

Construction of pIG.NEO

Overview of available adenovirus packaging constructs and assessment of their capacity to transform primary kidney cells

FIG. 6

Western blotting analysis of A549 clones transfected with pIG.E1A.NEO and PER clones (HER cells transfected with pIG.E1A.E1B)

FIG. 7

Southern blot analyses of 293, 911 and PER cell lines

FIG. 8

Transfection efficiency of PER.C3, PER.C5, PER.C6 and 911 cells. Cells were cultured in 6-well plates and transfected (n=2) with 5 μ g pRSV.lasZ by calcium-phosphate co-precipitation. Forty-eight hours later the cells were stained with X-GAL. The mean percentage of blue cells is shown.

FIG. 9

Construction of pMLP1.TK

FIG. 10

New recombinant adenoviruses and packaging constructs without sequence overlap

FIG. IIA

Packaging system based on primary cells

New recombinant adenoviruses and packaging constructs without sequence overlap

Packaging system based on established cell lines: transfection FIG. I IB with E1a and selection with G418

IG.Ad.MLPI.TK recombinant adenovirus wt adenovirus-5 Generation of recombinant adenovirus 3 3 911 cell co-transfect adenovirus × Clai HSV-tk ᇤ HSV-tk PMLPI.TK

F1G, 12

FIG. 13

Replication of Adenovirus

FIG. 14

The potential hairpin conformation of a single—stranded DNA molecule that contains the HP/asp sequences used in these studies. Restriction with the restriction endonucleases <code>Asp718I</code> of plasid pICLHa, containing the annealed oligonucleotide pair HP/asp1 en HP/asp2 will yield a linear double—stranded DNA fragment. In cells in which the required adenovirus genes are present, replication can initiate at the terminus that contains the ITR sequence. During the chain elongation, the one of the strands will be displaced. The terminus of the single—stranded displaced—strand molecule can adopt the conformation depicted above. In this conformation the free 3'—terminus can serve as a primer for the cellular and/or adenovirus DNA polymerase, resulting in conversion of the displaced strand in a double—stranded form.

5'-GTACACTGACCTAGTGCCGCCCGGGCA
||||||||||||| A
3'-GATCACGGCGGCCCGA

FIG. 15

FIG. 16

FIG. 17

FIG. 18

FIG. 19

Cloned adenovirous fragments

FIG. 20

Adapter plasmid pAd5/L420-HSA

FIG. 21

Adapter plasmid pAd5/CLIP

FIG. 22

Generation of recombinant adenoviruses

Minimal adenovirus vector pMV/L420H

FIG. 24

FIG. 26A

FIG. 26B

həsni AMQɔ

Average percentage CPE efficiency: 86 %

FIG. 27

% wells producing functional virus

#days of infection and MOI

FIG. 32

FIG. 34A

FIG. 34B

FIG. 34C

The first the season will be a first of the first of the

Not.

Clal

AgeI

, KpnI

FIG. 34G

FIG. 34M

Relative amounts of wells with CPE after transfection of PER.C6/E2A cells with pCLIP—LacZ and the adapter plasmid pIPspAdapt2.

Transfection of pIPspAdapt2 to PER.C6/E2A

FIG. 34N

E.coli transformation transfer colonies Linearize adapters Construction total Adeno cDNA Library (1) cDNA mRNA isolation Isolation of adapter plasmids with c DNA Cells/tissue

FIG. 36A

FIG. 36B

EXAMPLE 21 384 WELL PLATE IN PROGRESS

☑ ceNOSrec

Zool □

2

Time (days)

FIG. 37C

⊠ GLVR2

Co-transfections on 384 well plates

1001

S S ■ hIL3

Medium changed 7 days after transfection

FIG. 38A

Medium not changed

FIG. 38B

Propagation 7 days after transfection

FIG. 38C

