Integrating factors

$$y' + P(x)y = Q(x)$$

$$I(x) = \exp\left(\int P(x)dx\right)$$

$$y(x) = \frac{1}{I(x)} \int Q(x)I(x)dx + \frac{\alpha}{I(x)}$$

Change of variables

$$y^{(n)} = F(y, y', \dots, y^{(n-1)}, t)$$

Let $x_{i+1} = y^{(i)}$ where $i \in \{0, 1, \dots, n-1\}$.

Picard-Lindelöf statement

Consider IVP: $x'_i = F_i(t, x_1, ..., x_n)$ or that $\mathbf{x}' = \mathbf{F}(t, \mathbf{x})$ with $\mathbf{x}(t_0) = \mathbf{x}_0$ and \mathbf{x} is a vector with n entries.

It has **unique** solutions if:

$$F_i, \frac{\partial F_i}{\partial x_j}$$
 and $\frac{\partial F_i}{\partial t}$ are continuous in

 $R \subset \mathbb{R}^{n+1}$ where $(t, \boldsymbol{x}_0^T) \in R$. Here $i, j \in \{1, \dots, n\}$.

Homogeneous systems

Consider x' = Ax where **A** is a $n \times n$ matrix. Substituting $x = e^{rt}\xi$ gives:

$$(\mathbf{A} - r_i \mathbf{I_n}) \boldsymbol{\xi^{(i)}} = \mathbf{0}$$

where $i \in \{1, 2, ..., n\}$. Our general solution is then:

$$\mathbf{x}(t) = \sum_{i=1}^{n} c_i e^{r_i t} \boldsymbol{\xi}^{(i)}$$
$$= \sum_{i=1}^{n} c_i \mathbf{x}^{(i)}$$
$$= \boldsymbol{\Psi}(t) \boldsymbol{c}.$$

If initial conditions $x(t_0) = x_0$ are given:

$$\boldsymbol{c} = \boldsymbol{\Psi}^{-1}(t_0)\boldsymbol{x}(t_0)$$

$$\boldsymbol{x}(t) = \boldsymbol{\Psi}(t)\boldsymbol{\Psi}^{-1}(t_0)\boldsymbol{x}_0.$$

Matrix exponentials

Given a $n \times n$ matrix \boldsymbol{A} :

$$e^{\mathbf{A}t} = \sum_{n=0}^{\infty} \frac{(\mathbf{A}t)^n}{n!}$$
$$= \mathbf{I}_n + \mathbf{A}t + \frac{1}{2!}\mathbf{A}^2t^2 + \dots$$

For system x' = Ax:

$$\boldsymbol{x}(t) = e^{\boldsymbol{A}t} \boldsymbol{x}(0)$$

and that $e^{\mathbf{A}t} = \mathbf{\Psi}(t)\mathbf{\Psi}^{-1}(0)$.

Diagonalisation

For x' = Ax we have $A = TDT^{-1}$. If x = Ty then y' = Dy.

Since our fundamental matrix with respect to \boldsymbol{y} is a diagonal matrix $\boldsymbol{Q} = e^{\boldsymbol{D}t}$, the fundamental matrix with respect to \boldsymbol{x} is $\boldsymbol{\Psi}(t) = \boldsymbol{T}e^{\boldsymbol{D}t}$ and:

$$e^{\mathbf{A}t} = \mathbf{T}e^{\mathbf{D}t}\mathbf{T}^{-1}.$$

Generalised eigenvectors

If eigenvalues do not generate enough eigenvectors to form n linearly independent solutions for a $n \times n$ matrix \boldsymbol{A} , then consider the following ansatz:

$$\boldsymbol{x} = te^{rt}\boldsymbol{\xi} + e^{rt}\boldsymbol{\eta}.$$

$$\therefore (\mathbf{A} - r_i \mathbf{I_n}) \boldsymbol{\eta^{(i)}} = \boldsymbol{\xi^{(i)}}$$

Then this r_i produces two solutions:

$$\boldsymbol{x}^{(1)} = e^{rt}\boldsymbol{\xi}$$

$$\boldsymbol{x}^{(2)} = te^{rt}\boldsymbol{\xi} + e^{rt}\boldsymbol{\eta}.$$

Non-homogeneous systems

Consider non-homogeneous ODE system:

$$x' = Ax + g.$$

• Change of basis

Let x = Ty and since $A = TDT^{-1}$:

$$y' = Dy + T^{-1}q$$

which is solved by integrating factors. Finally revert back to x.

• Variation of parameters

Find solution $x_H = \Psi c$ to x' = Ax. Then let the non-homogeneous solution be $x = \Psi u(t)$.

$$\therefore \Psi u'(t) = g(t)$$

Row reduce before integrating.

• Undetermined coefficients

Let non-homogeneous ODE system have solutions of form:

$$oldsymbol{x} = oldsymbol{x}_H + oldsymbol{x}_p$$

where x_H is our homogeneous solution and x_p our particular solution.

Critical points

Consider non-linear ODE system

$$x' = F(x, y),$$

$$y' = G(x, y).$$

We define $\mathbf{x}^{\mathbf{0}} = \begin{bmatrix} x^0 \\ y^0 \end{bmatrix}$ as a **critical point** when $F(\mathbf{x}^{\mathbf{0}}) = G(\mathbf{x}^{\mathbf{0}}) = 0$.

Linearisation and stability

Let
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} x - x^0 \\ y - y^0 \end{bmatrix}$$
.

$$\mathbf{v}' \approx F(x^0, y^0) + \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad (x - y^0) = \begin{pmatrix} \partial F \\ \partial y^0 \end{pmatrix} \quad ($$

$$\therefore u_1' \approx F(x^0, y^0) + \left(\frac{\partial F}{\partial x}\right)_{x^0} (x - x^0) + \left(\frac{\partial F}{\partial y}\right)_{x^0} (y - y^0)$$

$$\therefore u_2 \approx G(x^0, y^0) + \left(\frac{\partial G}{\partial x}\right)_{x^0} (x - x^0) + \left(\frac{\partial G}{\partial y}\right)_{x^0} (y - y^0)$$

$$\therefore u' = Au$$

$$= \begin{bmatrix} \partial F/\partial x & \partial F/\partial y \\ \partial G/\partial x & \partial G/\partial y \end{bmatrix}_{\boldsymbol{x}=\boldsymbol{x^0}} \begin{bmatrix} \boldsymbol{x}-\boldsymbol{x^0} \\ \boldsymbol{y}-\boldsymbol{y^0} \end{bmatrix}$$

Critical points x^0 may also be classified:

Eigenvalues	Critical Points	Stability
$r_1 > r_2 > 0$	Node (source)	unstable
$r_1 < r_2 < 0$	Node (sink)	asymp. stable
$r_2 < 0 < r_1$	saddle	unstable
$r_1 = r_2 > 0$	Proper/Improper node	unstable
$r_1 = r_2 < 0$	Proper/Improper node	asymp. stable
$r_1, r_2 = \lambda \pm i\mu \ (\lambda > 0)$	focus	unstable
$r_1, r_2 = \lambda \pm i\mu \ (\lambda < 0)$	focus	asymp. stable
$r_1=i\mu,r_2=-i\mu$	center	stable

Linearisation preserves critical point behaviour **except** when eigenvalues are of $r=\pm i\mu$ form, for which then classification is unknown.

Stable critical points x^0 :

All solutions start and stay near x^0 .

$$\forall \epsilon > 0; \exists \delta > 0; \forall \boldsymbol{x}(t) = \boldsymbol{\phi}(t) : |\boldsymbol{x}(0) - \boldsymbol{x}^{\mathbf{0}}| < \delta$$

$$\implies |\boldsymbol{x}(t) - \boldsymbol{x}^{\mathbf{0}}| < \epsilon \text{ for } \forall t \ge 0$$

Attracting critical points x^0 :

All solutions tends to x^0 .

$$\forall \delta > 0 : |\boldsymbol{x}(0) - \boldsymbol{x}^{0}| < \delta$$

$$\implies \lim_{t \to \infty} \boldsymbol{x}(t) = \boldsymbol{x}^{0}$$

Asymptotically stable critical points x^0 : Attracting and stable.

Lyapunov's theory and limit cycles

Consider $\dot{x} = F(x,y)$ and $\dot{y} = G(x,y)$ and let $\boldsymbol{x^0} \in D$ be a critical point. Let $E: D \subset \mathbb{R}^2 \to \mathbb{R}$ is defined such that $E(x^0, y^0) = 0$.

$$\therefore \frac{\mathrm{d}E}{\mathrm{d}t} = \frac{\partial E}{\partial x}F + \frac{\partial E}{\partial y}G$$

• Let E > 0 for $\forall x \neq x^0$.

If $\frac{dE}{dt} \leq 0$ then $\boldsymbol{x^0}$ is stable.

If $\frac{\mathrm{d}E}{\mathrm{d}t} < 0$ then $\boldsymbol{x^0}$ is asymptotically stable.

• $E(x^*) > 0$ and $\frac{dE}{dt} > 0$

 \implies unstable x^0 . (flip both signs)

Postive definite: E(x) > 0 for $\forall x \neq x^0$

Postive semidefinite:

 $E(\boldsymbol{x}) \geq 0 \text{ for } \forall \boldsymbol{x} \neq \boldsymbol{x^0}$

Limit cycles are periodic solutions such that at least one other non-closed trajectory approaches it as $t \to \infty$.

Generally if our trajectory is enclosed by finite non-simple region and F, G have continuous partials then there is a limit cycle.

Real Fourier series

The Fourier expansion of piecewise continuous f(x) on [-L, L] is:

$$f_{FS}(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos \frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L})$$
 Consider $f(x)$ defined in $[0, L]$ originally.

where $f_{FS}(x) = f_{FS}(x + 2L)$. If α is a discontinuous point:

$$f_{FS}(\alpha) = \frac{f(\alpha^+) + f(\alpha^-)}{2}$$

for α^+ is the limit from the <u>left</u>.

Our Fourier coefficients are:

$$a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx$$

$$a_n = \frac{1}{L} \int_{-L}^{L} \cos \frac{n\pi x}{L} f(x) dx$$

$$b_n = \frac{1}{L} \int_{-L}^{L} \sin \frac{n\pi x}{L} f(x) dx.$$

Orthogonality

Let
$$S_n = \sin \frac{n\pi x}{L}$$
 and $C_n = \cos \frac{n\pi x}{L}$.
 $\langle S_n, S_m \rangle = \langle C_n, C_m \rangle = L\delta_{mn}$
 $\langle S_n, C_m \rangle = 0$.

Where:

$$\delta_{mn} = \left\{ \begin{array}{ll} 1 & m = n \\ 0 & m \neq n \end{array} \right.$$

$$\langle u(x),v(x)\rangle = \int_{-L}^L u(x)v(x)\mathrm{d}x$$

$$\cos A \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$$

$$\sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$$

$$\sin A \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)].$$

Even functions: f(-x) = f(x)

$$\therefore \int_{-L}^{L} f(x) dx = 2 \int_{0}^{L} f(x) dx$$

Odd functions: f(-x) = -f(x)

$$\therefore \int_{-L}^{L} f(x) \mathrm{d}x = 0$$

• Even function f(x) on [-L, L]:

$$f_{FS}(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L}$$

$$a_n = \frac{2}{L} \int_0^L \cos \frac{n\pi x}{L} f(x) dx$$

• **Odd** function f(x) on [-L, L]:

$$f_{FS}(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}$$

$$b_n = \frac{2}{L} \int_0^L \sin \frac{n\pi x}{L} f(x) \mathrm{d}x$$

Extensions

1. Define <u>even</u> function:

$$g(x) = \begin{cases} f(x) & x \in [0, L] \\ f(-x) & x \in (-L, 0) \end{cases}$$

with cosine series.

2. Define odd function:

$$h(x) = \begin{cases} f(x) & x \in (0, L) \\ 0 & x = 0, L \\ -f(-x) & x \in (-L, 0) \end{cases}$$

with sine series.

Complex Fourier series

Similarly:

$$f_{FS}(x) = \sum_{n=-\infty}^{\infty} c_n \exp\left(\frac{in\pi}{L}x\right)$$

$$e^{i\theta} = \sin\theta + i\cos\theta.$$

Then $\forall n \in \mathbb{Z}$ we have that:

$$c_n = \frac{1}{2L} \int_{-L}^{L} \exp\left(-\frac{in\pi}{L}x\right) f(x) dx$$

$$c_n = \begin{cases} (a_n - ib_n)/2 & n > 0\\ (a_0)/2 & n = 0\\ (a_n + ib_n)/2 & n < 0. \end{cases}$$

The **inner product** is defined as:

$$\langle f, g \rangle = \int_{-L}^{L} f(x)g^*(x) dx.$$

$$\therefore \langle \exp\left(\frac{i\boldsymbol{m}\pi}{L}\boldsymbol{x}\right), \exp\left(\frac{i\boldsymbol{n}\pi}{L}\boldsymbol{x}\right) \rangle = 2L\delta_{mn}$$

Parseval's theorem

$$\langle f, f \rangle = \int_{-L}^{L} |f(x)|^2 dx$$

$$= 2L \sum_{n = -\infty}^{\infty} |c_n|^2$$

$$= L \left[\frac{|a_0|^2}{2} + \sum_{n = 1}^{\infty} (|a_n|^2 + |b_n|^2) \right]$$

Heat equation

$$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$$

Let u(x,t) = X(x)T(t).

$$\frac{1}{\alpha^2}\frac{\dot{T}}{T} = \frac{X^{\prime\prime}}{X} = -\lambda$$

$$X'' + \lambda X = 0$$

$$\dot{T} + \alpha^2 \lambda T = 0$$

 $\lambda = \mu^2; X(x) = b_1 \cos \lambda^{1/2} x + b_2 \sin \lambda^{1/2} x$ $\lambda = -\mu^2$; $X(x) = b_1 \cosh \mu x + b_2 \sinh \mu x$ $T(t) = a_1 \exp\left(-\alpha^2 \lambda t\right)$

Standard boundary conditions

- u(x,0) = f(x) for 0 < x < L
- u(0,t) = u(L,t) = 0 for $\forall t > 0$

$$X(0) = X(L) = 0$$

$$\therefore X_n = b_2 \sin \lambda_n^{1/2} x$$

$$\therefore \lambda_n = \left(\frac{n\pi}{L}\right)^2 \text{ for } \forall n \in \mathbb{N}$$

Our general solution must then be:

$$u(x,t) = \sum_{n=1}^{\infty} c_n \exp(-\alpha^2 \lambda_n t) \sin \lambda_n^{1/2} x$$

$$c_n = \frac{2}{L} \int_0^L \sin\left(\lambda_n^{1/2} x\right) f(x) dx.$$

Fixed boundary temperatures

- $u(0,t) = T_1$
- $u(L,t) = T_2$
- u(x,0) = f(x)

$$v(x) = \lim_{t \to \infty} u(x, t)$$

Since
$$v'' = 0$$
, $v(0) = T_1$ and $v(L) = T_2$:

$$v(x) = \frac{T_2 - T_1}{L}x + T_1.$$

We then deduce that:

$$u(x,t) = v(x) + \omega(x,t)$$

where $\omega(x,t)$ satisfies conditions:

- $\omega(0,t) = \omega(L,t) = 0$
- $\omega(x,0) = f(x) v(x)$

$$\therefore \omega(x,t) = \sum_{n=1}^{\infty} c_n \exp\left(-\alpha^2 \lambda_n t\right) \sin \lambda_n^{1/2} x$$

For
$$\lambda_n = \left(\frac{n\pi}{L}\right)^2$$
 and

$$c_n = \frac{2}{L} \int_0^L \sin\left(\lambda_n^{1/2} x\right) \left(f(x) - v(x)\right) dx.$$

Insulated rod ends

•
$$\frac{\partial}{\partial x}u(0,t) = \frac{\partial}{\partial x}u(L,t) = 0$$

•
$$u(x,0) = f(x)$$

$$X'(0) = X'(L) = 0$$

$$u(x,t) = \sum_{n=1}^{\infty} c_n \exp(-\alpha^2 \lambda_n t) \cos \lambda_n^{1/2} x$$

$$c_n = \frac{2}{L} \int_0^L \cos(\lambda_n^{1/2} x) f(x) dx$$

$$\lambda_n = \left(\frac{n\pi}{L}\right)^2$$

Wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

Let u(x,t) = X(x)T(t).

$$\frac{X^{\prime\prime}}{X} = \frac{\ddot{T}}{c^2T} = -\lambda$$

$$X'' + \lambda X = 0$$

$$\ddot{T} + c^2 \lambda T = 0$$

Plucked string

- u(0,t) = u(L,t) = 0
- $\frac{\partial}{\partial t}u(x,0) = 0$
- u(x,0) = f(x)

$$X(0) = X(L) = 0$$
 and $\dot{T}(0) = 0$

$$u(x,t) = \sum_{n=1}^{\infty} c_n \sin \lambda_n^{1/2} x \cos c \lambda_n^{1/2} t$$

$$c_n = \frac{2}{L} \int_0^L \sin\left(\lambda_n^{1/2} x\right) f(x) dx$$
$$\lambda_n = \left(\frac{n\pi}{L}\right)^2$$

General initial conditions

- u(0,t) = u(L,t) = 0
- $\bullet \ \frac{\partial}{\partial t}u(x,0) = g(x)$
- u(x,0) = f(x)

$$u(x,t) = \sum_{n=1}^{\infty} \sin \lambda_n^{1/2} x$$

$$\times \left(a_n \cos c \lambda_n^{1/2} t + b_n \sin c \lambda_n^{1/2} t \right)$$

$$a_n = \frac{2}{L} \int_0^L \sin \left(\lambda_n^{1/2} x \right) f(x) dx$$

$$b_n = \frac{1}{c \lambda_n^{1/2} L} \int_0^L \sin \left(\lambda_n^{1/2} x \right) g(x) dx$$

 $\lambda_n = \left(\frac{n\pi}{I}\right)^2$

Laplace's equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Let u(x, y) = X(x)Y(y).

$$\frac{X''}{X} = -\frac{Y''}{Y} = \lambda$$

$$X'' - \lambda X = 0$$

$$Y'' + \lambda Y = 0$$

Rectangular boundary conditions

- u(x,0) = u(x,b) = 0
- u(0, y) = 0 and u(a, y) = f(y)

Here $x \in [0, a]$ and $y \in [0, b]$.

$$X(0) = 0$$
 and $Y(0) = Y(b) = 0$

$$\therefore Y_n = a_1 \sin\left(\lambda_n^{1/2} y\right) \text{ for } \lambda_n = \frac{n^2 \pi^2}{b^2}$$

$$\therefore X_n = a_3 \sinh\left(\lambda_n^{1/2} x\right)$$

$$u(x,y) = \sum_{n=1}^{\infty} c_n \sinh\left(\lambda_n^{1/2} x\right) \sin\left(\lambda_n^{1/2} y\right)$$

$$c_n = \frac{2}{b \sinh\left(\lambda_n^{1/2} a\right)} \int_0^b \sin\left(\lambda_n^{1/2} y\right) f(y) dy$$

Circular boundary conditions

- $u(a, \theta) = f(\theta)$
- $u(r,\theta)$ is bounded

Here $r \in [0, a]$ and $\theta \in [0, 2\pi]$.

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} + \frac{1}{r} \frac{\partial u}{\partial r} = 0.$$

Let $u(r,\theta) = R(r)\Theta(\theta)$.

$$\therefore r^2 \frac{R''}{R} + r \frac{R'}{R} = -\frac{\ddot{\Theta}}{\Theta} = \lambda$$

$$\therefore \ddot{\Theta} + \lambda \Theta = 0$$

$$\therefore r^2 R'' + rR' = \lambda R$$

For the first ODE if $\lambda \leq 0$ then we get at best constant solutions. If $\lambda > 0$:

$$\Theta(\theta) = a_1 \cos \lambda^{1/2} \theta + a_2 \sin \lambda^{1/2} \theta$$

and since periodicity must be preserved:

$$\Theta(\theta) = \Theta(\theta + 2\pi)$$

$$\therefore \lambda_n^{1/2} = n \text{ or } \lambda_n^{1/2} = 0$$

where $n \in \mathbb{N}$. So when $\lambda_n = 0$:

$$r^2R'' + rR' = 0$$

and since $u(r,\theta)$ is bounded we get only constant solutions. If $\lambda_n=n^2$ then:

$$r^2R'' + rR' - n^2R = 0$$

with solutions of form $R(r) = r^{\alpha}$ which yields $R_n(r) = c_n r^n$. Then:

$$u(r,\theta) = \frac{p_0}{2} + \sum_{n=1}^{\infty} r^n \left(q_n \cos \lambda_n^{1/2} \theta + r_n \sin \lambda_n^{1/2} \theta \right)$$

$$p_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) d\theta$$

$$q_n = \frac{1}{a^n \pi} \int_{-\pi}^{\pi} \cos\left(\lambda_n^{1/2} \theta\right) f(\theta) d\theta$$

$$r_n = \frac{1}{a^n \pi} \int_{-\pi}^{\pi} \sin(\lambda_n^{1/2} \theta) f(\theta) d\theta.$$

Regular S-L problems

A regular S-L problem defined on [0,1] is:

$$-\frac{\mathrm{d}}{\mathrm{d}x}\left(p(x)\frac{\mathrm{d}y}{\mathrm{d}x}\right) + q(x)y = \lambda r(x)y$$

- $a_1y(0) + a_2y'(0) = 0$
- $b_1y(1) + b_2y'(1) = 0$
- p(x), p'(x), q(x), r(x) are continuous
- p(x), r(x) are strictly positive

which yields **real** eigenvalues λ_n and **orthonormal** eigenfunctions $\phi_n(x)$:

$$\langle \phi_m, \phi_n \rangle = \int_0^1 r(x)\phi_m(x)\phi_n(x) dx = \delta_{mn}$$

in Hilbert space $L^2([0,1], r(x)dx)$.

Let $\phi_n(x) = k_n y_n(x)$.

$$\therefore k_n = \frac{1}{\sqrt{\langle y_n, y_n \rangle}}$$
$$= \left(\int_0^1 r(x) y_n^2(x) dx\right)^{-1/2}$$

General 2nd order ODEs

$$-p(x)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - \omega(x)\frac{\mathrm{d}y}{\mathrm{d}x} + q(x)y = \lambda r(x)y$$

$$F(x) = \exp\left[\int_0^x \frac{\omega(s) - p'(s)}{p(s)} ds\right]$$

$$-\frac{\mathrm{d}}{\mathrm{d}x} \left[F(x)p(x)\frac{\mathrm{d}y}{\mathrm{d}x} \right] + F(x)q(x)y = \lambda F(x)r(x)y$$

Lagrange's identity

Let functions u and v satisfy regular S-L Consider the following PDE: boundary conditions. Then:

$$\langle \mathcal{L}[u], v \rangle = \langle u, \mathcal{L}[v] \rangle$$

where:

$$\langle u, v \rangle = \int_0^1 u v^* \mathrm{d}x$$

$$\mathcal{L}[u] = -\frac{\mathrm{d}}{\mathrm{d}x} \left[p(x) \frac{\mathrm{d}u}{\mathrm{d}x} \right] + q(x)u.$$

$$\therefore \langle \mathcal{L}[u], v \rangle - \langle u, \mathcal{L}[v] \rangle$$

$$= -\left[p \left(u'v^* - u(v^*)' \right) \right]_0^1$$

$$= -\left[p(x) \left(\frac{\mathrm{d}u}{\mathrm{d}x} \cdot v^* - u \cdot \frac{\mathrm{d}v^*}{\mathrm{d}x} \right) \right]_0^1$$

$$\left[pu'v^* \right]' = \left(pu' \right)'v^* + pu'(v^*)'$$

$$\left[pu(v^*)' \right]' = \left(p(v^*)' \right)'u + pu'(v^*)'$$

S-L series expansion

The set of orthonormal eigenfunctions $\{\phi_n(x)\}\$ from a S-L problem defined on [0,1] may be used to expand function f(x):

$$f_{\phi}(x) = \sum_{n=1}^{\infty} c_n \phi_n(x)$$

$$c_n = \int_0^1 r(x)\phi_n(x)f(x)\mathrm{d}x.$$

in $L^2([0,1],r(x)dx)$. We also have the general Pareseval's identity:

$$\int_0^1 r(x) [f(x)]^2 dx = \sum_{n=1}^\infty c_n^2.$$

Non-homogeneous S-L problems

$$\mathcal{L}[y] = \mu r(x)y + f(x)$$

$$\mathcal{L}[y] = -\frac{\mathrm{d}}{\mathrm{d}x} \left[P(x) \frac{\mathrm{d}y}{\mathrm{d}x} \right] + q(x)y$$

Firstly solve corresponding homogeneous problem:

$$\mathcal{L}[y] = \lambda r(x)y$$

for non-trivial λ_n and $\phi_n(x)$.

Then the general solution is:

$$y(x) = \sum_{n=1}^{\infty} b_n \phi_n(x)$$

$$b_n = \frac{c_n}{\lambda_n - \mu}$$

$$c_n = \int_0^1 \phi_n(x) f(x) \mathrm{d}x.$$

Non-homogeneous PDEs

$$r(x)\frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left[p(x) \frac{\partial u}{\partial x} \right] - q(x)u(x,t) + F(x,t)$$

with conditions:

$$\bullet \ \frac{\partial}{\partial x}u(0,t) - h_1u(0,t) = 0$$

•
$$\frac{\partial}{\partial x}u(1,t) - h_2u(1,t) = 0$$

•
$$u(x,0) = f(x)$$
.

Firstly solve the homogeneous case. Let u(x,t) = X(x)T(t).

$$\therefore \frac{1}{rX} \Big[p'X' + pX'' - qX \Big] = \frac{\dot{T}}{T} = -\lambda$$

This yields two ODEs:

$$\dot{T} + \lambda T = 0$$
$$-[pX']' + qX = \lambda rX$$

with boundary conditions:

$$X'(0) - h_1 X(0) = 0$$

$$X'(1) - h_2 X(1) = 0$$

Clearly our second ODE is of S-L form. We are now going to assume that this regular S-L problem has <u>non-trivial</u> λ_n and orthonormal eigenfunctions $\phi_n(x)$. Then:

$$u(x,t) = \sum_{n=1}^{\infty} b_n(t)\phi_n(x).$$

Since we have a S-L problem:

$$\sum_{n=1}^{\infty} \dot{b_n}(t)\phi_n(x) = \sum_{n=1}^{\infty} b_n(t) \left[-\lambda_n \phi_n(x) \right] + \frac{F(x,t)}{r(x)}$$

$$\frac{F(x,t)}{r(x)} = \sum_{n=1}^{\infty} \gamma_n(t)\phi_n(x)$$

$$\gamma_n(t) = \int_0^1 F(x, t) \phi_n(x) dx$$

$$\sum_{i=1}^{\infty} \left[\dot{b_n}(t) + \lambda_n b_n(t) - \gamma_n(t) \right] \phi_n(x) = 0$$

$$b_n(t) = e^{-\lambda_n t} \int_0^t \gamma_n(s) e^{\lambda_n s} ds + e^{-\lambda_n t} b_n(0)$$

finally using initial conditions:

$$b_n(0) = \int_0^1 r(x)f(x)\phi_n(x)\mathrm{d}x$$

and all this is in $L^2([0,1], r(x)dx)$.

Singular S-L problems

Consider the following ODE:

$$-\frac{\mathrm{d}}{\mathrm{d}x}\left(p(x)\frac{\mathrm{d}y}{\mathrm{d}x}\right) + q(x)y = \lambda r(x)y$$

but now some of p(x), q(x) and r(x) are discontinuous at x = 0 and/or x = 1. This is a **singular** S-L problem with boundary condition:

$$b_1 y(1) + b_2 y'(1) = 0$$

<u>or</u>

$$a_1y(0) + a_2y'(0) = 0.$$

Now singular S-L problems at x = 0 may be self-adjoint or that they yield:

- $\lambda_n \in \mathbb{R}$ (Real eigenvalues)
- $\langle \phi_m, \phi_n \rangle = \delta_{mn}$ (Orthogonal eigenfunctions)

if they satisfy Lagrange's identity. Consider singular S-L problem at x = 0:

$$\int_{\epsilon}^{1} \left(\mathcal{L}[u]v - u\mathcal{L}[v] \right) dx$$

$$= \left[-p(x) \left(u'(x)v(x) - u(x)v'(x) \right) \right]_{\epsilon}^{1}$$

$$= p(\epsilon) \left(u'(\epsilon)v(\epsilon) - u(\epsilon)v'(\epsilon) \right)$$

and tends to zero if and only if:

$$\lim_{\epsilon \to 0} \left[p(\epsilon) \Big(u'(\epsilon) v(\epsilon) - u(\epsilon) v'(\epsilon) \Big) \right] = 0,$$

where we define:

$$\mathcal{L}[u] = -\frac{\mathrm{d}}{\mathrm{d}x} \left[p(x) \frac{\mathrm{d}u}{\mathrm{d}x} \right] + q(x)u.$$

Therefore this is the condition for our singular S-L problem to have real eigenvalues and orthogonal eigenfunctions.

Similarly for singular S-L problem at x=1it is self-adjoint if:

$$\lim_{\epsilon \to 0} \left[p(1 - \epsilon) \left(u'(1 - \epsilon)v(1 - \epsilon) - u(1 - \epsilon)v'(1 - \epsilon) \right) \right] = 0.$$

Finally whilst eigenvalues may be real they are not necessarily discrete!

Laplace transforms

So let f(t) be defined for $t \in [0, \infty)$. Its Laplace transform is:

$$\mathcal{L}[f(t)] = \int_0^\infty e^{-st} f(t) dt.$$

Let functions of exponential order be defined as:

$$\forall t \in [0, \infty); \exists A > 0 \text{ and } B \in \mathbb{R} : |f(t)| \leq Ae^{Bt}$$

where f is piecewise continuous and we denote such functions as $f \in E$.

For sufficiently large s, the Laplace transform $f \in E$ converges.

Reduction of order

$$\mathcal{L}[f'(t)] = s\mathcal{L}[f(t)] - f(0)$$

For $\forall f, f' \in E$ and generalising:

$$\mathcal{L}[f^{(n)}(t)] = s^n \mathcal{L}[f(t)] - s^{(n-1)} f^{(0)}(0)$$
$$- s^{(n-2)} f^{(1)}(0)$$
$$- \dots - s f^{(n-2)}(0) - f^{(n-1)}(0).$$

Shifts, scaling and derivatives

Let $F(s) = \mathcal{L}[f(t)](s)$. We then have that:

1. **s-shift**:

$$\mathcal{L}[e^{-ct}f(t)](s) = F(s+c)$$

where $s + c > \gamma$.

2. **t-shift**:

Let $c \ge 0$ and f(t) = 0 if t < 0.

$$\therefore \mathcal{L}[f(t-c)](s) = e^{-sc}F(s)$$

In terms of the unit step function:

$$\mathcal{L}[g(t-c)u_c(t)](s) = e^{-sc}G(s)$$

where $G(s) = \mathcal{L}[g(t)](s)$ and g(t) any normal function.

3. s-derivative:

$$\mathcal{L}[tf(t)](s) = -\frac{\mathrm{d}}{\mathrm{d}s}F(s)$$

$$\mathcal{L}[t^n f(t)] = (-1)^n F^{(n)}(s)$$

4. scaling:

$$\mathcal{L}[f(ct)] = \frac{1}{c}F(\frac{s}{c})$$

$$\frac{1}{c}\mathcal{L}[f(\frac{t}{c})] = F(cs)$$

where c > 0.

Higher order ODEs

$$y^{(n)}(t) + a_1 y^{(n-1)}(t) + \dots + a_n y(t) = f(t)$$

$$Z(s)\mathcal{L}[y(t)] = \mathcal{L}[f(t)] + Z_0(s)$$

Where Z(s) is a degree n polynomial and $Z_0(s)$ a degree n-1 polynomial dependent on our initial conditions.

If the source term is of the following form:

$$f(t) = t^n e^{at} (A\cos bt + B\sin bt)$$

then $\mathcal{L}[f(t)]$ is rational and therefore:

$$\mathcal{L}[y(t)] = \frac{\mathcal{L}[f(t)]}{Z(s)} + \frac{Z_0(s)}{Z(s)}$$

where we can solve this via standard transforms.

Discontinuous source terms

Consider the following ODE:

$$Ay''(t) + By'(t) + Cy(t) = g(t)$$

where g(t) is piecewise continuous:

$$g(t) = f(t)[u_a(t) - u_b(t)] = \left\{ \begin{array}{ll} f(t) & t \in [a,b) \\ 0 & t \notin [a,b) \end{array} \right.$$

for b > a. This is the **unit step function**:

$$u_c(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge c. \end{cases}$$

$$\therefore \mathcal{L}[u_c(t)](s) = \frac{e^{-sc}}{s}$$

Furthermore we can define a <u>shift</u> of f(t) by c > 0 to the right by:

$$f(t-c)u_c(t)$$

$$\mathcal{L}[f(t-c)u_c(t)] = e^{-sc}F(s)$$

where $F(s) = \mathcal{L}[f(t)]$.

Impulse functions

The Dirac delta is defined as:

$$\delta(t) = \begin{cases} \infty & t = 0\\ 0 & t \neq 0 \end{cases}$$

and has the following properties:

$$\int_{-\infty}^{\infty} \delta(t - t_0) f(t) dt = f(t_0)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big[u_{t_0}(t) \Big] = \delta(t - t_0)$$

$$\mathcal{L}[\delta(t-t_0)] = e^{-st_0}.$$

If $t_0 = 0$ then $\mathcal{L}[\delta(t)] = \lim_{t_0 \to 0} (e^{-st_0}) = 1$.

Consider the following impulse ODE:

$$y''(t) + y(t) = \delta(t)$$

with initial conditions y(0) = y'(0) = 0:

$$\mathcal{L}[y(t)] = \frac{1}{s^2 + 1} \lim_{t_0 \to 0} \left(e^{-st_0}\right).$$

It is important that we do not evaluate the limit here! Then by inspection:

$$y(t) = \lim_{t_0 \to 0} \left(\sin(t - t_0) u_{t_0}(t) \right)$$
$$= \sin(t) u_0(t).$$

Convolutions

Let functions $f, g: [0, \infty) \to \mathbb{R}$.

$$f(t) * g(t) = \int_0^t f(s)g(t-s)ds$$
$$= \int_0^t g(s)f(t-s)ds$$

- f * (g + h) = f * g + f * h
- f * q = q * f
- f * (q * h) = (f * q) * h
- $f * 1 \neq f$
- $f * f \neq f^2$.

Convolution theorem

$$\mathcal{L}[f(t) * g(t)] = \mathcal{L}[f(t)]\mathcal{L}[g(t)]$$

For if $f, g \in E$ then $f * g \in E$. Note:

$$\int_0^t f(s)ds = \int_0^t f(s)u_0(t-s)ds$$
$$\mathcal{L}\left[\int_0^t f(s)ds\right] = \frac{\mathcal{L}[f(t)]}{s}.$$

Now consider the following ODE:

$$ay''(t) + by'(t) + cy(t) = g(t)$$

with
$$y(0) = \alpha$$
 and $y'(0) = \beta$.

Here $a, b, c, \alpha, \beta \in \mathbb{R}$.

$$\therefore \mathcal{L}[y(t)] = \Phi(s) + \Psi(s)$$

$$= \frac{(as+b)\alpha + a\beta}{as^2 + bs + c}$$

$$+ \frac{1}{as^2 + bs + c} \mathcal{L}[g(t)]$$

$$\therefore y(t) = \phi(t) + \psi(t)$$

$$ah''(t) + bh'(t) + ch(t) = \delta(t)$$

$$h(0) = h'(0) = 0$$

$$H(s) = \mathcal{L}[h(t)] = \frac{1}{as^2 + bs + c}$$

$$\therefore \Psi(s) = \frac{1}{as^2 + bs + c} \mathcal{L}[g(t)]$$
$$= H(s)\mathcal{L}[g(t)]$$

$$\mathcal{L}[\psi(t)] = \mathcal{L}[h(t)]\mathcal{L}[g(t)]$$
$$= \mathcal{L}[h(t) * q(t)].$$

$$\psi(t) = h(t) * g(t)$$
$$= \int_{0}^{t} h(s)g(t - s)ds.$$

Standard transforms

- $\mathcal{L}[t^n] = \frac{n!}{s^{n+1}}$ where $n \in \mathbb{N}$.
- $\mathcal{L}[e^{at}] = \frac{1}{s-a}$ where s > a.
- $\mathcal{L}[\sin at] = \frac{a}{s^2 + a^2}$,

$$\mathcal{L}[\cos at] = \frac{s}{s^2 + a^2}$$
 where $s > 0$.

• $\mathcal{L}[\sinh at] = \frac{a}{s^2 - a^2}$,

$$\mathcal{L}[\cosh at] = \frac{s}{s^2 - a^2}$$
 where $s > |a|$.

•
$$\mathcal{L}[e^{at}\sin bt] = \frac{b}{(s-a)^2 + b^2}$$

$$\mathcal{L}[e^{at}\cos bt] = \frac{s-a}{(s-a)^2 + b^2}$$

• $\mathcal{L}[u_c(t)] = \frac{e^{-cs}}{s}$ where s > 0.

•
$$\mathcal{L}[\delta(t-c)] = e^{-cs}$$
.

Miscellaneous

• Polar coordinates

$$x = r\cos\theta$$
$$y = r\sin\theta$$

• Taylor's formula

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

• Partial fractions

$$\frac{N(x)}{(ax+b)(cx+d)^2}$$

$$= \frac{A}{ax+b} + \frac{B}{cx+d} + \frac{C}{(cx+d)^2}$$

$$\frac{N(x)}{(ax+b)(x^2+c)}$$

$$= \frac{A}{ax+b} + \frac{Bx+C}{x^2+c^2}$$

• Hyperbolic functions

$$\sinh x = \frac{1}{2} \left(e^x - e^{-x} \right)$$
$$\cosh x = \frac{1}{2} \left(e^x + e^{-x} \right)$$

Periodicity: $2\pi i$

• Integrals

$$\int \frac{\mathrm{d}x}{\sin x} = \ln|\csc x - \cot x| + k$$

$$\int \frac{\mathrm{d}x}{\cos x} = \ln|\tan x - \sec x| + k$$

• Bessel's equation

Let
$$t = \sqrt{\lambda}x$$
. Then:

$$-(xy')' = \lambda xy$$

$$t\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + \frac{\mathrm{d}y}{\mathrm{d}t} + ty = 0.$$

This is Bessel's equation of order zero. Its general solution is:

$$y = c_1 J_0(t) + c_2 Y_0(t)$$

where J_0 and Y_0 are Bessel functions. Since Y_0 is unbounded we choose $c_2 = 0$ and set our <u>orthonormal</u> eigenfunctions to be:

$$\phi_n(x) = k_n J_0(\sqrt{\lambda_n} x)$$

$$J_0(\sqrt{\lambda}x) = 1 + \sum_{m=1}^{\infty} \frac{(-1)^m \lambda^m x^{2m}}{2^{2m} (m!)^2}.$$

• Further transforms

$$\mathcal{L}[t^n e^{at}] = \frac{n!}{(s-a)^{n+1}}$$

where $n \in \mathbb{N}$ and s > a.

$$\mathcal{L}[\delta(t-c)f(t)] = e^{-cs}f(c).$$

Phase diagrams

\bullet $\,\underline{\mathrm{Real}}$ and unique eigenvalues:

• Repeat eigenvalues ($\boldsymbol{\xi}$ and $\boldsymbol{\eta}$):

• Repeat eigenvalues

