

Digital Signal Processing Laboratory

LabSheet-04

Name: Suriyaa MM

Roll Number: EE23B054

A. Observation of Gibbs Phenomenon

```
COLOUR_BROWN = "#c4a484";
COLOUR_RED = "#fc1758";
COLOUR_BLUE = "#4a8af0";
COLOUR_GREY
            = "#A9A9A9";
% Fix values of w_c and the bandwidth
w_c1 = pi / 4; % Lower cutoff frequency
w c2 = pi / 2; % Upper cutoff frequency
for M = [5 12 18 27]
   % Generate the impulse response of the bandpass filter
   hbp = zeros(1, 2*M+1);
    for n = -M:M
       if n == 0
           hbp(n+M+1) = (wc2 - wc1) / (2*pi);
        else
           hbp(n+M+1) = (sin(wc2*n) - sin(wc1*n)) / (pi*n);
        end
    end
    n = -M:M;
```

```
% Define the frequency range for w
    deltaw = 0.0001;
    w = -pi:deltaw:pi;
    % Compute the Fourier Transform Hm(e^jw) of hbp
    Hm = fftshift(fft(hbp, length(w)));
    figure;
    figProps = gcf;
    figProps.Position(3:4) = figProps.Position(3:4) * 3;
    % Plot hbp
    subplot(2,1,1);
    stem(n, hbp, Color = COLOUR BROWN, LineWidth = 1.25);
    xlabel('n', Interpreter = "latex");
    ylabel('$x {bp}$[n]', Interpreter = "latex");
    title('Impulse Response of Bandpass Filter', Interpreter = "latex");
    subtitle(['$w_{c1}$ = 'num2str(w_c1)', $w_{c2}$ = 'num2str(w_c2)', M = 'num2str(M)],
Interpreter = "latex");
    grid on;
    % Plot Fourier Transform of hbp
    subplot(2,1,2);
    plot(w, abs(Hm), Color = COLOUR_RED, LineWidth=1.25);
    xlabel('$\omega$', Interpreter = "latex");
    ylabel('|$H_{M}(e^{j\omega})$|', Interpreter = "latex");
    title('Fourier Transform of Impulse Response of Bandpass Filter (Magnitude)', Interpreter =
"latex");
    subtitle(['$w_{c1}$ = ' num2str(w_c1) ', $w_{c2}$ = ' num2str(w_c2) ', M = ' num2str(M)],
Interpreter = "latex");
    set(gca, "XMinorGrid", "on");
    set(qca, "YMinorGrid", "on");
    set(gca, "Color", "#A9A9A9");
end
```


Impulse Response of Bandpass Filter

Fourier Transform of Impulse Response of Bandpass Filter (Magnitude)

Impulse Response of Bandpass Filter

Fourier Transform of Impulse Response of Bandpass Filter (Magnitude)

Impulse Response of Bandpass Filter

Gibbs phenomenon

- Occurs when approximating a discontinuous function using a finite number of Fourier series terms.
- The oscillations near the cutoff frequency are due to the truncation of the ideal sinc function. These oscillations do not diminish with increasing M but instead approach a fixed percentage of the discontinuity height.

In Plot
$$H_M(e^{j\omega})$$
 vs ω

• The magnitude of the Fourier Transform $H_M(e^{j\omega})$ should show a bandpass characteristic, with high values at included frequencies $[-\frac{\pi}{2}, -\frac{\pi}{4}], [\frac{\pi}{4}, \frac{\pi}{2}]$ and attenuated values at other frequencies.

B. Generation of Random Sinusoid

```
% Fix a value of w_c
w_c = pi * rand();
% Fix a value of L1
L1 = 100;
% Fix a value of A between 1 and 100
A = randi(100);
% Fix a value of N between 1 and 100 and generate n <= N
N = 100;
n = linspace(-N, N, L1);
% Generation of discerete w in range [0, w_c] which is an Linear array of size L1
w = w_c * rand(1, L1);
% Generation of discerte A in range [1, A] which is a Linear array of size L1
a = 1 + A * rand(1, L1);
% Generation of discrete phi in range [-pi, pi] which is a Linear array of size L1
phi = 2*pi + pi * rand(1, L1);</pre>
```

```
% Initialize the signal x_a[n]
x = zeros(size(n));
% Construct the signal
for i = 1:L1
    x_a = x_a + a(i) * cos(w(i) * n + phi(i)); % Summing the contributions
end
figure;
figProps = gcf;
figProps.Position(3:4) = figProps.Position(3:4) * 3;
subplot(3,1,1);
stem(n, x_a, Color = COLOUR_BROWN);
xlabel('n', Interpreter = "latex");
ylabel('$x_a$[n]', Interpreter = "latex");
title('Random Sinusoid (a)', Interpreter = "latex");
subtitle(['$\omega c$ = ' num2str(w c) ' $L 1$ = ' num2str(L1) ' A = ' num2str(A)], Interpreter = 
"latex");
% Fix a value of L2
L2 = 100;
% generate n <= N
n = linspace(-N, N, L2);
% Generation of discerete w in range [w_c, pi] which is an Linear array of size L2
w = (pi - w c) + pi * rand(1, L1);
% Generation of discerte A in range [1, A] which is a Linear array of size L1
a = 1 + A * rand(1, L2);
% Generation of discrete phi in range [-pi, pi] which is a Linear array of size L1
phi = 2*pi + pi * rand(1, L2);
% Initialize the signal x_a[n]
x b = zeros(size(n));
```

```
% Construct the signal
for i = 1:L2
                        x b = x b + a(i) * cos(w(i) * n + phi(i)); % Summing the contributions
end
subplot(3,1,2);
stem(n, x_b, Color = COLOUR_BLUE);
xlabel('n', Interpreter = "latex");
ylabel('$x b$[n]', Interpreter = "latex");
title('Random Sinusoid (b)', Interpreter = "latex");
subtitle(['$\omega _c$ = ' num2str(w_c) ' $L_2$ = ' num2str(L2) ' A = ' num2str(A)], Interpreter = ' num2str(A) | (A) 
  "latex");
x_n = x_a + x_b;
subplot(3,1,3);
stem(n, x_b, Color = COLOUR_RED);
xlabel('n', Interpreter = "latex");
ylabel('x[n]', Interpreter = "latex");
title('Sum of Random Sinusoids (a and b)', Interpreter = "latex");
subtitle(['$\omega _c$ = ' num2str(w_c) ' $L_2$ = ' num2str(L2) ' A = ' num2str(A)], Interpreter = ' num2str(A) | (A) 
 "latex");
```


C. Filling x[n] using Truncated BPF

```
% Define parameters
M = 100; % Length of the impulse response
wc1 = pi/4; % Lower cutoff frequency
wc2 = pi/2; % Upper cutoff frequency
% Generate the impulse response of the bandpass filter
hbp = zeros(1, 2*M+1);
for n = -M:M
   if n == 0
       hbp(n+M+1) = (wc2 - wc1) / (2*pi);
       hbp(n+M+1) = (sin(wc2*n) - sin(wc1*n)) / (pi*n);
    end
end
ybp = conv(x n, hbp);
figure;
figProps = qcf;
figProps.Position(3:4) = figProps.Position(3:4) * 2;
w = -pi:0.0001:pi;
% Plot Magnitude of Frequency Response of x
subplot(2,1,1);
plot(w,abs(fftshift(fft(x n/max(abs(x n)), length(w)), length(w))), Color = COLOUR RED, LineWidth =
1.25);
xlabel('$\omega$', 'Interpreter', 'latex');
ylabel('|$H_{x}(e^{jw})$|', 'Interpreter', 'latex');
title('Fourier Transform of Orignal Signal (Magnitude)', 'Interpreter', 'latex');
subtitle(['M = 'num2str(M), '$\omega {c1}$ = 'num2str(wc1), '$\omega {c2}$ = 'num2str(wc2)],
'Interpreter', 'latex');
set(gca, "XMinorGrid", "on");
set(qca, "YMinorGrid", "on");
set(qca, "Color", "#A9A9A9");
```

```
% Plot Magnitude of Frequency Response of ybp
subplot(2,1,2);
plot(w,abs(fftshift(fft(ybp/max(abs(ybp)), length(w)))), Color = COLOUR_RED, LineWidth = 1.25);
xlabel('$\omega$', 'Interpreter', 'latex');
ylabel('|$H_{bp(x)}( e^{jw})$|', 'Interpreter', 'latex');
title('Fourier Transform of Filtered Signal (Magnitude)', 'Interpreter', 'latex');
subtitle(['M = ' num2str(M), ' $\omega_{c1}$ = ' num2str(wc1), ' $\omega_{c2}$ = ' num2str(wc2)],
'Interpreter', 'latex');
set(gca, "XMinorGrid", "on");
set(gca, "YMinorGrid", "on");
set(gca, "Color", "#A9A9A9");
```


Bandpass Filter

A bandpass filter is a type of electronic filter that allows a specific range of frequencies to pass through while attenuating frequencies outside that range. It is essentially a combination of a low-pass filter and a high-pass filter

Observations:

- Original Signal: The Fourier transform $(H_x(e^{jw}))$ of the original signal (x[n]) shows its frequency components
- **Filtered Signal:** The Fourier transform $(H_{bp(x)}(e^{jw}))$ of the filtered signal (ybp) shows the frequency components that have passed through the bandpass filter.
- Bandpass Effect: The magnitude of the Fourier transform of (ybp) is significantly higher within the passband compared to the magnitude of the Fourier transform of (x[n]) outside the passband. Thus we can see that our bandpass filter is working correctly.