Dr. Jürg M. Stettbacher

Neugutstrasse 54 CH-8600 Dübendorf

Telefon: +41 43 299 57 23 Fax: +41 43 299 57 25 E-Mail: dsp@stettbacher.ch

Zahlensysteme und Codes

Lösungen zu den Übungsaufgaben

Version 2.22 2015-09-01

Zusammenfassung: Dieses Dokument enthält die vollständigen Lösungen zu den Übungsaufgaben im Skript Zahlensysteme und Codes - Konzept und Verwendung in der Informatik.

1 Übungsaufgaben

1.1 Rechnen in Zahlensystemen

(a) Operanden im Binärformat:

Den Betrag der Dezimalzahlen kann man mit Hilfe des Hornerschemas ins Binärformat umwandeln. Das geht beispielsweise für die Zahl 21_d so:

$$21_d \div 2 = 10$$
 Rest 1
 $10_d \div 2 = 5$ Rest 0
 $5_d \div 2 = 2$ Rest 1
 $2_d \div 2 = 1$ Rest 0
 $1_d \div 2 = 0$ Rest 1

Auslesen von unten nach oben ergibt $21_d = 10101_b$. Weiter erhalten wir:

$$9_d$$
 = ... 0 0 0 1 0 0 1 $_b$ 1-er Komplement ... 1 1 1 0 1 1 0 $_b$ 2-er Komplement -9_d = ... 1 1 1 0 1 1 1 0

Nun führen wie die Addition aus:

Das Resultat können wir leicht kontrollieren. Wir erhalten, wie erwartet:

$$1100_b = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 12_d$$

(b) Zuerst müssen wir die Binärzahlen in Hexadezimalzahlen umwandeln. Das können wir in Vierergruppen tun, denn jede Hexadezimalziffer umfasst gerade vier Bit:

Damit folgt die Subtraktion:

Das Resultat der Subtraktion ist die positive Zahl $AD1_h$.

(c) Wir finden: $7_d = ...00111_b$ und $11_d = ...001011_b$. Die Zahl -11_d erhalten wir mit dem 2-er Komplement:

Beim schriftlichen Berechnen der Multiplikation müssen wir darauf achten, dass wir insbesondere die negativen Operatoren in der Breite des Resultats schreiben. Hier haben wir, inkl. von mindestens einem Vorzeichenbit, 5 Bit in den Operatoren. Das Resultat kann rund doppelt¹ so breit werden, also wählen wir 10 Bit.

	0	0	1	1	1	b	X	•••	1	1	1	1	1	1	0	1	0	1	b
									1	1	1	1	1	1	0	1	0	1	
							+	•••	1	1	1	1	1	0	1	0	1		
							+	•••	1	1	1	1	0	1	0	1			
Üb	ertra	ag					+							1			0	0	

Das Resultat ist negativ. Um heraus zu finden, welchen Wert es hat, bilden wir wieder das Komplement:

Genau genommen hat das Resultat maximal die Breite 2*N* − 1, wenn die vorzeichenbehafteten Operanden die Breite *N* haben.

Damit erhalten wir ... $01001101_b = 2^6 + 2^3 + 2^2 + 2^0 = 77_d$. Das Resultat der Multiplikation ist demnach -77_d , was wir schon gedacht hatten.

- (d) Wir verwenden die Komplementdarstellung im gegebenen Zahlensystem:
 - Binärsystem, 2-er Komplement: $-11'0111'1000_b = ...11'1100'1000'1000_b$
 - Zehnersystem, 10-er Komplement: $-87.25_d = \dots 99912.75_d$

Anhand des zweiten Beispiels wollen wir zeigen, wie man das Resultat verifizieren kann. Dazu addieren wir zur negativen Zahl beispielsweise den Wert 100_d . Das Resultat müsste 100.00 - 87.25 = +12.75 geben.

1.2 Endliche Zahlen

(a) Die Zahl 1100′1001_b kann zwei Dinge bedeuten, je nachdem, ob im entsprechenden Kontext der Inhalt des Registers als vorzeichenlos oder vorzeichenbehaftet interpretiert wird. Im vorzeichenlosen Fall bedeutet die Zahl:

$$11001001_b = 2^7 + 2^6 + 2^3 + 2^0 = 201_d$$

Wird der Registerinhalt als vorzeichenbehaftete Zahl angesehen, so ist sie negativ. Ihren Wert finden wir über das Komplement.

Der Betrag ist dann $110111_b = 2^5 + 2^4 + 2^2 + 2^1 + 2^0 = 55_d$. Im Register steht also der Wert -55_d .

(b) Falls das Register vorzeichenbehaftete Zahlen enthält, so käme es bei der Addition von $100_d + 100_d$ zu einem Überlauf, denn in 8 Bit lassten sich nur Zahlen von -128_d bis $+127_d$ darstellen, resp. von $1000'0000_b$ bis $0111'1111_b$.

(c) Die vorzeichenlose Subtraktion von 0-1 in 8 Bit ergibt $1111'1111_b = 255_d$. Das Resultat ist demnach falsch. Der Prozessor wird allerdings das *Borrow*-Flag setzten, das auf den Über- oder besser Unterlauf hinweist. In vielen Prozessoren heisst das Flag *Carry* und wird für Überläufe bei Additionen und Unterläufe bei Subtraktionen verwenden.

1.3 Allgemeine Codes

(a) Die binäre Zahl 110011_b entspricht 51_d . Wir benötigen also die zwei BCD-Ziffern 5 und 1. Folglich ist:

$$110011_b = 0101'0001_{BCD}$$

(b) Die BCD-Zahl $0010'1001_{BCD}$ besteht aus 2 Zehnern und 9 Einern:

$$0010'1001_{BCD} = 2_d \cdot 10_d + 9_d \cdot 1_d$$
$$= 29_d$$
$$= 11101_b$$

Man kann das auch direkt binär ausrechnen:

$$0010'1001_{BCD} = 0010_b \cdot 1010_b + 1001_b \cdot 0001_b$$
$$= 10100_b + 1001_b$$
$$= 11101_b$$

- (c) Wenn das Code-Rad vorwärts dreht: $011 \implies 010$. Wenn das Code-Rad rückwärts dreht: $011 \implies 001$.
- (d) Den hexadezimalen Wert zum ASCII Code 100_d finden wir zum Beispiel mit dem Horner Schema:

$$100_d \div 16 = 6 \text{ Rest } 4$$

 $6_d \div 16 = 0 \text{ Rest } 6$

Also $100_d = 64_h$. Damit gehen wir in die ASCII-Tabelle und finden das Zeichen:

$$ASCII(64_h) = d$$