28

or greater purity by weight;

CLAIMS

What Is Claimed Is:

1	1.	A con	tinuous method for the recovery of zinc oxide from waste		
2	material streams which comprise zinc compounds, comprising the steps of:				
3		a.	roasting said waste material at an elevated temperature and		
4	in a reducing atmosphere;				
5		b.	treating said waste material with an ammonium chloride		
6	solution at an	eleva	ted temperature to form a product solution which comprises		
7	dissolved zinc and dissolved zinc oxide whereby any iron oxide in said waste				
8	material will not go into solution;				
9		C.	separating said product solution from any undissolved		
10	materials present in said product solution including any of said iron oxide;				
11		d.	adding zinc metal and a dispersant to said product solution		
12	whereby any	lead a	nd cadmium ions contained within said product solution are		
13	displaced by said zinc metal and precipitate out of said product solution as lead				
14	and cadmium metals and said dispersant is selected from the group consisting of				
15	dispersants w	vhich w	vill prevent the aggregation of said zinc metal;		
16		e.	separating said product solution from the lead and cadmium		
17	metals;				
18		f.	lowering the temperature of said product solution thereby		
19	precipitating the zinc component as a mixture of crystallized zinc compounds;				
20		g.	separating said precipitated zinc compounds from said		
21	product soluti	ion;			
22		h.	washing said precipitated zinc compounds with a wash water		
23	thereby solub	ilizing	certain of said precipitated zinc compounds;		
24		i.	separating remaining precipitated zinc compounds that have		
25	not solubilized from said solution;				
26		j.	drying said remaining precipitated zinc compounds at a		
27	temperature of at least 100°C whereby said resulting product is zinc oxide of 99%				

2

29		k.	dissolving said resulting product in a concentrated sodium		
30	hydroxide solution;				
31		1.	filtering out any undissolved materials;		
32		m.	dispersing said sodium hydroxide solution into droplets		
33	between 100 and 300 microns in size;				
34		n.	combining said droplets with a sufficient amount of 70°C to		
35	100°C water to dilute the solution by a factor of 3 to 30 by volume, thereby				
36	precipitating zinc oxide crystals; and				
37		Ο.	filtering out said zinc oxide crystals.		
1	2.	The n	nethod of Claim 1 further comprising the steps of:		
2		p.	washing said zinc oxide crystals in water; and		
3		q.	adding an acid to said zinc oxide crystals; wherein said acid		
4	reacts with the zinc oxide to form a zinc compound.				
1	3.	The n	nethod of Claim 2, wherein said acid is selected from the group		
2	consisting of acetic acid, boric acid, bromic acid, carbonic acid, chromic acid, nitric				
3	acid, phosphoric acid, stearic acid, gluconic acid, hydrochloric acid, sulfuric acid,				
4	and edetic acid.				
1	4.	The r	nethod of Claim 1, wherein, in step (h), said wash water is		
2	above 25°C.				
1	5.	The r	nethod of Claim 4, wherein said wash water is at a temperature		
2	of 60°C to 100°C.				
1	6.	The r	nethod of Claim 5, wherein said zinc compounds are washed		
2	with water at a ratio of between 0.1 and 2 pounds of zinc compounds per gallon of				
3	wash water.				
1	7.	The r	nethod of Claim 6, wherein the temperature and the ratio of		
2	water to zinc compounds is controlled to obtain zinc oxide crystals having a				
3	desired surface area.				
1	8.	The r	nethod of Claim 1, wherein, in step (m), said droplets are		
2	between 150 and 250 microns in size.				
1	۵	The	nethod of Claim 1, wherein the size of said droplets in step (m)		

is controlled to obtain zinc oxide crystals having a desired surface area.

- 1 10. The method of Claim 1, wherein, in step (n), said amount of water is 2 sufficient to dilute the solution by a factor of 3 to 8 by volume.
- 1 11. The method of Claim 1, wherein, in step (n), said water is at a
- 2 temperature ranging from 90°C to 100°C.