파이썬으로 배우는 알고리즘 기초 Chap 3. 동적계획

3.2

제단경로와 플로이드 알고리즘

- 최단 경로 문제
 - 주어진 그래프에서 모든 정점의 쌍에 대한 최단 경로를 구하시오.

- 엄밀한 문제 정의:
 - G = (V, E): G는 그래프, V는 정점(vertex)의 집합, E는 간선(edge)의 집합
 - 그래프 G는 방향성(directed), 가중치(weighted) 그래프임
 - 최단 경로는 단순 경로($simple\ path$): 같은 정점을 두 번 거치지 않음(acyclic)

- 최단 경로 문제의 이해
 - 단순무식한 방법으로 해결하기
 - 각 정점에서 다른 정점으로 가는 모든 경로를 구한 뒤
 - 그 경로들 중에서 가장 짧은 경로를 찾는 방법
 - 효율성 분석 (최악의 경우 = 모든 정점간의 간선이 존재할 때)
 - $(n-2)(n-3)\cdots 1 = (n-2)!$ (지수 시간 복잡도)
 - 최단 경로 문제는 최적화 문제(optimization problem)
 - 최적화 문제는 하나 이상의 해답 후보가 있을 수 있고,
 - 해답 후보 중에서 가장 최적의 $\mathbf{L}(optimal\ value)$ 을 가진 해답을 찾는 문제

- 최단 경로 문제의 입력 사례
 - 그래프의 표현: 인접 행렬(adjacency matrix)
 - v_0 에서 v_2 로 가는 가능한 단순 경로의 수는? 3
 - v_0 에서 v_2 로 가는 최단 경로와 경로 길이는? $[v_0, v_3, v_2]$, length = 3

W	0	1	2	3	4
0	0	1	∞	1	5
1	9	0	3	2	∞
2	∞	∞	0	4	∞
3	∞	∞	2	0	3
4	3	1 0 ∞ ∞	∞	∞	0

- 최단 경로: 동적계획(Dynamic Programming)
 - 1단계: 재귀 관계식을 찾는다.
 - D: 각 정점의 쌍이 가지는 최단 경로의 길이를 나타내는 행렬
 - D[i][j]: v_i 에서 v_j 로 가는 최단 경로의 길이
 - 목표: 인접 행렬 W에서 최단 경로의 행렬 D와의 재귀 관계식 구하기

- 2단계: 상향식 방법으로 해답을 구한다.
 - 초기화: $D^0 = W$,
 - 최종 목표: $D^n = D$.
 - 상향식 계산: D^0, D^1, \dots, D^n

- D^k : k개의 중간 정점을 지나는 최단 경로 길이의 행렬
- $D^k[i][j]$: v_i 에서 v_j 로 k개의 중간 정점을 지나는 최단 경로 길이
- D^0 : 다른 어떤 정점도 지나지 않는 최단 경로의 길이 (=W)
- D^n : 다른 모든 정점을 지날 수 있는 최단 경로의 길이 (= D)

$D^0 \rightarrow D^1 \rightarrow D^2 - \cdots \rightarrow D^n$												
	0	1	2	2	4		D		1	2	2	4
	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	_		0	1		<u> </u>	4
0	0	1	∞ –	1	5		0	0	1	→ 3	1	4
1	9	0	3	2	∞		1	8	0	3	2	5
2	∞	∞	0	4	∞		0 1 2	10	11	0	4	7
				0							0	
4	3	∞	∞	∞	0		4	3	4	6	4	0

- 재귀 관계식 구하기
 - $D^0 = W, D^k \vdash D^{k-1}$ 로부터 구함 $(1 \le k \le n)$
 - $D^{k-1}[i][j]$: v_i 에서 v_j 로 k-1개의 중간 정점을 지남
 - $D^{k}[i][j]$: 다음과 같은 두 가지의 경우를 고려
 - 경우 1: 하나의 정점을 더 지나게 해 줘도 새로운 최단 경로가 없는 경우
 - $D^{k}[i][j] = D^{k-1}[i][j]$
 - 경우 2: 하나의 정점(v_k)을 더 지나면 새로운 최단 경로가 있는 경우
 - $D^{k}[i][j] = D^{k-1}[i][k] + D^{k-1}[k][j]$

■ 최단 경로의 재귀 관계식

- $D^0 = W$
- $D^{k}[i][j] = \min(D^{k-1}[i][j], D^{k-1}[i][k] + D^{k-1}[k][j])$

$$D^{1}[i][j] = \min(D^{0}[i][j], D^{0}[i][k] + D^{0}[k][j])$$

								`		
D^0	0	1	2	3	4	D^1	0	1	2	3
0	0	1	∞	1	5	0				
1	9	0	3	2	∞	1				2
2	∞	∞	0	4	∞	2				
3	∞	∞	2	0	3	3				
4	3	1 0 ∞ ∞	∞	∞	0	4		4		4
'	•					•				

Algorithm 3.3: Floyd's Algorithm for Shortest Paths

```
def floyd (W):
    D = W
    n = len(W)
    for k in range(n):
        for i in range(n):
            for j in range(n):
                D[i][j] = min(D[i][j], D[i][k] + D[k][j])
    return D
```



```
本LI全TV@Youtube
 자세히 보면 유익한 코딩 채널
```

```
INF = 999
W = \Gamma
    [0, 1, INF, 1, 5],
    [9, 0, 3, 2, INF],
    [INF, INF, 0, 4, INF],
    [INF, INF, 2, 0, 3],
    [3, INF, INF, INF, 0]
D = floyd(W)
for i in range(len(D)):
    print(D[i])
```

```
[0, 1, 3, 1, 4]
[8, 0, 3, 2, 5]
[10, 11, 0, 4, 7]
[6, 7, 2, 0, 3]
[3, 4, 6, 4, 0]
```


자세히 보면 유익한 코딩 채널

- 좋아. 좋은데... 최단 경로는?
 - Algorithm 3.3에서는 최단 경로의 길이만 구함
 - 최단 경로를 구하기 위해서는 그 과정을 기록해야 함

- P[i][j]: v_i 에서 v_j 로 가는 최단 경로가 거쳐야 하는 새로운 정점
 - v_i 에서 v_j 로 가는 최단 경로의 중간에 놓여있는 정점이 최소한 하나가 있는 경 우에는 그 놓여있는 정점 중에서 가장 큰 인덱스
 - 최단 경로의 중간에 놓여있는 정점이 없는 경우에는 -1

Algorithm 3.4: Floyd's Algorithm for Shortest Paths 2

```
def floyd2 (W):
    n = len(W)
    D = W
    P = [[-1] * n for _ in range(n)]
    for k in range(n):
        for i in range(n):
            for j in range(n):
                if (D[i][j] > D[i][k] + D[k][j]):
                    D[i][j] = D[i][k] + D[k][j]
                    P[i][j] = k
    return D, P
```


- 그러면... 최단 경로는 어떻게 찾지?
 - P[i][j] = -1이면, 간선 (v_i, v_j) 가 최단 경로임
 - P[i][j] = k 인 경우에는 inorder 탐색을 함
 - (v_i, v_k) 의 최단 경로 출력 후
 - v_k 를 출력하고
 - (v_k, v_i) 의 최단 경로 출력

P	0	1	2	3	4
0	-1	-1	3	-1	3
1	4	-1	-1	-1	3
2	4	4	-1	-1	3
3	4	4	-1	-1	-1
4	-1	0	3	-1 -1 -1 -1 0	-1

(4, 2)(4, 2): 3(4, 3): 0 (4, 0): -1 print '0' (0, 3): -1 print '3' (3, 2): -1

Algorithm 3.5: Print Shortest Path

```
def path (P, u, v):
    if (P[u][v] != -1):
        path(P, u, P[u][v])
        print('v%d'%(P[u][v]), end='-> ')
        path(P, P[u][v], v)
```

```
D, P = floyd2(W)
for i in range(len(D)):
    print(D[i])
for i in range(len(P)):
    print(P[i])
```



```
本LI全TV@Youtube
 자세히 보면 유익한 코딩 채널
```

```
u = 4
V = 2
print('shortest path from v%d to v%d:'%(u, v), end=' ')
print('v%d'%(u), end='-> ')
path(P, u, v)
print('v%d'%(v), end=' ')
    [0, 1, 3, 1, 4]
                                   [-1, -1, 3, -1, 3]
    [8, 0, 3, 2, 5]
                                [4, -1, -1, -1, 3]
    [10, 11, 0, 4, 7]
                                   [4, 4, -1, -1, 3]
    [6, 7, 2, 0, 3]
                                  [4, 4, -1, -1, -1]
                                   [-1, 0, 3, 0, -1]
    [3, 4, 6, 4, 0]
```

shortest path from v4 to v2: v4-> v0-> v3-> v2

주니온TV@Youtube

자세히 보면 유익한 코딩 채널

https://bit.ly/2JXXGqz

- 여러분의 구독과 좋아요는 강의제작에 큰 힘이 됩니다.
- 강의자료 및 소스코드: 구글 드라이브에서 다운로드 (다운로드 주소는 영상 하단 설명란 참고)

https://bit.ly/3fN0q8t