

AML5202 | Deep Learning | Problem Set-2

- 1. Suppose $\mathbf{a}^{[1]}$ is a 128-vector. Let $\mathbf{a}_B^{[1]} = \begin{bmatrix} \mathbf{a}^{[1]} \\ 1 \end{bmatrix}$. Calculate the gradient $\nabla_{\mathbf{a}^{[1]}} \left(\mathbf{a}_B^{[1]} \right)$.
- 2. Suppose z is a 128-vector. If $\mathbf{a} = \text{ReLU}(\mathbf{z})$, calculate the gradient $\nabla_{\mathbf{z}}(\mathbf{a})$.
- 3. Consider the following forward propagation for a sample 784-vector x with one-hot encoded correct label 10-vector y (shapes shown below):

$$\boxed{ \underbrace{\mathbf{x}_B}_{785} = \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix} } \rightarrow \boxed{ \underbrace{\mathbf{z}_{128}^{[1]} = \mathbf{W}_{?\times?}^{[1]} \mathbf{x}_B}_{?\times?} } \rightarrow \boxed{ \underbrace{\mathbf{a}_{12}^{[1]} = \mathrm{ReLU} \left(\mathbf{z}_{128}^{[1]} \right) }_{?} } \\ \rightarrow \boxed{ \underbrace{\mathbf{a}_B^{[1]}}_{?} = \begin{bmatrix} \mathbf{a}_{11}^{[1]} \\ 1 \end{bmatrix} } \rightarrow \boxed{ \underbrace{\mathbf{z}_{10}^{[2]} = \mathbf{W}_{?}^{[2]} \mathbf{a}_B^{[1]}}_{?} } \rightarrow \boxed{ \underbrace{\mathbf{a}_{10}^{[2]} = \mathrm{softmax} \left(\mathbf{z}_{10}^{[2]} \right) }_{10} } \\ \rightarrow \boxed{ \underbrace{\mathbf{a}_{10}^{[1]} = \mathbf{w}_{?}^{[2]} \mathbf{a}_B^{[1]}}_{?} } \rightarrow \boxed{ \underbrace{\mathbf{a}_{10}^{[2]} = \mathbf{w}_{?}^{[2]} \mathbf{a}_B^{[2]}}_{?} } \rightarrow \boxed{ \underbrace{\mathbf{a}_{10}^{[2]} = \mathbf{w}_{?}^{[2]} \mathbf{a}_B^{[2]}}_{?} } \\ \rightarrow \boxed{ \underbrace{\mathbf{a}_{10}^{[2]} = \mathbf{w}_{?}^{[2]} \mathbf{a}_B^{[2]}}_{?} } \rightarrow \boxed{ \underbrace{\mathbf{a}_{10}^{[2]} = \mathbf{w}_{?}^{[2]} \mathbf{a}_B^{[2]}}_{?} } \rightarrow \boxed{ \underbrace{\mathbf{a}_{10}^{[2]} = \mathbf{w}_{?}^{[2]} \mathbf{a}_B^{[2]}}_{?} }$$

where $\hat{\mathbf{y}} = \mathbf{a}^{[2]}$, the predicted probability vector. What are the missing shapes above?

- 4. Fill in the missing entries in $\begin{cases} \nabla_{\mathbf{a}^{[1]}}(L) &= \nabla_{?}\left(\mathbf{a}_{B}^{[1]}\right) \times \nabla_{\mathbf{a}_{B}^{[1]}}\left(\mathbf{z}^{[2]}\right) \times \nabla_{?}(L), \\ \nabla_{?}(L) &= \nabla_{\mathbf{z}^{[1]}}\left(\mathbf{a}^{[1]}\right) \times \nabla_{\mathbf{a}^{[1]}}(L). \end{cases}$
- 5. Calculate the gradients $\nabla_{\mathbf{a}_{2}^{[1]}} \left(\mathbf{z}^{[2]} \right)$ and $\nabla_{\mathbf{z}^{[1]}} \left(\mathbf{a}^{[1]} \right)$.