Logic Gates

La porta logica è una funzione che esegue un *operazione logica*. Possono avere una o più porte d'ingresso ed una di uscita.

Vediamo le porte logiche principali :

NOT

$$Y = \bar{A}$$

A Y 0 1

1 0

AND

$$Y = AB$$

A B Y 0 0 0

0 1 0

1 0 0 1 1 1

OR

$$Y = A + B$$

A B Y
0 0 0
0 1 1
1 0 1
1 1 1

XOR

$$Y = A + B$$

A B Y
0 0 0
0 1 1
1 0 1
1 1 0

NAND

 $Y = \overline{AB}$

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

NOR

$$Y = \overline{A + B}$$

Α	В	Υ	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

NXOR

$$Y = \overline{A + B}$$

Ci sono alcuni casi in cui l'output di una porta logica non è così scontanto, vediamo per esempio uno XOR con 3 ingressi, quindi:

$$A + B + C = Y$$

Si può scrivere anche come lo xor di A e B con lo xor di C

$$(A + B) + C = Y$$

In questo caso il risultato dello xor è 1, quando il numero di 1 in ingresse sarà dispari:

Α	В	С	Υ	
0	0	0	0	
1	1	0	0	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	1	1	1	

Con tali porte logiche si costruisce un circuito logico. Ad un circuito bisogna dare caratteristiche funzionali (le porte logiche utilizzata) e caratteristiche temporali (il tempo necessario per emettere un output)

Tale circuito ha gli elementi E1, E2 ed E3
Ogni elemento è un circuito composto a sua volta

Ogni elemento è un circuito composto a sua volta da circuiti elementari. Ci son 2 tipi di circuiti :

Circuiti combinatori

• Essi non hanno memoria, e l'output è determinato dai valori correnti degli input

Circuiti sequenziali

 Essi hanno memoria, e l'output è determinato dai valori correnti e precedenti degli input

•

Un circuito è combinatorio se non ha memoria, ed ogni nodo è un input, o si collega ad esattamente un output. Inoltre non Deve contenere percorsi ciclici.

Circuito combinatorio:

Circuito NON combinatorio (un nodo ha collegati 2 output):

Vediamo alcune definizioni importanti nell'algebra booleana:

Complemento:

 $\overline{A,B,C}$ il negato di un valore

Literal:

 A, \bar{A}, B, \bar{B} la variabile ed il suo complemento

Implicante:

 $\bar{A}BC$, $A\bar{C}$, BC un prodotto di Literal

Minterm:

ABC, $A\overline{B}C$, $A\overline{B}C$ un prodotto che usa tutte le variabili in input

Maxterm:

A+B+C, $A+\overline{B}+C$, $A+\overline{B}+C$ una somma che usa tutte le variabili in input

Sum of Product (SOP)

$$Y = F(A,B)$$

А	В	Υ	MINTERM	MINTERM NAME
0	0	0	$ar{A} imes ar{B}$	m0
0	1	1	$\bar{A} \times B$	m1
1	0	0	$A \times \overline{B}$	m2
1	1	1	$A \times B$	m3

Supponiamo di non sapere cosa fa questa funzione, ma di conoscere solamente il valore in output per ogni caso. Prima bisogna calcolare i *Minterm* per ogni caso.

- Questa funzione vale 1 quando $\bar{A} \times B + A \times B$
- Si sommano i *Minterm* nella tabella dove Y = 1

Quindi $Y = \bar{A}B + AB$

Product of Sum (SOP)

$$Y = F(A,B)$$

Α	В	Υ	MAXTERM	MAXTERM NAME
0	0	0	A + B	MO
0	1	1	$A + \bar{B}$	M1
1	0	0	$\bar{A} + B$	M2
1	1	1	$\bar{A} + \bar{B}$	M3

Supponiamo di non sapere cosa fa questa funzione, ma di conoscere solamente il valore in output per ogni caso. Prima bisogna calcolare i *Maxterm* per ogni caso.

- Questa funzione vale 1 quando $(\bar{A} + B) \times (A + B)$
- Si calcola il prodotto dei *Maxterm* nella tabella dove Y = 0

Quindi $Y = (\bar{A} + B) (A + B)$

Il DUALE di un operazione booleana è esse ma sostituendo 0 con 1 e \times con +

Esempio: 1×0 — duale $\longrightarrow 0+1$