Bayesian Time-Series Econometrics

Book 2 - algebraic derivations

Romain Legrand

Third edition

Bayesian Time-Series Econometrics

© Romain Legrand 2021

All rights reserved. No parts of this book may be reproduced or modified in any form by any electronic or mechanical means (including photocopying, recording, or by any information storage and retrieval system) without permission in writing from the author.

Cover illustration: Thomas Bayes (d. 1761) in Terence O'Donnell, History of Life Insurance in Its Formative Years (Chicago: American Conservation Co., 1936), p. 335.

To my wife, Mélanie.

To my sons, Tristan and Arnaud.

Contents

I	Bayesian statistics	1
3	Three applied examples	3
4	Further aspects of Bayesian priors and posteriors	7
5	Properties of Bayesian estimates	15
II	Simulation methods	17
6	The Gibbs sampling algorithm	19
7	The Metropolis-Hastings algorithm	21
8	Mathematical theory	25
Ш	I Econometrics	29
9	The linear regression model	31
10	Applications with the linear regression model	37
IV	Vector autoregressions	51
11	Vector autoregressions	53
12	Further aspects of Bayesian vector autoregressions	67
14	Bayesian VAR: advanced applications	77
\mathbf{V}	Vector autoregression extensions	81
15	Vector error correction	83
16	Vector autoregressive moving average	101
Re	eferences	105

ii CONTENTS

PART I

Bayesian statistics

Three applied examples

derivations for equation (1.3.3)

$$f(y|p) = \prod_{i=1}^{n} p^{y_i} (1-p)^{1-y_i} = p^{\sum_{i=1}^{n} y_i} (1-p)^{\sum_{i=1}^{n} 1-y_i} = p^m (1-p)^{n-m}$$
(a.1.3.1)

derivations for equation (1.3.5)

The derivative is given by:

$$\frac{dlog(f(y|p))}{dp} = \frac{m}{p} - \frac{n-m}{1-p}$$
 (a.1.3.2)

Set the value to 0 and solve for *p*:

Set the value to 0 and solve for
$$p$$
:

$$\frac{m}{p} - \frac{n - m}{1 - p} = 0$$

$$\Leftrightarrow \frac{m}{p} = \frac{n - m}{1 - p}$$

$$\Leftrightarrow m(1 - p) = p(n - m)$$

$$\Leftrightarrow m - mp = np - mp$$

$$\Leftrightarrow m = np$$

$$\Leftrightarrow p = \frac{m}{p}$$
(a.1.3.3)

derivations for equation (1.3.11)

$$f(y|p) = \prod_{i=1}^{n} \frac{\lambda^{y_i} e^{-\lambda}}{y_i!} = \frac{\prod_{i=1}^{n} \lambda^{y_i} \prod_{i=1}^{n} e^{-\lambda}}{\prod_{i=1}^{n} y_i!} = \frac{\lambda^{\sum_{i=1}^{n} y_i} e^{-n\lambda}}{\prod_{i=1}^{n} y_i!}$$
(a.1.3.4)

derivations for equation (1.3.13)

The derivative is given by:

$$\frac{dlog(f(y|\lambda))}{d\lambda} = \frac{\sum_{i=1}^{n} y_i}{\lambda} - n$$
 (a.1.3.5)

Set the value to 0 and solve for λ :

$$\frac{\sum_{i=1}^{n} y_i}{\lambda} - n = 0$$

$$\Leftrightarrow \frac{\sum_{i=1}^{n} y_i}{\lambda} = n$$

$$\Leftrightarrow \lambda = \frac{1}{n} \sum_{i=1}^{n} y_i$$
(a.1.3.6)

derivations for equation (1.3.16)

$$\lambda^{\sum_{i=1}^{n} y_i} e^{-n\lambda} \times \lambda^{a-1} e^{-\lambda/b}$$

$$= \lambda^{a+\sum_{i=1}^{n} y_i - 1} e^{-\lambda(n+1/b)}$$

$$= \lambda^{a+\sum_{i=1}^{n} y_i - 1} e^{-\lambda/(n+1/b)^{-1}}$$
(a.1.3.7)

Now:

$$(n+1/b)^{-1} = \frac{1}{n+1/b} = \frac{b}{bn+1}$$
 (a.1.3.8)

Hence:

$$\lambda^{\sum_{i=1}^{n} y_i} e^{-n\lambda} \times \lambda^{a-1} e^{-\lambda/b}$$

$$= \lambda^{a+\sum_{i=1}^{n} y_i - 1} e^{-\lambda/\frac{b}{bn+1}}$$
(a.1.3.9)

derivations for equation (1.3.19)

$$f(y|\mu) = \prod_{i=1}^{n} (2\pi\sigma)^{-1/2} exp\left(-\frac{1}{2} \frac{(y_i - \mu)^2}{\sigma}\right)$$

$$= \prod_{i=1}^{n} (2\pi\sigma)^{-1/2} \prod_{i=1}^{n} exp\left(-\frac{1}{2} \frac{(y_i - \mu)^2}{\sigma}\right)$$

$$= (2\pi\sigma)^{-n/2} exp\left(-\frac{1}{2} \sum_{i=1}^{n} \frac{(y_i - \mu)^2}{\sigma}\right)$$
(a.1.3.10)

derivations for equation (1.3.21)

The derivative is given by:

$$\frac{dlog(f(y|\mu))}{d\mu} = \sum_{i=1}^{n} \frac{(y_i - \mu)}{\sigma}$$
 (a.1.3.11)

Set the value to 0 and solve for μ :

$$\sum_{i=1}^{n} \frac{(y_i - \mu)}{\sigma} = 0$$

$$\Leftrightarrow \sum_{i=1}^{n} (y_i - \mu) = 0$$

$$\Leftrightarrow \sum_{i=1}^{n} y_i - n\mu = 0$$

$$\Leftrightarrow \sum_{i=1}^{n} y_i = n\mu$$

$$\Leftrightarrow \mu = \frac{1}{n} \sum_{i=1}^{n} y_i$$
(a.1.3.12)

derivations for equation (1.3.24)

First group the exponential terms:

$$\pi(\mu|y) \propto exp\left(-\frac{1}{2}\sum_{i=1}^{n}\frac{(y_i-\mu)^2}{\sigma}\right) \times exp\left(-\frac{1}{2}\frac{(\mu-m)^2}{v}\right) = exp\left(-\frac{1}{2}\left[\sum_{i=1}^{n}\frac{(y_i-\mu)^2}{\sigma} + \frac{(\mu-m)^2}{v}\right]\right) \tag{a.1.3.13}$$

Develop the term within the square bracket:

$$\sum_{i=1}^{n} \frac{(y_i - \mu)^2}{\sigma} + \frac{(\mu - m)^2}{v}$$

$$= \frac{1}{\sigma} \sum_{i=1}^{n} (y_i^2 + \mu^2 - 2\mu y_i) + \frac{1}{v} (\mu^2 + m^2 - 2\mu m)$$

$$= \frac{1}{\sigma} \left(\sum_{i=1}^{n} y_i^2 + n\mu^2 - 2\mu \sum_{i=1}^{n} y_i \right) + \frac{1}{v} (\mu^2 + m^2 - 2\mu m)$$
(a.1.3.14)

Group the terms:

$$= \mu^2 \left(\frac{n}{\sigma} + \frac{1}{v} \right) - 2\mu \left(\frac{1}{\sigma} \sum_{i=1}^n y_i + \frac{m}{v} \right) + \frac{1}{\sigma} \sum_{i=1}^n y_i^2 + \frac{m^2}{v}$$
 (a.1.3.15)

Set back in (a.1.3.13):

$$\pi(\mu|y) \propto exp\left(-\frac{1}{2}\left[\mu^{2}\left(\frac{n}{\sigma} + \frac{1}{v}\right) - 2\mu\left(\frac{1}{\sigma}\sum_{i=1}^{n}y_{i} + \frac{m}{v}\right) + \frac{1}{\sigma}\sum_{i=1}^{n}y_{i}^{2} + \frac{m^{2}}{v}\right]\right)$$
(a.1.3.16)

Further aspects of Bayesian priors and posteriors

derivations for equation (1.4.5)

First group the terms:

$$\pi(\mu, \sigma|y)$$

$$\propto \sigma^{-n/2} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} \frac{(y_i - \mu)^2}{\sigma}\right) \times \sigma^{-1/2} \exp\left(-\frac{1}{2} \frac{(\mu - m)^2}{v\sigma}\right) \times \sigma^{-\alpha/2 - 1} \exp\left(-\frac{\delta}{2\sigma}\right)$$

$$= \sigma^{-(n+\alpha)/2 - 1} \times \sigma^{-1/2} \times \exp\left(-\frac{1}{2\sigma} \left[\sum_{i=1}^{n} (y_i - \mu)^2 + \frac{(\mu - m)^2}{v} + \delta\right]\right)$$
(a.1.4.1)

Develop the term in the square bracket:

$$\sum_{i=1}^{n} (y_i - \mu)^2 + \frac{(\mu - m)^2}{v} + \delta$$

$$= \sum_{i=1}^{n} (y_i^2 + \mu^2 - 2\mu y_i) + \frac{\mu^2}{v} + \frac{m^2}{v} - 2\mu \frac{m}{v} + \delta$$

$$= \sum_{i=1}^{n} y_i^2 + n\mu^2 - 2\mu \sum_{i=1}^{n} y_i + \frac{\mu^2}{v} + \frac{m^2}{v} - 2\mu \frac{m}{v} + \delta$$

$$= \mu^2 \left(n + \frac{1}{v} \right) - 2\mu \left(\sum_{i=1}^{n} y_i + \frac{m}{v} \right) + \sum_{i=1}^{n} y_i^2 + \frac{m^2}{v} + \delta$$
(a.1.4.2)

Complete the squares:

$$= \mu^2 \left(n + \frac{1}{v} \right) - 2\mu \frac{\bar{v}}{\bar{v}} \left(\sum_{i=1}^n y_i + \frac{m}{v} \right) + \sum_{i=1}^n y_i^2 + \frac{m^2}{v} + \delta + \frac{\bar{m}^2}{\bar{v}} - \frac{\bar{m}^2}{\bar{v}}$$
(a.1.4.3)

Define:

$$\bar{v} = \left(n + \frac{1}{v}\right)^{-1} \qquad \bar{m} = \bar{v}\left(\sum_{i=1}^{n} y_i + \frac{m}{v}\right)$$
 (a.1.4.4)

Then (a.1.4.3) rewrites:

$$= \frac{\mu^2}{\bar{v}} + \frac{\bar{m}^2}{\bar{v}} - 2\mu \frac{\bar{m}}{\bar{v}} + \sum_{i=1}^n y_i^2 + \frac{m^2}{v} + \delta - \frac{\bar{m}^2}{\bar{v}}$$

$$= \frac{(\mu - \bar{m})^2}{\bar{v}} + \sum_{i=1}^n y_i^2 + \frac{m^2}{v} + \delta - \frac{\bar{m}^2}{\bar{v}}$$
(a.1.4.5)

Substituting back (a.1.4.5) in (a.1.4.1) eventually yields:

$$\pi(\mu, \sigma|y)$$

$$\propto \sigma^{-(n+\alpha)/2-1} \times \sigma^{-1/2} \times exp\left(-\frac{1}{2\sigma}\left[\frac{(\mu-\bar{m})^2}{\bar{v}} + \sum_{i=1}^n y_i^2 + \frac{m^2}{v} + \delta - \frac{\bar{m}^2}{\bar{v}}\right]\right)$$

$$= \sigma^{-(n+\alpha)/2-1} \times \sigma^{-1/2} \times exp\left(-\frac{1}{2}\frac{(\mu-\bar{m})^2}{\sigma\bar{v}}\right) \times exp\left(-\frac{1}{2\sigma}\left[\sum_{i=1}^n y_i^2 + \frac{m^2}{v} + \delta - \frac{\bar{m}^2}{\bar{v}}\right]\right)$$

$$= \sigma^{-\bar{\alpha}/2-1} \times \sigma^{-1/2} \times exp\left(-\frac{1}{2}\frac{(\mu-\bar{m})^2}{\sigma\bar{v}}\right) \times exp\left(-\frac{\bar{\delta}}{2\sigma}\right)$$
(a.1.4.6)

with:

$$\bar{\alpha} = n + \alpha$$
 $\bar{\delta} = \sum_{i=1}^{n} y_i^2 + \frac{m^2}{v} + \delta - \frac{\bar{m}^2}{\bar{v}}$ (a.1.4.7)

derivations for equation (1.4.10)

Rearrange the terms:

$$\pi(\mu|y)$$

$$\propto \Gamma\left(\frac{\bar{\alpha}+1}{2}\right) \left(\frac{\bar{\delta}+(\mu-\bar{m})^2/\bar{v}}{2}\right)^{-\frac{\bar{\alpha}+1}{2}}$$

$$\propto \left(\frac{\bar{\delta}+(\mu-\bar{m})^2/\bar{v}}{2}\right)^{-\frac{\bar{\alpha}+1}{2}}$$

$$\propto \left(\bar{\delta}+\frac{(\mu-\bar{m})^2}{\bar{v}}\right)^{-\frac{\bar{\alpha}+1}{2}}$$

$$= \bar{\delta}\left(1+\frac{(\mu-\bar{m})^2}{\bar{\delta}\bar{v}}\right)^{-\frac{\bar{\alpha}+1}{2}}$$

$$\propto \left(1+\frac{(\mu-\bar{m})^2}{\bar{\delta}\bar{v}}\right)^{-\frac{\bar{\alpha}+1}{2}}$$

$$= \left(1+\frac{1}{\bar{\alpha}}\frac{(\mu-\bar{m})^2}{\bar{\delta}\bar{v}/\bar{\alpha}}\right)^{-\frac{\bar{\alpha}+1}{2}}$$
(a.1.4.8)

derivations for equation (1.4.13)

Solve for the derivative:

$$2\int (\hat{\theta} - \theta) \ \pi(\theta|y)d\theta = 0$$

$$\Leftrightarrow \int (\hat{\theta} - \theta) \ \pi(\theta|y)d\theta = 0$$

$$\Leftrightarrow \int \hat{\theta} \ \pi(\theta|y)d\theta - \int \theta \ \pi(\theta|y)d\theta = 0$$

$$\Leftrightarrow \hat{\theta} \int \pi(\theta|y)d\theta = \int \theta \ \pi(\theta|y)d\theta$$

$$\Leftrightarrow \hat{\theta} = \int \theta \ \pi(\theta|y)d\theta$$
(a.1.4.9)

derivations for equation (1.4.16)

Rearrange the expression:

$$f(y) = \int \int (2\pi)^{-n/2} (2\pi)^{-1/2} v^{-1/2} \frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)} \times \sigma^{-n/2} exp\left(-\frac{1}{2}\sum_{i=1}^{n} \frac{(y_i - \mu)^2}{\sigma}\right) \times \sigma^{-1/2} exp\left(-\frac{1}{2}\frac{(\mu - m)^2}{v\sigma}\right) \times \sigma^{-\alpha/2 - 1} exp\left(-\frac{\delta}{2\sigma}\right) d\mu d\sigma$$
(a.1.4.10)

The second row can be recognised as equation (a.1.4.1). Using the same manipulations, one obtains equation (a.1.4.6), and thus the previous expression rewrites as:

$$f(y) = \int \int (2\pi)^{-n/2} (2\pi)^{-1/2} v^{-1/2} \frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)} \times \sigma^{-1/2} exp\left(-\frac{1}{2} \frac{(\mu - \bar{m})^2}{\sigma \bar{v}}\right) \times \sigma^{-\bar{\alpha}/2 - 1} exp\left(-\frac{\bar{\delta}}{2\sigma}\right) d\mu d\sigma$$
(a.1.4.11)

with $\bar{m}, \bar{v}, \bar{\alpha}$ and $\bar{\delta}$ defined as in (a.1.4.4) and (a.1.4.7). Now add multiplicative terms to obtain normal and inverse Gamma probability density functions, and take constants out of the integral:

$$f(y) = (2\pi)^{-n/2} v^{-1/2} \bar{v}^{1/2} \frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)} \frac{\Gamma(\bar{\alpha}/2)}{\bar{\delta}/2^{\bar{\alpha}/2}} \times \int \int (2\pi\bar{v}\sigma)^{-1/2} exp\left(-\frac{1}{2} \frac{(\mu - \bar{m})^2}{\sigma\bar{v}}\right) \times \frac{\bar{\delta}/2^{\bar{\alpha}/2}}{\Gamma(\bar{\alpha}/2)} \sigma^{-\bar{\alpha}/2 - 1} exp\left(-\frac{\bar{\delta}}{2\sigma}\right) d\mu d\sigma$$
 (a.1.4.12)

The expression can simplify further. Consider only the constant on the first line:

$$(2\pi)^{-n/2} v^{-1/2} \bar{v}^{1/2} \frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)} \frac{\Gamma(\bar{\alpha}/2)}{\bar{\delta}/2^{\bar{\alpha}/2}}$$

$$= 2^{-n/2} \pi^{-n/2} v^{-1/2} ((n+1/v)^{-1})^{1/2} \frac{\delta^{\alpha/2}}{\bar{\delta}^{\bar{\alpha}/2}} \frac{2^{\bar{\alpha}/2}}{2^{\alpha/2}} \frac{\Gamma(\bar{\alpha}/2)}{\Gamma(\alpha/2)}$$

$$= 2^{-n/2} \pi^{-n/2} v^{-1/2} (n+1/v)^{-1/2} \frac{\delta^{\alpha/2}}{\bar{\delta}^{\bar{\alpha}/2}} \frac{2^{(\alpha+n)/2}}{2^{\alpha/2}} \frac{\Gamma(\bar{\alpha}/2)}{\Gamma(\alpha/2)}$$

$$= \pi^{-n/2} (1+vn)^{-1/2} \frac{\delta^{\alpha/2}}{\bar{\delta}^{\bar{\alpha}/2}} \frac{\Gamma(\bar{\alpha}/2)}{\Gamma(\alpha/2)}$$
(a.1.4.13)

Substitute back in (a.1.4.12):

$$f(y) = \pi^{-n/2} (1 + \nu n)^{-1/2} \frac{\delta^{\alpha/2}}{\bar{\delta}^{\alpha/2}} \frac{\Gamma(\bar{\alpha}/2)}{\Gamma(\alpha/2)} \times \int \int (2\pi \bar{\nu}\sigma)^{-1/2} exp\left(-\frac{1}{2} \frac{(\mu - \bar{m})^2}{\sigma \bar{\nu}}\right) \times \frac{\bar{\delta}/2^{\bar{\alpha}/2}}{\Gamma(\bar{\alpha}/2)} \sigma^{-\bar{\alpha}/2 - 1} exp\left(-\frac{\bar{\delta}}{2\sigma}\right) d\mu d\sigma$$
 (a.1.4.14)

derivations for equation (1.4.19)

Rearrange the expression:

$$\mathbb{P}(M_{i}|y) = \frac{f(y|M_{i}) \mathbb{P}(M_{i})}{f(y)}$$

$$\Leftrightarrow \mathbb{P}(M_{i}|y) = \frac{f(y,M_{i}) / \pi(M_{i}) \mathbb{P}(M_{i})}{f(y)}$$

$$\Leftrightarrow \mathbb{P}(M_{i}|y) = \frac{\int f(y,M_{i},\theta_{i}) / \pi(M_{i})d\theta_{i} \mathbb{P}(M_{i})}{f(y)}$$

$$\Leftrightarrow \mathbb{P}(M_{i}|y) = \frac{\int \frac{f(y,M_{i},\theta_{i})}{\pi(M_{i},\theta)} \frac{\pi(M_{i},\theta)}{\pi(M_{i})}d\theta_{i} \mathbb{P}(M_{i})}{f(y)}$$

$$\Leftrightarrow \mathbb{P}(M_{i}|y) = \frac{\int f(y|M_{i},\theta_{i}) \pi(\theta|M_{i})d\theta_{i} \mathbb{P}(M_{i})}{f(y)}$$

$$\Leftrightarrow \mathbb{P}(M_{i}|y) = \frac{\int f(y|M_{i},\theta_{i}) \pi(\theta|M_{i})d\theta_{i} \mathbb{P}(M_{i})}{f(y)}$$

$$(a.1.4.15)$$

derivations for equation (1.4.24)

Rearrange the expression to obtain:

$$f(\hat{y}|y) = \iint \sigma^{-1/2} exp\left(-\frac{1}{2}\frac{(\hat{y}-\mu)^{2}}{\sigma}\right) \times \sigma^{-n/2} exp\left(-\frac{1}{2}\sum_{i=1}^{n}\frac{(y_{i}-\mu)^{2}}{\sigma}\right) \times \sigma^{-1/2} exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{v\sigma}\right) \times \sigma^{-\alpha/2-1} exp\left(-\frac{\delta}{2\sigma}\right) d\mu d\sigma$$

$$= \iint \sigma^{-1/2} exp\left(-\frac{1}{2\sigma}\left[(\hat{y}-\mu)^{2} + \sum_{i=1}^{n}(y_{i}-\mu)^{2} + \frac{(\mu-m)^{2}}{v} + \delta\right]\right) \sigma^{-(\alpha+n+1)/2-1} d\mu d\sigma$$

$$= \iint \sigma^{-1/2} exp\left(-\frac{1}{2\sigma}\left[(\hat{y}-\mu)^{2} + \sum_{i=1}^{n}(y_{i}-\mu)^{2} + \frac{(\mu-m)^{2}}{v} + \delta\right]\right) \sigma^{-\hat{\alpha}/2-1} d\mu d\sigma \qquad (a.1.4.16)$$

with:

$$\hat{\alpha} = \alpha + n + 1 \tag{a.1.4.17}$$

Consider the term in square brackets:

$$(\hat{y} - \mu)^{2} + \sum_{i=1}^{n} (y_{i} - \mu)^{2} + \frac{(\mu - m)^{2}}{v} + \delta$$

$$= \hat{y}^{2} + \mu^{2} - 2\hat{y}\mu + \sum_{i=1}^{n} (y_{i}^{2} + \mu^{2} - 2y_{i}\mu) + \frac{\mu^{2}}{v} + \frac{m^{2}}{v} - 2\mu\frac{m}{v} + \delta$$

$$= \hat{y}^{2} + \mu^{2} - 2\hat{y}\mu + \sum_{i=1}^{n} y_{i}^{2} + n\mu^{2} - 2\mu\sum_{i=1}^{n} y_{i} + \frac{\mu^{2}}{v} + \frac{m^{2}}{v} - 2\mu\frac{m}{v} + \delta$$

$$= \left(\delta + \hat{y}^{2} + \sum_{i=1}^{n} y_{i}^{2} + \frac{m^{2}}{v}\right) + \mu^{2}\left(1 + n + \frac{1}{v}\right) - 2\mu\left(\hat{y} + \sum_{i=1}^{n} y_{i} + \frac{m}{v}\right)$$

$$= \left(\delta + \hat{y}^{2} + \sum_{i=1}^{n} y_{i}^{2} + \frac{m^{2}}{v}\right) + \mu^{2}\left(1 + n + \frac{1}{v}\right) - 2\mu\frac{\hat{v}}{\hat{v}}\left(\hat{y} + \sum_{i=1}^{n} y_{i} + \frac{m}{v}\right) + \frac{\hat{m}^{2}}{\hat{v}} - \frac{\hat{m}^{2}}{\hat{v}}$$

$$= \left(\delta + \hat{y}^{2} + \sum_{i=1}^{n} y_{i}^{2} + \frac{m^{2}}{v} - \frac{\hat{m}^{2}}{\hat{v}}\right) + \mu^{2}\left(1 + n + \frac{1}{v}\right) - 2\mu\frac{\hat{v}}{\hat{v}}\left(\hat{y} + \sum_{i=1}^{n} y_{i} + \frac{m}{v}\right) + \frac{\hat{m}^{2}}{\hat{v}}$$

$$= \left(\delta + \hat{y}^{2} + \sum_{i=1}^{n} y_{i}^{2} + \frac{m^{2}}{v} - \frac{\hat{m}^{2}}{\hat{v}}\right) + \mu^{2}\left(1 + n + \frac{1}{v}\right) - 2\mu\frac{\hat{v}}{\hat{v}}\left(\hat{y} + \sum_{i=1}^{n} y_{i} + \frac{m}{v}\right) + \frac{\hat{m}^{2}}{\hat{v}}$$

$$= \left(\delta + \hat{y}^{2} + \sum_{i=1}^{n} y_{i}^{2} + \frac{m^{2}}{v} - \frac{\hat{m}^{2}}{\hat{v}}\right) + \mu^{2}\left(1 + n + \frac{1}{v}\right) - 2\mu\frac{\hat{v}}{\hat{v}}\left(\hat{y} + \sum_{i=1}^{n} y_{i} + \frac{m}{v}\right) + \frac{\hat{m}^{2}}{\hat{v}}$$

$$= \left(\delta + \hat{y}^{2} + \sum_{i=1}^{n} y_{i}^{2} + \frac{m^{2}}{v} - \frac{\hat{m}^{2}}{\hat{v}}\right) + \mu^{2}\left(1 + n + \frac{1}{v}\right) - 2\mu\frac{\hat{v}}{\hat{v}}\left(\hat{y} + \sum_{i=1}^{n} y_{i} + \frac{m}{v}\right) + \frac{\hat{m}^{2}}{\hat{v}}$$

$$= \left(\delta + \hat{y}^{2} + \sum_{i=1}^{n} y_{i}^{2} + \frac{m^{2}}{v} - \frac{\hat{m}^{2}}{\hat{v}}\right) + \mu^{2}\left(1 + n + \frac{1}{v}\right) - 2\mu\frac{\hat{v}}{\hat{v}}\left(\hat{y} + \sum_{i=1}^{n} y_{i} + \frac{m}{v}\right) + \frac{\hat{m}^{2}}{\hat{v}} + \frac{\hat{m}^{2}}{\hat{v}}$$

$$= \left(\delta + \hat{y}^{2} + \sum_{i=1}^{n} y_{i}^{2} + \frac{m^{2}}{v} - \frac{\hat{m}^{2}}{\hat{v}}\right) + \mu^{2}\left(1 + n + \frac{1}{v}\right) - 2\mu\frac{\hat{v}}{\hat{v}}\left(\hat{y} + \sum_{i=1}^{n} y_{i} + \frac{m}{v}\right) + \frac{\hat{m}^{2}}{\hat{v}}$$

$$= \left(\delta + \hat{y}^{2} + \sum_{i=1}^{n} y_{i}^{2} + \frac{m^{2}}{v} - \frac{m^{2}}{\hat{v}}\right) + \mu^{2}\left(1 + n + \frac{1}{v}\right) - 2\mu\frac{\hat{v}}{\hat{v}}\left(\hat{y} + \sum_{i=1}^{n} y_{i} + \frac{m}{v}\right) + \frac{\hat{m}^{2}}{\hat{v}}\left(\frac{\hat{v}}{v} + \sum_{i=1}^{n} y_{i} + \frac{m}{v}\right)$$

Define:

$$\hat{\delta} = \left(\delta + \hat{y}^2 + \sum_{i=1}^n y_i^2 + \frac{m^2}{\nu} - \frac{\hat{m}^2}{\hat{v}}\right) \qquad \hat{v} = \left(1 + n + \frac{1}{\nu}\right)^{-1} \qquad \hat{m} = \hat{v}\left(\hat{y} + \sum_{i=1}^n y_i + \frac{m}{\nu}\right) \quad (a.1.4.19)$$

Then (a.1.4.17) becomes:

$$= \hat{\delta} + \frac{\mu^2}{\hat{v}} - 2\mu \frac{\hat{m}}{\hat{v}} + \frac{\hat{m}^2}{\hat{v}}$$

$$= \hat{\delta} + \frac{(\mu - \hat{m})^2}{\hat{v}}$$
(a.1.4.20)

Substitute back in (a.1.4.16):

$$f(\hat{y}|y)$$

$$= \int \int \sigma^{-1/2} exp\left(-\frac{1}{2\sigma}\left[\hat{\delta} + \frac{(\mu - \hat{m})^2}{\hat{v}}\right]\right) \sigma^{-\hat{\alpha}/2 - 1} d\mu d\sigma$$

$$= \int \int \sigma^{-1/2} exp\left(-\frac{1}{2}\frac{(\mu - \hat{m})^2}{\hat{v}\sigma}\right) \times \sigma^{-\hat{\alpha}/2 - 1} exp\left(-\frac{\hat{\delta}}{2\sigma}\right) d\mu d\sigma$$

$$= \int \sigma^{-\hat{\alpha}/2 - 1} exp\left(-\frac{\hat{\delta}}{2\sigma}\right) \int \sigma^{-1/2} exp\left(-\frac{1}{2}\frac{(\mu - \hat{m})^2}{\hat{v}\sigma}\right) d\mu d\sigma$$
(a.1.4.21)

The second integral contains the kernel of a normal distribution with mean \hat{m} and variance $\hat{v}\sigma$. It thus integrates to a constant (not involving \hat{y}) and can be relegated to the normalization constant, yielding:

$$\propto \int \sigma^{-(\hat{\alpha}+1)/2-1} exp\left(-\frac{\hat{\delta}}{2\sigma}\right) d\sigma \tag{a.1.4.22}$$

The remaining integral contains the kernel of an inverse Gamma distribution with shape $\hat{\alpha}$ and scale $\hat{\delta}$. It integrates to the reciprocal of the normalization constant of the inverse Gamma distribution (see book1, section 4.3), which does involve \hat{y} . The term must thus be retained, yielding:

$$f(\hat{y}|y) \approx \Gamma(\hat{\alpha}) (\hat{\delta}/2)^{-\hat{\alpha}/2} \\ \approx (\hat{\delta}/2)^{-\hat{\alpha}/2} \\ \approx (\hat{\delta})^{-\hat{\alpha}/2} \\ = \left(\delta + \hat{y}^2 + \sum_{i=1}^n y_i^2 + \frac{m^2}{\nu} - \frac{\hat{m}^2}{\hat{\nu}}\right)^{-\hat{\alpha}/2} \\ = \left(\delta + \hat{y}^2 + \sum_{i=1}^n y_i^2 + \frac{m^2}{\nu} - \hat{v}\left[\hat{y} + \sum_{i=1}^n y_i + \frac{m}{\nu}\right]^2\right)^{-\hat{\alpha}/2}$$

$$(a.1.4.23)$$

Define:

$$\tilde{m} = \sum_{i=1}^{n} y_i + \frac{m}{v} \tag{a.1.4.24}$$

Then (a.1.4.23) becomes:

$$= \left(\delta + \hat{y}^2 + \sum_{i=1}^n y_i^2 + \frac{m^2}{v} - \hat{v}[\hat{y} + \tilde{m}]^2\right)^{-\hat{\alpha}/2}$$

$$= \left(\delta + \hat{y}^2 + \sum_{i=1}^n y_i^2 + \frac{m^2}{v} - \hat{v}\hat{y}^2 - \hat{v}\tilde{m}^2 - 2\hat{v}\tilde{m}\hat{y}\right)^{-\hat{\alpha}/2}$$

$$= \left(\delta + \sum_{i=1}^n y_i^2 + \frac{m^2}{v} - \hat{v}\tilde{m}^2 + \hat{y}^2(1 - \hat{v}) - 2\hat{v}\tilde{m}\hat{y}\right)^{-\hat{\alpha}/2}$$

$$= \left(\delta + \sum_{i=1}^n y_i^2 + \frac{m^2}{v} - \hat{v}\tilde{m}^2 + \hat{y}^2(1 - \hat{v}) - 2\hat{v}\tilde{m}\hat{y}\right)^{-\hat{\alpha}/2}$$
(a.1.4.25)

Complete the squares:

$$= \left(\delta + \sum_{i=1}^{n} y_{i}^{2} + \frac{m^{2}}{v} - \hat{v}\tilde{m}^{2} + \hat{y}^{2}(1 - \hat{v}) - 2\hat{v}\frac{\ddot{v}}{\ddot{v}}\tilde{m}\hat{y} + \frac{\ddot{m}^{2}}{\ddot{v}} - \frac{\ddot{m}^{2}}{\ddot{v}}\right)^{-\hat{\alpha}/2}$$

$$= \left(\left[\delta + \sum_{i=1}^{n} y_{i}^{2} + \frac{m^{2}}{v} - \hat{v}\tilde{m}^{2} - \frac{\ddot{m}^{2}}{\ddot{v}}\right] + \hat{y}^{2}(1 - \hat{v}) - 2\hat{v}\frac{\ddot{v}}{\ddot{v}}\tilde{m}\hat{y} + \frac{\ddot{m}^{2}}{\ddot{v}}\right)^{-\hat{\alpha}/2}$$
(a.1.4.26)

Define:

$$\bar{\alpha} = \alpha + n$$
 $\ddot{\delta} = \delta + \sum_{i=1}^{n} y_i^2 + \frac{m^2}{v} - \hat{v}\tilde{m}^2 - \frac{\ddot{m}^2}{\ddot{v}}$ $\ddot{v} = (1 - \hat{v})^{-1}$ $\ddot{m} = \hat{v}\ddot{v}\tilde{m}$ (a.1.4.27)

Then (a.1.4.26) becomes:

$$= \left(\ddot{\delta} + \frac{\hat{y}^2}{\ddot{v}} - 2\hat{y}\frac{\ddot{m}}{\ddot{v}} + \frac{\ddot{m}^2}{\ddot{v}}\right)^{-(\bar{\alpha}+1)/2}$$

$$= \left(\ddot{\delta} + \frac{(\hat{y} - \ddot{m})^2}{\ddot{v}}\right)^{-(\bar{\alpha}+1)/2}$$

$$= \ddot{\delta}^{-(\bar{\alpha}+1)/2} \left(1 + \frac{(\hat{y} - \ddot{m})^2}{\ddot{\delta}\ddot{v}}\right)^{-(\bar{\alpha}+1)/2}$$

$$\propto \left(1 + \frac{(\hat{y} - \ddot{m})^2}{\ddot{\delta}\ddot{v}}\right)^{-(\bar{\alpha}+1)/2}$$

$$= \left(1 + \frac{1}{\bar{\alpha}} \frac{(\hat{y} - \ddot{m})^2}{\ddot{\delta}\ddot{v}/\bar{\alpha}}\right)^{-(\bar{\alpha}+1)/2}$$
(a.1.4.28)

Finally, reformulate all the messy terms:

$$\ddot{v} = (1 - \hat{v})^{-1} = \frac{1}{1 - \hat{v}} = \frac{1}{1 - \frac{1}{1 + n + \frac{1}{v}}} = \frac{1}{\frac{1 + n + \frac{1}{v} - 1}{1 + n + \frac{1}{v}}} = \frac{1}{\frac{n + \frac{1}{v}}{1 + n + \frac{1}{v}}} = \frac{1 + n + \frac{1}{v}}{n + \frac{1}{v}} = \frac{v + vn + 1}{vn + 1}$$

$$= 1 + \frac{v}{vn + 1} = 1 + \frac{1}{n + 1/v} = 1 + \left(n + \frac{1}{v}\right)^{-1} = 1 + \bar{v}$$
(a.1.4.29)

with \bar{v} defined as in (a.1.4.4).

Also:

$$\frac{\hat{v}}{1-\hat{v}} = \frac{\frac{1}{1+n+\frac{1}{v}}}{1-\frac{1}{1+n+\frac{1}{v}}} = \frac{\frac{1}{1+n+\frac{1}{v}}}{\frac{1+n+\frac{1}{v}-1}{1+n+\frac{1}{v}}} = \frac{\frac{1}{1+n+\frac{1}{v}}}{\frac{n+\frac{1}{v}}{1+n+\frac{1}{v}}} = \frac{1}{n+\frac{1}{v}} = \left(n+\frac{1}{v}\right)^{-1} = \bar{v}$$
(a.1.4.30)

Then:

$$\ddot{m} = \hat{v}\ddot{v}\tilde{m} = \frac{\hat{v}}{1 - \hat{v}}\tilde{m} = \bar{v}\tilde{m} = \bar{v}\left(\sum_{i=1}^{n} y_i + \frac{m}{v}\right) = \bar{m}$$

$$(a.1.4.31)$$

with \bar{m} defined as in (a.1.4.4).

Finally:

$$\hat{v}\tilde{m}^{2} + \frac{\ddot{m}^{2}}{\ddot{v}} = \hat{v}\tilde{m}^{2} + (\hat{v}\tilde{v}\tilde{m})^{2}/\ddot{v} = \hat{v}\tilde{m}^{2} + \hat{v}^{2}\ddot{v}\tilde{m}^{2} = \hat{v}\tilde{m}^{2}(1 + \hat{v}\tilde{v}) = \hat{v}\tilde{m}^{2}\left(1 + \frac{\hat{v}}{1 - \hat{v}}\right)$$

$$= \hat{v}\tilde{m}^{2}\left(\frac{1 - \hat{v} + \hat{v}}{1 - \hat{v}}\right) = \hat{v}\tilde{m}^{2}\left(\frac{1}{1 - \hat{v}}\right) = \tilde{m}^{2}\left(\frac{\hat{v}}{1 - \hat{v}}\right) = \tilde{m}^{2}\bar{v} = \tilde{m}\bar{m} = \frac{\bar{m}}{\bar{v}}\bar{m} = \frac{\bar{m}^{2}}{\bar{v}}$$
(a.1.4.32)

Substitute in (a.1.4.27) to obtain:

$$\ddot{\delta} = \delta + \sum_{i=1}^{n} y_i^2 + \frac{m^2}{v} - \frac{\bar{m}^2}{\bar{v}} = \bar{\delta}$$
 (a.1.4.33)

with $\bar{\delta}$ defined as in (a.1.4.7).

Substitute (a.1.4.29), (a.1.4.31) and (a.1.4.33) in (a.1.4.28) to eventually obtain:

$$f(\hat{y}|y) \propto \left(1 + \frac{1}{\bar{\alpha}} \frac{(\hat{y} - \bar{m})^2}{\bar{\delta}(1 + \bar{v})/\bar{\alpha}}\right)^{-(\bar{\alpha} + 1)/2} \tag{a.1.4.34}$$

Properties of Bayesian estimates

derivations for equation (1.5.1)

The mean of a Beta distribution with shapes a and b is given by $\frac{a}{a+b}$. Given the posterior hyperparameters $\bar{\alpha} = \alpha + m$ and $\bar{\beta} = \beta + n - m$, the posterior mean writes as:

$$\mathbb{E}(p|y)$$

$$= \frac{\bar{\alpha}}{\bar{\alpha} + \bar{\beta}}$$

$$= \frac{\alpha + m}{\alpha + m + \beta + n - m}$$

$$= \frac{\alpha + m}{\alpha + \beta + n}$$

$$= \frac{\alpha}{\alpha + \beta + n} + \frac{m}{\alpha + \beta + n}$$

$$= \frac{\alpha}{\alpha + \beta} \frac{\alpha + \beta}{\alpha + \beta + n} + \frac{m}{n} \frac{n}{\alpha + \beta + n}$$

$$= \gamma \mathbb{E}(p) + (1 - \gamma) \hat{p}$$
(a.1.5.1)

with:

$$\mathbb{E}(p) = \frac{\alpha}{\alpha + \beta} \qquad \hat{p} = \frac{m}{n} \qquad \gamma = \frac{\alpha + \beta}{\alpha + \beta + n}$$
 (a.1.5.2)

derivations for equation (1.5.2)

The mean of a Gamma distribution with shape a and scale b is given by ab. Given the posterior hyperparameters $\bar{a} = a + \sum_{i=1}^{n} y_i$ and $\bar{b} = \frac{b}{bn+1}$, the posterior mean writes as:

$$\mathbb{E}(\lambda|y)$$

$$= \frac{(a + \sum_{i=1}^{n} y_i)b}{bn + 1}$$

$$= \frac{ab}{bn + 1} + \frac{b\sum_{i=1}^{n} y_i}{bn + 1}$$

$$= ab\left(\frac{1}{bn + 1}\right) + \frac{\sum_{i=1}^{n} y_i}{n}\left(\frac{bn}{bn + 1}\right)$$

$$= \gamma \mathbb{E}(\lambda) + (1 - \gamma) \hat{\lambda}$$
(a.1.5.3)

with:

$$\mathbb{E}(\lambda) = ab \qquad \hat{\lambda} = \frac{\sum_{i=1}^{n} y_i}{n} \qquad \gamma = \frac{1}{bn+1}$$
 (a.1.5.4)

derivations for equation (1.5.3)

The mean of a normal distribution with mean μ and variance σ is given by μ . Given the posterior hyperparameters $\bar{v} = \left(\frac{n}{\sigma} + \frac{1}{v}\right)^{-1}$ and $\bar{m} = \bar{v}\left(\frac{1}{\sigma}\sum_{i=1}^{n}y_i + \frac{m}{v}\right)$, the posterior variance writes as:

$$\bar{v} = \left(\frac{n}{\sigma} + \frac{1}{v}\right)^{-1} = \frac{1}{n/\sigma + 1/v} = \frac{\sigma}{n + \sigma/v}$$
(a.1.5.5)

Then the posterior mean can be expressed as:

$$\mathbb{E}(\mu|y)$$

$$= \frac{\sigma}{n+\sigma/v} \left(\frac{1}{\sigma} \sum_{i=1}^{n} y_i + \frac{m}{v} \right)$$

$$= \frac{1}{n+\sigma/v} \left(\sum_{i=1}^{n} y_i \right) + \frac{\sigma}{n+\sigma/v} \left(\frac{m}{v} \right)$$

$$= \frac{n}{n+\sigma/v} \left(\frac{\sum_{i=1}^{n} y_i}{n} \right) + \frac{\sigma/v}{n+\sigma/v} m$$

$$= \frac{vn}{vn+\sigma} \left(\frac{\sum_{i=1}^{n} y_i}{n} \right) + \frac{\sigma}{vn+\sigma} m$$

$$= \gamma \mathbb{E}(\mu) + (1-\gamma) \hat{\mu}$$
(a.1.5.6)

with:

$$\mathbb{E}(\mu) = m \qquad \hat{\mu} = \frac{\sum_{i=1}^{n} y_i}{n} \qquad \gamma = \frac{\sigma}{vn + \sigma}$$
 (a.1.5.7)

PART II

Simulation methods

The Gibbs sampling algorithm

derivations for equation (2.6.17)

Combine all the terms to obtain:

$$\begin{split} &\approx (2\pi\sigma)^{-n/2} \exp\left(-\frac{1}{2}\sum_{i=1}^{n}\frac{(y_{i}-\mu)^{2}}{\sigma}\right) \frac{(2\pi\nu)^{-1/2} \exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{\nu}\right)}{\frac{1}{J}\sum_{j=1}^{J}(2\pi\bar{\nu})^{-1/2} \exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{\nu}\right)}{\frac{1}{J}\sum_{j=1}^{J}(2\pi\bar{\nu})^{-1/2} \exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{\nu}\right)}{\frac{1}{J}\sum_{j=1}^{J}\bar{\nu}^{-1/2} \exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{\nu}\right)} \frac{\frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)}\sigma^{-\alpha/2-1} \exp\left(-\frac{\delta}{2}\sigma\right)}{\frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)}\sigma^{-\alpha/2-1} \exp\left(-\frac{\delta}{2}\sigma\right)} \\ &= (2\pi)^{-n/2}\sigma^{-n/2} \exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{\sigma}\right) \frac{\nu^{-1/2} \exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{\nu}\right)}{\frac{1}{J}\sum_{j=1}^{J}\bar{\nu}^{-1/2} \exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{\nu}\right)} \frac{\frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)}\exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{(\mu/2)}\right)}{\frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)}} \frac{\frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)}\exp\left(-\frac{\delta}{2}\sigma\right)}{\frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)}} \\ &= (2\pi)^{-n/2}\exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{\nu}\right) \frac{\frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)}}{\frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)}} \exp\left(-\frac{\delta}{2}\sigma\right) \\ &= (2\pi)^{-n/2}\exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{\nu}\right) \frac{\frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)}}{\frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)}} \exp\left(-\frac{\delta}{2}\sigma\right) \\ &= 2^{-n/2}\pi^{-n/2}\exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{\nu}\right) \frac{\frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)}}{\frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)}} \frac{2^{\alpha/2}}{\frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)}} \\ &= \pi^{-n/2}\exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{\nu}\right) \frac{\frac{\delta^{\alpha/2}}{\Gamma(\alpha/2)}}{\frac{\delta^{\alpha/2}}{\Gamma(\alpha/2)}} \frac{2^{\alpha/2}}{\frac{\delta^{\alpha/2}}{\Gamma(\alpha/2)}} \\ &= \pi^{-n/2}\frac{\delta^{\alpha/2}}{\delta^{\alpha/2}}\frac{\Gamma(\alpha/2)}{\Gamma(\alpha/2)} \frac{\exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{\nu}\right)}{\frac{1}{J}\sum_{j=1}^{J}\bar{\nu}^{-1/2}\exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{\nu}\right)} \frac{\frac{\delta^{\alpha/2}}{\Gamma(\alpha/2)}}{\frac{\delta^{\alpha/2}}{\Gamma(\alpha/2)}} \\ &= \pi^{-n/2}\frac{\delta^{\alpha/2}}{\delta^{\alpha/2}}\frac{\Gamma(\alpha/2)}{\Gamma(\alpha/2)} \frac{\exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{\nu}\right)}{\frac{1}{J}\sum_{j=1}^{J}\bar{\nu}^{-1/2}\exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{\nu}\right)} \frac{\frac{\delta^{\alpha/2}}{\Gamma(\alpha/2)}}{\frac{\delta^{\alpha/2}}{\Gamma(\alpha/2)}} \\ &= \pi^{-n/2}\frac{\delta^{\alpha/2}}{\delta^{\alpha/2}}\frac{\Gamma(\alpha/2)}{\Gamma(\alpha/2)} \frac{\exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{\nu}\right)}{\frac{1}{J}\sum_{j=1}^{J}(\nu/\bar{\nu})^{1/2}\exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{\nu}\right)} \frac{\exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{\nu}\right)}{\frac{\delta^{\alpha/2}}{\Gamma(\alpha/2)}} \end{split}$$

Now:

$$v/\bar{v} = v(n/\sigma + 1/v) = vn/\sigma + 1$$
 (a.2.6.2)

Hence:

$$f(y) \approx \pi^{-n/2} \frac{\delta^{\alpha/2}}{\bar{\delta}^{\bar{\alpha}/2}} \frac{\Gamma(\bar{\alpha}/2)}{\Gamma(\alpha/2)} \frac{\exp\left(-\frac{1}{2} \frac{(\mu - m)^2}{\nu}\right)}{\frac{1}{J} \sum_{j=1}^{J} (1 + \nu n/\sigma)^{1/2} \exp\left(-\frac{1}{2} \frac{(\mu - \bar{m})^2}{\bar{\nu}}\right)}$$
(a.2.6.3)

The Metropolis-Hastings algorithm

derivations for equation (2.7.7)

Rearrange:

$$\pi(\mu|y,\lambda)$$

$$\propto \exp\left(-\frac{1}{2}\sum_{i=1}^{n}\frac{(y_{i}-\mu)^{2}}{\exp(\lambda)}\right)\times \exp\left(-\frac{1}{2}\frac{(\mu-m)^{2}}{v}\right)$$

$$= \exp\left(-\frac{1}{2}\left[\sum_{i=1}^{n}\frac{(y_{i}-\mu)^{2}}{\exp(\lambda)} + \frac{(\mu-m)^{2}}{v}\right]\right)$$
(a.2.7.1)

Develop the term within the square bracket:

$$\sum_{i=1}^{n} \frac{(y_i - \mu)^2}{\exp(\lambda)} + \frac{(\mu - m)^2}{\nu}$$

$$= \frac{1}{\exp(\lambda)} \sum_{i=1}^{n} (y_i^2 + \mu^2 - 2\mu y_i) + \frac{1}{\nu} (\mu^2 + m^2 - 2\mu m)$$

$$= \frac{1}{\exp(\lambda)} \left(\sum_{i=1}^{n} y_i^2 + n\mu^2 - 2\mu \sum_{i=1}^{n} y_i \right) + \frac{1}{\nu} (\mu^2 + m^2 - 2\mu m)$$
(a.2.7.2)

Group the terms and complete the squares:

$$= \mu^{2} \left(\frac{n}{\exp(\lambda)} + \frac{1}{\nu} \right) - 2\mu \left(\frac{1}{\exp(\lambda)} \sum_{i=1}^{n} y_{i} + \frac{m}{\nu} \right) + \frac{1}{\exp(\lambda)} \sum_{i=1}^{n} y_{i}^{2} + \frac{m^{2}}{\nu}$$

$$= \mu^{2} \left(\frac{n}{\exp(\lambda)} + \frac{1}{\nu} \right) - 2\mu \frac{\bar{\nu}}{\bar{\nu}} \left(\frac{1}{\exp(\lambda)} \sum_{i=1}^{n} y_{i} + \frac{m}{\nu} \right) + \frac{1}{\exp(\lambda)} \sum_{i=1}^{n} y_{i}^{2} + \frac{m^{2}}{\nu} + \frac{\bar{m}^{2}}{\bar{\nu}} - \frac{\bar{m}^{2}}{\bar{\nu}}$$
(a.2.7.3)

Define:

$$\bar{v} = \left(\frac{n}{\exp(\lambda)} + \frac{1}{v}\right)^{-1} \qquad \bar{m} = \bar{v}\left(\frac{1}{\exp(\lambda)}\sum_{i=1}^{n} y_i + \frac{m}{v}\right)$$
(a.2.7.4)

Then (a.2.7.3) rewrites:

$$= \frac{\mu^2}{\bar{v}} + \frac{\bar{m}^2}{\bar{v}} - 2\mu \frac{\bar{m}}{\bar{v}} + \frac{1}{\exp(\lambda)} \sum_{i=1}^n y_i^2 + \frac{m^2}{v} - \frac{\bar{m}^2}{\bar{v}}$$

$$= \frac{(\mu - \bar{m})^2}{\bar{v}} + \frac{1}{\exp(\lambda)} \sum_{i=1}^n y_i^2 + \frac{m^2}{v} - \frac{\bar{m}^2}{\bar{v}}$$
(a.2.7.5)

Substitute back in (a.2.7.1):

$$\pi(\mu|y,\lambda)$$

$$\propto \exp\left(-\frac{1}{2}\left[\frac{(\mu-\bar{m})^2}{\bar{v}} + \frac{1}{\exp(\lambda)}\sum_{i=1}^n y_i^2 + \frac{m^2}{v} - \frac{\bar{m}^2}{\bar{v}}\right]\right)$$

$$= \exp\left(-\frac{1}{2}\frac{(\mu-\bar{m})^2}{\bar{v}}\right) \exp\left(-\frac{1}{2}\left[\frac{1}{\exp(\lambda)}\sum_{i=1}^n y_i^2 + \frac{m^2}{v} - \frac{\bar{m}^2}{\bar{v}}\right]\right)$$

$$\propto \exp\left(-\frac{1}{2}\frac{(\mu-\bar{m})^2}{\bar{v}}\right)$$

$$(a.2.7.6)$$

derivations for equation (2.7.14)

$$\alpha(\lambda^{(j-1)}, \lambda^{(j)}) = \frac{\exp(\lambda^{(j)})^{-n/2}}{\exp(\lambda^{(j-1)})^{-n/2}} \frac{\exp\left(-\frac{1}{2}\sum_{i=1}^{n} \frac{(y_i - \mu)^2}{\exp(\lambda^{(j)})}\right)}{\exp\left(-\frac{1}{2}\sum_{i=1}^{n} \frac{(y_i - \mu)^2}{\exp(\lambda^{(j-1)})}\right)} \frac{\exp\left(-\frac{1}{2} \frac{(\lambda^{(j)} - g)^2}{z}\right)}{\exp\left(-\frac{1}{2} \frac{(\lambda^{(j-1)} - g)^2}{z}\right)}$$
(a.2.7.7)

Consider the first term:

$$\frac{\exp(\lambda^{(j)})^{-n/2}}{\exp(\lambda^{(j-1)})^{-n/2}}
= \exp(\lambda^{(j)} - \lambda^{(j-1)})^{-n/2}
= \exp\left(\frac{n}{2}(\lambda^{(j-1)} - \lambda^{(j)})\right)$$
(a.2.7.8)

Consider the second term:

$$\frac{\exp\left(-\frac{1}{2}\sum_{i=1}^{n}\frac{(y_{i}-\mu)^{2}}{\exp(\lambda^{(j)})}\right)}{\exp\left(-\frac{1}{2}\sum_{i=1}^{n}\frac{(y_{i}-\mu)^{2}}{\exp(\lambda^{(j-1)})}\right)}$$

$$=\frac{\exp\left(-\frac{1}{2}\exp(-\lambda^{(j)})\sum_{i=1}^{n}(y_{i}-\mu)^{2}\right)}{\exp\left(-\frac{1}{2}\exp(-\lambda^{(j-1)})\sum_{i=1}^{n}(y_{i}-\mu)^{2}\right)}$$

$$=\exp\left(-\frac{1}{2}\left[\exp(-\lambda^{(j)})-\exp(-\lambda^{(j-1)})\right]\sum_{i=1}^{n}(y_{i}-\mu)^{2}\right)$$

$$=\exp\left(\frac{1}{2}\left[\exp(-\lambda^{(j-1)})-\exp(-\lambda^{(j)})\right]\sum_{i=1}^{n}(y_{i}-\mu)^{2}\right)$$

$$=\exp\left(\frac{1}{2}\left[\exp(-\lambda^{(j-1)})-\exp(-\lambda^{(j)})\right]\sum_{i=1}^{n}(y_{i}-\mu)^{2}\right)$$
(a.2.7.9)

Consider the third term:

$$\frac{\exp\left(-\frac{1}{2}\frac{(\lambda^{(j)}-g)^2}{z}\right)}{\exp\left(-\frac{1}{2}\frac{(\lambda^{(j-1)}-g)^2}{z}\right)}$$

$$= \exp\left(-\frac{1}{2}\left[\frac{(\lambda^{(j)}-g)^2-(\lambda^{(j-1)}-g)^2}{z}\right]\right)$$

$$= \exp\left(\frac{1}{2}\left[\frac{(\lambda^{(j)}-g)^2-(\lambda^{(j)}-g)^2}{z}\right]\right)$$
(a.2.7.10)

Substitute back in (a.2.7.7):

$$\alpha(\lambda^{(j-1)}, \lambda^{(j)}) = \exp\left(\frac{1}{2} \left[\frac{n(\lambda^{(j-1)} - \lambda^{(j)}) + \left[\exp(-\lambda^{(j-1)}) - \exp(-\lambda^{(j)})\right] \sum_{i=1}^{n} (y_i - \mu)^2}{z} \right] \right)$$
(a.2.7.11)

derivations for equation (2.7.21)

Rearrange the expression:

$$\begin{split} &\frac{1}{f(y)} \\ &\approx \frac{1}{J} \sum_{j=1}^{J} \frac{g(\theta^{(j)})}{f(y|\mu^{(j)},\lambda^{(j)}) \, \pi(\mu^{(j)}) \, \pi(\lambda^{(j)})} \\ &= \frac{1}{J} \sum_{j=1}^{J} \frac{\mathbbm{1}}{(2\pi \, \exp(\lambda))^{-n/2} \, \exp\left(-\frac{1}{2} \sum_{i=1}^{n} \frac{(y_i - \mu)^2}{\exp(\lambda)}\right) \, (2\pi v)^{-1/2} \, \exp\left(-\frac{1}{2} \frac{(\mu - m)^2}{v}\right) \, (2\pi z)^{-1/2} \, \exp\left(-\frac{1}{2} \frac{(\lambda - g)^2}{v}\right)} \\ &= \mathbbm{1}(\theta \in \hat{\Theta}) \times \omega^{-1} (2\pi)^{(n+2-k)/2} |\hat{\Sigma}|^{-1/2} (vz)^{1/2} \\ &\times \frac{1}{J} \sum_{j=1}^{J} \exp\left(\frac{1}{2} \left[n\lambda + \sum_{i=1}^{n} \frac{(y_i - \mu)^2}{\exp(\lambda)} + \frac{(\mu - m)^2}{v} + \frac{(\lambda - g)^2}{z} - (\theta - \hat{\theta})'\hat{\Sigma}^{-1} (\theta - \hat{\theta})\right]\right) \\ &= \mathbbm{1}(\theta \in \hat{\Theta}) \times (\omega J)^{-1} (2\pi)^{n/2} |\hat{\Sigma}|^{-1/2} (vz)^{1/2} \\ &\times \sum_{j=1}^{J} \exp\left(\frac{1}{2} \left[n\lambda + \sum_{i=1}^{n} \frac{(y_i - \mu)^2}{\exp(\lambda)} + \frac{(\mu - m)^2}{v} + \frac{(\lambda - g)^2}{z} - (\theta - \hat{\theta})'\hat{\Sigma}^{-1} (\theta - \hat{\theta})\right]\right) \end{aligned} \tag{a.2.7.12}$$

Mathematical theory

derivations for equation (2.8.11)

The definition of an invariant distribution implies that:

$$(\pi_{1} \quad \pi_{2} \quad \pi_{3} \quad \pi_{4} \quad \cdots) \begin{pmatrix} p+q & r & 0 & 0 & 0 & \cdots \\ p & q & r & 0 & 0 & \cdots \\ 0 & p & q & r & 0 & \cdots \\ 0 & 0 & p & q & r & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} = (\pi_{1} \quad \pi_{2} \quad \pi_{3} \quad \pi_{4} \quad \cdots)$$
 (a.2.8.1)

The product with the first column of *P* yields:

$$\pi_{1}(p+q) + \pi_{2}p = \pi_{1}$$

$$\Leftrightarrow \pi_{2}p = \pi_{1}(1-p-q)$$

$$\Leftrightarrow \pi_{2}p = \pi_{1}r$$

$$\Leftrightarrow \pi_{2} = (r/p)\pi_{1}$$
(a.2.8.2)

The second column yields:

$$\pi_1 r + \pi_2 q + \pi_3 p = \pi_2$$

$$\Leftrightarrow \pi_1 r + \pi_3 p = \pi_2 (1 - q)$$

$$\Leftrightarrow \pi_1 r + \pi_3 p = \pi_1 (r/p)(1 - q)$$

$$\Leftrightarrow \pi_1 + \pi_3 (p/r) = \pi_1 (1 - q)/p$$

$$\Leftrightarrow \pi_3 (p/r) = \pi_1 (1 - q - p)/p$$

$$\Leftrightarrow \pi_3 (p/r) = \pi_1 (r/p)$$

$$\Leftrightarrow \pi_3 (p/r) = \pi_2$$

$$\Leftrightarrow \pi_3 = (r/p)\pi_2$$

$$\Leftrightarrow \pi_3 = (r/p)\pi_2$$

(a.2.8.3)

The third column yields:

$$\pi_{2}r + \pi_{3}q + \pi_{4}p = \pi_{3}$$

$$\Leftrightarrow \pi_{2}r + \pi_{4}p = \pi_{3}(1 - q)$$

$$\Leftrightarrow \pi_{2}r + \pi_{4}p = \pi_{2}(r/p)(1 - q)$$

$$\Leftrightarrow \pi_{2} + \pi_{4}(p/r) = \pi_{2}(1 - q)/p$$

$$\Leftrightarrow \pi_{4}(p/r) = \pi_{2}(1 - q - p)/p$$

$$\Leftrightarrow \pi_{4}(p/r) = \pi_{2}(r/p)$$

$$\Leftrightarrow \pi_{4}(p/r) = \pi_{3}$$

$$\Leftrightarrow \pi_{4} = (r/p)\pi_{3}$$

$$\Leftrightarrow \pi_{4} = (r/p)^{2}\pi_{2}$$

$$\Leftrightarrow \pi_{4} = (r/p)^{3}\pi_{1}$$
(a.2.8.4)

Continuing this way, one obtains in general that $\pi_j = (r/p)^{j-1}\pi_1$. If an invariant distribution exists, we must have $\pi_1 + \pi_2 + \pi_3 \cdots = 1$. Hence:

$$\pi_{1} + \pi_{2} + \pi_{3} + \dots = 1
\Leftrightarrow \pi_{1} + (r/p)\pi_{1} + (r/p)^{2}\pi_{1} + \dots = 1
\Leftrightarrow \pi_{1}(1 + (r/p) + (r/p)^{2} + \dots) = 1
\Leftrightarrow \pi_{1} \frac{1}{1 - r/p} = 1
\Leftrightarrow \pi_{1} = 1 - r/p$$
(a.2.8.5)

derivations for equation (2.8.16)

Start from the definition and rearrange:

$$\pi(y_{t}) = \int \pi(y_{t-1}) p(y_{t-1}, y_{t}) dy_{t-1}$$

$$\propto \int \exp\left(-\frac{1}{2} \frac{(y_{t-1} - \mu)^{2}}{\sigma}\right) \exp\left(-\frac{1}{2} \frac{(y_{t} - c - \gamma y_{t-1})^{2}}{s}\right) dy_{t-1}$$

$$= \int \exp\left(-\frac{1}{2} \left[\frac{(y_{t-1} - \mu)^{2}}{\sigma} + \frac{(y_{t} - c - \gamma y_{t-1})^{2}}{s}\right]\right) dy_{t-1}$$

$$= \int \exp\left(-\frac{1}{2} \left[\frac{(y_{t-1} - \mu)^{2}(1 - \gamma^{2})}{s} + \frac{(y_{t} - c - \gamma y_{t-1})^{2}}{s}\right]\right) dy_{t-1}$$

$$= \int \exp\left(-\frac{1}{2s} \left[(y_{t-1} - \mu)^{2}(1 - \gamma^{2}) + (y_{t} - \mu(1 - \gamma) - \gamma y_{t-1})^{2}\right]\right) dy_{t-1}$$
(a.2.8.6)

Consider the term within the square brackets:

$$(y_{t-1} - \mu)^{2}(1 - \gamma^{2}) + (y_{t} - \mu(1 - \gamma) - \gamma y_{t-1})^{2}$$

$$= (1 - \gamma^{2})y_{t-1}^{2} + (1 - \gamma^{2})\mu^{2} - 2(1 - \gamma^{2})\mu y_{t-1} + y_{t}^{2} + \mu^{2}(1 - \gamma)^{2} + \gamma^{2}y_{t-1}^{2}$$

$$- 2\mu(1 - \gamma)y_{t} - 2\gamma y_{t}y_{t-1} + 2\mu\gamma(1 - \gamma)y_{t-1}$$

$$= y_{t-1}^{2} + (1 - \gamma^{2})\mu^{2} - 2(1 - \gamma^{2})\mu y_{t-1} + y_{t}^{2} + \mu^{2}(1 - \gamma)^{2}$$

$$- 2\mu(1 - \gamma)y_{t} - 2\gamma y_{t}y_{t-1} + 2\mu\gamma(1 - \gamma)y_{t-1}$$

$$= y_{t-1}^{2} + (1 - \gamma^{2})\mu^{2} - 2\mu y_{t-1} + 2\gamma^{2}\mu y_{t-1} + y_{t}^{2} + \mu^{2}(1 - \gamma)^{2}$$

$$- 2\mu(1 - \gamma)y_{t} - 2\gamma y_{t}y_{t-1} + 2\mu\gamma y_{t-1} - 2\mu\gamma^{2}y_{t-1}$$
(a.2.8.7)

$$= y_{t-1}^{2} + (1 - \gamma^{2})\mu^{2} - 2\mu y_{t-1} + y_{t}^{2} + \mu^{2}(1 - \gamma)^{2} - 2\mu(1 - \gamma)y_{t} - 2\gamma y_{t}y_{t-1} + 2\mu \gamma y_{t-1}$$

$$= y_{t-1}^{2} + (1 - \gamma^{2})\mu^{2} - 2\mu y_{t-1}(1 - \gamma) + y_{t}^{2} + \mu^{2}(1 - \gamma)^{2} - 2\mu(1 - \gamma)y_{t} - 2\gamma y_{t}y_{t-1}$$

$$= y_{t-1}^{2} + (1 - \gamma^{2})\mu^{2} - 2\mu y_{t-1}(1 - \gamma) + y_{t}^{2} + \mu^{2}(1 - \gamma)^{2} - 2\mu(1 - \gamma^{2})y_{t} + 2\mu(1 - \gamma)\gamma y_{t} - 2\gamma y_{t}y_{t-1}$$

$$= y_{t-1}^{2} + (1 - \gamma^{2})\mu^{2} - 2\mu y_{t-1}(1 - \gamma) + (1 - \gamma^{2})y_{t}^{2} + \gamma^{2}y_{t}^{2} + \mu^{2}(1 - \gamma)^{2}$$

$$- 2\mu(1 - \gamma^{2})y_{t} + 2\mu(1 - \gamma)\gamma y_{t} - 2\gamma y_{t}y_{t-1}$$

$$= (1 - \gamma^{2})y_{t}^{2} + (1 - \gamma^{2})\mu^{2} - 2\mu(1 - \gamma^{2})y_{t}$$

$$+ y_{t-1}^{2} + \mu^{2}(1 - \gamma)^{2} + \gamma^{2}y_{t}^{2} - 2\gamma y_{t}y_{t-1} - 2\mu y_{t-1}(1 - \gamma) + 2\mu(1 - \gamma)\gamma y_{t}$$

$$= (1 - \gamma^{2})y_{t}^{2} + (1 - \gamma^{2})\mu^{2} - 2\mu(1 - \gamma^{2})y_{t}$$

$$+ y_{t-1}^{2} + c^{2} + \gamma^{2}y_{t}^{2} - 2\gamma y_{t}y_{t-1} - 2cy_{t-1} + 2c\gamma y_{t}$$

$$= (1 - \gamma^{2})(y_{t} - \mu)^{2} + (y_{t-1} - c - \gamma y_{t})^{2}$$
(a.2.8.8)

Substitute back in (a.2.8.6):

$$\pi(y_t) = \int \exp\left(-\frac{1}{2s}\left[(1-\gamma^2)(y_t - \mu)^2 + (y_{t-1} - c - \gamma y_t)^2\right]\right) dy_{t-1}$$
(a.2.8.9)

and this eventually reformulates as:

$$\pi(y_t) = \exp\left(-\frac{1}{2}\frac{(y_t - \mu)^2}{\sigma}\right) \int \exp\left(-\frac{1}{2}\frac{(y_{t-1} - c - \gamma y_t)^2}{s}\right) dy_{t-1}$$
 (a.2.8.10)

PART III

Econometrics

The linear regression model

derivations for equation (3.9.7)

Consider first β . To do so, rewrite the likelihood function as:

$$log(f(y|\beta,\sigma)) = -\frac{n}{2}log(2\pi) - \frac{n}{2}log(\sigma) - \frac{1}{2\sigma}(y'y + \beta'X'X\beta - 2\beta'X'y)$$
(a.3.9.1)

Then solve for the partial derivative:

$$\frac{\partial log(f(y|\beta,\sigma))}{\partial \beta} = 0$$

$$\Leftrightarrow -\frac{1}{2\sigma}(2\beta'X'X - 2y'X) = 0$$

$$\Leftrightarrow \beta'X'X - y'X = 0$$

$$\Leftrightarrow \beta'X'X = y'X$$

$$\Leftrightarrow X'X\beta = X'y$$

$$\Leftrightarrow \beta = (X'X)^{-1}X'y$$
(a.3.9.2)

Hence the estimate is $\hat{\beta} = (X'X)^{-1}X'y$. Consider now σ . Solve for the partial derivative:

$$\frac{\partial log(f(y|\beta,\sigma))}{\partial \sigma} = 0$$

$$\Leftrightarrow -\frac{n}{2}\frac{1}{\sigma} + \frac{1}{2}\frac{(y-X\beta)'(y-X\beta)}{\sigma^2} = 0$$

$$\Leftrightarrow -n + \frac{(y-X\beta)'(y-X\beta)}{\sigma} = 0$$

$$\Leftrightarrow \frac{(y-X\beta)'(y-X\beta)}{\sigma} = n$$

$$\Leftrightarrow \sigma = \frac{(y-X\beta)'(y-X\beta)}{n}$$
(a.3.9.3)

This expression gives the optimum for any value of β . To obtain a global maximum we must choose the value of β that maximizes the likelihood, namely $\hat{\beta}$. Therefore, the estimate for σ is given by $\hat{\sigma} = (y - X\hat{\beta})'(y - X\hat{\beta})/n$.

derivations for equation (3.9.12)

Develop and group:

$$\exp\left(-\frac{1}{2}\frac{(y-X\beta)'(y-X\beta)}{\sigma}\right) \times \exp\left(-\frac{1}{2}(\beta-b)'V^{-1}(\beta-b)\right)$$

$$= \exp\left(-\frac{1}{2}\left[(y-X\beta)'\sigma^{-1}(y-X\beta) + (\beta-b)'V^{-1}(\beta-b)\right]\right)$$
(a.3.9.4)

Consider the term in square brackets:

$$(y - X\beta)'\sigma^{-1}(y - X\beta) + (\beta - b)'V^{-1}(\beta - b)$$

$$= y'\sigma^{-1}y + \beta'X'\sigma^{-1}X\beta - 2\beta'X'\sigma^{-1}y + \beta'V^{-1}\beta + b'V^{-1}b - 2\beta'V^{-1}b$$

$$= \beta'(V^{-1} + \sigma^{-1}X'X)\beta - 2\beta'(V^{-1}b + \sigma^{-1}X'y) + b'V^{-1}b + y'\sigma^{-1}y$$
(a.3.9.5)

Substitute back in (a.3.9.4):

$$= \exp\left(-\frac{1}{2}\left[\beta'(V^{-1} + \sigma^{-1}X'X)\beta - 2\beta'(V^{-1}b + \sigma^{-1}X'y) + b'V^{-1}b + y'\sigma^{-1}y\right]\right)$$
(a.3.9.6)

derivations for equation (3.9.23)

Group and rearrange:

$$\pi(\beta, \sigma|y)$$

$$\propto \sigma^{-n/2} \exp\left(-\frac{1}{2} \frac{(y - X\beta)'(y - X\beta)}{\sigma}\right) \times |\sigma V|^{-1/2} \exp\left(-\frac{1}{2} (\beta - b)'(\sigma V)^{-1} (\beta - b)\right)$$

$$\times \sigma^{-\alpha/2 - 1} \exp\left(-\frac{\delta}{2\sigma}\right)$$

$$= \sigma^{-k/2} \exp\left(-\frac{1}{2\sigma} \left[(y - X\beta)'(y - X\beta) + (\beta - b)'V^{-1}(\beta - b)\right]\right) \sigma^{-(\alpha + n)/2 - 1} \exp\left(-\frac{\delta}{2\sigma}\right) \quad (a.3.9.7)$$

Define:

$$\bar{\alpha} = \alpha + n \tag{a.3.9.8}$$

Then:

$$= \sigma^{-k/2} \exp\left(-\frac{1}{2\sigma}\left[(y-X\beta)'(y-X\beta)+(\beta-b)'V^{-1}(\beta-b)\right]\right) \sigma^{-\bar{\alpha}/2-1} \exp\left(-\frac{\delta}{2\sigma}\right)$$
 (a.3.9.9)

Consider the term between the square brackets:

$$(y - X\beta)'(y - X\beta) + (\beta - b)'V^{-1}(\beta - b)$$

$$= y'y + \beta'X'X\beta - 2\beta'X'y + \beta'V^{-1}\beta + b'V^{-1}b - 2\beta'V^{-1}b$$

$$= \beta'(V^{-1} + X'X)\beta - 2\beta'(V^{-1}b + X'y) + y'y + b'V^{-1}b$$

$$= \beta'(V^{-1} + X'X)\beta - 2\beta'\bar{V}^{-1}\bar{V}(V^{-1}b + X'y) + y'y + b'V^{-1}b + \bar{b}'\bar{V}^{-1}\bar{b} - \bar{b}'\bar{V}^{-1}\bar{b}$$
(a.3.9.10)

Define:

$$\bar{V} = (V^{-1} + X'X)^{-1}$$
 $\bar{b} = \bar{V}(V^{-1}b + X'y)$ (a.3.9.11)

Then (a.3.9.10) becomes:

$$= \beta' \bar{V}^{-1} \beta - 2\beta' \bar{V}^{-1} \bar{b} + y'y + b'V^{-1}b + \bar{b}' \bar{V}^{-1} \bar{b} - \bar{b}' \bar{V}^{-1} \bar{b}$$

$$= (\beta' \bar{V}^{-1} \beta - 2\beta' \bar{V} \bar{b} + \bar{b}' \bar{V}^{-1} \bar{b}) + y'y + b'V^{-1}b - \bar{b}' \bar{V}^{-1} \bar{b}$$

$$= (\beta - \bar{b})' \bar{V}^{-1} (\beta - \bar{b}) + y'y + b'V^{-1}b - \bar{b}' \bar{V}^{-1} \bar{b}$$
(a.3.9.12)

Substitute back in (a.3.9.9):

$$= \sigma^{-k/2} \exp\left(-\frac{1}{2}(\beta - \bar{b})'(\sigma \bar{V})^{-1}(\beta - \bar{b})\right) \sigma^{-\bar{\alpha}/2 - 1} \exp\left(-\frac{\delta + y'y + b'V^{-1}b - \bar{b}'\bar{V}^{-1}\bar{b}}{2\sigma}\right) \quad (a.3.9.13)$$

Define:

$$\bar{\delta} = \delta + y'y + b'V^{-1}b - \bar{b}'\bar{V}^{-1}\bar{b}$$
 (a.3.9.14)

Then (a.3.9.13) eventually rewrites:

$$\pi(\beta, \sigma|y) \propto \sigma^{-k/2} \, \exp\left(-\frac{1}{2}(\beta - \bar{b})'(\sigma \bar{V})^{-1}(\beta - \bar{b})\right) \, \sigma^{-\bar{\alpha}/2 - 1} \, \exp\left(-\frac{\bar{\delta}}{2\sigma}\right) \tag{a.3.9.15}$$

derivations for equation (3.9.28)

Rearrange:

$$\Gamma\left(\frac{\bar{\alpha}+k}{2}\right)\left(\frac{\bar{\delta}+(\beta-\bar{b})'\bar{V}^{-1}(\beta-\bar{b})}{2}\right)^{-\frac{\bar{\alpha}+k}{2}}$$

$$\propto \left(\frac{\bar{\delta}+(\beta-\bar{b})'\bar{V}^{-1}(\beta-\bar{b})}{2}\right)^{-\frac{\bar{\alpha}+k}{2}}$$

$$\propto \left(\bar{\delta}+(\beta-\bar{b})'\bar{V}^{-1}(\beta-\bar{b})\right)^{-\frac{\bar{\alpha}+k}{2}}$$

$$\propto \left(1+(\beta-\bar{b})'(\bar{\delta}\bar{V})^{-1}(\beta-\bar{b})\right)^{-\frac{\bar{\alpha}+k}{2}}$$

$$\propto \left(1+\frac{1}{\bar{\alpha}}(\beta-\bar{b})'(\bar{\delta}\bar{V}/\bar{\alpha})^{-1}(\beta-\bar{b})\right)^{-\frac{\bar{\alpha}+k}{2}}$$

$$\propto \left(1+\frac{1}{\bar{\alpha}}(\beta-\bar{b})'(\bar{\delta}\bar{V}/\bar{\alpha})^{-1}(\beta-\bar{b})\right)^{-\frac{\bar{\alpha}+k}{2}}$$
(a.3.9.16)

derivations for equation (3.9.38)

Rearrange the likelihood function:

$$f(y|\beta,\sigma) = (2\pi)^{-n/2} |\sigma W|^{-1/2} \exp\left(-\frac{1}{2}(y-X\beta)'(\sigma W)^{-1}(y-X\beta)\right)$$

$$= (2\pi\sigma)^{-n/2} |W|^{-1/2} \exp\left(-\frac{1}{2}\frac{(y-X\beta)'W^{-1}(y-X\beta)}{\sigma}\right)$$
(a.3.9.17)

This reformulates further as:

$$= (2\pi\sigma)^{-n/2} \left(\prod_{i=1}^{n} w_{i}^{-1/2} \right) \exp\left(-\frac{1}{2} \frac{(y - X\beta)' \operatorname{diag}(\exp(-Z\gamma)) (y - X\beta)}{\sigma} \right)$$

$$= (2\pi\sigma)^{-n/2} \left(\prod_{i=1}^{n} \exp(z_{i}'\gamma) \right)^{-1/2} \exp\left(-\frac{1}{2} \frac{(y - X\beta)' \operatorname{diag}(\exp(-Z\gamma)) (y - X\beta)}{\sigma} \right)$$

$$= (2\pi\sigma)^{-n/2} \left(\exp\left(\sum_{i=1}^{n} z_{i}'\gamma \right) \right)^{-1/2} \exp\left(-\frac{1}{2} \frac{(y - X\beta)' \operatorname{diag}(\exp(-Z\gamma)) (y - X\beta)}{\sigma} \right)$$

$$= (2\pi\sigma)^{-n/2} \left(\exp(1_{n}'Z\gamma) \right)^{-1/2} \exp\left(-\frac{1}{2} \frac{(y - X\beta)' \operatorname{diag}(\exp(-Z\gamma)) (y - X\beta)}{\sigma} \right)$$

$$= (2\pi\sigma)^{-n/2} \exp\left(-\frac{1}{2} 1_{n}'Z\gamma \right) \exp\left(-\frac{1}{2} \frac{(y - X\beta)' \operatorname{diag}(\exp(-Z\gamma)) (y - X\beta)}{\sigma} \right)$$

$$= (2\pi\sigma)^{-n/2} \exp\left(-\frac{1}{2} [1_{n}'Z\gamma + (y - X\beta)' \operatorname{diag}(\exp(-Z\gamma)) (y - X\beta)/\sigma] \right)$$

$$= (3\pi\sigma)^{-n/2} \exp\left(-\frac{1}{2} [1_{n}'Z\gamma + (y - X\beta)' \operatorname{diag}(\exp(-Z\gamma)) (y - X\beta)/\sigma] \right)$$

$$= (3\pi\sigma)^{-n/2} \exp\left(-\frac{1}{2} [1_{n}'Z\gamma + (y - X\beta)' \operatorname{diag}(\exp(-Z\gamma)) (y - X\beta)/\sigma] \right)$$

$$= (3\pi\sigma)^{-n/2} \exp\left(-\frac{1}{2} [1_{n}'Z\gamma + (y - X\beta)' \operatorname{diag}(\exp(-Z\gamma)) (y - X\beta)/\sigma] \right)$$

$$= (3\pi\sigma)^{-n/2} \exp\left(-\frac{1}{2} [1_{n}'Z\gamma + (y - X\beta)' \operatorname{diag}(\exp(-Z\gamma)) (y - X\beta)/\sigma] \right)$$

derivations for equation (3.9.44)

Rearrange the terms:

$$\pi(\beta|y,\sigma,w) = \exp\left(-\frac{1}{2}\frac{(y-X\beta)'W^{-1}(y-X\beta)}{\sigma}\right) \times \exp\left(-\frac{1}{2}(\beta-b)'V^{-1}(\beta-b)\right)$$

$$= \exp\left(-\frac{1}{2}\left[(y-X\beta)'(\sigma W)^{-1}(y-X\beta) + (\beta-b)'V^{-1}(\beta-b)\right)\right]$$
(a.3.9.19)

Consider the term in square brackets and complete the squares:

$$(y - X\beta)'(\sigma W)^{-1}(y - X\beta) + (\beta - b)'V^{-1}(\beta - b)$$

$$= y'(\sigma W)^{-1}y + \beta'X'(\sigma W)^{-1}X\beta - 2\beta'X'(\sigma W)^{-1}y + \beta'V^{-1}\beta + b'V^{-1}b - 2\beta'V^{-1}b$$

$$= \beta'(V^{-1} + \sigma^{-1}X'W^{-1}X)\beta - 2\beta'(V^{-1}b + \sigma^{-1}X'W^{-1}y) + y'(\sigma W)^{-1}y + b'V^{-1}b$$

$$= \beta'(V^{-1} + \sigma^{-1}X'W^{-1}X)\beta - 2\beta'\bar{V}^{-1}\bar{V}(V^{-1}b + \sigma^{-1}X'W^{-1}y)$$

$$+ y'(\sigma W)^{-1}y + b'V^{-1}b + \bar{b}'\bar{V}^{-1}\bar{b} - \bar{b}'\bar{V}^{-1}\bar{b}$$
(a.3.9.20)

Define:

$$\bar{V} = (V^{-1} + \sigma^{-1}X'W^{-1}X)^{-1} \qquad \qquad \bar{b} = \bar{V}(V^{-1}b + \sigma^{-1}X'W^{-1}y)$$
(a.3.9.21)

Then (a.3.9.20) rewrites:

$$= \beta' \bar{V}^{-1} \beta - 2\beta' \bar{V}^{-1} \bar{b} + \bar{b}' \bar{V}^{-1} \bar{b} + y' (\sigma W)^{-1} y + b' V^{-1} b - \bar{b}' \bar{V}^{-1} \bar{b}$$

$$= (\beta - \bar{b})' \bar{V}^{-1} (\beta - \bar{b}) + y' (\sigma W)^{-1} y + b' V^{-1} b - \bar{b}' \bar{V}^{-1} \bar{b}$$
(a.3.9.22)

Substitute back in (a.3.9.19):

$$\begin{split} &\pi(\beta|y,\sigma,w) \\ &= \exp\left(-\frac{1}{2}\left[(\beta-\bar{b})'\bar{V}^{-1}(\beta-\bar{b}) + y'(\sigma W)^{-1}y + b'V^{-1}b - \bar{b}'\bar{V}^{-1}\bar{b}\right]\right) \\ &= \exp\left(-\frac{1}{2}(\beta-\bar{b})'\bar{V}^{-1}(\beta-\bar{b})\right) \exp\left(-\frac{1}{2}\left[y'(\sigma W)^{-1}y + b'V^{-1}b - \bar{b}'\bar{V}^{-1}\bar{b}\right]\right) \\ &\propto \exp\left(-\frac{1}{2}(\beta-\bar{b})'\bar{V}^{-1}(\beta-\bar{b})\right) \end{split} \tag{a.3.9.23}$$

derivations for equation (3.9.69)

Rearrange the terms:

$$\pi(\phi|y,\beta,\sigma)$$

$$\propto \exp\left(-\frac{1}{2}\frac{(\varepsilon - E\phi)'(\varepsilon - E\phi)}{\sigma}\right) \times \exp\left(-\frac{1}{2}(\phi - p)'H^{-1}(\phi - p)\right)$$

$$= \exp\left(-\frac{1}{2}\left[(\varepsilon - E\phi)'\sigma^{-1}(\varepsilon - E\phi) + (\phi - p)'H^{-1}(\phi - p)\right]\right)$$
(a.3.9.24)

Consider the term in square brackets and complete the squares:

$$\begin{split} &(\varepsilon - E\phi)'\sigma^{-1}(\varepsilon - E\phi) + (\phi - p)'H^{-1}(\phi - p) \\ &= \varepsilon'\sigma^{-1}\varepsilon + \phi'E'\sigma^{-1}E\phi - 2\phi'E'\sigma^{-1}\varepsilon + \phi'H^{-1}\phi + p'H^{-1}p - 2\phi'H^{-1}p \\ &= \phi'(H^{-1} + \sigma^{-1}E'E)\phi - 2\phi'(H^{-1}p + \sigma^{-1}E'\varepsilon) + \varepsilon'\sigma^{-1}\varepsilon + p'H^{-1}p \\ &= \phi'(H^{-1} + \sigma^{-1}E'E)\phi - 2\phi'\bar{H}^{-1}\bar{H}(H^{-1}p + \sigma^{-1}E'\varepsilon) + \varepsilon'\sigma^{-1}\varepsilon + p'H^{-1}p + \bar{p}'\bar{H}^{-1}\bar{p} - \bar{p}'\bar{H}^{-1}\bar{p} \\ &= \phi'(H^{-1} + \sigma^{-1}E'E)\phi - 2\phi'\bar{H}^{-1}\bar{H}(H^{-1}p + \sigma^{-1}E'\varepsilon) + \varepsilon'\sigma^{-1}\varepsilon + p'H^{-1}p + \bar{p}'\bar{H}^{-1}\bar{p} - \bar{p}'\bar{H}^{-1}\bar{p} \end{split}$$

Define:

$$\bar{H} = (H^{-1} + \sigma^{-1}E'E)^{-1}$$
 $\bar{p} = \bar{H}(H^{-1}p + \sigma^{-1}E'\varepsilon)$ (a.3.9.26)

Then (a.3.9.25) becomes:

$$= \phi' \bar{H}^{-1} \phi - 2 \phi' \bar{H}^{-1} \bar{p} + \bar{p}' \bar{H}^{-1} \bar{p} + \varepsilon' \sigma^{-1} \varepsilon + p' H^{-1} p - \bar{p}' \bar{H}^{-1} \bar{p}$$

$$= (\phi - \bar{p})' \bar{H}^{-1} (\phi - \bar{p}) + \varepsilon' \sigma^{-1} \varepsilon + p' H^{-1} p - \bar{p}' \bar{H}^{-1} \bar{p}$$
(a.3.9.27)

Substitute back in (a.3.9.24) to obtain:

$$\pi(\phi|y,\beta,\sigma)$$

$$= \exp\left(-\frac{1}{2}\left[(\phi-\bar{p})'\bar{H}^{-1}(\phi-\bar{p}) + \varepsilon'\sigma^{-1}\varepsilon + p'H^{-1}p - \bar{p}'\bar{H}^{-1}\bar{p}\right]\right)$$

$$= \exp\left(-\frac{1}{2}(\phi-\bar{p})'\bar{H}^{-1}(\phi-\bar{p})\right) \exp\left(-\frac{1}{2}\left[\varepsilon'\sigma^{-1}\varepsilon + p'H^{-1}p - \bar{p}'\bar{H}^{-1}\bar{p}\right]\right)$$

$$\propto \exp\left(-\frac{1}{2}(\phi-\bar{p})'\bar{H}^{-1}(\phi-\bar{p})\right)$$
(a.3.9.28)

Applications with the linear regression model

derivations for equation (3.10.4)

Rearrange the expression:

$$f(\hat{y}|y)$$

$$\propto \int \exp\left(-\frac{1}{2}\frac{(\hat{y}-\hat{X}\beta)'(\hat{y}-\hat{X}\beta)}{\sigma}\right) \exp\left(-\frac{1}{2}(\beta-\bar{b})'\bar{V}^{-1}(\beta-\bar{b})\right) d\beta$$

$$= \int \exp\left(-\frac{1}{2}\left[\sigma^{-1}(\hat{y}-\hat{X}\beta)'(\hat{y}-\hat{X}\beta)+(\beta-\bar{b})'\bar{V}^{-1}(\beta-\bar{b})\right]\right) d\beta$$
(a.3.10.1)

Consider the term in square brackets:

$$\begin{split} & \sigma^{-1}(\hat{y} - \hat{X}\beta)'(\hat{y} - \hat{X}\beta) + (\beta - \bar{b})'\bar{V}^{-1}(\beta - \bar{b}) \\ &= \sigma^{-1}\hat{y}'\hat{y} + \sigma^{-1}\beta'\hat{X}'\hat{X}\beta - 2\sigma^{-1}\beta'\hat{X}'\hat{y} + \beta'\bar{V}^{-1}\beta + \bar{b}'\bar{V}^{-1}\bar{b} - 2\beta'\bar{V}^{-1}\bar{b} \\ &= \beta'(\bar{V}^{-1} + \sigma^{-1}\hat{X}'\hat{X})\beta - 2\beta'(\bar{V}^{-1}\bar{b} + \sigma^{-1}\hat{X}'\hat{y}) + \sigma^{-1}\hat{y}'\hat{y} + \bar{b}'\bar{V}^{-1}\bar{b} \\ &= \beta'(\bar{V}^{-1} + \sigma^{-1}\hat{X}'\hat{X})\beta - 2\beta'\hat{V}^{-1}\hat{V}(\bar{V}^{-1}\bar{b} + \sigma^{-1}\hat{X}'\hat{y}) + \sigma^{-1}\hat{y}'\hat{y} + \bar{b}'\bar{V}^{-1}\bar{b} + \hat{b}'\hat{V}^{-1}\hat{b} - \hat{b}'\hat{V}^{-1}\hat{b} \end{split}$$
(a.3.10.2)

Define:

$$\hat{V} = (\bar{V}^{-1} + \sigma^{-1}\hat{X}'\hat{X})^{-1} \qquad \qquad \hat{b} = \hat{V}(\bar{V}^{-1}\bar{b} + \sigma^{-1}\hat{X}'\hat{y})$$
(a.3.10.3)

Then (a.3.10.2) becomes:

$$= \beta' \hat{V}^{-1} \beta - 2\beta' \hat{V}^{-1} \hat{b} + \hat{b}' \hat{V}^{-1} \hat{b} + \sigma^{-1} \hat{y}' \hat{y} + \bar{b}' \bar{V}^{-1} \bar{b} - \hat{b}' \hat{V}^{-1} \hat{b}$$

$$= (\beta - \hat{b})' \hat{V}^{-1} (\beta - \hat{b}) + \sigma^{-1} \hat{y}' \hat{y} + \bar{b}' \bar{V}^{-1} \bar{b} - \hat{b}' \hat{V}^{-1} \hat{b}$$
(a.3.10.4)

Substituting back in (a.3.10.1):

$$f(\hat{y}|y)
\propto \int \exp\left(-\frac{1}{2}\left[(\beta - \hat{b})'\hat{V}^{-1}(\beta - \hat{b}) + \sigma^{-1}\hat{y}'\hat{y} + \bar{b}'\bar{V}^{-1}\bar{b} - \hat{b}'\hat{V}^{-1}\hat{b}\right]\right) d\beta
= \int \exp\left(-\frac{1}{2}(\beta - \hat{b})'\hat{V}^{-1}(\beta - \hat{b})\right) \exp\left(-\frac{1}{2}\left[\sigma^{-1}\hat{y}'\hat{y} + \bar{b}'\bar{V}^{-1}\bar{b} - \hat{b}'\hat{V}^{-1}\hat{b}\right]\right) d\beta
= \exp\left(-\frac{1}{2}\left[\sigma^{-1}\hat{y}'\hat{y} + \bar{b}'\bar{V}^{-1}\bar{b} - \hat{b}'\hat{V}^{-1}\hat{b}\right]\right) \int \exp\left(-\frac{1}{2}(\beta - \hat{b})'\hat{V}^{-1}(\beta - \hat{b})\right) d\beta
\propto \exp\left(-\frac{1}{2}\left[\sigma^{-1}\hat{y}'\hat{y} + \bar{b}'\bar{V}^{-1}\bar{b} - \hat{b}'\hat{V}^{-1}\hat{b}\right]\right)$$
(a.3.10.5)

Consider the term in square brackets:

$$\sigma^{-1}\hat{y}'\hat{y} + \bar{b}'\bar{V}^{-1}\bar{b} - \hat{b}'\hat{V}^{-1}\hat{b}
= \sigma^{-1}\hat{y}'\hat{y} + \bar{b}'\bar{V}^{-1}\bar{b} - (\bar{V}^{-1}\bar{b} + \sigma^{-1}\hat{X}'\hat{y})'\hat{V}\hat{V}^{-1}\hat{V}(\bar{V}^{-1}\bar{b} + \sigma^{-1}\hat{X}'\hat{y})
= \sigma^{-1}\hat{y}'\hat{y} + \bar{b}'\bar{V}^{-1}\bar{b} - (\bar{V}^{-1}\bar{b} + \sigma^{-1}\hat{X}'\hat{y})'\hat{V}(\bar{V}^{-1}\bar{b} + \sigma^{-1}\hat{X}'\hat{y})
= \sigma^{-1}\hat{y}'\hat{y} + \bar{b}'\bar{V}^{-1}\bar{b} - \bar{b}'\bar{V}^{-1}\hat{V}\bar{V}^{-1}\bar{b} - \sigma^{-2}\hat{y}'\hat{X}\hat{V}\hat{X}'\hat{y} - 2\sigma^{-1}\hat{y}'\hat{X}\hat{V}\bar{V}^{-1}\bar{b}
= \hat{y}'(\sigma^{-1}I_m - \sigma^{-2}\hat{X}\hat{V}\hat{X}')\hat{y} - \bar{b}'(\bar{V}^{-1} - \bar{V}^{-1}\hat{V}\bar{V}^{-1})\bar{b} - 2\sigma^{-1}\hat{y}'\hat{X}\hat{V}\bar{V}^{-1}\bar{b} \tag{a.3.10.6}$$

In what follows, we make use of property m.13 (the Sherman-Woodbury-Morrison identity): $(A + BDC)^{-1} = A^{-1} - A^{-1}B(D^{-1} + CA^{-1}B)^{-1}CA^{-1}$.

Consider the central part of the second term in (a.3.10.6). Rearrange and use the identity twice to obtain:

$$\bar{V}^{-1} - \bar{V}^{-1}\hat{V}\bar{V}^{-1}
= \bar{V}^{-1} - \bar{V}^{-1}(\bar{V}^{-1} + \sigma^{-1}\hat{X}'\hat{X})^{-1}\bar{V}^{-1}
= (\bar{V} + \sigma(\hat{X}'\hat{X})^{-1})^{-1}
= \sigma^{-1}\hat{X}'\hat{X} - \sigma^{-1}\hat{X}'\hat{X}(\sigma^{-1}\hat{X}'\hat{X} + \bar{V}^{-1})^{-1}\sigma^{-1}\hat{X}'\hat{X}
= \sigma^{-1}\hat{X}'\hat{X} - \sigma^{-2}\hat{X}'\hat{X}\hat{V}\hat{X}'\hat{X}
= \hat{X}'(\sigma^{-1}I_m - \sigma^{-2}\hat{X}\hat{V}\hat{X}')\hat{X}$$
(a.3.10.7)

Consider finally the contral part of the third term in (a.3.10.6). We note that $\hat{V}(\bar{V}^{-1} + \sigma^{-1}\hat{X}'\hat{X}) = I_m$ so $\hat{V}\bar{V}^{-1} = I_m - \hat{V}\sigma^{-1}\hat{X}'\hat{X}$. Following:

$$\hat{X}\hat{V}\bar{V}^{-1} = \hat{X} - \hat{X}\hat{V}\sigma^{-1}\hat{X}'\hat{X} = (I_m - \sigma^{-1}\hat{X}\hat{V}\hat{X}')\hat{X}$$
(a.3.10.8)

Substitute (a.3.10.7) and (a.3.10.8) back in (a.3.10.6) to obtain:

$$= \hat{y}'(\sigma^{-1}I_{m} - \sigma^{-2}\hat{X}\hat{V}\hat{X}')\hat{y} - \bar{b}'\hat{X}'(\sigma^{-1}I_{m} - \sigma^{-2}\hat{X}\hat{V}\hat{X}')\hat{X}\bar{b} - 2\sigma^{-1}\hat{y}'(I_{m} - \sigma^{-1}\hat{X}\hat{V}\hat{X}')\hat{X}\bar{b}$$

$$= \sigma^{-1}\hat{y}'(I_{m} - \sigma^{-1}\hat{X}\hat{V}\hat{X}')\hat{y} - \sigma^{-1}\bar{b}'\hat{X}'(I_{m} - \sigma^{-1}\hat{X}\hat{V}\hat{X}')\hat{X}\bar{b} - 2\sigma^{-1}\hat{y}'(I_{m} - \sigma^{-1}\hat{X}\hat{V}\hat{X}')\hat{X}\bar{b}$$

$$= \sigma^{-1}\left[\hat{y}'(I_{m} - \sigma^{-1}\hat{X}\hat{V}\hat{X}')\hat{y} - \bar{b}'\hat{X}'(I_{m} - \sigma^{-1}\hat{X}\hat{V}\hat{X}')\hat{X}\bar{b} - 2\hat{y}'(I_{m} - \sigma^{-1}\hat{X}\hat{V}\hat{X}')\hat{X}\bar{b}\right]$$

$$= \sigma^{-1}(\hat{y} - \hat{X}\bar{b})'(I_{m} - \sigma^{-1}\hat{X}\hat{V}\hat{X}')(\hat{y} - \hat{X}\bar{b})$$

$$(a.3.10.9)$$

We use one last time the Sherman-Woodbury-Morrison identity on the central term to obtain:

$$I_m - \sigma^{-1} \hat{X} \hat{V} \hat{X}' = I_m - \sigma^{-1} \hat{X} (\bar{V}^{-1} + \sigma^{-1} \hat{X}' \hat{X})^{-1} \hat{X}' = (I_m + \sigma^{-1} \hat{X} \bar{V} \hat{X}')^{-1}$$
(a.3.10.10)

Substituting back in (a.3.10.9):

$$= \sigma^{-1}(\hat{y} - \hat{X}\bar{b})'(I_m + \sigma^{-1}\hat{X}\bar{V}\hat{X}')^{-1}(\hat{y} - \hat{X}\bar{b})$$

$$= (\hat{y} - \hat{X}\bar{b})'(\sigma I_m + \hat{X}\bar{V}\hat{X}')^{-1}(\hat{y} - \hat{X}\bar{b})$$
(a.3.10.11)

Eventually substituting back in (a.3.10.5), we conclude:

$$f(\hat{y}|y) \propto \exp\left(-\frac{1}{2}(\hat{y} - \hat{X}\bar{b})'(\sigma I_m + \hat{X}\bar{V}\hat{X}')^{-1}(\hat{y} - \hat{X}\bar{b})\right)$$
 (a.3.10.12)

derivations for equation (3.10.6)

Rearrange the expression:

$$f(\hat{y}|y)$$

$$\propto \int \int \sigma^{-m/2} \exp\left(-\frac{1}{2} \frac{(\hat{y} - \hat{X}\beta)'(\hat{y} - \hat{X}\beta)}{\sigma}\right) \exp\left(-\frac{1}{2} \frac{(y - X\beta)'(y - X\beta)}{\sigma}\right)$$

$$\times \sigma^{-k/2} \exp\left(-\frac{1}{2} (\beta - b)'(\sigma V)^{-1} (\beta - b)\right) \times \sigma^{-\alpha/2 - 1} \exp\left(-\frac{\delta}{2\sigma}\right)$$

$$= \int \int \sigma^{-k/2} \exp\left(-\frac{1}{2\sigma} \left[(\hat{y} - \hat{X}\beta)'(\hat{y} - \hat{X}\beta) + (y - X\beta)'(y - X\beta) + (\beta - b)'(\sigma V)^{-1} (\beta - b) + \delta\right]\right)$$

$$\times \sigma^{-(\alpha + n + m)/2 - 1} d\beta d\sigma \tag{a.3.10.13}$$

Consider the term in the square bracket:

$$\begin{split} &(\hat{y} - \hat{X}\beta)'(\hat{y} - \hat{X}\beta) + (y - X\beta)'(y - X\beta) + (\beta - b)'(\sigma V)^{-1}(\beta - b) + \delta \\ &= \hat{y}'\hat{y} + \beta'\hat{X}'\hat{X}\beta - 2\beta'\hat{X}'\hat{y} + y'y + \beta'X'X\beta - 2\beta'X'y + \beta'V^{-1}\beta + b'V^{-1}b - 2\beta'V^{-1}b + \delta \\ &= (\delta + \hat{y}'\hat{y} + y'y + b'V^{-1}b) + \beta'(V^{-1} + X'X + \hat{X}'\hat{X})\beta - 2\beta'(V^{-1}b + X'y + \hat{X}'\hat{y}) \\ &= (\delta + \hat{y}'\hat{y} + y'y + b'V^{-1}b) + \beta'(V^{-1} + X'X + \hat{X}'\hat{X})\beta - 2\beta'\hat{V}^{-1}\hat{V}(V^{-1}b + X'y + \hat{X}'\hat{y}) + \hat{b}'\hat{V}^{-1}\hat{b} - \hat{b}'\hat{V}^{-1}\hat{b} \\ &= (\delta + \hat{y}'\hat{y} + y'y + b'V^{-1}b - \hat{b}'\hat{V}^{-1}\hat{b}) + \beta'(V^{-1} + X'X + \hat{X}'\hat{X})\beta - 2\beta'\hat{V}^{-1}\hat{V}(V^{-1}b + X'y + \hat{X}'\hat{y}) + \hat{b}'\hat{V}^{-1}\hat{b} \\ &= (\delta + \hat{y}'\hat{y} + y'y + b'V^{-1}b - \hat{b}'\hat{V}^{-1}\hat{b}) + \beta'(V^{-1} + X'X + \hat{X}'\hat{X})\beta - 2\beta'\hat{V}^{-1}\hat{V}(V^{-1}b + X'y + \hat{X}'\hat{y}) + \hat{b}'\hat{V}^{-1}\hat{b} \end{split}$$

$$(a.3.10.14)$$

Define:

$$\hat{\delta} = \delta + \hat{y}'\hat{y} + y'y + b'V^{-1}b - \hat{b}'\hat{V}^{-1}\hat{b} \qquad \hat{V} = (V^{-1} + X'X + \hat{X}'\hat{X})^{-1} \qquad \hat{b} = \hat{V}(V^{-1}b + X'y + \hat{X}'\hat{y})$$
(a.3.10.15)

Then (a.3.10.14) rewrites:

$$= \hat{\delta} + \beta' \hat{V}^{-1} \beta - 2\beta' \hat{V}^{-1} \hat{b} + \hat{b}' \hat{V}^{-1} \hat{b}$$

$$= \hat{\delta} + (\beta - \hat{b})' \hat{V}^{-1} (\beta - \hat{b})$$
(a.3.10.16)

Substitute back in (a.3.10.13):

$$f(\hat{y}|y)$$

$$\propto \int \int \sigma^{-k/2} \exp\left(-\frac{1}{2\sigma} \left[\hat{\delta} + (\beta - \hat{b})'\hat{V}^{-1}(\beta - \hat{b})\right]\right) \sigma^{-(\alpha + n + m)/2 - 1} d\beta d\sigma$$

$$= \int \int \sigma^{-k/2} \exp\left(-\frac{1}{2\sigma} (\beta - \hat{b})'\hat{V}^{-1}(\beta - \hat{b})\right) d\beta \sigma^{-(\alpha + n + m)/2 - 1} \exp\left(-\frac{\hat{\delta}}{2\sigma}\right) d\sigma$$

$$= \int \int \sigma^{-k/2} \exp\left(-\frac{1}{2\sigma} (\beta - \hat{b})'\hat{V}^{-1}(\beta - \hat{b})\right) d\beta \sigma^{-(\bar{\alpha} + m)/2 - 1} \exp\left(-\frac{\hat{\delta}}{2\sigma}\right) d\sigma \qquad (a.3.10.17)$$

with:

$$\hat{\alpha} = \alpha + n + m \tag{a.3.10.18}$$

The first term is the kernel of a multivariate normal distribution; integration hence yields a constant:

$$= \int \sigma^{-\hat{\alpha}/2-1} \exp\left(-\frac{\hat{\delta}}{2\sigma}\right) d\sigma \tag{a.3.10.19}$$

The remaining term is the krenel of an inverse gamma distribution; integration thus yields the reciprocal of the normalization constant:

$$\begin{split} &= \Gamma(\hat{\alpha}/2)(\hat{\delta}/2)^{-\hat{\alpha}/2} \\ &\propto (\hat{\delta}/2)^{-\hat{\alpha}/2} \\ &\propto \hat{\delta}^{-\hat{\alpha}/2} \\ &= (\delta + \hat{y}'\hat{y} + y'y + b'V^{-1}b - \hat{b}'\hat{V}^{-1}\hat{b})^{-\hat{\alpha}/2} \\ &= (\delta + \hat{y}'\hat{y} + y'y + b'V^{-1}b - (V^{-1}b + X'y + \hat{X}'\hat{y})'\hat{V}'\hat{V}^{-1}\hat{V}(V^{-1}b + X'y + \hat{X}'\hat{y}))^{-\hat{\alpha}/2} \\ &= (\delta + \hat{y}'\hat{y} + y'y + b'V^{-1}b - (V^{-1}b + X'y + \hat{X}'\hat{y})'\hat{V}(V^{-1}b + X'y + \hat{X}'\hat{y}))^{-\hat{\alpha}/2} \\ &= (\delta + \hat{y}'\hat{y} + y'y + b'V^{-1}b - (V^{-1}b + X'y + \hat{X}'\hat{y})'\hat{V}(V^{-1}b + X'y + \hat{X}'\hat{y}))^{-\hat{\alpha}/2} \end{split} \tag{a.3.10.20}$$

Define:

$$\tilde{b} = V^{-1}b + X'y \tag{a.3.10.21}$$

Then (a.3.10.20) rewrites:

$$= (\delta + \hat{y}'\hat{y} + y'y + b'V^{-1}b - (\tilde{b} + \hat{X}'\hat{y})'\hat{V}(\tilde{b} + \hat{X}'\hat{y}))^{-\hat{\alpha}/2}$$

$$= (\delta + \hat{y}'\hat{y} + y'y + b'V^{-1}b - \tilde{b}'\hat{V}\tilde{b} - \hat{y}'\hat{X}\hat{V}\hat{X}'\hat{y} - 2\hat{y}'\hat{X}\hat{V}\tilde{b})^{-\hat{\alpha}/2}$$

$$= (\delta + y'y + b'V^{-1}b + \hat{y}'(I_m - \hat{X}\hat{V}\hat{X}')\hat{y} - \tilde{b}'\hat{V}\tilde{b} - 2\hat{y}'\hat{X}\hat{V}\tilde{b})^{-\hat{\alpha}/2}$$

$$= ([\delta + y'y + b'V^{-1}b - \tilde{b}'\hat{V}\tilde{b} - \ddot{y}'\hat{V}^{-1}\ddot{y}] + \hat{y}'(I_m - \hat{X}\hat{V}\hat{X}')\hat{y} - 2\hat{y}'\ddot{V}^{-1}\ddot{V}\hat{X}\hat{V}\tilde{b} + \ddot{y}'\ddot{V}^{-1}\ddot{y})^{-\hat{\alpha}/2}$$
(a.3.10.22)

Define:

$$\ddot{\delta} = \delta + y'y + b'V^{-1}b - \tilde{b}'\hat{V}\tilde{b} - \ddot{y}'\ddot{V}^{-1}\ddot{y} \qquad \ddot{V} = (I_m - \hat{X}\hat{V}\hat{X}')^{-1} \qquad \ddot{y} = \ddot{V}\hat{X}\hat{V}\tilde{b}$$
(a.3.10.23)

Then (a.3.10.22) rewrites:

$$= (\ddot{\delta} + \mathring{y}'\ddot{V}^{-1}\mathring{y} - 2\mathring{y}'\ddot{V}^{-1}\ddot{y} + \mathring{y}'\ddot{V}^{-1}\ddot{y})^{-\hat{\alpha}/2}$$

$$= (\ddot{\delta} + (\mathring{y} - \mathring{y})'\ddot{V}^{-1}(\mathring{y} - \mathring{y}))^{-\hat{\alpha}/2}$$

$$= \ddot{\delta}^{-\hat{\alpha}/2}(1 + (\mathring{y} - \mathring{y})'[\ddot{\delta}\ddot{V}]^{-1}(\mathring{y} - \mathring{y}))^{-\hat{\alpha}/2}$$

$$\propto (1 + (\mathring{y} - \mathring{y})'[\ddot{\delta}\ddot{V}]^{-1}(\mathring{y} - \mathring{y}))^{-\hat{\alpha}/2}$$

$$= \left(1 + \frac{1}{\bar{\alpha}}(\mathring{y} - \mathring{y})'[\ddot{\delta}\ddot{V}/\bar{\alpha}]^{-1}(\mathring{y} - \mathring{y})\right)^{-(\bar{\alpha} + m)/2}$$
(a.3.10.24)

Thus we finally conclude:

$$f(\hat{y}|y) \propto \left(1 + \frac{1}{\bar{\alpha}}(\hat{y} - \ddot{y})'[\ddot{\delta}\ddot{V}/\bar{\alpha}]^{-1}(\hat{y} - \ddot{y})\right)^{-(\bar{\alpha} + m)/2} \tag{a.3.10.25}$$

Finally, reformulate the messy terms. First, reformulate \ddot{V} . For this, we make again use of property m.13 (the Sherman-Woodbury-Morrison identity): $(A + BDC)^{-1} = A^{-1} - A^{-1}B(D^{-1} + CA^{-1}B)^{-1}CA^{-1}$.

Then, starting from (a.3.10.23):

$$\ddot{V} = (I_m - \hat{X}\hat{V}\hat{X}')^{-1}
= (I_m - \hat{X}(V^{-1} + X'X + \hat{X}'\hat{X})^{-1}\hat{X}')^{-1}
= I_m + \hat{X}(V^{-1} + X'X)^{-1}\hat{X}'
= I_m + \hat{X}\bar{V}\hat{X}'$$
(a.3.10.26)

Now consider the term ÿ. Start from:

$$\ddot{V}\hat{X}\hat{V}$$

$$= (I_m + \hat{X}\bar{V}\hat{X}')\hat{X}\hat{V}$$

$$= \hat{X}\hat{V} + \hat{X}\bar{V}\hat{X}'\hat{X}\hat{V}$$

$$= \hat{X}(\hat{V} + \bar{V}\hat{X}'\hat{X}\hat{V})$$

$$= \hat{X}(I_m + \bar{V}\hat{X}'\hat{X})\hat{V}$$
(a.3.10.27)

We then note that (a.3.10.15) implies:

$$\hat{V} = (V^{-1} + X'X + \hat{X}'\hat{X})^{-1} \Leftrightarrow \hat{V} = (\bar{V}^{-1} + \hat{X}'\hat{X})^{-1}$$
(a.3.10.28)

Hence:

$$= \hat{X}(I_m + \bar{V}\hat{X}'\hat{X})(\bar{V}^{-1} + \hat{X}'\hat{X})^{-1}$$

$$= \hat{X}\bar{V}(\bar{V}^{-1} + \hat{X}'\hat{X})(\bar{V}^{-1} + \hat{X}'\hat{X})^{-1}$$

$$= \hat{X}\bar{V}$$
(a.3.10.29)

Using this result in (a.3.10.23), and combining with definition (a.3.10.21), we obtain:

$$\ddot{y} = \ddot{V}\hat{X}\hat{V}\tilde{b} = \hat{X}\bar{V}\tilde{b} = \hat{X}\bar{b} \tag{a.3.10.30}$$

Finally, reformulate $\ddot{\delta}$. First, note that:

$$\tilde{b}'\hat{V}\tilde{b} + \ddot{y}'\ddot{V}^{-1}\ddot{y} \\
= \bar{b}'\bar{V}^{-1}\hat{V}\bar{V}^{-1}\bar{b} + \bar{b}'\hat{X}'(I_{m} - \hat{X}\hat{V}\hat{X}')\hat{X}\bar{b} \\
= \bar{b}'[(\hat{V}^{-1} - \hat{X}'\hat{X})'\hat{V}(\hat{V}^{-1} - \hat{X}'\hat{X}) + \hat{X}'\hat{X} - \hat{X}'\hat{X}\hat{V}\hat{X}'\hat{X}]\bar{b} \\
= \bar{b}'[(\hat{V}^{-1} - \hat{X}'\hat{X})'(I_{k} - \hat{V}\hat{X}'\hat{X}) + \hat{X}'\hat{X} - \hat{X}'\hat{X}\hat{V}\hat{X}'\hat{X}]\bar{b} \\
= \bar{b}'[\hat{V}^{-1} - \hat{X}'\hat{X} - \hat{X}'\hat{X} + \hat{X}'\hat{X}\hat{V}\hat{X}'\hat{X} + \hat{X}'\hat{X}\hat{V}\hat{X}'\hat{X} + \hat{X}'\hat{X}\hat{V}\hat{X}'\hat{X}]\bar{b} \\
= \bar{b}'[\hat{V}^{-1} - \hat{X}'\hat{X}]\bar{b} \\
= \bar{b}'[\bar{V}^{-1} + \hat{X}'\hat{X} - \hat{X}'\hat{X}]\bar{b} \\
= \bar{b}'\bar{V}^{-1}\bar{b} \tag{a.3.10.31}$$

Substituting this in (a.3.10.23) to obtain:

$$\ddot{\delta} = \delta + y'y + b'V^{-1}b - \tilde{b}'\hat{V}\tilde{b} - \ddot{y}'\ddot{V}^{-1}\ddot{y} = \delta + y'y + b'V^{-1}b - \bar{b}'\bar{V}^{-1}\bar{b} = \bar{\delta}$$
 (a.3.10.32)

Eventually substituting for (a.3.10.26), (a.3.10.30) and (a.3.10.32) in (a.3.10.25) yields:

$$f(\hat{y}|y) \propto \left(1 + \frac{1}{\bar{\alpha}}(\hat{y} - \hat{X}\bar{b})'[\bar{\delta}(I_m + \hat{X}\bar{V}\hat{X}')/\bar{\alpha}]^{-1}(\hat{y} - \hat{X}\bar{b})\right)^{-(\bar{\alpha} + m)/2}$$
(a.3.10.33)

derivations for equation (3.10.10)

The log likelihood function is given by:

$$\log(f(y|\beta,\sigma)) = -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\sigma) - \frac{1}{2}\frac{(y - X\beta)'(y - X\beta)}{\sigma}$$
(a.3.10.34)

The function is estimated at the maximum likelihood values. Hence $\beta = \hat{\beta}$ and $\sigma = \hat{\sigma} = \frac{\hat{\epsilon}'\hat{\epsilon}}{n}$.

Substituting in (a.3.10.34):

$$\log(f(y|\hat{\beta},\hat{\sigma}))
= -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\hat{\sigma}) - \frac{1}{2}\frac{(y - X\hat{\beta})'(y - X\hat{\beta})}{\hat{\sigma}}
= -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\hat{\sigma}) - \frac{1}{2}\frac{n\,\hat{\epsilon}'\hat{\epsilon}}{\hat{\epsilon}'\hat{\epsilon}}
= -\frac{n}{2}\log(2\pi) - \frac{n}{2}\log(\hat{\sigma}) - \frac{n}{2}
= -\frac{n}{2}\left[\log(2\pi) + \log(\hat{\sigma}) + 1\right]$$
(a.3.10.35)

Then AIC obtains as:

$$AIC = 2k/n - 2\hat{L}/n$$

$$= 2k/n - 2\left(-\frac{n}{2}\left[\log(2\pi) + \log(\hat{\sigma}) + 1\right]\right)/n$$

$$= 2k/n + \log(2\pi) + \log(\hat{\sigma}) + 1$$
(a.3.10.36)

Using similar calculations, BIC immediately obtains as:

$$BIC = k \log(n)/n + \log(2\pi) + \log(\hat{\sigma}) + 1$$
 (a.3.10.37)

Removing the constants that make the value invariant to the number of coefficients:

$$AIC = 2k/n + \log(\hat{\sigma}) \qquad BIC = k \log(n)/n + \log(\hat{\sigma}) \qquad (a.3.10.38)$$

derivations for equation (3.10.19)

Rearrange:

$$f(y) = \int (2\pi\sigma)^{-n/2} \exp\left(-\frac{1}{2} \frac{(y - X\beta)'(y - X\beta)}{\sigma}\right) \times (2\pi)^{-k/2} |V|^{-1/2} \exp\left(-\frac{1}{2} (\beta - b)'V^{-1}(\beta - b)\right) d\beta$$

$$= \int (2\pi)^{-(n+k)/2} \sigma^{-n/2} |V|^{-1/2} \times \exp\left(-\frac{1}{2} \left[(y - X\beta)'\sigma^{-1}(y - X\beta) + (\beta - b)'V^{-1}(\beta - b)\right]\right) d\beta$$
(a.3.10.39)

Consider the term square brackets:

$$(y - X\beta)'\sigma^{-1}(y - X\beta) + (\beta - b)'V^{-1}(\beta - b)$$

$$= y'\sigma^{-1}y + \beta'X'\sigma^{-1}X\beta - 2\beta'X'\sigma^{-1}y + \beta'V^{-1}\beta + b'V^{-1}b - 2\beta'V^{-1}b$$

$$= \beta'(V^{-1} + \sigma^{-1}X'X)\beta - 2\beta'(V^{-1}b + \sigma^{-1}X'y) + y'\sigma^{-1}y + b'V^{-1}b$$

$$= \beta'(V^{-1} + \sigma^{-1}X'X)\beta - 2\beta'\bar{V}^{-1}\bar{V}(V^{-1}b + \sigma^{-1}X'y) + \bar{b}\bar{V}^{-1}\bar{b} + y'\sigma^{-1}y + b'V^{-1}b - \bar{b}\bar{V}^{-1}\bar{b}$$
 (a.3.10.40)

Define:

$$\bar{V} = (V^{-1} + \sigma^{-1}X'X)^{-1} \qquad \qquad \bar{b} = \bar{V}(V^{-1}b + \sigma^{-1}X'y)$$
(a.3.10.41)

Then (a.3.10.40) reformulates:

$$= \beta' \bar{V}^{-1} \beta - 2\beta' \bar{V}^{-1} \bar{b} + \bar{b} \bar{V}^{-1} \bar{b} + y' \sigma^{-1} y + b' V^{-1} b - \bar{b} \bar{V}^{-1} \bar{b}$$

$$= (\beta - \bar{b})' \bar{V}^{-1} (\beta - \bar{b}) + y' \sigma^{-1} y + b' V^{-1} b - \bar{b} \bar{V}^{-1} \bar{b}$$
(a.3.10.42)

Substitute back in (a.3.10.39):

$$\begin{split} f(y) &= \int (2\pi)^{-(n+k)/2} \, \sigma^{-n/2} \, |V|^{-1/2} \times \exp\left(-\frac{1}{2} \left[(\beta - \bar{b})' \bar{V}^{-1} (\beta - \bar{b}) + y' \sigma^{-1} y + b' V^{-1} b - \bar{b} \bar{V}^{-1} \bar{b} \right] \right) d\beta \\ &= (2\pi)^{-(n+k)/2} \, \sigma^{-n/2} \, |V|^{-1/2} (2\pi)^{k/2} |\bar{V}|^{1/2} \times \exp\left(-\frac{1}{2} \left[y' \sigma^{-1} y + b' V^{-1} b - \bar{b} \bar{V}^{-1} \bar{b} \right] \right) \\ &\times \int (2\pi)^{-k/2} |\bar{V}|^{-1/2} \exp\left(-\frac{1}{2} (\beta - \bar{b})' \bar{V}^{-1} (\beta - \bar{b}) \right) d\beta \\ &= (2\pi)^{-n/2} \, \sigma^{-n/2} |\bar{V}|^{1/2} |V|^{-1/2} \times \exp\left(-\frac{1}{2} \left[y' \sigma^{-1} y + b' V^{-1} b - \bar{b} \bar{V}^{-1} \bar{b} \right] \right) \\ &\times \int (2\pi)^{-k/2} |\bar{V}|^{-1/2} \exp\left(-\frac{1}{2} (\beta - \bar{b})' \bar{V}^{-1} (\beta - \bar{b}) \right) d\beta \end{split} \tag{a.3.10.43}$$

derivations for equation (3.10.21)

Consider the term:

$$(2\pi)^{-n/2} \sigma^{-n/2} |\bar{V}|^{1/2} |V|^{-1/2}$$

$$= (2\pi)^{-n/2} \sigma^{-n/2} |(V^{-1} + \sigma^{-1}X'X)^{-1}|^{1/2} |V|^{-1/2}$$

$$= (2\pi)^{-n/2} \sigma^{-n/2} |V^{-1} + \sigma^{-1}X'X|^{-1/2} |V|^{-1/2}$$

$$= (2\pi)^{-n/2} \sigma^{-n/2} (|V||V^{-1} + \sigma^{-1}X'X|)^{-1/2}$$

$$= (2\pi)^{-n/2} \sigma^{-n/2} |I_k + \sigma^{-1}VX'X|^{-1/2}$$
(a.3.10.44)

Hence:

$$f(y) = (2\pi)^{-n/2} \sigma^{-n/2} |I_k + \sigma^{-1}VX'X|^{-1/2} \exp\left(-\frac{1}{2} \left[y'\sigma^{-1}y + b'V^{-1}b - \bar{b}\bar{V}^{-1}\bar{b}\right]\right)$$
(a.3.10.45)

derivations for equation (3.10.23)

Rearrange the expression:

$$f(y) = \int \int (2\pi\sigma)^{-n/2} \exp\left(-\frac{1}{2} \frac{(y-X\beta)'(y-X\beta)}{\sigma}\right)$$

$$\times (2\pi)^{-k/2} |\sigma V|^{-1/2} \exp\left(-\frac{1}{2} (\beta-b)'(\sigma V)^{-1} (\beta-b)\right) \times \frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)} \sigma^{-\alpha/2-1} \exp\left(-\frac{\delta}{2\sigma}\right) d\beta d\sigma$$

$$= \int \int (2\pi\sigma)^{-n/2} (2\pi)^{-k/2} |\sigma V|^{-1/2} \frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)} \sigma^{-\alpha/2-1}$$

$$\times \exp\left(-\frac{1}{2\sigma} \left[(y-X\beta)'(y-X\beta) + (\beta-b)'V^{-1} (\beta-b) + \delta \right] \right) d\beta d\sigma \qquad (a.3.10.46)$$

Consider the term in square brackets and complete the squares:

$$(y - X\beta)'(y - X\beta) + (\beta - b)'V^{-1}(\beta - b) + \delta$$

$$= y'y + \beta'X'X\beta - 2\beta'X'y + \beta'V^{-1}\beta + b'V^{-1}b - 2\beta'V^{-1}b + \delta$$

$$= \beta'(V^{-1} + X'X)\beta - 2\beta'(V^{-1}b + X'y) + \delta + y'y + b'V^{-1}b$$

$$= \beta'(V^{-1} + X'X)\beta - 2\beta'\bar{V}^{-1}\bar{V}(V^{-1}b + X'y) + \delta + y'y + b'V^{-1}b + \bar{b}'\bar{V}^{-1}\bar{b} - \bar{b}'\bar{V}^{-1}\bar{b}$$
(a.3.10.47)

Define:

$$\bar{V} = (V^{-1} + X'X)^{-1}$$
 $\bar{b} = \bar{V}(V^{-1}b + X'y)$ $\bar{\delta} = \delta + y'y + b'V^{-1}b - \bar{b}'\bar{V}^{-1}\bar{b}$ (a.3.10.48)

Then (a.3.10.47) rewrites:

$$= \beta' \bar{V}^{-1} \beta - 2\beta' \bar{V}^{-1} \bar{b} + \bar{b}' \bar{V}^{-1} \bar{b} + \bar{\delta}$$

$$= (\beta - \bar{b})' \bar{V}^{-1} (\beta - \bar{b}) + \bar{\delta}$$
(a.3.10.49)

Substituting back in (a.3.10.46):

$$f(y) = \int \int (2\pi\sigma)^{-n/2} (2\pi)^{-k/2} |\sigma V|^{-1/2} \frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)} \sigma^{-\alpha/2-1}$$

$$\times \exp\left(-\frac{1}{2\sigma} \left[(\beta - \bar{b})' \bar{V}^{-1} (\beta - \bar{b}) + \bar{\delta} \right] \right) d\beta d\sigma$$

$$= \int \int (2\pi)^{-n/2} (2\pi)^{-k/2} |\sigma V|^{-1/2} \frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)}$$

$$\times \sigma^{-(\alpha+n)/2-1} \exp\left(-\frac{1}{2\sigma} \left[(\beta - \bar{b})' \bar{V}^{-1} (\beta - \bar{b}) + \bar{\delta} \right] \right) d\beta d\sigma$$
(a.3.10.50)

define:

$$\bar{\alpha} = \alpha + n \tag{a.3.10.51}$$

Then (a.3.10.50) rewrites:

$$\begin{split} &= \int \int (2\pi)^{-n/2} \; (2\pi)^{-k/2} |\sigma V|^{-1/2} \; \frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)} \\ &\times \; \sigma^{-\tilde{\alpha}/2-1} \exp\left(-\frac{1}{2\sigma} \left[(\beta-\bar{b})'\bar{V}^{-1}(\beta-\bar{b}) + \bar{\delta}\right]\right) d\beta d\sigma \\ &= (2\pi)^{-n/2} \; |\sigma V|^{-1/2} |\sigma \bar{V}|^{1/2} \; \frac{\delta/2^{\alpha/2}}{\Gamma(\alpha/2)} \; \frac{\Gamma(\bar{\alpha}/2)}{\bar{\delta}/2^{\bar{\alpha}/2}} \\ &\times \; \int \int (2\pi)^{-k/2} |\sigma \bar{V}|^{-1/2} \exp\left(-\frac{1}{2}(\beta-\bar{b})'(\sigma \bar{V})^{-1}(\beta-\bar{b})\right) \times \frac{\bar{\delta}/2^{\bar{\alpha}/2}}{\Gamma(\bar{\alpha}/2)} \sigma^{-\bar{\alpha}/2-1} \exp\left(-\frac{\bar{\delta}}{2\sigma}\right) d\beta d\sigma \\ &= 2^{-n/2} \pi^{-n/2} \; |V|^{-1/2} |\bar{V}|^{1/2} \; \frac{\delta^{\alpha/2}}{\bar{\delta}^{\bar{\alpha}/2}} \; \frac{2^{(\alpha+n)/2}}{2^{\alpha/2}} \; \frac{\Gamma(\bar{\alpha}/2)}{\Gamma(\alpha/2)} \\ &\times \; \int \int (2\pi)^{-k/2} |\sigma \bar{V}|^{-1/2} \exp\left(-\frac{1}{2}(\beta-\bar{b})'(\sigma \bar{V})^{-1}(\beta-\bar{b})\right) \times \frac{\bar{\delta}/2^{\bar{\alpha}/2}}{\Gamma(\bar{\alpha}/2)} \sigma^{-\bar{\alpha}/2-1} \exp\left(-\frac{\bar{\delta}}{2\sigma}\right) d\beta d\sigma \\ &= \pi^{-n/2} \; |V|^{-1/2} |\bar{V}|^{1/2} \; \frac{\delta^{\alpha/2}}{\bar{\delta}^{\bar{\alpha}/2}} \; \frac{\Gamma(\bar{\alpha}/2)}{\Gamma(\bar{\alpha}/2)} \\ &\times \; \int \int (2\pi)^{-k/2} |\sigma \bar{V}|^{-1/2} \exp\left(-\frac{1}{2}(\beta-\bar{b})'(\sigma \bar{V})^{-1}(\beta-\bar{b})\right) \times \frac{\bar{\delta}/2^{\bar{\alpha}/2}}{\Gamma(\bar{\alpha}/2)} \sigma^{-\bar{\alpha}/2-1} \exp\left(-\frac{\bar{\delta}}{2\sigma}\right) d\beta d\sigma \\ &= \pi^{-n/2} \; |V|^{-1/2} |\bar{\nabla}|^{1/2} \exp\left(-\frac{1}{2}(\beta-\bar{b})'(\sigma \bar{V})^{-1}(\beta-\bar{b})\right) \times \frac{\bar{\delta}/2^{\bar{\alpha}/2}}{\Gamma(\bar{\alpha}/2)} \sigma^{-\bar{\alpha}/2-1} \exp\left(-\frac{\bar{\delta}}{2\sigma}\right) d\beta d\sigma \end{aligned}$$

derivations for equation (3.10.25)

Reformulate the expression:

$$\pi^{-n/2} |V|^{-1/2} |\bar{V}|^{1/2} \frac{\delta^{\alpha/2}}{\bar{\delta}\bar{\alpha}/2} \frac{\Gamma(\bar{\alpha}/2)}{\Gamma(\alpha/2)}$$

$$= \pi^{-n/2} |V|^{-1/2} |(V^{-1} + X'X)^{-1}|^{1/2} \frac{\delta^{\alpha/2}}{\bar{\delta}\bar{\alpha}/2} \frac{\Gamma(\bar{\alpha}/2)}{\Gamma(\alpha/2)}$$

$$= \pi^{-n/2} |V|^{-1/2} |(V^{-1} + X'X)|^{-1/2} \frac{\delta^{\alpha/2}}{\bar{\delta}\bar{\alpha}/2} \frac{\Gamma(\bar{\alpha}/2)}{\Gamma(\alpha/2)}$$

$$= \pi^{-n/2} |V(V^{-1} + X'X)|^{-1/2} \frac{\delta^{\alpha/2}}{\bar{\delta}\bar{\alpha}/2} \frac{\Gamma(\bar{\alpha}/2)}{\Gamma(\alpha/2)}$$

$$= \pi^{-n/2} |I_k + VX'X|^{-1/2} \frac{\delta^{\alpha/2}}{\bar{\delta}\bar{\alpha}/2} \frac{\Gamma(\bar{\alpha}/2)}{\Gamma(\alpha/2)}$$

$$= \pi^{-n/2} |I_k + VX'X|^{-1/2} \frac{\delta^{\alpha/2}}{\bar{\delta}\bar{\alpha}/2} \frac{\Gamma(\bar{\alpha}/2)}{\Gamma(\alpha/2)}$$
(a.3.10.53)

derivations for equation (3.10.27)

Rearrange the expression:

$$\begin{split} &\frac{f(y)}{\pi(\sigma^{+}|y,\beta^{+})} \times \frac{f(\beta^{+},\sigma^{+})}{\pi(\sigma^{+}|y,\beta^{+})} \times \frac{1}{f} \sum_{j=1}^{f} \pi(\beta^{+}|\sigma^{(j)},y)} \\ &\approx \frac{f(y|\beta^{+},\sigma^{+})}{\pi(\sigma^{+}|y,\beta^{+})} \times \frac{1}{f} \sum_{j=1}^{f} \pi(\beta^{+}|\sigma^{(j)},y)}{\sigma} \\ &= (2\pi\sigma)^{-n/2} \exp\left(-\frac{1}{2} \frac{(y-X\beta)'(y-X\beta)}{\sigma}\right) \times \frac{(2\pi)^{-k/2}|V|^{-1/2} \exp\left(-\frac{1}{2}(\beta-b)'V^{-1}(\beta-b)\right)}{\frac{1}{f} \sum_{j=1}^{f} (2\pi)^{-k/2} |V|^{-1/2} \exp\left(-\frac{1}{2}(\beta-b)'V^{-1}(\beta-b)\right)} \\ &\times \frac{\frac{\delta/2^{n/2}}{\delta/2^{n/2}} \sigma^{-\alpha/2-1} \exp\left(-\frac{\delta}{2}\sigma\right)}{\frac{\delta/2^{n/2}}{\delta/2^{n/2}} \exp\left(-\frac{1}{2} \frac{(y-X\beta)'(y-X\beta)}{\sigma}\right)} \times \frac{(2\pi)^{-k/2}|V|^{-1/2} \exp\left(-\frac{1}{2}(\beta-b)'V^{-1}(\beta-b)\right)}{\frac{1}{f} \sum_{j=1}^{f} (2\pi)^{-k/2} |V|^{-1/2} \exp\left(-\frac{1}{2}(\beta-b)'V^{-1}(\beta-b)\right)} \\ &\times \frac{\Gamma(\alpha/2)}{\Gamma(\alpha/2)} \frac{2^{(\alpha+n)/2}}{\delta^{\alpha/2}} \frac{\delta^{\alpha/2} \sigma^{-\alpha/2-1} \exp\left(-\frac{\delta}{2}\sigma\right)}{\frac{\delta}{\delta} \alpha/2} \sigma^{-(\alpha+n)/2-1} \exp\left(-\frac{\delta}{2}\sigma\right)} \\ &= 2^{-n/2} \pi^{-n/2} \sigma^{-n/2} \times \frac{(2\pi)^{-k/2}|V|^{-1/2} \exp\left(-\frac{1}{2}(\beta-b)'V^{-1}(\beta-b)\right)}{\frac{1}{f} \sum_{j=1}^{f} (2\pi)^{-k/2} |V|^{-1/2} \exp\left(-\frac{1}{2}(\beta-b)'V^{-1}(\beta-b)\right)}} \\ &\times \frac{\Gamma(\alpha/2)}{\Gamma(\alpha/2)} \frac{2^{(\alpha+n)/2}}{2^{2\alpha/2}} \frac{\delta^{\alpha/2} \sigma^{-\alpha/2-1} \exp\left(-\frac{\delta}{2}(\beta-b)'V^{-1}(\beta-b)\right)}{\frac{\delta}{\delta} \alpha/2} \sigma^{-(\alpha+n)/2-1} \exp\left(-\frac{\delta}{2}(\beta-b)'V^{-1}(\beta-b)\right)} \\ &\times \frac{\Gamma(\alpha/2)}{\Gamma(\alpha/2)} \frac{2^{(\alpha+n)/2}}{\delta^{\alpha/2}} \times \frac{\delta^{\alpha/2} \sigma^{-\alpha/2-1} \exp\left(-\frac{\delta}{2}(\beta-b)'V^{-1}(\beta-b)\right)}{\frac{\delta}{\delta} \alpha/2} \sigma^{-(\alpha+n)/2-1} \exp\left(-\frac{\delta}{2}(\beta-b)'V^{-1}(\beta-b)\right)} \\ &\times \frac{\Gamma(\alpha/2)}{\Gamma(\alpha/2)} \frac{2^{(\alpha+n)/2}}{\delta^{\alpha/2}} \frac{\delta^{\alpha/2} \sigma^{-\alpha/2-1} \exp\left(-\frac{\delta}{2}(\beta-b)'V^{-1}(\beta-b)\right)}{\frac{\delta}{\delta} \alpha/2} \sigma^{-(\alpha+n)/2-1} \exp\left(-\frac{\delta}{2}(\beta-b)'V^{-1}(\beta-b)\right)} \\ &\times \frac{\Gamma(\alpha/2)}{\frac{1}{f} \sum_{j=1}^{f} |V|^{1/2} \exp\left(-\frac{1}{2}(\beta-b)'V^{-1}(\beta-b)\right)}{\frac{\delta}{\delta} \alpha/2} \frac{\delta^{\alpha/2}}{\sigma^{-(\alpha+n)/2-1} \exp\left(-\frac{\delta}{2}\beta\right)} \\ &= \pi^{-n/2} \frac{|V|^{-1/2} \exp\left(-\frac{1}{2}(\beta-b)'V^{-1}(\beta-b)\right)}{\frac{1}{f} \sum_{j=1}^{f} |V|^{1/2} |V|^{-1/2} \exp\left(-\frac{1}{2}(\beta-b)'V^{-1}(\beta-b)\right)}{\frac{1}{f$$

derivations for equation (3.10.29)

Substitute for the functions and rearrange:

$$\begin{split} &\frac{1}{f(y)} \\ &\approx \frac{1}{J} \sum_{j=1}^{J} \frac{g(\theta^{(j)})}{f(y|\beta^{(j)},\sigma^{(j)},\gamma^{(j)}) \, \pi(\beta^{(j)}) \, \pi(\sigma^{(j)}) \, \pi(\gamma^{(j)})} \\ &= \frac{1}{J} \sum_{j=1}^{J} \frac{\omega^{-1}(2\pi)^{-(k+h+1)/2} |\hat{\Sigma}|^{-1/2} \exp\left(-\frac{1}{2}(\theta-\hat{\theta})'\hat{\Sigma}^{-1}(\theta-\hat{\theta})\right) \mathbb{1}(\theta \in \hat{\Theta})}{\left[\frac{(2\pi\sigma)^{-n/2} |W|^{-1/2} \exp\left(-\frac{1}{2}(y-X\beta)'W^{-1}(y-X\beta)}{\sigma}\right) \times (2\pi)^{-k/2} |V|^{-1/2} \exp\left(-\frac{1}{2}(\beta-b)'V^{-1}(\beta-b)\right)} \right]} \\ &= \frac{1}{J} \sum_{j=1}^{J} \mathbb{1}(\theta \in \hat{\Theta}) \, \omega^{-1}(2\pi)^{(n+k+h-(k+h+1))/2} |\hat{\Sigma}|^{-1/2} |W|^{1/2} |V|^{1/2} |Q|^{1/2} \, \frac{\Gamma(\alpha/2)}{\delta/2\alpha/2} \, \sigma^{(\alpha+n)/2+1} \\ &\times \exp\left(\frac{1}{2} \left[\frac{(y-X\beta)'(\sigma W)^{-1}(y-X\beta) + (\beta-b)'V^{-1}(\beta-b) + \delta\sigma^{-1}}{(\gamma-g)'Q^{-1}(\gamma-g) - (\theta-\hat{\theta})'\hat{\Sigma}^{-1}(\theta-\hat{\theta})} \right] \right) \\ &= (\omega J)^{-1}(2\pi)^{(n-1)/2} |\hat{\Sigma}|^{-1/2} |V|^{1/2} |Q|^{1/2} \, \frac{\Gamma(\alpha/2)}{\delta/2\alpha/2} \\ &\times \sum_{j=1}^{J} \mathbb{1}(\theta \in \hat{\Theta}) |W|^{1/2} \, \sigma^{(\alpha+n)/2+1} \exp\left(\frac{1}{2} \left[\frac{(y-X\beta)'(\sigma W)^{-1}(y-X\beta) + (\beta-b)'V^{-1}(\beta-b)}{(\gamma-g)^{-1}(\gamma-g) - (\theta-\hat{\theta})'\hat{\Sigma}^{-1}(\theta-\hat{\theta})} \right] \right) \\ &= (\alpha J)^{-1}(2\pi)^{(n-1)/2} |\hat{\Sigma}|^{-1/2} |V|^{1/2} |Q|^{1/2} \, \frac{\Gamma(\alpha/2)}{\delta/2\alpha/2} \\ &\times \sum_{j=1}^{J} \mathbb{1}(\theta \in \hat{\Theta}) |W|^{1/2} \, \sigma^{(\alpha+n)/2+1} \exp\left(\frac{1}{2} \left[\frac{(y-X\beta)'(\sigma W)^{-1}(y-X\beta) + (\beta-b)'V^{-1}(\beta-b)}{(\gamma-g)^{-1}(\theta-\hat{\theta})} \right] \right) \\ &= (\alpha J)^{-1}(2\pi)^{(n-1)/2} |\hat{\Sigma}|^{-1/2} |V|^{1/2} |Q|^{1/2} \, \frac{\Gamma(\alpha/2)}{\delta/2\alpha/2} \\ &\times \sum_{j=1}^{J} \mathbb{1}(\theta \in \hat{\Theta}) |W|^{1/2} \, \sigma^{(\alpha+n)/2+1} \exp\left(\frac{1}{2} \left[\frac{(y-X\beta)'(\sigma W)^{-1}(y-X\beta) + (\beta-b)'V^{-1}(\beta-b)}{(\gamma-g)^{-1}(\beta-\hat{\theta})} \right] \right) \\ &= (\alpha J)^{-1}(2\pi)^{(n-1)/2} |\hat{\Sigma}|^{-1/2} |V|^{1/2} |Q|^{1/2} \, \frac{\Gamma(\alpha/2)}{\delta/2\alpha/2} \\ &\times \sum_{j=1}^{J} \mathbb{1}(\theta \in \hat{\Theta}) |W|^{1/2} \, \sigma^{(\alpha+n)/2+1} \exp\left(\frac{1}{2} \left[\frac{(y-X\beta)'(\sigma W)^{-1}(y-X\beta) + (\beta-b)'V^{-1}(\beta-b)}{(\gamma-g)^{-1}(\beta-\hat{\theta})} \right] \right) \\ &= (\alpha J)^{-1}(2\pi)^{(n-1)/2} |\hat{\Sigma}|^{-1/2} |V|^{1/2} |Q|^{1/2} \, \frac{\Gamma(\alpha/2)}{\delta/2\alpha/2} \\ &\times (\alpha J)^{-1/2} |Q|^{-1/2} \, \frac{(\alpha J)^{-1/2}}{\delta/2\alpha/2} \\ &\times (\alpha J)^{-1/2} |Q|^{-1/2} \, \frac{(\alpha J)^{-1/2}}{\delta/2\alpha/2} \\ &\times (\alpha J)^{-1/2} |Q|^{-1/2} \, \frac{(\alpha J)^{-1/2}}{\delta/2\alpha/2} \\ &\times (\alpha J)^{-1/2} \, \frac{(\alpha$$

Using logs on both sides yields:

$$-log(f(y)) \approx log\left((\omega J)^{-1}(2\pi)^{(n-1)/2} |\hat{\Sigma}|^{-1/2} |V|^{1/2} |Q|^{1/2} \frac{\Gamma(\alpha/2)}{\delta/2^{\alpha/2}}\right)$$

$$+log\left(\sum_{j=1}^{J} \mathbb{1}(\theta \in \hat{\Theta}) |W|^{1/2} \sigma^{(\alpha+n)/2+1} \exp\left(\frac{1}{2} \left[\frac{(y-X\beta)'(\sigma W)^{-1}(y-X\beta) + (\beta-b)'V^{-1}(\beta-b)}{+\delta\sigma^{-1} + (\gamma-g)'Q^{-1}(\gamma-g) - (\theta-\hat{\theta})'\hat{\Sigma}^{-1}(\theta-\hat{\theta})} \right]\right)\right)$$
(a.3.10.56)

or:

$$\begin{split} \log(f(y)) &\approx -\log\left((\omega J)^{-1}(2\pi)^{(n-1)/2} \; |\hat{\Sigma}|^{-1/2} \; |V|^{1/2} \; |Q|^{1/2} \; \frac{\Gamma(\alpha/2)}{\delta/2^{\alpha/2}}\right) \\ &-\log\left(\sum_{j=1}^{J} \mathbb{1}(\theta \in \hat{\Theta}) \; |W|^{1/2} \; \sigma^{(\alpha+n)/2+1} \exp\left(\frac{1}{2} \left[\begin{array}{c} (y - X\beta)'(\sigma W)^{-1}(y - X\beta) + (\beta - b)'V^{-1}(\beta - b) \\ +\delta \sigma^{-1} + (\gamma - g)'Q^{-1}(\gamma - g) - (\theta - \hat{\theta})'\hat{\Sigma}^{-1}(\theta - \hat{\theta}) \end{array} \right]\right) \right) \\ &\qquad \qquad (a.3.10.57) \end{split}$$

derivations for equation (3.10.32)

Substitute for the functions and rearrange:

$$\begin{split} &\frac{1}{f(y)} \\ &\approx \frac{1}{J} \sum_{j=1}^{J} \frac{g(\theta^{(j)})}{f(y|\beta^{(j)},\sigma^{(j)},\phi^{(j)}) \, \pi(\beta^{(j)}) \, \pi(\sigma^{(j)}) \, \pi(\phi^{(j)})} \\ &= \frac{1}{J} \sum_{j=1}^{J} \frac{\omega^{-1}(2\pi)^{-(k+q+1)/2} |\hat{\Sigma}|^{-1/2} \exp\left(-\frac{1}{2}(\theta-\hat{\theta})'\hat{\Sigma}^{-1}(\theta-\hat{\theta})\right) \, \mathbb{I}(\theta \in \hat{\Theta})}{\left[\frac{(2\pi\sigma)^{-T/2} \exp\left(-\frac{1}{2}(\varepsilon-E\phi)'\sigma^{-1}(\varepsilon-E\phi)\right) \times (2\pi)^{-k/2} |V|^{-1/2} \exp\left(-\frac{1}{2}(\beta-b)'V^{-1}(\beta-b)\right) \right]} \\ &= \frac{1}{J} \sum_{j=1}^{J} \mathbb{I}(\theta \in \hat{\Theta}) \ \omega^{-1}(2\pi)^{(T+k+q-(k+q+1))/2} \, |\hat{\Sigma}|^{-1/2} \, |V|^{1/2} \, |Z|^{1/2} \, \frac{\Gamma(\alpha/2)}{\delta/2^{\alpha/2}} \, \sigma^{(\alpha+T)/2+1} \\ &\times \exp\left(\frac{1}{2} \left[\frac{(\varepsilon-E\phi)'\sigma^{-1}(\varepsilon-E\phi) + (\beta-b)'V^{-1}(\beta-b)}{+\delta\sigma^{-1} + (\phi-p)'Z^{-1}(\phi-p) - (\theta-\hat{\theta})'\hat{\Sigma}^{-1}(\theta-\hat{\theta})} \right] \right) \\ &= (\omega J)^{-1}(2\pi)^{(T-1)/2} \, |\hat{\Sigma}|^{-1/2} \, |V|^{1/2} \, |Z|^{1/2} \, \frac{\Gamma(\alpha/2)}{\delta/2^{\alpha/2}} \\ &\times \sum_{j=1}^{J} \mathbb{I}(\theta \in \hat{\Theta}) \sigma^{(\alpha+T)/2+1} \exp\left(\frac{1}{2} \left[\frac{(\varepsilon-E\phi)'\sigma^{-1}(\varepsilon-E\phi) + (\beta-b)'V^{-1}(\beta-b)}{\delta/2^{\alpha/2}} \right] \right) \\ &= (\alpha J)^{-1}(2\pi)^{(T-1)/2} \, |\hat{\Sigma}|^{-1/2} \, |V|^{1/2} \, |Z|^{1/2} \, \frac{\Gamma(\alpha/2)}{\delta/2^{\alpha/2}} \\ &\times \sum_{j=1}^{J} \mathbb{I}(\theta \in \hat{\Theta}) \sigma^{(\alpha+T)/2+1} \exp\left(\frac{1}{2} \left[\frac{(\varepsilon-E\phi)'\sigma^{-1}(\varepsilon-E\phi) + (\beta-b)'V^{-1}(\beta-b)}{\delta/2^{\alpha/2}} \right] \right) \\ &= (\alpha J)^{-1}(2\pi)^{(T-1)/2} \, |\hat{\Sigma}|^{-1/2} \, |V|^{1/2} \, |Z|^{1/2} \, \frac{\Gamma(\alpha/2)}{\delta/2^{\alpha/2}} \\ &\times \sum_{j=1}^{J} \mathbb{I}(\theta \in \hat{\Theta}) \sigma^{(\alpha+T)/2+1} \exp\left(\frac{1}{2} \left[\frac{(\varepsilon-E\phi)'\sigma^{-1}(\varepsilon-E\phi) + (\beta-b)'V^{-1}(\beta-b)}{\delta/2^{\alpha/2}} \right] \right) \\ &= (\alpha J)^{-1}(2\pi)^{(T-1)/2} \, |\hat{\Sigma}|^{-1/2} \, |V|^{1/2} \, |Z|^{1/2} \, \frac{\Gamma(\alpha/2)}{\delta/2^{\alpha/2}} \\ &\times \sum_{j=1}^{J} \mathbb{I}(\theta \in \hat{\Theta}) \sigma^{(\alpha+T)/2+1} \exp\left(\frac{1}{2} \left[\frac{(\varepsilon-E\phi)'\sigma^{-1}(\varepsilon-E\phi) + (\beta-b)'V^{-1}(\beta-b)}{\delta/2^{\alpha/2}} \right] \right) \\ &= (\alpha J)^{-1}(2\pi)^{(T-1)/2} \, |\hat{\Sigma}|^{-1/2} \, |V|^{1/2} \, |Z|^{1/2} \, \frac{\Gamma(\alpha/2)}{\delta/2^{\alpha/2}} \\ &\times (\alpha J)^{-1/2} \, |Z|^{-1/2} \, |Z$$

Using logs on both sides yields:

$$-log(f(y)) \approx log\left((\omega J)^{-1}(2\pi)^{(T-1)/2} |\hat{\Sigma}|^{-1/2} |V|^{1/2} |Z|^{1/2} \frac{\Gamma(\alpha/2)}{\delta/2^{\alpha/2}}\right) + log\left(\sum_{j=1}^{J} \mathbb{1}(\theta \in \hat{\Theta})\sigma^{(\alpha+T)/2+1} \exp\left(\frac{1}{2} \left[\frac{(\varepsilon - E\phi)'\sigma^{-1}(\varepsilon - E\phi) + (\beta - b)'V^{-1}(\beta - b)}{+\delta\sigma^{-1} + (\phi - p)'Z^{-1}(\phi - p) - (\theta - \hat{\theta})'\hat{\Sigma}^{-1}(\theta - \hat{\theta})} \right]\right)\right)$$
(a.3.10.59)

or:

$$log(f(y)) \approx -log\left((\omega J)^{-1}(2\pi)^{(T-1)/2} |\hat{\Sigma}|^{-1/2} |V|^{1/2} |Z|^{1/2} \frac{\Gamma(\alpha/2)}{\delta/2^{\alpha/2}}\right)$$

$$-log\left(\sum_{j=1}^{J} \mathbb{1}(\theta \in \hat{\Theta}) \sigma^{(\alpha+T)/2+1} \exp\left(\frac{1}{2} \begin{bmatrix} (\varepsilon - E\phi)'\sigma^{-1}(\varepsilon - E\phi) + (\beta - b)'V^{-1}(\beta - b) \\ +\delta\sigma^{-1} + (\phi - p)'Z^{-1}(\phi - p) - (\theta - \hat{\theta})'\hat{\Sigma}^{-1}(\theta - \hat{\theta}) \end{bmatrix}\right)\right)$$
(a.3.10.60)

PART IV

Vector autoregressions

CHAPTER 11

Vector autoregressions

derivations for equation (4.11.9)

Consider first β . To do so, rewrite the likelihood function as:

$$\log(f(y|\beta,\Sigma)) = -\frac{nT}{2} \, \log(2\pi) - \frac{1}{2} \, \log(|\bar{\Sigma}|) - \frac{1}{2} (y'\bar{\Sigma}^{-1}y + \beta'\bar{X}'\bar{\Sigma}^{-1}\bar{X}\beta - 2\beta'\bar{X}'\bar{\Sigma}^{-1}y) \tag{a.4.11.1}$$

Then solve for the partial derivative:

$$\frac{\partial log(f(y|\beta,\Sigma))}{\partial \beta} = 0$$

$$\Leftrightarrow -\frac{1}{2}(2\beta'\bar{X}'\bar{\Sigma}^{-1}\bar{X} - 2y'\bar{\Sigma}^{-1}\bar{X}'y) = 0$$

$$\Leftrightarrow \beta'\bar{X}'\bar{\Sigma}^{-1}\bar{X} - y'\bar{\Sigma}^{-1}\bar{X} = 0$$

$$\Leftrightarrow \beta'\bar{X}'\bar{\Sigma}^{-1}\bar{X} = y'\bar{\Sigma}^{-1}\bar{X}$$

$$\Leftrightarrow \bar{X}'\bar{\Sigma}^{-1}\bar{X}\beta = \bar{X}'\bar{\Sigma}^{-1}y$$

$$\Leftrightarrow \beta = (\bar{X}'\bar{\Sigma}^{-1}\bar{X})^{-1}\bar{X}'\bar{\Sigma}^{-1}y$$
(a.4.11.2)

The formula can simplify further. Note first that:

$$\bar{X}'\bar{\Sigma}^{-1}
= (I_n \otimes X)'(\Sigma \otimes I_T)^{-1}
= (I_n \otimes X')(\Sigma^{-1} \otimes I_T)
= \Sigma^{-1} \otimes X'$$
(a.4.11.3)

Substituting for (a.4.11.3) in (a.4.11.2):

$$\beta$$

$$= (\bar{X}'\bar{\Sigma}^{-1}\bar{X})^{-1}\bar{X}'\bar{\Sigma}^{-1}y$$

$$= [(\Sigma^{-1} \otimes X')(I_n \otimes X)]^{-1}[(\Sigma^{-1} \otimes X')y]$$

$$= (\Sigma^{-1} \otimes X'X)^{-1}(\Sigma^{-1} \otimes X') vec(Y)$$

$$= (\Sigma \otimes (X'X)^{-1})(\Sigma^{-1} \otimes X') vec(Y)$$

$$= (I_n \otimes (X'X)^{-1}X') vec(Y)$$

$$= vec((X'X)^{-1}X'Y)$$

$$= vec(\hat{B})$$
(a.4.11.4)

with:

$$\hat{\mathcal{B}} = (X'X)^{-1}X'Y \tag{a.4.11.5}$$

Hence the maximum likelihood estimate is $\hat{\beta} = vec(\hat{B})$.

To obtain the maximum likelihood estimate for Σ , it is convenient to use property d.7 that states the equivalence between the multivariate normal and matrix normal distributions. Doing so, the likelihood function of the VAR model rewrites as:

$$f(y|\beta, \Sigma) = (2\pi)^{-nT/2} |\Sigma|^{-T/2} exp\left(-\frac{1}{2} tr\left[\Sigma^{-1} (Y - XB)'(Y - XB)\right]\right)$$
 (a.4.11.6)

And the log-likelihood becomes:

$$\log(f(y|\beta,\Sigma)) = -\frac{nT}{2} \log(2\pi) - \frac{T}{2} \log(|\Sigma|) - \frac{1}{2} tr\left[\Sigma^{-1} (Y - XB)'(Y - XB)\right]$$
 (a.4.11.7)

Then solve for the partial derivative:

$$\frac{\partial log(f(y|\beta,\Sigma))}{\partial \Sigma} = 0$$

$$\Leftrightarrow -\frac{T}{2}\Sigma^{-1} - \frac{1}{2}(Y - X\mathcal{B})'(Y - X\mathcal{B})(-\Sigma^{-1}\Sigma^{-1}) = 0$$

$$\Leftrightarrow -T\Sigma^{-1} + (Y - X\mathcal{B})'(Y - X\mathcal{B})(\Sigma^{-1}\Sigma^{-1}) = 0$$

$$\Leftrightarrow T\Sigma^{-1} = (Y - X\mathcal{B})'(Y - X\mathcal{B})(\Sigma^{-1}\Sigma^{-1})$$

$$\Leftrightarrow T\Sigma = (Y - X\mathcal{B})'(Y - X\mathcal{B})$$

$$\Leftrightarrow \Sigma = \frac{1}{T}(Y - X\mathcal{B})'(Y - X\mathcal{B})$$
(a.4.11.8)

Replacing \mathcal{B} with its maximum likelihood estimate $\hat{\mathcal{B}}$, we conclude that the maximum likelihood estimate for Σ is $\hat{\Sigma} = \frac{1}{T}(Y - X\hat{\mathcal{B}})'(Y - X\hat{\mathcal{B}})$.

derivations for equation (4.11.14)

Group terms:

$$\pi(\beta|y)$$

$$\propto \exp\left(-\frac{1}{2}(y-\bar{X}\beta)'\bar{\Sigma}^{-1}(y-\bar{X}\beta)\right) \times \exp\left(-\frac{1}{2}(\beta-b)'V^{-1}(\beta-b)\right)$$

$$= \exp\left(-\frac{1}{2}\left[(y-\bar{X}\beta)'\bar{\Sigma}^{-1}(y-\bar{X}\beta) + (\beta-b)'V^{-1}(\beta-b)\right]\right)$$
(a.4.11.9)

Consider the terms in square brackets:

$$(y - \bar{X}\beta)'\bar{\Sigma}^{-1}(y - \bar{X}\beta) + (\beta - b)'V^{-1}(\beta - b)$$

$$= y'\bar{\Sigma}^{-1}y + \beta'\bar{X}'\bar{\Sigma}^{-1}\bar{X}\beta - 2\beta'\bar{X}'\bar{\Sigma}^{-1}y + \beta'V^{-1}\beta + b'V^{-1}b - 2\beta'V^{-1}b$$

$$= \beta'(V^{-1} + \bar{X}'\bar{\Sigma}^{-1}\bar{X})\beta - 2\beta'(V^{-1}b + \bar{X}'\bar{\Sigma}^{-1}y) + b'V^{-1}b + y'\bar{\Sigma}^{-1}y$$
(a.4.11.10)

Complete the squares:

$$= \beta'(V^{-1} + \bar{X}'\bar{\Sigma}^{-1}\bar{X})\beta - 2\beta'\bar{V}^{-1}\bar{V}(V^{-1}b + \bar{X}'\bar{\Sigma}^{-1}y) + \bar{b}'\bar{V}^{-1}\bar{b} - \bar{b}'\bar{V}^{-1}\bar{b} + b'V^{-1}b + y'\bar{\Sigma}^{-1}y \quad (a.4.11.11)$$

Define:

$$\bar{V} = (V^{-1} + \bar{X}'\bar{\Sigma}^{-1}\bar{X})^{-1} \qquad \qquad \bar{b} = \bar{V}(V^{-1}b + \bar{X}'\bar{\Sigma}^{-1}y)$$
(a.4.11.12)

Then (a.4.11.11) rewrites:

$$= \beta' \bar{V}^{-1} \beta - 2\beta' \bar{V}^{-1} \bar{b} + \bar{b}' \bar{V}^{-1} \bar{b} - \bar{b}' \bar{V}^{-1} \bar{b} + b' V^{-1} b + y' \bar{\Sigma}^{-1} y$$

$$= (\beta - \bar{b})' \bar{V}^{-1} (\beta - \bar{b}) + (b' V^{-1} b - \bar{b}' \bar{V}^{-1} \bar{b} + y' \bar{\Sigma}^{-1} y)$$
(a.4.11.13)

Substitute (a.4.11.13) back in (a.4.11.9):

$$\pi(\beta|y) = \exp\left(-\frac{1}{2}\left[(\beta - \bar{b})'\bar{V}^{-1}(\beta - \bar{b}) + (b'V^{-1}b - \bar{b}'\bar{V}^{-1}\bar{b} + y'\bar{\Sigma}^{-1}y)\right]\right)$$

$$= \exp\left(-\frac{1}{2}(\beta - \bar{b})'\bar{V}^{-1}(\beta - \bar{b})\right) \exp\left(-\frac{1}{2}(b'V^{-1}b - \bar{b}'\bar{V}^{-1}\bar{b} + y'\bar{\Sigma}^{-1}y)\right)$$

$$\propto \exp\left(-\frac{1}{2}(\beta - \bar{b})'\bar{V}^{-1}(\beta - \bar{b})\right)$$
(a.4.11.14)

Where the last line obtains by noting that the second term in row 2 does not involve β and can hence be relegated to the normalization constant.

The terms in (a.4.11.12) simplify. Note first that:

$$\bar{X}'\bar{\Sigma}^{-1}\bar{X}
= (I_n \otimes X)'(\Sigma \otimes I_T)^{-1}(I_n \otimes X)
= (I_n \otimes X')(\Sigma^{-1} \otimes I_T)(I_n \otimes X)
= (\Sigma^{-1} \otimes X')(I_n \otimes X)
= \Sigma^{-1} \otimes X'X$$
(a.4.11.15)

Similarly:

$$\bar{X}'\bar{\Sigma}^{-1}y
= (I_n \otimes X)'(\Sigma \otimes I_T)^{-1}vec(Y)
= (I_n \otimes X')(\Sigma^{-1} \otimes I_T)vec(Y)
= (\Sigma^{-1} \otimes X')vec(Y)
= vec(X'Y\Sigma^{-1})$$
(a.4.11.16)

Then (a.4.11.12) rewrites:

$$\bar{V} = (V^{-1} + \Sigma^{-1} \otimes X'X)^{-1} \qquad \qquad \bar{b} = \bar{V}(V^{-1}b + vec(X'Y\Sigma^{-1}))$$
 (a.4.11.17)

derivations for equation (4.11.23)

Start from the vectorized likelihood function:

$$f(y|\beta,\Sigma) = (2\pi)^{-nT/2}|\bar{\Sigma}|^{-1/2} exp\left(-\frac{1}{2}(y-\bar{X}\beta)'\bar{\Sigma}^{-1}(y-\bar{X}\beta)\right)$$
 (a.4.11.18)

Use then property d.7 that establishes the equivalence between the multivariate normal and matrix normal distributions to reformulate the likelihood in vectorized form as:

$$f(y|\mathcal{B},\Sigma) = (2\pi)^{-nT/2} |\Sigma|^{-T/2} exp\left(-\frac{1}{2} tr\left[\Sigma^{-1} (Y - X\mathcal{B})'(Y - X\mathcal{B})\right]\right)$$
(a.4.11.19)

Consider the quadratic term:

$$(Y - XB)'(Y - XB)$$

$$= Y'Y + B'X'XB - 2B'X'Y$$

$$= Y'Y + B'X'XB - 2B'X'Y + 2\hat{B}X'Y - 2\hat{B}X'Y$$

$$= Y'Y + B'X'XB - 2B'(X'X)(X'X)^{-1}X'Y + 2\hat{B}(X'X)(X'X)^{-1}X'Y - 2\hat{B}X'Y$$

$$= Y'Y + B'X'XB - 2B'(X'X)\hat{B} + 2\hat{B}(X'X)\hat{B} - 2\hat{B}X'Y$$

$$= Y'Y + B'X'XB - 2B'(X'X)\hat{B} + \hat{B}(X'X)\hat{B} + \hat{B}(X'X)\hat{B} - 2\hat{B}X'Y$$

$$= Y'Y + B'X'XB - 2B'(X'X)\hat{B} + \hat{B}(X'X)\hat{B} + \hat{B}(X'X)\hat{B} - 2\hat{B}X'Y$$

$$= (B'(X'X)B + \hat{B}(X'X)\hat{B} - 2B'(X'X)\hat{B}) + (Y'Y + \hat{B}(X'X)\hat{B} - 2\hat{B}X'Y)$$

$$= (B - \hat{B})'(X'X)(B - \hat{B}) + (Y - X\hat{B})'(Y - X\hat{B})$$
(a.4.11.20)

Hence (a.4.11.19) rewrites:

$$\begin{split} f(y|\mathcal{B}, \Sigma) &= (2\pi)^{-nT/2} |\Sigma|^{-T/2} exp\left(-\frac{1}{2} tr \left[\Sigma^{-1} (B - \hat{B})'(X'X) (B - \hat{B}) + \Sigma^{-1} (Y - X\hat{B})'(Y - X\hat{B})\right]\right) \\ &= (2\pi)^{-nT/2} |\Sigma|^{-T/2} exp\left(-\frac{1}{2} tr \left[\Sigma^{-1} (B - \hat{B})'(X'X) (B - \hat{B})\right]\right) \\ &\times exp\left(-\frac{1}{2} tr \left[\Sigma^{-1} (Y - X\hat{B})'(Y - X\hat{B})\right]\right) \end{split}$$
 (a.4.11.21)

Also, it follows from property m.55 that:

$$tr\left[\Sigma^{-1}(B-\hat{B})'(X'X)(B-\hat{B})\right] = (\beta - \hat{\beta})'(\Sigma \otimes (X'X)^{-1})^{-1}(\beta - \hat{\beta})$$
 (a.4.11.22)

Substituting back in (a.4.11.21) yields:

$$f(y|\beta,\Sigma) = (2\pi)^{-nT/2} |\Sigma|^{-T/2} exp\left(-\frac{1}{2}(\beta-\hat{\beta})'(\Sigma\otimes(X'X)^{-1})^{-1}(\beta-\hat{\beta})\right)$$
$$\times exp\left(-\frac{1}{2} tr\left[\Sigma^{-1}(Y-X\hat{B})'(Y-X\hat{B})\right]\right)$$
(a.4.11.23)

derivations for equation (4.11.32)

Start from the joint posterior:

$$\pi(\beta, \Sigma|y) \propto |\Sigma|^{-T/2} exp\left(-\frac{1}{2}(\beta - \hat{\beta})' \left(\Sigma \otimes (X'X)^{-1}\right)^{-1} (\beta - \hat{\beta})\right)$$

$$\times exp\left(-\frac{1}{2} tr\left[\Sigma^{-1}(Y - X\hat{B})'(Y - X\hat{B})\right]\right)$$

$$\times |\Sigma \otimes W|^{-1/2} exp\left(-\frac{1}{2}(\beta - b)'(\Sigma \otimes W)^{-1}(\beta - b)\right)$$

$$\times |\Sigma|^{-(\alpha + n + 1)/2} exp\left(-\frac{1}{2} tr\left\{\Sigma^{-1}S\right\}\right)$$
(a.4.11.24)

Note first that:

$$|\Sigma \otimes W|^{-1/2} = |\Sigma|^{-k/2}|W|^{-n/2}$$
 (a.4.11.25)

Hence, substituting back in (a.4.11.24) and rearranging:

$$\pi(\beta, \Sigma|y) \propto exp\left(-\frac{1}{2}(\beta - \hat{\beta})' \left(\Sigma \otimes (X'X)^{-1}\right)^{-1} (\beta - \hat{\beta})\right)$$

$$\times |\Sigma|^{-T/2} exp\left(-\frac{1}{2} tr \left[\Sigma^{-1} (Y - X\hat{B})' (Y - X\hat{B})\right]\right)$$

$$\times |\Sigma|^{-k/2} exp\left(-\frac{1}{2} (\beta - b)' (\Sigma \otimes W)^{-1} (\beta - b)\right)$$

$$\times |\Sigma|^{-(\alpha + n + 1)/2} exp\left(-\frac{1}{2} tr \left\{\Sigma^{-1}S\right\}\right)$$
(a.4.11.26)

After regrouping, one obtains:

$$\pi(\beta, \Sigma | y) \propto |\Sigma|^{-k/2} exp\left(-\frac{1}{2}\left[(\beta - b)'(\Sigma \otimes W)^{-1}(\beta - b) + (\beta - \hat{\beta})'(\Sigma \otimes (X'X)^{-1})^{-1}(\beta - \hat{\beta})\right]\right) \times |\Sigma|^{-(\alpha + T + n + 1)/2} exp\left(-\frac{1}{2}tr\left\{\Sigma^{-1}\left[S + (Y - X\hat{B})'(Y - X\hat{B})\right]\right\}\right)$$
(a.4.11.27)

Consider the term within the curly brackets in the first row:

$$(\beta - b)'(\Sigma \otimes W)^{-1}(\beta - b) + (\beta - \hat{\beta})'(\Sigma \otimes (X'X)^{-1})^{-1}(\beta - \hat{\beta})$$

$$= tr \left\{ \Sigma^{-1}(\mathcal{B} - B)'W^{-1}(\mathcal{B} - B) \right\} + tr \left\{ \Sigma^{-1}(\mathcal{B} - \hat{B})'(X'X)(\mathcal{B} - \hat{B}) \right\}$$

$$= tr \left\{ \Sigma^{-1} \left[(\mathcal{B} - B)'W^{-1}(\mathcal{B} - B) + (\mathcal{B} - \hat{B})'(X'X)(\mathcal{B} - \hat{B}) \right] \right\}$$

$$= tr \left\{ \Sigma^{-1} \left[(\mathcal{B} - B)'W^{-1}(\mathcal{B} - B) + (\mathcal{B} - \hat{B})'(X'X)(\mathcal{B} - \hat{B}) \right] \right\}$$

$$= tr \left\{ \Sigma^{-1} \left[(\mathcal{B} - B)'W^{-1}(\mathcal{B} - B) + (\mathcal{B} - \hat{B})'(X'X)(\mathcal{B} - \hat{B}) \right] \right\}$$

$$= tr \left\{ \Sigma^{-1} \left[\mathcal{B}'W^{-1}\mathcal{B} + \mathcal{B}'W^{-1}\mathcal{B} - 2\mathcal{B}'W^{-1}\mathcal{B} + \mathcal{B}'(X'X)\mathcal{B} + \hat{\mathcal{B}}'(X'X)\hat{\mathcal{B}} - 2\mathcal{B}'(X'X)\hat{\mathcal{B}} \right] \right\}$$

$$= tr \left\{ \Sigma^{-1} \left[\mathcal{B}'(W^{-1} + X'X)\mathcal{B} - 2\mathcal{B}'(W^{-1}\mathcal{B} + X'X\hat{\mathcal{B}}) + \mathcal{B}'W^{-1}\mathcal{B} + \hat{\mathcal{B}}'(X'X)\hat{\mathcal{B}} \right] \right\}$$
(a.4.11.28)

Complete the squares:

$$= tr \left\{ \Sigma^{-1} \left[\mathcal{B}'(W^{-1} + X'X) \mathcal{B} - 2 \mathcal{B}' \bar{W}^{-1} \bar{W}(W^{-1}B + X'X\hat{B}) + \bar{B}' \bar{W}^{-1} \bar{B} - \bar{B}' \bar{W}^{-1} \bar{B} + B'W^{-1}B + \hat{B}'(X'X)\hat{B} \right] \right\}$$
(a.4.11.29)

Define:

$$\bar{W} = (W^{-1} + X'X)^{-1}$$
 $\bar{B} = \bar{W}(W^{-1}B + X'X\hat{B})$ (a.4.11.30)

then the expression becomes:

$$= tr \left\{ \Sigma^{-1} \left[\mathcal{B}' \bar{W}^{-1} \mathcal{B} - 2 \mathcal{B}' \bar{W}^{-1} \bar{B} + \bar{B}' \bar{W}^{-1} \bar{B} - \bar{B}' \bar{W}^{-1} \bar{B} + B' W^{-1} B + \hat{B}' (X'X) \hat{B} \right] \right\}$$

$$= tr \left\{ \Sigma^{-1} \left[(\mathcal{B}' - \bar{B})' \bar{W}^{-1} (\mathcal{B}' - \bar{B}) - \bar{B}' \bar{W}^{-1} \bar{B} + B' W^{-1} B + \hat{B}' (X'X) \hat{B} \right] \right\}$$

$$= tr \left\{ \Sigma^{-1} (\mathcal{B}' - \bar{B})' \bar{W}^{-1} (\mathcal{B}' - \bar{B}) \right\} + tr \left\{ \Sigma^{-1} \left[B' W^{-1} B + \hat{B}' (X'X) \hat{B} - \bar{B}' \bar{W}^{-1} \bar{B} \right] \right\}$$
(a.4.11.31)

Substituting (a.4.11.31) in (a.4.11.27) yields:

$$\begin{split} \pi(\beta, \Sigma | y) & \propto |\Sigma|^{-k/2} exp \left(-\frac{1}{2} \left[tr \left\{ \Sigma^{-1} (\mathcal{B}' - \bar{B})' \bar{W}^{-1} (\mathcal{B}' - \bar{B}) \right\} + tr \left\{ \Sigma^{-1} \left[B' W^{-1} B + \hat{B}' (X' X) \hat{B} - \bar{B}' \bar{W}^{-1} \bar{B} \right] \right\} \right] \right) \\ & \times |\Sigma|^{-(\alpha + T + n + 1)/2} exp \left(-\frac{1}{2} tr \left\{ \Sigma^{-1} \left[S + (Y - X \hat{B})' (Y - X \hat{B}) \right] \right\} \right) \\ & = |\Sigma|^{-k/2} exp \left(-\frac{1}{2} \left[tr \left\{ \Sigma^{-1} (\mathcal{B}' - \bar{B})' \bar{W}^{-1} (\mathcal{B}' - \bar{B}) \right\} \right] \right) \\ & \times |\Sigma|^{-(\alpha + T + n + 1)/2} exp \left(-\frac{1}{2} tr \left\{ \Sigma^{-1} \left[S + (Y - X \hat{B})' (Y - X \hat{B}) + B' W^{-1} B + \hat{B}' (X' X) \hat{B} - \bar{B}' \bar{W}^{-1} \bar{B} \right] \right\} \right) \end{split}$$

$$(a.4.11.32)$$

Define:

$$\bar{\alpha} = \alpha + T$$
 $\bar{S} = S + (Y - X\hat{B})'(Y - X\hat{B}) + B'W^{-1}B + \hat{B}'(X'X)\hat{B} - \bar{B}'\bar{W}^{-1}\bar{B}$ (a.4.11.33)

Then the expression becomes:

$$\pi(\beta, \Sigma | y) \propto |\Sigma|^{-k/2} exp\left(-\frac{1}{2} \left[tr\left\{ \Sigma^{-1} (\mathcal{B}' - \bar{B})' \bar{V}^{-1} (\mathcal{B}' - \bar{B}) \right\} \right] \right)$$

$$\times |\Sigma|^{-(\bar{\alpha} + n + 1)/2} exp\left(-\frac{1}{2} tr\left\{ \Sigma^{-1} \bar{S} \right\} \right)$$
(a.4.11.34)

Some of the expressions simplify. Consider first (a.4.11.30):

$$\bar{B} = \bar{W}(W^{-1}B + X'X\hat{B}) = \bar{W}(W^{-1}B + X'X(X'X)^{-1}X'Y) = \bar{W}(W^{-1}B + X'Y)$$
(a.4.11.35)

Consider then:

$$(Y - X\hat{B})'(Y - X\hat{B}) + \hat{B}'X'X\hat{B}$$

$$= Y'Y + \hat{B}'X'X\hat{B} - \hat{B}'X'Y - Y'X\hat{B} + \hat{B}'X'X\hat{B}$$

$$= Y'Y + 2\hat{B}'X'X\hat{B} - \hat{B}'X'Y - Y'X\hat{B}$$

$$= Y'Y + 2Y'X(X'X)^{-1}X'X(X'X)^{-1}X'Y - Y'X(X'X)^{-1}X'Y - Y'X(X'X)^{-1}X'Y$$

$$= Y'Y + 2Y'X(X'X)^{-1}X'Y - Y'X(X'X)^{-1}X'Y - Y'X(X'X)^{-1}X'Y$$

$$= Y'Y$$
(a.4.11.36)

Substitute back in (a.4.11.33):

$$\bar{S} = S + Y'Y + B'W^{-1}B - \bar{B}'\bar{W}^{-1}\bar{B}$$
(a.4.11.37)

derivations for equation (4.11.37)

Start from the initial equation and reformulate:

$$\pi(\mathcal{B}|y)$$

$$\approx |\bar{S} + (\mathcal{B}' - \bar{B})'\bar{W}^{-1}(\mathcal{B}' - \bar{B})|^{-\frac{\bar{\alpha} + k}{2}}$$

$$= |\bar{S} \{ I_n + \bar{S}^{-1}(\mathcal{B}' - \bar{B})'\bar{W}^{-1}(\mathcal{B}' - \bar{B}) \}|^{-\frac{\bar{\alpha} + k}{2}}$$

$$= |\bar{S}|^{-\frac{\bar{\alpha} + k}{2}} |I_n + \bar{S}^{-1}(\mathcal{B}' - \bar{B})'\bar{W}^{-1}(\mathcal{B}' - \bar{B})|^{-\frac{\bar{\alpha} + k}{2}}$$

$$= |I_n + \bar{S}^{-1}(\mathcal{B}' - \bar{B})'\bar{W}^{-1}(\mathcal{B}' - \bar{B})|^{-\frac{\bar{\alpha} + T + k}{2}}$$

$$= |I_n + \bar{S}^{-1}(\mathcal{B}' - \bar{B})'\bar{W}^{-1}(\mathcal{B}' - \bar{B})|^{-\frac{\bar{\alpha} + T + k}{2}}$$

$$= |I_n + \bar{S}^{-1}(\mathcal{B}' - \bar{B})'\bar{W}^{-1}(\mathcal{B}' - \bar{B})|^{-\frac{(\bar{\alpha} + T - n + 1) + k + n - 1}{2}}$$

$$= |I_n + \bar{S}^{-1}(\mathcal{B}' - \bar{B})'\bar{W}^{-1}(\mathcal{B}' - \bar{B})|^{-\frac{(\bar{\alpha} + T - n + 1) + k + n - 1}{2}}$$
(a.4.11.38)

Define:

$$\hat{\alpha} = \alpha + T - n + 1 \tag{a.4.11.39}$$

Then:

$$= \left| I_n + \bar{S}^{-1} (\mathcal{B}' - \bar{B})' \bar{W}^{-1} (\mathcal{B}' - \bar{B}) \right|^{-\frac{\hat{\alpha} + k + n - 1}{2}}$$

$$= \left| I_n + \frac{1}{\hat{\alpha}} (\bar{S}/\hat{\alpha})^{-1} (\mathcal{B}' - \bar{B})' \bar{W}^{-1} (\mathcal{B}' - \bar{B}) \right|^{-\frac{\hat{\alpha} + k + n - 1}{2}}$$
(a.4.11.40)

Define:

$$\hat{S} = \bar{S}/\hat{\alpha} \tag{a.4.11.41}$$

Then:

$$\pi(\mathcal{B}|y) \propto \left| I_n + \frac{1}{\hat{\alpha}} \hat{S}^{-1} (\mathcal{B}' - \bar{B})' \bar{W}^{-1} (\mathcal{B}' - \bar{B}) \right|^{-\frac{\hat{\alpha} + k + n - 1}{2}}$$
(a.4.11.42)

derivations for equation (4.11.45)

Note that:

$$|\bar{\Sigma}|^{-1/2} = |\Sigma \otimes I_T|^{-1/2} = |\Sigma|^{-T/2} |I_T|^{-n/2} = |\Sigma|^{-T/2}$$
(a.4.11.43)

Also:

$$(y - \bar{X}\beta)'\bar{\Sigma}^{-1}(y - \bar{X}\beta) = (y - (I_n \otimes X)\beta)'(\Sigma \otimes I_T)^{-1}(y - (I_n \otimes X)\beta) = tr\left\{\Sigma^{-1}(Y - X\beta)'(Y - X\beta)\right\}$$
(a.4.11.44)

Then substituting in the original expression:

$$\begin{split} \pi(\Sigma|y,\beta) & \propto |\Sigma|^{-T/2} exp\left(-\frac{1}{2} tr\left\{\Sigma^{-1} (Y-X\mathcal{B})'(Y-X\mathcal{B})\right\}\right) \times |\Sigma|^{-(\alpha+n+1)/2} exp\left(-\frac{1}{2} tr\left\{\Sigma^{-1} S\right\}\right) \\ & = |\Sigma|^{-(\alpha+T+n+1)/2} \ exp\left(-\frac{1}{2} tr\left\{\Sigma^{-1} \left[S+(Y-X\mathcal{B})'(Y-X\mathcal{B})\right]\right\}\right) \\ & = |\Sigma|^{-(\bar{\alpha}+n+1)/2} \ exp\left(-\frac{1}{2} tr\left\{\Sigma^{-1} \bar{S}\right\}\right) \end{split} \tag{a.4.11.45}$$

with:

$$\bar{\alpha} = \alpha + T \qquad \qquad \bar{S} = S + (Y - X \mathcal{B})'(Y - X \mathcal{B}) \tag{a.4.11.46}$$

derivations for equation (4.11.49)

Start from Bayes rule and rearrange:

$$\pi(\beta, \Sigma|y)$$

$$\approx f(y|\beta, \Sigma)\pi(\beta)\pi(\Sigma)$$

$$\approx |\Sigma|^{-T/2}exp\left(-\frac{1}{2}(\beta-\hat{\beta})'(\Sigma\otimes(X'X)^{-1})^{-1}(\beta-\hat{\beta})\right)$$

$$\times exp\left(-\frac{1}{2}tr\left[\Sigma^{-1}(Y-X\hat{B})'(Y-X\hat{B})\right]\right)\times|\Sigma|^{-(\alpha+1)/2}$$

$$=|\Sigma|^{-k/2}exp\left(-\frac{1}{2}(\beta-\hat{\beta})'(\Sigma\otimes(X'X)^{-1})^{-1}(\beta-\hat{\beta})\right)$$

$$\times|\Sigma|^{-(T-k+\alpha+1)/2}exp\left(-\frac{1}{2}tr\left[\Sigma^{-1}(Y-X\hat{B})'(Y-X\hat{B})\right]\right)$$

$$=|\Sigma|^{-k/2}exp\left(-\frac{1}{2}tr\left\{\Sigma^{-1}(\beta'-\hat{B})'(X'X)(\beta'-\hat{B})\right\}\right)$$

$$\times|\Sigma|^{-(T-k+n+3)/2}exp\left(-\frac{1}{2}tr\left\{\Sigma^{-1}(Y-X\hat{B})'(Y-X\hat{B})\right\}\right)$$

$$=|\Sigma|^{-k/2}exp\left(-\frac{1}{2}tr\left\{\Sigma^{-1}(\beta'-\hat{B})'\hat{W}^{-1}(\beta'-\hat{B})\right\}\right)$$

$$\times|\Sigma|^{-(\hat{\alpha}+n+1)/2}exp\left(-\frac{1}{2}tr\left\{\Sigma^{-1}(\beta'-\hat{B})'\hat{W}^{-1}(\beta'-\hat{B})\right\}\right)$$

$$\times|\Sigma|^{-(\hat{\alpha}+n+1)/2}exp\left(-\frac{1}{2}tr\left\{\Sigma^{-1}(\beta'-\hat{B})'\hat{W}^{-1}(\beta'-\hat{B})\right\}\right)$$
(a.4.11.47)

with:

$$\hat{W} = (X'X)^{-1} \qquad \hat{\alpha} = T - k + 2 \qquad \hat{S} = (Y - X\hat{B})'(Y - X\hat{B})$$
(a.4.11.48)

derivations for equation (4.11.52)

Start from the joint posterior, group the terms and integrate:

$$\pi(\mathcal{B}|\mathbf{y}) = \int \pi(\mathcal{B}, \Sigma|\mathbf{y}) d\Sigma \propto \int |\Sigma|^{-(\hat{\alpha}+k+n+1)/2} \exp\left(-\frac{1}{2} \operatorname{tr}\left\{\Sigma^{-1}\left[\hat{S} + (\mathcal{B}' - \hat{B})'\hat{W}^{-1}(\mathcal{B}' - \hat{B})\right]\right\}\right) d\Sigma$$
(a.4.11.49)

This is the kernel of an inverse Wishart distribution with degrees of freedom $(\hat{\alpha} + k)$ and scale $\hat{S} + (\mathcal{B}' - \hat{B})'\hat{W}^{-1}(\mathcal{B}' - \hat{B})$, and integration yields the reciprocal of the normalization constant of the distribution. Hence:

$$\pi(\mathcal{B}|y) \propto \Gamma_n \left(\frac{\hat{\alpha}+k}{2}\right) 2^{(\hat{\alpha}+k)n/2} \left|\hat{S} + (\mathcal{B}' - \hat{B})'\hat{W}^{-1}(\mathcal{B}' - \hat{B})\right|^{-\frac{\hat{\alpha}+k}{2}} \propto \left|\hat{S} + (\mathcal{B}' - \hat{B})'\hat{W}^{-1}(\mathcal{B}' - \hat{B})\right|^{-\frac{\hat{\alpha}+k}{2}}$$
(a.4.11.50)

Rearrange:

$$\pi(\mathcal{B}|y)$$

$$\propto |\hat{S} + (\mathcal{B}' - \hat{B})'\hat{W}^{-1}(\mathcal{B}' - \hat{B})|^{-\frac{\hat{\alpha}+k}{2}}$$

$$= |\hat{S}\{I_n + \hat{S}^{-1}(\mathcal{B}' - \hat{B})'\hat{W}^{-1}(\mathcal{B}' - \hat{B})\}|^{-\frac{\hat{\alpha}+k}{2}}$$

$$= |\hat{S}|^{-\frac{\hat{\alpha}+k}{2}}|I_n + \hat{S}^{-1}(\mathcal{B}' - \hat{B})'\hat{W}^{-1}(\mathcal{B}' - \hat{B})|^{-\frac{\hat{\alpha}+k}{2}}$$

$$= |I_n + \hat{S}^{-1}(\mathcal{B}' - \hat{B})'\hat{W}^{-1}(\mathcal{B}' - \hat{B})|^{-\frac{\hat{\alpha}+k}{2}}$$

$$= |I_n + \hat{S}^{-1}(\mathcal{B}' - \hat{B})'\hat{W}^{-1}(\mathcal{B}' - \hat{B})|^{-\frac{T+2}{2}}$$

$$= |I_n + \hat{S}^{-1}(\mathcal{B}' - \hat{B})'\hat{W}^{-1}(\mathcal{B}' - \hat{B})|^{-\frac{(T-n-k+3)+k+n-1}{2}}$$

$$= |I_n + \hat{S}^{-1}(\mathcal{B}' - \hat{B})'\hat{W}^{-1}(\mathcal{B}' - \hat{B})|^{-\frac{(T-n-k+3)+k+n-1}{2}}$$
(a.4.11.51)

Define:

$$\tilde{\alpha} = T - n - k + 3 \tag{a.4.11.52}$$

Then:

$$= \left| I_n + \hat{S}^{-1} (\mathcal{B}' - \hat{B})' \hat{W}^{-1} (\mathcal{B}' - \hat{B}) \right|^{-\frac{\tilde{\alpha} + k + n - 1}{2}}$$

$$= \left| I_n + \frac{1}{\tilde{\alpha}} (\hat{S}/\tilde{\alpha})^{-1} (\mathcal{B}' - \hat{B})' \hat{W}^{-1} (\mathcal{B}' - \hat{B}) \right|^{-\frac{\tilde{\alpha} + k + n - 1}{2}}$$
(a.4.11.53)

Define:

$$\tilde{S} = \hat{S}/\tilde{\alpha} \tag{a.4.11.54}$$

Then:

$$\pi(\mathcal{B}|y) \propto \left| I_n + \frac{1}{\tilde{\alpha}} \tilde{S}^{-1} (\mathcal{B}' - \hat{B})' \hat{W}^{-1} (\mathcal{B}' - \hat{B}) \right|^{-\frac{\tilde{\alpha} + k + n - 1}{2}}$$
(a.4.11.55)

derivations for equation (4.11.68)

Start from the original likelihood function:

$$f(y|\beta,\Sigma) = (2\pi)^{-nT/2}|\bar{\Sigma}|^{-1/2} exp\left(-\frac{1}{2}(y-\bar{X}\beta)'\bar{\Sigma}^{-1}(y-\bar{X}\beta)\right)$$
 (a.4.11.56)

Consider first the determinant term in (a.4.11.56) and rearrange:

$$|\bar{\Sigma}|^{-1/2}$$

$$= |\Sigma \otimes I_{T}|^{-1/2}$$

$$= |\Sigma|^{-T/2} |I_{T}|^{-k/2}$$

$$= |\Sigma|^{-T/2}$$

$$= |\Phi^{-1} \wedge \Phi^{-1'}|^{-T/2}$$

$$= |\Phi^{-1}|^{-T/2} |\Lambda|^{-T/2} |\Phi^{-1'}|^{-T/2}$$

$$= |\Phi|^{T/2} |\Lambda|^{-T/2} |\Phi'|^{T/2}$$

$$= |\Lambda|^{-T/2}$$

$$= |\Lambda|^{-T/2}$$

$$= \prod_{i=1}^{n} \lambda_{i}^{-T/2}$$
(a.4.11.57)

Consider then the quadratic form in (a.4.11.56):

$$(y - \bar{X}\beta)'\bar{\Sigma}^{-1}(y - \bar{X}\beta)$$

$$= (y - (I_n \otimes X)\beta)'(\Sigma \otimes I_T)^{-1}(y - (I_n \otimes X)\beta)$$

$$= tr \left[\Sigma^{-1}(Y - X\beta)'I_T^{-1}(Y - X\beta)\right]$$

$$= tr \left[\Sigma^{-1}(Y - X\beta)'(Y - X\beta)\right]$$

$$= tr \left[\Sigma^{-1}\mathcal{E}'\mathcal{E}\right]$$

$$= tr \left[\mathcal{E}\Sigma^{-1}\mathcal{E}'\right]$$

$$= tr \left[\begin{cases} \varepsilon_1'\Sigma^{-1}\varepsilon_1 & \varepsilon_1'\Sigma^{-1}\varepsilon_2 & \cdots & \varepsilon_1'\Sigma^{-1}\varepsilon_T \\ \varepsilon_2'\Sigma^{-1}\varepsilon_1 & \varepsilon_2'\Sigma^{-1}\varepsilon_2 & \cdots & \varepsilon_2'\Sigma^{-1}\varepsilon_T \\ \vdots & \vdots & \ddots & \vdots \\ \varepsilon_T'\Sigma^{-1}\varepsilon_1 & \varepsilon_1'\Sigma^{-1}\varepsilon_2 & \cdots & \varepsilon_T'\Sigma^{-1}\varepsilon_T \end{cases}\right]$$

$$= \sum_{l=1}^T \varepsilon_l'\Sigma^{-1}\varepsilon_l$$

$$= \sum_{l=1}^T \varepsilon_l'(\Phi^{-1}\Lambda\Phi^{-1})^{-1}\varepsilon_l$$

$$= \sum_{l=1}^T \varepsilon_l'(\Phi^{-1}\Lambda\Phi^{-1})^{-1}\varepsilon_l$$

$$= \sum_{l=1}^T (\Phi\varepsilon_l)'\Lambda^{-1}(\Phi\varepsilon_l)$$
(a.4.11.58)

Consider the first term in the quadratic form:

$$\Phi \, \varepsilon_{t} = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
\phi_{21} & 1 & \ddots & \cdots \\
\vdots & \ddots & \ddots & 0 \\
\phi_{n1} & \cdots & \phi_{n(n-1)} & 1
\end{pmatrix} \begin{pmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \\ \vdots \\ \varepsilon_{n,t} \end{pmatrix}$$

$$= \begin{pmatrix}
\varepsilon_{1,t} \\
\phi_{2}\varepsilon_{-2,t} + \varepsilon_{2,t} \\
\vdots \\
\phi_{n}\varepsilon_{-n,t} + \varepsilon_{n,t}
\end{pmatrix} (a.4.11.59)$$

with:

$$\varepsilon_{-i,t} = (\varepsilon_{1,t} \ \varepsilon_{2,t} \ \cdots \ \varepsilon_{i-1,t})' \tag{a.4.11.60}$$

Substitute (a.4.11.59) back in the quadratic form (a.4.11.58):

$$(\Phi \varepsilon_t)' \Lambda^{-1}(\Phi \varepsilon_t)$$

$$(\varepsilon_{1,t}, \phi_2 \varepsilon_{1,t} + \varepsilon_{2,t}, \dots, \phi_r \varepsilon_{r-t} + \varepsilon_{r-t}) \begin{pmatrix} \lambda_1^{-1} & 0 & \cdots & 0 \\ 0 & \lambda_2^{-1} & \ddots & \vdots \end{pmatrix} \begin{pmatrix} \varepsilon_{1,t} \\ \phi_2 \varepsilon_{-2,t} + \varepsilon_{2,t} & \cdots & \varepsilon_{r-t} \end{pmatrix}$$

$$= (\varepsilon_{1,t} \quad \phi_2 \varepsilon_{-2,t} + \varepsilon_{2,t} \quad \cdots \quad \phi_n \varepsilon_{-n,t} + \varepsilon_{n,t}) \begin{pmatrix} \lambda_1^{-1} & 0 & \cdots & 0 \\ 0 & \lambda_2^{-1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n^{-1} \end{pmatrix} \begin{pmatrix} \varepsilon_{1,t} \\ \phi_2 \varepsilon_{-2,t} + \varepsilon_{2,t} \\ \vdots \\ \phi_n \varepsilon_{-n,t} + \varepsilon_{n,t} \end{pmatrix}$$

$$= \left(\lambda_{1}^{-1} \varepsilon_{1,t} \ \lambda_{2}^{-1}(\phi_{2}\varepsilon_{-2,t} + \varepsilon_{2,t}) \ \cdots \ \lambda_{n}^{-1}(\phi_{n}\varepsilon_{-n,t} + \varepsilon_{n,t})\right) \begin{pmatrix} \varepsilon_{1,t} \\ \phi_{2}\varepsilon_{-2,t} + \varepsilon_{2,t} \\ \vdots \\ \phi_{n}\varepsilon_{-n,t} + \varepsilon_{n,t} \end{pmatrix}$$

$$=\sum_{i=1}^{n}\lambda_{i}^{-1}(\varepsilon_{i,t}+\phi_{i}\varepsilon_{-i,t})^{2}$$
(a.4.11.61)

Substitute (a.4.11.61) back in (a.4.11.58) to obtain:

$$\sum_{t=1}^{T} (\Phi \varepsilon_{t})' \Lambda^{-1} (\Phi \varepsilon_{t})$$

$$= \sum_{t=1}^{T} \sum_{i=1}^{n} \lambda_{i}^{-1} (\varepsilon_{i,t} + \phi_{i} \varepsilon_{-i,t})^{2}$$

$$= \sum_{i=1}^{n} \lambda_{i}^{-1} \left(\sum_{t=1}^{T} (\varepsilon_{i,t} + \phi_{i} \varepsilon_{-i,t})^{2} \right)$$
(a.4.11.62)

Then, note that:

$$\sum_{t=1}^{T} (\varepsilon_{i,t} + \phi_i \varepsilon_{-i,t})^2$$

$$= (\varepsilon_{i,1} + \phi_{i}' \varepsilon_{-i,1} \quad \varepsilon_{i,2} + \phi_{i}' \varepsilon_{-i,2} \quad \cdots \quad \varepsilon_{i,T} + \phi_{i}' \varepsilon_{-i,T}) \begin{pmatrix} \varepsilon_{i,1} + \phi_{i}' \varepsilon_{-i,1} \\ \varepsilon_{i,2} + \phi_{i}' \varepsilon_{-i,2} \\ \vdots \\ \varepsilon_{i,T} + \phi_{i}' \varepsilon_{-i,T} \end{pmatrix}$$

$$= (\varepsilon_{i,1} + \varepsilon_{-i,1}' \phi_{i} \quad \varepsilon_{i,2} + \varepsilon_{-i,2}' \phi_{i} \quad \cdots \quad \varepsilon_{i,T} + \varepsilon_{-i,T}' \phi_{i}) \begin{pmatrix} \varepsilon_{i,1} + \varepsilon_{-i,1}' \phi_{i} \\ \varepsilon_{i,2} + \varepsilon_{-i,2}' \phi_{i} \\ \vdots \\ \varepsilon_{i,T} + \varepsilon_{-i,T}' \phi_{i} \end{pmatrix}$$

$$\vdots$$

$$\varepsilon_{i,T} + \varepsilon_{-i,T}' \phi_{i}$$

$$= egin{array}{ccccc} (arepsilon_{i,1} + arepsilon_{-i,1}' \phi_i & arepsilon_{i,2} + arepsilon_{-i,2}' \phi_i & \cdots & arepsilon_{i,T} + arepsilon_{-i,T}' \phi_i) \end{array} egin{array}{cccc} arepsilon_{i,1} + arepsilon_{-i,1}' \phi_i \ arepsilon_{i,2} + arepsilon_{-i,2}' \phi_i \ dots \ arepsilon_{i,T} + arepsilon_{-i,T}' \phi_i \end{pmatrix}$$

$$= (\mathcal{E}_i + \mathcal{E}_{-i}\phi_i)'(\mathcal{E}_i + \mathcal{E}_{-i}\phi_i) \tag{a.4.11.63}$$

with:

$$\mathcal{E}_{-i} = (\mathcal{E}_1 \ \mathcal{E}_2 \cdots \mathcal{E}_{i-1}) \tag{a.4.11.64}$$

Also, noting that $\mathcal{E}_i = Y_i - X\beta_i$:

$$\sum_{t=1}^{T} (\varepsilon_{i,t} + \phi_i \varepsilon_{-i,t})^2 = (Y_i - X\beta_i + \varepsilon_{-i}\phi_i)'(Y_i - X\beta_i + \varepsilon_{-i}\phi_i)$$
(a.4.11.65)

Substitute (a.4.11.65) back in (a.4.11.62):

$$\sum_{t=1}^{T} (\Phi \varepsilon_t)' \Lambda^{-1}(\Phi \varepsilon_t) = \sum_{i=1}^{n} \lambda_i^{-1} (Y_i - X\beta_i + \mathcal{E}_{-i} \phi_i)' (Y_i - X\beta_i + \mathcal{E}_{-i} \phi_i)$$
 (a.4.11.66)

Therefore, substituting (a.4.11.66) back in (a.4.11.58):

$$(y - \bar{X}\beta)'\bar{\Sigma}^{-1}(y - \bar{X}\beta) = \sum_{i=1}^{n} \lambda_{i}^{-1} (Y_{i} - X\beta_{i} + \mathcal{E}_{-i}\phi_{i})'(Y_{i} - X\beta_{i} + \mathcal{E}_{-i}\phi_{i})$$
(a.4.11.67)

Finally, replacing (a.4.11.57) and (a.4.11.67) in (a.4.11.56) yields:

$$f(y|\beta,\lambda,\phi) = (2\pi)^{-nT/2} \left(\prod_{i=1}^{n} \lambda_{i}^{-T/2} \right) exp\left(-\frac{1}{2} \sum_{i=1}^{n} \lambda_{i}^{-1} (Y_{i} - X\beta_{i} + \mathcal{E}_{-i}\phi_{i})'(Y_{i} - X\beta_{i} + \mathcal{E}_{-i}\phi_{i}) \right)$$
(a.4.11.68)

derivations for equation (4.11.75)

Start from:

$$\pi(\beta_{i}|y,\beta_{-i}) \propto exp\left(-\frac{1}{2}\lambda_{i}^{-1}(Y_{i} - X\beta_{i} + \mathcal{E}_{-i}\phi_{i})'(Y_{i} - X\beta_{i} + \mathcal{E}_{-i}\phi_{i})\right) \times exp\left(-\frac{1}{2}(\beta_{i} - b_{i})'V_{i}^{-1}(\beta_{i} - b_{i})\right)$$
(a.4.11.69)

Develop the first quadratic form:

$$(Y_{i} - X\beta_{i} + \mathcal{E}_{-i}\phi_{i})'(Y_{i} - X\beta_{i} + \mathcal{E}_{-i}\phi_{i})$$

$$= Y_{i}'Y_{i} + \beta_{i}'X'X\beta_{i} + \phi_{i}'\mathcal{E}'_{-i}\mathcal{E}_{-i}\phi_{i} - 2\beta_{i}'X'(Y_{i} + \mathcal{E}_{-i}\phi_{i}) + 2Y_{i}'\mathcal{E}_{-i}\phi_{i}$$
(a.4.11.70)

Develop the second gudratic form:

$$(\beta_i - b_i)' V_i^{-1} (\beta_i - b_i)$$

$$= \beta_i' V_i^{-1} \beta_i + b_i' V_i^{-1} b_i - 2\beta_i' V_i^{-1} b_i$$
(a.4.11.71)

Substitute (a.4.11.70) and (a.4.11.71) back in (a.4.11.69) to obtain:

$$\pi(\beta_{i}|y,\beta_{-i})$$

$$\approx exp\left(-\frac{1}{2}\lambda_{i}^{-1}\left(Y_{i}'Y_{i}+\beta_{i}'X'X\beta_{i}+\phi_{i}'\mathcal{E}_{-i}'\mathcal{E}_{-i}\phi_{i}-2\beta_{i}'X'(Y_{i}+\mathcal{E}_{-i}\phi_{i})+2Y_{i}'\mathcal{E}_{-i}\phi_{i}\right)\right)$$

$$\times exp\left(-\frac{1}{2}\left(\beta_{i}'V_{i}^{-1}\beta_{i}+b_{i}'V_{i}^{-1}b_{i}-2\beta_{i}'V_{i}^{-1}b_{i}\right)\right)$$

$$= exp\left(-\frac{1}{2}\left(\lambda_{i}^{-1}\beta_{i}'X'X\beta_{i}-2\lambda_{i}^{-1}\beta_{i}'X'(Y_{i}+\mathcal{E}_{-i}\phi_{i})+\beta_{i}'V_{i}^{-1}\beta_{i}-2\beta_{i}'V_{i}^{-1}b_{i}\right)\right)$$

$$\times exp\left(-\frac{1}{2}\left(\lambda_{i}^{-1}Y_{i}'Y_{i}+\lambda_{i}^{-1}\phi_{i}'\mathcal{E}_{-i}'\mathcal{E}_{-i}\phi_{i}+2\lambda_{i}^{-1}Y_{i}'\mathcal{E}_{-i}\phi_{i}+b_{i}'V_{i}^{-1}b_{i}\right)\right)$$

$$\approx exp\left(-\frac{1}{2}\left(\lambda_{i}^{-1}\beta_{i}'X'X\beta_{i}-2\lambda_{i}^{-1}\beta_{i}'X'(Y_{i}+\mathcal{E}_{-i}\phi_{i})+\beta_{i}'V_{i}^{-1}\beta_{i}-2\beta_{i}'V_{i}^{-1}b_{i}\right)\right)$$

$$\approx exp\left(-\frac{1}{2}\left[\beta_{i}'(\lambda_{i}^{-1}X'X+V_{i}^{-1})\beta_{i}-2\beta_{i}'(V_{i}^{-1}b_{i}+\lambda_{i}^{-1}X'[Y_{i}+\mathcal{E}_{-i}\phi_{i}])\right]\right)$$
(a.4.11.72)

Consider the term within the square brackets and complete the squares:

$$\beta_{i}'(\lambda_{i}^{-1}X'X + V_{i}^{-1})\beta_{i} - 2\beta_{i}'(V_{i}^{-1}b_{i} + \lambda_{i}^{-1}X'[Y_{i} + \mathcal{E}_{-i}\phi_{i}])$$

$$= \beta_{i}'(\lambda_{i}^{-1}X'X + V_{i}^{-1})\beta_{i} - 2\beta_{i}'\bar{V}_{i}^{-1}\bar{V}_{i}(V_{i}^{-1}b_{i} + \lambda_{i}^{-1}X'[Y_{i} + \mathcal{E}_{-i}\phi_{i}]) + \bar{b}_{i}'\bar{V}_{i}^{-1}\bar{b}_{i} - \bar{b}_{i}'\bar{V}_{i}^{-1}\bar{b}_{i}$$
(a.4.11.73)

Define:

$$\bar{V}_i = (\lambda_i^{-1} X' X + V_i^{-1})^{-1} \qquad \bar{b}_i = \bar{V}_i (V_i^{-1} b_i + \lambda_i^{-1} X' [Y_i + \mathcal{E}_{-i} \phi_i]) \qquad (a.4.11.74)$$

Then (a.4.11.73) rewrites:

$$\beta_{i}'(\lambda_{i}^{-1}X'X + V_{i}^{-1})\beta_{i} - 2\beta_{i}'(V_{i}^{-1}b_{i} + \lambda_{i}^{-1}X'[Y_{i} + \mathcal{E}_{-i}\phi_{i}])$$

$$= \beta_{i}'\bar{V}_{i}^{-1}\beta_{i} - 2\beta_{i}'\bar{V}_{i}^{-1}\bar{b}_{i} + \bar{b}_{i}'\bar{V}_{i}^{-1}\bar{b}_{i} - \bar{b}_{i}'\bar{V}_{i}^{-1}\bar{b}_{i}$$

$$= (\beta_{i} - \bar{b}_{i})'\bar{V}_{i}^{-1}(\beta_{i} - \bar{b}_{i}) - \bar{b}_{i}'\bar{V}_{i}^{-1}\bar{b}_{i}$$
(a.4.11.75)

Substitute (a.4.11.75) back in (a.4.11.72) to obtain:

$$\pi(\beta_{i}|y,\beta_{-i})$$

$$\propto exp\left(-\frac{1}{2}\left[(\beta_{i}-\bar{b}_{i})'\bar{V}_{i}^{-1}(\beta_{i}-\bar{b}_{i})-\bar{b}_{i}'\bar{V}_{i}^{-1}\bar{b}_{i}\right]\right)$$

$$= exp\left(-\frac{1}{2}(\beta_{i}-\bar{b}_{i})'\bar{V}_{i}^{-1}(\beta_{i}-\bar{b}_{i})\right) exp\left(-\frac{1}{2}(-\bar{b}_{i}'\bar{V}_{i}^{-1}\bar{b}_{i})\right)$$

$$\propto exp\left(-\frac{1}{2}(\beta_{i}-\bar{b}_{i})'\bar{V}_{i}^{-1}(\beta_{i}-\bar{b}_{i})\right)$$
(a.4.11.76)

derivations for equation (4.11.81)

Rearrange the initial formula:

$$\pi(\phi_{i}|y,\phi_{-i})$$

$$\propto exp\left(-\frac{1}{2}\lambda_{i}^{-1}(Y_{i}-X\beta_{i}+\mathcal{E}_{-i}\phi_{i})'(Y_{i}-X\beta_{i}+\mathcal{E}_{-i}\phi_{i})\right)\times \exp\left(-\frac{1}{2}\tau^{-1}\phi_{i}'\phi_{i}\right)$$

$$= exp\left(-\frac{1}{2}\left[\lambda_{i}^{-1}(Y_{i}-X\beta_{i}+\mathcal{E}_{-i}\phi_{i})'(Y_{i}-X\beta_{i}+\mathcal{E}_{-i}\phi_{i})+\tau^{-1}\phi_{i}'\phi_{i}\right]\right)$$
(a.4.11.77)

Consider the term within the square brackets:

$$\lambda_{i}^{-1}(Y_{i} - X\beta_{i} + \mathcal{E}_{-i}\phi_{i})'(Y_{i} - X\beta_{i} + \mathcal{E}_{-i}\phi_{i}) + \tau^{-1}\phi_{i}'\phi_{i}$$

$$= \lambda_{i}^{-1}(Y_{i}'Y_{i} + \beta_{i}'X'X\beta_{i} + \phi_{i}'\mathcal{E}'_{-i}\mathcal{E}_{-i}\phi_{i} + 2\phi_{i}'\mathcal{E}'_{-i}[Y_{i} - X\beta_{i}] - 2Y_{i}'X\beta_{i}) + \tau^{-1}\phi_{i}'\phi_{i}$$

$$= \lambda_{i}^{-1}(Y_{i}'Y_{i} + \beta_{i}'X'X\beta_{i} + \phi_{i}'\mathcal{E}'_{-i}\mathcal{E}_{-i}\phi_{i} - 2\phi_{i}'(-\mathcal{E}'_{-i}[Y_{i} - X\beta_{i}]) - 2Y_{i}'X\beta_{i}) + \tau^{-1}\phi_{i}'\phi_{i}$$

$$= \phi_{i}'(\tau^{-1}I_{i-1} + \lambda_{i}^{-1}\mathcal{E}'_{-i}\mathcal{E}_{-i})\phi_{i} - 2\phi_{i}'(-\lambda_{i}^{-1}\mathcal{E}'_{-i}[Y_{i} - X\beta_{i}]) + \lambda_{i}^{-1}(Y_{i}'Y_{i} + \beta_{i}'X'X\beta_{i} - 2Y_{i}'X\beta_{i}) \quad (a.4.11.78)$$

Complete the squares:

$$= \phi_{i}'(\tau^{-1}I_{i-1} + \lambda_{i}^{-1}\mathcal{E}'_{-i}\mathcal{E}_{-i})\phi_{i} - 2\phi_{i}'\bar{Z}_{i}^{-1}\bar{Z}_{i}(-\lambda_{i}^{-1}\mathcal{E}'_{-i}[Y_{i} - X\beta_{i}]) + \lambda_{i}^{-1}(Y_{i}'Y_{i} + \beta_{i}'X'X\beta_{i} - 2Y_{i}'X\beta_{i}) + \bar{f}'_{i}\bar{Z}_{i}^{-1}\bar{f}_{i} - \bar{f}'_{i}\bar{Z}_{i}^{-1}\bar{f}_{i}$$
(a.4.11.79)

Define:

$$\bar{Z}_i = (\tau^{-1}I_{i-1} + \lambda_i^{-1} \mathcal{E}'_{-i} \mathcal{E}_{-i})^{-1} \qquad \bar{f}_i = \bar{Z}_i(-\lambda_i^{-1} \mathcal{E}'_{-i} [Y_i - X\beta_i])$$
(a.4.11.80)

Then (a.4.11.79) rewrites:

$$= \phi_{i}' \bar{Z}_{i}^{-1} \phi_{i} - 2 \phi_{i}' \bar{Z}_{i}^{-1} \bar{f}_{i} + \bar{f}_{i}' \bar{Z}_{i}^{-1} \bar{f}_{i} + \lambda_{i}^{-1} (Y_{i}' Y_{i} + \beta_{i}' X' X \beta_{i} - 2 Y_{i}' X \beta_{i}) - \bar{f}_{i}' \bar{Z}_{i}^{-1} \bar{f}_{i}$$

$$= (\phi_{i} - \bar{f}_{i})' \bar{Z}_{i}^{-1} (\phi_{i} - \bar{f}_{i}) + \lambda_{i}^{-1} (Y_{i}' Y_{i} + \beta_{i}' X' X \beta_{i} - 2 Y_{i}' X \beta_{i}) - \bar{f}_{i}' \bar{Z}_{i}^{-1} \bar{f}_{i}$$
(a.4.11.81)

Substitute (a.4.11.81) back in (a.4.11.77):

$$\pi(\phi_{i}|y,\phi_{-i})$$

$$\approx exp\left(-\frac{1}{2}\left[(\phi_{i}-\bar{f}_{i})'\bar{Z}_{i}^{-1}(\phi_{i}-\bar{f}_{i})+\lambda_{i}^{-1}(Y_{i}'Y_{i}+\beta_{i}'X'X\beta_{i}-2Y_{i}'X\beta_{i})-\bar{f}_{i}'\bar{Z}_{i}^{-1}\bar{f}_{i}\right]\right)$$

$$= exp\left(-\frac{1}{2}(\phi_{i}-\bar{f}_{i})'\bar{Z}_{i}^{-1}(\phi_{i}-\bar{f}_{i})\right)exp\left(-\frac{1}{2}\left[\lambda_{i}^{-1}(Y_{i}'Y_{i}+\beta_{i}'X'X\beta_{i}-2Y_{i}'X\beta_{i})-\bar{f}_{i}'\bar{Z}_{i}^{-1}\bar{f}_{i}\right]\right)$$

$$\approx exp\left(-\frac{1}{2}(\phi_{i}-\bar{f}_{i})'\bar{Z}_{i}^{-1}(\phi_{i}-\bar{f}_{i})\right)$$
(a.4.11.82)

Eventually, notice that:

$$\bar{f}_i = \bar{Z}_i(-\lambda_i^{-1} \mathcal{E}'_{-i}[Y_i - X\beta_i]) = \bar{Z}_i(-\lambda_i^{-1} \mathcal{E}'_{-i} \mathcal{E}_i)$$
(a.4.11.83)

Further aspects of Bayesian vector autoregressions

derivations for equation (4.12.3)

Consider the general VAR model and reformulate it:

$$y_{t} = Cz_{t} + A_{1}y_{t-1} + \dots + A_{p}y_{t-p} + \varepsilon_{t}$$

$$\Leftrightarrow y_{t} - y_{t-1} = Cz_{t} + A_{1}y_{t-1} + \dots + A_{p}y_{t-p} - y_{t-1} + \varepsilon_{t}$$

$$\Leftrightarrow \Delta y_{t} = Cz_{t} + \sum_{i=1}^{p} A_{i}y_{t-i} - y_{t-1} + \varepsilon_{t}$$

$$\Leftrightarrow \Delta y_{t} = Cz_{t} + \sum_{i=1}^{p} \left(A_{i}y_{t-i} + \sum_{j=i+1}^{p} A_{j}y_{t-i} - \sum_{j=i+1}^{p} A_{j}y_{t-i} \right) - y_{t-1} + \varepsilon_{t}$$

$$\Leftrightarrow \Delta y_{t} = Cz_{t} + \left(\sum_{i=1}^{p} A_{i} - I \right) y_{t-1} - \sum_{i=1}^{p-1} \left(\sum_{j=i+1}^{p} A_{j} \right) (y_{t-i} - y_{t-i-1}) + \varepsilon_{t}$$

$$\Leftrightarrow \Delta y_{t} = Cz_{t} + \left(\sum_{i=1}^{p} A_{i} - I \right) y_{t-1} + \sum_{i=1}^{p-1} B_{i} \Delta y_{t-i} + \varepsilon_{t}$$

$$(a.4.12.1)$$

with:

$$B_i = -\sum_{j=i+1}^{p} A_j \tag{a.4.12.2}$$

derivations for equation (4.12.17)

Start from:

$$Y_{lrp} = X_{lrp} \mathcal{B} + \mathcal{E}_{lrp}$$

$$\Leftrightarrow Y_{lrp} = (0_{n \times m} \quad \mathbf{1}'_{p} \otimes Y_{lrp}) \begin{pmatrix} C' \\ A'_{1} \\ \vdots \\ A'_{p} \end{pmatrix} + \mathcal{E}_{lrp}$$

$$\Leftrightarrow Y_{lrp} = Y_{lrp}A'_{1} + \dots + Y_{lrp}A'_{p} + \mathcal{E}_{lrp}$$

$$\Leftrightarrow Y'_{lrp} = A_{1}Y'_{lrp} + \dots + A_{p}Y'_{lrp} + \mathcal{E}'_{lrp}$$

$$\Leftrightarrow (A_1 + \dots + A_p - I)Y'_{lrp} = -\mathcal{E}'_{lrp}$$

$$\Leftrightarrow (A_1 + \dots + A_p - I) \left[diag(H \, \bar{y}/\pi_7) \, H^{-1\prime} \right]' = -\mathcal{E}'_{lrp}$$

$$\Leftrightarrow (A_1 + \dots + A_p - I)H^{-1} \operatorname{diag}(H\bar{y}/\pi_7) = -\mathcal{E}'_{lrp}$$

$$\Leftrightarrow (A_1 + \dots + A_p - I)H^{-1} = -\operatorname{diag}(\pi_7/H\bar{y}) \ \mathcal{E}'_{lrp}$$
 (a.4.12.3)

derivations for equation (4.12.20)

Focus on the term within the integral and rearrange:

$$(2\pi)^{-nT/2}|\bar{\Sigma}|^{-1/2}exp\left(-\frac{1}{2}(y-\bar{X}\beta)'\bar{\Sigma}^{-1}(y-\bar{X}\beta)\right)\times(2\pi)^{-q/2}|V|^{-1/2}\exp\left(-\frac{1}{2}(\beta-b)'V^{-1}(\beta-b)\right)$$

$$=(2\pi)^{-nT/2}|\bar{\Sigma}|^{-1/2}(2\pi)^{-q/2}|V|^{-1/2}exp\left(-\frac{1}{2}\left[(y-\bar{X}\beta)'\bar{\Sigma}^{-1}(y-\bar{X}\beta)+(\beta-b)'V^{-1}(\beta-b)\right]\right)$$
(a.4.12.4)

Also:

$$|\bar{\Sigma}|^{-1/2} = |\Sigma \otimes I_T|^{-1/2} = |\Sigma|^{-T/2} |I_T|^{-n/2} = |\Sigma|^{-T/2}$$
(a.4.12.5)

And:

$$(y - \bar{X}\beta)'\bar{\Sigma}^{-1}(y - \bar{X}\beta) + (\beta - b)'V^{-1}(\beta - b)$$

$$= y'\bar{\Sigma}^{-1}y + \beta'\bar{X}'\bar{\Sigma}^{-1}\bar{X}\beta - 2\beta'\bar{X}'\bar{\Sigma}^{-1}y + \beta'V^{-1}\beta + b'V^{-1}b - 2\beta'V^{-1}b$$

$$= \beta'(V^{-1} + \bar{X}'\bar{\Sigma}^{-1}\bar{X})\beta - 2\beta'(V^{-1}b + \bar{X}'\bar{\Sigma}^{-1}y) + b'V^{-1}b + y'\bar{\Sigma}^{-1}y$$
(a.4.12.6)

Complete the squares:

$$= \beta'(V^{-1} + \bar{X}'\bar{\Sigma}^{-1}\bar{X})\beta - 2\beta'\bar{V}^{-1}\bar{V}(V^{-1}b + \bar{X}'\bar{\Sigma}^{-1}y) + \bar{b}'\bar{V}^{-1}\bar{b} - \bar{b}'\bar{V}^{-1}\bar{b} + b'V^{-1}b + y'\bar{\Sigma}^{-1}y \quad (a.4.12.7)$$

Define:

$$\bar{V} = (V^{-1} + \bar{X}'\bar{\Sigma}^{-1}\bar{X})^{-1} \qquad \qquad \bar{b} = \bar{V}(V^{-1}b + \bar{X}'\bar{\Sigma}^{-1}y) \tag{a.4.12.8}$$

Then (a.4.12.7) rewrites:

$$= \beta' \bar{V}^{-1} \beta - 2\beta' \bar{V}^{-1} \bar{b} + \bar{b}' \bar{V}^{-1} \bar{b} - \bar{b}' \bar{V}^{-1} \bar{b} + b' V^{-1} b + y' \bar{\Sigma}^{-1} y$$

$$= (\beta - \bar{b})' \bar{V}^{-1} (\beta - \bar{b}) + (b' V^{-1} b - \bar{b}' \bar{V}^{-1} \bar{b} + y' \bar{\Sigma}^{-1} y)$$
(a.4.12.9)

The terms in (a.4.12.8) simplify. Note first that:

$$\bar{X}'\bar{\Sigma}^{-1}\bar{X} = (I_n \otimes X)'(\Sigma \otimes I_T)^{-1}(I_n \otimes X) = (I_n \otimes X')(\Sigma^{-1} \otimes I_T)(I_n \otimes X) = (\Sigma^{-1} \otimes X')(I_n \otimes X) = \Sigma^{-1} \otimes X'X$$
(a.4.12.10)

Similarly:

$$\bar{X}'\bar{\Sigma}^{-1}y = (I_n \otimes X)'(\Sigma \otimes I_T)^{-1}vec(Y) = (I_n \otimes X')(\Sigma^{-1} \otimes I_T)vec(Y) = (\Sigma^{-1} \otimes X')vec(Y) = vec(X'Y\Sigma^{-1})$$
(a.4.12.11)

Substituting (a.4.12.5) and (a.4.12.9) back in (a.4.12.4), the term within the integral rewrites:

$$\begin{split} &(2\pi)^{-nT/2}|\Sigma|^{-T/2}(2\pi)^{-q/2}|V|^{-1/2}exp\left(-\frac{1}{2}\left[(\beta-\bar{b})'\bar{V}^{-1}(\beta-\bar{b})+(b'V^{-1}b-\bar{b}'\bar{V}^{-1}\bar{b}+y'\bar{\Sigma}^{-1}y)\right]\right)\\ &=(2\pi)^{-nT/2}|\Sigma|^{-T/2}(2\pi)^{-q/2}|V|^{-1/2}|\bar{V}|^{1/2}|\bar{V}|^{-1/2}\\ &\times exp\left(-\frac{1}{2}\left[(\beta-\bar{b})'\bar{V}^{-1}(\beta-\bar{b})+(b'V^{-1}b-\bar{b}'\bar{V}^{-1}\bar{b}+y'\bar{\Sigma}^{-1}y)\right]\right)\\ &=(2\pi)^{-nT/2}|\Sigma|^{-T/2}|V|^{-1/2}|\bar{V}|^{1/2}exp\left(-\frac{1}{2}(b'V^{-1}b-\bar{b}'\bar{V}^{-1}\bar{b}+y'\bar{\Sigma}^{-1}y)\right)\\ &\times (2\pi)^{-q/2}\bar{V}^{-1}exp\left(-\frac{1}{2}(\beta-\bar{b})'\bar{V}^{-1}(\beta-\bar{b})\right) \end{split} \tag{a.4.12.12}$$

The expression simplifies further. Note that:

$$|V|^{-1/2}|\bar{V}|^{1/2}$$

$$= |V|^{-1/2}|(V^{-1} + \Sigma^{-1} \otimes X'X)^{-1}|^{1/2}$$

$$= |V|^{-1/2}|(V^{-1} + \Sigma^{-1} \otimes X'X)|^{-1/2}$$

$$= |V(V^{-1} + \Sigma^{-1} \otimes X'X)|^{-1/2}$$

$$= |I + V(\Sigma^{-1} \otimes X'X)|^{-1/2}$$

$$= |I + V(\Sigma^{-1} \otimes X'X)|^{-1/2}$$
(a.4.12.13)

Also:

$$y'\bar{\Sigma}^{-1}y$$

$$= y'(\Sigma \otimes I_T)^{-1}y$$

$$= y'(\Sigma^{-1} \otimes I_T)y$$

$$= y' \operatorname{vec}(Y\Sigma^{-1})$$

$$= \operatorname{vec}(Y)' \operatorname{vec}(Y\Sigma^{-1})$$

$$= \operatorname{tr}(Y'Y\Sigma^{-1})$$
(a.4.12.14)

Thus, substituting again (a.4.12.13) and (a.4.12.14) back in (a.4.12.12), the term within the integral eventually rewrites as:

$$(2\pi)^{-nT/2} |\Sigma|^{-T/2} |I + V(\Sigma^{-1} \otimes X'X)|^{-1/2} exp\left(-\frac{1}{2} \left[b'V^{-1}b - \bar{b}'\bar{V}^{-1}\bar{b} + tr(Y'Y\Sigma^{-1})\right]\right)$$

$$\times (2\pi)^{-q/2} \bar{V}^{-1} exp\left(-\frac{1}{2}(\beta - \bar{b})'\bar{V}^{-1}(\beta - \bar{b})\right)$$
(a.4.12.15)

derivations for equation (4.12.23)

Focus on the term within the integral and rearrange:

$$(2\pi)^{-nT/2} |\Sigma|^{-T/2} exp \left(-\frac{1}{2} (\beta - \hat{\beta})' (\Sigma \otimes (X'X)^{-1})^{-1} (\beta - \hat{\beta}) \right)$$

$$\times exp \left(-\frac{1}{2} tr \left[\Sigma^{-1} (Y - X\hat{B})' (Y - X\hat{B}) \right] \right)$$

$$\times (2\pi)^{-q/2} |\Sigma \otimes W|^{-1/2} exp \left(-\frac{1}{2} (\beta - b)' (\Sigma \otimes W)^{-1} (\beta - b) \right)$$

$$\times \frac{2^{-\alpha n/2}}{\Gamma_n \left(\frac{\alpha}{2} \right)} |S|^{\alpha/2} |\Sigma|^{-(\alpha + n + 1)/2} exp \left(-\frac{1}{2} tr \left\{ \Sigma^{-1} S \right\} \right)$$

$$= (2\pi)^{-nT/2} \frac{2^{-\alpha n/2}}{\Gamma_n \left(\frac{\alpha}{2} \right)} |S|^{\alpha/2}$$

$$\times (2\pi)^{-nk/2} |\Sigma \otimes W|^{-1/2} exp \left(-\frac{1}{2} \left[(\beta - b)' (\Sigma \otimes W)^{-1} (\beta - b) + (\beta - \hat{\beta})' (\Sigma \otimes (X'X)^{-1})^{-1} (\beta - \hat{\beta}) \right] \right)$$

$$\times |\Sigma|^{-(\alpha + T + n + 1)/2} exp \left(-\frac{1}{2} tr \left\{ \Sigma^{-1} \left[S + (Y - X\hat{B})' (Y - X\hat{B}) \right] \right\} \right)$$
(a.4.12.16)

Note first that:

$$|\Sigma \otimes W|^{-1/2} = |\Sigma|^{-k/2} |W|^{-n/2}$$
(a.4.12.17)

Then focus on the first term between square brackets to obtain:

$$(\beta - b)'(\Sigma \otimes W)^{-1}(\beta - b) + (\beta - \hat{\beta})' (\Sigma \otimes (X'X)^{-1})^{-1} (\beta - \hat{\beta})$$

$$= tr \left\{ \Sigma^{-1}(\mathcal{B} - B)'W^{-1}(\mathcal{B} - B) \right\} + tr \left\{ \Sigma^{-1}(\mathcal{B} - \hat{B})'(X'X)(\mathcal{B} - \hat{B}) \right\}$$

$$= tr \left\{ \Sigma^{-1} \left[(\mathcal{B} - B)'W^{-1}(\mathcal{B} - B) + (\mathcal{B} - \hat{B})'(X'X)(\mathcal{B} - \hat{B}) \right] \right\}$$

$$= tr \left\{ \Sigma^{-1} \left[(\mathcal{B} - B)'W^{-1}(\mathcal{B} - B) + (\mathcal{B} - \hat{B})'(X'X)(\mathcal{B} - \hat{B}) \right] \right\}$$

$$= tr \left\{ \Sigma^{-1} \left[\mathcal{B}'W^{-1}\mathcal{B} + \mathcal{B}'W^{-1}\mathcal{B} - 2\mathcal{B}'W^{-1}\mathcal{B} + \mathcal{B}'(X'X)\mathcal{B} + \hat{B}'(X'X)\hat{B} - 2\mathcal{B}'(X'X)\hat{B} \right] \right\}$$

$$= tr \left\{ \Sigma^{-1} \left[\mathcal{B}'(W^{-1} + X'X)\mathcal{B} - 2\mathcal{B}'(W^{-1}\mathcal{B} + X'X\hat{B}) + \mathcal{B}'W^{-1}\mathcal{B} + \hat{B}'(X'X)\hat{B} \right] \right\}$$
(a.4.12.18)

Complete the squares:

$$= tr \left\{ \Sigma^{-1} \left[\mathcal{B}'(W^{-1} + X'X) \mathcal{B} - 2 \mathcal{B}' \bar{W}^{-1} \bar{W}(W^{-1}B + X'X\hat{B}) + \bar{B}' \bar{W}^{-1} \bar{B} - \bar{B}' \bar{W}^{-1} \bar{B} + B'W^{-1}B + \hat{B}'(X'X)\hat{B} \right] \right\}$$
(a.4.12.19)

Define:

$$\bar{W} = (W^{-1} + X'X)^{-1} \qquad \bar{B} = \bar{W}(W^{-1}B + X'X\hat{B})$$
(a.4.12.20)

then the expression becomes:

$$= tr \left\{ \Sigma^{-1} \left[\mathcal{B}' \bar{W}^{-1} \mathcal{B} - 2 \mathcal{B}' \bar{W}^{-1} \bar{B} + \bar{B}' \bar{W}^{-1} \bar{B} - \bar{B}' \bar{W}^{-1} \bar{B} + B' W^{-1} B + \hat{B}' (X'X) \hat{B} \right] \right\}$$

$$= tr \left\{ \Sigma^{-1} \left[(\mathcal{B}' - \bar{B})' \bar{W}^{-1} (\mathcal{B}' - \bar{B}) - \bar{B}' \bar{W}^{-1} \bar{B} + B' W^{-1} B + \hat{B}' (X'X) \hat{B} \right] \right\}$$

$$= tr \left\{ \Sigma^{-1} (\mathcal{B}' - \bar{B})' \bar{W}^{-1} (\mathcal{B}' - \bar{B}) \right\} + tr \left\{ \Sigma^{-1} \left[B' W^{-1} B + \hat{B}' (X'X) \hat{B} - \bar{B}' \bar{W}^{-1} \bar{B} \right] \right\}$$
(a.4.12.21)

Substituting (a.4.12.17) and (a.4.12.21) in (a.4.12.16) yields:

$$(2\pi)^{-nT/2} |W|^{-n/2} \frac{2^{-\alpha n/2}}{\Gamma_n(\frac{\alpha}{2})} |S|^{\alpha/2}$$

$$\times (2\pi)^{-nk/2} |\Sigma|^{-k/2} exp\left(-\frac{1}{2}tr\left\{\Sigma^{-1}(\mathcal{B}'-\bar{B})'\bar{W}^{-1}(\mathcal{B}'-\bar{B})\right\}\right)$$

$$\times |\Sigma|^{-(\alpha+T+n+1)/2} exp\left(-\frac{1}{2}tr\left\{\Sigma^{-1}\left[S+(Y-X\hat{B})'(Y-X\hat{B})+B'W^{-1}B+\hat{B}'(X'X)\hat{B}-\bar{B}'\bar{W}^{-1}\bar{B}\right]\right\}\right)$$
(a.4.12.22)

Define:

$$\bar{\alpha} = \alpha + T$$
 $\bar{S} = S + (Y - X\hat{B})'(Y - X\hat{B}) + B'W^{-1}B + \hat{B}'(X'X)\hat{B} - \bar{B}'\bar{W}^{-1}\bar{B}$ (a.4.12.23)

Then the expression becomes:

$$(2\pi)^{-nT/2} |W|^{-n/2} \frac{2^{-\alpha n/2}}{\Gamma_n(\frac{\alpha}{2})} |S|^{\alpha/2}$$

$$\times (2\pi)^{-nk/2} |\Sigma|^{-k/2} exp\left(-\frac{1}{2} tr\left\{\Sigma^{-1} (\mathcal{B}' - \bar{B})' \bar{W}^{-1} (\mathcal{B}' - \bar{B})\right\}\right)$$

$$\times |\Sigma|^{-(\bar{\alpha} + n + 1)/2} exp\left(-\frac{1}{2} tr\left\{\Sigma^{-1} \bar{S}\right\}\right)$$
(a.4.12.24)

And finally, this rewrites:

$$(2\pi)^{-nT/2} |W|^{-n/2} |\bar{W}|^{n/2} \frac{2^{\bar{\alpha}n/2}}{2^{\alpha n/2}} \frac{\Gamma_n\left(\frac{\bar{\alpha}}{2}\right)}{\Gamma_n\left(\frac{\alpha}{2}\right)} |S|^{\alpha/2} |\bar{S}|^{-\bar{\alpha}/2}$$

$$\times (2\pi)^{-nk/2} |\Sigma|^{-k/2} |\bar{W}|^{-n/2} exp\left(-\frac{1}{2} tr\left\{\Sigma^{-1} (\mathcal{B}' - \bar{B})' \bar{W}^{-1} (\mathcal{B}' - \bar{B})\right\}\right)$$

$$\times \frac{2^{-\bar{\alpha}n/2}}{\Gamma_n\left(\frac{\bar{\alpha}}{2}\right)} |\bar{S}|^{\bar{\alpha}/2} |\Sigma|^{-(\bar{\alpha}+n+1)/2} exp\left(-\frac{1}{2} tr\left\{\Sigma^{-1} \bar{S}\right\}\right)$$
(a.4.12.25)

Go on simplifying. Note that:

$$(2\pi)^{-nT/2} \frac{2^{\bar{\alpha}n/2}}{2^{\alpha n/2}} = 2^{-nT/2} \pi^{-nT/2} \frac{2^{(\alpha+T)n/2}}{2^{\alpha n/2}} = \pi^{-nT/2}$$
(a.4.12.26)

Also:

$$|W|^{-n/2}|\bar{W}|^{n/2}$$

$$= |W|^{-n/2}|(W^{-1} + X'X)^{-1}|^{n/2}$$

$$= |W|^{-n/2}|(W^{-1} + X'X)|^{-n/2}$$

$$= |W(W^{-1} + X'X)|^{-n/2}$$

$$= |I + WX'X|^{-n/2}$$
(a.4.12.27)

Consider then:

$$(Y - X\hat{B})'(Y - X\hat{B}) + \hat{B}'X'X\hat{B}$$

$$= Y'Y + \hat{B}'X'X\hat{B} - \hat{B}'X'Y - Y'X\hat{B} + \hat{B}'X'X\hat{B}$$

$$= Y'Y + 2\hat{B}'X'X\hat{B} - \hat{B}'X'Y - Y'X\hat{B}$$

$$= Y'Y + 2Y'X(X'X)^{-1}X'X(X'X)^{-1}X'Y - Y'X(X'X)^{-1}X'Y - Y'X(X'X)^{-1}X'Y$$

$$= Y'Y + 2Y'X(X'X)^{-1}X'Y - Y'X(X'X)^{-1}X'Y - Y'X(X'X)^{-1}X'Y$$

$$= Y'Y$$
(a.4.12.28)

Substitute back in (a.4.12.23):

$$\bar{S} = S + Y'Y + B'W^{-1}B - \bar{B}'\bar{W}^{-1}\bar{B} \tag{a.4.12.29}$$

Then:

$$= |S|^{\alpha/2}|\bar{S}|^{-\bar{\alpha}/2}$$

$$= |S|^{\alpha/2}|S + Y'Y + B'W^{-1}B - \bar{B}'\bar{W}^{-1}\bar{B}|^{-\bar{\alpha}/2}$$

$$= |S|^{-T/2}|S|^{(\alpha+T)/2}|S + Y'Y + B'W^{-1}B - \bar{B}'\bar{W}^{-1}\bar{B}|^{-\bar{\alpha}/2}$$

$$= |S|^{-T/2}|S|^{\bar{\alpha}/2}|S + Y'Y + B'W^{-1}B - \bar{B}'\bar{W}^{-1}\bar{B}|^{-\bar{\alpha}/2}$$

$$= |S|^{-T/2}|S^{-1}|^{-\bar{\alpha}/2}|S + Y'Y + B'W^{-1}B - \bar{B}'\bar{W}^{-1}\bar{B}|^{-\bar{\alpha}/2}$$

$$= |S|^{-T/2}|S^{-1}|^{-\bar{\alpha}/2}|S + Y'Y + B'W^{-1}B - \bar{B}'\bar{W}^{-1}\bar{B}|^{-\bar{\alpha}/2}$$

$$= |S|^{-T/2}|S^{-1}(S + Y'Y + B'W^{-1}B - \bar{B}'\bar{W}^{-1}\bar{B})|^{-\bar{\alpha}/2}$$

$$= |S|^{-T/2}|I + S^{-1}(Y'Y + B'W^{-1}B - \bar{B}'\bar{W}^{-1}\bar{B})|^{-\bar{\alpha}/2}$$

$$= |S|^{-T/2}|I + S^{-1}(\bar{S} - S)|^{-\bar{\alpha}/2}$$
(a.4.12.30)

Substituting back (a.4.12.26), (a.4.12.27) and (a.4.12.30) in (a.4.12.25) finally yields:

$$\pi^{-nT/2} |I + WX'X|^{-n/2} |S|^{-T/2} |I + S^{-1}(\bar{S} - S)|^{-\bar{\alpha}/2} \frac{\Gamma_n\left(\frac{\alpha}{2}\right)}{\Gamma_n\left(\frac{\alpha}{2}\right)} \times (2\pi)^{-nk/2} |\Sigma|^{-k/2} |\bar{W}|^{-n/2} exp\left(-\frac{1}{2} tr\left\{\Sigma^{-1}(\mathcal{B}' - \bar{B})'\bar{W}^{-1}(\mathcal{B}' - \bar{B})\right\}\right) \times \frac{2^{-\bar{\alpha}n/2}}{\Gamma_n\left(\frac{\bar{\alpha}}{2}\right)} |\bar{S}|^{\bar{\alpha}/2} |\Sigma|^{-(\bar{\alpha}+n+1)/2} exp\left(-\frac{1}{2} tr\left\{\Sigma^{-1}\bar{S}\right\}\right)$$
(a.4.12.31)

Therefore, substituting back in the integrals, we obtain:

$$f(y) = \pi^{-nT/2} |I + WX'X|^{-n/2} |S|^{-T/2} |I + S^{-1}(\bar{S} - S)|^{-\bar{\alpha}/2} \frac{\Gamma_n\left(\frac{\alpha}{2}\right)}{\Gamma_n\left(\frac{\alpha}{2}\right)}$$

$$\times \int \int (2\pi)^{-nk/2} |\Sigma|^{-k/2} |\bar{W}|^{-n/2} exp\left(-\frac{1}{2}tr\left\{\Sigma^{-1}(\mathcal{B}' - \bar{B})'\bar{W}^{-1}(\mathcal{B}' - \bar{B})\right\}\right) d\beta$$

$$\times \frac{2^{-\bar{\alpha}n/2}}{\Gamma_n\left(\frac{\alpha}{2}\right)} |\bar{S}|^{\bar{\alpha}/2} |\Sigma|^{-(\bar{\alpha}+n+1)/2} exp\left(-\frac{1}{2}tr\left\{\Sigma^{-1}\bar{S}\right\}\right) d\sigma$$
(a.4.12.32)

derivations for equation (4.12.26)

$$\begin{split} &f(y)\\ \approx \frac{f(y|\beta^*,\Sigma^*)\pi(\beta^*,\Sigma^*)}{\pi(\Sigma^*|y,\beta^*)\times\frac{1}{J}\sum_{j=1}^{J}\pi(\beta^*|\Sigma^{(j)},y)}\\ &= (2\pi)^{-nT/2}|\bar{\Sigma}|^{-1/2}exp\left(-\frac{1}{2}(y-\bar{X}\beta)'\bar{\Sigma}^{-1}(y-\bar{X}\beta)\right)\\ &\times \frac{(2\pi)^{-q/2}|V|^{-1/2}\exp\left(-\frac{1}{2}(\beta-b)'V^{-1}(\beta-b)\right)}{\frac{1}{J}\sum_{j=1}^{J}(2\pi)^{-q/2}|\bar{V}|^{-1/2}\exp\left(-\frac{1}{2}(\beta-b)'\bar{V}^{-1}(\beta-b)\right)} \times \frac{\frac{2^{-\alpha n/2}}{\Gamma_n(\frac{\alpha}{2})}|S|^{\alpha/2}|\Sigma|^{-(\alpha+n+1)/2}exp\left(-\frac{1}{2}tr\left\{\Sigma^{-1}S\right\}\right)}{\frac{2^{-\bar{\alpha}n/2}}{\Gamma_n(\frac{\bar{\alpha}}{2})}|\bar{S}|^{\bar{\alpha}/2}|\Sigma|^{-(\bar{\alpha}+n+1)/2}exp\left(-\frac{1}{2}tr\left\{\Sigma^{-1}\bar{S}\right\}\right)} \end{split}$$

$$(a.4.12.33)$$

Now, note that:

$$|\bar{\Sigma}|^{-1/2} = |\Sigma \otimes I_T|^{-1/2} = |\Sigma|^{-T/2} |I_T|^{-n/2} = |\Sigma|^{-T/2}$$
(a.4.12.34)

Also:

$$(y - \bar{X}\beta)'\bar{\Sigma}^{-1}(y - \bar{X}\beta)$$

$$= (y - (I_n \otimes X)\beta)'(\Sigma \otimes I_T)^{-1}(y - (I_n \otimes X)\beta)$$

$$= tr\{\Sigma^{-1}(Y - X\beta)'(Y - X\beta)\}$$
(a.4.12.35)

Substituting back (a.4.12.34) and (a.4.12.35) in (a.4.12.33):

$$\begin{split} &f(y)\\ \approx & (2\pi)^{-nT/2}|\Sigma|^{-T/2}exp\left(-\frac{1}{2}tr\left\{\Sigma^{-1}(Y-X\mathcal{B})'(Y-X\mathcal{B})\right\}\right)\\ \times & \frac{(2\pi)^{-q/2}|V|^{-1/2}\exp\left(-\frac{1}{2}(\beta-b)'V^{-1}(\beta-b)\right)}{\frac{1}{J}\sum_{j=1}^{J}(2\pi)^{-q/2}|\bar{V}|^{-1/2}\exp\left(-\frac{1}{2}(\beta-\bar{b})'\bar{V}^{-1}(\beta-\bar{b})\right)} \times \frac{\frac{2^{-\alpha n/2}}{\Gamma_{n}\left(\frac{\alpha}{2}\right)}|S|^{\alpha/2}|\Sigma|^{-(\alpha+n+1)/2}exp\left(-\frac{1}{2}tr\left\{\Sigma^{-1}S\right\}\right)}{\frac{2^{-\bar{\alpha}n/2}}{\Gamma_{n}\left(\frac{\alpha}{2}\right)}|\bar{S}|\bar{\alpha}/2}|\Sigma|^{-(\bar{\alpha}+n+1)/2}exp\left(-\frac{1}{2}tr\left\{\Sigma^{-1}\bar{S}\right\}\right) \end{split} \tag{a.4.12.36}$$

Continue with the definitions of $\bar{\alpha}$ and \bar{S} :

$$= 2^{-nT/2} \pi^{-nT/2} |\Sigma|^{-T/2} exp \left(-\frac{1}{2} tr \left\{ \Sigma^{-1} (Y - X \mathcal{B})' (Y - X \mathcal{B}) \right\} \right)$$

$$\times \frac{(2\pi)^{-q/2} |V|^{-1/2} exp \left(-\frac{1}{2} (\beta - b)' V^{-1} (\beta - b) \right)}{\frac{1}{J} \sum_{j=1}^{J} (2\pi)^{-q/2} |\bar{V}|^{-1/2} exp \left(-\frac{1}{2} (\beta - b)' \bar{V}^{-1} (\beta - \bar{b}) \right)}{\frac{2^{-\alpha n/2}}{\Gamma_n \left(\frac{\alpha}{2} \right)} |\bar{S}|^{\alpha/2} |\Sigma|^{-(\alpha + n + 1)/2} exp \left(-\frac{1}{2} tr \left\{ \Sigma^{-1} S \right\} \right)}$$

$$\times \frac{\frac{2^{-\alpha n/2}}{\Gamma_n \left(\frac{\alpha}{2} \right)} |\bar{S}|^{\alpha/2} |\Sigma|^{-(\alpha + n + n + 1)/2} exp \left(-\frac{1}{2} tr \left\{ \Sigma^{-1} [S + (Y - X \mathcal{B})' (Y - X \mathcal{B})] \right\} \right)}{\frac{2^{-(\alpha + T)n/2}}{\Gamma_n \left(\frac{\alpha}{2} \right)} |\bar{S}|^{\alpha/2} |\Sigma|^{-(\alpha + n + n + 1)/2} exp \left(-\frac{1}{2} (\beta - b)' V^{-1} (\beta - b) \right)} \times \frac{\frac{2^{-\alpha n/2}}{\Gamma_n \left(\frac{\alpha}{2} \right)} |S|^{\alpha/2} |\Sigma|^{-(\alpha + n + n + 1)/2}}{\frac{2^{-(\alpha + T)n/2}}{J} \sum_{j=1}^{J} (2\pi)^{-q/2} |V|^{-1/2} exp \left(-\frac{1}{2} (\beta - b)' V^{-1} (\beta - b) \right)} \times \frac{\frac{2^{-\alpha n/2}}{\Gamma_n \left(\frac{\alpha}{2} \right)} |S|^{\alpha/2} |\Sigma|^{-(\alpha + n + n + 1)/2}}{\frac{2^{-(\alpha + T)n/2}}{\Gamma_n \left(\frac{\alpha}{2} \right)} |S|^{\alpha/2} |\Sigma|^{-(\alpha + T + n + 1)/2}}$$

$$= 2^{-nT/2} \pi^{-nT/2} \times \frac{(2\pi)^{-q/2} |V|^{-1/2} exp \left(-\frac{1}{2} (\beta - b)' V^{-1} (\beta - b) \right)}{\frac{1}{J} \sum_{j=1}^{J} (2\pi)^{-q/2} |\bar{V}|^{-1/2} exp \left(-\frac{1}{2} (\beta - b)' V^{-1} (\beta - b) \right)} \times \frac{\frac{1}{\Gamma_n \left(\frac{\alpha}{2} \right)}}{\frac{1}{\Gamma_n \left(\frac{\alpha}{2} \right)} |\bar{S}|^{\alpha/2}}$$

$$= \pi^{-nT/2} \times \frac{(2\pi)^{-q/2} |V|^{-1/2} exp \left(-\frac{1}{2} (\beta - b)' V^{-1} (\beta - b) \right)}{\frac{1}{J} \sum_{j=1}^{J} (2\pi)^{-q/2} |\bar{V}|^{-1/2} exp \left(-\frac{1}{2} (\beta - b)' V^{-1} (\beta - b) \right)} \times \frac{\frac{1}{\Gamma_n \left(\frac{\alpha}{2} \right)}}{\frac{1}{\Gamma_n \left(\frac{\alpha}{2} \right)} |\bar{S}|^{\alpha/2}}$$

$$= \pi^{-nT/2} \times \frac{exp \left(-\frac{1}{2} (\beta - b)' V^{-1} (\beta - b) \right)}{\frac{1}{J} \sum_{j=1}^{J} |V|^{1/2} |\bar{V}|^{-1/2} exp \left(-\frac{1}{2} (\beta - \bar{b})' \bar{V}^{-1} (\beta - \bar{b}) \right)} \times \frac{\frac{1}{\Gamma_n \left(\frac{\alpha}{2} \right)} |\bar{S}|^{\alpha/2}}{\frac{1}{\Gamma_n \left(\frac{\alpha}{2} \right)} |\bar{S}|^{\alpha/2}}$$

$$= \pi^{-nT/2} \times \frac{exp \left(-\frac{1}{2} (\beta - b)' V^{-1} (\beta - b) \right)}{\frac{1}{J} \sum_{j=1}^{J} |V|^{1/2} |\bar{V}|^{-1/2} exp \left(-\frac{1}{2} (\beta - \bar{b})' \bar{V}^{-1} (\beta - \bar{b}) \right)} \frac{\Gamma_n \left(\frac{\alpha}{2} \right)}{\Gamma_n \left(\frac{\alpha}{2} \right)} \frac{|\bar{S}|^{\alpha/2}}{|\bar{S}|^{\alpha/2}}$$

$$= \pi^{-nT/2} \times \frac{exp \left(-\frac{1}{2} (\beta - b)' V^{-1} (\beta - \bar{b}) \right)}{\frac{1}{J} \sum_{j=1}^{J} (\beta - \bar{b})^{-1/2} exp \left(-\frac{1}{2} (\beta$$

Note that:

$$= |S|^{\alpha/2} |\bar{S}|^{-\bar{\alpha}/2}$$

$$= |S|^{\alpha/2} |S + (Y - XB)'(Y - XB)|^{-\bar{\alpha}/2}$$

$$= |S|^{-T/2} |S|^{(\alpha+T)/2} |S + (Y - XB)'(Y - XB)|^{-\bar{\alpha}/2}$$

$$= |S|^{-T/2} |S|^{\bar{\alpha}/2} |S + (Y - XB)'(Y - XB)|^{-\bar{\alpha}/2}$$

$$= |S|^{-T/2} |S^{-1}|^{-\bar{\alpha}/2} |S + (Y - XB)'(Y - XB)|^{-\bar{\alpha}/2}$$

$$= |S|^{-T/2} |S^{-1}|^{-\bar{\alpha}/2} |S + (Y - XB)'(Y - XB)|^{-\bar{\alpha}/2}$$

$$= |S|^{-T/2} |I + S^{-1}(Y - XB)'(Y - XB)|^{-\bar{\alpha}/2}$$

$$= |S|^{-T/2} |I + S^{-1}(\bar{S} - S)|^{-\bar{\alpha}/2}$$
(a.4.12.38)

Also:

$$= |V|^{1/2} |\bar{V}|^{-1/2}$$

$$= |V|^{1/2} |(V^{-1} + \Sigma^{-1} \otimes X'X)^{-1}|^{-1/2}$$

$$= |V|^{1/2} |V^{-1} + \Sigma^{-1} \otimes X'X|^{1/2}$$

$$= |I + V(\Sigma^{-1} \otimes X'X)|^{1/2}$$
(a.4.12.39)

Substituting (a.4.12.38) and (a.4.12.39) back in (a.4.12.37):

$$= \pi^{-nT/2} \frac{\Gamma_{n}(\frac{\bar{\alpha}}{2})}{\Gamma_{n}(\frac{\alpha}{2})} |S|^{-T/2} |I + S^{-1}(\bar{S} - S)|^{-\bar{\alpha}/2}$$

$$\times \frac{\exp(-\frac{1}{2}(\beta - b)'V^{-1}(\beta - b))}{\frac{1}{J}\sum_{j=1}^{J} |I + V(\Sigma^{-1} \otimes X'X)|^{1/2} \exp(-\frac{1}{2}(\beta - \bar{b})'\bar{V}^{-1}(\beta - \bar{b}))}$$
(a.4.12.40)

derivations for equation (4.12.29)

Use simple back recursion to obtain:

$$\gamma_{t} = \mu_{t} + F \gamma_{t-1} + \xi_{t}
\Leftrightarrow \gamma_{t} = \mu_{t} + F (\mu_{t-1} + F \gamma_{t-2} + \xi_{t-1}) + \xi_{t}
\Leftrightarrow \gamma_{t} = \mu_{t} + F \mu_{t-1} + F^{2} \gamma_{t-2} + \xi_{t} + F \xi_{t-1}
\Leftrightarrow \gamma_{t} = \mu_{t} + F \mu_{t-1} + F^{2} (\mu_{t-2} + F \gamma_{t-3} + \xi_{t-2}) + \xi_{t} + F \xi_{t-1}
\Leftrightarrow \gamma_{t} = \mu_{t} + F \mu_{t-1} + F^{2} \mu_{t-2} + F^{3} \gamma_{t-3} + \xi_{t} + F \xi_{t-1} + F^{2} \xi_{t-2}$$
(a.4.12.41)

Going on this way:

$$\gamma_t = \sum_{i=0}^{j} F^i \mu_{t-i} + F^j \gamma_{t-j} + \sum_{i=0}^{j} F^i \xi_{t-i}$$
(a.4.12.42)

derivations for equation (4.12.30)

Consider the general formulation of the VAR model:

$$y_t = Cz_t + A_1 y_{t-1} + \dots + A_p y_{t-p} + \varepsilon_t$$
 (a.4.12.43)

Taking expectations on both sides, noting that $\mathbb{E}(y_t) = \mathbb{E}(y_{t-1}) = \cdots = \mathbb{E}(y_{t-p}) = \mu$ by stationarity, and that $\mathbb{E}(z_t) = z_t$ and $\mathbb{E}(\varepsilon_t) = 0$, one obtains:

$$\mu = Cz_t + A_1\mu + \dots + A_n\mu \tag{a.4.12.44}$$

Rearranging:

$$(I - A_1 - \dots - A_n)\mu = Cz_t$$
 (a.4.12.45)

Which eventually yields:

$$\mu = (I - A_1 - \dots - A_n)^{-1} C z_t \tag{a.4.12.46}$$

derivations for equation (4.12.34)

Rearrange:

$$exp\left(-\frac{1}{2}(\beta-\hat{\beta})'(\Sigma\otimes(X'X)^{-1})^{-1}(\beta-\hat{\beta})\right)\times exp\left(-\frac{1}{2}(\beta-b)'(\Sigma\otimes W)^{-1}(\beta-b)\right)$$

$$=exp\left(-\frac{1}{2}tr\{\Sigma^{-1}(\mathcal{B}-\hat{B})'(X'X)(\mathcal{B}-\hat{B})\}\right)\times exp\left(-\frac{1}{2}tr\{\Sigma^{-1}(\mathcal{B}-B)'W^{-1}(\mathcal{B}-B)\}\right)$$

$$=exp\left(-\frac{1}{2}tr\{\Sigma^{-1}[(\mathcal{B}-\hat{B})'(X'X)(\mathcal{B}-\hat{B})+(\mathcal{B}-B)'W^{-1}(\mathcal{B}-B)]\}\right)$$
(a.4.12.47)

Consider the terms in square brackets and complete the squares:

$$(\mathcal{B} - \hat{B})'(X'X)(\mathcal{B} - \hat{B}) + (\mathcal{B} - B)'W^{-1}(\mathcal{B} - B)$$

$$= \mathcal{B}'(X'X)\mathcal{B} + \hat{B}'(X'X)\hat{B} - 2\mathcal{B}'(X'X)\hat{B} + \mathcal{B}'W^{-1}\mathcal{B} + \mathcal{B}'W^{-1}\mathcal{B} - 2\mathcal{B}W^{-1}\mathcal{B}$$

$$= \mathcal{B}'(W^{-1} + X'X)\mathcal{B} - 2\mathcal{B}'(W^{-1}\mathcal{B} + X'X\hat{B}) + \hat{B}'(X'X)\hat{B} + \mathcal{B}'W^{-1}\mathcal{B}$$

$$= \mathcal{B}'(W^{-1} + X'X)\mathcal{B} - 2\mathcal{B}'\bar{W}^{-1}\bar{W}(W^{-1}\mathcal{B} + X'X\hat{B}) + \bar{B}'\bar{W}^{-1}\bar{B} - \bar{B}'\bar{W}^{-1}\bar{B} + \hat{B}'(X'X)\hat{B} + \mathcal{B}'W^{-1}\mathcal{B}$$

$$= \mathcal{B}'(W^{-1} + X'X)\mathcal{B} - 2\mathcal{B}'\bar{W}^{-1}\bar{W}(W^{-1}\mathcal{B} + X'X\hat{B}) + \bar{B}'\bar{W}^{-1}\bar{B} - \bar{B}'\bar{W}^{-1}\bar{B} + \hat{B}'(X'X)\hat{B} + \mathcal{B}'W^{-1}\mathcal{B}$$

$$= (a.4.12.48)$$

Define:

$$\bar{W} = (W^{-1} + X'X)^{-1}$$
 $\bar{B} = \bar{W}(W^{-1}B + X'X\hat{B})$ (a.4.12.49)

Then:

$$= \mathcal{B}' \bar{W}^{-1} \mathcal{B} - 2 \mathcal{B}' \bar{W}^{-1} \bar{B} + \bar{B}' \bar{W}^{-1} \bar{B} - \bar{B}' \bar{W}^{-1} \bar{B} + \hat{B}' (X'X) \hat{B} + B'W^{-1} B$$

$$= (\mathcal{B} - \bar{B})' \bar{W}^{-1} (\mathcal{B} - \bar{B}) - \bar{B}' \bar{W}^{-1} \bar{B} + \hat{B}' (X'X) \hat{B} + B'W^{-1} B$$
(a.4.12.50)

Substitute back in (a.4.12.47):

$$= exp\left(-\frac{1}{2}tr\{\Sigma^{-1}[(\mathcal{B}-\bar{B})'\bar{W}^{-1}(\mathcal{B}-\bar{B})-\bar{B}'\bar{W}^{-1}\bar{B}+\hat{B}'(X'X)\hat{B}+B'W^{-1}B]\}\right)$$

$$= exp\left(-\frac{1}{2}tr\{\Sigma^{-1}(\mathcal{B}-\bar{B})'\bar{W}^{-1}(\mathcal{B}-\bar{B})\}\right)exp\left(-\frac{1}{2}tr\{\Sigma^{-1}[-\bar{B}'\bar{W}^{-1}\bar{B}+\hat{B}'(X'X)\hat{B}+B'W^{-1}B]\}\right)$$

$$\propto exp\left(-\frac{1}{2}tr\{\Sigma^{-1}(\mathcal{B}-\bar{B})'\bar{W}^{-1}(\mathcal{B}-\bar{B})\}\right)$$
(a.4.12.51)

Finally, note again that:

$$\bar{B} = \bar{W}(W^{-1}B + X'X\hat{B}) = \bar{W}(W^{-1}B + X'X(X'X)^{1}X'Y) = \bar{W}(W^{-1}B + X'Y)$$
(a.4.12.52)

derivations for equation (4.13.17)

The log-likelihood is given by:

$$\log(f(y|\beta,\Sigma)) = -\frac{nT}{2} \log(2\pi) - \frac{1}{2} \log(|\bar{\Sigma}|) - \frac{1}{2} (y - \bar{X}\beta)' \bar{\Sigma}^{-1} (y - \bar{X}\beta)$$
 (a.4.12.53)

Then note that:

$$\log(|\bar{\Sigma}|) = \log(|\Sigma \otimes I_T|) = \log(|\Sigma|^T |I_T|^n) = \log(|\Sigma|^T) = T \log(|\Sigma|)$$
(a.4.12.54)

Also:

$$(y - \bar{X}\beta)'\bar{\Sigma}^{-1}(y - \bar{X}\beta) = (y - (I_n \otimes X)\beta)'(\Sigma \otimes I_T)^{-1}(y - (I_n \otimes X)\beta) = tr\left\{\Sigma^{-1}(Y - X\beta)'(Y - X\beta)\right\}$$
(a.4.12.55)

Substituting back (a.4.12.54) and (a.4.12.55) in (a.4.12.53):

$$\log(f(y|\beta,\Sigma)) = -\frac{nT}{2} \log(2\pi) - \frac{T}{2} \log(|\Sigma|) - \frac{1}{2} tr\left\{\Sigma^{-1} (Y - X\mathcal{B})'(Y - X\mathcal{B})\right\} \tag{a.4.12.56}$$

The function is estimated at the maximum likelihood values. Hence $\mathcal{B} = \hat{\mathcal{B}}$ and $\Sigma = \hat{\Sigma} = \mathcal{E}' \mathcal{E} / T$. Substituting in (a.4.12.56):

$$\begin{split} &\log(f(y|\beta,\Sigma)) \\ &= -\frac{nT}{2} \log(2\pi) - \frac{T}{2} \log(|\hat{\Sigma}|) - \frac{1}{2} tr \left\{ \hat{\Sigma}^{-1} (Y - X\hat{B})'(Y - X\hat{B}) \right\} \\ &= -\frac{nT}{2} \log(2\pi) - \frac{T}{2} \log(|\hat{\Sigma}|) - \frac{1}{2} tr \left\{ \hat{\Sigma}^{-1} \hat{\Sigma} T \right\} \\ &= -\frac{nT}{2} \log(2\pi) - \frac{T}{2} \log(|\hat{\Sigma}|) - \frac{T}{2} \\ &= -\frac{nT}{2} \log(2\pi) - \frac{T}{2} (1 + \log(|\hat{\Sigma}|)) \\ &= -\frac{T}{2} \left(n \log(2\pi) + (1 + \log(|\hat{\Sigma}|)) \right) \end{split} \tag{a.4.12.57}$$

Following, the AIC obtains as:

AIC
=
$$2q/T - 2\hat{L}/T$$

= $2q/T - 2/T \left[-\frac{T}{2} \left(n \log(2\pi) + (1 + \log(|\hat{\Sigma}|)) \right) \right]$
= $2q/T + n \log(2\pi) + 1 + \log(|\hat{\Sigma}|)$ (a.4.12.58)

It follows immediatey that the BIC is given by:

BIC
=
$$q \log(T)/T - 2\hat{L}/T$$

= $q \log(T)/T - 2/T \left[-\frac{T}{2} \left(n \log(2\pi) + (1 + \log(|\hat{\Sigma}|)) \right) \right]$
= $q \log(T)/T + n \log(2\pi) + 1 + \log(|\hat{\Sigma}|)$ (a.4.12.59)

And the Hannan-Quinn criterion is given by:

$$\begin{split} &HQ\\ &=2q\,\log(\log(T))/T-2\,\hat{L}/T\\ &=2q\,\log(\log(T))/T-2/T\,\left[-\frac{T}{2}\,\left(n\log(2\pi)+(1+\log(|\hat{\Sigma}|))\right)\right]\\ &=2q\,\log(\log(T))/T+n\,\log(2\pi)+1+\log(|\hat{\Sigma}|) \end{split} \tag{a.4.12.60}$$

Removing the constants makes the value invariant to the number of endogenous variables:

$$AIC = 2q/T + \log(|\hat{\Sigma}|) \qquad BIC = q \log(T)/T + \log(|\hat{\Sigma}|) \qquad HQ = 2q \log(\log(T))/T + \log(|\hat{\Sigma}|)$$

$$(a.4.12.61)$$

Bayesian VAR: advanced applications

derivations for equation (4.14.18)

The distribution for the conditional forecasts is given by:

$$R\,\hat{\mathbf{y}}_{T+1:T+h} \sim N(\bar{\mathbf{y}}, \mathbf{\Omega}) \tag{a.4.14.1}$$

The distribution for the unconditional forecasts is given by:

$$\hat{y}_{T+1:T+h} \sim N(f_{T+1:T+h}, M(I_h \otimes \Gamma)M')$$
 (a.4.14.2)

Using the selection matrix R on the unconditional forecasts, we find that the distribution of the forecasts for the variables on which conditions apply is given by:

$$R \,\hat{y}_{T+1:T+h} \sim N(R \, f_{T+1:T+h}, \, D(I_h \otimes \Gamma)D')$$
 (a.4.14.3)

with D is a $k \times nh$ matrix such that D = RM. Now choose any $(nh - k) \times nh$ matrix \hat{D} such that the rows of \hat{D} form an orthonormal basis for the nullspace of D. This implies that:

$$\hat{D}\hat{D}' = I_{nh-k}$$
 $\hat{D}D' = 0_{k \times (nh-k)}$ $\hat{D}D' = 0_{(nh-k) \times k}$ (a.4.14.4)

Now define the random variable z as:

$$z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} D \\ \hat{D} \end{pmatrix} M^{-1} \hat{y}_{T+1:T+h} = \begin{pmatrix} R \, \hat{y}_{T+1:T+h} \\ \hat{D} M^{-1} \hat{y}_{T+1:T+h} \end{pmatrix}$$
(a.4.14.5)

Thus, the distribution of z is given by:

$$z \sim N \begin{bmatrix} Rf_{T+1:T+h} \\ \hat{D}M^{-1}f_{T+1:T+h} \end{bmatrix} , \begin{bmatrix} D(I_h \otimes \Gamma)D' & 0_{k \times (nh-k)} \\ 0_{(nh-k) \times k} & \hat{D}(I_h \otimes \Gamma)\hat{D}' \end{bmatrix}$$
 (a.4.14.6)

The distribution of the conditions is given by (a.4.14.1). Because z_1 and z_2 are independent, we can simply substitute for (a.4.14.1) in (a.4.14.6) to obtain:

$$z \sim N \begin{bmatrix} \bar{y} \\ \hat{D}M^{-1}f_{T+1:T+h} \end{bmatrix} , \begin{bmatrix} \Omega & 0_{k \times (nh-k)} \\ 0_{(nh-k) \times k} & \hat{D}(I_h \otimes \Gamma)\hat{D}' \end{bmatrix}$$
 (a.4.14.7)

(a.4.14.5) permits to recover $\hat{y}_{T+1:T+h}$ from:

$$\hat{y}_{T+1:T+h} = M \binom{D}{\hat{D}}^{-1} z \tag{a.4.14.8}$$

Since *D* has full row rank, then its generalised inverse D^* is such that $DD^* = I_k$. Hence:

$$\begin{pmatrix} D \\ \hat{D} \end{pmatrix}^{-1} = \begin{pmatrix} D^* & \hat{D}' \end{pmatrix}$$
 (a.4.14.9)

which also implies that $\hat{D}D^* = 0$. Thus:

$$\hat{y}_{T+1:T+h} = M \left(D^* \quad \hat{D}' \right) z \tag{a.4.14.10}$$

Eventually combining (a.4.14.10) with (a.4.14.7), we obtain the restricted distribution of $\hat{y}_{T+1:T+h}$ as $\hat{y}_{T+1:T+h} \sim N(\hat{\mu}, \hat{\Omega})$, with:

$$\hat{\mu} = M(D^* \bar{y} + \hat{D}' \hat{D} M^{-1} f_{T+1:T+h}) \qquad \qquad \hat{\Omega} = M(D^* \Omega D^{*'} + \hat{D}' \hat{D} (I_h \otimes \Gamma) \hat{D}' \hat{D}) M' \qquad (a.4.14.11)$$

Since $\hat{y}_{T+1:T+h} = f_{T+1:T+h} + M \ \xi_{T+1:T+h}$, it follows that $\xi_{T+1:T+h} = M^{-1}(\hat{y}_{T+1:T+h} - f_{T+1:T+h})$. Thus, from (a.4.14.11), the restricted distribution of the shocks $\xi_{T+1:T+h}$ is given by $\xi_{T+1:T+h} \sim N(\bar{\mu}, \bar{\Omega})$, with:

$$\bar{\mu} = D^* \bar{y} + \hat{D}' \hat{D} M^{-1} f_{T+1:T+h} - M^{-1} f_{T+1:T+h} \qquad \bar{\Omega} = D^* \Omega D^{*'} + \hat{D}' \hat{D} (I_h \otimes \Gamma) \hat{D}' \hat{D}$$
(a.4.14.12)

Also, it follows directly from post-multiplication of (a.4.14.9) that $D^*D + \hat{D}'\hat{D} = I_{nh}$, so that $\bar{\mu}$ in (a.4.14.12) rewrites:

$$\bar{\mu} = D^* \bar{y} - D^* D M^{-1} f_{T+1:T+h} = D^* \bar{y} - D^* R f_{T+1:T+h} = D^* (\bar{y} - R f_{T+1:T+h})$$
(a.4.14.13)

And $\bar{\Omega}$ in (a.4.14.12) rewrites:

$$\bar{\Omega} = D^* \Omega D^{*\prime} + (I_{nh} - D^* D)(I_h \otimes \Gamma)(I_{nh} - D^* D)$$
(a.4.14.14)

derivations for equation (4.14.20)

Start from $\hat{y}_{T+1:T+h} = f_{T+1:T+h} + M \xi_{T+1:T+h}$. This implies that $\hat{y}_{T+1:T+h} \sim N(\hat{\mu}, \hat{\Omega})$, with:

$$\hat{\mu} = f_{T+1:T+h} + M \bar{\mu} \qquad \hat{\Omega} = M\bar{\Omega}M' \tag{a.4.14.15}$$

From (a.4.14.13), the first expression rewrites as:

$$\hat{\mu} = f_{T+1:T+h} + M \,\bar{\mu} = f_{T+1:T+h} + MD^*(\bar{y} - Rf_{T+1:T+h}) \tag{a.4.14.16}$$

And from (a.4.14.14), the second term obtains directly as:

$$\bar{\Omega} = M \left[D^* \Omega D^{*'} + (I_{nh} - D^* D)(I_h \otimes \Gamma)(I_{nh} - D^* D) \right] M'$$
(a.4.14.17)

derivations for equation (4.14.45)

We show that \bar{H}_0^{-1} is given by:

$$\bar{H}_0^{-1} = \begin{pmatrix} H_0^{-1} & 0_{n \times k} \\ -\Gamma_{0,2}^{-1} \Gamma_{0,1} H_0^{-1} & \Gamma_{0,2}^{-1} \end{pmatrix}$$
 (a.4.14.18)

Indeed:

$$\bar{H}_{0}\bar{H}_{0}^{-1}
= \begin{pmatrix} H_{0} & 0_{n \times k} \\ \Gamma_{0,1} & \Gamma_{0,2} \end{pmatrix} \begin{pmatrix} H_{0}^{-1} & 0_{n \times k} \\ -\Gamma_{0,2}^{-1}\Gamma_{0,1}H_{0}^{-1} & \Gamma_{0,2}^{-1} \end{pmatrix}
= \begin{pmatrix} H_{0}H_{0}^{-1} & 0_{n \times k} \\ \Gamma_{0,1}H_{0}^{-1} - \Gamma_{0,2}\Gamma_{0,2}^{-1}\Gamma_{0,1}H_{0}^{-1} & \Gamma_{0,2}\Gamma_{0,2}^{-1} \end{pmatrix}
= \begin{pmatrix} I_{n} & 0_{n \times k} \\ 0_{k \times n} & I_{k} \end{pmatrix}
= I_{\bar{n}}$$
(a.4.14.19)

derivations for equation (4.14.46)

Start from the stacked SVAR formulation and develop:

$$\bar{H}_{0}\bar{y}_{t} = \bar{H}_{+}\bar{x}_{t} + \bar{\xi}_{t}
\Leftrightarrow \bar{H}_{0}^{-1}\bar{H}_{0}\bar{y}_{t} = \bar{H}_{0}^{-1}\bar{H}_{+}\bar{x}_{t} + \bar{H}_{0}^{-1}\bar{\xi}_{t}
\Leftrightarrow \bar{y}_{t} = \bar{H}_{0}^{-1}\bar{H}_{+}\bar{x}_{t} + \bar{H}_{0}^{-1}\bar{\xi}_{t}
\Leftrightarrow \begin{pmatrix} y_{t} \\ r_{t} \end{pmatrix} = \bar{H}_{0}^{-1}\bar{H}_{+}\bar{x}_{t} + \begin{pmatrix} H_{0}^{-1} & 0_{n \times k} \\ -\Gamma_{0,2}^{-1}\Gamma_{0,1} H_{0}^{-1} & \Gamma_{0,2}^{-1} \end{pmatrix} \begin{pmatrix} \xi_{t} \\ v_{t} \end{pmatrix}$$
(a.4.14.20)

Consider the lower block for m_t :

$$r_t = \bar{H}_0^{-1} \bar{H}_+ \bar{x}_t - \Gamma_{0,2}^{-1} \Gamma_{0,1} H_0^{-1} \xi_t + \Gamma_{0,2}^{-1} v_t$$
(a.4.14.21)

It then follows that:

$$\mathbb{E}(r_{t}\xi_{t}')
= \bar{H}_{0}^{-1}\bar{H}_{+}\mathbb{E}(\bar{x}_{t}\xi_{t}') - \Gamma_{0,2}^{-1}\Gamma_{0,1}H_{0}^{-1}\mathbb{E}(\xi_{t}\xi_{t}') + \Gamma_{0,2}^{-1}\mathbb{E}(\nu_{t}\xi_{t}')
= -\Gamma_{0,2}^{-1}\Gamma_{0,1}H_{0}^{-1}$$
(a.4.14.22)

where we have used a standard exogeneity assumption $Ex(\xi_t|\bar{x}_t)=0$, and the fact that v_t and ξ_t are uncorrelated.

PART V

Vector autoregression extensions

Vector error correction

derivations for equation (5.15.3)

Start from the VAR model

$$y_t = Cz_t + A_1y_{t-1} + \dots + A_py_{t-p} + \varepsilon_t$$
 (a.5.15.1)

Subtract y_{t-1} from both sides:

$$y_t = Cz_t + A_1y_{t-1} + \dots + A_py_{t-p} + \varepsilon_t$$
 (a.5.15.2)

Rearrange:

$$\Leftrightarrow \Delta y_{t} = Cz_{t} + \sum_{i=1}^{p} A_{i}y_{t-i} - y_{t-1} + \varepsilon_{t}$$

$$\Leftrightarrow \Delta y_{t} = Cz_{t} + \sum_{i=1}^{p} \left(A_{i}y_{t-i} + \sum_{j=i+1}^{p} A_{j}y_{t-i} - \sum_{j=i+1}^{p} A_{j}y_{t-i} \right) - y_{t-1} + \varepsilon_{t}$$

$$\Leftrightarrow \Delta y_{t} = Cz_{t} + \left(\sum_{i=1}^{p} A_{i} - I \right) y_{t-1} - \sum_{i=1}^{p-1} \left(\sum_{j=i+1}^{p} A_{j} \right) (y_{t-i} - y_{t-i-1}) + \varepsilon_{t}$$

$$\Leftrightarrow \Delta y_{t} = Cz_{t} + \left(\sum_{i=1}^{p} A_{i} - I \right) y_{t-1} + \sum_{i=1}^{p-1} \left(-\sum_{j=i+1}^{p} A_{j} \right) (y_{t-i} - y_{t-i-1}) + \varepsilon_{t}$$

$$\Leftrightarrow \Delta y_{t} = Cz_{t} + \Pi y_{t-1} + \sum_{i=1}^{p-1} F_{i} \Delta y_{t-i} + \varepsilon_{t}$$

$$(a.5.15.3)$$

derivations for equation (5.15.13)

Start from:

$$\Delta Y = Y_{-1}K\Lambda' + Z\Phi + \mathcal{E} \tag{a.5.15.4}$$

Use direct vectorization properties to obtain:

$$vec(\Delta Y) = (\Lambda \otimes Y_{-1})vec(K) + (I_n \otimes Z)vec(\Phi) + vec(\mathcal{E})$$
(a.5.15.5)

Using previously introduced notations:

$$\Delta \mathbf{v} = (\Lambda \otimes Y_{-1}) \kappa + \bar{Z} \phi + \varepsilon \tag{a.5.15.6}$$

with $\kappa = vec(K)$. This immediately implies that the likelihood function is given by:

$$f(y|\kappa,\lambda,\phi,\Sigma) = (2\pi)^{-nT/2}|\bar{\Sigma}|^{-1/2}\exp\left(-\frac{1}{2}(\Delta y - (\Lambda \otimes Y_{-1})\kappa - \bar{Z}\phi)'\bar{\Sigma}^{-1}(\Delta y - (\Lambda \otimes Y_{-1})\kappa - \bar{Z}\phi)\right)$$
(a.5.15.7)

derivations for equation (5.15.14)

Start from:

$$\Delta Y = Y_{-1}K\Lambda' + Z\Phi + \mathcal{E} \tag{a.5.15.8}$$

Note that this rewrites as:

$$\Delta Y = (Y_{-1}K)\Lambda'I_n + Z\Phi + \mathcal{E} \tag{a.5.15.9}$$

Use then direct vectorization properties to obtain:

$$vec(\Delta Y) = (I_n \otimes Y_{-1}K)vec(\Lambda') + (I_n \otimes Z)vec(\Phi) + vec(\mathcal{E})$$
(a.5.15.10)

Using previously introduced notations:

$$\Delta y = (I_n \otimes Y_{-1}K)\lambda + \bar{Z}\phi + \varepsilon \tag{a.5.15.11}$$

with $\lambda = vec(\Lambda')$. This immediately implies that the likelihood function is given by:

$$f(y|\kappa,\lambda,\phi,\Sigma) = (2\pi)^{-nT/2}|\bar{\Sigma}|^{-1/2}\exp\left(-\frac{1}{2}(\Delta y - (I_n \otimes Y_{-1}K)\lambda - \bar{Z}\phi)'\bar{\Sigma}^{-1}(\Delta y - (I_n \otimes Y_{-1}K)\lambda - \bar{Z}\phi)\right)$$
(a.5.15.12)

derivations for equation (5.15.21)

For convenience, define first:

$$\tilde{y} = \Delta y - \bar{Y}_{-1}\xi \tag{a.5.15.13}$$

Then $\pi(\phi|y,\xi,\Sigma)$ rewrites:

$$\pi(\phi|y,\xi,\Sigma) \propto \exp\left(-\frac{1}{2}(\tilde{y}-\bar{Z}\phi)'\bar{\Sigma}^{-1}(\tilde{y}-\bar{Z}\phi)\right) \times \exp\left(-\frac{1}{2}(\phi-f)'Q^{-1}(\phi-f)\right)$$
(a.5.15.14)

Group terms:

$$\pi(\phi|y,\xi,\Sigma)$$

$$\propto \exp\left(-\frac{1}{2}(\tilde{y} - \bar{Z}\phi)'\bar{\Sigma}^{-1}(\tilde{y} - \bar{Z}\phi)\right) \times \exp\left(-\frac{1}{2}(\phi - f)'Q^{-1}(\phi - f)\right)$$

$$= \exp\left(-\frac{1}{2}\left[(\tilde{y} - \bar{Z}\phi)'\bar{\Sigma}^{-1}(\tilde{y} - \bar{Z}\phi) + (\phi - f)'Q^{-1}(\phi - f)\right]\right) \tag{a.5.15.15}$$

Consider the terms in square brackets:

$$(\tilde{y} - \bar{Z}\phi)'\bar{\Sigma}^{-1}(\tilde{y} - \bar{Z}\phi) + (\phi - f)'Q^{-1}(\phi - f)$$

$$= \tilde{y}'\bar{\Sigma}^{-1}\tilde{y} + \phi'\bar{Z}'\bar{\Sigma}^{-1}\bar{Z}\phi - 2\phi'\bar{Z}'\bar{\Sigma}^{-1}\tilde{y} + \phi'Q^{-1}\phi + f'Q^{-1}f - 2\phi'Q^{-1}f$$

$$= \phi'(Q^{-1} + \bar{Z}'\bar{\Sigma}^{-1}\bar{Z})\phi - 2\phi'(Q^{-1}f + \bar{Z}'\bar{\Sigma}^{-1}\tilde{y}) + f'Q^{-1}f + \tilde{y}'\bar{\Sigma}^{-1}\tilde{y}$$
(a.5.15.16)

Complete the squares:

$$= \phi'(Q^{-1} + \bar{Z}'\bar{\Sigma}^{-1}\bar{Z})\phi - 2\phi'\bar{Q}^{-1}\bar{Q}(Q^{-1}f + \bar{Z}'\bar{\Sigma}^{-1}\tilde{y}) + \bar{f}'\bar{Q}^{-1}\bar{f} - \bar{f}'\bar{Q}^{-1}\bar{f} + f'Q^{-1}f + \tilde{y}'\bar{\Sigma}^{-1}\tilde{y}$$
(a.5.15.17)

Define:

$$\bar{Q} = (Q^{-1} + \bar{Z}'\bar{\Sigma}^{-1}\bar{Z})^{-1} \qquad \qquad \bar{f} = \bar{Q}(Q^{-1}f + \bar{Z}'\bar{\Sigma}^{-1}\tilde{y})$$
 (a.5.15.18)

Then (a.5.15.17) rewrites:

$$= \phi' \bar{Q}^{-1} \phi - 2 \phi' \bar{Q}^{-1} \bar{f} + \bar{f}' \bar{Q}^{-1} \bar{f} - \bar{f}' \bar{Q}^{-1} \bar{f} + f' Q^{-1} f + \tilde{y}' \bar{\Sigma}^{-1} \tilde{y}$$

$$= (\phi - \bar{f})' \bar{Q}^{-1} (\phi - \bar{f}) + (f' Q^{-1} f - \bar{f}' \bar{Q}^{-1} \bar{f} + \tilde{y}' \bar{\Sigma}^{-1} \tilde{y})$$
(a.5.15.19)

Substitute (a.5.15.19) back in (a.5.15.15):

$$\begin{split} &\pi(\phi \,|\, y, \xi, \Sigma) \\ &= \exp\left(-\frac{1}{2}\left[(\phi - \bar{f})'\bar{Q}^{-1}(\phi - \bar{f}) + (f'Q^{-1}f - \bar{f}'\bar{Q}^{-1}\bar{f} + \tilde{y}'\bar{\Sigma}^{-1}\tilde{y})\right]\right) \\ &= \exp\left(-\frac{1}{2}(\phi - \bar{f})'\bar{Q}^{-1}(\phi - \bar{f})\right) \exp\left(-\frac{1}{2}(f'Q^{-1}f - \bar{f}'\bar{Q}^{-1}\bar{f} + \tilde{y}'\bar{\Sigma}^{-1}\tilde{y})\right) \\ &\propto \exp\left(-\frac{1}{2}(\phi - \bar{f})'\bar{Q}^{-1}(\phi - \bar{f})\right) \end{split} \tag{a.5.15.20}$$

Where the last line obtains by noting that the second term in row 2 does not involve ϕ and can hence be relegated to the normalization constant.

The terms in (a.5.15.18) simplify. Note first that:

$$\bar{Z}'\bar{\Sigma}^{-1}\bar{Z}
= (I_n \otimes Z)'(\Sigma \otimes I_T)^{-1}(I_n \otimes Z)
= (I_n \otimes Z')(\Sigma^{-1} \otimes I_T)(I_n \otimes Z)
= (\Sigma^{-1} \otimes Z')(I_n \otimes Z)
= \Sigma^{-1} \otimes Z'Z$$
(a.5.15.21)

Similarly:

$$\bar{Z}'\bar{\Sigma}^{-1}\tilde{y}$$

$$= \bar{Z}'\bar{\Sigma}^{-1}(\Delta y - \bar{Y}_{-1}\xi)$$

$$= (I_n \otimes Z)'(\Sigma \otimes I_T)^{-1}vec(\Delta Y - Y_{-1}\Xi')$$

$$= (I_n \otimes Z')(\Sigma^{-1} \otimes I_T)vec(\Delta Y - Y_{-1}\Xi')$$

$$= (\Sigma^{-1} \otimes Z')vec(\Delta Y - Y_{-1}\Xi')$$

$$= vec(Z'[\Delta Y - Y_{-1}\Xi']\Sigma^{-1})$$
(a.5.15.22)

Then (a.5.15.18) rewrites:

$$\bar{Q} = (Q^{-1} + \Sigma^{-1} \otimes Z'Z)^{-1} \qquad \qquad \bar{f} = \bar{Q}(Q^{-1}f + vec(Z' [\Delta Y - Y_{-1}\Xi'] \Sigma^{-1})) \qquad (a.5.15.23)$$

derivations for equation (5.15.24)

Note that:

$$|\bar{\Sigma}|^{-1/2} = |\Sigma \otimes I_T|^{-1/2} = |\Sigma|^{-T/2} |I_T|^{-n/2} = |\Sigma|^{-T/2}$$
(a.5.15.24)

Also:

$$(\Delta y - \bar{Y}_{-1}\xi - \bar{Z}\phi)'\bar{\Sigma}^{-1}(\Delta y - \bar{Y}_{-1}\xi - \bar{Z}\phi)$$

$$= (\Delta y - (I_n \otimes Y_{-1})\xi - (I_n \otimes Z)\phi)'(\Sigma \otimes I_T)^{-1}(\Delta y - (I_n \otimes Y_{-1})\xi - (I_n \otimes Z)\phi)$$

$$= tr\{\Sigma^{-1}(\Delta Y - Y_{-1}\Xi' - Z\Phi)'(\Delta Y - Y_{-1}\Xi' - Z\Phi)\}$$
(a.5.15.25)

Then substituting in the original expression:

$$\begin{split} &\pi(\Sigma|y,\phi,\xi) \\ &\propto |\bar{\Sigma}|^{-1/2} \exp\left(-\frac{1}{2}(\Delta y - \bar{Y}_{-1}\xi - \bar{Z}\phi)'\bar{\Sigma}^{-1}(\Delta y - \bar{Y}_{-1}\xi - \bar{Z}\phi)\right) \\ &\times |\Sigma|^{-(\alpha+n+1)/2} \exp\left(-\frac{1}{2}tr\{\Sigma^{-1}S\}\right) \\ &= |\Sigma|^{-T/2} \exp\left(-\frac{1}{2}tr\{\Sigma^{-1}(\Delta Y - Y_{-1}\Xi' - Z\Phi)'(\Delta Y - Y_{-1}\Xi' - Z\Phi)\}\right) \times |\Sigma|^{-(\alpha+n+1)/2} \exp\left(-\frac{1}{2}tr\{\Sigma^{-1}S\}\right) \\ &= |\Sigma|^{-(\alpha+T+n+1)/2} \exp\left(-\frac{1}{2}tr\{\Sigma^{-1}[S + (\Delta Y - Y_{-1}\Xi' - Z\Phi)'(\Delta Y - Y_{-1}\Xi' - Z\Phi)]\}\right) \\ &= |\Sigma|^{-(\bar{\alpha}+n+1)/2} \exp\left(-\frac{1}{2}tr\{\Sigma^{-1}\bar{S}\}\right) \end{split} \tag{a.5.15.26}$$

with:

$$\bar{\alpha} = \alpha + T$$
 $\bar{S} = S + (\Delta Y - Y_{-1}\Xi' - Z\Phi)'(\Delta Y - Y_{-1}\Xi' - Z\Phi)$ (a.5.15.27)

derivations for equation (5.15.28)

For convenience, define first:

$$\tilde{y} = \Delta y - \bar{Z}\phi \tag{a.5.15.28}$$

Then $\pi(\xi|y,\phi,\Sigma)$ rewrites:

$$\pi(\xi|y,\phi,\Sigma) \propto \exp\left(-\frac{1}{2}(\tilde{y}-\bar{Y}_{-1}\xi)'\bar{\Sigma}^{-1}(\tilde{y}-\bar{Y}_{-1}\xi)\right) \times \exp\left(-\frac{1}{2}\xi'U^{-1}\xi\right) \tag{a.5.15.29}$$

Group terms:

$$\pi(\xi|y,\phi,\Sigma)
\propto \exp\left(-\frac{1}{2}(\tilde{y}-\bar{Y}_{-1}\xi)'\bar{\Sigma}^{-1}(\tilde{y}-\bar{Y}_{-1}\xi)\right) \times \exp\left(-\frac{1}{2}\xi'U^{-1}\xi\right)
= \exp\left(-\frac{1}{2}\left[(\tilde{y}-\bar{Y}_{-1}\xi)'\bar{\Sigma}^{-1}(\tilde{y}-\bar{Y}_{-1}\xi)+\xi'U^{-1}\xi\right]\right)$$
(a.5.15.30)

Consider the terms in square brackets:

$$(\tilde{y} - \bar{Y}_{-1}\xi)'\bar{\Sigma}^{-1}(\tilde{y} - \bar{Y}_{-1}\xi) + \xi'U^{-1}\xi$$

$$= \tilde{y}'\bar{\Sigma}^{-1}\tilde{y} + \xi'\bar{Y}'_{-1}\bar{\Sigma}^{-1}\bar{Y}_{-1}\xi - 2\xi'\bar{Y}'_{-1}\bar{\Sigma}^{-1}\tilde{y} + \xi'U^{-1}\xi$$

$$= \xi'(U^{-1} + \bar{Y}'_{-1}\bar{\Sigma}^{-1}\bar{Y}_{-1})\xi - 2\xi'(\bar{Y}'_{-1}\bar{\Sigma}^{-1}\tilde{y}) + \tilde{y}'\bar{\Sigma}^{-1}\tilde{y}$$
(a.5.15.31)

Complete the squares:

$$= \xi'(U^{-1} + \bar{Y}'_{1}\bar{\Sigma}^{-1}\bar{Y}_{-1})\xi - 2\xi'\bar{U}^{-1}\bar{U}(\bar{Y}'_{1}\bar{\Sigma}^{-1}\tilde{v}) + \bar{d}'\bar{U}^{-1}\bar{d} - \bar{d}'\bar{U}^{-1}\bar{d} + \tilde{v}'\bar{\Sigma}^{-1}\tilde{v}$$
(a.5.15.32)

Define:

$$\bar{U} = (U^{-1} + \bar{Y}'_{-1}\bar{\Sigma}^{-1}\bar{Y}_{-1})^{-1} \qquad \qquad \bar{d} = \bar{U}(\bar{Y}'_{-1}\bar{\Sigma}^{-1}\tilde{y})$$
(a.5.15.33)

Then (a.5.15.32) rewrites:

$$= \xi' \bar{U}^{-1} \xi - 2\xi' \bar{U}^{-1} \bar{d} + \bar{d}' \bar{U}^{-1} \bar{d} - \bar{d}' \bar{U}^{-1} \bar{d} + \tilde{y}' \bar{\Sigma}^{-1} \tilde{y}$$

$$= (\xi - \bar{d})' \bar{U}^{-1} (\xi - \bar{d}) + (\tilde{y}' \bar{\Sigma}^{-1} \tilde{y} - \bar{d}' \bar{U}^{-1} \bar{d})$$
(a.5.15.34)

Substitute (a.5.15.34) back in (a.5.15.30):

$$\begin{split} &\pi(\xi|y,\phi,\Sigma) \\ &= \exp\left(-\frac{1}{2}\left[(\xi-\bar{d})'\bar{U}^{-1}(\xi-\bar{d}) + (\tilde{y}'\bar{\Sigma}^{-1}\tilde{y} - \bar{d}'\bar{U}^{-1}\bar{d})\right]\right) \\ &= \exp\left(-\frac{1}{2}(\xi-\bar{d})'\bar{U}^{-1}(\xi-\bar{d})\right) \exp\left(-\frac{1}{2}(\tilde{y}'\bar{\Sigma}^{-1}\tilde{y} - \bar{d}'\bar{U}^{-1}\bar{d})\right) \\ &\propto \exp\left(-\frac{1}{2}(\xi-\bar{d})'\bar{U}^{-1}(\xi-\bar{d})\right) \end{split} \tag{a.5.15.35}$$

Where the last line obtains by noting that the second term in row 2 does not involve ξ and can hence be relegated to the normalization constant.

The terms in (a.5.15.33) simplify. Note first that:

$$\bar{Y}'_{-1}\bar{\Sigma}^{-1}\bar{Y}_{-1}
= (I_n \otimes Y_{-1})'(\Sigma \otimes I_T)^{-1}(I_n \otimes Y_{-1})
= (I_n \otimes Y'_{-1})(\Sigma^{-1} \otimes I_T)(I_n \otimes Y_{-1})
= (\Sigma^{-1} \otimes Y'_{-1})(I_n \otimes Y_{-1})
= \Sigma^{-1} \otimes Y'_{-1}Y_{-1}$$
(a.5.15.36)

Similarly:

$$\bar{Y}'_{-1}\bar{\Sigma}^{-1}\tilde{y}$$

$$= \bar{Y}'_{-1}\bar{\Sigma}^{-1}(\Delta y - \bar{Z}\phi)$$

$$= (I_n \otimes Y_{-1})'(\Sigma \otimes I_T)^{-1}(\Delta y - \bar{Z}\phi)$$

$$= (I_n \otimes Y'_{-1})(\Sigma^{-1} \otimes I_T)(\Delta y - \bar{Z}\phi)$$

$$= (\Sigma^{-1} \otimes Y'_{-1})(\Delta y - \bar{Z}\phi)$$

$$= (\Sigma^{-1} \otimes Y'_{-1})vec(\Delta Y - Z\Phi)$$

$$= vec(Y'_{-1}[\Delta Y - Z\Phi]\Sigma^{-1})$$
(a.5.15.37)

Then (a.5.15.33) rewrites:

$$\bar{U} = (U^{-1} + \Sigma^{-1} \otimes Y'_{-1} Y_{-1})^{-1} \qquad \qquad \bar{d} = \bar{U} \ vec(Y'_{-1} [\Delta Y - Z\Phi] \Sigma^{-1})$$
 (a.5.15.38)

derivations for equation (5.15.34)

For convenience, define first:

$$\tilde{y} = \Delta y - \bar{Z}\phi$$
 $\tilde{X} = \Lambda \otimes Y_{-1}$
(a.5.15.39)

Then $\pi(\kappa|y,\lambda,\phi,\Sigma)$ rewrites:

$$\pi(\kappa|y,\lambda,\phi,\Sigma) \propto \exp\left(-\frac{1}{2}(\tilde{y}-\tilde{X}\kappa)'\bar{\Sigma}^{-1}(\tilde{y}-\tilde{X}\kappa)\right) \times \exp\left(-\frac{1}{2}\kappa'R^{-1}\kappa\right)$$
(a.5.15.40)

Group terms:

$$\pi(\kappa|y,\lambda,\phi,\Sigma)$$

$$\propto \exp\left(-\frac{1}{2}(\tilde{y}-\tilde{X}\kappa)'\bar{\Sigma}^{-1}(\tilde{y}-\tilde{X}\kappa)\right) \times \exp\left(-\frac{1}{2}\kappa'R^{-1}\kappa\right)$$

$$= \exp\left(-\frac{1}{2}\left[(\tilde{y}-\tilde{X}\kappa)'\bar{\Sigma}^{-1}(\tilde{y}-\tilde{X}\kappa)+\kappa'R^{-1}\kappa\right]\right)$$
(a.5.15.41)

Consider the terms in square brackets:

$$(\tilde{y} - \tilde{X}\kappa)'\bar{\Sigma}^{-1}(\tilde{y} - \tilde{X}\kappa) + \kappa'R^{-1}\kappa$$

$$= \tilde{y}'\bar{\Sigma}^{-1}\tilde{y} + \kappa'\tilde{X}'\bar{\Sigma}^{-1}\tilde{X}\kappa - 2\kappa'\tilde{X}'\bar{\Sigma}^{-1}\tilde{y} + \kappa'R^{-1}\kappa$$

$$= \kappa'(R^{-1} + \tilde{X}'\bar{\Sigma}^{-1}\tilde{X})\kappa - 2\kappa'(\tilde{X}'\bar{\Sigma}^{-1}\tilde{y}) + \tilde{y}'\bar{\Sigma}^{-1}\tilde{y}$$
(a.5.15.42)

Complete the squares:

$$= \kappa'(R^{-1} + \tilde{X}'\bar{\Sigma}^{-1}\tilde{X})\kappa - 2\kappa'\bar{R}^{-1}\bar{R}(\tilde{X}'\bar{\Sigma}^{-1}\tilde{y}) + \bar{g}'\bar{R}^{-1}\bar{g} - \bar{g}'\bar{R}^{-1}\bar{g} + \tilde{y}'\bar{\Sigma}^{-1}\tilde{y}$$
(a.5.15.43)

Define:

$$\bar{R} = (R^{-1} + \tilde{X}'\bar{\Sigma}^{-1}\tilde{X})^{-1}$$
 $\bar{g} = \bar{R}(\tilde{X}'\bar{\Sigma}^{-1}\tilde{y})$ (a.5.15.44)

Then (a.5.15.43) rewrites:

$$= \kappa' \bar{R}^{-1} \kappa - 2\kappa' \bar{R}^{-1} \bar{g} + \bar{g}' \bar{R}^{-1} \bar{g} - \bar{g}' \bar{R}^{-1} \bar{g} + \tilde{y}' \bar{\Sigma}^{-1} \tilde{y}$$

$$= (\kappa - \bar{g})' \bar{R}^{-1} (\kappa - \bar{g}) + (\tilde{y}' \bar{\Sigma}^{-1} \tilde{y} - \bar{g}' \bar{R}^{-1} \bar{g})$$
(a.5.15.45)

Substitute (a.5.15.45) back in (a.5.15.41):

$$\begin{split} &\pi(\kappa|y,\lambda,\phi,\Sigma) \\ &= \exp\left(-\frac{1}{2}\left[(\kappa-\bar{g})'\bar{R}^{-1}(\kappa-\bar{g}) + (\tilde{y}'\bar{\Sigma}^{-1}\tilde{y} - \bar{g}'\bar{R}^{-1}\bar{g})\right]\right) \\ &= \exp\left(-\frac{1}{2}(\kappa-\bar{g})'\bar{R}^{-1}(\kappa-\bar{g})\right) \exp\left(-\frac{1}{2}(\tilde{y}'\bar{\Sigma}^{-1}\tilde{y} - \bar{g}'\bar{R}^{-1}\bar{g})\right) \\ &\propto \exp\left(-\frac{1}{2}(\kappa-\bar{g})'\bar{R}^{-1}(\kappa-\bar{g})\right) \end{split} \tag{a.5.15.46}$$

Where the last line obtains by noting that the second term in row 2 does not involve κ and can hence be relegated to the normalization constant.

The terms in (a.5.15.44) simplify. Note first that:

$$\tilde{X}'\bar{\Sigma}^{-1}\tilde{X}
= (\Lambda \otimes Y_{-1})'(\Sigma \otimes I_{T})^{-1}(\Lambda \otimes Y_{-1})
= (\Lambda' \otimes Y'_{-1})(\Sigma^{-1} \otimes I_{T})(\Lambda \otimes Y_{-1})
= (\Lambda'\Sigma^{-1} \otimes Y'_{-1})(\Lambda \otimes Y_{-1})
= (\Lambda'\Sigma^{-1}\Lambda) \otimes (Y'_{-1}Y_{-1})$$
(a.5.15.47)

Similarly:

$$\tilde{X}'\bar{\Sigma}^{-1}\tilde{y}
= \tilde{X}'\bar{\Sigma}^{-1}(\Delta y - \bar{Z}\phi)
= (\Lambda \otimes Y_{-1})'(\Sigma \otimes I_T)^{-1}(\Delta y - \bar{Z}\phi)
= (\Lambda' \otimes Y'_{-1})(\Sigma^{-1} \otimes I_T)(\Delta y - \bar{Z}\phi)
= (\Lambda'\Sigma^{-1} \otimes Y'_{-1})(\Delta y - \bar{Z}\phi)
= (\Lambda'\Sigma^{-1} \otimes Y'_{-1}) vec(\Delta Y - Z\Phi)
= vec(Y'_{-1}[\Delta Y - Z\Phi]\Sigma^{-1}\Lambda)$$
(a.5.15.48)

Then (a.5.15.44) rewrites:

$$\bar{R} = (R^{-1} + \Lambda' \Sigma^{-1} \Lambda \otimes Y'_{-1} Y_{-1})^{-1} \qquad \qquad \bar{g} = \bar{R} \operatorname{vec}(Y'_{-1} [\Delta Y - Z\Phi] \Sigma^{-1} \Lambda) \qquad (a.5.15.49)$$

derivations for equation (5.15.37)

For convenience, define first:

$$\tilde{y} = \Delta y - \bar{Z}\phi$$
 $\tilde{X} = I_n \otimes Y_{-1}K$ (a.5.15.50)

Then $\pi(\lambda|y, \kappa, \phi, \Sigma)$ rewrites:

$$\pi(\lambda|y,\kappa,\phi,\Sigma) \propto \exp\left(-\frac{1}{2}(\tilde{y}-\tilde{X}\lambda)'\bar{\Sigma}^{-1}(\tilde{y}-\tilde{X}\lambda)\right) \times \exp\left(-\frac{1}{2}\lambda'P^{-1}\lambda\right)$$
 (a.5.15.51)

Group terms:

$$\pi(\lambda | y, \kappa, \phi, \Sigma)$$

$$\propto \exp\left(-\frac{1}{2}(\tilde{y} - \tilde{X}\lambda)'\bar{\Sigma}^{-1}(\tilde{y} - \tilde{X}\lambda)\right) \times \exp\left(-\frac{1}{2}\lambda'P^{-1}\lambda\right)$$

$$= \exp\left(-\frac{1}{2}\left[(\tilde{y} - \tilde{X}\lambda)'\bar{\Sigma}^{-1}(\tilde{y} - \tilde{X}\lambda) + \lambda'P^{-1}\lambda\right]\right)$$
(a.5.15.52)

Consider the terms in square brackets:

$$(\tilde{y} - \tilde{X}\lambda)'\bar{\Sigma}^{-1}(\tilde{y} - \tilde{X}\lambda) + \lambda'P^{-1}\lambda$$

$$= \tilde{y}'\bar{\Sigma}^{-1}\tilde{y} + \lambda'\tilde{X}'\bar{\Sigma}^{-1}\tilde{X}\lambda - 2\lambda'\tilde{X}'\bar{\Sigma}^{-1}\tilde{y} + \lambda'P^{-1}\lambda$$

$$= \lambda'(P^{-1} + \tilde{X}'\bar{\Sigma}^{-1}\tilde{X})\lambda - 2\lambda'(\tilde{X}'\bar{\Sigma}^{-1}\tilde{y}) + \tilde{y}'\bar{\Sigma}^{-1}\tilde{y}$$
(a.5.15.53)

Complete the squares:

$$= \lambda'(P^{-1} + \tilde{X}'\bar{\Sigma}^{-1}\tilde{X})\lambda - 2\lambda'\bar{P}^{-1}\bar{P}(\tilde{X}'\bar{\Sigma}^{-1}\tilde{y}) + \bar{h}'\bar{P}^{-1}\bar{h} - \bar{h}'\bar{P}^{-1}\bar{h} + \tilde{y}'\bar{\Sigma}^{-1}\tilde{y}$$
 (a.5.15.54)

Define:

$$\bar{P} = (P^{-1} + \tilde{X}'\bar{\Sigma}^{-1}\tilde{X})^{-1}$$
 $\bar{h} = \bar{P}(\tilde{X}'\bar{\Sigma}^{-1}\tilde{y})$ (a.5.15.55)

Then (a.5.15.54) rewrites:

$$= \lambda' \bar{P}^{-1} \lambda - 2\lambda' \bar{P}^{-1} \bar{h} + \bar{h}' \bar{P}^{-1} \bar{h} - \bar{h}' \bar{P}^{-1} \bar{h} + \tilde{y}' \bar{\Sigma}^{-1} \tilde{y}$$

$$= (\lambda - \bar{h})' \bar{P}^{-1} (\lambda - \bar{h}) + (\tilde{y}' \bar{\Sigma}^{-1} \tilde{y} - \bar{h}' \bar{P}^{-1} \bar{h})$$
(a.5.15.56)

Substitute (a.5.15.56) back in (a.5.15.52):

$$\pi(\lambda | y, \kappa, \phi, \Sigma)$$

$$= \exp\left(-\frac{1}{2}\left[(\lambda - \bar{h})'\bar{P}^{-1}(\lambda - \bar{h}) + (\bar{y}'\bar{\Sigma}^{-1}\bar{y} - \bar{h}'\bar{P}^{-1}\bar{h})\right]\right)$$

$$= \exp\left(-\frac{1}{2}(\lambda - \bar{h})'\bar{P}^{-1}(\lambda - \bar{h})\right) \exp\left(-\frac{1}{2}(\bar{y}'\bar{\Sigma}^{-1}\bar{y} - \bar{h}'\bar{P}^{-1}\bar{h})\right)$$

$$\propto \exp\left(-\frac{1}{2}(\lambda - \bar{h})'\bar{P}^{-1}(\lambda - \bar{h})\right)$$
(a.5.15.57)

Where the last line obtains by noting that the second term in row 2 does not involve λ and can hence be relegated to the normalization constant.

The terms in (a.5.15.55) simplify. Note first that:

$$\tilde{X}'\bar{\Sigma}^{-1}\tilde{X}$$

$$= (I_n \otimes Y_{-1}K)'(\Sigma \otimes I_T)^{-1}(I_n \otimes Y_{-1}K)$$

$$= (I_n \otimes K'Y'_{-1})(\Sigma^{-1} \otimes I_T)(I_n \otimes Y_{-1}K)$$

$$= (\Sigma^{-1} \otimes K'Y'_{-1})(I_n \otimes Y_{-1}K)$$

$$= \Sigma^{-1} \otimes (K'Y'_{-1}Y_{-1}K)$$
(a.5.15.58)

Similarly:

$$\tilde{X}'\bar{\Sigma}^{-1}\tilde{y}$$

$$= \tilde{X}'\bar{\Sigma}^{-1}(\Delta y - \bar{Z}\phi)$$

$$= (I_n \otimes Y_{-1}K)'(\Sigma \otimes I_T)^{-1}(\Delta y - \bar{Z}\phi)$$

$$= (I_n \otimes K'Y'_{-1})(\Sigma^{-1} \otimes I_T)(\Delta y - \bar{Z}\phi)$$

$$= (\Sigma^{-1} \otimes K'Y'_{-1})(\Delta y - \bar{Z}\phi)$$

$$= (\Sigma^{-1} \otimes K'Y'_{-1}) \operatorname{vec}(\Delta Y - Z\Phi)$$

$$= \operatorname{vec}(K'Y'_{-1}[\Delta Y - Z\Phi]\Sigma^{-1})$$
(a.5.15.59)

Then (a.5.15.55) rewrites:

$$\bar{P} = (P^{-1} + \Sigma^{-1} \otimes K'Y'_{-1}Y_{-1}K)^{-1} \qquad \bar{h} = \bar{P} \operatorname{vec}(K'Y'_{-1}[\Delta Y - Z\Phi]\Sigma^{-1})$$
(a.5.15.60)

derivations for equation (5.15.44)

Bayes rule in its raw form is given by:

$$\pi(\xi,\tau^2,\nu,\psi^2,\eta,\phi,\Sigma|y) \propto f(y|\xi,\phi,\Sigma) \; \pi(\xi,\tau^2,\nu,\psi^2,\eta,\phi,\Sigma) \tag{a.5.15.61}$$

where the parameters τ^2 , ν , ψ^2 and η are omitted from the likelihood function as they don't intervene in the likelihood once ξ is determined. Consider first the rightmost term, which is the joint prior. Using a standard independence assumption between ϕ , Σ and the other parameters, it rewrites as:

$$\pi(\xi, \tau^{2}, \nu, \psi^{2}, \eta, \phi, \Sigma) = \pi(\xi, \tau^{2}, \nu, \psi^{2}, \eta) \ \pi(\phi) \ \pi(\Sigma)$$
 (a.5.15.62)

The first term on the right-hand-side of (a.5.15.62) rewrites as:

$$\pi(\xi, \tau^{2}, \nu, \psi^{2}, \eta)
= \frac{\pi(\xi, \tau^{2}, \nu, \psi^{2}, \eta)}{\pi(\tau^{2}, \nu)} \frac{\pi(\tau^{2}, \nu)}{\pi(\nu)} \pi(\nu)
= \frac{\pi(\xi, \tau^{2}, \nu, \psi^{2}, \eta)}{\pi(\tau^{2}, \nu)} \pi(\tau^{2} | \nu) \pi(\nu)
= \frac{\pi(\xi, \tau^{2}, \nu, \psi^{2}, \eta)}{\pi(\tau^{2}, \nu, \psi^{2}, \eta)} \frac{\pi(\tau^{2}, \nu, \psi^{2}, \eta)}{\pi(\tau^{2}, \nu)} \pi(\tau^{2} | \nu) \pi(\nu)
= \pi(\xi | \tau^{2}, \nu, \psi^{2}, \eta) \frac{\pi(\tau^{2}, \nu, \psi^{2}, \eta)}{\pi(\tau^{2}, \nu)} \pi(\tau^{2} | \nu) \pi(\nu)
= \pi(\xi | \tau^{2}, \nu, \psi^{2}, \eta) \frac{\pi(\tau^{2}, \nu, \psi^{2}, \eta)}{\pi(\tau^{2}, \nu)} \pi(\tau^{2} | \nu) \pi(\nu)$$
(a.5.15.63)

Assuming independence between τ^2 , v and ψ^2 , η :

$$= \pi(\xi | \tau^{2}, \nu, \psi^{2}, \eta) \frac{\pi(\tau^{2}, \nu)\pi(\psi^{2}, \eta)}{\pi(\tau^{2}, \nu)} \pi(\tau^{2} | \nu)\pi(\nu)$$

$$= \pi(\xi | \tau^{2}, \nu, \psi^{2}, \eta)\pi(\psi^{2}, \eta)\pi(\tau^{2} | \nu)\pi(\nu)$$
(a.5.15.64)

Assuming independence between the different ξ_i , τ_i and v_i :

$$= \left(\prod_{i=1}^{n^{2}} \pi(\xi_{i}|\tau^{2}, \nu, \psi_{i}^{2}, \eta_{i}) \pi(\psi_{i}^{2}, \eta_{i})\right) \pi(\tau^{2}|\nu) \pi(\nu)$$

$$= \left(\prod_{i=1}^{n^{2}} \pi(\xi_{i}|\tau^{2}, \nu, \psi_{i}^{2}, \eta_{i}) \frac{\pi(\psi_{i}^{2}, \eta_{i})}{\pi(\eta_{i})} \pi(\eta_{i})\right) \pi(\tau^{2}|\nu) \pi(\nu)$$

$$= \left(\prod_{i=1}^{n^{2}} \pi(\xi_{i}|\tau^{2}, \nu, \psi_{i}^{2}, \eta_{i}) \pi(\psi_{i}^{2}|\eta_{i}) \pi(\eta_{i})\right) \pi(\tau^{2}|\nu) \pi(\nu)$$
(a.5.15.65)

Noting that conditioning on v and η_i is irrelevant once τ and ψ_i^2 are known, this becomes:

$$= \left(\prod_{i=1}^{n^2} \pi(\xi_i | \tau^2, \psi_i^2) \; \pi(\psi_i^2 | \eta_i) \; \pi(\eta_i)\right) \pi(\tau^2 | \nu) \; \pi(\nu) \tag{a.5.15.66}$$

Replacing (a.5.15.66) in (a.5.15.61):

$$\pi(\xi, \tau^{2}, \nu, \psi^{2}, \eta, \phi, \Sigma | y) \propto f(y | \xi, \phi, \Sigma) \left(\prod_{i=1}^{n^{2}} \pi(\xi_{i} | \tau^{2}, \psi_{i}^{2}) \ \pi(\psi_{i}^{2} | \eta_{i}) \ \pi(\eta_{i}) \right) \pi(\tau^{2} | \nu) \ \pi(\nu) \ \pi(\phi) \ \pi(\Sigma)$$
(a.5.15.67)

derivations for equation (5.15.46)

Rearrange:

$$\pi(\tau^{2}|y,\xi,\nu,\psi^{2},\eta,\phi,\Sigma)$$

$$\propto \left(\prod_{i=1}^{n^{2}} (\tau^{2})^{-1/2} \exp\left(-\frac{1}{2} \frac{\xi_{i}^{2}}{\tau^{2} \psi_{i}^{2}}\right)\right) (\tau^{2})^{-1/2-1} \exp\left(-\frac{1}{\nu \tau^{2}}\right)$$

$$= (\tau^{2})^{-n^{2}/2} \exp\left(-\frac{1}{2} \sum_{i=1}^{n^{2}} \frac{\xi_{i}^{2}}{\tau^{2} \psi_{i}^{2}}\right) (\tau^{2})^{-1/2-1} \exp\left(-\frac{1}{\nu \tau^{2}}\right)$$

$$= (\tau^{2})^{-(n^{2}+1)/2-1} \exp\left(-\frac{1/2 \sum_{i=1}^{n^{2}} \xi_{i}^{2}/\psi_{i}^{2} + 1/\nu}{\tau^{2}}\right)$$
(a.5.15.68)

Define:

$$a_{\tau} = \frac{n^2 + 1}{2}$$
 $b_{\tau} = \frac{1}{2} \sum_{i=1}^{n^2} \frac{\xi_i^2}{\psi_i^2} + \frac{1}{v}$ (a.5.15.69)

Then this rewrites:

$$\pi(\tau^2|y,\xi,\nu,\psi^2,\eta,\phi,\Sigma) \propto (\tau^2)^{-a_{\tau}-1} \exp\left(-\frac{b_{\tau}}{\tau^2}\right)$$
 (a.5.15.70)

derivations for equation (5.15.49)

Rearrange:

$$\pi(\nu|y,\xi,\tau^{2},\psi^{2},\eta,\phi,\Sigma)$$

$$\propto \nu^{-1/2} \exp\left(-\frac{1}{\nu\tau^{2}}\right) \nu^{-1/2-1} \exp\left(-\frac{1}{\nu}\right)$$

$$= \nu^{-1-1} \exp\left(-\frac{1/\tau^{2}+1}{\nu}\right)$$
(a.5.15.71)

Define:

$$a_{\nu} = 1$$
 $b_{\nu} = \frac{1}{\tau^2} + 1$ (a.5.15.72)

Then this rewrites:

$$\pi(\nu|y,\xi,\tau^2,\psi^2,\eta,\phi,\Sigma) \propto \nu^{-a_{\nu}-1} \exp\left(-\frac{b_{\nu}}{\nu}\right)$$
 (a.5.15.73)

derivations for equation (5.15.52)

Rearrange:

$$\pi(\psi_{i}^{2}|y,\xi,\tau^{2},\nu,\eta,\phi,\Sigma)$$

$$\propto (\psi_{i}^{2})^{-1/2} \exp\left(-\frac{1}{2}\frac{\xi_{i}^{2}}{\tau^{2}\psi_{i}^{2}}\right) (\psi_{i}^{2})^{-1/2-1} \exp\left(-\frac{1}{\eta_{i}\psi_{i}^{2}}\right)$$

$$= (\psi_{i}^{2})^{-1-1} \exp\left(-\frac{\xi_{i}^{2}/2\tau^{2}+1/\eta_{i}}{\psi_{i}^{2}}\right)$$
(a.5.15.74)

Define:

$$a_{\psi} = 1$$
 $b_{\psi} = \frac{\xi_i^2}{2\tau^2} + \frac{1}{n_i}$ (a.5.15.75)

Then this rewrites:

$$\pi(\psi_i^2|y,\xi,\tau^2,v,\eta,\phi,\Sigma) \propto (\psi_i^2)^{-a_{\psi}-1} \, \exp\left(-\frac{b_{\psi}}{\psi_i^2}\right) \tag{a.5.15.76}$$

derivations for equation (5.15.55)

Rearrange:

$$\pi(\eta_{i}|y,\xi,\tau^{2},\nu,\psi^{2},\phi,\Sigma)$$

$$\propto \eta_{i}^{-1/2} \exp\left(-\frac{1}{\eta_{i}\psi_{i}^{2}}\right) \eta_{i}^{-1/2-1} \exp\left(-\frac{1}{\eta_{i}}\right)$$

$$= \eta_{i}^{-1-1} \exp\left(-\frac{1/\psi_{i}^{2}+1}{\eta_{i}}\right)$$
(a.5.15.77)

Define:

$$a_{\eta} = 1$$
 $b_{\eta} = \frac{1}{\psi_i^2} + 1$ (a.5.15.78)

Then this rewrites:

$$\pi(\psi_i^2|y,\xi,\tau^2,\nu,\eta,\phi,\Sigma) \propto \eta_i^{-a_\eta - 1} \exp\left(-\frac{b_\eta}{\eta_i}\right)$$
 (a.5.15.79)

derivations for equation (5.15.65)

Start from the joint version of Bayes rule:

$$\pi(\kappa, \lambda, \tau^2, \nu, \psi^2, \eta, \zeta^2, \omega, \phi, \Sigma | y) \propto f(y | \kappa, \lambda, \phi, \Sigma) \pi(\kappa, \lambda, \tau^2, \nu, \psi^2, \eta, \zeta^2, \omega, \phi, \Sigma)$$
 (a.5.15.80)

where the parameters τ^2 , ν , ψ^2 , η , ζ^2 and ω are omitted from the likelihood function as they don't intervene in the likelihood once κ and λ are determined. Consider first the rightmost term, which is the joint prior. Using a standard independence assumption between ϕ , Σ and the other parameters, it rewrites as:

$$\pi(\kappa, \lambda, \tau^2, \nu, \psi^2, \eta, \zeta^2, \omega, \phi, \Sigma) = \pi(\kappa, \lambda, \tau^2, \nu, \psi^2, \eta, \zeta^2, \omega) \ \pi(\phi) \ \pi(\Sigma)$$
(a.5.15.81)

The first term on the right-hand-side of (a.5.15.81) rewrites as:

$$\pi(\kappa, \lambda, \tau^{2}, \nu, \psi^{2}, \eta, \zeta^{2}, \omega)$$

$$= \frac{\pi(\kappa, \lambda, \tau^{2}, \nu, \psi^{2}, \eta, \zeta^{2}, \omega)}{\pi(\tau^{2}, \nu, \psi^{2}, \eta, \zeta^{2}, \omega)} \pi(\tau^{2}, \nu, \psi^{2}, \eta, \zeta^{2}, \omega)$$

$$= \pi(\kappa, \lambda | \tau^{2}, \nu, \psi^{2}, \eta, \zeta^{2}, \omega) \pi(\tau^{2}, \nu, \psi^{2}, \eta, \zeta^{2}, \omega)$$
(a.5.15.82)

Assume independence between κ and λ , and also between ψ^2 , η and ζ^2 , ω and τ^2 , ν :

$$= \pi(\kappa | \tau^{2}, \nu, \psi^{2}, \eta, \zeta^{2}, \omega) \pi(\lambda | \tau^{2}, \nu, \psi^{2}, \eta, \zeta^{2}, \omega) \pi(\tau^{2}, \nu) \pi(\psi^{2}, \eta) \pi(\zeta^{2}, \omega)$$
(a.5.15.83)

For the first term, the conditioning on v, η, ζ^2 and ω can be dropped as only τ^2 and ψ^2 are relevant to determine κ . Similarly, for the second term, the conditioning on v, ψ^2, η and ω can be dropped as only τ^2 and η^2 are relevant to determine λ . Hence:

$$= \pi(\kappa | \tau^2, \psi^2) \, \pi(\lambda | \tau^2, \zeta^2) \, \pi(\tau^2, \nu) \, \pi(\psi^2, \eta) \, \pi(\zeta^2, \omega) \tag{a.5.15.84}$$

Continue reformulating:

$$= \pi(\kappa|\tau^{2}, \psi^{2}) \pi(\lambda|\tau^{2}, \zeta^{2}) \frac{\pi(\tau^{2}, \nu)}{\pi(\nu)} \pi(\nu) \frac{\pi(\psi^{2}, \eta)}{\pi(\eta)} \pi(\eta) \frac{\pi(\zeta^{2}, \omega)}{\pi(\omega)} \pi(\omega)$$

$$= \pi(\kappa|\tau^{2}, \psi^{2}) \pi(\lambda|\tau^{2}, \zeta^{2}) \pi(\tau^{2}|\nu) \pi(\nu) \pi(\psi^{2}|\eta) \pi(\eta) \pi(\zeta^{2}|\omega) \pi(\omega)$$
(a.5.15.85)

Assuming finally independence across the row parameters $(i = 1, \dots, n)$, and also independence between the column parameters $(j = 1, \dots, r)$, one obtains:

$$= \left(\prod_{i=1}^{n} \prod_{j=1}^{r} \pi(\kappa_{ij} | \psi_{i}^{2}, \tau_{j}^{2}) \ \pi(\lambda_{ij} | \zeta_{i}^{2}, \tau_{j}^{2}) \right) \left(\prod_{i=1}^{n} \pi(\psi_{i}^{2} | \eta_{i}) \ \pi(\eta_{i}) \ \pi(\zeta_{i}^{2} | \omega_{i}) \ \pi(\omega_{i}) \right) \left(\prod_{j=1}^{r} \pi(\tau_{j}^{2} | \nu_{j}) \ \pi(\nu_{j}) \right)$$
(a.5.15.86)

Substitute back in (a.5.15.81):

$$\pi(\kappa, \lambda, \tau^{2}, \nu, \psi^{2}, \eta, \zeta^{2}, \omega, \phi, \Sigma) = \pi(\phi) \ \pi(\Sigma) \left(\prod_{i=1}^{n} \prod_{j=1}^{r} \pi(\kappa_{ij} | \psi_{i}^{2}, \tau_{j}^{2}) \ \pi(\lambda_{ij} | \zeta_{i}^{2}, \tau_{j}^{2}) \right)$$

$$\left(\prod_{i=1}^{n} \pi(\psi_{i}^{2} | \eta_{i}) \ \pi(\eta_{i}) \ \pi(\zeta_{i}^{2} | \omega_{i}) \ \pi(\omega_{i}) \right) \left(\prod_{j=1}^{r} \pi(\tau_{j}^{2} | \nu_{j}) \ \pi(\nu_{j}) \right)$$

$$(a.5.15.87)$$

Substitute back (a.5.15.87) in (a.5.15.80):

$$\pi(\kappa, \lambda, \tau^{2}, \nu, \psi^{2}, \eta, \zeta^{2}, \omega, \phi, \Sigma | y) \propto f(y | \kappa, \lambda, \phi, \Sigma) \ \pi(\phi) \ \pi(\Sigma) \left(\prod_{i=1}^{n} \prod_{j=1}^{r} \pi(\kappa_{ij} | \psi_{i}^{2}, \tau_{j}^{2}) \ \pi(\lambda_{ij} | \zeta_{i}^{2}, \tau_{j}^{2}) \right)$$

$$\left(\prod_{i=1}^{n} \pi(\psi_{i}^{2} | \eta_{i}) \ \pi(\eta_{i}) \ \pi(\zeta_{i}^{2} | \omega_{i}) \ \pi(\omega_{i}) \right) \left(\prod_{j=1}^{r} \pi(\tau_{j}^{2} | \nu_{j}) \ \pi(\nu_{j}) \right)$$

$$(a.5.15.88)$$

derivations for equation (5.15.67)

Rearrange:

$$\begin{split} &\pi(\tau_{j}^{2}|y,\kappa,\lambda,\nu,\psi^{2},\eta,\zeta^{2},\omega,\phi,\Sigma) \\ &\propto \left(\prod_{i=1}^{n} (\tau_{j}^{2})^{-1/2} \exp\left(-\frac{1}{2} \frac{\kappa_{ij}^{2}}{\psi_{i}^{2} \tau_{j}^{2}}\right) (\tau_{j}^{2})^{-1/2} \exp\left(-\frac{1}{2} \frac{\lambda_{ij}^{2}}{\zeta_{i}^{2} \tau_{j}^{2}}\right) \right) (\tau_{j}^{2})^{-1/2-1} \exp\left(-\frac{1}{\nu_{j} \tau_{j}^{2}}\right) \\ &= (\tau_{j}^{2})^{-n/2} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} \frac{\kappa_{ij}^{2}}{\psi_{i}^{2} \tau_{j}^{2}}\right) (\tau_{j}^{2})^{-n/2} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} \frac{\lambda_{ij}^{2}}{\zeta_{i}^{2} \tau_{j}^{2}}\right) (\tau_{j}^{2})^{-1/2-1} \exp\left(-\frac{1}{\nu_{j} \tau_{j}^{2}}\right) \\ &= (\tau_{j}^{2})^{-n} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} \left[\frac{\kappa_{ij}^{2}}{\psi_{i}^{2} \tau_{j}^{2}} + \frac{\lambda_{ij}^{2}}{\zeta_{i}^{2} \tau_{j}^{2}}\right]\right) (\tau_{j}^{2})^{-1/2-1} \exp\left(-\frac{1}{\nu_{j} \tau_{j}^{2}}\right) \\ &= (\tau_{j}^{2})^{-(n+1/2)-1} \exp\left(-\frac{1/2 \sum_{i=1}^{n} (\kappa_{ij}^{2}/\psi_{i}^{2} + \lambda_{ij}^{2}/\zeta_{i}^{2}) + 1/\nu_{j}}{\tau_{j}^{2}}\right) \end{split} \tag{a.5.15.89}$$

Define:

$$a_{\tau} = n + \frac{1}{2}$$
 $b_{\tau} = \frac{1}{2} \sum_{i=1}^{n} \left(\frac{\kappa_{ij}^2}{\psi_i^2} + \frac{\lambda_{ij}^2}{\zeta_i^2} \right) + \frac{1}{v_j}$ (a.5.15.90)

Then this rewrites:

$$\pi(\tau_j^2|y,\kappa,\lambda,\nu,\psi^2,\eta,\zeta^2,\omega,\phi,\Sigma) \propto (\tau_j^2)^{-a_\tau - 1} \exp\left(-\frac{b_\tau}{\tau_j^2}\right)$$
 (a.5.15.91)

derivations for equation (5.15.70)

Rearrange:

$$\pi(v_{j}|y,\kappa,\lambda,\tau^{2},\psi^{2},\eta,\zeta^{2},\omega,\phi,\Sigma)$$

$$\approx v_{j}^{-1/2}\exp\left(-\frac{1}{v_{j}\tau_{j}^{2}}\right)v_{j}^{-1/2-1}\exp\left(-\frac{1}{v_{j}}\right)$$

$$= v_{j}^{-1-1}\exp\left(-\frac{1/\tau_{j}^{2}+1}{v_{j}}\right)$$
(a.5.15.92)

Define:

$$a_{v} = 1$$
 $b_{v} = \frac{1}{\tau_{j}^{2}} + 1$ (a.5.15.93)

Then this rewrites:

$$\pi(\nu_j|y,\kappa,\lambda,\tau^2,\psi^2,\eta,\zeta^2,\omega,\phi,\Sigma) \propto \nu_j^{-a_v-1} \exp\left(-\frac{b_v}{\nu_j}\right)$$
 (a.5.15.94)

derivations for equation (5.15.73)

Rearrange:

$$\pi(\psi_{i}^{2}|y,\kappa,\lambda,\tau^{2},\nu,\eta,\zeta^{2},\omega,\phi,\Sigma)$$

$$\propto \left(\prod_{j=1}^{r}(\psi_{i}^{2})^{-1/2}\exp\left(-\frac{1}{2}\frac{\kappa_{ij}^{2}}{\psi_{i}^{2}\tau_{j}^{2}}\right)\right)(\psi_{i}^{2})^{-1/2-1}\exp\left(-\frac{1}{\eta_{i}\psi_{i}^{2}}\right)$$

$$= (\psi_{i}^{2})^{-r/2}\exp\left(-\frac{1}{2}\sum_{j=1}^{r}\frac{\kappa_{ij}^{2}}{\psi_{i}^{2}\tau_{j}^{2}}\right)(\psi_{i}^{2})^{-1/2-1}\exp\left(-\frac{1}{\eta_{i}\psi_{i}^{2}}\right)$$

$$= (\psi_{i}^{2})^{-(r+1)/2-1}\exp\left(-\frac{1/2\sum_{j=1}^{r}\kappa_{ij}^{2}/\tau_{j}^{2}+1/\eta_{i}}{\psi_{i}^{2}}\right)$$
(a.5.15.95)

Define:

$$a_{\psi} = \frac{r+1}{2}$$
 $b_{\psi} = \frac{1}{2} \sum_{i=1}^{r} \frac{\kappa_{ij}^2}{\tau_i^2} + \frac{1}{\eta_i}$ (a.5.15.96)

Then this rewrites:

$$\pi(\psi_i^2|y,\kappa,\lambda,\tau^2,\nu,\eta,\zeta^2,\omega,\phi,\Sigma) \propto (\psi_i^2)^{-a_{\psi}-1} \exp\left(-\frac{b_{\psi}}{\psi_i^2}\right)$$
 (a.5.15.97)

derivations for equation (5.15.76)

Rearrange:

$$\pi(\eta_{i}|y,\kappa,\lambda,\tau^{2},\nu,\psi^{2},\zeta^{2},\omega,\phi,\Sigma)$$

$$\approx \eta_{i}^{-1/2} \exp\left(-\frac{1}{\eta_{i}\psi_{i}^{2}}\right) \eta_{i}^{-1/2-1} \exp\left(-\frac{1}{\eta_{i}}\right)$$

$$= \eta_{i}^{-1-1} \exp\left(-\frac{1/\psi_{i}^{2}+1}{\eta_{i}}\right)$$
(a.5.15.98)

Define:

$$a_{\eta} = 1$$
 $b_{\eta} = \frac{1}{\psi_i^2} + 1$ (a.5.15.99)

Then this rewrites:

$$\pi(\eta_i|y,\kappa,\lambda,\tau^2,\nu,\psi^2,\zeta^2,\omega,\phi,\Sigma) \propto \eta_i^{-a_\eta - 1} \exp\left(-\frac{b_\eta}{\eta_i}\right)$$
 (a.5.15.100)

derivations for equation (5.15.79)

Rearrange:

$$\pi(\zeta_{i}^{2}|y,\kappa,\lambda,\tau^{2},v,\psi^{2},\eta,\omega,\phi,\Sigma)$$

$$\propto \left(\prod_{j=1}^{r}(\zeta_{i}^{2})^{-1/2}\exp\left(-\frac{1}{2}\frac{\lambda_{ij}^{2}}{\zeta_{i}^{2}\tau_{j}^{2}}\right)\right)(\zeta_{i}^{2})^{-1/2-1}\exp\left(-\frac{1}{\omega_{i}\zeta_{i}^{2}}\right)$$

$$= (\zeta_{i}^{2})^{-r/2}\exp\left(-\frac{1}{2}\sum_{j=1}^{r}\frac{\lambda_{ij}^{2}}{\zeta_{i}^{2}\tau_{j}^{2}}\right)(\zeta_{i}^{2})^{-1/2-1}\exp\left(-\frac{1}{\omega_{i}\zeta_{i}^{2}}\right)$$

$$= (\zeta_{i}^{2})^{-(r+1)/2-1}\exp\left(-\frac{1/2\sum_{j=1}^{r}\lambda_{ij}^{2}/\tau_{j}^{2}+1/\omega_{i}}{\zeta_{i}^{2}}\right)$$
(a.5.15.101)

Define:

$$a_{\zeta} = \frac{r+1}{2}$$
 $b_{\zeta} = \frac{1}{2} \sum_{i=1}^{r} \frac{\lambda_{ij}^{2}}{\tau_{i}^{2}} + \frac{1}{\omega_{i}}$ (a.5.15.102)

Then this rewrites:

$$\pi(\zeta_i^2|y,\kappa,\lambda,\tau^2,\nu,\psi^2,\eta,\omega,\phi,\Sigma) \propto (\zeta_i^2)^{-a_{\zeta}-1} \exp\left(-\frac{b_{\zeta}}{\zeta_i^2}\right) \tag{a.5.15.103}$$

derivations for equation (5.15.82)

Rearrange:

$$\pi(\omega_{i}|y,\kappa,\lambda,\tau^{2},\nu,\psi^{2},\eta,\zeta^{2},\phi,\Sigma)$$

$$\approx \omega_{i}^{-1/2} \exp\left(-\frac{1}{\omega_{i}\zeta_{i}^{2}}\right) \omega_{i}^{-1/2-1} \exp\left(-\frac{1}{\omega_{i}}\right)$$

$$= \omega_{i}^{-1-1} \exp\left(-\frac{1/\zeta_{i}^{2}+1}{\omega_{i}}\right)$$
(a.5.15.104)

Define:

$$a_{\omega} = 1$$
 $b_{\omega} = \frac{1}{\zeta_i^2} + 1$ (a.5.15.105)

Then this rewrites:

$$\pi(\omega_i|y,\kappa,\lambda,\tau^2,\nu,\psi^2,\eta,\zeta^2,\phi,\Sigma) \propto \omega_i^{-a_\omega-1} \exp\left(-\frac{b_\omega}{\omega_i}\right)$$
 (a.5.15.106)

derivations for equation (5.15.86)

Bayes rule in its raw form is given by:

$$\pi(\xi, \delta, \phi, \Sigma | y) \propto f(y | \xi, \phi, \Sigma) \ \pi(\xi, \delta, \phi, \Sigma) \tag{a.5.15.107}$$

where the parameters δ are omitted from the likelihood function as they don't intervene in the likelihood once ξ is determined. Consider first the rightmost term, which is the joint prior. Using a standard independence assumption between ϕ , Σ and the other parameters, it rewrites as:

$$\pi(\xi, \delta, \phi, \Sigma) = \pi(\xi, \delta) \,\pi(\phi) \,\pi(\Sigma) \tag{a.5.15.108}$$

The first term on the right-hand-side of (a.5.15.62) rewrites as:

$$\pi(\xi, \delta) = \frac{\pi(\xi, \delta)}{\pi(\delta)} \pi(\delta) = \pi(\xi | \delta) \pi(\delta)$$
(a.5.15.109)

Assuming independence between the different ξ_i and δ_i :

$$\pi(\xi, \delta) = \pi(\xi | \delta)\pi(\delta) = \left(\prod_{i=1}^{n^2} \pi(\xi_i | \delta_i) \ \pi(\delta_i)\right)$$
(a.5.15.110)

Replacing (a.5.15.110) back in (a.5.15.108):

$$\pi(\xi, \delta, \phi, \Sigma) = \left(\prod_{i=1}^{n^2} \pi(\xi_i | \delta_i) \ \pi(\delta_i)\right) \ \pi(\phi) \ \pi(\Sigma)$$
(a.5.15.111)

Eventually replacing (a.5.15.111) in (a.5.15.107):

$$\pi(\xi, \delta, \phi, \Sigma | y) \propto f(y | \xi, \phi, \Sigma) \left(\prod_{i=1}^{n^2} \pi(\xi_i | \delta_i) \ \pi(\delta_i) \right) \pi(\phi) \ \pi(\Sigma)$$
(a.5.15.112)

derivations for equation (5.15.88)

The joint conditional posterior is given by:

$$\pi(\delta_{i}|y,\xi,\phi,\Sigma) \propto \left[(2\pi\tau_{1}^{2})^{-1/2} \exp\left(-\frac{1}{2}\frac{\xi_{i}^{2}}{\tau_{1}^{2}}\right) \right]^{\delta_{i}} \left[(2\pi\tau_{2}^{2})^{-1/2} \exp\left(-\frac{1}{2}\frac{\xi_{i}^{2}}{\tau_{2}^{2}}\right) \right]^{(1-\delta_{i})} \mu^{\delta_{i}} (1-\mu)^{(1-\delta_{i})}$$

$$(a.5.15.113)$$

Since δ_i is a binary variable, it can only take values 0 or 1. Consider the case $\delta_i = 1$. In this case, the posterior becomes:

$$\pi(\delta_i|y,\xi,\phi,\Sigma) \propto (2\pi\tau_1^2)^{-1/2} \exp\left(-\frac{1}{2}\frac{\xi_i^2}{\tau_1^2}\right) \mu$$
 (a.5.15.114)

In the case $\delta_i = 0$, the posterior becomes:

$$\pi(\delta_i|y,\xi,\phi,\Sigma) \propto (2\pi\tau_2^2)^{-1/2} \exp\left(-\frac{1}{2}\frac{\xi_i^2}{\tau_2^2}\right) (1-\mu)$$
 (a.5.15.115)

Because δ_i is binary, its posterior is Bernoulli as well. The sum of the probabilities for $\delta_i = 0$ and $\delta_i = 1$ must therefore be 1. This obtains by normalizing the kernels by the sum of their values. Thus for $\delta_i = 1$:

$$\pi(\delta_{i}|y,\xi,\phi,\Sigma) = \frac{(2\pi\tau_{1}^{2})^{-1/2}\exp\left(-\frac{1}{2}\frac{\xi_{i}^{2}}{\tau_{1}^{2}}\right)\mu}{(2\pi\tau_{1}^{2})^{-1/2}\exp\left(-\frac{1}{2}\frac{\xi_{i}^{2}}{\tau_{1}^{2}}\right)\mu + (2\pi\tau_{2}^{2})^{-1/2}\exp\left(-\frac{1}{2}\frac{\xi_{i}^{2}}{\tau_{2}^{2}}\right)(1-\mu)}$$

$$= \frac{\tau_{1}^{-1}\exp\left(-\frac{1}{2}\frac{\xi_{i}^{2}}{\tau_{1}^{2}}\right)\mu}{\tau_{1}^{-1}\exp\left(-\frac{1}{2}\frac{\xi_{i}^{2}}{\tau_{1}^{2}}\right)\mu + \tau_{2}^{-1}\exp\left(-\frac{1}{2}\frac{\xi_{i}^{2}}{\tau_{2}^{2}}\right)(1-\mu)}$$

$$= \frac{\frac{\mu}{\tau_{1}}\exp\left(-\frac{1}{2}\frac{\xi_{i}^{2}}{\tau_{1}^{2}}\right)}{\frac{\mu}{\tau_{1}}\exp\left(-\frac{1}{2}\frac{\xi_{i}^{2}}{\tau_{2}^{2}}\right) + \frac{1-\mu}{\tau_{2}}\exp\left(-\frac{1}{2}\frac{\xi_{i}^{2}}{\tau_{2}^{2}}\right)}$$
(a.5.15.116)

Define:

$$\mu_{\xi} = \frac{a_1}{a_1 + a_2} \qquad a_1 = \frac{\mu}{\tau_1} \exp\left(-\frac{1}{2} \frac{\xi_i^2}{\tau_1^2}\right) \qquad a_2 = \frac{1 - \mu}{\tau_2} \exp\left(-\frac{1}{2} \frac{\xi_i^2}{\tau_2^2}\right)$$
(a.5.15.117)

Hence the posterior is Bernoulli with a probability of success μ_{ξ} , which writes as:

$$\pi(\delta_i|y,\xi,\phi,\Sigma) = \mu_{\xi}^{\delta_i} (1 - \mu_{\xi})^{(1 - \delta_i)}$$
(a.5.15.118)

derivations for equation (5.15.94)

Bayes rule in raw form is given by:

$$\pi(\kappa, \chi, \lambda, \gamma, \phi, \Sigma | y) \propto f(y | \kappa, \chi, \phi, \Sigma) \ \pi(\kappa, \chi, \lambda, \gamma, \phi, \Sigma) \tag{a.5.15.119}$$

A standard independence assumption between ϕ , Σ and the groups made of κ and χ , then λ and γ yields:

$$\pi(\kappa, \chi, \lambda, \gamma, \phi, \Sigma | y) \propto f(y | \kappa, \chi, \phi, \Sigma) \ \pi(\kappa, \chi) \ \pi(\lambda, \gamma) \ \pi(\phi) \ \pi(\Sigma)$$
(a.5.15.120)

Rearranging:

$$\pi(\kappa, \chi, \lambda, \gamma, \phi, \Sigma | y)$$

$$\propto f(y | \kappa, \chi, \phi, \Sigma) \pi(\kappa, \chi) \pi(\lambda, \gamma) \pi(\phi) \pi(\Sigma)$$

$$= f(y | \kappa, \chi, \phi, \Sigma) \frac{\pi(\kappa, \chi)}{\pi(\chi)} \pi(\chi) \frac{\pi(\lambda, \gamma)}{\pi(\gamma)} \pi(\gamma) \pi(\phi) \pi(\Sigma)$$

$$= f(y | \kappa, \chi, \phi, \Sigma) \pi(\kappa | \chi) \pi(\chi) \pi(\lambda | \gamma) \pi(\phi) \pi(\Sigma)$$

$$= f(y | \kappa, \chi, \phi, \Sigma) \pi(\kappa | \chi) \pi(\chi) \pi(\lambda | \gamma) \pi(\phi) \pi(\Sigma)$$
(a.5.15.121)

Finally, assume independence between the different κ_i , χ_i , λ_i and γ_i to obtain:

$$\pi(\kappa, \chi, \lambda, \gamma, \phi, \Sigma | y) \propto f(y | \kappa, \chi, \phi, \Sigma) \left(\prod_{i=1}^{nr} \pi(\kappa_i | \chi_i) \ \pi(\chi_i) \ \pi(\lambda_i | \gamma_i) \ \pi(\gamma_i) \right) \pi(\phi) \ \pi(\Sigma)$$
(a.5.15.122)

derivations for equation (5.15.96)

The joint conditional posterior is given by:

$$\pi(\chi_{i}|y,\kappa,\lambda,\gamma,\phi,\Sigma) \propto \left[(2\pi\tau_{1}^{2})^{-1/2} \exp\left(-\frac{1}{2}\frac{\kappa_{i}^{2}}{\tau_{1}^{2}}\right) \right]^{\chi_{i}} \left[(2\pi\tau_{2}^{2})^{-1/2} \exp\left(-\frac{1}{2}\frac{\kappa_{i}^{2}}{\tau_{2}^{2}}\right) \right]^{(1-\chi_{i})} \mu^{\chi_{i}} (1-\mu)^{(1-\chi_{i})}$$
(a.5.15.123)

Since χ_i is a binary variable, it can only take values 0 or 1. Consider the case $\chi_i = 1$. In this case, the posterior becomes:

$$\pi(\chi_i|y,\kappa,\lambda,\gamma,\phi,\Sigma) \propto (2\pi\tau_1^2)^{-1/2} \exp\left(-\frac{1}{2}\frac{\kappa_i^2}{\tau_1^2}\right) \mu \tag{a.5.15.124}$$

In the case $\chi_i = 0$, the posterior becomes:

$$\pi(\chi_i|y,\kappa,\lambda,\gamma,\phi,\Sigma) \propto (2\pi\tau_2^2)^{-1/2} \exp\left(-\frac{1}{2}\frac{\kappa_i^2}{\tau_2^2}\right) (1-\mu)$$
 (a.5.15.125)

Because χ_i is binary, its posterior is Bernoulli as well. The sum of the probabilities for $\chi_i = 0$ and $\chi_i = 1$ must therefore be 1. This obtains by normalizing the kernels by the sum of their values. Thus for $\chi_i = 1$:

$$\begin{split} &\pi(\chi_{i}|y,\kappa,\lambda,\gamma,\phi,\Sigma) \\ &= \frac{(2\pi\tau_{1}^{2})^{-1/2}\exp\left(-\frac{1}{2}\frac{\kappa_{i}^{2}}{\tau_{1}^{2}}\right)\,\mu}{(2\pi\tau_{1}^{2})^{-1/2}\exp\left(-\frac{1}{2}\frac{\kappa_{i}^{2}}{\tau_{1}^{2}}\right)\,\mu + (2\pi\tau_{2}^{2})^{-1/2}\exp\left(-\frac{1}{2}\frac{\kappa_{i}^{2}}{\tau_{2}^{2}}\right)\,(1-\mu)} \\ &= \frac{\tau_{1}^{-1}\exp\left(-\frac{1}{2}\frac{\kappa_{i}^{2}}{\tau_{1}^{2}}\right)\,\mu}{\tau_{1}^{-1}\exp\left(-\frac{1}{2}\frac{\kappa_{i}^{2}}{\tau_{1}^{2}}\right)\,\mu + \tau_{2}^{-1}\exp\left(-\frac{1}{2}\frac{\kappa_{i}^{2}}{\tau_{2}^{2}}\right)\,(1-\mu)} \\ &= \frac{\frac{\mu}{\tau_{1}}\exp\left(-\frac{1}{2}\frac{\kappa_{i}^{2}}{\tau_{1}^{2}}\right)}{\frac{\mu}{\tau_{1}}\exp\left(-\frac{1}{2}\frac{\kappa_{i}^{2}}{\tau_{2}^{2}}\right)} \end{split} \tag{a.5.15.126}$$

Define:

$$\mu_{\kappa} = \frac{a_1}{a_1 + a_2} \qquad a_1 = \frac{\mu}{\tau_1} \exp\left(-\frac{1}{2} \frac{\kappa_i^2}{\tau_1^2}\right) \qquad a_2 = \frac{1 - \mu}{\tau_2} \exp\left(-\frac{1}{2} \frac{\kappa_i^2}{\tau_2^2}\right)$$
 (a.5.15.127)

Hence the posterior is Bernoulli with a probability of success μ_{κ} , which writes as:

$$\pi(\chi_i|y,\kappa,\lambda,\gamma,\phi,\Sigma) = \mu_{\kappa}^{\chi_i} (1-\mu_{\kappa})^{(1-\chi_i)}$$
(a.5.15.128)

derivations for equation (5.15.99)

The joint conditional posterior is given by:

$$\pi(\gamma_{i}|y,\kappa,\chi,\lambda,\phi,\Sigma) \propto \left[(2\pi\tau_{1}^{2})^{-1/2} \exp\left(-\frac{1}{2}\frac{\lambda_{i}^{2}}{\tau_{1}^{2}}\right) \right]^{\gamma_{i}} \left[(2\pi\tau_{2}^{2})^{-1/2} \exp\left(-\frac{1}{2}\frac{\lambda_{i}^{2}}{\tau_{2}^{2}}\right) \right]^{(1-\gamma_{i})} \mu^{\gamma_{i}} (1-\mu)^{(1-\gamma_{i})}$$
(a.5.15.129)

Since γ_i is a binary variable, it can only take values 0 or 1. Consider the case $\gamma_i = 1$. In this case, the posterior becomes:

$$\pi(\gamma_i|y,\kappa,\chi,\lambda,\phi,\Sigma) \propto (2\pi\tau_1^2)^{-1/2} \exp\left(-\frac{1}{2}\frac{\lambda_i^2}{\tau_1^2}\right) \mu \tag{a.5.15.130}$$

In the case $\gamma_i = 0$, the posterior becomes:

$$\pi(\gamma_i|y,\kappa,\chi,\lambda,\phi,\Sigma) \propto (2\pi\tau_2^2)^{-1/2} \exp\left(-\frac{1}{2}\frac{\lambda_i^2}{\tau_2^2}\right) (1-\mu)$$
 (a.5.15.131)

Because γ_i is binary, its posterior is Bernoulli as well. The sum of the probabilities for $\gamma_i = 0$ and $\gamma_i = 1$ must therefore be 1. This obtains by normalizing the kernels by the sum of their values. Thus for $\gamma_i = 1$:

$$\pi(\gamma_{i}|y,\kappa,\chi,\lambda,\phi,\Sigma)$$

$$= \frac{(2\pi\tau_{1}^{2})^{-1/2}\exp\left(-\frac{1}{2}\frac{\lambda_{i}^{2}}{\tau_{1}^{2}}\right)\mu}{(2\pi\tau_{1}^{2})^{-1/2}\exp\left(-\frac{1}{2}\frac{\lambda_{i}^{2}}{\tau_{1}^{2}}\right)\mu + (2\pi\tau_{2}^{2})^{-1/2}\exp\left(-\frac{1}{2}\frac{\lambda_{i}^{2}}{\tau_{2}^{2}}\right)(1-\mu)}$$

$$= \frac{\tau_{1}^{-1}\exp\left(-\frac{1}{2}\frac{\lambda_{i}^{2}}{\tau_{1}^{2}}\right)\mu}{\tau_{1}^{-1}\exp\left(-\frac{1}{2}\frac{\lambda_{i}^{2}}{\tau_{1}^{2}}\right)\mu + \tau_{2}^{-1}\exp\left(-\frac{1}{2}\frac{\lambda_{i}^{2}}{\tau_{2}^{2}}\right)(1-\mu)}$$

$$= \frac{\frac{\mu}{\tau_{1}}\exp\left(-\frac{1}{2}\frac{\lambda_{i}^{2}}{\tau_{1}^{2}}\right)}{\frac{\mu}{\tau_{1}}\exp\left(-\frac{1}{2}\frac{\lambda_{i}^{2}}{\tau_{1}^{2}}\right)}$$

$$= \frac{\frac{\mu}{\tau_{1}}\exp\left(-\frac{1}{2}\frac{\lambda_{i}^{2}}{\tau_{1}^{2}}\right) + \frac{1-\mu}{\tau_{2}}\exp\left(-\frac{1}{2}\frac{\lambda_{i}^{2}}{\tau_{2}^{2}}\right)}{\exp\left(-\frac{1}{2}\frac{\lambda_{i}^{2}}{\tau_{2}^{2}}\right)}$$
(a.5.15.132)

Define:

$$\mu_{\lambda} = \frac{a_1}{a_1 + a_2} \qquad a_1 = \frac{\mu}{\tau_1} \exp\left(-\frac{1}{2} \frac{\lambda_i^2}{\tau_1^2}\right) \qquad a_2 = \frac{1 - \mu}{\tau_2} \exp\left(-\frac{1}{2} \frac{\lambda_i^2}{\tau_2^2}\right)$$
 (a.5.15.133)

Hence the posterior is Bernoulli with a probability of success μ_{κ} , which writes as:

$$\pi(\gamma_i|y,\kappa,\chi,\lambda,\phi,\Sigma) = \mu_{\lambda}^{\gamma_i} (1 - \mu_{\lambda})^{(1-\gamma_i)}$$
(a.5.15.134)

Vector autoregressive moving average

derivations for equation (5.16.16)

For convenience, define first:

$$\tilde{y} = y - \bar{Z}\kappa \tag{a.5.16.1}$$

Then $\pi(\beta|y, Z, \kappa, \Sigma)$ rewrites:

$$\pi(\boldsymbol{\beta}|\boldsymbol{y},\boldsymbol{\kappa},\boldsymbol{Z},\boldsymbol{\Sigma}) \propto \exp\left(-\frac{1}{2}(\tilde{\boldsymbol{y}} - \bar{\boldsymbol{X}}\boldsymbol{\beta})'\bar{\boldsymbol{\Sigma}}^{-1}(\tilde{\boldsymbol{y}} - \bar{\boldsymbol{X}}\boldsymbol{\beta})\right) \times \exp\left(-\frac{1}{2}(\boldsymbol{\beta} - \boldsymbol{b})'\boldsymbol{V}^{-1}(\boldsymbol{\beta} - \boldsymbol{b})\right) \tag{a.5.16.2}$$

Group terms:

$$\pi(\beta|y,\kappa,Z,\Sigma)$$

$$\propto \exp\left(-\frac{1}{2}(\tilde{y}-\bar{X}\beta)'\bar{\Sigma}^{-1}(\tilde{y}-\bar{X}\beta)\right) \times \exp\left(-\frac{1}{2}(\beta-b)'V^{-1}(\beta-b)\right)$$

$$= \exp\left(-\frac{1}{2}\left[(\tilde{y}-\bar{X}\beta)'\bar{\Sigma}^{-1}(\tilde{y}-\bar{X}\beta) + (\beta-b)'V^{-1}(\beta-b)\right]\right)$$
(a.5.16.3)

Consider the terms in square brackets:

$$\begin{split} &(\tilde{y} - \bar{X}\beta)'\bar{\Sigma}^{-1}(\tilde{y} - \bar{X}\beta) + (\beta - b)'V^{-1}(\beta - b) \\ &= \tilde{y}'\bar{\Sigma}^{-1}\tilde{y} + \beta'\bar{X}'\bar{\Sigma}^{-1}\bar{X}\beta - 2\beta'\bar{X}'\bar{\Sigma}^{-1}\tilde{y} + \beta'V^{-1}\beta + b'V^{-1}b - 2\beta'V^{-1}b \\ &= \beta'(V^{-1} + \bar{X}'\bar{\Sigma}^{-1}\bar{X})\beta - 2\beta'(V^{-1}b + \bar{X}'\bar{\Sigma}^{-1}\tilde{y}) + b'V^{-1}b + \tilde{y}'\bar{\Sigma}^{-1}\tilde{y} \end{split}$$
(a.5.16.4)

Complete the squares:

$$= \beta'(V^{-1} + \bar{X}'\bar{\Sigma}^{-1}\bar{X})\beta - 2\beta'\bar{V}^{-1}\bar{V}(V^{-1}b + \bar{X}'\bar{\Sigma}^{-1}\tilde{y}) + \bar{b}'\bar{V}^{-1}\bar{b} - \bar{b}'\bar{V}^{-1}\bar{b} + b'V^{-1}b + \tilde{y}'\bar{\Sigma}^{-1}\tilde{y} \quad (a.5.16.5)$$

Define:

$$\bar{V} = (V^{-1} + \bar{X}'\bar{\Sigma}^{-1}\bar{X})^{-1} \qquad \qquad \bar{b} = \bar{V}(V^{-1}b + \bar{X}'\bar{\Sigma}^{-1}\tilde{y})$$
(a.5.16.6)

Then (a.5.16.5) rewrites:

$$= \beta' \bar{V}^{-1} \beta - 2\beta' \bar{V}^{-1} \bar{b} + \bar{b}' \bar{V}^{-1} \bar{b} - \bar{b}' \bar{V}^{-1} \bar{b} + b' V^{-1} b + \tilde{y}' \bar{\Sigma}^{-1} \tilde{y}$$

$$= (\beta - \bar{b})' \bar{V}^{-1} (\beta - \bar{b}) + (b' V^{-1} b - \bar{b}' \bar{V}^{-1} \bar{b} + \tilde{y}' \bar{\Sigma}^{-1} \tilde{y})$$
(a.5.16.7)

Substitute (a.5.16.7) back in (a.5.16.3):

$$\pi(\beta | y, \kappa, Z, \Sigma)$$

$$= \exp\left(-\frac{1}{2} \left[(\beta - \bar{b})' \bar{V}^{-1} (\beta - \bar{b}) + (b'V^{-1}b - \bar{b}' \bar{V}^{-1}\bar{b} + \bar{y}' \bar{\Sigma}^{-1} \tilde{y}) \right] \right)$$

$$= \exp\left(-\frac{1}{2} (\beta - \bar{b})' \bar{V}^{-1} (\beta - \bar{b}) \right) \exp\left(-\frac{1}{2} (b'V^{-1}b - \bar{b}' \bar{V}^{-1}\bar{b} + \bar{y}' \bar{\Sigma}^{-1} \tilde{y}) \right)$$

$$\propto \exp\left(-\frac{1}{2} (\beta - \bar{b})' \bar{V}^{-1} (\beta - \bar{b}) \right)$$
(a.5.16.8)

Where the last line obtains by noting that the second term in row 2 does not involve β and can hence be relegated to the normalization constant.

The terms in (a.5.16.6) simplify. Note first that:

$$\bar{X}'\bar{\Sigma}^{-1}\bar{X}$$

$$= (I_n \otimes X)'(\Sigma \otimes I_T)^{-1}(I_n \otimes X)$$

$$= (I_n \otimes X')(\Sigma^{-1} \otimes I_T)(I_n \otimes X)$$

$$= (\Sigma^{-1} \otimes X')(I_n \otimes X)$$

$$= \Sigma^{-1} \otimes X'X$$
(a.5.16.9)

Similarly:

$$\bar{X}'\bar{\Sigma}^{-1}\tilde{y}$$

$$= \bar{X}'\bar{\Sigma}^{-1}(y - \bar{Z}\kappa)$$

$$= (I_n \otimes X)'(\Sigma \otimes I_T)^{-1}vec(Y - ZK)$$

$$= (I_n \otimes X')(\Sigma^{-1} \otimes I_T)vec(Y - ZK)$$

$$= (\Sigma^{-1} \otimes X')vec(Y - ZK)$$

$$= vec(X' [Y - ZK] \Sigma^{-1})$$
(a.5.16.10)

Then (a.5.16.6) rewrites:

$$\bar{V} = (V^{-1} + \Sigma^{-1} \otimes X'X)^{-1} \qquad \qquad \bar{b} = \bar{V}(V^{-1}b + vec(X'[Y - ZK]\Sigma^{-1})) \qquad (a.5.16.11)$$

derivations for equation (5.16.19)

For convenience, define first:

$$\tilde{y} = y - \bar{X}\beta \tag{a.5.16.12}$$

Then $\pi(\kappa|y,\beta,Z,\Sigma)$ rewrites:

$$\pi(\kappa|y,\beta,Z,\Sigma) \propto \exp\left(-\frac{1}{2}(\tilde{y}-\bar{Z}\kappa)'\bar{\Sigma}^{-1}(\tilde{y}-\bar{Z}\kappa)\right) \exp\left(-\frac{1}{2}(\kappa-g)'W^{-1}(\kappa-g)\right) \tag{a.5.16.13}$$

Group terms:

$$\pi(\kappa|y,\beta,Z,\Sigma)$$

$$\propto \exp\left(-\frac{1}{2}(\tilde{y}-\bar{Z}\kappa)'\bar{\Sigma}^{-1}(\tilde{y}-\bar{Z}\kappa)\right) \times \exp\left(-\frac{1}{2}(\kappa-g)'W^{-1}(\kappa-g)\right)$$

$$= \exp\left(-\frac{1}{2}\left[(\tilde{y}-\bar{Z}\kappa)'\bar{\Sigma}^{-1}(\tilde{y}-\bar{Z}\kappa)+(\kappa-g)'W^{-1}(\kappa-g)\right]\right)$$
(a.5.16.14)

Consider the terms in square brackets:

$$(\tilde{y} - \bar{Z}\kappa)'\bar{\Sigma}^{-1}(\tilde{y} - \bar{Z}\kappa) + (\kappa - g)'W^{-1}(\kappa - g)$$

$$= \tilde{y}'\bar{\Sigma}^{-1}\tilde{y} + \kappa'\bar{Z}'\bar{\Sigma}^{-1}\bar{Z}\kappa - 2\kappa'\bar{Z}'\bar{\Sigma}^{-1}\tilde{y} + \kappa'W^{-1}\kappa + g'W^{-1}g - 2\kappa'W^{-1}g$$

$$= \kappa'(W^{-1} + \bar{Z}'\bar{\Sigma}^{-1}\bar{Z})\kappa - 2\kappa'(W^{-1}g + \bar{Z}'\bar{\Sigma}^{-1}\tilde{y}) + g'W^{-1}g + \tilde{y}'\bar{\Sigma}^{-1}\tilde{y}$$
(a.5.16.15)

Complete the squares:

$$= \kappa'(W^{-1} + \bar{Z}'\bar{\Sigma}^{-1}\bar{Z})\kappa - 2\kappa'\bar{W}^{-1}\bar{W}(W^{-1}g + \bar{Z}'\bar{\Sigma}^{-1}\tilde{y}) + \bar{g}'\bar{W}^{-1}\bar{g} - \bar{g}'\bar{W}^{-1}\bar{g} + g'W^{-1}g + \tilde{y}'\bar{\Sigma}^{-1}\tilde{y}$$
(a.5.16.16)

Define:

$$\bar{W} = (W^{-1} + \bar{Z}'\bar{\Sigma}^{-1}\bar{Z})^{-1} \qquad \qquad \bar{g} = \bar{W}(W^{-1}g + \bar{Z}'\bar{\Sigma}^{-1}\tilde{y}) \tag{a.5.16.17}$$

Then (a.5.16.16) rewrites:

$$= \kappa' \bar{W}^{-1} \kappa - 2\kappa' \bar{W}^{-1} \bar{g} + \bar{g}' \bar{W}^{-1} \bar{g} - \bar{g}' \bar{W}^{-1} \bar{g} + g' W^{-1} g + \tilde{y}' \bar{\Sigma}^{-1} \tilde{y}$$

$$= (\kappa - \bar{g})' \bar{W}^{-1} (\kappa - \bar{g}) + (g' W^{-1} g - \bar{g}' \bar{W}^{-1} \bar{g} + \tilde{y}' \bar{\Sigma}^{-1} \tilde{y})$$
(a.5.16.18)

Substitute (a.5.16.18) back in (a.5.16.14):

$$\pi(\kappa|y,\beta,Z,\Sigma)$$

$$= \exp\left(-\frac{1}{2}\left[(\kappa-\bar{g})'\bar{W}^{-1}(\kappa-\bar{g}) + (g'W^{-1}g - \bar{g}'\bar{W}^{-1}\bar{g} + \bar{y}'\bar{\Sigma}^{-1}\tilde{y})\right]\right)$$

$$= \exp\left(-\frac{1}{2}(\kappa-\bar{g})'\bar{W}^{-1}(\kappa-\bar{g})\right) \exp\left(-\frac{1}{2}(g'W^{-1}g - \bar{g}'\bar{W}^{-1}\bar{g} + \bar{y}'\bar{\Sigma}^{-1}\tilde{y})\right)$$

$$\propto \exp\left(-\frac{1}{2}(\kappa-\bar{g})'\bar{W}^{-1}(\kappa-\bar{g})\right)$$
(a.5.16.19)

Where the last line obtains by noting that the second term in row 2 does not involve κ and can hence be relegated to the normalization constant.

The terms in (a.5.16.17) simplify. Note first that:

$$\bar{Z}'\bar{\Sigma}^{-1}\bar{Z}
= (I_n \otimes Z)'(\Sigma \otimes I_T)^{-1}(I_n \otimes Z)
= (I_n \otimes Z')(\Sigma^{-1} \otimes I_T)(I_n \otimes Z)
= (\Sigma^{-1} \otimes Z')(I_n \otimes Z)
= \Sigma^{-1} \otimes Z'Z$$
(a.5.16.20)

Similarly:

$$\bar{Z}'\bar{\Sigma}^{-1}\tilde{y}$$

$$= \bar{Z}'\bar{\Sigma}^{-1}(y - \bar{X}\beta)$$

$$= (I_n \otimes Z)'(\Sigma \otimes I_T)^{-1}vec(Y - XB)$$

$$= (I_n \otimes Z')(\Sigma^{-1} \otimes I_T)vec(Y - XB)$$

$$= (\Sigma^{-1} \otimes Z')vec(Y - XB)$$

$$= vec(Z' [Y - XB] \Sigma^{-1})$$
(a.5.16.21)

Then (a.5.16.17) rewrites:

$$\bar{W} = (W^{-1} + \Sigma^{-1} \otimes Z'Z)^{-1} \qquad \qquad \bar{g} = \bar{W}(W^{-1}g + vec(Z'[Y - XB]\Sigma^{-1})) \qquad (a.5.16.22)$$

derivations for equation (5.16.22)

Note that:

$$|\bar{\Sigma}|^{-1/2} = |\Sigma \otimes I_T|^{-1/2} = |\Sigma|^{-T/2} |I_T|^{-n/2} = |\Sigma|^{-T/2}$$
(a.5.16.23)

Also:

$$(y - \bar{X}\beta - \bar{Z}\kappa)'\bar{\Sigma}^{-1}(y - \bar{X}\beta - \bar{Z}\kappa)$$

$$= (y - (I_n \otimes X)\beta - (I_n \otimes Z)\kappa)'(\Sigma \otimes I_T)^{-1}(y - (I_n \otimes X)\beta - (I_n \otimes Z)\kappa)$$

$$= tr\{\Sigma^{-1}(Y - X\beta - ZK)'(Y - X\beta - ZK)\}$$
(a.5.16.24)

Then substituting in the original expression:

$$\pi(\Sigma|y,\beta,\kappa,Z)$$

$$\propto |\bar{\Sigma}|^{-1/2} \exp\left(-\frac{1}{2}(y-\bar{X}\beta-\bar{Z}\kappa)'\bar{\Sigma}^{-1}(y-\bar{X}\beta-\bar{Z}\kappa)\right)$$

$$\times |\Sigma|^{-(\alpha+n+1)/2} \exp\left(-\frac{1}{2}tr\{\Sigma^{-1}S\}\right)$$

$$= |\Sigma|^{-T/2} \exp\left(-\frac{1}{2}tr\{\Sigma^{-1}(Y-XB-ZK)'(Y-XB-ZK)\}\right) \times |\Sigma|^{-(\alpha+n+1)/2} \exp\left(-\frac{1}{2}tr\{\Sigma^{-1}S\}\right)$$

$$= |\Sigma|^{-(\alpha+T+n+1)/2} \exp\left(-\frac{1}{2}tr\{\Sigma^{-1}[S+(Y-XB-ZK)'(Y-XB-ZK)]\}\right)$$

$$= |\Sigma|^{-(\bar{\alpha}+n+1)/2} \exp\left(-\frac{1}{2}tr\{\Sigma^{-1}\bar{S}\}\right)$$
(a.5.16.25)

with:

$$\bar{\alpha} = \alpha + T$$
 $\bar{S} = S + (Y - X \mathcal{B} - ZK)'(Y - X \mathcal{B} - ZK)$ (a.5.16.26)

Bibliography

106 BIBLIOGRAPHY

