Table des matières

I	Fon	ctions	2									
	1	Ensembles de nombres	2									
	2	Intervalle	2									
	3	Fonctions	2									
	4	monotonie	4									
	5	Opérations sur les fonctions	5									
	6	Image (direct) d'une fonction composé (composition)	5									
	7	Image réciproque	5									
	8	Application, surjectives, injectives, bijectives										
	9	Fonction réciproque										
Π	Lim	Limites 10										
	1	Voisinage et adhérence	10									
	2	Limite finie en un point de \mathbb{R}	10									
	3	Restriction à un sous ensemble	11									
	4	Propriété	11									
	5	Théorème des gendarmes										
	6	Opération sur les limites										
	7	Limites infinies, et limites en l'infinie	15									
	8	·	16									
II	I Con	ntinuité	18									
	1	Définition et premières propriétés	18									
	2	Théorème des valeurs intermédiaires	20									
	3	Continuité et extremum	22									
	4	Fonctions réciproques	23									
ΙV	Dér		25									
	1	Interprétation géométrique	26									
	2	Dérivabilité des prolongements de fonctions	27									
	3	Opération usuelles	28									
	4	Extreima et points critiques	30									
	5	Acroissements finis et conséquences	31									
\mathbf{V}	Dér	ivées d'ordre supérieur	33									
	1	Dérivées d'ordre supérieur	34									
	2	Développement limité et formule de Taylor-Young	34									

3	Formu	le de Taylor-Lagrange	37
4	Opérat	tion usuelles sur les DL	37
5	Applic	ations des DL	36
	5.1	Calcul de limites	36
	5.2	sign local d'une fonction	4(
	5.3	Position par rapport à une asymptote	41

I

Fonctions

1 Ensembles de nombres

: Réels \mathbb{R} , Rationnels $\mathbb{Q} = \frac{a}{b}$ avec a et b entiers naturels \mathbb{N} , entiers $\mathbb{Z} = \{-3, -2, ..., 1\}$, nombres complexes \mathbb{C} .

2 Intervalle

: [a, b] avec a, b réels compris dans l'intervale, dit fermé, a < b,]a, b[avec a, b non compris dans l'intervale dit ouvert \to Intervalle bornés $\mathbb{R} =]-\infty; +\infty[\mathbb{R}^* =]-\infty; 0[\cup]0; +\infty[\mathbb{R}^+ = [0; +\infty[\mathbb{R}^- =]-\infty; 0]$

3 Fonctions

Exemple: sinus: sin: \mathbb{R} (domaine de definitions, sources, ensemble de depart) $\to \mathbb{R}$ ou[-1,1] (domaine de valeurs, image, but, ensemble d'arrivee)

Définitions Soit E, F 2 ensemble de R. Une fonction f est procédé pour associer à tout élément de R un unique élément de F Le graph de F "vit" dans $\mathbb{R}^2 = \mathbb{R} * \mathbb{R}$

Définitions : Soit E et F 2 ensembles, on définit leur <u>produit cartesien</u> : comme l'ensemble dont les éléments sont les couples (x, y) avec x "vit" dans E et y dans F. $ExF = \{(x, y), x \in E, y \in F\}$

Définitions : Le graphe de f : $E \to F$ est un sous ensemble de E * F donné par

3. FONCTIONS

$$E * F = \{(x, y), x \in E, y = f(x)\}$$

$$E * F = \{x : \rightarrow f(x) = y\}$$

Exemples cosinus : $\cos : \mathbb{R} \to [-1, 1]$

tangeante tan : $\mathbb{R} \setminus \{\pi/2 + k * \pi, k \text{ appartient a Z}\} \rightarrow]-\infty, +\infty[$

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

$$\mathbb{R} \to \mathbb{R}x \to x^n, n \in \mathbb{N}$$

$$n = 0 : x \to 1$$

$$n = 1 : x \to x$$

$$n = 2 : x \to x^2$$

$$n = 3 : x \to x^3$$

n > 0 et n pair.

Remarque: les fonctions sont plus étroites. Schéma typique pour

Définitions Soit $f: E \to R$ une fonction, avec E symétrique par rapport à 0.

- f est dite paire si : $\forall x \in E, f(-x) = f(x)$
- f est impaire si : $\forall x \in E, f(x) = -f(-x)$ Remarque : si f est impaire $\rightarrow f(0) = 0$. En effet,

$$f(-0) = f(0) (I.1)$$

$$f(0) = -f(0) (I.2)$$

$$2 * f(0) = 0 (I.3)$$

Exemple : fonctions paire : cosinus, x^{2p} avec p appartient à N impaires sinus, tangeante, x^{2p+1} avec p appartient à N

4 monotonie

Soit $f: E \to \mathbb{R}$

 $\frac{1}{1}$

- f est croissante si a < b, alors $f(a) \le f(b)$ avec $a, b \in \mathbb{R}$
- f est strictement croissante si a < b, alors f(a) < f(b) avec $a, b \in \mathbb{R}$
- f est decroissant si $\forall \{a,b\} \in \mathbb{R}$ avec a < b, alors $f(a) \ge f(b)$
- f est decroissant si $\forall \{a,b\} \in \mathbb{R}$ avec a < b, alors f(a) > f(b)

Exemple $f: \mathbb{R}^* \to \mathbb{R}^* x \to \frac{1}{x}$

décroissante sur] $-\infty$, 0[et]0, $+\infty[$ mais pas sur] $-\infty$, $0[\cup]0$, $+\infty[$ par exemple, $-1 \le 1$ et $\frac{1}{-1} \le 1$

Définition Soit $f: E \to F$ et A un sous ensemble de E. On appelle <u>restriction</u> de f a A, note $f_{|A}$. La fonction $f_{|A}: A \to F$ definie par $f_A(x) = f(x) \forall x \in A$

Soit $f: E \to F$ et E', F' des sous ensembles de R, avec $E \subset E', F \subset F'$. La fonction $g: E' \to F'$ est un prolongement de f si $g_{|E|} = F(x)$ c'est à dire $\forall x \in E, g(x) = f(x)$

Exemple logarithme népérien $ln:]0, +\infty[\to \mathbb{R}$ $x \to ln(x)$ ln(a) + ln(b) = ln(a*b) avec $\forall (a,b) \in (R^{*+})^2$

5 Opérations sur les fonctions

Soit $f, g: E \to \mathbb{R}$. On peut définir :

- La fonction somme f + g par $f + g : E \to \mathbb{R}$ $x \to (f + g)(x) = f(x) + g(x)$
- La fonction produit f * g par $f * g : E \to \mathbb{R}$ $x \to (f * g)(x) = f(x) \cdot g(x)$

6 Image (direct) d'une fonction composé (composition)

Définitions : $f: E \to F$. L'image de f notée im(f) c'est l'ensemble $\{y \in F \text{ tel que il existe } x \in E \text{ tel que } f(x) = y\}$ aussi noté f(E)

Définition $f: E \to F$ et $g: E' \to F'$ Si l'image de $g \subset E$, on peut définir la fonction composé $fog: E' \to F$ $x \mapsto fog(x) = f(g(x))$

7 Image réciproque

Définition Soit $f: E \to F$, et $B \subset F$ L'image réciproque de B par f est l'ensemble $f^{-1}(B) = \{x \in E \text{ tel que } f(x) \in B\}$ $f^{-1}([-1,1]) = [a,b]$

Exemple (de composition)

$$f: E \to \mathbb{R}$$

$$x \mapsto \sqrt{x^2 - 4x + 3}$$

composé de fonction f = gou

$$u: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2 - 4x + 3$$
$$g: \mathbb{R}^2 \to \mathbb{R}$$
$$x \mapsto \sqrt{x}$$

$$\Delta = 16 - 12 = 4$$
 racine de u : 1 et 3

u(x) > 0 si et seulement si $x \in]-\infty;1] \cup [3;+\infty[E=]-\infty;1] \cup [3;+\infty[$

$$h: \mathbb{R}^* \to \mathbb{R}$$

$$x \mapsto ln(x^2)$$

Pour composer h avec

$$v: \mathbb{R} \to \mathbb{R}^+$$

$$x \mapsto x^2$$

ou doit enlever les points où v s'annule, c'est à dire $v^{-1}(\{0\}) = \{0\}$

$$g: \mathbb{R}^{+*} \to \mathbb{R}$$

$$x \mapsto 2ln(x)$$

 $\ln(x^2) = \ln(x*x) = \ln(x) + \ln(x) = 2\ln(x)$ mais $\ln(a*b) = \ln(a) + \ln(b)$ n'est valable que si a et b>0

8 Application, surjectives, injectives, bijectives

Définition $w: E \to F$ $(E, F \in \mathbb{R})$ On dit que w est surjective si w(E) = FDe manière équivalente : $(y \in F$ tel que il existe $x \in E$ avec w(x) = y) = F c'est à dire tout les éléments de F admette un antécédent. c'est à dire $\forall y \in F$, il existe un $x \in E$ tel que w(x) = y

Définition $w: E \to F$ $(E, F \subset R)$ On dit que w est injective si tout élément de F admet au plus un antécédent. c'est à dire que si x et x' des éléments de E qui sont différents, w(x) différent w(x')

Exemple $w(x) = x^2$ n'est pas injectifs car -2 et 2 ont la meme image (4). Exemple :

(10

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x^3$$

Cette fonction est injective car pour tout y de \mathbb{R} , il existe un $x \in \mathbb{R}$ tel que f(x) = y. On a aussi $\forall y \in \mathbb{R}$, cet antécédent est unique.

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x^2$$

Cette fonction n'est pas surjective (-1 par exemple n'a pas d'antécédent) et pas injective car y = 4 par exemple possède 2 antécédents.

Remarque : Si on considère

$$g: \mathbb{R} \to \mathbb{R}^+$$

$$x \mapsto x^2$$

g est surjective (il y a toujours au minimum un antécédent) mais toujours pas injective Plus généralement, si on considère $f: E \to f(E)$ est toujours surjective.

 $sin: \mathbb{R} \to [-1;1]$ est surjective mais pas injective : 0 est compris entre [-1;1] mais possède plusieurs antécédent $(k*\pi \text{ avec } k \in \mathbb{R})$

$$g: \mathbb{R} \to \mathbb{R}^+$$

$$x \mapsto e^{2x}$$

Cette fonction n'est pas surjective (antécédent de 0 n'existe pas) mais est injective.

Definition $w: E \to F(E, R \subset \mathbb{R})$ w est dîtes bijective si elle est injective <u>et</u> surjective, c'est à dire tout élément de F admet exactement un antécédent.

9 Fonction réciproque

Si $f: E \to F$ est bijective, pour tout y de F, il existe un unique x dans E tel que f(x) = y On peut donc définir $g: F \to E$ par g(y) = x (tel que f(x) = y) g est la réciproque de f, notée f^{-1}

Exemple

$$f: \mathbb{R} \to \mathbb{R}^{*+}$$

$$x \mapsto exp(x)$$

$$q: \mathbb{R}^{*+} \to \mathbb{R}$$

$$x \mapsto ln(x)$$

Remarque si $g = f^{-1}$ avec $f : E \to F$ et $g : F \to E$ alors

$$fog: F \to F$$

$$x \mapsto x$$

et $f \circ g = g \circ f$

Démonstration Soit $y \in F$, quelconque, on veut calculer fog(y) Par définition de g comme fonction réciproque de f, g(y) = x tel que f(x) = y donc f(g(y)) = f(x) = y

Proposition $f: E \to F$ une fonction impaire, supposons que $f_{|E \cap \mathbb{R}^+}$ est croissante, Alors $f_{|E \cap \mathbb{R}^-}$ est croissante

Démonstration

$$f_{|E\cap\mathbb{R}^-}:E\cap\mathbb{R}^-\to\mathbb{R}$$

$$x \mapsto f(x)$$

Soit x et x' dans $E \cap \mathbb{R}^-$ tels que $x \leq x'$.

$$f(x) = f(-x)$$
 car f impaire

$$f(x') = -f(-x)$$

Comme $x, x' \in E \cap \mathbb{R}^-, -x, -x' \in E \cap \mathbb{R}^+$ et comme $x \leq x'$ et $-x \geq -x', f(-x) \geq f(-x')$ car f est croissante sur $E \cap \mathbb{R}^+$

Conclusion, $-f(-x) \le -f(-x')$ et donc $f(x) \le f(x') \le f(x')$. On a prouvé que $f_{|E \cap \mathbb{R}^-}$ est croissante.

Remarque f^{-1} pourrait être la fonction $\frac{1}{f}$ (la fonction f est différent de 0), la fonction réciproque de f (avec f bijective).

Pour $f: E \to \mathbb{R}, B \subset \mathbb{R}$

$$f^{-1}(B) = \{x \in E, f(x) \in \mathbb{R}\}$$
 Est toujours définie

Proposition $f: E \to F$ et $g: F \to G$ si f et g sont bijective, alors gof l'est aussi et $(gof)^{-1} = g^{-1}of^{-1}$ $(gof: E \to G)$

Exemple Trouver la fonction réciproque de $f: \mathbb{R} \to]-7, +\infty[, f(x)=e^{3x+2}-7]$ On écrit $y=e^{3x+2}-7$ et on détermine x en fonction des y.

$$y+7=e^{3x+2}$$

$$ln(y+7)=3x+2 \ y>-7 \quad \text{car fonction } exp>0$$

$$x=\frac{1}{3}(ln(y+7)-2)$$
 d'où $f^{-1}(x)=\frac{1}{3}(ln(x+7)-2)$

Etablie
$$f: E \to \mathbb{R}$$
 et $A \subset E$
 $f(A) = \{y \in \mathbb{R} \text{ tel que } x \in A, f(x) = y\}$ $f(A) = im(f_{|A})$

\mathbf{II}

Limites

1 Voisinage et adhérence

Definition si $x \in E$, on dit que E est un voisinage de x si E contient un intervalle ouvert qui contient x. Ceci est équivalent à E voisinage de x si il existe $\delta > 0$ tel que $|x - \delta; x + \delta| \subset E$.

Définition Soit $E \subset \mathbb{R}$. Un réel x est <u>adherent</u> à E, si tout voisinage V de x intersecte E, c'est à dire $(V \cap E \neq \emptyset)$

Exemple

- si $x \in E$, x est adhérent à E, car pour tout voisinage V de x, $x \in V \cap E$
- E =]0; 1], 0 est adhérent à E.
- $E = \{1 + \frac{1}{n}; n \in \mathbb{N}^*\} = \{2, \frac{3}{2}, \frac{4}{3}\} \text{ 1 est adhérent à E car } \lim_{n \to +\infty} 1 + \frac{1}{n} = 1$

2 Limite finie en un point de \mathbb{R}

Definition $f: E \to \mathbb{R}; x_0$ un point adhérent de E.

On dit que f(x) tend vers l en x_0 ou que f(x) admet la limite l en x_0 si : $\forall \epsilon > 0$, il existe $\delta > 0$, $|x - x_0| < \delta \rightarrow |f(x) - l| < \epsilon$

Ceci est équivalent à dire que $\forall \epsilon > 0$, il existe $\delta > 0$ tel que $\forall x \in [x_0 - \delta, x_0 + \delta], f(x) \in [l - \epsilon, l + \epsilon]$ Pour tout voisinage V de l'il existe un voisinage de x_0 U tel que si x est dans U, alors f(x) est dans V.

Notation
$$\lim_{x \to x_0} f(x) = l$$
 ou $f(x) \xrightarrow[x \to x_0]{} l$

Exemple $f: \mathbb{R}^+ \to \mathbb{R}$ dont le graph est :

$$\lim_{x \to 0} f(x) = 1$$

Soit $\epsilon > 0$, tout $\delta > 0$ convient.

f n'admet pas de limite en 0.

3 Restriction à un sous ensemble

 $f: E \to \mathbb{R}, A \subset \mathbb{R}, x_0$ adhérent à A. On dit que f(x) tend vers $l \in \mathbb{R}$ quand x tends vers x_0 dans A.

 $\forall \epsilon > 0$, il existe $\delta > 0$, tel que $\forall x \in A, |x - x_0| < \delta, |f(x) - l| < \epsilon$

Exemple limite à gauche de f en x_0 est $\lim_{\substack{x \to x_0 \\ x < x_0}} f(x)$ c'est à dire la limite de f(x) quand x tends vers x_0 dans $]-\infty, x_0[$

Exemple limite à droite de f en x_0 est $\lim_{\substack{x \to x_0 \\ x > x_0}} f(x)$ c'est à dire la limite de f(x) quand x tends vers x_0 dans $]x_0, +\infty[$

Exemple La fonction f de l'exemple [x] admet une limite à droite en 0: $\lim_{\substack{x\to 0\\x>0}} f(x)$, pour f(x)=1 La fonction f de l'exemple [x] admet une limite à gauche en 0: $\lim_{\substack{x\to 0\\x<0}} f(x)$, pour f(x)=0

Remarque On écrit aussi $\lim_{x \to x_0} f(x)$ par $\lim_{\substack{x \to x_0 \\ x > x_0}} f(x)$ et $\lim_{x \to 0} f(x)$ par $\lim_{\substack{x \to 0 \\ x > 0}} f(x)$

4 Propriété

Unicité Si la limite existe, elle est unique.

démontration par l'absurde : $f: E \to \mathbb{R}, x_0$ adhérent à E. On suppose que la limite en x_0 existe mais qu'elle n'est pas unique. Supposons que $\lim_{x\to x_0} f(x) = l_1$ et $\lim_{x\to x_0} f(x) = l_2$ avec $l_1 \neq l_2$

Comme $\lim_{x \to x_0} f(x) = l_1$, $\forall \epsilon_1 > 0$, il existe $\delta_1, \forall x \in E|x - x_0| < \delta_1$, $\operatorname{alors}|f(x) - l_1| < \epsilon_1$ (*) De plus $\lim_{x \to x_0} f(x) = l_2$, $\forall \epsilon_2 > 0$, il existe $\delta_2, \forall x \in E|x - x_0| < \delta_2$, $\operatorname{alors}|f(x) - l_2| < \epsilon_2$ (**)

Choisissons $\epsilon < \frac{l_1 + l_2}{2}$, on remarque $]l_1 - \epsilon, l_1 + \epsilon[\cap]l_2 - \epsilon, l_2 + \epsilon[= \emptyset]$

On trouve δ_1 et δ_2 tel que (*) et (**) soient vraies.

On appelle $\delta = min\{\delta_1, \delta_2\}, [x_0 - \delta; x_0 + \delta[\subset]x_0 - \delta_1; x_0 + \delta_1[\cap]x_0 - \delta_2; x_0 + \delta_2[\cap]x_0 - \delta_2; x_0 - \delta_2[\cap]x_0 - \delta_2; x_0 - \delta_2[\cap]x_0 -$

Soit $x \in]x_0 - \delta; x_0 + \delta[$ Par $(*), f(x) \in]l_1 - \epsilon; l_1 + \epsilon[$ et par $(**), f(x) \in]l_2 - \epsilon; l_2 + \epsilon[$ donc $f(x) \in]l_1 - \epsilon, l_1 + \epsilon[\cap]l_2 - \epsilon, l_2 + \epsilon[= \emptyset \text{ Ceci est absurde } (f(x) \neq \emptyset)$

5 Théorème des gendarmes

f, g, h 3 fonctions $E \to \mathbb{R}$, $x \in \mathbb{R}$ adhérent à E.

- (i) Si f, g, h admettent pour limites respective l, m, n en x_0 et si $f(x) \le g(x) \le h(x)$ pour tout x de E, alors $l \le m \le n$
- (ii) Si $f(x) \le g(x) \le h(x)$ sur E et si f et h admettent une limite (identique) l en x_0 , alors g admet une limite en x_0 et $\lim_{x\to x_0} g(x) = l$

Remarque On remplace les inégalité de (i) par $\forall x \in E, f(x) < g(x) < h(x)$, on obtient aussi $l \le m \le n$

Exemple f(x) = |x| et g(x) = 2|x| Sur $E \subset R^+$, f < g mais $\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x)$

Exemple

$$\lim_{x\to 0} x.\sin(\frac{1}{x}) \text{ existe ?}$$

 $(\sin(\frac{1}{r})$ n'a pas de limite en 0)

Soit f, g, h $\mathbb{R}^* \to \mathbb{R}$, f(x) = -|x|, $g(x) = x \sin(\frac{1}{x})$, h(x) = |x|

On a bien $\forall x \in \mathbb{R}^*, f(x) \leq g(x) \leq h(x)$ car $\forall x \in \mathbb{R}, -1 \leq \sin(x) \leq 1$

Donc par le théorème des gendarmes, Comme $\lim_{x\to 0} f(x) = 0$ et $\lim_{x\to 0} h(x) = 0$ g admet 0 comme limite quand x tends vers 0.

Fonction de référence

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \to x^n$$

$$\lim_{x \to 0} f(x) = 0$$

$$f: \mathbb{R}^{+*} \to \mathbb{R}$$

$$x \to x^{ln(n)}$$

$$\lim_{x \to 0} f(x) = 0$$

$$f: \mathbb{R}^{+*} \to \mathbb{R}$$

$$x \to x^{\alpha} \cdot ln(x)^{\beta}$$

$$\alpha > 0, \beta > 0, \lim_{x \to 0} f(x) = 0$$

$$f: \mathbb{R}^* \to \mathbb{R}$$

$$x \to \frac{\sin x}{x}$$

$$\lim_{x \to 0} f(x) = 1$$

Methode

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \to \frac{1}{x} - \frac{1}{x(x+1)}$$

$$f(x) = \frac{(x+1)-1}{x(x+1)} = \frac{x}{x+1} = \frac{1}{x+1} \text{ donc } \lim_{x \to 0} f(x) = 1$$

$$f: \mathbb{R}^+ \to \mathbb{R}$$

$$x \to \frac{\sqrt{3+x} - \sqrt{3}}{2x}$$

$$f(x) = \frac{\sqrt{3+x} - \sqrt{3}}{2x} \cdot \frac{\sqrt{3+x} + \sqrt{3}}{\sqrt{3+x} + \sqrt{3}}$$

$$= \frac{\sqrt{3+x^2} - \sqrt{3}^2}{2x(\sqrt{3+x} + \sqrt{3})}$$

$$= \frac{1}{2(\sqrt{3+x} + \sqrt{3})}$$

Donc
$$\lim_{x \to 0} f(x) = \frac{1}{4\sqrt{3}}$$

Comportement local

Proposition Si f(x) admet une limite $l \in \mathbb{R}$ quand x tends vers x_0 , alors f est localement bornée. c'est à dire il existe un voisinnage de x, V, tel que il existe $M \in \mathbb{R}, \forall x \in V, |f(x)| < M$

Remarque Il existe un voisinnage de x_0 si et seulement si il existe un intervalle ouvert contenant x_0 si et seulement si il existe $\delta > 0, x \in]x_0 - \delta, x_0 + \delta[$

Demonstration Par hypothèse,
$$f(x) \xrightarrow[x \to x_0]{} l$$
 c'est à dire $\forall \epsilon > 0$, il existe $\delta > 0$ tel que $|x - x_0| < \delta |f(x) - l| < \epsilon$ Soit $\epsilon = 1$, On trouve δ tel que $\forall x \in]x_0 - \delta, x_0 + \delta[$ $|f(x) - l| < 1$, c'est à dire $-1 < f(x) - l < 1$ Soit $|f(x)| < l + 1$

Propriété Si f(x) admet $l \neq 0$ comme limite quand x tends vers x_0 , alors localement (autour de x_0), alors f est de signe constant

Démonstration bornée en x_0 (meme style que la précédente), $\epsilon = \frac{l}{3}$

Exemple

$$\lim_{x \to 1} f(x) = 6 = f(1) \text{ avec } f = x^2 + 2x + 3$$

$$|f(1+h) - f(1)| = |(1+h)^2 + (1+h) * 2 + 3 - 6|$$

$$= |1 + 2h + h^2 + 2 + 2h - 3|$$

$$= |h(h+4)|$$

$$= |h| * (h+4)$$

$$\leq 5|h|$$

$$\lim_{h \to 0} 5|h| = 0$$

Par le théorème des gendarmes,

$$\lim_{h \to 0} |f(1+h) - f(1)| = 0$$

Remarque x = 1 + h quand h tends vers 0 et x tends vers 1.

6 Opération sur les limites

 $f,g:E\to\mathbb{R};x_0$ adherent à E
 Supposons que $\lim_{x\to x_0}f(x)=l,\lim_{x\to 0}g(x)=m$ Alors

- $\lim_{x \to x_0} (f+g)(x)$ existe et vaut l+m
- $-\lim_{x\to x_0} (f.g)(x)$ existe et vaut l.m
- si $m \neq 0$, alors $\lim_{x \to x_0} (f/g)(x)$ existe et vaut $\frac{l}{m}$

Composition $f: E \to F, g: F \to G$ $gof: E \to G, x_0$ adhérent à E.

Supposons que

- $-\lim_{x \to \infty} f(x) = l \in \mathbb{R}$
- F est un voissinage de l.
- $-\lim_{y\to l}g(y)=m$

Alors $\lim_{x\to x_0} gof(x)$ existe et vaut m.

Exemple

$$g: y \to e^y$$

$$f: x \to \sqrt{1+x}$$

- gof est bien défini car le domaine de g
 est $\mathbb R$
- 0 est bien adhérent au domaine de f (qui est $[-1, +\infty[)$
- $-\lim_{x\to 0} f(x) = l$
- $-\lim_{y\to 1}g(x)=e$

7 Limites infinies, et limites en l'infinie

Définition $f: E \to \mathbb{R}, x_0$ adhérent à E

On dit que f(x) tend vers $+\infty$ (ou $-\infty$) quand x tend vers x_0 si $\forall A > 0$, il existe $\delta > 0$ tel que $|x - x_0| < \delta$, alors f(x) > A (ou f(x) < -A pour f(x) tend vers $-\infty$).

Exemple

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty$$

$$\lim_{\substack{x \to 0 \\ x < 0}} \frac{1}{x} = -\infty$$

Définition $f: E \to \mathbb{R}$ tel qu'il existe A > 0 tel que $]A; +\infty[\subset E$ On dit que f(x) tend vers $l \in E$ quand x tend vers $+\infty$

c'est à dire $\forall \epsilon > 0$, il existe A > 0, x > A, alors $|f(x) - l| < \epsilon$

Définition $f: E \to \mathbb{R}$ tel qu'il existe A < 0 tel que $]-\infty, A[\subset E$ On dit que f(x) tend vers $l \in E$ quand x tend vers $-\infty$ c'est à dire $\forall \epsilon > 0$, il existe A < 0, x < A, alors $|f(x) - l| < \epsilon$

Remarque $\lim_{x \to -\infty} f(x) = +\infty$ veut dire $\forall A > 0$, il existe B > 0, x < -B tel que f(x) > A

Exemple

$$f: \mathbb{R}^* \to \mathbb{R}$$

$$x \mapsto \frac{1}{x}$$

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty$$

Démonstration Soit A > 0. On cherche δ tel que si 0 < x, $0 < \delta$ alors $f(x) = \frac{1}{x} > A$ Choisir $\delta = \frac{1}{A}$ suffit, en effet $0 < x < \frac{1}{A}$ alors $\frac{1}{x} > \frac{1}{A}$.

Exemple $g(x) = 1 + e^{-x}$ Montrons que $\lim_{x \to +\infty} g(x) = 1$ et $\lim_{x \to -\infty} g(x) = +\infty$

Exemple

$$f:]-\frac{\pi}{2};\frac{\pi}{2}[\,\to\mathbb{R}$$

$$x \longrightarrow tan(x)$$

$$\lim_{\substack{x \to -\frac{\pi}{2} \\ x > -\frac{\pi}{2}}} tan(x) = -\infty$$

8 Opération sur les limites

- Limites finies $(l \in \mathbb{R})$ en l'infini sont exactement les memes opérations.
- Limites infinies $(l = \pm \infty)$ Attention aux cas inderminé :

$$+\infty-\infty, \frac{\pm\infty}{+\infty}, 0*(\pm\infty)$$

Exemple
$$\frac{+\infty}{+\infty} = ?$$

$$f: x \mapsto x$$

$$g: x \mapsto x^{2}$$

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 0$$

$$f_{2}: x \mapsto x^{3}$$

$$g_{2}x \mapsto x^{2}$$

$$\lim_{x \to +\infty} \frac{f_{2}(x)}{g_{2}(x)} = +\infty$$

$$f_{3}: x \mapsto 3x$$

$$x \mapsto x$$

$$\lim_{x \to +\infty} \frac{f_{3}(x)}{g_{3}(x)} = 3$$

Plus généralement, P,Q deux polynomes, que vaut $\lim_{x\to +\infty} \frac{P(x)}{Q(x)}$? Elle est égale au rapport des thermes du plus haut degrés. Exemple :

$$\lim_{x \to +\infty} \frac{3x^2 - 2x + 4x^5 + 2}{x^4 + 3} = \lim_{x \to +\infty} \frac{4x^5}{x^4} = +\infty$$

Exemple

$$\lim_{x \to 0} x * \sin(\frac{1}{x}) = 0$$

$$\operatorname{car} \, \forall x \neq 0, \, 1 \leq \sin(\frac{1}{x}) \leq 1$$

donc $0 \le |x * \sin(\frac{1}{x})| \le |x|$ avec —x— tend vers 0 pour x tend vers 0.

Continuité

Définition et premières propriétés 1

Définition $f: E \to \mathbb{R}$ et $x \in E$

- On dit que f est continue en x_0 (au point x_0) si $\lim_{x\to x_0} f(x)$ existe et vaut $f(x_0)$
- f est continue sur E si f est continue en tout point $x_0 \in E$

O

Exemple Fonctions continues:

- $-x \mapsto x^2 \text{ est continue sur } \mathbb{R}$ $-x \mapsto \frac{1}{x} \text{ (domaine } \mathbb{R}^*\text{) est continue sur } \mathbb{R}^*$
- $\sin \cos \cot \cot \sec x$

Fonctions discontinues : $x \mapsto [x]$ n'est pas continue en 1 par exemple. En effet, $\lim_{\substack{x \to 1 \\ x < 1}} f(x) = 0$ et $\lim_{\substack{x \to 1 \\ x > 1}} f(x) = 1$.

Les limites à gauches et à droite étant différentes donc
$$\lim_{\substack{x \to 1 \ x > 0}} p(x) = 1$$
 pour tout x différent de 0 mais $\lim_{\substack{x \to 0 \ x > 0}} g(x) = \lim_{\substack{x \to 0; x < 0}} g(x)$

Remarque f continue en x_0 si et seulement si $\forall \epsilon > 0$, il existe $\delta > 0$ tel que $|x-x_0| < \delta$ et $|f(x)-f(x_0)| < \epsilon$

Définition

- f est continue à droite en x_0 si limite de $\mathrm{f}(\mathrm{x})$ par valeur supérieur $(\lim_{\substack{x \to x_0 \\ x > x_0}} f(x))$ en x_0 et vaut $f(x_0)$
- f est continue à gauche e en x_0 si limite de f(x) par valeur inférieur $(\lim_{\substack{x \to x_0 \\ x < x_0}} f(x))$ en x_0 et vaut $f(x_0)$

Exemple

f(partie entière de l'exemple précédent) est continue à droite mais pas à gauche en 1. f est continue sur [0; 1]

— g n'est pas continue ni à gauche, ni à droite en 0.

Proposition f est continue en x_0 si et seulement si elle est continue à gauche et à droite en x_0

Propriété $f, g: E \to \mathbb{R}, x_0 \in E$

f et g continue en x_0

- f+g est continue en x_0
- f.g est continue en x_0 $\frac{f}{q}$ est continue en x_0 si $g(x_0) \neq 0$

La continuité est très local, meme si pour un $x \in E$, g(x) = 0, temps que x_0 différent de $0, \frac{f}{g}$ est continue en x_0

Composition $f: E \to F \ g: F \to G \ \text{et} \ gof: E \to G \ \text{si} \ \text{f est continue en} \ x \in E \ \text{et} \ \text{g est continue}$ en $f(x) \in F$, alors gof est continue en x_0

Exemple

- Polynôme, $\sin + \cos, \tan + exp$ sont continues sur \mathbb{R} $\sin(\ln(\frac{e^x}{1+x^2}))$ est continue sur \mathbb{R} car $exp, 1+x^2$ sont continue, de plus $1+x^2\neq 0$ pour $x \in \mathbb{R}$ donc $\frac{e^x}{1+x^2}$ est continue sur \mathbb{R} . Finallement, e^x n'est jamais null donc $im(x \mapsto$ $\frac{e^x}{1+r^2}$) = $\varphi \subset \mathbb{R}^{+*}$, d'où $ln(\varphi)$ est continue sur \mathbb{R}
- $\frac{x \mapsto \frac{\sin(x)}{x}}{\text{est continue sur } \mathbb{R}^*, \text{ de plus, } \lim_{x \to 0} \frac{\sin(x)}{x} = 1$

Définition Soit $f: E \to \mathbb{R}$, x_0 adhérent à E. Si $\lim_{x \to x_0} f(x) = l$, alors la fonction $g: E \cup \{x_0\} \to I$ \mathbb{R} par la fonction

$$g(x) = \begin{cases} f(x) & \text{si } x \in E \\ l & \text{si } x = x_0 \end{cases}$$
 Est continue sur \mathbb{R}

Exemple

$$g(x) = \begin{cases} \frac{\sin(x)}{x} & \text{si } x \neq 0 \\ l & \text{si } x = 0 \end{cases}$$
 Est continue sur \mathbb{R}

$$h(x) = \begin{cases} xln(x) & \text{si } x > 0 \\ & \text{est le prolongement par continuit\'e en } 0 \text{ de } x \mapsto xln(x) \\ 0 & \text{si } x = 0 \end{cases}$$

$$x \mapsto \frac{1}{x}$$
, $\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$ et $\lim_{x \to 0^{+}} \frac{1}{x} = +\infty$

Exercice Par quelles valeurs de c, la fonction définie par

$$f(x) = \begin{cases} \frac{\sin(2x)}{x} & \text{si } x < 0\\ x + c & \text{si } x \ge 0 \end{cases}$$

est continue? f est continue si et seulement si x=2 En effet,

$$\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} \frac{\sin(2x)}{x}$$
$$= \frac{\sin(2x)}{2x} * 2 = 2$$

 $(2^{eme} \text{ méthode} : sin(2x) = 2sin(x) * cos(x), \frac{sin(2x)}{x} = 2 * \frac{sin(x)}{x}. \cos(x) \text{ ce qui tend vers } 2$ pour x tend vers 0, et $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = c$ donc $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x)$ si et seulement si c = 2)

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) \text{ si et seulement si } c = 2)$$

Donc f est continue en 0 si c = 0. De plus, pour tout $x_0 > 0$, f(x) = x + c qui est continue sur \mathbb{R}^{+*} et pour tout $x_0 < 0$, $f(x) = \frac{\sin(2x)}{x}$ qui est continue sur \mathbb{R}^{-*} Le seule problème possible était en 0.

Comportement local

Proposition Si f est continue en x_0 , alors f est localement bornée autour de x_0 (c'est à dire il existe un voisinnage de x_0 sur lequel f est bornée, c'est à dire il existe $\delta > 0$ et M > 0 tel que $|x-x_0|<\delta$ et |f(x)|< M). Si f est continue en x_0 et $f(x)\neq 0$, alors f est de signe constant (celui de $f(x_0)$ localement autour de x_0

2 Théorème des valeurs intermédiaires

Théorème $f:[a,b]\mathbb{R}(a < b)$ et continue (sur [a,b]) Pour tout y compris entre f(a) et f(b) il existe au moins $x \in [a,b]$ tel que f(x) = y.

Exemple

$$x \mapsto x^2$$
$$[-1,3] \to \mathbb{R}$$

(Contre) exemple : la continuité est essentielle. Voici une fonction monotone et non continue pour laquel il existe des y dans [f(a), f(b)] qui n'a pas d'ancédent entre a et b.

Corollaire 1 $f:[a,b]\to\mathbb{R}$, continue. si f(a) et f(b) sont non nul et de signes différents, il existe $x\in]a,b[$ tel que f(x)=0

Corollaire Si $f(x) \neq 0$ et $f(b) \neq 0$ avec a, b de signes différents dans \mathbb{R} , alors il existe un $c \in]a, b[$ tel que f(x) = 0

Corollaire

f fonction continue
$$f: \mathbb{R} \to \mathbb{R}$$

tel que $\lim_{x\to +\infty} f(x) = +\infty$ et $\lim_{x\to -\infty} f(x) = -\infty$ alors f est surjective.

Idée de démonstration Ramener à un intervalle "bornée", de type $[a,b] \in \mathbb{R}^2$, a < b. Soit $y \in \mathbb{R}$, et $x_1, x_2 \in \mathbb{R}$ tel que $x_1 < x_2$ et $f(x_1) = y - 1$ et $f(x_2) = y + 1$. On cherche à prouver qu'il existe au moins un antécédent.

 $\lim_{x \to +\infty} f(x) = +\infty \text{ donc } f(x) \ge y + 1 \text{ pour x assez grand.}$

 $\lim_{x\to -\infty} f(x) = -\infty \text{ donc } f(x) \leq y-1 \text{ pour x assez petit. On applique le théorème des valeurs intermédiaire à } f_{|[x_1,x_2]}: [x_1,x_2] \to \mathbb{R} \text{ et } f_{|[x_1,x_2]} \text{ est bien continue.}$

Comme $f(x_1) \le y - 1 < y < y + 1 \le f(x_2)$

D'où il existe $x \in [x_1, x_2]$ tel que f(x) = y.

Corollaire $f: I \to \mathbb{R}$, continue sur $I \in \mathbb{R}$, alors f(I) est un intervall.

3 Continuité et extremum

Définition Soit $E \subset \mathbb{R}$.

- On dit que x est le minimum de E, si pour tout élément de $x' \in E$, $x' \ge x$
- On dit que x est le maximum de E, si pour tout élément de $x' \in E$, $x' \le x$
- Un extremum est un minimum ou un maximum.

Remarque Le maximum et le minimum sont unique.

Théorème Soit $f : [a, b] \to \mathbb{R}(a < b)$, continue. L'image de f admet un minimum et un maximum.

Remarque de manière équivalente : Minimum $\exists y \in Im(f), \forall y' \in Im(f), y' \geq y \text{ (ou y est le minimum)}$ $\exists x_{min} \in [a,b], \forall x' \in [a,b], f(x') \geq f(x_{min}) \text{ (avec } y = f(x_{min}) \text{ et } y' = f(x'))$

Pour le maximum : $\exists x_{max} \in [a, b], \forall x' \in [a, b], f(x') \leq f(x_{max})$ ($f(x_{max})$ le maximum de Im(f))

Dans ces exemples, y est forcément unique (dans le cas du minimum ou du maximum) mais il peut y avoir plusieurs antécédents (plusieurs x_{min} et x_{max})

Exemple $\sin: [0, 4\pi] \to [-1, 1]$ Le minimum de $\sin([0, 4\pi])$ est -1. Il est atteint en $\frac{3\pi}{2}$ et $\frac{7\pi}{2}$.

Remarque 2 hypothèses. Pour avoir un maximum ou un minimum, [a, b] doit etre un intervalle <u>ferme</u> et <u>borne</u>. Par exemple, Le minimum n'est pas atteint sur [a, b] De meme, sur [a, b[pour le maximum.

Corollaire supposons $f: \mathbb{R} \to \mathbb{R}$ continue.

Si $\lim_{x\to-\infty} f(x) = +\infty$ et $\lim_{x\to+\infty} f(x) = +\infty$, alors f admet un minimum mais pas de maximum.

Idée de démonstration

Cette fonction admet un minimum (0) mais jamais de maximum.

Corollaire $f:[a,b]\to\mathbb{R}$ continue.

Si pour tout $x \in [a, b], f(x) > 0$ alors le minimum de Im(f) > 0, c'est à dire $\exists m > 0, \forall x \in [a, b], f(x) \geq m > 0$

4 Fonctions réciproques

Théorème $f: I \to \mathbb{R}$, continue et strictement monotone.

- 1. f(I) est un intervall
- 2. f est bijective sur J
- 3. f^{-1} est continue et strictement monotone, avec le meme sens de variations que f.
- 4. Les graphs de f et f^{-1} sont symétriques par rapport à la première bisectrice $\Delta y = x$

Exemple $\sin[-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1]$ est continue et strictement croissante.

et f^{-1} vaut arcsinus. $y = \sin(x)$ $y = \sin(x)$ et f^{-1} vaut arcsinus. $y = \sin(x)$ $y = \sin(x)$

Exemple $\cos[0,\pi] \to [-1,1]$ est continue et strictement croissante.

Donc f est bijective, c'est à dire $f^{-1}:[-1,1]\to[0,\pi]$ existe et f^{-1} vaut arccosinus.

 $y = \cos(x)$ 0

 $arccos: [-1,1] \rightarrow [0,\pi]$ est continue et strictement croissante.

Exemple $\tan :]\frac{-\pi}{2}, \frac{\pi}{2}[\to \mathbb{R} \text{ est continue et strictement croissante, donc sa fonction reciproque est : <math>\arctan : \mathbb{R} \to]\frac{-\pi}{2}, \frac{\pi}{2}[$ aussi.

 $y = \tan(x)$ $-\frac{\pi}{2}$ -1 0 $\frac{\pi}{2}$

Donc f est bijective, c'est à dire $f^{-1}: \mathbb{R} \to [-\frac{\pi}{2}, \frac{\pi}{2}]$ existe et f^{-1} vaut arctangeante. $arctan: \mathbb{R} \to [-\frac{\pi}{2}, \frac{\pi}{2}] \text{ est continue et strictement croissante.}$

 $\frac{\pi}{2} \uparrow \qquad \Delta y = x$ $y = \arctan(x)$

Exemple

 $\begin{cases} n \in \mathbb{N}^* \\ \text{est continue sur } \mathbb{R}. \text{ Elle est strictement croissante sur } \mathbb{R}^+ \text{ si n est pair.} \\ x \mapsto x^n \end{cases}$

Elle est donc bijective : $\begin{cases} x \mapsto x^{\frac{1}{n}} \\ & \text{elle est strictement croissante sur } \mathbb{R} \text{ si n est impair. Reciproque} \\ \mathbb{R}^+ \to \mathbb{R}^+ \end{cases}$

 $\begin{cases} x \mapsto x^{\frac{1}{n}} \\ \mathbb{R} \to \mathbb{R} \end{cases}$

IV

Dérivabilité

Définition $f: E \to \mathbb{R}, E$ est un voisinage de x_0 . f est <u>derivable</u> en x_0 si $\frac{f(x) - f(x_0)}{x - x_0}$ admet une limite l quand x tend vers x_0 ($l \in \mathbb{R}$). $\tau(x) = \frac{f(x) - f(x_0)}{x - x_0}$ est appelé le <u>taux d'accroissement</u> de f en x_0 . La limite de l (quand elle existe) est la dérivée de f en x_0 , elle est notée $f'(x_0)$

Exemple
$$f: x \mapsto x^{2} \\ \mathbb{R} \to \mathbb{R}$$

$$f'(1) = ? = \frac{x^{2} - x_{0}^{2}}{x - x_{0}} \\ = \frac{(x - x_{0})(x + x_{0})}{x - x_{0}} \\ \lim_{x \to x_{0}} x + x_{0} = 2x_{0}$$

$$f: x \mapsto x^3$$

Exemple 2

$$\mathbb{R} \to \mathbb{R}$$

$$\tau(x) = \frac{x^3 - x_0^3}{x - x_0}$$

$$\forall x \neq x_0, \qquad = \frac{(x - x_0)(x^2 + x \cdot x_0 + x_0^2)}{x - x_0}$$

$$\lim_{x \to x_0} x^2 + x \cdot x_0 + x_0^2 = 3x_0$$

$$\forall x_0 \in \mathbb{R}, f'(x) = 3x_0^2$$

Exemple 3
$$f: x \mapsto \sqrt{x}$$
 $\mathbb{R}^+ \to \mathbb{R}$

$$\tau(x) = \frac{\sqrt{x} - \sqrt{x_0}}{x - x_0}$$

$$= \frac{(\sqrt{x} - \sqrt{x_0})(\sqrt{x} + \sqrt{x_0})}{(x - x_0)(\sqrt{x} + \sqrt{x_0})}$$

$$\forall x \neq x_0, x_0 \in \mathbb{R}^{+*}$$

$$= \frac{x - x_0}{(x - x_0)(\sqrt{x} + \sqrt{x_0})}$$

$$\lim_{x \to x_0} \tau(x) = \lim_{x \to x_0} \frac{1}{\sqrt{x} + \sqrt{x_0}}$$

$$= \frac{1}{2\sqrt{x_0}}$$

1 Interprétation géométrique

 $f'(x_0)$ est le coefficient directeur de la tangente du graphe de f en $(x_0, f(x_0))$

 $\tau(x_1) = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \text{ est le coefficient de la droite passant par } P_{x_1} \text{ et } P_{x_0} \text{ avec } P_{x_1} \text{ du graph au point } x_1, \text{ et } P_{x_0} \text{ celui de } x_0$

$$y = \tau(x_1)(x - x_0) + f(x_0) \text{ avec } x_1 \in \mathbb{R}$$

Quand x tend vers x_0 , la droite D_{x_1} "converge" vers la tangeante au graph de f au point $(x_0, f(x_0))$, d'équation :

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Définition Si
$$\lim_{\substack{x \to x_0 \\ x < x_0}} \tau(x) = l^-, l^- \in \mathbb{R}$$

On dit que f est dérivable à gauche en x_0 et on note $f_g'(x_0) = l^-$

Si
$$\lim_{\substack{x \to x_0 \\ x > x_0}} \tau(x) = l^+, l^+ \in \mathbb{R}$$

f admet une dérivée à droite en x_0 , que l'on note $f'_d(x_0) = l^+$

Théorème $f: E \to \mathbb{R}, E$ un voisinage de x_0 . f est dérivable en x_0 si et seulement si f est dérivable à droite et à gauche en x_0 et $f'_d(x_0) = f'_q(x_0)$

Remarque Cette fonction n'est pas dérivable en 1, pourtant $f'_d(1) = f'_g(1)$, f doit donc alors être continue en x_0

Démonstration f est dérivable en x_0 , alors $\lim_{x\to x_0} \tau(x) = l \in \mathbb{R}$, cela signifie

$$\exists \delta > 0, |x - x_0| < \delta \text{ donc } |\tau(x) - l| < 1$$

donc que

$$l-1 \le \tau(x) \le l+1$$

$$l - 1 \le \frac{f(x) - f(x_0)}{x - x_0} \le l + 1$$

Si $x > x_0$, on obtient :

$$(l-1)(x-x_0) \le f(x) - f(x_0) \le (l+1)(x-x_0)$$

$$\lim_{x \to x_0} (l-1)(x-x_0) \le \lim_{x \to x_0} f(x) - f(x_0) \le \lim_{x \to x_0} (l+1)(x-x_0)$$

$$0 \le \lim_{x \to x_0} f(x) - f(x_0) \le 0$$

 $\lim_{x \to x_0} f(x) - f(x_0) = 0$ par le théorème des gendarmes, et de même pour $x < x_0$

Définition $f: E \to \mathbb{R}$ f est dérivable sur l'intervalle ouvert [a, b] si f est dérivable en tout point de $x_0 \in]a, b[$ f est dérivable sur l'intervalle fermé [a, b] si f est dérivable sur l'intervalle ouvert et à droite en a et à gauche en b.

Exemple $x \to \sqrt{x}$ est dérivable sur $]0, +\infty[$, $[a, +\infty[(a > 0)$ mais pas sur $[0, +\infty[$.

2 Dérivabilité des prolongements de fonctions

Proposition $f:[a,b]\to\mathbb{R}, g[b,c]\to\mathbb{R}$ dérivable

Proposition
$$f:[a,b] \to \mathbb{R}, g[b,c] \to \mathbb{R}$$
 dérivable

On définit $\varphi:[a,c] \to \mathbb{R}$ par la formule $\varphi(x)$

$$\begin{cases} f(x) & \text{si } x \in [a,b] \\ g(x) & \text{si } x \in [b,c] \end{cases}$$

 φ est continue sur [a,c] si

$$\lim_{\substack{x \to b \\ x < b}} \varphi(x) = \lim_{\substack{x \to b \\ x > b}} \varphi(x) = \varphi(b)$$

$$f(b) = g(x) = f(b)$$

Si φ est continue, φ est dérivable sur [a,c] si $f_q'(b)=g_d'(b)$

Exercice Trouver α et β tels que $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} e^x + 2, six \le 1\\ \alpha x + \beta six > 1 \end{cases}$$

Soit dérivable sur \mathbb{R} . Comme $e^x + 2$ et $\alpha x + \beta$ sont dérivable sur \mathbb{R} , le seul problème peut survenir en 1. Pour être dérivable, f doit être continue : $e^1+2=\alpha+\beta$ et on doit avoir $f'_a(1)=e=f'_d(1)=\alpha$. $\alpha = 1$ et $\beta = 2$

3 Opération usuelles

 $f, gE \to \mathbb{R}, E$ voisinage de x_0 .

f et g sont dérivable en x_0 , alors :

- f+g est dérivable en x_0 et $(f+g)'(x_0) = f'(x) + g'(x)$
- f^*g est dérivable en x_0 et $(f*g)'(x_0) = f'(x_0)*g(x_0) + f(x_0)*g'(x_0)$
- si $g(x_0) \neq 0$ f/g est dérivable en x_0 et $(\frac{f}{g})'(x_0) = \frac{f'(x_0) * g(x_0) f(x_0) * g'(x_0)}{g(x_0)}$

Démonstration Pour la somme :

$$(f+g)(x) - (f+g)(x_0) = f(x) + g(x) - (f(x_0) + g(x_0))$$

$$= f(x) - f(x_0) + g(x) - g(x_0)$$

$$\frac{(f+g)(x) - (f+g)(x_0)}{x - x_0} = \frac{f(x) - f(x_0)}{x_0} + \frac{g(x) - g(x_0)}{x - x_0}$$

Pour le produit :

$$(f * g)(x) - (f * g)(x_0) = f(x) * g(x) - (f(x_0) * g(x_0))$$

$$= (f(x) - f(x_0))g(x) + f(x_0)g(x) - f(x_0)g(x_0)$$

$$= (f(x) - f(x_0))g(x) + f(x_0)(g(x) - g(x_0))$$

$$\frac{(f * g)(x) - (f * g)(x_0)}{x - x_0} = \frac{f(x) - f(x_0)}{x_0}g(x) + \frac{g(x) - g(x_0)}{x - x_0}f(x_0)$$

Comme précédemment, $\lim_{x\to x_0} g(x) = g(x_0)$ car g est continue en x_0

$$\frac{f}{g} = f \cdot \frac{1}{g}$$
$$(\frac{f}{g})' = f' \cdot \frac{1}{g'} + f \cdot (\frac{1}{g})'$$

 $\textbf{Composition} \quad f: E \rightarrow F, g: F \rightarrow G, gofE \rightarrow G$

On suppose f dérivable en x_0 , g dérivable en $f(x_0)$ alors $g \circ f$ est dérivable en x et $(g \circ f)'(x_0) = f'(x_0) \cdot g'(f(x_0))$

Exemple $f, g: E \to F$ dérivables en x_0 , avec $f(x_0) \neq 0, \frac{f'}{g}(x_0) = (g * \frac{1}{g})'(x_0)$ Et $\frac{1}{g}$ est la composée de g et de $\varphi: x \mapsto \frac{1}{x}$ $\varphi'(x) = -\frac{1}{x^2} \text{ d'où } (\frac{1}{g})'(x_0) = -\frac{g'(x_0)}{(g(x_0))^2}$

Soit finalement
$$(\frac{f}{g})'(x_0) = (f \cdot \frac{1}{g})'(x_0) = f'(x_0) \cdot \frac{1}{g(x_0)} - f(x_0) \frac{-g'(x_0)}{(g(x_0))^2}$$

$$= \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}$$

Exemple dérivée $e^{\sin(x)}$

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \sin(x)$$

$$g: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto e^{x}$$

$$h: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto gof(x)$$

D'où $\forall x \in \mathbb{R}h'(x) = \cos(x) \cdot e^{\sin(x)}$

Définissons f par la formule $f(x) = \frac{1}{1+x^2}, \forall x \in \mathbb{R}, 1+x^2 \neq 0$ Donc :

- f est définie sur \mathbb{R}

et
$$f'(x) = \frac{-1x}{(1+x^2)^2}$$

Dérivée de la fonction réciproque $f: E \to F$ dérivable sur E et bijective (Sa réciproque est notée f^{-1}) On note $f^{-1}of(x) = x \forall x \in E$ Donc $(f^{-1}of)'(x) = f'(x) \cdot (f^{-1})'(f(x)) = 1 \forall x \in E$ On obtient $(f^{-1})'(f(x)) = \frac{1}{f'(x)}$

Exemple $\tan \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to \mathbb{R}, x \mapsto \frac{\sin x}{\cos x}$ Pour $x \in \tan \left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \cos x \neq 0$ et donc

$$(\tan)'(x) = \frac{\cos x \cdot \cos x - \sin x(-\sin x)}{(\cos x)^2}$$
$$= \frac{1}{\cos^2 x} = 1 + \tan^2(x)$$

En effet,
$$1 + \tan^2(x) = 1 + \frac{\sin^2 x}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

De plus, tan est bijective, de réciproque $arctan\mathbb{R} \to]-\frac{\pi}{2}, \frac{\pi}{2}[$ arctan est dérivable sur \mathbb{R} et $arctan(\tan x) = x$

donc
$$\tan'(x) \cdot (arctan)'(\tan(x)) = 1$$
 c'est à dire $arctan'(\tan x) = \frac{1}{\tan'(x)} = \frac{1}{1 + \tan^2 x}$
On note $z = \tan x$, $arctan'(z) = \frac{1}{1 + z^2}$

Exercise a)
$$f:]-\frac{\pi}{2}, \frac{\pi}{2}[\rightarrow]-1, 1[$$

f est bijective et f'(x) ne s'annule pas, donc $\forall x \in]-1,1[,archsin'(x)=\frac{1}{\sqrt{1-x^2}}]$ b) de même, $arccos'(x) = -\frac{1}{\sqrt{1-x^2}} \text{ sur }]-1,1[$

Extreima et points critiques 4

Définitions $f: E \to F$

f admet un maximum local en $\alpha \in E$, s'il existe un voisinage V de α , $V \subset E$, tel que $\forall x \in E$ $V \cap E, f(x) \leq f(\alpha)$

f admet un minimum localen $\beta \in E$, s'il existe un voisinage V de β , $W \subset E$, tel que $\forall x \in E$ $W \cap E, f(x) > f(\beta)$

Un extremum local est un minimum local, soit un maximum local.

Proposition $f: E \to \mathbb{R}, x_0 \in E$ avec E voisinage de x_0 Si x_0 est un extremum local de f, alors $f'(x_0) = 0$

ON dit alors que x_0 est un point critique de f.

Remarque $f:[a,b]\to\mathbb{R}$ Les extrema sont inclus dans $\{x\in]a,b[$ tel que $f'(x)=0\}\cup\{a,b\}$

Exemple (inhabituel) $f:[0,1] \cup \{3\}$

 $V \cap E = \{3\} \ \forall x \in V \cap E, f(x) \geq f(3) \ \text{donc} \ f(3) \ \text{est un minimum local},$ de même, il est aussi un maximum local car $\forall x \in V \cap E, f(x) \leq f(3)$

Exemple $\sin[-\frac{\pi}{4}, \pi] \to [-1, 1]$ La restriction de la fonction sinus à $[-\frac{\pi}{4}, \pi]$ admet un unique point critique

Théorème de Rolle Soit $f:[a,b] \to \mathbb{R}$, continue sur [a,b], dérivble sur [a,b] si f(x)=f(b), alors il existe au moins un $c \in]a, b[$ tel que f'(c) = 0

Démonstration Notons y = f(a) = f(b) f continue sur [a, b] (fermé) donc il existe un minimum global et un maximum global (atteints respectivement) en α et β , c'est à dire $\forall x \in [a, b], f(\alpha) \leq$ $f(x) \leq f(\beta)$

1er cas $f(\alpha) = y = f(\beta)$

La fonction est donc constante sur [a, b]. N'importequel $c \in [a, b]$ convient.

2er cas soit $f(\alpha) < y$ ou $y < f(\beta)$

Supposons que $f(\alpha) < y f(\alpha)$ est un minimum global donc un minimum local.

 $\alpha \in]a, b[$, car $f(x) \neq y$ Par la proposition, $f'(\alpha) = 0$

De même, si $y < f(\beta)$, prendre $c = \beta$ convient.

Exemple

On remarque que f(0) n'est ni un minimum, ni un maximum local.

5 Acroissements finis et conséquences

Exemple

Théorème $f:[a,b]\to\mathbb{R}$ est continue sur [a,b] et dérivable sur]a,b[. Il existe un réel $c\in]a,b[$ tel que $\frac{f(b)-f(a)}{b-a}=f'(c).$

Démonstration Appliquer le théorème de Rolle à

$$g(x) = f(x) - \left(\frac{f(b) - f(a)}{b - a}\right) \cdot x$$

Corollaire f est une fonction comme ci dessus,

- si $f' \ge 0$ sur [a, b] alors f est croissante sur [a, b]
- si f' > 0 sur a, b alors f est strictement croissante sur a, b
- si $f' \leq 0$ sur a, b[alors f est decroissante sur a, b]
- si f' < 0 sur [a, b] alors f est strictement decroissante sur [a, b]
- si f' = 0 sur a, b alors f est constante a, b

Application Tableaux de variations.

Exemple

$$\sin h: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{e^x - e^{-x}}{2}$$

 $\sin h(0)=0$ $\sin h$ est dérivable sur $\mathbb R$ et $\sin h'(x)=\frac{e^x+e^-x}{2}=\cosh(x)$ $\sinh'(x)>0$ pour tout x, donc le sinus hyperbolique est croissante. De même

$$\cos h : \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{e^x + e^{-x}}{2}$$

$$\cos' h(x) = \frac{e^x + e^{-x'}}{2} = \frac{e^x - e^{-x}}{2} = \sin h$$

$$\cos(0) = 1$$

$$x \mid -\infty \qquad 0 \qquad +\infty$$

x	$-\infty$	0		$+\infty$
sin'h		+		
sinh	$-\infty$	0-		$\rightarrow +\infty$
x	$-\infty$	0		$+\infty$
cos'h		- 0	+	
cosh	$+\infty$	1		$+\infty$

$$tan h: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$\frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^x (1 - e^{-2x})}{e^x (1 + e^{-2x})}$$

$$= \frac{1 - e^{-2x}}{1 + e^{-2x}} \xrightarrow[x \to +\infty]{} 1$$

De la même façon, $tanh(x) \xrightarrow[x \to -\infty]{} = -1$

Remarque $\sin h : \mathbb{R} \to \mathbb{R}$ est bijective $\sin h^{-1} = arg \sin h$ $\cos h : \mathbb{R}^+ \to [1, +\infty[$ est bijective $\cos h^{-1} = arg \cos h$

\mathbf{V}

Dérivées d'ordre supérieur

But Approcher localement une fonction f par des polynômes.

$$k \in \mathbb{N}^+, k! = 1 * 2 * 3 * \dots * k$$

Définition

$$0! = 1$$

Exemple

polynome de degré 0 $f(x) = f(x_0) + (f(x) - f(x_0))$

$$= \epsilon(x) \xrightarrow[x \to x_0]{} 0$$
 Si f continue

— Polynôme de degré 1 si f est dérivable :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + (f(x) - f(x_0) - f'(x_0)(x - x_0))$$

$$(f(x) - f(x_0) - f'(x_0)(x - x_0)) = (x - x_0)(\frac{f(x) - f(x_0)}{x - x_0} - f'(x_0))$$

$$= \epsilon(x) \xrightarrow[x \to x_0]{} 0$$
 car f est dérivable

On voudrait

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \frac{1}{3!}f^{(3)}(x_0)(x - x_0)^3 + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n + (x - x_0)^n \epsilon(x)$$

$$\text{avec } \epsilon(x) \xrightarrow[x \to x_0]{} 0$$

Objectifs du cours :

- 1. Comprendre $f''(x_0), f'''(x_0)$
- 2. Comprendre $\epsilon(x)$

Exemple En 0 ordre 2 : $e^x = 1 + x + \frac{1}{2}x^2 + x^2\epsilon(x)$

Application:

— Calcul de limites :
$$\frac{e^x - 1 - x}{x^2} \xrightarrow[x \to 0]{} \frac{1}{2}$$

— Position d'un graph par rapport à sa tangeante. On

considère f(x) – tangeante :

$$e^{x} - (x - 1) = \frac{1}{2}x^{2} + x^{2}\epsilon(x)$$

= $x^{2}(\frac{1}{2} + \epsilon(x))$

 $x^2 > 0$ et $\frac{1}{2} + \epsilon(x) > 0$ donc près de 0, la fonction est au dessus de sa tangeante.

1 Dérivées d'ordre supérieur

Définition $f: I \to \mathbb{R}$ I est un intervalle ouvert. On dit que f est C^0 si elle est :

- C^0 si elle est continue sur I.
- C^1 si elle est dérivable sur I et que f' est continue.
- C^2 si f est dérivable deux fois et f" est continue sur I
- C^k si f est dérivable k fois et $f^{(k)}$ est continue sur I
- $-C^{\infty}$ si f est $C^k \forall k \in \mathbb{N}$

Exemple $f(x) = x^2 \sin(\frac{1}{x}) \to C^0$ car f(x) est dérivable, donc continue.

$$f'(x) = 2x \sin(\frac{1}{x}) + x^2(\frac{-1}{x^2})\cos(\frac{1}{x})$$
$$= 2x \sin(\frac{1}{x}) - \cos 1x$$

Donc f(x) n'est pas C^1 car f'(x) n'est pas continue $(\cos(\frac{1}{x})$ n'est pas continue en 0).

2 Développement limité et formule de Taylor-Young

Définition Soit $f: I \to \mathbb{R}$, I est un intervalle ouvert. $x_0 \in I$. f admet un développement limité en x_0 à l'ordre n s'il existe :

- un polynome de degrés n : $P(x) = a_0 + a_1.x + ... + a_n.x^n$ Un fonction $\epsilon:]x_0 \delta, x_0 + \delta[\to \mathbb{R} \text{ avec } \epsilon \xrightarrow[x \to x_0]{} 0 \text{ tel que}$

$$f(x) = P(x - x_0) + (x - x_0) \cdot \epsilon(x) \text{ pour } x \in]x_0 - \delta, x_0 + \delta[$$
$$= a_0 + a_1(x - x_0) + \dots + a_n(x - x_n)^n \epsilon(x)$$

Dans ce cas P est la partie principale du développement limité.

2. DÉVELOPPEMENT LIMITÉ ET FORMULE DE TAYDÓRIVÓENC'ORDRE SUPÉRIEUR

- degré de P = n
- $-\epsilon$ définie près de x_0 et tel que $\epsilon(x) \xrightarrow[x \to x_0]{} 0$

Théorème Si un tel développement limité existe, alors il est unique.

Exemple
$$p(x) = x^4 + 3x^2 - x17$$
. $DL_3(0) = 17 - x + 3x^2 + x^3 \cdot \epsilon(x)$

Formule de Taylor-Young

Théorème $f: I \to R, I$ intervalle ouvert et $x_0 \in I$

Si f est C^n sur I, alors f admet un développement limité à l'ordre n en x_0

De plus,
$$\forall x \in]x_0 - \delta, x_0 + \delta[, f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2} * (x - x_0)^2 + \dots + \frac{f^n(x_0)}{n!}(x - x_0)^n + (x - x_0)^n \epsilon(x)$$

avec $\epsilon(x) \xrightarrow[x \to x_0]{} 0$ pour $\delta > 0,]x_0 - \delta, x_0 + \delta[\subset I$

Exemple

1.
$$f(x) = exp(x)$$
 en $x_0 = 0$
 $e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n!} + x^n \epsilon(x) \text{ avec } \epsilon(x) \xrightarrow[x \to 0]{} 0$

2.
$$Q(x) = x^3 + 3x^2 + 1$$

 $DL_6(0): Q(x) = 1 + 3x^2 + x^3 + x^6 \epsilon(x) \ (\epsilon(x) = 0 \xrightarrow[x \to 0]{} 0)$
 $DL_2(0): Q(x) = 1 + 3x^2 + x^2 \epsilon(x) \text{ avec } (\epsilon(x) \xrightarrow[x \to 0]{} 0)$

$$DL_2(1): Q(x) = Q(1) + Q'(1) + \frac{Q''(1)}{2} + (x-1)^2 \epsilon(x)$$

Or
$$Q'(x) = 3x^2 + 6x$$

$$donc Q'(1) = 9$$

$$et Q''(x) = 6x + 6$$

$$donc Q''(x) = 12$$

$$DL_2(1): Q(x) = 5 + 9(x - 1) + \frac{12}{2}(x - 1)^2 + (x - 1)^2 \epsilon(x)$$
$$= 5 + 9(x - 1) + 6(x - 1)^2 + (x - 1)^2 \epsilon(x)$$

3.
$$f(x) = \ln(1+x)$$

 $DL_3(0): f(x) = 0 + 1 \cdot x + -\frac{1}{2}x^2 + \frac{2}{3!}x^3 + x^3\epsilon(x)$

$$f'(x) = \frac{1}{1+x} \qquad \text{d'ou } f'(0) = 1$$

$$\operatorname{car} \ f''(x) = -\frac{1}{(1+x)^2} \ \text{d'ou } f''(0) = -1$$

$$f'''(x) = \frac{2}{(1+x)^3} \qquad \text{d'ou } f'''(0) = 2$$

Comme 3! = 1 * 2 * 3 on obtient $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + x^3 \epsilon(x)$ avec $\epsilon(x) \xrightarrow[x \to 0]{} 0$

$$f(x) = \frac{1}{1-x}DL_n(0)?$$

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + x^n \epsilon(x)$$

En effet, la somme des N premiers termes de la suite géométrique de premier terme q et de raison x est : $q \frac{1-x^N}{1-x}$

$$\begin{aligned} & \text{pour } q = 1 : \\ & \frac{1-x^N}{1-x} = 1 + x + x^2 + \ldots + x^{N-1} \end{aligned}$$

$$\frac{1}{1-x} - \underbrace{(1+x+x^2 + \dots + x^n)}_{N-1=n} = \frac{1}{1+x} - \frac{1-x^{n+1}}{1+x}$$
Donc
$$= \frac{1 - (1-x^{n+1})}{1-x}$$

$$= \frac{x^{n+1}}{1-x} = x^n \underbrace{(\frac{x}{1-x})}_{\epsilon(x) \xrightarrow{x \to 0}} 0$$

Conclusion :
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + x^n \epsilon(x)$$

Remarque :
$$(\frac{1}{1-x})^{(17)}(0) = 17!$$

4.
$$f(x) = \sin(x)DL_4(0)$$
?

$$g(0) = \sin(0) = 0$$

$$g'(0) = \cos(0) = 1$$

$$g''(0) = -\sin(0) = 0$$

$$g'''(0) = -\cos(0) = -1$$

$$g^{(4)}(0) = \sin(0) = 0$$

D'où
$$\sin(x) = x - \frac{x^3}{3!} + x^4 \epsilon(x)$$

Remarque comme sin est impaire, seuls les coefficients impairs apparaissent dans la partie principal.

3 Formule de Taylor-Lagrange

Qui aide à spécifier ϵ

Théorème $f: E \to \mathbb{R}$, I un intervalle et $x_0 \in I$ et fC^n sur I.

Pour tout x de I, il existe x entre x et x_0 tel que $f(x) = f(x_0) + f'(x_0)(x - x_0) + ... + \frac{f^{(n-1)}(c)}{(n-1)!}(x - x_0)^{n-1} + \frac{f^{(n)}(c)}{n!}(x - x_0)^n$

Remarque c dépend de x! $\frac{f^{(n)}(c(x))}{n!}(x-x_0)^n$

Remarque pour n = 1 on retrouve le théorème des accroissements finis.

— On retrouve Taylor-Young en posant

$$\epsilon(x) = \frac{1}{n!} (f^{(n)}(c) - f^{(n)}(x_0))$$

Car f est C^n , le $f^{(n)}$ est continue.

4 Opération usuelles sur les DL

Théorème $f, g: I \to \mathbb{R}$, I intervalle ouvert, $x_0 \in I$. Si f et g admettent un DL à l'ordre n en x_0 alors :

— f + g aussi dont la partie principale est la somme des parties principales des DL respective de f et g.

i.e si $f(x) = P(x) + x^n \epsilon_1(x)$ avec P polynôme de degré $\leq n$ et $\epsilon_1 \xrightarrow[x \to x_0]{} 0$ et si $g(x) = Q(x) + x^n \epsilon_2(x)$ avec Q polynôme de degrés $\leq n$

Alors
$$(f+g)(x) = (P+Q)(x) + x^n \epsilon_3(x)$$

— $f \cdot g$ aussi et sa partie principale est le produit des parties principales <u>TRONQUE</u> à l'ordre n.

Exemple $DL_2(0)$ de $e^x \cdot \sin(x)$

$$DL_2(0) \text{ de } e^x : 1 + x + \frac{x^2}{2} + x^2 \epsilon(x)$$

$$DL_2(0)$$
 de $\sin(x) = x + x^2 \epsilon(x)$

Donc $DL_2(0)$ de $e^x \cdot \sin(x)$ est : $(1 + x + \frac{x}{2}) \cdot (x) + x^2 \epsilon(x)$ À TRONQUER, c'est à dire :

Théorème $f: E \to \mathbb{R}, g: J \to \mathbb{R} \text{ avec } f(I) \subset J, x_0 \in I$

Si f admet un $DL_n(x_0)$ et que g admet un $DL_N(f(x_0))$ alors gof admet un $DL_n(x_0)$ et sa partie principale est la composé des parties principales <u>tronque</u> à l'ordre n.

i.e
$$f(x) = P(x) + x^n \epsilon(x)$$
 et $g(x) = Q(x) + x^n \epsilon(x)$ alors : $gof(x) = R(x) + x^n \epsilon(x)$, $R(x) = QoP(x)$ TRONQUE

Exercice $DL_3(0)$ de $e^{\sin x}$?

$$e^{\sin x} = 1 + x + \frac{x^2}{2} + x^3 \epsilon(x)$$

En effet, $\sin x = x - \frac{x^3}{6} + x^3 \epsilon(x)$. De plus, $\sin(0) = 0$ Donc on veut le DL de exp en 0 :

$$e^y = 1 + y + \frac{y^2}{2} + \frac{y^3}{6} + y^3 \epsilon(y)$$

Par composition,

$$e^{\sin x} = 1 + (x - \frac{x^3}{6}) + \frac{1}{2}(x - \frac{x^3}{6})^2 + \frac{1}{6}(x - \frac{x^3}{6})^3 + x^3\epsilon(x)$$

On obtient:

$$e^{\sin x} = 1 + x - \frac{x^3}{6} + \underbrace{\frac{1}{2}(x^2)}_{\text{On a tronque}} + \underbrace{\frac{1}{6}x^3}_{\text{Ici aussi}!} + x^3 \epsilon(x)$$
$$= 1 + x + \frac{x^2}{2} + 0x^3 + x^3 \epsilon(x)$$

5 Applications des DL

5.1 Calcul de limites

$$f(x) = \frac{e^x - 1}{(1+x)^2 - 1}$$
 lim en 0?

$$= \frac{(1+x+x\epsilon(x)) - 1}{x(x+2)}$$

$$= \frac{x(1+\epsilon(x))}{x(x+2)}$$
 avec $\epsilon(x) \xrightarrow[x\to 0]{} 0$

$$= \frac{1+\epsilon(x)}{x+2} \xrightarrow[x\to 0]{} \frac{1}{2}$$
 par opérations usuelles sur les limites

$$\begin{aligned} \textbf{Exemple} \quad g(x) &= \frac{1 - \cos x}{x^2} = \frac{1 - \left(1 - \frac{x^2}{2} + x^2 \epsilon(x)\right)}{x^2} = \underbrace{\frac{1}{2} - \epsilon(x)}_{x \to 0^{\frac{1}{2}}} \\ h(x) &= \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x} \qquad lim \text{ en } 0 \\ \sqrt{1 + y} &= 1 + \frac{1}{2}y - \frac{1}{8}y^2 + y^2 \epsilon(y) \\ \sqrt{1 + \cos x} &= \sqrt{2 + (\cos x - 1)} = \sqrt{2}(1 + \frac{1}{2}(\cos x - 1)) \\ &= \sqrt{2}(\sqrt{1 + \frac{\cos x - 1}{2}}) \\ \frac{\cos x - 1}{2} &= \frac{1}{2}(-\frac{x^2}{2} + x^2 \epsilon(x)) = -\frac{x^2}{4} + x^2 \epsilon(x) \\ D'ou \sqrt{1 + \frac{1}{2}(\cos x - 1)} &= 1 + \frac{1}{2} \frac{-x^2}{4} + x^2 \epsilon(x) \\ &= 1 - \frac{x^2}{8} + x^2 \epsilon(x) \\ &= 1 - \frac{x^2}{8} + x^2 \epsilon(x) \\ Donc \ h(x) &= \frac{\sqrt{2} - \sqrt{2}(1 - \frac{x^2}{8} + x^2 \epsilon(x))}{x^2 + x^2 \epsilon} \\ &= \frac{x^2(\frac{\sqrt{2}}{8} + \epsilon(x))}{x^2(1 + \epsilon x)} = \frac{\sqrt{2}}{8} + \epsilon(x)}{1 + \epsilon(x)} \xrightarrow[x \to 0]{} \frac{\sqrt{2}}{8} \end{aligned}$$

Remarque $DL_N(x_0)$ de gof.

Il faut que:

- gof(x) existe pour $x \in]x_0 \delta; x + \delta[$.
- f admette un $DL_n(x_0)$

— g admette un DL_n en $f(x_0)$

5.2 sign local d'une fonction

Proposition $f: I \to \mathbb{R}$, I intervalle de \mathbb{R} , si $f(x) = c(x - x_0)^n + (x - x_0)^2 \epsilon(x)$ avec $C \neq 0, \epsilon(x) \xrightarrow[x \to x_0]{} 0$

Exemple
$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + x^4 \epsilon(x) \text{ avec } \epsilon(x) \xrightarrow[x \to 0]{} 0$$

De plus,
$$\cos x - (1 - \frac{x^2}{2}) = \underbrace{\frac{1}{24}}_{c>0} x^{\frac{n \text{ pair}}{4}} + x^4 \epsilon(x)$$

$$y = \cos x + 1$$

$$y = -\frac{x^2}{2} + 1$$

Exemple $x \mapsto \ln(1+x)$

Sa tangeante en 0 est la droite $\Delta: y = x$. De plus, $\ln(1+x) = x + -\frac{x^2}{2} + x^2 \epsilon(x)$

Donc
$$\ln(1 + x - x) = -\frac{1}{2}x^2 + x^2\epsilon(x)$$

5.3 Position par rapport à une asymptote

Exemple
$$f(x) = \frac{x^3}{1+x+2x^2}$$

$$f(x) = \frac{x^3}{2x^2} (\frac{1}{\frac{1}{2x^2} + \frac{1}{2x} + 1})$$

$$= \frac{x}{2} (\frac{1}{1+(\frac{1}{2x} + \frac{1}{2x^2})})$$

$$u(y) = \frac{1}{2}y + \frac{1}{2}y^2 \qquad \text{avec } y = \frac{1}{2}$$

$$\frac{1}{1+u} = 1 - u + u^2 + u^3 \epsilon(u)$$

$$= 1 - (\frac{1}{2x} + \frac{1}{2x^2}) + (\frac{1}{2x} + \frac{1}{2x^2})^2 + \frac{1}{x^2} \epsilon(\frac{1}{x})$$

$$= 1 - \frac{1}{2x} - \frac{1}{2x^2} + \frac{1}{4x^2} + \frac{1}{x^2} \epsilon(\frac{1}{x})$$

$$= 1 - \frac{1}{2x} - \frac{1}{4x^2} + \frac{1}{x^2} \epsilon(\frac{1}{x})$$

$$f(x) = \frac{x}{2} (1 - \frac{1}{2x} - \frac{1}{4x^2} + \frac{1}{x^2} \epsilon(x))$$

$$= \frac{x}{2} - \frac{1}{4} - \frac{1}{8x} + \frac{1}{x} \epsilon(x)$$