Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie L o listă numerică și următoarea definiție de predicat PROLOG având modelul de flux (i, o):

f([],0). $f([H|T],S):-\underline{f(T,S1)}$,S1>=2,!,S is S1+H. $f([_|T],S):-\underline{f(T,S1)}$,S is S1+1.

Rescrieți această definiție pentru a evita apelul recursiv **f(T,S)** în ambele clauze. Nu redefiniți predicatul. Justificați răspunsul.

C.	Pentru o valoare N dată, să se genereze lista permutărilor cu elementele N, N+1,,2*N-1 având proprietatea că valoare absolută a diferenței dintre două valori consecutive din permutare este <=2. Se vor scrie modelele matematice și modele	ea
,	absolută a diferenței dintre două valori consecutive din permutare este <=2. Se vor scrie modelele matematice și modele de flux pentru predicatele folosite.	ele

D. Un arbore n-ar se reprezintă în LISP astfel (nod subarbore1 subarbore2). Se cere să se verifice dacă un nod **x** apare pe un nivel par în arbore. Nivelul rădăcinii se consideră a fi 0. **Se va folosi o funcție MAP.**

Exemplu pentru arborele (a (b (g)) (c (d (e)) (f))) **a)** \mathbf{x} =g => T **b)** \mathbf{x} =h => NIL