Validated, scalable, community developed variant calling and RNA-seq analysis

Brad Chapman
Bioinformatics Core, Harvard School of Public Health
https://github.com/chapmanb/bcbio-nextgen
http://j.mp/bcbiolinks

3 June 2014

Overview

Sequencing samples

Configuration

bcbio-nextgen

Tool integration

Scaling and resiliency

Variation

Single base (SNPs)
Insertions/deletions
Structural

Quality

Alignment Methods Coverage RNA-seq

Alignment Quantitation Expression

Analysis

Annotation Query Visualization

Development goals

- Community developed
- Quantifiable
- Configurable
- Scalable
- Reproducible

Content-free descriptions

- Pipeline
- Best-practice
- Framework

Uses

- Aligners: bwa-mem, novoalign, bowtie2
- Variantion: FreeBayes, GATK, MuTecT, SnpEff, VEP, GEMINI
- RNA-seq: tophat, STAR, cufflinks, HTSeq
- Quality control: fastqc, bamtools, RNA-SeQC
- Manipulation: bedtools, bcftools, biobambam, sambamba, samblaster, samtools, vcflib

Provides

- Validation outputs + automated evaluation
- Tool integration
- Multi-platform support
- Scaling

Complex, rapidly changing tools

Whole genome, deep coverage v1

Warning: the material on this page is considered out of date by the GSA team.

Best Practice Variant Detection with the GATK v2

Warning: the material on this page is considered out of date by the GSA team.

RETIRED: Best Practice Variant Detection with the GATK v3

Best Practice Variant Detection with the GATK v4, for release 2.0 [RETIRED]

July 2012 edited February 4 | The Best Practices have been updated for GATK version 3. If you are running an older version, you should seriously consider upgrading. For more details

Large number of specialized dependencies

```
**************************************
# HugeSeg
# The Variant Detection Pipeline
***********************************
-- DEPENDENCIES
+ ANNOVAR version 20110506
+ BEDtools version 2.16.2
+ BreakDancer version 1.1
+ BreakSeq Lite version 1.3
+ BWA version 0.6.1
+ CNVnator version 0.2.2
+ GATK version 1.6-9
+ JDK version 1.6.0 21
+ Modules Release 3.2.8
+ Perl
+ Picard Tools version 1.64
+ Pindel version 0.2.2
+ Plantation version 2
+ pysam version 0.6
+ Python version 2.7
+ Simple Job Manager version 1.0
+ Tabix version 0.1.5
+ VCFtools version 0.1.5
```

https://github.com/StanfordBioinformatics/HugeSeq

Quality differences between methods

Variant Calling Test

We compare combinations of variant calling pipelines across different data sets. Browse our public facing reports to see how various aligner + variant caller combinations perform against each other. Test your own combination of tools by creating your own report. Below is a sample conconcordance view on our "Illumina 100bp Paired End 30x Coverage" data set.

http://www.bioplanet.com/gcat

Scaling on full ecosystem of clusters

Platform LSF

Torque

Solution

http://www.amazon.com/Community-Structure-Belonging-Peter-Block/dp/1605092770

Community: installation

The trepidation of opening an INSTALL file. "Please say ./configure; make; make install... please say ./configure; make; make install..."

```
♣ Reply 😝 Retweet ★ Favorite · · · More
```

Automated Install

Bare machine to ready-to-run with tools and data

- CloudBioLinux: http://cloudbiolinux.org
- Homebrew: https://github.com/Homebrew/homebrew-science
- Conda: http://j.mp/py-conda

Easier install

Docker

Community: documentation

https://bcbio-nextgen.readthedocs.org

Community: contribution

https://github.com/chapmanb/bcbio-nextgen

Validation

Tests for implementation and methods

- Currently:
 - Family/population calling
 - RNA-seq differential expression
 - Structural variations
- Expand to:
 - Cancer tumor/normal
 http://j.mp/cancer-var-chal

Example evaluation

- Variant calling
 - GATK UnifiedGenotyper
 - GATK HaplotypeCaller
 - FreeBayes
- Two preparation methods
 - Full (de-duplication, recalibration, realignment)
 - Minimal (only de-duplication)

Reference materials

http://www.genomeinabottle.org/

Quantify quality

Quantification details: http://j.mp/bcbioeval2

Validation enables scaling

- Little value in realignment when using haplotype aware caller
- Little value in recalibration when using high quality reads
- Streaming de-duplication approaches provide same quality without disk IO

Configuration overview

- High level abstraction
- Adjust by intent, rather than command line
- Domain specific language
- YAML configuration file

Getting started

Start with examples

```
https://bcbio-nextgen.readthedocs.org/en/latest/contents/testing.
html#example-pipelines
```

Automatically generate configuration

```
https://bcbio-nextgen.readthedocs.org/en/latest/contents/configuration.html#automated-sample-configuration
```

Parameter documentation

```
https://bcbio-nextgen.readthedocs.org/en/latest/contents/configuration.html#algorithm-parameters
```

Example - RNA-seq

```
5
    details:
6
      - analysis: RNA-seq
        algorithm:
8
          aligner: star
9
          quality_format: Standard
10
          trim_reads: read_through
11
          adapters: [truseq, polya]
        description: Test1
13
        files: [1_110907_ERP000591_1_fastq.txt, 1_110907_ERP000591_2_fastq.txt]
14
        genome build: mm9
```

Example – variant calling

```
11
    details:
12
       - files: [../input/NA12878_1.fastq.gz, ../input/NA12878_2.fastq.gz]
13
         description: NA12878
14
        metadata:
15
           batch: ceph
16
           sex: female
17
         analysis: variant2
18
         genome_build: GRCh37
19
         algorithm:
20
           aligner: bwa
21
           align_split_size: 5000000
           mark_duplicates: true
23
           recalibrate: false
24
           realign: false
25
           variantcaller: [freebayes, gatk-haplotype]
26
           quality_format: Standard
27
           coverage interval: genome
28
           remove lcr: true
29
           validate: ../input/GiaB NIST RTG v0 2.vcf.qz
           validate_regions: ../input/GiaB_NIST_RTG_v0_2_regions.bed
```

Scaling overview

- Infrastructure details: http://j.mp/bcbioscale

Current target environment

- Cluster scheduler
 - SLURM
 - Torque
 - SGE
 - LSF
- Shared filesystem
 - NFS
 - Lustre
- Local temporary disk
 - SSD

Configuration to batch scripts

```
Configuration

Batch file

bwa:  #PBS -l nodes=1:ppn=16
  cmd: bwa  #PBS -l mem=45260mb
  cores: 16
samtools:
  cores: 16
  memory: 2G
gatk:
  jvm_opts: ["-Xms750m", "-Xmx2750m"]
```

Intel + Harvard FAS Research Computing

James Cuff, John Morrissey, Kristina Kermanshahche https://rc.fas.harvard.edu/

Evaluation details

System

- 560 cores
- 4Gb RAM/core
- Lustre filesystem
- Infiniband network

Samples

- 75 samples
- 30x whole genome (100Gb)
- Illumina
- Family-based calling

Timing: Alignment

Step	Time	Processes
Alignment preparation	9.5 hours	BAM to fastq; bgzip;
		grabix index
Alignment	31 hours	bwa-mem alignment
		samblaster deduplication
BAM merge	5.5 hours	Merge alignment parts
Post-processing	11 hours	Calculate callable regions

Timing: Variant calling

Step	Time	Processes
Variant calling	30 hours	FreeBayes
Variant post-processing	5 hours	Combine variant files;
		annotate: GATK and snpEff

Timing: Analysis and QC

Step	Time	Processes
GEMINI	5 hours	Create GEMINI SQLite database
Quality Control	2.5 hours	FastQC, alignment and variant statistics

Timing: Overall

- 100 hours, ~4 days for 75 samples
- ~1 1/2 hours per sample at 560 cores
- In progress: optimize for single samples

Reproducible environment

http://docker.io

Consistent support environment

We've found 83 issues

Search all of GitHub

ဂူ Opened by alartin 3 days ago 📭 2 comments

(F) Installation issues

Representation of the property of the property

D Update installation.rst

Fix typo in docs.

Opened by hammer 25 days ago 📮 1 comment

Issue with Isolated Installation

Opened by svm-zhang 14 days ago . 5 comments

installation: Fatal error: local()

Sopened by idot 3 months ago . 6 comments

Docker benefits

- Fully isolated
- Reproducible store full environment with analysis (~1Gb)
- Improved installation single download + data

bcbio with Docker

- External Python wrapper
 - Installation
 - Start and run containers
 - Mount external data into containers
 - Parallelize
- All analysis tools inside Docker

```
https://github.com/chapmanb/bcbio-nextgen-vm
http://j.mp/bcbiodocker
```

Docker HPC parallelization

bcbio-nextgen-vm bcbio-nextgen

(workflow and parallel)

IPython parallel

Cluster scheduler (SLURM, Torque, SGE, LSF)

Machine 1

Docker Container bcbio-nextgen (run tools) external tools (bwa, freebayes...)

Machine 2

Docker Container bcbio-nextgen (run tools) external tools (bwa, freebayes...)

Consistent scaling environment

Amazon challenges

- Cost spot instances
- Disk local scratch, no EBS
- Organization no shared filesystems, S3 push/pull
- Data reconstitute on minimal machines
- Security encryption at rest

Clusterk http://clusterk.com/

Summary

- Community development > challenges
- Easy to install, learn and contribute
- Validated
- Configurable
- Scalability
- Reproducibility and virtualization

https://github.com/chapmanb/bcbio-nextgen http://j.mp/bcbiolinks