Graded Assignment 1 Report

- * on the excel workbook the LInRegOutput6 has the best model and the tab is colored yellow.
- ** the tab top5 and 95% variance correspond to the tables containing the summary statistics of the models for the respective PCA method.

1. Data handling/ Missing data/ 11a

Going through each column of predictors and sorting in descending order to find invalid or missing cells. There were none. Then I created dummy values for the features fuel_type and color. Once that was done the following screenshots are of the scatterplot matrices. The first is using the first five predictors and the second uses predictors I thought could have lead to dimension reduction as they are highly correlated. In the second screenshot, those variables seem correlated but PCA did not have any of them selected as a top predictor (up to top 15).

11b.

The top 5 predictors were:

Age_08_04 fuel_type_petro I backseat divider mistlamps

These 5 covered 36% of the variance.

The top 15 predictors were:

Age_08_04
fuel_type_petrol
backseat divider
mistlamps
radio
gears
color red
color blue
color grey
color green
color black
color white
color violet

The top 15 covered 64% of the variance.

	Mrg_Month	0.014251024	0.031609942	0.009779783	0.006024149	-0.049407965	0.118921495	-0.058174936	0.209382327	
Exp	lained Variance									
	Component	▼ Eigenvalue ▼	Varianco % - Cun	nulative Variance, %						
	Component 1	5.540942259	12.31320502	12.31320502						
	Component 2	3.178344495	7.062987768	19.37619279						
	Component 3	3.030642793	6.734761762	26.11095455						
	Component 4	2.422936693	5.384303761	31.49525831						
	Component 5	2.040269676	4.533932614	36.02919092						
	Component 6	1.609493361	3.576651914	39.60584284						
	Component 7	1.438400675	3.196445945	42.80228878						
	Component 8	1.325522365	2.945605254	45.74789404						
	Component 9	1.310913141	2.913140313	48.66103435						
	Component 10	1.279129831	2.842510736	51,50354509						
	Component 11	1.201799753	2.670666117	54.1742112						
	Component 12	1.169495349	2.598878553	56.77308976						
	Component 13	1.14477139	2.543936422	59.31702618						
	Component 14	1.112834864	2.472966364	61.78999254						
	Component 15	1.060437572	2.356527937	64.14652048						
	Component 16	1.040956874	2.313237497	66.45975798						
	Component 17	1.016550891	2.259001981	68.71875996						
	Component 18	0.996287204	2.213971565	70.93273152						
	Component 19	0.991888604	2.204196898	73.13692842						
	Component 20	0.967323088	2.149606863	75.28653529						
	Component 21	0.943772302	2.097271783	77.38380707						
	Component 22	0.868455647	1.929901439	79.31370851						
	Component 23	0.835664871	1.857033047	81.17074155						
	Component 24	0.821103232	1.82467385	82.9954154						
	Component 25	0.7395674	1.643483112	84.63889852						
	Component 26	0.710076122	1.577946937	86.21684545						
	Component 27	0.688280907	1.529513126	87.74635858						
	Component 28	0.661021885	1.468937521	89.2152961						
	Component 29	0.607334142	1.349631428	90.56492753						
	Component 30	0.585135326	1.300300726	91.86522825						
	Component 31	0.519289351	1.153976335	93.01920459						
	Component 32	0.475672674	1.057050386	94.07625497						
	Component 33	0.461198201	1.02488489	95.10113986						
(→	PCA_Output1	PCA_Scores1	STDPartition	2 LinReg_Out	put2 Lini	Reg_ResidInf	luence2	LinReg_Trai	ningScore2	

2. Partitioning and PCA

For PCA, I first ran using the top 5 predictors which ended up explaining 36% of the variance. I highlighted the weights in the PCAOutput tab and recorded the components to use for partitioning. I used partitioning with 80/20, 75/25, 70/30 splits and recorded the R2 and RMSE values (in file "Tables for graded assignment 1" as to avoid clutter in the main workbook). Once the results were tabulated I then went back to the encoding tab and ran PCA for 95% of the variance which gave 33 predictors. Since that

^{*} two of them were used for multiple components

was a lot I took the top 15 as instructed in the assignment instruction document. As before I highlighted the components weights and recorded the top 15 to pass to partitioning. The model 4 in this table had an extra predictor (doors) which led to better validation R2. As a note, when attempting to run PCA with the cylinders predictor it would not allow me to add it, upon looking at the column all the values were the same so I decided to omit that predictor from PCA.

Top 5 table:

	Α	В	С	D	E	F	G	Н	I
1									
2									
3	Components used:			Partitioning	Training R2	Training RMSE	Validation R2	Validation RMSE	Tab name
4	Age_08_04		Model 1	80/20	0.7743	1677.839	0.8058	1738.057	LinRegOuput
5	fuel_type_petrol		Model 2	75/25	0.7755	1685.98	0.7983	1708.143	LinRegOuput1
6	backseat divider		Model 3	70/30	0.7768	1687.093	0.7918	1706.434	LinRegOuput2
7	mistlamps								
8	radio								
9									
10									
11	explained variance	36.029%							
12									
13									
	top 5 used PCA								
	tab without								
14	cylinders								
1.5									

95% variance table:

	Α	В	С	D	Е	F	G	Н	1	
1		U							·	,
2	Components used									
3	for top 15(2 used twice):			Partitioning	Training R2	Training RMSE	Validation R2	Validation RMSE	tab name	
4	Age_08_04		Model 1	80/20	0.7817	1650.046	0.8062	1736.507	LinRegOutput3	
5	fuel_type_petrol		Model 2	75/25	0.7824	1660.023	0.8008	1697.561	LinRegOutput4	
6	backseat divider		Model 3	70/30	0.7826	1665.032	0.7976	1682.494	LinRegOutput5	
7	mistlamps		Model 4	80/20	0.7846	1639.135	0.8101	1718.833	LinRegOutput6	uses 16 predicors: top 15 + doors
8	radio									
9	gears									
10	color red									
11	color blue									
12	color grey									
13	color green									
14	color black									
15	color white									
16	color violet									
17										
18		PCAOutput1								
19										
20	top 15 explained variation	64.1465%								
21										

3. Scoring

For choosing the best model out of the 6, first I looked at if the R2 value for both training and validation were > 70% (they all were) and if the two R2 values were close to each other. Then the model with the highest validation R2 value was chosen as the best model for each (top 5 and 95% variation). Then out of the two best I again chose the one with the highest R2 to deploy on the new data and predict the price (model 4). Below is a screenshot of the predicted values on the new data, which I believe to be accurate as the predicted values fall in the range of the prices of the original data.

