03/01 Thurs Thm Intermediate Value Thm? Given a continuous function f: [a,b] - R, then any value c before f(a) and f(b),

FXE[a,b] S.t. f(x)=C. Thm) Suppose f is strictly increasing f: [a,b] > R Then Image of f = [f(a), f(b)] $\Rightarrow f$ is continuous $pf) \Leftarrow : Use I.V.T$ $\Rightarrow : Assume f$ is not continuous at x_0 . ex)] a seg Extriner s.t. limxn=xo but E fixin) new does not converge to f(xo) From { Xn3 new pick a subsequence { Xnx3 xen that is either inc/dec

Hence since f is strictly in C { {f(Xnx)} xen is either Strictly inc/Strictly dec. Assume without loss of generality, that Exax3 is strictly inc and thus (fixnx) 3 xen is strictly inc. Since & f(x(nx)) x en is strictly inc and bounded lim + (xnx) = S exists. Now, Since Image = [f(a), f(b)] = \$\forall \chi_0 \text{ } \forall \ 8.t. f(xo)=5. for the second assumption from $f(x_{n_k}) \neq f(x_0)$ No tice $f(x_0) > f(x_{n_k})$ implies $x_0 > x_{n_k}$ (since $f(x_0)$) Since Xnx -> Xo, then Xo > Xo.

Extraction of the hand $(x_0) \leq f(x_0)$ as fis seneth $(+(x_n)) \leq f(x_0)$ since x_{n_k} $(x_0) \leq f(x_0)$ inc. on the other hand, $f(\mathcal{X}_0) \leq f(\mathcal{X}_0)$ Since $\lim_{k \to 0} f(\mathcal{X}_{nk}) = f(\mathcal{X}_0)$ To $X_0 = X_0$, and hence limf($x_n = f(x_0)$) - congradict GLypy goal is & show Xo = Xo!!! Thm) If f: (a, b) - (c,d) is continuous and have the inverse Lt. Then I'm must be confinuers f) I has inverse It meaning I is a bisection. dince I is a 1-1 and continuous then fiseither strictly incldec. If fis strictly inc. then fis also strictly inc. Furthermore image of flis [a,b] from bisection of f.
Applying the previous theorem & fl, we
obtain flis outso continuous. * 8 depends on to and E. for the same & E>o, the & for Uo is much smaller than 8 for to

Then Cary smaller set of the anisomy entinuous 7hm) f: ca, b] - R continuous, then & muse be unidermy continues 7hm) f: (a,b) -> R, and f is uniformly continuous

to the continuously extended to the

endpints a & b. Continiously extended to all means you can define f(a) & f(b) f.t. J; Ca, b] -R is continuous. Def) $f: S \rightarrow R$, we say f is differentiable at a $\in S$, if $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = xists$. Notation $f(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ if exists.

ex) f(x) = |x|. Is f(x) = |x|. Is f(x) = |x|. $\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{|x| - 1}{x - 1}$ 1 = 1 = 1 = 1 IS & differentiable at > (=0 ! $\lim_{x\to 0} \frac{f(x)-f(x)}{x-0} = \lim_{x\to 0} \frac{|x|-0}{x-0} = \lim_{x\to 0} \frac{x-0}{x-0} = 1$ Honce, Vimit does not exist.

7hm) If f is differentiable at a then f. Since $\lim_{n\to\infty} (x_n-\alpha) = 0$ this implies $\lim_{n\to\infty} (x_n-\beta)$ = 0 Therefore, f is continuous at x=a