Repetición	Tratan 1 2	nientos t
1	Y_{11} Y_{21}	X_{t1}
n_i	Y_{1} Y_{2}	Y _{tim}
totales	Y ₁ . Y ₂ .	••• У±•
\ \ J	$\sum_{i=1}^{n} \lambda_{ij} = \lambda_{1}.$	$\sum_{j=1}^{n} y_{2j} =$
> 2 1	$\frac{1}{2}\sum_{i=1}^{n}\frac{1}{j_{i}}$	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
		(f1) tz
$ \uparrow_2 \uparrow_1 $	t3 /	F10 (4z1
T3 Tz	7	(Y=1) Y 22
		Vc 12
<u> </u>	T3 _	12 Vi31A)
	T_ 50	ento tratam
	•	
# n (v	$\frac{1}{\sqrt{2}}$ $\frac{t}{\sqrt{2}}$	h
1= 1 J=1 (γ; -	$\langle \cdot \cdot \cdot \rangle = \sum_{k=1}^{\infty}$	<u> </u>
•		
	= \(\sum_{i=1}^{\infty} \)	$\sum_{j=1}^{n} \left[\left(\overline{Y_{i}}, -\overline{Y}_{i} \right) \right]$
	·	
	=	$\frac{\partial}{\partial x} \left[\left(\frac{1}{2} - \frac{1}{2} \right)^{2} \right]$
	_ \frac{\pm}{2} \frac{\pm}{2} \land 1	(\(\frac{1}{2}\), \(-\frac{1}{2}\)
	N=1 d=1	((((((((((((((((((((
	entre	ruon tratamientos

Error

$$\sum_{n=1}^{n} (Y_{ij} - Y_{i}) = \sum_{j=1}^{n} Y_{ij} - \sum_{j=1}^{n} \overline{Y}_{i}$$

$$= Y_{i} - n \overline{Y}_{i}$$

$$= Y_{i} - N \cdot Y_{i}$$

$$= Y_{i} - Y_{i}$$

	Fuentes Variacio	gl	Sumus Cuadra dos	Cuadrados Medios	F
	Entre tratam. Jento trat.	t-1 = N-t + (n-1)	$\sum \sum_{i} (\overline{y}_{i} \overline{y}.)^{2}$ $\sum \sum_{i} (\overline{y}_{i} - \overline{y}_{i}.)^{2}$	$CM+nt = \frac{SC+nat}{L-1}$ $CM \in mor = \frac{SC \in mor}{L(n-1)} = 0^{2}$	$\frac{1}{1600000000000000000000000000000000000$
		7 -1 1 -1	ΣΣ (Yij - \(\overline{\chi}_{\chi}\)^2	±(n-1)	t(n-1) t(n-1)
١	pjo: N= txn			+ (

Fc (+-1; t(n-1)gl)

Parametros/ U

Estimation por minimos cuadrados.
$$\emptyset = \sum_{i=1}^{t} \sum_{j=1}^{n} \mathcal{E}_{ij}^{2} = \sum_{j=1}^{t} (\gamma_{ij} - \mu - \tau_{ij})^{2}$$

$$\frac{\partial Q}{\partial \mu} = 2\sum_{k=1}^{\frac{1}{2}}\sum_{j=1}^{N} \left(Y_{ij} - \mu - Y_{i}\right) \frac{\partial (-\mu)^{\frac{1}{2}}}{\partial \mu} = -2\sum_{k=1}^{\frac{1}{2}}\sum_{j=1}^{N} \left(Y_{ij} - \mu - Y_{i}\right) = 0$$

$$\sum_{k=1}^{\infty} \sum_{j=1}^{N} \left(Y_{ij} - \mu - Y_{i}\right) \frac{\partial (-\mu)^{\frac{1}{2}}}{\partial \mu} = \sum_{k=1}^{\infty}\sum_{j=1}^{N} \mu + \sum_{k=1}^{\infty}\sum_{j=1}^{N} \mu$$

$$\frac{\partial \mathcal{A}}{\partial \mathcal{V}_{i}} = 2 \sum_{i=1}^{N} \left(\frac{1}{1} - \mathcal{A} - \frac{1}{1} \right) \underbrace{\frac{\partial \mathcal{A}}{\partial \mathcal{V}_{i}}}_{\sum \sum i} \underbrace{\frac{\sum i}{j}}_{i = N} \underbrace{\frac{\sum i}{j}}_{i = N} + \underbrace{\sum i}_{i = N} \underbrace{\frac{\sum i}{j}}_{i = N} \underbrace{\frac{\sum i}{j}}_{$$

R.L.S Y= po+B, X, +E modelo ŷ = bo + b, x, Ecuación

Roemplazando restricción en (A)

ZZYij = NM + N ZZ

ZZ Jij = M

N

Y. = M

Ahora en B

$$\frac{\overline{Y_{i}} = \widehat{Y_{i}} - \widehat{Y_{i}}}{\widehat{Y_{i}} = \overline{Y_{i}} - \widehat{Y_{i}}}$$

$$\frac{\overline{Y_{i}} = \overline{Y_{i}} - \widehat{Y_{i}}}{\widehat{Y_{i}} = \overline{Y_{i}} - \overline{Y_{i}}}$$

$$= \widehat{Y_{i}} + \widehat{Y_{i}} - \overline{Y_{i}}$$

$$= \widehat{Y_{i}} + \widehat{Y_{i}} - \overline{Y_{i}}$$

$$= \widehat{Y_{i}} - \widehat{Y_{i}}$$