp tất cả các ma trận khả nghịch A cấp n sao cho các phần tử của A & A^{-1} đều bằng 0 hoặc 1. (a) Với n = 3, tìm tất cả các ma trận thuộc P_3 . (b) Tính số phần tử của P_n với $n \in \mathbb{N}^*$ tùy ý.

Chứng minh. (a) Đặt $A = (a_{ij})_{3\times 3}, A^{-1} = (b_{ij})_{3\times 3}$, kết hợp với A, A_{-1} đều khả nghịch, có mỗi hàng & mỗi cột đều có ít nhất 1 số 1. Có $1 = a_{k1}b_{1k} + a_{k2}b_{2k} + a_{k3}b_{3k}$ với k = 1, 2, 3, nên tồn tại duy nhất $m \in \{1, 2, 3\}$ để $a_{km} = b_{mk} = 1$.

3 Analysis – Giải Tích

3.1 Sequence – Dãy số

Resources - Tài nguyên.

- 1. [Khả09]. Phan Huy Khải. Các Chuyên Đề Số Học Bồi Dưỡng Học Sinh Giỏi Toán Trung Học. Chuyên Đề 2: Số Học & Dãy Số.
- 8 (General recursive sequences Dãy truy hồi tổng quát). Cho dãy số $(u_n)_{n=1}^{\infty}$ được xác định bởi công thức truy hồi

$$u_n = f(u_{n-1}, u_{n-2}, \dots, u_{n-m}), \ \forall m, n \in \mathbb{N}^*, \ m < n.$$
(14)

Tim các tính chất tổng quát của dãy theo 1 số dạng đặc biệt của hàm f để lập thành các mệnh đề \mathcal{E} định lý, rồi chứng minh chúng.

Vài phương pháp phổ biến để giải bài toán dãy số.

- Tìm cách xác định công thức số hạng tổng quát của dãy số: Thử vài trường hợp đầu để dự đoán công thức chính xác rồi chứng minh bằng quy nạp toán học.
- Sử dụng phương trình đặc trung của lý thuyết dãy số.
- 9 (VMC2023B). Cho $(u_n)_{n=1}^{\infty}$ là dãy số được xác định bởi $u_n = \prod_{k=1}^n \left(1 + \frac{1}{4^k}\right)$, $\forall n \in \mathbb{N}^*$. (a) Tìm tất cả $n \in \mathbb{N}^*$ thỏa $u_n > \frac{5}{4}$. (b) Chứng minh $u_n \leq 2023$, $\forall n \in \mathbb{N}^*$. (c) Chứng minh dãy số $(u_n)_{n=1}^{\infty}$ hội tụ.

Chứng minh. (a)
$$u_{n+1} = \left(1 + \frac{1}{4^{n+1}}\right) u_n > u_n$$
, $\forall n \in \mathbb{N}^*$, suy ra (u_n) đơn điệu tăng, mà $u_1 = \frac{5}{4}$ nên $u_n > \frac{5}{4} \Leftrightarrow n \geq 2$. (b)

Remark 1. Gặp phải dãy số $(u_n)_{n=1}^{\infty}$ có công thức mỗi số hạng là 1 tích thì thử tính $\frac{u_{n+1}}{u_n}$ xem có đơn giản hóa được không. Gặp phải dãy số $(u_n)_{n=1}^{\infty}$ có công thức mỗi số hạng là 1 tổng thì thử tính $u_{n+1} - u_n$ xem có đơn giản hóa được không.

10 (Recursive sequence vs. ANN). Tìm mối liên hệ giữa các dãy số cho bởi công thức truy hồi (recursive sequences) & mạng lưới nơ-ron nhân tạo (artificial neural networks, abbr., ANNs).

3.2 Integral – Tích phân

4 Miscellaneous

Tài liệu

- [Hưn22] Nguyễn Hữu Việt Hưng. Đại Số Tuyến Tính. Tái bản lần thứ 4. Nhà Xuất Bản Đại Học Quốc Gia Hà Nội, 2022, p. 335.
- [Khả09] Phan Huy Khải. Các Chuyên Đề Số Học Bồi Dưỡng Học Sinh Giỏi Toán Trung Học. Chuyên Đề 2: Số Học & Dãy Số. Nhà Xuất Bản Giáo Dục, 2009, p. 260.