

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО"

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №5

по дисциплине "ОСНОВЫ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ" Тема: «Асинхронный обмен данными с ВУ».

Вариант: 1362.

выполнил:
Студент группы Р3130
Птицын Максим Евгеньевич
Преподаватель
Ткешелашвили Нино Мерабиевна

Задание 1

По выданному преподавателем варианту разработать программу асинхронного обмена данными с внешним устройством. При помощи программы осуществить ввод или вывод информации, используя в качестве подтверждения данных сигнал (кнопку) готовности ВУ.

Введите номер варианта 1362

- 1. Программа осуществляет асинхронный вывод данных на ВУ-3
- 2. Программа начинается с адреса 360_{16} . Размещаемая строка находится по адресу $5A1_{16}$.
- 3. Строка должна быть представлена в кодировке ISO-8859-5.
- 4. Формат представления строки в памяти: АДРО: ДЛИНА АДР1: СИМВ2 СИМВ1 АДР2: СИМВ4 СИМВ3 ..., где ДЛИНА 16 разрядное слово, где значащими являются 8 младших бит.

5. Вывод строки начинается со вывода количества символов (1 байт), и должен быть завершен по выводу их необходимого количества.

2 Программа

2.1Assembler

	ORG	0x360
ADDR:	WORD	$0 \times 5 A 1$
LEN:	WORD	0x0000
FIRST:	WORD	0x0000
SECOND:	WORD	0x0000
START:	LD	(ADDR)
	AND	#0xFF
	ST	LEN
L:	IN	7
	AND	#0x40
	BEQ	L
	LD	LEN
	OUT	6
BEGIN:	CLA	
	LD	(ADDR)
	ST	SECOND
	SWAB	
	ST	FIRST
S1:	IN	7
	AND	#0x40
	BEQ	S1
	LD	FIRST
	AND	#0xFF
	OUT	6
S2:	IN	7
	AND	#0x40
	BEQ	S2
	LD	SECOND
	AND	#0xFF
	OUT	6
	LOOP	LEN
	JUMP	BEGIN
STOP:	HLT	

2.2 Основная:

Cell Address	Cell Content	Mnemonics	Comments
360	05A1	ADDR	Текущий адрес ячейки строки.
361	0000	LEN	Длина строки + итератор.
362	0000	FIRST	Переменная для хранения младшего байта слова.
363	0000	SECOND	Переменная для хранения старшего байта слова.
364	+AAFB	LD (-5)+	Загрузка в аккумулятор длины строки с
			постинкрементом адреса ячейки.
365	2FFF	AND #0xFF	Выделение значащих младших 8 бит.
366	EEFA	ST (IP-6)	Сохранение длины строки в ячейку итератора.
367	1207	IN 7	Считывание SR.
368	2F40	AND 0x40	Проверка 6го бита на "1".
369	F0FD	BEQ (-3)	Возвращает на считывание SR, если кнопка
			"Готов"не инициализирована.
36A	AEF6	LD (IP-10)	Загрузка LEN в аккумулятор
36B	1306	OUT 6	Вывод значения аккумулятора в DR.
36C	0200	CLA	Очистка аккумулятора.
36D	AAF1	LD (-15)+	Загрузка в аккумулятор текущей ячейки
			массива с постинкрементом.
36E	EEF3	ST (IP-13)	Сохранение старшего символа в FIRST.
36F	0680	SWAB	Обмен байтами.
370	EEF0	ST (-16)	Сохраненение младшего слова в SECOND.
371	1207	IN 7	Считывание SR.
372	2F40	AND $\#0x40$	Проверка 6го бита на "1".
373	F0FD	BEQ (-3)	Возвращает на считывание SR, если кнопка
			"Готов"не инициализирована.
374	AEEC	LD (IP-20)	Загрузка в аккумулятор старшее слово.
375	2FFF	AND #0xFF	Выделение младшего байта у загруженного значения.
376	1306	OUT 6	Вывод значения аккумулятора в DR.
377	1207	IN 7	Считывание SR.
378	2F40	AND $\#0x40$	Проверка 6го бита на "1".
379	F0FD	BEQ (IP-3)	Возвращает на считывание SR, если кнопка
			"Готов"не инициализирована.
37A	AEE7	LD (IP-33)	Загружает в аккумулятор младшее слово.
37B	2FFF	AND #0xFF	Выделение младшего байта у значения в аккумуляторе.
37C	1306	OUT 6	Вывод значения в DR.
37D	8EE2	LOOP (IP-38)	LEN-1, проверка, что LEN $\geqslant 0$.
37E	CEED	JUMP (IP-19)	Возвращение на начало цикла (в 367).
37F	0100	HLT	Остановка.

2.3 Описание программы:

Вывод текста сохранённого в массиве в формате АДР0: ДЛИНА АДР1: СИМВ2 СИМВ1 АДР2: СИМВ4 СИМВ3 ...

(выводит сначала количество символов, а потом символы в порядке возрастания: СИМВ1, СИМВ2, СИМВ3)

3 Область представления данных и область допустимых значений

3.1 Область представления:

В ячейке 360 беззнаковое 11 тиразрядное 16 теричное число (адрес ячейки).

В ячейках 362-363 символ строки в кодировке ISO-8859-5.

В ячейке 361, 5А1 беззнаковое 8миразрядное 16теричное число.

В дальнейших ячейках массива - беззнаковые 16теричные числа, с закодированными символами в младшем и старшем байте.

3.2 ОДЗ

3.2.1 ADDR:

 $0\leqslant ADDR\leqslant 2047$

3.2.2 LEN:

 $0\leqslant LEN\leqslant 2047$

3.2.3 M_i :

 $20_{16} \leqslant M_i \leqslant FF_{16}$

4 Расположение программы в памяти БЭВМ:

Программы - 360-37A . Выводимая строка – 5A1-(5A1+LEN-1) .