

<u>Help</u>

sandipan_dey >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Calendar</u> <u>Discussion</u> <u>Notes</u>

()

Next >

2. Bounce

☐ Bookmark this page

< Previous</pre>

Problem Set B due Sep 15, 2021 20:30 IST

Practice

Setup

In <u>Recitation 5</u>, you practiced finding an outgoing velocity vector of a particle that bounces off a wall. In this problem, you will generalize this calculation and express the answer using matrices.

The following image depicts the setup:

In the picture, \vec{v} is the velocity of the projectile before it hits the wall, and \vec{w} is the velocity of the projectile after it hits the wall. The vector \vec{n} is a normal vector to the wall. Assume $|\vec{n}|=1$.

Physics tells us that the angle of incidence equals the angle of reflection – the two marked angles in the picture are equal. It also tells us that if there is no friction, then $|\vec{v}| = |\vec{w}|$. Given \vec{v} and \vec{n} , our goal is to find \vec{w} .

We will break this big problem into several steps. We begin by breaking \vec{v} into a piece parallel to \vec{n} and a piece perpendicular to \vec{n} , as in the following picture.

Find w from a and b

1/1 point (graded)

Find a formula for \vec{w} in terms of \vec{a} and \vec{b} . Write veca and vecb for \vec{a} and \vec{b} .

$$ec{w} = oxed{ ext{veca - vecb}}$$

Submit

You have used 2 of 3 attempts

Find length of b from v and n

1/1 point (graded)

What is the length of the vector \vec{b} ? Enter a formula in terms of \vec{v} and \vec{n} .

Write vecv for \vec{v} and vecn for \vec{n} . You may write a dot product such as $\vec{u} \cdot \vec{w}$ using vecu * vecw.

Submit

You have used 1 of 3 attempts

Could not format HTML for problem. Contact course staff in the discussion forum for assistance.

Find a from v and n

1/1 point (graded)

Find a formula for \vec{a} from \vec{v} and \vec{n} .

Write vecv for \vec{v} and vecn for \vec{n} . You may also write a dot product between two vectors using *. To write a scaled vector such as $2\vec{v}$, enter vecv.

$$ec{a} = oxed{ ext{vecv - (vecv*vecn)*vecn}}$$

Submit

You have used 1 of 3 attempts

Find w from v and n

1/1 point (graded)

Find a formula for $\vec{\boldsymbol{w}}$ from $\vec{\boldsymbol{v}}$ and $\vec{\boldsymbol{n}}$.

Write vecv for \vec{v} and vecn for \vec{n} . You may also write a dot product between two vectors using * . To write a scaled vector such as $2\vec{v}$, enter 2*vecv.

$$ec{w} = \boxed{ ext{vecv - 2*(vecv*vecn)*vecn}}$$

Submit

You have used 1 of 3 attempts

Could not format HTML for problem. Contact course staff in the discussion forum for assistance.

2. Bounce

Topic: Unit 4: Matrices and Linearization / 2. Bounce

Hide Discussion

Add a Post

≺ All Posts

Alternative method: Eigen vectors and Eigen values of M

discussion posted 7 days ago by $\underline{\textbf{yves-M}}$ (Community TA)

I find it fascinating that this problem can be modeled with a Matrix.

- ullet Intuitively $m{M}$ must have $-m{1}$ and $m{1}$ for Eigen values with respective Eigen vectors $m{ec{n}}$ and $m{ec{n}}^\perp$ (a vector perpendicular to $ec{n}$, for example $ec{n}^\perp = \langle -n_2, n_1
 angle$). [Since an incoming particule in the direction of $ec{n}$ should bounce back, while a particule coming along \vec{n}^{\perp} would slide along the wall].
- An indeed, we can check that it is the case of the solution found in (Find the matrix).

With the above intuition, one could have found $m{M}$ by multiplying three matrices. From right to left:

- ullet (a) the change-of-basis matrix (also called transition matrix) $R_{- heta}$ to change basis from $ec{i},ec{j}$ to $ec{n},ec{n}^\perp$
- ullet then (b) $oldsymbol{D}$ a diagonal matrix with -1 and 1 on its diagonal
- then (c) $R_ heta$ to return from $ec{n},ec{n}^\perp$ basis to $ec{i},ec{j}$ basis. Note that $R_{- heta}=R_ heta^T$ (if $|ec{n}|=|ec{n}^\perp|=1$) and $R_ heta$ is easily expressed in terms of $m{n_1}$ and $m{n_2}$

Physics becomes easy when Algebra comes at the rescue:)

This post is visible to everyone.

0 responses

Preview

Submit

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legai

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>