Лабораторная работа 16

Задачи оптимизации. Модель двух стратегий обслуживания

Кудряшов Артём Николаевич

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
	3.1 Постановка задачи	7 7 11
4	Выводы	19

Список иллюстраций

3.1	Модель первой стратегии обслуживания	8
3.2	Отчёт по модели первой стратегии обслуживания	9
3.3	Модель второй стратегии обслуживания	10
3.4	Отчет по модели второй стратегии обслуживания	10
3.5	Модель двух стратегий обслуживания с 1 пропускным пунктом	12
3.6	Отчёт по модели двух стратегий обслуживания с 1 пропускным	
	пунктом	12
3.7	Модель первой стратегии обслуживания с 3 пропускными пунктами	13
3.8	Отчёт по модели первой стратегии обслуживания с 3 пропускными	
	пунктами	14
3.9	Модель первой стратегии обслуживания с 4 пропускными пунктами	15
3.10	Отчёт по модели первой стратегии обслуживания с 4 пропускными	
	пунктами	15
3.11	Модель второй стратегии обслуживания с 3 пропускными пунктами	16
3.12	Отчёт по модели второй стратегии обслуживания с 3 пропускными	
	пунктами	16
3.13	Модель второй стратегии обслуживания с 4 пропускными пунктами	17
3.14	Отчёт по модели второй стратегии обслуживания с 4 пропускными	
	пунктами	17

Список таблиц

3.1	Сравнение стратеги	й:												1	1

1 Цель работы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.

2 Задание

Реализовать с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

3 Выполнение лабораторной работы

3.1 Постановка задачи

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a,b]. Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: μ = 1, 75 мин, a = 1 мин, b = 7 мин.

3.2 Построение модели

Целью моделирования является определение:

• характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска;

- наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля;
- оптимального количества пропускных пунктов.

В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем:

- коэффициенты загрузки системы;
- максимальные и средние длины очередей;
- средние значения времени ожидания обслуживания.

Для первой стратегии обслуживания, когда прибывающие автомобили образуют две очереди и обслуживаются соответствующими пропускными пунктами, имеем следующую модель (рис. [3.1]).

```
GENERATE (Exponential(1,0,1.75)) ; прибытие автомобилей
TEST LE Q$Other1,Q$Other2,Obsl_2 ; длина оч. 1<= длине оч. 2
TEST E Q$Other1,Q$Other2,Obsl_{1}; длина оч. 1= длине оч. 2
TRANSFER 0.5, Obsl_1, Obsl_2; длины очередей равны, ; выбираем произв. пункт пропуска
; моделирование работы пункта 1
Obsl 1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punkt1 ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punkt1 ; освобождение пункта 1
TERMINATE ; автомобиль покидает систему
; моделирование работы пункта 2
Obsl_2 QUEUE Other2 ; присоединение к очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди 2
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; задание условия остановки процедуры моделирования
GENERATE 10080 ; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
 (7 дней x 24 часа x 60 мин = 10080 мин)
TERMINATE 1 ; остановить моделирование
START 1 ; запуск процедуры моделирования
```

Рис. 3.1: Модель первой стратегии обслуживания

После запуска симуляции получим отчёт (рис. [3.2]).

<pre>lab16_1.1.1</pre>	I - REPOR	ı						
	START	TIME	FND T	TMF BI	OCKS	FACILITIES	STODAGES	
		0.000					0	
			10000.	000	10	-	•	
	NAM	ſΕ		VAI	LUE			
	OBSL 1			5.	.000			
	OBSL 2			11.	.000			
	OTHER1			10000	.000			
	OTHER2			10001	.000			
	PUNKT1			10003	.000			
	PUNKT2			10002	.000			
LABEL		TOC	BLOCK TYPE	ידווק	סע כטניאיי	ד מווססקאיד מ	יסוואד סדדטי	
TWDEL		1	GENERATE		5853	I CORRENI C		
		2	TEST		5853	-		
			TEST		1162	0	-	
		_	TRANSFER		2431	0	-	
OBSL 1			QUEUE		2928	387	-	
0555_1			SEIZE		2541	307		
			DEPART		2541	0	-	
			ADVANCE		2541	1	-	
		_	RELEASE		2540	0		
		_	TERMINATE		2540	0	-	
OBSL 2			QUEUE		2925	388	-	
0555_2			SEIZE		2537	300		
			DEPART		2537	0	-	
			ADVANCE		2537	1	-	
			RELEASE		2536	0		
			TERMINATE		2536	0	-	
			GENERATE		1	0	-	
			TERMINATE		1		-	
			ILIMILIAIL		-			
FACILITY			UTIL. AVE					
PUNKT2			0.996					
PUNKT1		2541	0.997	3.95	o 1	50/9 (0 0	38/
			ONT. ENTRY EN					
OTHER1			387 2928					
OTHER2		393	388 2925	12	187.11	4 644.82	647.479	0
FEC XN			ASSEM			PARAMETER	R VALUE	
5855	0		102 5855					
5079	0	10083.	517 5079	8	9			

Рис. 3.2: Отчёт по модели первой стратегии обслуживания

Составим модель для второй стратегии обслуживания, когда прибывающие автомобили образуют одну очередь и обслуживаются освободившимся пропускным пунктом (рис. [3.3], [3.4]).

```
Punkt STORAGE 2

GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

QUEUE Other; присоединение к очереди 1

ENTER punkt,1; занятие пункта 1

DEPART Other; выход из очереди 1

ADVANCE 4,3; обслуживание на пункте 1

LEAVE| punkt,1; освобождение пункта 1

TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования

GENERATE 10080; генерация фиктивного транзакта,

; указывающего на окончание рабочей недели

; (7 дней х 24 часа х 60 мин = 10080 мин)

TERMINATE 1; остановить моделирование

START 1; запуск процедуры моделирования
```

Рис. 3.3: Модель второй стратегии обслуживания

	START	TIME		END	TIME	BLO	CKS F.	ACILITIE:	STO	RAGES	
	0	.000		10080	0.000		9	0		1	
	NAM	T.				VALU	E				
	OTHER	_				001.0	_				
	PUNKT				10	000.0	00				
LABEL		LOC	BLOC	K TYPE		ENTRY	COUNT	CURRENT	COUNT	RETRY	
		1	GENE	RATE		57	19		0	0	
		2	QUEU	Ε		57	19	6	58	0	
		3	ENTE	R		50	51		0	0	
		4	DEPA	RT		50	51		0	0	
		5	ADVA	NCE		50	51		2	0	
		6	LEAV.	E		50	49		0	0	
		7	TERM	INATE		50	49		0	0	
		8	GENE:	RATE			1		0	0	
		9	TERM	INATE			1		0	0	
QUEUE		MAX C	ONT.	ENTRY E	ENTRY	(0) A	VE.CON	T. AVE.T	IME I	AVE.(-0)	RET
OTHER		668	668	5719		4 3	44.466	607.	138	607.562	2 0
STORAGE PUNKT								. AVE.C			
FEC XN								PARAMETI	ER '	VALUE	
5721		10080.				0	1				
5051		10081.					6				
5052 5722	-	10083.				5	6 8				

Рис. 3.4: Отчет по модели второй стратегии обслуживания

Составим таблицу по полученной статистике (табл. [3.1]).

Таблица 3.1: Сравнение стратегий:

Показатель	стратегия 1			стратегия 2
	пункт 1	пункт 2	в целом	
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина очереди	393	393	786	668
Средняя длина очереди	187,098	187,114	374,212	344,466
Среднее время ожидания	644,107	644,823	644,465	607,138

Сравнив результаты моделирования двух систем, можно сделать вывод о том, что первая модель позволяет обслужить большее число автомобилей. Однако мы видим, что разница между обслуженными и поступившими автомобилями меньше для второй модели – значит, продуктивность работы выше. Также для второй модели коэффициент загрузки равен 1 – значит ни один из пунктов не простаивает. Максимальная длина очереди, средняя длина очереди и среднее время ожидания меньше для второй стратегии. Можно сделать вывод, что вторая стратегия лучше.

3.3 Оптимизация модели двух стратегий обслуживания

Изменим модели, чтобы определить оптимальное число пропускных пунктов (от 1 до 4). Будем подбирать под следующие критерии:

- коэффициент загрузки пропускных пунктов принадлежит интервалу [0, 5; 0, 95];
- среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;
- среднее время ожидания обслуживания не должно превышать 4 мин.

Для обеих стратегий модель с одним пунктом выглядит одинаково (рис. [3.5]).

```
GENERATE (Exponential (1,0,1.75)); прибытие автомобилей QUEUE Other; присоединение к очереди 1 SEIZE punkt; занятие пункта 1 DEPART Other; выход из очереди 1 ADVANCE 4,3; обслуживание на пункте 1 RELEASE punkt; освобождение пункта 1 TERMINATE; автомобиль покидает систему; задание условия остановки процедуры моделирования GENERATE 10080; генерация фиктивного транзакта,; указывающего на окончание рабочей недели; (7 дней к 24 часа к 60 мин = 10080 мин) TERMINATE 1; остановить моделирование START 1; запуск процедуры моделирования
```

Рис. 3.5: Модель двух стратегий обслуживания с 1 пропускным пунктом

После симуляции получим следующий отчет (рис. [3.5]).

lab16_2.6.1	- REPORT					
	START TIME 0.000			FACILITIES 1		
ı	0.000	10000.0	00 9	1	U	
I						
	NAME		VALUE			
	OTHER		10000.000			
	PUNKT		10001.000			
LABEL		BLOCK TYPE				
	1	GENERATE	5744 5744	0	0	
		QUEUE SEIZE	2511		_	
		DEPART	2511	0	0	
	_	ADVANCE	2511	1	0	
	_	RELEASE	2510	0	0	
	-	TERMINATE	2510	0	0	
		GENERATE	1	0	0	
		TERMINATE	1	0	0	
FACILITY		UTIL. AVE.				
PUNKT	2511	1.000	4.014 1	2512 0	0 0	3233
OUEUE	MAY (CONT. ENTRY ENT	DV (O) AVE C	ONT AVE TIM	F AVE (-0)	DETDV
OTHER		3233 5744				
OTHER	5251	2200 0711	1 1017.0	70 2000.01	2003.010	•
FEC XN		ASSEM C		I PARAMETER	VALUE	
		255 2512	5 6			
5746 5747		384 5746				
	0 20160	.000 5747	0 8			

Рис. 3.6: Отчёт по модели двух стратегий обслуживания с 1 пропускным пунктом

В этом случае модель не проходит ни по одному из критериев, так как коэффициент загрузки, размер очереди и среднее время ожидания больше.

Построим модель для первой стратегии с 3 пропускными пунктами и получим отчет (рис. [3.7], [3.8]).

Рис. 3.7: Модель первой стратегии обслуживания с 3 пропускными пунктами

LABEL		LOC	BLOC	K TYPE	ENTRY	COUNT	CURREN	T COUNT	RETRY	
		1	GENE	RATE	5.5	47		0	0	
				ISFER	5.5	47		0	0	
GO		3	TRAN	ISFER	3 6	82		0	0	
OBSL 1		4	QUEU	ΙE	18	153		1	0	
_		5	SEIZ	E	18	152		0	0	
		6	DEPA	RT	18	152		0	0	
		7	ADVA	NCE	18	52		1	0	
		8	RELE	ASE	18	51		0	0	
		9	TERM	INATE	18	51		0	0	
OBSL 2		10	QUEU	JΕ	18	29		0	0	
_		11	SEIZ	E	18	29		0	0	
		12	DEPA	RT	18	29		0	0	
		13	ADVA	NCE	18	329		0	0	
		14	RELE	ASE	18	129		0	0	
		15	TERM	INATE	18	29		0	0	
OBSL 3		16	QUEU	ΙE	18	65		3	o o	
_		17	SEIZ	E	18	62		0	0	
		18	DEPA	RT	18	62		0	0	
		19	ADVA	NCE	18	62		1	0	
		20	RELE	ASE	18	61		0	0	
		21	TERM	INATE	18			0	0	
		22	GENE	RATE		1		0	0	
		23	TERM	INATE		1		0	0	
FACILITY	Ž.	ENTRIES	UTI	L. AV	E. TIME A	VAIL.	OWNER F	END INT	ER RETRY	DELAY
PUNKT2		1829	0.	717	3.952	1	0	0	0 0	0
PUNKT3		1862	0.	740	4.006	1	5534	0	0 0	3
PUNKT1		1852	0.	727	3.957	1	5546	0	0 0	1
QUEUE		MAX C	ONT.	ENTRY E	NTRY(0)	VE.CON	T. AVE.	TIME	AVE.(-0)	RETRY
OTHER2		11	0	1829	508	1.112	6	.126	8.482	
OTHER3		13	3	1865	513 529	1.134	6	.132	8.458	0
OTHER1		9	1	1853	529	0.929	5	.055	7.075	0
FEC XN					CURRENT		PARAME	TER	VALUE	
5549					0					
5534	0	10082.	140	5534	19	20				
5546		10085.	99	5546	7	8				
5550	0	20160.	000	5550	0	22				

Рис. 3.8: Отчёт по модели первой стратегии обслуживания с 3 пропускными пунктами

В этом случае среднее количество автомобилей в очереди меньше 3 и коэффициент загрузки в нужном диапазоне, но среднее время ожидания больше 4.

Построим модель для первой стратегии с 4 пропускными пунктами (рис. [3.9], [3.10]).

Рис. 3.9: Модель первой стратегии обслуживания с 4 пропускными пунктами

				ANCE		_			1		0	
		27	REL	EASE		1	412		0		0	
		28	TER	MINATE		1	412		0		0	
		29	GEN.	ERATE			1		0		0	
		30	TER	MINATE			1		0		0	
FACILITY		ENTRIES										
PUNKT4		1413	_				_		_	0	0	0
PUNKT3		1378						0	0	0		0
PUNKT2		1366				3.993	_	0	_	0	0	0
PUNKT1		1465	0	.584		4.018	1	5621	0	0	0	0
QUEUE		MAX CO	ONT.	ENTRY	ENTI	RY(0)	AVE.CON	IT. AVI	E.TIME	E AV	E.(-0)	RETRY
OTHER4		7	0	1413		528	0.415	5	2.958	3	5.325	0
OTHER3		8	0	1378		555	0.345	5	2.527	7	4.816	0
OTHER2		6	0	1366		525	0.363	3	2.676	5	4.934	0
OTHER1		6	0	1465		590	0.492	2	3.385	5	5.667	0
FEC XN	PRI	BDT		ASSE	M C	JRRENT	NEXT	PARAI	METER	VA	LUE	
5624	0	10080.0	141	5624		0	1					
5621	0	10080.3	398	5621		8	9					
5623	0	10082.2	255	5623		26	27					
5625	0	20160.0	000	5625		0	29					

Рис. 3.10: Отчёт по модели первой стратегии обслуживания с 4 пропускными пунктами

В этом случае все критерии выполнены, поэтому 4 пункта являются *оптимальным* количеством для первой стратегии.

Построим модель для второй стратегии с 3 пропускными пунктами и получим отчет (рис. [3.11], [3.12]).

```
| lab16_3.gps
 punkt STORAGE 3:
 GENERATE (Exponential(1,0,1.75)) ; прибытие автомобилей
 ; моделирование работы пункта 1
 QUEUE Other ; присоединение к очереди 1
 ENTER punkt ; занятие пункта 1
 DEPART Other ; выход из очереди 1
 ADVANCE 4,3 ; обслуживание на пункте 1
 LEAVE punkt ; освобождение пункта 1
 TERMINATE ; автомобиль покидает систему
 ; задание условия остановки процедуры моделирования
 GENERATE 10080 ; генерация фиктивного транзакта,
 ; указывающего на окончание рабочей недели
 ; (7 дней х 24 часа х 60 мин = 10080 мин)
 TERMINATE 1 ; остановить моделирование
 START 1 ; запуск процедуры моделирования
```

Рис. 3.11: Модель второй стратегии обслуживания с 3 пропускными пунктами

	OTHER PUNKT	10001.000
LABEL		LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY 1 GENERATE 5683 0 0 2 QUEUE 5683 0 0 3 ENTER 5683 0 0 4 DEPART 5683 0 0 5 ADVANCE 5683 3 0 6 LEAVE 5680 0 0 7 TERMINATE 5680 0 0 8 GENERATE 1 0 0 9 TERMINATE 1 0 0
QUEUE OTHER		MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY 12 0 5683 2521 1.063 1.885 3.388 0
STORAGE PUNKT		CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY 3 0 0 3 5683 1 2.243 0.748 0 0
5683 5685 5684	0 0 0	BDT ASSEM CURRENT NEXT PARAMETER VALUE 10080.434 5680 5 6 10080.631 5683 5 6 10082.068 5685 0 1 10085.592 5684 5 6 20160.000 5686 0 8

Рис. 3.12: Отчёт по модели второй стратегии обслуживания с 3 пропускными пунктами

В этом случае все критерии выполняются, поэтому модель оптимальна.

Построим модель для второй стратегии с 4 пропускными пунктами и получим отчет (рис. [3.11], [3.12]).

```
рипкt STORAGE 4;
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей

; моделирование работы пункта 1
QUEUE Other; присоединение к очереди 1
ENTER punkt; занятие пункта 1
DEPART Other; выход из очереди 1
ADVANCE 4,3; обслуживание на пункта 1
LEAVE punkt; освобождение пункта 1
TERMINATE; автомобиль покидает систему

; задание условия остановки процедуры моделирования
GENERATE 10080; генерация фиктивного транзакта,
; указывающего на окончание рабочей недели
; (7 дней х 24 часа х 60 мин = 10080 мин)
TERMINATE 1; остановить моделирование
START 1; запуск процедуры моделирования
```

Рис. 3.13: Модель второй стратегии обслуживания с 4 пропускными пунктами

LABEL		TOC	BLOCK TYPE	ENTRY	COUNT	CHIDDENIT	COUNT	DETDV	
DADLE				571		COMMENT	0		
				571			0	0	
			ENTER	571			0	0	
		_	DEPART	571			0	0	
		_		571	-		4	0	
		_	LEAVE	571			0	0	
		_		571	-		0	0	
			GENERATE		-		0	0	
		•	TERMINATE		1		0	0	
			1211111111		-		•		
QUEUE		MAX C	ONT. ENTRY	ENTRY(0) AV	E.CON	T. AVE.T	IME A	AVE. (-0)	RETRY
OTHER		7	0 5719	4356	0.194	0.	341	1.431	. 0
1				MAX. ENTRIE					
PUNKT		4	0 0	4 5719	, 1	2.253	0.56	3 0	U
FEC XN	PRI	BDT	ASSEM	CURRENT	NEXT	PARAMETI	ER V	VALUE	
5718	0	10082.	346 5718	5	6				
5717	0	10082.	112 5717	5	6				
5719	0	10083.	393 5719	5	6				
5721	0	10084.	393 5721	0	1				
5720	0	10085.	162 5720	5	6				
5722	0	20160.	000 5722	0	8				

Рис. 3.14: Отчёт по модели второй стратегии обслуживания с 4 пропускными пунктами

Здесь все критерии выполнены при этом время ожидания и среднее число автомобилей меньше, чем в случе второй стратегии с 3 пунктами, однако и загрузка

меньше. Можно сделать вывод, что 4 пропускной пункт излишне разгружает систему.

В результате анализа наилучшим количеством пропускных пунктов будет 3 при втором типе обслуживания и 4 при первом.

4 Выводы

В результате выполнения данной лабораторной работы я реализовал с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменение модели, чтобы определить оптимальное число пропускных пунктов.