

CORRELAÇÃO E REGRESSÃO

Inferência Estatística

Prof. Ms. André Santos

- ✓ Ms. Engenharia de Produção
- ✓ MBA Finanças & Banking
- ✓ Esp. Estatística Aplicada
- ✓ Esp. Marketing
- ✓ Matemático

Metodologia:

- ★Educação continuada;
- Conteúdo progressivo e cumulativo;
- Linguagem simples;
- Formalismo científico

Processos & Ferramentas

Aspectos técnicos

- *Teoria
- Demonstrações
- Exercícios
- Estudo de Casos

Objetivos

- Conhecimento científico
- Conhecimento prático
- Defender cientificamente modelos empíricos

Onde estamos

Área 1: Descritiva

Planejamento Estatístico

Estatística Descritiva

Probabilidade

Área 2: Inferencial

Intervalos de Confiança

Testes de hipóteses

Regressão

Testes x² e Distribuição F

Testes não-paramétricos

O que você deve aprender

- ✓ O que são variáveis dependentes e independentes
- √ Tipos de correlação
- ✓ Coeficiente de correlação
- ✓ Testar o coeficiente de correlação
- ✓ Distinguir entre correlação e causalidade

Definição

- 1. Uma correlação é uma relação entre duas variáveis.
- 2. Os dados podem ser representados por pares ordenados (x,y), onde
 - x é a variável independente (ou explanatória) e y é a variável dependente (ou resposta).

Tipos de Correlação

Exemplo

- ✓ Você é um(a) analista de comportamento do consumidor (marketing) e conduziu um estudo para determinar se há uma associação entre publicidade e vendas:
 - ✓ Quais são as possíveis variáveis (x,y)
 - ✓ Construa o diagrama
 - ✓ Identifique o tipo de correlação
 - ✓ Com base no resultado é possível realizar um modelo de regressão linear?

Amostra

Vendas = (225; 184; 220; 240; 180; 184; 186; 215)

Publicidade = (2,4; 1,6; 2,0; 2,6; 1,4; 1,6; 2,0; 2,2)

Coeficiente de correlação produto-momento de Person.

Karl Pearson (UK, 1857-1936)

Coeficiente de correlação

✓ O coeficiente de correlação é uma medida da força e direção de uma relação linear entre duas variáveis. O símbolo r representa o coeficiente de correlação amostral:

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{n\sum x^2 - (\sum x)^2}\sqrt{n\sum y^2 - (\sum y)^2}}$$

Teste de hipótese para um coeficiente de correlação p de uma população

✓ Determinar se o coeficiente de correlação é significante.

Teste unicaudal à direita

 $H_0: p \ge 0$ (não há correlação negativa significante) $H_a: p < 0$ (correlação negativa significante)

Teste unicaudal à esquerda

 $\begin{cases} H_0: p \leq 0 \text{ (não há correlação positiva significante)} \\ H_a: p > 0 \text{ (correlação positiva significante)} \end{cases}$

Se o Valor-p (p-value) for menor que o nível de significância (α) então a correlação entre as variáveis é significativa.

Teste bicaudal

 $\begin{cases} H_0: p = 0 \text{ (não há correlação significante)} \\ H_a: p \neq 0 \text{ (correlação significante)} \end{cases}$

Correlação e causalidade

- 1. Há uma relação direta de causa e efeito entre as variáveis?
- 2. Há uma relação de causa e efeito reversa entre as variáveis?
- 3. É possível que a relação entre as variáveis possa ser causada por uma terceira variável?
- 4. É possível que a relação entre duas variáveis seja uma coincidência?

Correlação e causalidade

- 1. Há uma relação direta de causa e efeito entre as variáveis?
- 2. Há uma relação de causa e efeito reversa entre as variáveis?
- 3. É possível que a relação entre as variáveis possa ser causada por uma terceira variável?
- 4. É possível que a relação entre duas variáveis seja uma coincidência?

X causa Y?

Correlação e causalidade

- 1. Há uma relação direta de causa e efeito entre as variáveis?
- 2. Há uma relação de causa e efeito reversa entre as variáveis?
- 3. É possível que a relação entre as variáveis possa ser causada por uma terceira variável?
- 4. É possível que a relação entre duas variáveis seja uma coincidência?

Correlação e causalidade

- 1. Há uma relação direta de causa e efeito entre as variáveis?
- 2. Há uma relação de causa e efeito reversa entre as variáveis?
- 3. É possível que a relação entre as variáveis possa ser causada por uma terceira variável?
- 4. É possível que a relação entre duas variáveis seja uma coincidência?

Z causa X e Y?

Correlação e causalidade

- 1. Há uma relação direta de causa e efeito entre as variáveis?
- 2. Há uma relação de causa e efeito reversa entre as variáveis?
- 3. É possível que a relação entre as variáveis possa ser causada por uma terceira variável?
- 4. É possível que a relação entre duas variáveis seja uma coincidência?

Regressão linear

Objetivos

Etapa 1

 Encontrar a equação da linha de regressão

Etapa 2

 Prever valores y usando uma equação de regressão

Regressão

Definição

• Uma linha de regressão, também denominada linha de melhor ajuste, é a linha para a qual a soma dos quadrados dos resíduos é um mínimo.

Para um dado valor x, $d = (valor \ y \ observado) - (valor \ y \ previsto)$

X	Observado (ponto)	Previsto (reta)	d (distância)	d²
Α	2	4	-2	4
В	6	5	1	1
С	8	6	2	4
D	4	7	-3	9
E	10	8	2	4

0 22

Regressão

Interpretação da equação de regressão

- Coeficientes:
 - β_0 : Intercepto
 - β_1 : Coeficiente angular

$$y = 104 + 50x$$

Regressão – Análise dos Resultados

$$sal = sb + \beta_{emp} * Emp$$

Estatísticas	Resultado
R ²	0,67
Erro	1.287,73
Coeficiente 1 (intersecção)	55.152,98
Coeficiente 2 (Emprego)	316,77

Estatísticas	Resultado
R ²	0,89
Erro	801,13
Coeficiente 1 (intersecção)	48.283,70
Coeficiente 2 (Emprego)	336,29
Coeficiente 3 (Educação)	442,22

Legenda:

β_{edu} = Coeficiente parcial da variável Edu	Emp = Anos na mesma empresa
β_{emp} = Coeficiente parcial da variável Emp	Exp = Experiência em outras empresas
β_{exp} = Coeficiente parcial da variável Exp	sal = salário anual
Edu = Anos de estudo	sb = salário base

Estatísticas	Resultado
R ²	0,94
Erro	659,48
Coeficiente 1 (intersecção)	49.764,44
Coeficiente 2 (Emprego)	364,41
Coeficiente 3 (Educação)	227,61
Coeficiente 4 (Experiência)	266,93

Regressão – Análise dos Resultados

Modelo Stepwise - Summary

Model	R	R²	Adjusted R ²	RMSE
1	0.000	0.000	0.000	2103.456
2 (emp)	0.824	0.679	0.625	1287.731
3 (emp+exp	0.947	0.898	0.857	795.857

Modelo 3

• Incremento de 21,9 p.p.

Modelo 2

 67% variação dos dados

RLM

Estatísticas	Resultado
R ²	0,94
Erro	659,48
Coeficiente 1 (intersecção)	49.764,44
Coeficiente 2 (Emprego)	364,41
Coeficiente 3 (Educação)	227,61
Coeficiente 4 (Experiência)	266,93

Considerações finais

Objetivos

- Importância da correlação
- Analisar os coeficientes da regressão

Próximos passos

- Testes de normalidade
- Intervalos de previsão

Próximos passos

Descritiva Área 1: [

Planejamento Estatístico

Estatística **Descritiva**

Probabilidade

Área 2: Inferencial

Intervalos de Confiança

Testes de hipóteses

Regressão

Testes x² e Distribuição F

Testes não-paramétricos

