

Name	:	(Class:	Date:	
1 1001110	•		Ciuss.	Dutti	

All calculations MUST be shown. No mark given if calculations are not shown. All mathematical answers must be in 3 significant figures.

Which of the substances listed below fits the description in the boxes provided. Each substance can be used only ONCE.

Aqueous ammonia calcium hydroxide carbonic acid universal indicator hydrogen chloride sodium oxide

(c) slowly added to solution Y. Label the axes.

		Mg27 CO32 Table of solubility.	
3.	Dilute	e nitric acid was added to magnesium carbonate.	
HU02(42)	(a)	Write the balanced equation (with state symbols).	
Hular)		2 HNO2 (ag) + Mglo2 (=> Mg(NO3)2(ag) + CO2(g)+ H2O(l) [. Effervescence	e
H2804 (29)		0.025 not 0.01 not Salt 2. White solid	
	(b)	25.0cm ³ of 1.0M of the acid was added to 0.840g of magnesium carbonate.	
		(i) Calculate the number of moles of the acid present.	
		no. of notes and = 0.025 × 1.0 Coloniles Coloniles Coloniles	
		= 0.0250 mol do not 3. Test COZ	
		(11) Calculate the number of moles of magnesium carbonate present	
		100. of moles migroz = 0.840 yet! Ismanaha	/
		71412146 0.0100 mc1	•
		conditions.	
		Mg/Bis limiting (all of 0.01 mol usedup)	
		Mg Wz: Wz = 1:1	
		no. of nucles 202 = 0.0100 mol	
		1 1. Co. 2 1. 2 2. 2 1. 2 2. 2 1. 2 2. 2 1. 2 2. 2	2 \
		(iv) Suggest a chemical test to test for the presence of carbon dioxide gas. (or 240 cm.) Describe the observation you would see.	
		Describe the observation you would see.	
		Bubble coz gas into linewater, (ag. CalOH)zor	
		Bubble cor gas into linewater, (ag. Ca(OH)zor white ppt. formed. Ca(OH)z Solu	th
		[Cannot describe as	
		chalky solution!	
		mining 2000, 100	
4.	Write	balanced equations (with state symbols) for these reactions:	
	(a)	dilute hydrochloric acid reacts with zinc	
		$\frac{2HU(qq) + Zn(s) \rightarrow ZnUz + Hz(g)}{acid}$ [2] white solid	
		acid reactive metal salt solid	
	(b)	dilute sulfuric acid reacts with potassium hydroxide	
		Hrsog(ag) + 2KOH(ag) -> Krsog(ag) +2H2O(l) aid aikali(base)	
	(c)	dilute nitric acid reacts with lead(II) carbonate	
	(c)	7 HAM (as) + Ph/m (a) - Ph/Mm) (as) + Ho(l)	
		dilute nitric acid reacts with lead(II) carbonate $ \begin{array}{cccccccccccccccccccccccccccccccccc$	
		Solid Solution	
		Somtion	

5 polyatomic ions: OH- NO3- CC32- SO42-

								Gro	oun					NH	•		
1	II							GI	oup			III	IV	V	VI	VII	0
		,		Key			1 H hydrogen 1					13	14	15	16	17	2 He heliu 4
3 Li lithium 7 11 Na	4 Be beryllium 9 12 Ma		ato	(atomic) r omic sym name ve atomic	bol	tr	ansi Orm	kon	me	als	ı	5 B boron 11 13 A/	6 C carbon 12 14 Si	7 N nitrogen 14 15 P	8 O oxygen 16 16 S	9 F fluorine 19 17 C1	10 Ne neo 20 18 At
sodium 23	magnesium 24								W 20			aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argi
19 K otassium 39	20 Ca calcium 40	SC scandium 45	Ti titanium 48	V vanadium 51	Cr chromium 52	25 Mn manganese 55	26 Fe iron 56	Co cobalt 59	28 Ni nickel 59	Cu copper 64	30 Zn 2n0 65	31 Ga gallium 70	32 Ge germanium 73	33 As arsenic 75	34 Se selenium 79	35 Br bromine 80	Ki krypt 84
37 Rb ubidium 85	38 Sr strontium 88	39 Y yttrium 89	40 Zr zirconium 91	41 Nb niobium 93	42 Mo molybdenum 96	43 Tc	44 Ru ruthenium 101	45 Rh rhodium 103	46 Pd palladium 106	47 Ag silver	40	49 In indium 115	50 Sn tin 119	51 Sb antimony 122	52 Te tellurium 128	53 I iodine 127	54 Xi xen 13
55 Cs aesium 133	56 Ba barium 137	57 – 71 lanthanoids	72 Hf hafnium 178	73 Ta tantalum 181	74 W tungsten 184	75 Re rhenium 186	76 Os osmium 190	77 Ir iridium 192	78 Pt platinum 195	79 Au gold 197	80 Hg mercury 201	81 T <i>I</i> thallium 204	82 Pb lead 207	83 Bi bismuth 209	84 Po polonium	85 At astatine	R rad
87 Fr ancium	88 Ra radium	89 – 103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 Hs hassium	109 Mt meitnerium	110 De darmstadtium	111 Rg roentgenium	112 Cn copernicium		114 F/ flerovium		116 Lv livermorium		
la	anthanoid	ls	57	58	59	60	61	62	63	64	65	66	67	68	69	70	7
			La lanthanum 139	Ce cerium 140	Pr praseodymium 141	144	Pm promethium	Sm samarium 150	Eu europium 152	Gd gadolinium 157	Tb terbium 159	Dy dysprosium 163	Ho holmium 165	Er erbium 167	Tm thulium 169	Yb ytterbium 173	Li lutet 17
	actinoids		AC actinium	90 Th thorium 232	91 Pa protactinium 231	92 U uranium 238	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 Es einsteinium	100 Fm fermium	101 Md mendelevium	102 No nobelium	10 L lawre

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.n.)

if pH=1.5, [H+]=10-PH = 10-1.5 work backwards = 0.0316 moldm3

will react with the following reactants. Your substances can be used once, more than once, or not at all.

Reactant	Substance (from List A)
dilute hydrochloric acid	
sodium hydroxide	

HW-29 Jul

Briefly explain the following observations:

When dilute sulfuric acid is neutralized by aqueous sodium hydroxide, the (a) resulting mixture is a very good conductor of electricity.

(b)	A solution of hydrogen chloride in methylbenzene does not conduct electricity and does not react with magnesium.
(c)	A solution of hydrogen chloride in water conducts electricity and reacts rapidly with magnesium.
fough	not acidic alcohol (neutral) no H ⁺ /no OH ⁻ (Not alkaline) nol is an organic compound with the formula, CH ₃ CH ₂ OH. This compound is
luble in wat	er. It seems to suggest, with the presence of the –OH group and the hydrogen
luble in wat	to carbon atoms, and its good solubility, that it can be an acid or an alkali. Other than using pH sensor or indicators, briefly describe how you can prove that
luble in wat oms bonded	to carbon atoms, and its good solubility, that it can be an acid or an alkali.
luble in wat oms bonded	other than using pH sensor or indicators, briefly describe how you can prove that a solution of ethanol is not an alkali. Other than using pH sensor or indicators, briefly describe how you can prove that a solution of ethanol is not an acid. Other than using pH sensor or indicators, briefly describe how you can prove that a solution of ethanol is not an acid. Other than using pH sensor or indicators, briefly describe how you can prove that a solution of ethanol is not an alkali. Other than using pH sensor or indicators, briefly describe how you can prove that a solution of ethanol is not an alkali. Other than using pH sensor or indicators, briefly describe how you can prove that a solution of ethanol is not an alkali. Other than using pH sensor or indicators, briefly describe how you can prove that a solution of ethanol is not an alkali. Other than using pH sensor or indicators, briefly describe how you can prove that a solution of ethanol is not an alkali. Other than using pH sensor or indicators, briefly describe how you can prove that a solution of ethanol is not an alkali.
luble in wat oms bonded (a)	other than using pH sensor or indicators, briefly describe how you can prove that a solution of ethanol is not an alkali. Other than using pH sensor or indicators, briefly describe how you can prove that a solution of ethanol is not an acid. Other than using pH sensor or indicators, briefly describe how you can prove that a solution of ethanol is not an acid. Then alcohol is not acidic. Other than using pH sensor or indicators, briefly describe how you can prove that a solution of ethanol is not an alkali.

Answers

1.

Substance	Description
a. aqueous ammonia	has a pH of about 11
b. carbonic acid	has a pH of about 5
c. hydrogen chloride	dissociates almost complete in water
d. sodium oxide	produces OH ⁻ ions when dissolved in water
e. universal indicator	is used to test for acids and alkalis
f. calcium hydroxide	is used by farmers for the treatment of soil

- 2a Sodium Hydroxide
- 2b Use moist red litmus paper. Turned blue.
- 2c See graph on right. 1m for shape, 1m for pHs

3. (a)
$$2HNO_3(aq) + MgCO_3(s) \rightarrow Mg(NO_3)_2(aq) + CO_2(g) + H_2O(1)$$

- (d) (i) No. of moles acid present = $0.0250 \times 1.0 = 0.025 \text{mol}$
 - (ii) No. of moles carbonate present = 0.84/84 = 0.0100 mol
 - (iii) Limiting reagent is magnesium carbonate. Volume of carbon dioxide gas = $0.0100 \times 24.0 = 0.240 \text{ dm}^3$
 - (iv) Bubble CO₂ gas into limewater/calcium hydroxide solution. White ppt. will be formed in colourless solution.
- 4a. $2HCl(aq) + Zn(s) \rightarrow ZnCl_2(aq) + H_2(g)$
- 4b $2KOH(aq) + H_2SO_4(aq) \rightarrow K_2SO_4(aq) + 2H_2O(l)$
- 4c $2HNO_3(aq) + PbCO_3(s) \rightarrow Pb(NO_3)_2(aq) + CO_2(g) + H_2O(l)$
- Sulfuric acid, when dissolved in water, undergoes complete ionization to produce aqueous H⁺ ions. However, ethanoic acid, when dissolved in water, only undergoes partial ionization to produce low concentration of aqueous H⁺ ions.
- Sb Rapid, vigorous effervescence in test-tube containing the strong acid [1], slower effervescence in the other test-tube.

6a

Nature of Oxide	Chemical Name (List A)	Solubility
a. Neutral	Carbon monoxide	Insoluble
b. Acidic	Carbon dioxide	Partially soluble
c. Basic	Sodium oxide	Soluble
d. Amphoteric	Zinc oxide	Insoluble

6b

Reactant	Substance (from List A)
dilute hydrochloric acid	Sodium oxide, zinc oxide
sodium hydroxide	Carbon dioxide, zinc oxide

7a This neutralization reaction produces aqueous sodium sulfate and water. Since sodium sulfate is a soluble salt, it will dissolve to produce aqueous mobile ions, that can act as mobile charge carriers.

Yr3 Chemistry Remedial - Acids & Bases

- 7b Hydrogen chloride will not ionize in methylbenzene, thus no aqueous H⁺ ions are dissociated. With no aqueous hydrogen ions present, it does not react with magnesium as an acid.
- 7c Hydrogen chloride will ionize in water, producing aqueous hydrogen ions (mobile charge carriers) that will allow electricity to be conducted. The solution is acidic and it will react with magnesium.
- 8a Add calcium carbonate (or moderately reactive metal such as Mg). If no effervescence is observed, and no carbon dioxide gas evolved, the ethanol solution is then not acidic.
- 8b Add any ammonium salt and warm the mixture. If no effervescence observed (no ammonia gas evolved), the ethanol solution is not an alkali.