VJEROJATNOST I STATISTIKA

ZADACI ZA VJEŽBU

9. Zakon velikih brojeva i centralni granični teorem

FER, Zagreb

SADRŽAJ:

Zadaci za vježbu iz udžbenika Nevena Elezovića: Slučajne varijable Cjelina 9 – Zakon velikih brojeva i centralni granični teorem

*** Prije rješavanja zadataka treba proći teoretsko gradivo ove cjeline ***

1. Formule	3
2. Zadaci	4
3. Rješeni zadaci	6
4. Službena rješenja	8
5. Literatura	9

NAPOMENA

Zadaci KOJE TREBA rješavati su od 1.-6. zadatka, ostali zadaci su teoretskog tipa.

Zadaci koji nedostaju: -

Posebna zahvala LORD OF THE LIGHT na rješenjima nekih zadataka!

FORMULE:

9. ZAKON VELIKIH BROJEVA I CENTRALNI GRANIČNI TEOREM

Konvergencija po vjerojatnosti: $\lim_{n \to \infty} P(|X_n - Y| > \varepsilon) = 0$

NEJEDNAKOSTI:

Nejednakost Markova:

Ako X poprima nenegativne vrijednosti, onda za svaki $\varepsilon > 0$ vrijedi:

$$P(X \ge \varepsilon) \le \frac{E(X)}{\varepsilon}$$

L_p nejednakost:

Za svaku slučajnu varijablu X s očekivanjem m_X: $P(|X-m_X| \ge \varepsilon) \le \frac{E|X-m_X|^p}{\varepsilon^p}$

Nejednakost Čebiševa:

Posebince za p=2 vrijedi

$$P(|X-m_X| \geq \varepsilon) \frac{D(X)}{\varepsilon^2}$$

ZAKON VELIKIH BROJEVA:

Slabi zakon velikih brojeva:

$$\frac{1}{n}\sum_{k=1}^{n}(X_{k}-EX_{k})\to 0, \quad kad \ n\to\infty$$

Jaki zakon velikih brojeva:

$$\frac{1}{n}\sum_{k=1}^{n}X_{k}\to m$$

CENTRALNI GRANIČNI TEOREM:

Centralni granični teorem (C.G.T.):

 X_n niz identičkih distribuiranih nezavisnih slučajnih varijabli s očekivanjem m i disperzijom σ^2 .

$$\frac{\sum_{k=1}^{n}(X_k-m)}{\sigma\sqrt{n}}\to \mathcal{N}(0.1)$$

Teorem Moivre-Laplace:

Normirana binomna razdioba teži po distribuciji k jedničnoj normalnoj razdiobi

$$\frac{\mathcal{B}(n,p)-np}{\sqrt{npq}} \longrightarrow \mathcal{N}(0,1)$$

ZADACI:

§ 9. Zadatci za vježbu

- 1. Slučajna varijabla X ima matematičko očekivanje E(X)=1 i standardnu devijaciju $\sigma(X)=0.2$. Ocijeni vjerojatnost događaja $A=\left\{0.5 < X < 1.5\right\}$.
- 2. Broj sunčanih dana u nekom gradu u toku jedne godine je slučajna varijabla sa matematičkim očekivanjem 75 dana. Pokaži da je vjerojatnost da u toku jedne godine u tom gradu ne bude više od 200 sunčanih dana veća od $\frac{5}{8}$.
- 3. Nenegativna slučajna varijabla X ima matematičko očekivanje E(X)=1 i standardnu devijaciju $\sigma(X)=0.4$. Da li događaj $A=\{0< X<3\}$ ima vjerojatnost veću od 90 % ?
- **4.** Matematičko očekivanje i standardna devijacija brzine vjetra na nekoj visini su jednaki: E(X) = 25 km/h, $\sigma(X) = 4.5 \text{ km/h}$. Kolika se brzina vje-

tra može očekivati na toj visini sa vjerojatnošću ne manjom od 0.9?

- 5. Nenegativna slučajna varijabla X ima matematičko očekivanje E(X)=1 i standardnu devijaciju $\sigma(X)=0.4$. Pokaži da je vjerojatnost događaja $A=\{X<3\}$ veća od 95%!
- 6. Ocijeni vjerojatnost da odstupanje proizvoljne slučajne varijable od njezinog očekivanja nije veće od 3σ , gdje je σ devijacija te varijable. Kolika je ta vjerojatnost ako slučajna varijabla ima normalnu razdiobu?
- 7. Neka su X_1 , X_2 ,...nezavisne identički distribuirane slučajne varijable s konačnim očekivanjem $a = E(X_1)$ i disperzijom $\sigma^2 = D(X_1)$. Dokaži

da tada vrijedi

$$egin{aligned} \overline{X} &= rac{1}{n} \sum_{k=1}^n X_k
ightarrow a, \ S^2 &= rac{1}{n} \sum_{k=1}^n (X_k - \overline{X})^2
ightarrow \sigma^2, \end{aligned}$$

kad $n \to \infty$.

* * *

- 8. Pokaži da binomna razdioba B(n,p) u graničnom prelazu $n\to\infty$, $p\to 0$, np=a (konstanta) prelazi u Poissonovu P(a).
- 9. Neka je X_1, X_2, \ldots niz nezavisnih identički distribuiranih slučajnih varijabli koje uzimaju vrijednosti 0 ili 1 s vjerojatnostima $\frac{1}{2}$. Neka je $X=0, X_1X_2\ldots$ binarni prikaz broja X. Dokaži da X ima jednoliku razdiobu na intervalu [0,1].
- 10. Neka su X_1, X_2, \ldots nezavisne slučajne varijable s jednolikom razdiobom na intervalu [-1, 1]. Dokaži, s pomoću Levyjevog teorema

$$\frac{\sum_{k=1}^{n} X_k}{\sqrt{3n}} \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}(0,1).$$

* * *

11. Neka su X_1,X_2,\ldots nezavisne slučajne varijable, s Poissonovom razdiobom, $X_k \sim P(\lambda_k)$. Ako je $\sum_{k=1}^{\infty} \lambda_k = \infty$, dokaži da

$$\frac{\sum_{k=1}^{n} X_k - \sum_{k=1}^{n} \lambda_k}{\sqrt{\sum_{k=1}^{n} \lambda_k}} \xrightarrow{\mathcal{D}} \mathcal{N}(\mathbf{0}, \mathbf{1}).$$

* *

12. Slučajna varijabla X zadana je gustoćom razdiobe

$$f(x) = 1 - |x|, \qquad |x| < 1.$$

Odredi njezinu karakterističnu funkciju.

13. Odredi karakterističnu funkciju slučajne varijable X čija je gustoća razdiobe

$$f(x) = \frac{1 - \cos x}{\pi x^2}.$$

14. Slučajna varijabla X ima funkciju gustoće $f(x)=a\cdot\sin x$, $0\leqslant x\leqslant \pi$. Odredi karakterističnu funkciju i pomoću nje očekivanje i disperziju slučajne varijable X.

Provjeri nužnost ovih uvjeta: karakteristična funkcija varijable X zadovoljava gornje uvjete. (Dokaz dovoljnosti vrlo je složen.)

- **24.** Neka su $\{\vartheta_k\}$ karakteristične funkcije te $a_k > 0$, $\sum a_k = 1$. Pokaži da je i $\vartheta = \sum a_k \vartheta_k$ karakteristična funkcija.
- 25. Neka je ϑ karakteristična funkcija. Dokaži da su funkcije

$$t\mapsto e^{\vartheta(t)-1},$$

$$t\mapsto \frac{1}{2-\vartheta(t)}$$

15. Odredi karakterističnu funkciju slučajne varijable *X* zadane gustoćom

$$f(x) = e^{-x} , \qquad x > \mathbf{0}$$

Izračunaj $E(X^n)$.

- 16. Neka X ima jediničnu normalnu razdiobu, $X \sim \mathcal{N}(0,1)$. Koristeći karakterističnu funkciju, izračunaj $E(X^n)$, $n \in \mathbf{N}$.
- 17. Odredi karakterističnu funkciju $\varphi_X(t)$ slučajne varijable X zadane gustoćom

$$f(x) = \frac{1}{2} e^{-|x-1|}, \quad x \in \mathbf{R}$$

te izračunaj njezino očekivanje.

18. Zadana je karakteristična funkcija

$$\vartheta(t) = e^{iat - b|t|}.$$

Odredi gustoću razdiobe pripadne slučajne varijable.

19. Pokaži da funkcija

$$artheta(t) = \left\{ egin{array}{ll} \sqrt{1-t^2}, & & |t| \leqslant 1, \ 0, & & |t| > 1. \end{array}
ight.$$

nije karakteristična funkcija niti jedne razdiobe.

20. Pokaži da je

$$\vartheta(t) = \sum_{k=0}^{\infty} a_k \cos kt,$$

- ($a_k > 0, \sum a_k = 1$) karakteristična funkcija i odredi pripadnu razdiobu.
- **21.** Izračunaj vjerojatnost događaja $A = \{X + Y > 0\}$, ako su X i Y nezavisne slučajne varijable zadane svojim karakterističnim funkcijama

$$\vartheta_X(t) = \frac{1}{2}(1 + \cos t),$$

$$\vartheta_Y(t) = \frac{1}{4}(3 + \cos t).$$

22. Neka je $\vartheta_X(t) = \cos^2 t$ karakteristična funkcija slučajne varijable X. Ako je $Y = X + X^2$, odredi karakterističnu funkciju $\vartheta_Y(t)$ varijable Y.

* * *

- 23. Bochnerov teorem. $\vartheta R \to C$ je karakteristična funkcija neke slučajne varijable ako i samo ako zadovoljava uvjete:
 - a) $\vartheta(0) = 1$,
 - b) θ je neprekinuta,
- c) ϑ je pozitivno definitna, tj. za svaki $n \in \mathbb{N}$, sve brojeve $z_1, \ldots, z_n \in \mathbb{C}$, $t_1, \ldots, t_n \in \mathbb{R}$ vrijedi

$$\sum_{i,k=1}^n z_j \overline{z_k} \vartheta(t_j - t_k) \geqslant \mathbf{0}.$$

26. Neka je ϑ karakteristična funkcija. Pokaži da je i

$$t \mapsto \frac{1}{t} \int_0^t \vartheta(u) du$$

također karakteristična funkcija.

27. Dokaži sljedeće svojstvo karakterističnih funkcija:

$$|\vartheta(t+h)-\vartheta(t)|\leqslant \sqrt{2(1-\operatorname{Re}\vartheta(h))}.$$

28. Ako za neki T>0 karakteristična funkcija ϑ ima svojstvo $\vartheta(T)=1$, dokaži da je tada ϑ periodička funkcija, te da je T njezin period.