# МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э.Баумана

# Отчет по рубежному контролю №1 по курсу «Технологии машинного обучения»

Технологии разведочного анализа и обработки данных.

Подготовил Ионов С.А. ИУ5-62Б Вариант №10

### 1) Описание задания

Задача №2: для заданного набора данных проведите обработку пропусков в данных для одного категориального и одного количественного признака. Какие способы обработки пропусков в данных для категориальных и количественных признаков Вы использовали? Какие признаки Вы будете использовать для дальнейшего построения моделей машинного обучения и почему?

Дополнительно: для произвольной колонки данных построить гистограмму.

## 2) Текст программы

```
import pandas as pd
import numpy as np
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
import seaborn as sns
import matplotlib.pyplot as plt
from pylab import rcParams # для того, чтобы задавать размер диаграмм
%matplotlib inline
data = pd.read_csv('data/dc-wikia-data.csv', sep=',')
data.isnull().sum()
data.info()
mising_count = data.isnull().sum()
all_count = data.isnull().count()
pd.concat([mising_count.sort_values(), (mising_count/all_count*100).sort_values()],
      axis=1, keys=['Количество пропусков', 'Процент пропусков']).tail(11)
data.drop(['GSM'], axis=1, inplace=True)
rcParams['figure.figsize'] = 7,7
g = sns.kdeplot(data=data, x="APPEARANCES", shade=True)
g.set_xlabel("APPEARANCES", size = 15)
g.set ylabel("Frequency", size = 15)
plt.title('Distribution of APPEARANCES', size = 18)
indicator = MissingIndicator()
mask_missing_values_only = indicator.fit_transform(data[['APPEARANCES']])
imp_num = SimpleImputer(strategy='most_frequent')
data_num_imp = imp_num.fit_transform(data[['APPEARANCES']])
data['APPEARANCES'] = data_num_imp
filled_data = data_num_imp[mask_missing_values_only]
print('APPEARANCES', 'most_frequent', filled_data.size, filled_data[0],
filled_data[filled_data.size-1], sep='; ')
```

# 3) Экранные формы с примерами выполнения программы

- В рубежном контроле использовался датасет FiveThirtyEight Comic Characters Dataset (файл dc-wikia-data.csv)
- Первые 5 строк набора данных имеют вид:

| page_id | name                                 | urislug                             | ID                 | ALIGN              | EYE           | HAIR          | SEX                | GSM | ALIVE                | APPEARANCES | FIRST<br>APPEARANCE | YEAR   |
|---------|--------------------------------------|-------------------------------------|--------------------|--------------------|---------------|---------------|--------------------|-----|----------------------|-------------|---------------------|--------|
| 1422    | Batman<br>(Bruce<br>Wayne)           | √wiki√Batman_(Bruce_Wayne)          | Secret<br>Identity | Good<br>Characters | Blue<br>Eyes  | Black<br>Hair | Male<br>Characters | NaN | Living<br>Characters | 3093.0      | 1939, May           | 1939.0 |
| 23387   | Superman<br>(Clark<br>Kent)          | ∨wiki∨Superman_(Clark_Kent)         | Secret<br>Identity | Good<br>Characters | Blue<br>Eyes  | Black<br>Hair | Male<br>Characters | NaN | Living<br>Characters | 2496.0      | 1986, October       | 1986.0 |
| 1458    | Green<br>Lantern<br>(Hal<br>Jordan)  | VwikiVGreen_Lantern_(Hal_Jordan)    | Secret<br>Identity | Good<br>Characters | Brown<br>Eyes | Brown<br>Hair | Male<br>Characters | NaN | Living<br>Characters | 1565.0      | 1959, October       | 1959.0 |
| 1659    | James<br>Gordon<br>(New<br>Earth)    | VwikiVJames_Gordon_(New_Earth)      | Public<br>Identity | Good<br>Characters | Brown<br>Eyes | White<br>Hair | Male<br>Characters | NaN | Living<br>Characters | 1316.0      | 1987, February      | 1987.0 |
| 1576    | Richard<br>Grayson<br>(New<br>Earth) | \/wiki\/Richard_Grayson_(New_Earth) | Secret<br>Identity | Good<br>Characters | Blue<br>Eyes  | Black<br>Hair | Male<br>Characters | NaN | Living<br>Characters | 1237.0      | 1940, April         | 1940.0 |

#### • В наборе данных присутствуют пропуски:

| page_id          | 0    |
|------------------|------|
| name             | 0    |
| urlslug          | 0    |
| ID               | 2013 |
| ALIGN            | 601  |
| EYE              | 3628 |
| HAIR             | 2274 |
| SEX              | 125  |
| GSM              | 6832 |
| ALIVE            | 3    |
| APPEARANCES      | 355  |
| FIRST APPEARANCE | 69   |
| YEAR             | 69   |
| dtype: int64     |      |

#### • Состав признаков в датасете:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 6896 entries, 0 to 6895 Data columns (total 13 columns):

| Data                                                | COTUMNS (COCAT 13   | COTUMNIS).     |         |  |  |
|-----------------------------------------------------|---------------------|----------------|---------|--|--|
| #                                                   | Column              | Non-Null Count | Dtype   |  |  |
|                                                     |                     |                |         |  |  |
| 0                                                   | page_id             | 6896 non-null  | int64   |  |  |
| 1                                                   | name                | 6896 non-null  | object  |  |  |
| 2                                                   | urlslug             | 6896 non-null  | object  |  |  |
| 3                                                   | ID                  | 4883 non-null  | object  |  |  |
| 4                                                   | ALIGN               | 6295 non-null  | object  |  |  |
| 5                                                   | EYE                 | 3268 non-null  | object  |  |  |
| 6                                                   | HAIR                | 4622 non-null  | object  |  |  |
| 7                                                   | SEX                 | 6771 non-null  | object  |  |  |
| 8                                                   | GSM                 | 64 non-null    | object  |  |  |
| 9                                                   | ALIVE               | 6893 non-null  | object  |  |  |
| 10                                                  | APPEARANCES         | 6541 non-null  | float64 |  |  |
| 11                                                  | FIRST APPEARANCE    | 6827 non-null  | object  |  |  |
| 12                                                  | YEAR                | 6827 non-null  | float64 |  |  |
| <pre>dtypes: float64(2), int64(1), object(10)</pre> |                     |                |         |  |  |
| memor                                               | ry usage: 700.5+ KE | 3              | •       |  |  |
|                                                     | , ,                 |                |         |  |  |

• Количество и процент пропусков в данных:

|                  | Количество пропусков | Процент пропусков |
|------------------|----------------------|-------------------|
| urlslug          | 0                    | 0.000000          |
| ALIVE            | 3                    | 0.043503          |
| FIRST APPEARANCE | 69                   | 1.000580          |
| YEAR             | 69                   | 1.000580          |
| SEX              | 125                  | 1.812645          |
| APPEARANCES      | 355                  | 5.147912          |
| ALIGN            | 601                  | 8.715197          |
| ID               | 2013                 | 29.190835         |
| HAIR             | 2274                 | 32.975638         |
| EYE              | 3628                 | 52.610209         |
| GSM              | 6832                 | 99.071926         |

- Категориальный признак «GSM» удаляем, так как он содержит большое количество пропусков (99%)
- Для числового признака «APPEARANCES» строим гистограмму распределения:



• Гистограмма имеет одномодальное распределение, поэтому для заполнения пропусков в данных используем моду:

APPEARANCES; most\_frequent; 355; 1.0; 1.0

• После обработки пропусков в двух признаках имеем следующий набор данных:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6896 entries, 0 to 6895
Data columns (total 12 columns):
# Column
                     Non-Null Count Dtype
---
    -----
                      -----
                                      int64
0
   page_id
                     6896 non-null
                   6896 non-null
   name
                                     object
1
                   6896 non-null
4883 non-null
    urlslug
                                     object
2
3
   TD
                                     object
4 ALIGN
                    6295 non-null
                    3268 non-null
4622 non-null
5
    EYE
                                     object
   HATR
6
                                     object
7
    SEX
                    6771 non-null
                                      object
8
    ALIVE
                     6893 non-null
                                      object
   APPEARANCES
                     6896 non-null
                                     float64
10 FIRST APPEARANCE 6827 non-null
                                     obiect
11 YEAR
                      6827 non-null
                                     float64
dtypes: float64(2), int64(1), object(9)
memory usage: 646.6+ KB
```

#### • Выводы, ответы на вопросы к РК:

В данной работе для обработки пропусков данных мы воспользовались двумя стратегиями: 1) удаление признака, содержащего большое количество пропусков (99%); 2) импутация данных в признаке, в котором количество пропусков не превышает порогового значения (5%), путем заполнения наиболее часто встречаемым значением (вывод о применимости моды был сделан исходя из гистограммы распределения).

Из представленных выше признаков также стоит отбросить признак "EYE" с высоким процентом пропусков (52%): удаление строк привело бы к серьезной потере размера датасета, а заполнение пропусков привело бы к возможному нарушению набора данных (неправильные данные). Также из описания датасета можно понять, что столбцы "FIRST APPEARANCE" и "YEAR" означают одно и то же. Кроме того, исследование количества пропусков дают одинаковые показатели, а значит, скорее всего, эти признаки содержат одинаковые данные. В дальнейшем можно оставить один из них. В остальных признаках можно либо выбросить строки с пустыми значениями, либо заполнить их.

Окончательное решение по выбору признаков, поступающих на вход модели, может приниматься после проведения корреляционного анализа. Также после проведения кросс-валидации и подбора оптимальных параметров модели возможен пересмотр набора признаков: либо их удаление, либо их добавление в зависимости от результатов работы алгоритма машинного обучения.