Statistical Thinking

What is statistics, anyway?

 The science of collecting, organizing, summarizing, and analyzing data to answer questions and/or draw conclusions.

Why statistics?

- To satisfy our curiosity
 - Exploring the world around us.
 - Searching for patterns to lead to discoveries
- To make sure that we can stand on our legs
 - Evidence to show that we are right (or wrong)

Statistics Rests on Two Major Concepts

- Variation
 - Differences or changes in an item

Statistics Rests on Two Major Concepts

- Data
 - Observations gathered to draw conclusions
 - Context matters

Context matters -Always Ask:

• Who: Describe the individuals who were surveyed.

What: Determine what is being measured.

When: When was the research conducted?

Where: Where was the research conducted?

- Why: What was the purpose of the survey or experiment?
- How: Describe how the survey or experiment was conducted.

total example

Introduction to Data Science: What makes a good data scientist?

Introduction to Data Science: What makes a good data scientist?

Introduction to Data Science: What makes a good data scientist?

Introduction to Data Science: Data Science Terminology

Introduction to Data Science: Data Science Terminology

- Data Scientist
- Data Analyst
- Business Analyst
- Data Engineer
- Data Governance
- Data Set
- Data Wrangling
- Data Modeling
- Data Mining
- Data Visualization
- Big Data
- Machine Learning

How do you define data?

 Information or a set of values collected from surveys, experiments, observations, etc.

- In statistics, we classify data into four categories:
 - Nominal Data
 - Ordinal
 - Interval
 - Ratio

Nominal Data

Labels; no quantitative value;
 can be grouped

Nominal Data

Labels; no quantitative value;
 can be grouped

Ordinal

Non-numerical values; can be ranked

PAIN MEASUREMENT SCALE

Ordinal

Non-numerical values; can be ranked

Interval

Numerical values; equal distance
 between; known order and differences

Interval

Numerical values; equal distance
 between; known order and differences

- Ratio
 - Can be compared

The ratio between coke cans to orange juice

Ratio Examples

5:9

Boys:Girls

Temerature	Number of Customers									
	Day 1	Day 2	Day 3							
90	100	80	90							
80	200	180	215							
70	300	260	295							
60	160	180	170							
50	50	50	49							
40	10	9	8							

Temerature	Number of Customers										
	Day 1	Day 2	Day 3								
90	100	80	90								
80	200	180	215								
70	300	260	295								
60	160	180	170								
50	50	50	49								
40	10	9	8								

Temerature	Number of Customers									
	Day 1	Day 2	Day 3							
90	100	80	90							
80	200	180	215							
70	300	260	295							
60	160	180	170							
50	50	50	49							
40	10	9	8							

- Descriptive Statistics
 - Describe data
- Inferential Statistics
 - Describe and infer

Module 1 Video 3: Statistics

A subset of a Population

Random

all items have equal chance to be selected

Distribution:

Shows all values in a data set and their frequency

Central Tendency: a value describes the center or central location of a data set.

 There are three ways to describe the central tendency: mean, median, and mode.

Mean

Numerical average of the data set

Congratulations! Your test score is 80!

Mean (μ mu)

Studens	Α	В	С	D	E	F	G	Н		J	K	L	M	N	O	Р	Q	R	S	Т	U	V
Grades	90	98	56	67	89	78	98	100	64	89	98	76	95	100	90	85	78	95	86	89	91	67

Population mean = μ = (Σ Xi)/N

Where Σ = the sum of

Xi = individual datum value

N = the number of datum in the population

(90+ 98+ 56+ 67+ 89+ 78+ 98+ 100+

78+95+86+89+91+67) **/ 22 = 85.4**

Mean $(\bar{x} \times bar)$

```
Sample mean \bar{x} = (\Sigma xi) / n
Where \Sigma = the sum of
xi = individual datum value
n = the number of datum in the sample
```

Median

Score at 50 percentile; the number in the middle

Congratulations! Your test score is 80!

Median

Studens	Α	В	С	D	E	F	G	Н		J	K	L	M	N	0	Р	Q	R	S	Т	U	V
Grades	90	98	56	67	89	78	98	100	64	89	98	76	95	100	90	85	78	95	86	89	91	67

First, we have to rank order the numbers

Studens	С	I	D	V	L	F	Q	Р	S	E		Т	Α	O	U	M	R	В	G	K	Н	N
Grades	56	64	67	67	76	78	78	85	86	89	89	89	90	90	91	95	95	98	98	98	100	100

Since there are two numbers in an even size data set, we will add the 2 numbers then divide the sum by 2 to obtain the median

$$(89+89)/2=89$$

Median

Coffee 3.25 5.25 5.25 3.55 4.95

First, we have to rank order the numbers

\$4.95 is the median

Mode

The most frequently occurring; the most common

Mode

The most frequently occurring; the most common

Bimodal Distribution

Mode

The most frequently occurring; the most common

It's a fact! 4 out of 5 dentists surveyed would recommend Trident for their patients who chew gum.

Statistics: Central Tendency 2: Mode, Mean, Median – Which One?

- Mode
 - Nominal data outliers are fine
 - Which brand do you prefer?
- Mean
 - Interval and ratio data not excessively skewed
 - What is the average salary?
- Median
 - Ordinal Data skewed data is fine
 - How satisfy are you?

Spread of data

- Standard Deviation
 - Average distance from the mean

Standard Deviation (Population)

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Where σ = lowercase sigma = standard deviation

 Σ = the sum of

Xi = individual datum value

 μ = mean of population

N = the number of datum in the population

- Standard Deviation (Population)
 - Average distance from the mean

- Standard Deviation (Population)
 - Average distance from the mean

- Standard Deviation (Population)
 - Average distance from the mean

- Standard Deviation (Population)
 - Average distance from the mean

Standard Deviation (Population)

- Standard Deviation
 - Price of Ice Tea (1, 3, 6, 8, 7)
 - N = 5
 - $\mu = (1+3+6+8+7)/5 = 5$

$$6 = \sqrt{(1-5)^2 + (3-5)^2 + (6-5)^2 + (8-5)^2 + (7-5)^2}$$

$$6 = \sqrt{16+4+1+9+4} = \sqrt{34}$$

$$6 = \sqrt{3+} = \sqrt{6.8} = \sqrt{2.61}$$

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Standard Deviation (Sample)

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2}$$

Where s = standard deviation (sample)

 Σ = the sum of

xi = individual datum value

 \bar{x} = mean of sample

N = the number of datum in the population

- Variance (Population) = σ^2
- Variance (Sample) = s^2

- Standard Deviation
 - 68-95-99.7 rule
 - Empirical Rule

- Standard Deviation
 - 68-95-99.7 rule
 - Empirical Rule

- Standard Deviation
 - 68-95-99.7 rule
 - Empirical Rule

- Standard Deviation
 - U.S. males average weight is 171 pounds. A 95th percentile male is 216 pounds

- What is the standard deviation σ ?

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

95 Percent males in the United States weight between 126lbs and 216lbs with a standard deviation of 22.5lbs

$$\sigma = ?$$

$$\mu = 171 \, lbs$$

A 95 percentile male is 216 lbs (95 percentile

is 2 standard deviation from mean)

$$\sigma = (216 - 171)/2$$
; $\sigma = 22.5$

Statistics: Z-Score

Z-score

 Describes the location of a raw value in relations to the mean and standard deviation

Statistics: Z-Score for Population

$$Z_X = (X - \mu) / \sigma$$

 σ = ? μ = 171 lbs

A 95 percentile male is 216 lbs (95 percentile

is 2 standard deviation from mean)

 $\sigma = (216 - 171)/2$; $\sigma = 22.5$

Statistics: Z-Score for Population

What is the Z-Score for 120lbs?

$$Z_X = (X - \mu) / \sigma$$

 $Z_{120} = (120 - 171) / 22.5$
 $Z_{120} = -2.27$

 a 120lbs male is 2.27 standard deviation from the mean

$$\sigma$$
 = ?
 μ = 171 lbs
A 95 percentile male is 216 lbs (95 percentile
is 2 standard deviation from mean)
 σ = (216 -171)/2; σ = 22.5

Statistics: Z-Score for Sample

$$z_x = (x - \bar{x}) / s$$

Statistics: Z-Score

In the context of sample size

Standard Deviation (Population)

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Where σ = lowercase sigma = standard deviation

 Σ = the sum of

Xi = individual datum value

 μ = mean of population

N = the number of datum in the population

Standard Deviation (Sample)

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \overline{x})^2}$$

Where s = standard deviation (sample)

 Σ = the sum of

xi = individual datum value

 \bar{x} = mean of population

N = the number of datum in the population

