Théorie des Langages Rationnels Properties of Rational Languages

Adrien Pommellet, LRE

April 14, 2023

Inverting the pipeline

An intuition on edges

Consider the following pattern:

Were we to allow edges labelled by **regular expressions**, then this automaton would be equivalent to:

An intuition on states

In a similar manner, if we consider the pattern:

Then this automaton is equivalent to:

A tricky case

However, if we consider the pattern:

We take into account every possible path: xy^*z , xy^*v , uy^*z , uy^*z .

Handling all the paths

We therefore must add four edges, one for each possible path:

We create $|incoming \ edges| \times |outgoing \ edges|$ edges as we remove q.

The terminal case

We will remove almost every state and edge of A until only the pattern below is left; then the regular expression e is such that $\mathcal{L}(A) = \mathcal{L}(e)$.

However, in order to reach this point, there must be **only one** initial state and one distinct accepting state.

Moreover, the initial state must have no **incoming** transitions, and the accepting state, no **outgoing** transitions.

Changing the initial and accepting states

If there are multiple initial and accepting states with the wrong edges:

Then we design a new initial state i, a new accepting state f, then use ε -transitions to link them to the **former** initial and accepting states.

A summary

- Ensure that there is a single initial state with no incoming edges and a single, distinct accepting state with no outgoing edges.
- 2 Apply the edge removal pattern whenever possible.
- Apply the state removal pattern whenever possible.
- Stop once there is a single edge between the initial state and the accepting state.
- This edge is then labelled by a **regular expression** *e* equivalent to the input automaton.

A consequence

Theorem

Given an automaton A on the alphabet Σ , there exists a regular expression $e \in \mathsf{Reg}_{\Sigma}$ such that $\mathcal{L}(A) = \mathcal{L}(e)$.

Note that this theorem applies to DFA, NFA, and ε -NFA alike.

Moreover, depending on the order in which the removal patterns are applied, the algorithm may yield **different but equivalent** regular expressions.

Practical Application

Exercise 1. Find a regular expression equivalent to the automaton A.

Figure 1: Automaton A.

Answer I

Answer II

Answer III

Answer IV

Answer V

Stability properties

By design, rational languages are stable by union, Kleene star and concatenation. What about **other operations**?

Practical Application

Exercise 2. Find an automaton A_2 on the alphabet $\Sigma = \{a, b\}$ such that $\mathcal{L}(A_2) = \overline{\mathcal{L}(A_1)}$.

Figure 2: Automaton A_1 .

Answer

Stability by complementation

Theorem

If $L \in \mathsf{Rat}_{\Sigma}$, then $\overline{L} \in \mathsf{Rat}_{\Sigma}$ as well.

Proof. Let \mathcal{A}_1 be a **complete DFA** recognizing L. Consider the complete DFA \mathcal{A}_2 obtained by switching \mathcal{A}_1 's accepting and non-accepting states. Then \mathcal{A}_2 recognizes \overline{L} .

Note that A_1 must be complete and deterministic to ensure each word admits exactly one path, that we can therefore alter.

Various stability properties

Lemma

Given a rational language $L \in Rat_{\Sigma}$, Pref(L), Suff(L), Fact(L), and the mirror language L^R are all rational.

The proof is left as an exercise. Like the previous property, it relies on our ability to compute a DFA that recognizes L, then modifying it so that it recognizes instead another language derived from L.

Stability by intersection

A consequence of the previous theorem is the following:

Theorem

If $L_1, L_2 \in \mathsf{Rat}_{\Sigma}$, then $L_1 \cap L_2 \in \mathsf{Rat}_{\Sigma}$ as well.

Proof. $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$, and both the union and the complementation preserve rationality.

But can we build a DFA explicitly recognizing $L_1 \cap L_2$?

Introducing the synchronized product

Consider two DFA A_1 and A_2 . Our intuition is to perform a synchronized product $A_1 \times A_2$ of their transitions:

Intuitively, we simulate both DFA at the same time.

Computing the synchronized product

Properties of the synchronized product

These properties apply to the synchronized product $A_1 \times A_2$:

- The initial state of $A_1 \times A_2$ is (i_1, i_2) where i_1 (resp. i_2) is A_1 's (resp. A_2 's) initial state.
- A state (f_1, f_2) of $A_1 \times A_2$ is **accepting** if and only if f_1 (resp. f_2) is an accepting state of A_1 (resp. A_2).
- If A_1 has n_1 states and A_2 has n_2 states, then $A_1 \times A_2$ has **at most** $n_1 \times n_2$ states.

Emptiness checks

Lemma

Given $L \in Rat_{\Sigma}$, we can decide whether $L = \emptyset$ or not.

Proof. Let \mathcal{A} be a DFA recognizing L. Using a **depth-first search** starting from \mathcal{A} 's initial state, we can determine whether an accepting state is reachable or not.

If there is at least one path from the initial state to an accepting state, then \mathcal{A} accepts its label. If there is none, $L = \mathcal{L}(\mathcal{A}) = \emptyset$.

Equality checks

Lemma

Given $L_1, L_2 \in Rat_{\Sigma}$, we can decide whether $L_1 = L_2$ or not.

Proof. Note that $(L_1 = L_2) \iff (L_1 \subseteq L_2) \land (L_2 \subseteq L_1)$. But $(L_1 \subseteq L_2) \iff L_1 \cap \overline{L_2} = \emptyset$. $L_1 \cap \overline{L_2}$ being rational, we can decide whether it is empty or not.

In a similar fashion, $(L_2 \subseteq L_1) \iff L_2 \cap \overline{L_1} = \emptyset$. $L_2 \cap \overline{L_1}$ is also rational, thus we can also check its emptiness.

Advanced properties of rational languages

Testing equality

A practical algorithm based on this proof would be the following:

- **1** Compute two **complete DFA** A_1 and A_2 respectively recognizing L_1 and L_2 .
- 2 Compute their complements $\overline{A_1}$ and $\overline{A_2}$.
- **3** Compute the synchronized products $\overline{A_1} \times A_2$ and $A_1 \times \overline{A_2}$.
- Check the emptiness of both products by performing a depth first search; the languages are equal if both are empty.
- **3** The search will otherwise return a **counter-example** w such that $w \in L_1$ but $w \notin L_2$, or $w \in L_2$ but $w \notin L_1$.

That's all folks!