北京工业大学 2021—2022 学年第二学期 《高等数学(工)—2》期中考试试卷

考试说明: 考试日期: 2022 年 4 月 29 日, 考试时间: 95 分钟, 考试方式: 闭卷 承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,在考试过程中自觉遵守有关规定和纪律,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考,若有违反,愿接受相应处分。

承诺人:	学号:	班号:

注: 本试卷共<u>三</u>大题,共<u>6</u>页,满分 100 分,考试时必须使用卷后附加的统一草稿纸。

卷 面 成 绩 汇 总 表 (阅卷教师填写)

题 号	_	=	Ξ	总成绩
满分	30	60	10	
得 分				

得 分

一、填空题:(本大题共10小题,每小题3分,共30分)

1. 计算二重极限
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{x^2y}{x^2+y^2} =$$

- 2. 微分方程 $xyy' = x^2 + y^2$ 满足初始条件y(1) = 1的特解为______
- 3. 级数 $\sum_{n=1}^{\infty} \left[\frac{1}{n^{1+\frac{1}{n}}} + (-1)^n \ln \left(1 + \frac{1}{n} \right) \right]$ 是收敛还是发散? ______
- 4. 函数 $y = x^2 \cos \frac{x}{2}$ 的麦克劳林级数中 x^{2022} 的系数为_____
- 5. 设 $y = C_1 e^{2x} + C_3 x e^{2x} + C_3 \sin x + C_4 \cos x$ 是某个常系数线性微分方程的通解 $(C_1, C_2, C_3, C_4$ 为任意常数),则该微分方程为______
- 6. 设 2π 周期函数f在 $[-\pi,\pi)$ 上满足 $f(x)=\left\{ egin{array}{ll} \mathrm{e}^{-x}, & -\pi \leq x < 0 \\ 0, & x=0, \end{array} \right.$ 其 Fourier 级 $x+\pi, \quad 0 < x < \pi$

数的和函数记为 S(x),则 $S(2022\pi)$ 一瞄] 收集整理并免费分享

7. 由上半球面 $z = \sqrt{4 - x^2 - y^2}$ 与圆锥面 $z = \sqrt{3(x^2 + y^2)}$ 所围立体在 xOy
坐标面的投影是
8. 若级数 $\sum_{n=1}^{\infty} a_n 2^n$ 条件收敛,则 $\sum_{n=1}^{\infty} n a_n (x+1)^n$ 的收敛(开)区间为
9. 设 $z = uv + \sin t$,而 $u = e^t$, $v = \cos t$,则全导数 $\frac{dz}{dt} =$
10. 方程 $xyz + \sqrt{x^2 + y^2 + z^2} = \sqrt{2}$ 所确定的隐函数 $z = z(x, y)$ 在点 $(1, 0, -1)$
处的全微分为 $dz =$
二、计算题:(本大题共6小题,每小题10分,共60分)

得分 11. 求函数 $f(x,y) = \begin{cases} e^{-\frac{1}{x^2+y^2}}, & x^2+y^2 \neq 0 \\ 0, & x^2+y^2 = 0 \end{cases}$ 的二阶偏导数 $f''_{xx}(0,0)$ 与 $f''_{xy}(0,0)$.

得 分

12. 求微分方程 $y'' + 3y' + 2y = 3(x-1)e^{-x}$ 的通解.

得 分

13. 设 $z = f(2x - y, y \sin x)$, 其中f具有连续的二阶偏导数,求 $\frac{\partial^2 z}{\partial x^2}$ 和 $\frac{\partial^2 z}{\partial y \partial x}$.

14. 求幂级数 $\sum_{n=1}^{\infty} n^2 x^{n-1}$ 的收敛域与和函数.

$$\sum_{n=1}^{\infty} \left[f\left(\frac{1}{n}\right) - 1 - \frac{1}{n} \right]$$
 的敛散性.

得 分

16. 设 2π 周期函数f在 $[-\pi,\pi)$ 上满足 $f(x)=x^2~(-\pi \le x < \pi)$,将其展开成 Fourier 级数,并求级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ 的和.

三、证明题:(本大题共2小题,每小题5分,共10分)

得 分

17. 验证函数 $u = \arctan \frac{y}{x}$ 是 Laplace 方程 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ 的解.

得 分

18. 设级数 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} b_n$ 均绝对收敛,证明级数 $\sum_{n=1}^{\infty} (a_n + b_n)^2$ 收敛.