PIPELINING: INTRODUCTION

Mahdi Nazm Bojnordi

Assistant Professor

School of Computing

University of Utah

Overview

- Announcement
 - TA hours
 - Thursdays 11:00-1:00 (Payman)
 - Tuesdays 9:30-11:30 (Krunal Jain)
- This lecture
 - Processing instructions
 - Single-cycle architecture
 - Reusing resources
 - Pipelined architecture

Processing Instructions

Every RISC instruction may require multiple processing steps

Processor
r
Memory

Processing Instructions

Every RISC instruction may require multiple processing steps

Processing Instructions

- Every RISC instruction may require multiple processing steps
 - Instruction Fetch (IF)
 - Instruction Decode (ID)
 - Register Read (RR)
 - All instructions?
 - Execute Instructions (EXE)
 - Memory Access (MEM)
 - All instructions?
 - Register Write Back (WB)

Single-cycle RISC Architecture

- □ Example: simple MIPS architecture
 - Critical path includes all of the processing steps

Single-cycle RISC Architecture

Single-cycle RISC Architecture

Reusing Idle Resources

- □ Each processing step finishes in a fraction of a cycle
 - Idle resources can be reused for processing next instructions

- □ Five stage pipeline
 - Critical path determines the cycle time

□ Example program ■ CT=1.5ns; CPU Time = ? AND R1,R2,R3 XOR R4,R2,R3 SUB R5,R1,R4 ADD R6,R1,R4 MUL R7, R5, R6 Time CPU Time = CI x CPI x CT

□ Example program \Box CT=1.5ns; CPU Time = $5 \times 5 \times 1.5$ ns = 37.5ns > 30ns **WORSE!!** AND R1,R2,R3 XOR R4,R2,R3 SUB R5,R1,R4 ADD R6,R1,R4 MUL R7,R5,R6 Time CPU Time = CI x CPI x CT

- □ Example program
 - □ CT=1.5ns; CPU Time = ?

AND R1,R2,R3

XOR R4,R2,R3

SUB R5,R1,R4

ADD R6,R1,R4

MUL R7, R5, R6

Example program

$$\Box$$
 CT=1.5ns; CPU Time = $5 \times 1 \times 1.5$ ns = 7.5 ns

AND R1,R2,R3

What is the cost of pipelining?

XOR R4,R2,R3

SUB R5,R1,R4

ADD R6,R1,R4

MUL R7, R5, R6

Example program

$$\Box$$
 CT=1.5ns; CPU Time = 5 x 1 x 1.5ns = 7.5ns

AND R1,R2,R3

What is the cost of pipelining?

XOR R4,R2,R3

SUB R5,R1,R4

ADD R6,R1,R4

CT: original cycle time

P: no. pipeline stages

t: additional HW delay

New Time = $CI \times CPI \times (t + CT/P)$

Speedup = CT / (t + CT/P)

Example program

 \Box CT=1.5ns; CPU Time = $5 \times 1 \times 1.5$ ns = 7.5ns

AND R1,R2,R3

What is the cost of pipelining?

XOR R4,R2,R3

SUB R5,R1,R4

ADD R6,R1,R4

CT: original cycle time

P: no. pipeline stages t: additional HW delay

New Time = $CI \times CPI \times (t + CT/P)$

Speedup = CT / (t + CT/P)

What about CPI?