Indice

L	\mathbf{Mic}	Microoperazioni															2						
	1.1	Esercizio 1 (Fetch)																					2
	1.2	Esercizio 2 (Inc)																					2

1 Microoperazioni

1.1 Esercizio 1 (Fetch)

Esercizio 1.1

Scrivere le microistruzioni per effettuare il fetch di un'istruzione, commentando ogni passo. (Architettura ad 1 bus)

Fetch

F 1. PC_{out}, MAR_{in}, READ, SELECT₄, ADD, Y_{in}

Estraggo dal program counter l'indirizzo dell'istruzione da eseguire e lo metto nel MAR per ottenere l'istruzione. Successivamente metto imposto $SELECT_4$ che seleziona la costante 4 dal multiplexer per sommarla al program counter che si trova già nella ALU, questo equivale ad andare all'istruzione successiva, cioè PC+1 word. Il risultato della somma viene salvato nel registro Y.

2. Y_{out} , PC_{in} , WMFC

Estraggo l'indirizzo dell'istruzione successiva dall'registro Y e lo inserisco nel program counter mentre aspetto che la funzione di lettura del MAR venga completata.

3. MDR_{out} , IR_{in}

Una volta che viene letto il dato all'indirizzo inserito nel MAR il risultato viene messo in MDR e successivamente trasferito nell'IR completando così il fetch dell'istruzione.

1.2 Esercizio 2 (Inc)

Esercizio 1.2

Descrivere le microistruzioni relative alla seguente istruzione: (Architettura ad 1 bus)

INC %EAX

- F 1. PCout, MDRin, READ, SELECT4, ADD, Yin
 - 2. Y_{out} , PC_{in} , WMFC
 - 3. MDR_{out} , IR_{in} ,
- $DE = 4. EAX_{out}, SELECT_0, CB, ADD, Y_{in}$
 - 5. Y_{out} , EAS_{in} , END