

Universidad de San Carlos de Guatemala Escuela de Ciencias Físicas y Matemáticas Métados Matemáticas para Física, Samestr

Métodos Matemáticos para Física, Semestre 2, 2023

Profesor: Dr. Juan Ponciano Auxiliar: Diego Sarceño

EJEMPLO 2

Considere la componente de una onda electromagnética en una cavidad láser de longitud l. Las ondas son generadas por una corriente J(x) que impregna la cavidad y las paredes están hechas de un material conductor perfectamente reflectante, por lo que $E_z(0) = E_z(L) = 0$. La ecuación de Maxwell para la componente (polarizada en la dirección z) es

$$\left(\frac{\partial^2}{\partial x^2} - k^2\right) E_z(x) = J(x),$$

donde la constante k^2 es igual a $g\omega^2/c^2$ donde c es la velocidad de la luz, ω es la frecuencia angular de la luz y g es el coeficiente de ganancia (un número que describe la transferencia de energía de un medio a la onda electromagnética). Encuentre la solución general para E_z entre las paredes.

Bibliografía

[1] Saxe, K. (2002). Beginning functional analysis (p. 7). New York: Springer.