Project Management Metrics: Formulas and Explanations

1 Introduction

This document provides detailed explanations and formulas for various project management metrics. These metrics are crucial for monitoring and controlling the project's financial and schedule performance.

PV (Planned Value)

Formula: $PV = (\text{Total Budget}) \times (\text{Percentage of Planned Work})$

Use: Measures the estimated value of the work planned to be done at any given point in the project.

EV (Earned Value)

Formula: $EV = (\text{Total Budget}) \times (\text{Percentage of Work Actually Completed})$

Use: Represents the value of the work actually performed, reflecting the project's progress.

AC (Actual Cost)

Formula: AC = Total Actual Cost

Use: Indicates the real cost incurred for the work completed up to a particular time.

BAC (Budget at Completion)

Formula: BAC = Total Budget for the Project Use: The original total budget set for the project.

CV (Cost Variance)

Formula: CV = EV - AC

Use: Assesses cost performance by comparing the earned value with the actual cost.

CPI (Cost Performance Index)

Formula: $CPI = \frac{EV}{AC}$

Use: Evaluates the efficiency of the budgeted resources.

SV (Schedule Variance)

Formula: SV = EV - PV

Use: Measures schedule performance by comparing the earned value against the planned value.

SPI (Schedule Performance Index)

Formula: $SPI = \frac{EV}{PV}$

Use: Indicates the efficiency of time usage in the project.

EAC (Estimate at Completion)

Formula: $EAC = \frac{BAC}{CPI}$

Use: Provides a forecast of the project's total cost at completion.

ETC (Estimate to Complete)

Formula: ETC = EAC - AC

Use: Estimates the remaining cost to complete the project.

VAC (Variance at Completion)

Formula: VAC = BAC - EAC

Use: Predicts the project's budget surplus or deficit at completion.

2 EVM Anlysis

This Section demonstrates the calculation and application of Earned Value Management (EVM) metrics using a practical example.

Project Parameters

- Total Budget for the Project (BAC): \$100,000
- \bullet Percentage of Planned Work Completed by a Certain Date: 50%
- Percentage of Actual Work Completed by the Same Date: 40%
- \bullet Actual Cost (AC) Incurred to Date: \$45,000

EVM Calculations

- PV (Planned Value): $PV = BAC \times Percentage$ of Planned Work = \$100,000 \times 50% = \$50,000
- EV (Earned Value): $EV = BAC \times Percentage$ of Actual Work Completed = \$100,000 \times 40% = \$40,000
- CV (Cost Variance): CV = EV AC = \$40,000 \$45,000 = -\$5,000 (A negative CV indicates the project is over budget.)
- CPI (Cost Performance Index): $CPI = \frac{EV}{AC} = \frac{\$40,000}{\$45,000} \approx 0.89$ (A CPI less than 1 indicates cost inefficiency.)
- SV (Schedule Variance): SV = EV PV = \$40,000 \$50,000 = -\$10,000 (A negative SV indicates the project is behind schedule.)

2

• SPI (Schedule Performance Index): $SPI = \frac{EV}{PV} = \frac{\$40,000}{\$50,000} = 0.8$ (An SPI less than 1 indicates schedule inefficiency.)

• EAC (Estimate at Completion): Assuming the current cost performance will continue,

```
EAC = \frac{BAC}{CPI} = \frac{\$100,000}{0.89} \approx \$112,360 (This is the estimated total cost of the project at completion.)
```

- ETC (Estimate to Complete): $ETC = EAC AC = \$112,360 \$45,000 \approx \$67,360$ (This is the estimated remaining cost to complete the project.)
- VAC (Variance at Completion): VAC = BAC EAC = \$100,000 \$112,360 = -\$12,360

(A negative VAC indicates a projected budget overrun.)

3 Steps to Take After EVM Analysis

This section outlines the steps a project manager can take after conducting an Earned Value Management (EVM) analysis to address any identified issues and steer the project towards successful completion.

Steps for Addressing Issues in Project Management

Address Cost Overruns (Negative CV and VAC)

- Reassess and possibly renegotiate contracts or resource costs.
- Identify areas of unnecessary spending.
- Optimize resource allocation to reduce costs without impacting quality.

Improve Cost Efficiency (CPI less than 1)

- Review and streamline processes to reduce waste and increase efficiency.
- Implement cost-saving measures.
- Reallocate budget to higher-priority tasks.

Mitigate Schedule Delays (Negative SV and SPI less than 1)

- Reevaluate and update the project schedule.
- Accelerate certain tasks where possible, perhaps through additional resources or overtime work.
- Prioritize tasks that are on the critical path to avoid further delays.

Review Project Scope and Objectives

- Ensure that the project scope has not crept beyond its initial boundaries.
- Confirm that all stakeholders have the same understanding of project objectives.
- Adjust scope if necessary, in consultation with stakeholders.

Communicate with Stakeholders

- Update stakeholders on the current status of the project.
- Discuss potential impacts and the need for any changes in scope, schedule, or budget.
- Seek feedback and suggestions from stakeholders.

Risk Management

- Review and update the project's risk management plan.
- Identify new risks that may have emerged and develop mitigation strategies.
- Monitor key risk indicators closely.

Quality Assurance

- Ensure that cost-cutting or schedule acceleration efforts do not compromise the quality of the work.
- Implement regular quality checks and balances.

Reforecasting

- Use EAC and ETC to reforecast project outcomes.
- Adjust project plans and resource allocations based on these forecasts.

Lessons Learned

- Document lessons learned from the issues encountered.
- Share this knowledge with the team and use it for future projects.

Regular Monitoring and Control

- Continue to monitor project progress using EVM and other project management tools.
- Make adjustments as necessary to ensure project objectives are met.

By taking these actions, a project manager can address current issues, prevent future problems, and increase the likelihood of delivering the project successfully within its constraints.