COMS 331: Theory of Computing, Spring 2023 Homework Assignment 7

Neha Maddali Due at 10:00PM, Wednesday, April 5, on Gradescope.

Problem 44.

Let $A \sqcup B = \{0x \mid x \in A\} \cup \{1y \mid y \in B\}$, and we will show that $A \leq_m A \sqcup B$. By the definition of \leq_m , $x \in A \Longrightarrow f(x) \in A \sqcup B$. So, f(x)=0x makes that statement true, and if $x \notin A$, then $f(x) \notin A \sqcup B$. Therefore, $A \leq_m A \sqcup B$.

Problem 45.

Let A,B,C $\subseteq \{0,1\}^*$. It is true that A \leq_m C and B \leq_m C. By the definition of \leq_m , $x \in A \Longrightarrow f(x) \in C$, and $y \in B \Longrightarrow g(y) \in C$. So, if A \sqcup B \leq_m C is true, then $z \in A \sqcup B$ implies that $h(z) \in C$. By the definition of join, $z \in 0x$ or $z \in 1y$ or $(z \in 0x \text{ and } z \in 1y)$. So, if $z \in 0x$, then h(z) = f(x). If $z \in 1y$, then h(z) = g(y). Since f(x), $g(y) \in C$, it follows that $h(z) \in C$. Therefore, if $A \leq_m C$ and $B \leq_m C$, then $A \sqcup B \leq_m C$.

Problem 46.

Suppose that A is \leq_m -complete for CE. Then there exists a computable function f such that for every $x, x \in A$ if and only if $f(x) \in CE$. Use f to define the reduction from H to $A \sqcup A^c$. Let M be a TM and w be a string. We want to decide whether M halts on input w. Define a TM M' as follows: on any input x, M' first computes f(x), then simulates M on input w for |f(x)| steps. If M has halted on w within |f(x)| steps, then M' accepts, otherwise M' loops forever. Now show that M halts on w if and only if there exists x such that $f(x) \in CE$ and M' halts on x. If M halts on w, then there exists a natural number n such that M halts on w within n steps. Let x be a string such that $f(x) = 1^n$. Then M' simulates M on w for n steps, which is enough time for M to halt on w. Therefore, M' halts on x. Conversely, suppose that there exists x such that $f(x) \in CE$ and M' halts on x. Then M' computes f(x) and simulates M on w for |f(x)| steps. Since $f(x) \in CE$, there exists a computation of M on w that halts within |f(x)| steps. Therefore, M halts on w. There exists a computable reduction from H to $A \sqcup A^c$. Therefore, if $A \sqcup A^c$ is c.e. or co-c.e., then H is c.e. or co-c.e., respectively. But H is known to be c.e.-complete, which means that it is neither c.e. nor co-c.e. Therefore, $A \sqcup A^c$ is neither c.e. not co-c.e.

Problem 47.

Let B be a language that is computably enumerable. Then, there is a TM M_B that accepts all strings in B. To show that $\exists B$ is c.e., we must build a TM $M_{\exists B}$ for $\exists B$. $M_{\exists B}$ has an input of $x \in \{0,1\}^*$. Then, we have a nested for loop where the outer loop is for i=0,1,2... and the inner loop starts with for j=0, which $j \leq i$, j++. The value of i will represent the number of steps for which we simulate M_B , and j will represent the jth w that we are enumerating. Within the nested loops, we will enumerate w_j . Then, we will construct a string-pairing $\langle x, w_j \rangle$ according to the given

definition and run M_B on $\langle x, w_j \rangle$ for i steps. Then, if M_B accepts, $M_{\exists B}$ will also accept. The given definition of $M_{\exists B}$ works because it avoids infinite loops where M_B doesn't accept or reject. By running M_B on string-pairings concurrently, it allows some strings to never accept/reject without affecting other strings. Therefore, $\exists B$ is c.e.

Problem 48.

Let A be a c.e. language, and $A = \exists B$. Then, there is a TM $M_{\exists B}$ such that $L(M_{\exists B}) = \exists B$. Then, we must create a TM M_B for language B. The input for M_B is $\langle x, w \rangle$, where $x, w \in \{0, 1\}^*$. We can then run $M_{\exists B}$ on x for |w| (length of w) steps, and if $M_{\exists B}$ accepts, then M_B accepts, and otherwise it rejects. Running $M_{\exists B}$ on x for |w| steps takes finite steps, so the machine won't run forever. It is guaranteed to accept or reject, which is the definition of a TM for a decidable language. Also, $x \in \exists B$, which is decided by $M_{\exists B}$, implies that there is some $\langle x, w \rangle \in B$ because $x \notin \exists B$ means that there doesn't exist a w such that $\langle x, w \rangle \in B$. By the construction of M_B , it is proven that for every c.e. language $A \subseteq \{0,1\}^*$, there is a decidable language $B \subseteq \{0,1\}^*$ such that $A = \exists B$.

Problem 49.

Assume that A is decidable which means there is a TM M_A such that M_A accepts all strings in A and rejects all strings not in A. Then, we can use $A_{TM} = \{\langle M, w \rangle | \text{ M accepts } w \}$ to show the reduction $A \leq_m A_{TM}$. M_A has an input of $\langle M \rangle$, and if M' satisfies the condition, accept, otherwise reject. The TM for A_{TM} has an input of $\langle M, w \rangle$, and we construct M' as follows: on input w, if w="01", accept, otherwise run M on x and if M accepts, then accept. (The language that M' decides will be Σ^* is M accepts x, or $\{01\}$ if M does not accept x.) Continuing in the steps for the TM for A_{TM} , we will then run M_A on the $\langle M' \rangle$ that we constructed, and if M_A accepts, accept, otherwise reject. We can see that there is a contradiction because the TM for A_{TM} is decidable, but A_{TM} is actually undecidable. By the reduction we showed, it follows that A is undecidable.

Problem 50.

Let $A = \{k \in N | M_k(3) \uparrow\}$. To show that A is \leq_m -complete for coCE, we must show that $A \in \text{coCE}$ and A is \leq_m -hard for coCE. Let the compliment of A be A^C . If $A \in \text{coCE}$, then $A^C \in \text{CE}$. Let M_{A^C} be a TM for A^C . The input for M_{A^C} is a string k. If $M_k(3)$ halts, then accept. $A^C \in CE$ because there is a TM that decides A^C . Therefore, $A \in \text{coCE}$. To show A is \leq_m -hard for coCE, we can show that $H \leq_m A^C$, where H is the halting problem. This will use the same reduction process as seen in problem 49. Since $A \in \text{coCE}$ and A is \leq_m -hard for coCE, $\{k \in N | M_k(3) \rightarrow\}$ is \leq_m -complete for coCE. \blacksquare