Madhav Institute of Technology and Science, Gwalior-474005

(A Govt. Aided UGC Autonomous & NAAC Accredited Institute Affiliated to RGPV, Bhopal)

DEPARTMENT OF INFORMATION TECHNOLOGY

FINISHING SCHOOL PROGRAM (Online Internship) - 2021

DATA SCIENCE FOR BEGINNERS

ASSIGNMENT-3

SUBMITTED TO:

Prof. VISHWAS SRIVASTAVA
Prof. ABHISHEK DIXIT

SUBMITTED BY:

Neeraj Gopal Verma 0901IT181038 IT 3RD Year (6TH Sem) Q.1 WAP to show different attributes of grid.

CODE:-

mpl.show()

```
import matplotlib.pyplot as mpl
print('NEERAJ GOPAL VERMA-0901IT181038\n') #user details
#raw data
planets = ['Jupiter', 'Saturn', 'Uranus', 'Neptune']
distance = [4.2, 8.52, 18.21, 29.09]
#graph plot
mpl.plot(planets, distance, linewidth = 2, color = 'black')
#set chart titile and label axes
mpl.title('Distance between Earth and:',fontsize = 18)
mpl.xlabel('Planets',fontsize = 16)
mpl.ylabel('Distance(in AU)',fontsize = 16)
#set limits of axes
mpl.ylim(0,29.09)
#set size of tick labels
mpl.tick_params(labelsize = 14)
#set grid parameters
mpl.grid(color = 'blue',linewidth = 1,linestyle = '-.')
```

OUTPUT:-

Q.2 WAP to Subplot two or more graphs horizontally.

CODE:-

import matplotlib.pyplot as mpl

print('NEERAJ GOPAL VERMA-0901IT181038\n') #user details

#FIRST PLOT:

$$x = [1, 2, 3, 4]$$

$$y = [1,2,3,4]$$

mpl.subplot(3,1,1)
mpl.title("1st")
mpl.plot(x,y)

#SECOND PLOT:

```
x = [1, 2, 3,4]
y = [1,4,9,16]

mpl.subplot(3,1,2)
mpl.title("2nd")
mpl.plot(x,y)

#THIRD PLOT:
x = [1,2,3,4]
y = [1,8,27,64]

mpl.subplot(3,1,3)
mpl.title("3rd")
mpl.plot(x,y)

mpl.suptitle("HORIZONTAL 3 PLOTS")
```

OUTPUT:-

mpl.show()

Q.3 WAP to Plot the first five cubic numbers, and then plot the first 5000 cubic numbers. Using scatter plot with colormap.

CODE:-

mpl.show()

```
import matplotlib.pyplot as mpl
print('NEERAJ GOPAL VERMA-0901IT181038\n') #user details
num = [i for i in range(1,6)]
cubes = [i**3 for i in range(1,6)]
colours = [i for i in range(1,6)]
mpl.scatter(num,cubes,c = colours,cmap = 'Blues')
mpl.show()
num = [i for i in range(1,5001)]
cubes = [i**3 for i in range(1,5001)]
colours = [i for i in range(1,5001)]
mpl.scatter(num,cubes,c = colours,cmap = 'Reds')
```

OUTPUT:-

