I will be performing multiple regression analysis on a dataset using Python. For this, I will choose a finance dataset for regression analysis. One commonly used dataset in finance is the "Stock Market Dataset." It typically includes information about stock prices, trading volumes, and various financial indicators for different companies over a period of time.

In [3]: | pip install yfinance

Requirement already satisfied: yfinance in c:\users\sande\anaconda3\lib\si te-packages (0.2.38) Requirement already satisfied: pandas>=1.3.0 in c:\users\sande\anaconda3\l ib\site-packages (from yfinance) (1.5.3) Requirement already satisfied: numpy>=1.16.5 in c:\users\sande\anaconda3\l ib\site-packages (from yfinance) (1.24.3) Requirement already satisfied: requests>=2.31 in c:\users\sande\anaconda3 \lib\site-packages (from yfinance) (2.31.0) Requirement already satisfied: multitasking>=0.0.7 in c:\users\sande\anaco nda3\lib\site-packages (from yfinance) (0.0.11) Requirement already satisfied: lxml>=4.9.1 in c:\users\sande\anaconda3\lib \site-packages (from yfinance) (4.9.2) Requirement already satisfied: appdirs>=1.4.4 in c:\users\sande\anaconda3 \lib\site-packages (from yfinance) (1.4.4) Requirement already satisfied: pytz>=2022.5 in c:\users\sande\anaconda3\li b\site-packages (from yfinance) (2022.7) Requirement already satisfied: frozendict>=2.3.4 in c:\users\sande\anacond a3\lib\site-packages (from yfinance) (2.4.4) Requirement already satisfied: peewee>=3.16.2 in c:\users\sande\anaconda3 \lib\site-packages (from yfinance) (3.17.5) Requirement already satisfied: beautifulsoup4>=4.11.1 in c:\users\sande\an aconda3\lib\site-packages (from yfinance) (4.12.2) Requirement already satisfied: html5lib>=1.1 in c:\users\sande\anaconda3\l ib\site-packages (from yfinance) (1.1) Requirement already satisfied: soupsieve>1.2 in c:\users\sande\anaconda3\l ib\site-packages (from beautifulsoup4>=4.11.1->yfinance) (2.4) Requirement already satisfied: six>=1.9 in c:\users\sande\appdata\roaming \python\python311\site-packages (from html5lib>=1.1->yfinance) (1.16.0) Requirement already satisfied: webencodings in c:\users\sande\anaconda3\li b\site-packages (from html5lib>=1.1->yfinance) (0.5.1) Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\sande\ap pdata\roaming\python\python311\site-packages (from pandas>=1.3.0->yfinanc e) (2.8.2) Requirement already satisfied: charset-normalizer<4,>=2 in c:\users\sande \anaconda3\lib\site-packages (from requests>=2.31->yfinance) (2.0.4) Requirement already satisfied: idna<4,>=2.5 in c:\users\sande\anaconda3\li b\site-packages (from requests>=2.31->yfinance) (3.4) Requirement already satisfied: urllib3<3,>=1.21.1 in c:\users\sande\anacon da3\lib\site-packages (from requests>=2.31->yfinance) (1.26.16) Requirement already satisfied: certifi>=2017.4.17 in c:\users\sande\anacon

da3\lib\site-packages (from requests>=2.31->yfinance) (2023.7.22) Note: you may need to restart the kernel to use updated packages.

```
In [4]: # Importing necessary libraries
import pandas as pd
import numpy as np
import yfinance as yf
import statsmodels.api as sm

# List of companies we want to analyze
companies = ['AAPL', 'MSFT', 'GOOG', 'AMZN']

# Fetching historical stock price data from Yahoo Finance
stock_data = yf.download(companies, start='2020-01-01', end='2021-12-31')

# Dropping missing values if any
stock_data.dropna(inplace=True)

# Displaying the first few rows of the dataset
print(stock_data.head())
```

[********* 4 of 4 completed

Price \	Adj Close				Close	
Ticker MZN	AAPL	AMZN	GOOG	MSFT	AAPL	А
Date 2020-01-02 497	72.960472	94.900497	68.368500	154.215652	75.087502	94.900
2020-01-03 497	72.251144	93.748497	68.032997	152.295425	74.357498	93.748
2020-01-06 997	72.826851	95.143997	69.710503	152.689087	74.949997	95.143
2020-01-07 002	72.484352	95.343002	69.667000	151.296875	74.597504	95.343
2020-01-08 503	73.650337	94.598503	70.216003	153.706818	75.797501	94.598
Price Ticker	C00C	MCET	High		•••	Low \
Date	GOOG	MSFT	AAPI	_ AMZN	• • •	GOOG
2020-01-02	68.368500	160.619995	75.150002	2 94.900497	67.07	77499
2020-01-03	68.032997	158.619995				77199
2020-01-06	69.710503	159.029999				00000
2020-01-07	69.667000	157.580002				18997
2020-01-08	70.216003	160.089996				12000
Price		0pen				\
Ticker Date	MSFT	AAPL		N GOOG	MSF	Γ
2020-01-02	158.330002	74.059998	93.750000	67.077499	158.779999	Ð
2020-01-03	158.059998	74.287498	93.224998	3 67.392998	158.320007	7
2020-01-06	156.509995	73.447502	93.000000	67.500000	157.080002	2
2020-01-07	157.320007	74.959999	95.224998	8 69.897003	159.320007	7
2020-01-08	157.949997	74.290001	94.902000	0 69.603996	158.929993	3
Price	Volume					
Ticker Date	AAPL	AMZN	GOOG	MSFT		
2020-01-02	135480400	80580000	28132000 2	22622100		
2020-01-03	146322800			21116200		
2020-01-06	118387200			20813700		
2020-01-07	108872000			21634100		
2020-01-08	132079200			27746500		

[5 rows x 24 columns]

Will proceed with Data Preparation step. Here, I will

- 1. Check the data types: Ensure that the data types are appropriate for each column.
- 2. Handle missing values: Check for and handle any missing values in the dataset.
- 3. Ensure data consistency: Check if the data is consistent and formatted correctly for analysis.

This will display the data types of each column, the number of missing values in each column, and basic descriptive statistics for the dataset.

```
In [5]: # Check data types
    print(stock_data.dtypes)

# Check for missing values
    print(stock_data.isnull().sum())

# Ensure data consistency
    print(stock_data.describe())
```

Price	Ticker					
Adj Close	AAPL	float64				
Adj Ciose	AMZN	float64				
	GOOG	float64				
	MSFT	float64				
Close	AAPL	float64				
C1036	AMZN	float64				
	GOOG	float64				
114 -h	MSFT	float64				
High	AAPL	float64				
	AMZN	float64				
	G00G	float64				
	MSFT	float64				
Low	AAPL	float64				
	AMZN	float64				
	G00G	float64				
	MSFT	float64				
0pen	AAPL	float64				
	AMZN	float64				
	GOOG	float64				
	MSFT	float64				
Volume	AAPL	int64				
	AMZN	int64				
	GOOG	int64				
	MSFT	int64				
dtype: obj	ect					
Price	Ticker					
Adj Close	AAPL	0				
3	AMZN	0				
	GOOG	0				
	MSFT	0				
Close	AAPL	0				
0_000	AMZN	0				
	GOOG	0				
	MSFT	0				
High	AAPL	0				
117811	AMZN	0				
	GOOG	0				
	MSFT					
Lou		0				
Low	AAPL	0				
	AMZN GOOG	0				
		0				
0	MSFT	0				
0pen	AAPL	0				
	AMZN	0				
	G00G	0				
	MSFT	0				
Volume	AAPL	0				
	AMZN	0				
	G00G	0				
	MSFT	0				
dtype: int						
	dj Close				Close	\
Ticker	AAPL	AMZN	GOOG	MSFT	AAPL	
	4.000000	504.000000	504.000000	504.000000	504.000000	
	5.741158	150.553222	99.660341	227.412939	118.005079	
	9.183268	26.083053	29.457459	51.198459	29.349252	
min 5	4.632900	83.830498	52.831001	130.375595	56.092499	
25% 8	9.386547	144.369999	73.789251	194.782990	91.526875	
50% 12	1.373463	159.871246	89.078751	215.896286	123.645000	
75% 13	8.798916	167.748619	127.641247	266.068382	140.960003	

max	177.824463	186.570496	150.709000	335.709808	180.330002	
Price Ticker	AMZN	GOOG	MSFT	High AAPL	AMZN	\
count	504.000000	504.000000	504.000000	504.000000	504.000000	• • •
mean	150.553222	99.660341	234.199127	119.340968	152.328902	
std	26.083053	29.457459	51.484969	29.495388	26.301452	• • •
min	83.830498	52.831001	135.419998	57.125000	87.972504	• • •
25%	144.369999	73.789251	201.757504	92.881876	147.021000	• • •
50%	159.871246	89.078751	222.669998	125.080002	161.657249	• • •
75%	167.748619	127.641247	272.952507	142.164997	169.445499	• • •
max	186.570496	150.709000	343.109985	182.130005	188.654007	
IIIax	180.370490	130.703000	343.103363	102.130003	100.034007	• • •
Price	Low		0pen			\
Ticker	GOOG	MSFT	AAPL	AMZN	GOOG	
count	504.000000	504.000000	504.000000	504.000000	504.000000	
mean	98.592506	231.619563	117.900437	150.599012	99.552615	
std	29.385660	51.492485	29.362344	26.248373	29.482984	
min	50.676800	132.520004	57.020000	82.075500	52.825500	
25%	72.982878	197.682503	91.272499	143.743748	73.570501	
50%	88.013500	219.539993	123.705002	160.102753	88.948502	
75%	126.816748	270.325005	139.657505	167.668873	127.013374	
max	149.887497	342.200012	181.119995	187.199997	151.000000	
Price		Volume	9			
Ticker	MSFT	AAPI	_ A	MZN	GOOG	MSFT
count	504.000000	5.040000e+02	2 5.040000e	+02 5.04000	0e+02 5.040	000e+02
mean	234.000119	1.242302e+08	8.329235e	+07 3.15997	5e+07 3.187	531e+07
std	51.438170	6.316090e+07	7 3.590935e	+07 1.43565	6e+07 1.447	710e+07
min	137.009995	4.100000e+07	7 2.903800e	+07 6.93600	0e+06 1.055	060e+07
25%	200.327499	8.119942e+07	7 5.855200e	+07 2.19305	0e+07 2.272	362e+07
50%	222.705002	1.088506e+08	3 7.419100e	+07 2.81580	0e+07 2.777	180e+07
75%	271.222504	1.478633e+08	3 1.001430e	+08 3.64255	0e+07 3.607	522e+07
max	344.619995	4.265100e+08	3.113460e	+08 8.65820	0e+07 9.701	.270e+07

[8 rows x 24 columns]

Perform Explonatory Data Analysis(EDA): Here, we'll explore the data to understand its characteristics and relationships between variables. We'll visualize the data to gain insights and identify any patterns or trends.

```
In [6]: import matplotlib.pyplot as plt

# Plot stock prices over time
stock_data['Adj Close'].plot(figsize=(10, 6))
plt.title('Stock Prices Over Time')
plt.xlabel('Date')
plt.ylabel('Stock Price (USD)')
plt.legend(companies)
plt.grid(True)
plt.show()
```


EDA Technique: Correlation Analysis: We'll compute the correlation matrix to identify relationships between different stocks.

```
In [7]: # Compute correlation matrix
    correlation_matrix = stock_data['Adj Close'].corr()
    print("Correlation Matrix:")
    print(correlation_matrix)
```

```
Correlation Matrix:
Ticker
                                          MSFT
            AAPL
                      AMZN
                                G00G
Ticker
AAPL
        1.000000 0.897824
                            0.895248
                                      0.936209
AMZN
        0.897824 1.000000
                           0.734451
                                      0.805830
GOOG
        0.895248 0.734451
                           1.000000
                                      0.967988
MSFT
        0.936209 0.805830 0.967988
                                      1.000000
```

Histograms and Density Plots: We'll visualize the distributions of stock prices for each company.

Box Plots: We'll use box plots to identify outliers and compare distributions between different stocks.

Stock Price (USD)

100

400

```
In [9]: # Plot box plots
    stock_data['Adj Close'].plot(kind='box', figsize=(10, 6))
    plt.title('Box Plot of Stock Prices')
    plt.ylabel('Stock Price (USD)')
    plt.grid(True)
    plt.show()
```


We'll explore the correlation between the stock prices of the selected companies in more detail. For this, we Visualize the correlation matrix using a heatmap. This heatmap will show the correlation coefficients between different stocks. Positive values indicate a positive correlation (movement in the same direction), while negative values indicate a negative correlation (movement in opposite directions). Values closer to 1 or -1 indicate stronger correlations.

```
In [10]: import seaborn as sns

# Visualize correlation matrix using heatmap
plt.figure(figsize=(10, 6))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f")
plt.title('Correlation Matrix of Stock Prices')
plt.show()
```


Identify highly correlated pairs of stocks and analyze their relationships using scatter plots

```
In [11]: # Scatter plot between Apple and Microsoft stock prices
plt.figure(figsize=(8, 6))
plt.scatter(stock_data['Adj Close']['AAPL'], stock_data['Adj Close']['MSFT'
plt.title('Scatter Plot: Apple vs Microsoft Stock Prices')
plt.xlabel('Apple Stock Price (USD)')
plt.ylabel('Microsoft Stock Price (USD)')
plt.grid(True)
plt.show()
```


Analyze trading volumes: Visualize the trading volumes for each company to understand the level of trading activity.

```
In [12]: # Plot trading volumes
    stock_data['Volume'].plot(figsize=(10, 6))
    plt.title('Trading Volumes Over Time')
    plt.xlabel('Date')
    plt.ylabel('Volume')
    plt.legend(companies)
    plt.grid(True)
    plt.show()
```


Calculate and analyze daily returns: Compute the daily returns for each stock and analyze their distributions and correlations.

```
In [13]:
         # Calculate daily returns
         daily_returns = stock_data['Adj Close'].pct_change()
         # Plot daily returns distributions
         daily_returns.hist(bins=20, figsize=(10, 6), density=True, alpha=0.5)
         daily_returns.plot(kind='kde', figsize=(10, 6))
         plt.title('Distribution of Daily Returns')
         plt.xlabel('Daily Return')
         plt.ylabel('Density')
         plt.legend(companies)
         plt.show()
         # Compute correlation matrix of daily returns
         correlation_matrix_returns = daily_returns.corr()
         # Visualize correlation matrix of daily returns using heatmap
         plt.figure(figsize=(10, 6))
         sns.heatmap(correlation_matrix_returns, annot=True, cmap='coolwarm', fmt=".
         plt.title('Correlation Matrix of Daily Returns')
         plt.show()
```



```
In [14]: # Importing necessary libraries
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import LinearRegression
         from sklearn.metrics import mean_squared_error
         # Selecting independent variables (trading volumes)
         independent_vars = ['Volume']
         # Extracting independent and dependent variables
         X = stock_data[independent_vars]
         y = stock_data['Adj Close']
         # Splitting the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ra
         # Fitting the regression model
         model = LinearRegression()
         model.fit(X_train, y_train)
         # Making predictions
         y_pred = model.predict(X_test)
         # Evaluating the model
         mse = mean_squared_error(y_test, y_pred)
         print("Mean Squared Error:", mse)
```

Mean Squared Error: 1034.5376626372279

```
# Fetching historical data for S&P 500 and NASDAQ indices
In [15]:
         index_data = yf.download(['^GSPC', '^IXIC'], start='2020-01-01', end='2021-
         # Print index data to verify availability
         print(index data)
         # Extracting adjusted close prices of indices
         index_data_close = index_data['Adj Close']
         # Merging index data with stock data with consistent suffixes
         stock data = pd.merge(stock data, index data close, left index=True, right
         # Print stock data after merging
         print(stock_data)
         # Selecting additional independent variables with consistent suffixes
         additional_independent_vars = ['^GSPC_Index', '^IXIC_Index'] # 5&P 500 and
         # Extracting additional independent variables
         X_additional = stock_data[additional_independent_vars]
         # Concatenating additional independent variables with existing ones
         X = pd.concat([X, X_additional], axis=1)
         [********* 2 of 2 completed
         C:\Users\sande\AppData\Local\Temp\ipykernel_18032\634464011.py:11: Futu
         reWarning: merging between different levels is deprecated and will be r
         emoved in a future version. (2 levels on the left, 1 on the right)
           stock_data = pd.merge(stock_data, index_data_close, left_index=True,
         right_index=True, suffixes=('', '_Index'))
         Price
                      Adj Close
                                                     Close
         High \
         Ticker
                          ^GSPC
                                        ^IXIC
                                                     ^GSPC
                                                                   ^IXIC
         ^GSPC
         Date
         2020-01-02 3257.850098
                                  9092.190430 3257.850098
                                                             9092.190430 3258.
         139893
         2020-01-03 3234.850098
                                  9020.769531 3234.850098
                                                             9020.769531 3246.
         149902
         2020-01-06 3246.280029
                                  9071.469727 3246.280029
                                                             9071.469727
                                                                          3246.
         840088
         2020-01-07 3237.179932
                                  9068.580078 3237.179932
                                                             9068.580078 3244.
         989912
```

In []:

```
In [16]: # Create a list of tuples containing variable names and coefficients
         coefficients_list = [(variable, coefficient) for variable, coefficient in z
         # Create DataFrame from the list of tuples
         coefficients df = pd.DataFrame(coefficients list, columns=['Variable', 'Coe']
         # Display the DataFrame
         print("Model Coefficients:")
         print(coefficients_df)
         # Display the intercept
         print("Intercept:", model.intercept_)
         Model Coefficients:
                  Variable Coefficient
         0 (Volume, AAPL) -9.357792e-08
         1 (Volume, AMZN) -5.126573e-08
         2 (Volume, GOOG) -3.213529e-07
            (Volume, MSFT) -4.221551e-07
         Intercept: [155.18431321 183.43634021 139.21791483 293.95811243]
In [17]: # Calculate R-squared
         r_squared = model.score(X_test, y_test)
         print("R-squared:", r_squared)
         # Calculate Adjusted R-squared
         n = len(X_test)
         p = len(X.columns)
         adjusted_r_squared = 1 - (1 - r_squared) * ((n - 1) / (n - p - 1))
         print("Adjusted R-squared:", adjusted_r_squared)
         R-squared: 0.3214337752524574
         Adjusted R-squared: 0.29316018255464305
 In [ ]:
 In [ ]:
```