

Exercise 5A

Question 38:

In AABC,

∠A=180° - ∠B- ∠C
=180° - 35° - 65°
=180° - 100° = 80°
∴ ∠BAX =
$$\frac{1}{2}$$
 ∠A
= $\frac{1}{2}$ × 80° = 40°

Now in AABX,

$$\angle B = 35^{\circ}$$

 $\angle BAX = 40^{\circ}$
and $\angle BXA = 180^{\circ} - 35^{\circ} - 40^{\circ}$
 $= 180^{\circ} - 75^{\circ} = 105^{\circ}$

So, in $\triangle ABX$,

∠B is smallest,so the side opposite to ∠B, that is AX, is smallest

Now consider ∆AXC

$$\angle CAX = \frac{1}{2} \times \angle A$$

= $\frac{1}{2} \times 80^{\circ} = 40^{\circ}$

/AVA - 100 100 400 6E

 $\angle AAC = 160 - 40 - 65$ = $180^{\circ} - 105^{\circ} - 75^{\circ}$

Therefore, in $\triangle AXC$, we have, $\angle CAX = 40^{\circ}$. $\angle C = 65^{\circ}$ and $\angle AXC = 75^{\circ}$

∴ ∠CAX is smallest in ∆AXC

So the side opposite to ∠CAX is shortest.

⇒ CX is shortest

⇒ CX < AX(ii)

From (i) and (ii) ,we get

BX> AX> CX

This is the required descending order.

********** END ********