Khanh Nguyen

August 2022, March 2023 Revisited

1 Problem Setup

In this section, we introduce the PCA problem

Given n data points, we define mean and variance as follows

Definition 1 (mean and variance of n data points). Let $\mathcal{X} = \{x_1, x_2, ..., x_n\}$ where $x_i \in \mathbb{R}^d$, $x_i \in \mathbb{N} \cap [1, n]$. Define

$$\mu(\mathcal{X}) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\sigma(\mathcal{X}) = \frac{1}{n-1} \sum_{i=1}^{n} ||x_i - \mu(\mathcal{X})||_2^2$$

If data is centered, i.e $\mu(\mathcal{X}) = 0$, the variance can be rewritten as the sum of squared L2 norm of all data points, i.e $\sigma(\mathcal{X}) = \frac{1}{n-1} \sum_{i=1}^{n} ||x_i||_2^2$. Throughout this tutorial, we assume data is centered.

We also denote $X = [x_1, x_2, ..., x_n] \in \mathbb{R}^{d \times n}$ as the data matrix of \mathcal{X} where each column of X corresponds to a data point in \mathcal{X} , we can rewrite *mean* and *variance* as follows

Definition 2 (mean and variance of a data matrix). Let $X = [x_1, x_2, ..., x_n] \in \mathbb{R}^{d \times n}$ be the data matrix of n data points in \mathbb{R}^d

$$\mu(X) = \frac{1}{n} X \mathbf{1}_n = \mathbf{0}_d$$

$$\sigma(X) = \frac{1}{n-1} ||X|_F^2 = \frac{1}{n-1} \operatorname{tr} X^T X$$

The PCA problem attempts to find a k-dimensional subspace of \mathbb{R}^d denoted as \mathcal{U}_k such as the orthogonal projection of \mathcal{X} into \mathcal{U}_k preserves as much variance of \mathcal{X} as possible.

Let $U_k = [u_1, u_2, ..., u_k] \in \mathbb{R}^{d \times k}$ be the matrix of a orthogonal basis of \mathcal{U}_k , i.e $U_k^T U_k = I_k$. The PCA projection of \mathcal{X} into \mathcal{U}_k can be written as $X \mapsto U_k U_k^T X$.

Definition 3 (Principle Component Analysis). Let $X \in \mathbb{R}^{d \times n}$

$$\operatorname{pca}_{k} X = \max_{U_{k} \in \mathbb{R}^{d \times k} \wedge U_{k}^{T} U_{k} = I_{k}} \sigma(U_{k} U_{k}^{T} X)$$

$$\tag{1}$$

Some preliminary observations

- If data is centered, the projected data is also centered. $(U_k U_k^T X) \mathbf{1}_n = U_k U_k^T (X \mathbf{1}_n) = \mathbf{0}_d$
- the maximum variance of data after the project is achievable if and only if all data points lie in the subspace \mathcal{U}_k

To elaborate on the second observation, let V_k be the complement subspace of U_k in \mathbb{R}^d , i.e every vector $x \in \mathbb{R}^d$ can be expressed as x = u + v where $u \in U_k$ and $v \in V_k$. Furthermore, the L2 norm of x can be expressed as $||x||_2^2 = ||u||_2^2 + ||v||_2^2$ (this is well-know Pythagorean theorem). Sum up all data points, we have $\sum_{i=1}^n ||x_i||_2^2 = \sum_{i=1}^n ||u_i||_2^2 + \sum_{i=1}^n ||v_i||_2^2.$ Hence, $\sum_{i=1}^n ||x_i||_2^2 \ge \sum_{i=1}^n ||u_i||_2^2.$ Since, the projected data is also centered, the RHS is the variance of projected data.

In machine learning, we often use the inner product of data points into the k principle directions as a dimensionality reduction method for downstream tasks. In this tutorial, we call it PCA embedding

Definition 4 (PCA Embedding).

$$X \mapsto \hat{U}_k^T X \in \mathbb{R}^{k \times n} \tag{2}$$

where \hat{U}_k is the optimal value of U_k .

2 Reduction to Trace Optimization Problem

In this section, we find PCA solution by reducing it to Trace Optimization Problem

Definition 5 (Trace Optimization Problem). Given $M \in \mathbb{R}^{d \times d}$ symmetric positive semidefinite with d eigenvalues $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_d \geq 0$. Find a matrix $U \in \mathbb{R}^{d \times k}$ with $U^TU = I_k$ such as the trace $\operatorname{tr} U^T M U$ is maximized or minimized

The optimal value of $\mathit{Trace\ Optimization}$ is the sum of k largest / smallest eigenvalues.

$$\max_{U \in \mathbb{R}^{d \times k} \wedge U^T U = I_k} \operatorname{tr} U^T M U = \sum_{i=1}^k \lambda_i$$

$$\min_{U \in \mathbb{R}^{d \times k} \wedge U^T U = I_k} \operatorname{tr} U^T M U = \sum_{i=d-k+1}^d \lambda_i$$

In the case of PCA, the objective can be rewritten as

$$\sigma(U_k U_k^T X) = \operatorname{tr}(U_k U_k^T X)^T (U_k U_k^T X)$$

$$= \operatorname{tr} X^T U_k (U_k^T U_k) U_k^T X \quad \text{(decompose)}$$

$$= \operatorname{tr} X^T U_k U_k^T X \quad \text{(orthogonal of } U_k)$$

$$= \operatorname{tr} U_k^T (X X^T) U_k \quad \text{(cyclic property of trace)}$$
(3)

Therefore, the solution of PCA can be obtained by solving Trace Optimization where $M = XX^T$. Let $X = U\Sigma V^T$ be the Singular Value Decomposition of X. We rewrite $XX^T = U\Sigma^2 U^T$. Hence, the solution is of PCA is the subspace with basis consists of k left singular vectors corresponding to the k largest singular values.

3 Equivalent to Low-Rank Approximation on Frobenius Norm

3.1 Low-Rank Approximation on Frobenius Norm (LRA-FN)

Given matrix $A \in \mathbb{R}^{m \times n}$, the problem of Low-Rank Approximation on Frobenius Norm (LRA-FN) seeks to find a rank-k approximation of A ($k \leq \min(m, n)$). Formally,

$$\min_{A_k \in \mathbb{R}^{m \times n} \land \text{rank } A_k = k} ||A_k - A||_F^2 \tag{4}$$

The Eckart-Young-Mirsky theorem states that the optimality is achievable when the rank-k matrix A is the rank-k SVD of A_k , i.e $\hat{A}_k = U_k \Sigma_k V_k^T$. The optimal objective value is

$$\min_{A_k \in \mathbb{R}^{m \times n \wedge \text{rank } A_k = k}} ||A_k - A||_F^2 = ||\hat{A}_k - A||_F^2 = \sum_{i=k+1}^n \sigma_i^2$$
 (5)

where $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_{\min(m,n)} \geq 0$ are the singular values of A. We can rewrite the rank-k SVD decomposition of A as

$$U_k \Sigma_k V_k^T = U_k U_k^T A \tag{6}$$

Intuitively speaking, the best rank-k approximation of matrix A is achievable by orthogonally projecting its columns into the subspace constructed from k left singular vectors corresponding to k largest singular values. This operation is identical to PCA. In fact, LRA-FN and PCA are equivalent.

Theorem 1. PCA and LRA-FN are equivalent

$3.2 \quad \text{PCA} \rightarrow \text{LRA-FN}$

In this section, we find the solution of PCA from the solution of LRA-FN In PCA, we want to find U_k such as $\sigma(U_k U_k^T X)$ is maximized. We can

In PCA, we want to find U_k such as $\sigma(U_k U_k^T X)$ is maximized. We can rewrite the objective as

$$\sigma(U_k U_k^T X) = ||U_k U_k^T X||_F^2 \tag{7}$$

Since $U_k U_k^T$ is a orthogonal projection, $U_k U_k^T x$ and $U_k U_k^T x - x$ are orthogonal for all $x \in \mathbb{R}^d$: $(U_k U_k^T x)^T (U_k U_k^T x - x) = 0$

Apply Pythagorean theorem for all columns of $U_k U_k^T X$

$$||U_k U_k^T X||_F^2 + ||U_k U_k^T X - X||_F^2 = ||X||_F^2$$

$$||U_k U_k^T X||_F^2 = ||X||_F^2 - ||U_k U_k^T X - X||_F^2$$
(8)

By LRA-FN,

$$||U_k U_k^T X - X||_F^2 \ge ||\hat{U}_k \hat{U}_k^T X - X||_F^2 \tag{9}$$

Where \hat{U}_k is the matrix of k left singular values of X corresponding to the k largest singular values.

Hence,

$$||U_k U_k^T X||_F^2 \le ||X||_F^2 - ||\hat{U}_k \hat{U}_k^T X - X||_F^2 = \sum_{i=1}^k \sigma_i^2$$
(10)

where $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_{\min(d,n)} \geq 0$ are the singular values of X. $U_k = \hat{U}_k$ admits equality.

3.3 $LRA-FN \rightarrow PCA$

In this section, we find the solution of LRA-FN from the solution of PCA

Given any rank-k approximation $A_k \in \mathbb{R}^{m \times n}$ of A, let $U_k \in \mathbb{R}^{m \times k}$ be a orthogonal basis of column space of A. We will prove that $U_k U_k^T A$ gives a better or as good approximation of A as A_k .

Theorem 2 (minimal distance). For any vector u in a k-dimensional subspace \mathcal{U}_k , the minimal distance to another vector $a \in \mathbb{R}^m$ is achievable when u is the projection of a onto \mathcal{U}_k .

$$\min_{u \in \mathcal{U}_k} ||u - a||_2 = ||U_k U_k^T a - a||_2$$
(11)

where columns of U_k is a orthogonal basis of \mathcal{U}_k

Apply theorem ?? to columns of A_k and A, we have

$$||A_k - A||_F \ge ||U_k U_k^T A - A||_F \tag{12}$$

By Pythagorean theorem,

$$||U_k U_k^T A - A||_F = ||A||_F - ||U_k U_k^T A||_F$$
(13)

By PCA, $||U_kU_k^TA||_F$ is maximal when U_k is the k left singular vectors corresponding to the k largest singular values.

$$||\hat{U}_k \hat{U}_k^T A||_F \ge ||U_k U_k^T A||_F \tag{14}$$

Hence,

$$||A_{k} - A||_{F} \ge ||U_{k}U_{k}^{T}A - A||_{F}$$

$$= ||A||_{F} - ||U_{k}U_{k}^{T}A||_{F}$$

$$\ge ||A||_{F} - ||\hat{U}_{k}\hat{U}_{k}^{T}A||_{F}$$
(15)

The equality is admitted in both conditions (1) A_k is the orthogonal projection of A in some subspace of dimension k and (2) the subspace is from PCA.

4 Sequential PCA

In machine learning, sometimes, number of data points is very large and they come sequentially. Sequential PCA attempts to approximate the PCA in O(1) time. This section is a discussion on concept drifting in sequential PCA

Suppose there exists an algorithm producing PCA embedding $y_1^{(t)}, y_2^{(t)}, ..., y_t^{(t)} \in \mathbb{R}^k$ of input data point $x_1, x_2, ..., x_t \in \mathbb{R}^d$ after receiving data point x_t at time t. Let $U_k^{(t)} \in \mathbb{R}^{k \times d}$ be the approximated k-dimensional projection subspace of PCA at time t. When a new data point come, the algorithm yields a new approximation of the projection subspace $U_k^{(t+1)}$. Generally, the new approximation will be different. The authors in ? introduced an update to all previous embedding vectors as

$$y_t^{(t_2)} \mapsto U_k^{(t_2)T} U_k^{(t_1)} y_t^{(t_1)} \tag{16} \label{eq:16}$$

The update can be decomposed into two steps: (1) map the embedding of x_t at time t_1 : $y_t^{(t_1)} \in \mathbb{R}^k$ back to \mathbb{R}^d (2) project the resulting vector / tensor into the new basis $U_k^{(t_2)}$ that yields the embedding of x_t at time t_2 : $y_t^{(t_2)}$

5 Appendix

5.1 A proof of Trace Optimization Problem

We have

$$\operatorname{tr} U^{T}MU = \operatorname{tr} M(UU^{T}) \quad \text{(cyclic property)}$$

$$\leq \sum_{i=1}^{d} \sigma_{i}(M)\sigma_{i}(UU^{T}) \quad \text{(Von Neumann's Trace Inequality)}$$

$$= \sum_{i=1}^{k} \sigma_{i}(M) \quad (U \text{ is orthogonal rank-}k)$$

$$(17)$$

where $\sigma_i(A)$ is the *i*-th singular value of A sorted descending.

5.2 A proof of Von Neumann's Trace Inequality

This proof is by user1551 from Mathematics Stack Exchange? The Von Neumann's Trace Inequality is stated as follow:

Theorem 3. Given two complex matrices $A, B \in \mathbb{R}^{n \times n}$ with singular values $\alpha_1 \ge \alpha_2 \ge ... \ge \alpha_n \ge 0$ and $\beta_1 \ge \beta_2 \ge ... \ge \beta_n \ge 0$

$$|\operatorname{tr} AB| \le \sum_{i=1}^{n} \alpha_i \beta_i \tag{18}$$

Lemma 1. The Von Neumann's Trace Inequality can be reduced to

$$|\operatorname{tr} DUSV^*| < \operatorname{tr} DS \tag{19}$$

such that U and V are unitary and $D = diag(d_1, d_2, ..., d_n), S = diag(s_1, s_2, ..., s_n)$

Let P_k denotes the orthogonal projection matrix $I_k \bigoplus 0_{n-k} = diag(1, 1, ..., 1, 0, 0, ..., 0)$ (k times of 1)

We write D and S as the non-negatively weighted sum of P_k s

$$D = (d_1 - d_2)P_1 + (d_2 - d_3)P_2 + \dots + (d_{n-1} - d_n)P_{n-1} + d_nP_n$$
 (20)

and similarly for S. Conveniently, we write $D = \sum_k \alpha_k P_k$, $S = \sum_l \beta_l P_l$. Inequality ?? becomes

$$\left|\sum_{k,l} \alpha_k \beta_l \operatorname{tr} P_k U P_l V^*\right| \le \sum_{k,l} \alpha_k \beta_l \operatorname{tr} P_k P_l \tag{21}$$

If we have $|\operatorname{tr} P_k U P_l V^*| \le \operatorname{tr} P_k P_l$, Triangle Inequality implies the inequality ??. $(|a+b| \le |a|+|b|)$

Indeed, denote $U = [u_1, u_2, ..., u_n], V = [v_1, v_2, ..., v_n],$ so that $P_k U P_l = [P_k u_1, P_k u_2, ..., P_k u_l, 0, ..., 0].$ Assuming $l \le k$, we have

$$|\operatorname{tr}(P_{k}UP_{l})V^{*}| = |\operatorname{tr} V^{*}(P_{k}UP_{l})| \quad (\operatorname{cyclic property})$$

$$= \left| \sum_{i=1}^{n} \langle (P_{k}UP_{l})_{i}, v_{i} \rangle \right| \quad (\operatorname{unroll})$$

$$= \left| \sum_{i=1}^{l} \langle P_{k}u_{i}, v_{i} \rangle \right| \quad (\operatorname{unroll})$$

$$\leq \left| \sum_{i=1}^{l} ||P_{k}u_{i}|| ||v_{i}|| \quad (\operatorname{Cauchy-Schwarz inequality})$$

$$= \sum_{i=1}^{l} ||P_{k}u_{i}|| \quad (\operatorname{unit vector})$$

$$= \sum_{i=1}^{l} 1 \quad (\operatorname{orthogonal projection matrix})$$

$$= l$$

$$= \operatorname{tr} P_{k} P_{l}$$

$$(22)$$

For the other case, l > k, we write $|\operatorname{tr}(P_k U P_l) V^*| = |\operatorname{tr} U(P_l V^* P_k)|$ then apply Cauchy-Schwarz inequality on row space instead.

5.2.1 Proof of lemma ??

SVD:
$$A = U_A \Sigma_A V_A^*, B = U_B \Sigma_B V_B^*$$

$$\operatorname{tr} AB = \operatorname{tr} U_A \Sigma_A V_A^* U_B \Sigma_B V_B^*$$

$$= \operatorname{tr} \Sigma_A (V_A^* U_B) \Sigma_B (U_A^* V_B) * \text{ (cyclic property)}$$

$$= \operatorname{tr} DUCV^*$$
(23)