Podstawy logiki i teorii mnogości

Ćw. 6

opracował: dr inż. Jakub Długosz

Celem ćwiczenia jest zaznajomienie z relacjami i funkcjami

Zadanie 1

Rozważmy dwie relacje w zbiorze \mathbb{Z} :

R

 $\forall a, b \in \mathbb{Z} (aRb \iff 3|(a-b))$

S

 $\forall a, b \in \mathbb{Z} (aSb \iff 3|(b-a))$

Sprawdzić czy:

- a) 1R0
- b) 1S0
- c) OR1
- d) 0S1
- e) 21R15
- f) 21S15
- g) 15R21
- h) 15S21
- i) 21R-15
- j) -17R-17

Zadanie 2

Sprawdzić, czy relacje R,S określone w zadaniu 1 są:

- a) zwrotne w \mathbb{Z}
- b) przeciwzwrotne w \mathbb{Z}
- c) symetryczne w Z
- d) słabo antysymetryczne w Z
- e) przeciwsymetryczne (asymetryczne) w Z
- f) przechodnie w \mathbb{Z}
- g) spójne w \mathbb{Z}

Zadanie 3

Określ czym jest **relacja identyczności** $I_{\mathbb{Z}}$ w zbiorze liczb całkowitych \mathbb{Z} .

Podstawy logiki i teorii mnogości, Ćw. 6, Strona 2/2

Zadanie 4

Dla relacji S z zadania 1 określ

- a) jej dziedzinę (inaczej nazywaną 1-szą dziedziną) $D(S) = D_1(S)$
- b) jej przeciwdziedzinę (inaczej nazywaną 2-gą dziedziną) $D^*(S) = D_2(S)$
- c) $zbi\acute{o}r D(S) \cup D^*(S)$ zwany jej polem
- d) zbiór $S^{-1} := \{(a, b) \in \mathbb{Z}^2 : (b, a) \in S\}$

Zadanie 5

Czy relacja która jest przeciwsymetryczna jest

- a) zwrotna,
- b) przeciwzwrotna?

Zadanie 6

Udowodnić, że relacja R jest symetryczna \Leftrightarrow $(R \subseteq R^{-1})$.

Zadanie 7

Znajdź dziedzinę i przeciwdziedzinę relacji R oraz relację R^{-1} jeśli:

- a) $R = \{(a,b), (a,c), (b,c)\}$
- b) $R = \{(a,a), (a,b), (b,c)\}$
- c) $R = \{(a,b,c),(a,c,b),(a,d,b)\}$
- d) aRb \Leftrightarrow $(a \in \mathbb{N} \land b \in \mathbb{N} \land (a < b))$.

Zadanie 8

Sprawdzić, czy relacje określone w Zadaniu 1 i Zadaniu 7 są relacjami

- a) równoważności
- b) porządku.

Zadanie 9

Sprawdzić, które z relacji określonych w Zadaniu 1 i Zadaniu 7 są funkcjami.

Zadanie 10

Wyznaczyć klasy abstrakcji dla relacji równoważności R i S określonych w Zadaniu 1.

Dla relacji równoważności $T \subseteq X^2$ klasę abstrakcji $[a]_T$ elementu a definiujemy jako $[a]_T := \{b \in X : aTb\}.$

Zadanie 11

Niech $T \subseteq X^2$ będzie relacją równoważności. Pokazać, że:

 $\forall c,d \in X \left[\; ([c]_T = [d]_T) \lor ([c]_T \cap [d]_T = \emptyset) \right] \;\; .$