

Presentazione

1.1 Descrizione della traccia

Si richiede la realizzazione di una BotNET¹ per il recupero di quante più informazioni possibili sul dispositivo in cui una delle componenti della BotNET (a scelta dello studente) venga eseguito.

1.1.1 Tecnologie e linguaggi richiesti

Si richiede un applicativo scritto in Python² che utilizzi come strumento di comunicazione le socket³

1.2 Implementazione del sistema

Il progetto si concretizza in 2 componenti ben definite:

- ▶ Un Bot Master per la gestione dei dati ricevuti dal bot slave al quale inpartisce comandi sfruttando una connessione tramite socket asincrona;
- ▶ Il Bot slave, che ha il compito di ricavare quante più informazioni possibili sullo stato della macchina sul quale viene eseguito 4.

¹Per BotNET si intende una rete composta da dispositivi infettati da malware, detti bot o zombie, che agiscono tutti sotto lo stesso controllo di un unico dispositivo - detto botmaster - aumentando esponenzialmente le capacità dell'attaccante.

²Python è un linguaggio di programmazione di alto livello, orientato a oggetti, adatto, tra gli altri usi, a sviluppare applicazioni distribuite, scripting, computazione numerica e system testing.

³Astrazione software progettata per utilizzare delle API standard e condivise per la trasmissione e la ricezione di dati attraverso una rete oppure come meccanismo di IPC..

⁴Della quale non abbiamo nessun controllo diretto.

1.3 Guida al Bot Master

1.3.1 Primo avvio

Durante la fase di avvio il programma effettua le seguenti operazioni:

- ► Controlla che host e porta⁵ siano disponibili per la successiva creazione della socket;
- ► Esegue una connessione al dbms utilizzato per il salvataggio delle informazioni e inizializza la tabella utilizzata per lo scopo (se non precedentemente presente);
- ▶ Inizializza la socket in attesa di nuove connessioni dal client a cui impartirà comandi da eseguire;

Nel momento in cui viene effettuata una nuova connessione, il server invia la richiesta effettuata dall'utente al client e in base a questa automaticamente:

- ► Salva l'informazione sul database (che viene mostrata all'utente attraverso lo standard output);
- ▶ Nel caso in cui si trattasse di un file (identificato da un campo Header a inizio richiesta), lo salva automaticamente, per poter essere fruibile successivamente.

1.3.2 Memorizzazione dei dati

Il sistema permette inoltre utilizza un DBMS⁶ per il salvataggio dei dati ricavati dal bot slave durante la sua esecuzione.

1.3.3 Modalità di esecuzione

È possibile invocare il bot master con una serie di flag aggiuntive, che permettono di:

- ▶ Definire un host e porta su cui esporre il servizio (rispettivamente --host e --port)
 - Ricordiamo che di default il bot master utilizzerà rispettivamente 127.0.0.1 e la porta 9090;
- ► Definire una cartella custom che verrà utilizzata per il salvataggio dei dati;⁷
- ► Gestire una connessione multi-client (invocando il bot master con --supervisor=dispatcher)
 - ♦ In questo modo il bot master fa da tramite per la connessione 1:1 tra clientX e master

1.4 Guida al Bot Slave

1.4.1 Primo avvio

Durante la fase di avvio il programma effettua le seguenti operazioni:

⁵Ricordiamo che in fase di lancio del programma è possibile definirne altri e sostituirli a quelli di default.

⁶Fa affidamento al DBMS (Database Management System) PostgreSQL.

⁷Dati che verrano recuperati dalla macchina in cui è eseguito il client (su specifica richiesta).

- ► Controlla che host e porta⁸ siano disponibili per la successiva creazione della socket;
- ► Esegue un test sull'effettivo stato di attività del server
 - In caso di esito negativo attende e ritenta;
 - ♦ In caso di esito positivo invece esegue le istruzioni impartite dal Master.

In base alle flag specificate è possibile:

- ▶ Definire un nuovo host e porta a cui connettersi (rispettivamente --host e --port);
- ▶ Ricercare automaticamente il bot master (flag --finder);
- ▶ Richiedere di essere accoppiato ad un bot master automaticamente (flag -r).

1.5 Analisi della struttura del progetto

La struttura del progetto è così strutturata:

- ▶ Un file main.py, utilizzato per eseguire il tutto;
- ▶ Una cartella utilities, contentente:
 - ◆ async_socket_server.py → Funzioni per la qestione della connessione socket;
 - ♦ bot_master_utility.py → Funzioni di supporto al server;
 - ♦ database_handler.py → Funzioni di supporto per la gestione del DBMS.

- ▶ Un file main.py, utilizzato per eseguire il tutto;
- ▶ Una cartella utilities, contentente:
 - ♦ async_socket_client.py → Funzioni per la qestione della connessione socket;
 - ♦ bot_master_utility.py → Funzioni di supporto al client;

2 Codice sorgente sviluppato

Il codice sorgente prodotto durante lo sviluppo di $StealBot^{@}$ è disponibile sulla piattaforma GitHub, che ne ha permesso anche il versionamento.

Di seguito riportiamo un link per il download⁹

È possibile leggere una attenta analisi del codice al seguente link

TODO: Aggiungere l'url del sito prima di consegnare

⁸Così come per il Master anche in questo caso è possibile definirne altri e sostituirli a quelli di default.

⁹Potrebbe non essere accessibile a tutti (il repository è per privacy privato).

3 Risultati ottenuti

Durante le prove di testing 10, abbiamo recuperato le seguenti informazioni: 11

3.1 Informazioni sulla macchina (OS: Linux-5.15.0-52-generic-x86_64-with-glibc2.35)

CPU

Brand	CPU Count	CPU Count logical	Frequenza Minima	Frequenza Massima
Intel(R) Core(TM) i7-8569U	4	4	2.80GHz	4.70GHz

RAM

Memoria utilizzata	Memoria Totale
790.86MB	3.83GB

DISCO

Device	Mountpoint	Tipo di partizione
/dev/sda2	/boot/efi	vfat
/dev/sda3	/	ext4

STATO DEL DISCO

Letture	Scritture
691.32MB	31.47MB

¹⁰Effettuate il 16 novembre e il 13 dicembre.

¹¹Le due macchine in questione sono molto simili tra loro (ricordiamo che sono entrambe macchine virtuali eseguite su Hypervisor VirtualBox), tanto da supporre che siano una il clone dell'altra.

			10
NIET	۲W۲	ואמי	NO Z
INF	IVVI	JKKI	IVII

Interfaccia	IP	NetMask	Broadcast
loop	127.0.0.1	255.0.0.0	Nessuna
loop	::1	ffff:ffff:ffff:ffff:ffff:ffff:ffff	Nessuna
loop	00:00:00:00:00	Nessuna	Nessuna
enp0s3	10.0.2.15	255.255.255.0	10.0.2.255
enp0s3	fe80::9406:ff6d:57df:81b6%enp0s3	ffff:ffff:ffff:	Nessuna
enp0s3	08:00:27:63:f0:81	Nessuna	ff:ff:ff:ff:ff
enp0s8	192.168.1.188	255.255.255.0	192.168.1.255
enp0s8	192.168.1.224	255.255.255.0	192.168.1.255
enp0s8	fdac:c077:5c58:0:7913:ba74:dcde:5157	ffff:ffff:ffff:	Nessuna
enp0s8	fdac:c077:5c58:0:3595:1b00:316b:ad04	ffff:ffff:ffff:	Nessuna
enp0s8	fe80::b224:2d33:82d5:b5de%enp0s8	ffff:ffff:ffff:	Nessuna
enp0s8	fdac:c077:5c58:0:7913:ba74:dcde:5157	ffff:ffff:ffff:	Nessuna
enp0s8	fdac:c077:5c58:0:3595:1b00:316b:ad04	ffff:ffff:ffff:	Nessuna
enp0s8	fe80::b224:2d33:82d5:b5de%enp0s8	ffff:ffff:ffff:	Nessuna
enp0s8	08:00:27:e5:6a:b8	Nessuna	ff:ff:ff:ff:ff

UTENTI ATTIVI

Nome utente	Attivo da
alessio	2022-11-16 09:04:16

3.2 File recuperati durante l'esecuzione del bot slave

- ▶ .bash_history → Contiene tutta la cronologia dei comandi dati dall'utente;
- ▶ .bash_logout → Contiene le operazioni da eseguire durante il logout dell'utente;
- bashrc → File di configurazione della shell bash;
- ▶ bookmarks → Contiene i segnalibri definiti dall'utente
- ▶ meta-release-lts e ubuntu. 22.04 → Contengono le informazioni aggiuntive della macchina su cui gira il bot slave;

¹²Onde evitare inutili ripetizioni abbiamo preferito compattare le informazioni riguardanti il networking di entrambe le macchine virtuali. Con l'IP **192.168.1.188** stiamo indicando la macchina della quale avevamo già informazioni; con **192.168.1.224** quella sulla quale non erano stati ancora effettuati test di alcun tipo.

- ▶ .pam_environment → Contiene variabili per la lingua;
- ▶ .passwords → File contentente eCambiata
- ightharpoonup . profile ightharpoonup Impostazioni aggiuntive per la shell bash
- ▶ .python_history → Contiene la cronologia dei comandi effettuati dall'interprete interattivo python;
- ▶ user-dirs.dirs → Contiene le informazioni sulle variabili delle directory della home dell'utente.

3.3 Report dei dati recuperati

Di seguito vengono riportati alcuni estratti dei dati recuperati dall'applicativo wireshark¹³, ottenuti durante la prima prova:

	No 1 (Time 0.00000000)	
Source	WistronN_73:f9:a6	
Destination	Broadcast	
Protocol	ARP	
Lenght	42	
Info	Who has 192.168.11.1? Tell 192.168.1.24	
	No 12 (Time 2 176000000)	
	No 13 (Time <i>3.176898029</i>)	
Source	192.168.1.72	
Destination	192.168.1.188	
Protocol	TCP	
Lenght	120	
Info	54654 →9000 [PSH, ACK] Seq=1 Ack=8 Win=502 TSVal=1423094325 TSecr=3808546355	
Data (54 bytes)	<os-type>Linux-5.15.0-52-generic-x86_64-with-glibc2.35</os-type>	

 $^{^{13}}$ Nel quale abbiamo impostato il filtro ip.addr eq 192.168.1.72 and (tcp.port eq 9000 || tcp.port eq 9001) (ottenendo in questo modo solo i pacchetti di nostro interesse).

	No 179 (Time <i>14.033129003</i>)	
Source	192.168.1.72	
Destination	192.168.1.224	
Protocol	TCP	
Lenght	157	
Info	54658 →9001 [PSH, ACK] Seq=268 Ack=39 Win=502 TSVal=1423105176 TSecr=3808557231	
Data (54 bytes)	<partition-disk-info><partition-device>/dev/sda3<partition- MountPoint>/<partition-fstype>ext4</partition-fstype></partition- </partition-device></partition-disk-info>	

4 Ringraziamenti

Ringraziamo il professore Alessio Botta per lo splendid	o corso, che ci ha permesso	di comprendere a pieno	tecnologie di cui il
mondo fa largo uso.			