Day and Time	Full group
Day 1: 9:00-12:00	Lead author reports on results: Diane, Ignacio, Regis, Vinicius, Gustavo, Dimaris, Olivier each to present a 10 min talk + 10 min discussion= 140 min (3 hours with a 30 minute coffee break)
Day 1: 12-1:30	Lunch break
Day 1: 1:30-2:30	Proposed Paper 8 (Group Discussion): Gustavo Romero would like to propose a new paper 8, using matrices of predator-prey interaction strengths to calculate effects of drought on connectance and other network metrics.
Day 1: 2:30-3:30	Metrics of hydrology and rainfall (Nicholas, with input from Diane, Andrew, Olivier) – how metrics are calculated, how they are correlated within sites, how they differ between sites.
Day 1: 3:30-5:00	Using BWG tools (Workshop: Andrew) Please bring laptops. We will make sure here that everyone can use bwgtools to access and manipulate the data. Assistants: Diane, Nicholas, Olivier, others?
Day 1: 5:00-5:30	Data managers only: quality control exercise Diane, Regis, Kurt, Rodrigo, Fabiola, Nicholas, Pablo (please bring laptops or photocopies of field notes with the original raw data for your site)

The "drought" experiment

Bromeliads grow in different climates.

Bromeliads grow in different climates.

mu

High k: more equitable rainfall, less of a hollow curve

Paper 1: Thresholds Contingency & sensitivity

Focus on sensitivity, not thresholds

Figure from Kayler et al. 2015. "Experiments to confront the extremes of climate change" Front. Ecol. Environ.

Are bromeliads everywhere equally sensitive to changes in relative rainfall?

- (1) Is there evidence of site contingency? If so, which types of climatic shifts and what types of responses?
- (2) How do climatic shifts affect this ecosystem? Is the pattern similar between sites?
- (3) Do differences between sites in ambient conditions explain contingency?
- (4) Does contingency disappear when we consider hydrological dynamics directly?

Q1. Is there evidence of site contingency? If so, which types of climatic shifts and what types of responses?

		Site Rainfall main Rainfa				nfall	l interact Site continge				ency to rainfall							
	Which country?	Site	mu	mu²	k	k²	mu x k	mu x k²	mu² x k	mu² x k²	Site x mu	Site x mu ²	Site x k	Site x k ²	Site x mu x k	Site x mu x k ²	Site x mu ² x k	Site x mu ² x k ²
Decomp	CO PR AR																	
FPOM	CA MA FG																	
delta15N	CO CA PR FG																	
CO ₂	AR CR																	
Bacteria	CO FG PR																	
Shredder	AR FG CA																	
Filter	PR																	
Scraper	CO CR PR																	
Gatherer	AR CO																	
Engulfer	MAFG																	

1. Site and rainfall mean (mu, mu²) frequently important as main effects, but they don't interact.

2. Rainfall dispersion (k, k²) not often important, appears as only example of site contingency....

3. Almost half of responses show evidence of contingency, especially those directly measuring invertebrates or bromeliads.

Which model explains more (adj.) deviance?

Unadjusted D2

	Site x Relative mu, k	Site	Site x Relative mu, k	Site	rainfall P
Decomp	0.89	0.85	0.93	0.85	0.13*
FPOM	0.65	0.64	0.76	0.66	0.29
delta15N	0.67	0.64	0.78	0.66	C
CO ₂	0.92				
Bacteria	0.71	0.65	0.80	0.67	0.00001
Shredder	0.33	0.34	0.53	0.37	0.10*
Filter	0.68	0.50	0.78	0.52	C
Scraper	0.68	0.63	0.78	0.65	C
Gatherer	0.50	0.46	0.65	0.48	0.47
Engulfer	0.77	0.70	0.84	0.72	C
P:D mass ratio			0.53	0.34	0.003

^{*}if test rain interactions first, then test main effects of rain, then p<0.05

4. Sensitive sites differ with response, but CO,FG, AR, PR frequently sensitive and MA, CR, CA less often sensitive

Q2. How do climatic shifts affect this ecosystem? Is the pattern similar between sites?

We have not one but two climatic shifts (mu and k)...

Figure from Kayler et al. 2015. "Experiments to confront the extremes of climate change" Front. Ecol. Environ.

mu = 1, k = 1

The challenge:

- Estimate ambient conditions with 1 replicate of mu=1 k=1 treatment.
- 2. Express response relative to site's ambient conditions
- 3. Plot in a way that allows site comparisons

The challenge:

1. Estimate ambient conditions with 1 replicate of mu=1 k=1 treatment.

Solution: Build a model with all 30 bromeliads, use model to get best estimate of mu=1, k=1 for mediansized bromeliad

The challenge:

2. Express response relative to site's ambient conditions.

Solution: Divide responses by ambient estimate to obtain the factor by which it decreases (<1) or increases (>1).

Q3. Is site contingency largely due to differences in the absolute magnitude of mu and k?

Compare this model: Y ~ site x relative mu &k

With this model: Y~absolute mu &k

If the site effect is primarily due to site differences in ambient rainfall, both models should be equally good.

Which model explains more (adj.) deviance?

	100	

	Site x Relative mu, k	Absolute mu, k
Decomp	0.89	0.22
FPOM	0.65	0.05
delta15N	0.67	0.29
CO ₂	0.92	0.50
Bacteria	0.71	0.10
Shredder	0.33	0.05
Filter	0.68	0.45
Scraper	0.68	0.21
Gatherer	0.50	0.07
Engulfer	0.77	0.35

Is site contingency largely due to differences in the absolute magnitude of mu and k?

Compare this model:

Y ~ site x relative mu &k

With this model:

Y ~ absolute mu &k

If the site effects is primarily due to site differences in ambient rainfall, both models should be equally good.

Is hydrology the better predictor as it is more direct?

Hydrology:

Frequency of drying Fluctuations in water depth Average water depth Overflow

Buffered by:

- Water retention between days
- Overflow
- Leaf geometry

Hydrology variables

Amplitude Dried out Overflow cvdepth

uncorrelated

Correlogram of key responses

Which model explains more (adj.) deviance?

	Site x Relative mu, k	Absolute mu, k	Site x Hydrology
Decomp	0.89	0.22	0.90
FPOM	0.65	0.05	0.73
delta15N	0.67	0.29	0.67
CO ₂	0.92	0.50	0.94
Bacteria	0.71	0.10	0.66
Shredder	0.33	0.05	0.40
Filter	0.68	0.45	0.66
Scraper	0.68	0.21	0.69
Gatherer	0.50	0.07	0.52
Engulfer	0.77	0.35	0.29

Surprisingly, hydrology is very similar in predictive power to relative mu, k models. Which model explains more (adj.) deviance?

What hydrology variables are important?

		·						•				1
	Site x Relative mu, k	Absolute mu, k	Site x Hydrology	Site	Dried out days	Dried out ²	Over flow days	Over flow ²	Amplit ude	Amplit ude ²	CV depth	CV depth ²
Decomp	0.89	0.22	0.90									
FPOM	0.65	0.05	0.73									
delta15N	0.68	0.29	0.67									
CO ₂	0.92	0.50	0.94									
Bacteria	0.71	0.10	0.66									
Shredder	0.33	0.05	0.40									
Filter	0.68	0.45	0.66									
Scraper	0.68	0.21	0.69									
Gatherer	0.50	0.07	0.52									
Engulfer	0.77	0.35	0.29									

Depends on glm type Main effect only Site interaction

¹Cardoso not in hydrology models

summary

Some aspects of the ecosystem respond similarly to relative changes in rainfall, regardless of geographic site.

Others don't.

There is more to site contingency than just differences in current conditions.

Models of relative rainfall and site are surprisingly good at explaining variance in ecosystem properties.

Which model explains more (adj.) deviance?

What hydrology variables are important?

	Site x Relative mu, k	Absolute mu, k	Site x Hydrology	Site	Dried out days	Dried out ²	Over flow days	Over flow ²	Amplit ude	Amplit ude ²	CV depth	CV depth ²
Decomp	0.89	0.22	0.90									
FPOM	0.65	0.05	0.73									
delta15N	0.67	0.29	0.67									
CO ₂	0.92	0.50	0.94									
Bacteria	0.71	0.10	0.66									
Shredder	0.33	0.05	0.40									
Filter	0.68	0.45	0.66									
Scraper	0.68	0.21	0.69									
Gatherer	0.50	0.07	0.52									
Engulfer	0.77	0.35	0.29									

Depends on glm type

Main effect only

Site interaction

¹Cardoso not in hydrology models

Argentina

Cardoso

Colombia

Costa Rica

French Guiana

Macae

Puerto Rico

