KOMMUNIKATIONSFEHLER, VERKLEMMUNG UND DIVERGENZ BEI INTERFACE-AUTOMATEN KOLLOQUIUM ZUR BACHELORARBEIT

Ayleen Schinko

9. Februar 2016

INHALT

MOTIVATION

- DEFINITIONEN
- 3 Verfeinerung für Error-, Ruhe- und DIVERGENZ-FREIHEIT

Ayleen Schinko 9. Februar 2016 2 / 16

MOTIVATION

- Modellierung von Systemen und deren Kommunikationsverhalten (Parallelkomposition)
- simulation parallel arbeitender Softwarekomponenten
- Kommunikationsfehler in Interface-Automaten nicht zulässig, deshalb Error-IO-Transitionssysteme als Abwandlung davon betrachtet
 - Kommunikationsfehler zwischen Komponenten
 - Verklemmung innerhalb einer Softwarekomponenten (keine Outputs mehr möglich)
 - Divergenz einer Softwarekomponenten (unendliche viele intere Aktionen)

DEFINITIONEN

DEFINITION (ERROR-IO-TRANSITIONSSYSTEME)

Ein Error-IO-Transitionssysteme (EIO) ist ein Tupel $S = (Q, I, O, \delta, q_0, E)$ mit den Komponenten:

- Q die Menge der Zustände,
- I,O die disjunkte Menge der (sichtbaren) Input- und Output-Aktionen,
- $\delta \subseteq Q \times (I \cup O \cup \{\tau\}) \times Q$ die Transitionsrelation,
- $ullet q_0 \in Q$ der Startzustand,
- $E \subseteq Q$ die Menge der Error-Zustände.

Aktionsmenge von S: $\Sigma = I \cup O$

Signatur: Sig(S) = (I, O)

DEFINITION (PARALLELKOMPOSITION)

Zwei ElOs S_1, S_2 sind **komponierbar**, falls $O_1 \cap O_2 = \emptyset$ gilt. Die Parallelkomposition der ElOs S_1 und S_2 ist $S_{12} := S_1 || S_2 = (Q, I, O, \delta, q_0, E)$ mit den Komponenten:

$$Q = Q_1 \times Q_2,$$

$$\bullet \ I = (I_1 \backslash O_2) \cup (I_2 \backslash O_1),$$

•
$$O = O_1 \cup O_2$$

•
$$q_0 = (q_{01}, q_{02}),$$

•
$$\delta = \{((q_1, q_2), \alpha, (p_1, q_2)) \mid (q_1, \alpha, p_1) \in \delta_1,$$

 $\alpha \in (\Sigma_1 \cup \{\tau\}) \setminus \text{Synch}(S_1, S_2) \}$
 $\cup \{((q_1, q_2), \alpha, (q_1, p_2)) \mid (q_2, \alpha, p_2) \in \delta_2,$
 $\alpha \in (\Sigma_2 \cup \{\tau\}) \setminus \text{Synch}(S_1, S_2) \}$
 $\cup \{((q_1, q_2), \alpha, (p_1, p_2)) \mid (q_1, \alpha, p_1) \in \delta_1, (q_2, \alpha, p_2) \in \delta_2,$
 $\alpha \in \text{Synch}(S_1, S_2) \},$

 \bullet $E = \dots$

DEFINITION (PARALLELKOMPOSITION)

Zwei ElOs S_1, S_2 sind **komponierbar**, falls $O_1 \cap O_2 = \emptyset$ gilt. Die Parallelkomposition der ElOs S_1 und S_2 ist

 $S_{12} := S_1 || S_2 = (Q, I, O, \delta, q_0, E)$ mit den Komponenten:

$$Q = Q_1 \times Q_2,$$

•
$$I = (I_1 \backslash O_2) \cup (I_2 \backslash O_1)$$
,

•
$$O = O_1 \cup O_2$$
,

$$q_0 = (q_{01}, q_{02}),$$

•
$$\delta = \ldots$$
,

•
$$E = (Q_1 \times E_2) \cup (E_1 \times Q_2)$$

$$\bigcup \left\{ (q_1, q_2) \mid \exists a \in O_1 \cap I_2 : q_1 \stackrel{a}{\to} \land q_2 \stackrel{a}{\not\to} \right\} \\
\bigcup \left\{ (q_1, q_2) \mid \exists a \in I_1 \cap O_2 : q_1 \stackrel{a}{\not\to} \land q_2 \stackrel{a}{\to} \right\}.$$

Traces sind die möglichen Wege eines EIOs, mit ihrer Transitionsbeschriftung.

Traces sind die möglichen Wege eines EIOs, mit ihrer Transitionsbeschriftung.

Definition (Pruning- und Fortsetzungs-Funktion)

Für ein EIO S wird definiert:

- prune : $\Sigma^* \to \Sigma^*$, $w \mapsto u$, mit w = uv, $u = \varepsilon \land u \in \Sigma^* \cdot I$ und $v \in O^*$,
- cont: $\Sigma^* \to \mathfrak{P}(\Sigma^*), w \mapsto \{wu \mid u \in \Sigma^*\},\$
- cont : $\mathfrak{P}(\Sigma^*) \to \mathfrak{P}(\Sigma^*), L \mapsto \bigcup \{\operatorname{cont}(w) \mid w \in L\}.$

9. Februar 2016 6 / 16

DEFINITION (RUHE)

Ein Ruhe-Zustand ist ein Zustand in einem EIO, der keine Outputs und kein τ zulässt.

Die Menge der Ruhe-Zustände in einem EIO ist wie folgt formal definiert:

$$Qui := \left\{ q \in Q \mid \forall \alpha \in (O \cap \{\tau\}) : q \not\stackrel{\alpha}{\nrightarrow} \right\}.$$

DEFINITION (RUHE)

Ein Ruhe-Zustand ist ein Zustand in einem ElO, der keine Outputs und kein T zulässt.

Die Menge der Ruhe-Zustände in einem EIO ist wie folgt formal definiert:

$$Qui := \left\{ q \in Q \mid \forall \alpha \in (O \cap \{\tau\}) : q \not\to^{\alpha} \right\}.$$

DEFINITION (DIVERGENZ)

Ein Divergenz-Zustand ist ein Zustand in einem EIO, der eine unendliche Folge von τs ausführen kann.

Die Menge Div(S) besteht aus all diesen divergenten Zuständen des ElOs S.

Definition (Divergenz-Verfeinerungs-Basisrelation)

Für ElOs S_1 und S_2 mit der gleichen Signatur wird $S_1 \sqsubseteq_{Div}^B S_2$ geschrieben, wenn ein Error-, Ruhe- oder Divergenz-Zustand in S_1 nur dann lokal erreichbar ist, wenn er auch in S_2 lokal erreichbar ist. Diese Basisrelation stellt eine Verfeinerung bezüglich Error, Ruhe und Divergenz dar.

 \sqsubseteq_{Div}^{C} bezeichnet die vollständige abstrakte Präkongruenz von \sqsubseteq_{Div}^{B} bezüglich $\cdot \parallel \cdot$.

Definition (Divergenz-Verfeinerungs-Basisrelation)

Für ElOs S_1 und S_2 mit der gleichen Signatur wird $S_1 \sqsubseteq_{Div}^B S_2$ geschrieben, wenn ein Error-, Ruhe- oder Divergenz-Zustand in S_1 nur dann lokal erreichbar ist, wenn er auch in S_2 lokal erreichbar ist. Diese Basisrelation stellt eine Verfeinerung bezüglich Error, Ruhe und Divergenz dar.

 $\sqsubseteq_{Div}^{\mathbf{C}}$ bezeichnet die vollständige abstrakte Präkongruenz von $\sqsubseteq_{Div}^{\mathbf{B}}$ bezüglich $\cdot \| \cdot \|$

DEFINITION (DIVERGENZTRACES)

Sei S ein EIO und definiere:

- $\bullet \ \, {\rm strikte} \ \, {\rm Divergenztraces} \colon StDT(S) := \Big\{ w \in \Sigma^* \mid q_0 \stackrel{w}{\Rightarrow} q \in Div \Big\},$
- gekürzte Divergenztraces:

$$PrDT(S) := \bigcup \{ prune(w) \mid w \in StDT(S) \}.$$

Definition (Error-, Divergenz- und Ruhe-Semantik)

Sei S ein EIO.

- Die Menge der Divergenztraces von S ist DT(S) := cont(PrDT(S)).
- Die Menge der Error-Divergenztraces von S ist $EDT(S) := ET(S) \cup DT(S)$.
- Die Menge der error-divergenz-gefluteten Ruhetraces von S ist $QDT(S) := StQT(S) \cup EDT(S)$.
- Die Menge der error-divergenz-gefluteten Sprache von S ist $EDL(S) := L(S) \cup EDT(S)$.

Für zwei ElOs S_1, S_2 mit der gleichen Signatur schreibt man $S_1 \sqsubseteq_{Div} S_2$, wenn $EDT_1 \subseteq EDT_2$, $QDT_1 \subseteq QDT_2$ und $EDL_1 \subseteq EDL_2$ gilt.

SATZ (ERROR-, RUHE- UND DIVERGENZ-SEMANTIK FÜR PARALLELKOMPOSITION)

Für zwei komponierbare ElOs S_1, S_2 und ihre Komposition S_{12} gilt:

- $\bullet EDT_{12} = \operatorname{cont} \left(\operatorname{prune} \left((EDT_1 || EDL_2) \cup (EDL_1 || EDT_2) \right) \right),$
- $2 QDT_{12} = (QDT_1 || QDT_2) \cup EDT_{12},$
- $EDL_{12} = (EDL_1 || EDL_2) \cup EDT_{12}.$

SATZ (ERROR-, RUHE- UND DIVERGENZ-SEMANTIK FÜR PARALLELKOMPOSITION)

Für zwei komponierbare ElOs S_1, S_2 und ihre Komposition S_{12} gilt:

- $EDT_{12} = \text{cont} (\text{prune} ((EDT_1 || EDL_2) \cup (EDL_1 || EDT_2))),$
- **2** $QDT_{12} = (QDT_1 || QDT_2) \cup EDT_{12}$,
- **3** $EDL_{12} = (EDL_1 || EDL_2) \cup EDT_{12}$.

Proposition (Divergenz-Präkongrunez)

 \sqsubseteq_{Div} ist eine Präkongruenz bezüglich $\cdot \parallel \cdot$.

Definition (ω -Partner)

Ein EIO S_1 ist ein ω -Partner von einem EIO S_2 , wenn $I_1 = O_2$ und $O_1 = I_2 \cup \{\omega\}$ mit $\omega \notin I_2 \cup O_2$ gilt.

Ayleen Schinko 9. Februar 2016 11 / 16

Definition (ω -Partner)

Ein EIO S_1 ist ein ω -Partner von einem EIO S_2 , wenn $I_1=O_2$ und $O_1=I_2\cup\{\omega\}$ mit $\omega\notin I_2\cup O_2$ gilt.

LEMMA (VERFEINERUNG MIT DIVERGENZ-ZUSTÄNDEN)

Gegeben sind zwei ElOs S_1 und S_2 mit der gleichen Signatur. Wenn $U\|S_1\sqsubseteq_{Div}^{\mathrm{B}}U\|S_2$ für alle ω -Partner U gilt, dann folgt daraus $S_1\sqsubseteq_{Div}S_2$.

x? bezeichnet den Input x und x! den Output x

Abbildung: $x? \neq x_i$ steht für alle $x \in I_U \setminus \{x_i\}$

9. Februar 2016 12 / 16

Abbildung : $x? \neq x_i$ steht für alle $x \in I_U \setminus \{x_i\}$, q_n ist der einzige Ruhe-Zustand

9. Februar 2016 13 / 16

ABBILDUNG : $x? \neq x_i$ steht für alle $x \in I_U \setminus \{x_i\}$, q_n ist der einzige Error-Zustand

Ayleen Schinko 9. Februar 2016 14 / 16

Satz (Vollstänige Abstraktheit für Divergenz-Semantik)

Seinen S_1 und S_2 zwei ElOs mit derselben Signatur. Dann gilt $S_1 \sqsubseteq_{Div}^{\mathbb{C}} S_2 \Leftrightarrow S_1 \sqsubseteq_{Div} S_2$.

Satz (Vollstänige Abstraktheit für Divergenz-Semantik)

Seinen S_1 und S_2 zwei ElOs mit derselben Signatur. Dann gilt $S_1 \sqsubseteq_{Div}^{\mathbb{C}} S_2 \Leftrightarrow S_1 \sqsubseteq_{Div} S_2$.

Abbildung : Folgerungskette

Ayleen Schinko 9. Februar 2016 15 / 16

KOROLLAR

Es gilt: $S_1 \sqsubseteq_{Div} S_2 \Leftrightarrow U \| S_1 \sqsubseteq_{Div}^B U \| S_2$ für alle komponierbaren U.

Ayleen Schinko 9. Februar 2016 16 / 16