Il ishi algoritmi di scheduling si dividoro in du categorie: clock-driven e priority-driven (in au le decirioni di scheduling vengono prese al verificazi di eventi). gli algoritmi priority-driven si dividoro, a loro volta, in statici (in cui la priorità dei tost è costante, come in DM) e dinamici (in cui la priorità du test verie durente l'esecurtione, come in EDF).

I vantaggi degli elgoritmi priority driven sono le maggiore flesibilité, in quanto i possibile acattere nuovi sob sense dover rieffetture schedulezione intere enche durante l'executaione, mentre gli rvantaggi sono una maggiore complessité dell'algoritme e della validatione Inoltre, hanno un comportamento non deterministico quando i parametri temporali variano.

(3) Per il bound di Liu-Layland deve eccadere che:

 $U_{4} = \frac{4}{18} = 0.22$

 $U_{ror} \leq n \cdot (2^{1/m} - 1)$ con $n = n^{\circ} tesk = 4$

 $0.77 \le 4.(\sqrt[4]{2}-1) = 0.757$ NO, l'insieme di took non è rehedulabile per Jiu-Layland, me potrebbe esserbo doto che la condizione è solo sufficiente. U123 = 0.55 \le 3. (2^{1/3}-1) = 0.78. I primi 3 task sono gerantiti, il

quarto no. (b) Rer il bound di Kur e Moh, divido il lash-set in 3 insiemi:

$$T_{1} = \{ \gamma_{1}, \gamma_{3} \}$$
 $U_{1} = \sum_{i=1,3}^{3} U_{i} = 0.3$

U2= 0.25 T2= [22]:

UTOT = 0.77

T3= {2a} U3= 0.22

Verifico il bound:

~ (18,4)

Upor $\leq n \left(2^{\frac{n}{2}}-1\right)$ con $n=n^{\frac{n}{2}}$ tosh = 3

0.77 \le 3 \cdot(2^{1/3}-1) = 0.78 \le 1; l'insieme de test et schedulabile per Kus e Math. 1 task sono tutti garentili.

D. John M. modificano in:

$$2 = (5, 0.75 + 2.5) = (5, 3.25)$$
 $U_1 = 0.65$
 $2 = (8, 2 + 2.5) = (8, 4.5)$ $U_2 = 0.56$
 $2 = (10, 1.5 + 2.5) = (10,4)$ $U_3 = 0.4$
 $2 = (18,4)$ $U_4 = 0.22$

[2) Verifico:
$$U_1' \leq n \left(\frac{2^{1/n}-1}{2^{1/n}-1} \right) \quad \text{con} \quad m=1 \quad \Rightarrow \quad 0.65 \leq 1: \left(2-1 \right) \quad \underbrace{OK}$$

$$U_1 + U_2' \leq n \left(\frac{2^{1/n}-1}{2^{1/n}-1} \right) \quad \text{con} \quad n=2 \quad \Rightarrow \quad 0.15 + 0.56 \leq 2 \left(\frac{2^{1/2}-1}{2^{1/2}-1} \right) \Rightarrow \quad 0.71 \leq 0.828 \quad \underbrace{OK}$$

$$U_1 + U_2 + U_3' \leq n \left(\frac{2^{1/n}-1}{2^{1/n}-1} \right) \quad \text{con} \quad n=3 \quad \Rightarrow \quad 0.15 + 0.25 + 0.4 \leq 3 \left(\frac{2^{1/3}-1}{2^{1/3}-1} \right) \Rightarrow \quad 0.8 \leq 0.78 \quad \underbrace{NO}$$

$$\text{But } \text{Jim } \text{e. } \text{Jayland, solor in primite } \text{due } \text{tesh sono governation}.$$

(b)
$$T_1' = \{x_1', x_3\} - U_1' = 0.8$$

$$T_2' = \{x_2'\} \qquad U_2' = 0.56$$

$$T_3' = \{x_4\} \qquad U_3' = 0.22$$

Verifico $U_1 \leq n(2^{l/n}-1)$ on $n=1 \rightarrow 0.8 \leq 1$ ok $U_1 + U_2' \le n(2^{4/n}-1)$ Com $n=2 \rightarrow 0.86 \le 0.828$ NO Ou kno e mor, solo Ti è gerentito.

3 Uni (EDF) = 1 Jupponiamo che un insième di tosh non sie schedulshile con ESF e, pertanto, che un te ni verifiche una destline miss.

Giccome in te viene mancata une dudline, K rignifica che il tempo a disposizione i inferiore a quello richisto:

=> U>1 che è un assurbs e pertanto Uiub(EDF)=1.

[4] DM - condition sufficienti

Il test di Liu Teyland:

(1)
$$U_{751} = \frac{2}{5} + \frac{3}{6} = 0.9 \stackrel{?}{\leq} 2 \cdot (\sqrt{2} - 1) = 0.828 \quad \underline{No}$$

$$(27)$$
 $(175) = \frac{2}{3} + \frac{3}{6} = 1.16$ No

DM: TS1: il tast 1 è garantito, il 2 no.

(1) $\int_{10}^{10} = \frac{2}{5} + \frac{3}{6} = 0.9 \le 1$

EDF: conditione sufficiente

(2)
$$0_{13} = \frac{2}{3} + \frac{3}{6} = 1.16 > 1$$
 No

Bound iperbolico

(1.4)(1.5) = 2.1 >2 NO

(1.66) (1.5) = 2.49 >2 No

EDF-TSI à garantito e rehebblile : TS2 non e-rehibilité (23 garantito)

۲ <u>.</u>	51	52	\int_3	5 ₄	Ni	Bi
2,	11		7		2	19
22	2	13	1		2	22
γ_3		The second section of the sect	4+3		1	18
24	5	18	6	6	1	2
75		1		2	0	

Zi blocco diretto

Me SI da TA per 5 ms

72: blocco diretto

ru S2 de 24 per 18 ms

blocco indiretto

M 53 de 23 per 4 ms

Z3: blocco indiretto re S2 de Za per 18 ms

Ta: blocco diretto ma nu Sa da Es per 2 ms

H= 240

φ=(1- U+or) H = ...

 $\left\lceil \frac{c_2}{\phi} \right\rceil \cdot H \leq D_2 \qquad \left\lceil \frac{26}{\phi} \right\rceil \cdot 240 \leq 206 \qquad mo$