МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Параллельные алгоритмы»

Тема: Знакомство с программированием гетерогенных систем в стандарте Open CL

Студент гр. 0303	Середенков А.А.
Преподаватель	Сергеева Е.И.

Санкт-Петербург 2023

Цель работы.

Понять принципы вычислений на видеопроцессорах и изучить фреймворк OpenCl, и на его основе реализовать вычисление фрактала Мандельброта.

Задание.

Реализовать расчёт фрактала Мандельброта на OpenCL. Визуализировать результат.

Выполнение работы.

Для выполнения данной лабораторной работы, была установлена и настроена среда разработки Microsoft Visual Studio.

Были реализованы функции (*mandelbrot, color, compute_iterations*) для подсчёта множества Мандельброта на основном вычислительном устройстве. Вычисление точек производится в 50 итераций. Итоговое изображение получается чёрно-белым.

В *kernel* были написаны аналогичные функции подсчёта, но вместо цикла используется подсчёт в work-item. Были написаны дополнительные функции для инициализации и запуска фреймворка OpenCl:

get_device — функция, необходимая для поиска устройства GPU. При отсутствии устройств выбирается первый попавшийся CPU.

build_program — функция, загружающая текст кода, запускающая kernel и собирающая программу.

align — функция, выравнивающая размер изображения, необходимый для рабочей группы.

invoke_kernel — функция, запускающая kernel. Функция передаёт параметры в kernel, помещает задачу в очередь. В ней задаётся размер рабочей группы и рабочей единицы, в конце сохраняет полученный результат.

Сравним время работы программы при вычислениях на CPU и GPU. Результат вычисления представлен в табл. 1

Таблица 1 — Время вычисления CPU и GPU.

Размерность	Время вычисления на GPU	Время вычисления на СРИ
изображения		
128×128	0.0005681 c	0.0007658 c
256×256	0.0006568 c	0.0031117 с
512×512	0.0008359 c	0.0116676 c
1024×1024	0.0023389 c	0.0472434 c
2048×2048	0.0071213 c	0.197769 с
4096×4096	0.0208892 c	0.779621 c

Исходя из результатов таблицы можно сделать вывод, что вычисления проводимые на GPU намного быстрее, аналогичных вычислений на CPU. Вычисления небольших изображений занимает примерно одинаковое время на CPU и GPU.

Результат вычислений представлен на рис. 1.

Рисунок 1 — Полученный фрактал Мандельброта.

Выводы.

В процессе выполнения лабораторной работы был изучен фреймворк OpenCl и написана программа, которая вычисляет фрактал Мандельброта на GPU и CPU, а также сравнивает время выполнения.