

- 1. 주류 판매와 관련된 요인 6가지 분석, 패턴 파악
 - 2. 주류 판매의 효과적인 전략 구축
 - 3. 여름 신제품 출시에 적용하여 이익 극대화

고객 정보 데이터

상품 구매 정보 데이터

상품 분류 정보 데이터

특징 파악할 부분

- 1. 고객
- 2. 판매수량
- 3. 판매가격
- 4. 일년 추세
- 5. 시간별 추세
 - 6. 지역

c(고객데이터), o(주문데이터), p(상품데이터) 병합 co=pd.merge(c, o, on='customer_id') df=pd.merge(co, p, on='product_code')

오프라인 매장만 (온라인 매장 삭제) df=df.drop(df[df['on_off_div']==2].index)

필요하지 않은 컬럼 삭제
col=['order_id','on_off_div','partner_code','product_code']
df=df.drop(col, axis=1)

주류 데이터만 추출 df=df.loc[df['large_product_cat']=='주류']

<u>인덱스를 삭제하고 재설정</u> df=df.reset_index(drop=<mark>True</mark>)

	customer_id	gender	age_group	location	market_code	buy_date	buy_hour	buy_amount	buy_count	product	large_product_cat	mid_product_cat
0	M000034966	여성	40대	Z07	A020116	20210919	16	16440.0	2	국산맥주	주류	맥주
1	M000034966	여성	40대	Z07	A043676	20210116	21	10800.0	4	국산맥주	주류	맥주
2	M000136117	여성	30대	Z11	A020092	20210104	17	8220.0	1	국산맥주	주류	맥주
3	M000201112	여성	50대	Z17	A043753	20210725	15	8000.0	4	국산맥주	주류	맥주
4	M000504230	여성	30대	Z05	A030304	20210219	17	9240.0	1	국산맥주	주류	맥주


```
# 60대 + 70대 -> 70대 이상
my_dict = {'60대': '60대 이상','70대': '60대 이상'}
df['age_group'] = df['age_group'].replace(my_dict)
```

```
df['age_group'].value_counts()
40대 68838
30대 43666
50대 35058
20대 11251
60대 8606
70대 2415
```

```
df['age_group'].value_counts()
40대 68838
30대 43666
50대 35058
20대 11251
60대 이상 11021
```


상품 하나당 가격(price) 컬럼 추가 price=df['buy_amount']/df['buy_count'] df.insert(8,'price',price)

df.loc[:,df.columns[6:9]].head()

	buy_amount	buy_count	price
156312	16440.0	2	8220.0
156313	10800.0	4	2700.0
156314	8220.0	1	8220.0
156315	8000.0	4	2000.0
156316	9240.0	1	9240.0


```
df['price'].describe()
         1.698340e+05
count
         6.277998e+03
mean
         1.877288e+04
std
min
         1.000000e+01
25%
         1.570000e+03
50%
         2.500000e+03
75%
         7.080000e+03
         1.672000e+06
max
Name: price, dtype: float64
```

```
# 주류 중분류별로 따로 떼내기
beer=df[df['mid_product_cat']=='맥주']
soju=df[df['mid_product_cat']=='소주']
trad=df[df['mid_product_cat']=='전통주']
wine=df[df['mid_product_cat']=='와인']
oset=df[df['mid_product_cat']=='주류세트']
fore=df[df['mid_product_cat']=='양주']
```



```
# 극단치 처리 할수

def deal_with_extremes(kind):

# 상위 10% -> 상위 10% 속하는 값들의 중앙값
q9=kind['price'].quantile(q=0.9, interpolation='nearest')
m9=kind.loc[kind['price']>=q9]['price'].median()
kind['price'].loc[kind['price']>=q9]=m9

# 하위 10% -> 하위 10% 속하는 값들의 중앙값
q1=kind['price'].quantile(q=0.1, interpolation='nearest')
m1=kind.loc[kind['price']<=q1]['price'].median()
kind['price'].loc[kind['price']<=q1]=m1
```

deal_with_extremes(beer)
deal_with_extremes(soju)
deal_with_extremes(trad)
deal_with_extremes(wine)
deal_with_extremes(oset)
deal_with_extremes(fore)

〈 극단치 처리 전 〉

〈 극단치 처리 후 〉

가격 범위가 10원~18만원에서 약 600원~13000원으로 줄어들어 분포를 <mark>더 쉽고 정확하게</mark> 파악 가능


```
# 7개 이상을 7로 표기
df['buy_count'] = df['buy_count'].clip(upper=7)
```

```
df['buy_count'].value_counts().tail(15)
27
40
72
60
                 df['buy_count'].value_counts()
26
28
                        108674
63
34
                         35084
33
                          9904
37
                          8848
36
                          2415
96
                  5
                           2413
29
                            819
31
                            392
35
                            316
Name: buy_count,
                            310
                  20
                            139
```

```
df['buy_count'].value_counts()
```

Name: buy_count, dtype: int64

df['buy_date'] = pd.to_datetime(df['buy_date'].astype(str), format='%Y-%m-%d')

년 추출 -> year 컬럼 추가 year = df['buy_date'].dt.year df.insert(5,'year',year)

월 추출 -> month 컬럼 추가 month = df['buy_date'].dt.month df.insert(5,'month',month)

일 추출 -> day 컬럼 day = df['buy_date'].dt.day df.insert(5,'day',day) df.loc[:,df.columns[4:8]].head()

	buy_date	day	month	year
156312	2021-09-19	19	9	2021
156313	2021-01-16	16	1	2021
156314	2021-01-04	4	1	2021
156315	2021-07-25	25	7	2021
156316	2021-02-19	19	2	2021

모든 주류 중분류에 전처리 과정 적용

```
beer=df[df['mid_product_cat']=='맥주']
soju=df[df['mid_product_cat']=='소주']
trad=df[df['mid_product_cat']=='전통주']
wine=df[df['mid_product_cat']=='와인']
oset=df[df['mid_product_cat']=='주류세트']
fore=df[df['mid_product_cat']=='양주']
```


여성의 주류 구매량 -> 1위 국산맥주 2위 수입맥주

35000 30000 25000 count 20000 15000 10000 5000 0 40대 30대 50대 20대 60대 이상 age_group

주류를 구매한 연령대

맥주를 구매한 연령대

40대 > 30대 > 50대 > 20대 > 60대 이상 🚣

〈주류 중분류별 1년 총 판매량〉

주류 중분류별 총 구매량

count_df = df.groupby(['mid_product_cat']).agg({'buy_count':'sum'});count_df

	buy_count	· ·
mid_product_cat		
맥주	160318	
소주	69060	
양주	4086	
와인	21764	
전통주	31565	
주류세트	1833	

TOP3

BOTTOM3

공통된 특징 : 한번에 한개씩 가장 많이 사가고 두개씩, 세개씩, 네개씩 ... 순서대로 한번에 사가는 고객 수가 줄어든다.

고객들이 한번에 맥주 3개보다 4개를 더 많이 구매한다. 맥주의 경우 4개를 사면 할인해주기 때문이라고 원인 유추

불 분석과 인사이트

데이터 분석

money_df=df.groupby(['mid_product_cat']).agg({'price':'mean','buy_amount':'sum','buy_count':'sum'})
money_df=money_df.rename(columns={'price':'평균가격','buy_amount':'매출','buy_count':'판매량'})
money_df.sort_values('매출', ascending=False)

판매량	매줄	평균가격		
			mid_product_cat	
167338	571956162.0	4324.559548	맥주	
22491	454916159.0	21422.899396	와인	
71676	174067040.0	3136.505076	소주	
4450	91639540.0	25829.061806	양주	
32027	83096560.0	2983.926755	전통주	
1960	66907020.0	37177.673675	주류세트	

맥주, 소주, 전통주 : 가격대가 낮고 평균가격에 가깝게 분포 와인, 주류세트, 양주 : 가격대가 높고 넓게 분포

가격대가 낮은 품목 = 판매량 & 매출 TOP3

가격이 낮을수록 더 많이 팔리나?

우하향 그래프 -> 가격이 낮을수록 역시 잘 팔리는군!

İ

매출 TOP3 더 가파르게 우하향하는 그래프 -> 가격이 낮을수록 더더더 많이 산다

분석과 인사이트 제

```
###상품의 월별 판매량 추세 함수

def show_large_product_month(product):
    ex_df = df.query(f'large_product_cat == "{product}"')
    monthly_count = ex_df.groupby(['month'])['buy_count'].sum()
```

return monthly_count

'2021년 월 평균 약 24000개씩 판매' & 1, 5, 7, 8, 12월 판매량 사 연초, 연말, 연휴 주류 판매량

7, 8월은 '왜' 높을까??

2021년 주류 판매 비율 파이차트

buy_count_mid = df.groupby(['mid_product_cat']).sum()['buy_count'].reset_index()

plt.pie(buy_count_mid['buy_count'].tolist(), labels=buy_count_mid['mid_product_cat'].tolist(), explode = [0, 0, 0.1, 0, 0, 0.2] plt.title('2021년 주류 판매 비율')

plt.show()

맥주의 비율이 55.5%로 매우 높다!

def normalize(x):
 return (x - x.mean())/x.std();

정규화한 주류와 맥주의 판매량 그래프가 매우 유사!

-> 7, 8월 맥주의 판매량이 주류 판매량에 영향

술 ,시간대별 얼마나 판매될까?


```
liquor_orders_by_hour = df,groupby('buy_hour'),size(),reset_index()
liquor_orders_by_hour,columns = ['buy_hour', 'order_count']

plt,bar(liquor_orders_by_hour['buy_hour'], liquor_orders_by_hour['order_count'])

plt,xticks(range(24), range(24))

plt,xlabel('시간')

plt,ylabel('주문 건수')

plt,title('시간대별 주류 구매량')

plt,show()
```

시간

```
# datetime

df['buy_date'] = pd.to_datetime(df['buy_date'], format='%Y%m%d')
# 6월부터 8월까지.

summer_df = df[(df['buy_date'].dt.month >= 6) & (df['buy_date'].dt.month <= 8)]

liquor_orders_by_hour = summer_df.loc[summer_df['large_product_cat'] == '주류'].groupby('buy_hour').size().reset_index()
liquor_orders_by_hour.columns = ['buy_hour', 'order_count']

plt.bar(liquor_orders_by_hour['buy_hour'], liquor_orders_by_hour['order_count'])
plt.xticks(range(24), range(24))
plt.xlabel('시간')
plt.ylabel('주문 건수')
plt.title('6, 7, 8월 시간대별 주류 구매량')
plt.show()
```


#지역별 고객 수 cus = df.groupby('location')['customer_id'].nunique()

#지역별 점포 수 store = df.groupby('location')['market_code'].nunique()

지역별 mid_product_cat 판매액

df_locammid = df.groupby(['location', 'mid_product_cat'])['buy_amount'].sum().reset_index()

df_locammid

	location	mid_product_cat	buy_amount
0	Z01	맥주	6356140.0
1	Z01	소주	3236330.0
2	Z01	양주	1213190.0
3	Z01	와인	2342530.0
4	Z01	전통주	975680.0
97	Z17	소주	40325510.0
98	Z17	양주	31693980.0
99	Z17	와인	194724380.0
100	Z17	전통주	28325700.0
101	Z17	주류세트	28722140.0

Z17, Z10에서 주류 판매액 높음 대부분 지역에서 맥주가 큰 판매액 비중 차지

지역별 mid_product_cat 판매함
df_loccmid = df.groupby(['location', 'mid_product_cat'])['buy_count'].sum().reset_index()

df_loccmid

	location	mid_product_cat	buy_count
0	Z01	맥주	2530
1	Z01	소주	1443
2	Z01	양주	70
3	Z01	와인	161
4	Z01	전통주	540
97	Z17	소주	17595
98	Z17	양주	1389
99	Z17	와인	9022
100	Z17	전통주	9908
101	Z17	주류세트	924

<u>. o</u>

Z17, Z10에서 주류 판매량 높음 모든 지역에서 맥주의 판매량 가장 높음

1	Z02	1129270.0
2	Z03	6951940.0
3	Z04	38611490.0
4	Z05	15593536.0
5	Z06	22698542.0
6	Z07	2130790.0
7	Z08	14922100.0
8	Z09	16160770.0
9	Z10	149117070.0
10	Z11	33315330.0
11	Z12	10097070.0
12	Z13	15783870.0
13	Z14	7698090.0
14	Z15	11498830.0
15	Z16	40967715.0
16	Z17	178923609.0

location buy_amount

6356140.0

Z01

Z17, Z10에서 절반 이상의 판매량, 판매액 차지

```
# 지역별로 주류 판매액을 점포 수로 나눈 비율
store = df.groupby('location')['market_code'].nunique()
df_locam = df.groupby('location')['buy_amount'].sum()
loc_store = df_locam / store
loc_store
location
       124092.719298
Z01
        53421.914894
Z03
       139090.650407
       257549.630435
Z05
       230748.492958
Z06
       227734.437811
Z07
        97898,000000
Z08
       225817.535714
Z09
       212660.571429
Z10
       289781.809917
       306777.500000
Z11
Z12
       156549.929577
Z13
       216913.461538
Z14
       107443.906977
Z15
       165985, 428571
Z16
       339097.734177
Z17
       402172.255200
```

Z17에서 한 점포 당 주류 판매액 가장 높음

1. 출시시기 -> '여름'

2. 판매량 1위!

=> 이번 신제품은 '맥주'

✓ 타겟 -> 여성

어름 신제품 활용 교객

여름 신제품 활용

맥주는 특히나 가격과 판매량의 관계가 <mark>강하다</mark> -> 95% 신뢰구간의 <mark>하한</mark> 신뢰경계로 가격 설정

```
def confidence_interval(data, confidence):
    data=np.array(data)
    mean=np.mean(data)
    n=len(data)
    stderr=stats.sem(data)
    interval=stderr*stats.t.ppf((1+confidence)/2, n-1)
    return (mean, mean-interval, mean+interval)
```

confidence_interval(beer['price'], confidence=0.95)

(4328.574466510286, 4299.144072888578, 4358.004860131993)

맥주 가격이 95% 확률로 약 4200원~ 약 4400원 사이에 존재 -> 신제품 가격 : 4200원 여름 신제품 활용

4개 할인 판매

3개 사는 것보다 4개 사도록 유도 -> 더 많은 매출이익

주류 구매량은 6시 이후로 감소

타임세일 8시 ~ 10시

여름 신제품 활용

맥주 신제품을 판매량이 높은 Z17, Z10순으로 차등 분배

많은 유동 인구, 점포 당 주류 판매액 높은 Z17 지역 집중공략

