RS/Conference2019

San Francisco | March 4–8 | Moscone Center

SESSION ID: LAB3-R09

Blockchain, Cryptocurrency, Smart Contracts and Initial Coin Offerings: A Technical Perspective

Tom Plunkett

Consulting Solutions Director Oracle

Captain Brittany Snelgrove

United States Marine Corps

Captain Brandan Schofield

United States Marine Corps

Agenda

Blockchain and Cryptocurrency Overview
Cryptography: Hashes, Digital Signatures, PKI
Bitcoin and Blockchain
Ethereum and Solidity
Identity and Access Management with Blockchain
Bitcoin Lab Demo
Ethereum Lab Demo

Blockchain and Cryptocurrency

- Over 6000 Cryptocurrencies exist, and over 1000 new ones being created every year.
- VCs invested over \$3 billion in 2018.
- Initial Coin Offerings over \$15 billion in 2018.
- Over 3000 blockchain patent applications filed.
- Over 30 Presentations at RSA Conference about Blockchain

Hash functions:

```
takes any string as input fixed-size output (example 256 bits) efficiently computable Security properties:
```

collision-free (Nobody can find x and y such that x != y and H(x)=H(y))

hiding (Given H(x), infeasible to find x)
puzzle-friendly (best search strategy is to just try
random values of x)

Hash as message digest

If we know H(x) = H(y), it's safe to assume that x = y.

To recognize a file that we saw before, just remember its hash.

Useful because the hash is small.

Hash as a Commitment

Want to "seal a value in an envelope", and "open the envelope" later.

Commit to a value, reveal it later.

linked list with hash pointers = "block chain"

use case: tamper-evident log

binary tree with hash pointers = "Merkle tree"

Digital Signatures, Public/Secret Keys

Digital Signatures

```
"valid signatures verify"
    verify(pk, message, sign(sk, message)) == true
"can't forge signatures"
    adversary who:
        knows pk
        gets to see signatures on messages of his choice
        can't produce a verifiable signature on another message
```

Aspects of decentralization in Bitcoin

- 1. Who maintains the ledger?
- 2. Who has authority over which transactions are valid?
- 3. Who creates new bitcoins?
- 4. Who determines how the rules of the system change?
- 5. How do bitcoins acquire exchange value?

Beyond the protocol: exchanges, wallet software, service providers...

Aspects of decentralization in Bitcoin

Peer-to-peer network: open to anyone, low barrier to entry

Mining:

open to anyone, but inevitable concentration of power often seen as undesirable

Updates to software:

core developers trusted by community, have great power

pistributed consensus

Key technical challenge of decentralized electronic cash: distributed consensus

Definition: The protocol terminates and all correct nodes decide on the same value. This value must have been proposed by some correct node.

Bitcoin is a peer-to-peer system

When Alice wants to pay Bob: she broadcasts the transaction to all Bitcoin nodes

Note: Bob's computer is not in the picture

Why consensus is hard

Nodes may crash Nodes may be malicious

Network is imperfect

- Not all pairs of nodes connected
- Faults in network
- Latency

What can a malicious node do?

Doublespending attack

Honest nodes will extend the longest valid branch

From Bob the merchant's point of view

Incentives: block rewards and mining fees

Creator of block gets to

- include special coin-creation transaction in the block
- choose recipient address of this transaction

Block creator gets to "collect" the block reward only if the block ends up on long-term consensus branch!

Transaction Fees: Creator of transaction can choose to make output value less than input value. Remainder is a transaction fee and goes to block creator

Proof of work

To approximate selecting a random node: select nodes in proportion to a resource that no one can monopolize (we hope)

- In proportion to computing power: proof-of-work
- In proportion to ownership: proof-of-stake

Hash puzzles

To create block, find nonce s.t.

H(nonce | prev_hash | tx | ... | tx) is very small

Target space

If hash function is secure:

only way to succeed is to try enough nonces until you get lucky

Mining economics

If mining reward (block reward + Tx fees) > hardware + electricity cost → Profit

Complications:

- fixed vs. variable costs
- reward depends on global hash rate

A transaction-based ledger (Bitcoin)

Inputs: Ø time Outputs: 25.0→Alice change address Inputs: 1[0] Outputs: $17.0 \rightarrow Bob$, $8.0 \rightarrow Alice$ SIGNED(Alice) Inputs: 2[0] Outputs: $8.0 \rightarrow Carol, 7.0 \rightarrow Bob$ SIGNED(Bob) Inputs: 2[1] Outputs: 6.0→David, 2.0→Alice SIGNED(Alice)

we implement this with hash pointers

finite scan to check for validity

is this valid?

SIMPLIFICATION: only one transaction per block

Bitcoin script execution example

Bitcoin block structure

Hash chain of blocks

Storing Private Keys: store key in a file, on your computer or phone

Very convenient.

As available as your device.

device lost/wiped \Rightarrow key lost \Rightarrow coins

As secure as your device.

device compromised \Rightarrow key leaked \Rightarrow coins stolen

Evolution of Bitcoin mining

gold pan

sluice box

placer mining

pit mining

Professional mining centers

Needs: cheap power good network cool climate

BitFury mining center, Republic of Georgia

Identifying Addresses By Spending

Shared spending is evidence of joint control

Addresses can be linked transitively

Bitcoin links

- https://bitcoin.org/bitcoin.pdf
- https://github.com/bitcoinbook/bitcoinbook/blob/develop/book.asciidoc
- https://p2sh.info/dashboard/db/home-dashboard?orgld=1
- https://github.com/petertodd/python-bitcoinlib
- https://en.bitcoin.it/wiki/Script
- https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html
- http://cs251crypto.stanford.edu/18au-cs251/
- http://bitcoinbook.cs.princeton.edu/

Ethereum

- Solidity programming language: similar to Java/Javascript, with cryptocurrency functionality built in
- Smart Contracts are the Solidity equivalent of java classes that run on a blockchain in an Ethereum virtual machine
- Transaction costs in Solidity are called gas costs. Everything that executes on the blockchain has a
 gas cost associated with it.
- Security is very important. Solidity has greater capabilities than Bitcoin Script, and far greater security vulnerabilities.

Ethereum and Solidity links

- http://bit.do/cs251solidity
- https://remix.ethereum.org/
- https://coursetro.com/posts/code/97/Ethereum-Smart-Contracts:-Variables-and-Types-Tutorial

Identity and Access Management with Blockchain on GCSS-MC

Capt Brandan Schofield Capt Brittany Snelgrove

Evolve the MAGTF, operate with resilience, and enhance the Marine Corps' maneuverability

- Marine Corps Operating Concept

- What is GCSS-MC?
- Current architecture
- Research Questions
- What is blockchain?
- Proposed architecture
- Benefits
- Timeline
- Questions

What is GCSS-MC?

- USMC's Supply and Maintenance Management Web-enabled Dataresource
- Used to manage, control, identify and distribute ground supplies and coordinate maintenance actions for all ground Marine units
- Software Oracle E-Business Suite (EBS) version R12
- 3 Tier System
 - Database Tier
 - Application Tier
 - Client Tier
- Requires Internet Connection to function
- Access Management
 - Oracle Access Management (OAM) using Online Certificate Status Protocol (OCSP) part of PKI terminating at CONUS based DISA Servers

Current Architecture

Problem: 67% of user transaction time devoted to DISA check 13.5% of network overhead (Mbps)

Current Physical Architecture

Typical Oracle Access Management

Research Questions

- 1. How can a blockchain database be used to authenticate clients on the GCSS-MC web-enabled data resource? (Experimentation)
- How can a blockchain database be feasibly acquisitioned and integrated into the current GCSS-MC architecture? (Qualitative)

Proposed Architecture

Proposed Architecture

Proposed Logical Architecture

Blockchain Access Management

Benefits

- Decentralized user authentication
- Network overhead potentially reduced
- No DMZ required (trustless system)
- No expensive centralized web-servers and data-stores
- Potential increase in availability for remote users
- Policy enforcement through algorithm
 - "Trust through algorithm"

Communicate
Maneuver Identity Shoot S Move
Targe Network Access Blockchain Bandwidth

Target Access and Identity Sustainment Access and Identity Sustain.

Access and Identity Sustain.

Management Information
Cyber Security
Logistics & Cyber
Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Cyber

Logistics & Sustainment

Bitcoin Lab Demo #1

Ethereum Lab Demo #1