BASIC CIRCUITS AND MEMORY

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Bernhard Kainz (with thanks to A. Gopalan, N. Dulay and E. Edwards)

b.kainz@imperial.ac.uk

Digital Circuits

Basic Circuits

Half Adder Assignment Project Exam Help

Full Adder https://tutorcs.com

WeChat: cstutorcs

Latches

Adders

- A digital circuit that performs addition of numbers
- Not only used in anithmethologica unit(s), but also in other parts of the processor, where they are used to calculate addresses, table indices, and similar operations

WeChat: cstutorcs

Most common adders operate on binary numbers

Consider adding two 1-bit binary numbers together:

Ass	signment	Project	Exam He	elp ₁
+	https://	1 utores.e	0	1
		1	1	??

WeChat: cstutorcs

Input – 2 separate lines

Consider adding two 1-bit binary numbers together:

Ass	signment	Project	Exam He	elp ₁
+	https://s	1	0	1
	00	01	01	10

WeChat: cstutorcs

- Input 2 separate lines
- Output two bits how do we represent this?
 - Use two separate lines (Sum and Carry)

- Can we now draw the circuit?
 - · What do we Anseign mutent Pattige ct Exam Help
 - One each for suntaps cartyltores.com

WeChat: cstutorcs

Recall

	0	0	1	1
Ass	signment	Project	Exam He	elp 1
	00	01	01	10
https://tutorcs.com				

Truth Table

А	WeCha B	t: cstutoi A + B	Sum	Carry
0	0	0	0	0
0	1	1	1	0
1	0	1	1	0
1	1	2	0	1

Selecting Gates

Sum	Carry		XOR	And
₀ Ass	signment	Project Exa	m Help	0
1	httpg://s	utorcs.com	1	0
1	https://t	lutores.com	1	0
0	WéCha	t: cstutorcs	0	1

- Hence, we can build the expressions as:
 - Sum = $A \oplus B$
 - Carry = A B

Circuit

Is this Correct?

A more concise and better version ©

Full Adder

- Half-adders have a major limitation
 - Cannot accept a carry bit from a previous stage → they cannot be chained together to add multi-bit numbers Assignment Project Exam Help
- Full-adders can atterit three sits as input
 - Third bit is the carry-in bit weChat: cstutorcs
- Can be cascaded to produce adders of any number of bits by daisy-chaining the carry of one output to the input of the next

Full Adder

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = (A \cdot B) + C_{in} \cdot (A \oplus B))$$

Full Adder

Conceptually

Ripple-Carry Adder

- Consists of several full adders connected in a series so that the carry must propagate through every full adder before the addition is completed Exam Help
- Require the least amount of hardware of all adders, but they are the slowest chat: cstutorcs
 - Carry-Lookahead Adder (homework)

Ripple-Carry Adder

• The following diagram shows a four-bit adder, which adds the numbers A and B, as well as a carry input, together to produce S and the carry putput Exam Help

Gates

- Building blocks for combinatorial circuits
 - · Output dependsigningenstipentileettExam Help
- All gates can be but out of the present and NOR gates

WeChat: cstutorcs

- What if we would like to store values?
 - Use a feedback mechanism where the output values depend indirectly, on themselves

- Building blocks to sequential circuits
- · Can be built Assing matent Project Exam Help
- https://tutorcs.com

 Able to remember 1-bit of information ©

 WeChat: cstutorcs
- Useful web-page
 - http://www.play-hookey.com/digital/sequential/

- SR-latch
 - S = Set
 - R = Reset Assignment Project Exam Help

• S = 0, R = 0

- Value of Q does not change → value is 'remembered'
 - Sometimes called the *latch* state

• S = 1, R = 0

Set the value of Q

• S = 0, R = 0

Value of Q stays the same – it 'remembers' ☺

• S = 0, R = 1

- Reset the value of Q to 0
- S = 1, R = 1 leads to undefined state

• SR-Latch: Truth table

Ass i gnn	nent Pro	ject©Exai	n Help
0	0	Latch	
ohttp	s://tuto	rcs.com	1
$1_{\mathbf{We}}$	Chat: cs	tutores	0
1	1	Undefined	

Flip-Flops

 Latches are asynchronous

output changes very soon after the input changes

Assignment Project Exam Help

- Most computers today, are synchronous

 Outputs of all the sequential circuits change simultaneously to the

 rhythm of a global clock signal welchat: cstutorcs
- A flip-flop is a synchronous version of the latch

Memory

- Useful variation on the SR latch circuit is the Data latch, or D latch
- Constructed by instingethe Projected Sanpul apthe R input signal
 - Allows for a single the si Allows for a single the silverted

Memory

- Two basic types of memory
- Static RAM AS Big Minent Project Exam Help
 - Bit-cell is a latch
 - Fast, not very depresent for the property of the
 - Primarily used in Cache
 - Consumes less p\(\forall \) Chat: cstutorcs
- Dynamic RAM (DRAM)
 - Bit-cell is a transistor and capacitor (which leaks information)
 - Storage has to be periodically refreshed
 - Primarily used in main memory
 - Cheaper than SRAM

Memory

- Memories hold binary values
 - · Data (e.g. Integers neelst Pharacters) xam Help
 - · CPU Instructions hiteps: ontputer (Programs)
 - Memory Addresses (Cointers to the Structions)
- Contents remain unchanged unless overwritten with a new binary value
 - Some of them *lose* the content when power is turned off (volatile memory)

Memory – Examples

- CPU, Registers, Caches L1, L2 [L3]
- Mainboard Assignment Project Exam Help
 - RAM (Random Access Memory) https://tutorcs.com
 - Caches
 - I/O Registers & Bufferchat: cstutorcs
 - Video-card Memory
- Storage Devices
 - Hard Disks, CDs, DVDs, Tapes, Memory Sticks, Flashcards

Computer Architecture

3 Types of Memory

Capacity

CPU Main Memory

Assignment Project Exam Help

Registers

< 2 KB

https://tutorcs.com 256 MB to 8 GB+

WeChat: cstutorcs

Storage Device

Hard Disk 250 GB to 2 TB+ 1 KB = 2^{10} bytes

RAM

1 MB = 2^{20} bytes

1 GB = 2^{30} bytes

 $1TB = 2^{40}$ bytes

Speed (Access Time)

CPU Main Memory

Assignment Project Exam Help

Registers < 1 nanosecs

https://tutorcs.com10 - 100 nanosecs

WeChat: cstutorcs

Storage Device

Hard Disk 5 - 10 millisecs

milli = 10^{-3} micro = 10^{-6} nano = 10^{-9}

RAM

Volatility

Assignment Project Exam Help
Registers
Contents Lost https://tutorcs.com Contents Lost
WeChat: cstutorcs

Storage Device

Hard Disk
Contents Not Lost

Summary

