Homework 2

January 20, 2022

Please submit your HW on Canvas; include a PDF printout of any code and results, clearly labeled, e.g. from a Jupyter notebook. It is due Wednesday January 26th by 11:59pm EST.

Problem 1

Let $f(x): \mathbb{R}^n \to \mathbb{R}^n$ be an invertible map from inputs $x \in \mathbb{R}^n$ (n-component column vectors) to outputs in \mathbb{R}^n . If g(x) is the inverse function, so that g(f(x)) = x = f(g(x)), use the chain rule to show how the Jacobians f'(x) and g'(x) are related.

Problem 2

Consider $f(A) = \sqrt{A}$ where A is an $n \times n$ matrix. (Recall that the matrix square root is a matrix such that $(\sqrt{A})^2 = A$. In 18.06, we might compute this from a diagonalization of A by taking the square roots of all the eigenvalues.)

- a) Give a formula for the Jacobian of f, acting on vec(A), in terms of Kronecker products and matrix powers only (no eigenvalues required!). (Hint: see problem 1.)
- b) Check your formula numerically against a finite-difference approximation. (To ensure that no complex numbers show up in the matrix square root, pick a random positive-definite $A = B^T B$ for some random square B.)

Problem 3

Suppose that $A(p) = A_0 + \operatorname{diagm}(p)$ constructs an $n \times n$ matrix A from $p \in \mathbb{R}^n$, where $\operatorname{diagm}(p) = \begin{pmatrix} p_1 & & \\ & p_2 & \\ & & \ddots \end{pmatrix}$ is the

diagonal matrix with the entries of p along its diagonal, and A_0 is some constant matrix. We now perform the following sequence of steps:

- 1. solve A(p)x = a for $x \in \mathbb{R}^n$, where a is some vector.
- 2. form $B(x) = B_0 + \operatorname{diagm}(x \cdot * x)$ where $\cdot *$ is the elementwise product and B_0 is some $n \times n$ matrix.
- 3. solve By = b for $y \in \mathbb{R}^n$, where b is some vector.
- 4. compute $f = y^T F y$ where $F = F^T$ is some symmetric $n \times n$ matrix.

Now, suppose that we want to optimize f(p) as a function of the parameters p that went into the first step. We need to compute the gradient ∇f for any kind of large-scale problem. If n is huge, though, we must be careful to do this efficiently, using "reverse-mode" or "adjoint" calculations in which we apply the chain rule from left to right.

- a) Explain the sequence of steps to compute ∇f . Your answer should show that ∇f can also be computed by solving only $two \ n \times n$ linear systems, similar to f itself.
- b) Check your answer numerically against finite differences (for some randomly chosen A_0, B_0, a, b, F).
- c) Check your answer against the result of a reverse-mode AD software (e.g. Zygote in Julia).

Problem 4

- a) Write down some 4×4 matrix that is not the Kronecker product of two 2×2 matrices. Convince us this is true.
- b) Prove that if $A(m \times m)$ and $B(n \times n)$ are orthogonal (i.e., $A^T A = I_m$ and $B^T B = I_n$) then $A \otimes B(mn \times mn)$ is orthogonal.
- c) If $f(A) = e^A = \sum_{k=0}^{\infty} A^k/k!$, write down a power series involving Kronecker products for the Jacobian f'(A). Check your answer with a numerical example, e.g. against finite differences.