

DATE: Thursday, January 02, 2003 Printable Copy Create Case

Set Name	Query	Hit Count	Set Name
side by side			result set
DB=JP	AB,EPAB,DWPI; PLUR=YES; OP=ADJ		
<u>L8</u>	L7 not 16	2040	<u>L8</u>
<u>L7</u>	(12 or 13) and (sio2 or silica or silicon)	2081	<u>L7</u>
<u>L6</u>	L5 and (sio2 or silica or silicon)	41	<u>L6</u>
<u>L5</u>	(12 or 13) and beta	121	<u>L5</u>
<u>L4</u>	beta with cristobalite or beta\$1cristobalite	28	<u>L4</u>
<u>L3</u>	al\$si\$po4 or alpo4	377	<u>L3</u>
<u>L2</u>	(aluminum or al) with (po4 or \$phosphate)	9739	<u>L2</u>
<u>L1</u>	wo-9200929-\$.did.	2	<u>L1</u>

END OF SEARCH HISTORY

4.30 SECTION 4

TABLE 4.6 Atom Radii and Effective Ionic Radii of Elements

Element		Effective ionic radii, pm				
	Atom radius, pm	_		Coordination number		
		Ion charge	4	6	8	12
Actinium	1,87.8	3+		111		
Aluminum	143.1	3+	39	53.5		
Americium	173	2+			. 126	
		3+		97.5	109	
		4+		89	95	
		5+		86		ļ
		6+		80		
Antimony	145	3-		245		
		1+		89		
		3+	76	76		
	1010	5+		60		
Arsenic	124.8	3-		222		
		3+		58		
		5+	33.5	46		
Astatine		1-		227		
	İ	5+	}	57		
.		7+		62		
Barium	217.3	2+		136	142	160
Berkelium		2+		118		
		3+		98		
D 11:	1112	4+	105	87	93	
Beryllium	111.3	1-	195	4.5		
Diament.	154.7	2+	27	45		
Bismuth	154.7	3-		213	111	
		3+		103	111	
D	97	5+	26	76		
Boron	86	1+	35	27		
Duamina	•	3+	11	27		İ
Bromine		1-	59	196		
		3+		47		
		5+ 7+	31*	47 25		
Cadmium	148.9	2+	78	95	110	131
Calcium	197	2+	/0	100	110	135
Californium	186(2)	2+		117	112	133
Camonnum	180(2)	3+		95		
	1	4+		82.1		
Carbon		4-	260	02.1	/	
Caroon		4+	15	16		
Cerium	181.8	3+	15	102	114.3	134
Corruin	101.0	4+		87	97	114
Cesium	265	1+		167	174	188
Chlorine	200	1-		181	1	100
		5+	34	1 201		
		7+	8	27		
Chromium	128	1+	81			
		2+		73 LS	1	
				80 HS		
		3+		61.5		
		<u> </u>				

^{*}CN = 3

TABLE 4.6 Atom Radii and Effective Ionic Radii of Elements (Continued)

		Effective ionic radii, pm					
	Atom			Coordination number			
Element	radius, pm	Ion charge	4	6	8	12	
Chromium		4+	41	55			
(continued)		5+	34.5	49	57		
		6+	26	44			
Cobalt	125	2+	38	65 LS	90		
				74.5 HS			
		3+		54.5 LS			
				61 HS			
		4+	40	53 HS			
Copper	128	1+	60	77			
		2+	57	73			
		3+		54 LS			
Curium	174	3+		97			
		4+		85	95		
Dysprosium	178.1	2+		107	119		
		3+		91.2	102.7		
Einsteinium	186(2)	3+		98			
Erbium	176.1	3+		89.0	100.4		
Europium	208.4	2+		117	125	135	
		3+		94.7	106.6		
Fluorine	71.7	1 —	131	133			
		7+		8			
Francium	270	1+		180			
Gadolinium	180.4	3+		93.8	105.3		
Gallium	135	2+		120			
		3+	47	62.0			
Germanium	128	2+		73			
		4+	39.0	53.0			
Gold	144	1+		137			
		3+	68	85			
Hafnium	159	4+	58	71	83		
Holmium	176.2	3+		90.1	101.5*	112	
Hydrogen		1-		154			
Indium	167	1+		140			
		3+	62	80.0	92		
Iodine		1-		220			
		5+		95			
		7+	42	53			
Iridium	135.5	3+		68			
		4+		62.5			
		5+		57	[
Iron	126	2+		61 LS			
		1	63 HS	78 HS	92 HS		
		3+		55 LS			
			49 HS	64.5 HS	78 HS		
		4+		58.5			
		6+	25				
Lanthanum	183	3+		103.2	116.0	136	

^{*}CN = 10

4.32 SECTION 4

ì

TABLE 4.6 Atom Radii and Effective Ionic Radii of Elements (Continued)

		Effective ionic radii, pm				
	Atom radius, pm	T		Coordination number		
Element		Ion charge	4	6	8	12
Lead	175	2+	98	119	129	149
		4+		78	94	
Lithium	152	1+	59	76		
Lutetium	173.8	3+		86.1	97.7	
Magnesium	160	2+	57	72.0	89	
Manganese	127	2+	66 HS	67 LS 83 HS	96	
		3+		58 LS 64.5 HS		
		4+	39	53		
		5+	33			
		6+	25.5			
		7+	25	46		,
Mercury	151	1+	111*	119		
-		2+	96	102	114	
Molybdenum	139	3+		69		
•	}	4+		65.0	:	
		5+	46	61	,	
		6+	41	59	73†	
Neodymium	181.4	2+			129	
		3+		98.3	110.9	127
Neptunium	155	2+		110		
_		3+		101		İ
		4+		87	98	
		5+		75		
		6+		72		
		7+		71		
Nickel	124	2+	55	69.0		
		3+		56 LS		
				60 HS		
		4+		48 LS		
Niobium	146	3+		72		
		4+		68	79	
		5+	48	64	74	
Nitrogen	†	3-	146			
		1+	25			
		3+		16		
		5+		13		
Nobelium		2+		110		
Osmium	135	4+		63.0	i	
		5+		57.5		
		6+		54.5		
		7+		52.5		
		8+	39			
Oxygen		2-	138	140	142	
Palladium	137	2+	64	86		
		3+		76		1
		4+		61.5		1

^{*} CN = 3 † CN = 7

 TABLE 4.6
 Atom Radii and Effective Ionic Radii of Elements (Continued)

		Effective ionic radii, pm					
	Atom	<u> </u>		Coordination	n number		
Element	radius, pm	Ion charge	4	6	8	12	
Phosphorus	108	3-		212			
		3+		44		ì	
		5+	17	38			
Platinum	138.5	2+		80			
		4+		62.5			
Dlata dan	150	5+		57			
Plutonium	159	3+		100	06		
		4+ 5+		86	96	1	
		6+		74 71		1	
Polonium	164	2-		(230)		1	
rololliulli	104	4+		94	108	ĺ	
		6+		67	100		
Potassium	232	1+	137	138	151	164	
Praseodymium	182.4	3+	157	99	112.6	104	
Trascodymnam	102.4	4+		85	96		
Promethium	183.4	3+		97	109.3		
Protoactinium	163	3+		104	107.5		
		4+		90	101		
		5+		78	91		
Radium	(220)	2+			148	170	
Rhenium	137	4+		63			
		5+		58			
		6+		55			
		7+	38	53			
Rhodium	134	3+		66.5			
		4+		60			
		5+		55			
Rubidium	248	1+		152	161	172	
Ruthenium	134	3+		68			
		4+		62.0			
		5+		56.5			
		7+	38				
a :	100.4	8+	36		1	İ	
Samarium	180.4	2+		05.0	127		
Scandium	162	3+		95.8	107.9	124	
Selenium	162 116	3+ 2-		74.5	87.0		
Selemum	110	4+		198 50			
		6+		42			
Silicon	118	4+	26	40.0		1	
Silver	144	1+	100	115	130		
	1	2+	79	94	130		
		3+	67	75			
Sodium	186	1+	99	102	118	139	
Strontium	215	2+		118	126	144	
Sulfur	106	2-		184			
		4+		37			
		6+	12	29			
Tantalum	146	3+		72		1	

4.34 SECTION 4

TABLE 4.6 Atom Radii and Effective Ionic Radii of Elements (Continued)

		Effective ionic radii, pm					
Element	Atom radius, pm	Coordination number				ıber	
		Ion charge	4	6	8	12	
Tantalum		4+		68			
(continued)		5+		64	74		
Technetium	136	4+		64.5			
		5+		60			
		7+	37	56			
Tellurium	142	2-		221			
		4+	66	97			
		6+	43	56			
Terbium	177.3	3+		92.3	104.0		
		4+		76	88		
Thallium	170	1+		150	159	170	
		3+	75	88.5	98		
Thorium	179	4+	, ,	94	105	121	
Thullium	175.9	2+		103	100	1	
	1,75.5	3+		88.0	99.4	105*	
Tin	151	2+		118	77.4	103	
1 111	131	4+	55	69.0	81		
Titanium	147	2+	33	86	61		
1 italifalli	177	3+		67.0			
		4+	42	60.5	74		
Tungsten	139	4+	72	66	/-		
Tungsten	139	5+		62			
		6+	42	60			
Uranium	156	3+	42	102.5			
Oranium	130	4+		89	100	117	
		5+		76	100	117	
			60		0.6	1	
Vanadium	124	6+ 2+	52	73	86		
vanadium	134			79		İ	
		3+		64.0			
		4+	25.5	58	72		
v		5+	35.5	54			
Xenon	100.0	8+	40	48			
Ytterbium	193.3	2+		102	114		
X7	100	3+		86.8	98.5	104*	
Yttrium	180	3+		90.0	101.9	108*	
Zinc	134	2+	60	74.0	90		
Zirconium	160	4+	59	72	84	89*	

^{*}CN = 11

4.5.2 Ionic Radii

One of the major factors in determining the structures of the substances that can be thought of as made up of cations and anions packed together is ionic size. It is obvious from the nature of wave functions that no ion has a precisely defined radius. However, with the insight afforded by electron