Exercice 1.

1. (a) On complète l'arbre de probabilités relatif aux trois premières semaines :

(b) A_2 et $\overline{A_2}$ forment une partition de A_1 , d'après la formule des probabilités totales on a :

$$P(A_3) = P(A_2 \cap A_3) + P(\overline{A_2} \cap A_3)$$

$$= P(A_2) \times P_{A_2}(A_3) + P(\overline{A_2}) \times P_{\overline{A_2}}(A_3)$$

$$= 0, 9 \times 0, 9 + 0, 1 \times 0, 4$$

$$= 0, 81 + 0, 04$$

$$= 0, 85$$

(c) Sachant que le client achète un melon au cours de la semaine 3, la probabilité qu'il en ait acheté un au cours de la semaine 2 est :

un au cours de la semaine 2 est :
$$P_{A_3}(A_2) = \frac{P(A_2 \cap A_3)}{P(A_3)} \text{ soit } P_{A_3}(A_2) = \frac{0,9 \times 0,9}{0,85} \approx 0,95.$$

2. (a) On représente un arbre pondéré correspondant aux semaines n et n+1:

 A_n et $\overline{A_n}$ forment une partition de l'univers, d'après la formule des probabilités totales on a :

$$P(A_{n+1}) = P(A_n \cap A_{n+1}) + P(\overline{A_n} \cap A_{n+1})$$

$$= p_n \times 0, 9 + (1 - p_n) \times 0, 4$$

$$= 0, 5p_n + 0, 4$$

$$p_{n+1} = 0, 5p_n + 0, 4$$

(b) Voici le programme complété :

1

30/04/2024

- 4. (a) Soit \mathscr{P}_n la proposition : $p_n > 0, 8$.
 - Initialisation. On sait que $p_1 = 1$ donc $p_1 > 0, 8$: \mathcal{P}_1 est vraie.
 - Hérédité.

Soit $n \in \mathbb{N}^*$. Supposons \mathscr{P}_n vraie c'est-à-dire $p_n > 0, 8$.

D'après l'hypothèse de récurrence, $p_n > 0, 8$ donc $0, 5p_n > 0, 4$ et ainsi $0, 5p_n + 0, 4 > 0, 8$ qui signifie $p_{n+1} > 0, 8$. La proposition est donc vraie au rang n + 1.

• Conclusion.

 \mathscr{P}_1 est vraie et \mathscr{P}_n est héréditaire à partir du rang 1 donne \mathscr{P}_n est vraie pour tout $n \ge 1$.

On a donc démontré que, pour tout entier naturel non nul, $p_n > 0, 8$.

(b) $\forall n \in \mathbb{N}^*$,

$$p_{n+1} - p_n = 0,5p_n + 0,4 - p_n$$
$$= 0,4 - 0,5p_n$$

Or pour tout entier naturel non nul, $p_n > 0.8$ donc $0.5p_n > 0.4$ puis $-0.5p_n < -0.4$ et enfin $0.4 - 0.5p_n < 0.$

On en déduit que, pour tout $n \ge 1$, $p_{n+1} - p_n < 0$ et donc que la suite (p_n) est décroissante.

- (c) La suite (p_n) est décroissante.
 - Dé plus pour tout $n \ge 1$, $p_n > 0$, 8 donc la suite (p_n) est minorée par 0, 8.

D'après le théorème de la convergence monotone, on peut déduire que la suite (p_n) est convergente vers une limite ℓ telle que $\ell \ge 0, 8$.

5. (a) $\forall n \in \mathbb{N}^*$,

$$v_{n+1} = p_{n+1} - 0.8$$

$$= 0.5p_n + 0.4 - 0.8$$

$$= 0.5(v_n + 0.8) - 0.4$$

$$= 0.5v_n$$

Donc la suite (v_n) est géométrique de raison q=0,5 et de premier terme $v_1=p_1-0,8=0,2$.

- (b) On déduit de la question précédente que, pour tout $n \ge 1$, $v_n = v_1 \times q^{n-1}$ donc $v_n = 0, 2 \times 0, 5^{n-1}$. Comme pour tout $n \ge 1$, $p_n = v_n + 0, 8$, on en déduit que $p_n = 0, 8 + 0, 2 \times 0, 5^{n-1}$.
- (c) La suite (v_n) est géométrique de raison 0,5 et -1<0,5<1 donc la suite (v_n) est convergente vers 0. Pour tout n>0, $p_n=v_n+0,8$ donc la suite (p_n) est convergente et a pour limite 0,8.

Exercice 2.

I. Étude d'une fonction f

1. (a) u est dérivable]0; $+\infty[$ et pour tout réel x > 0 on a $u'(x) = 3x^2 + \frac{2}{x} > 0$ qui est la somme de termes positifs.

La fonction u est strictement croissante sur]0; $+\infty[$.

(b) On a $u(1) = 1 - 1 + 2 \ln 1 = 0$.

On sait que la fonction u est strictement croissante sur]0; $+\infty[$ et u(1)=0 donc on en déduit que : u>0 sur]1; $+\infty[$ et u<0 sur]0; 1[.

- 2. Étude de la fonction f
 - (a) Écrivons $\frac{\ln x}{x^2} = \frac{1}{x^2} \times \ln x$.

On a $\lim_{x \to 0} \overset{x^2}{x} = 0$.

Or $\lim_{x\to 0} \frac{1}{x^2} = +\infty$ et $\lim_{x\to 0} \ln x = -\infty$ donc par produit des limites $\lim_{x\to 0} \frac{1}{x^2} \times \ln x = -\infty$ et au final par différence des limites :

$$\lim_{x \to 0} f(x) = +\infty$$

(b) On a $\lim_{x\to +\infty} x = +\infty$ et $\lim_{x\to +\infty} \frac{\ln x}{x^2} = 0$ (limites de cours), donc par différence des limites :

$$\lim_{x \to +\infty} f(x) = +\infty$$

(c) f est dérivable sur]0; $+\infty[$ et pour tout réel x > 0:

$$f'(x) = 1 - \frac{\frac{1}{x} \times x^2 - 2x \ln x}{x^4}$$

$$= 1 - \frac{1 - 2 \ln x}{x^3}$$

$$= \frac{x^3 - 1 + 2 \ln x}{x^3}$$

$$= \frac{u(x)}{x^3}$$

Donc f'(x) est du signe de u(x) puisque $x^3 > 0$ sur]0; $+\infty[$.

D'après la question 1. b. on en déduit que f'(x) > 0 sur]1 ; $+\infty$ [et

$$f'(x) < 0 \text{ sur }]-\infty ; 1[.$$

D'où le tableau de variations de la fonction f sur $[0; +\infty[$ avec f(1) = 1:

x	() $1 + \infty$
Signe de $f'(x)$		- 0 +
Variation de f		$+\infty$ $+\infty$

3. (a) Pour tout réel x > 0 on a $d(x) = -\frac{\ln x}{x^2}$.

On a $x^2 > 0$ donc d(x) est su signe $\operatorname{de} - \ln x$ sur]0; $+\infty[$.

Or
$$-\ln x > 0 \iff \ln x < 0 \iff 0 < x < 1$$
.

De même $-\ln x=0 \iff x=1$ et $-\ln x<0 \iff x>1$ et on en déduit le signe de d(x) sur]0; $+\infty[$:

x	0		1		$+\infty$
signe de $d(x)$		+	0	_	

- Sur]0; 1[, d(x) > 0 donc \mathscr{C} est au dessus de Δ .
- sur $]1; +\infty[$, d(x) < 0 donc \mathscr{C} est en dessous de Δ .
- \mathscr{C} et Δ sont sécantes au point de coordonnées (1 ; 1).

II.Calculs d'aires

1. (a) On a vu que pour $x \ge 1$, $f(x) \le x$; donc $\mathcal{A}(\alpha) = \int_1^{\alpha} \left(x - \left[x - \frac{\ln x}{x^2} \right] \right) dx = \int_1^{\alpha} \frac{\ln x}{x^2} dx$. On pose:

$$\begin{cases} u(x) &= \ln x \\ v'(x) &= \frac{1}{x^2} \end{cases} \implies \begin{cases} u'(x) &= \frac{1}{x} \\ v(x) &= -\frac{1}{x} \text{ par exemple} \end{cases}$$

Avec u et v dérivables sur $[1 ; +\infty[$ à dérivées continues, on intègre par parties :

$$\mathcal{A}(\alpha) = \left[-\frac{\ln x}{x} \right]_{1}^{\alpha} + \int_{1}^{\alpha} \frac{1}{x^{2}} dx$$

$$= \left[-\frac{\ln x}{x} - \frac{1}{x} \right]_{1}^{\alpha}$$

$$= \frac{\ln \alpha}{\alpha} \frac{1}{\alpha} + 0 + 1$$

$$= 1 - \frac{\ln \alpha}{\alpha} - \frac{1}{\alpha}$$

(b) Comme $\lim_{\alpha \to +\infty} \frac{\ln \alpha}{\alpha} = 0$ (limite de cours) et $\lim_{\alpha \to +\infty} \frac{1}{\alpha} = 0$, on a alors

$$\lim_{\alpha \to +\infty} \mathcal{A}(\alpha) = \ell = 1.$$

2. e > 2, on a $\frac{1}{e} < \frac{1}{2} < 1$.

On a vu que dans ce cas la courbe \mathscr{C} est au dessus de la droite (Δ) , donc :

$$\mathcal{A}(\alpha) = \int_{\alpha}^{1} \left[-\frac{\ln x}{x^{2}} \right] dx$$

En intégrant par parties comme précédemment les fonctions étant dérivables sur $[\alpha; 1]$, on obtient

$$\mathcal{A}(\alpha) = \left[\frac{\ln x}{x} + \frac{1}{x}\right]_{\alpha}^{1} = 1 - \frac{\ln \alpha}{\alpha} - \frac{1}{\alpha}.$$

En particulier:

$$\mathcal{A}\left(\frac{1}{e}\right) = 1 - \frac{\ln\frac{1}{e}}{\frac{1}{e}} - \frac{1}{\frac{1}{e}}$$

$$= 1 - \frac{-1}{\frac{1}{e}} - \frac{1}{\frac{1}{e}}$$

$$= 1$$

$$= \ell$$

30/04/2024 4

Exercice 3.

- 1. Calcul d'un angle
 - (a) $\overrightarrow{AB} \begin{pmatrix} -2 \\ 2 \\ -2 \end{pmatrix}$ et $\overrightarrow{AC} \begin{pmatrix} -3 \\ -1 \\ -1 \end{pmatrix}$.

 $\frac{-2}{-3} \neq \frac{2}{-1}$: les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas proportionnelles donc ces vecteurs ne sont pas colinéaires et par suite les points A, B et C ne sont pas alignés.

- (b) $AB^2 = \overrightarrow{AB} \cdot \overrightarrow{AB}$ donc $AB^2 = 4 + 4 + 4 = 3 \times 4$ et $AB = 2\sqrt{3}$ (vu que AB > 0); De même $AC^2 = 9 + 1 + 1 = 11$, donc $AC = \sqrt{11}$.
- (c) D'une part $\overrightarrow{AB} \cdot \overrightarrow{AC} = 6 2 + 2 = 6$:
 - D'autre part $\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \times \overrightarrow{AC} \times \cos \widehat{BAC}$.

On a donc
$$6 = 2\sqrt{3} \times \sqrt{11} \times \cos \widehat{\text{BAC}} \iff \cos \widehat{\text{BAC}} = \frac{6}{2\sqrt{3} \times \sqrt{11}} = \frac{3}{\sqrt{33}}$$
.

La calculatrice donne $\widehat{BAC} \approx 58,51$, soit $58,5^{\circ}$ au dixième près.

2. Calcul d'une aire

(a) Soit
$$M(x \; ; \; y \; ; \; z)$$
 un point de \mathcal{P} . On a $M(x \; ; \; y \; ; \; z) \in \mathcal{P} \iff \overrightarrow{CM} \cdot \overrightarrow{AB} = 0$.
Avec $\overrightarrow{CM} \begin{pmatrix} x+1 \\ y+1 \\ z-2 \end{pmatrix}$, on obtient :

$$-2(x+1) + 2(y+1) - 2(z-2) = 0 \iff -(x+1) + (y+1) - (z-2) = 0 \iff -x + y - z + 2 = 0.$$

$$(z-2)$$

$$-2(x+1)+2(y+1)-2(z-2)=0 \iff -(x+1)+(y+1)-(z-2)=0 \iff -x+y-z+2=0.$$
(b) La droite (AB) passe par le point A et est dirigée par le vecteur $\frac{1}{2}\overrightarrow{AB}$ par exemple donc une représentation paramétrique de la droite (AB) est :
$$\begin{cases} x=2-t \\ y=t \\ z=3-t \end{cases}$$

(c) Soit E le projeté orthogonal de C sur (AB) : le point E appartient donc au plan \mathcal{P} et à la droite (AB); ses coordonnées vérifient donc'l'équation de \mathcal{P} et les équations paramétriques de (AB), donc le système :

$$\begin{cases} -x+y-z+2 &= 0 \\ x &= 2-t \\ y &= t \\ z &= 3-t \end{cases}, t \in \mathbb{R} ; \text{ en remplaçant } x, y \text{ et } z \text{ par leurs expressions en fonction}$$

de t dans l'équation de \mathcal{P} on obtient :

$$-2 + t + t - 3 + t + 2 = 0 \iff 3t - 3 = 0 \iff t = 1.$$

On a donc E(1; 1; 2).

30/04/2024

(d) On a $\overrightarrow{BC} \begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix}$, d'où $BC^2 = 1 + 9 + 1 = 11$ et $BC = \sqrt{11}$.

Comme $AC = BC = \sqrt{11}$, le triangle ABC est isocèle en C; or on a vu que E est le projeté de C sur la droite (AB), donc dans le triangle isocèle (ABC), [CE] est la hauteur relative à la base [AB].

5

On a
$$\overrightarrow{CE}$$
 $\begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$, d'où $CE^2 = 1 + 4 = 8$ et $CE = 2\sqrt{2}$.

L'aire du triangle (ABC) est donc égale à :

$$\mathcal{A}(\mathrm{ABC}) = \frac{\mathrm{AB} \times \mathrm{CE}}{2} = \frac{2\sqrt{3} \times 2\sqrt{2}}{2} = 2\sqrt{6} \text{ u.a.}$$

- 3. Calcul d'un volume
 - (a) $F \in (ABC) \iff il \text{ existe } \alpha \in \mathbb{R}, \ \beta \in \mathbb{R}, \text{ tels que} : \overrightarrow{AF} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$

$$\iff \left\{ \begin{array}{rcl} -1 & = & -2\alpha - 3\beta \\ -1 & = & 2\alpha - \beta \\ 0 & = & -2\alpha - \beta \end{array} \right..$$

En ajoutant membre à membre les deux dernières équations on obtient $-1 = -2\beta \iff \beta = \frac{1}{2}$ et en remplaçant β par $\frac{1}{2}$ dans la première équation $-1 = -2\alpha + \frac{3}{2} \iff 2\alpha = 1 - \frac{3}{2} = -\frac{1}{2} \iff$ $\alpha = -\frac{1}{4}$.

Donc $\overrightarrow{AF} = -\frac{1}{4}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$: les quatre points A, B, C et F sont coplanaires.

(b) Avec \overrightarrow{FD} $\begin{pmatrix} 2 \\ -2 \\ -4 \end{pmatrix}$, on peut calculer : $\overrightarrow{FD} \cdot \overrightarrow{AB} = -2 - 2 + 4 = 0 \text{ et}$ $\overrightarrow{FD} \cdot \overrightarrow{AC} = -6 + 2 + 4 = 0.$

$$\overrightarrow{FD} \cdot \overrightarrow{AB} = -2 - 2 + 4 = 0 \text{ et}$$

$$\overrightarrow{FD} \cdot \overrightarrow{AC} = -6 + 2 + 4 = 0.$$

Le vecteur \overrightarrow{FD} est donc orthogonal à deux vecteurs non colinéaires du plan (ABC) : il est donc orthogonal à ce plan, ou encore la droite (FD) est orthogonale au plan (ABC).

(c) Si l'on choisit comme base le triangle (ABC), la hauteur de ce tétraèdre est donc [FD] et la volume est égal à :

$$V(ABCD) = \frac{1}{3} \times A(ABC) \times FD$$

$$\begin{split} \mathcal{V}(ABCD) &= \frac{1}{3} \times \mathcal{A}(ABC) \times FD \\ Avec\ FD^2 &= 4+4+16=24, \ on \ trouve\ FD = \sqrt{24} = \sqrt{4\times6} = 2\sqrt{6}, \ d'où : \end{split}$$

$$\mathcal{V}(ABCD) = \frac{1}{3} \times 2\sqrt{6} \times 2\sqrt{6}$$

$$= \frac{4 \times 6}{3}$$

$$= 8 \text{ u.v}$$

Exercice 4. On considère l'équation différentielle

(E):
$$y' - y = e^x$$
.

1. u est dérivable sur \mathbb{R} et pour tout réel x on a :

$$u'(x) = e^x + xe^x$$

$$u'(x) - u(x) = e^x$$

u est donc une solution de (E).

- 2. (E_0) : $y'-y=0 \iff y'=y$: les solutions de (E_0) sont les fonctions définies et dérivables sur \mathbb{R} telles que $x \longmapsto Ce^x$, $C \in \mathbb{R}$.
- 3. Toutes les solutions de (E) sont donc les fonctions définies et dérivables sur $\mathbb R$ telles que :

$$x \longmapsto (C+x)e^x, C \in \mathbb{R}$$

4. On pose $f_2(x) = (C+x)e^x$. $f_2(0) = 2 \iff C = 2$ et ainsi :

$$f_2(x) = (x+2)e^x$$

5. g est dérivable sur \mathbb{R} et pour tout réel x on a $g'(x) = e^x + (x+k)e^x$ soit $g'(x) = (x+k+1)e^x$. De même g' est dérivable sur \mathbb{R} et $g''(x) = (x+k+2)e^x$. Pour tout réel x on a $e^x > 0$ donc g''(x) est du signe de x+k+2.

Or $x+k+2=0 \Longleftrightarrow x=-k-2$: on en déduit le signe de g''(x) sur $\mathbb R$:

x	$-\infty$	-k-2		$+\infty$
signe de $g'('x)$	_	0	+	

g change de convexité au point d'abscisse -k-2 et $g(-k-2)=(-k-2+2)\mathrm{e}^{-2-k}=-2\mathrm{e}^{-2-k}$: le point $A_k(-2-k\,;\,-2\mathrm{e}^{-2-k})$ est l'unique point d'inflexion de \mathscr{C}_g .