Midterm of Stat 517, 10/17/2016

Problem 1. Suppose \mathcal{A} is semiring on a nonempty set Ω . Let \mathcal{B} be the collection of all finite disjoint unions of \mathcal{A} -sets. Prove that \mathcal{B} is a field. Furthermore, show that $\sigma(\mathcal{A}) = \sigma(\mathcal{B})$.

Problem 2. Let Ω be a set with infinitely many elements. A co-finite subset of Ω is a set whose complement is a finite set. Let \mathcal{A} be the collection of all finite and co-finite subsets of Ω . Show that \mathcal{A} is a field. Use the set $\Omega = \{1, 2, \ldots\}$ to give a counter example that \mathcal{A} is not a σ -field.

Problem 3. Suppose Ω is a nonempty set and $\mu^*: 2^{\Omega} \to [0, \infty]$ is set function that such that (i) $\mu^*(\emptyset) = 0$, and (ii) μ^* is finitely subadditive; that is, if A_1, \ldots, A_n are subsets of Ω , then $\mu^*(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n \mu^*(A_i)$. Let

$$\mathcal{M}(\mu^*) = \{ A \subseteq \Omega : \mu^*(E) = \mu^*(EA) + \mu^*(EA^c) \text{ for all } E \subseteq \Omega \}.$$

Show that $\mathcal{M}(\mu^*)$ is a field. (Hint, for the third condition for a field, use the equivalent condition $A \in \mathcal{F}, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$).

Problem 4. In a sequence independent coin tossing, where the probability of getting a head at each tossing is 1/2. Show that the probability of getting infinitely many heads is 1, and the probability of getting finitely many heads is 0.

Probl

1° We first prone $\sigma(A) = \sigma(B)$.

B is the collection of "finite" disjoint union of & sets and

- B = T(A)

=) o(B) co(o(A)) = o(A)

On the other hand, since & EB, J(A) ET(B)

Thus, J(\$)= J(B).

I think B is NOT necessarily a field on I.

But, it might be a field on UB =: 1.

(i) \$ & B is obvious since \$ & A.

(ii) Given BEB.

Then B= MAK, where A, ... Am are disjoint in A.

 $=) \Omega' \setminus B = \bigcap_{k=1}^{M} (\Omega' \setminus A_k) = \bigcap_{k=1}^{M} (\bigcup_{B \in B} B \setminus A_k) = \bigcap_{k=1}^{M} (\bigcup_{B \in B} (\bigcup_{j=1}^{M} C_j)) =$

Prob 2

1º claim: A is a field.

 $\Omega^{c} = \emptyset$. =) Ω is cofinite. =) $\Omega \in A$.

Given A & A.

cesel A is finite

Then $(A^c)^c = A$ is finite. =) A^c is cofinite. =) $A^c \in A$.

CERZ A is cofinite.

Then A is finite. =) ACEA.

(3) Criven A, B & A. We shall prove AUB is either finite or cofinite.
Suppose AUB is NOT finite.

Then either IAI=00 or IBI=00, say IAI=00.

Then A is cotinite. i.e. A is finite.

- =) (AUB) = ACABC is finite.
- =) AUB is cotinite = AUB EA. expand

By (1), (2), (3), A is a field. (#)

2° deim: A is NOT a o-field when $\Omega = \{1, 2, 3, \dots 3$

Consider AK = { 2kt1], K= 0,1,2,...

Then |AK|=1 =) AKEA, VK.

However, UAx={1,3,5,7,9,...} is neither finite nor cotinite.

=) DAK & A. =) A is NOT a T-tield. (#)

Prob 3

MAEEU, EU=E, EU=&.

=) u*(E)=u*(ED)+0=u*(ED)+u*(p)=u*(ED)+u*(ED).

=) I = M(u+)

Given A EM(4*)

Then u*(E)=u*(EA)+u*(EA')=u*(EA')+u*(EA)=u*(E(A'))+u*(E(A')), A E E D.

=) A ° ∈ M(u*).

(111) For notational convenience, denote 11*(E) by IEI in the following, VEEQ. Given A, B EM(11*).

Then |E|=|EA|+|EA'|=|EB|+|EB'|, YE = Q.

Morener, |EA| = |EAB| + |EAB^c| = (I)+(I) |EA" = |EA"B| + |EA"B" |= (亚) + (IV)

(I)+(II)= | EAB|+ | EAG| = |(EB)A|+ |(EB)AG| = | EB|

Similarly, (II)+(ZV)= |ZBC|.

Thus

You don't howed all

Prob4

Let An be the event of getting a head at the neth toss, and

B " " intinitely many heads.

Then B = limsup An & C = liminf An.

Note that P(An) = 1/2 and [An] is indep. by condition.

Thus, by 2nd Bovel-Cancelli lemma,

since $\sum_{n=1}^{\infty} P(A_n) = \sum_{n=1}^{\infty} 1/2 = \infty$, P(B) = 1.

Also, note that C=BC.

Thus, P(C)=1-P(B)=1-1=0.

Final of Stat 517, 12/12/2016

V Problem 1. Let (Ω, \mathcal{F}) , $(\Omega_1, \mathcal{F}_1)$, ..., $(\Omega_k, \mathcal{F}_k)$ be measurable spaces. Let $f_i : \Omega \to \Omega_i$, i = 1, ..., k be measurable functions with respect to $\mathcal{F}/\mathcal{F}_i$. Let $\mathcal{F}_1 \times \cdots \times \mathcal{F}_k$ be the σ-field on $\Omega_1 \times \cdots \times \Omega_k$ generated by the class of sets $\{A_1 \times \cdots \times A_k : A_1 \in \mathcal{F}_1, ..., A_k \in \mathcal{F}_k\}$. Let $f : \Omega \to \Omega_1 \times \cdots \times \Omega_k$ be defined by $f(\omega) = (f_1(\omega), ..., f_k(\omega))$. Show that f is measurable with respect to $\mathcal{F}/(\mathcal{F}_1 \times \cdots \times \mathcal{F}_k)$.

Problem 2. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space, and $f: \Omega \to \overline{\mathbb{R}}$ be a nonnegative and measurable function with respect to $\mathcal{F}/\overline{\mathcal{R}}$.

- $\sqrt{1}$. Use the definition of $\int f d\mu$ to show that f=0 a.e. μ if and only if $\int f d\mu = 0$.
 - 2. Suppose

$$\int^* f d\mu = \inf_{\{A_i\} \in \mathcal{P}} \sum_{i=1}^k \left[\sup_{\omega \in A_i} f(\omega) \right] \, \mu(A_i)$$

where \mathcal{P} is the collection of all finite \mathcal{F} partitions of Ω . Show that $\int_{-\pi}^{\pi} f d\mu = 0$ if and only if f = 0 a.e. μ .

- \bigvee Problem 3. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and suppose $\{f_n\}_{n=1}^{\infty}$ and f are functions from Ω to $\overline{\mathbb{R}}$ measurable with respect to $\mathcal{F}/\overline{\mathcal{R}}$.
 - \checkmark 1. Show that, if $f_n \ge g$ and g is integrable with respect to μ , then $\int \liminf_n f_n d\mu \le \liminf_n \int f_n d\mu$.
 - \checkmark 2. Show that, if $f_n \leq g$ and g is integrable with respect to μ , then $\int \limsup_n f_n d\mu \geq \limsup_n \int f_n d\mu$.
- - $\sqrt{1}$. Let ν be the set function $\nu(A) = \int_A \delta d\mu$. Use MCT to show that ν is a measure on (Ω, F) .
 - \checkmark 2. Use the three step argument to prove that $\int f d\nu = \int f \delta d\mu$ for any nonnegative function $f: \Omega \to \overline{R}$ that is measurable with respect to $\mathcal{F}/\overline{\mathcal{R}}$.
- ✓ Problem 5. Let $(Ω, \mathcal{F}, μ)$ be a measure space where μ is a finite measure. Suppose f is a function from Ω to $\overline{\mathbb{R}}$ measurable with respect to $\mathcal{F}/\overline{\mathcal{R}}$. Show that f is integral with respect to μ if and only if

$$\lim_{lpha o\infty}\int_{|f|>lpha}|f|d\mu=0.$$