Statistic

for machine learning

Tran Trong Khiem

AI lab tranning

2024/05/29

Tran Trong Khiem Statistic 1 / 43

- 1 Introduction
- 2 Matrix multiplication
- 3 Matrix inversion
- 4 Eigenvalue decomposition (EVD)
- **5** Singular value decomposition (SVD)

Introduction

Linear projection: Let $y \in \mathbb{R}^m$ and $\{x_1, \ldots, x_n\} \in \mathbb{R}^m$.

- The projection of y onto the span of $\{x_1, \ldots, x_n\}$ is $v \in \text{span}(\{x_1, \ldots, x_n\}).$
- v is as close as possible to y.
- $\text{Proj}(y; \{x_1, \dots, x_n\}) = \arg\min_{v \in \text{span}(\{x_1, \dots, x_n\})} \|y v\|^2$
- Given a (full rank) matrix $A \in \mathbb{R}^{m \times n}$ with $m \ge n$.

$$Proj(y; A) = \arg\min_{v \in \mathcal{R}(A)} ||v - y||^2 = A(A^T A)^{-1} A^T y$$

Vector norms : A norm is any function $f : \mathbb{R}^n \to \mathbb{R}$ that satisfies :

- For all $x \in \mathbb{R}^n$, $f(x) \ge 0$ (non-negativity).
- f(x) = 0 if and only if x = 0 (definiteness).
- For all $x \in \mathbb{R}^n$, $t \in \mathbb{R}$, f(tx) = |t|f(x) (absolute value homogeneity).
- For all $x, y \in \mathbb{R}^n$, f(x+y) < f(x) + f(y) (triangle inequality).

Tran Trong Khiem Statistic 3 / 43

Introduction

- a matrix $A \in \mathbb{R}^{m \times n}$ defining a linear function f(x) = Ax.
- define the **induced norm** of A as :

$$||A||_p = \max_{x \neq 0} \frac{||Ax||_p}{||x||_p} = \max_{x=1} ||Ax||_p$$

- Typically p=2, $||A||_2=\sqrt{\lambda_{\max}(A^TA)}=\max_i\sigma_i$
 - $\lambda_{\max}(M)$ is the largest eigenvalue of M.
 - σ_i is the *i*'th singular value.
- The nuclear norm, also called the trace norm
 - $||A||_* = \operatorname{tr}(\sqrt{A^T A}) = \sum_i \sigma_i$
 - Where $\sqrt{A^TA}$ is the matrix square root. We have :

$$||A||_* = \sum |\sigma_i| = ||\sigma||_1$$

Tran Trong Khiem Statistic 4 / 43

Matrix norms(cnt.)

• we can define the **Schatten** p-norm as:

$$||A||_p = \left(\sum_i \sigma_i^p(A)\right)^{1/p}$$

• The **Frobenius norm** of a matrix *A* is defined as:

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = \sqrt{\operatorname{tr}(A^T A)} = ||\operatorname{vec}(A)||_2$$

• If *A* is expensive to evaluate, but *Av* is cheap. We can create a **stochastic approximation** to the Frobenius :

$$||A||_F^2 = \operatorname{tr}(A^T A) = \mathbb{E}[v^T A^T A v] = \mathbb{E}[||Av||_2^2]$$

• where $v \sim \mathcal{N}(0, I)$

Tran Trong Khiem Statistic 5 / 43

Properties of a matrix

Trace of a square matrix

• The trace of a square matrix $A \in \mathbb{R}^{n \times n}$, denoted tr(A):

$$\operatorname{tr}(A) = \sum_{i=1}^{n} A_{ii}$$

- The trace has the following properties, where $c \in \mathbb{R}$
 - $tr(A) = tr(A^T)$
 - tr(A+B) = tr(A) + tr(B)
 - tr(cA) = c tr(A)
 - tr(AB) = tr(BA)
 - $\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i$ where λ_i are the eigenvalues of A.
 - tr(ABC) = tr(BCA) = tr(CAB)
 - $x^T A x = tr(x^T A x) = tr(x x^T A)$

Tran Trong Khiem Statistic 6 / 43

Determinant of a square matrix

The **determinant** of a square matrix, denoted det(A) or |A|

- measure of how much it changes a unit volume when viewed as a linear transformation.
- The determinant operator satisfies these properties, where $A, B \in \mathbb{R}^{n \times n}$
 - $|A| = |A^T|$
 - $|cA| = c^n |A|$
 - $\bullet |AB| = |A||B|$
 - |A| = 0 iff A is singular.
 - $|A^{-1}| = 1/|A|$ iff A is not a singular.
 - $|A| = \prod^n \lambda_i$ where λ_i are the eigenvalues of A

Tran Trong Khiem Statistic 7 / 43

Rank of a matrix

- column rank is the dimension of the space spanned by its columns.
- row rank is the dimension of the space spanned by its rows.
- any matrix A, columnrank(A) = rowrank(A) = rank(A)
- $A \in \mathbb{R}^{m \times n}$, $\operatorname{rank}(A) \leq \min(m, n)$
 - If rank(A) = min(m, n), then *A* is said to be full rank
- $A \in \mathbb{R}^{m \times n}$, $rank(A) = rank(A^T) = rank(A^TA) = rank(AA^T)$
- $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, $\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))$
- $A, B \in \mathbb{R}^{m \times n}$, $rank(A + B) \le rank(A) + rank(B)$

Tran Trong Khiem Statistic 8 / 43

Condition numbers

The **condition number** of a **matrix** *A*

- a **measure of how numerically stable** any computations involving *A* will be.
- $\kappa(A) = ||A|| \cdot ||A^{-1}||$, Where ||A|| is the norm of the matrix.
 - $\kappa(A) \geq 1$
 - We say *A* is **well-conditioned** if $\kappa(A)$ is small (close to 1)
 - **Ill-conditioned** if $\kappa(A)$ is large
 - *A* large condition number means *A* is nearly singular.
- The linear system of equations Ax = b.
 - If *A* is **non-singular**, the unique solution is $x = A^{-1}b$
 - Suppose we change b to $b + \Delta b$, We have : $A(x + \Delta x) = b + \Delta b$
 - $\Delta x = A^{-1} \Delta b$
 - A is well-conditioned if a small Δb results in a small Δx
 - A is ill-conditioned, a small change in b can lead to an extremely

Special types of matrices

Diagonal matrix

- a matrix where all non-diagonal elements are 0.
- denoted $D = \operatorname{diag}(d_1, d_2, \dots, d_n)$
- identity matrix : I = diag(1, 1, ..., 1), so AI = A = IA
- **extract the diagonal vector** from a matrix using d = diag(D)
- convert a vector into a diagonal matrix by writing D = diag(d)

Triangular matrices

- An upper triangular matrix only has non-zero entries on and above the diagonal.
- A **lower triangular matrix** only has non-zero entries on and below the diagonal.

Tran Trong Khiem Statistic 10 / 43

Special types of matrices

Positive definite matrices

- Given a square matrix $A \in \mathbb{R}^{n \times n}$ and a vector $x \in \mathbb{R}^n$.
- the scalar value $x^T A x$ is called a **quadratic form**:

$$x^{T}Ax = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}x_{i}x_{j}$$

- Note that : $x^T A x = (x^T A x)^T = x^T A^T x = x^T (\frac{1}{2} A + \frac{1}{2} A^T) x$
- assume that the matrices appearing in a quadratic form are symmetric.
- *A* symmetric matrix $A \in \mathbb{S}^n$ is **positive definite**
 - iff for all non-zero vectors $x \in \mathbb{R}^n$, $x^T A x > 0$.
- *A* symmetric matrix $A \in \mathbb{S}^n$ is **negative definite**
 - iff for all non-zero $x \in \mathbb{R}^n$, $x^T A x < 0$.

Tran Trong Khiem Statistic 11 / 43

Special types of matrices

Orthogonal matrices:

- Two vectors $x, y \in \mathbb{R}^n$ are **orthogonal** if $x^Ty = 0$.
- A vector $x \in \mathbb{R}^n$ is normalized if $||x||_2 = 1$.
- A set of vectors that is pairwise orthogonal and normalized is called orthonormal.
- A square matrix $U \in \mathbb{R}^{n \times n}$ is **orthogonal** if all its columns are **orthonormal**.
- U is **orthogonal** iff $U^TU = I = UU^T$
 - inverse of an orthogonal matrix is its transpose.

Tran Trong Khiem Statistic 12 / 43

- 2 Matrix multiplication

- **5** Singular value decomposition (SVD)

Tran Trong Khiem Statistic 13 / 43

Matrix multiplication

• The product of two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ is the matrix AB.

$$C = AB \in \mathbb{R}^{m \times p}$$
, where $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$

- Matrix multiplication is **associative** :(AB)C = A(BC).
- Matrix multiplication is **distributive** : A(B + C) = AB + AC.
- $AB \neq BA$

Vector-vector products

• $x, y \in \mathbb{R}^n$, the quantity x^Ty , called the **inner product**, **dot produc**.

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

- Note that it is always the case that : $x^Ty = y^Tx$.
- Given vectors $x \in R^m$, $y \in R^n$, matrix is given by $(xy^T)_{ii} = x_iy_i$

Tran Trong Khiem Statistic 14 / 43

Matrix-vector products

Matrix-vector products:

- Given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $x \in \mathbb{R}^n$, $y = Ax \in \mathbb{R}^m$ is their product.
 - $y_i = a_i^T x$.
 - y is a **linear combination** of the columns of *A*

Matrix-matrix products

- $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, $\mathbf{a}_i \in \mathbb{R}^n$ and $\mathbf{b}_j \in \mathbb{R}^n$
- C = AB, where $c_i = Ab_i$

Summing slices of the matrix

- Suppose *X* is an $N \times D$ matrix. $1_N^T X = (\sum_n x_{n1} \cdots \sum_n x_{nD})$
- Hence the **mean of the data vectors** is given by: $\bar{x}^T = \frac{1}{N} \mathbf{1}_N^T X$
- We can sum all entries in a matrix by pre and post multiplying by a vector of 1s: $1_N^T X 1_D = \sum X_{ii}$

Tran Trong Khiem Statistic 15 / 43

Scaling rows and columns of a matrix

The **sum of squares matrix** is $D \times D$ matrix defined by :

$$S_0 = \sum_{n=1}^N x_n x_n^T = X^T X$$

• The **scatter matrix** is a $D \times D$ matrix defined by :

$$S_{\bar{\mathbf{x}}} = \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}})(\mathbf{x}_n - \bar{\mathbf{x}})^T = (\sum_{n} x_n x_n^T) - N \bar{x} \bar{x}^T$$

- define $\tilde{X}: \tilde{X} = X 1_N \bar{x}^T = X \frac{1}{N} 1_N 1_N^T X = \mathbf{C}_N X$
 - $\mathbf{C}_N = \mathbf{I}_N \frac{1}{N} \mathbf{J}_N$ is the **centering matrix**.
 - $\mathbf{J}_N = \mathbf{1}_N \mathbf{1}_N^T$ is a matrix of all 1s.
 - scatter matrix can now be computed as follows:

$$S_{x} = \tilde{X}^{T}\tilde{X} = X^{T}\mathbf{C}_{N}^{T}\mathbf{C}_{N}X = X^{T}\mathbf{C}_{N}X$$

Tran Trong Khiem Statistic 16 / 43

Distance matrix

- Let *X* be an $N_x \times D$ data matrix, *Y* be an $N_y \times D$.
- Squared pairwise distances between these as :

$$D_{ij} = (\mathbf{x}_i - \mathbf{y}_j)^T (\mathbf{x}_i - \mathbf{y}_j) = \|\mathbf{x}_i\|^2 - 2\mathbf{x}_i^T \mathbf{y}_j + \|\mathbf{y}_j\|^2$$

- Let $\hat{x} = \left[\|\mathbf{x}_1\|^2; \dots; \|\mathbf{x}_{N_x}\|^2 \right] = \operatorname{diag}(\mathbf{X}\mathbf{X}^T)$
 - a vector each element is the squared norm of the examples in X
- Then we have : $D = \hat{x} \mathbf{1}_{N_y}^T 2\mathbf{X}\mathbf{Y}^T + \mathbf{1}_{N_x}\hat{y}^T$
- In the case that X = Y, we have : $D = \hat{x} \mathbf{1}_N^T 2\mathbf{X}\mathbf{X}^T + \mathbf{1}_N \hat{x}^T$

Tran Trong Khiem Statistic 17 / 43

Kronecker products

Kronecker products:

- A is an $m \times n$ matrix and B is a $p \times q$ matrix,
- the **Kronecker product** $A \otimes B$ is the $mp \times nq$ block matrix:

$$A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{bmatrix}$$

- $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$
- $(A \otimes B)$ vec(C) = vec (BCA^T)
 - where vec(M) stacks the columns of M.

Tran Trong Khiem Statistic 18 / 43

- 1 Introduction
- 2 Matrix multiplication
- 3 Matrix inversion
- 4 Eigenvalue decomposition (EVD)
- **5** Singular value decomposition (SVD)

Tran Trong Khiem Statistic 19 / 43

The inverse of a square matrix:

• The inverse of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted A^{-1} .

$$A^{-1}A = I = AA^{-1}$$

- Note that A^{-1} exists if and only if $det(A) \neq 0$.
 - If det(A) = 0, it is called a **singular matrix**.
- $A, B \in \mathbb{R}^{n \times n}$ are non-singular:
 - $(A^{-1})^{-1} = A$
 - $(AB)^{-1} = B^{-1}A^{-1}$
 - $(A^{-1})^T = (A^T)^{-1} = A^{-T}$
- For the case of a 2 × 2 matrix.
 - $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad \mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

Tran Trong Khiem Statistic 20 / 43

Schur complements

Theorem 7.3.1: Consider a general partitioned matrix.

$$\mathbf{M} = \begin{pmatrix} \mathbf{F} & \mathbf{H} \\ \mathbf{E} & \mathbf{G} \end{pmatrix}$$

Where we assume *E* and *H* are invertible. We have :

$$\mathbb{M}^{-1} = \begin{pmatrix} (M/H)^{-1} & -(M/H)^{-1}FH^{-1} \\ -H^{-1}G(M/H)^{-1} & H^{-1}G(M/H)^{-1}FH^{-1} + H^{-1} \end{pmatrix}$$

Where:

- $\mathbf{M}/\mathbf{H} = \mathbf{E} \mathbf{F}\mathbf{H}^{-1}\mathbf{G}$
- $M/E = H GE^{-1}F$
- We say that M/H is the **Schur complement** of M with respect to H, and M/E is the **Schur complement** of M with respect to E.

Tran Trong Khiem Statistic 21 / 43

We have:

$$(M/H)^{-1} = (E - FH^{-1}G)^{-1} = E^{-1} + E^{-1}F(H - GE^{-1}F)^{-1}GE^{-1}$$

This is known as **the matrix inversion lemma** or the **Sherman-Morrison-Woodbury formula**.

- Let *X* be an $N \times D$ data matrix.
- Let Σ be an $N \times N$ diagonal matrix.
- Using the substitutions $E = \Sigma$, $F = G^T = X$, and $H^{-1} = -I$
- $(\Sigma + XX^T)^{-1} = \Sigma^{-1} \Sigma^{-1}X(I + X^T\Sigma^{-1}X)^{-1}X^T\Sigma^{-1}$
- The LHS takes $O(N^3)$ time to compute, the RHS takes $O(D^3)$ time to compute.

Tran Trong Khiem Statistic 22 / 43

Matrix determinant lemma

We have:

•
$$|X||M||Z| = |W| = |E - FH^{-1}G||H|$$

Matrix inversion

•
$$|M/H| = \frac{|M|}{|H|}$$

•
$$|M| = |M/H||H| = |M/E||E|$$

•
$$|M/H| = \frac{|M/E||E|}{|H|}$$

•
$$|E - FH^{-1}G| = |H - GE^{-1}F| \cdot |H^{-1}| \cdot |E|$$

• Setting
$$E = A, F = -u, G = v^T, H = 1$$
:

$$|A + uv^T| = (1 + v^T A^{-1}u)|A|$$

Tran Trong Khiem Statistic 23 / 43

- 1 Introduction
- 2 Matrix multiplication
- 3 Matrix inversion
- 4 Eigenvalue decomposition (EVD)
- **5** Singular value decomposition (SVD)

Tran Trong Khiem Statistic 24 / 43

Eigenvalue decomposition (EVD)

Basics:

- matrix $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{R}$ is an **eigenvalue** of A.
 - $Au = \lambda u, \quad u \neq 0.$
 - $u \in \mathbb{R}^n$ is the corresponding eigenvector.
 - multiplying A by the vector u results in a new vector that points in the same direction as u
 - for any **eigenvector** $u \in R^n$, and scalar $c \in R$

$$A(cu) = cAu = c\lambda u = \lambda(cu)$$

- *cu* is also an **eigenvector**.
- We can rewrite the equation above: $(\lambda I A)u = 0$, $u \neq 0$
- $(\lambda I A)u = 0$ has a non-zero solution for u if and only if $(\lambda I A)$ has a non-empty nullspace.

$$\det(\lambda I - A) = 0$$

Tran Trong Khiem Statistic 25 / 43

EVD

• The trace of a matrix is equal to the sum of its eigenvalues,

$$\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i$$

• The determinant of A is equal to the product of its eigenvalues,

$$\det(A) = \prod_{i=1}^{n} \lambda_i$$

- The rank of A is equal to the number of non-zero eigenvalues of A.
- If A is non-singular, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with associated eigenvector u_i .
- The eigenvalues of a diagonal or triangular matrix are just the diagonal entries.

Tran Trong Khiem Statistic 26 / 43

Eigenvalues and eigenvectors of symmetric matrices

- When A is **real and symmetric**
 - all the eigenvalues are real.
 - the eigenvectors are orthonormal.
 - $u_i^T u_i = 0$ if $i \neq j$, and $u_i^T u_i = 1$, where u_i are the eigenvectors.

We can therefore represent *A* as

$$A = U\Lambda U^{T} = \begin{pmatrix} | & | & & | \\ u_{1} & u_{2} & \cdots & u_{n} \\ | & | & & | \end{pmatrix} \begin{pmatrix} \lambda_{1} & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{pmatrix} \begin{pmatrix} -u_{1}^{T} - \\ -u_{2}^{T} - \\ \vdots \\ -u_{n}^{T} - \end{pmatrix}$$
$$= \lambda_{1} (u_{1}) (-u_{1}^{T} -) + \cdots + \lambda_{n} (u_{n}) (-u_{n}^{T} -) = \sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{T}$$

- Once we have diagonalized a matrix, it is easy to invert.
- $A^{-1} = U\Lambda^{-1}U^T = \sum_{i=1}^d \frac{1}{\lambda_i} u_i u_i^T$ where $U^T = U^{-1}$

Tran Trong Khiem Statistic 27 / 43

Checking for positive definiteness

• A symmetric matrix is positive definite iff all its eigenvalues are positive.

$$x^{T}Ax = x^{T}U\Lambda U^{T}x = y^{T}\Lambda y = \sum_{i=1}^{n} \lambda_{i}y_{i}^{2}$$

- Where $y = U^T x$
- If all $\lambda_i > 0$, then the matrix is **positive definite**.
- If all $\lambda_i \geq 0$, it is **positive semidefinite**.
- if A has both positive and negative eigenvalues, it is indefinite.

Geometry of quadratic forms

• A quadratic form is a function that can be written as :

$$f(x) = x^T A x$$

• where $x \in \mathbb{R}^n$ and A is a **positive definite**, symmetric $n \times n$ matrix.

Tran Trong Khiem Statistic 28 / 43

Geometry of quadratic forms

Geometry of quadratic forms

• Let $A = U\Lambda U^T$ be a diagonalization of A. Hence we can write :

$$f(x) = x^{T}Ax = x^{T}U\Lambda U^{T}x = y^{T}\Lambda y = \sum_{i=1}^{n} \lambda_{i}y_{i}^{2}$$

- where $y_i = x^T u_i$ and $\lambda_i > 0$.
- The level sets of f(x) define hyper-ellipsoids. For example, in 2d, we have:

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 = r$$

Tran Trong Khiem Statistic 29 / 43

Standardizing and whitening data

- Suppose we have a dataset $X \in \mathbb{R}^{N \times D}$.
- Standardizing the data:
 - each column has **zero mean and unit variance**.
 - does not **remove correlation** between the columns.
- whiten the data
 - remove correlation between the columns.

Tran Trong Khiem Statistic 30 / 43

Power method

Goal: computing the **eigenvector** corresponding to the **largest eigen**value of a real, symmetric matrix.

- can be useful when the matrix is **very large but sparse**.
- Let $A = U\Lambda U^T$ be a matrix with **orthonormal eigenvectors** \mathbf{u}_i and eigenvalues $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_m| > 0$.
- Let $v_{(0)} = Ax$ for some x. Hence we can write $v_{(0)}$ as :

$$\mathbf{v}_0 = U(\Lambda U^T \mathbf{x}) = a_1 \mathbf{u}_1 + \dots + a_m \mathbf{u}_m$$

• We can now repeatedly multiply ν by A and renormalize:

$$\mathbf{v}_t \propto A\mathbf{v}_{t-1}$$

• Since \mathbf{v}_t is a multiple of $A^t\mathbf{v}_0$, we have :

$$\mathbf{v}_t \propto a_1 \lambda_1^t \mathbf{u}_1 + a_2 \lambda_2^t \mathbf{u}_2 + \cdots + a_m \lambda_m^t \mathbf{u}_m$$

Tran Trong Khiem Statistic 31 / 43

Power method

We have :

$$v_t \propto \lambda_1^t \left(a_1 \mathbf{u}_1 + a_2 \left(\frac{\lambda_2}{\lambda_1} \right)^t \mathbf{u}_2 + \dots + a_m \left(\frac{\lambda_m}{\lambda_1} \right)^t \mathbf{u}_m \right) \rightarrow \lambda_1^t a_1 \mathbf{u}_1$$

- since $|\lambda_k| < |\lambda_1|$ for k > 1.
- this converges to u_1 , although **not very quickly**.
- Define the Rayleigh quotient to be:

$$R(A, \mathbf{x}) = \frac{\mathbf{x}^T A \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

Hence:
$$R(A, u_i) = \frac{\lambda_i \mathbf{u_i}^T \mathbf{u_i}}{\mathbf{u_i}^T \mathbf{u_i}} = \lambda_i$$

```
def power method(A, max iter=100, tol=1e-5):
    n = np.shape(A)[0]
    u = np.random.rand(n)
    converged = False
    iter = 0
    while (not converged) and (iter < max iter):
        old u = u
        u = np.dot(A, u)
        u = u / norm(u)
        lam = np.dot(u, np.dot(A, u))
        converged = norm(u - old u) < tol
        iter += 1
    return lam. u
```

Suppose: computed the first eigenvector and value u_1 , λ_1 by the power method.

Goal: compute subsequent eigenvectors and values.

- Since the eigenvectors are orthonormal, and the eigenvalues are real.
- we can project out the u_1 as :

$$A^{(2)} = (I - \mathbf{u}_1 \mathbf{u}_1^T) A^{(1)}$$

= $A^{(1)} - \mathbf{u}_1 \mathbf{u}_1^T A^{(1)}$
= $A^{(1)} - \lambda_1 \mathbf{u}_1 \mathbf{u}_1^T$

- This is called matrix deflation.
- Apply the **power method** to $A^{(2)}$, will find λ_2, u_2

Tran Trong Khiem Statistic 33 / 43

Eigenvectors optimize quadratic forms

Goal: Use matrix calculus to solve an optimization problem. Problem:

$$\max_{\mathbf{x} \in \mathbb{R}^n} \ \mathbf{x}^T A \mathbf{x}$$
 subject to $\|\mathbf{x}\|_2^2 = 1$

- $A \in S^n$ is a symmetric matrix.
- The **Lagrangian** in this case can be given by :

$$L(\mathbf{x}, \lambda) = \mathbf{x}^T A \mathbf{x} + \lambda (1 - \mathbf{x}^T \mathbf{x})$$

- λ is called the Lagrange multiplier.
- $\nabla_{\mathbf{x}} L(\mathbf{x}, \lambda) = 2A^T \mathbf{x} 2\lambda \mathbf{x} = 0$
- this is just the linear equation $Ax = \lambda x$.

Tran Trong Khiem Statistic 34 / 43

- 1 Introduction
- 2 Matrix multiplication
- 3 Matrix inversion
- 4 Eigenvalue decomposition (EVD)
- **5** Singular value decomposition (SVD)

Tran Trong Khiem Statistic 35 / 43

Singular value decomposition (SVD)

Basics: Any (real) $m \times n$ matrix A can be decomposed as :

$$A = USV^{T} = \sigma_{1} \left(\mathbf{u}_{1} \right) \mathbf{v}_{1}^{T} + \cdots + \sigma_{r} \left(\mathbf{u}_{r} \right) \mathbf{v}_{r}^{T}$$

- *U* is an $m \times m$ whose **columns are orthornormal** $(UU^T = I)$
- V is $n \times n$ matrix whose rows and columns are orthonormal $(V^TV = VV^T = I)$
- Matrix S is an $m \times n$ matrix.
 - containing the $r = \min(m, n)$ singular values $\sigma_i \ge 0$ on the main diagonal.
 - with 0s filling the rest of the matrix.
- The columns of *U* are the **left singular vectors**.
- The columns of *V* are the **right singular vectors**.

Tran Trong Khiem Statistic 36 / 43

Connection between SVD and EVD

If A is real, symmetric and positive definite

- singular values = eigenvalues.
- left and right singular vectors = eigenvectors.
- $A = USV^T = USU^T = USU^{-1}$
- if $A = USV^T$ then $A^TA = VS^TU^TUSV^T = V(S^TS)V^T$
 - $(A^T A)V = V D_n$
 - eigenvectors of AA^T are equal to V
 - Eigenvalues of A^TA are equal to $D_n = S^TS$
 - $U = \text{evec}(AA^T)$
 - $V = \text{evec}(A^T A)$
 - $D_m = \text{eval}(AA^T)$
 - $D_n = \text{eval}(A^T A)$
 - EVD does not always exist, even for square A. SVD always exists.

Tran Trong Khiem Statistic 37 / 43

Pseudo inverse

The **Moore-Penrose pseudo-inverse** of A, pseudo inverse denoted A^{\dagger} .

- $AA^{\dagger}A = A$
- $A^{\dagger}AA^{\dagger} = A^{\dagger}$
- $(AA^{\dagger})^T = AA^{\dagger}$
- $(A^{\dagger}A)^T = A^{\dagger}A$

If *A* is **square and non-singular**, then $A^{\dagger} = A^{-1}$.

- If m > n (tall, skinny) and the columns of A are linearly independent.
 - $A^{\dagger} = (A^T A)^{-1} A^T$
 - A^{\dagger} is a **left inverse** of A because : $A^{\dagger}A = (A^{T}A)^{-1}A^{T}A = I$
- If m < n (short, fat) and the rows of A are linearly independent.
 - $A^{\dagger} = A^T (AA^T)^{-1}$
 - A^{\dagger} is a right inverse of A.

Statistic 38 / 43

SVD and the range and null space of a matrix

We have:

$$Ax = \sum_{j:\sigma_j>0} \sigma_j(v_j^T x) u_j = \sum_{j=1}^r \sigma_j(v_j^T x) u_j$$

- where r is the rank of A.
- Range of A is given by : range(A) = span $\{u_i : \sigma_i > 0\}$
- define a vector $y \in \mathbb{R}^n$:

$$y = \sum_{j:\sigma_j=0} c_j v_j = \sum_{j=r+1}^n c_j v_j$$

- nullspace(A) = span ({ $v_i : \sigma_i = 0$ }) with dimension n r
- $\dim(\operatorname{range}(A)) + \dim(\operatorname{nullspace}(A)) = r + (n r) = n$

Tran Trong Khiem Statistic 39 / 43

Truncated SVD

- Let $A = USV^T$ be the SVD of A.
- Let $\hat{A}_K = U_K S_K V_K^T$.
 - where we use the first K columns of U and V.
 - The optimal rank K approximation, it minimizes : $||A \hat{A}_K||_F$
 - If K = r = rank(A), there is no error introduced by this decomposition.
 - If K < r, we incur **some error**. This is called a **truncated SVD**.
 - The total number of parameters needed to represent an N × D matrix using a rank K approximation is:

$$NK + KD + K = K(N + D + 1)$$

• The **error** in this rank-K approximation is given by :

$$||A - \hat{A}||_{\mathsf{F}} = \sum_{k=K+1}^{r} \sigma_k$$

• σ_k is the k'th singular value of A

Tran Trong Khiem Statistic 40 / 43

Other matrix decompositions

LU factorization

- We can factorize any square matrix A = LU
 - lower triangular matrix L.
 - upper triangular matrix *U*.

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{pmatrix} \begin{pmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{pmatrix}. \tag{1}$$

- we may need to **permute the entries** in the matrix before creating this decomposition.
 - reorder the rows so that the first element is nonzero.
- We can denote this process by :

$$PA = I.U$$

where P is a permutation matrix.

Tran Trong Khiem Statistic 41 / 43

QR decomposition

Suppose we have $A \in \mathbb{R}^{m \times n}$.

- representing a set of linearly independent basis vectors.
- want to find vectors q_i and coefficients r_{ij} such that :

$$\begin{pmatrix} | & | & \cdots & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & \cdots & | \end{pmatrix} = \begin{pmatrix} | & | & \cdots & | \\ q_1 & q_2 & \cdots & q_n \\ | & | & \cdots & | \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ r_{21} & r_{22} & \cdots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ r_{n1} & r_{n2} & \cdots & r_{nn} \end{pmatrix}.$$
(2)

- We can write this as:
 - $a_1 = r_{11}q_1$
 - $a_2 = r_{12}q_1 + r_{22}q_2$
 - $\bullet \ a_n = r_{1n}q_1 + \cdots + r_{nn}q_n$
- In matrix notation, we have : $A = \hat{Q}\hat{R}$
 - \hat{Q} is $m \times n$ with **orthonormal columns**. \hat{R} is $n \times n$ and **upper**

Tran Trong Khiem Statistic 42 / 43

Cholesky decomposition

Any symmetric positive definite matrix can be factorized as:

$$A = R^T R$$

- *R* is **upper triangular** with **real**, **positive** diagonal elements.
- also be written as $A = LL^T$, where $L = R^T$ is **lower triangular**.
- This is called a **Cholesky factorization**.
- The computational complexity of this operation is $O(V^3)$.
 - where V is the number of variables.

Tran Trong Khiem Statistic 43 / 43