Ботаем экзамен по алгему

Декартово произведение множеств

Прямое, или декартово произведение двух множеств — множество, элементами которого являются все возможные упорядоченные пары элементов исходных множеств

```
\{(x;y)|x\in A,y\in B\}
```

Понятие отношения на множестве

Пусть M_1, M_2, \ldots, M_n — некоторые множества. Отношением на совокупности этих множеств называется любое подмножество декартова произведения этих множеств. Если $M_1 = M_2 = \ldots = M_n = M$, то говорят об отношении на множестве M.

Свойства отношений

- Рефлексивность: $\forall a \in X(aRa)$
- Симметричность: $\forall a, b \in X(aRb \Rightarrow bRa)$
- Антисимметричность: $\forall a, b \in X(aRb \land bRa \Rightarrow a = b)$
- Транзитивность: $\forall a, b, c \in X(aRb \land bRc => aRc)$

Отношение эквивалентности

Отношение на множестве М называется отношением эквивалентности, если оно рефлексивно, симметрично и транзитивно.

Вот несколько примеров отношений эквивалентности:

- на любом множестве: отношение равенства;
- на множестве треугольников: отношение подобия;
- на множестве действительных чисел: иметь одинаковую целую часть;
- на множестве вершин графа: быть связанными;
- на множестве людей: быть одного года рождения.

Теорема о разбиении

Разбиением множества М называется его представление в виде объединения непустых непересекающихся подмножеств.

Теорема о разбиении множества Каждое отношение эквивалентности задаёт разбиение множества, на котором оно определено. Любое разбиение множества задается некоторым отношением эквивалентности. **Доказательство**

Пусть R — отношение эквивалентности на множестве M. Для каждого элемента а из M построим множество $M_a = \{x | x \in M \text{ и } xRa\}$. Среди этих множеств могут оказаться одинаковые. Соберём совокупность всех не совпадающих между собой множеств M_a и покажем, что их объединение образует разбиение множества M.

Во-первых, заметим, что каждое множество не пусто, поскольку $a \in M_a$ в силу рефлексивности отношения R.

Во-вторых, объединение всех выбранных нами множеств совпадает с М, поскольку каждый элемент из М попадает в подмножество, отмеченное им самим в роли индекса.

В третьих, покажем, что два различных множества M_a и M_b не пересекаются. Допустим противное: пусть $c \in M_a \cap M_b$. По построению множеств M_a и M_b это означает, что cRa и cRb. Ввиду симметричности отношения R имеем aRc. Выберем теперь произвольный x из M_a . Поскольку xRa и aRc, транзитивность отношения показывает, что xRc. Но при этом cRb. Применяя ещё раз свойство транзитивности, получаем $xRb \Rightarrow x \in M_b$. Так как x произвольный, $M_a \subseteq M_b$. В то же время элементы а и b абсолютно равноправны, поэтому $M_b \subseteq M_a$. Значит, $M_a = M_b$, что противоречит тому, что M_a и M_b различны.

Пусть теперь имеется некоторое разбиение множества М: $M = \bigcup \{M_i | M_i \neq \emptyset \text{ и } M_i \cap M_j = \emptyset \text{ при } i \neq j\}$ Определим на М следующее отношение R: aRb, если найдётся множество M_i , для которого $a \in M_i$ и $b \in M_i$.

Покажем, что R – отношение эквивалентности.

Во-первых, R рефлексивно. По определению объединения множеств каждый элемент а из M попадает хотя бы в одно подмножество M_i . Это означает, что aRa.

Во-вторых, R симметрично. Ясно, что если для пары (a,b) нашлось множество M_i , для которого $a \in M_i$ и $b \in M_i$, то это же множество годится для пары (b,a).

В-третьих, R транзитивно. Пусть a,b и c — такие элементы, что aRb и bRc. Значит, найдётся такое множество M_i , для которого $a \in M_i$ и $b \in M_i$, и такое множество M_k , для которого $b \in M_k$ и $c \in M_k$. Мы видим, что b оказался общим элементом множеств M_i и M_k , а по определению разбиения разные его подмножества общих элементов не имеют. Следовательно, $M_i = M_k$, а тогда aRc.

Ясно также, что отношение R задаёт именно то разбиение, на основании которого оно было построено.

Отношение порядка

Отношение на множестве M называется **отношением порядка**, если оно **рефлексивно, транзитивно и антисимметрично**. Вот несколько примеров отношений порядка:

- на множестве прямоугольников: содержаться;
- на множестве действительных чисел: меньше или равно;
- на множестве сотрудников одного учреждения: быть начальником.

Максимальные и минимальные элементы

Элемент M множества A, упорядоченного отношением \unlhd называется максимальным, если $\forall a \in A (a \ge M \Rightarrow a = M)$

Элемент m множества A, упорядоченного отношением \unlhd называется минимальным, если $\forall a \in A (a \leq m \Rightarrow a = m)$

Наибольшие и наименьшие элементы

Элемент $a\in A$ называется наименьшим, если $\forall x\in A(a\unlhd x)$ Элемент $a\in A$ называется наибольшим, если $\forall x\in A(a\unrhd x)$

Чем отличается минимальный элемент от наименьшего?

???????????????????????????????

Отображения множеств

Отображением множества M_1 в множество M_2 называют бинарное отношение, определённое на этих множествах, если первый компонент пары $(a,b)\in M_1\times M_2$ рассматривается как *аргумент*, а второй – как значение для этого аргумента.

Свойства отображений

Отображение f множества M_1 в множество M_2 называется всюду определённым, если $D(f)=M_1$.

Отображение f множества M_1 в множество M_2 называется **сюръективным**, если $E(f)=M_2$.

Отображение f множества M_1 в множество M_2 называется **однозначным**, если каждый элемент а из D(f) имеет ровно одно значения в множестве M_2 :

$$\forall a \in M_1 \forall b \in M_2 \forall c \in M_2 (b = f(a) \land c = f(a) \Rightarrow b = c) \tag{1}$$

Отображение f множества M_1 в множество M_2 называется **инъективным**, если каждый элемент b из E(f) является значением только одного элемента из M_1 :

$$\forall b \in M_2 \forall a \in M_1 \forall c \in M_1 (b = f(a) \land b = f(x) \Rightarrow a = c) \tag{2}$$

Отображение f множества M_1 в множество M_2 называется **биективным**, если оно **инъективно** и **сюръективно**.

Отображение f множества M_1 в множество M_2 называется **взаимнооднозначным**, если оно **инъективно**, однозначно сюръективно.

Обратное отображение

Пусть $f:X\to Y$ - биективное отображение. Тогда каждому $y\in F$ соответствует единичный x, который обозначается как $f^{-1}(y)$ b такой, что f(x)=y. Таким образом определено отображение $f^{-1}:F\to E$, которое называется **обратным** отображению f.

Композиция отображений и ее свойства

Композицией отображений $f: X \to Y$ и $g: Y \to Z$ называется отображение $f \circ g: X \to Z$, обозначающее f(g(x)).

Свойства:

- Композиция двух отображений определена, тогда и только тогда, когда область значений первого отображения совпадает с областью отображения второго.
- Отображение тогда и только тогда имеет обратное, когда оно взаимно однозначно (биективно).
- Из биективности отображения вытекает биективность обратного отображения

Свойства композиции отображений

- Ассоциативность: $f \circ (g \circ h) = (f \circ g) \circ h$
- ullet Некоммутативность: fg
 eq gf

Ещё важные свойства

- Композиция всюду определенных (однозначных, сюръективных, инъективных) отображения является вюду определенным отображением.
- Отображение, обратное всюду определенному отображению, сюръективно;
- Отображение, обратное однозначному отображению, инъективно;
- Отображение, обратное сюръективному отображению, всюду определенное;
- Отображение, обратное инъективному отображению, однозначно.
- Композиция взаимно однозначных отображений является взаимно однозначным отображением.
- Отображение, обратное взаимно однозначному отображению, взаимно однозначно.

Операции на множестве

Операцией на множестве M называется всюду определённая функция из M^n в M. Число n называют арностью, или местностью, данной операции. Вот несколько примеров операций:

- на множестве натуральных чисел: сложение двух чисел; это бинарная (двуместная) операция;
- на множестве целых чисел: нахождение числа, противоположного данному; это унарная (одноместная) операция;
- на множестве рациональных чисел: нахождение среднего арифметического n чисел; это n-арная (n-местная) операция;
- на множестве подмножеств данного множества: операция пресечения подмножеств; это бинарная операция.

Свойства операций

- Коммутативность операции \circ : $\forall x,y \in M \quad (x \circ y = y \circ x)$
- Ассоциативность операции \circ : $\forall x,y,z\in M$ $(x\circ y)\circ z=x\circ (y\circ z)$
- ullet Элемент e из M называется нейтральным относительн операции $\circ\colon \forall x\in M\quad x\circ e=e\circ x=x$
- Элемент y из M называется симметричным относительн операции \circ : $x \circ y = y \circ x = e$

Понятие полугруппы, группы

Полугруппа - множество, на котором определена ассоциативная операция.

Примеры полугрупп:

- множество натуральных чисел как относительно операции сложения, так и операции умножения;
- множество отрицательных целых чисел относительно сложения;
- булеан множества М относительно операций объединения и пересечения;
- множество всюду определённых функций, отображающих множество М в себя, относительно операции композиции

Группа - множество, на котором определена ассоциативная операция, имеется нейтральный элемент и каждый элемент обладает симметричным (множество, на котором определена ассоциативная операция) Примеры групп:

- множество целых чисел относительно операции сложения;
- множество положительных рациональных чисел относительно операции умножения;
- множество ненулевых действительных чисел относительно операции умножения;
- множество взаимно-однозначных отображений произвольного множества М на себя.

Симметрическая группа

Симметрической группой (S_n) называется множество *подстановок* на множестве (подстановка на множестве M_n - взаимнооднозначное отображение множества M_n на себя)

Разрешимость уравнений в группе

Теорема. В группе G уравнение $x \circ x = x$ имеет единственное решение x = e, где e – нейтральный элемент группы.

Доказательство. Так как $e\circ e=e$, e - решение. Пусть x_0 - какое-то решение системы. Тогда $x_0=x_0\circ e=x_0\circ (x_0\circ x_0^{-1})=(x_0\circ x_0)\circ x_0^{-1}=x_0\circ x_0^{-1}=e$.

Теорема. Если в полугруппе M с операцией \circ для любых элементов a и b существуют такие элементы x и y, для которых $a \circ x = b$ и $y \circ a = b$, то M является группой относительно этой операции.

Доказательство. Сначала покажем, что полугруппе М есть нейтральный элемент. Выберем какойнибудь элемент a из M и рассмотрим уравнение $a \circ x = a$. Обозначим через e_1 какое-либо его решение (нам не дано, что уравнение имеет единственное решение!). Покажем, что для любого элемента c из M выполнено равенство $x \circ e_1 = c$. Для этого рассмотрим уравнение $y \circ a = c$ и обозначим через c_1 какое-нибудь его решение. Напишем цепочку равенств:

```
c \circ e_1 = (c_1 \circ a) \circ e_1 = c_1 \circ (a \circ e_1) = c_1 \circ a = c
```

Теперь рассмотрим уравнение $y \circ a = a$ и обозначим через e_2 какое-либо его решение. Аналогично доказывается, что для любого элемента с из M выполнено равенство $e_2 \circ c = c$.

Наконец, заметим, что $e_2=e_2\circ e_1=e_1$. Следовательно, $e_1=e_2=e$ — нейтральный элемент полугруппы М.

Докажем теперь наличие симметричного у любого элемента а из М. Рассмотрим уравнения $a\circ x=e$ и $y\circ a=e$. Обозначим через x_0 и y_0 решения этих уравнений. Тогда $x_0=e\circ x_0=(y_0\circ a)\circ x_0=y_0\circ (a\circ x_0)=y_0\circ e=y_0$, т.е. элемент $x_0=y_0$ симметричен элементу а. Эта теорема показывает, что желание иметь в данном множестве решения для любого линейного уравнения при условии ассоциативности операции неизбежно приводит к понятию группы. готово брат.

Теорема. Пусть G – группа относительно операции \circ . Тогда для любых элементов a и b из G существуют и при том единственные такие элементы x и y, для которых $a \circ x = b$ и $y \circ a = b$.

Доказательство. Для элемента a существует симметричный $a^{\check{}}$. Положим $x_0=a^{\check{}}\circ b$. Тогда $a\circ x_0=a\circ (a^{-1}\circ b)=(a\circ a^{-1})\circ b=e\circ b=b$, то есть построенный нами элемент x_0 удовлетворяет требованиям теоремы.

Покажем теперь, что любой элемент группы G, удовлетворяющий равенству $a\circ x=b$, совпадает с x_0 . Пусть x_1 таков, что $a\circ x_1=b$. Тогда $a^{-1}\circ (a\circ x_1)=a^{-1}\circ b$. В то же время $a^{-1}\circ (a\circ x_1)=(a^{-1}\circ a)\circ x_1=e\circ x_1=e\circ x_1=x_1\Rightarrow x_1a^{-1}\circ b=x_0$

Замечание. Если операция \circ не коммутативна, то элементы $a^{-1} \circ b$ и $b \circ a^{-1}$ могут и не совпадать.

Теорема показывает, что в любой группе разрешимы уравнения первой степени. Уравнения более высоких степеней, скажем, квадратные, уже могут не иметь решений. Например, в группе положительных рациональных чисел относительно операции умножения уравнение $x^2=2$ решений не имеет.

Кольца и их свойства

Кольцо - множество M, на котором определены две бинарные операции \circ и *, удовлетворяющие следующим условиям:

- М группа относительно о
- * дистрибутивна относительно о

Примеры:

- множество целых чисел относительно операций сложения и умножения;
- множество действительных чисел относительно операций сложения и умножения;
- множество многочленов с действительными коэффициентами относительно операций сложения и умножения;
- множество функций из R в R относительно операций сложения и умножения.

Области целостности и поля

Область целостности - коммутативное ассоциатовное кольцо без *делителей нуля* (Ненулевые элементы a и b кольца K называются *делителями нуля*, если ab=0).

Поле - коммутативное ассоциативное кольцо с 1, каждый ненулевой элемент которого обратим.

Понятие вектора

Вектор — это элемент векторного пространства (некоторого множества с двумя операциями на нём, которые подчиняются восьми аксиомам).

Вектором называется отрезок, концы которого упорядочены. Первый из его концов называется началом, второй – концом вектора.

Операции сложения и умножения векторов и их свойства

Свойства:

- ullet Коммутативность: $ec{a} + ec{b} = ec{b} + ec{a}$
- Ассоциативность сложения $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$
- Нейтральный элемент относительно сложения $\vec{0}$: $\vec{a} + \vec{0} = \vec{a}$
- Противоположный вектор для любого ненулевого относительно умножения: $\vec{a} + (-\vec{a}) = \vec{0}$
- Ассоциативность умножения: $(\lambda \cdot \eta) \cdot \vec{a} = \lambda \cdot (\eta \cdot \vec{a})$
- Дистрибутивность умножения относительно сложения: $\lambda \cdot (\vec{a} + \vec{b}) = \lambda \cdot \vec{a} + \lambda \cdot \vec{b}$, $(\lambda + \eta) \cdot \vec{a} = \lambda \cdot \vec{a} + \eta \cdot \vec{a}$
- Нейтральный элемент относительно умножения: $1 \cdot \vec{a} = \vec{a}$

Коллинеарность векторов

Два вектора \vec{a} и \vec{b} коллинеарны, если $\exists t \colon \vec{a} = t \cdot \vec{b}.$

Два вектора коллинеарны, если отношения их координат равны.

Два вектора коллинеарны, если их векторное произведение равно нулевому вектору.

Базис на плоскости

Базисом на плоскости называется любая упорядоченная пара линейно независимых векторов, принадлежащих этой плоскости.

Теорема о разложении вектора по базису на плоскости

Пусть (\vec{a}, \vec{b}) — базис некоторой плоскости, а \vec{x} — вектор, лежащий в этой плоскости. Тогда существуют, и притом единственные, числа t_1 и t_2 такие, что

$$\vec{x} = t_1 \vec{a} + t_2 \vec{b} \tag{3}$$

Доказательство

Отложим вектора \vec{a} , \vec{b} и \vec{x} от некоторой точки О нашей плоскости и обозначим концы полученных направленных отрезков через A, B и M соответственно.

Спроектируем точку М на прямую ОА параллельно прямой ОВ и на прямую ОВ параллельно прямой ОА. Обозначим полученные точки через A' и B' соответственно и положим $\vec{a}':=\overrightarrow{OA}'$ и $\vec{b}':=\overrightarrow{OB}'$. Ясно, что $\vec{a}' \parallel \vec{a}$ и $\vec{b}' \parallel \vec{b}$. Поскольку $\vec{a}, \ \vec{b} \neq \vec{0}$, по критерию коллинеарности векторов $\vec{a}' = t_1 \vec{a}$ и $\vec{b}' = t_1 \vec{b}$ для некоторых чисел t_1 и t_2 . Тогда $\vec{x} = t_1 \vec{a} + t_2 \vec{b}$.

Осталось доказать единственность. Пусть $\vec{x}=s_1\vec{a}+s_2\vec{b}$ для некоторых чисел s_1 и s_2 . Вычитая это равенство из равенства $\vec{x}=t_1\vec{a}+t_2\vec{b}$ имеем $(t_1-s_1)\vec{a}+(t_2-s_2)\vec{b}=\vec{0}$. Если $t_1-s_1\neq 0$, то $\vec{A}=-\frac{t_2-s_2}{t_1-s_1}\cdot\vec{b}\parallel\vec{b}$, противоречие. Следовательно, $t_1-s_1=0$, то есть $t_1=s_1$.

Действия с векторами в координатной форме

No॒	Вид операции	на плоскости	в пространстве
1	Координаты	$A(x_1; y_1); B(x_2; y_2)$	$A(x_1; y_1; z_1); B(x_2; y_2; z_2)$
	вектора	$\overline{AB} = (x_2 - x_1; y_2 - y_1)$	$\overline{AB} = (x_2 - x_1; y_2 - y_1; z_2 - z_1)$
2	Длина вектора	$\overline{a} = (x; y)$ $ \overline{a} = \sqrt{x^2 + y^2}$	$\overline{a} = (x; y; z)$ $ \overline{a} = \sqrt{x^2 + y^2 + z^2}$
3	Сложение и вычитание векторов	$ \overline{a} = (x_1; y_1) \overline{b} = (x_2; y_2); \overline{a} \pm \overline{b} = (x_1 \pm x_2; y_1 \pm y_2) $	$ \overline{a} = (x_1; y_1; z_1) \overline{b} = (x_2; y_2; z_2); \overline{a} \pm \overline{b} = (x_1 \pm x_2; y_1 \pm y_2; z_1 \pm z_2) $
4	Умножение вектора на число	$\overline{a} = (x; y); k \in R$ $k\overline{a} = (kx; ky)$	$\overline{a} = (x; y; z); k \in R$ $\overline{ka} = (kx; ky; kz)$
5	Скалярное произведение векторов	$\overline{a} = (x_1; y_1) \overline{b} = (x_2; y_2);$ $\overline{a} \cdot \overline{b} = x_1 \cdot x_2 + y_1 \cdot y_2$	
6	Угол между векторами	$\cos(a;b) = \frac{\overline{a} \cdot \overline{b}}{ \overline{a} \cdot \overline{b} }$	$\cos(a;b) = \frac{\overline{a} \cdot \overline{b}}{ \overline{a} \cdot \overline{b} }$
7	Координаты середины отрезка	$M\left(\begin{array}{c} A\ (x_1;\ y_1);\ B\ (x_2;y_2) \\ M\left(\begin{array}{c} x_1+x_2 \\ 2 \end{array}; \frac{y_1+y_2}{2} \end{array}\right)$	$M\left(\begin{array}{c} A\ (x_1;\ y_1;\ z_1);\ B\ (x_2;\ y_2;\ z_2) \\ M\left(\begin{array}{c} \frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}; \frac{z_1+z_2}{2} \end{array}\right)$
8	Расстояние между точками	$\begin{vmatrix} A (x_1; y_1); B (x_2; y_2) \\ \overline{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \end{vmatrix}$	$ A(x_1; y_1; z_1); B(x_2; y_2; z_2) AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} $

Компланарность векторов

Компланарные векторы — это векторы, которые параллельны одной плоскости или лежат на одной плоскости

Условия компланарности векторов:

- Для 3-х векторов выполняется условие: если смешанное произведение 3-х векторов равно нулю, то эти три вектора компланарны
- Для 3-х векторов выполняется условие: если три вектора линейно зависимы, то они компланарны.
- если среди векторов не более 2-х линейно независимых векторов, то они компланарны.

Базис пространства

Базисом пространства называется упорядоченная тройка некомпланарных векторов

Теорема о разложении вектора по базису в пространстве

Пусть $(\vec{a}, \vec{b}, \vec{c})$ - базис пространства, а \vec{x} - произвольный вектор. Тогда существуют единственные t_1 , t_2 , t_3 такие, что

$$\vec{x} = t_1 \vec{a} + t_2 \vec{b} + t \vec{3} \vec{x} \tag{4}$$

Доказательство

Отложим вектора \vec{a} , \vec{b} и \vec{c} от некоторой точки О и обозначим концы полученных направленных отрезков через A, B, C и M соответственно.

Поскольку \vec{a} и \vec{b} неколлинеарны, существует единственная плоскость π , проходящая через точки O, A и B. Спроектируем точку M на плоскость π параллельно прямой ОС и на прямую ОС параллельно плоскоси

Обозначим полученные точки как M' и C' и положии $\vec{x}' := \overrightarrow{OM'}$ и $\vec{c}' := \overrightarrow{OC'}$. По теореме о разложении вектора по базису на плоскости $\vec{x} = t_1 \vec{a} + t_2 \vec{b}$ для некоторых t_1 и t_2 . Далее $\vec{c}' \parallel \vec{c} \neq \vec{0}$, откуда $\vec{c}' = t_3 \vec{c}$ для некоторого t_3 . Тогда $\vec{x} = \vec{x} + \vec{c}' = t_1 \vec{a} + t_2 \vec{b} + t_3 \vec{c}$. Существование чисел t_1 , t_2 , t_3 с требуемыми свойствами доказано. Осталось доказать их единственность. Пусть $\vec{x} = s_1 \vec{a} + s_2 \vec{b} + s_3 \vec{c}$ для некоторых s_1 , s_2 и s_3 . Вычитая это равенство их равенства $\vec{x} = t_1 \vec{a} + t_2 \vec{b} + t_3 \vec{c}$, получим

$$(t_1 - s_1)\vec{a} + (t_2 - s_2)\vec{b} + (t_3 - s_3)\vec{c} = \vec{0}$$
(5)

Если $t_1-s_1\neq 0$, то $\vec{a}=-\frac{t_2-s_2}{t_1-s_1}\cdot \vec{b}-\frac{t_3-s_3}{t_1-s_1}\cdot \vec{c}$. Но тогда вектора \vec{a} , \vec{b} и \vec{c} компланарны, что противоречит условию $\Rightarrow t_1-s_1=0 \Rightarrow t_1=s_1$. Аналогично $t_2=s_2$ и $t_3=s_3$.

алгем $\Phi T-104$

Скалярное произведение векторов

Скалярным произведением ненулевых векторов называется число, равное произведению длин этих векторов на косинус угла между ними. Скалярное произведение нулевого вектора на любой вектор по определению равно 0. Скалярное произведение векторов а и \vec{b} обозначается через $\vec{a}\vec{b}$

$$\vec{a}\vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \widehat{\cos(\vec{a}, \vec{b})} \tag{6}$$

Свойства:

- \bullet $\vec{a}\vec{b} = \vec{b}\vec{a}$
- $(\vec{a} + \vec{b})\vec{c} = \vec{a}\vec{c} + \vec{b}\vec{c}$
- $(t\vec{a})\vec{b} = t(\vec{a}\vec{b})$
- ullet $ec{a}ec{a}\geq 0$, причём $ec{a}ec{a}=0$ только тогда, когда $ec{a}=ec{0}.$

Компонента вектора на прямую и проекция вектора на ось

Если $\vec{a}=x\vec{i}+y\vec{j}+z\vec{z}$, то $x\vec{i}$, $x\vec{i}$ и $x\vec{i}$ - компоненты этого вектора.

Проекция вектора на ось – это вектор, началом и концом которого являются соответственно проекции начала и конца заданного вектора.

Свойства компоненты, проекции и скалярного произведения

Свойства проекций (пусть векторы \vec{a} и \vec{b} проецируются на прямую l):

- $pr_l(\vec{a} + \vec{b}) = pr_l\vec{a} + pr_l\vec{b}$
- $pr_l(t\vec{a}) = tpr_l\vec{a}$

Векторное и смешанное произведения векторов

Упорядоченная тройка некомпланарных векторов $(\vec{u}, \vec{v}, \vec{w})$ называется правой, если из конца вектора \vec{w} поворот от \vec{u} к \vec{v} по наименьшему углу выглядит происходящим против часовой стрелки, и левой – в противном случае. Правую тройку векторов называют также положительно ориентированной, а левую – отрицательно ориентированной.

Векторным произведением неколлинеарных векторов \vec{a} и \vec{b} называется вектор \vec{c} такой, что:

- $|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \cdot \widehat{\sin(\vec{a}, \vec{b})}$
- ullet $ec{c}$ ортогонален к векторам $ec{a}$ и $ec{b}$
- ullet тройка $(ec{a}, ec{b}, ec{c})$ правая.

Если \vec{a}, \vec{b} и \vec{c} - произвольные вектора, а t - произвольное число, то

- ullet $ec{a} imesec{b}=-ec{b} imesec{a}$ (антикоммутативность)
- $\bullet \ (t\vec{a}) \times \vec{b} = \vec{a} \times (t\vec{b}) = t(\vec{a} + \vec{b})$
- $\bullet \ (\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$
- $\bullet \ \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$

алгем $\Phi T-104$

Смешанным произведением векторов \vec{a}, \vec{b} и \vec{c} называется число, равное скалярному произведению векторного произведения векторов \vec{a} и \vec{b} на вектор \vec{c} (обозначается $\vec{a}\vec{b}\vec{c}$. Таким образом, $\vec{a}\vec{b}\vec{c}:=(\vec{a}\times\vec{b})\vec{c}$.

Критерий компланарности векторов. Вектора \vec{a}, \vec{b} и \vec{c} компланарны тогда и только тогда, когда их смешанное произведение равно нулю.

Доказательство. Необходимость. Предположим, что вектора \vec{a}, \vec{b} и \vec{c} компланарны. Если $\vec{a} \parallel \vec{b}$, то $\vec{a} \times \vec{b} = \vec{0}$, и потому $\vec{a} \vec{b} \vec{c} = (\vec{a} \times \vec{b}) \vec{c} = \vec{0}$.

Пусть теперь $\vec{a} \not\parallel \vec{b}$. Отложим вектора \vec{a}, \vec{b} и \vec{c} от одной точки. Тогда они будут лежать в некоторой плоскости. Вектор $\vec{a} \times \vec{b}$ ортогонален этой плоскости а значит и вектору \vec{c} . Следовтельно $\vec{a} \vec{b} \vec{c} = (\vec{a} \times \vec{b}) \vec{c} = \vec{0}$.

Достаточность. Если $\vec{a} \parallel \vec{b}$, то компланарность очевидна Пусть теперь $\vec{a} \not \parallel \vec{b}$. Будем считать что вектора \vec{a}, \vec{b} и \vec{c} отложены от отдной и той же точки Пусть $\vec{a}\vec{b}\vec{c}=0$. Это означает что $(\vec{a}\times\vec{b})\vec{c}=0$. Следовательно $\vec{a}\times\vec{b}$ ортогонален вектору \vec{c} . Но вектор $\vec{a}\times\vec{b}$ ортогонален плоскости δ , образованной векторами \vec{a} и \vec{b} . Поскольку \vec{c} ортогонален этому вектору, то он лежитт в δ . А это означает, что вектора \vec{a}, \vec{b} и \vec{c} компланарны.

Теорема (геометрический смысл смешанного произведения) Объем параллелепипеда, построенного на трех некомпланарных векторах, равен модулю их смешанного произведения.

Доказательство. Пусть \vec{a}, \vec{b} и \vec{c} - три некомпланарных вектора. Предположим сначала, что тройка $(\vec{a}, \vec{b}, \vec{c})$ - правая.

Отложим вектора \vec{a}, \vec{b} и \vec{c} от точки О. Пусть точка С такая, что $\overrightarrow{OC} = \vec{c}$, а D - проекция точки С на плоскость векторов \vec{a} и \vec{b} , которую обозначим через σ . Учитывая, что $\alpha + \beta = \frac{\pi}{2}$ и потому $\sin \alpha = \cos \beta$, и юзая геометрический смысл векторного произведения, имеем

$$V = S \cdot h = |\vec{a} \times \vec{b}| \cdot |CD| = |\vec{a} \times \vec{b}| \cdot |\vec{c}| \cdot \sin \alpha = |\vec{a} \times \vec{b}| \cdot |\vec{c}| \cdot \cos \beta = (\vec{a} \times \vec{b})\vec{c} = \vec{a}\vec{b}\vec{c}. \tag{7}$$

Пусть теперь тройка \vec{a}, \vec{b} и \vec{c} левая. Тогда $\alpha=\beta-\frac{\pi}{2}$, откуда $\sin\alpha=-\cos\beta$.

$$V = S \cdot h = |\vec{a} \times \vec{b}| \cdot |CD| = |\vec{a} \times \vec{b}| \cdot |\vec{c}| \cdot \sin \alpha = -|\vec{a} \times \vec{b}| \cdot |\vec{c}| \cdot \cos \beta = -(\vec{a} \times \vec{b})\vec{c} = -\vec{a}\vec{b}\vec{c} \tag{8}$$

- ullet $ec{a}ec{b}ec{c}=V>0$, если тройка правая
- ullet $ec{a}ec{b}ec{c}=-V<0$, если тройка левая

Вот еще свойства (пусть $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ - произвольные вектора, а t - число)

$$\bullet \ \vec{a}\vec{b}\vec{c} = \vec{b}\vec{c}\vec{a} = \vec{c}\vec{a}\vec{b} = -\vec{a}\vec{c}\vec{b} = -\vec{c}\vec{b}\vec{a} = -\vec{b}\vec{a}\vec{c}$$

•
$$(t\vec{a})\vec{b}\vec{c} = \vec{a}(t\vec{b})\vec{c} = \vec{a}\vec{b}(t\vec{c}) = t(\vec{a}\vec{b}\vec{c})$$

- $\bullet \ (\vec{a} + \vec{b}) \vec{c} \vec{d} = \vec{a} \vec{c} \vec{d} + \vec{b} \vec{c} \vec{d}$
- $\vec{a}(\vec{b}+\vec{c})\vec{d}=\vec{a}\vec{b}\vec{d}+\vec{a}\vec{c}\vec{d}$ item $\vec{a}\vec{b}(\vec{c}+\vec{d})=\vec{a}\vec{b}\vec{c}+\vec{a}\vec{b}\vec{d}$

Системы координат на плоскости и в пространстве

Координатами точки М называются координаты её радиус-вектора.

Точка А делит отрезок M_0M_1 внутренним образом в отношении λ , если $\frac{M_0A}{AM_1}=\lambda$,

внешним образом, если
$$\dfrac{M_0A}{AM_1}=-\lambda$$

$$A\left(\frac{x_0 + \lambda x_1}{1 + \lambda}; \frac{y_0 + \lambda y_1}{1 + \lambda}; \frac{z_0 + \lambda z_1}{1 + \lambda}\right) \tag{9}$$

Виды уравнений прямой на плоскости

Любая точка на прямой может быть задана как $\vec{r} = \vec{r_0} + t\vec{a}, t \in \mathbb{R}, \vec{r_0} = (x_0, y_0), \vec{r} = (x, y), \vec{a} = (r, s)$ Уравнения прямой:

- 1. Параметрическое: $\begin{cases} x = x_0 + tr, \\ y = y_0 + ts \end{cases}$
- 2. Каноническое: $\frac{x x_0}{r} = \frac{y y_0}{r}$
- 3. Общее: Ax + By + C = 0, $A^2 + B^2 \neq 0$

Определение. Пусть прямая l задана уравнением Ax+By+C=0. Тогда вектор $\vec{n}=(A,B)$ называется главным вектором прямой l.

Замечание. Главный вектор прямой не коллинеарен этой прямой.

Доказательство. Пусть прямая l задана уравнением Ax + By + C = 0, $\vec{n} = (A, B), M_0(x_0, y_0) \in l$, то есть $Ax_0 + By_0 + C = 0$. Отложим вектор \vec{n} от точки M_0 . Концом соответствующего направленного отрезка будет точка $M_1(x_0+A,y_0+B)$. Подставив координаты этой точки в левую часть уравнения прямой, получим $A(x_0+A)+B(y_0+B)+C=Ax_0+By_0+C+A^2+B^2=A^2+B^2\neq 0.$

Таким образом, $M_1
otin l$. Поскольку $M_0 \in l$, а $\overrightarrow{M_0 M_1} = \vec{n}$, это означает, что вектор \vec{n} и прямая l не коллинеарны.

Взаимное расположение прямых на плоскости

Теорема. Пусть прямые l_1 и l_2 заданы уравнениями

- $A_1x + B_1y + C_1 = 0$
- $\bullet A_2x + B_2y + C_2 = 0$

. Тогда

- 1. l_1 и l_2 пересекаются $\Leftrightarrow \frac{A_1}{A_2} \neq \frac{B_1}{B_2}$
- 2. $l_1 \parallel l_2 \text{ in } l_1 \neq l_2 \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2}$
- 3. $l_1 = l_2 \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$

Доказательство (в ПСК).

 $rac{A_1}{A_2} = rac{B_1}{B_2}$ (условие параллельности нормальных векторов в ПСК). Направляющие вектора: $ec{a_1} = (-B_1,A_1), ec{a_2} = (-B_2,A_2).$ $l_1 \parallel l_2$ или $l_1 = l_2 \Leftrightarrow a_1 \parallel a_2 \Leftrightarrow rac{-B_1}{-B_2} = rac{A_1}{A_2}$, откуда следует утверждение 1.

Пусть $t = \frac{A_1}{A_2} = \frac{B_1}{B_2}$

алгем $\Phi T-104$

$$A_1=tA_2$$
 $B_1=tB_2$ $t \neq 0$, иначе $A_1=B_1=0$ Получаем $\begin{cases} A_1x+B_1y+C_1=0 \\ A_2x+B_2y+C_2=0 \end{cases}$ $\begin{cases} tA_2x+tB_2y+C_1=0 \\ A_2x+B_2y+C_2=0 \end{cases}$ $\begin{cases} tA_2x+tB_2y+C_2=0 \end{cases}$ $\begin{cases} tA_2x+tB_2y+C_2=0 \end{cases}$ $\begin{cases} tA_2x+tB_2y+C_1=0 \\ tA_2x+tB_2y+tC_2=0 \end{cases}$ $\begin{cases} tA_2x+tC_2=0 \end{cases}$

Нормальное уравнение прямой на плоскости

Отклонение точки от прямой

Теорема (о полуплоскостях). Пусть M(x',y') - точка плоскости. Если $M \in \lambda$, то Ax' + By' + C > 0, а если $M \in \mu$, то Ax' + By' + C < 0

Доказательство. Пусть $M \in \lambda$. Через точку М проведём прямую, коллинеарнубю \vec{n} . Мы знаем, что главный вектор прямой не коллинеарен этой прямой. Значит наша прямая пересечёт l. Пусть точка пересечения это N(x'',y''). Очевидно Ax''+By''+C=0. \overrightarrow{NM} и \vec{n} сонаправлены, то есть $\overrightarrow{NM}=t\vec{n},t>0$. Получаем, что $x'-x''=tA,y'-y''=tB \Rightarrow x'=x''+tA,y'=y''+tB \Rightarrow$

$$Ax' + By' + C = A(x'' + tA) + B(y'' + tB) + C = Ax'' + By'' + C + t(A^2 + B^2) = t(A^2 + B^2) > 0$$
 (10)

Мы доказали, что если $M \in \lambda$, то Ax' + By' + C > 0.

Ребят, ну давайте второе утверждение докажете сами плз.

Точки $P(x_1,y_1)$ и $Q(x_2,y_2)$ лежат по одну сторону от прямой Ax+By+C=0 тогда и только тогда, когда $sgn(Ax_1+By_1+C)=sgn(Ax_2+By_2+C)$ и по разные стороны, когда $sgn(Ax_1+By_1+C)\neq sgn(Ax_2+By_2+C)$

Плоскость

 σ - плоскость, $M_0(x_0,y_0,z_0)$ - точка в σ , $\vec{a_1}=(q_1,r_1,s_1)$ и $\vec{a_2}=(q_2,r_2,s_2)$ - направляющие вектора, не коллинеарные между собой. $\overrightarrow{M_0M_1}=u\vec{a_1}+v\vec{a_2}$, где $u,v\in\mathbb{R}$.

Уравнения плоскости:

1. Параметрическое;
$$\begin{cases} x = x_0 + q_1 u + q_2 v \\ y = y_0 + r_1 u + r_2 v \\ z = z_0 + s_1 u + s_2 v \end{cases}$$

2. Каноническое:
$$\begin{vmatrix} x-x_0 & y-y_0 & z-z_0 \\ q_1 & r_1 & s_1 \\ q_2 & r_2 & s_2 \end{vmatrix} = 0$$

3. Общее: из канонического можем получить $A=egin{array}{c|c} r_1 & s_1 \\ r_2 & s_2 \end{bmatrix}$, $B=egin{array}{c|c} q_1 & s_1 \\ q_2 & s_2 \end{bmatrix}$, $C=egin{array}{c|c} q_1 & r_1 \\ q_2 & r_2 \end{bmatrix}$. Имеем $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$ и (A,B,C)- главный вектор плоскости.

Теорема. Любая плоскость представима в виде уравнения Ax + By + Cz + D = 0. И наоборот, любое уравнение Ax + By + Cz + D = 0 задаёт плоскость.

Доказательство.

1. Любая плоскость представима каноническим уравнением
$$\begin{vmatrix} x-x_0 & y-y_0 & z-z_0 \\ q_1 & r_1 & s_1 \\ q_2 & r_2 & s_2 \end{vmatrix} = 0$$

$$\begin{vmatrix} r_1 & s_1 \\ r_2 & s_2 \end{vmatrix} (x-x_0) + \begin{vmatrix} q_1 & s_1 \\ q_2 & s_2 \end{vmatrix} (y-y_0) + \begin{vmatrix} q_1 & r_1 \\ q_2 & r_2 \end{vmatrix} (z-z_0) = 0, \ \text{где } A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$$
 и (A,B,C) .

- 2. Возьмём уравнение $Ax + By + Cz + D = 0, A^2 + B^2 + C^2 \neq 0.$
 - (a) Возьмём точку (x_0,y_0,z_0) , удовлетворяющую данному уравнению. Если $A\neq 0$, то берём $y_0=z_0=0$ и получаем $x_0=\frac{D}{A}$ (аналогично для A=0, тогда либо $B\neq 0$, либо $C\neq 0$.
 - (b) Возьмём 2 вектора:
 - $\vec{a_1} = (-B, A, 0)$
 - $\vec{a_2} = (-C, 0, A)$

Составим каноническое уравнение плоскости, проходящей через M_0 с направляющими векторами a_1 и a_2 .

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ -B & A & 0 \\ -C & 0 & A \end{vmatrix} = 0$$

$$A^{2}(x-x_{0}) + AB(y-y_{0}) + AC(z-z_{0}) = 0 | : A \Rightarrow A(x-x_{0}) + B(y-y_{0}) + C(z-z_{0}) = 0$$
 (11)

$$Ax + By + Cz - Ax_0 - By_0 - Cz_0 = 0 (12)$$

Здесь $D = -Ax_0 - By_0 - Cz_0$.

Взаимное расположение плоскостей

Пусть плоскости заданы уравнениями

1.
$$\pi_1: A_1x + B_1y + C_1z + D_1 = 0$$

2.
$$\pi_2$$
: $A_2x + B_2y + C_2z + D_2 = 0$

Тогда

$$1. \ \pi_1$$
 и π_2 пересекаются $\Leftrightarrow rac{A_1}{A_2}
eq rac{B_1}{B_2}$ или $rac{A_1}{A_2}
eq rac{C_1}{C_2}$

2.
$$\pi_1 \parallel \pi_2$$
 u $\pi_1 \neq \pi_2 \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}$

Доказательство (в общем случае). Рассмотрим систему уравнений

$$\begin{cases}
A_1x + B_1y + C_1z + D_1 = 0 \\
A_2x + B_2y + C_2z + D_2 = 0
\end{cases}$$
(13)

Пусть для определения $\frac{A_1}{A_2}
eq \frac{B_1}{B_2}$. Давайте сделаем $z_0=0$, тогда получим систему

$$\begin{cases} A_1 x + B_1 y = -D_1 \\ A_2 x + B_2 y = -D_2 \end{cases} (*)$$
 (14)

Эта система по правилу Крамера имеет единственное решение (x_0,y_0) . Значит невозможно $\pi_1=\pi_2$.

Если $\pi_1 = \pi_2$, то имеется другое решение системы, что противоречит с тем, что система (*) имеет только одно решение.

$$\begin{cases} A_1x+B_1y+C_1z+D_1=0\\ A_2x+B_2y+C_2z+D_2=0 \end{cases}$$

$$\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}=t, \text{ откуда} \begin{cases} tA_2x+tB_2y+tC_2z+D_1=0\\ tA_2x+tB_2y+tC_2z+tD_2=0 \end{cases} \Rightarrow D_1=tD_2=0 \Rightarrow t=\frac{D_1}{D_2}.$$
 Если это так, то решений ∞ .

Нормальное уравнение плоскости

????????????????????????????????

Отклонение точки от плоскости

Теорема (о полупространствах). Пусть M(x',y',z') - произольная точка пространства. Если $M\in\lambda$, то Ax' + By' + Cz' + D > 0, а если $M \in \mu$, то Ax' + By' + Cz' + D < 0.

Точки $P(x_1,y_1,z_1)$ и $Q(x_2,y_2,z_2)$ расположены по одну сторону от плоскости Ax' + By' + Cz' + D = 0 тогда и только тогда, когда $sgn(Ax_1 + By_1 + Cz_1 + D = sgn(Ax_2 + By_2 + Cz_2 + D)$, и по разные стороны, когда $sgn(Ax_1 + By_1 + Cz_1 + D \neq sgn(Ax_2 + By_2 + Cz_2 + D)$.

Виды уравнений прямой в пространстве

Пусть на прямой l лежит точка $M_0(x_0,y_0,z_0)$, $\vec{a}=(q,r,s)
eq \vec{0}$ - направляющий вектор прямой l. $\vec{r_0}$ радиус-вектор точки M_0 .

Точка M лежит на l тогда и только тогда, когда \vec{a} коллинеарен $\overrightarrow{M_0M}$, то есть $\overrightarrow{M_0M}=t\vec{a}$. $M \in l \Leftrightarrow \vec{r} = \vec{r_0} + t\vec{a}$.

Виды уравнений прямой в пространстве:

1. Векторное: $\vec{r} = \vec{r_0} + t\vec{a}$

2. Параметрическое:
$$\begin{cases} x=x_0+qt\\ y=y_0+rt\\ z=z_0+st \end{cases}$$

3. Каноническое:
$$\frac{x - x_0}{q} = \frac{y - y_0}{r} = \frac{z - z_0}{s}$$

4. По двум точкам:
$$\dfrac{x-x_0}{x_1-x_0}=\dfrac{y-y_0}{y_1-y_0}=\dfrac{z-z_0}{z_1-z_0}$$

5. Общие уравнения (как пересечение двух плоскостей):
$$\begin{cases} A_1x+B_1y+C_1z+D_1=0,\\ A_2x+B_2y+C_2z+D_2=0 \end{cases}$$

Теорема. Любая прямая в пространстве представима общим уравнением Доказательство.

У нас плосоксти пересекаются, поэтому нормальные векторы плоскостей непараллельны.

Общий случай. Предположим $\frac{A_1}{A_2} \neq \frac{B_1}{B_2}$. Перепишем систему в виде $\begin{cases} A_1x + B_1y = -C_1z - D_1, \\ A_2x + B_2y = -C_2z - D_2 \end{cases}$ Зафиксируем z и скажем, что z=t: $\begin{cases} A_1x + B_1y = -C_1z - D_1, \\ A_2x + B_2y = -C_2z - D_2 \end{cases}$ Поскольку $\begin{vmatrix} A_1 & A_2 \\ B_1 & B_2 \end{vmatrix} \neq 0$, то при любом t система имеет единственное решение по правилу Крамера:

$$\begin{cases}
x = \frac{\begin{vmatrix} -C_1t - D_1 & A_2 \\ -C_2t - D_2 & B_2 \end{vmatrix}}{\begin{vmatrix} A_1 & A_2 \\ B_1 & B_2 \end{vmatrix}} = \frac{t(-B_2C_1 + A_2C_2) - B_2D_1 + A_2D_2}{\begin{vmatrix} A_1 & A_2 \\ B_1 & B_2 \end{vmatrix}} = \frac{-B_2D_1 + A_2D_2}{\begin{vmatrix} A_1 & A_2 \\ B_1 & B_2 \end{vmatrix}} + t \frac{-B_2C_1 + A_2C_2}{\begin{vmatrix} A_1 & A_2 \\ B_1 & B_2 \end{vmatrix}}, \\
y = \frac{\begin{vmatrix} -A - 1 & C_1t - D_1 \\ -B_1 & C_2t - D_2 \end{vmatrix}}{\begin{vmatrix} A_1 & A_2 \\ B_1 & B_2 \end{vmatrix}} = \frac{t(-A_1C_2 + B_1C_1) - A_1D_2 + B_1D_1}{\begin{vmatrix} A_1 & A_2 \\ B_1 & B_2 \end{vmatrix}} = \frac{-A_1D_2 + B_1D_1}{\begin{vmatrix} A_1 & A_2 \\ B_1 & B_2 \end{vmatrix}} + t \frac{-A_1C_2 + B_1C_1}{\begin{vmatrix} A_1 & A_2 \\ B_1 & B_2 \end{vmatrix}}, \\
z = t
\end{cases}$$
(15)

 $\begin{cases} x = \frac{-B_2D_1 + A_2D_2}{\begin{vmatrix} A_1 & A_2 \end{vmatrix}} + t \frac{-B_2C_1 + A_2C_2}{\begin{vmatrix} A_1 & A_2 \end{vmatrix}}, \\ y = \frac{-A_1D_2 + B_1D_1}{\begin{vmatrix} A_1 & A_2 \end{vmatrix}} + t \frac{-A_1C_2 + B_1C_1}{\begin{vmatrix} A_1 & A_2 \end{vmatrix}}, \\ B_1 & B_2 \end{vmatrix}$ (16)

В ПСК можно доказать обратное: любое уравнение задаёт некоторую прямую

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0, \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

Поскольку плоскости непараллельны, то пусть $\frac{A_1}{A_2} \neq \frac{B_1}{B_2}$. Тогда берём z=0 и получаем систему

$$\left\{egin{aligned} A_1x+B_1y=-D_1,\ A_2x+B_2y=-D_2 \end{aligned}
ight.$$
 , которая по правилу Крамера имеет единственное решение $(x_0,y_0).$

 $ec{\mathsf{T}}$ аким образом, точка с координатами $M(x_0,y_0,z_0)$ лежит на данной прямой.

$$\vec{a} = \vec{n_1} \times \vec{n_2}$$
$$\vec{a_1} \perp \vec{n_1}, \vec{a_2} \perp \vec{n_2}$$

Таким образом, из уравнения плоскостей мы получаем напраляющий вектор данной прямой. По точке M_0 и направляющему вектору мы сможем восстановить прямую:

$$\frac{x - x_0}{B_1 C_2 - B_2 C_1} = \frac{y - y_0}{A_1 C_2 - A_2 C_1} = \frac{z}{A_2 B_2 - A_2 B_1}$$
(17)

Взаимное расположение прямых в пространстве

Пусть даны l_1 и l_2 , а $ec{a_1}=(q_1,r_1,s_1)$ и $ec{a_2}=(q_2,r_2,s_2)$ - направляющие векторы для этих прямых соответственно. Возьмём по одной точке $M_1(x_1,y_1,z_1)$ и $M_2(x_2,y_2,z_2)$ с каждой прямой.

Если прямые лежат в одной плоскости (либо совпадают, либо пересекаются), то смешанное произведе-

ние $\overrightarrow{M_1M_2}, \overrightarrow{a_1}, \overrightarrow{a_2}$ компланарны, то есть смешанное произведение равно нулю: 0.

Прямые скрещиваются $\Rightarrow \begin{vmatrix} x_2-x_2 & y_2-y_2 & z_2-z_1 \\ q_1 & r_1 & s_1 \\ q_2 & r_2 & s_2 \end{vmatrix} \neq 0.$ Прямые параллельны или совпадают: $\vec{a_1} \parallel \vec{a_2} \Leftrightarrow \frac{q_1}{q_2} = \frac{r_1}{r_2} = \frac{s_1}{s_2}.$

Взаимное расположение прямой и плоскости в пространстве

Теорема. Предположим, что дана плоскость Ax + By + Cz + D = 0, где $A^2 + B^2 + C^2 + D^2 \neq 0$, и прямая

$$l: egin{cases} x=x_0+qt, \\ y=y_0+rt, \\ z=z_0+st \end{cases}$$
 . Тогда прямая и плоскость пересекаются $\Leftrightarrow \mathbf{Aq}+\mathbf{Br}+\mathbf{Cs}
eq \mathbf{0}$

$$A(x_0 + qt) + B(y_0 + rt) + C(z_0 + st) = 0 \Leftrightarrow \vec{n} \perp \vec{a}$$

 $Ax_0 + By_0 + Cz_0 + D + (Aq + Br + Cs)t = 0$

Если $Aq+Br+Cs \neq 0$, то решение единственное: $t=\frac{-(Ax_0+By_0+Cz_0+D)}{Aq+Br+Cs}$ и прямая с плоскостью имеют одну общую точку.

Итак:

- l лежит в плоскости $\Leftrightarrow \begin{cases} Ax_0 + By_0 + Cz_0 + D = 0, \\ Aq + Br + Cs = 0, \end{cases}$
- ullet l параллельна плоскости $\Leftrightarrow egin{cases} Ax_0+By_0+Cz_0+D
 eq 0, \ Aq+Br+Cs=0, \end{cases}$
- l пересекается с плоскостью $\Leftrightarrow Aq + Br + Cs \neq 0$

Построение поля комплексных чисел

Пусть $a, b \in \mathbb{R}$.

Рассмотрим множесто пар вида (a, b).

Введем операции сложения и умножения $z_1 + z_1 = (x_1 + x_2, y_1 + y_2), z_1 z_2 = (x_1 x_2 - y_2 y_2, x_1 y_2 + x_2 y_1)$ **Теорема**. Относительно введенных операций множество $\mathbb C$ является полем:

- сложение:
 - коммутативность
 - ассоциативность
 - -(0,0) нейтральный
 - -(-x,-y) противоположный элемент

• умножение:

- коммутативность
- ассоциативность
- -(1,0) нейтральный
- обратный элемент существует, если $(x,y) \neq (0,0)$ или $x^2+y^2 \neq 0$: $z^{-1}=\left(\frac{x}{x^2+y^2},-\frac{y}{x^2+y^2}\right)$

Алгебраическая форма комплексного числа

```
(x,y)=(x,0)+y(0,1)=x+iy - общепринятая запись комплексного числа. x+iy (x - вещественная часть, y - мнимая часть) Для каждого z=x+iy существует \overline{z}=x-iy - сопряжённое.
```

Тригонометрическая форма комплексного числа

Любая точка плоскости однозначно задается парой (r,ϕ) , где r - расстояние от точки до начала координат.

$$\begin{cases} x = r\cos\phi, \\ y = r\sin\phi \end{cases} \Rightarrow z = |z|(\cos\phi + i\sin\phi)$$
 ϕ называется аргументом числа $z \; (\phi = argZ)$

Действия с числами в тригонометрической форме

При умножении комплексных чисел модули умножаются, а углы складываются. При делении модули делятся, а углы вычитаются.

Формула Муавра

$$z^{n} = (r(\cos\phi + i\sin\phi))^{n} = r^{n}(\cos(n\phi) + i\sin(n\phi))$$

Извлечение корней из комплексных чисел

Определение. Корнем n-ой степени комплексного числа z называется число w такое, что $w^n=z$.

Пусть
$$z = r(\cos\phi + i\sin\phi)$$
 $w = \rho(\cos\psi + i\sin\psi)$ У нас должно быть $w^n = z$: $w^n = \rho^n(\cos(n\psi) + i\sin(n\psi))$ $\rho^n(\cos(n\psi) + i\sin(n\psi)) = r(\cos\phi + i\sin\phi)$ Числа равны, а значит равны их модули $\rho^n = r \Rightarrow \rho = \sqrt[n]{r}$ $\cos(n\psi) + i\sin(n\psi) = \cos\phi + i\sin\phi \Rightarrow \begin{cases} \cos(n\psi) = \cos\phi, \\ \sin(n\psi) = \sin\phi \end{cases}$

Если у углов одинаковы \cos и \sin , то углы различаются на $2\pi k, k \in \mathbb{Z}$:

$$n\psi = \phi + 2\pi k \Rightarrow \psi = \frac{\phi + 2\pi k}{n} = \frac{\phi}{n} + \frac{2\pi k}{n} \tag{18}$$

$$\psi_0 = \frac{\phi}{n}$$

$$\psi_1 = \frac{\phi}{n} + \frac{2\pi}{n}$$

$$\psi_2 = \frac{\phi}{n} + \frac{4\pi}{n}$$

$$\psi_{n-1} = \frac{\phi}{n} + \frac{2\pi}{n}n = \frac{\phi}{n} + 2\pi$$

Таким образом, получаем, что аргументов для w, дающих разные корни n-1 степени в точности n

$$\psi = \frac{\phi}{n} + \frac{2\pi k}{n}, k = 0, 1, ..., n-1.$$
 Пусть $z = r(\cos\phi + i\sin\phi)$

$$w = \sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\phi + 2\pi k}{n} + i \sin \frac{\phi + 2\pi k}{n} \right), k = 0, 1, ..., n - 1$$
 (19)

В поле комплексных чисел любое комплексное число $z \neq 0$ имеет в точности n корней n-ой степени (предыдущая формула)

Пример.
$$1 = \cos \theta + i \sin \theta$$

$$\sqrt[3]{1} = \cos \frac{0 + 2\pi k}{3} + i \sin \frac{0 + 2\pi k}{3} = \cos \frac{2\pi k}{3} + i \sin \frac{2\pi k}{3}, k = 0, 1, 2$$
 $w_0 = \cos \frac{2\pi 0}{3} + i \sin \frac{2\pi 0}{3} = 1$
$$w_1 = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$$
 $w_2 = \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} = -\frac{1}{2} - i \frac{\sqrt{3}}{2}$

Пример. Корни п-ой степени из 1

В случае \mathbb{R} : $\sqrt[n]{1} = 1$

В случае $\mathbb C$ мы имеем n корней:

$$1 = 1(\cos 0 + i\sin 0)$$

$$\sqrt[n]{1} = \sqrt[n]{1} \left(\cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n} \right), k = 0, 1, ..., n - 1$$
 (20)

При
$$k = 0$$
: $w_0 = 1$

При
$$k=1$$
: $w_1=\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}$

$$w_k = \cos\frac{2\pi k}{n} + i\sin\frac{2\pi k}{n} = \left(\cos\frac{2\pi}{n} + i\sin\frac{2\pi}{n}\right)^k = w^k$$

Линейное пространство

Определение. Множество V называется линейным пространстом над полем \mathbb{F} , если для каждой пары элементов V определена операция сложения и для каждого элемента $x \in V$ определена операция умножения на число $t \in \mathbb{F}$. При этом элементы V называются векторами, а элементы \mathbb{F} называются скалярами.

Аксиомы:

1.
$$x + (y + z) = (x + y) + z$$

2.
$$x + y = y + x$$

3.
$$\exists 0 : \forall x \in V0 + x = x + 0 = x$$

4.
$$\forall x \exists -x : x + (-x) = -x + x = 0$$

$$5. \ t(x+y) = tx + ty$$

6.
$$(t+s)x = tx + sx$$

7.
$$t(sx) = (ts)x$$

8.
$$1x = x$$

Свойства:

- 1. Нулевой вектор единственный.
- 2. Противоположный элемент единственный

Примеры линейных пространств:

- 1. Множество векторов плоскости
- 2. Множество векторов пространства
- 3. Множество последовательностей длиный n из элементов $\mathbb R$
- 4. Многочлены от одной переменной, степени которых не превосходят п
- 5. Матрицы $n \cdot m$

Линейная зависимость векторов

Лемма. Если система векторов $x_1, x_2, ..., x_m$ содержит нулевой вектор, то она линейно зависима.

Доказательство.

Пусть $\vec{x_k} = \vec{0}$ Тогда можно взять линейную комбинацию $0x_1 + 0x_2 + ... + 1x_k + ... + 0x_m = \vec{0} \Rightarrow$ система векторов линейно зависима чтд.

Лемма. Если к линейно зависимой системе добавить новые векторы, то система останется линейно зависимой.

Доказательство.

Пусть $x_1, x_2, ..., x_m$ - линейно зависимая система. Тогда некоторый $\vec{x_k}$ выражается через остальные $x_1, ..., x_{k-1}, x_{k+1}, ..., x_m$. Если мы добавим еще какие-то векторы в системы, то $\vec{x_k}$ всё равно будет выражаться через остальные вектора. Пусть мы добавили веткоры y_1, y_2, y_l . Тогда $\vec{x_k} = t_1x_1 + ... + t_mx_m + 0y_1 + 0y_2 + ... + 9y_l$ чтд.

Лемма. Если система ненулевых векторов $a_1, ..., a_m$ линейно зависима, то найдется a_k который выражается через предыдущие векторы.

Доказательство. По условию существуют скаляры $t_1, t_2, ..., t_k$, по крайней мере один из которых не равен 0, такие, что $t_1a_1 + t_2a_2 + ... + t_ka_k = 0$.

Пусть j - наибольший индекс, для которого $t_j \neq 0$. Если j=1, то равенство $t_1a_1+t_2a_2+...+t_ka_k=0$ сводится к $t_1a_1=0$, откуда $a_1=0$, противоречие. Тогда j>1.

Перенося последнее слагаемое в другуб часть и деля на $t_i \neq 0$ получаем

$$a_j = -\frac{t_1}{t_j} \cdot a_1 - \dots - \frac{t_{j-1}}{a_j} \cdot a_{j-1} \tag{21}$$

чтд браток.

Системы образующих

Определение. Система векторов Σ векторного пространства V называется системой образующих этого пространства, если любой вектор из V линейно вырадатеся через какие-то вектора из системы Σ .

Базис линейного пространства

Определение. Базисом векторного пространства называется линейно независимая система образующих.

Замечание 1. Система векторов $e_1, e_2, ..., e_n$ линейно независима.

Доказательство. Предположим, что $x_1e_1+x_2e_2+...+x_ne_n=0$, для некоторых $x_1,...,x_n\in\mathbb{F}$.

$$x_1e_1 + x_2e_2 + ... + x_ne_n = (x_1, x_2, ..., x_n)$$
, то есть $(x_1, x_2, ..., x_n) = 0 \Leftrightarrow x_1 = x_2 = ... = x_n = 0$

Замечание 2. Если $x=(x_1,x_2,...,x_m)$ - произвольный вектора из F^n , то $x=x_1e_1+x_2e_2+...+x_ne_n$

Замечание 3. Вектора $e_1, e_2, ..., e_n$ образуют базис пространства F^n .

Доказательство. В силу 1 и 2 замечания эти вектора линейно независимы и являются системой образующих пространства F^n .

Определение. Система векторов $e_1, e_2, ..., e_n$ называется **стандартным базисом** пространства F^n .

Равномощность базисов

Теорема. Если в векторном пространстве есть базис из n векторов, то и любой базис этого пространства содержит ровно n векторов.

Доказательство. Пусть $A:=(a_1,a_2,...,a_n)$ — базис пространства, а $B:=(b_1,b_2,...,b_k)$ - другой базис. Чтобы доказать, что n=k, в силу симметрии достаточно проверить, что $k\leq n$. Пусть k>n.

Рассмотрим систему $b_1, a_1, a_2, ..., a_n$.

Это линейно зависимая система ненулевых векторов, так как вектор b_1 выражается через систему образующих А. По лемме о правом крайнем в $b_1, a_1, a_2, ..., a_n$ есть вектор, который линейно выражается через предыдущие. Это не может быть векторв b_1 - у него нет предыдущих. Значит, это какой-то a_i . Выкинув его, получим систему $b_1, a_1, a_2, ..., a_{i-1}, a_{i+1}, ..., a_n$ (*), которая останется системой образующих согласно лемме о прополке.

Теперь рассмотрим $b_2, b_1, a_1, a_2, ..., a_n$ (**).

Это линейно незавимимая система ненулевых векторов, так как вектор b_2 выражается через систему образующих (*). По лемме о правом крайнем в (**) есть вектор, выражающийся через предыдущие. Это не может быть ни b_1 , ни b_2 (у b_2 нет предыдущих, а b_1 не выражается через b_2 , так как система В линейно независимая). Значит, это какой-то a_i , $i \neq j$.

Выкинув его из (**), получим систему $b_2, b_1, a_1, a_2, ..., a_{i-1}, a_{i+1}, ..., a_{j-1}, a_{j+1}, ..., a_n$, которая останется системой образующих согласно лемме о прополке. Продолжая добавлять вектора из В и удалять вектора из А, будем получать системы из п образующих, в которых всё больше вектораов из В и всё меньше из А. Поскольку k>n, то через п шагов мы придём к системе образующих $b_n, ..., b_2, b_1$. Но тогда вектор b_{n+1} выражается через эту систему обазующих, что противоречит линейной незавимисости В. чтд браток.

Следствия.

- Если у векторного пространства V есть система из n образующих, то любая линейно независимая система в V содержит не больше n векторов.
- Если в V есть линейно независимая система из n векторов, то любая система образующих пространства V содержит не менее n векторов.

Размерность пространства

Если у векторного пространства есть конечный базис, то число векторов в базисе называется размерностью этого пространства. Размерность пространства V обозначается через dim V.

Теорема о разложении вектора по базису. Пусть V - ненулевое векторное пространство, $a_1,a_2,...,a_n$ - базис. Тогда $\forall x \in V$ существуют единственные $t_1,t_2,...,t_n$ такие, что $x=t_1a_1+t_2a_2+...+t_na_n(*)$.

Доказательство. Сущестование $t_1, t_2, ..., t_n$ ясно, поскольку базис - система образующих. Предположим, что наравне с (*) выполняется $x = s_1a_1 + s_2a_2 + ... + s_na_n$ для некоторых скаляров s_i . Вычтем одно равенство из другого и получим:

$$(t_1 - s_1)a_1 + (t_2 - s_2)a_2 + \dots + (t_n - s_n)a_n = 0$$
(22)

Поскольку вектора a_i линейно независимы, получаем, $t_i - s_i = 0 \Rightarrow t_i = s_i$ чтд браток.

Координаты вектора

Определение. Равенство $x=t_1a_1+t_2a_2+...+t_na_n$ называется разложением вектора $\,\,$ х по базису $a_1,a_2,...,a_n.$ Скаляры $t_1,t_2,...,t_n$ называются координатами вектора $\,$ в базисе $a_1,a_2,...,a_n.$ Записывается $x=(t_1,t_2,...,t_n).$

Действия с векторами в координатной форме

Подпространства линейного пространства

Определение. Непустое подмножество M векторного пространства V над полем F называется **подпространством** пространства V , если выполняются следующие условия:

- 1. если $x, y \in M$, то $x + y \in M$ (замкнутость подпространства относительно сложения векторов).
- 2. если $x \in M, t \in F$ то $tx \in M$ (замкнутость подпространства относительно умножения вектора на скаляр).

Определение. Векторные пространства V_1 и V_2 над одним и тем же полем F изоморфны, если существует биекция f из V_1 на V_2 (называемая изоморфизмом) такая, что f сохраняет операции, т.е.

$$\forall x_1, x_2 \in V_1 \forall t \in F \quad f(x_1 + x_2) = f(x_1) + f(x_2) \quad \& \quad f(tx) = t \cdot f(x)$$
 (23)

Теорема об изоморфизме векторных пространств. Любое n-мерное векторное пространство V над полем F изоморфно пространству F^n .

Доказательство. Пусть $a_1,a_2,...,a_n$ - базис пространства $V,b\in V,(t_1,...,t_n)$ - координаты вектора b в этом базисе. Определим отображение $f:V\to F^n$ правилом: $f(b):=t_1,...,t_n)$. Поскольку координаты определяют вектор однозначно, то отображение f инъективно. Сюръективность f очевидна: если $y=(s_1,...,s_n)\in F^n$, то y=f(x), где $x=s_1a_1+s_2a_2+...+s_na_n$.

Наконец, сохранение операций вытекает из замечания о координатах суммы векторов и произвежения вектора на скаляр.

Таким образом, f - изоморфизм из V на F^n . чтд браток.

Операции над подпространствами и их свойства

Нулевой вектор содержится в любом подпространстве M пространства V. **Доказательство.** Если x - произвольный вектор из M, то по второму условию из определения подпространства $0 = 0 \cdot x \in M$.

Замечание о подпространстве, порождённом набором векторов. Пусть V - векторное пространство и $a_1,a_2,...,a_k \in V$. Тогда $< a_1,...,a_k >$ - наименьшее подпространство пространства V, содержащее вектора $a_1,...,a_k$.

Доказательство. Пусть M — подпространство пространства V , содержащее вектора $a_1, a_2, ..., a_k$. По определению подпространства любая линейная комбинация векторов $a_1, a_2, ..., a_k$ лежит в M. Следовательно, $< a_1, ..., a_k > \subseteq M$. чтд браток.

Предложение о размерности подпространства. Пусть M – подпространство векторного пространства V . Тогда $dimM \leq dimV$, причем dimM = dimV тогда и только тогда, когда M = V.

Доказательство. Если М или V – нулевое пространство, то оба утверждения предложения выполняются тривиальным образом. Будем поэтому считать, что М и V – ненулевые пространства. Пусть $dim M = k,\ dim V = n.$ Неравенство $k \leq n$ следует из того, что базис М – это линейно независимая система в V , а любую линейно независимую систему векторов из V можно дополнить до базиса V по теореме о продолжении. При этои для дополнения нужно n-k векторов. Поэтому если n=k, то базис М уже является базисом V , т.е. M=V . Обратное утверждение очевидно.

Определение. Пусть V — векторное пространство, а M_1 и M_2 — его подпространства. Сумма подпространств M_1 и M_2 — это множество M_1+M_2 всех сумм векторов из M_1 с векторами из M_2 :

$$M_1 + M_2 := \{ x_1 + x_2 : x_1 \in M_1, x_2 \in M_2 \}$$
 (24)

Замечание о сумме и пересечении подпространств. Если M_1 и M_2 - подпространства V, то M_1+M_2 и $M_1\cap M_2$ также являются подпространствами V.

Доказательство. В силу замечания о нулевом векторе и подпространствах, каждое из подпространств M_1 и M_2 содержит нулевой вектор. Следовательно, $0=0+0\in M_1+M_2$ и $0\in M_1\cap M_2$. В частности, множества M_1+M_2 и $M_1\cap M_2$ непустые.

Пусть $x,y\in M_1+M_2$ и t - скаляр. Тогда $x=x_1+x_2,y=y_1+y_2$ для некоторых $x_1,y_1\in M_1$ и $x_2,y_2\in M_2$. Получаем

$$x + y = (x_1 + x_2) + (y_1 + y_2) = (x_1 + y_1) + (x_2 + y_2) \in M_1 + M_2, tx = t(x_1 + x_2) = tx_1 + tx_2 \in M_1 + M_2$$
 (25)

Итак, M_1+M_2 -подпространство в V. Далее пусть $x,y\in M_1\cap M_2$ и t - скаляр. Тогда $x,y\in M_1$ и $x,y\in M_2$. При этом имеем $x+y\in M_1, x+y\in M_2, tx\in M_1, tx\in M_2\Rightarrow x+y\in M_1, x+y\in M_2, tx\in M_1\cap M_2$, то есть $M_1\cap M_2$ - подпространство V. чтд браток.

Замечание о сумме подпространств. Если M_1 и M_2 – подпространства пространства V , то M_1+M_2 – наименьшее подпространство в V , содержащее M_1 и M_2 .

Доказательство. Если $x\in M_1$, то $x\in M_1+M_2$, поскольку $x=x+0, 0\in M_2$. Следовательно, $M_1\subseteq M_1+M_2$. Аналогично, $M_2\subseteq M_1+M_2$. Тогда $x=x_1+x_2$ для некоторых $x_1\in M_1$ и $x_2\in M_2$. Следовательно, $x_1,x_2\in M$, откуда $x=x_1+x_2\in M$. Итак $M_1+M_2\subseteq M$. чтд браток.

Теорема о размерности суммы и пересечения подпространств. Пусть V — векторное пространство, а M_1 и M_2 — его подпространства. Тогда размерность суммы подпространств M_1 и M_2 равна сумме размерностей этих подпространств минус размерность их пересечения.

Доказательство. Из предложения о размерности подпространства $dim(M_1 \cap M_2) \leq dim M_1$ и $dim(M_1 \cap M_2) \leq dim M_2$.

Положим $dim(M_1\cap M_2)=k, dim M_1=k+l, dim M_2=k+m.$ Если $M_1=\{0\}$, то очевидно $dim(M_1\cap M_2)=\{0\}, M_1+M_2=M_2$ и потому

$$dim(M_1 + M_2) = dim M_2 = dim M_1 + dim M_2 - dim(M_1 \cap M_2)$$
(26)

Аналогично разбирается случай $M_2 = \{0\}$.

Далее можно считать, что M_1 и M_2 ненулевые и $M_1\cap M_2\neq\{0\}$. Пусть $a_1,..a_k$ - базис $dim(M_1\cap M_2)$. По теореме о продолжении $a_1,..a_k$ можно дополнить как до базиса M_1 , так и до M_2 . Пусть $a_1,..a_k,b_1,..,b_l$ - базис M_1 , а $a_1,..a_k,c_1,c_2,...,c_m$ - базис M_2 .

Докажем, что базис $a_1,...a_k,b_1,...,b_l,c_1,...,c_m$ является базисом пространства M_1+M_2 . Этого достаточно для доказательства теоремы, так как число векторов в этом наборе равно

$$k + l + m = (k + l) + (k + m) - k = dim M_1 + dim M_2 - dim (M_1 \cap M_2)$$
(27)

Пусть $x\in M_1+M_2$. Тогда $x=x_1+x_2$. x_1 - лин. комбинация векторов $a_1,..a_k,b_1,..,b_l$, а x_2 - лин комбинация векторов $a_1,..a_k,c_1,c_2,...,c_m$.

Отсюда x - лин. комбинация $a_1,..a_k,b_1,...,b_l,c_1,...,c_m$.

Таким образом, $a_1,...a_k,b_1,...,b_l,c_1,...,c_m$ - система образующих пространства M_1+M_2 . Осталось до-казать, что эта система линейно независима.

Предположим, что

$$t_1a_1 + t_2a_2 + \dots + t_ka_k + s_1b_1 + \dots + s_lb_l + \dots + r_1c_1 + r_2c_2 + \dots + r_mc_m = 0$$
(28)

Нужно доказать, что все эти скаляры равны нулю.

Положим $y=s_1b_2+s_2b_2+...+s_lb_l$. Очев $y\in M_1$. С другой стороны из (28) вытекает, что

$$y = -t_1 a_1 - t_2 a_2 - \dots - t_k a_k - r_1 c_1 - r_2 c_2 - \dots - r_m c_m \in M_2$$
(29)

Следовательно $y \in M_1 \cap M_2$. Тогда y - это линейная комбинация $a_1,...,a_k$. То есь существуют такие скаляры $q_1,q_2,...,q_k$, что

$$y = s_1 b_1 + s_2 b_2 + \dots + s_l b_l = q_1 a_1 + q_2 a_2 + \dots + q_k a_k$$

$$\tag{30}$$

Следовательно

$$q_1a_1 + q_2a_2 + \dots + q_ka_k - s_1b_1 - s_2b_2 - \dots - s_lb_l = 0$$
(31)

Покскольку $a_1,a_2,...,a_k,b_1,...,b_l$ образуют базис пространства M_1 , то они линейно независимы. Поэтому линейная комбинация (31) тривиальна. Следовательно, равенство (28) принимает вид $t_1a_1+t_2a_2+...+t_ka_k+r_1c_1+r_2c_2+...+r_mc_m=0$.

Учитывая, что вектора $a_1,...,a_k,c_1,...,c_m$ образуют базис пространства M_2 , получаем, что $t_1=t_2=...=t_k=r_1=...=r_m=0$. чтд браток.

Опредление. Пусть V — векторное пространство, а M_1 и M_2 — его подпространства. Говорят, что сумма подпространств M_1 и M_2 является их **прямой суммой**, если $M_1\cap M_2=\{0\}$. Прямая сумма подпространств M_1 и M_2 обозначается через $M_1\oplus M_2$.

Замечание о базисе прямой суммы подпространств. Если $V=M_1\oplus M_2, b_1, b_2, ..., b_l$ —базис M_1 , а $c_1, c_2, ..., c_m$ - базис M_2 , то $b_1, ..., b_l, c_1, ..., c_m$ - базис пространства V.

Теорема о прямой сумме подпространств. Пусть V — векторное пространство, а M_1 и M_2 — его подпространства. Следующие условия эквивалентны

- 1. $M_1 + M_2$ является прямой суммой подпространств M_1 и M_2 .
- 2. $dim(M_1 + M_2) = dim M_1 + dim M_2$

3. любой вектор из M_1+M_2 единственным образом представим в виде суммы вектора из M_1 и вектора из M_2 .

4. нулевой вектор пространства V единственным образом представим в виде суммы вектора из M_1 и вектора из M_2 .

Доказательство. Эквивалентность условий 1) и 2) непосредственно вытекает из теоремы о размерности суммы и пересечения и того факта, что размерность нулевого пространства равна 0. Импликация $3) \Rightarrow 4)$ очевидна. Поэтому достаточно доказать импликации $1) \Rightarrow 3)$ и $4) \Rightarrow 1)$.

- 1) \Rightarrow 3). Пусть $x \in M_1 + M_2$. По определению суммы подпространств $x = x_1 + x_2, x_1 \in M_1, x_2 \in M_2$. Остаётся доказать, то такое представление вектора х единственно. Предположим, что $x = y_1 + y_2, y_1 \in M_1, y_2 \in M_2$. Тогда мы имеем $x_1 y_1 = y_2 x_2$. Ясно, что $x_1 y_1 \in M_1, y_2 x_2 \in M_2$. Следовательно $x_1y_1 = y_2 x_2 \in M_1 \cap M_2$. Но $M_1 \cap M_2 = \{0\}$. Поэтому $x_1y_1 = y_2 x_2 = 0$, откуда $x_1 = y_1, x_2 = y_2$. чтд браток.
- $4) \Rightarrow 1$). Предположим, что $M_1 \cap M_2 \neq \{0\}$, то есть существует ненулевой вектор $x \in M_1 \cap M_2$. Тогда вектор 0 может быть двумя различными способами представлен в виде суммы вектора из M_1 и вектора из M_2 : 0 = x + (-x) и 0 = 0 + 0. Мы получили противоречие с условием 4). чтд браток.

Замечание о прямой сумме подпространств

$$V = M_1 \oplus M_2 \Leftrightarrow \dim(M_1 + M_2) = \dim M_1 + \dim M_2 = \dim V \tag{32}$$

Необходимость сразу следует из теоремы о прямой сумме подпространств. Достаточность следует из теоремы о размерности сумм и пересечения. чтд браток.

Определение. Пусть $V=M_1\oplus M_2$, $x\in V$. В силу теоремы о прямой сумме подпространств существуют однозначно определенные векторы $x_1\in M_1$ и $x_2\in M_2$ такие, что $x=x_1+x_2$. Вектор x_1 называется проекцией x на M_1 параллельно M_2 , а вектор x_2 – проекцией x на x_2 параллельно x_3 0.

Алгоритм нахождения проекции вектора на подпространство. Пусть $V=M_1\oplus M_2,\ x\in V.$ Предположим, что нам известен базис $a_1,...,a_k$ подпространства M_1 и базис $b_1,...,b_l$ подпространства $M_2.$ В силу замечания о базисе прямой суммы подпространств $a_1,a_2,...,a_k,b_1,b_2,...,b_l$ - базис пространства V. Найдем координаты вектора x в этом базисе. Пусть они имеют вид $(t_1,...,t_k,s_1,...,s_l).$ Тогда $t_1a_1+...+t_ka_k+s_1b_1+...+s_lb_l$ - проекция x на M_1 параллельно M_2 , а $s_1b_1+...+s_lb_l$ - проекция x на $x_1a_2+...+x_lb_l$ - проекция x на $x_1a_2+...+x_lb_l$

Определение. Пусть V — векторное пространство, $x_0 \in V$, а M — подпространство в V. Множество всех векторов вида $x_0 + y$, где $y \in M$, называется линейным многообразием в V и обозначается через $x_0 + M$. Вектор x_0 называется начальным вектором многообразия $x_0 + M$, а подпространство М — направляющим подпространством этого многообразия. Размерность подпространства М называется размерностью многообразия $x_0 + M$.

Примеры

- Если $x_0=0$, то $x_0+M=M$. Таким образом, всякое подпространство пространства V является линейным многообразием в V
- Если $M = \{0\}$, то $x_0 + M = \{x_0\}$. Таким образом, всякий вектор из V является линейным многообразием в V (размерности 0).
- Обычные прямые и плоскости трехмерного пространства линейные многообразия.

Понятие линейного отображения

Пусть V и W — векторные пространства над одним и тем же полем F. Отображение $A:V\to W$ называется линейным оператором, если для любых векторов $x1,x2\in V$ и любого скаляра $t\in F$ выполняются равенства $A(x_1+x_2)=A(x_1)+A(x_2), A(tx_1)=tA(x_1)$

Относительно первого равенства говорят, что A сохраняет сумму векторов, относительно второго – что A сохраняет произведение вектора на скаляр. Линейные операторы иначе называют линейными отображениями.

Важный специальный случай возникает, когда пространства V и W совпадают, т.е. W=V. Тогда говорят, что A – линейный оператор на пространстве V или что A – линейный оператор пространства V. Линейные операторы на V иначе называют линейными преобразованиями.

Свойства линейного оператора Пусть V и W — векторные пространства над полем F, а $A:V \to W$ — линейный оператор. Тогда:

- 1. A(0) = 0
- 2. $A(\lambda_1v_1+\lambda_2v_2+...+\lambda_mv_m)=\lambda_1A(v_1)+...+\lambda_mA(v_m)$ для любых векторов $v_1,v_2,...,v_m\in V$ и любых скаляров $\lambda_1,...,\lambda_m\in\mathbb{F}$.

Доказательство. Первое свойство вытекает из того, что $A(0) = A(0 \cdot 0) = 0 \cdot A(0) = 0$.

Второе свойство выводится из определения линейного оператора очевидной индукцией по m. чтд браток доказательство огонь.

Теорема существования и единственности линейного оператора

Пусть V и W — векторные пространства над полем F, причем dimV = n > 0. Пусть $P = \{p_1, ..., p_n\}$ — базис пространства V, а $w_1, ..., w_n$ — произвольные вектора из W. Тогда существует единственный линейный оператор $A: V \to W$ такой, что $A(p_i) = w_i$ для всех i = 1, 2, ..., n.

Доказательство. Существование. Пусть $x \in V$, а $(x_1,...,x_n)$ — координаты вектора x в базисе P. Определим оператор $A:V\to W$ правилом $A(x):=x_1w_1+x_2w_2+...x_nw_n$. В силу единственности координат вектора в базисе это определение корректно (т. е. образ вектора x под действием x определен однозначно). Из свойств координат суммы векторов и произведения вектора на скаляр вытекает, что этот оператор линеен. Осталось заметить, что для всякого x потому x имеет в базисе x координаты x потому x и потому x потому x и потому x потому

Единственность. Пусть $B:V\to W$ - линейный оператор такой, что $B(p_i)=w_i$ для всех i=1,...,n. Пусть $x\in V$, а $(x_1,...,x_n)$ – координаты вектора x в базисе P. Тогда $x=x_1p_1+...+x_np_n$. В силу замечания о свойствах линейного оператора имеем

$$B(x) = B(x_1p_1 + \dots + x_np_n) = x_1B(p_1) + \dots + x_nB(p_n) = x_1w_1 + \dots + x_nw_n = A(x)$$
(33)

Следовательно B = A. чтд детка.

Произведение отображений

Определение Пусть V и W — векторные пространства над полем F, $A:V\to W$ — линейный оператор, а $t\in\mathbb{F}$. Произведением оператора A на скаляр t называется оператор $B:V\to W$ задаваемый правилом B(x):=tA(x) для всех $x\in V$. Произведение оператора A на скаляр t обозначается через tA.

Линейное пространство линейных отображений

Предложение о пространстве линейных операторов.

Произведение линейного оператора на скаляр является линейным оператором. Множество Hom(V,W) с операциями сложения операторов и умножения оператора на скаляр является векторным пространством.

Доказательство. Пусть $A, B \in Hom(V), x, y \in V, t, s \in \mathbb{F}$. Тогда

$$(tA)(x+y) = t(A(x+y)) = t(A(x) + A(y)) = tA(x) + tA(y) = (tA)(x) + (tA)(y)$$
(34)

$$(tA)(sx) = t(A(sx)) = t(sA(x)) = (ts)(A(x)) = s(tA(x)) = s((tA)(x))$$
(35)

Следовательно, tA - линейный оператор.

Похожим образом получаем, что $1 \cdot A = A$. С учетом свойств суммы операторов, мы получаем, что в Hom(V,W) выполнены все аксиомы векторного пространства. уничтожено.

Теорема о пространствах линейных операторов и матриц.

Если V и W — векторные пространства над полем F, dimV=n и dimW=k, то векторные пространства Hom(V,W) и $F^{k\times n}$ изоморфны.

Доказательство. Зафиксируем в V базис $P=\{p_1,p_2,...,p_n\}$, а в W — базис $Q=\{q_1,q_2,...,q_k\}$. Определим отображение $\phi: Hom(V,W) \to F^{k\times n}$ правилом: если $A:V \to W$ — линейный оператор, то $\phi(A)$ — матрица оператора A в базисах P и Q. Пусть $A,B\in Hom(V)$ и $t\in F$. Надо проверить, что отображение ϕ биективно и выполнены равенства

$$\phi(A+B) = \phi(A) + \phi(B) \tag{36}$$

$$\phi(tA) = t\phi(A) \tag{37}$$

В матрице $\phi(A+B)$ по столбцам записаны координаты векторов $(A+B)(p_i)$ в базисе Q, а в матрицах $\phi(A)$ и $\phi(B)$ – координаты векторов $A(p_i)$ и $B(p_i)$ соответственно в том же базисе. Поскольку $(A+B)(p_i)=A(p_i)+B(p_i)$, координаты вектора $(A+B)(p_i)$ равны сумме координат векторов $A(p_i)$ и $B(p_i)$. Первое из равенств

$$\phi(A+B) = \phi(A) + \phi(B) \tag{38}$$

$$\phi(tA) = t\phi(A) \tag{39}$$

доказано. Второе из них проверяется вполне аналогично.

Проверим, что отображение ϕ биективно. Если $A,B\in Hom(V,W)$ и $\phi(A)=\phi(B)$, то из определения матрицы линейного оператора вытекает, что операторы A и B одинаково действуют на базисных векторах пространства V . Но тогда A=B, так как линейный оператор однозначно определяется своим действием на базисных векторах. Следовательно, отображение ϕ инъективно.

Осталось доказать, что ϕ сюръективно. Пусть $A=(a_{ij})$ – произвольная матрица размера $k\times n$. Для всякого j=1,2,...,n положим $w_j=a_{1j}q_1+a_{2j}q_2++a_{kj}q_k$. В силу теоремы существования и единственности линейного оператора существует линейный оператор А такой, что $A(p_i)=w_i$ для всех i=1,2,...,n. Из определения матрицы оператора вытекает, что $A_{P,Q}=A$, т.е. $\phi(A)=A$. Следовательно, отображение ϕ сюръективно. убито фух.

Следствие о размерности пространства линейных операторов

Если V и W – векторные пространства над полем F, dimV = n и dimW = k, то dimHom(V, W) = kn.

Свойства произведения

Матрица линейного отображения

Определение. Пусть V и W - векторные пространства над полем F ,

причем dimV=n>0, dimW=k>0. Пусть $P=\{p_1,...,p_n\}$ - базис пространства V, а $Q=\{q_1,...,q_k\}$ - базис пространства W. Матрицей линейного оператора $A:V\to W$ в базисах P и Q называется $k\times n$ - матрица, итый столбец которой состоит из координат вектора $A(p_i)$ в базисе Q,i=1,2,...,n. Эта матрица обозначается $A_{P,Q}$ или просто A, если базисы зафиксированы.

Итак если

$$A(p_1) = a_{11}q_1 + a_{21}q_2 + \dots + a_{k1}q_k,$$

$$A(p_2) = a_{12}q_1 + a_{22}q_2 + \dots + a_{k2}q_k,$$

$$\dots$$

$$A(p_n) = a_{1n}q_1 + a_{2n}q_2 + \dots + a_{kn}q_k,$$
(40)

то
$$A_{P,Q} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{k1} & a_{k2} & \dots & a_{kn} \end{pmatrix}$$

Если W = V, Q = P, то говорят о матрице оператора в базисе P.

Определение. Пусть V и W — векторные пространства над полем F, а A и B — линейные операторы из V в W. Суммой операторов A и B называется оператор $S:V\to W$, задаваемый правилом S(x):=A(x)+B(x) для всех $x\in V$. Сумма операторов A и B обозначается через A+B.

Множество всех линейных операторов из V в W обозначается Hom(V, W).

Предложение о свойствах суммы операторов.

Сумма линейных операторов является линейным оператором. Множество Hom(V,W) с операцией сложения операторов является абелевой группой.

Доказательство. Пусть $A,B\in Hom(V),S=A+B.\ \forall x,y\in V,t\in\mathbb{F}$ имеем

$$S(x+y) = A(x+y) + B(x+y) = A(x) + A(y) + B(x) + B(y) = (A(x) + B(x)) + (A(y) + B(y)) = S(x) + S(y)$$

$$(41)$$

$$S(tx) = A(tx) + B(tx) = tA(x) + tB(x) = t(A(x) + B(x)) = tS(x)$$
(42)

Следовательно, оператор S линеен.

Далее, если $A,B,C\in Hom(V,W)$, то

$$(A+B)(x) = A(x) + B(x) = B(x) + A(x) = (B+A)(x)$$
(43)

$$((A+B)+C)(x) = (A+B)(x) + C(x) = (A(x)+B(x)) + C(x) = = A(x) + (B(x)+C(x)) = A(x) + (B+C)(x) = (A+(B+C))(x)$$
(44)

Получается A+B=B+A, (A+B)+C=A+(B+C). Нейтральным элементом по сложению является нулевой оператор O, поскольку (A+O)(x)=A(x)+O(x)=A(x)+0=A(x)

Обратным по сложению является оператор -А.

Предложение доказано. туда его.