Problems for Lecture 5

Group #2 of Cohort #2

Group member: Georgios Terzakis, Yue Yu, Xiaoqing Lu, Chong Cao

Download the daily returns for S&P500 value-weighted index with dividends (01/03/1972 - 12/30/2017) from CRSP. What was the average arithmetic and geometric historical mean rate of return for daily returns, for monthly returns, and for annual returns from 01/03/1972 through 12/30/2017, and for 5-year returns from 01/03/1972 through 12/30/2016? Make sure to annualize the returns you report.

S&P500 vwretd

	Arithmetic Average (%)	Geometric Average (%)
Daily	11.50	10.60
Monthly	11.24	10.58
Yearly	11.92	10.42
Five-Yearly	14.77	9.33

Arithmetic Average:
$$R = \frac{1}{n} \sum_{i=1}^{n} r_i = \frac{r_1 + r_2 + \dots + r_n}{n}$$

Geometric Average:
$$R = \left[\prod_{i=1}^{n} (1+r_i) \right]^{\frac{1}{n}} - 1 = \sqrt[n]{(1+r_1) \times (1+r_2) \times ... \times (1+r_n)} - 1$$

To annualize the returns

Arithmetic Average:
$$R_{annual} = m \times \frac{1}{n} \sum_{i=1}^{n} r_i = m \times \frac{r_1 + r_2 + \dots + r_n}{n}$$

Geometric Average:
$$R_{annual} = \left[\prod_{i=1}^{n} (1+r_i) \right]^{\frac{1}{n} \times m} - 1 = \frac{\frac{n}{m}}{\sqrt{(1+r_1) \times (1+r_2) \times \ldots \times (1+r_n)}} - 1$$

where m is the number of periods within one year, e.g. m = 12 for monthly return data.