

KubeEdge云边协同实践:大语言模型云边协同推理benchmark套件

胡时京 复旦大学 KubeEdge 范彧 北京航空航天大学 KubeEdge

Content

目录

- 01 大模型云边协同背景
- 02 KubeEdge大模型云边协同推理新范式
- 03 基于KubeEdge-lanvs的大模云边协同实践

04 开源成果分享

为什么我们需要大模型云边协同?

- · 每年LLM API开销超过100亿人民币
- · 云端LLM API开销仍然较为昂贵

Latest models

69: 03-mini-2025-01-31

Price per IM tokens · Batch API price Text tokens Model Cached input Output Input gpt-4.5-preview \$75.00 \$37.50 \$150.00 4 gpt-4.5 preview-2025-02-27 gpt-4o \$2.50 \$1.25 \$10.00 ₩ gpt-4o-2024-08-06 gpt-4o-audio-preview \$2.50 \$10.00 \$\top gpt-4a-audio-preview-2024-12-17 gpt-4o-realtime-preview \$5.00 \$2.50 \$20.00 ₩ gpt-4o-realtime-preview-2024-12-17 gpt-4o-mini \$0.15 \$0.075 \$0.60 ₩ gpt-4e-mini-2024-07-18 gpt-4o-mini-audio-preview \$0.15 \$0.60 4 gpt-4o-mini-audio-preview-2024-12-17 gpt-4o-mini-realtime-preview \$0.60 \$0.30 \$2.40 14 gpt-4c-mini-realtime-preview-2024-12-17 01 \$15.00 \$7.50 \$60.00 4 of 2024-12-17 o3-mini

\$1.10

\$0.55

\$4.40

为什么我们需要大模型云边协同?

- · 边缘端可以部署的LLM模型能力越来越强
- · 在较难任务上边缘端LLM模型与云端LLM模型还有 较大差距
- · 满血Deepseek-r1 671b在边缘部署资源开销较大

模型大小	参数量	显存需求 (GPU)	CPU 和内存需求	适用场景
1.5B	15fZ	2-4 GB	8 GB 内存	低端设备, 轻量推理
7B	70fZ	8-12 GB	16 GB 内存	中端设备,通用推理
8B	80fZ	10-16 GB	16-32 GB 内存	中高端设备,高性能 推理
14B	140fZ	16-24 GB	32 GB 内存	高端设备,高性能推 理
32B	320fZ	32-48 GB	64 GB 内存	高端设备, 专业推理
70B	700fZ	64 GB+	128 GB 内存	顶级设备,大规模推理
671B	6710{Z	多 GPU (80 GB+)	256 GB+ 内存	超大规模推理,分布式计算

Model	AIME 2024 pass@1	AIME 2024 cons@64	MATH-500 pass@1	GPQA Diamond pass@1	LiveCodeBench pass@1	CodeForces rating
GPT-4o-0513	9.3	13.4	74.6	49.9	32.9	759
Claude-3.5- Sonnet-1022	16.0	26.7	78.3	65.0	38.9	717
o1-mini	63.6	80.0	90.0	60.0	53.8	1820
QwQ-32B- Preview	44.0	60.0	90.6	54.5	41.9	1316
DeepSeek-R1- Distill-Qwen- 1.5B	28.9	52.7	83.9	33.8	16.9	954
DeepSeek-R1- Distill-Qwen-7B	55.5	83.3	92.8	49.1	37.6	1189
DeepSeek-R1- Distill-Qwen- 14B	69.7	80.0	93.9	59.1	53.1	1481
DeepSeek-R1- Distill-Qwen- 32B	72.6	83.3	94.3	62.1	57.2	1691

为什么我们需要大模型云边协同?

KCD
GROWING CLOUD NATIVE TOGETHER
BEIJING

- · 节省云端LLM API调用成本(每年超过100亿人民币的市场)
- · 提高边侧LLM回答准确率(利用云侧LLM更强的能力解决更难的问题)

为什么选择KubeEdge作为大模型云边协同基础设施

https://github.com/kubeedge/sedna

首个分布式协同AI开源项目Sedna

基于KubeEdge提供的边云协同能力,支持现有AI类应用无缝下沉到边缘

- ✓ 降低构建与部署成本
- ✓ 提升模型性能
- ✓ 保护数据隐私

基础框架

- ✓ 数据集管理
- ✓ 模型管理
- **√**

训练推理框架

- ✓ 协同推理
- ✓ 增量学习
- ✓ 联邦学习
- ✓ 终身学习

兼容性

- ✓ 主流AI框架
- ✓ 模块算法
- ✓ 可扩展算法接口
- ✓

为什么选择KubeEdge作为大模型云边协同基础设施

核心痛点

业务数据集及其配套算法难以获取

全场景多范式测试成本高

封闭测试环境难以跟上各类新业务孵化

个性化场景的测试用例准备繁琐

丰富AI生态,开箱即用

数据集与配套算法,覆盖开发5+流程,零改造开箱即用

可扩展开放工具链

环境管理自定义数据集与指标 告别封闭守旧的测试环境

全场景灵活切换

用例管理统一不同架构与接口, 同一套工具兼容5+场景范式

低代码生成测试用例

用例管理辅助生成测试用例, 简单配置即可降低繁琐重复编程

项目地址: https://github.com/kubeedge/ianvs

欢迎关注本项目,持续获得第一手独家公开数据集与完善基准测试配套

技术验证时间 半年 🔷 一个月,5倍研发效率提升

2.1 候选的云边协同推理方式

范式1: 模型切片

◆ 异构网络实现模型部署

解决隐私问题;带宽需求高;首字时延高

相关工作: EdgeShard¹; PerLLM²

范式2: 先推理后挖掘难例

◆ CV 场景下常见的协同策略

缓解隐私问题;带宽需求小;首字时延非常高

^{1.} Zhang, Mingjin, et al. EdgeShard: Efficient LLM Inference via Collaborative Edge Computing. arXiv:2405.14371

^{2.} Yang, Zheming, et al. PerLLM: Personalized Inference Scheduling with Edge-Cloud Collaboration for Diverse LLM Services. arXiv:2405.14636

2.2 较优的云边协同推理方式

范式3: 查询路由 (Query-Routing)

核心思想

识别简单的请求并将其路由到边端模型

示例

简单请求:求 $5\sin(\frac{\pi}{2})$ 复杂请求:给定区域 D ,求 $\iint_{\mathbb{R}} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2} dxdy$

简单请求:将下面这段翻译为英文:欢迎参加 KCD!

复杂请求:按照正式会议的翻译习惯,将KCD的会

议记录信达雅地翻译为英文。

2.2 较优的云边协同推理方式

范式3: 查询路由 (Query-Routing)

优势

在不降低回复质量的前提下,查询路由机制可以:

● 减少使用成本:

对于模型用户,减少顶级 API 使用开销;

对于模型厂商,合理调配模型降低推理成本

降低首字时延:边端模型几乎无传播时延

缓解隐私问题:仅有部分请求需要上云

相关工作:

Hybrid LLM³, RouteLLM⁴, Prompt2Leaderboard⁵

^{3.} Ding, Dujian, et al. Hybrid LLM: Cost-Efficient and Quality-Aware Query Routing. ICLR 2024.

^{4.} Ong, Isaac, et al. RouteLLM: Learning to Route LLMs with Preference Data. ICLR 2025.

^{5.} Frick, Evan, et al. Prompt-to-Leaderboard. arXiv:2502.14855

2.3 Query Routing 的效果

Rank* (UB)	Rank (StyleCtrl)	Model A	Arena Score	95% CI 🔺	Votes *	Organization	License A
1	2	Grok-3-Preview-02-24	1407	+7/-7	7580	×AI	Proprietary
1	1	GPT-4.5-Preview	1404	+7/-9	6024	OpenAI	Proprietary
3	6	Gemini-2.0-Flash-Thinking- Exp-01-21	1384	+5/-5	19837	Google	Proprietary
3	3	Gemini-2.0-Pro-Exp-02-05	1380	+4/-4	17695	Google	Proprietary
3	2	ChatGPT-40-latest (2025-01- 29).	1375	+4/-5	19587	0penAI	Proprietary
6	4	DeepSeek-R1	1361	+5/-6	10474	DeepSeek	MIT
6	10	Gemini-2.0-Flash-001	1355	+4/-5	15416	Google	Proprietary
6	3	01-2024-12-17	1353	+4/-4	22010	OpenAI	Proprietary
9	10	Gemma-3-27B-it	1339	+9/-11	3870	Google	Gemma
9	10	Owen2.5-Max	1338	+5/-5	14258	Alibaba	Proprietary
9	7	o1-preview	1335	+4/-4	33195	OpenAI	Proprietary
9	10	o3-mini-high	1328	+6/-5	11409	0penAI	Proprietary

引入查询路由后构成的新系统:1. 给定预算情况下,能够获得更高质量的回复

2. 在 ChatBot Arena 中获得了 1395 分,超越榜单上原有的所有模型

2.3 Query Routing 的效果

使用理想分类器在 MMLU (5-shot) 测试集上进行测试

KCD
GROWING CLOUD NATIVE TOGETHER
BEIJING

- 当 Qwen2.5 系列模型与 gpt-4o-mini 进行理想协作时 ,87% 的请求可交给边缘侧 的 Qwen 完成
- 实现 12.38% (相比 Qwen 自身) 和 8.23% (相比 gpt-4o-mini) 的 精度提升;并降低至少 50% 的首字时延

2.4 进一步加速 - 投机解码 (Speculative Decoding)

核心思想: 使用一个 Draft Model 快速预测多个 Token , 随后使用 Large Model 进行并行验证

- 在 Query-Routing 后,进一步提升边端侧/云侧的推理速度,提升系统的吞吐量,为用户提供更好的体验;
- LLaMA2-7B-Chat 实验:EAGLE 可以显著加速 LLM 的生成(2.35x);进行理想协作时,也能为系统带来 1.79x 的提升

Part 03 基于 KubeEdge-lanvs 的大模型云边协同实践

3.1 基于查询路由的 LLM 云边协同推理 Benchmark 架构

架构特色

- 丰富的指标统计
 - 正确率 Accuracy (%)
 - 首字时延 TTFT (s)
 - 吞吐量 Throughput (Token/s)
- 多样的 Inference 支持
 - Offline: transformers, vLLM, EAGLE
 - Online: OpenAl API Client
 - 具有缓存机制,支持断点续测
- 多样的 Router 示例
 - EdgeOnly, CloudOnly, Random
 - BERT-based Router
 - 最优路由 OracleRouter

3.2 环境准备


```
# Clone Ianvs Repo
git clone https://github.com/kubeedge/ianvs.git
cd ianvs
# 安装 KubeEdge Sedna
pip install examples/resources/third_party/sedna-0.6.0.1-py3-
none-any.whl
# 安装 KubeEdge Ianvs
pip install -r requirements.txt
python setup.py install
#安裝 Query-Routing 的依赖
pip install -r examples/cloud-edge-collaborative-inference-
for-llm/requirements.txt
```


3.3 测试数据集准备

KubeEdge Ianvs 对数据集格式进行了约定,至少需要准备以下两个文件:

1. metadata.json

```
{
   "dataset": "MMLU",
   "description": "Measuring Massive Multitask Language Understanding by Dan H
endrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt (ICLR 2021).",
   "level_1_dim": "single-modal",
   "level_2_dim": "text",
   "level_3_dim": "Q&A",
   "level_4_dim": "general"
}
```

2. test.jsonl

```
{"query": "Question: Find the degree for the given field extension Q(sqrt(2), sqrt(3), sqrt(18)) over Q.\nA. 0\nB. 4\nC. 2\nD. 6", "response": "B", "explanation": "", "level_1_dim": "single-modal", "level_2_dim": "text", "level_3_dim": "knowledge Q&A", "level_4_dim": "abstract_algebra"}
```


3.4 模型参数配置

参数名	类型	描述	默认值
model	str	模型名称	Qwen/Qwen2-1.5B-Instruct
backend	str	推理框架	huggingface
temperature	float	温度,0~2	0.8
top_p	float	核采样参数	0.8
max_tokens	int	最大补全 Token 数	512
repetition_penalty	float	重复惩罚因子	1.05
tensor_parallel_size	int	Tensor Parallel 数量 (仪适用于vLLM)	1
gpu_memory_utilization	float	GPU 显存利用率 (仅适用于vLLM)	0.9
draft_model	str	投机解码草稿模型 (仅适用于EAGLE)	-

3. Router 及其开放参数

Router 类型	描述	开放参数
EdgeOnly	将所有请求都路由到EdgeModel	-
CloudOnly	将所有请求都路由到CloudModel	-
OracleRouter	理想的最优路由	-
BERTRouter	使用 BERT 对请求进行分类路由	model, threshold
RandomRouter	随机地将请求路由到Edge/Cloud	threshold

2. CloudModel 及其开放参数

参数名	类型	描述	默认值
model	str	模型名称	gpt-4o-mini
temperature	float	采样温度	0.8
top_p	float	核采样参数	8.0
max_tokens	int	最大补全 Token 数	512
repetition_penalty	float	重复惩罚因子	1.05

export OPENAI_BASE_URL="https://api.openai.com/v1"
export OPENAI_API_KEY=sk_xxxxxxxxx

对于 BERTRouter,可以下载 RouteLLM 提供的 <u>□ routellm/bert_gpt4_augmented</u> 模型进行体验

3.5 运行评测

ianvs -f examples/cloud-edge-collaborative-inference-forllm/benchmarkingjob.yaml

控制台将实时打印评测状态:

```
(ianvs) (base) root@autodl-container-749c4db1bf-f7c84ac1:~/autodl-tmp/ianvs# python benchmarking.py -f examples/cloud-edge-collaborative-inference-for-llm/benchmarkingjob.yaml 2>61 | tee
         12 06:36:36,985] edge_model.py(43) [INFO] - {'model': 'Qwen/Qwen2.5-1.58-Instruct', 'backend': 'vllm', 'temperature': 0, 'top_p': 0.8, 'max_tokens': 512, 'repetition_penalty': 1.0
   | 14042/14842 [80:84<80:00, 3105.54it/s, Edge=18689, Cloud=3353]
                         joint_inference.py(186) [INFO] - Inference Finished
joint_inference.py(131) [INFO] - Release models
Both Wrong: 2496, Both Correct: 7317, Edge Better: 876, Cloud Better: 3353
                                           [INFO] = {'model': 'Qwen/Qwen2.5-3B-Instruct', 'backend': 'vllm', 'temperature': 0, 'top_p': 0.8, 'max_tokens': 512, 'repetition_penalty': 1.05,
 'tensor_parallel_size': 4, 'gpu_memory_utilization': 0.9, 'use_cache': True}
                             _sample_mining.py(30) [INFO] - USING OracleRouterFilter
                                  14042/14042 [00:04-00:00, 3191.6311/s, Edge=10889, Cloud=3153]
     -03-12 06:36:57,198] joint inference.py(131) [INFO] - Release models
                7:05,167] edge_model.py(43) [INFO] - {'model': 'Qwen/Qwen2.5-7B-Instruct', 'backend': 'vllm', 'temperature': 0, 'top_p': 0.8, 'max_tokens': 512, 'repetition_penalty': 1.05,
         12 86:37:85,167] cloud_model.cy(34) [INPO] - {'mode'!: "gpt-40-min'!, 'temperature': 8, 'top_p': 8.8, 'max_tokens': 512, 'repetition_penalty': 1.85, 'use_cache': True) 12 86:37:85,176] [olint inference.ov(73) [INPO] - Loading dataset
                              sample_mining.py(30) [INFO] - USING OracleRouterFilter
                                                        - Inference Start
                                 14042/14842 [00:04<00:00, 2937.18it/s, Edge=12304, Cloud=1738]
| rank | algorithm | Accuracy | Edge Ratio | Time to First Token | Throughput | Internal Token Latency | Cloud Prompt Tokens | Cloud Completion Tokens | Edge Prompt Tokens | Edge Comp
     | query-routing | 84.22 | 87.62
                                                                  | 179.28
                                                     Qwen/Qwen2.5-7B-Instruct
                                                                                                     gpt-4o-mini | 2024-10-28 16:58:30 | ./workspace-mmlu/benchmarkingjob/query-routi
            | jointinference |
                                                                                       vllm
                                                                 | 216.72
                                                                                         0.005
1364 | jointinference | Oracle
ng/b8eb2605-950a-11ef-8cbc-c97e05df5d14 |
                                                                                                      gpt-4o-mini | 2024-10-28 16:58:19 | ./workspace-mmlu/benchmarkingjob/query-routi
                                                     Qwen/Qwen2.5-3B-Instruct
                                                                   1 320.39
     | query-routing | 82.22 | 76.12
| jointinference | OracleRoute
                                                                                         0.803
                                                                                                                                        23254
                                                                                                                                                            9209538
                                                    Qwen/Qwen2.5-1.5B-Instruct
                                                                                                 | gpt-4o-mini | 2024-10-28 16:58:09 | ./workspace-mmlu/benchmarkingjob/query-routi
  4 | query-routing | 75.99 | 0.0
| jointinference | CloudOnly
                                                                  | 698.83
                                                   | Qwen/Qwen2.5-1.5B-Instruct
                                                                                                     gpt-4o-mini | 2024-10-28 16:57:43 | ./workspace-mmlu/benchmarkingjob/query-routi
ng/abe4062e-950a-11ef-8cbc-c97e05df5d14 |
```


BEIJING Part 04 开源成果分享

开源成果

中科院2024开源之夏项目支持

学生姓名	项目名称	社区名称	社区导师
范彧	大语言模型云边协同推理:基于KubeEdge-lanvs实现	KubeEdge	胡时京

CNCF基金会LFX Mentorship 2024项目支持

https://github.com/kubeedge/ianvs/tree/main/examples/cloud-edge-collaborative-inference-for-llm

KubeEdge SIG AI:完善分布式协同AI应用生态

- Kubeedge SIG AI
 - ➤ Github: https://github.com/kubeedge/community/tree/master/sig-ai

Kubeedge社区公众号

添加社区小助手微信, 发送 SIG AI 讲群

分布式协同AI框架 (Sedna)

定义AI应用分布式化的编程框架,帮助开发者快速开发边云协同AI应用,使AI应用更好地在边缘运行(包括成本节约、性能提升和数据保护)。
SIG AI已经孵化边云协同AI框架Sedna子项目,并在AI领域形成一定影响。

分布式协同AI基准测试 (Ianvs)

在开发、评估分布式协同AI应用和服务系统时,帮助用户确定关键维度性能:

- 分布式协同AI关键特性的全面基准规格;
- 分布式协同AI典型场景的测试用例;
- 分布式协同AI端到端测试床;

演讲者**胡时京**微信,输入验证信息"KCD北

演讲者**范彧**微信,输入验证信息"KCD北京"

