Conjuntos

Cojunto de Partes

 $P(A) = \{X :\subset A\} \lor x \in P(A)$

Operaciones entre conjuntos:

 $A \cup B = \{x \in U : x \in A \lor x \in B\}$

 $A \cup B = \{x \in U : x \in A \lor x \in B\}$

Sea $A\subseteq U$

Complemento:

$$A^c = \{x \in U : x
ot \in A\}$$

propiedades:

• $\emptyset^c = U$

•
$$U^c = \emptyset$$

• $(A^c)^c = A$

Union:

Sea $A, B \subseteq U$

•
$$A \cup \emptyset$$

• $A \cup U = U$

propiedades:

• $A \in B = B \in A$ • $A \in B = U$

Sea $A, B \subseteq U$

propiedades:

•
$$A \cap B = B \cap A$$

• $A \cap \emptyset = \emptyset$

• $A \cap U = A$

•
$$A \cap A^c = \emptyset$$

• conjuntos disjuntos : $\circ \ A \in B = \emptyset$

Sea $A, B \subseteq U$

diferencia:

 $A - B = \{x \in U : x \in A \land X \not\in B\}$

propiedades:

•
$$A-B \neq B-A$$

• $A - \emptyset = A$ • $A^c = U - A$

• $A - \emptyset = A$

•
$$A - A^c = A$$

• $A-A=\emptyset$

diferencia simetrica:

$A - B = \{x \in U : x \in A \land X \not\in B\}$

Sea $A, B \subseteq U$

Propiedades Importantes:

conmutativa : $egin{cases} A \cup B = B \cup A \ A \cap B = B \cap A \end{cases}$

asociativa : $\begin{cases} A \cup (B \cup C) = (A \cup B) \cup C \\ A \cap (B \cap C) = (A \cap B) \cup C \end{cases}$ * las exp tiene la misma operacion

Idempotencia:
$$\begin{cases} A \cup A = A \\ A \cap A = A \end{cases}$$

Elem neutro : $egin{cases} A \cup arnothing = A \ A \cap arnothing = arnothing \end{cases}$ ${\it distributiva}: \begin{cases} A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \\ A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \end{cases} * {\it las exp tiene la distintas operaciones}$

ley de absorcion : $egin{cases} A \cup (A \cap B) = A \ A \cap (A \cup B) = A \end{cases}$

ley de absorcion II : $egin{cases} A^c \cup (A \cap B) = A^c \cup B \ A^c \cap (A \cup B) = A^c \cap B \end{cases}$ * caso especial

•
$$A - B = A \cap B^C$$

ley de morgan : $\begin{cases} (A \cup B)^c = A^c \cap B^c \\ (A \cap B)^c = A^c \cup B^c \end{cases}$

• $A\Delta B = (A \cup B) - (A \cap B)$

 $A\Delta B = (A - B) \cup (B - A)$

$$A\Delta B = (A-B) \cup (B-A) \ A\Delta B = (A\cap B^c) \cup (B\cap A^c)$$