EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Avaliação

- * Todas as folhas devem ser identificadas com o <u>nome completo</u>. Justifique adequadamente todos os cálculos que efetuar;
- * A desistência só é possível após 1 hora do início da prova;
- * Não se pode utilizar telemóveis, máquinas de calcular gráficas e microcomputadores;
- * Resolva cada um dos dois grupos utilizando folhas de capa distintas.

GRUPO I

- **1.** [8,0] Considere o conjunto $S = \{\vec{a}, \vec{b}, \vec{c}\} \subset \mathbb{R}^4$, em que $\vec{a} = (1,1,0,2)$, $\vec{b} = (-1,1,1,2)$ e $\vec{c} = (0,1,1,3)$, e o subespaço de \mathbb{R}^4 , $H = \{(x, y, z, w) \in \mathbb{R}^4 : x y z = 0 \land w = 0\}$.
 - a) Calcule o subespaço gerado pelo conjunto S, L(S). Indique uma base para o subespaço obtido e conclua em relação à sua dimensão. Será o conjunto S linearmente dependente? Justifique.
 - b) Determine uma base ortogonal, W, para o espaço \mathbb{R}^4 que contenha o maior número possível de elementos do subespaço H.
 - c) Obtenha as coordenadas do vector $\vec{r} = (0,0,1,1)$ em relação à base W.
 - d) Calcule uma base, Q, para o subespaço L(S) que contenha os vetores (0,1,0,1) e (0,0,1,2).
- **2.** [2,5] Sejam os vetores \vec{a} , \vec{b} , \vec{c} e \vec{d} do espaço \mathbb{R}^3 , tais que $\|\vec{a}\| = 2$, $\|\vec{b}\| = 1$, $\|\vec{a}\| = 5$, $\|\vec{b} \times \vec{c}\| = 1$, $\angle(\vec{c}, \vec{b}) = 45^\circ$, $\angle(\vec{a} \times \vec{b}, \vec{b} \times \vec{c}) = 45^\circ$, $\vec{d} = \frac{1}{2} \vec{a} \times \vec{b} + \vec{b} + 2\vec{c}$ e $\vec{a} \cdot \vec{b} \times \vec{c} = -2$.
 - a) Mostre que $\{\vec{a}, \vec{b}\}$ é um conjunto ortogonal.
 - **b**) Obtenha a norma de \vec{d} .
 - c) Calcule o ângulo entre \vec{d} e $\vec{b} \times \vec{c}$.

.....(continua no verso

MESTRADOS INTEGRADOS EM ENG. MECÂNICA E EM ENG. INDUSTRIAL E GESTÃO | 2014-15

EM0005/EIG0048 | ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA | 1º ANO - 1º SEMESTRE

Prova sem consulta. Duração: 2h (20m de tolerância)

1ª Prova de Avaliação

GRUPO II

- **3.** [1,3] Mostre que os vectores \vec{a} e \vec{c} do espaço vetorial \mathbb{R}^3 são paralelos, se e só se $\vec{a} \times \vec{c} = \vec{0}$.
- **4.** [1,2] Sejam os vetores não nulos \vec{a} e \vec{c} do espaço vetorial \mathbb{R}^n . Mostre que $\|\vec{a} \vec{c}\| \ge \|\vec{a}\| \|\vec{c}\|$ e estabeleça a condição para que se verifique a igualdade. Justifique devidamente a resposta.
- **5.** [7,0] Sejam a reta $r: X(t) = P + t\vec{a}$, $t \in \mathbb{R}$, em que P = (1,1,1) e $\vec{a} = (1,2,0)$, os planos M: x+y-z=2 e $M_1: -x-y=1$ e o ponto R=(3,3,2). Determine:
 - a) O ponto, I, de interseção de r com M e o ângulo que este plano faz com M_1 .
 - b) A equação cartesiana dum plano, α , perpendicular a r e que passa num ponto, T, desta reta à distância $\sqrt{3}$ unidades de M.
 - c) A equação vetorial de uma reta, h, que passa em R, é concorrente com r e faz um ângulo de 30° com M_1 .