Exercise 1. Let X be a scheme and n an integer. Let \mathcal{E} be a locally free \mathcal{O}_{X} -module of rank n.

- (i) Let \mathcal{F} be an \mathcal{O}_X -module. Show that $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{E},\mathcal{F}) \simeq \mathcal{E}^{\vee} \otimes_{\mathcal{O}_X} \mathcal{F}$.
- (ii) Let $f: Y \to X$ be a morphism of schemes and \mathcal{G} an \mathcal{O}_Y -module. Show that $f_*(\mathcal{G} \otimes_{\mathcal{O}_Y} f^*\mathcal{E}) \simeq (f_*\mathcal{G}) \otimes_{\mathcal{O}_X} \mathcal{E}$.
- **Exercise 2.** (i) Let A be a noetherian ring, and M an A-module of finite type. Let r be an integer. Assume that the $A_{\mathfrak{p}}$ -module $M_{\mathfrak{p}}$ is free of rank r for every $\mathfrak{p} \in \operatorname{Spec}(A)$. Show that the A-module M is locally free of rank r.
- (ii) Let X be a regular curve over a field, and Z a closed subscheme of X satisfying $Z \neq X$. Show that the sheaf of ideals \mathcal{I}_Z is a locally free \mathcal{O}_{X} -module of rank one.

Exercise 3. Let X be a scheme and \mathcal{L} a locally free \mathcal{O}_X -module of rank one. Let $s \in H^0(X, \mathcal{L})$, and consider the set X_s consisting of those points $x \in X$ such that s_x generates the $\mathcal{O}_{X,x}$ -module \mathcal{L}_x .

- (i) Show that X_s is an open subset of X.
- (ii) Show that the induced open immersion of schemes $X_s \to X$ is an affine morphism.

Exercise 4. Let X be a scheme. Show that the morphisms $X \to \mathbb{P}^n$ are in bijective correspondence with the data of:

- a locally free \mathcal{O}_X -module of rank one \mathcal{L} ,
- sections $s_0, \ldots, s_n \in H^0(X, \mathcal{L})$ such that the induced morphism $\mathcal{O}_X^{n+1} \to \mathcal{L}$ is surjective,

where we identify $(\mathcal{L}, s_0, \ldots, s_n)$ and $(\mathcal{L}', s'_0, \ldots, s'_n)$ if there is an isomorphism of \mathcal{O}_X -modules $\mathcal{L} \to \mathcal{L}'$ mapping each s_i to s'_i .

(Hint: To construct $X \to \mathbb{P}^n$, let $i \in \{0, \ldots, n\}$. Consider the open subscheme X_{s_i} of X of the previous exercise, use the elements s_j for $j \neq i$ to define a morphism $X_{s_i} \to \mathbb{A}^n = \Omega_i \to \mathbb{P}^n$, and proceed with the glueing. Conversely given a morphism $X \to \mathbb{P}^n$, observe that the $\mathcal{O}_{\mathbb{P}^n}$ -module $\mathcal{O}(1)$ and its n+1 canonical sections pull back to an \mathcal{O}_X -module \mathcal{L} and n+1 sections of \mathcal{L} .)