МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э. БАУМАНА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Научно-исследовательская работа «Классификация известных методов устранения помех на изображениях»

Студент: Леонов Владислав Вячеславович

Группа: ИУ7-76Б

Руководитель: Филиппов Михаил Владимирович

Цель и задачи

Цель – провести классификацию существующих алгоритмов фильтрации помех на изображениях

Задачи:

- изучить общие понятия о шумовых помехах на изображениях;
- рассмотреть различные виды шумов;
- изучить существующие методы фильтрации шумов;
- сформулировать критерии для сравнения рассмотренных алгоритмов; классифицировать алгоритмы устранения помех.

Помехи и причины их появления

Помехами на изображениях называют случайное изменение яркости или цвета произвольного пикселя

Причины появления шумов:

- тепловой шум;
- квантовый шум;
- шум считывания.

Виды шумов

Шум Гаусса появляется на изображениях из-за плохого освещения или высокой температуры, выглядит как измененные значения цвета пикселя.

Виды шумов

Шум «Соль и Перец» проявляется в виде беспорядочно разбросанных черных и белых пикселей на изображении.

Виды шумов

Спекл-шум характеризуется наличием небольших, беспорядочно распределенных светлых или темных пятен на изображении, часто называемых «крапинками».

Классификация методов фильтрации

Линейные фильтры изображений — это методы обработки изображений, которые применяют линейное преобразование к значениям пикселей в изображении.

Нелинейные фильтры изображений — это методы, которые могут включать применение различных весов к пикселям на основе интенсивности или цвета пикселей, или применение различных преобразований к различным областям изображения

Метод среднего арифметического

Это простой метод фильтрации, который работает путем замены значения каждого пикселя изображения средним значением окружающих его пикселей, взвешенных в соответствии с ядром.

$$I_{filtered}(x,y) = \frac{1}{K} \sum_{i=-\frac{N}{2}}^{\frac{N}{2}} \sum_{j=-\frac{N}{2}}^{\frac{N}{2}} K(i,j) \cdot I(x+i,y+j)$$

Метод фильтрации по Гауссу

Это линейный фильтр, который работает путем свертки изображения с ядром, которое представляет собой небольшую матрицу весов. Веса в ядре определяются функцией Гаусса.

$$G(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} \qquad I'_{i,j} = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} I_{i+m,j+n} G_{m,n}$$

Метод медианной фильтрации

Это метод фильтрации, который работает путем замены значения каждого пикселя изображения медианным значением окружающих его пикселей в соответствии с ядром.

$$I_{filtered}(x,y) = m \begin{pmatrix} I(x-1,y-1) & I(x,y-1) & I(x+1,y-1) \\ I(x-1,y) & I(x,y) & I(x+1,y) \\ I(x-1,y+1) & I(x,y+1) & I(x+1,y+1) \end{pmatrix}$$

Метод билатеральной фильтрации

Это нелинейный фильтр, который работает путем замены значения каждого пикселя средневзвешенным значением значений близлежащих пикселей, где вес пикселя определяется комбинацией его интенсивности и пространственного расстояния от центрального пикселя.

$$I_{\text{filtered}}(x) = \frac{1}{W_p} \sum_{x_i \in \Omega} I(x_i) f_r(||I(x_i) - I(x)||) g_s(||x_i - x||)$$

$$W_p = \sum_{x \in \Omega} f_r(||I(x_i) - I(x)||) g_s(||x_i - x||)$$

Сравнение методов фильтрации

Фильтр	Изображение 1		Изображение 2	
	PSNR	SSIM	PSNR	SSIM
Среднего	26.75	0.564	26.36	0.565
Гаусса	27.51	0.599	27.41	0.629
Медианный	28.15	0.643	27.70	0.646
Билатеральный	29.55	0.782	28.66	0.729

Фильтр	Изображение 3		Изображение 4	
	PSNR	SSIM	PSNR	SSIM
Среднего	25.73	0.578	23.22	0.542
Гаусса	26.84	0.637	25.32	0.641
Медианный	26.58	0.642	23.96	0.604
Билатеральный	27.47	0.725	24.51	0.686

Заключение

Поставленная цель была достигнута.

В результате сравнения методов устранения шумов на изображениях сделаны выводы:

- среди линейных методов фильтр Гаусса показывает более высокую эффективность, чем метод среднего арифметического;
- среди нелинейных методов билатеральная фильтрация обеспечивает наивысшее качество восстановленного изображения;
- фильтр Гаусса и медианный фильтр обладают схожей эффективностью.