114

Distance, geodesics and complete manifolds

Spring 2023

Optimization on manifolds, MATH 512 @ EPFL

Instructor: Nicolas Boumal

The Riemannian metric induces a distance

$$dint(x,y) = \inf_{\substack{c: [0,1] \rightarrow M \\ c(0)=x, c(1)=y}} Length(c)$$

this defines a distance of M is connected.

Def: The length of a smooth curve segment $c: [0, 1] \to \mathcal{M}$ is

Length(c) =
$$\int_0^1 ||c'(t)||_{c(t)} dt$$

Fact: If \mathcal{M} is connected, the function dist: $\mathcal{M} \times \mathcal{M} \to \mathbf{R}$,

$$\operatorname{dist}(x,y) = \inf_{\substack{c:[0,1] \to \mathcal{M} \\ c(0) = x, c(1) = y}} \operatorname{Length}(c),$$

defines a distance on \mathcal{M} . We call it the Riemannian distance.

With that distance, \mathcal{M} is a metric space.

The metric topology and the manifold topology are the same.

Continuous:
$$x \mapsto dist(x,y)$$
 { $x \in M: dist(x,y) < r$ } open

Fact: If there exists a curve segment $c: [0,1] \to \mathcal{M}$ from x to y11 C (t)/1 clts such that Length(c) = dist(x, y), then c is a geodesic. We call such *c* a minimizing geodesic.

Def.: $x_0, x_1, x_2, ...$ is a Cauchy sequence if its points eventually get arbitrarily close: $\forall \varepsilon > 0, \exists K \text{ s.t. } \text{dist}(x_k, x_\ell) < \varepsilon \text{ for all } k, \ell \geq K.$

Def.: \mathcal{M} is metrically complete if all Cauchy sequences converge.

Fact: On a complete and connected manifold, each pair x, y is connected by a minimizing geodesic.

Completeness is sufficient but not necessary.

Metric completeness captures more than existence of minimizing geodesics: it captures the fact that geodesics "keep going forever".

Recall: a curve c is a geodesic if $\frac{D}{dt}c'(t) = 0$ for all t.

This is a smooth differential equation:

The solution c is uniquely determined by initial conditions c(0) = x and c'(0) = v.

But c(t) is not necessarily defined for all t: what can stop it?

Def.: \mathcal{M} is geodesically complete if all geodesics exist for all $t \in \mathbf{R}$.

Theorem (Hopf-Rinow). For \mathcal{M} connected, these are equivalent:

- \mathcal{M} is geodesically complete;
- \mathcal{M} is metrically complete;
- A subset of \mathcal{M} is compact iff it is closed and bounded.

Example: If \mathcal{M} is embedded in \mathcal{E} and closed in \mathcal{E} , it is complete.