Probability and Statistics

4 - Continuous Random Variables

Stefan Heiss

Technische Hochschule Ostwestfalen-Lippe Dep. of Electrical Engineering and Computer Science

December 19, 2023

Gamma Function

For $\alpha>0$ the gamma function is defined by: $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1}e^{-x}\,dx$ heorem (4.56)

(i)
$$\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$$
 for all $\alpha > 1$

(ii)
$$\Gamma(n) = (n-1)!$$
 for all $n \in \mathbb{N}$

(iii)
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

(iv)
$$\int_0^\infty x^{\alpha-1} e^{-\beta x} dx = \frac{\Gamma(\alpha)}{\beta^{\alpha}}$$
 for all $\alpha, \underline{\beta > 0}$ $\beta = 1$:

Proof of Theorem (4.56)

$$\Gamma(\omega) = \int_{0}^{\infty} x^{d-1} \cdot e^{-x} dx = x^{d-1} \cdot (-e^{-x}) \left[-\int_{0}^{\infty} (x-1) x^{d-2} \cdot (-e^{-x}) dx \right]$$

$$= \int_{0}^{\infty} x^{d-1} \cdot e^{-x} dx = (x-1) \cdot \Gamma(\alpha - 1)$$

(11) pf by induction well:
$$\Gamma(A) = \int_{0}^{\infty} e^{x} dx = -e^{-x} \Big|_{0}^{\infty} = -(-A) = 1 = 0$$
!

(11) pf by induction well: $\Gamma(A) = \int_{0}^{\infty} e^{x} dx = -e^{-x} \Big|_{0}^{\infty} = -(-A) = 1 = 0$!

(11) pf by induction well: $\Gamma(A) = \int_{0}^{\infty} e^{x} dx = -e^{-x} \Big|_{0}^{\infty} = -(-A) = 1 = 0$!

(11) pf by induction well: $\Gamma(A) = \int_{0}^{\infty} e^{x} dx = -e^{-x} \Big|_{0}^{\infty} = -(-A) = 1 = 0$!

(12) pf by induction well: $\Gamma(A) = \int_{0}^{\infty} e^{x} dx = -e^{-x} \Big|_{0}^{\infty} = -(-A) = 1 = 0$!

(13) pf by induction well: $\Gamma(A) = \int_{0}^{\infty} e^{x} dx = -e^{-x} \Big|_{0}^{\infty} = -(-A) = 1 = 0$!

(14) pf by induction well: $\Gamma(A) = \int_{0}^{\infty} e^{x} dx = -e^{-x} \Big|_{0}^{\infty} = -(-A) = 1 = 0$!

(15) pf by induction well: $\Gamma(A) = \int_{0}^{\infty} e^{x} dx = -e^{-x} \Big|_{0}^{\infty} = -(-A) = 1 = 0$!

(16) pf by induction well: $\Gamma(A) = \int_{0}^{\infty} e^{x} dx = -e^{-x} \Big|_{0}^{\infty} = -(-A) = 1 = 0$!

(17) pf by induction well: $\Gamma(A) = \int_{0}^{\infty} e^{x} dx = -e^{-x} \Big|_{0}^{\infty} = -(-A) = 1 = 0$!

(18) pf by induction well: $\Gamma(A) = \int_{0}^{\infty} e^{x} dx = -e^{-x} \Big|_{0}^{\infty} = -(-A) = 1 = 0$!

$$\lim_{k \to 1} \frac{1}{k} = \lim_{k \to 1} \frac{1}{k} \cdot e^{-k} dx = \lim_{k \to 1$$

$$\frac{du}{dx} = \frac{1}{2}x^{-4/2}$$

(iv)
$$\int_{\alpha}^{\alpha} x^{\alpha-1} e^{-\beta x} dx = \int_{\alpha}^{\alpha} \left(\frac{\alpha}{\beta}\right)^{\alpha-1} e^{-\alpha x} \frac{1}{\beta} \cdot \left(\beta dx\right) = \frac{1}{\beta^{\alpha}} \cdot \int_{\alpha}^{\alpha} u^{\alpha-1} e^{-\alpha x} du = \frac{1}{\beta^{\alpha}} \cdot \left(\frac{\alpha}{\beta}\right)^{\alpha-1} e^{-\alpha x} du = \frac{1}{\beta^{\alpha}} \cdot \left(\frac$$

Gamma Distributions

Definition (4.57)

A random variable has a gamma distribution $\Gamma(\alpha, \beta)$ for some parameters $\alpha, \beta \in \mathbb{R}^+$ if its pdf is defined by:

$$f_X(x) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} & \text{for } x \geq 0 \\ 0 & \text{for } x < 0 \end{cases}$$

Gamma Distributions

Theorem (4.58)

If X has a gamma distribution with $X \sim \Gamma(\alpha, \beta)$, then:

(i)
$$E(X) = \frac{\alpha}{\beta}$$

(ii)
$$Var(X) = \frac{\alpha}{\beta^2}$$

(iii)
$$\phi_X(t) = \left(\frac{\beta}{\beta - t}\right)^{\alpha}$$
 for $t < \beta$

(iv)
$$b \cdot X \sim \Gamma(\alpha, \beta/b)$$
 for $b \in \mathbb{R}^+$

Proof of Theorem (4.58)

Hu: Tol 10

Gamma Distributions

Remark (4.59)

MATLAB provides implementations of pdf's, cdf's and the inverses of cdf's of gamma distributions under the names gampdf(), gamcdf() and gaminv(), respectively.

Sum of independent random variables $X_i \sim \Gamma(\alpha_i, \beta)$

Theorem (4.60)

If X_1, \ldots, X_n are independent random variables with $X_i \sim \Gamma(\alpha_i, \beta)$, then

$$X = X_1 + \cdots + X_n$$

has a gamma distribution with $X \sim \Gamma\left(\sum_{i=1}^{n} \alpha_{i}, \beta\right)$.

D.

Erlang distributions

Definition (4.61)

A random variable has an *Erlang distribution* for some parameters $n \in \mathbb{N}$, $\beta \in \mathbb{R}^+$ if its pdf is defined by:

$$f_X(x) = \begin{cases} \frac{\beta^n}{(n-1)!} x^{n-1} e^{-\beta x} & \text{for } x \ge 0 \\ 0 & \text{for } x < 0 \end{cases}$$

l.e.:

$$Erlang(n, \beta) := \Gamma(n, \beta)$$

Remark (4.62)
$$\lambda = \lambda e^{-\lambda x}$$
 $\times \exp(\lambda) = \operatorname{Erlang}(1, \lambda) = \Gamma(1, \lambda)$

Erlang distributions

11 L(~' \})

If X has an Erlang distribution with $X \sim \text{Erlang}(n, \beta)$, then:

(4. ra)

(i)
$$\phi_X(t) = \left(\frac{\beta}{\beta - t}\right)^n$$
 for $t < \beta$

(ii)
$$E(X) = \frac{n}{\beta}$$

(iii)
$$Var(X) = \frac{n}{\beta^2}$$

(iv)
$$2\beta \cdot X \sim Erlang(n, 1/2) = \chi_{2n}^2 = (4 + 4)$$

Sum of independent random variables $X_i \sim \exp(\lambda)$

Theorem (4.64)

If X_1, \ldots, X_n are independent random variables with $X_i \sim \exp(\lambda)$, then

$$X = X_1 + \cdots + X_n$$

has an Erlang distribution with $X \sim \text{Erlang}(n, \lambda)$.

$$X_i \sim \Gamma(\Lambda, \lambda) \longrightarrow X_i \leftarrow -- + X_i \sim \Gamma(n, \lambda)$$

PDF's of Erlang distributions

Lemma (4.65)

Let f_X be the pdf of a random variable $X \sim Erlang(n, \lambda)$. Then

- (i) f_X has a maximum at: $m_n = \frac{n-1}{\lambda}$
- (ii) If n = 1, then f_X is concave upward.
- (iii) If n=2, then f_X is concave downward and then upward, with inflection point at: $\frac{2}{\lambda}$
- (iv) If n>2, then f_X is concave upward, then downward, then upward again with inflection points at: $m_n\pm\frac{\sqrt{n-1}}{\lambda}$

PDF's of $Erlang(n, 1) = \Gamma(n, 1)$ distributions for n = 1, 2, ..., 10

Pdf's and cdf's of $\chi_n^2 = \Gamma\left(\frac{n}{2}, \frac{1}{2}\right)$ distributions for $n = 1, 2, \dots, 10$

CDF's of Erlang distributions

Theorem (4.66)

If X has an Erlang distribution with $X \sim \text{Erlang}(n, \lambda)$, then its cdf is given by:

$$F_X(x) = \begin{cases} 1 - \sum_{k=0}^{n-1} \frac{(\lambda x)^k}{k!} e^{-\lambda x} & \text{for } x \ge 0 \\ 0 & \text{for } x < 0 \end{cases}$$

$$v = 1 : F_{\chi}(x) = \int_{0}^{x} \lambda \cdot e^{-\lambda x} dx = -e^{-\lambda x} \Big(\int_{0}^{x} = 1 - e^{-\lambda x} = 1 - \sum_{k=0}^{\infty} \frac{(\lambda x)^{0}}{2!} e^{-\lambda x} \Big)$$

CDF's of Erlang distributions