Name: Harshit Jain Access ID: hmj5262

Recitation: 8

Problem 0 Points:

Acknowledgements

- (a) I did not work in a group.
- (b) I did not consult without anyone my group members.
- (c) I did not consult any non-class materials.

Problem 1

Points:

Compare Growth Rates

(a)
$$n^{1.5} = \Omega(n^{1.3}) :: n^{1.3} < n^{1.5}$$

(b)
$$2^{n-1} = \Theta(2^n)$$
 : $2^{n-1} = \frac{2^n}{2}$ and constants (in this case, $\frac{1}{2}$) does not matter

(c)
$$n^{1.3logn} = \Omega(n^{1.5})$$
 : asymptotically $n^{1.3logn} > n^{1.5}$

(d)
$$3^n = \Omega(n \cdot 2^n)$$
 : asymptotically $3^n > n \cdot 2^n$

(e)
$$(log n)^{100} = O(n^{0.1})$$
 : power of $log n$ will only weaken the infinity of $log n$ and $n^{0.1} > (log n)^{100}$

(f)
$$n = \Omega((logn)^{log(logn)})$$
 : infinity of $(logn)^{log(logn)} >$ infinity of n

(g)
$$2^n = \Omega(n!)$$
 : infinity of exponential function is greater than the infinity of factorial function

(h)
$$log(e^n) = O(n \cdot log n)$$
 : $log(e^n) = n$ and we know that $n < nlog n$

(i)
$$n + logn = \Theta(n + (logn)^2)$$
 : dominating term is n and powers of logn will not affect infinities

(j)
$$5n + \sqrt{n} = \Omega(\log n + n)$$
 : comparable functions are \sqrt{n} and $\log n$; $\sqrt{n} > \log n$

Problem 3

Points:

Your solution starts here ...