Financial Engineering II Lab Assignment 3

Kumar Harsha, 11012318 January 24, 2014

Contents

1	Question 1	2
2	Question 2	8
3	Code	9

1 Question 1

Initial Price of Options

The initial prices of American call and put options for the given values are tabulated below:

	Set 1	Set 2
Call option	12.0853	12.1230
Put option	5.2667	5.2798

Dependence of Option Prices on Variables

Dependence on Starting Price of Asset

Dependence on Strike Price

Dependence on Rate

Dependence on Volatility

Dependence on Number of Steps

2 Question 2

Initial Prices of Lookback Put Option with Floating Strike

M↓	Option price
5	9.1193
10	10.0806
15	10.5192

Comparison

The value of option at time t=0 increases with increasing steps; probably to converge to greater accuracy. Accurate conclusions cannot be drawn because the algorithm takes a long time to compute values for more time steps.

3 Code

Function for Valuating an American Call Option

```
function [ price ] = americancallWD( start, strike, rate, steps,
   sigma, T, set )
%AMERICANCALLWD computes american call option price; no dividends
    on asset
%
    start = price of asset at t = 0
    strike = strike price for the option
    rate = risk free interest rate
    steps = number of time steps
    sigma = volatility
%
    T = total time
    set = set number of up-down pair to use
dt = T/steps;
switch set
    case 1
        up = exp(sigma*sqrt(dt));
        down = 1/up;
    case 2
        up = exp(sigma*sqrt(dt) + (rate-sigma*sigma*0.5)*dt);
        down = \exp(-sigma*sqrt(dt) + (rate-sigma*sigma*0.5)*dt);
end
price = european(start, strike, rate, steps, sigma, T, 0, up,
  down);
```

end

Function for Valuating an American Put Option

```
function [ price ] = americanputWD( start, strike, rate, steps,
    sigma, T, set)
%AMERICANPUTWD computes american option price; no dividends on
    asset
% start = price of asset at t = 0
% strike = strike price for the option
% rate = risk free interest rate
% steps = number of time steps
```

```
%
    sigma = volatility
    T = total time
%
    set = set number of up-down pair to use
asset = zeros(steps+1);
option = zeros(steps+1, steps+1);
dt = T/steps;
switch set
    case 1
        up = exp(sigma*sqrt(dt));
        down = 1/up;
    case 2
        up = exp(sigma*sqrt(dt) + (rate-sigma*sigma*0.5)*dt);
        down = exp(-sigma*sqrt(dt) + (rate-sigma*sigma*0.5)*dt);
end
p = (exp(rate*dt)-down)/(up-down);
asset(1,1) = start;
%create asset price tree
for i=2:steps+1
    asset(1,i) = asset(1,i-1)*up;
    for j=2:i
        asset(j,i) = asset(j-1,i)*down/up;
    end
end
%create option price tree
for i=1:steps+1
    option(i, steps+1) = \max(strike-asset(i, steps+1), 0);
end
for i=1:steps
    for j=1:steps+1-i
        option(j, steps+1-i) = \max(strike-asset(j, steps+1-i), (
           option (j, steps+2-i)*p + option <math>(j+1, steps+2-i)*(1-p)
           *exp(-rate*dt));
    end
end
price = option(1,1);
```

end

Code for Analysing European Options

```
format long; clear all; clc;
%initial values
start = 100:
K = 100;
T = 1;
M = 100;
r = 0.08;
sigma = 0.2;
%initial price of American call and put
disp(['American_Call; _Set_1']);
disp(americancallWD(start, K, r, M, sigma, T, 1));
disp(['American_Call; _Set_2']);
disp(americancallWD(start, K, r, M, sigma, T, 2));
disp(['American_Put;_Set_1']);
disp(americanputWD(start, K, r, M, sigma, T, 1));
disp(['American_Put; _Set_2']);
disp(americanputWD(start, K, r, M, sigma, T, 2));
%varying starting price S(0)
range = 50;
optiondata = zeros(2*range+1, 5);
for i=start-range:start+range
    optiondata (i-start+range+1, 1) = i;
    optiondata (i-start+range+1, 2) = americancallWD(i, K, r, M,
       sigma, T, 1);
    optiondata (i-start+range+1, 3) = american putWD(i, K, r, M,
       sigma, T, 1);
    optiondata (i-start+range+1, 4) = americancalIWD(i, K, r, M,
       sigma, T, 2);
    optiondata (i-start+range+1, 5) = american putWD(i, K, r, M,
       sigma, T, 2);
end
figure
```

```
plot(optiondata(:,1), optiondata(:,2), optiondata(:,1),
   optiondata (:,3), optiondata (:,1), optiondata (:,4), optiondata
   (:,1), optiondata(:,5))
title ('Varying Starting price of Asset')
legend('Call_option, _set_1', 'Put_option, _set_1', 'Call_option, _
   set_2', 'Put_option, _set_2')
%varying strike price K
range = 50;
strikedata = zeros(2*range+1, 5);
for i=K-range:K+range
    strikedata(i-K+range+1, 1) = i;
    strikedata(i-K+range+1, 2) = americancallWD(start, i, r, M,
       sigma, T, 1);
    strikedata(i-K+range+1, 3) = americanputWD(start, i, r, M,
       sigma, T, 1);
    strikedata(i-K+range+1, 4) = americancallWD(start, i, r, M,
       sigma, T, 2);
    strikedata(i-K+range+1, 5) = americanputWD(start, i, r, M,
       sigma, T, 2);
end
figure
plot(strikedata(:,1), strikedata(:,2), strikedata(:,1),
   strikedata (:,3), strikedata (:,1), strikedata (:,4), strikedata
   (:,1), strikedata(:,5))
title ('Varying _ Strike _ price')
legend('Call_for_set_1', 'Put_for_set_1', 'Call_for_set_2', 'Put_
   for set 2')
%varying interest rate
range = 4;
r = 8;
ratedata = zeros(2*range+1, 5);
for i=r-range:r+range
    ratedata(i-r+range+1, 1) = i/100;
    ratedata(i-r+range+1, 2) = americancalIWD(start, K, i/100, M,
        sigma , T , 1) ;
    ratedata(i-r+range+1, 3) = american putWD(start, K, i/100, M,
       sigma, T, 1);
```

```
ratedata(i-r+range+1, 4) = americancalIWD(start, K, i/100, M,
        sigma , T, 2);
    ratedata(i-r+range+1, 5) = american putWD(start, K, i/100, M,
       sigma, T, 2);
end
figure
x = plot(ratedata(:,1), ratedata(:,2), ratedata(:,1), ratedata
   (:,3), ratedata(:,1), ratedata(:,4), ratedata(:,1), ratedata
   (:,5));
title ('Varying Interest rate')
legend('Call_for_set_1', 'Put_for_set_1', 'Call_for_set_2', 'Put_
   for set 2')
%varying sigma
s = 20:
r = 0.08;
range = 10;
sigmadata = zeros(2*range+1, 5);
for i=s-range:s+range
    sigmadata(i-s+range+1, 1) = i/100;
    sigmadata(i-s+range+1, 2) = americancallWD(start, K, r, M, i)
       /100, T, 1);
    sigmadata(i-s+range+1, 3) = american putWD(start, K, r, M, i)
       /100, T, 1);
    sigmadata(i-s+range+1, 4) = americancalIWD(start, K, r, M, i)
       /100, T, 2);
    sigmadata(i-s+range+1, 5) = americanputWD(start, K, r, M, i)
       /100, T, 1);
end
figure
plot(sigmadata(:,1), sigmadata(:,2), sigmadata(:,1), sigmadata
   (:,3), sigmadata(:,1), sigmadata(:,4), sigmadata(:,1),
   sigmadata (:,5))
title ('Varying _SIGMA')
legend('Call_for_set_1', 'Put_for_set_1', 'Call_for_set_2', 'Put_
   for set 2')
%varying steps and strike prices
range = 50;
```

```
K = [95, 100, 105];
stepdata = zeros(2*range+1, 13);
for i=M-range:M+range
    stepdata(i-M+range+1, 1) = i;
    for j=1:3
        stepdata(i-M+range+1, 2+(j-1)*4) = americancallWD(start,
           K(j), r, i, sigma, T, 1);
        stepdata(i-M+range+1, 3+(i-1)*4) = american putWD(start, K
           (j), r, i, sigma, T, 1);
        stepdata (i-M+range+1, 4+(j-1)*4) = americancallWD (start,
           K(j), r, i, sigma, T, 2);
        stepdata (i-M+range+1, 5+(j-1)*4) = american putWD (start, K)
           (j), r, i, sigma, T, 2);
    end
end
for i = 1:3
    figure
    plot (stepdata (:,1), log10 (stepdata (:,2+(i-1)*4)), stepdata
       (:,1), log10 (stepdata (:,3+(i-1)*4)), stepdata (:,1), log10
       stepdata (:,4+(i-1)*4)), stepdata (:,1), log10 (stepdata
       (:,5+(i-1)*4))
    title (['Varying _Steps, _Strike _=', num2str(K(i))])
    legend('Call_option, _set_1', 'Put_option, _set_1', 'Call_
       option, set 2', 'Put option, set 2')
end
```

Function for Valuating a Lookback Option

```
function [ price ] = lookback( start, rate, steps, sigma, T)
%LOOKBACK compute initial price of a lookback put option with
    floating
%strike
%    start = initial asset price
%    rate = risk-free interest rate
%    steps = number of time steps
%    sigma = volatility
%    T = total time

dt = T/steps;
up = exp(sigma*sqrt(dt) + (rate-sigma*sigma*0.5)*dt);
```

```
down = exp(-sigma*sqrt(dt) + (rate-sigma*sigma*0.5)*dt);
p = (exp(rate*dt) - down)/(up - down);
option = zeros(2^steps, 1);
for i=0:2^s teps-1
    assetpath = de2bi(i, steps);
    d = sum(assetpath);
    u = steps-d;
    option(i+1) = start *(up^u) *(down^d);
    strike = start;
    temp = start;
    for j=1:steps
        switch assetpath (steps -j+1)
            case 0
                temp = temp*up;
            case 1
                temp = temp*down;
        end
        strike = max(strike, temp);
    option(i+1) = (max(strike-option(i+1), 0))*(p^u)*((1-p)^d);
end
disp (option)
price = sum(option)*exp(-rate);
end
```