Asignatura: SimulaciónModelado y Simulación de Sistemas

Generación de Variables Aleatorias

Generación de Variables Aleatorias

Propósito

- Comprender como se generan muestras de una distribución específica como entrada a un modelo de simulación.
- Algunas técnicas mas usadas para generar variables aleatorias.
 - □ Transformada Inversa.
 - □ Aceptación y Rechazo.

Técnica de la Transformada Inversa

- El concepto:
 - \square Para una fda: r = F(x)
 - ☐ Generar r desde una uniforme(0,1)
 - encontrar x:

$$x = F^{-1}(r)$$

Distribución Exponencial

[transformada Inversa]

Distr. Exponencial:

☐ fda:

$$r = F(x)$$

$$= 1 - e^{-\lambda x}$$

para $x \ge 0$

 \square Para generar $X_1, X_2, X_3 \dots$

$$X_{i} = F^{-1}(R_{i})$$

$$= -(1/\lambda) \ln(1-R_{i})$$

Figura: Transformada Inversa para $\exp(\lambda = 1)$

- Ejemplo: Generar 200 variables X_i con distrib. $exp(\lambda = 1)$
 - Generar 200 Rs con U(0,1) utilizando la formula anterior. El histograma de los Xs tiene la forma de la fig. de abajo:
 - Comparar con la fd de la exponencial.

Otras Distribuciones

[transformada Inversa]

- Ejemplos de otras distribuciones:
 - □ Uniform distribution
 - □ Weibull distribution
 - □ Triangular distribution

Distribuciones Continuas Empíricas [Transf.-Inversa]

- Cuando una distr. Teórica no es aplicable
- Coleccionar datos empíricos:
 - Remuestreo de los datos observados
 - □ Obtener valores mediante Interpolación.
- Para una muestra pequeña (tamaño n):
 - Ordenar los datos

$$X_{(1)} \le X_{(2)} \le \ldots \le X_{(n)}$$

Asignar la probablidad 1/n a cada intervalo

$$X_{(i-1)} \le X \le X_{(i)}$$

$$X = \hat{F}^{-1}(R) = x_{(i-1)} + a_i \left(R - \frac{(i-1)}{n} \right)$$

donde

$$a_i = \frac{x_{(i)} - x_{(i-1)}}{1/n - (i-1)/n} = \frac{x_{(i)} - x_{(i-1)}}{1/n}$$

□ Ejemplo. Datos recolectados:2,76 1,83 0,80 1,45 1,24 (pág. 307)

Distribuciones Continuas Empíricas [Transf.-Inversa]

 Ejemplo: Si la muestra es grande, se pueden agrupar. Suponer que se han recolectado datos de tiempos de reparación de 100 máquinas dañadas.

Intervalo			Frecuencia	Frecuencia	Pendie
i	(Horas)	Frecuencia	Relativa	Acum., c _i	nte, a i
1	$0.25 \le x \le 0.5$	31	0,31	0,31	0,81
2	$0.5 \le x \le 1.0$	10	0,10	0,41	5,0
3	$1.0 \le x \le 1.5$	25	0,25	0,66	2,0
4	$1.5 \le x \le 2.0$	34	0,34	1,00	1,47

Distribuciones Discretas

[Transf.-Inversa]

- Todas las distr. Discretas pueden ser generadas via la técnica de la Transformada Inversa.
- Ejemplos de aplicación:
 - □ Empírica
 - □ Uniforme Discreta
 - □ Geométrica

Técnica de Aceptación y Rechazo

- Muy usada cuando la inversa de la fda no existe.
- Ilustración: Para generar variables aleatorias, X ~ U(1/4, 1)

Procedimiento:

Paso 1. Generar R ~ U[0,1]

Paso 2a. Si R >= $\frac{1}{4}$, acceptar X=R.

Paso 2b. Si R < ¼, rechazar R, retornar al Paso 1.

- Eficiencia: habilidad para minimizar el número de rechazos.
- Poisson Distribution (pág. 318)

Proceso Poisson No Estacionario

- Método de "adelgazamiento":
 - □ Generar un Proceso de arribos Poisson Estacionario a la tasa mas grande, $\lambda^* = \max \lambda(t)$
 - "Aceptar" solo una porción de los arribos ("adelgazamiento"), para obtener (o simular) la tasa variable deseada.

PPNE

Dato: Tasas de Arribos

t (min)	Tiempo Medio entre arribos (min)	Tasa de Arribo λ(t) (#/min)
0	15	1/15
60	12	1/12
120	7	1/7
180	5	1/5
240	8	1/8
300	10	1/10
360	15	1/15
420	20	1/20
480	20	1/20

Procedimiento:

Step 1.
$$\lambda^* = \max \lambda(t) = 1/5$$
, $t = 0$ and $i = 1$.

Step 2. Para un núm. Aleatorio
$$R = 0.2130$$
,

$$E = -5ln(0.213) = 13.13$$

$$t = 13.13$$

Step 3. Generar R = 0.8830

$$\lambda(13.13)/\lambda^*=(1/15)/(1/5)=1/3$$

Dado R>1/3, NO generar el arribo.

Step 2. Para un núm. Aleatorio R = 0.5530,

$$E = -5ln(0.553) = 2.96$$

$$t = 13.13 + 2.96 = 16.09$$

Step 3. Generar R = 0.0240

$$\lambda(16.09)/\lambda^*=(1/15)/(1/5)=1/3$$

Dado
$$R < 1/3$$
, $T_1 = t = 16.09$,

and
$$i = i + 1 = 2$$

Técnicas Especiales

- M
 - Solo se aplican a distribuciones específicas.
 - Por ejemplo:
 - Transformación Directa para una distribución normal o loganormal
 - Método de Convolución
 - □ Distr. Beta (desde una distr. gamma)

- Método para una normal (μ, σ^2) :
 - □ Generar $Z_i \sim N(0,1)$

$$X_i = \mu + \sigma Z_i$$

- Método para una lognormal (μ, σ^2) :
 - □ Generate $X \sim N((\mu, \sigma^2))$

$$Y_i = e^{X_i}$$

Resumen

- Principios de generación de V.A.s via:
 - □ Técnica de la Transformada Inversa.
 - □ Técnica de Aceptación y Rechazo
 - □ Técnicas especiales

Referencias

- DAGPUNAR, J. [1998], Principles of Random Variate Generation, Clarendom Press, Oxford.
- LAW, A. M. [2007], Simulation Modeling and Analysis, 4th ed., McGraw-Hill, New York.
- RIPLEY, B.D. [1987], Stochastic Simulation, Wiley, New York.
- Jerry Banks, John S. Carson, II, Barry L. Nelson, *Discrete-Event System Simulation*, David M. Nicol. Quinta Edición. ISBN-10: 0136062121. Publisher: Prentice Hall.