基于 Multisim 的电路仿真报告:

运算放大器应用(一)——负阻抗变换器和回转器的设计

陈韵如

922110800802

南京理工大学自动化学院

日期: 2023年12月27日

摘 要

利用理想运算放大器的原理,设计并构建负阻抗变换器和回转器电路。通过 Multisim14 软件对电路进行仿真,研究负阻抗变换器和回转器的特性,加以验证实验理论的正确性。

关键词: Multisim14, 运算放大器电路, 复阻抗变换器, 回转器, 二端口网络

1 实验目的

- 1、了解负阻抗变换器的设计原理,用T参数研究其端口关系。
- 2、使用运算放大器设计 INIC 和 VNIC 电路,验证 VNIC 与 INIC 的关系式,并研究讨论其 短路稳定性和开路稳定性。
- 3、了解回转器电路原理并推导基本方程,使用运算放大器设计回转器电路,测量回转参数 g_{\circ}
- 4、使用回转器将负载电容回转为 $0.1H \sim 1H$ 的电感,验证模拟电感的电感特性和电感量准确性。

2 实验原理

2.1 负阻抗变换器 (NIC)

负阻抗变换器(NIC)是一种二端口器件,可形成一个线性负阻抗;分为电流反相型负阻抗变换器(INIC)与电压反相型负阻抗变换器(VNIC)两种。

下图为两种 NIC 的模型,其中 (a) 图为 INIC, (b) 图为 VNIC:

图 1: NIC 模型图解

2.1.1 端口阻抗推导

对于 INIC 电路:

其电压和电流关系为: (K1 为电流增益)

$$U_1 = U_2$$
$$I_1 = \frac{1}{K_1} I_2$$

由此可得,该二端口网络的 T 参数矩阵为:

$$[T] = \begin{bmatrix} 1 & 0 \\ 0 & -\frac{1}{K_1} \end{bmatrix}$$

(1) 若在输出端口接上负载 Z_L ,则有:

$$U_2 = -I_2 Z_L$$

则从输入端口看,输入阻抗 Z_i 为:

$$Z_i = \frac{U_1}{I_1} = \frac{U_2}{\frac{I_2}{K_1}} = -K_1 Z_L$$

(2) 若在输入端口接入负载 Zs,则有:

$$U_1 = -I_1 Z_s$$

则从输出端口看,输出阻抗 Z_0 为:

$$Z_0 = \frac{U_2}{I_2} = \frac{U_1}{K_1 I_1} = \frac{-Z_s}{K_1}$$

对于 VNIC 电路:

其电压和电流关系为: (K2 为电流增益)

$$Uu_1 = -\frac{1}{K_2}u_2$$
$$I_1 = -I_2$$

由此可得,该二端口网络的 T 参数矩阵为:

$$[T] = \begin{bmatrix} -\frac{1}{K_2} & 0\\ 0 & 1 \end{bmatrix}$$

(1) 若在输出端口接上负载 Z_L ,则有:

$$U_2 = -I_2 Z_L$$

则从输入端口看,输入阻抗 Z_i 为:

$$Z_i = \frac{U_1}{I_1} = \frac{-\frac{U_2}{K_2}}{-I_2} = -\frac{Z_L}{k_2}$$

(2) 若在输入端口接入负载 Z_s ,则有:

$$U_1 = -I_1 Z_s$$

则从输出端口看,输出阻抗 Z_0 为:

$$Z_0 = \frac{U_2}{I_2} = \frac{-K_2 U_1}{-I_1} = -K_2 Z_s$$

2.1.2 INIC 电路设计

右图为使用运放设计的 INIC 电路。运放输出端电压 u_{op} 为:

$$u_{op} = u_1 - i_1 R_1 = u_2 - i_2 R_2$$

由理想运放的原理:

$$u_1 = u_2$$

联立上式可得:

$$i_2 = \frac{R_1}{R_2} i_1$$

比较 INIC 的电压电流关系式可知:

$$K = \frac{R_1}{R_2}$$

故该电路为 INIC 电路。

2.1.3 VNIC 电路设计

右图为使用运放设计的 VNIC 电路。用节点电压法得出:

$$(\frac{1}{R_2} + \frac{1}{R_1})u_1 - \frac{1}{R_1}u_{op} = 0$$

解得,运放输出端电压 uop 为:

$$u_{op} = (1 + \frac{R_1}{R_2})u_1$$

 $\mathbf{Z} \colon \ u_1 = u_2 + u_{op}$

联立上式可得:

$$u_2 = -\frac{R_1}{R_2}u_1$$

比较 VNIC 的电压电流关系式可知:

$$K = \frac{R_1}{R_2}$$

由 KCL 可得: $i_2 = -i_1$ 故该电路为 VNIC 电路。

2.1.4 开路稳定性 (OCS) 与短路稳定性 (SCS)

用运算放大器设计的负阻抗变换器,为了稳定工作,必须保证负反馈强于正反馈。因此有一个端口只容许接高电阻负载,称为开路稳定(OCS);而另一个端口只容许接低阻负载,称为短路稳定(SCS)。

2.2 回转器

回转器为一个二端口网络,可将一个端口上的输入电流的值回转成另一个端口的电压,或 将一个端口上输入电压的值回转成另一个端口的输入电流。

其 Z 参数矩阵为:

$$[Z] = \left[\begin{array}{cc} 0 & -R \\ R & 0 \end{array} \right]$$

图 2: 回转器电路模型

2.2.1 基本方程推导

(1) 回转器端口间的关系为:

$$\begin{cases} i_1 = gu_2 \\ i_2 = -gu_2 \end{cases}$$

或者:

$$\begin{cases} u_1 = -ri_2 \\ u_2 = ri_1 \end{cases}$$

其中,g 或 $r=\frac{1}{g}$ 分别称为回转电导和回转电阻, 简称回转常数。

(2) 若在回转器 2-2 端口接以负载阻抗,则从 1-1 端口看入的输入阻抗为:

$$Z_{in1} = \frac{U_1}{I_1} = \frac{-rI_2}{\frac{U_2}{\frac{r}{2}}} = \frac{-r^2I_2}{U_2} = \frac{-r^2I_2}{-Z_LI_2} = \frac{r^2}{Z_L}$$

则在 1-1[']端口的回转电导 $g_1=\frac{1}{Z_{in1}}$ 。

(3) 如果负载阻抗
$$Z_L$$
 在 $1-1^\circ$ 端口,则在 $2-2^\circ$ 端口看入的输入阻抗为:
$$Z_{in2} = \frac{U_2}{I_2} = \frac{rI_1}{-\frac{U_1}{r}} = \frac{r^2I_1}{-U_1} = \frac{-r^2I_2}{-Z_LI_2} = \frac{r^2}{Z_L}$$

则在 2-2 端口的回转电导 $g_2=\frac{1}{Z_{in2}}$ 。

由(2)、(3)推导结果易得,回转器的一个端口的阻抗与另一端口的阻抗为反比例关系(乘 上一定系数),与方向无关(即具有双向性质)。

(4) g 的求解:

$$g = \frac{(g_1 + g_2)}{2}$$

2.2.2 回转器电路设计

使用运放设计的回转器如下图所示:

电路左右两端分别为两个端口1和11;2和22;

图 3: 回转器设计电路

令 $R_1 = R_2 = \cdots = R_7 = R$, 使用**节点电压法**对电路中 A、B、D、E 四个节点列方程:

$$\begin{cases} \frac{2}{R}u_1 - \frac{1}{R}u_C - \frac{1}{R}u_2 = I_1 \\ \frac{2}{R}u_B - \frac{1}{R}u_C = 0 \\ \frac{2}{R}u_D - \frac{1}{R}u_C - \frac{1}{R}u_F = 0 \\ \frac{2}{R}u_2 - \frac{1}{R}u_1 - \frac{1}{R}u_F = I_2 \end{cases}$$

联立解得:

$$i_1 = -\frac{u_2}{R}, \quad i_2 = \frac{u_1}{R}$$

故该电路为回转器,且其 Z 参数矩阵与回转器形式相同。由定义可知,该电路的回转阻抗 为 R,回转电导 $g=\frac{1}{R}$ 。

2.2.3 使用回转器模拟电感

图 4: 回转器模拟电感示意图

由回转器原理可知,回转器可将接入第二端口的电容回转为电感,带入前面已推导得出的关系式:

$$Z_{in} = \frac{1}{g^2 Z_L}$$

可得出, 其等效电感为:

$$L = r^2 C$$

3 负阻抗变换器的实验过程

3.1 使用运放实现 ICNC

实验电路如下:

图 5: INIC 实验电路图

在 Multisim 中选择**直流扫描仿真**,以 V_1 为电压源作线性扫描,从 0V 扫描至 5V,扫描增量设置为 0.1V,以探针作为输出,得到以下结果:(实验记录的详细数据见附件 Excel 文档。)

图 6: U_1 和 U_2 关系图

图 7: I₁ 和 I₂ 关系图

由数据计算,在误差允许范围内可以认为:

$$U_1 = U_2; \quad I_1 = I_2$$

与理论关系一致。其电流比 K 约为 1。

3.2 使用运放实现 VCNC

实验电路如下:

图 8: VNIC 实验电路图

在 Multisim 中选择**直流扫描仿真**,以 V_1 为电压源作线性扫描,从 0V 扫描至 5V,扫描增量设置为 0.1V,以探针作为输出,得到以下结果如图 9、10 所示。(实验记录的详细数据见附件 Excel 文档。)

图 9: *U*₁ 和 *U*₂ 关系图

图 10: I₁ 和 I₂ 关系图

由数据计算,在误差允许范围内可以认为:

$$U_1 = -U_2; \quad I_1 = -I_2$$

与理论关系一致。其电流比 K 约为 1。

3.3 INIC 接法下的开路稳定性 (OCS) 与短路稳定性研究 (SCS)

3.3.1 OCS 研究

使用 k 值验证 OCS,为更方便测量和处理所需数据,简化电路图如图 11 所示。设置 R_1 和 R_2 均为 1k, R_3 阻值可调。根据实验原理可得:

(1)K 的理论值:

$$K_1 = \frac{R_1}{R_2} = 1$$

(2)K 的测量值:

$$K_1 = -\frac{R}{R_3}$$

图 11: INIC 接法下的 OCS 探究电路

在 Multisim 中选择**参数扫描仿真**,扫描参数选择器件参数,扫描器件选择 Resistor,参数选择阻值 (Resistance),扫描变化类型选择十倍频程(由于需要模拟从短路到开路的一系列负载电阻值,故负载电阻值变化较大,此处使用十倍频程(对数坐标)能更好地反映实验结果),开始值设为 100Ω ,结束值设为 $100M\Omega$ (模拟开路),每十倍变化取两个点,扫描分析选择直流工作点分析,输出 U 和 I, $R=\frac{U}{I}$ 。数据如表 1 所示。

I	U	R3	R=U/I	K1 测量值
-0.00691	5	100	-724.106	7.241058
-0.00692	5	316.2278	-722.42	2.284494
-0.005	5	1000	-1000.02	1.00002
-0.00158	5	3162.278	-3162.37	1.000028
-0.0005	5	10000	-10000.6	1.000061
-0.00016	5	31622.78	-31628.1	1.000169
-5E-05	5	100000	-100051	1.000511
-1.6E-05	5	316227.8	-316732	1.001595
-4.98E-06	5	1000000	-1003021	1.003021

表 1: INIC 接法的 OCS 测量数据

分析数据可见,**随着 R 增大, K1 逐渐趋近于理论值 1,约从 R=1kΩ 开始, K1 的值开始在 1 附近随机来回摆动,平均误差小于 0.001**。故可认为,对与 INIC 电路,OCS 端口只允许接高电阻负载,才能保证整个电路稳定工作,这种稳定为开路稳定。

3.3.2 SCS 研究

使用 k 值验证 SCS, 为更方便测量和处理所需数据, 简化电路图如图 12 所示。

图 12: INIC 接法下的 SCS 探究电路

同样通过**参数扫描仿真**的方式逐渐调大 R4 的值,记录 U、I,计算 K1 的测量值。K1 理论值仍为 1。数据测量如表 2 所示。

R4	U	I	R=U/I	K1 测量值
1	5.005005	-0.005	-1000.02	1.00002
3.162278	5.015861	-0.00502	-1000.02	1.00002
10	5.050504	-0.00505	-1000.02	1.00002
31.62278	5.163274	-0.00516	-1000.02	1.00002
100	5.555543	-0.00556	-1000.02	1.00002
316.2278	6.673469	-0.00529	-1261.06	1.261056
1000	8.493233	-0.00349	-2431.34	2.431339

表 2: INIC 接法的 SCS 测量数据

分析数据易得,大致以 $R4=100\Omega$ 为分界点,小于该值时,K1 的值在 1 附近摆动,**相对误差 仅为 0.002\%**;大于该值时,k1 的值逐渐增大。故可认为,对于 INIC 电路,SCS 端口只允许接低电阻负载,才能保证整个电路稳定运行。

3.4 VNIC 接法下的开路稳定性 (OCS) 与短路稳定性研究 (SCS)

设置 R_1 和 R_2 均为 1k, R_3 阻值可调。根据实验原理可得:

(1)K 的理论值:

$$K_2 = \frac{R_1}{R_2} = 1$$

(2)K 的测量值:

$$K_2 = -\frac{R}{R_3}$$

3.4.1 OCS 研究

使用 k 值验证 OCS, 为更方便测量和处理所需数据, 简化电路图如图 10。

图 13: VNIC 接法下的 OCS 探究电路

通过**参数扫描仿真**的方式逐渐调大 R_3 的值,记录 U、I,计算 K_2 的测量值,数据如下表所示:

R3	U	I	R=U/I	K2 测量值
1	5	-0.64118	-7.79808	7.798077
3.162278	5	-0.5354	-9.33886	2.953207
10	5	-0.35179	-14.2129	1.421293
31.62278	5	-0.15811	-31.6235	1.000024
100	5	-0.05	-100.002	1.000021
316.2278	5	-0.01581	-316.234	1.000021
1000	5	-0.005	-1000.02	1.00002

表 3: VNIC 接法的 OCS 测量数据

分析数据易得,大致以 $R=30\Omega$ 为界,大于该值时, K_2 的值在 1 附近摆动,且**最大误差仅为 0.002\%**。故可认为,对于 UNIC 电路,OCS 端口只允许接高电阻负载,才能保证整个电路稳定运行。

3.4.2 SCS 研究

使用 k 值验证 SCS, 为更方便测量和处理所需数据, 简化电路图如图 11。

图 14: VNIC 接法下的 SCS 探究电路

通过**参数扫描仿真**的方式逐渐调大 R4 的值,记录 U、I,计算 K_2 的测量值, 数据如表 4 所示。

R4	U	I	R=U/I	K 测量值
1	5.005005	-0.005	-1000.02	1.00002
3.162278	5.015861	-0.00502	-1000.02	1.00002
10	5.050504	-0.00505	-1000.02	1.00002
31.62278	5.163274	-0.00516	-1000.02	1.00002
100	5.555543	-0.00556	-1000.02	1.00002
158.4893192	5.94167037	-0.00594155	-1000.02	1.00002
316.2278	6.673469	-0.00529	-1261.06	1.261056
1000	8.493233	-0.00349	-2431.34	2.431339

表 4: VNIC 接法的 SCS 测量数据

根据表格数据易得,大致以 R1=160 Ω 为界,小于该值, K_2 测量值为 1.00002,**最大误差只有 0.002**%。故可认为,对于 UNIC 电路,SCS 端口只允许接低负载电阻,才能保证整个电路稳定运行。

小结:

综合以上四组数据可知,对于 NIC 电路,为稳定工作,必须保证运放的负反馈强于正反馈。 OCS 是只允许接高阻抗负载的端口,为开路稳定端; SCS 是只允许接低阻抗负载的端口,为短路稳定端。

4 回转器的实验过程

4.1 使用运放实现回转器

回转器的实验电路如下:

图 15: 使用运放搭建的回转器实验电路

在 Multisim 中选择**直流扫描仿真**,以 V_1 为电压源作线性扫描,从 0V 扫描至 5V,扫描增量设置为 0.1V,以探针作为输出,得到以下结果: (实验记录的详细数据见附件 Excel 文档)

图 16: i₂ 和 u₁ 关系图

图 17: i₁ 和 u₂ 关系图

结合图 16 和实验数据可知,在误差允许范围内可认为, i_2 与 u_1 满足回转器关系式:

$$u_1 = -ri_2$$

结合图 17 和实验数据可知,由于 i_1 与 u_2 相差过大 (10^3),故在图象中 i_1 显示为近似一条直线。在误差允许范围内可认为, i_1 与 u_2 满足回转器关系式:

$$u_2 = ri$$

综上,可验证该使用运放构建的电路具有回转器作用。

4.1.1 测量回转参数 g

根据前面推导出的公式,可知实验回转器电路的回转电阻 $r=1k\Omega$,则回转参数的理论值为:

$$g = \frac{1}{r} = 0.001 \quad S$$

使用**直流扫描仿真**逐渐改变 U_1 大小,从 0V 扫描至 5V,扫描增量设置为 0.5V,输出 $I_1I_2U_2$ 的数据,计算 g 的测量值。具体数据见表 5,可知回转参数 g 的测量值和理论值一致,故 g 的大小满足前面推导的基本方程,验证成功。

U1/V	U2/V	I1/A	I2/A	g1=i1/u2	g2=-i2/u1	g=(g1+g2)/2	误差 E/%
0.5	0.49999	0.0005	-0.0005	0.001	0.001	0.001	0
1	0.99998	0.001	-0.001	0.001	0.001	0.001	0
1.5	1.49997	0.0015	-0.0015	0.001	0.001	0.001	0
2	1.999959	0.002	-0.002	0.001	0.001	0.001	0
2.5	2.499949	0.0025	-0.0025	0.001	0.001	0.001	0
3	2.999939	0.003	-0.003	0.001	0.001	0.001	0
3.5	3.499929	0.0035	-0.0035	0.001	0.001	0.001	0
4	3.999919	0.004	-0.004	0.001	0.001	0.001	0
4.5	4.499909	0.0045	-0.0045	0.001	0.001	0.001	0
5	4.999898	0.005	-0.005	0.001	0.001	0.001	0

表 5: 测量回转参数 g 相关数据

4.2 将电容回转为一个模拟纯电感

4.2.1 电感特性验证

实验电路如下:

图 18: 回转器模拟电感电路

图 19: 回转器模拟电感交流分析

在 Multisim 中选择**交流分析仿真**,以 V_1 为激励源,起始频率 1Hz,停止频率 10kHz,每十倍频程 10 个点,以探针作为输出,测得数据见图 19。(详细数据见附件。)

在误差允许范围内,**回转器在激励源一端的输入电流滞后电压约 90 度**,故可认为在一定频率范围内回转器将其回转成了电感。

4.2.2 电感准确性验证

根据理论公式:

$$L = r^2 C$$

可知, 1uF 的电容 C_1 理论上可回转成 1H 的电感。

又:

$$L = \frac{Zi}{2\pi f} = \frac{U_1}{2\pi f I_1}$$

在电路中添加探针测量端口电压 U_1 , 选择交流分析仿真,以 V_1 为激励源,起始频率 1Hz,停止频率 1kHz,每十倍频程 5 个点,以探针作为输出,计算得到 L 的模拟值如表 6 所示。(详细数据见附件。)

f/HZ	U/V	I/A	$Z_i = \frac{U}{I}$	$L_{\text{\'e}}_{\text{\'e}} = \frac{Z_i}{2\pi f}$
100	1	0.001591	628.3498	1.00005
158.4893	1	0.001004	995.8711	1.000054
251.1886	1	0.000634	1578.365	1.000063
398.1072	1	0.0004	2501.6	1.000088
630.9573	1	0.000252	3965.012	1.000149
1000	1	0.000159	6285.085	1.000302

表 6: 模拟电感相关测量数据

由数据可知, $L_{\text{模拟}}$ **基本与理论值一致,平均误差小于 0.001**。因此使用回转器将电容回转为一个模拟电感是可行的,经验证,该模拟量具有电感准确性。

5 实验总结

5.1 实验内容总结

本次实验使用运算放大器设计了负阻抗变换器和回转器电路。通过理论推导和软件仿真的形式研究了 VNIC 与 INIC 的特性,讨论分析了 VNIC 和 INIC 的端口特性、开路稳定性与短路稳定性。此外,本次实验还对回转器的基本方程和回转参数 g 进行了理论推导和仿真验证,研究了通过回转器将电容模拟为电感的方法,验证了模拟纯电感的电感特性和电感准确性。

5.2 实验误差分析

本次实验使用仿真软件进行验证,同时使用探针采集电流电压数据,使用参数扫描、直流扫描和交流分析等仿真方法,避免了现实情况下,电流表有内阻、器材元件精度问题等导致的误差,较便捷地获得大量精确数据,使验证的测量值与理论值基本一致,误差很小。

5.3 实验心得体会

通过本次实验,我加深了对负阻抗变换器和回转器电路的理解,学会了 Multisim 仿真平台的基本操作和常用的数据处理方式。同时学会了独立思考和解决问题的能力,在书写实验报告的过程中,也加深了对书写规范的理解。

在本次实验中,我也遇到了一些小问题,比如电路未接地,探针方向设置反了等待,通过解决这些问题,也使我更加细心和耐心。