STA 1013: Statistics through Examples

Lecture 7: Measure of Center

Hwiyoung Lee

September 16, 2019

Department of Statistics, Florida State University

Overview

- 1. Measure of Center
 - 1.1 Mean
 - 1.2 Median
 - 1.3 Mode

2. Weighted Mean

Measure of Center

Measure of Center

Measure of Center

- Mean
- Median
- Mode

Mean

The mean is what we most commonly call the average value

$$\mathsf{Mean} = \frac{\mathsf{sum of all values}}{\mathsf{total number of values}} = \frac{\sum_{i=1}^n x_i}{n} = \bar{x}$$

- x_i : i th observation
- $\bullet \ \, \mathsf{Example}: \, 1, 2, 2, 4, 5, 10$

$$\frac{1+2+2+4+5+10}{6}=4$$

4

Mean

- Most familiar measure of center
- Takes every value into account
- Affected by outliers

Example: Annual Income

Name	Annual Income
Tom	\$ 32,000
Larry	\$ 36,000
Susan	\$ 39,000
Paul	\$ 41,000
Marcus	\$ 50,000
Randy	\$ 57,000
Sandy	\$ 60,000
Tim	\$ 75,000
Pam	\$ 80,000
Kim	\$ 95,000

Mean ?

Example: Annual Income

Bill Gates moves to town

Name	Annual Income
Tom	\$ 32,000
Larry	\$ 36,000
Susan	\$ 39,000
Paul	\$ 41,000
Marcus	\$ 50,000
Randy	\$ 57,000
Sandy	\$ 60,000
Tim	\$ 75,000
Pam	\$ 80,000
Kim	\$ 95,000
Bill Gates	\$ 5,000,000,000

Mean ?

Outlier

Outlier

a value that is much higher or much lower than almost all other values.

- Bill Gates's annual income \$ 5,000,000,000 would be an outlier
- An outlier can pull the mean significantly upward (or downward)
- Making the mean unrepresentative of the data set as a whole

Example: Outlier

Example

Imagine that the 5 graduating seniors on a college basketball team receive the following first-year contract offers to play in the NBA (zero indicates that the player did not receive a contract offer):

0 0 0 0	\$ 10,000,000
---------	---------------

Table 1: Graduating seniors NBA contract offer

- Is it therefore fair to say that the average senior on this basketball team received a \$2 million contract offer?
- Not really. The single player receiving the large offer makes the mean much larger than it would be otherwise.

Median

Median: the middle value of the ordered data

- Half of the observations are larger and half are smaller than the Median.
- How to get ?
 - 1. Sort the data ascending order: the lowest value to the highest value.
 - 2. The Median is the (n+1)/2 th observation
 - 3. If n is odd, the median is the middle observation of the ordered array.
 - 4. If n is even, it is midway between the two central observations.
- Median is robust to ourliers

Example (n = odd)

Example: 2, 4, 1, 10, 8, 9, 5

- Sort: 1, 2, 4, 5, 8, 9, 10
- Median : (7+1)/2 th observation
 - 4 th observation : 5
- Q: What happens to the median if we change the 10 to 1,000?

- Mean :
- Q: What happens to the mean if we change the 10 to 1,000?

Example (n = even)

Example: 5, 11, 1, 13, 6, 9, 8, 3

- Sort: 1, 3, 5, 6, 8, 9, 11, 13
- Median : (8+1)/2 th observation
 - ullet 4.5 th observation : average of 4 th and 5 th observation
- Q: What happens to the median if we change the 1 to -1,000?

- Mean :
- Q: What happens to the mean if we change the 1 to -1,000?

Example: Annual Income

Bill Gates moves to town

Name	Annual Income
Tom	\$ 32,000
Larry	\$ 36,000
Susan	\$ 39,000
Paul	\$ 41,000
Marcus	\$ 50,000
Randy	\$ 57,000
Sandy	\$ 60,000
Tim	\$ 75,000
Pam	\$ 80,000
Kim	\$ 95,000
Bill Gates	\$ 5,000,000,000

Median?

Midrange

Midrange

 The value that midway between the maximum and minimum in the data set

$$\mathsf{Midrange} = \frac{\mathsf{Max} + \mathsf{Min}}{2}$$

- Easy to calculate
- Example: 1, 2, 4, 5, 7, 9, 10, 11
 - Midrange :
 - Median :

Midrange

- Because the midrange uses only the maximum and minimum values (ignore all other values), it is very sensitive to those extremes
- Example: 0, 5, 5, 5, 6, 7, 8, 9, 100
 - Midrange:
 - Median :
- Not popular (Rarely used)

Mode

Mode: the value of the data that occurs with the greatest frequency.

Example: 1, 2, 3, 3, 3, 4, 5

- Mean :
- Median :
- Mode :

Mode for skewed data

Example: 5, 5, 5, 6, 6, 7, 8, 9, 10, 11, 100, 500, 1,000,000

- Mean:
- Median :
- Mode :

Mode for Right skewed data

Example: 5, 5, 5, 6, 6, 7, 8, 9, 10, 11, 100, 500, 1,000,000

• Mean: 76,974.77

• Median: 8

• Mode: 5

Mode < Median < Mean

Mode for skewed data

Example: -1,000,000, -500, -100, 6, 6, 7, 7, 7, 8, 8, 8, 8, 10

- Mean :
- Median :
- Mode :

Mode for Left skewed data

Example: -1,000,000, -500, -100, 6, 6, 7, 7, 7, 8, 8, 8, 8, 10

• Mean :-7,732.692

• Median: 7

• Mode: 8

Mode > Median > Mean

Mode

Mean, Median always exist and are always unique

1. The mode may not exist

• Example: 1, 2, 3, 4, 5, 6, 7, 8, 9

2. The mode may not be unique

• Example: 1, 2, 2, 2, 5, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10

Mode for continuous data

Example : Weight data

195.6	200.4	165.6	165.3	191.7	169.3	153.2
						160.3
198.5	163.2	166.3	197.3	201.3	168.2	198.4

• Mean: 177.0952

149.3	150.3	153.2	160.3	163.2	165.3	165.6
166.3						
191.7	195.6	197.3	198.4	198.5	200.4	201.3

Table 2: Sorted weight data

• Median: 170.4

For continuous data, Mode usually does not exist !!

Mode for binned data

Binned weight data

Weight	Count
140 ~ 149.9	1
$150\sim159.9$	2
$160\sim169.9$	7
$170\sim179.9$	2
$180\sim189.9$	2
$190\sim199.9$	5
200 ~ 209.9	2

- **Mode** : the bin with the highest frequency (160 \sim 169.9)
- Binned data will be used for the Histogram

Weighted Mean

Motivation

Suppose two differnt group: A, B

Group	n	Mean
А	10	20
В	30	40

• The overall mean of 40 people

$$\frac{20+40}{2} = 30 ?$$

Totally wrong !!

The sizes of the two different groups must be taken into account

Motivation

Recall the mean formula:

$$\mathsf{Mean} = \frac{\sum_{i=1}^n x_i}{n} = \frac{\mathsf{Total} \; \mathsf{sum} \; \mathsf{of} \; \mathsf{all} \; \mathsf{data} \; \mathsf{values}}{\mathsf{The} \; \mathsf{number} \; \mathsf{of} \; \mathsf{all} \; \mathsf{data} \; \mathsf{values}}$$

Since,

Group A

Total sum :
$$10 \times 20 = 200$$
 ($\because \frac{\text{Total sum of A}}{10} = 20$)

Group B

Total sum : 30
$$\times$$
 40 = 1,200 ($\because \frac{\text{Total sum of B}}{30} = 40$)

Thus,

$$\mathsf{Mean} = \frac{10 \times 20 + 30 \times 40}{40} = \frac{200 + 1,200}{40} = 35$$

Motivation

State	n	Mean
Alabama	n_1	\bar{x}_1
Alaska	n_2	\bar{x}_2
:	:	:
Wisconsin	n_{49}	\bar{x}_{49}
Wyoming	n_{50}	\bar{x}_{50}

Don't do

$$\bar{x}_{usa} = \frac{\bar{x}_1 + \bar{x}_2 + \dots + \bar{x}_{49} + \bar{x}_{50}}{50}$$
 Wrong!!

The sizes of the 50 different states must be taken into account

$$\bar{x}_{usa} = \frac{n_1\bar{x}_1 + n_2\bar{x}_2 + \dots + n_{49}\bar{x}_{49} + n_{50}\bar{x}_{50}}{n_1 + n_2 + \dots + n_{49} + n_{50}}$$

Weighted Mean

A weighted mean accounts for variations in the relative importance of data values.

$$\begin{aligned} \text{Weighted mean} &= \frac{\text{Sum of (each data value} \times \text{its weight)}}{\text{sum of all weights}} \\ &= \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i} \end{aligned}$$

- ullet Each data value is assigned a weight (w_i)
- Weighted means are appropriate whenever the data values vary in their degree of importance

Example: Grade

Grade

Suppose your course grade is based on four quizzes and one final exam. Each quiz counts as 15% of your final grade, and the final counts as 40%. Your quiz scores are 75, 80, 84, and 88, and your final exam score is 96. What is your overall score?

$$\frac{15 \times 75 + 15 \times 80 + 15 \times 84 + 15 \times 88 + 40 \times 96}{15 + 15 + 15 + 15 + 40} = \frac{8745}{100} = 87.45$$

Exercise: Grade

Grade

Suppose your course grade is based on four quizzes and one final exam. Your lowest quiz grade will be dropped, and the other three will equally worth 20% of your grade, and the final counts as 40%. Your quiz scores are 100, 70, 64, and 88, and your final exam score is 96. What is your overall score?

Example: GPA

GPA

Randall has 38 credits with a grade of A, 22 credits with a grade of B, and 7 credits with a grade of C. What is his grade point average (GPA)? Base the GPA on values of 4.0 points for an A, 3.0 points for a B, and 2.0 points for a C.

$$\frac{38 \times 4 + 22 \times 3 + 7 \times 2}{38 + 22 + 7} = \frac{232}{67} = 3.46$$

Exercise: GPA

GPA

Lee has 30 credits with a grade of A, 15 credits with a grade of B, 5 credits with a grade of C, and 3 credits with F. What is his grade point average (GPA)? Base the GPA on values of 4.0 points for an A, 3.0 points for a B, 2.0 points for a C, and 0 points for a F.