Curriculum vitae	lum vitae Prof. Dr. rer. nat. Nicole Erika Radde		
Name Work address	Nicole Erika Radde Faculty of Engineering Design, Production Engineering and Automotive Engineering Institute for Systems Theory and Automatic Control University of Stuttgart 70569 Stuttgart fon: +49 711 685-67729 fax: +49 711 685-67735 E-mail: nicole.radde@ist.uni-stuttgart.de		
Academic Education	1996 2002 2007	Studies of Physics and Mathematics, TU Darmstadt Diploma Physics and 1. State Examination Physics/Mathematics, TU Darmstadt Doctorate, Non-linear dynamic phenomena in biochemical systems, University of Cologne	
Professional Career	2003–2007 2007–2008 2008–2015 since 2009 since 2012 2015 since 2017 since 2019 since 2019	Research Assistant, Center for Applied Informatics, University of Cologne Postdoctoral Researcher, Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig Junior Professor for Systems Theory in Systems Biology, University of Stuttgart Member of the Board of Directors of the Stuttgart Research Center Systems Biology (SRCSB), formerly Center Systems Biology (CSB) Principal Investigator and member of the Advisory Board EXC 310 Full Professor for Systems Theory in Systems Biology, University of Stuttgart Gender Equality Officer of the University of Stuttgart Vice Director of the Stuttgart Research Center Systems Biology (SRCSB) Member of the Board of Directors of the Excellence Cluster EXC 2075	
Funding (last 5 years)			
DFG-EXC 2075	2019–2026	Data-integrated modeling to provide novel solutions for individ-	
DFG	2019–2021	ualizing cancer therapy and predicting treatment success Design of synthetic, methylation based, epigenetic gene circuits in bacteria (RA1840/2-1)	
DFG-EXC 310/2	2014–2018	Regulation mechanisms of DLC1 and their role in tumour cell migration	
Wilhelm-und-Else Heraeus Stiftung DFG-TRR 141 BMBF e:Bio	2015 2014–2018 2013–2016	Summer School The Physics behind Systems Biology Structural design with biological methods Holistic multi-scale modeling of targeted protein therapeutics action	

Publications (max. 10 most relevant)

- I. Eisenkolb, A. Jensch, K. Eisenkolb, A. Kramer, P. Buchholz, J. Pleiss, A. Spiess, and N. Radde. "Modeling of biocatalytic reactions: A workflow for model calibration, selection and validation using Bayesian statistics". In: AiChE J e16866 (2019)
- C. Thomaseth, D. Fey, T. Santra, O. S. Rukhlenko, N. E. Radde, and B. N. Kholodenko. "Impact of measurement noise, experimental design, and estimation methods on Modular Response Analysis based network reconstruction". In: *Scientific reports* 8.1 (2018), p. 16217. DOI: 10.1038/s41598-018-34353-3
- 3. A. Jensch, Y. Frey, K. Bitschar, P. Weber, S. Schmid, A. Hausser, M. A. Olayioye, and N. E. **Radde**. "The tumor suppressor protein DLC1 maintains protein kinase D activity and Golgi secretory function". In: *The Journal of Biological Chemistry* 293.37 (2018), pp. 14407–14416. DOI: 10.1074/jbc.RA118.003787
- A. Jensch, C. Thomaseth, and N. E. Radde. "Sampling-based Bayesian approaches reveal the importance of quasi-bistable behavior in cellular decision processes on the example of the MAPK signaling pathway in PC-12 cell lines". In: *BMC Systems Biology* 11 (2017). DOI: 10.1186/s12918-017-0392-6
- 5. C. Thomaseth, K. Kuritz, F. Allgöwer, and N. **Radde**. "The circuit-breaking algorithm for monotone systems". In: *Mathematical biosciences* 284 (2017), pp. 80–91. DOI: 10.1016/j.mbs.2016.09.002
- 6. E.-M. Geissen, J. Hasenauer, S. Heinrich, S. Hauf, F. J. Theis, and N. E. **Radde**. "MEMO: multi-experiment mixture model analysis of censored data". In: *Bioinformatics (Oxford, England)* 32.16 (2016), pp. 2464–2472. DOI: 10.1093/bioinformatics/btw190
- 7. P. Weber, M. Hornjik, M. A. Olayioye, A. Hausser, and N. E. **Radde**. "A computational model of PKD and CERT interactions at the trans-Golgi network of mammalian cells". In: *BMC Systems Biology* 9 (2015), p. 9. DOI: 10.1186/s12918-015-0147-1
- 8. A. Kramer, B. Calderhead, and N. **Radde**. "Hamiltonian Monte Carlo methods for efficient parameter estimation in steady state dynamical systems". In: *BMC bioinformatics* 15 (2014), p. 253. DOI: 10.1186/1471-2105-15-253
- 9. S. Heinrich, E.-M. Geissen, J. Kamenz, S. Trautmann, C. Widmer, P. Drewe, M. Knop, N. **Radde**, J. Hasenauer, and S. Hauf. "Determinants of robustness in spindle assembly checkpoint signalling". In: *Nature cell biology* 15.11 (2013), pp. 1328–1339. DOI: 10.1038/ncb2864
- 10. N. **Radde**. "Fixed point characterization of biological networks with complex graph topology". In: *Bioinformatics (Oxford, England)* 26.22 (2010), pp. 2874–2880. DOI: 10.1093/bioinformatics/btq517