108 學年 2 學期

智慧感知雲端系統與應用設計

Arduino 實驗報告

組長:

王宇哲 P76084758

組員:

孫祥恩 P76084708

趙哲宏 P76081378

中華民國 109 年 4 月 7 日

目錄

— 、	組別與分工	. 4
_,	實驗項目	. 4
2.	1 認識 Arduino	4
2.2	2 認識 Serial	. 9
2	3 認識 BLE	12
2.4	4 認識 ESP8266 WiFi 模組	15

一、組別與分工

學號	姓名	分工項目說明
P76084708	孫祥恩	2.1, 2.3
P76081378	趙哲宏	2.2
P76084758	王宇哲	2.4

二、實驗項目

2.1 認識 Arduino

1. 請問 Arduino 開發的語法基本結構為何?

setup()

當 Arduino 啟動時需設定的參數

e.g.腳位設定

loop()

當 Arduino 啟動後會一直執行的工作

e.g.腳位的輸出入

- 2. 請列出至少五項 Arduino 語法控制結構。
 - break
 - continue

• dowhile
• else
• for
• goto
• if
• switch
• return
• switchcase
• while
3. 請列出 Digital IO 的 Function(至少 3 個)並說明之。
pinMode(pin, mode)
pin 指定數位腳位 D0~D13
mode 可選擇 INPUT、OUTPUT 或 INPUT PULLUP
digitalRead(pin)
pin 指定數位腳位 D0~D13
回傳可為 boolean (HIGH or LOW) 或 int (-32768~32767)
digitalWrite(pin, value)
pin 指定數位腳位 D0~D13
value 可為 HIGH or LOW
4. 請列出 Analog IO 的 Function(至少 5 個)並說明之。
analogRead(pin)
pin 指定類比腳位 A0~A5
回傳值可為 int (0~1023)

analogWrite(pin, value)
pin 需要 PWM 支援
value 介於 0~255

analogReference(type)
根據 type 設定類比輸入的參考電壓

analogReadResolution(bits)
Due, Zero, MKR 板子可以將回傳值從 10bits 改為 12bits

analogWriteResolution(bits)
Due, Zero, MKR 板子可以將 PWM 輸入從 8bits 改為 12bits

5. 請列出至少四項與時間有關的 Function 並說明之。

delay(ms)
設定暫停的時間,單位為 ms

delayMicroseconds(us)
設定暫停的時間,單位為 us

micros()
回傳板子執行此程式多久時間,單位為 us
約 70m 會溢位重置

miliis()
回傳板子執行此程式多久時間,單位為 us

約 50d 會溢位重置

6. 請列出至少七項與數學有關的 Function 並說明之(三角函式除外)。

abs(x) 回傳 x 的絕對值 constrain(x, a, b)a, b 設為 x 的上下界 範圍內回傳 x, 反之則回傳上界或下界 map(value, fromLow, fromHigh, toLow, toHigh) fromLow 對應 toLow fromHigh 對應 toHigh 依照上面關係將 value 值映射 不會 constrain 映射的值 max(x, y)回傳較大的參數 min(x, y)回傳較小的參數 pow(base, exponent) 回傳 x^y 值,型態為 double

```
sqrt(x)
回傳 x 的平方根,型態為 double
```

7. 請列出至少一項與亂數有關的 Function 並說明之。

```
random(min, max)
回傳 min~max-1 的亂數,型態為 long
min 可以不填,從 0 開始
```

8. 請列出至少一項與 Serial 相關的 Function 並說明之。

```
Serial.begin(speed)
設定 baud rate 為 speed
```

9. 請撰寫一個程式讓 LED 13 的閃爍時間為隨機跳動(1~3 秒内) 並說明如何達成。

```
void setup() {
    pinMode(13, OUTPUT);
}

void loop() {
    digitalWrite(13, HIGH);
    delay(random(1000, 3001));
    digitalWrite(13, LOW);
    delay(random(1000, 3001));
}
```

2.2 認識 Serial

在 Arduino 中如何對 RX,TX 寫入指令,必須注意哪些設定參數?

在 void setup()中創建連接埠(Serial.begin)後,使用 Serial.println()等等打印函數即可把資料寫入連接埠,並傳到相對應的連接埠,其中需要注意連接中的兩者Baud Rate 需要相同,且需要注意 Serial.available()是否為 1,來確認目前的連接是否可用

2. 什麼是 Baud Rate? 如何計算?

即每秒可以傳輸的 symbol 個數, symbol 大小可以自行調制, 其計算式為 $I=S*log_2N$, 其中 I 為傳信率(bit/s), N 為每個 symbol 負載的信息量, S 即為 Baud Rate

3. 如果 1bit 為單位的資料,利用 Baud Rate 為 9600 的傳送速度連續傳送 10 秒

(假設都沒掉封包),則共可傳送多少 Byte? (請考慮 Header, 並列出計算過程)

傳送一個單位的資料為 1bit, 加上 Start symbol 與 End symbol 共 3 bit, Baud Rate 為 9600 即 1 秒可以傳輸 9600 個 symbol, 而資料含 Header 共 3 個 symbol, 則 1 秒可以傳送 9600/3 = 3200 bit 的資料,故 10 秒共可傳送的 32000 bit = 4000 Byte 的資料

4. 依照給的 BLE Spec., Baud Rate 必須設在多少範圍內? 為什麼?

根據給出的文件,預設的 Baud Rate 為 9600 bps,而 Baud Rate 的範圍可以介於 1200 bps~115200 bps,且可用頻率為 1200*(2,4,8,16,32,48,96)倍,因為太高的 Baud Rate 並不會帶來更好的傳輸效率,在 buffer 內的資料可能尚未處理完畢,過於快速的傳輸只會造成 Serial Port 的閒置時間變長,對效率無益

5. 如何設定 Arduino 上 RX,TX 的 Baud Rate?

在 void setup()中創建連接埠(Serial.begin)時,在後方括弧内的參數內打上數字,即可規定此連接的 Baud Rate,其中要連接的 RX、TX 需有相同的連接埠名稱,且 Baud Rate 也要相同

6. 如何設定 Arduino IDE Terminal 的 Baud Rate? 如何將 Debug 訊息打印至

Arduino IDE Terminal?

在連接 Arduino 的情況下,打開 IDE 右上角的放大鏡,即可在右下方的 Combo Box 内調整 Terminal 的 Baud Rate, 欲將 Debug 訊息印至 Terminal,需先在 void setup()中創建連接埠(Serial.begin),讓 Arduino 與電腦連接,並同步 Baud Rate,之後使用 Serial.println()等等打印函數,將欲傳送的 Debug 訊息傳送至 Terminal即可

2.3 認識 BLE

1. 藍芽模組 HC-05、HC-06、HM-10、HC-08 功能與規格上有哪些差異?

HC-05 與 06 硬體相同,只是韌體不同,05 通常支援較多 AT 指令,也可以透過 AT 修改主從,06 則不能更改,都支援藍芽 2.0

HM-10 和 HC-08 都使用相同晶片, 也支援藍芽 4.0, HM-10 亦支援 iBeacon 的

相關指令

2. 各家藍芽模組的 AT Command 是否相同? 為什麼會有此種情形?

HC-05,06 HM-10 指令的 parameter 會直接接在指令後面,如 AT+BAUD8,只

差在支援指令數量

HC-08 指令的 parameter 則是透過 = 分隔,如 AT+BAUD=19200

AT 指令的語法沒有統一規範,但大多都會遵循大寫的方式

3. 拿到藍芽模組要如何連接?如何透過 AT Command 設定模組 ID、密碼?

要透過 USB 轉 TTL 的介面, 連接模組的 TX 與 RX 腳位

以 HC-08 為例:

設定 ID: AT+NAME=xxxxxx

設定密碼: AT+PIN=xxxxxx

4. 如何利用 Arduino 上的 RX,TX 對藍芽模組下 AT Command 做測試?
因為板子的邏輯電壓是 5V, 而藍芽模組的邏輯電壓基本上是 3.3V, 需要確認
模組是否已含有 1kΩ 的限流電阻,沒有須自行串連 (非強制,以規格書為主)
模組的 RX 與 TX 對應板子的 TX 與 RX (互為相反)
5. 如果需要對藍芽模組做設定,會用到 SPEC 上的哪些 AT Command? 請描述
其作用。
以 HC-08 為例:
AT+NAME= 用以設定 ID
AT+PIN= 用以設定密碼
AT+BAUD= 用以設定傳輸速率
6. 如果需要抓取藍芽模組的設定參數,會用到 SPEC 上哪些 AT Command? 請
描述其作用。
以 HC-08 為例:
AT 回傳連線狀態 (OK)
AT+RX 回傳基本的參數 (ID、PIN、模式、傳輸速率、位址)

AT+VERSION 回傳版本與日期

7. 請利用 Arduino 將藍芽模組設成自己的組別 ID,並說明如何達成? EX:IOT-01

以 HC-08 為例:

AT+NAME=IOT-01

8. 請說明藍芽模組上的 Data Mode and AT Command Mode 的差別。請問在一般情況下,使用者為什麼無法透過手機端對 BLE 模組下 AT Command?

Data Mode 主要負責接收或傳送資料,模組本身不會解讀資料,若要調整參數 就必須進入 AT 模式,而無線連接本身就是 Data Mode,故無法遠端下指令

2.4 認識 ESP8266 WiFi 模組

1. ESP8266 WiFi 模組的 ESP-01、ESP-03、ESP-12 功能與規格上有哪些差異?

Board	#Pins	Pitch	Form	LEDs	An-	Ant.Socket	Shielded	Di-	Flash
ID			fac-		tenna			men-	Size in
			tor					sions	Bytes
								mm	and
									(bits)
ESP-	8	0.1"	2×4	Yes	Etched-	No	No	14.3	512KB
01			DIL		on PCB			Х	(4Mb)
								24.8	
ESP-	14	2mm	2×7	No	Ce-	No	No	17.3	512KB
03			notch		ramic			Х	(4Mb)
								12.1	
ESP-	16	2mm	2×8	Yes	Etched-	No	Yes	24.0	4MB
12			notch		on PCB			Х	(32Mb)
								16.0	

2. 說明 ESP8266 WiFi 模組 ESP-01 的每一個針腳位意義與功用?

UTXD: TX 傳送

URXD: RX 接收

GND: 接地

VCC: 供電

RST: 重置

CH_PD: 晶片選擇

GPIO0: 模式切換的 high bit

GPIO2: 模式切換的 low bit

3. 說明 ESP8266 WiFi 模組 ESP-01 的支援的工作型態有哪三種?詳細說明每一種型態的意義與功用?最後詳細說明更改工作型態的流程及所需的 AT 指

令?

1=STA 網卡模式

Station 模式, 即無線網卡模式, 可連接到 AP, 不接受連入

2=AP 基地台模式

Access Point 模式, 即無線基地台模式, 接受其他 WiFi 終端連入

3=BOTH (AP+STA)

AP+STA 雙模

AT+CWMODE?: 查詢目前工作模式

AT+CWMODE=1:修改工作模式為 1(STA)網卡模式

架設一個 XAMPP 或 Apache Server, 並利用 Arduino、溫濕度感測器與 ESP8266 WiFi 模組 ESP-01 撰寫一個 HTTP GET Request 程式。將溫濕度傳 感器感測到的資料,使用 HTTP GET Request 傳送至 Server, 然後 Server 會 回傳收到的感測數值的平均值 (例如: $\frac{2(B)+2(B)}{2}$)。

請完成:

- 程式碼與使用到的 Library 存於 src 資料夾內並連同程式碼一起貼在下 方回答中
- 將 Arduino IDE 的 Serial Monitor 中顯示的 Server 接收的感測數據與回 傳的平均值截圖貼在下方回答中

```
[WiFiEsp] Initilization successful - 1.3.0
進行WiFi設定!
WiFi 連接中 ...
[WiFiEsp] Connected to ISMP HI
WiFi 連接成功!
IP 位址: 192.168.13.198
SSID: ISMP_HI
WiFi 設定結束
connecting to misclicked01.ubddns.org
[WiFiEsp] Connecting to misclicked01.ubddns.org
Humidity: 29.00%
                       Temperature: 26.00*C
requesting URL: /index.php?temperature=26.00&humidity=29.00
request sent
headers received
reply was:
27.5
closing connection
                       Temperature: 26.00*C
Humidity: 28.00%
requesting URL: /index.php?temperature=26.00&humidity=28.00
[WiFiEsp] >>> TIMEOUT >>>
[WiFiEsp] Data packet send error (1)
[WiFiEsp] Failed to write to socket 3
[WiFiEsp] Disconnecting 3
request sent
reply was:
closing connection
Humidity: 29.00%
                       Temperature: 26.00*C
requesting URL: /index.php?temperature=26.00&humidity=29.00
request sent
reply was:
========
closing connection
                       Temperature: 26.00*C
Humidity: 29.00%
requesting URL: /index.php?temperature=26.00&humidity=29.00
request sent
reply was:
_____
closing connection
Humidity: 30.00%
                       Temperature: 26.00*C
requesting URL: /index.php?temperature=26.00&humidity=30.00
Autoscroll Show timestamp
```