criterion performance measurements

overview

want to understand this report?

100/Data.List merge sort

OLS regression 24.8 μ s 24.9 μ s 25.0 μ s R² goodness-of-fit 1.000 1.000 1.000 Mean execution time 24.9 μ s 24.9 μ s 25.2 μ s Standard deviation 239 ns 449 ns 908 ns

Outlying measurements have moderate (14.4%) effect on estimated standard deviation.

100/Data. Sequence stable sort

 OLS regression
 29.8 μs
 31.2 μs
 32.9 μs

 R^2 goodness-of-fit
 0.985
 0.991
 0.998

 Mean execution time
 29.2 μs
 29.7 μs
 30.5 μs

 Standard deviation
 1.55 μs
 2.00 μs
 2.87 μs

100/Data. Sequence unstable sort

Outlying measurements have severe (62.2%) effect on estimated standard deviation.

1000/Data.List merge sort

OLS regression 510 μs 513 μs 517 μs R² goodness-of-fit 0.998 0.999 1.000 Mean execution time 503 μs 507 μs 513 μs Standard deviation 13.9 μs 16.9 μs 21.6 μs

Outlying measurements have moderate (25.3%) effect on estimated standard deviation.

1000/Data. Sequence stable sort

0.981

0.993

0.966

R² goodness-of-fit

Outlying measurements have severe (84.5%) effect on estimated standard deviation.

1000/Data. Sequence unstable sort

 OLS regression
 484 μs
 492 μs
 499 μs

 R² goodness-of-fit
 0.998
 0.999
 0.999

 Mean execution time
 479 μs
 482 μs
 486 μs

 Standard deviation
 8.67 μs
 12.0 μs
 15.9 μs

Outlying measurements have moderate (16.7%) effect on estimated standard deviation.

10000/Data.List merge sort

OLS regression 12.7 ms 13.2 ms 13.7 ms R^2 goodness-of-fit 0.988 0.993 0.998 Mean execution time 12.8 ms 13.0 ms 13.3 ms Standard deviation 449 μ s 582 μ s 812 μ s

Outlying measurements have moderate (18.1%) effect on estimated standard deviation.

10000/Data. Sequence stable sort

10 11 12 13 14 15 5 iters 10 15 20 25 30

lower bound estimate upper bound

Outlying measurements have moderate (37.8%) effect on estimated standard deviation.

10000/Data. Sequence unstable sort

Outlying measurements have severe (71.7%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

- The chart on the left is a kernel density estimate (also known as a KDE) of time measurements. This graphs the probability of any
 given time measurement occurring. A spike indicates that a measurement of a particular time occurred; its height indicates how
 often that measurement was repeated.
- The chart on the right is the raw data from which the kernel density estimate is built. The x axis indicates the number of loop iterations, while the y axis shows measured execution time for the given number of loop iterations. The line behind the values is the linear regression prediction of execution time for a given number of iterations. Ideally, all measurements will be on (or very near) this line.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

- OLS regression indicates the time estimated for a single loop iteration using an ordinary least-squares regression model. This number is more accurate than the *mean* estimate below it, as it more effectively eliminates measurement overhead and other constant factors.
- R² goodness-of-fit is a measure of how accurately the linear regression model fits the observed measurements. If the measurements are not too noisy, R² should lie between 0.99 and 1, indicating an excellent fit. If the number is below 0.99, something is confounding the accuracy of the linear model.
- · Mean execution time and standard deviation are statistics calculated from execution time divided by number of iterations.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.

colophon

This report was created using the <u>criterion</u> benchmark execution and performance analysis tool

Criterion is developed and maintained by <u>Bryan O'Sullivan</u>.