DP 5505

Delphine series

no-clean and lead-free solder paste

Key properties

- Anti hidden pillow defect
- Low voiding chemistry
- High stability
- High moisture resistance
- Suitable for vapour phase soldering
- Long profile capability
- No clean
- Absolute halogen free formulation
- RO/LO (IPC-JSTD-004A)
- Good cosmetics, clear minimal residue
- Designed to be cleanable with most common cleaning liquids and processes

Halogen free L0

Test Report

No. 10134676/08

Date: August 26, 2008

Page 2 of 2

Test Result(s):

Sample Description : Extracted paste Flux of DP5505

Sample Ref/Marking : Paste Flux I

Test item Result Detection Limit

Halides, as % Chloride n.d. 0.01

Note: (1) mg/kg = ppm; 0.1% = 1000 ppm

(2) n.d.= Not Detected (Denoted less than detection limit)

(3) The above reading is based on the solid (non-volatile) portion of the flux.

Lab Analyst: Jenny Yip.

Hidden pillow (head-in-pillow)

DP 5505 Peel-off BGA-side

DP 5505 Peel-off PCB-side

0 hidden pillow defects

Peel-off BGA-side

Peel-off PCB-side

161 hidden pillow defects

Hidden pillow defect

Parameters

paste 1: DP5505 SAC305 Typ3 88,5% paste 2: sensitive to hidden pillow component: BGA 256 (2x100 pcs) profile: Interflux P5 air peel off test

Voiding

• Passes IPC 7095 class 3 requirements (high reliability electronics)

Parameters

paste: DP5505 SAC305 Typ3 88,5%

component: BGA 256 (50pcs) profile: Interflux P3 air

X-Ray: Phoenix

Rolling of the paste

Parameters

paste: DP5505 SAC305 Typ3 88,5% stencil: 150 µm laser cut 10% red.

print speed: 70mm/s temperature: 22 C humidity: 53% R.H.

Good rolling without kneading

Stencil thickness

120 μm μBGA

150 µm standard

200 µm

 \bullet Standard stencil thickness of Interflux test boards are 120 μm -200 μm

Apertures/pitch

Parameters

paste: stencil: DP5505 SAC305 Typ4 88,5%

μBGA 0,5mm 120μm

µBGA 0.5 mm

Parameters

DP5505 SAC305 Typ4 88,5% paste: board: NiAu test board (Jumo) profile:

Jumo nr. 56 245 C 4min N2

0201

leadless package

μBGA 0,75 mm

Stencil separation

0402

0,5mm pitch

BGA

Large pad

Parameters

paste: DP5505 SAC305 Typ3 88,5% stencil: 150 µm laser cut 10% red

print speed: 70mm/s temperature: 22 C humidity: 53% R.H.

- Clear print definition
- No dogearing

Open time / Stencil life

• 8 hrs stencil life

1st print

1st print

Parameters

paste: DP5505 SAC305 Typ3 88,5% stencil: 150 µm laser cut 10% red.

print speed: 70mm/s

profile: Interflux P2.11 Air

temperature: 24 C humidity: 53% R.H.

- Good print definition
- Good soldering

Open cartridge storage time

- Opened and used jar
- 3 weeks at room teperature

1st print

1st print

Parameters

paste: DP5505 SAC305 Typ3 88,5% stencil: 150 µm laser cut 10% red.

print speed: 70mm/s

profile: Interflux P2.11 Air temperature: 21 C - 24 C

humidity: 50%R.H. - 56%R.H.

- Good printing performance
- Good soldering

Abandon time

1st print after 2hrs : ~ 1.55 % mass deviation

1st print after 4 hrs: ~ 1.72 % mass deviation

Parameters

paste: DP5505 SAC305 Typ3 88,5%

temperature: 24 C humidity: 53% R.H.

Abandon time

1st print after 8hrs : ~ 1.87 % mass deviation

Parameters

paste: DP5505 SAC305 Typ3 88,5%

temperature: 24

Ultra fine pitch capability

Parameters

paste: DP5505 SAC305 Typ3 88,5% stencil: 120µm laser cut µBGA 0,5mm

temperature: 22 C humidity: 55% R.H.

• < 3% mass deviation</p>

Print speed range

- 10mm/s: < 0,2% mass deviation
- 20mm/s: < 0,4% mass deviation
- 35mm/s < 0,4% mass deviation
- 50mm/s < 0,2% mass deviation
- 70mm/s: < 0,2% mass deviation
- 100mm/s < 0.2% mass deviation
- 150 mm/s < 0,4% mass deviation

Parameters

paste: DP5505 SAC305 Typ3 88,5%

stencil: 150 µm laser 10% red. print speed: variable

temperature: 24 C humidity: 53% R.H.

Temperature range

Parameters

paste: DP5505 SAC305 Typ3 88,5% stencil: 150µm laser cut 10% red.

speed: 70mm/s

temp.: 15 C-22 C -29 C-35 C

• 15 C : < 0,6 % mass deviation

• 22 C: < 0,8% mass deviation

• 29 C : < 1,5% mass deviation

• 35 C : < 4% mass deviation

Bridging/slump

pre slump pattern A-21

Cold slump: pass pattern A-21

Hot slump: pass pattern A-20

Hot slump: pass pattern A-21

Parameters

paste: DP5505 SAC305 Typ3 88,5% test: IPC J-STD-005 TM-650 2.4.35

temperature: 22 C / 150 C humidity: 52% R.H.

High humidity resistance

A paste suffering from humidity resulting in displaced components after 4 hrs @ 26 C-96 R.H. prior to reflow

Parameters

paste: DP5505 SAC305 Typ3 88,5%

test: 4h high humidity test

temperature: 26 C humidity: 96% R.H. profile: Interflux P3 Air

DP 5505: no displaced components or spatter

Low humidity resistance

1206 after 4h

1206 after 24h

Fine pitch pattern after 4h

Fine pitch pattern after 24h

Parameters

paste: DP5505 SAC305 Typ3 88,5% test: 24h low humidity test

temperature: 25 C humidity: 27% R.H.

Board: Interflux standard Cu OSP

Profile: Interflux P2.11 Air

Solder paste tack

Parameters

paste: DP5505 SAC305 Typ3 88,5% test: IPC J-STD-005 and TM-650 2.4.44

temperature: 25+/-2 C

humidity: 50% R.H. 10%

• < 3% over 8hours

Wetting

Wetting on Cu

Wetting on I-Sn

Wetting on NiAu

Parameters

paste: profile:

DP5505 SAC305 Typ3 88,5% Interflux P2.11 Air

Wetting on I-Ag > 6 months

Solder balling

result: pass as preferred 15 min

Parameters

paste: DP5505 SAC305 Typ3 88,5% test IPC J-STD-005 TM-650 2.4.34 stencil: 200 µm laser cut stainless steel

temperature: 22 C humidity: 53% R.H.

result: pass as preferred 4 hours

Solder beading

No solder beading

Parameters

paste: DP5505 SAC305 Typ3 88,5% stencil: 150 µm laser cut 0% red.

print speed: 70mm/s

profile: Interflux P3 profile air

temperature: 22 C humidity: 55% R.H.

PIP / PIH

paste: DP5505 SAC305 Typ3 88,5%

temperature: 24 C humidity: 53% R.H.

Profile: Interflux P2.11 Air

- Good hole filling
- No dropping of the paste
- Good soldering

Vapour phase

Parameters

paste: DP5505 SAC305 Typ3 88,5%

board: Interflux standard NiAu machine: Exmore VS500 vapor phase

liquid: Galden LS230

temperature: 230 C

Profiles

• Interflux P2.11 5 min 240°C: ~ medium range profile

Profiles

•Interflux P5 7,5 min 260°C ~ Jedec 20D high profile

Profiles

Parameters

paste: DP5505 SAC305 Typ3 88,5% board: Interflux standard NiAu

profile: Interflux P5 air

Residues

Paste: DP5 profile: Inte

DP5505 SAC305 Typ3 88,5% Interflux P2.11 air

- Low residue
- Clear residue
- Pin testable
- 56,55% of originally deposited volume of flux

Cleaning process

Solder Paste (unsoldered): We recommend the following cleaning agents

Interflux	VIGON®			ZESTRON®		ATRON®
Solder Paste	SC 200	SC 202	SC 400 *	SD 300	SD 301	SP 200
Interflux Delphine 5502	+	+	+	+	+	+
Interflux Delphine 5503	+	+	+	+	+	+
Interflux Delphine 5503/2	+	+	+	+	+	+
Interflux Delphine 5504	+	+	+	+	+	+
Interflux DP 5505	+	+	+	+	+	+
Interflux IF 9002	+	+	+	+	+	+
Interflux IF 9007'	+	+	+	+	+	+
Interflux IF 9009 LT	+	+	+	+	+	+
Interflux NX 9900 i	+	+	+	+	+	+

The results were obtained under the following conditions:

Spray-in-air process in stencil cleaning equipment

- Easily removable with standard process parameters
- Remove able with process optimisation (e.g. with additives and/or longer cleaning time) or other ZESTRON cleaning agents
- Difficult to remove with this cleaning agent, process optimisation necessary
- n not tested yet

Process Parameters (depending on cleaning application): 2-10 minutes at 20-50°C/ 68-122°F

• For stencil cleaning Interflux ISC8020 is recommended

Cleaning process

Solder Paste (reflowed): We recommend the following cleaning agents

Interflux	VIGON®				ZESTRON®		ATRON®	
Solder Paste	A 200	A 250	A 300	US	SC 202	FA*	VD	AC 205
Interflux Delphine 5502	+	n	+	0	0	+	+	n
Interflux Delphine 5503	+	n	+	0	0	+	+	n
Interflux Delphine 5503/2	+	+	0	0	+	+	0	+
Interflux Delphine 5504	0	0	0	0	0	+	0	0
Interflux DP 5505	0	0	+	0	0	+	0	0
Interflux IF 9002	+	n	+	+	-	+	-	n
Interflux IF 9007'	0	n	+	+	0	0	n	n
Interflux IF 9009 LT	+	n	+	+	+	+	+	n
Interflux NX 9900 i	+	n	+	+	0	+	n	n

The results were obtained under the following conditions:

Spray-in-air cleaning process
(VIGON®A 200, VIGON®A 250, VIGON®A 300, VIGON® SC 202, ATRON® AC 205) or Ultrasonic cleaning process (ZESTRON® FA+, ZESTRON® VD, VIGON®US)

Maintenance cleaning of Interflux products

- For the cleaning of condensation traps of reflow ovens we recommend ATRON® SP 200
- For the manual cleaning of reflow ovens we recommend VIGON® RC 101
- For the manual removal of residues from solder pastes we recommend VIGON® EFM
- Easily removable with standard process parameters
- Remove able with process optimisation (e.g. with additives and/or longer cleaning time) or other ZESTRON cleaning agents
 - Difficult to remove with this cleaning agent, process optimisation necessary
- n not tested yet

Process Parameters (depending on cleaning application): 2-10 minutes at 20-50°C/ 68-122°F

Reliability Data / SIR

Electrical properties (details)

DP 5505 bo	pards (group E)	Contro	ol boards (group F) Board1		
Pattern	T1	6,23x10 ⁰⁸ Ω		Ti	$3,96x10^{12} \Omega$
	T3	$9,86 \times 10^{08} \Omega$		T1	$3,01x10^{09} \Omega$
				T3	$2,72x10^{09} \Omega$
Board 2			Board2		
Pattern	T1	$7,54 \times 10^{08} \Omega$		Ti	$2,28 \times 10^{12} \Omega$
	T3	1,18x10 ⁰⁹ Ω		T1	$2,70x10^{09} \Omega$
				T3	$2,16x10^{09} \Omega$
Board 3					
Pattern	T1	4,82x10 ⁰⁸ Ω			
	T3	5,32x10 ⁰⁸ Ω			

Ti pattern initial measurements

T1 pattern measurements after 24 hours

T3 pattern measurements after 168 hours

Parameters

paste: DP5505 SAC305 Typ3 88,5% test: IPC J-STD-005 and TM-650 2.6.33

temperature: 85 C humidity: 85% time: 168 hrs

Chemical Data

Test

Copper Mirror IPC-J-STD-004 2.3.32
 Viscosity IPC-TM-650 2.4.34

• Classification IPC-J-STD-004A

• Halide Content IPC-TM-650 2.3.28.1

• Halide Content IPC-TM-650 2.3.35

Result

• Pass

• 800.000cPs

• RO LO

• N.D. (None Detected)

Pass

Quality Control

Solder paste quality control

- A quality test is carried out on every single batch before shipping.
 - Viscosity
 - Solderball test
 - Reflow test
 - Metal content test

Other properties

- Traceability guaranteed (batch number)
- Shelf life 9 months
- Availability in jars, cartridges, syringes and Proflow[™] cassette
- Also available in **SnPb-alloys**

Reliability Data / Test BONO

Purpose of the test is to create a very sensitive situation where the interaction of all fluxes can be measured. It uses a very fine Cu structure from a built up process. The test is designed that if the test would continue, all fluxes and solder pastes would fail in the end.

Reliability Data / Test BONO

- In between to wide cathodes, there is a very fine anode of $9\mu m$ by $75\mu m$. The resistance of the track is about 3 Ohms
- Solder paste is printed on the cathodes
 - Reflow profile
 - Residues must flow out over the anode
- · One untreated control board runs with the processed boards
- After 2 hours at 25°C and 50% R.H. the atmosphere is changed to 85°C and 85% R.H.
- After 16hrs of stabilisation, the initial resistances (Ro) of the anodes are measured
- A Bias Voltage of 20VDC is applied for 15 days
- The resistances of the anodes (Rj) are measured with 11V DC at 24, 96, 168, 288 and 360 hrs
- A corrosion factor is calculated: F_c : (Rj-Ro) / Ro x 100
- The corrosion factor must be < 8%

Reliability Data / Test BONO

What is absolutely halogen free?

- \rightarrow 0 ppm = absolutely halogen free
- → "L0" allows 500 ppm halogens : IPC J-STD-004A (2004)
- → "L0" allows 100 ppm halogens; EN 61190-1-2 (2002)

L0 is no guarantee for chemical reliability

- → Detecting halides in ppm levels is possible but no easy/quick test exists
- → Customer depends on the information provided by the manufacturer.

What is chemical reliability?

• The residues and reaction products of the soldering process cannot influence the functionality of the electronic circuit.

What can go wrong?

- Drop of the Surface Insulation Resistance (SIR)
- Leakage currents
- Corrosion/Pickling (Removal of surface metal)
- Electro migration (metal atoms are disolved and deposited somewhere else)

Electromigration

The reaction products

- The surfaces that have to be soldered have to be free from oxides. The flux does this job.
- A flux with halogens (Cl,Br,F,...) reacts with the metal and produces metal salts. The water solubility of these metal salts can be very high.

$$\rightarrow$$
 SnO + 2Cl- \rightarrow SnCl2 + O-

• The reaction products of a flux without halogens, when designed well, will produce reaction products that have very low water solubility.

What can happen with the halogenated metal salts?

Standard electrolytical process or electro migration

What are the parameters?

- Atmospherical Conditions: Temperature, Moisture
- Water solubility of the reaction products
- Protection capacity of the body (Rosin/ Resin,...)
- ON/OFF Frequency (Fatigue properties of the body)

What is the difference between lead-free alloys and SnPb?

		Solubility in cold
	Chemical	water
Metal salt	designation	(g/100cc)
Lead chloride	PbCl ₂	0,99
Copper chloride	CuCl ₂	70,6
Silver chloride	AgCl	89x10 ⁻⁶
Tin chloride	SnCl ₂	83,9

Water Solubility of the metal salts

- The water solubility of the metal salts is an indicator for corrosion/migration sensitivity.
- High Sn-content has the largest influence
- The metal salts formed between SnAgCu and Cl are theoretically about 50% more water soluble than the SnPb-salts.

How to predict corrosion?

- Standard corrosion tests give no guarantee for corrosion safety.
- Corrosion tests under static conditions (e.g. 85 C,85% r.h.) Don't take into acount fatigue mechanismes of the body (cracking of the Rosin/Resin) who protect the reaction products from the atmosphere.
- Standard corrosion tests don't take into acount unused soldering chemistry. (e.g., selective soldering, selective soldering carriers, ...)
- Automotive, Siemens and others have developed their own corrosion tests

Absolutely halogen free soldering chemistry is the safest way!

