# Wav2vec 2.0을 활용한 음성위조탐자 향상

중앙대학교 일반대학원 통계학과 ET LAB 강태인



# CONTENTS

- 01. Fake Audio Detection(Spoofing Detection)?
- 02. Feature extraction
- 03. Proposed feature extraction
- 04. Experiments & results
- 05. Conclusion

# Fake Audio Detection?

# Fake Audio (Spoofing Audio)

- 실제 음성을 다양한 방법 등으로 위조하여 만든 음성을 실제 음성과 구별.
- 위조 방법에는 TTS, RA, VC 등 이 있다.





## **Fake**

Text to Speech (TTS): synthetic speech

Replay Attack (RA): replayed voice

Voice Conversion (VC): converted voice





#### The New York Times

# Why we need fake audio detection? (Spoofing detection)

- 녹음된 목소리를 이용해 금융 거래나 보안 인증에서 사용.
- 유명인의 목소리를 녹음한 후 가짜 음성으로 합성 후 특정 발언 조작.
- 지인 목소리의 보이스피싱.

## Burger King 'O.K. Google' Ad Doesn't Seem O.K. With Google









A video from the fast-food chain shows the the latest example of marketers entering the living room, with the advertisement intended to prompt voice-activated smart speakers from Google into describing its burgers.



# Traditional Fake Audio Detection Model (Spoofing Detection Model)



# Traditional 2D-like Feature Extraction





#### **Fast Fourier Transform**

- 신호 데이터는 다양한 주기의 주기함수의 합으로 표현 가능하기 때문에 입력 신호를 다양한 주기의 주기함수의 세기로 분해하여 변환.



#### **Short Time Fourier Transform**

- 일정한 time step마다 FFT를 수행하게 되면 시간 정보를 반영 가능.
- Time step마다의 frequency 정보를 얻을 수 있다.







## Advancement of the model

- MFCC, LFCC → Machine Learning Model GMM(Gausian Mixture Model)...

- STFT, Mel-Spec, CQT → 1D CNN, 2D CNN LCNN, Non-OFD...

#### **Feature Extraction From Raw Waveform**

- SincNet에서 Band-pass filter의 일종인 Sinc function을 사용한 SincNet filter를 제시.
- SincNet filter는 data로부터 low and high cufoff frequencies를 학습.
- 2021년 부터 이를 이용한 Graph Neural Networks(GNNs) 기반 모델(RawGAT-ST, AASIST 등)이 높은 성능을 기록.
- Fully end-to-end Model이 시작.
- → 고도화된, 학습하는 feature가 성능향상의 요인인가 ?

# Feature Extraction wav2vec 2.0

#### Wav2vec 2.0

- 자기 지도 학습 모델로서, 음성 표현 학습에 집중.
- 여러 Downstream task에서 뛰어난 성능을 보여줌.
- 여러 버전의 사전학습 모델을 쉽게 접근 가능.
- → 음성표현을 많이 학습했고, 여러 downstream task에서도 좋았으니,,,,
  Spoofing Detection에서도 어쩌면,,?



# Proposed Feature Extraction



### Wav2vec 2.0 As Feature Extractor

- Parameter를 모두 freeze시키고 AASIST를 붙여보니 성능이 매우 안좋음.
- → 데이터에 adaptation 시키면?

→ '마지막' Transformer layer의 output이 정말 spoofing에 유리한 representation일까?

# Proposed Feature Extraction



## **Wav2vec 2.0 As Feature Extractor**

- <Hyperparameter setting>
- #TTL(Total Transformer layers) : 총 몇 개의 transformer layer를 사용 할 것인가.

- #FTL(Frozen Transformer layers) : 몇 개의 transformer layer까지 freeze시킬 것인가.

# **Experimental Design**

- <Experimental design>
- → 최적의 #TTL, #FTL 조합은? (Spoofing detection에 맞는 parameter space가 있지 않을까?)



- → 사전학습 버전에 따른 성능 차이가 있을까?
- → 기존 feature와 비교하면?
- → 다른 spoofing detection model들과 비교하면?

# → 최적의 #TTL, #FTL 조합은?

- ASVSpoof2019 LA Dataset 사용.
- EER(Equal Error Rate) metric사용.
- Default model로 AASIST를 사용. (AASIST의 성능은 **EER 0.83%**)
- Default version으로 XLS-R(1B) 를 사용.
- 48개의 layer에서 3개 단위로 모든 조합을 실험.

| #TTL |      |       |       |       | #FTL  |       |       |       |       |
|------|------|-------|-------|-------|-------|-------|-------|-------|-------|
|      | 0    | 3     | 6     | 9     | 12    | 15    | 18    | 33    | 48    |
| 3    | 8.96 | 38.23 | -     | -     | -     | -     | -     | -     | _     |
| 6    | 7.71 | 6.54  | 42.82 | -     | -     | -     | -     | -     | _     |
| 9    | 1.38 | 0.88  | 0.98  | 17.84 | -     | -     | -     | -     | -     |
| 12   | 0.77 | 0.41  | 0.57  | 0.22  | 17.85 | -     | -     | -     | -     |
| 15   | 0.87 | 1.04  | 1.35  | 0.80  | 1.43  | 41.00 | -     | -     | -     |
| 18   | 0.63 | 0.40  | 0.61  | 2.14  | 2.39  | 6.68  | 26.01 | -     | -     |
| 33   | 2.41 | 2.01  | 3.94  | 3.57  | 4.26  | 4.36  | 4.54  | 37.51 | -     |
| 48   | 2.37 | 5.75  | 0.65  | 2.83  | 7.52  | 5.13  | 9.72  | 4.53  | 41.09 |

**Table 1**. EER(%) results on XLS-R(1B) and AASIST combination system.

### <Result>

- 최적의 #TTL space = {12, 15, 18}
- 최적의 #FTL space = {0, 3, 6, 9, 12, 15}

# → 사전학습 버전에 따른 차이?

- 실험한 버전은 XLSR-53, XLS-R(0.3B), XLS-R(1B), XLS-R(2B)이다.
- Default model로 AASIST를 사용.
- 앞선 실험의 결과로 parameter space를 지정.

| version     | #TTL | #FTL | min t-DCF | EER(%) |  |
|-------------|------|------|-----------|--------|--|
| XLSR-53     | 12   | 3    | 0.0083    | 0.26   |  |
| XLS-R(0.3B) | 15   | 6    | 0.0093    | 0.29   |  |
| XLS-R(1B)   | 12   | 9    | 0.0063    | 0.22   |  |
| XLS-R(2B)   | 18   | 3    | 0.0098    | 0.30   |  |

**Table 2**. Results on various wav2vec 2.0 front-ends.

- min t-DCF(Detection Cost Function), EER을 metric으로 사용.

#### <Result>

- XLS-R(1B)뿐만 아니라 optimal한 parameter space가 다른 사전학습 버전에서도 최고 성능에 크게 영향을 주지 않는다.

# → 기존 feature와의 차이

- 실험한 model은 2D CNN 기반 LCNN, Non-OFD, 1D CNN 기반 RawNet2, GNN 기반 RawGAT-ST, AASIST이다.
- 비교 feature는 STFT, CQT, SincNet filter 등이 있다.
- Default 버전으로 XLS-R(1B)를 사용.

#### <Result>

| Model         | Front-end         | min t-DCF | EER(%) |  |
|---------------|-------------------|-----------|--------|--|
| I CNINI [2]   | STFT              | 0.1028    | 4.53   |  |
| LCNN [2]      | XLS-R(1B) (12/9)  | 0.0320    | 1.02   |  |
| Non-OFD [13]  | CQT               | -         | 1.35   |  |
| Noil-OfD [13] | XLS-R(1B) (15/9)  | 0.0111    | 0.41   |  |
| RawNet2 [3]   | SincNet filter    | 0.1301    | 5.64   |  |
| Rawnetz [3]   | XLS-R(1B) (12/6)  | 0.0032    | 0.12   |  |
| RawGAT-ST [5] | SincNet filter    | 0.0335    | 1.06   |  |
| KawOAI-SI [3] | XLS-R(1B) (18/12) | 0.0048    | 0.24   |  |
| AASIST [6]    | SincNet filter    | 0.0275    | 0.83   |  |
| AASIST [0]    | XLS-R(1B) (12/9)  | 0.0063    | 0.22   |  |

**Table 3**. Results on various spoofing detection back-ends.

- 모든 Network에서 wav2vec 2.0 front-end가 높은 성능 향상을 시켰다. 특히, wav2vec 2.0 + RawNet2 는 State-Of-The-Art의 성능.
- Optimal hyperparameter space가 유효했다.

# → 다른 Spoofing Model과 비교

- Default 버전으로 XLS-R(1B)를 사용.

#### <Result>

- 다른 모델과 비교했을 때 최고 성능 달성.
- wav2vec 2.0+VIB, wav2vec 2.0+ASP 보다 잘 잘동하는 원인은 정확히 확인하지 못 함.

| Model                        | Front-end      | min t-DCF | EER(%) |  |
|------------------------------|----------------|-----------|--------|--|
| RawNet2 [3]                  | SincNet filter | 0.1301    | 5.64   |  |
| GAT-T [23]                   | LFB            | 0.0894    | 4.71   |  |
| LCNN [2]                     | STFT           | 0.1028    | 4.53   |  |
| GMM [24]                     | LFCC           | 0.0904    | 3.50   |  |
| RW-ResNet [25]               | Raw Waveform   | 0.0817    | 2.98   |  |
| LCNN-LSTM-sum [26]           | LFCC           | 0.0524    | 1.92   |  |
| Non-OFD [13]                 | CQT            | -         | 1.35   |  |
| RawGAT-ST [5]                | SincNet filter | 0.0335    | 1.06   |  |
| AASIST [6]                   | SincNet filter | 0.0275    | 0.83   |  |
| GCN based model [7]          | LFB            | 0.0166    | 0.58   |  |
| wav2vec 2.0 + VIB [17]       | BASE [8]       | 0.0107    | 0.40   |  |
| wav2vec 2.0 + ASP [12]       | XLSR-53        | -         | 0.31   |  |
| wav2vec 2.0 + AASIST (Ours)  | XLS-R(1B)      | 0.0063    | 0.22   |  |
| wav2vec 2.0 + RawNet2 (Ours) | XLS-R(1B)      | 0.0032    | 0.12   |  |

**Table 4**. Comparison with recently established spoofing detection systems.



## Conclusion

- Spoofing detection에서 고도화된 feature encoder를 사용하는 것이 대체로 유리하다.
- Wav2vec 2.0을 활용할 때에 data adaptation을 위해 fine-tuning하는 것이 좋다.
- Downstream task에 맞는 #TTL, #FTL을 찾아주는 것이 좋다.

# THANK YOU

