Corso di Laurea: Ingegneria Informatica

Esame di Fisica Generale del 16/06/2014	
Cognome:	Nome:
Matricola:	Anno di corso :

Esercizio 1

Un'asta sottile omogenea di massa $M=1{\rm Kg}$ e lunghezza $L=1{\rm m}$ è incernierata nel suo estremo A ed è libera di oscillare nel piano verticale. L'asta è inizialmente in equilibrio.

Ad un certo istante l'asta viene colpita nel punto C da una sfera di raggio R=0.5m e massa m=0.5Kg. Il punto C dista d=0.3m dall'estremo B dell'asta. Un attimo prima dell'urto la velocità della sfera vale $\vec{V_0}=(5;10)\frac{\rm m}{\rm s}$ e l'urto è completamente anelastico (la sfera resta attaccata all'asta).

Si calcoli:

a) Quanto dista dall'estremo A il centro di massa del sistema subito dopo l'urto:

$$D = \dots \dots$$

b) Il valore della velocità angolare ω subito dopo l'urto:

$$\omega = \dots$$

c) Qual è la massima variazione di altezza raggiunta dal centro di massa del sistema nel moto successivo all'urto:

$$\Delta H_{max} = \dots$$

Esercizio 2

Una carica negativa Q è distribuita omogeneamente nel guscio sferico di raggio interno $R_1=0.1\mathrm{m}$ e raggio esterno $R_2=0.2\mathrm{m}$. La differenza di potenziale tra i punti a distanza R_2 e quelli a distanza R_1 è $|V_2-V_1|=200\mathrm{V}$.

Si calcoli:

	_	_	_		_
Α,	Quanto	***	1	annian	α
а	<i>J</i> Quanto	vare	ıа	Carica	w

$$Q=.....$$

b) Il potenziale dei punti distanti R_1 dal centro (si assuma $V_\infty=0)$:

$$V_1 = \dots$$

c) La densità di energia elettrostatica di un punto P distante $2R_2$ dal centro della sfera:

$$u_e = \dots$$