Plano de Ensino – Linguagens Formais e Autômatos

Instituto Federal de Educação, Ciência e Tecnologia de Brasília, campus Taguatinga

1 Identificação da Disciplina

• Nome da Disciplina: Linguagens Formais e Autômatos;

• Curso: Computação (ABI);

• Pré-requisitos: Estrutura de Dados e Algoritmos;

• Carga Horária: 72 h/a.

• Período: 2024/2;

• Professor: Daniel Saad Nogueira Nunes.

2 Ementa

Gramáticas. Linguagens Regulares, Livres-de-Contexto e Sensíveis ao Contexto. Tipos de Reconhecedores. Operações com Linguagens. Propriedades das Linguagens. Autômatos de Estados Finitos Determinísticos e não Determinísticos. Autômatos de Pilha. Máquina de Turing. Hierarquia de Chomsky. Funções Recursivas. Tese de Church. Problemas Indecidíveis. Teorema da Incompletude de Godel.

3 Objetivos e Competências

- Abordar modelos, com diferentes poderes computacionais, de modo formal.
- Verificar a limitação dos modelos abordados.
- Estudar as classes de complexidade definidas por esses modelos.

4 Habilidades Esperadas

- Avaliar modelos e suas capacidades computacionais.
- Entender diferentes formalismos computacionais e aplicá-los, adequadamente, na solução de problemas.
- Entender a diferença das linguagens regulares e livres de contexto.

5 Conteúdo Programático

- 1. Introdução à disciplina;
- 2. Autômatos finitos determinísticos (AFDs).
- 3. Autômatos finitos não-determinísticos (AFNs).
- 4. ε -AFNs.
- 5. Expressões regulares.
- 6. Linguagens regulares e suas propriedades.
- 7. Gramáticas livres de contexto.
- 8. Autômatos de pilha.
- 9. Linguagens livres de contexto e suas propriedades.

6 Metodologias de Ensino

Tradicional.

7 Recursos de Ensino

Os recursos de ensinam baseiam-se, mas não são limitados em:

- Computador;
- Internet;
- Quadro branco, pincel e apagador;
- Projetor multimídia;
- Visitas técnicas e participação em eventos;
- Grupo de discussão restrito da disciplina.

8 Avaliação

A nota final é calculada como:

$$N_f = \frac{\sum_{i=1}^2 P_i}{2}$$

Em que P_i denota a nota da i-ésima prova.

O aluno é considerado aprovado se, e somente se, obtiver $N_f \geq 6.0$ e presença $\geq 75\%$.

9 Observações

Será atribuída nota **ZERO** a qualquer avaliação que incidir em plágio.

10 Cronograma

A Tabela 1 descreve o planejamento de atividades da disciplina (sujeito à alterações).

Tabela 1: Cronograma

Data	Conteúdo	Carga-horária
09/10/24	Apresentação da disciplina	4
16/10/24	Conceitos fundamentais e DFAs	4
23/10/24	NFAs	4
30/10/24	Aplicações	4
06/11/24	ε-NFAs	4
13/11/24	Feriado	4
20/11/24	Expressões regulares	0
27/11/24	Laboratório de expressões regulares	4
04/12/24	Linguagens regulares	4
11/12/24	Revisão	4
18/12/24	Prova 1	4
25/12/24	Recesso	0
01/01/25	Recesso	0
08/01/25	Gramáticas livres de contexto	4
15/01/25	Gramáticas livres de contexto	4
22/01/25	Autômatos de pilha	4
29/01/25	Linguagens livres de contexto	4
05/02/25	Prova 2	4
12/02/25	Revisão	4
19/02/25	Prova substitutiva	4
	Total	68

Total 68

Bibliografia

- [HMU07] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman, *Introduction to automata theory, languages, and computation, 3rd edition*, Pearson international edition, Addison-Wesley, 2007.
- [Sip97] Michael Sipser, Introduction to the theory of computation, PWS Publishing Company, 1997.