Bell States, GHZ States, and W-States: Exploring the Robustness of Entanglement for Noisy Quantum Systems

Agustin Garcia Flores^{1*}, M. Jaden Brewer², Jake Navas², Alexander Hardin², Inès Montaño^{2*}

¹Department of Physics, Arizona State University, Tempe, AZ 85281, USA

²Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, AZ 85011, USA

Motivation

Due to the sensitivity of quantum information to external perturbations, we investigate how noise affects Bell, GHZ, and W-states, and which types of entangled states are most resilient to depolarization. Our findings can help us determine the best entangled state to employ for exchanging quantum information between quantum devices.

Background

Quantum entanglement is a nonlocal property of two or more qubits that permits a collection of qubits to express stronger correlation than is feasible in classical systems. Three examples of quantum entanglement states are shown below:

$$|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$|GHZ\rangle_{M} = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes M} + |1\rangle^{\otimes M})$$

$$|W\rangle_{3} = \frac{1}{\sqrt{3}}(|001\rangle + |010\rangle + |100\rangle)$$

We can use quantum circuits to achieve quantum teleportation:

Figure 1: A quantum teleportation circuit that utilizes the $|\Phi^+\rangle$ bell state to teleport some arbitrary state, $|\psi\rangle$, from qubit 0 onto qubit 2.

Fidelity generates a helpful metric that reveals information about the closeness of two arbitrary qubit states:

$$F(\rho,\sigma) \equiv tr \sqrt{\rho^{1/2}\sigma\rho^{1/2}}$$

Source: [1]

The fidelity of the state we are teleporting and the teleported state yields information on the robustness of the teleportation circuit.

How are the different states of entanglement compared?

Methods

The Network Simulator for Quantum Information Using Discrete Events (NetSquid) is a software tool for modeling and simulation of scalable quantum networks.

Figure 2: A quantum teleportation circuit that utilizes a three-qubit $|GHZ\rangle$ state to teleport some arbitrary state, $|\psi\rangle$, from qubit 0 onto qubit 3.3

Figure 3: A quantum teleportation circuit that utilizes a $|W\rangle$ state to teleport some arbitrary state, $|\psi\rangle$, from qubit 0 onto qubit 3. Here, the \widetilde{U} gate is an 8x8 unitary matrix.³

Depolarization randomly turns a quantum state into a totally mixed state with a specific probability.

Figure 4: A Bloch sphere representation of a qubit after applying an *X* gate. (a) shows the qubit when no depolarization is applied to the operation. (b) and (c) show the qubit when a 100% probability of depolarization is applied to the *X* gate operation.

How does probabilistic noise affect fidelity?

Results

Figure 5: Illustrating the individual impact of gate and processor depolarization on fidelity. We emphasize the decay rate (C term) and the fidelity plateau value (B term).^{2,4}

Average Values of All Teleported States

	Gate Depolarization		Processor Depolarization	
Teleportation Circuit	Fidelity Decay Rate	Fidelity Plateau	Fidelity Decay Rate	Fidelity Plateau
Bell State	0.0921	0.4972	0.1704	0.4996
GHZ State	0.1055	0.4157	0.1899	0.4151
W-State	0.1585	0.6084	0.2967	0.6101

Table 1: A comparison of the average values for all three variations of teleportation circuits. The boxes in blue indicate optimal performance.

Figure 6: Comparing our NetSquid simulation data to that of an actual quantum computer.^{2,5}

Conclusions

- Quantum computer noise environments can be replicated with simplified noise models.
- Depending on the probability of depolarization within a quantum system, either the Bell States or the W-state would be optimal for communicating information.

Acknowledgements

[1] Nielsen, M. A., & Chuang, I. L. (2010). *Quantum Computation and Quantum Information* (10th Anniversary). Cambridge University Press.
[2] Coopmans, T., Knegjens, R., Dahlberg, A. *et al.* NetSquid, a NETwork Simulator for QUantum Information using Discrete events. *Commun Phys* 4, 164 (2021). https://doi.org/10.1038/s42005-021-00647-8
[3] Jung, E., Hwang, et al. (2008). GHZ versus W-states: Quantum teleportation through noisy channels. Physical Review A, 78(1). https://doi.org/https://doi.org/10.48550/arXiv.0801.1433
[4] Northern Arizona University Advanced Research Computing. 2023. Advanced Research Computer High-Performance Computing: Monsoon. Flagstaff, AZ: Northern Arizona University. https://in.nau.edu/arc/details/.
[5] IBM Quantum (2022). ibmq_lima (Version 1.0.49) [Falcon r4T]. https://quantum-computing.ibm.com/

