Dualità e Programmazione Lineare

Luigi De Giovanni

Dipartimento di Matematica, Università di Padova

Problemi di programmazione lineare: punti di vista

- ipotizza vettore x
- ② verifica $x \in P$ e calcola $c^T x$
- 3 z* è il minimo tra tutti

- o ipotizza valore funzione obiettivo w
- ② verifica $w \leq c^T x$ su P (o vertici)
- w* è il massimo tra tutti

$$z^* = \min c^T x$$
 $w^* = \min (PL_1)$ s.t. $Ax = b$ (PL_2) s.t. $x \ge 0$

$$w^* = \max w$$
 (PL_2) s.t. $w \le c^T x \quad \forall x \in P$ $w \in \mathbb{R}$

Se z^* esiste finito, $z^* = w^*$

- n variabili
- m vincoli

- 1 sola variabile (w)
- molti (esponenzialmente) vincoli

Nota: possiamo limitare i vincoli alle sole soluzioni di base: $O\begin{pmatrix} n \\ m \end{pmatrix}$ vincoli

Condizioni equivalenti di ammissibilità per PL2

Obiettivo: riscrivere PL_2 in forma maneggevole (meno vincoli)

- Assunzione "tecnica": PL₁ ammette ottimo limitato
- Vogliamo trovare condizioni tali che

Cominciamo deducendo delle condizioni necessarie (=>)

Espressione dei costi ridotti

•
$$Ax = b$$
 \Rightarrow $Bx_B + Fx_F = b$ \Rightarrow $x_B = B^{-1}b - B^{-1}Fx_F$

•
$$z = c^T x = c_B^T x_B + c_F^T x_F = c_B^T (B^{-1}b - B^{-1}Fx_F) + c_F^T x_F$$

$$\Rightarrow z = \underbrace{c_B^T B^{-1}b}_{\bar{z}_B} + \underbrace{(c_F^T - c_B^T B^{-1}F)}_{\bar{c}_F^T} x_F$$

•
$$\bar{c}^T = [\bar{c}_B^T | \bar{c}_F^T] = [0^T | c_F^T - c_B^T B^{-1} F] =$$

$$= [c_B^T - c_B^T B^{-1} B | c_F^T - c_B^T B^{-1} F] =$$

$$= [c_B^T | c_F^T] - [c_B^T B^{-1} B | c_B^T B^{-1} F] =$$

$$= c^T - c_B^T B^{-1} [B | F] =$$

$$= c^T - c_B^T B^{-1} A$$

Condizioni necessarie

- $P \neq \emptyset \land z^* > -\infty \Rightarrow \exists \text{ base } B : c^T \geq c_B^T B^{-1} A$
- $w \le c^T x$, $\forall x \in P \Rightarrow \exists \text{ base } B : w \le c_B^T B^{-1} b$
- \exists base $B \Rightarrow \exists u \in \mathbb{R}^m : c_B^T B^{-1} = u^T$
- Riassumendo:

$$\begin{cases} w \le c^T x, \ \forall \ x \in P \\ P \ne \emptyset \ \land \ z^* > -\infty \end{cases} \implies \exists \ u \in \mathbb{R}^m : \begin{cases} u^T A \le c^T \\ w \le u^T b \end{cases}$$

Condizioni equivalenti!

Le condizioni sono anche sufficienti: $\forall x \in P = \{x : Ax = b, x \geq 0\}$:

- $\bullet \exists u \in \mathbb{R}^m : u^T A \leq c^T \Rightarrow u^T A x \leq c^T x \Rightarrow u^T b \leq c^T x$
- $\bullet \exists u \in \mathbb{R}^m : w \leq u^T b \Rightarrow w \leq u^T b \leq c^T x$

Dato un problema di programmazione lineare

$$z^* = \min\{c^T x : x \in P\} \text{ con } P = \{x : Ax = b, x \ge 0\},\$$

 $P \ne \emptyset \text{ e } z^* \text{ limitato,}$

valgono le seguenti condizioni necessarie e sufficienti:

$$w \le c^T x, \ \forall \ x \in P$$
 \iff $\exists \ u \in \mathbb{R}^m : \begin{cases} u^T A \le c^T \\ w \le u^T b \end{cases}$

Forma equivalente per PL2

$$w^* = \max w$$

s.t. $w \le c^T x \quad \forall x \in P$
 $w \in \mathbb{R}$

$$w^* = \max w$$

s.t. $w \le u^T b$ (un vincolo)
 $u^T A \le c^T$ (n vincoli)
 $u \in \mathbb{R}^m$ (m variabili)

[all'ottimo,
$$w = u^T b$$
]

$$w^* = \max \quad u^T b$$

$$(PL_2) \qquad \text{s.t.} \quad u^T A \le c^T \qquad (n \text{ vincoli})$$

$$u \in \mathbb{R}^m \qquad (m \text{ variabili})$$

Coppie di problemi primale-duale

$$(PL_1) (PL_2)$$

$$z^* = \min c^T x$$
 $w^* = \max u^T b$
s.t. $Ax = b$ s.t. $u^T A \le c^T$
 $x \ge 0$ $u \in \mathbb{R}^m$

- -n variabili x -n vincoli
- m vincoli
 m variabili u

Teorema: dualità forte

Se PL_1 ammette ottimo finito, $z^* = w^*$

Il problema duale

vincolo primale → variabile duale

$$u^T b = u_1 b_1 + u_2 b_2 + \ldots + u_m b_m$$

variabile primale → vincolo duale

$$u^{T}A \leq c^{T} \equiv \begin{cases} u^{T}A_{1} \leq c_{1} \\ u^{T}A_{2} \leq c_{2} \end{cases} \qquad \equiv u^{T}A_{j} \leq c_{j}, \ \forall \ j = 1 \dots n \\ u^{T}A_{n} \leq c_{n} \end{cases}$$

```
min 2x_1 - 3x_2 - x_3

s.t. 2x_1 + 4x_2 + 3x_3 = 22 x_1

x_1 - 7x_2 = 15 x_2

x_1, x_2, x_3 \ge 0
```

```
min 2x_1 - 3x_2 - x_3

s.t. 2x_1 + 4x_2 + 3x_3 = 22

x_1 - 7x_2 = 15

x_1, x_2, x_3 \ge 0
```

Duali di PL in forma generica

• Per la sufficienza, definire $u^T A \sim c^T$ e u per mantenere

$$c^Tx$$
 $\geq u^TAx$ $\geq u^Tb \geq w, \forall x \in F$
 $siccome \ x \geq 0$ $siccome \ Ax = b$
 $serve \ u^TA \leq c^T$ $vale \ con \ u \ qualsiasi$

• Consideriamo $c^T x > u^T A x$:

$$u^{T}Ax = \begin{bmatrix} u^{T}A_{1}|u^{T}A_{2}|\dots|u^{T}A_{j}|\dots|u^{T}A_{n}\end{bmatrix}\begin{bmatrix} x_{1}\\ x_{2}\\ \dots\\ x_{j}\\ \dots\\ x_{n}\end{bmatrix} =$$

$$= u^{T}A_{1}x_{1} + u^{T}A_{2}x_{2} + \dots + u^{T}A_{j}x_{j} + \dots + u^{T}A_{n}x_{n}$$

$$c^{T}x = c_{1}x_{1} + c_{2}x_{2} + \dots + c_{j}x_{j} + \dots + c_{n}x_{n}$$

Duali di PL in forma generica (cont.)

• Affinché $u^T A x \leq c^T x$, è sufficiente

$$u^{T}A_{j}x_{j} \leq c_{j}x_{j}, \forall j = 1...n$$

$$u^{T}A_{j}x_{j} \leq c_{j}x_{j}, \forall j = 1...n$$

Pertanto:

se $x_j \ge 0$, la condizione sufficiente è che $u^T A_j \le c_j$ se $x_j \le 0$, la condizione sufficiente è che $u^T A_j \ge c_j$ se x_j libera, la condizione sufficiente è che $u^T A_j = c_j$

variabile primale ≥ 0 / ≤ 0 / libera
 vincolo duale ≤ / ≥ / =

Duali di PL in forma generica (cont.)

Manteniamo adesso la seconda disugualianza della catena

$$c^T x \ge u^T A x \ge u^T b \ge w, \forall x \in P$$

• Consideriamo $u^T A x \ge u^T b$:

$$u^{T}Ax = \begin{bmatrix} u_{1}|u_{2}|\dots|u_{i}|\dots|u_{n} \end{bmatrix} \begin{bmatrix} a_{1}^{T}x \\ a_{2}^{T}x \\ \vdots \\ a_{i}^{T}x \end{bmatrix} = \begin{bmatrix} a_{1}^{T}x \\ a_{2}^{T}x \\ \vdots \\ a_{m}^{T}x \end{bmatrix}$$

$$= u_1 a_1^T x + u_2 a_2^T x + \dots + u_i a_i^T x + \dots + u_m a_m^T x$$

$$u^T b = u_1 b_1 + u_2 b_2 + \dots + u_i b_i + \dots + u_m b_m$$

Duali di PL in forma generica (cont.)

• Affinché $u^T A x \ge u^T b$, è sufficiente

$$u_i a_i^T x \geq u_i b_i, \ \forall \ i = 1 \ldots m$$

Pertanto:

se $a_i^T x \geq b_i$, la condizione sufficiente è che $u_i \geq 0$ se $a_i^T x \leq b_i$, la condizione sufficiente è che $u_i \leq 0$ se $a_i^T x = b_i$, la condizione sufficiente è che $u_i \in \mathbb{R}$ (sempre!)

• vincolo primale \geq / \leq / = \rightsquigarrow variabile duale \geq 0 / \leq 0 / libera

Si può dimostrare che le condizioni sono anche necessarie.

Duali di PL in forma generica: conversione

Considerare singolarmente variabili e vincoli primali

Primale (min $c^T x$)	Duale $(\max u^T b)$	
$a_i^T x \geq b_i$	$u_i \geq 0$	
$a_i^T x \leq b_i$	$u_i \leq 0$	
$a_i^T x = b_i$	u _i libera	
$x_j \geq 0$	$u^T A_j \leq c_j$	
$x_j \leq 0$	$u^T A_j \geq c_j$	
x _j libera	$u^T A_j = c_j$	

Per problemi di max, partire dalla colonna di destra

min	$10x_{1}$	$+20x_{2}$	+0- 23	
s.t.	$2x_1$	$-x_2$		≥ 1 Un =
		X2	$+x_3$	< 2 UL_
	x_1		$-2x_{3}$	$=3u_{3}$
		$3x_2$	$-x_3$	≥ 4 cly_
	x_1			≥ 0
		x_2		≤ 0
			V-	Tibora

47 A 2 NO	C2 C2 A2 (
Primale (min $c^T x$)	Duale ($\max u^T b$)		
$a_i^T x \geq b_i$	$u_i \geq 0$		
$a_i^T x \leq b_i$	$u_i \leq 0$		
$a_i^T x \bigoplus b_i$	u _i libera		
$x_j \geq 0$	$u^T A_j \leq c_j$		
$x_j \leq 0$	$u^T A_j \geq c_j$		
x _j libera	$u^T A_j = c_j$		

UTA NCT

may
$$1 \cdot u_1 + 2 \cdot u_2 \cdot 3u_3 \cdot 4 \cdot u_4 + 4u_4$$

 $2 \cdot u_1 + 0 \cdot u_2 + 1 \cdot u_3 + 0 \cdot u_4 \leq 10$
 $-u_1 + u_2 + 3u_4 \qquad \geq 20$
 $+u_2 - 2u_3 = u_4 \qquad = 0$
 $u_1 \geq 0 \qquad u_2 \in \text{berso} \quad u_4 \geq 0$

min	$10x_1$	$+20x_{2}$		
s.t.	$2x_1$	$-x_2$		≥ 1
		X2	$+x_3$	< 2 2
	x_1		$-2x_{3}$	=3
		$3x_2$	$-x_3$	≥ 4
	x_1			≥ 0
		<i>x</i> ₂		≤ 0
			<i>X</i> 3	libera

Primale (min c^Tx)	Duale $(\max u^T b)$	
$a_i^T x \geq b_i$	$u_i \geq 0$	
$a_i^T x \leq b_i$	$u_i \leq 0$	
$a_i^T x = b_i$	u _i libera	
$x_j \geq 0$	$u^T A_j \leq c_j$	
$x_j \leq 0$	$u^T A_j \geq c_j$	
x _j libera	$u^T A_j = c_j$	

	A
Primale $(\min c^T x)$	Duale (max u ^T
$a_i \times \geq b_i$	$u_i \geq 0$
$a_i^T x \leq b_i$	$u_i \leq 0$
$a_i^T x = b_i$	u _i Tibera
$x_j \geq 0$	$u^T A_j \leq c_j$
$x_j \leq 0$	$u^T A_j \geq c_j$
x _j libera —	$u^T A_j \neq c_j$

min $10y_{1} + 20y_{2}$ y_{2} 7. t . $2y_{1} - y_{2}$ y_{2} y_{3} y_{3} y_{2} y_{3} y_{3} y_{4}

max	x_1	$+2x_{2}$	$+3x_{3}$	$+4x_{4}$	
s.t.	$2x_{1}$		$+x_3$		≤ 10
	$-x_1$	$+x_2$		$+3x_{4}$	≥ 20
		<i>X</i> ₂	$-2x_{3}$	$-x_4$	= 0
	x_1				≥ 0
		x_2			≤ 0
			<i>X</i> ₃		libera
				X4	≥ 0

Primale $(\min c^T x)$	Duale (max u ^T	
$a_i^T x \geq b_i$	$u_i \geq 0$	
$a_i^T x \leq b_i$	$u_i \leq 0$	
$a_i^T x = b_i$	u _i libera	
$x_j \geq 0$	$u^T A_j \leq c_j$	
$x_j \leq 0$	$u^T A_j \geq c_j$	
x _j libera	$u^T A_j = c_j$	

Teoremi della dualità

Teorema: trasformazione duale doppia

Il duale del duale è il primale

Dimostrazione:

$$\begin{cases} \min & c^T x \\ s.t. & Ax \ge b \end{cases} \rightarrow \begin{cases} \max & u^T b \\ s.t. & u^T A \le c^T \end{cases} \equiv \begin{cases} \max & b^T u \\ s.t. & A^T u \le c \end{cases} \rightarrow \begin{cases} \min & c^T y \\ s.t. & y^T A^T \ge b^T \end{cases} \equiv \begin{cases} \min & c^T y \\ s.t. & Ay \ge b \end{cases} \equiv \begin{cases} \min & c^T x \\ s.t. & Ax \ge b \\ y > 0 \end{cases} \end{cases}$$

Teorema della dualità forte

```
Data coppia (PL) e (DL)
```

(PL) ammette **ottimo finito** $z^* \iff (DL)$ ammette **ottimo finito** w^* e, inoltre, $z^* = w^*$

Dimostrazione:

- \Rightarrow per costruzione, $z^* = w^*$
- per costruzione del duale applicata al duale, visto che il duale del duale è il primale

Teorema della dualità debole

Ricordando che i risultati possono essere generalizzati, fissiamo le idee:

$$z^* = \min c^T x$$
 $w^* = \max u^T b$
 (PL) s.t. $Ax \ge b$ (DL) s.t. $u^T A \le c^T$
 $x \ge 0$ $u \ge 0$

Siano
$$P = \{x \ge 0 : Ax \ge b\}$$
 e $D = \{u \ge 0 : u^T A \le c^T\}$
Se $P \ne \emptyset$ e $D \ne \emptyset$, allora $\forall x \in P, u \in D$ si ha $u^T b \ne c^T x$

Dimostrazione:

$$u^T b \leq u^T A x \leq c^T x$$
 $u^T \geq 0$
 $u^T \geq 0$
 $u^T \geq 0$
 $u^T A \leq c^T$

[Nota: per costruzione del duale, maggiorazioni sempre rispettate!]

Dualità debole: rappresentazione

• I valori delle soluzioni primale e duale si limitano a vicenda

- valori ammissibili del duale sono un lower bound per il primale
- valori ammissibili del primale sono un upper bound per il duale

Corollario: condizione di ottimalità

Date soluzioni x ammissibile primale e u ammissibile duale $c^Tx = u^Tb \iff x$ e u ottime primale e duale risp.

Dimostrazione:

- ⇒ soluzioni migliori violerebbero il teorema della dualità debole
- = per il Teorema della dualità forte

Corollario: caso illimitato

- (i) (PL) illimitato \Longrightarrow (DL) inammissibile
- (ii) (DL) illimitato \Longrightarrow (PL) inammissibile

Dimostrazione: per assurdo, una soluzione ammissibile duale \bar{u} imporrebbe $c^T x \geq \bar{u}^T b$, limitando il primale.

Attenzione: vale solo nella direzione data!

Dualità: riassunto dei risultati

		(DL)			
		Finito Illimitato Inammissibile			
	Finito	SI (e $z^* = \omega^*$)	NO	NO	
(PL)	Illimitato	NO	NO	SI (corollario)	
	Inammissibile	NO	SI (corollario)	(SI (*)	

* Esempio di coppia di problemi primale e duale inammissibili

Dualità e condizioni di ottimalità

(PP) min
$$c^T x$$
 (PD) max $u^T b$
s.t. $Ax \ge b$ s.t. $u^T A \le c^T$
 $x \ge 0$ $u \ge 0$

- a partire da primale in qualsiasi forma
- anche se \bar{x} NON è soluzione di base
- applicazione: trovare l'ottimo di un problema nella forma $\{\min / \max c^T x : Ax = b, x \in \mathbb{R}\}$

Complementarietà primale-duale (ortogonalità)

(PP) min
$$c^T x$$
 (PD) max $u^T b$
s.t. $Ax \ge b$ s.t. $u^T A \le c^T$
 $x \ge 0$ $u \ge 0$

Dimostrazione: \Rightarrow

• x, u ottime $\Rightarrow x$, u ammissibili \Rightarrow

$$u^Tb \leq u^TAx \leq c^Tx$$
 sempre!
 $u^{T} \geq 0$ $x \geq 0$ per costruzione
 $b \leq Ax$ $u^TA \leq c^T$

- ottime $\Rightarrow u^T b = c^T x$ (dualità forte) $\Rightarrow u^T b = u^T A x = c^T x$
- $c^T x = u^T A x$ \Rightarrow $(c^T u^T A) x = 0$

vale per coppie primale-duale in qualsiasi forma

Dimostrazione: \Leftarrow

•
$$u^{T}(Ax - b) = 0$$
 \Rightarrow $u^{T}b = u^{T}Ax$
• $(c^{T} - u^{T}A)x = 0$ \Rightarrow $c^{T}x = u^{T}Ax$

$$(c^T - u^T A)x = 0 \Rightarrow c^T x = u^T Ax$$

$$\Rightarrow u^T b = c^T x$$

• x e u ammissibili (per hp) con stesso valore della funzione obiettivo ⇒ ottime! (dualità forte)

vale per coppie primale-duale in qualsiasi forma

Ancora più informazioni

 $\frac{2}{D_1} + \frac{2}{D_2} - \frac{2}{D_m} = 0$

Sviluppando i prodotti

$$u^{T}(Ax - b) = \sum_{i=1}^{m} u_{i}(a_{i}^{T}x - b_{i}) = 0 \in \mathbb{R}$$

 $(c^{T} - u^{T}A)x = \sum_{j=1}^{n} (c_{j} - u^{T}A_{j})x_{j} = 0 \in \mathbb{R}$

Ogni addendo è concorde in segno (per costruz., in ogni forma) ⇒

Condizioni di complementarietà primale duale

Teorema (condizioni "estese")

Data qualsiasi coppia di problemi primale duale e $x \in \mathbb{R}^n$ $u \in \mathbb{R}^m$

$$x \in u$$
 \iff $u \text{ ammissibile duale}$ ottime \Leftrightarrow $u_i (a_i^T x - b_i) = 0 , \forall i = 1...m$ $(c_i - u^T A_i) x_i = 0 , \forall j = 1...n$

x ammissibile primale

- Esempio: (PP) $\min\{c^Tx : x \geq 0, Ax \geq b\}$ (PD) $\max\{u^T b : x \ge 0, u^T A \le c^T\}$

$$x_j > 0 \qquad \Rightarrow u' A_j = c_j$$

2) vincolo duale *lasco*
$$u^T A_j < c_j \Rightarrow x_j = 0$$

3) variabile duale
$$\neq 0$$
 $u_i > 0 \Rightarrow a_i^T x = b_i$

4) vincolo primale lasco
$$a_i^T x > b_i \Rightarrow u_i = 0$$

1) variabile primale $\neq 0 | x_j > 0 \Rightarrow u^T A_j = c_j | \text{vincolo duale saturo}$ variabile primale nulla vincolo primale saturo variabile duale nulla

solo nel verso \Rightarrow !