东南大学电工电子实验中心 实验报告

第 1、3 次实验

头验名称:	电于兀器件参数测试
院 (系):	自动化专 业:自动化
姓 名:	<u> </u>
实验室:	金智楼电子技术 4 室 105 实验组别: _无
同组人员:	无 实验时间: 2023 年 11 月 16 日
评定成绩:	审阅教师:

一、实验目的

- 1. 了解电流表电压表的物理模型,运用欧姆定律,通过对测量误差的分析、推理,掌握电流表内接法、电流表外接法等测量方法;通过对不同测量方法产生误差的估算、分析,建立技术方法存在适用范围的概念。
- 2. 了解二极管、稳压二极管的特性与应用特点,掌握稳压管伏安特性测量方法。

二、实验原理(预习报告内容,如无,则简述相关的理论知识点。)

(1) 正弦波信号的参数定义如下:

VP-P: 峰峰值,指正弦波信号的最大电压值与最小电压值之差,也就是正弦波的最大振幅的两倍。

V: 电压,指正弦波信号在任意时刻的电压值,可以用数学公式表示为 $V = VP-P/2 * \sin(2\pi f * t + \Phi)$,其中 f 是频率,t 是时间, Φ 是相位。

T: 周期, 指正弦波信号完成一个完整的波形所需的时间, 与频率的关系为 T = 1/f。

(2) 交流测量频率范围如下:

UT803 万用表的交流测量频率范围为 40 Hz 到 400 Hz SDM3055 万用表的交流测量频率范围为 20 Hz 到 100 kHz

功能	量度 bi	類率范围	1 年精度 23℃ ±5℃	温度系数 0℃~ 18℃ 28℃~ 50℃	测量方法和其他特性		
		2000			直流电压		
		20 Hz - 45 Hz	1.5 + 0.10	0.01+0.005	第六甲腺	200 mV 和 2 V 重信 10 M D 成 >10 G D 可值	
		45 Hz - 20 KHz	0.2 + 0.05	0.01 + 0.005	第八個民	20 V, 200 V 和 1000 V 重程 10 M 0 ± 2% <s0 0="" 25°="" a="" c="" td="" 開始<=""></s0>	
	200 mV	20 KHz - 50 KHz	1.0 + 0.05	0.01+0.005	(A) 人(S) (D)	1000 V 時間重推	
		50 KHz - 100 KHz	3.0 + 0.05	0.05 + 0.010	共襲が動と	120sB (分子LO 到599 1KO 不平衡电阻, 最大 = 500 VDC)	
		20 Hz - 45 Hz	1.5 + 0.10	0.01 + 0.005		100 EEE 00 00	
		45 Hz - 20 KHz	0.2+0.05	0.01+0.005	常展知创社	打开"旅馆器"希腊拉加比微过 2008	
	2 V				电阻		
		20 KHz - 50 KHz	1.0 = 0.05	0.01 + 0.005	形成方法	4 体性固烷 2 体性固可性	
		50 KHz - 100 KHz	3.0 + 0.05	0.05 + 0.010	線入保护	1000 V, 府有重经	
		20 Hz - 45 Hz	1.5 + 0.10	0.01 + 0.005	重流电流		
ERMANDRA PER	20 V	45 Hz = 20 KHz	0.2 + 0.05	0.01 + 0.005		200 u A 地歌年毛圧 < 10 m// 2 m A 地歌年モ圧 < 100 m//	
NAME OF TAXABLE PARTY.	20.7	20 KHZ - 50 KHZ	1.0 + 0.05	0.01 + 0.005	分寫电腦器	2 mA (400 mA 指取物用器 10	
		50 KHz - 100 KHz	3.0 + 0.05	0.05 + 0.010		2 A, 10 A 特,取种构图 10mΩ	
		20 Hz = 45 Hz	1.5 + 0.10	0.01 + 0.005	輸入保护	位于超面板的可要换 10 A,250 V 物馆任 内部 12 A,250 V 倒宿任	
	200 V	45 Hz - 20 KHz	0.2 + 0.05	0.01 + 0.005	连续性 / 二极管测试		
	200 V	20 KHz = 50 KHz	1.0 + 0.05	0.01 + 0.005	発量方法	使用 1 mA ±5% 但观察测量电路划电压	
		50 KHz - 100 KHz	3.0 + 0.05	0.05 + 0.010	岭 内西	T T	
		20 Hz - 45 Hz	1.5 = 0.10	0.01 + 0.005	进续性利值	गम	
		45 Hz - 20 KHz	0.2 + 0.05	0.01 + 0.005	10000000000000000000000000000000000000	1000 V	
	750 V	20 KHz - 50 KHz	1.0 + 0.05	0.01 + 0.005	真有效值交流电压		
		50 KHz - 100 KHz	3.0 - 0.05	0.05 + 0.010	用量方法	AC 網合資有效任用量。任意量程下可以有最高 1000V 直示模量	
		20 Hz - 45 Hz	1.5 + 0.10	0.015 + 0.015	近韓四原 徐入田太	高重程3%因素 + 3 所有重程下为 1Mの ± 2% 共降 < 100 sF	
	20 mA	45 Hz - 2 KHz	0.50 + 0.10	0.015 + 0.008	機入証拠 AC 連治整型級	20 Hz = 100 KHz	
	20 mA				#EUNH:	60:8 (対于LO 引致的 1Kg 不平衡物質和 <80Hz, 最大 ±500 VDC)	
		2 KHz = 10 KHz	2.50 + 0.20	0.015 + 0.006	真有效值交流电流		
		20 Hz - 45 Hz	1.5 + 0.10	0.015 + 0.005	利量方法	直西耦合到保险监视分词用阻器、AC 耦合到真有效值用量(用量输入的 AC 成分)	
	200 mA	45 Hz - 2 KHz	0.50 + 0.10	0.015 + 0.005	波維因會	清量程改经苦食 4 3	
高が値で支承さ ³		2 KHz = 10 KHz	2.50 + 0.20	0.015 + 0.008	最大输入	概念 DC 成分的 RMS 电像 < 10A	
made and a		20 Hz - 45 Hz	1.5 + 0.20	0.015 + 0.005	分為电路器	2A,10A 档为 0.01 0,20mA 和 200mA 档为 1 0	
	2 A	45 Hz - 2 KHz	0.50 + 0.20	0.015 ± 0.005	加入保押	但于相面积的可要换 10 A, 250 V 物溶丝	
		2 KHz = 10 KHz	2.50 + 0.20	0.015 + 0.005		内部 12 A,250 V 連絡丝	
		20 Hz - 45 Hz	1.5 + 0.15	0.015 + 0.005	S 字和周期		
	10 A ^N	45 Hz = 2 KHz	0.50 + 0.15	0.015 + 0.005	無量方法	张重初用信号数个国际的时间然后按禁锢中	
					用重注要等功	所有裁字计数器在小用压,任赖信号的引入岗至	

(3) 计算最大可测量频率下 0.01uF 0.022uF 电容的理论容抗值和 330uH 电感的理论 感抗值如下:

 $X_C = \frac{1}{2\pi f C}$, 其中 f 是频率, C 是电容值。根据不同的万用表,最大可测量频率有所不同,因此容抗值也有所不同。以下是不同万用表下的容抗值: UT803 万用表的最大可测量频率为 400 Hz,因此 0.01uF 电容的理论容抗值为

$$X_C = rac{1}{2\pi imes 400 imes 0.01 imes 10^{-6}} pprox 39.79 \Omega$$

SDM3055 万用表的最大可测量频率为 100 kHz,因此 0.01uF 电容的理论容抗值为 $X_C = \frac{1}{2\pi \times 100000 \times 0.01 \times 10^{-6}} pprox 0.16\Omega$

330uH 电感的理论感抗值为 $X_L = 2\pi f L$; , 其中 f 是频率,L 是电感值。根据不同的万用表,最大可测量频率有所不同,因此感抗值也有所不同。以下是不同万用表下的感抗值:

UT803 万用表的最大可测量频率为 400 Hz,因此 330uH 电感的理论感抗值为 $X_{L}=2\pi imes 400 imes 330 imes 10^{-6}pprox 0.83\Omega$

SDM3055 万用表的最大可测量频率为 100 kHz,因此 330uH 电感的理论感抗值为 $X_L=2\pi imes100000 imes330 imes10^{-6}pprox207.35\Omega$

- (4) 已了解 DDS 信号源作用,已了解基本功能和使用方法。
- (5) 二极管及稳压管的特性如下:

二极管是一种半导体器件,它允许电流只能沿一个方向流动,而在相反方向上阻断电流。它有两个端子,分别称为阳极和阴极,以及形成器件核心的 PN 结。阳极连接到电路的正极,阴极连接到电路的负极。当阳极电压高于阴极电压时,二极管正向偏置并导通电流。当阳极电压低于阴极电压时,二极管反向偏置并阻断电流。

稳压管是一种能够保持恒定输出电压的器件,不受输入电压或负载电流的变化的影响。它可以用来为需要特定电压水平的电子电路或设备提供稳定的电源。稳压管有两种类型:线性和开关。线性稳压管使用一个串联元件,如晶体管或电阻,来降低多余的电压并调节输出。开关稳压管使用一个开关元件,如晶体管或 MOSFET,来以高频率地开关输入电压,并通过控制占空比来调节输出。

(6) 了解分析稳压管伏安特性测量方法

伏安法是一种利用欧姆定律来测量稳压管的电压和电流的方法,它的基本原理是: 当稳压管的电压保持恒定时,电流随着电压源的变化而变化,反之亦然。因此,通过改变电压源的输出电压,可以得到稳压管的电压和电流的对应值,绘制出稳压管的伏安特性曲线。

伏安法的优点是原理简单,易操作,只需要一个可变电压源,一个电流表和一个电压表,就可以完成测量。这种方法适用于测量一般的稳压管,如齐纳二极管等,可以观察到稳压管的正向和反向特性,以及反向击穿区域的恒定电压。

伏安法的缺点是误差较大,因为电流表和电压表的内阻会影响测量结果。电流表的内阻会使电压源的输出电压降低,导致测量的稳压管电压偏小;电压表的内阻会使电路的总电阻增大,导致测量的电流偏小。因此,为了减小误差,应该选择内阻较小的电流表和内阻较大的电压表,或者使用其他更准确的测量方法,如等效法或直流电桥法。

三、实验内容

(1) 用数字万用表直接测量(10Ω、2MΩ)、电容(0.022μF)的参

数,测量二极管(稳压二极管)的极性。

电阻测量结果: 10.051 Ω 与 1.976M Ω

电容测量结果: 23.04nF

稳压二极管极性判断 (方法及结论):

用数字万用表的二极管档位,将红表笔接触稳压二极管的某极,黑表笔接触稳压二极管的另一极,如果显示有电压值(为 0.7365V),则说明稳压二极管的极性与表笔的颜色相同;如果显示无电压值且出现哗的声音,则说明稳压二极管的极性与表笔的颜色相反。

也可以直接观察稳压二极管,靠近黑环且旁边有一个负号的引脚为负极,另一个引脚为正极。

这两种办法都可以判断二极管的极性

(2) 设计电路,进行电阻阻值的测量 $(10\Omega, 2M\Omega)$;

a)选择合适的电源电压,分别用电流表内接和电流表外接两种方法测量每个电阻阻值;

10Ω电阻测量电路(电流表内接、电流表外接测量电路及实物图片拍摄)

2MΩ电阻测量电路(电流表内接、电流表外接测量电路及实物图片拍摄)

b) 记录测量数据,对比分析测量误差及误差原因,并以提高测量精度为准则给出实验结论。

电源电压	测量对象	测量方法	由压(v)	电流(I)	电阻(Ω)	误差(%)
(V)	(标称值)	侧里刀伝	电压(V)	电弧(1)		
1.9	10 Ω	电流表内接	21.574mV	1.899mA	11. 360Ω	13.6%
1.9	10 Ω	电流表外接	20.470mV	1.898mA	10. 785Ω	7. 85%
30	2ΜΩ	电流表内接	29. 944V	15. 114µA	1.981ΜΩ	-0.95%
30	2ΜΩ	电流表外接	29. 943V	18. 082 μ Α	1.656 ΜΩ	-17. 2%

实验数据分析 (误差和误差原因):

电流表内接和外接的测量方法对电阻的测量结果有影响,因为电流表本身也有内阻,会影响电路的总电阻。电流表内接时,电流表的内阻与被测电阻串联,会使总电阻增大,导致测量结果偏大,但是当被测电阻很大时,这个可以忽略不记,误差会比较小。电流表外接时,电压表的内阻与被测电阻并联,会使总电阻偏小,导致测量结果偏小,但是当被测电阻很小时,于很大的电压表电阻并联后电阻仍然很小,误差会比较小。

实验结论:

为了提高测量精度,应该选择合适的测量方法和仪器。一般来说,当被测电阻较小时,应该采用电流表外接的方法;当被测电阻较大时,应该采用电流表内接的方法。另外,应该选择内阻较小的电流表和灵敏度较高的万用表。

本实验中,最准确的测量结果是用 30V 电源和 $2M\Omega$ 被测电阻,并采用电流表内接的方法得到的。其误差为-0.95%,最小。最不准确的测量结果是用 1.9V 电源和 10Ω 被测电阻,并采用电流表内接的方法得到的。其误差为 13.6%,最大。

(3) 测量电容和电测量电容(0.022 µF、330 µH 电感)

a) 选择信号源作为激励源,选择信号频率,计算相应容抗、感抗;

测量频率	容抗	测量频率	感抗
1k	6.83*10 ³ Ω	10k	19.27 Ω
5k	1.42*10 ³ Ω	50k	98.70 Ω

- b) 选择电阻、电容,或者电阻、电感构成电路,接入激励源;
- c) 选择测量方法, 画出测量电路;

电容测量电路及实物图片拍摄:

电感测量电路及实物图片拍摄:

d) 在不同频率段分别测量并记录实验数据(各测两组数据),计算电容、电感的参数;

激励源频 率(Hz)	测量对象	测量方法	电压(V)	电流(I)	元件参数	误差 (%)
1k	电容	内接	1.741V	0.2548mA	22.9nF	4.09%
5k	电容	内接	1.42V	0.9960mA	22.3nF	1.36%
10k	电感	外接	33.35mV	1.7304mA	307uH	-6.97%
50k	电感	外接	166.25mV	1.686mA	314uH	-4.85%

e) 思考: 如何提高测量精度?

测量电容和电感的精度受到信号源的频率、电阻的大小、电路接法等因素的影响。为了提高测量精度,可以采取以下措施:

选择合适的信号频率,使得被测元件的阻抗处于一个合理的值,避免过大或过小的阻抗影响测量结果。

选择合适的电路接法,电感因为阻抗小电流表应该外接,而电容阻抗大电流表内外接都可以。

选择合适的电阻,使得电路的电压和电流不会因为过大而烧坏器件,也不会因为过小而使误差偏大。

(4) 稳压二极管伏安特性的测量; (提高要求)

a)测量电路:

b) 数据记录表格

表 4 测量稳压二极管的伏安特性

U	-6.34V	-6.33V	-6.31V	-6.31 V	-6.29 V	-6.28 V	-6.27 V
1	-10 mA	-9 mA	-8 mA	-7 mA	-6 mA	-5 mA	-4 mA
U	-6.26V	-6.24 V	-6.22 V	-6.21 V	-6.2 V	-6.1 V	0
1	-3 mA	-2 mA	-1 mA	-0.5mA	-193uA	-1uA	0

U	0	0.3057V	0.5915V	0.6836V	0.71 V	0.72V	0.74V	0.75V
1	0	0.033uA	5.96uA	117.9uA	0.296mA	0.488mA	0.882mA	1.374mA
U	0.77V	0.79V	0.8V	0.82	0.83	0.835		
1	2.59mA	4.93mA	7.28mA	12.93	16.88	20.13		

c) 描绘稳压二极管的伏安特性曲线

四、实验使用仪器设备(名称、型号、规格、编号、使用状况)

示波器:

GDS-1102B

信号源:

SDG 1032X Function/Arbitrary Waveform Generator

数字万用表:

SDM3055X-E Digital Multimeter

稳压电源:

SPD3303C

五、实验总结

(实验出现的问题及解决方法、思考题 (如有)、收获体会等)

本实验是电子技术基础的第一三个实验的实验报告,是对电阻、电容、电感和稳压二极管的测量和分析。通过本实验,我学习了不同的测量方法和原理,掌握了示波器、信号源、数字万用表和稳压电源的基本操作和使用,了解了电阻、电容、电感和稳压二极管的特性和参数,熟悉了实验箱的使用方法和注意事项。我还学习了如何选择合适的测量电路和绘制伏安特性曲线,以及如何计算容抗、感抗和误差,以及如何提高测量精度。

六、参考资料 (预习、实验中参考阅读的资料)

《电子技术基础实验教程》,李晓峰等编著,高等教育出版社

《电子技术基础》,王晓东等编著,清华大学出版社

《电子技术基础实验指导书》,北京航空航天大学电子信息工程学院