Оглавление

1	Вве	дение	в анализ
	1.1	Элеме	нтарные сведения из логики и теории множеств
		1.1.1	Высказывания, предикаты связки
		1.1.2	Кванторы
		1.1.3	Множества, равенство двух множеств, подмножества
		1.1.4	Простейшие операции над множествами
		1.1.5	Принцип двойственности
		1.1.6	Понятие счетного множества
	1.2	Теория	я вещественных чисел
		1.2.1	Множество рациональных чисел и его свойства
		1.2.2	Вещественные числа, основные свойства вещественных чисел
		1.2.3	Промежутки и их виды
		1.2.4	Основные леммы теории вещественных чисел
	1.3	Огран	иченное множество, границы
		1.3.1	Границы множества
		1.3.2	Существование точной верхней границы у ограниченного сверху множества
		1.3.3	Сечения в множестве рациональных чисел
		1.3.4	Свойства sup и inf
		1.3.5	Отделимость множеств, лемма о системе вложенных отрезков
		1.3.6	Лемма о последовательности стягивающихся отрезков
	1.4		ажения, функции
	1.1	1.4.1	Отображения, виды отображений и т. д
		1.4.2	Вещественные функции
	1.5		л последовательности
	1.0	1.5.1	Последовательность элементов множества, числовая последовательность, определения предела
		1.0.1	числовой последовательности и бесконечно малой последовательности
		1.5.2	Единственность предела последовательности
		1.5.3	Подпоследовательности, связь пределов последовательности и подпоследовательности
		1.5.4	Лемма о двух милиционерах
		1.5.5	Основные теоремы о пределах последовательности
		1.5.6	Понятие бесконечно большой последовательности
		1.5.7	Монотонные последовательности, критерий существования предела монотонной послед
		1.5.8	Существование предела последовательности $(1+1/n)^n$, число e
	1.6		тие предельной точки числового множества, теорема Больцано-Вейерштрасса, критерий Коши
	1.0	1.6.1	Предельная точка множества
		1.6.2	Теорема о последовательности, сходящейся к предельной точке
		1.6.2	Теорема Больцано-Вейерштрасса
			Критерий Коши
	1.7		ий и нижний пределы последовательности
	1.1	1.7.1	Понятие расширенной числовой прямой, понятие бесконечных пределов
		1.7.2	Понятие частичных верхних и нижних пределов последовательности. Теорема о существовании
		1.1.2	у каждой последовательности ее верхнего и нижнего предела
		1.7.3	Характеристические свойства верхнего и нижнего предела последовательности
		1.7.3 $1.7.4$	Критерий существования предела последовательности
		1.7.4	критерии существования предела последовательности
2	Веп	цестве	нная функция вещественного аргумента
	2.1		л вещественной функции вещественного аргумента
		2.1.1	Определение предела функции по Коши, примеры
		2.1.2	Определение предела функции по Гейне, примеры, эквивалентность определений
		2.1.3	Обобщение понятия предела функции на расширенную числовую ось
	2.2	Свойс	тва пределов функции и функций, имеющих предел

		Свойства, связанные с неравенствами
		Свойства, связанные с арифметическими операциями
2.3		оронние пределы функции
		Определение односторонних пределов, связь между существованием предела и односторонних пределов функции
		Георема о существовании односторонних пределов у монотонной функции и её следствия
2.4		ий Коши, замечательные пределы, бесконечно малые функции
		Критерий Коши существования предела функции
	2.4.2 1	Первый замечательный предел
	2.4.3 I	Второй замечательный предел
	2.4.4 1	Бесконечно малые функции и их классификация
2.5	Непрера	ывные функции. Общие свойства
	2.5.1 I	Понятие непрерывности функции в точке
		Непрерывность функции на множестве
	2.5.3]	Понятие колебания функции на множестве и в точке. Необходимое и достаточное условие непре-
	I	рывности функции в точке
	2.5.4	Односторонняя непрерывность
	2.5.5 1	Классификация точек разрыва
	2.5.6 .	Покальные свойства непрерывных функций
2.6		и, непрерывные на отрезке
		Георема Больцано-Коши и следствия из неё
		Первая теорема Вейерштрасса
		Вторая теорема Вейерштрасса
		Понятие равномерной непрерывности функции. Теорема Кантора, следствия из неё
		Свойства монотонных функций. Теорема об обратной функции
	2.6.6]	Непрерывность элементарных функций
Ост	ювы ли	фференциального исчисления
3.1		ренциальное исчисление функции одной независимой переменной
_		Определение производной и дифференциала, связь между этими понятиями
		Связь между понятиями дифференцируемости и непрерывности функций
		Георема о производной сложной функции. Инвариантность формы первого дифференциала
		Георема о производной обратной функции
		Производные основных элементарных функций. Доказательство
		Касательная к кривой. Геометрический смысл производной и дифференциала
	3.1.8	Физический смысл производной и дифференциала
		Односторонние и бесконечные производные
		Производные и дифференциалы высших порядков
3.2	Основн	ые теоремы дифференциального исчисления
	3.2.1	Георема Ферма
	3.2.2	Георема Ролля
		Георема Лагранжа и следствия из нее
		Георема Коши
3.3	Формул	а Тейлора
		Формула Тейлора для многочлена
		Формула Тейлора для произвольной функции. Различные формы остаточного члена формулы Гейлора
		Локальная формула Тейлора
		Формула Маклорена. Разложение по формуле Маклорена некоторых элементарных функций
3.4		о Лопиталя
).4		

Глава 1

Введение в анализ

- 1.1 Элементарные сведения из логики и теории множеств
- 1.1.1 Высказывания, предикаты связки
- 1.1.2 Кванторы
- 1.1.3 Множества, равенство двух множеств, подмножества
- 1.1.4 Простейшие операции над множествами
- 1.1.5 Принцип двойственности
- 1.1.6 Понятие счетного множества

. . .

- 1.2 Теория вещественных чисел
- 1.2.1 Множество рациональных чисел и его свойства
- 1.2.2 Вещественные числа, основные свойства вещественных чисел
- 1.2.3 Промежутки и их виды
- 1.2.4 Основные леммы теории вещественных чисел

- 1.3 Ограниченное множество, границы
- 1.3.1 Границы множества
- 1.3.2 Существование точной верхней границы у ограниченного сверху множества
- 1.3.3 Сечения в множестве рациональных чисел
- 1.3.4 Свойства sup и inf
- 1.3.5 Отделимость множеств, лемма о системе вложенных отрезков
- 1.3.6 Лемма о последовательности стягивающихся отрезков

- 1.4 Отображения, функции
- 1.4.1 Отображения, виды отображений и т. д.
- 1.4.2 Вещественные функции

. .

- 1.5 Предел последовательности
- 1.5.1 Последовательность элементов множества, числовая последовательность, определения предела числовой последовательности и бесконечно малой последовательности
- 1.5.2 Единственность предела последовательности
- 1.5.3 Подпоследовательности, связь пределов последовательности и подпоследовательности ности
- 1.5.4 Лемма о двух милиционерах
- 1.5.5 Основные теоремы о пределах последовательности
- 1.5.6 Понятие бесконечно большой последовательности
- 1.5.7 Монотонные последовательности, критерий существования предела монотонной послед
- 1.5.8 Существование предела последовательности $(1+1/n)^n$, число e

- 1.6 Понятие предельной точки числового множества, теорема Больцано-Вейерштрасса, критерий Коши
- 1.6.1 Предельная точка множества
- 1.6.2 Теорема о последовательности, сходящейся к предельной точке
- 1.6.3 Теорема Больцано-Вейерштрасса
- 1.6.4 Критерий Коши

- 1.7 Верхний и нижний пределы последовательности
- 1.7.1 Понятие расширенной числовой прямой, понятие бесконечных пределов
- 1.7.2 Понятие частичных верхних и нижних пределов последовательности. Теорема о существовании у каждой последовательности ее верхнего и нижнего предела
- 1.7.3 Характеристические свойства верхнего и нижнего предела последовательности
- 1.7.4 Критерий существования предела последовательности

...

Глава 2

Вещественная функция вещественного аргумента

- 2.1 Предел вещественной функции вещественного аргумента
- 2.1.1 Определение предела функции по Коши, примеры
- 2.1.2 Определение предела функции по Гейне, примеры, эквивалентность определений
- 2.1.3 Обобщение понятия предела функции на расширенную числовую ось
- 2.2 Свойства пределов функции и функций, имеющих предел
- 2.2.1 Свойства, связанные с неравенствами
- 2.2.2 Свойства, связанные с арифметическими операциями
- 2.3 Односторонние пределы функции
- 2.3.1 Определение односторонних пределов, связь между существованием предела и односторонних пределов функции
- 2.3.2 Теорема о существовании односторонних пределов у монотонной функции и её следствия

. .

- 2.4 Критерий Коши, замечательные пределы, бесконечно малые функции
- 2.4.1 Критерий Коши существования предела функции
- 2.4.2 Первый замечательный предел
- 2.4.3 Второй замечательный предел
- 2.4.4 Бесконечно малые функции и их классификация

- 2.5 Непрерывные функции. Общие свойства
- 2.5.1 Понятие непрерывности функции в точке
- 2.5.2 Непрерывность функции на множестве
- 2.5.3 Понятие колебания функции на множестве и в точке. Необходимое и достаточное условие непрерывности функции в точке
- 2.5.4 Односторонняя непрерывность
- 2.5.5 Классификация точек разрыва
- 2.5.6 Локальные свойства непрерывных функций

. . .

- 2.6 Функции, непрерывные на отрезке
- 2.6.1 Теорема Больцано-Коши и следствия из неё
- 2.6.2 Первая теорема Вейерштрасса
- 2.6.3 Вторая теорема Вейерштрасса
- 2.6.4 Понятие равномерной непрерывности функции. Теорема Кантора, следствия из неё

• • •

2.6.5 Свойства монотонных функций. Теорема об обратной функции

Лемма 1.

Непрерывная функция, заданная на отрезке, инъективна в том и только том случае, когда она строго монотонна.

Лемма 2.

Пусть $X \subset \mathbb{R}$. Любая строго монотонная функция $f: X \to Y \subset \mathbb{R}$ обладает обратной функцией $f^{-1}: Y \to X$, причём обратная функция f^{-1} имеет тот же характер монотонности на Y, что и функция f на X.

Лемма 3.

Пусть $X\subset\mathbb{R}$. Монотонная функция $f:X\to\mathbb{R}$ может иметь разрывы только первого рода.

Следствие 1.

Если a - точка разрыва монотонной функции f, то по крайней мере один из пределов функции f слева или справа от a определён.

доказательство. Если a - точка разрыва, то она является предельной точкой множества X и, по лемме 3, точкой разрыва первого рода. Таким образом, точка a является по крайней мере правосторонней или левосторонней предельной для множества X, т. е. выполнено хотя бы одно из следующих условий:

$$f(a-0) = \lim_{x \to a-0} f(x)$$

$$f(a+0) = \lim_{x \to a+0} f(x)$$

Если a - двусторонняя предельная точка, то существуют и конечны оба односторонних предела.

Следствие 2.

Если a - точка разрыва монотонной функции f, то по крайней мере в одном из неравенств $f(a-0) \leq f(a) \leq f(a+0)$ - для неубывающей f или $f(a-0) \geq f(a) \geq f(a+0)$ - для невозрастающей f, имеет место знак строгого неравенства, т. е. f(a-0) < f(a+0) - для неубывающей f или f(a-0) > f(a+0) - для невозрастающей f, и в интервале, определённым этим строгим неравенством, нет ни одного значения функции. (Также говорят: интервал свободен от значений функции.)

Следствие 3.

Интервалы, свободные от значений монотонной функции, соответствующие разным точкам разрыва этой функции, не пересекаются.

Лемма 4. Критерий непрерывности монотонной функции.

Пусть даны отрезок $X=[a;b]\subset\mathbb{R}$ и монотонная функция $f:X\to\mathbb{R}$. f непрерывна в том и только том случае, когда f(X) - отрезок Y с концами f(a) и (b). $(f(a)\leq f(b)$ для неубывающей $f, f(a)\geq f(b)$ для невозрастающей f).

Доказательство.

необходимость. Т. к. f монотонна, то все её значения лежат между f(a) и f(b). Т. к. f непрерывна, то она принимает и все промежуточные значения. Следовательно, f(X) - отрезок.

достаточность. Предположим противное, т. е. что $\exists (c \in [a;b])$ - точка разрыва f. Тогда по следствию 2 леммы 3 один из интервалов: (f(c-0);f(c)) или (f(c);f(c+0)) - определён и не содержит значений f. С другой стороны, этот интервал содержится в Y, т. е. f принимает не все значения из Y, $f(X) \neq Y$. Получили противоречие.

Теорема.

Пусть $X \subset \mathbb{R}, f: X \to R$ и f строго монотонна. Тогда существует обратная функция $f^{-1}: Y \to X$, где Y = f(X), притом f^{-1} строго монотонна на Y и имеет тот же характер монотонности, что и f на X. Если X = [a; b] и f непрерывна на отрезке X, то f([a; b]) есть отрезок с концами f(a) и f(b) и f^{-1} непрерывна на нём.

2.6.6 Непрерывность элементарных функций

. .

Глава 3

Основы дифференциального исчисления

- 3.1 Дифференциальное исчисление функции одной независимой переменной
- 3.1.1 Определение производной и дифференциала, связь между этими понятиями
- 3.1.2 Связь между понятиями дифференцируемости и непрерывности функций
- 3.1.3 Дифференцирование и арифметические операции
- 3.1.4 Теорема о производной сложной функции. Инвариантность формы первого дифференциала
- 3.1.5 Теорема о производной обратной функции
- 3.1.6 Производные основных элементарных функций. Доказательство
- 3.1.7 Касательная к кривой. Геометрический смысл производной и дифференциала
- 3.1.8 Физический смысл производной и дифференциала
- 3.1.9 Односторонние и бесконечные производные
- 3.1.10 Производные и дифференциалы высших порядков
- • •
- 3.2 Основные теоремы дифференциального исчисления
- 3.2.1 Теорема Ферма
- 3.2.2 Теорема Ролля
- 3.2.3 Теорема Лагранжа и следствия из нее
- 3.2.4 Теорема Коши

- 3.3 Формула Тейлора
- 3.3.1 Формула Тейлора для многочлена
- 3.3.2 Формула Тейлора для произвольной функции. Различные формы остаточного члена формулы Тейлора
- 3.3.3 Локальная формула Тейлора
- 3.3.4 Формула Маклорена. Разложение по формуле Маклорена некоторых элементарных функций

3.4 Правило Лопиталя

Пусть даны две непрерывные на интервале (a;b) функции f(x) и g(x), где $\{a;b\}\subset\overline{\mathbb{R}}$. Неопределённостью типа $\left[\frac{0}{0}\right]$ в точке a называется предел

$$\lim_{x \to a+} \frac{f(x)}{g(x)}$$

в случае, когда

$$\lim_{x \to a+} f(x) = \lim_{x \to a+} g(x) = 0$$

Аналогично определяются неопределённости вида $\left[\frac{\infty}{\infty}\right]$ и в точке b.

Другие виды неопределённостей сводятся к этим двум. Вообще говоря, неопределённость типа $\left[\frac{\infty}{\infty}\right]$ может быть сведена к типу $\left[\frac{0}{0}\right]$. Действительно, пусть $\lim_{x\to a+} f(x) = \lim_{x\to a+} g(x) = \infty$

$$\frac{f(x)}{g(x)} = \frac{\frac{f(x)}{g(x)}}{\frac{f(x)}{g(x)}}$$