Cryptanalysis of the ESSENCE Hash Function

M. Naya-Plasencia¹ A. Röck² J-P. Aumasson³ Y. Laigle-Chapuy¹ G. Leurent⁴ W. Meier⁵ T. Peyrin⁶

¹INRIA project-team SECRET, France
²Aalto University School of Science and Technology (TKK), Finland
³Nagravision SA, Cheseaux, Switzerland
⁴École Normale Supérieure, Paris, France
⁵FHNW, Windisch, Switzerland
⁶Ingenico, France

17th annual Fast Software Encryption workshop Seoul February 7-10, 2010

Outline

ESSENCE

Attack on ESSENCE

3 Conclusion

ESSENCE

ESSENCE [Jason W. Martin]

- First round candidate of the NIST SHA-3 competition
 - 64 submissions (October 2008)
 - 51 first round candidates
 - ▶ 14 second round candidates (July 2009)
- Based on feedback shift registers
 - over 32-bit words for ESSENCE-256/224
 - over 64-bit words for ESSENCE-512/384
- Message block: 8 word
- Chaining value: 8 words
- Merkle-Damgård tree
- Davies-Meyer construction for the compression function

ESSENCE [Jason W. Martin]

- First round candidate of the NIST SHA-3 competition
 - 64 submissions (October 2008)
 - 51 first round candidates
 - ▶ 14 second round candidates (July 2009)
- Based on feedback shift registers
 - over 32-bit words for ESSENCE-256/224
 - over 64-bit words for ESSENCE-512/384
- Message block: 8 words
- Chaining value: 8 words
- Merkle-Damgård tree
- Davies-Meyer construction for the compression function

Compression Function

Davies-Meyer construction

Block Cipher

 $32 \times$ clocked

- F: bitwise non-linear function
- L: linear function on the whole word
- 32 reversible steps

Attack on ESSENCE

Principle

- Collision attack
 - ▶ Find $\mathcal{M} \neq \mathcal{M}'$ so that $\mathcal{H}(\mathcal{M}) = \mathcal{H}(\mathcal{M}')$
 - ► Complexity of generic attack: $2^{\ell_n/2}$ where $\ell_h = |\mathcal{H}(\mathcal{M})|$
- For a chaining value H_{i-1} find two messages M_i , M'_i that collide to the same value H_i

Using a differential path

Differential Path

8/23

Exact Complexities

- Probabilities based on Hamming weight (HW) are not accurate enough:
 - e.g. a 1 bit difference has probability 2^{-8.4} to be canceled in the 7 steps of F, and not 2⁻⁷ as we would guess from the HW
- For accurate estimates consider the whole path bitwise
 - ▶ Possible differences: $(\alpha_i, \beta_i, \gamma_i)$ with $0 \le i \le 32/64$ and $\beta = L(\alpha)$ and $\gamma = L(\beta)$
 - ▶ Have to test 2³⁰ values for each each $(\alpha_i, \beta_i, \gamma_i)$

Probability of Complete Path - Bitwise

ullet Bitwise probability, independent of α

$(\alpha_i, \beta_i, \gamma_i)$ probability	(0,0,0)	(0,0,1) <mark>0</mark>	(0,1,0) 2 ^{-9.5}	(0,1,1) 2 ^{-9.1}
$(\alpha_i, \beta_i, \gamma_i)$ probability	(1,0,0) 2 ^{-24.4}	(1,0,1)	(1,1,0) 2 ⁻²³	(1,1,1) 2 ⁻²⁶

- Gives two conditions for α :

 - $\qquad \quad \alpha \wedge \neg \beta \wedge \gamma = \mathbf{0}$

Complexity of Complete Path

• Complexity for the α 's used in our attack:

	differer	itial path	generic method
	left	right	
ESSENCE-256	2 ^{67.4}	2 ^{240.6}	2 ¹²⁸
ESSENCE-512	2 ^{134.7}	2 ^{478.9}	2 ²⁵⁶

About 2^{15.4} pairs follow the whole path for ESSENCE-256 (2^{37.1} for ESSENCE-512)

Idea: Computing the Middle Part

Strategy of the Attack

- Compute many pairs that fulfill the middle part (step 8-17)
- Search among those one message pair that follows the rest of the path (step 0-8 and step 17-32)
- Try different chaining values (random starting messages) with our message pair to find a collision

Computing the Middle Part

8	$x_0 \oplus \alpha$	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇
9	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇	$ extit{X}_{8}\oplus lpha$
10	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇	$ extit{X}_8 \oplus lpha$	$x_9 \oplus \beta$
11	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇	$x_7 \qquad x_8 \oplus \alpha$		<i>X</i> ₁₀
12	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇	$\mathbf{x_8} \oplus \alpha$	$x_9 \oplus \beta$	<i>X</i> ₁₀	X ₁₁
13	<i>X</i> ₅	<i>x</i> ₆	<i>X</i> ₇	$\mathbf{X_8} \oplus \boldsymbol{\alpha}$	$x_9 \oplus \beta$	X ₁₀	X ₁₁	X ₁₂
14	<i>x</i> ₆	<i>X</i> ₇	$ extit{X}_8 \oplus lpha$	$x_9 \oplus \beta$	X ₁₀	X ₁₀ X ₁₁		X ₁₃
15	<i>X</i> ₇	$ extit{X}_8 \oplus lpha$	$x_9 \oplus \beta$	X ₁₀	X ₁₁	X ₁₂	X ₁₃	X ₁₄
16	$ extit{X}_8 \oplus lpha$	$\mathit{X}_9 \oplus eta$	<i>X</i> ₁₀	X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅
17	$ extit{X}_9 \oplus eta$	<i>X</i> ₁₀	<i>X</i> ₁₁	X ₁₂	X ₁₃	X ₁₄	<i>X</i> ₁₅	$ extit{X}_{16} \oplus lpha$

• Let ℓ be the word size (32 or 64), $\beta = L(\alpha)$, $\gamma = L(\beta)$, $s = |\alpha \vee \beta|$ and $S = \{i : \alpha_i \vee \beta_i = 1\}$

Computing the Middle Part - Bit Level

- For all bit-difference $(\alpha_i, \beta_i, \gamma_i)$, $0 \le i < 32/64$:
 - ▶ Store bit-tuples $(x_1, ..., x_{15})_i$ passing F in the middle part:

e.g.:
$$F(x_2, x_3, x_4, x_5, x_6, x_7, x_8)_i = F(x_2, x_3, x_4, x_5, x_6, x_7, x_8 \oplus \alpha)_i$$

- Better: Store only those tuples which have a possibility to follow the rest of the path
- Number of adequate tuples depending on the bit-differences:

(0,0,1)	(0, 1, 0)	(0, 1, 1)	(1,0,0)	(1,0,1)	(1, 1, 0)	(1, 1, 1)
		128		120		176
		128	2		4	2

• Number of possibilities to choose $(x_1, \ldots, x_{15})_i$, $i \in S$:

 $N_{\alpha} = 2^{|\alpha \wedge \neg \beta \wedge \neg \gamma|} \times 4^{|\alpha \wedge \beta \wedge \neg \gamma|} \times 96^{|\neg \alpha \wedge \beta \wedge \neg \gamma|} \times 2^{|\alpha \wedge \beta \wedge \gamma|} \times 128^{|\neg \alpha \wedge \beta \wedge \gamma|}$

Computing the Middle Part - Bit Level

- For all bit-difference $(\alpha_i, \beta_i, \gamma_i)$, $0 \le i < 32/64$:
 - ▶ Store bit-tuples $(x_1, ..., x_{15})_i$ passing F in the middle part:

e.g.:
$$F(x_2, x_3, x_4, x_5, x_6, x_7, x_8)_i = F(x_2, x_3, x_4, x_5, x_6, x_7, x_8 \oplus \alpha)_i$$

- Better: Store only those tuples which have a possibility to follow the rest of the path
- Number of adequate tuples depending on the bit-differences:

$(\alpha_i, \beta_i, \gamma_i)$	(0,0,1)	(0, 1, 0)	(0, 1, 1)	(1,0,0)	(1,0,1)	(1, 1, 0)	(1,1,1)
	0	96	128	96	120	96	176
better	0	96	128	2	0	4	2

• Number of possibilities to choose $(x_1, \ldots, x_{15})_i$, $i \in S$:

$$N_{\alpha} = 2^{|\alpha \wedge \gamma \beta \wedge \gamma \gamma|} \times 4^{|\alpha \wedge \beta \wedge \gamma \gamma|} \times 96^{|\gamma \alpha \wedge \beta \wedge \gamma \gamma|} \times 2^{|\alpha \wedge \beta \wedge \gamma|} \times 128^{|\gamma \alpha \wedge \beta \wedge \gamma|}$$

Computing the Middle Part - Fix s Bits

Computing the Middle Part - Linear Systems

• We have 7 linear systems depending on α , $8 \le j \le 14$

$$L(x_j) = R_j$$

- x_j and R_j have together
 - ≥ 2ℓ bits (ℓ is the word length)
 - 2s bit fixed
- L gives ℓ equations
- Probability of a solution $2^{-(2s-\ell)}$ if the system has full rank

Computing the Middle Part - Solving the Systems

- \bullet The position of the fixed bits is given by ${\cal S}$
- Using Gauss elimination we find $2s \ell$ equations which must be satisfied to have a solution
- Order the $7(2s-\ell)$ equations depending on the variables they contain, so that changing the variables in the later equations has no influence on the results of the first ones

Computing the Middle Part - Finishing

- After solving the linear systems we have
 - ▶ In x_i, R_i all bits fixed, $8 \le i \le 14$
 - ▶ In $x_1, ..., x_7, x_{15}$ we have s bits fixed
 - ▶ In x_0 , x_{16} no bit fixed
- Selecting the $\ell-s$ free bits of x_7 allows us to determine all the other free bits
 - \Rightarrow For each solution of the linear systems we have $2^{\ell-s}$ solutions for the middle part for free
- In average, we find a solution for x_0, \ldots, x_{16} in less than one call to the compression function

Final Complexity

ullet To find the optimal lpha

ESSENCE-256: Test all possible α

▶ ESSENCE-512: Test all α 's with HW \leq 8

(limitation on the left side)

	differer left	ntial path right	generic method			
ESSENCE-256	2 ^{67.4}	2 ^{62.2}	2 ¹²⁸			
ESSENCE-512	2 ^{134.7}	2 ^{116.1}	2 ²⁵⁶			

Semi-Free-Start Collision on 29 rounds

				Initial va	lues for r								Initial va	lues for k				_
	B0741769	BA2BA1A1	349A4DC8	54204D82	292006B1	80096194	D23020E1	9098A7EA		4CD35806	4759FB6D	3ED267E5	17641536	BE1F35ED	688B0C3C	DF126549	5FAE0827	
round				differ					round	differences								round
٥	0	0	0	0	0	0	0	0	0	80102040		0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	80102040	1	537874EB	0	0	0	0	0	0	80102040	1
2	0	0	0	0	0	0	80102040	0	2		0	0	0	0	0	80102040	0	2
3	0	0	0	0	0	80102040	0	0	3	0	0	0	0	0	80102040	0	0	3
4	0	0	0		80102040	0	0	0	4	0	0	0	0	80102040	0	0	0	4
5	0	0	0	80102040	0	0	0	0	5	0	0	0	80102040	0	0	0	0	5
6	0		80102040	0	0	0	0	0	6	0		80102040	0	0	0	0	0	6
7		80102040	0	0	0	0	0	0	7		80102040	0	0	0	0	0	0	7
8	80102040	0	0	0	0	0	0	0	8	80102040	0	0	0	0	0	0	0	8
9	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	80102040	9
10	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0		537874EB	10
11	0	0	0	0	0	0	0	0	11	0	0	0	0	0		537874EB	0	11
12	0	0	0	0	0	0	0	0	12	0	0	0	0			0	0	12
13	0	0	0	0	0	0	0	0	13	0	0	0		537874EB	0	0	0	13
14	0	0	0	0	0	0	0	0	14	0	0		537874EB	0	0	0	0	14
15	0	0	0	0	0	0	0	0	15	0	80102040	537874EB	0	0	0	0	0	15
16	0	0	0	0	0	0	0	0	16	80102040	537874EB	0	0	0	0	0	0	16
17	0	0	0	0	0	0	0	80102040	17	537874EB	0	0	0	0	0	0	80102040	17
18	0	0	0	0	0	0	80102040	0	18	0	0	0	0	0	0	80102040	0	18
19	0	0	0	0	0	80102040	0	0	19		0	0	0	0	80102040	0	0	19
20	0	0	0	0	80102040	0	0	0	20		0	0	0	80102040	0	0	0	20
21	0	0	0	80102040	0	0	0	0	21		0	0	80102040	0	0	0	0	21
22	0	0	80102040	0	0	0	0	0	22		0	80102040	0	0	0	0		22
23		80102040	0	0	0	0	0	0	23		80102040	0	0	0	0	80000040		23
24	80102040	0	0	0	0	0	0	0	24	80102040	0	0	0	0	80000040	38C32419	3B50EAEF	24
25	0	0	0	0	0	0	0	0	25	0	0	0	0	80000040	38C32419	3B50EAEF	E9F738F8	25
26	0	0	0	0	0	0	0	0	26	0	0	0	80000040	38C32419	3B50EAEF	E9F738F8	D59E6BC4	26
27	0	0	0	0	0	0	0	0	27	0	0	80000040		3B50EAEF	E9F738F8	D59E6BC4	519ECD90	27
28	0	0	0	0	0	0	0	0	28		80000040	38C32419	3B50EAEF	E9F738F8	D59E6BC4	519ECD90	81993748	28
29	0	0	0	0	0	0	0	0	29	80000040	38C32419	3B50EAEF	£9F738F8	D59E6BC4	519ECD90	81993745	1898997C	29
30	0	0	0	0	0	0	0	80000040	30	38C32419	3B50EAEF	E9F738F8	D59E6BC4	519ECD90	81993745	1898997C	A7EF91F9	30
31	0	0	0	0	0	0	80000040	102040	31	3B50EAEF	E9F738F8	D59E6BC4				A7EF91F9	21E1C70	31
32	0	0	0	0	0	80000040	102040	3336DACE	32	£9F738F8	D59E6BC4	519ECD90	8199374F	1898997C	A7EF91F9	21E1C70	1B715D5F	32

Conclusion

Conclusion

Complexity:

ESSENCE-256: 2^{67.4}
 ESSENCE-512: 2^{134.7}

• Why does the attack work?

- Message processing is independent of chaining value
- Precompute low probability part
- Efficient solving of linear system
- Very accurate probability estimation by considering the bit path
- Reduced cost by considering the whole path

Conclusion

Complexity:

ESSENCE-256: 2^{67.4}
 ESSENCE-512: 2^{134.7}

• Why does the attack work?

- Message processing is independent of chaining value
- Precompute low probability part
- Efficient solving of linear system
- Very accurate probability estimation by considering the bit path
- Reduced cost by considering the whole path