

Eric Han

eric_han@nus.edu.sg https://eric-han.com

Computer Science

L01 - 8 May 2025

Introduction to Gradient Descent

PDP – Micro-teaching Component

By the end of this activity, you should be able to:

- > Recognize why/how gradient descent is essential in ML training
- > Follow and apply the gradient descent manually on simple functions
- > Adjust the learning rate to observe and achieve convergence
- > Implement gradient descent in code and verify it works correctly

Recap

- Compute Complexity is the measure of the computational time needed to execute an algorithm as a function of the input size.
 - Matrix multiplication: if A is $m \times k$ and B is $k \times m$, then AB is $m \times m$.
- Matrix inversion: inverting a $m \times m$ matrix takes $O(m^3)$ time.
- Residual Sum of Squares: $RSS(X) = \sum_{i=1}^{n} (e_i)^2 = \sum_{i=1}^{n} (y_i \hat{f}(x_i))^2$

Why study Gradient Descent?

Gradient descent and its extensions/variants are used across Machine Learning:

- **Line search**: Adaptive step size based on function values
- > Momentum: Combines past updates to smooth oscillations
- **Adaptive methods**: Algorithms like Adagrad, Adam improve learning in practice
- > Distributed algorithms: Enable training at scale across multiple machines
- ightharpoonup Second-order methods: Use curvature information (e.g., Newton's method), though expensive for large d
- **Zero-th order methods**: Optimize without gradients useful for black-box or simulation-based problems (e.g., Bayesian optimization)

Takeaway: Gradient descent builds the foundation for understanding modern optimization.

(1)

(2)

Linear Models

Model between a single 1D input x and output y by learning parameters $\theta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$:

$$y \sim \beta_0 + \beta_1 x$$

We define $x = \begin{bmatrix} 1 & x \end{bmatrix}$ and express the function $\hat{f}_{\theta}(x)$ as:

$$\hat{f}_{\theta}(x) = \beta_0 + \beta_1 x = \begin{bmatrix} 1 & x \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = x\theta$$

Here,
$$\beta_1$$
 is the slope and β_0 is the intercept; Here generalized to m -dimensions

Here,
$$\beta_1$$
 is the slope and β_0 is the intercept; Here generalized to m -dimensions:

$$\hat{f}_{\theta}(x) = \beta_0 + \beta_1 x^{(1)} + \dots + \beta_m x^{(m)} = \begin{bmatrix} 1 & x^{(1)} & \dots & x^{(m)} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_m \end{bmatrix} = x\theta$$
 (3)

The simplest way is to consider perfect conditions, then we can use $\hat{\theta} = X^{-1}Y$. Matrix Inversion Example (1D)

Given n=2 points $(1,\ 3),(4,\ 9)$, we convert to matrix form:

$$X = \begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix}, \quad y = \begin{bmatrix} 3 \\ 9 \end{bmatrix}$$

Solve using: $\theta = X^{-1}y$, via calculation of inverse:

$$X^{-1} = \frac{1}{(1)(4) - (1)(1)} \begin{bmatrix} 4 & -1 \\ -1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 4 & -1 \\ -1 & 1 \end{bmatrix}$$

Then, we apply the inverse:

$$\theta = \frac{1}{3} \begin{bmatrix} 4 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 9 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 12 - 9 \\ -3 + 9 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Resulting line: $\hat{y} = 1 + 2x$.

Problems with Matrix Inversion

Noise exists, causing the ${\cal X}^{-1}$ to be non-invertible.

Figure 1: Estimated/Actual line (blue); Error e_i (vertical line).

Estimate $\hat{\theta}$ by minimizing the loss function L: $\mathrm{RSS}(X) = \underbrace{\mathrm{RSS}(\theta)}_{\text{fix } X. \text{ find } \theta} = L_{\mathrm{RSS}}(\theta) = L(\theta)$

Normal Equation (RSS)

(Solve for $\hat{\theta}$)

We want to find the estimate $\hat{\theta} = \arg\min_{\theta \in \Theta} L(\theta)$ where it minimizes the loss.

$$L(\theta) \hspace{1cm} = L_{\rm RSS}(\theta) = \sum_{i=1}^n (y_i - x_i \theta)^2 \hspace{1cm} \text{(expand the loss)}$$

$$= \|Y - X\theta\|^2 = Y^\top Y - 2Y^\top X\theta + \theta^\top X^\top X\theta \qquad \text{(convert to matrices)}$$

$$abla L_{
m RSS} = \frac{\partial L_{
m RSS}}{\partial heta} = -\left(2X^{ op}\left(Y - X heta
ight)
ight)$$
 (compute gradient)

Pseudo-inverse
$$X^\dagger$$

- **Problems with Normal Equation**
 - **Require** closed-form gradient ∇L

 - **Compute Complexity** of X^{\dagger} takes very long to compute $(X^{\top}X)^{-1}$: $O(m^3)$
 - **Accuracy** Invertibility of $(X^{T}X)^{-1}$
 - **Optimality** of $\hat{\theta}$ $L(\theta)$ is convex.

 $\nabla L(\theta) = 0 \quad \Longrightarrow \; \hat{\theta} = (X^\top X)^{-1} X^\top Y$

Convex Function (1D)

Figure 2: A function is **convex** if it curves upwards — like a bowl — and has no dips.

Definition: A twice-differentiable function $L:\mathbb{R}\to\mathbb{R}$ is convex if: $L''(\theta)\geq 0 \quad \forall \theta\in\mathbb{R}$

Implication: If $L''(\theta) > 0$, L is **strictly convex**, and any local minimizer is the unique global minimizer.

Given a convex loss function $L:\mathbb{R}^m\to\mathbb{R}$ with a minimizer, an initial point $\theta^{(0)}\in\mathbb{R}^m$, step size $\gamma>0$, and number of iterations T>0, we iteratively update:

$$\theta^{(t+1)} = \theta^{(t)} - \gamma \nabla L(\theta^{(t)}). \tag{4}$$

Each step moves in the direction of steepest descent scaled by γ ;

Algorithm

- II Start with initial θ_0 , step size γ , and total steps T
- 2 Run for each step: >> Update $\theta^{(t+1)} = \theta^{(t)} - \gamma \nabla L(\theta^{(t)})$
- Return at step T: $\theta^{(T)}$

5-minute Activity [L00.1]

Work in groups of 2s or 3s (split the work):

- \blacksquare Given a simple function $L(x) = x^2$.
 - a. What is its first-order derivative L'?
 - b. Solve for the minimum \boldsymbol{x}
 - c. Compute step-by-step over 3 iterations of x-values for $\gamma \in \{10, 1, 0.1, 0.01\}$.
 - d. What did you notice?

[Extra] What is the Compute Complexity of Gradient Descent for RSS?

Gradient Descent Algorithm

- **1** Start with initial θ_0 , step size γ , and total steps T
- Run for each step:
 - ightharpoonup Update $\theta^{(t+1)} = \theta^{(t)} \gamma \nabla L(\theta^{(t)})$
- \blacksquare Return at step T: $\theta^{(T)}$

We say Gradient Descent converges if it finds the global minimizer.

Answer

t	10.0	1.0	0.1	0.01
0	5	5	5	5
1	-95	-5	4	4.9
2	1805	5	3.2	4.802
3	-34295	-5	2.56	4.70596

- $\ \, \hbox{II Given a simple function } L(x)=x^2,$
 - a. First-order derivative $L^{\prime}(x)=2x$
 - b. Minimum is x=0
 - c. See above, step-by-step over 3 iterations of x-values.
 - d. What did we notice:
 - 1 Gradient Descent does not find 0 within T=3, requiring more iterations.
 - 2 For bad values of γ , Gradient Descent does not converge.
 - 3 Speed of convergence depends on γ .
- $oxed{2}$ Compute Complexity is O(nmT).

Illustration

See the animation for how gradient descent evolves over time.

Figure 3: x-values after 10 steps of gradient descent with various learning rates on $L(x)=x^2$.

Summary

Takeaway: Gradient descent is the foundation of modern optimization in machine learning.

- **Linear models** can be solved via matrix inversion only under ideal conditions.
- **Normal equation** avoids direct inversion of X, but still incurs $O(m^3)$ compute cost.
- **Convex functions** ensure any local min is global min, enabling efficient optimization.
- > Gradient descent is a scalable, general-purpose method:
 - Works even when inversion fails.
 - ightharpoonup Faster in most situations to compute O(nmT).

 - \gg Converges if convex and γ is not bad.
- > Key trade-off: **simplicity vs. scalability vs. convergence speed**.

Assignment 1 [Due in 7 days]

Implement the function gradient_descent(grad_L, theta_0, gamma, T) to minimize $L(\theta)$ using T steps of gradient descent; Submit on Coursemology.