数学实验四

- 1.常见信贷方式:
- A. 到期一次性还本息, 名义利率等于实际利率, 客户在银行的定期存款就是这种方式。
- B.**先按月还息,到期还本,**实际利率接近 A 的利率,是信用贷款常用的做法。
- C. 等额本息法,按月等额度还本金和利息,银行贷款的最常见方式。
- D.等额**本金法**,按月等还本金,并还相应利息,银行房贷的次常见方式。
- E.借贷时**先一次性扣除利息**、接下来每月还本金。

A 君于本日向银行存入银行固定存款 100 万元,整存整取,期限 2 年,约定到期<u>自动转**存** 2</u> 年,且假设利率不变。银行当日转手将该款项贷给 B 君,期限为 10 年。

- (1) 请建立数学模型. 描述 A 君和 B 君在该银行所设专项账户逐年余额情况。
- (2) 请建立数学模型,分别描述 A-E5 种情况下 B 君在该银行所设专项账户逐期余额情况。
- (3) 根据以上模型, 比较 A-E 5 种情况下, 存贷款的实际利率。
- (4) 讨论银行盈亏情况。
- (5) 如果利率允许波动(如 LPR), 做合理假设, 重新考虑以上问题。

请查阅银行最新存贷款利率

解:(1)请建立数学模型,描述 A 君和 B 君在该银行所设专项账户逐年余额情况。

• a) 查阅资料: 查阅华夏银行的存款与贷款利率,得知 2 年期存款年利率 r1=1.8%,5 年期以上的贷款年利 r2=3.95%。

2024年华夏银行存款利率一览表

全国银行间同业拆借中心发布贷款市场报价利率 (LPR)

发布日期: 2024年02月21日

期限品种	利率
1年期人民币贷款市场报价利率	3.45%
5年期以上人民币贷款市场报价利率	3.95%

·b) 建立模型并求解:

• A 君账户模型——Ai 为账户余额: $A_i = (1+r_1)A_{i-1}, i=1,2,\cdots,5$,且 A0=1000000,计算 A 君未来 10 年的账户余额。

```
% 设定时间单位为两年,则取时间单位长度为 5
n = 5;
% 设定初始金额与利率
A0 = 1000000;
r1 = 0.018;
r11= r1*2;
% 初始化账户余额
A = zeros(n+1, 1);
A(1) = A0;
% 计算余额
for i = 1:n
   interest = A(i) * r11; % 计算利息
   A(i+1) = A(i) + interest; % 计算余额
end
% 转换为每年的余额情况
AA = zeros(n*2+1, 1);
AA(1)=A(1);
```

```
for i = 1:n
    AA(i*2)=A(i+1);
    AA(i*2+1)=A(i+1);
end
```

呈现 A 君未来 10 年的账户余额:

```
% 显示
years=0:1:10;
A_str = arrayfun(@(x) sprintf('%.0f', x), AA, 'UniformOutput', false);
T = table(years', A_str, 'VariableNames', {'年份', 'A 君账户余额'});
disp(T);
```

```
年份
      A 君账户余额
      {'1000000'}
 0
      {'1036000'}
 1
 2
       {'1036000'}
       {'1073296'}
 3
       {'1073296'}
 4
       {'1111935'}
 5
       {'1111935'}
 6
 7
       {'1151964'}
 8
       {'1151964'}
 9
       {'1193435'}
10
      {'1193435'}
```

• 存储银行最后的支出:

```
PA=A(6);
save('P_fund.mat','PA','-append')
```

• 绘制图像呈现 A 君账户余额:

```
% 得到时间横轴
x=0:1:n;
x=x*2;
% 绘制余额随时间的变化
fig=plot(x, A,'b-');
% 设置线宽
fig(1).LineWidth =1.0;
% 打开网格
grid on;
set(gca, 'XGrid', 'on', 'YGrid', 'on', 'GridLineStyle', '-.');
% 设置坐标轴和标题
xlabel('时间/年');
ylabel('余额/元');
title('A 君存款余额随时间变化');
```


• B 君账户模型(假设等额本息法)——Bk 为账户余额: $B_k = (1+r_2)B_{k-1} - m, k = 1, 2, \cdots, 120$,且 B0=1000000,计算 B 君未来 10 年的账户余额。

```
clear;
% 设定时间单位为一月,则取时间单位长度为 120
n = 10 * 12;
% 设定初始金额与利率
B0 = 1e6;
r2 = 0.0395;
r22 = r2 / 12;
% 计算每月还款额
m = r22*B0*(1+r22)^n / ((1+r22)^n - 1);
% 初始化余额数组
B = zeros(n+1, 1);
B(1) = B0;
% 计算余额
for i = 2:n+1
   B(i) = B(i-1)*(1+r22) - m; % 计算本月的余额
end
% 转换为逐年余额
x=0:1:10;
balance_year=zeros(11, 1);
for i=1:11
   balance_year(i)=B(12*(i-1)+1);
```

•呈现 B 君未来 10 年的账户余额:

```
% 显示
years=0:1:10;
B_str = arrayfun(@(x) sprintf('%.0f', x), balance_year, 'UniformOutput', false);
T = table(years', B_str, 'VariableNames', {'年份', 'B 君贷款余额'});
disp(T);
```

```
B 君贷款余额
年份
 0
       {'1000000'}
       {'916795'}
 1
       {'830244'}
 2
       {'740211'
 3
       {'646556'
 4
 5
       {'549135'
 6
       {'447795'
       {'342379'
 8
       {'232722'
 9
       {'118655'}
10
       {'0'
```

绘制图像呈现 B 君贷款余额:

```
fig=plot(x, balance_year,'r-');
% 设置线宽
fig(1).LineWidth =1.0;
% 打开网格
grid on;
set(gca, 'XGrid', 'on', 'YGrid', 'on', 'GridLineStyle', '-.');
% 设置坐标轴和标题
xlabel('时间/年');
ylabel('余额/元');
title('B 君贷款余额随时间变化');
```


(2)请建立数学模型,分别描述 A-E5 种情况下 B 君在该银行所设专项账户逐期余额情况。

• a) 方式 A:到期一次性还本息,名义利率等于实际利率,客户在银行的定期存款就是这种方式。

```
clear;
% 设置初值,计算总利息
B0 = 1e6;
r22 = 0.0395 *10;
interest=B0*r22;
% 计算账户余额
balance_year = zeros(11, 1)+B0;
balance_year(end)=0;
```

• 显示 B 君逐期余额情况:

```
years=0:1:10;
balance_str = arrayfun(@(x) sprintf('%.0f', x), balance_year, 'UniformOutput', false);
T = table(years', balance_str, 'VariableNames', {'年份', 'B 君贷款余额(方式 A)'});
disp(T);
```

```
3
          {'1000000'}
4
          {'1000000'}
5
          {'1000000'}
6
          {'1000000'}
7
          {'1000000'}
8
          {'1000000'}
9
          {'1000000'}
10
          {'0'
```

```
P1=balance_year(1)+interest;
save('P_fund.mat','P1','-append');
```

• 绘制图像呈现 B 君贷款余额:

```
fig=plot(0:1:10, balance_year,'r-');
% 设置线宽
fig(1).LineWidth =1.0;
% 打开网格
grid on;
set(gca, 'XGrid', 'on', 'YGrid', 'on', 'GridLineStyle', '-.');
% 设置坐标轴和标题
xlabel('时间/年');
ylabel('余额/元');
title('B 君贷款余额随时间变化(方式 A)');
```


• b) 方式 B: 先按月还息, 到期还本, 实际利率接近 A 的利率, 是信用贷款常用的做法。

```
clear;
% 设定时间单位为两年为一月,则取时间单位长度为 120
n=10*12;
% 设置初值,计算月利息
B0 = 1e6;
r2=0.0395;
r22 = r2 /12;
interest = zeros(n, 1);
% 计算账户余额
balance = zeros(n+1, 1)+B0;
balance(end)=0;
```

• 显示 B 君逐期余额情况:

```
months=0:1:n;
balance_str = arrayfun(@(x) sprintf('%.0f', x), balance, 'UniformOutput', false);
T = table(months', balance_str, 'VariableNames', {'月份', 'B 君贷款余额(方式 B)'});
disp(T);
```

```
月份
       B 君贷款余额(方式 B)
 0
          {'1000000'}
          {'1000000'}
 1
          {'1000000'}
 2
 3
          {'1000000'}
 4
          {'1000000'}
 5
          {'1000000'}
 6
          {'1000000'}
 7
          {'1000000'}
 8
          {'1000000'}
 9
          {'1000000'}
10
          {'1000000'}
11
          {'1000000'}
12
          {'1000000'}
13
          {'1000000'}
14
          {'1000000'}
15
          {'1000000'}
          {'1000000'}
16
          {'1000000'}
17
18
           {'1000000'}
19
           {'1000000'}
20
           {'1000000'}
21
           {'1000000'}
22
           {'1000000'}
23
          {'1000000'}
          {'1000000'}
24
          {'1000000'}
25
26
          {'1000000'}
27
          {'1000000'}
28
          {'1000000'}
29
          {'1000000'}
30
          {'1000000'}
31
          {'1000000'}
```

```
32
          {'1000000'}
33
          {'1000000'}
34
          {'1000000'}
35
           {'1000000'}
36
           {'1000000'}
37
           {'1000000'}
38
           {'1000000'}
39
          {'1000000'}
40
          {'1000000'}
          {'1000000'}
41
42
           {'1000000'}
43
          {'1000000'}
44
           {'1000000'}
45
          {'1000000'}
46
           {'1000000'}
47
          {'1000000'}
48
          {'1000000'}
49
          {'1000000'}
          {'1000000'}
50
51
          {'1000000'}
52
          {'1000000'}
          {'1000000'}
53
54
          {'1000000'}
55
           {'1000000'}
56
           {'1000000'}
57
           {'1000000'}
58
           {'1000000'}
59
           {'1000000'}
60
           {'1000000'}
61
           {'1000000'}
62
           {'1000000'}
63
          {'1000000'}
64
          {'1000000'}
65
          {'1000000'}
66
          {'1000000'}
67
          {'1000000'}
68
          {'1000000'}
69
          {'1000000'}
70
          {'1000000'}
71
          {'1000000'}
72
          {'1000000'}
73
          {'1000000'}
74
          {'1000000'}
75
          {'1000000'}
76
          {'1000000'}
77
          {'1000000'}
78
          {'1000000'}
79
          {'1000000'}
          {'1000000'}
80
81
          {'1000000'}
82
           {'1000000'}
          {'1000000'}
83
84
          {'1000000'}
          {'1000000'}
85
86
           {'1000000'}
87
          {'1000000'}
88
           {'10000000'}
89
           {'1000000'}
90
          {'1000000'}
91
          {'1000000'}
92
          {'1000000'}
93
          {'1000000'}
94
          {'1000000'}
95
          {'1000000'}
```

```
96
           {'1000000'}
 97
           {'1000000'}
           {'1000000'}
 98
           {'1000000'}
 99
100
           {'1000000'}
101
           {'1000000'}
102
           {'1000000'}
103
           {'1000000'}
104
           {'1000000'}
105
           {'1000000'}
106
           {'1000000'}
107
           {'1000000'}
108
           {'1000000'}
           {'1000000'}
109
110
           {'1000000'}
111
           {'1000000'}
112
           {'1000000'}
113
           {'1000000'}
           {'1000000'}
114
115
           {'1000000'}
116
           {'1000000'}
           {'1000000'}
117
118
           {'1000000'}
           {'1000000'}
119
120
           {'0'
```

```
P2=0;
for i=1:n
    interest(i)=B0*r22;
    P2=P2+interest(i);
end
P2=balance(1)+P2;
save('P_fund.mat','P2','-append');
```

• 绘制图像呈现 B 君贷款余额:

```
fig=plot(months, balance,'r-');
% 设置线宽
fig(1).LineWidth =1.0;
% 打开网格
grid on;
set(gca, 'XGrid', 'on', 'YGrid', 'on', 'GridLineStyle', '-.');
% 设置坐标轴和标题
xlabel('时间/月');
ylabel('余额/元');
title('B 君贷款余额随时间变化(方式 B) ');
```


•c) 方式 C:等额本息法,按月等额度还本金和利息,银行贷款的最常见方式。

```
clear;
% 设定时间单位为两年为一月,则取时间单位长度为 120
n = 10 * 12;
% 设定初始金额与利率
B0 = 1e6;
r2 = 0.0395;
r22 = r2 / 12;
% 计算每月还款额
m = r22*B0*(1+r22)^n / ((1+r22)^n - 1);
% 初始化余额数组
balance = zeros(n+1, 1);
balance(1) = B0;
% 计算余额
for i = 2:n+1
   balance(i) = balance(i-1)*(1+r22) - m; % 计算本月的余额
end
```

• 显示 B 君逐期余额情况:

```
months=0:1:n;
balance_str = arrayfun(@(x) sprintf('%.0f', x), balance, 'UniformOutput', false);
T = table(months', balance_str, 'VariableNames', {'月份', 'B 君贷款余额(方式 C)'});
```

月份	B 君贷款余额(方式)
0	{'1000000'}
1	{'993191'}
2	{'986359'}
3	{'979505'}
4	{'972629'}
5	{'965730'}
6	{'965730'} {'958808'} {'951863'} {'944895'} {'937905'} {'930891'} {'923855'} {'916795'} {'909712'} {'902606'} {'885476'} {'888323'} {'881146'} {'866722'} {'859474'} {'852202'} {'859474'} {'852202'} {'844907'} {'837587'} {'830244'} {'822876'} {'815484'} {'800626'} {'793161'} {'778156'} {'778156'} {'77617'} {'7763053'} {'7747850'} {'747850'} {'740211'} {'732546'}
7	{'951863'}
8	{'944895'}
9	{'937905'}
10	{'930891'}
11	{'923855'}
12	{'916795'}
13	{'909712' }
14	{'902606'}
15	{'895476'}
16	{'888323'}
17	{'881146'}
18	{'873946'}
19	{'866722'}
20	{'859474'}
21	{'852202'}
22	{'844907'}
23	{'837587'}
24	{'830244'}
25	{'822876'}
26	{'815484'}
27	{'808067'}
28	{'800626'}
29	{'793161'}
30	{'785671' }
31	{'778156' }
32	{'770617' }
33	{'763053' }
34	{'755464' }
35	{'747850'}
36	{'740211' }
37	{'732546' }
38	
39	{'717142' }
40	{'709402'}
41	{'701636' }
42	{'693845'}
43	{'686028' }
44	{'678186' }
45	{'670317' }
46	{'662423' }
47	{'662423' } {'654503' }
48	{'646556'}
49	{'638584'}
50	{'630585'}
51	{'622560' }
52	{'614508' }
53	{'606430'}
54	{'598326' }
55	{'590194' }
56	{'582036'}
57	{'573852'}
58	{'724857' } {'717142' } {'709402' } {'701636' } {'693845' } {'686028' } {'678186' } {'670317' } {'662423' } {'662423' } {'6624503' } {'64556' } {'638584' } {'630585' } {'622560' } {'614508' } {'598326' } {'590194' } {'582036' } {'573852' } {'565640' }
٥٥	ر 400000 ر

F0	(15574041	,
59	{'557401'	Ì
60	{'549135'	}
61	{ '540842 '	}
62	{'532521'	}
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81	{'532521' {'524173'	}
64	{'515798'	}
65	{'507395'	1
66	('400064'	J
67	(1400504	ì
6/	{ 490506	}
68	{ '482020'	}
69	{'473506'	}
70	{'498964' {'490506' {'482020' {'473506' {'464964'	}
71	{ '456393 '	}
72	{'456393' {'447795' {'439168' {'430513'	}
73	{'439168'	į,
74	{'430513'	Ţ
75	('421920'	J
75	{'421829'	ì
76	{ 41311/	}
77	{ '404376 '	}
78	{'395606'	}
79	{'386808'	}
80	{'413117' {'404376' {'395606' {'386808' {'377980'	}
81	{'369124'	}
82	{'369124' {'360238' {'351323' {'342379' {'333405'	1
82 83 84	('251222'	J
0.3	(331323	ļ
84	{ 342379	}
85	{ '333405 '	}
86	{'324402'	}
85 86 87	{'315369'	}
88	{'306306'	}
89	{'324402' {'315369' {'306306' {'297213' {'288091'	}
90	{'288091'	,
91	{'278938'	Ţ
0.2	('260756'	J
92 93 94	(12605421	ì
93	{ 260543	}
94	{ .251300 .	}
95	{'242026'	}
95 96 97 98	{'278938' {'269756' {'260543' {'251300' {'242026' {'232722' {'223388' {'214022' {'204626'	}
97	{'223388'	}
98	{'214022'	}
99	{'204626'	í
100	{'195199'	ì
101	{'185740'	J
		J
102	{'176251' {'166730'	Ì
103	{'166730'	}
104	{'157178'	}
105	{'147595'	}
106	{'137980' {'128334'	}
107	{'128334'	}
108	{'118655'	}
109	{'108945'	}
110	{'99203'	٦,
	('90420'	J
111	{'89429' {'79622' {'69784'	Ì
112	{ . 79622 .	}
113	{'69784'	}
114	{'59912'	}
115	{'50009'	}
116	{'40073'	}
117	{'30104'	}
118	{'20102'	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
119	{'10068'	J
120		Ì
120	{'0'	}

```
P3=m*n;
save('P_fund.mat','P3','-append');
```

绘制图像呈现 B 君贷款余额:

```
fig=plot(months, balance,'r-');
% 设置线宽
fig(1).LineWidth =1.0;
% 打开网格
grid on;
set(gca, 'XGrid', 'on', 'YGrid', 'on', 'GridLineStyle', '-.');
% 设置坐标轴和标题
xlabel('时间/月');
ylabel('余额/元');
title('B 君贷款余额随时间变化(方式 C)');
```


• d) 方式 D:等额本金法,按月等还本金,并还相应利息(利息随本金减少而减少),银行房贷的次常见方式。

```
clear;
%设定时间单位为两年为一月,则取时间单位长度为 120
```

```
n=10*12;
% 设置初值, 计算月利率
B0 = 1e6;
r2=0.0395;
r22 = r2 / 12;
% 每月还款额
m = B0 / n;
% 初始化余额数组
balance = zeros(n+1, 1);
interest = zeros(n, 1);
P4=0;
balance(1) = B0;
% 计算每个月的余额
for i = 2:n+1
   balance(i) = balance(i-1) - m; % 计算余额
   interest(i-1) = balance(i-1)*r22;% 计算利息
   P4=P4+interest(i-1);% 计算利息和
end
```

• 显示 B 君逐期余额情况:

```
months=0:1:n;
balance_str = arrayfun(@(x) sprintf('%.0f', x), balance, 'UniformOutput', false);
T = table(months', balance_str, 'VariableNames', {'月份', 'B 君贷款余额(方式 D)'});
disp(T);
```

```
月份
       B 君贷款余额(方式 D)
          {'1000000'}
 0
 1
          {'991667'}
 2
          {'983333'}
 3
          {'975000'}
 4
          {'966667'}
 5
          {'958333'}
 6
          {'950000'}
 7
          {'941667'}
 8
          {'933333'}
 9
          { '925000 '
10
          {'916667'
          {'908333'
11
          {'900000'
12
          {'891667'
13
          {'883333'
14
          {'875000'
15
          {'866667'
16
          {'858333'
17
18
          {'850000'
19
          {'841667'
          {'833333'
20
21
          {'825000'
22
          {'816667'}
23
          {'808333'}
24
          {'800000'}
25
          {'791667'}
26
          {'783333'}
```

```
27
          {'775000'}
           {'766667'
28
           {'758333'
29
           {'750000'
30
           {'741667'
31
           {'733333'
32
33
           {'725000'
34
           {'716667'
35
           {'708333'
36
           {'700000'
           {'691667'
37
38
           {'683333'
39
           {'675000'
           {'666667'
40
41
           {'658333'
42
           {'650000'
43
           {'641667'
           {'633333'
44
45
           {'625000'
           {'616667'
46
47
           {'608333'
48
           {'600000'
           {'591667'
49
           {'583333'
50
           {'575000'
51
           {'566667'
52
           {'558333'
53
           {'550000'
54
55
           { '541667 '
56
           {'533333'
57
           {'525000'
           {'516667'
58
59
           {'508333'
60
           {'500000'
61
          {'491667'
62
          {'483333'
63
          {'475000'
                     }
          {'466667'
64
                     }
          { '458333 '
65
                     }
          {'450000'
66
67
          {'441667'
68
          {'433333'
          {'425000'
69
          {'416667'
70
           {'408333'
71
72
           {'400000'
           {'391667'
73
74
           {'383333'
75
           { '375000 '
76
           { '366667 '
77
           {'358333'
78
           {'350000'
79
           {'341667'
80
           {'333333'
81
           {'325000'
82
           {'316667'
83
           {'308333'
84
           {'300000'
85
           {'291667'
86
           {'283333'
           {'275000'
87
           {'266667'
88
                     }
           {'258333' }
89
          {'250000'}
90
```

```
91
           {'241667'}
 92
           {'2333333'
           {'225000'
 93
           {'216667'
 94
           {'208333'
 95
           {'200000'
 96
 97
           { '191667 '
 98
           {'183333'
 99
           {'175000'
100
           {'166667'
101
           {'158333'
           {'150000'
102
103
           {'141667'
104
           {'133333'}
105
           {'125000'
106
           {'116667'
107
           {'108333'
108
           {'100000'}
           {'91667'
109
           { '83333 '
110
111
           {'75000'
           {'66667'
112
           {'58333'
113
           {'50000'
114
           {'41667'
115
           {'33333'
116
           {'25000'
117
           {'16667'
118
119
           { '8333 '
120
           {'-0'
```

```
% 计算还款总额
P4=P4+B0;
save('P_fund.mat','P4','-append');
```

• 绘制图像呈现 B 君贷款余额:

```
fig=plot(months, balance,'r-');
%设置线宽
fig(1).LineWidth =1.5;
%打开网格
grid on;
set(gca, 'XGrid', 'on', 'YGrid', 'on', 'GridLineStyle', '-.');
%设置坐标轴和标题
ylim([0,1e6]);
xlabel('时间/月');
ylabel('余额/元');
title('B 君贷款余额随时间变化(方式 D)');
```


• e) 方式 E:借贷时先一次性扣除利息,接下来每月还本金。

```
clear;
%设置初值,计算总利息
B0 = 1e6;
r22 = 0.0395 *10;
interest=B0*r22;%扣除利息
% 设定时间单位为两年为一月,则取时间单位长度为 120
n=10*12;
% 初始化余额数组
balance = zeros(n+1, 1);
P4=0;
balance(1) =B0-interest;
% 计算每月还款额
m=balance(1)/n;
% 计算每个月的余额
for i = 2:n+1
   balance(i) = balance(i-1) - m;
end
```

• 显示 B 君逐期余额情况:

```
months=0:1:n;
balance_str = arrayfun(@(x) sprintf('%.0f', x), balance, 'UniformOutput', false);
```

P(1)3	
月份	B 君贷款余额(方式 E)
0	{'605000'}
1	('500058')
	{'599958'} {'594917'}
2	{ '594917' }
3	{'589875'}
4	{'584833'}
5	{'579792'}
6	{'574750'}
7	{'574750'} {'569708'}
8	{'564667'}
9	{'559625'}
10	{'554583'}
11	
12	{'549542'} {'544500'}
13	{'539458'}
14	{'534417'}
15	{'529375'}
16	{'524333'}
17	{'524333'} {'519292'}
18	{'514250'}
19	{'509208'}
20	{'504167'}
21 22	{'499125'} {'494083'}
	{ 494083 }
23	{'489042'}
24	{'484000'}
25	{'478958'}
26	{'473917'}
27	{'468875'}
28	{'463833'}
29	{'458792'}
30	{'453750'}
31	{'448708'} {'443667'}
32	{'443667'}
33	{'438625'}
34	{'433583'}
35	{'428542'}
36	{'423500'}
37	{'423500'} {'418458'}
38	{'413417'}
39	{'408375'}
40	{'403333'}
41	
42	{'398292'} {'393250'}
43	{'388208'}
44	{'383167'}
45	{'378125'}
46	
47	{'373083'} {'368042'}
48	{'363000'}
49	{'357958'}
50	{ '352917'}
50 51	
	,
52 52	{'342833'} {'337792'}
53	
54	{'332750'}
55	{'327708'}
56 57	{'322667'}
57	{'317625'}

58 59	{'312583'} {'307542'}
60	{'302500'}
61	{'297458'}
62	{'292417'}
63	{'287375'}
64	{'282333'}
65	{'277292'}
66	{'272250'}
67	{'267208'}
68	{'262167'}
69 70	{'257125'} {'252083'}
71	{'252083'} {'247042'}
72	{'242000'}
73	{'236958'}
74	{'231917'}
75 76	{'226875'}
76	{'221833'} {'216792'}
77 78	{'216792'} {'211750'}
78 79	{'206708'}
80	{'201667'}
81	{'196625'}
82	{'191583'}
83	{ 186542 }
84	{'181500'}
85 86	{'176458'} {'171417'}
87	{'171417'} {'166375'} {'161333'}
88	{'161333'}
89	{'156292'}
90	{'151250'}
91	{'146208'}
92	{'141167'}
93 94	{'136125'} {'131083'}
95	{'126042'}
96	{'126042'} {'121000'} {'115958'}
97	{'121000'} {'115958'}
98	{'110917'}
99	{'105875'}
100 101	{'100833'} {'95792'}
101	{'95792' } {'90750' }
103	{'85708' }
104	{'80667'}
105	{'75625'}
106	{'70583' } {'65542' }
107	{'65542' }
108 109	{'60500' } {'55458' }
110	{'50417' }
111	{'50417' } {'45375' }
112	{'40333' }
113	{'35292'}
114	{'30250' }
115 116	{'25208' } {'20167' }
117	{'25208' } {'20167' } {'15125' }
118	{'10083' }
119	{'5042' }
120	{'-0' }

```
% 计算实际借贷额度
P5=balance(1);
save('P_fund.mat','P5','-append');
```

• 绘制图像呈现 B 君贷款余额:

```
fig=plot(months, balance,'r-');
%设置线宽
fig(1).LineWidth =1.5;
%打开网格
grid on;
set(gca, 'XGrid', 'on', 'YGrid', 'on', 'GridLineStyle', '-.');
%设置坐标轴和标题
ylim([0,1e6]);
xlabel('时间/月');
ylabel('余额/元');
title('B 君贷款余额随时间变化(方式 E) ');
```


(3)根据以上模型,比较 A-E 5 种情况下,存贷款的实际利率。

• 计算实际利率: (请将目录设置成 EXP4)

```
clear;
% 读取各方式下实际还款总额
load('P_fund.mat');
B0=1e6;
R=zeros(5,1);
R(1)=((P1-B0)/B0)/10;% 计算方式 A 的实际利率
R(2)=((P2-B0)/B0)/10;% 计算方式 B 的实际利率
R(3)=((P3-B0)/B0)/10;% 计算方式 C 的实际利率
R(4)=((P4-B0)/B0)/10;% 计算方式 D 的实际利率
R(5)=((B0-P5)/P5)/10;% 计算方式 E 的实际利率
% 显示
R_str = arrayfun(@(x) sprintf('%.4f%%', x), R*100, 'UniformOutput', false);
T = table(['方式 A';'方式 B';'方式 C';'方式 D';'方式 E'], R_str, 'VariableNames', {'信贷方式', '实际disp(T);
```

信贷方式	实际利率
方式 A 方式式 B 方式式式 D 方式 E	{'3.9500%'} {'3.9500%'} {'3.9500%'} {'2.1209%'} {'1.9915%'} {'6.5289%'}

• 经过比较可得实际利率:方式 E>方式 A(名义利率)=方式 B>方式 C>方式 D。

(4)讨论银行盈亏情况。

• 计算银行利润: (请将目录设置成 EXP4)

```
clear;
% 读取各方式下银行的收入和支出
load('P_fund.mat');
B0=1e6;
profit=zeros(5,1);
profit(1)=P1-PA;% 计算方式 A 的银行利润
profit(2)=P2-PA;% 计算方式 B 的银行利润
profit(3)=P3-PA;% 计算方式 C 的银行利润
profit(4)=P4-PA;% 计算方式 D 的银行利润
profit(5)=2*B0-P5-PA;% 计算方式 E 的银行利润
% 不同方式的盈亏
profit_str = arrayfun(@(x) sprintf('%.0f', x), profit, 'UniformOutput', false);
T = table(['方式 A';'方式 B';'方式 C';'方式 D';'方式 E'], profit_str, 'VariableNames', {'信贷方式', disp(T);
```

```
方式 D {'5711' }
方式 E {'201565'}
```

- 经过比较可得银行利润:方式 A=方式 B=方式 E>方式 C>方式 D. 且 5 种方式下银行均不会出现亏损。
- (5) 如果利率允许波动(如 LPR),做合理假设,重新考虑以上问题。
 - 假设利率波动为正态随机波动,则信贷方式中方式 C 无法执行,方式 A,E 结果一样,只有方式 B,D 会有所不同。现计算波动的利率:

```
clear;
% 设定时间单位为两年为一月,则取时间单位长度为 120
n=10*12;
mu = 0.0395;
sigma = 0.01;
% 生成标准正态分布的随机波动
standard_normal=zeros(n,1);
r2 = zeros(n, 1);
for i=1:n
   while(1)
       standard_normal(i) = randn;
       r2(i) = mu + sigma * standard_normal(i);
       if(r2(i)>0&&r2(i)<mu*2)</pre>
           break;
       end
    end
end
% 储存正态随机波动的年利率
save('RandomChange r2.mat', 'r2');
```

• 方式 B: 先按月还息,到期还本,实际利率接近 A 的利率,是信用贷款常用的做法。

```
clear;
% 设定时间单位为两年为一月,则取时间单位长度为 120
n=10*12;
% 读取随机波动的利率
load('RandomChange_r2.mat');
% 设置初值,计算月利息
B0 = 1e6;
r22 = r2 ./12;
interest = zeros(n, 1);
% 计算账户余额
balance = zeros(n+1, 1)+B0;
balance(end)=0;
% 显示
months=0:1:n;
balance_str = arrayfun(@(x) sprintf('%.0f', x), balance, 'UniformOutput', false);
```

```
T = table(months', balance_str, 'VariableNames', {'年份', 'B 君贷款余额'});
disp(T);
```

```
年份
       B 君贷款余额
 0
        {'1000000'}
 1
        {'1000000'}
        {'1000000'}
 2
 3
        {'1000000'}
 4
        {'1000000'}
 5
        {'1000000'}
        {'1000000'}
 6
 7
        {'1000000'}
 8
        {'1000000'}
 9
        {'1000000'}
10
        {'1000000'}
11
        {'1000000'}
        {'1000000'}
12
13
        {'1000000'}
        {'1000000'}
14
        {'1000000'}
15
        {'1000000'}
16
        {'1000000'}
17
        {'1000000'}
18
        {'1000000'}
19
        {'1000000'}
20
        {'1000000'}
21
        {'1000000'}
22
        {'1000000'}
23
        {'1000000'}
24
25
        {'1000000'}
26
        {'1000000'}
27
        {'1000000'}
28
        {'1000000'}
29
        {'1000000'}
        {'1000000'}
30
31
        {'1000000'}
32
        {'1000000'}
33
        {'1000000'}
34
        {'1000000'}
35
        {'1000000'}
        {'1000000'}
36
37
        {'1000000'}
        {'1000000'}
38
39
        {'1000000'}
        {'1000000'}
40
        {'1000000'}
41
        {'1000000'}
42
        {'1000000'}
43
44
        {'1000000'}
        {'1000000'}
45
        {'1000000'}
46
47
        {'1000000'}
        {'1000000'}
48
49
        {'1000000'}
50
        {'1000000'}
51
        {'1000000'}
52
        {'1000000'}
53
        {'1000000'}
        {'1000000'}
54
        {'1000000'}
55
56
        {'1000000'}
57
        {'1000000'}
```

```
58
        {'1000000'}
 59
        {'1000000'}
        {'1000000'}
 60
        {'1000000'}
 61
 62
        {'1000000'}
 63
        {'1000000'}
        {'1000000'}
 64
 65
        {'1000000'}
 66
        {'1000000'}
 67
        {'1000000'}
 68
        {'1000000'}
 69
        {'1000000'}
 70
        {'1000000'}
 71
        {'1000000'}
 72
        {'1000000'}
 73
        {'1000000'}
 74
        {'1000000'}
 75
        {'1000000'}
 76
        {'1000000'}
        {'1000000'}
 77
        {'1000000'}
 78
        {'1000000'}
 79
        {'1000000'}
 80
        {'1000000'}
 81
        {'1000000'}
 82
 83
        {'1000000'}
 84
        {'1000000'}
 85
        {'1000000'}
 86
        {'1000000'}
 87
        {'1000000'}
 88
        {'1000000'}
        {'1000000'}
 89
 90
        {'1000000'}
 91
        {'1000000'}
 92
        {'1000000'}
 93
        {'1000000'}
 94
        {'1000000'}
 95
        {'1000000'}
 96
        {'1000000'}
 97
        {'1000000'}
 98
        {'1000000'}
 99
        {'1000000'}
        {'1000000'}
100
        {'1000000'}
101
        {'1000000'}
102
        {'1000000'}
103
104
        {'1000000'}
105
        {'1000000'}
106
        {'1000000'}
        {'1000000'}
107
108
        {'1000000'}
109
        {'1000000'}
        {'1000000'}
110
111
        {'1000000'}
112
        {'1000000'}
113
        {'1000000'}
114
        {'1000000'}
115
        {'1000000'}
116
        {'1000000'}
117
        {'1000000'}
118
        {'1000000'}
119
        {'1000000'}
120
        {'0'
                   }
```

```
p2=0;
for i=1:n
    interest(i)=B0*r22(i);
    p2=p2+interest(i);
end
p2=balance(1)+p2;
save('P_fund.mat','p2','-append');
```

• 绘制图像呈现 B 君贷款余额:

```
fig=plot(months, balance,'r-');
% 设置线宽
fig(1).LineWidth =1.0;
% 打开网格
grid on;
set(gca, 'XGrid', 'on', 'YGrid', 'on', 'GridLineStyle', '-.');
% 设置坐标轴和标题
xlabel('时间/年');
ylabel('余额/元');
title('B 君贷款余额随时间变化(方式 B)');
```


• 方式 D: 等额本金法,按月等还本金,并还相应利息(利息随本金减少而减少),银行房贷的次常见方式。

```
clear;
% 设定时间单位为两年为一月,则取时间单位长度为 120
n=10*12;
% 读取随机波动的利率
load('RandomChange_r2.mat');
% 设置初值, 计算月利率
B0 = 1e6;
r22 = r2 ./ 12;
% 每月还款额
m = B0 / n;
% 初始化余额数组
balance = zeros(n+1, 1);
interest = zeros(n, 1);
p4=0;
balance(1) = B0;
% 计算每个月的余额
for i = 1:n
   balance(i+1) = balance(i) - m; % 计算余额
   interest(i) = balance(i)*r22(i);% 计算利息
   p4=p4+interest(i);% 计算利息和
end
%显示
months=0:1:n;
balance_str = arrayfun(@(x) sprintf('%.0f', x), balance, 'UniformOutput', false);
T = table(months', balance_str, 'VariableNames', {'月份', 'B 君贷款余额'});
disp(T);
```

```
0
     {'1000000'}
      {'991667'
1
      {'983333'
2
3
      {'975000'}
4
      {'966667'}
5
     {'958333'}
6
      {'950000'}
7
      {'941667'}
8
     {'933333'}
9
      {'925000'}
10
      {'916667'}
      {'908333'}
11
      {'900000'}
12
13
      {'891667'}
14
      {'883333'}
15
      {'875000'}
      {'866667'
16
      {'858333'}
17
      {'850000'}
18
      {'841667'
19
      {'833333'
20
      {'825000'}
21
22
      {'816667'}
```

B 君贷款余额

月份

```
23
       {'808333'}
24
       {'800000'
       {'791667'
25
       {'783333'
26
27
       {'775000'
28
       {'766667'
       {'758333'
29
30
       {'750000'
31
       {'741667'
       {'733333'
32
                  }
33
       {'725000'
34
       {'716667'
35
       {'708333'
36
       {'700000'
                 }
       {'691667'
37
                  }
38
       {'683333'
39
       {'675000'
                  }
40
       {'666667'
41
       {'658333'
       {'650000'
42
       {'641667'
43
44
       {'633333'
       {'625000'
45
       {'616667'
46
       {'608333'
47
       {'600000'
48
49
       {'591667'
50
       { '583333'
51
       {'575000'
52
       {'566667'
53
       {'558333'
                 }
54
       {'550000'
55
       {'541667'
56
       {'533333'
57
       {'525000'
58
       {'516667'
59
       {'508333'
60
       {'500000'
                  }
61
       {'491667'
                  }
       {'483333'
62
       {'475000'
63
64
       {'466667'
65
       {'458333'
       {'450000'
66
       {'441667'
67
       {'433333'
68
       {'425000'
69
70
       { '416667 '
71
       {'408333'
72
       {'400000'
73
       {'391667'
74
       {'383333'
75
       {'375000'
       {'366667'
76
77
       {'358333'
78
       {'350000'
79
       {'341667'
80
       {'333333'}
81
       {'325000'}
82
       {'316667'
       {'308333' }
83
       {'300000'}
84
85
       {'291667'}
       {'283333'}
86
```

```
87
        {'275000'}
        {'266667'
 88
        {'258333'
 89
        {'250000'
 90
 91
        {'241667'
 92
        {'233333'
 93
        {'225000'
 94
        {'216667'
 95
        {'208333'
        {'200000'
 96
 97
        {'191667'
 98
        {'183333'
 99
        {'175000'}
100
        {'166667'}
101
        {'158333'
102
        {'150000'}
103
        {'141667'}
104
        {'133333'}
        {'125000'
105
106
        {'116667'
        {'108333'
107
        {'100000'
108
        {'91667'
109
        {'83333'
110
        {'75000'
111
        {'66667'
112
113
        {'58333'
114
        {'50000'
115
        {'41667'
116
        {'333333'
117
        {'25000'
        {'16667'
118
                  }
119
        {'8333'
                  }
120
        {'-0'
```

```
% 计算还款总额
p4=p4+B0;
save('P_fund.mat','p4','-append');
```

• 绘制图像呈现 B 君贷款余额:

```
fig=plot(months, balance,'r-');
%设置线宽
fig(1).LineWidth =1.5;
%打开网格
grid on;
set(gca, 'XGrid', 'on', 'YGrid', 'on', 'GridLineStyle', '-.');
%设置坐标轴和标题
ylim([0,1e6]);
xlabel('时间/月');
ylabel('余额/元');
title('B 君贷款余额随时间变化(方式 D)');
```


• 根据以上模型,比较了 A,B,D,E 4 种情况下,存贷款的实际利率:(请将目录设置成 EXP4)

```
clear;
% 读取各方式下实际还款总额
load('P_fund.mat');
B0=1e6;
R=zeros(4,1);
R(1)=((P1-B0)/B0)/10;% 计算方式 A 的实际利率
R(2)=((p2-B0)/B0)/10;% 计算方式 B 的实际利率
R(3)=((p4-B0)/B0)/10;% 计算方式 D 的实际利率
R(4)=((B0-P5)/P5)/10;% 计算方式 E 的实际利率
% 显示
R_str = arrayfun(@(x) sprintf('%.4f%%', x), R*100, 'UniformOutput', false);
T = table(['方式 A';'方式 B';'方式 D';'方式 E'], R_str, 'VariableNames', {'信贷方式', '实际利率'});
disp(T);
```

信贷方式	实际利率
方式 A	{'3.9500%'}
方式 B	{'3.9221%'}
方式 D	{'2.0205%'}
方式 E	{'6.5289%'}

- 经过比较可得实际利率:方式 E>方式 A(名义利率)>方式 B>方式 D,而方式 B 与名义利率(0.0395)接近。
- 讨论银行盈亏: (请将目录设置成 EXP4)

```
clear;
% 读取各方式下银行的收入和支出
load('P_fund.mat');
profit=zeros(4,1);
B0=1e6;
profit(1)=P1-PA;% 计算方式 A 的银行利润
profit(2)=p2-PA;% 计算方式 B 的银行利润
profit(3)=p4-PA;% 计算方式 D 的银行利润
profit(4)=2*B0-P5-PA;% 计算方式 E 的银行利润
% 不同方式的盈亏
profit_str = arrayfun(@(x) sprintf('%.0f', x), profit, 'UniformOutput', false);
T = table(['方式 A';'方式 B';'方式 D';'方式 E'], profit_str, 'VariableNames', {'信贷方式', '银行利润disp(T);
```

信贷方式	银行利润
方式 A	{'201565'}
方式 B	{'198773'}
方式 D	{'8613' }
方式 E	{'201565'}

• 经过比较可得银行利润:方式 A=方式 E>方式 D,而方式 B 与方式 A 接近;且 4 种方式下银行均(绝大概率)不会出现亏损。

2. 草场放牧

研究将鹿群放入草场后草和鹿两种群的相互作用。草的生长遵从 Logistic 规律,年固有增长率 0.8,最大密度为 3000(密度单位),<u>在草最茂盛时每只鹿每年可吃掉 1.6(密度单位)的草</u>。若没有草,鹿群的年死亡率高达 0.9,而草的存在可使鹿的死亡得以补偿,<u>在草最茂盛时补偿率为 1.5</u>。作出一些简化假设,用差分方程模型描述草和鹿两种群数量的变化过程。就以下情况进行讨论:

- (1) 比较将 100 只鹿放入密度为 1000 和密度为 3000 的草场两种情况。
- (2)适当改变参数,观察变化趋势。
- (1) 比较将 100 只鹿放入密度为 1000 和密度为 3000 的草场两种情况。
 - 符号说明:

a:草独立生存时的自然增长率;b: 鹿群掠取草的能力;c: 鹿群独自存在时的死亡率;d: 草对鹿群的供养能力。并假设鹿食草能力与草的茂盛程度呈线性关系,草对鹿的补偿能力与草的茂盛程度呈线性关系,可以确定参数如下:

```
xm= 3000;%草的最大密度为 3000
a = 0.8;
bb= 1.6;
b = bb/xm;
c = 0.9;
dd= 1.5;
d = dd/xm;
T = 100; % 研究时间(年)
```

- 记草的密度为 xk;xm=3000,满足规律为 $x_{k+1} x_k = x_k[a(1 \frac{x_k}{x_m}) by_k], k = 0, 1, \dots$
- 记鹿群数量为 yk;y0=100,满足规律为 $y_{k+1} y_k = y_k(-c + dx_k), k = 0, 1, \cdots$
- a) 将 100 只鹿放入密度为 1000 的草场:

```
%初始条件
x0 = 1000;
y0 = 100;
% 初始化每年的草场密度和鹿群数量
X = zeros(T+1, 1); % Grass population
Y = zeros(T+1, 1); % Deer population
X(1) = x0;
Y(1) = y0;
% 差分方程模型
for k = 1:T
   %草场增长密度
   dx = X(k) * (a *(1 - X(k)/xm)-b*Y(k));
   % 鹿群增长数量
   if X(k) > 0
       dy=Y(k)*(-c+d*X(k));
   else
       dy=Y(k)*(-c);
   end
   % 更新数值
   X(k+1) = X(k) + dx;
   Y(k+1) = Y(k) + dy;
end
```

•b) 将 100 只鹿放入密度为 3000 的草场:

```
%初始条件
xx0 = 3000; % 草
yy0 = 100; % 鹿
% 初始化每年的草场密度和鹿群数量
XX = zeros(T+1, 1); % 草
YY = zeros(T+1, 1); % 鹿
XX(1) = xx0;
YY(1) = yy0;
```

- c) 对比图像:
- 情况一:将 100 只鹿放入密度为 1000 的草场:

```
figure;
fig=plot(0:1:T, X, 'b',0:1:T, Y, 'r');
%设置线宽
fig(1).LineWidth =1.0;fig(2).LineWidth =1.0;
%打开网格
grid on;
set(gca, 'XGrid', 'on', 'YGrid', 'on', 'GridLineStyle', '-.');
%设置坐标轴和标题
xlabel('时间/年');
ylabel('草场密度(或鹿群数量)');
legend('草', '鹿');
title('草场和鹿群随时间的演化(情况一)');
```


•情况二:将100只鹿放入密度为3000的草场:

```
figure;
fig=plot(0:1:T, XX, 'b',0:1:T, YY, 'r');
%设置线宽
fig(1).LineWidth =1.0;fig(2).LineWidth =1.0;
%打开网格
grid on;
set(gca, 'XGrid', 'on', 'YGrid', 'on', 'GridLineStyle', '-.');
%设置坐标轴和标题
xlabel('时间/年');
ylabel('草场密度(或鹿群数量)');
legend('草', '鹿');
title('草场和鹿群随时间的演化(情况二)');
```


(2)适当改变参数,观察变化趋势。

• 调整参数:

```
clear;

xm = 3000;

a=0.8;

bb = 1.6;

b=bb/xm;

c = 0.9;

dd = 1.5;

x0=2000;

d=dd/xm;

T = 100; % 研究时间(年)
```

• 仿真各参数下的运行结果:

```
%初始条件
y0 = 100;
% 初始化每年的草场密度和鹿群数量
X = zeros(T+1, 1); % Grass population
Y = zeros(T+1, 1); % Deer population
X(1) = x0;
Y(1) = y0;
```

```
% 差分方程模型
for k = 1:T
    %草场增长密度
    dx = X(k) * (a *(1 - X(k)/xm)-b*Y(k));
    % 庭群增长数量
    if X(k) > 0
        dy=Y(k)*(-c+d*X(k));
else
        dy=Y(k)*(-c);
end
    % 更新数值
    X(k+1) = X(k) + dx;
    Y(k+1) = Y(k) + dy;
end
```

分析图像:

```
figure;
fig=plot(0:1:T, X, 'b',0:1:T, Y, 'r');
%设置线宽
fig(1).LineWidth =1.0;fig(2).LineWidth =1.0;
%打开网格
grid on;
set(gca, 'XGrid', 'on', 'YGrid', 'on', 'GridLineStyle', '-.');
%设置坐标轴和标题
xlabel('时间/年');
ylabel('草场密度(或鹿群数量)');
legend('草', '鹿');
str = sprintf('演化情况(a=%d,bb=%.1f,c=%.1f,dd=%.1f,x0=%d)', a,bb,c,dd,x0);
title(str);
```


- 经过对比,可以得到以下的结论:
- 调整草场初值,若草场初值为 0,则鹿群在数年内死亡,草场也不会生长;若刚开始草场初值大于 0,则无论其是否大于最大密度,最终草场和鹿群数量都趋于稳定,且稳定值与初值无关。

• 调整参数 dd(草最茂盛时对鹿群的供养能力),发现 dd 越大,则草和鹿群达到稳定数目的时间越长,且草的稳定解越小,鹿的稳定解越大。当 xm*dd<=c 时,发现最终鹿群会走向灭绝,符合模型假设。

• 调整参数 bb(草最茂盛时鹿群掠取草的能力),发现 bb 越小,则草和鹿群达到稳定数目的时间越长,且草的稳定解越小,鹿的稳定解越大。在 bb<1 时,甚至会出现鹿群数量大于草的情况。

• 调整参数 a(草独立存在时的增长率)和 c(鹿群独立存在时的死亡率),发现当 c 较小或 a 较大时,则草和鹿群达成稳定所需时间非常长,所以近似出现周期现象,近似于 Volterra 模型。

