TUTORIAL 4: DNA Translation

- Q1. Define translation in the context of molecular biology. (2 marks)
- Q2. What are the start and stop codons in translation? (2 marks)
- Q3. Name the three sites on the ribosome involved in translation. (1 mark)
- Q4. Explain the significance of the Shine-Dalgarno sequence in bacterial translation. (3 marks)
- Q5. Describe the role of tRNA in protein synthesis. (3 marks)
- Q6. Given the mRNA sequence 5'-AUG GUC GCU AAA AGU UGA-3', determine the corresponding amino acid sequence. (3 marks)
- Q7. How does tmRNA rescue stalled ribosomes? (3 marks)
- Q8. Compare the roles of initiation factors and elongation factors in translation. (4 marks)
- Q9. Analyze the importance of the central dogma in understanding protein synthesis. (4 marks)

Q1 Translation in molecular biology means the process of converting nucleic acid information into
amino acids
0) start codon: AUG
Stop codon : UAA, UAG, UGA
Q3 E-8ite (Exit site), A-site (Aueptor site), P-site (Peptide site)
Q4 The Shine - Dalgamo sequence in bacterial translation is a ribosomal binding site in the MRNA
of bacteria, located upstream of the start codon. It aligns the MRNA with the 165 rRNA
of the ribosome, ensuring the correct positioning of the start codon in the ribosome for
translation to begin
Q5. The role of tRNA (Transfer RNA) is serves as an adaptor molecule.
- carry specific amino acids to the ribosome
- Each tRNA has an anticodon pairs with the complementary codon on MRNA
- Ensures the correct sequence of amino acids is incorporated into the growing polypepticle
Q6 AUG = Methionine (start codon)
GUC = valine
GCU = Alanine
AA A = Lysine
AGU = Serine
UGA = Stop (translation ends)
Met-val-Ala-Lys-Serine-Stop
Q7 tm RNA rescue stalled ribusomes because it acts partly like tRNA and partly like mRNA.
- trna role: Imana binds to the stalled abosome and adds on alanine residue to the
puly peptide chain
MRNIA role: TIMENA takes over the MENA role by providing its own short ORF for translation

- InnkNA also adds a peptide tag to the nascent polypeptide chain. This tag targets the togged peptides for proteolyous 08 - Initiation factor binds to the ribosome and selects the start site - Elongation factor transports amino acids and translocates peptidyl - tRNA -Initiation factor assembles the ribosome on mRNA with the first tena - Elongation factor brings arrive ands to the ribosome and links them tugether 09- Describes the flow of genetic information The central dogma shows how genetic information flows from DNA to RNA to proteins - Explain NOW DNA works The central dogma explains how DNA works to create an organism's protein - Introduces line roles of RNA RNA has many jobs in the cell inunding carrying hereditary information, acting as enzymes -Highlight the fundamental principle of no reverse translation No way to transfer information from protein back to nucleic acid