Physical Security – Embedded Systems

Part IV IP Protection

IP Protection

- **□** Confidentiality
- **□** Authentication
- **□** Integrity

IP Confidentiality

- □ IPs (Intellectual Properties) need to be protected
- □ Patents provide juridical/financial protection...
 - Authorship/Ownership
 - Legitimate use
- **□** Illegitimate use must be proved!
- How to prove that your competitor stole your solution?
 - **♦** E.g., reverse engineering
 - **♦** Quite complex and expensive ⊗
 - **♦** Sometimes impossible ⊗
- Obfuscation
 - Encrypted bitstreams, ...

IP Authentication

- Need to identify the device efficiently and securely
 - "Fingerprint" of the device
 - Guarantee the origin of the design
 - Detect and Avoid fake products on the market
- □ Traditional solution
 - Embed a unique secret key in non volatile memory
 - Use crypto to authenticate the device through its secret key
- □ But...
 - Adversary may be able to extract the key
 - Who embeds and tests the keys? Is it trustable?
 - What if no crypto available?

Physical Unclonable Function (PUF)

- □ Identification of a device, by unique physical properties
- **□** Extract/Generate secrets from circuit of any complexity

Challenge
$$\longrightarrow$$
 PUF \longrightarrow Response

- □ Process variations: no two IC are identical (even with the same layout)
 - Hard to predict
 - Intrinsic in the fabrication process
 - **♦** Future proof: relative variation increases as technology advances
- Examples
 - Path delays (Arbiter)
 - **♦** Ring-Oscillators
 - **♦ Uninitialized SRAM memory state**
 - **•** ...

Simple PUF Example

- □ Compare two paths with an identical delay in design
 - Random process variation determines which path is faster
 - **♦** An arbiter outputs 1-bit digital response
- Multiple bits can be obtained by either duplicate the circuit or use different challenges
 - Each challenge selects a unique pair of delay paths

PUF Types

□ Strong

- Complex challenge/response mechanism
- Many, many possible challenges
- Impossible to clone
- Impossible to map all Challenge/Response pairs
- **♦** Hard to predict

□ Controlled

- Based on strong PUF, plus additional control logic
- Control logic used to filter PUF I/O

■ Weak

- Very few challenges
- Responses never meant to be used externally

PUF Applications

□ System Identification

- Very similar to biometrical identification systems
- Limited security

■ Key Generation

- **♦** Non volatile key storage
- Unique key material
- No key programming required

■ Hardware Entangled Cryptography

- Embedded integration of PUFs in crypto primitives
- **♦** No digital key present at any point **→** Not for every application

IP Integrity

- **□** Do you trust your design chain?
 - Several phases of IC fabrication are outsourced

□ Circuit can modified any time by inserting unknown functionality, i.e.

Hardware Trojan

Hardware Trojan

□ Trigger

Activating the Trojan on a specific condition

Payload

The malicious function

Cryptographic IP Cores @ FDTC2013

HT Taxonomy (1/4)

Insertion phase

- **□** Specification
- Design
- **□** Fabrication
- **☐** Assembly/Packaging

HT Taxonomy (2/4)

Activation mechanism

- □ Always On
- □ Triggered
 - Internally
 - Time
 - Other physical condition
 - **Externally**
 - User input
 - Component output

HT Taxonomy (3/4)

Effect

- **□** Change functionality
- **□** Degrade performance
- **□** Denial of Service
- **☐** Information leak

HT Taxonomy (4/4)

Other...

- **□** Abstraction level
 - ◆ System, RTL, gate, layout, physical, ...
- Location
 - CPU, memory, IO module, clock or power grid, ...
- Characteristics
 - Distribution, size, ...
 - **♦** Type parametric/functional), structure (layout)

HT Detection – Visual Inspection

Cross-correlation analysis of microscope images (invasive!)

Picture Trojaned GDSII Genuine GDSII |NCC| = 1.56%|NCC| = 0.67%

HT Non-Destructive Detection

- **□** Testing
 - **♦** Logic Test
- **□** Ring Oscillators
- **□** Gate Level Characterization
- **□** Side Channel Analysis
 - Delay
 - Current
 - **♦** Thermal
 - Power
 - ◆ EM
 - **...**

HT Non-Destructive Detection

- □ Set Trojan-free sample as golden reference
- □ Characterize golden reference
- □ Characterize unknown sample
- **□** Compute [dis]similarity
- Classify
- Objectives
 - Maximize true results (identify always Trojans infections and correct samples)
 - **♦** Minimize *false* results (e.g., missing Trojans, discarding good circuits)
 - Even without triggering the HT!
- **□** Best dissimilarity metrics?

