High-dimensional Classification Using Features Annealed Independence Rules

Ganchao Wei

November 10, 2021

Overview

- Introduction
- 2 Impact of High Dimensionality
- 3 Feature Selection by two-sample t-test
- Features Annealed Independence Rules
- Numerical Studies

Ganchao Wei FAIR

Introduction

- Classical methods of classification break down when the dimensionality is extremely large
- The difficulty is intrinsically caused by the existence of many noise features that don't contribute to the reduction of mis-classification rate
- When the dimensionality is high, the aggregated estimation error can be very large.
- In this paper, they proposed feature annealed independent rules (FAIR), which can extract all important features, and overcome both the issues of interpretability and the noise accumulation.

Consider the p-dimensional classification problem between 2 classes C_k , k=1,2. Each class has n_k observations. Assume the observations follow the model:

$$\mathbf{Y}_{ki} = \mu_k + \epsilon_{ki}, \quad k = 1, 2, i = 1, \dots, n_k$$

, where μ_k is the mean vector of class C_k and ϵ_{ki} has the distribution $N(0, \Sigma_k)$. Assume

- The 2 classes have compatible sample sizes, i.e., $c_1 \le n_1/n_2 \le c_2$.
- 2 have the same covariance matrix Σ

Consider the independence classification rule: classify as C_1 if

$$\delta(\mathbf{x}) = (\mathbf{x} - \boldsymbol{\mu})' \mathbf{D}^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) > 0$$

, where $\mu=(\mu_1+\mu_2)/2$ and $\textbf{\textit{D}}=\textit{diag}(\Sigma)$. The parameters can be estimated from samples as:

- $\hat{\boldsymbol{\mu}}_k = \sum_{i=1}^{n_k} \mathbf{Y}_{ki}/n_k$
- $\hat{\mu} = (\hat{\mu}_1 + \hat{\mu}_2)/2$
- $\hat{\mathbf{D}} = diag\{(S_{1j}^2 + S_{2j}^2)/2, j = 1, \dots, p\}$

Then the plug-in discriminant function is $\hat{\delta}(\mathbf{x})$. Denote the parameter by $\boldsymbol{\theta} = (\mu_1, \mu_2, \Sigma)$. If a new observation \mathbf{X} from class C_1 , then the misclassification rate is

(2.2)
$$W(\hat{\delta}, \boldsymbol{\theta}) = P(\hat{\delta}(\mathbf{X}) \le 0 | \mathbf{Y}_{ki}, i = 1, ..., n_k, k = 1, 2) = 1 - \Phi(\Psi),$$

where

$$\Psi = \frac{(\boldsymbol{\mu}_1 - \widehat{\boldsymbol{\mu}})'\widehat{\mathbf{D}}^{-1}(\widehat{\boldsymbol{\mu}}_1 - \widehat{\boldsymbol{\mu}}_2)}{\sqrt{(\widehat{\boldsymbol{\mu}}_1 - \widehat{\boldsymbol{\mu}}_2)'\widehat{\mathbf{D}}^{-1}\Sigma\widehat{\mathbf{D}}^{-1}(\widehat{\boldsymbol{\mu}}_1 - \widehat{\boldsymbol{\mu}}_2)}},$$

and $\Phi(\cdot)$ is the standard Gaussian distribution function. The worst case classification error is

$$W(\hat{\delta}) = \max_{\boldsymbol{\theta} \in \Gamma} W(\hat{\delta}, \boldsymbol{\theta}),$$

Ganchao Wei FAIR

Let $\mathbf{R} = \mathbf{D}^{-1/2} \mathbf{\Sigma} \mathbf{D}^{-1/2}$ be the correlation matrix, $\lambda_{max}(\mathbf{R})$ be its largest eigenvalue, and $\alpha = \mu_1 - \mu_2$. Consider the parameter space:

$$\Gamma = \left\{ (\boldsymbol{\alpha}, \boldsymbol{\Sigma}) : \boldsymbol{\alpha}' \mathbf{D}^{-1} \boldsymbol{\alpha} \ge C_p, \lambda_{\max}(\mathbf{R}) \le b_0, \min_{1 \le j \le p, k = 1, 2} \sigma_{kj}^2 > 0 \right\}$$

- First term: imposes a lower bound on the strength of signals
- Second term: requires the maximum eigenvalue of R is upper bounded. (But there's no lower bound, the condition number can still diverge)
- Third term: ensures that there are no deterministic features that make classification trivial and D is always invertible.

Then consider the asymptotic behavior of $W(\hat{\delta}, \theta)$ and $W(\hat{\delta})$.

THEOREM 1. Suppose that $\log p = o(n)$, n = o(p) and $nC_p \to \infty$. Then:

(i) The classification error $W(\delta, \theta)$ with $\theta \in \Gamma$ is bounded from above as

$$W(\hat{\delta}, \boldsymbol{\theta}) \leq 1 - \Phi\bigg(\frac{[n_1 n_2/(pn)]^{1/2} \boldsymbol{\alpha}' \mathbf{D}^{-1} \boldsymbol{\alpha} (1 + o_P(1)) + \sqrt{p/(nn_1 n_2)} (n_1 - n_2)}{2\sqrt{\lambda_{\max}(\mathbf{R})} \{1 + n_1 n_2/(pn) \boldsymbol{\alpha}' \mathbf{D}^{-1} \boldsymbol{\alpha} (1 + o_P(1))\}^{1/2}}\bigg).$$

(ii) Suppose $p/(nC_p) \to 0$. For the worst case classification error $W(\delta)$, we have

$$W(\hat{\delta}) = 1 - \Phi(\frac{1}{2}[n_1 n_2/(pnb_0)]^{1/2} C_p \{1 + o_P(1)\}).$$

Specifically, when $\{\frac{n_1n_2}{pn}\}^{1/2}C_p \to C_0$ with C_0 a nonnegative constant, then

$$W(\hat{\delta}) \stackrel{P}{\longrightarrow} 1 - \Phi(C_0/(2\sqrt{b_0})).$$

In particular, if $C_0 = 0$, then $W(\hat{\delta}) \xrightarrow{P} \frac{1}{2}$.

The independence rule $\hat{\delta}$ would be no better than the random guessing due to noise accumulation, unless the signal levels are extremely high.

→□▶→□▶→□▶→□ → ○ ○ ○

Ganchao Wei FAIR November 10, 2021 7/25

Indeed, the discrimination based on linear projections to almost all directions performs nearly the same as random guessing (caused by noise accumulation in the estimation of μ_1 and μ_2)

THEOREM 2. Suppose that **a** is a p-dimensional uniformly distributed unit random vector on a (p-1)-dimensional sphere. Let $\lambda_1, \ldots, \lambda_p$ be the eigenvalues of the covariance matrix Σ . Suppose $\lim_p \frac{1}{p^2} \sum_{j=1}^p \lambda_j^2 < \infty$ and $\lim_p \frac{1}{p} \sum_{j=1}^p \lambda_j = \tau$ with τ a positive constant. Moreover, assume that $p^{-1}\alpha'\alpha \to 0$. Then if we project all the observations onto the vector **a** and use the classifier

(2.3)
$$\hat{\delta}_{\mathbf{a}}(\mathbf{x}) = (\mathbf{a}'\mathbf{x} - \mathbf{a}'\widehat{\boldsymbol{\mu}})(\mathbf{a}'\widehat{\boldsymbol{\mu}}_1 - \mathbf{a}'\widehat{\boldsymbol{\mu}}_2),$$

the misclassification rate of $\hat{\delta}_{\mathbf{a}}$ satisfies

$$P(\hat{\delta}_{\mathbf{a}}(\mathbf{X}) \leq 0 | \mathbf{Y}_{ki}, i = 1, \dots, n_k, k = 1, 2) \xrightarrow{P} \frac{1}{2},$$

where the probability is taken with respect to \mathbf{a} and $\mathbf{X} \in \mathbb{C}_1$.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 ○ ○

8 / 25

Ganchao Wei FAIR November 10, 2021

Feature Selection by two-sample t-test

The 2 sample t-statistic for feature j is defined as

$$T_j = \frac{\bar{Y}_{1j} - \bar{Y}_{2j}}{\sqrt{S_{1j}^2/n_1 + S_{2j}^2/n_2}}$$

Relax the normality assumption: just assume the noise vector ϵ_{ki} are *i.i.d.* within class with mean 0 and covariance Σ_k , and are independent between classes. Consider the following condition:

CONDITION 1.

- (a) Assume that the vector $\alpha = \mu_1 \mu_2$ is sparse and without loss of generality, only the first s entries are nonzero.
- (b) Suppose that ϵ_{kij} and $\epsilon_{kij}^2 1$ satisfy the Cramér's condition, that is, there exist constants ν_1 , ν_2 , M_1 and M_2 , such that $E|\epsilon_{kij}|^m \le m!M_1^{m-2}\nu_1/2$ and $E|\epsilon_{kij}^2 \sigma_{kj}^2|^m \le m!M_2^{m-2}\nu_2/2$ for all $m = 1, 2, \ldots$
- (c) Assume that the diagonal elements of both Σ_1 and Σ_2 are bounded away from 0.

Feature Selection by two-sample t-test

Under the condition on the previous slide, we can show that the t-test can pick up all important features w.p.1. $(c_1 \le n_1/n_2 \le c_2 \text{ and } n = n_1 + n_2)$

THEOREM 3. Let s be a sequence such that $\log(p-s) = o(n^{\gamma})$ and $\log s = o(n^{1/2-\gamma}\beta_n)$ for some $\beta_n \to \infty$ and $0 < \gamma < \frac{1}{3}$. Suppose that $\min_{1 \le j \le s} \frac{|\alpha_j|}{\sqrt{\sigma_{1j}^2 + \sigma_{2j}^2}} = n^{-\gamma}\beta_n$. Then under Condition 1, for $x \sim cn^{\gamma/2}$ with c some positive constant, we have

$$P\left(\min_{j \le s} |T_j| \ge x \text{ and } \max_{j > s} |T_j| < x\right) \to 1.$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

 Ganchao Wei
 FAIR
 November 10, 2021
 10 / 25

Just apply the independence classifier to the selected features \rightarrow Featured Annealed Independence Rule (FAIR).

In many application, $\alpha=\mu_1-\mu_2$ are sparse \to the noise accumulation can exceed the signal accumulation for faint features \to further single out the most important features to reduce misclassification rate, after using t-test.

If $\Sigma_1=\Sigma_2=I$, and is known, the independence classifier $\hat{\delta}$ becomes the nearest centroids classifier

$$\hat{\delta}_{\mathsf{NC}}(\pmb{x}) = (\pmb{x} - \hat{\pmb{\mu}})'(\hat{\pmb{\mu}}_1 - \hat{\pmb{\mu}}_2)$$

If only the first m dimensions are used in the classification, the corresponding features annealed independence classifier becomes

$$\hat{\delta}_{NC}^{m}(\mathbf{x}) = (\mathbf{x}^{m} - \hat{\boldsymbol{\mu}}^{m})'(\hat{\boldsymbol{\mu}}_{1}^{m} - \hat{\boldsymbol{\mu}}_{2}^{m})$$

Ganchao Wei FAIR November 10, 2021 11 / 25

The classification error for the truncated classifier is:

THEOREM 4. Consider the truncated classifier $\hat{\delta}_{NC}^{m_n}$ for a given sequence m_n . Suppose that $\frac{n}{\sqrt{m_n}} \sum_{j=1}^{m_n} \alpha_j^2 \to \infty$ as $m_n \to \infty$. Then the classification error of $\hat{\delta}_{NC}^{m_n}$ is

$$W(\hat{\delta}_{NC}^{m_n}, \boldsymbol{\theta}) = 1 - \Phi\left(\frac{(1 + o_P(1)) \sum_{j=1}^{m_n} \alpha_j^2 + m_n(n_1 - n_2)/(n_1 n_2)}{2\{(1 + o_P(1)) \sum_{j=1}^{m_n} \alpha_j^2 + n m_n/(n_1 n_2)\}^{1/2}}\right),$$

where $n = n_1 + n_2$ as defined in Section 2.

This theorem tells us that the ideal choice on the number of features is

$$m_0 = \underset{1 \le m \le p}{\arg \max} \frac{\left[\sum_{j=1}^m \alpha_j^2 + m(n_1 - n_2)/(n_1 n_2)\right]^2}{n m/(n_1 n_2) + \sum_{j=1}^m \alpha_j^2}$$

Ganchao Wei FAIR November 10, 2021 12 / 25

When $n_1=n_2$, the expression reduces to $m_0=\operatorname{argmax}_{1\leq m\leq p}\frac{(m^{-1/2}\sum_{j=1}^m\alpha_j^2)^2}{2/n+\sum_{j=1}^m\alpha_j^2/m}$. The term $m^{-1/2}\sum_{j=1}^m\alpha_j^2$ reflects the trade-off between the signal and noise as dimensionality m increases.

An ideal classifier $\hat{\delta}_{NC}$ is to select a subset $A=\{j: |\alpha_j|>a\}$ and use this subset to construct independence classifier. The oracle classifier can be written as

$$\hat{\delta}_{\text{orc}}(\mathbf{x}) = \sum_{j=1}^{p} \hat{\alpha}_j (x_j - \hat{\mu}_j) 1_{\{|\alpha_j| > a\}}.$$

The misclassification rate is approximately

(4.1)
$$1 - \Phi\left(\frac{\sum_{j \in \mathcal{A}} \alpha_j^2 + m(n_1 - n_2)/(n_1 n_2)}{2\{nm/(n_1 n_2) + \sum_{j \in \mathcal{A}} \alpha_j^2\}^{1/2}}\right)$$

when $\frac{n}{\sqrt{m}}\sum_{j\in A}\alpha_j^2\to\infty$ and $m\to\infty$.

In practice, we have no such an oracle, and selecting the subset A is difficult. Then just use the estimator-plug-in version: FAIR based on the hard thresholding:

$$\hat{\delta}_{\text{FAIR}}^{b}(\mathbf{x}) = \sum_{j=1}^{p} \hat{\alpha}_{j} (x_{j} - \hat{\mu}_{j}) 1_{\{|\hat{\alpha}_{j}| > b\}}.$$

We study the classification error of FAIR and the impact of the threshold b on the classification result in the following theorem.

THEOREM 5. Suppose that $\max_{j \in \mathcal{A}^c} |\alpha_j| < b_n$ and $\log(p-m)/[n(b_n-max_{j \in \mathcal{A}^c} |\alpha_j|)^2] \to 0$ with $m = |\mathcal{A}|$. Moreover, assume that $\frac{n}{\sqrt{m}} \sum_{j \in \mathcal{A}} \alpha_j^2 \to \infty$ and $\sum_{j \in \mathcal{A}} |\alpha_j|/[\sqrt{n} \sum_{j \in \mathcal{A}} \alpha_j^2] \to 0$. Then

$$W(\hat{\delta}_{\mathrm{FAIR}}^{b_n}, \pmb{\theta}) \leq 1 - \Phi\bigg(\frac{(1+o_P(1))\sum_{j \in \mathcal{A}}\alpha_j^2 + nm(n_1n_2)^{-1} - mb_n^2}{2\{(1+o_P(1))\sum_{j \in \mathcal{A}}\alpha_j^2 + nm(n_1n_2)^{-1}\}^{1/2}}\bigg).$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Comment: The upper bound of $W(\hat{\delta}_{FAIR}^{b_n}, \theta)$ is greater than $W(\hat{\delta}_{NC}^{m_n}, \theta)$ (Theorem 4). This is expected as estimating the set A increases the classification error.

When the common covariance matrix is different from identity, FAIR takes a slightly different form:

$$\hat{\delta}_{\text{FAIR}}(\mathbf{x}) = \sum_{j=1}^{p} \hat{\alpha}_{j} (x_{j} - \hat{\mu}_{j}) / \hat{\sigma}_{j}^{2} 1_{\{\sqrt{n/(n_{1}n_{2})}|T_{j}| > b\}}$$

, where T_j is the two-sample t-statistic.

15/25

Ganchao Wei FAIR November 10, 2021

The number of features can be selected by minimizing the upper bound of the classification error. The optimal m is:

$$m_1 = \argmax_{1 \leq m \leq p} \frac{1}{\lambda_{\max}^m} \frac{[\sum_{j=1}^m \alpha_j^2/\sigma_j^2 + m(1/n_2 - 1/n_1)]^2}{nm/(n_1n_2) + \sum_{j=1}^m \alpha_j^2/\sigma_j^2},$$

where λ_{\max}^m is the largest eigenvalue of the correlation matrix \mathbf{R}^m of the truncated observations. It can be estimated from the samples:

(4.3)
$$\hat{m}_{1} = \underset{1 \leq m \leq p}{\arg \max} \frac{1}{\hat{\lambda}_{\max}^{m}} \frac{\left[\sum_{j=1}^{m} \hat{\alpha}_{j}^{2} / \hat{\sigma}_{j}^{2} + m(1/n_{2} - 1/n_{1})\right]^{2}}{nm/(n_{1}n_{2}) + \sum_{j=1}^{m} \hat{\alpha}_{j}^{2} / \hat{\sigma}_{j}^{2}}$$

$$= \underset{1 \leq m \leq p}{\arg \max} \frac{1}{\hat{\lambda}_{\max}^{m}} \frac{n\left[\sum_{j=1}^{m} T_{j}^{2} + m(n_{1} - n_{2}) / n\right]^{2}}{mn_{1}n_{2} + n_{1}n_{2} \sum_{j=1}^{m} T_{j}^{2}}.$$

16/25

Ganchao Wei FAIR November 10, 2021

The big picture of the simulation:

- The mean vector μ_1 is $(1-c)\delta_0 + \frac{c}{2}\exp(-2|x|)$, while $\mu_2 = 0$.
- $n_1 = 30$ and $n_2 = 30$ for training. Separate 200 samples are generated from each class as test dataset.
- Set p = 4500 and c = 0.02: around 90 signal features on an average, many of which are weak signals.

FIG. 1. True mean difference vector α . x-axis represents the dimensionality, and y-axis shows the values of corresponding entries of α .

Number of features vs. misclassification rates (averages $+\ 2$ standard errors) over 100 simulations.

- ullet row 1: ordered by t-statistic (equivalently, $\hat{oldsymbol{lpha}}$, estimated mean differences)
- ullet row 2: ordered by true lpha

Comments:

- Classification results of FAIR are close to those of the oracle -assisted independence classifier.
- m increase increases → misclassification rate increases
- min = 0.0128 in upper, min = 0.0020 in lower.
- when all features are included (m = 4500), MR = 0.2522.
- When we decrease the signal levels/ increase the dimensionality, MR tend to 0.5.
- Similar results based on projected samples.

What about the proposed method for selecting features in FAIR? Compare their method (thick) to nearest shrunken centroids method (NSC, thin). **Upper**: number of chosen features over 100 simulations; **Lower**: Classification error.

FAIR: mean number of feature (29.71), mean MR (0.0154, sd = 0.0085) NSC: mean number of feature (28.43), mean MR (0.0216, sd = 0.0179)

Application 1: Leukemia data

7129 genes (p), 72 samples (47 in ALL and 25 in AML). 27 in ALL and 11 in AML are set to be training.

TABLE 1 Classification errors of Leukemia dataset

Method	Training error	Test error	No. of selected genes	
Nearest shrunken centroids	1/38	3/34	21	
FAIR	1/38	1/34	11	

Application 1: Leukemia data

Further set different proportion of training (100 γ %). idff = FARI - NSC; IR = independence rule (all features)

Application 1: Leukemia data

number of features: NSC is not good at feature selection.

Application 2: Lung Cancer data

TABLE 2
Classification errors of Lung cancer data

Method	Training error	Test error	No. of selected genes
Nearest shrunken centroids	0/32	11/149	26
FAIR	0/32	7/149	31

Application 3: Prostate Cancer data

TABLE 3
Classification errors of Prostate cancer dataset

Method	Training error	Test error	No. of selected genes
Nearest shrunken centroids FAIR	8/102 10/102	9/34 9/34	6 2
0.4	0.5 0.4 0.4 0.3 0.3 0.3 0.3 0.2 0.1 0.	0.5 0.4 0.4 0.2 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5	+ + + + + + + + + + + + + + + + + + + +
FAIR NSC diff. IR γ =0.4	FAIR NSC α γ=0.		FAIR NSC diff. IR γ =0.6