Relaciones

[TODO: Faltan hacer todos los gráficos]

[1] Pares ordenados

[TODO: Mover pares ordenados a conjuntos... ¿O no?]

Sean $A \vee B$ conjuntos y $a \in A \wedge b \in B$ entonces el par ordenado de $a \vee b$ es (a, b).

1. Igualdad de pares ordenados

Dados $a_1,a_2\in A$ y $b_1,b_2\in B$ la igualdad de los pares ordenados (a_1,b_1) y (a_2,b_2) se define por:

$$(a_1, b_1) = (a_2, b_2) \Leftrightarrow a_1 = a_2 \land b_1 = b_2$$

[2] Producto cartesiano de dos conjuntos

Sean A y B dos conjuntos entonces el producto cartesiano de A y B es $A \times B$ y se define por:

$$a \in A \land b \in B \Leftrightarrow (a, b) \in A \times B$$

Nótese lo siguiente:

$$A = \varnothing \lor B = \varnothing \Leftrightarrow a \notin A \lor b \notin B)$$

$$\Leftrightarrow \neg(a \in A \land b \in B)$$

$$\Leftrightarrow \neg((a,b) \in A \times B)$$

$$\Leftrightarrow (a,b) \notin A \times B$$

$$\Leftrightarrow A \times B = \varnothing$$

Por lo tanto $A = \emptyset \lor B = \emptyset \Leftrightarrow A \times B = \emptyset$

→ Propiedades

Dados A, B y C conjuntos.

- 1. $A \times (B \cap C) = (A \cap B) \times (A \cap C)$
- 2. $A\times (B\cup C)=(A\cup B)\times (A\cup C)$
- 3. $(A \cap B) \times C = (A \cap C) \times (B \cap C)$
- 4. $(A \cup B) \times C = (A \cup C) \times (B \cup C)$

[3] Relación binaria entre dos Conjuntos

Dados dos conjuntos A,B y $\mathcal R$ decimos que $\mathcal R$ es una relación de A en B si se cumple $\mathcal R\subseteq A\times B$.

$$(a,b) \in \mathcal{R} \Leftrightarrow a\mathcal{R}b$$
$$(a,b) \notin \mathcal{R} \Leftrightarrow a\mathcal{R}b$$

[4] Dominio e imagen de una relación

Sea \mathcal{R} una relación de A en B.

- 1. El **dominio** de \mathcal{R} es $\mathrm{Dom}(\mathcal{R}) = \{a \in A : \exists b \in B \ (a,b) \in \mathcal{R}\}$
- 2. La **imagen** de \mathcal{R} es $\operatorname{Im}(\mathcal{R}) = \{b \in B : \exists a \in A \ (a,b) \in \mathcal{R}\}\$

$$Dom(\mathcal{R}) \subseteq A \wedge Im(\mathcal{R}) \subseteq B$$

[5] Imagen y pre-imagen de un elemento

Sea \mathcal{R} una relación de A en B, $a \in A$ y $b \in B$.

- 1. El conjunto imagen de a por \mathcal{R} es $\mathcal{R}(a) = \{b \in B : (a, b) \in \mathcal{R}\}$
- 2. El conjunto pre-imagen de b por \mathcal{R} es $\mathcal{R}^{-1}(b) = \{a \in A : (a,b) \in \mathcal{R}\}$

[6] Imagen y pre-imagen de un subconjunto

Sea \mathcal{R} una relación de A en B, $X \subseteq A$ y $Y \subseteq B$.

- 1. El conjunto imagen de X por \mathcal{R} es $\mathcal{R}(X) = \{b \in B : \exists x \in X \ (x,b) \in \mathcal{R}\}$
- 2. El conjunto pre-imagen de Y por \mathcal{R} es $\mathcal{R}^{-1}(Y) = \{a \in A : \exists y \in Y \ (a,y) \in \mathcal{R}\}$

[7] Relación inversa de una relación

Sea $\mathcal R$ una relación de A en B la relación inversa de $\mathcal R$ es $\mathcal R^{-1}$ y se define:

$$x\mathcal{R}y \Leftrightarrow y\mathcal{R}^{-1}x$$

1. Relación inversa de la relación inversa

$$x(\mathcal{R}^{-1})^{-1}y \Leftrightarrow y\mathcal{R}^{-1}x \Leftrightarrow x\mathcal{R}y$$

[8] Composición de relaciones

Sean \mathcal{R} una relación de A en B y \mathcal{S} una relación de B en C. La relación composición de \mathcal{R} con \mathcal{S} es $\mathcal{S} \circ \mathcal{R}$ relación de A en C tal que:

$$x(\mathcal{S} \circ \mathcal{R})y \Leftrightarrow \exists u \in B \ x\mathcal{R}u \wedge u\mathcal{S}y$$

$$\mathcal{S} \circ \mathcal{R} = \{(x,y) \in A \times C : \exists u \in B \ x \mathcal{R} u \wedge u \mathcal{S} y\}$$

→ Propiedades

Sean $\mathcal R$ una relación de A en B, $\mathcal S$ una relación de B en C y $\mathcal T$ una relación de C en D.

- 1. $(\mathcal{T} \circ \mathcal{S}) \circ \mathcal{R} = \mathcal{T} \circ (\mathcal{S} \circ \mathcal{R})$
- 2. $(\mathcal{T} \circ \mathcal{S})^{-1} = \mathcal{S}^{-1} \circ \mathcal{T}^{-1}$

[9] Relaciones en un conjunto

Dada $\mathcal R$ una relación de A en B si A=B entonces se dice que $\mathcal R$ es una relación en A.

➡ Propiedades de relaciones en un conjunto

Sea \mathcal{R} una relación en A.

- 1. \mathcal{R} es reflexiva si $\forall a \in A \ a\mathcal{R}a$
- 2. \mathcal{R} es simétrica si $a\mathcal{R}b \Rightarrow b\mathcal{R}a$
- 3. \mathcal{R} es antisimétrica si $a\mathcal{R}b \wedge b\mathcal{R}a \Rightarrow a=b$
- 4. \mathcal{R} es transitiva si $a\mathcal{R}b \wedge b\mathcal{R}c \Rightarrow a\mathcal{R}c$

[10] Relaciones de orden

Sea $\mathcal R$ una relación en A reflexiva, antisimétrica y transitiva entonces es una relación de orden. Si $x\mathcal Ry$ entonces «x precede a y» o «x es anterior a y» y se nota $x \prec y$. Si $x \prec y$ o $y \prec x$ entonces x e y son comparables.

→ Conjunto ordenado

Sea A un conjunto y \mathcal{R} una relación de orden llamamos conjunto ordenado al par ordenado (A, \mathcal{R}) .

→ Diagrama de Hasse

[TODO: Importante, supongo]

→ Orden inducido en un subconjunto

Sean (A, \mathcal{R}) un conjunto ordenado y $S \subseteq A$ un conjunto, entonces el orden inducido por \mathcal{R} en S es $\mathcal{R}_S = \mathcal{R} \cap (S \times S)$ queda así (S, \mathcal{R}_S) subconjunto ordenado de (A, \mathcal{R}) .

→ Orden total

Sean A un conjunto y $\mathcal R$ una relación en A tal que $\forall x,y\in A$ $x\prec y\vee y\prec x$ entonces $\mathcal R$ es una relación de orden total.

➡ Elementos minimales y maximales

Dado un conjunto ordenado (A, \mathcal{R}) .

- 1. $a \in A$ es un elemento minimal de (A, \mathcal{R}) si $\forall x \in A \ x \prec a \rightarrow x = a$
- 2. $a \in A$ es un elemento maximal de (A, \mathcal{R}) si $\forall x \in A \ a \prec x \rightarrow x = a$

Todos los conjuntos ordenados finitos no vacíos tienen por lo menos un elemento minimal y un elemento maximal.

➡ Elementos mínimos y máximos

Dado un conjunto ordenado (A, \mathcal{R}) .

- 1. $a \in A$ es un elemento mínimo de (A, \mathcal{R}) si $\forall x \in A \ a \prec x$
- 2. $a \in A$ es un elemento máximo de (A, \mathcal{R}) si $\forall x \in A \ x \prec a$

Si un conjunto tiene elemento mínimo entonces es único y si un conjunto tiene elemento máximo entonces también es único.

→ Cotas inferiores y superiores

Dado un conjunto ordenado (A, \mathcal{R}) y un conjunto $S \subseteq A$.

- 1. $a \in A$ es una cota inferior de S en (A, \mathcal{R}) si $\forall x \in S \ a \prec x$
- 2. $a \in A$ es una cota superior de S en (A, \mathcal{R}) si $\forall x \in S \ x \prec a$

→ Ínfimos y supremos

Dado un conjunto ordenado (A, \mathcal{R}) y un conjunto $S \subseteq A$.

1. $a \in A$ es el ínfimo de S en (A, \mathcal{R}) si a es cota inferior de S en (A, \mathcal{R}) y:

$$\forall a' \in A \ (\forall x \in S \ a' \prec x) \rightarrow a' \prec a$$

2. $a \in A$ es el supremo de S en (A, \mathcal{R}) si a es cota superior de S en (A, \mathcal{R}) y:

$$\forall a' \in A \ (\forall x \in S \ x \prec a') \rightarrow a \prec a'$$

[11] Relaciones de equivalencia

Sea $\mathcal R$ una relación en A reflexiva simétrica y transitiva entonces es una relación de equivalencia. Si $x\mathcal Ry$ entonces «x es equivalente a y» y se nota $x\sim y$.

→ Clase de equivalencia

Sea \mathcal{R} una relación de equivalencia en A y $x \in A$, entonces la clase de equivalencia de x es $\mathcal{R}(x) = [x]$.

1. Propiedades

- 1. $x \in A \Rightarrow [x] \neq \emptyset$
- 2. $a \sim b \Leftrightarrow [a] = [b]$
- 3. $\neg (a \sim b) \Leftrightarrow [a] \cap [b] = \emptyset$

→ Particiones

Sean A un conjunto y P una familia de conjuntos, entonces P es una partición de A si y solo si se cumplen simultáneamente:

- 1. $\forall X_1 \in P \ \forall X_2 \in P \ X_1 \neq X_2 \rightarrow X_1 \cap X_2 = \varnothing$
- 2. $\forall a \in A \ \exists X \in P \ a \in X$

Si P es una partición de A entonces existe una sola relación de equivalencia tal que todas las clases de equivalencia son elementos de P.

→ Conjunto cociente

Sea $\mathcal R$ una relación de equivalencia en A, entonces el conjunto cociente de A por R es $A|_R$ tal que:

$$x \in A \Rightarrow [x] \in A|_R$$