Álgebra Linear e Geometria Analítica	Projeto 2
Professor João Soares	1 página
Universidade de Coimbra	18 de dezembro de 2020

Para responder a estas questões deve preparar dois documentos, um contendo os vários comandos MATLAB/OCTAVE que, quando invocado na linha de comandos, conduzem às respostas, e outro contendo os resultados desses mesmos comandos - use, e.g., o comando diary para gravar uma sessão. Os dois documentos devem ser enviados até ao dia 17 de janeiro para jsoares@mat.uc.pt indicando em assunto apenas dois elementos: alga2021-TRB2 e o seu número de cartão de estudante separados por um espaço. Use comandos simples que respondam diretamente ao que é pedido, de uma forma tão compacta quanto possível. Deve responder a tudo.

- 1. Construa uma matriz B, 6×4 , definida pelos últimos 6 digitos do seu número de cartão de estudante (a primeira coluna) e o de três amigos (as restantes três colunas). Cada elemento da matriz é definido por um digito apenas. Construa uma coluna \mathbf{b} , 4×1 , preenchida com os digitos do ano do seu nascimento pela ordem que entender. Defina um escalar c de valor igual ao dia do mês do seu nascimento.
- (a). Calcule as matrizes $A \equiv B^T B \in BB^T$.
- (b). Verifique que a caraterística das matrizes $B,\,B^TB$ e BB^T é a mesma.
- (c). Avalie a função $f(\mathbf{x}) \equiv \mathbf{x}^T A \mathbf{x}/2 + \mathbf{b}^T \mathbf{x} + c$ em $\mathbf{x} = (1, 2, -1, -2)$.
- (d). Calcule para a matriz A + I: (i) o determinante; (ii) a matriz adjunta; (iii) a inversa.
- (e). Calcule o complemento algébrico de A relativamente ao elemento a_{21} .
- **2.** (a). Obtenha a decomposição PA = LU.
- (b). Calcule a solução \mathbf{c} do sistema de equações $L\mathbf{y} = P\mathbf{b}$ e a solução $\mathbf{\hat{x}}$ de $U\mathbf{x} = \mathbf{c}$.
- (c). Verifique que $\|\mathbf{b} A\hat{\mathbf{x}}\| = 0$.
- 3. Retire a última coluna, denotada b, da matriz A definindo assim uma matriz 4×3 .
- (a). Obtenha a decomposição QR da nova matriz A na forma completa.
- (b). Calcule a projeção ortogonal \mathbf{b}_S de \mathbf{b} sobre o espaço das colunas de A, denotado S.
- (c). Obtenha a solução $\hat{\mathbf{x}}$ de $A\mathbf{x} = \mathbf{b}$ no sentido dos mínimos quadrados.
- **4.** Acrescente a coluna \mathbf{b}_S à matriz A, definindo assim uma matriz A, 4×4 .
- (a). Construa a matriz $C = (A + A^T)/2$ e calcule $||C C^T||$. Conclua.
- (b). Obtenha uma fatorização $C=QDQ^T$ (onde D denota uma matriz diagonal e Q uma matriz ortogonal).