Algebra — Egzamin, I termin

Czas: 200 minut.

W rozwiązaniach zaleca się podawanie kroków pośrednich obliczeń, tak aby były one weryfikowalna nawet w przypadku błędu rachunkowego.

Proszę podpisać wszystkie kartki! (Ta kartka jest przeznaczona na brudnopis).

Zadanie 1 Dla przestrzeni liniowych $S = \text{LIN}(\{(1,6,5,5,3),(1,2,3,2,2)\})$ oraz $T = \text{LIN}(\{(3,4,5,3,3),(2,1,3,1,2)\})$ oblicz $\dim(S+T)$ oraz $\dim(S\cap T)$. Podaj dowolną bazę S+T.

Numer	indeksu:.									

Zadanie 2 Rozważmy grupę G oraz jej dwie podgrupy H oraz K; niech $g \in G$. Pokaż, że warstwa lewostronna g podgrupy $H \cap K$ jest przecięciem warstw lewostronnych elementu g dla H oraz dla K, innymi słowy:

$$g(H \cap K) = gH \cap gK .$$

Wywnioskuj z tego, że przecięcie dwóch podgrup normalnych G jest podgrupą normalną G.

Numer	indeksu:.									

Zadanie 3 Niech M,N będą macierzami symetrycznymi rozmiaru $n\times n$. Pokaż, że:

- M+N jest macierzą symetryczną;
- MN jest macierzą symetryczną wtedy i tylko wtedy gdy M,N komutują (tj. MN=NM); jeśli M jest odwracalna, to również M^{-1} jest macierzą symetryczną.

Zadanie 4 Ile rozwiązań, w zależności od parametry $\lambda,$ ma podany układ równań?

$$\begin{cases} 3x_1 & -x_2 & +4x_3 & = 1 \\ 5x_1 & -2x_2 & +6x_3 & = 1+\lambda \\ (6+\lambda^2)x_1 & -3x_2 & +(9-\lambda^2)x_3 & = 3 \end{cases}.$$

Numer	indeksu:.									

Zadanie 5 Rozważmy wielomian poraz macierz kwadratową M. Pokaż, że

- \bullet jeśli Mjest diagonalizowalna, to również p(M)jest;
- jeśli λ jest wartością własną M, to $p(\lambda)$ jest wartością własną p(M).

Zadanie 6 Dla wielomianów $f = x^5 - 3x^4 - x^3 + 7x^2 - 4, g = x^3 - 3x^2 + 2x$ z $\mathbb{R}[X]$ podziel (z resztą) f przez g. Oblicz też $\gcd(f,g)$ i przedstaw je w postaci af + bg dla odpowiednich wielomianów $a,b \in \mathbb{R}[X]$.

Zadanie 7 Dla standardowego iloczynu skalarnego w \mathbb{R}^4 zortonormalizuj podany układ wektorów. Uzupełnij go do bazy ortonormalnej.

$$\{(4,4,-2,0);(1,4,1,0);(5,-4,-7,1)\}$$
.

Wskazówka: Dla dobra Nas wszystkich: nie zmieniaj kolejności wektorów.

Numer	indeksu:.									

Zadanie 8 Rozważmy grupę obrotów i symetrii (odbić) sześciokąta foremnego. Ile ma ona elementów?

Malujemy każdy bok sześciokąta foremnego na jeden z sześciu kolorów; sześciokąty uznajemy za nierozróżnialne, jeśli można jeden przekształcić na drugi przez obrót lub symetrię. Ile jest takich rozróżnialnych sześciokątów?

Zadanie 9 Rozważmy grupę permutacji S_n . Pokaż, że jeśli g i h są rozłącznymi cyklami, to rząd gh jest najmniejszą wspólną wielokrotnością rzędów f oraz g.

Rozważmy permutację:

Podaj permutację odwrotną σ^{-1} . Rozłóż σ oraz σ^{-1} na cykle. Jakie są rzędy permutacji σ oraz σ^{-1} ?