AER1517 Control for Robotics

Assignment 1: Model-Based Iterative Linear Quadratic Control

Prof. Angela Schoellig

General Information

- Download handout and script templates from Quercus
 - Problem 1.1 Mobile robot
 - Problem 1.2 Quadrotor
- Due on Feb. 17 (Monday) 23:59
- Submission through Gradescope
 - A single PDF with solutions and requested scripts
 - Both typed and scanned handwritten solutions are accepted
- Office hour: Feb. 13 (Thursday) 14:00 @ UTIAS

Problem 1.1 Mobile Robot | Overview

- Goal: Control a unicycle-type mobile robot to move along a straight line
- Two components:
 - LQR
 - ILQC

Problem 1.1 Mobile Robot | Model

- State: $\mathbf{x} = [y, h]^T \in \mathbb{R}^2$
- Input: $\mathbf{u} = \omega \in \mathbb{R}^1$

System dynamics:

$$\dot{y}(t) = v(t) \sin (h(t))$$
$$\dot{h}(t) = \omega(t)$$

(assume constant forward speed $v(t) = \bar{v}$)

 $y_{\rm goal}$

Problem 1.1 Mobile Robot | Code Structure (LQR)

main_p1_lqr.m

- task_design()
- generate_model()

LQR design

mobile_robot_sim()

plot_results()

Problem 1.1 Mobile Robot | (a)-(c) LQR Design

- Assume infinite horizon
- Linearize dynamics about one point $(\mathbf{x}_{\mathrm{op}}, \mathbf{u}_{\mathrm{op}})$

$$\dot{\mathbf{x}}(t) = \mathbf{F}(\mathbf{x}(t), \mathbf{u}(t))$$
 $\delta \dot{\mathbf{x}}(t) = \mathbf{A}_{\text{lin}} \delta \mathbf{x}(t) + \mathbf{B}_{\text{lin}} \delta \mathbf{u}(t)$
linearize

where
$$\delta \mathbf{x}(t) = \mathbf{x}(t) - \mathbf{x}_{\mathrm{op}}$$
 and $\delta \mathbf{u}(t) = \mathbf{u}(t) - \mathbf{u}_{\mathrm{op}}$

- Given the (Q, R) matrices defined in task_design(), design a LQR controller with lqr() function in Matlab
 - Note the convention of lqr() (see documentation)

Problem 1.1 Mobile Robot | (a)-(c) LQR Design

Control law (static gains):

$$\mathbf{u}(t) = \mathbf{K}(\mathbf{x}(t) - \mathbf{x}_{\text{goal}}) = \underbrace{\left[\boldsymbol{\theta}_{\text{ff}}^T \quad \boldsymbol{\theta}_{\text{fb}}^T\right]}_{\boldsymbol{\theta}^T} \begin{bmatrix} 1 \\ \mathbf{x}(t) \end{bmatrix} = \boldsymbol{\theta}_{\text{ff}}^T + \boldsymbol{\theta}_{\text{fb}}^T \mathbf{x}(t)$$

- 'Repmat' controller parameters for simulation: $\Theta = [\theta, \theta, ..., \theta] \in \mathbb{R}^{3 \times (N-1)}$
- Complete main_p1_lqr.m
- Run and observe
 - Effect of changing Q and R matrices
 - Performance for different initial states

Problem 1.1 Mobile Robot | Code Structure (ILQC)

main_p1_ilqc.m

- task_design()
- generate_model()

ILQC design

- mobile_robot_sim()
- plot_results()

```
main_p1_lqr.m × main_p2_ilqc.m × task_design.m × +
       task ilqc = task design();
      N = length(task ilqc.start time:task ilqc.dt:task ilqc.end time);
      % add model
       const vel = 1; % assume constant forward speed
       model = generate_model(const_vel);
       % save directory
       save dir = './results/';
       % initialize controller
      load(strcat(save dir, 'lqr controller'));
       controller ilqc = controller lqr;
      % flags
       plot on = true;
       save on = true;
       %% [Problem 1.1 (j)] Iterative Linear Quadratic Controller
       % Design a ILQC controller based on the linearized dynamics and quadratized
       % costs. The cost function of the problem is specified in 'task ilqc.cost'
      % via the method 'task design()'.
55
       %% Simulation
       sim out ilqc = mobile robot sim(model, task ilqc, controller ilqc);
       fprintf('\n\ntarget state [%.3f; %.3f]\n', task_ilqc.goal_x);
       fprintf('reached state [%.3f; %.3f]\n', sim out ilqc.x(:,end));
       %% Plots
       if plot on
          plot results(sim out ilqc);
```


Problem 1.1 Mobile Robot | (d)-(j) ILQC Design

ILQC algorithm:

- Initial policy (LQR) $\Theta_{
 m lqr}$
- Forward pass $(\bar{\mathbf{x}}_0, \bar{\mathbf{u}}_0), (\bar{\mathbf{x}}_1, \bar{\mathbf{u}}_1), ..., (\bar{\mathbf{x}}_{N-1}, \bar{\mathbf{u}}_{N-1}), \bar{\mathbf{x}}_N$
- (Initializations)
- Backward pass

at each time step, approximate system dynamics and cost function about $(\bar{\mathbf{x}}_k, \bar{\mathbf{u}}_k)$

- Linearizing system dynamics $(\mathbf{A}_k, \mathbf{B}_k)$
- Quadratic approximation of costs $(q_k, \mathbf{q}_k, \mathbf{Q}_k, \mathbf{r}_k, \mathbf{R}_k, \mathbf{P}_k)$
- Solve for optimal input at each time step and update policy ${f u}_k=ar{f u}_k+\delta{f u}_k^*$ •-----

Problem 1.1 Mobile Robot | (d)-(j) ILQC Design

- Complete main_p1_ilqc.m
- Run and observe
 - Differences between LQR and ILQC

• Note: Model used in controller design and simulation are identical, but two functions mobile_robot_sim.m and mobile_robot_sim_test.m in ./simulation can be used to explore model mismatch (see comments in code for details).

Problem 1.2 Quadrotor | Overview

- Goal: Control a quadrotor to reach a designated goal state and/or passing through a given via-point
- Four components (based on programming exercise from [1]):
 - LQR
 - LQR with via-point
 - ILQC
 - ILQC with via-point

Reference

[1] Jonas Buchli. Optimal and Learning Control for Autonomous Robots, ETH Zurich. Info: http://www.adrlab.org/doku.php/adrl:education:lecture:fs2015

Problem 1.2 Quadrotor | Model

- State: $\mathbf{x} = [x,y,z,\phi,\theta,\psi,\dot{x},\dot{y},\dot{z},\dot{\phi},\dot{\theta},\dot{\psi}]^T \in \mathbb{R}^{12}$
- Input: $\mathbf{u} = [F_z, M_x, M_y, M_z]^T \in \mathbb{R}^4$

- System dynamics: $\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, \mathbf{u}) = \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x})\mathbf{u}$
 - Nonlinear
 - Underactuated

AscTec Hummingbird [2]

References

[2] AscTec Hummingbird. Info: http://www.asctec.de/en/uav-uas-drones-rpas-roav/asctec-hummingbird/#pane-0-0

Problem 1.2 Quadrotor | Code Structure (LQR)


```
PUBLISH
                                                                                                                     VIEW
main_p2_lqr.m
                                                                                             main_p2_lqr.m × main_p2_ilqc.m × Task_Design.m × LQR_Design.m × ILQC_Design.m × Cost_Design.m × +
                                                                                                 %% General
                                                                                                 % add subdirectories
                                                                                                 addpath (genpath (pwd));
                                                                                                 % define task
    Task_Design()
                                                                                                 Task = Task Design();
                                                                                          40
                                                                                                 % load the dynamic model of the quadcopter
         Model
                                                                                                 load('Quadrotor Model.mat', 'Model'); % save as structure "Model"
                                                                                          42
                                                                                          43
                                                                                                 % define cost function
    Cost_Design()
                                                                                                 Task.cost = Cost Design( Model.param.mQ, Task );
                                                                                          45
                                                                                                 % save directory
                                                                                                 save dir = './Results/';
                                                                                                 % flags
                                                                                                 plot on = true;
                                                                                                 save on = true;
                                                                                                 %% Initial LQR Controller Design
                                                                                                 % [Problem 1.2 (a)-(c)] Fill in the missing parts in ...
                                                                                                 % LQR Design(Model, Task)
    LQR_Design()
                                                                                                 [Initial Controller, Cost LQR] = LQR Design(Model, Task);
                                                                                          57
                                                                                                 %% Simulation
        Quad Simulator()
                                                                                                 Sim Out LQR = Quad Simulator(Model, Task, Initial Controller);
                                                                                                 disp('LQR controller performance:');
                                                                                          61 -
                                                                                                 fprintf('Cost with LQR controller (metric: LQR cost function!): J^* = %.3f \n', Cost LQR);
                                                                                                 fprintf('Start Quadcopter position: x = %.3f, y = %.3f, z = %.3f \n', Sim Out LQR.x(1:3,1));
                                                                                                 fprintf('Final Quadcopter position: x = %.3f, y = %.3f, z = %.3f \n', Sim Out LQR.x(1:3,end));
                                                                                          64
                                                                                                 %% Visualization of LQR controller
                                                                                          66 -
                                                                                                 if plot on
       Visualize2()
                                                                                          67 -
                                                                                                     Visualize2(Sim Out LQR, Model.param);
```


Problem 1.2 Quadrotor | (a) LQR Controller Gain

• LQR: Linearize system dynamics around one linearization point $(\mathbf{x}_{\mathrm{op}}, \mathbf{u}_{\mathrm{op}})$

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)) + \mathbf{g}(\mathbf{x}(t))\mathbf{u}(t)$$
 | linearize | Useful functions | Model.Alin{1}(x_lin, u_lin, Model.param.syspar_vec) | Model.Blin{1}(x_lin, u_lin, Model.param.syspar_vec) | Model.param.syspar_vec) |

- Cost function (Q, R) matrices are specified in the struct Task.cost
 - Can be modified through Cost_Design()
- Matlab function lqr() for computing controller gain

- Designing controller to reach goal state
- Controller has a feedforward component and a feedback component

$$egin{aligned} \mathbf{u}_k &= \mathbf{u}_{\mathrm{ff}} + \mathbf{u}_{k,\mathrm{fb}} \ &= \mathbf{u}_{\mathrm{ff}} + \mathbf{K}(\mathbf{x}_k - \mathbf{x}_{\mathrm{ref}}) \ &= \left[\mathbf{u}_{\mathrm{ff}} - \mathbf{K}\mathbf{x}_{\mathrm{ref}} \quad \mathbf{K} \right] \begin{bmatrix} 1 \\ \mathbf{x}_k \end{bmatrix} \ &= oldsymbol{ heta}_k^T \mathbf{x}_{k,\mathrm{aug}} \end{aligned}$$

• Dimensions: $\boldsymbol{\theta}_k \in \mathbb{R}^{13 \times 4}$ (time step k), $\boldsymbol{\Theta} \in \mathbb{R}^{13 \times 4 \times (N-1)}$ (all time steps)

$$\mathbf{\Theta} \in \mathbb{R}^{13 \times 4 \times (N-1)}$$
 (all time steps)

Problem 1.2 Quadrotor | (b) LQR for Reaching Goal State

- Complete corresponding parts in LQR_Design()
- Run and observe
 - Effect of changing (Q, R) matrices
 - Effect of changing goal locations

• ...

- General note:
 - Private function ./Private/Design_functions/LQR_Design_Solution.p is available for checking implementation

Problem 1.2 Quadrotor | (b) LQR for Reaching Goal State

Link to video: https://drive.google.com/open?id=1b2wJco_63T5li3juw85mi8wMTr6PB1JL

Problem 1.2 Quadrotor | (c) LQR with Via-Point

- Modify the controller such that the quadrotor passes through a prescribed via-point
 - Controller varies over time
- Complete LQR_Design()
- Run and observe
 - Performance as compared to LQR alone

Problem 1.2 Quadrotor | Code Structure (ILQC)

main_p2_ilqc.m

- Task_Design()
- Model
- Cost_Design()

- ILQC_Design()
- Quad_Simulator()

Visualize2()

```
VIEW
               PUBLISH
                main_p2_ilqc.m × Task_Design.m × LQR_Design.m × ILQC_Design.m × Cost_Design.m × +
       % define task
       Task = Task Design();
       % load the dynamic model of the quadcopter
       load('Quadrotor Model.mat', 'Model'); % save as structure "Model"
43
       % define cost function
       % [Problem 1.2 (e)] Fill in the missing parts under 'via point' in ...
       % Cost Design ( Model.param.mQ, Task )
       Task.cost = Cost Design( Model.param.mQ, Task );
46 -
47
48
       % save directory
       save dir = './Results/';
50
51
       % flags
       plot on = true;
       save on = true;
       load lgr = false;
55
56
       %% Problem 2: ILQC controller design
57
       % [Problem 1.2 (d)] Fill in the missing parts in ...
       % ILQC Design (Model, Task, Initial Controller, @Quad Simulator)
       [ILQC Controller, Cost] = ILQC Design(Model, Task, Initial Controller, @Quad Simulator);
60
                                                          LQR Controller
       %% Simulation
61
62 -
       t cpu = cputime;
63 -
       Sim Out ILQC = Quad Simulator (Model, Task, ILQC Controller);
       t cpu = cputime - t cpu;
       fprintf('The ILQC algorithm found a solution in %fs \n\n',t cpu);
       fprintf('Final Quadcopter Position: xQ = %.3f, yQ = %.3f, zQ = %.3f \n', Sim Out ILQC.x(1:3,end));
67 -
       fprintf('Final Quadcopter Velocity: xQ = %.3f, yQ = %.3f, zQ = %.3f \n', Sim Out ILQC.x(7:9,end));
       %% Visualization of ILQC controller
70 -
       if plot on
           Visualize2(Sim_Out_ILQC, Model.param);
71 -
72 -
```


ILQC: Linearize system dynamics around each discretized (state, input)

Approximation to convert a continuous-time linearized system to a discrete-

time linearized system:

$$\delta \dot{\mathbf{x}}(t) = \mathbf{A}_{\text{lin}} \delta \mathbf{x}(t) + \mathbf{B}_{\text{lin}} \delta \mathbf{u}(t)$$

$$\frac{\delta \mathbf{x}_{k+1} - \delta \mathbf{x}_k}{\delta t} = \mathbf{A}_{\text{lin}} \delta \mathbf{x}_k + \mathbf{B}_{\text{lin}} \delta \mathbf{u}_k$$

$$\delta \mathbf{x}_{k+1} = (\mathbf{I} + \mathbf{A}_{\text{lin}} \delta t) \delta \mathbf{x}_k + (\mathbf{B}_{\text{lin}} \delta t) \delta \mathbf{u}_k$$

$$\mathbf{A}_k$$

```
for k = (length(sim out.t)-1):-1:1
                 % state of system at time step n
149 -
                 x0 = X0(:,k);
                 u0 = U0(:,k);
152
                 % [Todo] Discretize and linearize continuous system dynamics Alin
154
                 % around specific pair (x0,u0). See exercise sheet Eqn. (18) for
                 % details.
                % Alin = ...;
                 % Blin = ...;
162
163
                 % [Todo] quadratize cost function
                 % [Note] use function {q fun, Qv fun, Qm fun, Rv fun, Rm fun,
166
                 % Pm fun} provided above.
                 % t0 = T0(:,k);
169
170
171
                 % Rv = ...;
173
                % Rm = ...;
174
```

Problem 1.2 Quadrotor | (d) ILQC Controller Design

ILQC: Linearize system dynamics around each discretized (state, input)

Approximation to convert a continuous-time linearized system to a discrete-

time linearized system:

$$\delta \dot{\mathbf{x}}(t) = \mathbf{A}_{\mathrm{lin}} \delta \mathbf{x}(t) + \mathbf{B}_{\mathrm{lin}} \delta \mathbf{u}(t)$$

$$\downarrow \text{approx.}$$

$$\delta \mathbf{x}_{k+1} = (\mathbf{I} + \mathbf{A}_{\mathrm{lin}} \delta t) \, \delta \mathbf{x}_k + (\mathbf{B}_{\mathrm{lin}} \delta t) \, \delta \mathbf{u}_k$$

$$\mathbf{A}_k$$

 Cost approximation: Jacobian and Hessian of the cost functions are provided in the script

```
for k = (length(sim out.t)-1):-1:1
                 % state of system at time step n
                 x0 = X0(:,k);
                 u0 = U0(:,k);
152
                 % [Todo] Discretize and linearize continuous system dynamics Alin
154
                 % around specific pair (x0,u0). See exercise sheet Eqn. (18) for
                 % details.
                 % Alin = ...;
                 % Blin = ...;
162
163
164
                 % [Todo] quadratize cost function
                 % [Note] use function {q fun, Qv fun, Qm fun, Rv fun, Rm fun,
                 % Pm fun} provided above.
                 % t0 = T0(:,k);
169
170
171
173
                 % Rm = ...;
174
```


Problem 1.2 Quadrotor | (d) ILQC Controller Design

- Similar to Problem 1.1, complete ILQC_Design()
 - Private function ./Private/Design_functions/ILQC_Design_Solution.p is available for checking implementation
- Run and observe
 - Compare with LQR controller

Problem 1.2 Quadrotor | (e) ILQC with Via-Point

• Add to ILQC cost function a term that penalizes deviation from via-point \mathbf{x}_{vp} in proximity of time t_{vp} :

$$g_{\text{vp}}(t) = (\mathbf{x} - \mathbf{x}_{\text{vp}})^T \mathbf{Q}_{\text{vp}}(\mathbf{x} - \mathbf{x}_{\text{vp}}) \sqrt{\frac{\rho}{2\pi}} \exp\left(-\frac{\rho}{2}(t - t_{\text{vp}})^2\right)$$

weighted by ρ -steep bell curve

- Complete Cost_Design()
- Run and observe
 - Use different via-points
 - Compare with LQR

Problem 1.2 Quadrotor | (e) ILQC with Via-Point

Link to video: https://drive.google.com/open?id=1awkzzF6MylcgP6hxMJwn7RcmvZobRFng

