

2 Logische Verknüpfungen

Betrachtet man die binären Zahlen 0 und 1 als Zustände, so kann man ihnen entsprechende Wahrheitswerte 0=false und 1=true zuweisen. Verknüpft man zwei Zustände, so ist der Ausgang (Output) abhängig von den eingehenden (Input) Zuständen. Dabei können auch wieder nur die entsprechenden Zustände 0=false und 1=true angenommen werden.

Es stellt sich nun die Frage, welche Verknüpfungen gibt es?

Hier ist zu unterscheiden zwischen **Grundver-** knüpfungen und **Erweiterte Verknüpfungen**¹.

Nachfolgend betrachten wir zunächst die <u>drei</u> Grundverknüpfungen. Dazu zählt zum einen die Funktionalität, das gebräuchlichste Schaltsymbol sowie die dazugehörige Wahrheitstabelle.

2.1 Grundverknüpfungen

Wir bezeichnen diese Verknüpfungen als *Grundverknüpfungen*, da sie selbst nur unter Verwendung der anderen Grundverknüpfung dargestellt werden kann und sie zudem in Kombination alle in ?? dargestellten Verknüpfungen erzeugen können.

NOT

Die **NOT**-Verknüpfung wird auch als *Negation* bezeichnet. Sie negiert also ihren Eingangszustand.

Geht ein 0 rein, so kommt eine 1 raus.

AND

Für die **AND**-Verknüpfung kann auch der Begriff *Konjunktion* verwendet werden.

Sie verknüpft die <u>zwei</u> Eingangszustände als logisches UND. Dabei ist der Output nur dann 1, wenn beide Eingangszustände 1 sind.

		x_1	x_2	$f(x_1;x_2)$
-	1.	0	0	0
8	Ŀ	0	1	0
	:	1	0	0
Vanua vana	0.81	1	1	1

OR.

Die **OR**-Verknüpfung wird auch als *Disjunktion* bezeichnet.

Sie verknüpft die <u>zwei</u> Eingangszustände als logisches ODER. Dabei ist der Output in dem Moment $\mathbf{1}$, wenn <u>mindestens einer</u> der beiden Eingangszustände $\mathbf{1}$ ist.

			x_1	x_2	$f(x_1; x_2)$
Н	- 527	1	0	0	0
:	≥1		0	1	1
			1	0	1
		100	1	1	1

2.2 Erweiterte Verknüpfungen

NAND

Die Verknüpfung entspricht dem AND. **Vorsicht:**Das Ausgangssignal wird negiert. Es ist also **immer 1**, <u>außer wenn beide</u> Eingangszustände **1**sind.

NOR

Die Verknüpfung entspricht dem OR. <u>Aber</u> auch hier wird das Ausgangssignal negiert.

¹Die Bezeichnung ist selbst gewählt.

Entsprechend ist der Output $nur\ 1$, $\underline{wenn\ beide}$ Eingangszustände 0 sind.

			x_1	x_2	$f(x_1;x_2)$
Ŧ		7.	0	0	1
	≥1	9	0	1	0
1	100000		1	0	0
1000	2000		1	1	0

XOR.

Die logische Verknüpfung OR wird hier verschärft. Das Ausgangssignal ist **nur genau dann** 1, <u>wenn eine</u> der beiden Eingangssignale 1 ist.

Diese Verknüpfung entspricht dem invertierten XOR. Das bedeutet, das Ausgangssignal ist **genau dann 1**, wenn <u>beide</u> Eingangszustände $\mathbf{0}$ oder beide $\mathbf{1}$ sind.

	x_1	x_2	$f(x_1;x_2)$
	0	0	1
=	0	1	0
<u>-</u>	1	0	0
	1	1	1

Ihre Aufgabe:

Überlegen Sie für die einzelnen Erweiterten Verknüpfungen, wie sie diese <u>nur</u> unter Verwendung der **Grundverknüpfungen** realisieren können.