For every $\epsilon > 0$, there is some $\eta > 0$, such that, for every $x \in A$,

if
$$||x - a||_E \le \eta$$
, then $||f(x) - b||_F \le \epsilon$.

We have the following result relating continuity at a point and the previous notion.

Proposition 37.14. Let (E, \mathcal{O}_E) and (F, \mathcal{O}_F) be two topological spaces, and let $f: E \to F$ be a function. For any $a \in E$, the function f is continuous at a iff f(x) approaches f(a) when x approaches a (with values in E).

Proof. Left as a trivial exercise.

Another important proposition relating the notion of convergence of a sequence to continuity, is stated without proof.

Proposition 37.15. Let (E, \mathcal{O}_E) and (F, \mathcal{O}_F) be two topological spaces, and let $f: E \to F$ be a function.

- (1) If f is continuous, then for every sequence $(x_n)_{n\in\mathbb{N}}$ in E, if (x_n) converges to a, then $(f(x_n))$ converges to f(a).
- (2) If E is a metric space, and $(f(x_n))$ converges to f(a) whenever (x_n) converges to a, for every sequence $(x_n)_{n\in\mathbb{N}}$ in E, then f is continuous.

A special case of Definition 37.20 will be used when E and F are (nontrivial) normed vector spaces with norms $\| \cdot \|_E$ and $\| \cdot \|_F$. Let U be any nonempty open subset of E. We showed earlier that E has no isolated points and that every set $\{v\}$ is closed, for every $v \in E$. Since E is nontrivial, for every $v \in U$, there is a nontrivial open ball contained in U (an open ball not reduced to its center). Then, for every $v \in U$, $A = U - \{v\}$ is open and nonempty, and clearly, $v \in \overline{A}$. For any $v \in U$, if f(x) approaches b when x approaches v with values in $A = U - \{v\}$, we say that f(x) approaches b when v approaches v with values v in v. This is denoted by

$$\lim_{x \to v, x \in U, x \neq v} f(x) = b.$$

Remark: Variations of the above case show up in the following case: $E = \mathbb{R}$, and F is some arbitrary topological space. Let A be some nonempty subset of \mathbb{R} , and let $f: A \to F$ be some function. For any $a \in A$, we say that f is continuous on the right at a if

$$\lim_{x \to a, x \in A \cap [a, +\infty)} f(x) = f(a).$$

We can define *continuity on the left* at a in a similar fashion.

Let us consider another variation. Let A be some nonempty subset of \mathbb{R} , and let $f: A \to F$ be some function. For any $a \in A$, we say that f has a discontinuity of the first kind at a if

$$\lim_{x \to a, x \in A \cap (-\infty, a)} f(x) = f(a_{-})$$