

University College Dublin An Coláiste Ollscoile, Baile Átha Cliath

CPU

Dr. Vivek Nallur (vivek.Nallur@ucd.ie)

CPU

Short introduction – not in exam, just for general knowledge

What is a CPU?

- It is a Central processing Unit
 - It performs the basic functions of a computer
 - Normally comprises of two units
 - Arithmetic Logic Unit(ALU)
 - Control Unit (CU)

A CPU is a Turning Machine

State Machines

- Called non-writing machines
- Have no control on their external input
- Cannot "write" or change their inputs
- ☐ Turing Machine after A. M. Turing
 - A writing machine
 - ☐ Finite State Machine capable of modifying its own input symbols
 - Fundamental Theoretical Model of all digital computers

Turing Machine

- Tape divided into squares each contains a symbol (blank squares store a 0)
- Head has 3 operations:
 - Read symbol in square being scanned
 - Write new symbol in scanned square
 - Shift tape 1 square in either direction

Imaginary Machine

Cycle of Computation

- 1. Start in state S_i
- 2. Read symbol under head
- 3. Write new symbol
- 4. Shift left/right
- 5. Enter new state S_i

Turing Machine Properties

- Anything a Universal Turing Machine can do, a digital computer can do
- Anything a Universal Turing Machine cannot do, a digital computer cannot do
- Emulation A Universal Turing Machine can mimic or emulate the behaviour of any other Turing Machine (and therefore, so can a computer)

The Halting Problem

- A Universal Turing Machine (and therefore a computer) cannot predict when the computation of another Turing Machine will ever halt (complete)
- Given a program description and finite input we cannot determine if the program will complete or run forever given that input

CPU -

CPU-Control unit

- CU has many function but the most important is controlling the flow of a program.
- The CPU knows where the next instruction is by using a special register known as a Program Counter, also know as an instruction pointer in x86
- These tells it where the next part of a program sequence will be.

CPU - ALU

- To add two numbers together the CPU would through its ALU perform the following actions
 - Copy the first number into a register (A)
 - Copy the second number into a register (B)
 - Execute a function using the ALU to add the numbers
 - The ALU will process the numbers and place the result in a register C or simply write over the contents of Register A

CPU Fetch Execute Cycle

Fetching-Where is the code from?

