Symulacje komputerowe w fizyce: Chaos – wprowadzenie.

Jakub Tworzydło, Stanisław Żukowski

Instytut Fizyki Teoretycznej

1 Chaos

Układy dynamiczne

1 Chaos

Układy dynamiczne

1 Chaos

Układy dynamiczne

1 Chaos

Układy dynamiczne

Edward Norton Lorenz 1917–2008

- "ojciec" dynamiki chaotycznej
- badał uproszczony model atmosferyczny
- zaproponował termin "efekt motyla"

Predictability: Does the Flap of a Butterflyś Wings in Brazil set off a Tornado in Texas? (referat wygłoszony w 1972)

4/21

"Deterministyczny przepływ nie-periodyczny" (1963)

fizyczne parametry:

różnica temperatur, ciążenie, rozszerzalność cieplna, przewodnictwo cieplne, lepkość

 Lorenz zidentyfikował czułość na warunki początkowe

"... he entered the decimal .506 instead of entering the full .506127"

"Deterministyczny przepływ nie-periodyczny" (1963)

- model konwekcji Rayleigha-Benarda
- fizyczne parametry:

różnica temperatur, ciążenie, rozszerzalność cieplna, przewodnictwo cieplne, lepkość

 Lorenz zidentyfikował czułość na warunki początkowe

"... he entered the decimal .506 instead of entering the full .506127"

5/21

Równania Lorenza

układ równań nieliniowych, autonomicznych

$$\dot{X} = \sigma(Y - X)
\dot{Y} = X(\rho - Z) - Y
\dot{Z} = XY - \beta Z$$

 $\sigma = 10$ (liczba Prandtla) $\beta = 8/3$ ρ zmieniane (liczba Rayleigha)

X — proporcjonalne do prędkości obrotowej płynu

Y — różnica temperatury wznoszącego się i opadającego płynu

6/21

Z — odstępstwo od pionowego, liniowego rozkładu temp.

- układ równań nieliniowych, autonomicznych
- ani cykl graniczny, ani stan stacjonarny
- określony jako dziwny atraktor (dowód w 2001 r.)

$$\dot{X} = \sigma(Y - X)$$

$$\dot{Y} = X(\rho - Z) - Y$$

$$\dot{Z} = XY - \beta Z$$

 $\sigma=$ 10 (liczba Prandtla), $\beta=8/3,$ punkty stabilne $\it CC'$ dla $\rho<$ 13

$$\textit{C},\textit{C}'=(\pm\sqrt{\beta(\rho-1)},\pm\sqrt{\beta(\rho-1)},\rho-1)$$

- układ równań nieliniowych, autonomicznych
- ani cykl graniczny, ani stan stacjonarny
- określony jako dziwny atraktor (dowód w 2001 r.)

$$\dot{X} = \sigma(Y - X)$$

$$\dot{Y} = X(\rho - Z) - Y$$

$$\dot{Z} = XY - \beta Z$$

 $\sigma=$ 10 (liczba Prandtla), $\beta=$ 8/3, punkty stabilne $\it C$ $\it C'$ dla $\it \rho<$ 13

$$\textit{C},\textit{C}' = (\pm \sqrt{\beta(\rho-1)}, \pm \sqrt{\beta(\rho-1)}, \rho-1)$$

- układ równań nieliniowych, autonomicznych
- ani cykl graniczny, ani stan stacjonarny
- określony jako dziwny atraktor (dowód w 2001 r.)

$$\dot{X} = \sigma(Y - X)
\dot{Y} = X(\rho - Z) - Y
\dot{Z} = XY - \beta Z$$

 $\sigma=$ 10 (liczba Prandtla), $\beta=$ 8/3, Lorenz znalazł chaos dla $\rho=$ 28 "przeskoki" między C i C'

$$C, C' = (\pm \sqrt{\beta(\rho-1)}, \pm \sqrt{\beta(\rho-1)}, \rho-1)$$

7/21

Ilustracja czułości na warunki początkowe ∝ 10⁻⁵

Ilustracja czułości na warunki początkowe 💉 🚻 🤼

Ilustracja czułości na warunki początkowe 🔻 🚻 🤼

Teoria układów chaotycznych

Podstawowe wymagania do powstania CHAOSU:

- wykładnicza czułość na warunki początkowe
- ograniczona przestrzeń fazowa, własność "mieszania"

→ podręcznik Cvitanovica

Wykładnik i czas Lyapunowa

Ilościowy opis czułości na zaburzenie warunków początkowych:

$$\delta \vec{x}(t) \approx e^{\lambda t} |\delta \vec{x}(0)|$$

Dynamika przewidywalna do czasu Lyapunowa:

$$T pprox -rac{1}{\lambda} \ln |\delta x/L|$$

ciekawostka wykł. Lyapunowa układu słonecznego: $\lambda^{-1} \approx 50 My$

J. Tworzydło (IFT) – Chaos – 10/21

Równanie Duffinga

Ilustruje w najprostszy sposób "drogę do chaosu"

$$\ddot{x} = -\gamma \dot{x} + bx - ax^3 + f_0 \cos(\omega t)$$

- pojedyncza cząstka w potencjale podwójnej studni
- z periodyczną siłą pobudzającą
- z tłumieniem

J. Sound Vib. 65, 285 (79)

Am. J. Phys. 65, 841 (97)

Am. J. Phys. 65, 841 (97)

Magnet positioning screw

Am. J. Phys. 65, 841 (97)

Obraz w przestrzeni fazowej $(x, y = \dot{x})$

J. Sound Vib. 65, 285 (79)

Am. J. Phys. 65, 841 (97)

Porównanie z doświadczeniem

Chaos

Układy dynamiczne

Układy dynamiczne

Układ AUTONOMICZNY:

$$\frac{d\mathbf{x}}{dt} = \mathbf{G}(\mathbf{x}(t)), \text{ gdzie } \mathbf{x} \in \mathbb{R}^N$$

N – wymiar przestrzeni fazowej.

JEDNOZNACZNOŚĆ:

 $\mathbf{x} = \mathbf{x}(t=0)$ wyznacza pojedynczą trajektorię w p. fazowej

Układy dynamiczne

Układ AUTONOMICZNY:

$$\frac{d\mathbf{x}}{dt} = \mathbf{G}(\mathbf{x}(t)), \text{ gdzie } \mathbf{x} \in \mathbb{R}^N$$

N – wymiar przestrzeni fazowej.

JEDNOZNACZNOŚĆ:

 $\mathbf{x} = \mathbf{x}(t=0)$ wyznacza pojedynczą trajektorię w p. fazowej

FAKT: $N \ge 3$ wystarcza, aby możliwy był chaos !!!

R-nie Duffinga w postaci autonomicznej

Oscylator nieliniowy z tłumieniem i wymuszeniem:

$$\ddot{x} = -c\dot{x} + bx - ax^3 + f\cos(\omega t)$$

można przepisać dla $\mathbf{X} = (x_1, x_2, x_3) = (x, \dot{x}, \omega t)$ w postaci

$$\begin{cases} \dot{x_1} = x_2 \\ \dot{x_2} = -cx_2 + bx_1 - ax_1^3 + f\cos(x_3) \\ \dot{x_3} = \omega \end{cases}$$

pobudzenie periodyczne

 \rightarrow 1 wymiarowy ukł. mechaniczny wystarcza do chaosu (nadal N=3)

Przekrój Poincare

pozwala redukować N-wym układ dynamiczny z czasem ciągłym do N-1-wym dyskretnej mapy

16/21

Przekrój Poincare

pozwala redukować N-wym układ dynamiczny z czasem ciągłym do N-1-wym dyskretnej mapy

MAPA

$$\boldsymbol{x}_{n+1} = \boldsymbol{M}(\boldsymbol{x}_n)$$

JEDNOZNACZNOŚĆ $A \rightarrow B$ oraz $B \rightarrow A$

Przekrój Poincare

pozwala redukować N-wym układ dynamiczny z czasem ciągłym do N-1-wym dyskretnej mapy

MAPA

$$\boldsymbol{x}_{n+1} = \boldsymbol{M}(\boldsymbol{x}_n)$$

JEDNOZNACZNOŚĆ $A \rightarrow B$ oraz $B \rightarrow A$

FAKT: chaos może powstać dla odwracalnej 2-wymiarowej mapy M

Przekrój Poincare

pozwala redukować N-wym układ dynamiczny z czasem ciągłym do N-1-wym dyskretnej mapy

MAPA

$$\boldsymbol{x}_{n+1} = \boldsymbol{M}(\boldsymbol{x}_n)$$

JEDNOZNACZNOŚĆ $A \rightarrow B$ oraz $B \rightarrow A$

FAKT: chaos może powstać dla odwracalnej 2-wymiarowej mapy M czasowy przekrój Poincare: $x^{(3)} = 0 \pmod{2\pi} \longrightarrow x_n^{(3)} = \omega(t_0 + nT)$

1 Chaos

Układy dynamiczne

Atraktor Duffinga

Cięcie Poincare:

punkty $(x(t_n), \dot{x}(t_n))$ w chwilach $T_n = n\frac{2\pi}{\omega}$

18/21

Atraktor mapy Henona

Układ dynamiczny:

2 wymiarowa mapa odwracalna, minimalna nieliniowość

$$\begin{array}{ll} x_{n+1} &= y_n + 1 - ax_n^2 \\ y_{n+1} &= bx_n \end{array}$$

Inne przykłady (eksperymentalnych) układów chaotycznych

- układy elektroniczne (Chua's circuit)
- lasery (rezonansowy jedno-modowy)
- złącza nadprzewodzące (złącza Josephsona)
- reakcje chemiczne (reakcja Bielousowa-Żabotyńskiego)
- kapiący kran; różne przepływy np. płynu, plazmy
- cykle pracy serca