PHIL3110 - Assignment 1

Maxwell Bo

April 17, 2018

Part A

Problem 1

1.
$$\frac{Pa \vee Qa^{(1)} \qquad (Pa \vee Qa) \to \bot}{\frac{\bot}{\neg (Pa \vee Qa)} \qquad (DM-1)}}$$

De Morgan's Law 1

$$\frac{\varphi^{(1)}}{\varphi \vee \psi} \qquad \neg(\varphi \vee \psi) \qquad \frac{\psi^{(2)}}{\varphi \vee \psi} \qquad \neg(\varphi \vee \psi)$$

$$\frac{\bot}{\neg \varphi} \qquad (1) \qquad (\neg I) \qquad \frac{\bot}{\neg \psi} \qquad (2) \qquad (\neg I)$$

$$\neg \varphi \wedge \neg \psi$$

$$2. \quad \frac{Qa \vee Ra^{(3)}}{Qa \vee Ra^{(3)}} \quad \frac{Qa^{(1)}}{Pa} \quad \frac{Qa \rightarrow Pa}{Pa} \quad \frac{Ra^{(2)}}{Pa} \quad \frac{Ra \rightarrow Pa}{(1) \ (2) \ (\vee E)} \quad \frac{Pa}{(Qa \vee Ra) \rightarrow Pa} \quad ^{(3) \ (\rightarrow I)}$$

Problem 2

1.

$$Q^{\mathcal{M}} = \{m_1\}$$

$$T^{\mathcal{M}} = \{\langle m_1, m_1 \rangle, \langle m_1, m_2 \rangle, \langle m_2, m_2 \rangle\}$$

2. Distressingly, \mathcal{L} does not define any constant symbols, nor does \mathcal{M} provide interpretations of constant symbols in \mathcal{M} .

Thus

$$\mathcal{M} \nvDash \exists x \neg Txx$$

However assuming \mathcal{M}^+ , where \mathcal{M}^+ is the expanded model \mathcal{M} , where $m^{\mathcal{M}}=m$ for all $m \in \mathcal{M}$, we see that

$$M \models \exists x \neg Txx$$

as

$$\langle m_3^{\mathcal{M}}, m_3^{\mathcal{M}} \rangle \not\in T^{\mathcal{M}}$$

3. No, as \mathcal{M} does not define any constant symbols $\mathcal{M} \nvDash \exists x \varphi$ for some arbitrary φ (as x will bind no constant symbols), and thus

$$\mathcal{M} \nvDash \exists x \forall y (Qy \leftrightarrow Tyx)$$

Assuming \mathcal{M}^+ ,

$$\mathcal{M}^+ \nvDash \exists x \forall y (Qy \leftrightarrow Tyx)$$

By fixing x to $m_1^{\mathcal{M}}$, we see that

$$\forall y \cdot y \in Q^{\mathcal{M}} \leftrightarrow \langle y, m_1^{\mathcal{M}} \rangle \in T^{\mathcal{M}}$$

as

$$\begin{split} & m_1^{\mathcal{M}} \in Q^{\mathcal{M}} \text{ and } \langle m_1^{\mathcal{M}}, m_1^{\mathcal{M}} \rangle \in T^{\mathcal{M}} \\ & m_2^{\mathcal{M}} \not\in Q^{\mathcal{M}} \text{ and } \langle m_2^{\mathcal{M}}, m_1^{\mathcal{M}} \rangle \not\in T^{\mathcal{M}} \\ & m_3^{\mathcal{M}} \not\in Q^{\mathcal{M}} \text{ and } \langle m_3^{\mathcal{M}}, m_1^{\mathcal{M}} \rangle \not\in T^{\mathcal{M}} \end{split}$$

Part B

Problem 3

- 1. (a) BHMB is not a good sandwich
 - (b) (((B)JB)HB) is a good sandwich
 - (c) BHBMBJM is not a good sandwich
- 2. **Definition 1** A sandwich is good iff there is some stage n such that sandwich \in Stage(n) where:
 - $Stage(0) = \{B\}$
 - Stage(n+1) is the set of φ such that either:
 - (a) $\varphi \in Stage(n)$
 - (b) φ is of the form ψMB , ψHB , or ψJB , where $\psi \in Stage(n)$
- 3. Make A the set of all n such that for each $\psi \in Stage(n)$, ψ does not contain any two instances of the same ingredient adjacently.

Base

 $0 \in A$. As $Stage(0) = \{B\}$, all $\varphi \in Stage(0)$ do not contain any two instances of the same ingredient adjacently. We can also see that all $\varphi \in Stage(0)$ are terminated by B

Induction Step

Suppose $n \in A$.

Lemma 1 Since $n \in A$, and every $\varphi \in Stage(n)$ is of the form B, ψMB , ψHB , or ψJB , for $\psi \in Stage(m)$ for some m < n, all φ are terminated by B.

Lemma 2 Since $n \in A$, every $\varphi \in Stage(n)$ does not contain any two instances of the same ingredient adjacently.

For each $\varphi \in Stage(n+1) \setminus Stage(n)$, recalling the definition for Stage(n+1), φ is of the form ψMB , ψHB , or ψJB , for some $\psi \in Stage(n)$

Given

- all $\varphi \in Stage(n)$ are terminated by B (Lemma 1)
- all $\varphi \in \{MB, HB, JB\}$ don't begin with B, and are not themselves adjacent ingredients
- Lemma 2

all $\varphi \in Stage(n+1) \setminus Stage(n)$ do not contain two instances of the same ingredient adjacently.

Thus, $n+1 \in A$. Then by induction, we see that every $n \in A$.

Problem 4

1. $(\to I)$ Suppose d_{ψ} is a derivation of $\Gamma, \varphi \vdash \psi$, with d_{ψ} being from stage n.

The $(\to I)$ rule tells us that the $n+1^{\text{th}}$ stage contains a derivation d of $\Gamma, \varphi \vdash \varphi \to \psi$.

We must show $\Gamma, \varphi \models \varphi \rightarrow \psi$.

Since $d_{\psi} \in Stage_{Der}(n)$ we have $\Gamma, \varphi \models \psi$.

Let \mathcal{M} be a model which $\mathcal{M} \models \gamma$ for all $\gamma \in \Gamma \cup \varphi$.

Thus we have $\mathcal{M} \models \varphi$ and $\mathcal{M} \models \psi$, so $\mathcal{M} \models \varphi \rightarrow \psi$.

 $(\exists E)$ Suppose:

- $d_{\exists x \varphi(x)}$ is a derivation of $\Gamma \vdash \exists x \varphi(x)$
- d_{ψ} is a derivation of $\Delta, \varphi(a) \vdash \psi$, where a does not occur in Δ or $\exists x \varphi(x)$

where all are members of stage n. Then the $(\exists E)$ rule tells us that the $n+1^{\text{th}}$ stage contains a derivation d of $\Gamma, \Delta, \varphi(a) \vdash \psi$.

We must show that $\Gamma, \Delta, \varphi(a) \models \psi$.

Since $d_{\exists x\psi(x)} \in Stage_{Der}(n)$, we have $\Gamma \models \exists x\varphi(x)$.

Since $d_{\psi} \in Stage_{Der}(n)$, we have $\Delta, \varphi(a) \models \psi$.

Let \mathcal{M} be a model which $\mathcal{M} \models \gamma$ for all $\gamma \in \Gamma \cup \Delta$, with some $a^{\mathcal{M}} = m$.

 $\mathcal{M} \models \psi$ for some arbitrary interpretation of a, as a does not occur in Δ , ψ , or $\varphi(x)$.

Thus, some \mathcal{M}' with a differing interpretation of a to an object in M than \mathcal{M} , $\mathcal{M}' \models \psi$ iff $\mathcal{M}' \models \exists x \varphi(x)$.

Therefore

 $\exists m \in M \ \mathcal{M}' \models \exists x \varphi(x), \varphi(m) \Leftrightarrow \mathcal{M} \models \psi.$

2. Suppose $\psi := \chi \vee \delta \in \Delta$.

We claim that $\chi \vee \delta$ iff $\chi \in \Delta$ or $\delta \in \Delta$.

If $\chi \vee \delta \in \Delta$, then by Claim 120 and $(\vee I)$ we have either χ or δ in Δ , and by $(\vee E)$ we have χ and δ in Δ .

If either χ or δ are in Δ then Claim 120 and $(\vee I)$ tell us that $\chi \vee \delta \in \Delta$.

$$\chi \vee \delta \in \Delta \Leftrightarrow \chi \in \Delta \text{ or } \delta \in \Delta$$
$$\Leftrightarrow \mathcal{M}^{\Delta} \models \chi \text{ or } \mathcal{M}^{\Delta} \models \delta$$
$$\Leftrightarrow \mathcal{M}^{\Delta} \models \chi \vee \delta$$

The first \Leftrightarrow is via our claim; the second \Leftrightarrow is by induction hypothesis; and the last \Leftrightarrow is from the \models definition.

3. Suppose $\psi := \forall x \chi(x)$.

Then we claim $\forall x \chi(x) \in \Delta$ iff there is some constant symbol $a \in \mathcal{L}(C)$ such that $\chi(a) \in \Delta$. Suppose $\forall x \chi(x) \in \Delta$. Then by Claim 120 and $(\forall E)$, there is some $a \in \mathcal{L}(C)$ such that $\chi(a) \in \Delta$.

On the other hand, if for some some $a \in \mathcal{L}(C)$, $\chi(a) \in \Delta$, then by Claim 120 and $(\forall I)$, $\forall x \chi(x) \in \Delta$.

Then we have

$$\forall x \chi(x) \in \Delta \Leftrightarrow \text{there is some } a \in M^{\Delta} \text{ such that } \chi(a) \in \Delta$$

 $\Leftrightarrow \text{there is some } a \in M^{\Delta} \text{ such that } \mathcal{M}^{\Delta} \models \chi(a)$
 $\Leftrightarrow \mathcal{M}^{\Delta} \models \forall x \chi(x)$

The first \Leftrightarrow is via our claim; the second \Leftrightarrow is by induction hypothesis; and the final \Leftrightarrow is was via the \models definition.