Estimación y Predicción en Series Temporales

Práctico 6: filtros adativos

Departamento de Procesamiento de Señales

Instituto de Ingeniería Eléctrica Facultad de Ingeniería

2022

Filtros lineales óptimos: filtro de Wiener

- d[n] señal deseada
- u[n] señal observable conjuntamente estacionaria con d[n]
- : Diseñar un filtro discreto cuya salida y[n] provea un estimador de una señal deseada d[n] a partir de una señal de entrada correlacionada u[n].
- El criterio de optimización es la minimización del error cuadrático medio de la estimación, definido como

$$J(\mathbf{w}) = E(|e[n]|^2),$$
 con $e[n] = d[n] - y[n].$

ullet En el caso en que el filtro Wiener es FIR con M coeficientes, la dependencia del error cuadrático medio con los coeficientes del filtro es

$$J(\mathbf{w}) = \sigma_d^2 - \mathbf{p}^H \mathbf{w} - \mathbf{w}^H \mathbf{p} + \mathbf{w}^H \mathbf{R} \mathbf{w}$$
 (1)

Filtro de Wiener

 Los coeficientes del filtro óptimo que minimizan el error cuadrático medio cumplen que

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = 0,$$

• lo que conduce al sistema $M \times M$ denominado

$$\mathbf{R}\mathbf{w}_o = \mathbf{p} \qquad \Leftrightarrow \qquad \mathbf{w}_o = \mathbf{R}^{-1}\mathbf{p}$$

 Con el filtro funcionando en condiciones óptimas, el error mínimo es

$$J(\mathbf{w}) = J_{min}$$
$$= \sigma_d^2 - \mathbf{w}_o^H \mathbf{R} \mathbf{w}_o$$

Filtro de Wiener

Observaciones

- Se necesita conocer la función de autocorrelación de la entrada R y la correlación cruzada entre la entrada y la señal deseada p.
- Se necesita invertir R, que es Topelitz y simétrica.
 - Puede ser costoso computacionalmente si M es grande.
 - Mala estimación si la matriz está mal condicionada.
- Hipótesis: El filtro de Wiener solo puede aplicarse en condiciones de estacionaridad:
 - u[n] estacionario en sentido amplio (*WSS*).
 - u[n] y d[n] tienen que ser conjuntamente estacionarios.

Filtros adaptivos

- d[n] señal deseada
- u[n] señal observable conjuntamente estacionaria con d[n]
- Los coeficientes del filtro se actualizan con el requerimiento de cuadrático medio J[n] en cada iteración,

$$\mathbf{w}[n+1] = \mathbf{w}[n] + \Delta \mathbf{w}[n].$$

- El define como se realiza la corrección de los coeficientes en cada paso, es decir, define $\Delta \mathbf{w}[n]$.
 - Para eso, usa la señal de error e[n], ya que permite al filtro medir su desempeño y determinar como deben ser actualizados los coeficientes.
- Teniendo en cuenta que los coeficientes son variables, la salida del filtro es

M-1

Filtros adaptivos

Curva de aprendizaje

- La curva de aprendizaje de un filtro adaptivo es la evolución del error cuadrático medio J[n] con el número de iteración.
- Indica cuan rápido el filtro adaptivo aprende la solución de las ecuaciones de Wiener-Hopf.

Propiedades deseables de un filtro adaptivo

• En condiciones estacionarias, el filtro debe producir una sucesión de correcciones $\Delta \mathbf{w}[n]$ de forma de que $\mathbf{w}[n]$ converja al filtro de Wiener,

$$\lim_{n \to \infty} \mathbf{w}[n] = \mathbf{R}^{-1} \mathbf{p}.$$

• No debería ser necesario conocer $r_u[k]$ y p[k] para calcular $\Delta \mathbf{w}[n]$. La estimación de la estadística de las señales

 En el método de descenso por gradiente, la regla de adaptación es

$$\mathbf{w}[n\!+\!1] = \mathbf{w}[n] \!+\! \frac{1}{2} \mu \left(-\nabla J[n] \right)$$

- $\mu > 0$: tamaño del paso de adaptación
- Aplicando el gradiente a J[n] (ecuación 1) se tiene que

$$\nabla J[n] = -2\mathbf{p} + 2\mathbf{R}\mathbf{w}[n]$$

La regla de adaptación queda

$$\mathbf{w}[n+1] = \mathbf{w}[n] + \mu \left(\mathbf{p} - \mathbf{R}\mathbf{w}[n]\right)$$

El algoritmo comienza con
alguna estimación inicial de

Estabilidad del algoritmo de descenso por gradiente

La evolución del i-ésimo coeficiente del filtro está dada por

$$w_i[n] = w_{io} + \sum_{k=0}^{M-1} a_{ik} (1 - \mu \lambda_k)^n$$
 $i = 0, 1, \dots, M-1$

- w_{io} es el valor óptimo del i-ésimo coeficiente del filtro.
- λ_k son los valoes propios de \mathbf{R} .
- a_{ik} son constantes que dependen de las condiciones iniciales y los valores y vectores propios de R.
- Cada exponencial en la sumatoria se llama modo natural del filtro.

Convergencia

En el caso estacionario, el algoritmo de descenso por gradiente converge a la solución de las ecuaciones de Wiener-Hopí si el tamaño de paso cumple que [los modos naturales se

Velocidad de convergencia

• Se define la constante de tiempo τ_k como la cantidad de iteraciones para que el k-ésimo modo caiga 1/e de su valor inicial,

$$(1 - \mu \lambda_k)^{\tau_k} = \frac{1}{e}$$
 \Rightarrow $\tau_k = -\frac{1}{\ln(1 - \mu \lambda_k)}$

- En el caso en que μ es pequeño ($\mu\lambda_k\ll 1$), $au_kpprox rac{1}{\mu\lambda_k}$
- Definiendo la constante de tiempo global τ como la cantidad de iteraciones para que el modo de decaimiento mas lento caiga 1/e de su valor inicial,

$$au = \max au_k pprox rac{1}{\mu \lambda_{\mathsf{min}}}$$

• Definiendo α como el paso de adaptación normalizado,

Algoritmo (descenso por gradiente, máxima pendiente)

$$\left\{ \begin{array}{ll} \mathbf{w}[0] &= \mathbf{0} \\ \mathbf{w}[n+1] &= \mathbf{w}[n] + \mu \left(\mathbf{p} - \mathbf{R} \mathbf{w}[n] \right) \end{array} \right.$$

Observacio<u>nes</u>

- Hay que conocer R y p, igual que en cálculo del filtro de Wiener.
- Hipótesis:
 - u[n] estacionario en sentido amplio
 - u[n] y d[n] conjuntamente estacionarios
- No se necesita invertir R.
- Si el algoritmo converge, lo hace al filtro óptimo (filtro de Wiener).
- Condición de convergencia: El paso de adaptación tiene que cumplir

Algoritmo LMS

 En el método de descenso por gradiente, la regla de adaptación es

$$\mathbf{w}[n+1] = \mathbf{w}[n] + \frac{1}{2}\mu \left(-\nabla J[n]\right) \qquad \text{con} \qquad \nabla J[n] = -2\mathbf{p} + 2\mathbf{R}\mathbf{w}[n]$$

En el algoritmo LMS,

$$\hat{\mathbf{w}}[n{+}1] = \hat{\mathbf{w}}[n] {+} \frac{1}{2} \mu \left(-\hat{\nabla} J[n] \right)$$

Valores verdaderos

$$\mathbf{R}[n] = E\left(\mathbf{u}[n]\mathbf{u}^{H}[n]\right)$$
$$\mathbf{p}[n] = E\left(\mathbf{u}[n]d^{*}[n]\right)$$

Usando los estimadores instantáneos, la estimación del gradiente es

Estimadores instantáneos

 $con \qquad \hat{\nabla}J[n] = -2\hat{\mathbf{p}} + 2\hat{\mathbf{R}}\hat{\mathbf{w}}[n]$

$$\hat{\mathbf{R}}[n] = \mathbf{u}[n]\mathbf{u}^H[n]$$
$$\hat{\mathbf{p}}[n] = \mathbf{u}[n]d^*[n]$$

Algoritmo LMS

La ecuación en recurrencia del algoritmo LMS queda

- : Se establecen condiciones iniciales: $\hat{\mathbf{w}}[0] = \mathbf{0}$.
- : Se tiene la estimación de $\hat{\mathbf{w}}[n]$
 - Se calcula la salida del filtro,

$$y[n] = \hat{\mathbf{w}}^H[n]\mathbf{u}[n]$$

Se calcula el error de estimación,

$$e[n] = d[n] - y[n]$$

3 Se adaptan los coeficientes del filtro,

$$\hat{\mathbf{w}}[n+1] = \hat{\mathbf{w}}[n] + \mu \mathbf{u}[n]e^*[n]$$

Propiedades del algoritmo LMS

Hipótesis de independencia

Los datos $\mathbf{u}[n]$ y los coeficientes del filtro $\hat{\mathbf{w}}[n]$ son estadísticamente independientes.

- Como $\hat{\mathbf{w}}[n]$ depende de $\mathbf{u}[n-1], \, \mathbf{u}[n-2], \ldots,$ la hipótesis no es cierta.
- El uso de la hipótesis conduce a propiedades de convergencia que coinciden con los resultados experimentales.

Convergencia

Si los procesos son conjuntamente estacionarios y se cumple la hipótesis de independencia, el algoritmo LMS converge en media si se cumple que

$$0 < \mu < rac{2}{\lambda_{\max}}, \qquad ext{con } \lambda_{\max} ext{ el valor propio máximo de } \mathbf{R}.$$

13 / 53

Propiedades del algoritmo LMS

Error por exceso

- Con el filtro de Wiener, el error cuadrático medio de estimación al usar los coeficientes óptimos es $J(\mathbf{w}_o) = J_{min}$.
- Las estimaciones sucesivas de los coeficientes $\hat{\mathbf{w}}[n]$ en el algoritmo LMS sufren de ruido de gradiente debido al uso de estimadores instantáneos.
- Como resultado, en funcionamiento en régimen los coeficientes permanecen fluctuando en torno a los coeficientes óptimos w_o.
- El error en régimen con el algoritmo LMS será mayor que el error producido por el filtro óptimo. La diferencia es el error por exceso,

$$J_{ex}[n] = J[n] - J_{min}$$
 con $J[n] = E(|e[n]|^2)$.

En condiciones de convergencia, el exter quadrática madia

Propiedades del algoritmo LMS

Curva de aprendizaje

• En el algoritmo de descenso por gradiente, dado $\mathbf{w}[0]$, la curva de aprendizaje queda completamente determinada,

$$J[n] = \sigma_d^2 - \mathbf{p}^H \mathbf{w}[n] - \mathbf{w}^H[n]\mathbf{p} + \mathbf{w}^H[n]\mathbf{R}\mathbf{w}[n].$$

 En el algoritmo LMS, la curva de aprendizaje no es determinística porque la estimación del gradiente se realiza empleando valores muestrales de la entrada y la señal deseada,

$$J[n] = |e^2[n]|.$$

 La curva de aprendizaje es ruidosa. Una estimación adecuada se logra promediando las curvas de aprendizaje en muchos experimentos usando los mismos parámetros.

Algoritmo NLMS

En el algoritmo LMS, la adaptación de los coeficientes está dada por

$$\hat{\mathbf{w}}[n+1] = \hat{\mathbf{w}}[n] + \mu \mathbf{u}[n]e^*[n] \qquad \text{con } 0 < \mu < 2/\lambda_{max}$$

- Aparecen dos dificultades:
 - Si $\mathbf{u}[n]$ es grande, se produce
 - No se conoce **R** y por lo tanto tampoco λ_{max} .
- La condición de convergencia puede sustituirse por la condición mas restrictiva (convergencia en media cuadrática)

$$0 < \mu < \frac{2}{ME(|u[n]|^2)}$$

• $E(|u[n]|^2)$ puede estimarse a partir de $\mathbf{u}[n]$,

$$\begin{split} \widehat{E(|u[n]|^2)} &= \frac{1}{M} \sum_{k=0}^{M-1} |u[n-k]|^2 = \frac{1}{M} \mathbf{u}^H[n] \mathbf{u}[n] = \frac{1}{M} \|\mathbf{u}[n]\|^2. \\ \text{lo que conduce a la restricción} \qquad 0 < \mu < \frac{2}{\|\mathbf{u}[n]\|^2}. \end{split}$$

Algoritmo NLMS

 Teniendo en cuenta esta restricción, el paso de adaptación del algoritmo LMS puede ser sustituido por el paso variable

$$\mu[n] = \frac{\beta}{\|\mathbf{u}[n]\|^2} \qquad \text{con} \qquad 0 < \beta < 2.$$

Esto conduce al algoritmo NLMS,

$$\hat{\mathbf{w}}[n+1] = \hat{\mathbf{w}}[n] + \beta \frac{\mathbf{u}[n]}{\|\mathbf{u}[n]\|^2} e^*[n]$$

• Ocurre un problema similar al de amplificación del ruido de gradiente si $\|\mathbf{u}[n]\|$ es pequeño. Para evitarlo se aplica la siguiente modificación,

$$\hat{\mathbf{w}}[n+1] = \hat{\mathbf{w}}[n] + \beta \frac{\mathbf{u}[n]}{\epsilon + ||\mathbf{u}[n]||^2} e^*[n],$$

con ϵ algún número real positivo pequeño.

- La señal deseada d[n] es cierta señal x[n] que se quiere predecir.
- La entrada al filtro adaptivo es la señal retardada 1 muestra, u[n] = x[n-1].

Ejemplo

• La señal a predecir es un proceso AR(2):

$$x[n] = -a_1x[n-1] - a_2x[n-2] + v[n]$$
 con $v[n]$ de potencia σ_v^2

• El filtro adaptivo a diseñar es de primer orden (M=2).

Filtro de Wiener

• Para encontrar el filtro óptimo, hay que resolver las ecuaciones de Wiener-Hopf de tamaño 2×2 .

• Como d[n] = x[n] y u[n] = x[n-1], la correlación cruzada es

$$p[-k] = E\{u[n-k]d[n]\}\}$$

$$= E\{x[n-1-k]x[n]\}$$

$$= r_x[k+1] = r_u[k+1]$$

Las ecuaciones de Wiener-Hopf quedan en este caso

$$\begin{bmatrix} r_u[0] & r_u[1] \\ r_u[1] & r_u[0] \end{bmatrix} \begin{bmatrix} w[0] \\ w[1] \end{bmatrix} = \begin{bmatrix} r_u[1] \\ r_u[2] \end{bmatrix}$$

• Teniendo en cuenta que x[n] (y por lo tanto u[n]) es un proceso AR(2), usando las ecuaciones de Yule-Walker se tiene que

$$r_u[0] = \frac{1 + a_2}{(1 - a_2) \left[(1 + a_2)^2 - a_1^2 \right]} \sigma_v^2 = \sigma_u^2$$

$$r_u[1] = \frac{-a_1}{1 + a_2} \sigma_u^2$$

Las ecuaciones de Wiener-Hopf quedan

$$\sigma_u^2 \left[\begin{array}{cc} 1 & \frac{-a_1}{1+a_2} \\ \frac{-a_1}{1+a_2} & 1 \end{array} \right] \left[\begin{array}{c} w_0 \\ w_1 \end{array} \right] = \sigma_u^2 \left[\begin{array}{c} \frac{-a_1}{1+a_2} \\ \frac{a_1^2}{1+a_2} - a_2 \end{array} \right]$$

 Resolviendo el sistema se llega a que los coeficientes del predictor son,

$$\mathbf{w}_o = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} -a_1 \\ -a_2 \end{bmatrix} \qquad y[n] = -a_1 x[n-1] - a_2 x[n-2]$$

• El error de estimación e[n] del filtro óptimo es

$$e[n] = d[n] - y[n] = x[n] - y[n] = v[n],$$

por lo que el error cuadrático medio mínimo es

$$J_{min} = E(|e^2[n]|) = \sigma_v^2$$

Predictor lineal adaptivo con descenso por gradiente

 La regla de adaptación en el algoritmo de descenso por gradiente es

$$\mathbf{w}[n+1] = \mathbf{w}[n] + \mu \left(\mathbf{p} - \mathbf{R}\mathbf{w}[n]\right)$$

 La matriz de autocorrelación de la entrada y la correlación cruzada entre la entrada y la señal deseada son,

$$\mathbf{R} = \sigma_u^2 \begin{bmatrix} 1 & \frac{-a_1}{1+a_2} \\ \frac{-a_1}{1+a_2} & 1 \end{bmatrix} \qquad \mathbf{p} = \sigma_u^2 \begin{bmatrix} \frac{-a_1}{1+a_2} \\ \frac{a_1^2}{1+a_2} - a_2 \end{bmatrix}$$

• Hay que decidir el valor del paso de adaptación μ que cumpla las condiciones de convergencia,

$$0 < \mu < \frac{2}{1}$$
.

 En este ejemplo, el cálculo de los valores propios puede hacerse analíticamente,

$$\lambda_{1,2} = \frac{\pm a_1 + a_2 + 1}{(1 - a_2) \left[(1 + a_2)^2 - a_1^2 \right]}.$$

 Se consideran tres casos con distintos parámetros del proceso AR(2) a predecir,

a_1	a_2	λ_{max}	λ_{min}	$\chi(\mathbf{R})$	$\mu_{max} = 2/\lambda_{max}$
0	0.8	2.7778	2.7778	1	0.72
-1.2	0.8	8.3333	1.6667	5	0.24
-1.75	0.8	100	1.4085	71	0.02

- Se corre el algoritmo de descenso por gradiente para los tres casos usando los mismos parámetros.
 - $\mathbf{w}[0] = \mathbf{0}$
 - $\mu = 0.05 \mu_{3 max} = 0.001$
 - 1500 iteraciones [los puntos están graficados cada 20

Lugar del plano a1-a2 para condicion de estacionaridad asintotica

Se considera ahora solo el segundo proceso AR(2),

a_1	a_2	λ_{max}	λ_{min}	$\chi(\mathbf{R})$	$\mu_{max} = 2/\lambda_{max}$
-1.2	0.8	8.3333	1.6667	5	0.24

 Se corre el algoritmo de descenso por gradiente para distintos pasos de adaptación,

μ_1	μ_2	μ_3	μ_4
$0.01\mu_{max}$	$0.2\mu_{max}$	$0.9\mu_{max}$	μ_{max}

con los parámetros,

- $\mathbf{w}[0] = \mathbf{0}$
- 100 iteraciones

Predictor lineal adaptivo con el algoritmo LMS

- Se emplea ahora como predictor un filtro adaptivo entrenado con el algoritmo LMS.
- Para entrenar el filtro no es necesario conocer R ni p.
- El procedimiento para realizar las simulaciones es el siguiente:
 - Se generan muestras del proceso AR(2) x[n] a predecir.
 - La señal deseada es d[n] = x[n].
 - La entrada al filtro adaptivo es u[n] = x[n-1]
- 1. Estudio de la convergencia con el número de condición de ${f R}$
 - Se consideran los tres mismos casos de antes, donde se varía el numero de condición de la matriz de autocorrelación del proceso de entrada.
 - Se corre el algoritmo LMS usando los mismos parámetros,

Se considera ahora solo el segundo proceso AR(2),

a_1	a_2	λ_{max}	λ_{min}	$\chi(\mathbf{R})$	$\mu_{max} = 2/\lambda_{max}$
-1.2	0.8	8.3333	1.6667	5	0.24

 Se corre el algoritmo de descenso por gradiente para distintos pasos de adaptación,

μ_1	μ_2	μ_3	μ_4
$0.01\mu_{max}$	$0.3\mu_{max}$	$0.1\mu_{max}$	$0.2\mu_{max}$

con los parámetros,

- $\mathbf{w}[0] = \mathbf{0}$
- 500 iteraciones

1.5

-1

-0.5

0 0.5

- Considerando el caso de procesos con ${\bf R}$ de distinto número de condición, para que la comparación de J_{min} tenga sentido, la potencia σ_u^2 de los procesos debe ser igual.
- La potencia del proceso AR(2) es,

$$r_u[0] = \frac{1+a_2}{(1-a_2)\left[(1+a_2)^2 - a_1^2\right]}\sigma_v^2 = \sigma_u^2.$$

• Fijando σ_u^2 , hay que elegir σ_v^2 como

$$\sigma_v^2 = \frac{(1 - a_2) \left[(1 + a_2)^2 - a_1^2 \right]}{1 + a_2} \sigma_u^2.$$

• En el ejemplo considerado, si $\sigma_u^2 = 1$, se tiene entonces

a_1	a_2	$\chi(\mathbf{R})$	$\mu_{max} = 2/\lambda_{max}$	σ_v^2
0	8.0	1	0.72	0.36
-1.2	0.8	5	0.24	0.2
-1.75	0.8	71	0.02	0.0197

- s[n] ruido blanco de media nula y potencia σ_s^2 .
- v[n] ruido blanco introducido por el canal de media nula y potencia σ_v^2 independiente de s[n].

Ejemplo

 El canal se modela como el siguiente filtro FIR de tres coeficientes

$$h[n] = \left\{ \begin{array}{l} \frac{1}{2} \left[1 + \cos \left(\frac{2\pi}{W} (n-2) \right) \right], & \text{si } n = 1, \, 2, \, 3 \\ 0, & \text{en otro caso} \end{array} \right.$$

W controla la cantidad de distorsión del canal.

Filtro de Wiener

- Matriz de autocorrelación de la entrada
 - La entrada al filtro es u[n]=x[n]+v[n], con x[n] y v[n] procesos independientes. Por lo tanto,

$$r_u[k] = r_x[k] + r_v[k].$$

- v[n] es ruido blanco de potencia σ_v^2 , así que $r_v[k] = \sigma_v^2 \delta[k]$.
- Teniendo en cuenta que x[n] es un proceso filtrado, se cumple que,

$$r_x[k] = r_s[k] * h[k] * h[-k],$$

• s[n] es un proceso blanco de potencia σ_s^2 , así que $r_s[k] = \sigma_s^2 \delta[k]$. Además $\sigma_s^2 = E(s^2[n]) = 1$. Entonces,

$$r_u[k] = h[k] * h[-k] + \sigma_v^2 \delta[k].$$

 Como h[n] tiene solo tres coeficientes no nulos, se tiene que,

$$r_u[k] = \left\{ \begin{array}{ll} h^2[1] + h^2[2] + h^2[3] + \sigma_v^2, & k = 0 \\ h[1]h[2] + h[2]h[3], & k = 1 \\ h[1]h[3], & k = 2 \\ 0, & k \ge 3 \end{array} \right.$$

$$\begin{split} p[-k] &= E \left\{ u[n-k]d[n] \right\} \\ &= E \left\{ (x[n-k] + v[n-k])s[n-L] \right\} \\ &= E \left\{ x[n-k]s[n-L] \right\} \\ &= E \left\{ x[n]s[n+k-L] \right\} \\ &= E \left\{ \left(\sum_{l=-\infty}^{\infty} h[l]s[n-l] \right) s[n+k-L] \right\} \\ &= \sum_{l=-\infty}^{\infty} h[l]E \left\{ s[n-l]s[n+k-L] \right\} \\ &= \sum_{l=-\infty}^{\infty} h[l]r_s[-l-k+L] \\ &= \sum_{l=-\infty}^{\infty} h[l]\delta[-l-k+L] \end{split}$$

Por ejemplo, si L=7.

or ejempio, si
$$=7$$
,
$$\begin{bmatrix} h[7] \\ h[6] \\ h[5] \end{bmatrix}$$

Observación

- La respuesta del canal en este ejemplo es un filtro FIR simétrico.
- Puede demostrarse que el filtro FIR óptimo para contrarrestar la distorsión del canal debe es simétrico.
- El sistema global (cascada del canal y el filtro adaptivo) tiene un retardo de grupo igual a la suma de los retardos de grupo de ambos filtros
- En este ejemplo se tiene que,

```
	au_{g, {
m canal}} = 2 \; {
m muestras} 	au_{g, {
m wiener}} = 5 \; {
m muestras} 	au_{g, {
m global}} = 7 \; {
m muestras}
```

