AMATH 584 HW4 Nate Whybra

10.1) a) Put u = V so we can write Householder reflector as F = I - 2 uu* We want to find eigenvectors q; such that

Fqi = 1 qi for some $\lambda \neq 0$. Let $q_i = W$, then

Fq = Fw = w - 2 w (w u)

So u is an eigenvector of F with corresponding eigenvalue $\lambda_1 = -1$. Now consider a vector 92 = w where w is orthogonal to u, since F is Hermitian all the eigenvectors of F Should be orthogonal to each other, Then

Fq2 = Fw = W - 2 w (w/w) tolc orthogonal = 1.w

So w is an eigenvector with corresponding eigenvalue $\lambda_2 = 1$. If F is mxm, we J found an eigenvector q_1 with $\lambda_1=1$. Since found an eigenvector q_1 with $\lambda_1=1$. Since any vector orthogonal to q_1 gives an eigenvalue $\lambda_2=1$, since q_1 is termitian it eigenvalue that there are q_1 eigenvalues of value 1 (multiplicity m-1) and 1 eigenvalue with value -1, in summary $\lambda = 1$ w/ multiplicity m-1 $\lambda = -1$ w/ multiplicity 1 $\lambda = -1$ w/ multiplicity 1

b) For any square matrix, the determinant is the product of the eigenvalues, so det(F) = 16(-1) = [-1]

c) Since F is Hermitian, the singular values are the absolute values of the eigenvalues, so in this case F has m singular values equal to 1.

a) continued:

As F maps vectors q

by reflecting q across the

hyperplane H orthogonal to

V, if q is parallel to

V, q will simply have its

direction reversed, wich is

the same as being multiplied

by -1 (one of our eigenvalues). If

q is orthogonal to V it lies

q is orthogonal to V it lies

in the hyperplane H and won't get

moved anywhere by F (corresponding to $\Lambda = 1$).