Scilab Textbook Companion for Elementary Fluid Mechanics by J. K. Vennard¹

Created by
Ashish Charan Tandi
Fluid mechanics
Others
IIT Bombay
College Teacher
None
Cross-Checked by
Chaitanya Potti

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Elementary Fluid Mechanics

Author: J. K. Vennard

Publisher: John Wiley & Sons, USA

Edition: 4

Year: 1961

ISBN: 9780471905851

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Fundamentals	5
2	Fluid Statics	9
3	Kinematics of Fluid Motion	16
4	Flow of an Incompressible Ideal Fluid	20
5	Flow of a Compressible Ideal Fluid	28
6	The Impulse Momentum Principle	33
7	Flow of a Real Fluid	44
8	Similitude and Dimensional Analysis	48
9	Fluid Flow in Pipes	51
11	Fluid Measurements	62
12	Elementary Hydrodynamics	66
13	Fluid Flow about Immersed Objects	67

List of Scilab Codes

Exa 1.1	Chapter 1 Example 1	5
Exa 1.2	Chapter 1 Example 2	5
Exa 1.3	Chapter 1 Example 3	6
Exa 1.4	Chapter 1 Example 4	7
Exa 1.5	Chapter 1 Example 5	7
Exa 2.1	Chapter 2 Example 1	9
Exa 2.2	Chapter 2 Example 2	9
Exa 2.3	Chapter 2 Example 3	0
Exa 2.4	Chapter 2 Example 4	0
Exa 2.5	Chapter 2 Example 5	1
Exa 2.6	Chapter 2 Example 6	2
Exa 2.7	Chapter 2 Example 7	2
Exa 2.8	Chapter 2 Example 8	3
Exa 2.9	Chapter 2 Example 9	3
Exa 2.10	Chapter 2 Example 10	4
Exa 2.11	Chapter 2 Example 11	4
Exa 3.1	Chapter 3 Example 1	6
Exa 3.2	Chapter 3 Example 2	6
Exa 3.3	Chapter 3 Example 3	7
Exa 3.4	Chapter 3 Example 4	8
Exa 3.5	Chapter 3 Example 5	8
Exa 4.1	Chapter 4 Example 1	0
Exa 4.2	Chapter 4 Example 2	0
Exa 4.3	Chapter 4 Example 3	2
Exa 4.4	Chapter 4 Example 4	2
Exa 4.5	Chapter 4 Example 5	23
Exa 4.6	Chapter 4 Example 6	23
Exa 4.7	Chapter 4 Example 7	4

Exa 4.9	Chapter 4 Example 9	25
Exa 4.11	Chapter 4 Example 11	25
Exa 4.12	Chapter 4 Example 12	26
Exa 5.1	Chapter 5 Example 1	28
Exa 5.2	Chapter 5 Example 2	29
Exa 5.3	Chapter 5 Example 3	29
Exa 5.4	Chapter 5 Example 4	30
Exa 5.5	Chapter 5 Example 5	30
Exa 5.6	Chapter 5 Example 6	31
Exa 6.1	Chapter 6 Example 1	33
Exa 6.2	Chapter 6 Example 2	34
Exa 6.3	Chapter 6 Example 3	35
Exa 6.4	Chapter 6 Example 4	35
Exa 6.5	Chapter 6 Example 5	36
Exa 6.6	Chapter 6 Example 6	37
Exa 6.7	Chapter 6 Example 7	38
Exa 6.8	Chapter 6 Example 8	38
Exa 6.9	Chapter 6 Example 9	39
Exa 6.10	Chapter 6 Example 10	40
Exa 6.11	Chapter 6 Example 11	41
Exa 6.12	Chapter 6 Example 12	42
Exa 7.1	Chapter 7 Example 1	44
Exa 7.4	Chapter 7 Example 4	44
Exa 7.5	Chapter 7 Example 5	45
Exa 7.6	Chapter 7 Example 6	46
Exa 7.7	Chapter 7 Example 7	46
Exa 8.1	Chapter 8 Example 1	48
Exa 8.2	Chapter 8 Example 2	48
Exa 8.3	Chapter 8 Example 3	49
Exa 8.4	Chapter 8 Example 4	49
Exa 9.1	Chapter 9 Example 1	51
Exa 9.2	Chapter 9 Example 2	51
Exa 9.3	Chapter 9 Example 3	52
Exa 9.4	Chapter 9 Example 4	53
Exa 9.6	Chapter 9 Example 6	53
Exa 9.7	Chapter 9 Example 7	54
Exa 9.8	Chapter 9 Example 8	55
Exa 9 9	Chapter 9 Example 9	55

Exa 9.10	Chapter 9 Example 10	56
Exa 9.11	Chapter 9 Example 11	57
Exa 9.12	Chapter 9 Example 12	57
Exa 9.13	Chapter 9 Example 13	58
Exa 9.14	Chapter 9 Example 14	59
Exa 9.15	Chapter 9 Example 15	59
Exa 9.16	Chapter 9 Example 16	60
Exa 11.1	Chapter 11 Example 1	62
Exa 11.2	Chapter 11 Example 2	62
Exa 11.3	Chapter 11 Example 3	63
Exa 11.4	Chapter 11 Example 4	64
Exa 11.5	Chapter 11 Example 5	64
Exa 12.2	Chapter 12 Example 2	66
Exa 13.1	Chapter 13 Example 1	67
Exa 13.2	Chapter 13 Example 2	68
Exa 13.3	Chapter 13 Example 3	69

Fundamentals

Scilab code Exa 1.1 Chapter 1 Example 1

```
clear;
clc;
//page no.8

T = 80; //temperature of chlorine gas in degree F
p = 100; //pressure in psia
W = 2*35.45; //molecular weight of chlorine
R = 1545/W; //specific gas constant in ft-lb/lb-degreeR
gam = p*(144/R)*(1/(460+T)); //specific weight of chlorine in lb/cuft
Spec_vol = 1/gam; //specific volume in cuft/lb
rho = gam/32.2; //density of chlorine in slug/cuft
printf('Spec. weight = %.3 f lb/cuft\n Spec. volume = %.3 f cuft/lb\n density = %.4 f slug/cuft',gam, Spec_vol,rho);
```

Scilab code Exa 1.2 Chapter 1 Example 2

```
1 clear;
2 clc;
3 //page no. 12
5 funcprot(0);
6 \text{ gamma} = 1.4;
7 T1 = 60; //temperature of air in degree F
8 p1 = 14.7; //pressure in psia
9 k = 0.5; //(final volume/initial volume) = k
10 R = 53.3; // Engineering gas constant
11 gam1 = p1*(144/R)*(1/(460+T1)); //lb/cuft
12 gam2 = gam1/k; //lb/cuft
13 p2 = (p1/(gam1^(gamma)))*(gam2^(gamma)); // in psia
14 T2 = p2*(144/R)*(1/gam2); //in degree F
15 a1 = sqrt(gamma*32.2*R*(460+T1)); // in fps
16 a2 = sqrt(gamma*32.2*R*(T2));// in fps
17 printf('Final pressure = \%.1 f psia\n Final
      temperature = %d degreeR \n Sonic velocity before
       compression = \%d fps\n Sonic velocity after
      compression = %d fps',p2,T2,a1,a2);
18
19
  //there are small errors in the answers given in
      textbook
```

Scilab code Exa 1.3 Chapter 1 Example 3

```
1 clear;
2 clc;
3 //page no. 17
4
5 r1 = 0.25; // radius of cylinder in feet
6 l = 2; //length of cylnider in feet
7 r2 = 0.30; // radius of co-axial cylinder in feet
8 mu = 0.018; //lb-sec/ft^2
9 torque = 0.25; // in ft-lb
```

Scilab code Exa 1.4 Chapter 1 Example 4

```
1 clear;
2 clc;
3
4 //page no.20
5
6 T = 70; //degreeF
7 del_p = 0.1; // in psi
8 sigma = 0.00498; // lb/ft
9 R = (sigma*2)/(del_p*144); //in ft
10 d = 12*2*R; // in inches
11 printf('Diameter of the droplet of water, d = %.4 f in',d);
```

Scilab code Exa 1.5 Chapter 1 Example 5

```
1 clear;
2 clc;
3
4 //page no. 20
5
6 l = 12; // length of the cylinder
7 T = 150; //temperature of water in degreeF
8 p1 = 14.52; //atmospheric pressure in psia
9 p2 = 3.72; //the pressure on the inside of the piston in psia
10 F = 0.25*(p1-p2)*%pi*l^2; //Force on the piston in lb
11 printf('Minimum force on the piston to be applied is , F = %d lb.',F);
12
13 //there is an error in the answer given in textbook
```

Fluid Statics

Scilab code Exa 2.1 Chapter 2 Example 1

```
1 clear;
2 clc;
3
4 //page no.32
5 T = 68; //degreeF
6 p = 10; // psi
7 d = 15; // feet
8 rho = 1.59; //specific gravity
9 gam = rho*62.4; //lb/cuft
10 p1 = gam*d + p*144; //psf
11 printf('p1 = %d psf = %.1f psi ',p1,p1*0.00694);
12
13 //there is an error in the answer given in the textbook
```

Scilab code Exa 2.2 Chapter 2 Example 2

```
1 clear;
```

```
2 clc;
3
4 //page no.32
5 h = 35000; // feet
6 p1 = 14.7; // psia
7 T1 = 519; // degreeR
8 gam1 = 0.0765; // lb/cuft
9 p2 = 504; // psfa
10 T2 = T1 - h*0.00356; // degreeR
11 gam2 = p2/(53.3*T2); // lb/cuft
12 printf('p2 = %d psfa = %.2 f psia\n specific weight = %.3 f lb/cuft', p2, p2*0.00695, gam2);
```

Scilab code Exa 2.3 Chapter 2 Example 3

```
1 clear;
2 clc;
3
4 //page no.35
5
6 h1 = 12.5; // inches
7 p1 = 14.50; // psia
8 p = p1 - h1*14.70/29.92; //absolute pressure in psia
9 printf('Absolute pressure = %.2f psia',p);
```

Scilab code Exa 2.4 Chapter 2 Example 4

```
1 clear;
2 clc;
3
4 //page no.37
5 gam1 = 0.9*62.4;
6 gam2 = 13.55*62.4;
```

Scilab code Exa 2.5 Chapter 2 Example 5

```
1 clear;
2 clc;
4 //page no. 42
6 \ 11 = 4; // feet
7 \ b1 = 6; // feet
8 b2 = 6; // feet
9 12 = 2.55; // feet
10 t = 1; // feet
11 F1 = 0.5*11*b1*62.4*(0.5*11 + t); // lb
12 F2 = 0.25*\%pi*b2^2 *62.4*(12 + t); // lb
13 a1 = 11*b2^3 /(36*0.5*b2*0.5*11*b1); // feet
14 a2 = 70/((0.5*12 + t)*28.3); // feet
15 l_p = (F1*(0.5*11 + a1)+F2*(12+a2))/(F1+F2) +1;//
      feet
16 \text{ x_p1} = (0.5*11-a1) - a1*2/b2; // feet
17 M = integrate ('(62.4/2)*(36-y^2)*(y+1)', 'y', 0, 6); //
      ft - lb
18 \text{ x_p2} = M/F2; // feet
19 \text{ x_p} = (\text{x_p2*F2} - \text{F1*x_p1})/(\text{F1+F2}); // \text{ feet}
20 printf('Total force on composite area is %d lb',F1+
      F2);
21 printf('\n Vertical location of resultant force is %
      .2f ft below the water surface',1_p);
22 printf('\n Horizontal location of resultant force is
       %.3f ft right of the water surface',x_p);
```

Scilab code Exa 2.6 Chapter 2 Example 6

```
1 clear;
2 clc;
3
4 //page no.45
6 \ 1 = 8; // feet
7 b = 10; // feet
8 F_h = 0.5*1*b*62.4*(b+2.5); // lb
9 x = 83.2/(40*(b+2.5)); // feet
10 F_v = (b+5)*62.4*40-(1*62.4*(25 - 0.25*%pi*25)); //
     1b
11 F = sqrt(F_h^2 + F_v^2); // lb
12 e = (2680*3.91 + 37440*(0.25*b))/F_v ; // feet
13 theta = 180*atan(F_v/F_h) / pi; // degrees
14 \text{ x_p} = 0.25*b-x; // feet
15 printf('Magnitude of resultant force is %d lb',F);
16 printf('\n Theta = \%d degrees', theta);
17 printf('\n Location is \%.3 f feet above and \%.2 f
      feet to the right of B',x_p,e);
18
19 //there are errors in the answer given in textbook
```

Scilab code Exa 2.7 Chapter 2 Example 7

```
1 clear;
2 clc;
3
4 //page no.48
```

```
5
6 A = 4000; // sq.ft
7 d1 = 10; // feet
8 d2 = 2; // inches
9 rho = 64; // lb/cuft
10 W = A*(d2/12)*rho; // lb
11 printf('Weight of cargo = %d lb', W);
12
13 // there is an error in the answer given in textbook
```

Scilab code Exa 2.8 Chapter 2 Example 8

```
1 clear;
2 clc;
3
4 //page no. 48
6 gam = 53.0; // lb/cuft
7 D = 17; // inches
8 d = 12; // inches
9 V = (\%pi/6)*(D/12)^3;
10 V1 = 0.584; // cuft
11 V2 = 0.711; // cuft
12 W = V*gam;
13 F_B = V1*62.4;
14 F_ACA = (V2)*62.4;
15 F = W+F_ACA-F_B;
16 printf ('The force exerted between sphere and orfice
      plate = \%.1 f lb',F);
17
18 //there is an error in the answer given in textbook
```

Scilab code Exa 2.9 Chapter 2 Example 9

```
1 clear;
2 clc;
3
4 //page no. 51
5
6 v = 15; // ft/sec^2
7 d = 5; // ft
8 p = integrate('-62.4*(v+32.2)/32.2', 'z',0,-5);
9 printf('p = %d psf',p);
```

Scilab code Exa 2.10 Chapter 2 Example 10

```
1 clear;
2 clc;
3
4 //page no. 52
5
6 m = -0.229; //slope
7 a_z = 1.96; // ft/sec^2
8 a_x = 4*a_z; // ft/sec^2
9 a = sqrt(a_x^2 + a_z^2); // ft/sec^2
10 p = integrate('-(32.2 + a_z)*(62.4/32.2)', 'z', 0,-2.75);
11 printf('p = %.1 f psf',p);
12
13 //there is an error in the answer given in textbook
```

Scilab code Exa 2.11 Chapter 2 Example 11

```
1 clear;
2 clc;
3
4 //page no. 54
```

```
5
6 11 = 2; // feet
7 12 = 3; // feet
8 rpm = 100;
9 p_A = (11+12)-(2/3)*(2*%pi*rpm/60)^2 /(2*32.2);
10 p_B = (11+12)+(1/3)*(2*%pi*rpm/60)^2 /(2*32.2);
11 printf('Pressure heads at point A and point B respectively are %.2 f ft ', p_A, p_B);
```

Kinematics of Fluid Motion

Scilab code Exa 3.1 Chapter 3 Example 1

```
1 clear;
2 clc;
3
4 //page no. 83
5
6 v_mag = 3;
7 x = 8;
8 y = 6;
9 s = sqrt(x^2 + y^2);
10 v = v_mag*s;// fps
11 a_t = v_mag*s*v_mag;// ft/sec^2
12 a_r = 0;
13 a = sqrt(a_r^2 + a_t^2);
14 printf('v = %d fps \n a = %d ft/sec^2',v,a);
```

Scilab code Exa 3.2 Chapter 3 Example 2

```
1 clear;
```

```
2 clc;
3
4 //page no. 83
5
6 v = 5; // fps
7 a_t = 0;
8 a_r = v^2 /2; // ft/sec^2
9 printf('Radial component of acceleration = %.1 f ft/sec^2\n Tangential component of acceleration = %d',a_r,a_t);
```

Scilab code Exa 3.3 Chapter 3 Example 3

```
1 clear;
2 clc;
3
4 //page no.85
5 v = 5; // fps
6 r = 2;
7 theta = 60; // degrees
8 x = 1;
9 y = sqrt(3);
10 \quad v_t = v;
11 v_r = 0;
12 u = -v*y/(sqrt(x^2 + y^2));
13 v = v*x/(sqrt(x^2 + y^2));
14 \ a_x = -50*x/8;
15 \ a_y = -50*y/8;
16 \ a_r = -v_t^2 /r;
17 	 a_t = v_r * v_t / r;
18 printf('u = \%.2 \, \text{f} \, \text{fps}, v = \%.2 \, \text{f} \, \text{fps}',u,v);
19 printf('\n v_r = \%d, v_t = \%d fps', v_r, v_t);
20 printf ('\n a_x = \%.2 f ft/sec^2, a_y = \%.2 f ft/sec^2'
       ,a_x,a_y);
21 printf('\n a_r = \%.1 f ft/sec^2, a_t = \%d',a_r,a_t);
```

Scilab code Exa 3.4 Chapter 3 Example 4

```
1 clear;
2 clc;
3
4 //page no. 88
5
6 w = 600; // pounds
7 l1 = 12; //inches
8 l2 = 8; //inches
9 Q = w/(62.4);
10 V_12 = Q/(0.25*%pi*(11/12)^2);
11 V_8 = Q/(0.25*%pi*(12/12)^2);
12 printf('Q = %.2f cfs',Q);
13 printf('\n V_12 = %.2f fps\n V_8 = %.2f fps',V_12, V_8);
```

Scilab code Exa 3.5 Chapter 3 Example 5

```
1 clear;
2 clc;
3
4 //page no.89
5
6 l = 12; // inches
7 W = 6; // pounds
8 w = 0.0624 // lb/cuft
9 l1 = 8; // inches
10 rho = 0.050; // lb/cuft
11 Q_12 = W/w;
12 Q_8 = W/rho;
```

```
13  V_12 = Q_12/(0.25*%pi*(1/12)^2);
14  V_8 = Q_8/(0.25*%pi*(11/12)^2);
15  printf('Q_12 = %.1 f cfs, Q_8 = %d cfs',Q_12,Q_8);
16  printf('\n V_12 = %.1 f fps, V_8 = %d fps',V_12,V_8);
17
18  //there is a minute error in the answer given in textbook
```

Flow of an Incompressible Ideal Fluid

Scilab code Exa 4.1 Chapter 4 Example 1

```
1 clear;
2 clc;
3
4 //page no.103
5
6 d = 4; //feet
7 theta = 30; // degrees
8 p_C = 5; // psi
9 p_A = p_C-(62.4/144)*cos(theta*%pi/180) *2;
10 p_B = p_C+(62.4/144)*cos(theta*%pi/180) *2;
11 h = p_C*144/62.4;
12 printf('The static pressures at A and B are %.2f psi and %.2f psi respectively.',p_A,p_B);
13 printf('\n The hydraulic grade line is %.2f ft (vertically) above C,',h);
```

Scilab code Exa 4.2 Chapter 4 Example 2

```
1 clear;
2 clc;
3
4 //page no. 105
6 h = 100; //ft
7 	 d1 = 5; //in
8 d2 = 8; //in
9 \text{ h1} = 60; // \text{ ft}
10 h2 = 10; // ft
11 h3 = 40; // ft
12 \text{ h4} = 102; // \text{ft}
13 H = 300; //ft
14 theta = 30; // degrees
15 \text{ gam} = 0.43;
16
17
18 V5 = sqrt(h*2*32.2);
19 Q = V5*0.25*\%pi*(d1/12)^2;
20 \text{ V1} = (d1/12)^4 *h;
21 \ V2 = h*(d1/d2)^4;
22 p1 = (h1-V1)*gam;
23 p2 = -(h2-V2)*2.04*gam;
24 p3 = (h3-V1)*gam;
25 \text{ p4} = (h4-V1)*gam;
26 \ V6 = V5*\cos(theta*\%pi/180);
27 e = H - (V6^2)/(2*32.2);
28 printf('p1 = \%.1 f psi\n p2 = \%.1 f in. of Hg vacuum\n
       p3 = \%.1 f psi n p4 = \%.1 f psi', p1, p2, p3, p4);
29 printf('\n elevation = \%.1 f ft',e);
30
31 //there are small errors in the answer given in
      textbook
```

Scilab code Exa 4.3 Chapter 4 Example 3

```
1 clear;
2 clc;
3
4 //page no. 107
6 p = 14; // psia
7 gam = 62; //lb/cuft
8 \ 11 = 35; // ft
9 12 = 10; // ft
10 d = 6; //in
11
12 p_v = 2.2*gam;
13 p_B = p*144;
14 \text{ k_c} = 11-12+(p_B/gam)-(p_v/gam);
15 \text{ K6} = 11;
16 \, d_c = d*(K6/k_c)^0.25;
17
18 printf('d = \%.2 f in', d_c);
```

Scilab code Exa 4.4 Chapter 4 Example 4

```
1 clear;
2 clc;
3
4 //page no. 108
5
6 rho = 0.00238; //slug/cuft
7 h = 6; //in
8 V_0 = sqrt(2*(h/12)*(62.4 - rho*32.2)/rho);
```

Scilab code Exa 4.5 Chapter 4 Example 5

```
1 clear;
2 clc;
3
4 //page no.110
6 \text{ sg} = 0.82;
7 \text{ p1} = 20; // \text{psia}
8 p2 = 10; //psia
9 d1 = 6; //in
10 d2 = 12; //in
11 del_z = 4; //ft
12 d = 18.7; //in
13
14 \text{ h1} = (p1-p2)*144/(sg*62.4) - del_z;
15 \text{ A1} = 0.25 * \%pi * (d1/12)^2;
16 \text{ A2} = 0.25 * \% pi * (d2/12)^2;
17 V2 = sqrt(-2*h1*32.2/(1-(A2/A1)^2));
18 V1 = (A2/A1)*V2;
19 Q = A1*V1;
20 printf('Flow rate = \%.2 \,\mathrm{f} \,\mathrm{cfs}',Q);
21
22 //there is a small error in the answer given in
       textbook
```

Scilab code Exa 4.6 Chapter 4 Example 6

```
1 clear;
2 clc;
3
4 //page no. 112
6 \text{ e1} = 100; // \text{ft}
7 theta = 60; // degrees
8 \text{ e2} = 98.5; // \text{ft}
9 \text{ V_s2} = 20; //fps
10 e3 = 95; //ft
11
12 t2 = (e1-e2)/\cos(theta*\%pi/180);
13 p2 = 3*62.4*\cos(\text{theta*\%pi/180});
V_F2 = sqrt((e1 + (V_s2^2 /(2*32.2)) - p2/62.4 - e2)
       *2*32.2);
15 q = 3*1*V_s2;
16 y = 11.22; //ft
17 \text{ y1} = 10.74; // \text{ft}
18 V1 = sqrt((y-y1)*2*32.2);
19
20 printf('On spillwy: Pressure = \%.1f psf , velocity =
       \%d \text{ fps} ', p2, V_F2);
21 printf('\n In the approach channel: Depth = \%.2 \,\mathrm{f} ft,
        V1 = \%.1 f fps', y1, V1);
```

Scilab code Exa 4.7 Chapter 4 Example 7

```
1 clear;
2 clc;
3
4 //page no. 113
5
6 d = 10; // in
7 p = 40; // psi
8 G = 5; // cfs
```

```
9 y1 = 92.4; //ft
10 k1 = -11.3; //ft
11 k2 = 92.4; //ft
12 k3 = 3.2; //ft
13 k4 = 10.1; //ft
14
15 E_p = k4+y1+d-k1-k3;
16 hp = G*62.4*E_p/550;
17
18 printf('Pump horsepower = %.1 f hp',hp);
```

Scilab code Exa 4.9 Chapter 4 Example 9

```
1 clear;
2 clc;
3
4 //page no. 122
5
6 sw = 20; // specific weight in lb/cuft
7 p_B = 6; //psi
8 p_A = 2; //psi
9 L = 17.28; //ft
10 l = 10; //ft
11 V_A = sqrt(2*32.2*((p_B-p_A)*144/50 - 1));
12
13 printf('The mean velocity = %.2 f fps', V_A);
```

Scilab code Exa 4.11 Chapter 4 Example 11

```
1 clear;
2 clc;
3
4 //page no. 126
```

```
5
6 D = 6; //in
7 v = 100; //fps
8 p = 0; //psi
9 gam = 0.08; // specific weight in lb/cuft
10 R = 6; //in
11 theta = 60; // degrees
12 \text{ v_r} = \text{v*}(1-(0.5*\text{D/R})^2)*\cos(\text{theta*\%pi/180});
13 v_t = -v*(1+(0.5*D/R)^2)*sin(theta*%pi/180);
14 V = sqrt(v_r^2 + v_t^2);
15 p = ((v^2 /(2*32.2)) - (V^2 /(2*32.2)) - (\cos(theta*)
      %pi/180) * sin (theta * %pi/180))) * gam;
16 printf ('Velocity = \%.1 \, \text{f} fps\n Pressure = \%.2 \, \text{f} psf', V
      ,p);
17
18 //there is an error in the answer given in textbook
```

Scilab code Exa 4.12 Chapter 4 Example 12

```
1 clear;
2 clc;
3
4 //page no. 127
5
6 p_A = 0;
7 p_B = 0;
8 p_C = 0;
9 p_D = 0;
10 //velocity heads
11 V1 = 15.28; // fps
12 V2 = 16.78; // fps
13 V3 = 15.50; //fps
14 V4 = 16.50; //fps
15
16 q = sqrt(2*32.2)*integrate('h^(1/2)', 'h')
```

```
,3.771,4.229);  
17  
18    printf('V_A = %.2 f fps,\n V_B = %.2 f fps,\n V_C = % .2 f fps,\n V_D = %.2 f fps',V1,V2,V3,V4);  
19    printf('\n Flow rate = %.2 f cfs/ft',q);
```

Flow of a Compressible Ideal Fluid

Scilab code Exa 5.1 Chapter 5 Example 1

```
1 clear;
2 clc;
\frac{3}{\sqrt{\text{page no. } 152}}
5 \text{ v1} = 100; // \text{ fps}
6 \text{ p1} = 50; // \text{psia}
7 \text{ T1} = 300; // \text{degreeF}
8 \text{ v2} = 500; // \text{ fps}
9 \text{ Cp} = 186.5;
10 \text{ gam} = 1.4;
11 T2 = T1 - (v2^2 - v1^2)/(2*36.2*Cp);
12 p2 = p1*(1 - (v2^2 - v1^2)/(2*36.2*53.3*(T1+460)*(
       gam/(gam-1))))^(1/0.286);
13 printf('T2 = \%d degreeF',T2);
14 printf('\n p2 = \%.1 \, \text{f psia',p2});
15
16 //there is an error in the answer given in textbook
```

Scilab code Exa 5.2 Chapter 5 Example 2

```
1 clear;
2 clc;
3
4 //page no. 153
5
6 p1 = 300; // psia
7 T1 = 900; // degreeF
8 p2 = 200; // psia
9 T2 = 780; // degreeF
10 H2 = 1414; //Btu/lb
11 H1 = 1471; // Btu/lb
12 V2 = sqrt(2*31.1*778*(H1-H2));
13 printf('T2 = %d degreeF\n V2 = %d fps',T2,V2);
```

Scilab code Exa 5.3 Chapter 5 Example 3

```
1 clear;
2 clc;
3
4 //page no. 155
5
6 v = 586; // fps
7 p = 13; // psia
8 T = 0; // degreeF
9 gam = 1.4;
10 rho_0 = p*144/(32.2*53.3*(460+T));
11 a_0 = sqrt(gam*32.2*53.3*(T+460));
12 M_0 = v/a_0;
13 p_8_approx = p+(0.5/144)*rho_0*v^2 *(1+0.25*M_0^2);
14 p_8_exact = p*(1+M_0^2 *(gam-1)/2)^(gam/(gam-1));
```

```
15 T_8 = v^2 /(2*32.2*186.5) +460;
16 rho_8 = p_8_exact*144/(T_8*32.2*53.3);
17 printf('At stagnetion point, p = %.2f psia\n T = %.1
    f degreeR\n density = %.5f slug/cuft',p_8_exact,
    T_8,rho_8);
```

Scilab code Exa 5.4 Chapter 5 Example 4

```
1 clear;
2 clc;
3
4 //page no. 161
5
6 d = 1; // in
7 p = 100; // psi
8 T = 10; // degreeF
9 p_i = 80; //psi
10 p_b = 14.7; //psi
11 p1 = 16520; // psfa
12 gam1 = 0.553; // lb/cuft
13 k = 0.874;
14 G = (0.5*k*0.25*%pi*(d/12)^2 /(1-(2/3)^4)) *sqrt (2*32.2*(p-p_i)*144/gam1);
15 printf('flow rate = %.2f lb/sec',G);
```

Scilab code Exa 5.5 Chapter 5 Example 5

```
1 clear;
2 clc;
3
4 //page no. 163
5 d = 1;// in
6 p_r = 100;//psi
```

```
7 \text{ T_r} = 100; // \text{degreeF}
8 p_b = 14.7; // psi
9 p3 = 14.7; //psi
10 G = 2.03; // lb/sec
11 \text{ gam1} = 0.553;
12 \text{ gam} = 1.4;
13 V3 = sqrt(2*32.2*(gam/(gam-1))*(p_r+p_b)*144/gam1
      *(1-(p3/(p_r+p_b))^((gam-1)/gam)));
14 T3 = (T_r+460) - V3^2 /(2*32.2*186.5);
15 a3 = sqrt(gam*32.2*53.3*T3);
16 M3 = V3/a3;
17 A3 = G/(gam1*V3);
18 d3 = (A3/(0.25*\%pi))^(1/2);
19 p3_{dash} = 103.3; // psia
20 p_B = p3*(1+ (2*gam/(gam+1))*(M3^2 -1));
21 printf ('V3 = \%d fps, a3 = \%d fps, M3 = \%.2f ', V3, a3
      ,M3);
22 printf('\n p3_dash = \%.1 f psia, p_B = \%.1 f psia',
      p3_dash,p_B);
23
24 //there are minute errors in the answer given in
      textbook
```

Scilab code Exa 5.6 Chapter 5 Example 6

```
1 clear;
2 clc;
3
4 //page no. 166
5
6 V_0 = 586; // fps
7 t_0 = 0; // degreeF
8 P_0 = 13; // psia
9 a_0 = 1052; // fps
10 M_0 = 0.557;
```

```
11 V_A = 800; //fps
12 V_B = 900; //fps
13 \text{ gam} = 1.4;
14 \text{ T_A} = 488.5 - \text{V_A^2} / (2*32.2*186.5);
15 T_B = 488.5 - V_B^2 / (2*32.2*186.5);
16 \text{ p_A} = 16.18*(T_A/488.5)^(gam/(gam-1));
17 p_B = 16.18*(T_B/488.5)^(gam/(gam-1));
18 \ a_A = sqrt(gam*32.3*53.3*T_A);
19 a_B = sqrt(gam*32.3*53.3*T_B);
20 M_A = V_A/a_A;
21 M_B = V_B/a_B;
22 printf('At point A, p = \%.2 f psia, T = \%.1 f degreeR,
       a = \%d \text{ fps}, M = \%.3 \text{ f',p_A,T_A,a_A,M_A)};
23 printf('\n At point B, p = \%.2 f psia, T = \%.1 f
      degreeR, a = %d fps, M = %.3 f', p_B, T_B, a_B, M_B);
24
25 //there are errors in the answers given in textbook
```

The Impulse Momentum Principle

Scilab code Exa 6.1 Chapter 6 Example 1

```
1 clear;
2 clc;
4 //page no. 176
6 G = 10; // cfs
7 	 d1 = 12; //in
8 d2 = 8; //in
9 p1 = 10; //psi
10 V = 3; // cuft
11 theta = 60; // degrees
12 p2 = 3.43; // psi
13 \text{ w} = 187; // \text{lb}
14
15 V1 = G/(0.25*\%pi*(d1/12)^2);
16 \text{ V2} = G/(0.25*\%pi*(d2/12)^2);
17 	ext{ F1} = 0.25 * \%pi * (d1^2) * p1;
18 	ext{ F2 = 0.25*\%pi*d2^2 *p2;}
19 Fx = F1+F2*cos(theta*\%pi/180) - G*1.935*(-V2*cos(
```

Scilab code Exa 6.2 Chapter 6 Example 2

```
1 clear;
2 clc;
3
4 //page no. 178
6 \ 11 = 5; //ft
7 	 12 = 2; // ft
9 V1 = sqrt(2*32.2*(12-11)/(1-(11/12)^2));
10 \quad V2 = (11/12) * V1;
11 q = 11*V1;
12 \text{ F1} = 62.4*(11^2)/2;
13 F2 = 62.4*(12^2)/2;
14 Fx = F1-F2-q*1.935*(V2-V1);
15 printf ('Force = %d lb and direction is in downstream
       direction', Fx);
16
17 //there is an error in the answer given in textbook
```

Scilab code Exa 6.3 Chapter 6 Example 3

```
1 clear;
2 clc;
3
4 //page no. 182
6 d = 2; //ft
7 Q = 40; //cfs/ft
9
10 V1 = Q/d;
11 \ y1 = d;
12 \text{ K1} = \text{V1}^2 / (32.2*\text{y1});
13 y2 = (-1 + sqrt(1+8*K1));
14 V2 = Q/y2;
15 delta = d + (V1^2 /(2*32.2)) - y2 - (V2^2 /(2*32.2))
16 hp = Q*62.4*delta/550;
17 printf('y2 = \%.2 f ft,\n delta = \%.2 f ft,\n
      Horsepower dissipated = \%.1 f hp', y2, delta, hp);
18
19 //there are errors in the answer given in textbook
```

Scilab code Exa 6.4 Chapter 6 Example 4

```
1 clear;
2 clc;
3 funcprot(0);
4 //page no. 184
5
6 y1 = 2;//ft
7 V1 = 20;//fps
8 beta = 40;//degrees
```

Scilab code Exa 6.5 Chapter 6 Example 5

```
1 clear;
2 \text{ clc};
4 //page no. 186
5
6 \text{ p1} = 14.7; // \text{psia}
7 \text{ V1} = 1732; // \text{pfs}
8 \text{ a1} = 862; // \text{fps}
9
10 \text{ M1} = V1/a1;
11 M2 = sqrt((1+0.4*0.5*M1^2)/(1.4*M1^2 - 0.4*0.5));
12 p2 = p1*(1+2*(1.4/2.4)*(M1^2 -1));
13 V2 = V1*(2+0.4*M1^2)/(2.4*M1^2);
14 \ a2 = V2/M2;
15 T2 = a2^2/(1.4*32.2*53.3);
16 \text{ T1} = a1^2/(1.4*32.2*53.3);
17 \text{ del}_T = T2-T1;
18 printf ('p2 = \%.1 f psia,\n V2 = \%d fps,\n a2 = \%d fps
       \sqrt{n} T2 = %d degreeR',p2,V2,a2,T2);
19 printf('\n Rise of temperature = \%d degreeF', del_T);
```

Scilab code Exa 6.6 Chapter 6 Example 6

```
1 clear;
2 clc;
3 funcprot(0);
5 //page no. 188
7 \text{ p1} = 14.7; // \text{psia}
8 \text{ v1} = 1732; // \text{ fps}
9 \text{ a1} = 862; // \text{ fps}
10 beta = 40; // degrees
11
12
13 \text{ M1} = v1/a1;
14 T1 = a1^2 /(1.4*32.2*53.3);
15 \text{ p2} = \text{p1}*(1 + 2*(1.4/2.4)*(M1^2 *(sin(beta*%pi/180)))
      ^2 -1));
16 theta = beta - (180/\%pi)*atan(tan(beta*\%pi/180) *
      (0.4*(M1*sin(beta*\%pi/180))^2 +2)/(2.4*(M1*sin(
      beta*%pi/180))^2));
  M2 = sqrt((1/sin((beta-theta)*\%pi/180))^2 *(1 +
      (0.4/2)*((M1*sin(beta*%pi/180))^2))/(1.4*(M1*sin))
      (beta*\%pi/180))^2) -(0.4/2));
18 v2 = v1*\cos(\text{beta*\%pi/180})/\cos((\text{beta-theta})*\%\text{pi/180});
19 a2 = v2/M2;
20 T2 = a2^2 /(1.4*32.2*53.3);
21
22
23 printf ('Angle required = \%.1 \,\mathrm{f} degrees, \n p2 = \%.1 \,\mathrm{f}
      degreeR', theta, p2, v2, a2, T2);
```

Scilab code Exa 6.7 Chapter 6 Example 7

```
1 clear;
2 clc;
3
4 //page no. 190
5
6 F = 1000; //lb
7 H = 30000; //ft
8 v1 = 500; //fps
9 v2 = 4000; //fps
10 p2 = 5; //psia
11 A2 = 1; //sqft
12 p1 = 4.37; //psia
13
14 G_a = (F - (p2-p1)*A2*144)*32.2/(v2-v1);
15
16 printf('Ga = %.1 f lb/sec', G_a);
```

Scilab code Exa 6.8 Chapter 6 Example 8

```
1 clear;
2 clc;
3
4 //page no. 194
5
6 gam = 0.0765; // lb/cuft
7 V1 = 293; //fps
8 hp = 1500;
9 h = 10; //ft
```

```
10  V4 = 338; // fps
11
12  V = 0.5*(V1+V4);
13  Q = hp*550/((V4-V1)*V*gam/32.2);
14  d1 = sqrt(Q/(V1*0.25*%pi));
15  d4 = sqrt(Q/(V4*0.25*%pi));
16  F = Q*(gam/32.2)*(V4-V1);
17  eta = V1/V;
18
19  printf('V4 = %d fps,\n V = %.1 f fps,\n d1 = %.1 f ft,\n d4 = %.2 f ft,\n F = %d lb,\n efficiency = %.1 f percentage',V4,V,d1,d4,F,eta*100);
20
21  // there are small errors in the answer given in textbook
```

Scilab code Exa 6.9 Chapter 6 Example 9

```
1 clear;
2 clc;
3
4 //page no. 198
6 D = 6; //ft
7 d = 2; //in
8 V1 = 200; //fps
9 \text{ rpm} = 250;
10 theta = 150; // degrees
11
12 u = (rpm/60)*2*%pi*0.5*D;
13 \text{ v1} = V1 - u;
14 v2 = v1;
15 V_2x = v1*cos(theta*%pi/180) + u;
16 V_2y = v2*sin(theta*%pi/180);
17 V2 = sqrt(V_2x^2 + V_2y^2);
```

```
18  Q = 0.25*%pi*(d/12)^2 *V1;
19  F_x = Q*1.935*(V_2x-V1);
20  P = F_x*u/550;
21
22  printf('The working component of force on fluid = %d lb,\n P = %d hp',F_x,-P);
23
24  //thete are small errors in the answers given in textbook
```

Scilab code Exa 6.10 Chapter 6 Example 10

```
1 clear;
2 clc;
4 //page no. 199
6 P = 100; //hp
7 V = 75; //fps
8 \text{ V1} = 150; // \text{fps}
9 d = 2; //in
10 alpha1 = 60; // degrees
11
12 Q = 0.25*\%pi*(d/12)^2 *V1;
13 F_v = 550*P/V;
14 V2 = sqrt(V1^2 - P*550/(Q*1.935/2));
15 alpha2 = (180/\%pi)*asin((V1*sin(alpha1*\%pi/180) - (
      F_y/(Q*1.935))/V2);
16 beta1 = 90 - (180/\%pi)*atan((V1*sin(alpha1*\%pi/180)
      - V)/(V1*cos(alpha1*%pi/180)));
17 beta2 = 90 + (180/\%pi)*atan((V-V2*sin(alpha2*\%pi)
      /180))/(V1*cos(alpha1*%pi/180)));
18
19 printf('Beta1 = %d degrees, \n Beta2 = %d degrees',
      beta1, beta2);
```

```
20
21
22 //there are small errors in the answer given in
textbook
```

Scilab code Exa 6.11 Chapter 6 Example 11

```
1 clear;
2 clc;
3
4 //page no. 203
6 \text{ r1} = 5; //ft
7 r2 = 3.5; //ft
8 beta1 = 60; // degrees
9 beta2 = 150; // degrees
10 t = 1; // ft
11 alpha1 = 15; // degree
12 Q = 333; // cfs
13 \text{ gam} = 0.434;
14
15 V_r1 = Q/(2*\%pi*r1);
16 \ V_r2 = Q/(2*\%pi*r2);
17 V_{t1} = V_{r1}*(1/tan(alpha1*%pi/180));
18 u1 = V_{t1} - V_{r1}*tan((90-beta1)*%pi/180);
19 omega = u1/r1;
20 u2 = omega*r2;
V_t2 = u2 - V_r2*(1/tan((90-beta1)*\%pi/180));
22 T = Q*1.935*(V_t1*r1 - (V_t2*r2));
23 hp = T*omega/550;
24 E_T = hp*550/(Q*62.4);
25 V1 = sqrt(V_r1^2 + V_t1^2);
26 \ V2 = sqrt(V_r2^2 + V_t2^2);
27 \text{ del_p} = E_T*gam + (gam/(2*32.2))*(V2^2 - V1^2);
28
```

Scilab code Exa 6.12 Chapter 6 Example 12

```
1 clear;
2 clc;
3
4 / page no. 204
5
6 \text{ r1} = 3; //in
7 \text{ r2} = 10; //in
8 beta1 = 120; // degrees
9 beta2 = 135; // degrees
10 t = 1; //in
11 Q = 4; // cfs
12 \text{ gam} = 0.434;
13
14
15 V1 = Q*144/(2*\%pi*r1);
16 \ V_r1 = V1;
17 V_r2 = Q*144/(2*\%pi*r2);
18 u1 = V1*tan((beta1-90)*\%pi/180);
19 omega = u1/(r1/12);
20 \ u2 = omega*(r2/12);
V_t2 = u2 - V_r2/tan((180-beta2)*\%pi/180);
22 T = Q*1.935*(V_t2*(r2/12));
23 P = T*omega/547.561; //hp
24 E_P = P*550/(Q*62.4);
V2 = sqrt(V_r2^2 + V_t2^2);
26 \text{ del_p} = E_P*gam + (gam/(2*32.2))*(V1^2 - V2^2);
```

Chapter 7

Flow of a Real Fluid

Scilab code Exa 7.1 Chapter 7 Example 1

```
1 clear;
2 clc;
3
4 //page no. 225
5
6 nu = 0.00001; // sqft/sec
7 d = 1; //in
8 R_c = 2100;
9 V = R_c*nu/(d/12);
10 Q = V*0.25*%pi*(d/12)^2;
11 printf('Q = %.6 f cfs',Q);
```

Scilab code Exa 7.4 Chapter 7 Example 4

```
1 clear;
2 clc;
3
4 //page no. 240
```

```
6 G = 240; //lb/sec
7 \text{ A1} = 4; // sqft
8 A2 = 2; // sqft
9 z1 = 30; //ft
10 	 z2 = 80; // ft
11 V1 = 600; // fps
12 V2 = 800; // fps
13 p1 = 20; // psia
14 p2 = 35; // psia
15 gam1 = G/(A1*V1);
16 \text{ gam2} = G/(A2*V2);
17 T1 = p1*144/(53.3*gam1);
18 T2 = p2*144/(53.3*gam2);
19 del_H = 186.5*(T2-T1);
20 E_H1 = (V2^2)/(2*32.2) - (V1^2)/(2*32.2) + del_H+z2-
      z1;
21 E_H2 = (V2^2)/(2*32.2) - (V1^2)/(2*32.2) + del_H;
22 \ Q = G*E_H2/550;
23 printf('T1 = \%d degreeR,\n T2 = \%d degreeR',T1,T2);
24 printf('\n The net heat energy added = \%d hp',Q);
25
26 //there is an error in the answer given in textbook
```

Scilab code Exa 7.5 Chapter 7 Example 5

```
1 clear;
2 clc;
3
4 //page no. 240
5
6 G = 50;//cfs
7 Q = 400;//hp
8 A1 = 4;//sqft
9 A2 = 2;//sqft
```

```
10  z1 = 30; // ft
11  z2 = 80; // ft
12  p1 = 20; // psi
13  p2 = 10; // psi
14
15  V1 = G/A1;
16  V2 = G/A2;
17  E_p = Q*(550/62.4)/G;
18  h_L = (p1-p2)*144/62.4 + (V1^2 - V2^2)/(2*32.2) +(z1 -z2)+E_p;
19  printf('Head lost = %.1 f ft', h_L);
```

Scilab code Exa 7.6 Chapter 7 Example 6

```
1 clear;
2 clc;
3
4 //page no. 243
5
6 b = 3; //ft
7 d = 2; //ft
8 l = 200; //ft
9 h_L = 30; //ft
10 tau_0 = h_L*62.4*b*d/(10*1); //0.00694
11 printf('The resistance stress exerted between fluid and conduit walls = %.2f psf = %.3f psi',tau_0, tau_0*0.00694);
```

Scilab code Exa 7.7 Chapter 7 Example 7

```
1 clear;
2 clc;
3
```

```
4 //page no.244
5
6 h_L = 30; //ft
7 l = 200; //ft
8 d = 2; //ft
9 r = 8; //in
10 //part (a)
11 tau_0 = h_L*62.4/(d*1);
12
13 //part(b)
14 tau = (0.5*r/12)*(tau_0*0.00694);
15 printf('Part(a): Shear stress = %.2f psf = %.4f psi ',tau_0,tau_0*0.00694);
16 printf('\n Part(b): Shear stress = %.4f psi ',tau);
```

Chapter 8

Similitude and Dimensional Analysis

Scilab code Exa 8.1 Chapter 8 Example 1

```
1 clear;
2 clc;
3 //page no. 266
4
5 Tw = 32; // degreeF
6 d1 = 3; // in
7 v = 10; // fps
8 delp = 2; // psi
9 h1 = 30; // ft
10 Tb = 68; // degreeF
11 d2 = 1; // in
12 h2 = 10; // ft
13 V = v*(d1/12)*0.0000137/((d2/12)*0.88*0.0000375);
14 del_p = delp/h2^2 *0.88*V^2;
15 printf('V = %.2 f fps\n del_p = %.2 f psi', V, del_p);
```

Scilab code Exa 8.2 Chapter 8 Example 2

```
1 clear;
2 clc;
3
4 //page no. 266
5
6 l = 400; // ft
7 h = 10; //ft
8 v = 30; // fps
9 D = 2; //lb
10 V = sqrt((v^2 /1)*h);
11 D_p = (D/V^2) *(v^2)*(l^2)/h^2;
12 printf('V = %.2 f fps\n Prototype drag = %d lb',V,D_p
);
```

Scilab code Exa 8.3 Chapter 8 Example 3

```
1 clear;
2 clc;
3
4 //page no.266
5
6 G = 20000; // cfs
7 k = 1/15;
8 Q_m = G*(k)^(2+ 1/2);
9 printf('Qm = %d cfs',Q_m);
10
11 //there is a minute error in the answer given in textbook
```

Scilab code Exa 8.4 Chapter 8 Example 4

```
1 clear;
2 clc;
3
4 //page no. 266
5
6 k = 1/10;
7 v = 3000; // fps
8 h = 15000; // altitude
9 T = 68; // degreeF
10 am = 870; // fps
11 ap = 1057; // fps
12 Vm = v*(am/ap);
13 rho_m = v*(1/k)*0.001495*0.031/(0.033*Vm);
14 p_m = 32.2*rho_m*34.9*(T+460)/(144);
15 printf('Vm = %d fps\n p_m = %d psia', Vm, p_m);
16
17 // there is a small error in the answer given in textbook
```

Chapter 9

Fluid Flow in Pipes

Scilab code Exa 9.1 Chapter 9 Example 1

```
1 clear;
2 clc;
3
4 //page no.281
5 d = 6; //inches
6 v = 15; //fps
7 l = 100; //ft
8 h_L = 17.5; //ft
9 f = h_L*(d/(12*1))*(2*32.2/v^2);
10 V_f = v*sqrt(f/8);
11 printf('The friction velocity = %.2 f fps', V_f);
12
13 //there is an error in the answer given in textbook
```

Scilab code Exa 9.2 Chapter 9 Example 2

```
1 clear;
2 clc;
```

```
3
4 //page no. 285
6 T = 100; // degreeF
7 d = 3; // inches
8 \text{ Re} = 80000; // \text{ Reynolds number}
9 = 0.006; // inches
10 \ 1 = 1000; // feet
11 f1 = 0.021; // friction factor
12 nu = 0.729*10^-5; // sqft/sec
13 V = Re*nu/0.25;
14 h_L1 = f1*(1/0.25)*(V^2 /(2*32.2));
15 f = 0.316/Re^0.25;
16 h_L = (f/f1)*h_L1;
17 printf ('Head loss expected = \%.1 f ft\n and head loss
       expected if the pipe were smooth = \%.2 f ft', h_L1
      ,h_L);
```

Scilab code Exa 9.3 Chapter 9 Example 3

```
1 clear;
2 clc;
3
4 //page no. 288
5
6 T = 100; //degreeF
7 d = 3; // inches
8 Re = 80000; // Reynolds number
9 e = 0.006; //inches
10 l = 1000; // ft
11 f = 0.0255; // friction factor
12 V = 2.33; // fps
13 h_L = f*(1/0.25)*(V^2 /(2*32.2));
14 printf('Head loss expected = %.1 f ft', h_L);
```

Scilab code Exa 9.4 Chapter 9 Example 4

```
1 clear;
2 clc;
3
4 //page no. 290
6 Q = 100; //gallons per minute
7 \text{ sg} = 0.90;
8 nu = 0.0012; // lb - sec / sqft
9 d = 3; // in
10 \ 1 = 1000; //ft
11 r = 1; //in
12 V = 4.53; //fps
13 Re = V*(d/12)*sg*1.935/nu;
14 h_L = (64/Re)*(12*1/d)*(V^2 /(2*32.2));
15 v = 2*V*(1 - (2/d)^2);
16 tau = 62.4*sg*h_L/(2*1*12);
17 printf('v = \%.2 f fps\n h_L = \%.1 f ft of oil\n tau =
     \%.3 f psf', v, h_L, tau);
```

Scilab code Exa 9.6 Chapter 9 Example 6

```
1 clear;
2 clc;
3
4 //page no. 295
5
6 Q = 90;// gallons per minute
7 T = 68;//degreeF
8 d = 3;// in
9 1 = 3000;//ft
```

```
10 r = 1; // in
11 f = 0.018;
12 V = Q/(60*7.48*0.25*\%pi*(d/12)^2);
13 Re = V*(d/12)*1.935/(0.000021);
14 \text{ h_L} = f*(1/0.25)*(V^2 /(2*32.2));
15 \text{ tau}_0 = f*1.935*V^2 /8;
16 \text{ tau1} = 2*tau_0/d;
17 \text{ v_c} = V*(1+4.07*sqrt(f/8));
18 \text{ v}_{-} = \text{sqrt}(tau_{-}0/1.935);
19 v1 = v_*(5.50+5.75*log10(v_*(r/(2*12))/0.00001085));
v1_{-} = v_{c} - v_{*} + 5.75 * \frac{10g10}{0.5 * d/(r/2)};
21 delta = d*32.8/(Re*sqrt(f));
22 printf ('Head lost = \%.1 f ft of water\n Wall shear
       stress = \%.3 f psf\n the center velocity = \%.2 f
       fps \ n \ shearing \ stress = \%.3 f \ psf \ v1 = \%.2 f \ fps \
       n \operatorname{delta} = \%.4 \operatorname{f} \operatorname{in}.', h_L, tau_0, v_c, tau1, v1_, delta)
```

Scilab code Exa 9.7 Chapter 9 Example 7

```
1 clear;
2 clc;
3
4 //page no. 298
5
6 d = 12; // in
7 v = 10; //fps
8 e = 2; //in
9 k = 0.002; //relative roughness
10 l = 1000; // ft
11 f = (1/(1.14+2*log10(1/k)))^2;
12 v_c = v*(1+4.07*sqrt(f/8));
13 tau_0 = f*1.935*v^2 /8;
14 v2 = v_c - tau_0*5.75*log10(0.5*d/e);
15 v2_ = 8.48*tau_0 + tau_0*5.75*log10(e/(12*k));
```

Scilab code Exa 9.8 Chapter 9 Example 8

```
1 clear;
2 clc;
3
4 //page no. 300
5
6 V = 4.08; // fps
7 Re = 93800; //Reynolds number
8 r = 1; //in
9 m = 1/7;
10 R = 3; //in
11 f = 0.316/(Re^0.25);
12 v_c = V/(2/((m+1)*(m+2)));
13 v1 = v_c*(r/R)^(1/7);
14 tau_0 = f*1.935*V^2 /8;
15 printf('f = %.3 f\n v_c = %.2 f fps\n v1 = %.2 f fps\n wall shear = %.3 f ps',f,v_c,v1,tau_0);
```

Scilab code Exa 9.9 Chapter 9 Example 9

```
1 clear;
2 clc;
3
4 //page no. 302
```

```
6  p = 14.7; // psia
7  T = 60; // degreeF
8  l = 2000; // ft
9  b = 18; // in
10  h = 12; // in
11  v = 10; // fps
12  R_h = (b*h)/(2*12*(b+h));
13  Re = v*4*R_h*0.0763/(32.2*0.000000375);
14  f = 0.019;
15  h_L = f*(1/(4*R_h))*v^2 /(2*32.2);
16  del_p = 0.0763*h_L;
17  printf('loss of head = %.1 f ft of air\n and the pressure drop = %.2 f psf = %.3 f psi',h_L,del_p,del_p*0.0069);
```

Scilab code Exa 9.10 Chapter 9 Example 10

```
1 clear;
2 clc;
3
4 //page no. 305
5 Q = 90; //gpm
6 d = 3; //in
7 1 = 3000; //ft
8 V = Q/(60*7.48*0.25*\%pi*(d/12)^2);
9 R_h = (d/12)/4;
10 C_hw = 140;
11 S = (V/(1.318*140*R_h^0.63))^(1/0.54);
12 h_L = S*1;
13 printf('The loss of head = \%.1 f ft of water', h_L);
14
15 //there is a minute error in the answer given in
      textbook
```

Scilab code Exa 9.11 Chapter 9 Example 11

```
1 clear;
2 clc;
4 //page no. 307
6 G = 40; // lb/min
7 d = 3; // in
8 T = 100; // degreeF
9 p = 50; // psia
10 \ 1 = 2000; //ft
11 Re = ((G/60)*(d/12))/(0.0491*32.2*4*10^-7);
12 f = 0.015;
13 gam1 = p*(144/(53.3*(T+460)));
14 V1 = (G/60)/(gam1*0.0491);
15 a = sqrt(1.4*32.2*53.3*(T+460));
16 \text{ M1} = \text{V1/a};
17 M2_limit = sqrt(1/1.4);
18 1 = (((1-(M1/M2_limit)^2)/(1.4*M1^2)) - 2*log(
      M2_{limit}/M1))*(0.25/0.015);
19 p2 = 38.9; //psia, from trial and error method
20 printf('p2 = \%.1 \, \text{f psia',p2});
```

Scilab code Exa 9.12 Chapter 9 Example 12

```
1 clear;
2 clc;
3
4 //page no. 312
5
6 d = 12;// in
```

```
7 D = 24; //in
8 theta = 20; //degrees
9 G = 10; //cfs
10 p = 20; //psi
11 V12 = G/(0.25*%pi);
12 V24 = V12/4;
13 K_L = 0.43;
14 p24 = ((p*144/62.4) + (V12^2 /(2*32.2)) - ((V24^2) /(2*32.2)) - K_L*(V12-V24)^2 /(2*32.2))/2.314;
15 printf('Pressure in the larger pipe = %.1f psi',p24);
;
```

Scilab code Exa 9.13 Chapter 9 Example 13

```
1 clear;
2 clc;
3
4 //page no. 322
6 d = 12; // in
7 1 = 1000; //ft
8 \text{ h1} = 200; // \text{elevation}
9 h2 = 250; // elevation
10 T = 50; // degreeF
11 	ext{ f1} = 0.030;
12 V1 = sqrt((h2-h1)*2*32.2/(0.5+f1*1 +1));
13 R1 = V1/0.00000141;
14 	 f2 = 0.019;
15 V2 = sqrt((h2-h1)*2*32.2/(0.5+f2*1 +1));
16 R2 = V1/0.00000141;
17 Q = 0.25*\%pi*(d/12)^2 *V2;
18 printf('Velocity = \%.1 f fps\n flow rate = \%.1 f cfs',
      V2,Q);
```

Scilab code Exa 9.14 Chapter 9 Example 14

```
1 clear;
2 clc;
3
4 //page no. 322
5
6 l = 200; //ft
7 Q = 0.1; // cfs
8 del_h = 5; // ft
9 T = 50; // degreeF
10 d = 0.187; // ft
11 V = Q/(0.25*%pi*d^2);
12 R = V*d/0.0000141;
13 f = (del_h*2*32.2/V^2 -(1+0.5))*(d/1);
14 printf('Required diameter of the pipe = %.2 f in.',d *12);
```

Scilab code Exa 9.15 Chapter 9 Example 15

```
1 clear;
2 clc;
3
4 //page no. 324
5
6 Q = 2.5; //cfs
7 T = 50; //degreeF
8 d1 = 8; //in
9 d2 = 6; //in
10 l1 = 1000; //ft
11 l2 = 2000; //ft
12 V8 = Q/(0.25*%pi*(d1/12)^2);
```

```
13  V6 = Q/(0.25*%pi*(d2/12)^2);
14  R8 = V8*0.667/0.0000141;
15  f8 = 0.020;
16  R6 = V6*0.5/0.0000141;
17  f6 = 0.019;
18  h_L8 = f8*(11/0.667)*(V8^2 /(2*32.2));
19  h_L6 = f6*(12/0.5)*(V6^2 /(2*32.2));
20  Ep = 100+h_L8+h_L6;
21  n = Q*62.4*(Ep)/550;
22  V8 = sqrt((30/f8)*2*32.2/(11/0.667));
23  Q_max = V8*0.25*%pi*(d1/12)^2;
24  printf('Maximum reliable flow that can be pumped = % .1 f cfs',Q_max);
```

Scilab code Exa 9.16 Chapter 9 Example 16

```
1 clear;
2 clc;
3
4 //page no. 327
5
6 Q = 5; // cfs
7 d = 12; //in
8 1 = 5000; //ft
9 h = 70; //ft
10 L = 2000; //ft
11 K = (h/Q^1.85);
12 a = (L/1)*K;
13 b = ((1-L)/1)*K;
14 Q_{-} = (h/((b+a*(0.5^{(1.85)))))^{(1/1.85)};
15 Q_A = Q_{/2};
16 \ Q_B = Q_{-}/2;
17 del = Q_-Q; //gain capcaity
18 percent = (del/Q)*100; //gain percentage
19 printf ('The gain of capacity by looping the pipe is
```

 $\%.1\,\mathrm{f}$ cfs or $\%\mathrm{d}$ percentage',del,percent);

Chapter 11

Fluid Measurements

Scilab code Exa 11.1 Chapter 11 Example 1

Scilab code Exa 11.2 Chapter 11 Example 2

```
1 clear;
2 clc;
```

Scilab code Exa 11.3 Chapter 11 Example 3

```
1 clear;
2 clc;
3
4 //page no. 411
6 P = 20; //in. of mercury
7 p = 5; //in. of mercury
8 T = 150; // degreeF
10 k = P/p;
11
12 if k >1.893 then
       M_0 = 1.645;
13
14 end
15 V_0 = sqrt(2*32.2*186.5*(T+460)/(1+(2*186.5))
     /(53.3*1.4*M_0^2));
16
17 printf('The speed of this airplane = %d fps', V_0);
```

```
18
19 //there is an error in the answer given in textbook
```

Scilab code Exa 11.4 Chapter 11 Example 4

```
1 clear;
2 clc;
3
4 //page no. 420
6 b = 6; //in
7 d = 3; //in
8 p = 20; //psi
9 \text{ del_p} = 6; // \text{in. of mercury}
10 p_bar = 14.70; //psia
11 T = 60; //degreeF
12
13 k = (p + p_bar - b*(p_bar/29.92))/(p+p_bar);
14 \text{ gam1} = (p+p_bar)*144/53.3 / (T+460);
15 A2 = 0.0491; //sqft
16 \quad Y = 0.949;
17 \text{ Cv} = 0.98;
18 G = Y*Cv*A2*gam1*sqrt(2*32.2*b*10*A2*144/gam1) /(
      sqrt (1-0.25^2));
19 Cv_true = 0.981;
20 G_true = G*Cv_true/Cv;
21
22 printf ('G = \%.2 \, \text{f} \, \text{lb/sec}',G);
```

Scilab code Exa 11.5 Chapter 11 Example 5

```
1 clear;
2 clc;
```

```
3
4 //page no. 422
6 d = 3; //in
7 1 = 6; //in
8 h = 6; //in
9 T = 60; // degreeF
10
11 Cv = 0.99;
12 \text{ A1} = 0.25 * \%pi * (d/12)^2;
13 Q = Cv*A1*sqrt(2*32.2*(h/12)*(13.55-1)) /(sqrt
      (1-0.25^2);
14 Cv_true = 0.988;
15 Q_true = Q*Cv_true/Cv;
16 \text{ h_L} = 3.8;
17
18 printf('Q = \%.3 \, f \, cfs', Q);
19 printf('\n True Q = \%.3 f \text{ cfs',Q_true});
20 printf('\n Total head loss is about %.1f ft of water
      ',h_L);
21
22 //there are small errors in the answer given in
      textbook
```

Chapter 12

Elementary Hydrodynamics

Scilab code Exa 12.2 Chapter 12 Example 2

```
1 clear;
2 clc;
3
4 //page no. 491
5
6 Q = 0.00010; // cfs
7 t = 0.1; // ft
8 h = 3; // ft
9 d = 6; // in
10
11 K = Q*h/(t*0.25*%pi*(d/12)^2);
12
13 printf('K = %.5 f fps',K);
14
15 // there is an error in the answer given in textbook
```

Chapter 13

Fluid Flow about Immersed Objects

Scilab code Exa 13.1 Chapter 13 Example 1

```
1 clear;
2 clc;
4 / page no. 502
6 b = 50; //ft
7 c = 7; //ft
8 CL = 0.6; //lift coefficient
9 CD = 0.05; //drag coefficient
10 alpha = 7;//degrees
11 V = 150/0.681818; //coverting mph to fps
12 \text{ H} = 10000; //ft
13 rho = 0.001756; // slug/cuft
14
15 D = CD*b*c*rho*0.5*V^2;
16 hp = D*V/550;
17 L = CL*b*c*rho*0.5*V^2;
18 mu = 3.534*10^-7; //lb-sec/sqft
19 R = V*c*rho/mu;
```

```
20 a = sqrt(1.4*33.2*53.3*(23.4+459.6));
21 M = V/a;
22
23 printf('hp = %d hp,\n L = %.2 f lb,\n R = %d,\n M = % .3 f',hp,L,R,M);
24
25 //there are small errors in the answer given in textbook
```

Scilab code Exa 13.2 Chapter 13 Example 2

```
1 clear;
2 clc;
3
4 //page no. 511
6 1 = 5; //ft
7 d = 0.5; //ft
8 v = 1; //fps
9 T = 60; // degreeF
10 D = 0.04; //lb
11 k = 1/64; //model scale
12
13 \text{ nu} = 0.00001217;
14 R = v*1/nu;
15 \text{ Cf1} = 0.0020;
16 \text{ Cf2} = 0.0052;
17 \text{ Dx1} = 2*\text{Cf1}*1*d*1.938*0.5*v^2;
18 \text{ Dx2} = 2*\text{Cf}2*1*d*1.938*0.5*v^2;
19 delta1 = 1*5.20/sqrt(R);
20 \text{ delta2} = 1*0.38/(R^0.2);
V_0 = sqrt((v^2 /1)*(1*(1/k)));
22 R_p = V_0*1*(1/k)/nu;
23 \text{ Cf} = 0.00185;
24 \text{ Dx} = 2*Cf*1*d*(1/k)^2 *1.938*0.5*V_0^2;
```

```
25  Dw = D-Dx2;
26  Dw_p = (1/k)^2 *d*l*V_0^2 *Dw/(1*d);
27  D = Dw_p + Dx;
28
29  printf('Total drag of the prototype = %d lb',D);
30
31  //there is an error in the answer given in textbbok
```

Scilab code Exa 13.3 Chapter 13 Example 3

```
1 clear;
2 clc;
3
4 / page no. 524
6 c = 6; //ft
7 b = 36; //ft
8 \text{ AR1} = 6; // \text{aspect ratio}
9 Cd = 0.0543; //drag coefficient
10 Cl = 0.960; //lift coefficient
11 alpha1 = 7.2; // degrees
12 \text{ AR2} = 8;
13
14 // for aspect ratio = 8
15 CL = 0.960; //negligible change of lift coefficient
16 //for aspect ratio = 6
17 C_Di = C1^2 /(\%pi*AR1);
18 // \text{for aspect ratio} = \text{infinity}
19 \quad C_D0 = Cd - C_Di;
20 / for AR = 8
21 C_D = C_{D0} + C1^2 /(%pi*AR2);
22 / for AR = 6
23 alpha_i = (180/\%pi)*C1/(\%pi*AR1);
24 / for AR = infinty
25 alpha_0 = alpha1 - alpha_i;
```

```
26 //for AR = 8
27 alpha = alpha_0 + Cl/(AR2*%pi) *(360/(2*%pi));
28
29 printf('Lift coefficient = %.3f (negligible change of lift coefficient)',CL);
30 printf('\n Drag coefficient = %.4f',C_D);
31 printf('\n Angle of attack = %.1f degress',alpha);
```