Welcome to the course!

INTRODUCTION TO DATA IN R

Mine Cetinkaya-Rundel

Associate Professor at Duke University & Data Scientist and Professional Educator at RStudio

High School and Beyond

id	gender	race	•••	socst
70	male	white	•••	57
121	female	white	•••	61
86	male	white	•••	31
•••	•••	•••	•••	•••
137	female	white	•••	61

Loading data

```
# Load package
library(openintro)

# Load data
data(hsb2)
```


Structure of your data

```
# View the structure of your data
str(hsb2)
```

```
'data.frame': 200 obs. of 11 variables:
$ id : int 70 121 86 141 172 113 50 11 84 48 ...
$ gender : chr "male" "female" "male" "male" ...
$ race : chr "white" "white" "white" ...
$ ses : Factor w/ 3 levels "low", "middle", ..: 1 2 3 3 2 2 2 2 2 2 ...
$ schtyp : Factor w/ 2 levels "public", "private": 1 1 1 1 1 1 1 1 ...
$ prog : Factor w/ 3 levels "general", "academic", ...: 1 3 1 3 2 2 ...
$ read : int 57 68 44 63 47 44 50 34 63 57 ...
$ write : int 52 59 33 44 52 52 59 46 57 55 ...
$ math : int 41 53 54 47 57 51 42 45 54 52 ...
$ science: int 47 63 58 53 53 63 53 39 58 50 ...
$ socst : int 57 61 31 56 61 61 61 36 51 51 ...
```

Glimpse of your data

```
# Load package

library(dplyr)

# View the structure of your data
glimpse(hsb2)
```

```
Observations: 200
Variables: 11
$ id <int> 70, 121, 86, 141, 172, 113, 50, 11, 84, 4...
$ gender <chr> "male", "female", "male", "male", "male",...
$ race <chr> "white", "white", "white", "white", "whit...
$ ses <fctr> low, middle, high, high, middle, middle,...
$ schtyp <fctr> public, public, public, public, public, ...
$ prog <fctr> general, vocational, general, vocational...
$ read <int> 57, 68, 44, 63, 47, 44, 50, 34, 63, 57, 6...
$ write <int> 52, 59, 33, 44, 52, 52, 59, 46, 57, 55, 4...
$ math <int> 41, 53, 54, 47, 57, 51, 42, 45, 54, 52, 5...
$ science <int> 47, 63, 58, 53, 53, 63, 53, 39, 58, 50, 5...
$ socst <int> 57, 61, 31, 56, 61, 61, 61, 61, 36, 51, 51, 6...
```


Let's practice!

INTRODUCTION TO DATA IN R

Types of variables

INTRODUCTION TO DATA IN R

Mine Cetinkaya-Rundel

Associate Professor at Duke University & Data Scientist and Professional Educator at RStudio

Variable types help us determine...

- What summary statistics?
- What type of visualizations?
- What statistical methods?

Types of variables

- Numerical (quantitative): numerical values
 - Continuous: infinite number of values within a given range, often measured
 - Discrete: specific set of numeric values that can be counted or enumerated, often counted
- Categorical (qualitative): limited number of distinct categories
 - o Ordinal: finite number of values within a given range, often measured

Glimpse to identify variables

```
# Load package
library(dplyr)
# View the structure of your data
glimpse(hsb2)
```

```
Observations: 200

Variables: 11

$ id <int> 70, 121, 86, 141, 172, 113, 50, 11, 84, 4...

$ gender <chr> "male", "female", "male", "male", "male",...

$ race <chr> "white", "white", "white", "white", "whit...

$ ses <fctr> low, middle, high, high, middle, middle,...

$ schtyp <fctr> public, public, public, public, public, ...

$ prog <fctr> general, vocational, general, vocational...

$ read <int> 57, 68, 44, 63, 47, 44, 50, 34, 63, 57, 6...

$ write <int> 52, 59, 33, 44, 52, 52, 59, 46, 57, 55, 4...

$ math <int> 41, 53, 54, 47, 57, 51, 42, 45, 54, 52, 5...

$ science <int> 47, 63, 58, 53, 53, 63, 53, 39, 58, 50, 5...

$ socst <int> 57, 61, 31, 56, 61, 61, 61, 61, 36, 51, 51, 6...
```


Glimpse to identify variables

```
# Load package
library(dplyr)
# View the structure of your data
glimpse(hsb2)
```

```
Observations: 200

Variables: 11

$ id <int> 70, 121, 86, 141, 172, 113, 50, 11, 84, 4...

$ gender <chr> "male", "female", "male", "male", "male",...

$ race <chr> "white", "white", "white", "white", "whit...

$ ses <fctr> low, middle, high, high, middle, middle,...

$ schtyp <fctr> public, public, public, public, public, public, ...

$ prog <fctr> general, vocational, general, vocational...

$ read <int> 57, 68, 44, 63, 47, 44, 50, 34, 63, 57, 6...

$ write <int> 52, 59, 33, 44, 52, 52, 59, 46, 57, 55, 4...

$ math <int> 41, 53, 54, 47, 57, 51, 42, 45, 54, 52, 5...

$ science <int> 47, 63, 58, 53, 53, 63, 53, 39, 58, 50, 5...

$ socst <int> 57, 61, 31, 56, 61, 61, 61, 61, 36, 51, 51, 6...
```


Let's practice!

INTRODUCTION TO DATA IN R

Categorical data in R: factors

INTRODUCTION TO DATA IN R

Mine Cetinkaya-Rundel

Associate Professor at Duke University & Data Scientist and Professional Educator at RStudio

Categorical data

- Often stored as factors in R
 - Important use: statistical modeling
 - Sometimes undesirable, sometimes essential
- Common in subgroup analysis
 - Only interested in a subset of the data
 - Filter for specific levels of categorical variable

Table to explore

```
# Number of students in public and private schools in hsb2
table(hsb2$schtyp)
```

```
public private
168 32
```


Filter to subset

```
# Filter for public schools
hsb2_public <- hsb2 %>%
filter(schtyp == "public")
```

The pipe operator

The pipe operator

A (very) simple pipe

```
# Sum of 3 and 4, without pipe
sum(3, 4)
```

7

```
# Sum of 3 and 4, with pipe
3 %>% sum(4)
```

7

Filter to subset (cont.)

```
# Filter for public schools
hsb2_public <- hsb2 %>%
filter(schtyp == "public")
```

== : "is equal to"

Table to explore further

```
# Number of students in public and private schools in hsb2_public
table(hsb2_public$schtyp)
```

```
public private
168 0
```

Drop (unused) levels

```
# Drop unused levels
hsb2_public$schtyp <- droplevels(hsb2_public$schtyp)</pre>
```

```
# Number of students in public and private schools in hsb2_public
table(hsb2_public$schtyp)
```

```
public 168
```


Let's practice!

INTRODUCTION TO DATA IN R

Discretize a variable

INTRODUCTION TO DATA IN R

Mine Cetinkaya-Rundel

Associate Professor at Duke University & Data Scientist and Professional Educator at RStudio

Average reading score

```
# Calculate average reading score and show the value
mean(hsb2$read)
```

52.23

```
# Calculate average reading score and store as avg_read
avg_read <- mean(hsb2$read)
# Do both
(avg_read <- mean(hsb2$read))</pre>
```

52.23

New variable: read_cat

id	•••	read
70	•••	57
121	•••	68
86	•••	44
•••	•••	•••
137	•••	63

New variable: read_cat

id	•••	read		read_cat
70	•••	57	\rightarrow	at or above avg
121	•••	68	\rightarrow	at or above avg
86	•••	44	\rightarrow	below avg
•••	•••	•••	•••	•••
137	•••	63	\rightarrow	at or above avg

New variable: read_cat

```
ifelse([logical condition], [do this if true], [do this if false])
```

Let's practice!

INTRODUCTION TO DATA IN R

Visualizing numerical data

INTRODUCTION TO DATA IN R

Mine Cetinkaya-Rundel

Associate Professor at Duke University & Data Scientist and Professional Educator at RStudio

ggplot2

- Modern looking, hassle-free plots
- Easy to extend code for multivariate plots
- Iterative construction

```
# Load ggplot2
library(ggplot2)
```

Math vs. science scores

```
# Scatterplot of math vs. science scores
ggplot(data = hsb2, aes(x = science, y = math)) +
    geom_point()
```


Math vs. science scores

```
# Scatterplot of math vs. science scores
ggplot(data = hsb2, aes(x = science, y = math)) +
    geom_point()
```


Math, science, and program

```
# Scatterplot of math vs. science scores, controlling for program
ggplot(data = hsb2, aes(x = science, y = math, color = prog)) +
    geom_point()
```


Math, science, and program

```
# Scatterplot of math vs. science scores, controlling for program
ggplot(data = hsb2, aes(x = science, y = math, color = prog)) +
    geom_point()
```


Let's practice!

INTRODUCTION TO DATA IN R

