Álgebra y Geometría Analítica I

Hirch, Juan Manuel

CONTENTS

Lógica	2
Proposiciones	. 2
Definición	. 2
Conectores Lógicos	. 2
Proposiciones Primitivas	. 2
Tautologías y Contradicciones	. 2
Equivalencia Lógica	. 2
Leyes de la Lógica	. 3
Inferencia	. 3
Argumento	2

LÓGICA

Proposiciones

Definición

Se considera proposición a cualquier oración a la cual se le pueda asignar un valor de verdad $(V \circ F)$. Se las suele nombrar con una única letra minúscula (p, q, s).

Conectores Lógicos

Son operadores de proposiciones que resultan en otras proposiciones.

- Negación: La negación de p se simboliza $\neg p$, y su valor de verdad es el opuesto de p.
- Conjunción: La conjunción entre p y q es $p \wedge q$, y es verdadera sólo si ambas proposiciones lo son.
- · Disyunción:
 - ▶ Inclusiva: Se simboliza $p \lor q$ y es verdadero si al menos p o q son verdaderas.
 - Exclusiva: Se simboliza $p \oplus q$ y es verdadero si p o q son verdaderas, pero no ambas.
- Implicación: Se simboliza $p \to q$, a p se le llama hipótesis y q tesis, y es verdadero salvo que p sea verdadero, y q no.
- **Bicondicional**: Se simboliza $p \leftrightarrow q$, y es verdadero cuando p y q tienen el mismo valor de verdad.

Proposiciones Primitivas

Son aquellas proposiciones que no pueden ser formadas a partir de conectores lógicos.

Tautologías y Contradicciones

Una proposición compuesta se llama *tautología* si es verdadera para cualquier combinación de asignaciones de verdad de las proposiciones que la componen. Lo contrario es llamado *contradicción*.

Equivalencia Lógica

Dos proposiciones s_1, s_2 son *lógicamente equivalentes* si tienen la misma tabla de verdad. Se simboliza $s_1 \iff s_2$. La Equivalencia Lógica tiene las siguientes propiedades:

- $s \iff s$
- si $s_1 \iff s_2$, entonces $s_2 \iff s_1$
- si $s_1 \iff s_2$ y $s_2 \iff s_3$, entonces $s_1 \iff s_3$

LEYES DE LA LÓGICA

Sean p,q,r proposiciones primitivas, T_0 y F_0 una tautología y contradicción respectivamente, se cumplen:

• $\neg \neg p \iff p$	Ley de doble negación
	Leyes de De Morgan
• $p \lor q \Longleftrightarrow q \lor p$ $p \land q \Longleftrightarrow q \land p$	Leyes Conmutativas
• $p \lor (q \lor r) \iff (p \lor q) \lor r$ $p \land (q \land r) \iff (p \land q) \land r$	Leyes Asociativas
$ \begin{array}{c} \bullet \;\; p \vee (q \wedge r) \Longleftrightarrow (p \vee q) \wedge (p \vee r) \\ p \wedge (q \vee r) \Longleftrightarrow (p \wedge q) \vee (p \wedge r) \end{array} $	Leyes Distributivas
• $p \lor p \Longleftrightarrow p$ $p \land p \Longleftrightarrow p$	Leyes Idempotentes
$ \begin{array}{c} \bullet & p \vee F_0 \Longleftrightarrow p \\ p \wedge T_0 \Longleftrightarrow p \end{array} $	Leyes de Neutro
$ p \lor \neg p \Longleftrightarrow T_0 $ $p \land \neg p \Longleftrightarrow F_0 $	Leyes Inversas
$ \begin{array}{c} \bullet & p \lor T_0 \Longleftrightarrow T_0 \\ p \land F_0 \Longleftrightarrow F_0 \end{array} $	Leyes de Dominación
$ \begin{array}{c} \bullet & p \wedge (p \vee q) \Longleftrightarrow p \\ p \vee (p \wedge q) \Longleftrightarrow p \end{array} $	Leyes de Absorción

Inferencia

Argumento

Se le llama **argumento** a una *proposición compuesta* de la forma:

$$p_1 \wedge p_2 \wedge p_3 \wedge \dots \wedge p_k \to q$$

Llamamos premisas al conjunto de todas las p, y conclusion a q. Se dice que el argumento es **valido** si es una tautología, escrito:

$$p_1 \wedge p_2 \wedge p_3 \wedge \dots \wedge p_k \Longrightarrow q$$

También llamamos a esto Implicancia Lógico.

EJEMPLO:

Si intentamos demostrar

$$(p \to r) \land (r \to s) \land (t \lor \neg s) \land (\neg t \lor u) \land \neg u \Longrightarrow \neg p$$

deberíamos ver que

$$(p \to r) \land (r \to s) \land (t \lor \neg s) \land (\neg t \lor u) \land \neg u \to \neg p$$

es una **tautología**. Para que una *implicancia* sea falsa, la hipótesis debe ser verdadera, y la tesis falsa. Entonces supongamos que

$$p \to r$$
, $r \to s$, $t \vee \neg s$, $\neg t \vee u$, $\neg u$

son todas verdaderas y $\neg p$ falso, osea p verdadero.

- si p verdadero y $p \rightarrow r$ verdadero, r verdadero.
- si r verdadero y $r \rightarrow s$ verdadero, s verdadero.
- si s verdadero entonces $\neg s$ falso.
- si s verdadero y $t \vee \neg s$ verdadero, t debe ser verdadero.
- si p verdadero y $p \rightarrow r$ verdadero, r verdadero.