MA106 Tut5

B)
$$|B-\lambda\Gamma| = 0$$
 $|P^{\dagger}AP-\lambda\Gamma| = 0$
 $|P^{\dagger}A$

A matrix has a 0 eigenvalue iff it is not invertible $\mathcal{K}^{\neq 0}$

If
$$\lambda = 0$$
 $\Rightarrow |AB| = 0$
 $\Rightarrow |A| = 0 \text{ or } |B| = 0$
 $\Rightarrow |BA| = 0$
 $\Rightarrow 0 \text{ is an eigenvalue of BA}$

M2] Explicitely constauct Inverse

Suppose the inverse of I-AB is C

$$\rightarrow BCA(I-BA) = I-(I-BA)$$

$$\rightarrow$$
 (I+BCA)(I-BA) = I

Hence, put
$$y = \chi + \lambda$$

[yI - A]

is divisible by $(y - \lambda)^k$

if $|yI - A|$ has atleast k roots as λ

AM 7 GM

·

(b)
$$|4-\lambda - 1 - 2| = 0$$

 $|2 - 1-\lambda - 2|$
 $|-1 - 1-\lambda|$
 $|-1 - 1-\lambda|$

Finding eigenvectors:

(1) IA \ 70

AV

4) 21

Consider the set of all skew-hermitian matrices

is this a vector space? If yes, what is F?

$$\begin{array}{ll}
A, B \\
(A+B)^* = A^* + B^* \\
(\alpha A)^* = \alpha A^*
\end{array}$$

$$A,B$$

$$(A+B)^{*} = A^{*} + B^{*}$$

$$B = iA = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 6 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A+A^{*} = 0$$

$$B = iA = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 6 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A+A^{*} = 0$$

$$B+B^{*} \neq 0$$

Previous tut Problem 1
A ken (and Lair (and arts)
A ken B (and
KXD CROSSIC
Lemma: the non-zero eigenvalues of $A\overline{A}$ are also of $A\overline{A}$ and vice-versa
A AT >
$ATA(ATV) = \lambda(ATV)$
V ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
$A^TAy = \lambda y y \neq 0$
infact, these eigenvalues have the same
multiplicities
ATA -> nxn matrix -> rank(ATA) < k
ATA -> nxn matrix -> rank(ATA) < k AAT -> kxk matrix ->
CSX TOOKS
2I-ATA = 0 0 0000
G. C.
[Kxk PM = coef. of xn-k(-1)
= sum of roots taken k at a time
atmost one non-zero term
this is simply the product of
eigenvalues of AAT
det (AAT)