МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №8

по дисциплине «Машинное обучение»

Тема: Классификация (линейный дискриминантный анализ, метод опорных векторов)

Студент гр. 6304	Ковынев М.В.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург

2020

Цель

Ознакомиться с методами классификации модуля Sklearn

Ход работы

- 1. Загрузить датасет по ссылке: https://archive.ics.uci.edu/ml/datasets/iris . Данные представлены в виде data файла. Данные представляют собой информацию о трех классах цветов
- 2. Создан Python скрипт. Загружены данные в датафрейм
- 3. Выделены данные и их метки
- 4. Разбили выборку на обучающую и тестовую
- 5. Проведем классификацию наблюдений используя LDA

Score: 0.96 Wrong: 3

Рисунок 1 — Точность и количество наблюдений, который были неправильно определены

6. Параметры:

- solver svd (разложение по сингулярным числам), lsqr (решение MHK), eigen (разложение на собственные числа)
- shrinkage auto (автоматическое сжатие по лемме Ледуа-Вольфа), [0, 1]
- priors класс априорных вероятностей. По умолчанию пропорции классов выводятся из данных обучения
- n components количество компонентов
- store_covariance сохранение взвешанной ковариационной матрицы при svd
- tol Абсолютный порог для того, чтобы единичное значение X считалось значимым, используется для оценки ранга X.

7. Атрибуты

• coef_ — весовые вектора

- intercept массив прерывания
- covariance_ взвешенная внутриклассовая ковариационная матрица
- explained_variance_ratio_ процент дисперсии, объясняемой каждым из выбранных компонентов
- means средние в классах
- priors вероятности классов
- scalings_ масштабирование объектов в пространстве, охватываемом центроидами классов
- xbar_ общее среднее
- classes уникальные метки классов.
- 8. Построен график зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки. Размер тестовой выборки изменялся от 0.05 до 0.95 с шагом 0.05. Параметр random_state сделан равным номеру своей зачетной книжки 630408.

Рисунок 2 – Linear Discriminant Analysis

9. Функция transform проецирует данные для максимизации разбиения классов. LDA пытается определить атрибуты, на которые приходится наибольшая разница между классами. В частности, LDA, в отличие от PCA, является контролируемым методом, использующим известные

метки классов, то есть метод tranform позволяет уменьшить размерность данных.

Рисунок 3 — Результат работы tranform

10.Исследована работа классификатор при различных параметрах solver, shrinkage

Рисунок 4 — solver=svd, shrinkage=None

Рисунок 5 — solver=lsqr, shrinkage=auto

Рисунок 6 — solver=eigen, shrinkage=auto

Рисунок 7 — solver=lsqr, shrinkage=None

11.Задана априорная вероятность классу с номером 1 равную 0.7, остальным классам задана равные априорные вероятности

Рисунок 7 — Linear Discriminant Analysis (priors=[0.15, 0.7, 0.15])

- 12. Классифицируем при SVM на тех же данных
- 13.Используя функцию score() выведена точность классификации

Score: 0.96 Wrong: 3

Рисунок 8 — Точность и количество наблюдений, который были неправильно определены

14. Выведена следующая информация

```
clf.support_vectors_ [[4.5 2.3 1.3 0.3]
 [5.4 3.9 1.7 0.4]
 [5.1 3.3 1.7 0.5]
 [5. 3. 1.6 0.2]
 [5.1 2.5 3. 1.1]
 [6.2 2.2 4.5 1.5]
 [5.7 2.9 4.2 1.3]
 [5.7 2.8 4.5 1.3]
 [6.6 3. 4.4 1.4]
 [6.4 2.9 4.3 1.3]
 [4.9 2.4 3.3 1. ]
  6.7 3.1 4.4 1.4]
 [5.7 2.6 3.5 1. ]
 [6.3 2.5 4.9 1.5]
 [6.7 3.
          5.
              1.7]
 [5.5 2.4 3.7 1. ]
 [6.6 2.9 4.6 1.3]
 [5.6 3. 4.1 1.3]
 [5.9 3.2 4.8 1.8]
 [6.3 2.3 4.4 1.3]
 [5.9 3. 5.1 1.8]
```

```
[6.4 2.8 5.6 2.1]
       [6.5 3.2 5.1 2. ]
       [6.2 3.4 5.4 2.3]
       [5.7 2.5 5. 2.]
       [6.9 \ 3.1 \ 5.4 \ 2.1]
       [7.2 3. 5.8 1.6]
       [7.9 3.8 6.4 2. ]
       [6. 3. 4.8 1.8]
       [6.4 3.2 5.3 2.3]
       [6.7 3. 5.2 2.3]
       [5.8 2.7 5.1 1.9]
       [6.3 2.9 5.6 1.8]]
      clf.support [16 26 36 59 2 4 6 33 34 37 40 42 54 57 58 60 64 65 66 67
1 11 14 17
       19 20 23 41 44 55 56 62 71]
      clf.n_support_ [ 4 16 13]
```

Атрибут

- support индексы опорных векторов
- support_vectors_ сами опорные вектора,
- n_support_ количество опорных векторов для каждого класса.
- 15.Построен график зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки. Размер тестовой выборки изменялся от 0.05 до 0.95 с шагом 0.05. Параметр random_state сделан равным номеру своей зачетной книжки 630408.

Рисунок 8 — svm.SVC()

16.Исследована работа метода опорных векторов при различных значениях kernel, degree, max_iter

kernel	Wrong classified	Score
linear	2	0.973
poly	6	0.953
rbf	4	0.953
sigmoid	54	0.333

degree	Wrong classified	Score
1	5	0.946
2	6	0.96
3	6	0.953
4	5	0.96
5	3	0.97

max_iter	Wrong classified	Score
1	9	0.92
2	8	0.94
3	5	0.95
4	3	0.96
5	1	0.98
6	3	0.96
7	3	0.96
8	4	0.96

17.. Проведено исследование для методов NuSVC и LinearSVC

Рисунок 9 — svm.NuSVC()

Рисунок 10 — svm.LinearSVC()

- NuSVC подобен SVC, но использует параметр для управления количеством опорных векторов.
- LinearSVC аналогично SVC с линейным ядром, но лучше масштабируется для большого числа выборок.

Вывод

В ходе лабораторной работы рассмотрены такие методы классификации модуля Sklearn, как LinearDiscriminantAnalysis, SVC, NuSVC и LinearSVC.