First, we run the OLS.

```
% Title: Matlab script for group project, STATS 506
% Author: Daxuan Deng
% Funtion: explore the relationship between health condition and drinking
           alcohol, using data NHANES 2005-2006 data.
% Date: 11/30/2019
% load data
alq = xptread('ALQ_D.XPT');
demo = xptread('DEMO_D.XPT');
hsq = xptread('HSQ_D.XPT');
% select variables
alq = alq(:, {'SEQN', 'ALQ120Q'});
demo = demo(:, {'SEQN', 'RIAGENDR', 'RIDAGEYR', 'DMDEDUC2', 'INDFMPIR'});
hsq = hsq(:, {'SEQN', 'HSD010'});
% merge data
dt = join(alq, demo, 'Keys', 'SEQN');
dt = join(dt, hsq, 'Keys', 'SEQN');
% rename columns
dt.Properties.VariableNames = ...
["id", "alcohol", "sex", "yr", "edu", "pir", "health"];
% drop invalid values
dt = rmmissing(dt);
dt(dt.alcohol > 365, :) = [];
dt(dt.yr < 21, :) = [];
dt(dt.edu > 5, :) = [];
dt(dt.health > 3, :) = [];
% centralize and factorize
dt.alcohol = (dt.alcohol - mean(dt.alcohol)) ./ std(dt.alcohol);
dt.sex = categorical(dt.sex);
dt.yr = (dt.yr - mean(dt.yr)) ./ std(dt.yr);
dt.edu = categorical(dt.edu);
dt.pir = (dt.pir - mean(dt.pir)) ./ std(dt.pir);
dt.health = categorical(dt.health);
% set 'Good' as base level
dt.health = reordercats(dt.health, {'3','1','2'});
% run OLS
md = fitlm(dt, 'alcohol ~ sex + yr + edu + pir + health');
```

% summary md.Coefficients

ans =

10x4 table

	Estimate	SE	tStat	pValue
(Intercept)	-0.097662	0.077429	-1.2613	0.2073
sex_2	-0.066717	0.038258	-1.7439	0.081291
yr	-0.0055428	0.019314	-0.28698	0.77415
edu_2	0.10222	0.090452	1.1301	0.25854
edu_3	0.10132	0.083256	1.2169	0.22373
edu_4	0.14169	0.083778	1.6912	0.090904
edu_5	0.087332	0.089987	0.97049	0.33189
pir	0.016709	0.02198	0.76021	0.44719
health_1	0.059674	0.061606	0.96863	0.33281
health_2	0.049529	0.041841	1.1838	0.23661

```
% extract fitted values and residuals
fit = predict(md, dt(:, 3:7));
res = md.Residuals.Raw;
coef = md.Coefficients(:,1);

% plot residuals
plot(1:height(dt), res, 'x'), title('residuals of OLS')
```


The residuals plot shows that the data is skewed, so using residual bootstrap will be an appropriate choice.

```
% bootstrap
rng(506);
nboot = 1000;
% resample residuals
func = Q(x)x;
res_boot = bootstrp(nboot, func, res);
dt_boot = dt(:, 3:7);
beta_boot = zeros(nboot, 10);
for i=1:nboot
   % generate new response
    dt_boot.alcohol = fit + res_boot(i,:)';
   % fit new model
   md_boot = fitlm(dt_boot, 'alcohol ~ sex + yr + edu + pir + health');
   % extract new estimate
    beta_boot(i,:) = table2array(md_boot.Coefficients(:,1))';
end
\% hist health_1 and health_2
hist(beta_boot(:,9)),title('coefficient of health 1')
hist(beta_boot(:,10)),title('coefficient of health 2')
```



```
% calculate std err
se = std(beta_boot);

% summary
result = coef;
result.se = se';
result.t = result.Estimate ./ result.se;
result.pvalue = 1-tcdf(abs(result.t),1);
```

result

result =

10x4 table

	Estimate	se	t	pvalue
(Intercept)	-0.097662	0.074424	-1.3122	0.20728
sex_2	-0.066717	0.037603	-1.7742	0.16337
yr	-0.0055428	0.020298	-0.27307	0.41515
edu_2	0.10222	0.090457	1.13	0.23059
edu_3	0.10132	0.078252	1.2948	0.20934
edu_4	0.14169	0.080976	1.7498	0.16527
edu_5	0.087332	0.085008	1.0273	0.24571
pir	0.016709	0.022218	0.75205	0.29475
health_1	0.059674	0.062881	0.94899	0.25833
health_2	0.049529	0.041953	1.1806	0.2237

We conclude from the table that most standard errors of coefficient estimators slightly decrease compared with the OLS. However, all pvalues are above 0.05, so there is no statistical significance that factors have strong relationships with drinking alcohol.