数学分析 II 习题课讲义

龚诚欣

gongchengxin@pku.edu.cn

2024年2月4日

目录

1	第 1 次习题课: 定积分的基本概念与可积性	3
	1.1 问题	3
	1.2 解答	3
2	第 2 次习题课: 定积分的性质与计算	4
	2.1 问题	4
	2.2 解答	4
3	第 3 次习题课: 定积分的应用与中值定理	5
	3.1 问题	5
	3.2 解答	6
4	第 4 次习题课: 广义积分的收敛性与计算	6
	4.1 问题	6
	4.2 解答	7
5	第 5 次习题课: 积分的综合运用	8
	5.1 问题	8
	5.2 解答	8
6	第 6 次习题课: 正项级数	9
	6.1 问题	9
	6.2 解答	9
7	第7次习题课:任意项级数,数项级数的性质	9
	7.1 问题	9
	7.2 解答	9
8	第 8 次习题课: 函数项级数的一致收敛性 (1)	9
	8.1 问题	9
	8.2 解答	9
9	第 9 次习题课: 函数项级数的一致收敛性 (2)	9
	9.1 问题	9
	9.2 解答	9

10	第 10 次习题课: 幂级数的基本性质	9
	10.1 问题	
	10.2 解答	9
11	第 11 次习题课: 泰勒展开与多项式逼近	9
	11.1 问题	
	11.2 解答	9
12	第 12 次习题课: 傅里叶级数的基本性质	9
	12.1 问题	
	12.2 解答	9
13	第 13 次习题课: 傅里叶级数的收敛性	9
	13.1 问题	9
	13.2 解答	9
14	· 致谢	9

第 1 次习题课: 定积分的基本概念与可积性 1

1.1 问题

- 1. f(x) 在 [a,b] 的每一点处的极限都是 0, 证明 $f(x) \in R[a,b]$ 且 $\int_a^b f(x) \mathrm{d}x = 0$.
- 2. $f(x) \in R[a,b], \int_a^b f(x) dx > 0$. 证明 $\exists [\alpha,\beta] \subset [a,b], \text{s.t.} \forall x \in [\alpha,\beta], f(x) > 0$.
- 3. $f(x) \in R[a, b]$, 问 |f(x)| 是否一定 $\in R[a, b]$?
- 4. 讨论区间 [a,b] 上 $f,|f|,f^2$ 的可积性之间的关系.
- 5. 设非负函数 $f(x) \in C[a,b]$, 证明极限 $\lim_{n \to +\infty} \left(\int_a^b f^n(x) dx \right)^{\frac{1}{n}}$ 存在并求之.
- 6. $f(x) \ge 0, f''(x) \le 0, x \in [a, b]$. 证明 $\max_{x \in [a, b]} f(x) \le \frac{2}{b-a} \int_a^b f(x) dx$.
- 7. $n \in \mathbb{N}_{+}, f(x) \in C[a,b], \int_{a}^{b} x^{k} f(x) dx = 0, k = 0, 1, \cdots, n$. 证明 f(x) 在 (a,b) 内至少有 n+1 个零点.
 8. 计算极限 $\lim_{n \to +\infty} \frac{[1^{\alpha} + 3^{\alpha} + \cdots + (2n+1)^{\alpha}]^{\beta+1}}{[2^{\beta} + 4^{\beta} + \cdots + (2n)^{\beta}]^{\alpha+1}}$.
 9. $\lim_{n \to +\infty} \frac{a_{n}}{n^{\alpha}} = 1, \alpha > 0$, 求 $\lim_{n \to +\infty} \frac{1}{n^{1+\alpha}} (a_{1} + a_{2} + \cdots + a_{n})$.

- 10. (Hölder 不等式). 非负函数 $f(x), g(x) \in R[a, b], p, q > 1, \frac{1}{p} + \frac{1}{q} = 1$. 证明 $\int_a^b f(x)g(x) dx \le \left(\int_a^b f^p(x)\right)^{\frac{1}{p}} \left(\int_a^b g^q(x)\right)^{\frac{1}{q}}$. 11. $f(x) \in R[a, b], A = \inf_{x \in [a, b]} f(x), B = \sup_{x \in [a, b]} f(x), g(y) \in C[A, B]$, 证明 $G(x) := g(f(x)) \in R[a, b]$.
- 12. 己知 (0,1) 上的单调函数 f(x) 满足 $\lim_{n\to+\infty} \sum_{k=1}^{n-1} \frac{1}{n} f(\frac{k}{n})$ 存在, 问是否有 $f(x) \in R[0,1]$?

1.2 解答

- 1. 显然 f(x) 有界, 否则由聚点原理矛盾. 其次 $\forall \epsilon > 0, \forall x \in [a,b], \exists \delta_x > 0, \text{s.t.} \omega_{(x-\delta_x,x+\delta_x)} < \epsilon$. 由于 $\cup_{x \in [a,b]} (x-\delta_x,x+\delta_x)$ $\delta_x) \supset [a,b]$, 因此存在两两无包含关系的有限子覆盖 $\cup_{i=1}^n (x_i - \delta_i, x_i + \delta_i) \supset [a,b]$. 不妨设 $a \leq x_1 < \dots < x_n \leq b$. 可 取分割点 $y_i \in (x_i - \delta_i, x_i + \delta_i) \cap (x_{i+1} - \delta_{i+1}, x_i + \delta_{i+1})$, 对于这个分割, $\sum_{i=1}^n \omega_i \Delta x_i < \epsilon(b-a)$, 因此有可积性. 由于 $\left|\int_{a}^{b} f(x) dx\right| \leq \int_{a}^{b} |f(x)| dx \leq \sum_{i=1}^{n} \int_{y_{i-1}}^{y_{i}} |f(x)| dx \leq \epsilon(b-a), \epsilon$ 的任意性知 $\int_{a}^{b} f(x) dx = 0.$
- 2. 反证法. 如果每个区间都存在值小于等于 0. 那么任意分割我都取区间内那个小于等于 0 的点, 达布和始终小于等于 0, 其极限, 即积分值不可能大于 0.
- 3. $f(x) = -\text{Riemann}(x) \in R[0,1], |f(x)| = -\text{Dirichlet}(x) \notin R[0,1].$
- 4. $f \in R[a,b] \Rightarrow |f|, f^2 \in R[a,b]$, 因为 f 在 x_0 处连续 $\Rightarrow |f|, f^2$ 在 x_0 处连续.
- $|f| \in R[a,b] \Rightarrow f^2 \in R[a,b], \not\Rightarrow f \in R[a,b].$ |f| 在 x_0 处连续 $\Rightarrow f^2$ 在 x_0 处连续, 而对于 f 有反例 $f(x) = 1_{\mathbb{Q}} 1_{\mathbb{R}\setminus\mathbb{Q}}.$ $f^2 \in R[a,b] \Rightarrow |f| \in R[a,b], \not\Rightarrow f \in R[a,b]$. 理由与上一个相同.
- 5. 设 $M = \max_{x \in [a,b]} f(x), f(\xi) = M$. 由连续性, $\forall \epsilon > 0, \exists \delta > 0$ s.t. $\forall x \in (\xi \delta, \xi + \delta), f(x) > M \epsilon$. 因此当 n 足够大时成立

$$M + 2\epsilon > ((b-a)M^n)^{\frac{1}{n}} \ge \left(\int_a^b f^n(x) dx\right)^{\frac{1}{n}} \ge \left(\int_{\xi-\delta}^{\xi+\delta} f^n(x) dx\right)^{\frac{1}{n}} > (2\delta(M-\epsilon)^n)^{\frac{1}{n}} > M - 2\epsilon \Rightarrow \left(\int_a^b f^n(x) dx\right)^{\frac{1}{n}} \to M.$$

$$M + 2\epsilon > ((b-a)M^n)^{\frac{1}{n}} \ge \left(\int_a^b f^n(x) dx\right)^{\frac{1}{n}} \ge \left(\int_{\xi-\delta}^{\xi+\delta} f^n(x) dx\right)^{\frac{1}{n}} > (2\delta(M-\epsilon)^n)^{\frac{1}{n}} > M - 2\epsilon \Rightarrow \left(\int_a^b f^n(x) dx\right)^{\frac{1}{n}} \to M.$$
6. 设 $f(\xi) = \max_{x \in [a,b]} f(x)$. 由题意知 $f(x)$ 是凹函数, 因此成立 $f(x) \ge \begin{cases} \frac{f(\xi) - f(a)}{\xi - a}(x - a) + f(a), & x \in [a,\xi] \\ \frac{f(b) - f(\xi)}{b - \xi}(x - \xi) + f(\xi), & x \in [\xi,b] \end{cases} \Rightarrow \text{RHS} \ge \frac{2}{b - a} \left(\int_a^\xi f(x) dx + \int_\xi^b f(x) dx\right) \ge \frac{2}{b - a} \left((\xi - a)\frac{f(\xi) + f(a)}{2} + (b - \xi)\frac{f(b) + f(\xi)}{2}\right) \ge \frac{2}{b - a}\frac{f(\xi)}{2}(\xi - a + b - \xi) = f(\xi) = \text{LHS}.$
7. $\int_a^b f(x) dx = 0 \Rightarrow \exists 1$ 零点, 记为 x_1 . $\int_a^b (x - x_1)f(x) dx = 0 \Rightarrow \exists 2$ 零点, 记为 x_2 . $\cdots \int_a^b \left[\prod_{i=1}^n (x - x_i)\right]f(x) dx = 0 \Rightarrow \exists 1$

$$\frac{2}{b-a} \left(\int_a^{\xi} f(x) dx + \int_{\xi}^b f(x) dx \right) \ge \frac{2}{b-a} \left((\xi - a) \frac{f(\xi) + f(a)}{2} + (b - \xi) \frac{f(b) + f(\xi)}{2} \right) \ge \frac{2}{b-a} \frac{f(\xi)}{2} (\xi - a + b - \xi) = f(\xi) = \text{LHS}.$$

8.

原式 =
$$2^{\alpha-\beta} \frac{\left[\frac{2}{n} \left(\frac{1}{n}\right)^{\alpha} + \frac{2}{n} \left(\frac{3}{n}\right)^{\alpha} + \dots + \frac{2}{n} \left(\frac{2n+1}{n}\right)^{\alpha}\right]^{\beta+1}}{\left[\frac{2}{n} \left(\frac{2}{n}\right)^{\beta} + \frac{2}{n} \left(\frac{4}{n}\right)^{\beta} + \dots + \frac{2}{n} \left(\frac{2n}{n}\right)^{\beta}\right]^{\alpha+1}} \xrightarrow{\stackrel{\text{定积分定义}}{}} 2^{\alpha-\beta} \frac{\left(\int_{0}^{2} x^{\alpha} dx\right)^{\beta+1}}{\left(\int_{0}^{2} x^{\beta} dx\right)^{\alpha+1}} = 2^{\alpha-\beta} \frac{(\beta+1)^{\alpha+1}}{(\alpha+1)^{\beta+1}}$$

9.
$$\forall \epsilon > 0, \exists N, \forall n > N, n^{\alpha}(1 - \epsilon) < a_n < n^{\alpha}(1 + \epsilon)$$
. 从而当 n 足够大时, $\frac{1}{n^{1+\alpha}}(1^{\alpha} + 2^{\alpha} + \dots + N^{\alpha}) < \epsilon, \frac{1}{n^{1+\alpha}}(a_1 + a_2 + \dots + a_N) < \epsilon, \left|\frac{1}{n^{1+\alpha}}[(a_{N+1} - (N+1)^{\alpha}) + \dots + (a_n - n^{\alpha})]\right| \leq \frac{\epsilon}{n^{1+\alpha}}[(N+1)^{\alpha} + \dots + n^{\alpha}] \leq \frac{\epsilon}{n^{1+\alpha}}\sum_{i=1}^{n}i^{\alpha} = \frac{\epsilon}{n}\sum_{i=1}^{n}(\frac{i}{n})^{\alpha} \leq \frac{\epsilon}{n^{1+\alpha}}\sum_{i=1}^{n}(a_{N+1} - (N+1)^{\alpha}) + \dots + a_{N-1}(a_{N+1} - (N+1)^{\alpha}) + \dots + a_{N-1}(a_{N+1}$

$$\epsilon \int_0^1 x^{\alpha} dx + \epsilon = \frac{\epsilon}{\alpha+1} + \epsilon \le 2\epsilon$$
. 这意味着 $\left| \frac{1}{n^{1+\alpha}} \left(\sum_{i=1}^n a_i - \sum_{i=1}^n i^{\alpha} \right) \right| \le 4\epsilon \Rightarrow 原极限 = \lim_{n \to +\infty} \frac{1}{n^{1+\alpha}} \sum_{i=1}^n i^{\alpha} = \frac{1}{\alpha+1}$.

10. WLOG $\left(\int_a^b f^p(x)\mathrm{d}x\right)^{\frac{1}{p}} = \left(\int_a^b g^q(x)\mathrm{d}x\right)^{\frac{1}{q}} = 1$, 则原命题的结论可改写为 $\int_a^b f(x)g(x)\mathrm{d}x \le 1$. 由 $\ln x$ 的凹性,我们有 $\alpha \ln a + (1-\alpha) \ln b \le \ln(\alpha a + (1-\alpha)b) \Leftrightarrow a^\alpha b^{1-\alpha} \le \alpha a + (1-\alpha)b$. 令 $\alpha = \frac{1}{p}, 1-\alpha = \frac{1}{q}, a = x^p, b = y^q \Rightarrow xy \le 1$ $\frac{x^p}{p} + \frac{y^q}{q} \Rightarrow \int_a^b f(x)g(x)dx \le \int_a^b \frac{f(x)^p}{p} + \frac{g(x)^q}{q}dx = \frac{1}{p} + \frac{1}{q} = 1.$

本题也可以将积分离散化后使用离散版本的 Hölder 不等式.

11. 证法 a: G(x) 的间断点集合是 f(x) 间断点集合的子集, 因此其 Lebesgue 测度为 0, 从而可积.

证法 b: 由于 g(y) 一致连续, 因此 $\forall \epsilon > 0, \exists \delta > 0$, 使得 $\forall |y_1 - y_2| < \delta, |g(y_1) - g(y_2)| < \frac{\epsilon}{2(b-a)}$. 由于 $f(x) \in R[a,b]$, 因 此 $\exists [a,b]$ 的分割 Δ ,使得 $\sum_{i=1}^n \omega_i(f) \Delta x_i < \frac{\delta \epsilon}{4M}$,其中 $M = \sup_{y \in [A,B]} |g(y)|$.若 $\omega_i(f) < \delta$,则 $\omega_i(G) < \frac{\epsilon}{2(b-a)}$.若 $\omega_i(f) \geq \delta$,

其区间长度 $\sum_{i:\omega_i(f)\geq \delta} \Delta x_i$ 不会超过 $\frac{\epsilon}{4M}$. 因此 $\sum_{i=1}^n \omega_i(G) \Delta x_i = \sum_{i:\omega_i(f)<\delta} \omega_i(G) \Delta x_i + \sum_{i:\omega_i(f)\geq \delta} \omega_i(G) \Delta x_i < \frac{\epsilon}{2} + 2M \frac{\epsilon}{4M} = \epsilon$.

这样对于任意 $\epsilon > 0$ 我们都找到了一个分割 Δ 使得 $\sum_{i=1}^{n} \omega_i(G) \Delta x_i < \epsilon$.

12. 考虑 $f(x) = \tan(\pi x - \frac{\pi}{2})$. $\lim_{n \to +\infty} \sum_{k=1}^{n-1} \frac{1}{n} f(\frac{k}{n}) = 0$, 但是 $\int_0^1 f(x) dx$ 不存在.

2 第 2 次习题课: 定积分的性质与计算

2.1 问题

- 1. 设函数 f(x) 在 \mathbb{R} 上有定义且内闭可积, 证明 $\forall a,b \in \mathbb{R}, \lim_{h \to 0} \int_a^b [f(x+h) f(x)] \mathrm{d}x = 0.$
- 2. (Riemann-Lebesgue 引理). $f \in R[a,b], g \in R[0,T], g(x+T) = g(x)$, 则 $\int_a^b f(x)g(nx) dx \to \int_a^b f(x) dx \cdot \frac{1}{T} \int_0^T g(x) dx$.
- 3. 计算积分 $I = \int_{-\pi}^{1} \frac{dx}{x^2 2x \cos \alpha + 1}, \alpha \in (0, \pi).$
- 4. 计算积分 $I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\cos^2 x}{1 + e^{-x}} dx$.
- 5. 计算积分 $I = \int_0^{\frac{\pi}{2}} \sin x \ln \sin x dx$. 6. 计算积分 $I_n = \int_0^{\frac{\pi}{2}} \frac{\sin^2 nx}{\sin x} dx$, 并求极限 $\lim_{n \to +\infty} \frac{I_n}{\ln n}$.
- 7. $f(x) \in C[a,b]$, 且对于任意的 $[\alpha,\beta] \subset [a,b]$, $\exists \delta > 0, M > 0$, s.t. $\left| \int_{\alpha}^{\beta} f(x) dx \right| \leq M(\beta \alpha)^{1+\delta}$. 证明 $f(x) \equiv 0$.
- 8. $f(x) \in C(\mathbb{R})$, 定义 $g(x) = f(x) \int_0^x f(t) dt$. 证明若 g(x) 单调递减, 则 $f(x) \equiv 0$.
- 9. f(x) 在 \mathbb{R} 上有定义且内闭可积, 且 f(x+y) = f(x) + f(y). 证明 f(x) = xf(1).
- 10. f(x) 在 $(0, +\infty)$ 上是凸函数. 证明 $f(x) \in R[0, x], \forall x \in (0, +\infty), 且 F(x) = \frac{1}{x} \int_0^x f(t) dt$ 也是 $(0, +\infty)$ 上的凸函数. 11. $f(x) \in C[-1, 1]$, 证明 $\lim_{n \to +\infty} \frac{\int_{-1}^1 (1-x^2)^n f(x) dx}{\int_{-1}^1 (1-x^2)^n dx} = f(0)$.
- 12. f(x) 在 [0,1] 上非负连续, 且 $f^2(t) \le 1 + 2 \int_0^t f(s) ds$. 证明 $f(t) \le 1 + t$.

2.2 解答

- 1. WLOG h<1. 由可积函数性质, 存在 [a,b+1] 上的连续函数 g(x) 使得 $\int_a^{b+1}|f(x)-g(x)|\mathrm{d}x<\epsilon$,且 $\exists\delta>0$ 使得 $\forall x,y \in [a,b+1], |x-y| < \delta, \; \text{Rec} |g(x)-g(y)| \leq \frac{\epsilon}{b-a}. \; \text{Mem} \left| \int_a^b [f(x+h)-f(x)] \mathrm{d}x \right| \leq \int_a^b |f(x+h)-g(x+h)| \mathrm{d}x + \int_a^b |g(x+h)-g(x)| \mathrm{d}x + \int_a^b |g(x)-f(x)| \mathrm{d}x \leq \int_a^{b+1} |f(x)-g(x)| \mathrm{d}x + \int_a^b \frac{\epsilon}{b-a} \mathrm{d}x + \int_a^{b+1} |f(x)-g(x)| \mathrm{d}x \leq 3\epsilon.$
- 2. WLOG 设 $\int_0^T g(x) dx = 0$, 否则考虑 $h(x) = g(x) \frac{1}{T} \int_0^T g(x) dx$.

由 Riemann 积分定义, $\forall \epsilon > 0$,存在阶梯函数 $s_{\epsilon}(x) = \begin{cases} C_1 & a = x_0 \leq x < x_1 \\ C_2 & x_1 \leq x < x_2 \\ \cdots \\ C_m & x_{m-1} \leq x \leq x_m = b \end{cases}$ 使得 $\int_a^b |f(x) - s_{\epsilon}(x)| \mathrm{d}x < \epsilon$. 设

 $M = \sup_{x \in [0,T]} |g(x)|. \quad \text{则} \mid \int_a^b f(x)g(nx) dx| = |\int_a^b (f(x) - s_{\epsilon}(x))g(nx) dx + \int_a^b s_{\epsilon}(x)g(nx) dx| \leq \int_a^b |f(x) - s_{\epsilon}(x)|g(nx) dx + \int_a^b s_{\epsilon}(x)g(nx) dx| \leq \int_a^b |f(x) - s_{\epsilon}(x)|g(nx) dx + \int_a^m C_i \int_{x_{i-1}}^{x_i} g(nx) dx < M\epsilon + \frac{1}{n} \sum_{i=1}^m C_i \int_{nx_{i-1}}^{nx_i} g(x) dx \leq M\epsilon + \frac{1}{n} \sum_{i=1}^m C_i MT.$ 其中最后一个等式利用了 $\int_0^T g(x) dx = 0$, 这意味着 $\int_c^d g(x) dx = \int_c^{c+T} g(x) dx + \int_{c+T}^{c+2T} g(x) dx + \dots + \int_{c+kT}^d g(x) dx$ (设 $c+kT \leq d < c+(k+1)T$) = $\int_{c+kT}^d g(x) dx \leq MT$. 选择一个足够大的 n, 使得 $\frac{1}{n} \sum_{i=1}^m C_i MT < \epsilon$. 从而 $|\int_a^b f(x)g(nx) dx| \leq (M+1)\epsilon$.

3.
$$I = \int_{-1}^{1} \frac{\mathrm{d}x}{(x-\cos\alpha)^2+\sin^2\alpha} = \frac{1}{\sin^2\alpha} \int_{-1}^{1} \frac{\mathrm{d}x}{\left(\frac{x-\cos\alpha}{\sin\alpha}\right)^2+1} = \frac{1}{\sin\alpha} \arctan\left(\frac{x-\cos\alpha}{\sin\alpha}\right) \Big|_{-1}^{1} = \frac{\pi}{2\sin\alpha}.$$
4. $I = \int_{-\frac{\pi}{4}}^{0} \frac{\cos^2x}{1+e^{-x}} \mathrm{d}x + \int_{0}^{\frac{\pi}{4}} \frac{\cos^2x}{1+e^{-x}} \mathrm{d}x = \int_{0}^{\frac{\pi}{4}} \frac{\cos^2(-x)}{1+e^{-x}} \mathrm{d}x + \int_{0}^{\frac{\pi}{4}} \frac{\cos^2x}{1+e^{-x}} \mathrm{d}x = \int_{0}^{\frac{\pi}{4}} \cos^2x \mathrm{d}x = \frac{\pi}{8} + \frac{1}{4}.$
5. $I = \int_{0}^{\frac{\pi}{2}} \ln\sin x \mathrm{d}(1-\cos x) = (1-\cos x) \ln\sin x \Big|_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} (1-\cos x) \mathrm{d}(\ln\sin x) = -\int_{0}^{\frac{\pi}{2}} (1-\cos x) \frac{\cos x}{\sin x} \mathrm{d}x = -\int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos x}{1+\cos x} \mathrm{d}x = \int_{0}^{\frac{\pi}{2}} \left(-\sin x + \frac{\sin x}{1+\cos x}\right) \mathrm{d}x = \left[\cos x - \ln(1+\cos x)\right] \Big|_{0}^{\frac{\pi}{2}} = \ln 2 - 1.$
6. 利用三角函数公式,

$$\begin{split} I_n &= \int_0^{\frac{\pi}{2}} \frac{1 - \cos(2nx)}{2\sin x} \mathrm{d}x = \int_0^{\frac{\pi}{2}} \frac{1 - \cos[(2n-2)x]\cos 2x + \sin[(2n-2)x]\sin 2x}{2\sin x} \mathrm{d}x \\ &= \int_0^{\frac{\pi}{2}} \frac{1 - \cos[(2n-2)x](1 - 2\sin^2 x) + 2\sin[(2n-2)x]\sin x \cos x}{2\sin x} \mathrm{d}x \\ &= \int_0^{\frac{\pi}{2}} \frac{1 - \cos[(2n-2)x]}{2\sin x} \mathrm{d}x + \int_0^{\frac{\pi}{2}} \frac{2\sin^2 x \cos[(2n-2)x] + 2\sin[(2n-2)x]\sin x \cos x}{2\sin x} \mathrm{d}x \\ &= I_{n-1} + \int_0^{\frac{\pi}{2}} \sin x \cos[(2n-2)x] + \sin[(2n-2)x]\cos x \mathrm{d}x = I_{n-1} + \int_0^{\frac{\pi}{2}} \sin(2n-1)x \mathrm{d}x \\ &= I_{n-1} - \frac{1}{2n-1} \cos[(2n-1)x] \Big|_0^{\frac{\pi}{2}} = I_{n-1} + \frac{1}{2n-1} \end{split}$$

由于
$$I_1 = 1$$
, 因此 $I_n = \sum_{i=1}^n \frac{1}{2i-1}$, 从而 $\lim_{n \to +\infty} \frac{I_n}{\ln n} = \lim_{n \to +\infty} \frac{\sum_{i=1}^n \frac{1}{i}}{\ln n} - \lim_{n \to +\infty} \frac{1}{2} \frac{\sum_{i=1}^n \frac{1}{i}}{\ln n} = \frac{1}{2}$.

7. 假设 $\exists f(x_0) > 0$. 由连续性, $\exists \delta > 0$, s.t. $\forall x \in (x_0 - \delta, x_0 + \delta)$, $f(x) > \frac{f(x_0)}{2}$, 从而 $\forall [\alpha, \beta] \subset (x_0 - \delta, x_0 + \delta)$, $\left| \int_{\alpha}^{\beta} f(x) dx \right| > \frac{f(x_0)}{2} (\beta - \alpha) > M(\beta - \alpha)^{1+\delta}$ (最后一个大于号成立只需令 $\beta - \alpha < \left(\frac{f(x_0)}{2M} \right)^{\frac{1}{\delta}}$), 矛盾.

8. 构造 $G(x) = \frac{1}{2} \left(\int_0^x f(t) dt \right)^2$, G'(x) = g(x) 单调递减, g(0) = 0, 因此 G(x) 在 $(0, +\infty)$ 上单调递减, 在 $(-\infty, 0)$ 上单 调递增, 且 G(0) = 0, $G(x) \ge 0$ 恒成立 $\Rightarrow G(x) \equiv 0 \Rightarrow \int_0^x f(t) dt \equiv 0 \Rightarrow f(x) \equiv 0$.

9. 只需证明对无理数点成立. 考察 $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. 由有理数点的稠密性, $\int_0^\alpha f(x) \mathrm{d}x = \frac{\alpha^2}{2} f(1)$. 由集合 $\{q\alpha: q \in \mathbb{Q}\}$ 的稠密

性且 $f(q\alpha) = qf(\alpha)$, $\int_0^\alpha f(x) \mathrm{d}x = f(\alpha) \frac{\alpha}{2}$. 因此 $f(\alpha) \frac{\alpha}{2} = \frac{\alpha^2}{2} f(1) \Rightarrow f(\alpha) = \alpha f(1)$.

10. 凸函数开区间上连续 \Rightarrow 闭区间上可积. 做变换 $F(x) = \frac{1}{x} \int_0^x f(t) \mathrm{d}t = \int_0^x f(\frac{t}{x} \cdot x) \mathrm{d}\frac{t}{x} = \int_0^1 f(ux) \mathrm{d}u$, 从而

够大的 n 使得 $|I_2|<\epsilon$. 类似地放缩 I_3 , 从而 $|I_1+I_2+I_3|<3\epsilon$.

12. 原命题条件 $\Rightarrow \underbrace{\frac{f(t)}{\sqrt{1+2\int_0^t f(s) \mathrm{d}s}}} \leq 1 \Rightarrow \int_0^x \frac{f(t)}{\sqrt{1+2\int_0^t f(s) \mathrm{d}s}} dt \leq \int_0^x 1 \mathrm{d}t \Rightarrow \sqrt{1+2\int_0^t f(s) \mathrm{d}s} \Big|_0^x \leq x \Rightarrow \sqrt{1+2\int_0^x f(s) \mathrm{d}s} \leq x \Rightarrow \sqrt{1+2\int_0^x$ $1 + x \Rightarrow f(x) \le \sqrt{1 + 2 \int_0^x f(s) ds} \le 1 + x.$

第 3 次习题课: 定积分的应用与中值定理

3.1 问题

- 1. f(x) 是 [0,1] 上的递减正函数,证明对于 $\forall 0 < \alpha < \beta \le 1$ 都有 $\beta \int_0^{\alpha} f(x) dx \ge \alpha \int_{\alpha}^{\beta} f(x) dx$.
- 2. f(x) 在 \mathbb{R} 上有定义且内闭可积, f(x+y) = f(x) + f(y) + xy(x+y), 求 f(x).
- 3. 已知 A > 0, $AC B^2 > 0$, 求椭圆 $Ax^2 + 2Bxy + Cy^2 = 1$ 的面积.
- 4. 证明极坐标下曲线 $r=r(\theta)$ 与 $\theta=\alpha,\theta=\beta$ 所围平面图形绕极轴旋转一周所得立体体积为 $V=\frac{2\pi}{3}\int_{\alpha}^{\beta}r^{3}(\theta)\sin\theta\mathrm{d}\theta$.
- 5. 求双扭线 $r^2 = 2a^2\cos 2\theta$ 绕轴 $\theta = \frac{\pi}{4}$ 旋转一周所得的曲面的面积.
- $6. \ f(x) \in C^1[0,1], f(x) \in [0,1], f(0) = f(1) = 0, f'(x)$ 单调递减. 证明曲线 y = f(x) 在 [0,1] 上的弧长不大于 3.
- 7. 半径为 R 的球正好有一半沉入水中, 球的密度为 1. 现将球从水中匀速取出, 需要做多少功?

- 8. 求质量分布均匀的对数螺旋线 $r=e^{\theta}$ 在 $(r,\theta)=(1,0)$ 和 $(r,\theta)=(e^{\phi},\phi)$ 之间一段的重心坐标.
- 9. 求圆的渐伸线 $\begin{cases} x = a(\cos t + t \sin t) \\ y = a(\sin t t \cos t) \end{cases}$ $,t\in [0,2\pi]$ 上 $A(a,0),B(a,-2\pi a)$ 之间部分与直线 \overline{AB} 围成图形的面积.
- 10. 试求由抛物线 $y^2 = 2x$ 与过其焦点的弦所围的图形面积的最小值.
- 11. f(x) 在 [a,b] 上单调递增,用定积分第二中值定理证明 $\int_a^b x f(x) dx \ge \frac{a+b}{2} \int_a^b f(x) dx$.
- 12. (Dirichlet 判别法). 设 f(x) 在 $(a, +\infty)$ 上单调, $\lim_{x\to +\infty} f(x) = 0$. $\forall A \geq a, g(x) \in R[a, A]$ 且 $|\int_a^A g(x) dx| \leq M$ 恒成
- 立. 证明极限 $\lim_{A\to +\infty} \int_a^A f(x)g(x)dx$ 存在.

3.2 解答

- 1. LHS = $\beta \int_0^{\alpha} f(x) dx \ge \beta \alpha f(\alpha) \ge \alpha (\beta \alpha) f(\alpha) \ge \alpha \int_{\alpha}^{\beta} f(x) dx = RHS$.
- 2. 等式左右两边对 x 积分,得到 $\int_y^{x+y} f(t) dt = \int_0^x f(t) dt + x f(y) + \frac{x^3 y}{3} + \frac{x^2 y^2}{2}$. 类似有 $\int_x^{x+y} f(t) dt + \int_0^y f(t) dt + y f(x) + \frac{x y^3}{3} + \frac{x^2 y^2}{2}$. 两式相减得 $x f(y) + \frac{x^3 y}{3} = y f(x) + \frac{x y^3}{3}$,即是 $\frac{f(x)}{x} \frac{x^2}{3} = \frac{f(y)}{y} \frac{y^2}{3}$. 从而 $\frac{f(x)}{x} \frac{x^3}{3} \equiv C \Rightarrow f(x) = \frac{x^3}{3} + Cx$. 经验证符合题意.
- 3. 设矩阵 $\begin{pmatrix} A & B \\ B & C \end{pmatrix}$ 有相似标准型 $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, 其中 λ_1, λ_2 是方程 $\lambda^2 (A+C)\lambda + (AC-B^2) = 0$ 的两个根. 则原椭

圆在新坐标系下的方程为 $\lambda_1 x^2 + \lambda_2 y^2 = 1$, 面积 $S = \pi \sqrt{\frac{1}{\lambda_1 \lambda_2}} = \pi \sqrt{\frac{1}{AC-B^2}}$.

- 4. 对应 $[\theta, \theta + \mathrm{d}\theta]$ 的扇形面积 $\mathrm{d}S = \frac{1}{2}r^2(\theta)\mathrm{d}\theta$, 其质心位于 $\frac{2}{3}r(\theta)$ 处. 由 Guldin 第二定理, 此扇形绕极轴旋转体体积为 $dV = \frac{1}{2}r^2(\theta)d\theta 2\pi \frac{2}{3}r(\theta)\sin\theta = \frac{2\pi}{3}r^3(\theta)\sin\theta d\theta$. 两边积分得到结果.
- 5. 原命题等价于 $r^2 = 2a^2 \sin 2\theta$ 绕极轴旋转一周所得的曲面的面积. 改写成平面坐标系 $\begin{cases} x = a\sqrt{2\sin 2\theta}\cos \theta \\ y = a\sqrt{2\sin 2\theta}\sin \theta \end{cases}$

面积 $S = 2 \int_0^{\frac{\pi}{2}} 2\pi y(\theta) \sqrt{x'(\theta)^2 + y'(\theta)^2} d\theta = 8\pi a^2$.

- 6. 设 f'(M) = 0. 则周长 $C = \int_0^1 \sqrt{1 + f'(x)^2} \mathrm{d}x \le \int_0^1 (1 + |f'(x)|) \mathrm{d}x = 1 + \int_0^M f'(x) \mathrm{d}x \int_M^1 f'(x) \mathrm{d}x = 1 + 2f(M) \le 3$.
- 7. 球心向上移动距离 h 时, 球位于水外的体积为 $V(h) = \frac{1}{2} \frac{4}{3} \pi R^3 + \int_0^h \pi (\sqrt{R^2 z^2})^2 dz = \frac{2}{3} \pi R^3 + \pi (R^2 h \frac{1}{3} h^3)$. 对应
- 位移 [h, h + dh] 所做的微功 $dW = gV(h)\rho dh$. 从而 $W = g\int_0^R V(h)dh = g(\frac{2}{3}\pi R^4 + \frac{5}{12}\pi R^4) = \frac{13}{12}g\pi R^4$. 8. $\bar{x} = \frac{\int_0^{\phi} e^{2\theta} \cos\theta d\theta}{\int_0^{\phi} e^{\theta} d\theta} = \frac{e^{2\phi}(\sin\phi + 2\cos\phi) 2}{5(e^{\phi} 1)}, \bar{y} = \frac{\int_0^{\phi} e^{2\theta} \sin\theta d\theta}{\int_0^{\phi} e^{\theta} d\theta} = \frac{e^{2\phi}(2\sin\phi \cos\phi) + 1}{5(e^{\phi} 1)}$. 9. 直线 AB 的参数方程 $\begin{cases} x = \phi(t) = a \\ y = \psi(t) = t \end{cases}, t \in [-2\pi a, 0].$ 于是 $S = -\int_0^{2\pi} y(t) dx(t) \int_{-2\pi a}^0 \psi(t) d\phi(t) = -\int_0^{2\pi} a(\sin t t) dt = 0$.

 $t\cos t a(t\cos t)dt + 0 = \frac{4}{3}\pi^3 a^2 + \pi a^2$

- 10. 焦点为 $(\frac{1}{2},0)$,设过焦点的直线为 $x-\frac{1}{2}=ky$,与抛物线交点为 y_1,y_2 ,则围成的面积为 $S=\int_{y_1}^{y_2}\left(ky+\frac{1}{2}-\frac{y^2}{2}\right)\mathrm{d}y=\frac{k}{2}(y_2-y_1)(y_2+y_1)+\frac{1}{2}(y_2-y_1)-\frac{1}{6}(y_2-y_1)(y_2^2+y_1y_2+y_1^2)$. 联立直线与抛物线,由韦达定理知 $y_1+y_2=2k,y_1y_2=-1$. 则 $S = \frac{2}{3}(k^2 + 1)^{\frac{3}{2}}$. 因此 k = 0 时面积最小, 为 $\frac{2}{3}$.
- 11. f(x) 单调, $g(x) = x \frac{a+b}{2}$. 由定积分第二中值定理, $\int_a^b (x \frac{a+b}{2}) f(x) dx = f(a) \int_a^\xi (x \frac{a+b}{2}) dx + f(b) \int_\xi^b (x \frac{a+b}{2}) dx = f(a) \int_a^b (x \frac{a+b}{2}) dx + (f(b) f(a)) \int_\xi^b (x \frac{a+b}{2}) dx = (f(b) f(a)) \frac{1}{2} (b \xi) (\xi a) \ge 0.$
- 12. 由极限定义, $\forall \epsilon > 0, \exists X > a, \text{s.t.} \forall x \geq X, |f(x)| \leq \frac{\epsilon}{4M}$. 从而 $\forall A', A'' \geq X, |\int_{A'}^{A''} f(x)g(x) dx| = |f(A') \int_{A'}^{\xi} g(x) dx + \int_{A''}^{A''} f(x)g(x) dx| = |f(A') \int_{A'}^{\xi} g(x) dx|$ $f(A'')\int_{\xi}^{A''}g(x)\mathrm{d}x|\leq 2M(|f(A')|+|f(A'')|)\leq\epsilon$. 由柯西收敛定理知极限存在.

第 4 次习题课: 广义积分的收敛性与计算

4.1 问题

- 1. $f(x)>0, x\in(1,+\infty)$, $\lim_{x\to+\infty}\frac{\ln f(x)}{\ln x}=-\lambda, \lambda>1$, 试判断 $\int_1^{+\infty}f(x)\mathrm{d}x$ 的收敛性.
- 2. (Euler 积分). 求积分 $I = \int_0^{\pi/2} \ln \sin x dx$.
- 3. (Dirichlet 积分). 求积分 $I = \int_0^{+\infty} \frac{\sin x}{x} dx$.
- 4. 证明 $\lim_{x \to \infty} \int_0^1 \cos^n \frac{1}{x} dx = 0.$

- 5. 计算 $I(\alpha) = \int_0^{+\infty} \frac{dx}{(1+x^2)(1+x^{\alpha})}$.
- 6. f(x) 在 \mathbb{R} 上内闭可积, $f(+\infty) = A$, $f(-\infty) = B$. 证明 $\forall a \in \mathbb{R}$, 广义积分 $\int_{-\infty}^{+\infty} [f(x+a) f(x)] dx$ 收敛, 并求其值.

- 7. 讨论广义积分 $\int_{0}^{+\infty} \frac{x dx}{1+x^{6} \sin^{2} x}$ 的收敛性.
 8. 讨论广义积分 $\int_{0}^{+\infty} \frac{e^{x} \sin 2x}{x^{p}} dx$ 的收敛性和绝对收敛性.
 9. 讨论广义积分 $\int_{0}^{+\infty} \frac{\cos ax}{1+x^{p}} dx, p \geq 0, a \in \mathbb{R}$ 的收敛性.
 10. 讨论广义积分 $\int_{0}^{+\infty} \frac{x^{p}}{1+x^{q}|\sin x|^{r}} dx, p, q, r > 0$ 的收敛性.
- 11. $f(x) \in C^1[0,1]$ 且 f'(x) > 0,证明广义积分 $\int_0^1 \frac{f(x) f(0)}{x^p} \mathrm{d}x$ 在 p < 2 时收敛, 在 $p \ge 2$ 时发散.
- 12. $\int_{-\infty}^{+\infty} f(x) dx$ 收敛, 证明 $\int_{-\infty}^{+\infty} f(x \frac{1}{x}) dx$ 收敛.

4.2 解答

- 1. 由极限定义, $\exists X > 1$, s.t. $\forall x > X$, $\frac{\ln f(x)}{\ln x} < -\frac{\lambda+1}{2} \Leftrightarrow f(x) < x^{-\frac{\lambda+1}{2}}$. 由比较判别法知无穷积分收敛.
- 2. 由对称性, $I = \frac{1}{2} \int_0^{\pi} \ln \sin x dx$. 做两倍变换, $I = \int_0^{\frac{\pi}{2}} \ln \sin 2x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{2}} \ln \sin x dx + \int_0^{\frac{\pi}{2}} \ln \cos x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{2}} \ln \sin x dx + \int_0^{\frac{\pi}{2}} \ln \cos x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{2}} \ln \sin x dx + \int_0^{\frac{\pi}{2}} \ln \cos x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{2}} \ln \sin x dx + \int_0^{\frac{\pi}{2}} \ln \cos x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{2}} \ln \sin x dx + \int_0^{\frac{\pi}{2}} \ln \cos x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{2}} \ln \sin x dx + \int_0^{\frac{\pi}{2}} \ln \cos x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{2}} \ln \sin x dx + \int_0^{\frac{\pi}{2}} \ln \cos x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{2}} \ln \sin x dx + \int_0^{\frac{\pi}{2}} \ln \cos x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{2}} \ln \sin x dx + \int_0^{\frac{\pi}{2}} \ln \cos x dx = \frac{\pi}{2} \ln 2 + \int_0^{\frac{\pi}{$
- 3. 注意到 $\frac{\sin(n+\frac{1}{2})x}{2\sin\frac{x}{2}} = \frac{1}{2} + \sum_{k=1}^{n} \cos kx$, 从而 $\int_{0}^{\pi} \frac{\sin(n+\frac{1}{2})x}{2\sin\frac{x}{2}} \mathrm{d}x = \frac{\pi}{2}$. 定义 $f(x) = \frac{1}{x} \frac{1}{2\sin\frac{x}{2}}$. 由于 $x \to 0$ 时 f(x) = O(x), 因

- 此 $f(x) \in R[0,\pi]$, 由 Riemann-Lebesgue 引理 (2.1.2) 知 $\lim_{n \to +\infty} \int_0^{\pi} f(x) \sin(n + \frac{1}{2})x dx = 0$, 即是 $\lim_{n \to +\infty} \int_0^{\pi} \frac{\sin(n + \frac{1}{2})x}{x} dx = \lim_{n \to +\infty} \int_0^{\pi} \frac{\sin(n + \frac{1}{2})x}{x} dx = \lim_{n \to +\infty} \int_0^{\pi} \frac{\sin(n + \frac{1}{2})x}{x} dx = \int_0^{(n + \frac{1}{2})\pi} \frac{\sin x}{x} dx \to \int_0^{+\infty} \frac{\sin x}{x} dx$ 立得结论.

 4. 做变换 $t = \frac{1}{x}$, 则 $\int_0^1 \cos^n \frac{1}{x} dx = \int_1^{+\infty} \frac{\cos^n t}{t^2} dt = \int_1^A \frac{\cos^n t}{t^2} dt + \int_A^{+\infty} \frac{\cos^n t}{t^2} dt := I_1 + I_2$. 对于 I_1 , 由定积分第二中值定理 知 $\exists \xi_A \in [1,A] \text{ s.t.} I_1 = \int_1^{\xi_A} \cos^n t dt$. 因此对于任意固定的 $A, n \to +\infty$ 时 $I_1 \to 0$. 对于 I_2 , 成立 $|I_2| \leq \int_A^{+\infty} \frac{1}{t^2} dt = \frac{1}{A}$.

- 因此 $\forall \epsilon > 0$,选择 $A = \frac{2}{\epsilon}$,则 $|I_2| \le \frac{\epsilon}{2}$,并选择充分大的 n 使得 $|I_1| < \frac{\epsilon}{2}$,此时 $|I| \le \epsilon$,由极限定义知结论成立.

 5. 做倒数变换,知 $I(\alpha) = \int_{+\infty}^{0} \frac{\mathrm{d} \frac{1}{x}}{(1+x^{-2})(1+x^{-\alpha})} = I(-\alpha)$. 又由于 $I(\alpha) + I(-\alpha) = \int_{0}^{+\infty} \frac{\mathrm{d} x}{1+x^2} = \frac{\pi}{2}$,因此 $I(\alpha) = \frac{\pi}{4}$.

 6. $\int_{M}^{N} [f(x+a) f(x)] \mathrm{d} x = \int_{N}^{N+a} f(x) \mathrm{d} x \int_{M}^{M+a} f(x) \mathrm{d} x \to (A-B)a$.

 7. 函数恒正,只需讨论有界性。令 $u_k = \int_{(k-1)\pi}^{k\pi} \frac{x \mathrm{d} x}{1+x^6 \sin^2 x}$,则 $u_k \le k\pi \int_{(k-1)\pi}^{k\pi} \frac{\mathrm{d} x}{1+(k-1)^6 \pi^6 \sin^2 x} = k\pi \int_{0}^{\pi} \frac{\mathrm{d} x}{1+(k-1)^6 \pi^6 \sin^2 x} \le 2k\pi \int_{0}^{\frac{\pi}{2}} \frac{\mathrm{d} x}{1+4(k-1)^6 \pi^6 \sin^2 x} = \frac{k}{\pi} \int_{0}^{(k-1)^3 \pi^3} \frac{\mathrm{d} t}{1+t^2} \sim \frac{1}{2k^2}$. 由于 $\int_{0}^{n\pi} = \sum_{k=1}^{n} u_k \sim \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k^2} < +\infty$,因 此原广义积分收敛.
- 8. 先考虑积分收敛性. 显然当 $p \le 0$ 时原积分发散. 当 p > 0 时,由于 $|\int_a^A e^{\sin x} \sin 2x dx| = 2|\int_{\sin a}^{\sin A} e^{\sin x} \sin x d\sin x| = 2|e^{\sin A}(\sin A 1) e^{\sin a}(\sin a 1)| < 8e, \frac{1}{x^p}$ 单调递减趋于 0,因此由 Dirichlet 判别法, $\int_1^{+\infty} \frac{e^x \sin 2x}{x^p} dx$ 收敛,我们只需考察积分在 0 处的性质. 由于当 $x \to 0$ 时 $\frac{e^{\sin x} \sin 2x}{x^p} \sim \frac{2}{x^{p-1}}$,因此 $p \ge 2$ 时原积分发散, p < 2 时原积分收敛. 再考虑绝对收敛性. 当 $1 时,<math>\left|\frac{e^{\sin x} \sin 2x}{x^p}\right| \le \frac{e}{x^p}$,因此绝对收敛. 当 $0 时,<math>\left|\frac{e^{\sin x} \sin 2x}{x^p}\right| \ge \frac{2^p}{e} \left|\frac{\sin 2x}{(2x)^p}\right| \ge \frac{1}{e} \left|\frac{\sin^2 2x}{(2x)^p}\right| = 1$ $\frac{1}{2e}\left(\frac{1-\cos 4x}{(2x)^p}\right)$, 而 $\int_0^{+\infty}\frac{\cos 4x}{(2x)^p}\mathrm{d}x$ 收敛, $\int_0^{+\infty}\frac{1}{(2x)^p}\mathrm{d}x$ 发散, 因此原积分条件收敛.
- 9. 当 $a \neq 0, p > 0$ 时, $\frac{1}{1+x^p}$ 单调递减趋于 $0, \int_0^N \cos ax \mathrm{d}x$ 有界, 由 Dirichlet 判别法知收敛. 当 $a \neq 0, p = 0$ 时显然发 散. 当 a = 0, p > 1 时显然收敛. 当 $a = 0, 0 \le p \le 1$ 时显然发散.
- 10. 显然当 $q \le p+1$ 时原积分发散. 当 q > p+1 时, 一方面,

$$I = \sum_{k=0}^{+\infty} \int_0^{\pi} \frac{(k\pi + t)^p}{1 + (k\pi + t)^q |\sin t|^r} dt \le 2 \sum_{k=0}^{+\infty} (k+1)^p \pi^p \int_0^{\pi} \frac{dt}{1 + (k\pi)^q |\frac{2}{\pi}t|^r} \le C_1 \sum_{k=0}^{+\infty} \frac{(k+1)^p}{k^{\frac{q}{r}}} \int_0^{2(k\pi)^{\frac{q}{r}}} \frac{dt}{1 + t^r} dt$$

另一方面

$$I = \sum_{k=0}^{+\infty} \int_0^{\pi} \frac{(k\pi + t)^p}{1 + (k\pi + t)^q |\sin t|^r} dt \ge \sum_{k=0}^{+\infty} (k\pi)^p \int_0^{\pi} \frac{dt}{1 + [(k+1)\pi]^q |t|^r} \ge C_2 \sum_{k=0}^{+\infty} \frac{k^p}{(k+1)^{\frac{q}{r}}} \int_0^{\pi[(k+1)\pi]^{\frac{q}{r}}} \frac{dt}{1 + t^r}$$

- $r>1, \int_0^A \frac{\mathrm{d}t}{1+t^r}$ 一致有界. $r=1, \int_0^A \frac{\mathrm{d}t}{1+t^r} \sim \ln A$. $r<1, \int_0^A \frac{\mathrm{d}t}{1+t^r} \sim A^{1-r}$. 因此原积分收敛 iff $q>(p+1)\max(r,1)$. 11. 由柯西微分中值定理, $\exists \xi \in (0,x)$ s.t. $\frac{f(x)-f(0)}{x^p} = \frac{f'(\xi)}{x^{p-1}}$. 由于 f'(x) 连续且大于 0, 因此 $\exists 0 < m < M$ s.t. m< f'(x) < MM 对 $\forall x \in [0,1]$ 均成立, 即 $\frac{m}{x^{p-1}} < \frac{f(x) - f(0)}{x^p} < \frac{M}{x^{p-1}}$. 从而 $p \ge 2$ 时发散, p < 2 时收敛.
- 12. $\int_0^{+\infty} f(x \frac{1}{x}) dx = \int_{-\infty}^{+\infty} \frac{x^2}{x^2 + 1} f(x \frac{1}{x}) d(x \frac{1}{x}) = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{t + \sqrt{t^2 + 4}}{\sqrt{t^2 + 4}} f(t) dt$. 由于 $\int_{-\infty}^{+\infty} f(t) dt$ 收敛, $\frac{t + \sqrt{t^2 + 4}}{\sqrt{t^2 + 4}}$ 单调有界, 由 Abel 判别法知 $\int_0^{+\infty} f(x \frac{1}{x}) dx$ 收敛. 另一侧同理.

5 第 5 次习题课: 积分的综合运用

5.1 问题

- 1. 证明 π 是无理数. 你可以按照以下步骤: (1) 设 $\pi = \frac{a}{b}, a, b \in \mathbb{Z}, 定义 f(x) = \frac{b^n x^n (\pi x)^n}{n!}$, 证明 $\forall i \in \mathbb{N}_+, f^{(i)}(0), f^{(i)}(\pi)$ 都是整数. (2) 证明定积分 $\int_0^{\pi} f(x) \sin x dx$ 也是整数. (3) 证明 $0 < \int_0^{\pi} f(x) \sin x dx < 1$, 得到矛盾.
- 2. $f(x) \in C^2[0,1], f(0) = f(1) = f'(0) = 0, f'(1) = 1$, 证明 $\int_0^1 (f''(x))^2 dx \ge 4$, 取等号当且仅当 $f(x) = x^3 x^2$.
- 3. 设函数 f(x) 在区间 [a,b] 上恒正, 且满足 Lipschitz 条件 $|f(x_1)-f(x_2)| \leq L|x_1-x_2|$. 又已知对于 $a \leq c \leq d \leq b$ 成立 $\int_c^d \frac{\mathrm{d}x}{f(x)} = \alpha$, $\int_a^b \frac{\mathrm{d}x}{f(x)} = \beta$. 证明积分不等式 $\int_a^b f(x) \mathrm{d}x \leq \frac{e^{2L\beta}-1}{2L\alpha} \int_c^d f(x) \mathrm{d}x$.
- 4. $f(x) \in C[0, +\infty)$ 且平方可积, $g(x) = \int_0^x f(t) dt$. 证明 $\int_0^{+\infty} \frac{g^2(x)}{x^2} dx \le 4 \int_0^{+\infty} f^2(x) dx$.

5.2 解答

- 1. (1) f(x) 是一个次数从 n 到 2n 的多项式. 至于 $f^{(i)}(0)$ 是不是整数, 我们只需讨论求导后的非零常数项. 此时 $i \ge n$, 求导后得到的非零常数值是 i!c, 且 c 是整数除以 n! 得到的有理数, 从而 i!c 是整数. 由于 $f(x) = f(\pi x) \Rightarrow f^{(i)}(\pi) = (-1)^n f^{(i)}(0)$, 因此 $f^{(i)}(\pi)$ 也是整数.
- (2) 由分部积分, $\int_0^{\pi} f(x) \sin x dx = f(x)(-\cos x)|_0^{\pi} + \int_0^{\pi} f'(x) \cos x dx = f(0) + f(\pi) + f'(x) \sin x|_0^{\pi} \int_0^{\pi} f''(x) \sin x dx = f(0) + f(\pi) \int_0^{\pi} f''(x) \sin x dx.$ f(x) 是 2n 此多项式, 重复以上过程, 最后的结果是 $\int_0^{\pi} f(x) \sin x dx = f(0) + f(\pi) f''(0) f''(\pi) + \dots + (-1)^n f^{(2n)}(0) + (-1)^n f^{(2n)}(\pi)$, 因此是整数.
- (3) 在区间 $[0,\pi]$ 上成立 $0 \le a bx = b(\pi x) \le a$, 因此 $0 \le f(x) = \frac{x^n(a-bx)^n}{n!} \le \frac{\pi^n a^n}{n!}$, 从而 $0 < \int_0^\pi f(x) \sin x \mathrm{d}x \le \int_0^\pi f(x) \mathrm{d}x < \frac{\pi^{n+1} a^n}{n!}$. 当 n 足够大时, $\frac{\pi^{n+1} a^n}{n!} < 1$.
- 2. 令 $p(x) = x^3 x^2$,从而有 $\int_0^1 [(f''(x))^2 (p''(x))^2] dx = \int_0^1 [f''(x) p''(x)]^2 dx + 2 \int_0^1 f''(x) p''(x) dx 2 \int_0^1 [p''(x)]^2 dx \ge 0 + 2f'(x)p''(x)|_0^1 2 \int_0^1 f'(x)p'''(x) dx 8 = 2f'(1)p''(1) 2f(x)p'''(x)|_0^1 + 2 \int_0^1 f(x)p''''(x) dx 8 = 0.$
- 3. 设 $m = \inf_{x \in [a,b]} f(x) = f(x_0)$,从而 $m \le f(x) \le m + L|x x_0|$, $\frac{1}{m + L|x x_0|} \le \frac{1}{f(x)} \le \frac{1}{m}$. 两边积分,得到

$$m(b-a) \le \int_a^b f(x) dx \le m(b-a) + \frac{L}{2} [(x_0 - a)^2 + (x_0 - b)^2]$$
$$\frac{b-a}{m} \ge \int_a^b \frac{1}{f(x)} dx = \beta \ge \frac{1}{L} \ln \frac{(x_0 + \frac{m}{L} - a)(-x_0 + \frac{m}{L} + b)}{(\frac{m}{L})^2}$$

因此

$$\int_{a}^{b} f(x) dx \le \sup_{x_{0} \in [a,b]} \left\{ m(b-a) + \frac{L}{2} [(x_{0}-a)^{2} + (x_{0}-b)^{2}] \right\} = m(b-a) + \frac{L}{2} (b-a)^{2}$$
$$\beta \ge \inf_{x_{0} \in [a,b]} \left\{ \frac{1}{L} \ln \frac{(x_{0} + \frac{m}{L} - a)(-x_{0} + \frac{m}{L} + b)}{(\frac{m}{L})^{2}} \right\} \Rightarrow b - a \le \frac{(e^{L\beta} - 1)m}{L}$$

从而

$$\int_{-L}^{b} f(x) dx \le m \left(\frac{(e^{L\beta} - 1)m}{L} \right) + \frac{L}{2} \left(\frac{(e^{L\beta} - 1)m}{L} \right)^{2} = \frac{(e^{2L\beta} - 1)m^{2}}{2L}$$

对比欲证结论, 只需证明

$$\int_{c}^{d} f(x) \mathrm{d}x \ge \alpha m^{2} = m^{2} \int_{c}^{d} \frac{\mathrm{d}x}{f(x)} \Leftrightarrow \frac{\int_{c}^{d} f(x) \mathrm{d}x}{\int_{c}^{d} \frac{1}{f(x)} \mathrm{d}x} \ge m^{2}$$

这由 $f(x) \ge m, \frac{1}{f(x)} \le \frac{1}{m}$ 立得.

4. 由 L'Hospital, $\lim_{x \to 0+0} \frac{g^2(x)}{x} = \lim_{x \to 0+0} 2g(x)f(x) = 0$. 因此 $\int_0^A \frac{g^2(x)}{x^2} \mathrm{d}x = \int_0^A g^2(x) \mathrm{d}(-\frac{1}{x}) = -\frac{g^2(A)}{A} + 2\int_0^A \frac{f(x)g(x)}{x} \mathrm{d}x$. 再 由 Cauchy 不等式, $\left(\int_0^A \frac{f(x)g(x)}{x} \mathrm{d}x\right)^2 \le \int_0^A f^2(x) \mathrm{d}x \int_0^A \frac{g^2(x)}{x^2} \mathrm{d}x \Rightarrow \left(\int_0^A \frac{g^2(x)}{x^2} \mathrm{d}x + \frac{g^2(A)}{A}\right)^2 \le 4\int_0^A f^2(x) \mathrm{d}x \int_0^A \frac{g^2(x)}{x^2} \mathrm{d}x \Rightarrow \left(\int_0^A \frac{g^2(x)}{x^2} \mathrm{d}x\right)^2 \le 4\int_0^A f^2(x) \mathrm{d}x \int_0^A \frac{g^2(x)}{x^2} \mathrm{d}x \Rightarrow \int_0^A \frac{g^2(x)}{x^2} \mathrm{d}x \le 4\int_0^A f^2(x) \mathrm{d}x$. 常可,

		6 第 6 次习题课: 正项级数
6.1	问题	
6.2	解答	
		7 第7次习题课:任意项级数,数项级数的性质
7.1	问题	
7.2	解答	
		8 第8次习题课:函数项级数的一致收敛性(1)
8.1	问题	
8.2	解答	
		9 第 9 次习题课: 函数项级数的一致收敛性 (2)
9.1	问题	
9.2	解答	
		10 第 10 次习题课: 幂级数的基本性质
10.1	问题	
10.2	解答	
		11 第 11 次习题课: 泰勒展开与多项式逼近
11.1	问题	
11.2	解答	
		12 第 12 次习题课: 傅里叶级数的基本性质
12.1	问题	
12.2	解答	

13.1 问题

13

13.2 解答

14 致谢

第 13 次习题课: 傅里叶级数的收敛性

感谢北京大学数学科学学院的王冠香教授和刘培东教授, 他们教会了笔者数学分析的基本知识, 他们的课件和讲义也成为了笔者的重要参考. 感谢选修 2024 春数学分析 II 习题课 3 班的全体同学, 他们提供了很多有意思的做法和反馈.