Lecture 2014-02-03

Author: Kemal Ahmed Instructor: Dr. MvM

Course: SFWR ENG 2MX3

Math objects made using MathType; graphs made using Winplot.

Table of Contents

System of Frequency	1
e.g. 1) Radar	1
Discrete Fourier Series (DFS)	2
Associated Analysis Equation	
e.g. 2)	
Fourier Series	
e.g. 3) DTFT	3
e.g. 4)	
More DTFT	
Converting to Continuous	4

System of Frequency

$$x(t) = e^{i\omega t}$$

$$\Rightarrow y(t) = H(\omega)e^{i\omega t}$$

$$x(t) = \cos(\omega t)$$

$$y(t) = \underbrace{H(\omega)\cos\left(\omega t + \angle H(\omega) + \psi\right)}_{\text{gain}}$$

All gain is stored from $0-\pi$.

e.g. 1) Radar

An antenna array (many small antennas) sends out multiple sines. The phase shift (gain) of the original signal says how far the object is away.

Doppler radar: changes the frequency so you can see the speed that things are moving

Discrete Fourier Series (DFS)

If x(n) is p-periodic,
$$x(n) = \sum_{k=0}^{p-1} X_k e^{i\omega_0 kn}$$
, $\omega_0 = \frac{2\pi}{p}$

Associated Analysis Equation

$$X_k = \frac{1}{p} \sum_{n=0}^{p-1} x(n) e^{-i\omega_0 kn}$$

e.g. 2)

x(n):

0 $ 1 $ $ 0 $ $ -1$	0	1	0	-1
------------------------	---	---	---	----

$$p = 4$$

$$X_0 = \frac{1}{4} (0 \quad 1 \quad 0 \quad -1) = 0$$

$$X_1 = \frac{1}{4} \left(0 \quad e^{-i\frac{\pi}{2}} \quad 0 \quad -e^{i-\frac{3\pi}{2}} \right) = \frac{-i}{2}$$

$$X_2 = \frac{1}{4} \begin{pmatrix} 0 & e^{-i\frac{2\pi}{2}} & 0 & -e^{-i2\frac{3\pi}{2}} \end{pmatrix} = 0$$

$$X_3 = \frac{1}{4} \begin{pmatrix} 0 & e^{i\frac{2\pi}{2}} & 0 & -e^{-i3\frac{3\pi}{2}} \end{pmatrix} = \frac{i}{2} = -\frac{1}{2i}$$

- Coefficient in front of the brackets is 1/p
 Since the first and 3rd x values are 0, so are the first and third parts of each X

$$x(n) = \frac{1}{2i}e^{i\frac{\pi}{2}n} + \frac{1}{2i}e^{i\frac{\pi}{2}n}$$
$$= \sin\left(\frac{\pi}{2}n\right)$$

i is like a phase shift of $\pi/2$

$$X\left(0\right) = \frac{1}{2i} + \frac{-1}{2i} = 0$$

Fourier Series

$$X(t) \approx \sum_{k=-\infty}^{\infty} X_k e^{i\omega_0 kt}$$

This is not guaranteed to converge, which is why we use a \approx , instead of an equal sign, like we did for the Discrete Fourier Series.

$$X_{k} = \frac{1}{p} \int_{0}^{p} x(t) e^{-i\omega_{0}kt}$$

It's very difficult to build a stabilizer. You need a material that has resistance that increases with heat, like platinum, unlike silicon.

e.g. 3) DTFT

Using an LTI system:

$$x(n) = e^{i\omega n}$$

$$H(\omega) \Rightarrow y(n) = H(\omega)e^{i\omega n}$$

$$h(n) \Rightarrow y(n) = \sum_{k=-\infty}^{\infty} h(n)x(n-k)$$
 (Convolution)

Although the system was designed in the frequency domain, you will need to compute the output to any input by going back to the time domain.

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)e^{i\omega(n-k)}$$
$$= e^{i\omega n} \sum_{k=-\infty}^{\infty} h(k)e^{-ik\omega}$$

Discrete-Time Fourier Transform (DTFT): $H(\omega) = \sum_{k=-\infty}^{\infty} h(k)e^{-i\omega k}$

What can we do with this?

e.g. 4)

$$y(n) = \frac{1}{3}x(n) + \frac{1}{3}x(n-1) + \frac{1}{3}x(n-2)$$

$$h(n) = \begin{cases} \frac{1}{3}, & n = 0, 1, 2\\ 0, & \text{else} \end{cases}$$

$$x(n) = e^{i\omega n}x(n-1) = e^{-i\omega}e^{i\omega n}$$

$$y(n) = H(\omega)e^{i\omega n}$$

$$H(\omega) = \frac{1}{3} + \frac{1}{3}e^{-i\omega} + \frac{1}{3}e^{-i2\omega}$$

More DTFT

Continuation of the example, deriving the <u>Discrete-Time Fourier Transform</u>:

$$H(\omega) = \sum_{k=-\infty}^{\infty} h(k) e^{-i\omega k}$$

= $h(0)e^{0} + h(1)e^{-i\omega} + h(2)e^{-i2\omega}$
= $\frac{1}{3} + \frac{1}{3}e^{-i\omega} + \frac{1}{3}e^{-i2\omega}$

Converting to Continuous

$$x(t) = e^{i\omega t}$$

$$y(t) = H(\omega)e^{i\omega t}$$

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

$$= \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

$$y(t) = \int_{-\infty}^{\infty} h(\tau)e^{i\omega(t-\tau)}d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau)e^{-i\omega\tau}d\tau e^{i\omega t}$$

Continuous Time Fourier Transform (**CTFT**): $H(\omega) = \int_{-\infty}^{\infty} h(t)e^{-i\omega t} dt$