Redundancy Analysis

Alan Harding

Sub-system structure

Sensor subsystem components

- Sensors
- Barriers
- Input conditioning circuits
- etc.

Final element components

- Actuators
- Barriers
- Output conditioning circuits
- etc.

Logic subsystem components

- Processors
- Computers
- Scanning devices
- etc.

1001 System (fault tolerance=0)

• A single channel where any dangerous failure leads to a failure of the safety function when a demand arises

(P = Probability of dangerous failure)

Voting Techniques

Each subsystem can be represented as one or more following voting groups

2003 = two channels out of three must vote

The logic gate solution below gives one as the output for ones on two out of three channels .

It also gives zero for the output if two channels ask for zero.

Component redundancy

Physical block diagram

Series Faults

Px represents probability of failure

Full box represents signal sent

Probability of Failure = PA + PB + PC - PA.PB - PA.PC- PB.PC + 2PA.PB.PC

Worst Case Probability of Failure = PA + PB + Pc

Parallel Redundancy Faults

Px represents probability of failure

We now worry if B fails once A has failed

Full box represents signal sent

Probability of Failure = Pa.PB = PB. PA

Fault tree analysis of 1001 system

1002 redundant system

Physical block diagram

Reliability Block Diagram

(P = Probability of dangerous failure)

Fault tree analysis of 1002 redundant system

Great improvement in 1002 redundant control system

2002 redundant system

• Physical block diagram

Channel 1

Channel 1

Diagnostics

Diagnostics

Channel 2

Diagnostic testing only reports the detected faults and does not change the

• Reliability Block Diagram

output voting

Fault tree analysis of 2002 redundant system

Poor safety performance in 2002 redundant control system

2003 redundant system

• Physical block diagram

In parallel with a majority voting arrangement for the output signals

The output state is not changed if only one channel gives a different result which disagrees with the other two channels

Reliability Block Diagram

(P = Probability of dangerous failure)

Safety versus availability

A flaw with this type diagram is that it is not clear whether safe is on or off

