

FCC Test Report

(PART 27)

Report No.: RF171115C32-2

FCC ID: YY3-1127824

Test Model: Algiz 8X

Received Date: Nov. 15, 2017

Test Date: Dec. 02, 2017 ~ Jan. 20, 2018

Issued Date: Jan. 22, 2018

Applicant: Handheld Group AB

Address: Kinnegatan 17 A 531 33 Lidköping Sweden

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

(R.O.C)

Test Location (1): No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan

Hsien 333, Taiwan, R.O.C.

Test Location (2): No.215, Sec. 3, Beixin Rd., Xindian Dist., New Taipei City 231, Taiwan,

R.O.C

FCC Registration /

427177 / TW0011

Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencie

Table of Contents

Re	eleas	e Control Record	3
		tificate of Conformity	
2		nmary of Test Results	
		Measurement Uncertainty Test Site and Instruments	
3		neral Information	
	3 1	General Description of EUT	R
		Configuration of System under Test	
	0.2	3.2.1 Description of Support Units	
	3.3	Test Mode Applicability and Tested Channel Detail	
		EUT Operating Conditions	
	3.5	General Description of Applied Standards	13
4	Tes	t Types and Results	14
		Output Power Measurement	
	4.1	4.1.1 Limits of Output Power Measurement	
		4.1.2 Test Procedures	
		4.1.3 Test Setup	
		4.1.4 Test Results	
	42	Frequency Stability Measurement	
		4.2.1 Limits of Frequency Stability Measurement	
		4.2.2 Test Procedure	
		4.2.3 Test Setup	
		4.2.4 Test Results	
	4.3	Occupied Bandwidth Measurement	31
		4.3.1 Limits of Occupied Bandwidth Measurement	31
		4.3.2 Test Procedure	31
		4.3.3 Test Setup	31
		4.3.4 Test Result	
	4.4	Band Edge Measurement	
		4.4.1 Limits of Band Edge Measurement	
		4.4.2 Test Setup	
		4.4.3 Test Procedures	
	1 E	4.4.4 Test Results	
	4.5	Peak to Average Ratio	
		4.5.2 Test Setup	
		4.5.3 Test Procedures	
		4.5.4 Test Results	
	4.6	Conducted Spurious Emissions	
		4.6.1 Limits of Conducted Spurious Emissions Measurement	
		4.6.2 Test Setup	
		4.6.3 Test Procedure	52
		4.6.4 Test Results	
	4.7	Radiated Emission Measurement	
		4.7.1 Limits of Radiated Emission Measurement	
		4.7.2 Test Procedure	
		4.7.3 Deviation from Test Standard	
		4.7.4 Test Setup	
		4.7.5 Test Results	<i>1</i> 5
5	Pict	ures of Test Arrangements	85
Αŗ	pen	dix – Information on the Testing Laboratories	86

Release Control Record

Issue No.	Description	Date Issued
RF171115C32-2	Original Release	Jan. 22, 2018

1 Certificate of Conformity

Product: Rugged Tablet PC

Brand: Handheld

Test Model: Algiz 8X

Sample Status: Identical Prototype

Applicant: Handheld Group AB

Test Date: Dec. 02, 2017 ~ Jan. 20, 2018

Standards: FCC Part 27, Subpart C, L

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by: , Date: Jan. 22, 2018

Vera Huang / Specialist

Approved by: , Date: Jan. 22, 2018

Dylan Chiou / Project Engineer

2 Summary of Test Results

	Applied Standard: FCC Part 27 & Part 2 (LTE 4)								
FCC Clause	Test Item	Result	Remarks						
2.1046 27.50(d)(4)	Maximum Peak ()utnut Power		Meet the requirement of limit.						
2.1055 27.54	Frequency Stability		Meet the requirement of limit.						
2.1049 27.53(h)	Occupied Bandwidth	Pass	Meet the requirement of limit.						
27.50(d)(5)	Peak to Average Ratio	Pass	Meet the requirement of limit.						
27.53(h)	Band Edge Measurements	Pass	Meet the requirement of limit.						
2.1051 27.53(h)	Conducted Spurious Emissions	Pass	Meet the requirement of limit.						
2.1053 27.53(h)	Radiated Spurious Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -18.44 dB at 3465.00 MHz.						

	Applied Standard: FCC Part 27 & Part 2 (LTE 13)							
FCC Clause	Test Item	Result	Remarks					
2.1046 27.50(b)(10)	Maximum Peak Output Power		Meet the requirement of limit.					
2.1055 27.54 Frequency Stability 2.1049 27.53(g) Occupied Bandwidth		Pass	Meet the requirement of limit.					
		Pass	Meet the requirement of limit.					
27.50(d)(5)	Peak to Average Ratio	Pass	Meet the requirement of limit.					
27.53(g)	Band Edge Measurements	Pass	Meet the requirement of limit.					
2.1051 27.53(g)	Conducted Spurious Emissions	Pass	Meet the requirement of limit.					
2.1053 27.53(g)(f)	Radiated Spurious Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -7.91 dB at 1564.00 MHz.					

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.44 dB
Dodieted Emissions up to 1 CHz	30 MHz ~ 200 MHz	2.0153 dB
Radiated Emissions up to 1 GHz	200 MHz ~ 1000 MHz	2.0224 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	1.0121 dB
Radiated Emissions above 1 GHz	18 GHz ~ 40 GHz	1.1508 dB

2.2 Test Site and Instruments

Description & Manaufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent Technologies	N9038A	MY52260177	Jul. 05, 2017	Jul. 04, 2018
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Dec. 13, 2016 Jan. 11, 2018	Dec. 12, 2017 Jan. 10, 2019
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Dec. 13, 2016 Dec. 06, 2017	Dec. 12, 2017 Dec. 05, 2018
HORN Antenna ETS-Lindgren	3117	00143293	Jun. 26, 2017	Jun. 25, 2018
Double Ridge Guide Horn Antenna EMCO	3115	5619	Dec. 15, 2016 Nov. 30, 2017	Dec. 14, 2017 Nov. 29, 2018
BILOG Antenna SCHWARZBECK	VULB 9168	9168-153	Dec. 13, 2016 Dec. 06, 2017	Dec. 12, 2017 Dec. 05, 2018
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Dec. 14, 2016 Dec. 01, 2017	Dec. 13, 2017 Nov. 30, 2018
Fixed Attenuator Mini-Circuits	BW-N10W5+	NA	Jul. 07, 2017	Jul. 06, 2018
Bluetooth Tester	CBT	100980	Jun. 28, 2017	Jun. 27, 2019
Loop Antenna	EM-6879	269	Aug. 11, 2017	Aug. 10, 2018
MXG Vector signal generator Agilent	N5182B	MY53050430	Oct. 24, 2017	Oct. 23, 2018
Preamplifier Agilent	310N	187226	Jun. 23, 2017	Jun. 22, 2018
Preamplifier Agilent	83017A	MY39501357	Jun. 23, 2017	Jun. 22, 2018
Power Meter Anritsu	ML2495A	1012010	Aug. 15, 2017	Aug. 14, 2018
Power Sensor Anritsu	MA2411B	1315050	Aug. 15, 2017	Aug. 14, 2018

Description & Manaufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
RF signal cable ETS-LINDGREN	5D-FB	Cable-CH1-01(R FC-SMS-100-SM S-120+RFC-SMS -100-SMS-400)	1 111h 7h 701/	Jun. 25, 2018
RF signal cable ETS-LINDGREN	8D-FB	Cable-CH1-02(R FC-SMS-100-SM S-24)	Jun. 26, 2017	Jun. 25, 2018
Software BV ADT	E3 8.130425b	NA	NA	NA
Antenna Tower MF	NA	NA	NA	NA
Turn Table MF	NA	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA
Fixed Attenuator Mini-Circuits	BW-N10W5+	NA	Jul. 08, 2017	Jul. 07, 2018

- Note: 1. The calibration interval of the above test instruments is 12 / 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
 - 2. The test was performed in HsinTien Chamber 1.
 - 3. The horn antenna and preamplifier (model: 83017A) are used only for the measurement of emission frequency above 1 GHz if tested.
 - 4. The IC Site Registration No. is IC7450I-1.

3 General Information

3.1 General Description of EUT

Product	Rugged Tablet PC				
Brand	Handheld				
Test Model	Algiz 8X				
Status of EUT	Identical Prototype				
	19 Vdc (adapter)				
Power Supply Rating	7.6 Vdc (Li-ion battery)				
Modulation Type	LTE QPSK, 16QAM				
	LTE Band 4 (Channel Bandwidth: 1.4 MHz)	1710.7 ~ 1754.3 MHz			
	LTE Band 4 (Channel Bandwidth: 3 MHz)	1711.5 ~ 1753.5 MHz			
	LTE Band 4 (Channel Bandwidth: 5 MHz)	1712.5 ~ 1752.5 MHz			
F	LTE Band 4 (Channel Bandwidth: 10 MHz)	1715.0 ~ 1750.0 MHz			
Frequency Range	LTE Band 4 (Channel Bandwidth: 15 MHz)	1717.5 ~ 1747.5 MHz			
	LTE Band 4 (Channel Bandwidth: 20 MHz)	1720.0 ~ 1745.0 MHz			
	LTE Band 13 (Channel Bandwidth: 5 MHz)	779.5 ~ 784.5 MHz			
	LTE Band 13 (Channel Bandwidth: 10 MHz)	782.0 MHz			
	LTE Band 4 (Channel Bandwidth: 1.4 MHz)	1M09W7D			
	LTE Band 4 (Channel Bandwidth: 3 MHz)	2M70G7D			
	LTE Band 4 (Channel Bandwidth: 5 MHz)	4M49W7D			
Emission Designator	LTE Band 4 (Channel Bandwidth: 10 MHz)	8M97G7D			
Emission Designator	LTE Band 4 (Channel Bandwidth: 15 MHz)	13M5G7D			
	LTE Band 4 (Channel Bandwidth: 20 MHz)	18M0W7D			
	LTE Band 13 (Channel Bandwidth: 5 MHz)	4M50W7D			
	LTE Band 13 (Channel Bandwidth: 10 MHz)	8M95W7D			
Max. ERP Power	LTE Band 13 (Channel Bandwidth: 5 MHz)	181.30 mW			
wax. ERP Power	LTE Band 13 (Channel Bandwidth: 10 MHz)	185.23 mW			
	LTE Band 4 (Channel Bandwidth: 1.4 MHz)	357.03 mW			
	LTE Band 4 (Channel Bandwidth: 3 MHz)	361.83 mW			
Max. EIRP Power	LTE Band 4 (Channel Bandwidth: 5 MHz)	359.50 mW			
Wax. EIRP POWEI	LTE Band 4 (Channel Bandwidth: 10 MHz)	362.66 mW			
	LTE Band 4 (Channel Bandwidth: 15 MHz)	361.99 mW			
	LTE Band 4 (Channel Bandwidth: 20 MHz) 368.55 mW				
Antenna Type	Fixed Internal Antenna				
Accessory Device	Refer to Note as below				
Data Cable Supplied	Refer to Note as below				

Note:

1. The EUT contains following accessory devices.

Product	Brand	Model	Description
Adapter	EDAC	EA10633B-190	I/P: 100-240 Vac, 50-60 Hz, 2 A O/P: 19 Vdc, 3.42 A
Battery 1	Handheld Group AB	ALG8X-08A	7.6 Vdc, 5200 mAh
Battery 2	Handheld Group AB	BH340	7.4 Vdc, 400 mAh

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Configuration of System under Test

<Radiated Emission Test>

<E.R.P. / E.I.R.P. Test>

3.2.1 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units.

3.3 Test Mode Applicability and Tested Channel Detail

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis, and antenna ports

The worst case was found when positioned as the table below. Following channel(s) was (were) selected for the final test as listed below:

Band	ERP / EIRP	Radiated Emission
LTE Band 4	Y-plane	Y-axis
LTE Band 13	Y-plane	X-axis

LTE Band 4

EUT Configure Mode	Test Item	Available Channel	Tested Channel	Channel Bandwidth	Modulation	Mode
		19957 to 20393	19957, 20175, 20393	1.4 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
		19965 to 20385	19965, 20175, 20385	3 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
	EIRP	19975 to 20375	19975, 20175, 20375	5 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
_	LIKE	20000 to 20350	20000, 20175, 20350	10 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
		20025 to 20325	20025, 20175, 20325	15 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
		20050 to 20300	20050, 20175, 20300	20 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
		19957 to 20393	19957, 20393	1.4 MHz	QPSK	1 RB / 0 RB Offset
		19965 to 20385	19965, 20385	3 MHz	QPSK	1 RB / 0 RB Offset
	Frequency Stability	19975 to 20375	19975, 20375	5 MHz	QPSK	1 RB / 0 RB Offset
_		20000 to 20350	20000, 20350	10 MHz	QPSK	1 RB / 0 RB Offset
		20025 to 20325	20025, 20325	15 MHz	QPSK	1 RB / 0 RB Offset
		20050 to 20300	20050, 20300	20 MHz	QPSK	1 RB / 0 RB Offset
		19957 to 20393	19957, 20175, 20393	1.4 MHz	QPSK, 16QAM	6 RB / 0 RB Offset
		19965 to 20385	19965, 20175, 20385	3 MHz	QPSK, 16QAM	15 RB / 0 RB Offset
	Occupied	19975 to 20375	19975, 20175, 20375	5 MHz	QPSK, 16QAM	25 RB / 0 RB Offset
_	Bandwidth	20000 to 20350	20000, 20175, 20350	10 MHz	QPSK, 16QAM	50 RB / 0 RB Offset
		20025 to 20325	20025, 20175, 20325	15 MHz	QPSK, 16QAM	75 RB / 0 RB Offset
		20050 to 20300	20050, 20175, 20300	20 MHz	QPSK, 16QAM	100 RB / 0 RB Offset
		19957 to 20393	19957, 20175, 20393	1.4 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
	5	19965 to 20385	19965, 20175, 20385	3 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
	Peak to	19975 to 20375	19975, 20175, 20375	5 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
	Average Ratio	20000 to 20350	20000, 20175, 20350	10 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
		20025 to 20325	20025, 20175, 20325	15 MHz	QPSK, 16QAM	1 RB / 0 RB Offset
		20050 to 20300	20050, 20175, 20300	20 MHz	QPSK, 16QAM	1 RB / 0 RB Offset

EUT Configure Mode	Test Item	Available Channel	Tested Channel	Channel Bandwidth	Modulation	Mode
			19957	1.4 MHz	QPSK	1 RB / 0 RB Offset
		19957 to 20393				6 RB / 0 RB Offset
			20393	1.4 MHz	QPSK	1 RB / 5 RB Offset
						6 RB / 0 RB Offset
			19965	3 MHz	QPSK	1 RB / 0 RB Offset
		19965 to 20385				15 RB / 0 RB Offset
			20385	3 MHz	QPSK	1 RB / 14 RB Offset
						15 RB / 0 RB Offset
			19975	5 MHz	QPSK	1 RB / 0 RB Offset
		19975 to 20375				25 RB / 0 RB Offset
			20375	5 MHz	QPSK	1 RB / 24 RB Offset
-	Band Edge	20000 to 20350 20025 to 20325	20000 1	10 MHz	QPSK	25 RB / 0 RB Offset
						1 RB / 0 RB Offset
			20350	10 MHz	QPSK	50 RB / 0 RB Offset
						1 RB / 49 RB Offset
						50 RB / 0 RB Offset
			20025	15 MHz	QPSK	1 RB / 0 RB Offset
			20325	15 MHz	QPSK	75 RB / 0 RB Offset
						1 RB / 74 RB Offset
						75 RB / 0 RB Offset
			20050	20 MHz	QPSK	1 RB / 0 RB Offset
		20050 to 20300	00			100 RB / 0 RB Offset
			20300	20 MHz	QPSK	1 RB / 99 RB Offset
		100571 00000	10057 00175 00000	4 4 5 41 1	0.001/	100 RB / 0 RB Offset
		19957 to 20393	19957, 20175, 20393	1.4 MHz	QPSK	1 RB / 0 RB Offset
		19965 to 20385	19965, 20175, 20385	3 MHz	QPSK	1 RB / 0 RB Offset
-	Conducted	19975 to 20375	19975, 20175, 20375	5 MHz	QPSK	1 RB / 0 RB Offset
	Emission	20000 to 20350	20000, 20175, 20350	10 MHz	QPSK	1 RB / 0 RB Offset
		20025 to 20325	20025, 20175, 20325	15 MHz	QPSK	1 RB / 0 RB Offset
	Dodiete -	20050 to 20300	20050, 20175, 20300	20 MHz	QPSK	1 RB / 0 RB Offset
-	Radiated Emission	20050 to 20300	20050, 20175, 20300	20 MHz	QPSK	1 RB / 0 RB Offset

Note: This device was tested under all bandwidths, RB configurations and modulations. The worst case was found in QPSK modulation.

LTE Band 13

EUT Configure Mode	Test Item	Available Channel	Tested Channel	Channel Bandwidth	Modulation	Mode	
	ERP	23205 to 23255	23205, 23230, 23255	5 MHz	QPSK, 16QAM	1 RB / 0 RB Offset	
-	EKP	23230	23230	10 MHz	QPSK, 16QAM	1 RB / 0 RB Offset	
	Frequency	23205 to 23255	23205, 23255	5 MHz	QPSK	1 RB / 0 RB Offset	
-	Stability	23230	23230	10 MHz	QPSK	1 RB / 0 RB Offset	
	Occupied	23205 to 23255	23205, 23230, 23255	5 MHz	QPSK, 16QAM	25 RB / 0 RB Offset	
-	Bandwidth	23230	23230	10 MHz	QPSK, 16QAM	50 RB / 0 RB Offset	
	Peak to	23205 to 23255	23205, 23230, 23255	5 MHz	QPSK, 16QAM	1 RB / 0 RB Offset	
-	Average Ratio	23230	23230	10 MHz	QPSK, 16QAM	1 RB / 0 RB Offset	
			23205	5 MHz	QPSK	1 RB / 0 RB Offset	
			23205 to 23255	20200	O IVII IZ	QI OIX	25 RB / 0 RB Offset
		20200 10 20200	23255	5 MHz	QPSK	1 RB / 24 RB Offset	
_	Band Edge		20200	J WII 12	QI OIL	25 RB / 0 RB Offset	
_	Dana Luge		23230	10 MHz	QPSK	1 RB / 0 RB Offset	
		23230	23230	TO IVII IZ	QI SIX	50 RB / 0 RB Offset	
		23230	23230	10 MHz	QPSK	1 RB / 49 RB Offset	
			23230	TO IVII IZ	QFSK	50 RB / 0 RB Offset	
	Conducted	23205 to 23255	23205, 23230, 23255	5 MHz	QPSK	1 RB / 0 RB Offset	
_	Emission	23230	23230	10 MHz	QPSK	1 RB / 0 RB Offset	
	Radiated	23230	23230	10 MHz	QPSK	1 RB / 0 RB Offset	
_	Emission	23230	23230	10 IVIDZ	U F3N	1 RB / 0 RB Offset	

Note: This device was tested under all bandwidths, RB configurations and modulations. The worst case was found in QPSK modulation.

Test Condition:

Test Item	Environmental Conditions	Input Power	Tested By
ERP / EIRP	25 deg. C, 65 % RH	7.6 Vdc	Karl Lee
Frequency Stability	25 deg. C, 65 % RH	7.6 Vdc	Carlos Chen
Occupied Bandwidth	25 deg. C, 65 % RH	7.6 Vdc	Carlos Chen
Band Edge	25 deg. C, 65 % RH	7.6 Vdc	Carlos Chen
Peak to Average Ratio	25 deg. C, 65 % RH	7.6 Vdc	Carlos Chen
Conducted Emission	25 deg. C, 65 % RH	7.6 Vdc	Carlos Chen
Radiated Emission	25 deg. C, 65 % RH	120 Vac, 60 Hz	Karl Lee / Harry Hsueh

3.4 EUT Operating Conditions

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 27 KDB 971168 D01 Power Meas License Digital Systems v02r02 ANSI/TIA/EIA-603-E 2016 ANSI 63.26-2015

Note: All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Output Power Measurement

4.1.1 Limits of Output Power Measurement

Fixed, mobile, and portable (hand-held) stations operating in the 1710–1755 MHz band are limited to 1 watt EIRP.

Portable stations (hand-held devices) operating in the 776-787 MHz band are limited to 3 watts ERP

4.1.2 Test Procedures

EIRP / ERP Measurement:

- a. All measurements were done at low, middle and high operational frequency range. RBW and VBW is 5 MHz for WCDMA and 10 MHz for LTE mode.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8 m (below or equal 1 GHz) and/or 1.5 m (above 1 GHz) height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G.
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power 2.15 dBi.

Conducted Power Measurement:

- a. The EUT was set up for the maximum power with LTE link data modulation and link up with simulator.
- b. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

4.1.3 Test Setup

EIRP / ERP Measurement:

<Radiated Emission below or equal 1 GHz>

<Radiated Emission above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

Conducted Power Measurement:

4.1.4 Test Results

Conducted Output Power (dBm)

					LTE Ban	nd 4				
					PSK				QAM	
BW	RB	RB	Low CH 20050	Mid CH 20175	High CH 20300	3GPP	Low CH 20050	Mid CH 20175	High CH 20300	3GPP
(MHz)	Size	Offset	1720.0	1732.5	1745.0	MPR	1720.0	1732.5	1745.0	MPR
			MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)
	1	0	23.22	23.17	23.15	0	22.17	22.12	22.10	1
	1	50	23.18	23.13	23.11	0	22.13	22.08	22.06	1
20	1 50	99	23.01 22.37	22.96 22.32	22.94 22.30	0	21.96 21.32	21.91 21.27	21.89 21.25	2
20	50	25	22.26	22.21	22.19	1	21.21	21.16	21.14	2
	50	50	22.12	22.07	22.05	1	21.07	21.02	21.00	2
	100	0	22.10	22.05	22.03	1	21.05	21.00	20.98	2
					PSK				QAM	
BW	RB	RB	Low CH 20025	Mid CH 20175	High CH 20325	3GPP	Low CH 20025	Mid CH 20175	High CH 20325	3GPP
(MHz)	Size	Offset	1717.5	1732.5	1747.5	MPR	1717.5	1732.5	1747.5	MPR
			MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)
	1	0	23.09	23.04	23.02	0	22.04	21.99	21.97	1
	1	37 74	23.05 22.88	23.00 22.83	22.98 22.81	0	22.00 21.83	21.95 21.78	21.93 21.76	1
15	36	0	22.00	22.03	22.01	1	21.03	21.76	21.70	2
13	36	19	22.13	22.08	22.06	1	21.08	21.03	21.01	2
	36	39	21.99	21.94	21.92	1	20.94	20.89	20.87	2
	75	0	21.97	21.92	21.90	1	20.92	20.87	20.85	2
					PSK				QAM	
BW	RB	RB	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP
(MHz)	Size	Offset	20000 1715.0	20175 1732.5	20350 1750.0	MPR	20000 1715.0	20175 1732.5	20350 1750.0	MPR
			MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)
	1	0	22.98	22.93	22.91	0	21.93	21.88	21.86	1
	1	24	22.94	22.89	22.87	0	21.89	21.84	21.82	1
10	1	49	22.77	22.72	22.70	0	21.72	21.67	21.65	2
10	25 25	0 12	22.13 22.02	22.08 21.97	22.06 21.95	1	21.08 20.97	21.03 20.92	21.01 20.90	2
	25	25	21.88	21.83	21.81	1	20.83	20.78	20.76	2
	50	0	21.86	21.81	21.79	1	20.81	20.76	20.74	2
					PSK				QAM	
BW	RB	RB	Low CH	Mid CH	High CH	3GPP	Low CH	Mid CH	High CH	3GPP
(MHz)	Size	Offset	19975 1712.5	20175 1732.5	20375 1752.5	MPR	19975 1712.5	20175 1732.5	20375 1752.5	MPR
			MHz	MHz	MHz	(dB)	MHz	MHz	MHz	(dB)
	1	0	22.89	22.84	22.82	0	21.84	21.79	21.77	1
	1	12	22.85	22.80	22.78	0	21.80	21.75	21.73	1
5	12	24 0	22.68 22.04	22.63 21.99	22.61 21.97	1	21.63	21.58	21.56 20.92	2
3	12						20.00	20 04		
						1	20.99	20.94		
	12	6 13	21.93 21.79	21.88 21.74	21.86 21.72	1	20.99 20.88 20.74	20.94 20.83 20.69	20.92 20.81 20.67	2 2
	12 25	6	21.93	21.88	21.86		20.88	20.83	20.81	2
		6 13	21.93 21.79 21.77	21.88 21.74 21.72 QF	21.86 21.72 21.70	1	20.88 20.74 20.72	20.83 20.69 20.67	20.81 20.67 20.65	2 2
BW		6 13 0	21.93 21.79 21.77 Low CH	21.88 21.74 21.72 QF Mid CH	21.86 21.72 21.70 PSK High CH	1	20.88 20.74 20.72	20.83 20.69 20.67 Mid CH	20.81 20.67 20.65 2AM High CH	2 2
BW (MHz)	25	6 13 0	21.93 21.79 21.77	21.88 21.74 21.72 QF	21.86 21.72 21.70	1 1 3GPP MPR	20.88 20.74 20.72	20.83 20.69 20.67	20.81 20.67 20.65	2 2 2 3GPP MPR
	25 RB Size	6 13 0 RB Offset	21.93 21.79 21.77 Low CH 19965 1711.5 MHz	21.88 21.74 21.72 QF Mid CH 20175 1732.5 MHz	21.86 21.72 21.70 25K High CH 20385 1753.5 MHz	1 1 3GPP MPR (dB)	20.88 20.74 20.72 Low CH 19965 1711.5 MHz	20.83 20.69 20.67 160 Mid CH 20175 1732.5 MHz	20.81 20.67 20.65 2AM High CH 20385 1753.5 MHz	2 2 2 2 3GPP MPR (dB)
	25 RB Size	6 13 0 RB Offset	21.93 21.79 21.77 21.77 Low CH 19965 1711.5 MHz 22.77	21.88 21.74 21.72 QF Mid CH 20175 1732.5 MHz 22.72	21.86 21.72 21.70 21.70 21.70 21.70 20.85 High CH 20.385 1753.5 MHz 22.70	1 1 3GPP MPR (dB)	20.88 20.74 20.72 Low CH 19965 1711.5 MHz 21.72	20.83 20.69 20.67 Mid CH 20175 1732.5 MHz 21.67	20.81 20.67 20.65 20.65 20.65 20.65 20.65 20.65 20.65 20.65 20.65	2 2 2 2 3GPP MPR (dB)
	25 RB Size 1 1	6 13 0 RB Offset	21.93 21.79 21.77 21.77 Low CH 19965 1711.5 MHz 22.77 22.73	21.88 21.74 21.72 QF Mid CH 20175 1732.5 MHz 22.72 22.68	21.86 21.72 21.70 21.70 21.70 21.70 21.70 21.70 21.70 22.70 22.66	1 1 3GPP MPR (dB) 0	20.88 20.74 20.72 Low CH 19965 1711.5 MHz 21.72 21.68	20.83 20.69 20.67 Mid CH 20175 1732.5 MHz 21.67 21.63	20.81 20.67 20.65 20.65 20.85 High CH 20385 1753.5 MHz 21.65 21.61	2 2 2 2 3GPP MPR (dB) 1
(MHz)	25 RB Size 1 1 1	6 13 0 RB Offset	21.93 21.79 21.77 Low CH 19965 1711.5 MHz 22.77 22.73 22.56	21.88 21.74 21.72 QF Mid CH 20175 1732.5 MHz 22.72 22.68 22.51	21.86 21.72 21.70 21.70 21.70 20.85 High CH 20.385 1753.5 MHz 22.70 22.66 22.49	1 1 3GPP MPR (dB) 0 0	20.88 20.74 20.72 Low CH 19965 1711.5 MHz 21.72 21.68 21.51	20.83 20.69 20.67 Mid CH 20175 1732.5 MHz 21.67 21.63 21.46	20.81 20.67 20.65 20.65 20.85 1753.5 MHz 21.65 21.61 21.44	2 2 2 3GPP MPR (dB) 1 1
	25 RB Size 1 1	6 13 0 RB Offset 0 7 14	21.93 21.79 21.77 21.77 Low CH 19965 1711.5 MHz 22.77 22.73 22.56 21.92	21.88 21.74 21.72 QF Mid CH 20175 1732.5 MHz 22.72 22.68 22.51 21.87	21.86 21.72 21.70 21.70 21.70 20.385 1753.5 MHz 22.70 22.66 22.49 21.85	1 1 3GPP MPR (dB) 0	20.88 20.74 20.72 Low CH 19965 1711.5 MHz 21.72 21.68 21.51 20.87	20.83 20.69 20.67 Mid CH 20175 1732.5 MHz 21.67 21.63	20.81 20.67 20.65 2AM High CH 20385 1753.5 MHz 21.65 21.61 21.44 20.80	2 2 2 3GPP MPR (dB) 1 1 1 2
(MHz)	25 RB Size 1 1 1 8	6 13 0 RB Offset	21.93 21.79 21.77 Low CH 19965 1711.5 MHz 22.77 22.73 22.56	21.88 21.74 21.72 QF Mid CH 20175 1732.5 MHz 22.72 22.68 22.51	21.86 21.72 21.70 21.70 21.70 20.85 High CH 20.385 1753.5 MHz 22.70 22.66 22.49	3GPP MPR (dB) 0 0 0 1	20.88 20.74 20.72 Low CH 19965 1711.5 MHz 21.72 21.68 21.51	20.83 20.69 20.67 Mid CH 20175 1732.5 MHz 21.67 21.63 21.46 20.82	20.81 20.67 20.65 20.65 20.85 1753.5 MHz 21.65 21.61 21.44	2 2 2 3GPP MPR (dB) 1 1
(MHz)	25 RB Size 1 1 1 8 8	6 13 0 RB Offset	21.93 21.79 21.77 21.77 Low CH 19965 1711.5 MHz 22.77 22.73 22.56 21.92 21.81	21.88 21.74 21.72 QF Mid CH 20175 1732.5 MHz 22.72 22.68 22.51 21.87 21.76	21.86 21.72 21.70 21.70 21.70 20.385 1753.5 MHz 22.70 22.66 22.49 21.85 21.74	3GPP MPR (dB) 0 0 0 1 1 1	20.88 20.74 20.72 Low CH 19965 1711.5 MHz 21.72 21.68 21.51 20.87 20.76	20.83 20.69 20.67 Mid CH 20175 1732.5 MHz 21.67 21.63 21.46 20.82 20.71	20.81 20.67 20.65 20.65 20.65 20.65 20.65 20.65 21.65 21.65 21.61 21.44 20.80 20.69	2 2 2 3GPP MPR (dB) 1 1 1 2
(MHz)	25 RB Size 1 1 1 8 8 8 8	6 13 0 RB Offset 0 7 14 0 3	21.93 21.79 21.77 21.77 Low CH 19965 1711.5 MHz 22.77 22.73 22.56 21.92 21.81 21.67 21.65	21.88 21.74 21.72 QF Mid CH 20175 1732.5 MHz 22.72 22.68 22.51 21.87 21.76 21.62 21.60	21.86 21.72 21.70 SK High CH 20385 1753.5 MHz 22.70 22.66 22.49 21.85 21.74 21.60 21.58	1 1 3GPP MPR (dB) 0 0 1 1 1	20.88 20.74 20.72 Low CH 19965 1711.5 MHz 21.72 21.68 21.51 20.87 20.76 20.62 20.60	20.83 20.69 20.67 160 Mid CH 20175 1732.5 MHz 21.67 21.63 21.46 20.82 20.71 20.57 20.55	20.81 20.67 20.65 20.65 20.65 20.65 20.65 21.65 21.61 21.44 20.80 20.69 20.55 20.53	2 2 2 3GPP MPR (dB) 1 1 1 2 2
(MHz) 3	25 RB Size 1 1 1 1 8 8 8 8 15	6 13 0 RB Offset 0 7 14 0 3 7 0	21.93 21.79 21.77 Low CH 19965 1711.5 MHz 22.77 22.73 22.56 21.92 21.81 21.67 21.65	21.88 21.74 21.72 QF Mid CH 20175 1732.5 MHz 22.72 22.68 22.51 21.87 21.76 21.62 21.60 QF	21.86 21.72 21.70 SK High CH 20385 1753.5 MHz 22.70 22.66 22.49 21.85 21.74 21.60 21.58	1 1 3GPP MPR (dB) 0 0 0 1 1 1 1	20.88 20.74 20.72 Low CH 19965 1711.5 MHz 21.72 21.68 21.51 20.87 20.76 20.62 20.60	20.83 20.69 20.67 Mid CH 20175 1732.5 MHz 21.67 21.63 21.46 20.82 20.71 20.57 20.55	20.81 20.67 20.65 20.65 20.85 1753.5 MHz 21.65 21.61 21.44 20.80 20.69 20.55 20.53	2 2 2 3GPP MPR (dB) 1 1 1 2 2 2 2
(MHz) 3	25 RB Size 1 1 1 8 8 8 15	6 13 0 RB Offset 0 7 14 0 3 7	21.93 21.79 21.77 21.77 Low CH 19965 1711.5 MHz 22.77 22.73 22.56 21.92 21.81 21.67 21.65	21.88 21.74 21.72 QF Mid CH 20175 1732.5 MHz 22.72 22.68 22.51 21.87 21.76 21.62 21.60	21.86 21.72 21.70 SK High CH 20385 1753.5 MHz 22.70 22.66 22.49 21.85 21.74 21.60 21.58	1 1 3GPP MPR (dB) 0 0 0 1 1 1 1 1 1	20.88 20.74 20.72 Low CH 19965 1711.5 MHz 21.72 21.68 21.51 20.87 20.76 20.62 20.60	20.83 20.69 20.67 160 Mid CH 20175 1732.5 MHz 21.67 21.63 21.46 20.82 20.71 20.57 20.55	20.81 20.67 20.65 20.65 20.65 20.65 20.65 21.65 21.61 21.44 20.80 20.69 20.55 20.53	2 2 2 3GPP MPR (dB) 1 1 1 2 2 2 2 2 2
(MHz) 3	25 RB Size 1 1 1 1 8 8 8 8 15 RB Size	6 13 0 RB Offset	21.93 21.79 21.77 Low CH 19965 1711.5 MHz 22.77 22.73 22.56 21.92 21.81 21.67 21.65 Low CH 19957 1710.7 MHz	21.88 21.74 21.72 QF Mid CH 20175 1732.5 MHz 22.72 22.68 22.51 21.87 21.76 21.60 QF Mid CH 20175 1732.5 MHz	21.86 21.72 21.70 SK High CH 20385 1753.5 MHz 22.70 22.66 22.49 21.85 21.74 21.60 21.58 SK High CH 20393 1754.3 MHz	1 1 3GPP MPR (dB) 0 0 0 1 1 1 1 1 1 3GPP MPR (dB)	20.88 20.74 20.72 Low CH 19965 1711.5 MHz 21.72 21.68 21.51 20.87 20.76 20.62 20.60 Low CH 19957 1710.7 MHz	20.83 20.69 20.67 160 Mid CH 20175 1732.5 MHz 21.67 21.63 21.46 20.82 20.71 20.57 20.55 160 Mid CH 20175 1732.5 Mid CH 20175 1732.5	20.81 20.67 20.65 20.65 20.85 1753.5 MHz 21.65 21.61 21.44 20.80 20.69 20.55 20.53 20.69 20.753 20.753 20.754 20.754.3 MHz	2 2 2 3GPP MPR (dB) 1 1 1 2 2 2 2 2 2 2 2 2
(MHz) 3	25 RB Size 1 1 1 8 8 8 8 15 RB Size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 13 0 RB Offset 0 7 14 0 3 7 0	21.93 21.79 21.77 Low CH 19965 1711.5 MHz 22.77 22.73 22.56 21.92 21.81 21.67 21.65 Low CH 19957 1710.7 MHz	21.88 21.74 21.72 Mid CH 20175 1732.5 MHz 22.72 22.68 22.51 21.87 21.76 21.62 21.60 Mid CH 20175 1732.5 MHz 22.64	21.86 21.72 21.70 SK High CH 20385 1753.5 MHz 22.70 22.66 22.49 21.85 21.74 21.60 21.58 SK High CH 20393 1754.3 MHz	1 1 3GPP MPR (dB) 0 0 0 1 1 1 1 1 1 1 1 0	20.88 20.74 20.72 Low CH 19965 1711.5 MHz 21.72 21.68 21.51 20.87 20.76 20.62 20.60 Low CH 19957 1710.7 MHz 21.64	20.83 20.69 20.67 160 Mid CH 20175 1732.5 MHz 21.67 21.63 21.46 20.82 20.71 20.57 20.55 Mid CH 20175 1732.5 MHz 21.59	20.81 20.67 20.65 20.65 20.85 1753.5 MHz 21.65 21.61 21.44 20.80 20.69 20.55 20.55 20.53 20.69 20.55 20.55 20.53 20.69	2 2 2 2 3GPP (dB) 1 1 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 1 1
(MHz) 3	25 RB Size 1 1 1 8 8 8 8 15 RB Size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 13 0 RB Offset 0 7 14 0 3 7 0 RB Offset	21.93 21.79 21.77 Low CH 19965 1711.5 MHz 22.77 22.73 22.56 21.92 21.81 21.67 21.65 Low CH 19957 1710.7 MHz 22.69 22.65	21.88 21.74 21.72 Mid CH 20175 1732.5 MHz 22.72 22.68 22.51 21.87 21.76 21.62 21.60 Mid CH 20175 1732.5 MHz 22.64 22.64	21.86 21.72 21.70 SK High CH 20385 1753.5 MHz 22.70 22.66 22.49 21.85 21.74 21.60 21.58 SK High CH 20393 1754.3 MHz 22.62 22.58	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20.88 20.74 20.72 Low CH 19965 1711.5 MHz 21.72 21.68 21.51 20.87 20.76 20.62 20.60 Low CH 19957 1710.7 MHz 21.64 21.64	20.83 20.69 20.67 160 Mid CH 20175 1732.5 MHz 21.63 21.46 20.82 20.71 20.57 20.55 Mid CH 20175 1732.5 MHz 21.59 21.59	20.81 20.67 20.65 20.65 20.65 20.65 21.61 21.44 20.80 20.69 20.55 20.53 20.69 20.55 20.53 20.69 20.55 20.53	2 2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 2 1
(MHz) 3 BW (MHz)	25 RB Size 1 1 1 8 8 8 8 15 RB Size 1 1 1 1 1 1 1 1	6 13 0 RB Offset 0 7 14 0 3 7 0 RB Offset	21.93 21.79 21.77 Low CH 19965 1711.5 MHz 22.77 22.73 22.56 21.92 21.81 21.67 21.65 Low CH 19957 1710.7 MHz 22.69 22.65 22.48	21.88 21.74 21.72 Mid CH 20175 1732.5 MHz 22.72 22.68 22.51 21.87 21.76 21.62 21.60 QF Mid CH 20175 1732.5 MHz 22.64 22.64 22.64	21.86 21.72 21.70 SK High CH 20385 1753.5 MHz 22.70 22.66 22.49 21.85 21.74 21.60 21.58 SK High CH 20393 1754.3 MHz 22.62 22.58 22.49	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20.88 20.74 20.72 Low CH 19965 1711.5 MHz 21.72 21.68 21.51 20.87 20.76 20.62 20.60 Low CH 19957 1710.7 MHz 21.64 21.64 21.60 21.43	20.83 20.69 20.67 160 Mid CH 20175 1732.5 MHz 21.67 21.63 21.46 20.82 20.71 20.57 20.55 Mid CH 20175 1732.5 MHz 21.59 21.59 21.38	20.81 20.67 20.65 20.65 20.65 20.65 20.65 21.65 21.61 21.44 20.80 20.69 20.55 20.53 20.69 20.55 20.53 20.69 20.55 20.53 20.69 20.55 20.53	2 2 2 3GPP MPR (dB) 1 1 1 2 2 2 2 2 2 3GPP MPR (dB) 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1
(MHz) 3	25 RB Size 1 1 1 8 8 8 8 15 RB Size 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 13 0 RB Offset 0 7 14 0 3 7 0 RB Offset	21.93 21.79 21.77 Low CH 19965 1711.5 MHz 22.77 22.73 22.56 21.92 21.81 21.67 21.65 Low CH 19957 1710.7 MHz 22.69 22.65	21.88 21.74 21.72 OF Mid CH 20175 1732.5 MHz 22.72 22.68 22.51 21.87 21.76 21.62 21.60 OF Mid CH 20175 1732.5 MHz 22.64 22.64 22.60 22.43 22.52	21.86 21.72 21.70 SK High CH 20385 1753.5 MHz 22.70 22.66 22.49 21.85 21.74 21.60 21.58 SK High CH 20393 1754.3 MHz 22.62 22.58	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20.88 20.74 20.72 Low CH 19965 1711.5 MHz 21.72 21.68 21.51 20.87 20.76 20.62 20.60 Low CH 19957 1710.7 MHz 21.64 21.64	20.83 20.69 20.67 160 Mid CH 20175 1732.5 MHz 21.67 21.63 21.46 20.82 20.71 20.57 20.55 160 Mid CH 20175 1732.5 MHz 21.55 21.38 21.46	20.81 20.67 20.65 20.65 20.65 20.65 21.61 21.44 20.80 20.69 20.55 20.53 20.69 20.55 20.53 20.69 20.55 20.53	2 2 2 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 2 1
(MHz) 3 BW (MHz)	25 RB Size 1 1 1 8 8 8 15 RB Size 1 1 1 1 1 1 1 1 3	6 13 0 RB Offset 0 7 14 0 3 7 0 RB Offset 0 2 5 0	21.93 21.79 21.77 Low CH 19965 1711.5 MHz 22.77 22.73 22.56 21.92 21.81 21.67 21.65 Low CH 19957 1710.7 MHz 22.69 22.65 22.48 22.57	21.88 21.74 21.72 Mid CH 20175 1732.5 MHz 22.72 22.68 22.51 21.87 21.76 21.62 21.60 QF Mid CH 20175 1732.5 MHz 22.64 22.64 22.64	21.86 21.72 21.70 21.70 21.70 21.70 21.70 22.66 22.49 21.85 21.74 21.60 21.58 21.74 21.60 21.58 22.49 21.85 21.74 21.60 21.58 22.49 21.58 22.41 22.50	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20.88 20.74 20.72 Low CH 19965 1711.5 MHz 21.72 21.68 21.51 20.87 20.76 20.62 20.60 Low CH 19957 1710.7 MHz 21.64 21.60 21.43 21.51	20.83 20.69 20.67 160 Mid CH 20175 1732.5 MHz 21.67 21.63 21.46 20.82 20.71 20.57 20.55 Mid CH 20175 1732.5 MHz 21.59 21.59 21.38	20.81 20.67 20.65 20.65 20.65 20.65 20.65 21.65 21.65 21.64 20.80 20.69 20.55 20.53 20.69 20.69 20.55 20.53 20.69 20.55	2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

					LTE Ban	d 13					
				QP	PSK			16QAM			
BW (MHz)	RB Size	RB Offset		Mid CH 23230 782.0 MHz		3GPP MPR (dB)		Mid CH 23230 782.0 MHz		3GPP MPR (dB)	
	1	0		21.88		0		20.98		1	
	1	24		21.44		0		20.91		1	
	1	49		21.47		0		20.53		1	
10	25	0		20.50		1		19.61		2	
	25	12		20.49		1		19.54		2	
	25	25		20.47		1		19.59		2	
	50	0		20.4		1		19.61		2	
				QPSK				16QAM			
BW (MHz)	RB Size	RB Offset	Low CH 23205 779.5 MHz	Mid CH 23230 782.0 MHz	High CH 23255 784.5 MHz	3GPP MPR (dB)	Low CH 23205 779.5 MHz	Mid CH 23230 782.0 MHz	High CH 23255 784.5 MHz	3GPP MPR (dB)	
	1	0	21.43	21.76	21.53	0	20.64	20.93	20.60	1	
	1	12	21.36	21.56	21.61	0	20.47	20.86	20.95	1	
	1	24	21.38	21.47	21.46	0	20.74	20.60	20.79	1	
5	12	0	20.51	20.53	20.46	1	19.32	19.53	19.51	2	
	12	6	20.46	20.64	20.50	1	19.46	19.53	19.46	2	
	12	13	20.39	20.42	20.51	1	19.53	19.51	19.52	2	
	25	0	20.55	20.40	20.47	1	19.68	19.42	19.49	2	

ERP Power (dBm)

EKF FO	wer (dBm)			LTE Band 13								
	Channel Bandwidth: 5 MHz / QPSK											
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	ERP (dBm)	ERP (mW)	Polarization (H/V)					
	23205	779.5	-8.09	32.771	22.53	179.10						
	23230	782.0	-8.12	32.741	22.47	176.64	Н					
Y	23255	784.5	-8.12	32.854	22.58	181.30						
r	23205	779.5	-13.80	32.5	16.55	45.19						
	23230	782.0	-13.87	32.52	16.50	44.67	V					
	23255	784.5	-13.86	32.62	16.61	45.81						
			Channel Ba	ndwidth: 5 MHz	/ 16QAM							
	23205	779.5	-9.14	32.771	21.48	140.64						
	23230	782.0	-9.11	32.741	21.48	140.64	Н					
V	23255	784.5	-9.15	32.854	21.55	143.02						
Υ	23205	779.5	-14.92	32.5	15.43	34.91						
	23230	782.0	-14.82	32.52	15.55	35.89	V					
	23255	784.5	-14.90	32.62	15.57	36.06						

	LTE Band 13									
			Channel Ba	ndwidth: 10 MHz	/ QPSK					
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	ERP (dBm)	ERP (mW)	Polarization (H/V)			
Υ	23230	782.0	-7.91	32.737	22.68	185.23	Н			
Ť	23230	782.0	-13.72	32.52	16.65	46.24	V			
		(Channel Bar	ndwidth: 10 MHz	/ 16QAM					
Y	23230	782.0	-8.95	32.737	21.64	145.78	Н			
Y	23230	782.0	-14.71	32.52	15.66	36.81	V			

EIRP Power (dBm)

	wer (aBm)			LTE Band 4							
Channel Bandwidth: 1.4 MHz / QPSK											
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)				
	19957	1710.7	-16.97	42.49	25.52	356.04					
	20175	1732.5	-16.80	42.33	25.53	357.03	Н				
Y	20393	1754.3	-16.59	42.10	25.51	355.63					
Y	19957	1710.7	-21.42	42.99	21.57	143.55					
	20175	1732.5	-21.25	42.74	21.49	140.93	V				
	20393	1754.3	-21.73	42.21	20.48	111.69					
		C	hannel Ban	dwidth: 1.4 MHz	z / 16QAM						
	19957	1710.7	-18.06	42.49	24.43	277.01					
	20175	1732.5	-17.75	42.33	24.58	286.88	Н				
V	20393	1754.3	-17.59	42.10	24.51	282.49					
Υ	19957	1710.7	-22.54	42.99	20.45	110.92					
	20175	1732.5	-22.26	42.74	20.48	111.69	V				
	20393	1754.3	-21.72	42.21	20.49	111.94					

				LTE Band 4							
Channel Bandwidth: 3 MHz / QPSK											
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)				
	19965	1711.5	-16.90	42.49	25.59	361.83					
	20175	1732.5	-16.84	42.33	25.49	353.75	Н				
Y	20385	1753.5	-16.55	42.10	25.55	358.92					
Y	19965	1711.5	-21.43	42.99	21.56	143.22					
	20175	1732.5	-21.25	42.74	21.49	140.93	V				
	20385	1753.5	-20.69	42.21	21.52	141.91					
			Channel Ba	ndwidth: 3 MHz	/ 16QAM						
	19965	1711.5	-17.99	42.49	24.50	281.51					
	20175	1732.5	-17.82	42.33	24.51	282.29	Н				
\ \ _{\\}	20385	1753.5	-17.52	42.10	24.58	287.08					
Y	19965	1711.5	-22.47	42.99	20.52	112.72					
	20175	1732.5	-22.34	42.74	20.40	109.65	V				
	20385	1753.5	-21.78	42.21	20.43	110.41					

				LTE Band 4							
Channel Bandwidth: 5 MHz / QPSK											
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)				
	19975	1712.5	-16.95	42.49	25.54	357.68					
	20175	1732.5	-16.77	42.33	25.56	359.50	Н				
Y	20375	1752.5	-16.58	42.10	25.52	356.45					
Y	19975	1712.5	-21.46	42.99	21.53	142.23					
	20175	1732.5	-21.26	42.74	21.48	140.60	V				
	20375	1752.5	-20.67	42.21	21.54	142.56					
			Channel Ba	ndwidth: 5 MHz	/ 16QAM						
	19975	1712.5	-18.04	42.49	24.45	278.29					
	20175	1732.5	-17.74	42.33	24.59	287.54	Н				
Y	20375	1752.5	-17.56	42.10	24.54	284.45					
Y	19975	1712.5	-22.43	42.99	20.56	113.76					
	20175	1732.5	-22.24	42.74	20.50	112.20	V				
	20375	1752.5	-21.68	42.21	20.53	112.98					

				LTE Band 4							
Channel Bandwidth: 10 MHz / QPSK											
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)				
	20000	1715.0	-16.89	42.49	25.60	362.66					
	20175	1732.5	-16.74	42.33	25.59	361.99	Н				
Y	20350	1750.0	-16.51	42.10	25.59	362.24					
ĭ	20000	1715.0	-21.43	42.99	21.56	143.22					
	20175	1732.5	-21.21	42.74	21.53	142.23	V				
	20350	1750.0	-20.68	42.21	21.53	142.23					
		(Channel Bar	ndwidth: 10 MHz	/ 16QAM						
	20000	1715.0	-17.98	42.49	24.51	282.16					
	20175	1732.5	-17.80	42.33	24.53	283.60	Н				
V	20350	1750.0	-17.54	42.10	24.56	285.76					
Y	20000	1715.0	-22.44	42.99	20.55	113.50					
	20175	1732.5	-22.21	42.74	20.53	112.98	V				
	20350	1750.0	-21.68	42.21	20.53	112.98					

				LTE Band 4							
Channel Bandwidth: 15 MHz / QPSK											
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)				
	20025	1717.5	-16.92	42.49	25.57	360.16					
	20175	1732.5	-16.74	42.33	25.59	361.99	Н				
Y	20325	1747.5	-16.54	42.10	25.56	359.75					
Ť	20025	1717.5	-21.43	42.99	21.56	143.22					
	20175	1732.5	-21.25	42.74	21.49	140.93	V				
	20325	1747.5	-20.57	42.21	21.64	145.88					
		(Channel Bar	ndwidth: 15 MHz	/ 16QAM						
	20025	1717.5	-17.90	42.49	24.59	287.41					
	20175	1732.5	-17.82	42.33	24.51	282.29	Н				
V	20325	1747.5	-17.59	42.10	24.51	282.49					
Y	20025	1717.5	-22.46	42.99	20.53	112.98					
	20175	1732.5	-22.17	42.74	20.57	114.02	V				
	20325	1747.5	-21.68	42.21	20.53	112.98					

	LTE Band 4										
Channel Bandwidth: 20 MHz / QPSK											
Plane	Channel	Frequency (MHz)	LVL (dBm)	Correction Factor (dB)	EIRP (dBm)	EIRP (mW)	Polarization (H/V)				
	20050	1720.0	-16.82	42.49	25.67	368.55					
	20175	1732.5	-16.74	42.33	25.59	361.99	Н				
Y	20300	1745.0	-16.49	42.10	25.61	363.92					
Y	20050	1720.0	-21.42	42.99	21.57	143.55					
	20175	1732.5	-21.28	42.74	21.46	139.96	V				
	20300	1745.0	-20.53	42.21	21.68	147.23					
		(Channel Bar	ndwidth: 20 MHz	/ 16QAM						
	20050	1720.0	-17.86	42.49	24.63	290.07					
	20175	1732.5	-17.72	42.33	24.61	288.87	Н				
Y	20300	1745.0	-17.53	42.10	24.57	286.42					
Y	20050	1720.0	-22.47	42.99	20.52	112.72					
	20175	1732.5	-22.12	42.74	20.62	115.35	V				
	20300	1745.0	-21.60	42.21	20.61	115.08					

4.2 Frequency Stability Measurement

4.2.1 Limits of Frequency Stability Measurement

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

4.2.2 Test Procedure

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ± 0.5 $^{\circ}$ C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

Note: The frequency error was recorded frequency error from the communication simulator.

4.2.3 Test Setup

4.2.4 Test Results

Frequency Error vs. Voltage

Voltage					
(Volts)	Law Channel		Limit (ppm)		
(2 32)	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
7.6	1710.700002	0.001	1754.300001	0.001	2.5
6.8	1710.700001	0.001	1754.300003	0.001	2.5
8.7	1710.700003	0.002	1754.300001	0.001	2.5

Note: The applicant defined the normal working voltage of the battery is from 6.8 Vdc to 8.7 Vdc.

	or vs. remperature				
		Channel Band	width: 1.4 MHz		
Temp. (℃)	Low C	hannel	High C	hannel	Limit (ppm)
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
-30	1710.700003	0.002	1754.300004	0.002	2.5
-20	1710.700001	0.001	1754.300002	0.001	2.5
-10	1710.700003	0.002	1754.300002	0.001	2.5
0	1710.700002	0.001	1754.300002	0.001	2.5
10	1710.699999	-0.001	1754.299998	-0.001	2.5
20	1710.699999	-0.001	1754.299999	-0.001	2.5
30	1710.699996	-0.002	1754.299997	-0.002	2.5
40	1710.699997	-0.002	1754.299998	-0.001	2.5
50	1710.699996	-0.002	1754.299998	-0.001	2.5

Voltage					
(Volts)	Low Channel		High Channel		Limit (ppm)
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
7.6	1711.500001	0.001	1753.500003	0.002	2.5
6.8	1711.500002	0.001	1753.500004	0.002	2.5
8.7	1711.500001	0.001	1753.500001	0.001	2.5

Note: The applicant defined the normal working voltage of the battery is from 6.8 Vdc to 8.7 Vdc.

		Channel Band	dwidth: 3 MHz		
Temp. (°C)	Low C	hannel	High C	hannel	Limit (ppm)
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
-30	1711.500004	0.002	1753.500003	0.002	2.5
-20	1711.500003	0.002	1753.500003	0.002	2.5
-10	1711.500003	0.002	1753.500001	0.001	2.5
0	1711.500002	0.001	1753.500002	0.001	2.5
10	1711.499997	-0.002	1753.499997	-0.002	2.5
20	1711.499996	-0.002	1753.499996	-0.002	2.5
30	1711.499998	-0.001	1753.499998	-0.001	2.5
40	1711.499997	-0.002	1753.499997	-0.002	2.5
50	1711.499997	-0.002	1753.499999	-0.001	2.5

Voltage					
(Volts)	Low C	hannel	High Channel		Limit (ppm)
(12332)	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
7.6	1712.500001	0.001	1752.500003	0.002	2.5
6.8	1712.500003	0.002	1752.500003	0.001	2.5
8.7	1712.500003	0.002	1752.500002	0.001	2.5

Note: The applicant defined the normal working voltage of the battery is from 6.8 Vdc to 8.7 Vdc.

·					
		Channel Band	dwidth: 5 MHz		
Temp. (℃)	Low C	hannel	High C	hannel	Limit (ppm)
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
-30	1712.500001	0.001	1752.500003	0.002	2.5
-20	1712.500004	0.002	1752.500002	0.001	2.5
-10	1712.500001	0.001	1752.500003	0.002	2.5
0	1712.500003	0.002	1752.500004	0.002	2.5
10	1712.499998	-0.001	1752.499997	-0.002	2.5
20	1712.499997	-0.002	1752.499998	-0.001	2.5
30	1712.499997	-0.002	1752.499996	-0.002	2.5
40	1712.499996	-0.002	1752.499996	-0.002	2.5
50	1712.499997	-0.002	1752.499999	-0.001	2.5

Voltage		Channel Bandwidth: 10 MHz					
(Volts)	Low Channel High Channel		Limit (ppm)				
(12332)	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)			
7.6	1715.000004	0.002	1750.000001	0.001	2.5		
6.8	1715.000001	0.001	1750.000003	0.002	2.5		
8.7	1715.000001	0.001	1750.000003	0.002	2.5		

Note: The applicant defined the normal working voltage of the battery is from 6.8 Vdc to 8.7 Vdc.

·	·				
		Channel Band	width: 10 MHz		
Temp. (℃)	Low C	hannel	High C	hannel	Limit (ppm)
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
-30	1715.000003	0.002	1750.000002	0.001	2.5
-20	1715.000003	0.002	1750.000001	0.001	2.5
-10	1715.000003	0.002	1750.000004	0.002	2.5
0	1715.000003	0.002	1750.000001	0.001	2.5
10	1714.999997	-0.002	1749.999999	-0.001	2.5
20	1714.999998	-0.001	1749.999999	-0.001	2.5
30	1714.999998	-0.001	1749.999997	-0.002	2.5
40	1714.999997	-0.002	1749.999997	-0.002	2.5
50	1714.999999	-0.001	1749.999999	-0.001	2.5

Voltage		Channel Band	width: 15 MHz		
(Volts)	Low Channel High Channel		Limit (ppm)		
(1033)	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
7.6	1717.500002	0.001	1747.500004	0.002	2.5
6.8	1717.500002	0.001	1747.500004	0.002	2.5
8.7	1717.500004	0.002	1747.500001	0.001	2.5

Note: The applicant defined the normal working voltage of the battery is from 6.8 Vdc to 8.7 Vdc.

		Channel Band	width: 15 MHz		
Temp. (℃)	Low C	hannel	High C	hannel	Limit (ppm)
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
-30	1717.500004	0.002	1747.500001	0.001	2.5
-20	1717.500003	0.002	1747.500001	0.001	2.5
-10	1717.500003	0.002	1747.500001	0.001	2.5
0	1717.500001	0.001	1747.500002	0.001	2.5
10	1717.499998	-0.001	1747.499996	-0.002	2.5
20	1717.499996	-0.002	1747.499996	-0.002	2.5
30	1717.499996	-0.002	1747.499999	-0.001	2.5
40	1717.499998	-0.001	1747.499998	-0.001	2.5
50	1717.499997	-0.002	1747.499996	-0.002	2.5

Voltage		Channel Bandwidth: 20 MHz					
(Volts)	Low Channel High Channel		hannel	Limit (ppm)			
(1033)	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)			
7.6	1720.000003	0.002	1745.000001	0.001	2.5		
6.8	1720.000004	0.002	1745.000002	0.001	2.5		
8.7	1720.000002	0.001	1745.000002	0.001	2.5		

Note: The applicant defined the normal working voltage of the battery is from 6.8 Vdc to 8.7 Vdc.

		Channel Band	width: 20 MHz		
Temp. (℃)	Low C	hannel	High C	hannel	Limit (ppm)
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
-30	1720.000003	0.002	1745.000002	0.001	2.5
-20	1720.000004	0.002	1745.000004	0.002	2.5
-10	1720.000003	0.002	1745.000003	0.002	2.5
0	1720.000004	0.002	1745.000004	0.002	2.5
10	1719.999997	-0.002	1744.999997	-0.002	2.5
20	1719.999997	-0.002	1744.999996	-0.002	2.5
30	1719.999998	-0.001	1744.999997	-0.002	2.5
40	1719.999997	-0.002	1744.999997	-0.002	2.5
50	1719.999996	-0.002	1744.999998	-0.001	2.5

Voltage					
(Volts)	Low C	hannel	High C	Limit (ppm)	
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
7.6	779.500002	0.003	784.500003	0.003	2.5
6.8	779.500004	0.005	784.500004	0.005	2.5
8.7	779.500003	0.004	784.500004	0.005	2.5

Note: The applicant defined the normal working voltage of the battery is from 6.8 Vdc to 8.7 Vdc.

	or vs. remperature				
Temp. (℃)	Low C	hannel	High C	hannel	Limit (ppm)
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)	
-30	779.500002	0.003	784.500002	0.002	2.5
-20	779.500002	0.002	784.500002	0.002	2.5
-10	779.500003	0.003	784.500002	0.002	2.5
0	779.500003	0.004	784.500004	0.005	2.5
10	779.499997	-0.003	784.499998	-0.003	2.5
20	779.499999	-0.001	784.499996	-0.005	2.5
30	779.499997	-0.004	784.499998	-0.002	2.5
40	779.499996	-0.005	784.499998	-0.002	2.5
50	779.499997	-0.004	784.499996	-0.005	2.5

Voltage (Volts)	LTE Ba			
	Channel Band	Limit (ppm)		
(VOILS)	Frequency (MHz) Frequency Error (ppm			
7.6	782.000003	0.004	2.5	
6.8	782.000003	0.004	2.5	
8.7	782.000003	0.004	2.5	

Note: The applicant defined the normal working voltage of the battery is from 6.8 Vdc to 8.7 Vdc.

	LTE		
Temp. (℃)	Channel Bar	Limit (ppm)	
	Frequency (MHz)		
-30	782.000004	0.005	2.5
-20	782.000003	0.004	2.5
-10	782.000003	0.003	2.5
0	782.000003	0.004	2.5
10	781.999997	-0.004	2.5
20	781.999997	-0.003	2.5
30	781.999998	-0.002	2.5
40	781.999998	-0.002	2.5
50	781.999996	-0.005	2.5

4.3 Occupied Bandwidth Measurement

4.3.1 Limits of Occupied Bandwidth Measurement

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

4.3.2 Test Procedure

- a. The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- b. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

4.3.3 Test Setup

4.3.4 Test Result

LTE Band 4								
С	hannel Band	width: 1.4 MF	-lz		Channel Band	lwidth: 3 MH	z	
I (.nannel ·	Frequency	99 % Oo Bandwid	ccupied Ith (MHz)	Channel	Channel Frequency		99 % Occupied Bandwidth (MHz)	
	(MHz)	QPSK	16QAM		(MHz)	QPSK	16QAM	
19957	1710.7	1.0880	1.0895	19965	1711.5	2.7019	2.6972	
20175	1732.5	1.0874	1.0894	20175	1732.5	2.7019	2.6963	
20393	1754.3	1.0881	1.0883	20385	1753.5	2.7018	2.6982	

LTE Band 4								
Channel Bandwidth: 5 MHz Channel Bandwidth: 10 MHz							lz	
I (.nannei i ·	Frequency	99 % Oo Bandwid	ccupied Ith (MHz)	z) Channel	Frequency	99 % Occupied Bandwidth (MHz)		
	(MHz)	QPSK	16QAM		(MHz)	QPSK	16QAM	
19975	1712.5	4.4885	4.4891	20000	1715.0	8.9735	8.9726	
20175	1732.5	4.4892	4.4921	20175	1732.5	8.9638	8.9695	
20375	1752.5	4.4835	4.4865	20350	1750.0	8.9615	8.9651	

LTE Band 4								
C	hannel Band	width: 15 MH	Iz	C	hannel Band	width: 20 MF	łz	
i (.nannei ·	Frequency	99 % Oo Bandwid	ccupied lth (MHz)	-			ccupied Ith (MHz)	
	(MHz)	QPSK	16QAM		(MHz)	QPSK	16QAM	
20025	1717.5	13.472	13.465	20050	1720.0	17.958	17.995	
20175	1732.5	13.460	13.453	20175	1732.5	17.937	17.972	
20325	1747.5	13.478	13.461	20300	1745.0	17.960	18.018	

LTE Band 13								
Channel Bandwidth: 5 MHz Channel Bandwidth: 10 MHz							lz	
Channel	Frequency		ccupied Ith (MHz)	Channel	Frequency	99 % Occupied Bandwidth (MHz)		
	(MHz)	QPSK	16QAM		(MHz)	QPSK	16QAM	
23205	779.5	4.4804	4.4816					
23230	782.0	4.4889	4.4903	23230	782.0	8.9436	8.9517	
23255	784.5	4.4929	4.4962					

4.4 Band Edge Measurement

4.4.1 Limits of Band Edge Measurement

For operations in the 776-787 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater.

However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

For operations in the 1710–1755 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

4.4.2 Test Setup

4.4.3 Test Procedures

- a. All measurements were done at low and high operational frequency range.
- b. The center frequency of spectrum is the band edge frequency and span is 1 MHz. RB of the spectrum is 13 kHz and VB of the spectrum is 51 kHz (LTE Bandwidth 1.4 MHz).
- c. The center frequency of spectrum is the band edge frequency and span is 1 MHz. RB of the spectrum is 30 kHz and VB of the spectrum is 100 kHz (LTE Bandwidth 3 MHz).
- d. The center frequency of spectrum is the band edge frequency and span is 1 MHz. RB of the spectrum is 100 kHz and VB of the spectrum is 300 kHz (LTE Bandwidth 5 MHz/10 MHz).
- e. The center frequency of spectrum is the band edge frequency and span is 1 MHz. RB of the spectrum is 150 kHz and VB of the spectrum is 470 kHz (LTE Bandwidth 15 MHz).
- f. The center frequency of spectrum is the band edge frequency and span is 1 MHz. RB of the spectrum is 180 kHz and VB of the spectrum is 560 kHz (LTE Bandwidth 20 MHz).
- g. Record the max. trace plot into the test report.

4.4.4 Test Results

For the 763 - 775 MHz and 793 - 805 MHz band, the FCC limit is 65+10log(P[watt]) in a 6.25 kHz bandwidth. Since it was not possible to set the resolution bandwidth to 6.25 kHz with the available equipment, a bandwidth of 10 kHz was used instead to show compliance. By using a 10 kHz bandwidth on the spectrum analyzer.

 $10\log(10kHz/6.25kHz) = 2.04 dB$ Limit line = -35 dBm + 2.04 dB = -32.96 dBm

For the 763 - 775 MHz and 793 - 805 MHz band, the FCC limit is 65+10log(P[watt]) in a 6.25 kHz bandwidth. Since it was not possible to set the resolution bandwidth to 6.25 kHz with the available equipment, a bandwidth of 10 kHz was used instead to show compliance. By using a 10 kHz bandwidth on the spectrum analyzer.

 $10\log(10kHz/6.25kHz) = 2.04 dB$

Limit line = -35 dBm + 2.04 dB =-32.96 dBm

4.5 Peak to Average Ratio

4.5.1 Limits of Peak to Average Ratio Measurement

In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB.

4.5.2 Test Setup

4.5.3 Test Procedures

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Record the maximum PAPR level associated with a probability of 0.1 %.

4.5.4 Test Results

LTE Band 4								
Channel Bandwidth: 1.4 MHz				Channel Bandwidth: 3 MHz				
Channel	Frequency (MHz)	Peak to Average Ratio (dB)		Channel	Frequency	Peak to Average Ratio (dB)		
		QPSK	16QAM		(MHz)	QPSK	16QAM	
19957	1710.7	4.61	5.24	19965	1711.5	5.49	5.35	
20175	1732.5	4.41	5.06	20175	1732.5	4.06	5.09	
20393	1754.3	3.52	4.28	20385	1753.5	3.44	4.39	

LTE Band 4								
Channel Bandwidth: 5 MHz				Channel Bandwidth: 10 MHz				
Channel	Frequency (MHz)	Peak to Average Ratio (dB)		Channel	Frequency	Peak to Average Ratio (dB)		
		QPSK	16QAM		(MHz)	QPSK	16QAM	
19975	1712.5	4.51	5.39	20000	1715.0	4.58	5.11	
20175	1732.5	4.47	5.43	20175	1732.5	4.38	5.32	
20375	1752.5	4.10	4.43	20350	1750.0	3.83	4.63	

LTE Band 4								
Channel Bandwidth: 15 MHz				Channel Bandwidth: 20 MHz				
Channel	Frequency (MHz)	Peak to Average Ratio (dB)		Channel	Frequency	Peak to Average Ratio (dB)		
		QPSK	16QAM		(MHz)	QPSK	16QAM	
20025	1717.5	4.69	5.53	20050	1720.0	4.85	5.58	
20175	1732.5	4.62	5.31	20175	1732.5	4.68	4.81	
20325	1747.5	4.02	4.57	20300	1745.0	4.14	4.62	

LTE Band 13								
Channel Bandwidth: 5 MHz				Channel Bandwidth: 10 MHz				
Channel	Frequency (MHz)	Peak to Average Ratio (dB)		Channel	Frequency	Peak to Average Ratio (dB)		
		QPSK	16QAM		(MHz)	QPSK	16QAM	
23205	779.5	3.79	4.52	23230		4.11		
23230	782.0	4.69	5.46		782.0		5.05	
23255	784.5	4.70	5.46					

4.6 Conducted Spurious Emissions

4.6.1 Limits of Conducted Spurious Emissions Measurement

The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 +10 log10(P) dB. The limit of emission is equal to -13 dBm.

4.6.2 Test Setup

4.6.3 Test Procedure

- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- b. Measuring frequency range is from 30MHz to 1 GHz and 1 GHz to 10GHz for LTE Band 13 and from 30MHz to 1 GHz, 1 GHz to 10GHz, and 10 GHz to 26.5GHz for LTE Band 4. 10 dB attenuation pad is connected with spectrum. RBW = 100 kHz and VBW = 300 kHz are used for conducted emission measurement.

4.6.4 Test Results

LTE Band 4

30MHz ~ 1GHz

1GHz ~ 10GHz

10GHz ~ 26.5GHz

LTE Band 13

30MHz ~ 1GHz

Next Pk Righ

Mkr--CF

More 1 of 2

Mkr-Ref L

DL1-13.00 dB

1GHz ~ 10GHz

#VBW 3.0 MHz

Stop 10,000 GHz #Sweep 501.3 ms (20000 pts)

4.7 Radiated Emission Measurement

4.7.1 Limits of Radiated Emission Measurement

- a. The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 +10 log10(P) dB. The limit of emission is equal to -13 dBm.
- b. For operations in the 775-788 MHz, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz. The limit of emissions is equal to -40 dBm.

4.7.2 Test Procedure

- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8 m (below or equal 1 GHz) and/or 1.5 m (above 1 GHz) height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G.
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power 2.15 dBi.

Note: The resolution bandwidth of spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz.

4.7.3 Deviation from Test Standard

No deviation.

4.7.4 Test Setup

<Radiated Emission below or equal 1 GHz>

<Radiated Emission above 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.7.5 Test Results

LTE Band 4

Channel Bandwidth: 20 MHz / QPSK

Low Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 27(B4/B17) Horizontal Remark : LTE_Band 4_Link_CH20050

Tested by: Karl Lee

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 pp 3440.00 -36.91 -51.26 -13.00 -23.91 14.35 Peak 2 5160.00 -37.20 -57.12 -13.00 -24.20 19.92 Peak

Site : 966 chamber 1

Condition: PART 27(B4/B17) Vertical Remark : LTE_Band 4_Link_CH20050

Tested by: Karl Lee

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 3440.00 -39.67 -54.02 -13.00 -26.67 14.35 Peak 2 pp 5160.00 -37.32 -57.24 -13.00 -24.32 19.92 Peak

Middle Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 27(B4/B17) Horizontal Remark : LTE_Band 4_Link_CH20175

Tested by: Karl Lee

		-,						
				Read	Limit	0ver		
		Freq	Level	Level	Line	Limit	Factor	Remark
		MHz	dBm	dBm	dBm	dB	dB	
1		37.56	-76.93	-66.96	-13.00	-63.93	-9.97	Peak
2		184.44	-60.86	-55.22	-13.00	-47.86	-5.64	Peak
3		258.96	-58.09	-52.50	-13.00	-45.09	-5.59	Peak
4		419.00	-57.95	-54.78	-13.00	-44.95	-3.17	Peak
5		602.40	-60.87	-61.27	-13.00	-47.87	0.40	Peak
6		814.50	-59.25	-61.10	-13.00	-46.25	1.85	Peak
7	pp	3465.00	-31.44	-45.78	-13.00	-18.44	14.34	Peak
8		5197.50	-36.11	-56.23	-13.00	-23.11	20.12	Peak

Site : 966 chamber 1

Condition: PART 27(B4/B17) Vertical Remark : LTE_Band 4_Link_CH20175

Tested by: Karl Lee

			Kead	Limit	Over		
	Freq	Level	Level	Line	Limit	Factor	Remark
-	MII-						
	MHz	dBm	dBm	dBm	dB	dB	
1	82.65	-70.73	-59.18	-13.00	-57.73	-11.55	Peak
2	201.72	-60.70	-54.54	-13.00	-47.70	-6.16	Peak
3	250.59	-63.28	-57.77	-13.00	-50.28	-5.51	Peak
4	486.20	-63.38	-58.51	-13.00	-50.38	-4.87	Peak
5	733.30	-61.85	-60.85	-13.00	-48.85	-1.00	Peak
6	843.90	-66.93	-68.44	-13.00	-53.93	1.51	Peak
7	3465.00	-40.62	-54.96	-13.00	-27.62	14.34	Peak
8 pp	5197.50	-36.06	-56.18	-13.00	-23.06	20.12	Peak

High Channel

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 27(B4/B17) Horizontal Remark : LTE_Band 4_Link_CH20300

Tested by: Karl Lee

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 pp 3490.00 -33.86 -48.17 -13.00 -20.86 14.31 Peak 2 5235.00 -35.82 -55.98 -13.00 -22.82 20.16 Peak

Site : 966 chamber 1

Condition: PART 27(B4/B17) Vertical Remark : LTE_Band 4_Link_CH20300

Tested by: Karl Lee

Read Limit Over
Freq Level Level Line Limit Factor Remark

MHz dBm dBm dBm dB dB

1 3490.00 -40.75 -55.06 -13.00 -27.75 14.31 Peak 2 pp 5235.00 -34.45 -54.61 -13.00 -21.45 20.16 Peak

LTE Band 13

Channel Bandwidth: 10 MHz / QPSK

1 RB / 0 RB Offset

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 27(B13) Horizontal Remark : LTE_Band 13_Link_CH23230

			Read	Limit	0ver		
	Freq	Level	Level	Line	Limit	Factor	Remark
	MHz	dBm	dBm	dBm	dB	dB	
1	122.34	-69.15	-61.02	-13.00	-56.15	-8.13	Peak
2	229.53	-59.23	-53.45	-13.00	-46.23	-5.78	Peak
3	273.81	-55.84	-50.12	-13.00	-42.84	-5.72	Peak
4	441.40	-60.23	-56.58	-13.00	-47.23	-3.65	Peak
5	517.00	-63.40	-59.32	-13.00	-50.40	-4.08	Peak
6	656.30	-55.90	-55.73	-13.00	-42.90	-0.17	Peak
7 pp	1564.00	-47.91	-54.77	-40.00	-7.91	6.86	Peak

Site : 966 chamber 1

Condition: PART 27(B13) Vertical Remark : LTE_Band 13_Link_CH23230

	Freq	Level		Limit Line		Factor	Remark
-	MHz	dBm	dBm	dBm	dB	dB	
1	90.21	-70.89	-60.22	-13.00	-57.89	-10.67	Peak
2	155.01	-66.90	-59.09	-13.00	-53.90	-7.81	Peak
3	237.90	-61.75	-56.07	-13.00	-48.75	-5.68	Peak
4	357.40	-63.29	-58.33	-13.00	-50.29	-4.96	Peak
5	561.10	-55.15	-53.97	-13.00	-42.15	-1.18	Peak
6	591.90	-57.32	-57.39	-13.00	-44.32	0.07	Peak
7 pp	1564.00	-52.17	-59.03	-40.00	-12.17	6.86	Peak

LTE Band 13

Channel Bandwidth: 10 MHz / QPSK

50 RB / 0 RB Offset

Bureau Veritas Consumer Products Services Ltd., Taoyuan Branch

Site : 966 chamber 1

Condition: PART 27(B13) Horizontal Remark : LTE_Band 13_Link_CH23230

			. ,					
				Read	Limit	0ver		
		Freq	Level	Level	Line	Limit	Factor	Remark
		MHz	dBm	dBm	dBm	dB	dB	
1		99.93	-62.04	-51.92	-13.00	-49.04	-10.12	Peak
2		160.68	-62.36	-54.79	-13.00	-49.36	-7.57	Peak
3		244.38	-60.53	-54.94	-13.00	-47.53	-5.59	Peak
4		394.50	-56.74	-53.74	-13.00	-43.74	-3.00	Peak
5		626.20	-59.82	-59.95	-13.00	-46.82	0.13	Peak
6		703.90	-54.65	-54.20	-13.00	-41.65	-0.45	Peak
7	pp	1564.00	-53.61	-60.47	-40.00	-13.61	6.86	Peak

Site : 966 chamber 1

Condition: PART 27(B13) Vertical Remark : LTE_Band 13_Link_CH23230

	Freq	Level		Limit Line		Factor	Remark
_	MHz	dBm	dBm	dBm	dB	dB	
1	36.48	-58.52	-48.18	-13.00	-45.52	-10.34	Peak
2	103.71	-63.61	-53.96	-13.00	-50.61	-9.65	Peak
3	189.57	-60.68	-54.95	-13.00	-47.68	-5.73	Peak
4	430.20	-60.11	-56.69	-13.00	-47.11	-3.42	Peak
5	610.10	-55.87	-56.19	-13.00	-42.87	0.32	Peak
6	698.30	-59.84	-59.47	-13.00	-46.84	-0.37	Peak
7 pp	1564.00	-53.57	-60.43	-40.00	-13.57	6.86	Peak

5 Pictures of Test Arrangements
Please refer to the attached file (Test Setup Photo).

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---