Vv255 Lecture 15

Dr Jing Liu

UM-SJTU Joint Institute

June 26, 2017

Recall the polar coordinates in relation to Cartesian coordinates.

• For the same curve in the same space \mathbb{R}^2 , we might have 2 representations

$$y = y(x)$$
$$r = r(\theta)$$

$$y = y(x)$$

 $r = r(\theta)$ e.g. $y = \frac{3}{2}x - 1 \iff r = \frac{2}{3\cos\theta - 2\sin\theta}$

• In terms of the standard basis e_x and e_y , we have

$$\mathbf{r} = \begin{bmatrix} x \\ y \end{bmatrix}_{\mathcal{C}} = x\mathbf{e}_x + y\mathbf{e}_y, \quad \text{where} \quad \mathcal{C} = \{\mathbf{e}_x, \mathbf{e}_y\}$$

ullet We want to have an orthonormal basis $\mathcal{P} = \{\mathbf{e}_r, \mathbf{e}_{ heta}\}$,

$$\begin{bmatrix} r \\ \theta \end{bmatrix}_{\mathcal{P}} = r \mathbf{e}_r + \theta \mathbf{e}_{\theta}, \qquad \text{where}$$

 \mathbf{e}_r is the direction of increasing r. \mathbf{e}_{θ} is the direction of increasing $\theta.$

ullet Therefore, we expect the unit vector in the direction of increasing r to be

$$\mathbf{e}_r = \frac{(\cos \theta) \, \mathbf{e}_x + (\sin \theta) \, \mathbf{e}_y}{\sqrt{(\cos \theta)^2 + (\sin \theta)^2}} = (\cos \theta) \, \mathbf{e}_x + (\sin \theta) \, \mathbf{e}_y$$

• Similarly, the unit vector in the direction of increasing θ ,

$$\mathbf{e}_{\theta} = \frac{(-\sin\theta)\,\mathbf{e}_x + (\cos\theta)\,\mathbf{e}_y}{\sqrt{(-\sin\theta)^2 + (\cos\theta)^2}} = (-\sin\theta)\,\mathbf{e}_x + (\cos\theta)\,\mathbf{e}_y$$

ullet We can verify the orthogonality of ${f e}_r$ and ${f e}_ heta$ by computing

$$\mathbf{e}_x \cdot \mathbf{e}_\theta = 0$$

• Note the Cartesian position vector ${\bf r}$ in terms of ${\bf e}_r$ and ${\bf e}_{\theta}$ is

$$\mathbf{r} = \begin{bmatrix} x \\ y \end{bmatrix}_{\mathcal{C}} = r\mathbf{e}_r \neq r\mathbf{e}_r + \theta\mathbf{e}_\theta = \begin{bmatrix} r \\ \theta \end{bmatrix}_{\mathcal{P}}$$

• Note both \mathbf{e}_r and \mathbf{e}_{θ} are functions of θ .

$$\mathbf{e}_r(\theta)$$
 and $\mathbf{e}_{\theta}(\theta)$

• Let $\theta = \theta_0$, then the Cartesian position vector is a vector-valued function,

$$\mathbf{r}(r) = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} r\cos\theta_0 \\ r\sin\theta_0 \end{bmatrix} = r \begin{bmatrix} \cos\theta_0 \\ \sin\theta_0 \end{bmatrix}$$

• The rate of change of r with respect to r is

$$\frac{d\mathbf{r}}{dr} = \begin{bmatrix} \cos \theta_0 \\ \sin \theta_0 \end{bmatrix} = \mathbf{e}_r \bigg|_{\theta = \theta_0}$$

which gives the tangential direction of the curve defined by ${f r}$ at r as usual.

ullet If $r=r_0$, then the Cartesian position vector is a vector-valued function of heta,

$$\mathbf{r}(r) = \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} r_0 \cos \theta \\ r_0 \sin \theta \end{bmatrix}$$

• The rate of change of ${\bf r}$ with respect to θ is

$$\frac{d\mathbf{r}}{d\theta} = r_0 \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix} = r_0 \mathbf{e}_\theta = r \mathbf{e}_\theta \Big|_{r=r_0}$$

which gives the tangential direction of the curve defined by ${f r}$ at r as usual.

We have two derivatives of

$$\mathbf{r}(r,\theta)$$

1. The rate of change of \mathbf{r} with respect to r while holding θ fixed.

$$\frac{d\mathbf{r}}{dr}$$

2. The rate of change of \mathbf{r} with respect to θ while holding r fixed.

$$\frac{d\mathbf{r}}{d\theta}$$

Q: Have you seen derivatives that are similar to those?

$$\frac{\partial \mathbf{r}}{\partial r}$$
 and $\frac{\partial \mathbf{r}}{\partial \theta}$

 The partial derivatives give the change of the function, here the vector-valued function, with respect to one independent variable, holding other independent variables constant. • Now consider the scalar-valued function of two variables,

$$z = f(x, y)$$

ullet Recall a partial derivative of z is a directional derivative in the direction of

$$\mathbf{e}_x$$
 or \mathbf{e}_y

Q: Are these always the best direction to consider the rate of z?

$$f(x,y) = e^{-(x^2+y^2)}\cos(4(x^2+y^2))$$

ullet Clearly ${f e}_x$ and ${f e}_y$ are no better than any linear orthogonal directions.

Q: Why using polar coordinates is a better choice here?

• Since it shows the radial symmetry of the function

$$f(x,y) = e^{-(x^2+y^2)} \cos \left(4(x^2+y^2)\right)$$
$$= e^{-r^2} \cos \left(4r^2\right)$$

- It is often the symmetry of a given physical problem that points to the most convenient choice of basis or coordinates.
- If we add the usual z coordinate to the plane polar coordinates, then we will have a cylindrical coordinate system.

Definition

Cylindrical coordinates represent a point P in \mathbb{R}^3 by (r,θ,z) in which

- 1. r and θ are the polar coordinates for the projection of P onto the xy-plane
- 2. z is the Cartesian vertical coordinate.

 Similar to the plane polar basis, the cylindrical polar basis can be found by differentiating the Cartesian position vector

$$\mathbf{r}(r, \theta, z) = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} r\cos\theta \\ r\sin\theta \\ z \end{bmatrix}$$

As may be directly verified, the following basis is orthonormal everywhere,

$$\mathbf{e}_r = \frac{\frac{\partial \mathbf{r}}{\partial r}}{\left|\frac{\partial \mathbf{r}}{\partial r}\right|} = \frac{\partial \mathbf{r}}{\partial r} = \begin{bmatrix} \cos \theta \\ \sin \theta \\ 0 \end{bmatrix}, \qquad \text{where } \mathbf{e}_r \text{ gives the direction of increasing } r.$$

$$\mathbf{e}_{\theta} = \frac{\frac{\partial \mathbf{r}}{\partial \theta}}{\left|\frac{\partial \mathbf{r}}{\partial \theta}\right|} = \frac{1}{r} \frac{\partial \mathbf{r}}{\partial \theta} = \begin{bmatrix} -\sin\theta\\\cos\theta\\0 \end{bmatrix}, \quad \text{where } \mathbf{e}_{\theta} \text{ gives the direction of increasing } \theta.$$

$$\mathbf{e}_{z} = \frac{\frac{\partial \mathbf{r}}{\partial z}}{\left|\frac{\partial \mathbf{r}}{\partial z}\right|} = \frac{\partial \mathbf{r}}{\partial z} = \begin{bmatrix} 0\\0\\1 \end{bmatrix},$$

where \mathbf{e}_z gives the direction of increasing z.

Definition

Spherical coordinates represent a point P in \mathbb{R}^3 by (ρ,θ,ϕ) in which

- 1. ρ is the distance between the point P to the origin O.
- 2. θ is the angular coordinate for the projection of P on the xy-plane.
- 3. ϕ is the angle \vec{OP} makes with the positive z-axis.

Again the spherical polar basis can be found by differentiating

$$\mathbf{r}(\rho, \theta, \phi) = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \rho \sin \phi \cos \theta \\ \rho \sin \phi \sin \theta \\ \rho \cos \phi \end{bmatrix}$$

Again it can be directly verified, the following basis is orthonormal in \mathbb{R}^3 ,

$$\mathbf{e}_{\rho} = \frac{\frac{\partial \mathbf{r}}{\partial \rho}}{\left|\frac{\partial \mathbf{r}}{\partial \rho}\right|} = \frac{\partial \mathbf{r}}{\partial \rho} = \begin{bmatrix} \sin\phi\cos\theta\\ \sin\phi\sin\theta\\ \cos\phi \end{bmatrix}\,, \qquad \text{where } \mathbf{e}_{\rho} \text{ is the direction of increasing } \rho.$$

$$\mathbf{e}_{\theta} = \frac{\frac{\partial \mathbf{r}}{\partial \theta}}{\left|\frac{\partial \mathbf{r}}{\partial \theta}\right|} = \frac{1}{\rho \sin \phi} \frac{\partial \mathbf{r}}{\partial \theta} = \begin{bmatrix} -\sin \theta \\ \cos \theta \\ 0 \end{bmatrix}, \quad \text{where } \mathbf{e}_{\theta} \text{ is the direction of increasing } \theta.$$

$$\mathbf{e}_{\phi} = \frac{\frac{\partial \mathbf{r}}{\partial \phi}}{\left|\frac{\partial \mathbf{r}}{\partial \phi}\right|} = \frac{1}{\rho} \frac{\partial \mathbf{r}}{\partial \phi} = \begin{bmatrix} \cos\phi\cos\theta\\ \cos\phi\sin\theta\\ -\sin\phi \end{bmatrix}, \qquad \text{where } \mathbf{e}_{\phi} \text{ is the direction of increasing } \phi.$$