

Itthi Chatnuntawech

Basic Signal Transformations

Time shift

An advanced version of x[n]

Basic Signal Transformations

Time reversal

Reflection in the x-axis

Linear Time-Invariant (LTI) System

Many practical systems can be successfully modeled as LTI systems

Linear + Time-Invariant

Linear System

Module: Signal Processing

complex constants

Time-Invariant System

Also referred to as a shift-invariant system

The system doesn't change over time

Would get the same results running an experiment now or later

Linear Time-Invariant (LTI) System

Many practical systems can be successfully modeled as LTI systems

$$x \qquad h \qquad \qquad x \qquad \qquad$$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Oppenheim, Alan V. Discrete-time signal processing. Pearson Education India, 1999. Oppenheim, Alan V., et al. Signals and systems. Vol. 2. Upper Saddle River, NJ: Prentice hall, 1997.

ชาสร้างคน ชามพรมแดน

Module: Signal Processing

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$n = -3$$

x[k]

$$h[-3-k]$$

$$1 \quad 2 \quad 3$$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

n

n = 0 x[k]

h[0-k]

-4 -2

 $k=-\infty$

$$n = 4$$
 $x[k]$

n=5 x[k]

length of y = (length of x) + (length of h) – 1

Applications of Convolution

Time series analysis - stock market averages

An equalizing filter compensates for the frequency characteristics of speakers

Oppenheim, Alan V., et al. Signals and systems. Vol. 2. Upper Saddle River, NJ: Prentice hall, 1997.

Communication systems -Amplitude Modulation (AM)

Data representation and feature extraction

Module: Signal Processing

https://commons.wikimedia.org/wiki/File:2D_Convolution_Animation.gif

ชาสร้างคน ชามพรมแคน

Original image

Blurring

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

Highlighting large differences

-1	-1	-1
-1	8	-1
- 1	-1	-1

Vertical edge detection

_	
1	1
	: /
-1	-1

Filters/kernels

Predefined filters/kernels

0	0	0
0	0	1
0	0	0

Learnable filters/kernels

