Alkalmazott Fizikai Módszerek Laboratórium

Pásztázó elektronmikroszkópia

Csörnyei Géza

Eötvös Loránd Tudományegyetem Fizikus MSc I

'E' mérőcsoport

Mérés dátuma: 2019.11.08.

Mérés vezetője: Kolonits Tamás

1. Bevezető

Mérésünk során megismerkedtünk a pásztázó elektronmikroszkópia elméletének, valamint használatának alapjaival. A méréseink kiértékelése során egy ismert méretű kalibrációs rácsról készült felvétel segítségével meghatároztuk egy ismeretlen rács, illetve egy légy szemének méreteit.

2. Méréshez használt eszközök

- Jeol JSM-25S típusú elektronmikroszkóp
- Számítógép a mikroszkóppal történő mérés elvégzésére

3. Rövid elméleti összefoglaló

Mérésünk során pásztázó elektronmikroszkópot használtunk, mely a nevéből látszó módon elektronokat használ a képalkotáshoz. A mikroszkóp katódjából kilépő elektronokat egy szabályozható erősségű elektromos tér gyorsítja a szükséges energiára. Az így felgyorsított elektronokat ezt követően ráfókuszáljuk a minta egy adott pontjára, ahol ennek következtében különböző termékek keletkeznek. Ezen termékek közül számunkra a szekunder és a visszaszóródott elektronok a legfontosabbak, a pásztázó elektronmikroszkópiában ezeket használjuk. A szekunder elektronok a minta nyaláb felőli oldalán megjelenő elektronok, melyek elsősorban a gyengén kötött, külső elektronhélyon elhelyezkedő elektronok, melyeket a nyaláb kiüt a helyükről és topologikus, azaz felületi információt tartalmaznak a mintáról. A visszaszórt elektronok a nyalábból rugalmasan és rugalmatlanul, nagy szögű szórást szenvedett részecskék. Ezen elektronok képalkotásra használhatók. Ezen elektronokat egy a mikroszkóban található Everhard–Thornley-detektor alakította mérhető jellé. Mérésünk során csak a szekunder elektronokat vizsgáltuk, melyek a lehetséges legjobb felbontást szolgáltatják. A jó felbontás mellett a szekunder elektronok az anyagi minőségben vett eltérések megjelenítésére is használhatók, ugyanis ezen képeken a kontraszt jelentősen függ a letapogatott anyag atomjainak rendszámától.

A mérés során a behelyezett mintát a mikroszkóp pontról pontra letapogatta, majd a létrejövő termékeket mérve modulálta a képernyő egyes pixeleinek intenzitását. Az így kapott kép rendkívül jó mélységélességgel rendelkezett, a SEM képeken a különböző mélységben elhelyezkedő mintarészletek egyazon képek élesek voltak.

4. Mérés menete

A mérés megkezdéséhez a legelső elvégzendő feladatunk a minta mikroszkópba történő behelyezése volt. A minták a méréshez előre el lettek készítve, így megfelelően meg lettek tisztítva, valamint a biológiai minták kellőképpen ki lettek szárítva (mely a minta vákuumba történő behelyezése miatt volt fontos), valamint a nem vezető minták be lettek vonva egy vékony vezető (például arany) réteggel. Kiválasztott mintát egy csipesz segítségével kivettük a tárolóedényből, majd behelyeztük a mintatartóba. A lehetséges szennyeződések elkerülése végett ezen lépéshez kesztyű viselése volt szükséges. A mintatartóba történő behelyezést követően beállítottuk a minta magasságát úgy, hogy a mintatartó tetejével egy szintben legyen a minta. A mintatartó ezt követően visszakerült a mikroszkópba, majd a tartószerkezetet ütközésig visszatoltuk.

A vezérlőpanelen megnyomva az EVAC gombot a mintát vákuum alá helyeztük, mely folyamathoz több percre is szükség volt. A vákuum létrejötte után be kellett állítanunk a mikroszkóp optimális intenzitását. Optimális intenzitás esetén nem csak a rendszer munkapontját állítjuk be, de a katód élethosszát is megnöveljük. Ezen beállítást követően a kontrasztot (Contrast) és a fényerőt (Brightness) változtatva megkerestük a vizsgálni kívánt tartományt. A tartományon egy kicsi pontszerű objektumot keresve beállítottuk a rendszer fókuszát (Focus Coarse és Focus Fine), majd korrigáltuk a lencse asztigmatikus hibáját (Stigmator). Ezt követően kisebbre állítottuk a nagyítást, majd felvettünk a kívánt tartományról egy képet, melyet a számítógépre továbbítottunk. A gépen látott fényerő és kontraszt nem egyezik meg a vezérlőpulton látottal, ezért a számítógép által számolt intenzitás hisztogramok segítségével a megfelelőre állítottuk ezen értékeket.

A képek elkészítése és a mérés elvégzése után levettük a katódról a feszültséget, majd lekapcsoltuk a gyorsítófeszültséget. A mikroszkóp alaphelyzetbe állításához megnyomtuk a *VENT* gombot, mely hatására a mintatérbe levegőt engedtünk, majd kicserélhettük a mintát, a fentebb már ismertetett módon.

5. Mérések kiértékelése

5.1. Kalibráció

A kiértékelések elvégzéséhez meg kellett határoznunk az egyes ábrákon látható alakzatok valódi fizikai méreteit. Ehhez egy hatszögrácsokat tartalmazó réz mintát használtunk. A kalibrációhoz adott volt egy a mintáról készült kép, amelyen be voltak jelölve az egyes távolságok. A kép a 1. ábrán látható.

1. ábra. A kalibrációs rácsról készült kép az egyes fizikai távolságokkal

N (L)	T3: :1 : 4 4 []	M(4 + 14 1	TZ 1:1 2 : 2 C 1 4 [
Nagyítás (x)	Fizikai méret $[\mu m]$	Méret a képen [px]	Kalibrációs faktor $[\mu m/px]$
150	61.55	63.03	0.977
150	64.88	66.85	0.970
150	21.57	23.26	0.927
150	18.88	21.01	0.899
300	61.55	130.14	0.473
300	64.88	139.46	0.465
300	21.57	47.51	0.454
300	18.88	44.05	0.429
700	61.55	296.20	0.208
700	64.88	314.38	0.206
700	21.57	109.13	0.198
700	18.88	104.08	0.181
1000	21.57	155.19	0.139
1000	18.88	139.01	0.136
2000	21.57	315.29	0.068

1. táblázat. A készített képek vizsgálata során kapott értékek

A táblázatban látható adatok segítségével kiszámoltam a kalibrációs faktor értékeket az egyes nagyítások esetére, melyet egyszerűen a kapott értékek átlagának tekintettem. Több mérés esetén lehetőségem volt a statisztikus hiba becslésére is, a kalibrációs faktorok szórásának számításával. Amennyiben ehhez nem volt elegendő mérés, ott a többi nagyítás esetén számolt relatív hibát alkalmaztam. A kalibrációhoz készített képek az oldal alján, valamint a következő oldalon láthatók.

Nagyítás (x)	Kalibrációs faktor $[\mu m]$	Hiba $[\mu m]$
150	0.943	0.032
300	0.455	0.017
700	0.198	0.011
1000	0.138	0.002
2000	0.068	0.002

2. táblázat. A számolt kalibrációs faktor értékek

2. ábra. A kalibrációhoz használt képek, melyek a rézrácsról készültek. A bal panelen a 150x-es, a jobb panelen a 300x-os nagyítás mellett készült kalibrációs kép látható.

3. ábra. A kalibrációhoz használt képek, melyek a rézrácsról készültek. A bal panelen a 700x-os, a jobb panelen a 1000x-es nagyítás mellett készült kalibrációs kép látható.

4. ábra. A kalibrációhoz használt 2000x-es nagyítás mellett készült kép.

5.2. Szilícium minta mérésének kiértékelése

A szilícium mintán mesterségesen kialakított mintázatok voltak láthatók, melyekre példa a 5. ábrán látható. Feladatunk a mintán látható téglalapok területének megmérése, illetve ezen területek és a hozzájuk tartozó téglalapok mellett látható számok közötti kapcsolat elemzése volt. A nagyítás, a látható, valamint a kalibrációs faktorok segítségével számolt terület, valamint a téglalapok mellett látható számok a 3. táblázatban láthatók.

5. ábra. Példa a szilícium mintán látható mintázatra

Sorszám	Nagyítás (x)	1.terület (px)	2. terület (px)	3. terület (px)	Átlagos terület	Hiba
1.78	300	17945.00	18141.47	17784.72	17957.06	145.89
1.59	300	22450.00	22322.55	23052.14	22608.23	318.17
1.41	300	28589.53	30467.98	28730.51	29262.67	854.22
1.26	300	34608.34	34682.60	35276.25	34855.73	298.89
1.12	200	20610.00	20289.62	20229.00	20376.21	167.16

3. táblázat. A szilícium minta képeiről leolvasott és számolt értékek

A fent táblázatban összefoglalt értékeket át kellett váltani valós fizikai méretekké, melyet a kalibrációs faktorokkal tehettem meg. Minden átlagos értéket, valamint a hibákat megszoroztam a megfelelő kalibrációs faktorok négyzetével (mivel terület mennyiségekről van szó), majd a kapott értékeket a 4. táblázatban foglaltam össze. A táblázatban látható hibákat a kalibrációs faktor hibájának és a területmérés statisztikus hibájából hibaterjedéssel számoltam.

Sorszám	Terület $[\mu m^2]$	Hiba $[\mu m^2]$
1.78	3717.56	198.74
1.59	4680.47	255.93
1.41	6058.10	365.70
1.26	7216.01	386.27
1.12	9491.37	507.52

4. táblázat. A számolt területértékek

Mivel a területek a sorszámok növekedésével csökkentek, valamint mivel látszólag nem lineáris csökkenésről volt szó, ezért a sorszámokkal fordítottan arányos függést tételeztem fel. Ennek fényben az illesztett függvény $f(x) = \frac{a}{x} + b$ alakú volt. Az illesztés a 6. ábrán látható. A kapott illesztési paraméterek:

$$a = 16451.05 \pm 825.13 \,\mu\text{m}^2$$

$$b = -5586.64 \pm 539.88 \,\mu\text{m}^2$$
(1)

6. ábra. A mért értékek illesztésével kapott ábra

A fenti ábrán látható, hogy az illesztés hibán belül leírta a megfigyelt változást, vagyis a szilícium mintán látott téglalapok területe és a mellettük látható sorszámok közötti összegfüggés fordított arányosság volt.

6. Légy szemének vizsgálata

A mérés során az utolsó feladatként az aranyozott légy szemének vizsgálatát végeztük el különböző nagyításokon. Elsőként 2000x-es nagyításon készítettünk egy képet, mely segítségével aztán meghatároztuk a légy szemén látható cellák átmérőjének nagyságát. A méréshez készült kép a 7. ábrán látható.

7. ábra. A légy szeméről készült 2000x-es nagyítású kép

A cella átmérőjének meghatározásához leolvastam két szemközti csúcs pixel koordinátáit, majd kiszámoltam a fizikai méreteket a kalibrációs egyenes segítségével. A kapott cellaátmérő (23.963 \pm 0.705) μ m. A kapott képről emellett a cellák oldalhosszait is meg tudtuk határozni, ehhez csupán a szomszédos csúcsok képen vett távolságát kellett megmérni. A kalibrációs paraméter segítségével kapott átlagos cella oldalhossz: (11.673 \pm 0.642) μ m.

Kisebb nagyítás alkalmazása esetén az egyes cellák középpontjai közötti távolságot is megbecsülhetjük. Ehhez lecsökkentettük a nagyítást 700x-ra, majd a 8. ábrán látható képet készítettük.

8. ábra. A légy szemének 700x-os nagyításon készült képe

A kapott képen kiválasztottam egy cellát, majd a szomszédos hat másik cella középpontjától vett távolságát meghatározva megkaptam a lény szemének rácsparaméterét. A kapott rácsparaméter: (21.764 \pm 1.209) μ m. Ez az érték közel azonos a cella átmérőjének hosszával, vagyis várakozásainknak megfelel.

7. Diszkusszó

Mérésünk során megismerkedtünk a pásztázó elektronmikroszkópia alapjaival, valamint több mintáról készített képet is kiértékeltünk.

Hivatkozások

[1] Kiadott jegyzet:

http://metal.elte.hu/oktatas/alkfizlab/meresleirasok/SEM3.pdf