机器学习作业——鲍鱼年龄预测

董浩宇 502023150001

1. 实现方案

1.1 数据导入与数据类型

为了方便数据的管理与计算,我选用了numpy作为计算的工具。 在互联网将数据集(csv格式)下载到本地后,使用Pandas工具实现数据集的读取,然后将Pandas DataFrames数据格式统一转为numpy.float64格式进行存储与计算。在本次作业中,所有的数据类型均为numpy.float64。

在本次作业中,代码以及报告中的X代表数据集中的特征,而Y代表数据集中的结果, θ 表示模型参数。需要注意的是,为了能够将模型表示为: $\hat{Y}=X\theta$ 的形式,本文中的X与 θ 需要特殊处理,处理方式如下:

第1条数据	1	x1	x2	•••	xn
第2条数据	1	x1	x2	•••	xn
	•••	•••	•••	•••	xn
第N条数据	1	x1	x2		xn
$ heta_0$					
$\overline{ heta_1}$					
$\overline{\theta_2}$					
$\overline{\theta_n}$					

假设由N个特征,在第一个特征的前方添加一个恒定为1的特征。模型参数有N+1项, θ_0 表示的即为偏置项。使用这样的方法处理过后,只需要一个 $\hat{Y}=X\theta$,就能够完整地表示出带有偏置项的线性回归模型。

1.2 对于性别的处理

鲍鱼的性别分为三种,M, F, and I (infant),如果直接使用不同的数字对鲍鱼性别进行编码,可能无法很好地表示出不同性别对于鲍鱼寿命的影响。为了表示鲍鱼的性别,本次作业中选用了one-hot编码方式,对鲍鱼的性别进行编码。具体编码方式如下表:

特征\性别	М	F	I
x1	1	0	0
x2	0	1	0
x3	0	0	1

将性别使用one-hot进行编码之后,总特征由8个变为10个。

1.3 使用梯度下降的方案

在本次作业中,梯度下降线性回归,岭回归与Lasso回归将使用梯度下降方法进行训练。这些方法的训练代价较低,训练速度较快,且使用梯度下降的方法也可以避免 $\hat{\theta}=(X^TX)^{-1}X^Ty$ 中 $(X^TX)^{-1}$ 不可逆的情况,使得训练过程更加稳定。

在本次作业中的梯度下降方法中,标准线性回归的梯度值为:

$$rac{\partial J(heta)}{\partial heta} = X^T(X heta-y)$$

岭回归的梯度值为:

$$rac{\partial J(heta)}{\partial heta} = X^T(X heta-y) + \lambda heta'$$

Lasso回归的梯度值为:

$$rac{\partial J(heta)}{\partial heta} = X^T(X heta-y) + \lambda sgn(heta')$$

使用上方给出的梯度,即可进行梯度下降对模型进行训练。

1.4 使用直接计算的方案

由于局部加权线性回归的特点,对于每一个测试集中的数据,都需要算出不同的W,并且重新计算参数,如果使用梯度下降,则计算成本过高。因此本次作业中,局部加权线性回归使用直接计算的方案来获得参数。使用到的计算公式为:

$$\hat{\theta} = (X^T W X)^{-1} X^T W y$$

其中W为权重矩阵。使用此方法对于每一个测试集中的数据计算出一个模型,从而测试其拟合效果。

2. 实验结果

2.1 基于梯度下降的标准线性回归预测

2.1.1 特征缩放对梯度下降的影响

上图代表不同特征缩放方法对梯度下降的影响,图中截取的是训练过程中的前200步。

在实验中,使用了相同的学习率,相同的训练集与测试集。从图中可以看出,使用特征缩放会放缓训练过程。

在模型的测试方面,本次作业中将所有模型使用相同的学习率(1e-2),相同的学习步数(5000),进行训练。 并且使用十折交叉验证的方法,将数据集进行评估,最终求出各种方法的MSE误差。 在最终进行5000步的训练。完整的训练对比曲线如下图。

各种特征缩放方法的十折交叉验证预测MSE误差分别为:

特征缩放方法	不缩放	MinMax	Mean	Standardization
MSE Mean	6.80	6.93	6.98	5.32

能够看出,使用Standardization方法进行正则化,会降低训练的速度,但是能够明显降低MSELoss。

2.1.2 学习率对梯度下降的影响

上图为不同学习率下,200步内的损失曲线。 可以看出,学习率越高,梯度下降越快。

完整的5000次训练后,十折交叉验证的结果为:

学习率	0.01	0.03	0.06	0.09
MSE_Mean	6.80	5.98	5.46	5.31

可以看出,由于模型较为简单,这里不会出现过分震荡的现象,而且因为5000步还未完全收敛,学习率较大的实验中,训练速度较快,MSELoss都较低。

2.1.3 初值对梯度下降的影响

从训练曲线可以看出,当theat初值在小范围内浮动时,基本上不会对训练造成什么影响,但是如果theta离初值过远,比如图中紫色就是调到了100,就可能陷入局部极小点,造成训练结果不佳。

2.2 Lasso回归和岭回归

上图代表不同正则化方法对梯度下降的影响,在本次实验中,不使用特征缩放,图中截取的是训练过程中的前 200步。可以看出正则化对于这个模型训练速度的影响几乎忽略不计。

完整的实验设置方法与1.中相同,使用相同的学习率(1e-2),相同的学习步数(5000),对于正则化使用相同的 λ (1e-1)。

	不正则化	岭回归	Lasso回归
MSE Mean	6.80	7.49	7.67

从表格中可以看出,使用正则化后,模型测试结果MSE误差增大。

参数	不正则化	岭回归	Lasso回归
θ_0	4.57	7.61	7.57
$ heta_1$	2.05	0.66	0.39
$ heta_2$	1.79	0.41	0.10
θ_3	0.72	-0.80	-0.58
$ heta_4$	2.58	0.63	0.17
$ heta_5$	2.22	0.57	0.00
$ heta_6$	1.08	0.27	0.00
$ heta_7$	1.83	1.66	2.8
$ heta_8$	-2.31	0.02	0.00
$ heta_9$	0.08	0.27	0.00
$ heta_{10}$	2.55	0.94	0.00

上表展示了不同模型使用相同训练集训练出来的参数,可以很明显的看出,使用正则化方法后,模型的参数数值上变小了,而且对于Lasso回归,很多参数都变成了0,也就是说这一个特征与结果关系并不大,在模型中可以删除这一项。

从上面的表格中就能很清楚地看出正则化的意义。

2.3 局部加权线性回归

局部加权线性回归中有一个参数是k,在完成局部加权线性回归的代码后,首先对k取值的影响进行探究。

上图中,横轴乘0.01就是LWLR算法中取得k值,即k从0.05开始,每隔0.01计算一次局部线性加权回归,直到k 取到1。可以看出在k取到0.2之后,局部线性回归的预测结果已经对k不是特别敏感了。

之后我取了k=0.2,进行十折交叉验证,得到的平均MSE如下:

k MSE_LOSS_mean 0.2 4.7

可以看出,相较于其他的方法,局部加权线性回归的MSE误差最小。但是运行局部加权线性回归程序所需要的时间也是最长的。

2.4 影响鲍鱼年龄的主要因素

参数	参数对应特征	不正则化	岭回归	Lasso回归
θ_0	常数	4.57	7.61	7.57
$ heta_1$	性别为Female	2.05	0.66	0.39
$ heta_2$	性别为Male	1.79	0.41	0.10
θ_3	性别为Infant	0.72	-0.80	-0.58
$ heta_4$	Length	2.58	0.63	0.17

参数	参数对应特征	不正则化	岭回归	Lasso回归
$ heta_5$	Diameter	2.22	0.57	0.00
$ heta_6$	Height	1.08	0.27	0.00
$ heta_7$	Whole weight	1.83	1.66	2.8
$ heta_8$	Shucked weight	-2.31	0.02	0.00
$ heta_9$	Viscera weight	0.08	0.27	0.00
$ heta_{10}$	Shell weight	2.55	0.94	0.00

综上上文多种模型的预测结果(特别是正则化回归结果),影响鲍鱼年龄的主要因素有Sex,Whole Weight以及Length。性别为Female与鲍鱼年龄正相关,而性别为Infant与鲍鱼年龄负相关,Whole Weight以及Length与鲍鱼年龄正相关。

3. 不同模型的比较

使用相同的超参数对上文的所有模型进行测试,得到最终的MSE误差结果为:

	标准梯度下降	岭回归	Lasso回归	局部加权线性回归
MSE_Mean	6.80	7.49	7.67	4.7
Run_Time(ms)	634	602	650	6650

可以看出局部加权线性回归的拟合能力明显强于其他的模型,但是局部加权线性回归计算量非常大,计算所需要的时间远远高于其他的算法,另外三种算法时间相差不大,可以认为时间复杂度相同。