Home work 5

- 1. Время распространени $t = \frac{10 \text{м}}{3 \cdot 10^8 \text{ м/c}} = 0.03$ микросекунд
- а. Время получения всех объектов тогда

$$\left(rac{3\cdot 200}{150}+rac{100000}{150}+4t
ight)+\left(rac{3\cdot 200}{15}+rac{100000}{15}+4t
ight)pprox 7377+8t$$
 секунд

б. Общее время для постоянных HTTP-соединений:

$$\left(rac{3\cdot 200}{150}+rac{100000}{150}+4t
ight)+10\cdot \left(rac{200}{150}+rac{100000}{150}+2t
ight)pprox 7351+24t$$
 секунд

Быть может иногда 25 секунд это существенно, но наверное скорее нет, существенного ускорения не произошло.

2. В случае клиент-серверного взаимодействия сервер должен передать $F\cdot N$ данных с максимальной скоростью u_s . В случае, если скорость приема данных у клиента меньше, чем $\frac{u_s}{N}$, то скорость становится равной d_i . То есть для N=10 скорость будет $d_i=2$ Мбит/с, а для других случаев $\frac{u_s}{N}$ Мбит/с. Ясно, что при клиент-серверном взаимодействии u нет смысла рассматривать. При одноранговом взаимодействии добавляется скорость u в случае если на превышает лимит по входу, конечно.

Зависимость времени от количества клиентов

- 3. а. Каждому посылать сигнал со скоростью $\frac{u_s}{N}$
 - б. Каждому посылать сигнал со скоронсть d_{min}
 - в. Допустим, что мы посылаем контент клиенту i со скоростью u_i . Тогда при ограничениях (это не дополнительные ограничения, они на самом деле в самой постановке задачи есть)

$$\begin{cases} \sum u_i \le u_s \\ u_i \le d_i \end{cases}$$

время раздачи равно $max \frac{F}{u_i} = \frac{F}{u_{min}}$. Заметим, что из второго выражения системы следует, что $u_{min} \leq d_{min}$, а из первого следует, что $u_{min} \leq \frac{u_s}{N}$ (это немного сложнее заметить, но если допустить обратное, то сумма слева будет больше, чем u_s , противоречие). Таким образом время раздачи оценивается снизу:

$$\begin{cases} \frac{F}{u_{min}} \ge \frac{FN}{u_s} \\ \frac{F}{u_{min}} \ge \frac{F}{d_{min}} \end{cases}$$

и при этом выше мы показали, что такие схемы реализуемы. Таким образом, минимальное время действительно достижимо и доказано равно предложенным величинам.