Attorney Docket No.: 30020-189001 Client Ref. No.: AMSC-633

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Arnold P. Kehrli Art Unit: 2836

Serial No.: 10/658,597 Examiner: Dru M. Parries

Filed : September 9, 2003 Conf. No. : 1923

Title : LOW IMPEDANCE TRANSMISSION LINE WITH A POWER FLOW

CONTROLLER

MAIL STOP APPEAL BRIEF-PATENTS

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

AMENDMENTS TO BRIEF ON APPEAL

In response to the notification of non-compliant appeal brief mailed Nov. 24, 2008, please amend Sections (3) and (5) of the appeal brief filed on Nov. 3, 2008, as follows:

(3) Status of Claims

Please add the following to the end of section 3:

Claims 2, 12, and 16-18 have been canceled.

Claims 1, 3-11, 13-15, and 19-23 have been rejected, as follows:

- Claims 1, 3, 5, and 7 were rejected under 35 U.S.C. § 103(a) as being unpatentable over U.S. Publication 2003/0183410 ("Sinha") and U.S. Patent 6,344,956 ("Morita").
- Claim 4 was rejected under 35 U.S.C. § 103(a) as being unpatentable over Sinha and Morita, and further in view of U.S. Patent 5,878,334 ("Talisa").
- Claim 6 was rejected under 35 U.S.C. § 103(a) as being unpatentable over Sinha and Morita, and further in view of Japanese Patent 11122793A ("Shimomura").
- Claims 8-9 and 22 were rejected under 35 U.S.C. § 103(a) as being unpatentable over Sinha and Morita, and further in view of U.S. Patent 5,420,495 ("Hingorani").

Applicant(s): Arnold P. Kehrli Attorney Docket No.: 30020-189001 Client Ref. No.: AMSC-633

Serial No. : 10/658,597 September 9, 2003

Filed

Page 2 of 6

> Claims 10, 11, and 13-14 were rejected under 35 U.S.C. § 103(a) as being unpatentable over Sinha, Morita, and Hingorani.

Claim 15 was rejected under 35 U.S.C. § 103(a) as being unpatentable over Sinha, Morita, and Hingorani, and further in view of Shimomura.

Claims 19 and 20 were rejected under 35 U.S.C. § 103(a) as being unpatentable over Sinha and Morita, and further in view of U.S. Patent 4,045,823 ("Parton").

Claim 21 was rejected under 35 U.S.C. § 103(a) as being unpatentable over Sinha and Morita, and further in view of U.S. Patent Publication 2002/0005668 ("Couture").

Claim 23 was rejected under 35 U.S.C. § 103(a) as being unpatentable over Sinha and Morita.

(5) Summary of Claimed Subject Matter

Please add the following to the end of section 5:

The subject matter of the application is claimed in independent claims 1, 10, and 23. Claims 3-9 and 19-22 each depends upon claim 1. Claims 11 and 13-14 each depends upon claim 10. The independent claims are supported in the specification at least as follows:

CLAIM	SUPPORT
Claim 1 A multi-line utility power transmission	Fig. 3; Pg. 1, <i>l</i> . 14;
system comprising:	Pg. 3, l. 28 – Pg. 4, l. 1
a first power transmission line having a first	Fig. 3 (e.g., 12 or 14);
impedance characteristic;	Pg. 1, ll. 14–15; Pg. 4, ll. 3–7;

Arnold P. Kehrli 10/658,597 September 9, 2003 3 of 6 Applicant(s):
Serial No.:
Filed: Attorney Docket No.: 30020-189001 Client Ref. No.: AMSC-633

Page

a second power transmission line including a	Fig. 3 (e.g., 50);
superconductor, in parallel with the first power	Pg. 1, <i>ll</i> . 15–17;
transmission line, and having a second impedance	Pg. 5, ll. 8–13;
characteristic less than the first impedance	
characteristic; and	
a power flow controller, coupled to the	Fig. 3 (e.g., 52);
second power transmission line, for selectively	Pg. 1, ll. 17–19; Pg. 5, ll. 8–10;
regulating during normal operating conditions of the	Pg. 7, ll. 1–7, ll. 13–22;
power transmission system by a variable amount at	Pg. 7, l. 26 – Pg. 8, l. 1;
least one of the magnitude and direction of the	Pg. 8, <i>ll</i> . 9–11, 19–21;
power flowing through the second power	
transmission line;	
wherein the power flow controller is	Fig. 3 (e.g., 52);
configured to selectively regulate the power flowing	Pg. 2, <i>ll</i> . 8–10;
through the second power transmission line to	Pg. 7, <i>ll</i> . 13–22;
provide at least one of	
load balancing between the first power transmission	Pg. 7, ll. 1–7
line and the second power transmission line and flow	
optimization between the first power transmission	
line and the second power transmission line;	
wherein the power flow controller is	Fig. 3 (e.g., 52);
configured to provide incremental flow change of	Pg. 7, <i>ll</i> . 13–22;
current.	Pg. 8, <i>ll</i> . 6–21;
	1
Claim 10 A method comprising:	Fig. 4 (100);
	Pg. 2, l. 13; Pg. 8, l. 25
connecting a first power transmission line	Figs. 3–4 (e.g., 12 or 14; 102);
having a first impedance characteristic in parallel	Pg. 1, ll. 15–16; Pg. 2, l. 14;
with	Pg. 8, ll. 25–27
	1

Applicant(s): Arnold P. Kehrli Serial No.: 10/658,597 Filed: September 9, 2003 Page: 4 of 6 Attorney Docket No.: 30020-189001 Client Ref. No.: AMSC-633

a second power transmission line including a	Figs. 3–4 (e.g., 50; 104);
superconductor and having a second impedance	Pg. 2, <i>ll</i> . 14–16;
characteristic less than the first impedance	Pg. 8, l. 25 – Pg. 9, l. 4
characteristic;	1 g. 6, t. 23 – 1 g. 9, t. 4
supplying power to the first power	Fig. 4 (e.g., 102, 104);
transmission line and the second power transmission	Pg. 2, l. 16; Pg. 8, ll. 25–28
line;	
determining a level of power flow for the	Fig. 4 (e.g., 106);
second power transmission line; and	Pg. 2, l. 17; Pg. 8, ll. 28–29
selectively regulating during normal	Fig. 3–4 (e.g., 52; 106, 108);
operating conditions of the power transmission	Pg. 3, <i>ll</i> . 5–7;
system by a variable amount the power transferred	Pg. 7, ll. 1–7, 13–22;
through the second power transmission line to	Pg. 8, <i>ll</i> . 19–21;
provide at least one of	Pg. 9, <i>ll</i> . 1–2;
load balancing between the first power transmission	Pg. 7, <i>ll</i> . 1–7
line and the second power transmission line and flow	
optimization between the first power transmission	
line and the second power transmission line;	
wherein selectively regulating the amount of	Fig. 3–4 (e.g., 52; 106, 108);
power transferred through the second power	Pg. 2, <i>ll</i> . 16–17;
transmission line includes changing the flow of	Pg. 7, <i>ll</i> . 13–17;
current incrementally.	Pg. 8, <i>ll</i> . 6–14
Claim 23 A multi-line utility power transmission	Fig. 3; Pg. 1, <i>l</i> . 14;
system comprising:	Pg. 3, l. 28 – Pg. 4, l. 1
a first power transmission line having a first	Fig. 3 (e.g., 12 or 14);
impedance characteristic;	Pg. 1, <i>ll</i> . 14–15; Pg. 4, <i>ll</i> . 3–7;

Applicant(s): Arnold P. Kehrli Serial No.: 10/658,597 Filed: September 9, 2003 Page: 5 of 6

a second power transmission line including a	Fig. 3 (e.g., 50);
superconductor, in parallel with the first power	Pg. 1, <i>ll</i> . 15–17;
transmission line, and having a second impedance	Pg. 5, <i>ll</i> . 8–13;
characteristic less than the first impedance	
characteristic; and	
a power flow controller, coupled to the	Fig. 3 (e.g., 52);
second power transmission line, for selectively	Pg. 1, ll. 17–19; Pg. 5, ll. 8–10;
regulating during normal operating conditions of the	Pg. 7, ll. 1–7, ll. 13–22;
power transmission system by a variable amount at	Pg. 7, l. 26 – Pg. 8, l. 1;
least one of the magnitude and direction of the	Pg. 8, <i>ll</i> . 9–11, 19–21;
power flowing through the second power	
transmission line;	
wherein the power flow controller is	Fig. 3 (e.g., 52);
configured to selectively regulate the power flowing	Pg. 2, <i>ll</i> . 8–10;
through the second power transmission line to	Pg. 7, <i>ll</i> . 13–22;
provide at least one of	
load balancing between the first power transmission	Pg. 7, ll. 1–7
line and the second power transmission line and flow	
optimization between the first power transmission	
line and the second power transmission line;	
wherein the power flow controller is further	Fig. 3 (e.g., 52 & 50);
configured to restrict a total amount of current	Pg. 2, <i>ll</i> . 4-10;
allowed to pass through the second power	Pg. 7, <i>ll</i> . 13–22;
transmission line while maintaining a	Pg. 8, <i>ll</i> . 6–24; Pg. 9, <i>ll</i> . 5–7;
superconductive state of the second power	Pg. 9, <i>ll</i> . 5–7;
transmission line.	
	I

Attorney Docket No.: 30020-189001 Client Ref. No.: AMSC-633

Applicant(s): Arnold P. Kehrli Serial No.: 10/658,597

Filed

September 9, 2003

Page

: 6 of 6

Attorney Docket No.: 30020-189001

Client Ref. No.: AMSC-633

CONCLUSION

Appellant respectfully submits that with the above amendments, the appeal brief is now in compliance with § 41.37.

No fee is believed due. Please apply all appropriate charges or credits to Deposit Account No. 50-4189, referencing Attorney Docket No. 30020-189001.

Respectfully submitted,

Date: DECEMBER 23, 2008

Frank R. Occhiuti Reg. No. 35,306

Customer No. 69713 Occhiuti Rohlicek & Tsao LLP 10 Fawcett Street Cambridge, MA 02138 Telephone: (617) 500-2501

Facsimile: (617) 500-2499

52794.doc