Спектральный анализ электрических сигналов

Цель работы

Изучение спектрального состава периодических электрических сигналов

Оборудование

Анализатор спектра, генератор прямоугольных импульсов, генератор сигналов специальной формы, осциллограф.

Экспериментальная установка

Рис. 1: Структурная схема анализатора спектра

Рис. 2: Схема для исследования спектра периодической последовательности прямоугольных импульсов

Рис. 3: Схема для исследования спектра периодической последовательности цугов высокочастотных колебаний

Рис. 4: Схема для исследования спектра высокочастотного гармонического сигнала, промодулированного по амплитуде низкочастотным гармоническим сигналом

Теоретическая часть

Рассмотрим функцию вида

$$f(t) = A_1 \cos(\omega_1 t - \alpha_1) + A_2 \cos(\omega_2 t - \alpha_2) + \ldots + A_N \cos(\omega_N t - \alpha_N),$$

или в более короткой записи

$$f(t) = \sum_{n=1}^{N} A_n \cos(\omega_n t - \alpha_n),$$

где A_n, ω_n, α_n — постоянные величины. Множество пар $(\omega_1, A_1), (\omega_2, A_2), \ldots, (\omega_n, A_n)$ называется спектром функции f(t). N может быть конечным или бесконечным.

В физике широко используется разложение сложных сигналов на гармонические колебания различных частот ω . Представление периодического сигнала в виде суммы гармонических сигналов в математике называется разложением в ряд Фурье. Непериодические сигналы представляются в виде интеграла Фурье.

Рис. 5: График периодической функции с периодом повторения T

Пусть заданная функция f(t) периодически повторяется с частотой $\Omega_1 = 2\pi/T$, где T — период повторения. Её разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t) \right],$$

или

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n).$$

Здесь $a_0/2$ — постоянная составляющая (среднее значение) функции f(t); a_n и b_n — коэффициенты косинусных и синусных членов разложения. Они определяются выражениями

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt;$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt$$

Точку начала интегрирования t_1 можно выбрать произвольно.

В тех случаях, когда сигнал чётен относительно t=0, так что f(t)=f(-t), в тригонометрической записи остаются только косинусные членыЮ так как все коэффициенты b_n обращаются в нуль. Для нечётной относительно t=0 функции, наоборот, в нуль обращаются коэффициенты a_n , и ряд состоит только из синусных членов.

Амплитуда A_n и фаза ψ_n n-й гармоники выражаются через коэффициенты a_n и b_n следующим образом:

$$A_n = \sqrt{a_n^2 + b_n^2}; \quad \psi_n = \operatorname{arctg} \frac{b_n}{a_n}.$$

Заменим косинусы экспонентами в соответствии с формулой

$$\cos \alpha = \frac{e^{i\alpha} + e^{-i\alpha}}{2}.$$

Подстановка даёт

$$f(t) = \frac{1}{2} \left(a_0 + \sum_{n=1}^{\infty} A_n e^{-i\psi_n} e^{in\Omega_1 t} + \sum_{n=1}^{\infty} A_n e^{i\psi_n} e^{-in\Omega_1 t} \right).$$

Введём комплексные амплитуды \hat{A}_n и \hat{A}_{-n} :

$$\hat{A}_n = A_n e^{i\psi_n}; \quad \hat{A}_{-n} = A_n e^{i\psi_n}; \quad \hat{A}_0 = a_0.$$

Разложение f(t) приобретает вид

$$f(t) = \frac{1}{2} \sum_{n = -\infty}^{\infty} \hat{A}_n e^{in\Omega_1 t}.$$

Таким образом, введение отрицательных частот (типа $-n\Omega_1$) позволяет записать разложение Фурье особенно простым образом. Формулы комплексных амплитуд обеспечивают действительность суммы: в каждой частоте $k\Omega_1$ соответствуют один член из разложение в ряд Фурье до комплексных амплитуд (n=k), а в разолжении суммы — два члена (n=k) И n=-k. Формулы комплексных амплитуд позволяют переходить от действительного разложения к комплексному и обратно.

Для расчёта комплксных амплитуд A_n не обязательно пользоваться формулами комплексных амплитуд, полученных выше. Умножим левую и правую части разложения в сумму с комплексными амплитудами на $e^{-ik\Omega_1 t}$ и проинтегрируем полученное равенство по времени на отрезке, равном одному периоду, например, от $t_1 = 0$ до $t_2 = 2\pi/\Omega_1$. В правой части обратятся в нуль все члены, кроме одного, соответствующего n = k. Этот член даёт $A_k T/2$. Имеем поэтому

$$\hat{A}_k = \frac{2}{T} \int_{0}^{T} f(t)e^{-ik\Omega_1 t} dt.$$

Как мы видим, спектр любой периодической функции состоит из набора гармонических колебаний с дискретными частотами: $\Omega_1, 2\Omega_1, 3\Omega_1, \ldots$ и постоянной составляющей, которую можно рассматривать как колебание с нулевой частотой $(0 \cdot \Omega_1)$. Такой спектр называют линейчатым или дискретным.

Пусть непериодический сигнал f(t) действует в конечно временном интервале $t_1 < t < t_2$. Превратим функцию f(t) в периодическую путём повторения её с произвольным периодом $T > (t_1 - t_2)$. Для этой новой функции применимо разложение в ряд Фурье. В соответствии с формулами абсолютная величина коэффициентов a_n и b_n обратно пропорциональна T, поэтому устремляя T к бесконечности, в пределе получим бесконечно малые амплитуды гармонических составляющих. Количество составляющих, входящих в ряд Фурье, будет при этом бесконечно большим, так как при $T \to \infty$ частота $\Omega_1 = \frac{2\pi}{T} \to 0$. Другими словами, расстояние между спектральными линиями, равное частоте Ω_1 , становится бесконечно малым, и спектр из дискретного переходит в сплошной.

Воспольхуемся комплексной формулой ряда Фурье и подставим вместо A_n выражение:

$$f(t) = \sum_{n \to -\infty}^{+\infty} \frac{1}{T} \left[\int_{t_1}^{t_2} f(t) e^{-in\Omega_1 t} dt \right] e^{in\Omega_1 t} =$$

$$= \frac{1}{2\pi} \sum_{n \to -\infty}^{+\infty} \frac{1}{T} \left[\int_{t_1}^{t_2} f(t) e^{-in\Omega_1 t} dt \right] e^{in\Omega_1 t} \cdot \Omega_1.$$

При записи второго выражения использована связь $T=2\pi/\Omega_1$.

При $T \to \infty$ частота Ω_1 превращается в $d\Omega_1$, $n\Omega_1$ — в текущую частоту Ω , а операция суммирования — в операцию интегрирования. В результате получаем двойной интеграл Фурье:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\int_{t_1}^{t_2} f(t) e^{-i\Omega t} dt \right] e^{i\Omega t} d\Omega.$$

Внутренний интеграл обозначим

$$\hat{F}(\Omega) = \int_{t_1}^{t_2} f(t)e^{-i\Omega t}dt.$$

 $\hat{F}(\Omega)$ называется спектральной плотностью или спектральной характеристикой функции f(t). Сравнивая полченное выражение с предыдущим для комплексной амплитуды соответствующеей гармоники $(\Omega = \Omega_n)$ той же самой функции, но уже периодической, получим

$$2\hat{F}(\Omega_n) = T \cdot \hat{A}_n = 2\pi \frac{\hat{A}_n}{\Omega_1}.$$

Поскольку Ω_1 — это полоса частот, определяющая соседние спектральные линии дискретного спектра, то $\hat{F}(\Omega)$ имеет смысл плотности амплитуд.

Из вышееречисленного соотношения следует важный вывод: огибающая сплошного спектра непериодической функции и огибающая линейчатого спектра той же периодической функции совпадают по форме и отличаются только масштабом.

Примеры спектров периодических функций

Рис. 6: Периодическая последовательность прямоугольных импульсов и её спектр

Периодическая последовательность прямоугольных импульсов с амплитудой V_0 , длительностью τ , частотой повторения $\Omega_1=2\pi/T$, где T — период повторения импульсов.

Найдём среднее значение (постоянную составляющую):

$$\langle V \rangle = \frac{a_0}{2} = \frac{A_0}{2} = \frac{1}{T} \int_{-\tau/2}^{\tau/2} V_0 dt = V_0 \frac{\tau}{T}$$

Коэффициенты при косинусных составляющих равны

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \tau/2)}{n\Omega_1 \tau/2} \sim \frac{\sin x}{x}.$$

Поскольку наша функция чётная, все коэффициенты синусоидальных гармоник $b_n=0$. Спектр a_n последовательности прямоугольных импульсов представлен на рисунке. Амплитуды гармоник $A_n(A_n=|a_n|)$ меняются по закону $|\sin x/x|$.

На рисунке изображён случай, когда T кратно τ . Назовём шириной спектра $\Delta\omega$ (или $\Delta\nu=\Delta\omega/2\pi$) расстояние от главного максимума ($\omega=0$) до первого нуля огибающей,

возникающего, как нетрудно убедиться, при $n=2\pi/\tau\Omega_1$. При этом

$$\Delta\omega\tau\simeq 2\pi$$
 или $\Delta\nu\Delta t\simeq 1$.

Полученное соотношение взаимной связи интервалов $\Delta \nu$ и Δt является частным случаем соотношения неопределённости в квантовой механике. Несовместимость острой локализации волнового процесса во времени с узким спектром частот — явление широко известное в радиотехнике. Ширина селективной настройки $\Delta \nu$ радиоприёмника ограничивает приём радиосигналов длительность. $t < 1/\Delta \nu$.

Рис. 7: Периодическая последовательность цугов и её спектр

Периодическая последовательность цугов гармонического колебания $V_0\cos(\omega_0 t)$ с длительностью цуга τ и периодом повторения T. Функция f(t) снова является чётной относительно t=0. Коэффициент при n-й гармонике согласно формуле равен

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(\omega_0 t) \cdot \cos(n\Omega_1 t) dt =$$

$$= V_0 \frac{\tau}{T} \left(\frac{\sin\left[(\omega_0 - n\Omega_1) \frac{\tau}{2} \right]}{(\omega_0 - n\Omega_1) \frac{\tau}{2}} + \frac{\sin\left[(\omega_0 + n\Omega_1) \frac{\pi}{2} \right]}{(\omega_0 + n\Omega_1) \frac{\pi}{2}} \right).$$

Зависимость для случая, когда T/τ равно целому числу, представлена на рисунке выше. Сравнивая спектр последовательности прямоугольных импульсов и спектр цугов, мы видим, что они аналогичны, но их максимумы сдвинуты по частоте на величину ω_0 .

Рис. 8: Гармонические колебания, модулированные по амплитуде и их спектр

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой $\Omega(\Omega \ll \omega_0)$:

$$f(t) = A_0[1 + m\cos\Omega t]\cos\omega_0 t.$$

Коэффициент m называют глубиной модуляции. При m < 1 амплитуда колебаний меняется от минимальной $A_{min} = A_0(1-m)$ до максимальной $A_{max} = A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}.$$

Простым тригонометрическим преобразованием уравнения можно найти спектр амплитудно-модулированных колебаний:

$$f(t) = A_0 \cos(\omega_0 t) + A_0 m \cos(\Omega t) \cos(\omega_0 t) =$$

$$= A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos(\omega_0 - \Omega) t$$

. Спектр таких колебаний содержит три составляющих — основную компоненту и две боковых. Первое слагаемое в правой части представляет собой исходное немодулированное колебание с основной (несущей) частотой ω_0 и амплитудой $a_{\rm och}=A_0$. Второе и третье слагаемые соответствуют новым гармоническим колебаниям с частотами $(\omega_0+\Omega)$ и $(\omega_0-\Omega)$. Амплитуды этих двух колебаний одинаковы и составляют m/2 от амплитуды немодулированного колебания: $a_{\rm fok}=A_0m/2$. Начальные фазы трёх колебаний одинаковы.

Обработка результатов экспериментов Исследование спектра периодической последовательности прямоугольных импульсов:1

Рис. 9: Спектр прямоугольных импульсов при $f_{\text{повт}}=1$ к Γ ц и au=25 мкс

Рис. 10: Спектр прямоугольных импульсов при $f_{\text{повт}}=1$ к Γ ц и au=50 мкс

Рис. 11: Спектр прямоугольных импульсов при $f_{\text{повт}}=2$ к Гц и $\tau=50$ мкс

Построим график $\Delta \nu(1/\tau)$:

Рис. 12: График зависимости $\Delta \nu$ от 1/ au

Коэффициент угла наклона графика $k=1\Rightarrow c$ большой точностью выполняется соотношение неопределённостей.

Исследование спектра периодической последовательности цугов гармонических колебаний:

Рис. 13: Спектр цугов при $f_{\text{повт}}=1$ к
Гц и $\tau=50$ мкс

Рис. 14: Спектр цугов при $f_{\text{повт}}=1$ к
Гц и $\tau=100$ мкс

Рис. 15: Спектр цугов при $\nu_0=25$ к
Гц и $\tau=50$ мкс

Рис. 16: Спектр цугов при $\nu_0=10$ к Г
ц и $\tau=50$ мкс

Исследуем зависимость расстояния $\delta \nu$ между соседними спектральными компонентами от периода T (частоты повторения импульсов $f_{\text{повт}}$ в диапазоне 1-8 к Γ ц):

Рис. 17: График зависимости $\Delta \nu$ от $f_{\text{повт}}$

Угловой наклон графика k=1.04, что с достаточной точностью подтверждает справедливость соотношения неопределённости. Исследование спектра гармонических сигналов, модулированных по амплитуде Измеряя глубину модуляции, исследуем зависимость отношения амплитуды боковой линии спектра к амплитуде основной линии ($a_{60\mathrm{K}}/a_{\mathrm{och}}$) от глубины модуляции m и построим график:

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}.$$

Рис. 18: График зависимости $a_{\mathrm{бок}}/a_{\mathrm{осh}}$ от m

Угловой коэффициент наклона графика $k_{\rm прак}=0.5.$ По формуле $a_{\rm 6ok}=a_{\rm och}\cdot m/2\Rightarrow k_{\rm reop}=0.5$

Вывод

В данной лабораторной работе мы исследовали соотношение неопределённости $\Delta \nu \cdot \tau \simeq 1$ — несовместимость острой локализации волнового процесса во времени с узким спектром частот.