

UNIVERSIDAD DE GRANADA

Máster Universitario en Física y Matemáticas

EL TÍTULO DEL TRABAJO FIN DE MÁSTER

Trabajo Fin de Máster presentado por Nombre Apellido1 Apellido2

Curso 2016/17

UNIVERSIDAD DE GRANADA

Máster Universitario en Física y Matemáticas

EL TÍTULO DEL TRABAJO FIN DE MÁSTER

Trabajo Fin de Máster presentado por Nombre Apellido1 Apellido2

Curso 2016/17

Tutor: Nombre Apellido1 Apellido2 Departamento: Matemática Aplicada

Área de Conocimiento: Matemática Aplicada

(Página de agradecimientos si los hay) Thank you.

Índice

1.	Esfé	éricos Armónicos	1	
	1.1.	Preliminares	1	
		1.1.1. Notación	1	
		1.1.2. La función Γ	2	
		1.1.3. Resultados básicos de la esfera	3	
	1.2. Esféricos Armónicos Through Primitive Spaces			
		1.2.1. Espacios de Polinomios Homogéneos		
		1.2.2. Armónicos de Legendre y Polinomios de Legendre		
		1.2.3. Esféricos Armónicos	7	
	1.3.	Teorema de Adición. Consecuencias	8	

Capítulo 1

Esféricos Armónicos

1.1. Preliminares

1.1.1. Notación

Usaremos $d \in \mathbb{N}$ para representar la dimensión de un conjunto. El conjunto $\mathbb{R}^d = x = (x_1, ..., x_d)^T : x_j \in \mathbb{R}, 1 \leq j \leq d$ es el espacio euclídeo de dimensión d
 con el producto escalar y la norma

$$(x,y) = \sum_{j=1}^{d} x_j y_j |x| = (x,x)^{1/2} x, y \in \mathbb{R}^d$$

En \mathbb{R}^d usaremos la base canónica

$$e_1 = (1, 0, ..., 0)^T, ..., e_d = (0, 0, ..., 1)^T$$

y escribiremos $x = \sum_{j=1}^d x_j e_j, x \in \mathbb{R}^d$ Para indicar la dimensión explícitamente usaremos $x_{(d)}$ en lugar de x. En tal caso, $x_{(d)} = x_{(d-1)} + x_d e_d$ siendo $x_{(d-1)} = (x_1, ..., x_{d-1}, 0)^T$. También usaremos $x_{(d-1)}$ para referirnos al vector (d-1)-dimensional $(x_1, ..., x_{d-1}, 0)^T$.

Definición 1.1. Sean $\xi, \eta \in \mathbb{S}^{d-1}$, definimos las siguientes distancias:

- \blacksquare La distancia euclídea $|\xi-\eta|=\sqrt{2(1-\xi\eta)}$
- La distancia geodésica $\theta(\xi, \eta) = \arccos(\xi, \eta)$

Nota1.2. Usando que $\frac{2}{\pi} \le sint \le t, t \in [0,\pi/2]$ se deduce la siguiente relación entre ambas distancias:

$$\frac{2}{\pi}\theta(\xi,\theta) \le |\xi - \eta| \le \theta(\xi,\eta)$$

Para $x=(x_1,...,x_d)$ definimos $x^\alpha=x_1^{\alpha_1}...x_d^{\alpha_d}$. Análogamente, Para el operador gradiente $\nabla=(\partial_{x_1},...,\partial_{x_d})^T$ definimos

$$\nabla^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} ... \partial x_d^{\alpha_d}}$$

Y finalmente definimos el operador laplaciano como

$$\triangle = \nabla . \nabla = \sum_{j=1}^{d} (\partial / \partial x_j)^2$$

1.1.2. La función Γ

Definición 1.3.

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} dt, x \in (\mathbb{R})^+$$

Proposición 1.4. Se verifican las siguientes formulas:

$$\int_0^\infty tx - 1e^{-at^b}dt = b^{-1}a^{-x/b}\Gamma(x/b)x, a, b \in \mathbb{R}^+$$

$$\int_0^1 |lnt|^{x-1} dt = \Gamma(x), x \in \mathbb{R}^+$$

$$\Gamma(x+1) = x\Gamma(x)x \in \mathbb{R}^+$$

$$\Gamma^{(k)}(x) = \int_0^\infty (lnt)^k t^{x-1} e^{-t} dt, k \in \mathbb{N}_0, x \in \mathbb{R}^+$$

Nota 1.5. Obviamente, $\Gamma(1)=1$ y de la tercera fórmula se deduce que $\Gamma(n+1)=n!, n\in\mathbb{N}_0$. Es decir, la función Γ extiende el operador factorial de los números naturales a los reales positivos.

Lema 1.6.

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

$$\Gamma(n + \frac{1}{2}) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}$$

Definición 1.7. Sea $x \in \mathbb{R}$ y $n \in \mathbb{N}$, el símbolo de Pochhammer se define como

$$(x)_0 = 1, (x)_n = x(x+1)(x+2)...(x+n-1)$$

Proposición 1.8.

$$(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)}, x \in \mathbb{R}^+$$

3

1.1.3. Resultados básicos de la esfera.

Usaremos dV^d para el elemento de volumen de dimensión d y dS^{d-1} para el elemento (d-1)-dimensional de la superficie de la esfera unidad \mathbb{S}^{-1} . Sobre la superficie de un dominio general usaremos d_{σ} para los elementos de la superficie

Proposición 1.9. Para $d \ge 3$ y $\xi \in \mathbb{S}^{d-1}$, con $\xi_{(d)} = te_d + \sqrt{1 - t^2} \xi_{(d-1)} t \in [-1, 1]$, se tiene que

$$dS^{d-1}(te_d + \sqrt{1 - t^2}\xi_{(d-1)}) = (1 - t^2)^{\frac{d-3}{2}}dtdS^{d-2}(\xi_{(d-1)})$$

Equivalentemente,

$$dS^{d-1} = (1 - t^2)^{\frac{d-3}{2}} dt dS^{d-2}$$

Ejemplo 1.10. Sea d=3 y ξ un punto genérico de la esfera. Usando coordenadas esféricas

$$\xi_{(3)} = \begin{pmatrix} \cos\phi \sin\theta \\ \sin\phi \sin\theta \\ \cos\theta \end{pmatrix} 0 \le \phi \le 2\pi, 0 \le \theta \le \pi$$

Sea $t = cos\theta$ entonces

$$\xi_{(2)} = \left(\cos\phi sen\phi 0\right)$$

Por tanto,
$$\xi_{(3)}=te_3+\sqrt{1-t^2}\xi_{(2)}$$
 y $dS^1=d\phi, dS^2=dtd\phi$

Podemos usar la anterior proposición para el cálculo del área de la superficie de la esfera.

Proposición 1.11.

$$|\mathbb{S}^{d-1}| = \int_{\mathbb{S}^{d-1}} dS^{d-1} = \frac{2\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2})}$$

Proposición 1.12. Sea $A \in \mathbb{R}$ ortogonal entonces

$$dS^{d-1}(A\xi) = dS^{d-1}(\xi)$$
$$dV^d(A\xi) = dV^d(\xi)$$

Llamamos $C(S^{d-1})$ al espacio de funciones continuas sobre S^{d-1} . Este espacio es un espacio de Banach con la norma $||f||_{\infty} = \sup\{|f(\xi): \xi \in \mathbb{S}^{d-1}\}$. Llamaremos $L^2(S^{d-1})$ al espacio de funciones con cuadrado integrable en S^{d-1} . Dicho espacio es un Hilbert con el producto escalar

$$(f,g) = \int_{S^{d-1}} f\overline{g}dS^{d-1}$$

Consideramos el espacio $C(S^{d-1})$ con la norma inducida por el producto escalar de $L^2(S^{d-1})$. Este espacio no es completo. Además, el cierre de $C(S^{d-1})$ respecto a dicha norma es $L^2(S^{d-1})$. Es decir, dado una función $f \in L^2(S^{d-1})$ existe una sucesión $\{f_n\} \subset C(S^{d-1})$ tal que $f_n \to f$

Proposición 1.13. Sean $\Sigma_{\delta} = \{x \in \mathbb{R}^d : |x| \in [1 - \delta, 1 + \delta]\}$ y $f^*(x) = f(\frac{x}{|x|}), x \in \Sigma_{\delta}$ y $k \in \mathbb{N}$. f es k veces diferenciable en S^{d-1} cuando f^* lo es.

Definición 1.14. Definimos $C^k(S^{d-1}), k \in \mathbb{N} \cup 0$ como el espacio de funciones k veces diferenciables en S^{d-1}

Proposición 1.15. $C^k(S^{d-1})$ es un espacio de Banach con la norma

$$||f||_{C^k(S^{d-1})} = ||f^*||_{C^k(\Sigma_\delta)}$$

Nota 1.16. Usaremos $||f||_{\infty} = ||f||_{C(S^{d-1})}$

1.2. Esféricos Armónicos Through Primitive Spaces

Consideramos \mathbb{O}^d el conjunto de matrices ortogonales de orden d. Para cualquier $v \in \mathbb{O}^d$ vector no nulo, $\mathbb{O}^d(v) = \{A \in \mathbb{O}^d : Av = v\}$ es el subconjunto de matrices ortogonales que deja el subespacio $span\{v\} = \{\alpha v : \alpha \in \mathbb{R}\}$ invariante.

Definición 1.17. Sea $f: \mathbb{R}^d \to \mathbb{C}$ y $A \in \mathbb{R}^{dxd}$, se define f_A como:

$$f_A(x) = f(Ax) \forall x \in \mathbb{R}^d$$

Proposición 1.18. Si $f_A = f$ para algún $A \in \mathbb{O}^d$ entonces f(x) depende de x a través de |x|, luego f es constante en una esfera de radio arbitrario.

Demostración. Sean $x, y \in \mathbb{R}^d$ con $|\mathbf{x}| = |\mathbf{y}|$, podemos encontrar una matriz $A \in \mathbb{O}^d$ tal que Ax = y. Entonces $f(x) = f_A(x) = f(y)$.

Introduciremos los armónicos esféricos como... Consideramos un subespacio \mathbb{V} de funciones definidas de \mathbb{R}^d a un subconjunto de \mathbb{R}^d .

Definición 1.19. Sea \mathcal{V} un subespacio de funciones definidas de \mathbb{R}^d a $A \subseteq \mathbb{R}^d$. Se dice que \mathcal{V} es invariante si para $f \in \mathcal{V}$ y $A \in \mathbb{O}^d$, entonces $f_A \in \mathcal{V}$. Considerando \mathcal{V} un subespacio invariante de un espacio proveniente de un producto escalar se define:

- \mathcal{V} es reducible si $\mathcal{V} = \mathcal{V}_1 + \mathcal{V}_2$ con $\mathcal{V}_1 \neq \emptyset$, $\mathcal{V}_2 \neq \emptyset$ verificando $\mathcal{V}_1, \mathcal{V}_2$ irreducibles y $\mathcal{V}_1 \perp \mathcal{V}_2$.
- \mathcal{V} es irreducible si no es reducible.
- \mathcal{V} es primitivo si es invariante e irreducible.

Definición 1.20. Dado $f: \mathbb{R}^d \to \mathbb{C}$ se define $span\{f_A : A \in ()^d\}$ como el espacio de las series convergentes $\sum c_j f_{A_j}$ con $A_j \in \mathbb{O}^d, c_j \in \mathbb{C}$

De la definición se deduce que $span\{f_A : A \in \mathbb{O}^d\}$ es un subespacio de funciones. Además, si \mathcal{V} es un espacio finito dimensional $\mathcal{V} = span\{f_A\}$

1.2.1. Espacios de Polinomios Homogéneos.

Consideramos \mathcal{H}_n^d el espacio de polinomios homogéneos de grado n en d dimensiones. Las funciones son de la forma:

$$\sum_{|\alpha|=n} a_{\alpha} x^{\alpha}, a_{\alpha} \in \mathbb{C}.\mathcal{H}_n^d$$

Ejemplo 1.21.

$$\mathbb{H}_{2}^{2} = \left\{ a_{1}x_{1}^{2} + a_{2}x_{1}x_{2} + a_{3}x_{2}^{2} \right\}$$

$$\mathbb{H}_{3}^{2} = \left\{ a_{1}x_{1}^{3} + a_{2}x_{2}^{3} + a_{3}x_{1}^{2}x_{2} + a_{4}x_{1}x_{2}^{2} \right\}$$

A continuación vamos a estudiar la dimensión de \mathcal{H}_n^d , llegando a la conclusión de que es un espacio invariante finito dimensional. Para determinar $dim\mathcal{H}_n^d$ contamos los monomios de grado n, es decir, x^α con $\alpha_i \geq 0$ y verificando $\alpha_1 + \alpha_2 + ... + \alpha_d = n$ Cada $\mathbb{H}_n \in \mathbb{H}_n^d$ se puede escribir como:

$$\mathbb{H}_n(x) = \sum_{|\alpha|=n} a_{\alpha} x^{\alpha}, a_{\alpha} \in \mathbb{C}.$$

Para el polinomio $\mathbb{H}_n(x)$ definimos

$$\mathbb{H}_n(\nabla) = \sum_{|\alpha|=n} a_{\alpha} \nabla^{\alpha}.$$

Dados 2 polinomios cualesquiera $\mathbb{H}_n(x)$,

$$\mathbb{H}_{n,1}(x) = \sum_{|\alpha|=n} a_{\alpha,1} x^{\alpha}, \mathbb{H}_{n,2}(x) = \sum_{|\alpha|=n} a_{\alpha,2} x^{\alpha}$$

Se sigue que

Luego $(\mathbb{H}_{n,1},\mathbb{H}_{n,2})_{\mathbb{H}_n^d} := \mathbb{H}_{n,1}(\nabla)\overline{\mathbb{H}_{n,2}(x)}$ define un producto escalar en \mathbb{H}_n^d

Definición 1.22. Una función f es armónica si $\triangle f(x) = 0$.

Lema 1.23. $Si \triangle f = 0$, entonces $\triangle f_A = 0 \forall A \in \mathbb{O}^d$

Demostración. Sea y = Ax, entonces $\nabla_x = A\nabla_y$. Como $A \in \mathbb{O}^d$ se tiene que

$$\triangle_x = \nabla_x . \nabla_x = \nabla_y . \nabla_y = \triangle_y$$

A continuación, vamos a ver un subespacio de H_n^d importante.

Definición 1.24. Llamamos $\mathbb{Y}_n(\mathbb{R}^d)$ al espacio de los polinomios homogéneos de grado n en \mathbb{R}^d que son armónicos.

Ejemplo 1.25. $\mathbb{Y}_n(\mathbb{R}^d) = \mathbb{H}_n^d$ si n = 0 o n = 1

Para d = 1, $\mathbb{Y}_n(\mathbb{R}) = \emptyset$ para $n \geq 2$

Para d = 2, $\mathbb{Y}_n(\mathbb{R}^2)$, los polinomios de la forma $(x_1 + ix_2)^n$ pertenecen a $\mathbb{Y}_n(\mathbb{R}^2)$. En particular, $\mathbb{Y}_2(\mathbb{R}^2)$ está formado por polinomios de la forma $a(x_1^2 - x_2^2) + bx_1x_2, a, b \in \mathbb{C}$

Calculamos ahora la dimensión de $\mathbb{Y}_n(\mathbb{R}^d)$. Llamaremos $N_{n,d}$ a la dimensión de $\mathbb{Y}_n(\mathbb{R}^d)$. Sea $H_n \in \mathbb{H}_n^d$, dicho polinomio puede ser escrito de la forma

$$H_n(x_1,...,x_d) = \sum_{j=0}^{n} (x_d)^j h_{n-j}(x_1,...x_{d-1}), h_{n-j} \in \mathbb{H}_{n-j}^{d-1}$$

Aplicamos el operador laplaciano a H_n ,

$$\triangle_{(d)}H_n(x_{(d)}) = \sum_{i=0}^{n-2} (x_d)^j [\triangle_{(d-1)}h_{n-j}(x_{(d-1)}) + (j+2)(j+1)h_{n-j-2}(x_{(d-1)})]$$

Luego, si $H_n \in \mathbb{Y}_n(\mathbb{R}^d)$ entonces $\triangle_{(d)}H_n(x_{(d)}) \equiv 0$ y

$$h_{n-j-2} = -\frac{1}{(j+2)(j+1)} \triangle_{(d-1)} h_{n-j}, 0 \le j \le n-2$$

En consecuencia un armónico homogéneo está únicamente determinado por $h_n \in \mathbb{H}_n^{d-1}$ y $h_{n-1} \in \mathbb{H}_{n-1}^{d-2}$. De este modo, obtenemos la siguiente relación ...

$$N_{n,d} = dim \mathbb{H}_n^{d-1} + \mathbb{H}_{n-1}^{d-1}$$

Usando la formula se tiene que para $d \geq 2$,

$$N_{n,d} = \frac{(2n+d-2)(n+d-3)!}{n!(d-2!)}, n \in \mathbb{N}$$

1.2.2. Armónicos de Legendre y Polinomios de Legendre

Ahora, nos centraremos en unos armónicos homogéneos especiales, los armónicos de Legendre de grado n en d dimensiones.

Definición 1.26. Se define los armónicos de Legendre, $L_{n,d}: \mathbb{R} \to \mathbb{R}$ verificando las siguientes condiciones:

- $L_{n,d} \in \mathbb{Y}_n(\mathbb{R}^d)$
- $L_{n,d}(Ax) = L_{n,d}(x) \forall A \in \mathbb{O}(), \forall x \in \mathbb{R}^d$
- $L_{n,d}(e_d) = 1$

Nota 1.27. La segunda condición implica que $h_{n-j}(A_1x_{d-1})=h_{n-j}(x_{d-1}), \forall A_1\in (\mathbb{O})^{(d-1)}, x_{(d-1)}\in \mathbb{R}^{d-1}, 0\leq j\leq n$

De una proposición anteriorse deduce que por ser h_{n-j} polinomio homogéneo,(n-j) es par y

$$h_{n-j}(x_{(d-1)}) = \begin{cases} c_k |x_{(d-1)}|^{2k} & \text{si } n-j=2k\\ 0 & \text{si } n-j=2k+1 \end{cases}$$
 (1.2.1)

Por tanto,

$$L_{n,d}(x) = \sum_{k=0}^{[n/2]} c_k |x_{(d-1)}|^{2k} (x_d)^{n-2k}$$

Determinamos ahora los coeficientes c_k

$$c_k = -\frac{(n-2k+2)(n-2k+1)}{2k(2k+d-3)}c_{k-1}, 1 \le k \le \lfloor n/2 \rfloor$$

Usando la condición de normalidad se tiene que $c_0 = 1$ y

$$c_k = (-1)^k \frac{n!\Gamma(\frac{d-1}{2})}{4^k k!(n-2k)!\Gamma(k+\frac{d-1}{2})}, 0 \le k \le [n/2]$$

Finalmente, obtenemos la siguiente expresión

$$L_{n,d}(x) = n!\Gamma(\frac{d-1}{2}) \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \frac{|x_{(d-1)}|^{2k} (x_d)^{n-2k}}{4^k k! (n-2k)! \Gamma(k+\frac{d-1}{2})}$$

Usando coordenadas polares $x_{(d)} = r\xi_{(d)}, \xi_{(d)} = te_d + \sqrt{1-t^2}\xi_{(d-1)}$, definimos el polinomio de Legendre de grado n en d dimensiones, $P_{n,d}(t) = L_{n,d}(\xi_{(d)})$ como la restricción a la esfera unidad del armónico de Legendre. Por tanto

$$P_{n,d}(t) = n!\Gamma(\frac{d-1}{2}) \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \frac{(1-t^2)^k t^{n-2k}}{4^k k! (n-2k)! \Gamma(k+\frac{d-1}{2})}$$

Nota 1.28.
$$P_{n,d}(1) = 1$$
 y $L_{n,d}(x) = L_{n,d}(r\xi_{(d)}) = r^n P_{n,d}(t)$

1.2.3. Esféricos Armónicos

Definición 1.29. Se llama espacio de esféricos armónicos de orden n en d dimensiones a $\mathbb{Y}_n^d = \mathbb{Y}_n(\mathbb{R}^d)|\mathbb{S}^{d-1}$

De la definición se deduce que un esférico armónico $\mathbb{Y}_n \in \mathbb{Y}_n^d$ está asociado a un armónico homogéneo $\mathbb{H}_n \in \mathbb{Y}_n^d$ de la siguiente forma:

$$\mathbb{H}_n(r\xi) = r^n \mathbb{Y}_n(\xi)$$

En consecuencia, $dim Y_n^d = N_{n,d}$

Teorema 1.30. Sea $\mathbb{Y}^d \in \mathbb{Y}_n^d$ $y \xi \in \mathbb{S}^{d-1}$. Entonces \mathbb{Y}_n es invariante respecto a $\mathbb{O}^d(\xi)$, si y sólo si, $\mathbb{Y}_n(\eta) = \mathbb{Y}_n(\xi)\mathbb{P}_{n,d}(\xi.\eta) \forall \eta \in \mathbb{S}^{d-1}$

$$Demostraci\'on.$$

1.3. Teorema de Adición. Consecuencias.

Teorema 1.31. Sea $\{Y_{n,j}: 1 \leq j \leq N_{n,d}\}$ una base ortonormal de \mathbb{Y}^d , es decir,

$$\int_{\mathbb{S}^{d-1}} Y_{n,j}(\eta) \overline{Y_{n,j}(\eta)} d\mathbb{S}^{d-1} = \delta_{j,k}, 1 \le j, k \le N_{n,d}$$

Entonces,

$$\sum_{j=1}^{N_{n,d}} Y_{n,f}(\xi) \overline{Y_{n,j}(\eta)} = \frac{N_{n,d}}{|\mathbb{S}^{d-1}|} P_{n,d}(\xi.\eta) \forall \xi, \eta \in \mathbb{S}^{d-1}$$

Demostraci'on.