import pandas as pd
import numpy as np
from sklearn import metrics
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

BostonTrain = pd.read_csv("/content/drive/MyDrive/archive (1).zip")

BostonTrain.head()

	Unnamed:	0	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	lstat	med
0		1	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.
1		2	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.
2		3	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.
3		4	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.
4		5	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.

BostonTrain.info()
BostonTrain.describe()

Unnamed: 0	1.0	0.4	-0.1	0.4	-0.0	0.4	-0.1	0.2	-0.3	0.7	0.7	0.3	-0.3	0.3	-0.
crim -	0.4	1.0	-0.2	0.4	-0.1	0.4	-0.2	0.4	-0.4	0.6	0.6	0.3	-0.4	0.5	-0.
F2 -	-0.1	-0.2	1.0	-0.5	-0.0	-0.5	0.3	-0.6	0.7	-0.3	-0.3	-0.4	0.2	-0.4	0.4
snpui	0.4	0.4	-0.5	1.0	0.1	0.8	-0.4	0.6	-0.7	0.6	0.7	0.4	-0.4	0.6	-0.
chas	-0.0	-0.1	-0.0	0.1	1.0	0.1	0.1	0.1	-0.1	-0.0	-0.0	-0.1	0.0	-0.1	0.2
XOU -	0.4	0.4	-0.5	0.8	0.1	1.0	-0.3	0.7	-0.8	0.6	0.7	0.2	-0.4	0.6	-0.
E -	-0.1	-0.2	0.3	-0.4	0.1	-0.3	1.0	-0.2	0.2	-0.2	-0.3	-0.4	0.1	-0.6	0.7
age	0.2	0.4	-0.6	0.6	0.1	0.7	-0.2	1.0	-0.7	0.5	0.5	0.3	-0.3	0.6	-0.
- di	-0.3	-0.4	0.7	-0.7	-0.1	-0.8	0.2	-0.7	1.0	-0.5	-0.5	-0.2	0.3	-0.5	0.2
rad	0.7	0.6	-0.3	0.6	-0.0	0.6	-0.2	0.5	-0.5	1.0	0.9	0.5	-0.4	0.5	-0.
tax	0.7	0.6	-0.3	0.7	-0.0	0.7	-0.3	0.5	-0.5	0.9	1.0	0.5	-0.4	0.5	-0.
ptratio	0.3	0.3	-0.4	0.4	-0.1	0.2	-0.4	0.3	-0.2	0.5	0.5	1.0	-0.2	0.4	-0.
black	-0.3	-0.4	0.2	-0.4	0.0	-0.4	0.1	-0.3	0.3	-0.4	-0.4	-0.2	1.0	-0.4	0.3
stat	0.3	0.5	-0.4	0.6	-0.1	0.6	-0.6	0.6	-0.5	0.5	0.5	0.4	-0.4	1.0	-0.
medv	-0.2	-0.4	0.4	-0.5	0.2	-0.4	0.7	-0.4	0.2	-0.4	-0.5	-0.5	0.3	-0.7	1.0
	Unnamed: 0	crim	zn	indus	chas	nox	m	age	dis	rad	tax	ptratio	black	lstat	med

X = BostonTrain.drop(['medv'], axis = 1)

y = BostonTrain['medv']

```
# Splitting to training and testing data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.3, random_state = 4)
from sklearn.linear_model import LinearRegression
# Create a Linear regressor
lm = LinearRegression()
# Train the model using the training sets
lm.fit(X_train, y_train)
\label{linearRegression} LinearRegression(copy\_X=True, fit\_intercept=True, n\_jobs=None)
      ▼ LinearRegression
      LinearRegression()
lm.intercept_
     36.16448443981083
coeffcients = pd.DataFrame([X_train.columns,lm.coef_]).T
coeffcients = coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'})
coeffcients
```

	Attribute	Coefficients	1	ıl.
0	Unnamed: 0	-0.002223		
1	crim	-0.123405		
2	zn	0.057502		
3	indus	-0.008676		
4	chas	4.683688		
5	nox	- 14.127075		
6	rm	3.320913		
7	age	-0.005862		
8	dis	-1.563919		
9	rad	0.344319		
10	tax	-0.013476		
11	ptratio	-0.796731		
12	black	0.009382		
13	Istat	-0.525367		

```
y_pred = lm.predict(X_train)
# Model Evaluation
print('R^2:',metrics.r2_score(y_train, y_pred))
 print('Adjusted R^2:',1 - (1-metrics.r2\_score(y\_train, y\_pred))*(len(y\_train)-1)/(len(y\_train)-X\_train.shape[
print('MAE:',metrics.mean_absolute_error(y_train, y_pred))
print('MSE:',metrics.mean_squared_error(y_train, y_pred))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_train, y_pred)))
```

R^2: 0.7472849101482609

Adjusted R^2: 0.7368482987679531

MAE: 3.079972468824701 MSE: 19.022074481402168 RMSE: 4.36143032518028

```
plt.scatter(y_train, y_pred)
plt.xlabel("Medv")
plt.ylabel("Predicted prices")
plt.title("Prices vs Predicted prices")
plt.show()
```


plt.scatter(y_pred,y_train-y_pred)
plt.title("Predicted vs residuals")
plt.xlabel("Predicted")
plt.ylabel("Residuals")
plt.show()

```
sns.distplot(y_train-y_pred)
plt.title("Histogram of Residuals")
plt.xlabel("Residuals")
plt.ylabel("Frequency")
plt.show()
```

<ipython-input-24-3959bf587b5e>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(y_train-y_pred)


```
y_test_pred = lm.predict(X_test)
# Model Evaluation
acc_linreg = metrics.r2_score(y_test, y_test_pred)
print('R^2:', acc_linreg)
print('Adjusted R^2:',1 - (1-metrics.r2_score(y_test, y_test_pred))*(len(y_test)-1)/(len(y_test)-X_test.shape)
print('MAE:',metrics.mean_absolute_error(y_test, y_test_pred))
print('MSE:',metrics.mean_squared_error(y_test, y_test_pred))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test, y_test_pred)))
```

R^2: 0.7134033837044166

Adjusted R^2: 0.6841161382435541

MAE: 3.854992058726411 MSE: 29.92643938932016 RMSE: 5.47050631928345

```
from sklearn.ensemble import RandomForestRegressor
```

```
plt.scatter(y_train, y_pred)
plt.xlabel("medv")
plt.ylabel("Predicted prices")
plt.title("Prices vs Predicted prices")
plt.show()
```



```
plt.scatter(y_pred,y_train-y_pred)
plt.title("Predicted vs residuals")
plt.xlabel("Predicted")
plt.ylabel("Residuals")
plt.show()
```

Predicted vs residuals

```
25
20
15
10
```

```
y_test_pred = reg.predict(X_test)
# Model Evaluation
acc_rf = metrics.r2_score(y_test, y_test_pred)
print('R^2:', acc_rf)
 print('Adjusted \ R^2:',1 - (1-metrics.r2\_score(y\_test, \ y\_test\_pred))*(len(y\_test)-1)/(len(y\_test)-X\_test.shapered))*(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len(y\_test)-1)/(len
print('MAE:',metrics.mean_absolute_error(y_test, y_test_pred))
print('MSE:',metrics.mean_squared_error(y_test, y_test_pred))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test, y_test_pred)))
                            R^2: 0.8366030910225934
```

Adjusted R^2: 0.8199055966745373 MAE: 2.436598684210526 MSE: 17.061917046052635 RMSE: 4.130607345906003