

${\bf Contents}$

1	Wh	at is Deligne-Mumford Stack?	1
2	Characterization of DM stacks		1
3	Local Structure of Deligne-Mumford Stacks		2
4	Coarse Moduli		2
5	Keel-Mori Theorem		2
	5.1	Quotient stack of affine scheme by finite group defines a coarser moduli	2
	5.2	Luna's etale slice theorem	2
	5.3	Descending etale morphism to geometric quotient	2
	5.4	Keel-Mori Theorem	2
6	Geometry of Deligne-Mumford Stack		3
	6.1	Criterion for vector bundle on DM stack descent to coarse moduli	3
	6.2	Deligne–Mumford stack has a finite cover by scheme	3
	6.3	Zariski Main theorem	3
	6.4	Chow Lemma	3
7	Examples		9
	7.1	Moduli of smooth curves as a Deligne-Mumford Stack	9
1	W	What is Deligne-Mumford Stack?	
2	Characterization of DM stacks		
		em 1. Let \mathcal{X} be an algebraic stack. The following are equivalent: stack \mathcal{X} is a Deligne-Mumford:	

- (2) the diagonal $\mathcal{X} \to \mathcal{X} \times \mathcal{X}$ is unramified; and
- (3) every point of \mathcal{X} has a discrete and reduced stabilizer group.

If \mathcal{X} has quasi-compact diagonal (e.g., \mathcal{X} is quasi-separated), then (3) is equivalent to requiring that every stabilizer is finite and reduced.

Theorem 2. Let $G \to S$ be a smooth affine group scheme acting on an algebraic space U over S. Then (1) [U/G] is Deligne-Mumford if and only if every point of U has a discrete and reduced stabilizer group, or equivalently if and only if the action map $G \times U \to U \times U$ is unramified. (2) [U/G] is an algebraic space if and only if every point of U has a trivial stabilizer group, or equivalently if and only if the action map $G \times U \to U \times U$ is a monomorphism.

3 Local Structure of Deligne-Mumford Stacks

Theorem 3. Let \mathcal{X} be a quasi-separated Deligne-Mumford stack and $x \in |\mathcal{X}|$ be a finite type point with geometric stabilizer G_x . There exists an étale morphism

$$f: ([\operatorname{Spec} A/G_x], w) \to (\mathcal{X}, x)$$

where $w \in [\operatorname{Spec} A/G_x]$ such that f induces an isomorphism of geometric stabilizer groups at w. Moreover, if \mathcal{X} has separated (resp., affine) diagonal, then it can be arranged that f is representable and separated (resp., affine).

4 Coarse Moduli

5 Keel-Mori Theorem

- 5.1 Quotient stack of affine scheme by finite group defines a coarser moduli
- 5.2 Luna's etale slice theorem
- 5.3 Descending etale morphism to geometric quotient

5.4 Keel-Mori Theorem

Theorem 4. Let \mathcal{X} be a Deligne-Mumford stack separated and of finite type over a noetherian algebraic space S. Then there exists a coarse moduli space $\pi: \mathcal{X} \to X$ with $\mathcal{O}_X = \pi_* \mathcal{O}_{\mathcal{X}}$ such that

- (1) X is separated and of finite type over S,
- (2) π is a proper universal homeomorphism, and
- (3) for every flat morphism $X' \to X$ of algebraic spaces, the base change $\mathcal{X} \times_X X' \to X'$ is a coarse moduli space. Moreover, X is proper if and only if \mathcal{X} is.

6 Geometry of Deligne-Mumford Stack

- 6.1 Criterion for vector bundle on DM stack descent to coarse moduli
- 6.2 Deligne–Mumford stack has a finite cover by scheme

Theorem 5. (1) Let \mathcal{X} be a Deligne-Mumford stack separated and of finite type over a noetherian scheme S. Then there exists a finite, generically étale, and surjective morphism $Z \to \mathcal{X}$ from a scheme Z.

- (2) Let X be a normal algebraic space of finite type over a noetherian scheme S. Show that there is a normal scheme U with an action of a finite abstract group G such that X is the quotient of U by G, i.e., $[U/G] \to X$ is a coarse moduli space.
- 6.3 Zariski Main theorem
- 6.4 Chow Lemma
- 7 Examples
- 7.1 Moduli of smooth curves as a Deligne-Mumford Stack

References