

1. Basics of deep learning

2. Deep learning for graphs

3. Graph Convolutional Networks

4. GNNs subsume CNNs and Transformers

Content

Local network neighborhoods:

- Describe aggregation strategies
- Define computation graphs

Stacking multiple layers:

- Describe the model, parameters, training
- How to fit the model?
- Simple example for unsupervised and supervised training

Setup

Assume we have a graph G:

- V is the vertex set
- A is the adjacency matrix (assume binary)
- $X \in \mathbb{R}^{m \times |V|}$ is a matrix of node features
- v: a node in V; N(v): the set of neighbors of v.

Node features:

- Social networks: User profile, User image
- Biological networks: Gene expression profiles, gene functional information
- When there is no node feature in the graph dataset:
 - Indicator vectors (one-hot encoding of a node)
 - Vector of constant 1: [1, 1, ..., 1]

A Naïve Approach

- Join adjacency matrix and features
- Feed them into a deep neural net:

- Issues with this idea:
 - O(|V|) parameters
 - Not applicable to graphs of different sizes
 - Sensitive to node ordering

Idea: Convolutional Networks

CNN on an image:

Goal is to generalize convolutions beyond simple lattices Leverage node features/attributes (e.g., text, images)

Real-World Graphs

But our graphs look like this:

- There is no fixed notion of locality or sliding window on the graph
- Graph is permutation invariant

- Graph does not have a canonical order of the nodes!
- We can have many different order plans.

Graph does not have a canonical order of the nodes!

Graph does not have a canonical order of the nodes!

• Graph does not have a canonical order of the nodes!

What does it mean by "graph representation is same for two order plans"?

Consider we learn a function f that maps a graph G = (A, X) to a vector \mathbb{R}^d then

$$f(\boldsymbol{A}_1, \boldsymbol{X}_1) = f(\boldsymbol{A}_2, \boldsymbol{X}_2)$$

A is the adjacency matrix X is the node feature matrix

Order plan 1: A_1, X_1

Order plan 2: A_2, X_2

What does it mean by "graph representation is same for two order plans"?

- Consider we learn a function f that maps a graph G = (A, X) to a vector \mathbb{R}^d .

 A is the adjacency matrix X is the node feature matrix
- Then, if $f(A_i, X_i) = f(A_j, X_j)$ for any order plan i and j, we formally say f is a permutation invariant function.

For a graph with m nodes, there are m! different order plans.

Similarly for node representation: We learn a function f that maps nodes of G to a matrix $\mathbb{R}^{m \times d}$

Order plan 1: A_1, X_1 Order plan 2: A_2, X_2

$$f(A_1, X_1) = \begin{bmatrix} A & & & \\ B & & & \\ C & & & \\ D & & & \\ E & & & \\ F & & & \end{bmatrix}$$

Similarly for node representation: We learn a function f that maps nodes of G to a matrix $\mathbb{R}^{m \times d}$.

Similarly for node representation: We learn a function f that maps nodes of G to a matrix $\mathbb{R}^{m \times d}$.

For node representation

- Consider we learn a function f that maps a graph G = (A, X) to a matrix $\mathbb{R}^{m \times d}$
 - graph has m nodes, each row is the embedding of a node.
- Similarly, if this property holds for any pair of order plan i and j, we say f is a permutation equivariant function.

 Graph neural networks consist of multiple permutation equivariant / invariant functions.

Are other neural network architectures, e.g., MLPs, permutation invariant / equivariant?

No.

Switching the order of the input leads to different outputs!

Are other neural network architectures, e.g., MLPs, permutation invariant / equivariant?

No.

This explains why the naïve MLP approach fails for graphs!

?

hidden laver 1 hidden laver 2 hidden laver 3

Are any neural network architecture, e.g.,

Next: Design graph neural networks that are permutation invariant / equivariant by passing and aggregating information from neighbors!

