BAYES CLASSIFIER

Dr. Umarani Jayaraman Assistant Professor

Chapter 2 Bayesian Decision Theory

Decision Theory

Decision

Make choice under uncertainty

Pattern

Category

Given a test sample, its category is uncertain and a decision has to be made

In essence, PR is a decision process

Bayesian Decision Theory

Bayesian decision theory is a statistical approach to pattern recognition

The fundamentals of most PR algorithms are rooted from Bayesian decision theory

Basic Assumptions

- The decision problem is posed (formalized) in probabilistic terms
- All the relevant probability values are known

Key Principle

Bayes Theorem

Linear separable classes

- ☐ In this case, the two classes can be separated by linear boundary, this is also known as linearly separable classes
- ☐ This is supervised learning

Non linear separable classes

Among these non-linear separable classes, the most common are

- 1. Quadratic classifier
- 2. Cubic classifier

- ☐ Consider any manufacturing company which produces goods for example steel plant
- **Quality control department should take the decision in which of the two classes it should go**
- \square ω_1 -> accept
- \square ω_2 -> reject

- \square ω_1 -> accept
- \square ω_2 -> reject
- We may take the previous history (i.e) how many objects are accepted and how many are rejected by the quality control department

- \square $P(\omega 1) > P(\omega 2) \Rightarrow \omega 1$
- $P(\omega 1) < P(\omega 2) => \omega 2$
- But, this is not really logical because the object is always accepted or always be rejected based on a priori probability (i.e) $p(\omega 1)$ and $p(\omega 2)$

Solution:
Incorporate
observations
into decision!

- ☐ Let the observation be x
- **We can find out P(x/ω1) and P(x/ω2)**
- ☐ It is nothing but probability density function x taking the objects from class ω1 and ω2 respectively (class conditional PDF)

- Now the decision rule may be
- \square P($\omega 1/x$) > P($\omega 2/x$) => $\omega 1$, in favor of class $\omega 1$
- A more logical will be if this P(ω1/x) and P(ω2/x) can be combined with a priori probability P(ω1) and P(ω2)

Decision After Observation

Known

Unknown

Prior probability

$$P(\omega_j) \ (1 \le j \le c)$$

Class-conditional pdf

$$p(x|\omega_j) \ (1 \le j \le c)$$

Observation for test example

 x^* (e.g.: fish lightness)

The quantity which we want to use in decision naturally (by exploiting observation information)

Bayes

Formula

Posterior probability

$$P(\omega_j|x^*) \ (1 \le j \le c)$$

Convert the prior probability $P(\omega_j)$ to the posterior probability $P(\omega_j|x^*)$

Bayes Formula Revisited

From the preliminary probability theory,

Joint probability density function (Joint PDF)

Law of total probability

$$p(\omega, x) = P(\omega|x) \cdot p(x)$$

$$p(\omega, x) = P(\omega) \cdot p(x|\omega)$$

$$P(\omega|x) \cdot p(x) = P(\omega) \cdot p(x|\omega)$$

$$P(\omega|x) = \frac{p(x|\omega) \cdot P(\omega)}{p(x)}$$

Bayes Formula Revisited (Cont.)

$$P(\omega_j|x) = \frac{p(x|\omega_j) \cdot P(\omega_j)}{p(x)} \quad (1 \le j \le c) \quad \text{(Bayes Formula)}$$

Bayes Decision Rule

if
$$P(\omega_j|x) > P(\omega_i|x), \ \forall i \neq j \implies \text{Decide } \omega_j$$

- \square $P(\omega_j)$ and $p(x|\omega_j)$ are assumed to be known
- p(x) is irrelevant for Bayesian decision (serving as a normalization factor, not related to any state of nature)

$$p(x) = \sum_{j=1}^{c} p(\omega_j, x) = \sum_{j=1}^{c} p(x|\omega_j) \cdot P(\omega_j)$$

Bayes Formula Revisited (Cont.)

$$P(\omega_j|x) = \frac{p(x|\omega_j) \cdot P(\omega_j)}{p(x)} = P(x/\omega 1). P(\omega 1) > P(x/\omega 2). P(\omega 2) => \omega 1$$

Special Case I: Equal prior probability

$$P(\omega_1) = P(\omega_2) = \cdots = P(\omega_c) = \frac{1}{c}$$
 Depends on the likelihood $P(x|\omega_j)$

Special Case II: Equal likelihood

$$p(x|\omega_1) = p(x|\omega_2) = \cdots = p(x|\omega_c)$$
 Depends on a priori probability $P(\omega_i)$

Special Case III: otherwise, prior probability and likelihood function together in Bayesian decision process

Bayes Theorem

Bayes theorem
$$P(H|X) = \frac{P(H)P(X|H)}{P(X)}$$

X: the observed sample (also called evidence; e.g.: the length of a fish) H: the hypothesis (e.g. the fish belongs to the "salmon" category)

P(H): the **prior probability** that H holds (e.g. the probability of catching a salmon)

P(X|H): the **likelihood** of observing X given that H holds (e.g. the probability of observing a 3-inch length fish which is salmon)

P(X): the **evidence probability** that X is observed (e.g. the probability of observing a fish with 3-inch length) P(H|X): the **posterior probability** that H holds given X (e.g. the probability of X being salmon given its length is 3-inch)

Thomas Bayes (1702-1761)

Bayes Classifier

$$P(\omega_j|x) = \frac{p(x|\omega_j) \cdot P(\omega_j)}{p(x)}$$
 (1 \le j \le c) (Bayes Formula)

if
$$P(\omega_j|x) > P(\omega_i|x), \ \forall i \neq j \implies \text{Decide } \omega_j$$

Example 1

- Two boxes B1 and B2 contain 100 and 200 light bulbs respectively. The first box (B1) has 15 defective bulbs and the second has 5 defective bulbs
 - a) Suppose a box is selected at random and one bulb is picked out. What is the probability it is defective?
 - b) Suppose the bulb we tested was defective what is the probability it came from box 1?

Example 1- cont.

	Defective	Not defective
B1	15	85
B2	5	195

Example 1- cont.

- Since the box is selected at random they are equally likely
- $P(B1) = P(B2) = \frac{1}{2} = 0.5$
- P(D/B1) = 15/100 = 0.15
- $P(D/B2) = \frac{5}{100} = 0.25$
- P(D) = P(D/B1). P(B1) + P(D/B2). P(B2)
- P(D)=(0.15x0.5)+(0.025x0.5)=0.0875
- Thus there is about 9% probability a bulb is defective.

Example 1- cont.

- P(B1/D) = P(D/B1). P(B1) / P(D)
- P(B1/D) = 0.15x0.5 / 0.0875 = 0.8571
- 0.8571 > 0.5
- Recall box 1 has three times more defective bulbs compared to box 2

Example 2

Problem statement

- A new medical test is used to detect whether a patient has a certain cancer or not, whose test result is either + (positive) or (negative)
- For patient with this cancer, the probability of returning *positive* test result is 0.98
- For patient without this cancer, the probability of returning *negative*
- test result is 0.97
- The probability for any person to have this cancer is 0.008

Question

If *positive* test result is returned for some person, does he/she have this kind of cancer or not?

Example 2- cont.

	Positive (+)	Negative (-)
Class ω1 Cancer	0.98	
Class ω2 No Cancer		0.97

Question

If *positive* test result is returned for some person, does he/she have this kind of cancer or not?

Idea:

$$P(\omega i /+) = ? => P(\omega 1 /+) =? , P(\omega 2 /+) =?$$
 If $P(\omega 1 /+) > P(\omega 2 /+) => \omega 1$ If $P(\omega 1 /+) < P(\omega 2 /+) => \omega 2$

Example 2 (Cont.)

$$\omega_1$$
: cancer $P(\omega_1) = 0.008$ $P(+ \mid \omega_1) = 0.98$ $P(- \mid \omega_2) = 0.97$

$$\omega_2$$
: no cancer $x \in \{+, -\}$

 $P(\omega_2) = 1 - P(\omega_1) = 0.992$

$$P(+ \mid \omega_1) = 0.98$$
 $P(- \mid \omega_1) = 1 - P(+ \mid \omega_1) = 0.02$

$$P(- \mid \omega_2) = 0.97$$
 $P(+ \mid \omega_2) = 1 - P(- \mid \omega_2) = 0.03$

$$P(\omega_1 \mid +) = \frac{P(\omega_1)P(+ \mid \omega_1)}{P(+)} = \frac{P(\omega_1)P(+ \mid \omega_1)}{P(\omega_1)P(+ \mid \omega_1) + P(\omega_2)P(+ \mid \omega_2)}$$
$$= \frac{0.008 \times 0.98}{0.008 \times 0.98 + 0.992 \times 0.03} = 0.2085$$

$$P(\omega_2 \mid +) = 1 - P(\omega_1 \mid +) = 0.7915$$

$$P(\omega_2 \mid +) > P(\omega_1 \mid +)$$

No cancer!

Error in Bayes Classifier

Probability of Error

Bayes Risk Classifier

Bayes Minimum Error Rate Classifier

Bayes Formula Revisited (Cont.)

$$P(\omega_j|x) = \frac{p(x|\omega_j) \cdot P(\omega_j)}{p(x)} \quad (1 \le j \le c) \quad \text{(Bayes Formula)}$$

Bayes Decision Rule

if
$$P(\omega_j|x) > P(\omega_i|x), \ \forall i \neq j \implies \text{Decide } \omega_j$$

- \square $P(\omega_j)$ and $p(x|\omega_j)$ are assumed to be known
- p(x) is irrelevant for Bayesian decision (serving as a normalization factor, not related to any state of nature)

$$p(x) = \sum_{j=1}^{c} p(\omega_j, x) = \sum_{j=1}^{c} p(x|\omega_j) \cdot P(\omega_j)$$

Bayes Formula Revisited

$$\left(C_{P(\omega_j|x)} = \frac{p(x|\omega_j) \cdot P(\omega_j)}{p(x)} = P(x/\omega 1). P(\omega 1) > P(x/\omega 2). P(\omega 2) => \omega 1$$

Special Case I: Equal prior probability

$$P(\omega_1) = P(\omega_2) = \cdots = P(\omega_c) = \frac{1}{c}$$
 Depends on the likelihood $P(x|\omega_j)$

Special Case II: Equal likelihood

$$p(x|\omega_1) = p(x|\omega_2) = \cdots = p(x|\omega_c)$$
 Depends on a priori probability $P(\omega_j)$

Special Case III: otherwise, prior probability and likelihood function together in Bayesian decision process

 $P(x/\omega 1)$. $P(\omega 1) > P(x/\omega 2)$. $P(\omega 2) => \omega 1$

- $P(x/\omega 1). P(\omega 1) > P(x/\omega 2). P(\omega 2) \Longrightarrow \omega 1$
- There is a finite probability of error
- If we decide in favor of $\omega 1 \Rightarrow P(\omega 2/x)$
- If we decide in favor of $\omega 2 \Rightarrow P(\omega 1/x)$

- $P(x/\omega 1)$. $P(\omega 1) > P(x/\omega 2)$. $P(\omega 2) \Rightarrow \omega 1$
- There is a finite probability of error
- If we decide in favor of $\omega 1 \Rightarrow P(\omega 2/x)$
- If we decide in favor of $\omega 2 \Rightarrow P(\omega 1/x)$
- Given, the situation like this, the total error
- $P(error \mid x) = \min[P(\omega_1 \mid x), P(\omega_2 \mid x)]$

Bayes Decision Rule (In case of two classes)

if
$$P(\omega_1|x) > P(\omega_2|x)$$
, Decide ω_1 ; Otherwise ω_2

Whenever we observe a particular x, the probability of error is:

$$P(error \mid x) = \begin{cases} P(\omega_1 \mid x) & \text{if we decide } \omega_2 \\ P(\omega_2 \mid x) & \text{if we decide } \omega_1 \end{cases}$$

Under Bayes decision rule, we have

$$P(error \mid x) = \min[P(\omega_1 \mid x), P(\omega_2 \mid x)]$$

For every x, we ensure that $P(error \mid x)$ is as small as possible

The average probability of error over all possible *x* must be as small as possible

Is Bayes Decision Rule Optimal?

- For every x, Bayes classifier ensures that P(error/x) is as small as possible
- The average probability of error over all possible *x* must also be as small as possible
- The Bayes rule minimizes the expected error rate
- Minimizing the expected error rate is a pretty reasonable goal
- However, it is not always the best thing to do.

Is Bayes Decision Rule Optimal?

- Consider the situation
- You are designing a pedestrian detection algorithm for an autonomous navigation system
- Your algorithm must decide whether there is a pedestrian crossing the street
- There could be two possible types of error
 - □ False positive: There is no pedestrian, but the system thinks there is a pedestrian
 - Miss (false negative): There is a pedestrian, but the system thinks there is not

Is Bayes Decision Rule Optimal?

- In this situation, should we give equal weight to these two types of error?
- Solution: To deal with these kind of problem instead of minimizing the error rate, we minimize something called the risk
- First, we define the loss matrix L, which quantifies the cost of making each type of error

Bayes Risk

- Element $λ_{ij}$ of the loss matrix specifies the cost of taking action $α_i$ when the true state of nature is $ω_i$
- \square Typically, we set $\lambda_{ii} = 0$ for all i
- □ Thus a typical loss matrix for m=2, would have the form

$$\Box \ \mathsf{L} = \begin{bmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{bmatrix} = \begin{bmatrix} 0 & \lambda_{12} \\ \lambda_{21} & 0 \end{bmatrix}$$

Bayes Decision Rule –The General Case

- By allowing to use more than one feature $x \in \mathbf{R} \implies \mathbf{x} \in \mathbf{R}^d$ (d-dimensional Euclidean space)
- By allowing more than two states of nature $\Omega = \{\omega_1, \omega_2, \dots, \omega_c\} \text{ (finite set of } c \text{ states of nature)}$
- ☐ By allowing actions other than merely deciding the state of nature

$$\mathcal{A} = \{\alpha_1, \alpha_2, \dots, \alpha_a\}$$
 (finite set of a possible actions)

Note: $c \neq a$

Bayes Decision Rule – The General Case (Cont.)

☐ By introducing a loss function more general than the probability of error

$$\lambda(\alpha_i \mid \omega_j)$$

 $\lambda(\alpha_i \mid \omega_j)$ => the loss incurred for taking action α_i when the state of nature is ω_j

A simple loss function

or ease of reference,	Action	$\alpha_1 =$	$\alpha_2 =$	$\alpha_3 =$
sually written as:	Class	"Recipe A"	"Recipe B"	"No Recipe"
	$\omega_1 =$ "cancer"	5	50	10,000
۸ ا	ω_2 = "no cancer"	60	3	0

Bayes Decision Rule – The General Case (Cont.)

The problem

Given a particular x, we have to decide which action to take

$$\alpha_i \ (1 \le i \le a)$$

We need to know the *loss* of taking each action

nature is ω_i

true state of the action being taken is α_i

incur the loss $\lambda(\alpha_i \mid \omega_i)$

However, the true state of nature is uncertain

Expected (average) loss

Bayes Decision Rule – The General Case

Expected loss

all possible states of nature! $R(\alpha_i \mid \mathbf{x}) = \sum_{j=1}^{c} \underline{\lambda(\alpha_i \mid \omega_j)} \cdot \underline{P(\omega_j \mid \mathbf{x})}$

The incurred loss of taking action $i n_i$ case of true state of nature being ω_i

The probability of ω_j being the true state of nature, given the feature vector x

Average by enumerating over

The expected loss is also named as *(conditional)* risk or risk function

Bayes Decision Rule – The General Case

- Now, we have to choose that action α_i for which the risk is minimum.
- It is also called as Bayes risk and it is the best performance that can be achieved.

Bayes Decision Rule – The General Case (Cont.)

$$R = \int R(\alpha(\mathbf{x}) \mid \mathbf{x})) \cdot p(\mathbf{x}) d\mathbf{x} \quad \text{(overall risk)}$$

For every \mathbf{x} , we ensure that the conditional risk $R(\alpha(\mathbf{x}) \mid \mathbf{x})$ is as small as possible

The overall risk over all possible **x** must be as small as possible

Bayes decision rule (General case)

$$\alpha(\mathbf{x}) = \arg\min_{\alpha_i \in \mathcal{A}} R(\alpha_i \mid \mathbf{x})$$

$$= \arg\min_{\alpha_i \in \mathcal{A}} \sum_{j=1}^{c} \lambda(\alpha_i \mid \omega_j) \cdot P(\omega_j \mid \mathbf{x})$$

- The resulting overall risk is called the Bayes risk (denoted as R^*)
 - The best performance achievable given $p(\mathbf{x})$ and loss function

Two-Category Classification

Special case

$$\square$$
 $\Omega = \{\omega_1, \omega_2\}$ (two states of nature)

$$\square$$
 $\mathcal{A} = \{\alpha_1, \alpha_2\}$ $(\alpha_1 = \text{decide } \omega_1; \ \alpha_2 = \text{decide } \omega_2)$

$$\lambda_{ij} = \lambda(\alpha_i \mid \omega_j) :$$

the loss incurred for deciding ω_i when the true state of nature is ω_i

The conditional risk:

$$R(\alpha_1 \mid \mathbf{x}) = \lambda_{11} \cdot P(\omega_1 \mid \mathbf{x}) + \lambda_{12} \cdot P(\omega_2 \mid \mathbf{x})$$

$$R(\alpha_2 \mid \mathbf{x}) = \lambda_{21} \cdot P(\omega_1 \mid \mathbf{x}) + \lambda_{22} \cdot P(\omega_2 \mid \mathbf{x})$$

Two-Category Classification (Cont.)

$$\lambda_{11} \cdot P(\omega_1 \mid \mathbf{x}) + \lambda_{12} \cdot P(\omega_2 \mid \mathbf{x}) < \lambda_{21} \cdot P(\omega_1 \mid \mathbf{x}) + \lambda_{22} \cdot P(\omega_2 \mid \mathbf{x})$$

by re-arrangement

likelihood ratio

constant θ independent of x

the loss for being error is ordinarily greater than the loss for being correct

 $\lambda_{21} - \lambda_{11} > 0$

by Bayes

$$(\lambda_{21} - \lambda_{11}) \cdot p(\mathbf{x} \mid \omega_1) \cdot P(\omega_1)$$

$$>$$

$$(\lambda_{12} - \lambda_{22}) \cdot p(\mathbf{x} \mid \omega_2) \cdot P(\omega_2)$$

Bayes Minimum Risk- Numerical Example 1

Suppose we have:

Action	$\alpha_1 =$	$\alpha_2 =$	$\alpha_3 =$
Class	"Recipe A"	"Recipe B"	"No Recipe"
$\omega_1 =$ "cancer"	5	50	10,000
ω_2 = "no cancer"	60	3	0

For a particular \mathbf{x} : $P(\omega_1 \mid \mathbf{x}) = 0.01$ $P(\omega_2 \mid \mathbf{x}) = 0.99$

$$P(\omega_1 \mid \mathbf{x}) = 0.01$$

$$P(\omega_2 \mid \mathbf{x}) = 0.99$$

Bayes Minimum Risk- Numerical Example 1

calculate the risk involved for various action given in the table

Action	$\alpha_1 =$	$\alpha_2 =$	$\alpha_3 =$
Class	"Recipe A"	"Recipe B"	"No Recipe"
$\omega_1 =$ "cancer"	5	50	10,000
ω_2 = "no cancer"	60	3	0

For a particular
$$\mathbf{x}$$
:
$$P(\omega_1 \mid \mathbf{x}) = 0.01$$

$$P(\omega_2 \mid \mathbf{x}) = 0.99$$

$$R(\alpha_1 \mid \mathbf{x}) = \sum_{j=1}^{2} \lambda(\alpha_1 \mid \omega_j) \cdot P(\omega_j \mid \mathbf{x})$$

$$= \lambda(\alpha_1 \mid \omega_1) \cdot P(\omega_1 \mid \mathbf{x}) + \lambda(\alpha_1 \mid \omega_2) \cdot P(\omega_2 \mid \mathbf{x})$$

$$= 5 \times 0.01 + 60 \times 0.99 = 59.45$$

Similarly, we can get: $R(\alpha_2 \mid \mathbf{x}) = 3.47 \ R(\alpha_3 \mid \mathbf{x}) = 100$

Bayes Minimum Risk- Numerical Example 2

Spam Filtering: Suppose we have

Action	$lpha_1=$ Keep the mail	$lpha_2=$ Delete as Spam
ω1=normal mail	0	3
ω2=spam mail	1	0

For a particular **x**:

$$P(x/\omega 1)=0.35$$

$$P(x/\omega 2)=0.65$$

$$P(\omega 1) = 0.4$$

$$P(\omega 2) = 0.6$$

Bayes Minimum Risk- Numerical Example 2

Spam Filtering: Suppose we have

Action Class	$lpha_1=$ Keep the mail	$lpha_2=$ Delete as Spam
ω1=normal mail	0	3
ω2=spam mail	1	0

$$R(\alpha_1 \mid \mathbf{x}) = 0.736$$

$$R(\alpha_2 \mid \mathbf{x}) = 0.792$$

Since $R(\alpha_1 \mid \mathbf{x}) < R(\alpha_2 \mid \mathbf{x})$ we decide take action 1 and decide class 1. Keep the mail

For a particular **x**:

$$P(x/\omega 1)=0.35$$

$$P(x/\omega 2)=0.65$$

$$P(\omega 1) = 0.4$$

$$P(\omega 2) = 0.6$$

Minimum-Error-Rate Classification

Classification setting

 $\square \quad \Omega = \{\omega_1, \omega_2, \dots, \omega_c\} \ (c \text{ possible states of nature})$

$$\square \mathcal{A} = \{\alpha_1, \alpha_2, \dots, \alpha_c\} \ (\alpha_i = \text{decide } \omega_i, \ 1 \le i \le c)$$

Zero-one (symmetrical) loss function

$$\lambda(\alpha_i \mid \omega_j) = \begin{cases} 0 & i = j \\ 1 & i \neq j \end{cases} \quad 1 \le i, j \le c$$

- Assign no loss (i.e. 0) to a correct decision by taking action
- ☐ Assign a unit loss (i.e. 1) to any incorrect decision (equal cost)

Minimum-Error-Rate Classification (Cont.)

49

$$R(\alpha_{i} \mid \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_{i} \mid \omega_{j}) \cdot P(\omega_{j} \mid \mathbf{x})$$

$$= \sum_{j \neq i} \lambda(\alpha_{i} \mid \omega_{j}) \cdot P(\omega_{j} \mid \mathbf{x}) + \lambda(\alpha_{i} \mid \omega_{i}) \cdot P(\omega_{i} \mid \mathbf{x})$$

$$= \sum_{j \neq i} P(\omega_{j} \mid \mathbf{x}) \qquad \text{error rate}$$

$$= 1 - P(\omega_{i} \mid \mathbf{x}) \qquad P(\omega_{i} \mid \mathbf{x}) \qquad \text{the probability that action}$$

$$\alpha_{i} \text{ (decide } \omega_{i} \text{) is correct}$$

Minimum error rate

Decide ω_i if $P(\omega_i \mid \mathbf{x}) > P(\omega_j \mid \mathbf{x})$ for all $j \neq i$

Discriminant function for Minimum Risk, Minimum Error Rate classifier (Bayes Classifier)

Discriminant Function-Multi category

case

Classification

Pattern

Category

actions decide categories

Discriminant functions

$$g_i: \mathbf{R}^d \to \mathbf{R} \quad (1 \le i \le c)$$

- ☐ Useful way to represent classifiers
- ☐ One function per category

Decide ω_i

if
$$g_i(\mathbf{x}) > g_j(\mathbf{x})$$
 for all $j \neq i$

- The classifier is viewed as a network or machine that computes *c* discriminant function
- Select the category corresponding to the maximum discriminant

 A network representation of a classifier is shown below

- The nature of discriminant classes
- $\omega_1, \omega_2, \ldots, \omega_c => c$ number of classes
- $g_i(x) > g_j(x)$ for all $i \neq j => x \in \omega_i$

Discriminant function under different conditions

Minimum risk:

$$g_i(\mathbf{x}) = -R(\alpha_i \mid \mathbf{x}) \quad (1 \le i \le c)$$

Minimum-error-rate:

$$g_i(\mathbf{x}) = P(\omega_i | \mathbf{x}) \quad (1 \le i \le c)$$

- Hence, the feature vector x can assign to the class which has maximum $g_i(x)$.
- But the choice of discriminant function $g_i(x)$ is not unique, more generally, if we replace every $g_i(x)$ by $f(g_i(x))$, where f(.) is a monotonically increasing function, the resulting classification is unchanged.

(Cont.)
This observation can lead to significant analytical and computational simplifications

$$f(\cdot)$$
 is a monotonically increasing function
$$f(g_i(\mathbf{x})) \Longleftrightarrow g_i(\mathbf{x}) \quad (i.e. \ equivalent \ in \ decision)$$
 e.g.:
$$f(x) = k \cdot x \ (k > 0) \qquad \qquad f(g_i(\mathbf{x})) = k \cdot g_i(\mathbf{x}) \ (1 \le i \le c)$$

$$f(x) = \ln x \qquad \qquad f(g_i(\mathbf{x})) = \ln g_i(\mathbf{x}) \ (1 \le i \le c)$$

(Cont.)

Decision region

c discriminant functions c decision regions

$$g_i(\cdot) \ (1 \le i \le c)$$

$$\mathcal{R}_i \subset \mathbf{R}^d \ (1 \le i \le c)$$

$$\mathcal{R}_i = \{ \mathbf{x} \mid \mathbf{x} \in \mathbf{R}^d : g_i(\mathbf{x}) > g_j(\mathbf{x}) \ \forall j \neq i \}$$
where $\mathcal{R}_i \cap \mathcal{R}_j = \emptyset \ (i \neq j)$ and $\bigcup_{i=1}^c \mathcal{R}_i = \mathbf{R}^d$

Decision boundary

surface in feature space where ties occur among several largest discriminant functions

decision boundary

Dichotomizer: The two category case

Dichotomizer: A Classifier that places a pattern in one of any two categories has a special name called a dichotomizer

$$g_1(x) = g_2(x)$$

$$g(x) = g_1(x) - g_2(x)$$

Thus a dichotomizer can be viewed as a machine that computes a single discriminant function g(x), and classifies x according to algebraic sign of the result

Discriminant Function (Cont.)

Minimum error rate classifier

- $g_i(x) = P(\omega_i/x)$
- $g_i(x) = P(x/\omega_i). P(\omega_i) / P(x)$
- $g_i(x) = P(x/\omega_i). P(\omega_i)$
- $f(g_i(x)) = \ln P(x/\omega_i) + \ln P(\omega_i)$

Discriminant Function (Cont.)

- \square Minimum error rate classifier: $g_i(x) = P(\omega_i/x)$
- □ two category case
- \square $g_1(x) = P(\omega_i/x)$; $g_2(x) = P(\omega_i/x)$
- $g(x) \equiv g_1(x) g_2(x) = 0$
- \square g(x)= P(ω_1/x) P(ω_2/x)=0
- \square g(x)= P(x/ ω_1). P(ω_1) P(x/ ω_2). P(ω_2)
- \square g(x)= ln (P(x/ ω_1). P(ω_1)) ln(P(x/ ω_2). P(ω_2))
- \square g(x)= ln P(x/ ω_1) + ln P(ω_1) ln P(x/ ω_2) ln P(ω_2)

Discriminant function for Bayes Classifier

- $g_1(x) = P(\omega_i/x)$
- $g_i(x) = \ln P(\omega_i/x)$
- $g(x) = \ln P(x/\omega_i) + \ln P(\omega_i)$
- $P(x/\omega_i) = class conditional PDF$
- □ $P(\omega_i) = PDF$ (a priori probability)
- Note: The structure of baye's classifier is determined by the conditional densities $P(x/\omega_i)$ as well as prior probabilities $P(\omega_i)$

Discriminant function for Bayes Classifier

- We can have various types of probability density like i) normal density ii) poison iii) laplacian iv) exponential and so on
- Out of these, the most common Probability Density Function (PDF) which is in use is Normal/ Gaussian density function.

Univariate density: for a single variable, the normal /Gaussian density is

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

- P(x) = P(x) =
- $\mu = mean = E(x)$
- σ = standard deviation = E [(x- μ)²]
- This particular PDF is specified by two parameters μ , σ
- □ In short \approx N(μ , σ^2)

- Multivariate Probability Density function
- Here X be a feature vector, $X = [x_1, x_2, ..., x_d]^T$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right]$$

- $\mu = E[X]$; x is d-dimensional vector
 - $\mu = [\mu_1, \mu_2, ..., \mu_d]^T$
- \sum = covariance matrix, dxd matrix
- □ In short \approx N(μ , Σ)

- What is expected value of individual component?
- Expected value of the ith component
- $\mu_i = E[x_i]$
- $| i \neq j; \sigma_{ij} = E[(x_i \mu_i) (x_j \mu_j)]$
- $_{\Box}$ i=j; σ_{ii} = E[(x_i- μ_i) (x_i- μ_i)] = E[(x_i- μ_i)²]

- Bivariate Probability Density function (two variables)
- □ Here X is of the form $[x_1, x_2]^T$
- □ Number of dimension d=2
- \square Assume x_1 and x_2 are statistically independent, and hence σ_{12} and σ_{21} are 0
- □ Mean μ = $[\mu_1, \mu_2]^T$

The normal density- bivariate case

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

The above multivariate normal density can be simplified to

$$P(X) = \frac{1}{2\pi |\Sigma|^{1/2}} exp\left[\frac{-1}{2} \left\{ \left(\frac{x_1 - \mu_1}{\sigma_1}\right)^2 + \frac{x_2 - \mu_2}{\sigma_2}\right)^2 \right\}\right]$$

□ Case 1:

- $\sigma_{ij}=0; i \neq j$
- \square x_1 and x_2 are statistically independent
- Trace the loci of points of constant density for all value of x for which P(x) is constant.
- Those loci of points forms circle

□ Case 1:

- What happens if the variants are different?
- □ Case 2:
 - $\sigma_{ij}=0; i \neq j$

 $= x_1$ and x_2 are not statistically independent. The loci of points forms ellipse

- What happens if the variants are different?
- □ Case 3:
 - \square $\sigma_{ij} \neq 0$; $i \neq j$
 - $\sigma_{1}^{2} \neq \sigma_{2}^{2}$; $\sigma_{12} = \sigma_{21} = 0$
- \square x_1 and x_2 are not statistically independent
- The direction of point distribution is determined by eigenvector

of ∑

Multivariate Gaussian (Normal) examples

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & -0.8 \\ 0 & 1 \end{bmatrix} \qquad \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & -0.8 \\ -0.8 & 1 \end{bmatrix}$$

Andrew N

Gaussian Density–Multivariate Case

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

Gaussian Density – Multivariate

$$\mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \qquad \begin{bmatrix} \mu_i = \mathcal{E}[x_i] & \sigma_{ij} = \sigma_{ji} = \mathcal{E}[(x_i - \mu_i)(x_j - \mu_j)] \end{bmatrix}$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

$$\mathbf{x} = (x_1, x_2, \dots, x_d)^t : \text{ d-dimensional column vector}$$

$$\boldsymbol{\mu} = (\mu_1, \mu_2, \dots, \mu_d)^t : \text{ d-dimensional mean vector}$$

$$\boldsymbol{\Sigma} = [\sigma_{ij}]_{1 \leq i,j \leq d} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \dots & \sigma_{dd} \end{pmatrix} \begin{pmatrix} d \times d \text{ covariance} \\ matrix \\ |\boldsymbol{\Sigma}| : \text{ determinant} \\ \boldsymbol{\Sigma}^{-1} : \text{ inverse} \end{pmatrix}$$

Gaussian Density – Multivariate

Case

Properties of covariance matrix

Properties of Σ

$$\boldsymbol{\Sigma} = [\sigma_{ij}]_{1 \leq i,j \leq d} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \dots & \sigma_{dd} \end{pmatrix} \overset{\square}{\text{symmetric}}$$

$$\sigma_{ij} = \sigma_{ji} = \mathcal{E}[(x_i - \mu_i)(x_j - \mu_j)]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_i - \mu_i)(x_j - \mu_j) \cdot \underline{p}(x_i, x_j) \, dx_i dx_j$$
marginal pdf on a pair of

$$\sigma_{ii} = \operatorname{Var}[x_i] = \sigma_i^2$$

 $\sigma_{ii} = \text{Var}[x_i] = \sigma_i^2$ random variables (x_i, x_j)

Gaussian Density— Multivariate Case (Cont.)

$$\mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}) : p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

$$(\mathbf{x} - \boldsymbol{\mu})^t : 1 \times d \text{ matrix}$$

$$\boldsymbol{\Sigma}^{-1} : d \times d \text{ matrix}$$

$$(\mathbf{x} - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

$$\operatorname{scalar} (1 \times 1 \text{ matrix})$$

$$(\mathbf{x} - \boldsymbol{\mu}) : d \times 1 \text{ matrix}$$

$$\Sigma$$
: positive definite
$$\Sigma^{-1} : \text{positive definite}$$
$$-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \, \Sigma^{-1} \, (\mathbf{x} - \boldsymbol{\mu}) \leq 0$$
$$(\mathbf{x} - \boldsymbol{\mu})^t \, \Sigma^{-1} \, (\mathbf{x} - \boldsymbol{\mu}) \geq 0$$

Discriminant Functions for Gaussian Density for Bayes Classifier

Bayes classification: (Minimum error rate classification)

$$g_i(\mathbf{x}) = P(\omega_i | \mathbf{x}) \quad (1 \le i \le c)$$

$$g_i(\mathbf{x}) = P(\omega_i | \mathbf{x})$$
 $g_i(\mathbf{x}) = \ln P(\omega_i | \mathbf{x})$ $g_i(\mathbf{x}) = \ln p(\mathbf{x} | \omega_i) + \ln P(\omega_i)$

$$p(\mathbf{x}|\omega_i) \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$
 Constant, could be ignored
$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) + \frac{d}{2}\ln 2\pi - \frac{1}{2}\ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i)$$

Case I:
$$\Sigma_i = \sigma^2 \mathbf{I}$$

$$p(\mathbf{x}|\omega_i) \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i)$$

Covariance matrix: σ^2 times the identity matrix **I**

$$g_i(\mathbf{x}) = -\frac{||\mathbf{x} - \boldsymbol{\mu}_i||^2}{2\sigma^2} + \ln P(\omega_i) \quad \begin{aligned} ||\cdot|| : Euclidean \ norm \\ ||\mathbf{x} - \boldsymbol{\mu}_i||^2 = (\mathbf{x} - \boldsymbol{\mu}_i)^t (\mathbf{x} - \boldsymbol{\mu}_i) \end{aligned}$$

Case I:
$$\Sigma_i = \sigma^2 \mathbf{I}$$
 (Cont.)

$$g_i(\mathbf{x}) = -\frac{||\mathbf{x} - \boldsymbol{\mu}_i||^2}{2\sigma^2} + \ln P(\omega_i) \quad \text{distance}$$
 the same for all states of nature, could be ignored
$$g_i(\mathbf{x}) = -\frac{1}{2\sigma^2} (\mathbf{x}^t \mathbf{x}) - 2\boldsymbol{\mu}_i^t \mathbf{x} + \boldsymbol{\mu}_i^t \boldsymbol{\mu}_i] + \ln P(\omega_i)$$

Linear discriminant functions

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0} \implies \frac{\text{Linear machine or}}{\text{linear equation}}$$

$$\mathbf{w}_i = \frac{1}{\sigma^2} \boldsymbol{\mu}_i$$
 weight vector

$$w_{i0} = -\frac{1}{2\sigma^2} \boldsymbol{\mu}_i^t \boldsymbol{\mu}_i + \ln P(\omega_i)$$
 threshold/bias

Case II: $\Sigma_i = \Sigma$

$$p(\mathbf{x}|\omega_i) \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i)$$

Covariance matrix: identical for all classes

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) + \ln P(\omega_i)$$

 $(\mathbf{x} - \boldsymbol{\mu}_i)^t \, \boldsymbol{\Sigma}^{-1} \, (\mathbf{x} - \boldsymbol{\mu}_i) : \frac{\text{squared } \textit{Mahalanobis}}{\textit{distance}}$

$$\Sigma = I$$

reduces to Euclidean distance

P. C.

-Mahalanobis-

(1893-1972)

Case II:
$$\Sigma_i = \Sigma$$
 (Cont.)

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) + \ln P(\omega_i)$$

the same for all states of nature,

could be ignored

$$g_i(\mathbf{x}) = -\frac{1}{2} [\mathbf{x}^t \mathbf{\Sigma}^{-1} \mathbf{x}) - 2\boldsymbol{\mu}_i^t \mathbf{\Sigma}^{-1} \mathbf{x} + \boldsymbol{\mu}_i^t \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_i] + \ln P(\omega_i)$$

Linear discriminant functions

$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0} \implies \frac{\text{Linear machine or}}{\text{linear equation}}$$

$$\mathbf{w}_i = \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_i$$
 weight vector

$$w_{i0} = -\frac{1}{2}\boldsymbol{\mu}_{i}^{t}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}_{i} + \ln P(\omega_{i})$$
 threshold/bias

$\Sigma_i = ext{arbitrary}$

$$p(\mathbf{x}|\omega_i) \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$$

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i)$$

Quadratic discriminant functions

$$g_{i}(\mathbf{x}) = \mathbf{x}^{t} \mathbf{W}_{i} \mathbf{x} + \mathbf{w}_{i}^{t} \mathbf{x} + w_{i0}$$

$$quadratic \ matrix$$

$$\mathbf{W}_{i} = -\frac{1}{2} \mathbf{\Sigma}_{i}^{-1}$$

$$weight \ vector$$

$$\mathbf{w}_{i} = \mathbf{\Sigma}_{i}^{-1} \boldsymbol{\mu}_{i}$$

$$w_{i0} = -\frac{1}{2} \boldsymbol{\mu}_{i}^{t} \mathbf{\Sigma}_{i}^{-1} \boldsymbol{\mu}_{i} - \frac{1}{2} \ln |\mathbf{\Sigma}_{i}| + \ln P(\omega_{i}) \ threshold/bias$$

Bayes Decision Boundary for Two Classes

Case 1 & 2 : Linear Separable Cases

Case 3: Nonlinearly Separable Cases

Normal density- mean is changing

Normal density- sigma is changing

Summary

- Bayesian Decision Theory
 - PR: essentially a decision process
 - Basic concepts
 - States of nature
 - Probability distribution, probability density function (pdf)
 - Class-conditional pdf
 - Joint pdf, marginal distribution, law of total probability
 - Bayes theorem
 - Prior + likelihood + observation □ Posterior probability
 - Bayes decision rule
 - Decide the state of nature with maximum posterior

Summary (Cont.)

- Feasibility of Bayes decision rule
 - Prior probability + likelihood
 - Solution I: counting relative frequencies
 - □ Solution II: conduct density estimation (chapters 3,4)
- Bayes decision rule: The general scenario
 - Allowing more than one feature
 - Allowing more than two states of nature
 - Allowing actions than merely deciding state of nature
 - □ Loss function: λ : $\Omega \times A \to \mathbf{R}$

Summary (Cont.)

Expected loss (conditional risk)

$$R(\alpha_i \mid \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i \mid \omega_j) \cdot P(\omega_j \mid \mathbf{x})$$

Average by enumerating over all possible states of nature

- General Bayes decision rule
 - Decide the action with minimum expected loss
 - Minimum-error-rate classification
 - Actions \(\Price \Pi \) Decide states of nature
 - Zero-one loss function
 - Assign no loss/unit loss for correct/incorrect decisions

Summary (Cont.)

- Discriminant functions
 - General way to represent classifiers
 - One function per category/class
 - Induce decision regions and decision boundaries
- Gaussian/Normal density

$$\mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}) : p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right]$$

Discriminant functions for Gaussian pdf

$$\Sigma_i = \sigma^2 \mathbf{I}, \Sigma_i = \Sigma$$
: linear discriminant function

 $\Sigma_i = \text{arbitrary}$: quadratic discriminant function

Thank you

