Programming Methodology Project 3

-Conway's Game of Life-

공과대학 전기·정보공학부 2020-14196 안민규

I. 서론

Conway's Game of Life를 보았을 때 마치생명체들이 태어나고 죽는 과정을 보는 것 같았다. 따라서 유전 기능을 추가하면 유전인자가 어떻게 유전이 되고 군체 내에서 퍼지게 되는지 대략적으로 확인이 가능할 것이다. Handout에 있던 multi-color cells에서 아이디어를 착안하여, 색깔을 유전인자로 하며, 중간 유전(불완전 우성)을 하는 분꽃을 GoL로구현하였다.

분꽃의 색깔은 중간유전이다. 따라서 서로 다른 두 유전자 (R, W)가 같이 있는 이형접합 의 경우에는 우성형질이 아닌, 새로운 색깔인 분홍색이 나타난다. 우성형질 유전으로 하면 우성형질로 Grid가 수 초 내에 가득 찰 것이 기 때문에 좀 더 유전의 흐름이 잘 보이고, 관 찰하기 재미있는 중간유전으로 선택하였다.

II. 본론

1. 작동 개요

기본은 Cell class에서 derived된 CustomCell class를 사용한다. inheritance함수를 사용하여 부모의 cell을 입력으로 받고, 그에 따른 자손의 색깔을 rand()함수를 이용한 확률에 의해 결정한다. 확률은 멘델의 법칙을 따르며, 다음 표와 같이 설정하였다.

자 손	빨- 빨	빨- 분	분- 분	분- 흰	빨- 흰	흰 - 흰
빨 강	1	0.5	0.25	0	0	0
분홍	0	0.5	0.5	0.5	1	0
하 양	0	0	0.25	0.5	0	1

표 1. 멘델의 법칙에 따른 유전 확률

이렇게 색깔을 설정한 뒤, rand()함수를 이 용하여 1%의 확률로 돌연변이가 발생하도록 하였다.

Randomize_color()함수인데, 이 함수가 실행되면 자손의 색깔이 임의의 색깔로 변하게 되며, 부모의 유전 형질에 영향받지 않는다.

이 외의 다른 유전인자나 꽃의 자연사 (aging), 교차 등등은 고려하지 않았다.

2. 실행 결과

Srand(time(NULL)); 을 사용하였기 때문 에 매 실행마다 다른 결과가 출력된다.

그림 1. 초기 화면

config파일인 flower.txt를 실행하였다. 초기에는 아직 rand()함수가 실행되지 않아 색깔이 설정되어있지 않다.

그림 2. t=1 모습

꽃이 피었다. 시간이 지날수록 꽃은 그 영역을 넓혀간다. 그림 2에서는 R 유전자가 많이 부족해 보여서 처음에는 흰색 분꽃이 우세할 것으로 예상된다.

그림 3. t=5일 때 모습

제법 많이 퍼진 것을 볼 수 있으며, 예상대로 흰색이 좀더 우세하게 군체를 형성하였다.

그림 4. t=20일 때 모습

흰색은 계속해서 퍼져나간다. 이때 분홍 분꽃 중심에서 빨간 분꽃이 피어난 것을 확인할 수 있다.

그림 5. t=43일 때 모습

빨간색 분꽃들이 번식하면서 왼쪽을 중심으

로 빨간 분꽃의 군체를 형성한 것을 볼 수 있다. 돌연변이도 이따금씩 오른쪽에서 발생하며 빨간 분꽃과 흰색 분꽃의 비율이 비슷해졌다.

그림 6. t=80일 때의 모습

오히려 빨간색 분꽃의 비율이 더 높아진 것을 확인할 수 있다.

그림 7. t=503일 때의 모습

이 후에는 어떤 색깔의 분꽃이 우세하지 않고 유사한 비율을 유지해가며 세대를 이어가는 것을 확인할 수 있었다.

이 외에도 시뮬레이션을 계속 실행하였으며, 그 결과 충분한 시간이 지나면 두 색깔의 비율 이 비슷해지는 것을 확인할 수 있었다. 처음 몇 분동안 빨간색 분꽃이 아예 나오지 않는 경 우도 있었으며, 반대로 흰 꽃이 전멸한 시뮬레 이션도 관찰되었다. 그러나 돌연변이와 분홍 분꽃의 존재로 인하여 끝내 두 꽃의 비율은 다 시 비슷한 수준으로 조정되었다.

III. 결론

중간 유전을 GoL을 이용하여 시뮬레이션해볼 수 있었다. 이를 통하여 이상적인 상황에서의 유전자 흐름을 관찰하였다. 이후 여러가지요소들을 추가하여 해당 요소와 유전자 빈도와의 관계를 시뮬레이션을 통해 확인할 수 있을 것이다.