

Введение в нейронные сети

ЦИФРОВАЯ ОБРАБОТКА ИЗОБРАЖЕНИЙ

План занятия

4.1

4.2

Принципы работы нейронной сети

- Перцептрон
- Логические операции

Полносвязная нейронная сеть

- Структура полносвязной сети
- Функции активации и нелинейность
- Матричные операции
- Граф вычислений

План занятия

4.3

Обучение

- Функции потерь логит, софтмакс
- Градиентный спуск и методы оптимизации
- Обратное распространение градиента и граф вычислений, автоматическое дифференцирование
- Регуляризация
- Инициализация весов

ПРИМЕРЫ ПРИМЕНЕНИЯ НЕЙРОННЫХ СЕТЕЙ

ALPHAGO

Консольные игры ATARI

PINBALL

Консольные игры ATARI

ПРИМЕРЫ ПРИМЕНЕНИЯ НЕЙРОННЫХ СЕТЕЙ

Автоматическая аннотация изображений

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Машинный перевод

Задача.

Предсказать поступление в университет по результатам теста и оценкам

Задача.

Предсказать поступление в университет по результатам теста и оценкам

Линейная регрессия

Объединяем линейные регрессии

Объединяем линейные регрессии

Функция активации

$$f(x_1, x_2, ..., x_m) =$$

$$\begin{cases} 0 & \text{if } b + \sum w_i \cdot x_i < 0 \\ 1 & \text{if } b + \sum w_i \cdot x_i \ge 0 \end{cases}$$

- х значения признаков
- **w** веса регрессии
- **b** свободный член

Логические операции. AND, OR

Логические операции. XOR

IN	IN	OUT
1	1	0
1	0	1
0	1	1
0	0	0

Логические операции. XOR

Принцип работы нейронной сети

- 1. Перцептрон может иметь один или несколько входов
- 2. Значение на каждом входе взвешивается соответствующим весом
- 3. Выходом перцептрона является линейная комбинация входных значений и соответствующих весов
- 4. К выходу перцептрона применяется функция активации
- 5. Изменяя веса перцептрона мы изменяем его функциональность

Структура полносвязной сети

Содержит **один входной слой, один выходной**

И один или несколько внутренних слоев Каждый нейрон предыдущего слоя **связан** с нейроном последующего слоя

Функции активации

В случае линейной функции активации **нейронная сеть вырождается в линейное преобразование** Линейную функцию активации на практике используют только на выходном слое в задачах регрессии

Для внутренних слоев в качестве функции активации как правило используют relu или tanh

Функции активации

$$\sigma(x) = 1 / (1 + \exp(-x))$$

$$tanh(x) = 2\sigma(2x) - 1$$

$$f(x) = \max(0, x)$$

ReLU

Функции активации

- Sigmoid как правило используется для выходного слоя
- Для внутренних слоев обычно используют tanh или relu
- Выбор этих функций в качестве активации для внутренних слоев связан с особенностью процесса обучения

Матричные операции

Граф вычислений

Процесс вычисления выходного значения нейронной сети можно представить в виде графа

Перемещаемся от входа нейронной сети к выходу, выполняя операции

Структура сети может быть сложной

4

Перед запуском вычислений необходимо определить последовательность выполнения операций

Топологическая сортировка

ОБУЧЕНИЕ НЕЙРОННОЙ СЕТИ

ОБУЧЕНИЕ НЕЙРОННОЙ СЕТИ

Функция потерь

Необходимо сформулировать оптимизационную задачу, те выбрать функцию потерь

Функция потерь должна быть дифференцируема по параметрам модели

Функция потерь определяет величину штрафа в случае неверной классификации

Решение задачи сводится к подбору параметров модели при которых функция потерь будет минимальна

Бинарная классификация — Logistic Loss

$$\widetilde{y} = \frac{1}{1 + e^{-(hw^T + b)}}$$

$$E_i(\widetilde{y}) = -\left[y_i log(\widetilde{y}_i) + (1 - y_i) log(1 - \widetilde{y}_i)\right]$$

- номер объекта в обучающей выборке
- у~_i предсказание вероятности модели для i-го объекта
- у_i истинное значение i-го объекта из обучающей выборки

- **h** вектор значений
- **w** скрытого слоя вектор весов выходного
- **b** слоя свободный член

ОБУЧЕНИЕ НЕЙРОННОЙ СЕТИ

Несколько классов — Softmax Cross-Entropy

$$E(w) = -\sum_{k} (d_k \log y_k + (1 - d_k) \log(1 - y_k))$$

$$y_k = \frac{\exp(\sum_{j} w_{k,j}^{(2)} h_j^{(1)})}{\sum_{k'} \exp(\sum_{j} w_{k',j}^{(2)} h_j^{(1)})}$$

Минимизация функции потерь

$$w_{t+1} := w_t - \eta_t \frac{1}{N} \sum_{i=1}^N \frac{\partial E(w)}{\partial w}$$

w параметр модели

eta параметр скорости обучения

N число объектов в выборке/батче

E функция потерь

Дифференцирование сложной функции

$$\frac{\partial E(\widetilde{y}(w))}{\partial w} = \frac{\partial E(\widetilde{y}(w))}{\partial \widetilde{y}(w)} \frac{\partial \widetilde{y}(w)}{\partial w}$$

Дифференцирование сложной функции

$$f(x, y, z) = (x + y)z$$
$$q = x + y$$
$$f = qz$$

Дифференцирование сложной функции

$$f(x, y, z) = (x + y)z$$

$$f = qz q = x + y$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} \frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$$

Обратное распространение ошибки

Обратное распространение ошибки

Обратное распространение ошибки

Исчезающие градиенты

Исчезающие градиенты

Функции активации

Nane	Plot	Equation	Derivative
Identity	/	f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
Tanli		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$

Функции активации

Nane	Plot	Equation	Derivative
Identity	/	f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
Tanii		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$

Функции активации

Nane	Plot	Equation	Derivative
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU)		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU)		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Инициализация весов

- Не стоит инициализировать одинаковыми значениями
- Простой способ: случайные числа из равномерного распределения в диапазоне 0..1
- Можно инициализировать случайными ортогональными значениями
- Некоторые алгоритмы инициализируют веса пропорционально числу входов в узел

Keras Available Initializers

Градиентный спуск

Оцениваем направление градиента функции потерь в текущей точке для текущих значений параметров модели Делаем шаг в направлении противоположном направлению вектора градиента Оценку градиента можно уточнить взяв среднее оценок по нескольким примерам из обучающей выборки batch

Градиентный спуск

Необходимо чтобы функция была выпуклой можно посчитать производную в любой точке При большом числе параметров функция потерь как правило имеет локальные минимумы

Седловые точки — такие точки градиент в которых равен нулю, при этом точка не является ни минимумом, ни максимумом

Седловая точка

Оптимизация

Существует несколько оптимизационных алгоритмов основанных на градиентном спуске

Стандартного градиентного спуска **может быть недостаточно** для стабильного и быстрого поиска минимума

Основная идея алгоритмов —

коррекция длины и направления вектора градиента с учетом предыдущих итераций Оптимизация Момент

Momentum update

Tensorflow Playground playground.tensorflow.org/

РЕЗЮМЕ

РЕЗЮМЕ

٦

Изучили принципы работы нейронной сети 2

Познакомились с процессом обучения нейронной сети

3

Реализовали решение задачи классификации MNIST с помощью фреймворка Keras

Полезные материалы

- Neural Networks and Deep Learning
- 2. <u>Deep Learning</u>
- 3. <u>CS231n Winter 2016</u>
- 4. Yes you should understand backprop
- 5. An overview of gradient descent optimization algorithms
- 6. The Neural Network Zoo
- 7. <u>Tensorflow Playground</u>
- 8. Loss Functions

СПАСИБО ЗА ВНИМАНИЕ