Datenstrukturen und effiziente Algorithmen

Skript zur Vorlesung aus den Mitschriften von

Markus Vieth

David Klopp

1. November 2016

Vorwort

Dieses Skript basiert auf unserer Mitschrift der Vorlesung Datenstrukturen und effiziente Algorithmen (DSeA) im WS 2015/16 an der JGU Mainz (Dozent: Prof. Dr. E. Schömer).

Es handelt sich nicht um eine offizielle Veröffentlichung der Universität.

Wir übernehmen keine Gewähr für die Fehlerfreiheit und Vollständigkeit des Skripts.

Fehler können unter Github gemeldet werden. Die aktuelle Version dieses Skriptes ist ebenfalls auf Github zu finden.

Inhaltsverzeichnis

Vo	Vorwort				i
I.	I. Sortieren und Suchen				1
1.	1. Bubblesort				2
	1.1. Pseudocode1.2. Laufzeitanalyse				
2.	2. Heapsort				4
	2.1. Skizze			 	4
	2.2. Heap-Eigenschaft 2.3. Idee				
	2.4. Pseudocode 2.4.1. Phase: Bottom-up	Strategie zum He	 apaufbau	 	5
	-	se			
	2.5. Korrektheitsbetrachtung 2.6. Laufzeitanalyse			 	6
	9	on n und k			
	v i	oau			
	2.6.4. Fazit				
3.	3. Landau-Notation				9
	3.1. $O(n) \ldots \ldots \ldots$			 	9
	3.2. $\Omega(n)$				
	3.3. $\Theta(n)$				
	$3.4. o(n) \dots \dots \dots \dots \dots \dots \dots \dots \dots $				
4.	4. Mergesort (Divide and Conq 4.1. Pseudo-Code 4.2. Laufzeitanalyse				
5.	5. Master-Theorem				13
	5.1. Fall $1: (\frac{a}{b^{\alpha}}) < 1 \dots$			 	13
	5.2. Fall $2: (\frac{a}{b^{\alpha}}) > 1 \dots$			 	14
	5.3. Fall $3: \left(\frac{a}{b^{\alpha}}\right) = 1 \dots 5.3.1$. Beispiel: Mergeso				
6.	6. Schnelle Multiplikation lange 6.1. Schulmethode zur Multip			 	15 15

In halts verzeichn is

7.	kra-Bazzi Theorem	17
	1. Beispiel	. 17
	2. Das Theorem	. 17
	7.2.1. Ergänzung für den allgemeinen Fall	. 17
	3. Beweisidee	. 18
8.	neare Rekursionsgleichungen	19
	1. Fibonacci-Zahlen	. 19
	2. Methode der erzeugenden Funktionen	
	8.2.1. Einschub: Beispiel Reihenentwicklung	
	8.2.2. Nullstellen des Nennerpolynoms	
	8.2.3. Partialbruchzerlegung	
	8.2.4. Lösung	
a	uicksort (Divide and Conquer)	21
9.	1. Pseudo-Code	
	9.1.1. Zufallspermutation	
	•	
	9.1.2. Einschub: Stochastik	
	9.1.3. Laufzeitanalyse	. 23
10	ledian in Linearzeit	25
	0.1. Verallgemeinerung	. 25
	0.2. Idee	. 25
11.	uickselect	26
	1. Quicksort	
	2. Quickselect	
12	erallgemeinerung von Akra-Bazzi	27
13.	ledian der Mediane	28
	3.1. Ansatz	
	3.2. Deterministische Variante für k-Select	
	3.3. Laufzeitanalyse für den worst-case	
14.	ntere Schranke für vergleichsbasierte Sortierverfahren	29
	4.1. Entscheidungsproblem: (Bubbelsort)	
	4.2. Worst-case Laufzeit	
	14.2.1. Lemma: Mittlere Tiefe der Blätter in einem Entscheidungsbaum $> \log_2(n)n$.	
15.	adix-Sort	32
	5.1. Beispiel:	
	5.2. Pseudo-Code	
16	inäre Suchbäume	33
	3.1. Pseudo-Code	. 34
17.	VL-Bäume von Adelson-Velsky and Landis	35
	7.1. Allgemein	
	7.2. Laufzeitanalyse	

Inhaltsverze	eichnis
17.3. Baumtiefe	37 38
18. (a,b)-Suchbäume 18.1. Aufspaltung bei Einfügen 18.2. Verschmelzen von Knoten beim Löschen	
19.1. Bankkonto-Methode	43
20.1 Laufzeiten der Operationen 20.1.1. Analyse der Laufzeit zum Einfügen eines neuen Elementes k 20.1.2. Analyse der Suchzeit für einen Schlüssel k 20.1.3. Laufzeit beim Löschen von Schlüssel k 20.2. Universelles Hashing 20.2.1. Definition 20.3. Perfektes Hashing 20.3.1. Definition 20.3.2. Nachteil	44 45 45 45 46 47 47
II. Graphen-Algorithmen	50
21. Einführung 21.1. Eulerische Polyederformel 21.2. Adjazenzmatrix 21.3. Adjazenzlisten Repräsentation	52
22.BFS (Breadth-First Search) Breitensuche 22.1. Pseudo-Code 22.2. Laufzeit 22.2.1. Definition: Länge kürzesten Weges 22.2.2. Satz: Richtigkeit des Algorithmus 22.2.3. Lemma 1: Dreiecksungleichung für kürzeste Wege 22.2.4. Lemma 2 22.2.5. Lemma 3 22.2.6. Satz: Richtigkeit des Algorithmus	54 56 56 56 56 56
23.1. Dijkstra-Algorithmus	61 61 61

In halts verzeichn is

24		Pairs-Shortest Path Algorithmen	63
	24.1.	Allgemein	63
		24.1.1. Laufzeit zur Berechnung von $D^{(n)}$	64
	24.2.	Floyd-Warshall-Algorithmus	64
		24.2.1. Korrektheitsbeweis:	64
		24.2.2. Beweis der Invariante durch Induktion nach k	65
	24.3.	Naive Lösung	65
	24.4.	Johnson-Algorithmus	65
		24.4.1. Laufzeit des Johnson-Algorithmus	66
25	. Mini	imal aufspannende Bäume MST	67
	25.1.	Greedy-Algorithmen zur Lösung des MST-Problems:	67
	25.2.	Schnitt-Lemma:	67
		25.2.1. Beweis für das Schnitt-Lemma	68
	25.3.	Algorithmus von Kruskal	68
	25.4.	Einfache Union-Find-Datenstruktur	69
		25.4.1. Laufzeit Kruskal	69
	25.5.	Prim-Algorithmus zur Berechnung eines MST	70
		25.5.1. Korrektheit des Prim-Algorithmus	71
		25.5.2. Laufzeit des Prim-Algoritmus	71
		25.5.3. Beispiel des Prim-Algorithmus:	71
26	. Prio	rity-Queue mittels Fibonacci-Heaps	72
		Operationen eines Binomial-Heaps	72
		26.1.1. Konsolidierung der Wurzelliste	74
	26.2.	Eigenschaften	74
		26.2.1. Lemma: Knotenanzahl im Unterbaum	74
		26.2.2. Beweis	74
		26.2.3. Satz: Kosten der Operationen	76
		26.2.4. Beweis	76
27	. Das	Heiratsproblem	77
		Allgemein	77
	_,,,,,	27.1.1. Lemma: (Berge)	78
		27.1.2. Beweis:	78
		27.1.3. Pseudo-Code	79
		27.1.4. Laufzeit	79
	27.2.	Hopcroft-Karp-Algorithmus	79
	,,,	27.2.1. Gesamtzahl der Schleifendurchläufe	80
28	Algo	orithmen zur Berechnung maximaler Flüsse	81
	_	Allgemein	81
	20.1.	28.1.1. Flusserhaltung	81
		28.1.2. Definition: Fluss	81
		28.1.3. Definition: Schnitt (S,T)	82
		28.1.4. Konstruktion des Restnetzwerk G_f	82
	28.2	Ford-Fulkerson-Algorithmus	82
		Restnetzwerk $G_f = (V, E_f)$	83
		Max-Flow-Min-Cut-Theorem	83
	40.4.	28.4.1. Beweis: $1. \Rightarrow 2. \dots \dots \dots \dots \dots \dots \dots \dots \dots$	83
		#U. 1. 1. 1. U. W. U. U. 1. 7 #	-00

	Inhaltsverzeich	nis
28.4.2. Idee		83
28.4.3. Zwick		85
28.5. Edmonds-Karp Algorithmus		87
28.5.1. Lemma:		87
28.5.2. Beweis durch Widerspruch		87
28.5.3. Lemma		88
28.5.4. Beweis		88
28.5.5. Laufzeitanalyse von Edmonds-Karp Algorithmus		89
28.6. Algorithmus von Dinic		89
28.6.1. Sperrfluss (blocking flow)		89
28.7. Definition: Sperrfluss		89
28.7.1. Pseudo-Code		90
28.7.2. Begründung zur Laufzeit		90
28.8. Maxmimum Matching als Flussproblem		91
28.8.1. Flussnetzwerke mit Einheitskapazität		91
28.8.2. Finden knotendisjunkter Wege		93
28.8.3. Ergänzung zum Paper		93
29. Dynamische Programmierung		94
29.1. Matrizen Multiplikation		94
29.1.1. Bottom-Up Ansatz		95
29.1.2. Programm		95

Teil I. Sortieren und Suchen

1. Bubblesort

Abbildung 1.1.: Bubblesort

1.1. Pseudocode

```
void bubblesort (int[] a) {
  int n = a.length;
  for (int i = 1; i < n; i++) {
    for (int j = 0; j < n-i; j++) {
      if (a[j] < a[j+1])
        swap (a, j, j+1);
    }
}</pre>
```

Schleifen-Invariante: Nach dem Ablauf der i-ten Phase gilt:

Die Feldpositionen n-i,...,n enthalten die korrekt sortierten Feldelemente

Beweis durch Induktion nach i $\stackrel{i=n-1}{\Longrightarrow}$ Sortierung am Ende korrekt.

1.2. Laufzeitanalyse

T(n) = Zahl der durchgeführten Elementvergleiche für eine Eingabemenge von n Elementen

- 1. Phase n-1
- 2. Phase n-2
- 3. Phase n-3

:

i. Phase n-i

:

$$\frac{\text{(n-1). Phase n-(n-1)}=1}{1+2+3+\ldots+(n-1)}$$

$$T(n) = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} \in O(n^2)$$

$$\begin{array}{c|cc} n & T_{real} \\ \hline 2^{10} & 8ms \\ 2^{11} & 11ms \\ 2^{12} & 26ms \\ \hline \vdots & & \\ 2^{16} & 5,819s \\ 2^{17} & 23,381s \\ \hline \vdots & & \\ 2^{20} & 16min \\ \hline \vdots & & \\ 2^{26} & 52d \\ \hline \end{array}$$

$$T_{real}(n) \approx cn^2 \ c \approx 10^{-6}$$

$$T_{real}(2n) \approx c \cdot (2n)^2 = 4cn^2 = 4T_{real}(n)$$

$$\frac{T_{real}(2n)}{T_{real}(n)} = 4$$

2. Heapsort

z.B. 21 6 4 7 12 5 3 11 14 17 19 8 9 10 42

2.1. Skizze

Abbildung 2.1. Heapsort (Ausgangssituation)

2.1.1. Indices innerhalb der Baumstruktur

Abbildung 2.2.: Indices

2.2. Heap-Eigenschaft

Abbildung 2.3.: Heap-Eigenschaft

2.3. Idee

Phase 1 Stelle die Heap-Eigenschaft überall her ⇒ größtes Element steht in der Wurzel

Phase 2 Tausche Wurzel mit letztem Feldelement (z.B. 42 mit 3)

- Entferne letztes Feldelement aus dem Baum
- Gehe erneut zu Phase 1

2.4. Pseudocode

```
void heapify (int[] a, int i, int n) {
     while (2i + 1 < n) {    //linkes Kind von i existiert</pre>
3
       int j = 2i + 1;
4
       if (2i + 2 < n)
                             //rechtes Kind von i existiert
         if (a[j] < a[j+1])
5
6
           j = j + 1;
                             //j steht für Index des größten Kindes
7
                             //Vater größer als Kind
       if (a[i] > a[j])
                        //Abbruch, weil heap bereits erfüllt
8
         break;
9
                         //Tausch zwischen Vater und Kind
       swap(a,i,j);
10
       i = j;
11
     }
12 }
```

2.4.1. Phase: Bottom-up Strategie zum Heapaufbau

```
1 for (int i = n/2; i ≥0; i--)
2 heapify(a,i,n);
```

2.4.2. Phase: Sortierphase

```
1 for (int i = n-1; i ≥0; i--) {
2   swap(a,0,i);
3   heapify(a,0,i);
4 }
```

2.5. Korrektheitsbetrachtung

Invariante beim Heapaufbau: Beim Durchlauf der for-Schleife wird die Heapeigenschaft vom unteren Baumlevel bis zur Wurzel hergestellt.

Invariante für Sortierphase: Nach jedem weiteren Durchlauf der for-Schleife findet ein weiteres Element am Feldende seinen "richtigen Platz".

2. Heapsort

2.6. Laufzeitanalyse

T(n) = Zahl der Elementvergleiche.

n := Zahl der Elemente k := Zahl der Schichten

2.6.1. Zusammenhang von n und k

$$n = \sum_{i=0}^{k-1} 2^i = 2^k - 1$$

Merke: Geometrische Reihe

$$\sum_{i=0}^{k-1} x^i = \frac{1 - x^k}{1 - x} \quad \text{mit } x \neq 1$$

2.6.2. Analyse Heapaufbau

$$\sum_{l=0}^{k-1} 2^l (k-1-l)$$

 $2^l :=$ Anzahl Knoten auf Level l

(k-1-l) := Leveldifferenz zwischen l und der Blattebene

$$\sum_{l=0}^{k-1} (k-1-l) \cdot 2^l = \sum_{l=0}^{k-1} (k-1) \cdot 2^l - \sum_{l=0}^{k-1} l \cdot 2^l = (k-1)(2^k-1) - 2\sum_{l=1}^{k-1} l 2^{l-1}$$

Nebenrechnung

$$\sum_{i=1}^{k-1} i \cdot x^{i-1} = \frac{d}{dx} \left(\sum_{i=0}^{k-1} x^i \right) = \frac{d}{dx} \left(\frac{x^k - 1}{x - 1} \right)$$
$$= \frac{kx^{k-1}(x - 1) - (x^k - 1)}{(x - 1)^2}$$
$$\text{mit } x = 2 \text{ folgt:} \quad k \cdot 2^{k-1} - 2^k + 1$$

$$= (k-1)(2^k - 1) - k2^k + 2^{k+1} - 2$$

$$= k2^k - 2^k - k + 1 - k2^k + 2^{k+1} - 2$$

$$= -2^k - k - 1 + 2^{k+1} \le 2^{k+1} \approx 2 \cdot n$$

 \Rightarrow Heapaufbau in lineare Zeit

2.6.3. Sortierphase

1. Versuch $n \cdot k$ mit $n = 2^k - 1 \Leftrightarrow k = \log_2(n+1) \approx n \cdot \log_2(n)$

2. Versuch (mit Verkleinerung der Liste)

$$\sum_{l=0}^{k-1} 2^l \cdot l = 2 \sum_{l=1}^{k-1} l \cdot 2^{l-1} = 2 \cdot (k \cdot 2^{k-1} - 2^k + 1) \ge k \cdot 2^{k-1} \approx n \cdot \log_2(n)$$

2. Heapsort

2.6.4. Fazit

Laufzeit $c \cdot n \cdot \log_2(n)$ wobei $c \in \mathbb{R}$

3. Landau-Notation

 $g, f: \mathbb{N} \to \mathbb{N}$

3.1. O(n)

 $g(n) \in O(f(n)) \Leftrightarrow c > 0 \land n_0 \in \mathbb{N}$, so dass für alle $n \ge n_0$ gilt: $g(n) \le c \cdot f(n) \Leftrightarrow \lim_{n \to \infty} \sup \frac{g(n)}{f(n)} < \infty$

Beispiel

$$\lim_{n\to\infty}\frac{n\log_2(n)}{n^2}=\lim_{n\to\infty}\frac{\log_2(n)}{n}=\lim_{n\to\infty}\frac{\frac{\ln(n)}{\ln(2)}}{n}\stackrel{\text{L' Hopital}}{=}\lim_{n\to\infty}\frac{1}{\ln(2)}\cdot\frac{1}{n}=\frac{1}{\ln(2)}\lim_{n\to\infty}\frac{1}{n}=0$$

3.2. $\Omega(n)$

 $g(n) \in \Omega(f(n)) \Leftrightarrow c > 0 \land n_0 \in \mathbb{N}$, so dass für alle $n \ge n_0$ gilt: $g(n) \ge c \cdot f(n) \Leftrightarrow \lim_{n \to \infty} \inf \frac{g(n)}{f(n)} > 0$

Beispiel $g(n) = n^p$ $f(n) = n^q$ $p \ge q$

Behauptung $g(n) \in \Omega(f(n))$

$$\lim_{n \to \infty} \frac{n^p}{n^q} = \infty > 0$$

3.3. $\Theta(n)$

$$g(n) \in \Theta(f(n)) \Leftrightarrow g(n) \in O(f(n)) \land g(n) \in \Omega(f(n))$$

 $\text{Beispiel} \quad g(n) = n^p + n^{p-1} + c \cdot n^2 \qquad f(n) = n^p$

 $\begin{array}{ll} \textbf{Behauptung} & g(n) \in \Theta(f(n)) \\ \dots. & \text{Rechnung} \end{array}$

3.4. o(n)

$$g(n) \in o(f(n)) \Leftrightarrow \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$$

Beispiel $g(n) = n \cdot \log_2(n)$ $f(n) = n^2$

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0 \quad \text{siehe oben}$$

3. Landau-Notation

Erklärung "g ist asymptotisch gesehen vernachlässigbar gegenüber f."

3.4.1. Notation

Häufig wird:

$$O(n) = O(n^2) = O(n^2 \cdot \log_2(n))$$

geschrieben, anstelle von:

$$O(n) \subset O(n^2) \subset O(n^2 \cdot \log_2(n))$$

Missbrauch der Notation!!!

4. Mergesort (Divide and Conquer)

4.1. Pseudo-Code

```
1 int[] a; //Eingabefeld
 2 int[] b; //Hilfsfeld
   void mergesort(int links, int rechts) {
        if (links \geqref{eq:rechts}) return;
 6
        int mitte = (links+rechts)/2;
       mergesort(links, mitte);
       mergesort(mitte+1, rechts);
9
        merge(links, mitte, rechts);
10 }
12
    void merge(int links, int mitte, int rechts) {
        int i = links;
14
        int j = mitte+1;
15
        int k = links;
16
        while (i \leqmitte && j \leqrechts) {
17
           if (a[i] < a[j])</pre>
               b[k++] = a[i++];
18
19
20
               b[k++] = a[j++];
21
22
        while (i <mitte)
23
           b[k++] = a[i++];
24
        while (j ≤rechts)
25
           b[k++] = a[j++];
26
        for (k=links; k \le rechts; k++)
27
           a[k] = b[k];
28 }
```

4.2. Laufzeitanalyse

 $T(n) = \text{Zahl der von Mergesort durchgeführten Elementarvergleiche} \approx \text{Laufzeit}$

$$T(n) = 2T(\frac{n}{2}) + n - 1 \approx 2T(\frac{n}{2}) + n \text{ mit } T(1) = 0$$

Korrekter wäre $T(n) = T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \rceil) + n - 1$

Für ungerade Zahlen

4. Mergesort (Divide and Conquer)

$$\begin{split} T(n) &= 2 \cdot 2T \left(\frac{n}{2}\right) + n \stackrel{(1)}{=} 2 \left(^{\mathrm{I}} \left(2T \left(\frac{n}{4}\right) + \frac{n}{2}\right) + n\right) = 4T \left(\frac{n}{4}\right) + 2n \\ &\stackrel{(2)}{=} 4 \cdot \left(2T \left(\frac{n}{8}\right) + \frac{n}{4}\right) + 2n = 8T \left(\frac{n}{8}\right) + 3n = \ldots = 2^i \cdot T \left(\frac{n}{2^i}\right) + in \end{split}$$

$$T\left(\frac{n}{2}\right) = 2T\left(\frac{n}{4}\right) + \frac{n}{2} \tag{1}$$

$$T\left(\frac{\overline{n}}{4}\right) = 2T\left(\frac{\overline{n}}{8}\right) + \frac{\overline{n}}{4} \qquad (2)$$

....

$$T(1) = 0$$

Rekursionsende $\frac{n}{2^i} = 1 \Leftrightarrow 2^i = n \Leftrightarrow i = \log_2(n)$

$$T(n) = 2^{\log_2(n)} T\left(\frac{n}{2^{\log_2(n)}}\right) + n\log_2(n) = nT(1) + \log_2(n) = \log_2(n)$$

Abstraktion

T(n) = Laufzeit eines Divide & Conquer Algorithmus der ein Problem dadurch löst, das es in a Teilprobleme der Größe $\frac{n}{h}$ zerlegt wird, die rekursiv gelöst werden und anschließend kombiniert werden.

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + n^{\alpha}$$
 $\alpha > 0$ mit $T(1) = 0$

$$T(n) = aT\left(\frac{n}{h}\right) + n^{\alpha} \stackrel{(1)}{=} a^{2}T\left(\frac{n}{h^{2}}\right) + a\left(\frac{n}{h}\right)^{\alpha} + n^{\alpha}$$

$$(1) \qquad T\left(\frac{n}{b}\right)=aT\left(\frac{n}{b^{2}}\right)+\left(\frac{n}{b}\right)^{\alpha}\stackrel{(2)}{=}a^{3}T\left(\frac{n}{b^{3}}\right)+a^{2}\left(\frac{n}{b^{2}}\right)^{\alpha}+a^{1}\left(\frac{n}{b^{1}}\right)^{\alpha}+a^{0}\left(\frac{n}{b^{0}}\right)^{\alpha}$$

$$(2) T\left(\frac{n}{b^2}\right) = aT\left(\frac{n}{b^3}\right) + \left(\frac{n}{b^2}\right)^{\alpha} = a^iT\left(\frac{n}{b^i}\right) + \sum_{j=0}^{i-1} a^j \left(\frac{n}{b^j}\right)^{\alpha} = a^iT\left(\frac{n}{b^i}\right) + n^{\alpha}\sum_{j=0}^{i-1} \left(\frac{a}{b^{\alpha}}\right)^j$$

$$mit i = \log_b(n) \land x = \frac{a}{b^{\alpha}}$$

...

$$T(1) = 0$$

5. Master-Theorem

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + n^{\alpha}$$

$$T(1) = 0$$

$$T(n) = a^{i}T\left(\frac{n}{b^{i}}\right) + n^{\alpha} \sum_{j=0}^{i-1} \left(\frac{a}{b^{\alpha}}\right)^{j}$$

$$\frac{\text{o.B.d.A}}{n = b^k \Leftrightarrow k = \log_b(n)}$$

5.1. Fall $1:(\frac{a}{b^{\alpha}})<1$

$$\left(\frac{a}{b^{\alpha}}\right) < 1 \Leftrightarrow a < b^{\alpha} \Leftrightarrow \log_b(a) < \alpha$$

$$\sum_{j=0}^{k-1} x^j = \frac{x^k - 1}{x - 1} \quad \text{für } x \neq 1$$

$$\Rightarrow \sum_{j=0}^{k-1} \left(\frac{a}{b^{\alpha}}\right)^j \le \frac{1}{1 - \frac{a}{b^{\alpha}}} = c'$$

$$T(n) = a^k T(1) + n^{\alpha} \cdot c'$$

= $c \cdot n^{\log_b(a)} + c' \cdot n^{\alpha} = \Theta(n^{\alpha})$

$$\textbf{Nebenbedingung} \quad a^{\log_b(n)} = \left(b^{\log_b(a)}\right)^{\log_b(n)} = \left(b^{\log_b(n)}\right)^{\log_b(a)} = n^{\log_b(a)}$$

5. Master-Theorem

5.2. Fall 2 : $(\frac{a}{b^{\alpha}}) > 1$

$$\left(\frac{a}{b^{\alpha}}\right) > 1 \Leftrightarrow \log_b(a) > \alpha$$

$$\sum_{j=0}^{k-1} \left(\frac{a}{b^{\alpha}}\right)^j = \left(\frac{\left(\frac{a}{b^{\alpha}}\right)^{\log_b(n)} - 1}{\left(\frac{a}{b^{\alpha}}\right) - 1}\right) \le \left(\frac{a}{b^{\alpha}}\right)^{\log_b(n)} \cdot c'' = \frac{a^{\log_b(n)}}{b^{\alpha \log_b(n)}} = \frac{n^{\log_b(\alpha)}}{n^{\alpha}}$$

$$T(n) = c \cdot n^{\log_b(a)} + n^{\alpha} \cdot \frac{n^{\log_b(a)}}{n^{\alpha}} \cdot c'' = \Theta\left(n^{\log_b(a)}\right)$$

5.3. Fall 3 : $(\frac{a}{b^{\alpha}}) = 1$

$$\left(\frac{a}{b^{\alpha}}\right) = 1 \Leftrightarrow a = b^{\alpha} \Leftrightarrow \log_b(a) = \alpha$$

$$T(n) = c \cdot n^{\log_b(a)} + n^{\alpha} \cdot \log_b(n) = \Theta\left(n^{\alpha} \cdot \log(n)\right)$$

5.3.1. Beispiel: Mergesort

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$T(1) = 0$$

Ermittle
$$a = 2$$
 $b = 2$ $\alpha = 1$

$$\log_2(2) = 1 = \alpha \Rightarrow 3$$
. Fall $\Rightarrow \Theta(n \cdot \log(n))$

6. Schnelle Multiplikation langer Zahlen

$$\mathbf{A} = \boxed{a_{n-1} \quad \dots \quad a_i \quad \dots \quad a_2 \quad a_1 \quad a_0} \quad a_i \in \mathbb{B} = \{0, 1\}$$

$$= \sum_{i=0}^{n-1} a_i 2^i$$

$$B = b_{n-1} \dots b_2 b_1 b_0$$

$$= \sum_{i=0}^{n-1} b_i 2^i$$

Frage Wie schnell können wir zwei n-stellige Binärzahlen addieren/subtrahieren/multiplizieren?

Addition $\Theta(n)$

6.1. Schulmethode zur Multiplikation

 n^2 Aufwand zur Ermittlung der Partialprodukte + n \cdot Kosten für die Addition von Zahlen der Länge 2n $\implies \Theta(n^2)$

Ziel
$$o(n^2)$$
 $O(n^{1,58})$

6.2. Karazuba Ofman

$$A = \boxed{a_{n-1} \mid \dots \mid a_{\frac{n}{2}}} \qquad \boxed{a_{\frac{n}{2}-1} \mid \dots \mid a_0}$$
$$= A_1 \qquad \qquad = A_0$$

$$A = A_0 + A_1 2^{\frac{n}{2}}$$

$$A \cdot B = (A_0 + A_1 2^{\frac{n}{2}})(B_0 + B_1 2^{\frac{n}{2}})$$
$$= A_0 B_0 + A_0 B_1 2^{\frac{n}{2}} + A_1 B_0 2^{\frac{n}{2}} + A_1 B_1 2^n$$

6. Schnelle Multiplikation langer Zahlen

Legende markierte Elemente haben die Länge $\frac{n}{2}$

Anmerkung Addition von Zahlen der Länge 2n

Sei T(n) die Laufzeit dieser rekursiven Methode zur Multiplikation zweier n-stelliger Zahlen:

$$T(n) = 4 \cdot T\left(\frac{n}{2}\right) + c \cdot n$$
 $T(1) = c$

Mastertheoreme

$$a = 4$$
 $b = 2$ $\alpha = 1$ $\log_2(4) = 2 > \alpha$

$$\Rightarrow T(n) = \Theta(n^2)$$

 \Rightarrow kein Gewinn bisher!!!

Ziel Ermittle Partialprodukte auf anderem Weg

1.)
$$(A_0 + A_1) \cdot (B_0 + B_1) = A_0B_0 + A_0B_1 + A_1B_0 + A_1B_1 = P$$

2.)
$$A_0 \cdot B_0$$

3.)
$$A_1 \cup B_1$$

$$\Rightarrow (A_0B_1 + A_1B_0) \cdot 2^{\frac{n}{2}} = (P - (A_0B_0) - (A_1B_1)) \cdot 2^{\frac{n}{2}}$$

Es verbleiben 3 Multiplikationen und Additionen

$$AB = A_0 B_0 + (P - (A_0 B_0) - (A_1 B_1)) \cdot 2^{\frac{n}{2}} + A_1 B_1 2^n$$

Mastertheoreme

$$T(n) = 3 \cdot T\left(\frac{n}{2}\right) + n$$

$$a=3, \quad b=2, \quad \alpha=1$$

$$\log_2(3) > 1 \implies 2$$
. Fall

$$\Rightarrow \Theta\left(n^{\log_2(3)}\right) = \Theta\left(n^{1,5849625}\right)$$

7. Akra-Bazzi Theorem

7.1. Beispiel

$$T(n) = 2T\left(\frac{n}{2}\right) + \log_2(n)$$

$$T(n) = \begin{cases} aT\left(\frac{n}{b}\right) + g(n) & n > n_0 \\ h(n) & 1 \le n \le n_0 \end{cases}$$

$$T(n) = \Theta\left(n^{\alpha}\left(1 + \int_1^n \frac{g(x)}{x^{\alpha+1}} dx\right)\right) \quad \text{mit } \alpha, \text{ so dass gilt: } \frac{a}{b^{\alpha}} = 1$$

7.2. Das Theorem

$$\begin{split} T(n) &= a \cdot T\left(\frac{n}{b}\right) + g(n) \\ T(1) &= c \\ T\left(n\right) &= \Theta\left(n^{\alpha}\left(1 + \int_{1}^{n} \frac{g\left(x\right)}{x^{1+\alpha}} dx\right)\right) \quad \text{mit } \frac{a}{b^{\alpha}} = 1 \quad \alpha = \log_{b}(a) \\ \text{z.B. } T(n) &= 2T\left(\frac{n}{2}\right) + \log(n)^{\text{I}} \end{split}$$

7.2.1. Ergänzung für den allgemeinen Fall (siehe Kapitel 12)

$$T(n) = \sum_{i=1}^{k} \left[a_i \cdot T\left(\frac{n}{b_i}\right) \right] + g(n)$$

$$T(1) = c$$

$$T(n) = \Theta\left(n^{\alpha} \left(1 + \int_{1}^{n} \frac{g(x)}{x^{1+\alpha}} dx\right)\right) \quad \text{mit } \sum_{i=1}^{k} \frac{a_i}{b_i^{\alpha}} = 1$$

Iklausurrelevant

7. Akra-Bazzi Theorem

7.3. Beweisidee

$$\begin{split} &T(\frac{n}{b}) = aT(\frac{n}{b^2}) + g(\frac{n}{b}) \\ &T(n) = a\left(aT\left(\frac{n}{b^2}\right) + g\left(\frac{n}{b}\right)\right) + g\left(n\right) = a^2 + \frac{n}{b^2} + a^1g\left(\frac{n}{b^1}\right) + a^0g\left(\frac{n}{b^0}\right) \\ &\Rightarrow a^iT\left(\frac{n}{b^i}\right) + \sum_{j=0}^{i-1} a^ig\left(\frac{n}{b^2}\right) \quad \text{Rekursionsende für } \mathbf{r} = \log_b(b) \\ &\Theta(a^{\log_b(n)}) = \Theta(n^\alpha) \\ &\sum_{j=0}^{\log(n)-1} a^jg\left(\frac{n}{b^\alpha}\right) \approx \int_0^{\log_b(n)} a^jg\left(\frac{n}{b^j}\right) dj \end{split}$$

Substitution

$$x = \frac{n}{b^{j}} = n \cdot b^{-j} = n \cdot e^{-j \ln(b)}$$

$$\frac{dx}{d_{j}} = n \left(-\ln(b)\right) e^{-j \ln(b)} = -n \ln(b) b^{j} = -\ln(b) x$$

$$\Rightarrow d_{j} = \frac{1}{-\ln(b)x} dx$$

$$a^{j} = b^{\log_{b}(a)j} = b^{\alpha j} = \left(b^{j}\right)^{\alpha} = \left(\frac{n}{x}\right)^{\alpha}$$

$$= \int_{n}^{1} \left(\frac{n}{x}\right)^{\alpha} g(x) \left(\frac{1}{-\ln(b)x}\right) dx = \frac{n^{\alpha}}{\ln(b)} \cdot \int_{1}^{n} \frac{g(x)}{x^{1+\infty}} dx$$

q.e.d

8. Lineare Rekursionsgleichungen

8.1. Fibonacci-Zahlen

$$f_n = f_{n-1} + f_{n-2}$$

$$f_0 = 0$$

$$f_1 = 1$$

n	0	1	2	3	4	5	6	7	
f(n)	0	1	1	2	3	5	8	13	

Abbildung 8.1.: Fibonacci-Zahlen

8.2. Methode der erzeugenden Funktionen

$$F(Z) = \sum_{n=0}^{\infty} f_n Z^n = f_0 \cdot Z^0 + f_1 \cdot Z^1 + \sum_{n=2}^{\infty} (f_{n-1} + f_{n-2}) \cdot Z^n$$

$$= Z + \sum_{n=2}^{\infty} f_{n-1} Z^n + \sum_{n=2}^{\infty} f_{n-2} Z^n$$

$$= Z + Z \sum_{n=2}^{\infty} f_{n-1} Z^{n-1} + Z^2 \sum_{n=2}^{\infty} f_{n-2} Z^{n-2}$$

$$\Leftrightarrow F(Z) = Z + Z \cdot F(Z) + Z^2 \cdot F(Z)$$

$$\Leftrightarrow -Z = Z^2 F(Z) + Z F(Z) - F(Z) = F(Z)(Z^2 + Z - 1)$$

$$F(Z) = -\frac{Z}{Z^2 + Z - 1}$$

8.2.1. Einschub: Beispiel Reihenentwicklung

$$\frac{1}{1-Z} = \sum_{n=0}^{\infty} Z^n$$

$$\Rightarrow F(Z) = -\frac{Z}{Z^2 + Z - 1}$$

8. Lineare Rekursionsgleichungen

8.2.2. Nullstellen des Nennerpolynoms

$$Z^{2} + Z = 1 \quad | + (\frac{1}{2})^{2}$$

$$\Leftrightarrow (Z + \frac{1}{2})^{2} = \frac{5}{4}$$

$$\Leftrightarrow Z_{1/2} = -\frac{1}{2} \pm \frac{\sqrt{5}}{2}$$

$$\Rightarrow Z^{2} + Z + 1 = (Z + \phi)(Z + \overline{\phi})$$
Goldener Schnit
$$\phi = \frac{1 + \sqrt{5}}{2}$$

$$\overline{\phi} = \frac{1 - \sqrt{5}}{2}$$

8.2.3. Partialbruchzerlegung

$$\frac{A}{Z+\phi} + \frac{B}{Z+\overline{\phi}} = \frac{A \cdot (Z+\overline{\phi}) + B(Z+\phi)}{(Z+\phi)(Z+\overline{\phi})}$$

$$\Rightarrow AZ + BZ = -Z \Leftrightarrow A+B = -1 \quad (1)$$

$$A\overline{\phi} + B\phi = 0 \Leftrightarrow B = -\frac{A\overline{\phi}}{\phi} \quad (2)$$

$$(2) \text{ in } (1) \quad A - \frac{A\overline{\phi}}{\phi} = -1 \Leftrightarrow A\left(1 - \frac{\overline{\phi}}{\phi}\right) = -1$$

$$\Leftrightarrow A = -\frac{1}{\sqrt{5}}\phi$$

$$\Rightarrow B = \frac{1}{\sqrt{5}}\overline{\phi}$$

8.2.4. Lösung

$$F(Z) = \frac{-Z}{Z^2 + Z + 1} = -\frac{1}{\sqrt{5}} \frac{\phi}{Z + \phi} + \frac{1}{\sqrt{5}} \frac{\overline{\phi}}{Z + \overline{\phi}}$$

$$= \frac{1}{\sqrt{5}} \left(\frac{1}{1 + \frac{Z}{\phi}} - \frac{1}{1 + \frac{Z}{\overline{\phi}}} \right) = \frac{1}{\sqrt{5}} \left(\frac{1}{1 - \phi Z} - \frac{1}{1 - \overline{\phi} Z} \right)$$

$$= \frac{1}{\sqrt{5}} \left(\sum_{n=0}^{\infty} (\phi Z)^n - \sum_{n=0}^{\infty} (\overline{\phi} Z)^n \right) = \sum_{n=0}^{\infty} \frac{1}{\sqrt{5}} \left(\phi^n - \overline{\phi}^n \right) \cdot Z^n$$

$$f_n = \frac{1}{\sqrt{5}} \left(\phi^n - \overline{\phi}^n \right) \quad \text{mit } \phi = 1,681... \quad \overline{\phi} = -0,681...$$

9. Quicksort (Divide and Conquer)

Abbildung 9.1.: Quicksort

```
⇒ Tausche 15 mit 10
- Bewege Zeiger erneut
⇒ Tausche 5 und 24
- Bewege Zeiger erneut
⇒ Tausche 16 und 2
- Bewege Zeiger erneut
⇒ i wird größer als j ⇒ Abbruch (tausche Pivotelement mit letztem Element in Teilliste 1)
⇒ es ergeben sich zwei Teillisten

4, 6, 3, 10, 7, 9, 5, 2 |12| 16, 24, 42, 15

best-case T(n) = 2T(\frac{n}{2}) + n = \Theta(n \log n)

worst-case T(n) = T(n-1) + n = \Theta(n^2)
```

9.1. Pseudo-Code

```
void quicksort(int[] a, int links, int rechts) {
       if (links >rechts) return;
3
       int mitte = partition(a, links, rechts);
       quicksort(a, links, mitte-1);
 4
5
       quicksort(a, mitte+1, rechts);
    int partition(int[] a, int links, int rechts) {
9
       int r = random(links, rechts);
10
       swap(a, r, rechts);
       int pivot = a[rechts];
11
12
       int i = links;
13
       int j = rechts-1;
14
       while (i \leqj) {
15
           if (a[i] > pivot) {
16
               swap(a, i, j);
17
               j--;
           } else {
19
               i++;
20
21
       }
```

9. Quicksort (Divide and Conquer)

```
22 swap(a, i, rechts);
23 return i;
24 }
```


Abbildung 9.2.: Quicksort

Schleifen-Invariante:

```
\begin{split} a[k] > p & \text{ für } j < k < rechts \\ a[k] \le p & \text{ für } links < k < i \end{split}
```

9.1.1. Zufallspermutation

```
void randomPermutation(int[] a) {
   int n = a.length;
   for (int i = n-1); i > 0; i--) {
      int r = random(0,i); // gleichverteilte Zufallszahl im Intervall [0,i)
      swap(a,r,i);
   }
}
```

9.1.2. Einschub: Stochastik

Fairer Würfel (Erwartungswert):

X sei Zufallsvariable $\hat{=}$ Anzahl Augen

$$Pr(X = x_i) \quad x_i \in \{1, 2, 3, 4, 5, 6\}$$

$$E(X) = \sum_{i=1}^{6} x_i \cdot Pr(X = x_i) = \frac{1}{6} \cdot \sum_{i=1}^{6} x_i = \frac{1}{6} \cdot \frac{7 \cdot 6}{2} = 3, 5$$

Fairer Würfel (Erste Sechs):

X sei Zufallsvariable $\hat{=}$ Zahl der benötigten Würfe bis zum Auftreten der ersten 6.

$$x_i \in N$$

$$P_{\mathcal{D}}(X = i) \quad 1 \quad \sum_{i=1}^{\infty} i \quad (5)$$

$$E(X) = \sum_{i=1}^{\infty} i \cdot Pr(X=i) = \frac{1}{6} \cdot \sum_{i=1}^{\infty} i \cdot \left(\frac{5}{6}\right)^{i-1}$$

Mit der Ableitung der geometrischen Reihe, $\frac{1}{(1-x)^2}$ folgt:

$$=\frac{1}{6}\cdot\left(\frac{1}{\left(1-\frac{5}{6}\right)^2}\right)=6$$

9.1.3. Laufzeitanalyse

T(n) = Erwartungswert der Laufzeit von Quicksort bei zufällig gleichverteilter Eingabe-Partition.

$$T(n) = n + \sum_{i=1}^{n} (T(i-1) + T(n-i)) \cdot \frac{1}{n}$$

Unter der Annahme, dass keine gleich großen Elemente existieren.

$$T(1) = 0$$

Abbildung 9.3.

9. Quicksort (Divide and Conquer)

Lösen durch Einsetzten

$$T(n) = n + \frac{2}{n} \sum_{i=1}^{n} T(i-1) = n + \frac{2}{n} \sum_{i=0}^{n-1} T(i)$$

$$\Leftrightarrow n \cdot T(n) = n^2 + 2 \sum_{i=0}^{n-1} T(i)$$

$$\Leftrightarrow 2(n-1) \cdot T(n-1) = (n-1)^2 + 2 \sum_{i=0}^{n-2} T(i)$$

$$\Leftrightarrow (1) - (2)nT(1) - (n-1)T(n-1) = n2 - (n-1)^2 + 2T(n-1)$$

$$\Leftrightarrow nT(n) = (n+1)T(n-1) + 2n - 1$$

$$\Leftrightarrow T(n) \le \frac{n+1}{n} T(n-1) + 2 \le \frac{n+1}{2} \left(\frac{n}{n+1} \cdot T(n-2) + 2 \right) + 2$$

$$= \frac{n+1}{n-1} T(n-2) + \frac{n+1}{n} \cdot 2 + 2$$

$$\le \frac{n+1}{n-1} \left(\frac{n-1}{n-2} T(n-3) + 2 \right) + \frac{n+1}{n} \cdot 2 + 2 \cdot 1$$

$$= \frac{n+1}{n-2} T(n-3) + 2 \cdot \frac{n+1}{n-1} + 2 \cdot \frac{n+1}{n} + 2 \cdot \frac{n+1}{n+1}$$

$$\Rightarrow T(n) \le \frac{n+1}{n-(k-1)} T(n-k) + 2(n+1) \sum_{i=1}^{k-2} \frac{1}{n-i} \quad \text{endet für k = n-1}$$

$$T(n) = 2(n+1) \sum_{i=-1}^{n-3} \frac{1}{n-i} = 2(n+1) \sum_{j=3}^{n+1} \frac{1}{j} \le 2(n+1) H_{n+1} \in O(n \log n) \quad \text{mit j=n-i}$$

10. Median in Linearzeit

Median $\; \stackrel{\textstyle .}{=} \; \frac{n}{2}$ -kleinste Element in einer Folge von
n Elementen

10.1. Verallgemeinerung

Finde das k-t kleinste Elemente in der Folge

Naive Strategie: $O(k \cdot n)$

10.2. Idee

1 select(int[] a, int k) {}

Abbildung 10.1.: Aufruf von Partition

- 1. Fall $k = i \Rightarrow$ Pivotelement war gesucht
- 2. Fall $k < i \Rightarrow$ suche rekursiv das k-t kleinste Element in L
- 3. Fall $k > i \Rightarrow$ suche rekursiv das (k-i)-t kleinste Element in R

11. Quickselect

11.1. Quicksort

$$T(n) = \frac{1}{n} \sum_{i=1}^{n} T(i-1) + T(n-i) + n \quad \in O(n \log(n))$$

11.2. Quickselect

$$T(n) = n + \frac{1}{n} \sum_{i=1}^{n} max(T(i-1), T(n-i))$$

Behauptung Select $\in O(n)$, also $T(n) = c \cdot n$

Beweis Induktion

$$\begin{split} T(n) &= n + \frac{1}{n} \sum_{i=1}^{n} \max \left(c\left(i - 1 \right), c\left(n - i \right) \right) \\ &= n + \frac{1}{n} \cdot c \sum_{i=1}^{n} \max \left(\left(i - 1 \right), \left(n - i \right) \right) \\ &= n + \frac{1}{n} \cdot c \cdot 2 \left(\sum_{i=1}^{n-1} i - \sum_{i=1}^{n-1} i \right) \\ &= n + \frac{1}{n} \cdot c \cdot Z \left(\frac{\left(n - 1 \right)n}{Z} - \frac{\left(\frac{n}{2} - 1 \right) \frac{1}{2}}{Z} \right) \\ &= n + \frac{1}{n} c \left(n \left(n - 1 \right) - \frac{n}{2} \left(\frac{n}{2} - 1 \right) \right) = n + \frac{1}{n} \cdot c \left(n^2 - n - \frac{n^2}{4} + \frac{n}{2} \right) \\ &= n + \frac{1}{n} c \left(\frac{3}{4} n^2 - \frac{1}{2} n \right) = n + c \left(\frac{3}{4} n - \frac{1}{2} \right) \\ &\Rightarrow cn = n + c \left(\frac{3}{4} n - \frac{1}{2} \right) = n + \frac{3}{4} cn - \frac{1}{2} c \\ &\Rightarrow cn \geq n + \frac{3}{4} cn \Leftrightarrow c \geq 4 \\ &q.e.d \end{split}$$

12. Verallgemeinerung von Akra-Bazzi

$$T_n = \left[\sum_{i=1}^k a_i T(\frac{n}{b_i})\right] + g(n)$$

Beispiel

$$T_n = 1 \cdot T\left(\frac{n}{3}\right) + 1 \cdot T\left(\frac{2n}{3}\right) + n$$
$$T_n = \theta\left(n^{\alpha}\left(1 + \int_1^n \frac{g(x)}{x^{1+\alpha}} dx\right)\right)$$

Klassisch $\alpha = \log_b(a), \frac{a}{b^{\alpha}} = 1$

Jetzt Bestimmte α so, dass gilt:

$$\sum_{i=1}^{k} \frac{a_i}{b_i^{\alpha}} = 1$$

$$a_1 = a_2 = 1, \quad b_1 = 3, \quad b_2 = \frac{3}{2}, \quad g(n) = n$$

$$\frac{1}{3}^{\alpha} + \frac{2}{3}^{\alpha} \stackrel{!}{=} 1 \Rightarrow \alpha = 1$$

$$T(n) = \Theta\left(n\left(1 + \int_1^n \frac{x}{x^{1+1}} dx\right)\right) = \Theta(n\ln(n))$$

13. Median der Mediane

13.1. Ansatz

Gruppierung in 5er Päckchen

Wortlaut Teile die n Elemente in 5-er Gruppen. Bestimme innerhalb jeder Gruppe den Median. Bestimme nun den Median der Mediane. Wähle diesen Median als Pivotelement.

$$\exists \frac{3n}{10} \text{ Elemente } \leq p \geq \exists \frac{3n}{10} \text{ Elemente } (\pm 1 \text{ wegen p})$$

Abbildung 13.1.: Median der Mediane

13.2. Deterministische Variante für k-Select

Wähle zu Beginn den Median der Mediane als Pivot Elemente. Unterteile nun die Folge anhand von p in zwei Teilfolgen und verfahre von nun an analog zur randomisierten Variante von k-Select.

13.3. Laufzeitanalyse für den worst-case

$$T(n) = T\left(\frac{n}{5}\right) + n + T\left(\frac{7n}{10}\right)$$

$$A_1 = \frac{n}{5}, \quad A_2 = n, \quad A_3 = \frac{7n}{10}$$

 $A_1 =$ Laufzeit zur rekursiven Bestimmung des Medians der Mediane mittels k-Select

 $A_2 = \text{Laufzeit zur Aufteilung in Teilfolgen}$

 $A_3 =$ Laufzeit für den Aufruf von k-Select für die größere Teilfolge in jedem Durchlauf, die aber sicher $\leq n - \frac{3n}{10} = \frac{7n}{10}$ hat.

Wende die verallgemeinerte Form von Akra-Bazzi an:

$$g(n) = n$$
, $a_1 = a_2 = 1$, $b_1 = 5$, $b_2 = \frac{10}{7}$

Bestimme

$$\alpha = \left(\frac{1}{5}\right)^{\alpha} + \left(\frac{7}{10}\right)^{\alpha} = 1$$

$$\Leftrightarrow \left(\frac{2}{10}\right)^{\alpha} + \left(\frac{7}{10}\right)^{\alpha} = 1$$

$$n^{\alpha} \left(1 + \int_{1}^{n} \frac{x}{x^{1+\alpha}} dx \right) = n^{\alpha} \left(1 + \int_{1}^{n} x^{-\alpha} dx \right) = n^{\alpha} \left(1 + \left[\frac{1}{1-\alpha} x^{-\alpha+1} \right]_{1}^{n} \right) = n^{\alpha} \left(1 + \frac{1}{1-\alpha} \left(n^{-\alpha+1} - 1 \right) \right)$$

14. Untere Schranke für vergleichsbasierte Sortierverfahren

14.1. Entscheidungsproblem: (Bubbelsort)

Abbildung 14.1.: Entscheidungsbaum am Beispiel Bubblesort

Ein Entscheidungsbaum für einen vergleichsbasierten Sortieralgorithmus besteht aus inneren Knoten, die mit der Vergleichsoperation $a_i < a_j$ beschriftet sind, wobei sich die Indizes i, j auf die Position der Elemente in der Eingabefolge beziehen.

Die Blätter des Entscheidungsbaums sind mit den Permutationen beschriftet, die sich nach korrekter Sortierung ergeben.

Jeder korrekte Sortieralgorithmus muss zu einem Entscheidungsbaum mit mindestens n! Blättern korrespondieren.

maximale Baumtiefe $\hat{}$ maximale Anzahl durchgeführter Vergleichsoperationen

14. Untere Schranke für vergleichsbasierte Sortierverfahren

14.2. Worst-case Laufzeit

Worst-case Laufzeit eines vergleichsbasierten Sortieralgorithmus

- â mittlere Tiefe der Blätter im zugehörigen Entscheidungsbaums

Sei T_{max} die maximale Baumtiefe in einem binären Baum. Betrachte nun zunächst den vollständigen binären Baum mit #Blätter ≤ 2 .

Untere Schranke $t_{max} \ge \log_2(n!) = \Omega(n \log n) = \log_2(n!) \le t_{mean}$

Abbildung 14.2.: Binärerbaum

Herleitung

$$\ln(n!) = \ln(n(n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1) = \ln(n) + \ln(n-1) + \dots + 1$$
$$= \sum_{i=1}^{n} \ln(i) \ge \int_{1}^{n} \ln(x) dx = [x \ln(x) - x]_{1}^{n} = n \ln(n) - n + 1$$

$$\Rightarrow n! \ge e^{n \ln(n) - n + 1} = e \cdot e^{-n} \cdot \left(e^{\ln(n)}\right)^n = e \cdot e^{-n} \cdot n = e\left(\frac{n}{e}\right)^n$$

Stirling $n! \approx \sqrt{2\pi n} (\frac{n}{e})^n$

14.2.1. Lemma: Mittlere Tiefe der Blätter in einem Entscheidungsbaum $> \log_2(n)n$

Beweis Induktion nach m (Blattanzahl)

Untere Schranke $m_1, m_2 \triangleq \text{Blattanzahl im linken bzw. rechten}$ Teilbaum der Wurzel

Abbildung 14.3.: Induktions-Ansatz

Induktions Anfang: m = 1 $t_{mean} = \log_2(1) = 0$

Induktions Behauptung: $t_{mean} \ge \log_2(m)$

Induktions Schritt: Sei $m_1 < m, m_2 < m$ (1) und $m_1 + m_2 = m$ (2)

b $\hat{=}$ Blatt im Entscheidungsbaum T_b

l $\hat{=}$ Blatt im linken Teilbaum T_l

r $\hat{=}$ Blatt im rechten Teilbaum T_r

$$t_{mean}^{links} \ge \log_2(m_1)$$
 und $t_{mean}^{rechts} \ge \log_2(m_2)$

$$\frac{1}{m} \sum_{l} \cdot t_l = t_{mean}^{links} \ge \log_2(m_1)$$

Verfahre analog für rechts.

$$\sum_{b} T_{b} = \sum_{l} (T_{l} + 1) + \sum_{r} (T_{r} + 1) \ge m_{1} + m_{2} + m_{1} \log_{2}(m_{1}) + m_{2} \log_{2}(m_{2})$$

Unter der Annahme, dass das Minimum bei $\frac{m}{2}$ liegt:

$$m_1 \log_2(m_1) + m_2 \log_2(m_2) \ge \frac{m}{2} \log_2\left(\frac{m}{2}\right) \cdot 2 = m \log_2\left(\frac{m}{2}\right) \quad \text{mit (2)}$$

Es folgt somit:

$$t_{mean} = \frac{1}{m} \sum_{b} T_b \ge \frac{1}{m} \left(m + m \log_2 \left(\frac{m}{2} \right) \right) = 1 + \log_2 \left(\frac{m}{2} \right) = 1 + \log_2(m) - 1 = \log_2(m)$$

$$q.e.d$$

15. Radix-Sort

15.1. Beispiel:

```
10 1
       0 1 0
              1 00
                      001
01 0
               1 01
       100
                      010
00 1
       1 1 0
               0 01
                     011
              0 10
11 1
       101
                     100
       001
               1 10
10^{\circ}0
                     101
01 1
       111
               1 11
                      110
11 0
       0 1 1
              0 11
                      111
```

Wichtig Beginne die Sortierung mit dem niedrigsten Bit

15.2. Pseudo-Code

```
void radixsort(int[] a) { // positives Element
 1
 2
        int n = a.length;
 3
        int[] b0 = new int[n];
 4
        int[] b1 = new int[n];
 5
        int n0, n1;
 7
        for (int i=0; i<32; i++) {</pre>
 8
            n0 = n1 = 0;
 9
            for (int j=0; j<n; j++) {</pre>
                if (a[j] & (1<<i)) { // i-tes Bit von a[j]</pre>
10
                    b1[n1] = a[j];
11
12
                    n1 = n1+1;
13
                } else {
                    b0[n0] = a[j];
14
                    n0 = n0+1;
15
16
                }
17
            }
19
            for (int j=0; j<n0; j++)</pre>
20
                a[j] = b0[j];
21
            for (int j=0; j<n1; j++)</pre>
22
                a[n0+j] = b1[j];
23
        }
24 }
```

16. Binäre Suchbäume

 $\textbf{Zahlen} \quad 12,\, 8,\, 3,\, 16,\, 24,\, 17,\, 10,\, 21,\, 14,\, 9$

Abbildung 16.1.: Knotenorientierte Speicherung

16. Binäre Suchbäume

Abbildung 16.2.: Binärer Suchbaum

16.1. Pseudo-Code

```
class Node {
                              // info ist optional
3
       int key, info;
       Node left, right, parent; // parent ist optional
4
5
   }
7
    int height(Node node) {
8
       if (node = NULL) return 0;
9
       return height;
10
   }
12
    Node insert(Node node, int x) {
13
       if (node == NULL)
14
           return new Node(x, NULL, NULL);
16
       if (node.key > x)
17
           node.left = insert(node.left, x);
18
           node.right = insert(node.right, x);
19
20
       return node;
21
   }
23
    void inorder(Node node) {
24
       if (node == NULL) return;
25
       inorder(node.left) // linke Hälfte
26
       print(node)
27
       inorder(node.right) // rechte Hälfte
28 }
```

17. AVL-Bäume von Adelson-Velsky and Landis

17.1. Allgemein

Ziel Binärer Suchbaum mit garantierter Such-, Einfüge- und Löschzeit $O(\log n)$

Idee Definiere eine Balancebedingung, die dafür sorgt, dass die Baumstruktur möglichst nahe an der Idealstruktur eines vollständigen binären Baumes liegt.

Aber gleichzeitig soll es möglich sein "schnell" Strukturänderungen beim Einfügen und Löschen vorzunehmen.

Abbildung 17.1.: AVL-Baum

17.2. Laufzeitanalyse

Ziel Analyse der erwarteten maximalen Tiefe randomisierter binärer Suchbäume

Sei der Schlüssel der Wurzel das i-kleinste Element

 $T_n \; \hat{=} \;$ maximale Tiefe eines randomisierten Suchbaums mit $\{1,...,n\}$ Elementen

Abbildung 17.2.

Für den Fall, dass i als Wurzelknoten gewählt wird gilt:

$$T_n = \max\{T_{i-1}, T_{n-i}\} + 1$$

$$X_n = 2^{T_n} \text{ exponentielle Tiefe}$$

$$2^{T_n} = 2^{1+\max\{T_{i-1}, T_{n-1}\}} = 2 \cdot 2^{\max\{T_{i-1}, T_{n-1}\}} = 2 \cdot \max\{2^{T_{i-1}}, 2^{T_{n-1}}\}$$

$$\Rightarrow X_n = 2 \cdot \max\{X_{i-1}, X_{n-1}\}$$

Mit der Abschätzung: $max\{2^{T_1},2^{T_2}\} \leq 2^{T_1}+2^{T_2}$ folgt:

$$E(X_n) = E\left(\sum_{i=1}^n \frac{1}{n} \cdot 2 \cdot \max\{X_{i-1}, X_{n-1}\}\right)$$

$$= \frac{2}{n} \sum_{i=1}^n E\left(\max\{X_{i-1}, X_{n-1}\}\right) \le \frac{2}{n} \sum_{i=1}^n E\left(X_{i-1} + X_{n-1}\right)$$

$$= \frac{2}{n} \sum_{i=1}^n \left[E(X_{i-1}) + E(X_{n-i})\right] \le \frac{4}{n} \sum_{i=0}^{n-1} E(X_i)$$

$$n \cdot E(X_n) = 4 \cdot \sum_{i=0}^{n-1} E(X_i) \quad (1)$$

$$(n-1) \cdot E(X_{n-1}) = 4 \cdot \sum_{i=0}^{n-2} E(X_i) \quad (2)$$

$$nE(X_n) - (n-1)E(X_{n-1}) = 4E(X_n) \quad (1) - (2)$$

$$\Leftrightarrow nE(X_n) = (n+3)E(X_{n-1})$$

$$E(X_n) = \frac{n+3}{n} E(X_{n-1}) = \frac{n+3}{n} \cdot \frac{n+2}{n-1} E(X_{n-2}) = \prod_{i=0}^{n-1} \frac{n+3-i}{n-i}$$

$$= \frac{n+3}{n} \cdot \frac{n+2}{n-1} \cdot \frac{n+1}{n-2} \cdot \frac{n}{n-3} \cdot \dots \cdot \frac{6}{3} \cdot \frac{8}{2} \cdot \frac{4}{1}$$

Mit der "Jensenschen Ungleichung" folgt:

$$\sum_{i} Pr(T = t_i) \cdot f(t_i) \ge f\left(\sum_{i} Pr(T = t_i) \cdot t_i\right) = \frac{(n+3)(n+2)(n+1)}{3!} \cdot c \Rightarrow E(X_n) \in O(n^3)$$

$$X_n = 2^{T_n}, E(X_n) = E(2^{T_n})$$

$$E(f(T)) \ge f(E(T)) \Leftrightarrow fkonvex$$

$$c \cdot n^3 \ge 2^{E(T_n)}, E(T_n) \le \log_2(c \cdot n^3) \in O(\log n)$$

17.3. Baumtiefe

Ziel: Zeige, dass die maximale Tiefe eines AVL-Baums mit
n Knoten ($\hat{=}$ n gespeicherten Schlüsseln) $O(\log(n))$ beträgt.

Abbildung 17.3.

17.3.1. AVL-Eigenschaft:

Abbildung 17.4.

 $|h(T_L) - h(T_R)| \le 1$ muss für jeden Knoten des Baums gelten. \Rightarrow Suchzeit $O(\log(n))$ im worst-case.

n(h) = minimale Anzahl von Knoten in AVL-Baum der Tiefe h

q.e.d.

 $^{^{\}mathrm{I}}f(h)$ meint hierbei die h-te Fibonacci-Zahl

17. AVL-Bäume von Adelson-Velsky and Landis

17.4. Rotationen

 $Keys(T_1) < Key(X) < Keys(T_2) < Key(Y) < Keys(T_3)$ balance(Y)= height(Y.left)-height(Y.right)

Abbildung 17.5.: Rotation

17.5. Pseudo-Code

```
class Node {
3
       int key;
4
       Node left, right;
5
       int height;
6
   }
    int height(Node node) {
9
        if (node = null) return 0;
10
       return height;
   }
11
13 Node rotateRight(Node y) {
       Node x = y.left;
14
       Node T2 = x.right;
15
       y.left = T2;
16
17
       x.right = y;
18
       y.height = 1+max(height(y.left), height(y.right));
       x.height = 1+max(height(x.left), height(x.right));
20
21 }
23 Node rotateLeft(Node y) {
24
        //analog
25 }
27
   Node insert(Node node, int key) {
28
       if (node == null) return new Node(key);
29
       if (key < node.key)</pre>
30
           node.left = insert(node.left, key);
31
32
           node.right = insert(node.right, key);
       if (balance(node)>1 && key < node.left.key)</pre>
34
35
           return rotateRight(node);
36
       if (balance(node)<-1 && key > node.right.key)
37
           return rotateLeft(node);
38
       if (balance(node)>1 && key > node.left.key) {
39
           node.left = rotateLeft(node.left);
           return rotateRight(node);
41
42
       if (balance(node)<-1 && key < node.right.key) {</pre>
43
           node.right = rotateRight(node.right);
44
           return rotateLeft(node);
       }
45
46
       return node;
```

Anmerkung: Die Laufzeit des Einfügens bleibt in $O(\text{Baumtiefe}) = O(\log n)$. Nur einer der vier Fälle ist notwendig, um die Balance herzustellen.

18. (a,b)-Suchbäume

Blattorientierte Speicherung der Elemente

Innere Knoten haben mindestens a und höchstens b Kinder und tragen entsprechende Schlüsselwerte, um die Suche zu leiten.

Beispiel:

$$h$$
ê Tiefe $\Rightarrow a^h \le n \le b^h \Rightarrow \log_b n \le h \le \log_a n$

Abbildung 18.2.: Einfügen und Löschen in einem 2-5 Baum

18.1. Aufspaltung bei Einfügen

18.2. Verschmelzen von Knoten beim Löschen

Aufspalte- und Verschmelze-Operationen können sich von der Blattebene bis zur Wurzel kaskadenartig fortpflanzen. Sie bleiben aber auf den Suchpfad begrenzt.

 \Rightarrow Umbaukosten sind beschränkt durch die Baumtiefe = $O(\log n)$

19. Amortisierte Analyse

Naive Analyse $2^k = n$

$$1 \cdot \frac{n}{2} + 2 \cdot \frac{n}{4} + 3 \cdot \frac{n}{8} + \dots + k \cdot \frac{n}{2^k} = \frac{n}{2} \sum_{i=1}^k i(\frac{1}{2})^{i-1} = 2^{k+1} - k - 2 = 2n - k - 2$$

Von 0 bis n im Binärsystem zu zählen kostet $\leq 2n$ Bit-Flips

Sprechweise: amortisierte Kosten einer Inkrement-Operation sind 2 Folge von n-Ops kostet 2n

19.1. Bankkonto-Methode

$$\begin{aligned} \operatorname{Konto}(i+1) &= \operatorname{Konto}(i) - \operatorname{Kosten}(i) + \operatorname{Einzahlung}(i) \\ \sum_{i=1}^n \operatorname{Kosten}(i) &= \operatorname{tats\"{a}chliche} \operatorname{Gesamtkosten} = \sum_{i=1}^n (\operatorname{Einzahlung}(i) + \operatorname{Konto}(i - \operatorname{Konto}(i+1)) \\ &= \sum_{i=1}^n \operatorname{Einzahlung}(i) + \operatorname{Konto}(1) - \operatorname{Konto}(n+1) \end{aligned}$$

000
001€ Kosten(1) = 1
01€0 = 2
01€1€ = 1
1€00 = 3
1€01€ = 1
1€1€0 = 2
1€1€1€ =
$$\frac{1}{11}$$

19.1.1. Kontoführungsschema: für Binärzähler

1€ pro 1 in der Binärdarstellung

Jeder Übergang $1_{\mathfrak{C}} \to 0$ kann dann mit dem entsprechenden Euro Betrag auf dieser 1 bezahlt werden. Es gibt pro Inkrement Operation nur einen $0 \to 1$ Übergang $2\mathfrak{C}$ Einzahlung für jede Inc-Operation reichen aus um:

- 1. diesen $0 \to 1$ Übergang zu bezahlen
- 2. die neu entstandene $1_{\mathfrak{C}}$ mit einem Euro zu besparen.

$$GK = 2(2^k - 1) + 0^I - k^{II} = 2n - k - 2$$

19.1.2. Kontoführungsschema für einen 2-5 Baum

Satz: Ausgehend von einem <u>leeren</u> 2-5-Baum betrachten wir die Rebalancierungskosten C (Split- und Fusionsoperationen) für eine Folge von m Einfüge- oder Löschoperationen. Dann gilt: $C \in O(m)$ d.h. Amortisierte Kosten der Split- und Fusionsoperationen sind konstant.

! Dies bezieht sich nicht auf die Suchkosten, die in $O(\log n)$ liegen.

Beweisidee:

Kontoführung:

1	2	3	4	5	6
2€	1€	9€	9€	1€	2€

regelmäßige Einzahlung: 1€

Durch eine Einfüge- oder Löschoperation steigt oder fällt der Knotengrad des direkt betroffenen Knotens um höchstens $1. \Rightarrow 1 \in$ Einzahlung reicht zur Aufrechterhaltung dieses Sparplanes.

Jetzt Beseitigung der temporären 1- und 6-Knoten:

Ein 6-Knoten nutzt 1€ um seinen Split zu bezahlen. Die beiden neu entstehenden 3-Knoten benötigen kein Kapital. Der Vaterknoten des gesplitteten 6-Knotens benötigt ggf. den zweiten verfügbaren €. Analoge Betrachtung für Fusion eines temp. 1-Knotens.

^IZählerstand(000)

 $^{^{\}text{II}}$ Zählerstand $(\overbrace{111\dots 1})$

20. Hashing

Abbildung 20.1.: Universum und Hashtabelle der Größe m

 $U\subseteq \mathbb{N}$ z.B. 64-Bit-Integer n = Zahl dr zu verwaltenden Schlüssel

Hashfunktion h:

$$h: U \to [0, \dots, m-1]$$

z.B.
$$k \mapsto k \mod m$$

Einfache Annahme: (einfaches uniformes Hashing)

$$\forall k_i, k_j \in U : Pr(h(k_i) = h(k_j)) = \frac{1}{m}$$

20.1. Laufzeiten der Operationen

20.1.1. Analyse der Laufzeit zum Einfügen eines neuen Elementes k

- h(k) berechnen $\longrightarrow O(1)$
- Einfügen am Listenanfang in Fach $h(k). \longrightarrow O(1)$

20.1.2. Analyse der Suchzeit für einen Schlüssel k

- $h(k) \longrightarrow O(1)$
- Listenlänge zum Fach h(k) sei $n_{h(k)}$ also beim Durchlauf der kompletten Liste $\longrightarrow O(n_{h(k)})$

$$E(n_{h(k)}) = \frac{n}{m} = \alpha^{\mathrm{I}}$$

Suchzeit(Einfügen) $\in O(1 + \alpha)$

20.1.3. Laufzeit beim Löschen von Schlüssel k

- $h(k) \longrightarrow O(1)$
- Durchlaufen der Liste $\longrightarrow 0(n_{h(k)})$
- Löschen durch "Pointer-Umbiegen" $\longrightarrow O(1)$

20.2. Universelles Hashing

Idee Arbeite nicht mit einer festen Hashfunktion sondern wähle am Anfang eine zufällige Hashfunktion aus einer Klasse von Hashfunktionen aus.

z.B.

$$h_{a,b}(k) = ((a \cdot k + b) mod p) mod m$$

p sei eine hinreichend große Primzahl $0 < a < p, 0 \le b < p$

$$\mathcal{H}_{p,m} = \{ h_{a,b}(k) | 0 < a < p, \ 0 \le b < p \}$$

$$|\mathcal{H}_{p,m}| = p(p-1)$$

Definition \mathcal{H} heißt universell $\Leftrightarrow \forall k, l \in U : Pr(h(k) = h(l)) \leq \frac{1}{m}$

Suchzeit

$$\mathfrak{X}_{k,l} = \begin{cases} 1 & \text{für } h(k) = h(l) \\ 0 & \text{sonst} \end{cases}$$

$$E(n_{h(k)}) = E\left(\sum_{l \in T, l \neq k}\right) = \sum_{l \in T, l \neq k} E(X_{k,l}) = \sum_{l \in T, l \neq k} Pr(h(k) = h(l)) = \sum_{l \in T, l \neq k} \frac{1}{m} = \frac{n-1}{m} = \alpha$$

Könnte ein boshafter Mitspieler
n Schlüssel bei gegebener fester Hashfunktion wählen, so würde er sol
che wählen, die auf den gleichen Slot unter gegebener Hashfunktion abgebildet werden. \leadsto Durchschnittliche Ablaufzeit von O(n)

ldee zufällige Wahl der Hashfunktion aus einer Familie von Funktionen derart, dass die Wahl unabhängig von den zu speichernden Schlüssel ist (universelles Hashing).

^IBelegungsfaktor

20.2.1. Definition

Sei \mathcal{H} eine endliche Menge von Hashfunktionen, welche ein gegebenes Universum U von Schlüsseln auf $\{0,\ldots,m-1\}$ abbildet. Sie heißt universell, wenn für jedes Paar von Schlüsseln $k,l\in U$ $l\neq k$ die Anzahl der Hashfunktionen $h\in\mathcal{H}$ mit h(l)=h(k) höchstens $\frac{|\mathcal{H}|}{m}$. Anders: Für ein zufälliges $h\in\mathcal{H}$ beträgt die Wahrscheinlichkeit, dass zwei unterschiedliche Schlüssel k,l kollidieren nicht mehr als $\frac{1}{m}$ ist.

Beispiel

p Primzahl, so groß, dass alle möglichen Schlüssel $k \in U$ im $0, \ldots, p-1$ liegen. $\mathbb{Z}/p\mathbb{Z}$ bezeichnet den Restklassenring mod p (weil p prim, ist $\mathbb{Z}/p\mathbb{Z}$ ein Körper). $\mathbb{Z}/p\mathbb{Z}^*$ ist die Einheitengruppe.

Annahme: Die Menge der Schlüssel im Universum U ist größer als die Anzahl der Slots in der Hashtabelle. Für $a \in \mathbb{Z}/p\mathbb{Z}^*$ und $b \in \mathbb{Z}/p\mathbb{Z}$ betrachte:

$$h_{a,b}(k) := (a \cdot k + b \mod p) \mod m \quad (*)$$

Damit ergibt sich die Familie

$$\mathbb{Z}/p\mathbb{Z}^* = \{1, \dots, p-1\} \ \mathbb{Z}/p\mathbb{Z} = \{0, \dots, p-1\} \ \mathcal{H}_{p,m} = \{h_{a,b} | a \in \mathbb{Z}/p\mathbb{Z}^*, b \in \mathbb{Z}/p\mathbb{Z}^{(*)} \ |\mathcal{H}| = p(p-1)\}$$

Satz Die in (*) eingeführte Klasse von Hashfunktionen ist universell.

Beweis Seien k, l Schlüssel auf $\mathbb{Z}/p\mathbb{Z}$ mit $k \neq l$

Für $h_{a,b} \in \mathcal{H}_{p,m}$ betrachten wir

$$r = (a \cdot k + b) \mod p$$

$$s = (a \cdot l + b) \mod p$$

Es ist $r \neq s$

Dazu:

$$r - s = a \cdot (k - l) \mod p \quad (*2)$$

Angenommen r - s = 0

$$0 = a \cdot (k - l) \mod p$$
, aber $a \in \mathbb{Z}/p\mathbb{Z}^* \Rightarrow a \neq 0$ und $k \neq l \Rightarrow k - l \neq 0$

Da p prim ist $\mathbb{Z}/p\mathbb{Z}$ ein Körper \Rightarrow kein Nullteiler $\Rightarrow a \cdot (k-l) \neq 0 \Rightarrow r \neq s$

Daher bilden $h_{a,b} \in \mathcal{H}_{p,m}$ unterschiedliche Schlüssel k, l auf unterschiedliche Elemente ab. ("Auf dem level mod p" gibt es keine Kollisionen).

Aus (*2) folgt:

$$(r-s)(k-l)^{-1} = a \mod p$$

$$r - a \cdot k = b \mod p$$
 Bijektion zwischen (k,l) und (a,b)

Daher ist die Wahrscheinlichkeit, dass zwei Schlüssel $h \neq l$ kollidieren, gerade die Wahrscheinlichkeit, dass $r \equiv s \mod m$, falls $r \neq S$ zufällig gewählt (aus $\mathbb{Z}/p\mathbb{Z}$).

Für gegebenes r gibt es unter den übrigen p-1 Werten für s höchstens $\lceil \frac{p-1}{m} \rceil \leq \lceil \frac{p}{m} \rceil - 1$ Möglichkeiten, sodass $s \neq r \mod p$ aber $r = s \mod m$

Abschätzung nach oben

$$\lceil \frac{p}{m} \rceil - 1 \le \frac{(p+m-1)}{m} - 1 = \frac{p-1}{m}$$
 Kollisionsmöglichkeiten

Die Wahrscheinlichkeit, dass r und s kollidieren $\mod m$ Kollisionsmöglichkeiten / Gesamtzahl der Werte

$$=\frac{p-1}{m}\cdot\frac{1}{p-1}=\frac{1}{m}$$

 \Rightarrow Für ein Paar von Schlüsseln $k, l \in \mathbb{Z}/p\mathbb{Z}$ mit $k \neq l$

$$P[h_{a,b}(k) = h_{a,b}(l)] \le \frac{1}{m} \Rightarrow \mathcal{H}_{p,m}$$
 universell!

20.3. Perfektes Hashing

Wichtig Menge der Schlüssel ist im Vorhinein bekannt und ändert sich nicht mehr.

Beispiele reserved words bei Programmiersprachen, Dateinamen auf einer CD

20.3.1. Definition

Eine Hashmethode heißt perfektes Hashing, falls O(1) Speicherzugriffe benötigt werden, um die Suche nach einem Element durchzuführen.

Idee Zweistufiges Hashing mit universellen Hashfunktionen.

- 1. Schritt n Schlüssel, m Slots durch Verwendung der Hashfunktion h, welche aus einer Familie universeller Hashfunktionen stammt.
- 2. Schritt Statt einer Linkedlist im Slot anzulegen, benutzen wir eine kleine zweite Hashtabelle S_j mit Hashfunktion h_j

Bild Schlüssel $k = \{10, 22, 37, 49, 52, 60, 72, 75\}$ Äußere Hashfunktion $h(k) = ((a \cdot b) \mod p) \mod m$

$$a = 3, b = 42, p = 101, m = 9$$

$$h(10) = \underbrace{(3 \cdot 10 + 42 \mod 101)}_{=72} \mod 9 = 0$$

Um zu garantieren, dass keine Kollision auf der zweiten Ebene auftreten, lassen wir die Größe von S_j gerade n_j^2 sein $(n_j \neq \#\text{Schlüssel} \mapsto j \text{Slot})$.

Wir verwenden für die Hashfunktion der ersten Ebene eine Funktion aus $\mathcal{H}_{p,m}$. Schlüssel die im j-ten Slot werden in der sekundären Hashtabelle S_j der Größe m_j mittels h_j gehasht. $h_j \in \mathcal{H}_{p,m}$

Wir zeigen: 2 Dinge:

- 1. Wie versichern wir, dass die zweite Hashfunktion keine Kollision hat.
- 2. Der erwartete Speicherbedarf ist O(n)

zu 1.

20. Hashing

Abbildung 20.2.: Perfekte Hashtabelle

Satz Beim Speichern von n Schlüsseln in einer Hashtabelle der Größe $m=n^2$ ist die Wahrscheinlichkeit, dass eine Kollision auftritt $<\frac{1}{2}$

Beweis: Es gibt $\binom{n}{2}$ mögliche Paare, die kollidieren können. Jedes kollidiert mit der Wahrscheinlichkeit $\leq \frac{1}{m}$, falls $h \in \mathcal{H}$ zufällig gewählt wurde.

Sei X eine zufallsvariable(ZV), X zählt Kollisionen:

Für $m = n^2$ ist die erwartete Zahl der Kollisionen:

$$E[X] = \binom{n}{2} \cdot \frac{1}{m} = \binom{n}{2} \cdot \frac{1}{n^2} = \frac{n!}{2!(n-2)!n^2} = \frac{(n-1)}{2n} \le \frac{1}{2}$$

Anwenden der Markow-Ungleichung (a=1):

$$P[X \ge 1] \le \frac{E[X]}{1} = \frac{1}{2} \Rightarrow \text{ Wahrscheinlichkeit für irgendeine Kollision ist } < \frac{1}{2}$$

q.e.d

20.3.2. Nachteil

Für große n ist $m = n^2$ nicht haltbar!

zu 2. Wenn die Größe der primären Hashtabelle m=n ist, dann ist der Platzverbrauch in $O(n) \curvearrowright$ Betrachte Platzverbrauch der sekundären Hashtabellen.

Satz Angenommen wir wollen n Schlüssel in einer Hashtabelle der Größe m=n mit Hashfunktion $h \in \mathcal{H}$. Dann gilt:

$$E\left[\sum_{j=0}^{m-1} n_j^2\right] < 2n$$

Beweis

Betrachte

$$a^{2} = a + 2 \cdot {a \choose n} = a + 2 \cdot \frac{a^{2} - a}{2} \quad (*3)$$

Betrachte

$$E\left[\sum_{j=0}^{m-1} n_j^2\right] \stackrel{(*3)}{=} E\left[\sum_{j=0}^{m-1} \left(n_j + 2\binom{n_j}{2}\right)\right]$$

$$\lim_{j \to \infty} E\left[\sum_{j=0}^{m-1} n_j\right] + 2E\left[\sum_{j=0}^{m-1} \binom{n_j}{2}\right] = n + 2E\left[\sum_{j=0}^{m-1} \binom{n_j}{2}\right] \# \text{ der Kollisionen}$$

Da unsere Hashfunktion universell ist, ist die erwartete Zahl dieser Paare:

$$\binom{n}{2} \frac{1}{m} = \frac{n(n-1)}{2m} = \frac{n-1}{2}$$
, da $m = n$

Somit

$$E\left[\sum_{j=0}^{m-1} n_j^2\right] \le n + 2\frac{n-1}{2} = 2n - 1 < 2n$$

Korollar Speichern wir n Schlüssel in einer Hashtabelle der Größe m=n mit einer zufälligen universellen Hashfunktion und setzen die Größe der Hashtabellen der zweiten Ebene auf $m_j=n_j^2$ für j=0, m=1, so ist der Platzverbrauch des perfekten Hashings weniger als 2n. Die Wahrscheinlichkeit, dass der Platzverbrauch der zweiten Hashtabellen $\geq 4n$ ist, ist $\leq \frac{1}{2}$ ohne Beweis. Bei n Elementen sollte die Hashtabelle $m=n^2$ groß sein.

Für die universellen Hashfunktionen

$$\mathcal{H}_{p,m} = \{ h_{a,b}(k) = (a \cdot k + b) \mod p \mod m | 0 < a < p, \ 0 \le b < p \}$$

 $\binom{n}{1}$ Schlüsselpaare (k,l) mit $k \neq l$

$$E(\#\text{Kollisionen}) \le \binom{n}{2} \cdot \frac{1}{m} = \frac{n(n-1)}{2} \cdot \frac{1}{n^2} \le \frac{1}{2}$$

Idee Zweistufiges Verfahren:

 \bullet primäre Hashfunktion für Tabelle der Größe m=n

Abbildung 20.3.: Perfektes Hashing

 $^{^{\}rm II}$ Universalität von ${\mathcal H}$

Teil II. Graphen-Algorithmen

21. Einführung

 $G = (V, E) \quad V \text{ vertices, } E \text{ edges} \quad E \subseteq V \times V$

Abbildung 21.1.: Gerichteter Graph

Planare Graphen können ohne Überkreuzung der Kanten in die Ebene eingebettet werden.

21.1. Eulerische Polyederformel

$$|V| + |F| = |E| + 2$$

$$8 + 6 = 12 + 2$$

Es gilt:

$$2 \cdot |E| \ge 3 \cdot |F|$$

#gerichtete Kanten =
$$2 \cdot |E| = \sum_{i=1}^{|F|} # \text{Kanten}(f_i)^{\text{I}} \ge 3 \cdot |F|$$

$$|F| \leq \frac{2}{3}|E|, \quad |V| + |F| = |E| + 2 \leq |V| + \frac{2}{3}|E| \Rightarrow \frac{1}{3}|E| + 2 \leq |V|$$

$$\Rightarrow |E| \le 3 \cdot |V| - 6$$

Abbildung 21.2.: Würfel

Abbildung 21.3.: Placeholder

IJedes f_i hat mindestens 3 Kanten

21. Einführung

Abbildung 21.4.: Beispiel

21.2. Adjazenzmatrix

															1
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	
0	1	0	1	0	0	1	0	0	1	1	0	0	0	0	
1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	
2	1	1	1	1	0	0	0	0	0	0	0	0	0	0	
3	0	0	0	1	0	0	1	0	0	0	0	0	0	0	
4	0	1	0	0	1	0	0	1	0	0	0	0	0	0	
5	0	0	1	0	0	1	1	0	0	0	0	0	0	0	
6	0	0	0	0	0	0	1	0	0	1	1	0	0	0	= A
7	0	1	0	0	0	0	0	1	0	0	0	0	0	0	
8	0	0	1	0	1	0	0	1	1	0	0	0	0	0	
9	0	0	0	0	0	1	0	0	0	1	1	1	0	1	
10	0	0	0	0	0	0	0	0	0	0	1	0	0	1	
11	1	0	0	0	0	0	0	0	0	0	0	1	1	0	
12	0	0	0	0	0	0	0	1	1	0	0	0	1	0	
13	0	0	0	0	0	0	0	0	0	0	0	1	1	1	

$$a \in B^{|V| \times |V|}$$

falls G ungerichtet $\Rightarrow A = A^T$

21.3. Adjazenzlisten Repräsentation

Abbildung 21.5.: Adjazenzliste

Platzbedarf

$$\mathcal{O}(|V| + |E|) = \mathcal{O}\left(|V| + \sum_{i=0}^{|V|-1} \text{outdeg}(v_i)\right)$$

Abbildung 21.6.: indeg und outdeg

22. BFS (Breadth-First Search) Breitensuche

22.1. Pseudo-Code

```
forall (v in V\{S}) {
2
     col[v]=white; // Farbe weiß = unbekannt, grau = bekannt, schwarz = vollkommen bekannt
3
     d[v] = infinity; // Distanz
4
     pi[v] = NULL; // pi ist Vorgänger
5
6
                    // s ist Startknoten
  col[s] = grey;
7
  d[s] = 0;
  pi[s] = NULL;
       Queue
                      _{
m VS}
                                 Stack
      Schlange
                                 Stapel
                                   ,,
      empty()
       push()
       pop()
       FIFO
                                 FILO
 First-In-First-Out
                           First-In-First-Out
Queue Q;
Q.push(s);
while(!Q.empty()) {
```

```
1
 2
      u = Q.pop();
      forall( (u,v) in E) {
 6
        if (col[v] == white) {
          col[v] == grey;
 8
          d[v] = d[u] + 1;
          pi[v] = u;
 9
10
          Q.push(v);
11
12
13
      col[u] = black;
14
```


22.2. Laufzeit

$$\mathcal{O}(|V| + |E|)$$

Abbildung 22.1.: Grafik zum Beispielcode

Begründung: Jeder von *s* aus erreichbare Knoten wird nur einmal in die Queue aufgenommen und auch ihr entfernt. Für jeden Knoten muss nur einmal seine Adjazenzliste durchlaufen werden.

$$\Rightarrow \mathcal{O}\left(|V| + \sum_{v \in V} \text{outdeg}(v)\right)$$

Abbildung 22.2.: Beispiel

22. BFS (Breadth-First Search) Breitensuche

22.2.1. Definition: Länge kürzesten Weges

 $\delta(s,v)=$ Länge eines kürzesten Weges vom Startknoten s zum Knoten v. Setze $\delta(s,v)=\infty$, falls v nicht erreichbar von s aus.

22.2.2. Satz: Richtigkeit des Algorithmus

Nach Ablauf von BFS^I gilt

$$\forall v \in V : d[v] = \delta(s, v)$$

22.2.3. Lemma 1: Dreiecksungleichung für kürzeste Wege

Abbildung 22.3.

22.2.4. Lemma 2

Zu jedem Zeitpunkt im Verlauf von BFS gilt:

$$\forall v \in V : d[v] \ge \delta(s, v)$$

Beweis (induktiv über Zahl der Operationen, die d-Wert verändern)

Induktions-Anfang

$$d[s] = 0\sqrt{}$$

Induktions-Schritt Knoten v wird von u aus neu entdeckt

$$d[u] \ge \delta(s, u)$$

$$d[v] = d[u] + 1 \ge \delta(s, u) + 1 \stackrel{D.U.}{\ge} \delta(s, v)$$

22.2.5. Lemma 3

Sei $Q = (v_1, v_2, \dots, v_k)$ eine Queue, dann gilt stets:

$$d[v_1] \le d[v_2] \le \ldots \le d[v_k] \le d[v_1] + 1$$

^IBreitensuche

Beweis (induktiv über die Zahl der push- und pop-Operationen)

Induktions-Anfang

$$d[s] = 0\sqrt{}$$

Induktions-Schritt

pop

$$\frac{d[v_1]}{d[v_2]} \le d[v_2] \le \dots \le d[v_k] \le d[v_1] + 1 \stackrel{!}{\le} d[v_2] + 1$$

push

$$d[u] = d[v_1] \le d[v_2] \le \ldots \le d[v_k] \le d[u] + 1$$

Beachte Kante (u, v) v ist weiß

$$v = v_{k+1}$$
 wird gepusht

$$d[v_{k+1}] = d[v_1] + 1$$

Zustand von Q nach push

$$d[v_2 \le d[v_3] \le \ldots \le d[v_k] \le d[v_1] + 1 = d[v_{k+1}] \ \ \checkmark$$

22.2.6. Satz: Richtigkeit des Algorithmus

Nach Ablauf von BFS^{II} gilt

$$\forall v \in V: \ d[v] = \delta(s, v)$$

Beweis durch Widerspruch

Sei $v \in V$, so dass $d[v] \neq \delta(s, v)$ am Ende des Algorithmus $\stackrel{Lemma2}{\Longrightarrow} d[v] > \delta(s, V)$

Sei v so gewählt, dass es der erste Knoten ist mit der Eigenschaft, dass sein d-Wert falsch gesetzt wird. d.h. Alle d-Werte bis zu diesem Zeitpunkt sind korrekt.

Sei $s \mapsto u' \to v$ ein kürzester Weg s ui v

Betrachte die Situation bei Bearbeitung von u':

1. Fall v ist in diesem Moment schwarz.

$$d[v] > \delta(s, v) = \delta(s; u') + 1 > {\rm III} d[v]$$

2. Fall v ist in diesem Moment weiß.

$$d[v] > \delta(s, u') + 1 = d[u'] + 1 = {}^{\text{IV}}d[v]$$

II Breitensuche

 $^{^{\}mathrm{III}}v$ vor u' aus Q entfernt und Lemma 3.

 $^{^{\}mathrm{IV}}$ wegen Wahl von v;d-Wert von u'muss also korrekt sein

22. BFS (Breadth-First Search) Breitensuche

3. Fall v ist grau.

$$d[v] > \delta(s, u') + 1 = d[u'] + 1 \ge d[u] + 1 = d[v]$$

 $d[u] \leq d[u'],$ weil uvor u'aus Qentfernt \not

q.e.d.

Abbildung 22.4.

23. Kürzeste Wege Algorithmen

23.1. Dijkstra-Algorithmus

$$G = (V, E)$$
 $w : E \to \mathbb{R}_0^+$

Abbildung 23.1.

Sei $p = (s = v_0, v_1, v_2, \dots, v_k)$

Abbildung 23.2.

$$w(p) = \sum_{i=0}^{k-1} w(v_i, v_{i+1}) = \delta(s, v_k)$$

Abbildung 23.3.

$$\delta(s, v) \le \delta(s, U) + w(u, v)$$

23. Kürzeste Wege Algorithmen

Betrachte Algorithmen zur kürzesten Wege Berechnung, die Distanzwerte nur mit Hilfe dieser relax-Funktion verändern, dann gilt:

$$d[v] \ge \delta(s, v) \ \forall v \in V$$

Beweis

$$d[v] = d[u] + w(u, v) \stackrel{I.A.}{\geq} \delta(s, u) + w(u, v) \geq \delta(s, v)$$

Induktion über Zahl der reflex-Aufrufe

$$G = (V, E)$$
 $w: E \to \mathbb{R}^{\geq 0}$

```
forall (v \in V) {
2
      d[v] = \infty;
3
      \Pi[v] = NULL;
4
   }
    d[s] = 0;
   S = \emptyset;
7
    PriorityQueue PQ;
8
    forall (v \in V)
9
      PQ.insert((d[v],v));
10
    while(!PQ.empty()) {
11
      u = PQ.deleteMin();
12
      13
        if (d[v] > d[u] + w(u,v)) {
          d[v] = d[u] + w(u,v);
14
15
          \Pi[v] = u;
16
          PQ.decreaseKey((d[v],v));
17
18
      }
19
      S = S \cup \{u\};
   20
```


Abbildung 23.4.

Satz: Der Dijkstra Algorithmus berechnet alle d-Werte, so dass nach Ablauf des Algorithmus $\forall v \in V$ gilt: $d[v] = \delta(s, v)$.

Beweis:

Annahme:

$$\exists v \in V: \ d[v] \neq \delta(s, v)$$

$$\stackrel{LemmaRelax}{\Longrightarrow} d[v] > \delta(s, v)$$

Sei v so gewählt, dass v der erste Knoten mit der Eigenschaft ist, der mit deleteMin der PQ entnommen wird und nach Relaxation aller von ihm ausgehenden Kanten der Menge S hinzugefügt wird.

Betrachte einen kürzesten Weg $s \leadsto v$

$$d[v] > \delta(s,v) \geq {}^{\mathrm{I}}\delta(s,y) = d[y] = {}^{\mathrm{II}}d[x] + w(x,y) = d[y] \geq {}^{\mathrm{III}}d[v] \quad \sharp$$

Abbildung 23.5.: Skizze

^Iweil Kantengewichte nicht negativ sein dürfen

 $^{^{\}mathrm{II}}\mathbf{x}$ wurde schon zu S hinzugefügt, hat also korrekten d-Wert $d[x] = \delta(s,x)$

 $^{^{\}rm III}$ weil v
 vor y aus der PQ entnommen wird.

23.1.1. Vorläufige Laufzeitanalyse von Dijkstra

```
\begin{array}{cccc} \text{PQ.insert} & \text{x} & |V| \\ \text{PQ.empty} & \text{x} & |V| \\ \text{PQ.deleteMin} & \text{x} & |V| \\ \text{PQ.decreaseKey} & \text{x} & |E| \end{array}
```

Mit balanciertem Suchbaum oder mit binärem Heap (siehe 2) können diese Operationen alle in Zeit $\mathcal{O}(\log |V|)$ realisiert werden. \Rightarrow Gesamtlaufzeit: $\mathcal{O}((|V| + |E|) \log |V|)$

Wir werden später zeigen, dass eine Laufzeit von $O(|V| \log |V| + |E|)$ möglich ist.

23.2. Bellman-Ford-Algorithmus

$$G = (V, E) \ w : E \to \mathbb{R}$$

Voraussetzung G enthält keine negativen Zyklen

Abbildung 23.6.: Ein verbotener, negativer Zyklus

23.2.1. Pseudocode

```
1 forall(v ∈V) {
2 d[v] = ∞;
3 Π[v] = NULL;
4 }
5 d[s] = 0;
6 for(i = 1; i < |V|; i++)
7 forall((u,v) ∈E)
8 if( d[v] > d[u] + w(u,v)) {
9 d[v] = d[u] + w(u,v);
10 Π[v] = u;
11 }
```

23.2.2. Laufzeit: Bellman-Ford

 $\mathcal{O}(|V|\cdot |E|)$

23.2.3. Korrektheitsbeweis: Bellman-Ford

Invariante: Nach den i-ten Schleifendurchlauf sind alle Kürzesten Wege korrekt berechnet, die $\leq i$ Kanten benutzen.

Beweis: Induktion über i

Induktionsanfang

i = 0 $d[s] = 0 = \delta(s, s)$, da keine negativen Zyklen vorliegen.

23.2.4. Induktionsschritt: $i \rightarrow i+1$

Betrachte kürzesten Weg mit i+1 Kanten:

$$s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_i \rightarrow v_{i+1}$$

Aufgrund der Induktionsannahme^{IV} gilt: $d[v_i] = \delta(s, v_i)$, weil $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_i$ ein kürzester Weg $s \leadsto v_i$ mit i Kanten ist. Da alle Kanten in der inneren Schleife einmal relaxiert werden, trifft dies insbesondere auf die Kante (v_i, v_{i+1}) zu:

$$d[v_{i+1}] = d[v_i] + w(v_i, v_{i+1}) = \delta(s, v_i) + w(v_i, v_{i+1}) = \delta(s, v_{i+1})$$

Frage: Warum folgt aus der Gültigkeit dieser Invariante die Korrektheit des Algorithmus?

Antwort Alle kürzesten Wege benutzen höchstens |V|-1 Kanten, ansonsten hätten sie einen Zyklus mit Gewicht ≥ 0 , den man auch weglassen kann.

```
//Erkennung der Existenz negativer Zyklen
forall((u,v) ∈E)
if(d[v] > d[u] + w(u,v))
negativer Zyklus
```

 $^{^{\}rm IV}{\rm Die}$ Invariante

24. All-Pairs-Shortest Path Algorithmen

24.1. Allgemein

Distanzmatrix D für einen Graphen G = (V, E) $V = v_1, v_2, \dots, v_n$, $w : E \mapsto \mathbb{R}$

$$d_{ij} = \begin{cases} 0 & \text{für } i = j \\ w(v_i, v_j) & \text{für } (v_i, v_j) \in E \\ \infty & \text{sonst} \end{cases}$$

$$D = (d_{ij})_{\substack{i=1,\dots,n\\j=1,\dots,n}} \in \mathbb{R}^{n \times n}$$

Abbildung 24.1.: Grafik

$$d_{ij}^{(2)} = \min(d_i^{(1)}j, \ \min(d_{ik}^{(1)} + d_k^{(1)}j))$$

$$D^{(2)} = D^{(1)} \circ D^{(1)} = \min(d_{ik}^{(1)} + d_k^{(1)}j)$$

Vergleich zu Matrixmultiplikation

$$C = A \circ B$$
 , mit $A, B \in \mathbb{R}^{n \times n}$

$$C_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

im Ring $(\mathbb{R}, +, \cdot)$

$$C_{ij} = (A_{ik} + B_{kj})$$

Kommutativgesetz

$$\min(\min(a,b),c) = \min(a,b,c)$$

im "Ring" $(\mathbb{R}, \min, +)$

Distributivgesetz

$$a + \min(b, c) = \min(a + b, a + c)$$

Assoziativgesetz

$$A \circ (B \circ C) = (A \circ B) \circ C$$

Ziel:
$$D^{(n)II} = D^{(1)} \circ D^{(1)} \circ \ldots \circ D^{(1)}$$

Es gilt:
$$D^{(n)} = D^{(n+m)}$$
 für $m \ge 1$

Ider keiner ist

 $^{^{\}mathrm{II}}$ In der Potenz stehen die Anzahl der betrachteten Kanten.
n entspricht allen Kanten

24. All-Pairs-Shortest Path Algorithmen

24.1.1. Laufzeit zur Berechnung von $D^{(n)}$

Naiv: $O(n^4)$

$$D^{(2)} = D^{(1)} \circ D^{(1)}$$

$$D^{(4)} = D^{(2)} \circ D^{(2)}$$

$$D^{(8)} = D^{(4)} \circ D^{(4)}$$

:

$$D^{(2^i)} = D^{(2^{i-1})} \circ D^{(2^{i-1})}$$

Schrittzahl i so wählen, dass $2^i \geq n$

sukzessives Quadrieren: $O(n^3 \log n)$

24.2. Floyd-Warshall-Algorithmus

```
1 for (k = 1; k ≤n; k++)
2 for(i = 1; i ≤n; i++)
3 for (j = 1; j ≤n; j++)
4 d[i][j] = min(d[i][j], d[i][k]+d[k][j])
```

Laufzeit $O(n^3)$

24.2.1. Korrektheitsbeweis:

Invariante Nach dem k-ten Schleifendurchlauf entspricht d_{ij} der Weglänge eines kürzesten Weges p von v_i nach v_j , wobei nur Zwischenknoten erlaubt sind, mit Index $\leq k$

$$p: v_i \to v_{l_1} \to v_{l_2} \to \ldots \to v_{l_m} \to v_j$$

d.h.
$$1 \le l_1, l_2, \dots, l_m \le k$$

24.2.2. Beweis der Invariante durch Induktion nach k

k=0: Nach der Initialisierung von D, also vor dem 1. Schleifendurchlauf, gilt obige Invariante.

 $k-1 \rightarrow k$:

Abbildung 24.2.: Beweis der Invariante

Durch die Operation $d_{ij} = \min(d_{ij}, d_{ik} + d_{kj})$ wird die Invariante sichergestellt.

24.3. Naive Lösung des All-Pairs Problems durch |V|-malige Anwendung von Bellman-Ford oder Dijkstra-Algorithmus

 $\textbf{Bellman-Ford} \ \ \mathfrak{O}(|V|\cdot |V|\cdot |E|) = \mathfrak{O}(|V|^2\cdot |E|)$

Dijkstra $\mathcal{O}(|V| \cdot (|V| \cdot \log |V| + |E|)) = \mathcal{O}(|V| \cdot |E| + |V|^2 \cdot \log |V|)$

24.4. Johnson-Algorithmus

Idee: Neugewichtung der Kanten, so dass keine negativen Kantengewichte mehr vorhanden sind. Anschließend |V|-mal Dijkstra-Algorithmus ausführen.

Naiver Ansatz

Abbildung 24.3.: Naiver Ansatz, kürzester Weg wird zerstört

24. All-Pairs-Shortest Path Algorithmen

Neuer Ansatz

$$w'(u, v) = \operatorname{pot}^{\operatorname{III}}(u) - \operatorname{pot}(v) + w(u, v) \ge 0$$

Mit dieser Neugewichtung gilt, dass kürzeste Wege bzgl. w den kürzesten Wegen bzgl. w' entsprechen.

$$p: s = v_0 \to v_1 \to v_2 \to \dots v_i \to v_{i+1} \to \dots v_k = t$$

$$w'(p) = \sum_{i=0}^{k-1} w'(v_i, v_{i+1}) = \sum_{i=0}^{k-1} \left[pot(v_i) - 1pot(v_{i+1}) + w(v_i, v_{i+1}) \right]$$

$$\stackrel{Teleskopsumme}{=} pot(v_0) - pot(v_k) + \sum_{i=1}^{k-1} w(v_i, v_{i+1}) = pot(s) - pot(t) + w(p)$$

d.h. Alle kürzesten Wege $s \leadsto t$ unterscheiden sich bzgl. w' im Vergleich zu w nur um eine feste additive Konstante pot(s) - pot(t)

$$pot(u) - pot(v) + w(u, v) \ge 0$$
$$pot(v) \le pot(u) + w(u, v)^{IV}$$
$$pot(v) = \delta(z, v)$$
$$G' = (V', E') \quad V' = V \cup z, E' = E \cup (z, v) | v \in V \quad \text{mit } w'(z, v) = 0$$

Abbildung 24.4.: Die blau markierten Kanten haben die Länge 0

- \bullet Löse single-source-shortest-Path Problem in G' mit z als Startknoten
- setze $pot(v) = \delta_{G'}(z, v)^{V}$
- Neugewichtung
- \bullet |V|-mal Dijkstra

24.4.1. Laufzeit des Johnson-Algorithmus

$$O(|V| \cdot |E| + |V| \cdot (|V| \cdot \log |V| + |E|)) = O(|V| \cdot |E| + |V|^2 \cdot |V|)$$

III Potential funktion

^{IV}Dreiecksungleichung

Vberechnet mit Bellman-Ford

25. Minimal aufspannende Bäume MST

Eingabe

$$G = (V, E)$$
 E ungerichtet $(u, v) \in E \Rightarrow (v, u) \in E$ mögliche Notation $\{u, v\}$

 $w: E \to \mathbb{R}$

Gesucht

Baum $T\subseteq E$ $G_T=(V,T) \text{zusammenhängend (zykelfrei)}$ $w(T)=\sum_{e\in T} w(e) \text{minimal}$

Frage |T| = ?

Antwort |T| = |V| - 1

25.1. Greedy-Algorithmen zur Lösung des MST-Problems:

Starte mit $T=\emptyset$, nehme sukzessive Kanten zu T hinzu, so dass nach |V|-1 Schritten der gesuchte MST entstanden ist. Dabei benötigen wir ein Kriterium, das sicherstellt, dass gewählte Kanten zur Gesamtlösung dazugehören.

25.2. Schnitt-Lemma:

Betrachte eine Aufteilung (Schnitt) der Knotenmenge V in S und $\overline{S} = V \setminus S$ und Kanten $(u,v) \in E \cap S \times \overline{S}$

Sei $e \in E \cap S \times S$ mit $w(e) \leq w(e') \ \forall \ e' \in E \cap S \times S$ dann gibt es einen MST mit $e \in MST$

25.2.1. Beweis für das Schnitt-Lemma

Sei e eine "sichere" Kante aus dem Schnitt-Lemma.

o.B.d.A. $u \in S$ und $v \in \overline{S}$.

Es gibt eine Zykel in $T \cup \{e\}$ und darin eine Kante $e' \in S \times \overline{S}$ mit $w(e') \geq w(e)$.

Ersetze $T' = T \cup \{e\} \setminus \{e'\}$

 $w(T') \le w(T) \Rightarrow w(T') = w(T)$ weil T ein MST.

q.e.d.

25.3. Algorithmus von Kruskal

sortiere Kanten nach ihrem Gewicht aufsteigend $T=\emptyset$

```
forall (u,v) ∈E in sortierter Reihenfolge {
    if (find(u) == find(v)) continue;
    T = T∪{(u,v)};
    union(u,v);
}
```

Effizienz von Kruskal

Abbildung 25.3.: Reihenfolge $\begin{array}{c} \text{gr\"{u}n} {\rightarrow} \text{rot} {\rightarrow} \text{blau} {\rightarrow} \text{braun} \end{array}$

Idee zum Aufbau einer Union-Find-Datnstruktur

Jeder Knoten trägt eine Komponentennummer, die in einem Feld vermerkt ist. Die find-Operation ist durch einen Feld-Zugriff realisierbar. Um die union-Operation zu realisieren, verwalten wir die Knoten einer Komponente in einer einfach verketteten Liste und merken uns die Listenlänge. Wenn zwei Komponenten fusionieren, benennen wir die Komponente mit der kleineren Knotenzahl um, indem wir die zugehörige Liste durchlaufen und die Umbenennung im Feld vornehmen. Und die beiden betroffenen Listen müssen konkateniert werden.

Beobachtung: Ein einzelner Knoten erfährt höchstens $\log |V|$ viele Umbenennungen seiner Komponentennummer, da sich bei jeder Umbenennung die Größe der Komponente zu der er gehört, verdoppelt.

25.4. Einfache Union-Find-Datenstruktur

	0	1	2		n-1			
ref	0	1	2		n-1	n - V		
size	1	1	1		1	n = V		
next	-1	-1	-1		-1			

```
class Partition
 1
 2
        int[] ref,size,next;
 3
        Partiotion(int n) {
 4
           ref = new int[n];
 5
            size = new int[n];
 6
            next = new int [n];
            for (int i = 0; i < n; i++) {</pre>
 8
               ref[i] = i;
9
                size[i] = 1;
10
               next[i] = -1;
11
            }
        }
12
13
        int find(int v) {
14
            return ref[v];
15
        }
16
        void union(int u, int v) {
17
            int x = ref[u];
                                                                          x1
                                                                                  y1
                                                                                                 x2
                                                                                                         y2
                                                                   Х
            int y = ref[v];
18
20
            if (size[x] > size[y]) {
                                                          ref
21
               x = ref[v];
22
               y = ref[u];
23
24
            int h = next[y];
25
            next[y] = x;
                                                        next
            int z = y;
26
27
            while ( next[z] \geq 0) {
28
               z = next[z];
29
               ref[z] = y;
30
31
            next[z] = h;
32
            size[y] = size[y] + size[x];
        }
33
```

25.4.1. Laufzeit Kruskal

$$\mathcal{O}(|E| \cdot \log |V| + |E| + |V| \cdot \log |V|)$$

$$\mathcal{O}(|E| \cdot \log |V|)$$

25.5. Prim-Algorithmus zur Berechnung eines MST


```
T = T \cup \{(u, v)\}
T_{MST} = \{(v, \pi(v)) \mid v \in V \setminus \{s\}
```

```
PriotityQueue PQ;
 2
    forall(v \in V) {
 3
        d[v] = \infty;
        \pi[v] = NULL;
 4
        inTree[v] = false;
 5
        PQ.insert(v, d[v]);
 6
 7
    }
 8
    d[s] = 0;
 9 PQ.decreaseKey(s,d[s]); //\overline{S} \hat{=} PQ
10 T = \emptyset
                        //S = \{v \in V | \text{inTree[v]} = \text{true} \}
    while(!PQ.empty()) {
11
        u = PQ.deleteMin();
12
13
         forall((u,v) \in E) {
14
             if(inTree[v] == true) continue;
15
             if(d[v] > w(u,v)) {
16
                 d[v] = w(u,v);
17
                 \pi[v] = u;
18
                 PQ.derceaseKey(v, d[v]);
             }
19
20
        }
21
        inTree[u] = true;
22
        T = T \cup (u,v); //T = T \cup {(u,\pi[u])} u \neq s
23 }
```

25.5.1. Korrektheit des Prim-Algorithmus

Korrektheit von Prim folgt unmittelbar aus dem Schnitt-Lemma, denn der Algorithmus stellt sicher, dass stets eine Kante gewählt wird, die mit minimalem Gewicht über den Schnitt (S, \overline{S}) führt.

25.5.2. Laufzeit des Prim-Algoritmus

$ V imes t t exttt{PQ.insert}$	O(1)	
$ V { imes}$ PQ.empty	O(1)	In Summe $\mathcal{O}(E + V \cdot \log V)$
$ V { imes}$ PQ.deleteMin	$O(\log V)$	In Summe $O(E + V \cdot \log V)$
$ E \times PQ$.decreaseKev	$\mathcal{O}(1)$	

25.5.3. Beispiel des Prim-Algorithmus:

Abbildung 25.5.

26. Priority-Queue mittels Fibonacci-Heaps

Abbildung 26.1.: Binomial-Bäume

Es gilt:

Zahl der Knoten auf Level i ist $\binom{k}{i}$

$$\binom{k}{i} = \binom{k-1}{i} + \binom{k-1}{i-1}$$

Gesamtzahl aller Knoten $= 2^k$

n = 0:

n = 1: 1

n = 2: 1 2 1

n=3: 1 3 3 1

n = 4: 1 4 6 4 1

26.1. Operationen eines Binomial-Heaps

Abbildung 26.2.: Aufbau

- insert
- deleteMin
- decreaseKey

ldee Für jeden Knoten wird gelten, dass die Zahl aller Nachfahren $\geq \Phi^k$ k = Knotengrad

Insert

Einzelner Knoten wird einfach in die Wurzelliste gehängt und Minimum wird aktualisiert.

DeleteMin

Lösche den Minimumsknoten und übernehme alle seine Kindknoten in die Wurzelliste. Konsolidiere anschließend die Wurzelliste. Nach dem Konsolidieren hat die Wurzelliste nur noch eine "kleine" Länge und wir bestimmen das neue Minimum durch einen Durchlauf durch diese Liste.

Abbildung 26.3.: DeleteMin-Operation

decreaseKey

Wir können davon ausgehen, dass wir den betroffenen Knoten kennen. Falls der erniedrigte Schlüssel des Knotens kleiner als der Schlüssel des Vaterknotens wird, lösen wir den Knoten aus der Kindliste des Vaters und setzen ihn in die Wurzelliste. Wir markieren den Vater, dass er einen Kindknoten verloren hat. Sollte der Vater schon eine Markierung tragen, so wird auch der Vater Knoten abgelöst und in die Wurzelliste gesetzt. Dieser Prozess kann sich kaskadenartig bis zur jeweiligen Wurzel fortsetzen. Bei Aufnahme eines abgelösten Knotens in die Wurzelliste, muss auch das Minimum aktualisiert werden.

Abbildung 26.4.: decreaseKey-Operation

26.1.1. Konsolidierung der Wurzelliste

Nach dem "Lazy Evaluation"-Prinzip wird dieser Vorgang nur nach einem **deleteMin** angestoßen, um die Wurzelliste zu verkürzen. Wir nutzen ein einfaches Feld hinreichender Größe, um temporär Knoten, entsprechend ihren Grades, zu verwalten. Wir durchlaufen die Wurzelliste. Wenn wir einen Knoten vom Grad k antreffen, schreiben wir ihn in das Feld an Position k bzw. verschmelzen ihn mit dem Knoten von Grad k, den wir dort antreffen. Dadurch entsteht gegebenenfalls ein neuer Knoten vom Grad k+1 der an Position k+1 im Feld zu setzen ist. Es kann also zu weiteren Fusionsoperationen kommen. Analogie zu der Übertragungsfortpflanzung beim Binärzähler.

Abbildung 26.5.: Konsolidierungs-Operation

26.2. Eigenschaften

26.2.1. Lemma: Knotenanzahl im Unterbaum

Für jeden Knoten x in einem Fibonacci-Heap gilt, dass die Zahl aller Knoten im Unterbaum von x mindestens Φ^k beträgt, wobei $k = \operatorname{grad}(x)$.

26.2.2. Beweis

Abbildung 26.6.: Schaubild zum Beweis

Seien y_1, y_2, \ldots, y_k die aktuellen Kindknoten von x, nummeriert in der Reihenfolge, wie sie (letztmalig) Kindknoten von x geworden sind. Zum Zeitpunk, zu dem y_i Kindknoten von x geworden ist, existieren bereits die i-1 Kindknoten $y_1, y_2, \ldots, y_{i-1}. \Rightarrow \operatorname{grad}(x) \geq i-1$

 y_i kann nur Kind von xwerden, wenn xund y_i gleichen Grad haben. $\Rightarrow \operatorname{grad}(y_i) \geq i-1$

Da y_i im Folgenden höchstens einen Kindknoten verlieren kann, gilt:

$$\operatorname{grad}(y_i) \ge i - 2$$

Sei S_k die Mindestanzahl von Knoten in einem Unterbaum eines Knoten x vom Grad k

$$S_k \ge 1 + 1 + \sum_{i=2}^k S_{i-2}$$

Wir zeigen

$$S_k \stackrel{(2)}{\geq} f_{k+2}^{\mathrm{I}} \stackrel{(1)}{\geq} \Phi^k$$

 $^{^{\}mathrm{I}}k-2$ -te Fibonacci Zahl

(1)
$$f_{0} \quad f_{1} \quad f_{2} \quad f_{3} \quad f_{4} \quad f_{5} \quad \dots$$

$$f_{0} \quad 1 \quad 1 \quad 2 \quad 3 \quad 5$$

$$f_{k+2} \geq \Phi^{k}$$

$$k = 0 \; : \; f_{2} = 1 \geq \Phi^{0} = 1$$

$$k = 1 \; : \; f_{3} = 2 \geq \Phi^{1} = 1,6181\dots$$

$$f_{k+2} = f_{k+1} + f_{k} \geq \Phi^{k-1} + \Phi^{k-2} = {}^{\text{II}}\Phi^{k-2}(\Phi+1) = \Phi^{k-2} \cdot \Phi^{2} = \Phi^{k}$$

(2)
$$S_k \geq f_{k+2}?$$

$$S_k \geq 2 + \sum_{i=2}^k S_{i-2}$$

$$k = 0 : S_0 \geq f_2 = 1 \checkmark$$

$$k = 1 : S_1 \geq f_3 = 2 \checkmark$$

 $S_k \ge 2 + \sum_{i=2}^k f_i$, da wegen Induktions-Annahme $S_{i-2} \ge f_{(i-2+2)} = f_i$ für i < k

Zu zeigen:

$$2 + \sum_{i=2}^{k} f_i \ge f_{k+2}$$

Es gilt:

$$1 + \sum_{i=1}^{k} f_i = f_{k+2}$$

$$k = 0 : 1 = f_2 \checkmark$$

$$k = 1 : 1 + f_1 = f_3 = 2 \checkmark$$

$$1 + \sum_{i=1}^{k+1} = (1 + \sum_{i=1}^{k} f_i) + f_{k+1} = f_{k+2} + f_{k+1} = f_{k+3}$$

q.e.d.

Aus dem Lemma folgt, dass in einem Fibonacci-Heap für $n^{\rm III}$ Elemente zu keinem Zeitpunkt ein Knoten vom Grad $\log_\phi n = k$ auftauchen kann. Insbesondere ist die Wurzelliste nach einer Konsolidierung auch nur $\log_\Phi n$ lang, weil dort nur Knoten unterschiedlichen Grades auftauchen.

 $^{{}^{\}mathrm{III}}\Phi^k \leq n$

26. Priority-Queue mittels Fibonacci-Heaps

26.2.3. Satz: Kosten der Operationen

Mit einem Fibonacci-Heap lassen sich die Operationen insert, deleteMin und decreaseKey mit folgenden amortisierten Kosten realisieren:

 $\begin{array}{ll} \text{insert} & \mathcal{O}(1) \\ \text{deletemin} & \mathcal{O}(\log n) \\ \text{decreaseKey} & \mathcal{O}(1) \end{array}$

26.2.4. Beweis

Wir verwenden die Bankkonto-Methode zur amortisierten Analyse nach folgendem Schema: Jeder Knoten in der Wurzelliste wird mit einer RE^{IV} bespart und jeder markierte Knoten der einen Kindknoten verloren hat wird mit 2 RE bespart.

Bemerkung Wurzelknoten tragen keine Markierung, obwohl sie eventuell Kindknoten verloren haben.

Wir zeigen nun, dass die oben genannten Kosten für die einzelnen Operationen ausreichen, damit im gesamten Verlauf das Kontoführungsschema, ohne Schulden machen zu müssen, aufrecht erhalten werden kann.

insert Einfügen in Wurzelliste +1RE Investition $\in O(1)$

deleteMin Alle Kindknoten des gelöschten Knotens wandern in die Wurzelliste.

Dafür müssen wir $\log_{\Phi} n$ viele RE investieren. Die Konkatenation der doppelt verketteten Listen kostet nur konstante Zeit. Der ganze Konsolidierungsprozess kann bezahlt werden durch die RE auf den Wurzelknoten. Die anschließende Minimumsuche kostet nur $\mathcal{O}(\log n)$, weil die Wurzelliste höchstens $\log_{\Phi} n$ viele Elemente hat.

decreaseKey

Behauptung Es genügen 4 RE pro Operation

Vorgehensweise:

- 1RE für die Aufnahme eines abgelösten Knotens in die Wurzelliste
- 2RE für die Markierung des Vaterknotens
- 1RE für "sonstige" konstante Kosten(Pointeraktualisierungen).

Ein Vaterknoten, der schon markiert ist, hat aufgrund der Gültigkeit der Bankkontoführung schon 2RE und bekommt vom abgelösten Kindknoten noch 2 RE. Damit hat er 4RE für seine eigene Ablösung zur Verfügung. Dieses Schema lässt sich also fortsetzen und die Kosten einer Ablösekaskade lassen sich damit decken.

		1
α	.e.	d.

IV Rechen Einheit

27. Das Heiratsproblem - Maximum cardinality matching in bipartiten Graphen

27.1. Allgemein

Abbildung 27.1.: Ausgangsproblem

$$G = (V_1 \dot{\cup} V_2, E)$$

 $M\subseteq E$ heißt Matching, wenn jeder Knoten zu höchstens einer Kante aus M inzident ist. Freie Knoten sind an keiner Matching-Kante beteiligt.

M heißt <u>maximales</u> Matching, wenn M durch Hinzunahme einer weiteren Kante nicht vergrößert werden kann.

Gesucht ist ein <u>maximum-Matching</u> M^* mit $|M^*| \ge |M| \ \forall \ M$ Matching.

(a) Nicht optimales Matching

(b) optimales Matching

27. Das Heiratsproblem

Abbildung 27.3.: Alternierender Pfad

Alternierender Graph, der mit einem Singleknoten startet und endet, nennt man einen augmentierten Pfad.

Zum finden eines augmentierten Pfades verwenden wir folgenden Graphen $G_M = (V_1 \cup V_2 \cup \{s\}, E')$

$$E' = \{(v_1, v_2) | v_1 \in V_1, v_2 \in V_2, (v_1, v_2) \in E \setminus M\}$$

$$\cup \{(v_2, v_1) | v_1 \in V_1, v_2 \in V_2, (v_1, v_2) \in M\} \cup \{(s, v_1) | v_1 \in V_1 \text{ frei}\}$$

Mit Hilfe von BFS oder DFS können wir in G_M augmentierende Pfade leicht finden. Also

Zei
$$\mathcal{O}(|V| + |E|)$$

27.1.1. Lemma: (Berge)

Ein Matching M ist ein maximum-Matching \Leftrightarrow Es gibt keinen M-augmentierenden Pfad.

27.1.2. Beweis:

 $"A \Rightarrow B"$

 $\neg B \Rightarrow \neg A$ Es gibt M-augmentierenden Pfad $\Rightarrow M$ ist kein maximum Matching

 $"A \Leftarrow B"$

 $\neg A \Rightarrow \neg B$ Sei M noch kein maximum Matching.

z.z. Es gibt ein M-augmentierenden Pfad

 M^* sei ein maximum Matching, d.h. $|M^*| > |M|$.

Betrachte den Graphen $\tilde{G} = (V_1 \cup V_2, M \oplus M^*)$

Alle Knoten in \ddot{G} haben höchstens Grad 2, ansonsten wäre ein Knoten inzident zu zwei Kanten aus dem Gleichen Matching M oder M^* .

G besteht aus einzelnen Knoten, Pfaden gerader oder ungerader Länge und Zyklen gerader Länge.

Abbildung 27.4.: Beispiel

z.z. Es gibt in \tilde{G} mindestens einen M-augmentierenden Pfad p, der mehr Kanten aus M^* als aus M besitzt. Dies gilt, weil ansonsten $|M^*| \leq |M|$

q.e.d.

27.1.3. Pseudo-Code

```
 \begin{array}{lll} 1 & \texttt{M} = \emptyset; \\ 2 & \texttt{do} \ \{ \\ 3 & \texttt{P} = \texttt{findAugmPath}(G_M); \\ 4 & \texttt{if} \ (\texttt{P} == \texttt{NULL}) \ \texttt{break}; \\ 5 & \texttt{M} = \texttt{M} \oplus \texttt{P}; \\ 6 & \texttt{} \} \ \texttt{while}(\texttt{true}); \\ \end{array}
```

Wiederholung: Symmetrische Differenz

$$A \oplus B = A \setminus B \cup B \setminus A$$

Abbildung 27.5.: Symmetrische Differenz

27.1.4. Laufzeit

$$O\left(\min(|V_1|, |V_2|) \cdot (|V| + |E|)\right)$$
$$= O(|V| \cdot |E|)$$

27.2. Hopcroft-Karp-Algorithmus

erzielt Laufzeit von $\mathcal{O}(\sqrt{|V|}\cdot |E|)$

```
1 M = \emptyset;

2 do {

3 G_L = buildLevelGraph(G_M); //Knotendisjunkte M-augmentierende Pfade

4 \mathcal{P} = findAugmPath(G_L); //\mathcal{P} = P_1\dot{\cup}P_2\dot{\cup}\ldots\dot{\cup}P_k

5 M = M \oplus \mathcal{P};

6 } while(\mathcal{P} \neq \emptyset);
```

 G_L kann mittels BFS in Zeit $\mathcal{O}(|V| + |E|)$ konstruiert werden. Zum Auffinden einer maximalen Menge von M-augmentierenden Pfaden in G_L verwenden wir DFS und entfernen jedes mal den gefunden Pfad P_i aus G_L . DFS sorgt dafür, dass P_i in Zeit $\mathcal{O}(|P_i|)$ gefunden und gelöscht werden kann.

 \Rightarrow findAugmPaths(G_L) hat nur Laufzeit O(|E|)

Ohne Beweis (siehe später Edmonds-Krap-Algorithmus) gilt:

Die Zeit der Schichten im Levelnetzgraph des Hopcraft-Karp-Algorithmus steigt mindestens um eins von Durchlauf zu Durchlauf.

$$|M^*| - |M| \le \frac{|V|}{k}$$
 $\tilde{G} = (V_1 \cup V_2, M \oplus M^*)$

k Mindestlänge der $M\text{-}\mathrm{augmentierenden}$ Pfade

^ILemma von Berge

27. Das Heiratsproblem

- 1. Phase k Schleifendurchläufe \Rightarrow Danach haben M-augment. Pfade mindestens die Länge k
- 2. Phase Weitere $\frac{|V|}{k}$ Schleifendurchläufe genügen, um zum Maximum-Matching M^* zu gelangen.

27.2.1. Gesamtzahl der Schleifendurchläufe

$$S(k) = k + \frac{|V|}{k}$$
 $S'(k) = 1 - \frac{|V|}{k^2} = 0 \Rightarrow k = \sqrt{|V|}$

 \Rightarrow Zahl der Schleifendurchläufe $\leq \sqrt{|V|}$

28. Algorithmen zur Berechnung maximaler Flüsse

28.1. Allgemein

 $c^{\mathrm{I}}: E \to \mathbb{R}_0^+$

 $f: E \to \mathbb{R}_0^+$

 $\forall (u,v) \in E : \text{Kapazit"atsbedingung: } 0 \leq f(u,v) \leq c(u,v)$

Abbildung 28.1.: ...

28.1.1. Flusserhaltung

Abbildung 28.2.: Flusserhalt

$$\forall u \in V \setminus \{s, t\}$$

$$\sum_{v \in V} f(u, v) = \sum_{v \in V} f(v, u)$$
Fluss aus u herraus
Fluss in u herein

$$(u,v) \notin E \Rightarrow c(u,v) = 0 \Rightarrow f(u,v) = 0$$

 $(u,v) \in E \Rightarrow (v,u) \notin E$ Konventionen

28.1.2. Definition: Fluss

|f| Fluss, der von s nach t transportiert wird.

$$|f| = \sum_{v \in V} f(s,v) - \sum_{v \in V} f(v,s) = \sum_{v \in V} f(v,t) - \sum_{v \in V} f(t,v)$$

Gesucht: maximaler Fluss |f|

^IKapazität

28.1.3. Definition: Schnitt (S, T)

$$S \dot{\cup} T = V \quad s \in S, t \in T$$

Schnittkapazität

$$\sum_{u \in S} \sum_{v \in T} c(u, v) = c(S, T)$$

Fluss über Schnitt

$$\sum_{u \in S} \sum_{v \in T} f(u, v) - \sum_{u \in S} \sum_{v \in T} f(v, u) \le c(S, T)$$

Abbildung 28.4.: Beispiel Schnitt

$$|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s) + \underbrace{\sum_{u \in S \setminus \{s\}} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)}_{= v \in S} = \sum_{u \in S} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$

$$= \sum_{u \in S} \left(\sum_{v \in S} f(u, v) + \sum_{v \in T} f(u, v) - \sum_{v \in S} f(v, u) - \sum_{v \in T} f(v, u) \right)$$

$$= \sum_{u \in S} \left(\sum_{v \in V} f(u, v) - \sum_{v \in S} f(v, v) - \sum_{v \in S} f(v, v) - \sum_{v \in S} f(v, v) \right)$$

$$= \sum_{u \in S} \left(\sum_{v \in V} f(u, v) - \sum_{v \in S} \sum_{v \in S} f(v, v) - \sum_{v \in S} \sum_{v \in S} f(v, v) \right) = f(S, T)$$

28.1.4. Konstruktion des Restnetzwerk G_f

(a) Restnetzwerk zum Graphen (b) Mit Restnetzwerk optimierter Graph

$$|f| = f(S,T) \le c(S,T)$$

28.2. Ford-Fulkerson-Algorithmus

```
1 f = 0;

2 do {

3 p = flussverbessernder Pfad im Restnetzwerk G_f;

4 c_{min} = kleinste Restkapazität der Kanten von p;

5 erhöhe den Fluss f entlang von p um c_{min}

6 } while (p \neq NULL);
```

28.3. Restnetzwerk $G_f = (V, E_f)$

$$c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{für } (u,v) \in E \\ f(v,u) & \text{für } (v,u) \in E \\ 0 & \text{sonst} \end{cases}$$

28.4. Max-Flow-Min-Cut-Theorem

- 1. |f| ist maximal \Rightarrow Es gibt keinen f-verbessernden Pfad
- 2. Es gibt einen (S,T)-Schnitt, so dass c(S,T)=|f|
- 3. $c(S,T) = |f| \Rightarrow f$ ist maximal und c(S,T) minimal

28.4.1. Beweis: $1. \Rightarrow 2$.

Gegeben sein ein maximaler Fluss $f \Rightarrow t$ ist in G_f nicht von s erreichbar.

Sei
$$S = \{v \in V | \exists p : s \leadsto v \text{ in } G_f\}, T = V \setminus S, t \in T$$

28.4.2. Idee

Abbildung 28.6.

Zeige: Alle Vorwärtskanten über den Schnitt S,T sind saturiert, d.h. f(u,v)=c(u,v) Alle Rückwärtskanten von T nach S tragen den Flusswert 0.

Beweis Sei $(u, v) \in S \times T \cap E$

Anmerkung f(u, v) < c(u, v)

$$\Rightarrow (u,v) \in E_f \text{ mit } c_f(u,v) = c(u,v) - f(u,v) > 0$$

 $\Rightarrow v$ ist von saus erreichbar: $s \leadsto u \to v \not\downarrow$

28. Algorithmen zur Berechnung maximaler Flüsse

Sei
$$(v, u) \in T \times S$$

Abbildung 28.7.

Anmerkung: f(v, u) > 0

$$\Rightarrow (u, v) \in E_f \text{ mit } c_f(u, v) = f(v, u) > 0$$

 $\Rightarrow v$ ist auf dem Weg $s \leadsto u \to v$ in G_f erreichbar. ‡

$$|f| = \sum_{u \in S, v \in T} f(u, v) - \sum_{u \in S, v \in T} f(v, u) = \sum_{u \in S, v \in T} c(u, v) - 0 = c(S, T)$$

 $1. \Rightarrow 2.$ q.e.d.

 $|f| = c(S, T) \Rightarrow f$ maximal und c(S, T) minimal.

Offene Frage Unter welchen Bedingungen terminiert der Ford-Fulkerson-Algorithmus?

 $\Rightarrow |f^*|^{\mathrm{II}} \in \mathbb{N}, c_{min}(p) \in \mathbb{N}$ für pflussverbessernder Pfad ≥ 1

 \Rightarrow Es genügen $|f^*|$ viele Iterationen zur Flussverbesserung

 \Rightarrow Laufzeit($|f^*| \cdot |E|$)

Abbildung 28.8.

II maximaler Fluss

28.4.3. Zwick

$$\overline{\phi} = \frac{\sqrt{5} - 1}{2} |X| > 1000 |f^*| = 2X + 1$$

Invariante $\overline{\phi}=0,613\ldots$

$$1 - \overline{\phi} = \overline{\phi}^{\ 2}$$

$$\overline{\phi}^{\ k-1} - \overline{\phi}^{\ k} = \overline{\phi}^{\ k+1}$$

28. Algorithmen zur Berechnung maximaler Flüsse

1. Schritt Schicke $\overline{\phi}^{\ k}$ Flusseinheiten entlang Pfad B

Abbildung 28.12.: Schritt 1

2. Schritt Schicke $\overline{\phi}^{k}$ entlang C

Abbildung 28.13.: Schritt 2

3. Schritt Schicke $\overline{\phi}^{k+1}$ entlang B

Abbildung 28.14.: Schritt 3

2. Schritt Schicke $\overline{\phi}^{k+1}$ entlang A

Abbildung 28.15.: Schritt 4

Wir iterieren diese 4 Schritte unendlich oft

$$|f| = 1 + 2 \cdot \sum_{k=1}^{\infty} \overline{\phi}^{k} + 2 \cdot \sum_{k=1}^{\infty} \overline{\phi}^{k+1} < 7 \le 2X + 1 \qquad \sum_{k=0}^{\infty} \overline{\phi}^{k} = \frac{1}{1 - \overline{\phi}}$$

Abbildung 28.16.: Wiederholung

28.5. Edmonds-Karp Algorithmus

$$G = (V, E)$$
, $c: R \to \mathbb{R}_0^+, G_F = (V, E_f), G_f^L = (V, E_f^L)$

```
\begin{array}{ll} \text{1} & \text{f = 0;} \\ 2 & \text{while}(\exists \ p \leadsto t \in G_f^L = (V, E_f^L)) \ \ \\ 3 & \text{sei } c_{min}(\texttt{p}) \ \text{die kleinste Restkapazität auf p} \\ 4 & f(u,v) = \begin{cases} f(u,v) + c_{min}(p) & \text{falls } (u,v) \in p \\ f(u,v) - c_{min}(p) & \text{falls } (v,u) \in p \end{cases} \\ 5 & \end{cases}
```

 $\delta_f(s,v)$ die kleinste Zahl von Kanten, die in G_f^L benötigt werden, um von snach vzu gelangen.

28.5.1. Lemma:

Im Verlauf des Edmonds-Karp Algorithmus gilt:

$$\delta_{f'}(s, v) \ge \delta_f(s, v)$$

wobei der Fluss f' durch eine Flussverbesserung aus f hervorgegangen ist.

28.5.2. Beweis durch Widerspruch

Annamhe

$$\exists v \in V : \delta_{f'}(s, v) < \delta_f(s, v)$$
 (**)

sei v so gewählt, dass $\delta_{f'}(s, v)$ minimal. Sei $s \leadsto u \to v$ ein kürzester Weg in $G_{f'}^L$.

$$\delta_f(s, u) \le \delta_{f'}(s, u) = \delta_{f'}(s, v) - 1 \quad (*)$$

Behauptung

$$(u,v) \not\in E_f^L$$

Beweis durch Widerspruch

28. Algorithmen zur Berechnung maximaler Flüsse

$$\delta_f(s,v) \leq {}^{\mathrm{III}}\delta_f(s,u) + 1 \leq {}^{\mathrm{IV}}\delta_{f'}(s,v) \ \ \mbox{\mbox{\mbox{$\rlap/$}$}} \ \mbox{zu} \ (**)$$

 $\Rightarrow (u, v) \notin E_f^L \text{ aber } (u, v) \in E_{f'}^L$

Abbildung 28.17.

d.h. Bei der Flussverbesserung von f zu f' wurde die Kante (v,u) benutzt in G_f^L .

$$\delta_f(s, u) = \delta_f(s, v) + 1$$

$$\stackrel{(**)}{>} \delta_{f'}(s, v) + 1$$

$$\stackrel{(*)}{\geq} \delta_f(s, u) + 2$$

q.e.d.

28.5.3. Lemma

Eine kante (u,v) kann un den Level-Rest-Netzwerken höchstens $\frac{|V|}{2}$ mal saturiert werden und damit temporär aus dem jeweiligen Rest-Netzwerk verschwinden

28.5.4. Beweis

Abbildung 28.18.

$$\delta_f(s, v) = \delta_f(s, u) + 1$$

$$\delta_{f'}(s, v) = \delta_{f'}(s, u) - 1$$

 $[\]overline{^{\rm III}{\rm Dreieck sungleichung}}$

 $^{^{\}mathrm{IV}}$ wegen (*)

28.6. Algorithmus von Dinic

$$\delta_f(s, u) = \delta_f(s, v) - 1 \le \delta_{f'}(s, v) - 1 = \delta_{f'}(s, u) - 2$$

$$\Rightarrow \delta_{f'}(s, u) \ge \delta_f(s, u) + 2$$

q.e.d.

28.5.5. Laufzeitanalyse von Edmonds-Karp Algorithmus

Bei jeder Flussverbesserung wird mindestens eine Kante saturiert. Jede einzelne Kante kann aber höchstens $\frac{|V|}{2}$ mal saturiert werden.

- \Rightarrow Es gibt höchstens $\mathcal{O}(|E|\cdot|V|)$ viele Flussverbesserungen, Jede Flussverbesserung kann in $\mathcal{O}(|E|)$ ausgeführt werden.
- \Rightarrow Gesamtlaufzeit: $\mathcal{O}(|E|^2 \cdot |V|)$

28.6. Algorithmus von Dinic

28.6.1. Sperrfluss (blocking flow)

$$G_f^L = (V, E_f^L)$$

Wir konstruieren einen Sperrfluss g für einen Graphen H, indem wir wiederholt entlang von (s,t)-Pfaden Fluss von s nach t transportieren.

Bevor wir diesen Prozess wiederholen, löschen wir saturierte Kanten aus H. Läuft man bei der Wegesuche in eine Sackgasse, so muss diese aus H entfernt werden, damit man zu einem späteren Zeitpunkt nicht wieder in diese Sackgasse gerät.

Ziel Algorithmus zur Sperrflussberechnung in Zeit $O(|V| \cdot |E|)$

28.7. Definition: Sperrfluss

$$G = (V, E)$$
 $g: E \to \mathbb{R}^+$ ein Fluss

Auf jedem s-t-Pfad gibt es eine saturierte Kante $(u,v) \in E$, d.h. g(u,v) = c(u,v)

Achtung Wir betrachten hierbei <u>nicht</u> die Kantenmenge E_f des Restnetzwerkes.

Es gilt: $\delta_{f'}(s,v) \geq \delta_f(s,v)$, wobei f' aus f durch eine Flusserhöhung hervorgegangen ist.

Für den Dinic-Algorihtmus gilt darüber hinaus, dass $\delta_{f'}(s,t) \geq \delta_f(s,t) + 1$ wobei f' aus f durch eine Flussverbesserung mittels eines Sperrflusses g hervorgegangen ist.

28. Algorithmen zur Berechnung maximaler Flüsse

Beweisidee

Konsequenz Im Dinic-Algorithmus genügt es, |V| Sperrfluss-Berechnungen durchzuführen.

Ziel Sperrfluss in Zeit $O(|V| \cdot |E|)$ berechnen.

Gesamtlaufzeit Dinic
$$\text{O}(|V|^2 \cdot |E|)$$
 vs. Edmonds-Karp
$$\text{O}(|V| \cdot |E|^2)$$
 (Sleator & Tarjan :
$$\text{O}(|V| \cdot |E| \cdot \log |V|))$$

28.7.1. Pseudo-Code

```
1
    H = G_f^L;
 2
    stack P;
 3
    P.push(s);
 4
     g = 0;
 5
     while(true) {
 6
         u = P.top();
 7
         if (\exists (u, v) \in H) \{
 8
              P.push(v);
 9
              if (v \neq t) continue;
10
              //v = 7, d.h. flussverbessernder s-t-Pfad gefunden
              c_{min} = \min_{(\mathbf{u}, \mathbf{v}) \in P} \{ c_f(\mathbf{u}, \mathbf{v}) - g(\mathbf{u}, \mathbf{v}) \}
11
12
              forall (u,v) \in P {
13
                  g(u, v) = g(u, v)+c_{min};
14
                  if (g(u, v) == c_f(u, v))
15
                       lösche (u, v) \in H;
16
              P.clear();
17
              P.push(s);
18
19
              continue;
20
         } //end if
21
         //Sackgasse
22
         lösche alle zu u inzidenten Kanten aus H;
23
         P.pop();
24
         if (u == s)
25
              break;
    } //end while
26
```

28.7.2. Begründung zur Laufzeit

Jeder s-t-Pfad wird in Zeit $\mathcal{O}(|V|)$ gefunden. Danach wird mindestens eine Kante aus H entfernt, weil sie saturiert wird. Jede kante kann höchstens einmal als Sackgasse betreten werden, weil sie anschließend gelöscht wird.

28.8. Maxmimum Matching als Flussproblem

(b) Flussproblem (Kantengewichte sind 1)

$$E \supseteq M^* = \{(u, v) \in E \cap V_1 \times V_2 \mid f(u, v) = 1\}$$

F.F.-Laufzeit
$$\mathcal{O}(|f^*| \cdot |E|)$$

= $\mathcal{O}(|V| \cdot |E|)$

|f| ist ganzzahlig = Kardinalität des maximum Matchings $|M^*|$

28.8.1. Flussnetzwerke mit Einheitskapazität (unit capacity network flow)

$$G = (V, E) \quad c: E \to \{0, 1\}$$

Sperrfluss-Berechnung läuft in O(|E|), weil immer alle Kanten auf den flussverbessernden s-t-Pfaden gelöscht werden können.

Dinic: $O(|V| \cdot |E|)$

Satz

Mit Hilfe des Dinic-Algorithmus lässt sich ein Flussproblem mit Einheitskapazität in Zeit

$$\mathcal{O}\left(\min\left(|E|^{\frac{1}{2}},|V|^{\frac{2}{3}}\right)\right)$$

lösen.

Beweis

- 1. Fall Zeige, dass $2 \cdot \sqrt{|E|}$ viele Sperrfluss-Berechnungen genügen.
 - 1. Phase Zuerst $\sqrt{|E|}$ Sperrfluss-Berechnungen. \Rightarrow Fluss f

$$\Rightarrow \delta_f(s,t) \ge \sqrt{|E|}$$

 \Rightarrow Schnitt zwischen zwei Levels L_i und L_{i+1} mit weniger als $\sqrt{|E|}$ Kanten. $|f^*| \leq |f| + \sqrt{|E|}$, weil über diesen Schnitt zusätzlich zu f noch ein Fluss der Größe $\sqrt{|E|}$ möglich ist.

28. Algorithmen zur Berechnung maximaler Flüsse

 \Rightarrow 2. Phase: Um von f zu f^* zu kommen, reichen weitere $\sqrt{|E|}$ viele Sperrfluss-Berechnungen aus.

2. Fall

1. Phase Führe $2\cdot |V|^{\frac{2}{3}}$ Sperrflussberechnungen durch. $\Rightarrow \ \delta_f(s,t) > 2\cdot |V|^{\frac{2}{3}}$

Abbildung 28.22.: Schaubild

Behauptung

$$k = 2 \cdot |V|^{\frac{2}{3}}$$

$$\exists 0 < i < k : |V_i| \le |V|^{\frac{1}{3}}$$

und $|V_{i+1}| \le |V|^{\frac{1}{3}}$

Falls Behauptung gilt $\Rightarrow c_f(V_i, V_{i+1}) \leq \#$ Kanten über diesen Schnitt $\leq |V_i| \cdot |V_{i+1}| \leq |V|^{\frac{2}{3}}$. Maximaler Fluss $|f^*|$ ist vom aktuellen Fluss f, der sich nach der 1. Phase eingestellt hat höchstens noch $|V|^{\frac{2}{3}}$ entfernt. Deshalb genügen in der 2. Phase noch $|V|^{\frac{2}{3}}$ Sperrflussberechnungen um $|f^*|$ zu erreichen.

Beweis der Behauptung $<|V|^{\frac{2}{3}}$ Schichten haben $>|V|^{\frac{1}{3}}$ Knoten. Andernfalls gäbe es mehr als $|V|^{\frac{2}{3}} \cdot |V|^{\frac{1}{3}} = |V|$ viele Knoten.

Beweisidee Wir färben die Schichten weiß, welche weniger als $|V|^{\frac{1}{3}}$ Knoten haben und den Rest schwarz, da es mehr weiße als schwarze gibt, müssen 2 weiße aufeinander folgen.:

$$\underbrace{w \ s \ w \ s \ w \ s \dots \ w \ s}_{k}$$

$$\begin{split} &> |V|^{\frac{2}{3}} \text{ Schichten haben} \leq |V|^{\frac{1}{3}} \text{ Knoten} \\ &\Rightarrow \text{es muss } i \text{ geben, mit } |V_i| \cdot |V_{i+1}| \leq |V|^{\frac{1}{3}} \end{split}$$

q.e.d.

28.8.2. Finden knotendisjunkter Wege

ldee Man Forme den Graphen wie folgt um:

28.8.3. Ergänzung zum Paper^V

$$\operatorname{pot}_f(v) = \min \left(\sum_{(v,u) \in E} c(v,u) - f(v,u), \sum_{(u,v) \in E} c(u,v) - f(u,v) \right)$$

Abbildung 28.24.

^VInformation Processing Letters Volume 7, number 6

29. Dynamische Programmierung

29.1. Matrizen Multiplikation

 $\mathbb{R}^{n\times m}\ni C=AB\ A\in\mathbb{R}^{n\times k},\ B\in\mathbb{R}^{k\times m}$

Abbildung 29.1.: Matrix-Multiplikation

$$c_{ij} = \sum_{l=1}^{k} a_{il} \cdot b_{li}$$

Laufzeit $O(n \cdot k \cdot m)$

$$A_1 \cdot A_2 \cdot A_3 \cdot \ldots \cdot A_n \quad A_i \in \mathbb{R}^{p_{i-1} \times p_i}$$

Beispiel

$$\boldsymbol{x}^T \cdot \boldsymbol{a} \cdot \boldsymbol{b}^T \cdot \boldsymbol{y}$$
 , $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$ Spaltenvektoren

Abbildung 29.2.: Vektor-Multiplikation

$$x^T \underset{3}{\cdot} ((a \underset{1}{\cdot} b^T) \underset{2}{\cdot} y)$$

$$\mathbb{R}^{n \times n} \ni (a \cdot b^T) \text{ kostet } \mathfrak{O}(n^2) \quad (a \cdot b^T) \cdot y \text{ kostet } \mathfrak{O}(n^2) \quad x^T \cdot (\ldots) \text{ kostet } \mathfrak{O}(n)$$

Insgesamt $O(n^2)$

$$\begin{aligned} &(\boldsymbol{x}^T \underset{1}{\cdot} \boldsymbol{a}) \underset{3}{\cdot} (\boldsymbol{b}^T \underset{2}{\cdot} \boldsymbol{y}) \\ & \mathfrak{O}(\boldsymbol{n}) + \mathfrak{O}(1) + \mathfrak{O}(\boldsymbol{n}) = \mathfrak{O}(\boldsymbol{n}) \end{aligned}$$

Ansatz

$$A_1 \cdot A_2 \cdot A_3 \cdot \ldots \cdot A_n \qquad A_i \in \mathbb{R}^{p_{i-1} \times p_i}$$

Es gibt C_{n-1} Klammerungen $C_n = \frac{1}{n+1} \binom{2n}{n}$ exponentiell in $n \in \Omega(2^n)$

29.1.1. Bottom-Up Ansatz

$$A_{ij} = (A_i \cdot A_{i+1} \cdot \ldots \cdot A_j) \in \mathbb{R}^{p_{i-1} \times p_j}$$

 $M_{ij} = \text{ optimale Kosten zur Auswertung von} A_{ij}$

Gesucht M_{1n}

$$M_{ij} = \min_{i \le k < j} \{ M_{ik} + M_{(k+1)j} + p_{i-1} \cdot p_k \cdot p_j \}$$
$$M_{ii} = 0$$

Nebenrechnung

$$A_{ij} = (A_i \cdot A_{i+1} \cdot \dots \cdot A_k) \cdot (A_{k+2} \cdot \dots \cdot A_j) = A_{ik} \cdot A_{(k+1)i} \quad A_{ik} \in \mathbb{R}^{p_{i-1} \times p_k}, \ A_{(k+1)j} \in \mathbb{R}^{p_k \times p_j}$$
$$A_{ii} = A_i$$

29.1.2. Programm

```
1 for (i = 1; i \le n; i++) {
        M[i][i] = 0;
 3
    for (1 = 2; 1 \le n; 1++) {
        for (i = 1; i \leq n - 1 + 1; i++) {
             j = i + 1 - 1;
             M[i][j] = \infty;
             for( k = i; k < j; k++) {</pre>
 8
                 q = M[i][k] + M[k+1][k] + p[i-1] \cdot p[k] \cdot p[j];
9
                 if ( q < M[i][j]) {</pre>
10
                     M[i][j] = q;
S[i][j] = k;
11
12
13
             }
14
15
        }
16 }
```

Laufzeit $O(n^3)$

Abbildungsverzeichnis

1.1.	Bubblesort	2
2.2.	Heapsort (Ausgangssituation)	4 4 4
8.1.	Fibonacci-Zahlen	19
9.1. 9.2. 9.3.	Quicksort	21 22 23
10.1.	Aufruf von Partition	25
13.1.	Median der Mediane	28
14.2.	Binärerbaum	29 30 30
	1 0	33 34
17.2. 17.3. 17.4. 17.5.	Rotation	35 35 37 37 38
18.2.	Einfügen und Löschen in einem 2-5 Baum	40
20.2.	Perfekte Hashtabelle	44 48 49
21.2. 21.3. 21.4. 21.5.	Würfel	51 51 51 52 53 53
22.2.	Beispiel	54 55 56 58

Abbildungs verzeichn is

23.1		 	 	 	 59
23.2		 	 	 	 59
23.3		 	 	 	 59
23.4		 	 	 	 60
23.5. Skizze		 	 	 	 60
23.6. Ein verbotener, negativer Zyklus		 	 	 	 61
24.1. Grafik		 	 	 	 63
24.2. Beweis der Invariante		 	 	 	 65
24.3. Naiver Ansatz, kürzester Weg wird zerstört .					65
24.4. Die blau markierten Kanten haben die Länge	0	 	 	 	 66
25.2					68
25.3. Reihenfolge grün→rot→blau→braun					68
25.5					71
26.1 D D.					
26.1. Binomial-Bäume					72
26.2. Aufbau					72
26.3. DeleteMin-Operation					73
26.4. decreaseKey-Operation					73
26.5. Konsolidierungs-Operation					74
26.6. Schaubild zum Beweis		 	 	 	 74
27.1. Ausgangsproblem		 	 	 	 77
27.3. Alternierender Pfad					78
27.4. Beispiel					78
27.5. Symmetrische Differenz					79
28.1					81
28.2. Flusserhalt					81
28.4. Beispiel Schnitt					82
28.6					83
28.7					84
28.8					84
28.11					85
28.12Schritt 1					86
28.13Schritt 2					86
28.14Schritt 3					86
28.15Schritt 4					86
28.16Wiederholung					87
28.17					88
28.18					88
$28.21k \ge \sqrt{ E } \dots \dots \dots \dots$					92
28.22Schaubild					92
28.24		 	 	 	 93
29.1. Matrix-Multiplikation		 	 	 	 94
29.2. Vektor-Multiplikation		 	 	 	 94