Отчет по лабораторной работе №8

Дисциплина: архитектура компьютера

Курушин Георгий Романович

Содержание

6	Список литературы	25
5	Выводы	24
	4.1 Реализация циклов в NASM	8 14 20
4	Выполнение лабораторной работы	8
3	Теоретическое введение	7
2	Задание	6
1	Цель работы	5

Список иллюстраций

4.1	Создание каталога	8
4.2	Копирование программы из листинга	9
4.3	Запуск программы	0
4.4	Изменение программы	1
4.5	Запуск измененной программы	2
4.6	Добавление push и pop в цикл программы	3
4.7	Запуск измененной программы	4
4.8	Копирование программы из листинга	5
4.9	Запуск второй программы	6
4.10	Копирование программы из третьего листинга	7
4.11	Запуск третьей программы	8
4.12	Изменение третьей программы	9
4.13	Запуск измененной третьей программы	0
4.14	Написание программы для самостоятельной работы	1
4.15	Запуск программы для самостоятельной работы	3

Список таблиц

1 Цель работы

Приобретение навыков написания программ с использованием циклов и обработкой аргументов командной строки.

2 Задание

- 1. Реализация циклом в NASM
- 2. Обработка аргументов командной строки
- 3. Самостоятельное написание программы по материалам лабораторной работы

3 Теоретическое введение

Стек — это структура данных, организованная по принципу LIFO («Last In — First Out» или «последним пришёл — первым ушёл»). Стек является частью архитектуры процессора и реализован на аппаратном уровне. Для работы со стеком в процессоре есть специальные регистры (ss, bp, sp) и команды. Основной функцией стека является функция сохранения адресов возврата и передачи аргументов при вызове процедур. Кроме того, в нём выделяется память для локальных переменных и могут временно храниться значения регистров.

4 Выполнение лабораторной работы

4.1 Реализация циклов в NASM

Создаю каталог для программ лабораторной работы №8 (рис. -fig. 4.1).

Рис. 4.1: Создание каталога

Копирую в созданный файл программу из листинга. (рис. -fig. 4.2).

```
sm variant.asm lab6-4.asm lab7-1.asm lab7-2.asm
%include 'in_out.asm'
SECTION .data
msgl db 'Введите N: ',0h
SECTION .bss
N: resb 10
SECTION .text
global _start
_start:
; ---- Вывод сообщения 'Введите №: '
mov eax,msgl
call sprint
; ---- Ввод 'N'
mov ecx, N
mov edx, 10
call sread
; ---- Преобразование '№' из символа в число
mov eax,N
call atoi
mov [N],eax
; ----- Организация цикла
mov ecx,[N] ; Счетчик цикла, `ecx=N`
label:
mov [N],ecx
mov eax,[N]
call iprintLF; Вывод значения `N` loop label; `ecx=ecx-l` и если `ecx` не '0'; переход на `label`
call quit
```

Рис. 4.2: Копирование программы из листинга

Запускаю программу, она показывает работу циклов в NASM (рис. -fig. 4.3).

Рис. 4.3: Запуск программы

Заменяю программу изначальную так, что в теле цикла я изменяю значение регистра ecx (рис. -fig. 4.4).

```
Открыть ▼ 📑
sm variant.asm lab6-4.asm lab7-1.asm lab7-2.asm
%include 'in_out.asm'
SECTION .data
msgl db 'Введите <u>N</u>: ',0h
SECTION .bss
N: resb 10
SECTION .text
global _start
_start:
; ---- Вывод сообщения 'Введите <u>N</u>: '
mov eax,msg1
call sprint
; ---- Ввод 'N'
mov ecx, N
mov edx, 10
call sread
; ---- Преобразование '№' из символа в число
call atoi
mov [N],eax
; ----- Организация цикла
mov ecx,[N] ; Счетчик цикла, `ecx=N`
label:
sub ecx, 1
mov [N],ecx
mov eax,[N]
call iprintLF ; Вывод значения `N`
loop label ; `ecx=ecx-1` и если `ecx` не '0'
; переход на `label`
call quit
```

Рис. 4.4: Изменение программы

Из-за того, что теперь регистр есх на каждой итерации уменьшается на 2 значения, количество итераций уменьшается вдвое (рис. -fig. 4.5).

```
hoxdrich17@fedora:-/work/arch-pc/lab0% nasm -f elf lab8-1.asm hoxdrich17@fedora:-/work/arch-pc/lab0% nasm -f elf lab8-1.lab8-1.o hoxdrich17@fedora:-/work/arch-pc/lab0% лаsm -f elf lab8-1.asm hoxdrich17@fedora:-/work/arch-pc/lab0% лаsm -f elf lab8-1.asm hoxdrich17@fedora:-/work/arch-pc/lab0% лаsm -f elf lab8-1.asm hoxdrich17@fedora:-/work/arch-pc/lab0% nasm -f elf lab8-1.asm hoxdrich17@fedora:-/work/arch-pc/lab0% nasm -f elf lab8-1.asm hoxdrich17@fedora:-/work/arch-pc/lab0% лаsm -f elf lab8-
```

Рис. 4.5: Запуск измененной программы

Добавляю команды push и pop в программу (рис. -fig. 4.6).

```
sm variant.asm lab6-4.asm lab7-1.asm lab7-2.asm
%include 'in_out.asm'
SECTION .data
msgl db 'Введите №: ',0h
SECTION .bss
N: resb 10
SECTION .text
global _start
_start:
; ---- Вывод сообщения 'Введите №: '
mov eax,msg1
call sprint
; ---- Ввод 'М'
mov ecx, N
mov edx, 10
call sread
; ---- Преобразование '№' из символа в число
mov eax,N
call atoi
mov [N],eax
; ----- Организация цикла
mov ecx,[N] ; Счетчик цикла, `ecx=N`
push ecx
sub ecx, 1
mov [N],ecx
mov eax,[N]
call iprintLF ; Вывод значения `N`
loop label ; `ecx=ecx-1` и если `ecx` не '0'
; переход на `label`
call quit
```

Рис. 4.6: Добавление push и pop в цикл программы

Теперь количество итераций совпадает введенному N, но произошло смещение выводимых чисел на -1 (рис. -fig. 4.7).

Рис. 4.7: Запуск измененной программы

4.2 Обработка аргументов командной строки

Создаю новый файл для программы и копирую в него код из следующего листинга (рис. -fig. 4.8).

Рис. 4.8: Копирование программы из листинга

Компилирую программу и запускаю, указав аргументы. Программой было обратоно то же количество аргументов, что и было введено (рис. -fig. 4.9).

Рис. 4.9: Запуск второй программы

Создаю новый файл для программы и копирую в него код из третьего листинга (рис. -fig. 4.10).

Рис. 4.10: Копирование программы из третьего листинга

Компилирую программу и запускаю, указав в качестве аргументов некоторые числа, программа их складывает (рис. -fig. 4.11).

Рис. 4.11: Запуск третьей программы

Изменяю поведение программы так, чтобы указанные аргументы она умножала, а не складывала (рис. -fig. 4.12).

Рис. 4.12: Изменение третьей программы

Программа действительно теперь умножает данные на вход числа (рис. -fig. 4.13).

Рис. 4.13: Запуск измененной третьей программы

4.3 Задание для самостоятельной работы

Пишу программму, которая будет находить сумма значений для функции f(x) = 30x-11, которая совпадает с моим 16 вариантом (рис. -fig. 4.14).

```
lab8-4.asm
                                                                 = ∨ ∧ ⊗
Открыть ▼ 📑
                                                                          lab8-4.asm ⊗
                                     lab8-2.asm lab8-3.asm
eport.md
                 lab8-1.asm
%include 'in_out.asm'
SECTION .data  \label{eq:msg_func}  \mbox{msg\_func db "Функция: }  f(x) = 30x - 11", 0 
msg_result db "Результат: ", 0
SECTION .text
GLOBAL _start
mov eax, msg_func
call sprintLF
рор есх
sub ecx, 1
mov esi, 0
next:
cmp ecx, 0h
jz _end
pop eax
call atoi
mov ebx, 30
mul ebx
sub eax, 11
add esi, eax
loop next
_end:
mov eax, msg_result
call sprint
mov eax, esi
call iprintLF
call quit
```

Рис. 4.14: Написание программы для самостоятельной работы

Код программы:

```
%include 'in_out.asm'

SECTION .data
msg_func db "Функция: f(x) = 30x - 11", 0
msg_result db "Результат: ", 0

SECTION .text
GLOBAL _start
```

```
_start:
mov eax, msg_func
call sprintLF
рор есх
pop edx
\mathsf{sub}\ \mathsf{ecx}\,,\ 1
\quad \text{mov esi, } 0
next:
cmp ecx, 0h
jz _end
pop eax
call atoi
mov ebx, 30
mul ebx
sub eax, 11
add esi, eax
loop next
_end:
mov eax, msg_result
call sprint
mov eax, esi
call iprintLF
```

call quit

Проверяю работу программы, указав в качестве аргумента несколько чисел (рис. -fig. 4.15).

Рис. 4.15: Запуск программы для самостоятельной работы

5 Выводы

В результате выполнения данной лабораторной работы я приобрел навыки написания программ с использованием циклов а также научился обрабатывать аргументы командной строки.

6 Список литературы

- 1. Курс на ТУИС
- 2. Лабораторная работа №8
- 3. Программирование на языке ассемблера NASM Столяров А. В.