

现代密码学

SM3密码杂凑算法

信息与软件工程学院

SM3密码杂凑算法

- SM3是中国国家密码管理局颁布的中国商用密码标准算法,它是一类密码杂凑函数,可用于数字签名及验证、消息认证码生成及验证、随机数生成。
- 标准起草人: 王小云、李峥、于红波、张超、罗鹏、吕述望
- · 2012年3月,成为中国商用密码标准(GM/T 0004-2012)
- · 2016年8月,成为中国国家密码标准(GB/T 32905-2016)
- · 2018年11月22日,含有我国SM3杂凑密码算法的ISO/IEC 10118-3:2018《信息安全技术杂凑函数第3部分:专用杂凑函数》最新一版(第4版)由国际标准化组织(ISO)发布,SM3算法正式成为国际标准。

算法的输入数据长度为l比特, $l < 2^{64}$ 输出哈希值长度为256比特。

- 1. 常数与函数
- (1) 常数

初始值

IV = 7380166F4914B2B9

172442*D*7*D*A8*A*0600

A96F30BC163138AA

E38DEE4DB0FB0E4E

常量

$$T_j = \begin{cases} 79\text{CC}4519, & 0 \le j \le 15 \\ 7\text{A}879\text{D}8\text{A}, & 16 \le j \le 63 \end{cases}$$

(2) 函数

五中 X,Y,Z为32位字, $\wedge, \vee, -, \oplus$ 分别是逻辑与、逻辑布尔函数: 或、逻辑非和逐比特异或运算

$$FF_{j}(X,Y,Z) = \begin{cases} X \oplus Y \oplus Z, \\ (X \wedge Y) \vee (X \wedge Z) \vee (Y \wedge Z), \end{cases}$$

$$GG_{j}(X,Y,Z) = \begin{cases} X \oplus Y \oplus Z, \\ (X \wedge Y) \vee (\overline{X} \wedge Z), \end{cases}$$

 $0 \le j \le 15$

 $16 \le j \le 63$

 $0 \le j \le 15$

 $16 \le j \le 63$

混淆

置换函数:

$$P_0(X) = X \oplus (X <<< 9) \oplus (X <<< 17);$$
 扩散 $P_1(X) = X \oplus (X <<< 15) \oplus (X <<< 23).$

式中X为32位字,符号a <<< n表示把a循环左移n位。

2. 算法描述

算法对数据首先进行填充,再进行迭代压缩后生成哈希值。

- (1) 填充并附加消息的长度
 - > 对消息填充的目的是使填充后的数据长度为512的整数倍。
 - \triangleright 设消息m的长度为l比特。首先将比特"1"添加到m的末尾,再添加k个"0", 其中k满足

$l+1+k=448 \mod 512$

▶ 然后再添加一个64位比特串,该比特串是长度l的二进制表示。

举例:消息为011000010110001001100011,其长度为*l*=24,填充后的比

特串为

423个0 64比特

(2) 迭代压缩

将填充后的消息 m' 按512比特进行分组得 $m' = B^{(0)}B^{(1)} \cdots B^{(L-1)}$ 对 m'按下列方式迭代压缩:

FOR
$$i=0$$
 to $L-1$ $V^{(i+1)} = CF(V^{(i)}, B^{(i)})$

其中 CF是压缩函数, $V^{(i)}$ 为 256比特初始值 IV, $B^{(i)}$ 为填充后的消息分组, 迭代压缩的结果为 $V^{(L)}$, $V^{(L)}$ 即为消息 m的哈希值。

- ① 消息分组 $B^{(i)}$ 划分为16个字 $W_0, W_1, ..., W_{15}$ 。
- ② FOR j=16 to 67 $W_{j} = P_{1} \Big(W_{j-16} \oplus W_{j-9} \oplus \Big(W_{j-3} <<<15 \Big) \Big) \oplus \Big(W_{j-13} <<<7 \Big) \oplus W_{j-6}$

 $B^{(i)}$ 经消息扩展后得到132个字 $W_0, W_1, \dots, W_{67}, W_0', W_1', \dots, W_{63}'$ 。

(4) 压缩函数

设A,B,C,D,E,F,G,H为字寄存器 $,SS_1,SS_2,TT_1,TT_2$ 为中间变量, 压缩函数 $V^{(i+1)} = CF(V^{(i)},B^{(i)}) (0 \le i \le n-1)$ 的计算过程如下:

$$ABCDEFGH = V^{(i)}$$

FOR
$$j=0$$
 to 63

$$SS_1 \leftarrow ((A <<< 12) + E + (T_j <<< j)) <<< 7;$$

$$SS_2 = SS_1 \oplus (A <<< 12);$$

$$TT_1 = FF_j(A, B, C) + D + SS_2 + W'_j;$$

$$TT_2 = GG_j(E, F, G) + H + SS_1 + W_j;$$

$$D = C$$
;

$$C = B <<< 9;$$

$$B=A;$$

$$A = TT_1;$$
 $H = G;$
 $G = F <<<19;$
 $F = E;$
 $E = P_0(TT_2)$
 $ENDFOR$
 $V^{(i+1)} = ABCDEFGH \oplus V^{(i)}$

其中 + 为模 232 加运算, 字的存储为大端格式

SM3密码杂

$$ABCDEFGH = V^{(i)}$$

FOR
$$j=0$$
 to 63

$$SS_1 \leftarrow \left((A <<< 12) + E + \left(T_j <<< j \right) \right) <<< 7;$$

$$SS_2 = SS_1 \oplus (A <<< 12);$$

$$TT_1 = FF_i(A, B, C) + D + SS_2 + W_i';$$

$$TT_2 = GG_j(E, F, G) + H + SS_1 + W_j;$$

$$D = C ;$$

$$C = B <<<9;$$

$$B = A$$
;

$$A_0 = T T_1$$
;

$$H = G ;$$

$$G = F <<<19;$$

$$F = E;$$

$$E = P_0 (TT_2)$$

ENDFOR

$$V^{(i+1)} = ABCDEFGH \oplus V^{(i)}$$

 $Tj = \begin{cases} 79cc4519 & 0 \le j \le 15 \\ 7a879d8a & 16 \le j \le 63 \end{cases}$

$$FF_{j}(X,Y,Z) = \begin{cases} X \oplus Y \oplus Z \\ (X \wedge Y) \vee (X \wedge Z) \vee (Y \wedge Z) \end{cases}$$

$$GG_{j}(X,Y,Z) = \begin{cases} X \bigoplus Y \bigoplus Z \\ (X \land Y) \lor (\sim X \land Z) \end{cases}$$

 $0 \le j \le 15$ $16 \le j \le 63$

(5) 输出哈希值

$$ABCDEFGH = V^{(L)}$$

输出 256 比特的哈希值 y=ABCDEFGH。

SM3产生消息哈希值的处理过程

SM3哈希算法的安全性

- > 压缩函数是哈希函数安全的关键
 - \triangleright SM3的压缩函数 CF 中的布尔函数 $FF_j(X,Y,Z)$ 和 $GG_j(X,Y,Z)$ 是非线性函数,经过循环迭代后提供混淆作用
 - \triangleright 置换函数 $P_0(X)$ 和 $P_1(X)$ 是线性函数,经过循环迭代后提供扩散作用。
 - ▶ 再加上 CF 中的其他运算的共同作用,压缩函数 CF 具有很高的安全性,从而确保SM3具有很高的安全性。

算法比较

王小云,于红波. SM3密码杂凑算 法[J]. 信息安全研究, 2016(11).

表 2 SM3 密码杂凑算法和其他标准的 ASIC 实现

	算法	面积 (gates)	时钟 /MHz	吞吐量 /Mbps	吞吐量面积比 /(Kbps/gate)	
	SM3 ^[10]	11 068	216.00	1 619	146. 28	
	SHA-256 ^[11]	15 400	189.75	1 349	87. 60	
	SHA-512 ^[11]	30 747	169.20	1 969	64.04	
	Whirlpool [11]	38 911	101.94	2 485	63. 86	
	SHA-3 ^[12]	56 320	487.80	21 229	376.94	

表 5 SM3 密码杂凑算法和其他杂凑标准的最好分析结果

算法	攻击类型	步(轮)数	百分比/%	文献
SM3	碰撞攻击	20	31	[18]
	原像攻击	30	47	[24-25]
	区分器攻击	37	58	[27]
SHA-1	碰撞攻击	80	100	[4,28-29]
	原像攻击	62	77. 5	[30]
RIPEMD-128	碰撞攻击	40	62. 5	[31]
	原像攻击	36	56. 25	[32]
	区分器攻击	64	100	[33]
RIPEMD-160	原像攻击	34	53. 12	[34]
	区分器攻击	51	79. 68	[35]
SHA-256	碰撞攻击	31	48. 4	[36]
	原像攻击	45	70. 3	[23]
	区分器攻击	47	73. 4	[37]
Whirlpool	碰撞攻击	8	80	[38]
	原像攻击	6	60	[38]
	区分器攻击	10	100	[39]
Stribog	碰撞攻击	7. 5	62.5	[40]
	原像攻击	6	50	[41]
KECCAK-256	碰撞攻击	5	20. 8	[42]
	原像攻击	2	8	[43]
	区分器攻击	24	100	[44]
KECCAK-512	碰撞攻击	3	12.5	[42]
	区分器攻击	24	100	[44]

感谢聆听! xynie@uestc.edu.cn