МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

ФАКУЛЬТЕТ ИНФОКОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ КАФЕДРА ПРОГРАММНЫХ СИСТЕМ

Отчет по лабораторной работе **AnyLogic**

Выполнил:

Кислюк И. В.

студент группы К4120

Проверил: Осипов Н. А.

ЦЕЛЬ РАБОТЫ:

Изучить и научиться применять пакет моделирования AnyLogic.

ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ:

Задача Эрланга

Задача Эрланга связана с разработкой системы массового обслуживания для телефонной сети. Пример задачи — в систему поступают заявки — телефонные вызовы с интервалом времени между вызовами, который соответствует экспоненциальному закону распределения с некоторой интенсивностью a. Заявки обслуживаются в процессоре. Обслуживание заявки выполняется с некоторой интенсивностью b. При обслуживании вызова используется N каналов телефонной сети. Число каналов телефоной станции изменяется. Постройте модель обслуживания телефонных вызовов.

ХОД РАБОТЫ:

1. В данном задании мы построили модель для исследования процесса незатухающих гармонических колебаний, а также удобный пользовательский интерфейс для её использования (рисунок 1):

Рисунок 1 – Модель незатухающих гармонических колебаний

Memory: 38M of 512M

ing | Time: 22.30 | Simulation: Stop time not set | Date: Nov 20, 2017, 12:00:22 AM | Date: Nov 20, 2017, 20

2. Следующим заданием было создание модели обслуживания сервера, с использованием пользовательского класса в качестве агента. Созданная модель данной системы представлена на рисунке 2.

Рисунок 2 – Модель обслуживания сервера

3. Далее, мы изучили моделирование конечных автоматов на примере модели светофора (рисунок 3).

Рисунок 3 – Модель светофора

4. Также мы ознакомились с типовой задачей Эрланга и рассмотрели способы оптимизации моделей в AnyLogic (рисунки 4, 5):

Рисунок 4 – Типовая задача Эрланга

Рисунок 5 – Оптимизации модели

5. В контрольном задании требовалось построить модель функционирования системы связи с двумя каналами — основным и резервным, с перерывами в работе основного канала. Провести моделирование в течение 5 часов, а также определить рациональную ёмкость накопителя и вероятности передачи сообщений разными каналами (рисунки 6, 7):

Рисунок 6 – Оптимизация финальной модели

Рисунок 7 – Модель функционирования системы связи

вывод:

